

Section-I: General Ability

1.	If a man buys 5 liters of milk at Rs 18/- per liter. He mixes it with 20% water and sells it at Rs 20/- per liter, then what is the percentage gain?					
	(A) 22%	(B) 33.3%	(C) 40%	(D) 60%		
2.		ity of win on any gi		is 50 percent, what is the		
	(A) 8/125	(B) 2/25	(C) 5/16	(D) 8/25		
 4. 	A card is drawn from a pack of 52 cards. The probability of getting a double face card is					
	(A) $\frac{3}{26}$	(B) $\frac{1}{26}$	(C) $\frac{2}{13}$	(D) $\frac{3}{13}$		
	26	26	13	13		
4.	GVK Energy recently reported 2 nd quarter earnings. The analyst consensus estimate for 2nd quarter earnings per share was a 20% increase over last year's 2nd quarter earnings per share. If the company actually reported earnings per share that were 30% lower than analyst estimates, by what percent did this year's 2nd quarter earnings per share decrease over last year's 2nd quarter earnings per share?					
	(A) 12%	(B) 10%	(C) 15%	(D) 16%		
5.	If difference between SI and CI over an amount borrowed @ 8% per annum for 2 years is 8/-, then the principal amount is					
	(A) 800/-	(B) 100/-	(C) 1200/-	(D) 1250/-		
6.	Two trains are moving in the same direction at 70 kmph and 43 kmph respectively. A man in the slower train observes the 10 seconds elapse before the faster train completely passes by him. What is the length of faster train?					
	(A) 100m	(B) 75m	(C) 120m	(D) 50m		
7.	In a School consisting 350 students, each student is registered for at least one of three classes - Dance, Music and Kungfu. 150 students are registered for Dance, 150 students are registered for Music, and 200 students are registered for Kungfu. If only 50 students are registered for all three classes, how many students are registered for exactly two classes?					
	(A) 200	(B) 100	(C) 50	(D) 150		
8.	The price of onions increases by 25%, by what percent should a housewife reduces the consumption so that expenditure on onions can be same as before?					
	(A) 15%	(B) 16.66%	(C) 12%	(D) 20%		
9.	In how many ways can 2 children be seated in a row of 'n' chairs, so that there is always at least one empty chair between the two?					
	(A) n	(P) $n^2 + n$	(C) n^2 $3n$	(D) $n^2 = 3n + 2$		

I was 4ft tall in 1990 and my height increased a constant amount each year for the next 5

10.

	-	of the 5th year, I was I my height increase p		at the end of the 3th year. By		
	(A) 3/10	(B) 4/15	(C) 1/2	(D) 2/3		
11.	Choose the correct	t option, which is the	closest opposite in me	eaning to the word Pliant		
	(A) Humble	(B) Rigid	(C) Tactful	(D) Earnest		
11.12.13.14.15.	Choose the pair the pair.	nat best expresses a rel	ationship similar to the	hat expressed by the original		
	Inflate: Magnitu	de				
	(A) Measure: Weight		(B) Extend: Dura	ation		
	(C) Magnify: Coin	1	(D) Legislate: Ca	rime		
12. 13. 14.	Choose the most appropriate alternative from the options given below to complete the sentence.					
	You are as tall as					
	(A) me	(B) I	(C) mine	(D) I am		
14.	Choose the grammatically incorrect sentence.					
	(A) We understand his having to leave early					
	(B) Susan regrets John's being in trouble					
	(C) You should not rely on him calling you in the morning					
	(D) They are look	ing forward to our visi	ting them			
12. 13. 14.	Complete the sent	ence.				
	Hot milk has long	been a standard cure f	for insomnia because	of its quality.		
	(A) malevolent	(B) desultory	(C) soporific	(D) plaintive		
16.	Researchers have found that since the oil price increase of the 1990's, there has been a decline in home energy consumption. They concluded that almost all of the decline has been achieved through reduced standards of living and changes in the way people spend their time.					
	Each of the following, if true, would support the conclusion above EXCEPT:					
	(A) Sales of portable heaters rose as families concentrated their winter activities in a limited number of rooms.(B) During the winter months, more people frequented public places such as libraries and					
	community centers, and on the average, spent considerably longer periods in then than they had done previously. (C) More than 39 percent of households were able to decrease energy costs substantially					

(C) More than 39 percent of households were able to decrease energy costs substantially by having relatively inexpensive work done to improve the efficiency of their existing heating systems.

