5 Последовательности суммируемых функций

Заметим, что множество L(E) всех суммируемых на измеримом множестве E функций является линейным пространством.

Сопоставим каждой функции $f \in L(E)$ число

$$||f||_{L(E)} = \int_{E} |f(x)| dx.$$

Эту величину можно считать нормой, если ввести в L(E) равенство следующим образом: f=g тогда и только тогда, когда $f\sim g$, то есть f(x)=g(x) почти всюду на E.

Ясно, что L(E) является метрическим пространством с метрикой

$$\rho(f,g) = \|f - g\|_{L(E)} = \int_{E} |f(x) - g(x)| dx.$$

Опр. Пусть $f \in L(E)$ и $\{f_n\}_{n=1}^{\infty} \subset L(E)$. Будем писать, что $f_n \to f$ в L(E), если

$$||f_n - f||_{L(E)} = \int_E |f_n(x) - f(x)| dx \to 0$$
 при $n \to \infty$.

Теорема 5.1. Пусть $f \in L(E)$, $\{f_n\}_{n=1}^{\infty} \subset L(E)$ и $\delta > 0$. Справедливо неравенство Чебышёва

$$meas E[|f_n - f| > \delta] \leqslant \frac{1}{\delta} \int_E |f_n(x) - f(x)| dx.$$

Доказательство.

$$\int_{E} |f_n - f| \, dx = \int_{E[|f_n - f| > \delta]} |f_n - f| \, dx + \int_{E[|f_n - f| \le \delta]} |f_n - f| \, dx \geqslant$$

$$\geqslant \int_{E[|f_n - f| > \delta]} |f_n - f| \, dx \geqslant \delta \cdot \text{meas } E[|f_n - f| > \delta]$$

Теорема доказана.

Следствие $Ecnu\ f_n \to f\ s\ L(E),\ mo\ f_n \to f\ no\ мере\ нa\ E.$

Докажем теперь несколько классических теорем л предельном переходе под знаком интеграла Лебега.

Пусть $f \in L(E)$, $\{f_n\}_{n=1}^{\infty} \subset L(E)$ и известно, что $f_n(x) \to f(x)$ при $n \to \infty$ почти всюду на E.

Можно ли утверждать, что

$$\lim_{n \to \infty} \int_{E} f_n(x) dx = \int_{E} f(x) dx ?$$

Вообще говоря, нельзя.

Пример. Пусть

$$f_n(x) = \begin{cases} n, & x \in [0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

Тогда $f_n(x) \to f(x) = 0$ всюду на (0,1]. В то же время

$$\int_{0}^{1} f_n(x) \, dx = 1 \not\to \int_{0}^{1} f(x) \, dx = 0.$$

Если же взять

$$f_n(x) = \begin{cases} n^2, & x \in [0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

то, по прежнему, $f_n(x) \to f(x) = 0$ всюду на (0,1]. В то же время

$$\int_{0}^{1} f_n(x) \, dx = n \to \infty.$$

Если взять

$$f_n(x) = \begin{cases} (-1)^n n, & x \in [0, 1/n), \\ 0, & x \in [1/n, 1]. \end{cases}$$

то, $f_n(x) \to f(x) = 0$ всюду на (0,1] и

$$\int_{0}^{1} f_n(x) \, dx = (-1)^n.$$

Предела у этой последовательности нет вообще.

Теорема 5.2. (Теорема Лебега о мажорируемой сходимости.) Пусть $f \in L(E)$, $\{f_n\}_{n=1}^{\infty} \subset L(E)$ и существует функция $F \in L(E)$ такая, что

$$|f_n(x)| \leqslant F(x)$$
 почти всюду на E для всех $n \geqslant 1$. (5.1)

Eсли $f_n(x) o f(x)$ почти всюду на E, то $f_n o f$ в L(E) и

$$\lim_{n \to \infty} \int_{E} f_n(x) \, dx = \int_{E} f(x) \, dx.$$

Доказательство. Переходя к пределу в (5.1), получаем, что функция f измерима и удовлетворяет неравенству $|f(x)| \leq F(x)$ почти всюду на E. Следовательно $f \in L(E)$.

Положим $E_N = E \cap B_N$ и заметим, что

$$\int_{E} |f_n - f| \, dx = \int_{E_N} |f_n - f| \, dx + \int_{E \setminus B_N} |f_n - f| \, dx \le \int_{E_N} |f_n - f| \, dx + 2 \int_{E \setminus B_N} F \, dx.$$

Для произвольного $\varepsilon>0$ второе слагаемое в правой части этого неравенства можно сделать меньше $\frac{\varepsilon}{3}$ выбором $N=N(\varepsilon)$. Фиксируем это $N=N(\varepsilon)$ и получим

$$\int_{E} |f_n - f| \, dx \leqslant \int_{E_N} |f_n - f| \, dx + \frac{\varepsilon}{3}.$$

Заметим, что из $f_n \to f$ почти всюду на E_N следует, что $f_n \to f$ по мере на E_N , то есть для любого $\delta > 0$ мера множества $E_N[|f_n - f| > \delta]$ стремится к нулю при $n \to \infty$.

