

Classes: 2^{nde} C Thème: Mécanique

Titre de la leçon : Le mouvement

Durée: 7h

Tableau des habiletés et contenus

Habiletés	Contenus
Montrer	le caractère relatif du mouvement d'un point matériel
	un référentiel.
Définir	• un repère d'espace.
	Un repère de temps.
	 le vecteur-position d'un point matériel.
Repérer	quelques points dans un repère convenablement choisi.
	la trajectoire d'un point matériel.
Définir	la vitesse moyenne.
	la vitesse instantanée.
	le vecteur-vitesse.
Déterminer	les caractéristiques du vecteur-vitesse.
Représenter	Le vecteur-vitesse
	La nature du mouvement :
Déterminer	- mouvement rectiligne uniforme ;
	- mouvement rectiligne uniformément varié ;
	- mouvement circulaire uniforme.

Situation d'apprentissage

Le premier jour de la rentrée scolaire, des élèves de la classe de 2^{nde} C du Collège Moderne de Tiédio échangent de leurs nouvelles. L'un d'entre eux raconte son voyage depuis Bondoukou jusqu'à Tiédio. Il dit qu'il est parti de Bondoukou à 10 h 15 min et a parcouru la distance de 79 km en 1 h 50 min. Il dit encore que le véhicule ralentissait en abordant les virages et roulait plus vite sur les routes rectilignes et qu'à travers la fenêtre il voyait défiler les arbres. Ces camarades ayant apprécié le récit, décident ensemble d'étudier ce déplacement. Pour cela, ils cherchent à montrer le caractère relatif du mouvement, puis à définir un référentiel, les vitesses moyenne et instantanée et enfin à identifier les différents types de mouvement effectués.

- Disque en carton Enregistrements sur aérotable (n°1; 4; 5; 6).	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
	BIBLIOGRAPHIE Collection AREX 2 ^{nde} C. Collection EURIN GIE 2 ^{nde} C.

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	LE MOUVEMENT
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. Caractère relatif du mouvement 1.1 Exemple Considérons un passager assis dans un car et un observateur arrêté au bord de la route. Le passager est: - en mouvement par rapport à l'observateur car la distance entre les deux personnages varie au cours du temps au repos par rapport au par rapport au car sa position ne varie pas au cours du temps. Conclusion: La notion de mouvement ne dépend que de l'objet de référence choisi: le mouvement a un caractère relatif. 1.2 Référentiel Le référentiel est le solide par rapport auquel on décrit le mouvement d'un mobile. Exemples: - le référentiel terrestre; - le référentiel de Copernic; - le référentiel de Copernic; - le référentiel Galiléen. 1.3 Repère d'espace et un repère de temps. 1.3.1 Repère d'espace Le repère d'espace et un référentiel donné. Il permet de définir la position du point mobile M par les coordonnées du vecteur-position OM et a pour origine un point O. Trois cas peuvent être distingués: - 1er cas: M se déplace sur une droite.

T	
	Le vecteur-position \overrightarrow{OM} s'écrit : $\overrightarrow{OM} = x_M \vec{\iota}$ - $2^{\text{ème}}$ cas : M se déplace dans un plan.
	y ↑
	y_M y_M y_M y_M y_M y_M y_M y_M
	Le vecteur-position \overrightarrow{OM} s'écrit : $\overrightarrow{OM} = x_M \vec{i} + y_M \vec{j}$ $-3^{\text{ème}} \text{ cas}$: M se déplace dans un espace.
	Z_M
	\vec{k} \vec{j} \vec{y}_M
	x ×

Dos à portée de main
Le vecteur-position OM s'écrit : $OM = x_M \vec{i} + y_M \vec{j} + z_M \vec{k}$
NB: - les vecteurs
1.3.2 Repère de temps
Un repère de temps permet de situer un point mobile dans le temps.
Le temps se présente sous deux aspects :
- A chaque position du point mobile M, on associe un temps précis appelé
instant ou date noté t. L'unité légale du temps est la seconde (s).
- La durée est l'intervalle de temps séparant deux instants respectifs t_i et t_f
notée Δt : $\Delta t = t_f - t_i$ avec $t_f > t_i$.
1.4 <u>Trajectoire d'un point mobile</u>
La trajectoire d'un point mobile est l'ensemble des positions occupées
successivement par le mobile au cours de son mouvement.
- Si les positions forment une droite, on dit que la trajectoire est rectiligne .
- Si les positions forment un cercle, on dit que la trajectoire est circulaire .
- Si les positions forment une courbe, on dit que la trajectoire est curviligne .
of ies positions forment and course, on all que la lagorithe est cut vingiles
1 Vitaria
1. Vitesse
1.1 Vitesse moyenne
La vitesse moyenne est le quotient de la distance parcourue d par la durée Δt du
parcours.
m m
m/s ou m.s ⁻¹ $V_m = \frac{d}{\Delta t}$ s
$\Delta t \blacktriangleleft S$
Exemple : La vitesse moyenne effectuée par un automobiliste sur le trajet
Tanda-Bondoukou, long de 56 km, en 1 h10 min est de m.s ⁻¹ .
1.2 <u>Vitesse instantanée</u>
- La vitesse instantanée est la vitesse à un instant précis. Elle se lit sur le
compteur de vitesse (automobiles, motos,).
Exemple : Le principal du CMT arrive au niveau du pont Bahia et consulte son
tableau de bord qui indique 100 km.h ⁻¹ .
100 km.h ⁻¹ est la vitesse instantanée.
- On peut calculer cette vitesse comme étant la vitesse moyenne entre deux
instants très proches encadrant l'instant t_i .
mount of the province endurant i mount of

2.	Etude	de	quelques	mouvements

2.1 Mouvement rectiligne uniforme

2.1.1 Expérience

Sur une table à coussin d'air, on enregistre les positions successives d'un mobile M à intervalle de temps régulier $\tau = ms$. Sa trajectoire est donnée par le document 1 ci-dessous.

.

Document 1

2.1.2 Etude du document 1

- La trajectoire de M est une droite donc son mouvement est rectiligne.
- Les positions successives de M sont régulièrement espacées $(M_0M_1 = M_1M_2 = \cdots = M_9M_{10} = cm)$ donc son mouvement est **uniforme.**
 - ⇒ Le mouvement de M est rectiligne et uniforme.
- Représentation des vecteurs-vitesses \vec{V}_t sur le document 1 à l'aide de l'échelle suivant : 1 cm \rightarrow 0,25 m.s⁻¹.

Date t _i	t_1	t_4	t ₇
Vitesse	$V_1 =$	$V_4 =$	V ₇ =
instantanée V _i (m.s ⁻¹)	$V_1 =$	$V_4 =$	$V_7 =$
(111.5)	$V_1 =$	$V_4 =$	$V_7 =$
Longueur de \vec{V}_l (cm)			

La vitesse instantanée a la **même valeur** à toutes les dates : $V_1 = V_4 = V_7 = ... = m.s^{-1}$. De plus, après avoir représenté les vecteurs-vitesse sur le document 1 à l'aide de l'échelle, on constate qu'ils ont la **même direction** et le **même sens.**

 \Rightarrow Le vecteur-vitesse de M est constant $(\overrightarrow{V_1} = \overrightarrow{V_4} = \overrightarrow{V_7} = \cdots)$.

2.1.3 Conclusion

		mobile est constan	t (même norme, mê	me direction et mé	ême sens).
		2.2.1 <u>Expéri</u>	ositions successive		ile A à un intervalle de
				•	
			<u>Do</u>	cument 2	
		- La trajectoire de A - Les distances entr son mouvement est ⇒ Le m	re les positions succ dit varié. ouvement de A est	essives de A ne s	ont pas les mêmes donc
		suivant: 1 cm -	→ 0,25 m.s	s ⁻¹	
		Date t _i	t_2	t ₅	t ₇
		Vitesse instantanée V _i	$V_2 = V_2 $	$V_5 = V_5 $	$V_7 = V_7 $
		(m.s ⁻¹)	$V_2 =$	$V_5 =$	$V_7 =$
		Longueur de \overrightarrow{V}_l (cm)			
		représentation des l'échelle, on consta ⇒ Le v 2.2.3 <u>Conclu</u>	vecteurs-vitesse su te que ces vecteurs de ecteur-vitesse de A usion	ont la même direction V_2 varie ($\overline{V_2} \neq \overline{V_5}$	$(V_2 \neq V_5 \neq V_7)$. Après 2 en tenant compte de ction et le même sens. \overrightarrow{V}_7).

Docs à p	ortée de main
	varie (mème direction, même sens, mais de normes différentes).
	2.3 Mouvement circulaire uniforme
	2.3.1 Expérience
	On enregistre les positions successives d'un point mobile B à un intervalle de
	temps régulier $\tau = ms$ (voir document 3).
	temps regulier to this (voir document 3).
	(Voir page suivante)
	(· · · · · · · · · · · · · · · · · · ·
	• • •
	• •
	•
	•
	•
	•
	•
	<u>Document 3</u>
	2.3.2 Etude du document 3
	- La trajectoire de B est un cercle donc son mouvement est circulaire.
	- Les positions successives de B sont régulièrement espacées $(B_0B_1 = B_1B_2 =$
	$\cdots = B_{15}B_{16} = cm$) donc son mouvement est uniforme.
	⇒ Le mouvement de B est circulaire et uniforme.
	- Représentation des vecteurs-vitesses \vec{V}_l sur le document 3 à l'aide de l'échelle
	suivant: 1 cm — → 0,1 m.s ⁻¹
	D.t.
	Date t_i t_1 t_7 t_{12}

Т	T T	Docs à port	ée de main	1	1	
			Vitesse instantanée V _i (m.s ⁻¹)	$V_1 =$ $V_1 =$ $V_1 =$	$V_7 =$ $V_7 =$ $V_7 =$	$V_{12} = V_{12} = V$
			Longueur de \vec{V}_l (cm)			
			en tenant compte d des sens différents	 Après représentation e l'échelle, on const 	on des vecteurs-vit ate que ces vecteu	es dates : $V_1 = V_4 = V_{16}$ tesse sur le document 3 rs ont des directions et
			Remarque: Les p		vecteurs-vitesse s	se coupent un point qui
						reur-vitesse d'un point s différents).
				Activité d	l'évaluation	

Classes: 2nd C Thème: Mécanique

Titre de la leçon : Actions mécaniques ou forces

Durée: 10h

Tableau des habiletés et contenus

Habiletés	Contenus
Connaître	les effets d'une action mécanique.
Définir	une action mécanique.
	les types d'actions mécaniques :
Identifier	- action mécanique localisée ;
	- action mécanique repartie en volume s'exerçant à distance ;
	- action mécanique de contact repartie en surface.
	quelques actions mécaniques :
Représenter	- tension d'un fil ;
	- poids d'un corps ;
	- réaction d'un support.
Déterminer	la relation entre la tension et l'allongement d'un ressort.
Utiliser	la relation : $T = k (I - I_0)$.
Enoncer	le principe des interactions ou actions réciproques.
Utiliser	le principe des interactions ou actions réciproques.
Citer	quelques applications des actions réciproques.
Définir	un système mécanique.
Identifier	les forces extérieures agissant sur un système.
Représenter	Les forces qui s'exercent sur un système.

Situation d'apprentissage

Au cours d'une finale d'interclasses qui opposent les classes de 2^{nde} A et de 2^{nde} C du Collège Moderne de Tiédio, l'arbitre accorde un coup franc à la 2^{nde} C. Avant le tir, le joueur pose son pied sur le ballon et constate que celui-ci se déforme légèrement. Il exécute le coup franc en donnant un coup de pied au ballon qui va par la suite heurter un joueur de la 2^{nde} A avant de se loger dans les filets. Les élèves veulent connaître l'auteur du but. Pour cela, ils décident d'identifier les actions mécaniques qui se sont exercées sur le ballon à partir de leurs effets, de définir et de modéliser une action mécanique.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Billes d'acier.	- Schémas
- Aimant.	- Manuels d'élèves
- Objets flottants etc	
- Dynamomètres.	
- Ressorts.	BIBLIOGRAPHIE
- Fils.	Collection AREX 2 ^{nde} C
- Masses marquées.	Collection EURIN GIE 2 ^{nde} C
- Poulies.	Concession Earth (GIE 2
- Crochets etc	
- Potences et règles graduées.	
- Masses marquées.	
- Récipient.	
- Corps à immerger.	

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	ACTIONS MECANIQUES OU FORCES
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. Effets d'une action mécanique 1.1 Effet dynamique 1.1.1 Exemple Au cours d'un match de football entre deux équipes A et B, un joueur de l'équipe A tire un coup franc. Le gardien de but de l'équipe B, peut soit arrêter la balle ou soit la dévier. L'action mécanique du pied du joueur de l'équipe A sur la balle, la met en mouvement. L'action mécanique exercée par le gardien de l'équipe B pour arrêter ou dévier la balle, modifie ce mouvement. 1.1.2 Conclusion Une action mécanique exercée sur un corps est capable de le mettre en mouvement ou modifier son mouvement: il s'agit de l'effet dynamique. 1.2 Effet statique 1.2.1 Exemple Un objet est accroché à un ressort. L'action mécanique exercée par l'objet sur le
				ressort le déforme . L'action mécanique exercée par ressort sur l'objet, le

Docs à por	tée de main
	maintient en équilibre.
	1.2.2 Conclusion
	Une action mécanique exercée sur un corps est capable de le déformer ou le
	maintenir en équilibre: il s'agit de l'effet statique.
	2. Notion de force
	2.1 Définition
	On appelle force, toute action mécanique capable de mettre en mouvement un
	corps, de modifier le mouvement d'un corps, de déformer un corps et de
	maintenir en équilibre un corps.
	maintenii en equinore un corps.
	2.2 Vootour faras
	2.2 Vecteur force
	Une force est modélisée par un vecteur appelé vecteur-force.
	La force exercée par un corps A sur un corps B est représentée par un vecteur
	noté $\vec{F}_{A/B}$ ou $\vec{F}_{A o B}$ ou \vec{F} .
	2.3 Caractéristiques d'une force
	Les caractéristiques d'une force sont :
	- point d'application : point où s'applique la force ;
	- direction : droite d'action ou support de la force ;
	- sens : celui du mouvement (que la force tend à produire) ;
	- intensité : valeur de la force donnée par un dynamomètre et qui s'exprime en
	Newton (N).
	The word (14).
	2.4 Catégories de forces
	Il existe deux catégories de forces.
	2.4.1 Forces de contact
	Pour les forces de contact, l'acteur et le receveur de l'action mécanique sont en
	contact. Elles sont localisées ou réparties en surface.
	Exemple : La tension d'un fil; la réaction d'un support; la poussée
	d'Archimède.
	2.4.2 <u>Forces à distance</u>
	L'acteur et le receveur de l'action mécanique ne sont pas en contact. Elles sont
	réparties en volume.
	Exemple : le poids d'un solide, forces magnétiques, forces électrostatiques.
	3. Quelques exemples de forces
	3.1 Force de contact localisée : la tension d'un fil
	On accroche un solide D suspendu à un plafond par l'intermédiaire d'un fil E au
	point d'attache I comme l'indique la figure ci-dessous.
	point a attache i comme i maique la rigure ci-ucssous.

