Inteligência Artificial para Robótica Móvel

Visão usando RNC

Professor: Marcos Maximo

Roteiro

- Motivação;
- Classificação e Localização;
- Detecção de Objetos;
- Sliding Windows com CNN;
- YOLO;
- Estudo de Caso: Visão do Humanoide.

Motivação

Classificação x Detecção

Classification

Classification + Localization

Object Detection

CAT

CAT

CAT, DOG, DUCK

Classificação e Localização

Classificação com Localização

- p_c : presença do objeto.
- (b_x, b_y) : centro do bounding box.
- (b_w, b_h) : dimensões do bounding box.
- Feature vector:

$$\mathbf{y} = [p_c, b_x, b_y, b_w, b_h]^T$$

Classificação com Localização

• Com várias classes:

$$\mathbf{y} = [p_c, b_x, b_y, b_w, b_h, c_1, c_2, c_3]^T$$

- Loss function:
- $p_c = 1$:

$$\mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) = \sum_{j=1}^{n_y} \left(\hat{y}_j^{(i)} - y_j^{(i)}\right)^2$$

•
$$p_c = 0$$
:
 $\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = (\hat{p}_c - p_c)^2$
 $\mathbf{y} = [0, ?, ?, ?, ?, ?, ?, ?]^T$

Landmark Detection

 Pode-se incluir várias features (pontos) no vetor de features, além do bounding box:

$$\left[l_{1x}, l_{1y}, l_{2x}, l_{2y}, \dots, l_{nx}, l_{ny}\right]^{T}$$

Detecção de Objetos

Sliding Window Detection

Sliding Windows Detection

- Jeito clássico de se fazer antes de *Deep Learning*.
- Custo computacional muito elevado.
- Precisão da localização não é muito boa, pois desloca-se a janela em passos discretos.

Region of Interest (ROI)

- Outra maneira de posicionar a janela é por região de interesse (ROI).
- Primeiro, executa-se um algoritmo mais simples para detectar candidatos a serem o objeto.
- Em geral, usa-se algoritmos de visão clássica.
- Um classificador baseado em aprendizado precisa apenas "filtrar" os candidatos ao invés de buscar na imagem inteira.

Sliding Windows com CNN

Implementação de FC com CONV

Sliding Windows com CNN

- Inglês: You Only Look Once (YOLO).
- Como o nome indica, tenta resolver o problema de várias inferências em *sliding windows*.
- Algoritmo de detecção de objetos baseado em CNN.
- CNN baseada na GoogLeNet.
- Atualmente, já está na versão 3.

- Ideia: dividir a imagem em um grid $S \times S$ (e.g. 19x19).
- Associar a cada célula um vetor de features.

$$\mathbf{y} = \begin{bmatrix} p_c \\ b_x \\ b_y \\ b_w \\ b_h \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} b_c \\ b_x \\ b_y \\ b_w \\ b_h \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$$

- (b_x, b_y) em relação à célula (e normalizado de 0 a 1).
- (b_w, b_h) em relação à imagem.
- Precisa transformar no treinamento e na inferência.
- Versão 2 usa um método mais complicado.

• Como há um vetor de features para cada célula, a saída é $S \times S \times n_{\nu}$.

CNN do YOLO

CNN do YOLO

- YOLO: 24 camadas convolucionais e 2 totalmente conectadas.
- FastYOLO: 9 camadas convolucionais e 2 totalmente conectadas.
- Camadas da FastYOLO também tem menos filtros.

CNN do YOLO

- Última camada usa função de ativação linear.
- Todas as outras usam Leaky ReLU:

$$\phi(x) = \begin{cases} x, x > 0 \\ 0, 1x, x \le 0 \end{cases}$$

Intersection over Union (IoU)

- Métrica para avaliar bounding box.
- Alinhamento perfeito: IoU = 1. Pior alinhamento: IoU = 0.
- Em geral, se $IoU \ge 0.5$ (arbitrário), então localização "correta".

Fonte: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Confidence

• No lugar de apenas a probabilidade do objeto estar presente (p_c) , YOLO sugere usar confidence:

$$C = Pr(Object) * IoU(pred, truth)$$

 YOLO também mantém apenas um vetor em cada célula para indicar as classes presentes:

$$\mathbf{p}_i = \begin{bmatrix} p_i(c=1) \\ p_i(c=2) \\ p_i(c=3) \end{bmatrix}$$

• Em tempo de execução, calcula-se confidence por classe:

$$C_{i,j}(c) = C_{i,j} * p_i(c)$$

Confidence

• Vetor de *features* fica:

$$\mathbf{y} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \mathbf{p} \end{bmatrix}$$

