ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра Прочности Летательных Аппарато	Кафедра	Прочности	Летательных	Аппарато
--	---------	-----------	-------------	----------

Дипломная работа на степень бакалавра на тему:

Исследование прочности конструкции центроплана для крыльев большого удлинения.

Студент	Дынников Ю.А.
Научный руководитель степень?	Шаныгин А.Н.
Зав. кафедрой степень?	Замула Г.Н.

Оглавление

1	Пра	актиче	еская значимость задачи	3
2	Реш	цение	задачи	5
	2.1	Созда	ние параметрической модели центроплана	5
	2.2	Оптим	мизация геометрических параметров сечения центроплана	8
		2.2.1	Постановка задачи	8
		2.2.2	Постановка модельной задачи	8
3	Вал	идаци	ия решения	11

Введение

В настоящее время стремительно развиваются беспилотные летательные аппараты. Некоторые из них конструируются под задачи разведки, которые налагают на Π А требования малозаметности. [1]

Глава 1

Практическая значимость задачи

В настоящее время всё большее внимание уделяется принципиальной схеме самолета "летающее крыло". Данная схема применяется в том числе и для разработки беспилотных летательных аппаратов, предназначенных для разведки. В конструктировании таких самолетов особое внимание уделяется требованиям малозаметности и увеличения аэродинамического качества, и как слествие, возможности барражировать в течение длительного времени.

Для удовлетворения данным требованиям конструкцию самолета создают максимально "плоской" – так, в подобных конструкциях строительная высота фюзеляжа сравнима с высотой двигателя. Один из способов создания подобной конструкции – использование изогнутого кессона. (Рис.1.1). Примером такого самолета служит концепт американского беспилотного летательного аппарата RQ-180 (Рис.1.2).

Рис. 1.1: Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа с изображением двигателя

Так как вес конструкции является одним из важнейших критериев при выборе конструкции самолета, (что-то дописать), при проектировании самолета необходимо знать, какой вклад в вес конструкции совершает выбор такой формы кессона. С целью получения таких сведений в данной работе проводится анализ влияния различных форм кессона на вес самолета.

Стоит заметить, что для того, чтобы в полной мере понимать целесообразность выбора той или иной формы центроплана, необходимо проводить комплексный анализ с учетом того, как меняются аэродинамических характеристик самолета при выборе той или иной формы кессона, и выбирать оптимальный вариант, исходя из критериев как прочности, так и аэродинамики. В данной работе проводится анализ лишь с точки зрения прочности

Рис. 1.2: Концепт американского БПЛА RQ-180

конструкции, аэродинамические характеристики и нагрузки приняты постоянными.

Полученные в работе данные возможно использовать при дальнейшем проектировании самолетов схемы "летающее крыло".

Глава 2

Решение задачи

2.1 Создание параметрической модели центроплана

Для анализа влияния формы кессона на вес самолета и его аэродинамические характеристики была создана параметрическая модель, представляющая из себя упрощенную модель центроплана. В упрощенной модели кессон заменен коробом переменного прямоугольного сечения с перегородками. На него передаются нагрузки путем приложения аэродинамических нагрузок на упрощенную модель крыла — короб постоянного прямоугольного сечения. Материал всех панелей - алюминий, толщина каждой панели постоянна, панели без вырезов.

Для модели центроплана имеются два параметра: относительная координата нижней точки сечения и строительная высота в плоскости симметрии самолета. Кривые, описывающие нижнюю и верхнюю поверхность кессона выбраны кубическим сплайном через заданные исходя из параметров точки с условием равенства нулю производных в точках стыка фюзеляжа с крылом и в плоскости симметрии самолета.

Были выбраны 42 пары значений параметров, для каждой пары была проведена оптимизация толщин панелей кессона с целью удовлетворения требованиям прочности конструкции, а именно: среднее напряжение в каждой панели было ограничено сверху значением допускаемого напряжения, равным 35кг/мм^2 . Оптимизация проводилась по алгоритму σ/σ для каждой панели. Итоговые результаты вычислений приведены в таблице 2.2 и на 2.2 и на 2.2 и на 2.2 и на 2.20 гары за 2.21 гары за 2.22 гары за 2.23 гары за 2.24 гары за 2.24 гары за 2.26 гары за 2.26 гары за 2.26 гары за 2.27 гары за 2.28 гары за 2.28 гары за 2.29 гары за гары за

Таблица 2.1: Зависимость площади панелей центроплана и веса кессона от параметров центроплана

