$Exercices \ MP/MP^*$ $S\'eries \ Enti\`eres$

Exercice 1. Donner le rayon de convergence de

1. $\sum_{n\geqslant 1} \left(\cosh\left(\frac{1}{n}\right)\right)^{n^{\alpha}} z^n$,

2.
$$\sum_{n\geqslant 1} \left(1 + \frac{(-1)^n}{n^2}\right)^{n^3} z^n$$
.

Exercice 2.

1. Soit $(\theta_1, \dots, \theta_p) \in [0, 2\pi[^p \text{ des réels distincts}, (m_1, \dots, m_p) \in (\mathbb{N}^*)^p$. Montrer que

$$\left(u_n = \sum_{k=1}^p m_k e^{in\theta_k}\right)_{n \in \mathbb{N}}$$
(1)

ne tend pas vers 0.

2. Soit $A \in \mathcal{M}_p(\mathbb{C})$ et $a_n = \operatorname{Tr}(A^n)$. Donner le rayon de convergence et la somme de $\sum a_n z^n$.

Exercice 3. Donner le rayon de convergence et calculer la somme (en cas de convergence) de

$$\sum_{n\geq 1} \frac{z^n}{\sum_{k=1}^n k^2} = \sum_{n=\geq 1} \frac{6z^n}{n(n+1)(2n+1)}.$$
 (2)

Exercice 4. On définit

$$f:]-1,+\infty[\rightarrow \mathbb{R}$$

$$t \mapsto \begin{cases} \frac{t}{\ln(1+t)} & si \ t \neq 0, \\ 1 & si \ t = 0. \end{cases}$$

$$(3)$$

Montrer que f est développable en série entière sur]-1,1[, en déduire que f est \mathcal{C}^{∞} . On pourra former $\int_0^1 (1+t)^u \mathrm{d}u = I(t)$.

Exercice 5. Donner le rayon de convergence de $\sum_{n\geq 1} a_n z^n$ où

$$a_n = \left(\sum_{k=1}^n \frac{1}{k}\right)^{\ln(n)}.\tag{4}$$

Exercice 6. Donner le rayon de convergence de $\sum a_n z^n$ où a_n est le nombre de diviseurs n.

Exercice 7. Soit $(a_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telle que

$$\lim_{n \to +\infty} \frac{a_{n-1}a_{n+1}}{a_n^2} = l \in \mathbb{R}. \tag{5}$$

Déterminer le rayon de convergence de $\sum a_n z^n$.

Exercice 8. Soit $z \in \mathbb{C}$ tel que |z| < 1. On pose $\phi(z) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{z^n}{n}$. Déterminer $e^{\phi(z)}$.

Exercice 9. Donner le rayon de convergence et calculer la somme (sur le disque ouvert de convergence) de

$$\sum_{n=0}^{+\infty} \frac{z^n}{\cos\left(\frac{2n\pi}{3}\right)}.$$
 (6)

Exercice 10. Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ des suites réelles, on suppose que

- i) pour tout $n \in \mathbb{N}$, $b_n \geqslant 0$,
- $ii) a_n \underset{+\infty}{\sim} b_n,$
- iii) le rayon de convergence de $\sum b_n z^n$ vaut 1,
- iv) $\sum b_n$ diverge.

On forme sur
$$[0,1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ et } g(x) = \sum_{n=0}^{+\infty} b_n x^n.$$

- 1. Montrer que $\lim_{x\to 1^-} g(x) = +\infty$.
- 2. Montrer que $f(x) \sim g(x)$.
- 3. Donner un équivalent simple quand $x \to 1^-$ de $h_p(x) = \sum_{n=1}^{+\infty} n^p x^n$ avec $p \in \mathbb{N}$.

Exercice 11. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon de convergence 1. On suppose que $\lim_{x \to 1^-} = S \in \mathbb{R}$ et que $a_n = \underset{+\infty}{o} \left(\frac{1}{n}\right)$. Montrer que $\sum a_n$ converge et vaut S. On pourra étudier $f\left(1 - \frac{1}{n}\right)$.

Exercice 12. Soit $f: \mathbb{C} \to \mathbb{C}$ développable en série entière avec un rayon de convergence $\rho > 0$ telle que $f(0) \neq 0$. Montrer qu'il existe une fonction T, développable en série entière, et r > 0, telle que si |z| < r, $f(z) = e^{T(z)}$.

