Money Creation and Banking: Theory and Evidence

Heon Lee

Department of Economics University of Missouri

November 10, 2020

Introduction

- What determines the money multiplier?
- Motivations
 - since 2008, banks hold large excess reserves.
 (required reserves ratios are zero, since March 26th 2020)
 - relationship between the money multiplier and the required reserve ratio is not clear in the data even before 2008.
- ► This paper
 - a profit maximizing bank creates inside money and determines whether to hold excess reserve endogenously.
 - credit conditions matter for the money multiplier.
 - different means of payments.

Drop in Money Multiplier & Large Excess Reserves

$$\mbox{M1 Money Multiplier} = \frac{\mbox{M1}}{\mbox{Monetary Base}} = \frac{\mbox{Currency} + \mbox{CheckableDeposit}}{\mbox{Monetary Base}}$$

Money Multiplier & Required Reserves Ratio

$$\frac{M1}{MB} = \frac{C+D}{C+R} = \frac{C/D+1}{C/D+R/D} = \frac{cd+1}{cd+req}$$

when banks are not holding excess reserves

- currency-deposit ratio (cd) determined by the public.
- required reserves ratio (req) determined by a central bank

Chow test for structural break

Increase of Currency in Circulation

Demand for Currency

- Banks are holding excess reserves since 2008
- ► There is no negative relationship between money multiplier and required reserve ratio even pre-2008 period when banks are not holding excess reserves
- ► Negative relationship between money multiplier and currency deposit ratio disappeared since 2008
- Currency-output ratio of US economy is higher than ever since 1960
- ▶ More physical currency than checkable deposits from 2002Q2 to 2010Q1
- ⇒ Can monetary theory explain these observation and money creation process?

I construct a search model of money and credit with fractional reserve banking:

- identify conditions and policies that characterize when banks hold excess reserves.
- identify effect of credit condition.

I construct a search model of money and credit with fractional reserve banking:

- identify conditions and policies that characterize when banks hold excess reserves.
- identify effect of credit condition.

- there are three types of equilibrium:
 - 1. ample-reserves, 2. scarce-reserves, 3. no-banking

I construct a search model of money and credit with fractional reserve banking:

- identify conditions and policies that characterize when banks hold excess reserves.
- identify effect of credit condition.

- there are three types of equilibrium:
 - 1. ample-reserves, 2. scarce-reserves, 3. no-banking
- ightharpoonup interest rate is not too small ightharpoonup scarce-reserves

I construct a search model of money and credit with fractional reserve banking:

- identify conditions and policies that characterize when banks hold excess reserves.
- identify effect of credit condition.

- there are three types of equilibrium:
 - 1. ample-reserves, 2. scarce-reserves, 3. no-banking
- interest rate is not too small → scarce-reserves interest rate is small & interest on reserve → ample-reserves

I construct a search model of money and credit with fractional reserve banking:

- identify conditions and policies that characterize when banks hold excess reserves.
- identify effect of credit condition.

- there are three types of equilibrium:
 - 1. ample-reserves, 2. scarce-reserves, 3. no-banking
- interest rate is not too small → scarce-reserves interest rate is small & interest on reserve → ample-reserves
- calibrated model can generate many features of the evolution of money multiplier in the data.

- ▶ Bank's lending constraint.
- ▶ Interaction of money and credit.

- Bank's lending constraint.
 - consider zero-excess reserves (bank's lending constraint binds)

$$\begin{aligned} \mathsf{M} &= \mathsf{C} + \frac{\mathsf{Reserves}}{\mathsf{Reserve} \; \mathsf{Requirement} \; (\mathsf{RR})} \\ &= \underbrace{\mathsf{C} + \mathsf{Reserves}}_{\mathsf{Base} \; \mathsf{Money}} + \underbrace{\mathsf{Reserves} \times \left(\frac{1}{\mathsf{RR}} - 1\right)}_{\mathsf{Created} \; \mathsf{Inside} \; \mathsf{Money} \; \mathsf{through} \; \mathsf{Lending}} \end{aligned}$$

Interaction of money and credit.

- Bank's lending constraint.
 - consider zero-excess reserves (bank's lending constraint binds)
 - consider bank's profit maximization

s.t. Reserves
$$\times \left(\frac{1}{RR} - 1\right) \ge 1$$
 lending = created inside money

- Doesn't need to bind. This need to be endogenous.
- Interaction of money and credit.

