ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 5.4.1 Определение энергии α -частиц по величине их пробега в воздухе

> Серебренников Даниил Группа Б02-826м

Цель работы: измерить пробег α -частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и синтиляционного счетчика, – по полученным данным определить энергию частиц.

1 Теоретическая часть

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзяь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0,32E^{3/2} \tag{*}$$

2 Экспериментальная установка

В данной работе пробег α -частиц в воздухе определяется треями способами:

- 1. С помощью счетчика Гейгера рис. 1а;
- 2. С помощью сцинтилляционного счетчика рис. 1b;
- 3. С помощью ионизационной камеры рис. 1с.

Рис. 1: Экспериментальные установки.

В качестве источника α -частиц используется 239Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239Pu состоят их трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

3 Экспериментальные данные

Таблица 1: Ионизационная камера.

P, Topp	σ_P , Topp	<i>I</i> , пА	σ_I , пА
18		16	1
38		43	1
58		71	1
78		101	1
98		130	1
118		160	1
138		193	1
158		221	1
208		304	5
258		388	5
308		470	5
368		576	5
468		765	5
478		795	5
498		827	5
518		875	5
538		911	5
548	3	927	5
558		940	5
578		960	5
598		966	5
608		971	5
618		970	5
628		966	5
638		964	5
658		962	10
668		963	10
678		957	10
688		960	10
708		953	10
718		952	10
728		945	10
738		944	10
748		940	10
758		937	10

Таблица 2: Счетчик Гейгера.

t, c	N_0	x, MM	σ_x , mm	N	σ_N
102	15	40,0		14,7	0,7
202	25	35,0		12,4	0,3
141	15	30,0		10,6	0,4
115	24	28,0		20,9	0,9
124	27	26,0		21,8	0,9
1345	25	24,0		1,86	0,01
210	45	23,0		21,4	0,5
200	46	22,0		23,0	0,6
250	73	21,0		29,2	0,6
218	76	20,0	0,5	34,9	0,8
111	238	19,0	0,5	214	10
136	1000	18,0		735	30
115	1583	17,0		1380	60
120	1800	16,0		1500	60
109	1600	15,0		1470	70
105	1561	14,0		1490	70
103	1536	13,0		1490	70
110	1564	12,0		1420	60
113	1560	11,0		1380	60
103	1484	10,0		1440	70

Таблица 3: Сцинтилляционный счетчик.

t, c	N_0	P, Topp	σ_P , Topp	$N, 10^3$	$\sigma_N, 10^3$
10	3603	18		36	2
10	3435	38		34	2
10	3233	58		32	2
10	3089	78		31	2
10	2923	98		29	1
10	2744	108		27	1
10	2646	118		26	1
10	2347	138		23	1
10	2036	158		20	1
10	1992	166		20	1
10	1830	176	3	18,3	0,9
10	1666	186		16,7	0,8
10	1431	196		14,3	0,7
10	1260	208		12,6	0,6
10	1001	216		10,0	$0,\!5$
10	820	226		8,2	0,4
10	635	236		6,4	0,3
10	474	246		4,7	0,2
10	324	258		3,2	0,2
10	90	276		0,90	0,05
100	51	308		0,0510	0,0003
100	11	358		0,01100	0,00006

4 Обработка результатов

4.1 Исследование пробега α -ч. счетчика Гейгера

Представим результаты измерений (табл. 2) зависимости N=N(x) в виде графика – рис. 2.

Рис. 2: N = N(x).

Найдем кривую, приближающую экспериментальные точки, в следующем виде:

$$N(x) = \frac{A_1 - A_2}{1 + e^{(x - x_0)/dx}} + A_2.$$

Таблица 4: Параметры аппроксимации.

A_1	A_2	x_0 , MM	dx, мм	R^2
1500	23	18	0,4	?

Средний $R_{\rm cp}$ и экстраполированный $R_{\rm экстр}$ пробеги определяются следующими уравнениями:

$$\begin{cases} N''(R_{\rm cp}) = 0, \\ R_{\rm \tiny 9KCTP} = R_{\rm cp} + |N(R_{\rm cp})/N'(R_{\rm cp})| \, . \end{cases}$$

Энергию можно найти из формулы (*): $E = (R/0, 32)^{2/3}$.

Таблица 5: R.

Таблица 6: Е.

$R_{\rm cp},{ m cm}$	$R_{\text{экстр}}, \text{ cm}$	
$1,80 \pm 0,05$	$1,9 \pm 0,1$	

$E(R_{\rm cp})$, МэВ	$E(R_{\text{экстр}}), \text{ MэВ}$
$3,16 \pm 0,06$	$3,28 \pm 0,12$

4.2 Исследование пробега α -ч. с помощью сцинтилляционного счетчика

Представим результаты измерений (табл. 3) зависимости N=N(P) в виде графика – рис. 3.

Рис. 3: N = N(P).

Найдем кривую, приближающую экспериментальные точки, в следующем виде:

$$N(P) = \frac{B_1 - B_2}{1 + e^{(P - P_0)/dP}} + B_2.$$

Таблица 7: Параметры аппроксимации.