La force exercée par le fil E sur le solide D notée $\overrightarrow{F}_{E/D}$ est la tension du fil \overrightarrow{T} . plafond fil E solide D Les caractéristiques de \overrightarrow{T} sont : - point d'application : le point d'attache I. - direction : celle du fil.	
solide D Les caractéristiques de \vec{T} sont : - point d'application : le point d'attache I.	
solide D Les caractéristiques de \vec{T} sont : - point d'application : le point d'attache I.	
solide D Les caractéristiques de \overrightarrow{T} sont : - point d'application : le point d'attache I.	
solide D Les caractéristiques de \overrightarrow{T} sont : - point d'application : le point d'attache I.	
Les caractéristiques de \vec{T} sont : - point d'application : le point d'attache I.	
Les caractéristiques de \vec{T} sont : - point d'application : le point d'attache I.	
- point d'application : le point d'attache I.	
- sens : orienté du solide D vers le fil F.	
- intensité : celle de l'intensité du poids \vec{P} du solide $D \Rightarrow T=P$.	
3.2 Force repartie en volume s'exerçant à distance : le poids d'un corp	
La force d'attraction exercée par la terre T sur un corps C notée $\overline{F_{T/C}}$ est le po	oids
\overrightarrow{P} de ce corps.	
Corps C G	
Corps C $\overrightarrow{F_{T/C}} = \overrightarrow{P}$	
lack	
terre T	
Les caractéristiques de \vec{P} sont : - point d'application : le centre de gravité G du corps.	
- direction : la verticale du lieu.	
- sens : du haut vers le bas. - intensité : $P = m \times g$ avec $m : masse du corps (kg)$	
$\begin{cases} g : \text{ intensit\'e de pesanteur } (N/ \text{ kg}) \\ P : \text{ poids du corps } (N) \end{cases}$	

Docs à portée de main	
42 T 11	
4.2 <u>Tableau de mesures</u>	
La mesure de longueur à vide du ressort l_0 avec la règle donne: $l_0 = 20c$ Pour les différentes valeurs de la tension T mesurées à l'aide du dynamon	
on mesure la longueur du ressort l à l'aide de la règle. Puis on ca	
l'allongement x pour chaque valeur de T.	icuic
Tanongement a pour enaque valeur de 1.	
T(N) 0 0,2 0,4 0,6 0,8 1	
l(cm) 20 20,4 20,8 21,2 21,6 22	
$x = l - l_0(cm)$ 0 0,4 0,8 1,2 1,6 2	
4.3 Représentation graphique de $T = f(x)$	
1 cm → 0,1 N	
Echelle:	
$T(N)_{\blacktriangle}$	
1+	
0,8+	
0,6+	
0,0 +	
0,4 +	
0,2 +	
0 0.4 0.8 1.2 1.6 2 x(cm)	
0 0,4 0,8 1,2 1,6 2 x(cm)	
4.4 Relation entre la tension T et l'allongement x du ressort	
La courbe $T = f(x)$ est une droite qui passe par l' origine . L'équation de	cette
droite est de la forme : $T = a x$ où a est la pente de la droite.	
	,

	Docs à portée de main
	Docs a portée de main $\frac{\text{Calculons }k}{a=\frac{\Delta T}{\Delta x}}$ $a=\frac{T_2-T_1}{x_2-x_1}$ $\underline{\text{AN}}: a=\frac{0,4-0,2}{(0,8-0,)410^{-2}}$
	La pente a est appelée constante de raideur (constante d'élasticité) du ressort et se note k . On a donc la relation : $T = k \ x$ ou $T = k \ (l - l_0)$ avec $\begin{cases} T \ en \ N \\ k \ en \ N \ m^{-1} \\ x \ en \ m \end{cases}$
	Activité d'application 1. Un ressort a une longueur à vide $l_0 = 15$ cm. Une de ses extrémités est fixe. On applique sur l'autre extrémité, une force \overrightarrow{F} d'intensité $F = 4,5$ N et le ressort prend une longueur $l = 18$ cm. Calcule la constante de raideur k de ce ressort. 2. On applique à une des extrémités du ressort précédent une autre force $\overrightarrow{F'}$ d'intensité $F' = 5$ N . Calcule la nouvelle longueur l de ce ressort.
	1. Constante de raideur k $F = k (l - l_0) \Rightarrow k = \frac{F}{l - d}$ $\frac{AN}{k} : k = \frac{4, 5}{(18 - 15) \cdot 10^{-2}}$ $k = 1 5 0 N. m$ 2. Nouvelle longueur l du ressort
	$F' = k (l - l) \Rightarrow l = \frac{F'}{k} + l_0$ $\underline{AN} : l = \frac{5}{15} + 0.1 \text{avec } l_0 = 15 \text{ cm} = 0.15 \text{ m}.$

	Does a pot tee de main
	l = 0.183 m soit l = 18.3 cm
	5. Principe des interactions 5.1 Mise en évidence
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	On accroche deux dynamomètres A et B l'un à l'autre et l'ensemble est maintenu sous tension. Le dynamomètre A provoque l'allongement du ressort du dynamomètre B et exerce une force $\overrightarrow{F_{A/B}}$ sur B. De même B exerce une force $\overrightarrow{F_{B/A}}$ sur A.
	 5.2 <u>Caractéristiques des forces</u> Les deux forces ont : la même droite d'action. des sens opposés. ont la même intensité : F_{A/B} = F_{B/A}
	5.3 Enoncé du principe des interactions Lorsque deux corps A et B sont en interaction, le corps A exerce une force $\overrightarrow{F_{A/B}}$ sur le corps B et le corps B exerce une force $\overrightarrow{F_{B/A}}$ sur le corps A telle que : $\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}}$
	5.4 Application : la marche à pied $\overrightarrow{F_{S/P}}$
	$\overline{F_{P/S}}$

	boos a por c	ee de merii
		En marchant, la plante du pied P exerce sur le sol S une force
		$\overrightarrow{F_{P/S}}$. D'après le principe des interactions, S exerce sur P une force $\overrightarrow{F_{S/P}}$ qui
		permet au marcheur d'avancer et de le propulser vers l'avant.
		r r r r r r r r r r r r r r r r r r r
		Autres exemples d'applications :
		- Propulsion d'une fusée par réaction ;
		- Rebond d'une balle à la suite d'un choc;
		- Recul d'une arme à feu à la suite d'un tir etc
		6. Système mécanique
		6.1 <u>Identification d'un système</u>
		← fil F
		•
		On peut choisir d'étudier soit:
		- le solide S donc S est le système.
		- le fil F donc F est le système.
		- l'ensemble fil + solide donc l'ensemble est le système.
		6.2 <u>Définition</u>
		Un système est un corps ou un ensemble de corps que l'on désire étudier.
		6.3 Forces agissant sur un système
		6.3.1 Forces intérieures et forces extérieures
		- Toutes les forces d'interaction entre les différentes parties d'un système sont
		appelées forces intérieures.
		- Les forces extérieures sont les forces exercées par le milieu extérieur sur le
		système.
		6.3.2 <u>Identification et représentation des forces</u>
		(voir page suivante)

T T	 Docs à port	tée de main
		<u>Système</u> : le solide S.
		\overline{T}
		- forces extérieures : le poids \overrightarrow{P} du solide et la tension \overrightarrow{T} du fil forces intérieures : néant.
		<u>Système</u> : le solide S + le fil
		\overrightarrow{R}
		T
		P
		- forces extérieures : le poids \overrightarrow{P} du solide et la tension \overrightarrow{R} du support. - forces intérieures : la tension \overrightarrow{T} du fil.

	Docs à por	tée de main
		Situation d'évaluation

Classes: 2nd C Thème: Mécanique

Titre de la leçon: Equilibre d'un solide soumis à deux, puis à trois forces.

Durée: 7h

Tableau des habiletés et contenus

Habiletés	Contenus	
Enoncer	les conditions d'équilibre.	
	les forces appliquées à un solide en équilibre soumis à deux forces :	
	- solide sur un plan horizontal ;	
Représenter	- solide attaché à un fil.	
	les forces s'exerçant sur un solide en équilibre sur un plan incliné.	
Définir	les réactions normale et tangentielle.	
Appliquer	les conditions d'équilibre d'un solide soumis à deux forces.	
Connaître	les conditions d'équilibre d'un solide soumis à trois forces non	
	parallèles.	
Représenter	les forces appliquées à un solide en équilibre soumis à trois forces.	
Appliquer	les conditions d'équilibre d'un solide soumis à trois forces non	
	parallèles.	

Situation d'apprentissage

Des élèves de la classe de 2^{nde} C du Collège Moderne de Tiédio ont confectionné un tableau qu'ils veulent offrir à leur professeur comme cadeau. Certains proposent que la ficelle qui va permettre d'accrocher le tableau à une pointe fixée dans un mur, soit attachée en point du tableau; tandis que d'autres proposent qu'elle le soit en deux points. Pour s'accorder, ils décident d'identifier les forces extérieures agissant sur le tableau et de déterminer les conditions d'équilibre du tableau selon qu'il est soumis à deux puis à trois forces.

MATERIELS PAR POSTE DE TRAVAIL - Dispositif pour l'étude des forces. - Plan incliné. - Solide.	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
- Rapporteur.	BIBLIOGRAPHIE Collection AREX 2 ^{nde} C Collection EURIN GIE 2 ^{nde} C

PLAN DE LA LECON

Docs à portée de main				
Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	EQUILIBRE D'UN SOLIDE SOUMIS A DEUX, PUIS A TROIS FORCES
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		
				 Condition d'équilibre d'un solide soumis à deux forces Expérience
				D_1 $\overline{F_1}$ $\overline{F_2}$ D_2
				Soit un solide S (morceau de polystyrène), de poids négligeable devant les autres forces, soumis à l'action de deux fils reliés chacun par un dynamomètre.

1.2 <u>Résultats</u> En équilibre, les forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ exercées par les fils respectivement en A et B
ont: - même support; - des sens opposés; - une même intensité. Les deux forces étant de sens opposés et ayant même intensité $\Rightarrow \overline{F_1} = -\overline{F_2}$. Donc $\overline{F_1} + \overline{F_2} = \overline{0}$. 1.3 Conclusion Lorsqu'un solide soumis à l'action de deux forces $\overline{F_1}$ et $\overline{F_2}$ est en équilibre: $-\overline{F_1} + \overline{F_2} = \overline{0}$ 2. Exemples de solides en équilibre soumis à deux forces. 2.1 Solide sur un plan horizontal Considérons un solide S de masse $m = 200$ g posé sur un plan horizontal. On donne $g = 10$ N/kg. 2.1.1 Bilan des forces Système: le solide S Bilan des forces: - le poids \overrightarrow{P} du solide la réaction \overrightarrow{R} du support. 2.1.2 Caractéristiques des forces A l'équilibre on $a : \overrightarrow{P} + \overrightarrow{R} = \overrightarrow{0} \Rightarrow P = R$ - Caractéristiques de \overrightarrow{P} Point d'application: le centre de gravité G Direction: la verticale du lieu. Sens: du haut vers le bas. Intensité: $P = m$ $g \Rightarrow P = 0$, $2 \times 1\theta$ $P = 2$ N . - Caractéristiques de \overrightarrow{R} Point d'application: le point de contact A . Direction: la verticale du lieu. Sens: du haut vers le bas. Intensité: $P = m$ $p \Rightarrow P = 0$, $p = 0$.
Sens: du bas vers le haut. Intensité: $R = P \Rightarrow R = 2N$
Intensite: $K = P \Rightarrow K = 2N$

	Doos à portée de main
	2.1.3 Représentation des forces La représentation des forces \overrightarrow{P} et \overrightarrow{R} suivant l'échelle : 1cm \longrightarrow 1N donne une longueur de 2 cm pour chacune des forces sur le schéma suivant :
	$\frac{1}{R} G$
	2.2 Solide attaché à un fil On considère un solide S de masse m = 150 g attaché à un fil suspendu à un plafond. 2.2.1 Bilan des forces Système: le solide S Bilan des forces: - le poids P du solide. - la tension T du fil. 2.2.2 Caractéristiques des forces S est en équilibre et est soumis à deux forces P et T ⇒ P = T. - Caractéristiques de P Point d'application: le centre de gravité G Direction: la verticale du lieu. Sens: du haut vers le bas. Intensité: P = m g ⇒ P = 0, 15 x 1 P = 1, 5 N. - Caractéristiques de T Point d'application: le point d'attache B. Direction: la verticale du lieu. Sens: du bas vers le haut. Intensité: T = P ⇒ T = 1, 5 N 2.2.3 Représentation des forces La représentation des forces P et T suivant l'échelle: 1cm → 1,5 N donne une longueur de 1 cm pour chacune des forces sur le schéma suivant:

2.3 Equilibre stable et équilibre instable 2.3.1 Equilibre stable Soit une règle plate, percée d'un trou O à une de ses extrémités, accrochée à un support. Ecartée de sa position d'équilibre (position 1), elle oscille et y revient : on dit que l'équilibre est stable.
2.3.2 <u>Equilibre instable</u> Soit la même règle plate en équilibre avec le trou O sous le centre de gravité G (position 2). Ecartée de cette position, elle s'en éloigne, effectue un demi-tour et après quelques oscillations, occupe la position d'équilibre stable (position 1). L'équilibre de la position 2 est dit instable.

G \overline{R} 3. Etude de l'équilibre d'un solide sur un plan incliné 3.1 Plan incliné lisse Système : le solide $\overrightarrow{Bilan des forces}$: - le poids \overrightarrow{P} du solide. - la réaction \overrightarrow{R} du support incliné. La surface de contact du plan incliné étant lisse, il n'y a pas de force de frottement ⇒ la réaction est normale au plan.

ortée de main
Les forces \overrightarrow{P} et \overrightarrow{R} n'ont pas la même droite d'action. L' équilibre est impossible : le solide glisse $(\overrightarrow{P} + \overrightarrow{R} \neq \overrightarrow{0})$.
3.2 Plan incliné rugueux
$\overrightarrow{R_N}$ \overrightarrow{R} $\overrightarrow{R_R}$ $\overrightarrow{R_R}$ $\overrightarrow{R_R}$
Système : le solide
<u>Bilan des forces</u> : - le poids \overrightarrow{P} du solide.
- la réaction \overrightarrow{R} du support incliné. La réaction n'est plus normale au plan: on dit qu'il existe des forces de
frottements.
\overrightarrow{P} et \overrightarrow{R} ont la même droite d'action et \overrightarrow{P} + \overrightarrow{R} = $\overrightarrow{0}$ \Rightarrow le solide est en
équilibre. →
La réaction \overrightarrow{R} du support a deux composantes : la réaction normale $\overrightarrow{R_N}$ et la réaction tangentielle \overrightarrow{R} ($\overrightarrow{R} = \overrightarrow{R_N} + \overrightarrow{R_t}$).
3.2.1 Réaction normale
La réaction normale est la composante de la réaction \overrightarrow{R} qui est perpendiculaire
(normale) au plan incliné. 3.2.2 Réaction tangentielle
La projection orthogonale de la réaction \overrightarrow{R} sur le plan incliné est la réaction
tangentielle. Elle représente la force de frottement et est notée \vec{f} .
Activité d'application Un solide de masse m = 500g est accroché au bout d'un ressort de raideur k = 100 N/m comme l'indique la figure. On prendra g = 10 N/kg 1. Donne l'inventaire des forces appliquées au solide puis représente-les. 2. Ecris la condition d'équilibre. 3. Exprime l'allongement Δl du ressort en fonction de m, k et g. 4. Calcule la valeur de l'allongement Δl du ressort.

Dos à portée de main
Résolution 1. Inventaire des forces appliquées Système : le solide Bilan des forces : - le poids \overrightarrow{P} du solide. - La tension \overrightarrow{T} du ressort. 2. Condition d'équilibre A l'équilibre : $\overrightarrow{P} + \overrightarrow{T} = \overrightarrow{0}$ 3. Expression de Δl $P = T \Rightarrow mg = k \Delta l \Rightarrow \Delta l = \frac{mg}{k}$ 4. Valeur de Δl $\Delta N \cdot \Delta l = \frac{0.5 \times 10}{1000}$ $\Delta l = 0, 05 moit \Delta l = 5 cm$ 4. Condition d'équilibre d'un solide soumis à trois forces non parallèles 4.1 Expérience Soit un solide S de masse négligeable, maintenu en équilibre par l'action simultanée de 3 fils tendus liés à des dynamomètres.

Docs à portée de main
$\overline{F_1}$ $\overline{F_2}$ $\overline{F_2}$ $\overline{F_3}$ $\overline{F_3}$
4.2 <u>Résultats</u> En équilibre : - les trois forces sont coplanaires et leurs droites d'action sont concourantes , - la somme vectorielle des trois forces est égale au vecteur nul : $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$ 4.3 <u>Conclusion</u> Lorsqu'un solide est soumis à l'action de trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ non parallèles, est en équilibre : - les forces sont coplanaires , - leurs droites d'actions sont concourantes , - la somme vectorielle des forces est égale au vecteur nul : $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$.

F Fomesoutra.com

	Docs à port	ée de main

Classes: 2nd C Thème: Mécanique

Titre de la leçon : Equilibre d'un solide mobile autour d'un axe fixe

Durée: 5h

Tableau des habiletés et contenus

<u>Habiletés</u>	<u>Contenu</u>
Connaître	I'expression du moment d'une force par
	rapport à un axe fixe.
	l'unité légale du moment d'une force par
	rapport à un axe fixe.
Déterminer	le moment d'une force par rapport à un axe fixe.
Connaître	les conditions d'équilibre d'un solide mobile
	autour d'un axe fixe.
Appliquer	les conditions d'équilibre d'un solide mobile
	autour d'un axe fixe.

Situation d'apprentissage

Un élève en classe de 2nd C au Collège Moderne de Tiédio a ramassé des noix d'acajou dans la plantation de son père pendant le week-end. Sur le chemin de retour, il se rend chez un acheteur de produits agricoles qui dispose d'une balance romaine en vue de les vendre. Doutant de la fiabilité de cette balance, il refuse de lui vendre son produit. Le lundi, il relate les faits à ses amis et ensemble avec l'aide du professeur décident de déterminer le moment d'une force, de connaître les conditions d'équilibre d'un solide mobile autour d'un axe fixe et d'utiliser ces relations.

MATERIELS PAR POSTE DE TRAVAIL - Dispositif d'étude classique	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
	BIBLIOGRAPHIE Collection AREX 2 nd C. Eurin gié 2 nd C.

PLAN DE LA LECON

	1	T	Docs à p	oatfa / ortée de main
Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	EQUILIBRE D'UN SOLIDE MOBILE AUTOUR D'UN AXE FIXE
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation Quelles actions les élèves veulent mener?	Les élèves lisent la situation Ils décident : - de déterminer le moment d'une force, de connaître les conditions d'équilibre d'un solide mobile autour d'un axe fixe et d'utiliser ces relations.	1. Effet de rotation d'une force 1.1 Expérience et observations

mi

	boos a po	F (N)	$F_0 = 6$ $d_0 = 0.15$	Tableau de mes $F_1 = 4,5$ $d_1 = 0,20$	F ₂ = 6 $d_2 = 0.15$	$F_3 = 9$ $d_3 = 0,10$
		F × d (N.m)	0,90	0,90	0,90	0,90
		On obtient le même effet de rotation chaque fois que : $\mathbf{F_0} \times \mathbf{d_0} = \mathbf{F_i} \times \mathbf{d_i}$. L'effet de rotation dépend donc à la fois de l'intensité \mathbf{F} de la force exercée et de la distance \mathbf{d} à l'axe de rotation. 2.2 <u>Définition du moment d'une force</u> Le moment $\mathbf{M_A}(\mathbf{F})$ par rapport à un axe fixe (Δ) d'une force \mathbf{F} orthogonale à cet axe est égal au produit de l'intensité \mathbf{F} de la force par la longueur \mathbf{d} du bras de levier : $(\mathbf{N.m}) \qquad \qquad \mathbf{M_A}(\mathbf{F}) = \mathbf{F} \times \mathbf{d} \qquad \qquad \mathbf{m}$ (\mathbf{N}) 2.3 <u>Le moment: grandeur algébrique</u>				

 $m_2 = 450 g (d_2 = 15 cm)$

_	_	_			_	
- 3	1	2	Ré	CII	lta	t

F (N)	$F_0 = 6 \text{ N}$	$F_1 = 1,5 \text{ N}$	$F_2 = 4.5 \text{ N}$	P = 2 N	R = 14 N
d (m)	$d_0 = 0,15$	$d_1 = 0,20$	$d_2 = 0.15$	d' = 0	d'' = 0
M _Δ (N.m)	- 0,90	+ 0,30	+ 0,60	0	0

Calculons la somme des différentes forces extérieures appliquées au disque maintenu en équilibre :

$$\sum M_{\Delta}(\overset{1}{F}_{ext}) = M_{\Delta}(\overset{1}{F}_{0}) + M_{\Delta}(\overset{1}{F}_{1}) + M_{\Delta}(\overset{1}{F}_{2}) + M_{\Delta}(\overset{u}{P}) + M_{\Delta}(\overset{u}{R})$$

$$= -0.9 + 0.3 + 0.6 + 0 + 0$$

$$\sum M_{\Delta}(\overset{1}{F}_{ext}) = 0 \text{ N.m.}$$

On constate que cette somme est nulle.

