Math 225A Notes

Sarah Mantell

October 16, 2022

1.1 General Definitions

Definition 1.1.1 (Number field): A number field is a finite field extension over \mathbb{Q} .

Definition 1.1.2 (Algebraic integer): Let K be a number field. An algebraic number $a \in K$ is called integral or an algebraic integer of K if f(a) = 0 for some monic polynomial f with coefficients in \mathbb{Z} . Denote the set of algebraic integers in K by \mathbb{G}_K .

Proposition 1.1.3: Let K be a number field. Then \mathbb{O}_K is a ring and $K = \operatorname{Frac}(\mathbb{O}_K)$.

Proposition 1.1.4: The ring \mathfrak{O}_K is Noetherian, integrally closed, and every nonzero prime ideal of \mathfrak{O}_K is maximal.

Notice that the results presented in the proposition above imply that \mathfrak{O}_K is a Dedekind domain, using one of the many equivalent defintions of a Dedekind domain.

Theorem 1.1.5 (Unique Factorization of Ideals): Every nonzero ideal $\mathfrak{a} \nsubseteq \mathfrak{G}_K$ can be uniquely written as

$$\mathfrak{a} = \mathfrak{p}_1^{r_1} \cdots \mathfrak{p}_m^{r_m}$$

where $m \ge 1$, $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are distinct nonzero prime ideals of \mathfrak{G}_K , and $r_1, \ldots, r_m \in \mathbb{N}$.

Definition 1.1.6 (Trace, Norm): Suppose that $\mathbb{Q} \subseteq K \subseteq L$ is an extension of fields. Let $a \in L$ and view L as a K-vector space to consider the linear transformation

$$T_a:L\to L$$

The notes here about algebraic number theory are very brief – the recommended texts for a more in depth reading are:

- ► Algebraic Number Theory Chapters I, II (Neukirch)
- ► Algebraic Number Theory Notes (Milne)

Theorem ?? is actually true for any Dedekind domain, but we just focus on this specific case here.

$$x \mapsto ax$$
.

Define the trace and norm for *a* as

$$\operatorname{Tr}_{L/K}(a) = \operatorname{Tr}(T_a) \in K$$

and

$$Nm_{L/K}(a) = det(T_a) \in K$$
.

With trace and norm defined as in Definition ??, we obtain a bi-*K*-linear pairing:

$$\langle \cdot, \cdot \rangle_{L/K} : L \times K \to K$$

given by

$$\langle a, b \rangle_{L/K} = \operatorname{Tr}_{L/K}(ab).$$

Definition 1.1.7: Let $\alpha_1, \ldots, \alpha_n$ be a basis of L over K. The discriminant of $\alpha_1, \ldots, \alpha_n$ is defined as

$$D(\alpha_1,\ldots,\alpha_n)=\det\left(\left(\langle\alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}\right).$$

The discriminant of L/K is denoted by $D_{L/K}$ and is the ideal of \mathfrak{G}_K generated by

$$\{D(\alpha_1,\ldots,\alpha_n):\alpha_1,\ldots,\alpha_n\}$$
 is a basis of L/K contained in $\mathfrak{G}_L\}$.

For K/\mathbb{Q} , $\mathbb{O}_{\mathbb{Q}}=\mathbb{Z}$ and therefore is a PID. So, \mathbb{O}_K is a free \mathbb{Z} -module of rank $n=[K:\mathbb{Q}]$. For any \mathbb{Z} -basis α_1,\ldots,α_n of \mathbb{O}_K ,

$$D_{K/\mathbb{Q}} = (D(\alpha_1, \ldots, \alpha_n)).$$

Definition 1.1.8 (Ramification index, Residue class degree/Intertia degree): Let L/K be an extension of number fields, $\wp \subseteq \mathfrak{G}_L$ a nonzero prime ideal, and define $\mathfrak{p} = \wp \cap \mathfrak{G}_K \subseteq \mathfrak{G}_K$. Write the prime factorization of $\mathfrak{p}\mathfrak{G}_L$ as

