Zusammenfassung Numerik von PDEs

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen. Eine DGL der Form

$$F(x, u, Du, \dots, D^k u) = 0$$

heißt partielle DGL/PDE der Ordnung k > 1, wobei

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$$

eine gegebene Funktion und $u: \Omega \to \mathbb{R}$ gesucht ist.

Def (Klassifikation von PDEs).

• Die PDE heißt linear, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

mit Funktionen $a_{\alpha}, f: \Omega \to \mathbb{R}$ besitzt.

• Die PDE heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u + a_0(x, u, D_u, \dots, D^{k-1} u) = 0$$

besitzt, wobei $a_{\alpha}: \Omega \to \mathbb{R}$ und $a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$ gegeben sind.

• Die PDE heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, Du, \dots, D^{k-1}u) D^{\alpha}u + a_{0}(x, u, D_{u}, \dots, D^{k-1}u) = 0$$

hat, wobei $a_{\alpha}, a_0 : \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k}$ gegeben sind.

 Die PDE heißt nichtlinear, falls die Ableitungen der höchsten Ordnung nicht linear vorkommen.

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen und $F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ eine gegebene Funktion. Eine PDE der Form

$$F(x, u, \partial_{x_1} u, \dots, \partial_{x_n} u, \partial_{x_1} \partial_{x_1} u, \dots, \partial_{x_n} \partial_{x_n} u, \dots, \partial_{x_n} \partial_{x_n} u) = 0$$

heißt PDE zweiter Ordnung.

Notation. $p_i := \partial_{x_i} u, p_{ij} := \partial^2_{x_i x_j} u$

$$M(x) := \begin{pmatrix} \frac{\partial F}{\partial p_{11}} & \cdots & \frac{\partial F}{\partial p_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial p_{n1}} & \cdots & \frac{\partial F}{\partial p_{nn}} \end{pmatrix} = M(x)^{T}.$$

Def (Typeneinteilung für PDEs der 2. Ordnung). Obige PDE zweiter Ordnung heißt

- elliptisch in x, falls die Matrix M(x) positiv o. definit ist.
- parabolisch in x, falls genau ein EW von M(x) gleich null ist und alle anderen dasselbe Vorzeichen haben.
- hyperbolisch in x, falls genau ein EW ein anderes Vorzeichen als die anderen EWe hat.

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt.

- $\mathcal{C}(\overline{\Omega}, \mathbb{R}^m)$ ist der Raum aller auf $\overline{\Omega}$ stetigen Funktionen $u: \Omega \to \mathbb{R}^m$, $\mathcal{C}(\overline{\Omega}) \coloneqq \mathcal{C}(\overline{\Omega}, \mathbb{R})$, $\|u\|_{\mathcal{C}(\overline{\Omega}, \mathbb{R}^m)} = \sup_{x \in \overline{\Omega}} \|u(x)\|$. (Damit wird $(\mathcal{C}(\overline{\Omega}, \mathbb{R}^m), \|-\|_{\mathcal{C}(\overline{\Omega}, \mathbb{R}^m)})$ zu einem Banach-Raum.)
- $C^k(\overline{\Omega}, \mathbb{R}^m)$, $k \in \mathbb{N}$ ist der Raum aller auf Ω k-mal stetig diff'baren Funktionen $u: \Omega \to \mathbb{R}^m$, die zusammen mit ihren Ableitungen bis zur Ordnung k stetig auf $\overline{\Omega}$ fortgesetzt werden können.

$$||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)}$$

• $\mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) = \{u \in \mathcal{C}(\overline{\Omega},\mathbb{R}^m) \mid H_{\alpha}(u,\overline{\Omega}) \coloneqq \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{\|u(x) - u(y)\|}{\|x - y\|^{\alpha}} < \infty \}$ heißt Raum aller gleichmäßig Hölder-stetigen Funktionen zum Exponent $\alpha \in [0,1)$.

Bem. • $\mathcal{C}^{0,1}(\overline{\Omega},\mathbb{R}^m)$ heißt Raum der Lipschitz-stetigen Funktionen.

