Let $q \in [0,1]^N$ be a fixed vector where $q_i = P(X_i = 1)$. In each time-step t upto a known end point T:

- 1. The learner chooses an $I_t \in {1, ..., N}$ and $J_t \in {0, 1}$.
- 2. Then $X_t \in [0,1]^N$ is sampled from a product of Bernoulli distributions, $X_{t,i} \sim (q_i)$
- 3. The learner observes $\tilde{X}_t \in 0, 1^K$, which is defined by $t_{t,i} = \begin{cases} X_{t,i} & \text{if } i \neq I_t \\ J_t & \text{otherwise.} \end{cases}$ The learner receives reward $Y_t \sim (r(\tilde{X}))$ where $r:0,1^K \to [0,1]$ is unknown and arbitrary.

