

Data book

MH2103Axxxx

Enhanced, truly random number, hardware encryption algorithm unit, 32-bit Arm? Cortex-M3 core microcontroller with 128K byte to 1024K byte flash 17 timers, 3 ADCs, 2 Dacs, 15 communication interfaces

Features:

- Kernel: 32-bit Arm®Cortex®-M3Core
 - Maximum operating frequency of 216MHz, 2.54DMips/MHz(CoreMark1.0)
 - Single-period multiplication and hardware division

Memorizer

- 128K, 256K, 512K, and 1024K bytes of flash program memory
- 32K/64K/96K bytes of SRAM
- FSMC Static memory controller

Clock, reset, and power management

- 2.0 to 3.6 volts power supply and I/O pins
- Power on/power off reset (POR/PDR), programmable voltage

Monitor (PVD)

- 4 to 16MHz crystal oscillator
- Factory-tuned 8MHz RC oscillator calibrated 40kHz RC oscillator
- 32kHz RTC oscillator with calibration function

Low power consumption

- Sleep, Stop, and standby modes
- VBAT supplies power for RTC and backup registers
- Three 12-bit analog-to-digital converters, 1us conversion time(up to 21 input channels)
 - Conversion range: 0 to 3.6V Temperature sensor
- 2 12-bit D/A converters
- DMA: 12-channel DMA controller

Debug mode

- Serial single-line debugging (SWD) and JTAG interfaces
- Embedded Tracking Module (ETM)

■ I/O port

- Supports a maximum of 112 multifunctional bidirectional I/O ports, and all I/O ports can be mapped to 16 external interrupts
- All GPIOs can be forcibly configured with a pull-down resistor
- Enhanced CRC computing unit
- 17 timers

- Supports a maximum of 10 16-bit timers, each timer has a maximum of 4 for input capture/output ratio / PWM

Or pulse counting for channel and incremental encoder input

- Two 16-bit PWM advanced control timers with dead zone control and emergency brake for motor control
- 2 watchdog timers (independent and window)
- System time timer: a 24-bit self-decreasing counter
- Two 16-bit basic timers

15 communication interfaces

- Two I2C ports (supporting SMBus and PMBus)
- Five USART interfaces (supporting ISO7816, LIN, IrDA interfaces, and modem control)
- Three SPI ports, two multiplexed with I2S ports CAN ports (2.0B active)
- USB 2.0 full speed port (optional internal 1.5K pull-up resistor)
- SDIO ports

Hardware encryption algorithm unit

- Built-in hardware algorithms (DES, AES, SHA, SM1, SM3, SM4, and SM7)
- Provides a complete high-performance algorithm library
- TRNG: The TRNG unit is used to generate a sequence of truly random numbers
 - Four independent true random sources can be configured independently
 - 128 bits of random data can be generated at a time
 - The post-processing function is optional
 - Attack detection

SENSOR: Voltage and temperature sensor alarm

- Detects VBAT and VDD voltages independently
- Provides a temperature sensor
- Reset or interrupt after alarm is generated

SRAM scrambling

- Supports address and data scrambling

One-time Programmable (OTP)

- Supports 32 bytes

Catal ogue

1 Introduce	5
2 Specification	6
List of devices	6
Summarize	
2.1.1 32-bit Arm® Cortex®-M3 Core with built-in flash memory and SRAM	6
2.1.2 Built-in flash memory	
2.1.3 Memory protection unit (MPU)	7
2.1.4 Built-in SRAM Built-in flash memory	
2.1.5 Static Memory Controller (FSMC)	7
2.1.6 LCD parallel interface	
2.1.7 CRC(Cyclic redundancy Check) computing unit	8
2.1.8 Nested Vector Interrupt Controller (NVIC)	
2.1.9 External Interrupt/Event Controller (EXTI)	8
2.1.10 Clock and start	8
2.1.11 Startup mode	8
2.1.12 Power supply scheme	9
2.1.13 Power supply monitor	
2.1.14 Voltage regulator	9
2.1.15 Low power mode	9
2.1.16 DMA	
2.1.17 RTC(Real-time clock) and backup register	
2.1.18 Timer and watchdog	
2. 1. 19 I2C bus	12
2.1.20 Universal Synchronous/Asynchronous Transceiver (USART)	12
2.1.21 Serial Peripheral Interface (SPI)	
2.1.22 Audio interface (I2S)	
2. 1. 23 SDIO	
2.1.24 Controller Area Network (CAN)	
2.1.25 Universal Serial Bus (USB)	
2.1.26 Universal Input/Output Interface (GPIO)	
2.1.27 ADC(Analog/Digital Converter)	
2.1.28 DAC(Digital/Analog Signal Converter)	
2.1.29 Temperature sensor	
2.1.30 Serial Single-wire JTAG Debugging Port (SWJ-DP)	14
2.1.31 Embedded Tracking Module (ETM)	
2.1.32 True Random Number Generator (TRNG)	
3 Pin definition	
LQFP48 package	
LQFP64 package	
LQFP100 package	
LQFP144 package	
LQFP48 Pin definition	
LQFP64 Pin definition	
LQFP100 Pin definition	
LQFP144 Pin definition	
4 Electrical characteristic	
Test condition	
4.1.1 Minimum and maximum values	
4.1.2 Typical value	29

4. 1. 3	Typical curve	29
4.1.4	Load capacitance	29
4.1.5	Pin input voltage	30
4.1.6	Power supply scheme	30
4.1.7	Current consumption measurement	31
Absolute :	maximum rating	31
Working c	o ndi t i o n	32
4.1.8	General operating conditions	32
4.1.9	Working conditions during power-on and power-off	32
4.1.10	Built-in reset and power control module features	
4.1.11	Built-in reference voltage	33
4. 1. 12	Supply current characteristic	33
4. 1. 13	External clock source features	36
4.1.14	Features of the internal clock source	39
4. 1. 15	Time to wake up from low power mode	40
4.1.16	PLL characteristics	40
4. 1. 17	Memory characteristic	
4. 1. 18	Absolute maximum (electrical sensitivity)	41
4.1.19	Features of I/O ports	41
4.1.20	NRST pin characteristics	42
4. 1. 21	TIM timer characteristics	43
4.1.22	CAN(Controller Local Area Network) interface	43
4. 1. 23	12-bit ADC features	43
4. 1. 24	DAC electrical parameters	
4. 1. 25	Temperature sensor characteristics	
5 Package	e characteristics	47
LQFP48 p	package	47
	package	
	package	
LQFP144	package	50
6 Order o	Code	51
7 Annendi	i x	53

Table directory

Table 1 Device function configuration table	6
Table 2 Matching relationship between power supply voltage and FLASH DELAY level	
Table 3TIM configuration table	
Table 4LQFP48 pin definition configuration table	18
Table 5LQFP64 pin definition configuration table	
Table 6LQFP100 Pin definition configuration table	22
Table 7LQFP144 Pin definition configuration table	24
Table 8 Voltage characteristics	31
Table 9 Current characteristics	31
Table 10 Temperature characteristics	32
Table 11 General operating conditions	32
Table 12 Operating conditions for power-on and power-off	32
Table 13 Built-in reset and power control module characteristics	32
Table 14 Built-in reference voltage	
Table 15 Current consumption in operating mode	33
Table 16 Current consumption in sleep mode, code running in FLASH	34
Table 17 Typical and maximum current consumption in down and standby modes	34
Table 18 Current consumption of built-in peripherals	35
Table 19 High-speed external user clock characteristics	36
Table 20 Low speed external user clock characteristics	37
Table 21HSE4~16MHZ oscillator characteristics (1)(2)	38
Table 22LSE oscillator characteristics (FLSE=32.768KHZ)(1)	39
Table 23HSI Oscillator Characteristics (1)	40
Table 24LSI Oscillator Characteristics (1)	
Table 25 Wake times for low power mode	40
Table 26PLL features	40
Table 27 Flash memory characteristics	
Table 28 Flash memory life and data retention period	
Table 29 Absolute maximum ESD values	
Table 30 Static characteristics of I/O	
Table 31 Output voltage characteristics	
Table 32NRST pin characteristics	
Table 33TIMX features	
Table 34ADC characteristics	
Table 35 Maximum RAIN when FADC=14MHZ(1)	
Table 36DAC characteristics	
Table 37 Characteristics of temperature sensor	
Table 38MH2103A series order code information diagram	
Table 39 Document version history	53

Chart directory

Figure 1 I	LQFP48 package	16
Figure 2 l	LQFP64 package	16
Figure 3 I	LQFP100 package	17
Figure 4 I	LQFP144 package	18
Figure 5 I	Load conditions for the pins	29
Figure 6 I	Pin input voltage	30
Figure 7 F	Power supply scheme	30
Figure 8 (Current consumption measurement scheme	. 31
Figure 9 /	AC timing diagram of an external high-speed clock source	. 37
Figure 10	AC timing diagram of an external low-speed clock source	. 38
Figure 11	Typical applications using 8MHZ crystals	. 39
Figure 12	Typical application using a 32.768KHZ crystal	. 39
Figure 13	Suggested NRST pin protection	43
Figure 14	VSENSE ideal curve of temperature	6
Figure 15	LQFP487MM × 7MM package size	47
Figure 16	LQFP6410MM x 10MM package size	48
Figure 17	LQFP10014MM x 14MM package size	. 49
Figure 18	LQFP14420MM × 20MM package size	. 50

1 Introduce

The contents of the data manual include: the basic configuration of the product (such as the capacity of built-in Flash and RAM, the type and number of peripheral modules, etc.), the number and distribution of pins, electrical characteristics, package information, and order codes.

2 Specification

List of devices

Table 1 Device function configuration table

Table	e i bevice function	on contrigu	nation ta	DI E						
	ser i es				MH2103A					
seri es		CBT6	ССТ6	RPT6	VET6	VGT6	ZET6	ZGT6		
	Flash (K bytes)	128	256	256	512	1024	512	1024		
	SRAM(K bytes)	32	64	96	96	96	96	96		
	advanced	1	1	2	2	2	2	2		
timing device	Be common	4	4	10	10	10	10	10		
	basi c	2	2	2	2	2	2	2		
	SPI	3	3	3	3	3	3	3		
	I2S	_	_	2	2	2	2	2		
Communi ca	I2C	2	2	2	2	2	2	2		
-tion interface	USART/UART	3	3	5	5	5	5	5		
	USB	1	1	1	1	1	1	1		
	CAN	1	1	1	1	1	1	1		
	SDIO	-	=	1	1	1	1	1		
	FSMC	-	=	=	1	1	1	1		
	GPIO port	37	37	51	80	80	112	112		
	2-bit ADC module mber of channels)	2(10 channel s)	2(10 channel s)	3 (16 channel s)	3 (16 channel s)	3 (16 channel s)	3(21 channels)	3(21 channels)		
	2-bit DAC module mber of channels)	2(2 channel s)	2(2 channel s)	2(2 channel s)	2(2 channel s)	2(2 channel s)	2(2 channel s)	2(2 channel s)		
Rand	om number module	Support								
Hardware encryption algorithm unit		Support								
Page Size (K bytes)		1	2	2	2	4	2	4		
	CPU frequency	216M								
0	perating voltage	2. 0~3. 6V								
0per	rating temperature	-40 to +85℃								
Enc	capsulation form	LQF	P48	LQFP64	LQFI	P100	LQF	P144		
							1			

summari ze

2.1.132-bit Arm® Cortex®-M3Core with built-in flash memory and SRAM

The 32-bit Arm® Cortex®-M3Core provides a low-cost platform, reduced pin count, reduced system power consumption, and superior computing performance and advanced interrupt system response for the needs of the MCU.

2.1.2 Built-in flash memory

Built-in flash memory for storing programs and data.

Table 2 Matching relationship between power supply voltage and FlashDelay level

	HCLK (MHz)				
Flash Delay level	Voltage Range 2.3V - 3.6V	Voltage Range 2.0V - 2.3V			
0	0 < HCLK <= 108	0 < HCLK <= 32			
1	108 < HCLK <= 216	32 < HCLK <= 64			
2	-	64 < HCLK <= 128			
3	1	128 < HCLK <= 192			
4	_	192 < HCLK <= 216			

2.1.3 Memory Protection Unit (MPU)

A memory protection unit (MPU) is used to manage the CPU's access to memory, preventing one task from accidentally damaging memory or resources used by another active task. This storage area is organized into up to 8 protected areas, which can be further divided into up to 8 subareas in turn. The protected area size can range from 32 bytes to the entire 4 gigabytes of addressable memory.

MPU is especially useful if there is some critical or certified code in the application that must be protected from the misbehavior of other tasks. It is usually managed by an RTOS(Real-Time Operating System). If a program accesses a memory location that is prohibited by the MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can dynamically update the MPU area Settings based on the process being executed.

2.1.4 Built-in SRAM Built-in flash memory

Up to 96K bytes of built-in SRAM, the CPU can be accessed with 0 wait cycles (read/write).

2.1.5 Static Memory Controller (FSMC)

The following modes are supported: PC card/Flash, SRAM, PSRAM,

NOR, and NAND. Function overview:

- •Three FSMC interrupts, either through logic or connected to the NVIC unit
- •Write FIF0
- •Execute code from external memory other than NAND flash and PC cards

2.1.6 LCD parallel interface

FSMC can be configured to interface seamlessly with most graphics LCD controllers. It supports Intel 8080 and Motorola 6800 modes and is flexible enough to accommodate specific LCD interfaces.

