

AN INVESTIGATIONAL STUDY INTO THE DESIGN OF A LOW COST, ADAPTIVE HEARING AID

Presented by:

Kayla-Jade Butkow (714227)

Kelvin da Silva (835842)

Outline

- Objectives and Specifications
- System Block Diagram
- Simulated vs Hardware Hearing Aid
- Hearing Aid Functionality
- Results
- Future Work and Conclusion

Objectives and Specifications

- To develop a low cost hearing aid
- Functionality:
 - Amplifying specific frequency bands according to a person's audiogram
 - User tuneable directionality
- Done in the form of:
 - Software simulation
 - Hardware proof of concept

System Block Diagram

Simulated vs Hardware Hearing Aid

Property	Simulation	Hardware	
Number of microphones	10	4	
Device Bandwidth	0.25–8 kHz	2.8-3.5 kHz and 5.6-7 kHz	
Filter Order	14	2	
Filter Bandwidth	1/3 Octave	1/3 Octave	
Types of filters	Butterworth FIR bandpass	Butterworth bandpass	
Number of filters	16 per microphone	2 per microphone	
Number of steerable angles	19 (10° increments)	5 (0°, 60°, 90°, 120°, 180°)	
Real time data acquisition	No	Yes	

Compensatory Amplification

Audiogram matching: requires amplification of individual frequency bands

Directionality

- Amplification in a user specified direction
- Delay-and-sum beamforming

Testing

Compensatory gain

Results: Simulation

- Matched to an audiogram
- Average error per frequency band: 1.41%

Results: Simulation

Most precise steering at 3.15 kHz

Spatial aliasing

- $ightharpoonup d < \frac{\lambda_{min}}{2}$
- \rightarrow d=5cm
- λ_{min} = wavelength of maximum frequency

1.00kHz

Results: Hardware

- Total cost: R1462.61
- Input sound frequency:3.15 kHz
- Error caused by interaction of stop-bands
 - Due to filter order

Results: Hardware

- Most accurate at 90°
 - No time delay
- Increased error in other directions
 - Integer number of sample shifts
- Nulls not distinctive in measurements

System Error Analysis

Compensatory Amplification	Applied Frequency (kHz)	Frequency Band (kHz)	Error (%)
	3.15	2.82 - 3.55	0.81
	6.30	2.82 - 3.55	15.34
	3.15	5.62 - 7.08	19.56
	6.30	5.62 - 7.08	3.67
Directionality	Dial Angle (°)		Average Error (%)
	0		46.6
	60		30.7
	90		12.7
	120		22.7
	180		51.7
	Omni-directional		42.7

Future Work

- Higher quality omni-directional microphones
- Integrated circuit chip
 - Pre-processing of the audio signals
- Embedding circuitry into headphones
 - Reduce the size of the device
 - Make the device more user friendly

Conclusion

- Objectives and specifications have been met
- Low cost under R1500
- Full hearing aid simulation
 - Compensatory amplification
 - Steerable directionality
- Concepts proven in hardware

References

[1] L. Tiete et al. "Detecting Laterality and Nasality in Speech with the Use of a Multi-Channel recorder." Sensors (Basel, Switzerland), vol. 14, pp. 1918-1949, 02 2014.

Questions?