The Optimal Design of Climate Agreements Inequality, Trade, and Incentives for Carbon Policy

Thomas Bourany
THE UNIVERSITY OF CHICAGO

EPIC lunch

October 2024

Motivation

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The "free-riding problem" causes climate inaction:
 - Climate policy redistributes across countries through:
 (i) change in climate (ii) energy markets, and (iii) reallocation of activity through trade

Motivation

- ▶ Proposals to fight climate inaction and the free-riding problem:
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"
 - Carbon Border Adjustment mechanisms (CBAM), EU policy: carbon tariffs

Motivation

- ▶ Proposals to fight climate inaction and the free-riding problem:
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"
 - Carbon Border Adjustment mechanisms (CBAM), EU policy: carbon tariffs

⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate agreement boils down to a carbon price, a tariff rate and a choice of countries
 - Trade-off:

Intensive margin: a "climate club" with few countries and large emission reductions vs. *Extensive margin:* a larger set of countries, at the cost of lowering the carbon tax

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate agreement boils down to a carbon price, a tariff rate and a choice of countries
 - Trade-off:

 Intensive margin: a "climate club" with few countries and large emission reductions vs. Extensive margin: a larger set of countries, at the cost of lowering the carbon tax
 - Build a Climate-Macro model (IAM) with heterogeneous countries and trade to study the strategic implications of climate agreements and the optimal club design

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate agreement boils down to a carbon price, a tariff rate and a choice of countries
 - Trade-off:

 Intensive margin: a "climate club" with few countries and large emission reductions vs. Extensive margin: a larger set of countries, at the cost of lowering the carbon tax
 - Build a Climate-Macro model (IAM) with heterogeneous countries and trade to study the strategic implications of climate agreements and the optimal club design
- Preview of the results:
 - Despite complete freedom of policy instruments, impossible to achieve the world's optimal policy with complete participation
 - · Beneficial to leave several fossil fuels producing countries outside of the climate agreement
 - Welfare improvement with transfers, c.f. UN COP27's "loss and damage" fund

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al (2024)
 - Tariff policy: Ossa (2014), Costinot et al (2015), Adao, Costinot (2022), Antràs et al (2022)
 - ⇒ Climate cooperation and optimal design of climate agreement

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al (2024)
 - Tariff policy: Ossa (2014), Costinot et al (2015), Adao, Costinot (2022), Antràs et al (2022)
 - ⇒ Climate cooperation and optimal design of climate agreement

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), BA Thringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al (2024)
 - Tariff policy: Ossa (2014), Costinot et al (2015), Adao, Costinot (2022), Antràs et al (2022)
 - ⇒ Climate cooperation and optimal design of climate agreement
- ▶ IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - Non-cooperative or suboptimal taxation: Chari, Kehoe (1990), Hassler, Krusell, Olovsson (2019)
 - Strategic and constrained policy with heterogeneous countries & trade

October 2024

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016), Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al (2024)
 - Tariff policy: Ossa (2014), Costinot et al (2015), Adao, Costinot (2022), Antràs et al (2022)
 - ⇒ Climate cooperation and optimal design of climate agreement
- ► IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - Non-cooperative or suboptimal taxation: Chari, Kehoe (1990), Hassler, Krusell, Olovsson (2019)
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade

- ► Nordhaus (2015)
 - Examine "stable climate coalitions" (club imposing carbon tax) in a simple model
 - Abstract from General Equilibrium and distributional effects
 - Results: Penalty tariffs necessary to enforce a climate club
- ► Farrokhi, Lashkaripour (2024)
 - Study and characterize the optimal trade policy with climate externality
 - General static trade model. Results: unilateral tariffs not effective
 - Sequential search for one stable climate club if EU or US join.

► Main contribution:

- Search for the *optimal* climate agreement
- GE on good and energy market and redistribution effects are important
- Cost of climate change is endogenous to policy: damages are non-linear
- Analyze other distributional policies (transfers/taxes, *loss and damage funds*)
- General framework for analyzing macrodynamics (c.f. Bourany (2024))

6/28

└─Household & Firms

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature T_i , energy extraction cost C_i
 - In each country, five agents:
 - 1. Representative household $V_i = \max_{c_{ii}} u(c_i)$

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{\theta}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}$$

$$\sum_{j} c_{ij} \underbrace{\left(1 + t_{ij}^{b}\right)}_{\text{tariff}} \underbrace{\tau_{ij}}_{\text{iceberg}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{profit}} + t_{i}^{f}$$

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature T_i , energy extraction cost \mathcal{C}_i
 - In each country, five agents:
 - 1. Representative household $V_i = \max_{c_i} u(c_i)$

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \sum_{j} c_{ij} \underbrace{\left(1 + t_{ij}^{b}\right)}_{\text{tariff}} \underbrace{\tau_{ij}}_{\text{iceberg}} p_{j} = \underbrace{w_{i}\ell_{i}}_{\text{fossil firm profit}} + t_{i}^{ls}$$

2. Competitive final good firm:

$$\max_{\ell_i, \boldsymbol{e}_i^f, \boldsymbol{e}_i^c, \boldsymbol{e}_i^c} \mathsf{p}_i \ \mathcal{D}_i(\mathcal{E}) \ z_i f(\ell_i, \boldsymbol{e}_i^f, \boldsymbol{e}_i^c, \boldsymbol{e}_i^r) - w_i \ell_i - (q^f + \mathsf{t}_i^\varepsilon) \boldsymbol{e}_i^f - (q_i^c + \mathsf{t}_i^\varepsilon) \boldsymbol{e}_i^c - q_i^r \boldsymbol{e}_i^r$$

- Externality: Damage function $\mathcal{D}_i(\mathcal{E})$, Income inequality from z_i , Carbon tax: t_i^{ε}
- Trade, à la Armington

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

Energy traded in international markets, at price q^f

$$E^f = \sum_{\mathbb{I}} e_i^f = \sum_{\mathbb{I}} e_i^x$$

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

Energy traded in international markets, at price q^f

$$E^f = \sum_{\mathbb{I}} e_i^f = \sum_{\mathbb{I}} e_i^x$$

- 4. Coal energy firm: elastic supply e_i^c at price $q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm: elastic supply e_i^r at price $q_i^r = z_i^r \mathbb{P}_i$

