- b. Find the fourier transform of a triangular pulse.
- differential 30. a. A system is described following $\frac{d^2y(t)}{dt} + 7\frac{dy(t)}{dt} + 12y(t) = x(t)$ determine the response of the system to a unit step applied at t = 0. The initial conditions are y(0) = -2; $\frac{dy(0)}{dt} = 0$.

b.i. Find the inverse Laplace transform for $\frac{\left(1+e^{-2s}\right)}{\left(3s^2+2s\right)}$

- ii. Obtain the transfer function of the system if $y(t) = e^{-t} 2e^{-2t} + e^{-3t}$ and $x(t) = e^{-0.5t}$.
- 31. a. Find the 8-point DFT of the following sequence $x(n) = \{1, -1, 1, -1, 1, -1, 1, -1\}$

(OR)

b. Consider a causal and stable LTI system whose input x(n) and output y(n) are related through the second order difference equation

$$y(n) - \frac{1}{6}y(n-1) - \frac{1}{6}y(n-2) = x(n)$$

- Determine the frequency response $H(e^{j\omega})$ for the system
- Determine the impulse response h(n) for the system.
- 32. a. Using z-transform, find the output y(n) of a LTI discrete time system specified by the given equation $y(n) - \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = 2x(n) + \frac{3}{2}x(n-1)$, when the initial conditions are y(-1) = 0, y(-2) = 1 and input $x(n) = \left(\frac{1}{4}\right)^n u(n)$.

b. Obtain the Direct Form I, II cascade and parallel form realization for the system y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).

	1	0.00	0.0						
Reg. No.									
Reg. No.				1					
0									

B.Tech. DEGREE EXAMINATION, MAY 2019

Third Semester

EC1008 - SIGNALS AND SYSTEMS

(For the candidates admitted during the academic year 2013 - 2014 and 2014 - 2015)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

- 1. The period of the function $\cos \frac{\pi}{4}(t-1)$ is
 - $\frac{1}{8}$ sec

(B) 8 sec

(C) 4 sec

- 2. A signal $x(t) = A\cos(\omega_0 t + \phi)$ is
 - (A) A power signal

- (B) An energy signal
- (C) An energy as well as a power signal
- (D) Neither an energy nor a power signal
- 3. Which one of the following systems is a causal system?
 - (A) $y(t) = \sin[u(t+3)]$

- (B) v(t) = 5u(t) + 3u(t+1)
- (C) $y(t) = \sin \left[u(t-3) \right] + \sin \left[u(t+3) \right]$ (D) y(t) = 5u(t) + 3u(t-1)
- 4. The system y(t) = x(3t-6) is
 - (A) Linear, time invariant
- (B) Linear, time variant
- (C) Non linear, time variant
- (D) Non linear, time invariant
- 5. Periodic function of the half-wave symmetry is necessarily
 - (A) An even function

- (B) An odd function
- (C) Neither odd nor even
- (D) Both odd and even
- 6. If from the function x(t) one forms the function $\psi(t) = x(t) + x(-t)$ then $\psi(t)$ is
 - (A) Even

- (B) Odd
- (C) Neither odd nor even
- (D) Both odd and even
- 7. The Fourier transform of the function sgn(t) is
 - (A)

- The inverse Fourier transform of the function $X(j\omega) = \frac{1}{j\omega} + \pi\delta(\omega)$
- (A) $\sin \omega t$

(C) $\sin(t)$

(D) u(t)