$$\mathfrak{p}\mathfrak{G}_L=\wp_1^{e_1}\cdots\wp_m^{e_m}$$

where $\wp_1 = \wp$. The ramification index of \wp over \mathfrak{p} , denoted by $e(\wp/\mathfrak{p})$, is defined to be e_1 (as given in the prime factorization). The residue class degree, or the intertia degree, of \wp over \mathfrak{p} , denoted by $f(\wp/\mathfrak{p})$, is defined to be $[\mathfrak{O}_L/\wp:\mathfrak{O}_K/\mathfrak{p}]$.

The matrix

$$\left(\langle\alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}$$

is an $n \times n$ matrix, with entries in K.

Definition 1.1.9 (Ramified): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathbb{O}_K$ a nonzero prime ideal. We say \mathfrak{p} is ramified in L or L/K is ramified at \mathfrak{p} if $e(\wp/\mathfrak{p}) > 1$ for some $\wp \subseteq \mathbb{O}_L$ satisfying $\mathfrak{p} = \wp \cap \mathbb{O}_K$. We say \mathfrak{p} is unramified in L or L/K is unramified at \mathfrak{p} if $f(\wp/\mathfrak{p}) = 1$ for every $\wp \subseteq \mathbb{O}_L$ where $\mathfrak{p} = \wp \cap \mathbb{O}_K$.

Definition 1.1.10 (Splits, Splits completely): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say \mathfrak{p} splits or splits completely in L if $e(\wp/\mathfrak{p}) = f(\wp/\mathfrak{p}) = 1$ for every $\wp \subseteq \mathfrak{O}_L$ with $\wp \cap \mathfrak{O}_K = \mathfrak{p}$.

Definition 1.1.11 (Inert): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say that \mathfrak{p} is inert in L if $\mathfrak{p}\mathfrak{O}_L$ is a prime ideal of \mathfrak{O}_L .

From these definitions, one can derive the following identity: if $\mathfrak{p}\mathbb{G}_L = \mathscr{D}_1^{e_1} \cdots \mathscr{D}_m^{e_m}$ then

$$[L:K] = \sum_{j=1}^{m} e(\wp_j/\mathfrak{p}_j) f(p_j/\mathfrak{p}_j).$$

Theorem 1.1.12: The extension L/K is unramified at $\mathfrak{p} \subseteq \mathfrak{G}_K$ if and only if \mathfrak{p} does not divide $D_{L/K}$. That is, $D_{L/K} \nsubseteq \mathfrak{p}$ if and only if \mathfrak{p} and $D_{L/K}$ are coprime $(\mathfrak{p} + D_{L/K} = \mathfrak{G}_K)$.

Theorem 1.1.13 (Minkowski): \mathbb{Q} has non nontrivial extension that is unramified at all primes. Equivalently, every $D_{K/\mathbb{Q}} \neq \pm 1$.

Note that Theorem ?? is not true for a general number field *K*:

Example 1: Let $K = \mathbb{Q}(\sqrt{-5})$ and $L = K(\sqrt{-1})$ so that L/K is an extension of number fields. Then, $\mathbb{O}_K = \mathbb{Z}[\sqrt{-5}]$ and $L = K(\sqrt{5})$. To see that L/K is unramified at all primes, we apply Theorem ?? and show that $D_{L/K} = \mathbb{O}_K$.

The remainder of this example is just some computations regarding the discriminant and two different *K*-bases of *L*.

Definition 1.1.14 (Fractional ideal): A fractional ideal of K is a nonzero finitely generated \mathfrak{O}_K -submodule of K.

One can define a multiplication on the collection of fractional ideals of K: if $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are all fractional ideals of K, then the product is the \mathfrak{G}_K -submodule of K generated by $\{a_1 \cdots a_n | a_j \in \mathfrak{a}_j\}$.

