Prepared by: [Arun Konagurthu]

Source material acknowledgement

These lecture slides are built on the [source material] developed by [Lloyd Allison].

FIT2004 S1/2017: Algorithms and Data Structures

Prerequisite material: (1) Hashing – Linear and Quadratic probing
(2) Binary searh trees

Faculty of Information Technology, Monash University

What is covered in these slides?

Prerequisites covered already in FIT1008

- Collision resolution using Linear chaining
- Collision resolution using Linear and Quadratic probing
- Binary search trees and basic operations on them.

Recommended reading

- Hashing: http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Table/
- Weiss "Data Structures and Algorithm Analysis" (Chapter 4&5's relevant sections)
- Search Trees part of http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tree/

Closed-addressing using Linear chaining

One form of collision resolution requires putting keys that collide in a linear **list** associated with index.

```
/*LINEAR CHAINING EXAMPLE ON SOME FIRSTNAMES
  N (number of keys) = 27, M (table size) = 11
  hash function used:
  hash("ARUN") =
  (((ascii('A')*3 + ascii('R'))*3 + ascii('U'))*3 + ascii('N'))*3 % M
*/
       0: WILLIAM --> JASON
       1: BENJAMIN --> SOPHIA --> BENJAMIN
       2: DANTEL --> CAMPRELL --> DANTEL --> LACHLAN
       3: MAXIMILIAN --> SITGGEN --> JESSE
       4: SAMUEL --> LUTZA --> PETER
       5: EMMANUEL --> CHRISTOPHER --> ADITI
       6: JOSHUA
       7: AI.T --> AI.EXANDER
       8:
       9: MATTHEW --> DEMETRIOS --> MATTHEW
      10: I.AWSON --> JEREMY --> MARTIN
```

Closed-addressing using Linear chaining

One form of collision resolution requires putting keys that collide in a linear **list** associated with index.

```
/*LINEAR CHAINING EXAMPLE ON SOME FIRSTNAMES
  N (number of keys) = 27, M (table size) = 11
  hash function used:
  hash("ARUN") =
  (((ascii('A')*3 + ascii('R'))*3 + ascii('U'))*3 + ascii('N'))*3 % M
*/
       0: WILLIAM --> JASON
       1: BENJAMIN --> SOPHIA --> BENJAMIN
       2: DANTEL --> CAMPRELL --> DANTEL --> LACHLAN
       3: MAXIMILIAN --> SITGGEN --> JESSE
       4: SAMUEL --> LUTZA --> PETER
       5: EMMANUEL --> CHRISTOPHER --> ADITI
       6: JOSHUA
       7: AI.T --> AI.EXANDER
       8:
       9: MATTHEW --> DEMETRIOS --> MATTHEW
      10: I.AWSON --> JEREMY --> MARTIN
```

What is the worst-case time complexity for standard operations on hash-tables: insert("key"), delete("key"), lookup("key")?

Open-addressing using Linear probing

- Linear probing is the simplest probing strategy.
- Generalized formula for *i*th probe after collision

$$\mathsf{hash}(\mathsf{"key"},i) = (\mathsf{hash}(\mathsf{"key"}) + c_1i) \pmod{M}$$

where, c_1 is the increment or step-size of probe M is the size of the hash table.

M = 8 Empty hash table

0	1	2	3	4	5	6	7
????	????	????	????	????	????	????	????

M = 8 Empty hash table

0	1	2	3	4	5	6	7
????	????	????	????	????	????	????	????

insert("fred"); Let hash("fred") = 6

0	1	2	3	4	5	6	7
????	????	????	????	????	????	fred	????

M = 8 Empty hash table

Empty	nasn	cabre					
0	1	2	3	4	5	6	7
????	????	????	????	????	????	????	????
inser	t("fre	d"); Le	et has k	("fred	l") = 6		
0	1	2	3	4	5	6	7
????	????	????	????	????	????	fred	????
inser	t("ann	e"); Le	et has k	ı("anne	") = 2		
0	1	2	3	4	5	6	7
????	????	anne	????	????	????	fred	????

