Marco Casu

Faculty of Information Engineering, Computer Science and Statistics Department of Computer, Control and Management Engineering Master's degree in Artificial Intelligence and Robotics This document summarizes and presents the topics for the Artificial intelligence course for the Master's degree in Artificial Intelligence and Robotics at Sapienza University of Rome. The document is free for any use. If the reader notices any typos, they are kindly requested to report them to the author.

CONTENTS

1	\mathbf{Intr}	roduzione	3
	1.1	Basic Definitions	3
		1.1.1 Types of Agents	3
		1.1.2 The Environment	
2	Sea	arch Problems	8
	2.1	Classical Search	8
		2.1.1 Vacuum Cleaner Example	10
	2.2	Problem Descriptions	11
		2.2.1 Missionaries and Cannibals Example	12
		2.2.2 Tree and Graph Search	12
	2.3	Blind Search	
		2.3.1 Breadth-First Search	

CHAPTER

1

INTRODUZIONE

1.1 Basic Definitions

In the context of the artificial intelligence, an agent is an entity that can

- Perceive the environment through sensors (percepts)
- Act upon the environment through actuators (actions).

We say that an agent is **rational** if he selects the action that maximize a given *performance measure*, informally, he attempts to do "the right thing". The best case is hypothetical and often unattainable, because the agent usually can't perform all the actions needed, and can't perceive all the information about the environment.

An agent has a performance measure M and a set A of all possible actions, given percept a sequence A and knowledge K (data), he has to select the next action $a \in A$, is a map

$$M \times P \times K \longrightarrow A.$$
 (1.1)

An action a is optimal if it maximize the expected value of M, given the sequence P and the knowledge K. An agent is rational if he always chooses the optimal action. More specifically, an agent consists in two components:

- an architecture which provides an interface to the environment
- a program executed on that architecture.

There are some limitation that we aren't considering, such as the fact that determining the optimal choice could take too much time or memory on the architecture.

1.1.1 Types of Agents

There are different kinds of agents, a **Table Driven Agent** is the simplest form of agent architecture. It's essentially a look-up table that maps every possible sequence of percepts (what the agent has sensed so far) to a corresponding action the agent should take. His behavior can be resumed in the algorithm 1.

A Reflex Agent consists in three components:

• sensors to get information from the environment

Algorithm 1 Table Driven Agent

Require: percepts

persistent: *percepts*, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append *percept* to the end of *percepts*

 $action \leftarrow LookUp(percepts, table)$

return action

Figure 1.1: Reflex agent diagram

- a decision making process, in form of a *condition-action rules*, typically looks like IF (condition) THEN (action).
- actuators, the outputs that allow the agent to affect or change the environment.

A Model-Based Reflex Agent is an enhanced version of the previous one, the key enhancement here is the inclusion of an *Internal State* and a *Model of the World* to make up for the agent's limited view of the environment. The internal state cannot simply be the last thing the agent saw; it needs to be updated to reflect reality. This is done using a Model of the World, which contains two key pieces of knowledge:

- How the world evolves independently of the agent, his accounts for changes in the environment that occur regardless of the agent's actions (e.g., a clock ticking, an external event).
- How the agent's own actions affect the world, this is the effect of the agent's previous action (e.g., if the agent drove forward, its position changed).

Figure 1.2: Model Based Reflex agent diagram

If a model based reflex agent consider the future prospective, is a **Goal Based Agent**, as shown in figure 1.3.

A **Utility Based Agent** is equipped with a *utility function* that maps a state to a number which represents how desirable the state is. Agent's utility function is an internalization of the performance function.

Figure 1.3: Goal Based agent diagram

Figure 1.4: Utility Based agent diagram

A **Learning Agent** is an architecture designed to improve its efficiency over time by separating four functions:

- the performance element selects actions
- the critic provides feedback on those actions against a standard
- the learning element uses this feedback to update the agent's internal knowledge
- the problem generator suggests exploratory actions to gain new knowledge. This structure enables the agent to continuously adapt and improve its decision-making.

Figure 1.5: Learning agent diagram

An agent can be classified in one of the following groups:

- a domain specific agent is a solver specific to a particular problem (such as playing chess), is usually more efficient.
- a **general agent** is a solver for general problems, such as learning the rule of any board game, is usually more intelligent but less efficient.

