決定木アルゴリズム

事例の集計

川田恵介

丸暗記の問題

- データへの適合は、データ分析の大部分で活用されている戦略だが、注意も必要
- 非常に複雑なモデルを作ると、データへの適合度は非常に高くなる
- ⇔ 予測性能 が改善するとは限らない
 - データ固有の特徴を強く反映してしまう
 - = 事例集計が十分にできない

事例集計

- "すべての" 推定方法で、事例の集計を行う
- 集計を行わない方法も、"日常"的に使われている
 - 例: 丸暗記法

丸暗記法

- 過去の全く同じ事例を、予測値とする
 - 全く同じ事例がなければ、最も近い事例を予測値とする
 - 巨大な決定木を推定しても、通常 OK
- 日々活用されている
 - 判例, 歴史, スポーツ選手の将来
- わかりやすいが、、、、多くの応用例で劣悪な予測性能
 - データから観察できない個人差がある場合、深刻なトラブル

例: 賃金予測

A tibble: 4 x 2

賃金 年齢

<dbl> <dbl>

- 1 100 25
- 2 20 28
- 3 40 20
- 4 15 40
 - 21歳の賃金予測は?

例: 賃金予測

A tibble: 4 x 6

賃金 年齢 丸暗記法 平均法 `データへの適合度: 丸暗記 ` データへの適合度: 平均~1

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
3164	0	43.8	100	25	100	1
564	0	43.8	20	28	20	2
14	0	43.8	40	20	40	3
827	0	43.8	15	40	15	4

i abbreviated name: 1: `データへの適合度: 平均法記 `

丸暗記法 VS 平均

- 丸暗記法の方が一般に
 - 複雑な予測モデル
 - データへの適合度が高い
- 現実はおそらく複雑 X の値が異なれば、Yの値も異なる
 - 丸暗記の方がいいのでは?

論点先取り

- 丸暗記のようなデータに適合したモデルは、観察できる要因 X の情報を有効活用できる**可能性**を高める
- 事例集計が不十分に終わり、観察できない要因の偏りが弊害をもたらしうる

- 収集した事例によっては、質の極めて悪い予測モデルが生成される
- 観察できない要素について議論する必要があり、抽象的な枠組みが必要
 - 母集団とサンプリング

理想の予測モデル

- 完璧な予測は不可能
- 理想の予測モデルは母平均値関数

母集団とサンプリング

- 分析チームは、事例収集から始める
- 直接観察できない巨大な集団 (母集団) から、事例 (データ) が収集 (サンプリング) される
 - 大学前ローソンの潜在的な顧客 (母集団) から、ある日の利用者 (サンプル) の購入履歴
- 同じ母集団から新たにランダム抽出する事例を予測するモデル g(X) を構築
- ポイント: 母集団を調べたいが、"何があっても"不可能!!!
 - 不完全な推測(推定)しかできない

予測モデル問題

- 新たな事例について、二乗誤差 $(Y-g(X))^2$ を最小化する
 - 特定の事例についてのみ、予測が上手くいく可能性
- 母集団について、平均的に上手くいくかどうかで、性能を評価
- 母集団における平均二乗誤差

$$:= E_P[(Y - g(X))^2]$$

予測モデルの評価

- 評価用の新しい事例は、通常存在しない
- よく似た状況を作り出せる
 - データをランダムに2分割する

- 一方のデータでモデルを作り、もう一方で平均二乗誤差を計算する

予測モデルのポイント

- ある X が分かれば、Y の予測値を自動的に計算してくれる
- X が同じであれば、予測値は必ず同じ
 - 母集団において X 以外の要素も Y に影響を与えるのであれば、完璧な予測は不可能

理想の予測モデル

- 最もマシな予測は?
- 二乗誤差であれば、"大外れ"を減らす必要がある
 - 最善の予測値は、 $g(x) = E_P[Y|X]$
 - := ある <math>X 集団における平均値
- X の持つ情報を完全に活用できているモデル

予測モデルのポイント

$$Y-g(X) = \underbrace{Y-E_P[Y|X]}_{$$
削減不可能} + \underbrace{E_P[Y|X]-g(X)}_{削減可能

- 個人差はどうしようもない
- どのように母平均を推定するか?
 - 事例集計を活用

推定問題

例: 顧客の就学状態予測

- Y = 大学生/その他, X = 休日/平日
- 母集団: 潜在顧客
 - 曜日だけでコンビニにいくかどうかは決まっていない
 - 休日であれば 25%, 金曜日以外の平日であれば 60% が大学生
 - 週全体では、50% が大学生

- 実際には未知
- データ: 一部をランダムに抽出
 - 偶然偏る

例: 4事例を抽出

- A さんがランダムに 4 名を抽出
- # A tibble: 4 x 2

Holiday University

<chr> <chr>

1 Not No

2 Not Yes

3 Not Yes

4 Yes Yes

- B さんがランダムに 4 名を抽出
- # A tibble: 4 x 2

Holiday University

<chr> <chr>

1 Not Yes

2 Not Yes

3 Not No

4 Not Yes

• データの性質 (平均値など) が大きく異なる

平均値: N = 4

平均値: N = 30

くじ引き

- どのようなデータを用いることができるのか? = 確率的(くじ引き)で決定
 - データから生成されるモデルも確率的に決定
- 二乗誤差を評価指標として用いるのであれば、大はずしを減らしたい
 - 事例集計が有効

事例の集計

- ランダムに抽出されたデータであれば、事例数が増えれば増えるほど、サンプル平均値は母平均に近づいていく
 - **平均値**に観察されない要因が与える影響を緩和できる!!!
 - 運悪く的外れなモデルを用いてしまうリスクの緩和

平均値: N = 1000

予測モデルの推定:

2つの選択肢

- 全事例の単純平均
- 平日/休日ごとの平均 (丸暗記 / 1回のみ分割を行う決定木)

トレードオフ

- 単純平均は
 - 兵員多くの事例を集約でき、観察されない要素の偏りを緩和できる
 - 観察できる情報 (曜日) を未活用

サブグループ平均値: N = 30

サンプルサイズの恩恵

- 一般に、サンプルサイズが大きければ、サンプル分割の弊害は減少する
 - データ分析版: 限界生産性低減
- より細かくサンプル分割 (複雑なモデル) しても、観察できない要因の偏りを軽減できる

サンプル増加: N = 1000

まとめ: データへの適合 VS 事例集計

- 一般化できる含意: X の持つ情報を完全活用するためには、
 - 事例集計により、データが偶然もった観察できない要因の偏りを緩和したい
- 複雑なモデル (X off報をより活用したモデル) は、事例が少ないと
 - データへ適合が改善するが、データが偶然もった特徴も反映してしまう
 - 過剰適合/過学習