Implementando algoritmos de Machine Learning com Scikit-learn

1. Carregamento e Visualização Inicial

Carregar os dados e explorar sua estrutura:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Definir nomes das colunas
columns = ['Área', 'Perímetro', 'Compacidade', 'Comprimento_Núcleo', 'Largura_Núcleo',
           'Coeficiente_Assimetria', 'Comprimento_Sulco', 'Variedade']
# Ler o arquivo tratando múltiplos espaços como delimitadores
df = pd.read_csv("seeds_dataset.txt", sep="\s+", names=columns)
# Exibir as primeiras linhas
print(df.head())
# Estatísticas descritivas
print(df.describe())
# Verificar valores ausentes
print(df.isnull().sum())
# Visualizar distribuições dos atributos
df.hist(figsize=(12, 8))
plt.show()
# Correlação entre Variáveis
# Calcular correlações
corr_matrix = df.corr()
# Exibir heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f")
plt.show()
```

5/202	5, 14:10	0					FASE4_SEE	DS - Colab
∓	Área		Perímetr	o Compacid	ade Compriment	to_Núcleo	Largura_Núc	leo \
_	0 15	.26	14.8	4 0.8	710	5.763	3.	312
	1 14	4.88 14.57				5.554	3.333	
	2 14.29 3 13.84 4 16.14		14.09 0.96 13.94 0.89			5.291	1 3.337	
					955	5.324	3.	379
			14.9	9 0.90	234	5.658	3.	.562
	Co	Coeficiente_Assimetria Comprimento_Sulco Variedade						
	0		_	2.221	5.226	9	1	
	1			1.018	4.956	5	1	
	2			2.699	4.825	5	1	
	3			2.259	4.805	5	1	
	4			1.355	5.175	5	1	
			Área	Perímetro	Compacidade	Comprimen	to Núcleo \	
	count	21	0.000000	210.000000	210.000000	2:	10.000000	
	mean	1	4.847524	14.559286	0.870999		5.628533	
	std		2.909699	1.305959	0.023629		0.443063	
	min	10	0.590000	12.410000	0.808100		4.899000	
	25%	1	2.270000	13.450000	0.856900		5.262250	
	50%	1	4.355000	14.320000	0.873450		5.523500	
	75%	1	7.305000	15.715000	0.887775		5.979750	
	max	2	1.180000	17.250000	0.918300		6.675000	
		La	rgura_Núc	leo Coefic	iente_Assimetri	ia Compri	mento_Sulco	Variedade
	count mean		210.000	000	210.00000	90	210.000000	210.000000
			3.258605		3.70026	91	5.408071	2.000000
	std		0.377	714	1.50355	57	0.491480	0.818448
	min		2.630	000	0.76510	90	4.519000	1.000000
	25%	% 2.944000			2.561500		5.045000	1.000000
	50%		3.237000		3.599000		5.223000	2.000000
	75%		3.561750		4.76875	4.768750		3.000000
	max		4.033000		8.45606	90	6.550000	3.000000
	Área			0				
	Perímetro Compacidade Comprimento_Núcleo			0				
				0				
				0				
				α				

Largura_Núcleo 0 Coeficiente_Assimetria 0 0 Comprimento_Sulco 0 Variedade

Área -

dtype: int64

2. Normalização e Padronização dos Dados

Utilizar MinMaxScaler ou StandardScaler para que as escalas dos atributos não influenciem o modelo.

Aplicar StandardScaler para padronizar os dados, pois os dados possuem magnitudes muito diferentes e deve padronizá-los antes da modelagem.

Aplicar Teste de Shapiro-Wilk para avaliar se uma variável segue uma distribuição normal.

