

Task Migration Policy for Temperature-Aware **Management of Many-Core Systems**

Paul Meyer

(Final Presentation) October 23, 2020

Motivation

Many-Core Systems

- Many-Core Systems
 - Large number of processing resources
 - Parallel execution of applications
 - Dynamic workload
 - Dynamic resource management
- The thermal Issue
 - Increased on-chip temperature
 - Dense integration of transistors
 - · High density of power consumption
 - Requires thermal control
 - Dynamic thermal distribution
 - Dynamic workload
 - Dynamic Thermal Management (DTM)

running on 8x8 core system

Dynamic Thermal Management (DTM)

- Predefined temperature constraint: T_{thr}
 - Thermally safe operation as long as $T_{\rm max} < T_{\rm thr}$
 - ullet Enforced using DVFS or power gating if $T_{
 m max} > T_{
 m thr}$

Thermal Safe Power (TSP)

- TSP analysis provides a core power constraint: P_{thr}
 - Function of the location of active cores (Q), heat flow, T_{thr} , etc.
 - Thermally safe operation as long as $P_{\rm core} < P_{\rm thr}$
 - Enforced using DVFS or power gating if $P_{core} > P_{thr}$

Temperature-Aware Task Migration Policy

Task Migration Policy

- Migration policy decides <u>which</u> migration must be performed.
- Large decision space
 - *N*-core system \rightarrow up to $\left(\frac{N}{2}\right) \times \left(\frac{N}{2}\right)$ migration options!
 - Heuristic is required

Task Migration Policy

- Migration policy decides <u>which</u> migration must be performed.
- Large decision space
 - *N*-core system \rightarrow up to $\left(\frac{N}{2}\right) \times \left(\frac{N}{2}\right)$ migration options!
 - · Heuristic is required

Two-Step Heuristic

- Step 1: Select a promising active core (migration source)
 - \rightarrow Goal: maximum increase in P_{thr} if it becomes idle
- Step 2: Select a promising idle core (migration destination)
 - \rightarrow Goal: minimum decrease in P_{thr} if it becomes active

Task Migration Policy

- Migration policy decides <u>which</u> migration must be performed.
- Large decision space
 - *N*-core system \rightarrow up to $\left(\frac{N}{2}\right) \times \left(\frac{N}{2}\right)$ migration options!
 - Heuristic is required

Two-Step Heuristic

- Step 1: Select a promising active core (migration source)
 - \rightarrow Goal: maximum increase in P_{thr} if it becomes idle
- Step 2: Select a promising idle core (migration destination)
 - ightarrow Goal: minimum decrease in P_{thr} if it becomes active
- TSP analysis* is required to calculate P_{thr}
 - Time-consuming analysis
 - ightarrow Goal: single analysis to select both source and destination

^{*} Pagani, Santiago, Heba Khdr, Jian-Jia Chen, Muhammad Shafique, Minming Li, and Jörg Henkel. Thermal safe power (TSP): Efficient power budgeting for heterogeneous manycore systems in dark silicon. IEEE Transactions on Computers (TC) 66, no. 1 (2016): 147-162.

TSP Analysis: Homogeneous Many-Core

• Calculates core power constraint $P_{thr}(\mathbf{Q})$ for system use-case \mathbf{Q}

$$AT' + BT = P + T_{amb}G \tag{1}$$

$$T_i = \sum_{j=1}^{N} b_{i,j}^{-1} \cdot \frac{\mathbf{p}_j^{cores}}{\mathbf{p}_j^{cores}} + \sum_{j=1}^{N} b_{i,j}^{-1} \left(p_j^{blocks} + T_{amb} \cdot g_j \right)$$
 (2)

$$\frac{P_{\text{thr}}^{\star}(\mathbf{Q})}{\text{thr}} = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - P_{\text{inact}}^{\text{core}} \cdot \sum_{j=1}^{M} b_{i,k_{j}}^{-1} (1 - q_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot q_{j}} + \frac{-\sum_{j=1}^{N} b_{i,j}^{-1} (p_{j}^{\text{blocks}} + T_{\text{amb}} \cdot q_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot q_{j}} \right\}$$
(3)