- Bank's lending constraint.
- Interaction of money and credit.
 - ▶ follow Gu et al. (2016, ECTA)
 - credit is a substitute for money
 - an increase in credit only crowds out the real balance of money.

Related Literature

- Money and credit: Gu et al. (2016, ECTA) Lotz & Zhang (2016, JET), Wang et al. (2019, IER), Bethune et al. (2020, REStud),
- ► Inside money and banking: Freeman & Huffman (1991, IER), Berentsen et al. (2007, JET), Gu et al. (2013, REStud), Berentsen et al. (2015, REStud)

- ► Time, goods
- ► Buyers, sellers
- Preferences

- ► Time, goods
 - 1. $t = 0, 1, 2..., \infty$
 - 2. Each period has two subperiod:
 - Centralized Market (CM)
 - Decentralized Market (DM): bilateral trade, subject to anonymity, limited commitment
 - 3. Perishable DM/CM goods.
- Buyers, sellers
- Preferences

- ► Time, goods
- Buyers, sellers
 - 1. Buyer: measure 1; maximize life time utility;
 - 2. Seller: measure 1; maximize life time utility;
- Preferences

- ► Time, goods
- ► Buyers, sellers
- Preferences

Buyer:
$$U(X) - H + u(q)$$

Seller:
$$U(X) - H - c(q)$$

- CM consumption X; CM disutility for production H; DM consumption q; discount factor: β
- efficient DM consumption, q^* solves $u'(q^*) = c'(q^*)$.

Different DM meetings

- 1 DM1: sellers only accept cash
- 2 DM2: sellers accept cash / claim on deposits / private bank note
- 3 DM3: sellers accept cash / claim on deposits / private bank note / unsecured credit (buyer's unsecured credit limit is exogenously given by $\bar{\delta}$)
- ▶ Type j DM meeting with prob σ_j
- $\sigma_1 + \sigma_2 + \sigma_3 = 1$
- ► In the CM, agents get to know which DM meeting they are going to

Bank

- A representative bank; max profit in each period;
- ▶ accepts deposits, d; issues claims on deposit (give deposit rate, i_d); can keep deposits as reserves, r; may earn some interest on reserves $i_r \ge 0$
- lends bank loans ℓ by issuing private banknotes $b = \ell$; earns interest i_{ℓ}
- lending is constrained by reserves and reserve requirement;

$$\ell \le \bar{\ell} = \frac{1 - \chi}{\chi} r$$

- cost for operating claims on deposit, k;
- costly enforcement to repay ℓ , $\eta(\ell) = \nu \ell^{\alpha}$ where $\alpha > 1$;

Central bank

- M is monetary base issued by the central bank.
- ▶ *M* is distributed to the economy in two ways: (1) *C* as cash in circulation; (2) *R* as reserves hold by banks.

$$M = C + R$$

- i_r: interest on reserves; μ: money growth rate; Τ: lump-sum transfer (or tax); φ: price of money in terms of CM consumption good;
- ▶ The central bank's budget constraint can be written as

$$\mu\phi M = \phi(M - M_{-1}) = T + i_r \phi R$$

b Bargaining is characterized by payment and quantity (p, q).

- **B** Bargaining is characterized by payment and quantity (p, q).
- ► Kalai (1977)'s proportional bargaining

$$\max u(q) - p$$
 s.t $u(q) - p = \theta [u(q) - c(q)]$

▶ $\theta \in [0,1]$ denotes the buyers' bargaining power.

- **B** Bargaining is characterized by payment and quantity (p,q).
- Kalai (1977)'s proportional bargaining

$$\max u(q) - p$$
 s.t $u(q) - p = \theta [u(q) - c(q)]$

- ▶ $\theta \in [0,1]$ denotes the buyers' bargaining power.
- $p = v(q) = (1 \theta)u(q) + \theta c(q)$

- **B** Bargaining is characterized by payment and quantity (p,q).
- Kalai (1977)'s proportional bargaining

$$\max u(q) - p$$
 s.t $u(q) - p = \theta [u(q) - c(q)]$

- ▶ $\theta \in [0,1]$ denotes the buyers' bargaining power.
- $p = v(q) = (1 \theta)u(q) + \theta c(q)$
- ▶ Define *liquidity premium*, $\lambda(q)$, as following