3.1.3 Enoncé du théorème des moments

Lorsqu'un solide mobile autour d'un axe fixe, est en équilibre, la somme algébrique des moments par rapport à cet axe, de toutes les forces extérieures appliquées à ce solide est nécessairement nulle :

$$\sum M_{\Delta}(\stackrel{1}{F}_{ext}) = 0.$$

4. Conditions générales d'équilibre d'un système

Lorsqu'un solide mobile autour d'un axe fixe (Δ) est en équilibre alors :

Docs	s à portée de main
	- la somme algébrique des moments par rapport à l'axe des forces
	appliquées est nulle :
	$\sum M_{\Lambda}(\stackrel{1}{F}_{ext}) = 0.$
	$\angle M_{\Delta}(F_{\rm ext}) = 0.$
	 la somme vectorielle des forces appliquées est nulle :
	$\sum_{i=1}^{n} \frac{1}{2}$
	$\sum_{i} (\hat{F}_{ext}) = \hat{0}.$
	Exercice d'application
	Une poulie à deux gorges de rayons $r = 25$ cm et $R = 50$ cm, mobile autour d'un
	axe (Δ) est accrochée à un support comme l'indique la figure ci-contre.
	and (2) est decreence a an support comme i marque la rigare el conde.
	On suspend par un fil s'enroulant sur la petite gorge, un objet de masse $m_1 = 1$
	kg.
	1- Calculer la masse m ₂ de l'objet qu'il faut accrocher au fil qui s'enroule
	sur la grande gorge pour rétablir l'équilibre.
	2- Déterminer les caractéristiques de la réaction \overrightarrow{R} de l'axe de rotation (Δ)
	sur la poulie.
	R R
	/ X r \ \
	$\setminus \setminus (\Delta) /$
	Résolution
	1-
	Système étudié : la poulie à deux gorges
	 <u>Référentiel d'étude</u> : le référentiel terrestre
	Bilan des forces appliquées :
	- Dian des totees appriquées.

 	 Docs à por	utra /	
		 La force F	\vec{F}_2
		2- Détermination des caractéristiques de la réaction $\vec{F}_1 + \vec{F}_2 + \vec{R} = \vec{0}$ $\vec{R} = -(\vec{F}_1 + \vec{F}_2)$ A.N: $R = 1.10 + 0,5.10 = 15 \text{ N}$ Les caractéristiques de \vec{R} sont : - Direction : verticale - Sens : orienté vers le haut - Point d'application : contact entre la poulie et l'axe (Δ) - Intensité : 15 N	\vec{F}_2

Classes: 2nd C Thème: Mécanique

Titre de la leçon : Principe de l'inertie

Durée: 4h

Tableau des habiletés et contenus

Habiletés	Contenus
Définir	• un système isolé.
	 un système pseudo-isolé.
Déterminer	le centre d'inertie de quelques solides homogènes.
Connaître	la relation barycentrique.
Déterminer	le centre d'inertie d'un système de deux solides.
Déterminer	la nature du mouvement du centre d'inertie d'un
	système isolé ou pseudo isolé.
Enoncer	le principe de l'inertie.
Appliquer	le principe de l'inertie.

Situation d'apprentissage

Appia, élève en classe de 2nd C au Collège Moderne de Tiédio participe à une course de vélo. Au dernier virage avant l'arrivé, il dérape et tombe. Le secouriste de son équipe l'approche pour apprécier ses blessures. L'élève lui signifie qu'il avait pris toutes les dispositions pour aborder le virage et gagner la course. Le secouriste lui dit qu'il est tombé car la position du centre d'inertie du système (vélo-cycliste) a été modifiée. N'ayant pas compris les propos du secouriste, Appia rend compte le lendemain à l'école de sa mésaventure à ses camarades de classe. Ensemble, ils décident de déterminer le centre d'inertie d'un système, la nature de son mouvement et d'appliquer le principe d'inertie.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Enregistrement sur aérotable N°11	- Schémas
- Papier calque	- Manuels d'élèves
	BIBLIOGRAPHIE
	Collection AREX 2 nd C

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	LE PRINCIPE DE L'INERTIE
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation	questions	 Définitions 1.1 Système isolé Un système est dit isolé lorsqu'il n'est soumis à aucune force. Remarque: Cette condition est irréalisable car le poids existe toujours. 1.2 Système pseudo-isolé Un système est dit pseudo-isolé si les forces qui s'exercent sur lui se compensent à chaque instant: ∑ F_{ext} = 0. Exemple: Le mobile autoporteur sur une table horizontale. Mouvement du centre d'inertie d'un système isolé ou pseudo-isolé Expérience

Lançons un mobile autoporteur sur une table horizontale, en le faisant tournoyer. On enregistre à intervalle de temps réguliers, les mouvements de deux ses points A et G (G est le centre d'inertie et A est à la périphérie).

2.2 Exploitation des résultats

(fiche de TP à coller)

La réaction du support compense le poids du mobile. Le mobile est alors un système pseudo-isolé.

Le point G a un mouvement rectiligne uniforme.

Le point A a un mouvement curviligne.

2.3 Conclusion

L'unique point G, d'un système pseudo-isolé, animé d'un mouvement rectiligne uniforme est appelé centre d'inertie du solide pseudo-isolé.

2.4 Mouvement d'ensemble et mouvement propre d'un solide

- Le mouvement du centre d'inertie G du solide est le **mouvement d'ensemble** du solide.

Dans le cas d'un système isolé ou pseudo-isolé, le mouvement d'ensemble est rectiligne uniforme.

- Le mouvement d'un point quelconque A du solide autour du centre d'inertie G est le **mouvement propre du solide**.

3. Principe de l'inertie

Enoncé: Dans un référentiel galiléen, le centre d'inertie d'un système isolé ou

Qa svatra Docs à portée de main		
pseudo-isolé :		
	u repos s'il est initialement	
- a un mo	ouvement rectiligne uniform	me s'il est en mouvement.
4.	Mise en évidence du cen	tre d'inertie
	4.1 Centre d'inertie de g	uelques solides homogènes
1) <u>Carré</u>	<u>é ou rectangle</u>	2) <u>Triangle</u>
	G	G
Point de con	ncours des diagonales	Point de concours des médianes
3) <u>Le cerc</u>	ceau ou cercle	5) <u>Sphère</u>
	G.	G.
Centre du ce	erceau ou du cercle	Centre de la sphère

Docs à portée de main
6) Cylindre G Milieu de la hauteur Remarque: Le centre d'inertie d'un solide n'est pas obligatoirement un point de ce solide.
Soient deux solides (S ₁) et (S ₂) de masses respectives m ₁ et m ₂ et de centre
d'inertie G_1 et G_2 . Le centre d'inertie G de l'ensemble $\{S_1 + S_2\}$ appartient au
segment [G ₁ G ₂] et vérifie la relation barycentrique :
$m_1 \overrightarrow{GG}_1 + m_2 \overrightarrow{GG}_2 = \overrightarrow{0} $ (1)
Si on considère un point O de l'espace, on peut écrire : $m_{1} (\overrightarrow{GO} + \overrightarrow{OG_{1}}) + m_{2} (\overrightarrow{GO} + \overrightarrow{OG_{2}}) = \overrightarrow{0}$ $m_{1} \overrightarrow{GO} + m_{1} \overrightarrow{OG_{1}} + m_{2} \overrightarrow{GO} + m_{2} \overrightarrow{OG_{2}} = \overrightarrow{0}$ $m_{1} \overrightarrow{OG_{1}} + m_{2} \overrightarrow{OG_{2}} = (m_{1} + m_{2}) \overrightarrow{OG}$
$\Longrightarrow \boxed{\overrightarrow{OG}} = \frac{m_1}{m_1 + m_2} \overrightarrow{OG_1} + \frac{m_2}{m_1 + m_2} \overrightarrow{OG_2} $ (2)
Les relations (1) et (2) sont des relations barycentriques.

Docs à portée de main			
Application: Soit le système (S) ci-dessous obtenu par la juxtaposition de deux solides (S ₁) et (S ₂) accolés. Déterminons la position du centre d'inertie G de (S). $(S_1) \qquad \qquad$			
Si on remplace dans la relation (2) le point O par G ₁ :			
$\overrightarrow{G_1} \overrightarrow{G} = \frac{m_2}{m_1 + m_2} \overrightarrow{G_1} \overrightarrow{G_2} \text{car} \overrightarrow{AG_1} = \overrightarrow{0}$			
$\implies G \in [G_1G_2]$			
Si $m_2 = 3$ m_1 alors $\overrightarrow{G_1 G} = \frac{3}{4} \overrightarrow{GG_2}$			
Activité d'intégration			
 Des élèves de la classe de 2nd C du Collège Moderne de Tiédio disposent de l'enregistrement ci-dessous reproduit à l'échelle ¹/₃ de deux mobiles autoporteurs indépendants. Ils ont pour masses m₁ = 200 g et m₂ = 600 g et pour centres d'inertie respectifs G₁ et G₂ dont les positions ont été marquées toutes les τ = 40 ms. Les deux mobiles se rencontrent puis se séparent après un choc. Il t'est demandé de les aider à déterminer la nature du mouvement du centre d'inertie G du système constitué par les deux mobiles. 1. Détermine la trajectoire du centre d'inertie G du système constitué par les deux mobiles. 2. Calcule la vitesse V_G du point G puis représente son vecteur vitesse V_G. 3. Enonce le principe d'inertie puis dire de quel système il s'agit. 			

Docs à portée de main
G ₁
G_2
<u>Solution</u>
1. Déterminons la trajectoire du centre d'inertie G du système constitué des deux palets Soit G le centre d'inertie du système $G_1(m_1)$ et $G_2(m_2)$ $\overrightarrow{G_1} \overrightarrow{G} = \frac{m_2}{m_1 + m_2} \overrightarrow{G_1} \overrightarrow{G_2}$
$\underline{AN} : \overrightarrow{G_1} \overrightarrow{G} = \frac{600}{200 + 600} \overrightarrow{G_1} \overrightarrow{G_2} \implies \overrightarrow{G_1} \overrightarrow{G} = \frac{3}{4} \overrightarrow{G_1} \overrightarrow{G_2}$ Pour chaque couple de position de G_1 et de G_2 , on place G au $\frac{3}{4}$ du vecteur $\overrightarrow{G_1} \overrightarrow{G_2}$
La trajectoire de G est une droite. Les positions successives de G sont équidistantes. Le mouvement de G est donc rectiligne uniforme. 2. Calculons la vitesse du point G et représentons le vecteur vitesse $\overrightarrow{V_G}$ On peut calculer la vitesse de G en choisissant deux positions quelconques par exemple a et b.

$V_G = rac{3 \ ab}{7 au}$
$\underline{AN}: V_G = \frac{3 \times 6}{7 \times 40 \cdot 10}$
$V_G = 64,28 \text{ cm/s} = 0,64 \text{ m/s}$
3. Le système constitué par l'ensemble des deux palets et

3. Le système constitué par l'ensemble des deux palets est pseudo isolé puisque son centre d'inertie a un mouvement rectiligne uniforme (principe de l'inertie).

Classes: 2nd C Thème: Mécanique

<u>Titre de la leçon</u>: Quantité de mouvement

Durée: 7h

Tableau des habiletés et contenus

Habiletés	Contenus
Définir	le vecteur-quantité de mouvement.
Connaître	l'unité de quantité de mouvement.
Déterminer	les caractéristiques du vecteur quantité de
	mouvement.
Représenter	le vecteur-quantité.
Connaître	la loi de conservation du vecteur-quantité de
	mouvement.
Appliquer	la conservation du vecteur-quantité de
	mouvement.

Situation d'apprentissage

Un élève de la classe de 2nd C du Collège Moderne de Tiédio assiste à une partie de jeu de billes. Il constate que lorsqu'une petite bille frappe de plein fouet une grosse bille immobile, cette dernière reste immobile ou se déplace faiblement, tandis que la petite bille recule nettement. Il partage ces observations avec ses camarades de classe et ensemble décident de définir le vecteur-quantité de mouvement, de connaître ses caractéristiques et enfin d'appliquer la conservation de ce vecteur.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Table à cousin d'air	
- Mobiles autoporteurs	
- Enregistrement n°31	
- Enregistrement n°12 à 29	
	BIBLIOGRAPHIE
	Collection AREX 2 nd C
	Guide et programmes 2 nd C
	1 0

PLAN DE LA LECON

- 1. Vecteur quantité de mouvement
- 2. Conservation du vecteur quantité de mouvement

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	QUANTITE DE MOUVEMENT
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation	questions	1. Vecteur quantité de mouvement 1.1 Expérience Considérons un système constitué par deux mobiles autoporteurs (S_1) de masse $m_1 = 100$ g et (S_2) de masse $m_2 = 50$ g, reliés par deux fils et par un ressort comprimé de masse négligeable.
				Initialement, le système est immobile. On brûle les fils, les deux mobiles s'éloignent l'un de l'autre puis on obtient l'enregistrement ci-dessous (document 1) avec les positions de (S_1) et (S_2) à intervalle de temps régulier $\tau = 40 \text{ms}$.

		Docs a por	tee de main							
			• A ₃	• A ₂	A ₁	A _o	• B ₀	• B ₁	• B ₂	• B ₃
			1.2	Explo	(S oitation	<u>.</u>	(S ₂)			
			- du mo	bile au	ıtoporte	eur (S ₁) : V	$r_1 = \frac{A_0 A_1}{\tau} =$	$V_1 = 0.12$	25 m.s ⁻¹	
							$\tau_2 = \frac{B_0 B_1}{\tau} =$	\Rightarrow V ₂ = 0,25	m.s ⁻¹	
			Calculo $\frac{m_1}{m_2} = \frac{1}{m_2}$	ons les $\frac{100}{50} =$	rappo	orts suivar	its: $\frac{m_1}{m_2}$ et $\frac{V_2}{V_1}$			
			$\frac{V_2}{V_1} = \frac{1}{C}$	0,25 0,125	= 2	$\Rightarrow \frac{m}{m}$	$\frac{u_1}{u_2} = \frac{V_2}{V_1} \Rightarrow $	$m_1V_1=n$	$n_2 V_2$ (1)	
			Les vec la relati	on (1)	devien	t :	es ayant la mêm $\Rightarrow m_1 \ \overrightarrow{V_1}$ -		•	posés,
						_	ntité de mouve ntité de mouve			
			1.3. Le vecto	.1 <u>D</u> eur- qu	éfinitic iantité (on de mouven	estiques du vec nent \overrightarrow{p} d'un se $\overrightarrow{V_G}$ de son centr	olide est égal		
							$\overrightarrow{p} = \mathbf{m} \ \overrightarrow{V_G}$			

Docs à	soutra portée de main
	1.3.2 <u>Caractéristiques du vecteur- quantité de mouvement</u>
	- <u>point d'application</u> : Le centre d'inertie G du solide.
	- <u>Direction</u> : celle de la vitesse $\overrightarrow{V_G}$
	- <u>Sens</u> : celui de la vitesse $\overrightarrow{V_G}$ $p \ en \ kg.m.s^{-1}$
	- <u>Sens</u> : celui de la vitesse $\overrightarrow{V_G}$ $p \ en \ kg.m.s^{-1}$ - <u>Intensité</u> : $p = m \cdot GV$ $m \ en \ kg$ $V_G \ en \ m.s^{-1}$
	$V_G en m.s^{-1}$
	1.4 <u>Vecteur quantité de mouvement d'un système de deux solides</u>
	Le vecteur quantité de mouvement \overrightarrow{p} d'un système constitué deux solides (S_1) et (S_2) est égal à la somme des vecteurs quantité de mouvement $\overrightarrow{p_1}$ et $\overrightarrow{p_2}$ des deux solides.
	$\overrightarrow{p} = \overrightarrow{p_1} + \overrightarrow{p_2} = (m_1 + m_2)\overrightarrow{V_G} = m_1\overrightarrow{V_{G_1}} + m_2\overrightarrow{V_{G_2}}$
	Activité d'application
	Calcule la quantité de mouvement p : a. d'une balle de 50 g éjectée à une vitesse de 700 m.s ⁻¹ . b. d'une automobile de 840 kg roulant sur une route horizontale à une vitesse de 130 km.h ⁻¹ .
	Réponse : a. $p = m.v = 0.05 \times 700 = 35 \text{ kg.m.s}^{-1} \text{ avec } m = 50 \text{ g} = 0.05 \text{ kg.}$ b. $p = m.v = 840 \times 36.11 = 30332.4 \text{ kg.m.s}^{-1} \text{ avec } v = 36.11 \text{ m.s}^{-1}.$
	 2. Conservation du vecteur quantité de mouvement 2.1 Loi de conservation de la quantité de mouvement d'un système isolé ou pseudo-isolé 2.1.1 Exploitation du document 1
	- Avant la rupture des fils : $\overrightarrow{p_{a\ v\ a}}_{n} = \overrightarrow{t_0}$ car le système est immobile.