Energy markets

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

Energy traded in international markets, at price q^f

$$E^f = \sum_{\mathbb{I}} e_i^f = \sum_{\mathbb{I}} e_i^x$$

- 4. Coal energy firm: elastic supply e_i^c at price $q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm: elastic supply e_i^r at price $q_i^r = z_i^r \mathbb{P}_i$
- Climate system: mapping from emission $\mathcal{E} = \sum_{\mathbb{I}} e_i^f + e_i^c$ to damage $\mathcal{D}_i(\mathcal{E})$

Model – Equilibrium

- Given policies $\{t_i^{\varepsilon}, t_{ij}^{b}, t_i^{ls}\}_i$, a **competitive equilibrium** is a set of decisions $\{c_{ij}, e_i^{f}, e_i^{c}, e_i^{r}, e_i^{x}\}_{ij}$, emission $\{\mathcal{E}\}_i$ changing climate and prices $\{p_i, w_i, q_i^{c}, q_i^{r}\}_i, q^f$ such that:
- Households choose $\{c_{ij}\}_{ij}$ to max. utility s.t. budget constraint
- Firm choose inputs $\{e_i^f, e_i^c, e_i^r\}_i$ to max. profit
- \circ Oil-gas firms extract/produce $\{e_i^x\}_i$ to max. profit. + Elastic renewable, coal supplies $\{e_i^c,e_i^r\}_i$
- \circ Emissions \mathcal{E} affects climate and damages $\mathcal{D}_i(\mathcal{E})$
- o Government budget clear $\sum_i t_i^{ls} = \sum_i t_i^{\varepsilon} (e_i^f + e_i^c) + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- o Prices $\{p_i, w_i, q^f\}$ adjust to clear the markets for energy $\sum_{\mathbb{I}} e^x_{it} = \sum_{\mathbb{I}} e^f_{it}$ and for each good

$$y_i := \mathcal{D}_i(\mathcal{E}) z_i f(\ell_i, e_i^f, e_i^r, e_i^r) = \sum_{k \in \mathbb{I}} \tau_{ki} c_{ki} + \sum_{k \in \mathbb{I}} \tau_{ki} (x_{ki}^f + x_{ki}^c + x_{ki}^r)$$

with x_{ki} export of good i as input in energy production in k In expenditure, with import shares $s_{ij} = \frac{c_{ij}\tau_{ij}p_{i}}{c_{i}\mathbb{P}_{i}}$, it yields

$$p_{i}y_{i} = \sum_{k \in \mathbb{T}} \frac{s_{ki}}{1 + t_{ki}^{b}} (p_{k}y_{k} + q^{f}(e_{k}^{x} - e_{k}^{f}) + \tilde{t}_{k}^{ls})$$

Ramsey Problem with endogenous participation

- **Definition:** A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax t^{ε}
 - If j exits agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $\mathfrak{t}_{ij}^b = \mathfrak{t}^b$ on goods from j They still trade with club members in oil-gas at price q^f
 - Exit: unilateral deviation $\mathbb{J}\setminus\{j\}$, \Rightarrow *Nash equilibrium*
- ▶ Participation constraints, given indirect utility $U_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$

$$U_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \ge U_i(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)$$
 [Nash equilibrium]

▶ Objective: search for the optimal *and stable* climate agreement

$$\max_{\mathbb{J}, \mathbf{t}^{\varepsilon}, \mathbf{t}^{b}} \mathcal{W}(\mathbb{J}, \mathbf{t}^{\varepsilon}, \mathbf{t}^{b}) = \max_{\mathbf{t}^{\varepsilon}, \mathbf{t}^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} U_{i}(\mathbb{J}, \mathbf{t}^{\varepsilon}, \mathbf{t}^{b})$$

$$s.t. \qquad \mathbb{J} \in \mathbb{S}(\mathbf{t}^{\varepsilon}, \mathbf{t}^{b}) = \left\{ \mathcal{I} \mid U_{i}(\mathbb{J}, \mathbf{t}^{\varepsilon}, \mathbf{t}^{b}) \geq U_{i}(\mathbb{J} \setminus \{i\}, \mathbf{t}^{\varepsilon}, \mathbf{t}^{b}) \ \forall i \in \mathcal{I} \right\}$$

Ramsey Problem with endogenous participation

▶ *Objective*: optimal *and stable* climate agreement $\{J, t^{\varepsilon}, t^{b}\}$

$$\max_{\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}} \mathcal{W}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) = \max_{\mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} U_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b})$$

$$s.t. \qquad \mathbb{J} \in \mathbb{S}(\mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) = \left\{ \mathcal{I} \mid U_{i}(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) \geq U_{i}(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^{b}) \ \forall i \in \mathcal{I} \right\}$$

• Alternative: *Coalitional Nash-equilibrium* $\mathbb{C}(\mathfrak{t}^f,\mathfrak{t}^b)$: robust of sub-coalitions deviations:

$$\mathbb{J} \in \mathbb{C}(\mathfrak{t}^f,\mathfrak{t}^b) = \left\{ \mathcal{J} \mid U_i(\mathbb{J},\mathfrak{t}^f,\mathfrak{t}^b) \geq U_i(\mathbb{J} \backslash \hat{\mathbb{J}},\mathfrak{t}^f,\mathfrak{t}^b) \ \forall i \in \hat{\mathbb{J}} \ \& \ \forall \ \hat{\mathbb{J}} \subseteq \mathcal{J} \cup \{i\} \right\}$$

Ramsey Problem with endogenous participation

▶ *Objective:* optimal *and stable* climate agreement $\{J, t^{\varepsilon}, t^{b}\}$

$$\max_{\mathbb{J}, t^{\varepsilon}, t^{b}} \mathcal{W}(\mathbb{J}, t^{\varepsilon}, t^{b}) = \max_{t^{\varepsilon}, t^{b}} \max_{\mathbb{J}} \sum_{i \in \mathbb{I}} \omega_{i} U_{i}(\mathbb{J}, t^{\varepsilon}, t^{b})$$

$$s.t. \qquad \mathbb{J} \in \mathbb{S}(t^{\varepsilon}, t^{b}) = \left\{ \mathcal{J} \mid U_{i}(\mathbb{J}, t^{\varepsilon}, t^{b}) \geq U_{i}(\mathbb{J} \setminus \{i\}, t^{\varepsilon}, t^{b}) \ \forall i \in \mathcal{J} \right\}$$

