

1724
PATENT
Attorney Docket No.: 36290-0311-00-US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: Patent application of :
Ian Fraser Jarvies, *et al.* :
Serial No.: 10/523,497 : Group Art Unit:
Filed: February 4, 2005 : 1724 :
For: APPARATUS AND METHOD FOR : Examiner:
TREATMENT OF CHEMICAL AND BIOLOGICAL : Not Yet Assigned
HAZARDS : Conf. No. 1844

TRANSMITTAL OF PRIORITY DOCUMENT

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Transmitted herewith is a certified copy of Patent Application GB0218314.3 filed August 7, 2002, the name Ian Fraser Jarvies, *et al.*, from the UK Intellectual Property Office.

CERTIFICATE OF MAILING
UNDER 37 C.F.R. 1.8(a)

I hereby certify that this paper, along with any paper referred to as being attached or enclosed, is being deposited with the United States Postal Service on the date indicated below, with sufficient postage, as first class mail, in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

BY *Dan Scellato*
DATE: *November 27, 2007*

It is submitted that the certified copy of the above-stated priority document satisfies all of the requirements of 35 U.S.C. §119, and the right of foreign priority should therefore accorded to the present application.

Please charge any fee required by this paper or credit any amount paid in excess of
Deposit Account No. 50-0573.

Respectfully submitted,

IAN FRASER JARVIES ET AL.

BY:

DANIEL A. MONACO
Registration No. 30,480
Drinker Biddle & Reath LLP
One Logan Square
18th and Cherry Streets
Philadelphia, PA 19103-6996
Phone: (215) 988-3312
Fax: (215) 988-2757
Attorney for Applicant

Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with patent application GB0218314.3 filed on 7 August 2002.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

AR Bushell

Dated 26 October 2007

Patents Form 1/77

THE PATENT OFFICE
A
- 7 AUG 2002
RECEIVED BY FAX

07AUG02 E739274-0 002894
P01/77000,0,00-021831443

Patents Act 1977
(Rule 16)

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

P30191-1/NBW/RPA

2. Patent application number

0218314.3

7 AUG 2002

3. 1 each applicant (*underline all surnames*)Albagia Limited
Adzie House
Strichen
Aberdeenshire AB43 6TBPatents ADP number (*if you know it*)

If the applicant is a corporate body, give the country/state of its incorporation

UK

8441099 (01)

4. Title of the invention

Apparatus and Method for Treatment of Chemical and Biological Hazards

5. Name of your agent (*if you have one*)

Murgitroyd & Company

"Address for service" in the United Kingdom to which all correspondence should be sent
(*including the postcode*)Scotland House
165-169 Scotland Street
Glasgow
G5 8PLPatents ADP number (*if you know it*)

1198015

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*if you know it*) the or each application number

Country

Priority application number
(*if you know it*)Date of filing
(*day / month / year*)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(*day / month / year*)8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (*Answer 'Yes' or 'No'*)

Yes

- a) any applicant named in part 3 is not an inventor; or
- b) there is an inventor who is not named as an applicant; or
- c) any named applicant is a corporate body.

See note (d))

Patents Form 1/77

0043795 07-Aug-02 05:34

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	25
Claim(s)	1
Abstract	1
Drawing(s)	4

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 8/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature *Murgitroyd & Co.* Date 07/08/2002
Murgitroyd & Company

12. Name and daytime telephone number of person to contact in the United Kingdom

MURNANE, Graham

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filed in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

1 **APPARATUS AND METHOD FOR TREATMENT OF CHEMICAL AND**
2 **BIOLOGICAL HAZARDS**

3
4 The present invention relates to an apparatus for the
5 treatment of hazardous materials specifically prions,
6 chemical and biological agents. The invention further
7 relates to a method for using such an apparatus.

