

ORBIT DETERMINATION

ASEN 5070

Fall 2011

LECTURE 9

9/12/2011

Supplemental Reading:

Sections 4.1 – 4.4

True or False

- 1) If the relationship between the observations and the state is linear we do not have to iterate the Newton-Raphson equation. _____
- 2) Given observations of range rate P_j , j=1----5, all elements of the following state vectors can be solved for (indicate T or F for case A and B)

$$\dot{\boldsymbol{\rho}}_{j} = \frac{1}{\boldsymbol{\rho}_{j}} \left[\left(\boldsymbol{x}_{0} - \boldsymbol{x}_{s} + \dot{\boldsymbol{x}}_{0} \boldsymbol{t}_{j} \right) \dot{\boldsymbol{x}}_{0} + \left(\boldsymbol{y}_{0} - \boldsymbol{y}_{s} + \dot{\boldsymbol{y}}_{0} \boldsymbol{t}_{j} - \frac{\boldsymbol{g} \boldsymbol{t}_{j}^{2}}{2} \right) \left(\dot{\boldsymbol{y}}_{0} - \boldsymbol{g} \boldsymbol{t}_{j} \right) \right]$$

- 3) The state vector in case 2.B could be solved for uniquely with one observation each of $\rho, \dot{\rho}, \theta, \dot{\theta}$ at one instant in time.
- 4) For problem 2.B we may use any initial guess for the state but it may take many iterations to converge. _____
- 5) Given:

$$\ddot{\theta} + \omega^2 \theta = 0 \qquad X_0 = \begin{bmatrix} \theta_0 \\ \dot{\theta}_0 \end{bmatrix} \qquad Y(t) = \begin{bmatrix} \theta_0(t) \\ \dot{\theta}_0(t) \end{bmatrix} + \varepsilon(t)$$

Since the observation-state and state propagation equations are linear we do not have to use a state deviation vector. _____

- 6) The differential equation in each column of $\dot{\Phi} = A\Phi$ is independent of the equations in other columns.
- 7) The least squares solution minimizes the sum of the residuals. _____
- 8) For the equation $y = Hx + \varepsilon$ we always have more unknowns than equations.
- 9) If the determinant of a symmetric matrix is negative (answer T or F)
 - a) It is not positive definite _____
 - b) It's inverse does not exist.
 - c) Some eigenvalues are imaginary. _____
- 10) The derivative of a scalar WRT a vector is a scalar.

11) The rank of
$$H = \begin{bmatrix} 2 & 3 & 6 \\ 4 & 6 & 12 \end{bmatrix}$$
 is 2. _____

Variable
\widetilde{H}
ϵ
ρ
θ
θ
Y
\widehat{X}_k
\widehat{X}_k $G(X,t)$ $\dot{\rho}$
ρ̈́
x
$\Phi(t,t_0)$
$\frac{\dot{\theta}}{X_k}$
X_k
X^*

Alternate Description of Φ using Taylor Series Expansion

Assume that we can write the solution for $X^*(t)$ based on initial conditions X_0^*

$$\mathbf{X}^{*}(t) = F\left(\mathbf{X}_{0}^{*}, t\right)$$

Expand the true solution about $X^*(t) = F(X_0^*, t)$ and retain 1st order terms

$$X(t) = X^*(t) + \frac{\partial X^*(t)}{\partial X_0} (X(t_0) - X^*(t_0)) + \dots$$

$$\mathbf{X}(t) - \mathbf{X}^*(t) = \frac{\partial \mathbf{X}^*(t)}{\partial \mathbf{X}_0} \left(\mathbf{X}(t_0) - \mathbf{X}^*(t_0) \right)$$

Define $\chi(t) = X(t) - X^*(t)$, then

$$\chi(t) = \frac{\partial X^{*}(t)}{\partial X_{0}} \chi(t_{0}) = \Phi(t, t_{0}) \chi_{0}$$

Alternate Description of Φ using Taylor Series Expansion

For example, assume that

$$X(t) = \begin{bmatrix} x \\ y \\ \dot{x} \\ \dot{y} \\ \alpha \end{bmatrix}$$

then $\Phi(t,t_0) = \frac{\partial X(t)}{\partial X(t_0)} = \frac{\partial X(t)}{\partial X_0}$ $X(t) = \begin{bmatrix} x \\ y \\ \dot{x} \\ \dot{y} \\ \alpha \end{bmatrix}$ α is a constant

and

$$\Phi(t,t_0) = \begin{bmatrix} \partial x(t) \middle & \partial x(t)$$

$$[0 \ 0 \ 0 \ 0 \ 1]$$

Let β represent a $j \times 1$ vector of force model parameters and γ a $k \times 1$ vector of measurement model parameters. β and γ are constants.