• Alternative: *Coalitional Nash-equilibrium* $\mathbb{C}(\mathfrak{t}^f,\mathfrak{t}^b)$: robust of sub-coalitions deviations:

$$\mathbb{J} \in \mathbb{C}(\mathfrak{t}^f, \mathfrak{t}^b) = \left\{ \mathcal{J} \mid U_i(\mathbb{J}, \mathfrak{t}^f, \mathfrak{t}^b) \geq U_i(\mathbb{J} \setminus \hat{\mathbb{J}}, \mathfrak{t}^f, \mathfrak{t}^b) \ \forall i \in \hat{\mathbb{J}} \& \forall \ \hat{\mathbb{J}} \subseteq \mathcal{J} \cup \{i\} \right\}$$

- No country i and subcoalition \hat{J} would be better off than in the current agreement J
- Current design: (i) choose taxes {t^f, t^b},
 (ii) choose the coalition J s.t. participation constraints hold
- Solution method (Nash equilibrium):
 - relies on the complementarity of the combinatorial discrete choice problem and use
 a "squeezing procedure", c.f. Jia (2008), Arkolakis, Eckert, Shi (2023), to handle the problem

Quantification

- ► Energy parameters to match production/reserves,
 - Isoelastic cost function $C_i(e_i^x) = \bar{\nu}_i (e_i^x/\mathcal{R}_i)^{1+\nu_i} \mathcal{R}_i$
 - Use $\bar{\nu}_i, \nu_i$ to match e_i^x and π_i^f ,
- ► Armington model,
 - Iceberg cost τ_{ij} projected on distance and preferences a_{ij} to match import shares $s_{ij} = \frac{c_{ij}\tau_{ij}p_j}{c_i\mathbb{P}_i}$
- ► Production $\bar{y} = zf(\ell_i, k_i, e_i^f, e_i^r)$
 - Nested CES energy vs. labor-capital Cobb-Douglas bundle $k_i^{\alpha} \ell_i^{1-\alpha}$ (elasticity $\sigma_y < 1$), and fossil/renewable $\sigma_e > 1$, $CES(e_i^f, e_i^r)$
 - TFP, and DTC, z_i, z_i^e , calibrated to match GDP / energy shares data.
- Pareto weights ω_i :
 - Imply no redistribution motive, \bar{c}_i consumption in initial equilibrium t = 2020

$$\omega_i = \frac{1}{u'(\bar{c}_i)}$$

Details More details Details Pareto weights

Quantification – Climate system and damage

- Static economic model: decisions $e_i^f + e_i^c$ taken "once and for all", $\mathcal{E} = \sum_i e_i^f + e_i^c$
 - Climate system:

$$\dot{\mathcal{S}}_t = \mathcal{E} - \delta_s \mathcal{S}_t$$
 $T_{it} = \bar{T}_{i0} + \Delta_i \mathcal{S}_t$

 Path of period damages heterogeneous across countr Quadratic (c.f. Nordhaus-DICE)

$$\mathcal{D}_i(T_{it}) = e^{-\gamma (T_{it} - T_i^{\star})^2}$$

Economic feedback in Present discounted value

$$\mathcal{D}_i(\mathcal{E}) = \int_0^\infty e^{-\rho t} \mathcal{D}(T_{it}) dt$$

Similarly for LCC_i, SCC_i...

Quantitative application – Sample of 10 "regions"

- Sample of 10 "regions": (i) US+Canada, (ii) China+HK, (iii) EU+UK+Schengen, (iv) South Asia, (v) Sub-saharian Africa, (vi) Middle-East+Maghreb, (vii) Russia+CIS, (viii) Japan+Korean+Australia+Asian Dragons, (ix) South-East Asia (Asean), (x) Latin America WIP: 25 countries + 5 regions
- ▶ Data (Avg. 2018-2023) on macro variables, energy markets, trade shares $s_{ij} = \frac{c_{ij}\tau_{ij}p_j}{c_iP_i}$, etc.

Optimal policy: benchmarks

- ► Three policy benchmarks, c.f. Bourany (2024), without endogenous participation
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects

Optimal policy: benchmarks

- ► Three policy benchmarks, c.f. Bourany (2024), without endogenous participation
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects
 - Second-Best: Social planner, single carbon tax without transfers
 - Optimal carbon tax t^{ε} correct climate externality, but also accounts for:
 - (i) Redistribution motives, G.E. effects on (ii) energy markets and (iii) trade leakage

$$t^{\varepsilon} = \underbrace{\sum_{i} \phi_{i} LCC_{i}}_{} + \sum_{i} \phi_{i} \text{ Supply Redistrib}_{i}^{\circ} - \sum_{i} \phi_{i} \text{ Demand Distort}_{i}^{\circ} - \sum_{i} \phi_{i} \text{ Trade Redistrib}_{i}^{\circ} \qquad \phi_{i} \propto \omega_{i} u'(c_{i})$$

Details: Competitive equilibrium Details eq 0 , First-Best, with unlimited instruments Details eq 1 ,
 Second-best, Ramsey policy with limited instruments Details eq 2

Optimal policy: benchmarks

- ► Three policy benchmarks, c.f. Bourany (2024), without endogenous participation
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects
 - **Second-Best:** Social planner, single carbon tax without transfers
 - Optimal carbon tax t^{ε} correct climate externality, but also accounts for:
 - (i) Redistribution motives, G.E. effects on (ii) energy markets and (iii) trade leakage

$$\mathbf{t}^{\varepsilon} = \underbrace{\sum_{i} \phi_{i} LCC_{i}}_{-SC} + \sum_{i} \phi_{i} \text{ Supply Redistrib}_{i}^{\circ} - \sum_{i} \phi_{i} \text{ Demand Distort}_{i}^{\circ} - \sum_{i} \phi_{i} \text{ Trade Redistrib}_{i}^{\circ} \qquad \phi_{i} \propto \omega_{i} u'(c_{i})$$

- Details: Competitive equilibrium Details eq 0 , First-Best, with unlimited instruments Details eq 1 ,
 Second-best, Ramsey policy with limited instruments Details eq 2
- *Unilateral policy:* Local planner in country *i* unilaterally choosing t_i^{ε} and t_{ij}^{b}
 - Optimal unilateral carbon tax (subsidy!) and tariffs for terms-of-trade manipulations
 - Nash equilibrium of ${\mathbb I}$ countries choosing individually unilateral policies

Gains from cooperation – World Optimal policy

- ► Optimal carbon tax (Second Best): ~ \$136/tCO₂
- ► Reduce fossil fuels / CO₂ emissions by 40% compared to Business as Usual (BAU)
- Welfare difference btw world optimal policy w/o participation constraints vs BAU (Comp. Eq.)