- **B** Bargaining is characterized by payment and quantity (p,q).
- ► Kalai (1977)'s proportional bargaining

$$\max u(q) - p$$
 s.t $u(q) - p = \theta [u(q) - c(q)]$

- ▶ $\theta \in [0,1]$ denotes the buyers' bargaining power.
- ▶ Define *liquidity premium*, $\lambda(q)$, as following

$$\lambda(q) = \frac{u'(q)}{v'(q)} - 1 = \frac{\theta[u'(q) - c'(q)]}{(1 - \theta)u'(q) + \theta c'(q)}, \quad \lambda'(q) < 0$$

Payment p is constrained by their liquidity position z.

$$v(q_1) = p_1 \le z_1 = m_1$$

 $v(q_2) = p_2 \le z_2 = m_2 + d_2(1 + i_d) + b_2$
 $v(q_3) = p_3 \le z_3 = m_3 + d_3(1 + i_d) + b_3 + \bar{\delta}$

- Let p^* be a payment to get q^* with $p^* = v(q^*)$.
- ▶ When $z_j > p^*$, $p_j = p^*$ and when $z_j < p^*$, $p_j = z_j$.
- ▶ m: cash; d: deposit; $\bar{\delta}$: unsecured credit limit; b: private banknote issued by a bank; i_d : deposit rate;

Period t

Buyers' CM problem

CM value function for buyer

$$W^B(m, d, b, \ell, \delta) = \sum \sigma_j W_j^B(m, d, b, \ell, \delta)$$

CM value function for *i* type DM meeting buyer

$$W_j^B(m,d,b,\ell,\delta) = \max_{X,H,\hat{m}_i,\hat{d}_i,\hat{\ell}_i,\hat{b}_i} U(X) - H + \beta V_j^B(\hat{m}_j,\hat{d}_j,\hat{b}_j,\hat{\ell}_j)$$

subject to

$$(1+\pi)\hat{m}_j + (1+\pi)\hat{d}_j + X = m + (1+i_d)d + b - \delta - (1+i_l)\ell + H + \tau$$

 $\hat{b}_j = \hat{\ell}_j$

 π : inflation rate; τ : lump-sum transfer/tax to buyer;

DM1 buyer's problem

$$V_1^B(m, d, b, \ell) = u(q) + W^B(m - \tilde{m}, d, b, \ell, 0)$$

 $p = \tilde{m}$

DM1 buyer's problem

$$V_1^B(m, d, b, \ell) = u(q) + W^B(m - \tilde{m}, d, b, \ell, 0)$$

 $p = \tilde{m}$

DM1 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d, b, \ell, 0) - W^{B}(m, d, b, \ell, 0)$$

DM1 buyer's problem

$$V_1^B(m, d, b, \ell) = u(q) + W^B(m - \tilde{m}, d, b, \ell, 0)$$

 $p = \tilde{m}$

DM1 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d, b, \ell, 0) - W^{B}(m, d, b, \ell, 0)$$

Intermediate result:
$$\hat{d}_1 = \hat{\ell}_1 = \hat{b}_1 = 0$$

DM2 & DM3 buyer's problem

DM2 value function

$$V_2^B(m,d,b,l) = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0)$$
where $p = \tilde{m} + (1 + i_d)\tilde{d} + \tilde{b}$

DM2 value function

$$V_2^B(m,d,b,l) = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0)$$
where $p = \tilde{m} + (1 + i_d)\tilde{d} + \tilde{b}$

DM2 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0) - W^{B}(m, d, b, \ell, 0)$$

DM2 value function

$$V_2^B(m,d,b,l) = u(q) + W^B(m-\tilde{m},d-\tilde{d},b-\tilde{b},\ell,0)$$

where $p = \tilde{m} + (1+i_d)\tilde{d} + \tilde{b}$

DM2 buyer's DM trade surplus

$$\Delta = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0) - W^B(m, d, b, \ell, 0)$$

DM3 value function

$$V_3^B(m,d,b,l) = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, \delta)$$
where $p = \tilde{m} + (1 + i_d)\tilde{d} + \tilde{b} + \delta$ $\delta \leq \bar{\delta}$

