TRINITY COLLEGE DUBLIN

School of Computer Science and Statistics

Week 10 Questions

ST3009: Statistical Methods for Computer Science

For each problem, explain/justify how you obtained your answer in order to obtain full credit. In fact, most of the credit for each problem will be given for the derivation/model used as opposed to the final answer.

Question 1. A continuous random variable X has CDF:

$$F_X(x) = \begin{cases} 1 & x > 1 \\ x & 0 \le x \le 1 \\ 0 & x < 0 \end{cases}$$

(a) Calculate the probability P(X = 0.5) that X equals 0.5.

(b) Calculate the probability $P(0.25 \le x \le 0.5)$ that X lies between 0.25 and 0.5.

(c) Calculate the probability $P(-1 \le x \le 0.5)$.

Question 2. A continuous random variable X has PDF:

$$f_X(x) = \begin{cases} 0 & x > 2\\ x/2 & 0 \le x \le 2\\ 0 & x < 0 \end{cases}$$

(a) Calculate the CDF of X. Hint: Remember the area of a triangle is half the base times the height.

(b) Calculate $P(0.5 \le X \le 10)$.

Question 3. Continuous random variables X and Y have PDFs: $f_X(x) = \frac{e^{-|x|}}{2}$, $f_Y(y) = e^{-2|y|}$.

(a) Suppose X and Y are independent, write an expression for their joint PDF $f_{XY}(x,y)$.

(b) Suppose $f_{XY}(x,y) = \frac{e^{-|xy|}}{2}$ (so they're not independent), write an expression for the conditional PDF $f_{Y|X}(y|x)$. Hint: recall the definition of conditional PDF.

(c) Using Bayes Rule for PDFs and your answer from (b) write an expression for the conditional PDF $f_{X|Y}(x|y)$.

Question 4. Suppose you have a sequence of m random variables $Z = \{Y^{(i)}, i = 1, 2, ..., m\}$ with conditional PDF $f_{Y^{(i)}|X^{(i)}}(y^{(i)}|x^{(i)}) = e^{-2|\theta y^{(i)}-x^{(i)}|}$, where θ is an unknown parameter. The random variables $Y^{(i)}$, i = 1, 2, ..., m, are independent.

(a) Write an expression for the PDF $f_{Z|X}$ i.e. the joint PDF of the $Y^{(i)}$'s conditioned on the $x^{(i)}$'s, i = 1, 2, ..., m.

(b) Suppose you are given training data consisting of a set of m pairs of data $(x^{(i)}, y^{(i)}), i = 1, 2, ..., m$, where $y^{(i)}$ is an observation of RV $Y^{(i)}$. The PDF of this data is given by your answer from part (a), but the PDF depends on unknown parameter θ . Briefly discuss how you could use gradient ascent to choose a value of θ which maxmises the PDF of the training data.

.