2.1.7 CRC(Cyclic redundancy Check) computing unit

CRC(Cyclic redundancy check) cells use a fixed polynomial (multiple modes optional and hardware data processing) generator to generate a CRC code from a 32-bit data word.

In many applications, CRC-based technologies are used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC60335-1 standard, it provides a means of detecting errors in flash memory.

2.1.8 Nested Vector Interrupt Controller (NVIC)

Built-in nested vector interrupt controller capable of handling up to 71 maskable interrupt channels (not including 16 Core interrupts) and 8 priorities.

- The tightly coupled NVIC enables low latency interrupt response processing
- The interrupt vector entry address goes directly to the kernel
- Tightly coupled NVIC interface
- Allows for early processing of interrupts
- Handle higher-priority interrupts that arrive late
- Supports the interrupt tail link function
- Automatically saves processor state
- Automatically resumes upon interrupt return with no additional instruction overhead.

 The module provides flexible interrupt management with minimal interrupt latency.

2.1.9 External Interrupt/Event Controller (EXTI)

The External Interrupt/Event controller contains 19 edge detectors for generating interrupt/event requests. Each interrupt can be configured independently with its trigger events (rising or falling edge or double edge) and can be shielded individually; There is a pending register that maintains the status of all interrupt requests. EXTI can detect clock cycles with a pulse width smaller than the internal APB2.

2.1.10 Clock and start

The selection of the system clock is made at startup, when the internal 8MHz RC oscillator is selected as the default CPU clock, and then an external 4 to 16MHz clock with failure monitoring can be selected. When an external clock failure is detected, it is isolated and the system automatically switches to the internal RC oscillator. If an interrupt is enabled, the software can receive the corresponding interrupt. Also, complete interrupt management of the PLL clock can be implemented when needed (such as when an external oscillator used indirectly fails).

Multiple pre-dividers are used to configure the frequency, high speed APB(APB2) and low speed APB(APB1) regions of the AHB. The maximum frequency of AHB and high speed APB is 216MHz, and the maximum frequency of low speed APB is 108MHz.

2.1.11 Startup mode

At startup, one of three bootstrap modes can be selected through the bootstrap pin:

- Bootstrap from program flash memory
- Bootstrap from system memory
- Bootstrap from internal SRAM

The Bootloader is stored in the system memory and can be reprogrammed via USART1.

2.1.12 Power supply scheme

- VDD: Power the I/O pins and internal regulator.
- VSSA, VDDA: Provides power to the ADC, reset module, RC oscillator, and the analog portion of the PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
- VBAT: When the VDD is turned off, power the RTC, the external 32kHz oscillator, and the backup register (via the internal power switcher). Note: All voltage ranges refer to general operating conditions.

2.1.13 Power supply monitor

The POR/PDR circuit is integrated inside the product, which is always in the working state to ensure that the system works when the power supply exceeds 2V; When the VDD is below the set threshold (VPOR/PDR), the device is placed in the reset state without the need to use an external reset circuit. There is also a programmable voltage monitor (PVD) in the device, which monitors the VDD/VDDA power supply and compares it to the threshold VPVD. When the VDD falls below or above the threshold VPVD, an interrupt handler can issue a warning message or shift the microcontroller into safe mode. The PVD function needs to be enabled through a program.

2. 1. 14 Vol tage regulator

The regulator has three operating modes: Main mode (MR), Low Power mode (LPR) and Off mode

- The main mode (MR) is used for normal operational operations
- Low Power Mode (LPR) Downtime mode for the CPU
- Shutdown mode Standby mode for the CPU: the voltage regulator output is in a high resistance state, the power supply of the core circuit is cut off, and the voltage regulator is in a zero consumption state (but the contents of the registers and SRAM are lost).

The regulator is always in operation after reset and is turned off in standby mode with high resistance output.

2.1.15 Low power mode

Sleep pattern

In sleep mode, only the CPU stops, all peripherals are working and can wake up the CPU in the event of an interruption/event.

Stop mode

The downtime mode allows for minimal power consumption while keeping SRAM and register contents intact. In shutdown mode, power supply to all internal 1.1V sections is stopped, the PLL, HSI RC oscillators and HSE crystal oscillators are turned off, and the regulator can be placed in normal or low power mode. The microcontroller can be awakened from shutdown mode by any signal configured as EXTI, which can be one of the 16 external I/O ports, the output of PVD, the RTC alarm clock, or the wake signal of USB.

Standby mode

Minimum power consumption is achieved in standby mode. The internal voltage regulator is turned off, so the power supply to all internal 1.1V sections is cut off; PLL, HSI RC oscillator and HSE crystal oscillator are also turned off; After entering standby mode, the contents of the SRAM and register will disappear, but the contents of the backup register will remain, and the standby circuit will still work. The conditions for exiting from standby mode are an external reset signal on the NRST, an IWDG reset, a rising edge on the WKUP pin, or an alarm clock on the RTC.

Note: RTC, IWDG, and the corresponding clock are not stopped when entering shutdown or standby mode.

2. 1. 16 DMA

Supports up to 12 universal DMA channels (7 channels for DMA1 and 5 channels for DMA2) to manage memory -to-memory, device-to-memory, and memory-to-device data transfers; The DMA controller supports the management of the ring buffer, which avoids the interruption when the controller transmission reaches the end of the buffer.

Each channel has its own hardware DMA request logic, and each channel can be triggered by software. The length of the transmission, the source address of the transmission, and the destination address can be set separately through the software. DMA can be used with major peripherals: SPI/I2S, I2C, USART, advanced/universal/basic timers TIMx, ADC, DAC, SDIO.

2.1.17 RTC(Real-time clock) and backup register

The RTC and the backup register are powered by a switch that selects VDD when VDD is active, otherwise it is powered by the VBAT pin. The backup registers (42 16-bit registers) can be used to hold 84 bytes of user application data when VDD is turned off. RTC and back-up registers are not reset by the system or power reset source; When awakened from standby mode, it will not be reset.

The real-time clock has a set of continuously running counters that can provide a calendar clock function with appropriate software, and also has alarm interrupt and phased interrupt functions. The RTC's drive clock can be a 32.768kHz oscillator using an external crystal, an internal low-power RC oscillator, or a high-speed external clock with a 128 split frequency. The typical frequency of an internal low-power RC oscillator is 40kHz. To compensate for the deviation of the natural crystals, the RTC's clock can be calibrated by outputting a 512Hz signal. The RTC has a 32-bit programmable counter that allows long time measurements to be made using comparison registers. There is a 20-bit pre-divider for the timebase clock, which produces a 1-second long time reference when the clock is 32.768kHz by default.

2.1.18 Timer and watchdog

This series includes up to 2 advanced control timers, 10 general timers, 2 basic timers, 2 watchdog timers and 1 system tick timer.

The following table compares the functions of advanced control timers, ordinary timers, and basic timers:

lable	311M	confi	gurati	on	tabl	е
-------	------	-------	--------	----	------	---

timer	Counter resolution	Counter type	Predivision Coefficient	Generate DMA request	Capture/compare channels	Complementary output
TIM1	1 6-bi t	Up, down, up	It is an integer ranging from	can	4	VOC
TIM8	10-01 τ	/down	1 to 65536	can	4	yes
TIM2						
TIM3	1/ bi+	Up, down, up	It is an integer ranging from	000	4	n.n.
TIM4	16-bi t	/down	1 to 65536	can	4	none
TIM5						

TIM9 TIM12	1 6-bi t	upward	The value ranges from 1 to 65536 Arbitrary integer	May not	2	none
TIM10 TIM11 TIM13 TIM14	16-bi t	upward	The value ranges from 1 to 65536 Arbitrary integer	May not	1	none
TIM6 TIM7	1 6-bi t	upward	The value ranges from 1 to 65536 Arbitrary integer	May	0	none

Advanced Control timers (TIM1 and TIM8)

The two advanced control timers (TIM1 and TIM8) can be thought of as three-phase PWM generators assigned to 6 channels, with complementary PWM outputs with dead zone insertion, and as full universal timers. Four separate channels can be used for:

- Input capture
- Output comparison
- Generate PWM(edge or center alignment mode)
- Single pulse output

When configured as a 16-bit standard timer, it has the same functionality as the TIMx timer.

When configured as a 16-bit PWM generator, it has full modulation capability (0 to 100%). In debug mode, the counter can be frozen while the PWM outputs are disabled, thus cutting off the switches controlled by these outputs. Many of the functions are the same as standard TIM timers, and the internal structure is the same, so advanced control timers can operate in conjunction with TIM timers through the timer link function to provide synchronization or event link functions.

Universal timer (TIM2, TIM3, TIM4, TIM5)

In this series, there are 4 standard timers (TIM2, TIM3, TIM4, TIM5) that can run synchronously. Each timer has a 16-bit auto-load tapered/decrement counter, a 16-bit pre-divider, and four separate channels, each for input capture, output comparison, PWM and monopulse mode output. They can also work with advanced control timers via the timer link function to provide synchronization or event link functionality. In debug mode, counters can be frozen. Any standard timer can be used to generate PWM output. Each timer has its own DMA request mechanism.

These timers are also capable of processing signals from incremental encoders, as well as digital outputs from one to three Hall sensors.

Universal timer (TIM10, TIM11, TIM9)

These timers are based on a 16-bit automatic reload counter and a 16-bit pre-divider. TIM10 and TIM11 have a separate channel, while TIM9 has two separate channel outputs for input capture/output comparison, PWM or monopulse modes that can be fully synchronized with TIM2, TIM3, TIM4, TIM5 universal timers. They can also be used as simple time bases.

Universal timer (TIM13, TIM14, TIM12)

These timers are based on a 16-bit automatic reload counter and a 16-bit pre-divider. TIM13 and TIM14 have a separate channel, while

The TIM12 has two separate channels for input capture/output comparison, separate channel outputs in PWM or monopulse mode, which can be fully synchronized with TIM2, TIM3, TIM4, TIM5 universal timers. They can also be used as simple time bases.

Independent watchdog

The independent watchdog is based on a 12-bit decrement counter and an 8-bit pre-divider, which is clocked by an internally independent 40kHz RC oscillator; Because the RC oscillator is independent of the master clock, it can operate in both down and standby modes. It can be used as a watchdog to reset the entire system in the event of a problem, or as a free timer to provide time-out management for applications. Option bytes can be configured to be software or hardware enabled watchdog. In debug mode, counters can be frozen.

Basic timers TIM6 and TIM7

These timers are mainly used for the generation of DAC triggers. They can also be used as a universal 16-bit time base.

Window guard dog

The window watchdog has a 7-bit decrement counter and can be set to run freely. It can be used as a watchdog to reset the entire system in case of problems. It is driven by the master clock and has the function of early warning interruption; In debug mode, counters can be frozen.

System time base timer

This timer is designed for real-time operating systems and can also be used as a standard decrement counter. It has the following characteristics:

- 24-bit decrement counter
- Automatic reloading function
- Generates a maskable system interrupt when the counter is 0
- Programmable clock source

2. 1. 19 I2C bus

Up to 2 I2C bus interfaces, capable of working in multi-master or slave mode, supporting standard and fast modes. The I2C interface supports 7-bit or 10-bit addressing, and dual-slave addressing in 7-bit slave mode. Built-in hardware CRC generator/verifier.

They can operate using DMA and support SMBus version 2.0 /PMBus.

2. 1. 20 Uni versal Synchronous/Asynchronous Transcei ver (USART)

Three universal synchronous/asynchronous transceivers (USART1, USART2 and USART3) and two universal asynchronous receiving transmitters (UART4 and UART5). These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and LIN master/slave functionality.

USART1 interface communication rate up to 13.5 megabits per second. USART1, USART2, and USART3 interfaces feature hardware CTS and RTS signal management, ISO7816-compatible smart card mode, and SPI-like communication mode.

2.1.21 Serial Peripheral Interface (SPI)

Up to 3 SPI interfaces. The 3-bit pre-divider produces 8 master mode frequencies that can be configured to be 8 or 16 bits per frame. Hardware CRC generation/verification supports basic SD card and MMC modes. All SPI interfaces can use DMA operations.

2.1.22 Audio interface (I2S)

Two standard IIS interfaces (multiplexed with SPI2 and SPI3) can operate in master or slave mode and can be configured for 16-bit or 32-bit transmission, as well as input or output channels, supporting audio sampling frequencies from 8kHz to 48kHz.

When either or both I2S interfaces are configured in master mode, its master clock can output to an external DAC or CODEC(decoder) at 256 times the sampling frequency.

2. 1. 23 SDIO

The SD/SDIO/MMC host interface can support three different data bus modes in version 4.2 of the MMC Card System specification: 1-bit (default), 4-bit, and 8-bit. The SDIO Memory card specification version 2.0 supports two data bus modes: 1-bit (default) and 4-bit. Current chip versions can only support one SD/SDIO/MMC 4.2 card at a time, but can support multiple MMC 4.1 or earlier cards at the same time.

In addition to ${\rm SD/SDIO/MMC}$, this interface is fully compatible with CE-ATA Digital Protocol version 1.1.

2.1.24 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B(active) with bit rates up to 1 megabit/SEC. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers. It has 3 sending mailboxes and 2 receiving FIFOs, 3 stages and 14 adjustable filters.

2.1.25 Universal Serial Bus (USB)

A built-in full-speed USB-compatible device controller follows the full-speed USB device (12 megabits/SEC) standard, and the endpoint can be configured by software with standby/wake function. The USB-specific 48MHz clock is generated directly from the internal master PLL (clock source is optional).