DM2 value function

$$V_2^B(m,d,b,l) = u(q) + W^B(m-\tilde{m},d-\tilde{d},b-\tilde{b},\ell,0)$$

where $p = \tilde{m} + (1+i_d)\tilde{d} + \tilde{b}$

DM2 buyer's DM trade surplus

$$\Delta = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0) - W^B(m, d, b, \ell, 0)$$

DM3 value function

$$V_3^B(m,d,b,l) = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, \delta)$$
where $p = \tilde{m} + (1 + i_d)\tilde{d} + \tilde{b} + \delta$ $\delta \leq \bar{\delta}$

DM3 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, \delta) - W^{B}(m, d, b, \ell, 0)$$

DM2 value function

$$V_2^B(m,d,b,l) = u(q) + W^B(m-\tilde{m},d-\tilde{d},b-\tilde{b},\ell,0)$$

where $p = \tilde{m} + (1+i_d)\tilde{d} + \tilde{b}$

DM2 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, 0) - W^{B}(m, d, b, \ell, 0)$$

DM3 value function

$$V_3^B(m,d,b,l) = u(q) + W^B(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, \delta)$$
where $p = \tilde{m} + (1 + i_d)\tilde{d} + \tilde{b} + \delta$ $\delta \leq \bar{\delta}$

DM3 buyer's DM trade surplus

$$\Delta = u(q) + W^{B}(m - \tilde{m}, d - \tilde{d}, b - \tilde{b}, \ell, \delta) - W^{B}(m, d, b, \ell, 0)$$

Intermediate result: $\hat{m}_2 = \hat{m}_3 = 0$ when $i_d > 0$

A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d}$$
 $(-i_d)d$

A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d} i_r r + (-i_d) d$$
s.t. $r \le d$

A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d} \quad i_r r + (-i_d - k)d$$
s.t. $r \le d$

► A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d,\ell} i_r r + (-i_d - k)d + i_l \ell$$
s.t. $r \le d$

► A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d,\ell} i_r r + (-i_d - k)d + i_l \ell - \nu \ell^{\alpha}$$
s.t. $r \le d$

A risk-neutral rep. bank max its profit by receiving deposits and lending loans.

$$\max_{r,d,\ell} i_r r + (-i_d - k)d + i_l \ell - v \ell^{\alpha}$$

$$s.t. \ r \leq d \quad \& \quad \underbrace{\frac{1 - \chi}{\chi} r}_{\text{lending limit}} \geq \ell$$

- ightharpoonup r = d
- Two cases
- 1. bank's lending is not binding.

$$0 = i_r - i_d - k \tag{1}$$

$$0 = i_I - \alpha v \ell^{\alpha - 1} \tag{2}$$

$$\ell^* = \left(rac{i_l}{lpha
u}
ight)^{rac{1}{lpha - 1}}$$
 : supply for loan where $\ell^* < ar{\ell} = rac{1 - \chi}{\chi} d$

2. bank's lending is binding.

$$0 = i_r - i_d - k + \left[i_l - \alpha v \left(\frac{1 - \chi}{\chi} d \right)^{\alpha - 1} \right] \frac{1 - \chi}{\chi}$$
 (3)

Definition of equilibrium

Focus on stationary equilibrium where real balances are constant $m=m^+$, $r=r^+$. $\pi=\mu$. $i\equiv (1+\mu)/\beta-1$.

Given monetary policy, (i,i_r,χ) and credit limit $(\bar{\delta})$, a stationary monetary equilibrium is consists of

- real quantities $(m_j, d_j, \ell_j)_{j=1}^3$,
- \triangleright consumption quantities (q_1, q_2, q_3) ,
- \triangleright prices (i_l, i_d) ,

satisfying the following:

- 1. $(i_d, i_l, q_1, q_2, q_3)$ solves agents' problem and bank's problem
- 2. The bank lending constraint satisfies, $\ell=\min(\bar{\ell},\ell^*)$ where $\bar{\ell}=\frac{1-\chi}{\chi}r$ and $\ell^*=\left(\frac{i_l}{\alpha v}\right)^{\frac{1}{\alpha-1}}$
- 3. Asset markets clear

