Scientific Computing (MATH6183001)

Problem Set 7 - Pumping Lemma for Non-CFL July 29, 2024

Problem 1. Use the pumping lemma to show that the following languages are not context free.

```
a. \{a^nb^nc^n\mid n\geq 0\}
b. \{a^ib^jc^k\mid 0\leq i\leq j\leq k \}
c. \{ww\mid w\in \{0,1\}^* \}
d. \{0^n1^n0^n1^n\mid n\geq 0 \}
```

Problem 2. Let B be the language of all palindromes over $\{0,1\}$ containing equal numbers of 0s and 1s. Show that B is not context free.

Problem 3. Let $\Sigma = \{1,2,3,4\}$ and $C = \{w \in \Sigma^* \mid \text{in } w, \text{ the number of 1s equals the number of 2s, and the number of 3s equals the number of 4s}. Show that <math>C$ is not context free.

Problem 4. Let $G = (V, \Sigma, R, S)$ be the following grammar. $V = \{S, T, U\}; \Sigma = \{0, \#\};$ and R is the set of rules:

```
\begin{split} S &\to TT|U \\ T &\to 0T|T0|\# \\ U &\to 0U00|\# \end{split}
```

Consider the language B = L(G). The pumping lemma for context-free languages states the existence of a pumping length p for B. What is the minimum value of p that works in the pumping lemma? Justify your answer.

Problem 5*. Show that $F = \{a^i b^j \mid i = kj \text{ for some positive integer } k\}$ is not context free.