2.1.26 Universal Input/Output Interface (GPIO)

Each GPIO pin can be configured by software to be an output (push-pull or leak-open), an input (with or without pull or drop down), or a reusable peripheral function port. Most GPIO pins are shared with digital or analog multiplexed peripherals. With the exception of ports with analog input functions, all GPIO pins have high current flow capability.

In case of need, the peripheral function of the I/0 pin can be locked with a specific operation to avoid accidental writing to the I/0 register. Each I/0 can be configured with forced up and down resistors to save external resistance consumption.

2.1.27 ADC(Analog/Digital Converter)

Supports up to three 12-bit analog/digital converters (ADCs) with up to 21 external channels for single or scan conversion. In scan mode, the conversion on a selected set of analog inputs is automatically performed.

Additional logic functions on the ADC interface include:

- Synchronous sampling and holding
- Cross sampling and holding
- Single sampling

An ADC can operate using DMA.

The analog watchdog feature allows very precise monitoring of one, multiple, or all selected channels, resulting in an interruption when the monitored signal exceeds a preset threshold.

Events generated by standard timers (TIMx) and advanced control timers (TIM1 and TIM8) can be internally cascaded to the ADC start trigger and injection trigger,

respectively, and the application can synchronize the AD transition with the clock.

2.1.28 DAC(Digital/Analog Signal Converter)

Two 12-bit buffered DAC channels can be used to convert a 2-channel digital signal into a 2-channel analog voltage signal and output it.

This dual digital interface supports the following functions:

- Two DAC converters: one output channel each
- 8-bit or 12-bit monotonic output
- Align left and right data in 12-bit mode
- Synchronous update function
- Generating noise wave
- Triangular wave generation
- Dual DAC channel independent or synchronous conversion
- DMA capabilities are available for each channel
- External trigger for conversion
- Input reference voltage V REF+

The DAC channel can be triggered by the update output of the timer, and the update output can also be connected to different DMA channels.

2.1.29 Temperature sensor

The temperature sensor produces a voltage that varies linearly with temperature. The temperature sensor is internally connected to the input channel of the ADC1_IN16 for converting the output of the sensor into a numeric value.

2.1.30 Serial Single-wire JTAG Debugging Port (SWJ-DP)

Embedded SWJ-DP interface, which is a combination of JTAG and serial single-line debugging interface, can achieve serial single-line debugging interface or JTAG interface connection. JTAG's TMS and TCK signals share pins with SWDIO and SWCLK, respectively, and a special signal sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.1.31 Embedded Tracking Module (ETM)

The use of embedded Trace microunits (ETM) connected to external Trace port analysis (TPA) devices with few ETM pins outputs compressed data streams at high speeds from the CPU core, providing developers with clear information on instruction running and data flow. The TPA device can be connected to the debugging host through USB, Ethernet or other high-speed channels, and the real-time instruction and data flow can be recorded by the debugging software on the debugging host and displayed in the required format. TPA hardware can be purchased from development tool vendors and is compatible with third-party debugging software.

2.1.32 True Random Number Generator (TRNG)

TRNG units are used to generate sequences of truly random numbers. A sequence of 128-bit truly random numbers is generated at a time. The CPU interrupt request can be generated after the random number is generated.

3 Pin definition

LQFP48 package

Figure 1 LQFP48 package

LQFP64 package

Figure 2LQFP64 package

LQFP100 package

Figure 3 LQFP100 package

LQFP144 package

Figure 4 LQFP144 package

LQFP48 Pin definition

Table 4 LQFP 48 Pin definition configuration table

LQFP 48	Pin Name	Туре	I/O Level	Main Function (after reset)	Default	Remap
1	VBAT	S	ı	VBAT	_	ı
2	PC13-TAMPERRTC	I/0	ı	PC13	TAMPER-RTC	-
3	PC14-OSC32_IN	I/0		PC14	OSC32_IN	-

	1	1	ı	<u> </u>		1
4	PC15-OSC32_OUT	I/0	-	PC15	OSC32_OUT	-
5	OSC_IN	I/0		OSC_IN	1	PD0
6	OSC_OUT	I/0	-	OSC_OUT	1	PD1
7	NRST	I/0	-	NRST	_	-
8	VSSA	S	-	VSSA	-	-
9	VDDA	S	-	VDDA		_
10	PAO-WKUP	I/0	-	PAO	WKUP/USART2_CTS/ ADC12_INO/TIM2_CH1_ETR/ TIM5_CH1	-
11	PA1	I/0	-	PA1	USART2_RTS/ADC12_IN1/ TIM2_CH2/TIM5_CH2	-
12	PA2	I/0	-	PA2	USART2_TX/ADC12_IN2/ TIM2_CH3/TIM5_CH3/	-
13	PA3	I/0	-	PA3	USART2_RX/ADC12_IN3/ TIM2_CH4/TIM5_CH4/	-
14	PA4	I/0	-	PA4	SPI1_NSS/USART2_CK/ DAC_OUT1/ADC12_IN4	-
15	PA5	I/0	-	PA5	SPI1_SCK/ADC12_IN5/ DAC_OUT2	-
16	PA6	I/0	-	PA6	SPI1_MISO/ADC12_IN6/ TIM3_CH1	TIM1_BKIN
17	PA7	I/0	-	PA7	SPI1_MOSI/ADC12_IN7/ TIM3_CH2	TIM1_CH1N
18	PB0	I/0	-	PB0	ADC12_IN8/TIM3_CH3	TIM1_CH2N
19	PB1	I/0	-	PB1	ADC12_IN9/TIM3_CH4	TIM1_CH3N
20	PB2	I/0	FT	PB2/B00T1	_	_
21	PB10	I/0	FT	PB10	I2C2_SCL/USART3_TX	TIM2_CH3
22	PB11	I/0	FT	PB11	I2C2_SDA/USART3_RX	TIM2_CH4
23	VSS_1	S	-	VSS_1	-	-
24	VDD_1	S	-	VDD_1	1	-
25	PB12	I/0	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/TIM1_BKIN	_
26	PB13	I/0	FT	PB13	SPI2_SCK/USART3_CTS/ TIM1_CH1N	-
27	PB14	I/0	FT	PB14	SPI2_MISO/USART3_RTS/ TIM1_CH2N	-
28	PB15	I/0	FT	PB15	SPI2_MOSI/TIM1_CH3N	-
29	PA8	I/0	FT	PA8	USART1_CK/TIM1_CH1/ MCO	_
30	PA9	I/0	FT	PA9	USART1_TX/TIM1_CH2	-
31	PA10	I/0	FT	PA10	USART1_RX/TIM1_CH3	-
32	PA11	I/0	_	PA11	USART1_CTS/USBDM CAN_RX/TIM1_CH4	_
33	PA12	I/0	_	PA12	USART1_RTS/USBDP/ CAN_TX/TIM1_ETR	-
34	PA13	I/0	FT	JTMS-SWDIO	-	PA13
35	VSS_2	S	-	VSS_2	-	-
36	VDD_2	S	-	VDD_2	-	-
37	PA14	I/0	FT	JTCK-SWCLK	-	PA14
38	PA15	I/0	FT	JTDI	SPI3_NSS	TIM2_CH1_ETR/PA15/ SPI1_NSS
39	PB3	I/0	FT	JTD0	SPI3_SCK	TIM2_CH2/PB3/ TRACESWO/SPI1_SCK

40	PB4	I/0	FT	NJTRST	SPI3_MISO	TIM3_CH1/PB4/ SPI1_MISO
41	PB5	I/0	-	PB5	I2C1_SMBA/ SPI3_MOSI	TIM3_CH2/SPI1_MOSI
42	PB6	I/0	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
43	PB7	I/0	FT	PB7	I2C1_SDA/TIM4_CH2	USART1_RX
44	B00T0	Ι	-	ВООТО	_	_
45	PB8	I/0	FT	PB8	TIM4_CH3	I2C1_SCL/CAN_RX
46	PB9	I/0	FT	PB9	TIM4_CH4	I2C1_SDA/CAN_TX
47	VSS_3	S	_	VSS_3	_	_
48	VDD_3	S	_	VDD_3	_	_

⁽¹⁾ FT =5V tolerance

LQFP64 pin definition

Table 5LQFP 64 Pin definition Configuration table

LQFP 64	Pin Name	Type	I/O Level	Main Function (after reset)	Default	Remap
1	VBAT	S	ı	VBAT	_	1
2	PC13-TAMPERRTC	I/0	ı	PC13	TAMPER-RTC	1
3	PC14-OSC32_IN	I/0	-	PC14	OSC32_IN	_
4	PC15-OSC32_OUT	I/0	-	PC15	OSC32_OUT	_
5	OSC_IN	I/0	-	OSC_IN	_	PD0
6	OSC_OUT	I/0	-	OSC_OUT	_	PD1
7	NRST	I/0	-	NRST	_	_
8	PC0	I/0	-	PC0	ADC123_IN10	_
9	PC1	I/0	-	PC1	ADC123_IN11	_
10	PC2	I/0	-	PC2	ADC123_IN12	_
11	PC3	I/0	-	PC3	ADC123_IN13	_
12	VSSA	S	-	VSSA	_	_
13	VDDA	S	-	VDDA	-	_
14	PAO-WKUP	I/0	ı	PAO	WKUP/USART2_CTS/ ADC123_INO/TIM2_CH1_ETR/ TIM5_CH1/TIM8_ETR	-
15	PA1	I/0	ı	PA1	USART2_RTS/ADC123_IN1/ TIM2_CH2/TIM5_CH2	1
16	PA2	I/0	I	PA2	USART2_TX/ADC123_IN2/ TIM2_CH3/TIM5_CH3/ TIM9_CH1	-
17	PA3	I/0	ı	PA3	USART2_RX/ADC123_IN3/ TIM2_CH4/TIM5_CH4/ TIM9_CH2	1
18	VSS_4	S	-	VSS_4	_	_
19	VDD_4	S	-	VDD_4	-	-
20	PA4	I/0	-	PA4	SPI1_NSS/USART2_CK/ DAC_OUT1/ADC12_IN4	-
21	PA5	I/0	_	PA5	SPI1_SCK/ADC12_IN5/ DAC_OUT2	-
22	PA6	I/0	-	PA6	SPI1_MISO/ADC12_IN6/ TIM3_CH1/TIM8_BKIN/ TIM13_CH1	TIM1_BKIN
23	PA7	I/0	-	PA7	SPI1_MOSI/ADC12_IN7/ TIM3_CH2/TIM8_CH1N/	TIM1_CH1N

					TIM14_CH1	
24	PC4	I/0		PC4	ADC12_IN14	_
25	PC5	I/0		PC5	ADC12_IN15	-
26	PB0	I/0	-	PB0	ADC12_IN8/TIM3_CH3/ TIM8_CH2N	TIM1_CH2N
27	PB1	I/0	ı	PB1	ADC12_IN9/TIM3_CH4/ TIM8_CH3N	TIM1_CH3N
28	PB2	I/0	FT	PB2/B00T1	-	_
29	PB10	I/0	FT	PB10	I2C2_SCL/USART3_TX	TIM2_CH3
30	PB11	I/0	FT	PB11	I2C2_SDA/USART3_RX	TIM2_CH4
31	VSS_1	S	-	VSS_1	_	-
32	VDD_1	S	ı	VDD_1		-
33	PB12	1/0	FT	PB12	SPI2_NSS/I2S2_WS/ I2C2_SMBA/USART3_CK/ TIM1_BKIN	-
34	PB13	I/0	FT	PB13	SPI2_SCK/I2S2_CK/ USART3_CTS/TIM1_CH1N	-
35	PB14	I/0	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS/TIM12_CH1	-
36	PB15	I/0	FT	PB15	SPI2_MOSI/I2S2_SD/ TIM1_CH3N/TIM12_CH2	-
37	PC6	I/0	FT	PC6	I2S2_MCK/TIM8_CH1/ SDIO_D6	TIM3_CH1
38	PC7	I/0	FT	PC7	I2S3_MCK/TIM8_CH2/ SDIO_D7	TIM3_CH2
39	PC8	I/0	FT	PC8	TIM8_CH3/SDIO_DO	TIM3_CH3
40	PC9	I/0	FT	PC9	TIM8_CH4/SDIO_D1	TIM3_CH4
41	PA8	I/0	FT	PA8	USART1_CK/TIM1_CH1/ MCO	-
42	PA9	I/0	FT	PA9	USART1_TX/TIM1_CH2	-
43	PA10	I/0	FT	PA10	USART1_RX/TIM1_CH3	-
44	PA11	I/0	-	PA11	USART1_CTS/USBDM CAN_RX/TIM1_CH4	-
45	PA12	I/0	-	PA12	USART1_RTS/USBDP/ CAN_TX/TIM1_ETR	-
46	PA13	I/0	FT	JTMS-SWDIO		PA13
47	VSS_2	S	-	VSS_2		_
48	VDD_2	S	-	VDD_2	_	
49	PA14	I/0	FT	JTCK-SWCLK	_	PA14
50	PA15	I/0	FT	JTDI	SPI3_NSS/I2S3_WS	TIM2_CH1_ETR/PA15/ SPI1_NSS
51	PC10	I/0	FT	PC10	UART4_TX/SDIO_D2	USART3_TX
52	PC11	I/0	FT	PC11	UART4_RX/SDIO_D3	USART3_RX
53	PC12	I/0	FT	PC12	UART5_TX/SDIO_CK	USART3_CK
54	PD2	I/0	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD	
55	PB3	I/0	FT	JTD0	SPI3_SCK/I2S3_CK	PB3/TRACESWO TIM2_CH2/SPI1_SCK
56	PB4	I/0	FT	NJTRST	SPI3_MISO	PB4/TIM3_CH1/ SPI1_MISO
57	PB5	I/0	-	PB5	I2C1_SMBA/SPI3_MOSI /I2S3_SD	TIM3_CH2/SPI1_MOSI
58	PB6	I/0	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
59	PB7	I/0	FT	PB7	I2C1_SDA/TIM4_CH2	USART1_RX

