

Relational Algebra

Dr. Munesh Singh

Relational Algebra

Dr. Munesh Singh

Indian Institute of Information Technology
Design and Manufacturing,
Kancheepuram
Chennai-600127

January 31, 2019

What is Relational Algebra?

Relational Algebra

Dr. Munes Singh

Database

- Every database management system must define a query language to allow users to access the data stored in the database.
- Relational Algebra is a procedural query language used to query the database tables to access data in different ways.

Primary Operation

Relational Algebra

- The primary operations that we can perform using relational algebra are:
- Select (σ)
- Project (Π)
- **③** Union (∪)
- Set Different (-)
- Intersection (∩)
- O Cartesian Product (X)
- Rename (ρ)

Basic Relational Algebra Operations

Relational Algebra

- Relational Algebra divides in various groups:
- Unary Relation Operations
 - SELECT
 - PROJECT
 - RENAME
- Relational Algebra Operation From Set Theory
 - UNION
 - INTERSECTION
 - DIFFERENCE
 - CARTESIAN PRODUCT
- Binary Relation Operations
 - JOIN
 - DIVISION

SELECT (σ)

Relational Algebra

- The SELECT operation is used for selecting a subset of the tuples according to a given selection condition
- Select operation selects tuples that satisfy a given predicate.
- $\sigma_p(r)$
- ullet σ is the predicate
- r stands for relation which is the name of the table
- p is preposition logic

Relational Algebra

Dr. Munesł Singh

Example

- Account(ano,bname,bal)
- Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

- Select all loan tuples where branch name is Hyderabad
- $\sigma_{bname="Hyderabad"}(Loan)$
- Select all loan tuples where branch name is "Hyderabad" and loan amount greater than 5000

Relational Algebra

Dr. Munesl Singh

Example

- Account(ano,bname,bal)
- Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

- Select all loan tuples where branch name is Hyderabad
 - $\sigma_{bname="Hyderabad"}(Loan)$
- Select all loan tuples where branch name is "Hyderabad" and loan amount greater than 5000
- $\sigma_{bname}=$ " Hyderabad" \land amt>5000 (Loan)

Projection (Π)

Relational Algebra

- The projection method defines a relation that contains a vertical subset of Relation.
- This helps to extract the values of specified attributes to eliminates duplicate values.
- \bullet $\Pi_{A1,A2,..An}(r)$
- Π is the predicate
- r stands for relation which is the name of the table
- A1,A2,...An is Attributes

Relational Algebra

Dr. Munesl Singh

Example

- Account(ano,bname,bal)
- Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr, ano)
- Borrower(cname,cno)

- List all loan number and the amount of the loan
- $\Pi_{Lno,amt}(Loan)$
- Find those customers who lives in "pune"

Relational Algebra

Dr. Munesl Singh

Example

- Account(ano,bname,bal)
- Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

- List all loan number and the amount of the loan
 - $\Pi_{Lno,amt}(Loan)$
- Find those customers who lives in "pune"
- $\Pi_{cname}(\sigma_{city="pune"}(customer))$

Selection and Projection Query

Relational Algebra

Example

- Account(ano,bname,bal)
 - Branch(bname,bcity,asset)
 - Customer(cnamr,cstreet,ccity)
 - Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

- Find the account no where balance is less than 1000?
- Find those loan number which are from SBI kandagi branch with amount>1000
- Find branch name and branch city with assert more than 100000.

Union (∪)

Relational Algebra

- It includes all tuples that are in tables A or in B.
- For a union operation to be valid, the following conditions must hold:
 - R and S must be the same number of attributes
 - Attribute domain need to be compatible.
 - Duplicate tuples should be automatically removed

Relational Algebra

Example

- Account(ano,bname,bal)
 - Branch(bname,bcity,asset)
 - Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

Example

- Find the name of all banks customers who have either an account or a loan or both
- $\Pi_{cname}(borrower)$
- $\Pi_{cname}(depositior)$
- $\Pi_{cname}(borrower) \cup \Pi_{cname}(depositior)$

¥

Set Difference (-)

Relational Algebra

- The result of A B, is a relation which includes all tuples that are in A but not in B.
- The two-operand relations A and B should be either compatible or Union compatible.