Bounding box definido por:

$$\mathbf{b} = [C, x, y, w, h]^T$$

• Loss function:

$$\mathcal{L} = \lambda_{coord} \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{obj} \left[(\hat{x}_{i} - x_{i})^{2} + (\hat{y}_{i} - y_{i})^{2} \right]$$

$$+ \lambda_{coord} \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{obj} \left[(\sqrt{\widehat{w}_{i}} - \sqrt{w_{i}})^{2} + (\sqrt{\widehat{h}_{i}} - \sqrt{h_{i}})^{2} \right]$$

$$+ \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{obj} (\hat{c}_{i} - c_{i})^{2} + \lambda_{noobj} \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{noobj} (\hat{c}_{i} - c_{i})^{2}$$

$$+ \sum_{i=1}^{S^{2}} \varepsilon_{i}^{obj} \sum_{c=1}^{C} (\hat{p}_{i}(c) - p_{i}(c))^{2}$$

• Se objeto está presente:

$$\mathcal{L} = \lambda_{coord} \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{obj} \left[(\hat{x}_{i} - x_{i})^{2} + (\hat{y}_{i} - y_{i})^{2} \right]$$

$$+ \lambda_{coord} \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i,j}^{obj} \left[(\sqrt{\hat{w}_{i}} - \sqrt{w_{i}})^{2} + (\sqrt{\hat{h}_{i}} - \sqrt{h_{i}})^{2} \right]$$

$$+ \sum_{i=1}^{S^{2}} \sum_{j=1}^{B} \varepsilon_{i}^{obj} (\hat{c}_{i} - c_{i})^{2} + \sum_{i=1}^{S^{2}} \varepsilon_{i,j}^{obj} \sum_{c=1}^{C} (\hat{p}_{i}(c) - p_{i}(c))^{2}$$

• Se objeto **não** está presente:

$$\mathcal{L} = \lambda_{noobj} \sum_{i=1}^{S^2} \sum_{j=1}^{B} \varepsilon_{i,j}^{noobj} (\hat{C}_i - C_i)^2$$

- A loss function é quadrática, mesmo para os termos de "classificação".
- Raiz quadrada em w e h para penalizar menos erros grandes em bounding boxes grandes.
- $\lambda_{coord} = 5$, $\lambda_{noobj} = 0.5$.
- $\varepsilon_{i,j}^{obj}$ se objeto presente na *bounding box* j da célula i.
- $\varepsilon_{i,j}^{noobj} = 1 \varepsilon_{i,j}^{obj}$.

- Durante o treinamento, para uma dada célula, como escolher a qual bounding box (\mathbf{b}_1 , \mathbf{b}_2 etc.) do vetor de features associa-se um objeto?
- YOLO escolhe o bounding box com IoU(pred, label) máximo considerando os parâmetros atuais da rede.
- Isso faz com que *bounding boxes* fiquem especializados para certos tipos de objetos.

Non-max Supression

- Objetos se estendem durante várias células.
- Múltiplas detecções do mesmo objeto.

Non-max Supression

- Para cada classe:
 - Usar *threshold* inicial de *confidence* por classe para eliminar detecções pouco confiáveis.
 - Enquanto ainda houver detecção não tratada:
 - Pegar a detecção D_{max} com maior valor de *confidence* dentre as não tratadas.
 - Eliminar todas as detecções D_i com $IoU(D_{max}, D_i) \ge 0.5$.

Anchor Boxes

- Definir de antemão qual o formato esperado de certo bounding box.
- Associar qual b.b. com base em IoU(anchor, label).
- Ideia usada na YOLO v2.
- Definidos "na mão" ou com aprendizado não-supervisionado.

YOLO v2

• Saída da rede é t_x , t_y , t_w , t_h e t_o . Então, calcula-se:

$$x = c_x + \sigma(t_x)$$

$$y = c_y + \sigma(t_y)$$

$$w = p_w e^{t_w}$$

$$h = p_h e^{t_h}$$

$$C = \sigma(t_0)$$

- (c_x, c_y) é a origem da célula.
- p_w e p_h são as dimensões do *anchor box*.
- $\sigma(.)$ é a função sigmóide. Seu uso garante que os valores em questão ficarão entre 0 e 1.

YOLO v2

• CNN com 19 camadas convolucionais e 5 de maxpooling.

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool		Global	1000
Softmax			
		•	•

YOLO v3

- Rede com 53 camadas.
- Uso de Residual Networks para permitir rede mais profunda.

Estudo de Caso: Visão do Humanoide

- Bola da RoboCup atualmente é branca.
- Confunde com outros objetos.

- Iniciação Científica do Lucas Steuernagel (COMP-21).
- Inicialmente pensado para a bola.
- Extensão posterior para as traves (não conseguimos detectar bem com visão clássica).
- Baseado no YOLO.