B_1	B_2	P_0 , Topp	dP, торр	R^2
35500 ± 900	-1200 ± 600	177 ± 4	47 ± 3	0,99

Давления $P_{\rm cp}$ и $P_{\rm экстр}$, которые соответсвуют среднему $R_{\rm cp}$ и экстраполированному $R_{\rm экстр}$ пробегам, очевидно, определяются следующей системой уравнений:

$$\begin{cases} N''(P_{\rm cp}) = 0, \\ P_{\rm \tiny 9KCTP} = P_{\rm cp} + |N(P_{\rm cp})/N'(P_{\rm cp})|. \end{cases}$$

Таблица 8: Р.

$P_{\rm cp}$, Topp	$P_{\text{экстр}}$, торр
177 ± 4	264 ± 8

Так как α -частицы не могут достигнуть люминофора при обычном давлении, то свободный пробег будет равен расстоянию между препаратом и люминофором – 9 см. Следовательно, мы можем пересчитать средний и экстраполированные свободные пробеги частиц к давлению 760 торр и температуре 15°:

$$R = \frac{288 \text{ K}}{T} \frac{P}{760 \text{ торр}} 9 \text{ см}.$$

Таблица 9: R.

Таблица 10: *E*.

$R_{\rm cp},{ m cm}$	$R_{\text{экстр}}$, см
$2,03 \pm 0,05$	$3,02 \pm 0,09$

$E(R_{\rm cp})$, МэВ	$E(R_{\text{экстр}}), \text{ MэВ}$
$3,43 \pm 0,06$	$4,47 \pm 0,09$

4.3 Определение пробега α -ч. с помощью ионизационной камеры

Представим результаты измерений (табл. 1) зависимости I = I(P) в виде графика – рис. 4.

Рис. 4: I = I(P).

По графику определим: $P_{\text{экстр}} = (570 \pm 10)$ торр. Аналогично предыдущему пункту найдём экстраполированный пробег $R_{\text{экстр}}$ и соответствующую энергию.

$$R = \frac{288 \text{ K}}{T} \frac{P}{760 \text{ Topp}} \frac{10 - 0.5}{2} \text{ cm},$$

где 0.5 см и 10 см – диаметры первого и второго электродов соответственно.

Таблица 11: *R*. Таблица 12: *E*.

$R_{\text{экстр}}, \text{ cm}$	$E(R_{\mathfrak{g}_{\mathrm{KCTP}}}), \mathrm{M}\mathfrak{g}\mathrm{B}$	
$3,44 \pm 0,07$	$4,87 \pm 0,07$	

5 Обсуждение результатов и выводы

В настоящей лабораторной работе тремя различными способами был измерен свободный пробег в воздухе α -частиц с энергией 5,15 МэВ. В качестве источника радиоактивных частиц был использован ²³⁹Pu.

Результаты вычислений энергий для экстраполированных и средних пробегов (таблицы 6, 10, 12) по эмпирической формуле (⋆) привели к заниженным значениям. Это обусловлено следующим набором причин:

- 1. Пучки частиц обладают конечными размерами, что приводит к угловой расходимости.
- 2. Источник частиц покрыт слюдяной пленкой, что приводит к замедлению α -частиц.
- 3. Эмпирическая формула (⋆) в области энергий 4-5,5 МэВ требует уточнений.

Итак, несмотря на наличе коллиматора, в данной работе мы имели дело не с узкими параллельными пучками частиц, а с пучками конечных размеров. Это привело к тому, что экспериментально наблюдаемые зависимости числа α -частиц от глубины их проникновения качественно правильно передают провявление брэгговского пика и, тем самым, относительную величину пробега частиц с разной энергией. Однако в силу указанных причин брэгговский пик оказывается смещенным и сильно размытым. Поэтому экстраполированный пробег дает лучшую оценку.

Более того, из-за отдачи, которую испытывают атомы при испускании частиц, близлежащие поверхности от источника могут загрязняться, поэтому источники покрыты тонкой слюдяной пленкой. Свободный пробег (выраженный в r/cm^2) которой в 1,2 больше свободного пробега в воздухе, выраженного в тех же единицах.

Для уточнения формулы (★) вычислим по ней значения энергий для известных длин свободного пробега в воздухе и найдем разницу — таблица 13. Видно, что в диапазоне от 1,58 до 5,58 имеется наибольшее расхождение¹. Поэтому найдем степенную функцию, которая лучше всего в среднем квадратичном приближает табличные значения в интересующем нас диапазоне. Имеем:

$$E = a R^b, \tag{**}$$

где a и b – постоянные, значения которых приведены рис. 5.

 $^{^{1}}$ вблизи нуля тоже, но в данной работе эта область нас не интересует

Таблица 13: Пробег α -частиц в воздухе.

R, cm	E, МэВ	E(R), МэВ	ΔE , МэВ
0,113	0,1	0,50	-0,40
0,309	0,5	0,98	-0,48
0,499	1,0	1,34	-0,34
0,714	1,5	1,71	-0,21
0,966	2,0	2,09	-0,09
1,25	2,5	2,48	0,02
1,58	3,0	2,90	0,10
1,96	3,5	3,35	$0,\!15$
2,37	4,0	3,80	0,20
2,82	4,5	4,27	0,23
3,29	5,0	4,73	$0,\!27$
3,82	5,5	5,22	0,28
4,37	6,0	5,71	0,29
5,58	7,0	6,72	0,28
7,19	8,0	7,96	0,04
8,66	9,0	9,01	-0,01
10,2	10,0	10,05	-0,05

Рис. 5: E = E(R).