PENGELOMPOKAN KEJADIAN GEMPA BUMI MENGGUNAKAN FUZZY C-MEANS CLUSTERING

SKRIPSI

Digunakan Sebagai Syarat Maju Ujian Diploma IV Politeknik Negeri Malang

Oleh:

RYAN RIFQI ARISTA NIM. 1341180077

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG JANUARI 2017

PENGELOMPOKAN KEJADIAN GEMPA BUMI MENGGUNAKAN FUZZY C-MEANS CLUSTERING

SKRIPSI

Digunakan Sebagai Syarat Maju Ujian Diploma IV Politeknik Negeri Malang

Oleh:

RYAN RIFQI ARISTA NIM. 1341180077

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG JANUARI 2017

HALAMAN PENGESAHAN

PENGELOMPOKAN KEJADIAN GEMPA BUMI MENGGUNAKAN FUZZY C-MEANS CLUSTERING

Disusun Oleh: RYAN RIFQI ARISTA NIM. 1341180077

Skripsi ini telah diuji pada tanggal Disetujui oleh:

1.	Penguji I	:	Dr. Eng. Cahya Rahma M.Kom.	<u>id, S.T.,</u>	
			NIP. 19720202200501	1002	
2.	Penguji II	:	Imam Fahrur Rozi, S.T	<u>., M.T.</u>	
			NIP. 19840610200812	1004	
3.	Pembimbing I	:	Dr. Eng. Rosa Andrie A S.T., M.T.	<u>Asmara,</u>	
			NIP. 19801010200501	1001	
4.	Pembimbing II	:	Dwi Puspitasari, S.Kor	n, M.Kom	
			NIP. 197911152005012	2002	
			Mengetahui,		
	Ketua Juru Teknologi Inf		-	Ketua Program Teknik Inform	

<u>Rudy Ariyanto, S.T., M.Cs.</u>
NIP. 19711110 199903 1 002

<u>Ir. Deddy Kusbianto PA, M.Mkom</u>
NIP. 19621128 198811 1 001

PERNYATAAN

Dengan ini saya menyatakan bahwa Skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar Ahli Madya/kesarjanaan di suatu Perguruan Tinggi, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Malang, 06 Desember 2017

Ryan Rifqi Arista

ABSTRAK

Arista, Ryan Rifqi. "Pengelompokan Kejadian Gempa Bumi menggunakan *Fuzzy C-Means Clustering*". **Pembimbing:** (1) **Dr. Eng. Rosa Andrie Asmara, S.T., M.T.,** (2) **Dwi Puspitasari, S.Kom, M.Kom**.

Skripsi, Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang, 2017.

Wilayah Indonesia memiliki tingkat kerawanan gempa yang cukup tinggi jika dibandingkan dengan negara-negara lainnya. Hal ini disebabkan karena posisi Indonesia berada pada pertemuan tiga lempeng tektonik besar yaitu lempeng Eurasia, lempeng Indo-Australia, dan lempeng Pasifik. Tingkat kerawanan gempa yang tinggi ini dibuktikan dengan data kejadian gempa signifikan pada tahun 2005 sampai 2009, tercatat dalam kurun waktu tersebut terjadi 26 gempa signifikan dengan rentang magnitudo antara 4,8 sampai 8,6 skala Richter. Kejadian gempa tersebut juga menimbulkan dampak diantaranya korban jiwa, korban luka-luka, kerusakan rumah dan hancurnya rumah.

Sistem pengelompokan kejadian gempa bumi merupakan sebuah sistem yang berfungsi untuk mengelompokkan kejadian-kejadian gempa berdasarkan dua parameter utama, yaitu parameter kekuatan gempa dan parameter dampak gempa. Kedua parameter tersebut dilakukan proses pengelompokan secara terpisah, sehingga proses pengelompokan menghasilkan dua macam hasil pengelompokan. Tahapan dari sistem ini dimulai dari *preprocessing* data untuk menghilangkan *noise*, kemudian mengambil parameter pengelompokan dari user yang berupa jumlah *cluster*, nilai error minimum, dan batas maksimum iterasi. Pengelompokan dilakukan menggunakan metode *fuzzy c-means*. Hasil pengelompokan kemudian ditampilkan dalam bentuk tabel dan dalam bentuk titik koordinat dalam Google Maps.

Pengelompokan kejadian gempa bumi ini telah diuji dengan membandingkan hasil pengelompokan sistem dengan hasil pengelompokan manual. Pengujian dilakukan dengan masukan jumlah iterasi maksimum yang berbeda. Berdasarkan hasil pengujian didapatkan bahwa semakin besar nilai iterasi maksimum akan berpengaruh terhadap akurasi pengelompokan.

Kata Kunci: data mining, clustering, gempa bumi, fuzzy c-means, NOAA.

ABSTRACT

Ryan Rifqi Arista. "Clustering Earthquake Occurrence using Fuzzy C-Means Clustering". Pembimbing: (1) Dr. Eng. Rosa Andrie Asmara, S.T., M.T., (2) Dwi Puspitasari, S.Kom, M.Kom.

Essay, Informatics Engineering Study Programme, Department of Information Technology, State Polytechnic of Malang, 2017.

The territory of Indonesia is a region that has a high level of earthquake vulnerability. It is because Indonesia is located between three big tectonic plates, including the Eurasian plate, Indo-Australian plate, and Pacific plate. The high level of earthquake is proved by data, which record some significant earthquake events. Between year 2005 and 2009 there were 26 significant earthquake events, with magnitude range between 4,8 and 8,6 Richter scale. Those earthquake events also causing casualties, injuries, houses broken and destroyed.

The earthquake event clustering system is a system that has a function to cluster earthquake events based on two main parameters, one is earthquake strength parameter and the other is earthquake impact parameter. These two parameters are clustered separately, so the clustering process generates two types of result. The phase of this is system is started from data preprocessing for cleaning data noises, then taking clustering parameter such as the amount of cluster, minimum error value, and maximum iteration limit from user input. The clustering process is done using fuzzy c-means method. Than the result will be displayed as table and as coordinates in Google Maps.

The earthquake event clustering is tested by comparing the clustering result from the system and from manual calculation. Testing is done by using different maximum iteration limit. The testing results in conclusion that different maximum iteration limit value could effect the clustering accuration.

Keywords: data mining, clustering, earthquake, fuzzy c-means, NOAA.

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala rahmat dan hidayah-Nya penulis dapat menyelesaikan skripsi dengan judul "PENGELOMPOKAN KEJADIAN GEMPA BUMI MENGGUNAKAN FUZZY C-MEANS CLUSTERING". Skripsi ini penulis susun sebagai persyaratan untuk menyelesaikan studi program Diploma IV Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang.

Penulis menyadari tanpa adanya dukungan dan kerja sama dari berbagai pihak, kegiatan skripsi ini tidak akan dapat berjalan baik. Untuk itu, penulis ingin menyampaikan terima kasih kepada:

- 1. Bapak Rudy Ariyanto, ST., M.Cs., selaku ketua jurusan Teknologi Informasi
- 2. Bapak Ir. Deddy Kusbianto PA, M.Mkom, selaku ketua program studi Teknik Informatika
- 3. Bapak Dr. Eng. Rosa Andrie Asmara, S.T., M.T. selaku pembimbing 1
- 4. Ibu Dwi Puspitasari, S.Kom, M.Kom selaku pembimbing 2
- 5. Serta seluruh pihak yang telah membantu dan mendukung lancarnya pembuatan skripsi dari awal hingga akhir.

Penulis menyadari bahwa dalam penyusunan skripsi ini masih terdapat kekurangan dan kelemahan baik itu sistematika penulisan maupun penggunaan bahasa. Untuk itu penulis mengharapkan saran dan kritik dari berbagai pihak yang bersifat membangun demi penyempurnaan laporan ini. Semoga laporan ini berguna bagi pembaca secara umum dan penulis secara khusus. Akhir kata, penulis ucapkan banyak terima kasih.

Malang, 06 Desember 2017

Penulis

DAFTAR ISI

HALAN	MAN JUDUL	i
HALAN	MAN PENGESAHAN	i
PERNY	YATAAN	ii
ABSTR	2AK	iv
ABSTRA	ACT	V
KATA	PENGANTAR	V
DAFTA	AR ISI	vi
DAFTA	AR GAMBAR	X
DAFTA	AR TABEL	X
DAFTA	AR LAMPIRAN	xi
BAB I.	PENDAHULUAN	1
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	3
1.3.	Tujuan	3
1.4.	Batasan Masalah	3
1.5.	Sistematika Penulisan	4
BAB II.	. LANDASAN TEORI	5
2.1.	Gempa Bumi	5
2.2.	BNPB (Badan Nasional Penanggulangan Bencana)	<i>6</i>
2.3.	BMKG (Badan Meteorologi, Klimatologi dan Geofisika)	<i>6</i>
2.4.	NOAA (National Oceanic and Atmospheric Administration)	7
2.5.	XAMPP	7
2.6.	PHP	8
2.7.	MySQL	8
2.8.	Data Mining	9
2.9.	Tahap-tahap <i>Data Mining</i>	9
2.10.	Teknik-teknik Data Mining	10
2.1	10.1. Association Rule Mining	11
2.1	10.2. Classification	11
2.1	10.3. Clustering	12
2 11	Metode Clustering	13

2.12. H	Klasifikasi Algoritma <i>Clustering</i>	. 14
2.13. I	Fuzzy Clustering	. 14
BAB III. MI	ETODOLOGI PENELITIAN	. 19
3.1. Tal	napan Penelitian	. 19
3.1.1.	Studi Literatur	. 19
3.1.2.	Analisis	. 20
3.1.3.	Desain Sistem	. 20
3.1.4.	Implementasi	. 20
3.1.5.	Pengujian Sistem	. 21
3.1.6.	Maintenance	. 21
3.2. Da	ta	. 21
3.3. Me	tode Pengumpulan Data	. 21
3.4. Hip	potesis	. 21
3.5. Per	hitungan Manual	. 21
BAB IV AN	ALISIS DAN PERANCANGAN	. 24
4.1. Ga	mbaran Umum	. 24
4.2. An	alisis Sistem	. 24
4.2.1.	Kebutuhan Input	. 25
4.2.2.	Kebutuhan Proses	. 25
4.2.3.	Kebutuhan Output	. 25
4.3. Per	ancangan Sistem	. 25
4.3.1.	Flowchart	. 25
4.3.2.	Perancangan Database	. 27
4.3.3.	Perancangan Proses	. 29
4.4. Rai	ncangan User Interface	. 30
BAB V. IMI	PLEMENTASI	. 32
5.1. Im	plementasi Basis Data	. 32
5.2. Im	plementasi Sistem	. 34
5.2.1.	Implementasi Algoritma Fuzzy C-Means	. 34
5.2.2.	Antarmuka Sistem	. 37
BAB VI. PE	NGUJIAN DAN PEMBAHASAN	. 40
6.1. Per	ngujian	. 40
6.1.1.	Pengujian Sistem	
6.1.2.	Pengujian Metode	. 46

BAB V	II. KESIMPULAN	53
7.1.	Kesimpulan	53
7.2.	Saran	53
DAFTA	AR PUSTAKA	54
DAFTA	AR LAMPIRAN	56

DAFTAR GAMBAR

Gambar 3.1 Tahapan dalam metode waterfall	19
Gambar 4.1. Alur proses pada sistem	24
Gambar 4.2. Flowchart Upload File Kejadian Gempa	26
Gambar 4.3. Flowchart Fuzzy C-Means Clustering	27
Gambar 4.4. CDM untuk sistem yang dibuat	28
Gambar 4.5 PDM untuk sistem yang dibuat	28
Gambar 4.6. Use Case Diagram sistem	29
Gambar 4.7 Activity Diagram sistem	29
Gambar 4.8 Rancangan User Interface Halaman Home	30
Gambar 4.9 Rancangan User Interface Halaman Proses Fuzzy C-Means	30
Gambar 4.10 Rancangan User Interface Halaman Hasil Pengelompokan	31
Gambar 5.1. Tabel-tabel dari basis data `db_clusteringgempa`	32
Gambar 5.2 Implementasi Antarmuka Home	37
Gambar 5.3 Implementasi Antarmuka Proses Fuzzy C-Means	38
Gambar 5.4. Implementasi Antarmuka Rekapitulasi	39
Gambar 6.1. Data berhasil muncul menandakan pengujian upload file berhasil	42
Gambar 6.2 Pengujian Upload File jika pernah upload file	42
Gambar 6.3 Muncul pesan error jika belum memilih file	43
Gambar 6.4 Berhasil masuk halaman hasil pengelompokan	44
Gambar 6.5. Pengujian Parameter Clustering jika pernah clustering	44
Gambar 6.6 Pengujian Parameter Clustering field kosong	45
Gambar 6.7 Pengujian Parameter Clustering field jumlah cluster	45

DAFTAR TABEL

Tabel 3.1. Data Kekuatan dan Kedalaman Gempa	22
Tabel 3.2. Matriks Partisi U	22
Tabel 3.3. Data centroid untuk setiap cluster	22
Tabel 3.4. Hasil perhitungan fungsi objektif	23
Tabel 3.5. Hasil perhitungan membership function	23
Tabel 5.1 Struktur tabel `tb_datagempa`	32
Tabel 5.2 Struktur tabel `tb_hasiltraining`	33
Tabel 5.3 Struktur tabel `tb_minmax`	33
Tabel 6.1. Tabel Pengujian Sistem	40
Tabel 6.2 Tabel pengujian metode Fuzzy C-Means	49
Tabel 6.3 Matriks partisi U untuk pengujan	50
Tabel 6.4 Hasil Pengujian Fuzzy C-Means pada sistem	50
Tabel 6.5. Hasil Pengujian Fuzzy C-Means pada excel	51

DAFTAR LAMPIRAN

Lampiran 1 Kode Program	56
Lampiran 2 Dataset Gempa Bumi Siginifikan NOAA untuk wilayah Indonesia.	57

BAB I. PENDAHULUAN

1.1. Latar Belakang

Berdasarkan peta seismik dunia, diketahui bahwa wilayah Indonesia memiliki tingkat kerawanan gempa yang cukup tinggi jika dibandingkan dengan negara-negara lainnya. Hal tersebut disebabkan posisi Indonesia berada pada pertemuan tiga lempeng besar yang terus-menerus bergerak [1]. Ketiga lempeng tektonik besar tersebut yaitu Lempeng Tektonik Eurasia, Lempeng Tektonik Indonesia Indo-Australia, dan Lempeng Tektonik Pasifik. Selain lempeng-lempeng tersebut, masih ada lempeng-lempeng tektonik kecil lainnya yaitu Filipina, Laut Maluku, Halmahera, dan Sangihe. Pergerakan lempeng-lempeng tektonik tersebut merupakan penyebab terjadinya gempa bumi tektonik di Indonesia dan akibatnya Indonesia merupakan salah satu negara yang mempunyai tingkat kegempaan yang tinggi di dunia [2].

Berdasarkan data yang dipublikasikan oleh NOAA, pada tahun 2005 sampai dengan 2009 tercatat terjadi 26 gempa signifikan dengan rentang magnitudo antara 4.8 Skala Richter (SR) sampai dengan 8.6 Skala Richter. Dari 26 kejadian tersebut, 10 diantaranya menimbulkan korban jiwa dengan rentang korban antara 1 orang sampai dengan 5.749 orang, dan korban luka-luka dengan rentang korban antara 4 orang sampai dengan 38.568 orang. Dari 26 kejadian gempa tersebut juga, 9 diantaranya menimbulkan rumah rusak. Rentang rumah yang rusak antara 6 sampai dengan 127.000 rumah [3].

