РЕШЕНИ ЗАДАЧИ ПО МАТЕМАТИКА ОТ КОМБИНАТОРИКА И ВЕРОЯТНОСТИ

Задачите са от учебници за 10 клас, "Тестове за подготовка на зрелостен изпит" – изд. "Анубис", "Текстови задачи за държавни зрелостни изпити" – изд. "Булвест 2000", "Матура за отличен" – изд. "Просвета", давани задачи на Зрелостен изпит – 2008 г.

Задачите са събрани и решени от Здравка Поплазарова Компютърна обработка – ученици от 10^6 клас – Илия, Ина, Кристиян, Магдалена, Марина, Милослав, Моника, Недю, Никол, Теодора, Христо с ръководител Мария Калоянова. Редактори Здравка Поплазарова и Мария Калоянова

Декември 2008 година София о Пермутации $P_n = n!$

о Вариации
$$V_n^k = \frac{n!}{(n-k)!}$$

о Комбинации
$$C_n^k = \frac{n!}{(n-k)!k!} = \binom{n}{k}$$

 P_n - Всички нареждания на \underline{n} елемента в \underline{n} - членни редици.

 V_n^k - Всички $\underline{\underline{k}}$ -членни редици от $\underline{\underline{n}}$ елемента, различаващи се една от друга по елементите или по реда, в който са взети.

 C_n^k - Всички $\underline{\underline{k}}$ -елементни подмножества на множеството от $\underline{\underline{n}}$ елемента, за които редът на елементите не е от значение.

 $\underline{3a6}$. Броят на комбинациите на k елемента от n-ти клас $\binom{C_n}{k}$ е равен на вариациите на k елемента от n-ти клас $\binom{V_n}{k}$, разделен на броя на повторенията на k елемента — пермутации $P_k = k!$. Под "повторения" се разбира \underline{k} -членни редици, съдържащи еднакви елементи, различаващи се по място.

$$C_n^k = \frac{V_n^k}{P_k} = \frac{\frac{n!}{(n-k)!}}{k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}$$

О Вероятност /класическа/ $P = \frac{Брой \ благоприятни \ събития}{Брой \ на \ всички \ събития} \to P \in [0;1]$

Вероятността да се случи благоприятно събитие е броят на благоприятните възможности /събития/, разделен на броя на всички възможности /събития/.

Вероятността да се случи благоприятно събитие (P) + вероятността да се случи неблагоприятно събитие (\overline{P}) е $1. \to P + \overline{P} = 1$

1) ! Колко десетцифрени числа могат да се съставят, като всяка цифра се използва само веднъж? Решение: Цифрите са 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – 10 цифри. На първо място имаме избор от 10 цифри, на второ – от 9, на трето – от 8, ... на второ място – избор от девето цифри и на десето – от 1, т.е. 10! възможности. Ако на първо място сложим 0, тогава на второ имаме избор от 9 цифри, на трето – от 8, на четвърто – от 7, ..., на десето – от 1 цифра, т.е. 9! възможности.

Число не може да започва с $0 \Rightarrow 10! - 9! = 10.9! - 9! = (10-1).9! = 9.9! = 3265920$

Друг начин за разсъждаване: на първо място имаме избор от 9 цифри /без 0/, за второ място остава избор отново от 9 цифри / 0 се връща като възможен избор, но една от цифрите вече сме сложили на първо място и я отстраняваме, защото не бива да повтаряме, така остават 9 възможности/, на трето място – избор от 8 цифри, на четвърто – избор от 7, ..., на девето – от 2, на десето – от $1 \Rightarrow 9.9.8.7.6.5.4.3.2.1 = 9.9! = 3265920.$

- 2) По колко различни начина могат 7 книги да бъдат подредени на една полица? Решение: 7! = 7.6.5.4.3.2.1 = 5040
- 3) ! Колко прави минават през 8 точки, никои три от които не лежат на една права? <u>Решение:</u> (Две точки определят една права и няма значение коя е първа и коя е втора, т.е. редът на елементите не е от значение.) $C_8^2 = \frac{8!}{6! \cdot 2!} = \frac{6! \cdot 7 \cdot 8}{6! \cdot 1 \cdot 2} = \frac{7 \cdot 8}{2} = 28$
 - 4) Колко равнини минават през 7 точки, никои три от които не лежат на една права и никои 4 не лежат в една равнина?

<u>Решение:</u> (Три точки, нележащи на 1 права определят една равнина.) $C_7^3 = \frac{7!}{4!.3!} = \frac{4!.5.6.7}{4!.12.3} = 35$

5) ! Колко диагонала има правилен *п*-ъгълник?

<u>Решение:</u> Всички прави през две точки са: $C_n^2 = \frac{n!}{(n-2)!2!} = \frac{(n-2)!(n-1)n}{(n-2)!.1.2} = \frac{(n-1)n}{2} \Rightarrow$ Изваждаме броя на страните $\Rightarrow \frac{(n-1)n}{2} - n = \frac{n^2 - n - 2n}{2} = \frac{n^2 - 3n}{2}$ диагонала.

6) ! Колко фиша могат да се попълнят в играта "6 от 49" на Спортния тотализатор така, че във всеки да фиш да има точно три числа от 1 до 10?

<u>Решение:</u> Първите 3 числа измежду числата до 10 можем да изберем по C_{10}^3 начина. Като махнем числата от 1 до 10, до 49 остават 39 числа и измежду тях трябва да изберем другите 3 за фиша, а това межем да направим по C_{39}^3 начина. При всеки избор на първите 3 числа, можем по C_{39}^3 начина да изберем вторите, а за първите 3 имаме C_{10}^3 възможности. Следователно възможностите са

$$C_{10}^3.C_{39}^3 = \frac{10!}{7!.3!}.\frac{39!}{36!.3!} = \frac{7!.8.9.10}{7!.1.2.3}.\frac{36!.37.38.39}{36!.1.2.3} = \frac{8.9.10}{2.3}.\frac{37.38.39}{2.3} = 120.37.19.13 = 1096680$$

7) ! Конспект за матура има 20 въпроса и 25 задачи. Колко различни комбинации могат да се съставят, ако изпитен билет съдържа 2 билета и 3 задачи?

<u>Решение:</u> Възможните избори на 2 от 20 въпроса са C_{20}^2 , а възможните комбинации на 3 от 25 задачи са C_{25}^3 . Всеки избор на въпроси може да се съпостави с всеки избор на задачи.

$$\Rightarrow C_{20}^2.C_{25}^3 = \frac{20!}{18!.2!}.\frac{25!}{22!.3!} = \frac{18!.19.20}{18!.2}.\frac{22!.23.24.25}{22!.1.2.3} = 190.2300 = 437000$$

8) В играта "Бридж" се раздават по 13 карти на играч измежду 52 карти. По колко различни начина един играч може да получи 13 карти?

<u>Решение:</u> Редът на елементите няма значение, тук – в какъв ред се раздават картите. Избираме

$$\frac{\text{Решение.}}{13}$$
 редът на елементите няма значение, тук – в какъв ред се раздават картите. И $\frac{13}{13}$ от 52 карти по C_{52}^{13} начина. $\Rightarrow C_{52}^{13} = \frac{52!}{39!.13!} = \frac{39!40.41.42.43.44.45.46.47.48.49.50.51.52}{39!1.2.3.4.5.6.7.8.9.10.11.12.13} = \frac{41.42.43.4.45.46.47.48.49.5.51}{2.3.6.7.9.12} = \frac{41.43.4.45.46.47.4.49.5.51}{6.9} = \frac{41.43.4.45.46.47.4.49.5.51}{6.9}$

$$=\frac{41.42.43.4.45.46.47.48.49.5.51}{2367912}=\frac{41.43.4.45.46.47.4.49.5.51}{69}=$$

$$\frac{41.43.4.15.23.47.4.49.5.17}{3} = 38116060.49.20.17 = 38116060.16660 = 635013559600$$

9) Колко петцифрени числа могат да се образуват от цифрите 0, 1, 2, 3, 4?

<u>Решение:</u> От 5 цифри $\rightarrow P_5 = 5! = 1.2.3.4.5 = 120$ числа.

Числата не могат да започват с $0 \Rightarrow P_5 - P_4 = 5! - 4! = 120 - 24 = 96$

10)! По колко начина могат да бъдат разпределени в един ден 9 учебни предмета, ако в дневната програма се включват 5 различни учебни предмета?

Решение:
$$V_9^5 = \frac{9!}{(9-5)!} = \frac{4!.5.6.7.8.9}{4!} = 30.56.9 = 15120$$
, защото редът на предметите има

значение.

- 11) Колко са четирицифрените числа, които съдържат цифрите 1, 2, 3 и 4 точно по един път? <u>Решение:</u> $P_4 = 1.2.3.4 = 24$, $P_4 = 4!$
- 12) Колко са четирицифрените числа, в които се срещат само цифрите 1, 2, 3, 4, 5, 6, 7 и никоя цифра не се повтаря?

Решение: Избираме 4 от 7 цифри и има значение коя на кое място е.

$$\Rightarrow V_7^4 = \frac{7!}{3!} = \frac{3!.4.5.6.7}{3!} = 4.5.6.7 = 840$$

13) Тото играчите попълват 6 от 49. Колко различни фиша могат да се попълнят?
$$\underline{\text{Решениe:}}\ C_{49}^6 = \frac{49!}{43!.6!} = \frac{43!.44.45.46.47.48.49}{43!.1.2.3.4.5.6} = \frac{44.45.46.47.49}{15} = 13983816$$

14) Колко е броят на четирицифрените числа, в които се срещат само цифрите 0, 1, 2, 3, 4, 5 и никоя от тях не се повтаря?

Решение:
$$V_6^4 - V_5^3 = \frac{6!}{2!} - \frac{5!}{2!} = \frac{5!.6 - 5!}{2} = \frac{5!.(6 - 1)}{2} = \frac{1.2.3.4.5.5}{2} = 300$$

С '0' не може да започва число, а броят на 0^{***} е V_5^3 .

15) Колко прави линии могат да се построят през 8 точки, никои от три които не лежат на една

Решение:
$$C_8^2 = \frac{8!}{6!.2!} = \frac{6!.7.8}{6!.2} = \frac{56}{2} = 28$$

16)! По колко различни начина могат да се подредят 5 различни книги в една редица на библиотеката?

<u>Решение:</u> 5 книги, за всички има място $\rightarrow P_5 = 5! = 1.2.3.4.5 = 120$

- 17) По колко различни начина могат да седнат 6 ученика на една пейка? <u>Решение:</u> $P_6 = 6! = 1.2.3.4.5.6 = 720$
- 18)! По колко различни начина могат да се подредят 5 души в един кръг? <u>Решение:</u> $P_4 = 4! = 1.2.3.4 = 24$ — един от тях може да застане където иска и според него другите ще се подреждат.
 - 19)! По колко различни начина могат да седнат на една пейка 5 ученика, ако двама от тях не искат да се разделят и трябва да са един до друг?

<u>Решение:</u> Двамата броим за един $\rightarrow P_4$, но те могат да си разменят местата

$$\rightarrow 2.P_4 = 2.4! = 2.1.2.3.4 = 48$$

20) Колко трицифрени числа могат да се съставят от цифрите 1, 3, 4, 6?

Решение:
$$V_4^3 = \frac{4!}{(4-3)!} = \frac{1.2.3.4}{1!} = 24$$

21) Дадени са 7 различни по цвят ленти. Колко различни трицветни знамена могат да се ушият от тях?

Решение:
$$V_7^3 = \frac{7!}{(7-3)!} = \frac{4!.5.6.7}{4!} = 5.6.7 = 210$$

22) От една група от 15 спортиста трябва да се изберат 4 участника за щафета 800+400+200+100. По колко начина може да стане това?

<u>Решение:</u> Трябва да изберем 4-ма от 15, като има значение мястото – на кой по ред пост ще бяга спортистът, защото дистанциите са различни.

$$\Rightarrow V_{10}^4 = \frac{15!}{(15-4)!} = \frac{11!.12.13.14.15}{11!} = 12.13.14.15 = 32760$$

23) Колко четирицифрени числа могат да се напишат с цифрите 2, 0, 5, 8, 9?

Решение: 5 цифри на 4 места
$$\rightarrow V_5^4 - V_4^3 = \frac{5!}{(5-4)!} - \frac{4!}{(4-3)!} = \frac{1.2.3.4.5}{1!} - \frac{1.2.3.4}{1!} = 120 - 24 = 96$$

24) По колко различни начина могат да се изберат трима дежурни от група от 20 души?

Решение:
$$C_{20}^3 = \frac{20!}{17! \cdot 3!} = \frac{17! \cdot 18.19.20}{17! \cdot 1.2.3} = \frac{18.19.20}{6} = 1140$$

25) Дадени са 'n' точки в равнината, като никои три от тях не лежат на една права. Намерете броя на правите, които се получават като се съединяват всеки две от точките.

Решение:
$$C_n^2 = \frac{n!}{(n-2)! \cdot 2!} = \frac{(n-2)! \cdot (n-1)n}{(n-2)! \cdot 1 \cdot 2} = \frac{(n-1)n}{2}$$

26) Шампионатът по футбол, в който участват 16 отбора, се провежда така че всеки отбор се среща два пъти с всеки друг отбор. Колко е броят на срещите, които се провеждат?

Решение:
$$2.C_{16}^2 = 2.\frac{16!}{(16-2)!.2!} = \frac{14!.15.16}{14!.2!} = 15.8 = 120$$
 – комбинираме ги по 2 отбора по C_{16}^2

начина и всяка двойка играе по два мача.

Или: V_{16}^2 , защото в двойките има значение домакин-гост.

27)! Събрание от 80 човека трябва да избере председател, секретар и трима членове на комисия. По колко начина може да стане това?

