Accepted Manuscript

Nail Squamous Cell Carcinoma: A Hidden High-risk HPV Reservoir for Sexually Transmitted Infections

Akira Shimizu, MD, Ph.D, Yuko Kuriyama, MD, Michiko Hasegawa, MD, Atsushi Tamura, MD, Ph.D, Osamu Ishikawa, MD, Ph.D

JAAD

TO THE STATE OF THE STATE

PII: S0190-9622(19)30514-6

DOI: https://doi.org/10.1016/j.jaad.2019.03.070

Reference: YMJD 13320

To appear in: Journal of the American Academy of Dermatology

Received Date: 6 February 2019
Revised Date: 20 March 2019
Accepted Date: 20 March 2019

Please cite this article as: Shimizu A, Kuriyama Y, Hasegawa M, Tamura A, Ishikawa O, Nail Squamous Cell Carcinoma: A Hidden High-risk HPV Reservoir for Sexually Transmitted Infections, *Journal of the American Academy of Dermatology* (2019), doi: https://doi.org/10.1016/j.jaad.2019.03.070.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Article type: Review article 1 Title: Nail Squamous Cell Carcinoma: A Hidden High-risk HPV Reservoir for Sexually 2 3 **Transmitted Infections** 4 Akira Shimizu, MD, Ph.D, a Yuko Kuriyama, MD, a Michiko Hasegawa, MD, bAtsushi 5 Tamura, MD, Ph.D, b Osamu Ishikawa, MD, Ph.D. a 6 7 ^a Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, 8 Gunma, Japan, ^bIsesaki Municipal Hospital, Isesaki, Japan. 9 10 11 Corresponding author: Dr. Akira Shimizu, Department of Dermatology, Gunma University 12 Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan. E-mail: shimizuakira@gunma-u.ac.jp 13 Funding sources: None 14 15 **Conflicts of Interest:** None declared. 16 Reprint requests: Akira Shimizu Manuscript word count: 2396 17 **Abstract word count**: 176 18

References: 81

Figures: 2
Supplementary figures: 0
Tables: 3
Supplementary tables: 0
Keywords: Human papillomavirus; nail apparatus; Bowen's disease; squamous cell
carcinoma; sexually transmitted infections

Abstract

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Human papillomavirus (HPV) causes cervical cancer, anal cancer, vulvar cancer, vaginal cancer, penile cancer and oropharyngeal cancer. SCC in the genital region in particular is recognized to be caused by HPV infection, and intraepithelial lesions of the penis and vulva are termed penile intraepithelial neoplasia (PIN) and vulvar intraepithelial neoplasia (VIN), respectively. Although SCC of the nail apparatus is recognized as being associated with high-risk HPVs, it is not well-known in general medicine, and its analysis has been insufficient. In this article, we reviewed 136 cases of HPV-associated nail SCC and SCC in situ and delineated their clinical characteristics. We found that half of the cases were high-risk HPV-associated. Almost all of the types were high-risk α-HPVs. This disease had male dominance and left digit 3 and right digits 1-3 were typically affected. In this review, 24% of the cases of nail SCC had a history of other HPV-associated diseases, suggesting the possibility of genito-digital transmission. We propose that nail SCC is a hidden high-risk HPV-associated reservoir and should be recognized as a sexually transmitted infection.

43 Squamous cell carcinoma (SCC) of the skin can develops from preceding lesions, such as actinic keratosis, Bowen's disease, burn scars and chronic radiation dermatitis. Bowen's 44 disease is SCC in situ and is sometimes induced by high-risk human papillomavirus (HPV) 45 infection. ^{1, 2} We previously reported that genital SCC and nail SCC in situ (Bowen's disease) 46 are HPV-associated diseases. ^{3,4} SCC in the genital region in particular is recognized to be 47 caused by HPV infection, and intraepithelial lesions of the penis and vulva are termed penile 48 intraepithelial neoplasia (PIN) and vulvar intraepithelial neoplasia (VIN), respectively. ⁵ 49 Although 60% to 80% of cases of SCC of the nail apparatus have been reported to be 50 associated with high-risk HPVs (mainly HPV 16) ⁶⁻⁸, this fact is not widely known in general 51 medicine, and systemic analyses have not been performed. 52 In this article, we reviewed 136 cases of HPV-associated nail SCC and SCC in situ 53 and delineated their clinical characteristics. Based on analyses of HPV types reported in the 54 literature, we propose that nail SCC is a hidden high-risk HPV-associated reservoir site for

57

55

56

sexually transmitted infection (STI).

The nail apparatus consists of the nail plate, nail matrix, nail bed, hyponychium, grooves and fold surrounding the nail plate. The nail matrix is located at the ventral surface of the proximal portion of the nail and forms the nail plate (Figure 1A). The most proximal portion of the nail matrix lies proximal to the nail root, which is embedded beneath the proximal nail fold (Figure 1B).

We previously reported on cases of nail Bowen's disease (Figure 1C). ^{3, 4} In these cases, numerous HPV-positive cells were seen around the nail fold, especially in the nail matrix (Figure 1D, E). Of note, HPV-positive cells were distributed even in the epithelial cells of the proximal nail fold, suggesting that the HPV infection spreads beyond the clinically visible lesion. The HPV-positive areas were plotted in a schematic illustration shown in Figure 1F.

In this article, we classified nail lesions of SCC into two types: periungual type (PUT), defined as lesions occurring in the periungual area, such as the nail fold and nail groove (Figure 1G); and subungual type (SUT), defined as lesions located beneath the nail plate. "Longitudinal melanonychia type (LMT)" is clinically characterized by a pigmented streak of the nail plate and is included in SUT (Figure 1H).

Search strategy and selection criteria

- We searched the English literature of HPV-associated nail SCC from 1983 to 2017 by
- PubMed using the following keywords: human papillomavirus, HPV, nail, nail bed, nail
- matrix, digits, fingers, SCC, Bowen disease, Bowen's disease and skin cancer.

80

81

Patient demographics

- We found 136 patients with nail SCC (53 patients) and SCC in situ (83 patients). Since
- multiple lesions were seen in 11 patients, the number of tumors on the fingers and toes was
- 140 and 16 tumors, respectively (Table 1, 2). We used the term "nail SCC" for both invasive
- SCC and SCC in situ unless otherwise specified. The patients' ages ranged from 12 to 85
- years (average age 52.2 years and median age 50; 5 cases were unknown) and sex ratio was
- 2.3:1 (92 males and 39 females; 5 cases were unknown). Right fingers were affected in 61
- 88 cases and left fingers in 54 cases: right f-1,17; f-2, 17; f-3 17; f-4, 6; f-5, 4 (Figure 2A) and
- 89 left f-1, 1; f-2, 12; f-3, 19; f-4, 13; f-5, 9 (Figure 2B). The most frequently affected digits
- were the left middle finger (f-3) followed by the right middle finger (f1-3). Five cases had toe
- lesions. Clinically, 46 (34%) of the tumors were classified as PUT, 35 (26%) as SUT/LMT
- 92 and 7 as both types (5%) (Table 1).

