Аффинный ортогональный тензор

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

25 апреля 2019 г.

Аннотация

Аффинный ортогональный тензор второго ранга. Диада. Сопряженный тензор. Симметричные и антисимметричные тензоры. Разложение тензора.

Пусть в некоторой ортогональной прямолинейной системе координат *Охуг*

$$\vec{a} = \vec{i}a_x + \vec{j}a_y + \vec{k}a_z.$$

Пусть в некоторой ортогональной прямолинейной системе координат Oxyz

$$\vec{a} = \vec{i}a_x + \vec{j}a_y + \vec{k}a_z.$$

Тогда в другой ортогональной прямолинейной системе координат Ox'y'z' вектор будет иметь координаты:

$$a_{x'} = a_x \cos(x, x') + a_y \cos(y, x') + a_z \cos(z, x'),$$

Пусть в некоторой ортогональной прямолинейной системе координат Oxyz

$$\vec{a} = \vec{i}a_x + \vec{j}a_y + \vec{k}a_z.$$

Тогда в другой ортогональной прямолинейной системе координат Ox'y'z' вектор будет иметь координаты:

$$a_{x'} = a_x \cos(x, x') + a_y \cos(y, x') + a_z \cos(z, x'),$$

 $a_{y'} = a_x \cos(x, y') + a_y \cos(y, y') + a_z \cos(z, y'),$

Пусть в некоторой ортогональной прямолинейной системе координат *Охуг*

$$\vec{a} = \vec{i}a_x + \vec{j}a_y + \vec{k}a_z.$$

Тогда в другой ортогональной прямолинейной системе координат Ox'y'z'вектор будет иметь координаты:

$$a_{x'} = a_x \cos(x, x') + a_y \cos(y, x') + a_z \cos(z, x'),$$

$$a_{y'} = a_x \cos(x, y') + a_y \cos(y, y') + a_z \cos(z, y'),$$

$$a_{z'} = a_x \cos(x, z') + a_y \cos(y, z') + a_z \cos(z, z').$$

Определение

Если для прямолинейной ортогональной системы координат Охуг имеется совокупность трех величин a_x , a_y , a_z , преобразующихся по вышеуказанным формулам в величины $a_{x'}$, $a_{y'}$, $a_{z'}$, в другой ортогональной прямолинейной системе координат Ox'y'z',

Определение

Если для прямолинейной ортогональной системы координат Охуг имеется совокупность трех величин a_x , a_y , a_z , преобразующихся по вышеуказанным формулам в величины $a_{x'}$, $a_{y'}$, $a_{z'}$, в другой ортогональной прямолинейной системе координат Ox'y'z', то совокупность этих величин определяет аффинный ортогональный вектор \vec{a} . Скалярные величины a_x , a_y , a_z называются составляющими (компонентами) вектора \vec{a} по осям Ox, Oy, Oz.

Аффинный ортогональный тензор второго ранга

Определение

Если для прямолинейной ортогональной системы координат Охуг имеется совокупность трех векторов \vec{p}_x , \vec{p}_y , \vec{p}_z , преобразующихся по формулам в величины $\vec{p}_{x'}$, $\vec{p}_{y'}$, $\vec{p}_{z'}$, в другой системе координат Ox'y'z':

$$\vec{p}_{x'} = \vec{p}_x \cos(x, x') + \vec{p}_y \cos(y, x') + \vec{p}_z \cos(z, x'),
\vec{p}_{y'} = \vec{p}_x \cos(x, y') + \vec{p}_y \cos(y, y') + \vec{p}_z \cos(z, y'),
\vec{p}_{z'} = \vec{p}_x \cos(x, z') + \vec{p}_y \cos(y, z') + \vec{p}_z \cos(z, z'),$$

