```
In [59]: import pandas as pd
In [60]: data=pd.read_csv("/home/placement/Downloads/fiat500 (5).csv")
In [61]: data.describe()
Out[61]:
                                engine_power
                                              age_in_days
                                                                         previous_owners
                                                                                                  lat
                                                                                                              lon
                                                                                                                          price
                                                                     km
                                                                             1538.000000 1538.000000
                                                                                                      1538.000000
                                                                                                                    1538.000000
             count 1538.000000
                                  1538.000000
                                              1538.000000
                                                             1538.000000
                    769.500000
                                    51.904421
                                              1650.980494
                                                            53396.011704
                                                                                 1.123537
                                                                                            43.541361
                                                                                                         11.563428
                                                                                                                    8576.003901
             mean
                    444.126671
                                     3.988023
                                              1289.522278
                                                                                             2.133518
                                                                                                          2.328190
                                                                                                                    1939.958641
               std
                                                            40046.830723
                                                                                 0.416423
              min
                      1.000000
                                    51.000000
                                               366.000000
                                                             1232.000000
                                                                                1.000000
                                                                                            36.855839
                                                                                                          7.245400
                                                                                                                    2500.000000
              25%
                     385.250000
                                   51.000000
                                               670.000000
                                                            20006.250000
                                                                                 1.000000
                                                                                            41.802990
                                                                                                          9.505090
                                                                                                                    7122.500000
              50%
                    769.500000
                                   51.000000
                                              1035.000000
                                                            39031.000000
                                                                                 1.000000
                                                                                            44.394096
                                                                                                         11.869260
                                                                                                                    9000.000000
              75%
                   1153.750000
                                   51.000000
                                              2616.000000
                                                            79667.750000
                                                                                 1.000000
                                                                                            45.467960
                                                                                                         12.769040
                                                                                                                   10000.000000
              max 1538.000000
                                   77.000000
                                              4658.000000
                                                           235000.000000
                                                                                 4.000000
                                                                                            46.795612
                                                                                                         18.365520
                                                                                                                  11100.000000
In [62]: data1=data.drop(['ID','lat','lon'],axis=1)
```

In [63]: data1

Out[63]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [64]: data=pd.get_dummies(data)

In [65]: data

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [66]: data.shape
Out[66]: (1538, 11)
In [67]: y=data['price']
x=data.drop('price',axis=1)
```

```
In [68]: y
Out[68]: 0
                 8900
                 8800
         2
                 4200
         3
                 6000
                 5700
         4
                 . . .
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1538, dtype: int64
```

In [69]: x

: 	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	0	1	0

1538 rows × 10 columns

In [70]: !pip install scikit-learn

Requirement already satisfied: scikit-learn in ./anaconda3/lib/python3.10/site-packages (1.2.1)
Requirement already satisfied: numpy>=1.17.3 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear n) (1.23.5)

Requirement already satisfied: scipy>=1.3.2 in ./anaconda3/lib/python3.10/site-packages (from scikit-learn) (1.10.0)

Requirement already satisfied: joblib>=1.1.1 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear n) (1.1.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./anaconda3/lib/python3.10/site-packages (from sciki t-learn) (2.2.0)

In [71]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state= 42)

In [72]: x test.head(5)

Out[72]:

: _		ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
	481	482	51	3197	120000	2	40.174702	18.167629	0	1	0
	76	77	62	2101	103000	1	45.797859	8.644440	0	1	0
1	502	1503	51	670	32473	1	41.107880	14.208810	1	0	0
	669	670	51	913	29000	1	45.778591	8.946250	1	0	0
1	409	1410	51	762	18800	1	45.538689	9.928310	1	0	0

In [73]: x test.shape

Out[73]: (508, 10)

In [74]: x_train.head(5)

Out[74]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
527	528	51	425	13111	1	45.022388	7.58602	1	0	0
129	130	51	1127	21400	1	44.332531	7.54592	1	0	0
602	603	51	2039	57039	1	40.748241	14.52835	0	1	0
331	332	51	1155	40700	1	42.143860	12.54016	1	0	0
323	324	51	425	16783	1	41.903221	12.49565	1	0	0

```
In [75]: y_test.head(5)
```

Out[75]: 481

481 7900

76 7900

1502 9400 669 8500

1409 9700

Name: price, dtype: int64

In [76]: y_train.head(5)

Out[76]: 527

527 9990

129 9500

602 7590

331 8750

323 9100

Name: price, dtype: int64