$$\mathbf{X} = \begin{bmatrix} \overline{r} \\ \overline{v} \\ \overline{\beta} \\ \overline{\gamma} \end{bmatrix} \qquad \dot{\mathbf{X}} = F\left(\mathbf{X}, t\right) = \begin{bmatrix} \dot{\overline{r}} \\ \dot{\overline{v}} \\ \dot{\overline{\beta}} = 0 \\ \dot{\overline{\gamma}} = 0 \end{bmatrix}$$

$$A = \frac{\partial F(\mathbf{X}, t)}{\partial \mathbf{X}} = \begin{bmatrix} \partial \overline{r} / \partial \overline{r} \end{bmatrix}_{3 \times 3} = 0 \quad \begin{bmatrix} \partial \overline{r} / \partial \overline{v} \end{bmatrix}_{3 \times 3} = 1 \quad \begin{bmatrix} \partial \overline{r} / \partial \overline{\beta} \end{bmatrix}_{3 \times j} = 0 \quad \begin{bmatrix} \partial \overline{r} / \partial \overline{y} \end{bmatrix}_{3 \times k} = 0 \\ \begin{bmatrix} \partial \overline{v} / \partial \overline{r} \end{bmatrix}_{3 \times 3} \quad \begin{bmatrix} \partial \overline{v} / \partial \overline{v} \end{bmatrix}_{3 \times 3} \quad \begin{bmatrix} \partial \overline{v} / \partial \overline{\beta} \end{bmatrix}_{3 \times j} \quad \begin{bmatrix} \partial \overline{v} / \partial \overline{y} \end{bmatrix}_{3 \times k} = 0 \\ \begin{bmatrix} \partial \overline{\beta} / \partial \overline{r} \end{bmatrix}_{j \times 3} = 0 \quad \begin{bmatrix} \partial \overline{\beta} / \partial \overline{v} \end{bmatrix}_{j \times 3} = 0 \quad \begin{bmatrix} \partial \overline{\beta} / \partial \overline{y} \end{bmatrix}_{j \times k} = 0 \\ \begin{bmatrix} \partial \overline{y} / \partial \overline{r} \end{bmatrix}_{j \times 3} = 0 \quad \begin{bmatrix} \partial \overline{y} / \partial \overline{v} \end{bmatrix}_{j \times 3} = 0 \quad \begin{bmatrix} \partial \overline{y} / \partial \overline{y} \end{bmatrix}_{j \times k} = 0 \end{bmatrix}$$

Colorado Center for Astrodynamics Research The University of Colorado

Hence, A(t) may be written as:

$$A = \begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix}_{3\times3} & \begin{bmatrix} I \end{bmatrix}_{3\times3} & \begin{bmatrix} 0 \end{bmatrix}_{3\times j} & \begin{bmatrix} 0 \end{bmatrix}_{3\times k} \\ \begin{bmatrix} \partial \overline{r} \\ \partial \overline{r} \end{bmatrix}_{3\times3} & \begin{bmatrix} \partial \overline{r} \\ \partial \overline{r} \end{bmatrix}_{3\times3} & \begin{bmatrix} \partial \overline{r} \\ \partial \overline{\rho} \end{bmatrix}_{3\times j} & \begin{bmatrix} 0 \end{bmatrix}_{3\times k} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & I & 0 & 0 \\ A_{21} & A_{22} & A_{23} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{(6+j+k)\times(6+j+k)}$$

Then $\dot{\Phi} = A\Phi$ yields

$$\dot{\Phi} = \begin{bmatrix} 0 & I & 0 & 0 \\ A_{21} & A_{22} & A_{23} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & 0 \\ \phi_{21} & \phi_{22} & \phi_{23} & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{bmatrix}_{(6+j+k)\times(6+j+k)}$$

$$=\begin{bmatrix} [\phi_{21}]_{3x3} & [\phi_{22}]_{3x3} & [\phi_{23}]_{3xk} & [0]_{3xk} \\ [A_{21}\phi_{11} + A_{22}\phi_{21}]_{3x3} & [A_{21}\phi_{12} + A_{22}\phi_{22}]_{3x3} & [A_{21}\phi_{13} + A_{22}\phi_{23} + A_{23}]_{3xj} & [0]_{3xk} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, we need only to integrate the $6 \times (6+j)$ matrix of differential equations,

$$\dot{\Phi}_1 = \begin{bmatrix} [\phi_{21} & \phi_{22} & \phi_{23} \\ [A_{21}\phi_{11} + A_{22}\phi_{21}] & [A_{21}\phi_{12} + A_{22}\phi_{22}] & [A_{21}\phi_{13} + A_{22}\phi_{23} + A_{23}] \end{bmatrix}_{6 \times (6+j)}$$

within I.C.