8
9 The risks associated with contamination caused by
10 chemical and biological agents of various kinds are
11 well known. Medical equipment and surgical instruments
12 are required to be sterilised to eliminate a growing
13 range of infectious agents including more recently
14 prions implicated in new variant Creutzfeld Jacob
15 Disease (nvCJD). Proteins exhibit huge variation in
16 structure. However, they are formed in similar ways
17 and thus display certain structural elements and
18 characteristics that are common. The primary structure
19 of proteins is determined by the amino acid sequence
20 and pendant side groups. The amino acid chains are
21 then folded to form various secondary structures

1 designated as α -helices or β -sheets. Secondary
2 structure is determined by the folding of the amino
3 acid chains and interactions between the various side
4 groups. Further associations may also form, depending
5 on the protein's environment. For example different
6 hydrophilic and hydrophobic groups or areas within the
7 protein molecule are sensitive to the medium in which
8 the molecule may be suspended. The prion protein plays
9 an essential role in the pathogenesis of a group of
10 sporadic, genetically determined and infectious fatal
11 degenerative diseases, referred to as prion diseases,
12 or transmissible encephalopathys (TSE's), affecting the
13 central nervous system of humans and other mammals.
14 The cellular prion protein is encoded with a single
15 copy gene, highly conserved across mammalian species.
16 In prion diseases this protein undergoes conformational
17 changes involving a shift from α -helix to β -sheet
18 structure. The structures of the proteins, both native
19 and rogue, have been extensively investigated. The one
20 of most interest and immediate impact to humans is the
21 protein associated with nvCJD. What is unusual about
22 the protein that is associated with TSEs is the extreme
23 robustness it exhibits. This is thought to be due its
24 β -sheet structure. Prions are known to survive
25 temperatures in excess of 300 °C. Such proteins thus
26 represent present particular problems in terms of their
27 transmission and destruction. The nvCJD prion is known
28 to have a high affinity for stainless steel and other

1 metals posing significant difficulties for the
2 sterilisation of medical equipment, such as surgical
3 instruments. At the same time, considering hazards
4 unrelated to the medical field, chemical and biological
5 agents, such as those used as weapon materials, pose
6 significant handling and disposal risks.

7
8 For the purposes of the present application, the term
9 "hazardous material" means any organic material that
10 may be inimical to human well being and as such may be
11 classed as a chemical or biological hazard. "Hazardous
12 material" includes, but is not restricted to, viral
13 material, bacterial material, prions, proteins, lipids,
14 chemical and biological agents / material with
15 associated organophosphate bases, organic waste or by-
16 products associated with pharmaceutical processes and
17 blood products, and further includes all of said agents
18 in isolation and when found within, on the surface of
19 or bonded to other material, instruments or equipment.
20 The term "target material" is used throughout in
21 reference to a "hazardous material" which is to be
22 treated according to the method of the invention.

23
24 The term "treatment" is used in its broadest form and
25 encompasses the deactivation and destruction of
26 hazardous material. Relatively minor modifications to
27 the structure or conformation of a particular agent may
28 be sufficient to render it inactive without the need

1 for the agent to be destroyed or decomposed into
2 constituent elements.

3

4 While some methods for treating such agents are known,
5 these typically involve the use of reagents which are
6 themselves difficult to handle and which have
7 associated safety issues. Fluorine and ozone for
8 example may be effective in catalysing such processes,
9 but create significant handling problems and are not
10 suited to use in an open bath apparatus. Furthermore,
11 some prior art processes are required to be carried out
12 at very high temperatures and / or pressures. The
13 apparatus used in such processes is necessarily complex
14 and expensive in light of the associated handling
15 difficulties.

16

17 There remains therefore a need for a method for the
18 deactivation or destruction of prions, chemical and
19 biological agents, which is effective, efficient and
20 broadly applicable. There is a particular need for an
21 apparatus and a treatment method that can be used to
22 sterilise or decontaminate equipment and instruments
23 that may have come into contact with hazardous
24 material. The present invention as set out below
25 provides such an apparatus and a method for its use.

26

27 Accordingly, in a first aspect the present invention
28 provides apparatus for treating hazardous material and
29 for decontaminating items that may have come into

1 contact with such material. In its broadest form such
2 apparatus comprises an operator accessible treatment
3 vessel or chamber and a light source capable of
4 irradiating a catalyst within the treatment vessel or
5 chamber with a predetermined wavelength.