60	ВООТО	Ι	-	ВООТО	-	-
61	PB8	I/0	FT	PB8	TIM4_CH3/SDIO_D4/ TIM1O_CH1	I2C1_SCL/CAN_RX
62	PB9	I/0	FT	PB9	TIM4_CH4/SDIO_D5/ TIM11_CH1	I2C1_SDA/CAN_TX
63	VSS_3	S	ı	VSS_3	_	_
64	VDD_3	S	-	VDD_3	_	_

⁽¹⁾ FT =5V tolerance

LQFP100 pin definition

Table 6 LQFP 100 Pin definition configuration table

	6 LUFP 100 PIN			Main		
LQFP 100			I/O Level	Function		
F.	Pin Name	Type) Г	(after	Default	Remap
2)/1	reset)		
1	PE2	I/0	FT	PE2	FSMC A23	_
$\frac{1}{2}$	PE3	I/0	FT	PE3	FSMC_A23	_
3	PE4	I/0	FT	PE4	FSMC A20	_
4	PE5	I/0	FT	PE5	FSMC_A20	_
5	PE6	I/0	FT	PE6	FSMC_A22	
6	VBAT	S	-	VBAT		_
7	PC13-TAMPERRTC	I/0	_	PC13	TAMPER-RTC	_
8	PC14-OSC32 IN	I/0	_	PC14	OSC32 IN	_
9	PC15-OSC32 OUT	I/0	-	PC15	OSC32 OUT	_
10	VSS 5	S	-	VSS 5	- -	
11	VDD 5	S	_	VDD 5	_	
12	OSC IN	I	-	OSC IN	_	_
13	OSC_OUT	0	-	OSC_OUT	_	_
14	NRST	I/0	-	NRST	-	_
15	PC0	I/0	-	PC0	ADC123 IN10	_
16	PC1	I/0	-	PC1	ADC123 IN11	_
17	PC2	I/0	-	PC2	ADC123_IN12	
18	PC3	I/0	-	PC3	ADC123_IN13	_
19	VSSA	S	-	VSSA	-	_
20	Vref-	S	ı	Vref-	-	_
21	Vref+	S	ı	Vref+	_	-
22	VDDA	S	-	VDDA	_	-
23	PAO-WKUP	I/0	-	PAO	WKUP/USART2_CTS/ ADC123_INO/TIM2_CH1_ETR/ TIM5_CH1/TIM8_ETR	-
24	PA1	I/0	-	PA1	USART2_RTS/ADC123_IN1/ TIM2_CH2/TIM5_CH2	-
25	PA2	I/0	-	PA2	USART2_TX/ADC123_IN2/ TIM2_CH3/TIM5_CH3/ TIM9_CH1	-
26	PA3	I/0	-	PA3	USART2_RX/ADC123_IN3/ TIM2_CH4/TIM5_CH4/ TIM9_CH2	-
27	VSS_4	S		VSS_4	-	-
28	VDD_4	S	-	VDD_4	-	_
29	PA4	I/0		PA4	SPI1_NSS/USART2_CK/	_

						1
					DAC_OUT1/ADC12_IN4	
30	PA5	I/0	_	PA5	SPI1_SCK/ADC12_IN5/	_
30	1 AU	1/0		1 110	DAC_OUT2	
					SPI1_MISO/ADC12_IN6/	
31	PA6	I/0	_	PA6	TIM3_CH1/TIM8_BKIN/	TIM1_BKIN
					TIM13_CH1	
					SPI1_MOSI/ADC12_IN7/	
32	PA7	I/0	-	PA7	TIM3_CH2/TIM8_CH1N/	TIM1_CH1N
					TIM14_CH1	
33	PC4	I/0		PC4	ADC12_IN14	_
34	PC5	I/0		PC5	ADC12_IN15	_
2.5	DDO	T /O		DDO	ADC12_IN8/TIM3_CH3/	TIM1 CHOM
35	PB0	I/0	_	PB0	TIM8_CH2N	TIM1_CH2N
0.0	DD1	T /O		DD1	ADC12 IN9/TIM3 CH4/	TTM1 OHON
36	PB1	I/0	_	PB1	TIM8_CH3N	TIM1_CH3N
37	PB2	I/0	FT	PB2/B00T1	_	
38	PE7	I/0	FT	PE7	FSMC D4	TIM1 ETR
39	PE8	I/0	FT	PE8	FSMC D5	TIM1 CH1N
40	PE9	I/0	FT	PE9	FSMC D6	TIM1 CH1
41	PE10	I/0	FT	PE10	FSMC D7	TIM1 CH2N
42	PE11	I/0	FT	PE11	FSMC D8	TIM1 CH2
43	PE12	I/0	FT	PE12	FSMC D9	TIM1 CH3N
44	PE13	I/0	FT	PE13	FSMC D10	TIM1 CH3
45	PE14	I/0	FT	PE14	FSMC_D11	TIM1_CH4
46	PE15	I/0	FT	PE15	FSMC D12	TIM1_SKIN
47	PB10	I/0	FT	PB10	I2C2 SCL/USART3 TX	TIM2 CH3
48	PB11	I/0	FT	PB11	I2C2 SDA/USART3 RX	TIM2_CH3
49	VSS 1	S	-	VSS 1		- TIMZ_CII I
50	VDD 1	S	_	VDD 1	_	_
30	VDD_1	3		\DD_1	SPI2_NSS/I2S2_WS/	
51	PB12	I/0	FT	PB12	I2C2 SMBA/USART3 CK/	_
31	FD12	1/0	ГТ	FD12	TIM1 BKIN	
					SPI2 SCK/I2S2 CK/	
52	PB13	I/0	FT	PB13	USART3_CTS/TIM1_CH1N	_
					SPI2 MISO/TIM1 CH2N	
53	PB14	I/0	FT	PB14	USART3 RTS/TIM12 CH1	_
54	PB15	I/0	FT	PB15	SPI2_MOSI/I2S2_SD/	_
55	PD8	T /O	FT	PD8	TIM1_CH3N/TIM12_CH2 FSMC D13	LICADTO TV
		I/0				USART3_TX
56 57	PD9	I/0	FT	PD9	FSMC_D14	USART3_RX
57	PD10	I/0	FT	PD10	FSMC_D15	USART3_CK
58	PD11	I/0	FT	PD11	FSMC_A16	USART3_CTS
59	PD12	I/0	FT	PD12	FSMC_A17	TIM4_CH1/USART3_RX
60	PD13	I/0	FT	PD13	FSMC_A18	TIM4_CH2
61	PD14	I/0	FT	PD14	FSMC_DO	TIM4_CH3
62	PD15	I/0	FT	PD15	FSMC_D1	TIM4_CH4
63	PC6	I/0	FT	PC6	I2S2_MCK/TIM8_CH1/	TIM3_CH1
					SDIO_D6 I2S3 MCK/TIM8 CH2/	
64	PC7	I/0	FT	PC7	1253_MCK/11M6_CH2/ SDIO D7	TIM3_CH2
65	PC8	I/0	FT	PC8	TIM8 CH3/SDIO DO	TIM3 CH3
66	PC9	I/0	FT	PC9	TIM8 CH4/SDIO D1	TIM3_CH4
					USART1 CK/TIM1 CH1/	11110_0111
67	PA8	I/0	FT	PA8	MCO	_
					MOO	<u> </u>

68	PA9	I/0	FT	PA9	USART1 TX/TIM1 CH2	
69	PA10	I/0	FT	PA10	USART1_TX/TIM1_CH3	_
70	PA11	I/0	-	PA11	USART1_CTS/USBDM CAN_RX/TIM1_CH4	-
71	PA12	I/0	_	PA12	USART1_RTS/USBDP/ CAN_TX/TIM1_ETR	-
72	PA13	I/0	FT	JTMS-SWDIO	_	PA13
73			N	ot Connected		-
74	VSS_2	S	-	VSS_2	-	_
75	VDD_2	S	ı	VDD_2	-	-
76	PA14	I/0	FT	JTCK-SWCLK	_	PA14
77	PA15	1/0	FT	JTDI	SPI3_NSS/I2S3_WS	TIM2_CH1_ETR/PA15/ SPI1_NSS
78	PC10	I/0	FT	PC10	UART4_TX/SDIO_D2	USART3_TX
79	PC11	I/0	FT	PC11	UART4_RX/SDIO_D3	USART3_RX
80	PC12	I/0	FT	PC12	UART5_TX/SDIO_CK	USART3_CK
81	PD0	I/0	FT	PD0	FSMC_D2	CAN_RX
82	PD1	I/0	FT	PD1	FSMC_D3	CAN_TX
83	PD2	I/0	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD	-
84	PD3	I/0	FT	PD3	FSMC_CLK	USART2_CTS
85	PD4	I/0	FT	PD4	FSMC_NOE	USART2_RTS
86	PD5	I/0	FT	PD5	FSMC_NWE	USART2_TX
87	PD6	I/0	FT	PD6	FSMC_NWAIT	USART2_RX
88	PD7	I/0	FT	PD7	FSMC_NE1/FSMC_NCE2	USART2_CK
89	PB3	1/0	FT	JTD0	SPI3_SCK/I2S3_CK	PB3/TRACESWO TIM2_CH2/SPI1_SCK
90	PB4	I/0	FT	NJTRST	SPI3_MISO	PB4/TIM3_CH1/ SPI1_MISO
91	PB5	I/0	-	PB5	I2C1_SMBA/SPI3_MOSI /I2S3_SD	TIM3_CH2/SPI1_MOSI
92	PB6	I/0	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
93	PB7	I/0	FT	PB7	I2C1_SDA/TIM4_CH2 / FSMC_NADV	USART1_RX
94	ВООТО	Ι	-	ВООТО	-	-
95	PB8	I/0	FT	PB8	TIM4_CH3/SDIO_D4/ TIM10_CH1	I2C1_SCL/CAN_RX
96	PB9	I/0	FT	PB9	TIM4_CH4/SDIO_D5/ TIM11_CH1	I2C1_SDA/CAN_TX
97	PE0	I/0	FT	PE0	TIM4_ETR/FSMC_NBL0	-
98	PE1	I/0	FT	PE1	FSMC_NBL1	_
99	VSS_3	S	-	VSS_3	-	-
100	VDD_3	S	-	VDD_3	_	_

⁽¹⁾ FT =5V tolerance

LQFP144 Pin definition

Table 7 LQFP 144 Pin definition configuration table

4			_	Main		
LQFP 144	Pin Name	Туре	I/O Level	Function (after reset)	Default	Remap

				•		
1	PE2	I/0	FT	PE2	FSMC_A23	
2	PE3	I/0	FT	PE3	FSMC_A19	_
3	PE4	I/0	FT	PE4	FSMC_A20	_
4	PE5	I/0	FT	PE5	FSMC_A21	_
5	PE6	I/0	FT	PE6	FSMC_A22	_
6	VBAT	S	-	VBAT	_	_
7	PC13-TAMPERRTC	I/0	-	PC13	TAMPER-RTC	_
8	PC14-OSC32_IN	I/0	-	PC14	OSC32_IN	-
9	PC15-OSC32_OUT	I/0	-	PC15	OSC32_OUT	-
10	PF0	I/0	FT	PF0	FSMC_AO	_
11	PF1	I/0	FT	PF1	FSMC A1	-
12	PF2	I/0	FT	PF2	FSMC_A2	-
13	PF3	I/0	FT	PF3	FSMC A3	-
14	PF4	I/0	FT	PF4	FSMC A4	-
15	PF5	I/0	FT	PF5	FSMC A5	_
16	VSS 5	S	_	VSS_5	-	_
17	VDD_5	S	_	VDD 5	_	_
18	PF6	I/0	_	PF6	ADC3 IN4/FSMC NIORD	_
19	PF7	I/0	_	PF7	ADC3_IN4/FSMC_NTORD ADC3_IN5/FSMC_NREG	
20	PF8	I/0	_	PF8	ADC3_IN6/FSMC_NIOWR	
21	PF9	I/0	_	PF9	ADC3_IN7/FSMC_CD	
22	PF10	I/0	_	PF10		
					ADC3_IN8/FSMC_INTR	
23	OSC_IN	I 0		OSC_IN	_	
24	OSC_OUT			OSC_OUT	_	
25	NRST	I/0	_	NRST	- ADG100 TM10	
26	PC0	I/0	_	PC0	ADC123_IN10	_
27	PC1	I/0	_	PC1	ADC123_IN11	_
28	PC2	I/0	_	PC2	ADC123_IN12	_
29	PC3	I/0	_	PC3	ADC123_IN13	_
30	VSSA	S	-	VSSA	_	_
31	Vref-	S	_	Vref-	-	_
32	Vref+	S	I	Vref+	_	-
33	VDDA	S	-	VDDA	-	-
34	PAO-WKUP	I/0		PAO	WKUP/USART2_CTS/ ADC123 INO/TIM2 CH1 ETR/	_
94	TAO WIXUF	1/0		IAU	TIM5 CH1/TIM8 ETR	
					USART2 RTS/ADC123 IN1/	
35	PA1	I/0	-	PA1	TIM2_CH2/TIM5_CH2	_
		_ /.			USART2_TX/ADC123_IN2/	
36	PA2	I/0	-	PA2	TIM2_CH3/TIM5_CH3/	_
					TIM9_CH1	
					USART2_RX/ADC123_IN3/	
37	PA3	I/0	_	PA3	TIM2_CH4/TIM5_CH4/	_
					TIM9_CH2	
38	VSS_4	S	-	VSS_4	-	_
39	VDD_4	S	-	VDD_4	-	_
40	PA4	I/0	-	PA4	SPI1_NSS/USART2_CK/ DAC_OUT1/ADC12_IN4	-
41	PA5	I/0	_	PA5	SPI1_SCK/ADC12_IN5/	_
		•			DAC_OUT2 SPI1 MISO/ADC12 IN6/	
42	PA6	I/0	_	PA6	TIM3 CH1/TIM8 BKIN/	ТТМ1 ОКТМ
42	PAO	1/0	_	PAO		TIM1_BKIN
					TIM13_CH1	