R

• It should be defined relation consisting of the tuples that are in relation A, but not in B.

A B	1 2	R DIFFERENCE S
D	3	
F	4	B 2
E	5	F 4
		E 5
S		
A	1	S DIFFERENCE R
C	2	
D	3	C 2
E	4	E 4

Relational Algebra

Example

- Account(ano,bname,bal)
 - Branch(bname,bcity,asset)
 - Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

Example

- List all customer names who are having an account but no loan from the bank
- $\Pi_{cname}(borrower)$
- Π_{cname}(depositior)
- $\Pi_{cname}(depositor) \Pi_{cname}(borrower)$

>

Intersection (\cap)

Relational Algebra

Dr. Munesl Singh

- Defines a relation consisting of a set of all tuple that are in both A and B. However, A and B must be union-compatible.
- The attribute name of A has to match with the attribute name in B.

R	
A	1
В	2
D	3
F	4
E	5

S	
A	1
С	2
D	3
E	4

R |NTERSECTION S

A	1
D	3

Relational Algebra

Example

- Account(ano,bname,bal)
 - Branch(bname,bcity,asset)
 - Customer(cnamr,cstreet,ccity)
 - Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

Example

- Find all customer who have a loan and account both on the bank
- Π_{cname}(borrower)
- Π_{cname}(depositior)
- $\Pi_{cname}(depositor) \cap \Pi_{cname}(borrower)$

>

Cartesian Product (X)

Relational Algebra

Dr. Munesh Singh

- Find customer name who has taken the loan from "pune" branch
- $\Pi_{cname}(\sigma_{borrower.Lno=Loan.Lno\land bname="pune"}(borrower\ X\ loan))$

borre			cname	borr.	rowerx loan Lno	loan lBnam d	amt
<u>c1</u>	11		cl	11	11	pune	400000
c2	12		c1	11	12	noida	600000
c3	12		c2	12	11	pune	400000
			c2	12	12	noida	600000
loa	n		c3	12	11	pune	400000
Lno	bname	amt	c 3	12	12	noida	600000
11	pune	400000					
12	noida	600000					

Rename Operation (ρ)

Relational Algebra

Dr. Munes Singh

- The results of relational algebra are also relations but without any name.
 - The rename operation allows us to rename the output relation
- Denotes: $\rho_{newr}(oldr)$, $\rho_{newr(A1,A2,--An)}(oldr)$

- Account(ano,bname,bal)
- Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

Relational Algebra

Dr. Munesh Singh

Example

• Find out the maximum account balance in the bank $\Pi_{act.bal} - \Pi_{act.bal}(\sigma_{act.bal} <_{a.bal}(account \ X \ \rho_a(account)))$

Acc x p_a(Acc)

$A = A P_a(A = C)$								
Α	Acc			Acc.	_			
ano	bname	bal	Acc.ano	bname	Acc.bal	a.ano	a.bnam	e a.bal
a1	b1	100	a1	b1	100	a1	b1	100
a2	b2	500	al	b1	100	a2	b2	500
a3	b3	400	al	b1	100	a3	b3	400
			a2	b2	500	a1	b1	100
			a2	b2	500	a2	b2	500
			a2	b2	500	a3	b3	400
			a3	b3	400	a1	b1	100
			a3	b3	400	a2	b2	500
			a3	b3	400	a3	b3	400

Join Operations

Relational Algebra Dr. Munesh

- Join operation is essentially a cartesian product followed by a selection criterion.
- JOIN operation also allows joining variously related tuples from different relations.
- Types of Joins:
 - Inner join(outcome/result contains only the matching tuple)
 - Theta join
 - EQUI join
 - Natural join
 - Outer join(The result will contain all the tuples from one or both of the relation)
 - Left Outer join
 - Right Outer join
 - Full Outer join

