CS350: Data Structures

B-Trees

James Moscola Department of Physical Sciences York College of Pennsylvania

Introduction

 All of the data structures that we've looked at thus far have been memory-based data structures

 What if we have more data than we can store in main system memory?

- What if we need to store a data structure on disk?
 - Are the data structures we've talked about thus far suitable for disk?
 - What features of previous data structures might need to be altered?

Memory Access vs. Disk Access

- Following pointers in memory is a relatively quick operation when compared to following pointers on disk
- Hard disk drives are very slow
 - A 7200 RPM disk drive rotates 7200 times in one minute (each revolution takes 1/120 of a second ... ~8.3 ms)
 - On average, must spin the disk half way to get to the desired data
 - For this example, can do about 120 disk accesses per second
 - A 3 GHz processor can compute the result of ~3 Billion instructions per second (6 Billion if dual core)
 - A disk access is about 25 Million times SLOWER than a modern processor (i.e. the processor can execute 25 Million instructions in the time that it takes one disk access to finish)

Memory Access vs. Disk Access

- Storing large amounts of data in a binary tree on disk could take very long to access
 - Given a perfectly balanced binary tree, the number of disk accesses to search for an element on disk is O(log N)
 - May take on the order of several seconds
 - Given an unbalanced binary tree (worst case) the number of disk accesses to search for an element on disk is O(N)
 - Example: A tree with 10 Million nodes stored on disk
 - May require 10 Million disk accesses to find last node. At 8.3ms/disk access, that's 83 million ms (~23 hours)

B-Tree Idea

- Want to reduce the number of disk accesses to a small number (i.e. 3 or 4)
 - Increase the fanout of a tree (i.e. increase the # of children at each node)
- Reduce the height of the tree
 - Reduces the number of disk accesses required to traverse tree
- Requires extra computation, but processor time is very cheap compared to disk access time

B-Trees

- The number of children that a node may have is M (an M-ary tree)
- Each node requires M-1 keys to determine which branch to take when traversing the tree
 - In a binary tree M=2, and therefore it requires only 1 key at each node to determine which child pointer to follow

- A B-tree of order M is an M-ary tree with the following properties:
 - (1) Data items are stored at leaf nodes
 - (2) Non-leaf nodes store as many as *M-1* keys to guide the searching process; key *i* represents the smallest key in subtree *i+1*
 - (3) The root is either a leaf or has between 2 and M children
 - (4) All non-leaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children
 - (5) All leaf nodes are at the same depth and have between $\lceil L/2 \rceil$ and L data items, for some value L

B-Tree Example

(1) All data items are stored in the leaf nodes

(2) Non-leaf nodes store as many as *M*-1 keys to guide the searching process; key *i* represents the smallest key in subtree *i*+1

(4) All non-leaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children

(5) All leaf nodes are at the same depth and have between $\lceil L/2 \rceil$ and L data items, for some value L

In this example, L=5 so each leaf node must have between 3 and 5 data items

B-Tree Insertion

B-Tree Insertion

- What if there is no space available in leaf node during insertion?
 - The leaf node is split into two separate leaf nodes and the existing keys are redistributed between the new leaf nodes
- Consider inserting the value 55 into the following tree
 - The leaf node where 55 should be inserted is full

B-Tree Insertion (With Full Leaf Node)

B-Tree Insertion (With Full Leaf and Parent Nodes)

B-Tree Insertion

- When a node is split, its parent gains a child
- If the parent has already reached its limit of children, then the parent must be split as well
 - Must continue splitting all the way up the tree until a parent node is found that does not need splitting
 - If the root is split, then a new root must be created with the older, split root as its children (root is allowed to have only 2 children)

- To delete from a B-Tree, find the item that needs to be removed and remove it
 - May cause violation of B-Tree rules if the leaf that the item is deleted from contains only the minimum number of items
 - Remember, each node must contain between \[\[\L/2 \] \] and \(L\) data items
 - If a violation occurs, a node can gain the minimum number of items by adopting an item from a neighboring leaf node
 - If the neighbor is ALSO already at its minimum number of items, then the two leaf nodes can be combined to form a single full leaf node.
 - This may cause the parent to fall below the minimum number of children, in which case, the same adoption/combining strategy is used to satisfy the B-Tree properties

