Digital image processing and analysis 5. Image enhancement: global operations

Professor Ela Claridge School of Computer Science

Previous lecture:

- Digital representation of colour images
 - Colour mixing (vector arithmetics)
 - Pixel arrays
 - Colour models

In this lecture we shall find out about:

- Image enhancement and restoration
 - Image histogram
 - Manipulating image brightness
 - Contrast enhancement
 - LUT operations

Image enhancement Scope

- Elimination or significant reduction of image distortions caused by imperfect image generation process
- Improvement of visual qualities of an image (brightness, contrast, sharpness, etc.)

Image enhancement Causes

- Contrast distortions
 - Causes
 - exposure error
 - limited dynamic range of sensors

- Geometric distortions (not covered in the lectures)
 - Causes
 - sensor or camera geometry
 - lens geometry (e.g. wide-angle)
 - object geometry (e.g. projection of the Earth)

Image enhancement Contrast enhancement: methods

- Contrast enhancement
 - Exposure correction statistical methods
 - "histogram manipulation"
 - Sensor distortion correction camera model
 - "de-illumination"
 - Sharpening filtering

- Histogram is a frequency distribution graph.
- It shows the number of pixels in the image having a particular image value or a range of values.

Number of pixels

Pixel value

Two images with the same **statistical distribution** of pixel values but with different **spatial distribution** of pixel values

- Image properties depicted by histogram
 - Contrast
 - low most pixels within a small portion of grey scale
 - high bimodal histogram with peaks at outer brightness regions

0

Dynamic range

- how widely occupied the grey scale is
- small all the pixels in a small portion of a grey scale
- large wide grey level scale distribution

0

- Desired characteristics
 - Medium or high contrast
 - Large dynamic range

Low contrast, low dynamic range

Medium contrast, high dynamic range

Source: By original Phillip Capper, modified by User: Konstable - modified Hawkes Bay NZ.jpg, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=855363

Image enhancement Histogram manipulations

- Aim: to "redistribute" the histogram so that contrast and dynamic range may be enhanced.
- General principles
 - The only information used is the statistics of image values (referred to as statistical image model)
 - The same transformation is applied to each pixel (referred to as pixel point processing)
- Mathematical notation

$$I'(x,y) = T(I(x,y))$$

x, y - pixel location

T-transformation

 $I-original\ image$

I' – image after transformation

Image enhancement Histogram manipulations: shifting

- The effect on the image: lightning or darkening.
- The effect on the histogram: shifted to the right or left from that of the original.
- The operation: adding or subtracting a constant value to all pixels.
- Mathematical notation:

$$I'(x,y) = I(x,y) + B$$

B > 0 - increasing brightness

B < 0 - decreasing brightness

Image enhancement Histogram manipulations: shifting

$$I' = I - 70$$

Image enhancement Histogram manipulations: shifting

Image enhancement Histogram manipulations: stretching

- The effect on the image: changing contrast and / or dynamic range.
- The effect on the histogram: broader or narrower distribution in relation to that of the original.
- The operation: multiplying all pixels by a constant value.
- Mathematical notation:

$$I'(x,y) = C \cdot I(x,y)$$

C > 1 - broadening distribution, increasing contrast <math>0 < C < 1 - narrowing distribution, decreasing contrast

Image enhancement Histogram manipulations: stretching

 $I' = 0.65 \cdot I$

Image enhancement Histogram manipulations: stretching

Image enhancement Histogram manipulations: shift and stretch

Max: 85

Mean: 29.000

StdDev: 14.039

 $I' = 3 \cdot (I - 119)$

Mode: 18 (4689)

Image enhancement Histogram manipulations: equalisation

- The effect on the image: visually enhancing dynamic range, e.g. lightening underexposed areas, darkening overexposed areas.
- The effect on the histogram: image values distributed across the whole range, spaced in proportion to the number of pixels with a given value in the original.
- The operation: applying the inverse of the cumulative histogram (histogram's probability distribution function, pdf).
- Mathematical notation:
 - See Histogram equalization in the list of further readings

Image enhancement Histogram manipulations: equalisation

Mode: 54 (4689)

StdDev: 60.957

Image enhancement LUT operations

- Indexed colour (see previous lecture)
 - A pixel value (or a value of a pixel component) is an index (a pointer) to a table containing colour definitions

Pixel **colour** values

Pixel **image** values

Image enhancement LUT operations

- Instead of manipulating pixel values, we can manipulate the contents of the LUT.
- The same results can be achieved but much faster.
- On a 1,000x1,000 image (1,000,000 pixels) with 256 grey levels
 - Using operations on pixel values: million operations
 - Using operations on LUT: 256 operations

Image enhancement LUT operations (equivalent to histogram shift)

Original mapping

Change LUT

Apply LUT

Image enhancement LUT operations (equivalent to histogram stretch)

Change LUT

Apply LUT

In this lecture we have covered:

- Improving image quality
 - Manipulating image brightness
 - Contrast enhancement
 - Image histogram
 - LUT operations

Next lecture:

- Common types of image corruption
 - Noise
 - Blur
- Image frequencies
- Tools and methods for noise removal
 - Image profile
 - Image filtering operations
 - Convolution
 - Low-pass (smoothing) filters

Further reading and experimentation

Book chapters

- Sonka, M. Hlavac, V. Boyle, R. (various editions) Image Processing, Analysis and Machine Vision, Chapman & Hall Computing, 4.1
- Gonzalez, R.C. & Woods, R.E. (various editions) Digital Image Processing, Addison-Wesley, Ch. 4.
- Contrast enhancement
- http://micro.magnet.fsu.edu/primer/digitalimaging/russ/expandingcontra st.html
- http://micro.magnet.fsu.edu/primer/digitalimaging/imageprocessingintro. html
- Histogram equalization www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf
- **Gamma correction**: http://www.cambridgeincolour.com/tutorials/gamma-correction.htm
- https://ledshield.wordpress.com/2012/11/13/led-brightness-to-your-eye-gamma-correction-no/
- http://www.dfstudios.co.uk/articles/programming/image-programmingalgorithms/image-processing-algorithms-part-6-gamma-correction/