Exercice 13. Soit $a \in \mathbb{R} \setminus \mathbb{Q}$, on pose pour tout $n \ge 1$, $a_n = \frac{1}{\sin(n\pi a)}$. Soit R_a le rayon de convergence $de \sum a_n z^n$.

- 1. Montrer que $R_a \leq 1$.
- 2. Évaluer R_a lorsque a est irrationnel algébrique.
- 3. Existe-t-il a tel que $R_a = 0$?

Exercice 14. Soit $(a_1, \ldots, a_N) \in \mathbb{N}^{\mathbb{N}}$ premiers entre eux dans leur ensemble. Pour $n \in \mathbb{N}$, on note $c_n = \left| \left\{ (p_1, \ldots, p_N) \in \mathbb{N}^N \middle| p_1 a_1 + \ldots p_N a_N = n \right\} \right|$. Donner un équivalent simple de c_n quand $n \to +\infty$.

Exercice 15. Soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sqrt{1+x+x^2} \tag{7}$$

Montrer que f est développable en série entière, et donner le rayon de convergence de la série entière obtenue. On pourra dériver $f^2(x)$.

Exercice 16. Soit $f: [0, A[\to \mathbb{R} \ de \ classe \ \mathcal{C}^{\infty} \ telle \ que \ pour \ tout \ n \in \mathbb{N}, \ pour \ tout \ t \in [0, 1[, f^{(n)}(t) \geqslant 0.$

- 1. Soit $x \in [0, A[$, montrer que $\sum_{k \ge 0} \frac{f^{(k)}(0)}{k!} x^k$ converge.
- 2. On pose, pour $n \in \mathbb{N}$ et $x \in [0, A[$, $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$. Montrer que si x < y < A, on $a \ 0 \le R_n(x) \le \left(\frac{x}{y}\right)^n R_n(y)$.
- 3. En déduire que f est développable en série entière sur [0, A[.
- 4. Application à tan.

Exercice 17. Déterminer le rayon de convergence de $\sum a_n z^n$ si

- 1. $a_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k}$.
- 2. pour tout $p \in \mathbb{N}$, $a_{3p} = \frac{(-1)^p}{2^p}$, $a_{3p+1} = 3^p$ et $a_{3p+2} = 0$. Calculer la somme.
- 3. $a_n = \int_0^1 \frac{t^n}{1+t+t^2} dt$, et calcul. Quelle est la valeur en -1?

Exercice 18. On pose $\omega_0 = 1$. Pour tout $n \ge 1$, ω_n est le nombre de relations d'équivalence sur $[\![1,n]\!]$. On s'intéresse à la série entière $\sum \frac{\omega_n}{n!} z^n = \sum a_n z^n$, de rayon de convergence R, de somme notée f(z).

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\omega_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \omega_k$ et que $\omega_n \leqslant n^n$ et R > 0.
- 2. Soit r > 1 et $n_0 = \lfloor re^r \rfloor$. On pose $A = \max_{k \leq n_0} \frac{\omega_k}{k!} r^k$. Montrer que pour tout $n \in \mathbb{N}$, $\frac{\omega_n t^n}{n!} \leq A$, en déduire R.
- 3. Montrer que pour tout $x \in]-R, R[, f'(x) = e^x f(x), déduire f(x)$ et une expression de ω_n .

Exercice 19. On appelle « partition » d'un entier $n \ge 0$ toute suite décroissante d'entiers naturels $(t_k)_{k\geqslant 1}$ telle que $\sum_{k=1}^{+\infty} t_k = n$ (somme finie). On note p_n le nombre de partitions de n. Soit R le rayon de convergence de $\sum_{n\geqslant 0} p_n z^n = f(z)$.

1. Montrer que R > 0.

- 2. Montrer que pour tout $x \in [0, R[$, on a $f(x) = \prod_{k=1}^{+\infty} \frac{1}{1-x^k}$, est-ce encore vrai pour $z \in D(0, R)$?
- 3. Évaluer R.

