Índice de Contenido

Serie o	de Taylor
1.1	Teorema
1.2	Definición
1.3	Observación
1.4	Método de obtención de la serie de Taylor
1.5	Ejemplos de series de Maclaurin
	Ejemplos de series de Taylor
Polino	mio de Taylor
2.1	Ejemplo
2.2	Observaciones
2.3	Teorema de Taylor con resto
2.4	Teorema de Convergencia de las series de Taylor
	2.4.1 Observación
	2.4.2 Ejemplos
2.5	Teorema de Taylor del resto integral
2.6	Ejemplos y Aplicaciones

1 Serie de Taylor

1.1 Teorema

Si f se puede representar como una serie de potencias centrada en a, es decir, si

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

para todo x tal que |x-a| < R. Entonces

$$c_n = \frac{f^{(n)}(a)}{n!}$$

1.2 Definición

Sea f(x) una función infinitamente diferenciable en un intervalo abierto que contiene a x = a. La serie de Taylor para f(x) alrededor de o centrada en x = a es

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x - a)^n$$

1.3 Observación

Para el caso especial en que a=0, la serie de Taylor se llama serie de Maclaurin y queda

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

1.4 Método de obtención de la serie de Taylor

- 1. Calcular las derivadas de f(x) hasta el orden n en el punto
- 2. Evaluar las derivadas en el punto a
- 3. Tratar de encontrar un patrón en las derivadas evaluadas en el punto a
- 4. Escribir la serie de Taylor

1.5 Ejemplos de series de Maclaurin

Ejemplo 1

Determine la serie de Maclaurin para $f(x) = e^x$.

Si $f(x) = e^x$, entonces $f'(x) = e^x$, $f''(x) = e^x$, $f'''(x) = e^x$, \cdots . Evaluando en x = 0 se tiene que f(0) = 1, f''(0) = 1, f'''(0) = 1, f'''(0) = 1, \cdots . Entonces la serie de Maclaurin para $f(x) = e^x$ es

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Determine la serie de Maclaurin para $f(x) = \sin(x)$.

Primero calculo las derivadas de $f(x) = \sin(x)$:

$$f(x) = \sin(x) \Rightarrow f'(x) = \cos(x)$$

$$f''(x) = -\sin(x) \Rightarrow f'''(x) = -\cos(x)$$

$$f''''(x) = \sin(x) \Rightarrow f'''''(x) = \cos(x)$$

$$\vdots$$

Evaluando en x=0 se tiene que f(0)=0, f'(0)=1, f''(0)=0, f'''(0)=-1, f'''(0)=0, f''''(0)=0, f''''(0)=1, \cdots . Entonces la serie de Maclaurin para $f(x)=\sin(x)$ es

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Ejemplo 3

Determine la serie de Maclaurin para $f(x) = \cos(x)$.

Primero calculo las derivadas de $f(x) = \cos(x)$:

$$f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$$

$$f''(x) = -\cos(x) \Rightarrow f'''(x) = \sin(x)$$

$$f''''(x) = \cos(x) \Rightarrow f'''''(x) = -\sin(x)$$

$$\vdots$$

Evaluando en x=0 se tiene que f(0)=1, f'(0)=0, f''(0)=-1, f'''(0)=0, f''''(0)=1, f'''''(0)=0, \cdots . Entonces la serie de Maclaurin para $f(x)=\cos(x)$ es

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Ejemplo 4

Determine la serie de Maclaurin para $f(x) = \ln(x+1)$.

Primero calculo las derivadas de $f(x) = \ln(x+1)$:

$$f(x) = \ln(x+1) \quad \Rightarrow \quad f'(x) = \frac{1}{x+1}$$

$$f''(x) = -\frac{1}{(x+1)^2} \quad \Rightarrow \quad f'''(x) = \frac{2}{(x+1)^3}$$

$$f''''(x) = -\frac{6}{(x+1)^4} \quad \Rightarrow \quad f'''''(x) = \frac{24}{(x+1)^5}$$

$$\vdots$$

Evaluando en x = 0 se tiene que f(0) = 0, f'(0) = 1, f''(0) = -1, f'''(0) = 2, f''''(0) = -6, f'''''(0) = 24, Entonces la serie de Maclaurin para $f(x) = \ln(x+1)$ es

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

Determine la serie de Maclaurin para $f(x) = \arctan(x)$.