Three types of equilibrium

 $ho \ell^* \geq \bar{\ell} > 0$: A scarce-reserves equilibrium

$$\ell = \bar{\ell} = \frac{1 - \chi}{\chi} r < \ell^*$$

 $ightharpoonup \bar{\ell} > \ell^* \geq 0$: A ample-reserves equilibrium

$$\ell = \ell^* < \bar{\ell} = \frac{1 - \chi}{\chi} r$$

 $ightharpoonup \bar{\ell} = 0$: A no-banking equilibrium

$$\ell = \bar{\ell} = \frac{1 - \chi}{\gamma} r = 0$$

Comparative statics

	$\left \begin{array}{c} \text{scarce-reserve} \\ \ell^* \geq \bar{\ell} > 0 \end{array}\right $		$ar{\ell} >$	e-reserve $\ell^* \geq 0$	no-b $\bar{\ell}$		
ζ	$\frac{\partial r}{\partial \zeta}$	$\frac{\partial i_d}{\partial \zeta}$	$\frac{\partial r}{\partial \zeta}$	$\frac{\partial i_d}{\partial \zeta}$	$\frac{\partial r}{\partial \zeta}$	$\frac{\partial i_d}{\partial \zeta}$	$\frac{\partial \ell^*}{\partial \zeta}$
i	-	+	-	0	0	0	+
ir	+	+	+	+	0	0	-

Result

Figure 1: Equilibria and Deposit Rates

Result

Proposition

For given $(i_r, \chi, \bar{\delta})$:

- (i) $\exists !$ scarce-reserves equilibrium iff $i \geq \max\{\hat{\iota}, \bar{\iota}\};$
- (ii) \exists ! ample-reserves equilibrium iff $i \in (0, \bar{\iota})$ and $i_r \geq k$;
- (iii) $\exists !$ no banking equilibrium either $i \in [0, \hat{\imath})$ where $i_r < k$, or $i \in [0, i_r k)$;

Proposition

 $\bar{\iota}$ is increasing in i_r , and $\hat{\iota}$ is decreasing in i_r .

From scarce-reserve to ample-reserve

- lacktriangle constraint matters: $\ell = \min\{\bar{\ell}, \ell^*\}$
 - \blacktriangleright ℓ^* is increasing in i and decreasing in i_r .
 - $ightharpoonup ar{\ell} = rac{1-\chi}{\chi} r$ is decreasing in i and increasing in i_r .
- consider the case that the central bank lowers the nominal interest rate from $i > \max\{\hat{\iota}, \bar{\iota}\}$ to $i' < \bar{\iota}$ with $i_r > k$.
 - ▶ from scarce-reserves to the ample-reserves.
 ⇒ decrease in money multiplier
 - huge increase in reserves

Role of credit condition

		reserve $ar{\ell} > 0$	ample- $ar{\ell} > \ell$	reserve * > 0	no-banking $ar{\ell}=0$
	$\bar{\delta} < \overline{\hat{\delta}}$	$\bar{\delta} > \hat{\delta}$	$\bar{\delta} < \tilde{\delta}$	$\bar{\delta} > \tilde{\delta}$	
$\partial r/\partial \overline{\delta}$	-	0	-	0	0
$\partial i_d/\partial \bar{\delta} \ \partial \ell^*/\partial \bar{\delta}$	+	0	0	0	0
$\partial \ell^*/\partial \overline{\delta}$	0	0	0	0	0

Role of credit condition

Figure 2: Demand for reserves and the monetary aggregate with different credit limits

Changes in credit access

scarce	-reserve	ample	e-reserve	no-ba		
$\ell^* \geq \bar{\ell} > 0$		$ $ $\bar{\ell} >$	$\ell^* \geq 0$	$\bar{\ell}$:		
$\frac{\partial r}{\partial \sigma_3}$	$\frac{\partial i_d}{\partial \sigma_3}$	$\frac{\partial r}{\partial \sigma_3}$	$\frac{\partial i_d}{\partial \sigma_3}$	$\frac{\partial r}{\partial \sigma_3}$	$\frac{\partial i_d}{\partial \sigma_3}$	$\frac{\partial \ell^*}{\partial \sigma_3}$
-	+	-	0	0	0	0