(D) At least 59% of the households maintained a lower indoor temperature than they had been accustomed to maintaining on very cold days.

17. Which of the following, if true, is the most logical completion of the argument below?

Companies defend their established practices and products, and resist change even if the market forces demand such change. When consumers insist on newer technologies and products, some companies respond to this demand by offering the same old-technology products with improved cosmetics. This rear-guard action is exemplified by

- (A) An automobile manufacturer offering a new line of hybrid cars running on electricity and conventional fuel to meet the growing demand for fuel-efficient cars.
- (B) A manufacturer of analog mobile phones offering a set of designer face plates on their analog phones in the face of a growing demand for digital mobile phones.
- (C) Analog phones in the face of a growing demand for digital mobile phones.
- (D) A computer manufacturer offering free office suite with every computer purchased.
- 18. Choose the part that contains error.

We think / her as / a/ silly girl/

- (A)
- (B)
- (C)
- (D)
- 19. "The reservation system in Indian railways should be abolished".

Choose the argument irrelevant to the above statement:

- (A) The income of railway reduces
- (B) It reduces the economical barriers between have's and have-not's
- (C) The reservation compartments need to be modified
- (D) The general ticket counters will get rushed
- children for the mistakes of their parents. 20. You mustn't
 - (A) Reproach
- (B) Reprieve
- (C) Repeal
- (D) Reject

Section-II: Mathematics, Chemistry, Physics

- $Z = \cos \theta + i \left[2\sin \theta \sqrt{3} \right]$, where z is purely real, the general solution is _____. 1.
 - (A) $\frac{\pi}{16}$

(B) $n\pi + (-1)^n \frac{\pi}{6}$

(C) $(2n+1)\frac{\pi}{2}+(-1)^n\frac{\pi}{3}$

- (D) $n\pi + (-1)^n \frac{\pi}{3}$
- 2. For a laser light show at an amusement park, the laser beam directed from the top of a 25ft building is to reflect from an object that is 90ft away from the base of the building at a point directly below the location of the laser. What is the angle of depression from the laser to the reflecting object?
 - (A) 15°
- (B) 20°
- (C) 25°
- (D) 30°

Find coefficient of x⁵⁰ in 3.

