

Investigating Mass Transfer in Symbiotic Stars

Thomas Gaudin

New Mexico Tech

What are Symbiotic Stars?

Image courtesy of NASA, ESA, and D. Berry (STSci)

- 3 components:
 - Cool Giant
 - Hot Compact Object
 - Dense Circumstellar Medium
- Widest type of interacting binary
 - Periods of ~100s of days
 - Orbital Separation of ~1 AU

What are Symbiotic Stars?

Image courtesy of NASA, ESA, and D. Berry (STSci)

- Connected to important late-stage stellar objects:
 - Planetary nebulae
 - Soft/hard X-ray sources
 - Cataclysmic variable stars
- Possible progenitors of Type Ia supernovae

Mass Transfer in Symbiotic Stars

- What mechanism drives mass transfer?
 - Is the giant filling its Roche lobe?
 - If not, does the giant's stellar wind play a large role?
- Knowing the mechanism of mass transfer will help inform models for evolution of a system

Mass Transfer in Symbiotic Stars

Image reprinted from Blind, N., Boffin, H. M. J., Berger, J.-P., Le Bouquin, J.-B., Mérand, A., Lazareff, B., & Zins, G. (2011). An incisive look at the symbiotic star SS Leporis-Milli-arcsecond imaging with PIONIER/VLTI. *Astronomy & Astrophysics*, *536*, A55.

- Investigated by several authors using photometry
 - Analysis of light curve variations informs geometry
- Investigated using Optical Interferometry
 - Blind et al. (2011) observed SS Lep
 - Boffin et al. (2014) observed 6 more systems
- So far results have been inconclusive

How do we best investigate mass transfer?

- Need to resolve the surface of the giants to check for asymmetry
- Optical interferometry is needed to achieve high enough resolution
- CHARA Array: Resolves features as small as 0.5 mas.
 - Can resolve the surface of most giants within ~1 kpc

Methodology

Target Distance (po	
V1724 Aql	250.4 ± 4.4
EG And	607.8 ± 12.4
BD Cam	234.3 ± 14.2
SU Lyn	728.6 ± 33.4

- Observed 4 nearby symbiotic stars using the CHARA Array
 - Observation dates: 9/20/21 9/22/21 UTC
- Used MIRC-X beam combiner with all 6 telescopes
- Analyzed each target using a combination of model fitting and image reconstruction

Model Fitting

- Used OITOOLS to fit 3 different geometric models to observed visibility data
- Best-fitting model provides information about the shape of the stellar disk
- Three models:
 - Uniform Disk
 - Elongated Disk
 - Hybrid Uniform/Elongated Disk

Imaging

- Reconstructed images of each target using SQUEEZE
- Reconstructions completed both with and without a prior of a uniform disk
 - Regularizers:
 - Total Variation, LO, and Laplacian
- Simulated observations of reconstructed images and fit the data to observations using OITOOLS

Results – Model Fitting

		V1472 Aql		
Model	Diameter (mas)	Eccentricity	Position Angle (degrees)	χ^2
uniform disk	2.37	-	-	11.7
elongated disk	2.41	0.98	164.3	10.7
hybrid model	2.39	0.97	155	5.53
	10	EG And	12/2 N	700
Model	Diameter (mas)	Eccentricity	Position Angle (degrees)	χ^2
uniform disk	1.7	-	-	2.67
elongated disk	1.71	0.99	92.5	2.54
hybrid model	1.73	0.98	-74.97	2.37
		BD Cam		
Model	Diameter (mas)	Eccentricity	Position Angle (degrees)	χ^2
uniform disk	5.35	-		33.96
elongated disk	5.6	0.94	-14.8	24.1
hybrid model	5.53	0.96	177.5	14.04
		SU Lyn	19	
Model	Diameter (mas)	Eccentricity	Position Angle (degrees)	χ^2
uniform disk	3.21	-	-	30.1
elongated disk	3.24	0.98	97.9	29.5
hybrid model	3.3	0.95	122.97	14.59

Results - Imaging

SU Lyn V1472 AqI BD Cam EG And

Conclusions

- Little evidence of any target filling its Roche lobe at this epoch
- Unlikely that Roche lobe overflow is the dominant mass transfer mechanism
- Role of the giant's wind in mass transfer is inconclusive
- Motivates a need for future study

Future Work

- Only seeing each star at one point in the orbit
 - Long term monitoring needed to confirm that the Roche lobe teardrop is not visible at other geometric configurations
- Sample size is only 4 targets
 - Need to observe more targets to draw more general conclusions

Questions?