Aufgabenblatt 13

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Spatvolumen) Seien
$$u = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}$$
, $v = \begin{pmatrix} 1 \\ -1/2 \\ 2 \end{pmatrix}$ $w = \begin{pmatrix} 1/2 \\ x \\ 5 \end{pmatrix} \in \mathbb{R}^3$.

- (a) Für welche Wahl von $x \in \mathbb{R}$ sind die drei Vektoren u, v, w linear abhängig?
- (b) Für welche $x \in \mathbb{R}$ spannen u, v, w ein Spat auf, dessen Volumen mit dem Volumen eines Würfels der Seitenlänge 2 übereinstimmt? (4 Punkte)

Aufgabe 2. (Vektorprodukt) Seien $u, v \in \mathbb{R}^3$.

- (a) Rechnen Sie nach, dass $\langle u \times v, e_j \rangle = \det(u, v, e_j)$ für j = 1, 2, 3.
- (b) Schliessen Sie daraus $\langle u \times v, w \rangle = \det(u, v, w) \quad \forall w \in \mathbb{R}^3$ (siehe Bemerkung 7.4.6).
- (c) Zeigen Sie nun: $u \times v = -(v \times u)$ und $\langle u, v \times w \rangle = \langle w, u \times v \rangle = \langle v, w \times u \rangle \quad \forall w \in \mathbb{R}^3$. (4 Punkte)

Aufgabe 3. (Lineare Unterräume) Welche der folgenden Teilmengen sind lineare Unterräume der angegebenen Vektorräume und welche nicht? Begründen Sie Ihre Antwort!

(a)
$$U = \left\{ \lambda \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\} \cup \left\{ \mu \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \mid \mu \in \mathbb{R} \right\} \subset \mathbb{R}^3.$$

- (b) Der Durchschnitt der Ebene im \mathbb{R}^3 , definiert durch x+y+z=0, mit der x-y-Ebene.
- (c) Im \mathbb{R}^3 die Menge der Vektoren v, die mit der z-Achse einen Winkel von 45° bilden.

(d)
$$U = \{ A \in \text{Mat}_{2 \times 2} \mid \det(A) = 0 \}.$$
 (e) $U = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, c \in \mathbb{R} \} \subset \text{Mat}_{2 \times 2}.$

(f) Die Polynome p von Grad 3 mit lokalem Maximum oder Minimum bei x=0. (6 Punkte)

Aufgabe 4. (Interpolationsaufgaben) Seien x_1, x_2, x_3 verschiedene reelle Zahlen.

(a) Rechnen Sie folgendes nach:
$$\det \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{pmatrix} = (x_3 - x_1)(x_3 - x_2)(x_2 - x_1).$$

(b) Schliessen Sie nun, dass es zu jeder Wahl von Zahlen y_1, y_2, y_3 genau ein quadratisches Polynom p gibt mit $p(x_j) = y_j$ für j = 1, 2, 3. (3 Punkte)

Aufgabe 5. (Unipotente Matrizen) Sei A eine $n \times n$ -Matrix der Form A = E + B, wobei $b_{ij} = 0$ für alle $i \geq j$.

(a) Zeigen Sie:
$$B^n = 0$$
 und $A^{-1} = E + \sum_{k=1}^n (-1)^k B^k$.
(b) Berechnen Sie nun die Inverse folgender Matrix: $A = \begin{pmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 5 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

(3 Punkte)

Und hier noch zwei Verständnisfragen zur Selbstkontrolle:

Frage 1. (Determinante) Welche der folgenden Aussagen sind korrekt?

- (a) Die Determinante einer 2×2 -Matrix verschwindet genau dann, wenn die beiden Spaltenvektoren dieselbe Gerade erzeugen.
- (b) Die Determinante einer 2×2 -Matrix ist positiv genau dann, wenn die beiden Spaltenvektoren einen spitzen Winkel bilden. \Box
- (c) Die Determinante einer 3×3 -Matrix ist ungleich Null genau dann, wenn die drei Spaltenvektoren eine räumliche Figur erzeugen.
- (d) Die Determinante einer 3×3 -Matrix ist positiv genau dann, wenn die drei Spaltenvektoren zur Dreifingerregel der rechten Hand passen.

Frage 2. (Vektorräume) Welche der folgenden Aussagen sind korrekt?

- (a) In jedem Vektorraum gibt es ein Vektorprodukt. $\hfill\Box$
- (b) Die Lösungsmengen homogener linearer Gleichungssysteme sind Vektorräume. \qed
- (c) Die Menge der Matrizen vom Typ $n \times n$ bilden einen Vektorraum.
- (d) Die quadratischen Polynome bilden einen linearen Unterraum des Vektorraums aller Polynome. $\hfill\Box$

Abgabe der Aufgaben: Donnerstag, den 16. Dezember 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.