Proposition 1.1.15: The collection of fractional ideals of K forms an abelian group under the multiplication of fractional ideals. With this structure, the identity is \mathfrak{G}_K and the inverse of \mathfrak{a} is $\mathfrak{a}^{-1} = \{x \in K | x\mathfrak{a} \subseteq \mathfrak{G}_K\}$.

Proposition 1.1.16: Let K be a number field. Every fractional ideal $\mathfrak a$ of K can be written uniquely in the form

$$\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{r_{\mathfrak{p}}}$$

where the product is taken over all the nonzero prime ideals of \mathfrak{G}_K , each $r_{\mathfrak{p}} \in \mathbb{Z}$, and almost every $r_{\mathfrak{p}}$ is zero.

Remark 1 With these definitions, I_K is the free abelian group on the set of nonzero prime ideals of \mathfrak{O}_K .

Define a subgroup of I_K by

$$P_K = \left\{ (a) = a \mathcal{O}_K : a \in K^\times \right\}.$$

Definition 1.1.17 (Ideal class group, Class group): The ideal class group or class group of *K* is defined as

$$Cl(K) = I_K/P_K$$
.

Theorem 1.1.18: For any number field K, the class group Cl(K) is finite.

Definition 1.1.19 (Class number): The class number of a number field K is the order of the class group Cl(K).

The proof that the class number of a given number field is indeed finite uses Minkowski Theory.

For a number field K, let r_k denote the number of real embeddings of K into \mathbb{R} and s_k denote the number of pairs of complex embeddings of K into \mathbb{C} . Here we are assuming that s_k is counting the pairs of embeddings that are not strictly contained in \mathbb{R} . Note that the complex embeddings occur in pairs through complex conjugation.

Theorem 1.1.20 (Dirichlet's Unit Theorem): Suppose that K is a number field and $\mu(K)$ is the finite group of roots of unity that are contained in K. Then,

$$\mathbb{O}_K^\times \cong \mathbb{Z}^{r_k + s_k - 1} \times \mu(K).$$

Definition 1.1.21 (Decomposition group): Suppose that L/K is a Galois extension of number fields, $\wp \subseteq L$ is a prime ideal, and $\mathfrak{p} = \wp \cap \mathfrak{G}_K$. The decomposition group of \wp is the set

$$G_{\emptyset} = \{ \sigma \in \operatorname{Gal}(L/K) : \sigma(\emptyset) = \emptyset \}.$$

Definition 1.1.22 (Inertia group): Let $\kappa = \mathbb{O}_K/\mathfrak{p}$ and $\lambda = \mathbb{O}_L/\wp$. The kernel of the map

$$G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$$

is the inertia group of \wp and is denoted by I_{\wp} .

Need to check the assumptions here – where is \wp living? Nonzero?

1.2 Ramification

Theorem 1.2.1: Let L/K and K'/K be two extensions lying within an algebraic closure \overline{K}/K . Define L' = LK'. If L/K is unramified, then L'/K' is unramified. That is, every subextension of an unramified extensions is unramified.

1.3 Valuations and Absolute Values

In general, assume hereafter that p denotes some prime number.

Definition 1.3.1 (p**-adic absolute value,** p**-adic norm):** The p-adic absolute value or norm of \mathbb{Q}

$$|\cdot|_p:\mathbb{Q}\to\mathbb{R}$$

is defined by

$$\left| p^m \frac{a}{b} \right|_p = p^{-m}$$

where both a and b are coprime to p. Set $|0|_p = 0$.

Proposition 1.3.2: The *p*-adic norm is indeed a norm. That is:

- 1. $|a|_p > 0$ for all $a \in \mathbb{Q}^{\times}$
- 2. $|ab|_p = |a|_p |b|_p$
- 3. $|a+b|_p \le |a|_p + |b|_p$

The p-adic norm actually satisfies a stronger version of the triangle inequality: $|a+b|_p \le \max\{|a|_p,|b|_p\}$. Since we have now equipped $\mathbb Q$ with a norm, it can be viewed as a topological space and thus there is a notion of convergence and Cauchy sequences. In particular, we are interested in studying the completion of $\mathbb Q$ with respect to a given p-adic norm.