Trade-off – Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Trade-off – Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Theoretical investigation: decomposing the welfare effects

- **Experiment:**
 - Start from the equilibrium where carbon tax $\mathbf{t}_{j}^{f} = 0, \mathbf{t}_{jk}^{b} = 0, \forall j,$
 - Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax $dt_i^f, \forall j$ and tariffs $dt_{i,k}^b, \forall j, k$

$$\frac{d\mathcal{V}_i}{u'(c_i)} = \eta_i^c \frac{d\mathbf{p}_i}{\mathbf{p}_i} + \left[\eta_i^c \gamma_i \frac{1}{\bar{\nu}} - \eta_i^c \mathbf{s}_i^e + \eta_i^{\pi} (1 + \frac{1}{\bar{\nu}}) \right] \frac{dq^f}{q^f} + \dots$$

• Difference in the GE effect on energy markets $\frac{dq'}{q'} \approx \bar{\nu} \frac{dE'}{E'} + \dots$, due to taxation

$$\frac{dq^f}{q^f} = -\sum_j \nu_j^f \frac{dt_j^f}{t_j^f} + \sum_i \nu_j^{p,R} \frac{d\mathbf{p}_j}{\mathbf{p}_j} + \sum_{j,k} \nu_j^{R,f,z,qr} s_{j,k} \frac{dt_{jk}^b}{t_{jk}^b}$$

- Trade and leakage effect: GE impact of t_i^f and t_i^b on y_i and p_i
- Simplifying assumption: no renewable

 \circ Params: σ energy demand elast^v, s^e energy cost share, $\bar{\nu}$ energy supply inverse elas^v, Climate damage γ_i

Decomposing the welfare effects: gains from trade

- Start from the equilibrium where carbon tax $\mathbf{t}_{i}^{f} = 0, \mathbf{t}_{ik}^{b} = 0, \forall j$,
- Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax $dt_i^f, \forall j$ and tariffs $dt_{i,k}^b, \forall j, k$

$$\frac{d\mathbf{p}}{\mathbf{p}} = \left[\mathbf{I} - \mathbf{T} - (\theta - 1) \left[\mathbf{T} \odot \mathbf{S} - (\mathbf{T} \odot \mathbf{I})' \right] \right]^{-1} \left((\mathbf{T} - \mathbf{I}) \frac{dy}{y} + \left(\mathbf{T} \left[(\theta - 1) \mathbf{I} - \theta \mathbf{S} \right] \odot \frac{dt^b}{t^b} \right) \mathbb{1} \right)
\frac{dy_i}{y_i} = \alpha_i^{p,qr} \frac{d\mathbf{p}_i}{\mathbf{p}_i} - \alpha_i^{qf} \frac{dt_i^f}{t_i^f} + \dots$$

 \circ Params: **S** Trade share matrix, **T** income flow matrix, θ , Armington CES

Climate Agreements: Intensive vs. Extensive Margin

- ► Intensive margin: higher tax, emissions ↓, welfare ↑
- ► Extensive margin: higher tax, participation ↓, free-riding and emissions ↑

Optimal Climate Agreement

- Despite full freedom of instruments (t^ε, t^b)
 - ⇒ can not sustain an agreement with Russia & Middle East
 - \Rightarrow need to reduce carbon tax from \$136 to \$98
- ► Intuition: relatively cold and closed economy, and fossil-fuel producers

Climate agreement and welfare

Recover 91% of welfare gains, i.e. 4.5% out of 5% conso equivalent.

Welfare and emission reduction: Different metrics!

- Agreements with tariffs recover 91% of welfare gains from the Second-Best optimal carbon tax without transfers – at a cost of increasing emissions by 13%
- First-best allocation relies heavily on transfers to be able to impose a higher carbon tax

Transfers – Loss and damage funds

- ► COP28 Major policy proposal: Loss and damage funds for countries vulnerable to the effects of climate change
- Simple implementation in our context: lump-sum receipts of carbon tax revenues:

$$\mathbf{t}_{i}^{ls} = (1 - \alpha)\mathbf{t}^{\varepsilon}\varepsilon_{i} + \alpha \frac{1}{\mathcal{P}} \sum_{j} \mathbf{t}^{\varepsilon}\varepsilon_{j}$$

► In practice: transfers from large emitters to low emitters

Taxation of fossil fuels energy inputs

- Current climate club: only imposes penalty tariffs on final goods, not on energy imports
 - Empirically relevant, c.f. Shapiro (2021): inputs are more emission-intensives but trade policy is biased against final goods output
- Alternative: tax energy import from non-participants $t_{ii}^{bf} = \beta t^b \mathbb{1}\{i \in \mathbb{J}, j \notin \mathbb{J}\}$

Dynamic coalition formation

- Current "equilibrium": $t_i^{\varepsilon} = 0$, $t_{ii}^b = 0$
- Optimal club equilibrium $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon \star}, \mathbf{t}_{ii}^b = \mathbf{t}^{b \star} \mathbb{1}\{i \in \mathbb{J}, j \notin \mathbb{J}\}$
- Optimal agreement follows the planner taxes and participation decision:

$$\mathbb{J}^{\star} = \mathbb{J}\big(\mathfrak{t}^{\varepsilon\star},\mathfrak{t}^{b\star}\big)$$

- What is driving the coordination failure?
 - Possible explanation: coalition building and *bargaining* may never reach such equilibrium:

$$ar{\mathbb{J}}_{t_0}(0,0) = \mathbb{I} \quad \stackrel{?}{\underset{t o T}{\longrightarrow}} \quad ar{\mathbb{J}}_Tig(\mathsf{t}^{arepsilon\star},\mathsf{t}^{b\star}ig) = \mathbb{J}^\star$$

• Can we find a sequence \mathbb{J}_t , t_t^f , t_t^b such that

$$\{\mathbb{J}_{t_0}, t_{t_0}^f, t_{t_0}^b\} = \{\bar{\mathbb{J}}_{t_0}, 0, 0\}$$
 $\{\mathbb{J}_T, t_T^\varepsilon, t_T^b\} = \{\bar{\mathbb{J}}_T, t_T^{f\star}, t_T^{b\star}\}$

Instruments used by leader countries (e.g. E.U., U.S. or China?) to reach such agreement?

