Comparison of Paris and Berlin Neighbourhoods

1 Introduction

1.1 Background

One of the important steps in planning travel or relocation to a new city is to choose which area to visit, stay, or live. It would be useful to have insight to the character of the neighbourhoods in order to find the places most suited to your personal preference and situation.

The character of a neighbourhood is defined by its demographic and the kinds of commerce and landmarks it contains. For example, the type and quantity of establishments may reveal whether an area is animated with bars and nightlife as opposed to a residential area occupied predominantly by schools and supermarkets. The type of restaurants in an area may reveal information about its demographic, and other features such as proximity to parks or shopping may of interest.

In addition, a way to make this information more relatable could be to draw parallels between the neighbourhoods of an unfamiliar city, to those of a city with which one is already familiar.

Preliminary research shows that Paris (left) is made up of 20 districts, each containing 4 neighbourhoods to to form a total of 80 neighbourhoods, while Berlin (right) is made up of 12 boroughs containing a total of 96 neighbourhoods. The full list of neighbourhoods and boroughs can be found in Appendix A.

The following figures from August 2017 show that although Paris has around 60% of Berlin's population, it occupies less than 12% its area, making the population density of Paris about 5 fold that of Berlin.

City	Population	Area (km²)	Density (/km²)
Paris	2203817	105.4	20909
Berlin	3711930	891.7	4162
·			

Source: https://en.wikipedia.org/wiki/List of European Union cities proper by population density

1.2 Objective

This project will cluster the neighbourhoods of Paris, France and Berlin, Germany to try and identify similar neighbourhoods between the two cities, and produce a list of the most abundant establishments which characterise each cluster.

1.3 Hypothesis

As Paris and Berlin are both multicultural European cities, the expectation is that similar neighbourhoods between the two cities should be readily identifiable. However, if there is little overlap and such parallels cannot be drawn, it would be a valuable conclusion as well to see how the cities differ.

2 Data Requirements

Requirement	Purpose	Source
A list of neighbourhoods for each	The neighbourhoods are the	Wikipedia [i]
city.	objects to be clustered.	
The top 100 venues for each neighbourhood.	Neighbourhood venues form the feature set for input to K-means clustering algorithm.	Foursquare
Each neighbourhood's geospatial coordinates.	Input to Foursquare venue search.	GeoPy package
Each city's average neighbourhood radius [ii]	Input to Foursquare venue search.	Calculated from the neighbourhoods' geospatial coordinates.

- [i] https://en.wikipedia.org/wiki/Boroughs and neighborhoods of Berlin
- [ii] The average neighbourhood radius per city will be used for simplicity rather than the radius of each individual neighbourhood as it is the relative density between the cities that needs to be corrected for.

3 Methodology

3.1 Data Collection

Neighbourhood Radius

The following maps show the 80 neighbourhoods of Paris, and 96 neighbourhoods of Berlin plotted on the same scale. It is evident that Paris neighbourhoods are much smaller compared to Berlin neighbourhoods.

In order to account for this difference in size, KD Tree algorithm was used to find the distance of each neighbourhood to its closest neighbour. The average distance was then calculated for each city and divided by 2 to find the average neighbourhood radius.

The top 100 venues were requested from Foursquare

- for each Paris neighbourhood within a radius of 521 metres
- for each Berlin neighbourhood within a radius of 1573 metres

The coordinates of Paris, France are 48.8566969, 2.3514616.

The coordinates of Berlin, Deutschland are 52.5170365, 13.3888599.

3.2 Exploratory Data Analysis

Distribution of venues

Foursquare venue search results:

	Paris	Berlin	
Total venues	6120	4570	
Average venues per neighbo	ourhood 77	48	

Number of venues per neighbourhoods:

On average, each neighbourhoods in Paris contains more venues than in Berlin.

In addition, 43% of Paris neighbourhoods returned the maximum number of 100 venues, compared to only 21% for Berlin.

Venue Categories

Some cleaning is required to make the venue categories fit for purpose.

Problems with the category labels include:

- Too specific, e.g. 'French Restaurant', 'Bistro', 'Creperie', 'Brasserie' are all types of French restaurants; 'Sushi Restaurant' could be grouped with other types of Japanese restaurants; it is not necessary to differentiate between 'Museum', 'Art Museum' and 'Art Gallery'. Such categories will be generalised.
- Too general, e.g. 'Tree', 'Building', 'Platform'. Venues in such categories will be dropped.
- Inconsistent naming the same type of venue under different labels, e.g. 'Tram Station' and 'Light Rail Station', 'Café' and 'Coffee Shop'. Such category labels will be aggregated.
- Location specific labels 'French Restaurant' in Paris and 'German Restsaurant' in Berlin will cause unnecassary segregation when clustering when both types of restaurants are the local cuisine. These will be classified to simply 'Restaurant'.
- Misleading bias whether due to the presence of unuseful data, or deficiency in one of the cities will be removed, e.g. Berlin has categories 'ATM', 'Hardware Store' which also exist in Paris in reality but are not present in the data. Venues in such categories will be dropped.
- Lastly, any venues categories with too few occurrences will be dropped. The minimum threshold for inclusion of a category is set at 20 total occurrences.

Data Cleaning

Number of venue categories:

	Total	Shared	Paris only	Berlin only
Before cleaning	422	231	76	115
After cleaning	32	31	0	1

The full lists of changes is detailed in Appendix B.

