Introduction to Cryptography Part III: DLP, DH and ElGamal

André Schrottenloher

Inria Rennes Team CAPSULE

[0]

1 The DL Problem

2 Solving the DLP

3 Diffie-Hellman Key Exchange

4 The ElGamal PKE

The DL Problem

The DL Problem

Discrete Logarithm

Let G, \cdot be a multiplicative group of order q and g a known element. Given g^a (where $a \leftarrow U(\mathbb{Z}_q)$), find a.

- $a \rightarrow g^a$ is always easy
- $g^a \rightarrow a$ is sometimes hard, but not always

Example: take N, k prime with N, a subgroup of $(\mathbb{Z}_N, +)$ generated by k.

- We can compute multiplicative inverses
- $ka \mod N \rightarrow a \mod N$ is easy

Safe primes

Remark: G in the DL problem can always be replaced by a cyclic group (generated by g).

Historical choice for DL groups:

- Work in the multiplicative group \mathbb{Z}_p^* , where p is prime
- Choose a subgroup of \mathbb{Z}_p^* with large prime order
- Take g a generator of this group
- A safe prime p is such that (p-1)/2 is prime.
- This guarantees the existence of a large subgroup, in which we work.

(p-1)/2 is called a Sophie Germain prime.

Interlude: Pohlig-Hellman reduction

Reduce the DLP in a group of order $n = p_1p_2$ to the DLP in groups of order p_1 and p_2 (if p_1, p_2 are coprime).

Algorithm:

- Let $h = g^a$
- Compute DL of $h^{p_2}=(g^{p_2})^a$ in the subgroup generated by g^{p_2} (of order p_1)
- \implies get $a \mod p_1$
 - Compute DL of $h^{p_1}=(g^{p_1})^a$ in the subgroup generated by g^{p_1} (of order p_2)
- \implies get $a \mod p_2$
 - Compute a using the CRT (since p_1, p_2 are coprime).
 - ⇒ we want to work in a group of large prime order.

Interlude: Pohlig-Hellman for a prime power

If $e \ge 2$, reduce the DLP in a group of order $n = p^e$ to e instances of DLP in a group of size p.

Algorithm (for $h = g^a$):

- 1. Initialize $x_0 = 0$
- 2. Compute $\gamma = g^{p^{e-1}}$ which has order p
- 3. For all k = 0, ..., e 1 do:
 - Compute the DL d_k of $h_k = (g^{-x_k}h)^{p^{e-1-k}}$ in the group $\langle \gamma \rangle$ generated by γ
 - $\bullet \quad \mathsf{Set} \ x_{k+1} = x_k + p^k d_k$

Then x_e is the DL. Indeed:

$$\gamma^{d_{e-1}} = (g^{-x_{e-1}}h) \implies h = g^{x_{e-1}}\gamma^{d_e} = g^{x_{e-1}+\rho^{e-1}d_{e-1}}$$
.

The non-trivial part is to prove that $h_k \in \langle \gamma \rangle$, which we have to prove by induction over k.

Interlude: DL in \mathbb{Z}_p^* vs. elliptic curves

- The DL in \mathbb{Z}_p^* can be solved in **subexponential time** using index calculus / sieving methods (similarly to factoring).
- p has to be large (2048-4096 bits) to ensure security.

Nowadays, we don't use DL in \mathbb{Z}_p^* anymore, but groups of **points on elliptic curves.**

An elliptic curve (on \mathbb{Z}_p) is the set of points (x,y) defined by an equation of the form $y^2=x^3+ax+b$ (+ a 'point at infinity"). It can be equipped with an additive group law.

- When the elliptic curve is well-chosen, the DL is hard.
- The best known algorithms are **exponential** (this lecture + TD).

Solving the DLP

Solving the DLP

- The DLP can be solved in any group of order q in time $\mathcal{O}(\sqrt{q})$.
- This is the best complexity known that works for any group.

An algorithm

Suppose $h = g^a$ and g are given.

- 1. Compute h^i for many random integers i
- 2. Compute g^j for many random integers j
- 3. Look for a pair (i,j) such that $i \neq j$ and $h^i = g^j$

From such a pair: $g^{ai} = g^j \implies ai = j \mod q \implies a = ji^{-1} \mod q$ (problem solved).

Next: compute the complexity of this approach.

Interlude: birthday paradox

What is the probability of two students (among 20) having the same birthday?

$$1-(1)(1-1/365)(1-2/365)\cdots(1-19/365)\simeq 0.41$$
 .

Lemma

Let y_1, \ldots, y_ℓ be random (uniform) samples in a set of size N. A **collision** is a pair (y_i, y_j) such that $y_i = y_j$ and $i \neq j$. There exists a collision:

- With prob. at most $\ell^2/2N$
- With prob. at least $\frac{\ell(\ell-1)}{4N}$ if $\ell \leq \sqrt{2N}$

Intuition:

- Each pair has probability 1/N of forming a collision
- There are $\ell^2/2$ pairs \implies this gives the upper bound
- But they are not independent

The constant is not that important. It can be made more precise.