$$\Phi_{1}(t_{0},t_{0}) = \begin{bmatrix} \begin{bmatrix} I \end{bmatrix}_{6\times6} & \begin{bmatrix} 0 \end{bmatrix}_{6\times j} \end{bmatrix}$$

The remaining elements of Φ simply are the elements of an identity matrix.

Sympletic Property of Φ

Under certain conditions on A(t) the state transition matrix may be inverted analytically (Battin, 1987). Under these conditions Φ is referred to as being sympletic.

If the matrix A(t) can be partitioned in the form

$$A(t) = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \tag{4.2.12}$$

where the submatrices have the properties that

$$A_1^T = -A_4$$
, $A_2^T = A_2$, and $A_3^T = A_3$ (4.2.13)

Sympletic Property of Φ

Then $\Phi(t,t_k)$ can be similarly partitioned as

$$\Phi(t,t_k) = \begin{bmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{bmatrix}$$

and $\Phi^{-1}(t,t_k)$ may be written as

$$\Phi^{-1}(t,t_k) = \begin{bmatrix} \Phi_4^T & -\Phi_2^T \\ -\Phi_3^T & \Phi_1^T \end{bmatrix}$$
 (4.2.14)

If $\ddot{r} = \nabla U$ then Eq. (4.2.13) is true

Sympletic Property of Φ

In this case (consider a 2-D case for simplicity)

$$\ddot{x} = \frac{\partial U}{\partial x} \qquad X = \begin{bmatrix} x \\ y \\ u \\ v \end{bmatrix}$$

$$\ddot{y} = \frac{\partial U}{\partial y} \qquad V$$

$$A = \frac{\partial F}{\partial X} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{\partial^2 U}{\partial x^2} & \frac{\partial^2 U}{\partial x \partial y} & 0 & 0 \\ \frac{\partial^2 U}{\partial y \partial x} & \frac{\partial^2 U}{\partial y^2} & 0 & 0 \end{bmatrix}$$

$$\dot{x} = u$$
 $\dot{y} = v$

$$\dot{u} = \frac{\partial U}{\partial x} \qquad \dot{v} = \frac{\partial U}{\partial y}$$

and
$$A_1^T = -A_4 \; ,$$

$$A_2^T = A_2 \; , \quad A_3^T = A_3 \; .$$

Because
$$\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$$

 Φ is symplectic

14a) Generate the A(t) and H matrix for the pendulum problem. Assume that we wish to estimate θ , $\dot{\theta}$, and b_0 at some epoch time.

Derive the equations of motion from the free body diagram.

$$\overline{r} = \ell \overline{\varepsilon}_r$$
 $\dot{\overline{r}} = \ell \dot{\overline{\varepsilon}}_r = \ell \dot{\theta} \overline{\varepsilon}_{\theta}$

$$\ddot{\overline{r}} = \ell \ddot{\theta} \overline{\varepsilon}_{\theta} - \ell \dot{\theta}^2 \overline{\varepsilon}_{r}$$

$$m\overline{r} = \sum \overline{F}$$

$$m\ddot{r} = mg\cos\theta\overline{\varepsilon}_r - T\overline{\varepsilon}_r - mg\sin\theta\overline{\varepsilon}_\theta$$

$$m(\ell \ddot{\theta} \overline{\varepsilon}_{\theta} - \ell \dot{\theta}^2 \overline{\varepsilon}_{r}) = (mg \cos \theta - T) \overline{\varepsilon}_{r} - mg \sin \theta \overline{\varepsilon}_{\theta}$$

In component form:
$$\overline{\varepsilon}_r - m\ell\dot{\theta}^2 = mg\cos\theta - T$$
 (1)

$$\overline{\varepsilon}_{\theta} \qquad m\ell \, \ddot{\theta} = -mg \sin \theta \tag{2}$$

