日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年11月25日

出 願 番 号

Application Number:

特願2002-340276

[ST.10/C]:

[JP2002-340276]

出 願 人
Applicant(s):

株式会社日立製作所

2003年 3月28日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】

【整理番号】 K02016911A

【あて先】 特許庁長官殿

特許願

【国際特許分類】 G06F 12/00

【発明者】

【住所又は居所】 神奈川県川崎市麻生区王禅寺1099番地 株式会社日

立製作所システム開発研究所内

【氏名】 本田 聖志

【発明者】

【住所又は居所】 神奈川県川崎市麻生区王禅寺1099番地 株式会社日

立製作所システム開発研究所内

【氏名】 岩見 直子

【発明者】

【住所又は居所】 神奈川県川崎市麻生区王禅寺1099番地 株式会社日

立製作所システム開発研究所内

【氏名】 芹沢 一

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社 日立製作所

【代理人】

【識別番号】 100075096

【弁理士】

【氏名又は名称】 作田 康夫

【手数料の表示】

【予納台帳番号】 013088

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【特許請求の範囲】

【発明の名称】仮想化制御装置およびデータ移行制御方法

【請求項1】

各々記憶領域を有する複数の記憶装置と、前記複数の記憶装置各々との間で、 該各々の記憶装置が有する記憶領域に格納されるデータを送受信するホストコン ピュータとに接続される仮想化制御装置であって、

前記複数の記憶装置と接続するための複数の第一のポートと、

前記ホストコンピュータと接続するための第二のポートと、

プロセッサと、

メモリとを有し、

前記メモリは、前記ホストコンピュータが前記複数の記憶装置のいずれかが有する第一の記憶領域にアクセスするために使用する第一の識別情報と、該第一の識別情報を含むデータを受信した場合に仮想化制御装置が該データに付与する前記第一の記憶領域を識別するための第二の識別情報とを関連付けたボリュームマッピング情報を記憶しており、

前記第一の記憶領域に格納されているデータが、前記複数の記憶装置のいずれかが有する第二の記憶領域に移行された場合に、前記プロセッサは、前記第一の識別情報と前記第二の記憶領域を識別するための第三の識別情報とを対応付けて、前記ボリュームマッピング情報に登録するよう制御することを特徴とする仮想化制御装置。

【請求項2】

請求項1記載の仮想化制御装置において、

前記メモリは更に前記仮想化制御装置と前記複数の記憶装置及び前記ホストコンピュータとの接続関係を示すルーティング情報を格納しており、

前記プロセッサは、前記ホストコンピュータ若しくは前記複数の記憶装置のいずれかからデータを受信した場合に、前記ボリュームマッピング情報に格納されている識別情報に基づいて、該データに識別情報を付与するか否かを判別し、

識別情報を付与しない場合に、前記ルーティング情報に基づいて、受信したデ

ータを前記ホストコンピュータ若しくは前記複数の記憶装置のいずれかに転送するよう制御することを特徴とする仮想化制御装置。

【請求項3】

請求項1記載の仮想化制御装置において、

前記第一の記憶領域と前記第二の記憶領域は、異なる記憶装置が有する記憶領域であることを特徴とする仮想化制御装置。

【請求項4】

請求項1記載の仮想化制御装置において、

前記プロセッサは、前記ボリュームマッピング情報を他の仮想化制御装置に通知するよう制御することを特徴とする仮想化制御装置。

【請求項5】

請求項1記載の仮想化制御装置において、

更に、仮想化制御装置を制御する管理装置と接続するための第三のポートを有 し、

前記プロセッサは、前記複数の第一のポートを介して接続される複数の記憶装置との間の接続状態を監視し、接続状態の変化を検出した場合に、前記管理装置に該接続状態の変化を通知するよう制御することを特徴とする仮想化制御装置。

【請求項6】

請求項3記載の仮想化制御装置において、

前記第一の記憶領域に格納されているデータを前記第二の記憶領域に移行する 移行処理が開始された場合に、前記プロセッサは、前記ホストコンピュータから 受信した前記第一の記憶領域に対するアクセス要求を保持し、

前記移行処理が完了した場合に、前記プロセッサは保持した前記アクセス要求を前記第二の記憶領域を有する記憶装置に宛てて転送することを特徴とする仮想化制御装置。

【請求項7】

一又は複数の計算機と接続される計算機システムであって、

各々記憶領域を有する複数の記憶装置と、

前記複数の記憶装置及び、前記一又は複数の計算機と接続されるスイッチとを

有し、

前記スイッチは、

複数の記憶装置と接続するための複数の第一のポートと、

前記一又は複数の計算機と接続するための一又は複数の第二のポートと、

計算機が前記複数の記憶装置のいずれかが有する第一の記憶領域にアクセスするために使用する第一の識別情報と、該第一の記憶領域を識別するための第二の識別情報との対応情報を格納したメモリと、

前記対応情報に基づいて、計算機から受信した前記第一の識別情報を有するデータを前記第二の識別情報を有するデータに変換して、前記第一の記憶領域を有する記憶装置に転送するルーティング処理部とを有し、

前記第一の記憶領域に格納されているデータが、前記複数の記憶装置のいずれかが有する第二の記憶領域に移行された場合に、前記ルーティング処理部は、前記第一の識別情報を有するデータを、前記第二の記憶領域を識別するための第三の識別情報を有するデータに変換して、前記第二の記憶領域を有する記憶装置に転送することを特徴とする計算機システム。

【請求項8】

請求項7記載の計算機システムにおいて、

前記スイッチは更に、前記複数の記憶装置のいずれかが有する記憶領域に格納されたデータを、前記複数の記憶領域のいずれかが有する他の記憶領域に移行するデータ移行処理を制御する、データ移行処理部を有し、

前記データ移行処理部は、前記第一の記憶領域に格納されているデータが、前記第二の記憶領域に移行された場合に、前記第一の識別情報と前記第三の識別情報を対応付けて、前記対応情報に登録することを特徴とする計算機システム。

【請求項9】

請求項8記載の計算機システムにおいて、

前記第一の記憶領域と前記第二の記憶領域は、異なる記憶装置が有する記憶領域であることを特徴とする計算機システム。

【請求項10】

請求項8記載の計算機システムにおいて、

更に、前記スイッチと接続される管理装置を有し、

前記管理装置は、前記対応情報を前記スイッチに送信して前記スイッチに設定 するボリューム管理部を有することを特徴とする計算機システム。

【請求項11】

請求項8記載の計算機システムにおいて、

前記ルーティング処理部は、前記第一の記憶領域に格納されているデータを前 記第二の記憶領域に移行するデータ移行処理が開始された場合に、ホストコンピ ュータから受信した前記第一の記憶領域に対するアクセス要求を保持し、

前記データ移行処理が完了した場合に、保持した前記アクセス要求を前記第二 の記憶領域を有する記憶装置に宛てて転送することを特徴とする仮想化制御装置

【請求項12】

ホストコンピュータから第一の識別情報を有するデータを受信して、該データ に第二の識別情報を付与して、該第二の識別情報が示す第一の記憶装置に宛てて 該データを送信するスイッチが、第一の記憶装置に格納されているデータを、第 この記憶装置に移行するデータ移行処理を制御する方法であって、

前記第一の記憶装置にデータ移行要求を発行するステップと、

前記第一の記憶装置からデータ移行処理の完了を通知するための報告を受信するステップと、

ホストコンピュータから第一の識別情報を有するデータを受信した場合に、該 データに第三の識別情報を付与して、該第三の識別情報が示す前記第二の記憶装 置に宛てて該データを送信するステップを有することを特徴とするデータ移行制 御方法。

【請求項13】

請求項12記載のデータ移行制御方法において、

前記スイッチは、前記第一の識別情報と前記第二の識別情報を対応付けて格納 したメモリを有しており、

更に、前記第一の識別情報と前記第三の識別情報とを対応付けて前記メモリに 格納するステップと、 前記メモリに格納された情報に基づいて、ホストコンピュータから受信した前 記第一の識別情報を有するデータを、前記第三の識別情報を有するデータに変換 するステップとを有することを特徴とするデータ移行制御方法。

【請求項14】

請求項12記載のデータ移行制御方法において、

更に、前記データ移行要求の発行後にホストコンピュータから受信した前記第 一の記憶装置に対するアクセス要求を保持するステップと、

前記データ移行処理の完了を通知するための報告を受信した後に、保持している前記アクセス要求を前記第二の記憶装置に宛てて送信するステップとを有することを特徴とするデータ移行制御方法。

【請求項15】

ホストコンピュータが有する第一のポートと記憶装置が有する第一のポートとに接続される第一のパスと、ホストコンピュータが有する第二のポートと記憶装置が有する第二のポートとに接続される第二のパスとを介して接続される、ホストコンピュータと記憶装置との間に、ホストコンピュータから受信したフレームを記憶装置に転送する仮想化制御装置を接続する方法であって、

前記ホストコンピュータから前記記憶装置が有する記憶領域に前記第一のパス を介してアクセスするよう設定するステップと、

前記第二のパスを切断するステップと、

前記ホストコンピュータが有する第二のポートと前記仮想化制御装置を第三の パスを介して接続するステップと、

前記仮想化制御装置と前記記憶装置が有する第二のポートを第四のパスを介して接続するステップと、

前記仮想化制御装置に、前記ホストコンピュータが前記記憶領域を識別するために使用している識別情報と、前記記憶装置が有する第二のポートの識別情報と、仮想的なポート識別情報とを対応付けて設定するステップと、

前記仮想化制御装置が前記ホストコンピュータに、該ホストコンピュータが前 記記憶領域を識別するために使用している前記識別情報と前記仮想的なポート識 別情報を送信するステップと、 前記ホストコンピュータが、前記仮想的なポート識別情報を有するアクセス要求を、該ホストコンピュータが有する前記第二のポートを介して送信するステップと、

前記仮想化制御装置が、前記仮想的なポート識別情報を有するデータを受信した場合に、該データを前記第四のパスへ送信するステップを有することを特徴とする仮想化制御装置の接続方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、複数の記憶装置間でデータ移行処理を実行する方法及び装置に関する。特に、記憶装置に対してアクセス要求を発行するホストコンピュータにデータ移行処理を意識させることなく、複数の記憶装置間でデータを移行する方法及び装置に関する。

[0002]

【従来の技術】

データ移行制御技術として、ディスクアレイサブシステムの様に複数のボリュームが一つの制御装置によって制御される記憶装置サブシステム内において、アクセス頻度の高いデータはアクセス速度の速いボリュームへ、アクセス頻度の低いデータはアクセス速度の遅いボリュームへ移行する技術がある。また、あるアプリケーションによって使用されるボリュームが各々異なる制御装置によって制御される複数の記憶領域にまたがって設けられるシステムにおいて、特定のアプリケーションによって使用されるボリューム内のデータを優先的に移行することにより、効率的なデータ移行を実現する技術が特許文献1に開示されている。

[0003]

【特許文献1】

米国特許出願公開第2001/0054133号明細書

[0004]

【発明が解決しようとする課題】

記憶装置サブシステム内におけるデータ移行は、記憶装置サブシステムを制御

する制御装置によって実行され、制御装置は、制御装置に接続するホストコンピュータに対してデータ移行処理を隠すことができる。しかし、記憶装置サブシステムをまたいだデータ移行については考慮されていない。従って、ある記憶装置サブシステム内に格納されているデータを他の記憶装置サブシステムに移行する場合は、制御装置はデータ移行処理に伴ってアクセス先の記憶装置サブシステムが変わる旨をホストコンピュータに通知する必要があり、データ移行処理をホストコンピュータに隠すことはできない。また、特許文献1にもデータ移行処理をホストコンピュータに対して隠しこむ技術は開示されていない。従ってホストコンピュータは、データ移行処理を契機として一旦自身の処理を中断しアクセス対象の記憶装置やボリュームを指定しなおす必要がある。

[0005]

