Machine Learning - Introduction

Yeganeh Jalalpour

Motivation

- Al goal: replace human programming with "self-programming" (= predict appropriate behavior based on experience)
- The example: infants
 - language skills
 - motor skills
 - other behaviors
- Usual dichotomy:
 - Algorithmic/heuristic "tricks"
 - Simulate human behavior (infant brain)

ML and Systems

- Data flow in ML systems
- Data complexity
- ML system evaluation

Data flow in ML systems

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
 - Association
- Reinforcement Learning

Data complexity

- Numerical Data
 - Continuous
 - Discrete
- Ordinal Data
- Categorical Data
- Fancy Data

ML System Evaluation

- Binary Classifications:
 - True Positive
 - False Positive
 - True Negative
 - False Negative

Some Binary Classification Metrics

- Accuracy = correct predictions / all predictions
- Recall = true positives / (true positives + false negatives)
- Precision = true positives / (true positives + false positives)

Receiver Operating Characteristic (ROC) curve

More Binary Classification Metrics

Confusion Matrix

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

• F1 Score

More Classification Metrics

Prediction "Loss"

(Image: Wikimedia Commons)

Typically various norms, e.g. L0, L1, L2