Tiples in repeate desires. $p_a p_r e_s p_1 + p_2 = m_1 v_1 + m_2$		- Après la rupture des fils :	$\overrightarrow{p_{a\ p\ r}} \stackrel{\rightarrow}{\models}_s \overrightarrow{p_1} + \overrightarrow{p_2} = m_1 \overrightarrow{V_1} + m_2$	\overline{V}_2
--	--	-------------------------------	---	------------------

Or d'après la relation (2) on a :
$$m_1 \overrightarrow{V_1} + m_2 \overrightarrow{V_2} = \overrightarrow{0}$$
 et comme $\overrightarrow{p_a v_a} = \overrightarrow{v_1} = \overrightarrow{0}$

Donc :
$$p_{a\ v\ a} = p_{a\ p\ r}$$
 (Conservation de la quantité de mouvement)

2.2 <u>Généralisation de la loi de conservation de la quantité de</u> mouvement

2.2.1 Expérience

Sur une table à cousin d'air, on réalise le choc entre deux mobiles autoporteurs (S_1) et (S_2) de masses respectives $\mathbf{m_1}$ et $\mathbf{m_2}$ avec $\mathbf{m_1} = \mathbf{2}$ $\mathbf{m_2}$. On obtient l'enregistrement représenté sur le document 2 suivant.

2.2.2 Exploitation du document 2

Repérons les différentes positions du mobile (S_1) $(A_0, A_1, A_2,...)$ et celles du mobile (S_2) $(B_0, B_1, B_2,...)$. Par la relation barycentrique, déterminons pour chaque couple (A, B), la position du centre d'inertie G du système $\{S_1 + S_2\}$. On obtient :

$$\overrightarrow{A_lG_l} = \frac{1}{3} \overrightarrow{A_lB_l}$$
 car $m_1 = 2 m_2$

		Avant le choc	Après le choc
	Vitesse (m.s ⁻¹)	$V_1 = 0.2625$	$V_1 = 0.1875$
Solide (S ₁)	Quantité de mouvement	$p_1 = m_1 V_1$	$p_1' = m_1 V_1'$
	(kg.m.s ⁻¹)	$p_1 = 0.02625$	$p_1' = 0.01875$
	Vitesse (m.s ⁻¹)	$V_2 = 0.3$	$V_2 = 0.25$
Solide (S ₂)	Quantité de mouvement	$p_2 = m_2 V_2$	$p_2' = m_2 V_2'$
	(kg.m.s ⁻¹)	$p_2 = 0.015$	$p_2' = 0.0125$

- Représentons les vecteurs- quantités de mouvement $\overrightarrow{p_1}$ et $\overrightarrow{p_2}$ des solides (S_1) et (S_2) avant le choc à la date t_1 .
- Représentons ensuite les vecteurs- quantités de mouvement $\overrightarrow{p_1'}$ et $\overrightarrow{p_2'}$ des solides après le choc à la date t_9 .
- Construisons les vecteurs- quantité de mouvement $\overrightarrow{p_{a\ v\ a}}_{p\ t}$ et $\overrightarrow{p_{a\ p\ r}}$ dy système respectivement aux dates t_1 et t_9 à partir de la somme des quantités de mouvement des deux solides.

Echelle: 1 cm \longrightarrow 0,01 kg.m.s ⁻¹ - Avant le choc: $\overrightarrow{p_{a\ v\ a}}_{n} = t\overrightarrow{p_{1}} + \overrightarrow{p_{2}}$
- Après le choc : $\overrightarrow{p_{a\ p\ r}} \stackrel{\rightarrow}{\in}_s \overrightarrow{p_1'} + \overrightarrow{p_2'}$
On constate que : $\overline{p_{a\ v\ a}}_{\overline{n}} = \overline{p_{a\ v\ r}}_{\dot{e}}$ \dot{i} \dot{j}
2.2.3 <u>Conclusion</u> Le vecteur- quantité de mouvement \vec{p} d'un système isolé ou pseudo-isolé se conserve au cours de son mouvement. $\overrightarrow{p_{a\ v\ a}} \overline{\pi}_{t} \overrightarrow{p_{a\ p\ r}} \dot{e} \text{ Qu} \overrightarrow{p} = \overrightarrow{p'}$
2.3 <u>Application : Recul d'une arme à feu</u> Un fusil de masse $m_1 = 1$ kg immobile tire une balle de masse $m_2 = 10$ g. La balle sort du canon avec une vitesse de 500 m.s ⁻¹ . Calcule la vitesse de recul du fusil.
Résolution: Système: { fusil + balle } Déterminons les quantités de mouvement avant et après le tir Avant le tir:
Le système est immobile, sa vitesse est nulle alors : $\overline{p_{a\ v\ a}}_{n} = \overline{t} \overrightarrow{0}$. - Après le tir : La balle sort du fusil avec une vitesse \overrightarrow{V} et le fusil recule avec une vitesse $\overrightarrow{V_r}$ $\overline{p_{a\ v\ r}}_{n} = m_1 \overrightarrow{V_r} + m_2 \overrightarrow{V}$
Le système est supposé pseudo-isolé, il y'a donc conservation de la quantité de mouvement.
$\overrightarrow{p_{a\ v\ a}}_{n} \overrightarrow{\overline{p_{t}}_{t}} \overrightarrow{p_{a\ p\ r}}_{e} \xrightarrow{\Longrightarrow} m_{1} \overrightarrow{V_{r}} + m_{2} \overrightarrow{V} = \overrightarrow{0} \implies \overrightarrow{V_{r}} = -\frac{m_{2}}{m_{1}} \overrightarrow{V}$ Les deux vitesses sont colinéaires et de sens contraires. $V_{r} = \frac{m_{2}}{m_{1}} V$
$\underline{A.N}: V_r = \frac{10. \ 10^3}{1} \times 500$

$V_r = 5 \text{ m.s}^{-1}$
Situation d'évaluation
Lors d'une séance de TP de physique, un groupe d'élèves de la classe de 2 ^{nde} C du Collège Moderne de Tiédio observent le choc de deux mobiles sur une table à coussin d'air. Le mobile (A) de masse m ₁ = 50 g, animé d'une vitesse v ₁ = 12 cm.s ⁻¹ va heurter un mobile (B) au repos de masse m ₂ = 70 g. Puis, Ils constatent qu'après le choc, les deux mobiles restent accrochés et l'ensemble se déplace avec une vitesse v ₂ . Tu es sollicité pour les aider à calculer v ₂ . 1. Définis le vecteur-quantité de mouvement $\overline{p_1}$ du solide (A) avant le choc. 2. Détermine la quantité de mouvement p_1 du mobile (A) avant le choc. 3. Calcule v ₂ en appliquant la conservation de la quantité de mouvement.
Solution
 Le vecteur- quantité de mouvement \$\overline{p_1}\$ du solide (A) est égal au produit de sa masse m₁ par le vecteur-vitesse \$\overline{v_1}\$ de son centre d'inertie. \$\overline{p_1} = m_1 \overline{v_1}\$ La quantité de mouvement \$p_1\$
$p_1 = m_1 v_1$ AN: $p_1 = 50.10^{-3} \text{ x } 12.10^{-2}$ $p_1 = 6.10^{-3} \text{ kg.m.s}^{-1}$
3. Calcul de $\overrightarrow{v_2}$ - Avant le choc: $\overrightarrow{p_a} \cdot \overrightarrow{v_a} \cdot \overrightarrow{p_1} + \overrightarrow{p_2}$
$\overrightarrow{p_1} = m_1 \overrightarrow{v_1} \text{ et } \overrightarrow{p_2} = \overrightarrow{0} \text{ car } v_2 = 0 \Rightarrow \overrightarrow{p} = \overrightarrow{p_1} = m_1 \overrightarrow{v_1}$ - Après le choc : $\overrightarrow{p_{a \ p \ r}} {\in} \overrightarrow{s} (m_1 + m_2) \overrightarrow{v_2}$ Surtème regards isolé \Rightarrow conservation de la quantité de mouvement :
Système pseudo-isolé \Rightarrow conservation de la quantité de mouvement : $\overrightarrow{p_{a\ v\ a}} \xrightarrow{n_{\overline{1}}} \overrightarrow{p_{a\ p\ r}}$ èsoit $m_1 \overrightarrow{v_1} = (m_1 + m_2) \overrightarrow{v}$
Les vecteurs $\overrightarrow{v_1}$ e $\overrightarrow{t_2}$ wont même direction et même sens d'où on obtient : $m_1 v_1 = (m_1 + m_2) v_2$
$\Rightarrow v_2 = \frac{m_1}{m_1 + m_2} v_1$ $v_2 = \frac{5 (1 + 7)}{5 (1 + 7)} 1 \cdot 1 \cdot 1^{-2}$
$\frac{\nu_2 - \frac{1}{5} + 7}{1 + 7}$

Fomesoutra.com

Docs à portée de main
$v_2 = 5.1 \ \Box^2 \ m. s^{-1} $ soit $5 \ c \ r. s^{-1}$

Classes: 2nd C

<u>Thème</u>: Electricité et électronique <u>Titre de la leçon</u>: Le courant électrique

Durée: 7h

Tableau des habiletés et contenus

Habiletés	Contenus
Connaître	 la nature du courant électrique dans les métaux. la nature du courant électrique dans les électrolytes. le sens conventionnel du courant électrique. les effets du courant électrique.
Représenter	le sens du courant électrique
Expliquer	la circulation du courant électrique : - dans les métaux - dans les électrolytes

Situation d'apprentissage

Kra, élève en classe de 2nd C au Collège Moderne de Tiédio a appris à travers un documentaire à la télévision que certains bracelets qu'on croit en or sont en fait plaqués en or par électrolyse d'une solution contenant les ions or. Intrigué par cette information et soucieux de comprendre cette opération, il en parle à ses camarades de classe et ensemble, ils cherchent à connaître la nature du courant électrique dans les électrolytes et les métaux, représenter le sens du courant électrique et d'expliquer sa circulation dans les électrolytes et les métaux.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Tube de Crookes.	- Schémas
- Générateur approprié aux tubes.	- Manuels d'élèves
- Interrupteur, fils de connexion.	
- Aimants droit, en u	
- Multimètres, piles, dipôles (lampes, résistors).	BIBLIOGRAPHIE
-Dispositif vertical de Laplace, tube en u avec	Collection AREX 2 nd
robinet, électrodes, Acide sulfurique dilué.	Collection GRIA 2 nd
- Solution de $K_2Cr_2O_7$ et de $CuSO_4$.	
- Alimentation stabilisée (12V-24V)	

PLAN DE LA LECON

- 1. Nature du courant électrique dans les métaux
 - 1.1 Expérience et observation
 - 1.2 Interprétation
 - 1.3 Conclusion
 - 1.4 Sens de déplacement des électrons
- 2. Nature du courant électrique dans les électrolytes
 - 2.1 Expérience et observation
 - 2.2 Interprétation
 - 2.3 Conclusion
 - 2.4 Sens de déplacement des ions
- 3. Sens conventionnel du courant électrique

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	LE COURANT ELECTRIQUE
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. Nature du courant électrique dans les métaux 1.1 Expériences et observations Aimant G
				A l'approche de l'aimant, la tige A l'approche de l'aimant, le métallique parcourue par le courant électrique est déviée . A l'approche de l'aimant, le faisceau d'électrons est dévié .
				1.2 <u>Interprétation</u> Le faisceau d'électrons et la tige métallique sont déviés dans le même sens. Cela montre que des électrons circulent dans la tige.

	 Docs à por	atra / tée de main —
		1.3 Conclusion
		Le courant électrique dans les métaux est dû à un déplacement ordonné des
		porteurs de charge appelés électrons .
		1 4 Sans de déplacement des électrons
		1.4 <u>Sens de déplacement des électrons</u> A l'extérieur du générateur, les électrons se déplacent de la borne négative (-)
		A r exterieur du generateur, les electrons se depracent de la borne negative (-)
		vers la borne positive (+) du générateur.
		<u> </u>
		Ī
		'
		
		 Sens de déplacement des électrons.
		2. <u>Nature du courant électriques dans les électrolytes</u>
		2.1 Expérience et observation
		
		(voir page suivante)

anede. cathode Coloration bleue Coloration orangée $(Cr_2O_7^{2-})$ Mélange de solutions de CuSO_a (bleue) et de KaCraQa(orange) 2.2 Interprétation - La couleur bleue observée à la cathode traduit la présence des ions cuivre $(Cu^{2+}).$ - la couleur orangée à l'anode traduit la présence des ions dichromates $(Cr_2O_7^{2-})$. 2.3 Conclusion Le courant électrique dans les électrolytes est dû à la migration des porteurs de charges appelés ions. 2.4 Sens de déplacement des ions Les ions positifs appelés cations se déplacent vers la cathode. Les ions négatifs appelés anions se déplacent vers l'anode. 3. Sens conventionnel du courant électrique A l'extérieur du générateur, le courant circule de la borne positive (+) vers la borne négative (-) du générateur.

Fomesoura.com Docs à portée de main	_
1. Donne le nom des électrodes A et B.	
2. Indique sur le schéma	
2.1 le sens conventionnel du courant.	
2.2 le sens de déplacement des électrons.	
2.3 le sens de déplacement des ions.	

Reponse

- 1. A est l'anode et B la cathode.
- 2. Voir le schéma.

Classes: 2nd C

Thème: Electricité et électronique

Titre de la leçon : Intensité d'un courant continu

Durée: 6h

Tableau des habiletés et contenus

Habiletés	Contenus
Définir	 la quantité d'électricité.
	 l'intensité du courant électrique.
Connaître	 l'expression de la quantité d'électricité. l'expression de l'intensité du courant électrique. l'unité de quantité d'électricité
Connaître	les lois du courant continu : - dans un circuit en série ; - dans un circuit avec dérivation.
Appliquer	les lois du courant continu

Situation d'apprentissage

Au cours d'une séance de TP au Collège Moderne de Tiédio, des élèves de la classe de 2^{nde} C observent que l'éclat de la lampe augmente au fur et à mesure qu'on associe les piles en série concordance dans un circuit électrique. Pour mieux comprendre ce phénomène, ils décident de définir l'intensité du courant électrique et d'appliquer les lois du courant continu.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Potentiomètre.	- Schémas
- Pile (1,5V à 9V)	- Manuels d'élèves
- Générateur basse fréquence.	
- Dipôles.	
- Bloc multiprise.	BIBLIOGRAPHIE
- Bouton poussoir.	Collection AREX 2 ^{nde} C
	Collection EURIN-GIE 2 ^{nde} C

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	INTENSITE D'UN COURANT CONTINU
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		 Quantité d'électricité Soit un nombre N de porteurs de charge en mouvement dans un conducteur. La quantité d'électricité Q transportée par un nombre N de porteurs de charge est égale au produit de N par la valeur absolue q de chaque porteur de charge. Q = N q Q s'exprime en Coulomb (C). 2. Intensité d'un courant électrique continu 2.1 Définition Soit un conducteur de section droite S. Soit Q la quantité d'électricité qui traverse S pendant une durée Δt.
				L'intensité I du courant électrique est le quotient de la quantité d'électricité Q

 1	1	Docs à port	Ge de main
		•	qui traverse la section du conducteur par la durée Δt .
			Coulomb (C)
			04
			$Ampère (A) \longrightarrow I = \frac{\checkmark}{\Delta t}$
			Seconde (s)
			Remarque : L'ampèremètre est l'instrument de mesure de l'intensité du courant
			électrique. Il se monte en série dans un circuit.
			L'unité de l'intensité du courant électrique est l'ampère (A). On utilise aussi
			souvent:
			- le kiloampère (kA) : $1 \text{ kA} = 10^3 \text{ A}$
			- le milliampère (mA) : 1 mA = 10^{-3} A
			- le microampère (μA) : 1 $\mu A = 10^{-6} A$
			Activité d'application
			Un nombre N = $1,125 \cdot 10^{20}$ d'électrons traverse une section d'un conducteur
			pendant une 1 minute. Calculer l'intensité du courant débité.
			Réponse :
			On a: $I = \frac{Q}{\Delta t}$ or $Q = N \mathbf{q} $.
			$I = \frac{N \mathbf{q} }{\Delta t}$. On a des électrons donc $\mathbf{q} = -1.6.10^{-19} \mathrm{C}$.
			$AN: I = \frac{1, 125. 130 \text{ x} 1, 6. 10^{19}}{1 \times 60}$
			I = 0.3 A
			2.2 Ordre de grandeur de quelques intensités du courant électrique
			- une lampe à incandescence : 0,1 à 5 A selon la lampe.
			- un fer à repasser : de 3 à 6 A.
			- une locomotive: environ 500 A.
			- un radiateur : de 5 à 15 A.
			- la foudre : de 6000 à 50000 A.
			3. Propriétés du courant électrique
			3.1 <u>Définitions</u>
			- On appelle nœud , le point de raccordement d'au moins trois fils de connexion.
			- Une branch e est une portion de circuit électrique située entre deux nœuds.
			one standing est and portion de enfourt electrique situes entre deux nouds.

