Chapter5: DAC and ADC Part-II

Asst.Prof.Dr.Supakit Nootyaskool

Objective

 To understand the digital to analog conversion and analog to digital conversion.

To explain converting digital data to analog signal wit R2R circuit.

Topic

- Digital to Analog Conversion
 - R2R ladder
- Analog to Digital Conversion
 - Flash ADC
 - Successive-approximations register (SAR)

DAC CHIP

Overview

MP3 Signal Processor

Led.

- 3 x 24-bit / 192kHz ADC
- Integrated FM tuner with RDS, Japanese band included (76-108 MHz)
- Stereo headphone output
- Stereo microphone amplifier

Signal conversion concept

- DAC (Digital to Analog Conversion) ? ps?
- ADC (Analog to Digital Conversion)

time

DIGITAL TO ANALOG CONVERSION WITH R2R LADDER

R2R Ladder

 Resistor connected as a network to convert binary number into an analog output signal.

Example DAC design

Supposed

- 4-bits system
- Maximum output voltage at 12v

Example DAC design

Supposed

- 4-bits system
- Maximum output voltage at 12v

D3	D2	D1	D0	bitvalue	Voltage
0	0	0	0	0	0
0	0	0	1	1	0.8
0	0	1	0	2	1.6
0	0	1	1	3	2.4
0	1	0	0	4	3.2
0	1	0	1	5	4
0	1	1	0	6	4.8
0	1	1	1	7	5.6
1	0	0	0	8	6.4
1	0	0	1	9	7.2
1	0	1	0	10	8
1	0	1	1	11	8.8
1	1	0	0	12	9.6
1	1	0	1	13	10.4
1	1	1	0	14	11.2
1	1	1	1	15	12

 $2^4 = 16 \text{ Levels } (0 \text{ to } 15)$ $D_0 D_1 D_2 D_3$

DAC: Resistance and voltage divider

DAC circuit (R2R)

$$V_{\text{out}} = -V_{\text{ref}} \left(b_3 \frac{1}{2} + b_2 \frac{1}{4} + b_1 \frac{1}{8} + b_0 \frac{1}{16} \right)$$

For a 4-Bit R-2R Ladder

For general n-Bit R-2R Ladder Binary Weighted Resister DAC

$$V_{\text{out}} = -V_{\text{ref}} \sum_{i=1}^{n} b_{n-i} \frac{1}{2^{i}}$$

Opamp

- Operational amplifiers is an IC amplifying a small signal.
- Opamp has a very-high input impedance and having two input polarities (+) and (-).
- With input characteristic, Opamp uses for differential amplifier.

Opamp in the market

- Famous IC code
 - LM324
 - LM741
 - AD822

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp

AD822-EP

FEATURES

True single-supply operation
Input voltage range extends below ground
Output swings rail-to-rail
Single-supply capability from 5 V to 30 V

Dual-supply capability from ±2.5 V to ±15 V

High load drive

Capacitive load drive of 350 pF, G = +1
Minimum output current of 15 mA

Excellent ac performance for low power

800 μA maximum quiescent current per amplifier Unity-gain bandwidth: 1.8 MHz

Slew rate of 3 V/µs

Good dc performance

800 μV maximum input offset voltage 2 μV/°C typical offset voltage drift

25 pA maximum input bias current

Low noise

13 nV/√Hz @ 10 kHz No phase inversion

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)

Military temperature range (-55°C to +125°C)

Controlled manufacturing baseline

One assembly/test site

One fabrication site

Enhanced product change notification Qualification data available on request

APPLICATIONS

Photodiode preamps

Active filters

12-bit to 14-bit data acquisition systems Low power references and regulators

CONNECTION DIAGRAM

GENERAL DESCRIPTION

The AD822-EP is a dual precision, low power FET input op amp that can operate from a single supply of 5 V to 30 V or dual supplies of ± 2.5 V to ± 15 V. It has true single-supply capability with an input voltage range extending below the negative rail, allowing the AD822 to accommodate input signals below ground in the single-supply mode. Output voltage swing extends to within 10 mV of each rail, providing the maximum output dynamic range.

Figure 2. Input Voltage Noise vs. Frequency

Offset voltage of 800 μ V maximum, offset voltage drift of 2 μ V/°C, input bias currents below 25 pA, and low input voltage noise provide dc precision with source impedances up to a gigaohm. The 1.8 MHz unity-gain bandwidth, –93 dB THD at 10 kHz, and 3 V/ μ s slew rate are provided with a low supply current of 800 μ A per amplifier.

ANALOG TO DIGITAL CIRCUIT

ADC circuits

- Characteristic of ADCs
 - Resolution
 - Conversion speed
- Type of ADC circuit in the present
 - Flash ADC
 - Pipelined ADC
 - Successive Approximation Register
 - Dual-slope convertor
 - Sigma-Delta converter

FLASH ADC

Flash ADC

- Serie resistor for voltage dividing to create voltage references
- Compare the voltage reference with an input voltage with Opamps.
- Use encoder circuit convert to BCD data.
- Strength
 - Very fast conversion
- Weakness
 - Number of comparator require 2^{N-1}

Voltage divider circuit

Flash ADC: Example

Flash ADC: Example

Flash ADC: Encoder design

No.	Y3	Y2	Y1	Y0	D2	D1	D0
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1
2	0	0	1	1	0	1	0
3	0	1	1	1	0	1	1
4	1	1	1	1	1	0	0

Encoder design (added don't care bits)

No.	Y3	Y2	Y1	YO	D2	D1	D0
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1
2	0	0	1	1	0	1	0
3	0	1	1	1	0	1	1
4	1	1	1	1	1	0	0
5	1	X	X	X	1	0	0
6	1	X	X	X	1	0	0
7	1	X	X	X	1	0	0

Encoder design (SOP, K-MAP)

No.	Y3	Y2	Y1	Y0	D2	D1	D0
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1
2	0	0	1	1	0	1	0
3	0	1	1	1	0	1	1
4	1	1	1	1	1	0	0
5	1	Χ	Χ	Χ	1	0	0
6	1	Χ	Χ	Χ	1	0	0
7	1	Χ	Χ	Χ	1	0	0

Flash ADC applied Arduino decoder

ADC: SUCCESSIVE APPROXIMATION REGISTER (SAR)

Successive Approximation Register (SAR)

Features

- Low energy.
- Interesting for digital circuit studying cause of having a counter, DAC, latch, and a comparator build to the system.

SAR-ADC

SAR-ADC: Example running

SAR-ADC: Example getting data

References

Content	Links		
Tutorial digital circuit	https://www.tutorialspoint.com/digital circuits/digital circuits conversion of flip flops.htm		
K-map online	http://www.32x8.com/index.html		
Encoder circuit design	https://www.geeksforgeeks.org/encoder- in-digital-logic/		
3bits flash ADC applied Arduino encoder	https://www.electronoobs.com/eng circuit os tut15 2.php		
Flash ADC	https://www.allaboutcircuits.com/textbook/digital/chpt-13/flash-adc/		
Example ADC with simulation	http://www.onmyphd.com/?p=analog.digit al.converter#h3 resolution		