Primero calculo las derivadas de $f(x) = \arctan(x)$:

$$f(x) = \arctan(x) \quad \Rightarrow \quad f'(x) = \frac{1}{1+x^2}$$

$$f''(x) = -\frac{2x}{(1+x^2)^2} \quad \Rightarrow \quad f'''(x) = \frac{2(3x^2-1)}{(1+x^2)^3}$$

$$f''''(x) = -\frac{8x(3x^2-1)}{(1+x^2)^4} \quad \Rightarrow \quad f'''''(x) = \frac{8(15x^4-10x^2+1)}{(1+x^2)^5}$$

$$\vdots$$

Evaluando en x=0 se tiene que f(0)=0, f'(0)=1, f''(0)=0, f'''(0)=2, f''''(0)=0, f''''(0)=8, \cdots . Entonces la serie de Maclaurin para $f(x)=\arctan(x)$ es

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Ejemplo 6

Determine la serie de Maclaurin para $f(x) = \frac{1}{1-x}$.

Primero calculo las derivadas de $f(x) = \frac{1}{1-x}$:

$$f(x) = \frac{1}{1-x} \quad \Rightarrow \quad f'(x) = \frac{1}{(1-x)^2}$$

$$f''(x) = \frac{2}{(1-x)^3} \quad \Rightarrow \quad f'''(x) = \frac{6}{(1-x)^4}$$

$$f''''(x) = \frac{24}{(1-x)^5} \quad \Rightarrow \quad f'''''(x) = \frac{120}{(1-x)^6}$$

$$\vdots$$

Evaluando en x=0 se tiene que f(0)=1, f'(0)=1, f''(0)=2, f'''(0)=6, f''''(0)=24, f'''''(0)=120, \cdots . Entonces la serie de Maclaurin para $f(x)=\frac{1}{1-x}$ es

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

Determine la serie de Maclaurin para $f(x) = \frac{1}{1+x}$.

Primero calculo las derivadas de $f(x) = \frac{1}{1+x}$:

$$f(x) = \frac{1}{1+x} \quad \Rightarrow \quad f'(x) = -\frac{1}{(1+x)^2}$$

$$f''(x) = \frac{2}{(1+x)^3} \quad \Rightarrow \quad f'''(x) = -\frac{6}{(1+x)^4}$$

$$f''''(x) = \frac{24}{(1+x)^5} \quad \Rightarrow \quad f'''''(x) = -\frac{120}{(1+x)^6}$$

$$\vdots$$

Evaluando en x = 0 se tiene que f(0) = 1, f'(0) = -1, f''(0) = 2, f'''(0) = -6, f''''(0) = 24, f'''''(0) = -120. \cdots . Entonces la serie de Maclaurin para $f(x) = \frac{1}{1+x}$ es

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n$$

Ejemplo 8

Determine la serie de Maclaurin para $f(x) = xe^x$.

Primero calculo las derivadas de $f(x) = xe^x$:

$$f(x) = xe^x \quad \Rightarrow \quad f'(x) = e^x + xe^x$$

$$f''(x) = 2e^x + xe^x \quad \Rightarrow \quad f'''(x) = 3e^x + xe^x$$

$$f''''(x) = 4e^x + xe^x \quad \Rightarrow \quad f'''''(x) = 5e^x + xe^x$$

$$\vdots$$

Evaluando en x=0 se tiene que f(0)=0, f'(0)=1, f''(0)=2, f'''(0)=3, f''''(0)=4, f'''''(0)=5, \cdots . Entonces la serie de Maclaurin para $f(x)=xe^x$ es Entonces $f^{(n)}(0)=n$ para todo $n \in \mathbb{N}$. Entonces la serie de Maclaurin para $f(x)=xe^x$ es

$$xe^{x} = x + x^{2} + \frac{x^{3}}{2!} + \frac{x^{4}}{3!} + \dots = \sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!}$$

1.6 Ejemplos de series de Taylor

Ejemplo 1

Determine la serie de Taylor para $f(x) = e^x$ alrededor de x = 1.