Docs à po	rtée de main
	3.2 <u>Loi des intensités du courant dans un circuit en série</u>
	3.2.1 Expérience et observation
	A D
	L ₁ L ₂
	A ₁ B _{A2} C
	Y Y Y
	$\mathbf{I} = \mathbf{I}_1 = \mathbf{I}_2 = \mathbf{A}$
	3.2.2 <u>Conclusion</u>
	Dans un circuit en série, l'intensité du courant électrique est la même en tout
	point $I = I_1 = I_2 = \dots = I_n$: c'est la loi d'unicité du courant dans un circuit
	série.
	3.3 Loi des intensités du courant dans un circuit avec dérivation
	3.3.1 Expérience et observation
	A A F
	' _
	L ₁
	A_2
	L ₂
	C A
	A ₁ J ₂
	$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$
	~ ~1 · ~2

 ça soutra / Docs à portée de main
Remarque: - Les points B et E représentent les nœuds du circuit le circuit possède trois branches : 3.3.2 Conclusion Dans un circuit en dérivation, l'intensité du courant qui traverse la branche
principale est égale à la somme des intensités des courants qui traversent les branches dérivées. $I = I_1 + I_2 + \dots + I_n$ 3.4 Loi des nœuds
La somme des intensités des courants arrivant à un nœud est égale à la somme des intensités des courants partant de ce nœud.
I_1 I_3 I_4 I_5
Au noeud B: $I_1 + I_2 = I_3 + I_4 + I_5$
Généralisation : $\sum I_{arrivant} = \sum I_{p\ artant}$
Situation d'évaluation

Classes: 2nd C

<u>Thème</u>: Electricité et électronique <u>Titre de la leçon</u>: Tension électrique

Durée: 7 h

Tableau des habiletés et contenus

Habiletés	Contenus
Définir	la tension électrique ou la différence de potentiel
	(ddp) entre deux points d'un circuit électrique.
Représenter	une tension continue par une flèche entre deux
	points sur un schéma.
Déterminer	Une tension continue.
	les lois de la tension en courant continu :
Connaître	- pour un circuit série ;
	- pour un circuit avec dérivations.
Appliquer	les lois de la tension en courant continu.
	les caractéristiques d'une tension variable :
Déterminer	- tension triangulaire
	- tension en créneau
	- tension sinusoïdale

Situation d'apprentissage

Un soir après une forte pluie, des élèves en classe de 2^{nde} C au Collège Moderne de Tiédio constatent dans la dite localité que les lampes brillent tantôt normalement tantôt faiblement. Le lendemain, en allant à l'école, ils en parlent à un électricien qui leur informe que c'est une variation de la tension du secteur qui est à l'origine de cette situation. Préoccupés et une fois en classe, ils en parlent aux autres élèves et ensemble, ils décident de définir la tension électrique, d'appliquer les lois de la tension électrique en courant continu puis de déterminer les caractéristiques d'une tension variable.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Potentiomètre.	- Schémas
- Pile (1,5 V à 9 V).	- Manuels d'élèves
- Générateur basse fréquence.	
- Dipôles.	
- Bloc multiprise.	DIDI IOCD ADIHE
Bioc maniprise.	BIBLIUGRAPHIE
- Bouton poussoir.	BIBLIOGRAPHIE Collection AREX 2 ^{nde}
Bouton poussoir.Voltmètres, multimètres, oscilloscopes.	Collection AREX 2 ^{nde}
- Bouton poussoir.	

PLAN DE LA LECON

- 1. Tension électrique entre deux points d'un circuit électrique
- 2. Utilisation d'un oscilloscope
- 3. Existence de tensions variables

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	TENSION ELECTRIQUE
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. Tension électrique entre deux points d'un circuit électrique 1.1 <u>Définition</u> La tension électrique entre deux points d'un circuit est la différence d'état électrique ou différence de potentiel (d.d.p) entre deux points du circuit. Elle se note U et est représentée par une flèche.

Docs à portée de main				
	 1.2 Mesure de la tension électrique La tension électrique se mesure à l'aide d'un voltmètre, d'un multimètre, d'un oscilloscope. Elle s'exprime en volt (V). On utilise aussi ses sous-multiples millivolt (mV): 1 mV = 10⁻³V microvolt (μV): 1 μV = 10⁻⁶ V. 1.3 Algébrisation de la tension électrique 			
	1.3.1 Montage			
	P N A B			
	+ V COM			
	1.3.2 <u>Tableau de mesure</u>			
	$oxed{U_{AB}} oxed{U_{BA}}$			
	$U_{AB} = -U_{BA}$			
	1.3.3 <u>Conclusion</u> La tension est une grandeur algébrique : $U_{AB} = -U_{BA}$.			
	1.4 <u>Loi de la tension en courant continu pour un circuit série</u> 1.4.1 <u>Montage</u>			

1.5.2 Tableau de mesure

U	U_{AB}	U_{CD}

$$U = U_{AB} = U_{CD} =V$$

1.5.3 Conclusion

Dans un circuit en dérivation (parallèle), les tensions aux bornes des dipôles en dérivation sont égales.

$$U = U_{AB} = U_{CD}$$

2. Utilisation d'un oscilloscope

2.1 Schéma d'un oscilloscope

L'oscilloscope comprend 3 parties essentielles :

- le canon à électrons où sont produits et accélérés les électrons.
- les plaques de déviation qui permettent les déviations verticales et horizontales du spot.
- l'écran fluorescent sur lequel est visualisé l'impact du faisceau d'électrons sous forme lumineuse appelée **spot**.

2.2 Principe de fonctionnement d'un oscilloscope

En absence de tension entre les plaques Y et Y', X et X' le faisceau d'électrons issu du canon n'est pas dévié et arrive en O au milieu de l'écran et forme un point lumineux (spot).

Lorsque la tension $U_{YY'} > 0$, le faisceau d'électrons est dévié vers le haut et lorsque la tension $U_{YY'} < 0$, le faisceau est dévié vers le bas.

Docs à poi	tée de main
	Lorsque le signal est crée entre X et X', on obtient une déviation horizontale du spot. Le balayage permet de suivre l'évolution d'une tension au cours du temps.
	2.3 <u>Visualisation et mesure d'une tension continue à l'oscilloscope</u> 2.3.1 <u>Visualisation d'une tension continue</u>
	masse Y P + masse Y N
	1
	2.3.2 <u>Mesure d'une tension continue à l'oscilloscope</u> Sensibilité verticale : 2 V / div.
	En $\underbrace{1}$: $U_{PN} = 2.5 \text{ div x 2 V / div} = 5 \text{ V}.$
	En \bigcirc : $U_{NP} = -2.5 \text{ div x 2 V / div} = -5 \text{ V}.$
	 3. Existence de tensions variables 3.1 Visualisation des tensions variables à l'oscilloscope 3.1.1 Définition Une tension variable est une tension dont la valeur est soit négative, soit positive en fonction du temps. Une tension est alternative si son signe change au cours du temps. Remarque: Les tensions variables sont fournies par : Générateur basse fréquence (GBF) Alternateurs (génératrice de bicyclette)
	- CIE 3.1.2 Exemples de tensions variables

Situation d'évaluation Pendant une séance de TP en électricité, un binôme d'élèves de la classe de 2ºde C du Collège Moderne de Tiédio réalise le montage électrique ci-dessous. Le générateur utilisé par ceux-ci délivre une tension de 6 V. Ensuite, ils branchent un voltmètre aux bornes de lampe L2 puis obtiennent 3,5 V. Tu es sollicité pour les aider à calculer la tension UBA. 1. Représente le voltmètre branché aux bornes de la lampe L2. 2. Reproduis le schéma et représente par des flèches les tensions UAD; UBA; UBA. 3. Calcule la tension UBA.	Docs à portée de main
	Situation d'évaluation Pendant une séance de TP en électricité, un binôme d'élèves de la classe de 2 ^{nde} C du Collège Moderne de Tiédio réalise le montage électrique ci-dessous. Le générateur utilisé par ceux-ci délivre une tension de 6 V. Ensuite, ils branchent un voltmètre aux bornes de lampe L ₂ puis obtiennent 3,5 V. Tu es sollicité pour les aider à calculer la tension U _{BA} . 1. Représente le voltmètre branché aux bornes de la lampe L ₂ . 2. Reproduis le schéma et représente par des flèches les tensions U _{AD} ; U _{BA} ; U _{BC} .

Classes: 2nd C Thème: Electricité

Titre de la leçon : Etude expérimentale de quelques dipôles passifs.

Durée: 10 h

Tableau des habiletés et contenus

Habiletés	Contenus
	les caractéristiques de quelques dipôles passifs :
	- conducteur ohmique ;
Tracer	- lampe à incandescence ;
	- diode au silicium ;
	- diode zener.
	 la résistance d'un conducteur ohmique.
Déterminer	 les tensions seuils de la diode au silicium
	et de la diode zener.
	 la tension zener de la diode zener.
	• la loi d'Ohm
Connaître	 les tensions seuils des diodes.
	 la tension zener de la diode zener.
Appliquer	la loi d'Ohm
	la résistance équivalente de l'association de deux
Déterminer	conducteurs ohmiques :
	- en série ;
	- en dérivation.
	la caractéristique de l'association de deux
Tracer	conducteurs ohmiques :
	- en série
	- en dérivation.

Situation d'apprentissage

Deux élèves en classe de 2^{nde} C au Collège Moderne de Tiédio discutent. L'un soutient que tous les dipôles passifs se comportent de la même façon dans un circuit électrique. L'autre n'est pas de cet avis. Pour s'accorder, ils informent les autres élèves de la classe. Ensemble, ils décident de tracer les caractéristiques d'un conducteur ohmique, d'une lampe à incandescence, d'une diode au silicium et d'une diode zener, et d'exploiter la loi d'Ohm.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Piles avec supports.	- Schémas
- Résistors.	- Manuels d'élèves
Diodes au silicium et zener.Lampe à incandescence.	
- Fils de connexion, interrupteur Potentiomètre, oscilloscopes Ampèremètre, voltmètre, multimètre.	BIBLIOGRAPHIE Collection AREX 2 ^{nde} C. Collection G. Martin 2 ^{nde} C. Collection Eurin gié 2 ^{nde} C.

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	ETUDE EXPERIMENTALE DE QUELQUES DIPOLES PASSIFS
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		
				 Généralités sur les dipôles passifs 1.1 <u>Dipôles</u> Un dipôle est un composant électronique qui possède deux bornes. Exemples: la pile, la lampe, la diode, le conducteur ohmique. 1.2 <u>Dipôles passifs</u> Un dipôle est passif si la tension entre ses bornes est nulle hors circuit. Exemples: la diode, le conducteur ohmique, la lampe.

	1.3 Symboles de quelques dipôles	passifs_
	Noms	Symboles
	Lampe à incandescence	
	Conducteur ohmique	
	Diode à jonction	
	Diode de Zener	
	1.4 Limite d'utilisation des dipôle Un dipôle passif ne peut être utilisé da détérioré. Le constructeur indique en maximale) de la tension et de l'intensité 2. Dipôles symétrique et dissymé Un dipôle est dit symétrique si ses de Un dipôle est dit dissymétrique si ses 3. Les conducteurs ohmiques 3.1 Etude de la caractéristique d'a 3.1.1 Expérience	ans n'importe quelles conditions sans être générale sur le dipôle une valeur limite é ou de la puissance à ne pas dépasser. Atrique ux bornes sont identiques. deux bornes ne sont pas identiques. un conducteur ohmique

3.1.2	Tableau	d۸	mosilko
3.1.2	1 abieau	ue	mesure

$U_{AB}(V)$	- 1,5	-1	- 0,5	0	0,5	1	1,5	2
$I_{AB}(mA)$	- 150	- 100	- 50	0	50	100	150	200

3.1.3 Tracé de la caractéristique intensité-tension : $U_{AR} = f(I_{AR})$

Echelle: $1 \text{ cm} \longrightarrow 0.5 \text{ V}$ $1 \text{ cm} \longrightarrow 50 \text{ mA}$

3.1.4 Exploitation de la caractéristique

La caractéristique intensité-tension ($U_{AB} = f(I_{AB})$) d'un conducteur ohmique est une droite qui passe par l'origine du repère de coefficient directeur a tel que :

$$a = \frac{\Delta U}{\Delta I} = \frac{U_2 - U_1}{I_2 - I_1} = R$$

R est appelé la résistance du conducteur ohmique et s'exprime en ohm (Ω) .

Remarque: L'inverse de la résistance est la conductance du conducteur ohmique notée G et s'exprime en siemens (S).

$$G = \frac{1}{R}$$

	<u>Déterminons graphiquement R</u>

$$R = \frac{\Delta U}{\Delta I} = \frac{U_2 - U_1}{I_2 - I_1}$$

$$R = \frac{2-0}{(200-0).1 \ \sigma^{3}}$$

$$R = 10 \ \Omega$$

3.1.5 Conclusion

Le conducteur ohmique est un dipôle passif, symétrique, et linéaire caractérisé par sa résistance R.

3.2 Loi d'Ohm

La tension U aux bornes d'un conducteur ohmique est égale au produit de sa résistance R par l'intensité I du courant qui le traverse.

3.3 Détermination de la résistance d'un conducteur ohmique

3.3.1 Détermination de la résistance par le code des couleurs

Bandes 1, 2, 3: signes significatifs

Bande 4: Multiplicateur Bande 5: Tolérance

Docs à portée de main		
Tableau du code de couleurs		
Couleurs Bandes 1, 2 et 3 Bande 4 Bande 5 Signes significatifs Multiplicateur Tolérance		
Noir 0 1 20 %		
Marron 1 10 1 %		
Rouge 2 10 ² 2 %		
Orange 3 10 ³		
Jaune 4 10 ⁴		
Vert 5 10 ⁵		
Bleu 6 10 ⁶		
Violet 7		
Gris 8		
Blanc 9		
Or 10 ⁻¹ 5 %		
Argent 10 ⁻² 10 %		
La valeur de la résistance est donnée par la relation : $R = (123 \text{ x } 4 \pm 5 \text{ %}) \Omega$ Activité d'application Détermine la valeur de la résistance R dans chaque cas :		
Activité d'application Détermine la valeur de la résistance R dans chaque cas : Cas a :		
Activité d'application Détermine la valeur de la résistance R dans chaque cas :		
Activité d'application Détermine la valeur de la résistance R dans chaque cas : Cas a :		

	Does a po	Tree de moti.
		1 : Noir
		2 : Bleu 3 : Vert
		4 : Orange
		5 : Argent
		Réponse : $\frac{\cos a}{\cos b}$: R = (330 x 1 ± 1 %) Ω = (330 ± 1 %) Ω. $\frac{\cos b}{\cos b}$: R = (065 x 10 ³ ± 10 %) Ω = (65.000 ± 10 %) Ω.
		3.3.2 <u>Détermination de la résistance à l'aide d'un ohmmètre</u>
		La résistance d'un conducteur ohmique peut se déterminer à partir d'un appareil
		appelé ohmmètre . On branche cet appareil aux bornes du conducteur ohmique et on lit directement
		la valeur de la résistance
		3.4 Association de conducteurs ohmiques
		3.4.1 <u>Association de conducteurs ohmiques en série</u>
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		On a : $U_{AC} = U_{AB} + U_{BC}$ avec $U_{AB} = R_1 I$; $U_{BC} = R_2 I$ et $U_{AC} = R_{\acute{e}} I$
		Ainsi $R_{\acute{e}} \not = R_1 I + R_2 I$
		Soit $R_{\acute{e}} = R_1 + R_2$
		Des conducteurs ohmiques montés en série sont équivalents à un seul conducteur ohmique ayant pour résistance la somme des résistances montées en série :
		$R_{\acute{e}} = R_1 + R_2 + \dots + R_n$

3.4.2 <u>Association de conducteurs ohmiques en parallèle</u>

On a:
$$I = I_1 + I_2$$
 avec $I = \frac{U_{AC}}{R_{\acute{e}} q}$; $I_1 = \frac{U_1}{R_1}$ et $I_2 = \frac{U_2}{R_2}$ ($U_1 = U_2 = U_{AC}$)
Ainsi $\frac{U_{AC}}{R_{\acute{e}} q} = \frac{U_{AC}}{R_1} + \frac{U_{AC}}{R_2}$

$$\operatorname{Soit}\left[\frac{1}{R_{\acute{\mathrm{e}}}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}\right] \implies \left[R_{\acute{\mathrm{e}}} \ q = \ \frac{R_{1} \times R_{2}}{R_{1} + R_{2}}\right]$$

L'inverse de la résistance équivalente est égal à la somme des inverses des résistances montées en parallèle :

$$\begin{vmatrix} \frac{1}{R_{\acute{e}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} \\ \end{vmatrix} \Rightarrow R_{\acute{e}} = \frac{R_1 \times R_2 \times \dots \times R_n}{R_1 + R_2 + \dots + R}$$

- 4. La lampe à incandescence
- 4.1 Etude expérimentale de la caractéristique d'une lampe à incandescence

(voir page suivante)

Doos à portée de main
 4.1.4 <u>Exploitation</u> La caractéristique intensité-tension (U_{AB} = f(I_{AB})) d'une lampe à incandescence passe par l'origine des axes et est symétrique par rapport à celle-ci mais elle n'est pas linéaire. 4.1.5 <u>Conclusion</u> La lampe à incandescence est donc un dipôle passif symétrique non linéaire.
5. <u>La diode à jonction</u> 5.1 <u>Etude expérimentale de la caractéristique d'une diode au silicium</u> 5.1.1 <u>Expérience</u>
4,5 V Schéma du montage potentiométrique
5.1.2 <u>Tableau de mesure</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
5.1.3 <u>Tracé de la caractéristique intensité-tension : $U_{AB} = f(I_{AB})$</u>
(voir page suivante)

Docs à pe	ortée de main
	Sens direct ou passant
	6. <u>La diode Zener</u> 6.1 <u>Etude expérimentale de la caractéristique d'une diode Zener</u> 6.1.1 <u>Expérience</u>
	A,5 V $A,5 V$ $A,5$
	Schéma du montage potentiométrique
	6.1.2 <u>Tableau de mesure</u>
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	6.1.3 Tracé de la caractéristique tension- intensité $I_{AR} = f(U_{AR})$
	(Voir page suivante)

Classes: 2^{nde} C

<u>Thème</u>: La matière et ses transformations <u>Titre de la leçon</u>: Elément chimique

Durée: 2h

Tableau des habiletés et contenus

Habiletés	Contenus	
	l'équation-bilan de la réaction chimique entre :	
Ecrire	- le métal cuivre et le dioxygène.	
	- l'oxyde de cuivre II et le carbone.	
	- la solution de sulfate de cuivre II et le fer.	
Définir	l'élément chimique	
Ecrire	les symboles de quelques éléments chimiques	
Nommer	quelques éléments chimiques.	

