# MultiVariate Normal Distribution

Jing Qin 22/03/2022

#### Re-cap: univariate normal distribution

Assume a r.v. X satisfies a normal/Gaussian distribution  $N(\mu, \sigma^2)$ , i.e.

$$X \sim N(\mu, \sigma^2)$$

• Probability density function  $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\}$ 





- ullet  $E(X)=\mu$  and  $Var(X)=\sigma^2$
- Estimation about  $\mu$  and  $\sigma$  with some given data: confidence interval and hypothesis test.

# Bivariate normal distribution p=2

$$\boldsymbol{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \qquad \text{(a)}$$

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$\frac{1}{2\pi \sqrt{\sigma_1^2 \sigma_2^2 (1 - \rho^2)}} \times$$

$$\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right)\right]\right\}$$

#### Towards general: vector and matrix form

$$\frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2(1-\rho^2)}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[ \frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} - 2\rho \left( \frac{x_1-\mu_1}{\sigma_1} \right) \left( \frac{x_2-\mu_2}{\sigma_2} \right) \right] \right\}$$

# For general $p \geq 2$ , joint PDF (4-4) $X \sim N_p(\mu, \Sigma)$

$$\frac{1}{(2\pi)^{2/2}|\Sigma|^{1/2}} \exp\left\{-(x-\mu)'\Sigma^{-1}(x-\mu)/2\right\}$$
This is why we need the vectors! 
$$\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left\{-(x-\mu)'\Sigma^{-1}(x-\mu)/2\right\}$$

Consider 
$$m{X}=(X_1,X_2,\dots,X_p)'$$
 and  $m{x}=(x_1,x_2,\dots,x_p)'$   $E(m{X})=m{\mu}$  and  $Cov(m{X})=\Sigma$ 



In practice: Is my data normally distributed?

Example: radiation data with door open+closed (t4-1.dat; t4-5.dat)

#### Quadratic form (4-8)

$$X \sim N_p(\mu, \Sigma) \implies \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\{-(x - \mu)'\Sigma^{-1}(x - \mu)/2\}$$

#### *p*-dimension

#### 1-dimension

Quadratic form

• (4-8) Assume  $X \sim N_p(\mu, \Sigma)$ , we have  $(X - \mu)' \Sigma^{-1} (X - \mu) \sim \chi_p^2$ 



## Statistical/Mahalanobis distance



## Statistical/Mahalanobis distance

#### Bigger variability, smaller difference



## Statistical/Mahalanobis distance

• (2-17, 4-3) The quadratic form  $(x - \mu)' \Sigma^{-1} (x - \mu)$  is referred to as squared statistical/Mahalanobis distance. R cmd mahalanobis ()

#### From x to $\mu$

$$d_E(x, y) = \sqrt{(x - y)^T \cdot (x - y)}$$

$$d_M(x, y) = \sqrt{(x - y)^T \cdot S^{-1} \cdot (x - y)}$$

$$= \sqrt{\begin{bmatrix} x_1 - y_1 & x_2 - y_2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \end{bmatrix}}$$

$$= \sqrt{\left[\frac{x_1 - y_1}{\sigma_1^2} \quad \frac{x_2 - y_2}{\sigma_2^2}\right] \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \end{bmatrix}}$$

$$= \sqrt{\frac{(x_1 - y_1)^2}{\sigma_1^2} + \frac{(x_2 - y_2)^2}{\sigma_2^2}}$$



• Result (4.7) The solid ellipsoid of x values satisfying

$$(x - \mu)' \Sigma^{-1} (x - \mu) \le c^2 = \chi_p^2(\alpha)$$

has probability  $1 - \alpha$ .

| 7 .    |                 |     |
|--------|-----------------|-----|
| achisa | $(\alpha \cdot$ | n I |
| qchisq | (u,             | ע ש |

| $\frac{1-\alpha}{1-\alpha}$ | Observed count | Expected count |
|-----------------------------|----------------|----------------|
| 0.25                        | 17             | 10.5           |
| 0.50                        | 29             | 21             |
| 0.75                        | 33             | 31.5           |

Expected number of observations versus data. Note

$$n = 42$$





# Q-Q plot, again

#### **Dimension?**

• Result (4.7) Assume  $m{X} \sim N_p(m{\mu}, \Sigma)$ , we have  $m{(X-\mu)'}\Sigma^{-1}(m{X-\mu}) \sim \chi_p^2$ 

$$(oldsymbol{X}-oldsymbol{\mu})'\Sigma^{-1}(oldsymbol{X}-oldsymbol{\mu})\sim\chi_p^2$$