26/28

Conclusion

- ► In this project, I solve for the optimal design of climate agreements
 - Correcting for inequality, redistribution effects through energy markets and trade leakage, as well as free-riding incentives
- ► Climate agreement design jointly solves for:
 - The optimal choice of countries participating
 - The carbon tax and tariff levels, accounting for both the climate externality, redistributive effects and the participation constraints
- ▶ Optimal coalition depends on the trade-off between
 - the gain from cooperation and free riding incentives
 - the gain from trade, i.e. the cost of retaliatory tariffs
 - \Rightarrow Need a large coalition and a carbon at 70% of the world optimum
- **Extensions:**
 - Extend this to dynamic settings: coalition building
 - Explore additional policy proposal to improve the optimal agreement

Conclusion

Thank you!

 $thomas bour any @\,uchicago.edu$

Optimal Design of Climate Agreements

Appendices

Welfare and Pareto weights

Welfare:

$$\mathcal{W}(\mathbb{J}) = \sum_{i \in \mathbb{I}} \omega_i \ u(c_i)$$

• Pareto weights ω_i :

$$\omega_i = \frac{1}{u'(\bar{c}_i)}$$

for \bar{c}_i consumption in initial equilibrium "without climate change", i.e. year = 2020

• Imply no redistribution motive in t = 2020

$$\omega_i u'(\bar{c}_i) = \omega_i u'(\bar{c}_i) \quad \forall i, j \in \mathbb{I}$$

 Climate change, taxation, and climate agreement (tax + tariffs) have redistributive effects
 ⇒ change distribution of c_i

back

Quantification – Trade model

• Armington Trade model:

$$s_{ij} \equiv \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij} \frac{((1+t_{ij})\tau_{ij}p_{j})^{1-\theta}}{\sum_{k} a_{ik}((1+t_{ik})\tau_{ik}p_{k})^{1-\theta}}$$

- CES $\theta = 5.63$ estimated from a gravity regression
- Iceberg cost τ_{ij} as projection of distance $\log \tau_{ii} = \beta \log d_{ii}$
- Preference parameters a_{ij} identified as remaining variation in the trade share s_{ij}
 ⇒ policy invariant

back

Step 0: Competitive equilibrium & Trade

- ► Each household in country *i* maximize utility and firms maximize profit
- Standard trade model results:
 - Consumption and trade:

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}{\sum_{k} a_{ik}(\tau_{ik}(1+t_{ik}^{b})p_{k})^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(\tau_{ij}p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

• Energy consumption doesn't internalize climate damage:

$$p_iMPe_i=q^e$$

Inequality, as measured in local welfare units:

$$\lambda_i = u'(c_i)$$

• "Local Social Cost of Carbon", for region i

$$LCC_{i} = \frac{\partial W_{i}/\partial \mathcal{E}}{\partial W_{i}/\partial w_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} = -\Delta_{i}\mathcal{D}'(T_{i})z_{i}f(e_{i}^{f})\frac{p_{i}}{\mathbb{P}_{i}}$$
 (> 0 if heat causes losses)

Step 1: World First-best policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers \mathbf{t}_i^{ls} , individual carbon taxes \mathbf{t}_i^f on energy e_i^f , bilateral tariffs \mathbf{t}_{ii}^b
- Budget constraint: $\sum_i t_i^b = \sum_i t_i^f e_i^f + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- ► Maximize welfare subject to
 - Market clearing for good $[\mu_i]$, market clearing for energy μ^e

back

Step 1: World First-best policy

- Social planner results:
 - Consumption:

$$\omega_i u'(c_i) = \left[\sum_j a_{ij} (\tau_{ij}\omega_j \mu_j)^{1-\theta}\right]^{\frac{1}{1-\theta}}$$

Energy use:

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

• Social cost of carbon:

$$SCC = -\frac{\sum_{j} \Delta_{j} \omega_{j} \mu_{j} \mathcal{D}'_{j}(T_{j}) \bar{y}_{j}}{\frac{1}{I} \sum_{j} \omega_{j} \mu_{j}}$$

back

Step 2: World optimal Ramsey policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument: uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^f e_i^f$
- ▶ Ramsey policy: Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy
 - Optimality (FOC) conditions for good demands $[\eta_{ij}]$, energy demand & supply, etc.
 - Trade-off faced by the planner:
 - (i) Correcting externality, (ii) Redistributive effect, (iii) Distort energy demand and supply

Step 2: World optimal Ramsey policy

- ► The planner takes into account
 - (i) the marginal value of wealth λ_i
 - (ii) the shadow value of good i, from market clearing, μ_i :

w/o trade
$$\omega_i u'(c_i) = \omega_i \lambda_i$$
 vs. w/ trade in goods:
$$\omega_i u'(c_i) = \left(\sum_{i \in \mathbb{T}} a_{ij} (\tau_{ij} \mathbf{p}_j)^{1-\theta} \left[\omega_i \lambda_i + \omega_j \mu_j + \eta_{ij} (1-s_{ij})\right]^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

▶ Relative welfare weights, representing inequality

w/o trade:
$$\widehat{\lambda}_i = \frac{\omega_i \lambda_i}{\overline{\lambda}} = \frac{\omega_i u'(c_i)}{\frac{1}{I} \sum_{\mathbb{I}} \omega_j u'(c_j)} \leq 1 \qquad \Rightarrow \qquad \begin{array}{c} \text{ceteris paribus, poorer} \\ \text{countries have higher } \widehat{\lambda}_i \end{array}$$
vs. w/ trade:
$$\widehat{\lambda}_i = \frac{\omega_i (\lambda_i + \mu_i)}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i (\lambda_i + \mu_i)} \leq 1$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region i:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(T_i) z_i f(e_i^f) p_i \qquad (> 0 \text{ if heat causes losses})$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(T_i) z_i f(e_i^f) p_i \qquad (> 0 \text{ if heat causes losses})$$

Social Cost of Carbon for the planner:

$$SCC := \frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i (\lambda_i + \mu_i)}$$

Social Cost of Carbon integrates these inequalities:

$$SCC = \sum_{\mathbb{T}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{T}} LCC_i + \mathbb{C}ov_i(\widehat{\lambda}_i, LCC_i)$$

