Mathematics for Computer Science Linear Algebra

Lecture 18: Orthogonal matrices and spectral decomposition

Andrei Krokhin

March 4, 2021

Contents for today's lecture

- · Orthogonal matrices: definition, properties, and characterisations
- Orthogonal diagonalisation: a characterisation and an algorithm
- Spectral decomposition of symmetric matrices

Reminder from earlier lectures

- Orthonormal = consisting of unit vectors, which are pairwise orthogonal
- Every finite-dimensional inner product space V has an orthonormal basis,
 which can be constructed from any basis of V via the Gram-Schmidt process.
- ullet For any column vectors ${f u}$ and ${f v}$ in ${\Bbb R}^n$ with Euclidean inner product, we have

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}.$$

Orthogonal matrices: definition

Definition

A square matrix Q is called orthogonal if $Q^T = Q^{-1}$ (equivalently, $Q^TQ = I$).

Example: Rotation and reflection matrices in \mathbb{R}^2 are orthogonal. Easy to check:

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Example: All permutation matrices are orthogonal.

Rows and columns in orthogonal matrices

Theorem

For any $n \times n$ matrix Q, TFAE:

- Q is orthogonal.
- **②** The rows of Q form an orthonormal basis in \mathbb{R}^n (with the Euclidean inner product).
- **3** The columns of Q form an orthonormal basis in \mathbb{R}^n (with the Euclidean inner product).

Proof.

We prove $(1) \Leftrightarrow (3)$, the proof of $(1) \Leftrightarrow (2)$ is similar.

If $Q = [\mathbf{u}_1 | \dots | \mathbf{u}_n]$ then each entry (i, j) in the product $Q^T Q$ is $\langle \mathbf{u}_i, \mathbf{u}_j \rangle$.

Hence, $Q^TQ = I$ iff we have $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ for all $i \neq j$ and $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 1$ for all i = j, which holds iff the set $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is orthonormal.

Any orthonormal set with n vectors in \mathbb{R}^n is a basis.

Properties of orthogonal matrices

Theorem

- The transpose of an orthogonal matrix is also orthogonal
- The inverse of an orthogonal matrix is also orthogonal
- 3 A product of orthogonal matrices is also orthogonal.
- If Q is orthogonal then det(Q) = 1 or det(Q) = -1.

All four proofs are very easy (one-line) exercises.

Orthogonal matrices as linear operators

Theorem

For any $n \times n$ matrix Q, TFAE:

- Q is orthogonal.
- $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proof.

- (1) \Rightarrow (3). If Q is orthogonal, $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^T Q\mathbf{y} = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle$.
- $(3) \Rightarrow (2)$. Obvious, use (3) with $\mathbf{x} = \mathbf{y}$.
- (2) \Rightarrow (1). Note: if $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is the standard basis then $Q = [Q\mathbf{e}_1 | \dots | Q\mathbf{e}_n]$.

We have $||Q\mathbf{e}_i|| = ||\mathbf{e}_i|| = 1$ for all i, and if $i \neq j$ then $\langle Q\mathbf{e}_i, Q\mathbf{e}_j \rangle = 0$ because

$$2 = ||\mathbf{e}_{i} + \mathbf{e}_{j}||^{2} = ||Q(\mathbf{e}_{i} + \mathbf{e}_{j})||^{2} = ||Q\mathbf{e}_{i} + Q\mathbf{e}_{j}||^{2} = \langle Q\mathbf{e}_{i} + Q\mathbf{e}_{j}, Q\mathbf{e}_{i} + Q\mathbf{e}_{j} \rangle = ||Q\mathbf{e}_{i}||^{2} + 2\langle Q\mathbf{e}_{i}, Q\mathbf{e}_{i} \rangle + ||Q\mathbf{e}_{i}||^{2} = ||\mathbf{e}_{i}||^{2} + 2\langle Q\mathbf{e}_{i}, Q\mathbf{e}_{i} \rangle + ||\mathbf{e}_{i}||^{2} = 2 + 2\langle Q\mathbf{e}_{i}, Q\mathbf{e}_{i} \rangle.$$

The columns of Q form an orthonormal set, hence Q is orthogonal.

Orthogonal diagonalisation

Let A and B be $n \times n$ matrices. Recall:

- A and B are similar if there is an invertible matrix P such that $P^{-1}AP = B$.
- If B above can be chosen to be diagonal then we say that A is diagonalisable and that P diagonalises A.
- ullet We proved: A is diagonalisable iff it has n linearly independent eigenvectors.

If, in addition, P can be chosen to be orthogonal then we say, respectively, that

- A and B are orthogonally similar.
- A is orthogonally diagonalisable and that P orthogonally diagonalises A (and then $P^TAP = B$, since $P^T = P^{-1}$).

Question: Which matrices are orthogonally diagonalisable?

The spectral theorem

Theorem (Spectral theorem)

For any $n \times n$ matrix A, TFAE:

- **1** A is orthogonally diagonalisable, i.e. $A = QDQ^T$ for some orthogonal matrix Q and some diagonal matrix D.
- A has an orthonormal set of n eigenvectors.
- A is symmetric.

Proof.

The proof of $(1) \Leftrightarrow (2)$ is the same as for the general diagonalisation (+ the fact that a matrix is orthogonal iff it has orthonormal columns).

(1)
$$\Rightarrow$$
 (3) If $A = QDQ^T$ then $A^T = (QDQ^T)^T = (Q^T)^T D^T Q^T = QDQ^T = A$.

 $(3) \Rightarrow (1)$ Proof is omitted.

Eigen-properties of symmetric matrices

Theorem

If A is a symmetric matrix then

- all (complex) eigenvalues A are real, and
- eigenvectors from different eigenspaces are orthogonal.