<u>Решение:</u> От 80 души избираме двама за председател и секретар – вариации, защото мястото има значение; от останалите 78 души избираме трима членове с комбинации, защото са равнопоставени и мястото няма значение.

$$V_{80}^{2} \cdot C_{78}^{3} = \frac{80!}{78!} \cdot \frac{78!}{75! \cdot 3!} = \frac{78! \cdot 79.80}{78!} \cdot \frac{75! \cdot 76.77.78}{75! \cdot 1.2.3} = 79.80 \cdot \frac{76.77.78}{6} = 79.80.76.77.13 = 36984640.13$$

Същото се получава, ако първо изберем трима членове от 80 души, а после двама за председател и секретар от останалите 77

$$\rightarrow C_{80}^{3} V_{77}^{2} = \frac{80!}{77! \cdot 3!} \cdot \frac{77!}{75!} = \frac{\cancel{77}! \cdot 78.79.80}{\cancel{77}! \cdot 1.2.3} \cdot \frac{\cancel{75}! \cdot 76.77}{\cancel{75}!} = \frac{78.79.80}{6} \cdot 76.77 = 13.79.80.76.77 = 36984640.13$$

Или $2C_{80}^2$. C_{78}^3 — избираме двама за председател и секретар по C_{80}^2 начина /така мястото им няма значение/, но те могат да разпределят длъжностите си по 2 начина $\Rightarrow 2.C_{80}^2$, тримата членове избираме от останалите 78 по C_{78}^3 начина, като при тях мястото няма значение.

Или 80.79. C_{78}^3 – на първо място 80 възможни, на второ – 79, остават C_{78}^3 за избор на членовете.

28) По колко различни начина може да се образува разузнавателна група от трима офицери и седем войника, ако има всичко 10 офицера и 20 войника?

Решение:
$$C_{10}^3.C_{20}^7 = \frac{10!}{7!.3!}.\frac{20!}{13!.7!} = \frac{7!.8.9.10}{7!.1.2.3}.\frac{13!.14.15.16.17.18.19.20}{13!.1.2.3.4.5.6.7} = 120.\frac{16.17.18.19.20}{4.6} = 120.77520 = 9302400$$

29)! Тридесет души трябва да се разделят на три групи по 10 човека. По колко различни начина може да стане това?

<u>Решение:</u> Избираме първите 10 от 30 души по C_{30}^{10} начина, редът няма значение. Остават 20 души и от тях избираме 10 по C_{20}^{10} начина. Остават 10 души, които можем да изберем по само 1 начин $\left(C_{10}^{10}=1\right)$ Така получаваме $C_{30}^{10}.C_{20}^{10}.1$ на брой избора на 3 групи по 10, но при това ще има повторения на групите.

По условие групите нямат номера, следователно са равнопоставени, т.е. за тях редът няма значение. Броят на **ПОВТОРЕНИЯТА на 3 елемента** /в случая групи/ е P_3 и за да изключим тези

повторения, трябва да разделим на
$$P_3\Rightarrow \frac{C_{30}^{10}.C_{20}^{10}.1}{P_3}=\frac{1}{P_3}.C_{30}^{10}.C_{20}^{10}=\frac{1}{3!}.\frac{30!}{20!.10!}.\frac{20!}{10!.10!}=$$
 $=\frac{\cancel{10!}.11.12.13.\cancel{14}.\cancel{15!}.16.17.18.19.20.21.22.23.\cancel{24}.25.....30}{3!.\cancel{10!}.10!.1.\cancel{10!}.\cancel{10!}.10!.10!}=$ $=\frac{11.12.13.\cancel{10!}.10.\cancel{10!}.10.\cancel{10!}.10.\cancel{10!}.\cancel{10!}.10.\cancel{10!}.1$

30)! По колко различни начина може да се разпределят 12 различни предмета между три лица А, В, С, така че всяко от тях да получи по 4 предмета?

Решение: Избираме за A – 4 предмета от 12 по C_{12}^4 начина. Остават 8 предмета. Избираме за B – 4 предмета от 8 по C_8^4 начина. За C остават 4 предмета по 1 начин $\left(C_4^4=1\right)$. Хората са различни, затова редът на групите от 4 предмета има значение и няма да делим на повторенията.

$$\Rightarrow C_{12}^4.C_8^4 = \frac{12!}{8!.4!}.\frac{8!}{4!.4!} = \frac{12.11.10.9.8.7.6.5.\cancel{\cancel{A}}!}{\cancel{\cancel{\cancel{A}}}!.43.2\cancel{\cancel{A}}!.3.2} = 11.10.9.7.5 = 34650$$

31)! По колко различни начина една колода от 36 карти може да се раздели на две половини, така че във всяка половина да има по две аса?

Решение: Като махнем асата, остават 32 карти, половината от тях е 16. Избираме 16 от 32 карти като мястото няма значение по C_{32}^{16} начина. Две от четирите аса избираме по C_4^2 начина. $\Rightarrow C_{32}^{16}.C_4^2$.

32)! Учениците от един клас изучават 9 различни предмета. По колко начина може да се състави учебна програма за един учебен ден от 5 различни учебни часа, в който да се изучават 5 различни учебни предмета, при условие, че история и география не може да се изучават в един ден.

<u>Решение:</u> Като махнем географията остават 8 предмета, от които да подредим 5 часа, а това става по V_8^5 начина. Това включва и всички подредби, в които няма нито история, нито география.

Махаме географията. Ако имаме първи час история, останалите 4 часа можем да подредим по V_7^4 начина. Аналогично, ако история е втори, трети, четвърти или пети час. Така за избор на часа по история имаме 5 възможности, а за останалите четири часа – $V_7^4 \Rightarrow 5.V_7^4$ възможности да включим

история в програмата.

$$\Rightarrow V_8^5 + 5V_7^4 = \frac{8!}{3!} + 5.\frac{7!}{3!} = \frac{3!.4.5.6.7.8 + 5.3!.4.5.6.7}{3!} = 4.5.6.7(8+5) = 120.7.13 = 10920$$

33) В турнир по хандбал участват 8 отбора. Ако има безспорен фаворит за златния медал, то по колко различни начина могат да се разпределят златния, сребърния и бронзовия медали в турнира?

Решение: Без фаворита остават 2 различни медала за разпределяне измежду 7 отбора.

$$\Rightarrow V_7^2 = \frac{7!}{(7-2)!} = \frac{5!.6.7}{5!} = 6.7 = 42$$

34) ! На рафт са подредени събрани съчинения в 30 тома. По колко начина могат да се подредят така, че трети и четвърти том да не стоят един до друг?

<u>Решение:</u> Всички подреждания на 30 тома са 30!. От тях трябва да извадим тези, в които двата тома са един до друг.

Ако броим двата тома за 1 обект, получаваме 29 обекта, които можем да подредим по 29! начина, но двата тома могат да си разменят местата. \Rightarrow 2.29! начина да подредим 30-те тома, като трети и четвърти са един до друг.

$$\Rightarrow$$
 30!-2.29! = 29!.30 - 2.29! = 29!(30 - 2) = 29!.28

35) Пет момчета и три момичета трябва да се подредят в два реда за снимка, като момчетата са прави, а момичетата са седнали пред тях. По колко различни начина могат да се подредят?

<u>Решение:</u> Подреждането на момичетата (P_3) не зависи от подреждането на момчетата (P_5) .

$$\Rightarrow$$
 $P_5.P_3 = 5!.3! = 5.4.3.2.1.3.2.1 = 720$

36) Броят на различните начини, по които могат да се подредят в редица (за снимка) Иван и четиримата му приятели, така, че Иван да е винаги в средата е:

Решение: 1 2 И 3 4
$$\rightarrow$$
 $P_4 = 4! = 4.3.2.1 = 24$

37) В олимпиадата по математика участват отбори от по трима души. Ако отборът се прави измежду шест ученици, какъв е броят на възможнните отбори?

Решение:
$$C_6^3 = \frac{6!}{3!.3!} = \frac{3!.4.5.6}{3!.3.2.1} = 4.5 = 20$$

38) Колко вида знамена могат да се направят чрез различно подреждане на три ленти плат (бяла, зелена и червена) хоризонтално една под друга?

$$\begin{array}{c|c} E43 \\ 3E4 \\ 34E \\ \end{array}$$
 6 ВЪЗМОЖНОСТИ $\rightarrow P_3 = 3! = 3.2.1 = 6$

ЧЗБ ЧБЗ

39) В една зала за танци има n момчета и n момичета. По колко начина те могат да образуват танцови двойки?

<u>Решение:</u> Всяко момиче може да бъде поканено от всяко момче, нека момичетата не сменят местата си \Rightarrow броят на двойките е равен на броя на подрежданията в множеството на момчетата, т.е. $P_n = n!$

Или: първото момче има избор от n момичета, второто – от (n-1) момичета, ... n-тото момче има избор от 1 момиче, а това са n! възможности.

40) Колко двуцифрени числа могат да се напишат с цифрите 1, 2, 3, и 4 без повтаряне на цифрите?

Решение:

41)! Телефонен номер се състои от 5 различни цифри. Колко са възможностите за останалите три цифри, ако номерът започва с 25?

<u>Решение:</u> Всичките цифри са $10 \rightarrow 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$

Изоставям 2 и 5 \Rightarrow остават 8 цифри \Rightarrow с тези 8 цифри ще имаме вариации от 3^{-ти} клас (за останалите 3 цифри)

$$V_8^3 = \frac{8!}{(8-3)!} = \frac{5!.6.7.8}{5!} = 8.7.6 = 336$$

42) Колко трицифрени числа могат да се съставят с цифрите 3, 0, 4 и 7, така че да не се повтаря никоя от тях?

<u>Решение:</u> V_4^3 – броят на всички възможни вариации, V_3^2 – броят на вариациите на числата, започващи с 0

$$\Rightarrow V_4^3 - V_3^2 = \frac{4!}{(4-3)!} - \frac{3!}{(3-2)!} = 4! - 3! = 4.3.2.1 - 3.2.1 = 24 - 6 = 18$$

43) Да се намери броят на диагоналите в изпъкнал 12-ъгълник?

Решение: През 2 точки минава само една права
$$\Rightarrow C_{12}^2 = \frac{12!}{(12-2)! \cdot 2!} = \frac{10! \cdot 11 \cdot 12}{10! \cdot 2} = 66$$

В тези 66 прави са включени и правите, минаващи през два съседни върха (т.е. страните) \Rightarrow да извадим броя на страните \Rightarrow 66 – 12 = 54 диагонала.

44)! В партида от 18 детайла 4 са нестандартни. По колко начина могат да се вземат случайно 5 детайла, от които 2 са нестандартни?

<u>Решение:</u> 18 детайла = 4 нестандартни +14 стандартни

 C_4^2 – начина да се вземат от 4 нестанд. 2 нестанд.

Броят на взетите детайли е 5 = 2 нестанд. + 3 стандартни

 \Rightarrow за всеки от C_4^2 (начина за вземане на нестанд.) съответстват C_{14}^3 (начина за вземане на

стандартни)
$$\Rightarrow C_4^2 C_{14}^3 = \frac{4!}{(4-2)!.2!} \cdot \frac{14!}{(14-3)!.3!} = \frac{4.3.2.1}{2!.2.1} \cdot \frac{11!.12.13.14}{11!.3.2.1} = 6.26.14 = 2184$$

- 45) В партида има 5 изделия за 1-во качество и 10 изделия от 2-ро качество. По колко начина могат случайно да се вземат 3 изделия, така че:
 - (а) трите да са от 1-во качество;
 - (б) трите да са от 2-ро качество;
 - (в) двете да са от 1-во к-во, а едното от 2-ро;
 - (г) двете да са от 2-ро, а едното от 1-во.

(a)
$$C_5^3 = \frac{5!}{2! \cdot 3!} = \frac{3! \cdot 4 \cdot 5}{2 \cdot 3!} = 10$$

(6)
$$C_{10}^3 = \frac{10!}{7!.3!} = \frac{7!.8.9.10}{7!.3.2.1} = 120$$

(B)
$$C_5^2 C_{10}^1 = \frac{5!}{3! \cdot 2!} \cdot \frac{10!}{9! \cdot 1!} = \frac{3! \cdot 4 \cdot 5}{3! \cdot 2 \cdot 1} \cdot \frac{9! \cdot 10}{9! \cdot 1} = 10 \cdot 10 = 100$$

(r)
$$C_5^1 C_{10}^2 = \frac{5!}{4! \cdot 1!} \cdot \frac{10!}{8! \cdot 2!} = \frac{4! \cdot 5}{4!} \cdot \frac{8! \cdot 9 \cdot 10}{8! \cdot 2} = 5.45 = 225$$

46) В един клас има 15 момчета и 20 момичета. Намерете по колко различни начина може да се състави представителна група от 2 момчета и 3 момичета.

Решение:
$$C_{15}^2.C_{20}^3 = \frac{15!}{(15-2)!.2!}.\frac{20!}{(20-3)!.3!} = \frac{13!.14.15}{13!.2}.\frac{17!.18.19.20}{17!.3.2.1} = 105.1140 = 119700$$

47) По колко различни начина могат да бъдат назначени 2 чистачки и 3 машинописки, ако кандидатите за чистачки са 9, а за машинописки -14.

Решение:
$$C_9^2.C_{14}^3 = \frac{9!}{7!.2!}.\frac{14!}{11!.3!} = \frac{7!.8.9}{7!.2}.\frac{11!.12.13.14}{11!.3.2.1} = 36.364 = 13104$$

- 48)! Колко прави могат да се прекарат:
 - а) през 8 точки, никои 3 от които не лежат на една права;
 - б) през 10 точки, 3 от които лежат на една права.