近年企業データが爆発的に増加し、また記憶装置に対する24時間連続アクセスの要求が高まっていること考慮すると、複数の記憶装置を跨いだデータ移行処理は今後頻繁に発生すると予想され、ホストコンピュータの処理を中断することなく記憶装置を跨いだデータ移行が可能な技術が必要とされる。

[0006]

また、記憶装置内の記憶領域を管理し、ホストコンピュータから記憶領域への アクセス要求を転送する制御装置が交換されたり、新たな制御装置が導入された 場合には、ホストコンピュータにはアクセス先の記憶領域が変更されたものと認 識されてしまうので、複数の記憶装置間でデータ移行処理が実行された場合と同 様、ホストコンピュータは一旦処理を中断してアクセス対象を指定しなおす必要 がある。

[0007]

本発明の目的は、記憶装置間を跨いだデータ移行処理を、ホストコンピュータ に意識させることなく実行することができる制御装置及びデータ移行方法を提供 することである。

[0008]

また、本発明の他の目的は、制御装置の交換や新たな制御装置の導入を、ホストコンピュータに意識させることなく行うことができる制御装置及びデータ移行

方法を提供することである。

[0009]

【課題を解決するための手段】

本発明では、複数の記憶装置と接続される仮想化制御装置が、複数の記憶装置間でのデータ移行を制御する。仮想化制御装置は、ホストコンピュータがデータ移行元のボリュームを識別するために使用していた識別情報と同じ識別情報を用いて、データ移行先のボリュームを識別できるよう制御する。

[0010]

また、仮想化制御装置が交換された場合や、仮想化制御装置が新たに導入された場合には、新しい仮想化制御装置は、仮想化制御装置の交換や導入以前にホストコンピュータがアクセス先のボリュームを識別するために使用していた識別情報と同じ識別情報を用いて、仮想化制御装置の交換や導入後もホストコンピュータが同じボリュームにアクセスできるよう、フレームの転送を制御する。

[0011]

【発明の実施の形態】

本発明の実施形態を以下に説明する。尚、これにより本発明が限定されるものではない。

[第一の実施形態] 本発明の第一の実施形態を、図1~12を用いて説明する。

[0012]

図1は、本発明が適用される計算機システムの一例を示す図である。計算機システムは、複数台のホストコンピュータ1と、複数台の記憶装置3と、ホストコンピュータ1と記憶装置3とに接続される仮想化制御装置2と、仮想化制御装置2に接続される管理装置4とを有する。尚、ホストコンピュータ1および記憶装置3はネットワーク5を介して仮想化制御装置2と接続され、管理装置4はネットワーク6を介して仮想化制御装置2と接続される。ネットワーク5及びネットワーク6において使用されるプロトコルは同一のネットワークプロトコルでも異なるネットワークプロトコルでも良い。また、ネットワーク5において使用されるプロトコルも同一のプロトコルに限定されるものではなく、記憶装置と仮想化制御装置間のネットワークで使用されるプロトコルと、ホストコンピュータと仮

想化制御装置間のネットワークで使用されるプロトコルは異なるネットワークプロトコルであっても良い。また記憶装置毎、ホストコンピュータ毎に異なるネットワークプロトコルを用いて仮想化制御装置に接続しても良い。

[0013]

ホストコンピュータ1は、アプリケーションプログラムを実行するCPU10、 アプリケーションプログラムが格納されるメモリ11、記録媒体12、ネットワーク5に接続してデータを送受信するポート13を有する。

[0014]

管理装置4は、仮想化制御装置2を管理するための管理プログラムを実行する CPU40、管理プログラムが格納されるメモリ41、ネットワーク6に接続して データを送受信するポート43、記録媒体42を有する。

[0015]

記憶装置3は、ネットワーク5に接続してデータを送受信するポート33と、複数のディスク装置35から構成されるディスク装置群34と、個々のディスク装置35との間でデータの転送処理を行うディスクインタフェース制御部(図1ではHDD I/Fとして示す。)32と、ホストコンピュータ1からのアクセス要求に基づきディスク装置35への個々のアクセスを制御するCPU30と、ホストコンピュータ1とディスク装置35との間で転送されるデータを格納するバッファ部31を有する。

[0016]

仮想化制御装置 2 はホストコンピュータ 1 と記憶装置 3 との間で送受信されるフレームを転送するスイッチである。仮想化制御装置 2 は、ホストコンピュータ 1 或いは記憶装置 3 との間でデータの転送処理を行う複数のポート 2 3 と、複数のポート 2 3 間のパス選択を制御するパス制御部 2 2 と、管理装置 4 との間でデータの転送処理を行う管理ポート 2 5 と、パス選択制御部 2 2 を制御し、又管理装置 4 との間で送受信されたデータに基づき仮想化制御装置を制御するメイン制御部 2 0 を有する。尚、メイン制御部 2 0 は、後述するプログラムや情報が格納されるメモリ 5 1 や記録媒体 5 2 と、これらの情報を用いてプログラムを実行する CPU 5 0 を有する。又、図1においてはパス制御部 2 2 とメイン制御部 2 0 が有

するCPU50、メモリ51、記憶媒体52とは直接バスで接続されている例を示したが、パス制御部22とメイン制御部20がブリッジを介して接続される構成であっても良い。

[0017]

図1には、ホストコンピュータ1、記憶装置3、管理装置4はそれぞれ1つのポートを持つ例を示したが、これに限定されるものではなく、複数のポートを持つことも可能である。更に仮想化制御装置のポート23は、異なるネットワークプロトコルに対応可能であることから、ポート23を管理用ポートとして使用することも可能である。

[0018]

また記憶装置3は少なくともネットワーク5に接続してデータを送受信するポート33と、ホストコンピュータ1からアクセスされるデータを格納する記憶部を有すれば良く、例えば単体のディスク装置等であっても良い。

[0019]

図2は、管理装置4の記録媒体42に格納されており、メモリ41に読み込まれてCPU40によって実行されるプログラム、及び管理装置4の記録媒体42に格納される管理情報の一例を示す。

[0020]

ボリューム管理プログラム4 1 4 は、仮想化制御装置 2 から後述するボリュームマッピング情報 5 1 5 を読み出して出力装置に出力し、ボリュームマッピング情報を管理者に通知し、又ボリュームマッピング情報 5 1 5 に新たに登録する情報やボリュームマッピング情報の更新情報を入力装置を介して管理者から受け付けて仮想化制御装置 2 に送信し、管理者から受け付けた情報をボリュームマッピング情報 5 1 5 に設定する処理を実行するためのプログラムである。また、ボリュームマッピング管理情報 4 1 1 は、仮想化制御装置 2 から読み出したボリュームマッピング情報 5 1 5 や、管理者から受け付けた登録情報、更新情報を有する。尚、管理装置 4 の CPU 4 0 がボリュームマッピング管理情報 4 1 1 を用いてボリューム管理プログラム 4 1 4 を実行することによってボリューム管理部 4 0 1 が実現される。

[0021]

ここでボリュームとは、個々の記憶装置(仮想化された記憶装置も含む)で管理される記憶領域のことであり、一台の記憶装置が複数のボリュームを管理することも可能である。更に、記憶装置3で管理されるボリュームを実ボリューム、仮想化制御装置2で管理されるボリュームを仮想ボリュームとして、以後区別するものとする。

[0022]

記憶装置管理プログラム415は、仮想化制御装置2から後述する記憶装置状態管理情報512を読み出して出力装置に出力し、記憶装置の状態を管理者に通知し、又管理者から記憶装置状態管理情報512への登録情報や更新情報を受け付けて、これらの情報を仮想化制御装置2に設定するために実行されるプログラムである。また記憶装置管理情報412は、仮想化制御装置2から受信した記憶装置状態管理情報512や、管理者から受け付けた登録情報、更新情報を有する。尚、管理装置4のCPU40が記憶装置管理情報412を利用して記憶装置管理プログラム415を実行することによって、記憶装置管理部402が実現される。

[0023]

データ移行管理プログラム416は、仮想化制御装置2が管理する複数のボリューム間でデータ移行を実行するためにデータ移行制御情報413を生成し、データ移行制御情報413を有するデータ移行要求を仮想化制御装置2に対して発行し、仮想化制御装置2からデータ移行処理の結果を受信して、これを管理者に通知するために実行されるプログラムである。尚、管理装置4のCPU40がデータ移行管理プログラム416を実行することによって、データ移行管理部403が実現される。

[0024]

図3は、仮想化制御装置2の記録媒体52に格納されており、メモリ51に読み込まれてCPU50によって実行されるプログラムと、仮想化制御装置2の記録 媒体52に格納されている管理情報の一例を示す図である。

[0025]

ルーティング処理部501は、ホストコンピュータ1と記憶装置3との間で送

受信されるフレームデータのルーティング処理として,以下の二通りのルーティング処理を実行する。

[0026]

尚ここでいうフレームデータとは、ホストコンピュータ1から記憶装置3に対して送信されるアクセス要求情報、記憶装置3からホストコンピュータ1に対して送信されるステータス情報、及びアクセス要求情報に基づきホストコンピュータ1と記憶装置3との間で送受信されるデータ等の全ての情報を含むものとする

[0027]

まず実ルーティング処理部504は、ネットワーク5に接続された装置の結線情報であるルーティング情報514に基づき、ホストコンピュータ1と記憶装置3との間で直接送受信されるフレームデータのルーティング処理を制御する。即ち、実ルーティング処理部504は、パス制御部22にフレームデータの転送に使用するパスを指示する。パス制御部22は、実ルーティング処理部504の指示に基づいて、フレームデータを転送する。尚実ルーティング処理部504は、仮想化制御装置2のCPU50が、ルーティング情報514に基づいてメモリ51に読み込まれたルーティングプログラム516を実行することによって実現される。

[0028]

次に仮想化ルーティング処理部(以下、仮想化処理部と称する。)505は、 後述のボリュームマッピング情報515に基づき、ホストコンピュータ1から受信したフレームデータに対し後述の加工を施して記憶装置3に対して転送し、又、記憶装置3から受信したフレームデータに対し後述の加工を実施して、ホストコンピュータ1に転送する処理を実行する。尚、仮想化処理部505は、仮想化制御装置2のCPU50が、ボリュームマッピング情報515に基づいて、メモリ51に読み込まれた仮想化ルーティングプログラム517を実行することによって実現される。

[0029]

尚、図1及び図2においては、仮想化制御装置2がメイン制御部20を1つ有

し、このメイン制御部20において仮想化処理を含むルーティング処理を実施する場合を示している。しかし本発明はこれに限られるものではなく、例えば各ポート23毎にプロセッサを設け、このプロセッサがルーティング処理を実行することとしても良い。これによって、ルーティング処理をポート毎に並列に実施することができるので、仮想化制御装置2の性能を向上することができる。また、ルーティング処理部は、ハードウェアのみで構成されるものとすることもできる

[0030]

記憶装置監視部502は、仮想化制御装置2が仮想化制御の対象とする個々の記憶装置3の状態を監視し、監視結果を記憶装置状態管理情報512として保持し、記憶装置3の状態の変更を検出したことを契機に管理装置4に対して状態の変更通知し、又管理装置4から受信した記憶装置管理情報412に基づき自身が保持する記憶装置状態管理情報512を更新する処理を実行する。尚、記憶装置監視部502は、仮想化制御装置2のCPU50が、記憶装置監視プログラム518を実行することにより実現される。

[0031]

データ移行処理部503は、管理装置4から受信したデータ移行要求に含まれるデータ移行制御情報413を、仮想化制御装置2のメモリ51若しくは記憶媒体52にデータ移行制御情報513として格納し、データ移行制御情報513に基づき、仮想化制御装置2が管理する複数のボリューム間でのデータ移行処理を実行する。データ移行処理部503は、仮想化制御装置2のCPU50が、データ移行処理プログラム519を実行することにより実現される。尚、データ移行処理の手順の詳細は、後述する。

[0032]