1.1.2 The Environment

An environment can be classified in terms of different attributes:

- An environment can be **fully observable** if all the relevant information are accessible to the sensors, otherwise is **partially observable**.
- If there are no uncertainty, the environment is **deterministic**. An environment is **stochastic** if uncertainty is quantified by using probabilities, otherwise is **non deterministic** if uncertainty is managed as actions with multiple outcomes.
- An environment is **episodic** if the correctness of an action can be evaluated instantly, otherwise if are evaluated in the future developments, is **sequential**.
- An environment can be **static** or **dynamic**, if itdoes not change, but the agent's performance score changes, the environment is called **semi-dynamic**.
- An environment can be perceived as discrete or continuous.
- In a single environment there may be multiple agent, that can be **competitive** or **cooperative**.

Many sub-areas of AI can be classified by:

- Domain-specific vs. general.
- The environment.
- Particular agent architectures sometimes also play a role, especially in Robotics.

It follows a classification of some areas in terms of the attributes we discussed:

- Classical Search, the environment is
 - fully observable
 - deterministic
 - static
 - sequential
 - discrete
 - single-agent

and the approach is domain specific.

- Planning, the environment is
 - fully observable
 - deterministic
 - static
 - sequential
 - discrete
 - single-agent

and the approach is general.

- Adversarial Search, the environment is
 - fully observable
 - deterministic
 - static
 - sequential
 - discrete
 - multi-agent

and the approach is domain specific.

- General Game Playing, the environment is
 - fully observable
 - deterministic
 - static
 - sequential
 - discrete
 - multi-agent

and the approach is general.

- Constraint Satisfaction & Reasoning, the environment is
 - fully observable
 - deterministic
 - static
 - episodic
 - discrete
 - single-agent

and the approach is general.

- \bullet $\ensuremath{\mathbf{Probabilistic}}$ $\ensuremath{\mathbf{Reasoning}},$ the environment is
 - partially observable
 - stochastic
 - static
 - episodic
 - discrete
 - single-agent

and the approach is general.

CHAPTER

2

SEARCH PROBLEMS

2.1 Classical Search

Let's consider two basic example of classical search problems, the first one is the following:

Starting from Zurigo, we would like to find a route to Zagabria. We have an initial state (Zurigo), and we have to apply actions (drive) to reach the goal state (Zagabria). Another example is the following, we want to solve the tiles-puzzle game, shown in figure 2.1, to reach the left state, starting from the right one, the actions to perform is the move of the tiles. A performance measure could be to minimize the summed-up action costs.

Figure 2.1: The tile game

In the classical search context, we restrict the agent's environment to a very simple setting, with a finite number of states and actions, a single agent, a fully observable stati environment that doesn't evolve, given that assumption, the classical search problems are the simplest one, despite that, are very important problems in practice.

Every problem specifies a state space.

Definition 1 A State Space is a 6-tuple $\Theta = (S, A, c, T, I, S^G)$ where:

- S is a finite set of the states.
- A is a finite set of actions.
- $c: A \to \mathbb{R}^+$ is the cost function.
- $T \subseteq S \times A \times S$ is the transition relation, that describes how an action on a given state make the agent evolve to the next state. We assume that the problem is deterministic, so for all $s \in S$, $a \in A$, if $(s, a, s') \in T$ and $(s, a, s'') \in T$ then s' = s''.
- $I \in S$ is the initial state
- $S^G \subseteq S$ is the set of the goal states, where we want to end.

A transition (s, a, s') can be denoted $s \xrightarrow{a} s'$, we say that $s \to s'$ if $\exists a$ such that $(s, a, s') \in T$. We say that Θ has *unit costs* if $\forall a \in A$, c(a) = 1. A state space can be illustrated as a directed labeled graph.

Definition 2 Let $\Theta = (S, A, c, T, I, S^G)$ to be a state space, we say that

- s' is a **successor** of s if $s \rightarrow s'$
- s' is a **predecessor** of s if $s' \to sT$
- we say that s' is **reachable from** s if

$$\exists (a_1 \dots, a_n) \subseteq A \tag{2.1}$$

$$\exists (s_2 \dots, s_{n-1}) \subseteq S \tag{2.2}$$

$$(s, a_1, s_2) \in T \tag{2.3}$$

$$(s_2, a_2, s_3) \in T \tag{2.4}$$

$$\vdots (2.5)$$

$$(s_{n-1}, a_n, s') \in T \tag{2.6}$$

we can write the sequence as follows

$$s \xrightarrow{a_1} s_2, \dots, s_{n-1} \xrightarrow{a_n} s'. \tag{2.7}$$

- We say that s is **reachable** (without reference state) if is reachable from I.
- s is solvable if there exists $s' \in S^G$ such that s' is reachable from s, otherwise s is dead end.