Interlude: birthday paradox (ctd.)

Write $NoColl_i$ the event "no collision among y_1, \ldots, y_i ."

$$\mathsf{Pr}\left[\mathit{NoColl}_{\ell}\right] = \mathsf{Pr}\left[\mathit{NoColl}_{1}\right] \cdot \mathsf{Pr}\left[\mathit{NoColl}_{2} | \mathit{NoColl}_{1}\right] \cdots \mathsf{Pr}\left[\mathit{NoColl}_{\ell} | \mathit{NoColl}_{\ell-1}\right] \ .$$

Also: $Pr[NoColl_1] = 1$, and $Pr[NoColl_{i+1}|NoColl_i] = 1 - i/N$ (the new element must be different from the i previous ones)

$$\implies \Pr[NoColl_{\ell}] = \prod_{i=1}^{\ell-1} (1 - i/N)$$

Now we do some bounding: $\forall i, 1 - i/N \le e^{-i/N}$:

$$\Pr[NoColl_{\ell}] \le e^{-\sum_{i=1}^{\ell-1} i/N} = e^{-\ell(\ell-1)/2N}$$
.

And for x < 1, $1 - x/2 \ge e^{-x}$:

$$\Pr\left[\textit{Coll}\right] = 1 - \Pr\left[\textit{NoColl}_{\ell}\right] \geq 1 - e^{-\ell(\ell-1)/2N} \geq \frac{\ell(\ell-1)}{4N} \enspace .$$

Conclusion

Powers of h and g give us random elements of the group (heuristically). A collision occurs after computing $\mathcal{O}(\sqrt{q})$ powers. This algorithm has:

- Time $\widetilde{\mathcal{O}}(\sqrt{q})$ (optimal, up to small factors)
- Memory $\mathcal{O}(\sqrt{q})$ (not optimal)

We can do better: $\mathcal{O}(\sqrt{q})$ time and $\mathcal{O}(1)$ memory (see TD).

Diffie-Hellman Key Exchange

The Diffie-Hellman key-exchange

Public parameters: a cyclic group G and a generator g of order q.

- 1. Alice chooses $a \in \{1, \ldots, q-1\}$
- 2. Alice sends g^a
- 3.
- 4. **Alice** computes $(g^b)^a$

Bob chooses
$$b \in \{1, ..., q - 1\}$$

- **Bob** sends g^b
 - **Bob** computes $(g^a)^b$

 $k = (g^b)^a = (g^a)^b$ is the shared secret key.

Do not use this in practice.

DH security

- The adversary observes only g^a, g^b where $a, b \leftarrow U(\{1, \dots, q-1\})$.
- Recovering g^{ab} = the **computational DH problem** (CDH)

Many security proofs are based instead on the **decisional** DH problem (DDH).

Distinguish the two cases:

- RAND: a distribution g^a, g^b, g^c where $a, b, c \leftarrow U(\{1, \dots, q-1\})$
- ullet DDH: a distribution g^a, g^b, g^{ab} where $a, b \leftarrow U(\{1, \dots, q-1\})$

DDH is difficult in G is no PPT adversary $\mathcal A$ can exhibit non-negligible advantage:

$$\mathrm{Adv}(\mathcal{A}) = \left| \mathsf{Pr} \left[\mathcal{A} \xrightarrow{\mathit{RAND}} \mathbf{1} \right] - \mathsf{Pr} \left[\mathcal{A} \xrightarrow{\mathit{DDH}} \mathbf{1} \right] \right| \ .$$

The complete DDH game

The DDH game is played between a **challenger** C and an **adversary** A.

- C chooses (G, g)
- \mathcal{C} chooses $x, y \leftarrow U(\mathbb{Z}_q)$ and b
- RAND case (b = 0): $z \leftarrow U(\mathbb{Z}_q)$; DDH case (b = 1): z = xy
- C sends (g, g^x, g^y, g^z) to A
- \mathcal{A} returns a bit b'
- If b = b', A wins

DDH is difficult in G is for any PPT adversary A:

$$Adv(A) = \left| Pr[A \text{ wins}] - \frac{1}{2} \right| = negl(n)$$
.

DH security (ctd.)

- If we can solve DLP we can solve CDH
- If we can solve CDH we can solve DDH

Not an equivalence: there are "gap" groups where CDH is hard and DDH is easy.

The ElGamal PKE

ElGamal PKE

We are now in a group G where DDH is hard.

We are constructing a public-key encryption scheme based on this.

ElGamal PKE

Public parameters (G, q, g) (q is the order of G, g a generator)

KeyGen:

- Sample $x \hookleftarrow U(\mathbb{Z}_q)$
- $\mathsf{sk}, \mathsf{pk} = x, \mathsf{g}^{\mathsf{x}} := \mathsf{h}$

Enc $m \in G$

- Sample $y \leftarrow U(\mathbb{Z}_q)$
- Return $c_1, c_2 := (g^y, h^y \cdot m)$

$$Dec c = (c_1, c_2)$$

• Return $m = c_2(c_1^{-x})$

Correctness.

$$c_2(c_1^{-x}) = h^y mg^{-xy} = g^{xy} mg^{-xy} = m$$
.