93

94

HPV types associated with nail SCC

Although the number was limited, 7 case series of nail SCC were reported with analyses of

96 HPV types, in which 47% (49/104) of nail SCC cases were positive for high-risk HPVs 97 (Table 3). This value was comparable to those of other HPV-associated cancers ⁹.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Next, we collected the HPV types described in the literature, irrespective of the methods used. In 21 patients, multiple HPVs were detected. The detection rates of HPV types were as follows: high-risk HPV type 16 in 80 cases (57%), HPV56 in 12 cases (9%), HPV73 in 8 cases (6%), HPV33 in 7 cases (5%) and HPV58 in 6 cases (3%). As expected, HPV16 accounted for more than half of the lesions. When the lesions were classified into invasive and in situ lesions, HPV16 accounted for 50% of nail SCC in situ cases and 73% of invasive SCC cases (Figure 2C, D). Although the number was limited, the detection rates of minor HPV types were also different between invasive and in situ lesions. For example, HPV56 was observed in 12% (11 cases) of in situ lesions and 0% of invasive lesions (Figure 2D). There is increasing evidence that, under certain circumstances, such as immunodeficiency, β-HPVs play a role in cutaneous carcinogenesis. β-HPVs are ubiquitous in normal hair follicles from early childhood. Almost all of the HPVs associated with nail SCC were α-HPVs; however, β-HPVs 9, 17, 21 and 49 were detected in 2 patients. ^{10, 11}

Finally, we compared the HPV types between the two clinical types. In PUT, the HPVs detected were as follows: HPV16 in 24 cases (45%), HPV73 in 6 cases (11%), HPV33 in 5 cases (9%), HPV58 in 4 cases (9%), HPV35 in 3 cases (6%), HPV34 in 3 cases (6%), HPV51 in 3 cases (6%), HPV18 in 2 cases (4%), HPV26 in 2 cases (4%) and HPVs 9, 11, 17,

21, 49 and 82 in 1 case each (Figure 2E). In SUT/LMT, the HPVs detected were as follows: HPV16 in 15 cases (47%), HPV56 in 11 cases (34%), HPV59 in 3 cases (9%), HPV18 in 2 cases (6%) and HPVs 6, 26, 33, 39, 45, 52, 68 and 84 in 1 case each (Figure 2F). While HPV16 was most frequent in both types, other HPVs were detected in varying degrees of frequency. Of note, HPV56 showed characteristics typical of LMT, as HPV56 was detected in 10 out of 15 cases. HPV56, a minor HPV for cervical cancers, may have specific affinity for subungual epithelium.

HPV susceptibility of the nail matrix

All of the lesions included in this article involved the proximal nail fold (Figure 1G, H), suggesting that HPV infection in the nail matrix cells occurs secondary to infection of the nail fold. Given that HPV infects cervical squamocolumnar junction cells in cervical cancer, ¹²⁻¹⁵ similar cells in the nail apparatus might be targeted by HPV. Furthermore, Ito et al. reported the absence of Langerhans cells in the nail matrix. ¹⁶ The immunological characteristic of the nail matrix may account in part for its susceptibility to HPV infection. Further studies on this point will be required.

Treatment and recurrence rate of HPV-associated nail SCC

Several treatments are available for nail SCC. In this review, we summarize the treatments

the Mohs micrographic technique was most frequently performed, with a recurrence rate of 23% among the 30 reported cases. The largest single-institution study was reported by Alam et al., who found that recurrence occurred in 6 (26%) out of 23 cases treated with Mohs surgery. Interestingly, the recurrence rate of nail SCC invasive after Mohs micrographic surgery (26%) was higher than the average recurrence rate for all cutaneous SCC after Mohs micrographic surgery (3%). ^{17, 18} It was reported that HPV-associated nail SCCs exhibited higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual oncogenic HPV persisting in cells beyond the visible tumor margin (seen in Figure 1E) may
et al., who found that recurrence occurred in 6 (26%) out of 23 cases treated with Mohs surgery. Interestingly, the recurrence rate of nail SCC invasive after Mohs micrographic surgery (26%) was higher than the average recurrence rate for all cutaneous SCC after Mohs micrographic surgery (3%). ^{17, 18} It was reported that HPV-associated nail SCCs exhibited higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual
surgery. Interestingly, the recurrence rate of nail SCC invasive after Mohs micrographic surgery (26%) was higher than the average recurrence rate for all cutaneous SCC after Mohs micrographic surgery (3%). ^{17, 18} It was reported that HPV-associated nail SCCs exhibited higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual
surgery (26%) was higher than the average recurrence rate for all cutaneous SCC after Mohst micrographic surgery (3%). ^{17, 18} It was reported that HPV-associated nail SCCs exhibited higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual
micrographic surgery (3%). ^{17, 18} It was reported that HPV-associated nail SCCs exhibited higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual
higher expression of p16 ^{INK4a} and Ki67, suggesting that an increased cellular proliferation rate may be one of the factors underlying the aggressive behavior. ¹¹ In addition, residual
rate may be one of the factors underlying the aggressive behavior. 11 In addition, residual
oncogenic HPV persisting in cells beyond the visible tumor margin (seen in Figure 1E) may
be responsible for the high recurrence rate. ⁶ Although the detection of HPV was not routinely
performed, several reports found that the recurrence rate of nail SCC after Mohs surgery
ranged widely, from 0% ¹⁹ to 8% ²⁰ to 22% ²¹ ; however, these values are all lower than the
23% recurrence rate reported in this study. The outcome of HPV-positive and HPV-negative
nail SCC after Mohs surgery needs to be studied further.
In the SCC in situ cases, surgical excision was most frequent in 15 cases with a
recurrence rate of 33%. In two cases, wedge-shaped excision was performed, but recurrence
was noted. PDT, ²² radiotherapy ²³ and cryosurgery ²⁴ have been reported; however, they were

less effective than other approaches. Hunt et al. reported that radiotherapy was well tolerated

and less disabling than surgery to preserve the finger function and appearance. ²⁵

Prevention of nail SCC by vaccination

Recently, HPV vaccination through Cervarix (HPV 16 and 18), Gardasil (HPV 6, 11, 16, 18) and Gardasil 9 (HPVs 6, 11, 16, 18, 31, 33, 45, 52, 58), has become available in some countries. This review confirmed that HPVs 16, 33, 56 and 73 were prevalent in nail SCC with male predominance. Gardasil 9 may partially prevent nail SCC; however, HPV types 56 and 73 are not covered. To design a vaccine against HPV types, high-risk HPV infection in the skin should be taken into consideration.

