

Modelos Gaussianos

FAUBA

28 de mayo de 2022

Resolución de la ecuación de transporte

Modelar la química atmosférica consiste en resolver la ecuación de transporte:¹

$$\frac{\partial c}{\partial t} = \underbrace{E}_{\text{Emisión}} - \underbrace{\lambda c}_{\text{Química}} - \underbrace{u \frac{\partial c}{\partial x}}_{\text{Advección}} + \underbrace{K \frac{\partial^2 c}{\partial x^2}}_{\text{Mezclado turbulento}}$$

Expresa la conservación de masa para una especie c transportado por la atmósfera.

Hay dos caminos para resolverla:

Analítico

- ► Solución exacta.
- Utiliza supuestos y simplificaciones.
- Muy rápidos de computar.

Numérico

- Solución aproximada.
- Sin supuestos ni simplificaciones.
- ► Demandan mucho poder de cálculo.

 $^{^1}c$: concentración de especie quimica, v: velocidad del viento, K: coeficiente de turbulencia, E: tasa de emisión, λ : constante de reacción/degradación.

Solución Analítica a Ecuación de Transporte

Solución Analítica

Modelos Gaussianos Dan la solución a:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} + K_x \frac{\partial^2 c}{\partial x^2}$$

Cuya solución analítica tiene la forma:²

$$c_{(x,t)} = \frac{M}{\sqrt{2\pi}\sigma_x} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma_x^2}\right]$$

 $^{^{2}\}mu = ut$, $\sigma_{x} = \sqrt{2K_{x}t}$

Intuición solución analítica

Graficar solución analítica:

https://www.desmos.com/calculator

Discusión:

- ▶ Interpretar parámetros (μ y σ).
- Representa difusión?
- Representa advección?
- Garantiza conservación de masa?
- Incluir término de decaimiento.

Puff Gaussiano

Puff Gaussiano

Solución transitoria

Resuelve:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} + K_x \frac{\partial^2 c}{\partial x^2} + K_y \frac{\partial^2 c}{\partial y^2} + K_z \frac{\partial^2 c}{\partial z^2}$$

Cuya solución es³:

$$C_{(x,y,z,t)} = \frac{M}{\sqrt{2\pi^3}\sigma_x\sigma_y\sigma_z} \exp\left[-\frac{(x-ut)^2}{2\sigma_x^2}\right] \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{z^2}{2\sigma_z^2}\right]$$

 $^{^{3}\}mu = ut$, $\sigma_* = \sqrt{2K_*t}$

Pluma Gaussiana

Pluma Gaussiana

Solución estacionaria

Si planteamos la condición de equilibrio:⁴

$$\frac{\partial c}{\partial t} = 0 = -u \frac{\partial c}{\partial x} + K_y \frac{\partial^2 c}{\partial y^2} + K_z \frac{\partial^2 c}{\partial z^2}$$

Despejando:

$$\frac{\partial c}{\partial x} = \frac{K_y}{u} \frac{\partial^2 c}{\partial y^2} + \frac{K_z}{u} \frac{\partial^2 c}{\partial z^2}$$

 $^{^4\}mathsf{Despreciamos}$ la mezcla turbulenta en x ya que es muy chico comparado con la advección.

Pluma Gaussiana

Solución estacionaria

Resuelve:

$$\frac{\partial c}{\partial x} = \frac{K_y}{u} \frac{\partial^2 c}{\partial y^2} + \frac{K_z}{u} \frac{\partial^2 c}{\partial z^2}$$

Cuya solución es:⁵

$$C_{(x,y,z)} = \frac{Q}{u\sqrt{2\pi^2}\sigma_v\sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{z^2}{2\sigma_z^2}\right]$$

⁵Dado que t = x/u = cte., entonces: $\sigma_i = \sqrt{2K_it} = \sqrt{2K_ix/u}$.

Comparación Pluma Gaussiana con experimento de Richards

Modificacciones a modelo Gaussiano

Altura de la fuente

$$C_{(x)} = \frac{Q}{u\sqrt{2\pi}^2\sigma_y\sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{(z-H)^2}{2\sigma_z^2}\right]$$

Altura efectiva

Plume Rise

Elevación por empuje térmico y e impulso en la fuente.

$$C_{(x)} = \frac{Q}{u\sqrt{2\pi^2}\sigma_y\sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{(z-H-\Delta h)^2}{2\sigma_z^2}\right]$$