図4は、仮想化制御装置2で管理されるボリュームマッピング情報515の一例を示す図である。ボリュームマッピング情報515は、仮想ボリュームと実ボリュームとのマッピングを示す制御情報である。仮想ボリューム管理情報520としては、仮想ボリュームを識別するための情報と、仮想ボリュームの状態を表す情報とが含まれる。仮想ボリュームを識別するための情報としては、ネットワ

ークで固有の値を有するPort ID、ポート毎に固有の値を有するPort Name、装置内で固有の情報であるLUN (Logical Unit Number)等が含まれる。仮想ボリュームの状態を表す情報には、仮想ボリュームの容量を表すSize、仮想ボリュームのステータス情報等が含まれる。実ボリューム管理情報512には、仮想ボリュームに対応する実ボリュームを識別するための情報と、実ボリュームの状態を表す情報とが含まれる。実ボリュームを識別するための情報には、ネットワークで固有の値を有するPort ID、ポート毎に異なる値を有するPort Name、装置内で固有の値を有するLUN 等の情報が含まれる。また、実ボリュームの状態を表す情報には、実ボリュームの容量を表すSize、実ボリュームのステータス情報等が含まれる。

[0033]

ここで仮想ボリュームを識別するための情報のであるPort ID、Port Nameは、仮想化制御装置 2 がホストコンピュータ 1 に対して仮想的に見せる記憶装置(以下、仮想記憶装置)の仮想的なポート(以下、仮想ポート)に割当てられた識別子情報である。例えば、ホストコンピュータが仮想ポートのPort IDと仮想ボリュームのLUNを指定してフレームデータを送信した場合、実際には仮想化制御装置 2 の仮想化処理部 5 0 5 がボリュームマッピング情報 5 1 5 に基づいて、Port IDとLUNが示す仮想ボリュームに対応する実ボリュームを有する記憶装置にフレームデータを転送するよう制御する。しかしホストコンピュータには、自身が指定したPort IDが示すポートを有する記憶装置にアクセスしているように認識される。

[0034]

尚図4においては、Port ID=V_Pid_1、Port Name=V_Pname_1で識別される仮想ポートからアクセスされるLUN=0で識別される仮想ボリュームが、Port ID=P_Pid_1、Port Name=P_Pname_1で識別される実ポートからアクセスされるLUN=0で識別される実ポリュームにマッピングされている(対応付けられている)例を示している。

[0035]

仮想ポートが複数の仮想ボリュームを持つことも可能である。 図4 においては

、Port ID=V_Pid_2、Port Name=V_Pname_2で識別される仮想ポートは、LUN=0(5GB)、LUN=1(5GB)の2つの仮想ボリュームを持ち、それぞれ、Port ID=P_Pid_2、Port Name=P_Pname_2、LUN=0(5GB)及びPort ID=P_Pid_1、Port Name=P_Pname_1、LUN=1(5GB)で識別される実ボリュームにマッピングされている例を示している。

[0036]

尚、ステータス情報を用いた制御例については後述する。

[0037]

図5は、仮想化制御装置2で管理される記憶装置状態管理情報512の一例を示す図である。記憶装置状態管理情報512は、記憶装置監視部502によって検出された記憶装置及びこの記憶装置が管理する実ボリュームの、識別情報等を有する。具体的には、記憶装置のポートに対して割当てられるネットワークで固有のPort ID、各ポート毎に固有の値を有するPort Name、記憶装置毎に固有の値を有するNode Name、記憶装置内の各実ボリュームに割り当てられる記憶装置内で固有のLUN等の識別情報と、実ボリュームのSize等の実ボリュームの状態情報が、記憶装置状態管理情報512に含まれる。尚図5では、記憶装置状態管理情報512として、Port ID、Port Name、Node Name、LUN、Size情報を例示しているが、記憶装置状態管理情報512は、これに限定されるものではない。例えば実ボリュームに接続される仮想化制御装置2のポート情報を、記憶装置状態管理情報512として登録することも可能である。

[0038]

図5においては、Port ID=P_Pid_1、Port Name=P_Pname_1、Node Name=P_Nnam e_1で識別されるポートが、LUN=0(10GB)、LUN=1(5GB)で識別される実ボリュームを、Port ID=P_Pid_2、Port Name=P_Pname_2、Node Name=P_Nname_2で識別されるポートが、LUN=0(5GB)で識別される実ボリュームを、更にPort ID=P_Pid_3、Port Name=P_Pname_3、Node Name=P_Nname_3で識別されるポートが、LUN=1(10GB)で識別される実ボリュームを持つことを示している。

[0039]

ここで、実ボリュームの識別情報(LUN)や、実ボリュームを持つ各ポートの 識別情報(Port ID、Port Name、Node Name)は、ボリュームマッピング情報5 15の実ボリューム管理情報512のエントリ、或いはルーティング情報514のエントリとして使用することができる。更に、記憶装置状態管理情報512は管理装置4から設定できるようにしておくことが望ましい。本発明においては上述のように、管理装置4のCPU40が記憶装置管理プログラム415を実行することによって、管理装置4が記憶装置状態管理情報512を設定することができる。

[0040]

また、新たな記憶装置が仮想化制御装置2に接続された場合、仮想化制御装置2のCPU50は、記憶装置監視プログラム518を実行することにより、新たに接続された記憶装置からPort ID、Port Name、Node Name、LUN、Size情報等を取得し記憶装置状態管理情報512に登録すると共に、管理装置4に新たな装置の検出を通知する。尚、管理装置4においてボリューム管理プログラム414が実行され、管理装置4がボリュームマッピング情報515の仮想ボリューム管理情報520のステータス情報を設定するまでは、仮想化制御装置2は新たに接続された装置へのルーティング処理を実施しない(ルーティング情報514のエントリに登録しない)ことが望ましい。

[0041]

また既に仮想化制御装置2に接続されている記憶装置との接続が遮断された場合、或いは記憶装置からの応答がないなどの障害を仮想化制御装置2が検出した場合には、仮想化制御装置2は記憶装置状態管理情報512に登録されている情報を更新すると共に、管理装置4に記憶装置の状態の変化を通知する。この際、仮想化制御装置2は、ボリュームマッピング情報515の仮想ボリューム管理情報520を参照し、ステータス情報がある条件を満たす場合にのみ(例えば、ステータス情報がActiveに設定された装置の状態が変化した場合のみ等)状態の変化を通知することが望ましい。

[0042]

尚、図5においては省略しているが、一台の記憶装置が複数のポートを持つ場合もある。

[0043]

図6は、ホストコンピュータ1が仮想化制御装置2において仮想化された記憶装置(仮想記憶装置)にアクセスする場合の、アクセス要求の処理の概要を示す。図6では、ホストコンピュータ1は、仮想化制御装置2において仮想化された複数の仮想ボリュームから構成される仮想ボリューム群60のうち、Port ID=V_Pid_1、Port Name=V_Pname_1で識別される仮想ポートの仮想ボリュームLUN=0(10GB)に対するアクセス要求を発行する。

[0044]

ホストコンピュータ1から発行される仮想ボリュームに対するアクセス要求は、ルーティング処理部501によって、仮想記憶装置に対するアクセス要求であることが検出される。具体的には、ルーティング処理部が、アクセス要求に含まれるPort IDがボリュームマッピング情報515の仮想ボリューム管理情報に含まれることを検出することによって、仮想記憶装置に対するアクセス要求であることが分かる。すると、仮想化処理部505によってアクセス要求に含まれるPort ID、LUNが参照され、このPort ID、LUNと対応付けられてボリュームマッピング情報515に登録されている実ボリュームに対するアクセス要求にアクセス要求が変換された後、変換後のアクセス要求が記憶装置3に対して発行される。尚、アクセス要求の変換は、ホストコンピュータ1が発行したアクセス要求に含まれるPort ID、LUNを、このPort ID、LUNと対応付けられてボリュームマッピング情報515に登録されている実ボリュームのPort ID、LUNに、仮想化処理部505が変換することによって行われる。

[0045]

以降ホストコンピュータ1から受信したアクセス要求に基づく、ホストコンピュータ1と記憶装置3間のデータの送受信、並びにステータス情報の送信等、一連の処理は、仮想化制御装置2を介して実行される。尚、データの送受信処理、或いはステータス情報の送信処理等において、ホストコンピュータ1と記憶装置3との間で送受信されるデータも、仮想化処理部505によってフレームデータの変換処理が実施される。但し、ここで言う変換処理とは、データそのものの変換ではなく、データに付加された情報である送信先識別子情報(D_ID)、送信元識別子情報(S_ID)、エラー検出コードであるCRC (Cyclic Redundancy Check)等の

変換処理である。例えばホストコンピュータ 1 からD_ID=V_Pid_1が設定されたアクセス要求を仮想化制御装置 2 が受信した場合には、ルーティング処理部501がボリュームマッピング情報を用いてD_IDをP_Pid_1に変換し、新たにCRCを生成してフレームデータに付与して、記憶装置 3 に変換後のフレームデータを送信する。逆に記憶装置 3 からS_ID=P_Pid_1が設定されたフレームデータを仮想化制御装置 2 が受信した場合には、ルーティング処理部501がS_IDをV_Pid_1に変換し、フレームデータ中のCRCを新たに生成したCRCに置換えて、ホストコンピュータにフレームデータを送信する。

[0046]

図7は、仮想化制御装置2がホストコンピュータに提供している仮想ボリュームに対応付けられる記憶装置3の実ボリュームを、他の異なる記憶装置の実ボリュームに変更し、仮想ボリュームと実ボリュームのマッピングを変更する際の処理の概要を示す図である。この際、今まで仮想ボリュームに対応付けられてきた旧実ボリュームから、新たにこの仮想ボリュームに対応付けられることになった新実ボリュームへ、データの移行処理が実行される。

[0047]

図7は、Port ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別される実ポリュームに格納されていたデータを、Port ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で識別される実ポリュームに格納する(移行する)要求が何らかの条件を契機として発生し、管理者が管理装置4を介して仮想化制御装置2にデータ移行要求を発行した場合の処理を示している。管理端末から発行されるデータ移行要求は、データ移行元及びデータ移行先の実ポリュームを識別するための情報(Port ID、Port Name、LUN等)を含むデータ移行制御情報413を有する。

[0048]

データ移行要求を受信した仮想化制御装置2では、メイン制御部20のデータ移行処理部503がデータ移行制御情報を解析し、解析結果に基づいてデータ移行処理を実行する。即ち、図7に示す例においては、データ移行処理部503の制御によって、仮想化制御装置2からPort ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別される実ボリュームを持つ記憶装置3に対し、データ移行(copy)要

求が発行される。このデータ移行要求には、データ移行先の実ボリュームを識別する情報(図7に示す例においては、Port ID=P_Pid_3、Port Name=P_Pname_3、L UN=1)が含まれる。データ移行要求を受信したP_Pid_1で識別されるポートを持つ記憶装置は、LUN=0で識別される実ボリュームに格納されているデータを、P_Pid_3、Port Name=P_Pname_3、LUN=1で識別される実ボリュームに宛てて送信する。P_Pid_3で識別されるポートを持つ記憶装置はP_Pid_1で識別されるポートを持つ記憶装置から受信したフレームデータをLUN=1で識別される実ボリュームに格納する。このように、P_Pid_1で識別されるポートを持つ記憶装置とP_Pid_3で識別されるポートを持つ記憶装置とP_Pid_3で識別されるポートを持つ記憶装置とP_Pid_3で識別されるポートを持つ記憶装置とP_Pid_3で識別されるポートを持つ記憶装置との間でデータのコピーを行うことによって、データ移行処理が実現される。

[0049]

データ移行処理の完了後、データ移行処理部503はボリュームマッピング情報515にデータ移行先の実ボリュームを登録するとともに、仮想ボリューム管理情報520の仮想ボリュームのステータス情報を更新、登録する。係る情報の更新、登録がされた後のボリュームマッピング情報515の一例を図8に示す。

[0050]

