

direct product of partial algebras

 ${\bf Canonical\ name} \quad {\bf DirectProductOfPartialAlgebras}$

Date of creation 2013-03-22 18:43:40 Last modified on 2013-03-22 18:43:40

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 08A55
Classification msc 08A62
Classification msc 03E99
Defines direct product

Let \boldsymbol{A} and \boldsymbol{B} be two partial algebraic systems of type τ . The *direct* product of \boldsymbol{A} and \boldsymbol{B} , written $\boldsymbol{A} \times \boldsymbol{B}$, is a partial algebra of type τ , defined as follows:

- the underlying set of $\mathbf{A} \times \mathbf{B}$ is $A \times B$,
- for each n-ary function symbol $f \in \tau$, the operation $f_{A \times B}$ is given by:

for $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$, $f_{\mathbf{A} \times \mathbf{B}}((a_1, b_1), \ldots, (a_n, b_n))$ is defined iff both $f_{\mathbf{A}}(a_1, \ldots, a_n)$ and $f_{\mathbf{B}}(b_1, \ldots, b_n)$ are, and when this is the case,

$$f_{\mathbf{A}\times\mathbf{B}}((a_1,b_1),\ldots,(a_n,b_n)) := (f_{\mathbf{A}}(a_1,\ldots,a_n),f_{\mathbf{B}}(b_1,\ldots,b_n)).$$

It is easy to see that the type of $\mathbf{A} \times \mathbf{B}$ is indeed τ : pick $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$ such that $f_{\mathbf{A}}(a_1, \ldots, a_n)$ and $f_{\mathbf{B}}(b_1, \ldots, b_n)$ are defined, then $f_{\mathbf{A} \times \mathbf{B}}((a_1, b_1), \ldots, (a_n, b_n))$ is defined, so that $f_{\mathbf{A} \times \mathbf{B}}$ is non-empty, where all operations are defined componentwise, and the two constants are (0, 0) and (1, 1).

For example, suppose k_1 and k_2 are fields. They are both partial algebras of type $\langle 2, 2, 1, 1, 0, 0 \rangle$, where the two 2's are the arity of addition and multiplication, the two 1's are the arity of additive and multiplicative inverses, and the two 0's are the constants 0 and 1. Then $k_1 \times k_2$, while no longer a field, is still an algebra of the same type.

Let A, B be partial algebras of type τ . Can we embed A into $A \times B$ so that A is some type of a subalgebra of $A \times B$?

For example, if we fix an element $b \in B$, then the injection $i_b : A \to A \times B$, given by $i_b(a) = (a, b)$ is in general not a homomorphism only unless b is an idempotent with respect to every operation f_B on B (that is, $f_B(b, \ldots, b) = b$). In addition, b would have to be the constant for every constant symbol in τ . Following from the example above, if we pick any $r \in k_2$, then r would have to be 0, since, $(s_1 + s_2, 2r) = i_r(s_1) + i_r(s_2) = i_r(s_1 + s_2) = (s_1 + s_2, r)$, so that 2r = r, or r = 0. But, on the other hand, $i_r(s^{-1}) = (s, r)^{-1} = (s^{-1}, r^{-1})$, forcing r to be invertible, a contradiction!

Now, suppose we have a homomorphism $\sigma : \mathbf{A} \to \mathbf{B}$, then we may embed \mathbf{A} into $\mathbf{A} \times \mathbf{B}$, so that \mathbf{A} is a subalgebra of $\mathbf{A} \times \mathbf{B}$. The embedding is given by $\phi(a) = (a, \sigma(a))$.

Proof. Suppose $f_{\mathbf{A}}(a_1, \ldots, a_n)$ is defined. Since σ is a homomorphism, $f_{\mathbf{B}}(\sigma(a_1), \ldots, \sigma(a_n))$ is defined, which means $f_{\mathbf{A} \times \mathbf{B}}((a_1, \sigma(a_1)), \ldots, (a_n, \sigma(a_n))) = f_{\mathbf{A} \times \mathbf{B}}(\phi(a_1), \ldots, \phi(a_n))$

is defined. Furthermore, we have that

$$f_{\mathbf{A}\times\mathbf{B}}((a_1,\sigma(a_1)),\ldots,(a_n,\sigma(a_n))) = (f_{\mathbf{A}}(a_1,\ldots,a_n),f_{\mathbf{B}}(\sigma(a_1),\ldots,\sigma(a_n)))$$

$$= (f_{\mathbf{A}}(a_1,\ldots,a_n),\sigma(f_{\mathbf{A}}(a_1,\ldots,a_n)))$$

$$= \phi(f_{\mathbf{A}}(a_1,\ldots,a_n)),$$

showing that ϕ is a homomorphism. In addition, if $f_{\mathbf{A}\times\mathbf{B}}(\phi(a_1),\ldots,\phi(a_n))$ is defined, then it is clear that $f_{\mathbf{A}}(a_1,\ldots,a_n)$ is defined, so that ϕ is a strong homomorphism. So $\phi(\mathbf{A})$ is a subalgebra of $\mathbf{A}\times\mathbf{B}$. Clearly, ϕ is one-to-one, and therefore an embedding, so that \mathbf{A} is isomorphic to $\phi(\mathbf{A})$, and we may view \mathbf{A} as a subalgebra of $\mathbf{A}\times\mathbf{B}$.

Remark. Moving to the general case, let $\{A_i \mid i \in I\}$ be a set of partial algebras of type τ , indexed by set I. The *direct product* of these algebras is a partial algebra A of type τ , defined as follows:

- the underlying set of \mathbf{A} is $A := \prod \{A_i \mid i \in I\},\$
- for each n-ary function symbol $f \in \tau$, the operation $f_{\mathbf{A}}$ is given by: for $a \in A$, $f_{\mathbf{A}}(a)$ is defined iff $f_{\mathbf{A}_i}(a(i))$ is defined for each $i \in I$, and when this is the case,

$$f_{\mathbf{A}}(a)(i) := f_{\mathbf{A}_{i}}(a(i)).$$

Again, it is easy to verify that A is indeed a τ -algebra: for each symbol $f \in \tau$, the domain of definition $\text{dom}(f_{A_i})$ is non-empty for each $i \in I$, and therefore the domain of definition $\text{dom}(f_A)$, being $\prod \{\text{dom}(f_{A_i}) \mid i \in I\}$, is non-empty as well, by the axiom of choice.

References

[1] G. Grätzer: Universal Algebra, 2nd Edition, Springer, New York (1978).