Nail SCC in the global burden of cancer

The global burden of cancer caused by infectious agents has been reported. ^{9,26} Plummer et al. calculated the number of cancer cases attributable to infections by combining the cancer incidence (from GLOBOCAN 2012) with the attributable fraction (AF) of infections. Martel et al. built on Plummer's report to clarify the annual incident of HPV-associated cancer by adding more detailed data (e.g. by country and cancer subsites). The reported respective number of incident cases, AF and number of HPV-associated cases for each cancer were as follows: cervical cancer (630,000, 100.0%, 530,000), anal cancer (40,000, 88.0%, 35,000), vulvar cancer (34000, 24.9%, 8,500), vaginal cancer (15000, 78.0% 12,000), penile cancer

(26000, 50.0%, 13,000) and oropharyngeal cancer (96000, 30.8%, 29,000). 9

The lack of data concerning the annual incidence of nail SCC is an issue, so the number of SCC of extremities (C44.6 Malignant neoplasm: Skin of upper limb, including shoulder) was newly collected for the 10th version, ICD-10. Although the number is limited, an analysis of seven case series of nail SCC found that the AF was approximately 47% (Table 3). The average number of patients with HPV-associated nail SCC in our department is two cases/year. Gunma University Hospital is a tertiary hospital of Gunma Prefecture, which has a population of 2 million. We thus estimated the rate of nail SCC to be 1 per 1 million population per year. The global population is 7 billion, so about 7,000 people per year are estimated to be newly suffering from HPV-associated nail SCC. This number is comparable to that of vulvar cancer (8,500 per year).

Nail apparatus intraepithelial neoplasia (NIN)

Other HPV associated *in situ* lesions include intraepithelial neoplasia, such as cervical intraepithelial neoplasia (CIN), anal intraepithelial neoplasia (AIN), VIN and vaginal intraepithelial neoplasia (VAIN), all of which are HPV-associated lesions in ICD-10. In this context, we propose the term, "nail apparatus intraepithelial neoplasia (NIN)". Based on a review of the previous cases, the characteristics of "NIN" are as follows: predominantly affects men, all fingers except the left small finger can be affected, young age of onset

compared to common cutaneous SCC *in situ* and lesion can be clinically classified into two types (PUT and SUT/LMT).

In contrast to other HPV-associated cancer, such as CIN and AIN, NIN can be self-assessed. In many cases, however, a delay from the first clinical manifestation noted by the patient to the first medical consultation has been reported. Perruchoud et al. reported that the mean delay was 5.7 years (range: <1 month to 20 years). They also checked the initial diagnosis and reported that viral warts and/or onychomycosis were most common. ²⁷ The two phenotypes PUT and SUT/LMT should be widely recognized by doctors in order to facilitate the early correct diagnosis.

Sexual transmission of high-risk HPV between the nail apparatus and the genitals

The present data suggest that there is a high risk of HPV transmission through the nail apparatus. First, the age of the patients and sex were characteristic. As shown in Table 1, the average age was 52 years old (median: 50 years old), which is younger than that of ordinary SCC at other body sites, and this disease predominantly affects men. Second, we encountered 11 cases that had multiple finger lesions, suggesting that causative HPV is transmissible. Finally, as shown in Figure 2 in "Patient demographics", the distribution of the affected digits was characteristic. This distribution strongly suggests that high-risk HPV transmission occurs via the genito-finger route. The distribution also suggested that the transmission of HPV from

men to their partners is likely to occur, strongly indicating nail SCC to be an STI.

Furthermore, in this review, 24% of the cases of nail SCC had a history of other HPV-associated diseases. Among female patients, 36% suffered from HPV-associated lesions, suggesting that self-inoculation was a possible route of infection. Forslund et al. reported two patients with nail SCC who had a history of genital dysplasia. They performed sequencing of HPV DNA and revealed that the nail and genital lesions were caused by patient-specific HPV16 strains. ²⁸ Furthermore, they described five female patients diagnosed with genital dysplasia and Bowen's disease of the fingers who had the same HPV16 in both lesions. ²⁹ In all cases, finger SCC was noted after the diagnosis of the genital lesion. It is of interest that the partners of five of the male patients had a history of gynecological diseases, suggesting genito-digital transmission in male patients. Alam et al. investigated 23 cases of nail SCC and found that the 2 female patients had suffered from cervical carcinoma, and the partners of 5 male patients had gynecological disease. ⁶ They suggested the genito-digital spread of HPV as a mechanism of nail SCC. 6 Taken together, these findings suggest that high-risk HPV-associated nail SCC is not

224

rare and should not be overlooked. The nail apparatus is another pivotal reservoir of high-risk HPV and should be recognized in the field of public health.

227

228

226

225

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Acknowledgement:

We thank Ms. Saki Mizuno for technical assistance. This work was supported by grants from the Suzuken Memorial Foundation, Takeda Science Foundation and Japanese Association of Geriatric Dermatology Research.

References

- 234 1. Ikenberg H, Gissmann L, Gross G, Grussendorf-Conen EI, zur Hausen H. Human
- papillomavirus type-16-related DNA in genital Bowen's disease and in Bowenoid papulosis.
- 236 Int J Cancer 1983;32:563-5.
- 237 2. Moy RL, Eliezri YD, Nuovo GJ, Zitelli JA, Bennett RG, Silverstein S. Human
- 238 papillomavirus type 16 DNA in periungual squamous cell carcinomas. JAMA
- 239 1989;261:2669-73.
- 240 3. Shimizu A, Tamura A, Abe M, Amano H, Motegi S, Nakatani Y et al. Human
- papillomavirus type 56-associated Bowen disease. Br J Dermatol 2012;167:1161-4.
- 4. Shimizu A, Tamura A, Abe M, Motegi S, Nagai Y, Ishikawa O et al. Detection of human
- papillomavirus type 56 in Bowen's disease involving the nail matrix. Br J Dermatol
- 244 2008;158:1273-9.
- 5. Shimizu A, Kato M, Takeuchi Y, Sano T, Kaira K, Uezato H et al. Detection of human
- 246 papillomavirus (HPV) in patients with squamous cell carcinoma and the clinical
- characteristics of HPV-positive cases. Br J Dermatol 2014;171:779-85.
- 6. Alam M, Caldwell JB, Eliezri YD. Human papillomavirus-associated digital squamous
- 249 cell carcinoma: literature review and report of 21 new cases. J Am Acad Dermatol
- 250 2003;48:385-93.
- 7. Billings JECTBALS. McKee's Pathology of the Skin 5th Edition: Elsevier; 2019.

- 8. Sass U, Andre J, Stene JJ, Noel JC. Longitudinal melanonychia revealing an
- 253 intraepidermal carcinoma of the nail apparatus: detection of integrated HPV-16 DNA. J Am
- 254 Acad Dermatol 1998;39:490-3.
- 9. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D et al. Global burden of
- cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol
- 257 2012;13:607-15.
- 258 10. Ekeowa-Anderson AL, Harwood CA, Perrett CM, Sahota A, Annan H, Ran H et al.
- Vulval intraepithelial neoplasia and periungual Bowen's disease concordant for mucosal
- 260 (HPV-34) and epidermodysplasia verruciformis (HPV-21) human papillomavirus types. Clin
- 261 Exp Dermatol 2007;32:304-7.
- 262 11. Kreuter A, Gambichler T, Pfister H, Wieland U. Diversity of human papillomavirus types
- in periungual squamous cell carcinoma. Br J Dermatol 2009;161:1262-9.
- 12. Bosch FX, Lorincz A, Munoz N, Meijer CJLM, Shah KV. The causal relation between
- 265 human papillomavirus and cervical cancer. J Clin Pathol 2002;55:244-65.
- 13. Ferenczy A, Franco E. Persistent human papillomavirus infection and cervical neoplasia.
- 267 Lancet Oncol 2002;3:11-6.
- 268 14. Marsh M. Original site of cervical carcinoma; topographical relationship of carcinoma of
- 269 the cervix to the external os and to the squamocolumnar junction. Obstet Gynecol
- 270 1956;7:444-52.