図8は、図7に示すデータ移行に伴い、Port ID=V_Pid_1、Port Name=V_Pname _1、LUN=0で識別される仮想ボリュームにマッピングされる(対応付けられている)実ボリュームが、Port ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別される実ボリューム(データ移行元の実ボリューム)から、Port ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で識別される実ボリューム(データ移行先の実ボリューム)に変更された場合の、変更後のボリュームマッピング情報515の一例を示す図である。

[0051]

図8では、Port ID=V_Pid_1、Port Name=V_Pname_1、LUN=0で識別される仮想ボリュームにマッピングされる(対応する)実ボリュームとして、Port ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別される実ボリューム(データ移行元の実ボリューム)と、Port ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で識別される実ボリューム(データ移行先の実ボリューム)が登録されている。更に仮想ボリ

ューム管理情報 5 2 0 のステータス情報は、Port ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で識別される実ボリュームがActiveであり、Port ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別される実ボリュームがInactiveであることを示している。仮想ボリュームに対するアクセス要求は、ステータス情報がactiveである実ボリュームに対して実行される。例えば図 8 に示すボリュームマッピング情報 5 1 5 に従ってルーティング処理部がアクセス要求やフレームデータを転送する場合、Port ID=V_Pid_1、Port Name=V_Pname_1、LUN=0で識別される仮想ボリュームに対するアクセス要求、或いはこのアクセス要求に基づくデータの転送処理は、仮想ボリューム管理情報 5 2 0 のステータス情報に基づき、Port ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で認識される実ボリュームに対して実行される。

[0052]

このように、ある記憶装置が有する実ボリューム内のデータが、他の記憶装置 が有する実ボリュームに移行された場合、本実施形態においては仮想ボリューム と実ボリュームとの間のマッピング(対応関係)がデータ移行処理部503によ って変更される。しかし、ホストコンピュータがボリュームにアクセスするため に使用する識別情報は、仮想ボリュームの識別情報(仮想ポートのPort ID、Por t Name、及び仮想ボリュームのLUN)であり、この識別情報はデータ移行が実行 されても変化しない。例えば図7に示すデータ移行が実行される場合について考 える。ホストコンピュータがPort ID=V_Pid_1、Port Name=V_Pname_1、LUN=0で 識別される仮想ボリュームに対するアクセス要求を発行した場合、データ移行前 は、仮想化処理部505は図4に示すボリュームマッピング情報515に基づい て、このアクセス要求をPort ID=P_Pid_1、Port Name=P_Pname_1、LUN=0で識別 される実ボリュームに宛てて送信する。データ移行後は、仮想化処理部505は 図8に示すボリュームマッピング情報515に基づいて、このアクセス要求をPo rt ID=P_Pid_3、Port Name=P_Pname_3、LUN=1で認識される実ボリュームに宛て て送信する。したがって、本実施例によれば、ホストコンピュータがアクセス対 象として認識するボリュームの識別情報を変更することなく、複数の記憶装置間 でのデータ移行を実行することができる。

図8に示すボリュームマッピング情報515には、実ボリュームに対して発行 された未完了のコマンドを識別する情報も登録される。図8では、P_Pid_1、P_P name_1、LUN=0で識別されるデータ移行元の実ボリュームには、未完了のコマン ドとしてC_id_0、C_id_1、C_id_2が、P_Pid_3、P_Pname_3、LUN=1で識別される データ移行先の実ボリュームには、未完了のコマンド(データ移行処理部503 がデータ移行元の実ボリュームにデータ移行要求を送信した後に、仮想化制御装 置2がホストコンピュータから受信したデータ移行対象となっている仮想ボリュ ームへのコマンド)としてC_id_3、C_id_4が登録されている。コマンドは、仮想 化制御装置2がホストコンピュータからコマンドを受信したのを契機に仮想化制 御装置2によってボリュームマッピング情報に登録され、仮想化制御装置2が記 憶装置からコマンドに応じた処理の終了を通知する終了ステータス等を受信した 場合に削除される。但し仮想化制御装置2は、データ移行要求をデータ移行元の 実ボリュームに送信したことを契機に、ホストコンピュータ1から受信したデー タ移行対象の仮想ボリュームに対するコマンドを、データ移行先の実ボリューム のエントリに登録する。また仮想化制御装置2は、データ移行元の実ボリューム にデータ移行要求を送信した後に、データ移行元の記憶装置3からデータライト 系コマンドの終了ステータスを受信した場合には、未完了コマンドの登録を削除 せずコマンドが完了したことのみをボリュームマッピング情報515に設定する 。尚、図8では省略しているが、ボリュームマッピング情報515は、未完了の コマンドを識別するための情報以外に、コマンド情報を保持することも可能であ る。

[0054]

尚、図7及び図8では、データ移行の単位としてボリュームを用い、ボリューム単位でデータ移行を実行する例を示したが、本発明はこれに限られるものではない。ボリュームマッピング情報515が、データ移行元の記憶装置の開始/終了アドレス情報とデータ移行先の記憶装置の開始/終了アドレス情報を保持すれば、ブロックアドレス単位でデータ移行を実行することも可能である。

また図7及び図8では、データ移行処理部503が一台の記憶装置に対してデ

- タ移行要求を発行することにより、データ移行が実行される例を示したが、これに限られるものではない。例えばデータ移行処理部503がデータ移行元の記憶装置にはリード要求を、データ移行先の記憶装置にはライト要求をそれぞれ発行することによって、データ移行を実行することも可能である。

[0055]

尚、仮想ボリューム管理情報520のステータス情報は、管理装置4のボリューム管理部401によって設定・更新が可能であることが望ましい。

[0056]

図9は、仮想化制御装置2のルーティング処理部501によって実行される、フレームデータの転送処理の一例を示す図である。本処理は、ホストコンピュータ1或いは記憶装置3から仮想化記憶装置2がフレームデータを受信したことを契機として開始される(100)。フレームデータを受信したルーティング処理部501は、フレームデータに含まれるフレームデータの送信元/送信先の識別情報(送信元のPort ID、送信先のPort ID等)、及び必要な場合はフレームデータに含まれるフレームデータに含まれるフレームデータに含まれるフレームデータの種別情報、及びフレームのペイロードに含まれる各種情報(送信先のLUN等)を用いて、仮想化処理が必要か否かを判別する(101)。具体的には、送信先のPort IDやLUNが、ボリュームマッピング情報515の仮想ボリューム管理情報520に登録されている場合には、そのフレームデータは仮想化処理が必要なフレームデータであると判定される。

[0057]

仮想化処理が必要な場合、以下に示す仮想化処理(102)を仮想化処理部505 が実行する。

1. 受信したフレームデータが、ホストコンピュータから仮想記憶装置へのフレームデータである場合

仮想化処理部505は、ボリュームマッピング情報515に基づきフレームデータ中の送信先識別情報が示す仮想記憶装置に対応する記憶装置を検出する。そしてホストコンピュータから受信したフレームデータをこの記憶装置宛てのフレームデータに変換する為、フレームデータに含まれるフレームデータの送信先識別情報(DID)をこの記憶装置のPort IDに変換する。また受信したフレームデータ

中のCRCを新たな送信先識別情報に基づくCRCに変換する。そして変換後のフレームデータは、ポート23を介して記憶装置3に向けて送信される。

2. 受信したフレームデータが、仮想記憶装置にマッピングされた(対応づけられた)記憶装置からホストコンピュータに対するフレームデータである場合

仮想化処理部 5 0 5 は、ボリュームマッピング情報 5 1 5 に基づきフレームデータ送信元の記憶装置に対応する仮想記憶装置を検出する。そして記憶装置から受信したフレームデータを、この仮想記憶装置からのフレームデータに変換する為、フレームデータ内の送信元識別情報(S_ID)を仮想記憶装置のPort IDに置き換える。又、フレームデータ内のCRCを、新たな送信元識別情報に基づくCRCに置換える。そして、送信元識別情報とCRCが置き換えられたフレームデータは、ポート 2 3 を介してホストコンピュータ 1 に対して送信される。

[0058]

図9に示す仮想化処理要否の判別において(101)、ルーティング処理部501 が仮想化処理は不要と判別した場合、実ルーティング処理部504がルーティン グ情報514に基づいて、受信したフレームデータのルーティング処理を実行す る(103)。

[0059]

図10は、仮想化制御装置2のデータ移行処理部503が実行する、データ移 行処理の一例を示す図である。

[0060]

データ移行処理は、管理装置4から仮想化制御装置2がデータ移行要求を受信した場合に開始される(110)。データ移行要求を受信したデータ移行処理部503は、データ移行要求が有するデータ移行元及びデータ移行先の実ボリユームを示す情報に基づいて、データ移行制御情報513を生成する。尚、データ移行制御情報は、少なくともデータ移行元及びデータ移行先の実ボリユームを識別するための情報(Port ID、LUN等)を有する。そしてデータ移行処理部503は、データ移行制御情報513に基づき、データ移行元の実ボリユームを有する記憶装置3に対して、アクセス要求(データ移行要求)を発行する(111)。

[0061]

データ移行要求の発行後データ移行処理部 5 0 3 は、アクセス要求を発行した個々の記憶装置 3 から終了報告を受信するのを待つ(112)。そして、データ移行処理部 5 0 3 は、データ移行要求を発行した記憶装置 3 からの終了報告が、全て正常終了を通知する終了報告であるかを確認する(113)。尚、データ移行処理部 5 0 3 が異常終了を通知する終了報告を受信した場合には、データ移行処理部 5 0 3 が、この終了報告の発行元の記憶装置に対して、個別にアクセス要求(データ移行要求)の発行処理(111)から終了報告の確認処理(113)までの処理を再実行することが望ましい。

[0062]

データ移行処理部503が、データ移行要求の発行先記憶装置3全てから正常終了を示す終了報告を受信した場合は、データ移行処理部503は仮想ボリューム管理情報520に、データ移行先の実ボリュームを登録すると共に、仮想ボリューム管理情報のステータス情報を更新し(114)、データ移行処理の終了を管理装置4に対して報告する(115)。

[0063]

尚、図10に示すデータ移行処理においては、仮想化制御装置2からデータ移行要求を受信するデータ移行元の記憶装置3が以下の様な機能を有することによって、仮想ボリューム管理情報520のステータス情報が更新される時点で、移行元の実ボリュームに対するアクセス要求は全て完了していることが保証される

[0064]

データ移行元の記憶装置3は、データ移行処理中にホストコンピュータ1からライトコマンドを受信した場合、ライトコマンドに従って記憶媒体35にデータを書き込むと共に、ライトデータを一時的に保持するための記憶領域(退避ボリューム)に、書き込まれたライトデータを格納する。尚退避ボリュームは、記憶装置3が有する記憶媒体中の記憶領域である。そして、データ移行処理の一環としてデータ移行元の記憶装置3は、退避ボリュームに格納されたデータを、データ移行先の記憶装置3に送信する。従って、データ移行元の記憶装置3が仮想化制御装置2のデータ移行処理部503に終了報告を送信する際には、データ移行

元の実ボリュームに対する未完了のコマンドは存在せず、かつデータ移行処理中に実行されたライト処理によって変更されたデータは、データ移行先の記憶装置にも既に送信されていることとなる。このため、データ移行処理部503が仮想ボリューム管理情報520を更新する時点で、データ移行元の実ボリュームに対するアクセス要求は全て処理済みであることが保証される。従って、実ボリューム間でデータを移行し、仮想ボリュームにマッピングされる実ボリュームをデータ移行元の実ボリュームからデータ移行先の実ボリュームに変更する際に、データの整合性を保証することができる。

[0065]

以上に説明したデータ移行処理により、複数の記憶装置間におけるデータ移行 処理を制御する仮想化制御装置は、個々の記憶装置の持つ機能を活用することに よって、データ移行処理に要する処理負荷を軽減することができる。

[0066]