Si $f(x) = e^x$, entonces $f'(x) = e^x$, $f''(x) = e^x$, $f'''(x) = e^x$, Evaluando en x = 1 se tiene que f(1) = e, f'(1) = e, f''(1) = e, f'''(1) = e, Entonces la serie de Taylor para $f(x) = e^x$ alrededor de x = 1 es

$$e^x = e + e(x-1) + \frac{e}{2!}(x-1)^2 + \frac{e}{3!}(x-1)^3 + \dots = \sum_{n=0}^{\infty} \frac{e}{n!}(x-1)^n$$

Determine la serie de Taylor para $f(x) = e^x$ en x = 2.

Si $f(x) = e^x$, entonces $f'(x) = e^x$, $f''(x) = e^x$, $f'''(x) = e^x$, \cdots . Evaluando en x = 2 se tiene que $f(2) = e^2$, $f'(2) = e^2$, $f''(2) = e^2$, $f'''(2) = e^2$, \cdots . Entonces la serie de Taylor para $f(x) = e^x$ alrededor de x = 2 es

$$e^x = e^2 + e^2(x-2) + \frac{e^2}{2!}(x-2)^2 + \frac{e^2}{3!}(x-2)^3 + \dots = \sum_{n=0}^{\infty} \frac{e^2}{n!}(x-2)^n$$

Ejemplo 3

Determine la serie de Taylor para $f(x) = \sin(x)$ alrededor de $x = \frac{\pi}{2}$.

Primero calculo las derivadas de $f(x) = \sin(x)$:

$$f(x) = \sin(x) \Rightarrow f'(x) = \cos(x)$$

$$f''(x) = -\sin(x) \Rightarrow f'''(x) = -\cos(x)$$

$$f''''(x) = \sin(x) \Rightarrow f'''''(x) = \cos(x)$$

$$\vdots$$

Evaluando en $x = \frac{\pi}{2}$ se tiene que $f(\frac{\pi}{2}) = 1$, $f'(\frac{\pi}{2}) = 0$, $f''(\frac{\pi}{2}) = -1$, $f'''(\frac{\pi}{2}) = 0$, $f''''(\frac{\pi}{2}) = 1$, $f'''''(\frac{\pi}{2}) = 1$, $f'''''(\frac{\pi}{2}) = 0$, Entonces la serie de Taylor para $f(x) = \sin(x)$ alrededor de $x = \frac{\pi}{2}$ es

$$\sin(x) = 1 - \left(x - \frac{\pi}{2}\right) + \frac{\left(x - \frac{\pi}{2}\right)^3}{3!} - \frac{\left(x - \frac{\pi}{2}\right)^5}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}$$

Ejemplo 4

Determine la serie de Taylor para $f(x) = \cos(x)$ alrededor de $x = \frac{\pi}{2}$.

Primero calculo las derivadas de $f(x) = \cos(x)$:

$$f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$$

$$f''(x) = -\cos(x) \Rightarrow f'''(x) = \sin(x)$$

$$f''''(x) = \cos(x) \Rightarrow f'''''(x) = -\sin(x)$$

$$\vdots$$

$$\cos(x) = 0 - (x - \frac{\pi}{2})^2 + \frac{(x - \frac{\pi}{2})^4}{4!} - \frac{(x - \frac{\pi}{2})^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{(x - \frac{\pi}{2})^{2n}}{(2n)!}$$

Ejemplo 5

Determine la serie de Taylor para $f(x) = \ln(x+1)$ alrededor de x=1.