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial W/\partial E}{\partial W/\partial w} = \mathcal{C}_{EE}^f \operatorname{Cov}_i \left(\widehat{\lambda}_i, e_i^f - e_i^x \right) - \operatorname{Cov}_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma} \right)$$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial \mathcal{W}/\partial E}{\partial \mathcal{W}/\partial w} = \underbrace{\mathcal{C}_{EE}^{f}}_{\substack{\text{agg. supply} \\ \text{distortion}}} \underbrace{\mathbb{C}\text{ov}_{i}(\widehat{\lambda}_{i}, \underbrace{e_{i}^{f} - e_{i}^{x}}_{i})}_{\substack{\text{terms-of-trade} \\ \text{redistribution}}} - \underbrace{\mathbb{C}\text{ov}_{i}(\widehat{\lambda}_{i}, \underbrace{e_{i}^{f} - e_{i}^{x}}_{\sigma})}_{\substack{\text{demand} \\ \text{distortion}}}$$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure: Social Value of Fossil (SVF)

$$SVF := \frac{\partial W/\partial E}{\partial W/\partial w} = C_{EE}^f \operatorname{Cov}_i \left(\widehat{\lambda}_i, e_i^f - e_i^x \right) - \operatorname{Cov}_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma} \right)$$

- \circ Params: \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity
- ► *Proposition 2:* Optimal fossil energy tax:

$$\Rightarrow$$
 $\mathbf{t}^f = SCC + SVF$

– Social cost of carbon: $SCC = \sum_{\mathbb{I}} \hat{\lambda}_i LCC_i$

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- ► Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- ► Participation constraints:

$$u(c_i) \ge u(\tilde{c}_i)$$
 $[\nu_i]$

► Welfare:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{\mathbb{J}} \omega_i \ u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \ u(c_i)$$

Step 3: Ramsey Problem with participation constraints

Participation constraints

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

- ▶ Proposition 3.1: Second-Best social valuation with participation constraints
 - Participation incentives change our measure of inequality

w/ trade:
$$\omega_{i}(1+\nu_{i})u'(c_{i}) = \left(\sum_{j\in\mathbb{I}}a_{ij}(\tau_{ij}\mathsf{p}_{j})^{1-\theta}\left[\omega_{i}\widetilde{\lambda}_{i}+\omega_{j}\widetilde{\mu}_{j}+\widetilde{\eta}_{ij}(1-s_{ij})\right]^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

$$\Rightarrow \qquad \widehat{\widehat{\lambda}}_{i} = \frac{\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})}{\frac{1}{J}\sum_{\mathbb{J}}\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})} \neq \widehat{\lambda}_{i}$$
vs. w/o trade
$$\widehat{\widehat{\lambda}}_{i} = \frac{\omega_{i}(1+\nu_{i})u'(c_{i})}{\frac{1}{L}\sum_{\mathbb{J}}\omega_{j}(1+\nu_{j})u'(c_{j})} \neq \widehat{\lambda}_{i}$$

• Similarly, the "effective Pareto weights" are $\alpha\omega_i$ for countries outside the club $i \notin \mathbb{J}$ and $\omega_i(\alpha - \nu_i)$ for retaliation policy on $i \in \mathbb{J}$

Step 3: Participation constraints & Optimal policy

- ► *Proposition 3.2:* Second-Best taxes:
 - Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$
 - Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu \sigma}{q^f(1-s^f)}$ with ν fossil supply elasticity, σ energy demand elasticity and s^f energy cost share.
 - Optimal fossil energy tax $t^f(\mathbb{J})$:

$$\Rightarrow \quad \mathbf{t}^{f}(\mathbb{J}) = SCC + \underline{SVF}$$

$$= \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} LCC_{i} + \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} \mathcal{C}_{EE}^{f} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} (\underline{e}_{i}^{f} - \underline{e}_{i}^{x}) - \sum_{i \in \mathbb{J}} \widetilde{\lambda}_{i} \frac{\underline{q}^{f}(1 - \underline{s}_{i}^{f})}{\sigma}$$

• Optimal tariffs/export taxes $t^{b,r}(\mathbb{J})$ and $t^b(\mathbb{J})$: In search for a closed-form expression As of now, only opaque system of equations (fixed point w/ demand/multipliers)

Countries' incentives – Model w/o trade in goods

- Experiment: Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax $\mathfrak{t}^f(\mathbb{J}) = 0$, \Rightarrow country i is indifferent to join the club \mathbb{J} or not
 - Linear approximation around that point \Rightarrow small changes in carbon tax dt^f

Countries' incentives – Model w/o trade in goods

- Experiment: Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax $t^f(\mathbb{J}) = 0$, \Rightarrow country i is indifferent to join the club \mathbb{J} or not
 - Linear approximation around that point \Rightarrow small changes in carbon tax dt^f
 - Change in welfare if $i \in \mathbb{J}$ vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_i^{i\in\mathbb{J}})} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_i^{i\notin\mathbb{J}})} &= -e_i d\mathfrak{t}^f - \gamma_i (T_i - T_{i0})^\delta \, y_i \Delta_i (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_i \frac{q^f \nu}{E_{\mathbb{J}}} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \, + \, \pi_i \frac{(1 + \nu)}{E} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \end{split}$$

Difference in the GE effect on energy markets, for $\sigma \approx 1$

$$dE_{i \in \mathbb{J}} - dE_{i \notin \mathbb{J}} = -\left(E_{\mathbb{J}} - E_{\mathbb{J} \setminus \{i\}}\right) \frac{\sigma \ dt^f}{q^f (1 - s^f)} \frac{1}{1 + \frac{\nu \sigma}{(1 - s^f)}}$$

 \circ Params: σ energy demand elast^y, s^f energy cost share, ν energy supply elas^y, Climate damage γ_i and curv. δ

14 / 25

Countries' incentives – Model w/o trade in goods

- Experiment: Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax t^f(J) = 0,
 ⇒ country i is indifferent to join the club J or not
 - Linear approximation around that point \Rightarrow small changes in carbon tax dt^f
 - Change in welfare if $i \in \mathbb{J}$ vs. $i \notin \mathbb{J}$

$$\frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_i^{i\in\mathbb{J}})} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_i^{i\notin\mathbb{J}})} = -e_i dt^f - \gamma_i (T_i - T_{i0})^\delta y_i \Delta_i (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})$$

$$- e_i \frac{q^f \nu}{E_{\mathbb{J}}} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \pi_i \frac{(1+\nu)}{E} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})$$

• Difference in the GE effect on energy markets, for $\sigma \approx 1$

$$dE_{i \in \mathbb{J}} - dE_{i \notin \mathbb{J}} = -\left(E_{\mathbb{J}} - E_{\mathbb{J} \setminus \{i\}}\right) \frac{\sigma \ dt^f}{q^f (1 - s^f)} \frac{1}{1 + \frac{\nu \sigma}{(1 - s^f)}}$$