- Jede Hölder-stetige Funktion ist gleichmäßig stetig
- $\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m) := \{ u \in \mathcal{C}^k(\overline{\Omega},\mathbb{R}^m) \mid \forall |\gamma| = k : D^{\gamma}u \in \mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) \}$

$$||u||_{\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m)} := ||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} + \sum_{|\gamma|=k} H_{\alpha}(D^{\gamma}u,\overline{\Omega})$$

Damit wird $(\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m),\|-\|_{\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m)})$ zu einem Banach-Raum.

Bsp. Betrachte $u(x) = |x|^{\beta}$ auf $(-1,1) = \Omega$. Dann ist

$$\frac{|u(x) - u(0)|}{|x - 0|^{\alpha}} = |X|^{\beta - \alpha}$$

genau dann beschränkt, falls $\beta \geq \alpha.$ In dem Fall ist u Hölder-stetig zum Exponent $\alpha.$

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt. Das Gebiet Ω gehört zur Klasse $\mathcal{C}^{k,\alpha}$, wenn in jedem Punkt $x \in \partial \Omega$ eine Umgebung in $\partial \Omega$ existiert, die sich in einem geeigneten Koordinatensystem als ein Graph einer Funktion aus $\mathcal{C}^{k,\alpha}$ darstellen lässt und Ω liegt lokal immer auf einer Seite von $\partial \Omega$.

Satz (Gauß'scher Integralsatz). Sei $\Omega \subset \mathbb{R}^n$ ein Lipschitz-Gebiet und $u \in \mathcal{C}(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$. Dann gilt

$$\int_{\Omega} \div u \, \mathrm{d}x \int_{\Omega} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \, \mathrm{d}x = \int_{\partial \Omega} \sum_{i=1}^{n} u_{i} \nu_{i} \, \mathrm{d}\rho(x) = \int_{\partial \Omega} u \cdot \nu \, \mathrm{d}\rho(x),$$

wobei $\nu=(\nu_1,\ldots,\nu_n)$ der äußere Normalenvektoran an den R And von Ω ist.

$$\mathcal{L}u = f \text{in } \Omega \text{ (PDE)}$$

 $\mathcal{R}u = gauf \partial\Omega$ (Randbedingung)

wobei
$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2}u}{\partial x_{i}\partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u$$
 (linearer Differentialoperator) mit $a_{ij}, b_{i}, c, f : \Omega \to \mathbb{R}, g : \partial\Omega \to \mathbb{R}, A(x) \coloneqq (a_{ij}(x))_{i,j}$ symmetrisch. Randbedingungen:

- Dirichlet-Randbedingung: u = g auf $\partial \Omega$
- Neumann-Randbedingung: $(A(x)\nabla u) \cdot \nu = g$ auf $\partial \Omega$
- Robin-Randbedingung: $A(x)\nabla u \cdot \nu + \delta u = g$ auf $\partial \Omega$

 $Bem.\ {\rm Man}$ kann auch auf verschiedenen Teilstücken des Randes verschiedene Bedingungen stellen.

Bem. Falls a_{ij} differenzierbar sind, kann $\mathcal L$ in Divergenzform geschrieben werden:

$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(\frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x)u = -\sum_{i,j=1}^{n} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + c(x$$

Voraussetzungen:

• L ist gleichmäßig elliptisch, d.h.

$$\exists \lambda_0 > 0 \forall \xi \in \mathbb{R}^n : \forall x \in \Omega : \xi^T A(x) \xi \ge \lambda_0 \|\xi\|^2$$

Dabei heißt λ_0 Elliptizitätskonstante Bemerkung: $\mathcal{L} = f$ ist elliptisch auf $\Omega \iff A(x) > 0$ (spd) für alle $x \in \Omega$

• $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), g \in \mathcal{C}(\partial \Omega)$

Def. Eine Funktion $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ heißt klassische Lsg vom (RWP) mit Ru := u, wenn die beiden Gleichungen in (RWP) in jedem Punkt von Ω bzw. des Randes $\partial \Omega$ erfüllt sind.

Satz (Maximumsprinzip). Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt. Sei $u \in \mathcal{C}^2(\omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung vom (RWP) und $f \leq 0$ in Ω und $c \equiv 0$. Dann nimmt u sein Maximum auf dem Rand $\partial \Omega$ an, d. h.

$$\sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x) = \sup_{x \in \partial \Omega} g(x)$$