尚、データの整合性を保証するための他の方法として、以下の方法を用いるこ ともできる。仮想化制御装置2のボリュームマッピング情報515に、実ボリュ ーム毎に受信したコマンドを登録するためのエントリを持たせる。仮想化制御装 置2のルーティング処理部501は、ホストコンピュータから記憶装置3宛ての コマンドを受信する度に、このコマンドの転送先の実ボリュームに対応するエン トリにコマンドの内容を登録する。また、仮想化制御装置2が記憶装置からコマ ンドに応じた処理の終了報告を受信した際には、ルーティング処理部501は、 ボリュームマッピング情報515に登録したコマンドを削除する。この様に、仮 想化制御装置2が未完了なコマンドの存在を把握できるよう、ボリュームマッピ ング情報515を構成した上で、仮想化制御装置2のデータ移行処理部503が 記憶装置3にデータ移行要求を送信した後は、ホストコンピュータ1からデータ 移行対象の仮想ボリュームに対するコマンドを受信した仮想化制御装置2のルー ティング処理部501は、このコマンドを仮想化制御装置2が有する記憶媒体5 2に一時的に格納する。そして、仮想化制御装置2がデータ移行元の記憶装置3 からデータ移行完了報告を受信した場合には、仮想化制御装置2のルーティング 処理部は、記憶媒体52に格納していたコマンドを、データ移行先の実ボリュー

ムに対して転送する。係る方法を用いることによって、仮想化制御装置 2 がデータ移行元の記憶装置 3 にデータ移行要求を送信してから、この記憶装置 3 から終了報告を受信するまでの時間を短縮することができる。

[0067]

尚、前述の通り、データ移行処理部503が仮想ボリューム管理情報520のステータス情報を更新した後は、仮想ボリュームに対するアクセス要求或いはアクセス要求に基づくデータの転送等は、仮想ボリューム管理情報520のステータス情報に基づき、Activeな実ボリュームに対して実行される。

[0068]

以上に説明したように、仮想化制御対象の記憶装置間でデータ移行を実行する場合、仮想化制御装置2がボリュームマッピング情報515を更新することによって、ホストコンピュータ1がアクセス対象として認識する仮想ボリュームの識別情報を変更することなく、仮想ボリュームにマッピングされる実ボリュームをダイナミックに変更することができる。従って、ホストコンピュータ1は、記憶装置(実ボリューム)間でデータ移行が実行されたことを意識することなく、仮想ボリュームに対するアクセス処理を継続することができる。

[0069]

ところで、上述の実施形態では、仮想化制御装置2からデータ移行要求を受信した記憶装置3 (データ移行元) の機能を用いてデータの整合性(仮想ボリューム管理情報520の更新時に、変更前の実ボリュームに対する全てのアクセス要求が完了していること)を保証している。しかし、本発明はこれに限定されるものではない。

[0070]

以下に、データ移行処理の他のバリエーションとして、仮想化制御装置 2 が有する機能のみを用いて、変更前の実ボリュームに対するアクセス要求が全て完了したことを検出する方法を説明する。

[0071]

この方法においては、仮想化制御装置2のボリュームマッピング情報515に 、実ボリューム毎に受信したコマンドを登録するためのエントリを持たせる。仮 想化制御装置2は、ホストコンピュータから仮想ボリューム若しくは実ボリューム宛てのコマンドを受信する度に、このコマンドの転送先の実ボリュームに対応するエントリにコマンドの内容を登録する。また、仮想化制御装置2が記憶装置からコマンドに応じた処理の終了ステータスを受信した際には、ボリュームマッピング情報515に登録したコマンドを削除する。尚、エントリに登録されているコマンド自体は、仮想化制御装置2が記憶媒体52内に保持する。

[0072]

仮想化制御装置2は、データ移行要求を記憶装置3に送信したことを契機に、ホストコンピュータ1から受信したデータ移行対象の仮想ボリュームに対するコマンドを、データ移行先の実ボリュームに対応するエントリに登録する。更に仮想化制御装置2は、データ移行要求を送信した後に、データ移行元の記憶装置3からデータライト系コマンドの終了ステータスの報告を検出した場合は、ボリュームマッピング情報に登録されているコマンドを削除せず、コマンドに対する処理が完了したことのみをボリュームマッピング情報に登録する。

[0073]

仮想化制御装置 2 は、データ移行元の実ボリュームに対する未完了のコマンドが無くなったことを条件として(データ移行元の実ボリュームに対応付けられてボリュームマッピング情報 5 1 5 に登録されているコマンド全てについて、処理済みを示す情報が登録されていることを条件として)、仮想化制御装置 2 が一時的に保持しているデータライト系コマンド(ボリュームマッピング情報 5 1 5 に完了を示す情報が登録され、未削除のコマンド)に基づき、データ移行元の実ボリュームとデータ移行先の実ボリュームとの間でのデータの更新処理を実行する

即ち、データ移行要求送信後にライト系コマンドに基づいてデータ移行元の実ボリュームで実行されたデータの更新を、データ移行先の実ボリュームにも反映するため、仮想化制御装置 2 は、データ移行元の実ボリュームで更新されたデータをデータ移行先の実ボリュームに書き込むようデータ移行元及びデータ移行先の記憶装置を制御する。

[0074]

更に仮想化制御装置 2 は、データ移行元の実ボリュームとデータ移行先の実ボ リューム間でデータ更新処理が完了したのを契機に、ボリュームマッピング情報 5 1 5 に登録されている、データ移行要求送信後に受信した仮想ボリュームに対 するコマンドを、データ移行先の実ボリュームに対して送信する。

[0075]

尚、データ移行処理において、仮想化制御装置 2 がデータライト系コマンドの 処理状態を監視することとしても良い。例えば仮想化制御装置 2 は、データ移行 要求発行前にデータ移行元の実ボリュームに対して発行されたライト系コマンド に基づくライト処理が、データ移行処理開始後にも未だ実行されていない場合 (データ移行元の記憶装置と仮想化制御装置 2 との間でのライトコマンドに基づく ライトデータ転送が開始されていない場合) は、データ移行元に対してライト処 理のアボート処理を実行する。即ち、仮想化制御装置 2 は、データ移行元の実ボ リュームに対して発行されたライトコマンドをキャンセルする要求をこの実ボリ ュームに対して発行し、キャンセルされたライトコマンドと同一のライトコマンドをデータ移行処理完了後にデータ移行先の実ボリュームに対して発行する。係 る処理により、オーバヘッドの少ないデータ移行処理を実現することができる。

[0076]

以上の処理により、仮想ボリュームにマッピングされる実ボリュームを変更した場合にも、変更前の実ボリュームと変更後の実ボリュームとの間でデータの整合性を保証することができる。

[0077]

図11は、仮想化制御装置2の記憶装置監視処理部502によって実行される 記憶装置の接続状態監視処理の一例を示す図である。仮想化制御装置2の記憶装 置監視処理部502は、ポート23に接続される記憶装置の接続状態を監視し、 接続状態の変化を検出した際に図11に示す処理を開始する(120)。

[0078]

尚、仮想化制御装置2に接続される記憶装置3は各々自己の状態を仮想化制御装置に通知するためのソフトウェアを記憶装置3が有するメモリに格納している。このソフトウェアが記憶装置のCPU30によって実行されることによって、記憶

装置は仮想化制御装置の記憶装置監視処理部502に記憶装置のNode Name、Port Name、Port ID、記憶装置が有する実ボリュームのLUN、サイズ等の管理情報を送信する。従って、記憶装置監視処理部502は、記憶装置から受信する管理情報から接続状態を検出することができる。また、仮想化制御装置2は、ポート23に記憶装置が接続されている場合にはその旨を検出することができ、又ポート23から記憶装置が切り離された場合にもその旨を検出することができる。従って、記憶装置監視処理部502は、ポートと記憶装置との接続状態を自身で検出することによっても、接続状態の変化を検出することができる。

[0079]

接続状態の変化を検出した記憶装置監視部502は、先ず接続状態の変化が、新たな記憶装置の追加によるものなのか、それ以外の変化、例えばポート23と記憶装置との間の接続が切断されることによるものなのかを判別する(121)。

[0080]

新たな記憶装置が追加された場合には、記憶装置監視部502はこの記憶装置から記憶装置のポートの識別情報としてNode Name (装置毎に固有)情報、Port ID (ネットワークで固有)情報、Port Name (ポート毎に固有)情報を、また更に記憶装置が管理する実ボリュームの管理情報としてLUN (Logical Unit Number:装置内で固有)情報等の情報を取得する。そして記憶装置監視部502は、記憶装置ごとに固有の情報であるNode Nameや、記憶装置のポートに固有の識別子情報であるPort Nameが既に記憶装置状態管理情報512に登録済みであるか否かを判別し(122)、判別結果に基づき以下の処理を実行する。

[0081]

取得したNode NameやPort Nameが既に記憶装置状態管理情報 5 1 2 に登録されている場合は、記憶装置監視部 5 0 2 が登録済みの記憶装置が接続されたことを管理装置 4 に対して報告し(123)、一連の記憶装置監視処理を終了する。尚、記憶装置から取得したNode NameやPort Nameに対応付けられたPort ID (ネットワークで固有)情報が既に管理装置 4 によって記憶装置状態管理情報 5 1 2 に登録されている場合には、仮想化制御装置 2 が記憶装置にこの登録済みのPort IDを設定することが望ましい。またPort IDが登録されていない場合は、仮想化制御

装置がPort IDを記憶装置に割当ててこの記憶装置に設定し、記憶装置状態管理情報512に記憶装置に設定したPort IDを登録すると共に、管理装置4にこのPort IDを報告することが望ましい。更に、記憶装置から記憶装置監視処理部502が取得した実ボリュームの管理情報と、記憶装置状態管理情報512に登録済みの管理情報とが異なる場合は、記憶装置監視部502が記憶装置状態管理情報512を取得した管理情報を用いて更新し、管理装置4に報告することが望ましい。

[0082]

記憶装置から記憶装置監視処理部 5 2 0 が取得したNode NameやPort Name情報が、記憶装置状態管理情報 5 1 2 に登録されていない場合、記憶装置監視処理部 5 0 2 は取得した情報を記憶装置状態管理情報 5 1 2 に登録し(124)、管理装置 4 に報告し(123)、一連の記憶装置監視処理を終了する。

[0083]

ステップ121において、新たな記憶装置の追加以外(例えば、記憶装置の削除等)による接続状態の変化であると記憶装置監視部502が判断した場合には、記憶装置監視部502が、接続状態が変化した記憶装置が仮想化制御の対象であるか否かを判別し(125)、判別結果に基づき以下の処理を実行する。

[0084]

仮想化制御の対象となる記憶装置である場合は、記憶装置監視部502は検出した接続状態の変化を管理装置4に対して報告し(123)、一連の記憶装置監視処理を終了する。仮想化制御の対象外の記憶装置である場合には、記憶装置監視部502は、ネットワークプロトコルの規定に基づいた処理(例えば、Fibre ChannelにおけるRSCN (Registered State Change Notification)の通知)を実施し(126)、一連の記憶装置監視処理を終了する。

[0085]

以上の処理によって、仮想化制御装置2に接続される記憶装置3各々について、仮想化制御装置2が接続状態を監視し、接続状態が変化した場合には変化を管理装置に通知するよう制御することができる。また、仮想化制御装置2に接続される各記憶装置3について、記憶装置3が仮想化制御対象であるか否かに基づき

、接続状態の変更通知を制御することができる。

[第二の実施形態] (パーソナル情報を用いた記憶装置の識別)

第一の実施形態においては、記憶装置3のポート33を識別する情報として、Port ID、Port Nameが用いられる。しかし、本発明はこれに限られるものでは無く、記憶装置3のポート33を識別することができる情報であれば他の情報であっても良い。第一の実施形態においては、記憶装置3を識別する情報としてNode Nameが用いられたが、これも記憶装置3を識別することができる情報であれば他の情報でも良い。例えば記憶装置3を識別することができる情報であれば他の情報でも良い。例えば記憶装置3を識別するための情報として、SCSI (Small Computer System Interface)で規定するVital product dataのDevice Identification page (83h)で用いられる識別子情報を用いることもできる。また、任意のボリュームを識別するための情報として、ベンダ独自の識別子情報(以下、パーソナル情報)を用いることもできる。