Аффинный ортогональный тензор второго ранга

Определение

Если для прямолинейной ортогональной системы координат Охуг имеется совокупность трех векторов \vec{p}_x , \vec{p}_y , \vec{p}_z , преобразующихся по формулам в величины $\vec{p}_{x'}$, $\vec{p}_{y'}$, $\vec{p}_{z'}$, в другой системе координат Ox'y'z':

$$\vec{p}_{x'} = \vec{p}_x \cos(x, x') + \vec{p}_y \cos(y, x') + \vec{p}_z \cos(z, x'),
\vec{p}_{y'} = \vec{p}_x \cos(x, y') + \vec{p}_y \cos(y, y') + \vec{p}_z \cos(z, y'),
\vec{p}_{z'} = \vec{p}_x \cos(x, z') + \vec{p}_y \cos(y, z') + \vec{p}_z \cos(z, z'),$$

то совокупность этих величин определяет аффинный ортогональный тензор второго ранга. Векторы \vec{p}_x , \vec{p}_y , \vec{p}_z называются составляющими (компонентами) тензора Π по осям Ox, Oy, Oz.

Будем обозначать

$$\Pi = \vec{i}\vec{p}_x + \vec{j}\vec{p}_y + \vec{k}\vec{p}_z.$$

Будем обозначать

$$\Pi = \vec{i}\vec{p}_x + \vec{j}\vec{p}_y + \vec{k}\vec{p}_z.$$

Таким образом, тензор представляет собой набор из 9 компонент:

$$\Pi = \begin{pmatrix} p_{xx} & p_{xy} & p_{xz} \\ p_{yx} & p_{yy} & p_{yz} \\ p_{zx} & p_{zy} & p_{zz} \end{pmatrix}$$

Будем обозначать

$$\Pi = \vec{i}\vec{p}_x + \vec{j}\vec{p}_y + \vec{k}\vec{p}_z.$$

Таким образом, тензор представляет собой набор из 9 компонент:

$$\mathbf{\Pi} = \begin{pmatrix} p_{xx} & p_{xy} & p_{xz} \\ p_{yx} & p_{yy} & p_{yz} \\ p_{zx} & p_{zy} & p_{zz} \end{pmatrix} \leftarrow \begin{array}{l} \vec{p_x} = p_{xx}\vec{\mathbf{i}} + p_{xy}\vec{\mathbf{j}} + p_{xz}\vec{\mathbf{k}} \\ \leftarrow \vec{p_y} = p_{yx}\vec{\mathbf{i}} + p_{yy}\vec{\mathbf{j}} + p_{yz}\vec{\mathbf{k}} \\ \leftarrow \vec{p_z} = p_{zx}\vec{\mathbf{i}} + p_{zy}\vec{\mathbf{j}} + p_{zz}\vec{\mathbf{k}} \end{array}$$

Будем обозначать

$$\Pi = \vec{i}\vec{p}_x + \vec{j}\vec{p}_y + \vec{k}\vec{p}_z.$$

Таким образом, тензор представляет собой набор из 9 компонент:

$$\mathbf{\Pi} = \begin{pmatrix} p_{xx} & p_{xy} & p_{xz} \\ p_{yx} & p_{yy} & p_{yz} \\ p_{zx} & p_{zy} & p_{zz} \end{pmatrix} \leftarrow \vec{p_x} = p_{xx}\vec{\mathbf{i}} + p_{xy}\vec{\mathbf{j}} + p_{xz}\vec{\mathbf{k}} \\ \leftarrow \vec{p_y} = p_{yx}\vec{\mathbf{i}} + p_{yy}\vec{\mathbf{j}} + p_{yz}\vec{\mathbf{k}} \\ \leftarrow \vec{p_z} = p_{zx}\vec{\mathbf{i}} + p_{zy}\vec{\mathbf{j}} + p_{zz}\vec{\mathbf{k}}$$

В дальнейшем:

- вместо координат x, y,z будем писать x_1 , x_2 , x_3 ;
- базисные векторы будем обозначать \vec{i}_1 , \vec{i}_2 , \vec{i}_3 ;
- компоненты тензора будем нумеровать, т.е. p_{ii} $(i, j = \overline{1,3})$.

