

Inter-networking

- Internet Protocol (IP)
- Routing
- The Internet
- Multicast*
- Multi-protocol Label Switching*

Internet Protocol (IP)

• What is an Internetwork

- Service Model
 - Datagrams, Packet Format, ...
- Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

6

What?

- "internet" vs "Internet"
- "network" vs "subnetwork"
- physical vs logical networks

- repeater & hub physical
- bridge link
- switch network
- router internet
- gateway application

Alternatives?

• Novell's IPX

Internet Protocol (IP)

- **√** What is an Internetwork
- Service Model
 - Datagrams, Packet Format, ...
- Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

Service Model

- Datagram Delivery
- Packet Format
- Fragmentation and Reassembly

11

Datagram Delivery

Underlying network is..

- reliable or unreliable
- connection-oriented or connectionless
- small or large packet/frame sized
- physical, logical, wireless, ...

12

Datagram Delivery

- IP **Datagram** is basis of protocol
- Provides a "best-effort" or unreliable service
- May be **out of order**
- Connectionless

HLen - length in 32-bit words (normal 5 words, 20 bytes) Length - bytes, max 64k, includes header TTL - hops

Fragmentation

• IP datagram can be 64kB

• Underlying network may have 512b MTU

Fragmentation

- Each fragment is an IP datagram
- Each IP datagram is rebuilt for each network

Internet Protocol (IP) ✓ What is an Internetwork ✓ Service Model ✓ Datagrams, Packet Format, ... • Addressing • Datagram Forwarding • ARP, DHCP, ICMP, ...

IP Addressing

- Need to identify any host on the network
- Globally unique
- **Hierarchal** (not flat like Ethernet)
 - for easier routing
 - represents a network of networks

IP Addressing

- 32 bit addresses
- "Dotted Decimal" format
 - 130.111.135.26
- Contains two parts
 - Network
 - Host

| The state of the

20

IP Addressing

- Network portion
 - specifies a unique physical* network
 - used for routing
- Host portion
 - specifies a unique host on the network
 - local delivery

Internet Protocol (IP)

- **√** What is an Internetwork
- √ Service Model
 - ✓ Datagrams, Packet Format, ...
- √ Addressing
- Datagram Forwarding
- ARP, DHCP, ICMP, ...

Datagram Forwarding

How do datagrams traverse the internetwork

23

Forwarding vs Routing

- **forwarding** is taking an input packet and sending it out the appropriate port
- **routing** is the process of building forwarding tables.

26

Datagram Forwarding

- Every datagram has destination IP
- Network part uniquely identifies a physical network
 - All **hosts/routers** on network can **communicate** with all others
- Every network has a **router** on the net

27

Datagram Forwarding

Each host and router maintains a forwarding table

<u>Network</u>	Next-hop
I	RI
130.111	130.111.32.1
2	R2
141.114	141.114.1.1
default	R2 76.5.4.3

28 Datagram Forwarding If destination network == source network deliver locally

Datagram Forwarding

- Local delivery for local datagrams
- Routers forward datagrams towards the physical network

32

Internet Protocol (IP)

- **√** What is an Internetwork
- **√** Service Model
- √ Datagrams, Packet Format, ...
- √ Addressing
- ✓ Datagram Forwarding
- ARP, DHCP, ICMP, ...

33

Address Resolution Protocol (ARP)

Local delivery it's not that simple

IP Address != Ethernet Address

Address Resolution

- Finds local or link-level address for an IP address
 - Both hosts on the same IP Network
 - Discover / Dynamic
- Uses broadcast feature of link-level

Address Resolution

.Do we have the IP-MAC addresses cached?

2. Send out broadcast query

3. Look for response, and fill in cache

ARP Packet

0 8 16 31

Hardware type = 1 ProtocolType = 0x0800

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 0-3)

SourceProtocolAddr (bytes 4-5) SourceProtocolAddr (bytes 0-1)

TargetHardwareAddr (bytes 2-3)

TargetProtocolAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

35

ARP

- Problems?
 - ARP Spoofing (http://en.wikipedia.org/wiki/ARP_spoofing)

DHCP

- Static configuration of hosts
 - not flexible or adaptable to changes
 - cumbersome
- Dynamic configuration
 - provide host with an IP address
 - additional information: router, boot info...

41

DHCP

- Broadcast request: DHCPDISCOVER
- 2.Look for responses: DHCPOFFERs
- 3. Pick one and DHCPREQUEST
- 4. Wait for DHCPACK

42

DHCP

Problem:

Broadcast means you need a DHCP server on every network.