6

7 A first embodiment of the invention provides an
8 apparatus, for batch treatment of hazardous material,
9 comprising a treatment vessel for holding material to
10 be treated; a light source for irradiating the contents
11 of the treatment vessel; circulation or agitation means
12 and progress and / or by-product monitoring means. The
13 treatment vessel may comprise a 'glove box' type lid
14 facilitating manipulation of the bath contents by an
15 operator. An automatic light source cut-off may be
16 incorporated in order to enhance operator safety.

17

18 A second embodiment provides an apparatus comprising a
19 treatment vessel having one or more decontamination
20 trays for holding hazardous material or items to be
21 treated, a light source for irradiating the contents of
22 the treatment vessel, medium distribution means for
23 circulating a carrier medium within and / or through
24 the apparatus and by-product monitoring means.

25

26 A third embodiment provides an apparatus comprising a
27 holding tank for holding a carrier medium; a catalyst
28 hopper for holding a catalyst; a mixing vessel for
29 mixing the carrier medium and the catalyst; one or more

1 treatment chambers each having a housing which contains
2 a plurality of treatment beds and a light source; and a
3 distribution header for controlling the flow of carrier
4 medium and catalyst into the treatment chambers.
5 Preferably, each treatment bed comprises means for
6 inducing turbulent flow within the carrier medium
7 flowing therein.
8
9 A second aspect of the present invention provides a
10 method for the deactivation and / or destruction of
11 hazardous material comprising the step of irradiating
12 the hazardous material in the presence of a catalyst
13 with light having a wavelength in the range of 310 nm
14 to 400 nm. The method of the invention causes
15 sufficient chemical modification of the hazardous
16 material so as to deactivate or destroy it.
17
18 Preferably, the catalyst is TiO_2 in either rutile or
19 anatase form and preferably the method is carried out
20 at ambient temperature (of between about 15 to 35 °C)
21 and pressure (of between about 1 to 5 bar).
22
23 The method may be carried out in any water based
24 carrier medium that is compatible with the target
25 material and catalyst. Preferably the carrier medium
26 is water. Judicious choice of treatment medium is
27 required in order to ensure reliable and effective
28 treatment. In particular when considering the
29 treatment of objects or instruments contaminated with

1 prions for example the physical characteristics of the
2 apparatus and method should facilitate a suitable
3 reaction interface. This involves consideration of the
4 composition and viscosity of the carrier medium and the
5 path-length of the apparatus such that the target
6 material, catalyst and photons from the light source
7 are brought together in a manner suitable to effect
8 treatment. It follows that a medium that is relatively
9 low in viscosity and has appropriate optical
10 characteristics (over the wavelength(s) of the light
11 source) is desirable. In other words, the viscosity
12 must be such as to allow the bringing together of the
13 target material and the catalyst and the configuration
14 of the apparatus and the optical characteristics of the
15 medium must allow sufficient transmission of light to
16 the target / catalyst reaction site.

17
18 Thus, the present invention provides for the treatment
19 hazardous material such as prions linked with human or
20 animal nvCJD in both α and β forms and for treatment of
21 instruments and equipment that may have been
22 contaminated with said material. The method, and
23 apparatus for implementing it, are also applicable to
24 the destruction of chemical agent material, typically
25 organophosphate based systems, as typified by VX or
26 Sarin, but additionally blistering and choking agents
27 as typified by Mustard Gas and Tear Gas. Depending
28 upon the conditions employed, the invention provides

1 for total destruction of some hazardous material by
2 breaking it down into its constituent parts,
3 principally carbon dioxide, nitrogen, water and
4 inorganic salts, or alternatively provides for
5 sufficient modification of target materials so as to
6 render them inactive. The invention can also
7 deactivate or destroy many other bihazards, viral and
8 bacteriological material, and many commonly
9 industrially produced organic materials. Furthermore,
10 the method of the invention can be employed to
11 decontaminate materials, equipment, instruments and the
12 like which may have come into contact with hazardous
13 material.

14

15 The method of the invention represents an efficient
16 means of deactivating and / or destroying of hazardous
17 material under mild conditions on a batch basis.
18 Further advantages of the invention are described
19 below.

20

21 The various aspects of the invention are described in
22 detail below with reference to the accompanying
23 drawings in which:

24

25 Figure 1 shows a first embodiment of an apparatus
26 according to the invention;
27 Figure 2 shows a second embodiment of an apparatus
28 according to the invention;

1 Figure 3 shows a third embodiment of an apparatus
2 according to the invention; and
3 Figures 4 and 5 are more detailed views of the
4 treatment chamber of the embodiment shown in Figure 3.

