Most Reliable Path

You are given a directed graph G=(V,E) on which each edge $(u,v)\in E$ has an associated value r(u,v), which is a rational number in the range $0\le r(u,v)\le 1$ that represents the probability of a communication channel from vertex u to vertex v. We interpret r(u,v) as the probability that the channel from v to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the probability of the most reliable path between two given vertices.

Input Format

The first line contains two space separated integers |V| and |E| where |V| is the number of vertices and |E| is the number of edges in the graph G. Let the vertices of graph G be labelled with $\{0,1,\ldots,|V|-1\}$.

Each of the following |E| lines will contain three space separated integers u,v and w where (u,v) denotes the edge and w denotes $r(u,v)=2^{-w}$. The last line will contain two space separated integers s and t.

Constraints

- $1 \le |V| \le 2500$
- $1 \le |E| \le 6250000$
- $0 \le u, v, s, t < 2500$
- $0 \le w \le 10000$

Output Format

An integer p that denotes the probability of the most reliable path between s and t is 2^{-p} .