Edificios y obstaculos

Downwash

Deflección por sombra turbulenta generada por edificios y obstaculos:

$$C_{(x)} = \frac{Q}{u\sqrt{2\pi^2}\sigma_y\sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{(z-H-\Delta h)^2}{2\sigma_z^2}\right]$$

Terreno (plano)

Reflexión

$$C_{(x)} = \frac{Q}{u\sqrt{2\pi^2}\sigma_y\sigma_z} \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \left(\exp\left[-\frac{(z-H)^2}{2\sigma_z^2}\right] + \exp\left[-\frac{(z+H)^2}{2\sigma_z^2}\right]\right)$$

Terreno complejo

Se calculan dos plumas, una ignorando el terreno y otra siguiendo el terreno:

$$C_{tot} = f C_{ref} + (1 - f) C_{terr}$$

El resultado es una ponderación de estas dos determinadas por el factor f.

⁶donde $f=0.5+0.5\varphi_P$ y $\varphi_P=M_b/M_a\,M_b$. M_a Masa sobre H_c y M_b masa por debajo de H_c . h_c : hill slope scale. H_c : critical dividing streamline

Estabilidad

La estabilidad da idea de la libertad que tienen las maasas de aire para moverse verticalmente.

Parametrizaciones basadas en clases de estabilidad

La clasificación mas usada para determinar la estabilidad atmosférica es la desarrollada por Pasquill (1961) y Gifford (1961). Ellos definieron 6 clases $(A-F)^7$

	Día			Noche		
	Radiación solar			Nubosidad		
u(m/s)	Fuerte	Media	Débil	Nublado ($>4/8$)	Despejado ($< 3/8$)	
<2	А	A-B	В	Е	F	
2-3	A-B	В	C	Е	F	
3-5	В	B-C	C	D	E	
5-6	C	C-D	D	D	D	
>6	С	D	D	D	D	

Cuadro 1: Clases de Estabilidad

⁷donde A: muy inestable, B: moderadamente estable, C: levemente estable, D neutral, E levemente estable. F: estable.

Parametrizaciones basadas en clases de estabilidad

Briggs (1973), propuso formulas empiricas para el calculo de los σ :

$$\sigma_y = \frac{ax}{(1+bx)^c}$$
 $\sigma_z = \frac{dx}{(1+ex)^f}$

Los coeficientes (a,b,c,d,e,f) están tabulados y dependen de la clase de estabilidad:

C.E	a	b	С	d	e	f
А	0.22	0.0001	0.5	0.2	0	
В	0.16	0.0001	0.5	0.12	0	
C	0.11	0.0001	0.5	0.08	0.0002	0.5
D	0.08	0.0001	0.5	0.06	0.0015	0.5
E	0.06	0.0001	0.5	0.03	0.0003	1
F	0.04	0.0001	0.5	0.016	0.0003	1

C.E	а	b	С	d	e	f
Α	0.32	0.0004	0.5	0.24	0.0001	-0.5
В	0.32	0.0004	0.5	0.24	0.0001	-0.5
C	0.22	0.0004	0.5	0.2	0	
D	0.16	0.0004	0.5	0.14	0.0003	0.5
E	0.11	0.0004	0.5	0.08	0.0015	0.5
F	0.11	0.0004	0.5	0.08	0.0015	0.5

Cuadro 2: Rural

Cuadro 3: Urbano

Modificadores temporales

Los coeficientes de Briggs fueron generados con observaciones de promedios de 10 minutos. Para otros promedios temporales se usa:

$$\sigma_{y,2} = \sigma_{y,1} \left(\frac{t_2}{t_1}\right)^p$$

Parametrizaciones continuas

Basadas en el estudio de la turbulencia:

$$\sigma_y = \sigma_v \frac{x}{u} f_y$$
 $\sigma_z = \sigma_w \frac{x}{u} f_z$

Capa límite

Inversiones Térmicas

Se resuelve de la misma forma que la reflexión en el suelo.

Química y Deposición

Generalmente se aproximan con la ecuación de decaimiento exponencial de primer orden:

$$C_{(x,y,z)} = \frac{Q}{u}\phi_y\phi_z \exp\left[-\lambda\frac{x}{u}\right]$$

Terreno Urbano/Industrial

Un ambiente urbano/industrial se diferencia de uno rural en:

- Rugosidad (por obstaculos)
- Balance radiativo (diferencias en reflectividad, y evaporación)
- ▶ Turbulencia afectada por ostaculos (entre obstaculos y sobre ellos)
- ▶ Perfil de velocidad de vientos (el perfil calculado por teoria de similitud no funciona a alturas de 1-2 alturas de los obstaculos, es decir 10-20 z0).