Решение: а)
$$C_8^2 = \frac{8!}{6!.2!} = \frac{6!.7.8}{6!.2} = 28$$
; б) От правите през 10 точки трябва да

извадим трите прави, минаващи през 3 точки и вместо тях да прибавим 1 права — на която лежат трите точки: $C_{10}^2 - C_3^2 + 1 = C_{10}^2 - 3 + 1 = \frac{10!}{8! \cdot 2!} - 2 = \frac{8! \cdot 9 \cdot 10}{8! \cdot 2!} - 2 = 45 - 2 = 43$.

49) В колко точки се пресичат 6 прави, които лежат в една равнина, но не минават през една и съща точка и никои 2 от тях не са успоредни?

Решение:
$$C_6^2 = \frac{6!}{4!.2!} = \frac{4!.5.6}{4!.2!} = 15$$

- 50)! През колко точки, никои три от които не лежат на една права, могат да се прекарат:
 - а) 28 прави; б) 55 прави.

Решение: a)
$$C_n^2 = 28 \rightarrow \frac{n!}{(n-2)!2!} = 28 \rightarrow \frac{n(n-1)(n-2)!}{(n-2)!.2} = 28$$

$$n^2 - n - 56 = 0 \to n_{12} = \frac{1 \pm 15}{2} \to n = 8$$
 \Rightarrow Отг. 8 точки.

6)
$$C_n^2 = 55 \rightarrow \frac{n1}{(n-2)!2!} = 55 \rightarrow \frac{n(n-1)(n-2)!}{(n-2)!2!} = 55 \rightarrow n^2 - n - 110 = 0$$

$$n_{12} = \frac{1 \pm 21}{2} \xrightarrow{} -10 < 0$$
 не е реш. \Rightarrow Отг. 11 точки.

51) Колко окръжности са определени от 7 точки, ако никои 4 точки не лежат на една окръжност и никои три от тях не лежат на една и съща права?

Решение: (Три точки определят една окръжност, ако не лежат на една права.)

$$C_7^3 = \frac{7!}{(7-3)!3!} = \frac{4!5.6.7}{4!.3.2.1} = 35$$

52) Колко диагонала има един правилен 15-ъгълник?

<u>Решение:</u> През две точки минава една права $\rightarrow C_{15}^2 = \frac{15!}{13!2!} = \frac{15.14.13!}{13!2!} = 105 -$ всички прави

през 15 точки \Rightarrow трябва да извадим броя на страните \Rightarrow 105 -15 = 90 диагонала.

53) Колко тетраедъра могат да се построят от 7 точки, лежащи върху една сфера, ако никои 4 от тях не лежат в една равнина?

<u>Решение:</u> Тетраедърът има 4 върха, които не лежат в една равнина.

$$\Rightarrow C_7^4 = \frac{7!}{(7-4)!4!} = \frac{4!5.6.7}{3!4!} = \frac{5.6.7}{2.3.1} = 35$$

54) Колко равнини са определени от 6 точки, ако никои 3 от тях не лежат на една и съща права и никои 4 точки не лежат в една и съща равнина?

Решение:
$$C_6^3 = \frac{6!}{3!3!} = \frac{3!4.5.6}{3!3.2.1} = 20$$

55) В колко точки се пресичат 5 прави, които лежат в една равнина, ако никои три прави не минават през една и съща точка и две от тях са успоредни помежду си?

<u>Решение:</u> В C_5^2 се пресичат 5 прави, ако всеки две се пресичат в различна точка. Двете

успоредни прави не се пресичат и изваждаме 1 точка.
$$\Rightarrow C_5^2 - 1 = \frac{5!}{3!2!} - 1 = \frac{3!4.5}{3!2.1} - 1 = 10 - 1 = 9$$

56) Колко различни дроби могат да се съставят от дължините a ,b, c, d на 4 отсечки, ако числата a, b, c, d смятаме за цели и взаимнопрости?

Решение:
$$V_4^2 = \frac{4!}{2!} = \frac{2!3.4}{2!} = 12$$

57) Определете броя на различните изрази от вида ax + b ($a \ne b$), ако a, b приемат различни стойности от множеството от числа $\{-3;-1;0;1;2\}$.

Решение:
$$V_5^2 = \frac{5!}{3!} = \frac{3!4.5}{3!} = 20$$

58) Учениците от един клас, които били 25 души, получили 3 безплатни покани за театър, за концерт и за спортно съзтезание. По колко начина могат да бъдат разпределени поканите, ако всеки ученик може да получи най-много 1 покана?

Решение:
$$V_{25}^3 = \frac{25!}{(25-3)!} = \frac{22!23.24.25}{22!} = 13800$$

59) В компютърна зала на един ред има 10 места. По колко различни начина на тези места могат да се настанят 5 ученици?

Решение:
$$V_{10}^5 = \frac{10!}{5!} = \frac{5!6.7.8.9.10}{5!} = 30240$$

60)* В колко точки се пресичат 8 прави в една равнина, 4 от които са успоредни и никои три не минават през една точка ?

Ако 8 прави се пресичат в различни точки – това са C_8^2 точки. Но имаме 4 успоредни прави, които не се пресичат помежду си.

 \Rightarrow преброили сме с C_4^2 точки повече /4 пресичащи се прави имат C_4^2 общи точки, ако никои три не се пресичат в 1 точка/

общи точки, ако никои три не се пресичат в 1 точка/
$$\Rightarrow C_8^2 - C_4^2 = \frac{8!}{6!2!} - \frac{4!}{2!2!} = \frac{6!7.8}{6!2} - \frac{2!3.4}{2!.2} = 28 - 6 = 22$$

61)! В колко точки се пресичат 12 прави, никои две от които не са успоредни, но 4 от тях минават през една точка ?

<u>Решение:</u> Четирите прави биха се пресекли в C_4^2 точки, които сме преброили с C_{12}^2 . Вместо

това те се пресичат в 1 точка.
$$C_{12}^2 - C_4^2 + 1 = \frac{12!}{10!2!} - \frac{4!}{2!2!} + 1 = \frac{\cancel{10!}.11.12}{\cancel{10!}.2} - \frac{\cancel{2!}3.4}{\cancel{2!}2} + 1 = 66 - 6 + 1 = 61$$

62) Колко е броят на трицифрените числа които могат да се запишат с цифрите 1, 2, 3, 4, 5, 6, 7, 8 и 9 (девет цифри) без да се повтарят?

Решение:
$$V_9^3 = \frac{9!}{6!} = \frac{6!7.8.9}{6!} = 504$$

63) Колко е броят на трицифрените числа, които могат да се запишат с цифрите 1, 2, 3, 4, 5, 6, 7, 8 и 9, на които първата цифра е 6?

Решение:
$$V_8^2 = \frac{8!}{6!} = \frac{6!7.8}{6!} = 56$$

64) По колко начина може да се състави списък на 10 души?

Решение:
$$P_{10} = 10! = 1.2.3.4.5.6.7.8.9.10 = 3628800$$

65) Тридесет ученика си разменили снимки за спомен. Колко снимки са били раздадени?

Решение:
$$2.C_{30}^2 = 2.\frac{30!}{28!.2!} = 2.\frac{\cancel{28!}\cancel{29.30}}{\cancel{28!}\cancel{.2}} = 870$$

66) Четири различни награди трябва да се разпределят между четрима победители в един конкурс. По колко начина може да стане това?

Решение:
$$P_4 = 4! = 4.3.2.1 = 24$$

67) Колко различни комплекти от един молив и две химикалки могат да си съставят от 10 различни молива и 12 различни химикалки ?

Решение:
$$C_{10}^1.C_{12}^2 = \frac{10!}{9!1!}.\frac{12!}{10!2!} = \frac{9!10}{9!}.\frac{10!11.12}{10!2!} = 10.66 = 660$$

68) Колко е броят на различните подреждания на 5 рзлични перли върху окръжност?

Решение:
$$P_4 = 4! = 4.3.2.1 = 24$$

Една от перлите ще е специална – спрямо нея ще се нареждат останалите.

69) В състезание по математика участват 8 отбора. Но първо, второ и трето място може да се класира само по един отбор. На колко е равен броят на различните начини, по които тези отбори може да се класират на първо, второ и трето място?

Решение:
$$V_8^3 = \frac{8!}{5!} = \frac{5!6.7.8}{5!} = 6.7.8 = 336$$

70)! Урна съдържа 8 бели и 4 черни топки. По случаен начин се избират едновременно 2 топки. Да се намери вероятността двете топки да са бели.

<u>Решение:</u> Топките общо са 12. Всички възможни комбинации да извадим 2 топки от 12 са C_{12}^2 .

Белите топки са 8. Възможните комбинации да извадим 2 бели топки от 6 е C_8^2 .

Вероятността да се случи благоприятно събитие е броят на благоприятните възможности /събития/, разделен на броя на всички възможности /събития/.

$$\Rightarrow P = \frac{C_8^2}{C_{12}^2} = \frac{\frac{8!}{6!.2!}}{\frac{12!}{10!.2!}} = \frac{\cancel{6}!.7.8}{\cancel{6}!.2} \cdot \frac{\cancel{10}!.2}{\cancel{10}!.11.12} = 28 \cdot \frac{1}{66} = \frac{14}{33}$$

71) По колко различни начина могат да седнат 7 човека около кръгла маса?

Решение:
$$P_6 = 6! = 6.5.4.3.2.1 = 36.20 = 720$$

Един от тях може да седне където иска, местата на останалите ще са спрямо него.

72) Дадени са 5 отсечки с дължини 1, 4, 5, 7, 8. Каква е вероятността три случайно избрани да са страни на триъгълник?

Решение: Всички възможности са:
$$C_5^3 = \frac{5!}{2!3!} = \frac{\cancel{3}!4.5}{2.\cancel{3}!} = 10$$

А вероятността да се случи благоприятно събитие е броят на благоприятните възможности /събития/, разделен на броя на всички възможности /събития/.

$$\Rightarrow P = \frac{4}{10} = \frac{2}{5}$$

73) ! Ученик номерира пет DVD диска с числата 1, 2, 3, 4 и 5 и по случаен ред ги поставя в кутия. Да се намери вероятността дисковете №1 и №2 да са един до друг и в растящ ред отгоре надолу в кутията.

<u>Решение:</u> Всички възможни подредби са $P_5 = 5!$.

3! = 3.2 = 6 са възможностите за останалите три диска за всяка една от 4-те позиции. Диск №1 и №2 да са един до друг при даденото условие е 4.3! на брой, т.е.

 P_4 = 4! = 4.3.2 = 24 са благоприятните случаи. /Можем дисковете №1 и №2 да броим за 1 обект и така ще имаме подреждане на 4 обекта на 4 места./

$$\Rightarrow$$
търсената вероятност е $P = \frac{4.3!}{5!} = \frac{4.3!}{3!.4.5} = \frac{1}{5}$

74) ! На библиотечен рафт по случаен начин са поставени 30 тома на Леонард Ойлер. Вероятността том 1 и том 2 да са един до друг е ...

<u>Решение:</u> $P_{30} = 30!$ са всички възможни подредби

(1 том, 2 том), ... -29 възможни позиции /ако том 1 и том 2 броим за 1 обект/ и за всяка от тях $P_{28} = 28!$ са възможностите за останалите томове, но том 1 и том 2 могат да разменят местата си

⇒ 2.29.28! са благоприятните възможности том 1 и 2 да са един до друг

Или: ако броим том1 и том 2 за 1 обект, получаваме 29 обекра, които можем да подредим по $P_{29} = 29!$ начина. Понеже в двойката (том 1, том 2) могат да си сменят местата, то получаваме $2.P_{29} = 2.29!$ благоприятни начина за подреждане.

$$\Rightarrow$$
 търсената вероятност е $P = \frac{2.29.28!}{30!} = \frac{2.29.28!}{28!29.30} = \frac{1}{15}$

75)В кутия има 14 еднакви молива, от които 6 са с твърдост "Н" и 8 молива са с твърдост "НВ". По случаен начин се изваждат 3 молива. Да се намери вероятността и трите молива да са с твърдост "Н".

<u>Решение:</u> 6 молива "H" $\Rightarrow C_6^3 = \frac{6!}{3!3!} = \frac{3!4.5.6}{3!3.2} = 20$ начина да се изберат 3 молива "H"

 $C_{14}^3 = \frac{14!}{11!3!} = \frac{11!12.13.14}{11!3.2} = 26.14$ са всички възможни избора на 3 молива

$$\Rightarrow$$
 търсената вероятност е $P = \frac{20}{26.14} = \frac{5}{13.7} = \frac{5}{91}$

76) По колко начина могат да се разпределят 6 различни предмета между трима ученици така, че всеки да получи по два предмета?

12

Решение:
$$3.V_6^2 = 3.\frac{6!}{4!} = 3.\frac{\cancel{\cancel{M}}!5.6}{\cancel{\cancel{M}}!} = 90$$

77) При набиране на телефонен номер ученик установява, че е забравил последните две цифри на номера, но помни, че те са различни, и ги набира по случен начин. Каква е вероятността желаният номер да бъде избран при първо набиране?

<u>Решение:</u> Всички цифри са 10, 2 цифри е забравил $\Rightarrow V_{10}^2 = \frac{10!}{8!} = \frac{\cancel{\$}!.9.10}{\cancel{\$}!} = 90$. Само 1 е вярната

двойка. Търсената вероятност е $\frac{1}{90}$.

78) Компютър по случаен начин изписва на екрана трицифрено число. Да се намери вероятността всички цифри на числото да са равни.