Primero calculo las derivadas de $f(x) = \ln(x+1)$:

$$f(x) = \ln(x+1) \quad \Rightarrow \quad f'(x) = \frac{1}{x+1}$$

$$f''(x) = -\frac{1}{(x+1)^2} \quad \Rightarrow \quad f'''(x) = \frac{2}{(x+1)^3}$$

$$f''''(x) = -\frac{6}{(x+1)^4} \quad \Rightarrow \quad f'''''(x) = \frac{24}{(x+1)^5}$$
:

Pedro Villar

Evaluando en x=1 se tiene que f(1)=0, f'(1)=1, f''(1)=-1, f'''(1)=2, f''''(1)=-6, f'''''(1)=24, \cdots . Entonces la serie de Taylor para $f(x)=\ln(x+1)$ alrededor de x=1 es

$$\ln(x+1) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{n}$$

2 Polinomio de Taylor

Sea f tal que existen $f'(a), f''(a), \ldots, f^{(n)}(a)$. Para $n \ge 0$, definimos el **polinomio de Taylor de** f **de orden** n **centrado en** a como

$$T_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n = \sum_{j=0}^n \frac{f^{(j)}(a)}{j!}(x-a)^j$$

2.1 Ejemplo

Ahora veamos cómo utilizar esta definición para calcular varios polinomios de Taylor para $f(x) = \ln(x)$ en x = 1.

Para calcular los polinomios de Taylor necesitamos evaluar f y sus primeras 3 derivadas en x = 1:

$$f(1) = \ln(1) = 0$$

$$f'(1) = \frac{1}{1} = 1$$

$$f''(1) = -\frac{1}{1^2} = -1$$

$$f'''(1) = \frac{2}{1^3} = 2$$

Por lo tanto

$$\begin{split} T_{0,1}(x) &= 0, \\ T_{1,1}(x) &= 0 + 1(x - 1) = x - 1, \\ T_{2,1}(x) &= 0 + 1(x - 1) - \frac{1}{2}(x - 1)^2, \\ T_{3,1}(x) &= 0 + 1(x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 \end{split}$$

2.2 Observaciones

- Notar que la *n*-ésima suma parcial de la serie de Taylor de *f* centrada en *a* es el polinomio de Taylor de *f* de orden *n* centrado en *a*.
- Notar que $T_{1,a}$ es la recta tangente al gráfico de f en el punto (a, f(a)).

2.3 Teorema de Taylor con resto

Si $f \in C^{(n)}[a, b]$ y existe $f^{n+1}(a, b)$, es decir que se puede diferenciar n+1 entonces para todo par $x, c \in [a, b]$ se tiene que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

donde

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}, \quad \xi \in (x,c).$$

Y si existe un número real M tal que $|f^{(n+1)}(x)| \leq M$ para todo $x \in [a,b]$ entonces se tiene que

$$|E_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}.$$

para todo $x \in [a, b]$.

2.4 Teorema de Convergencia de las series de Taylor

Sea f una función tal que existe $f^{(n)}(a) \ \forall n \geq 0$. Entonces, se cumple que

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \forall x \in (a-c, a+c) \Leftrightarrow \lim_{n \to \infty} E_n(x) = 0 \quad \forall x \in (a-c, a+c)$$

2.4.1 Observación

Con este teorema, podemos demostrar que una serie de Taylor par f en a converge a f si podemos probar que el resto $E_n(x) \to 0$.

2.4.2 Ejemplos

Ejemplo 1

Usando el teorema de Taylor con resto, demostrar que la serie de Maclaurin para $f(x) = e^x$ converge a $f(x) = e^x$ para todo x en su intervalo de convergencia.