Situation d'apprentissage

Les élèves de la 2^{nde} C du Collège Moderne de Tiédio ont découvert dans un journal scientifique qu'il existe plusieurs millions d'espèces chimiques mais seulement une centaine d'éléments chimiques. Ils sont perplexes et veulent comprendre. Ils décident alors de définir un élément chimique à partir de quelques réactions chimiques, d'écrire les symboles de quelques éléments chimiques et les nommer.

MATERIELS PAR POSTE DE TRAVAIL - Cuivre métal Sulfate de cuivre II Soude Limaille de fer.	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
Oxyde de cuivre II.Poudre de carbone.Tube à essais ; labogaz.Allumettes	BIBLIOGRAPHIE Collection AREX 2 ^{nde} C Collection GRIA 2 ^{nde} C

PLAN DE LA LECON					

3.5	Does à portée de main								
Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE					
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	ELEMENT CHIMIQUE					
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. Réactions chimiques 1.1. Entre le métal cuivre et le dioxygène 1.1.1 Expérience et observations copeau de cuivre flamme bleue dépôt noir flamme verte					

1.1.2 Interprétation dépôt noir qui se forme est l'oxyde

Le dépôt noir qui se forme est l'**oxyde de cuivre II (CuO**). Il provient de la disparition de l'atome de cuivre et de la molécule de dioxygène.

1.1.3 Conclusion

Au cours de cette réaction, les atomes de cuivre (Cu) réagissent avec les molécules de dioxygène (O₂) pour donner l'oxyde de cuivre II (CuO).

L'équation-bilan de cette réaction chimique est :

$$2 \text{ Cu} + \text{O}_2 \longrightarrow 2 \text{ CuO}$$

1.2. Entre l'oxyde de cuivre II et le carbone

1.2.1 Expérience et observations

1.2.2 Interprétation

- Le dépôt métallique rouge qui se forme sur les parois du tube est constitué d'atomes de cuivre. Ces atomes proviennent de la transformation de l'oxyde de cuivre.
- L'eau de chaux troublée indique la présence du dioxyde de carbone qui provient de la transformation du carbone.

1.2.3 Conclusion

L'oxyde de cuivre II (CuO) et le carbone (C) réagissent pour donner du cuivre métal (Cu) et du dioxyde de carbone (CO₂).

L'équation-bilan de la réaction est :

$$2 \text{ CuO} + \text{C} \longrightarrow 2 \text{ Cu} + \text{CO}_2$$

	 Docs à p	outra / ortée de main	···				
		1.3	Entre la solution o 1 Expérience et ol		le fer		
	Solution k sulfate de contenant	des ions			•	Solution ve Dépôt méta	
	Cui	2+					
		- la solu transfor - le dép	2 Interprétation tion verte indique l mation du fer. Ot métallique rouge nent de la transform	indique la prés	sence d'atomes de	•	
		Les ion et des io	3 Conclusion s cuivre II (Cu ²⁺) ré ons fer II (Fe ²⁺). ion – bilan de la réa	_	e métal fer pour d	onner le métal cu	uivre
			$Cu^{2+} +$	Fe	Cu + F €	2+	
			Eléments chimiqu Définition	ies			
			ent chimique est la				
			<u>e</u> : L'élément ch	•			
		_	és suivants : métal I (CuO).	cuivre (Cu),	surfate de cuivre	(CuSO ₄) et oxy	ue ae
			Symboles de quelo	ques éléments	chimiques		
		2.2	o, moores de que l	ques ciements	ciriniques		
			Elément	Symbole	Elément	Symbole	

Elément chimique	Symbole	Elément chimique	Symbole
Hydrogène	Н	Cuivre	Cu
Carbone	С	Sodium	Na
Oxygène	О	Chlore	Cl
Fluor	F	Argent	Ag

Docs à portée de main				
	3. Corps simple 3.1 Corps simple Un corps simple est un corps constitué d'un seul élément chimique. Exemple: le dihydrogène H ₂ , le dioxygène O ₂ , le dichlore Cl ₂ . 3.2 Corps composé Un corps composé est constitué de plusieurs éléments chimiques. Exemple: le dioxyde de carbone CO ₂ , l'eau H ₂ O, le butane C ₄ H ₁₀ .			
	Situation d'évaluation			
	Des élèves de la classe de 2 ^{nde} C du Collège Moderne de Tiédio disposent de la liste des corps suivants : difluor, monoxyde de carbone, oxygène, octasoufre, dihydrogène, méthane, dioxyde de carbone. Ils cherchent à déterminer les corps qui ont le même élément chimique puis à identifier les corps simples et composés. Il t'est demandé de les aider. 1. Définis : 1.1 un élément chimique ; 1.2 un corps simple ; 1.3 un corps composé. 2. Ecris la formule de tous les corps. 3. Détermine les corps qui ont le même élément chimique. 4. Identifie les corps simples et composés.			
	Résolution			
	1. Définition 1.1 Voir cours 1.2 Voir cours 1.3 Voir cours 2. Formule des composés difluor: F ₂ ; monoxyde de carbone; CO; oxygène: O; octasoufre: S ₈ ; dihydrogène: H ₂ ; méthane: CH ₄ ; dioxyde de carbone: CO ₂ 3. Corps ayant le même élément chimique - H ₂ ; CH ₄ contiennent l'élément chimique hydrogène H CH ₄ ; CO; CO ₂ contiennent l'élément chimique carbone C O; CO; CO ₂ contiennent l'élément chimique oxygène O.			

	Docs à portée	de main	
	4.	. Corps simples: O ; F ₂ ; H ₂ . Corps composés: CO; CO ₂ ; CH ₄ .	

Classes: 2^{nde} C

<u>Thème</u>: La matière et ses transformations <u>Titre de la leçon</u>: Structure de l'atome

Durée: 4h

Tableau des habiletés et contenus

Habiletés	Contenus	
Décrire	La structure de l'atome.	
Connaître	 Les constituants d'un atome. 	
	 La constitution du noyau de l'atome. 	
Montrer	La neutralité électrique d'un atome.	
Définir	L'isotopie.	
Déterminer	La structure électronique des atomes.	
Ecrire	Les représentations de LEWIS de quelques atomes.	

Situation d'apprentissage

Fieni, élève en classe de 2^{nde} C au Collège Moderne de Tiédio apprend de son frère qui est en classe de Terminale que toute matière est faite à partir d'atomes et qu'à un élément donné correspond un atome. Emerveillé, il partage l'information avec ses camarades de classe puis ensemble, ils entreprennent de décrire un atome, de définir l'isotopie et de déterminer la structure électronique d'un atome.

MATERIELS PAR POSTE DE TRAVAIL - Série d'exercices polycopiés Tableau de données des charges, masse et dimensions de l'atome et ses constituants.	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
	BIBLIOGRAPHIE Collection AREX 2 ^{nde} Collection EURIN GIE 2 ^{nde}

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE			
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	STRUCTURE DE L'ATOME			
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		électrons. 1.1 Particules du noya	un noyau central autour duq	,	
				Neutron Dang la navau d'un atar	$m_n = 1,67.10^{-27} \text{ kg}$	0	
				Dans le noyau d'un atome, on désigne : - Le numéro atomique Z est le nombre de protons contenus dans le noyau. - Le nombre de neutrons N contenus dans le noyau. - Le nombre de masse A est le nombre de nucléons contenus dans le noyau. ⇒ A = Z + N			

_	_				
1	7	н.	PC	troi	n

L'électron est une particule de charge négative noté e^- .

	Masse	Charge
électron	$m_{e^-} = 9,1.10^{-31} \mathrm{kg}$	$-e = -1.6.10^{-19} \text{ C}$

L'ensemble des électrons en mouvement autour du noyau est appelé nuage électronique ou cortège électronique. Ce nuage contient **Z** électrons.

Activité d'application

Le noyau de l'atome de sodium est caractérisé par les valeurs Z = 11 et A = 23. Détermine le nombre de protons, de neutrons et d'électrons.

Réponse: 11 protons, N = A - Z = 23 - 11 = 12 neutrons, 11 électrons.

2. Electroneutralité de l'atome

2.1 Charge du noyau

La charge du noyau correspond à la charge totale des protons. Elle est égale à +Ze.

2.2 Charge du cortège électronique

La charge du cortège électronique correspond à la charge totale des électrons. Elle est égale à -**Ze**.

2.3 Charge totale de l'atome

La charge totale de l'atome est la somme de la charge du noyau et celle du cortège électronique (+Ze-Ze=0). L'atome est **électriquement neutre.**

3. Masse de l'atome

La masse d'un atome est donnée par l'expression : $\mathbf{M}_{at} = \mathbf{A} \ \mathbf{m}_p$ où A est le nombre de masse et \mathbf{m}_p la masse du proton.

Activité d'application

Calcule la masse de l'atome $\overline{\text{de l'H\'elium (He)}}$ sachant que son nombre de masse est A = 4.

<u>Réponse</u>: $M_{He} = 4 \times 1,67.10^{-27} = 6,68.10^{-27} \text{ kg.}$

4. Nucléïde

4.1 Définition du Nucléïde

On appelle nucléide, l'ensemble des atomes dont le noyau possède le même couple (\mathbf{Z}, \mathbf{A}) .

4.2 Représentation symbolique du Nucléïde

Le nucléide X, caractérisé par le couple (Z, A) est représenté par le symbole suivant :

 $\frac{A}{7}X$

avec A : nombre de masse ; Z : numéro atomique ; X : symbole de l'élément

Activité d'application

Représente l'atome d'aluminium (Al) dont le noyau est caractérisé par le couple (13, 27).

Réponse: ²⁷₁₃Al

5. Les isotopes

Des atomes sont dits **isotopes** lorsqu'ils ont le **même numéro atomique Z** mais des **nombres de masse A différents**.

Exemples: ${}^{12}_{6}$ C; ${}^{13}_{6}$ C; ${}^{14}_{6}$ C sont isotopes de l'élément chimiques carbone C. ${}^{16}_{8}$ O; ${}^{18}_{8}$ O sont des isotopes de l'élément chimique oxygène O.

6. Structure électronique des atomes

6.1 Couches électroniques

Les électrons d'un atome se répartissent sur différentes couches appelées **couches électroniques.** Les couches sont désignées par des lettres majuscules K, L, M, N...

6.2 Règles de remplissage des couches

<u>1ère règle</u>: chaque couche contient un nombre limité d'électrons.

- la couche K peut contenir au maximum 2 électrons.
- la couche L peut contenir au maximum 8 électrons.
- la couche M peut contenir au maximum 8 électrons.
- la couche N peut contenir au maximum 2 électrons.

<u>2ème règle</u>: Les électrons remplissent d'abord le niveau K puis, quand celui-ci est saturé à 2 électrons, le niveau L. Quand le niveau L comporte 8 électrons, le

	Docs a port	niveau M se remplit jusqu'à 8 électrons puis le niveau N jusqu'à 2 électrons.
		Remarque: Ces règles ne sont valables que pour les 20 premiers éléments
		$(1 \le Z \le 20).$
		Activité d'application
		Donne la formule électronique des atomes suivants : ⁴ ₂ He ; ¹⁴ ₇ N ; ³⁵ ₁₇ Cl ; ³⁹ ₁₈ K
		Réponse: - He $(Z = 2)$: K^2
		- $N(Z = 7) : K^2L^5$
		- $C1(Z = 17) : K^2 L^8 M^7$
		- $K(Z = 17) \cdot K \cdot L \cdot M$ - $K(Z = 19) \cdot K^2 L^8 M^8 N^1$
		K(E 17). K E W W
		6.3 Représentation de LEWIS des atomes
		La représentation de LEWIS a pour but de schématiser la couche électronique
P	Pour savoir si un	externe (la dernière couche en remplissage) d'un atome.
	electron est	- Le noyau et les électrons des couches internes sont représentés par le symbole
	élibataire ou forme	de l'élément chimique.
	in doublet on admet	- Les électrons célibataires sont représentés autour du symbole de l'élément
	es règles suivantes :	par des points (.).
	si on a jusqu'à 4	- Les doublets d'électrons sont représentés autour du symbole de l'élément par
	electrons	1
p	périphériques (sauf	des tirets (-).
p	oour He), les	
	electrons restent	Activité d'application
c	élibataires.	Ecris les représentations de LEWIS des atomes suivants : Al $(Z = 13)$;
-	au-delà de 4	He $(Z = 2)$ et S $(Z = 16)$.
é	electrons	<u>Réponse</u> :
l p	périphériques, les	$- AI (Z = 13) : K^2 L^8 M^3$
éi	electrons	La couche externe est la couche M qui comporte 3 électrons.
	upplémentaires	• Al •
	associent pour	Al
fo	former des doublets.	- He $(Z = 2)$: K^2
		La couche externe est la couche K qui comporte 2 électrons.
		He He
	On place d'abord les	·
	e célibataires ; il	$-S(Z=16): K^2 L^8 M^6$
	este 2 qui vont	La couche externe est la couche M qui comporte 6 électrons.
	associer à 2 de ces	••
	pour constituer 2	\$§• — <u>\$</u> •
	loublets.	•
<u> </u>	iouoiou.	

Activité d'évaluation Un test psychotechnique porte sur l'élément chlore. Le gagnant est celui qui aura répondu le plus vite répondu aux consignes. Tu es l'un des candidats. L'atome de chlore a pour nombre de masse A=35 et possède 17 protons. 1. Donne le numéro atomique Z. de l'atome de chlore. 2. Ecris le symbole de l'élément chimique chlore. 3. Etablis la formule électronique de l'élément chimique chlore. 4. Ecris la représentation de LEWIS de cet atome. Solution 1. Z = 17 2. \frac{35}{17}Cl 3. K'2 \frac{8}{17}M'7 4. Représentation de LEWIS	Dos à porté de main —				
	Activité d'évaluation Un test psychotechnique porte sur l'élément chlore. Le gagnant est celui qui aura répondu le plus vite répondu aux consignes. Tu es l'un des candidats. L'atome de chlore a pour nombre de masse A=35 et possède 17 protons. 1. Donne le numéro atomique Z de l'atome de chlore. 2. Ecris le symbole de l'élément chimique chlore. 3. Etablis la formule électronique de l'élément chimique chlore. 4. Ecris la représentation de LEWIS de cet atome. Solution 1. Z = 17 2. ³⁵ ₁₇ Cl 3. K²L ⁸ M ⁷ 4. Représentation de LEWIS				

Classes: 2nd C

Thème: Chimie générale

Titre de la leçon: Ions et molécules

Durée: 8h

Tableau des habiletés et contenus

Habiletés	Contenus	
Enoncer	La règle de l'octet.	
Interpréter	L'évolution chimique des atomes vers les ions	
	monoatomiques.	
Ecrire	• la formule de quelques ions monoatomiques.	
	la formule de quelques ions polyatomiques.	
Expliquer	La formation des molécules.	
Définir	La liaison de covalence.	
Donner	Les représentations de Lewis de quelques	
	molécules.	
Distinguer	Un corps pur simple et un corps pur composé.	
Ecrire	Les formules développées de quelques molécules.	
Ecrire	Les formules statistiques de quelques composés	
	ioniques.	
Différencier	Un composé ionique d'une molécule.	

Situation d'apprentissage

Un élève en classe de 2^{nd} C au Collège Moderne de Tiédio est soumis à deux questions provenant de son frère, élève en en quatrième :

- 1. Pourquoi certains atomes perdent-ils ou gagnent-ils un ou des électrons?
- 2. Comment et pourquoi les atomes se lient-ils?

Pour se donner toutes les chances d'avoir les réponses justes, cet élève associe ses camarades de classe. Puis ensemble, ils entreprennent d'interpréter l'évolution chimique des atomes vers les ions monoatomiques, d'expliquer la formation des molécules et d'écrire les formules statistiques de quelques composés ioniques.

MATERIELS PAR POSTE DE TRAVAIL - Modèles moléculaires	SUPPORT DIDACTIQUE - Classification périodique des éléments - Manuels d'élèves
	BIBLIOGRAPHIE Collection AREX 2 nd C

PLAN DE LA LECON

- 1. La règle de l'octet
- 2. Les ions
- 3. Les molécules
- 4. Corps purs

Morranta	Moments Oct. 1. Docs à portée de main					
didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE		
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	IONS ET MOLECULES		
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. La règle de l'octet Tous les gaz rares ont une couche électronique externe de 8 électrons sauf l'hélium qui en a 2. He Ne Ar Kr Les gaz rares ou nobles étant particulièrement stables, ils ont une réactivité quasi nulle. Au cours des réactions chimiques, les autres atomes réagissent pour obtenir la structure électronique des gaz rares (8e- sur la couche externe). Dans une transformation en molécule ou en ion, l'atome sature sa couche externe à 2 (règle du duet) ou 8 (règle de l'octet) électrons pour avoir la structure du gaz rare le plus proche de lui.		