Mengetahui fakta diatas, maka dapat dilakukan pengelompokan kejadian gempa bumi menggunakan parameter kekuatan gempa dan dampak akibat gempa. Kedua parameter utama tersebut nantinya dilakukan proses pengelompokan secara terpisah. Hasil pengelompokan ini tidak dapat menentukan tingkat keparahan suatu kejadian gempa, namun dari hasil pengelompokan kedua parameter tersebut dapat dicari keterkaitan antara kelompok parameter kekuatan gempa dan kelompok parameter dampak gempa.

Penelitian ini menggunakan data gempabumi signifikan yang dipublikasikan pada website NOAA [4]. Cakupan wilayah penelitian ini adalah seluruh wilayah Indonesia dengan rentang waktu antara tahun 1674 sampai dengan tahun 2017.

Metode yang akan digunakan untuk penelitian ini adalah Fuzzy C-Means (FCM). Metode ini jika dibandingkan dengan metode K-Means lebih baik karena memiliki hasil pengelompokan yang lebih stabil. Hal ini disebabkan karena pada perhitungan Fuzzy C-Means inisialisasi matriks u dilakukan secara random [5]. Selain itu pada Fuzzy C-Means, untuk menentukan keanggotaan suatu record terhadap suatu cluster digunakan konsep derajat keanggotaan. Konsep derajat keanggotaan adalah konsep dimana suatu record memiliki keanggotaan untuk semua *cluster*, namun *record* tersebut hanya masuk kedalam satu *cluster* saja, yaitu cluster yang memiliki nilai derajat keanggotaan terbesar terhadap record tersebut. Konsep derajat keanggotaan ini akan berpengaruh terhadap hasil pengelompokan, karena dengan konsep ini memungkinkan untuk suatu record untuk berpindahpindah *cluster* pada proses iterasi. Sedangkan pada metode *K-Means* perpindahan cluster ini tidak memungkinkan, karena K-Means tidak menggunakan konsep derajat keanggotaan. Pada metode K-Means penenentuan cluster untuk setiap record dilakukan dengan cara memasukkan record tersebut pada cluster yang terdekat. Penentuan ini hanya dilakukan di awal iterasi saja, pada iterasi selanjutnya hanya menghitung pergeseran centroid cluster, sehingga tidak memungkinkan untuk suatu record dalam mengubah keanggotaan pengelompokannya. Salah satu kelemahan dari K-Means yang lainnya adalah, inisialisasi matriks dilakukan dengan mengambil nilai salah satu record dari dataset yang dikelompokkan, sehingga hasil akhir perhitungan sangat berpengaruh dari nilai inisialisasi ini. Dengan kata lain, nilai inisialisasi yang berbeda juga dapat menimbulkan hasil pengelompokan yang berbeda juga. Fuzzy C-Means memiliki kelebihan diantaranya adalah ia dapat melakukan *clustering* lebih dari satu variabel secara sekaligus [6]. Data-data beserta parameter-parameternya dapat dikelompokkan dalam *cluster-cluster* sesuai dengan kecenderungannya. FCM juga memiliki tingkat akurasi yang tinggi dan waktu komputasi yang cepat.

1.2. Rumusan Masalah

Berdasarkan latar belakang diatas, maka rumusan masalah yang didapat adalah:

- a. Bagaimana cara mengelompokkan kejadian gempa bumi berdasarkan parameter kekuatan gempa dan parameter dampak gempa menggunakan metode *fuzzy C-Means*.
- b. Bagaimanakah hasil pengelompokan *fuzzy c-means* dari kedua parameter yang telah dijelaskan tersebut.
- c. Bagaimanakah keterkaitan antara hasil pengelompokan dari parameter kekuatan gempa dengan hasil pengelompokan dari parameter dampak gempa.

1.3. Tujuan

Berdasarkan rumusan masalah yang telah disebutkan, maka tujuan dari penelitian ini adalah:

- a. Untuk mengembangkan sistem yang dapat mengelompokkan kejadian gempa berdasarkan parameter kekuatan gempa dan parameter dampak gempa menggunakan metode *fuzzy C-Means*.
- b. Untuk mengetahui hasil pengelompokan dari kedua parameter yang telah dijelaskan.
- c. Mengetahui keterkaitan antara hasil pengelompokan dari parameter kekuatan gempa dengan hasil pengelompokan dari parameter dampak gempa.

1.4. Batasan Masalah

- Cakupan wilayah yang digunakan adalah wilayah Indonesia, yaitu antara 95°
 BT 141° BT dan 6° LU 11° LS. [7]
- 2. Data yang digunakan adalah basisdata gempa bumi signifikan yang didapat dari website NOAA yaitu https://www.ngdc.noaa.gov/.
- 3. Data yang digunakan adalah data gempa signifikan yang terjadi antara tahun 1674 sampai dengan tahun 2017.
- 4. Parameter yang digunakan untuk pengelompokan adalah parameter magnitudo, kedalaman gempa, jumlah korban meninggal, jumlah korban luka-luka, jumlah rumah hancur, dan jumlah rumah rusak.

1.5. Sistematika Penulisan

- BAB I Pendahuluan berisikan latar belakang, rumusan masalah, tujuan, batasan masalah dan sistematika penulisan.
- BAB II Landasan Teori berisikan teori-teori yang melengkapi latar belakang.
- BAB III Metodologi berisikan langkah-langkah memilih metode yang tepat sehingga setiap tahap penelitian dapat dilakukan dengan tepat.
- BAB IV Analisis dan Perancangan berisikan uraian sistem yang akan dibuat dan kebutuhan sistem yang meliputi kebutuhan fungsional dan kebutuhan non fungsional.
- BAB V Implementasi berisikan uraian sistem sesuai rancangan dan bahasa pemrograman yang dipakai.
- BAB VI Pengujian dan Pembahasan berisikan proses untuk menentukan apakah hasil dari penelitian sudah sesuai dengan kebutuhan sistem dan berjalan sesuai dengan yang diinginkan. Pembahasan merupakan argumentasi rasional dari penulis yang disusun secara sistematis berdasarkan fakta ilmiah yang diperoleh dari hasil pengujian.
- BAB VII Kesimpulan berisikan uraian singkat dan jelas tentang hasil penelitian yang diperoleh sesuai dengan tujuan penelitian.

BAB II. LANDASAN TEORI

2.1. Gempa Bumi

Gempa bumi adalah getaran bumi yang dihasilkan oleh percepatan energi yang dilepaskan, energi ini menyebar ke segala arah dari pusat sumbernya [8]. Gempa bumi di Indonesia seringkali dijumpai, mengingat Indonesia merupakan pertemuan tiga buah lempeng tektonik yang membentuk jalur-jalur gempa dan jalur vulkanik yang memberikan dampak besar terhadap distribusi penyebaran gempa di Indonesia. Gempa bumi yang perlu mendapatkan perhatian karena memiliki kemungkinan dampak kerusakan yang besar adalah gempa tektonik. Hal yang perlu diketahui adalah besarnya frekuensi yang terjadi, energi yang dibebaskan, dan luas pengaruhnya dalam kaitannya dengan pergerakan lempeng tektonik. Pusat-pusat gempa bumi tektonik berkaitan erat dengan tempat-tempat yang sering terjadi pergerakan pada kulit bumi yaitu di zona subduksi dan patahan [9].

Gempa bumi akan terjadi apabila terjadi penumpukan energi pada batas lempeng (bersifat konvergen (bertumbukan), divergen (saling menjauh) dan *transform* (berpapasan) atau pada sesar (patahan)) dan blok batuan tersebut tidak mampu lagi menahan batas elastisitasnya, sehingga akan dilepaskan sejumlah energi dalam bentuk rangkaian gelombang seismik yang dikenal sebagai gempa bumi [10].

Sebaran kegempaan di Indonesia terjadi pada batas pertemuan lempeng. Ketika dua lempeng bumi bertumbukan, lempeng dengan kerapatan massa lebih besar akan menusup ke bawah. Gerakan lempeng tersebut akan melambat akibat gesekan dengan selubung Bumi lainnya. Perlambatan gerak tersebut akan menyebabkan penumpukan energi di zona tumbukan (zona subduksi) dan zona patahan di dekatnya. Akibatnya, di zona-zona tersebut akan terjadi patahan batuan yang diikuti lepasnya energi secara tiba-tiba. Besar kecilnya energi yang dilepas tergantung seberapa besar batas elastisitas lempeng terlampaui. Proses pelepasan energi ini menimbulkan getaran partikel ke segala arah. Getaran-getaran inilah yang disebut dengan gempa tektonik [11].

2.2. BNPB (Badan Nasional Penanggulangan Bencana)

BNPB dibentuk berdasarkan Peraturan Presiden Nomor 8 Tahun 2008. Sebelumnya badan ini bernama Badan Koordinasi Nasional Penanggulangan Bencana yang dibentuk berdasarkan Peraturan Presiden Nomor 83 Tahun 2005, menggantikan Badan Koordinasi Nasional Penanggulangan Bencana dan Penanganan Pengungsi yang dibentuk dengan Keputusan Presiden Nomor 3 Tahun 2001. Dalam Melaksanakan penanggulangan bencana, Badan Nasional Penanggulangan Bencana mempunyai tugas:

- Memberikan Pedoman dan pengarahan terhadap usaha penanggulangan bencana yang mencakup pencegahan bencana, penanganan tanggap darurat, rehabilitasi, dan rekonstruksi secara adil dan setara;
- 2. Menetapkan standardisasi dan kebutuhan penyelenggaraan penanggulangan bencana berdasarkan peraturan perundang-undangan;
- Menyampaikan informasi kegiatan penanggulangan bencana kepada masyarakat;
- 4. Menggunakan dan mempertanggungjawabkan sumbangan/bantuan nasional dan internasional;
- 5. Mempertanggungjawabkan penggunaan anggaran yang diterima dari Anggaran Pendapatan dan Belanja Negara;
- Melaksanakan kewajiban lain sesuai dengan peraturan perundang-undangan.
 [12]

2.3. BMKG (Badan Meteorologi, Klimatologi dan Geofisika)

BMKG merupakan singkatan dari Badan Meteorologi, Klimatologi dan Geofisika. Pada awalnya BMKG bernama BMG (Badan Meteorologi dan Geofisika) yang didirikan pada tahun 1841 oleh Dr. Onnen Konihklijk seorang Kepala Rumah sakit di Bogor melalui pengamatan yang di lakukannya.

Tugas BMKG yakni melaksanakan tugas Pemerintahan di bidang meteorologi, klimatologi, kualitas Udara dan geofisika sesuai dengan ketentuan perundang-undangan yang berlaku. 11 Dalam kesehariannya BMKG menyelenggarakan fungsinya sebagai berikut:

 Perumusan kebijakan nasional dan kebijakan umum di bidang meteorologi, klimatologi, dan geofisika.

- Perumusan kebijakan teknis di bidang meteorologi, klimatologi, dan geofisika.
- 3. Koordinasi kebijakan, perencanaan dan program di bidang meteorologi, klimatologi, dan geofisika.
- 4. Pelaksanaan, pembinaan dan pengendalian observasi, dan pengolahan data dan informasi di bidang meteorologi, klimatologi, dan geofisika.
- 5. Pelayanan data dan informasi di bidang meteorologi, klimatologi, dan geofisika.
- 6. Penyampaian informasi kepada instansi dan pihak terkait serta masyarakat berkenaan dengan perubahan iklim.
- 7. Penyampaian informasi dan peringatan dini kepada instansi dan pihak terkait serta masyarakat berkenaan dengan bencana karena faktor meteorologi, klimatologi, dan geofisika. [13]

2.4. NOAA (National Oceanic and Atmospheric Administration)

NOAA adalah lembaga pemerintahan Amerika Serikat yang memiliki tugas untuk mengamati perubahan iklim, cuaca, serta ekosistem laut dan pantai. NOAA memiliki cabang yang bernama NCEI (National Centers for Environmental Information) yang bertugas untuk menyimpan arsip tentang data lingkungan dan bumi yang dapat diakses oleh publik. NCEI sendiri terbagi menjadi beberapa bagian, salah satunya adalah NGDC (National Geophysical Data Center) yang menyimpan data-data kejadian geofisikal, salah satunya adalah kejadian gempa bumi yang dibahas pada penelitian ini.

2.5. **XAMPP**

XAMPP merupakan paket PHP berbasis *open source* yang dikembangkan oleh sebuah komunitas *open source* [14]. Berikut adalah paket yang disediakan oleh XAMPP versi 5.6.30-0:

- PHP versi 5.6.30
- Apache versi 2.4.25
- OpenSSL versi 1.0.2j
- MariaDB versi 10.1.21

2.6. PHP

PHP adalah singkatan dari "PHP: Hypertext Preprocessor" yang merupakan sebuah bahasa scripting yang terpasang pada HTML. Sebagian besar sintaks mirip dengan bahasa C, Java, dan Perl, ditambah beberapa fungsi PHP yang spesifik. Tujuan utama penggunaan bahasa ini adalah untuk memungkinkan perancang web menulis halaman web dinamik dengan cepat [15].

2.7. MySQL

MySQL dikembangkan oleh sebuah perusahaan Swedia bernama MySQL AB, yang pada saat itu bernama TcX Data Consult AB, meskipun cikal bakal kodenya baru ada pada tahun 1979. Tujuan awal TcX membuat MySQL pada waktu itu adalah untuk mengembangkan aplikasi web untuk client.

MySQL adalah sebuah server database SQL multiuser dan multithreaded. MySQL adalah salah satu basisdata relasional yang mendukung pemakaian SQL dan dirancang untuk pengguna aplikasi. MySQL memungkinkan pengguna untuk mengolah data mereka didalam basisdata tersentral pada komputer pusat atau server. Data yang diberikan server dapat disesuaikan dengan tingkat dan kepentingan pengguna. Sehingga data yang dikirim dapat berupa sebagian dari keseluruhan isi data, sesuai dengan permintaan user. Semua komunikasi yang terjadi mendukung perintah-perintah SQL. Saat ini makin banyak pembuatan aplikasi yang menggunakan arsitektur *client/server* dalam pengaksesan database. Karena makin banyak pengguna aplikasi yang menuntut untuk dapat memperoleh informasi yang aktual dari bagian lain didalam suatu perusahaan, yang akan digunakan dalam proses pengambilan keputusan dibagian lainnya.

Kemudahannya dalam berbagai integrasi aplikasi web terutama PHP cukup membantu dalam pengembangan sistem informasi online. Hebatnya lagi, MySQL dapat didownload secara bebas dan gratis pada pertengahan tahun 2001. MySQL pernah mendapatkan penghargaan dari Linux Magazine Editor Choice Award, karena kemudahan instalasi, fleksibilitas dan ketersediaanya dalam berbagai platform. Hal ini semakin mengkukuhkan keberadaan MySQL dalam berbagai aplikasi berbasis *database*. Bukan hanya pada sistem operasi Linux, tapi juga menyebar pada sistem operasi yang lain.

2.8. Data Mining

Data mining adalah suatu istilah yang digunakan untuk menemukan pengetahuan yang tersembunyi di dalam database. Data mining merupakan proses semi otomatik yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi pengetahuan potensial dan berguna yang bermanfaat yang tersimpan di dalam database besar [16].

Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar [17]. Data mining juga disebut sebagai serangkaian proses untuk menggali nilai tambah berupa pengetahuan yang selama ini tidak diketahui secara manual dari suatu kumpulan data [18]. Data mining, sering juga disebut sebagai Knowledge Discovery in Database (KDD). KDD adalah kegiatan yang meliputi pengumpulan, pemakaian data, historis untuk menemukan keteraturan, pola atau hubungan dalam set data berukuran besar [19].