Proof.

We proved (1) in lecture 14 (about complex vector spaces).

To prove (2), assume that λ_1 and λ_2 are two different eigenvalues of A, and take any two eigenvectors \mathbf{u}_1 and \mathbf{u}_2 corresponding to λ_1 and λ_2 , respectively. We have

$$\begin{split} \lambda_1 \langle \mathbf{u}_1, \mathbf{u}_2 \rangle &= \langle \lambda_1 \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle A \mathbf{u}_1, \mathbf{u}_2 \rangle = (A \mathbf{u}_1)^T \mathbf{u}_2 = \\ \mathbf{u}_1^T A^T \mathbf{u}_2 &= \mathbf{u}_1^T A \mathbf{u}_2 = \langle \mathbf{u}_1, A \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \lambda_2 \mathbf{u}_2 \rangle = \lambda_2 \langle \mathbf{u}_1, \mathbf{u}_2 \rangle. \end{split}$$

Since $(\lambda_1 - \lambda_2)\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$ and $\lambda_1 \neq \lambda_2$, we get $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$, as required.

How to orthogonally diagonalise a symmetric matrix

Algorithm (assuming A is symmetric):

- Step 1. Find the eigenvalues and a basis in each eigenspace of A.
- Step 2. Apply Gram-Schmidt to each basis to obtain an orthonormal basis for each eigenspace.
- Step 3. Form the matrix Q whose columns are the vectors found in Step 2. Q will orthogonally diagonalise A and the diagonal of $D = Q^T A Q$ contains the eigenvalues of A in the same order as eigenvectors in Q.

Remarks:

- Steps 1 and 3 were also part of the (general) diagonalisation algorithm.
- The columns of Q will form an orthonormal set because eigenvectors from different eigenspaces are orthogonal (and the rest is guaranteed by Step 2).
- This algorithm applies only to symmetric matrices and always returns a
 diagonalisation, unlike the general diagonalisation algorithm (which applies to
 arbitrary square matrices and can return "not diagonalisable").

Example

Orthogonally diagonalise

$$A = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right).$$

Step 1. Find the eigenvalues of A: $\lambda_1 = 2$ and $\lambda_2 = 8$.

Find bases for the eigenspaces: $\{\mathbf u_1=(-1,1,0),\mathbf u_2=(-1,0,1)\}$ for $\lambda_1=2$ and $\{\mathbf u_3=(1,1,1)\}$ for $\lambda_2=8$

Step 2. Apply Gram-Schmidt to $\{\mathbf{u}_1,\mathbf{u}_2\}$ to get an orthonormal basis for $span(\mathbf{u}_1,\mathbf{u}_2)$: $\mathbf{v}_1=(-1/\sqrt{2},1/\sqrt{2},0)$ and $\mathbf{v}_2=(-1/\sqrt{6},-1/\sqrt{6},2/\sqrt{6})$.

Apply G-S to (i.e. normalise) $\mathbf{u}_3=(1,1,1)$ to get $\mathbf{v}_3=(1/\sqrt{3},1/\sqrt{3},1/\sqrt{3})$.

Step 3. Form the matrix Q. We have

$$Q = \left(\begin{array}{ccc} -1\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{array} \right) \quad \text{and} \quad Q^T A Q = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{array} \right)$$

Spectral decomposition

Let A be a symmetric $n \times n$ matrix and let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A, with $\lambda_1, \dots, \lambda_n$ the corresponding eigenvalues.

$$A = QDQ^{T} = (\mathbf{u}_{1}|\dots|\mathbf{u}_{n}) \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{pmatrix} =$$

$$(\lambda_1 \mathbf{u}_1 | \dots | \lambda_n \mathbf{u}_n) \begin{pmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_n^T \end{pmatrix} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T.$$

Theorem (Spectral decomposition)

Let A be a symmetric $n \times n$ matrix. With the \mathbf{u}_i 's and the λ_i 's as above,

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \ldots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T.$$

Geometric interpretation of spectral decomposition

Consider the matrix transformation T_A corresponding to a symmetric matrix A:

$$T_A(\mathbf{x}) = A\mathbf{x} = (\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \ldots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T)\mathbf{x}.$$

If we denote $W_i = span(\mathbf{u}_i)$, then we have

$$\lambda_i \mathbf{u}_i \mathbf{u}_i^T \mathbf{x} = \lambda_i \mathbf{u}_i (\mathbf{u}_i^T \mathbf{x}) = \lambda_i \mathbf{u}_i (\langle \mathbf{u}_i, \mathbf{x} \rangle) = \lambda_i (\langle \mathbf{u}_i, \mathbf{x} \rangle \mathbf{u}_i) = \lambda_i \operatorname{proj}_{\mathcal{W}_i} \mathbf{x}, \text{ and so}$$

$$T_A(\mathbf{x}) = A\mathbf{x} = \lambda_1 \operatorname{proj}_{W_1} \mathbf{x} + \lambda_2 \operatorname{proj}_{W_2} \mathbf{x} + \ldots + \lambda_n \operatorname{proj}_{W_n} \mathbf{x}.$$

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & -2 \end{array}\right)$$

$$\lambda_1 = -3, \quad \lambda_2 = 2$$

$$\textbf{u}_1 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 1 \\ -2 \end{array} \right), \ \textbf{u}_2 = \frac{1}{\sqrt{5}} \left(\begin{array}{c} 2 \\ 1 \end{array} \right)$$

What we learnt today

- Orthogonal matrices, their characterisations and properties
- Spectral theorem: Orthogonally diagonalisable = symmetric
- Eigen-properties of symmetric matrices
- Spectral decomposition for symmetric matrices

Next time:

Singular value decomposition