Definition 1.3.3 (*p***-adic numbers):** Let \mathbb{Q}_p be the completion of \mathbb{Q} with respect to the *p*-adic norm. The elements of \mathbb{Q}_p are called the *p*-adic numbers.

Using properties of limits and the fact that every element of \mathbb{Q}_p can be represented as the limit of a sequence of points in \mathbb{Q} , the addition and multiplication of \mathbb{Q} can be naturally extended to \mathbb{Q}_p . Likewise, the norm $|\cdot|_p$ can be extended to a norm on \mathbb{Q}_p . With these operations, \mathbb{Q}_p is a field that contains \mathbb{Q} as a subfield.

Definition 1.3.4 (*p***-adic integers):** Define the ring of *p*-adic integers to be the subset of \mathbb{Q}_p given by

$$\mathbb{Z}_p = \left\{ a \in \mathbb{Q}_p : |a|_p \le 1 \right\}.$$

One can easily see that the set of units is $\mathbb{Z}_p^{\times} = \{a \in \mathbb{Q}_p : |a|_p = 1\}.$

Example 2: The polynomial $x^{p-1} - 1$ is solvable of \mathbb{Q}_p .

Definition 1.3.5 (*p***-adic valuation):** The *p*-adic valuation of \mathbb{Q} is given by

$$\nu_p: \mathbb{Q} \to \mathbb{R} \cup \{\infty\}$$

where $v_p(p^m \frac{a}{b}) = m$ and both a and b are coprime to p. The p-adic valuation can be extended to \mathbb{Q}_p by letting $v_p(p^m a) = m$ where $a \in \mathbb{Z}_p^{\times}$.

Proposition 1.3.6: The *p*-adic valuation satisfies the following:

- 1. $v_p(a) = \infty$ if and only if a = 0
- 2. $v_p(ab) = v_p(a) + v_p(b)$
- 3. $v_p(a+b) = \min\{v_p(a), v_p(b)\}$

Furthermore, the p-adic valuation and p-adic absolute value have the following relation:

$$|a|_p = p^{-\nu_p(a)}$$
 $\nu_p(a) = -\log_p |a|_p$.

Definition 1.3.7 (Absolute value, Nonarchimedean): An absolute value, or multiplicative valuation, of a field K is a function $|\cdot|:K\to\mathbb{R}_{\geq 0}$ such that

- (1) |x| = 0 if and only if x = 0
- $(2) |xy| = |x| \cdot |y|$
- (3) $|x + y| \le |x| + |y|$

If instead of ??, the stronger condition

$$|x+y| \le \max\{|x|,|y|\}$$

holds, then $|\cdot|$ is a nonarchimedean absolute value.

Definition 1.3.8 (Equivalent): Two absolute values are equivalent if they induce the same topology.

Using topological properties, one can show that two absolute values $|\cdot|_1$, $|\cdot|_2$ on K are equivalent if and only if there exists $s \in \mathbb{R}_{>0}$ such that $|x|_1 = |x|_2^s$ for all $x \in K$. In particular, if there exists $x \in K$ where $|x|_1 \ge 1$

and $|x|_2 < 1$ the two absolute values are *not* equivalent.

Definition 1.3.9 (Additive valuation, Valuation): An additive valuation on a field K is a function $\nu: K \to \mathbb{R} \cup \{\infty\}$ such that

- (1) $v(x) = \infty$ if and only if x = 0
- (2) v(xy) = v(x) + v(y)
- (3) $v(x + y) \ge \min\{v(x), v(y)\}.$

With these definitions, the collection of valuations and collection of nonarchimedean absolute values are related by the exponential and logarithmic functions. With this relationships, we can define the following:

Definition 1.3.10 (Equivalent valuations): Two valuations are equivalent if their corresponding absolute values are equivalent (see Definition ??).

