Pinky Chauhan

CS 410 Technology Review

University of Illinois at Urbana-Champaign

ElasticSearch vs Solr

Introduction

Elasticsearch and Solr are two of the leading open source search engine technologies. Both are built on top of the same core underlying search library – Lucene and have several similar features as a result, but they are quite different in terms of functionalities such as scalability, ease of deployment, as well as community presence and many other aspects. I will try to highlight these differences and discuss the applicability of these technologies to different use cases in this technology review.

Details

Lucene overview

Apache Lucene is a high-performance, full-featured text search engine library written originally in Java. It is a technology suitable for nearly any application that requires full-text search. It uses inverted index to store the data and provides the following features:

- Scalable, High-Performance Indexing
 - over 150GB/hour on modern hardware
 - small RAM requirements -- only 1MB heap
 - incremental indexing as fast as batch indexing
 - index size roughly 20-30% the size of text indexed
- Powerful, Accurate and Efficient Search Algorithms
 - ranked searching -- best results returned first
 - many powerful query types: phrase queries, wildcard queries, proximity queries, range queries and more
 - fielded searching (e.g. title, author, contents)
 - sorting by any field
 - multiple-index searching with merged results
 - allows simultaneous update and searching
 - flexible faceting, highlighting, joins and result grouping
 - fast, memory-efficient and typo-tolerant suggesters
 - pluggable ranking models, including the Vector Space Model and Okapi BM25

ElasticSearch overview

Elasticsearch is a search engine based on the Lucene library. It provides a distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.

With REST APIs, Elasticsearch leverages on the search and indexing functions of Apache Lucene. This tool also provides a distributed full text search engine along with an HTTP web interface.

Released initially in the year 2010, Elasticsearch is popular for its REST APIs usage, distributed architecture, along with its speed and scalability. Elasticsearch is an integral component of the ELK Stack tools (comprising Elasticsearch, Logstash, and Kibana) – that are used for data ingestion, storage, analysis, and visualization.

Apache Solr overview

Solr is a highly reliable, scalable and fault tolerant open source search engine, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites.

It is built on top of Apache Lucene software library. With HTTP requests, Apache Solr provides advanced search capabilities of Apache Lucene.

Initially released in the year 2004, Apache Solr has a large and growing user community. Some of its best features include distributed full text search, faceting, and real-time indexing. The latest release of Apache Solr is version 8.6 – that was released in July 2020.

As a standalone search server, Solr uses a REST-like API – using which you can index documents in JSON, XML, and CSV formats.

Differences between ElasticSearch and Apache Solr

	SOLR	ELASTICSEARCH
Major features	Mainly focused on text-based searching	Along with text based search, it is also
	Highlighting	inclined to log analytics.
	Full-text search	Multi-tenancy
	Faceted search	An analyzer chain
	Real-time indexing	Analytical search
	Dynamic clustering	Grouping & aggregation
	Database integration	Distributed search
	NoSQL features	
	Rich document handling	
Open source	Fully open source with vast community	Recently became fully open source with
	support	Elasticsearch core and X-Pack (X-Pack
		code has been released as open source,
		but still requires commercial licensing to
		implement)
Initial setup	Although it has extensive	Elastic search is not as rigid as Solr. It's
	documentation, setting up and	very user friendly and set up is as simple
	experimenting on Solr is a bit	as downloading and executing with a
	tedious. Solr is now working on making	single command.
	it more under friendly.	
Queries	Queries can return in JSON, XML and	Only JSON format is supported.
	CSV formats	
Architecture	Solr creates inverted index of the	Nodes make up a cluster and contain
	documents posted to its core using a	shards, which contain documents that
	defined schema. Schema is a blue print	you're searching through. Elasticsearch
	which helps Solr in creating inverted	routes requests through nodes; the nodes

index of the documents by giving a set of predefined fields. Once Solr completes indexing the documents posted to its core or collection it can be used to run queries. When a query is given to Solr, it breaks the query into different chunks or entities and matches it with the inverted index of the documents created earlier.

then merge results from shards (Lucene indices) together to create a search result.

The distributed nature provides redundancy in case of node failures, and also adds capacity in case of heavy traffic.

Scalability

Solr itself is not very scalable but with the help of SolrCloud managed by zookeeper does the job. Solr allows the addition of shards on the go based on the requirements of the applications. Elasticsearch is scalable and is very flexible when it comes to data clusters.

Elastic search actually discourages the practice to add shards on the go. It has a fixed number of primary shards that cannot be altered. This is done to increase the query efficiency as the number of shards/indexes increase, latency in fetching the results increase.

Resource allocation

Solr is static compared to ElasticSearch. Resources are pre-allocated.