Exercice 20. Soit U un ouvert bornée non vide de \mathbb{C} et $f:\overline{U}\to\mathbb{C}$ continue sur \overline{U} analytique sur U, c'est-à-dire que pour tout $z_0\in U$, il existe $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^\mathbb{N}$ telle que pour tout $h\in\mathbb{C}$ tel que $|h|< d(z_0,\partial U), \ f(z_0+h)=\sum_{n=0}^{+\infty}a_nh^n.$

1. Montrer que pour tout $z_0 \in U$ et $r \in [0, d(z_0, \partial U)]$, on a

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$
 (8)

- 2. En déduire que |f| atteint son maximum et son minimum sur ∂U .
- 3. Que peut-on dire si f = 0 sur ∂U ?

Exercice 21.

- 1. Montrer que l'on peut, pour $q \in \mathbb{C}$, |q| < 1 fixé, pour tout $z \in \mathbb{C}$, on a $f(z) = \prod_{k=1}^{+\infty} (1 q^k z)$.
- 2. Montrer que f est développable en série entière.
- 3. De même pour $\frac{1}{f}$.

Exercice 22. Soit U un ouvert de \mathbb{C} et $f:U\to\mathbb{C}$ analytique sur U (développable en série entière au voisinage de tout point de U).

- 1. Soit $z_0 \in U$ et $r_0 > 0$, $(a_n)_{n \in \mathbb{N}}$ tels que si $h \in D(0, r_0)$, $f(z_0 + h) = \sum_{n=0}^{+\infty} a_n h^n$. On suppose qu'il existe $(\xi_k)_{k \in \mathbb{N}} \in U^{\mathbb{N}}$ telle que
 - (i) pour tout $k \in \mathbb{N}$, $\xi_k \neq z_0$,
 - (ii) $\lim_{n\to+\infty} \xi_k = z_0$,
 - (iii) pour tout $k \in \mathbb{N}$, $f(\xi_k) = 0$.

Montrer que pour tout $n \in \mathbb{N}$, $a_n = 0$.

2. On suppose de plus que U est connexe par arcs. Montrer que f=0 sur U. Est-ce encore vrai $si\ (\xi_k)$ ne converge pas?

Exercice 23. Soit $\theta \in]0, \pi[$.

1. Montrer que $f(x) = \ln(1 - 2x\cos(\theta) + x^2)$ est développable en série entière en 0.

- 2. Qu'en déduit-on relativement à $\sum_{n\geq 1} \frac{\cos(n\theta)}{n}$?
- 3. Calcular $I(x) = \int_0^{\pi} \ln\left(1 2x\cos(\theta) + x^2\right) d\theta$.

Exercice 24. Soit $(p_n)_{n\in\mathbb{N}}$ une suite strictement croissante d'entiers naturels.

- 1. Donner le rayon de convergence de $\sum_{n\geqslant 0} x^{p_n}$. On pose $f(x)=\sum_{n\geqslant 0} x^{p_n}$.
- 2. On suppose que $n = \underset{n \to +\infty}{o}(p_n)$. Montrer que $\lim_{x \to 1^-} (1-x)f(x) = 0$.
- 3. Réciproque?

Exercice 25. Soit $(u_0, v_0) \in \mathbb{C}^2$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - v_n$ et $v_{n+1} = u_n - 2v_n$. DOnner le rayon de convergence et les sommes des séries entières $U(z) = \sum_{n=0}^{+\infty} u_n z^n$ et $V(z) \sum_{n=0}^{+\infty} v_n z^n$.

Exercice 26.

- 1. Donner le développement en série entière de $f(z) = \frac{\sin(\theta)}{z^2 2z\cos(\theta) + 1}$ avec $\theta \in [0, 2\pi[$.
- 2. En déduire $I(z) = \int_0^{\pi} \frac{\sin(\theta) d\theta}{z^2 z = 2z \cos(\theta) + 1}$

Exercice 27.

- 1. Soit Y une variable aléatoire à valeurs dans [1,n]. Montrer que $(\mathbb{E}(Y^k))_{k\in[1,n]}$ caractérise la loi de Y.
- 2. Soit Y une variable aléatoire à valeurs dans \mathbb{N} . On suppose qu'il existe $a \in [0,1[$ tel que $\mathbb{P}(Y=k) = \underset{k \to +\infty}{O}(a^k)$. Montrer que pour tout $n \in \mathbb{N}^*$, Y^n a une espérance finie et que $(\mathbb{E}(Y^n))_{n \geq 1}$ caractérise la loi de Y.