Theorem 1.3.11: Every absolute value of \mathbb{Q} is either the usual Euclidean absolute value or is equivalent to $|\cdot|_p$ for some prime p.

From hereafter, $|\cdot|_{\infty}$ is used to denote the Euclidean absolute value.

Definition 1.3.12 (Residue class field, Valuation ring): Let K be a field with valuation ν . The local ring 1

$$\emptyset = \{ x \in K : \nu(x) \ge 0 \}$$

is the valuation ring for *K*. The unique maximal ideal of 0 is

$$\mathfrak{p}\left\{x\in K:\nu(x)>0\right\}$$

the units are

$$\mathbb{G}^{\times} = \{ x \in K : \nu(x) = 0 \}$$

The field 0/p is the residue class field of 0.

Definition 1.3.13 (Discrete valuation): A valuation ν on K is called discrete if $\nu(K^{\times}) = s\mathbb{Z}$ for some $s \in \mathbb{R}_{>0}$.

Definition 1.3.14 (Uniformizer): Assume that ν is a discrete valuation with $\nu(K^{\times}) = s\mathbb{Z}$. An element $\omega \in K$ is a uniformizer if $\nu(\omega) = s$.

Alternatively, we can think of the uniformizer as follows: ω is a uniformizer if and only if ω generates the unique maximal ideal of the valuation ring.

If ν is a discrete valuation, then it can be normalized to a valuation $\nu'(x) = s^{-1}\nu(x)$. From this definition, ν and ν' are equivalent and $\nu'(K^{\times}) = \mathbb{Z}$. Once normalized, an element ω is a uniformizer if and only if $\nu'(\omega) = 1$.

Proposition 1.3.15: Let K be a field with a discrete valuation. Then, the corresponding valuation ring is a discrete valuation ring 2 .

Completions

Now that a field K can be equipped with a norm, we can construct a completion of K with respect to any p-adic norm. The definition of completeness is the usual:

Definition 1.3.16 (Complete): The pair $(K, |\cdot|)$ is complete if every Cauchy sequence converges in K (with respect to the $|\cdot|$ norm.)

Given any $(K, |\cdot|)$, we can always find a completion \hat{K} and naturally extend $|\cdot|$ to \hat{K} . This new pair, $(\hat{K}, |\cdot|)$ is a complete valued field. When the absolute value $|\cdot|$ is nonarchimedean, the natural embedding

$$\mathfrak{O}_K/\mathfrak{p} \hookrightarrow \mathfrak{O}_{\hat{K}}/\mathfrak{p}_{\hat{K}}$$

of residue classes is an isomorphism.

Example 3: The completion of \mathbb{Q} with respect to $|\cdot|_{\infty}$ is \mathbb{R} . The completion of \mathbb{Q} with respect to $|\cdot|_p$ is \mathbb{Q}_p .

Theorem 1.3.17 (Hensel's Lemma): Let K be a complete discrete valued field with valuation ring $\mathfrak G$ and maximal ideal $\mathfrak p$. Suppose that a polynomial $f(x) \in \mathfrak G[x] - \mathfrak p[x]$ can be factored as

$$\overline{f}(x) = \overline{g}(x)\overline{h}(x)$$

in $\mathfrak{G}/\mathfrak{p}[x]$, with $\overline{g}(x)$ and $\overline{h}(x)$ coprime. Then, f(x) has a factorization

$$f(x) = g(x)h(x)$$

in $\mathbb{G}[x]$ such that $g(x) \equiv \overline{g}(x) \mod(\mathfrak{p}), h(x) \equiv \overline{h}(x) \mod(\mathfrak{p}), \deg(g(x)) = \deg(\overline{g}(x)),$ and $\deg(h(x)) = \deg(\overline{h}(x)).$

1.4 Absolute Values of Finite Extensions

Theorem 1.4.1: Let K be a field complete with respect to $|\cdot|$. Then $|\cdot|$ can be extended uniquely to an absolute value on any finite extension L of K by setting

$$|\alpha| = |\mathrm{Nm}_{L/K}(\alpha)|^{\frac{1}{[L:K]}}$$

for each $\alpha \in L$.