[0086]

以下、パーソナル情報によって、記憶装置3が有する実ボリュームや、仮想化 制御装置がホストコンピュータに提供する仮想ボリュームが識別される場合にお ける、データ移行方法について、図12~14を用いて説明する。

[0087]

図12は、パーソナル情報を登録するためのエントリを有するボリュームマッピング情報515の一例を示す図である。図12は、P_Pid_1 (LUN=0/1)、P_Pid_2 (LUN=0)、P_Pid_3 (LUN=0)で識別される各実ボリューム各々がパーソナル情報を保持する例であり、仮想ボリュームも実ボリュームと同様に、パーソナル情報を保持している。

[0088]

ここで仮想ボリュームにつけられたパーソナル情報は、V_Pid_2 (LUN=0)で識別される仮想ボリュームに付けられているパーソナル情報 "DDD_01"のように、対応する実ボリュームのパーソナル情報 "BBB_01"と一致する必要は無い。仮想ボリュームに割り当てられるパーソナル情報は、仮想化制御装置2が生成し、仮想ボリュームを識別するための情報としてボリュームマッピング情報515に登録されることとしてもよい。又、実ボリュームがパーソナル情報を持たない場合

にも、仮想化制御装置2が仮想ボリュームに対するパーソナル情報を生成してボリュームマッピング情報515に登録することができる。尚、V_Pid_2 (LUN=1) で識別される仮想ボリュームに付けられているパーソナル情報 "AAA_00" のように、対応する実ボリュームのパーソナル情報 "AAA_00" と同じパーソナル情報を仮想ボリュームに割り当てることもできる。

[0089]

更に、仮想ボリュームにつけられるパーソナル情報は、仮想ボリュームに対応付けられている実ボリュームが変更され、データ移行が実行されても、変更する必要はない。従って、例えばV_Pid_1 (LUN=0、 Active)に付けられているパーソナル情報 "AAA_01"は、対応する実ボリュームのパーソナル情報 "CCC_01"には一致しないが、データ移行前の実ボリュームのパーソナル情報 "AAA_01"とは一致している。これは、V_Pid_1 (LUN=0、 Active)で識別される仮想ボリュームが、データ移行前は対応する実ボリュームと同じパーソナル情報を有していおり、データ移行後もパーソナル情報を変更することなくデータ移行元の実ボリュームと同一のパーソナル情報を引き継いでいるからである。

[0090]

図13は、パーソナル情報を用いてボリュームを識別するホストコンピュータ 1が、仮想化制御装置2を介してボリュームにアクセスする際に実行される処理 の一例を示す。

[0091]

尚、第二の実施形態におけるホストコンピュータ1は、第一の実施形態における構成に加え更に記憶装置識別処理部15を有する。記憶装置識別処理部15は、ホストコンピュータのメモリ11に格納されているプログラムがCPU10に実行されることによって実現され、パーソナル情報を用いてホストコンピュータがアクセスするボリューム及び記憶装置を識別する。即ち、記憶装置識別処理部15は、記憶装置にアクセスする際にまず、ホストコンピュータとネットワークを介して接続される記憶装置各々に対して、記憶装置内の実ボリュームを識別するためのパーソナル情報を送信するよう要求し、各記憶装置からパーソナル情報を受信する。そして記憶装置識別処理部15は、ホストコンピュータのメモリ11

に格納されているアクセス対象の実ボリュームのパーソナル情報と、各記憶装置 から受信したパーソナル情報を照合する。記憶装置識別処理部15は、アクセス 対象の実ボリュームのパーソナル情報と同一のパーソナル情報を送信した記憶装置を、アクセス対象の記憶装置であると判別する。以上の記憶装置識別処理によって、アクセス対象の記憶装置が特定されると、ホストコンピュータは特定され た記憶装置に対してアクセス要求を発行する。

[0092]

図13では、ホストコンピュータ1がパーソナル情報 "AAA_01" で識別される 実ボリュームにアクセスする例を示す。

[0093]

まず、ホストコンピュータ1が記憶装置3と仮想化制御装置2を介さずに接続している場合を考える。図13においては、Port ID=P_Pid_1、Port Name=P_Pname_1で識別される記憶装置3のポートから、パーソナル情報 "AAA_01"を有する実ボリュームにアクセスすることができる。従って記憶装置識別処理部14は、このポートを有する記憶装置3からパーソナル情報 "AAA_01"を受信することとなり、この記憶装置3をアクセス対象として特定する。すると、ホストコンピュータは、パーソナル情報 "AAA_01"を受信した際受信フレームに含まれている送信元のアドレス情報 (Port ID=P_Pid_1) や実ボリュームの識別情報 (LUN=0)を用いて、アクセス対象の記憶装置3にアクセス要求を発行する。以降、このアクセス要求に基づくホストコンピュータから記憶装置とへのデータの送信は、Port ID=P_Pid_1、LUN=0の識別情報を有するフレームによって行われる。

[0094]

次に図13に示すように、ホストコンピュータ1と記憶装置3とが仮想化制御装置2を介して接続され、且、記憶装置3が仮想化制御対象である場合を考える。仮想化制御装置2の仮想化処理部505は、記憶装置3が有する実ボリュームに仮想ボリュームを割り当て、(ボリュームマッピング情報515に実ボリュームと対応付けて仮想ボリュームの識別情報を登録し)、実ボリュームのパーソナル情報 "AAA_01"と同一のパーソナル情報を仮想ボリュームのパーソナル情報としてボリュームマッピング情報515に設定する。

[0095]

仮想化処理部505が係る処理を実行することによって、ホストコンピュータ 1の記憶装置識別処理部15が、ネットワークを介して接続する装置に対してパ ーソナル情報を送信するよう要求すると、仮想化制御装置2がパーソナル情報" AAA_01"をホストコンピュータ1に送信することになる。従って、ホストコンピ ユータの記憶装置識別処理部15は、仮想化制御装置2からパーソナル情報"AA A_01"を受信した際、受信フレームに含まれている送信元のアドレス情報(Port ID=V Pid 1) 及び仮想ボリュームの識別情報(LUN=0)で識別される仮想記憶装 **置の仮想ボリュームをアクセス対象のボリュームと判別する。そして、ホストコ** ンピュータは、Port ID=V_Pid_1、LUN=0の識別情報を有するフレームを送信する ことによって、アクセス対象の仮想ボリュームへアクセス要求やデータを送信す る。Port ID=V_Pid_1、LUN=0の識別情報を有するフレームは、仮想化制御装置2 の仮想化ルーティング処理部505によって、Port ID=P_Pid_1、LUN=0で識別さ れる実ボリューム宛のフレームに変換された後、Port ID=P_Pid_1で識別される ポートを有する記憶装置3に向けて送信される。尚、ホストコンピュータがアク セス対象の記憶装置を検出(判別)した後の処理については、第一の実施形態と 同一であるので詳細な説明は省略する。

[0096]

以上に示したように、ホストコンピュータ1の記憶装置識別処理部15は、記憶装置3が仮想化制御装置2の仮想化制御対象下に置かれた場合でも、Port ID= V_Pid_1、Port Name=V_Pname_1で識別される仮想ポートが持つ仮想ボリュームに設定されたパーソナル情報 "AAA_01"を用いて、アクセス対象の記憶装置やボリュームを検出することができる。

[0097]

尚、図13において、ホストコンピュータ1と記憶装置3との間にルーティング処理のみを行うスィッチ(仮想化ルーティング処理部505を備えていないスイッチ)が介在しても上述の処理と同様の処理によって、ホストコンピュータは仮想ボリュームをアクセス対象のボリュームであると認識することができ、仮想化制御装置2はホストコンピュータからのフレームデータを仮想ボリュームに対

応付けられている実ボリュームに転送することができる。

[0098]

また、図13においては、実ボリュームに対応するPort ID (P_Pid_1)と仮想ボリュームに対応するPort ID (V_Pid_1)とは異なる値を有する。しかし本発明はこれに限定されるものではなく、仮想ポートのPort IDは仮想化制御装置2が割り当てることができる情報であるから、例えば仮想ボリュームに対応するPort IDをこの仮想ボリュームに対応する実ボリュームにアクセスするために用いられる実ポートのPort IDと同じ値(即ちPort ID=P_Pid_1)となるよう設定することもできる。

[0099]

図14は、仮想化制御対象である記憶装置間でデータ移行が実施される時の、パーソナル情報の制御例を示す図である。

[0100]

図14は、Port ID=P_Pid_1、パーソナル情報 "AAA_01" で識別される実ボリュームに格納されているデータを、Port ID=P_Pid_3、パーソナル情報 "CCC_01"で識別される実ボリュームに移行する場合を示している。図14においては、仮想ボリュームのパーソナル情報として、この仮想ボリュームに対応づけられている実ボリュームのパーソナル情報と同一の情報 (AAA_01) を用いている。そして、データ以降が実行された場合には、仮想化制御装置2の仮想化処理部505はデータ以降によって仮想ボリュームに対応づけられている実ボリュームが変更されても仮想ボリュームのパーソナル情報は変更することなく、仮想ボリュームのパーソナル情報としてデータ移行元の実ボリュームのパーソナル情報 "AAA_01"を引き継ぐ。

[0101]

以上の処理、即ちデータ移行処理前に仮想ボリュームに設定したパーソナル情報をデータ移行処理後も引き継ぐことによって、ホストコンピュータ1がパーソナル情報を用いてボリュームを識別する場合でも、記憶装置間でのデータ移行処理をホストコンピュータに対して隠蔽することができ、ホストコンピュータは、データ移行前にホストコンピュータが使用していたアクセス先ボリュームの識別

情報を用いてデータ移行後のアクセス先ボリュームを識別することができる。この結果、ホストコンピュータは記憶装置間でデータ移行処理が実行されても、ホストコンピュータで実行されている処理を中断することなく、処理を継続することができる。尚、仮想ボリュームに設定したパーソナル情報の引継ぎ処理以外については、第一の実施形態と同一であるので説明は省略する。

[0102]

更に、仮想ボリュームに設定したパーソナル情報を、複数の仮想化制御装置間で引き継ぐことができるようにすれば、ホストコンピュータ1がパーソナル情報を用いてボリュームの識別を行う場合、仮想化制御装置の交換をホストコンピュータに対して隠蔽することができる。この結果、ホストコンピュータは自身が実行する処理を中断することなく継続することが可能となる。仮想ボリュームのパーソナル情報は、ボリュームマッピング情報515の一部として仮想化制御装置2のルーティング処理部501が管理装置4のボリューム管理部401に通知し、管理装置4にボリュームマッピング管理情報411として保存されている。従って、仮想化制御装置が交換される場合には、管理装置4のボリューム管理部401が新たな仮想化制御装置2に対して、旧仮想化制御装置2のボリュームマッピング管理情報411を通知し、これを新たな仮想化制御装置2のボリュームマッピング管理情報411を通知し、これを新たな仮想化制御装置2のボリュームマッピング情報515に設定すれば、複数の仮想化制御装置間でパーソナル情報を引き継ぐことができる。

[0103]

尚仮想化制御装置を交換する場合には、仮想化制御装置が管理する仮想ポート の識別子情報も交換後の仮想化制御装置に引継げるように構成することが望まし い。また、仮想化制御装置2が、仮想ボリュームに設定されたパーソナル情報を データ移行処理後も変更せず、従前のパーソナル情報を引継ぐか否か(データ移 行元のパーソナル情報を用いる)、或いは新たなパーソナル情報を設定するか否 か等について、管理者が管理装置4を介して仮想化制御装置2に設定できるよう 構成することが望ましい。

[0104]