```
In [77]: from sklearn.linear model import LinearRegression
         reg=LinearRegression() #creating object of linearRegression
         reg.fit(x train, v train) #training are fitting LR object using training data
Out[77]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [781:
         vpred=req.predict(x test)
In [79]: | ypred
                  JJYJ.YJ401440,
                                   9022.44223903, 101/1.00/301/3, 10103.3049093/,
                                                                    7076.07274648,
                  9481.19877071,
                                  4918.69676305,
                                                   5809.10532945,
                 10066.02424638, 10430.97776811, 10050.79995384,
                                                                    7801.53792597,
                  8738.32379912,
                                  9963.07184541, 10250.69391036,
                                                                    9856.67153089,
                  8383.84152492,
                                  9307.84587539,
                                                   8530.90168144,
                                                                    9859.23075392,
                                  9744.86150125,
                                                   6741.410463
                                                                    7342.18893371.
                  9733.54483496.
                  8772.20704958,
                                  9959.77345301,
                                                   9692.26944677, 10524.54487623,
                  8221.41396472,
                                  6722.97284178,
                                                   9894.93188478,
                                                                    8849.71168914,
                                                                    9988.41681508,
                  9786.53980838, 10262.59139607, 10382.67498044,
                  9336.80741819,
                                  9902.52039123,
                                                   9109.63147621, 10147.01866123,
                                  6059.56493387,
                                                   8827.96184211, 10302.33416028,
                  7831.00036415,
                  5660.1705204 , 10068.83508852,
                                                   9595.70115109,
                                                                    7698.86996869,
                                  7421.93077111, 10397.65812756, 10008.49656229,
                  9319.54039166,
                 10572.26845119,
                                  9890.79746015,
                                                   9995.86970892,
                                                                    6328.88724858,
                 10434.22517244,
                                  9981.92833783, 10478.31842709,
                                                                    9584.67757276,
                  9795.59966427,
                                  6215.62308925,
                                                   8012.67431998, 10289.49085168,
                  6351.65397303,
                                  7447.35295678,
                                                   9954.0491226 ,
                                                                    6753.92994153,
                  7806.68212311,
                                  5292.72896136,
                                                   4479.07164048,
                                                                    8743.32482334,
                  6930.07078154,
                                  7474.31727616,
                                                   6868.13323766,
                                                                    7152.35036884,
                                                   9330.50348958, 10377.44826079,
                  9982.54626745,
                                  8788.00494177,
In [80]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
```

Out[80]: 0.8428319728488683

```
In [81]: from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
Out[81]: 577189.6736608233
In [82]: import math
         a=577189.6736608233
         print(math.sqrt(a))
         759.7300005007195
In [83]: | ypred
                 9/62.0/81/03/, 10010.4/809// , /324.68808828,
                                                                  9527.73426933,
                10450.80515505,
                                 8066.58173619, 10492.62679897,
                                                                  3710.6121898 ,
                10391.05986404, 10575.63523209, 6133.08783935, 10346.71696616,
                 6553.41814479,
                                 9091.6637332 , 10479.33721599,
                                                                  9408.65803116,
                 6871.80469669,
                                                                  9766.95479654,
                                 3255.22125642, 10146.47015989,
                                 5111.46844316,
                 6164.52040658,
                                                  9066.01493801,
                                                                  9756.3650463 ,
                                 5598.7203379 , 10075.79858758,
                 5414.5947869 ,
                                                                  8128.21212362,
                                 6731.76253756, 6737.96085675,
                                                                  5824.42019158,
                10491.36768849,
                 8830.1166215 ,
                                  9985.15913274, 10382.71023744,
                                                                  9468.0263143 ,
                 8968.98195986, 10125.34089439, 10458.2651463 , 10278.08804577,
                 9671.6787843 ,
                                  9329.13714009, 10314.76913411,
                                                                  5264.56339184,
                 9702.21408416,
                                  6171.43279386,
                                                  8986.33052433, 10216.19272235,
                 9147.3967606 ,
                                  9826.31604212,
                                                  8298.03251468,
                                                                  8311.88829156,
                 7566.99918427, 10585.88056004, 10365.38883807, 10134.48005849,
                10264.36282573,
                                  6915.44935844,
                                                  9653.38748676, 10541.2624204,
                 9560.92995691,
                                 8036.36881073,
                                                  9719.26456362,
                                                                  7852.08945425,
                10512.80396135,
                                 9252.12747599,
                                                  5726.61394851,
                                                                  6730.65776903,
                 8210.66023805, 10515.83562762, 10009.26844663,
                                                                  9700.98953567,
                10713.27840286, 7459.58763216,
                                                  6787.00375841,
                                                                  8104.3079721 ,
```

```
In [85]: Results=pd.DataFrame(columns=['price','predicate'])
    Results['price']=y_test
    Results['predicate']=ypred
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[85]:

	index	price	predicate	ID
0	481	7900	5819.193088	0
1	76	7900	7248.829142	1
2	1502	9400	9741.893697	2
3	669	8500	9798.980331	3
4	1409	9700	10055.006246	4
5	1414	9900	9551.495568	5
6	1089	9900	9758.017439	6
7	1507	9950	10122.977837	7
8	970	10700	9654.966181	8
9	1198	8999	9251.140326	9
10	1088	9890	10478.095123	10
11	576	7990	7807.300526	11
12	965	7380	7705.158738	12
13	1488	6800	6295.632449	13
14	1432	8900	9545.404863	14

```
In [ ]: data1['longue'] = data.apply
```