Atmospheric Implications of Ocean Alkalinity Enhancement

Jacqueline Kiszka

Department of Meteorology & Atmospheric Science Dr. Kenneth Davis

Introduction

- Proposal to implement ocean alkalinity enhancement carbon capture in the Chesapeake Bay
 - Increase in water alkalinity converts dissolved carbon dioxide into carbonate and bicarbonate
 - The water then absorbs anthropogenic CO₂ from the air
- Questions:
 - i. Will the decrease in carbon dioxide in the atmosphere be noticeable and detectable?
 - ii. What will the effects be on the ocean and atmosphere?

Methods

- A hypothetical OAE scenario was run that would result in an ingassing of 5000 tons of CO₂ per year
- Data from before & after the hypothetical alkalinity enhancement was tested for its atmospheric impact:
 - i. In terms of eddy covariance from flux tower measurements
 - ii. Using atmospheric budgeting to determine the change in mole fraction of CO₂ in the air as it crosses the bay

Prediction based on OAE scenario (Hinson 2021)

Conclusions

- There would not be a detectable difference in CO₂ as air crosses the bay (< 2 ppm)
- The change in air-sea flux (about 3 μmolCO₂/m²s) would be detectable for a flux tower in the Chesapeake Bay
 - There would be a larger change in flux in the winter than the summer
 - There is not currently an observation tower in the bay that could make these observations