(1) $R = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle\};$

(2)

证明:

 $R^2 \cap R = \emptyset$

 $\iff \neg \exists x \exists z (\langle x, z \rangle \in R^2 \land \langle x, z \rangle \in R)$

 $\iff \forall x \forall z \neg (\langle x, z \rangle \in \mathbb{R}^2 \land \langle x, z \rangle \in \mathbb{R})$ (量词否定等值式)

 $\iff \forall x \forall z (\neg \langle x, z \rangle \in R^2 \lor \neg \langle x, z \rangle \in R)$ (命题逻辑徳・摩根律)

(Ø 定义)

 $\iff \forall x \forall z (\neg (\exists y (\langle x, y \rangle \in R \land \langle y, z \rangle \in R)) \lor \neg \langle x, z \rangle \in R) \tag{关系合成定义}$

 $\iff \forall x \forall z (\forall y (\neg(\langle x, y \rangle \in R \land \langle y, z \rangle \in R)) \lor \neg\langle x, z \rangle \in R)$ (量词否定等值式)

 $\iff \forall x \forall z \forall y (\neg(\langle x,y \rangle \in R \land \langle y,z \rangle \in R) \lor \neg\langle x,z \rangle \in R) \tag{量词辖域扩张等值式)}$

 $\iff \forall x \forall y \forall z (\neg(\langle x,y \rangle \in R \land \langle y,z \rangle \in R) \lor \neg \langle x,z \rangle \in R) \tag{全称量词交换律²}$

 $\iff \forall x \forall y \forall z ((\langle x,y \rangle \in R \land \langle y,z \rangle \in R) \rightarrow \neg \langle x,z \rangle \in R) \tag{{\ref{4.2}}}$

 \iff R 是反传递的。 (反传递定义)

2.15

若 A 非空,则:

R 有如下性质: 非自反: 对任意 x, 有 $x \not\subset x$, 故 $\langle x, x \rangle \notin R$ 。

反自反: 对任意 x, 有 $\langle x, x \rangle \notin R$ 。

非对称:不存在 $\emptyset, A \in \mathcal{P}(A) \land \emptyset \subset A \mathbin{/} \cup A \not\subset \emptyset$ 。

反对称: 由于不存在 $x,y \in \mathcal{P}(A)$ 使得 $\langle x,y \rangle \in R \land \langle y,x \rangle \in R$,故 $\langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y$ 恒成立。

传递: 真子集性质。

S 有如下性质:

非自反: 由于 A 非空,则故有 $A \in \mathcal{P}(A) \land A \neq \emptyset$,于是 $A \cap A = A \neq \emptyset \Rightarrow \langle A, A \rangle \notin S$ 。

非反自反: $\varnothing \in \mathcal{P}(A) \land \varnothing \cap \varnothing = \varnothing \Rightarrow \langle \varnothing, \varnothing \rangle \in S$ 。

对称:集合交性质。

非反对称: 有 $\langle \emptyset, A \rangle \in S \land \langle A, \emptyset \rangle \in S$,但 $A \neq \emptyset$ 。

非传递: 有 $\langle A,\varnothing\rangle\in S \land \langle\varnothing,A\rangle\in S$,但 $\langle A,A\rangle\notin S$ 。

T有如下性质:

非自反: 有 $\langle \emptyset, \emptyset \rangle \notin T$ 。

非反自反: 有 $A \in \mathcal{P}(A) \land A \cup A = A \Rightarrow \langle A, A \rangle \in T$ 。

对称:集合并性质。

非反对称: 有 $\langle \varnothing, A \rangle \in T \land \langle A, \varnothing \rangle \in T$,但 $A \neq \varnothing$ 。

非传递: 有 $\langle \varnothing, A \rangle \in T \land \langle A, \varnothing \rangle \in T$,但 $\langle \varnothing, \varnothing \rangle \notin T$ 。

若 A 为空,则:

²参见教材例 27.8。