 \circ Params: σ energy demand elast^y, s^f energy cost share, ν energy supply elas^y, Climate damage γ_i and curv. δ

15/25

Countries' incentives – Armington Model with trade in goods

- ► Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(T_{i} - T_{i0})^{\delta}\eta_{i}^{y}\Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i}\frac{q^{f}\nu}{E_{\mathbb{I}}}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \eta_{i}^{f}\frac{(1+\nu)}{E}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y}\left(\frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\notin\mathbb{J}}\right) - s_{i\mathbb{J}^{c}}dt^{b} - \sum_{i\in\mathbb{I}}s_{ij}\left(\frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\notin\mathbb{J}}\right) \end{split}$$

Countries' incentives – Armington Model with trade in goods

- ▶ Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(T_{i} - T_{i0})^{\delta}\eta_{i}^{y}\Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i}\frac{q^{f}\nu}{E_{\mathbb{I}}}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \eta_{i}^{f}\frac{(1+\nu)}{E}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y}\left(\frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\notin\mathbb{J}}\right) - s_{i\mathbb{J}^{c}}dt^{b} - \sum_{i\in\mathbb{J}}s_{ij}\left(\frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\notin\mathbb{J}}\right) \end{split}$$

- GE effect on energy markets, same as before
- GE effect on goods markets, equilibrium on expenditure $v_i = \mathbb{P}_i c_i$, for $\theta \approx 1$

$$\frac{dv_i}{v_i} = \sum_{k \in \mathbb{Z}} \mathcal{P}_k \alpha_{ki} \left(\frac{dv_k}{v_k} - \theta \frac{dt_{ki}^b}{1 + t_{ki}^b} \right) \qquad \alpha_{ki} = \frac{c_{ki} \tau_{ki} p_i}{\sum_{\ell} c_{k\ell} \tau_{\ell\ell} p_{\ell}} \frac{v_k}{v_i} = s_{ki} \frac{v_k}{(1 + t_{ki}^b) v_i}$$

- Params: σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, share of output y in income $\eta_i^y = \frac{y_i p_i}{y_i}$, fossil rent share $\eta_i^f = \frac{\pi_i}{y_i}$

Countries' incentives – Armington Model with trade in goods

- ▶ Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(T_{i} - T_{i0})^{\delta} \, \eta_{i}^{y} \Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i} \frac{q^{f} \nu}{E_{\mathbb{I}}} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \, + \, \eta_{i}^{f} \frac{(1 + \nu)}{E} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y} \left(\frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\notin\mathbb{J}}\right) - s_{i\mathbb{J}^{c}} dt^{b} - \sum_{i\in\mathbb{J}} s_{ij} \left(\frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\notin\mathbb{J}}\right) \end{split}$$

- GE effect on energy markets, same as before
- GE effect on goods markets, equilibrium on expenditure $v_i = \mathbb{P}_i c_i$, for $\theta \approx 1$

$$\frac{dv_i}{v_i} = \sum_{k \in \mathbb{Z}} \mathcal{P}_k \alpha_{ki} \left(\frac{dv_k}{v_k} - \theta \frac{dt_{ki}^b}{1 + t_{ki}^b} \right) \qquad \alpha_{ki} = \frac{c_{ki} \tau_{ki} p_i}{\sum_{\ell} c_{k\ell} \tau_{\ell\ell} p_{\ell}} \frac{v_k}{v_i} = s_{ki} \frac{v_k}{(1 + t_{ki}^b) v_i}$$

- Params: σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, share of output y in income $\eta_i^y = \frac{y_i p_i}{y_i}$, fossil rent share $\eta_i^f = \frac{\pi_i}{y_i}$

Complementarity in coalition formation – Model w/o trade in goods

- ► Is marginal gain $\Delta W(\mathbb{J}, \mathbf{j}) := W(\mathbb{J} \cup \mathbf{j}) W(\mathbb{J})$ "growing" in \mathbb{J} ?
 - Linear approximation for small $\{t^f, t^b\}$

$$\Delta \mathcal{W}(\mathbb{J},j) = -\omega_{j}u'(c_{j})e_{j}dt^{f} + \left[\sum_{i\in\mathbb{I}}\omega_{i}u'(c_{i})\Delta_{i}\gamma_{i}(T_{i}-T_{i0})^{\delta}y_{i}\right]\frac{\sigma e_{j}dt^{f}}{q^{f}(1-s^{f}+\nu\sigma)} + \left[\sum_{i\in\mathbb{I}}\omega_{i}u'(c_{i})e_{i}\right]\frac{1}{1+\frac{1-s^{f}}{\nu\sigma}}\frac{e_{j}dt^{f}}{E_{\mathbb{I}}} - \left[\sum_{i\in\mathbb{I}}\omega_{i}u'(c_{i})\pi_{i}\right]\frac{(1+\nu)}{E_{\mathbb{I}}}\frac{\sigma e_{j}dt^{f}}{q^{f}(1-s^{f}+\nu\sigma)}$$

- Free-riding problem: $\Delta \mathcal{W}(\mathbb{J}, \mathbf{j})$ could be negative
- If $\Delta W(\mathbb{J}, \mathbf{j}) > 0$, what effects does \mathbb{J} have on marginal gain?
 - Marginal climate benefit decreases in \mathbb{J} , since temperature T_i declines!
 - G.E. effect on energy price: $E_{\mathbb{I}}$, q and π^f decreases with \mathbb{J} , effect on demand ambiguous
 - Similar formula for the case with trade tariffs: Work in progress.