<u>Решение:</u> Трицифрените числа са 100, ..., 999 – 900 на брой

Трицифрени числа с равни цифри са 111, 222, 333, 444, 555, 666, 777, 888, 999 – 9 на брой

- \Rightarrow търсената вероятност е $P = \frac{9}{900} = \frac{1}{100}$
- 79) За изпит са предложени комплект от 20 въпроса и 20 задачи. От тях се съставят изпитни билети, като всеки билет съдържа 3 въпроса и 2 задачи. Колко различни изпитни билета могат да се съставят?

Решение:
$$C_{20}^2.C_{20}^3 = \frac{20!}{18!2!}.\frac{20!}{17!3!} = \frac{\cancel{18!}\cancel{19.20}}{\cancel{18!}\cancel{2}}.\frac{\cancel{17!}\cancel{18.19.20}}{\cancel{17!}\cancel{3.2}} = 190.19.60 = 216600$$

80)! От урна, в която 15 червени, 10 сини и 5 бели топки, по случаен начин се изважда една топка. Каква е вероятността извадената топка да не е бяла? Решение:

<u>I начин:</u> Вероятността да бъде изтеглена бяла е $\frac{5}{30} = \frac{1}{6}$

 \Rightarrow Вероятността да <u>не</u> е бяла е $1 - \frac{1}{6} = \frac{5}{6}$.

<u>II начин:</u> Вероятността да бъде изтеглена червена е $\frac{15}{30} = \frac{1}{2}$. Вероятността да бъде изтеглена

синя е $\frac{10}{30} = \frac{1}{3}$ \Rightarrow Вероятността топката да не е бяла е $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$.

<u>III начин:</u> Всички топки са 30, а небелите са 25 \Rightarrow Вероятността топката да не е бяла е $\frac{25}{30} = \frac{5}{6}$.

81) Да се намери броят на всички четирицифрени числа, които съдържат цифрите 1, 2, 3 и 4 точно по един път.

<u>Решение:</u> $P_4 = 4! = 4.3.2 = 24$

82) В един клас има 16 момчета и 14 момичета. Осем билета за театър се разпределят в класа по равно – 4 билета за момчета и 4 за момичета. По колко начина могат да се разпределят билетите?

Решение:
$$C_{16}^4.C_{14}^4 = \frac{16!}{12!4!}.\frac{14!}{10!4!} = \frac{\cancel{12}\cancel{!}.13.14.15.16}{\cancel{12}\cancel{!}.4.3.2}.\frac{\cancel{10}\cancel{!}.11.12.13.14}{\cancel{10}\cancel{!}.4.3.2} = 13.140.77.13 = 1821820$$

83)! В един магазин 6% от наличните 50 чаши имат скрит дефект. Да се намери вероятността да купим 6 чаши, всяка от които е без дефект.

<u>Решение:</u> 6% от $50 = \frac{6}{100}.50 = 3$ чаши са дефектни \Rightarrow 47 чаши са качествени.

$$C_{47}^6 = \frac{47!}{41!6!} = \frac{\cancel{41!}42.43.44.45.46.47}{\cancel{41!}6.5.4.3.2} = 43.77.69.47$$
 - начина за избор на 6 качествени чаши.

$$C_{50}^6 = \frac{50!}{44!6!} = \frac{\cancel{44}!45.46.47.48.49.50}{\cancel{44}!6.5.4.3.2} = 15.46.47.49.10$$
 - начина за избор на произволни 6 чаши.

$$\Rightarrow$$
търсената вероятност е $P = \frac{C_{47}^6}{C_{50}^6} = \frac{43.\cancel{A7}.77.69}{15.46.\cancel{A7}.49.10} = \frac{43.11}{700} = \frac{473}{700}$

84)! В кутия има 10 бели и 5 черни топки. По случаен начин се изваждат 5 от тях. Да се намери вероятността 2 от тях да са бели и 3 черни.

Решение:
$$C_{10}^2 = \frac{10!}{8!2!} = \frac{\cancel{8}!9.10}{\cancel{8}!2} = 45$$
 начина да можем да изберем 2 от 10 бели топки

$$C_5^3 = \frac{5!}{2!3!} = \frac{\cancel{3}!4.5}{\cancel{2}!\cancel{3}!} = 10$$
 начина да изберем 3 от 5 черни

 \Rightarrow От 15-те топки можем да изберем точно 2 бели и 3 черни по $C_{10}^2.C_5^3 = 45.10$ начина

$$C_{15}^5 = \frac{15!}{10!5!} = \frac{\cancel{10!}\cancel{11.12.13.14.15}}{\cancel{10!}\cancel{5}\cancel{.4.3.2}} = 33.91 = 3003$$
 начина да изберем произволни 5 от 15 топки.

- \Rightarrow Търсената вероятност е $P = \frac{C_{10}^2.C_5^3}{C_{15}^5} = \frac{45.10}{3003} = \frac{150}{1001}$
- 85)! В урна има 10 червени и 5 бели топки. По случаен начин се изтеглят 3 топки. Каква е вероятността поне две от тях да са червени?

<u>Решение:</u> Поне две от три топки да са червени ≡ или 2, или 3 да са червени.

$$P_1 = \frac{C_{10}^2.C_5^1}{C_{15}^3} = \frac{45}{91}$$
 е вероятността две топки да са червени

$$P_2 = \frac{C_{10}^3}{C_{15}^3} = \frac{24}{91}$$
 е вероятността три да са червени

Търсената вероятност е:
$$P = P_1 + P_2 = \frac{45}{91} + \frac{24}{91} = \frac{69}{91}$$

86) Броят на диагоналите на правилен десетоъгълник е:

<u>Решение:</u> C_{10}^2 - Всички прави през 2 върха, 10 – страните

$$C_{10}^2 - 10 = \frac{10!}{8!2!} - 10 = 45 - 10 = 35$$
 диагонала.

87) Във финала на състезание по скок на височина участват 8 атлети. По колко различни начина могат да бъдат разпределени медалите?

Решение:
$$V_8^3 = \frac{8!}{5!} = 336$$

88)! Дадени са две кутии с тетрадки. Първата кутия съдържа 5 тетрадки със синя корица, а втората съдържа 5 тетрадки със зелена корица. Тетрадките във всяка кутия са номерирани последователно с етикети с цифрите 1, 2, 3, 4, 5. Ученик по случаен начин взема по една тетрадка от всяка кутия. Да се намери вероятността ученикът да си избере от кутиите тетрадки с еднакви номера.

<u>Решение:</u> Нека от първата кутия извадим която и да е тетрадка, например №3. Вероятността от втората кутия да извадим №3 е $\frac{1}{5}$.

89) Четири различни награди трябва да се разпределят между четирима победители в един конкурс. По колко начина може да стане това?

Решение: $P_4 = 4! = 4.3.2.1 = 24$

90) От 20 войници и 3 офицери се избира патрул от 3 войници и 1 офицер. Колко различни патрули могат да се съставят?

Решение:
$$C_{20}^3$$
. $C_3^1 = \frac{20!}{17!3!} \cdot \frac{3!}{2!1!} = \frac{17!18.19.20}{17!} \cdot \frac{1}{2} = 18.19.10 = 3420$

91) Разполагаме с 12 книги, две от които са от един автор, а останалите – от различни. По колко начина можем да ги подредим на един рафт така, че книгите от един автор да са една до друга?

<u>Решение:</u> 2.Р₁₁ = 2.11!

92) От 10 математици и 5 физици се съставя комисия от 7 членове. Каква е вероятността комисията да е съставена само от математици?

<u>Решение:</u> 10+5=15 учени

 C_{15}^{7} - брой на всички възможни комисии C_{10}^{7} благоприятни случаи (само математ.)

$$P = \frac{C_{10}^7}{C_{15}^7} = \frac{\frac{10!}{3!7!}}{\frac{15!}{8!7!}} = \frac{10!}{3!\cancel{7}!} \cdot \frac{8!\cancel{7}!}{15!} = \frac{\cancel{10!}\cancel{3!}\cancel{4.5.6.7.8}}{\cancel{3!}\cancel{11.12.13.14.15}} = \frac{6.7.8}{11.9.13.14} = \frac{8}{33.13} = \frac{8}{429}$$

93) В колко точки се пресичат 16 прави в една равнина, ако точно две от тях са успоредни и никои три прави не минват през една точка?

Решение:
$$C_{16}^2 - 1 = \frac{16!}{14!2!} - 1 = \frac{14!15.16}{14!2} - 1 = 15.8 - 1 = 120 - 1 = 119$$

94)! Кодът на сейф се състои от три цифри. Крадец имал сведение, че трите цифри са различни и една от тях е 6. Каква е вероятността той да отвори сейфа от първи опит?

<u>Решение:</u> Всички цифри са 10, крадецът знае една ⇒ остават 9

 C_9^2 - са възможностите за две от 9-те цифри P_3 -начина, по които е съставена тройка цифри $\Rightarrow C_9^2.P_3$ – брой на всички възможни проби

$$\Rightarrow P = \frac{1}{C_9^2 \cdot P_3} = \frac{1}{\frac{9!}{7!2!} \cdot 3!} = \frac{\cancel{7}!2}{\cancel{7}!8.9.2.3} = \frac{1}{216}$$

Или: броят на възможните проби може да се сметне като V_9^2 –възможните избори на 2 от 9 цифри, като има значение мястото им, умножаваме по 3, защото цифрата "6" може да е на първо, второ или трето място $\Rightarrow 2.V_9^2 = 216$.

95) Сладкарница предлага 12 вида сладолед, един от които е ягодов. Поръчах си прорция с три топки, всяка от различен вид. Вероятността в порцията ми да има ягодов сладолед е...

<u>Решение:</u> $C_{12}^3 = \frac{12!}{9!3!} = \frac{9!10.11.12}{9!3.2} = 220$ – брой на всички възможни порции с 3 топки от

 $C_{11}^2 = \frac{11!}{9!} = \frac{9!10.11}{9!2} = 55$ – брой на порциите с една топка ягодов сладолед и две топки друг вид

 $\Rightarrow P = \frac{55}{220} = \frac{1}{4}$ е търсената вероятност.

96) Двадесет ученици от 12^a клас учат английски език, а останалите пет — немски език. За участие в международна среща трябва да се изберат 6 ученика от 12^a клас, трима от които учат немски език. По колко начина може да стане това?

 C_5^3 — начина да се изберат 3-ма от 5 уч. (нем.) C_{20}^3 — начина да се изберат 3-ма от 20 уч. (анг.) общо 6 уч.

$$C_5^3.C_{20}^3 = \frac{5!}{2!3!}.\frac{20!}{17!3!} = \frac{3!4.5}{2.3!}.\frac{\cancel{17}!.18.19.20}{\cancel{17}!.3.2} = 10.3.19.20 = 11400$$
 начина

97) В състезание по математика могат да участват отбори, състоящи се от двама, трима или четрима ученика. Колко различни отбори могат да се съставят от 8 ученика?

 C_8^2 – брой на отборите с двама уч. от 8 C_8^3 – брой на отборите с трима уч. от 8 C_8^4 – брой на отборите с четирима уч. от 8

$$C_8^2 + C_8^3 + C_8^4 = \frac{8!}{6!2!} + \frac{8!}{5!3!} + \frac{8!}{4!4!} = \frac{6!7.8}{6!2} + \frac{5!6.7.8}{5!3.2} + \frac{4!5.6.7.8}{4!4.3.2} = 28 + 56 + 70 = 154$$

98)! В урна има 10 жетона, които са номерирани с числата от 1 до 10. От урната се вадят три жетона. Каква е вероятността сборът на трите номера да е 10?

15

<u>Решение:</u> $C_{10}^3 = \frac{10!}{7!3!} = \frac{7!.8.9.10}{7!3.2} = 120$ са всички възможности. Сборът на трите номера е 10,

ако са изтеглени жетони с номера: $\begin{pmatrix} 1, & 3 & u & 6 \\ 1, & 4 & u & 5 \end{pmatrix}$

$$\Rightarrow$$
 благоприятните възможности са $4 \Rightarrow P = \frac{4}{120} = \frac{1}{30}$

99) Изпъкнал многоъгълник има 44 диагонала. Колко е броят на страните му?

Решение: Разглеждаме *п*-ъгълник.

$$C_n^2 = \frac{n!}{(n-2)!2!} = \frac{(n-2)!(n-1).n}{(n-2)!2} = \frac{(n-1).n}{2}$$
 - брой на всички отсечки с n на брой върхове

$$C_n^2 - n = \frac{(n-1)n}{2} - n$$
 - от всички отсечки изваждаме броя на страните, за да получим броя на

$$\Rightarrow \frac{(n-1)n}{2} - n = \frac{n^2 - n - 2n}{2} = \frac{n^2 - 3n}{2}$$
 диагонала

$$\Rightarrow \frac{n^2 - 3n}{2} = 44 \rightarrow n^2 - 3n - 88 = 0 \rightarrow n_{12} = \frac{3 \pm 19}{2}, \ n_1 = 11, \ n_2 = -8 < 0 \Rightarrow \text{ Ott. } 11$$

100) В една кутия има 15 червени и 12 зелени топки. Каква е вероятността три случайно извадени топки да се окажат червени?