TSP Analysis: Heterogeneous Many-Core

• Calculates core **power-density** constraint $P_{\text{thr}}^{\rho}(\mathbf{Q})$ for system use-case \mathbf{Q}

$$AT' + BT = P + T_{amb}G \tag{1}$$

$$T_{i} = \sum_{j=1}^{N} b_{i,j}^{-1} \cdot \frac{\mathbf{p}_{j}^{cores}}{\mathbf{p}_{j}^{cores}} + \sum_{j=1}^{N} b_{i,j}^{-1} \left(p_{j}^{blocks} + T_{amb} \cdot g_{j} \right)$$
(2)

$$P_{\text{thr}}^{\rho \star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot p_{\text{inact},j}^{\text{core}} (1 - q_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \operatorname{area}_{j}^{\text{core}}} \cdot q_{j} + \frac{-\sum_{j=1}^{N} b_{i,j}^{-1} (p_{j}^{\text{blocks}} + T_{\text{amb}} \cdot g_{j})}{\sum_{i=1}^{M} b_{i,k_{i}}^{-1} \cdot \operatorname{area}_{j}^{\text{core}}} \cdot q_{j}} \right\}$$
(4)

Algorithm 1: TSP(Density) for a system use-case Q

Input: Q, P^{blocks}, T_{amb}, T_{thr}, P_{max}, areaj^{core} & p^{core}_{inact,j} (for j = 1, 2, ..., M), and floorplan;

Output: Uniform TSP(Density) constraint for mapping Q;

```
1: P_{\text{thr}}^{\rho \star}(\mathbf{Q}) \leftarrow \infty;

2: for all i \in \mathbf{L} do

3: auxP \leftarrow T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot p_{\text{inact},j}^{\text{core}} (1 - q_{j});

4: auxP \leftarrow auxP - \sum_{j=1}^{N} b_{i,j}^{-1} (p_{j}^{\text{blocks}} + T_{\text{amb}} \cdot g_{j});

5: auxP \leftarrow \frac{auxP}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \text{area}_{j}^{\text{core}} \cdot q_{j}};

6: if auxP < P_{\text{thr}}^{\rho \star}(\mathbf{Q}) then

7: P_{\text{thr}}^{\rho \star}(\mathbf{Q}) \leftarrow auxP;
```

8: if
$$P_{\text{thr}}^{\rho \star}(\mathbf{Q}) \leq R^{\rho}(\mathbf{Q})$$
 then

9:
$$P_{\text{thr}}^{\rho}(\mathbf{Q}) \leftarrow P_{\text{thr}}^{\rho \star}(\mathbf{Q});$$

11:

$$P_{\mathrm{thr}}^{
ho}(\mathbf{Q}) \leftarrow R^{
ho}(\mathbf{Q});$$

Complexity: O(ZN), with Z = #blocks, N = #nodes

12: return
$$P_{thr}^{\rho}(\mathbf{Q})$$
;

Source-Core Selection

Possible Methods

- Exhaustive search
 - For each active core c, calculate $P_{\text{thr}}^{\rho}(\mathbf{Q})$ assuming c is idle
 - Choose the core which results in greatest $P_{\text{thr}}^{\rho}(\mathbf{Q})$

Source-Core Selection

Possible Methods

- Exhaustive search
 - For each active core c, calculate $P_{\text{thr}}^{\rho}(\mathbf{Q})$ assuming c is idle
 - Choose the core which results in greatest $P_{\text{thr}}^{\rho}(\mathbf{Q})$
 - ightarrow Complexity: O(MZN) , M = # cores

2. Random search

- Select x active cores randomly as potential candidates
- For each randomly selected core c, calculate $P_{\text{thr}}^{\rho}(\mathbf{Q})$ assuming c is idle
- Choose the core which results in greatest $P_{\text{thr}}^{\rho}(\mathbf{Q})$
 - ightarrow Complexity: O(XZN), X= subset size

Source-Core Selection

Possible Methods

- Exhaustive search
 - For each active core c, calculate $P_{\text{thr}}^{\rho}(\mathbf{Q})$ assuming c is idle
 - Choose the core which results in greatest $P_{\text{thr}}^{\rho}(\mathbf{Q})$
 - ightarrow Complexity: O(MZN), M=#cores
- 2. Random search
 - Select x active cores randomly as potential candidates
 - For each randomly selected core c, calculate $P_{\text{thr}}^{\rho}(\mathbf{Q})$ assuming c is idle
 - Choose the core which results in greatest $P_{\mathrm{thr}}^{
 ho}(\mathbf{Q})$
 - ightarrow Complexity: O(XZN), X= subset size
- Proposed Method
 - Find the best candidate with a single TSP analysis for current Q
 - \rightarrow Complexity: O(ZN)

