BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-007998

(43)Date of publication of application: 10.01.2003

(51)Int.CI.

H01L 29/205 H01L 33/00 H01S 5/323

(21)Application number : 2001-190357

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

22.06.2001

(72)Inventor: KUMAKURA KAZUHIDE

MAKIMOTO TOSHIKI KOBAYASHI NAOKI

(54) LOW-RESISTANCE NITRIDE SEMICONDUCTOR AND ITS MANUFACTURING METHOD

(57)Abstract:

semiconductor structure having a high hole concentration and low resistance and to provide a method of manufacturing the structure. SOLUTION: The semiconductor structure is constituted of nitride semiconductors doped with a p-type impurity. In the structure, a semiconductor 1 having a lattice constant a1 and another semiconductor 2 having a different lattice constant a2 are joined together in a lattice strain containing state. More than 5% of the dopant contained in the semiconductor 1 is activated. The activating heat treatment for activating the dopant is performed at a temperature of ≥600° C in the joined

LEGAL STATUS

state.

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-7998

(P2003-7998A)

(43)公開日 平成15年1月10日(2003.1.10)

(51) Int.Cl. ⁷		識別記号	FΙ		Ŧ	·-7]-ド(参考)
H01L	29/205	•	H01L	29/205		5 F O 4 1
	33/00	•		33/00	С	5 F O 7 3
H01S	5/323	610	H01S	5/323	610	

審査請求 未請求 請求項の数11 OL (全 7 頁)

			水晶水 開水外/MI OL (至 1:54)
(21)出願番号	特顏2001-190357(P2001-190357)	(71)出願人	000004226 日本電信電話株式会社
(22)出顧日	平成13年6月22日(2001.6.22)		東京都千代田区大手町二丁目3番1号
		(72)発明者	熊倉 一英
特許法第30条第1	項適用申請有り 2001年3月28日		東京都千代田区大手町二丁目3番1号日本
(社)応用物理学	会発行の「2001年(平成13年)春季		電信電話株式会社内
第48回応用物理学	関係連合講演会 講演予稿集 第1分	(72)発明者	牧本 俊樹
冊」に発表			東京都千代田区大手町二丁目3番1号日本
			電信電話株式会社内
		(74)代理人	100088096
			弁理士 福森 久夫
			最終頁に続く

,

(54) 【発明の名称】 低抵抗窒化物半導体およびその作製方法

(57)【要約】

【課題】高い正孔濃度で、低抵抗のp型窒化物半導体構造およびその作製方法を提供すること。

【解決手段】p型不純物をドービングした窒化物半導体で構成され、格子定数 a 1を有する半導体 1 と a 1 とは異なる格子定数 a 2を有する半導体 2 が格子歪を含んだ状態で接合し、窒化物半導体 1 のドーパントが 5 %以上活性化していることを特徴とする。接合状態で6 0 0 ℃以上の温度で活性化熱処理を行う。

MgkープInGaN層	MgドープGaN層	アンドープGaN層	GaN緩衝層	サファイア基板
-------------	-----------	-----------	--------	---------

【特許請求の範囲】

【請求項1】 p型不純物をドーピングした窒化物半導 体で構成され、格子定数 a 1を有する半導体 1と a 1 と は異なる格子定数a2を有する半導体2とが格子歪を含 んだ状態で接合し、半導体1のドーパントが5%以上活 性化していることを特徴とする低抵抗窒化物半導体。

【請求項2】 半導体1がGaNで半導体2がInGa Nであることを特徴とする請求項 1 記載の低抵抗窒化物 半導体。

【請求項3】 半導体1がA1GaNで半導体2がGa 10 Nであることを特徴とする請求項1記載の低抵抗窒化物

【請求項4】 半導体1がA1GaNで半導体2がIn GaNであることを特徴とする請求項1記載の低抵抗窒 化物半導体。

【請求項5】 前記ドーパントはMgもしくはCである ことを特徴とする請求項1ないし3のいずれか1項記載 の低抵抗窒化物半導体。

【請求項6】 p型不純物をドーピングした格子定数 a を有する半導体2を格子歪を含んだ状態で接合し、次い で、ドーパントを活性化するための熱処理を行うことを 特徴とする低抵抗窒化物半導体の作製方法。

