

Practice of AI

C2: Machine learning & Data analyze

Jim Xie

Outline

- 1. Goal
- 2. ML workflow introduction
- 3. Basic math knowledge introduction
- 4. Time series forecasting demo
- 5. Brief summary

Goal

Getting start for data analyze with ML

Demo #1

Is ML Universal?

Limitations

> NFL

> Smooth

➤ Boundary

Category by sample

Supervised learning

Unsupervised learning

Reinforcement learning

Q: 样本不平衡怎么办?

Purpose

Class

Cat or Dog?

Regression

How much?

Workflow

EDA & preprocess

EDA #1

EDA #2

Insight from graph

- Data distribution
- Normalization

Data distribution

Normalization

• Why?

• How?

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$x' = \frac{x - \mu}{\sigma}$$

FE

Feature Engine

Why

2=

01

减少噪音

提高模型性能

02

减少维数

降低运算量

03

降低复杂度

增加可解释性

• 特征是否发散? • 特征和目标是否相关? Filter Methods Correlation Embed Methods • GA Wrap methods • CNN

16

Train and Evaluation

Model and Evaluation

Models

- Linear
- Neural network
- DT/SVM/Bayes
- XNN/LSTM/GRU
- Boost/XGBoost

•

Evaluate # Regression

$$RMSE(X, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2}$$

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

$$MAE(X,h) = \frac{1}{m} \sum_{i=1}^{m} |h(x_i) - y_i|$$

$$SD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - avg(x))^2}$$

Evaluate # Class

	Predicted (Positive)	Predicted (Negative)
Actual (Positive)	TP	FN
Actual (Negative)	FP	TN

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Sensitivity = Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

ROC

Underfitting/Overfitting

Q: How to do?

Backlog

Backlog