<u>Решение:</u> 15черв. + 12зел. = 27топки

 C_{27}^3 – брой на всички възможни тройки, C_{15}^3 – брой на тройки с 3 червени топки

$$P = \frac{C_{15}^3}{C_{27}^3} = \frac{\frac{15!}{12!3!}}{\frac{27!}{24!3!}} = \frac{15!}{12!3!} \cdot \frac{24!3!}{27!} = \frac{12! \cdot 13 \cdot 14 \cdot 15}{12!} \cdot \frac{24!}{24! \cdot 25 \cdot 26 \cdot 27} = \frac{13 \cdot 14 \cdot 15}{25 \cdot 26 \cdot 27} = \frac{7}{45}$$

101) Колко четирицифрени числа с различни цифри могат да се напишат с цифрите 1, 2, 3,4 и 0? <u>Решение:</u> V_5^4 – брой на всички 4-цифрени числа, написани с 5 цифри

С "0" не може да започва число $\Rightarrow V_4^3$ брой на всички 4-цифрени, започващи с 0

$$V_{5}^{4} - V_{4}^{3} = \frac{5!}{(5-4)!} - \frac{4!}{(4-3)!} = 5! - 4! = 4!(5-1) = 4.3.2.1.4 = 96$$

102) * В правоъгълната координатна система е изобразен квадрат ОАВС със страна, равна на 5м.ед. Избрани са две точки с координати цели числа от вътрешността на квадрата. Каква е вероятността точките да имат равни

Решение: 4.4 = 16 точки с цели координати има във вътрешността на квадрата.

$$C_{16}^2 = \frac{16!}{14!2!} = 120$$
 двойки измежду 16 точки.

В колко двойки точките имат равни абсциси? Ако абсцисата е 1, възможните ординати са 4 на брой, от там и точките са 4. От тях избираме 2 двойки по C_4^2 начина.

$$C_4^2 = \frac{4!}{2!2!} = 6$$
 двойки точки с абсциса $x = 1$ 6 двойки точки с абсциса $x = 2$ 6 двойки точки с абсциса $x = 3$

6 двойки точки с абсциса x = 4

$$\Rightarrow P = \frac{24}{120} = \frac{1}{5}$$

6.4 = 24 двойки точки с равни абсциси, т.е. 24 са благоприятните възможности

103) ! За 20 ученици от един клас били резервирани всички места от един ред на киносалон. Каква е вероятността две приятелки да получат билети за съседни места?

Решение:
$$C_{20}^2 = \frac{20!}{18!2!} = \frac{18!19.20}{18!2} = 190$$
 — всички възможности за избор на 2 билета...

Благоприятните възможности местата да са съседни са №1 и №2; №2 и №3; №3 и №4; ,...,

№19 и №20 -19 на брой
$$\Rightarrow P = \frac{19}{190} = \frac{1}{10}$$

104) ! Комисия от 10 мъже и 4 жени трябва да избере председател, заместник-председател и секретар, един от които да е жена. По колко начина може да се стане това?

<u>Решение:</u> $C_{10}^2 = 45$ начина да се изберат 2-ма мъже, 4 начина да се избере 1 жена) \Rightarrow тримата могат да се изберат по 4.45=180 начина.

3! = 6 начина за разпределение на 3-те длъжности)⇒ всички възможности са 4.6.45=1080

105) За приготвянето на плодов десерт са необходими три вида плодове. Ако на пазара се продават 7 вида плодове, колко различни десерта може да се приготвят?

Решение:
$$C_7^3 = \frac{7!}{4!3!} = \frac{4!5.6.7}{4!3.2} = 35$$

106) ! Съставени са всички пермутации на буквите а, б, в, г, д, е. Каква е вероятността в една случайно избрана пермутация всички съгласни букви да са разположени между двете гласни?

<u>Решение:</u> $P_6 = 6!$ - пермутациите на $6^{-\text{те}}$ букви

$$P_{4}=4!$$
 - пермутациите на $4^{-\text{те}}$ съгласни

Гласните букви могат да се разположат в началото и в края по два начина и при всяко тяхно положение съгласните се разполагат между тях по 4! начина.

Тогава 2.4! са благоприятните възможности

Търдената вероятност е
$$P = \frac{2.4!}{6!} = 2.\frac{4!}{4!5.6} = \frac{1}{15}$$

107) ! По колко начина могат да се подредят в редица 5 младежи и 4 девойки така, че всяка девойка да е между двама младежи ?

<u>Решение:</u> $P_5 = 5!$ начина да се подредят младежите МДМДМДМ

 $P_4 = 4!$ начина да се подредят девойките между тях

 \Rightarrow $P_4.P_5 = 4!5!$ е общият брой на подрежданията

108) ! С помощта на цифрите 0, 1, 3, 6, 7 и 8 са съставени всички четни 4-цифрени числа с различни цифри. Каква е вераятността първата цифра на случайно избрано число да е 6?

<u>Решение:</u> $V_5^3 = 60\,$ е броят на всички четни четирицифрени, завършващи на $0\,$

 $V_5^3 - V_4^2 = 60 - 12 = 48\;$ е броят на всички четирицифрени, завършващи на 8 или на 6

60 + 2.48 = 156 са всички четни четирицифрени

Числата, започващи с 6 завършват или на 0 или на 8, за останалите 2 цифри избираме от 4 – $V_4^2=12\Rightarrow 2.12=24$ е броят на благоприятните изходи

$$\Rightarrow P = \frac{24}{156} = \frac{2}{13}$$

109) Трима приятели участват в турнир с още 9 участници. Ако в турнира се присъждат по един златен, сребърен и бронзов медал, каква е вероятността двама от приятелите да са със златен и сребърен медал?

<u>Решение:</u> 9 + 3 = 12 участници

 $V_{12}^3 = 1320\,$ е броят на възможените разпределения на $3^{\rm Te}$ медала

 $V_3^2 = 6\,$ начина, по които двама от 3-мата приятели да вземат златен и сребърен медал

Остават 10 участиници – бронзовият медал може да получи всеки един от тях

$$\Rightarrow 10.V_3^2 = 10.6 = 60$$
 са благоприятните възможности $\Rightarrow p = \frac{60}{1320} = \frac{1}{22}$

Или: Всички възможности за златен и сребърен са $V_{12}^2 = \frac{12!}{10!} = 12.11 = 132$, а $V_3^2 = 6$

благоприятните, двама от тримата да са с тези медали. $\Rightarrow p = \frac{6}{12.11} = \frac{1}{22}$

110) Намерете броя на пресечните точки на диагоналите на изпъкнал десетоъгълник, ако никои три диагонала не се пресичат във вътрешна точка.

Решение: Една пресечна точка на два диагонала се определя от 4 върха т.е. броят на пресечните точки е равен на броя на възможните четириъгълници, образувани от 10-те точки (върхове на 10-ъг.)

$$=> C_{10}^4 = 210$$

111) В партида от 100 детайла 5 са дефектни. Вероятността от три случайно взети детайла от партидата и трите да са дефектни е

<u>Решение:</u> C_{100}^3 е броят на всички възможни тройки

 C_5^3 е броят на тройките, в които и трите детайла са дефектни

Търсената вероятност е $p = \frac{C_5^3}{C_{100}^3} = \frac{1}{16170}$

112) От 10 ученици и 6 ученички трябва да се сформират 4 смесени двойки за участие в турнир по тенис (1 момиче + 1 момче). По колко начина може да стане това?

<u>Решение:</u> C_{10}^4 начина да се изберат 4 момчета за двойките.

За всяко от момчетата трябва да се избере по едно момиче, от 6-те момичета — това са V_6^4 начина

$$\Rightarrow C_{10}^4.V_6^4 = \frac{10!}{6!.4!}.\frac{6!}{2!} = \frac{4!.5.6.7.8.9.10}{4!.2} = 75600$$
 е броят на тенис двойките

113) В олимпиада по математика участвали отбори от по трима души. Ако изборът се прави измежду 6 ученици, колко е броят на възможните отбори?

<u>Решение:</u> $C_6^3 = 20$

114) Иван написал на картончета цифрите от 1 до 9 по следния начин: цифрата 1 на 2 картончета, цифрата 2 на 3 картончета, цифрата 3 на 4 картончета и т.н. След това сложил картончетата в кутия. Вероятността на първото произволно изтеглено картонче да има нечетна цифра е...

<u>Решение:</u> 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 54 е броят на картончетата

$$2+4+6+8+10=30$$
 е броят на картончетата с нечетна цифра

$$\Rightarrow p = \frac{30}{54} = \frac{5}{9}$$

115) ! Вероятност на събитие може да бъде числото:

a)
$$\log_5 \frac{1}{5}$$
 6) $\cos \frac{3\pi}{4}$ B) $\sqrt{2}$ Γ) 2^{-2}

<u>Решение:</u> $p \in [0;1] \to$ Вероятност може да бъде числото $2^{-2} = \frac{1}{4} \in [0;1]$

116) ! Решете уравнението $P_3 + V_4^3 + x = C_3^2$

<u>Решение:</u> $3! + \frac{4!}{1!} + x = \frac{3!}{1! \cdot 2!} \rightarrow 6 + 4 \cdot 3 \cdot 2 + x = 3 \rightarrow x = -27$

117) Вероятността случайно взето трицифрено число да е образувано само от нечетни, неповтарящи се цифри, е равна на ...

<u>Решение:</u> Трицифрени числа: 100, 101, 102, 103,, 999 → 900 на брой

Трицифрени числа, съставени само от нечетни, неповтарящи се цифри /1, 3, 5, 7 и 9/ са V_5^3

$$\Rightarrow p = \frac{V_5^3}{900} = \frac{60}{900} = \frac{1}{15}$$

118) От 6 мъже и 4 жени, участващи в турнир по танци, трябва да се съставят 3 смесени двойки. По колко начина може да стане това?

<u>Решение:</u> $C_6^3 = 20$ начина да се изберат 3-ма мъже за смесените двойки

 $C_4^3 = 4$ начина да се изберат 3 жени за смесеите двойки

 \Rightarrow На всеки избор на жена отговарят 20 начина за избор на мъж, то

 $C_6^3.C_4^3 = 20.4 = 80$ начина да се изберат 3 смесени двойки

119) ! От 40 ученици в един клас 18 ученици учат немски език, 27-английски език, а 10 ученици не учат нито един от двата езика. Каква е вероятността случайно избран ученик да учи и английски, и немски език?

Решение:

$$18 + 27 = 45$$
 учат англ. нем. или и двата $40 - 10 = 30$ учат англ. нем. или и двата $45 - 30 = 15 \Rightarrow P = \frac{15}{40} = \frac{3}{8}$

120) Монета се хвърля 3 пъти. Вероятността да се сбъдне събитието "Пада се 2 пъти "тура" и един път "ези" е

Решение: Благоприятните случаи са 3, а всичките са 8.

$$\Rightarrow P = \frac{3}{8}$$

19

121) Вероятността при хвърляне на 2 неподправени зара да се паднат различен брой точки на двата зара е....

Решение: Всичките възможности за брой на точки на 1 зар са 6.

Първият зар е хвърлен, т.е. известни са точките му \Rightarrow

остават 5 възможности за втория зар.
$$\Rightarrow P = \frac{5}{6}$$

122) Броят на четните четирицифрени с различни цифри, които могат да се съставят от цифрите 1, 2, 3, 4, 5 е...

Решение:

$$V_4^3 = 24$$
 начина да завършват на $V_4^3 = 24$ начина да завършват на $V_4^3 = 24$ начина да завършват на $V_4^3 = 24$ начина да завършват на $V_4^3 = 24$

123) Да се намери колко окръжности са определени от 10 точки, ако никои три от тях не лежат на една права, но четири от тях лежат на една окръжност.

<u>Решение:</u> 3 точки, нележащи на 1 права определят 1 окръжност; 10 точки, никои три от които не лежат на 1 права и никои четири не лежат на 1 окръжност $\rightarrow C_{10}^3$ окръжности

10 точки, 4 лежат на 1 окръжност $\rightarrow C_4^3$ са окръжностите, които минават през 4 точки, нележащи на 1 окръжност, това число трябва да извадим от C_{10}^3 и вместо него да прибавим 1 – окръжността, на която лежат 4-те точки.

$$\rightarrow C_{10}^3 - C_4^3 + 1$$
, където C_4^3 окръжности, ако 4-те точки не лежат на 1 окръжност $C_{10}^3 - C_4^3 + 1 = 117$

124) С цифрите 1, 2, 3, 7, 8, 9 са записани всички двуцифрени числа, първата цифра, на които е по-малка от втората. Колко са тези числа?

Решение:

17 28 39
$$\rightarrow$$
 15 числа

19

125) Групата "М + И" си купува музикални инструменти – китара, барабан и йоника. В магазина има 7 вида китари, 3 вида барабани и 4 вида йоники. По колко начина групата може да извърши покупката?

<u>Решение:</u> 12 начина за K1 – една от китарите. Моделите китари са 7. Следователно 12.7 = 84 са всичките начини.

Отг. 84

126) Валери забравил първите три цифри от кода на алармената система в дома си, но помнел, че те са различни и решил да ги набере по случаен начин. Каква е вероятността Валери да набере правилно кода?

Решение: 10 цифри са всичките, 3 цифри забравил

$$V_{10}^3 = \frac{10!}{7!} = \frac{7!.8.9.10}{7!} = 720$$
 са всичките възможности и само един код е верен $\Rightarrow p = \frac{1}{720}$

127) Броят на новите буквени кодове, които се получават след разместването на буквите в думата ЕВРОПА, е

Решение: ЕВРОПА – това е един код от 6 букви

$$P_6 = 6! = 720\,$$
 са всичките кодове. Новите, без дадения са 720-1=719

128) В урна са поставени 4 печеливши и 18 непечеливши билета. Броят на различните начини, по които могат да се изтеглят 5 билета, от които точно 2 да са печеливши, е ...