【請求項7】 前記熱処理を600℃以上の温度で行う ことを特徴とする請求項6記載の低抵抗窒化物半導体の 作成方法。

【請求項8】 半導体1がGaNで半導体2がInGa Nであることを特徴とする請求項6又は7記載の低抵抗 窒化物半導体の作製方法。

【請求項9】 半導体1がA1GaNで半導体2がGa 30 れる正孔濃度は触媒層を用いない場合と同じである。 Nであることを特徴とする請求項6又は7記載の低抵抗 窒化物半導体の作製方法。

【請求項10】 半導体1がA1GaNで半導体2がI nGaNであることを特徴とする請求項6又は7記載の 低抵抗窒化物半導体の作製方法。

【請求項11】 前記ドーパントはMgもしくはCであ ることを特徴とする請求項6ないし10のいずれか1項 記載の低抵抗窒化物半導体の作製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】窒化物半導体をベースとした緑~ 紫外領域発光デバイスや髙出力電子デバイス等を作製す る際には、p型窒化物半導体のキャリア濃度を高くし抵 抗を下げることが、デバイス特性向上のためにも必要で ある。とくに禁制帯幅の広い半導体において高濃度化を 図ることは、光や電子の閉じ込めに対しても有効であ る。本発明は、このような窒化物半導体の高濃度p型層 を作製するための構造およびその作製方法に関するもの である。

[0002]

【従来の技術】高濃度 p型窒化物半導体の作製に関する 研究が盛んに行われている。これは、p型窒化物半導体 層は、その抵抗が高いため発熱したり、キャリア濃度が 低いため良好なオーミック接合の形成が困難となりデバ イスの閾値が上昇したり、デバイス特性に悪影響を及ぼ すからである。これまで、p型窒化物半導体の作製に は、アクセプタとしてMg原子が用いられている。ま た、このアクセプタの活性化のために、以下のような方 法が報告されている。

【0003】の電子線励起により励起する。

【0004】②髙周波を印加する。

【0005】 ②窒素雰囲気下で熱処理する。

【0006】 OからOのいずれの方法も、Mg-Hの結 合を断ち切り、Mgアクセプタを活性化する方法であ る。現状では、最も簡便な方法である3が主流となって いる。

【0007】また、Mgアクセプタの活性化のために半 導体表面に金属触媒層を用いる方法が報告されている

(脇、藤岡、尾嶋 平成13年春季第48回応用物理学 1を有する半導体1上に、a1とは異なる格子定数a2 20 関係連合講演会 講演予稿集p.416-31p-K-3)。この方法は、MgをドーピングしたGaN表面に Niを薄く真空蒸着した後、熱処理を行うものである。 従来の熱処理では、その温度が約600度以上でないと Mgアクセプタは活性化しなかったが、薄いNi触媒層 を用いる方法では、200度という低温でもMgアクセ ブタが活性化する。これは、薄いNiが金属触媒層とし て働き、GaN表面で水素の脱離を促進するため、低温 でもMgアクセプタが活性化するものと考えられてい る。しかしながら、Ni触媒層を用いた場合でも、得ら

> 【0008】一方、高濃度p型層を作製するための方法 としては、以下のような報告がある。

> 【0009】 ②禁制帯幅の狭い (誘電率の大きい) 窒化 物半導体を用いる。

> 【0010】6同時ドーピング法を用いる方法。つま り、n型のドーパントとp型のドーパント(n型ドーパ ント<P型ドーパント)を同時にドーピングし、ドナー ・アクセプタペアを形成し安定化させるとともに、過剰 なアクセプタを高濃度まで安定化させる方法である。

