Lecture 33 PCA-based Face Recognition ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University

Goals

To review the linear dimension reduction technique, Principal Component Analysis (PCA).

▶ To apply PCA for face recognition.

Average Male and Female Faces from Different Races (pmsol3.wordpress.com)

Lecture 33. PCA-based Face Recognition

Principal Component Analysis (PCA)

- ▶ PCA provides compact data representation
 - PCA constructs a lower dimensional linear subspace that "best explains" (in the MSE sense) the variation of data points from their mean.
 - All data will be represented in this low-dimension feature space where high-level vision tasks can be efficiently accomplished.

C

PCA: Solution

• We would like to maximize $\mathbf{v}^T \sum \mathbf{v}$ subject to $\mathbf{v}^T \mathbf{v} = 1$.

$$\Sigma = \mathbf{Q} \begin{bmatrix} \lambda_1^2 & 0 & 0 & 0 \\ 0 & \lambda_2^2 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda_q^2 \end{bmatrix} \mathbf{Q}^T \quad \text{with } 0 \le \lambda_1^2 \le \dots \le \lambda_q^2 \quad \text{and } \mathbf{Q} = \begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_q^T \end{pmatrix}$$

- This is an eigenvalue problem, and the eigenvector corresponding to the largest eigenvalue \mathbf{e}_a is the solution.
- The eigenvectors associated large eigenvalues reveals the underlying data distribution.
- The accuracy of PCA is determined by the ratio between the sum of top largest eigenvalues and that of all eigenvalues.

$$\frac{\sum_{k=p}^{q} \lambda_k^2}{\sum_{k=0}^{q} \lambda_k^2}$$

Eigen-face for Face Recognition

Computer Vision

Face Recognition: Off-line Training

Step I: Collect a set of images of m persons, reflecting n variations in expression, pose and lighting

$$\{\mathbf{I}_{j}^{k} \mid j=1,...m, k=1,...,n\};$$

- Step 2: Compute the mean μ and eigenfaces $\{\mathbf{u}_1,...,\mathbf{u}_p\}$ via PCA that construct a low-dimensional subspace V_P .
- Step 3: For the jth person in the database, calculate the corresponding representative vector in the subspace V_P spanned by the eigenfaces

$$\alpha_j^i = \frac{1}{n} \sum_{i=1}^n \left((\mathbf{I}_j^k - \mu), \mathbf{u}_i \right) \to \mathbf{w}_j = \left(\alpha_j^1 \quad \alpha_j^2 \quad \dots \quad \alpha_j^p \right)$$

p-dimensional representation of the jth person's face

The representative image for the jth person is $\hat{\mathbf{I}}_j = \left(\sum_{i=1}^p \alpha_j^i \mathbf{u}_i\right) + \mathbf{\mu}_j$

Face Recognition: Online Recognition

• Step 4: Compute the projection of an new image I_t on to V_p .

$$\beta_t^i = ((\mathbf{I}_t - \mu), \mathbf{u}_i) \rightarrow \mathbf{w}_t = (\beta_t^1 \quad \beta_t^2 \quad \dots \quad \beta_t^p) \rightarrow \hat{\mathbf{I}}_t = (\sum_{i=1}^p \beta_t^i \mathbf{u}_i) + \mu$$

- Step 5. If the distance $|\hat{\mathbf{I}}_t \mathbf{I}_t|$ is greater than a pre-set threshold, classify the image as "non-face".
- Step 6. Otherwise, if the minimum distance $d_k = |\mathbf{w}_t \mathbf{w}_k|$ between the projection of the new image and the known representative is smaller than some pre-set threshold, classify the image as "person number k"

$$k = \arg_k \min d_k = \arg_k \min |\mathbf{w}_t - \mathbf{w}_k|$$

Step 7. In the remaining case, classify the image as "unknown".

More discussion

Reconstructed face image of the given unknown person

Representative face image of person k

$$\begin{aligned} e_k &= \left| \hat{\mathbf{I}}_t - \hat{\mathbf{I}}_k \right| & \hat{\mathbf{I}}_t = \left(\sum_{i=1}^p \beta_i^i \mathbf{u}_i \right) + \mathbf{\mu} \rightarrow \mathbf{w}_t = \left(\beta_t^1 \quad \beta_t^2 \quad \dots \quad \beta_t^p \right) \\ \hat{\mathbf{I}}_j &= \left(\sum_{i=1}^p \alpha_j^i \mathbf{u}_i \right) + \mathbf{\mu} \rightarrow \mathbf{w}_j = \left(\alpha_j^1 \quad \alpha_j^2 \quad \dots \quad \alpha_j^p \right) \\ &= \left| \sum_{i=1}^p \left(\beta_t^i - \alpha_k^i \right) \mathbf{u}_i \right| & (\mathbf{u}_i, \mathbf{u}_j) = \begin{cases} 1 & i = j \\ 0 & \text{Otherwise} \end{cases} \\ &= \left(\sum_{i=1}^p \left(\beta_t^i - \alpha_k^i \right)^2 \right) = \left| \mathbf{w}_k - \mathbf{w}_t \right| = d_k \end{aligned}$$

Usually, face recognition is done by a rank. Given the top K candidates with the best match, if a face of the correct identity is included, then the recognition is a success.

Test image

View-based PCA

How to estimate the view?

