洛必达法则

在.

第二节・洛必达法则

■山东财经大学 ■田宽厚

第三章・导数的应用

1. $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 2. $\lim_{x \to \infty} \frac{4x^2 - 3x + 9}{5x^2 + 2x - 1} = \frac{4}{5}$

在第二章中我们已经知道 $\frac{0}{0}$, $\frac{\infty}{\infty}$ 型的极限可能存在, 也可能不存

通常称不能直接使用极限的四则运算法则来计算的极限, 为未定 式的极限, 常见的不定式有:

$$\frac{0}{0}, \frac{\infty}{\infty}$$

$$0 \cdot \infty, \infty - \infty$$

$$\infty - \infty$$

$$0^0, 1^{\infty}, \infty^0$$

第二节・洛必达法則

若为未定式的极限,在一定条件下,我们有下面的洛必达法则:
$$\lim \frac{f(x)}{\sigma(x)} = \lim \frac{f'(x)}{\sigma'(x)}$$

第二节・洛必达法則

Δ 3/29 ♥

第二节・洛必达法則

2.1 无穷小比值型

定理 1 如果
$$\lim f(x)=0$$
, $\lim g(x)=0$, 而且 $\lim \frac{f'(x)}{g'(x)}$ 的极限存在(或为 ∞), 则有
$$\lim \frac{f(x)}{\sigma(x)}=\lim \frac{f'(x)}{\sigma'(x)}$$

第二节・洛必达法則 无穷小比值型

例1 求极限
$$\lim_{x\to 1} \frac{x^3-3x+2}{x^3-x^2-x+1}$$
.

解 原式
$$\stackrel{*}{=}$$
 $\lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1}$ $\frac{*}{=}$ $\lim_{x \to 1} \frac{6x}{6x - 2} = \frac{3}{2}$

主 不是未定式不能用洛必达法则!
$$\lim_{x\to 1}\frac{6x}{6x-2}\neq\lim_{x\to 1}\frac{6}{6}=1$$

例2 求极限
$$\lim_{x\to+\infty} \frac{\frac{\pi}{2}-\arctan x}{1}$$
.

第二节・洛必达法則

解原式
$$\stackrel{\underline{a}}{=}$$
 $\lim_{x \to +\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}}$

$$= \lim_{x \to +\infty} \frac{x^2}{1+x^2}$$

$$= \lim_{x \to +\infty} \frac{1}{\frac{1}{x^2}+1} = 1$$

原式 等价 $\frac{x - \sin x}{x^3}$ $\frac{x}{2}$ $\frac{1 - \cos x}{2 - 2}$ 等价 $\frac{1}{2}x^2$ $\frac{3}{2}$

注 1 对于 $x \to 0$ 时的 $\frac{0}{6}$ 型极限, 现在我们有两种方法可以使用:

当 $x \to 0$ 时, 有如下这些常用的等价无穷小量: (1) $\sin x \sim x$

(5) $\ln(1+x) \sim x$

(6) e^x − 1 ~ x

(2) tan x ~ x

(7) $1 - \cos x \sim \frac{1}{2}x^2$

(3) $\arcsin x \sim x$

 $\arctan x \sim x$

第二节·洛必达法则 ▶ 无穷小比值型

(1) 等价无穷小量代换

(2) 洛必达法则

第二节·洛必达法则 ▶ 无穷小比值型

2.2 无穷大比值型

两种方法比较

原式 等价 $\lim_{x \to 0} \frac{3x}{6x} = \frac{3}{2}$.

一般地, 方法 (1) 应该优先使用, 因为方法 (2) 可能变得复杂.

二、 型型的洛必达法则

定理 2 如果 $\lim f(x) = \infty$, $\lim g(x) = \infty$, 而且 $\lim \frac{f'(x)}{g'(x)}$ 的极限

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

例 5 求极限 $\lim_{x \to \infty} \frac{2x^2 + x + 1}{2x^2 + x + 4}$.

解 原式 $\frac{4x+1}{6x-1} = \frac{4}{6}$.

第二节・洛必达法則

存在 (或为 ∞), 则有

例6 求极限 $\lim_{r\to +\infty} \frac{\ln x}{n} (n>0)$.

解 原式 $\frac{8}{\pi}$ $\lim_{n \to \infty} \frac{x}{n^{n-1}} = \lim_{n \to \infty} \frac{1}{n^{n}} = 0.$

例7 求极限 $\lim_{x\to+\infty}\frac{x^n}{2^{\lambda x}}$ (n为正整数).

解 原式
$$\stackrel{\triangle}{=}$$
 $\frac{nx^{n-1}}{\lambda e^{\lambda x}}$ $\stackrel{\triangle}{=}$ $\frac{n(n-1)x^{n-2}}{\lambda^2 e^{\lambda x}}$

$$\stackrel{\mathbf{8}}{=} \cdots \stackrel{\mathbf{8}}{=} \lim_{x \to +\infty} \frac{n!}{\lambda^n e^{\lambda x}} = 0.$$

注 例 6.7 表明 $x \to +\infty$ 时, $e^{\lambda x}$ 快于 x^n 快于 $\ln x$.