ElGamal security

Lemma

If DDH is difficult in G, then ElGamal is IND-CPA.

The proof is a **reduction**: given \mathcal{A} that breaks IND-CPA security of ElGamal, construct \mathcal{A}' that breaks DDH.

We say that the IND-CPA security of ElGamal reduces to DDH.

Proof

Consider an adversary A playing the IND-CPA game for ElGamal:

- Initialization: the challenger chooses a key (x, g^x) , a bit b, and sends g^x to A
- \mathcal{A} chooses m_0, m_1 and sends them to \mathcal{C}
- C computes $c_1, c_2 = \operatorname{Enc}(\operatorname{pk}, m_b)$ and sends (c_1, c_2) to A
- \mathcal{A} computes b', wins if b' = b

We show that if DDH is difficult:

$$Adv^{CPA}(A) = |Pr[A Win] - 1/2| \le negl(n)$$

For this we use ${\mathcal A}$ to define an adversary ${\mathcal B}$ against DDH.

Internally, $\mathcal B$ will run $\mathcal A$. When running inside $\mathcal B$, $\mathcal A$ still believes that they are in the IND-CPA game: all messages sent and received match those of the game.

Proof (ctd.)

Here is our adversary ${\cal B}$ playing the DDH game:

- (G, q, g) is fixed
- C chooses $x, y \leftarrow U(\mathbb{Z}_q)$ and b
- RAND case (b = 0): $z \leftarrow U(\mathbb{Z}_q)$; DDH case (b = 1): z = xy
- C sends (g^x, g^y, g^z) to B
- \mathcal{B} sends g, g^{\times} to \mathcal{A}
- \mathcal{A} chooses m_0, m_1 and sends them to \mathcal{B}
- \mathcal{B} chooses b', computes $(g^y, g^z \cdot m_{b'})$ and sends it to \mathcal{A}
- \mathcal{A} returns a bit b'' to \mathcal{B}
- If b' = b'' (\mathcal{A} wins in their game), \mathcal{B} returns 1, else 0

See next slide.

Proof (ctd.)

Here is all the activity between \mathcal{C} , \mathcal{B} and \mathcal{A} . Notice that all that \mathcal{A} ever sees is an IND-CPA game where \mathcal{B} acts as the challenger.

Proof (ctd.)

We study \mathcal{B} .

In the RAND case: (b = 0)

- z is uniform and independent, so $c_2 = g^z m_b$ is uniform and independent
- ullet ${\cal A}$ cannot distinguish the ciphertexts
- ullet ${\cal B}$ returns 1 with probability 1/2
- $Pr[\mathcal{B} \text{ wins}|RAND] = 1/2$

In the DDH case:
$$(b=1)$$

- z = xy and the ciphertext is valid
- \mathcal{B} returns 1 iff \mathcal{A} wins

$$\Pr\left[\mathcal{B} \text{ wins}|DDH\right] = \Pr\left[\mathcal{A} \text{ wins}\right]$$

In total:

$$|\Pr\left[\mathcal{B} \text{ wins}\right] - \frac{1}{2}| = \\ |\frac{1}{2}\Pr\left[\mathcal{B} \text{ wins}|DDH\right] + \frac{1}{2}\Pr\left[\mathcal{B} \text{ wins}|RAND\right] - \frac{1}{2}| = \frac{1}{2}|\Pr\left[\mathcal{A} \text{ wins}\right] - \frac{1}{2}| \ .$$

Proof (end)

For any adversary ${\cal A}$ against IND-CPA, there exists an adversary ${\cal B}$ against DDH that:

- ullet Takes the same time to run as ${\cal A}$
- Satisfies:

$$\left| \Pr[\mathcal{B} \text{ wins}] - \frac{1}{2} \right| = \frac{1}{2} \left| \Pr[\mathcal{A} \text{ wins}] - \frac{1}{2} \right|$$

If DDH is difficult, for any PPT adversary \mathcal{B} against DDH, $|\text{Pr}\left[\mathcal{B} \text{ wins}\right] - \frac{1}{2}| = \text{negl}(n)$

For any PPT adversary \mathcal{A} against ElGamal, $\left| \Pr[\mathcal{A} \text{ wins}] - \frac{1}{2} \right| = \operatorname{negl}(n)$

If DDH is difficult, then ElGamal is secure in the group G.

Discussion

One of the advantages of ElGamal compared to RSA:

The group is fixed. Multiple users can work in the same group (vs. need to regenerate N = PQ).

In crypto standards (e.g. NIST SP 800-186 for elliptic curves), there is a specification of groups that you can use.

One of the disadvantages of ElGamal & RSA:

It's not post-quantum :(