Definition 3 Let $\Theta = (S, A, c, T, I, S^G)$ to be a state space, and let $s \in S$. A **solution** for s is a path from s to some goal state $s' \in S^G$. The solution is **optimal** if it's cost is minimal, let H to be the set of all possible solution (sequence of states) for s

$$H = \{ paths \ from \ s \ to \ s' \in S^G \} = \{ (s_{i0}, s_{i1}, s_{i1}, \dots s_{in}) : s_{in} \in S^G, \ s_{i0} = s \}$$
 (2.8)

where n^i is the length of the i-th solution. The optimal solution is

$$\arg \min_{(s,s_{i1},\dots s_{in})\in H} \sum_{j=0}^{n^i} c(s_{ij}). \tag{2.9}$$

A solution for I is called **solution for** Θ , if such that solution exists, Θ is **solvable**.

2.1.1 Vacuum Cleaner Example

Let's consider a vacuum cleaner, that is the agent of our problem, the goal is to clean a room, the vacuum cleaner can be in two possible points (left and right), this points can be clean or dirty. The agent can perform the following actions

- move right
- · move left
- suck the dust on the floor

there are 8 possible states

- left point clean, right point clean, vacuum cleaner is on right point
- left point dirty, right point clean, vacuum cleaner is on right point
- left point clean, right point dirty, vacuum cleaner is on right point
- left point dirty, right point dirty, vacuum cleaner is on right point
- left point clean, right point clean, vacuum cleaner is on left point
- left point dirty, right point clean, vacuum cleaner is on left point
- left point clean, right point dirty, vacuum cleaner is on left point
- left point dirty, right point dirty, vacuum cleaner is on left point

the initial state is the one with the left point dirty, right point dirty, and the vacuum cleaner on the left point, we denote the actions R (move right), L (move left), S suck. The state space of the problem is show in figure 2.2.

Figure 2.2: The vacuum cleaner state space

Some example of set of actions that can lead from the initial state to a goal state are

$$\begin{split} S &\longrightarrow R \longrightarrow S \\ S &\longrightarrow R \longrightarrow R \longrightarrow S \\ R &\longrightarrow S \longrightarrow L \longrightarrow S \end{split}$$

Typically, the state space is exponentially large in the size of its specification, search problems are typically computationally hard and/or NP-complete. We say that we can give an *explicit description* of a search problem if we can define his state space as a graph.

2.2 Problem Descriptions

Definition 4 We have a **black box description** of the problem if we can't describe the state space explicitly but we can

- Know which is the initial state
- Check if a given state is a goal state
- Check the cost of a given action a
- Given a state s, check all the actions that are applicable to state s
- Given a state s and an applicable action a, we can get the successor state.

We can think about it in a programming-way, given a problem described by $\Theta = (S, A, c, T, I, S^G)$, we can't check directly Θ , but we have an API of the problem that provide the following functions

- InitialState(): return the initial state of the problem
- GoalTest(s): return true if and only if $s \in S^G$
- Cost(a : return c(a))
- Actions(s): return the set $\{a : \exists s \xrightarrow{a} s' \in T \text{ for some } s' \in S\}$
- ChildState(s, a): return s' if $s \xrightarrow{a} s' \in T$.

We **specify** a search problem if we can program/access to such an API. There are a declarative description too.

Definition 5

We have a **declarative description** of the problem if is described by the following sets:

- P is a set of boolean variables (propositions)
- $I \subseteq P$ is the subset of P indicating which propositions are true in the initial states.
- $G \subset P$ is the subset of P describing the goal states in the following way
 - a state s is a set of propositions
 - $-s \subseteq G \iff s \text{ is a goal state}$
- A is a set of actions, each action a is described by
 - a set $pre_a \subseteq P$ of precondition, a can be performed if and only if the conditions in pre_a are true.
 - a set of propositions add_a
 - a set of propositions del_a
 - the outcome of each action is the state $(\{s\} \cup add_a) \setminus del_a$
 - $-c:A\to\mathbb{R}$ is the cost function.

Declarative descriptions are strictly more powerful than black box ones. In this section we assume the black box description. In principle, the search strategies we will discuss can be used with any problem description that allows to implement the black box API.

2.2.1 Missionaries and Cannibals Example

The problem is the following

- there are a river and a boat that can carry the people from the left bank to the right
- there are 6 people, 3 missionaries and 3 cannibals
- the boat can carry 0, 1 or 2 people at the same time, not 3
- the goal is to get everybody to the left bank
- if at any time, there are more cannibals than missionaries in one bank, the missionaries get killed and the game is lost.

