Azzolini Riccardo 2019-02-27

# Esponenziali e logaritmi

## 1 Funzione esponenziale

Sia  $a \in \mathbb{R}$ , a > 0,  $a \neq 1$ . La funzione  $f(x) = a^x$ , con  $x \in \mathbb{R}$ , è chiamata funzione esponenziale con base a.

Indipendentemente dalla base, valgono le proprietà:

- $a^x > 0 \quad \forall x \in \mathbb{R}$
- $f(0) = a^0 = 1$ , quindi il grafico passa sempre dal punto (0,1)
- $\bullet \ a^{x_1+x_2} = a^{x_1} \cdot a^{x_2} \quad \forall x_1, x_2 \in \mathbb{R}$
- $(a^{x_1})^{x_2} = a^{x_1 x_2} \quad \forall x_1, x_2 \in \mathbb{R}$

Se a > 1,

$$x_1 < x_2 \implies a^{x_1} < a^{x_2} \quad \forall x_1, x_2 \in \mathbb{R}$$

quindi  $f(x) = a^x$  è strettamente crescente.

Se invece 0 < a < 1,

$$x_1 < x_2 \implies a^{x_1} > a^{x_2} \quad \forall x_1, x_2 \in \mathbb{R}$$

cioè  $f(x) = a^x$  è strettamente decrescente.

### 1.1 Esempi



## 2 Funzione logaritmo

La funzione esponenziale

$$f: \mathbb{R} \to (0, +\infty)$$
$$x \to a^x$$

(con  $a \neq 1)$ è iniettiva, e quindi invertibile. La sua inversa

$$f^{-1}: (0, +\infty) \to \mathbb{R}$$
  
 $x \to \log_a x$ 

è la funzione **logaritmo** in base a. Siccome, in generale,  $f(f^{-1}(x)) = x = f^{-1}(f(x))$ , si ha che

$$a^{\log_a x} = x = \log_a a^x$$



Osservazioni:

- Indipendentemente dalla base,  $\log_a 1 = 0$ .
- La funzione logaritmo ha la stessa monotonia dell'esponenziale di cui è l'inversa (come per tutte le funzioni inverse).

#### 2.1 Proprietà

Sia a > 0,  $a \neq 1$ .

1. 
$$\log_a(x_1x_2) = \log_a x_1 + \log_a x_2 \quad \forall x_1, x_2 \in (0, +\infty)$$

2. 
$$\log_a x^r = r \log_a x \quad \forall x \in (0, +\infty), r \in \mathbb{R}$$

3. 
$$\log_a \frac{x_1}{x_2} = \log_a x_1 - \log_a x_2 \quad \forall x_1, x_2 \in (0, +\infty)$$

4. Cambiamento di base: se 
$$b>0,\,b\neq 1,\,\log_b x=\frac{\log_a x}{\log_a b}$$

#### 2.1.1 Dimostrazione della 1

Siano  $\alpha = \log_a x_1$  e  $\beta = \log_a x_2$ . Allora,  $x_1 = a^{\alpha}$  e  $x_2 = a^{\beta}$ . Quindi, per le proprietà dell'esponenziale,

$$x_1 \cdot x_2 = a^{\alpha} \cdot a^{\beta} = a^{\alpha + \beta}$$

e di conseguenza, per la definizione di logaritmo,

$$\alpha + \beta = \log_a(x_1 x_2)$$
$$\log_a x_1 + \log_a x_2 = \log_a(x_1 x_2) \quad \Box$$

#### 2.1.2 Dimostrazione della 2

Sia  $\alpha = \log_a x$ , e quindi  $x = a^{\alpha}$ .

$$\begin{aligned} x^r &= (a^\alpha)^r \\ x^r &= a^{r\alpha} \\ \log_a x^r &= r\alpha \\ \log_a x^r &= r \log_a x \quad \Box \end{aligned}$$

#### 2.1.3 Dimostrazione della 3

$$\log_a \frac{x_1}{x_2} = \log_a (x_1 \cdot x_2^{-1})$$

$$= \log_a x_1 + \log_a x_2^{-1}$$

$$= \log_a x_1 - \log_a x_2 \quad \Box$$

#### 2.1.4 Dimostrazione della 4

Sia  $\alpha = \log_b x$ , quindi  $b^{\alpha} = x$ .

$$\log_a b^{\alpha} = \log_a x$$

$$\alpha \log_a b = \log_a x$$

$$\log_b x \cdot \log_a b = \log_a x$$

$$\log_b x = \frac{\log_a x}{\log_a b} \quad \Box$$

## 3 Base e

Il **numero di Nepero**,  $e\approx 2.71$ , ha particolare importanza come base di esponenziali e logaritmi.

Per questo, la funzione logaritmo in base e è chiamata **logaritmo naturale**, e la si indica con  $\ln x$  o semplicemente  $\log x$  (senza specificare la base).