NeXus Rules and Details

Mark Könnecke

Paul Scherrer Institute Switzerland

May 9, 2010

Overview

- NeXus coordinate systems
- File structural rules
- Rules for storing data items
- Rules for special applications
- Special NeXus groups

McStas Coordinate System

NeXus Simple Coordinate System

Polar_angle

Polar angle is always relative to the previous component

CIF like Coordinates (Proposed)

- Additional fields in base classes: transform, x_translation,
 y translation, z translation, aequatorial angle
- Pcurrent = op1 * op2 * op3 * ... * P0
- transform is a komma separated list of axis to apply to the component to get into position.
- Additional data attributes:
 - type: translation or rotation
 - vector: rotation or translation axis
 - offset: offset to center of component
- Use this for documentation or arbitrary axis specifications

NeXus Default Coordinates (CIF like)

- polar_angle: type= rotation, vector= 0,1,0, offset= 0, 0,
 -distance
- azimuthal angle: type=rotation, vector 0,0,1
- transform: azimuthal angle, polar angle

NXgeometry

• Special group structure which can be added to any base class

```
geometry: NXgeometry
translation: NXtranslation
translation [3]
shape: NXshape
shape: nxbox|sizes[]inder|nxsphere,
orientation: NXorientation
vector[3]
```


NeXus General Rules

- NeXus reserves the prefix NX for group names.
- Store as much as possible
- A NeXus file has one to many NXentry groups
- There are two types of entries: raw data and processed data
- Multiple different techniques in one file go into separate entries
- If there is only one entry, the preferred name is entry, else entry1, entry2... entryn
- If an entry conforms to an application definition, the application definitions must be stated in the entries definition field.

NeXus Raw Data File Structure

```
entry: NXentry
       sample: NXsample
       instrument: NXinstrument
              source: NX source
              velocity selector: NX velocity selector
              detector: NX detector
                     data[xsize,ysize], signal=1 (1)
       control:NXmonitor
              data
       data: NXdata
              link to (1)
```


NeXus Processed Data File Structure

```
entry:NXentry
sample:NXsample
processing_name:NXprocess
program
version
parameters:NXparameter
raw_file
data:NXdata
data[nx,ny,nz], signal=1
```


Rules for Storing Data Items

- Store physical values
- Use NeXus components and dictionary names
- Missing names will be quickly accepted by the NIAC
- Names: full words separated by __
- Specify units in same format as used by UDunits
- Application definitions may restrict units

Scaled Data (Proposed)

- NeXus STRONGLY prefers plain data in C storage order
- Additional attributes: linearity, offset, scaling, direction, precedence
- Same meaning as in imageCIF
- linearity:
 - offset: Vtrue = Vraw + offset
 - scaling: Vtrue = Vraw * scaling
 - scaling offset: Vtrue (Vraw/scaling) + offset
 - $sqrt_scaled$: $Vtrue = (Vraw/scaling)^2$
 - logarithmic scaled: $Vtrue = 10^{(Vraw/scaling)}$
- direction allows to select between increasing and decreasing indices
- precedence determines storage order

Associating Axis and Data

• Data and axis live in the same NXgroup

```
entry:NXentry
data:NXdata
data[nx,ny,nz], signal=1
x_axis[nx], axis=1
y_axis[ny], axis=2
z_axis[nz], axis=3
```


Multiple Axis

```
entry:NXentry  \begin{array}{l} \text{data:NXdata} \\ \text{data[nx,ny,nz], signal=1} \\ \text{x\_axis[nx], axis=1, primary=1} \\ \text{alternate\_x\_axis[nx], axis=1} \\ \text{y\_axis[ny], axis=2} \\ \text{z\_axis[nz], axis=3} \end{array}
```


Associating Axis and Data, Method 2

```
entry:NXentry
data:NXdata
data[nx,ny,nz], signal=1, axes=x_axis,y_axis,z_axis
x_axis[nx]
y_axis[ny]
z_axis[nz]
```


Storing Detector Data

- Preserve original dimensionality of detector, if possible
- Time-of-flight becomes last dimension
- Highly irregular detectors:

```
entry:NXentry
instrument:NXinstrument
detector:NXdetector
data[ndet], signal=1
polar_angle[ndet], axis=1
azimuthal_angle[ndet]
distance[ndet]
```


Scans

- Come in all shapes and sizes
- Captured by rules:
 - Store all varied parameters as arrays of length NP at the appropriate place in the NeXus hierarchy
 - For multi detectors, NP, number of scan points is always the first dimension
 - In NXdata: create links to counts and varied variables

Scan Example 1: rotating sample

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
       instrument: NXinstrument
              detector: NX detector
                     data[NP], signal=1 (2)
       control: NXmonitor
              data[NP]
       data: NXdata
              link to (1)
              link to (2)
```


Scan Example 2: complex scan in Q

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
              phi[NP], axis=1 (2)
              chi[NP], axis=1(3)
              h[NP], axis=1 (4), primary=1
              k[NP], axis=1 (5)
              I[NP], axis=1 (6)
       instrument:NXinstrument
              detector: NX detector
                     data[NP], signal=1 (7)
                     polar angle[NP], signal=1 (8)
       data: NXdata
              link to (1)
              link to (2)
              link to (...)
              link to (8)
```

Scan Example 3: sample rotation, area detector

```
entry: NXentry
       sample: NXsample
              rotation angle[NP], axis=1 (1)
       instrument: NXinstrument
              detector: NX detector
                     data[NP,xsize,ysize],signal=1 (2)
       control:NXmonitor
              data[NP]
       data: NXdata
              link to (1)
              link to (2)
```


Rasterisation

- This is rastering a sample at different wavelengths, positions etc.
- Same treatment as scans, NP replaced by NR number of raster points
- For the common case of rastering on a 2D grid one can store [nx,ny,detdim]. Be aware, though, that this causes problems if the rasterisation is aborted in mid operation.

NXlog

```
name_of_logged_value:NXlog
time[], start
value[]
description
minimum_value
maximum_value
average value
```


NXnote

```
note:NXlog
    author
    type
    date
    description
    file_name
    data, NX_BINARY
```


All Base Classes

NXaperture	NXattenuator	NXbeam_stop
NXbeam	$NXbending_magnet$	NXcharacterization
NXcollimator	NXcrystal	NXdata
NXdetector	$NXdisk$ _chopper	NXentry
${\sf NXenvironment}$	$NXevent_data$	NXfermi_chopper
NXfilter	NXflipper	${\sf NXgeometry}$
NXguide	NXinsertion_device	NXinstrument
NXlog	NXmirror	NXmoderator
NXmonitor	${\sf NXmonochromator}$	NXnote
NXorientation	NXparameters	NXpolarizer
NXprocess	NXsample	NXsensor
NXshape	NXsource	NXtranslation
NXuser	NXvelocity selector	