Como se sabe, $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ es la serie de Maclaurin para $f(x) = e^x$. Para determinar su intervalo de convergencia, utilizamos el criterio del cociente. Dado que

$$\frac{|a_{n+1}|}{a_n} = \frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^n} = \frac{|x|}{n+1},$$

tenemos que

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{a_n} = \lim_{n \to \infty} \frac{|x|}{n+1} = 0.$$

para todo x. Por lo tanto, la serie converge absolutamente para todo x, y así, el intervalo de convergencia es $(-\infty, \infty)$. Para probar ahora que la serie converge a e^x para todo x, utiliziamos el hecho de que $f^{(n)}(x) = e^x$ para todo $n \ge 0$ y e^x es una función crecciente en $(-\infty, \infty)$. Por lo tanto, para cualquier número real b, el valor máximo de e^x para todo $|x| \le b$ es e^b . Entonces,

$$|E_n(x)| \le \frac{e^b}{(n+1)!} |x|^{(n+1)}$$

Como acabamos de probar que la serie converge absolutamente para todo x, podemos tomar b tan grande como queramos. Por lo tanto, $\lim_{n\to\infty} E_n(x) = 0$ para todo x, y así la serie de Maclaurin para $f(x) = e^x$ converge a $f(x) = e^x$ para todo x.

2.5 Teorema de Taylor del resto integral

Si $f \in C^{(n+1)}[a,b]$ entonces para todo par $x,c \in [a,b]$ se tiene que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x)$$

donde

$$E_n(x) = \frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(x-t)^n dt.$$

2.6 Ejemplos y Aplicaciones

Ejemplo 1

Dar la serie de Taylor de f(x) = sen(x) y probar que f coincide con la serie de Maclaurin.

Ya tenemos la serie de Maclaurin para $f(x) = \sin(x)$, que es

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Ahora notemos que $f^{(n+1)} = \pm sen(t)$ o $\pm \cos(t)$, en cualquier caso vale para $f^{(n+1)} \leq 1$. Luego se sabe que el resto es mayor o igual a 0

$$|R_n(x)| \ge 0 = \frac{|f^{(n+1)}(t)|}{(n+1)!} |x|^{(n+1)} \ge \frac{|x|^{(n+1)}}{(n+1)!}$$

como

$$\lim_{n \to \infty} \frac{|x|^{(n+1)}}{(n+1)!} = 0$$

es decir, $\lim_{n\to\infty} E_n(x) = 0$ para todo x, entonces la serie de Maclaurin para $f(x) = \sin(x)$ converge a $f(x) = \sin(x)$ para todo x es decir que coincide la expresión

$$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Usando la fórmula de Maclaurin de la función exponencial, estimar el valor de e con un error menor que 10^{-6} .

Se tiene la serie de Maclaurin para $f(x) = e^x$, que es

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Para x = 1, obtenemos

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + E_n(1)$$

Como sabemos que $f^{(n+1)}(x) = e^x$ para todo $n \ge 0$, entonces $E_n(1) = \frac{e^c}{(n+1)!}$ para algún $c \in [0,1]$. Despejando el resto se tiene que

$$|E_n(1)| = \left| e - \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots \right) \right|$$

Ahora suponemos que e < 3 y que por lo tanto $e^c < 3$ para algún $c \in [0,1]$. Entonces

$$\frac{e^c}{(n+1)!} < \frac{3}{(n+1)!}$$

Luego,

$$\frac{3}{(n+1)!} < 10^{-6}$$

tomando n = 9,

$$\frac{3}{10!} < 10^{-6}$$

Esto quiere decir que tomando el polinomio de orden 9, se tiene que el error es menor que 10^{-6} .

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!}$$

Ejemplo 3

Usando la fórmula de Maclaurin de la función $f(x) = \ln(1+x)$, estimar el valor de $\ln(\frac{3}{2})$.

Por lo pronto sabemos que hay que evaluar el polinomio en $x = \frac{1}{2}$. Sabemos que la serie de Maclaurin para $f(x) = \ln(1+x)$ es

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{(n+1)}}{n+1}$$

para $x \in (-1,1]$. Entonces, como $x=\frac{1}{2}$ pertenece a dicho intervalo, se puede asegurar que cualquier truncamiento de la serie evaluado en $x=\frac{1}{2}$ es una aproximación de $\ln(\frac{3}{2})$. Y es obvio que cuanto más términos se tomen, más precisa será la aproximación.