5
6 In the drawings similar reference numerals have been
7 used to designate components common to each of the
8 alternative embodiments.

9
10 In its broadest form the invention provides a
11 decontamination method for the treatment of hazardous
12 material comprising the step of irradiating the
13 hazardous material in the presence of a catalyst, with
14 light of a suitable wavelength, to deactivate or
15 destroy the target material through photocatalytic
16 oxidative processes. In general terms, the apparatus
17 of the present invention comprises (i) a treatment
18 chamber in which the catalyst and the target material
19 may be irradiated with light of a suitable wavelength
20 (and energy) and (ii) a light source capable of
21 producing the desired wavelength. The light source
22 wavelength and intensity may be adjusted to optimise
23 the process depending upon the nature of the target
24 material and the choice of catalyst. A liquid carrier,
25 preferably a water based medium, is used to introduce
26 hazardous material into the treatment chamber for
27 irradiation.

28

1 Without being bound by theory, the invention is
2 considered to be the result of an interaction of light
3 energy (photons), the catalyst and water elements that
4 forms hydroxyl radicals which cleave sections of, or
5 links in, molecules of the target material ('primary
6 effects'). The action of UV light contributes directly
7 to the breakdown of target materials through photolysis
8 of molecules present. In conjunction with the
9 formation of hydroxyl radicals hydrogen peroxide (H_2O_2)
10 is also produced. This oxidising agent assists and
11 speeds the decontamination process cycle. The primary
12 effects of hydroxyl radicals allow secondary processes
13 (such as attack by H_2O_2) to act upon vulnerable parts of
14 the molecules. The ultimate result is the break down
15 of hazardous material into simple (safe) moieties,
16 formation of inorganic salts within the carrier medium
17 and production of off-gases, such as CO_2 .
18
19 The method of the invention employing highly reactive
20 hydroxyl radicals and H_2O_2 produced through irradiation
21 of a suitable catalyst can be utilised to oxidise prion
22 proteins decomposing them to NO_x , CO_2 , water and various
23 inorganic salts. Attack on a prion protein molecule by
24 a hydroxyl radical causes selective breakage of
25 multiple bond linkages, thus permanently altering the
26 crucial relationship between amino acid units and
27 inducing changes to their proper attachment and
28 alignment to each other (and to associated components
29 such as carbohydrates and possibly lipids). This

1 effect changes the spatial configuration of the prion
2 protein impacting upon its ability to reproduce
3 properly. It is possible that even small alterations
4 in the protein composition and / or configuration are
5 sufficient to impede biological activity of a prion
6 molecule. Any alteration in the structural make-up and
7 configuration reduces the resistance of the prion to
8 further oxidative processes, such as attack by H_2O_2 ,
9 thus increasing the rate of complete oxidation of the
10 molecule.

11

12 Contact between the hydroxyl radical / hydrogen
13 peroxide production interface and the target material
14 on the equipment / instruments or the like, using the
15 water based carrier medium with the catalyst, should be
16 maximised. This may be addressed by ensuring that the
17 catalyst within the water carrier is migrated to the
18 interface using suitable circulation or entraining
19 processes. Minimising the spatial offset in this
20 manner increases the effects of the short-lived
21 radicals produced upon irradiation.

22

23 Increasing the intensity of irradiation and / or
24 increasing the surface area of catalyst irradiated can
25 increase radical production. Additional catalyst may
26 be introduced to speed the process and replace catalyst
27 extracted from the waste stream.

1 The catalyst may be any photosensitive material, which
2 allows, through illumination with light of a suitable
3 wavelength, a reaction with the associated hazardous
4 material to occur. Suitable catalyst materials include
5 for example TiO_2 , TiO_3 , ZnO , CdS , $CdSe$, SnO_2 , WO_3 , Fe_2O_3 ,
6 and Ta_2O_5 . An example of a preferred catalyst is TiO_2 .
7 Irradiation of the catalyst produces active sites (on
8 what is in effect a semiconductor surface) causing
9 water absorbed to the surface to be oxidised. Highly
10 reactive hydroxyl radicals formed in this manner react
11 with (and ultimately decompose) the target material
12 present in the system.

