II Comportement thermique d'une habitation

Cette partie s'intéresse à l'isolation thermique d'une maison.

On décrit l'habitation en la décomposant en trois systèmes : le {milieu extérieur}, {l'intérieur}, {les murs}.

- L'intérieur est de l'air de capacité thermique à pression constante C_1 et de température $T_1(t)$.
- Les murs sont de capacité thermique à pression constante C_2 et de température $T_2(t)$.
- Le milieu extérieur agit comme un thermostat à la température T_e .
- On note R_1 la résistance thermique de l'ensemble de l'isolant placé à l'intérieur de la maison, contre les murs. L'intérieur cède donc une puissance thermique $(T_1 T_2)/R_1$ vers les murs.

- On note R_2 la résistance thermique de l'ensemble de l'isolant placé à l'extérieur de la maison, contre les murs. Les murs cèdent donc une puissance thermique $(T_2 T_e)/R_2$ vers l'extérieur.
- Le chauffage apporte une puissance thermique φ constante à l'intérieur.

Toutes les évolutions sont isobares, les solides et liquides sont supposés incompressibles et indilatables et les gaz parfaits.

17 - On étudie l'évolution des températures T_1 et T_2 . Montrer en justifiant qu'elles suivent les équations différentielles suivantes :

$$C_2 \frac{\mathrm{d}T_2}{\mathrm{d}t} = \frac{T_1 - T_2}{R_1} - \frac{T_2 - T_e}{R_2},\tag{2}$$

$$C_1 \frac{\mathrm{d}T_1}{\mathrm{d}t} = \varphi - \frac{T_1 - T_2}{R_1}.\tag{3}$$

II.1 Étude 1 : refroidissement lorsque le chauffage est coupé

Uniquement dans les **3 questions suivantes**, on suppose le chauffage coupé. De plus, la maison est uniquement isolée par l'intérieur ($R_2 = 0$ et $\forall t, T_2 = T_e$). Ainsi le problème se ramène à l'équation (3) avec $\varphi = 0$ et $T_2 = T_e = \text{constante}$. La température T_1 à l'instant t = 0 est notée T_{10} .

- 18 En déduire l'expression de $T_1(t)$. On introduira un temps caractéristique τ .
- 19 Effectuer un développement limité à l'ordre 1 en t/τ , pour $t \ll \tau$, de l'expression de $T_1(t)$ ci-dessus obtenue. Montrer alors que $T_1(t)$ est une fonction affine et donner l'expression de sa pente a en fonction de T_{10} , T_e et τ .
- 20 L'enregistrement ci-contre a été réalisé dans une habitation. Le chauffage est coupé à l'instant initial. On a $T_e = 0$ °C et $T_{10} = 20.9$ °C. En déduire une estimation de la grandeur R_1C_1 (attention à son unité).

Cette grandeur est caractéristique de l'inertie thermique de l'habitation.

II.2 Étude 2 : régime stationnaire

On étudie cette fois le comportement en régime stationnaire (toutes les températures sont constantes). Le chauffage est donc allumé, et on attend suffisamment longtemps pour que T_1 et T_2 se stabilisent. $T_e = 0$ °C est également constante. On pourra partir des équations (2) et (3).

- **21 -** Exprimer les températures T_1 et T_2 en fonction de R_1 , R_2 , φ et T_e .
- 22 Dans le cas d'une isolation par l'intérieur, il n'y a pas d'isolant à l'extérieur des murs $(R_2 = 0)$. En étudiant les relevés de consommation électrique sur un mois d'hiver, on constate qu'il faut en moyenne fournir une puissance thermique $\varphi = 1,0$ kW pour maintenir $T_1 = 20$ °C alors que $T_e = 0$ °C. En déduire une estimation de R_1 .

II.3 Étude 3 : régime permanent sinusoïdal

Des deux études précédentes on retiendra $C_1 = 2 \times 10^7 \,\mathrm{J\cdot K^{-1}}$ (tient compte de l'air intérieur, du mobilier, des dalles), $C_2 \simeq 10C_1$ typiquement pour des murs en parpaings. Les valeurs de R_1 et R_2 dépendent du type d'isolation : $R_1 = 2 \times 10^{-2} \,\mathrm{K\cdot W^{-1}}$ et $R_2 = 0$ si l'isolation est à l'intérieur des murs, et l'inverse si l'isolation est à l'extérieur des murs.

On étudie maintenant l'évolution des températures suite à l'alternance jour-nuit. La température extérieure n'est plus constante et varie avec une période de 24 h selon $T_e(t) = T_{e,\text{moyen}} + \Delta T_0 \cos \omega t$.

23 - Donner la valeur numérique de la pulsation ω .

Les questions qui précèdent suggèrent une analogie électrique. On admet que le problème thermique étudié est mathématiquement équivalent à l'étude du circuit électrique ci-dessous, où :

- le générateur $e(t) = E_0 \cos(\omega t)$ représente $T_e(t) T_{e,\text{moven}} = \Delta T_0 \cos \omega t$,
- la tension $u_1(t)$ représente la différence entre $T_1(t)$ et sa valeur en régime stationnaire,
- la tension $u_2(t)$ représente la différence entre $T_2(t)$ et sa valeur en régime stationnaire.