#### Q-Q plot, again

Result Assume  $m{X} \sim N_p(m{\mu}, \Sigma)$ , we have  $(m{X} - m{\mu})' \Sigma^{-1} (m{X} - m{\mu})$ 



#### **Dimension?**

$$(oldsymbol{X}-oldsymbol{\mu})'\Sigma^{-1}(oldsymbol{X}-oldsymbol{\mu})\sim\chi_p^2$$

#### Can we use Table 4.2 again?

| <b>Table 4.2</b> Critical Points for the Q-Q Plot Correlation Coefficient Test for Normality |                              |       |       |  |
|----------------------------------------------------------------------------------------------|------------------------------|-------|-------|--|
| Sample size                                                                                  | Significance levels $\alpha$ |       |       |  |
| n                                                                                            | .01                          | .05   | .10   |  |
| 5                                                                                            | .8299                        | .8788 | .9032 |  |
| 10                                                                                           | .8801                        | .9198 | .9351 |  |
| 15                                                                                           | .9126                        | .9389 | .9503 |  |
| , 20                                                                                         | .9269                        | .9508 | .9604 |  |
| 25                                                                                           | .9410                        | .9591 | .9665 |  |
| 30                                                                                           | .9479                        | .9652 | .9715 |  |
| 35                                                                                           | .9538                        | .9682 | .9740 |  |
| 40                                                                                           | .9599                        | .9726 | .9771 |  |
| 45                                                                                           | .9632                        | .9749 | .9792 |  |
| 50                                                                                           | .9671                        | .9768 | .9809 |  |
| 55                                                                                           | .9695                        | .9787 | .9822 |  |
| 60                                                                                           | .9720                        | .9801 | .9836 |  |
| 75                                                                                           | .9771                        | .9838 | .9866 |  |
| 100                                                                                          | .9822                        | .9873 | .9895 |  |
| 150                                                                                          | .9879                        | .9913 | .9928 |  |
| 200                                                                                          | .9905                        | .9931 | .9942 |  |
| 300                                                                                          | .9935                        | .9953 | .9960 |  |

#### plot, again

Result Assume  $m{X} \sim N_p(m{\mu}, \Sigma)$ , we have  $(m{X} - m{\mu})' \Sigma^{-1} (m{X} - m{\mu}) \sim \chi_p^2$ 

$$(oldsymbol{X}-oldsymbol{\mu})'\Sigma^{-1}(oldsymbol{X}-oldsymbol{\mu})\sim\chi_2^2$$



- 1. Generate multiple datasets with  $\chi_p^2$  for n=42
- 2. Make Q-Q plots for each of the dataset and derive  $r_O$  respectively
- 3. Collect all the  $r_{o}$  and find the critical value for some given significant level.
- > source("FindCrikChi2.R")
- > result1[[2]]

0.9948543

Conclusion

#### Is quadratic form enough for assessing normality?



This animal is a turtle.

This is an animal with 4 legs.







# Check MVN, continued

 (Result 4.4) Any subset of a MVN distributed random vector is normally distributed.

#### Example 4.5 (The distribution of a subset of a normal random vector)

If X is distributed as  $N_5(\mu, \Sigma)$ , find the distribution of  $\begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$ . We set

$$\mathbf{X}_1 = \begin{bmatrix} X_2 \\ X_4 \end{bmatrix}, \qquad \boldsymbol{\mu}_1 = \begin{bmatrix} \mu_2 \\ \mu_4 \end{bmatrix}, \qquad \boldsymbol{\Sigma}_{11} = \begin{bmatrix} \sigma_{22} & \sigma_{24} \\ \sigma_{24} & \sigma_{44} \end{bmatrix}$$

## In summary, basic track of checking MVN

- Test univariate normality for each marginal distribution with QQ-plot.
- Test bivariate normality for each pair of attributes. For example, a matrix of scatterplots and QQ-plot based on  $(X \mu)' \Sigma^{-1} (X \mu) \sim \chi_2^2$
- ullet Test over all MVN using QQ-plot based on  $(m{X}-m{\mu})'\Sigma^{-1}(m{X}-m{\mu})\sim\chi_p^2$
- Linear pattern in QQ-plot can be evaluated through hypothesis test.