Real-time resource allocation and processing with sharding support

Plugins support

Excellent pluggable architecture

More restrictive plugin architecture

Plugins can be easily developed and integrated

Plugins are not supported in hosted environments

Tight integration with Lucene development

Lags slightly in implementing new Lucene features

		Frequent point releases with feature additions
Analytics	Strong facet-based analytics	Strong analytic capabilities with aggregations
	JSON facets added to support more	
	dynamic aggregations with analytic	Supports analysis on top of aggregations
	functions	(e.g. moving averages)
	Stream Expressions are added in Solr 7	Provides time-series analysis of
	to support a streaming framework for	continually added data (like logs or social
	parallel computation and result	media streams) for trend and efficacy
	emissions for downstream processing	insights
Nested Data	Has the notion of parent-child document	Deep nesting is well-supported
Structures	relationships	Fully-structured JSON documents can be
	These exist as separate documents	directly persisted into Elasticsearch
	within the index, limiting their	directly persisted into Elasticscarch
	aggregation functionality in deeply-	Aggregations can be performed against
	nested data structures	nested structures easily
Query Operations	Mostly limited to query URI parameters,	Full-featured Query DSL for writing and
	leading to complex queries (debuggable	expressing complex queries
	in Solr Admin)	
	JOON ARK (O. L. 7)	Limited to only JSON
	JSON API (Solr 7) introduced to allow	Custom request handlers require the
	for JSON based query expressions	development of a plugin. There is no
	Request handlers can be simply defined	notion of jar references from a custom
	in Solr configuration and Java to	endpoint as there is in Solr
	perform specific and complex tasks	
	related to a given query use case	
Cognitive Search	Learning to Rank (LTR) module is	Includes a Machine Learning component
Capabilities and	supported in Solr 6.4 or later	(with X-Pack)
Integration		
	As an Apache project, Solr integrates	
	well with OpenNLP (but not an	

	embedded component) for entity extraction and tagging to feed concept-based search	Allows for pattern recognition and time series forecasting (ML and Kibana) Learning to Rank (LTR) plugin supports machine-learning-driven relevancy tuning exercises
		Open NLP can be utilized in a similar
		fashion to Solr as an external component supporting cognitive search functions
Management and Operations	Overall, more difficult to manage (though Cloudera Manager helps with this in a Hadoop environment)	Easy to set up and scale Automatic shard rebalancing after node addition
	APIs are not available (though Solr 7 supports metrics APIs, requires JMX)	APIs provide ease of monitoring and state evaluation
	Scaling requires manual intervention for shard rebalancing (Solr 7 has an auto- scaling API giving some control over shard allocation and distribution)	X-Pack provides out of the box resource dashboards (requires licensing from Elastic)
Bulk Indexing Tools	Batch API operations	Bulk API operations only
		Configuration modifications can be made to speed up initial bulk indexing
API Interaction	SolrJ (Java) is the most well maintained and up-to-date version and is maintained as part of the Apache project	Many APIs are developed and supported directly by Elastic (Java, JavaScript, Groovy, .NET, PHP, Perl, Python, Ruby)
	Other Apache maintained APIs: Flare, PHP, Python, Perl	Other community APIs exist for Elasticsearch (e.g. C++, Erlang, Go, Haskell, Lua, Perl, R, etc.)
	Other language APIs exist but are community maintained, and often lag in	

functionality behind SolrJ (most notably the .NET API) Search for large bulk data sets, for Log analytics: enterprise log consumption example, healthcare (payer / provider), and analysis or a replacement option for biopharma research, finance, and commercial off-the-shelf log analytics government products Native unformatted record filter and Real-time dashboards for operational timeline or sales and marketing insights search, such as e-commerce or customer-facing search High-volume data streams with natural Static data set searching language content from social media and IoT streams Large bulk reprocessing Native unformatted record filter and search (e-commerce, customer)

Conclusion

Use Cases

Overall, Solr and Elasticsearch seem similar in working but are different in a few areas like scalability, functionalities, ease of deployment, etc.

While both products are document-oriented search engines, Solr is more focused on enterprise-directed text searches with advanced information retrieval. Consequently, it's more suited for search applications that use massive amounts of static data (for instance e-commerce). Solr fits better into enterprise applications that already implement big data ecosystem tools, such as Hadoop and Spark.

Elasticsearch is focused more on scaling, data analytics, and processing time series data (such as log analysis) to obtain meaningful insights and patterns. Elasticsearch is more suited to modern web applications where data is carried in and out in JSON format.

References:

- https://lucene.apache.org/
- https://www.elastic.co/
- https://lucene.apache.org/solr/
- https://mindmajix.com/apache-solr-overview
- https://buildingvts.com/elasticsearch-architectural-overview-a35d3910e515