La capacité C_1 représente l'intérieur de la maison, qui se "charge" et se "décharge" à mesure que son énergie interne augmente ou diminue. De même pour C_2 qui réprésente les murs.

On se place en régime sinusoïdal forcé à la pulsation ω . La tension $u_1(t) = U_{10}\cos(\omega t + \varphi)$ est représentée par $\underline{u}_1(t) = U_{10}\mathrm{e}^{\mathrm{j}(\omega t + \varphi)}$ où $\mathrm{j}^2 = -1$.

- **24 -** On note $\underline{Z}_{\text{éq}}$ l'impédance équivalente à l'ensemble C_2 , R_1 et C_1 . Donner son expression en fonction de ω , C_2 , R_1 et C_1 .
- **25** Lorsqu'on considère une impédance \underline{Z}_1 et une impédance \underline{Z}_2 en dérivation, et que $|\underline{Z}_1| \gg |\underline{Z}_2|$, quelle approximation sur l'impédance équivalente à l'ensemble peut-on faire? On attend une justification.
- 26 Pour la suite, comme $C_2 \gg C_1$, on admet que $\underline{Z}_{\text{\'eq}} \approx \frac{1}{\mathrm{j}C_2\omega}$.

 En utilisant cette approximation, montrer que $\underline{H} = \frac{\underline{u}_1}{\underline{e}}$ peut s'écrire $\underline{H} = \frac{1}{\left(1+\mathrm{j}\frac{\omega}{\omega_1}\right)\left(1+\mathrm{j}\frac{\omega}{\omega_2}\right)}$ avec ω_1 et ω_2 des pulsations à exprimer en fonction des capacités et résistances.
- 27 Donner l'expression du gain en décibel de ce filtre en fonction de ω , ω_1 et ω_2 .
- 28 Donner la pente des asymptotes haute et basse fréquence du diagramme de Bode en amplitude.
- **29** Donner l'expression du déphasage entre $u_1(t)$ et e(t). Donner sa valeur pour ω petit et pour ω grand.

On obtient les valeurs numériques suivantes :

- Cas d'une isolation par l'intérieur : $\omega_1 = 2.5 \times 10^{-6} \, \mathrm{rad/s}$ et $\omega_2 = +\infty$.
- Cas d'une isolation par l'extérieur : $\omega_1 = +\infty$ et $\omega_2 = 2.5 \times 10^{-7} \, \mathrm{rad/s}$.

Les deux diagrammes de Bode en amplitude, l'un correspondant à l'isolation par l'intérieur et l'autre à l'isolation par l'extérieur, sont tracés cicontre.

- **30 -** Identifier les deux courbes : laquelle correspond à l'isolation par l'intérieur et laquelle correspond à l'isolation par l'extérieur?
- 31 On suppose une amplitude ΔT₀ = 10 °C pour la variation de température extérieure, ce qui dans notre analogie électrique se traduit par une amplitude E₀ = 10 V pour le signal e(t).
 On considère le cas d'une isolation par l'intérieur. En vous aidant du diagramme de Bode, et en arrondissant à la dizaine la plus proche la valeur de G_{dB}, donner la valeur de l'amplitude U₁₀ de u₁(t).
- 32 Faire de même pour le cas de l'isolation par l'extérieur, et conclure sur l'avantage de celle-ci.
- 33 Dans les deux cas (isolation intérieure ou extérieure), l'argument de la fonction de transfert vaut environ $-\pi/2$ pour la pulsation considérée ici. $u_1(t)$ est-il en avance ou en retard par rapport à e(t)? De quelle fraction de période? Traduire ceci en heures.

III Résistance thermique

La partie précédente utilise le formalisme des résistances thermiques, et on se propose ici de le justifier. On considère un matériau de longueur L et de section S. Les grandeurs ne dépendent que de l'abscisse x et du temps. En x=0 la température vaut T_0 , et en x=L elle vaut T_1 . On rappelle l'équation de diffusion thermique : $\left(\frac{\partial T}{\partial t}\right)_x = \kappa \left(\frac{\partial^2 T}{\partial x^2}\right)_t$.

Ici κ est la diffusivité thermique du matériau. On notera également λ sa conductivité thermique.

34 - Donner l'unité de κ . Par analyse dimensionnelle, donner une expression du temps caractéristique τ de variation de la température dans le matériau en fonction de κ et de L.

Dans la suite, on suppose que le temps de variation des sources est suffisamment petit devant τ pour pouvoir se placer en régime stationnaire : la température T ne dépend pas du temps.

- **35 -** Simplifier alors l'équation de diffusion thermique, puis la résoudre pour obtenir T(x) dans le matériau en fonction de x, T_1 , T_0 et L.
- **36** Donner l'expression du vecteur densité de flux thermique en fonction de T_1 , T_0 , L, \vec{e}_x , et d'une caractéristique du matériau.
- 37 On note φ le flux thermique (ou puissance thermique) à travers une tranche du matériau de normale \vec{e}_x , compté positif en allant de x=0 à x=L. Donner son expression.
- 38 En déduire un analogue de la loi d'Ohm : $T_0 T_1 = R \times \varphi$ avec R la résistance thermique, dont on donnera l'expression en fonction des caractéristiques du matériau.