Data mining adalah kegiatan menemukan pola yang menarik dari data dalam jumlah besar, data dapat disimpan dalam database, data warehouse, atau penyimpanan informasi lainnya. Data mining berkaitan dengan bidang ilmu – ilmu lain, seperti database system, data warehousing, statistik, machine learning, information retrieval, dan komputasi tingkat tinggi. Selain itu, data mining didukung oleh ilmu lain seperti neural network, pengenalan pola, spatial data analysis, image database, signal processing. Data mining didefinisikan sebagai proses menemukan pola-pola dalam data. Proses ini otomatis atau seringnya semiotomatis. Pola yang ditemukan harus penuh arti dan pola tersebut memberikan keuntungan, biasanya keuntungan secara ekonomi. Data yang dibutuhkan dalam jumlah besar [20].

2.9. Tahap-tahap Data Mining

Proses dalam *knowledge discovery in databases* (KDD) secara garis besar adalah sebagai berikut:

a. Data Selection

Pemilihan (seleksi) data dari sekumpulan data operasional perlu dilakukan sebelum tahap penggalian informasi dalam KDD dimulai. Data hasil seleksi yang

akan digunakan untuk proses *data mining* disimpan di suatu berkas, terpisah dari basis data operasional.

b. Pre-Processing/Cleaning

Sebelum proses *data mining* dapat dilaksanakan, perlu dilakukan proses *cleaning* pada data yang menjadi fokus KDD. Proses *cleaning* mencakup antara lain membuang duplikasi data, memeriksa data yang inkonsisten, memperbaiki kesalahan pada data, seperti kesalahan cetak (*tipografi*). Juga dilakukan proses *enrichment*, yaitu proses "memperkaya" data yang sudah ada dengan data atau informasi yang relevan dan diperlukan untuk KDD, seperti data atau informasi eksternal.

c. Transformation

Coding adalah proses transformasi pada data yang telah dipilih, sehingga data tersebut sesuai untuk proses data mining. Proses coding dalam KDD merupakan proses kreatif dan sangat tergantung pada jenis atau pola informasi yang akan dicari dalam basis data.

d. Data Mining

Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu. Teknik, metode, atau algoritma dalam data mining sangat bervariasi. Pemilihan metode atau algoritma yang tepat sangat bergantung pada tujuan dan proses KDD secara keseluruhan.

e. Interpretation/Evaluation

Pola informasi yang dihasilkan dari proses *data mining*, perlu ditampilkan dalam bentuk yang mudah dimengerti oleh pihak yang berkepentingan. Tahap ini merupakan bagian dari proses KDD yang disebut *interpretation*. Tahap ini mencakup pemeriksaan apakah pola atau informasi yang ditemukan bertentangan dengan fakta atau hipotesis yang ada sebelumnya.

2.10. Teknik-teknik Data Mining

Dengan definisi *data mining* yang luas, ada banyak jenis teknik analisa yang dapat digolongkan kedalam *data mining*. Berikut ini adalah gambaran dari beberapa teknik *data mining* yang populer.

2.10.1. Association Rule Mining

Association rules atau affinity analysis berkenaan dengan studi tentang "apa bersama apa". Sebagai contoh dapat berupa studi transaksi di supermarket, misalnya seseorang yang membeli susu bayi juga membeli sabun mandi. Pada kasus ini berarti susu bayi bersama dengan sabun mandi. Karena awalnya berasal dari studi tentang database transaksi pelanggan untuk menentukan kebiasaan suatu produk dibeli bersama produk apa, maka aturan asosiasi juga sering dinamakan market basket analysis.

Analisis asosiasi dikenal juga sebagai salah satu metode *data mining* yang menjadi dasar dari berbagai metode *data mining* lainnya. Khususnya salah satu tahap dari analisis asosiasi yang disebut analisis pola frekuensi tinggi yang menarik banyak peneliti untuk menghasilkan algoritma yang efisien. Penting tidaknya suatu aturan asosiatif dapat diketahui dengan dua parameter nilai penunjang yaitu persentase kombinasi item tersebut dalam *database* dan *confidence* yaitu kuatnya hubungan antar item dalam aturan asosiatif. Analisis asosiasi didefinisikan suatu proses untuk menemukan semua aturan asosiatif yang memenuhi syarat minimum untuk *support* dan syarat minimum untuk *confidence*.

2.10.2. Classification

Dalam klasifikasi, terdapat target variabel kategori. Sebagai contoh, penggolongan pendapatan dapat dipisahkan dalam tiga kategori, yaitu pendapatan tinggi, pendapatan sedang, dan pendapatan rendah.

Dalam decision tree tidak menggunakan vector jarak untuk mengklasifikasikan obyek. Seringkali data observasi mempunyai atribut-atribut yang bernilai nominal. Sebagai contoh misalkan objeknya adalah sekumpulan buah-buahan yang bisa dibedakan berdasarkan atribut, bentuk, warna, ukuran dan rasa. Bentuk, warna, ukuran dan rasa adalah besaran nominal, yaitu bersifat kategoris dan tiap nilai tidak bisa dijumlahkan atau dikurangkan. Dalam atribut warna ada beberapa nilai yang mungkin yaitu hijau, kuning, dan merah. Dalam atribut ukuran ada nilai besar, sedang, dan kecil. Dengan nilai-nilai atribut ini, kemudian dibuat decision tree untuk menentukan suatu obyek termasuk jenis buah apa jika nilai tiap-tiap atribut diberikan.

Ada beberapa macam algoritma decision tree diantaranya CART dan C4.5. Beberapa isu utama dalam decision tree yang menjadi perhatian utama yaitu seberapa detail dalam mengembangkan decision tree, bagaimana mengatasi atribut yang bernilai continues, memilih ukuran yang cocok untuk penentuan atribut, menangani data training yang mempunyai data yang atributnya tidak mempunyai nilai, memperbaiki efisiensi perhitungan.

Decision tree sesuai digunakan untuk kasus-kasus yang keluarannya bernilai diskrit. Walaupun banyak variasi model decision tree dengan tingkat kemampuan dan syarat yang berbeda, pada umumnya beberapa ciri yang cocok untuk diterapkannya decision tree adalah sebagai berikut:

- a. Data dinyatakan dengan pasangan atribut lainnya
- b. Label/keluaran data biasanya bernilai diskrit
- c. Data mempunyai *missing value* (nilai dari suatu atribut tidak diketahui)

Dengan cara ini akan mudah mengelompokkan obyek kedalam beberapa kelompok. Untuk membuat *decision tree* perlu memperhatikan hal-hal berikut ini:

- a. Atribut mana yang akan dipilih untuk pemisahan obyek
- b. Urutan atribut mana yang akan dipilih terlebih dahulu
- c. Struktur *tree*
- d. Kriteria pemberhentian
- e. Pruning

2.10.3. Clustering

Clustering adalah salah satu alat bantu pada data mining yang bertujuan mengelompokkan obyek-obyek ke dalam cluster-cluster. Cluster adalah sekelompok atau sekumpulan obyek-obyek data yang similar satu sama lain dalam cluster yang sama dan dissimilar terhadap obyek-obyek yang berbeda cluster. Obyek akan dikelompokkan ke dalam satu atau lebih cluster sehingga obyek-obyek yang berada dalam satu cluster akan mempunyai kesamaan yang tinggi antara satu dengan lainnya. Obyek-obyek dikelompokkan berdasarkan prinsip memaksimalkan kesamaan obyek pada cluster yang sama dan memaksimalkan ketidaksamaan pada cluster yang berbeda. Kesamaan obyek biasanya diperoleh dari nilai-nilai atribut

yang menjelaskan obyek data, sedangkan obyek-obyek data biasanya direpresentasikan sebagai sebuah titik dalam ruang multidimensi.

Tujuan utama dari metode clustering adalah pengelompokan sejumlah data/obyek ke dalam cluster (group) sehingga dalam setiap cluster akan berisi data yang semirip mungkin. Dalam clustering metode ini berusaha untuk menempatkan obyek yang mirip (jaraknya dekat) dalam satu klaster dan membuat jarak antar klaster sejauh mungkin. Ini berarti obyek dalam satu cluster sangat mirip satu sama lain dan berbeda dengan obyek dalam cluster-cluster yang lain. Dalam metode ini tidak diketahui sebelumnya berapa jumlah cluster dan bagaimana pengelompokannya [21].

Dengan menggunakan *clustering*, dapat diketahui pola-pola distribusi secara keseluruhan dan keterkaitan antara atribut-atribut data. Dalam *data mining*, usaha difokuskan pada metode-metode penemuan untuk *cluster* pada basis data berukuran besar secara efektif dan efisien. Beberapa kebutuhan pengelompokan dalam *data mining* meliputi skalabilitas, kemampuan untuk menangani tipe atribut yang berbeda, mampu menangani dimensionalitas yang tinggi, menangani data yang mempunyai *noise*, dan dapat diterjemahkan dengan mudah.

2.11. Metode Clustering

Secara garis besar, terdapat beberapa metode pengelompokan data. Pemilihan metode pengelompokan bergantung pada tipe dan tujuan pengelompokan itu sendiri.

a. Partitioning Method

Membangun berbagai partisi dan kemudian mengevaluasi partisi tersebut dengan beberapa kriteria, yang termasuk metode ini meliputi algoritma *K-Means*, *K-Medoid*, proclus, Clara dan PAM.

b. Hierarchial Method

Membuat suatu penguraian secara hierarkial dari himpunan data dengan menggunakan beberapa kriteria. Metode ini terdiri atas dua macam, yaitu Agglomerative yang menggunakan strategi *bottom-up* dan *Disisive* yang menggunakan strategi top-down. Metode ini meliputi algoritma Birch, Cure dan Chameleon.

c. Density-based Method

Metode ini berdasarkan konektivitas dan fungsi densitas. Metode ini meliputi algoritma Dbscan, Optic, dan Denclu.

d. Grid-based Method

Metode ini berdasarkan suatu struktur granularitas multi-level. Metode *clusterisasi* ini meliputi algoritma Sting, WaveCluster, dan Clique.

e. Model-based Method

Suatu model dihipotesakan untuk masing-masing *cluster* dan ide untuk mencari best fit dari model tersebut untuk masing-masing yang lain. Metode pengelompokan ini meliputi pendekatan statistik, yaitu algoritma COBWEB dan jaringan syaraf tiruan, yaitu SOM.

2.12. Klasifikasi Algoritma Clustering

Algoritma *clustering* secara luas diklasifikasikan menjadi dua algoritma, yaitu *hiearchical clustering* dan *non-hierarchical clustering* [22]. *Hierarchical clustering* adalah sebuah metode hierarkis yang menciptakan komposisi hierarkis yang diterapkan pada objek data, sehingga akan menghasilkan *cluster-cluster* yang bersarang. Algoritma *Hierarchical clustering* mengatur seluruh objek dalam sebuah pohon untuk melihat hubungan antara setiap objek. Contoh algoritma *hierarchical clustering* adalah HAC (*Hierarchical Agglomerative Clustering*).

Non-hierarchical clustering pada umumnya disebut algoritma partitional clustering, memberikan sejumlah n objek dan k yang merupakan jumlah dari cluster yang terbentuk. Algoritma partitional clustering mengolah objek ke dalam kelompok berdasarkan kriteria optimasi tertentu, dimana setiap kelompok merupakan representasi sebuah cluster. Salah satu contoh algoritma partitional clustering adalah Fuzzy C-Means.

2.13. Fuzzy Clustering

Fuzzy clustering adalah salah satu teknik untuk menentukan cluster optimal dalam suatu ruang vector yang didasarkan pada bentuk normal euclidian untuk jarak antar vector. Suatu algoritma dikatakan sebagai fuzzy clustering jika dan hanya jika algoritma tersebut menggunakan strategi adaptasi secara soft competitive (non-crisp). Sebagian besar algoritma fuzzy clustering didasarkan pada optimasi

fungsi obyektif atau modifikasi fungsi obyektif tersebut. Ada beberapa algoritma *clustering* data, salah satu diantaranya adalah *Fuzzy C-Means*.

2.14. Fuzzy C-Means

Fuzzy C-means Clustering (FCM) dikenal juga sebagai Fuzzy ISODATA. FCM menggunakan model pengelompokan fuzzy sehingga data dapat menjadi anggota dari semua kelas atau cluster terbentuk dengan derajat atau tingkat keanggotaan yang berbeda antara 0 hingga 1. Tingkat keberadaan data dalam suatu kelas atau cluster ditentukan oleh derajat keanggotaannya. Teknik ini pertama kali diperkenalkan oleh Jim Bezdek pada tahun 1981.

Konsep dasar FCM, pertama kali adalah menentukan pusat cluster yang akan menandai lokasi rata-rata untuk tiap-tiap cluster. Pada kondisi awal, pusat cluster ini masih belum akurat. Tiap-tiap data memiliki derajat keanggotaan untuk tiap-tiap cluster. Dengan cara memperbaiki pusat cluster dan nilai keanggotaan tiap-tiap data secara berulang, maka dapat dilihat bahwa pusat cluster akan menujui lokasi yang tepat. Perulangan ini didasarkan pada minimasi fungsi obyektif yang menggambarkan jarak dari titik data yang diberikan ke pusat *cluster* yang terbobot oleh derajat keanggotaan titik data tersebut [18].

Output dari Fuzzy C-Means bukan merupakan fuzzy inference system, namun merupakan deretan pusat cluster dan beberapa deret keanggotaan untuk tiap-tiap titik data. Informasi ini dapat digunakan untuk membangun suatu fuzzy inference system. FCM menggunakan model pengelompokan fuzzy sehingga data dapat menjadi anggota dari semua kelas atau cluster tersebut dengan derajat keanggotaan yang berbeda antara 0 hingga 1.

Metode *Fuzzy clustering* mengijinkan obyek untuk menjadi bagian dari beberapa kelompok secara bersamaan dengan perbedaan level keanggotaan. Sebagai contoh dalam *hard clustering*, misal himpunan data $Z = \{z_1, z_2, z_3, ..., z_{10}\}$ jika dibagi menjadi 2 kelompok maka himpunan U yang merupakan matriks partisi yang menunjukkan level keanggotaan elemen himpunan Z dalam kelompok A_1 atau A_2 akan berwujud sebagai berikut:

Baris atas matriks partisi U menunjukkan level keanggotaan elemen himpunan Z dalam A₁ dan baris bawah menunjukkan level keanggotaan elemen himpunan Z dalam A₂. Tampak bahwa setiap elemen himpunan Z secara khusus atau penuh akan menjadi anggota kelompok (A₁ atau A₂) dengan level keanggotaan 1, dan tidak menjadi anggota dalam suatu kelompok dengan level keanggotaan 0. x₁, x₂, x₃, x₄, x₅ dan x₆ secara khusus merupakan anggota dari A₂, x₇, x₈, x₉ dan x₁₀ secara khusus merupakan anggota dari kelompok A₂.

Sementara itu dalam *fuzzy clustering* level keanggotan data dalam suatu kelompok bukan hanya 0 dan 1 akan tetapi dapat memiliki nilai antara interval [0,1]. Baris ke-i dalam matriks partisi mengandung level keanggotaan I terhadap A_i. Nilai level keanggotaan dalam setiap kolom matriks partisi yang berarti nilai keanggotaan data dalam setiap kelompok akan selalu berjumlah 1.