$$(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$$

- (A) $1000C_{50}$
- (B) $1001C_{50}$ (C) $1000C_{51}$
- (D) 1001C₅₁

4.	If $\tan x = \frac{b}{a}$ then the	ne value of acos2x+bsi	n2x is		
	(A) 1	(B) ab	(C) b	(D) a	
5.	If $\sin A = \frac{1}{\sqrt{10}}$ and	and $\sin B = \frac{1}{\sqrt{5}}$ where	A and B are acute	e angles then (A+B) is	
	<u>(A)</u> π	(B) $\pi/2$	(C) $\pi/3$	(D) π/4	
6.	The pair of straight lines $6x^2 + 13xy + 6y^2 + x + 4y - 2 = 0$ meet the coordinate axes at P, Q, R, S. Then the equation of the circle passing through these points is				
	(A) $6x^2 + 6y^2 + x$	-4y-2=0	(B) $6x^2 + 6y^2 - x - 6y^2 - x $	+4y-z=0	
	(C) $6x^2 + 6y^2 - x$	-4y-2=0	(D) $6x^2 + 6y^2 + x - 6y^2 + x $	+4y-2=0	
7.	origin is 2 units a centre of the circle	and a diameter of the	circle contains the eq	uation $x - y = 3.5$ then the	
	(A) (1,2.5)	(B) (-1,-2.5)	(C) (-1,2.5)	(D) (1,-2.5)	
8.	(Where A is a squaugmented matrix. (A) there is only a	uare matrix, <mark>unknown</mark>) trivial solution	X and B are column (B) there is a unique	vectors and [A:B] is the ne solution	
	INDIAN ENGINEERING				
5. If $\sin A = \frac{1}{\sqrt{10}}$ and $\sin B = \frac{1}{\sqrt{5}}$ where A and B are acut $\frac{1}{\sqrt{10}}$. (A) π (B) $\pi/2$ (C) $\pi/3$ 6. The pair of straight lines $6x^2 + 13xy + 6y^2 + x + 4y - 2 = 0$ med Q, R, S. Then the equation of the circle passing through these p (A) $6x^2 + 6y^2 + x - 4y - 2 = 0$ (B) $6x^2 + 6y^2 - x$ (C) $6x^2 + 6y^2 - x - 4y - 2 = 0$ (D) $6x^2 + 6y^2 + x$ 7. The length of the tangent from the point (-2, -1) drawn to a origin is 2 units and a diameter of the circle contains the expectation of the circle is (A) (1,2.5) (B) (-1,-2.5) (C) (-1,2.5) 8. In the system of linear equations AX=B, if rank [A] < rank [A: (Where A is a square matrix, unknown X and B are column augmented matrix.) (A) there is only a trivial solution (B) there is a uniq (C) there are infinitely many solutions (D) there is no solution (D) there is no solution (B) 156 (C)144 10. Consider a set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. A binary relation R (a - b) mod 10 = 0; then which of the following statements are 1. R is reflexive 2. R is anti-symmetric 3. R is symmetric 4. R is transitive (A) 1, 2 (B) 1, 3 (C) 1, 3, 4	around a round table such				
	(A) 130	(B) 156	(C)144	(D) 162	
10.	Consider a set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. A binary relation R on A is defined as aRb, iff $(a-b) \mod 10 = 0$; then which of the following statements are true? 1. R is reflexive				
	2. R is anti-symmetric				
	4. R is transitive				
	(A) 1, 2	(B) 1, 3	(C) 1, 3, 4	(D) 1, 2, 3, 4	
11.	An electron in Bohr's H-atom has energy of -3.4eV. What is the angular, momentum of the electron?				
	(A) $2.5 \times 10^{-34} \text{JS}$	(B) 2.9×10^{-25} JS	(C) $2.6 \times 10^{-34} \text{ JS}$	(D) $2.11 \times 10^{-34} \text{JS}$	
12.	How many orbitals	s are there in the shell	with $n = 3$?		
	-			(D) 2	