Eq. (2) gives us $\theta(t)$, $\dot{\theta}(t)$ and Eq. (1) gives the tension in the cord,

$$T = mg\cos\theta + m\ell\dot{\theta}^2$$

Hence, we need to solve
$$\ddot{\theta} = \frac{-g}{\ell} \sin \theta$$
, $\omega = \sqrt{\frac{g}{\ell}}$
$$= -\omega^2 \sin \theta$$

writing Eqs. in 1st order form:

$$A(t) = \frac{\partial \dot{X}(t)}{\partial X(t)} = \begin{bmatrix} \frac{\partial \alpha}{\partial \theta} & \frac{\partial \alpha}{\partial \alpha} & \frac{\partial \alpha}{\partial b_0} \\ \frac{\partial \dot{\alpha}}{\partial \theta} & \frac{\partial \dot{\alpha}}{\partial \alpha} & \frac{\partial \dot{\alpha}}{\partial b_0} \\ \frac{\partial \dot{b}_0}{\partial \theta} & \frac{\partial \dot{b}_0}{\partial \alpha} & \frac{\partial \dot{b}_0}{\partial b_0} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -\omega^2 \cos\theta & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\dot{\Phi}(t,t_{o}) = A(t)\Phi(t,t_{o}) = \begin{bmatrix} \dot{\phi}_{11} & \dot{\phi}_{12} \\ \dot{\phi}_{21} & \dot{\phi}_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^{2}\cos\theta & 0 \end{bmatrix}^{*} \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$$

Can we use LaPlace Transforms to solve for $\Phi(t,t_o)$?

Where $\begin{bmatrix} \end{bmatrix}^*$ indicates that A(t) is evaluated on a reference solution for $\theta(t)$.

Choose initial conditions θ_0^* , $\dot{\theta}_0^*$ and generate the reference trajectory while simultaneously integrating $\dot{\Phi}=A(t)\Phi_0^*$ i.e.

$$\dot{\theta} = \alpha$$

$$\dot{\alpha} = -\omega^2 \sin \theta$$

$$\dot{\phi}_{11} = \phi_{21}$$

$$\dot{\phi}_{12} = \phi_{22}$$

$$\dot{\phi}_{21} = -\omega^2 \cos(\theta) \phi_{11}$$

$$\dot{\phi}_{22} = -\omega^2 \cos(\theta) \phi_{12}$$

Note that we do not need to integrate equations for b_0 since it is a constant

IC:
$$\theta^*(t_0)$$
, $\dot{\theta}^*(t_0)$, $\Phi(t_0, t_0) = I$

i.e.,
$$\phi_{11}\left(t_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}\right)=\phi_{22}\left(t_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}\right)=1$$
 , $\phi_{12}\left(t_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}\right)=\phi_{21}\left(t_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}\right)=0$

To do this in Matlab we would use the Reshape command. Which would write a matrix as a vector and vice versa. (see hints under handouts on web – "Matlab help for solving problem 4.10"). The vector derivatives are:

Compute $ilde{H}$

From the law of cosines

$$\rho^{2} = b_{0}^{2} + l^{2} - 2b_{0}l\cos(90^{\circ} + \theta)$$

$$= b_{0}^{2} + l^{2} + 2b_{0}l\sin\theta$$

$$= \frac{1}{\rho} [b_{0}l\cos\theta \quad 0 \quad b_{0} + l\sin\theta]$$
Hence,
$$\widetilde{H} = \frac{\partial \rho}{\partial x} = \begin{bmatrix} \frac{\partial \rho}{\partial \theta} & \frac{\partial \rho}{\partial \alpha} & \frac{\partial \rho}{\partial b_{0}} \end{bmatrix}$$

 $ilde{H}$ is evaluated on the reference solution

The observations are related to a reference state deviation vector by,

$$y(t_{1}) = \tilde{H}(t_{1})\Phi(t_{1}, t_{0})x_{0} + \varepsilon_{1}$$

$$y(t_{2}) = \tilde{H}(t_{2})\Phi(t_{2}, t_{0})x_{0} + \varepsilon_{2}$$

$$y(t_{m}) = \tilde{H}(t_{m})\Phi(t_{m}, t_{0})x_{0} + \varepsilon_{m}$$

$$y(t_{m}) = \begin{bmatrix} \tilde{H}(t_{1})\Phi(t_{1}, t_{0}) \\ \vdots \\ \tilde{H}(t_{m})\Phi(t_{m}, t_{0}) \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{m} \end{bmatrix}$$