尚第二の実施形態では、記憶装置3や仮想化制御装置2がボリューム毎にパー

ソナル情報を保持する(即ち、ボリュームごとにパーソナル情報が割り当てられる)ものとしているが、これに限定されるものではない。例えば記憶装置3や仮想化制御装置2がパーソナル情報を記憶装置単位で保持することも可能である。 更に第二の実施形態では、Port ID、Port Nameと、パーソナル情報とからポートを識別するものとしているが、これに限られるものではない。ポートを一意に識別できる方法であればどのような情報を用いても良く、更に各識別情報のうち任意の情報の組合せでポートを識別するものとしても良い。

[0105]

図17に、ホストコンピュータと記憶装置が各々複数のポートを有する場合の計算機システムの構成を示す。図17に示すホストコンピュータ1は、図13に示すホストコンピュータ1に、更に複数のポート13(Hid_1、Hid_2)を備えた構成を有している。また、図17に示す記憶装置3は、図13に示す記憶装置3に更に複数のポート33(P_Pid1、P_Pid2)を備えた構成を有している。

[0106]

記憶装置が複数のポートを有するので、ホストコンピュータ1の記憶装置識別 処理部15が記憶装置3にパーソナル情報を送信するよう要求すると、複数のポートから同じ値のパーソナル情報が送信されることとなる。そこで記憶装置識別情報処理部15は同じパーソナル情報を送信した複数のポートをボリューム管理情報としてメモリ11に格納して管理する。

[0107]

図18は、ホストコンピュータ1のメモリ11に格納されるボリューム管理情報の一例を示す図である。ボリューム管理情報はホストコンピュータが各記憶装置からパーソナル情報を受信した際に記憶装置識別処理部15によって作成される。ボリューム管理情報は、記憶装置毎に作成され、記憶装置が有する実ボリュームのボリューム番号、実ボリュームのパーソナル情報、ホストコンピュータ1から実ボリュームをアクセスする際に使用されるパス、及び実ボリュームのステータス情報が登録される。ここで、パス情報としては、プライマリパスとセカンダリパスの2つの情報が登録される。ホストコンピュータは通常はプライマリパスを用いて実ボリュームにアクセスするが、プライマリパスに障害が生じたり、

プライマリパスが切断された場合には、ホストコンピュータはパスを切り替え、 セカンダリパスを用いて実ボリュームにアクセスすることができる。

[0108]

図17を用いて、ホストコンピュータと記憶装置とが仮想化制御装置を介さずに接続している計算機システムにおいて、ホストコンピュータが実行している処理を中断することなくホストコンピュータと記憶装置の間に仮想化制御装置を接続し、記憶装置の実ボリュームを仮想化制御装置が仮想化してホストコンピュータに提供するよう計算機システムを変更するために実行される処理を説明する。

[0109]

まず、ホストコンピュータ1のポートHid_1と記憶装置3のポートP_Pid_1とがパス5-aで接続されており、ホストコンピュータのポートHid_2と記憶装置1のポートP_Pid_2がパス5-bで接続されている場合を考える。ホストコンピュータ1のメモリ11には図18に示すボリューム管理情報が記憶されており、このボリューム管理情報に従って、ホストコンピュータはパーソナル情報AAA_01で識別される実ボリュームをアクセスする場合にはポートHid_1とポートP_Pid_1を経由するプライマリパス5-aを使用し、パーソナル情報AAA_02で識別される実ボリュームをアクセスする場合にはポートHid_2とポートP_Pid_2を経由するプライマリパス5-bを使用する。

[0110]

次に上述の様な計算機システムにおいて、パス5-bを切断して、仮想化制御装置2を導入する場合に実行される処理を説明する。

1. パス5-bは切断されるので、ホストコンピュータはAAA_02で識別される実ボリュームをアクセスするために用いるパスをパス5-bからパス5-aに変更する必要がある。そこで記憶装置識別処理部15は、一時的にAAA_02で識別される実ボリュームへのアクセスを中止するため、ボリューム管理情報中のこの実ボリュームのステータス情報にInactiveを登録する。そして、ホストコンピュータのCPU10の制御により、ボリューム管理情報にセカンダリパスとして登録されているパス5-aを用いてAAA_02で識別される実ボリュームにアクセスするようパスを変更する。パスの変更後、記憶装置識別処理部15はボリューム管理情報中のAAA_02で

識別される実ボリュームのステータス情報をactiveに戻す。尚、以上の処理は、ホストコンピュータが、キーボード等の入力装置を介してホストコンピュータのユーザからの指示を受け付け、この指示に基づいてCPU10が実行する。また、記憶装置識別処理部15が自動的に係る処理を実行することとしても良い。即ち、記憶装置処理部15が、ボリューム管理情報を参照して、自動的にプライマリパスからセカンダリパスへの変更を実行しても良い。

- 2. 次に、パス5-bを切断し、ホストコンピュータ1と記憶装置3との間に仮想化制御装置2を接続する。具体的にはホストコンピュータのポートHid_2と仮想化制御装置2のポート23をパス5-cで接続し、記憶装置3のポートP_Port_2と仮想化制御装置2のポート23をパス5-dで接続する。
- 3. 仮想化制御装置 2 が計算機システムに接続されたら、仮想化制御装置のボリュームマッピング情報 5 1 5 を設定する。具体的には、仮想化制御装置 2 の仮想化処理部 5 0 5 が、記憶装置 3 が有するAAA_02で識別される実ボリュームに対応する仮想ボリュームを設定するため、この実ボリュームに対応付けて仮想Port ID (Port ID=V_Pid_01)、仮想Port Name(Pname=V_Pname_1)をボリュームマッピング情報 5 1 5 に登録する。また、この仮想ボリュームには、対応する実ボリュームのパーソナル情報AAA_02と同一のパーソナル情報が仮想化処理部 5 0 5 によって割り当てられ、ボリュームマッピング情報 5 1 5 に登録される。尚、ボリュームマッピング情報の設定は、管理装置 4 がユーザから受け付けた入力情報に従って行われる。即ち、管理情報 4 がユーザから受け付けた情報は、ボリューム管理部 4 0 1 の制御により仮想化制御装置 2 の仮想化処理部 5 0 5 に送信され、この入力情報に基づいて仮想化処理部 5 0 5 がボリュームマッピング情報を設定する。
- 4. ボリュームマッピング情報 5 1 5 が設定された後、ホストコンピュータ 1 はユーザからの指示を受け付けて、自装置が接続する他の装置に対してパーソナル情報を送信するよう要求する。すると、この要求を受信した仮想化制御装置 2 は、パーソナル情報AAA_02をホストコンピュータに送信する。
- 5. パーソナル情報AAA_02を仮想化制御装置2から受信したホストコンピュータ 1は、受信フレームに含まれている送信元アドレス(Port ID=V_Pid_01等)から

、新しい装置からパーソナル情報を受信したことを検出する。すると、記憶装置 識別処理部15は、再度AAA_02で識別される実ボリュームのステータス情報をIn activeに変更する。そして、記憶装置識別処理部15は、ボリューム管理情報に 登録されているAAA_02で識別される実ボリュームにアクセスするためのプライマリパスを、受信フレームに含まれる送信元アドレスに基づいて、ポートHid_2及 びポートP_Pid_2経由のパスから、ポートHid_2及びポートV_Pid_01(仮想ポート) 経由のパスに変更する。そして、ホストコンピュータのCPU10の制御により、プライマリパスを用いてAAA_02で識別される実ボリュームにアクセスするよう、アクセス用パスを変更する。パスの変更後、記憶装置識別処理部15は、AAA_02で識別される実ボリュームのステータス情報をActiveに戻す。

[0111]

以上の処理が実行されることによって、ホストコンピュータ1は仮想化制御装置2が接続された後も、記憶装置3の実ボリュームを、仮想化制御装置2が接続される前と同じパーソナル情報(AAA_02)を用いて識別することができる。従って、新たに仮想化制御装置2が計算機システムに導入され、ホストコンピュータが仮想ボリュームに対しアクセス要求を発行する場合にも、パーソナル情報をホストコンピュータに設定しなおす必要がない。このため、ホストコンピュータが実行している処理を中断する必要がない。

[第三の実施形態] (複数の記憶装置から一つの仮想ボリュームを構成)

第一の実施形態及び第二の実施形態では、一つの実ボリュームから一つの仮想ボリュームを構成する例を説明したが、本発明はこれに限られるものでは無く、複数の実ボリュームから一つの仮想ボリュームが構成される場合にも適用することができる。

[0112]

複数の実ボリュームから一つの仮想ボリュームが構成される場合について、図 15、図16を用いて説明する。

[0113]

図15は、Port ID=P_id_1、Port Name=P_Pname_1、LUN=3(5GB)で識別される 実ポリュームと、Port ID=P_id_2、Port Name=P_Pname_2、LUN=1(5GB)で識別さ れる実ボリュームから、Port ID=V_id_3、Port Name=V_Pname_3、LUN=0(10GB)で 識別される一つの仮想ボリュームを構成する場合の、ボリュームマッピング情報 5 1 5 の一構成例を示す図である。図1 5 に示すボリューム管理テーブルは、図1 2 に示すボリューム管理テーブルと比べて、一つの仮想ボリュームに対して二つの実ボリュームが割当てられていること、仮想ボリューム管理情報 5 2 0 のエントリとして実ボリュームに対応するアドレス情報が追加されていることが異なるのみで、他は同一である。また図1 5 においては、Port ID=V_id_3、Port Nam e=V_Pname_3、LUN=0で識別される仮想ボリュームのパーソナル情報としてPort ID=P_id_1、Port Name=P_Pname_1、LUN=3で識別される実ボリュームのパーソナル情報を用いている。

[0114]

図16は、二つの実ボリュームから一つの仮想ボリュームが構成される計算機システムの一例を示す図である。図16に示す計算機システムにおいても、仮想化制御装置2において実行される、データ移行処理、並びに記憶装置監視処理については、実施形態1及び実施形態2に記載した処理と同一の処理によって実行できるので、以下ルーティング処理について説明する。

(ルーティング処理)

ルーティング処理は、仮想化制御装置2がホストコンピュータ1或いは記憶装置3からのフレームデータを受信した場合に開始される。フレームデータを受信したルーティング処理部501は、フレームデータを構成する送信元/送信先の識別情報、更に必要な場合はフレームデータの種別情報及びフレーム中のペイロードを構成する各種情報(LUN等)を用いて、仮想化処理が必要か否かの判別を行う。具体的には、送信元/送信先の識別情報(Port ID等)やフレームのペイロードに含まれる情報(LUN)がボリュームマッピング情報515の仮想ボリューム管理情報520に登録されている場合には、ルーティング処理部501は仮想化処理が必要であると判断する。

[0115]

ルーティング処理部501が仮想化処理が必要であると判別した場合、以下の 仮想化処理を仮想化処理部505が実行する。 1. 受信したフレームデータが、ホストコンピュータから仮想記憶装置に対する フレームデータである場合

先ず受信したフレームデータがリード/ライト系のアクセス要求情報か否かを仮想化処理部505が判断する。フレームデータがリード/ライト系のアクセス要求情報である場合、ボリュームマッピング情報515と、アクセス要求情報(特に受信フレームのペイロード)に含まれるアドレス情報及びデータ転送長情報に基づき、仮想化処理部505は、フレームデータ送信先の仮想記憶装置に対応する記憶装置を特定する。そして受信したフレームを特定された記憶装置に対するフレームに変換する為、フレームデータを構成する送信先識別情報(D_ID)と、CR C情報を、特定された記憶装置のポートを示す送信先識別情報と、新しい送信先識別情報に基づくCRCとに置き換える。更に必要な場合、アクセス要求情報を構成する新たなアドレス情報及びデータ転送長情報を生成する。そして変換後のフレームは、仮想化制御装置のポート23を介して記憶装置3に送信される。尚、アクセス要求が二台の記憶装置に対して送信されるもの(アドレス989680hを跨いでのアクセス要求)である場合には、仮想化処理部505が、個々の記憶装置に対するアクセス要求を生成し個々の記憶装置にこのアクセス要求を送信する。

[0116]