SPIL MOSIZABCE LINT							
44	43	PA7	I/0	_	PA7	TIM3_CH2/TIM8_CH1N/	TIM1_CH1N
45						TIM14_CH1	
ABC12_INS/TIM3_CH3/	44	PC4	I/0		PC4	ADC12_IN14	-
40	45	PC5	I/0		PC5	ADC12_IN15	-
48	46	PB0	I/0	-	PB0		TIM1_CH2N
49	47	PB1	I/0	-	PB1		TIM1_CH3N
Decomposition Decompositio	48	PB2	I/0	FT	PB2/B00T1	-	-
51	49	PF11	I/0	FT	PF11	FSMC_NISO16	_
S2	50	PF12	I/0	FT	PF12	FSMC A6	_
S2	51	VSS 6	S	-	VSS 6	_	_
Fig.	52		S	-		_	_
54 PF14 I/O FT PF14 FSMC_A8 - 55 PF15 I/O FT PF15 FSMC_A9 - 56 PGO I/O FT PF1 FSMC_A10 - 57 PG1 I/O FT PG FSMC_A11 - 58 PE7 I/O FT PE8 FSMC_D4 TIMI_ETR 59 PE8 I/O FT PE8 FSMC_D4 TIMI_ETR 60 PE9 I/O FT PE8 FSMC_D4 TIMI_ETR 60 PE9 I/O FT PE8 FSMC_D6 TIMI_CHIN 60 PE9 I/O FT PE9 FSMC_D6 TIMI_CHIN 61 VSS.7 S. - VSS.7 - - - 62 VDD_7 - - - - 64 PE10 I/O FT PE10 FSMC_D8 TIMI_CHIN 65				FT	_	FSMC A7	_
S5						=	_
Fig.							_
S7							_
S8							_
Fig.							TIM1 ETR
Fig.						_	-
61 VSS_7 S - VSS_7 -							_
62 VDD_7 S - VDD_7 -	-						
Fig.		_				_	
64 PE11 I/O FT PE11 FSMC_D8 TIMI_CH2 65 PE12 I/O FT PE12 FSMC_D9 TIMI_CH3N 66 PE13 I/O FT PE13 FSMC_D10 TIMI_CH3N 67 PE14 I/O FT PE14 FSMC_D11 TIMI_CH3 68 PE15 I/O FT PE15 FSMC_D12 TIMI_BKIN 69 PB10 I/O FT PB10 I2C2_SCL/USART3_TX TIM2_CH3 70 PB11 I/O FT PB11 I2C2_SCL/USART3_TX TIM2_CH4 71 VSS_1 S - VSS_1 - - 72 VDD_1 S - VSS_1 S - VSS_2 - 74 PB13 I/O FT PB14 SP12_SCK/I2S2_CK/ USART3_CTS/TIM1_CH1N - - 75 PB14 I/O FT PB15 SP12_MOSI/I1S2_SD/ USART3_CTS/TIM12_CH1 - -					_	ESMC D7	
65 PE12 I/O FT PE12 FSMC_D9 TIMI_CH3N 66 PE13 I/O FT PE13 FSMC_D10 TIMI_CH3 67 PE14 I/O FT PE14 FSMC_D11 TIMI_CH4 68 PE15 I/O FT PE15 FSMC_D12 TIMI_BKIN 69 PB10 I/O FT PB10 12C2_SCL/USART3_TX TIM2_CH3 70 PB11 I/O FT PB11 12C2_SDA/USART3_RX TIM2_CH4 71 VSS_1 S VSS_1 - - - 72 VDD_1 S - VSD_1 - - 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ - 74 PB13 I/O FT PB12 SP12_MSJ12S2_US/ - 75 PB14 I/O FT PB13 SP12_SCK/I2S2_CK/ - 76 PB15 I/O FT PB15<						_	-
Feb							
67 PE14 I/O FT PE14 FSMC_D11 TIMI_CH4 68 PE15 I/O FT PE15 FSMC_D12 TIMI_BKIN 69 PB10 I/O FT PB10 I2C2_SCL/USART3_TX TIM2_CH3 70 PB11 I/O FT PB11 I2C2_SDA/USART3_RX TIM2_CH4 71 VSS_1 S VSS_1 — — 72 VDD_1 S — VDD_1 — 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ — 74 PB13 I/O FT PB13 SP12_NSS/I2S2_WS/ — 75 PB14 I/O FT PB13 SP12_SCK/I2S2_CK/ — 76 PB15 I/O FT PB15 SP12_MISO/TIM1_CH2N — 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 79 PD10 I/O FT PD9 FSMC_D13							
68 PE15 I/O FT PE15 FSMC_D12 TIMI_BKIN 69 PB10 I/O FT PB10 I2C2_SCL/USART3_TX TIM2_CH3 70 PB11 I/O FT PB11 I2C2_SDA/USART3_RX TIM2_CH4 71 VSS_1 S VSS_1 S STI2_CSAM_USART3_RX TIM2_CH4 72 VDD_1 S VDD_1 SPI2_NSS/I2S2_WS/ STI2_SCK/I2S2_CK/ STI2_NSS/I2S2_WS/ 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ STI2_NSS/I2S2_WS/ 74 PB13 I/O FT PB12 I2C2_SMBA/USART3_CK/ STI2_SCK/I2S2_CK/ 75 PB14 I/O FT PB13 SPI2_MSS/I2S2_WS/ SPI2_MSS/I2S2_WS/ 76 PB15 I/O FT PB14 SPI2_MSS/I2S2_WS/ SPI2_MSS/I2S2_WS/ 77 PD8 I/O FT PB15 SPI2_MSS/I2S2_WS/ SPI2_MSS/I2S2_WS/ 79 PD10 I/O FT PD9							
69 PB10 I/O FT PB10 I2C2_SCL/USART3_TX TIM2_CH3 70 PB11 I/O FT PB11 I2C2_SDA/USART3_RX TIM2_CH4 71 VSS_1 S - VSS_1 - - 72 VDD_1 S - VDD_1 - - 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ - 74 PB13 I/O FT PB12 I2C2_SMBA/USART3_CK/ - 74 PB13 I/O FT PB12 SP12_SCK/12S2_CK/ - 75 PB14 I/O FT PB14 SP12_MISO/TIM1_CH2N - 76 PB15 I/O FT PB15 SP12_MOS1/12S2_SD/ TIM1_CH3N/TIM12_CH2 - 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 PD9 I/O FT PD9 FSMC_D14 USART3_CK 80 PD11 I/O							
70 PB11 I/O FT PB11 I2C2_SDA/USART3_RX TIM2_CH4 71 VSS_1 S - VSS_1 - - 72 VDD_1 S - VDD_1 - - 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ TIM1_BKIN - 74 PB13 I/O FT PB13 SPI2_SCK/I2S2_CK/ USART3_CTS/TIM1_CH1N - 75 PB14 I/O FT PB14 SPI2_MISO/TIM1_CH2N USART3_RTS/TIM12_CH1 - 76 PB15 I/O FT PB15 SPI2_MOSI/I2S2_SD/ TIM1_CH3N/TIM12_CH2 - 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 PD9 I/O FT PD9 FSMC_D14 USART3_CK 80 PD10 I/O FT PD10 FSMC_D15 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/ USART3_RTS 82						—	
71 VSS_1 S - VSS_1 -							
72 VDD_1 S - VDD_1 - - 73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ TIM1_CKIN - 74 PB13 I/O FT PB13 SP12_SCK/I2S2_CK/ USART3_CTS/TIM1_CHIN - 75 PB14 I/O FT PB14 SP12_MISO/TIM1_CH2N USART3_RTS/TIM12_CH1 - 76 PB15 I/O FT PB15 SP12_MOSI/I2S2_SD/ TIM1_CH3N/TIM12_CH2 - 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 </td <td></td> <td></td> <td></td> <td>ГІ</td> <td></td> <td>12C2_SDA/ USAR13_RA</td> <td>11M2_CN4</td>				ГІ		12C2_SDA/ USAR13_RA	11M2_CN4
SP12_NSS/12S2_WS/ TIM1_BKIN TIM1_BKI						-	
73 PB12 I/O FT PB12 I2C2_SMBA/USART3_CK/ TIM1_BKIN - 74 PB13 I/O FT PB13 SPI2_SCK/I2S2_CK/ USART3_CTS/TIM1_CH1N - 75 PB14 I/O FT PB14 SPI2_MISO/TIM1_CH2N USART3_RTS/TIM12_CH1 - 76 PB15 I/O FT PB15 SPI2_MOSI/I2S2_SD/ TIM1_CH3N/TIM12_CH2 - 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/ USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	12	1_עעי	3		VDD_1	CDIO NCC/IOCO WC/	
74 PB13 I/O FT PB13 USART3_CTS/TIM1_CH1N — 75 PB14 I/O FT PB14 SPI2_MISO/TIM1_CH2N USART3_RTS/TIM12_CH1 — 76 PB15 I/O FT PB15 SPI2_MOSI/I2S2_SD/TIM1_CH3N/TIM12_CH2 — 77 PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 PD9 I/O FT PD9 FSMC_D14 USART3_RX 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	73	PB12	I/0	FT	PB12	I2C2_SMBA/USART3_CK/	-
To FT PB14 USART3_RTS/TIM12_CH1 CH1 CH2	74	PB13	I/0	FT	PB13		-
76 PB15 I/O FT PB15 TIM1_CH3N/TIM12_CH2	75	PB14	I/0	FT	PB14		-
78 PD9 I/O FT PD9 FSMC_D14 USART3_RX 79 PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	76	PB15	I/0	FT	PB15		-
79 PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	77	PD8	I/0	FT	PD8	FSMC_D13	USART3_TX
80 PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/ USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	78	PD9	I/0	FT	PD9	FSMC_D14	_
81 PD12 I/O FT PD12 FSMC_A17 TIM4_CH1/ USART3_RTS 82 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	79	PD10	I/0	FT	PD10	FSMC_D15	USART3_CK
81 PD12 FT PD12 FSMC_A17 USART3_RTS 82 PD13 I/0 FT PD13 FSMC_A18 TIM4_CH2 83 VSS_8 S - VSS_8 - -	80	PD11	I/0	FT	PD11	FSMC_A16	USART3_CTS
83 VSS_8 S - VSS_8	81	PD12	I/0	FT	PD12	FSMC_A17	
83 VSS_8 S - VSS_8	82	PD13	I/0	FT	PD13	FSMC_A18	TIM4_CH2
	83	VSS_8	S	-	VSS_8	_	-
				-	_	-	-
85 PD14 I/O FT PD14 FSMC_DO TIM4_CH3				FT		FSMC DO	TIM4 CH3
86 PD15 I/O FT PD15 FSMC D1 TIM4 CH4							