Решение:
$$\Rightarrow$$
 3 билета да са непечеливши $\Rightarrow C_4^2.C_{18}^3 = \frac{4!}{2!2!}.\frac{18!}{15!3!} = 816$

129) Да се определи броят на елементите "n", за които е изпълнено равенството $C_{n+1}^3 + C_n^2 = V_{n+1}^2$. Решение: Заместваме с формулите:

$$C_{n+1}^{3} + \overline{C_{n}^{2}} = V_{n+1}^{2} \rightarrow \frac{(n+1)!}{(n+1-3)!3!} + \frac{n!}{(n-2)!2!} = \frac{(n+1)!}{(n+1-2)!} \rightarrow \frac{(n+1)!}{6.(n-2)!} + \frac{n!}{2(n-2)!} = \frac{(n+1)!}{(n-1)!} \rightarrow$$

$$\frac{(n-2)!.(n-1).n.(n+1)}{6.(n-2)} + \frac{(n-2)!(n-1)n}{2.(n-2)!} = \frac{(n-1)!n.(n+1)}{(n-1)!} \rightarrow$$

$$\frac{(n-1)n(n+1)}{6} + \frac{(n-1)n}{2} - n(n+1) = 0 \rightarrow n(n^2-1) + 3n^2 - 3n - 6n^2 - 6n = 0 \rightarrow$$

$$n^3 - n - 3n^2 - 9n = 0$$
 / : $n \neq 0 \rightarrow n^2 - 3n - 10 = 0$, $\rightarrow n_{12} = \frac{3 \pm 7}{2} \xrightarrow{> 5} n > 0 \Rightarrow \text{Ott. } n = 5$

130) По колко различни начина може да се състави учебна програма за един 6-часов учебен ден от седмицата за 6 различни учебни предмета?

<u>Решение:</u> $P_6 = 6! = 6.5.4.3.2 = 720$

131) В кутия има 3 бели, 2 червени, 5 сини и 8 зелени топки. По случаен начин е извадена една от тях. Каква е вероятността тя да не е червена или зелена?

<u>Решение:</u> 3 бели + 2 червени + 5 сини + 8 зелени = 18 топки са всичките;

2 червени + 8 зелени = 10 топки
$$\Rightarrow$$
 искаме да се падне една от останалите $8 \Rightarrow p = \frac{8}{18} = \frac{4}{9}$

132) ! Броят на различните номера на мобилни телефони от вида 08882**** , които завършват на едноцифрено просто число е ...

Решение:

08882 ****2

08882 ****3

Цифрите **** могат да се повтарят. 08882 ****5

08882 ****7

$$V_n^k = n^k \to V_{10}^4 = 10^4$$
 за едно просто $\Rightarrow 4.10^n$ са всичките мобилни номера

133) ! 20% от топките в спортен магазин са червени, 60% от червените топки са футболни, а 50% от топките, които не са червени, не са футболни. Каква е вероятността при случаен избор от всички футболни топки клиентът да попадне на червена?

<u>Решение:</u> x – всички топки; 20% от $x = \frac{20x}{100} = \frac{1}{5}x$ са червени

80% от
$$x = \frac{80}{100}x = \frac{4}{5}x$$
 не са чевени

60% от
$$\frac{1}{5}x = \frac{60}{100} \cdot \frac{1}{5}x = \frac{3}{25}x$$
 червени футболни

50% от $\frac{4}{5}x = \frac{1}{2} \cdot \frac{4}{5}x = \frac{2}{5}x$ не са футболни \rightarrow останалите 50% от $\frac{4}{5}x$ са нечервени футболни $\rightarrow \frac{2}{5}x$ - нечервени футболни

$$p = \frac{червенифутболни}{футболни} = \frac{\frac{3}{25}x}{\frac{3}{25}x + \frac{2}{5}x} = \frac{\frac{3}{25}x}{\frac{13}{25}x} = \frac{3}{13}$$

134) Каква е вероятността случайно избрана карта от колода от 52 карти да е купа или каро?

Решение: 52 : 4 = 13 карти от боя, купа + каро
$$\rightarrow$$
 26 карти $\rightarrow p = \frac{26}{52} = \frac{1}{2}$

135) В равнината са дадени 18 точки, никои три от които не лежат на една права. Колко на брой са триъгълниците с върхове тези точки?

Решение:
$$C_{18}^3 = \frac{18!}{15!3!} = \frac{15!.16.17.18}{15!3.2} = 816$$

136) Буквите на Морзовата азбука се записват като последователност от точки и тирета. Какъв е броят на различните букви, които могат да се запишат с 5 символа?

Решение: Да се напишем всички възможности:

	·		···		
			· · ·	· - · · ·	
		· – – · –	• • • • • •	• • – • •	
	_·			• • • – •	
	· – – – –				
		· — · — —			
		· – – - ·	_ · _ ··		
1 буква	5 букви	10 букви	10 букви	5 букви	1 буква

1+5+10+10+5+1=32 букви

137) Каква е вероятността да се сбъдне събитието: 'Сборът от точките при хвърляне на два правилни зара да е 4'?

Решение:

6.6 = 36 са всичките възможности. Благоприятните случаи: 1 + 3 = 4, 2 + 2 = 4, 3 + 1 = 4

$$\Rightarrow$$
 3 случая, в които сумата е 4 $\Rightarrow p = \frac{3}{36} = \frac{1}{12}$

138) По колко начина може да се разпределят 6 различни предмета между 3 лица, така че всеки да получи 2 предмета?

Решение:
$$C_6^2$$
. $C_4^2 = 90$

139) В една кутия има 10 нови и 5 стари топки за тенис. По случаен начин са извадени 2 топки. Да се намери на колко е равна вероятността едната от тях да е нова, а другата – стара? Решение: 10 + 5 = 15 топки общо

 $C_{15}^2 = 105$ начина да се извадят 2 топки от 15

10.5 = 50 начина да се извади 1 стара и 1 нова топка

$$\to p = \frac{50}{105} = \frac{10}{21}$$

140) Колко са различните 5 – буквени 'думи' с различни букви, които могат да се образуват от буквите в думата 'ТАКСИ'?

Решение:
$$P_5 = 5! = 5.4.3.2 = 120$$

141) Кодът на куфар се състои от четири различни нечетни цифри. Най-големият брой опити, които трябва да се направят, за да се открие кодът на този куфар е ...

<u>Решение:</u> 1, 3, 5, 7, 9 – 5-те нечетни цифри

$$V_5^4 = \frac{5!}{1!} = 5! = 5.4.3.2. = 120$$
 опита

142) В един клас има 14 момичета и 12 момчета. Избират се 5 ученика да участват във викторина. Каква е вероятността в групата да има 3 момчета и 2 момичета?

<u>Решение:</u> 14 + 12 = 26 ученика, $C_{26}^5 = 65780$ начина да се изберат 5 от 26 ученика

 $C_{14}^3 = 26.14$ начина да се изберат 3 от 14 момчета

 $C_{12}^2 = 66$ начина да се изберат 2 от 12 момичета

$$p = \frac{C_{12}^2 \cdot C_{14}^3}{C_{26}^5} = \frac{66.26.14}{65780} = \frac{42}{115}$$

143) Броят на трицифрените числа с различни цифри, записани с цифрите 1, 3, 5, 7 и 9 е:

Решение:
$$V_5^3 \frac{5!}{2!} = \frac{5.4.3.2}{2} = 60$$

144) ! В училищен футболен турнир са проведени 30 срещи, като всеки 2 отбора се срещат 2 пъти. Колко отбора участват в турнира?

Решение:
$$V_n^2 = 30 \rightarrow \frac{n!}{(n-2)!} = 30 \rightarrow \frac{(n-2)!(n-1)n}{(n-2)!} = 30 \rightarrow n^2 - n - 30 = 0$$

$$n_{12} = \frac{1 \pm 11}{2} \xrightarrow{n=6} n = 6$$
 $n > 0 \rightarrow n = 6$

Отг. 6 отбора са участвали в 30 мача

145) Да се реши уравнението: $\frac{V_{n+1}^5}{4V_{n-1}^2} - \frac{P_{n+2}}{P_n} = 0$, n – естествено число.

Решение:

$$\frac{\frac{(n+1)!}{(n+1-5)!}}{\frac{4.(n-1)!}{(n-1-2)!}} - \frac{(n+2)!}{n!} = 0 \to \frac{(n+1)!(n-3)!}{4(n-4)!(n-1)!} - \frac{n!(n+1)(n+2)}{n!} = 0$$

$$\frac{(n-1)!n(n+1)(n-4)!(n-3)}{4(n-1)!(n-4)!} - (n+1)(n+2) = 0 \rightarrow n(n+1)(n-3) - 4(n+1)(n+2) = 0$$

$$(n+1)[n(n-3)-4(n+2)] = 0$$

$$1)n+1=0 \to n=-1<0 \text{ } n.p.$$

$$2)n^2-3n-4n-8=0 \to n^2-7n-8=0$$

$$n_{1,2} = \frac{7\pm 9}{2} \to n=8 \to n=8$$
Otr. $n=8$

146) Осемцифрова компютърна парола е съставена с помощта на различни цифри от 0 до 9, като всяка цифра може да бъде записана на произволно място. Каква е вероятността при първи опит да се открие паролата?

Решение:
$$V_{10}^8 = \frac{10!}{2!} = \frac{10!}{2}$$
 са всички възможни пароли (цифрите са 10)

$$P = \frac{1}{V_{10}^8} = \frac{2}{10!}$$

147) * Какъв е броят на правите, които минават през 9 точки, 3 от които лежат на една права, а останалите 6 – никои 3 не лежат на една права?

Решение: $C_6^2 = 15$ прави минават през 6-те точки 6.3=18 прави минават през A, B, C и 6-те точки. Правата a минава през A, B и C $\Rightarrow 15 + 6.3 + 1 = 34$ са търсените прави.

148) В партида от 100 учебника се оказало, че 4% са дефектни. 10 ученици са купили по 1 учебник от тази партида. Каква е вероятността никой от тях да не е дефектен?

<u>Решение:</u> 4% от 100 = 4 учебника са дефектни \Rightarrow 96 уч. са недефектни; C_{100}^{10} са всички възможни десетки (10 учеб.); C_{96}^{10} са всички възможни недефектни десетки

$$\Rightarrow p = \frac{C_{96}^{10}}{C_{100}^{10}} = \frac{\frac{96!}{86!.10!}}{\frac{100!}{90!.10!}} = \frac{96!}{86!.10!} \cdot \frac{90!10!}{100!} = \frac{86!.87.88.89.90.91.92.93.94.95.96.90!}{86!.90!.91.92.93.94.95.96.97.98.99.100} = \frac{87.88.89.90}{97.98.99.100} = \frac{87.88.89.90}{97.98.99.100} = \frac{87.88.89}{97.98.10} = \frac{15486}{23765} \approx 0,65$$

149) От клас от 15 момчета и 10 момичета с профилиращ предмет математика се избират по случаен начин трима, които участват в математическо състезание. Каква е вероятността сред избраните да има поне 2 момичета?

Решение: 15 момч. + 10 момич. = 25 ученика ⇒

 $C_{25}^3 = 2300$ начина да се избере тройка

 $C_{10}^3 = 120$ начина да се избере тройка от 3 момичета

 $15.C_{10}^2 = 675\,$ начина тройката да е от 1 момче и 2 момичета, като всяка двойка момичета се комбинира с 1 момче

$$\rightarrow p = \frac{120 + 675}{2300} = \frac{159}{460}$$

150) В урна са поставени картончета с буквите на кирилицата (на всяко картонче е написана точно една буква от азбуката). Каква е вероятността на случайно избрано картонче да е написана гласна?

<u>Решение:</u> 30 — всички букви от азбуката, 6 — гласните (без ю и я)! $\rightarrow p = \frac{6}{30} = \frac{1}{5}$

151) Решете уравнението: $P_3 + V_4^3 + x = C_3^2$

Решение:
$$3! + \frac{4!}{1!} + x = \frac{3!}{1!2!} \rightarrow 6 + 4.3.2 + x = \frac{6}{2} \rightarrow x = 3 - 30 = -27$$

152) Каква е вероятността произволно избран корен на уравнението $(x^2 + x) - 5(x^2 + x) + 6 = 0$ да е цяло число?

Решение:

$$(x^2 + x)_{1,2} = \frac{5 \pm 1}{2} = \xrightarrow{3} 2$$

$$x^{2} + x = 2 \rightarrow x^{2} + x - 2 = 0 \rightarrow x_{1,2} = \frac{-1 \pm 3}{2}; x_{1} = 1, x_{2} = -2$$

$$x^{2} + x = 3 \rightarrow x^{2} + x - 3 = 0 \rightarrow x_{3,4} = \frac{-1 \pm \sqrt{13}}{2}$$

$$\rightarrow$$
 От 4 корена 2 са цели $\rightarrow p = \frac{2}{4} = \frac{1}{2}$

153) ! Колко са четирицифрените числа с различни цифри, записани с помощта на цифрите 0, 1, 2, 3, 4, 5, 6, 7, едната от които е 1?

<u>Решение:</u> 0, 1, 2, 3, 4, 5, 6, 7 → 8 цифри, едната трябва да е 1 → остават 7 цифри

Ако 1 е първа цифра, $(1 \times \times \times) \rightarrow V_7^3 = 210$ са възможностите за 3 от 7-те цифри 0, 2, 3, 4, 5, 6, 7.

Ако 1 е втора, трета или четвърта цифра, $(\times 1 \times \times)$, $(\times \times 1 \times)$, $(\times \times 1)$ $\rightarrow 3$. $(V_7^3 - V_6^2) = 3$. (216 - 30) = 3.186 са възможностите, защото с "0" не може да започва число.

$$\Rightarrow V_7^3 + 3(V_7^3 - V_6^2) = 210 + 3.186 = 774$$

154) ! Каква е вероятността при хвърляне на правилен зар броят на точките да е число, кратно на 3?

<u>Решение:</u> $P = \frac{2}{6} = \frac{1}{3}$ (Всички точки са 6 възможности. Кратни на 3 са 3 и 6, т.е. 2

възможности)

- 155) Върху окръжност лежат 11 точки. Колко са отсечките с краища в тези точки? <u>Решение:</u> $C_{11}^2 = 55$
- 156) По случаен начин се взема четирицифрено число. Каква е вероятността всички цифри в него да са различни и нечетни?