Then
$$y = Hx_0 + \varepsilon$$
 and $\hat{x}_0 = (H^T H)^{-1} H^T y$

$$= \left(\sum_{i=1}^m H_i^T H_i\right)^{-1} \sum_{i=1}^m H_i^T y_i$$

Defining

Here

$$x_0 = (X_0 - X_0^*) = \begin{bmatrix} \theta_0 - \theta_0^* \\ \alpha_0 - \alpha_0^* \\ b_0 - b_0^* \end{bmatrix}$$
 at reference time, t_0

and $y(t_i) = \rho(t_i)$ observed - $\rho(t_i)$ computed

14 b) Assume small oscillations, i.e., $\sin \theta = \theta$, $\cos \theta = 1$. Then the equations of motion become

$$\ddot{\theta} + \frac{g}{l}\theta = 0$$

$$\ddot{\theta} + \omega^2 \theta = 0$$

Define

$$\omega = \sqrt{g/l}$$

This is the equation for a harmonic oscillator which has the solution

$$\theta(t) = A\cos\omega t + B\sin\omega t$$

The constants are evaluated by noting that $t=t_0=0, \ \theta=\theta_0, \ \dot{\theta}=\dot{\theta_0}$

Hence,

$$\theta(t) = \theta_0 \cos \omega t + \frac{\dot{\theta}_0}{\omega} \sin \omega t$$

$$\dot{\theta}(t) = \alpha(t) = -\theta_0 \omega \sin \omega t + \dot{\theta}_0 \cos \omega t$$

We may now write the state transition matrix directly by differentiating the solution for $\theta(t)$ and $\alpha(t)$, i.e.,

$$\Phi(t, t_0 = 0) = \frac{\partial X(t)}{\partial X(t_0)}$$

$$= \begin{bmatrix} \cos \omega t & \frac{1}{\omega} \sin \omega t & 0 \\ -\omega \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Alternatively write $\ddot{\theta} = -\omega^2 \theta$ as a 1st order system

14c) The assumption that θ is small restricts this solution to small values of θ . However, if we linearize $\theta(t)$ about a reference solution, we do not require that $\theta(t)$ be small, only that the deviation of $\theta(t)$ from the reference, $\theta^*(t)$, be small.

If an apriori value is available for \mathcal{X}_k (call it $\overline{\mathcal{X}}_k$) and an associated symmetric weighting matrix \overline{w}_k , the weighted least squares estimate of $\hat{\mathcal{X}}_k$ can be obtained.

Given

$$y = Hx_{k} + \varepsilon$$

$$\overline{\boldsymbol{x}}_{k} = \boldsymbol{x}_{k} + \boldsymbol{\eta}_{k}$$

Where η_k is the error in $\overline{\mathcal{X}}_k$ and its influence on $\hat{\mathcal{X}}_k$ is reflected in the weighting matrix $\overline{\mathcal{W}}_k$

and
$$[y]_{m \times 1}$$
, $[\overline{x}_k]_{n \times 1}$

Choose \hat{x}_k to minimize the performance index

$$J(x_k) = \frac{1}{2} \varepsilon^T w \varepsilon + \frac{1}{2} \eta_k \overline{w}_k \eta_k^T$$

Writing $J(x_k)$ explicitly in terms of x_k

$$J(x_k) = \frac{1}{2} (y - Hx_k)^T w(y - Hx_k) + \frac{1}{2} (\overline{x}_k - x_k)^T \overline{w}_k (\overline{x}_k - x_k)$$
(4.3.24)

$$\frac{\partial J(x_k)}{\partial x_k} = 0$$

Results in (See Eq B.7.4)

$$\frac{\partial J(x_k)}{\partial x_k} = -(y - Hx_k)^T wH - (\overline{x}_k - x_k)^T w_k = 0$$

$$=-y^{T}wH+x_{k}^{T}H^{T}wH-\overline{x}_{k}^{T}w_{k}+x_{k}^{T}w_{k}=0$$

Solving for \mathcal{X}_k yields $\hat{\mathcal{X}}_k$

$$x_k^T \left(H^T w H + w_k \right) = y^T w H + \overline{x}_k^T w_k$$

$$\hat{x}_k^T = \left(y^T w H + \overline{x}_k^T w_k\right) \left(H^T w H + w_k\right)^{-1}$$

$$\hat{x}_k = \left(H^T w H + w_k\right)^{-1} \left(H^T w y + w_k \overline{x}_k\right) \quad (4.3.25)$$

Note that
$$(H^T w H + w_k)^{-1}$$
 is symmetric

also

$$\frac{\partial^2 J(x_k)}{\partial x_k^2} = H^T w H + w_k$$

which will be positive definite if H and/or w_k is full rank. Hence, \hat{x}_k minimizes $J(x_k)$.