Source-Core Selection: Proposed Idea

Temperature Awareness:

Enabling the source-core search to see the heat distribution in the system

Concept

- Generate the heatmap of the system
- Rank all active cores by their temperature
- Select from all active cores the hottest one as source core
- Deactivating the selected core results in the maximum gain in P^p_{thr}
 - Better thermal balance in the system
 - Enables maximum frequency increase for active cores

Source-Core Selection: Proposed Procedure

Source-Core Selection: Proposed Procedure

core	<i>c</i> ₀	<i>C</i> ₁	<i>c</i> ₂	<i>C</i> ₃	<i>C</i> ₄	C 5	<i>c</i> ₆	C ₇	<i>C</i> ₈
auxP	29	28	24	33	22	18	41	38	35
P_{thr}^{ρ} :	18								

$$P_{\text{thr}}^{p \bigstar}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_j}^{1,1} \cdot \rho_{\text{inacl},j}^{\text{core}} (1 - q_i) - \sum_{j=1}^{N} b_{i,l_j}^{1,1} (\rho_j^{\text{blocks}} + T_{\text{amb}} \cdot g_j)}{\sum_{j=1}^{M} b_{i,k_j}^{1,1} \cdot \text{area}_j^{\text{core}} \cdot q_j} \right\}$$

Source-Core Selection: Proposed Procedure

core	<i>c</i> ₀	<i>C</i> ₁	c ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆	C ₇	<i>C</i> ₈
auxP	29	28	24	33	22	18	41	38	35
P_{thr}^{ρ} :	18								

core	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>c</i> ₅	<i>c</i> ₆	c ₇	<i>c</i> ₈
auxP	29	28	23	33	21	31	41	39	37
P_{thr}^{ρ} :	21								

Destination-Core Selection: Intuitive Approach

Proposed Method

- Using TSP Analysis as the base for the heuristic
- Destination-core selection heuristic:
 - 1. Perform the TSP analysis for the current system use-case (Q)
 - generate a map of inactive cores and their auxP value
 - 2. Sort the map by auxP values from high to low
 - Choose the first core-auxP pair (the coolest core) as the best destination core for migration
- The rest of the map can be used as alternative options

$$P_{\text{thr}}^{\rho \star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_j}^{-1} \cdot p_{\text{inact},j}^{\text{core}}(1 - q_j) - \sum_{j=1}^{N} b_{i,j}^{-1}(\rho_j^{\text{blocks}} + T_{\text{amb}} \cdot g_j)}{\sum_{j=1}^{M} b_{i,k_j}^{-1} \cdot \text{area}_j^{\text{core}} \cdot q_j} \right\}$$
(4)

Destination-Core Selection: Intuitive Approach

Proposed Method

- Using TSP Analysis as the base for the heuristic
- Destination-core selection heuristic:
 - 1. Perform the TSP analysis for the current system use-case (Q)
 - generate a map of inactive cores and their auxP value
 - 2. Sort the map by auxP values from high to low
 - Choose the first core-auxP pair (the coolest core) as the best destination core for migration
- The rest of the map can be used as alternative options

$$P_{\text{thr}}^{\rho\star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_j}^{-1} \cdot p_{\text{inact},j}^{\text{core}}(1 - q_j) - \sum_{j=1}^{N} b_{i,j}^{-1}(p_j^{\text{blocks}} + T_{\text{amb}} \cdot g_j)}{\sum_{j=1}^{M} b_{i,k_j}^{-1} \cdot \text{area}_j^{\text{core}} \cdot q_j} \right\}$$
(4)

Problem: Selection quality not as good as expected!

