

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 15.12.2016

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik (PL)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten"

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von "Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben. Alphabet der Prädikatenlogik:

 \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- → Allquantor

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- ∃ Existenzquantor

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- $R, S, R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- \blacksquare $R, S, R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)
- Objektgleichheit

Grundlagen zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- \blacksquare $R, S, R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)
- Objektgleichheit
- Komma

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

ik

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

$$A_{\textit{Ter}} := \{(,),,\} \cup \textit{Var}_{\textit{PL}} \cup \textit{Const}_{\textit{PL}} \cup \textit{Fun}_{\textit{PL}}.$$

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

• Objektgleichheiten $f_1 \stackrel{.}{=} f_2$

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $f_1 \stackrel{.}{=} f_2$
- Relation von Termen $R(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Gliederung der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $f_1 \stackrel{.}{=} f_2$
- Relation von Termen $R(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an. (Analog Stelligkeit von Relationen ar(R))

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Woraus kann ein Term bestehen?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
- Was davon sind atomare Formeln: $R(x) \wedge S(f(x,c))$, R(x,g(c,f(y,x))?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
- Was davon sind atomare Formeln: $R(x) \wedge S(f(x,c))$, R(x,g(c,f(y,x))?
- \rightarrow Nein, ja.

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
- Was davon sind atomare Formeln: $R(x) \wedge S(f(x, c))$, R(x, g(c, f(y, x)))?
- \rightarrow Nein, ja.
 - Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Lukas Bach, lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
- Was davon sind atomare Formeln: $R(x) \wedge S(f(x, c))$, R(x, g(c, f(y, x)))?
- \rightarrow Nein, ja.
- Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)?
- \rightarrow 4, 1, 2.

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Prädikatenlogik

■ m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind
- Produktionen

$$egin{aligned} L_{i+1} &
ightarrow L_i, T & ext{ für jedes } i \in \mathbb{N}_+ ext{ mit } i < m \ L_1 &
ightarrow T & ext{ für jedes } c_i \in Const_{PL} \ T &
ightarrow x_i & ext{ für jedes } x_i \in Var_{PL} \ T &
ightarrow f_i(L_{ar(f_i)}) & ext{ für jedes } f_i \in Fun_{PL} \end{aligned}$$

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Prädikatenlogische Formeln werden durch die Grammatik $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind
- Produktionen

$$egin{aligned} L_{i+1} &
ightarrow L_i, T & ext{ für jedes } i \in \mathbb{N}_+ ext{ mit } i < m \ L_1 &
ightarrow T & ext{ für jedes } c_i \in Const_{PL} \ T &
ightarrow x_i & ext{ für jedes } x_i \in Var_{PL} \ T &
ightarrow f_i(L_{ar(f_i)}) & ext{ für jedes } f_i \in Fun_{PL} \end{aligned}$$

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

$$\quad \blacksquare \ \textit{N}_\textit{Ter} = \{\textit{T}, \textit{L}_1, \textit{L}_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

Welche dieser Formeln entsprechen dieser Grammatik?

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$\begin{array}{l} \bullet \quad P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\} \end{array}$$

Aufgabe zu Grammatiken und Prädikatenlogik

$$\bullet$$
 $f(c,g(x))$

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- f(x,y,c)

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\mathsf{Ter}} = \{L_2 \to L_1, T \\ L_1 \to T \\ T \to c \\ T \to x \\ T \to y \\ T \to g(L_1) \\ T \to f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{Ter} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c, f)c

Grammatik der Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Dann:

$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T \\ L_1 \rightarrow T \\ T \rightarrow c \\ T \rightarrow x \\ T \rightarrow y \\ T \rightarrow g(L_1) \\ T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

Welche dieser Formeln entsprechen dieser Grammatik?

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c, f)c

Bilde die Ableitungsbäume zu den korrekten Formeln.

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere.

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigen:

■ ∀/∃

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$lacktriangledown$$
 $\forall/\exists,\neg,\wedge$

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$\quad \blacksquare \ \forall /\exists,\neg,\wedge,\vee$$

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$\blacksquare \ \forall /\exists, \neg, \wedge, \vee, \rightarrow / \leftarrow$$

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$\quad \blacksquare \ \forall /\exists, \neg, \wedge, \vee, \rightarrow / \leftarrow, \leftrightarrow$$

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigen:

$$\blacksquare$$
 $\forall/\exists,\neg,\wedge,\vee,\rightarrow/\leftarrow,\leftrightarrow$

Finde äquivalente Formeln, die mit möglichst wenig Klammern auskommen:

Bindungsstärken

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigen:

$$\blacksquare$$
 $\forall/\exists,\neg,\wedge,\vee,\rightarrow/\leftarrow,\leftrightarrow$

Finde äquivalente Formeln, die mit möglichst wenig Klammern auskommen:

$$\exists x \forall y (R(f(x), g(x)) \lor \forall z R(c, x)$$

Grundbegriffe Quantoren der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

• $\forall xp(x)$ heißt

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

■ $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - $\exists y \forall x \ p(x, y) = \text{Es gibt eine Person } y$, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - $\exists y \forall x \quad p(x,y) = \text{Es gibt eine Person } y$, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.
 - Eher nicht.