	- Docs à portée de main -
	2. <u>Les ions</u> 2.1 <u>Les ions monoatomiques</u>
	Les ions monoatomiques résultent d'atomes ayant cédé (perdu) ou capté (gagné) un
	ou plusieurs électrons.
	2.1.1 <u>Les cations</u>
	Ce sont les ions positifs issus de la perte d'électrons.
	Exemples:
	* Le sodium Na ($Z = 11$) : formule électronique : $K^2 L^8 M^1$.
	Pour avoir la structure en octet, l'atome de Na perd un électron et prend la
	structure électronique du néon $K^2 L^8$ d'où l'ion Na^+ ion sodium.
	On écrit : $Na \longrightarrow Na^+ + e^-$.
	* Le magnésium Mg ($Z = 12$) formule électronique : $K^2 L^8 M^2$.
	Pour avoir la structure en octet, l'atome de Mg perd deux électrons et prend la
	structure électronique du néon K^2L^8 d'où l'ion Mg^{2+} ion magnésium. On écrit : $Mg \longrightarrow Mg^{2+} + 2e^-$.
	2.1.2 <u>Les anions</u>
	Ce sont les ions négatifs issus du gain d'électrons.
	Exemples :
	* Le chlore Cl ($Z = 17$) : formule électronique : $K^2L^8M^7$
	Pour avoir la structure en octet l'atome de Cl gagne un électron et prend la
	structure électronique de l'argon $K^2 L^8 M^8$ d'où l'ion Cl ⁻ ion chlorure.
	On écrit : $C1 + e^- \longrightarrow C1^-$.
	* L'oxygène O ($Z = 8$) formule électronique : $(K)^2(L)^6$.
	Pour avoir le structure en octet l'atome d'oxygène gagne deux électrons et prend

la structure électroniq	ue du néon K ² L ⁸ d'où l'ion O ²⁻	ion oxyde ou ion oxygène.
100 501 00 00 00 01 0 01 0 01 10 0		1011 011 011 011 011 011

2.2 Les ions polyatomiques

Ce sont des assemblages d'atomes portant une charge électrique.

Exemples:

Cations	Nom du cation	Anions	Nom de l'anion
NH ₄ ⁺	ion ammonium	SO ₄ ²⁻	ion sulfate
H_3O^+	ion hydronium	Cr ₂ O ₇ ²⁻	ion bichromate
		NO ₃ -	ion nitrate
		MnO ₄ -	ion permaganate
		CO_3^{2-}	ion carbonate

2.3 Les composés ioniques

Ce sont des cristaux formés d'ions. Ils sont globalement neutres du point de vue électrique : ils contiennent autant de charges positives que de charges négatives.

$\underline{Exemples}:$

Composé ionique	Sulfate de cuivre	Fluorure	Carbonate de
		d'aluminium	sodium
Cation	Cu ²⁺	$A1^{3+}$	Na ⁺
Anion	SO ₄ ²⁻	F^-	CO_3^{2-}
Composition en ion	$(Cu^{2+}; SO_4^{2-})$	$(Al^{3+}; 3F^{-})$	(2 Na ⁺ ; CO ₃ ²⁻)
Formule statistique	CuSO ₄	AIF ₃	Na ₂ CO ₃

3. Les	s molé	cules
--------	--------	-------

3.1 <u>Définition de la liaison covalente</u>

La liaison de covalence (ou **liaison covalente**) résulte de la mise en commun par deux atomes d'une ou plusieurs paires d'électrons célibataires appelées **doublets de liaison**. Le nombre de doublets que partage un atome avec ses voisins pour respecter la règle de l'octet est sa **valence**. La liaison covalente est dite **simple**, **double** ou **triple** selon que les deux atomes ont mis en commun **un**, **deux** ou **trois** doublets d'électrons.

3.2 Définition de la molécule

Une molécule est une entité chimique électriquement neutre formée d'un nombre limité d'atomes liés entre eux par des liaisons de covalence.

3.3 Ecriture de la formule d'une molécule

La formule d'une molécule s'obtient en écrivant côte à côte les symboles des éléments présents dans la molécule et en précisant, en indice à droite, le nombre d'atomes de chaque élément. Le nombre d'atomes dans une molécule est son **atomicité**.

Exemple : une molécule possédant 6 atomes de carbone, 10 atomes d'hydrogène et 2 atomes de chlore a pour formule C $_6$ H $_{10}$ Cl $_2$ et pour atomicité At = 6+10+2 =18.

3.4 Représentation de LEWIS d'une molécule

* Chlorure d'hydrogène HCl

$$H(Z = 1) \Rightarrow K^{1}$$
 $H \cdot C1(Z = 17) \Rightarrow K^{2}L^{8}M^{7}$ $\boxed{C1} \cdot$

Dos à portée de main
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Valence de N : V= 3 (trivalent) La molécule de N ₂ possède une liaison covalente triple.
3.5 <u>Caractéristique géométrique de quelques molécules</u>
* Molécule d'eau H ₂ O
96 pm - La longueur de la liaison OH est de 96 pm.
H - L'angle HOH vaut 105°.
La molécule d'eau est coudée.
* Molécule d'ammoniac NH ₃
- La longueur de la liaison NH est de 101 pm L'angle HNH vaut 107° .
La molécule de NH ₃ forme une pyramide à base triangulaire.
* Molécule de méthane CH ₄
- La longueur de la liaison CH est 109 pm L'angle HCH vaut 109°28'.
La molécule de CH ₄ forme un tétraèdre.

DOUS &	portée de main
	 4. <u>Corps purs</u> Un corps pur est un corps formé de molécules toutes identiques. 4.1 <u>Corps pur simple</u>
	Lorsque les molécules sont constituées d'un seul type d'atomes alors le corps pur est dit simple. Exemple: H ₂ ; Cl ₂ ; etc
	4.2 <u>Corps pur composé</u> Dans le cas où les molécules sont formées de plusieurs types d'atomes, le corps pur est dit composé . <u>Exemple</u> : H ₂ O; CO ₂ ; etc
	Activité d'intégration
	Un groupe d'élèves de la classe de 2 nd C du Collège Moderne de Tiédio dispose des numéros atomiques de deux éléments chimiques Z = 17 et Z = 20. Ils identifient ces éléments à partir de leur numéro atomique et ensuite déterminent vers quels ions peuvent évoluer les deux atomes. Ne sachant pas comment s'y prendre, Ils cherchent à écrire la formule du composé formé à partir de ces ions et veulent savoir si ce composé est une molécule ou un composé ionique. Il t'est demandé de les aider. 1. Ecris les formules électroniques de ces éléments chimiques et identifie-les. 2. Donne le nom de la règle qui permet d'expliquer l'évolution des atomes vers les ions puis utilise-la pour déterminer les ions qui correspondent à ces éléments. 3. Ecris la formule du composé à partir des ions déterminés en 2. 4. Dis si ce composé est un composé ionique ou est une molécule.
	1. Pour Z = 17 : K² L ⁸ M ⁷ → 3 ^{ème} période ; 7 ^{ème} colonne. C'est le chlore. Pour Z = 20 : K² L ⁸ M ⁸ N² → 4 ^{ème} période ; 2 ^{éme} colonne. C'est le calcium. 2. La règle de l'octet
	- Pour avoir la structure en octet, l'atome de Cl gagne un électron et prend
	la structure électronique du néon $K^2 L^8$ d'où l'ion Cl^- ion chlorure.

	Docs à portée de main
	- Pour avoir la structure en octet, l'atome de Ca perd deux électrons et prend la
	structure électronique de l'argon K ² L ⁸ M ⁸ d'où l'ion Ca ²⁺ ion calcium.
	3. Le composé est le CaCl ₂ : C'est le chlorure de calcium.
	4. Ce composé est ionique.

Classes: 2nd C

<u>Thème</u>: La matière et ses transformations <u>Titre de la leçon</u>: Mole et grandeurs molaires

Durée: 4h

Tableau des habiletés et contenus

Habiletés	Contenus
Définir	la mole.
	La masse molaire atomique.
Définir	 la masse molaire moléculaire.
	la quantité de matière.
Connaître	l'unité de quantité de matière.
Déterminer	la quantité de matière d'un corps solide et liquide.
Connaître	la loi d'Avogadro-Ampère.
Définir	le volume molaire.
	 la quantité de matière d'un corps gazeux.
	 la densité d'un gaz par rapport à l'air.
Déterminer	la quantité de matière d'un corps gazeux
Utiliser	Les relations : $n = \frac{m}{M}$; $n = \frac{V}{V_m}$; $d = \frac{M}{29}$

Situation d'apprentissage

Lors d'une discussion entre des élèves de la classe de 2nd C du Collège Moderne de Tiédio, kobenan aimerait savoir le nombre de grains de riz que compte un sac de 50 kg. L'un d'eux affirme que ce sac compte des milliers de grains puis un autre qui l'estime à des millions de grains. Leur professeur de physique-chimie qui les a écoutés, les informe qu'on utilise en chimie la mole pour exprimer la quantité de matière. Surpris, ils décident avec ses camarades de classe de définir la mole et les grandeurs molaires puis de déterminer la quantité de matière de quelques corps solides, liquides, gazeux.

MATERIELS PAR POSTE DE TRAVAIL	- Guide et programme 2 nd C
	BIBLIOGRAPHIE Collection AREX 2 nd C

PLAN DE LA LECON

- 1. Quantité de matière
- 2. Grandeurs molaires
- 3.

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	MOLE ET GRANDEURS MOLAIRES
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation	questions	1. Quantité de matière
				1.1 <u>Utilité de la mole</u> Le nombre de molécules contenu dans 27 g d'eau, sachant que la masse d'une molécule d'eau étant de $m_0 = 2,99$. 10^{-23} g est : $n = \frac{27}{2, \ 99 \ 10^{23}} = 903. \ 10^{21} \ \text{molécules}$
				Il est impossible de dénombrer directement ce nombre d'où l'utilité d'une nouvelle unité qui est la mole de symbole mol . Remarque: Les particules ou entités peuvent être : - des atomes - des molécules - des ions etc - des grains de riz, de sable
				1.2 <u>Définition de la mole</u> La mole est l'unité internationale de la quantité de matière. La quantité de

, , , , , , , , , , , , , , , , , , ,	matiere est notée n et s'exprime en mole .
	Remarque: Lorsqu'on emploi la mole, les entités élémentaires doivent être
	spécifiées (atomes, molécules, ions, etc).
	1.3 La constante d'Avogadro
	C'est le nombre de particules contenues dans une mole d'entités élémentaires.
	Elle se note N_A et sa valeur est $N_A = 6,02. \ 10^{23} \ \text{mol}^{-1}$.
	Exemples: 1 mole d'atome de cuivre contient 6,02. 10 ²³ atomes de cuivre.
	1 mole de molécule d'eau contient 6,02. 10 ²³ molécules d'eau.
	1 mole d'ion sodium contient 6,02. 10^{23} ions sodium.
	1 111010 & 1011 60 61 611 611 611 611 611 611 611
	1.4 Quantité d'un échantillon de matière
	Le nombre d'entités chimiques élémentaires N contenues dans un échantillon
	de matière est proportionnel à la quantité de matière n.
	Le coefficient de proportionnalité est la constante d'Avogadro \mathcal{N}_A .
	$\mathbf{N} = \mathbf{n} \cdot \mathcal{N}_{\mathbf{A}}$
	T TOTA
	/ mol ⁻¹
	mol
	Activité d'application 1
	Détermine le nombre d'atomes de cuivre N dans 2,5 mol.
	Réponse : $N = n \cdot N_A$
	Teponse IV III IV
	AN: $N = 2.5 \times 6.02 \cdot 10^{23}$
	1111.11 2,5 A 0,02. 10
	$N = 1.5.10^{24}$ atomes
	1,5.10 atomes
	2. Grandeurs molaires
	2.1 Masse molaire
	La masse molaire M d'une espèce chimique est la masse d'une mole d'entités
	de cette espèce. Elle s'exprime en g/mol ou g.mol ⁻¹ .
	2.1.1 Masse molaire atomique
	C'est la masse d'une mole d'atomes de l'espèce chimique considérée.
	Les valeurs des masses molaires atomiques des éléments se trouvent dans le
	tableau de classification périodique.
	Exemples: $M_C = 12 \text{ g.mol}^{-1}$; $M_H = 1 \text{ g.mol}^{-1}$; $M_O = 16 \text{ g.mol}^{-1}$.

Docs à	portée de main
	2.1.2 <u>Masse molaire moléculaire</u> C'est la masse d'une mole de molécules de l'espèce chimique considérée. Elle
	s'obtient en faisant la somme des masses molaires atomiques des atomes qui
	constituent la molécule.
	Exemples : $M(H_2O) = 2.M_H + 1.M_O = 2 \times 1 + 1 \times 16 = 18 \text{ g.mol}^{-1}$.
	$M(CO_2) = 1.M_C + 2. M_O = 1 \times 12 + 2 \times 16 = 44 \text{ g.mol}^{-1}.$
	$M(H_2SO_4) = 2.M_H + 1.M_S + 4.M_O = 2 \times 1 + 1 \times 32 + 4 \times 16 = 98 \text{ g.mol}^{-1}$
	M(112004) 2.14H + 1.14IS + 4.14II
	2.1.3 Masse molaire ionique
	La masse molaire ionique est la masse d'une mole d'ion de l'espèce considérée.
	The second secon
	$M_{Cl^{-}} = M_{Cl} = 35.5 \text{ g.mol}^{-1} \text{ ; } M(SO_4^{2-}) = 1.M_S + 4. M_O = 96 \text{ g.mol}^{-1}$
	2.2 Relation entre quantité de matière et masse
	La quantité de matière n contenue dans une masse m d'une substance de masse
	molaire M est:
	(g)
	$\mathbf{n} = \frac{m}{M}$ et $\mathbf{m} = \mathbf{n} \cdot \mathbf{M}$
	m m. IVI
	(mol) (g.mol ⁻¹)
	(mol) (g.mol ⁻¹)
	A adinidé diamelia diam 2
	Activité d'application 2
	Calcule la quantité de matière contenue dans 32 g de dioxyde de carbone
	CO ₂ . On donne: $M_C = 12$ g.mol ⁻¹ et $M_O = 16$ g.mol ⁻¹ .
	<u>Réponse</u> : $n = \frac{m}{M}$ $M(CO_2) = 44 \text{ g.mol}^{-1}$.
	AN: $n = \frac{32}{44}$
	n = 0.73 mol
	2.2 Volume melaire
	2.3 Volume molaire
	2.3.1 <u>Définition</u>
	Le volume molaire d'un gaz est le volume d'une mole de molécule de ce gaz.
	On le note V _m et il s'exprime en L / mol ou L.mol ⁻¹ .
	2.2. Loi d'Arragadus Amadus
	2.3.2 Loi d'Avogadro-Ampère Francé: Pris dans les mêmes conditions de terménature et de pression, tous
	Enoncé: Pris dans les mêmes conditions de température et de pression, tous
	les gaz ont le même volume molaire V _m .
	NB: Le volume molaire V _m d'un gaz dépend de la température et de la pression.
	Dans les conditions normales de température et pression CNTP ($T = 0$ °C et $P =$

Docs à	portée de main
	1 atm) le volume molaire vaut $V_m = 22.4 \text{ L.mol}^{-1}$.
	2.3.3 Quantité de matière d'un gaz
	$V_m = \frac{V}{n}$ ou $V = n.V_m$ soit $n = \frac{V}{V_m}$
	$ \begin{cases} & n : Quantit\'e \ de \ mati\`ere \ en \ mol. \\ & V : volume \ de \ gaz \ en \ L. \\ & V_m : volume \ molaire \ en \ L.mol^{-1}. \end{cases} $
	Activité d'application 3 Détermine la quantité de matière contenue dans 1 m³ de gaz butane pris dans les conditions normales de température et de pression CNTP. Réponse: $V = 1 \text{ m}^3 = 1000 \text{ L}$ et $V_m = 22,4 \text{ L.mol}^{-1}$ dans les CNTP. $n = \frac{V}{V_m}$
	AN: $n = \frac{1000}{22, 4}$
	n = 44,64 mol
	2.4 Relation entre la masse molaire et densité d'un gaz $d = \frac{\rho_g}{\rho_{air}} = \frac{M_g/V_m}{\rho_{air}} = \frac{M_g}{\rho_{air}V_m} \qquad \rho_{air} \approx 1.3 \text{ g/L} \Rightarrow \rho_{air}.V_m \approx 29.$ La densité d'un gaz par rapport à l'air est donnée par la relation : $d = \frac{M}{29}$
	avec M étant la masse molaire moléculaire du gaz.
	N.B.: La densité n'a pas d'unité.
	Situation d'évaluation
	Au cours d'une séance d'exercice de chimie, les élèves de 2 nd C du Collège
	Moderne de Tiédio disposent de la masse de 0,35 mol d'un composé moléculaire
	qui est de 15,4 g. Ils veulent savoir si ce composé est le dioxyde de carbone. Il te
	sollicite pour les aider.

	ga soutra / Docs à portée de main
	1. Définis la masse molaire moléculaire
	2. Calcule sa masse molaire.
	3. Dis si ce composé est le dioxyde de carbone. On donne : M (C) = 12 g.mol ⁻¹ et M (O) = 16 g.mol ⁻¹ .
	<u>Solution</u>
	 La masse molaire moléculaire est la masse d'une mole de molécules de l'espèce considérée. Calcul de sa masse molaire
	$n = \frac{m}{M} \Rightarrow \frac{m}{M} =$
	AN: $M = \frac{15, 4}{0, 35}$
	$M=44 g. mot^{-1}$ 3. Calcul de la masse molaire du dioxyde de carbone
	$M (CO_2) = M (C) + 2 M (O) = 12 + 2 x 16 = 44 g.mol-1$
	Ce composé est le dioxyde de carbone.