We can model the problem as follows

• the state space S is

$$S = \{ (M, C, B) : M + C = 6, \ 0 \le M \le 3, \ 0 \le C \le 3, \ B \in \{0, 1\} \}$$
 (2.10)

M represents the current number of missionaries on the right bank, S represents the current number of cannibals on the right bank, B = 1 if the boat is on the right bank, otherwise is on the left.

- the initial state is (3,3,1)
- the goal states are $S^G = (0,0,0), (0,0,1)$
- each actions have the same cost, is negligible
- the action that can be performed are the following
 - if B=1, we can subtract (in total) 1 or 2 from M or C (or both), and set B=0.
 - if B=0, we can add (in total) 1 or 2 from M or C (or both), and set B=1.

an action is applicable if and only if the following condition are satisfied after

- $-M \ge C$ if M > 0, this decode the facts that the cannibals can't be more or equals than the missionaries on the right bank if there are missionaries on the left bank
- if M < 3 (some missionaries are on the left bank) then (3 M) > (3 C) the missionaries on the left bank must be greater than the cannibals on the left bank.

To search a solution we can start from the initial state and expand the tree of possible solutions accordingly to the applicable actions.

2.2.2 Tree and Graph Search

In the search context the following terminology is used

- Search node n: Contains a state reached by the search, plus information about how it was reached.
- Path cost g(n): The cost of the path reaching n.
- Optimal cost g^* : The cost of an optimal solution path. For a state s, $g^*(s)$ is the cost of a cheapest path reaching s.

- Node expansion: Generating all successors of a node, by applying all actions applicable to the node's state s. Afterwards, the state s itself is also said to be expanded.
- Search strategy: Method for deciding which node is expanded next.
- Open list: Set of all nodes that currently are candidates for expansion. Also called frontier.
- Closed list: Set of all states that were already expanded. Used only in graph search, not in tree search (up next). Also called explored set.

When we explore the state space of a problem we can maintain a closed list of all the node that has been already searched, to check for each generated new node if is already in the list (if so, we discard it). If such list is used, the search is called **graph search**, else, if the same state may appear in many search nodes, is called **tree search**. The tree search doesn't use a list so require less memory.

When we analyze a search algorithm, we are interested in various properties

- Completeness: the algorithm is guaranteed to find a solution (it there are one).
- Optimality: the returned solution is guaranteed to be optimal.
- Time Complexity: How long does it take to find a solution? (Measured in generated states).
- Space Complexity: How much memory does the search require? (Measured in states).
- Branching Factor: The number b of how many successor a state may have.
- Gal depth: the number d of action required to reach the shallowest (nearest to the initial state) goal state.

2.3 Blind Search

We talk about *blind search* if the problem does not require any input beyond the problem API. Does not require any additional work from the programmer. For each node n in the search context, we define the following data structure:

- n.State is the state which te node contains
- n.Parent is node in the search tree that generated this node
- n.Action is the action that was applied to the parent to generate the node
- n.PathCost, also denoted g(n), is the cost of the path from the initial state to the node (as indicated by the parent pointers).

On a node we can perform the following operations

- Solution(n) returns the path from the initials state to n
- ChildNode(n, a) returns the node n corresponding to the application of action a in state n. State.

We also have the open list (called frontier) where we can perform the following actions:

- Empty?(frontier) returns true if and only if there are no more elements in the open list.
- Pop(frontier) returns the first element of the open list, and removes that element from the list.
- Insert(element, frontier) inserts an element into the open list.

The insert function can put the element in front, in the last positions, or in other positions, it depends from the implementation (different implementations yield different search strategies).

2.3.1 Breadth-First Search

The strategy is to expand nodes in the order they were produced, as a FIFO queue, we expand the shallowest unexpanded node.

This algorithm 2 is complete and optimal. We are using the black box API.

Algorithm 2 Breadth-First Search

```
Require: problem
node \leftarrow \texttt{InitialState()}
if GoalTest(node.State) then
    return Solution(node)
end if
frontier \leftarrow a FIFO queue with node in it
explored \leftarrow an empty set
while true do
    if Empty?(frontier) then
        return Failure
    end if
    node \leftarrow pop(frontier)
    add node. State in explored
    {f for} \ {f each} \ action \ {f in} \ {f Actions} \ (node. {f State}) \ {f do}
        child \leftarrow ChildNode(node, action)
        if child. State is not in explored or frontier then
            if GoalTest(child.State) then
                return Solution(child)
            end if
            frontier \leftarrow \text{Insert}(child, frontier)
        end if
    end for
end while
```