Two Dimensional Toy Model and Layout Optimization

Marko Lalovic

Figure 1: Toy Model and (Tiny) Power Plant, units are meters. Solar angle $\phi=90^\circ$.

Figure 2: Solar angle $\phi=0^\circ$

Figure 3: Solar angle $\phi=30^\circ$

Figure 4: Solar angle $\phi=60^\circ$

Figure 5: Solar angle $\phi = 90^\circ$

Figure 6: Solar angle $\phi=120^\circ$

Figure 7: Solar angle at $\phi=150^\circ$

Figure 8: Solar angle at $\phi=180^\circ$

Definition (Layout Optimization Problem)

Find the optimal *layout*, positions H_i of heliostats i = 1, ..., n, that maximizes the daily energy production E of the Toy Model Power Plant. Subject to:

- Positions H_i are in the defined Area of the Plant
- $H_i, H_j, i \neq j$ are at the distance at least 4m
- H_i, R are at the distance at least 4m

for all $i = 1, \ldots n$.

Where we only consider the effects caused by

Cosine effect η_{cos} : Solar angle not being perpendicular to the heliostat Spillage effect η_{spill} : Reflected rays from flat mirror missing the receiver Atmospheric Attenuation η_{aa} : Sun radiation being lost due to attenuation

In case of n > 1 also

Shading effect η_{shade} : Solar rays being blocked by other heliostats Blocking Effect η_{block} : Reflected rays being blocked by other heliostats

Single Heliostat Optimization $H = H(\rho)$

(b)
$$\eta_{\cos} = \cos\left(\frac{\gamma}{2}\right) \approx 1 \implies \text{Power is maximized}$$

(c) $\phi + \rho + \gamma = \pi$

Figure 9: Cosine Effect

Single Heliostat Optimization $H = H(\rho)$

Using relations (c) and (d)

$$\begin{split} &\eta_{\cos}(\rho) = \int_0^{\pi} \cos\left(\frac{|\pi - \phi - \rho|}{2}\right) d\phi = 2\left(\sin\left(\frac{\rho}{2}\right) + \cos\left(\frac{\rho}{2}\right)\right) \\ &\eta_{\cos}'(\rho) = \cos\left(\frac{\rho}{2}\right) - \sin\left(\frac{\rho}{2}\right) \implies \rho^* = \frac{\pi}{2} \end{split}$$

Figure 10: Spillage Effect

(b) $\eta_{\text{spill}} = 1$

Power is maximized

Single Heliostat Optimization $H = H(\rho)$

Since $\tau=80^\circ$ and |RQ|=2, then by using

$$\frac{a+2}{a} = \frac{b+|HP|}{b}$$
 (Similarity)

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}$$
 (Sine Rule)

we get

$$\eta_{spill} = \min\left(1, \frac{|HP|}{2}\right)$$
(1)

$$=\min\left(1,rac{\sin(\pi- au-
ho)}{\sin\left(rac{\phi+
ho}{2}
ight)}
ight) \quad (2)$$

Figure 11: Spillage Effect Solution

Single Heliostat Optimization H = H(d)

Let d = ||H - R||, then the atmospheric attenuation ¹ is

$$\eta_{\mathsf{aa}}(d) = \begin{cases} 0.99321 - 1.176 \cdot 10^{-4}d + 1.97 \cdot 10^{-8}d^2, & d \le 1000m \\ \exp(-1.106 \cdot 10^{-4}d), & d > 1000m \end{cases}$$
(3)

Figure 12: Atmospheric Attenuation Effect

$$\implies d^* = \underset{d}{\operatorname{arg\,min}} \|H - R\|$$
 subject to: $\|H - R\| > 4$

 $^{^{1}}$ P. Richter, Simulation and optimization of solar thermal power plants. PhD dissertation, RWTH Aachen University, 2017.