Advanced track: well, it is by taking care of all the possible subsets of the attributes...or PCA

## Useful properties of MVN

• (Result 4.3) Let  $\boldsymbol{A}$  be a  $(q \times p)$  numeric matrix, then

$$AX \sim N_q(A\mu, A\Sigma A')$$

• Exercise 2 Find the mean vector and the total variance of  $\boldsymbol{A}\boldsymbol{X}$ . Exp 4.4 Given that  $\boldsymbol{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$  and  $\boldsymbol{X} = (X_1, X_2, X_3)'$ .

Further we know  $\boldsymbol{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , where  $\boldsymbol{\mu} = (1, 2, 1)'$  and

$$\Sigma = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

# Check MVN, continued

 (Result 4.4) Any subset of a MVN distributed random vector is normally distributed.

#### Example 4.5 (The distribution of a subset of a normal random vector)

If X is distributed as  $N_5(\mu, \Sigma)$ , find the distribution of  $\begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$ . We set

$$\mathbf{X}_1 = \begin{bmatrix} X_2 \\ X_4 \end{bmatrix}, \qquad \boldsymbol{\mu}_1 = \begin{bmatrix} \mu_2 \\ \mu_4 \end{bmatrix}, \qquad \boldsymbol{\Sigma}_{11} = \begin{bmatrix} \sigma_{22} & \sigma_{24} \\ \sigma_{24} & \sigma_{44} \end{bmatrix}$$

#### Useful properties of MVN

 (Result 4.4) Any subset of a MVN distributed random vector is normally distributed.

Example 4.6. (The equivalence of zero covariance and independence for normal variables) Let X be  $N_3(\mu, \Sigma)$  with

$$\boldsymbol{\mu} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Question 1: What is the distribution of  $(X_1, X_2)$ ?

#### Cov(X,Y) as a notation

The matrix of all covariances between elements in **X** and **Y** 

$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \qquad \boldsymbol{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix}$$

$$Cov(X,Y) = \begin{bmatrix} Cov(X_1,Y_1) & Cov(X_1,Y_2) & Cov(X_1,Y_3) \\ Cov(X_2,Y_1) & Cov(X_2,Y_2) & Cov(X_2,Y_3) \end{bmatrix}$$

It is sometimes convenient to use the Cov  $(\mathbf{X}^{(1)}, \mathbf{X}^{(2)})$  notation where

$$Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}) = \Sigma_{12}$$

is a matrix containing all of the covariances between a component of  $X^{(1)}$  and a component of  $X^{(2)}$ .

$$(2-38)+(2-40)$$

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_q \\ \vdots \\ X_{q+1} \\ \vdots \\ X_p \end{bmatrix} \right\} p - q \qquad = \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} \text{ and } \boldsymbol{\mu} = E(\mathbf{X}) = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_q \\ \vdots \\ \mu_{q+1} \\ \vdots \\ \mu_p \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix}$$

(2-38)

$$\sum_{(p \times p)} = E(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})' = q \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

$$(p \times p)$$

$$=\begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1q} & \sigma_{1,q+1} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{q1} & \cdots & \sigma_{qq} & \sigma_{q,q+1} & \cdots & \sigma_{qp} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{q+1,1} & \cdots & \sigma_{q+1,q} & \sigma_{q+1,q+1} & \cdots & \sigma_{q+1,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pq} & \sigma_{p,q+1} & \cdots & \sigma_{pp} \end{bmatrix}$$

(2-40)

# Useful properties of MVN

Matrix of 0's

#### Result 4.5.

- (a) If  $X_1$  and  $X_2$  are independent, then  $Cov(X_1, X_2) = 0$ , a  $q_1 \times q_2$  matrix of zeros.
- (b) If  $\left[\frac{\mathbf{X}_1}{\mathbf{X}_2}\right]$  is  $N_{q_1+q_2}\left(\left[\frac{\boldsymbol{\mu}_1}{\boldsymbol{\mu}_2}\right], \left[\frac{\boldsymbol{\Sigma}_{11}}{\boldsymbol{\Sigma}_{21}}\right] \boldsymbol{\Sigma}_{22}\right)$ , then  $\mathbf{X}_1$  and  $\mathbf{X}_2$  are independent if and only if  $\boldsymbol{\Sigma}_{12} = \mathbf{0}$ .