- 271 15. Yang EJ, Quick MC, Hanamornroongruang S, Lai K, Doyle LA, McKeon FD et al.
- 272 Microanatomy of the cervical and anorectal squamocolumnar junctions: a proposed model for
- anatomical differences in HPV-related cancer risk. Modern Pathol 2015;28:994-1000.
- 16. Ito T, Ito N, Saathoff M, Stampachiacchiere B, Bettermann A, Bulfone-Paus S et al.
- Immunology of the human nail apparatus: the nail matrix is a site of relative immune
- 276 privilege. J Invest Dermatol 2005;125:1139-48.
- 277 17. Riddel C, Rashid R, Thomas V. Ungual and periungual human papillomavirus-associated
- squamous cell carcinoma: a review. J Am Acad Dermatol 2011;64:1147-53.
- 18. Rowe DE, Carroll RJ, Day CL, Jr. Prognostic factors for local recurrence, metastasis, and
- survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment
- 281 modality selection. J Am Acad Dermatol 1992;26:976-90.
- 282 19. Dika E, Piraccini BM, Balestri R, Vaccari S, Misciali C, Patrizi A et al. Mohs surgery for
- squamous cell carcinoma of the nail: report of 15 cases. Our experience and a long-term
- 284 follow-up. Br J Dermatol 2012;167:1310-4.
- 20. Goldminz D, Bennett RG. Mohs micrographic surgery of the nail unit. J Dermatol Surg
- 286 Oncol 1992;18:721-6.
- 21. Young LC, Tuxen AJ, Goodman G. Mohs' micrographic surgery as treatment for
- squamous dysplasia of the nail unit. Australas J Dermatol 2012;53:123-7.
- 289 22. Usmani N, Stables GI, Telfer NR, Stringer MR. Subungual Bowen's disease treated by

- topical aminolevulinic acid-photodynamic therapy. J Am Acad Dermatol 2005;53:S273-6.
- 23. Attiyeh FF, Shah J, Booher RJ, Knapper WH. Subungual squamous cell carcinoma.
- 292 **JAMA 1979;241:262-3**.
- 293 24. Ruiz Santiago H, Morales-Burgos A. Cryosurgery as adjuvant to Mohs micrographic
- 294 surgery in the management of subungual squamous cell carcinoma. Dermatol Surg
- 295 2011;37:256-8.
- 25. Hunt WT, Cameron A, Craig P, de Berker DA. Multiple-digit periungual Bowen's
- disease: a novel treatment approach with radiotherapy. Clin Exp Dermatol 2013;38:857-61.
- 298 26. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of
- 299 cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health
- 300 **2016**;4:e609-16.
- 27. Perruchoud DL, Varonier C, Haneke E, Hunger RE, Beltraminelli H, Borradori L et al.
- Bowen disease of the nail unit: a retrospective study of 12 cases and their association with
- human papillomaviruses. J Eur Acad Dermatol Venereol 2016;30:1503-6.
- 28. Forslund O, Nordin P, Andersson K, Stenquist B, Hansson BG. DNA analysis indicates
- patient-specific human papillomavirus type 16 strains in Bowen's disease on fingers and in
- archival samples from genital dysplasia. Br J Dermatol 1997;136:678-82.
- 307 29. Forslund O, Nordin P, Hansson BG. Mucosal human papillomavirus types in squamous
- 308 cell carcinomas of the uterine cervix and subsequently on fingers. Br J Dermatol

- 309 2000;142:1148-53.
- 30. Kato M, Shimizu A, Hattori T, Abe M, Amano H, Motegi S et al. Detection of human
- papillomavirus type 58 in periungual Bowen's disease. Acta Derm Venereol 2013;93:723-4.
- 31. Kawashima M, Jablonska S, Favre M, Obalek S, Croissant O, Orth G. Characterization
- of a new type of human papillomavirus found in a lesion of Bowen's disease of the skin. J
- 314 Virol 1986;57:688-92.
- 32. Stone MS, Noonan CA, Tschen J, Bruce S. Bowen's disease of the feet. Presence of
- human papillomavirus 16 DNA in tumor tissue. Arch Dermatol 1987;123:1517-20.
- 33. Ostrow RS, Manias D, Mitchell AJ, Stawowy L, Faras AJ. Epidermodysplasia
- verruciformis. A case associated with primary lymphatic dysplasia, depressed cell-mediated
- immunity, and Bowen's disease containing human papillomavirus 16 DNA. Arch Dermatol
- 320 1987;123:1511-6.
- 321 34. Ostrow RS, Shaver MK, Turnquist S, Viksnins A, Bender M, Vance C et al. Human
- papillomavirus-16 DNA in a cutaneous invasive cancer. Arch Dermatol 1989;125:666-9.
- 323 35. Rudlinger R, Grob R, Yu YX, Schnyder UW. Human papillomavirus-35-positive
- bowenoid papulosis of the anogenital area and concurrent human papillomavirus-35-positive
- verruca with bowenoid dysplasia of the periungual area. Arch Dermatol 1989;125:655-9.
- 36. Guitart J, Bergfeld WF, Tuthill RJ, Tubbs RR, Zienowicz R, Fleegler EJ. Squamous cell
- 327 carcinoma of the nail bed: a clinicopathological study of 12 cases. Br J Dermatol

- 328 1990;123:215-22.
- 329 37. Eliezri YD, Silverstein SJ, Nuovo GJ. Occurrence of human papillomavirus type 16
- DNA in cutaneous squamous and basal cell neoplasms. J Am Acad Dermatol 1990;23:836-42.
- 38. Kettler AH, Rutledge M, Tschen JA, Buffone G. Detection of human papillomavirus in
- nongenital Bowen's disease by in situ DNA hybridization. Arch Dermatol 1990;126:777-81.
- 333 39. Echt AF, Hurwitz RM, Davis TE. Warts: benign or malignant? Indiana Med
- 334 **1991;84:476-9**.
- 40. Moy RL, Quan MB. The presence of human papillomavirus type 16 in squamous cell
- 336 carcinoma of the proximal finger and reconstruction with a bilobed transposition flap. J
- 337 Dermatol Surg Oncol 1991;17:171-5.
- 41. Rapini RP, Magee KL, Adler-Storthz K. The role of human papillomavirus in cutaneous
- neoplasia. Adv Dermatol 1992;7:129-47; discussion 48.
- 340 42. McGrae JD, Jr., Greer CE, Manos MM. Multiple Bowen's disease of the fingers
- associated with human papilloma virus type 16. Int J Dermatol 1993;32:104-7.
- 342 43. Sau P, McMarlin SL, Sperling LC, Katz R. Bowen's disease of the nail bed and
- periungual area. A clinicopathologic analysis of seven cases. Arch Dermatol 1994;130:204-9.
- 344 44. Nordin P, Stenquist B, Hansson BG. Joint occurrence of human papillomavirus type 16
- DNA in Bowen's disease on a finger and in dysplasia of the vulva and the uterine cervix. Br J
- 346 Dermatol 1994;131:740.