87	PG2	I/0	FT	PG2	FSMC A12	_
88	PG3	I/0	FT	PG3	FSMC_A13	-
89	PG4	I/0	FT	PG4	FSMC_A14	-
90	PG5	I/0	FT	PG5	FSMC_A15	-
91	PG6	I/0	FT	PG6	FSMC_INT2	-
92	PG7	I/0	FT	PG7	FSMC_INT3	_
93	PG8	I/0	FT	PG8	_	-
94	VSS_9	S	-	VSS_9	-	-
95	VDD_9	S	-	VDD_9	-	-
96	PC6	I/0	FT	PC6	I2S2_MCK/TIM8_CH1/ SDIO D6	TIM3_CH1
97	PC7	I/0	FT	PC7	12S3_MCK/TIM8_CH2/ SDIO D7	TIM3_CH2
98	PC8	I/0	FT	PC8	TIM8 CH3/SDIO DO	TIM3 CH3
99	PC9	I/0	FT	PC9	TIM8 CH4/SDIO D1	TIM3 CH4
100	PA8	I/0	FT	PA8	USART1_CK/TIM1_CH1/ MCO	-
101	PA9	I/0	FT	PA9	USART1 TX/TIM1 CH2	_
102	PA10	I/0	FT	PA10	USART1 RX/TIM1 CH3	_
103	PA11	I/0	-	PA11	USART1_CTS/USBDM CAN RX/TIM1 CH4	-
104	PA12	1/0	_	PA12	USART1_RTS/USBDP/ CAN TX/TIM1 ETR	-
105	PA13	I/0	FT	JTMS-SWDIO	<u> </u>	PA13
106			N	Not Connected		-
107	VSS_2	S	-	VSS_2	_	_
108	VDD_2	S	-	VDD_2	_	-
109	PA14	I/0	FT	JTCK-SWCLK	_	PA14
110	PA15	1/0	FT	JTDI	SPI3_NSS/I2S3_WS	TIM2_CH1_ETR/PA15 /SPI1_NSS
111	PC10	I/0	FT	PC10	UART4 TX/SDIO D2	USART3 TX
112	PC11	I/0	FT	PC11	UART4_RX/SDIO_D3	USART3_RX
113	PC12	I/0	FT	PC12	UART5_TX/SDIO_CK	USART3_CK
114	PD0	I/0	FT	PD0	FSMC_D2	CAN_RX
115	PD1	I/0	FT	PD1	FSMC_D3	CAN_TX
116	PD2	1/0	FT	PD2	TIM3_ETR/UART5_RX SDIO CMD	-
117	PD3	I/0	FT	PD3	FSMC CLK	USART2 CTS
118	PD4	I/0	FT	PD4	FSMC_NOE	USART2_RTS
119	PD5	I/0	FT	PD5	FSMC_NWE	USART2_TX
120	VSS_10	S	-	VSS_10	-	_
121	VDD_10	S	-	VDD_10	-	-
100					DOMO NIMATO	LICADTO DV
122	PD6	I/0	FT	PD6	FSMC_NWAIT	USART2_RX
122	PD6 PD7	I/0 I/0	FT FT	PD6 PD7	FSMC_NE1/FSMC_NCE2	USART2_CK
					-	
123	PD7	I/0	FT	PD7	FSMC_NE1/FSMC_NCE2	USART2_CK
123 124	PD7 PG9	I/0 I/0	FT FT	PD7 PG9	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3	USART2_CK -
123 124 125	PD7 PG9 PG10	I/0 I/0 I/0	FT FT FT	PD7 PG9 PG10	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3	USART2_CK -
123 124 125 126	PD7 PG9 PG10 PG11 PG12 PG13	I/0 I/0 I/0 I/0	FT FT FT FT	PD7 PG9 PG10 PG11	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3 FSMC_NCE4_2 FSMC_NE4 FSMC_A24	USART2_CK - - -
123 124 125 126 127	PD7 PG9 PG10 PG11 PG12	I/0 I/0 I/0 I/0 I/0 I/0 I/0	FT FT FT FT	PD7 PG9 PG10 PG11 PG12	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3 FSMC_NCE4_2 FSMC_NE4	USART2_CK
123 124 125 126 127 128	PD7 PG9 PG10 PG11 PG12 PG13	I/0 I/0 I/0 I/0 I/0 I/0 I/0 I/0 I/0 S	FT FT FT FT FT	PD7 PG9 PG10 PG11 PG12 PG13	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3 FSMC_NCE4_2 FSMC_NE4 FSMC_A24	USART2_CK
123 124 125 126 127 128 129	PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11	I/0 I/0 I/0 I/0 I/0 I/0 I/0 I/0 S S	FT FT FT FT FT FT FT	PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3 FSMC_NCE4_2 FSMC_NE4 FSMC_A24	USART2_CK
123 124 125 126 127 128 129 130	PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11	I/0 I/0 I/0 I/0 I/0 I/0 I/0 I/0 I/0 S	FT FT FT FT FT FT FT -	PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11	FSMC_NE1/FSMC_NCE2 FSMC_NE2/FSMC_NCE3 FSMC_NCE4_1/FSMC_NE3 FSMC_NCE4_2 FSMC_NE4 FSMC_A24	USART2_CK

						TIM2_CH2/SPI1_SCK	
134	PB4	I/0	FT	NJTRST	SPI3_MISO	PB4/TIM3_CH1/ SPI1_MISO	
135	PB5	I/0	-	PB5	I2C1_SMBA/SPI3_MOSI /I2S3_SD	TIM3_CH2/ SPI1_MOSI	
136	PB6	I/0	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX	
137	PB7	I/0	FT	PB7	I2C1_SDA/TIM4_CH2 / FSMC_NADV	USART1_RX	
138	B00T0	Ι	-	ВООТО	ı	-	
139	PB8	I/0	FT	PB8	TIM4_CH3/SDIO_D4/ TIM1O_CH1	I2C1_SCL/CAN_RX	
140	PB9	I/0	FT	PB9	TIM4_CH4/SDIO_D5/ TIM11_CH1	I2C1_SDA/CAN_TX	
141	PE0	I/0	FT	PE0	TIM4_ETR/FSMC_NBLO	-	
142	PE1	I/0	FT	PE1	FSMC_NBL1	_	
143	VSS_3	S	-	VSS_3	_	_	
144	VDD_3	S	-	VDD_3	-	_	

⁽¹⁾ FT =5V tolerance

4 Electrical characteristic

Test condition

Unless otherwise specified, all voltages are VSS based.

4.1.1Minimum and maximum values

Unless otherwise specified, all minimum and maximum values are guaranteed under the worst conditions of ambient temperature, supply voltage and clock frequency on the production line by testing 100% of the product at ambient temperature TA=25 $^{\circ}$ C.

Note below each table that data obtained through comprehensive evaluation, design simulation and/or process characteristics will not be tested on the production line; On the basis of comprehensive evaluation, the minimum and maximum values are obtained by taking the average value of the sample test and adding or subtracting three times the standard distribution (average $\pm 3\Sigma$).

4.1.2 Typical value

Unless otherwise noted, typical data are based on TA=25 $\,^{\circ}$ C and VDD=3.3V. These data are for design guidance only and are not tested.

Typical \mbox{ADC} accuracy values are obtained by sampling a standard batch and testing at all temperature ranges, and 95% of products have an error of less than or equal to the given value (mean ± 2).

4.1.3 Typical curve

Unless otherwise noted, typical curves are intended as a design guide only and are not tested. $\ \ \,$

4.1.4 Load capacitance

Figure 5 Load conditions for the pins

4.1.5 Pin input voltage

Figure 6 Pin input voltage

4.1.6 Power supply scheme

Figure 7 Power supply scheme

4.1.7 Current consumption measurement

Figure 8 Current consumption measurement scheme

Absolute maximum rating

A load applied to the device that exceeds the value given in the Absolute Maximum Rating list may cause the device to be permanently damaged. Only the maximum load that can be borne is given here, and it does not mean that the functional operation of the device under these conditions is correct. The reliability of the device will be affected if the device works at the maximum value for a long time.

Table 8 Voltage characteristics

symbol	De scription	Minimum value	Maximum value	uni t
VDD - VSS	External main supply voltage (including VDDA a VDD)(1)	nd -0.3	4	
VIN	Input voltage on 5V tolerant pins (2)	Vss-0.3	Vdd+4.0	V
VIN	Input voltage on other pins (2)	Vss-0.3	4.0	
A VDDx	Voltage difference between different supply pins	_	50	mV
VSSx-VSS	Voltage difference between different ground pins		50	III V

⁽¹⁾ All power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply system within the allowable range.
(2) Contains VREF-feet.

Table 9 Current characteristics

symbol	Description	Maximum value (1)	uni t
IVDD	Total current through the VDD/VDDA power line (supply current) (1)	150	
IVSS	Total current through the VSS ground wire (outflow current) (1)	150	mΛ
IIO	Output feed current on any I/O and control pin	25	mA
110	Output current on any I/O and control pin	-25	

⁽¹⁾ All power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply system within the allowable range.

Table 10 Temperature characteristics

symbol	De scripti o n	Numerical value	uni t
TSTG	Stor ag e temperature range	−65 [~] +150	$^{\circ}$ C
TJ	Maximum junction temperature	105	$^{\circ}$

Working condition

4.1.8 General operating conditions

Table 11 General operating conditions

symbol	Argument	Co ndi tions	Minimum value	Maximum value	uni t
fHCLK	Internal AHB clock frequency	_	0	216	
fPCLK1	Internal APB1 clock frequency	_	0	108	MHz
fPCLK2	Internal APB2 clock frequency	_	0	216	
VDD	Standard operating voltage	_	2.0	3.6	V
VDDA(1)	Simulate part of the operating voltage	Must be the same as VDD (2)	2.0	3.6	V
VBAT	Backup part of the operating voltage		1.6	3.6	V
TA	Ambient temperature	_	-40	85	$^{\circ}$

⁽¹⁾ It is recommended to use the same power supply for both VDD and VDDA.

4.1.9 Working conditions during power-on and power-off

The parameters given in the following table are based on ambient temperatures listed in the general operating conditions.

Table 12 Operating conditions for power-on and power-off

symbol	argument	Conditions	Minimum value	Maximum value	uni t
tVDD	VDD rising rate		0	8	/V
	VDD declin e r a te		20	8	us/V

4.1.10 Built-in reset and power control module features

The parameters given in the following table are tested at VDD supply voltages listed under common operating conditions.

Table 13 Built-in reset and power control module characteristics

symbol	argume n t	Co ndi tions	Mi ni mum val ue	Typi cal val ue	Maxi mum value	uni t
		PLS[2:0]=000 (rising edge)	2. 1	2.16	2. 26	V
		PLS[2:0]=000 (falling edge)	2	2.07	2. 16	V
	Programmable voltage detection Level selection of the device	PLS[2:0]=001 (rising edge)	2. 19	2. 26	2. 37	V
VPVD		PLS[2:0]=001 (falling edge)	2.09	2. 17	2. 27	V
VPVD		PLS[2:0]=010 (rising edge)	2. 28	2. 35	2. 48	V
		PLS[2:0]=010 (falling edge)	2. 18	2. 26	2. 38	V
		PLS[2:0]=011 (rising edge)	2. 38	2.48	2. 58	V
		PLS[2:0]=011 (falling edge)	2. 28	2. 36	2. 48	V

		PLS[2:0]=100 (rising edge)	2. 47	2. 55	2.69	V
		PLS[2:0]=100 (falling edge)	2. 37	2. 45	2. 59	V
		PLS[2:0]=101 (rising edge)	2. 57	2.66	2.79	V
		PLS[2:0]=101 (falling edge)	2. 47	2. 57	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.76	2. 9	V
		PLS[2:0]=110 (falling edge)	2. 56	2.67	2.8	V
		PLS[2:0]=111 (rising edge)	2. 76	2.85	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.77	2. 9	V
VPVDhyst(1)	PVD hys teresis	_	_	100	_	mV
VDOD /DDD	Power-on/power-	falling edge	_	1.90		V
VPOR/PDR	off reset Threshold value	rising edge		2.02		V
VPDRhyst(1)	PDR hysteresis	_	_	120		mV
TRSTTEMPO(1)	Reset duration	_		2	_	ms

⁽¹⁾ Guaranteed by design, not tested in production.

4.1.11 Built-in reference voltage

The parameters given in the following table are tested at VDD supply voltages listed under common operating conditions.

Table 14 Built-in reference voltage

symbol	argument	Co ndi tions	Minimum value	Typi cal val ue	Maximum value	uni t
VREFINT	Built-in reference voltage	-40°C < TA < +85°C	1.16	1. 20	1.24	V
TS_vrefint(1)	Sampling time of the ADC when reading out the internal reference voltage	_	_	5. 1	17. 1	us
TCoeff (2)	Temperature coefficient	-		<u> </u>	100	ppm/℃

⁽¹⁾ The shortest sampling time is obtained through multiple cycles in the application.

4.1.12 Supply current characteristic

Current consumption is a comprehensive indicator of a variety of parameters and factors, including operating voltage, ambient temperature, I/O pin load, product software configuration, operating frequency, I/O pin turnover rate, program location in memory, and code execution.

For the measurement method of current consumption, see the description of current consumption measurement in the section of Test Conditions.

Current consumption

The microcontroller is under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are turned off unless otherwise specified.
- When peripherals are turned on: fPCLK1 = fHCLK/2, fPCLK2 = fHCLK.

Table 15 Current consumption in operating mode

				3 '		
symbol	argument	Conditions	fHCLK	Typical values (1)	Maximum value (2)	uni t

⁽²⁾ Guaranteed by design, not tested in production.

				Enable all peripherals	Turn off all peripherals	Enable all peripherals	Turn off all peripherals	
			216MHz	36, 29	25. 49	38. 50	27. 56	
			168MHz	27. 71	19. 27	29. 95	21. 35	
			72MHz	13.09	9.38	14. 93	11. 21	
		External	48MHz	9. 35	6. 93	11. 18	8. 74	mA
		cl ock	32MHz	6. 88	5. 25	8. 68	7.04	
	Suppl y	rrent in	24MHz	5. 67	4. 46	7.41	6. 20	
IDD	current		16MHz	4. 43	3.63	6. 16	5. 34	
IDD	ın operating		8MHz	3. 28	2. 58	4. 98	4. 54	
	mode	Runni ng	128MHz	21.64	15. 19	23. 89	17. 27	
		at high	72MHz	13. 03	9.39	15. 03	11. 31	
		speed	48MHz	9. 34	6. 92	11. 26	8. 78	
		internal	32MHz	7. 55	5. 73	8. 73	7. 08	mA
		RC oscillat	24MHz	5. 69	4. 49	7. 74	6. 24	
		or	16MHz	4. 45	3.66	6. 21	5. 39	
		(HSI)	8MHz	3.30	2.88	5.02	4. 57	

- (1) The typical value is obtained when TA= $25\,^{\circ}$ C and VDD=3.3V.
- (2) The maximum value is measured at TA=85 $^{\circ}$ C and VDD=3.6V.
- (3) The external clock is 8MHz, and PLL is enabled when fHCLK>8MHz.