M = 8 Empty hash table

Empty	nasn	Labre							
0	1	2	3	4	5	6	7		
????	????	????	????	????	????	????	????		
<pre>insert("fred"); Let hash("fred") = 6</pre>									
0	1	2	3	4	5	6	7		
????	????	????	????	????	????	fred	????		
inser	t("ann	e"); Le	et has l	ı("anne	e") = 2				
0	1	2	3	4	5	6	7		
????	????	anne	????	????	????	fred	????		
inser	t("jim	"); Le	hash	("jim")	= 2 -	- coll	ision!		
0	1	2	3	4	5	6	7		
????	????	anne	????	????	????	fred	????		
		jim							

Linear probing example - cont'd

0	1	2	3	4	5	6	7
????	????	anne	????	????	????	fred	????
		jim					

Linear probing example - cont'd

0	1	2	3	4	5	6	7
????	????	anne	????	????	????	fred	????
		jim					

probe for empty hash+1, hash+2, ... (mod M)

0	1	2	3	4	5	6	7
????	????	anne	jim	????	????	fred	????

Linear probing example - cont'd

0	1	2	3	4	5	6	7		
????	????	anne	????	????	????	fred	????		
		jim							
probe for empty hash+1, hash+2, (mod M)									
0	1	2	3	4	5	6	7		
????	????	anne	jim	????	????	fred	????		
incort("iill"): Lot hach("iill") - 2 collicion									

insert("jill"); Let hash("jill") = 2 -- collision

0	1	2	3	4	5	6	7
????	????	anne jill	jim	????	????	fred	????

L	inear	probing	exampl	e –	cont'	d
_	mcai	Probling	CAUTTIPL	_	COLLE	ч

0	1	2	3	4	5	6	7
????	????	anne	????	????	????	fred	????
		jim					

probe for empty hash+1, hash+2, ... (mod M)

0	1	2	3	4	5	6	7
????	????	anne	jim	????	????	fred	????

insert("jill"); Let hash("jill") = 2 -- collision!

0	1	2	3	4	5	6	7
????	????	anne jill	jim	????	????	fred	????

probe... collision!

0	1	2	3	4	5	6	7
????	????	anne	jim	????	????	fred	????
			jill				

l incor	nrobing	ove menle	cont'd
Lillear	probling	example	- cont a

0	1	2	3	4	5	6	7
????	????	anne	????	????	????	fred	????
		jim					

probe for empty hash+1, hash+2, ... (mod M)

0	1	2	3	4	5	6	7
????	????	anne	jim	????	????	fred	????

insert("jill"); Let hash("jill") = 2 -- collision!

0	1	2	3	4	5	6	7
????	????	anne jill	jim	????	????	fred	????

probe... collision!

0	1	2	3	4	5	6	7
????	????	anne	jim	????	????	fred	????
			jill				

probe further...

0	1	2	3	4	5	6	7
????	????	anne	jim	jill	????	fred	????

Problem with Linear chaining

The problem with linear probing is that collisions from **nearby hash** values tend to merge into **big blocks**, and threfore the lookup can degenerate into a linear O(N) search.

Quadratic probing is a more sophisticated probing strategy!

$$\mathsf{hash}(\text{"key"}, i) = (\mathsf{hash}(\text{"key"}) + c_1 i + c_2 i^2) \pmod{M}$$

When $c_1=c_2=\frac{1}{2}$, the probe sequence after collision is +1, +3, +6, ... Note, when $c_2=0$, this becomes linear probing!

Quadratic probing is not guaranteed to probe every location in the table – an insert could fail while there is still an empty location. However hash tables are rarely allowed to get full – we will see this in a later slide. The same probing strategy is used in the associated search routine!

Advantage of Quadratic probing over linear

- The virtue of quadratic probing is that the probe locations for two near-miss keys, as opposed to two colliding keys, are not closely related.
- this reduces the likelihood of large collision blocks forming, which is a big problem with linear probing that slows down the search process.
- For example, if one set of keys all hash to '6' and another set hash to '7' then the collision blocks of these sets will over-run and merge with each other under linear-probing.
- With quadratic probing on the other hand, the probes after 6 are at positions 7, 9, 12, 16, ... and the probes after 7 are at positions 8, 10, 13, 17, This tends to give small disjoint blocks.

Testing the performance of linear and quadratic probing

Simulations give an estimate of the performance of a hash table based on its **Load** (ratio of number of hashed keys to table size). The time taken by **insert** and **lookup** depends on **collisions/lookup**.