▶ Production function $y_i = \mathcal{D}_i^y(T_i)z_if(k, \varepsilon(e^f, e^r))$

$$f_{i}(k, \ell, \varepsilon(e^{f}, e^{r})) = \left[(1 - \epsilon_{i})^{\frac{1}{\sigma_{y}}} (k^{\alpha} \ell^{1-\alpha})^{\frac{\sigma_{y}-1}{\sigma_{y}}} + \epsilon_{i}^{\frac{1}{\sigma_{y}}} (z_{i}^{e} \varepsilon_{i}(e^{f}, e^{r}))^{\frac{\sigma_{y}-1}{\sigma_{y}}} \right]^{\frac{\sigma_{y}}{\sigma_{y}-1}}$$

$$\varepsilon(e^{f}, e^{r}) = \left[\omega_{i}^{\frac{1}{\sigma_{e}}} (e^{f})^{\frac{\sigma_{e}-1}{\sigma_{e}}} + (1 - \omega_{i})^{\frac{1}{\sigma_{e}}} (e^{r})^{\frac{\sigma_{e}-1}{\sigma_{e}}} \right]^{\frac{\sigma_{e}}{\sigma_{e}-1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2011 (PPP).
- Today: $\omega_i = \bar{\omega} = 85\%$ and $\epsilon_i = \bar{\epsilon} = 12\%$ for all i
- Future: $(z_i^e, \omega_i, \epsilon_i)$ to match Energy/GDP $(e_i^f + e_i^r)/y_i$ and energy mix (e_i^f, e_i^r)
- Damage functions in production function y:

$$\mathcal{D}_i^{y}(T) = e^{-\gamma_i^{\pm,y}(T - T_i^{\star})^2}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{T > T^*\}} + \gamma^{-,y} \mathbb{1}_{\{T < T^*\}}$
- Today $\gamma_{i}^{\pm,y} = \bar{\gamma}^{\pm,y} \& T_{i}^{\star} = \bar{\alpha} T_{it_0} + (1 \bar{\alpha}) T^{\star}$

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. ν_i extraction cost curvature to match profit $\pi_i^f = \frac{\bar{\nu}_i \nu_i}{1 + \nu_i} (\frac{e_i^x}{\mathcal{R}_i})^{\nu_i} \mathcal{R}_i \mathbb{P}_i$
 - Future: Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. ν_i extraction cost curvature to match profit $\pi_i^f = \frac{\bar{\nu}_i \nu_i}{1 + \nu_i} (\frac{e_i^x}{\mathcal{R}_i})^{\nu_i} \mathcal{R}_i \mathbb{P}_i$
 - Future: Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)
- ▶ Renewable: Production \bar{e}_{it}^r and price q_{it}^r
 - Now: $q_{it}^r = z^r e^{-g_r t}$, with g_r growth rate in renewable energy price decreases.
 - Future: Choose z_i^r to match the energy mix (e_i^f, e_i^r)

back

Quantification – Future Extensions:

- ► Damage parameters:
 - $\gamma_i^{\pm,y}$ depends on daily temperature distribution $T \sim \mathcal{T}_i(\bar{T}, \sigma^T)$ following Rudik et al. (2022)
 - Use Climate Lab's (Greenstone et al) estimates for damage γ_i ?
- ► Fossil Energy markets:
 - Divide fossils e_{it}^f/e_{it}^x into oil/gas/coal
 - Match the production/cost/reserves data across countries
 - Use a dynamic model: extraction/exploration a la Hotelling
- Renewables Energy markets:
 - Make the problem dynamic with investment in capacity C_{it}^r
- ► Population dynamics
 - Match UN forecast for growth rate / fertility

Calibration

Table: Baseline calibration (\star = subject to future changes)

Tec	hnology d	Energy markets	
α	0.35	Capital share in $f(\cdot)$	Capital/Output ratio
ϵ	0.12	Energy share in $f(\cdot)$	Energy cost share (8.5%)
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2020)
ω	0.8	Fossil energy share in $e(\cdot)$	Fossil/Energy ratio
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern
δ	0.06	Depreciation rate	Investment/Output ratio
\bar{g}	0.01^{\star}	Long run TFP growth	Conservative estimate for growth
- 3e	0.01^{\star}	Long run energy directed technical chan	ge Conservative / Acemoglu et al (2012)
g_r	-0.01^{*}	Long run renewable price decrease	Conservative / Match price fall in R.E.
ν	2*	Extraction elasticity of fossil energy	Cubic extraction cost
re	ferences c	& Time horizon	
ρ	0.03	HH Discount factor	Long term interest rate & usual calib. in IAMs
η	2.5	Risk aversion	C
'n	0.01^{*}	Long run population growth	Conservative estimate for growth
ω_i	1	Pareto weights	Uniforms / Utilitarian Social Planner
T	90	Time horizon	Horizon 2100 years since 2010
	Thomas Bour	any (UChicago) Optim	al Design of Climate Agreements October 2024 22

Calibration

Climate parameters

Table: Baseline calibration (\star = subject to future changes)

```
0.81
                   Emission factor
                                                                   Conversion 1 MTOE \Rightarrow 1 MT CO<sub>2</sub>
         0.3
                   Inverse climate persistence / inertia
                                                                   Sluggishness of temperature \sim 11-15 years
                                                                   Pulse experiment: 100 \, GtC \equiv 0.21^{\circ} C medium-term warming
      2.1/1e6
                   Climate sensitivity
       0.0014
                   Carbon exit from atmosphere
                                                                   Pulse experiment: 100 \, GtC \equiv 0.16^{\circ} C \, \text{long-term warming}
                                                                   Nordhaus' DICE
      0.00234*
                   Damage sensitivity
     0.2 \times \gamma^{\oplus \star}
                   Damage sensitivity
                                                                   Nordhaus' DICE & Rudik et al (2022)
        0.2^{*}
                   Weight historical climate for optimal temp.
                                                                   Marginal damage decorrelated with initial temp.
                   Optimal yearly temperature
         15.5
                                                                   Average spring temperature / Developed economies
Parameters calibrated to match data
                   Population
                                                                   Data - World Bank 2011
p_i
                   TFP
                                                                   To match GDP Data – World Bank 2011
```

Local Temperature

Local Fossil reserves

To match temperature of largest city

To match data from BP Energy review

Sequential solution method

- ► Summary of the model:
 - ODEs for states $\{x\} = \{w_{it}, T_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^T, \lambda_t^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)

Sequential solution method

- ► Summary of the model:
 - ODEs for states $\{x\} = \{w_{it}, T_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^T, \lambda_{it}^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)
- ► Global Numerical solution:
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $\mathbf{y} = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- Why use a sequential approach?
 - *Global approach*: *Only* need to follow the trajectories for *i* agents:
 - Arbitrary (!) number of dimension of ex-ante heterogeneity:
 Productivity z_i Population p_i, Temperature scaling Δ_i, Fossil energy cost v̄_i, Energy mix ε_i, ω_i, z^r_i, Local damage γ^y_i, γ^u_i, T^{*}_i, Directed Technical Change z^e_i
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature T_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient
- ► Why not:
 - Numerical constraint to solve a large system of ODEs and non-linear equations:
 - \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

