Thermoino Verison 2.5 with PWM for CTC feature

Setting the following:

cTCBinMs: 10

cTCPos: 7

09

19

29

_ _

3 -9

4 -9

5 -9

60

Should give 9ms pulses (3 up, 3 down) with 1 ms pauses

This is what EXECCTC produces:

Pulses are 9ms, but time between pulses is >2ms:

AND the first negative pulse is missing (this changes from run to run and can be worse). It is related to the between pulse timing using the loop function. Instead we can use the phase correct PWM feature to generate precise pulse timing for CTC functionality:

Time between pulses = 1ms, pulse duration = 9ms

This is implemented for a max cTCBinMs of 500ms, which is a good resolution. 3000 CTC entries are allowed, ie giving a max stimulus duration of 3000*0.5s = 1500s = 25 minutes

Also fixed a bug in EXECCTC: the last pulse was always dropped \Rightarrow changed the end of loop statement

Works nicely: sine wave

How it works:

We are using a 16 bit timer, timer1 in phase correct PWM mode (mode 10).

					Timer/Counter			
		WGM12	WGM11	WGM10	Mode of		Update of	TOV Flag
Mode	WGM13	(CTC1)	(PWM11)	(PWM10)	Operation	TOP	OCR1x at	set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, phase correct, 8-bit	0x00FF	ТОР	воттом
2	0	0	1	0	PWM, phase correct, 9-bit	0x01FF	ТОР	воттом
3	0	0	1	1	PWM, phase correct, 10-bit	0x03FF	ТОР	воттом
4	0	1	0	0	СТС	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	ТОР
8	1	0	0	0	PWM, phase and frequency correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, phase and frequency correct	OCR1A	воттом	воттом
10	1	0	1	0	PWM, phase correct	ICR1	ТОР	воттом
11	1	0	1	1	PWM, phase correct	OCR1A	ТОР	воттом
12	1	1	0	0	СТС	ICR1	Immediate	MAX
13	1	1	0	1	Reserved	-	-	-
14	1	1	1	0	Fast PWM	ICR1	воттом	TOP
15	1	1	1	1	Fast PWM	OCR1A	BOTTOM	TOP

Timing is set by the prescaler:

CS12	CS11	CS10	Description	
0	0	0	No Clock Source	
0	0	1	System Clock	
0	1	0	Prescaler = 8	
0	1	1	Prescaler = 64	
1	0	0	Prescaler = 256	
1	0	1	Prescaler = 1024	
1	1	0	External clock source on T1 pin. Clock on falling edge.	
1	1	1	External clock source on T1 pin. Clock on rising edge.	

And we are using a prescaler of 64. The Mega2560 runs at 16MHz, prescale by 64 gives a tick per 4us. This is a good divider if we want ms resolution, ie 1ms = 250 ticks.

Phase correct PWM with TOP defined by ICR1 means in one cycle the counter counts from 0 to ICR1 and back again. Now we can define thresholds with OCR1A and OCR1B to generate he pulse. Each pulse is symmetric around a trough.

Now how to change pulse width from cycle to cyle? Each time the counter (TCNT1) hits the bottom an interrupt is fired (timer overflow) which we can service using

ISR(TIMER1_OVF_vect)

In this interrupt handler we simply set the new values for OCR1A and OCR1B. Note however, that these only come into effect at the next peak, because OCR1X are double buffered registers.

Works nicely: part of a sine wave

