

GRACEFT

Considere o sistema mostrado na Figura 11.24, o qual é composto por um cilindro de dupla ação com três sensores: S (posição inicial), C (centro) e D (direita). Também existem dois botões de contato momentâneo, LC e LD.

Seu funcionamento é o seguinte: ao pressionar o botão LC, o cilindro deslocase até encontrar o sensor C, quando então retorna à posição inicial (S).

Se o botão LD for pressionado depois de um segundo, o cilindro deve se deslocar até encontrar o sensor D e retornar para a posição inicial (S). Se forem pressionados simultaneamente os botões LC e LD, a prioridade é o botão LC.

Figura 11.24 - Cilindro de dupla ação.

GRACEFT

1º Passo - criação do Grafcet nível 1

Uma possível solução para o problema é dada na Figura 11.25.

Resolução

Vamos implementar o Grafcet no Zelio Soft.

Figura 11.25 - Grafcet nível 1.

GRACEFT-TABELAS DE ASOCIAÇÃO

Nivel comportamental	Nível tecnológico	Descrição
LC	l1	Botão vai até a posição central
LD	12	Botão vai até a posição direita
S	13	Sensor da posição inicial
С	14	Sensor da posição central
D	15	Sensor da posição à direita

Tabela 11.7 - Relacionamento entre nível comportamental e tecnológico para as entradas.

Como descrito anteriormente, cada transição corresponde a um bit de memória auxiliar. Assim, uma possível tabela de associação é:

Nivel comportamental	Nível tecnológico	Descrição
T01	МЗ	Transição entre as etapas 0 e 1
T03	M4	Transição entre as etapas 0 e 3
T12	M5	Transição entre as etapas 1 e 2
T34	M6	Transição entre as etapas 3 e 4
T20	M7	Transição entre as etapas 2 e 0
T40	M8	Transição entre as etapas 4 e 0

GRACEFT-TABELAS DE ASOCIAÇÃO

Nível comportamental	Nível tecnológico	Descrição
E_0	M9	Etapa 0
Ε ₁	MA	Etapa 1
E ₂	MC	Etapa 2
$\boldsymbol{\epsilon}_3$	MB	Etapa 3
E ₄	MD	Etapa 4

Tabela 11.9 - Relacionamento entre nível comportamental e tecnológico para as etapas.

Nível comportamental	Nível tecnológico	Descrição
A	Q1	Liga eletroválvula para Avançar
R	Q2	Liga eletroválvula para Recuar

Tabela 11.10 - Relacionamento entre nível comportamental e tecnológico para as ações.

GRACEFT NÍVEL 2

FIRST SCAN

I. Ativação da etapa inicial

O primeiro passo consiste em criar uma rotina que detecte o primeiro ciclo de varredura do sistema (first scan). Uma possível solução é apresentada na Figura 11.27.

Figura 11.27 - Implementação do first scan.

EQUAÇÕES

Nivel comportamental	Nível tecnológico
$T_{01} = E_0 \cdot LC$	M3=M9.11
$T_{03} = E_0 \cdot LD \cdot \overline{LC}$	$M4 = M9.12.\overline{11}$
$T_{12} = E_1 . C$	M5=MA.I4
$T_{34} = E_3.D$	M6=MB.I5
$T_{20} = E_2.S$	M7=MC.I3
$T_{40} = E_4 . S$	M8=MD.I3

Tabela 11.11 - Equações para os níveis comportamental e tecnológico.

Cuja implementação pode ser verificada na Figura 11.28.

Figura 11.28 - Implementação da equação das transições.

Uma furadeira vertical deve ser automatizada. O principio de funcionamento é o seguinte: Inicialmente, se o cabecote da furadeira estiver na posição mais alta (h) e o botão de partida (P) for presionado, deve-se ligar o motor da broca e descer em velocidadealta até encontrar o sensor de posição intermediária (b1). A partir desse ponto deve continuar descend com velocidade reducida até encontrar o sensor de posição mais baixa (b2). Atingindo o sensor, deve subir em velovidade alta até encontrar o sensor de posição mais alta (h), quando então deve desligar os motores de subida da broca. Considere duas sáida para controlar a velocidad (alta e baixa) e também duas saidas para controlar o snetido de deslocamento (sobe e desce)

Figura 11.17 - Furadeira de bancada automática.