Quantoren

Lukas Bach, lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - ∃y∀x p(x, y) = Es gibt eine Person y, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.
 - Eher nicht. Reihenfolge ist also wichtig!

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

■ Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

■ Ist $\forall x(p(x) \land \forall x(\neg p(x))))$ erfüllbar?

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

- Ist $\forall x(p(x) \land \forall x(\neg p(x)))$ erfüllbar?
- Ja: $\forall x(p(x) \land \forall \hat{x}(\neg p(\hat{x})))$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Substitution ist möglich.

Prädikatenlogik

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

$$\beta[x/5](p(x) \vee q(x,y))$$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

- $\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$
- $\beta[x/5](p(x) \vee \forall x(q(x,y))$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

$$\beta[x/5](p(x) \vee \forall x(q(x,y)) = p(5) \vee \forall x(q(x,y))$$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Führe die folgenden Subsitutionen durch:

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Führe die folgenden Subsitutionen durch:

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

$$p(x) \to \forall x \exists y (p(x) \land q(y,z) \leftrightarrow \forall z (q(x,z)))$$

Bindungsbereich von Quantoren

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Führe die folgenden Subsitutionen durch:

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

$$\beta[x/5](p(x) \vee \forall x(q(x,y)) = p(5) \vee \forall x(q(x,y))$$

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

$$p(x) \to \forall x \exists y (p(x) \land q(y,z) \leftrightarrow \forall z (q(x,z)))$$

$$\forall y(p(f(x,y))) \vee \exists z(q(z,f(y,z)))$$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

Prädikatenlogik

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

Interpretation (D, I)

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

■ Interpretation (*D*, *I*), bestehend aus...

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - lacksquare $I(R_i)\subseteq D^{ar(R_i)}$ für $R_i\in Rel_{PL}$
 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$

 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)}$ für $R_i \in Rel_{PL}$
 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,I,\beta}: L_{Ter} \cup L_{For} \rightarrow D \cup \mathbb{B}$

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$

 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,I,\beta}:L_{Ter}\cup L_{For}\to D\cup \mathbb{B}$ weißt einer prädikatenlogischen Formel eine Bedeutung

Semantik von prädikatenlogischen Formeln

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Mengen:

- Interpretation (D, I), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $lacksquare I(R_i) \subseteq D^{ar(R_i)}$ für $R_i \in Rel_{PL}$
 - I bildet weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,I,\beta}: L_{\mathit{Ter}} \cup L_{\mathit{For}} \to D \cup \mathbb{B}$ weißt einer prädikatenlogischen Formel eine Bedeutung (Wahrheitsgehalt für Formeln und Element des Universums für Terme) zu.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I?

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,I,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5$$
, $I(q(x, y)) = w :\Leftrightarrow x \ge y$.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.
Sei $ar(R) := 2$, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

 $T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,I,\beta}(T_1)?$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5$$
, $I(q(x, y)) = w :\Leftrightarrow x \ge y$.

$$T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,l,\beta}(T_1)?$$

• Wähle
$$y = 8 \in \mathbb{N}_0$$
.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

$$T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,l,\beta}(T_1)?$$

• Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5, I(q(x, y)) = w :\Leftrightarrow x \ge y$$
.

■
$$T_1 := p(x) \rightarrow \exists y (q(y,x) \land p(y))$$
, was ist $val_{D,I,\beta}(T_1)$?

■ Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w, I(p(8)) = w$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, $\beta(x) := 7$. Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$. Sei ar(R) := 2, $I(R) := \{(x, y) | x \le y\}$. Sei $I(p(x)) = w : \Leftrightarrow x > 5$, $I(q(x, y)) = w : \Leftrightarrow x > y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.
Sei $ar(R) := 2$, $I(R) := \{(x, y) | x < y\}$.

- Sei $I(p(x)) = w :\Leftrightarrow x \ge 5, I(q(x,y)) = w :\Leftrightarrow x \ge y.$
 - $T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,I,\beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.