Final venue categories:

Shared categories

['American Restaurant', 'Attraction', 'Auto', 'Bar / Pub', 'Beauty', 'Boat / Ferry', 'Café', 'Convenience Store', 'East Asian Restaurant', 'European Restaurant', 'Fast Food', 'Fitness / Sports', 'Hotel / Tourism', 'Italian Restaurant', 'Liquor Store', 'M.E. / African Restaurant', 'Market', 'Museum / Exhibit', 'Nightclub', 'Park', 'Performing Arts', 'Plaza', 'Restaurant', 'Service', 'Shopping', 'South Asian Restaurant', 'Specialty Food', 'Stadium', 'Supermarket', 'Urban Entertainment', 'Waterfront']

Paris only categories

[]

Berlin only categories

['Nature']

Data Analysis

Now that the categories have been cleaned, it is possible to compare venues for the two cities by plotting the occurrences of each category in one city against the other.

Full view:

Notable observations:

- The number of restaurants in Paris far surpasses any other type of venue, whereas in Berlin the number of restaurants and supermarkets are on par.
- There is an abundance and about equal number of cafés in both cities.
- Fitness and sport facilities are more readily available in Berlin, whereas Paris is dominated by restaurants, bars and shopping for recreation.
- Paris is more geared for tourism.
- Berlin has significantly more parks and nature spots than Paris.

Zoomed-in view:

3.3 Feature Set

To build the feature set, begin by onehot coding the venue list so that each venue is mapped to the category to which it belongs. Next, the venues are grouped by neighbourhood and the means of venues in the same category are calculated for each neighbourhood. This forms a *neighbourhood profile* which corresponds to one row in the feature set.

The resulting feature set is a 2-dimensional array where

- each row index is a neighbourhood,
- each column header is a venue category, and
- each cell value is the proportion that the venue category contributes to the neighbourhood.

3.4 Modeling

K-means clustering algorithm will be run on this feature set to group neighbourhoods with similar profiles.

Determining Optimal K

The Elbow method and the Silhouette Scores are used in complement to determine the optimal number of clusters for running K-means.

K=7 appears to be a reasonable choice given the results below. It indicates the potential start of the elbow 'bend' (albeit not a very clear one) and its silhouette coefficient is one of the higher ones.

4 Results

From a total of 7 clusters,

- 5 clusters contain neighbourhoods from both cities [Clusters 0, 1, 4, 5, 6]
- 2 clusters contain only Berlin neighbourhoods [Clusters 2, 3]

The colour of the clusters correspond to the bar graphs below.

Cluster Details

Clu	uster 0
6	Mail, Paris
7	Bonne-Nouvelle, Paris
8	Arts-et-Métiers, Paris
14	Arsenal, Paris
15	Notre-Dame, Paris
16	Quartier Saint-Victor, Paris
18	Val-de-Grâce, Paris
20	Monnaie, Paris
21	Odéon, Paris
22	
	Notre-Dame-des-Champs, Paris
23	Saint-Germain-des-Prés, Paris
24	Saint-Thomas-d'Aquin, Paris
25	Les Invalides, Paris
26	École-Militaire, Paris
27	Gros-Caillou, Paris
31	Europe, Paris
32	Saint-Georges, Paris
34	Faubourg-Montmartre, Paris
35	Rochechouart, Paris
36	Saint-Vincent-de-Paul, Paris
37	Porte-Saint-Denis, Paris
38	Porte-Saint-Martin, Paris
39	Hôpital-Saint-Louis, Paris
40	Folie-Méricourt, Paris
41	
	Saint-Ambroise, Paris
42	La Roquette, Paris
43	Sainte-Marguerite, Paris
47	Quinze-Vingts, Paris
48	Salpêtrière, Paris
49	La Gare, Paris
51	Croulebarbe, Paris
52	Montparnasse, Paris
54	Petit-Montrouge, Paris
55	Plaisance, Paris
56	Saint-Lambert, Paris
59	lavel, Paris
63	Chaillot, Paris
64	Les Ternes, Paris
65	Plaine Monceau, Paris
66	Batignolles, Paris
67	Épinettes, Paris
68	•
	Grandes-Carrières, Paris
69	Clignancourt, Paris
71	La Chapelle, Paris
72	La Villette, Paris
73	Pont-de-Flandre, Paris
75	Combat, Paris
79	Charonne, Paris
146	Rahnsdorf, Berlin
159	Malchow, Berlin
CI.	
	uster 1
0	Saint-Germain-l'Auxerrois, Paris
1	Les Halles, Paris
3 9	Place-Vendôme, Paris
9	Enfants-Rouges, Paris