在满足定理条件的某些情况下洛必认法则不能解决计算问题

例如

 $\lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to +\infty} \frac{x}{\sqrt{1+x^2}} = \lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x}$

事实上

 $\lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to +\infty} \sqrt{\frac{1}{x^2}+1} = 1$

第二节·洛必达法则 ▶ 无穷大比值型

第二节・洛必达法則 ▷

无穷大比值型

注 若 $\lim_{q'(x)} \frac{f'(x)}{q'(x)}$ 的极限不存在 (或 $\neq \infty$)时, 不能用洛必达法则!

$$\lim \frac{f(x)}{g(x)} \neq \lim \frac{f'(x)}{g'(x)}$$

例如

$$\lim_{x \to +\infty} \frac{x + \sin x}{x} \neq \lim_{x \to +\infty} \frac{1 + \cos x}{1} \Rightarrow$$
极限不存在
$$\lim_{x \to +\infty} \left(1 + \frac{\sin x}{x}\right) = 1.$$

 $\Xi \times 0.0 \times 20$ 型和 $\infty - \infty$ 型的未定式

对于 $0\cdot\infty$ 型和 $\infty-\infty$ 型的未定式, 我们可以将它们变换为 $\frac{0}{6}$ 型

$$\infty - \infty \xrightarrow{\text{id} \beta} \frac{0}{0}, \frac{\infty}{\infty} \xrightarrow{\text{in} \{0\}} 0 \cdot \infty$$

例8 求极限 $\lim_{x\to \frac{\pi}{2}} (\sec x - \tan x)$.

解 原式 = $\lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x}$

2.3 乘法减法型

$$\stackrel{\text{\tiny A}}{=} \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = 0.$$

第二节・洛必达法則 ▶ 乘法减法型 ∆ 19/29 V

第二节·洛必达法则 ▷ 乘法减法型

△ 20/29 ♥

求极限 $\lim_{r\to 0^+} x^n \ln x (n > 0)$.

思考 用洛必达大则求
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$$
.

解 原式 =
$$\lim_{x\to 0^+} \frac{\ln x}{x^{-n}} \stackrel{!}{=} \lim_{x\to 0^+} \frac{\frac{1}{x}}{-nx^{-n-1}}$$

= $\lim_{x\to 0^+} \left(\frac{x^n}{n}\right) = 0$.

第二节・洛必达法則

四、 1^{∞} 型 0^{0} 型和 ∞^{0} 型的未定式

第二节・洛必达法則

型未定式, 进而化为 0 型或 ∞ 型, 然后使用洛必达法则.

对于 1^{∞} 型, 0^{0} 型和 ∞^{0} 型的未定式, 我们可以将它们变换为 $0\cdot\infty$

 $\lim u(x)^{v(x)} = \lim e^{v(x) \ln u(x)} = e^{\lim v(x) \ln u(x)}$

 $\infty - \infty \xrightarrow{\underline{\mathbf{a}}} \frac{0}{0}, \frac{\infty}{\infty} \xrightarrow{\overline{\mathbf{w}} | \underline{\mathbf{w}}} 0 \cdot \infty \xrightarrow{\overline{\mathbf{w}} | \underline{\mathbf{w}}} \begin{cases} 0^0 \\ 1^\infty \\ \infty^0 \end{cases}$

△ 24/29 ♥

第二节・洛必达法則

幂指函数型

2.4 幂指函数型

△ 23/29 ♥

第二节・洛必达法則

幂指函数型

例 10 求极限 $\lim_{x\to 0^+} x^x$.

解 原式 =
$$e^{x \ln x}$$

↓例 9;
$$\lim_{x\to 0^+} x^n \ln x = 0$$

$$= e^0 = 1.$$

第二节・洛必达法則

2.5 内容小结

求极限 $\lim_{n\to\infty} \sqrt{n} (\sqrt[n]{n} - 1)$.

解 记: $n^{\frac{1}{n}} = e^{\frac{1}{n} \ln n} \stackrel{\text{例6}}{\longrightarrow} 1$

原式 = $\lim_{n\to\infty} n^{\frac{1}{2}} \left(n^{\frac{1}{n}} - 1\right)$

 $= \lim_{n \to \infty} \frac{e^{\frac{1}{n} \ln n} - 1}{e^{-\frac{1}{n}}}$ $=\lim_{n\to\infty}\frac{\frac{1}{n}\ln n}{\frac{1}{n-\frac{1}{n}}}=\lim_{n\to\infty}\frac{\ln n}{\frac{1}{n-\frac{1}{n}}}\stackrel{\text{(9)6}}{=}0.$

第二节・洛必达法則

洛必达法则

内容小结

 $0, \infty$ 型的未定式: $\lim_{x \to a(x)} \frac{f(x)}{a(x)} = \lim_{x \to a(x)} \frac{f'(x)}{a'(x)}$

2 0 · ∞ 型和 ∞ - ∞ 型的未定式:

 $\infty - \infty \xrightarrow{\text{id} \beta} \frac{0}{0}, \frac{\infty}{-1} \xrightarrow{\text{in} \text{in} \beta} 0 \cdot \infty$

■ 1^{∞} 型, 0^{0} 型和 ∞^{0} 型的未定式: $0 \cdot \infty$ 型数 $\begin{cases} 0^{0} \\ 1^{\infty} \\ \infty^{0} \end{cases}$

第二节・洛必达法則 内容小结

本节完!

第二节・洛必达法則 ▶ 内容小结

A 29/29 V