

INTITUTO TECNOLOGICO DE TLAXIACO

CARRERA: INGENIERIA EN SISTEMAS COMPUTACIONALES

DOCENTE:

ASIGNATURA: MATEMATICAS DISCRETAS

TEMA: CONVERSIONES DE SISTEMAS NUMERICOS

ALUMNOS:

MORALES PACHECO JANELY ARLETH

CRUZ CRUZ ARTURO BETSABÉ

SANTIAGO FERIA IRIS MAYRA

GRUPO:1AS

INDICE

Contenido

OBJETIVO	3
MATERIALES	3
INTRODUCCION	4
CONVERSION DE BINARIO A DECIMAL	5
DECIMAL A BINARIO	8
OCTAL A BINARIO	10
BINARIO A OCTAL	12
HEXADECIMAL A BINARIO	13
CONCLUSION	16

OBJETIVO

Son conocidas como conversiones de base y su objetivo es intercambiar y manipular datos entre diferentes sistemas de representación numérica como lo es el binario, decimal, octal y hexadecimal

MATERIALES

- una computadora
- Lápiz y lapicero
- Una calculadora
- Un cuaderno donde se realizó las operaciones

INTRODUCCION

Se sabe que los sistemas numéricos son un conjunto de símbolos y reglas que se usan para representar cantidades y que son esenciales para las matemáticas e informática y la conversión de los sistemas numéricos son la transformación de un numero de un sistema a otro como decimal a binario o hexadecimal a octal etc. Y cada sistema tiene sus propias reglas específicas Además de que los sistemas numéricos son esenciales en nuestra vida diaria ya que nos permiten contar, ordenar, situar o comparar correctamente los números .

CONVERSION DE BINARIO A DECIMAL

Ejercicio1: 1010 a decimal

Para convertir los números binarios a decimal se les asigna la potencia de 2 a los dígitos binarios. De derecha a izquierda se les agrega un numero comenzando con 0

A cada digito se multiplica por su potencia correspondiente

suma todos los resultados para obtener el valor decimal

Ejercicio 2: 0011

Se le asigna la potencia de 2 a los dígitos binarios. De derecha a izquierda se les agrega un numero comenzando con 0

A cada digito se multiplica por su potencia correspondiente

Se suman todos los resultados para obtener el valor decimal

Ejercicio 3: 1011

Se le asigna la potencia de 2 a los dígitos binarios. De derecha a izquierda se les agrega un numero comenzando con 0

A cada digito se multiplica por su potencia correspondiente

Se suman todos los resultados para obtener el valor decimal

Ejercicio 4: 1010

Se le asigna la potencia 2 a los binarios. De derecha a izquierda se les agrega un numero comenzando con 0

A cada digito se multiplica por su potencia correspondientes

Se suma todos los resultados para obtener el valor decimal

Ejercicio 5: 111

Se le asigna la potencia 2 a los binarios. De derecha a izquierda se les agrega un numero comenzando con 0

Cada digito se multiplica por su potencia correspondiente

Se suman todos los resultados para obtener el valor decimal

Ejercicio 6:101

Se les asigna la potencia 2 a los binarios, de derecha a izquierda se les agrega un numero comenzando con cero

Cada digito se multiplica por su potencia correspondiente

Se suman todos los resultados para obtener el valor decimal

Ejercicio 7:010

Se les asigna la potencia 2 a los binarios, de derecha a izquierda se les agrega un numero comenzando con cero

Cada digito se multiplica por su potencia correspondiente

Se suman todos los resultados de la multiplicación para obtener el resultado

DECIMAL A BINARIO

Ejercicio 1: 32

Se divide el numero decimal repetidamente entre 2 anotando el residuo de cada división en cada paso.

Una vez que el cociente sea cero

Se toman los residuos obtenidos

Se escriben en orden inverso de abajo

hacia arriba para formar el numero binario

Ejercicio 2: 64

Se divide el numero decimal repetidamente entre 2 anotando el residuo de cada división en cada paso

Una vez que el cociente sea cero

Se toman los residuos obtenidos y se escriben en orden inverso de abajo hacia arriba para

formar el numero binario

Ejercicio 3:58

Se divide el numero decimal repetidamente entre 2 anotando el residuo de cada división en

cada paso

Una vez que el cociente sea cero

Se toman los residuos y se escriben en orden inverso de abajo hacia arriba para formar el numero binario

Ejercicio 4: 49

Se divide el numero decimal repetidamente entre 2 anotando el residuo de cada división en

cada paso

Una vez que el cociente sea cero

Se toman los residuos y se escriben en

orden inverso de

0 0 1

abajo hacia arriba para formar el numero binario

OCTAL A BINARIO

Ejercicio 1: 326

Remplaza cada digito octal por su equivalente binario de 3 bits. Utiliza una tabla de conversión

Combina los resultados binarios en el mismo orden y escribe el número binario resultante

Ejercicio 2: 341

Remplazar cada digito octal por su equivalente binario de tres bits. Utiliza una tabla de

conversión

Dec	Hex	Oct	Bin	Dec	Hex	Oct	Bin
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0 1 2 3 4 5 6 7 8 9 A B C D E F	000 001 002 003 004 005 006 007 010 011 012 013 014 015 016	00000000 00000001 00000010 00000010 00000110 00000110 00000111 00001000 00001010 00001010 00001010 00001101 00001101 00001110 00001111	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	020 021 022 023 024 025 026 027 030 031 032 033 034 035 036	00010000 00010001 00010010 00010011 00010100 00010110 00010110 00010111 00011001 00011001 00011001 00011011

Combina los resultados binarios en el mismo orden y escribe el número binario resultante

