Commutative algebra notes

Matei Ionita

November 21, 2013

Lemma 1. Given an A-module M, the rule $\mathcal{B} \to A$ -modules, $U = D(f) \mapsto M_f = M \otimes_A A_f$ is a sheaf (of A-modules) on \mathcal{B} .

Proof. Lemma 1 shows this is well defined ang gives the restriction mappings. It's on HW to prove the sheaf condition. \Box

Definition 1. The structure sheaf of Spec(A) is the sheaf of maps $\mathcal{O}_{Spec(A)}$ which corresponds to the rule:

$$D(f) \mapsto A_f$$

on the basis \mathcal{B} of standard opens.

Remark. Similarly we have the sheaf \tilde{M} corresponding to $D(f) \mapsto M_f$. Observe that \tilde{M} is a sheaf of $\mathcal{O}_{Spec(A)}$ -modules.

Stalk of \mathfrak{p}. Since \mathcal{B} is a bassi for the topological space, to compute the stalk we need only consider pairs (D(f), s) where $\mathfrak{p} \in D(f)$ and $s \in A_f$., i.e.:

$$f \in A - \mathfrak{p}, s = \frac{a}{f^n}$$

Then 2 pairs $(D(f), a/f^n)$ and $(D(g), b/g^n)$ give the same element of the stalk iff there exists $h \in A - \mathfrak{p}$ such that $D(h) \subset D(f), D(h) \subset D(g)$ and $1/f^n$ and $1/g^n$ map to the same element of A_h . Contemplate the diagram. We conclude that we get a well-defined, injective and surjective map. In particular, $\mathcal{O}_{\text{Spec}(A),\mathfrak{p}} = A_{\mathfrak{p}}$.

Lemma 2. The stalk of $\mathcal{O}_{\operatorname{Spec}(A)}$ at \mathfrak{p} is $A_{\mathfrak{p}}$. The stalk of \tilde{M} at \mathfrak{p} is $M_{\mathfrak{p}}$.

Remark. If (X, \mathcal{O}_X) is a locally ringed space and $U \in X$ is open, then $(U, \mathcal{O}_X|_U)$ is a locally ringed space. Moreover there is an inclusion morphism:

$$j:(U,\mathcal{O}_X|_U)\to(X,\mathcal{O}_X)$$

of locally ringed spaces.

$$V \subset X \quad j^{\#} : \mathcal{O}_X(V) \stackrel{\rho_{U \cap V}^V}{\longrightarrow} \mathcal{O}_X|_U(j^{-1}V) = \mathcal{O}_X(U \subset V)$$

Remark. Open subspaces of schemes are, again, schemes. To see this, it's enough to show that $(D(f), \mathcal{O}_{\text{Spec}(A)}|_{D(f)}) = (\text{Spec}(A_f), \mathcal{O}_{\text{Spec}(A_f)}).$

Ring maps and morphisms

Let $A \xrightarrow{\phi} B$ be a ring map. Then:

$$\operatorname{Spec}(\phi) : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

is a continuous map of top spaces. Moreover, if $f \in A$ then:

$$\operatorname{Spec}(\phi)^{-1}(D(f)) = D(\phi(f))$$

Lemma. Let $f: X \to Y$ be a continuous map of top spaces. Let \mathcal{B}, \mathcal{C} be a basis for the top on X, Y respectively, both closed under intersections. Assume $f^{-1}v \in \mathcal{B}$ for all $V \in \mathcal{C}$. Then given sheaves \mathcal{F}, \mathcal{G} on X, Y respectively. To give a collection of maps:

$$\phi(V): \mathcal{G}(V) \to \mathcal{F}(f^{-1}V)$$

for all V open in Y compatible with the restriction maps, is the same as giving a collection:

$$\phi(V): \mathcal{G}(V) \to \mathcal{F}(f^{-1}V)$$

for all $V \in \mathcal{C}$ compatible with the restriction maps.

Remark. Such a collection of maps is called an f-map from \mathcal{G} to \mathcal{F} .

Proof. Given $\phi(V)$ defined for $V \in \mathcal{C}$ and $W \subset Y$ open. Choose an open covering $W = \bigcup V_i$, $V_i \in \mathcal{C}$ and then define $\phi(W)$ by:

$$\mathcal{G}(W) = \{(s_i) \in \prod \mathcal{G}(V_i) | \rho_{V_i \cap V_j}^{V_i}(s_i) = \rho_{V_i \cap V_j}^{V_j}(s_j) \}$$
$$\mathcal{F}(f^{-1}W) = \{(t_i) \in \prod \mathcal{F}(f^{-1}V_i) | \dots \}$$

Going back to $A \xrightarrow{\phi} B$ we let:

$$\operatorname{Spec}(\phi): (\operatorname{Spec}(B), \mathcal{O}_{\operatorname{Spec}(B)}) \to (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$$

Defined by rules:

$$\operatorname{Spec}(\phi)(\mathfrak{q}) = \phi^{-1}(\mathfrak{q}) \quad , \mathfrak{q} \in \operatorname{Spec}(B)$$

$$A_f = \mathcal{O}_{\operatorname{Spec}(A)}(D(f)) \to \mathcal{O}_{\operatorname{Spec}(B)}(D(\phi(f))) = B_{\phi(f)}$$

$$\frac{a}{f^n} \mapsto \frac{\phi(a)}{\phi(f)^n}$$

Morphism of ringed spaces. To check it's a morphism of schemes we need to check the induced maps:

$$\mathcal{O}_{\mathrm{Spec}(A)}\dots$$

is a local homo of local rings. This is OK as it's the map defined by ϕ .

Remark. $X \xrightarrow{f} Y, \phi : \mathcal{G} \to \mathcal{F}$ and f-map. Need to get:

$$\phi_x : \mathcal{G}_{f(x)} \to \mathcal{F}_x$$

$$(V, t) \mapsto (f^{-1}V, \phi(V)(t))$$

Lemma 3. Let A be a ring and $f \in A$. The ring map $A \to A_f$ induces an isom:

$$(\operatorname{Spec}(A_f), \mathcal{O}_{\operatorname{Spec}(A_f)}) \xrightarrow{\cong} (D(f), \mathcal{O}_{\operatorname{Spec}(A)}|_{D(f)})$$

Lemma 4. Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of locally ringed spaces. Then f is an iso iff:

- (a) f is a homeo
- (b) f induces isos on stalks.

Proof. Obvious by Lemma 6.

Lemma 5. Let $\mathcal{F} \xrightarrow{\alpha} \mathcal{G}$ be a map of sheaves on a top space X. Then α is an iso iff $\alpha_x : \mathcal{F}_x \to \mathcal{G}_x$ is an iso for all $x \in X$.

Proof. We will make $\beta: \mathcal{G} \to \mathcal{F}$ which is inverse of α . To do this it's enough if $\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is a bijection for all U. We first show it's injective. Suppose $\alpha(s) = \alpha(s')$ for some $s, s' \in \mathcal{F}(U)$. Then $(U, \alpha(s)), (U, \alpha(s'))$ define the same element of the stalk \mathcal{G}_x for all $x \in U$. By assumption this means that (U, s), (U, s') define the same element in \mathcal{F}_x for all $x \in U$. By definition this means that for all $x \in U$ there exists $x \in U_x \subset U$ open such that $s|_{U_x} = s'|_{U_x}$. Then $U = \bigcup_{x \in U} U_x$ is an open covering and the sheaf condition for \mathcal{F} shows s = s'. Surjectivity is similar.