仮想化制御装置2が受信したフレームデータが、リード/ライト系のアクセス要求情報以外のデータである(ライトデータである)場合、ボリュームマッピング情報515と、必要な場合にはライトデータ受信前に仮想化制御装置が受信したライトアクセス要求情報を構成するアドレス情報及びデータ転送長情報と、ライトデータのオフセット情報とに基づき、仮想化処理部505がフレームデータ送信先の仮想記憶装置に対応する記憶装置を検出する。そして受信したフレームを、検出された記憶装置に対するフレームに変換する為、仮想化処理505は、フレームデータを構成する送信先識別情報(D_ID)とCRCを、検出された記憶装置を特定するための識別情報とこの識別情報に基づく新たなCRCとに置き換える。そして仮想化制御装置2は、ポート23を介して検出された記憶装置3に対してフレームを送信する。

2. 受信したフレームが、仮想記憶装置にマッピングされた記憶装置からホスト

コンピュータに対するフレームである場合

先ず受信したフレームデータがリードデータか否かを判別し、フレームデータの種類に応じた処理を仮想化処理部505が実行する。例えばフレームデータがリードデータである場合、仮想化処理部505は、フレームデータ送信元の記憶装置に対応する仮想記憶装置を特定する。そして、受信したフレームを特定された仮想記憶装置からのフレームに変換する為、仮想化処理部505は、フレームデータの送信元識別情報(S_ID)とCRCを、仮想記憶装置の識別情報と、新たな送信先識別情報に基づくCRCに置き換える。そして、仮想化制御装置2はポート23を介してフレームデータをホストコンピュータ1に送信する。

[0117]

一つのリード系アクセス要求に基づくリードデータの送信処理が、二台の記憶装置で同時に実行される場合には、仮想化制御装置 2 は、一方の記憶装置から受信するリードデータをホストコンピュータに転送する処理が完了するまで、他方の記憶装置から受信したリードデータの転送処理を保留させることが望ましい。例えば、P_id_1, P_Pname_1, LUN=3(5GB)で識別される実ボリュームを持つ記憶装置と、P_id_2, P_Pname_2, LUN=1(5GB)で識別される実ボリュームを持つ記憶装置からリードデータを受信した場合には、仮想化制御装置 2 がP_id_2, P_Pname_2, LUN=1(5GB)で識別される実ボリュームを持つ記憶装置からリードデータを受信した場合には、仮想化制御装置 2 がP_id_2, P_Pname_2, LUN=1(5GB)で識別される実ボリュームを持つ記憶装置からのリードデータを一時的に保存することで、リードデータの転送処理を保留できる。

[0118]

尚、上述のような、複数の実ボリュームから一つの仮想ボリュームが構成される計算機システムにおいても、第一の実施形態及び第二の実施形態と同様、ホストコンピュータがアクセス対象として認識するボリュームの識別情報を変更することなく、仮想化制御対象の記憶装置間でデータ移行処理を実行することができる。即ち、記憶装置間でデータ移行処理が実行された場合には、第一の実施形態若しくは第二の実施形態と同様、仮想化制御装置2がボリュームマッピング情報515を更新し、仮想ボリュームに対応付けられている実ボリュームをデータ移行元の実ボリュームからデータ移行先の実ボリュームに変更することによって、ホストコンピュータ1がアクセス対象として認識するボリュームの識別情報を変

更することなく、仮想ボリュームにマッピングされる実ボリュームをダイナミックに変更することができる。従ってホストコンピュータ1は、記憶装置(実ボリューム)間で実行されるデータ移行を意識することなく処理を継続することができる。

[0119]

【発明の効果】

本発明によれば、ホストコンピュータがアクセス対象のボリュームを識別する ために用いる識別情報を変更することなく、複数の記憶装置間でのデータ移行処 理を実行することができる。この結果、ホストコンピュータの処理を中断するこ となくデータ移行処理を実行することができる。

[0120]

また、本発明においては、計算機システムに仮想化制御装置が新たに導入されたり、仮想化制御装置が交換された場合にも、ホストコンピュータはアクセス対象のボリュームを識別するために用いる識別情報を変更することなく、データにアクセスすることができる。この結果、ホストコンピュータの処理を中断することなく、仮想化制御装置を計算機システムに導入したり、仮想化制御装置を交換することができる。

【図面の簡単な説明】

- 【図1】本発明を適用する計算機システムの一例を示す図である。
- 【図2】管理装置の記憶媒体に格納されているプログラム及び情報の一例を示す図である。
- 【図3】仮想化制御装置の記憶媒体に格納されているプログラム及び情報の一例を示す図である。
- 【図4】第一の実施形態における、仮想化制御装置で管理されるボリュームマッピング情報の一例を示す図である。
- 【図5】第一の実施形態における、仮想化制御装置で管理される記憶装置状態管理情報の一例を示す図である。
- 【図 6】第一の実施形態における、ホストコンピュータから仮想記憶装置に対するアクセス要求の処理の概要を示す図である。

- 【図7】第一の実施形態における、記憶装置間でのデータ移行処理の概要を示す 図である。
- 【図8】第一の実施形態における、仮想化制御装置で管理されるボリュームマッピング情報の他の一例を示す図である。
- 【図9】第一の実施形態における、仮想化制御装置のルーティング処理部が実行 する処理の一例を示す図である。
- 【図10】第一の実施形態における、仮想化制御装置のデータ移行処理部が実行する処理の一例を示す図である。
- 【図11】第一の実施形態における、仮想化制御装置の記憶装置監視処理部が実 行する処理の一例を示す図である。
- 【図12】第二の実施形態における、仮想化制御装置で管理されるボリュームマッピング情報の一例を示す図である。
- 【図13】第二の実施形態における、ホストコンピュータから仮想記憶装置に対 するアクセス処理の概要を示す図である。
- 【図14】第二の実施形態における、記憶装置間でのデータ移行処理の概要を示す図である。
- 【図15】第三の実施形態における、仮想化制御装置で管理されるボリュームマッピング情報の一例を示す図である。
- 【図16】第三の実施形態における、仮想ボリュームの構成の一例を示す図である。
- 【図17】第二の実施形態における、計算機システムに仮想化制御装置を導入する場合に実行される処理の一例を示す図である。
- 【図18】第二の実施形態における、ホストコンピュータが管理するボリューム 管理情報の一例を示す図である。

【符号の説明】

- 1…ホストコンピュータ
- 2…仮想化制御装置
- 3 …記憶装置
- 4…管理装置

特2002-340276

- 5…ネットワーク
- 20…メイン制御部
- 501…ルーティング処理部
- 502…記憶装置監視部
- 503…データ移行処理部
- 504…実ルーティング処理部
- 505…仮想ルーティング処理部

【書類名】 図面

【図1】

【図2】

図2

【図3】

図 3 v 502 501 記憶装置監視部 ルーティング処理部 504 記憶装置 実ルーティング処理部 状態管理情報 518 ルーティング情報 516 記憶装置 監視プログラム ルーティングプログラム データ移行処理部 仮想化ルーティング処理部 (仮想化処理部) 515 データ移行 ボリュームマッピング 制御情報 情報 517 519 データ移行 仮想化ルーティング 処理 処理プログラム プログラム

【図4】

図 4

V ⁵¹⁵	520 مر					521			
<u> </u>	仮想ボリュ	ーム管	理情報		実ポリューム管理情報				
Port ID	Port Name	LUN	Size	Status	Port ID	Port Name	LUN	Size	Status
V_Pid_1	V_Pname_1	0	10 GB	Active	P_Pid_1	P_Pname_1	0	10 GB	Active
V_Pid_2	V_Pname_2	0	5 GB	Active	P_Pid_2	P_Pname_2	0	5 GB	Active
		1	5 GB	Active	P_Pid_1	P_Pname_1	1	5 GB	Active
•						•		•	•

【図5】

図 5

				N	51
Port ID	Port Name	Node Name	LUN	Size	
P_Pid_1	P_Pname_1	P_Nname_1	0	10 GB	
			1	5 GB	
P_Pid_2	P_Pname_2	P_Nname_2	. 0	5 GB	
P_Pid_3	P_Pname_3	P_Nname_3	1	10 GB	
•	•	•	•	•	

【図6】

【図7】

[図8]

					図 8					
515	4	520ر					521ر			
	仮想ポリュ	理情報		実ポリューム管理情報						
Port ID	Port Name	LUN	Size	Status	Port ID	Port Name	LUN	Size	Status	Command
V_Pid_1	V_Pname_1	0	10 GB	Inactive	P_Pid_1	P_Pname_1	0	10 GB	Active	C_id_0 C_id_1 C_id_2
		0	10 GB	Active	P_Pid_3	P_Pname_3	1	10 GB	Active	C_id_3 C_id_4
•		·	•	•	•	•	•	•	•	•

【図9】

【図10】

図10

【図11】

【図12】

			Command	C_id_3	C_id_0	•	•	•
			Status Command	10 GB Active C_id_3	Active	Active	Active	•
		青報	Size	10 GB	10 GB	80 8	80 S	•
	521	実ポリューム管理情報	Personal	10_222	AAA_01	BBB_01	AAA_00	•
	1	献	NO1	0	0	0	1	·
			Size Status Port 1D Port Name LUN	10 GB Active P_Pid_3 P_Pname_3	Inactive P_Pid_1 P_Pname_1	5 GB Active P.Pid_2 P.Pname_2	5 GB Active P.Pid.1 P.Pname_1	•
図12	20		Port 10	P_Pid_3	P_Pid_1	P_P1d_2	P_Pid_1	•
			Status	Active	Inactive	Active	Active	•
			Size	10 GB	10 GB	5 68		•
		ューム管理情報	Personal	AAA_01	AAA_01	10 000	AAA_00	•
	520	仮想ボリュ	NO.	0	0	0	-	•
		饭煮	Port 1D Port Name LUN	V_Pid_1 V_Pname_1		V_Pid_2 V_Pname_2		•
	515		Port 1D	V_Pid_1		V_Pid_2		•

【図13】

【図14】

【図15】

			Command	9 P! "3	2-61-2	•
			Size Status Command	Active	Active	•
		青報		5 GB	5 GB	•
	521	実ポリューム管理情報	Address Port 1D Port Name LUN Personal	AAA_02 5 GB Active C_id_6	BBB_01 5 GB Active C_id_7	•
	1	来	LUN	60	-	•
			Port Name	P_Pid_1 P_Pname_1 3	P_Pname_2	•
<u>図</u> 1		·	Port 10	P_Pid_1	P_bid_q	•
			Address	0h ∼ 98967Fh	989680h ~ P_Pid_2 P_Pname_2 1	•
			Status	Active		•
	220	手理情報	Size	85 Ot		•
,		仮想ボリューム管理情報	Personal Size Status	AAA_02 10 GB Active		•
			NO.7	0		•
			Port 10 Port Name LUN	V_Pid_3 V_Pname_3		•
	215		Port 10	V_Pid_3		

【図16】

【図17】

【図18】

図18

Volume	Personality	Connection (P)	Connection (S)	Status
0	AAA_01	Hid_1 - P_Pid_1	Hid_2 - P_Pid_2	Active
1	AAA_02	Hid_2 - P_Pid_2	Hid_1 - P_Pid_1	Active

【書類名】 要約書

【要約】

【課題】ホストコンピュータがアクセス対象として認識するボリュームの識別情報を変更することなく、複数の記憶装置間でデータ移行処理を実行する。

【解決手段】複数の記憶装置と接続される仮想化制御装置が、複数の記憶装置間でのデータ移行を制御する。仮想化制御装置は、ホストコンピュータがデータ移行元のボリュームを識別するために使用していた識別情報と同じ識別情報を用いて、データ移行先のボリュームを識別できるよう制御する。

【選択図】図1

認定・付加情報

特許出願の番号

特願2002-340276

受付番号

50201771528

書類名

特許願

担当官

第七担当上席

0096

作成日

平成14年11月26日

<認定情報・付加情報>

【提出日】

平成14年11月25日

出願人履歴情報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所