Solution:

DHCP forwarding

ICMP

Remember: Best-effort service

- Diagnostic purposes (ping)
- TTL (hops) reaches 0 at a router
- Host not reachable (network error)
- Network redirection

47

ARP, DHCP, ICMP

These protocols are at the **edge** between the **Network** and **IP** layers

- Address Resolution Protocol (ARP)
- Dynamic Host Configuration Protocol (DHCP)
- Internet Control Message Protocol (ICMP)

48

Internet Protocol (IP)

- √ What is an Internetwork
- ✓ Service Model
 - √ Datagrams, Packet Format, ...
- √ Addressing
- ✓ Datagram Forwarding
- ✓ ARP, DHCP, ICMP, ...

Internet Protocol (IP)

- **√** What is an Internetwork
- √ Service Model
- ✓ Datagrams, Packet Format, ...
- √ Addressing
- √ Datagram Forwarding
- ✓ ARP, DHCP, ICMP, ...

Inter-networking

- ✓ Internet Protocol (IP)
- ★ Routing
- The Internet
- Multicast*
- Multi-protocol Label Switching*

Routing

- Network as a graph
- Distance Vector (RIP)
- Link State
 - Open Shortest Path First (OSPF)
- Mobile Routing

Forwarding vs Routing

- **forwarding** is taking an input packet and sending it out the appropriate port
- **routing** is the process of building forwarding tables.

53

- Link State Packet (LSP)
 - Distance/Cost of neighbors
 - Flood to all routers

Metrics

- Bandwidth
- Latency
- "hops"
- Cost (dollars)
- Utilization
- Geo-Political boundaries

69

68

Inter-networking

- ✓ Internet Protocol (IP)
- **√** Routing
- ★ The Internet
- Multicast*
- Multi-protocol Label Switching*

The Internet

- Construction
- Autonomous Systems
- Subnetting
- Classless Routing (CIDR)
- Border Gateway Routing (BGP)
- IPv6

71 What does it look like NSFNET backbone Stanford ISU BARRNET regional MidNet regional PARC UNM NCAR Simplified view - Autonomous Systems (AS)

Subnetting

- Network part of address uniquely identifies a physical network
 - Class B network (16 & 16 bits) unused
 - Class C network (24& 8 bits) too small

Subnetting

- Allocate one "network" to several physical networks
- internal to network
- outside routes same

Network number Host number

Class B address

74

Subnetting

- Solves scalability problem
 - improve address assignment efficiency
 - aggregates information, from a distance

Classless Routing (CIDR)

- Scalability problems in the backbone
- Single location with multiple C nets
- Lots of entries to maintain outside
- Assignment of Class B wastes

CIDR

77

- Solution: aggregate routes
 - 192.4.16/20 = 192.4.16 to 192.4.31
 - 192.4.16/24 = 192.4.16

CIDR

- Solution: Assign blocks of Class C addresses
 - creates aggregate routes to AS

Interdomain Routing

- Each Autonomous System (AS)
 - Has a "border"
 - Handles its own internal routing
 - Has its own policies for in & out

80 Interdomain Routing Large corporation "Consumer" ISP ("Consumer" ISP) Large corporation Small corporation Stub AS, Multi-homed AS, & Transit AS

Interdomain Routing

- Find some path to destination
- Avoid loops
- Compliant with policies of ASs

Interdomain Routing

- Border Gateway Protocol (BGP)
 - AS numbers are unique
 - One node is the speaker for the network
 - Advertises complete paths to networks
 - Prevent loops
 - Path withdrawn messages

Interdomain Routing

83

- Scalable (by hierarchy)
 - AS has own internal policies and routing
 - Only AS borders run BGP on backbone
 - Aggregate networks
 - Only need to find path to border

IPv6 - Why?

- Address exhaustion (really Class B)
- Real-time services
- Security
- Configuration
- Routing mobile hosts

Addresses • 128 bits = 3.4 x 10³⁸ nodes • Notation = x:x:x:x:x:x:x • :: = zeros; 45de:1230:FG::11:12 • IPv4 (zero extended) ::FFFF:128.96.33.81

Configuration

- No more DHCP servers...
- Prefixes are assigned to networks (at AS)
 - Obtain interface ID
 - Obtain address prefix for subnet
 - local link only (1111 1110 10)
 - routers periodically advertise prefix

Inter-networking

- ✓ Internet Protocol (IP)
- **√** Routing
- √ The Internet
- Multicast*
- Multi-protocol Label Switching*

90

89

Inter-networking

fin