- Treinamento em Python com Tensorflow e Keras.
- Execução no robô em CPU (Intel Core i5) em C++ usando Tensorflow.
- Requisito de tempo no robô: < 100 ms.
- Rede final executada em 60-80 ms no robô (CPU!).

- Testou **13** redes diferentes até encontrar bom *trade-off* entre precisão e desempenho.
- Redução para 9 camadas.
- Redes usando 50% ou 25% da resolução original da imagem do robô (320x240 ou 160x120).
- Melhor rede modifica YOLO para usar ResNet (YOLO v3 adicionou isso) e usa 25% da resolução original da imagem.

• Vetor de *features*:

$$x = \begin{bmatrix} t_o & t_x & t_y & t_w & t_h \end{bmatrix}^T$$

• Processamento das *features* segue esquema da YOLO v2:

$$p = \sigma(t_o)$$

$$x = c_x + \sigma(t_x) * s_{coord}$$

$$y = c_y + \sigma(t_y) * s_{coord}$$

$$w = 640 \times 5 \times e^{t_w}$$

$$h = 640 \times 5 \times e^{t_h}$$

 Observação: não usou confidence, mas sim probabilidade de presença.

• Loss function:

$$\mathcal{L} = \gamma_{coord} \sum_{i=1}^{S^2} \varepsilon_i^{obj} [(\hat{x}_i - x_i)^2 + (\hat{y}_i - y_i)^2]$$

$$+ \gamma_{wh} \sum_{i=1}^{S^2} \varepsilon_i^{obj} \left[(\sqrt{\hat{w}_i} - \sqrt{w_i})^2 + (\sqrt{\hat{h}_i} - \sqrt{h_i})^2 \right]$$

$$+ \left(\sqrt{\hat{h}_i} - \sqrt{h_i} \right)^2 + \gamma_{obj} \sum_{i=1}^{S^2} \varepsilon_i^{obj} (\hat{p}_i - p_i)^2 + \gamma_{noobj} \sum_{i=1}^{S^2} \varepsilon_i^{noobj} (\hat{p}_i - p_i)^2$$

Arquitetura da CNN

- Dataset construído a partir de imagens do robô.
- Anotação com ferramenta *labellmg* (esforço da equipe).

- Data Augmentation: motion blur, variação de cor e variação de brilho.
- 12665 imagens no training set após data augmentation.
- 1490 imagens no test set.
- Parâmetros: $\gamma_{coord}=5$, $\gamma_{wh}=5$, $\gamma_{obj}=1$, $\gamma_{noobj}=0$,5.
- Otimizador Adam com parâmetros padrão.
- $\alpha = 0.5 \times 10^{-4}$ fixo.
- Treinamento com 100 épocas.

- Inferência no robô usando API de C++ do Tensorflow.
- Compilação do Tensorflow com instruções SSE4.1, SSE4.2, FMA, AVX e AVX2 (melhora desempenho em CPU).
- Thresholds de detecção tunnados para privilegiar falsos negativos.
- Motivo: visão filtra resultado com filtro de Kalman.
- Assim, falsos positivos são bem piores que falsos negativos.

- Acurácia de 85,4% no test set.
- Tempo de 60-80 ms.
- *IoU* médio: 0,662.
- No começo, nunca achava bola se o chão não fosse verde ©.
- Problemas com falsos positivos:
 - Encontra bola no ombro dele.
 - De modo geral, adora brilhos metálicos "circulares".
 - Passamos fita isolante em algumas partes metálicas do robô kkk.
 - Falso positivo na cruz do pênalti (na RoboCup é um círculo!)

Exemplos de Detecção

Exemplos de Detecção

Exemplos de Detecção

Passando do 2D para o 3D:

Adição de Trave

- Adição de outro anchor box com dimensão 2x5.
- Adição de outra bounding box no vetor de features.
- Testou-se várias possibilidades para representar uma trave.
 - Trave completa.
 - Um lado da trave.
 - Só o ponto de encontro do trave com o chão.
- Empiricamente, o que funcionou melhor foi encontro da trave com o chão.

Para Saber Mais

- Especialização de Deep Learning do Andrew Ng no Cousera (curso de Convolutional Neural Networks).
- Capítulos 9 do livro: GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. The MIT Press, 2016.
- Artigos do YOLO:
 - Redmon et al., 2015, You Only Look Once: Unified real-time object detection.
 - Redmon e Farhadi, 2016, YOLO9000: Better, Faster, Stronger.
 - Redmon e Farhadi, 2018, YOLOv3: An Incremental Improvement.

Laboratório 10

Laboratório 10

- Implementar YOLO para detecção da bola de futebol de robôs.
- Pensando em como não demorar tanto o treinamento...
- Talvez dar rede pronta e só programar a inferência...