Quantitative Analysis

Parameterization

- The utility functions for DM and CM are $u(q) = Aq^{1-\gamma}/(1-\gamma)$ and $U(X) = \log(X)$
- ▶ Cost function for DM is c(q) = q.
- In the model, the equilibrium is characterized by three policy variables (i, i_r, χ) and credit limit, $\bar{\delta}$.
- $\qquad \qquad \frac{\sigma_3\bar{\delta}}{1+\sigma_1\nu(q_1)+\sigma_2\nu(q_2)+\sigma_3\nu(q_3)} = \frac{\mathsf{Unsecured\ Credit}}{\mathsf{GDP}} \Rightarrow \bar{\delta}$
- ▶ Model generates equilibrium by using $(i, i_r, \chi, \frac{\text{Unsecured Credit}}{\text{GDP}})$
- ➤ Calibration is based on 1968-2007. Compare in-sample fit (1968-2007) and out-of-sample fit (2008-2017)

Sensitivity analysis for measure of monetary policy

Parameterization

Table 1: Model parametrization

Parameter	Value	Target/source	Data	Model							
External Parameters											
enforcement cost curvature, $lpha$	enforcement cost curvature, α 2 Set directly										
DM3 matching prob, σ_3	0.4783	Durkin (2000)									
Joi	Jointly Determined Parameters										
bargaining Power, θ	0.454	avg. retail markup	1.384	1.384							
enforcement cost level, $ u$	0.020	avg. UC/DM	0.387	0.378							
DM1 matching prob, σ_1	0.189	avg. C/D	0.529	0.564							
deposit operating cost, k	0.002	avg. R/Y	0.016	0.016							
DM utility level, A	0.618	avg. C/Y	0.044	0.044							
DM utility curvature, γ	0.398	semi-elasticity of C/Y to i	-3.716	-3.724							

Note: C, R, DM, UC, Y denote currency in circulation, reserves, DM transactions, unsecured credit and nominal GDP, respectively. D denotes inside money.

Fitted money demand for currency Sensitivity analysis for α and σ_3

Figure 3: In-sample Fit: 1968-2007

Figure 4: Out-of-sample Fit: 2008-2017

Figure 5: Composition of Monetary Base: Data vs. Model

Conclusion

- ▶ I construct monetary-search model of banking to investigate the money creation process.
- Use of unsecured credit crowds out inside money.
- When the central bank pay interest on reserves, money creation is not constrained by reserve requirements but still depends on the nominal interest rates and interests on reserves.
- Quantitatively, the calibrated model can account for the behavior of money creation.

THANK YOU!

Chow test

$$\begin{split} \text{Money multiplier}_t = & \beta_0 + \beta_1 \big(\text{RequiredReserves/Deposit} \big)_t \\ + & \mathbf{1}_{t \geq 1992Q2} \big[\gamma_0 + \gamma_1 \big(\text{RequiredReserves/Deposit} \big)_t \big] \\ + & \mathbf{1}_{t \geq 2008Q4} \big[\delta_0 + \delta_1 \big(\text{RequiredReserves/Deposit} \big)_t \big] + \epsilon_t \end{split}$$

F-statistics are obtained by testing $\gamma_0 = \gamma_1 = \delta_0 = \delta_1 = 0$.

$$\begin{aligned} \text{Money multiplier}_t = & \beta_0 + \beta_1 (\mathsf{Currency/Deposit})_t \\ + & \mathbf{1}_{t \geq 2008Q4} [\delta_0 + \delta_1 (\mathsf{Currency/Deposit})_t] + \epsilon_t \end{aligned}$$

F-statistics are obtained by testing $\delta_0 = \delta_1 = 0$. Back to motivation

Chow test for structural breaks

Table 2: Require Reserve Ratio

Dependent Variable: Money Mu	ıltiplier
RR	-0.601
	(0.365)
$RR imes 1_{t \geq 1992Q2}$	132.279* [*] **
-=	(0.031)
$RR imes 1_{t \geq 2008Q4}$	-147.943***
-=	(8.574)
$1_{t>1992Q2}$	9.091***
·= · · ·	(0.557)
$1_{t>2008Q4}$	0.074***
·= ···•	(0.611)
Constant	2.813***
	(0.053)
Obs.	228
R^2	0.963
DF for numerator	4
DF for denominator	222
F Statistic for Chow test	1711.32
F Statistic for 1% sig. level	3.40
F Statistic for 0.1% sig. level	4.79

