Практическая работа № 3

Определение эффективного алгоритма сортировки на основе эмпирического и асимптотического методов анализа

Цель: получить навыки по анализу вычислительной сложности алгоритмов сортировки и определению наиболее эффективного алгоритма.

Задание 1. Эмпирическая оценка эффективности алгоритмов Требования по выполнению задания

- 1. Разработать алгоритм ускоренной сортировки, определенной в варианте (приложение 1), реализовать код на языке C++. Сформировать таблицу 1.1 результатов эмпирической оценки сложности сортировки по формату табл. 1 для массива, заполненного случайными числами¹.
- 2. Определить ёмкостную сложность алгоритма ускоренной сортировки.

Таблица 1. Сводная таблица результатов

n	Т (n), мс	$T_{\Pi}(\mathbf{n}) = \mathbf{C}_{\phi} + \mathbf{M}_{\phi}$
100		
1000		
10000		
100000		
1000000		

- 3. Разработать алгоритм быстрой сортировки, определенной в варианте (приложение 1), реализовать код на языке C++. Сформировать таблицу 1.2 результатов эмпирической оценки сортировки по формату табл. 1 для массива, заполненного случайными числами.
- 4. Определить ёмкостную сложность алгоритма быстрой сортировки.
- 5. Добавьте в отчёт данные по работе любого из алгоритмов простой сортировки в среднем случае, полученные в предыдущей практической работе (в отчёте таблица 1.3).
- 6. Представить на общем сравнительном графике зависимости $T_n(n) = C_{\phi} + M_{\phi}$ для трёх анализируемых алгоритмов². График должен быть подписан, на нём обозначены оси.
- 7. На основе сравнения полученных данных определите наиболее эффективный из алгоритмов в среднем случае (отдельно для небольших массивов при n до 1000 и для больших массивов с n>1000).
- 8. Провести дополнительные прогоны программ ускоренной и быстрой сортировок на массивах, отсортированных а) строго в убывающем и б) строго возрастающем порядке значений элементов. Заполнить по этим данным соответствующие таблицы 1.4 и 1.5 для каждого алгоритма по формату табл. 1.

¹ Для соблюдения равенства условий при анализе эффективности, случайные массивы всех заданных длин должны быть одними и теми же для всех рассматриваемых алгоритмов.

 $^{^{2}}$ Можно разбить график на два: первый – для n до 1000, второй – для n >1000.

9. Сделайте вывод о зависимости (или независимости) алгоритмов сортировок от исходной упорядоченности массива на основе результатов, представленных в таблицах.

Задание 2. Асимптотический анализ сложности алгоритмов Требования по выполнению задания

- 1. Из материалов предыдущей практической работы приведите в отчёте формулы $T_{\tau}(n)$ функций роста алгоритма простой сортировки в лучшем и худшем случае (того же алгоритма, что и в задании 1).
- 2. На основе определений соответствующих нотаций получите асимптотическую оценку вычислительной сложности простого алгоритма сортировки³:
- в О-нотации (оценка сверху) для анализа худшего случая;
- в Ω -нотации (оценка снизу) для анализа лучшего случая.
 - 3. Получите (если это возможно) асимптотически точную оценку вычислительной сложности алгоритма в нотации θ .
 - 4. Реализуйте графическое представление функции роста и полученных асимптотических оценок сверху и снизу.
 - 5. Привести справочную информацию о вычислительной сложности усовершенствованного и быстрого алгоритмов сортировки, заданных в вашем варианте.
 - 6. Общие результаты свести в табл. 2.

Таблица 2. Сводная таблица результатов

		,	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	Асимптотическая сложность алгоритма				
	Наихудший	Наилучший	Средний	Ёмкостная	
A лгоритм 4	случай	случай	случай	сложность	
	(сверху)	(снизу)	(точная		
			оценка)		
Простой					
Усовершен-					
ствованный					
Быстрый					

7. Сделать вывод о наиболее эффективном алгоритме из трёх.

Отчёт

В отчёте по каждой сортировке необходимо привести словесное описание алгоритма и его блок-схему, а также программный код (с комментариями), результаты тестирования на массиве n=10 и контрольных прогонов на массивах длиной 100, 1000, 10000, 100000 и 1000000 элементов.

По итогам выполнения каждого задания сформулируйте соответствующие выводы.

³ Здесь математически доказывается существование коэффициентов, при которых истинны лежащие в основе определения каждой нотации неравенства.

⁴ В отчёте в этом столбце укажите названия соответствующих алгоритмов.

Приложение 1. Варианты индивидуальных заданий.

Вариант	Усовершенствован-	Быстрый алгоритм
_	ный алгоритм	
1	Сортировка обменами	Простое слияние
	с условием Айверсона	-
2	Шейкерная сортировка	Простое слияние
3	Шейкерная с условием	Простое слияние
	Айверсона	
4	Сортировка Шелла со	Простое слияние
	смещениями Д. Кнута.	
	Способ 1	
5	Шелла со смещениями	Простое слияние
	Д. Кнута. Способ 2	
6	Шелла со смещениями	Простое слияние
	Р. Седжвика.	
7	Пирамидальная сорти-	Простое слияние
	ровка	
8	Турнирная сортировка	Простое слияние
9	Сортировка обменами	Быстрая сортировка (Хоара)
	с условием Айверсона	
10	Шейкерная сортировка	Быстрая сортировка (Хоара)
11	Шейкерная с условием	Быстрая сортировка (Хоара)
	Айверсона	
12	Сортировка Шелла со	Быстрая сортировка (Хоара)
	смещениями Д. Кнута.	
	Способ 1	
13	Шелла со смещениями	Быстрая сортировка (Хоара)
	Д. Кнута. Способ 2	
14	Шелла со смещениями	Быстрая сортировка (Хоара)
	Р. Седжвика.	
15	Пирамидальная сорти-	Быстрая сортировка (Хоара)
	ровка	
16	Турнирная сортировка	Быстрая сортировка (Хоара)

Приложение 2. Методы определения смещения для сортировки Шелла, предложенные Д. Кнутом и Р. Седжвиком

Перед выполнением сортировки происходит вычисление длин промежутков (значения d из примера сортировки Шелла), которые записываются в массив, например, d.

По Седжвику

Значение смещения, записываемого в элемент массива d, вычисляется по формуле:

$$\mathbf{d}[i] = \begin{cases} 9*2^{i} - 9*2^{i/2} + 1 & \text{при } i - \text{четном} \\ 8*2^{i} - 6*2^{(i+1)/2} + 1 & \text{при } i \text{ нечетном} \end{cases}$$

Остановить создание и заполнение массива d на значении d[i-1], если 3*d[i] > n (размера массива).

По Кнуту

Если t – количество смещений, то:

Способ 1:

$$t=log_3n-1$$
 $d_0=1$, $d[i-1]=3*d[i]+1$ T.e. 1, 4, 13, 40, 121,

Способ 2:

$$t=\log_2 n-1$$
 $d_0=1$, $d[i-1]=2*d[i]+1$ T.e. 1, 3, 7, 13, 31,