Решение: 1000, 1001, ..., 9999 → 9999 – 999 = 9000 са всички четирицифрени числа.

Нечетните цифри са 1, 3, 5, 7 и 9 \rightarrow 5 на брой

 $V_5^4 = 120\,$ са всички четирицифрени числа, записани с различни нечетни цифри.

$$\rightarrow p = \frac{120}{9000} = \frac{1}{75}$$

157) Броят на изпитните теми, които могат да се подготвят от 50 тестови задачи, 20 задачи с посочване на отговор и 8 задачи за пълно решение, при условие, че една тема съдържа 30 задачи от първия тип, 5 задачи от втория тип и 3 задачи от третия тип, е:

<u>Решение:</u> $C_{50}^{30}.C_{20}^{5}.C_{8}^{3}$

158) На междуучилищно състезание по футбол били проведени 21 мача по системата всеки срещу всеки. Колко отбора са участвали в състезанието?

Решение:
$$C_n^2 = 21 \rightarrow \frac{n!}{(n-2)!.2!} = 21 \rightarrow \frac{(n-2)!(n-1)n}{(n-2)!2} = 21 \rightarrow n^2 - n - 42 = 0$$

$$\rightarrow n_{12} = \frac{1 \pm 13}{2} \rightarrow n = 7 > 0$$

$$\rightarrow n_{12} = \frac{1 \pm 13}{2} \rightarrow n = -2 < 0$$

Отг. 7 отбора

159) ! Вероятността при хвърляне на два зара произведението от падналите се точки да е

нечетно число е..., а вероятността това произведение да е четно число е...

Решение:
$$p = \frac{3.3}{6.6} = \frac{9}{36} = \frac{1}{4}$$

<u>I начин:</u>

1.2	3.2	5.2
1.4	3.4	5.4
1.6	3.6	5.6

9 случая

18 случая

$$p = \frac{9+18}{36} = \frac{27}{36} = \frac{3}{4}$$

<u>II начин:</u> ! Произведението на две числа от 1 до 6 е или четно, или нечетно. Вероятността да е нечетно е $\frac{1}{4} \rightarrow p = 1 - \frac{1}{4} = \frac{3}{4}$ е вероятността произведението да е четно.

160)! Каква е вероятността да познаете три числа от шест печеливши във фиш на спорт тото в играта "6 от 42"?

<u>Решение:</u> $C_{42}^6 = 37.38.13.41.7$ — брой на всички възможни шесторки

 $C_6^3 = 20$ — възможности да се изберат 3 от 6

 $C_{39}^3 = 37.19.13$ - възможности да избереш 3 от 39

$$p = \frac{C_6^3 \cdot C_{39}^3}{C_{42}^6} = \frac{20.37.19.13}{37.38.13.41.7} = \frac{20}{2.41.7} = \frac{10}{287}$$

161) Вероятността случайно избрано двуцифрено число да се дели на 5 е:

Решение: 90 са всички двуцифрени числа.

 $10, 15, 20, ..., 90, 95 \rightarrow$ това са 9.2=18 двуцифрени, които се делят на 5

$$\rightarrow p = \frac{18}{90} = \frac{1}{5}$$

162) По колко начина могат да бъдат назначени 3 души от 7 кандидати на 3 места с различни служебни задължения?

Решение:
$$V_7^3 = \frac{7!}{4!} = \frac{4!.5.6.7}{4!} = 210$$
 начина

163) По колко начина могат да се подредят 7 души в редица, така че 3 от тях винаги да са един до друг?

<u>Решение:</u> 3-ма винаги са един до друг \Rightarrow броим ги за 1, но те могат да си раменят местата $7-3=4 \rightarrow P_4=4!$ - подреждания на четиримата

Тримата, които броихме за 1 могат да разменят местата си и да се подредят по $P_3 = 3! = 6$ начина. Ако ги означим с ABC, то подредбите изглеждат така:

$$\Rightarrow$$
 6 $P_4 = 6.4! = 6.4.3.2 = 144$

164) За участие в математическо състезание трябва да се състави отбор от 4 души. Ако изборът се прави измежду 7 души, но един от тях е доказал, че е най-добрият и по право участва в отбора, то различните начини, по които може да се състави отборът, са...

<u>Решение:</u> $C_6^3 = 20$ — от 6 избираме 3-а, защото 1 е по право в отбора.

165) ! Паролатата за електронната поща на професор Всезнайко се образува от разместване на буквите в думата ЗАДАЧА, като две еднакви букви не са записани на една друга. Да се намери вероятността, ако професор Всезнайко е забравил паролата, да отвори пощата си с една проба. $A \times A \times A \times$

$$\rightarrow p = \frac{1}{24}$$

166) В томбола има три вида награди: 5 мобилни телефона, 2 еднодневни екскурзии и 3 велосипеда. Каква е вероятността първата изтеглена награда да е еднодневна екскурзия? Решение: 5 телефона + 2 екскурзии + 3 велосипеда = 10 награди

$$p = \frac{2}{10} = \frac{1}{5}$$

167) В ученическа конференция участват 25 представители на определените класове. Те избират ръководство в състав: председател, секретар и трима членове. По колко начина може да стане това?

<u>Решение:</u> $V_{25}^2 = \frac{25!}{23!} = \frac{23!24.25}{23!} = 600$ възможности за председател и секретар

25-2 = 23 са останалите участници — от тях трябва да се изберат 3-ма членове $C_{23}^{\scriptscriptstyle 3}$ = 77.23 = 1771

На всеки избор за председател и секретар отговарят 1771 начина за избор на 3-ма членове \Rightarrow 600.1771=1 062 600 начина.

168) Измежду 100 електрически крушки има 5 дефекти. Каква е вероятността 3 произволно избрани крушки да са изправни?

<u>Решение:</u> 100 - 5 = 95 са изправните круши

 $C_{100}^{3}\,$ - всичките възможности от $100\,$ да изберем $3\,$

 C_{95}^3 - всичките възможности от 95 да изберем 3 (изправни)

$$\rightarrow p = \frac{C_{95}^3}{C_{100}^3}$$

169) В колода, съдържаща 52 карти, по случаен начин се изваждат 2 карти. Каква е вероятността те да са девятка и асо?

<u>Решение:</u> C_{52}^2 — начина от 52 да извадим 2 карти

4 деветки $\rightarrow C_4^1$ начина от 4 да извадим 1

4 аса $\rightarrow C_4^1$ начина от 4 да извадим 1

Всяка девятка можем да извадим с едно от асата по C_4^1 начина $\to C_4^1.C_4^1$ са благоприятните възможности.

$$p = \frac{C_4^1 \cdot C_4^1}{C_{52}^2} = \frac{\frac{4!}{3!!} \cdot \frac{4!}{3!!}}{\frac{52!}{50!2}} = \frac{3! \cdot 4}{3!} \cdot \frac{3!4}{3!} \cdot \frac{50!2}{20!51.52} = 16 \cdot \frac{1}{51.26} = \frac{8}{51.13} = \frac{8}{663}$$

170) ! Четири новогодишни картички са пуснати по случаен начин по една в кутиите на четирима получатели. Каква е вероятността поне една от картичките да не е пусната в правилната кутия?

<u>Решение:</u> $P_4 = 4! = 4.3.2 = 24$ - всички начини да се пусне по една картичка в кутия

1 картичка е пусната в правилна кутия — остават 23 възможности поне една картичка да не е в правилната кутия — $p = \frac{23}{24}$

171) На картички са записани всички четирицифрени числа, които съдържат цифрите 2, 4, 6 и 8 точно по един път. Каква е вероятността на случайно избрана картина да е записано число, започжащо с цифрата 6?

Решение: P_4 – всички възможности

$$P_3$$
 — възможностите, числото да започва с "6" $\Rightarrow p = \frac{P_3}{P_4} = \frac{3!}{4!} = \frac{3!}{3!4} = \frac{1}{4}$

172) ! Колко са трицифрените числа с различни цифри, които се делят на 3 и се записват с помоща на цифрите 0, 1, 2, 4, 6?

<u>Решение:</u> $V_5^3 - V_4^2 = \frac{5!}{2!} - \frac{4!}{2!} = \frac{4!(5-1)}{2} = 4!.2 = 4.3.2.2 = 48$ са всички трицифрени с тези цифри, но за да се делят на 3, трябва сборът от цифрите им да се дели на 3..

173) Да се намери броят на различните обикновени дроби, записани с числата 3, 5, 7, 8, 13 и 31.

Решение:
$$\frac{3}{5} u \frac{5}{3}, \frac{3}{7} u \frac{7}{3}$$
 и т.н. $\rightarrow 2.C_6^2 = 30$

Всички дроби с равни числител и знаменател за равни на 1: $\frac{3}{3} = \frac{5}{5} = \frac{7}{7} = \dots = 1$

$$\Rightarrow$$
 Ott. 30 + 1 = 31.

174) Колко са двуцифрените числа с различни цифри, които могат да се съставят от цифрите 6, 7, 8 и 9?

Решение:
$$V_4^2 = \frac{4!}{2!} = 12$$

175) Ако броят на комбинациите на 6 елемента k-ти клас е 20, намерете k.

Решение:
$$C_6^k = 20 \rightarrow \frac{6!}{(6-k)!k!} = 20 \rightarrow (6-k)!k! = \frac{6.\cancel{5}.\cancel{4}.3.2}{\cancel{20}} \rightarrow (6-k)!k! = 36 \rightarrow k = 3$$

защото k е 2, 3, 4 или 5 и проверяваме:

$$k = 2 \rightarrow (6-2)!2! = 4!.2 = 4.3.2.2 = 48;$$

 $k = 3 \rightarrow (6-3)!3! = 3!.3.2 = 3.2.3.2 = 36;$
 $k = 4 \rightarrow (6-4)!4! = 2!.4.3.2 = 2.4.3.2 = 48;$
 $k = 5 \rightarrow (6-5)!5! = 1.5.4.3.2 = 120;$

OTF. k = 3

176) Секретарка, имаща строг началник, написала три поверителни писма, поставила ги в три еднакви плика, адресирала пликовете и ги изпратила. След известно време се усъмнила, че е разменила адресите и я очаква уволнение. Определете вероятността разсеяната секретарка да запази работата си.

<u>Решение:</u> $P_3 = 3! = 6$ са всичките възможности за адресиране, само 1 е точната $\rightarrow p = \frac{1}{6}$

177) ! Каква е вероятността трицифрено число, което се дели на 5 да е по-малко от 200? <u>Решение:</u> Трицифрените числа, които се делят на 5 образуват аритметична прогресия: $100,\ 105,\ ...,\ 995 \rightarrow 995 = 100 + (n-1).5/\ : 5 \rightarrow 199 = 20 + n - 1 \rightarrow n = 180 \rightarrow 180$ са всички трицифрени числа, които се делят на 5.

Трицифрените числа, които се делят на 5 и са по-малки от 200 образуват аритметична прогресия: 100, 105, ..., $195 \rightarrow 195 = 100 + (n-1).5/$: $5 \rightarrow 39 = 20 + n - 1 \rightarrow n = 20 \rightarrow 20$ на брой са трицифрените числа, които се делят на 5 и са по-малки от 200.

$$\rightarrow p = \frac{20}{180} = \frac{2.10}{9210} = \frac{1}{9}$$

178) Решете неравенството: $\frac{P_3.x^2 - V_{10}^2.x}{2} + 108 \le 0$

Решение:

179) ! Каква е вероятността поне един от почивните дни в седмицата (събота или неделя) да е слънчев?

Решение:

събота	неделя	
слънчев	слънчев	
слънчев	неслънчев	
неслънчев	слънчев	
неслънчев	неслънчев	

Три възможности за поне 1 слънчев от общо 4. $\rightarrow P = \frac{3}{4}$

180) В хранителен магазин се продават 5 вида масло, като всеки вид се продава в три различни разфасовки. Броят на начините, по които може да се избере по един пакет от всеки вид е ...

Решение:
$$C_3^1.C_3^1.C_3^1.C_3^1.C_3^1=\left(C_3^1\right)^5=\left(\frac{3!}{2!}\right)^5=3^5$$

181) Каква е вероятността на случайно избран лист (всяка дата е написана на отделен лист) от календара на 2003 година да е написано първо число на месец?

Решение: 12 месеца, 365 дни /2003 не е високосна/
$$\rightarrow P = \frac{12}{365}$$

182) В тенис турнир участват 10 мъже и 6 жени. По колко начина могат да се съставят 4 смесени двойки?

<u>Решение:</u> Отг. $C_{10}^4.C_6^4$

183) ! В урна има n бели, m черни и k червени топки. По случаен начин са избрани три от тях. Каква е вероятността всичките да бъдат с различен цвят?

<u>Решение:</u> m + n + k – на брой са всичките топки

 C_{m+n+k}^3 — начина да изберем 3 топки от всичките

 C_n^1 — начина да се избере бяла топка; C_m^1 — начина да се избере черна топка; C_k^1 — начина да се избере червена топка;

На всеки избор на бяла топка, съответстват C_m^1, C_k^1 избора за черна и червена

 $\Rightarrow C_n^1.C_m^1.C_k^1$ начина за избор на три топки с различен цвят.

$$\Rightarrow P = \frac{C_n^1 C_m^1 C_k^1}{C_{n+m+k}^1}$$

184) Колко са различните начина, по които от 10 войници могат да се изберат двама дежурни, единият от които е главен (старши)?

Решение:
$$V_{10}^2 = \frac{10!}{8!} = \frac{8!.9.10}{8!} = 90$$

185) * Колко окръжности се определят от 10 точки, 4 от които лежат на една права, а другите 5 – на една окръжност?