Преобразование ортогональных систем координат

Пусть задано некоторое преобразование одной ортогональной прямолинейной системы координат в другую с помощью матрицы преобразования, т.е. заданы направляющие косинусы единичных векторов новых базисных векторов $\alpha_{ik} = \cos(x_i, x_k')$:

$$Q = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix},$$

Преобразование ортогональных систем координат

Пусть задано некоторое преобразование одной ортогональной прямолинейной системы координат в другую с помощью матрицы преобразования, т.е. заданы направляющие косинусы единичных векторов новых базисных векторов $\alpha_{ik} = \cos(x_i, x_k')$:

$$Q = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}, \qquad \begin{cases} \sum_{i=1}^{3} \alpha_{is}^2 = 1 & (s = \overline{1,3}), \\ \sum_{i=1}^{3} \alpha_{is} \alpha_{ik} = 0 & (s, k = \overline{1,3}; s \neq k). \end{cases}$$

Преобразование ортогональных систем координат

Пусть задано некоторое преобразование одной ортогональной прямолинейной системы координат в другую с помощью матрицы преобразования, т.е. заданы направляющие косинусы единичных векторов новых базисных векторов $\alpha_{ik} = \cos(x_i, x_k')$:

$$Q = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix}, \qquad \begin{cases} \sum_{i=1}^{3} \alpha_{is}^{2} = 1 & (s = \overline{1,3}), \\ \sum_{i=1}^{3} \alpha_{is} \alpha_{ik} = 0 & (s, k = \overline{1,3}; s \neq k). \end{cases}$$

Таким образом, Q – ортогональная матрица, т.к.

$$Q^{-1}=Q^{t}.$$

Компоненты вектора \vec{a} и тензора Π в новой штрихованной системе координат a_1' , a_2' , a_3' и $\vec{p'}_1$, $\vec{p'}_2$, $\vec{p'}_3$ имеют вид:

$$a'_{k} = a_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} a_{x_{i}}, \quad \vec{p'}_{k} = \vec{p}_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} \vec{p}_{x_{i}} \quad (k = \overline{1,3}).$$

Компоненты вектора \vec{a} и тензора Π в новой штрихованной системе координат a_1' , a_2' , a_3' и $\vec{p'}_1$, $\vec{p'}_2$, $\vec{p'}_3$ имеют вид:

$$a'_{k} = a_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} a_{x_{i}}, \quad \vec{p'}_{k} = \vec{p}_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} \vec{p}_{x_{i}} \quad (k = \overline{1,3}).$$

Проекция вектора $\vec{p}_{\mathbf{x}'_k}$ на ось \mathbf{x}'_l : $(\vec{p}_{\mathbf{x}'_k})_{\mathbf{x}'_l} = \sum_{r=1}^3 \alpha_{kr} (\vec{p}_{\mathbf{x}_r})_{\mathbf{x}'_l}$.

Компоненты вектора \vec{a} и тензора Π в новой штрихованной системе координат a_1' , a_2' , a_3' и $\vec{p'}_1$, $\vec{p'}_2$, $\vec{p'}_3$ имеют вид:

$$a'_{k} = a_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} a_{x_{i}}, \quad \vec{p'}_{k} = \vec{p}_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} \vec{p}_{x_{i}} \quad (k = \overline{1,3}).$$

Проекция вектора $\vec{p}_{\mathbf{x}'_k}$ на ось x'_l : $(\vec{p}_{\mathbf{x}'_k})_{x'_l} = \sum_{r=1}^3 \alpha_{kr} (\vec{p}_{\mathbf{x}_r})_{x'_l}$.

Из определения аффинного вектора: $(\vec{p}_{\mathsf{x}_r})_{\mathsf{x}_l'} = \sum_{s=1}^{l} \alpha_{ls} \vec{p}_{\mathsf{x}_r \mathsf{x}_s}.$

Компоненты вектора \vec{a} и тензора Π в новой штрихованной системе координат a_1' , a_2' , a_3' и $\vec{p'}_1$, $\vec{p'}_2$, $\vec{p'}_3$ имеют вид:

$$a'_{k} = a_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} a_{x_{i}}, \quad \vec{p'}_{k} = \vec{p}_{x'_{k}} = \sum_{i=1}^{3} \alpha_{ki} \vec{p}_{x_{i}} \quad (k = \overline{1,3}).$$

Проекция вектора $\vec{p}_{x_k'}$ на ось x_l' : $(\vec{p}_{x_k'})_{x_l'} = \sum_{r=1}^3 \alpha_{kr} (\vec{p}_{x_r})_{x_l'}$.