Classes: 2nd C

Thème: Chimie générale

Titre de la leçon : Equation-bilan d'une réaction chimique

Durée: 4h

Tableau des habiletés et contenus

Habiletés	Contenus
Ecrire	l'équation-bilan d'une réaction chimique.
Déterminer	des quantités de matière, des masses et des volumes de corps à partir de l'équation-bilan d'une réaction chimique.
Connaître	la loi de Lavoisier.
Résoudre	des exercices : - dans le cas où les réactifs sont introduits dans les proportions stœchiométriques ; - dans le cas où l'un des réactifs est introduit en excès.

Situation d'apprentissage

Lors de la résolution d'un exercice de chimie par un groupe d'élèves de la classe de 2^{nde} C du Collège Moderne de Tiédio, l'un d'eux écrit l'équation-bilan de la réduction de l'oxyde ferrique par l'aluminium au tableau. Certains révèlent que celle-ci n'est pas équilibrée et d'autres pensent le contraire. Afin de s'accorder, ils décident de savoir écrire l'équation-bilan d'une réaction chimique, de déterminer des quantités de matière et des volumes à partir de l'équation-bilan et de connaître la loi de Lavoisier.

MATERIELS PAR POSTE DE TRAVAIL - Métaux (Zn, Fe et Al) - Oxyde ferrique - Ruban de magnésium - Acide chlorhydrique	SUPPORT DIDACTIQUE - Schémas - Manuels d'élèves
CreusetLabogazAllumettesSérie d'exercices polycopiés	BIBLIOGRAPHIE Collection AREX 2 ^{nde} C Collection EURIN- GIE 2 nd C

<u>PLAN DE LA LECON</u>

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	EQUATION-BILAN D'UNE REACTION CHIMIQUE
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation		1. La réaction chimique 1.1 <u>Définition</u> Une réaction chimique est une transformation au cours de laquelle certains corps disparaissent (réactifs) pour donner de nouveaux corps (produits). 1.2 <u>Equation-bilan d'une réaction chimique</u> Une réaction chimique est traduite par une équation-bilan: A + B

Docs à port	tée de main
	8 molecules de dioxyde de carbone et 10 molécules d'eau : c'est la signification
	microscopique.
	- 2 moles de butane réagissent avec 13 moles de dioxygène pour donner 8 moles
	de dioxyde de carbone et 10 moles d'eau : c'est la signification macroscopique.
	Activité d'application 1
	Equilibre les équations-bilan suivantes puis donne les deux niveaux de lecture :
	a. $C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$
	b. Fe + S
	Réponse: a. $C_3H_8 + 5 O_2 \longrightarrow 3 CO_2 + 4 H_2O$
	- 1 molécule de propane réagit avec 5 molécules de dioxygène pour donner 3
	molécules de dioxyde de carbone et 4 molécules d'eau.
	- 1 mole de propane réagit avec 5 moles de dioxygène pour donner 3 moles de
	dioxyde de carbone et 4 moles d'eau.
	b. $Fe + S \longrightarrow FeS$
	- 1 atome de fer réagit avec 1 atome de soufre pour donner une molécule de
	sulfure de fer.
	- 1 mole de fer réagit avec une mole de soufre pour donner une mole de sulfure
	de fer.
	2. Bilan d'une réaction chimique
	2.1 Bilan molaire
	L'équation-bilan fournit une relation entre les nombres de moles de réactifs
	ayant effectivement réagi et les nombres de moles des produits formés.
	Exemple:
	Réactifs Produits
	Equation-bilan $2 CuO + C \longrightarrow 2Cu + CO_2$
	Bilan molaire 2 mol 1 mol 2 mol 1 mol
	Relation entre les $\frac{n_{CuO}}{2} = \frac{n_C}{1} = \frac{n_{Cu}}{2} = \frac{n_{CO_2}}{1}$
	quantités de matières $\frac{-1}{2} = \frac{-1}{1} = \frac{-1}{2}$
	4
	2.2 Bilan massique

			Réactifs	Produits
		Equation-bilan	$3 Fe + 2 O_2 -$	→ Fe ₃ O ₄
	Bilan molaire	3 mol 2 mol	1 mol	
		Bilan massique	$m_{Fe} = 3x55,8 \; ; m_{O_2} = 2x32$	$; m_{Fe_3O_4} = 3x55,8 + 4x16$
		(m = n. M)	$m_{Fe} = 167.4 \text{g} ; m_{O_2} = 64 \text{ g}$	
		Somme des masses	$m_{Fe} + m_{O_2} = 231,4 \text{ g}$	$m_{Fe_3O_4} = 231.4 \text{ g}$
		La somme des masses d	les réactifs est égale à la somm	ne des masses des produits.

$$\sum masse\ des\ r\'eactifs = \sum masse\ des\ produits$$

2.3 Loi de Lavoisier

Dans une réaction chimique, la somme des masses des corps qui réagissent est égale à la somme des masses des corps qui se forment.

Activité d'application 2

On brûle 3 moles de méthane dans le dioxygène. Il se forme du dioxyde de carbone et de l'eau.

- 1. Détermine le nombre de mole de dioxygène utilisé.
- 2. Calcule la masse de dioxyde de carbone obtenue.

Réponse:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$
1. Le nombre de mole de dioxygène utilisé.

$$n_{CH_4} = \frac{n_{O_2}}{2} \implies n_{O_2} = 2 n_{CH_4}$$

AN:
$$n_{0_2} = 2 \times 0.3$$

$$n_{O_2} = 0.6 \, mol$$

2. La masse de dioxyde de carbone obtenue

$$n_{CH_4} = n_{CO_2} \Rightarrow n_{CH_4} = \frac{m_{CO_2}}{M_{CO_2}} \Rightarrow \boxed{m_{CO_2} = n_{CH_4} \times M_{CO_2}}$$

AN:
$$m_{CO_2} = 0.3 \times 44$$

$$m_{CO_2} = 13.2 \text{ g}$$

	2.4 <u>Bilan volumique</u> Pour les réactions chimiques mettant en jeu les gaz, la relation de proportionnalité est valable avec les volumes.
	Situation d'évaluation Le professeur de Physique-Chimie au cours d'une séance de TP avec les élèves de 2 ^{nde} C du Collège Moderne de Tiédio fait réagir 1,5 mol de fer métal avec 1 mol de soufre. Les élèves observent à la fin de la réaction, la formation du sulfure de fer de formule FeS. Ils veulent savoir si les réactifs sont dans les proportions stœchiométriques. Sinon s'il reste un réactif et enfin veulent déterminer la quantité de matière de sulfure de fer obtenue. Il t'est demandé de les aider. 1. Ecris l'équation-bilan de la réaction chimique. 2. Dites si les proportions sont stœchiométriques. Sinon, donne le réactif en excès. 3. Détermine la quantité de matière de sulfure de fer obtenue. Réponse 1. Equation-bilan de la réaction chimique
	$Fe + S \longrightarrow FeS$ 1 mol 1 mol 1 mol

Docs à portée de main
2. Les réactifs sont en quantités différentes donc ils ne sont pas dans les proportions stœchiométriques.
Le réactif en excès est le fer qui restera présent en fin de réaction. Le soufre est le réactif en défaut (ou réactif limitant) car il disparaît totalement.
3. La quantité de matière de sulfure de fer obtenue.
$n_S = n_{FeS}$
$n_{FeS} = 1 \text{ mol}$

Classes: 2nd C

Thème: Ions en solutions aqueuses

Titre de la leçon : Solutions aqueuses ioniques

Durée: h

Tableau des habiletés et contenus

Habiletés	Contenus		
Ecrire	l'équation-bilan de dissolution d'un composé ionique dans l'eau.		
Interpréter	le phénomène de dissolution dans l'eau d'un composé ionique.		
Définir	le solvant.le soluté.la solubilité.		
Définir	 la concentration massique volumique. la concentration massique volumique. 		
Déterminer	la concentration massique volumique.la concentration massique volumique.		
Interpréter	l'électrolyse de la solution aqueuse du chlorure de sodium.		
Exploiter	les équations-bilans des réactions chimiques.		

Situation d'apprentissage

Des élèves de la classe de 2^{nde} C du Collège Moderne de Tiédio rendent visitent à des femmes fabriquant les savons kabakrou. Ils constatent que lors de la dissolution de la soude dans l'eau, il y'a une forte élévation de la température. Etonnés et voulant en savoir plus, ils entreprennent avec leurs camarades de classe d'interpréter le phénomène de dissolution dans un composé ionique, de définir la solubilité, les concentrations volumiques massique et molaire.

MATERIELS PAR POSTE DE TRAVAIL	SUPPORT DIDACTIQUE
- Soude en pastille.	- Schémas
- Chlorure de sodium, chlorure d'ammonium.	- Manuels d'élèves
- Sulfate de cuivre.	
- Béchers en pyrex, thermomètres, tube à essais.	
- Indigo, phénolphtaléine.	BIBLIOGRAPHIE
- Tube en U et électrodes de graphite.	Collection AREX 2 ^{nde} C.
- Générateur 6V à 12V.	Collection EURIN GIE 2 ^{nde} C.
- Fils de connexion et pinces de crocodiles.	

PLAN DE LA LECON

Moments didactiques/ durée	Stratégies pédagogiques	Activités du professeur	Activités des élèves	TRACE ECRITE
Présentation	Questions/ réponses	Rappels/ pré requis	Les élèves répondent aux questions	SOLUTIONS AQUEUSES IONIQUES
Développement	Situation d'apprentissage Questions/réponses	Lisez la situation	questions	Solutions aqueuses ioniques 1.1 <u>Définitions</u> Solution aqueuse Une solution aqueuse est le mélange obtenu en dissolvant dans l'eau (solvant) une substance (soluté) solide, liquide ou gazeuse. Solution aqueuse ionique
				Une solution aqueuse ionique est une solution dont le solvant est l'eau et le soluté est un composé ionique.

1.2 Exemples de solutions aqueuses

• Solution aqueuse de chlorure de sodium (NaCl) Solvant : l'eau soluté : chlorure de sodium

Equation: NaCl eau $Na^+ + Cl^-$

• Solution aqueuse d'hydroxyde de sodium (NaOH) Solvant : l'eau soluté : hydroxyde de sodium

Equation: $NaOH \longrightarrow Na^+ + OH^-$

2. Dislocation d'un composé ionique dans l'eau

2.1 Effet thermique de la dissolution

2.1.1 Expérience et observation

Corps dissout	NaOH	NaCl	NH_4Cl	$CuSO_4$
Température initiale	26°C	26°C	26°C	26°C
de l'eau (T _i)				
Température finale de	33°C	26°C	23°C	26°C
la solution obtenue				
(T_f)				
Variation de la	+ 7°C	0°C	- 3°C	0°C
température				

- Pour NaCl et $CuSO_4$, il n'y'a aucune variation de la température : la dissolution de ces deux solutés dans l'eau est **athermique**.
- Pour aOH, il y'a élévation de la température : la dissolution de l'hydroxyde de sodium dans l'eau est **exothermique**.
- Pour NH_4Cl , il y'a abaissement de la température : la dissolution du chlorure

 Docs à portée de main
d'ammonium dans l'eau est endothermique .
2.1.2 <u>Interprétation de la dissolution</u>
Le phénomène de dissolution des composés ioniques se fait en trois étapes
(fictives):
- <u>La dislocation du cristal ou du réseau cristallin</u> Elle se fait avec la rupture des liaisons ioniques dans le cristal pour donner
naissance à des ions. Cette étape consomme de l'énergie : elle est
endothermique.
- <u>La dispersion des ions formés parmi les molécules d'eau</u> La dispersion des ions formés au milieu des molécules d'eau provoque
l'affaiblissement des interactions entre ces molécules. Cette étape est, elle aussi
endothermique.
- L'hydratation des ions
Cette étape correspond à la formation de liaisons entrree les ions et les molécules
d'eau. Elle se dégage de l'énergie : elle est exothermique .
2.1.3 Conclusion
Les étapes de la dissolution des composés ioniques dans l'eau se font
simultanément.
- Si l'énergie absorbée par la dislocation est plus importante que l'énergie libérée
par l'hydratation ($E_d > E_h$), la dissolution est alors endothermique : cas du chlorure d'ammonium NH_4Cl .
- Si l'énergie absorbée par la dislocation est plus faible que l'énergie libérée par
1'hydratation ($E_d < E_h$), la dissolution est alors exothermique : cas de
l'hydroxyde de sodium <i>NaOH</i> .
- Si l'énergie absorbée par la dislocation est égale à l'énergie libérée par
l'hydratation ($E_d = E_h$), la dissolution est athermique : cas du chlorure de sodium.
2.2 <u>Limite à la dissolution</u>
2.2.1 Expérience et observation

2.2.2 Conclusion

Lorsqu'un corps n'est plus totalement dissout dans le solvant, la solution est dite **saturée**. Il existe donc une limite à la dissolution.

3. Solubilité d'un composé ionique

3.1 <u>Définition</u>

La solubilité d'un composé ionique ou soluté est la quantité maximale de soluté que l'on peut dissoudre dans un litre d'eau à une température donnée. Elle s'exprime en **g.L**⁻¹ ou **mol.L**⁻¹.

Remarque : La solubilité dépend de la température et de la pression.

A 25°C, la solubilité de :

- NaCl est de 360 g.L⁻¹
- NaOH est de 920 g.L⁻¹
- $AgNO_3$ est de 2278 g.L⁻¹

3.2 Influence de la température de l'eau sur la solubilité : cas du NaCl

La solubilité de *NaCl* en fonction de la température est inscrit dans le tableau suivant :

Température (°C)	20	25	100
Solubilité (g.L ⁻¹)	3165	360	390

La solubilité de NaCl augmente avec la température.

4. Concentrations molaire et massique des constituants d'une solution

4.1 Concentration molaire

La concentration molaire notée C d'une espèce chimique en solution est égale au rapport de la quantité de matière \mathbf{n} de cette espèce chimique par le volume \mathbf{V} de

solution. $mol.L^{-1}$ $C = \frac{n}{V}$ Pour un composé ionique, la concentration molaire se note aussi []. Exemple: $[Cl^-]$; $[Na^+]$ 4.2 Concentration massique La concentration massique & d'une espèce chimique est égale au rapport de sa masse **m** par le volume **V** de solution. 4.3 Relation entre la concentration molaire et concentration volumique $\mathcal{C} = \frac{m}{V}$ or $m = n.M \implies \mathcal{C} = \frac{n}{V} M \implies \mathcal{C} = C.M$ Activité d'application On prépare 250 cm³ de solution en dissolvant dans l'eau 4,35 g de sulfate de potassium de formule K_2SO_4 . 1. Détermine la concentration molaire de chacun des ions présents en solution. 2. Détermine la concentration massique du soluté. Réponse : $K_2SO_4 \longrightarrow 2K^+ + SO_4^{2-}$ 1. Concentration molaire des ions présents.

$$[K^{+}] = \frac{n_{K^{+}}}{V} \quad \text{or} \quad n_{K^{+}} = 2 \, n_{K_{2}SO_{4}} \implies [K^{+}] = \frac{2 \, n_{K_{2}SO_{4}}}{V} \quad \text{avec} \quad n_{K_{2}SO_{4}} = \frac{m}{M}$$

$$\implies [K^{+}] = \frac{2 \, m}{M \, V}$$

$$\stackrel{\underline{AN} : \underline{[K^{+}]} = \frac{2 \, x \, 4.35}{174.3 \, x \, 0.25}$$

	2003 d pol	$[K^+] = 0.2 \ mol.L^{-1}$
		$[SO_4^{2-}] = \frac{n_{SO_4^{2-}}}{V} \text{ or } n_{SO_4^{2-}} = n_{K_2SO_4} \Longrightarrow [SO_4^{2-}] = \frac{n_{K_2SO_4}}{V} \text{ avec } n_{K_2SO_4} = \frac{m}{M}$
		$\Longrightarrow \left[SO_4^{2-}\right] = \frac{m}{M.V}$
		$\underline{AN}: [SO_4^{2-}] = \frac{4,35}{174,3 \times 0,25}$
		$[SO_4^{2-}] = 0.1 \ mol. L^{-1}$
		4.4 Electroneutralité des solutions aqueuses ioniques Une solution aqueuse contenant les ions A^{m+} , B^{n+} , C^{r-} et D^{u-} est
		électriquement neutre si : $m[A^{m+}] + n[B^{n+}] = r[C^{r-}] + u[D^{u-}]$
		Activité d'application
		Deux litres d'une solution aqueuse contiennent 17,55 g de <i>NaCl</i> et 29,5 g de <i>KCl</i> 1. Calcule les concentrations molaires des différents ions présents dans
		la solution. 2. Vérifie l'électroneutralité de la solution.
		Réponse:
		$NaCl \xrightarrow{H_2O} Na^+ + Cl^-$; $KCl \xrightarrow{H_2O} K^+ + Cl^-$
		<u>Ions présents en solution</u> : Na^+ ; K^+ ; Cl^-
		1. Concentration molaire des ions
		$n(NaCl) = \frac{m}{M} = \frac{17,55}{58;5} = 0,3 \text{ mol}$ et $n(KCl) = \frac{m}{M} = \frac{29,4}{74,5} = 0,39 \text{ mol}$
		$[Na^+] = \frac{n(NaCl)}{V} = \frac{0.3}{2} = 0.15 \text{ mol.L}^{-1}; [K^+] = \frac{n(KCl)}{V} = \frac{0.39}{2} = 0.195 \text{ mol.L}^{-1}$
		$n_T(Cl^-) = n(KCl) + n(NaCl) = 0.3 + 0.39 = 0.69 mol$
		$[Cl^{-}] = \frac{0.69}{2} = 0.345 \text{ mol.L}^{-1}.$

2. Vérifions l'électroneutralité de la solution $[Na^+] + [K^+] = 0,15 + 0,195 = 0,345 \text{ mol.L}^{-1}$. $[Cl^-] = 0,345 \text{ mol.L}^{-1}$ $[Na^+] + [K^+] = [Cl^-]$ Donc la solution est électriquement neutre.