

CONCOURS D'ENTREE A1 1996

Epreuve de MATHEMATIQUES 1

Durée 2 heures

Les théorèmes seront énoncés avec rigueur

Aucun résultat ne sera pris en compte s'il n'est accompagné de calculs intermédiaires

Les copies illisibles ou mal présentées seront pénalisées

Pour α réel et n entier strictement positif, on considère les intégrales généralisées :

$$I_{n,\alpha} = \int_0^\infty \frac{\left(\sin t\right)^n}{t^\alpha} dt$$

Une intégrale généralisée est dite semi-convergente si elle est convergente mais non absolument convergente.

I

- 1.1 Etude de la convergence de $I_{1,\alpha} = \int_0^{\infty} \frac{(\sin t)}{t^{\alpha}} dt$
 - 1.1.1. $\alpha > 1$ Etudier la convergence absolue de l'intégrale.

1.1.2
$$0 < \alpha \le 1$$

- . Montrer que l'intégrale $I_{1,\alpha}$ converge (on pourra utiliser une intégration par partie pour l'étude au voisinage de l'infini).
- . On considère la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t^{\alpha}} dt$.

Montrer que
$$\frac{2}{(n+1)^{\alpha} \pi^{\alpha}} \le |u_n| \le \frac{2}{n^{\alpha} \pi^{\alpha}}$$

. Que peut-on en déduire sur la convergence de

$$\int_0^\infty \left| \frac{\sin t}{t^\alpha} \right| dt \quad \text{et} \quad I_{1,\alpha} ?$$

1.1.3
$$\alpha \le 0$$
. On considère la suite $v_n = \int_{\pi}^{n\pi} \frac{\sin t}{t^{\alpha}} dt$.

Etudier la limite de $|v_{n+1} - v_n|$ et en déduire la nature de l'intégrale $I_{1,\alpha}$.

1.2 a et b étant deux réels, on considère l'intégrale

$$J_{a,b} = \int_0^\infty t^b \sin(t^a) dt$$

soit:

- D_1 l'ensemble des couples (a,b) tels que $J_{a,b}$ soit absolument convergente,
- D_2 l'ensemble des couples (a,b) tels que $J_{a,b}$ soit semi-convergente,
- D_3 l'ensemble des couples (a,b) tels que $J_{a,b}$ soit divergente.

A tout couple (a,b) on associe dans le plan un point M de coordonnées (a,b). Représenter graphiquement les domaines D_1 , D_2 , D_3 dans un même système d'axes.

II

2.2 2.2.1 Soit $f: [0; \frac{\pi}{2}] \to \Re$ (\Re désigne l'ensemble des nombres réels),

$$f(t) = \frac{\sin t}{t}$$

étudier le sens de variation de f.

2.2.2 Soit
$$F_{a,b}(x) = \int_{ax}^{bx} \frac{\sin t}{t^2} dt$$
,

étudier la parité de $F_{a,b}$.

Montrer que la limite de $F_{a,b}(x)$ est $\ln \frac{b}{a}$ quand x tend vers zéro.

(ln désigne le logarithme népérien)

2.3 Soit
$$I(\varepsilon) = \int_{\varepsilon}^{\infty} \frac{\sin^3 t}{t^2} dt$$
.

Montrer que $I(\varepsilon) = kF_{1,3}(\varepsilon)$ où k est une constante que l'on déterminera.

En déduire la valeur de $I_{3,2}$

III

$$\alpha = n$$

On pose
$$A_n = I_{n,n} = \int_0^\infty \left(\frac{\sin t}{t}\right)^n dt$$
.

On admet que $A_1 = \frac{\pi}{2}$.

- 3.1 x étant un réel strictement positif, calculer $\int_0^\infty \frac{\sin xt}{t} dt$.
- 3.2 Etudier la convergence de l'intégrale A_n pour n supérieur ou égal à 2.
- 3.3 Calculer A_2 .
- 3.4 Exprimer A_4 en fonction de A_2 et en déduire la valeur de A_4 .