【0011】@の方法では、一般的にGaNよりも禁制 帯幅の狭いInGaNが用いられる。InGaNはGa Nよりも誘電率が大きいために、水素原子モデルから計 算される正孔の束縛エネルギーが小さくなる。このた め、アクセプタの活性化エネルギーは、GaNよりも I n Ga Nのほうが小さくなることが予想される。実験的 にもInGaNの正孔濃度の温度特性から求めたアクセ ブタの活性化エネルギーは、GaNよりも小さく、室温 で10' 8 cm" 8 を超える正孔濃度が実現されている (K.Kumakura, T.Makimoto and N.Kobayashi, Jpn.App1.Ph 50 ys-39(2000)L337.)。

【0012】しかしながら、この方法では禁制帯幅の狭 い半導体を用いるため、半導体で光あるいは電子を閉じ 込める構造、例えば半導体レーザーの光閉じ込め層や、 電子デバイスにおける電子や正孔を閉じ込める為の障壁 層に利用することができない。

【0013】また、⑤の方法では、ドナー・アクセプタ 対を形成するために、p型不純物だけでなく、ほぼ同量 のn型不純物を半導体中にドーピングする。このため、 高濃度のp型層を作製するためには通常の作製方法の2 果、成長表面の平坦性が悪くなり、デバイスの活性層近 傍には利用できない。

【0014】一方、MgドープGaN上に薄いMgドー プInGaN層を成長した構造によって、電極と半導体 との間の接触抵抗を低減する報告もなされている (館 倉、牧本、小林 平成13年春季第48回応用物理学 関係連合講演会 講演予稿集p. 415-31a-K-11)。一般的に、半導体のキャリア濃度が増加すると とで接触抵抗は減少する。この系では、薄い歪InGa N層において発生する分極電界によって、半導体表面で 20 パンド構造が急峻に変化する。その結果、金属-半導体 界面に発生する障壁の幅が薄くなり、電流が流れ易くな る。そのため金属-半導体界面での接触抵抗が減少する ことになる。つまりこの方法は、MgドープGaN自体 の抵抗の減少とは関係なく、半導体表面でのバンド構造 がその抵抗を決定していると言うものである。

[0015]

【発明が解決しようとする課題】発明の目的は、窒化物 半導体において、Mgアクセプタの活性化エネルギーが 大きいために(GaNで170meV)、室温で高い正 30 孔濃度が得られなかった点を解決し、高い正孔濃度で、 p型の低抵抗窒化物半導体及びその作製方法を提供する ととにある。

[0016]

【課題を解決するための手段】本発明の低抵抗窒化物半 導体は、p型不純物をドーピングした窒化物半導体で構 成され、格子定数alを有する半導体1とalとは異な る格子定数 a 2 を有する半導体 2 とが格子歪を含んだ状 態で接合し、半導体1のドーパントが5%以上活性化し ていることを特徴とする。

【0017】本発明の低抵抗窒化物半導体の作製方法 は、p型不純物をドーピングした格子定数alを有する 半導体1上に、a1とは異なる格子定数a2を有する半 導体2を格子歪を含んだ状態で接合し、次いで、ドーバ ントを活性化するための熱処理を行うことを特徴とす る。

[0018]

【作用】MgをドービングしたGaNの表面に薄いMg をドーピングしたInGaNを成長すると、膜厚が薄い 場合、InGaNは格子緩和せずに歪んだ状態を保つ。

この表面での歪の効果により、MgをドーピングしたG a N中におけるMg は格子間などの不適切な位置に入ら ず、格子欠陥が減少する。したがって、アクセプタとし て働くMg原子の濃度が増加し正孔濃度が増加するよう になる。

