Convex Optimization

Chapter 3: Convex Set

Notes by Renxiona Liu

3.1 Basic Definitions

We first introduce a list of notions that will be discussed in convex analysis.

Definition 3.1 (Convex set). A set A is called a convex set, if for any $x, y \in A$ and $\alpha \in [0, 1]$, we have that $\alpha x + (1 - \alpha)y \in A$.

Definition 3.2 (Convex combination). A vector constructed as $\sum_{k=1}^{n} \alpha_k x_k$ with $\sum_{k=1}^{n} \alpha_k = 1$ and $\alpha_k > 0$ is called a convex combination.

Definition 3.3 (Affine set). A set A is called an affine set, if for any $x, y \in A$ and $\alpha \in \mathbb{R}$, we have that $\alpha x + (1 - \alpha)y \in A$.

Definition 3.4 (Affine combination). A vector constructed as $\sum_{k=1}^{n} \alpha_k x_k$ with $\sum_{k=1}^{n} \alpha_k = 1$ is called an affine combination.

Definition 3.5 (Convex hull). Given an arbitrary set A, the convex hull of A is the smallest convex set that contains A.

Definition 3.6 (Cone). A set A is called a cone if for any $x \in A$ and $\alpha > 0$, we have that $\alpha x \in A$.

Definition 3.7 (Convex cone). A set is a convex cone if it is a cone and convex.

Definition 3.8 (Conic combination). A vector constructed as $\sum_{k=1}^{n} \alpha_k x_k$ with $\alpha_k \geq 0$ is called a conic combination.

Definition 3.9 (Conic hull). Given an arbitrary set A, the conic hull of A is the smallest convex cone that contains A.

Next, we see some examples of definitions above.

Example 3.1. Hyperplanes and half spaces: $\{x \mid a^{\top}x + b = 0\}$ and $\{x \mid a^{\top}x + b > 0\}$.

Example 3.2. Euclidean balls and ellipsoids: $\{x \mid ||x - x_c||_2 \le r\}$ and $\{x \mid (x - c_c)^\top P^{-1}(x - x_c) \le r^2\}$.

Example 3.3. Polyhedrons:

$$\{x \mid a_i^{\top} x \le b_i, \text{ for } i = 1, 2 \dots, m, c_j^{\top} x = d_j \text{ for } j = 1, 2 \dots, n\}$$
 (3.1)

3.2 Operations that preserve convexity

- Intersection of sets over index set: $\bigcap_{\alpha} C_{\alpha}$ is a convex set if C_{α} is a convex set for $\alpha \in \mathcal{I}$.
- Cartesian product of sets: if C_i is a convex for i = 1, 2, ..., n, then

$$C_1 \times C_2 \dots \times C_n = \{(x_1, x_2, \dots, x_n) \mid x_i \in C_i, i = 1, 2 \dots, n\}$$
 (3.2)

is a convex set.

• Sum of two sets: if X, Y are convex, then we have that

$$Z = \alpha X + \beta Y := \{ z = \alpha x + \beta y \mid x \in X, y \in Y \}$$

$$(3.3)$$

is a convex set.

- Affine maps: let $f: \mathbb{R}^n \to \mathbb{R}^m$ be an affine map, $C_1 \subseteq \mathbb{R}^n$ and $C_2 \subseteq \mathbb{R}^m$ be two convex sets, then $f(C_1)$ and $f^{-1}(C_2)$ are both convex sets.
- **Projection**: given perspective function $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$ with $p(x,t) = \frac{x}{t}$, $C_1 \subseteq \mathbb{R}^{n+1}$ and $C_2 \subseteq \mathbb{R}^n$ are convex sets, then both $p(C_1)$ and $p(C_2)$ are convex set.

3.3 Separation theorems

Given two convex set, we have the following separation hyperplane theorem.

Theorem 3.1 (separation hyperplane theorem). Let $C, D \subseteq \mathbb{R}^n$ be two convex set with $C \cap D = \emptyset$. Then there must exist $a \neq 0$ and $b \in \mathbb{R}$, such that

$$a^{\top}x + b \le 0, \forall x \in C, \text{ and } a^{\top}x + b \ge 0, \forall x \in D$$
 (3.4)

we call hyperplane $\{x \mid a^{\top}x + b = 0\}$ the separating hyperplane for C and D.

Note the separating hyperplane is not necessary unique, the weak inequality above is all necessary. For strict separation, a useful theorem is given below.

Theorem 3.2. Let C be a closed convex set, $x_0 \in \mathbb{R}^n$ and $x_0 \notin C$. Then there exist $a \neq 0$ and $b \in \mathbb{R}$, such that

$$a^{\top}x + b < 0, \forall x \in C, \text{ and } a^{\top}x_0 + b > 0$$
 (3.5)