

20 Array - 3

2D Vectors

Lecture-16

Raghav Garg

2D Vectors

- vector<vector<int> > v;
- vector<vector<int> > v(m); → initial size
- * vector<vector<int> > v(m, vector<int> (n));
 - vector<vector<int> > v(m, vector<int> (n, k));

Advantages of vectors over arrays

1) Increase your rows

2D vectors are vector of nectors

2) Variable Columns

Advantages of vectors over arrays

$$VI = \{ 1, 2, 3\}$$

$$V2 = \{ 4, 5\}$$

$$V3 = \{ 6, 7, 8, 9, 10\}$$

$$V = \{ \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 4, 5\}, \{ 6, 7, 8, 9, 10\} \}$$

$$V = \{ 1, 2, 3\}, \{ 1, 2, 3$$

Advantages of vectors over arrays

Passing of 2D Arrays into functions -sproblem
we have to mention rows & columns both

Basic STL functions in vectors

- push_back()
- pop_back()
- begin()
- end()
- rbegin()
- rend()

```
V = { {1,2,33, {4,53}}
 \alpha = \{6, 7, 8, 9, 10\}
v. push-back(a);
V -> 5 41,2,33, 64,53, 86,7,8,9,103)
V. Pop-back();
V -> 5\\1,2,33, \4,53\\
```

Ques : Given an integer 'numRows', generate Pascal's triangle. [Leetcode 118]

Ques: Score after flipping matrix

Sam = D			[Leetcode 861]		
1	1	O	0		
(0	1	O		
1	1	0	Ø		

1st step: 0th column - all ones -> rows flip

2nd ctep: Flip the columns where noz > no o

Binary to Decimal

$$\begin{pmatrix} 8 & 4 & 2 & 1 \\ 2^3 & 2^2 & 2^1 & 2^0 \\ 3 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$= 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1$$

$$= 0 + 0 + 2 + 1 = 3$$

$$0 0 1 1 \rightarrow 3$$

$$=$$
 $16+0+4+0+1$

= 16×1 + 8×0+ Ux 1+ 2×0 +1×1

```
0 1 2 3 4 5 6

1 1 0 0 1 0 1

6 5 4 3 2 1 0

64 32 16 8 4 2 1
```

arr

×=12 49 16 32 54 128 Sum=11 1 18 8837 101

® skills

No. of ones 1 -> number 1 -> not always true

= 32+16=48

$$1 \times 32 + 0 \times 16 + 1 \times 18 + 1 \times 9 + 1 \times 2 + 1 \times 1$$

$$= 32 + 0 + 8 + 9 + 2 + 1$$

Ques: Write an efficient algorithm that searches for a value target in an m x n integer matrix which has the following properties:

- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.

```
® skills
                            j target = 5
                               if (matrix[i][j] > target)
      5
            8
      6
            9
                 16
     13
10
```

target = 20

(matrix[i][j] < target)
go down /rights(
(matrix[i][j] > target)
go left /upd

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

target = 5

matrix [i][j] > 15 - go left matrix [i][j] < 15 -> go dawn

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

target = 13

cle > target go left

cle < target go down

target = 27

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

bahar - false

Thank you!!