- 45. Tosti A, La Placa M, Fanti PA, Gentilomi G, Venturoli S, Zerbini M et al. Human
- 348 papillomavirus type 16-associated periungual squamous cell carcinoma in a patient with
- acquired immunodeficiency syndrome. Acta Derm Venereol 1994;74:478-9.
- 46. Sanchez-Lanier M, Triplett C, Campion M. Possible role for human papillomavirus 16 in
- squamous cell carcinoma of the finger. J Med Virol 1994;44:369-78.
- 47. Sasaoka R, Morimura T, Mihara M, Hagari Y, Aki T, Miyamoto T. Detection of human
- papillomavirus type 16 DNA in two cases of verrucous carcinoma of the foot. Br J Dermatol
- 354 1996;134:983-4.
- 48. McHugh RW, Hazen P, Eliezri YD, Nuovo GJ. Metastatic periungual squamous cell
- carcinoma: detection of human papillomavirus type 35 RNA in the digital tumor and axillary
- lymph node metastases. J Am Acad Dermatol 1996;34:1080-2.
- 49. Downs AM, Ward KA, Peachey RD. Subungual squamous cell carcinoma in Darier's
- 359 disease. Clin Exp Dermatol 1997;22:277-9.
- 50. Mitsuishi T, Sata T, Matsukura T, Iwasaki T, Kawashima M. The presence of mucosal
- human papillomavirus in Bowen's disease of the hands. Cancer 1997;79:1911-7.
- 362 51. Theunis A, Andre J, Noel JC. Evaluation of the role of genital human papillomavirus in
- the pathogenesis of ungual squamous cell carcinoma. Dermatology 1999;198:206-8.
- 52. Zabawski EJ, Jr., Washak RV, Cohen JB, Cockerell CJ, Brown SM. Squamous cell
- carcinoma of the nail bed: is finger predominance another clue to etiology? A report of 5

- 366 cases. Cutis 2001;67:59-64.
- 53. Ota M, Kawashima M, Mitsuishi T. Multiple Bowen's disease of the fingers. Eur J
- 368 Dermatol 2002;12:275-7.
- 54. Lambiase MC, Gardner TL, Altman CE, Albertini JG. Bowen disease of the nail bed
- presenting as longitudinal melanonychia: detection of human papillomavirus type 56 DNA.
- 371 Cutis 2003;72:305-9; quiz 296.
- 55. High WA, Tyring SK, Taylor RS. Rapidly enlarging growth of the proximal nail fold.
- 373 Dermatol Surg 2003;29:984-6.
- 56. Hara H, Honda A, Suzuki H, Sata T, Matsukura T. Detection of human papillomavirus
- type 58 in polydactylous Bowen's disease on the fingers and toes of a woman concurrent
- occurrence of invasive vulval and cervical carcinomas. Dermatology 2004;209:218-22.
- 57. Sato T, Morimoto A, Ishida Y, Matsuo I. Human papillomavirus associated with Bowen's
- disease of the finger. J Dermatol 2004;31:927-30.
- 58. Weisenseel P, Prinz J, Korting H. [Treatment of paraungual HPV73-positive Bowen
- disease with imiquimod cream]. Hautarzt 2006;57:309-10, 12.
- 381 59. Handisurya A, Rieger A, Bankier A, Koller A, Salat A, Stingl G et al. Human
- papillomavirus type 26 infection causing multiple invasive squamous cell carcinomas of the
- fingernails in an AIDS patient under highly active antiretroviral therapy. Br J Dermatol
- 384 2007;157:788-94.

- 60. Guldbakke KK, Brodsky J, Liang M, Schanbacher CF. Human papillomavirus type 73 in
- primary and recurrent periungual squamous cell carcinoma. Dermatol Surg 2008;34:407-13.
- 387 61. DePond W, Kure K, Lankachandra K, Gidwani R, Nelson BV, Zimmerman H et al.
- 388 Human papillomavirus-58 and -73-associated digital squamous cell carcinoma in a patient
- with aggressive digital papillary adenocarcinoma. Am J Dermatopathol 2009;31:375-8.
- 390 62. Inokuma D, Aoyagi S, Saito N, Iitani MM, Homma E, Hamasaka K et al. Bowen's disease
- of the nail matrix presenting as melanonychia: detection of human papillomavirus type 56.
- 392 Acta Derm Venereol 2009;89:638-9.
- 393 63. Turowski CB, Ross AS, Cusack CA. Human papillomavirus-associated squamous cell
- carcinoma of the nail bed in African-American patients. Int J Dermatol 2009;48:117-20.
- 395 64. Tanese K, Akiyoshi A, Saito M, Kubo A, Takanashi M, Ishiko A. Periungual squamous
- cell carcinoma induced by human papillomavirus type 59 in an immunosuppressed patient. J
- 397 Am Acad Dermatol 2009;61:167-9.
- 398 65. Nakajima H, Teraishi M, Tarutani M, Sano S. High prevalence of coinfection with
- mucosal high-risk type HPV (HR-HPV) and cutaneous HR-HPV in Bowen's disease in the
- 400 fingers. J Dermatol Sci 2010;60:50-2.
- 66. Aguayo R, Soria X, Abal L, Sanmartin V, Marti RM, Baradad M et al. Bowen's disease
- 402 associated with human papillomavirus infection of the nail bed. Dermatol Surg
- 403 2011;37:116-8.

- 404 67. Gormley RH, Groft CM, Miller CJ, Kovarik CL. Digital squamous cell carcinoma and
- association with diverse high-risk human papillomavirus types. J Am Acad Dermatol
- 406 2011;64:981-5.
- 68. Ohishi K, Nakamura Y, Ohishi Y, Yokomizo E, Ohara K, Takasaki M et al. Bowen's
- disease of the nail apparatus and association with various high-risk human papillomavirus
- 409 types. J Dermatol Sci 2011;63:69-72.
- 69. Grundmeier N, Hamm H, Weissbrich B, Lang SC, Brocker EB, Kerstan A. High-risk
- 411 human papillomavirus infection in Bowen's disease of the nail unit: report of three cases and
- review of the literature. Dermatology 2011;223:293-300.
- 413 70. Hunt R, Hwa C, Tzu J, Patel R, Tyring SK, Stein J. Multiple human papillomavirus-16
- 414 associated digital squamous-cell carcinomas in an immunocompetent woman with prior
- human papillomavirus-related genital carcinoma. Dermatol Online J 2011;17:20.
- 71. Patel PP, Hoppe IC, Bell WR, Lambert WC, Fleegler EJ. Perils of diagnosis and
- detection of subungual squamous cell carcinoma. Ann Dermatol 2011;23:S285-7.
- 72. Park SW, Lee DY, Mun GH. Longitudinal melanonychia on the lateral side of the nail: a
- sign of Bowen disease associated with human papillomavirus. Ann Dermatol 2013;25:378-9.
- 73. Nordin P, Stenquist BC. Aggressive curettage-cryosurgery for human papillomavirus-16
- associated subungual squamous cell carcinoma in situ. J Cutan Aesthet Surg 2013;6:155-7.
- 422 74. Sohn KM, Choi WJ, Kang H, Kim JE. Longitudinal melanonychia: a distinguishing