Enfants-Rouges, Paris

Saint-Merri, Paris Saint-Gervais, Paris

10

12

13

19

28

29 30 Archives, Paris

Sorbonne, Paris

Champs-Élysées, Paris

Faubourg-du-Roule, Paris

La Madeleine, Paris

Neighbourhoods: Total 50, Paris 48, Berlin 2

33 45 46 61 80 108 141 144 166 Clu 96 97 111 114 140 142 152 158 160 161 168	Chaussée-d'Antin, Paris Picpus, Paris Bercy, Paris La Muette, Paris Mitte, Berlin Spandau, Berlin Adlershof, Berlin Köpenick, Berlin Tegel, Berlin Juster 2 Buch, Berlin Französisch Buchholz, Berlin Staaken, Berlin Hakenfelde, Berlin Altglienicke, Berlin Altglienicke, Berlin Kaulsdorf, Berlin Falkenberg, Berlin Wartenberg, Berlin Neu-Hohenschönhausen, Berlin Heiligensee, Berlin
Clı	uster 3
91 93 99 100 109 110 128 131 134 138 151 153 154 162 171 173 174 175	Heinersdorf, Berlin Stadtrandsiedlung Malchow, Berlin Rosenthal, Berlin Wilhelmsruh, Berlin Haselhorst, Berlin Siemensstadt, Berlin Marienfelde, Berlin Gropiusstadt, Berlin Johannisthal, Berlin Biesdorf, Berlin Mahlsdorf, Berlin Hellersdorf, Berlin Hellersdorf, Berlin Waidmannslust, Berlin Wittenau, Berlin Märkisches Viertel, Berlin Borsigwalde, Berlin
Clu	uster 4
2 4 5 11 50 57 58 70 76 78 81 84 85 86 87 88 94 101 102 105 107 117	Palais-Royal, Paris Gaillon, Paris Vivienne, Paris Sainte-Avoye, Paris Maison-Blanche, Paris Necker, Paris Grenelle, Paris Goutte-d'Or, Paris Belleville, Paris Père-Lachaise, Paris Moabit, Berlin Wedding, Berlin Gesundbrunnen, Berlin Friedrichshain, Berlin Kreuzberg, Berlin Prenzlauer Berg, Berlin Pankow, Berlin Charlottenburg, Berlin Wilmersdorf, Berlin Westend, Berlin Halensee, Berlin Steglitz, Berlin

Neighbourhoods: Total 20, Paris 15, Berlin 5

Neighbourhoods: Total 11, Paris 0, Berlin 11

Neighbourhoods: Total 18, Paris 0, Berlin 18

Neighbourhoods: Total 28, Paris 10, Berlin 18

121	Dahlem, Berlin
124	Schöneberg, Berlin
125	Friedenau, Berlin
130	Neukölln, Berlin
135	Alt-Treptow, Berlin
164	Rummelsburg, Berlin
CI.	
Cit	uster 5 Bel-Air, Paris
53	Parc Montsouris, Paris
60	Auteuil, Paris
62	Porte-Dauphine, Paris
74	Amérique, Paris
, . 77	Saint-Fargeau, Paris
89	Weißensee, Berlin
90	Blankenburg, Berlin
92	Karow, Berlin
98	Niederschönhausen, Berlin
103	Schmargendorf, Berlin
104	Grunewald, Berlin
106	Charlottenburg-Nord, Berlin
113	Kladow, Berlin
115	Falkenhagener Feld, Berlin
116	Wilhelmstadt, Berlin
118	Lichterfelde, Berlin
119	_Lankwitz, Berlin
120	Zehlendorf, Berlin
122	Nikolassee, Berlin
123	Wannsee, Berlin
126	Tempelhof, Berlin
127 129	Mariendorf, Berlin Lichtenrade, Berlin
132	Buckow, Berlin
133	Rudow, Berlin
137	Baumschulenweg, Berlin
139	Niederschöneweide, Berlin
143	Oberschöneweide, Berlin
145	Friedrichshagen, Berlin
147	Grünau, Berlin
148	Müggelheim, Berlin
149	Schmöckwitz, Berlin
155	Friedrichsfelde, Berlin
156	Karlshorst, Berlin
157	Lichtenberg, Berlin
163	Fennpfuhl, Berlin
165	Reinickendorf, Berlin
167	Konradshöhe, Berlin
169	Frohnau, Berlin
170	Hermsdorf, Berlin
Clu	ıster 6
17	Jardin-des-Plantes, Paris
82	Hansaviertel, Berlin
83	Tiergarten, Berlin
95	Blankenfelde, Berlin
112	Gatow, Berlin
136	Plänterwald, Berlin

Marzahn, Berlin

Lübars, Berlin

150

172

Neighbourhoods: Total 41, Paris 6, Berlin 35

Neighbourhoods: Total 8, Paris 1, Berlin 7

Neighbourhood Distribution

	Paris	Berlin	Total	Cluster 6
Cluster 6	1	7	8	Cluster 5
Cluster 5	6	35	41	
Cluster 4	10	18	28	Cluster 4
Cluster 3	0	18	18	Cluster 3
Cluster 2	0	11	11	Cluster 2 Berlin
Cluster 1	15	5	20	Cluster 1 Paris
Cluster 0	48	2	50	Cluster 0
				0 10 20 30 40 50 60
				Number of Neighbourhoods

5 Discussion

Paris is dominated by cluster 0 throughout and at its centre a mix of 1 and 4.

Berlin can be described as the clusters 4, 5, 3, 2 forming loosely concentric circles from inside out, spotted with cluster 6 for parkland.

- Cluster 0 which is spread all across Paris is characterised restaurants and bars / pubs. This is the most 'Parisien' cluster as it covers most areas of Paris and only includes 2 Berlin neighbourhoods – Rahnsdort and Malchow.
- Cluster 1 which covers central Paris along the River Seine and the Champs Elysées is primarily shopping and cafés in addition to restaurants. Mitte of central Berlin falls into this cluster along with the centres of other animated Berlin boroughs.
- Hotels and tourism services are abundant all over Paris as they appear in both Clusters 0 and 1.
- Specialty food stores (bakery, patisserie, cheese shops, butchers) are also everywhere in Paris, whereas Berlin relies more on supermarkets.
- Cluster 2 sits towards the outskirts of Berlin and appears to be mainly residential with almost half of the venues being supermarkets.
- Cluster 3 is also on the periphery of Berlin, a little closer to the centre than cluster 2 and with more restaurants and shopping.
- Cluster 4 has many restaurants, cafés and bars but not as abundant as for clusters 0 and 1. Most neighbourhoods from the inner-most circle of Berlin fall into this cluster. It is further differentiated from clusters 0 and 1 by its relatively high number of East Asian restaurants (mainly Chinese and Japanese).
- Cluster 5 has a fairly similar profile to cluster 3 in terms of supermarkets, restaurants and sport facilities, but with cafés instead of shopping. This cluster makes up a good part of Berlin and includes a handful of pheripheric neighbourhoods of Paris.
- Clusters 2, 3 and 5 all of which are made up either exclusively or predominantly of Berlin neighbourhoods, have a notable number of sport facilities.
- Cluster 6 is the most green of the clusters, representing the neighbourhoods abundant in parks and nature.