13

14 The catalyst may be used in any form that provides
15 suitable contact with the target material. For
16 example, the catalyst may be dispersed in the carrier
17 medium or it may be coated onto or mixed with the
18 various materials to be decontaminated or destroyed. A
19 catalyst module such as a column or tower coated with
20 catalyst material may be employed. Alternatively, the
21 catalyst may be coated onto internal surfaces of the
22 apparatus, enhancing robustness and self-cleaning
23 capability. Recovery of the catalytic material for
24 reuse, increasing efficiency of the process, may be
25 provided for as described below.

26

27 While light in the range of 310 nm to 400 nm is
28 preferred, the wavelength of light employed may vary
29 depending upon the catalyst used, the medium used and

1 the nature of the target material. The wavelength to
2 be used may be selected based on the absorption
3 characteristics of the target material, thus increasing
4 efficiency. As photo-generated hydroxyl radicals are
5 the primary agents responsible for the decontamination
6 / destruction processes various parameters may be
7 changed to optimise the effect upon any given target
8 material. The selected wavelength may be produced for
9 example using a standard mercury lamp in conjunction
10 with a suitable filter.

11
12 The method of the invention degrades target materials
13 ultimately reducing them to simple reaction products
14 such as CO₂. The evolution of CO₂ or any other reaction
15 product can thus be used to monitor the degree and rate
16 of the process. Suitably off-gas production or target
17 material break down may be monitored using techniques
18 such as Raman spectroscopy, mass spectrometry, *in vitro*
19 tests or other known techniques appropriate to any
20 particular hazardous material.

21
22 Characteristics of the method of the invention are
23 detailed in Table 1, together with comparable data for
24 various prior art methods. The 'efficiency' values
25 indicate the rate and effectiveness of electron
26 transfer during the treatment process.

Catalyst	Efficiency (eV)	Medium	Output toxicity	Temp (°C)	Pressure (bar)	Power
TiO ₂ (present invention)	3.34	Water	Very low	<36	<10	Low
Ag (II)*	1.98	Nitric acid	High	-90	10	High
Ruthenium*	1.8	H ₂ SO ₄	High	-90	10	High
Chlorination*	1.3	Water	High	-40	<10	Low
H ₂ O ₂ **	2.00	Water	Low	<36	<10	Low

1

2 Table 1. *Indicates prior art process; **Hydrogen
 3 peroxide not a catalyst as such - included
 4 for comparison purposes only.

5

6 Prior art methods (other than those detailed in Table
 7 1) include hydrogenation and methods employing molten
 8 metals or supercritical water. These additional
 9 methods all pose significant hazards themselves due to
 10 the operating conditions required in order to be
 11 effective (for example, all three require temperatures
 12 in excess of 600 °C; and hydrogenation and
 13 supercritical water methods operate at pressures of
 14 about, or in excess of, 100 bar). Treatment with
 15 fluorine, possibly the strongest oxidising agent known,
 16 is also effective, but extremely difficult and
 17 dangerous to handle.

1 The method of the invention provides an effective and
2 efficient process for the deactivation and / or
3 destruction of hazardous material, on batch or
4 continuous basis, while overcoming the shortcomings of
5 some prior art methods in terms of operational
6 requirements and characteristics. The present
7 invention facilitates decontamination treatments to be
8 carried out under ambient temperature and pressure
9 conditions through a method and apparatus which has
10 minimal moving parts, is easy to maintain and operate
11 and which is readily scalable.