Из определения аффинного вектора: $(\vec{p}_{\mathsf{x}_r})_{\mathsf{x}_l'} = \sum_{s=1}^{\mathsf{y}} \alpha_{ls} \vec{p}_{\mathsf{x}_r \mathsf{x}_s}$.

Подставим последнее равенство в предпоследнее:

$$p_{\mathbf{x}_k'\mathbf{x}_l'} = \sum_{r=1}^3 \sum_{s=1}^3 lpha_{kr} lpha_{ls} p_{\mathbf{x}_r\mathbf{x}_s}$$
 или $p_{kl}' = \sum_{r=1}^3 \sum_{s=1}^3 lpha_{kr} lpha_{ls} p_{rs}.$

Определение тензора (альтернативное)

Определение (альтернативное)

Если для каждой прямолинейной прямоугольной системы координат $Ox_1x_2x_3$ имеется совокупность девяти величин p_{kl} , преобразующихся в величины p_{kl}' в новой системе координат $Ox_1'x_2'x_3'$ по формуле:

$$p'_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} \alpha_{kr} \alpha_{ls} p_{rs},$$

то совокупность этих величин определяет аффинный ортогональный тензор второго ранга **П** в пространстве трех измерений.

Альтернативная запись тензора

Записанную в новых обозначения формулу для разложения векторов

$$\vec{p}_k = \sum_{l=1}^3 \vec{i}_l p_{kl}, \quad (k=1,2,3)$$

Альтернативная запись тензора

Записанную в новых обозначения формулу для разложения векторов

$$\vec{p}_k = \sum_{l=1}^{3} \vec{i}_l p_{kl}, \quad (k = 1, 2, 3)$$

подставим в равенство, определяющее тензор, и получим условную запись

$$\Pi = \sum_{k=1}^{3} \sum_{l=1}^{3} \vec{i_k} \vec{i_l} p_{kl}.$$

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор *I* называется единичным тензором.

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор **/** называется единичным тензором.

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \leftarrow \begin{array}{c} \vec{p_1} = \vec{i_1} \\ \leftarrow \vec{p_2} = \vec{i_2} \\ \leftarrow \vec{p_3} = \vec{i_3} \end{array}$$

Пусть

$$I = \vec{i}_1 \vec{i}_1 + \vec{i}_2 \vec{i}_2 + \vec{i}_3 \vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $\leftarrow \quad \vec{p_1} = \vec{i_1}$
 $\leftarrow \quad \vec{p_2} = \vec{i_2}$
 $\leftarrow \quad \vec{p_3} = \vec{i_3}$
 $p_{rs} = \delta_{rs} = \begin{cases} 1, r = s, \\ 0, r \neq s. \end{cases}$

Пусть

$$I = \vec{i}_1 \vec{i}_1 + \vec{i}_2 \vec{i}_2 + \vec{i}_3 \vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\begin{array}{ccc}
\leftarrow & \vec{p_1} = \vec{i_1} \\
\leftarrow & \vec{p_2} = \vec{i_2} \\
\leftarrow & \vec{p_3} = \vec{i_3}
\end{array}
\qquad p_{rs} = \delta_{rs} = \begin{cases}
1, r = s, \\
0, r \neq s.
\end{cases}$$

$$p'_{kl} =$$

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\begin{array}{ccc}
\leftarrow & \vec{p_1} = \vec{i_1} \\
\leftarrow & \vec{p_2} = \vec{i_2} \\
\leftarrow & \vec{p_3} = \vec{i_3}
\end{array}
\qquad p_{rs} = \delta_{rs} = \begin{cases} 1, r = s, \\ 0, r \neq s. \end{cases}$$

$$p'_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} \alpha_{kr} \alpha_{ls} p_{rs} =$$