Table 16 Current consumption in sleep mode, code running in Flash

Table			701011 111 31		values (1)	Maximum v						
symbol argumer	argument	Conditions	fHCLK	Enable all peripherals	Turn off all peripherals	Enable all peripherals	Turn off all peripherals	uni t				
			216MHz	25. 72	7.01	27. 73	8. 70					
			168MHz	19.46	4.81	21.49	6. 58					
			72MHz	9. 53	3. 25	11. 31	4. 92					
		External	48MHz	6. 99	2.81	8. 76	4. 51	A				
		cl ock	32MHz	5. 32	2. 54	7. 07	4. 23	mA				
	Power	Power (3) supply in	24MHz	4. 50	2.41	6. 22	4. 09					
IDD	suppl y		16MHz	3. 66	2. 28	5. 36	3. 96					
לענד	in		8MHz	2.90	2. 17	4. 57	3. 84					
	sl eep	Run on	128MHz	15. 31	4. 14	17. 36	5. 90					
	mode	hi gh	72MHz	9. 47	3.20	11. 36	4. 93					
	flow	speed	48MHz	6. 97	2.80	8.80	4. 52					
		interna	32MHz	5. 32	2.54	7. 11	4. 26	mA				
		oscilla 24	24MHz	4.49	2.41	6. 25	4. 12					
		tor	16MHz	3.65	2. 27	5. 39	3. 98					
							tor (HSI)	8MHz	2.89	2. 17	4.61	3. 87

- (1) The typical value is obtained when TA= $25\,^{\circ}$ C and VDD=3.3V.
- (2) The maximum value is measured at TA=85 $^{\circ}$ C and VDD=3.6V.
- (3) The external clock is 8MHz, and PLL is enabled when fHCLK>8MHz.

Table 17 Typical and maximum current consumption in down and standby modes

symbol	argument	Conditions	Typi cal val ues (1)	Maximum value (2)	uni t
IDD	Supply current in shutdown mode	Regulator in running mode, low speed, high speed internal RC oscillator and external high-	210	1290	uA

		speed oscillator off (no independent watchdog)			
		The regulator is in low power mode, low speed, high speed internal RC oscillator and external high speed oscillator Closed (no independent watchdog)	130	1220	
		Low speed internal RC oscillator, low speed external oscillation The controller, RTC, and IWDG are closed	0. 7	2.2	
		Low speed internal RC oscillator is on, The external low speed oscillator and RTC and IWDG are turned off	1.0	2. 5	
	Supply current in standby	The external low speed oscillator is on, and the low speed internal RC oscillator and RTC and IWDG are off	1.0	2.6	
	mode	The external low speed oscillator and RTC are on, and the low speed internal RC oscillator and IWDG are off	1.3	2.7	
		The low speed internal RC oscillator and IWDG are on, and the external low speed oscillator and RTC are off	1.0	2.7	
IDD_VB AT	Supply current of the backup area	The external low speed oscillator and RTC are on	0.9	1.3	

- (1) The typical value is obtained when TA=25°C and VDD=VBAT=3.3V.
- (2) The maximum value is measured at TA=85°C and VDD=VBAT=3.6V.
- (3) It is derived from comprehensive evaluation and is not tested in production.

Built-in peripheral current consumption

MCU operating conditions are as follows:

- All I/O pins are in analog input mode
- All peripherals are turned off unless otherwise specified.
- The value given is calculated by measuring current consumption
 - ◆ Turn off the clocks of all peripherals
 - ◆ Turn on only one peripheral clock

Table 18 Current consumption of built-in peripherals

Bu	ilt-in peripheral	Typical power consumption at 25℃	uni t
	TIM2	2.08	
	TIM3	2. 36	
	TIM4	2. 22	
	TIM5	2. 08	
	TIM6	0.14	
APB1	TIM7	0.14	uA/MHz
	SPI2/I2S	0.97	
	SPI3/I2S	0.83	
	USART2	0. 56	
	USART3	0. 56	
	UART4	0.56	

	UART5	0.56	
	I2C1	1.81	
	I2C2	1.81	
	USB	5. 42	
	CAN	1.11	
	SDIO	7.92	
	WWDG	0.24	
	DAC	0.58	
	PWR	0.008	
	ВКР	0.11	
	ADC1 (1)	5	
	ADC2 (1)	5	
	ADC3 (1)	5	
APB2	TIM1	3.71	
	TIM8	3.76	
	SPI1	1.83	
	USART1	0.56	

⁽¹⁾ Special conditions for ADC: fHCLK=56MHz, fAPB1=fHCLK/2, fAPB2=fHCLK, fADCCLK=fAPB2/4, ADC_CR2

The ADON of the register =1.

4.1.13 External clock source features

High speed external user clock generated from an external oscillating source

The characteristic parameters given in the following table are measured using a high speed external clock source with ambient temperature and supply voltage conforming to common operating conditions.

Table 19 High-speed external user clock characteristics

symbol	argument	Co ndi tio ns	Minimum value	Typi cal val ue	Maximum value	uni t
fHSE_ext	User External Clock Frequency (1)		0.615	8	35	MHz
VHSEH	OSC_IN Input pin high level voltage		0. 48Vdd		Vdd	V
VHSEL	OSC_IN Input pin low voltage		Vss	_	0. 38Vdd	
tw(HSE) tw(HSE)	OSC_IN high or low time (1)	_	5	62.5	_	nc
tr(HSE) tf(HSE)	Time for OSC_IN to rise or fall (1)			4. 1	20	ns
Cin(HSE)	OSC_IN Input Tolerance (1)			5	_	рF
DuCy (HSE)	Duty cycle	<u> </u>	45	50	55	%

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 9 AC timing diagram of an external high-speed clock source Low speed external user clock generated from an external oscillating source

The characteristic parameters given in the following table are measured using a low speed external clock source, and the ambient temperature and supply voltage meet the general operating conditions.

Table 20 Low speed external user clock characteristics

symbol	argument	Co ndi t i o ns	Minimum value	Typi cal val ue	Maximum value	uni t
fHSE_ext	User External Clock Frequency (1)	Input pin High		32. 768	1000	KHz
VLSEH	OSC32_IN Input pin High level voltage				VDD	V
VLSEL	OSC32_IN Input pin low voltage	_	VSS	_	0.38Vdd	v
tw(LSE) tw(LSE)	OSC32_IN High or low duration (1)		450			
tr(LSE) tf(LSE)	OSC32_IN rise or fall time (1)		_	_	50	ns
Cin(LSE)	OSC32_IN Input Tolerance (1)	_		5	_	pF
DuCy (LSE)	Duty cycle	_	30		70	%

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 10 AC timing diagram of an external low-speed clock source High speed external clock generated using a crystal/ceramic resonator

The high speed external clock (HSE) can be generated using an oscillator consisting of a crystal/ceramic resonator of 4 to 16MHz. The information presented in this section is based on a comprehensive characteristic evaluation using the typical external components listed in the table below. In the application, the resonator and the load capacitor must be placed as close as possible to the pin of the oscillator to reduce output distortion and the stability time at startup. For detailed parameters of the crystal resonator (frequency, package, accuracy, etc.), please consult the respective manufacturer. (Note: The crystal resonator mentioned here is what we usually say is a passive crystal oscillator)

Table 21HSE 4~16MHz oscillator characteristics (1)(2)

Ī	symbol	argument	Co ndi tions		Minimum value	Typi cal val ue	Mi ni mum val ue	uni t
	fOSC_IN	Oscillator frequency			4	8	16	MHz
				TA = -40℃		790		
	tSU(HSE)	Start-up time	VDD is stable	TA = 25 ℃	_	860		us
				TA = 85 ℃	_	960	_	

- (1) The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.
- (2) It is derived from comprehensive evaluation and is not tested in production.
- $(3) \, tSU \, (HSE)$ is the startup time, measured from the time the software enables HSE until a stable 8MHz oscillation is obtained.

This value is measured on a standard crystal resonator and may vary greatly depending on the crystal manufacturer.

For CL1 and CL2, it is recommended to use a high quality ceramic capacitor between 5 pF and 25 pF designed for high frequency applications (typical value), and select a crystal or resonator that meets the requirements. Usually CL1 and CL2 have the same parameters. Crystal manufacturers usually give load capacitance parameters in a serial combination of CL1 and CL2. When selecting CL1 and CL2, the capacitive reactance of the PCB and MCU pins should be taken into account (the capacitance of the pins to the PCB can be roughly estimated at 10 pF).

Figure 11 Typical applications using 8MHz crystals Low speed external clock generated using a crystal/ceramic resonator

The low speed external clock (LSE) can be generated using an oscillator with a 32.768kHz crystal/ceramic resonator. The information presented in this section is the result of a comprehensive characteristic evaluation. In the application, the resonator and the load capacitor must be placed as close as possible to the pin of the oscillator to reduce output distortion and the stability time at startup. For detailed parameters of the crystal resonator (frequency, package, accuracy, etc.), please consult the respective manufacturer. (Note: The crystal resonator mentioned here is what we usually say is a passive crystal oscillator)

Table 22LSE oscillator characteristics (fLSE=32.768kHz)(1)

symbol	argument	Co nd	t i o ns	Minimum value	Typi cal val ue	winimum value	uni t
			$TA = -40^{\circ}C$	_	321	_	ms
tSU(HSE)	Start-up time	VDD is stable	TA = 25 ℃	_	221	_	ms
	er me		TA = 85 ℃	_	223		

(1) It is derived from comprehensive evaluation and is not tested in production. For CL1 and CL2, it is recommended to use a high-quality ceramic capacitor between 5 pF and 15 pF, and select a crystal or resonator that meets the requirements. Usually CL1 and CL2 have the same parameters. Crystal manufacturers usually give load capacitance parameters in a serial combination of CL1 and CL2.

The load capacitance CL is calculated by the following formula: $CL = CL1 \times CL2 / (CL1 + CL2) + Cstray$, where Cstray is the capacitance of the pin and the PCB board or PCB-related capacitance, and its typical value is between 2 pF and 7 pF.

Figure 12 Typical application using a 32.768KHz crystal

4.1.14 Features of the internal clock source

The characteristic parameters given in the following table are measured using ambient temperature and supply voltage in accordance with common operating conditions.

High speed internal (HSI)RC oscillator

Table 23HSI Oscillator Characteristics (1)

symbol	argument	Co ndi tio ns	Mi ni mum val ue	Typi cal val ue	Minimum value	uni t
fHSI	frequency	_		8	_	MHz
ACCHSI	Accuracy of HSI oscillator	$TA = -40^{85} C$	-2.5	_	2.5	%
tSU(HSI)	HSI oscillator startup time	_	_	12	_	us
IDD(HSI)	HSI oscillator power consumption	_		3.5	_	uA

(1) VDD = 3.3V, $TA = -40 \sim 85^{\circ}C$, unless otherwise specified.

Low speed internal (LSI)RC oscillator

Table 24LSI Oscillator Characteristics (1)

symbol	argument	Co ndi tions	Minimum value	Typi cal val ue	Minimum value	uni t
fLSI (2)	frequency	_	38	40	42	kHz
tSU(LSI)(3)	LSI oscillator startup time	_	_	75	_	us
IDD(LSI)(3)	LSI oscillator power consumption	_	_	0. 28	_	uA

(1) VDD = 3.3V, TA = $-40-85^{\circ}$ C, unless otherwise specified.

- (2) It is derived from comprehensive evaluation and is not tested in production
- (3) Guaranteed by design, not tested in production

4.1.15 Time to wake up from low power mode

The wake times listed in the table below are measured during the wake phase of an 8MHz HSI RC oscillator. The clock source used for wake up depends on the current operating mode:

- Down or standby mode: The clock source is the RC oscillator
- Sleep mode: The clock source is the clock used to enter sleep mode

All times are measured using ambient temperature and supply voltage conforming to common operating conditions.

Table 25 Wake times for low power mode

symbol	argument	Typical value	uni t
tWUSLEEP(1)	Wake up from sleep mode	10	CPU clock cycle
tWUSTOP(1)	Wake up from shutdown mode (Low power mode for voltage regulator)	12	us
tWUSTDBY(1)	Wake up from standby mode	1600	us

⁽¹⁾ The wake up time is measured from the wake up event until the user program reads the first instruction.

4.1.16 PLL characteristics

The parameters listed in the following table are measured using ambient temperature and supply voltage conforming to common operating conditions.

Table 26PLL features

symbol	Oraci Imant		Numerical val		uni +
	argument	Minimum value	Typical value	Maximum value (1)	uni t
fPLL_IN	PLL Input Clock (2)	1	8	32	MHz
	PLL Input clock duty cycle	40	_	60	%

fPLL_OUT	PLL frequency doubled output clock	4	_	216	MHz
tLOCK	PLL phase lock time		51.2	87.8	us
Jitter	Cyclic jitter	_	_	200	ps

⁽¹⁾ It is derived from comprehensive evaluation and is not tested in production.

4.1.17 Memory characteristic

Flash memory

Unless otherwise specified, all characteristic parameters are obtained at TA = -40-85 ° C.

Table 27 Flash memory characteristics

symbol	argument	Co ndi t i o ns	Typical value	uni t
tPROG	16 bit programming time	_	50	us
tERASE	Page erase time	_	25	ms
tME	Whole chip erase time	-	3/6(1)	S

⁽¹⁾ MH2113AVET6 / VGT6 / ZET6 / ZGT6 product entire erasure time typical values for the 6 s; The typical wiping time of other models is 3s.

