Fisher Information

Applications in Gradient Descent and Incremental Learning

Megh Shukla

RD I/CEI Mercedes-Benz Research and Development India

January 6, 2022

Overview

- 1. Why Fisher Information?
- 2. Applications Natural Gradient
- 3. Applications Online Learning
- 4. Applications Active Learning

Revisiting Maximum Likelihood

Given some observations x, we want to obtain θ that maximizes $f(x|\theta)$.

With the *i.i.d* assumption, our likelihood function is $\psi(\theta) = f(x_1|\theta) \times \ldots \times f(x_n|\theta)$.

Maximum Likelihood Estimate

$$\psi(\hat{ heta}) = \mathsf{arg}\,\mathsf{max}_{ heta}\,\,\psi(heta)$$

Log likelihood makes it easy to obtain $\hat{\theta} = \arg\max_{\theta} \psi(\theta) = \sum_{i=1}^{N} \log f(x_i|\theta)$

Revisiting Maximum Likelihood

Q1. So what after $\hat{\theta}$? How confident are we about our prediction?

Q2. Are we sure about $\hat{\theta} \to \theta_0$ as $n \to \infty$?

... Fisher Information to the rescue!

Definition

Fisher Information

$$\mathcal{I}_{ heta} = \mathbb{E}_{ extit{x}}igg[
abla_{ heta} \log p(extit{x}| heta) \,
abla_{ heta} \log p(extit{x}| heta)^{ extit{T}}igg]$$

. . .

. . .

. . .

. . .

Ye kya hai ?!

- 1. Asymptotic variance of the log likelihood estimate
- 2. Sensitivity of the parameter θ

How !? - Out of syllabus

Sensitivity of θ

$$\mathcal{I}_{ heta} = \mathbb{E}_{x} igg[
abla_{ heta} \log p(x| heta)
abla_{ heta} \log p(x| heta)^{T} igg] \equiv -\mathbb{E}_{x} igg[
abla_{ heta}^{2} \log p(x| heta) igg]$$

Asymptotic Variance

Once upon a time, there was the Law of Large Numbers: $P(|\bar{X} - \mathbb{E}(X)| > \epsilon) \to 0$.

The Central Limit Theorem defines the rate of convergence: $P(\bar{X} - \mathbb{E}(X)) \to \mathcal{N}(0, \frac{\sigma^2}{n})$

Theorem (Asymptotic Variance of the maximum likelihood estimate)

$$\sqrt{n}(\hat{ heta}- heta_0) o\mathcal{N}(0,\mathcal{I}_{ heta_0}^{-1})$$

Applications - Natural Gradient

So why is the Hessian important in optimization? Why do we not use the Hessian in our optimization process?

Theorem (Equivalency between Fisher and Hessian)

$$\mathcal{I}_{\theta} = -\mathbb{E}_{p(\mathbf{x}|\theta)}[H_{\log p(\mathbf{x}|\theta)}]$$

Applications - Natural Gradient

So what is Gradient Descent? $\frac{-\nabla_{\theta}\mathcal{L}(\theta)}{||\nabla_{\theta}\mathcal{L}(\theta)||} = \lim_{\epsilon \to 0} \frac{1}{d} \arg\min_{d < |\epsilon|} \mathcal{L}(\theta + d)$

Parameter space or Distribution space?

Applications - Natural Gradient

Distribution space: KL Divergence!

Equivalence between KL divergence and Fisher information

$$\mathit{KL}[p(x|\theta)||p(x|\theta+d)] \approx \frac{1}{2}d^{T}\mathcal{I}_{\theta}d$$

So a step in the parametric space is replaced by a step in the distribution space! $\lim_{\epsilon \to 0} \arg \min_{d < |\epsilon|} \mathcal{L}(\theta + d) \implies \lim_{\epsilon \to 0} \arg \min_{d : \mathcal{KL}[p_{\theta}||p_{\theta + d}] = \epsilon} \mathcal{L}(\theta + d)$

Theorem (Natural Gradient)

$$\hat{\nabla}_{\theta} \mathcal{L}(\theta) = \mathcal{I}_{\theta}^{-1} \nabla_{\theta} \mathcal{L}(\theta)$$

So why is Natural Gradient not popular? Ummm, Fisher matrix and inversion is expensive? So can we approximate the Fisher matrix? Yes, as done in *Adam* optimizer!

Applications - Elastic Weight Consolidation

Extending
$$\log p(\theta|\mathcal{D}) = \log p(\mathcal{D}|\theta) + \log p(\theta) - \log p(\mathcal{D})$$
 to tasks $\mathcal{D}_A, \mathcal{D}_B$: $\log p(\theta|\mathcal{D}) = \log p(\mathcal{D}_B|\theta) + \log p(\theta|\mathcal{D}_A) - \log p(\mathcal{D}_B)$

Applications - Elastic Weight Consolidation

Theorem (Elastic Weight Consolidation)

$$\mathcal{L}(heta) = \mathcal{L}_{B}(heta) + \sum_{i} rac{\lambda}{2} \mathcal{I}_{i} (heta - heta_{A,i}^{*})^{2}$$

[&]quot;Overcoming catastrophic forgetting in neural networks", PNAS

Applications - Expected Gradient Length

Expected Gradient Length - Classification

$$x^*_{EGL} = \operatorname{arg\,max}_x \sum_i P(y_i|x;\theta) || \nabla_{\theta} I(\mathcal{L} \cup (x,y_i);\theta) ||$$

Applications - Expected Gradient Length

Can we derive this result?

Expected Gradient Length - Classification

$$\mathbf{x}_{EGL}^{*} = \operatorname{arg\,max}_{\mathbf{x}} \sum_{i} P(y_{i} | \mathbf{x}; \theta) \, || \, \nabla_{\theta} I\left(\mathcal{L} \cup (\mathbf{x}, y_{i}); \theta\right) ||$$

Fisher to the rescue!

Applications - Expected Gradient Length

Asymptotic Variance
$$\sqrt{n}(\hat{ heta}- heta_0)
ightarrow \mathcal{N}(0,\mathcal{I}_{ heta_0}^{-1})$$

Minimizing the variance is same as maximizing the Fisher Information $\max_q \int q(y|x,\theta) ||\nabla_\theta I(x,y,\theta)||^2 \, dy \, dx$

Maximizing q is same as selecting unlabelled x having largest gradient $x_{EGL}^* = \arg\max_x \sum_i q(y_i|x;\theta) ||\nabla_\theta I(x,y_i,\theta)||^2$

"Active Learning for Speech Recognition: the Power of Gradients", NIPS Workshop 2016

Thank You!

Thank you!