【0019】従来の技術とは、半導体表面に薄い半導体 格子歪層が存在する点が異なる。従来の技術において は、活性化熱処理を行ったとしても活性化率はよくても 2%程度であり、従って、高濃度の正孔密度を達成しよ 倍以上の不純物をドーピングしなければならい。その結 10 うとすると、初期の不純物のドーブ量を高くしなければ ならない。しかるに、ドープ量が多くなると、格子間に 不純物が入り込み、半導体層の品質の劣化を招いてしま

> 【0020】本発明においては、活性化率が5%以上と 高いため、少ないドーブ量で(従って、結晶性の劣化を 招くことなく)、高い正孔密度を達成することができ る。

[0021]

【発明の実施の形態】本発明においては、格子定数 a 1 を有する半導体1とa1とは異なる格子定数a2を有す る半導体2が格子歪を含んだ状態で接合する。

【0022】半導体1を形成する基板の種類は特に限定 されない。例えばサファイア基板が好適に用いられる。 基板と半導体1との間には、緩衝層、アンドーブ層を介 在せしめることが好ましい。

【0023】半導体1は窒化物半導体であるが、例え ぱ、Al. Inb Gae Na (0≤a, b, c, d≦ 1) およびB_x A I_y N_x (0≤x、y、z≤1) その 他の窒化物半導体が用いられる。

【0024】半導体1の形成方法も特に限定されない が、例えば、有機金属気相成長法が好ましい。

【0025】この半導体1には、p型不純物をドープす る。

【0026】ドープする不純物としては、例えば、M g、Cなどが上げられる。特に、Mgは活性化されやす く低濃度ドープで高い正孔密度を達成する上で好まし

【0027】本発明においては、活性化の効率が極めて 高いため、過剰に不純物をドーブする必要がなく、従っ 40 て、良好な結晶性を維持しつつ高い正孔濃度を有する半 導体を作製することができる。

【0028】本発明においては、p型不純物がドーブ半 導体 1 上に、半導体 1 の格子定数 a 1 とは異なる格子定 数a2を有する半導体2を格子歪を含んだ状態で接合す

【0029】「格子歪を含んだ状態」には部分格子緩和 状態も含まれる。半導体2が格子歪を含んだ状態になる かどうかは、半導体1と半導体2との組成・組成比及び 半導体2の膜厚により左右される。

50 【0030】例えば、GaN上にInGaNを接合した

場合を図3に、AIGaN上にGaNを接合した場合を 図5に、AlGaN上にInGaNを接合した場合を図 7に示すが、半導体1と半導体2との組成・組成比及び 半導体2の膜厚により変化することがわかる。半導体 1、半導体2としてこれら以外のものを使用する場合に も予め実験により、組成・組成比と膜厚による歪状態の 図を求めておき、それに基づき格子歪を含んだ状態を実 現すればよい。

5

【0031】なお、図3、5、7における「歪」領域は 接合後における格子定数が異なる半導体1と半導体2と 10 の格子定数の差が約0の場合における領域である。「部 分格子緩和」領域は、格子定数の差が-2%~+2%の 領域である。

【0032】格子歪を含んだ状態で半導体2を接合した 後、活性化熱処理を行う。活性化熱処理の温度として は、600℃以上の温度で行えば十分である。すなわ ち、600℃以上の熱処理によりドーパントが5%以上 活性化する。ただ、950℃以下が好ましい。950℃ を超えると半導体の表面が荒れてしまうことがある。

【0033】熱処理時間としては、1~30分が好まし 20 く、5~15分がより好ましい。熱処理時間が短すぎる と活性化が十分行われない場合があり、長すぎても効果 が飽和してしまう。

【0034】半導体1あるいは半導体2において、In GaN、AlGaNを用いる場合、In、Alの組成比 は、0.1~0.2が好ましい。なお、1n.Alの比 を制御するには、有機金属気相成長時に、原材料中にお けるIn、Alの量を制御するか、あるいは、成長温度 の制御を行えばよい。