6 Conclusion

City Features

The data paints an overview of the cities characterised by the following features:

Paris

- dense with restaurants, bars and tourism in all parts of the city
- · specialty stores for grocery shopping
- urban forms of recreation such as shopping, cafés and dining out

Berlin

- · dense in central boroughs Mitte and Friedrichshain-Kreuzberg
- supermarkets for groceries
- accessibility to nature, parks and sporting facilities for recreation

Clusters Summary

Cluster	Description	Paris	Berlin	Defining features (top contributors to 40% of venues)
0	Parisian	96%	4%	Restaurants, bars
1	City centre	75%	25%	Restaurants, shopping, tourism
2	Berlin residential outskirts	0%	100%	Supermarkets Presence of (non-German/French) European cuisines.
3	Berlin residential with commerce	0%	100%	Shopping, supermarkets, sporting facilities
4	Midtown	36%	64%	Restaurants, East-Asian cuisine, cafés
5	Residential	15%	85%	Supermarkets, restaurants, Italian cuisine
6	Green spaces	13%	88%	Parks, nature, restaurants, attractions

Drawbacks

The data obtained from Foursquare was limited to 100 results (even when the limit was set to higher). In addition, the search results were extremely restaurant oriented especially for Paris which may have obscured other types of venues from being retrieved.

Future Studies

It could be interesting to filter for particular types of venues, such as daycares, schools, universities or places of worship to answer more specific questions regarding the demographic of neighbourhoods; or transport facilities and landscape to assess the adequacy or infrastructure.

7 Appendix

A) List of neighbourhoods

	neighbourhood	postcode	city
0	Saint-Germain-l'Auxerrois	75001	Paris
1	Les Halles	75001	Paris
2	Palais-Royal	75001	Paris
3	Place-Vendôme	75001	Paris
4	Gaillon	75002	Paris
5	Vivienne	75002	Paris
6	Mail	75002	Paris
7	Bonne-Nouvelle	75002	Paris
8	Arts-et-Métiers	75003	Paris
9	Enfants-Rouges	75003	Paris
10	Archives	75003	Paris
11			
	Sainte-Avoye	75003 75004	Paris
12	Saint-Merri	75004	Paris
13	Saint-Gervais	75004	Paris
14	Arsenal	75004	Paris
15	Notre-Dame	75004	Paris
16	Quartier Saint-Victor	75005	Paris
17	Jardin-des-Plantes	75005	Paris
18	Val-de-Grâce	75005	Paris
19	Sorbonne	75005	Paris
20	Monnaie	75006	Paris
21	Odéon	75006	Paris
22	Notre-Dame-des-Champs	75006	Paris
23	Saint-Germain-des-Prés	75006	Paris
24	Saint-Thomas-d'Aquin	75007	Paris
25	Les Invalides	75007	Paris
26	École-Militaire	75007	Paris
27	Gros-Caillou	75007	Paris
28	Champs-Élysées	75008	Paris
29	Faubourg-du-Roule	75008	Paris
30	La Madeleine	75008	Paris
31	Europe	75008	Paris
32	Saint-Georges	75009	Paris
33	Chaussée-d'Antin	75009	Paris
34	Faubourg-Montmartre	75009	Paris
35	Rochechouart	75009	Paris
36	Saint-Vincent-de-Paul	75010	Paris
37	Porte-Saint-Denis	75010	Paris
38	Porte-Saint-Martin	75010	Paris
39	Hôpital-Saint-Louis	75010	Paris
40	Folie-Méricourt	75011	Paris
41	Saint-Ambroise	75011	Paris
42	La Roquette	75011	Paris
43	Sainte-Marguerite	75011	Paris
44	Bel-Air	75012	Paris
45	Picpus	75012	Paris
46	Bercy	75012	Paris
	5-95		

	neighbourhood	postcode	city
47	Quinze-Vingts	75012	Paris
48	Salpêtrière	75013	Paris
49	La Gare	75013	Paris
50	Maison-Blanche	75013	Paris
51	Croulebarbe	75013	Paris
52	Montparnasse	75014	Paris
53	Parc Montsouris	75014	Paris
54	Petit-Montrouge	75014	Paris
55	Plaisance	75014	Paris
56	Saint-Lambert	75015	Paris
57	Necker	75015	Paris
58	Grenelle	75015	Paris
59	Javel	75015	Paris
60	Auteuil	75016	Paris
61	La Muette	75016	Paris
62	Porte-Dauphine	75016	Paris
63	Chaillot	75016	Paris
64	Les Ternes	75017	Paris
65	Plaine Monceau	75017	Paris
66	Batignolles	75017	Paris
67	Épinettes	75017	Paris
68	Grandes-Carrières	75018	Paris
69	Clignancourt	75018	Paris
70	Goutte-d'Or	75018	Paris
71	La Chapelle	75018	Paris
72	La Villette	75019	Paris
73	Pont-de-Flandre	75019	Paris
74	Amérique	75019	Paris
75	Combat	75019	Paris
76	Belleville	75020	Paris
77	Saint-Fargeau	75020	Paris
78	Père-Lachaise	75020	Paris
79	Charonne	75020	Paris