]	Linear probing	Qu	Quadratic probing			
Load	collisions/lookup	Load	collisions/lookup			
10%	0.04	10%	0.04			
20%	0.09	20%	0.10			
30%	0.15	30%	0.15			
40%	0.27	40%	0.25			
50%	0.39	50%	0.38			
60%	0.68	60%	0.53			
70%	0.92	70%	0.67			
80%	1.72	80%	1.09			
90%	2.29	90%	1.40			

Results here use hash keys that are uniform random numbers. This is the best possible case; Performance in real setting is actually worse.

Binary Search Trees (BST): Introduction

- The empty tree is a BST
- If the tree is not empty,
 - the elements in the left subtree are LESS THAN the element in the root
 - the elements in the right subtree are GREATER THAN the element in the root
 - the left subtree is a BST
 - 4 the right subtree is a BST

Note! **Don't forget last two** conditions!

Binary Search Trees (BST): Introduction

BST example

```
/*Input:*/ the land rover is a type of motor car
```

```
the
   land type
 is
        rover
       of
a
      motor
 car
```

Searching for some **x** in the BST

```
1 // BST implemented here as a tree data structure
_{2} // T = fork(e, L, R)
4 function search(x.T)
     if (T == nilTree)
       return false // not present!
6
7
     else if (\mathbf{x} < \mathbf{e}) // search x in Left subtree
       search(x,L)
10
     else if (\mathbf{x} > \mathbf{e}) // search x in Right subtree
       search( x . R )
13
     else return true
                           // found!
```

Inserting **x** into a BST

```
1 // BST implemented here as a tree data structure
_{2} // T = fork(e, L, R)
3 function insert(x, T)
     if (T == nilTree) // Insert here as leaf node
       T = fork(x, nilTree, nilTree)
5
  else if (\mathbf{x} < \mathbf{e}) // Traverse and insert ...
7
      insert( x, L ); // along the Left subtree
9
10
    else if (\mathbf{x} > \mathbf{e}) // Traverse and insert ...
       insert( x , R ) // along the Right subtree
12
13
14 else //x == e
   ... it depends ... // [discussed in lecture]
15
16 return
```

Delete x from a BST

```
First lookup x in T // Check if x is present in T
Assuming x found, there are three cases:
    case 1
        No children, x is a leaf node.
            Easy case! freeup leaf;
                        set subtree to nilTree:
    case 2
        x has One child
           Fairly easy case!
    case 3
        x has Two children.
           Tricky case!
```

Delete **x** from a BST – Case 1 (example)

Case 1

No children, x is a leaf node.

Easy case! freeup leaf; set subtree to nilTree;

Delete **x** from a BST – Case 2 (example)

Case 2 One child fairly easy . . .

Delete x from a BST - Case 3

Case 3

Two Children .

. .

T1 T2

Deleting node x requires some thought ...

Find smallest element, y, in right tree, T2 [OR greatest element, y, in left tree, T1]

overwrite x with y,

delete y from T2! [or y from T1!]

Delete **x** from a BST – Case 3 (example)

Image source: wikipedia

Delete **x** from a BST – pseudocode

```
1 // BST implemented here as a tree data structure
_{2} // T = fork(e, L, R)
3 Tree delete(x, T)
4 if(T != nilTree)
if(x < e) L = delete(x, L);
       else if( x > e ) R = delete(x, R);
       else /* found x: e == x */
       if(L == nilTree) /* left tree is empty
           T=R:
 else if(R == nilTree) /* right tree is empty */
       T=L:
11
 else
                   /* neither subtree is empty */
12
   findAndDel(T); /* described in next slide */
13
15 return T; /* also see over page . . . */
```

Delete **x** from a BST − pseudocode

```
1 // BST implemented here as a tree data structure
2 // T = fork(e, L, R); T.elt = root node/element
3 //
                           T.right = right subtree
                           T.left = left subtree
5 function findAndDel(T)
6 /* find smallest element in right subtree, copy it
to the root node and delete the original. */
8 Tree R = T.right;
/* one step right, then */
while( R.left != null )
/* as far left as possible */
    R = R.left;
11
12
13 T.elt = R.elt;
                                     /* copv */
14 T.right = delete(T.elt, T.right); /* delete original!
 return;
15
16 }
```

BST summary

- BST is a kind of Lookup table previously we studied hash table
- A lookup table is an Abstract Data Type that supports operations like search/lookup, insert, delete, ...
- Complexity
 - lookup, insert, delete proportional to height of the tree
 - ▶ O(n)-time, worst-case
- Note: Minimum element, y, is the left-most in BST
- Note: Maximum element, y, is the right-most in BST