- feature of Bowen's disease of the nail unit associated with human papillomavirus type 56. Eur
- 424 J Dermatol 2015;25:617-8.
- 425 75. Shimizu A, Yasuda M, Hoshijima K, Kato M, Takahashi A, Tamura A et al. Detection of
- Human Papillomavirus Type 67 in Subungual Bowen's Disease Presenting as Longitudinal
- Melanonychia. Acta Derm Venereol 2015;95:745-6.
- 428 76. Nanba M, Kaneko T, Kato T, Mitsuishi T. Human papillomavirus types 16 and 82 were
- detected in penile, perianal and periungual Bowen's disease lesions of a homosexual patient. J
- 430 Dermatol 2015;42:744-6.
- 431 77. Hyun DJ, Seo SR, Kim DH, Yoon MS, Lee HJ. Periungual Bowen's Disease in a
- 432 12-Year-Old Boy Treated with Photodynamic Therapy. Pediatr Dermatol 2016;33:e82-3.
- 433 78. Ogata D, Shimizu A, Hokama Y, Arai E , Tsuchida T. A case of human
- papillomavirus-associated squamous cell carcinoma with bone invasion and verruca vulgaris
- of the fingernails. Eur J Dermatol 2016;26:508-10.
- 436 79. Makino T, Hara H, Mizawa M, Shimizu A, Kaira K, Shimizu T. Detection of human
- papillomavirus type 35 in recurrent Bowen's disease lesions of the fingers. Eur J Dermatol
- 438 2017;27:198-200.
- 80. Ashinoff R, Li JJ, Jacobson M, Friedman-Kien AE, Geronemus RG. Detection of human
- papillomavirus DNA in squamous cell carcinoma of the nail bed and finger determined by
- polymerase chain reaction. Arch Dermatol 1991;127:1813-8.

- 81. Dika E, Venturoli S, Patrizi A, Piraccini BM, Fanti PA, Barbieri D et al. The detection of
- human papillomavirus-16 in squamous cell carcinoma of the nail unit: A case series. J Am
- 444 Acad Dermatol 2017;76:354-6.

- Figure legends: 446Figure 1. The distribution of HPV-infected cells in the nail apparatus and the classification of 447nail SCC. 448 (A) Side view of the nail apparatus. 449 (B) Top view of the nail apparatus. 450 (C) HPV56-positive nail SCC (SUT/LMT) and the area for surgical excision⁴. 451 (D) Anti-HPV antibody-positive cells on the proximal nail fold. 452 (E) High-power view of the inset. Anti-HPV antibody-positive cells in the epidermis and 453 454 stratum corneum. (F) Distribution of anti-HPV antibody-positive cells. The circle indicates the HPV-positive 455 456 area. (G) Representative clinical manifestation of nail SCC (PUT); the HPV58-positive case was 457previously reported ³⁰. 458 (H) Representative clinical manifestation of nail SCC (SUT/LMT); the HPV56-positive case 459 was previously reported³ 460 461
- Figure 2. HPV-positive digital lesions and HPV types detected in nail SCC.
- 463 (A, B) The number of HPV-positive digital lesions.
- 464 (C, D) HPV types detected in nail SCC in situ and SCC invasive.

465 (E, F) HPV types detected PUT and SUT/LMT.

Table 1. Clinical summary of nail SCC (1983-2018)

No. of patients		136
A == (A)		52.2years
Age (Average, range)		(12-85years)
Sex	Male:Female	92:39*
Clinical findings		
	SCC	53
	SCC in situ	83
	Periungual type (PUT)	46 (52%)
	Subungual/LM type (SUT/LMT)	35 (40%)
	PUT+SUT/LMT	7 (8%)
	Others/unknown	48
	Multiple lesions	11 (8%)
Other HPV-associated disease		
	Male	18/92 (20%)
	Female	14/39 (36%)
immunocompromised condition		18 (13%)

^{*}Sex of Five patients' was unknown.

467

Table 2. Nail SCC/Bowen's disease as reported in the literature

No	Reference	Tumor	Age (years)/	Digit	HPV	Туре	Therapy	Recur	Lesions of	ICH
			Sex						HPV	
1	Ikenberg et al. 1 1983	SCCis	74/F	ns	16	ns				
2	Kawashim a et al. ³¹ 1986	SCCis	69/F	L3F	34	PUT			Warts, Cervical cancer	Y
3	Stone et al. ³² 1987	SCCis	36/M	R4T	16	other	Excision		GW	Silicosis
4	Ostrow et al. ³³ 1987	SCCis	37/M	R1F	16	PUT	5			EV with
5	Moy et al.	SCCis	47/M	L3F	16	PUT	Mohs			
6		SCCis	22/F	R4F	16	PUT	Mohs			
7		SCC	52/M	L2,3F	16	PUT	Mohs			
8		SCC	56/M	R2F	16	PUT	Mohs			
9		SCC	44/F	L3F	16	PUT	Mohs			
10	Ostrow et al. ³⁴ 1989	SCCis	48/M	L2F	16	SUT	Mohs			
	Rudlinger						Excision,		BP with	
11	et al. 35	SCCis	42/F	R4F	35	PUT	radiation, Cryo,		HPV35	PCC
	1989						IFN		111 133	
12	Guitart et al. ³⁶ 1990	SCCis	69/F	L3F	16/18	SUT	Excision	yes	Cervical cancer with HPV16/18 , Warts	
13	Eliezri et al. ³⁷ 1990	SCCis	ns	ns	16	PUT				
14	Kettler et al. ³⁸ 1990	SCCis	36/M	ns	16	other			CA with HPV11 BD of	
15		SCCis	60/M	ns	16	other			Penis with HPV16	
16	Echt,	SCC	63/M	R2F	16,18	PUT				

	Hurwitz									
	and Davis									
	³⁹ 1990									
17	Ashinoff et al.1991	SCCis	26/M	R1F	16	other	Mohs			
18		SCC	46/M	R1F	16	other	Mohs			
19		SCCis	75/M	R5F	16	other	Mohs			
20		SCCis	29/M	L4F	16	other	Mohs			
21		SCC	84/M	R3F	16	other	Mohs			
-	Moy and									
22	Quan ⁴⁰	SCC	71/F	R3F	16	Unkno wn	Mohs			
23	Rapini et a 1. 41 1992	SCCis	66/F	R1F	16-related	PUT	Č			
24		SCCis	42/M	L4F	16-related	PUT			Warts	
25		SCCis	76/M	R2F	16-related	PUT				
26	McGrae et	SCCis	42/04	R2,3,4	16	-41	Tretinoin,		GW with	
26	a. ⁴² 1993	SCCIS	42/M	F	16	other	5-FU, Bleo		HPV6	
27	Sau et al. ⁴³	SCCis	55/M	L3F	16	SUT/P UT	Mohs			
28		SCCis	61/M	L1F	16	SUT/P UT	Mohs	yes		
29		SCCis	39/M	L3F	16	SUT/P UT	Mohs			
30		SCCis	48/F	L4F	16	SUT/P UT	5-FU	yes		
	Nordin et					SUT/P			VIN with	
31	al. ⁴⁴ 1994	SCCis	31/F	R3F	16	UT	Excision	yes	HPV16	
32	Tosti et al. 45 1994	SCC	28/M	R1F	16	SUT			Warts	AIDS
	Sanchez-L	77								
33	anier et al.	SCC	ns	ns	16	Other				
	⁴⁶ 1994									
34		SCC	ns	ns	16	Other				
35		SCC	ns	ns	16	Other				
36		SCC	ns	ns	16	Other				
37	Sasaoka et al. ⁴⁷ 1996	SCC	83/M	R4,5T	16	Other	Amp			

