

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)		
Cancún, Quintana Roo	M.C. Julio César Ramírez Pacheco	Se propone el temario para la asignatura		
14 Mayo 2010/	Dr. Luis Rizo Domínguez	Laboratorio de Telecomunicaciones		
11 Noviembre 2010	M.C. Iván Alexander Centeno Garcí	Laboratorio de Telecorridificaciones		

Relación con otras asignaturas	
Anteriores	Posteriores
Asignatura(s)	
a) Señales y sistemas	
b) Fundamentos de comunicaciones	
c) Comunicaciones digitales	
d) Redes inalámbricas	
	No aplica
Tema(s)	
a) Representación de señales.	
b) Modulaciones angulares.	
c) Modulaciones digitales ASK, PSK, FSK.	
d) Transmisión de señales inalámbricas.	

Nombre de la as	signatura		Departamento o Licenciatura
Laboratorio de	telecomunicaci	ones	Ingeniería en Telemática
Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IT3439	6	Licenciatura Preespecialidad

Tipo de asignatura	Horas de	e estudio		
	нт	HP	ТН	н

Laboratorio 0 48 48 48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Revisar los conceptos de comunicaciones analógicas, digitales y de procesado digital de señales para la comprensión del funcionamiento de los bloques funcionales que componen a un sistema de comunicación moderno.

Objetivo procedimental

Operar con los principales conceptos de señales, modulaciones y de procesado de señales para el diseño de circuitos AM, FM, ASK, FSK, PSK, PSK, Q-PSK, Diezmado de señales y filtros digitales.

Objetivo actitudinal

Fomentar el trabajo colaborativo para el desarrollo de proyectos integrales en equipos.

Unidades y temas

Unidad I. SEÑALES DE COMUNICACIÓN

Explicar los fundamentos de señales y sistemas para el diseño e implementación de prácticas de laboratorio que involucren el procesamiento de señales analógicas.

- 1) Operaciones básicas con señales.
 - a) Medición de las características de señales.
 - b) Suma y resta en el dominio del tiempo y frecuencia.
 - c) Construcción de un multiplicador de señales
- 2) Medición del ancho de banda de señales.
- 3) Muestreo de señales
- 4) Filtrado de señales.

Unidad II. MODULACIONES ANALÓGICAS Y DIGITALES

Aplicar los principios de la teoría de modulación analógica y digital para la implementación de circuitos de modulación

angular, por pulsos y codificaciones.
1) Modulación AM.
2) Modulación FM.
3) Modulaciones digitales
4) Transmisión de señales.
a) PCM.
b) Modulación delta.
5) Modulaciones por pulsos.
a) PAM.
b) PPM
c) PWM.
Unidad III. PROCESAMIENTO DIGITAL DE SEÑALES
Practicar con las principales técnicas de procesado digital de señales para su aplicación en un procesador digital de señales comercial.
1) Generación de señales discretas mediante el procesador de señales
2) Implementación de operaciones básicas
a) Corrimiento.
b) Diezmado.
c) Convolución
3) Transformada rápida de Fourier.
4) Filtrado digital de señales discretas.

- a) Filtros FIR.
- b) Filtros IIR.

Actividades que promueven el aprendizaje

Docente	Estudiante
Preguntas guía. Lectura dirigida.	Solución de ejercicios y(o problemas. Resúmenes. Investigación documental.

Actividades de aprendizaje en Internet

http://www.jhu.edu/signals/

http://www.itee.uq.edu.au/~coms3100/Lecture%20Notes/

http://www.ece.ucsb.edu/courses/ECE146/146A_W10Madhow/default.html

http://ecs.victoria.ac.nz/Courses/ELEN303_2009T1/LectureNotes

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes	
Exámenes	15	
Tareas	15	
Circuitos	30	
Reportes de prácticas	30	
Participaciones	10	
Total	100	

Fuentes de referencia básica

Bibliográficas

Bracewell, Ronald(2000). The Fourier transforms and its applications. Boston: McGraw-Hill.

Haykin, S. (2000). Communication systems. NewYork: Wiley.

Haykin, S. y Moher, M.(2006). Introduction to Analog and Digital Communications. NewYork: Wiley.

Mitra, S. K. (2002). Digital Signal Processing: A Computer Based Approach. New York: McGraw-Hill.

Proakis, J. G; Manolakis, D. G. (2001). Tratamiento digital de señales, principios, algoritmos y aplicaciones. México: Prentice Hall.

Proakis, J. G. y Salehi, M.(2002). Communication systems engineering. Upper Saddle River: Pearson

Proakis, J. G. y Salehi, M.(2005). Fundamentals of communication systems. Upper Saddle River: Pearson

Web gráficas

Johns Hopkins university (2010). Signals and Systems demonstrations. Recuperado el 21 de Mayo, 2010 de http://www.jhu.edu/signals/

The University of Queensland (2010). Lecture notes on introduction to communication. Recuperado el 19 de Mayo, 2010 de http://www.itee.uq.edu.au/~coms3100/Lecture%20Notes/

University of California, Santa Barbara (2010). Lecture notes on Communications I. Recuperado el 18 de Mayo, 2010 de http://www.ece.ucsb.edu/courses/ECE146/146A_W10Madhow/default.html

University of Wellington (2010). Lecture notes on introductory signal processing. Recuperado el 10 de Mayo, 2010 de http://ecs.victoria.ac.nz/Courses/ELEN303_2009T1/LectureNotes

Fuentes de referencia complementaria

Bibliográficas

Antoniou, A. (2006). Digital Signal Processing: signals, systems and filters. New York: McGraw-Hill.

Proakis, J. G; Salehi, M. y Bauch, G. (2003). Contemporary communication systems using MATLAB. New York: CL-Engineering.

Shenoi, B. A. (2006). Introduction to Digital Signal Processing and Filter Design. Hoboken, New Jersey: John Wiley & Sons.

Tan, L. (2008). Digital Signal Processing: Fundamentals and Applications. San Diego, CA: Academic Press.

Ziemer, R. E. y Tranter, W. (2001). Principles of Communications: Systems, Modulation and Noise. Singapore: John Wiley &

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Licenciatura en Electrónica, comunicaciones o afín, con maestría en Telecomunicaciones o comunicaciones. Preferentemente con Doctorado en sistemas de comunicaciones o telecomunicaciones.

Docentes

Experiencia docente de tres años de en el área de comunicaciones, en particular impartiendo asignaturas de telecomunicaciones, telefonía moderna, sistemas de comunicaciones, comunicaciones digitales, transmisión de señales, análisis de Fourier y señales y sistemas.

Profesionales

Experiencia comprobable mínima de tres años en el área de administración de sistemas de comunicaciones, telecomunicaciones o diseño y administración de redes de comunicaciones