【0035】また、半導体2の膜厚は、例えば、図3、 5、7に示す、組成比との関係から歪を有する領域内入 るように設定すればよい。ただ、半導体2の膜厚が薄す ぎると、熱処理時に半導体2が消失する場合もあるた め、単原子層以上の厚さが好ましい。

【0036】また、半導体2にも不純物をドーピングす るととが好ましい。半導体2中に不純物をドーピングす ることにより、オーミックな電気的接触を取ることが可 能となる。ドーピング量としては、10′°~10°° cm- ' が好ましい。

[0037]

【実施例】(実施例1)有機金属気相成長法を用いて、 サファイア基板上にアンドープG a N層を成長した後、 MgドープGaN層を成長した。このときのMgのドー ピング濃度は2×10¹ cm⁻⁸ である。その後、膜 厚を変えてMgドープInGaNを成長している。In GaNのIn組成は0.14である。サファイア基板上 にMgドープGaN層およびInGaN層を成長した場 合の層構造を図1に示す。

【0038】MgドープGaN層までの層構造や成長条 件は基板の種類によって異なるが、Mgドープ層の成長 50 - 3) > ×100(%) = 12%

条件は基板の種類に依存しない。とのため、Mgドーブ GaN層の特性も基板に依存しないものとなる。

【0039】成長後、Mgアクセプタの活性化のため、 窒素雰囲気において700℃で熱処理を施した。熱処理 時間は10分とした。なお、窒化物半導体の熱処理は6 00℃以上の温度で行えば十分である。歪を誘起させた MgドープInGaN層の電気伝導の影響を無くすため に、熱処理後ECRプラズマエッチングによってInG aN層は取り除いている。

【0040】半導体への電気的な接触を得るために、P d/Au電極を蒸着し、電気的な特性を評価した。図2 に、MgドープInGaN層の膜厚を変えたときのMg ドープGaN層中の抵抗率の変化を示す。通常の方法 は、InGaN層の膜厚が0の時である。MgドープG a N中の正孔濃度は8×10¹⁷ cm⁻³ であるが、I nGaN層を2nmあるいは5nm成長した場合は、正 孔濃度が通常の3倍の2. 4×10¹⁸ cm⁻³ と増加 した。

【0041】さらに、移動度も同様に2.2cm2/V -sから2.5cm²/V-sと増加している。抵抗率 は、[正孔濃度×移動度]の逆数に比例するため、歪 I nGaN層があることによりGaN層の抵抗率は1/3 以下となった。一方、InGaN層の膜厚を厚くすると 正孔濃度は減少し、InGaN層がない場合と同じとな

【0042】図3に、InGaN層中のIn組成と膜厚 を変えた場合の、InGaN層の歪・格子緩和の状態を 計算した結果を示す。 [n 組成が 0 . 1 4 の場合、その 膜厚が2nmの場合は、InGaN層は歪んだ状態であ 30 る。

【0043】膜厚が5nmを超えるとInGaN層は部 分的に格子緩和しはじめ、さらに厚くなり15nmの場 合は完全に In Ga N層は格子緩和している。 したがっ て、MgドープGaN中の正孔濃度のInGaN層の膜 厚依存性は、熱処理中の表面での格子歪に敏感であると とが分かる。とのように表面に歪んだ層が存在するとと により、Mgアクセプタの濃度自体が増加したものと考 えられる。

【0044】このように、MgドープGaN中の正孔濃 40 度を増加させるためには、図3に示す In組成と膜厚に よる歪・格子緩和図で、歪領域もしくは部分格子緩和領 域にあるInGaN層をMgドープGaN層上に成長 し、熱処理によってMgアクセプタを活性化することが 望ましい。

【0045】本実施例においては、初期のドーブ量が、 2×10¹ ° c m⁻ ° であり、熱処理後における正孔濃 度が2. 4×10¹⁸ cm⁻⁸ である。従って、Mgの 活性化率は、