Table 28 Flash memory life and data retention period

symbol	argument	Co ndi tions	Minimum value (1)	Typi cal val ue	Maximum value	uni t
NEND	Life span(Note: erase times)	$TA = -40^{\sim}85^{\circ}C$	100		_	Thousand times
tRET	Data retention period	TA = 105℃	20		_	years

⁽¹⁾ Based on comprehensive evaluation, it is not tested in production.

4.1.18 Absolute maximum (electrical sensitivity)

Electrostatic Discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse one second later) is applied to all pins of all samples, and the size of the sample is related to the number of power pins on the chip (3 x(n+1) power pins). This test meets the JEDECEIA/JESD22-A114 standard.

Table 29 Absolute maximum ESD values

symbol	argument	Co ndi tions	Maximum value (1)	uni t
VESD (HBM)	Electrostatic discharge voltage (human model)	T A = +25 ° C, Conforms to JEDECEIA/JESD22-A114	4000	V

⁽¹⁾ It is derived from comprehensive evaluation and is not tested in production.

4.1.19 Features of I/O ports

Common input/output features

Unless otherwise specified, the parameters listed in the following table are measured in accordance with general operating conditions. All I/O ports are compatible with CMOS and TTL.

Table 30 Static characteristics of I/O

svmbol	arqument	Co ndi tio ns	Minimum	Typi cal	Maxi mum	uni t	
Symbol	at guillette	Conditions	val ue	val ue	val ue	uiii t	

⁽²⁾ Care needs to be taken to use the correct frequency doubling factor, so that the fPLL_OUT is within the allowable range according to the PLL input clock frequency.

VIL	Input low-level voltage				1. 38	
WIII	Standard I/O pin, input high level voltage	_	1.59		_	V
VIH	FT I/O pin, input high level voltage		1.59			
Vhya	Standard I/O pin Schmidt flip-flop voltage hysteresis			0. 21	_	V
Vhys	5V tolerates I/O pin Schmidt trigger voltage hysteresis			0. 21		V
Ilkg	Input leakage current	VSS ≤ VIN ≤ VDD Standard I/O port	_	_	±0.5	uA
TING	input reakage current	VIN = 5V, 5V tolerance port	_	_	±1	uA
RPU	Weak pull-up equivalent resistance	VIN = VSS	37		38. 5	kΩ
RPD	Weak pull-down equivalent resistance	NIN = NDD	43.7		45. 7	kΩ
CIO	Capacitance of the I/O pin			5		pF

Output voltage

Unless otherwise specified, the parameters listed in the following table are measured using ambient temperature and VDD supply voltage conforming to common operating conditions . All I/O ports are compatible with CMOS and TTL.

Table 31 Output voltage characteristics

symbol	argument	Co ndi t i o ns	Minimum value	Maxi mum value	uni t
VOL	Output Low	TTL port, I_{IO} = +12mA		0.4	
VOH	Output high level	VDD=3.3V	2.9		
VOL	Output low	CMOS port, $I_{\mathrm{IO}} = +14\mathrm{mA}$		0.4	V
VOH	Output high level	VDD=3.3V	2.9		V
VOL	Output low	$I_{IO} = +34\text{mA}$		1.3	
VOH	Output high level	VDD=3.3V	2		

4.1.20 NRST pin characteristics

The NRST pin input drive uses a CMOS process, which is connected to a pull-up resistor that cannot be disconnected.

Unless otherwise specified, the parameters listed in the following table are measured using ambient temperature and supply voltage conforming to common operating conditions.

Table 32NRST pin characteristics

symbol	argument	Co ndi t i o ns	Mi ni mum val ue	Typi cal val ue	Maxi mum value	uni t
VIL(NRST)(1)	NRST Input low-level voltage	_	_	1. 31		V
VIH(NRST)(1)	NRST input high level voltage		_	1. 57	_	V
Vhys (NRST)	NRST Schmidt flip-flop voltage hysteresis		_	260	_	mV
RPU	Weak pull-up equivalent resistance	VIN=VSS		37		kΩ
VF(NRST)(1)	NRST input filter pulse	_	_	120	_	ns

VNF(NRST)(1) NRST input unfiltered pulse	_	25	_		ns
--	---	----	---	--	----

(1) Guaranteed by design, not tested in production.

Recommended NRST pin protection

Figure 13 Suggested NRST pin protection

- (1) The reset network is to prevent parasitic reset.
- (2) The user must ensure that the potential of the NRST pin can be below the maximum VIL(NRST), otherwise the MCU cannot be reset.

4.1.21 TIM timer characteristics

The parameters listed in the following table are guaranteed by design.

Table 33TIMx features

symbol	a r gu me n t	Minimum value	Maximum value	uni t
tres(TIM)	Timer resolution time	1	_	tTIMxCLK
fEXT	External clock frequency of the timer CH1 to CH4	0	FTIMCLK/2	MHz
ResTIM	Timer resolution	_	16	位
tCOUNTER	16-bit counter clock cycle when internal clock is selected	1	65535	tTIMxCLK
tMAX_COUNT	Maximum possible count		65535*65535	tTIMxCLK

4.1.22 CAN(Controller Local Area Network) interface

For details about the features of the input/output multiplexing function pins (CAN_TX and CAN_RX), see the IO Port Features section.

4.1.23 12-bit ADC features

Unless otherwise specified, the parameters in the following table are measured using ambient temperature, fPCLK2 frequency and VDDA supply voltage in accordance with common operating conditions.

Note: It is recommended to perform a calibration each time you power on.

Table 34 ADC characteristics

symbol	argument	Co ndi t i o ns	Minimum value	Typi cal val ue	Maximum value	uni t
VDDA	Supply voltage	_	2.0	3. 3	3.6	V

VREF+	Positive reference voltage	_	2.0	_	VDDA	V
fADC	ADC clock frequency	_	0.6	_	14	MHz
fS(2)	Sampling rate	_	0.05	_	1	MHz
fTRIG(2)	External trigger frequency	fADC = 14MHz	_	_	823	kHz
VAIN	Conversion voltage range (3)		0		VREF+	V
RAIN(2)	External input impedance	_		_	50	kΩ
RADC(2)	Sampling switch resistance	_	_	_	1	kΩ
CADC (2)	Internal sampling and holding capacitance	_	_			pF
tCAL(2)	Calibration time	fADC = 14MHz		5. 9		us
CORE (2)	Carrotation time			1/fADC		
tlat(2)	Injection triggers the	fADC = 14MHz			0.214	us
c1ac(2)	conversion delay			_	3	1/fADC
tlatr(2)	Conventional trigger	fADC = 14MHz		_	0.143	us
C14 (1 (2)	conversion time delay			_	2	1/fADC
tS(2)	Sampling time	fADC = 14MHz	0. 107	_	17. 1	us
(3(2)	Sampiring time		1.5	_	239. 5	1/fADC
tSTAB(2)	Power-on time		0	0	1	us
+COMV (2)	Total conversion	fADC = 14MHz			18	us
tCONV(2)	time (including sampling time)			s+ 12.5 for su proximations)	ICCessi ve	1/fADC

- (1) Guaranteed by comprehensive evaluation, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) Depending on the package, VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA. See Chapter 3 for details.
- (4) For external triggers, a delay 1/fPCLK2 must be added to the listed delay.

Table 35 Maximum RAIN when FADC =14 MHZ (1)

TS (cycl e)	tS(us)	Maximum RAIN(kΩ)
1.5	0. 11	0.4
7. 5	0. 54	5. 9
13. 5	0.96	11.4
28. 5	2.04	25. 2
41.5	2. 96	37. 2
55. 5	3. 96	50
71.5	5. 11	-
239. 5	17. 11	_

⁽¹⁾ Guaranteed by design, not tested in production.

4.1.24 DAC electrical parameters

Table 36 DAC characteristics

symbol	argument	Minimum value	Typi cal val ue	Maximum value	uni t	annotati on
VDDA	Analog supply voltage	2.0	-	3.6V	V	
VREF+	Refere nc e volt ag e	2.0	-	3.6V	V	

VSSA	Gro und wi re	0	=	0	V	
VOOA		U		0	V	
RLOAD(1)	Load resistance when the buffer is open	5	П	=	kΩ	_
RO(2)	Output impedance when the buffer is off	-	-	15	kΩ	-
CLOAD(1)	Load capacitance	_	-	50	pF	Large capacitor (buffer open) on DAC_OUT pin Hour)
DAC_OUT小(1)	The low end DAC_OUT voltage when the buffer is open	50	_	_	mV	The maximum DAC
DAC_OUT大(1)	High end DAC_OUT voltage when the buffer is open	-	-	VREF+ - 0. 2	V	output span is given
DAC_OUT小(1)	The low end DAC_OUT voltage when the buffer is off	_	0.5	_	mV	The maximum DAC
DAC_OUT大(1)	High end DAC_OUT voltage when the buffer is off	_	-	VREF+ - 0.03	V	output span is given
DNL (2)	Nonlinear distortion (deviation between 2 consecutive codes -1LSB)	-	-	+-2	LSB	The DAC is configured with 12 bits
INL(2)	Nonlinear accumulation (deviation between the value measured at code i and the line between code DAC_OUT large and code DAC_OUT small)	I	1	+-4	LSB	The DAC is configured with 12 bits
Offset error (2)	Offset error (deviation between the value measured at code 0x800 and the ideal value V REF+ /2)	-	15	25	mV	When VREF+=3.3V, the DAC is configured as 12 bits
tSETTLING	Set time (full range: 10-bit input code changes from small value to large value, DAC_OUT reaches ±1 LSB of its final value)	ı	3	4	us	C LOAD ≤ 50 pF, R LOAD ≥ 5kΩ
Update rate	When the input code is a small change (from the value i to i+1 LSB), the large frequency of the correct DAC_OUT is obtained	ļ	I	1	MS/s	C LOAD ≤ 50 pF, R LOAD ≥ 5kΩ
tWAKEUP	Wake time from off state (set ENx bit in DAC control register)	-	6. 5	10	us	C LOAD ≤50 pF, R LOAD ≥5kΩ The input code is between a small and a large possible value
PSRR+ (1)	Supply rejection ratio (relative to V DDA)(static DC measurement)		-60	-50	dB	No R LOAD, C LOAD ≤ 50 pF

- (1) Guaranteed by design, not tested in production.
- (2) Guaranteed by comprehensive evaluation, not tested in production.

4.1.25 Temperature sensor characteristics

Table 37 Characteristics of temperature sensor

symbol	argument	Minimum value	Typi cal val ue	Maximum value	uni t
Avg_Slope(1)	Aver ag e slope	_	5	_	mV/°C
V25(1)	Voltage at 25°C	_	1. 43	_	V

tSTART(2)	Establishment time	_	_	10	us
TS_temp(2)(3)	ADC sampling time when reading temperature	_	_	17. 1	us

- (1) Guaranteed by comprehensive evaluation, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) The shortest sampling time can be determined by the application through multiple loops.

The temperature is obtained using the following formula:

The temperature(° C) = $\{(V25 - VSENSE) / Avg_Slope\} + 25$

Here (1):

V25 = VSENSE value at 25 ° C

 ${\tt Avg_Slope} = {\tt Temperature}$ and the average slope of the VSENSE curve (Unit: mV/° C)

Figure 14V SENSE ideal curve for temperature

5 Package characteristics

LQFP48 package

Dimension	Minimum (mm)	Max. (mm)	Dimension	Minimum (mm)	Max. (mm)
A	6. 90	7. 10	C2	0.6	З6ТҮР
A1	0. 2	OTYP	Н	0.05	0. 15
A2	0. 50TYP		θ	12° TYP4	
A3	8.80	9. 20	θ 1	12° TYP4	
В	6. 90	7. 10	θ 2	4° TYP	
B1	8.80	9. 20	θ 3	$0^{\circ} \sim 5^{\circ}$	
B2	0.50	0.80	R	0. 15TYP	
С	1. 30	1.50	R1	0. 12TYP	
C1	0. 127	0.16			_

Figure 15 LQFP487mm×7mm package size

LQFP64 package

Figure 16 LQFP6410mm×10mm package size

LQFP100 package

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.08	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 17 LQFP10014mm \times 14mm package size

LQFP144 package

Figure 18 Package size of LQFP14420mm×20mm

6 Order code

 $6 = -40^{85}$ °C

7 = -40~105°C

Table 38 MH2103A series order code information diagram

MH 2 103A C B T 6 Product series MH= ARM based 32-bit microcontroller Product type 2 = General security type Product subseries 103A = Mainstream type Number of pins C = 48 feet R = 64 feet V = 100 feet Z = 144 feet Storage capacity B = 128K Flash + 32K SramC = 256K Flash + 64K SramP = 256K Flash + 96K Sram E = 512K Flash + 96K Sram G = 1024K Flash + 96K Sram Encapsulation information T = LQFPU = QFNtemperature

Beijing Hongli Kunpeng International Trade Co., Ltd.
Tel: 86-10-57891098 MP:86-13001179378 Mail: info@hlkpint.com or lucyliu0807@163.com

7 Appendi x

Table 39 Document version history

Da te	Edition	Al ter
2021-1-17	1.00	Initial version
2022-5-28	1.01	Added LQFP100 package description
2022-7-20	1.02	Added LQFP144 package description
2022-7-27	1.03	Added LQFP100 package, MH2103AVGT6 device description
2023-3-09	1.04	Added LQFP144 package, MH2103AZGT6 device description