Set
$$I(I) : \mathbb{N}_0 \to \mathbb{N}_0, (x, y) \mapsto x - y$$
.
Set $I(I) := 2 |I(I)| := 3 |x y| |x < y|$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

$$T_1 := \rho(x) \to \exists y (q(y,x) \land \rho(y)), \text{ was ist } val_{D,I,\beta}(T_1)?$$

■ Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w$, $I(p(8)) = w$, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.

•
$$T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$$
, was ist $val_{D,l,\beta}(T_2)$?

Beispiel zur Semantik

Lukas Bach Jukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5$$
, $I(q(x,y)) = w :\Leftrightarrow x \ge y$.

$$T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,l,\beta}(T_1)?$$

■ Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w, I(p(8)) = w$, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.

•
$$T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$$
, was ist $val_{D,l,\beta}(T_2)$?

•
$$val_{D,I,\beta}(p(x)) = w$$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(g) := 2, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5, I(q(x,y)) = w :\Leftrightarrow x \ge y.$$

$$T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,l,\beta}(T_1)?$$

■ Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w$, $I(p(8)) = w$, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.

•
$$T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$$
, was ist $val_{D,l,\beta}(T_2)$?

•
$$val_{D,I,\beta}(p(x)) = w$$

$$val_{D,I,\beta}(q(f(c,y),x))$$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y$$
.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5$$
, $I(q(x,y)) = w :\Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,I,\beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,l,\beta}(q(f(c,y),x)) = val_{D,l,\beta}(q(f(10,y),x))$

Beispiel zur Semantik

Lukas Bach Jukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.
Sei $ar(R) := 2$, $I(R) := \{(x, y) | x \le y\}$.

Set
$$d(R) := 2, l(R) := \{(x, y) | x \le y\}.$$

Set $l(p(x)) = w :\Leftrightarrow x \ge 5, l(q(x, y)) = w :\Leftrightarrow x \ge y.$

- $T_1 := p(x) \rightarrow \exists y (q(y, x) \land p(y))$, was ist $val_{D,I,\beta}(T_1)$?
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,l,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,l,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y)), \text{ was ist } val_{D, l, \beta}(T_2)?$
 - \bullet $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) =$ $val_{D,I,\beta}(q(10-y,7))$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.
Sei $ar(R) := 2$, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w :\Leftrightarrow x \ge 5$, $I(q(x, y)) = w :\Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,l,\beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Sei $D := \mathbb{N}_0$, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, $\beta(x) := 7$. Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.

Sei
$$I(p(x)) = 0$$
, $I(x) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w :\Leftrightarrow x \ge 5$, $I(q(x, y)) = w :\Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y,x) \land p(y)), \text{ was ist } val_{D,I,\beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $extbf{val}_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$
 - $val_{D,I,\beta}(p(y)) = w \text{ für } y \geq 5.$

Beispiel zur Semantik

Lukas Bach, lukas.bach@student.kit.edu

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w :\Leftrightarrow x \ge 5$, $I(q(x, y)) = w :\Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \to \exists y (q(f(c,y),x) \land p(y)), \text{ was ist } val_{D,I,\beta}(T_2)?$
 - $extbf{val}_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$
 - $val_{D,I,\beta}(p(y)) = w \text{ für } y \geq 5.$
 - Also: $val_{D,I,\beta}(T_2) = f$.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

- Gegeben sind folgende Prädikate:
 - Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
 - $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
 - Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Drücke die folgenden Aussagen mit prädikatenlogischen Formeln aus:

Jede männliche Person hat eine Mutter.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow M"utter(y, x))$

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben?

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

- Gegeben sind folgende Prädikate:
 - Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
 - $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
 - Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow M"utter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?
- Jeder Mann hat Kinder (plural!).

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?
- Jeder Mann hat Kinder (plural!).
 - $\forall x \exists y \exists z (\textit{Männlich}(x) \rightarrow (\textit{Vater}(x,y) \land \textit{Vater}(x,z) \land \neg (y = z)))$

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich $(x, y) := \text{wahr, gdw. } x \text{ m\"{a}}$ nnlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Drücke die folgenden Aussagen mit prädikatenlogischen Formeln aus:

Jede Frau ist mit höchstens einem Mann verheiratet.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit höchstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((M"annlich(y) \land M"annlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x,y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit höchstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((M"annlich(y) \land M"annlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$
- Wer m\u00e4nnlich ist, ist nicht weiblich und umgekehrt.

Aufgaben zu Prädikatenlogik

Lukas Bach, lukas.bach@student.kit.edu

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit h\u00f6chstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((M"annlich(y) \land M"annlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$
- Wer m\u00e4nnlich ist, ist nicht weiblich und umgekehrt.
 - $\forall x (M"annlich(x) \rightarrow \neg Weiblich(x) \land Weiblich(x) \rightarrow \neg M"annlich(x))$

Lukas Bach, lukas.bach@student.kit.edu