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\begin{array}{ccc}
\leftarrow & \vec{p_1} = \vec{i_1} \\
\leftarrow & \vec{p_2} = \vec{i_2} \\
\leftarrow & \vec{p_3} = \vec{i_3}
\end{array}
\qquad p_{rs} = \delta_{rs} = \begin{cases}
1, r = s, \\
0, r \neq s.
\end{cases}$$

$$p'_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} \alpha_{kr} \alpha_{ls} p_{rs} = \sum_{r=1}^{3} \alpha_{kr} \alpha_{lr} =$$

Пусть

$$\textbf{\textit{I}} = \vec{i}_1\vec{i}_1 + \vec{i}_2\vec{i}_2 + \vec{i}_3\vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\begin{array}{ccc}
\leftarrow & \vec{p_1} = \vec{i_1} \\
\leftarrow & \vec{p_2} = \vec{i_2} \\
\leftarrow & \vec{p_3} = \vec{i_3}
\end{array}
\qquad p_{rs} = \delta_{rs} = \begin{cases}
1, r = s, \\
0, r \neq s.
\end{cases}$$

$$p'_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} \alpha_{kr} \alpha_{ls} p_{rs} = \sum_{r=1}^{3} \alpha_{kr} \alpha_{lr} = \delta_{kl}.$$

Пусть

$$I = \vec{i}_1 \vec{i}_1 + \vec{i}_2 \vec{i}_2 + \vec{i}_3 \vec{i}_3.$$

Тензор *I* называется единичным тензором.

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\begin{array}{ccc}
\leftarrow & \vec{p}_1 = \vec{i}_1 \\
\leftarrow & \vec{p}_2 = \vec{i}_2 \\
\leftarrow & \vec{p}_3 = \vec{i}_3
\end{array}
\qquad p_{rs} = \delta_{rs} = \begin{cases} 1, r = s, \\ 0, r \neq s. \end{cases}$$

В альтернативной системе координат

$$p'_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} \alpha_{kr} \alpha_{ls} p_{rs} = \sum_{r=1}^{3} \alpha_{kr} \alpha_{lr} = \delta_{kl}.$$

Тензор I имеет одни и те же компоненты в любой ортогональной системе координат.

Диада

Определение

Пусть
$$\vec{a} = \vec{i}_1 a_1 + \vec{i}_2 a_2 + \vec{i}_3 a_3$$
 и $\vec{b} = \vec{i}_1 b_1 + \vec{i}_2 b_2 + \vec{i}_3 b_3$,

Диада

Определение

Пусть $\vec{a} = \vec{i}_1 a_1 + \vec{i}_2 a_2 + \vec{i}_3 a_3$ и $\vec{b} = \vec{i}_1 b_1 + \vec{i}_2 b_2 + \vec{i}_3 b_3$, тогда диадным или тензорными произведением векторов \vec{a} и \vec{b} называется тензор, определяемый следующим соотношением:

Диада

Определение

Пусть $\vec{a} = \vec{i}_1 a_1 + \vec{i}_2 a_2 + \vec{i}_3 a_3$ и $\vec{b} = \vec{i}_1 b_1 + \vec{i}_2 b_2 + \vec{i}_3 b_3$, тогда диадным или тензорными произведением векторов \vec{a} и \vec{b} называется тензор, определяемый следующим соотношением:

$$\vec{a} \otimes \vec{b} = \vec{a}\vec{b} =$$

Диада

Определение

Пусть $\vec{a} = \vec{i}_1 a_1 + \vec{i}_2 a_2 + \vec{i}_3 a_3$ и $\vec{b} = \vec{i}_1 b_1 + \vec{i}_2 b_2 + \vec{i}_3 b_3$, тогда диадным или тензорными произведением векторов \vec{a} и \vec{b} называется тензор, определяемый следующим соотношением:

$$\vec{a} \otimes \vec{b} = \vec{a}\vec{b} = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}$$