```
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from scipy.stats import shapiro
# Definir X (variáveis preditoras) e y (variável alvo)
X = df.iloc[:, :-1] # Todas as colunas, exceto 'Variedade'
y = df.iloc[:, -1] # Apenas a coluna 'Variedade'
# Min-Max Scaling
scaler_minmax = MinMaxScaler()
df_minmax = df.copy()
df_minmax.iloc[:, :-1] = scaler_minmax.fit_transform(df.iloc[:, :-1])
# StandardScaler (Z-score)
scaler_standard = StandardScaler()
df_standard = df.copy()
df_standard.iloc[:, :-1] = scaler_standard.fit_transform(df.iloc[:, :-1])
# Executar o teste de normalidade Shapiro-Wilk
for coluna in df.columns[:-1]: # Ignorando a coluna 'Variedade'
    stat, p = shapiro(df[coluna])
    print(f"{coluna}: Estatística={stat:.3f}, p-valor={p:.3f}")
→ Área: Estatística=0.933, p-valor=0.000
     Perímetro: Estatística=0.936, p-valor=0.000
     Compacidade: Estatística=0.973, p-valor=0.000
     Comprimento Núcleo: Estatística=0.944, p-valor=0.000
     Largura_Núcleo: Estatística=0.961, p-valor=0.000
     Coeficiente Assimetria: Estatística=0.984, p-valor=0.015
     Comprimento_Sulco: Estatística=0.925, p-valor=0.000
```

3. Separação em Conjuntos de Treinamento e Teste

Dividir os dados para treinar e testar os modelos:

```
from sklearn.model_selection import train_test_split

# Definir X (variáveis preditoras) e y (variável alvo)
X = df.iloc[:, :-1]
y = df['Variedade']

# Divisão dos dados
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
```

4. Implementação e Comparação dos Algoritmos de Classificação

Treinar diferentes modelos de classificação e avaliar seu desempenho:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy score, classification report, confusion matrix
# Modelos de classificação
models = {
    "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
    "KNN": KNeighborsClassifier(n_neighbors=5),
    "SVM": SVC(kernel='linear'),
    "Logistic Regression": LogisticRegression(max_iter=500),
    "Naive Bayes": GaussianNB(),
# Treinar e avaliar cada modelo
results = {}
for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    results[name] = acc
    print(f"\nModelo: {name}")
    print(classification_report(y_test, y_pred))
    print("Matriz de Confusão:")
    print(confusion_matrix(y_test, y_pred))
# Comparação de acurácia
print("\nComparação de Acurácia:")
for model, acc in results.items():
    print(f"{model}: {acc:.4f}")
    [[16 3 2]
      [2190]
      [ 1 0 20]]
     Modelo: SVM
```

```
Modelo: Naive Bayes
                        recall f1-score support
             precision
                  0.73
                           0.76
                                     0.74
                                                  21
          2
                  0.94
                            0.76
                                      0.84
                            0.95
                  0.83
                                      0.89
                                                  21
                                      0.83
                                                  63
   accuracy
                  0.83
                            0.83
                                      0.83
   macro avg
                                                  63
                0.83
                            0.83
                                      0.83
                                                  63
weighted avg
Matriz de Confusão:
[[16 1 4]
 [5160]
 [ 1 0 20]]
Comparação de Acurácia:
Random Forest: 0.9206
KNN: 0.8730
SVM: 0.8571
Logistic Regression: 0.8571
Naive Baves: 0.8254
```

5. Otimização dos Modelos

Utilizar Grid Search para encontrar melhores hiperparâmetros:

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
# Otimização do SVM
param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
grid = GridSearchCV(SVC(), param_grid, cv=5)
grid.fit(X_train, y_train)
# Melhor combinação de parâmetros SVM
print("Melhores parâmetros para SVM:", grid.best_params_)
# Otimização do K-Nearest Neighbors (KNN)
# Testar diferentes valores para n_neighbors e o tipo de métrica utilizada:
param_grid_knn = {'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance']}
grid_knn = GridSearchCV(KNeighborsClassifier(), param_grid_knn, cv=5)
grid_knn.fit(X_train, y_train)
# Melhor combinação de parâmetros KNN
print("Melhores parâmetros para KNN:", grid_knn.best_params_)
# Otimização do Random Forest
# Explorar o número de árvores na floresta (n_estimators),
# profundidade (max_depth) e critérios de divisão (criterion):
param_grid_rf = {'n_estimators': [50, 100, 150], 'max_depth': [None, 10, 20], 'criterion': ['gini', 'entropy']}
grid_rf = GridSearchCV(RandomForestClassifier(random_state=42), param_grid_rf, cv=5)
grid_rf.fit(X_train, y_train)
# Melhor combinação de parâmetros Randon Forest
print("Melhores parâmetros para Random Forest:", grid_rf.best_params_)
# Otimização do Naive Bayes
# O algoritmo GaussianNB não tem muitos hiperparâmetros para ajustar, mas
# podemos otimizar var_smoothing para melhor regularização:
param_grid_nb = {'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6]}
grid_nb = GridSearchCV(GaussianNB(), param_grid_nb, cv=5)
```