EE 112 (MBP): HW 4 (February 13, 2017)

- 1. Shown in the figure is a simple voltage regulator which is meant to maintain a constant voltage at the output, irrespective of the load resistance value (as long as it falls in a certain range). The Zener diode has $V_Z = 5.6 \,\mathrm{V}$.
 - (a) For $R_L = 150 \Omega$, what is the current through the Zener diode?
 - (b) What is the minimum value of R_L for which the circuit will work as desired?

2. For the circuit shown in the figure, plot i versus V_i for $-5 \,\mathrm{V} < V_i < 5 \,\mathrm{V}$. $(V_{\mathrm{on}} = 0.7 \,\mathrm{V})$ for the diode.)

- 3. Assume that the diodes in the following circuit are ideal (with $V_{\rm on}=0\,{\rm V}$).
 - (a) What is the condition on V_i for D_2 to be on and D_1 to be off?
 - (b) What is the condition on V_i for D_1 to be on and D_2 to be off?
 - (c) Plot i versus V_i for $0 \text{ V} < V_i < 25 \text{ V}$.
 - (d) Repeat for $V_{\rm on} = 0.7 \,\rm V.$

(Source: Millman)

4. The V_o versus V_i relationship for a circuit is given in the figure. The circuit has one diode with $V_{\rm on} = 0.7 \, \text{V}$, and two resistors R_1 and R_2 . One of the resistances is $1 \, \text{k}\Omega$. Draw the circuit and find the other resistance.