Корректность определения диады

При переходе к новой системе координат $Ox_1'x_2'x_3'$ компоненты этих векторов преобразуются по формулам:

$$a'_{k} = \sum_{r=1}^{3} \alpha_{kr} a_{r}, \quad b'_{l} = \sum_{s=1}^{3} \alpha_{ls} b_{s} \quad (k, l = 1, 2, 3).$$

Корректность определения диады

При переходе к новой системе координат $Ox'_1x'_2x'_3$ компоненты этих векторов преобразуются по формулам:

$$a'_{k} = \sum_{r=1}^{3} \alpha_{kr} a_{r}, \quad b'_{l} = \sum_{s=1}^{3} \alpha_{ls} b_{s} \quad (k, l = 1, 2, 3).$$

Перемножив оба эти равенства, получим

$$a'_k b'_l = \sum_{r=1}^3 \sum_{s=1}^3 \alpha_{ks} \alpha_{ls} a_r b_s.$$

следовательно приведенное выражение является тензором по определению (альтернативному).

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

$$(\vec{a}\vec{b})_c =$$

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

$$(\vec{a}\vec{b})_c = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}_c =$$

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

$$(\vec{a}\vec{b})_c = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}_c = \begin{pmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \end{pmatrix} =$$

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

$$(\vec{a}\vec{b})_c = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}_c = \begin{pmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \end{pmatrix} = \vec{b}\vec{a}.$$

Определение

Тензор Π_c называется сопряженным к тензору Π , если компоненты его получены транспонированием компонент тензора Π .

Сопряжение диады

$$(\vec{a}\vec{b})_c = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}_c = \begin{pmatrix} a_1b_1 & a_2b_1 & a_3b_1 \\ a_1b_2 & a_2b_2 & a_3b_2 \\ a_1b_3 & a_2b_3 & a_3b_3 \end{pmatrix} = \vec{b}\vec{a}.$$

Таким образом, $(\vec{a}\vec{b})_c = \vec{b}\vec{a}$.

Сумма тензоров

Определение

Суммой тензоров **A** и **B** называется тензор **C**, компоненты которого равны сумме компонент тензоров **A** и **B**. Пишут C = A + B.

Сумма тензоров

Определение

Суммой тензоров **A** и **B** называется тензор **C**, компоненты которого равны сумме компонент тензоров **A** и **B**. Пишут C = A + B.

Используя альтернативное определение легко показать, что определение суммы корректно, т.е. \boldsymbol{C} является тензором.

Симметричный тензор

Определение

Tензор $oldsymbol{S}$ называется $oldsymbol{c}$ имметричным, если $oldsymbol{S}_c = oldsymbol{S}$.

Симметричный тензор

Определение

Tензор $oldsymbol{S}$ называется $oldsymbol{c}$ имметричным, если $oldsymbol{S}_c = oldsymbol{S}$.

Покомпонентная запись симметричного тензора

$$\mathbf{S} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{12} & p_{22} & p_{23} \\ p_{13} & p_{23} & p_{33} \end{pmatrix}$$

Симметричный тензор

Определение

Tензор $oldsymbol{S}$ называется $oldsymbol{c}$ имметричным, если $oldsymbol{S}_c = oldsymbol{S}$.

Покомпонентная запись симметричного тензора

$$\mathbf{S} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{12} & p_{22} & p_{23} \\ p_{13} & p_{23} & p_{33} \end{pmatrix}$$

Симметричный тензор определяется 6 компонентами.

Определение

Tензор $oldsymbol{A}$ называется $oldsymbol{a}$ нтисимметричным, если $oldsymbol{A}_c = -oldsymbol{A}$.

Определение

 $extbf{T}$ ензор $extbf{A}$ называется $extbf{a}$ нтисимметричным, если $extbf{A}_c = - extbf{A}$.

