Now that the simulation is behaving as anticipated, I will explore the question of initial values. For this study, I consider the following DGP:

$$y_{it} = \alpha_i \beta_t + \eta_i \gamma_t e_{it} \tag{3}$$

Where $\eta_i, \gamma_t \sim \chi_1^2$ to satisfy $\eta_i \gamma_t > 0$. I fit a QFM using the same procedure as before, but with a change in the initialization step. Instead of beginning with PCA to guess the initial values, I add noise from a $\mathcal{N}(0,1)$ to the initial PCA estimate. This is then rotated according to the errors-in-variables rotation I have used previously. The model is fit from these new initial values, and some interesting patterns appear. Consider the examples in tables 1, 2, and 3.

Table 1: QFM Fits With Different Noise - Bad Second Factor Fit

Noise Seed	First Factor Fit	Second Factor Fit	Iterations	Objective Function Value
No Noise	0.9921	0.1600	14	3909.9828
134935	0.9912	0.7791	33	3595.2488
363439	0.9924	0.7245	18	3645.0155
880628	0.9927	0.1601	24	4005.6856
252318	0.9954	0.7844	84	3677.4222
344982	0.9965	0.7391	16	3591.6591
702677	0.9920	0.8051	54	3555.9745
116075	0.9910	0.1600	19	3915.6519
100298	0.9934	0.7755	25	3667.7547
178700	0.9943	0.1599	28	3940.8150
310893	0.9903	0.7956	28	3564.4116
True	0.9950	0.8008	47	3525.9113

Notes: This table reports the R^2 value for a regression each of the true factors on the estimated factors, as well as the value of the objective function evaluated at the estimate. Each observation is a different seed for random noise added to initial values generated by PCA.

In table 1, the fit based on the PCA starting values is quite poor for the second factor. Using different starting values, I am able to get a better fit for the second factor which is mirrored with a large decrease in the value of the objective function. Adding noise can also make the fit worse in terms of objective function value.

In table 2, the fit based on the PCA starting values is quite poor for both factors. Using different starting values, the fit is improved dramatically with the first factor being fit well and the second factor being fit decently.

In table 3, the fit based on the PCA starting values is very good. However, different starting values can produce a lover value of the objective function.

Table 2: QFM Fits With Different Noise - Poor PCA Fit

Noise Seed	First Factor Fit	Second Factor Fit	Iterations	Objective Function Value
No Noise	0.0119	0.0639	3	4548.2392
32851	0.9983	0.4868	91	2921.2252
305155	0.9985	0.1999	28	3004.2602
530302	0.9979	0.0911	26	3056.5396
53515	0.9965	0.4573	21	2967.1183
965115	0.9975	0.0176	100	3185.0630
201177	0.0703	0.3880	95	4157.0256
380261	0.9975	0.0422	11	3015.5472
406115	0.9982	0.0828	100	3128.7703
445781	0.9974	0.3452	15	2956.7660
912360	0.9981	0.3322	72	2969.2764
True	0.9971	0.5003	7	2901.3943

Notes: This table reports the R^2 value for a regression each of the true factors on the estimated factors, as well as the value of the objective function evaluated at the estimate. Each observation is a different seed for random noise added to initial values generated by PCA.

Table 3: QFM Fits With Different Noise - Good PCA Fit

Noise Seed	First Factor Fit	Second Factor Fit	Iterations	Objective Function Value
No Noise	0.9969	0.8077	68	3119.1333
688017	0.9968	0.8088	48	3112.0576
7268	0.9971	0.7998	20	3155.9562
934064	0.9969	0.8006	25	3164.4899
343860	0.9974	0.7982	18	3141.5936
798375	0.9965	0.7849	19	3050.5442
631366	0.9967	0.7847	71	3257.3209
124501	0.9957	0.7886	38	3184.5473
163844	0.9959	0.7902	51	3116.7062
673964	0.9975	0.7865	45	3170.8194
272234	0.9973	0.7840	19	3144.6454
True	0.9992	0.8096	10	2989.2456

Notes: This table reports the R^2 value for a regression each of the true factors on the estimated factors, as well as the value of the objective function evaluated at the estimate. Each observation is a different seed for random noise added to initial values generated by PCA.

Next, I consider starting estimation with the true factor levels and loadings. In each of the 3 examples above, using the true levels and loadings improves the fit and lowers the objective function value. I think this can be thought of as the ideal scenario, at least for the angle from which I am approaching the problem. The trouble we have with PCA is that it is based on the mean, and so is uninformative of the true value of the second factor because at the median, the second factor doesn't contribute. We want the initial value to be close to the true value so that we are close to the global optimum in the objective function. This is then a benchmark against which methods can be compared.