Sebagai contoh himpunan $Z = \{z_1, z_2, z_3, ..., z_{10}\}$. Dalam pembagian samar jika himpunan Z dibagi menjadi 2 kelompok Z_1 dan Z_2 , maka matriks partisi U dapat dituliskan seperti berikut:

$$U = \begin{bmatrix} 1 & 1 & 11 & 0.7 & 0.40.2 & 0 & 00 \\ 0 & 0 & 00 & 0.3 & 0.60.8 & 1 & 11 \end{bmatrix}$$

Baris atas matriks partisi U menunjukkan level keanggotaan elemen himpunan Z dalam A₁ dan baris bawah menunjukkan level keanggotaan elemen himpunan Z dalam A₂. Dalam *hard clustering* ini tampak bahwa setiap elemen himpunan Z dapat menjadi anggota kelompok (A₁ atau A₂) dengan level keanggotaan antara 0 sampai dengan 1. x₁, x₂, x₃, x₄ menjadi anggota A₁ dengan level keanggotaan 1.0 dan menjadi anggota A₂ dengan level keanggotaan 0 sedangkan x₅ menjadi anggota A₁ dengan level keanggotaan 0.7 dan menjadi anggota A₂ dengan level keanggotaan 0.3 dan seterusnya.

Adapun langkah-langkah dalam metode FCM adalah:

- 1. Menentukan jumlah cluster (c), error terkecil yang diharapkan (ε), dan batas maksimum iterasi (maxIter)
- 2. Membuat matriks partisi U.
- 3. Menghitung centroid dengan menggunakan persamaan berikut:

$$V_{kj} = \frac{\sum_{i=1}^{n} ((u_{ik})^{w} X_{ij})}{\sum_{i=1}^{n} (u_{ik})^{w}}$$
(1)

Keterangan:

 V_{kj} : pusat *cluster* untuk kelompok ke-k dan variabel ke-j

 u_{ik} : isi matriks u pada record ke-i dan kelompok ke-k

 X_{ij} : record ke-i pada variabel ke-j

w: weighting exponent/pembobot

n: jumlah seluruh record

4. Menghitung *distance* space, yang merupakan jarak euclidean kuadrat dengan menggunakan persamaan berikut:

$$\sum_{i=1}^{m} (X_{ij} - V_{kj})^2 \tag{2}$$

Keterangan:

 X_{ij} : record ke-i pada variabel ke-j

 V_{kj} : pusat *cluster* untuk kelompok ke-k dan variabel ke-j

m: jumlah seluruh record

5. Kemudian masukkan hasil perhitungan *distance space* kedalam rumus fungsi objektif berikut:

$$P_{t} = \sum_{i=1}^{n} \sum_{k=1}^{c} \left(\left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2} \right] (\mu_{ik})^{w} \right)$$
 (3)

Keterangan:

 P_t : Fungsi objektif

 X_{ij} : record ke-i pada variabel ke-j

 V_{kj} : pusat *cluster* untuk kelompok ke-k dan variabel ke-j

 u_{ik} : isi matriks u pada record ke-i dan kelompok ke-k

w: weighting exponent/pembobot

c: jumlah cluster

m: jumlah seluruh record

n: jumlah seluruh record

6. Menghitung perubahan matriks partisi dengan persamaan berikut:

$$\mu_{ik} = \frac{\left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2}\right]^{\frac{-1}{w-1}}}{\sum_{k=1}^{c} \left[\sum_{j=1}^{m} (X_{ij} - V_{kj})^{2}\right]^{\frac{-1}{w-1}}}$$
(4)

 u_{ik} : isi matriks u pada record ke-i dan kelompok ke-k

 X_{ij} : record ke-i pada variabel ke-j

 V_{kj} : pusat *cluster* untuk kelompok ke-k dan variabel ke-j

w: weighting exponent/pembobot

c: jumlah cluster

m: jumlah seluruh record

- 7. Cek perulangan:
 - a. Apabila $P_t < \varepsilon$, maka proses berhenti. Jika tidak, maka kembali ke langkah 3.
 - b. Apabila perulangan sudah melebihi batas maksimum iterasi (maxIter), hentikan perulangan. Jika belum, kembali ke langkah 3.

BAB III. METODOLOGI PENELITIAN

3.1. Tahapan Penelitian

Pada bagian ini dibahas metodologi yang digunakan dalam pembuatan website pengelompokan kejadian gempa bumi. Metode penelitian yang digunakan adalah *waterfall*.

Adapun tahapan dalam metode *waterfall* dijelaskan pada gambar 3.1 sebagai berikut:

Gambar 3.1 Tahapan dalam metode waterfall

Pada metode *waterfall* yang ditunjukkan pada Gambar 3.1 diatas, tiap prosesnya dilakukan urut dari awal sampai akhir, dan setelah melewati suatu proses maka tidak bisa kembali ke proses tersebut. Setiap proses dalam metode *waterfall* tidak tumpang tindih, memungkinkan hasil pekerjaan yang sesuai target.

Berikut ini adalah penjelasan dari setiap tahapan penelitian yang dilakukan.

3.1.1. Studi Literatur

Melakukan studi pada topik *data mining*, *clustering*, *fuzzy clustering*, dan *fuzzy c-means* dari jurnal, buku, dan sumber yang terdapat di internet.

3.1.2. Analisis

3.1.2.1. Analisis Kebutuhan Data

Melakukan analisis terhadap data tentang topik yang bersangkutan, mengidentifikasi data-data yang diperlukan dan hasil yang ingin dicapai. Pada penelitian ini ada dua parameter utama yang akan digunakan. Setiap parameter tersebut akan dilakukan proses pengelompokan sendiri-sendiri. Parameter yang pertama yaitu parameter kejadian gempa yang berisi data kedalaman gempa dan kekuatan gempa. Sedangkan parameter yang kedua adalah parameter dampak gempa yang berisi data jumlah korban meninggal, jumlah korban luka-luka, jumlah kerugian dalam bentuk uang, jumlah rumah rusak dan jumlah rumah hancur. Hasil yang diharapkan adalah terbentuknya dua hasil perhitungan pengelompokan dari dua parameter utama yang telah disebutkan.

3.1.2.2. Analisis Kebutuhan Aplikasi

Melakukan analisis terhadap perangkat lunak yang digunakan untuk menunjang sistem yang akan dibuat. Perangkat lunak yang akan digunakan adalah XAMPP dan PHP.

3.1.3. Desain Sistem

3.1.3.1. Gambaran Umum

Pada penelitian ini penulis akan membuat sebuah aplikasi yang dapat mengelompokkan kejadian gempa bumi signifikan yang pernah terjadi di seluruh wilayah Indonesia. Dari hasil pengelompokan ini pengguna dapat mengetahui kelompok untuk setiap kejadian gempa.

3.1.4. Implementasi

Mengimplementasikan desain sistem menjadi bentuk program dengan mengacu pada perancangan yang telah dibuat. Berikut ini adalah rencana kerja dalam tahap pembuatan program:

- Mendesain alur program, sesuai dengan alur algoritma Fuzzy C-Means.
- Perancangan database menggunakan MySQL.
- Merancang Antarmuka (*interface*), antarmuka ini digunakan agar *user* dapat berinteraksi dengan program.

3.1.5. Pengujian Sistem

Menguji sistem dan memastikan bahwa hasilnya sesuai dengan analisis kebutuhan. Disini pengujian dilakukan dengan cara membandingkan hasil pengelompokan yang pertama dengan hasil pengelompokan yang kedua. Kemudian membenahi program apabila terjadi error atau hasil perhitungan tidak sesuai dengan data pengujian.

3.1.6. Maintenance

Mengevaluasi proses-proses yang telah dilakukan sebelumnya, dan membetulkan kesalahan-kesalahan yang tidak ditemukan pada tahap-tahap sebelumnya.

3.2. Data

Penelitian ini menggunakan data gempabumi signifikan yang disediakan oleh NOAA pada website https://www.ngdc.noaa.gov/. Data gempa bumi yang diambil adalah seluruh gempa bumi signifikan yang pernah terjadi di wilayah Indonesia. Parameter yang digunakan adalah parameter kekuatan gempa, kedalaman gempa, jumlah korban meninggal, jumlah korban luka-luka, jumlah rumah rusak, dan jumlah rumah hancur.

3.3. Metode Pengumpulan Data

Data penelitian didapatkan melalui website https://www.ngdc.noaa.gov/dengan cara download hasil query *database* dari website tersebut. Query yang didownload berupa file data dengan format *tab delimited*.

3.4. Hipotesis

Penelitian ini diprediksi akan memberikan *output* berupa hasil pengelompokan dari kedua parameter yang telah dijelaskan. Hasil pengelompokan ditampilkan dalam bentuk tabel dan dalam bentuk titik koordinat dalam Google Maps.

3.5. Perhitungan Manual

Berikut ini adalah contoh penerapan *Fuzzy C-Means* yang sudah dijelaskan pada landasan teori. Data yang ditunjukkan Tabel 3.1 berikut ini merupakan data *dummy* yang berisi 5 kejadian gempa.

Tabel 3.1. Data Kekuatan dan Kedalaman Gempa

No.	Kedalaman	Magnitude
1	12	7
2	5	4
3	8	11
4	10	3
5	9	1

a. Membentuk matriks partisi U

Proses ini adalah membuat sebuah matriks yang berisi angka acak antara 0 sampai dengan 1. Jumlah μ_{ik} dalam satu record harus bernilai 1. Nilai μ_{ik} menentukan keanggotaan sebuah record terhadap suatu cluster. Contoh matriks partisi U ditunjukkan oleh Tabel 3.2.

Tabel 3.2. Matriks Partisi *U*

μik	μ1k	μ2k	μ3k
μi1	0,15	0,56	0,29
μi2	0,34	0,26	0,4
μi3	0,67	0,09	0,24
μi4	0,31	0,41	0,28
μi5	0,23	0,45	0,32

b. Menghitung centroid

Menghitung pusat *cluster* pada setiap kelompok menggunakan persamaan 1, hasilnya ditunjukkan pada Tabel 3.3.

Tabel 3.3. Data *centroid* untuk setiap *cluster*

Vkj	Vk1	Vk2
V1j	7,984103261	8,014945652
V2j	10,09277537	4,292012107
V3j	8,239585492	4,559378238

c. Menghitung fungsi objektif (P_t)

Mencari nilai fungsi objektif menggunakan persamaan 3. Hasil dari perhitungan fungsi objektif digunakan pada langkah 5 untuk cek kondisi perulangan. Hasilnya dapat dilihat pada tabel 3.4.

Tabel 3.4. Hasil perhitungan fungsi objektif

	$\sum_{k=1}^{c}$	$\sum_{k=2}^{c}$	$\sum_{k=3}^{c}$	SUM
$\sum_{i=1}^{n}$	0,38604468	3,440412849	1,690187291	5,516644819
$\sum_{i=2}^{n}$	2,8928508	1,759062323	1,729250908	6,381164026
$\sum_{i=3}^{n}$	4,00005909	0,399952163	2,392646969	6,792658225
$\sum_{i=4}^{n}$	2,80741923	0,282055419	0,433608427	3,523083075
$\sum_{i=5}^{n}$	2,65777581	2,436379096	1,356534136	6,450689041
Fungsi Objektif 28				28,66423919

d. Menghitung perubahan nilai matriks partisi

Menghitung perubahan nilai matriks partisi U menggunakan persamaan 4. Tujuannya untuk memperbaiki derajat keanggotaan pada setiap record.

Tabel 3.5. Hasil perhitungan membership function

	μ1k	μ2k	μ3k
μi1	0,29259759	0,45760556	0,249796852
μi2	0,23380279	0,22484507	0,541352144
μi3	0,71685523	0,12936751	0,15377726
μi4	0,04220694	0,734854	0,222939051
μi5	0,11150279	0,46561673	0,422880482

e. Cek perulangan

Langkah ini bertujuan untuk menentukan apakah perulangan akan dilanjutkan atau dihentikan. Perulangan itu sendiri bertujuan untuk memperbaiki nilai matriks *U.* Parameter pengecekan perulangan telah dijelaskan di landasan teori.

BAB IV

ANALISIS DAN PERANCANGAN

4.1. Gambaran Umum

Sistem yang akan dirancang dalam penelitian ini adalah sistem yang dapat mengelompokkan data kejadian gempa bumi menggunakan metode *fuzzy c-means*. Sistem ini bersifat dinamis karena dapat menerima inputan parameter dari *user* diantaranya jumlah *cluster*, nilai *error* minimum, dan jumlah maksimal iterasi. Sistem ini melakukan pengelompokan dua kali, dimana pengelompokan yang pertama menggunakan variabel magnitude dan kedalaman gempa, dan pengelompokan yang kedua menggunakan variabel dampak akibat gempa. Sistem ini dapat menampilkan hasil pengelompokan dalam bentuk tabel dan dalam bentuk koordinat di Google Maps.

4.2. Analisis Sistem

Sistem yang dirancang dalam penelitian ini memiliki beberapa fungsi utama, yaitu *upload* file data kejadian gempa, fungsi *preprocessing*, fungsi pengelompokan menggunakan metode *fuzzy c-means*, dan fungsi menampilkan hasil pengelompokan dalam bentuk tabel dan dalam bentuk koordinat Google Maps. Fungsi-fungsi tersebut memiliki hubungan antara satu dengan yang lainnya. Gambar 4.1 dibawah ini menjelaskan alur proses pada sistem.

Gambar 4.1. Alur proses pada sistem

4.2.1. Kebutuhan *Input*

Clustering Kejadian Gempa Bumi membutuhkan data inputan yaitu data kejadian gempa signifikan yang terjadi di wilayah Indonesia. Data didapatkan dari website http://ngdc.noaa.gov/.

4.2.2. Kebutuhan Proses

Beberapa proses dibutuhkan untuk mengolah data input menjadi output yang berupa informasi yang diharapkan. Beberapa proses tersebut antara lain:

- a. Proses preprocessing dokumen kejadian gempa.
- b. Proses input data gempa ke database.
- c. Proses pengambilan input parameter pengelompokan dari user.
- d. Proses pengelompokan kejadian gempa dengan *fuzzy c-means*.
- e. Proses menyimpan hasil pengelompokan kedalam database.
- f. Proses menampilkan hasil pengelompokan dalam bentuk tabel dan dalam bentuk koordinat pada Google Maps.

4.2.3. Kebutuhan Output

Output yang diharapkan adalah informasi berupa hasil pengelompokan kejadian gempa bumi dengan *fuzzy c-means* dalam bentuk tabel dan dalam bentuk koordinat Google Maps.

4.3. Perancangan Sistem

4.3.1. Flowchart

Flowchart adalah sebuah diagram dengan simbol-simbol grafis yang menyatakan aliran algoritma atau proses yang menampilkan langkah-langkah yang dihubungkan dengan anak panah.

4.3.1.1. Flowchart *Upload* File Kejadian Gempa

Flowchart *upload* file kejadian gempa berisi proses mulai dari *user* memilih file yang akan diupload, *user* klik tombol upload file, proses *preprocessing* file, dan proses input data kedalam database. Proses *preprocessing merupakan* proses pembersihan file dataset dari *noise* yang dapat mengakibatkan perubahan data saat dimasukkan kedalam database, misalnya *header* file dan kelebihan tab di

dalam data. Flowchart *upload* file kejadian gempa ditunjukkan oleh Gambar 4.2 berikut ini.

Gambar 4.2. Flowchart Upload File Kejadian Gempa

4.3.1.2. Flowchart Fuzzy C-Means Clustering

Flowchart algoritma *fuzzy c-means* merupakan flowchart yang berisi proses mengambil parameter pengelompokan dari user, pengambilan data dari database, serta proses-proses dalam metode *fuzzy c-means* yang berupa inisialisasi matriks partisi, menghitung pusat *cluster*, menghitung fungsi objektif, menghitung perubahan matriks partisi, serta melakukan pengecekan kondisi iterasi. Flowchart *fuzzy c-means clustering* dapat dilihat pada Gambar 4.3 dibawah ini.