	neighbourhood_id	neighbourhood	borough	city
0	0101	Mitte	Mitte	Berlin
1	0102	Moabit	Mitte	Berlin
2	0103	Hansaviertel	Mitte	Berlin
3	0104	Tiergarten	Mitte	Berlin
4	0105	Wedding	Mitte	Berlin
5	0106	Gesundbrunnen	Mitte	Berlin
6	0201	Friedrichshain	Friedrichshain-Kreuzberg	Berlin
7	0202	Kreuzberg	Friedrichshain-Kreuzberg	Berlin
8	0301	Prenzlauer Berg	Pankow	Berlin
9	0302	Weißensee	Pankow	Berlin
10	0303	Blankenburg	Pankow	Berlin
11	0304	Heinersdorf	Pankow	Berlin
12	0305	Karow	Pankow	Berlin
13	0306	Stadtrandsiedlung Malchow	Pankow	Berlin
14	0307	Pankow	Pankow	Berlin
15	0308	Blankenfelde	Pankow	Berlin

city	borough	neighbourhood	neighbourhood_id	
Berlir	Pankow	Buch	0309	16
Berlir	Pankow	Französisch Buchholz	0310	17
Berlir	Pankow	Niederschönhausen	0311	18
Berlir	Pankow	Rosenthal	0312	19
Berlir	Pankow	Wilhelmsruh	0313	20
Berlir	Charlottenburg-Wilmersdorf	Charlottenburg	0401	21
Berlir	Charlottenburg-Wilmersdorf	Wilmersdorf	0402	22
Berlir	Charlottenburg-Wilmersdorf	Schmargendorf	0403	23
Berlir	Charlottenburg-Wilmersdorf	Grunewald	0404	24
Berlir	Charlottenburg-Wilmersdorf	Westend	0405	25
Berlir	Charlottenburg-Wilmersdorf	Charlottenburg-Nord	0406	26
Berlir	Charlottenburg-Wilmersdorf	Halensee	0407	27
Berlir	Spandau	Spandau	0501	28
Berlir	Spandau	Haselhorst	0502	29
Berlir	Spandau	Siemensstadt	0503	30
Berlir	Spandau	Staaken	0504	31
Berlir	Spandau	Gatow	0505	32
Berlir	Spandau	Kladow	0506	33
Berlir	Spandau	Hakenfelde	0507	34
Berlin	Spandau	Falkenhagener Feld	0508	35
Berlir	Spandau	Wilhelmstadt	0509	36
Berlir	Steglitz-Zehlendorf	Steglitz	0601	37
Berlir	Steglitz-Zehlendorf	Lichterfelde	0602	38
Berlir	Steglitz-Zehlendorf	Lankwitz	0603	39
		Zehlendorf		40
Berlin	Steglitz-Zehlendorf		0604	
Berlin	Steglitz-Zehlendorf	Dahlem	0605	41
Berlin	Steglitz-Zehlendorf	Nikolassee	0606	42
Berlin	Steglitz-Zehlendorf	Wannsee	0607	43
Berlin	Tempelhof-Schöneberg	Schöneberg	0701	44
Berlin	Tempelhof-Schöneberg	Friedenau	0702	45
Berlin	Tempelhof-Schöneberg	Tempelhof	0703	46
Berlin	Tempelhof-Schöneberg	Mariendorf	0704	47
Berlir	Tempelhof-Schöneberg	Marienfelde	0705	48
Berlir	Tempelhof-Schöneberg	Lichtenrade	0706	49
Berlir	Neukölln	Neukölln	0801	50
Berlir	Neukölln	Britz	0802	51
Berlir	Neukölln	Buckow	0803	52
Berlir	Neukölln	Rudow	0804	53
Berlir	Neukölln	Gropiusstadt	0805	54
Berlir	Treptow-Köpenick	Alt-Treptow	0901	55
Berlir	Treptow-Köpenick	Plänterwald	0902	56
Berlir	Treptow-Köpenick	Baumschulenweg	0903	57
Berlir	Treptow-Köpenick	Johannisthal	0904	58
Berlir	Treptow-Köpenick	Niederschöneweide	0905	59
Berlir	Treptow-Köpenick	Altglienicke	0906	60
Berlir	Treptow-Köpenick	Adlershof	0907	61
Berlir	Treptow-Köpenick	Bohnsdorf	0908	62
Berlir	Treptow-Köpenick	Oberschöneweide	0909	63
Berlir	Treptow-Köpenick	Köpenick	0910	64
Berlir	Treptow-Köpenick	Friedrichshagen	0911	65
Berlir	Treptow-Köpenick	Rahnsdorf	0912	66
Berlir	Treptow-Köpenick	Grünau	0913	67