 $\{(2.4 \times 10^{18} \text{ cm}^{-3}) / (2 \times 10^{18} \text{ cm}$

と極めて高い値が得られた。

【0046】(実施例2)実施例1から容易に推測されるように、MgドーブGaN上のMgドーブInGaNの代わりにMgドーブA1GaN上のMgドーブGaNでも同様な効果が得られる。構造図を図4に示す。A1GaN上のGaNの場合の、GaN層の歪・格子緩和の状態を図5に示す。図5のA1組成とGaN膜厚に示すように、歪んだGaN層をMgドーブA1GaN層上に成長し、熱処理によってMgアクセブタを活性化することが望ましい。

【0047】本実施例においてもMgの5%以上が活性化していた。

【0048】(実施例3)実施例1から容易に推測されるように、MgドーブGaN上のMgドーブInGaNの代わりにMgドーブA1GaN上のMgドーブInGaNでも同様な効果が得られる。構造図を図6に示す。A1GaN上のInGaNの場合の、InGaN層の歪・格子緩和の状態を図7に示す。図7のA1組成とInGaN膜厚に示すように、歪んだInGaN層をMgドーブA1GaN層上に成長し、熱処理によってMgアクセブタを活性化することが望ましい。本実施例においてもMgの5%以上が活性化していた。

【0049】(実施例4)本例では、Mg に代えてのドーブを行った。他の点は、実施例1と同様とした。本例においては、Cの5%以上が活性化していた。

[0050]

【発明の効果】以上説明したように、MgドープGaN*

*層の上に歪MgドーブInGaN層を成長し、あるいは、MgドーブAIGaN層の上に歪MgドーブGaN層を成長し、熱処理することにより、通常の1/3以下の抵抗率を得ることができる利点がある。

【0051】さらに本発明方法では、Mgアクセブタの 実効的な濃度が増加しているため、Mgのドーピング量 を実質的に抑えることが可能となり、窒化物半導体自体 の結晶性の向上が見込まれる。

【図面の簡単な説明】

10 【図1】サファイア基板上にMgドーブGaN層および InGaN層を成長した場合の構造図を示している。

【図2】MgドーブInGaN層の膜厚を変えたときの MgドープGaN層中の正孔濃度の変化を示している。

【図3】InGaN層中のIn組成と膜厚を変えた場合の、InGaN層の歪・格子緩和の状態を計算した結果を示している。

【図4】サファイア基板上にMgドープAlGaN層およびGaN層を成長した場合の構造図を示している。

GaN膜厚に示すように、歪んだInGaN層をMgド 【図5】AlGaN層のAl組成とその上のGaNの膜ープAlGaN層上に成長し、熱処理によってMgアク 20 厚を変えた場合の、GaN層の歪・格子緩和の状態を計セプタを活性化することが望ましい。本実施例において 算した結果を示している。

【図6】サファイア基板上にMgドープAlGaN層およびInGaN層を成長した場合の構造図を示している

【図7】A1GaN層のA1組成とその上のInGaNの膜厚を変えた場合の、InGaN層の歪・格子緩和の状態を計算した結果を示している。

[図1]

MgドープInGaN層
MgドープGaN層
アンドープGaN層
GaN緩衝層
サファイア基板

[図2]

【図3】

【図4】

MgドープGaN層
MgドープAlGaN層
アンドープGaN層
GaN緩衝層
サファイア基板

【図6】

MgドープInGaN層
MgドープAlGaN層
アンドープGaN層
GaN級衛層
サファイア基板

【図7】

フロントページの続き

(72)発明者 小林 直樹 東京都千代田区大手町二丁目3番1号日本 電信電話株式会社内 下ターム(参考) 5F041 AA21 CA34 CA40 CA46 CA49 CA57 CA65 CA73 5F073 CA07 CB05 CB07 CB19 DA05 DA12 DA35 EA29

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.