Решение:

 $\to 10$ окр. Аналогично с т. B, C, D $\to 4.10 = 40$ окр.

6 окр. → Аналогично с В, С и $D \rightarrow 6.4=24$ окр.

ART

$$ABM$$
 BCM CDM ACM ADM BDM ABN BCN CDN ACN ADN BDN ABP BCP CDP ACP ADP BDP ABQ BCQ CDQ ACQ ADQ BDQ ABR BCR CDR ACR ADR BDR ABT BCT ACT ADT ADT ACT ACT ADT ADT ADT BDT ADT ADT

Общо: 40+24+30+6+7=107

186) В една касичка има 75 монети по 1 лев, 25 монети по 50ст, 60 монети по 20ст и 40 монети по 10ст. Вероятността при обръщане на касичката да падне монета със стойност, по-малка от 1 лев е:

Решение:

Всички монети са: 75 + 25 + 60 + 40 = 200 Монети, по-малки от 1 лев са: 25 + 60 + 40 = 125 $\rightarrow P = \frac{125}{200} = \frac{5}{8}$

187) На картички са записани двуцифрените числа от 10 до 55 включително. Да се намери вероятността на случайно избрана картичка да е записано число, което се дели на 6.

<u>Решение:</u> 10, 11, ..., 55 – 46 са всичките числа

12, 18, 24, 30, 36, 42, 48, 54 – 8 числа се делят на 6

$$\rightarrow P = \frac{8}{46} = \frac{4}{23}$$

188) Каква е вероятността при хвърляне на два еднакви зара да не се падне чифт е...

Решение:
$$P = \frac{5}{6}$$

189) ! Да се определи броят на всички четни трицифрени числа с различни цифри, които могат да се запишат с цифрите 1, 2, 3, 4, 5 и 7.

<u>Решение:</u> 1, ②, 3, ④, 5, 7, четните числа завършват на 2 или на 4.

Ако числото завършва на 2, то изглежда така: $\times \times 2$, а двуцифрените числа, записани с 1, 3, 4, 5, 7 са V_5^2 . Ако числото завършва на 4, то изглежда така: $\times \times 4$, а двуцифрените числа, записани с 1, 2, 3, 5, 7 са V_5^2 .

$$2.75, 5.76 \text{ ca } V_5 = 2.20 = 40$$

190) ! Каква е вероятността произволно избрано трицифрено число да се дели на 5?

Решение: Трицифрените числа, които се делят на 5 образуват аритметична прогресия:

180 са всички трицифрени, които се делят на 5, а всички трицифрени числа са 999-99=900

$$\rightarrow p = \frac{180}{900} = \frac{2.9.10}{9.10.10} = \frac{1}{5}$$

191) От явилите се на зрелостен изпит 6 момичета от 12а клас и 15 момичета от 12б клас, получилите отлична оценка са 6. Вероятността 2 от отличничките да са от 12а клас е...

Решение:
$$p = \frac{C_6^2 C_{15}^4}{C_{21}^6}$$

192) Тест по математика се състои от 20 алгебрични, 5 геометрични и 3 комбинаторни задачи. Колко различни варианта може да се подготвят от 30 задачи по алгебра, 10 по геометрия и 9 по комбинаторика?

<u>Решение:</u> Отг. $C_{30}^{20}.C_{10}^{5}.C_{9}^{3}$

193) ! На рафт за книги са подредени 4 книги по математика и 3 книги по български език. Каква е вероятността книгите по всеки предмет да стоят една до друга?

<u>Решение:</u> 4 + 3 = 7 книги са всичките

 $P_{7} = 7!$ са всичките възможни подреждания,

 P_4 са възможните подреждания на книгите по математика, а P_3 са подрежданията на книгите по български език. За всяко подреждане на книгите по мат. съответстват P_3 подреждания на книгите по бълг. език, като могат да са ММММБББ или БББММММ

 \rightarrow 2 P_4 . P_3 са възможните подреждания, които отговарят на условието

$$\rightarrow p = \frac{2P_4.P_3}{P_7} = \frac{2.4!3!}{7!} = \frac{2.4!3.2}{4!5.6.7} = \frac{2}{35}$$

194) (Матура 2 Юни 2003) В кутия има 25 бели, 15 червени и 10 сини топчета. По случаен начин се изважда едно топче. Каква е вероятността то да не е бяло?

<u>Решение:</u> 25+15+10=50 топчета са всичките; 15+10=25 топчета не са бели

$$\Rightarrow p = \frac{25}{50} = \frac{1}{2}$$

195) (Матура 12 Юни 2003) Кодът на сейф се състои от 5 различни нечетни цифри. Каква е вероятността, ако не знаете кода, да отворите сейфа при първия опит?

<u>Решение:</u> $P_5 = 5! = 5.4.3.2 = 120$ са всичките подреждания на 5-те цифри /1, 3, 5, 7, 9/

$$\Rightarrow p = \frac{1}{120}$$

196) ! (Матура 16 Юни 2003) От всички 30 възможни въпроса от конспекта за изпит студент знае $\frac{2}{3}$ от тях. Всеки изпитен билет съдържа два различни случайно избрани въпроса. Каква

е вероятността студентът да знае и двата въпроса от изтегления билет?

Решение:
$$\frac{2}{3}$$
 от $30 = \frac{2}{3}.30 = 20$ въпроса знае

$$C_{30}^2 = \frac{30!}{28!2!} = \frac{28!29.30}{28!2} = 29.15 = 435$$
 са всичките двойки въпроси

$$C_{20}^2 = \frac{20!}{18!2!} = \frac{18!19.20}{18!2} = 190\,$$
 са двойките въпроси, в които знае и двата въпроса

$$p = \frac{190}{435} = \frac{38}{87}$$

197) ! От цифрите 0, 1, 3, 5 и 7 са съставени четирицифрени числа с различни цифри. Да се намери броят на числата, които се делят на 5.

<u>Решение:</u> Трябва да завършват на 0 или на 5, тоест ***0 или ***5

1) ***0 - първите три цифри трябва да са 1,3,5 или 7

$$V_4^3 = \frac{4!}{1!} = 4.3.2 = 24\,$$
числа са тези, които завършват на 0

2) ***5 - първите три цифри трябва да са 0,1,3 или 7, като не могат да започват с 0.

$$V_4^3 - V_3^2 = \frac{4!}{1!} - \frac{3!}{1!} = 4.3.2 - 3.2 = 24 - 6 = 18$$
 числа са тези, които завършват на 5

OTF. 24 + 18 = 42

198) *Стандартен зар се хвърля 3 пъти. Да се намери вероятността сумарния брой точки да се дели на 3, но да не се дели на 2.

Решение: 6.6.6 = 216 са всички възможни хвърляния

Възможните суми са от 3 = 1+1+1 до 18 = 6+6+6. Числата, които се делят на 3 са: 3, 6, 9, 12, 15, 18. Тези от тях, които не са четни са: 3, 9, 15. Хвърляния:

Сума 1 се получава само от 1+1+1, 1 възможност.

Сума 9 се получава:

 $1+2+6=9 \rightarrow 1, 2, 6$ можем да хвърлим по 3!=6 начина

 $1+3+5=9 \to 1,3,5$ можем да хвърлим по 3!=6 начина

 $1+4+4=9 \rightarrow 1,4,4$ можем да хвърлим по 3 начина

 $2+3+4=9 \rightarrow 2,3,4$ можем да хвърлим по 3!=6 начина

 $2+2+5=9 \rightarrow 2,2,5$ можем да хвърлим по 3 начина

 $3+3+3=9 \to 3,3,3$ можем да хвърлим по 1 начин

 \Rightarrow за сума 9 имаме 3.6 + 2.3 + 1 = 25 възможности

Сума 15 се получава:

 $3+6+6=15 \rightarrow 3,6,6$ можем да хвърлим по 3 начина

 $4+5+6=15 \rightarrow 4,5,6$ можем да хвърлим по 3!=6 начина

 $5+5+5=15 \rightarrow 5,5,5$ можем да хвърлим по 1 начин

 \Rightarrow за сума 15 имаме 3+6+1=10 възможности

 \Rightarrow 1 + 25 + 10 = 36 са възможните хвърляния, при които е изпълнено условието на задачата.

$$\Rightarrow p \frac{36}{6.6.6} = \frac{1}{6}$$

199) Колко прави могат да се построят през 8 точки, никои три от които не лежат на една права?

Решение:
$$C_8^2 = \frac{8!}{6!2!} = \frac{6!7.8}{6!2} = 28$$

200) Трябва да се сформира група от трима китаристи и двама барабанисти. На прослушване се явяват 7 китаристи и 4 барабанисти. По колко различни начина може да се сформира групата?

Решение:
$$C_7^3.C_4^2 = \frac{7!}{4!3!}.\frac{4!}{2!2!} = \frac{4!5.6.7}{4!3.2}.\frac{4.3.2}{2.2} = 35.6 = 210$$

201) (II матура 03.06.2008г.) Колко различни четирицифрени числа могат да се запишат от цифрите 0, 2, 4 и 7 без повтарящи се цифри?

Решение:
$$P_4 - P_3 = 4! - 3! = 3!(4 - 1) = 3.2.3 = 18$$

202) (II матура 03.06.2008г.) В кутията има 5 червени топки и 4 бели топки. По случаен начин са избрани 5 топки. Каква е вероятността 3 от тях да са червени и 2 от тях да са бели?

Решение:
$$P = \frac{C_5^3 \cdot C_4^2}{C_9^5} = \frac{10}{21}$$

203) (II матура 03.06.2008 – резервна тема) Броят на раличните шестцифрени числа без повтарящи се цифри, които могат да се запишат с цифрите 0, 1, 2, 3, 4 и 5 е:

<u>Решение:</u> $P_6 = 6!$ са всички групи от тези 6 цифри

С "0' не може да започва число. $P_5 = 5!$ са всички петцифрени.

$$\rightarrow P_6 - P_5 = 6! - 5! = 5!(6 - 1) = 5.4.3.2.5 = 600$$

204) Седем ученици са подредени в редица по случаен начин. Двама от учениците са близнаци (брат и сестра). По колко различни начини могат да се подредят тези 7 ученици, така че близнаците да са един до друг в редицата?

Решение: Двамата близнаци броим за един

По $P_6 = 6!$ начина могат да се подредят. Но близнаците могат да си сменят местата

$$\rightarrow 2.P_6 = 2.6! = 2.6.5.4.3.2 = 1440$$

Отг: 1440 начина

205) В кутия има седем сини и четири червени топки. По случаен начин от кутията са извадени 5 топки. Каква е вероятността 3 от тях да са сини и 2 да са червени?

Решение: 7с. + 4ч. = 11 топки

 C_7^3 начина да извадим 3 сини от 7

 C_4^2 начина да извадим 2 червени от 4

 C_{11}^5 начина да извадим 5 топки от 11

$$\Rightarrow P = \frac{C_7^3 \cdot C_4^2}{C_{11}^5} = \frac{\frac{7!}{\cancel{1}!3!} \cdot \cancel{\cancel{1}!}}{\frac{11!}{6!5!}} = \frac{7!6!5!}{3!11!2.2} = \frac{5}{11}$$

206) В един кашон 6% от наличните 50 мобилни телефони имат дефект. Каква е вероятността от два случайно избрани мобилни телефона от кашона и двата да са дефектни?

$$6\%.50 = \frac{6}{100}.50 = 3 \rightarrow 3$$
 телефона са дефектни

 C_{50}^2 са всички възможности да извадим 2 от 50

 C_3^2 са всички възможности да извадим 2 от 3 дефектни

$$\Rightarrow P = \frac{C_3^2}{C_{50}^2} = \frac{\frac{3!}{1!2!}}{\frac{50!}{48!2!}} = \frac{3.2}{2} \cdot \frac{\cancel{48!2}}{\cancel{48!49.50}} = \frac{3}{1225}$$

207) За хокеен мач тренъорът има на разположение двама вратари, шест защитници и осем нападатели. По колко различни начина може да се образува началната шестица играчи, ако в нея задължително влизат един вратар, двама защитници и трима нападатели?

<u>Решение:</u> C_2^1 са всички възможности за 1 вратар от двама

 C_6^2 са всички възможности за 2-ма защитници от 6

 $C_8^{\rm 3}$ са всички възможности за 3-ма нападатели от 8

$$C_2^1.C_6^2.C_8^3 = \frac{2!}{1!1!}.\frac{6!}{4!2!}.\frac{8!}{5!3!} = \frac{5!6.4!.5.6.7.8}{4!5!3.2} = 5.6.7.8 = 30.56 = 1680$$

208) Кодът на охранителна система се състои от 4 различни нечетни цифри. Какъв е максималният брой опити, които трябва да се направят, за да се открие кодът на системата? Решение: 1, 2, 5, 7 и 9 са нечетните цифри

$$V_5^4 = \frac{5!}{(5-4)!} = 5! = 5.4.3.2 = 120$$

209) В шампионската лига по футбол участват 32 отбора, разделени в 8 групи по 4 отбора. Отборите във всяка група играят по два мача помежду си. Намерете броя на мачовете, които се изиграват.

Решение:
$$8.2.C_4^2 = 16.\frac{4!}{2!2!} = 16.\frac{4.3.2}{4} = 16.6 = 96$$

210) Каква е вероятността при хвърляне на два зара да се паднат 2 шестици?

Решение:
$$P = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

211) Колко различни диагонали могат да се построят в изпъкнал десетоъгълник?

Решение: Една права се определя от 2 точки

$$\rightarrow C_{10}^2 = \frac{10!}{8!2!} = \frac{8!9.10}{8!2} = 45$$
 са всички прави през 10-те върха (диаг. + страни)

Следователно 45 - 10 = 35 диагонала (страните са 10).