38		Verr Ca	79/M	R5T	16	PUT	Amp			
39	McHugh et al. 48 1996	SCC	51/M	L1F	35	PUT	Mohs	yes		
40	Forslund et al. ²⁸ 1997	SCCis	33/F	R1F	16	PUT	PDT	,	Genital dysplasia with HPV16 related HPV	>
41	Forslund et al. ²⁸ 1997	SCCis	38/F	L4F	16	SUT				
42	Downs et al. ⁴⁹ 1997	SCC	35/M	R3F	16	SUT	Excision		7	Darier's disease
43	Mitsuishi et al. ⁵⁰ 1997	SCCis	53/M	R3F	16	PUT	5)		
44		SCCis	34/F	L3F	73	PUT	Y			
45	Forslund et al. ²⁸ 1997	SCCis	57/F	L4F	16	PUT	7		CIN with HPV16	
46	Sass et al. ⁸	SCCis	67/M	L4F	16	SUT/L MT	Excision			
47	Theunis et al. 51 1999	SCCis	67/M	L4F	16	SUT				
48		SCCis	78/M	R1F	16	SUT				
49		SCCis	83/M	R1F	16	SUT				
50	Forslund et al. ²⁹ 2000	SCCis	61/F	L3F	16	SUT			cervical cancer with HPV16	
	Zabawski									
51	et al. ⁵² 2001	SCC	47/F	R3F	ns	SUT	Amp			
52		SCC	89/M	R4F	ns	SUT	Radiation			
53		SCC	72/M	L3F	ns	SUT	Radiation			
54	Ota et al. ⁵³ 2002	SCCis	80/M	L2F	18	PUT				Formerly Gynaecolo gist
55	Alam et al.	SCC	50/F	R4F	16	SUT	Mohs	yes	Cervical	

	⁶ 2003								cancer,	
									hysterecto	
									my	
56		SCC	78/M	R3F	16	PUT	Mohs	yes		
57		SCC	28/M	R2,4F	16	ns	Mohs			
58		SCC	45/F	R2F	16	ns	Mohs			
59		SCC	52/M	R3F	16	ns	Mohs			
60		SCC	60/M	L1F	ns	ns	Mohs		CA	Heart transplant
									Wife with	Organic
61		SCC	82/M	L3F	31	ns	Mohs		hysterecto	chemical
)	my	exposure
									Wife with	
							47		cervical	
62		SCC	64/M	R3F	16	ns	Mohs		cancer.	
									hysterecto	
							>		my	
63		SCC	37/M	R2F	16	ns	Mohs			
64		SCC	65/F	L2F	ns	ns	Mohs			Kidney
										transplant
65		SCC	80/F	R1F	ns	ns	Mohs			
									Wife with	
66		SCC	67/M	R2F	ns	ns	Mohs	yes	hysterecto	
									my	
67		SCC	62/F	R5F	ns	ns	Mohs		Hysterecto	
68		SCC	63/F	R3F	16	20	Mohs	NO.	my	
69		SCC	76/M	L2F	16	ns ns	Mohs	yes		
09		sec	70/101	1,21	10	115	IVIOIIS		Wife with	
70		SCC	30/M	L2F	16	ns	Mohs		cervical	
70		Sec	30/141	221	10	115	1110115		dysplasia	
71	\	SCC	81/M	L5F	16	ns	Mohs		аузрава	
72		SCC	45/F	R2F	16	ns	Mohs			
73		SCC	40/F	R5F	35	ns	Mohs			
74		SCC	52/M	L2F	16	ns	Mohs			
75		SCC	48/F	R2F	16	ns	Mohs			
76		SCC	68/F	R3F	16	ns	Mohs	yes		
77		SCC	47/F	L3F	16	ns	Mohs	yes		

	Lambiase					SUT/L				
78	et al. 54	SCCis	25/M	R3F	56	MT	Mohs			
	2003					1411				
70	High et al.	900	2604	DAE	26	DUTE				
79	⁵⁵ 2003	SCC	36/M	R2F	26	PUT				
									Vulva and	
									cervical	
80	Hara et al.	SCCis	46/F	ns	58	PUT			cancer	
	⁵⁶ 2004								with	
									HPV68	
	Sato et al.							\		
81	⁵⁷ 2004	SCCis	55/M	L4F	11, 16	PUT				
	Weisenseel									
82	et al. ⁵⁸	SCCis	49/M	L3F	73	PUT				
82	2006	SCCIS	4 <i>9/</i> IVI	LJI	73	101				
-										
0.2	Handisury	999	2024		26.50	GL ITT			BP with	AIDS with
83	a et al. ⁵⁹	SCC	28/M	ALL	26, 58	SUT	Unknown		HPV26	HAART
	2007					\\\\\	,			
	Ekeowa-A				21,34,49,5	7 1			VIN with	
84	nderson et	SCCis	23/F	L3F	8	PUT			HPV21,	
	al. 10 2007								31, 34	
	Shimizu A					SUT/L				
85	et al. 4	SCCis	34/M	L2T	56	MT	WS- excision	yes		
	2008				,	1,11				
86		SCCis	68/M	R1F	56	SUT/L	Excision			
00		beels	00/141	KII	30	MT	LACISION			
87		SCCis	29/F	L1T	56	SUT/L	WS- excision	Noc		
07		SCCIS)	LII	30	MT	WS- excision	yes		
	Guldbakke			DIE						
88	et al. ⁶⁰	SCCis	32/M	R1F,	73	PUT	Mohs	yes		HL
	2008			L2F						
	Depond et	SCC/SC								
89	al. 61 2009	Cis	55/M	ns	58, 73	ns				
	Inokuma et					SUT/L				
90	al. 62 2009	SCCis	41/M	R2F	56	MT				
									AW, PW,	
91	Kreuter et	SCCis	62/M	R2F	26	PUT	5-FU		OW, AIN,	HIV
	al. 11 2009	- **				-			PIN	