Положим $\delta(\varepsilon) = \frac{\varepsilon}{3|E_N|}$ и заметим, что

$$\int_{E_N} |f_n - f| \, dx = \int_{E_N[|f_n - f| > \delta]} |f_n - f| \, dx + \int_{E_N[|f_n - f| \le \delta]} |f_n - f| \, dx \le$$

$$\leq \int_{E_N[|f_n - f| > \delta]} 2F \, dx + \delta |E_N| \le \int_{E_N[|f_n - f| > \delta]} 2F \, dx + \frac{\varepsilon}{3}.$$

Из meas $E_N[|f_n-f|>\delta]\to 0$ при $n\to\infty$ в силу абсолютной непрерывности интеграла Лебега следует, что найдется $n_0(\varepsilon)$ такое, что

$$\int\limits_{E_N[|f_n-f|>\delta]} 2F\,dx < \frac{\varepsilon}{3} \quad \text{для всех} \quad n>n_0(\varepsilon).$$

Таким образом,

$$\left| \int_{E} f_n \, dx - \int_{E} f \, dx \right| \leqslant \int_{E} |f_n - f| \, dx < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \forall \, n > n_0(\varepsilon).$$

Теорема доказана.

Замечание. Теорема 5.2 останется верной, если в ее условиях заменить сходимость $f_n \to f$ почти всюду на E на сходимость по мере на E.

Теорема 5.3. (Теорема Б.Леви.) Пусть $\{f_n\}_{n=1}^{\infty}$ – неубывающая последовательность неотрицательных суммируемых на E функций и $f(x) = \lim_{n \to \infty} f_n(x)$ почти всюду на E.

Если последовательность $\left\{\int\limits_{E}f_{n}(x)\,dx\right\}_{n=1}^{\infty}$ ограничена, то $f\in L(E)$ и

$$\lim_{n \to \infty} \int_{E} f_n(x) dx = \int_{E} f(x) dx.$$

Если же последовательность $\left\{\int\limits_E f_n(x)\,dx\right\}_{n=1}^\infty$ неограничена, то $f\notin L(E)$.

Доказательство. Если $f \in L(E)$, то $0 \le f_n(x) \le f(x)$ и для доказательства достаточно воспользоваться теоремой Лебега о мажорированной сходимости.

Если $f \notin L(E)$, то

$$\lim_{n \to \infty} \int_E f_n(x) \, dx \geqslant \lim_{n \to \infty} \int_{E \cap B_M} [f_n]_N \, dx = \int_{E \cap B_M} [f]_N \, dx \to +\infty$$

при $M \to \infty$, $N \to \infty$.

Теорема доказана.

Замечание. Иногда теорему Б. Леви называют теоремой Лебега о монотонной сходимости.

Следствие. Пусть $\{u_n\}_{n=1}^{\infty}$ - последовательность неотрицательных суммируемых на E функций.

Если ряд $\sum_{n=1}^{\infty} \int_{E} u_n(x) dx$ сходится, то функциональный ряд $S(x) = \sum_{n=1}^{\infty} u_n(x)$ сходится почти всюду на E; кроме того, $S \in L(E)$ и

$$\int_{E} S(x) dx = \sum_{n=1}^{\infty} \int_{E} u_n(x) dx.$$
 (*)

Доказательство. Положим $S_N(x) = \sum_{n=1}^N u_n(x)$. Заметим, что $\{S_N(x)\}_{N=1}^\infty$ неубывающая последовательность неотрицательных суммируемых на E функций и

$$\int_{E} S_N(x) dx = \sum_{n=1}^{N} \int_{E} u_n(x) dx \leqslant \sum_{n=1}^{\infty} \int_{E} u_n(x) dx < \infty.$$

В силу теоремы Б. Леви функция $S(x) = \sum_{n=1}^{\infty} u_n(x)$ суммируема на E и справедливо равенство (*). Кроме того из $S \in L(E)$ следует, что $S(x) < \infty$ почти всюду.

Теорема 5.4. (Теорема Фату.) Пусть $\{f_n\}_{n=1}^{\infty}$ – последовательность неотрицательных суммируемых на E функций и $f(x) = \underline{\lim}_{n \to \infty} f_n(x)$.

 $Ecnu\int\limits_E f_n(x)\,dx\leqslant C\,$ для всех $n\geqslant 1,\ mo\ f\in L(E)\ u$

$$\int_{E} f(x) \, dx \leqslant C.$$

Доказательство. Положим $g_n(x) = \inf_{k \geqslant n} f_k(x)$ и заметим, что

$$f(x) = \underline{\lim}_{n \to \infty} f_n(x) = \sup_{n \geqslant 1} g_n(x) = \lim_{n \to \infty} g_n(x).$$

Последовательность $g_n(x)$, монотонно не убывая, сходится к f(x), причем

$$g_n(x) \leqslant f_n(x) \Rightarrow \int_E g_n dx \leqslant C \quad \forall n \geqslant 1.$$

В силу теоремы Б. Леви $f \in L(E)$ и

$$\int_{E} g_n dx \to \int_{E} f dx \Rightarrow \int_{E} f(x) dx \leqslant C.$$

Теорема доказана.

Следствие. Пусть $\{f_n\}_{n=1}^{\infty} \subset L(E)$ и $\int_E |f_n(x)| dx \leqslant C$ для всех $n \geqslant 1$. Если $f_n \to f$ почти всюду на E, то $f \in L(E)$ и $\int_E |f(x)| dx \leqslant C$.