13.	Which of the fo	llowing compounds is	expected to be coloured?			
	(A) Ag_2So_4	(B) CuF ₂	(C) MgF ₂	(D) Cucl		
14.	The rate of diffumass of X is	usion of methane at a g	iven temperature is twice	that of X. The molecular		
	(A) 64.0	(B) 32.0	(C) 4.0	(D) 8.0		
15.	An element has represented by	an atomic number 9 a	nd mass number 19 respe	ectively. Its ion is		
	$(A) M^{+}$	(B) M ²⁺	(C) M ⁻	(D) M ²⁻		
16.	(A) Freely mov(B) Freely mov(C) Freely mov	ing protons				
17.	Among the fello	oving magations Entrop		_		
17.	Among the following reactions Entropy decrease is maximum in $(A)NH_3(g)+HCl(g) \rightarrow NH_4Cl(S)$					
	(B) NaoH(aq) + HCl(aq) \rightarrow Nacl(aq) + H ₂ O					
	$(C)CaCO_3(S)$	\rightarrow Cao(S) + Co ₂ (g)				
	(A) B	(B) A	(C) C	(D) All are Equal		
18.	(B) Mutual disc (C) Large amou	ds are present in the up charge of oppositely ch ant of water is present in	oper atmosphere arged clouds resulting in	_		
19.	Metal ions exhibits colours when they are ignited due to					
19.	(A) Metal defici	•	(B) Frenkel defect			
	(C) Schottley defect (D) Metal excess defect					
20.	HX is a weak acid ($k_a = 10^{-5}$). It forms a salt NaX (0.1M) on reacting with caustic soda. The degree of hydrolysis of NaX is					
	(A) 0.01%	(B) 0.0001%	(C) 0.1%	(D) 0.5%		
21.	Which of the fo (A) Work	llowing does not have (B) Heat	relation with the first law (C) Internal energy	<u>*</u>		
22.	Which of the fo	llowing electromagneti (B) γ- rays	ic radiation has the longe (C) X-rays	st wavelength? (D) α-rays		

A photon energy corresponding to the red light of maximum wavelength is approximately

equal to

23.

	(A) 1.5 eV	(B) 1.0 eV	(C) 2.5 Ev	(D) 2.0 eV		
24.	_	articles of mass M and ir linear momenta?	4M have kinetic energ	ies in the ratio of 2: 1. W	√hat	
	(A) $\frac{1}{2}$	(B) $\frac{1}{\sqrt{2}}$	(C) $\frac{1}{4}$	(D) $\frac{1}{16}$		
25.	A satellite is revolving around the earth in a circular orbit of radius R . Its period of revolution varies as					
	$(A) \sqrt{R}$	(B) R	$(C)R^{\frac{3}{2}}$	(D) R^2		
26.		or circuit connected in current is 1 mA. The		have kinetic energies in the ratio of 2: 1. What (C) $\frac{1}{4}$ (D) $\frac{1}{16}$ in a circular orbit of radius R . Its period of (C) $R^{\frac{3}{2}}$ (D) R^2 amon emitter mode, the collector current is 40 ent gain β is (C) $\frac{40}{41}$ (D) $\frac{39}{41}$ boom temperature, if these materials are cooled ince of reases reases (B) NOT and AND gates (D) NOR and NAND gates arated by a distance R . The moment of inertial mass is (C) $\frac{1}{2}MR^2$ (D) $\frac{1}{4}MR^2$		
	$(A)\frac{41}{40}$	(B) $\frac{39}{40}$	(C) $\frac{40}{41}$	(D) $\frac{39}{41}$		
27.	Consider silicon and copper materials at room temperature, if these materials are cooled from room temperature to 75 K. The resistance of					
	(A) silicon and copper materials increases					
	(B) silicon and copper materials decreases					
	(C) copper increases and that of silicon decreases					
	(D) copper decre	ases and that of silico	n increases			
28.	Which of the following gates are the basic building blocks in digital circuits?					
	(A) AND and OR gates (B) NOT and AND gates					
	(C) NOT and OF	R gates	(D) NOR and NA	oit of radius R . Its period of $(D) R^2$ de, the collector current is 40 $(D) \frac{39}{41}$ digital circuits? AND gates JAND gates nice R . The moment of inertial $(D) \frac{1}{4} MR^2$ quation $y = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$		
29.	A diatomic molecule, each of mass M, separated by a distance R. The moment of inertia of the diatomic molecule about its centre of mass is					
	$(A) 2MR^2$	(B) MR^2	(C) $\frac{1}{2}MR^2$	$(D)\frac{1}{4}MR^2$		
30.	A wave in a stretched string at time 't' is described by the equation $y = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$.					
	The maximum particle velocity is					
	$(A)\frac{\omega}{k}$	$(B)\frac{d\omega}{dk}$	(C) $\frac{x}{t}$	(D) Aω		