Destination-Core Selection: Proposed Approach

Proposed Method

- Using TSP Analysis as the base for the heuristic
- Destination-core selection heuristic:
 - 1. Perform the TSP analysis for the current system use-case (Q)
 - generate a map of inactive cores and their auxP areacore value
 - 2. Sort the map by auxP values from high to low
 - Choose the first core-auxP pair (the coolest core) as the best destination core for migration
- The rest of the map can be used as alternative options

$$P_{\text{thr}}^{\rho \star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \rho_{\text{inact},j}^{\text{core},j} (1 - q_{j}) - \sum_{j=1}^{N} b_{i,j}^{-1} (\rho_{j}^{\text{blocks}} + T_{\text{amb}} \cdot g_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \text{area}_{j}^{\text{core}} \cdot q_{j}} \right\}$$
(4)

Experiments

Experiment Setup

Platform

- Heterogeneous (52 cores, 3 types)
- All TSP parameters are given
 B, G, T_{amb}, T_{thr}, p^{core}_{inact,i}, p^{blocks}_i, ...

Compared Approaches

- Exhaustive search
 - Best
 - Worst
- Random selection (x=5)
- Random selection (x=1)
- Proposed

Evaluation

- P_{thr}^{ρ} gain
- Average Frequency gain

AMD K6-2	AMD K6-2	AMI K6-:	2 K6-2	AMD K6-2	K	AMD K6-2		AM K6-	2	AMD K6-2	AMD K6-2
AMD K6-2	AMD K6-2	AMI K6-:		AMD K6-2			AMD K6-2	MD AM		AMD K6-2	AMD K6-2
AMD K6-III	AN K6	·III	AMD K6-III	AMD K6-III		IBM PowerI		IBM werPC		IBM werPC	IBM PowerPC
AMD K6-III	AN K6	4D	AMD AMD K6-III			IBM PowerPC		IBM PowerPC			
AMD K6-III	AN K6	·III	AMD K6-III	AMD K6-III		IBM PowerF		IBM werPC		IBM werPC	IBM PowerPC
AMD K6-III	AN K6	4D	AMD K6-III	AMD K6-III		IBM PowerF		IBM werPC		IBM werPC	IBM PowerPC

Source-Core Search: Thermal Balance

Source-Core Search: Performance Gain

Destination-Core Search: Thermal Balance

Destination-Core Search: Performance Gain

Investigated Migration Approaches

Holistic search

- finds the best pair of source and destination cores for migration (exhaustive)
- → (1) Holistic (optimal reference)

Two-Step search

- performs a TSP analysis to find the best source core
- performs a second TSP analysis based on an updated Q to find the best destination
- → (2) Exhaustive (heuristic reference)
- → (3) Proposed

Single-Step search

- performs a single TSP analysis to find the best source and the best destination cores
- → (4) Exhaustive (heuristic reference)
- → (5) Proposed

Migration Effectiveness: Thermal Balance

Migration Effectiveness: Thermal Balance

Best Compromise: Single-Step S/D search using proposed method

Migration Effectiveness: Performance Gain

Conclusion

Conclusion

- Many-core systems rely on dynamic thermal management
 - Thermal safety at the cost of performance loss
- Task migration is a promising solution
- Designing an efficient migration policy is challenging
- Proposed temperature-aware task migration policy is
 - Lightweight
 - Effective
 - Near optimal

Thanks for listening.

Any questions?

Backup Slides

Homogeneous Formulas

$$P_{\text{thr}}(\mathbf{Q}) = \begin{cases} P_{\text{thr}}^{\star}(\mathbf{Q}) & \text{if } P_{\text{thr}}^{\star}(\mathbf{Q}) \leq R\left(\sum_{i=1}^{M} q_i\right) \\ R\left(\sum_{i=1}^{M} q_i\right) & \text{otherwise.} \end{cases}$$
(5)

$$P_{\text{thr}}^{\star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - P_{\text{inact}}^{\text{core}} \cdot \sum_{j=1}^{M} b_{i,k_{j}}^{-1} (1 - q_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot q_{j}} + \frac{-\sum_{j=1}^{N} b_{i,j}^{-1} (p_{j}^{\text{blocks}} + T_{\text{amb}} \cdot g_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot q_{j}} \right\}$$
(3)

$$R(m) = P_{\text{inact}}^{\text{core}} + \frac{P_{\text{max}} - \sum_{i=1}^{N} \rho_i^{\text{blocks}} - P_{\text{inact}}^{\text{core}} \cdot M}{m}$$
 (6)

Algorithm 2: TSP for a Given Mapping (from [1])

Input: Q, P^{blocks}, T_{amb}, T_{thr}, P_{inact}, P_{max}, and floorplan;