		Вес кесс	сона [кг]		Площадь панелей центроплана [м²]						
N	Верхние	Нижние	Боковые		Верхние	Нижние	Боковые				
	панели	панели	стенки	\sum	панели	панели	стенки	Σ			
1	297.182	294.551	12.561	604.294	2.730	2.730	4.000	9.520			
2	225.261	237.378	27.672	490.313	2.730	2.740	5.210	10.720			
3	190.080	222.327	49.159	461.564	2.730	2.760	5.820	11.340			
4	161.544	211.467	65.963	438.972	2.730	2.760	6.450	11.950			
5	146.581	199.989	66.844	413.415	2.730	2.780	7.090	12.590			
6	134.746	191.293	70.912	396.952	2.730	2.800	7.640	13.200			
7	350.816	374.021	47.679	772.515	2.910	2.910	4.000	9.850			
8	253.752	259.311	53.180	566.245	2.910	2.850	5.210	10.990			
9	213.881	226.655	57.618	498.154	2.910	2.830	5.840	11.570			
10	188.442	205.603	62.047	456.092	2.910	2.810	6.450	12.150			
11	174.466	196.192	66.506	437.164	2.910	2.780	7.090	12.770			
12	154.328	195.919	70.963	421.210	2.910	2.770	7.680	13.350			
13	363.681	391.414	48.862	803.953	3.010	3.000	4.000	10.000			
14	258.118	275.555	53.209	586.883	3.010	2.930	5.230	11.160			
15	225.322	238.220	57.604	521.145	3.010	2.890	5.820	11.720			
16	201.612	214.755	62.046	478.413	3.010	2.860	6.440	12.310			
17	171.877	203.370	66.418	441.665	3.010	2.840	7.050	12.900			
18	163.553	201.207	70.912	435.673	3.010	2.820	7.660	13.480			
19	380.079	398.521	49.032	827.631	3.050	3.050	4.000	10.110			
20	267.143	279.590	53.134	599.866	3.050	2.980	5.210	11.240			
21	231.158	238.954	57.667	527.779	3.050	2.930	5.820	11.820			
22	197.327	218.001	62.040	477.368	3.050	2.910	6.410	12.390			
23	191.553	205.935	66.481	463.971	3.050	2.870	7.070	12.980			
24	158.352	203.948	70.897	433.199	3.050	2.850	7.660	13.560			
25	383.525	410.374	50.351	844.249	3.110	3.110	4.000	10.210			
26	279.228	288.331	53.186	620.745	3.110	3.030	5.210	11.350			
27	233.614	249.500	57.583	540.696	3.110	2.990	5.820	11.910			
28	213.922	221.683	62.125	497.728	3.110	2.950	6.450	12.500			
29	180.457	210.067	66.523	457.046	3.110	2.920	7.070	13.070			
30	167.492	205.426	71.001	443.918	3.110	2.880	7.640	13.660			
31	401.418	424.040	50.413	875.868	3.160	3.160	4.000	10.330			
32	285.115	297.451	53.649	636.214	3.160	3.070	5.230	11.470			
33	251.131	255.015	57.656	563.801	3.160	3.040	5.860	12.030			
34	212.049	229.543	62.067	503.658	3.160	3.000	6.450	12.610			
35	191.030	215.968	66.550	473.548	3.160	2.970	7.070	13.170			
36	170.765	209.184	70.962	450.912	3.160	2.920	7.660	13.740			
37	431.880	451.562	51.974	935.418	3.230	3.230	4.000	10.440			
38	291.199	306.178	54.263	651.640	3.230	3.130	5.210	11.560			
39	253.054	265.073	57.593	575.719	3.230	3.090	5.820	12.140			
40	222.782	233.403	61.948	518.132	3.230	3.050	6.400	12.700			
41	197.192	218.301	66.423	481.917	3.230	3.020	7.030	13.270			
42	175.591	210.828	70.877	457.295	3.230	2.970	7.660	13.840			

2.2 Оптимизация геометрических параметров сечения центроплана

2.2.1 Постановка задачи

В ходе работы было проведено исследование зависимости веса центроплана от его параметров с учетом критерия неразрушения конструкции при заданных нагрузках. Для этого была решена следующая модельная задача.

2.2.2 Постановка модельной задачи

Имеется упрощенная модель центроплана — короб переменного прямоугольного сечения с перегородками. На него передаются нагрузки посредством приложения аэродинамических нагрузок на модель крыла — короб постоянного прямоугольного сечения. Для модели центроплана имеются два параметра: относительная координата нижней точки сечения и строительная высота в плоскости симметрии самолета. Было выбрано 42 пары параметров, для каждой пары проведена оптимизация сечения с целью удовлетворения требований прочности конструкции, а именно: среднее напряжение в каждой панели не должно превышать допускаемого напряжения, равного 35кг/мм². Оптимизация проводилась алгоритмом σ/σ для каждой панели. Итоговые результаты вычислений приведены в таблице 2.2 и на 2.20 на 2.21 на 2.22 городскаемого на 2.22 городскаемого на 2.23 городскаемого на 2.24 городскаемого на 2.26 городскаемого на 2.26 городскаемого на 2.27 городскаемого на 2.28 городскаемого на 2.28 городскаемого на 2.29 городскаемого на 2.