Определение

 $extbf{ extit{T}}$ ензор $extbf{ extit{A}}$ называется $extbf{ extit{a}}$ нтисимметричным, если $extbf{ extit{A}}_c = - extbf{ extit{A}}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 =$$

Определение

 $extbf{T}$ ензор $extbf{A}$ называется $extbf{a}$ нтисимметричным, если $extbf{A}_c = - extbf{A}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

Определение

 $extbf{T}$ ензор $extbf{A}$ называется $extbf{a}$ нтисимметричным, если $extbf{A}_c = - extbf{A}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

где
$$\vec{p_1} = -\omega_3 \vec{i_2} + \omega_2 \vec{i_3} = \vec{i_1} \times \vec{\omega}$$
,

Определение

Тензор **A** называется антисимметричным, если $\mathbf{A}_c = -\mathbf{A}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

где
$$\vec{p}_1 = -\omega_3 \vec{i}_2 + \omega_2 \vec{i}_3 = \vec{i}_1 \times \vec{\omega}$$
, $\vec{p}_2 = \omega_3 \vec{i}_1 - \omega_1 \vec{i}_3 = \vec{i}_2 \times \vec{\omega}$,

Определение

Тензор **A** называется антисимметричным, если $\mathbf{A}_c = -\mathbf{A}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

где
$$\vec{p}_1 = -\omega_3 \vec{i}_2 + \omega_2 \vec{i}_3 = \vec{i}_1 \times \vec{\omega}, \ \vec{p}_2 = \omega_3 \vec{i}_1 - \omega_1 \vec{i}_3 = \vec{i}_2 \times \vec{\omega}, \ \vec{p}_3 = -\omega_2 \vec{i}_1 + \omega_1 \vec{i}_2 = \vec{i}_3 \times \vec{\omega}.$$

Определение

Тензор **A** называется антисимметричным, если $\mathbf{A}_c = -\mathbf{A}$.

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

где
$$\vec{p}_1 = -\omega_3 \vec{i}_2 + \omega_2 \vec{i}_3 = \vec{i}_1 \times \vec{\omega}, \ \vec{p}_2 = \omega_3 \vec{i}_1 - \omega_1 \vec{i}_3 = \vec{i}_2 \times \vec{\omega}, \ \vec{p}_3 = -\omega_2 \vec{i}_1 + \omega_1 \vec{i}_2 = \vec{i}_3 \times \vec{\omega}.$$

Таким образом,
$$A = \vec{i}_1(\vec{i}_1 \times \vec{\omega}) + \vec{i}_2(\vec{i}_2 \times \vec{\omega}) + \vec{i}_3(\vec{i}_3 \times \vec{\omega}).$$

Определение

Тензор **A** называется антисимметричным, если $\mathbf{A}_c = -\mathbf{A}$.

Покомпонентная запись антисимметричного тензора Введем вектор $\vec{\omega} = \vec{i_1}\omega_1 + \vec{i_2}\omega_2 + \vec{i_3}\omega_3$. Тогда

$$A = \vec{i}_1 \vec{p}_1 + \vec{i}_2 \vec{p}_2 + \vec{i}_3 \vec{p}_3 = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

где
$$\vec{p}_1 = -\omega_3 \vec{i}_2 + \omega_2 \vec{i}_3 = \vec{i}_1 \times \vec{\omega}, \ \vec{p}_2 = \omega_3 \vec{i}_1 - \omega_1 \vec{i}_3 = \vec{i}_2 \times \vec{\omega}, \ \vec{p}_3 = -\omega_2 \vec{i}_1 + \omega_1 \vec{i}_2 = \vec{i}_3 \times \vec{\omega}.$$

Таким образом,
$$A = \vec{i}_1(\vec{i}_1 \times \vec{\omega}) + \vec{i}_2(\vec{i}_2 \times \vec{\omega}) + \vec{i}_3(\vec{i}_3 \times \vec{\omega}).$$

Антисимметричный тензор задается 3 компонентами.

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор Π .