Gambar 4.3. Flowchart Fuzzy C-Means Clustering

4.3.2. Perancangan Database

Basisdata dirancang agar data yang berkaitan dapat terorganisir dan tersimpan dengan baik sehingga memudahkan dalam pencarian dan manipulasi data.

4.3.2.1. Conceptual Data Model (CDM)

Conceptual Data Model (CDM) berfungsi untuk memodelkan struktur logis dari basisdata. CDM terdiri dari objek yang tidak diimplementasikan secara langsung ke dalam basisdata yang akan digunakan. Struktur dari basisdata yang dibuat terdiri dari dua tabel, tabel `tb_datagempa` digunakan untuk menyimpan dataset yang telah di-preprocessing, dan tabel `tb_hasilclustering` digunakan untuk menyimpan hasil pengelompokan. Gambar 4.2 berikut ini menunjukkan CDM dari sistem yang dibuat.

Gambar 4.4. CDM untuk sistem yang dibuat

4.3.2.2. Physical Data Model (PDM)

Physical Data Model berfungsi untuk merepresentasikan struktur fisik dari database. Physical Diagram merupakan struktur fisik dari database yang akan dibuat berdasarkan rancangan CDM. Objek tabel didefinisikan berdasarkan entitas, kolom tabel didefinisikan berdasarkan atribut, dan relasi antar entitas didefinisikan dengan relasi foreign key. PDM untuk sistem yang dibuat ditunjukkan oleh gambar 4.3 berikut.

Gambar 4.5 PDM untuk sistem yang dibuat

4.3.3. Perancangan Proses

4.3.3.1. Use Case Diagram

Use Case Diagram adalah gambaran visual dari *actor*, *use case*, dan interaksi di dalamnya yang memperkenalkan suatu sistem. Use case diagram memberi gambaran singkat hubungan antara *use case*, aktor, dan sistem. Gambar 4.4 berikut menunjukkan diagram *use case* dari sistem yang dibuat.

Gambar 4.6. Use Case Diagram sistem

4.3.3.2. Activity Diagram

Gambar 4.7 Activity Diagram sistem

4.4. Rancangan User Interface

Rancangan *user interface* adalah rancangan tampilan sistem sebagai sarana komunikasi antara pengguna dengan sistem.

a. Rancangan User Inteface Home

Tampilan awal saat user masuk kedalam website. Berisi penjelasan singkat mengenai fungsi sistem yang dikembangkan.

Gambar 4.8 Rancangan User Interface Halaman Home

b. Rancangan User Inteface Proses Fuzzy C-Means

Berikut ini adalah tampilan halaman proses fuzzy c-means. User dapat melakukan upload dataset yang akan dikelompokkan. Jika upload berhasil maka data akan tampil di tabel. Setelah itu user memasukkan parameter *fuzzy c-means*.

Gambar 4.9 Rancangan User Interface Halaman Proses Fuzzy C-Means

c. Rancangan *User Inteface* Hasil Pengelompokan
 Hasil *clustering* akan ditampilkan di halaman hasil pengelompokan ini dalam bentuk tabel dan koordinat peta.

Gambar 4.10 Rancangan User Interface Halaman Hasil Pengelompokan

BAB V. IMPLEMENTASI

Pada bab ini dibahas implementasi dari perencanaan dan pembuatan tersebut. Tahap implementasi adalah tahap mengubah desain menjadi aplikasi.

5.1. Implementasi Basis Data

Implementasi basis data dilakukan sesuai dengan perencanaan dan pembuatan yang telah dilakukan pada bab 4. Basis data yang dibuat diberi nama db_clusteringgempa. Basis data tersebut berisi tiga tabel yaitu `tb_datagempa`, `tb_hasiltraining` dan `tb_minmax`.

Gambar 5.1. Tabel-tabel dari basis data `db_clusteringgempa`

Tabel 5.1 dibawah ini adalah tabel `tb_datagempa` yang menampung data hasil upload dari user. Tabel ini berisi field yang digunakan saat proses pengelompokan.

Nama Kolom	Tipe Data
ID_DATAGEMPA	int(4)
TANGGAL	date
FOCAL_DEPTH	int(4)
EQ_PRIMARY	double
LOCATION_NAME	varchar(50)
LATITUDE	double
LONGITUDE	double
TOTAL_DEATHS	int(6)
TOTAL MISSING	int(2)
TOTAL_INJURIES	int(5)
TOTAL_HOUSES_DESTROYED	int(6)
TOTAL_HOUSES_DAMAGED	int(6)

Tabel 5.1 Struktur tabel `tb_datagempa`

Tabel 5.2 dibawah ini adalah tabel `tb_hasiltraining` yang menampung data hasil pengelompokan *fuzzy c-means*. Field 'ID_DATAGEMPA' merupakan *foreign key* yang referensinya di tabel 'tb_datagempa'. Field 'cluster_kekuatan'

menyimpan hasil pengelompokan dari parameter kekuatan, sedangkan field 'cluster_dampak' menyimpan hasil pengelompokan dari parameter dampak gempa.

Tabel 5.2 Struktur tabel `tb_hasiltraining`

Nama Kolom	Tipe Data
ID_DATAGEMPA	int(4)
cluster_kekuatan	int(2)
cluster_dampak	int(2)

Tabel ketiga adalah `tb_minmax`. Tabel ini digunakan untuk menyimpan nilai maksimum dan minimum dari suatu parameter untuk sebuah *cluster*, misalnya magnitudo maksimum dan minimum dari *cluster* 1 untuk parameter kekuatan. Struktur dari `tb_minmax` ditunjukkan oleh Tabel 5.3 berikut ini.

Tabel 5.3 Struktur tabel `tb_minmax`

Nama Kolom	Tipe Data
param	varchar(20)
cluster	int(2)
jml_record	int(3)
EQ_PRIMARY_MAX	double
EQ_PRIMARY_MIN	double
FOCAL_DEPTH_MAX	int(4)
FOCAL_DEPTH_MAX	int(4)
TOTAL_DEATHS_MAX	int(6)
TOTAL_DEATHS_MIN	int(6)
TOTAL_MISSING_MAX	int(2)
TOTAL_MISSING_MIN	int(2)
TOTAL_INJURIES_MAX	int(5)
TOTAL_INJURIES_MIN	int(5)
TOTAL_DAMAGE_MILLIONS_DOLLARS_MAX	int(8)
TOTAL_DAMAGE_MILLIONS_DOLLARS_MIN	int(8)
TOTAL_HOUSES_DESTROYED_MAX	int(6)
TOTAL_HOUSES_DESTROYED_MIN	int(6)
TOTAL_HOUSES_DAMAGED_MAX	int(6)
TOTAL_HOUSES_DAMAGED_MIN	int(6)

5.2. Implementasi Sistem

5.2.1. Implementasi Algoritma Fuzzy C-Means

Berikut ini dijelaskan tentang implementasi algoritma *fuzzy c-means* pada sistem dalam bentuk potongan-potongan listing program.

Sebagian besar kode program *fuzzy c-means* terletak pada fungsi 'processDataset' yang terdapat pada file *controller*. Pertama-tama fungsi tersebut melakukan pengecekan apakah user sudah pernah melakukan proses *fuzzy c-means* atau belum. Jika pernah, maka sistem akan memunculkan pesan peringatan bahwa user sudah pernah melakukan proses *fuzzy c-means*. Jika sudah, maka masuk ke tahap berikutnya yaitu mengambil inputan parameter *fuzzy c-means* dari user.

```
public function processDataset() {
    if($this->mfcm->hasilTrainingIsEmpty() == TRUE) {
        $jml_cluster = $this->input-
>post('jml_cluster');
        $data['jmlCluster'] = $jml_cluster;
        $minErr = $this->input->post('e');
        $maxIter = $this->input->post('maxIter');
        ...
```

Setelah mendapatkan data inputan user, langkah selanjutnya adalah membuat matriks partisi U secara random.

```
$matriksU = $this-
>generateRandomMatrix($data['jmlCluster'], $jml_data);
```

Kode diatas memanggil fungsi lainnya yaitu 'generateRandomMatriks' yang fungsinya untuk *generate* matriks U dengan ukuran jumlah cluster banding jumlah data. Isi dari matriks ini adalah angka acak antara 0 sampai 1.

Setelah membuat matriks U, langkah selanjutnya adalah menghitung *centroid*, menghitung nilai fungsi objektif, menghitung perubahan matriks partisi U, dan melakukan pengecekan iterasi berdasarkan nilai *error* minimum.

```
\phi = 0;
do {
$objFunctionOld = $objFunction;
$centroid kekuatan = $this-
>hitungCentroid($data['selectedDataset kekuatan'],
$matriksU, $data['jmlCluster'], $jml data,
$SelectedVariable kekuatan, $wExp);
$dataFO kekuatan = $this-
>hitungFungsiObjektif($data['selectedDataset kekuatan']
, $centroid kekuatan, $data['jmlCluster'], $jml data,
$SelectedVariable kekuatan, $matriksU, $wExp);
$objFunction kekuatan
$dataFO kekuatan['ObjFunction'];
$matriksU kekuatan = $this-
>hitungPerubahanMatriksU($data['jmlCluster'],
$jml data, $dataFO kekuatan, $wExp);
} while(abs($objFunction - $objFunctionOld) > $minErr);
```

Beberapa baris kode diatas memanggil fungsi lainnya yang berfungsi melakukan perhitungan secara spesifik. Berikut ini adalah fungsi 'hitungCentroid' yang bertujuan untuk menghitung *centroid* dari masing masing *cluster*.

```
public function hitungCentroid($dataset, $matriksU,
$jml_cluster, $jml_data, $variabelUser, $wExp){
for($k = 0; $k < $jml_cluster; $k++){
$j = 0;
foreach($variabelUser as $variabel){
   $sumAtas = 0;
```

```
$sumBawah = 0;

for($i = 0; $i < $jml_data; $i++){
        $sumAtas = $sumAtas +
($dataset[$i][$variabel] * pow($matriksU[$i][$k],
$wExp));
        $sumBawah = $sumBawah +
pow($matriksU[$i][$k], $wExp);
    }

$centroid[$k][$j] = $sumAtas / $sumBawah;
$j++;
}
return $centroid;
}</pre>
```

Kode dibawah ini merupakan fungsi 'hitungFungsiObjektif' yang berfungsi untuk mencari nilai fungsi objektif.

```
public function hitungFungsiObjektif($dataset,
$centroid, $jml cluster, $jml data, $variabelUser,
$matriksU, $wExp){
     sum[][] = 0;
     $sum['ObjFunction'] = 0;
     for (\$k = 0; \$k < \$jml cluster; \$k++) {
          for($i = 0; $i < $jml_data; $i++){</pre>
               \$j = 0;
               temp = 0;
               foreach($variabelUser as $variabel){
                     temp = temp +
pow(($dataset[$i][$variabel] - $centroid[$k][$j]), 2);
                     $j++;
               sum[si][sk] = stemp;
               $sum['ObjFunction'] =
$sum['ObjFunction'] + ($sum[$i][$k] *
pow($matriksU[$i][$k], $wExp));
     return $sum;
}
```

Kode dibawah ini adalah fungsi 'hitungPerubahanMatriksU' yang berfungsi untuk menghitung kembali matriks U untuk mendapatkan nilai derajat keanggotaan yang baru.

5.2.2. Antarmuka Sistem

Implementasi antarmuka atau implementasi *user interface* mengacu pada desain antarmuka yang telah dijelaskan pada bab 4. Berikut ini adalah penjabaran dari antarmuka sistem yang dibuat.

a. Implementasi Antarmuka Halaman Home

Halaman *Home* adalah halaman awal yang terbuka ketika *user* mengakses website. Halaman ini berisi informasi singkat mengenai sistem yang dibuat. Implementasi dari halaman *home* dapat dilihat pada Gambar 5.2.

Gambar 5.2 Implementasi Antarmuka Home

b. Implementasi Antarmuka Halaman Proses Fuzzy C-Means

Pada halaman Training Data ini user dapat melakukan upload dataset melalui form yang telah disediakan, serta terdapat tabel yang berfungsi untuk menampilkan data dari file yang telah diupload. User juga melakukan input parameter pengelompokan *fuzzy c-means* melalui halaman ini. Berikut ini adalah implementasi dari halaman training data.

Gambar 5.3 Implementasi Antarmuka Proses Fuzzy C-Means

c. Implementasi Antarmuka Halaman Hasil Pengelompokan

Halaman hasil pengelompokan adalah halaman untuk menampilkan hasil perhitungan *fuzzy c-means*. Hasil pengelompokan ditampilkan dalam bentuk tabel dan dalam bentuk koordinat peta Google Maps. Bentuk peta ini dibagi menjadi tiga, peta yang pertama menampilkan koordinat gempa serta cluster yang dimiliki oleh koordinat tersebut untuk kedua parameter. Bentuk peta kedua menampilkan data gempa spesifik untuk parameter kekuatan. Tiap koordinatnya dapat memiliki warna yang berbeda-beda tergantung cluster yang dimiliki oleh koordinat tersebut. Bentuk peta ketiga hampir sama dengan bentuk yang kedua, hanya saja data yang ditampilkan spesifik untuk parameter dampak

saja. Implementasi dari antarmuka halaman hasil pengelompokan dapat dilihat pada Gambar 5.3.

Gambar 5.4. Implementasi Antarmuka Rekapitulasi

BAB VI. PENGUJIAN DAN PEMBAHASAN

Pada bab ini akan dijelaskan mengenai hasil pengujian dan pembahasan pada sistem yang dibuat. Sub bab pengujian akan menampilkan hasil uji coba sistem. Sub bab pembahasan akan menjelaskan hasil pengujian pada sub bab pengujian.

6.1. Pengujian

6.1.1. Pengujian Sistem

Pengujian sistem dilakukan untuk memeriksa fungsionalitas fungsi-fungsi yang dimiliki oleh sistem. Pengujian dilakukan dengan cara menjalankan setiap fitur dalam aplikasi dan melihat apakah hasilnya sudah sesuai dengan yang diharapkan. Tabel 6.1 dibawah ini menunjukkan pengujian yang dilakukan.

Tabel 6.1. Tabel Pengujian Sistem

No	Pola Pengujia n	Kode Prose s	Data Masukan	Validasi	Yang Diharapkan	Kesimpula n
1.	Upload file dataset	1.1	File dataset	1.1.a Belum pernah upload file 1.1.b Sudah pernah upload file 1.1.c Tidak melakukan pemilihan file	Upload file berhasil dan data tampil pada tabel. Upload file gagal dan muncul pesan error. Muncul pesan error dalam bentuk popup pada form upload file	Diterima Diterima
2.	Input paramete r clusterin g	2.1	Inputan paramete r dari user	2.1.a. Seluruh inputan benar dan belum pernah melakukan	Masuk ke halaman rekapitulasi dan menampilka n hasil clustering.	Diterima

No	Pola Pengujia n	Kode Prose s	Data Masukan	Validasi	Yang Diharapkan	Kesimpula n
				proses clustering		
				2.1.b.	Clustering	
				Seluruh	tidak	
				inputan	dilakukan	
				benar dan	dan muncul	Diterima
				sudah	pesan <i>error</i> .	
				pernah		
				clustering		
				2.1.c.	Clustering	
				Satu atau	tidak	
				lebih field	dilakukan	Diterima
				dikosongka	dan	Diterma
				n	tampilkan	
					pesan <i>error</i> .	
				2.1.d.	Tampilkan	
				Field	рор-ир	
				jumlah	berisi	Diterima
				<i>cluster</i> diisi	peringatan.	Dittillia
				nilai kurang		
				dari 2		

Berikut ini adalah penjelasan dari setiap proses pengujian sistem:

a. Kode Validasi 1.1.a

Data Masukan: File Dataset

Hasil yang diharapkan: Upload file berhasil dan data tampil pada tabel.