	neighbourhood_id	neighbourhood	borough	city
68	0914	Müggelheim	Treptow-Köpenick	Berlin
69	0915	Schmöckwitz	Treptow-Köpenick	Berlin
70	1001	Marzahn	Marzahn-Hellersdorf	Berlin
71	1002	Biesdorf	Marzahn-Hellersdorf	Berlin
72	1003	Kaulsdorf	Marzahn-Hellersdorf	Berlin
73	1004	Mahlsdorf	Marzahn-Hellersdorf	Berlin
74	1005	Hellersdorf	Marzahn-Hellersdorf	Berlin
75	1101	Friedrichsfelde	Lichtenberg	Berlin
76	1102	Karlshorst	Lichtenberg	Berlin
77	1103	Lichtenberg	Lichtenberg	Berlin
78	1104	Falkenberg	Lichtenberg	Berlin
79	1106	Malchow	Lichtenberg	Berlin
80	1107	Wartenberg	Lichtenberg	Berlin
81	1109	Neu-Hohenschönhausen	Lichtenberg	Berlin
82	1110	Alt-Hohenschönhausen	Lichtenberg	Berlin
83	1111	Fennpfuhl	Lichtenberg	Berlin
84	1112	Rummelsburg	Lichtenberg	Berlin
85	1201	Reinickendorf	Reinickendorf	Berlin
86	1202	Tegel	Reinickendorf	Berlin
87	1203	Konradshöhe	Reinickendorf	Berlin
88	1204	Heiligensee	Reinickendorf	Berlin
89	1205	Frohnau	Reinickendorf	Berlin
90	1206	Hermsdorf	Reinickendorf	Berlin
91	1207	Waidmannslust	Reinickendorf	Berlin
92	1208	Lübars	Reinickendorf	Berlin
93	1209	Wittenau	Reinickendorf	Berlin
94	1210	Märkisches Viertel	Reinickendorf	Berlin
95	1211	Borsigwalde	Reinickendorf	Berlin

B) Category labels cleaning

Misclassified venues

venue_name Lidl, venue_category changed from Discount Store to Supermarket : 2 converted venue_name La Cave Prenzlauer Berg, venue_category changed from Winery to Wine Bar : 1 converted venue_name Pfennigpfeiffer, venue_category changed from Shop & Service to Paper / Office Supplies Store : 1 converted

venue name Le Midnight, venue category changed from Other Nightlife to Hookah Bar: 1 converted

Generalised or aggregated categories

venue_category changed from ['Asian Restaurant', 'Noodle House', 'Chinese Restaurant', 'Cantonese Restaurant', 'Dim Sum Restaurant', 'Dumpling Restaurant', 'Jiangxi Restaurant', 'Shanxi Restaurant', 'Szechuan Restaurant', 'Taiwanese Restaurant', 'Japanese Restaurant', 'Soba Restaurant', 'Okonomiyaki Restaurant', 'Ramen Restaurant', 'Sushi Restaurant', 'Udon Restaurant', 'Korean Restaurant', 'Cambodian Restaurant', 'Thai Restaurant', 'Vietnamese Restaurant', 'Indonesian Restaurant'] to East Asian Restaurant: 751 converted

venue_category changed from ['Afghan Restaurant', 'Indian Restaurant', 'Pakistani Restaurant', 'Tibetan Restaurant'] to South Asian Restaurant : 73 converted

venue_category changed from ['American Restaurant', 'Cajun / Creole Restaurant', 'Southern / Soul Food Restaurant', 'New American Restaurant'] to American Restaurant : 16 converted venue_category changed from ['Mexican Restaurant', 'Burrito Place', 'Taco Place', 'Central American', 'Caribbean Restaurant', 'Cuban Restaurant', 'South American Restaurant', 'Arepa Restaurant', 'Argentinian Restaurant', 'Brazilian Restaurant', 'Colombian Restaurant', 'Empanada Restaurant', 'Peruvian Restaurant', 'Venezuelan Restaurant', 'Latin American Restaurant'] to American Restaurant : 104 converted

venue_category changed from ['Hawaiian Restaurant', 'Poke Place'] to Restaurant : 5 converted venue_category changed from ['English Restaurant', 'Scandinavian Restaurant', 'Belgian Restaurant', 'Modern European Restaurant', 'Swiss Restaurant', 'Austrian Restaurant', 'Schnitzel Restaurant', 'Eastern

```
European Restaurant', 'Russian Restaurant', 'Romanian Restaurant', 'Mediterranean Restaurant', 'Turkish Restaurant', 'Greek Restaurant', 'Taverna', 'Kumpir Restaurant', 'Portuguese Restaurant', 'Spanish Restaurant', 'Tapas Restaurant'] to European Restaurant: 236 converted venue_category changed from ['Italian Restaurant', 'Pizza Place'] to Italian Restaurant: 171 converted venue_category changed from ['Bavarian Restaurant', 'German Restaurant', 'Alsatian Restaurant', 'Auvergne Restaurant', 'Basque Restaurant', 'Breton Restaurant', 'Burgundian Restaurant', 'Corsican Restaurant', 'Fondue Restaurant', 'Provençal Restaurant', 'Savoyard Restaurant', 'Southwestern French Restaurant', 'French Restaurant', 'Molecular Gastronomy Restaurant', 'Bistro', 'Creperie', 'Lyonese Bouchon'] to Restaurant: 1193 converted
```

venue_category changed from ['Middle Eastern Restaurant', 'Caucasian Restaurant', 'Kurdish Restaurant', 'Lebanese Restaurant', 'Persian Restaurant', 'Syrian Restaurant', 'Yemeni Restaurant', 'Israeli Restaurant', 'Jewish Restaurant', 'Doner Restaurant', 'Falafel Restaurant', 'Halal Restaurant', 'Kebab Restaurant', 'Souvlaki Shop', 'Kofte Place', 'Pide Place', 'Shawarma Place'] to M.E. / African Restaurant: 181 converted

venue_category changed from ['Moroccan Restaurant', 'African Restaurant', 'Ethiopian Restaurant'] to M.E. / African Restaurant : 56 converted

venue_category changed from ['Restaurant', 'Comfort Food Restaurant', 'Diner', 'BBQ Joint', 'Steakhouse', 'Burger Joint', 'Seafood Restaurant', 'Fish & Chips Shop', 'Snack Place', 'Fried Chicken Joint', 'Food', 'Mac & Cheese Joint', 'Hot Dog Joint', 'Ice Cream Shop', 'Donut Shop', 'Bubble Tea Shop', 'Bagel Shop', 'Pie Shop', 'Sandwich Place', 'Soup Place', 'Food Truck', 'Street Food Gathering', 'Salad Place', 'Juice Bar', 'Currywurst Joint'] to Restaurant: 593 converted