Таблица 2.2: Зависимость площади панелей центроплана и веса кессона от параметров центроплана

		Вес кесс	сона [кг]		Площадь панелей центроплана [м²]						
N	Верхние	Нижние	Боковые		Верхние	Нижние	Боковые				
	панели	панели	стенки	\sum	панели	панели	стенки	Σ			
1	297.182	294.551	12.561	604.294	2.730	2.730	4.000	9.520			
2	225.261	237.378	27.672	490.313	2.730	2.740	5.210	10.720			
3	190.080	222.327	49.159	461.564	2.730	2.760	5.820	11.340			
4	161.544	211.467	65.963	438.972	2.730	2.760	6.450	11.950			
5	146.581	199.989	66.844	413.415	2.730	2.780	7.090	12.590			
6	134.746	191.293	70.912	396.952	2.730	2.800	7.640	13.200			
7	350.816	374.021	47.679	772.515	2.910	2.910	4.000	9.850			
8	253.752	259.311	53.180	566.245	2.910	2.850	5.210	10.990			
9	213.881	226.655	57.618	498.154	2.910	2.830	5.840	11.570			
10	188.442	205.603	62.047	456.092	2.910	2.810	6.450	12.150			
11	174.466	196.192	66.506	437.164	2.910	2.780	7.090	12.770			
12	154.328	195.919	70.963	421.210	2.910	2.770	7.680	13.350			
13	363.681	391.414	48.862	803.953	3.010	3.000	4.000	10.000			
14	258.118	275.555	53.209	586.883	3.010	2.930	5.230	11.160			
15	225.322	238.220	57.604	521.145	3.010	2.890	5.820	11.720			
16	201.612	214.755	62.046	478.413	3.010	2.860	6.440	12.310			
17	171.877	203.370	66.418	441.665	3.010	2.840	7.050	12.900			
18	163.553	201.207	70.912	435.673	3.010	2.820	7.660	13.480			
19	380.079	398.521	49.032	827.631	3.050	3.050	4.000	10.110			
20	267.143	279.590	53.134	599.866	3.050	2.980	5.210	11.240			
21	231.158	238.954	57.667	527.779	3.050	2.930	5.820	11.820			
22	197.327	218.001	62.040	477.368	3.050	2.910	6.410	12.390			
23	191.553	205.935	66.481	463.971	3.050	2.870	7.070	12.980			
24	158.352	203.948	70.897	433.199	3.050	2.850	7.660	13.560			
25	383.525	410.374	50.351	844.249	3.110	3.110	4.000	10.210			
26	279.228	288.331	53.186	620.745	3.110	3.030	5.210	11.350			
27	233.614	249.500	57.583	540.696	3.110	2.990	5.820	11.910			
28	213.922	221.683	62.125	497.728	3.110	2.950	6.450	12.500			
29	180.457	210.067	66.523	457.046	3.110	2.920	7.070	13.070			
30	167.492	205.426	71.001	443.918	3.110	2.880	7.640	13.660			
31	401.418	424.040	50.413	875.868	3.160	3.160	4.000	10.330			
32	285.115	297.451	53.649	636.214	3.160	3.070	5.230	11.470			
33	251.131	255.015	57.656	563.801	3.160	3.040	5.860	12.030			
34	212.049	229.543	62.067	503.658	3.160	3.000	6.450	12.610			
35	191.030	215.968	66.550	473.548	3.160	2.970	7.070	13.170			
36	170.765	209.184	70.962	450.912	3.160	2.920	7.660	13.740			
37	431.880	451.562	51.974	935.418	3.230	3.230	4.000	10.440			
38	291.199	306.178	54.263	651.640	3.230	3.130	5.210	11.560			
39	253.054	265.073	57.593	575.719	3.230	3.090	5.820	12.140			
40	222.782	233.403	61.948	518.132	3.230	3.050	6.400	12.700			
41	197.192	218.301	66.423	481.917	3.230	3.020	7.030	13.270			
42	175.591	210.828	70.877	457.295	3.230	2.970	7.660	13.840			

Рис. 2.2: Зависимость веса кессона от параметров центроплана

Глава 3

Валидация решения

Список таблиц

2.1	Зависимость	площади	панелей	центроплана	И	веса	кессона	от	параметров	
	центроплана									6
2.2	Зависимость	площади	панелей	центроплана	И	веса	кессона	от	параметров	
	пентроплана									9

Список иллюстраций

1.1	Вид сечения центроплана в месте стыка передней кромки крыла и фюзеляжа
	с изображением двигателя
1.2	Концепт американского БПЛА RQ-180
2.1	Зависимость веса кессона от параметров центроплана
2.2	Зависимость веса кессона от параметров центроплана

Литература

- [1] Diaz Jesus. Usaf confirms new secret stealth plane. http://gizmodo.com/5419363/usaf-confirms-new-secret-stealth-plane, 2009.
- [2] Rabbert Klein. Black holes and their relation to hiding eggs. *Theoretical Easter Physics*, 2010. (to appear).