(c) If  $X_1$  and  $X_2$  are independent and are distributed as  $N_{q_1}(\mu_1, \Sigma_{11})$  and  $N_{q_2}(\mu_2, \Sigma_{22})$ , respectively, then  $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$  has the multivariate normal distribution

$$N_{q_1+q_2}\left(\left[\begin{array}{c|c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array}\right], \left[\begin{array}{c|c} \boldsymbol{\Sigma}_{11} & \boldsymbol{0} \\ \boldsymbol{0}' & \boldsymbol{\Sigma}_{22} \end{array}\right]\right)$$

#### Useful properties of MVN

 (Result 4.4) Any subset of a MVN distributed random vector is normally distributed.

Example 4.6. (The equivalence of zero covariance and independence for normal variables) Let X be  $N_3(\mu, \Sigma)$  with

$$\mathbf{\Sigma} = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Are  $X_1$  and  $X_2$  independent? What about  $(X_1, X_2)$  and  $X_3$ ?

Question 2: are  $X_1$ ,  $X_2$  independent?

Question 3: are  $(X_1, X_2)$  and  $X_3$  independent?

#### Linear combinations of random vectors

Assume  $X_1, X_2, \ldots, X_n$  is are independent and identically distributed and  $X_j \sim N_p(\mu, \Sigma)$ .

ullet (Result 4.8) If  $oldsymbol{V}_1 = c_1 oldsymbol{X}_1 + c_2 oldsymbol{X}_2 + \cdots + c_n oldsymbol{X}_n$ , then

$$V_1 \sim N_p \left( \sum c_j oldsymbol{\mu}, \left( \sum c_j^2 
ight) \Sigma 
ight)$$

What is the distribution of the sample mean?

$$\overline{m{X}} = rac{1}{n} \sum m{X}_j$$

#### See the shape and how the variance decreases while n increases



### CLT: we know sample mean vector really well

$$\overline{X} \ approx \sim N_p(\mu, \frac{\Sigma}{n})$$

Result 4.13 (The central limit theorem). Let  $X_1, X_2, ..., X_n$  be independent observations from any population with mean  $\mu$  and finite covariance  $\Sigma$ . Then

$$\sqrt{n} (\overline{\mathbf{X}} - \boldsymbol{\mu})$$
 has an approximate  $N_p(\mathbf{0}, \boldsymbol{\Sigma})$  distribution

for large sample sizes. Here n should also be large relative to p.

Let  $X_1, X_2, \ldots, X_n$  be independent observations from a population with mean  $\mu$  and finite (nonsingular) covariance  $\Sigma$ . Then

$$\sqrt{n} (\overline{\mathbf{X}} - \boldsymbol{\mu})$$
 is approximately  $N_p(\mathbf{0}, \boldsymbol{\Sigma})$ 

and

(4-28)

$$n(\overline{\mathbf{X}} - \boldsymbol{\mu})' \mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu})$$
 is approximately  $\chi_p^2$ 

for n - p large.

Assume 
$$\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$$
, we have  $(\boldsymbol{X} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) \sim \chi_p^2$ 

Now on the tails:  $P[-0.2 < \overline{Y} - 0.5 < 0.2] \rightarrow 0$  as n grows big



## Result (4.12) LLN

Result 4.12 (Law of large numbers). Let  $Y_1, Y_2, \ldots, Y_n$  be independent observations from a population with mean  $E(Y_i) = \mu$ . Then

$$\widetilde{Y} = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$$

converges in probability to  $\mu$  as n increases without bound. That is, for any prescribed accuracy  $\varepsilon > 0$ ,  $P[-\varepsilon < \overline{Y} - \mu < \varepsilon]$  approaches unity as  $n \to \infty$ .

0,2 0,5 of the law of large numbers, which says that each 2

As a direct consequence of the law of large numbers, which says that each  $X_i$  converges in probability to  $\mu_i$ , i = 1, 2, ..., p,

$$\overline{\mathbf{X}}$$
 converges in probability to  $\boldsymbol{\mu}$  (4-26)

Also, each sample covariance  $s_{ik}$  converges in probability to  $\sigma_{ik}$ , i, k = 1, 2, ..., p, and

$$\mathbf{S}(\text{or }\hat{\mathbf{\Sigma}} = \mathbf{S}_n) \text{ converges in probability to }\mathbf{\Sigma}$$
 (4-27)