9.		t is the Laplace transform of a delayed	unit	impulse function $\delta(t-1)$?
	(A)		` '	Zero
1.0		exp(-s)	(D)	
10.		Laplace transform of $e^{at}\cos(bt)$ is eq		
	(A)	$\frac{s+a}{2}$	(B)	$\frac{s-a}{\left(s-a\right)^2+b^2}$
		$\frac{(s+a)^2 + b^2}{s-a}$ $\frac{s-a}{(s+a)^2 + b^2}$		$(s-a)^2+b^2$
	(C)	$\frac{s-a}{2}$	(D)	$\frac{s+a}{(s-a)^2}$
		$(s+a)^2+b^2$		$(s-a)^2$
11.	The	impulse response of a system is $h(t) =$	$\delta(t-$	-0.5). If two such systems are cascaded, the
		alse response of the overall system will		
		$0.5\delta\big(t-0.25\big)$	(B)	$\delta(t-0.25)$
	(C)	$\delta(t-1)$	(D)	$0.5\delta(t-1)$
12.	A go	ood measure of similarity between two	signa	$1 x_1(t)$ and $x_2(t)$ is
		Convolution		Correlation
	(C)	Power density spectrum	(D)	Fourier transform
13.		direct evaluation DFT requires		_ complex multiplications
		N(N-1)	(B)	
	(C)	N(N+1)	(D)	$\frac{N(N-1)}{2}$
1/	T)	1		2
17.		discrete Fourier transform of $x^*(n)$ is	(D)	* /
		$x^*(k)$		$x^*(-k)$
	(C)	x(N-k)	(D)	$x^*(N-k)$
15.		ch of the following systems are casual?		
	(A)	$h(n) = \left(\frac{1}{2}\right)^n u(n)$	(B)	$h(n) = a^n u(-n)$
	(0)	(-/	(Table)	
	(C)	$h(n) = \cos \pi n$	(D)	$h(n) = \sin(n\pi/4)$
16.	The	linear convolution of $x(n) = \{1, 2, 3\}$ ar	•	
	(A)	$y(n) = \{4,13,28,27,18\}$	(B)	$y(n) = \{4,23,28,7,18\}$ $y(n) = \{4,13,2,27,8\}$
	(C)	$y(n) = \{14,13,2,27,18\}$	(D)	$y(n) = \{4,13,2,27,8\}$
17.	The	region of convergence of the Z-transfor	m of	a unit step function is
		z > 1		z < 1
	` '	(Real part of z)>0	` '	(Real part of z)<0
18.		region of convergence of Z-transform of		
	(I)	Zeros	(B)	Poles

(D) Roots

(B) $\delta(n-m)$

(D) $\delta(m-n)$

19. Which one of the following represents the impulse response of a system defined by

20. The minimum number of delay elements required in realizing a digital filter with the transfer function $H(z) = \frac{1 + az^{-1} + bz^{-2}}{1 + az^{-1} + dz^{-2} + az^{-3}}$

(A) 2

(B) 3

(C) 4

(D) 5

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Sketch the following signals
 - (i) x(t) = 2u(t-1)
 - (ii) x(t) = 3r(t-1)
- 22. Evaluate the following integrals

(i)
$$\int_{-\alpha}^{\alpha} e^{-at^2} \delta(t-10) dt$$

(ii)
$$\int_{-\alpha}^{\alpha} \left[\delta(t) \cos t + \delta(t-1) \sin t \right] dt$$

- 23. State and prove Parseval's relation in Fourier series.
- Determine the response of an LTI system with impulse response $h(t) = e^{-2t} u(t)$ for the input $x(t) = \cos 10t$ using Fourier transform.
- 25. State initial value and final valve theorem for Laplace transform.
- 26.(i) State the condition for the existence of DTFT.
- (ii) Find the DTFT for the signal x(n) = u(n-k).
- 27. Using Z-transform, find the convolution of two sequences $x_1(n) = \{1, 2, -1, 0, 3\}$, $x_2(n) = \{1, 2, -1\}$.

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

- 28. a.i. Test whether the signal is periodic or not
 - $(1) \quad x(t) = te^{\sin(t)}$
 - (2) $x(t) = 2\cos(10t+1) \sin(4t-1)$
 - ii. Find the energy and power of the signal
 - $(1) \quad x(t) = tu(t)$
 - $(2) \quad x(n) = 2e^{j3\pi n}$

(OR)

- b. Check whether the given systems are static, causal, time invariant, linear and stable or not
 - $(1) \quad y(t) = oddx(t)$
 - (2) $y(n) = \cos[x(n)]$
- 29. a. Obtain the trigonometric fourier series representation of a half wave recitifer.

(OR)

(C) Complex values

 $H(z) = z^{-m}$?

(A) $\mu(n-m)$

(C) $\delta(m)$