Validasi: Belum pernah upload file

Langkah Pengujian:

- Pilih file dataset melalui form upload file.
- Klik tombol *Upload File*

Kesimpulan: Diterima

Hasil:

Gambar 6.1. Data berhasil muncul menandakan pengujian upload file berhasil

b. Kode Validasi 1.1.b

Data Masukan: File Dataset

Hasil yang diharapkan: Muncul pesan error.

Validasi: Sudah pernah upload file

Langkah Pengujian:

• Pilih file dataset melalui form upload file.

• Klik tombol Upload File

Kesimpulan: Diterima

Hasil:

Gambar 6.2 Pengujian Upload File jika pernah upload file

c. Kode Validasi 1.1.c

Data Masukan: File Dataset

Hasil yang diharapkan: Muncul pesan *error* dalam bentuk pop-up pada form

upload file.

Validasi: Tidak melakukan pemilihan file

Langkah Pengujian:

• Klik tombol *Upload File*

Kesimpulan: Diterima

Hasil:

Gambar 6.3 Muncul pesan error jika belum memilih file

d. Kode Validasi 2.1.a

Data Masukan: Inputan parameter dari user

Hasil yang diharapkan: Masuk ke halaman rekapitulasi.

Validasi: Seluruh inputan valid dan belum pernah clustering

Langkah Pengujian:

• Mengisi semua form parameter dengan benar.

• Klik tombol *Proses Data*

Kesimpulan: Diterima

Hasil:

Gambar 6.4 Berhasil masuk halaman hasil pengelompokan

e. Kode Validasi 2.1.b

Data Masukan: Inputan parameter dari user

Hasil yang diharapkan: Muncul pesan error.

Validasi: Seluruh inputan valid dan sudah pernah clustering

Langkah Pengujian:

• Mengisi semua form parameter dengan benar.

• Klik tombol Proses Data

Kesimpulan: Diterima

Hasil:

Gambar 6.5. Pengujian Parameter Clustering jika pernah clustering

f. Kode Validasi 2.1.c

Data Masukan: Inputan parameter dari user

Hasil yang diharapkan: Muncul pesan error.

Validasi: Satu atau lebih field dikosongkan

Langkah Pengujian:

• Mengisi hanya sebagian form

• Klik tombol *Proses Data*

Kesimpulan: Diterima

Hasil:

Gambar 6.6 Pengujian Parameter Clustering field kosong

g. Kode Validasi 2.1.d

Data Masukan: Inputan parameter dari user

Hasil yang diharapkan: Muncul pesan error.

Validasi: field 'jumlah cluster' diisi nilai kurang dari 2

Langkah Pengujian:

- Mengisi field 'jumlah cluster' dengan nilai kurang dari 2.
- Klik tombol *Proses Data*

Kesimpulan: Diterima

Hasil:

Gambar 6.7 Pengujian Parameter Clustering field jumlah cluster

6.1.2. Pengujian Metode

6.1.2.1. Pengujian Black Box

Pengujian *black box* dilakukan untuk mengukur kinerja dari perangkat lunak apakah fungsinya berjalan dengan benar atau tidak. Pengujian *black box* ini menguji performa sistem dalam hal ketepatan dalam proses *clustering*, yaitu ketepatan sistem dalam melakukan pengecekan iterasi. Berikut ini adalah hasil dari pengujian *black box* terhadap sistem, dengan jumlah *cluster* sebanyak 3 dan nilai *error* minimum adalah 0,01.

T. 11	Nilai FO lama – FO baru	Nilai FO lama – FO baru
Iterasi ke	(parameter kekuatan)	(parameter dampak)
1	591017,63654453	44721575607,668
2	10848,755585801	136269840,10635
3	62082,815855872	5788701551,9742
4	119563,27661553	36309482603,16
5	241229,64487563	60427513667,805
6	271956,430569	59036441648,015
7	371860,89439783	60375373505,15
8	547631,78064423	92201013251,969
9	877223,38042555	152728476049,65
10	1057111,1482847	167039630164,65
11	971318,38599296	166310041905,1
12	756093,64705404	317840661808,24
13	504275,21925193	425234663403,98
14	300824,9982779	176903558497,35
15	170635,21850675	32378015457,426
16	97208,054432707	6207322812,0132
17	57750,177414415	2029881036,5645
18	36431,744450458	1009603257,7546
19	24426,365132004	584711708,0376
20	17232,350037528	354058046,7041
21	12620,101316065	217904134,20581
22	9478,4227507664	135235435,75635
23	7235,0881889043	84378528,557373
24	5579,0827903794	52841947,899658
25	4329,4713575328	33179472,367188
26	3373,1877943566	20872881,581543
27	2634,8633525297	13148869,213379
28	2061,6101902435	8291302,4755859
29	1614,911645053	5231988,4472656
30	1266,0004729452	3303199,5783691
31	993,03202192485	2086243,6125488

T. 11	Nilai FO lama – FO baru	Nilai FO lama – FO baru
Iterasi ke	(parameter kekuatan)	(parameter dampak)
32	779,23883805051	1317991,7666016
33	611,65983665548	832809,21191406
34	480,22940542456	526308,15966797
35	377,10581168439	332643,8515625
36	296,1664244337	210257,46630859
37	232,62336159684	132906,73999023
38	182,7282485608	84015,562988281
39	143,5440528756	53111,063232422
40	112,76800864004	33575,265380859
41	88,593772173859	21225,605957031
42	69,603880861774	13418,565917969
43	54,685714252293	8483,1184082031
44	42,965740405023	5362,9946289062
45	33,758020443842	3390,4689941406
46	26,523849623278	2143,4626464844
47	20,840109617449	1355,1008300781
48	16,374440588057	856,69995117188
49	12,865756396204	541,60546875
50	10,108949913643	342,4091796875
51	7,9428842226043	216,474609375
52	6,24096249789	136,85375976562
53	4,9037218010053	86,52197265625
54	3,8530157050118	54,695556640625
55	3,0274452902377	34,58056640625
56	2,3787689507008	21,8662109375
57	1,8690829118714	13,81787109375
58	1,4686054475605	8,737548828125
59	1,1539365472272	5,52392578125
60	0.9066901281476	3,49462890625
61	0.71241977158934	2,204833984375
62	0.55977455899119	1,398681640625
63	0.43983565736562	0,883544921875
64	0.34559524990618	0,555419921875
65	0.27154708001763	0,353515625
66	0.21336473058909	0,218994140625
67	0.16764864884317	0,144287109375
68	0.13172781467438	0,089111328125
69	0.10350348055363	0,055419921875
70	0.081326597370207	0,033203125
71	0.06390133779496	0,02294921875
72	0.050209704786539	0,01708984375
73	0.039451650343835	0,01025390625
74	0.030998638831079	0,00390625
75	0.024356808513403	

Itamasi Isa	Nilai FO lama – FO baru	Nilai FO lama – FO baru
Iterasi ke	(parameter kekuatan)	(parameter dampak)
76	0.019138054922223	
77	0.015037490986288	
78	0.011815511621535	
79	0.0092839077115059	

Berdasarkan hasil pengujian diatas, iterasi untuk parameter kekuatan berhenti pada iterasi ke 79 dengan nilai fungsi obyektif sebesar 0,009. Sedangkan iterasi untuk parameter dampak berhenti pada iterasi ke 74 dengan nilai fungsi obyektif sebesar 0,003. Iterasi perhitungan kedua parameter tersebut berhenti sesuai dengan syarat penghentian iterasi, yaitu jika nilai fungsi obyektif lebih kecil dari nilai *error* minimum.

6.1.2.2. Pengujian Algoritma Fuzzy C-Means

Pengujian metode dimaksudkan untuk mengetahui apakah algoritma *fuzzy c-means* telah diimplementasikan dengan benar sesuai dengan dasar teori algoritma *fuzzy c-means*. Pengujian dilakukan dengan cara membandingkan hasil perhitungan sistem dengan perhitungan manual. Pengujian dilakukan beberapa kali dengan jumlah cluster yang berbeda-beda.

Data yang digunakan untuk pengujian diambil dari dataset yang digunakan untuk sistem sebanyak 15 *record*. Tabel 6.1 berikut ini menunjukkan data yang akan digunakan sebagai bahan uji. Pengujian dilakukan pada sistem dengan parameter jumlah *cluster* adalah 3, *error* minimum adalah 0,01, dan jumlah iterasi maksimum adalah 1.

Tabel 6.2 Tabel pengujian metode Fuzzy C-Means

I_D	Kedalaman	Magnitudo	Jumlah Meninggal	Jumlah Luka- luka	Jumlah Rumah hancur	Jumlah Rumah rusak
3010	35	7,6	20	20	0	0
3046	30	8,1	0	0	0	0
3047	16	8,1	0	0	0	0
3064	100	7,3	0	0	340	0
3572	60	7,7	0	3	169	0
3600	70	7,2	1	0	326	2200
3745	50	7,6	0	0	0	0
3749	90	8,1	213	2096	0	2800
3955	60	7,6	1	0	0	0
4178	100	6,7	8	1856	95	206
4240	74	6,5	2	6	0	0
4307	90	5,2	8	27	0	0
4334	6	7,6	71	0	3000	0
4394	80	6,8	54	300	2000	5000
4396	33	5,5	71	100	0	0

Proses pengujian metode ini menggunakan matriks partisi U yang nilainya sudah ditentukan. Hal ini dilakukan agar nilai nilai yang muncul tidak acak, sehingga hasil perhitungan sistem dapat dibandingkan dengan hasil perhitungan pada excel. Matriks partisi yang digunakan untuk pengujian ditunjukkan oleh tabel 6.2 berikut ini.

Tabel 6.3 Matriks partisi U untuk pengujan

uik	ui1	ui2	ui3
u1k	0,15	0,56	0,29
u2k	0,34	0,26	0,4
u3k	0,67	0,09	0,24
u4k	0,31	0,41	0,28
u5k	0,23	0,45	0,32
u6k	0,2	0,59	0,21
u7k	0,47	0,13	0,4
u8k	0,6	0,23	0,17
u9k	0,5	0,23	0,27
u10k	0,5	0,2	0,3
u11k	0,35	0,15	0,5
u12k	0,22	0,3	0,48
u13k	0,42	0,36	0,22
u14k	0,23	0,55	0,22
u15k	0,15	0,27	0,58

a. Pengujian metode Fuzzy C-Means pada sistem

Hasil pengujian pada sistem ditunjukkan pada Tabel 6.3 berikut ini.

Tabel 6.4 Hasil Pengujian Fuzzy C-Means pada sistem

No.	I_D	cluster_kekuatan	cluster_dampak
1	3010	0	2
2	3046	0	2
3	3047	0	2
4	3064	1	2
5	3572	1	2
6	3600	1	1
7	3745	0	2
8	3749	1	1
9	3955	1	2
10	4178	1	0

11	4240	1	2
12	4307	1	2
13	4334	0	1
14	4394	1	1
15	4396	0	2

Hasil pengelompokan menunjukkan bahwa pada cluster_kekuatan terdapat enam data yang masuk *cluster* 0, sembilan data masuk *cluster* 1, dan tidak ada data yang masuk *cluster* 2. Sedangkan pada cluster_dampak terdapat satu data yang masuk *cluster* 0, empat data masuk *cluster* 1, dan sepuluh data masuk ke *cluster* 2. Adanya *cluster* yang kosong disebabkan karena jumlah iterasi yang sedikit.

b. Pengujian Algoritma Fuzzy C-Means pada MS Excel Tabel 6.4 berikut ini menunjukkan hasil pengelompokan fuzzy c-means pada MS Excel.

Tabel 6.5. Hasil Pengujian Fuzzy C-Means pada excel

No.	I_D	cluster_kekuatan	cluster_dampak
1	3010	0	2
2	3046	0	2
3	3047	0	2
4	3064	1	2
5	3572	1	2
6	3600	1	1
7	3745	0	2
8	3749	1	1
9	3955	1	2
10	4178	1	0
11	4240	1	2
12	4307	1	2
13	4334	0	1
14	4394	1	1
15	4396	0	2

Berdasarkan Tabel 6.3 dan Tabel 6.4 dapat disimpulkan bahwa perhitungan *clustering fuzzy c-means* antara sistem dengan excel menghasilkan nilai *cluster* yang sama untuk kedua parameter yang digunakan.

Dari hasil pengujian diatas dapat dilihat perbandingan hasil pengelompokan dari kedua parameter. Dari 15 data yang dikelompokkan, hanya tiga data yang masuk kedalam kelompok yang sama yaitu data dengan ID 3600, 3749, dan 4394. Sehingga dapat disimpulkan bahwa antara hasil pengelompokan parameter kekuatan dengan parameter dampak kurang memiliki keterkaitan.

BAB VII. KESIMPULAN

7.1. Kesimpulan

Berdasarkan pembahasan dari Bab 1 sampai dengan Bab 6 dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Sistem yang telah dibuat dapat melakukan pengelompokan data gempa menggunakan metode *fuzzy c-means* berdasarkan parameter kekuatan gempa dan parameter dampak gempa.
- 2. Hasil dari pengelompokan *fuzzy c-means* menunjukkan beberapa kesimpulan. Perhitungan berdasarkan parameter kekuatan menunjukkan bahwa kebanyakan data terpusat pada *cluster* dengan kekuatan magnitudo yang besar. Sedangkan hasil perhitungan dari parameter dampak gempa menunjukkan bahwa kebanyakan data terpusat pada *cluster* dengan rentang jumlah kerugian yang kecil dan rentang jumlah rumah hancur yang juga sedikit.
- 3. Hasil pengelompokan *fuzzy c-means* antara parameter kekuatan gempa dan parameter dampak gempa tidak memiliki keterkaitan.

7.2. Saran

Berdasarkan pembahasan dan pengujian yang telah dilakukan, ada beberapa hal yang dapat dijadikan saran untuk mengembangkan sistem ini. Salah satunya dengan ditambahkan fitur untuk menentukan tingkat keparahan suatu kejadian gempa.

DAFTAR PUSTAKA

- [1] Naryanto, H S dan Wisyanto. 2005. Kajian dan Analisis Potensi Bencana Tsunami, Konfigurasi Pantai serta Mitigasi Bencana di Pantai Selatan Jawa Timur: Belajar dari Pengalaman Bencana Tsunami Banyuwangi Tahun 1994. Jurnal Alami. Vol 10 No 2 th. 2005. Jakarta.
- [2] Santoso, E.W. 2005. Penataan Ruang Kota Meulaboh Pasca Gempa Bumi dan Tsunami 26 Desember 2004. Usulan Rekomendasi. Jurnal Air, Lahan, Lingkungan, dan Mitigasi Bencana. P3TPSLK BBPT. Jakarta.
- [3] Setiawan, K. 2009. Waspada Bencana Bersama BMKG. Pustaka Cakra. Surakarta.
- [4] National Geophysical Data Center (NGDC). Diakses pada 13 Juli 2017. https://www.ngdc.noaa.gov/hazard/earthqk.shtml
- [5] Nurjanah, dkk. 2014. Implementasi Metode Fuzzy C-Means pada Sistem Clustering Data Varietas Padi. Kumpulan Jurnal Ilmu Komputer (KLIK). Universitas Lambung Mangkurat. Banjarbaru.
- [6] Hadi, HY. 2005. Pembagian Kelas Kuliah Mahasiswa Menggunakan Algoritma Pengklasteran *Fuzzy*. Universitas Diponegoro. Semarang.
- [7] Perdana, Sukma. 2016. Sumber Belajar Penunjang PLPG 2016: Hubungan Letak Astronomis, Geografis, Geologis dan Luas Wilayah dengan Sumberdaya di Indonesia.
- [8] Lutgens. 1982. Essentials of Geology. A Bell & Howell Company. Ohio.
- [9] Hidayat, Nur dan Santoso, Eko Widi. 1997.Gempa Bumi dan Mekanismenya. Jurnal ALAMI: Jurnal Air, Lahan, Lingkungan, dan Mitigasi Bencana. Badan Pengkajian dan Penerapan Teknologi.
- [10] Supartoyo, dan Surono. 2008. Katalog Gempa Bumi Merusak di Indonesia tahun 1629 2007. Departemen Energi dan Sumber Daya Mineral, Badan Geologi Pusat Vulkanologi dan Mitigasi Bencana Geologi.