Class of Compound	Examples
Alkanes	Methane; pentane; heptane; n-dodecane; cyclohexane, paraffin
Haloalkanes	mono-, di-, tri-, and tetrachloromethane; dichloropropane; Pentachloroethane; di and tribromoethane; 1,2-dichloropropane
Aliphatic Alcohols	methanol; ethanol; n- and iso-propanol; butanol; penta-1, 4-diol
Aliphatic Carboxylic Acids	methanoic, ethanoic; trichloroacetic, butyric; oxalic
Alkenes	propene; cyclohexene
Haloalkenes	di-, tri- and tetra-chloroethene; hexafluoropropene
Aromatics	benzene; naphthalene, Tributyl Phosphate
Haloaromatics	chloro and bromobenzene; chlorobenzenes; halophenols
Phenols	phenol; hydroquinone; catecol; resorcinol; cresol, nitrophenol
Aromatic Carboxylic Acids	benzoic; phthalic; salicylic
Polymers	polyethylene; PVC
Surfactants	polyethylene glycol; p-nonyl phenyl ether; sodium dodecyl benzene sulphonate; paraxon; malathion
Herbicides	methyl viologen; atrazine; simazine; bantazon
Pesticides	DDT; parathion; lindane, monocrotophos
Dyes	methylene blue; rhodamine B; methyl orange; fluorescein
Explosives	Trinitrotoluene
Cyanotoxins	Microcystins, Anatoxin-a
Bacteria	E.Coli., Serratia marcescens,
Proteins	

Table 2

1 Table 2 lists compounds successfully destroyed using
2 the present invention. Tributyl phosphate, appearing
3 in the 'Aromatics' class, is a simulant for nerve
4 agents.

5

Material	Concentration (% v/v)	Wavelength (nm)	Time (min)	Efficiency (%)
Methanol	0.1	385 +/- 10	20	99.5
Paraffin	0.1	385 + / - 10	40	99.75
Benzene	0.1	380 + / - 10	60	99.9

6 Table 3.

7

8 Table 3 details a number of test materials and the
9 conditions under which they were treated. In each case
10 treatment was carried out at atmospheric pressure and
11 at room temperature. The treatment efficiency (which
12 in the case of the three test materials corresponds to
13 destruction of the compounds in question) was measured
14 using spectrophotometric techniques.

15

16 The specific embodiments of an apparatus according to
17 the invention described below may each be provided with
18 a circulation system, a catalyst feed mechanism, and a
19 catalyst recovery system. In addition there may be a
20 flushing mechanism to remove excess free catalyst
21 deposits from the cleaned instruments or tools and
22 materials prior to final removal and drying. Larger
23 units having the same basic unit structure may be

1 complemented by material towers coated with the
2 catalyst through which the contaminated material in the
3 water-based matrix is allowed to percolate, thus
4 increasing exposure of the contaminants to the catalyst
5 and UV sources.

6

7 A first embodiment of an apparatus according to the
8 invention is shown schematically in Figure 1. The
9 apparatus comprises a treatment chamber or bath (1), a
10 light source (2), a circulation pump (3), an off-gas
11 monitor / treatment unit (8), a catalyst recovery
12 system (4) and a holding tank (5). A catalyst hopper
13 (6) and a medium storage unit (7) for storing the
14 catalyst and carrier medium prior to use are also
15 provided. This first embodiment has been designed for
16 small quantity throughput of, for example, surgical
17 instruments for decontamination or for destruction of
18 small quantities of target material. Manual
19 manipulation of items in the treatment chamber may be
20 facilitated through use of a glove-box type lid (9).
21 This apparatus is designed for operation by medical
22 staff in for example medical or dental practices.

23

24 Catalyst material and carrier medium are introduced
25 into the holding tank (5), from the catalyst hopper (6)
26 and the medium storage unit (7) respectively, and from
27 there into the treatment chamber (1). The catalyst is
28 typically suspended in the carrier medium and suitable
29 stirring means may be provided in order to ensure that

1 suspension is maintained and that the suspension
2 circulates within the chamber (1). The contaminated
3 equipment or target material (not shown) is placed in
4 to the bath; the lid closed and interlocks (not shown)
5 engaged before the process commences. In order to
6 maintain the catalyst in suspension within the carrier
7 medium during the process, the medium is circulated
8 through the system by using suitable means. This
9 facilitates maximum irradiation of the catalyst
10 simultaneously allowing the catalyst particles to
11 contact the interface with the target material. A
12 circulating pump (3) is used for the removal of
13 catalyst via the catalyst recovery system (4) at the
14 end of the process run. The catalyst recovery system
15 (4), typically takes the form of a cyclone separator.
16 The level of catalyst in the system is monitored via
17 the process controller (not shown) and adjusted to the
18 required level. The carrier medium is circulated
19 within the bath (1) during the
20 decontamination/destruction process and may be replaced
21 or replenished from the medium storage unit (7) or via
22 the catalyst recovery system (4). The process
23 controller (not shown) is used to monitor the overall
24 process, including monitoring off-gas production within
25 the off-gas monitor/treatment system (8). The off-gas
26 monitoring system (8) provides the means by which the
27 primary process status is monitored. The destruction
28 of organic elements produces CO₂, when no further CO₂
29 production is detected the treatment process may be