venue_category changed from ['Gluten-free Restaurant', 'Vegetarian / Vegan Restaurant'] to Restaurant : 69 converted

venue_category changed from ['Fast Food Restaurant', 'Food Court', 'Snack Place', 'Fried Chicken Joint', 'Food', 'Mac & Cheese Joint', 'Hot Dog Joint', 'Ice Cream Shop', 'Donut Shop', 'Bubble Tea Shop', 'Bagel Shop', 'Pie Shop', 'Sandwich Place', 'Soup Place', 'Food Truck', 'Street Food Gathering', 'Salad Place', 'Juice Bar', 'Currywurst Joint'] to Fast Food: 70 converted

venue_category changed from ['Café', 'Coffee Roaster', 'Coffee Shop', 'Pet Café', 'Tea Room', 'Cafeteria', 'Breakfast Spot', 'College Cafeteria'] to Café : 340 converted

venue_category changed from ['Bar', 'Wine Bar', 'Hotel Bar', 'Beer Bar', 'Sports Bar', 'Dive Bar', 'Beach Bar', 'Brasserie', 'Gay Bar', 'Hookah Bar', 'Cocktail Bar', 'Piano Bar', 'Champagne Bar', 'Whisky Bar', 'Roof Deck', 'Speakeasy', 'Lounge', 'Gastropub', 'Irish Pub', 'Beer Garden', 'Brewery', 'Beer Bar', 'Pub'] to Bar / Pub: 859 converted

venue_category changed from ['Nightclub'] to Nightclub: 0 converted

venue_category changed from ['Supermarket', 'Food & Drink Shop', 'Grocery Store', 'Discount Store', 'Organic Grocery', 'Health Food Store'] to Supermarket : 123 converted

venue_category changed from ['Market', 'Farmers Market', 'Flea Market'] to Market : 41 converted venue_category changed from ['Bakery', 'Pastry Shop', 'Cheese Shop', 'Dessert Shop', 'Chocolate Shop', 'Cupcake Shop', 'Gourmet Shop', 'Candy Store', 'Butcher', 'Deli / Bodega', 'Fish Market',

'Trattoria/Osteria'] to Specialty Food: 665 converted

venue_category changed from ['Liquor Store', 'Beer Store', 'Wine Shop'] to Liquor Store : 55 converted venue_category changed from ['Drugstore', 'Pharmacy', 'Optical Shop'] to Pharmacy / Healthcare : 123 converted

 $venue_category\ changed\ from\ ['Convenience\ Store',\ 'Herbs\ \&\ Spices\ Store']\ to\ Convenience\ Store:\ 1$ converted

venue_category changed from ['Salon / Barbershop', 'Spa', 'Health & Beauty Service', 'Massage Studio'] to Beauty : 25 converted

venue_category changed from ['Bookstore', 'Boutique', 'Used Bookstore', 'Shoe Store', 'Furniture / Home Store', 'Clothing Store', 'Arts & Crafts Store', 'Toy / Game Store', "Women's Store", "Men's Store", 'Jewelry Store', 'Accessories Store', 'Leather Goods Store', 'Electronics Store', 'Paper / Office Supplies Store', 'Kids Store', 'Pet Store', 'Lingerie Store', 'Camera Store', 'Music Store', 'Thrift / Vintage Store', 'Kitchen Supply Store', 'Stationery Store', 'Baby Store', 'Carpet Store', 'Outdoor Supply Store', 'Gift Shop', 'Cosmetics Shop', 'Smoke Shop', 'Perfume Shop', 'Miscellaneous Shop', 'Sporting Goods Shop', 'Record Shop', 'Flower Shop', 'Comic Shop', 'Costume Shop', 'Tailor Shop', 'Antique Shop', 'Fabric Shop', 'Pop-Up Shop', 'Mobile Phone Shop', 'Hobby Shop', 'Bike Shop', 'Furniture / Home Store', 'Kitchen Supply Store', 'Carpet Store', 'Garden Center', 'Hardware Store', 'Big Box Store', 'Shopping Mall', 'Shopping Plaza', 'Department Store', 'Automotive Shop', 'Motorcycle Shop', 'Auto Dealership', 'Fishing Store', 'Adult Boutique', 'Newsstand', 'Gun Shop'] to Shopping: 720 converted