Ejercicio 3: 123

Remplaza cada digito octal por su equivalente binario de 3 bits

Utiliza una tabla de conversión

Dec	Hex	Oct	Bin	Dec	Hex	Oct	Bin
0	0	000	00000000	16	10	020	00010000
1	1	001	00000001	17	11	021	00010001
2	2	002	00000010	18	12	022	00010010
3	3	003	00000011	19	13	023	00010011
4	4	004	0000011	20	14	024	00010100
5	5	005	00000100	21	15	025	00010101
6	6	005	00000101	22	16	026	00010110
7	7	006	00000110	23	17	027	00010111
				24	18	030	00011000
8	8	010	00001000	25	19	031	00011001
9	9	011	00001001	26	1A	032	00011010
10	Α	012	00001010	27	1B	033	00011011
11	В	013	00001011	28	1C	034	00011100
12	C	014	00001100	29	1D	035	00011101
13	D	015	00001101	30	1E	036	00011110
14	E	016	00001110	31	1F	036	00011111
15	F	017	00001111	31	115	037	00011111

Combina los resultados binarios en el mismo orden y escribe el número binario en el mismo orden

BINARIO A OCTAL

Ejercicio 1: 101110100

Agrupar los dígitos binarios en bloques de tres, comenzando por la derecha hasta la izquierda en caso de que el ultimo grupo tenga menos de tres dígitos agregarle ceros hacia la izquierda para completarlos

Convertir cada grupo de 3 bits binarios a su código octal equivalente usando una tabla de conversión

Juntar los dígitos octales resultantes en el mismo orden en el que se formaron los grupos

Ejercicio 2: 111101101

Agrupar los dígitos binarios en bloques de tres, comenzando por la derecha hasta la izquierda en caso de que el ultimo grupo tenga menos de tres dígitos se les debe agregarle ceros hacia la izquierda para completarlos

Convertir cada grupo de 3 bits binarios a su código octal equivalente usando una tabla de conversión

Dec	Hex	Oct	Bin	Dec	Hex	Oct	Bin
0	0	000	00000000	16	10	020	00010000
1	1	001	000000001	17	11	021	00010001
2	2	002	00000001	18	12	022	00010010
3	3	002	00000010	19	13	023	00010011
	-			20	14	024	00010100
4	4	004	00000100	21	15	025	00010101
5	5	005	00000101	22	16	026	00010110
6	6	006	00000110	23	17	027	00010111
7	7	007	00000111	24	18	030	00011000
8	8	010	00001000	25	19	031	00011001
9	9	011	00001001	26	1A	032	00011010
10	A	012	00001010	27	1B	033	00011011
11	В	013	00001011	28	1C	034	00011011
12	C	014	00001100				
13	D	015	00001101	29	1D	035	00011101
14	E	016	00001110	30	1E	036	00011110
15	F	017	00001111	31	1F	037	00011111

Juntar los dígitos octales resultantes en el mismo orden en el que se formaron los grupos

HEXADECIMAL A BINARIO

Ejemplo 1: 3FF

Dividir el número hexadecimal en sus dígitos individuales y remplazar cada digito de su equivalente binario de 4 bits utilizando una tabla de conversión

Unir todas las secuencias binarias para obtener el numero binario final

Ejemplo 2: SAD

Divide el número hexadecimal en sus dígitos individuales

520,->	5:25	12	10	0-	13	=	11	001	10		110	111	
	11001	1 1	010	110		-							
25 - 2 - 12 = 1		10 4	2-5-0		3 %	2-		1					
12 - 2 - 6 - 6	-		1=2=1		6 3	2=	3 =	0					
			20,0		3	2=	1:	1		-	-		
3+2 114		0	1:0:1		1.	0 2 :	0 -	1	-	-		-	
1-2-01								-	-		-		

Remplaza cada digito con su equivalencia binario de 4 bits utilizando una tabla de conversión

Dec	Hex	Oct	Bin	Dec	Hex	Oct	Bin
0	0	000	00000000	16	10	020	00010000
1	1	001	00000001	17	11	021	00010001
2	2	002	00000010	18	12	022	00010010
3	3	003	00000011	19	13	023	00010011
4	4	004	00000100	20	14	024	00010100
5	5	005	00000101	21	15	025	0001010
6	6	006	00000111	22	16	026	00010110
7	7	007	00000111	23	17	027	00010111
8	8	010	00000111	24	18	030	00011000
9	9	200		25	19	031	00011001
		011	00001001	26	1A	032	00011010
10	A	012	00001010	27	1B	033	00011011
11	В	013	00001011	28	1C	034	00011100
12	C	014	00001100	29	1D	035	0001110
13	D	015	00001101	30	1E	036	00011110
14	E	016	00001110	31	1F	037	0001111
15	F	017	00001111	01	1000	001	0001111

Unir todas las secuencias binarias para obtener el numero binario final

Ejercicio 1: 101110111

Agrupa los dígitos binarios en bloques de 4 comenzando de derecha a izquierda y completar el último bloque con ceros dado que no tiene los 4 dígitos

Convertir cada bloque de 4 bits a su equivalente hexadecimal utilizando una tabla de conversión

Juntar los resultados para obtener el número final

Ejercicio 2: 111101100

Agrupar los dígitos binarios en bloques de 4 bits comenzando de derecha a izquierda y completar el último bloque con ceros dado que no tiene los 4 dígitos

Convertir cada bloque de 4 bits a su equivalente hexadecimal utilizando una tabla de conversión

00	(2)	11	10	1100
841	21	84		8421
	1	14	1	12

Juntar todos los resultados para obtener el número final

CONCLUSION

Proporcionan métodos para representar y manipular cantidades y son esenciales para las matemáticas y informáticas y con estos ejercicios nos damos cuenta que hay otras maneras de como se utilizan los números y símbolos y cuan importante es en la informática.