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

где
$${m S}=rac{{m \Pi}+{m \Pi}_c}{2}$$
 — симметричный, а ${m A}=rac{{m \Pi}-{m \Pi}_c}{2}$ — антисимметричный тензоры. Действительно,

$$S_c =$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

$$\boldsymbol{S}_c = \left(\frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2}\right)_c =$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

$$\boldsymbol{S}_c = \left(\frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2}\right)_c = \frac{\boldsymbol{\Pi}_c + (\boldsymbol{\Pi}_c)_c}{2} =$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

$$\boldsymbol{S}_c = \left(\frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2}\right)_c = \frac{\boldsymbol{\Pi}_c + (\boldsymbol{\Pi}_c)_c}{2} = \frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2} =$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

. Пусть задан тензор **П**. Легко убедиться, что

$$\Pi = S + A$$

$$\boldsymbol{S}_c = \left(\frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2}\right)_c = \frac{\boldsymbol{\Pi}_c + (\boldsymbol{\Pi}_c)_c}{2} = \frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2} = \boldsymbol{S},$$

$$A_c =$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

 Π усть задан тензор Π . Легко убедиться, что

$$\Pi = S + A$$

$$m{\mathcal{S}}_c = \left(rac{m{\Pi} + m{\Pi}_c}{2}
ight)_c = rac{m{\Pi}_c + (m{\Pi}_c)_c}{2} = rac{m{\Pi} + m{\Pi}_c}{2} = m{\mathcal{S}},$$
 $m{\mathcal{A}}_c = \left(rac{m{\Pi} - m{\Pi}_c}{2}
ight)_c =$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

$$egin{aligned} oldsymbol{\mathcal{S}}_c &= \left(rac{oldsymbol{\Pi} + oldsymbol{\Pi}_c}{2}
ight)_c = rac{oldsymbol{\Pi}_c + (oldsymbol{\Pi}_c)_c}{2} = rac{oldsymbol{\Pi} + oldsymbol{\Pi}_c}{2} = oldsymbol{\mathcal{S}}, \ oldsymbol{\mathcal{A}}_c &= \left(rac{oldsymbol{\Pi} - oldsymbol{\Pi}_c}{2}
ight)_c = rac{oldsymbol{\Pi}_c - (oldsymbol{\Pi}_c)_c}{2} = \end{aligned}$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

Пусть задан тензор П. Легко убедиться, что

$$\Pi = S + A$$

$$egin{aligned} oldsymbol{S}_c &= \left(rac{oldsymbol{\Pi} + oldsymbol{\Pi}_c}{2}
ight)_c = rac{oldsymbol{\Pi}_c + (oldsymbol{\Pi}_c)_c}{2} = rac{oldsymbol{\Pi} + oldsymbol{\Pi}_c}{2} = oldsymbol{S}, \ oldsymbol{A}_c &= \left(rac{oldsymbol{\Pi} - oldsymbol{\Pi}_c}{2}
ight)_c = rac{oldsymbol{\Pi}_c - (oldsymbol{\Pi}_c)_c}{2} = -rac{oldsymbol{\Pi} - oldsymbol{\Pi}_c}{2} = oldsymbol{S}. \end{aligned}$$

Теорема

Всякий тензор можно разложить, и притом единственным образом, на сумму симметричного и антисимметричного тензора.

Доказательство.

 Π усть задан тензор Π . Легко убедиться, что

$$\Pi = S + A$$

$$\begin{split} \boldsymbol{S}_c &= \left(\frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2}\right)_c = \frac{\boldsymbol{\Pi}_c + (\boldsymbol{\Pi}_c)_c}{2} = \frac{\boldsymbol{\Pi} + \boldsymbol{\Pi}_c}{2} = \boldsymbol{S}, \\ \boldsymbol{A}_c &= \left(\frac{\boldsymbol{\Pi} - \boldsymbol{\Pi}_c}{2}\right)_c = \frac{\boldsymbol{\Pi}_c - (\boldsymbol{\Pi}_c)_c}{2} = -\frac{\boldsymbol{\Pi} - \boldsymbol{\Pi}_c}{2} = -\boldsymbol{A}. \end{split}$$

Теорема

Всякий тензор можно разложить в сумму трёх диад.

Теорема

Всякий тензор можно разложить в сумму трёх диад.

Доказательство.

 Π усть задан тензор Π .

Разложение

$$\Pi = \vec{i}_1 \vec{a}_1 + \vec{i}_2 \vec{a}_2 + \vec{i}_3 \vec{a}_3$$

и является суммой трёх диад. Такое разложение не является единственным.