Output: Uniform TSP power constraint for mapping **Q**;

```
1: P_{thr}^{\star}(\mathbf{Q}) \leftarrow \infty;
 2: for all i \in L do
             auxP \leftarrow T_{thr} - P_{inact}^{core} \cdot \sum_{i=1}^{M} b_{i,k}^{-1} (1 - q_i);
            auxP \leftarrow auxP - \sum_{i=1}^{N} b_{i,i}^{-1} (p_i^{\text{blocks}} + T_{\text{amb}} \cdot g_i);
           auxP \leftarrow \frac{auxP}{\sum_{i=1}^{M} b_{i}^{-1} \cdot \cdot \cdot \cdot a_{i}};
          if auxP < P_{thr}^{\star}(Q) then
                    P_{\text{thr}}^{\star}(\mathbf{Q}) \leftarrow auxP;
      end for
10: if P_{thr}^{\star}(\mathbf{Q}) \leq R\left(\sum_{i=1}^{M} q_i\right) then
           P_{\mathsf{thr}}(\boldsymbol{Q}) \leftarrow P_{\mathsf{thr}}^{\bigstar}(\boldsymbol{Q});
12: else
              P_{\text{thr}}(\mathbf{Q}) \leftarrow R\left(\sum_{i=1}^{M} q_i\right);
14: end if
15: return P_{thr}(\mathbf{Q});
```


Heterogeneous Formulas

$$P_{\text{thr}}^{\rho}(\mathbf{Q}) = \begin{cases} P_{\text{thr}}^{\rho \star}(\mathbf{Q}) & \text{if} \quad P_{\text{thr}}^{\rho \star}(\mathbf{Q}) \leq R^{\rho}(\mathbf{Q}) \\ R^{\rho}(\mathbf{Q}) & \text{otherwise.} \end{cases}$$
(7)

$$P_{\text{thr}}^{\rho \star}(\mathbf{Q}) = \min_{\forall i \in L} \left\{ \frac{T_{\text{thr}} - \sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot p_{\text{inact},j}^{\text{core}} (1 - q_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \text{area}_{j}^{\text{core}} \cdot q_{j}} + \frac{-\sum_{j=1}^{N} b_{i,j}^{-1} (p_{j}^{\text{blocks}} + T_{\text{amb}} \cdot g_{j})}{\sum_{j=1}^{M} b_{i,k_{j}}^{-1} \cdot \text{area}_{j}^{\text{core}} \cdot q_{j}} \right\}$$
(4)

$$R^{\rho}(\mathbf{Q}) = \frac{P_{\text{max}} - \sum_{i=1}^{N} p_i^{\text{blocks}} - \sum_{j=1}^{M} p_{\text{inact},j}^{\text{core}} (1 - q_j)}{\sum_{j=1}^{M} \text{area}_j^{\text{core}} \cdot q_j}$$
(8)

Dynamic Voltage and Frequency Scaling with Power Density

$$P_{total} = P_{static} + P_{dyn} \tag{9}$$

$$= I_q \cdot V_{dd} + \alpha \cdot \hat{C}_{eff} \cdot V_{dd}^2 \cdot f \tag{10}$$

$$P_{density} = \frac{P_{total}}{A} \tag{11}$$

$$P_{dyn} = A_i \cdot P_{density} - P_{stat,i} \tag{12}$$

$$\frac{P_{dyn}^{(a)}}{P_{dyn}^{(b)}} = \frac{V_{dd}^{(a)} \cdot V_{dd}^{(a)} \cdot f^{(a)}}{V_{dd}^{(b)} \cdot V_{dd}^{(b)} \cdot f^{(b)}} = \left(\frac{f^{(a)}}{f^{(b)}}\right)^{3}$$
(13)

avg freq gain per core =
$$\left(\frac{1}{|C|} \cdot \sum_{i \in C} \frac{f_i^{(a)}}{f_i^{(b)}}\right) - 1 \tag{14}$$

$$= \left(\frac{1}{|C|} \cdot \sum_{i \in C} \left(\frac{A_i \cdot P_{density}^{(a)} - P_{stat,i}}{A_i \cdot P_{density}^{(b)} - P_{stat,i}}\right)^{\frac{1}{3}}\right) - 1 \qquad (15)$$

Result: Destination-Core Search - Bad Ranking

Result: Destination-Core Search - Bad Ranking

Realistic Approach

Result: Migration Approaches

