Image Classification for Environmental Conservation:

Organic vs. Recyclable

Group 3:

- Brody Sherwood
- Woojong Choi

From Waste to Wisdom: Classifying Organic vs. Recyclable waste

Problem statement & Objectives

Background

- The U.S. produces 268 million tons of waste 140 million going into landfills each year, with the average American tossing 4.5 pounds of trash per day.
- The US recycling rate has increased steadily: from less than 7% in 1960 to the 32% as of 2022

Problem:

- Lack of recycling infrastructure in the US
- Manual waste classification process is time-consuming, labor-intensive, and prone to human error
- Mostly going to landfills and incinerators

Solution:

• Design a model to accurately classify items in images as either organic or recyclable and integrate the model into EcoSolutions' facilities for streamlined waste sorting process

Success Criteria:

• Create a model that scores higher than 90% accuracy when classifying 'organic' vs 'recyclable' images

Steps

4

1 Obtain image data

2 Load, process and analyze images

Train and validate binary classification models to predict whether an image corresponds to 'organic' or 'recyclable' waste

Evaluate model performance on unseen images

Image Data & Preprocessing

<u>Images</u>

Source: Kaggle

Data:

- 22,564 images for training
- 2,513 images for testing

Preprocessing

- 1) Convert to RBG
- 2) Image size 128 x 128 (multiple iterations)
- 3) Binarize class labels

Sample Images

organic

organic

recyclable

recyclable

Organic vs Recyclable: Class Distribution

• Organic: 12,565 (55.7%)

Recyclable: 9,999 (44.3%)

Test

• Organic: 1,401 (55.7%)

Recyclable: 1,112 (44.3%)

RGB Color Channels

Distribution of mean pixel RGB value for images

Color intensity / brightness of pixels

Mean: 161.20 Mean: 157.73

Distribution of mean pixel RGB value for images – by class

Train

• Organic: 145.65

Recyclable: 180.75

Test

Organic: 138.93

• Recyclable: 181.42

Distribution of color channels – by class

Organic

Color Channel Mean

Red: 167Green: 150

Blue: 120

Recyclable

Color Channel Mean

Red: 186Green: 181Blue: 175

Modeling – Exploratory Modeling

Baseline:

Organic: 55.69%

Recyclable: 44.31%

Model 1

- 2 Convolutional layers
- 1 Dense layer
- Accuracy:
 - Train: 0.721
 - Validation: 0.750

Model 2

- 3 Convolutional layers
- 1 Dense layer
- Accuracy:
 - Train: 0.745
 - Validation: 0.766

Model 3

- 4 Convolutional layers
- 2 Dense layer
- Accuracy:
 - Train: 0.818
 - Validation: 0.821

Baseline:

Organic: 55.69% Recyclable: 44.31%

VGG16 + Custom 'top' model

- Base model: VGG16
- Data Augmentation
- 2 Dense layers
- Drop out
- Early stopping

Baseline:

Train: **0.917**Validation: **0.895**

Organic: 55.69% Recyclable: 44.31%

Final Model

- Data Augmentation
- 5 Convolutional layers
- 3 Dense layers
- L2 Regularization
- Drop out
- Early stopping

Evaluation - test data

Accuracy: 0.923

	Precision	Recall	F1-Score
Organic	0.94	0.96	0.95
Recyclable	0.95	0.92	0.93

Evaluation - images

Conclusion

- Transfer learning using the pre-trained model VGG16 and customizing the 'top' layers resulted in an accuracy of approximately 90% for both the training and validation datasets.
- By employing data augmentation, various regularization techniques, and adding more Convolutional and Dense layers, we achieved higher training and validation accuracy compared to the model that relies on VGG16.
- Several of the misclassified images are challenging to categorize, even for humans. This suggests that the model is performing at or near an optimal level.

Improvement opportunities:

- There is potential for improvement if we were not constrained by Colab's limitations, such as limited compute units, memory, and storage.
- Explore other pre-trained models, such as ResNet50, Inception, EfficientNet, etc.
- Delve deeper into the misclassified images to discover trends and patterns. For instance, utilize interpretation techniques like LIME (Local Interpretable Model-Agnostic Explanations) to gain a better understanding of model predictions.