

OPTIMIZATIONS OF THE SKIP-GRAM MODEL WITH NEGATIVE SAMPLING

Milinaire Cédric

Chair of Data Science University of Passau, Germany

1 April 2019

Overview

Overview of my thesis

- Word embeddings are vector representations of words
- Word embeddings are a powerful tool that facilitate NLP
- Skip Gram Model with negative sampling, is a simple and powerful algorithm (Mikolov et al.) [1]
- This work focused on optimizing the convergence time
- Techniques used:
 - Advanced optimizers
 - Input shuffling

Outline

- Overview of my Thesis
- Background
 - Skip Gram Model
 - Skip Gram Model with negative Sampling
- Implementation
- Results
- O Discussion
- 6 Continuation of the Thesis
- Conclusion

Background

- Skip Gram Model
- Skip Gram with Negative Sampling (SGNS)

Main idea: train a network on a "fake task" then use the weights as embedding.

- The fake task:
- \bullet Given a word w guess the context words.

Network achitecture

(Source: http://mccormickml.com/2016/04/19/word2vectutorial-the-skip-gram-model/)

Softmax:

$$p(c|w) = \frac{exp(v_c^{'} v_w)}{\sum_{i=1}^{T} exp(v_i^{'} v_w)}$$
 (1)

 \boldsymbol{v}' is the output layer vector \boldsymbol{v} is the input layer vector Negative Sampling

- Distinguish data from noise ⇒ reduce problem to a logistic regression.
- Guess k random samples
- For each pair (w, c) we get:

$$\underset{\theta}{\operatorname{arg\,max}} \ log(\sigma(v_c^{'\mathsf{T}}v_w) + \sum_{k \in K} log(\sigma(-v_k^{'\mathsf{T}}v_w)) \ (2)$$

• Uses SGD as an optimizer

State of the Art

- word2vec (Mikolov et al. 2013) [1]
- Parallelizing Word2Vec in Shared and Distributed Memory (Ji et al. 2016)[2]
- Acceleration of Word2vec Using GPUs (Seulki and Youngmin 2016) [3]
- Gensim (Řehůřek and Sojka) [4]

Research Questions:

Can the convergence time of the skip Gram Model be optimized by the use of:

- Advanced optimizers
- and
 - Input Shuffling

while at the same time maintaining it's accuracy?

Our Implementation

Main Idea:

- Create a large batch of training samples, i.e 2000 pairs
- Compute loss for each pair
- Use sum over all pairs as loss for batch

Implementation

Implementation

- Setting
 - Dataset
 - Network Architecture
- Optimization Process

Dataset

- Text8 dataset
- First 30MB of clean text from wikipedia
- Vocabulary ≈ 250 k word (small)
- \bullet Subsampling \implies 50% decrease of data set size

Optimization process

Optimization techniques:

- Advanced Optimizers
 - Momentum
 - Nesterov accellerated Momentum
 - Adagrad
 - Adam
- Input Shuffling

Results

Results

- Rating our work
 - Word similarity
 - Convergence time
- Results
- Discussion
 - Comparison to Gensim and other related work

Word similarity

What is word similarity?

- Two word embeddings are close to each to other if their cosine distance is small.
- Pairs of word rated between 1 and 10 on their similarity,
- ['FBI', 'investigation', '8.31', 'Mars', 'scientist', '5.63']
- We are going to rank our model on the corelation between the distance of the word pairs and the human score.

Convergence time

- Defined convergence time based on word similarity
- Early Stoppage if: $\rho \rho_{prev} < 0.009 \lor \rho > 0.66$
- No more than 20 epochs.

Word similarity vs. Epoch

Discussion

Convergence time vs Gensim

Model	Convergence Time	Word Similarity
SGD	11	0.65
SGD w/shuffling	7	0.66
Adam	3	0.66
Adam w/ shuffling	2	0.66
Gensim	4	0.66

Convergence time comparison

Discussion

Questions that arises from the Thesis

- Is the batched version hindering performance?
- Can the results be replicated on other datasets?
- Can the results be replicated on other tasks?

Delete double occurrences

How can we improve the batched approach?

Problem:

Words appear more than once in a batch \rightarrow performance loss

Solution:

Create batch of different sizes, each batch will hold at most one pair per context word

Sentence = The fox jumps over the dog

Example Dictionnary:

```
{'The': ['fox', 'jumps'],
  'fox': ['jumps', 'The', 'over'],
  'jumps': ['over', 'fox', 'the', 'The'],
  'over': ['the', 'jumps', 'dog', 'fox'],
  'the': ['dog', 'over', 'jumps'],
  'dog': ['the', 'over']})
```

Example Batches

```
Batch 0: ('The', 'fox'), ('The', 'fox'),
        ('The', 'fox'), ('fox', 'jumps'),
        ('fox', 'jumps'), ('jumps', 'over'),
        ('jumps', 'over'), ('over', 'the'),
        ('over', 'the'), ('the', 'dog'),
        ('the', 'dog'), ('dog', 'the'), ('dog', 'the')
Batch 1: ('The', 'jumps'), ('The', 'jumps'),
        ('The', 'jumps'), ('fox', 'The'),
        ('fox', 'The'), ('jumps', 'fox'),
        ('jumps', 'fox'), ('over', 'jumps'),
        ('over', 'jumps'), ('the', 'over'),
        ('the', 'over'), ('dog', 'over'), ('dog', 'over')
Batch 2: ('fox', 'over'), ('fox', 'over'),
        ('fox', 'over'), ('jumps', 'the'),
        ('jumps', 'the'), ('over', 'dog'),
        ('over', 'dog'), ('the', 'jumps'), ('the', 'jumps')
Batch 3: ('jumps', 'The'), ('jumps', 'The'),
        ('jumps', 'The'), ('over', 'fox'), ('over', 'fox')
```

Delete double occurrences

Problem of the Solution:

Average Batch Size = 200, i.e training takes too long

Distribution of Words

Box plot showing the distribution of the number of pairs per context word, w/o subsampling

Distribution of Words

Results of the Distribution

- A few words are responsible for the majority of pairs.
- They almost have the same context words
- Idea: delete outliers from dataset

Deletion of outliers

First Results

Model	Convergence Time	Word Similarity
SGD	11	0.65
SGD w/shuffling	7	0.66
Adam	3	0.66
Adam w/ shuffling	2	0.66
Gensim	4	0.66
Adam w/o outliers	1	0.66

Deletion of outliers

Future Work

- Creating the perfect batch
- Analyze the deletion of outliers on other (bigger) datasets.
- Confirm all results on other task

Conclusion

- Skip Gram Model powerful yet simple tool to create word embedings
- Advanced optimizers especially Adagrad and Adam improve convergence time
- Improved convergence time, while maintaining accuracy
- Deletion of outliers is a promising aspect
- Further work includes more testing on different datasets and tasks

References

BAE, SEULKI AND YI, YOUNGMIN, 2016, Acceleration of Word2vec Using GPUs

Radim Řehůřek and Petr Sojka, 2010, Software Framework for Topic Modelling with Large Corpora