One can check that L is complete with respect to the defined norm. Also, if K is a field complete with respect to some $|\cdot|$, then every element of $\operatorname{Aut}(L/K)$ is a homeomorphism of L with respect to the extension of $|\cdot|$. Finally, $|\cdot|$ can be extended uniquely to an absolute value on \overline{K} . However, it's not necessarily the case that \overline{K} is complete with respect to the extension of the absolute value.

1.5 Absolute Values of Number Fields

Suppose that K is a number field and \mathfrak{p} is a nonzero prime ideal of \mathfrak{O}_K . Then, the localization \mathfrak{I} of \mathfrak{O}_K at \mathfrak{p} is a PID. This follows from the fact that \mathfrak{I} is a Dedekind domain and any local Dedekind domain is a PID.

Since the localization, say $\mathfrak{O}_{K,\mathfrak{p}}$, is a PID we may choose a generator ϖ of $\mathfrak{p}\mathfrak{O}_{K,\mathfrak{p}}$. Then,

3: In general, if I is a prime ideal of a ring R, then one can define the localization of R at I by defining $S = R \setminus I$ and considering the ring of fractions $S^{-1}R$.

$$\mathfrak{O}_{K,\mathfrak{p}} = \{0\} \cup \bigcup_{m \geq 0} \varpi^m \mathfrak{O}_{K,\mathfrak{p}}^{\times}$$

and

$$K = \{0\} \cup \bigcup_{m \in \mathbb{Z}} \omega^m \mathfrak{G}_{K,\mathfrak{p}}^{\times}.$$

Definition 1.5.1 (\mathfrak{p} -adic absolute value, \mathfrak{p} -adic norm): Define the \mathfrak{p} -adic absolute value or norm

$$|\cdot|_{\mathfrak{p}}:K\to\mathbb{R}_{\geq 0}$$

by

$$|\varpi^m a|_{\mathfrak{p}} = |\mathfrak{G}_K/\mathfrak{p}|^{-m}$$

where $m \in \mathbb{Z}$ and $a \in \mathcal{O}_{K,\mathfrak{p}}^{\times}$. Set $|0|_{\mathfrak{p}} = 0$.

Theorem 1.5.2: Every nontrivial absolute value of a number field K is either equivalent to $|\cdot|_{\mathfrak{p}}$ for some nonzero prime ideal \mathfrak{p} of \mathfrak{G}_K or some composition $|\cdot|_{\mathbb{C}} \circ \tau$ with $\tau: K \to \mathbb{C}$.

Theorem $\ref{eq:partial}$ can be thought of as a generalization of Theorem $\ref{eq:partial}$. The definitions for the $\ref{eq:partial}$ -adic norm replicate the construction of the $\ref{eq:partial}$ -adic integers. However, instead of restricting ourselves to prime numbers, we are now able to consider prime ideals.

2

Definition 2.0.1 (Local field): A local field is a field K with a nontrivial absolute value $|\cdot|$ such that K is locally compact with respect to $|\cdot|$.

Requiring that K is locally compact with respect to $|\cdot|$ implies that K is complete with respect to $|\cdot|$. If $K = \mathbb{R}$ or $K = \mathbb{C}$, then K is an archimedean local field. If the corresponding $|\cdot|$ has a discrete valuation with finite residue class field, then K is a nonarchimedean local field.

Definition 2.0.2 (Global field): A global field is either:

- (1) An algebraic number field.
- (2) A function field in one variable over a finite field.

A number field is always characteristic zero as it is defined as an extension over \mathbb{Q} . If the function field of an algebraic curve is taken over a finite field, it is the same as viewing it as a finite extension of some $\mathbb{F}_p(t)$ which is of nonzero (prime) characteristic.

Proposition 2.0.3: A local field is the completion of some global field with respect to an absolute value.

