Flujos

Una red de flujos G=(V,E) es un digrafo donde para todo $(u,v)\in E, c(u,v)\geq 0$ y no existe $(v,u)\in E$ con dos nodos distinguidos, s (fuente) y t (sumidero) donde $\forall v\in V$, existe camino $s\rightsquigarrow v\rightsquigarrow t$ en G

Más formalmente, un flujo es una función $f:E \to \mathbb{R}_{\geq 0}$

Donde por definición cumple:

- Capacidad: $\forall (u, v) \in E :: 0 \le f(u, v) \le c(u, v)$
- Conservación: $\forall v \in V \setminus \{s, t\} ::$

$$\sum_{(u,v)\in E} f(u,v) = \sum_{(v,w)\in E} f(v,w)$$

Nota: nos referimos a que la suma del flujo de entrada es igual a la del flujo de salida.

Y el valor (neto) del **flujo** es, $\forall u, v \in V \setminus \{s, t\} ::$

$$F = |f| = \sum_{v \in E} f(s,v) = \sum_{u \in E} f(u,t) =$$

Propiedades

- Simetría: f(u, v) = -f(v, u)
- $f(X,X) = 0 X \subset V$
- $f(X,Y) = -f(Y,X) X, Y \subset V$
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ si $X \cap Y = \emptyset$
- F = f(s, V) = f(V, t)

Corte

- Un **corte** en le digrafo G=(V,E) es una partición (S,T) tal que $S\subseteq V\setminus \{s\in S,t\notin S\}$ y $T=(V-S)\subseteq V\setminus \{t\in T,s\notin T\}$
- Dados $S, T \subseteq V$ podemos definir $ST = \{(u, v) \setminus u \in S, v \in T\}$
- Sea f un flujo definido en un digrafo $G=(V,E){\bf y}(S,T)$ un corte. Entonces el flujo a través del corte f(S,T) es igual al flujo F=f(s,V)

Capacidad de un corte

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Corte mínimo

El **corte mínimo** de una red de flujos es un corte de capacidad mínima entre todos los cortes de la red

Teorema de corte mínimo / flujo máximo

Sea f un flujo en una red de flujos G=(V,E) con un vértice fuente s y un sumidero t, es equivalente decir:

- f es el flujo máximo de G
- La red residual de G_f no tiene caminos aumentantes.
- |f| = c(S,T) para algún corte (S,T) en G

Algoritmo de Ford - Fulkerson para flujo máximo

```
F-F(G,c,s,t):
    Inicializar el flujo

while existe un camino de aumento (P) en R:
    for ij en P:
        if ij ∈ E:
            xij = xij + Δ(P)
        if not:
            xij = xij - Δ(P)
```

Edmond-Karp

Lema 1:

Si se ejecuta **E-K** sobre una red de flujos G=(V,E) con un nodo fuente s y un nodo sumidero t, luego $\forall v \in V \setminus \{s,t\}$:: la distancia del camino mínimo $\delta_{f(s,v)}$ en la red residual G_f incrementa de forma monótona con cada flujo aumentante.

Lema 2:

El total de flujos aumentantes está acotada por O(VE)

Nota

E-K es $O(VE^2)$ (BFS con FF)

Matching bipartito

Lema 3:

Sea G = (V, E) un grafo bipartito con $V = L \cup R$ y sea G' = (V', E') es la red de flujos de G.

Si M es un matcheo en G, entonces existe un flujo f en G' tal que |f|=|M|. Intuitivamente, f es un flujo en G', entonces hay un matching M en G con cardinalidad |M|=|f|