• GRACEFT NIVEL 1

- TABELAS DE ASSOCIAÇÃ
 O
- Uma para as receptividades (entradas);
- Uma para as transições;
- Uma para as etapas;
- Uma para as ações (saídas) associadas às etapas.

Nivel comportamental	Nível tecnológico	Descrição
Р	11	Botão de partida
h	12	Sensor da posição mais alta
b ₁	13	Sensor da posição intermediária
b_2	14	Sensor da posição mais baixa
fs	M1	First scan

Tabela 11.1 - Receptividades (entradas).

 TABELAS DE ASSOCIAÇÃ
 O

Nível comportamental	Nível tecnológico	Descrição
T ₀₁	M7	Transição entre as etapas 0 e 1
T ₁₂	M8	Transição entre as etapas 1 e 2
T ₂₃	M9	Transição entre as etapas 2 e 3
T ₃₀	MA	Transição entre as etapas 3 e 0

Tabela 110 T

mnortamental	Nível tecnológico	Descrição
Nivel comportamental	M3	Etapa 0
Eo	M4	Etapa 1
EI	M5	Etapa 2
E2	M6	Etapa 3

Tabela 11.3 - Etapas.

 TABELAS DE ASSOCIAÇÃ
 O

Nivel comportamental	Nível tecnológico	Descrição
Nivel comp Motor cabeçote desce	Q1	Motor cabeçote desce
Motor cabeçore	Q2	Velocidade alta
Velocidade alta	Q3	Velocidade baixa
Velocidade baixa	Q4	Motor cabeçote sobe
Motor cabeçote sobe Motor broca	Q5	Motor da broca

• GRAFCET NIVEL 2

Figura 11.19 - Grafcet nível 2 (tecnológico ou de implementação).

- Ativação da etapa inicial mediante o bit de início de varredura (first scan). Esse bloco só será executado uma vez.
- Detecção de bordas (neste caso especificamente não temos ações impulsionais).
- Transições. O cálculo das transições com base no estado atual e nas receptividades.
- Etapas. Desativação/ativação das etapas anteriores/posteriores às transições disparadas.
- Ações. Ativação das ações associadas às etapas.

Na Tabela 3.5 encontram-se as equações de implementação no nível comporamental e seu equivalente, nível tecnológico.

Nivel comportamental	Nível tecnológico
$T_{01} = E_0 . P. h$	M7=M3.I1.I2
$T_{12} = E_1 \cdot b1$	M8=M4.I3
$T_{23} = E_2 . b2$	M9 = M5. I4
$T_{30} = E_3 \cdot h$	MA=M6.I2

LADDER

A implementação dos passos 4.1 a 4.3 pode ser verificada na Figura 11.20.

Figura 11.20 - Implementação das equações de transições (mais first scan).

LADDER

Figura 11.21 - Implementação da função lógica: Set-E0 = first scan OU T₃₀.

Figura 11.22 - Implementação da seção de etapas.

Figura 11.22 - Implementação da seção de etapas.

Nível comportamental	Nível tecnológico
Desce = E_1+E_2	Q1 = M4 + M5
Sobe = E_3	Q4 = M6
Veloc. baixa = E ₂	Q3 = M5
Veloc. alta = E_1+E_3	Q2 = M4 + M6
Set motor broca = E ₁	SQ5 = M4
Reset motor broca = E_0	RQ5 = M3

Nível comportamental	Nível tecnológico
Desce = E_1+E_2	Q1 = M4 + M5
Sobe = E_3	Q4 = M6
Veloc, baixa = E ₂	Q3 = M5
Veloc. alta = E_1+E_3	Q2 = M4 + M6
Set motor broca = E_1	SQ5 = M4
Reset motor broca = E_0	RQ5 = M3

Figura 11.23 - Implementação das ações associadas às etapas.

TAREFA

Considere o sistema mostrado na Figura 11.24, o qual é composto por um cilindro de dupla ação com três sensores: S (posição inicial), C (centro) e D (direita). Também existem dois botões de contato momentâneo, LC e LD.

Seu funcionamento é o seguinte: ao pressionar o botão LC, o cilindro deslocase até encontrar o sensor C, quando então retorna à posição inicial (S).

Se o botão LD for pressionado depois de um segundo, o cilindro deve se deslocar até encontrar o sensor D e retornar para a posição inicial (S). Se forem pressionados simultaneamente os botões LC e LD, a prioridade é o botão LC.

Figura 11.24 - Cilindro de dupla ação.