1 regarded as complete. The residual CO₂ given off is
2 collected by use of an active charcoal filter fitted
3 into the off-gas system (8). Sampling can be
4 facilitated in order to allow for conformity *in vitro*
5 testing, spectroscopic analysis or the like to take
6 place. Once completion of the process has been
7 confirmed the used carrier medium can be disposed of in
8 a recognised manner and the apparatus may be flushed
9 with fresh medium. The flushing process enables all the
10 areas within the apparatus that may have been
11 contaminated by target material to be cleaned, although
12 the system is inherently self-decontaminating. The
13 carrier medium within treatment chamber (1) is then
14 topped-up prior to next usage and the medium in the
15 holding tank (7) replaced. While the method of the
16 invention may generally be carried out at, or close to,
17 atmospheric pressure, materials may be passed through
18 the apparatus under higher pressure particularly during
19 catalyst recovery and / or cleaning stages.

20

21 Access to the treatment chamber (1) for this activity
22 may be provided by a glove box lid arrangement (9).
23 This allows for function (if necessary), dismantling
24 and scrubbing of instruments or equipment to remove
25 stubborn or hidden contaminants. These are
26 subsequently circulated and destroyed in the treatment
27 chamber during the treatment process. Safety
28 interlocks may be employed to minimise any risks to
29 personnel during operation, particularly when

1 introducing target material in to the apparatus.
2 Switching means are provided for deactivating the light
3 source automatically when the bath lid (9) is opened.
4
5 A second embodiment is shown schematically in Figure 2.
6 This apparatus is designed for use in hospitals or
7 larger clinics with high throughput of surgical
8 instruments for decontamination. It is designed for
9 operation by dedicated staff with training in the
10 decontamination of surgical instruments and equipment.
11
12 The apparatus comprises a treatment chamber (1) having
13 decontamination trays (10) an ultraviolet light source
14 (2) and a medium distribution system (11). Catalyst
15 from the catalyst hopper (6) and / or a catalyst
16 recovery system (4) are introduced into a holding tank
17 (5). The contaminated equipment or product is placed
18 in the decontamination trays (10) and the trays (10)
19 are lowered into the treatment chamber (1). The lid is
20 closed and interlocks engaged before the process is
21 allowed to start. In order to maintain the catalyst in
22 suspension within the medium, the medium is circulated
23 by means of a circulation pump (3) and a medium
24 distribution system (11) having a plurality of rotating
25 spray heads (not shown). The distribution system (11)
26 creates a pressure jet effect that develops a catalyst
27 laden mist or aerosol within the treatment chamber (1)
28 which facilitates optimum contact / interaction between
29 the UV light, catalyst and target material on the

1 contaminated instruments. The carrier medium drains to
2 the bottom of the treatment chamber (1) where it is
3 collected in a circulation header tank (12) which in
4 turn feeds the circulation pump (3). At the end of the
5 treatment process any excess catalyst is recovered from
6 the medium via a catalyst recovery system (4). As
7 described above, a process control (not shown) is
8 provided to monitor progress of the treatment by means
9 of off-gas monitor / treatment system (8). Upon
10 completion of the treatment process, the lid is
11 removed, trays raised and the decontaminated
12 instruments removed.
13
14 The medium, including suspended catalyst, may be
15 circulated directly through the treatment chamber (1)
16 from the holding tank (5) during the decontamination
17 process or via the catalyst treatment unit (4) during
18 the catalyst recovery cycle. Carrier medium is sampled
19 for conformity / quality maintenance as described in
20 relation to the previous embodiment. The medium level
21 within the circulation header tank (12) is monitored
22 prior to and during operation and is topped-up as
23 required.
24
25 The third embodiment, shown schematically in Figure 3
26 with details of the treatment chamber arrangement shown
27 in Figures 4 and 5, is designed for either high or low
28 volume destruction of high level bio-hazards such as
29 chemical or biological agent materials, prion

1 contaminated material or the like (and may be adapted
2 to handle solid, liquid or gas phase hazardous
3 materials). It is envisaged that such a system would
4 be operated in a restricted area by dedicated and
5 suitably trained staff.