Exercice 28. Soit U un ouvert de \mathbb{C} et $f: U \to \mathbb{C}$ au sens complexe, c'est-à-dire que pour tout $z_0 \in U$, il existe $f'(z_0) = \lim_{\substack{h \to 0 \\ h \in \mathbb{C}^*}} \frac{f(z_0+h)-f(z_0)}{h}$ et $f': U \to \mathbb{C}$ est continue.

1. Montrer que

$$g: [0,1] \to \mathbb{C}$$

$$\lambda \mapsto \int_0^{2\pi} \frac{f((1-\lambda)z + \lambda re^{it}) - f(z)}{re^{it} - z} re^{it} dt$$

$$(9)$$

est constante. En déduire que $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ avec

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{it}e^{-int}\right) dt. \tag{10}$$

2. Montrer que pour tout $z_0 \in U$, on a pour $R = d(z_0, \partial U)$, il existe $(b_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ tel que pour tout $h \in D(0, R)$, $f(z_0 + h) = \sum_{n=0}^{+\infty} b_n h^n$.

Exercice 29. Calculer, en précisant le domaine de définition,

$$S_0(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}.$$
(11)

Exercice 30. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$. On suppose que pour tout $z \in \mathbb{C}$, $z \in \mathbb{R}$ si et seulement si $f(z) \in \mathbb{R}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $a_n \in \mathbb{R}$.
- 2. On pose $v(z) = \Im(f(z))$. Montrer que pour tout $m \ge 1$, pour tout r > 0,

$$\pi r^m a_m = 2 \int_0^\pi v\left(re^{i\theta}\right) \sin(m\theta) d\theta, \tag{12}$$

puis que $|r^m a_m| \leqslant mr |a_1|$.

3. En déduire que f est affine.

Exercice 31. Soit $\sum a_n z^n$ une série entière telle que $\sum |a_n|$ converge. On définit

$$f: \overline{D(0,1)} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^{+\infty}$$

$$(13)$$

On note $P_{r,n}(x) = \sum_{k=-n}^n r^{|k|} e^{ikx}$, et pour $r \in [0,1[$, $P_r(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} e^{ikx}$. Il s'agit du noyau de Poisson.

1. Montrer que pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, pour tout $r \in [0, 1]$,

$$\frac{1}{2\pi} \int_0^{2\pi} r^{|k|} e^{ikx} f\left(e^{i(x-t)}\right) dt = a_k r^k e^{ikx}. \tag{14}$$

En déduire que

$$\frac{1}{2\pi} \int_0^{2\pi} P_r(t) f\left(e^{i(x-t)}\right) dt = f\left(re^{ix}\right). \tag{15}$$

- 2. Quel est le signe de P_r ? Calculer $\frac{1}{2\pi} \int_0^{2\pi} P_r t) dt$.
- 3. Montrer que si $f(\mathbb{U}) \subset \mathbb{U}$, alors $f\left(\overline{D(0,1)}\right) \subset \overline{D(0,1)}$.

Exercice 32. Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n\geqslant 1} \in \mathcal{T}^{\mathbb{N}^*}$ indépendants tels que pour tout $n\geqslant 1$, $\mathbb{P}(A_n)=\frac{1}{n}$. On pose $R_n=\chi_{A_k}$.

1. Donner l'espérance et la variance de R_n , et donner à chaque fois un équivalent.

2. Montrer que pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{R_n}{\ln(n)} - 1 \right| > \varepsilon \right) = 0. \tag{16}$$

- 3. Donner la fonction génératrice G_{R_n} . En déduire $\mathbb{P}(R_n=1)$ et $\mathbb{P}(R_n=2)$.
- 4. Soit $a < b \in (\mathbb{N}^*)^2$ et $T_n = R_{nb} R_{na}$. Donner la fonction génératrice G_{T_n} . Déterminer, pour $t \geqslant 1$, $\lim_{n \to +\infty} G_{T_n}(t)$. On pourra montrer que pour tout $x \geqslant 0$, $x \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x$.