Matematyka Dyskretna Lista 2 7-13.03.2023r.

- 1. Korzystając z zasady indukcji matematycznej, wykazać, że:
 - (a) 7 jest dzielnikiem $2^{n+2} + 3^{2n+1}$ dla $n \ge 0$; (b) 10 jest dzielnikiem $2^{2^n} 6$ dla $n \ge 2$;
 - (c) $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ dla $n \ge 1$; (d) $\sum_{k=1}^{n} \frac{1}{4k^2 1} = \frac{n}{2n+1}$ dla $n \ge 1$.
- 2. Pokazać, że dowolną kwotę $n\geqslant 4$ złotych można rozmienić na dwuzłotówki i pięciozłotówki.
- 3. Pokazać, że $\lfloor x + \frac{1}{2} \rfloor$ oraz $\lceil x \frac{1}{2} \rceil$ są wyrażeniami przybliżającymi dowolną liczbę rzeczywistą x do jej najbliższej liczby całkowitej. Do czego przybliżają te wyrażenia liczby znajdujące się dokładnie w połowie między kolejnymi liczbami całkowitymi?
- 4. Wykazać, że dla dowolnego $x \in \mathbb{R}$ i $k \in \mathbb{Z}$ zachodzą równoważności:
 - (a) $x < k \Leftrightarrow |x| < k$; (b) $k < x \Leftrightarrow k < \lceil x \rceil$; (c) $x \leqslant k \Leftrightarrow \lceil x \rceil \leqslant k$; (d) $k \leqslant x \Leftrightarrow k \leqslant |x|$.
- 5. Na ilu bitach można zapisać liczby 65356 i 65536?
- 6. Wykazać, że liczb całkowitych w przedziale $(a < b \in \mathbb{R})$:
 - (a) [a, b] jest |b| [a] + 1; (b) (a, b] jest |b| |a|;
 - (c) [a, b) jest [b] [a]; (d) (a, b) jest [b] |a| 1.
- 7*. Ile rozwiązań x ma równanie (n+1)x |nx| = c $(n \in \mathbb{N}, c \in \mathbb{R} \text{ parametry})$?
- 8. Wyrazić za pomoca $\{x\}$ warunek konieczny i dostateczny na to, aby n|x| = |nx| $(n \in \mathbb{N})$.
- 9*. Udowodnić lub obalić nierówność $\lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor \leqslant \lfloor 2x \rfloor + \lfloor 2y \rfloor$.
- 10. Wskazać prawdziwe relacje:
 - (a) $\frac{1}{x} = \Theta(1)$; (b) $nx = \Omega(1)$ $(n \in \mathbb{N}_+ \text{ ustalone})$; (c) $\frac{\sin x}{x} = O(1)$; (d) $\ln^2 n = \Omega(n)$;
 - (e) $\sqrt{n} = O(\ln n)$; (f) $\sqrt{3^n + 4^n} = \Theta(2^n)$; (g) $n^{\sqrt{n}} = \Omega(2^n)$; (h) $\left(1 + \frac{1}{n}\right)^{n^2} = O(3^n)$.
- 11. Wyznaczyć najmniejsze $k \in \mathbb{R}$, dla którego zachodzi $f(n) = O(n^k)$:
 - (a) $f(n) = (n^2 + 1)(2n^4 + 3n 8);$ (b) $f(n) = (n^3 + 3n 1)^4;$ (c) $f(n) = \sqrt{n^3 + 4n};$
 - (d) $f(n) = \sqrt{n^5 3n} n\sqrt[3]{n^5 + 2n}$; (e) $f(n) = \frac{\sqrt{n^3 3n}}{\sqrt[3]{n^2 + 2n}}$; (f) $f(n) = \frac{\sqrt[3]{\sqrt{n^5 + 1} + n^2}}{\sqrt{\sqrt[4]{n^3 + 1} + \sqrt{n}}}$.
- 12. Uporządkować ciągi za pomocą relacji $a_n \preccurlyeq b_n \Leftrightarrow a_n = O(b_n)$:
 - $\ln n$, $(\ln n)^n$, $n^{\ln n}$, $\ln(n^n)$, $3^{\ln n}$, n, n^2 , $2^{\sqrt{n}}$, $1,01^n$, $0,99^n$, $\left(1+\frac{1}{n}\right)^n$.