6
7 The apparatus comprises a series treatment chambers (1)
8 the number and configuration of which may be adapted
9 depending upon the nature and quantity of material to
10 be treated. The target material in a suitable pre-
11 prepared state is introduced from a target material
12 hopper (13) under control of metering means (14) into a
13 mixing vessel (15). The carrier medium is fed in to
14 the mixing vessel (15) from the circulation header tank
15 (12) by the circulation pump (3) and catalyst is added
16 from a catalyst hopper (6). The pre-treatment
17 preparation of the target material may include but need
18 not be limited to the breaking down of solids into
19 smaller particles, the suspension of solid particles in
20 a liquid or the absorption of a gas into a liquid. The
21 target material, medium and catalyst mixture cascades
22 into distribution header (16) from which it enters the
23 treatment chambers (1). This method of controlling the
24 flow of the mixture removes any potential pressure
25 other than the hydrostatic head determined by the
26 relationship between the mixing vessel (15) and the
27 distribution header (16). Each treatment chamber (1)
28 comprises a housing that contains a series of tray-like
29 treatment beds and a light source (2). The treatments

1 beds are designed to maximise the time which the
2 carrier medium, catalyst and target material mixture is
3 exposed to the UV light, as well as promoting the
4 formation of turbulent flow. Typically each treatment
5 bed comprises of a series of channels (17) running back
6 and forth across the bed, each channel (17) containing
7 a textured surface (18) designed to induce turbulent
8 flow within the mixture. Control of the flow in this
9 manner prevents the catalyst and target material from
10 being shielded (as could occur in a laminar flow
11 situation) and maximises irradiation effectiveness.
12 The treatment beds are configured with a light source
13 (2), optionally shrouded with a mirror, directly
14 overhead. Each treatment bed further comprises a
15 transparent top plate, typically made from quartz or
16 some other material having suitable light transmission
17 characteristics. The treatment mixture is circulated
18 around the system until the process has been completed
19 or for a suitable duration as dictated by the operator.
20 Any suspended solids, catalyst and other waste products
21 are removed via a catalyst / waste treatment system (4)
22 for storage prior to final disposal.
23
24 Specific modifications may be introduced into the
25 carrier medium composition and flow control in order to
26 create the necessary environment for the target
27 material to be suspended within the medium. For
28 example, rotary, ultrasonic or other stirring /

1 agitation means make be incorporated into the
2 apparatus.

3

4 The process is controlled using a suitable process
5 monitoring and control system. This includes
6 monitoring the off-gas status by means of an off-gas
7 monitoring / treatment system (8). The off-gas
8 monitoring / treatment system (8) also provides a means
9 for the monitoring and collection / treatment of
10 gaseous reaction products such CO₂, NO_x, SO_x and the
11 like. In order to treat these off-gases specific
12 equipment such as scrubbers and absorbers may be
13 provided. As before suitable analytical techniques can
14 be employed to monitor the course of the treatment and
15 the content of used waste products and used carrier
16 medium.

17

18 The invention is not limited to the embodiments herein
19 described which can be varied in construction and
20 detail.

21

1 METHOD FOR THE DEACTIVATION OF CHEMICAL AND BIOLOGICAL
2 HAZARDS.

3
4 The present invention relates to a method for the
5 deactivation and / or destruction of hazardous
6 materials such as chemical or biological agents. The
7 invention further relates to apparatus for treating
8 hazardous material and for decontaminating items that
9 may have come into contact with it, the apparatus
10 comprising a treatment vessel or chamber and a light
11 source capable of irradiating a catalyst within the
12 treatment vessel or chamber with a predetermined
13 wavelength of light.

Figure 1

2 of 4

Figure 2

3 of 4

Figure 3

4 of 4

Figure 4

(1)

Figure 5