			A	CCEP	TED MA	ANUSC	CRIPT		35
92		SCC	71/M	L2F	51	other	Amp	PW	
93		SCC	62/F	R2F	16	other	Amp	PW	
94		SCCis	52/M	R1F	73, 81	other	Excision	AW	
95		SCC	71/M	L1F	33	other	Amp		
96		SCCis	59/M	L2F	56, 9, 17, 36	PUT	Excision	PW and CIN (Female partner)	
97	Turowski et al. ⁶³ 2009	SCCis	42/M	L1,R4, 5F	16	PUT	IQ+Mohs	X	
98		SCCis	44/M	R3F	High-risk HPV	PUT	Mohs+IQ		HIV
99	Tanese et al. ⁶⁴ 2009	SCC	29/M	L1F	59, 84	SUT	Amp		RP
100	Nakajima et al. ⁶⁵ 2010	SCCis	56/M	L3F	8, 16, 58	PUT			ATL
101	Aguayo et al. ⁶⁶ 2010	SCCis	54/F		16, 6	SUT		CIN and hysterecto	
102	Gormley et al. ⁶⁷ 2011	SCCis	47/M	R4F	33, 51	PUT			
103		SCCis	44/M	ns	16	PUT			
104		SCCis	42/M	DIE					
105				R1F	33, 73	PUT			
		SCCis	44/F	L2,4F	33, 73 33, 51, 73	PUT PUT			HIV
106		SCCis SCCis	44/F 50/F						HIV
106	Ohishi et al. ⁶⁸ 2011		\angle	L2,4F	33, 51, 73	PUT			HIV
		SCCis	50/F	L2,4F R3F	33, 51, 73 33, 51	PUT PUT SUT/L			HIV
107		SCCis SCCis	50/F 50/M	L2,4F R3F L4F	33, 51, 73 33, 51 56	PUT PUT SUT/L MT SUT/L			HIV
107		SCCis SCCis	50/F 50/M 36/M	L2,4F R3F L4F L4F	33, 51, 73 33, 51 56	PUT PUT SUT/L MT SUT/L MT SUT/L			HIV
107 108 109		SCCis SCCis SCCis	50/F 50/M 36/M 41/M	L2,4F R3F L4F L4F L3F	33, 51, 73 33, 51 56 16 59	PUT PUT SUT/L MT SUT/L MT SUT/L MT SUT/L MT SUT/L			HIV

113		SCCis	41/M	R5F	33	MT SUT/L MT			
114	Grundmeie r et al. ⁶⁹ 2011	SCC	46/M	R2F	16	PUT	Amp		
115		SCCis	50/M	L1F	16, 31, 33	PUT	Micrographic entire nail unit excision+IQ		
116		SCCis	67/M	R2F	73	PUT	Tangential excision yes +LASER	Y	HIV
117	Hunt et al. ⁷⁰ 2011	SCCis	60/F	R1,2F, L2-5F	16	SUT/P UT		VIN invasive, cervical cancer partner with GW	
118	Patel et al. 71 2011	SCC	68/F	R1F	18,39,45,5 9,68	SUT	Amp		
119	Shimizu A et al. ³ 2012	SCCis	67/M	L2F	56	SUT/L MT	Excision		
120	Park et al. 72 2012	SCCis	33/M	L1F	ns	SUT/L MT	Longitudinal excision		
121	Hunt et al. 25 2013	SCC/ SCCis	36/M	R2,3,4 F	High-risk HPV	PUT	Amp, radiation yes		AML, GVHD
122	Kato et al. 30 2013	SCCis	36/M	R3F	58	PUT	Excision		
123	Nordin et al. ⁷³ 2013	SCCis	57/M	R2F	16	PUT	Excision yes		
124	Sohn et al. 74 2015	SCCis	85/F	R3F	56	SUT/L MT	no treatment		
125	Shimizu A et al. ⁷⁵ 2015	SCCis	84/M	R2F	67	SUT/L MT	Excision		
126	Nanba et al. ⁷⁶ 2015	SCCis	51/M	L2F	16, 82	PUT		Genital BD	

127	Hyun et al. 77 2016	SCCis	12/M	R2F	34	PUT	PDT
							Digital
	Ogata et						lesion
128	al. ⁷⁸ 2016	SCC	46/M	L4F	16	SUT	Amp with
							HPV90
	Perruchou						
129	d et al. ²⁷	SCCis	58/M	R3F,	73	other	Cryo/Surgery
	2016			L3F			
130		SCCis	44/M	L4F	16	other	IQ
131		SCCis	51/M	L1F	16	other	None
132		SCCis	44/M	R1F	16	other	Cryo
						SUT/P	
133		SCCis	50/F	L2F	16	UT	Cryo/bleo
134		SCCis	52/M	L2F	52	other	None
107		999	2525	R1F,	4.5		5-FU+SA+anti
135		SCCis	36/M	L3F	16	other	mycotic
	Makino et						<u> </u>
136	al. ⁷⁹ 2017	SCCis	46/F	R4F	35	PUT	Excision

PUT: periungual type, SUT: subungual type, LMT: longitudinal melanonychia type, ns: not specified, ICH: immunocompromised host, BD: Bowen disease, PW: penile warts, AW: anal warts, OW: oral warts, GW: genital warts, BP: Bowenoid papulosis, PDT: photodynamic therapy, Cryo: cryotherapy, SA: salicylic acid, HAART: highly active anti-retroviral therapy, WS-excision: wedge-shaped excision, IQ: imiquimod, Amp: amputation, Bleo: bleomycin, HL: EV: epidermodysplasia verruciformis, Hodgkin's lymphoma, RP: relapsing polychondritis, PCC: pheochromocytoma, SCC: squamous cell carcinoma.

478

Table 3. Case series and attributable rate

Year	Author	SCC or	AR*	Number of samples positive for	Methods
1 cai	Author	in situ	AK	HR**-HPV	Wethous
1991	Ashinoff et al. 80	Both***	710/	5/7 marking for HDV16	PCR and in situ
1991	Asminori et al.	Both	71%	5/7 positive for HPV16	hybridization
1004	S4 -1 43	SCC in	570/	A/7'd' C LID LIDY	
1994	Sau et al. 43	situ	57%	4/7 positive for HR-HPV	in situ hybridization
2000	G1: 4	SCC in	600 /	2/5'.' (HD HDV/	DCD.
2008	Shimizu et al. ⁴	situ	60%	3/5 positive for HR-HPV	PCR
2009	Kreuter et al. 11	Both	24%	6/25 positive for HR-HPV	PCR
2011	Ohishi et al. ⁶⁸	SCC in	1000/	7/7 magitive for HD HDV	DCD
2011	Onishi et al.	situ	100%	7/7 positive for HR-HPV	PCR
2016	Perruchoud et al.	SCC in	750/	0/12 iti f UD UDV	DCD.
2016	27	situ	75%	9/12 positive for HR-HPV	PCR
2017	Dika et al. 81	SCC	37%	15/41 positive for HPV16	PCR
	Average		47%	49/104	

AR*: attributable rate, HR**: high-risk, Both***: SCC in situ and invasive.

479

Downloaded for Anonymous User (n/a) at VA Boston Healthcare System from ClinicalKey.com by Elsevier on July 09, 2019. For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.

Downloaded for Anonymous (na) and the Hoston Healthcare System from ClinicalKey.com by Elsevier on July 09, 2019. For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.

ACCEPTED MANUSCRIPT

Capsule summary

First bullet:

Nail squamous cell carcinomas are often HPV associated skin tumors.

Second bullet:

High-risk HPV-associated nail squamous cell carcinoma is not rare and should not be overlooked. The nail apparatus is another pivotal reservoir of high-risk HPV and should be recognized in the field of public health.