- [11] Winardi, A. 2006. Gempa Jogja, Indonesia & Dunia. Gramedia. Jakarta.
- [12] Utami, Putri. 2014. Rancang Bangun Spasial Web Service Ancaman dan Resiko Bencana Alam (Studi Kasus: Wilayah Pemantauan Badan Nasional Penanggulangan Bencana).
- [13] Munir, Badrul. 2016. Analisis Hasil Pengamatan Hilal Badan Meteorologi Klimatologi dan Geofisika (BMKG) Pusat pada Tahun 2010M 2015M.
- [14] Nugroho, Bunafit. 2004. Aplikasi Pemrograman Web Dinamis dengan PHP dan MySQL, Gava Media, Yogyakarta.
- [15] Peranginangin, Kasiman. 2006. Aplikasi Web dengan PHP dan MySQL. Penerbit Andi. Yogyakarta.
- [16] Turban, E. 2005. *Decision Support System and Intelligent Systems*. Penerbit Andi. Yogyakarta.
- [17] Davies, and Paul Beynon, 2004, Database Systems Third Edition, Palgrave Macmillan, New York.
- [18] Pramudiono, I. 2007. Pengantar Data Mining: Menambang Permata Pengetahuan di Gunung Data. http://www.ilmukomputer.org/wp-content/uploads/2006/08/iko-datamining.zip Diakses pada tanggal 10 Januari 2017.
- [19] Santosa, Budi, 2007, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis, Graha Ilmu, Yogyakarta.
- [20] Witten, I. H and Frank, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques Second Edition. Morgan Kauffman: San Fransisco.
- [21] Luhfi, Emha Taufiq, 2007. Fuzzy C-Means untuk Clustering Data (Studi Kasus: Data Performance Mengajar Dosen).
- [22] Henjaya, R. 2010. Penerapan Algoritma K-Means pada Clustering Berita Berbahasa Indonesia. Universitas Indonesia. Jakarta.

DAFTAR LAMPIRAN

Lampiran 1 Kode Program

```
// file controller
// upload data
public function uploadDataset()
if($this->mfcm->dataGempaIsEmpty() == FALSE)
      $this->errormsg("Error saat proses upload file", "Anda sudah
pernah melakukan upload file dataset.");
else
{
      $this->input->post('selected dataset');
      $uploaddir = "uploaddir/";
      $uploadfile = $uploaddir .
basename($ FILES['selected dataset']['name']);
(move uploaded file($ FILES['selected dataset']['tmp name'],
$uploadfile))
      {
            $this->neatFile();
      }
      else
      {
            $this->errormsg("Error saat proses upload file",
"Error No.: ".$ FILES['selected dataset']['error']);
}
// preprocessing
public function neatFile()
$file = 'uploaddir/' .
basename($ FILES['selected dataset']['name']);
$fileContent = file_get_contents($file);
// cek jika ada tab yang berlebihan
pattern = '/\t+/';
$replacement = "\t";
$newFileContent = preg_replace($pattern, $replacement,
$fileContent);
// cek jika ada spasi yang berlebihan
pattern = '/ +/';
$replacement = "";
$newFileContent = preg_replace($pattern, $replacement,
$newFileContent);
if(file put contents($file, $newFileContent))
      $this->mfcm->importToDatabase($file);
```

```
$this->trainingData();
}
}
// proses fuzzy c-means
public function processDataset()
// validasi untuk memeriksa apakah sudah pernah melakukan training
sebelumnya
// jika sudah, tampilkan alert ke user
if($this->mfcm->hasilTrainingIsEmpty() == TRUE)
      // mengambil inputan user
      $jml cluster = $this->input->post('jml cluster');
      $data['jmlCluster'] = $jml cluster;
      $minErr = $this->input->post('e');
      $maxIter = $this->input->post('maxIter');
      // menghitung banyaknya row
      $jml data = $this->mfcm->countRow();
      // deklarasi nilai weighting exponent
      $wExp = 2;
      $SelectedVariable kekuatan = array(0 => 'FOCAL DEPTH', 1 =>
'EQ PRIMARY');
      $SelectedVariable dampak = array(0 => 'TOTAL DEATHS', 1 =>
'TOTAL MISSING', 2 => 'TOTAL INJURIES', 3 =>
'TOTAL DAMAGE MILLIONS DOLLARS', 4 => 'TOTAL HOUSES DESTROYED', 5
=> 'TOTAL HOUSES DAMAGED');
      // mengambil semua data dari `tb_noaa`
      $data['dataset'] = $this->mfcm->getAllData();
      // mengambil data secara spesifik
      // yaitu data yang akan digunakan dalam perhitungan FCM
      $mergedVariable kekuatan = $this-
>mergeSelectedVariable($SelectedVariable kekuatan);
      $mergedVariable dampak = $this-
>mergeSelectedVariable($SelectedVariable dampak);
      $data['selectedDataset kekuatan'] = $this->mfcm-
>selectAllSpecificVariable ($\frac{\pi}{m}\text{ergedVariable kekuatan});
      $data['selectedDataset dampak'] = $this->mfcm-
>selectAllSpecificVariable($mergedVariable dampak);
      // generate matriks U dan mengisinya dengan angka random
      $matriksU = $this->generateRandomMatrix($data['jmlCluster'],
$jml data);
      \phi = 0;
      // jalankan perulangan sampai maxIter
      for($a = 0; $a < $maxIter; $a++)
            $objFunctionOld = $objFunction;
            // hitung Vkj
```

```
$centroid kekuatan = $this-
>hitungCentroid($data['selectedDataset kekuatan'], $matriksU,
$data['jmlCluster'], $jml data, $SelectedVariable kekuatan,
$wExp);
             // hitung fungsi obyektif
            $dataFO kekuatan = $this-
>hitungFungsiObjektif($data['selectedDataset kekuatan'],
$centroid kekuatan, $data['jmlCluster'], $jml data,
$SelectedVariable kekuatan, $matriksU, $wExp);
            $objFunction kekuatan =
$dataFO kekuatan['ObjFunction'];
            // hitung perubahan matriksU
            $matriksU kekuatan = $this-
>hitungPerubahanMatriksU($data['jmlCluster'], $jml data,
$dataFO kekuatan, $wExp);
            // cek apakah selisih nilai FO kurang dari minErr
            // jika ya, hentikan proses c-means
            if(abs($objFunction - $objFunctionOld) < $minErr)</pre>
                   break;
             }
      \phi = 0;
      for (\$a = 0; \$a < \$maxIter; \$a++)
            $objFunctionOld = $objFunction;
            // hitung Vkj
            $centroid dampak = $this-
>hitungCentroid($data['selectedDataset dampak'], $matriksU,
$data['jmlCluster'], $jml data, $SelectedVariable dampak, $wExp);
            // hitung fungsi obyektif
            $dataFO dampak = $this-
>hitungFungsiObjektif($data['selectedDataset dampak'],
$centroid_dampak, $data['jmlCluster'], $jml_data,
$SelectedVariable_dampak, $matriksU, $wExp);
            $objFunction dampak = $dataFO dampak['ObjFunction'];
            // hitung perubahan matriksU
            $matriksU dampak = $this-
>hitungPerubahanMatriksU($data['jmlCluster'], $jml data,
$dataFO dampak, $wExp);
            // cek apakah selisih nilai FO kurang dari minErr
            // jika ya, hentikan proses c-means
            if(abs($objFunction - $objFunctionOld) < $minErr)</pre>
                   break;
            }
      }
```

```
// assign setiap data ke cluster yang sesuai
      arr[] = array();
      for($i = 0; $i < count($data['dataset']); $i++){</pre>
            $arr[$i]['I D'] = $data['dataset'][$i]['I D'];
      $data['clusteredDataset'] = $arr;
      $data['clusteredDataset'] = $this-
>assignToCluster($jml data, $jml cluster, $matriksU kekuatan,
$data['clusteredDataset'], 'cluster kekuatan');
      $data['clusteredDataset'] = $this-
>assignToCluster($jml data, $jml cluster, $matriksU dampak,
$data['clusteredDataset'], 'cluster dampak');
      $this->mfcm-
>insertIntoHasilTraining($data['clusteredDataset']);
      // lakukan query select untuk kedua tabel
      // tujuannya untuk menggabungkan data kegempaan dan data
hasil pengelompokan
      $data['clusteredMerged'] = $this->mfcm->selectGabungan();
      $this->generateGeojson($data['clusteredMerged']);
      $this->generateJsonForTable($data['clusteredMerged'],
"json/clustered.json");
      $this->load->view('header');
      $this->load->view('navbar');
      $this->load->view('fcm/hasil', $data);
      $this->load->view('exscripts');
      $this->load->view('scripts');
      $this->load->view('footer');
}
else
      $this->errormsg("Training data sudah pernah dilakukan",
"Anda sudah melakukan training data sebelumnya.");
}
```

Lampiran 2 Dataset Gempa Bumi Siginifikan NOAA untuk wilayah Indonesia

I_D	YEAR	MONTH	DAY	FOCAL_ DEPTH	EQ_ PRIMARY	LATITUDE	LONGITUDE	TOTAL_ DEATHS	TOTAL_ MISSING	TOTAL_ INJURIES	TOTAL_ DAMAGE_	TOTAL_ HOUSES_	TOTAL_ HOUSES_
											MILLION_ DOLLARS	DESTROYED	DAMAGED
5983	1674	2	17	40	6.8	-3.750	127.750	2330	0	41	0	0	0
1620	1815	11	22	150	7.0	-8.000	115.000	11453	0	0	0	0	0
6642	1818	11	8	600	8.5	-7.000	117.000	0	0	0	0	0	0
1653	1820	12	29	80	7.5	-7.000	119.000	500	0	0	0	0	0
6071	1823	9	9	150	6.8	-6.500	108.500	0	0	0	0	0	0
1763	1833	11	24	75	8.3	-2.500	100.500	0	0	0	0	0	0
6050	1837	9	29	100	7.3	5.500	96.000	0	0	0	0	0	0
1819	1840	1	4	150	7.0	-8.000	110.500	0	0	0	0	0	0
6054	1843	1	5	70	7.3	1.500	98.000	0	0	0	0	0	0
9907	1852	1	9	150	6.5	-6.500	105.500	0	0	0	0	0	0
1934	1852	11	25	100	8.3	-5.250	129.750	60	0	0	0	0	0
6126	1857	5	13	50	7.0	-8.000	115.500	36	0	0	0	0	0
2043	1861	2	16	70	8.5	-1.000	97.500	1105	0	0	0	0	0
6142	1861	3	9	20	7.0	-9.000	98.000	950	0	0	0	96	0
6143	1861	4	26	70	7.0	1.000	97.500	0	0	0	0	0	0
6184	1876	5	28	50	6.8	-3.000	127.250	0	0	0	0	0	0
6309	1889	9	6	70	8.0	1.000	126.250	0	0	0	0	0	0
6570	1891	10	5	80	7.0	-9.000	124.000	0	0	0	0	0	0
6571	1892	11	18	70	7.0	-3.000	127.500	0	0	0	0	0	0
6226	1896	10	10	130	6.8	-3.500	102.500	0	0	0	0	0	0
6647	1897	3	15	15	5.5	-6.800	120.800	0	0	0	0	0	0
6574	1900	10	7	33	6.9	-4.000	140.000	5	0	0	0	1	0
6237	1903	3	30	33	6.5	-3.000	127.500	0	0	0	0	0	0
2702	1905	1	22	90	8.4	1.000	123.000	0	0	0	0	0	0
2800	1907	1	4	50	7.8	2.000	94.500	400	0	0	0	0	0
6246	1907	3	29	500	7.3	3.000	122.000	0	0	0	0	0	0

2813	1907	6	25	200	7.9	1.000	127.000	0	0	0	0	0	0
6250	1908	2	6	130	7.5	-2.000	100.000	0	0	0	0	0	0
2868	1909	6	3	40	7.6	-2.000	101.000	0	0	0	0	0	0
2973	1913	3	14	15	7.8	5.354	126.121	138	0	0	0	0	0
3005	1914	5	26	15	8.1	-1.829	136.943	0	0	0	0	0	0
3010	1914	6	25	35	7.6	-3.924	101.820	20	0	20	0	0	0
3046	1916	1	13	30	8.1	-3.000	136.000	0	0	0	0	0	0
3047	1916	1	13	16	8.1	-3.000	135.500	0	0	0	0	0	0
3064	1916	9	11	100	7.3	-9.000	113.000	0	0	0	0	340	0
3094	1917	8	30	100	7.8	-7.500	128.000	0	0	0	0	0	0
3128	1918	11	18	190	8.1	-7.000	129.000	0	0	0	0	0	0
6085	1930	6	19	33	6.0	-5.600	105.300	0	0	0	0	0	0
6086	1930	7	19	100	6.5	-9.300	114.300	0	0	0	0	0	0
3567	1935	12	28	33	7.9	-8.500	98.250	0	0	0	0	0	0
3572	1936	4	1	60	7.7	4.500	126.500	0	0	3	0	169	0
3600	1937	9	27	70	7.2	-9.400	110.200	1	0	0	0	326	2200
3609	1938	2	1	25	8.5	-5.250	130.500	0	0	0	0	24	8
3651	1939	12	21	150	8.0	-8.500	123.000	0	0	0	0	0	0
3705	1942	5	28	120	7.5	-8.500	124.000	0	0	0	0	0	0
3745	1943	6	9	50	7.6	-1.000	101.000	0	0	0	0	0	0
3749	1943	7	23	90	8.1	-9.500	110.000	213	0	2096	0	0	2800
3762	1943	11	6	60	7.6	-6.000	134.500	0	0	0	0	0	0
3777	1944	3	22	220	7.5	-8.500	123.500	0	0	0	0	0	0
3872	1948	3	1	60	7.9	-3.000	127.500	0	0	0	0	0	0
3955	1950	10	8	60	7.6	-3.800	128.300	1	0	0	0	0	0
3956	1950	11	2	60	8.1	-6.500	129.500	0	0	0	0	0	0
4102	1956	7	18	190	7.5	-5.500	130.000	0	0	0	0	0	0
4121	1957	4	16	600	7.5	-4.600	107.100	0	0	0	0	0	0
4132	1957	6	22	33	7.3	-1.500	137.000	0	0	0	0	0	0
6324	1958	4	21	200	6.7	-4.500	104.000	0	0	0	0	0	0
4178	1958	10	20	100	6.7	-9.500	112.500	8	0	1856	0	95	206
4240	1961	3	16	74	6.5	-8.200	122.000	2	0	6	0	0	0
4292	1963	5	18	65	6.0	-8.200	115.600	0	0	0	0	0	0