Theta Join \bowtie_{θ} & Equi Join

Relational Algebra

- (S) $\bowtie_{\theta}(R)$, where θ is a condition
- θ condition included comparative operators =, >, <, >=, <=, \neg
- I want to purchase both desktop and laptop but the price of desktop should be lower than laptop
 - $\Pi_{lpbrand, deskbrand}((\mathsf{Desktop}) \bowtie_{desktop.price < laptop.price}(\mathsf{Laptop}))$

Desl	ktop		Laptop		
desk brand	price	lp brand	price		
HP	50K	Dell	40k		
LG	40K	Asus	50k		
Acer	30K	Mac	90k		
Dell	70K	Lenovo	30k		

Natural Join ⋈

Relational Algebra

Dr. Munesl Singh

Course **Student** snamesage sno cname fees sno 21 n1s1s1c1 1000 n2 22 s3**c**3 s23000 23 n3 s5c5 s35000 n4 24 s4

sno	sname	sage	cname	fees
s1	n1	21	c1	1000
s3	n3	23	c3	3000

Left Outer Join

Relational Algebra

Student				Course			
	sno	sname	sage		sno	cname	fees
	s1	n1	21	•	s1	c1	1000
	s2	n2	22		s3	c 3	3000
	s3	n3	23		s5	c5	5000
	s4	n4	24				

sno	sname	sage	cname	fees
s1	n1	21	c1	1000
s2	n2	22	Null	Null
s3	n3	23	c3	3000
s4	n4	24	Null	Null

Right Outer Join

Relational Algebra

Student			Co	Course		
	sno	sname	sage	sno	cname	fees
	s1	n1	21	s1	c1	1000
	s2	n2	22	s3	c 3	3000
	s3	n3	23	s5	c5	5000
	ς4	n4	24			

sno	sname	sage	cname	fees
s1	n1	21	c1	1000
s3	n3	23	c3	3000
s5	Null	Null		5000

Full Outer Join

Relational Algebra

Stude	ent		Course			
sno	sname	sage		sno	cname	fees
s1	n1	21	•	s1	c1	1000
s2	n2	22		s3	c 3	3000
s3	n3	23		s5	c5	5000
s4	n4	24				

sno	sname	sage	cname	fees
s1	n1	21	c1	1000
s2	n2	22	Null	Null
s3	n3	23	c3	3000
s4	n4	24	Null	Null
s5	Null	Null	c5	5000

Division Operation

Relational Algebra

- The emp who works on all the project in company
- **Def:** if R(x)=R1(z) % R2(y) then relation R(x) is all the tuples t(x) in R1(z) that appears in R1 in combination with every tuple from R2(y), where Z=xUy.
- Result contain the attribute (R1-R2)

	R1	R2	R1%R2=?	R	
sno	pno	p.no		s.no	
s1	pl	p1	=	s1	
s1	р3	p4		s4	
s1	p2				
s2	p1	ı			
s1	p4				
s2	p2				
s4 s4	p1				
s4	p4				

Division Example

Relational Algebra

Dr. Munesl Singh

Example

- Account(ano,bname,bal)
 - Branch(bname,bcity,asset)
- Customer(cnamr,cstreet,ccity)
- Loan(Lno,bname,amt)
- Depositor(cnamr,ano)
- Borrower(cname,cno)

- Find all customers who have account at all branches of Delhi
- $r1=\Pi_{bname}(\sigma_{bcity="Delhi"}(branch))$
- $r2=\Pi_{cname.bname}(depositor \bowtie account)$
- r = r1%r2

Class Assignment

Relational Algebra

Dr. Munes Singh

Use these Relations to solve relational algebra quiries

- employees(eid,name,salary,did,mdid)
- projects(pid,description)
- workson(eid,pid, hours)
- departments(did, location)

Quiries

- List the name of the project that have employees from the systems department working less than 5 hours. Pid is also the name of the project.
- List the name of employees with salary greater than their manager's salary

Class Assignment

Relational Algebra

Dr. Munesl Singh

Quiries

- List the name of employees working on all projects.
- List the name of employees making more than 100,000 rs and working on zero projects
- List the name of employees working on both projectX and projectY