Definition (Daily energy production efficiency E)

$$\mathsf{E}^* = \int_0^\pi d\phi = \pi \tag{4}$$

$$\mathsf{E}(\rho, d) = \eta_{\mathsf{a}\mathsf{a}}(d) \cdot \frac{1}{\pi} \int_0^\pi \eta_{\mathsf{cos}}(\rho, \phi) \cdot \eta_{\mathsf{spill}}(\rho, \phi) d\phi \tag{5}$$

Figure 13: Plot of $E(\rho) \implies \rho^* \approx 35^\circ$

Figure 14: Solution $H^* \approx (3.29, 9.73)$.

For each heliostat $i = 1, \dots n$:

 $\eta_{shade} = \text{proportion of solar rays that are not blocked by other heliostats}$ (6)

 η_{block} = proportion of reflected rays that are not blocked by other heliostats (7)

Figure 15: Shading Effect.

Figure 16: Blocking Effect.

For a given layout H_1, H_2, \dots, H_n we approximate daily energy E by

$$\widehat{\mathsf{E}}(H_1, H_2, \dots, H_n) = \frac{1}{n \cdot m} \sum_{i=1}^n \eta_{\mathsf{a}\mathsf{a}} \cdot \sum_{k=1}^m \eta_{\mathsf{cos}}(\phi_k) \cdot \eta_{\mathsf{ray}}(\phi_k) \tag{8}$$

Example (Line Layout)

$$H_1=(6,5), \quad H_2=(12,5), \quad H_3=(18,5), \quad H_4=(23,5), \quad H_5=(29,5)$$

Using m=17 and 5 rays per heliostat we get $\widehat{\mathsf{E}} \approx 0.53$ ^a

^aFound one error in the code, but the results do not change significantly so I'm showing the same results as in the Report.

Figure 17: Golden spiral idea applied in 2D.

Figure 18: Valid heliostat positions.

Figure 19: Spiral Layout optimized sequentially, imitating how leaves grow.

Placing the heliostats equidistantly some distance apart on the parabola

$$y = \frac{1}{48}x^2\tag{9}$$

with the focal point R = (0, 12)

Figure 20: Parabolic Mirror Layout.

Figure 21: Valid Parabolic Layout.

Figure 22: Landscape.

Figure 23: Same landscape rotated.

Plot of $\widehat{E}(x_3, y_3)$ for the valid parabolic layout.

Running gradient ascent

$$x_k = x_{k-1} + \sigma \cdot g \tag{10}$$

where g is first finite difference estimate and $\sigma=1$

Figure 24: Starting close to the optimum.

Figure 25: Starting far from the optimum.

- Same story with running higher order methods and taking constraints into account
- Although, still got some interesting results
- In this case Sequential Quadratic Programming (SQP) method from a class of Lagrange-Newton methods:

Figure 26: Initial value.

Figure 27: Converged.

Running a set of different methods, notice the similarity of rows!

Figure 28: Top 9 Layouts.

Numerical Results

- Increasing the number of solar angles from 17 to 180 and rays from 5 to 50
- Most layouts were only exploiting the inaccuracies in the Toy model

Layout	Ê
Simulated Annealing	0.77
Differential Evolution	0.77
Parabolic	0.74
Basin-hopping	0.72
SQP	0.72
Cobyla	0.72
Theater	0.71
Best Random	0.70
Spiral	0.66
Random	0.42 ± 0.09

Table 1: By using layout optimization model accuracy.

Layout	Ê
Parabolic	0.80
Simulated Annealing	0.77
Differential Evolution	0.77
Theater	0.77
Cobyla	0.76
Best Random	0.75
Basin-hopping	0.73
SQP	0.73
Spiral	0.66

Table 2: By using increased model accuracy.

TODOs and Open Questions

- Improve the model, test the code and repeat the optimization and evaluation
- Try showing that putting heliostats on parabola is the best layout
- Or find a better layout (github.com/markolalovic/math-mods-camp)

Figure 29: Minimizing the effects of shading and blocking.