4306	1963	11	4	100	8.3	-6.860	129.580	0	0	0	0	0	0
6408	1963	12	16	64	6.6	-6.400	105.400	0	0	0	0	0	0
4307	1964	1	8	90	5.2	-3.700	119.400	8	0	27	0	0	0
4313	1964	4	2	130	7.0	5.900	95.700	0	0	0	0	0	0
4334	1965	1	24	6	7.6	-2.400	126.100	71	0	0	0	3000	0
4394	1967	2	19	80	6.8	-9.200	113.100	54	0	300	0	2000	5000
4396	1967	4	11	33	5.5	-3.700	119.300	71	0	100	0	0	0
4397	1967	4	12	100	6.1	5.500	97.300	14	0	0	0	2000	0
4441	1968	5	28	65	7.7	-2.900	139.300	0	0	0	0	0	0
4452	1968	8	10	25	7.6	1.400	126.200	0	0	0	0	0	0
4454	1968	8	14	23	7.4	3.320	119.800	200	0	58	0	800	0
4474	1969	1	30	70	7.5	4.800	127.400	0	0	0	0	0	0
4476	1969	2	23	13	7.4	-3.100	118.900	664	0	97	0	1287	0
4508	1969	11	21	20	7.7	2.100	94.600	0	0	0	0	0	0
4554	1971	1	10	34	8.1	-3.100	139.700	0	0	0	0	0	0
4555	1971	2	4	40	7.1	4.332	98.800	0	0	0	0	0	0
4568	1971	6	16	35	5.2	-7.200	109.100	1	0	6	0	0	1377
4605	1972	6	11	325	7.8	3.900	124.300	0	0	0	0	0	0
4683	1975	2	9	27	5.6	-6.700	106.700	1	0	0	0	0	0
4729	1976	6	25	33	7.1	-4.603	140.091	6000	0	0	0	0	0
4731	1976	7	14	40	6.5	-8.170	114.888	573	0	4755	195.000	0	0
4746	1976	10	29	33	7.1	-4.517	139.918	133	0	0	0	0	0
4758	1977	1	26	33	5.2	-8.220	115.190	0	0	0	0	0	0
4763	1977	3	8	22	6.0	2.832	100.020	0	0	0	0	0	0
4779	1977	8	19	33	8.0	-11.085	118.464	189	0	75	1.200	0	0
4832	1979	5	21	43	5.4	-8.299	115.934	0	0	0	0	0	0
4834	1979	5	30	25	5.8	-8.207	115.949	22	0	0	4.150	0	0
4842	1979	9	12	5	7.9	-1.679	136.040	115	0	0	0	1000	0
4849	1979	19	20	38	6.2	-8.254	115.847	2	0	40	0	0	0
4851	1979	11	2	62	6.1	-7.656	108.252	30	0	200	16.000	0	0
4866	1979	12	15	33	6.6	-3.299	102.712	8	0	162	0	2500	0
4867	1979	12	17	33	6.3	-8.390	115.889	27	0	200	0	0	0
4872	1980	4	16	84	5.8	-8.082	108.793	0	0	0	0	0	0

4909	1981	1	19	33	6.7	-4.576	139.232	305	0	0	5.000	0	0
4939	1982	2	10	40	5.5	-6.863	106.936	0	0	17	3.500	0	0
6461	1982	2	24	52	5.4	4.374	97.755	0	0	0	0	0	0
6512	1982	3	11	33	6.4	-9.265	118.489	0	0	0	0	0	0
4949	1982	8	6	46	5.6	-8.375	120.577	0	0	0	0	0	0
4959	1982	12	25	33	5.9	-8.405	123.080	13	0	390	1.450	1875	0
6463	1983	3	12	17	6.5	-4.056	127.924	0	0	0	0	0	0
4973	1983	4	4	79	6.6	5.723	94.722	0	0	100	1.000	0	0
4992	1983	10	16	40	6.0	1.084	121.052	0	0	0	0	20	15
4993	1983	10	25	33	6.1	1.131	120.858	2	0	4	0	20	4
5019	1984	1	8	33	6.6	-2.823	118.806	2	0	89	0	0	685
5043	1984	8	27	33	5.2	1.761	99.075	0	0	123	1.000	415	0
5063	1985	4	13	99	6.2	-9.245	114.185	0	0	0	0	0	0
5074	1985	9	15	10	6.3	-4.130	136.049	10	0	7	0	0	0
5085	1985	11	17	10	7.1	-1.639	134.911	0	0	0	0	0	0
5090	1986	1	29	33	5.0	-3.094	103.461	0	0	2	0	0	0
5134	1987	4	25	11	6.6	2.244	98.866	2	0	22	1.000	300	0
5150	1987	11	26	33	6.5	-8.247	124.155	125	0	108	5.000	237	0
5188	1989	3	8	32	5.6	1.031	126.189	0	0	0	0	0	0
5206	1989	7	14	10	6.2	-8.081	125.129	0	0	0	0	0	0
5207	1989	8	1	14	5.8	-4.511	139.022	0	0	0	0	0	0
5210	1989	9	4	9	6.0	-4.219	136.667	0	0	0	0	0	0
5231	1990	4	18	26	7.6	1.186	122.857	3	0	25	0	0	1140
5251	1990	7	6	14	4.8	-6.904	108.120	0	0	103	0	10300	0
5265	1990	11	15	48	6.8	3.908	97.457	1	0	32	2.100	0	0
5294	1991	6	20	31	7.5	1.196	122.787	0	0	0	0	0	1500
5296	1991	7	4	29	6.5	-8.099	124.681	28	0	181	7.700	1150	0
5315	1992	2	4	58	4.4	-7.138	109.067	0	0	1	0	800	700
5343	1992	12	12	28	7.8	-8.480	121.896	2500	0	2103	100.000	31785	0
5375	1994	1	21	20	7.0	1.015	127.733	9	0	300	0	0	550
5379	1994	2	15	23	6.9	-4.967	104.302	207	0	2000	170.476	6000	0
5385	1994	6	2	18	7.8	-10.477	112.835	238	0	423	2.200	1500	0
6832	1994	6	3	26	6.6	-10.362	112.892	0	0	0	0	0	0

10108	1994	6	4	11	6.5	-10.777	113.366	0	0	0	0	0	0
6833	1994	6	5	17	6.1	-10.341	113.369	0	0	0	0	0	0
5393	1994	10	8	17	6.8	-1.258	127.980	1	0	52	0	0	500
6391	1995	3	19	33	6.9	-4.183	135.109	0	0	0	0	0	0
5410	1995	5	14	13	6.9	-8.452	125.049	11	0	19	0	0	0
5422	1995	10	6	33	6.8	-2.045	101.436	84	0	1868	0	17600	0
5428	1996	1	1	24	7.9	5.622	119.931	9	0	63	1.200	400	0
5433	1996	2	17	33	8.2	-0.891	136.952	164	0	423	4.200	5043	0
5471	1997	8	20	33	6.0	4.358	96.494	0	0	0	0	0	0
5474	1997	9	28	33	5.9	-3.776	119.727	20	0	300	1.100	650	0
5479	1997	11	25	24	7.0	1.241	122.536	0	0	0	0	0	0
5504	1998	9	28	152	6.6	-8.194	112.413	1	0	0	0	38	62
5510	1998	11	29	33	7.7	-2.071	124.891	41	0	107	200.000	1000	0
5549	1999	12	21	56	6.5	-6.845	105.555	5	0	220	3.900	0	2800
5557	2000	5	4	26	7.6	-1.105	123.573	46	0	264	30.000	10000	0
5560	2000	6	4	33	7.9	-4.721	102.087	103	0	2174	6.000	0	0
5563	2000	6	7	33	6.7	-4.612	101.905	1	0	0	0	0	600
5570	2000	7	12	33	5.4	-6.675	106.845	0	0	6	0	0	225
5610	2001	10	19	33	7.5	-4.102	123.907	0	0	0	0	0	0
5644	20028	8	15	10	6.2	-1.196	121.333	48	0	0	0	0	200
5651	2002	9	20	10	6.4	-1.680	134.234	0	0	0	0	0	31
5656	2002	10	10	10	7.6	-1.757	134.297	8	0	632	0	1000	900
5662	2002	11	2	30	7.3	2.824	96.085	3	0	65	0	0	994
5674	2003	1	23	33	5.5	-8.807	118.524	0	0	2	0	0	500
5684	2003	3	21	33	4.6	-6.983	108.468	0	0	0	0	0	800
5702	2003	3	25	33	6.5	-8.294	120.743	4	0	20	0	0	0
5696	2003	5	26	31	7.0	2.354	128.855	1	0	7	0	28	20
5713	2003	8	11	10	6.0	1.142	128.152	0	0	0	0	0	200
5745	2003	12	5	33	4.9	-8.137	120.524	0	0	0	0	0	0
5752	2004	1	1	45	5.8	-8.310	115.788	1	0	29	0	6000	0
6611	2004	1	28	17	6.7	-3.120	127.400	0	0	0	0	0	0
5758	2004	2	5	17	7.0	-3.615	135.538	37	0	682	0	2678	0
5759	2004	2	7	10	7.3	-4.003	135.023	0	0	0	0	0	0

5762	2004	2	16	56	5.1	-0.466	100.655	5	0	7	0	0	100
5763	2004	2	22	42	6.0	-1.559	100.488	0	0	1	0	0	0
5772	2004	4	9	66	5.4	-1.549	100.540	0	0	0	0	0	0
5774	2004	4	16	96	5.5	-8.669	114.650	0	0	0	0	0	0
5775	2004	4	23	66	6.7	-9.362	122.839	0	0	0	0	0	0
5810	2004	11	11	10	7.5	-8.152	124.868	34	0	400	0	781	16712
5817	2004	11	26	10	7.1	-3.609	135.404	32	0	130	55.000	328	0
5823	2004	12	26	30	9.1	3.316	95.854	227899	0	0	10.000.000	0	0
5839	2005	1	23	11	6.3	-1.198	119.933	1	0	4	0	0	0
5844	2005	2	2	15	4.8	-7.037	107.819	1	0	0	0	0	0
6657	2005	3	28	30	8.6	2.085	97.108	1313	0	340	0	300	0
6659	2005	4	10	19	6.7	-1.644	99.607	0	0	0	0	0	0
6757	2005	7	5	21	6.7	1.819	97.082	0	0	0	0	0	0
6758	2005	7	9	32	5.9	-1.174	119.963	0	0	0	0	6	0
6760	2005	7	18	10	5.3	-9.948	124.480	0	0	0	0	0	0
8956	2006	1	27	397	7.6	-5.473	128.131	0	0	0	0	0	0
7230	2006	3	14	30	6.7	-3.595	127.214	4	0	0	0	241	0
7233	2006	3	28	30	5.0	3.462	97.224	0	0	0	0	0	0
7244	2006	5	12	17	5.5	-5.575	105.395	0	0	0	0	0	0
7245	2006	5	26	13	6.3	-7.961	110.446	5749	0	38568	3.100.000	127000	0
7181	2006	7	17	34	7.7	-9.254	107.411	802	0	498	55.000	1623	0
7419	2006	11	24	31	5.2	-3.728	119.233	0	0	0	0	0	0
7414	2006	11	29	39	6.2	2.520	128.283	0	0	0	0	50	0
7420	2006	12	1	43	6.3	-8.251	118.777	1	0	14	0	20	0
7444	2006	12	17	30	5.8	459.20.00	99.859	7	0	100	0	680	0
7456	2007	1	21	22	7.5	1.065	126.282	4	0	4	0	0	0
7481	2007	3	6	19	6.4	-0.493	100.498	67	0	826	0	43719	0
7524	2007	5	29	24	6.1	-1.065	127.343	0	0	0	0	0	0
7599	2007	7	26	25	6.9	2.872	127.464	0	0	0	0	0	0
7533	2007	8	8	289	7.5	-5.968	107.655	0	0	0	0	0	0
7617	2007	9	9	35	4.8	-7.783	114.338	0	0	13	0	0	0
7574	2007	9	12	34	8.4	-4.438	101.367	25	0	161	0	56425	0
7575	2007	9	12	35	7.9	-2.625	100.841	0	0	0	0	0	0

7674	2007	11	25	35	6.5	-8.277	118.339	3	0	0	0	0	0
7747	2008	1	7	12	5.9	795	134.012	0	0	6	0	0	22
7750	2008	1	22	20	6.1	1.011	97.442	1	0	5	0	0	0
7870	2008	2	20	26	7.4	2.768	95.964	3	0	25	0	0	0
7743	2008	2	25	25	6.5	-2.486	99.972	0	0	0	0	0	0
8185	2008	9	9	25	5.4	-3.935	103.058	2	0	0	0	0	113
8191	2008	11	16	30	7.3	1.271	122.091	6	0	77	0	0	1000
8204	2009	1	3	17	7.6	414	132.885	5	0	250	0	0	840
8211	2009	1	3	23	7.3	691	133.305	0	0	0	0	0	0
8251	2009	2	11	22	7.2	3.884	126.397	0	0	64	0	0	597
8472	2009	8	16	20	6.7	-1.479	99.490	0	0	9	0	0	0
8386	2009	9	2	46	7.0	-7.782	107.297	81	0	1297	0	0	54000
8534	2009	9	18	79	5.7	-9.138	115.593	0	0	7	0	0	0
8409	2009	9	30	81	7.5	720	99.867	1117	0	1214	2.200.000	0	181665
8552	2009	10	1	10	6.6	-2.515	101.501	3	0	0	10.000	0	0
8451	2009	11	8	18	6.6	-8.207	118.631	2	0	200	2.430	0	0
8992	2010	1	10	65	5.1	-7.907	107.879	1	0	2	0	0	0
8973	2010	4	6	31	7.8	2.383	97.048	0	0	0	0	0	0
9092	2010	5	9	38	7.2	3.748	96.018	0	0	0	0	0	0
9292	2010	6	16	18	7.0	-2.174	136.543	17	0	0	0	2556	0
9592	2010	10	25	20	7.8	-3.487	100.082	431	0	0	39.000	700	0
9864	2011	4	24	8	6.1	-4.586	122.771	0	0	14	0	0	0
9840	2011	9	5	91	6.7	2.965	97.893	10	0	0	0	0	0
9879	2012	4	11	20	8.6	2.327	93.063	10	0	12	0	0	0
9880	2012	4	11	25	8.2	635.20.00	92.463	0	0	0	0	0	0
9909	2012	6	4	50	5.8	-7.692	106.371	0	0	2	0	0	23
9951	2012	7	25	22	6.5	2.707	96.045	1	0	0	0	0	20
9938	2012	8	18	10	6.3	-1.315	120.096	6	0	43	0	471	1097
9957	2013	1	21	12	6.1	4.927	95.907	1	0	15	0	0	71
10006	2013	6	22	47	5.1	-8.305	116.058	0	0	50	0	5370	1700
10005	2013	7	2	13	6.1	4.645	96.665	42	6	2500	0	20401	0
10038	2013	7	8	60	5.7	-8.803	113.002	0	0	1	0	124	0
10050	2013	10	22	48	5.3	5.067	96.031	1	0	2	0	0	160

10070	2014	1	25	89	6.1	-7.976	109.246	0	0	0	0	0	0
10119	2014	11	15	35	7.1	1.928	126.547	0	0	0	0	0	0
10149	2015	7	27	48	7.0	-2.683	138.508	0	1	0	0	0	5
10158	2015	9	24	18	6.6	631	131.244	0	0	39	0	0	260
10171	2016	1	16	46	5.5	-3.863	127.229	0	0	8	0	0	120
10175	2016	3	2	24	7.8	-4.908	94.275	0	0	0	0	0	0
10185	2016	6	7	38	6.3	1.295	126.355	0	0	0	0	0	0
10189	2016	7	31	10	5.9	-8.218	117.816	0	0	4	0	0	700
10215	2016	12	6	8	6.5	5.281	96.108	101	0	857	0	245	11922
10250	2017	5	29	12	6.8	-1.289	120.453	0	0	5	0	5	0