venue_category changed from ['Auto Garage', 'Auto Workshop', 'Gas Station'] to Auto: 32 converted venue_category changed from ['Yoga Studio', 'Sports Club', 'Tennis Court', 'Gym', 'Gym / Fitness Center', 'Pool', 'Athletics & Sports', 'Fitness Center', 'Gym Pool', 'Cycle Studio', 'Recreation Center', 'Dance Studio', 'Squash Court', 'Hockey Rink', 'Soccer Field', 'Baseball Field', 'Boxing Gym', 'Volleyball Court', 'Climbing Gym', 'Rock Climbing Spot', 'Basketball Court', 'Hockey Field', 'College Gym', 'Golf Course', 'Martial Arts Dojo', 'College Rec Center'] to Fitness / Sports: 335 converted

```
venue category changed from I'Bowling Alley', 'Gaming Cafe', 'General Entertainment', 'Laser Tag',
'Indie Movie Theater', 'Movie Theater', 'Multiplex', 'Pool Hall', 'Arcade', 'Skating Rink', 'Karaoke Bar',
'Indoor Play Area'l to Urban Entertainment: 136 converted
venue_category changed from ['Theme Park Ride / Attraction', 'Paintball Field', 'Go Kart Track',
'Racetrack', 'Fair', 'Theme Park'] to Outdoor Entertainment: 14 converted
venue_category changed from ['Bed & Breakfast', 'Hostel', 'Hotel', 'Rental Car Location', 'Souvenir Shop', 'Motel', 'Resort', 'Tourist Information Center', 'Tour Provider'] to Hotel / Tourism: 649 converted venue_category changed from ['Recording Studio', 'Design Studio', 'Photography Studio', 'Photography
Lab', 'Lawyer', 'Food Service', 'Event Service', 'Office', 'Entertainment Service', 'Industrial Estate',
'Government Building', 'Tech Startup', 'IT Services', 'Construction & Landscaping', 'Coworking Space',
'Insurance Office', 'Business Service'] to Workplace: 31 converted
venue category changed from ['Bank', 'Post Office', 'Laundry Service', 'Laundromat', 'Credit Union', 'Dry
Cleaner', 'Shipping Store', 'Print Shop', 'Tattoo Parlor' to Service: 40 converted
venue category changed from ['Church'] to Place of Worship: 5 converted
venue category changed from ['Stadium', 'Rugby Stadium', 'Soccer Stadium', 'Track', 'Track Stadium',
'Football Stadium', 'Tennis Stadium'] to Stadium: 17 converted
venue_category changed from ['Circus', 'Comedy Club', 'Concert Hall', 'Jazz Club', 'Opera House',
'Performing Arts Venue', 'Indie Theater', 'Music Venue', 'Theater', 'Rock Club', 'Amphitheater'] to
Performing Arts: 179 converted
venue category changed from ['Museum', 'Art Gallery', 'Art Museum', 'History Museum', 'Science
Museum', 'Planetarium', 'Exhibit', 'Aquarium'] to Museum / Exhibit : 187 converted
venue_category changed from ['Library', 'Community Center', 'Cultural Center', 'Auditorium', 'Event
Space', 'Arts & Entertainment', 'Outdoor Event Space'] to Community Venue: 16 converted
venue_category changed from ['Botanical Garden', 'Cemetery', 'Garden', 'Park', 'Sculpture Garden',
'Skate Park', 'Playground', 'Zoo', 'Zoo Exhibit', 'Dog Run'] to Park: 137 converted
venue category changed from ['Plaza', 'Pedestrian Plaza'] to Plaza: 29 converted
venue category changed from ['Harbor / Marina', 'Waterfront', 'Canal'] to Waterfront: 19 converted
venue category changed from ['Historic Site', 'Memorial Site', 'Monument / Landmark', 'Fountain',
'Outdoor Sculpture', 'Palace', 'Scenic Lookout', 'Castle', 'Windmill', 'Cable Car', 'Street Art'] to
Attraction: 113 converted
venue category changed from ['Nature Preserve', 'Campground', 'Mountain', 'Forest', 'Beach', 'Lake',
'River' to Nature: 60 converted
venue category changed from ['Stables', 'Farm', 'Distillery'] to Agriculture: 14 converted
venue category changed from ['Bus Station', 'Bus Stop', 'Bike Rental / Bike Share'] to Bus / Bike: 125
converted
venue category changed from ['Train Station', 'Metro Station', 'Light Rail Station', 'Tram Station'] to
Rail / Tram: 151 converted
venue category changed from ['Boat or Ferry', 'Pier', 'Boat Rental'] to Boat / Ferry: 20 converted
venue category changed from ['Airport Lounge', 'Airport Service'] to Airport : 6 converted
Too few in category
venue category Community Venue: 16 venues dropped
venue category Outdoor Entertainment: 14 venues dropped
venue category Agriculture: 14 venues dropped
venue category Trail: 10 venues dropped
venue category Platform: 9 venues dropped
venue category Airport: 6 venues dropped
venue category Place of Worship: 5 venues dropped
venue category Bridge: 5 venues dropped
venue category ATM: 5 venues dropped
venue category Building: 4 venues dropped
venue category Intersection: 3 venues dropped
venue category Neighborhood: 3 venues dropped
venue category Tree: 3 venues dropped
venue category Rest Area: 2 venues dropped
venue_category Tunnel : 2 venues dropped
venue category Storage Facility: 1 venues dropped
venue_category Animal Shelter: 1 venues dropped
venue category Canal Lock: 1 venues dropped
venue category Field: 1 venues dropped
```

venue_category Road : 1 venues dropped venue_category Warehouse Store : 1 venues dropped

venue_category Boarding House : 1 venues dropped venue category Taxi Stand : 1 venues dropped

venue category Residential Building (Apartment / Condo): 1 venues dropped

venue category School: 1 venues dropped

111 venues dropped

Data biased or not useful

venue_category Rail / Tram : 151 venues dropped venue category Bus / Bike : 125 venues dropped

venue_category Pharmacy / Healthcare : 123 venues dropped

venue_category Workplace : 31 venues dropped

430 venues dropped

C) References used for venue category grouping

https://en.wikipedia.org/wiki/Geography of Asia#Regions

https://en.wikipedia.org/wiki/Kurdistan

https://en.wikipedia.org/wiki/Caucasus

https://en.wikipedia.org/wiki/List of regions of Latin America#Cultural regions

https://en.wikipedia.org/wiki/List of European cuisines

https://en.wikipedia.org/wiki/

Middle East#Territories and regions usually considered within the Middle East

D) Jupyter notebook

https://gist.github.com/jevel496/7d56ff1bbb9cf7e486de87f1045738d4