

Álgebra Lineal 2 Escuela Profesional de Matemática Faculdad de Ciencias Universidad Nacional de Ingeniería

Lista 5 de Ejercicios

Tema: Operadores ortogonales Ciclo: 2016.1

A lo largo de esta lista, E, F y G denotarán e.p.i.'s reales de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F):=\{A:E\to F\;;\;A\text{ es lineal}\}$ y $\mathrm{End}(E):=\mathcal{L}(E,E)$. Sea r>0, una aplicación $S:E\to E$ es llamada de **semejanza de razón** r si |Su-Sv|=r|u-v| para todo $u,v\in E$; decimos que S **preserva ángulos** si

$$\frac{\langle Su, Sv \rangle}{|Su||Sv|} = \frac{\langle u, v \rangle}{|u||v|}$$

para todo $u, v \in E \setminus \{0\}$. Una semejanza de razón 1 es llamada **isometría**.

- 1. Sea $f:\mathbb{R}^n\to\mathbb{R}^n$ una aplicación tal que f(0)=0 y |fu-fv|=|u-v| para cualesquiera $u,v\in\mathbb{R}^n$. Pruebe que
 - (a) $\forall u \in \mathbb{R}^n : |f(u)| = |u|$.
 - (b) $\forall u, v \in \mathbb{R}^n : \langle fu, fv \rangle = \langle u, v \rangle$.
 - (c) $\{f(e_1), \ldots, f(e_n)\}$ es una base ortonormal de \mathbb{R}^n .
 - (d) $\forall u = x_1 e_1 + \dots + x_n e_n \in \mathbb{R}^n$ se tiene $\langle f(v), f(e_i) \rangle = x_i, i = 1, \dots, n$. Luego, $f(u) = x_1 f(e_1) + \dots + x_n f(e_n)$.
 - (e) $f \in \text{End}(\mathbb{R}^n)$ y es ortogonal.
- 2. Pruebe que toda semejanza $S: E \to E$ de razón r > 0 tiene la forma S = rA + b, donde $A \in \operatorname{End}(\mathbb{R}^n)$ es ortogonal y $b \in \mathbb{R}^n$.
- 3. Sea E subespacio vectorial de F y sea $A \in \mathcal{L}(E,F)$ ortogonal. Pruebe que existe un endomorfismo ortogonal sobre F que extiende a A.
- 4. Sean $A \in \mathcal{L}(E, F)$ y $B \in \mathcal{L}(E, G)$ invertibles. Pruebe que existe $C \in \mathcal{L}(F, G)$ ortogonal e invertible con B = CA sii |Av| = |Bv| para todo $v \in E$.
- 5. Sean $A, B \in \text{End}(E)$ con |A| = |B|. Pruebe que existe $C \in \text{End}(E)$ ortogonal con B = CA.
- 6. Sea $u \in \mathbb{R}^n$ unitario. Pruebe las siguientes afirmaciones.
 - (a) $H_u: \mathbb{R}^n \to \mathbb{R}^n$, $v \mapsto v 2\langle v, u \rangle u$, es ortogonal.
 - (b) Sean $v, w \in \mathbb{R}^n$ con |v| = |w| y $v \neq w$. Tomando u = (v w)/|v w|, se tiene que $H_u(v) = w$.
- 7. Pruebe que todo $A \in \text{End}(E)$ puede ser expresado como A = UP, donde $P, U \in \text{End}(E)$, U es ortogonal y $P \ge 0$.

- 8. Sean $A, S \in \text{End}(E)$. Pruebe las siguientes proposiciones.
 - (a) Si A transforma vectores unitarios en vectores unitarios, entonces A es ortogonal.
 - (b) Si S es invertible y transforma dos vectores cualesquiera de la misma longitud en vectores de la misma longitud, entonces S es una semejanza.
- 9. Sea $S \in \text{End}(E)$ invertible que preserva ángulos. Pruebe las siguientes afirmaciones.
 - (a) S transforma vectores ortogonales de la misma longitud en vectores ortogonales de igual longitud.
 - (b) S es una semejanza.
- 10. Si la descomposición polar de un endomorfismo es única, pruebe que dicho endomorfismo es invertible.
- 11. Sea $A \in \text{End}(\mathbb{R}^3)$, $(x, y, z) \mapsto (2x + 3y 6z, 6x + 2y + 3z, -3x + 6y + 2z)$.
 - (a) Pruebe que A es una semejanza de razón 7.
 - (b) Verifique que o $7 \in \sigma(A)$ o bien $-7 \in \sigma(A)$.
 - (c) Encuentre un autovector de A, complételo a fin de obtener una base ortonormal de \mathbb{R}^3 y determine la matriz del operador A en esta base.
- 12. ¿Puede una matriz ortogonal ser antisimétrica?
- 13. Encuentre la descomposición polar de las siguientes matrices:

(a)
$$\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \sqrt{2} & 1 & 1 \\ -\sqrt{2} & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$