Lab and Homework #4

Introduction to Operating Systems CS-UY 3224 | CS-UY 3224G

Mirna Džamonja, email md5961@nyu.edu Due date for the Homework problems : October 2nd, 2023 by 5 PM, Paris time Please hand in through the *Assignments* option on *Brightspace*.

Question 1: A bit of commands in Unix/Linux.

Please work on this question from the Terminal.

- Check the paging situation on your computer by doing vm_stat. Familiarise yourself with this command by reading its man page.
- Run the top command. What does it do (run the man)? What information does it give you about memory?

Nothing to hand in for this exercise.

Question 2: Dynamic allocation of memory in C.

In this exercise you are asked to write a C program that determines the prime numbers up to a number given by the user. The program will have to dynamically allocate the memory needed for the task. You should use the function malloc of C.

To do at home and hand in: Your C program.

Question 3: Memory allocation algorithms.

Here we are practising the memory algorithms that we learned. The calculations might be a bit time-consuming, but they are simple. The assumptions that we make are that:

There are four jobs, A, B, C, D such that:

- The jobs have already been segmented, so every job has to fit in a single continuous chunk of memory.
- If needed, MMU has the right to stope and relocate jobs in order to compact memory.

Suppose that you have the following situation, in a memory allocated between addresses 0 and 3400, as follows:

A takes the addresses 0-500, B takes 900-1600, C takes 1900-2300, D takes 3100-3400.

The following actions happen, in this order:

- E starts and requests 300 units
- A requests 300 more units
- D exits

- F starts and requests 700 units
- C exits
- G starts and requests 900 units.

Give the contents of the memory under the following allocating algorithms:

- first-fit
- best fit
- worst-fit

I suggest to make a graphic representation first, in the style of OSTEP16-17 or other, as then the calculations become easier to visualize.

To do at home and hand in: All the work for this problem. What is the best algorithm for this example?

Question 4: Git.

A bit more of git. Do the exercise on the git tutorial site.

https://kbroman.org/github_tutorial/pages/fork.html

To do at home and hand in: Give me a link/access to what you have done.