Class field theory describes relationships between the abelian extensions of a number field K and the structure of \mathbb{O}_K .

Definition 2.0.4 (Unramified abelian extension): A maximal unramified abelian extension of K is an extension L that is unramified at all primes and every real embedding $K \hookrightarrow \mathbb{R}$ extends to a real embedding $L \hookrightarrow \mathbb{R}$.

Theorem 2.0.5: Let L be a maximal unramified abelian extension of K. Then there exists a canonical isomorphism

$$Cl(K) \xrightarrow{\cong} Gal(L/K).$$

The canonical isomorphism in Theorem ?? can be described as follows:

Not sure exactly what was being defined here... Should revist later.

Consider the diagram:

$$\begin{array}{cccc}
L & \stackrel{\supseteq}{\longrightarrow} & \mathfrak{G}_L & \stackrel{\supseteq}{\longrightarrow} & \wp \\
\downarrow & & & & \\
K & \stackrel{\supseteq}{\longrightarrow} & \mathfrak{G}_K & \stackrel{\supseteq}{\longrightarrow} & \mathfrak{p}
\end{array}$$

where \wp is a nonzero prime ideal of \mathfrak{O}_L and $\mathfrak{p} = \wp \cap \mathfrak{O}_K$. Define $\lambda = \mathfrak{O}_L/\wp$ and $\kappa = \mathfrak{O}_K/\mathfrak{p}$. There exists a natural map

$$G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$$

If $\sigma \in G_{\wp} \subseteq \operatorname{Gal}(L/K)$ then $\sigma(\wp) = \wp$ (and in particular, $\sigma(\mathfrak{p}) = \mathfrak{p}$). Define an element φ_{σ} of $\operatorname{Aut}(\lambda/\kappa)$ by

$$\varphi_{\sigma}: x + \wp \mapsto \sigma(x) + \wp$$

noting that this map is well-defined since \wp is fixed by σ . Furthmore, as σ fixes elements in K, φ_{σ} fixes elements of κ . Therefore, the map $G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$ given by $\sigma \mapsto \varphi_{\sigma}$ is as desired.

If K_1/K and K_2/K are both unramified abelian extensions, then K_1K_2/K is an unramified abelian extension (see Theorem ??). This means that the maximal unramified abelian extension of K can be well defined as the composition of all unramified abelian extensions of K.

Definition 2.0.6 (Hilbert class field): Let *K* be a number field. The maximal unramified abelian extension of *K* is called the Hilbert class field.

Assuming the same notation and set up as ??, we have the following result:

Proposition 2.0.7: An extension L/K is unramified if and only if the natural map $G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$ is an isomorphism.

Proof. Note that \mathfrak{pO}_L has a unique factorization of the form:

$$\mathfrak{p}\mathfrak{G}_L = \mathfrak{S}_1^{e_1} \cdots \mathfrak{S}_r^{e_r}$$

with $\wp_1 = \wp$. Consider the following two facts:

(1)
$$[L:K] = \sum_{j=1}^{r} e(\wp_j/\mathfrak{p}) f(\wp_j/\mathfrak{p}).$$

(2) The Galois group Gal(L/K) acts transitively on the collection $\{\wp_1, \ldots, \wp_r\}$.

Fact (2) means that there is a bijection between $\{\wp_1, \ldots, \wp_r\}$ and the G_{\wp} -cosets in $\operatorname{Gal}(L/K)$. That is,

$$r = \frac{|\mathrm{Gal}(L/K)}{|G_{\wp}|} = \frac{[L:K]}{|G_{\wp}|}.$$

Combining this with fact (1) yields

$$[L:K] = r$$

and since $r = \frac{[L:K]}{|G_{\wp}|}$,

$$|G_{\wp}| =$$

I'm confused on the first couple lines of the proof here. Why do we know that the ramification indexes are all equal? How does transitivity give a relationship to the G_{\wp} cosets in Gal(L/K)?