Ad-PEG₃₄₀₀

Ad-PEG₅₀₀₀

$Ad\text{-}(PEG_{5000})_2$

Figure | Structures of Various Adamantane-PEG molecules.

Figure 2. Hydrodynamic diameter of GALA (dashed line) and GALA-Ad (solid line)-modified polyplexes.

Figure 3. Zeta potential of GALA (dashed line) and GALA-Ad (solid line)-modified polyplexes.

Fig 4a. Untransfected BHK-21 cells

Fig 4b. BHK-21 cells transfected with β CDP6/FITC-Oligo at 5+/-

Fig 4c. BHK-21 cells transfected with βCDP6/FITC-Oligo/50% GALA

Fig 4d. BHK-21 cells transfected with βCDP6/FITC-Oligo/50%GALA-Ad

Fig 4. Uptake of GALA-Ad and GALA modified polyplexes by BHK-21 cells.

Figure 5a. Untransfected HUH-7 cells

Figure .5b. HUH-7 transfected with β CDP6/FITC-Oligo at 5+/-

Fig 5c. HUH-7 transfected with βCDP6/FITC-Oligo/ 50% GALA-Ad

Fig 5. Uptake of GALA-Ad and GALA modified polyplexes by HUH-7 cells

Fig 6. Luciferase transfection of BHK-21 cells with β CDP-based polyplexes modified with GALA (shaded bars) and GALA-Ad (white bars).

Fig 7. Toxicity of GALA and GALA-Ad modified polyplexes to BHK-21 cells.

Figure 8: Scheme for post-DNA-complexation pegylation by grafting.

5

Polyplex	PEG	Stage 1 (nm)	Stage 2 (nm)	Stage 3 (nm)
PEI 3+/-	10:1	58	65	115
PEI 6+/-	10:1	55	60	78
βCDP6 5+/-	100%	70 .	67.4	303
βCDP6 5+/-	150%	70	X^*	N/A
βCDP6 5+/-	200%	70	X^*	N/A
βCDP6 5+/-	100% PEG**	67	81	700

^{*}Poor correlation function; no size measurements possible. **PE G_{5000} added instead of PE G_{5000} -SPA

Figure 9: Particle sizes of PEI and 12 (βCDP6) polyplexes during post-DNA-complexation pegylation of grafting.

Fig 10 Salt stabilization of polyplexes by pegylation.

Figure 10A: Stabilization of polyplexes by pegylation.

Fig | | a Untransfected HUH-7

Fig 11 b HUH-7 transfected with β CDP6/Oligo + free PEG₃₄₀₀-FITC

Fig 11c HUH-7 transfected with β CDP6/Oligo/Ad-PEG₃₄₀₀-FITC

Fig () Co-delivery of β CDP6 polyplexes with PEG₃₀₀₀-FITC.

Fig 12 Structure of Lactose-CDP6.

Fig 13 Transfection of β CDP (dashed line) and Lac-CDP6 (solid line) polyplexes to HUH-7 cells.

10 Figure 14. Schematic of Experimental Protocol, Example 47

Figure 15. Particle Diameter

Figure 16. DNA Loss Due to Complex Precipitation

5 Figure 17 Inclusion Complexes to Modify 12/DNA Composite

Transfection of Modified Polyplexes to HepG2 cells (50% PEG)

Figure 18

5

5 Figure 19 Competitive Displacement Experiments

Figure 20 Synthesis of Adamantane-PEG-Transferrin (Ad-PEG-Tf)

Iron Loading of Transferrin

Figure 21

=

the first first that with a first to the first be first by first f

Figure 22 Binding Affinity Transferrin-PEG-Ad

5 Figure 23 Transferrin coupling via Lysine groups

5 Figure 24 Binding affinity of Transferrin-PEG-AD to transferrin receptors on PC3 cells

Figure 25 Zeta potential variation and particle size as a function of particle modification in transferrin and PEG-modified polyplexes

Figure 26 Zeta potential measurements, Ad-anionic-PEG

Stability in 150mM PBS using Ad-PEG 1mg/ml DNA, 3+/- CDP

Figure 27

Addition of increasing Tf-Modifier (balance is AD-PEG) 1 mg/mL DNA, 3+/- CDP

Figure 28

timis signi ginit i

Synthesis of Histidylated BCDP6

βCDP6 + FMOC-Hist(Trt)-OH DCC, HOBt DMF

TFA:H2O:TIPS

20% Piperidine

DMF

Figure 29

pH-sensitive Polymers for Endosomal Escape

Synthesis of secondary amine containing polymers

Figure 30