Chow test for structural breaks

Table 3: Currency Deposit Ratio

Dependent Variable:	
CD	-1.301***
	(0.027) -52.018***
$CD \times 1_{t \geq 2008Q4}$	-52.018***
	(4.995)
$1_{t>2008Q4}$	3.061***
-=	(0.409)
Constant	3.159***
	(0.015)

Obs.	228
R^2	0.974
DF for numerator	2
DF for denominator	224
F Statistic for Chow test	1245.69
F Statistic for 1% sig. level	4.70
F Statistic for 0.1% sig. level	7.13

Fitted money demand for currency

Figure 6: Money demand for currency

Model-implied regression

Table 4: Model-implied regression coefficients, model vs. data

Dependent Variable:	Reserves/GDP (1968-2007)		M1 Money M (2009-2		Excess Reserve/Deposit (2009-2017)		
	Data Model		Data	Model	Data	Model	
	(1)	(2)	(3)	(4)	(5)	(6)	
Unsecured Credit/GDP	-0.123*** (0.004)	-0.190					
3 Month T-bill Rate	-0.083*** (0.011)	-0.072	1.004*** (0.156)	1.999	-2.447*** (0.423)	-3.771	
Interest on Reserves			-0.892*** (0.150)	-2.034	2.137*** (0.405)	3.842	
R^2	0.876	0.849	0.652	0.922	0.612	0.855	

Notes: Columns (1)-(2) report the canonical cointegrating regression (CCR) estimates. First stage longrun variance estimation for CCR is based on Bartlett kernel and lag 1. Columns (3)-(6) report OLS estimates. For (3) and (5) Newey-West standard errors with lag 1 are reported in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent levels, respectively. Intercepts are included but not reported.

Welfare

Figure 7: Cost of inflation

Welfare

	$i_r = 0\%$	$i_r = 0.25\%$	$i_r = 0\%$	$i_r = 0.25\%$	$i_r = 0\%$	$i_r = 0.25\%$
	$\chi = 0.1$	$\chi = 0.1$	$\chi = 0.5$	$\chi = 0.5$	$\chi = 0.9$	$\chi = 0.9$
	(1)	(2)	(3)	(4)	(5)	(6)
q_1	0.141	0.141	0.141	0.141	0.141	0.141
$q_2 = q_3$	0.263	0.263	0.204	0.206	0.152	0.154
$1-\Delta$	0.0167	0.0167	0.0331	0.0324	0.0655	0.0638

Figure 8: Counterfactual analysis

Sensitivity analysis

Table 5: Alternative parametrizations

	Data	Baseline	Model 1	Model 2	Model 3	Model 4	M2
External Parameters							
α		2	1.8	2.2	1.8	2.2	2
σ_3		0.4783	0.3	0.3	0.4783	0.4783	0.4783
Calibration targets							
avg. retail markup	1.384	1.384	1.386	1.383	1.384	1.383	1.387
avg. C/Y	0.044	0.044	0.044	0.044	0.044	0.044	0.044
avg. R/Y	0.016	0.016	0.016	0.016	0.016	0.016	0.011
semi-elasticity of C/Y	-3.716	-3.724	-3.720	-3.729	-3.724	-3.729	-3.019
avg. C/D	0.529	0.564	0.574	0.557	0.564	0.557	
avg. UC/DM	0.387	0.378	0.379	0.377	0.378	0.377	
avg. C/D (M2)	0.090						0.103
avg. UC/DM (M2)	0.159						0.175

Note: C, R, DM, UC, Y denote currency in circulation, reserves, DM transactions, unsecured credit and nominal GDP, respectively.

Model parametrization

Figure 9: Model Fit with Different Specifications

Figure 10: Model fit with different measure of monetary policy

Sensitivity analysis

Table 6: Parametrizations with different measure of monetary policy

Interest/Inflation rate	3 Mont	h T-bill	Federa	Federal Funds		CP		Core PCE	
	Data	Model	Data	Model	Data	Model	Data	Model	
Targets									
avg. retail markup	1.384	1.384	1.384	1.384	1.384	1.384	1.384	1.384	
avg. C/Y	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	
avg. R/Y	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	
avg. C/D	0.529	0.564	0.529	0.531	0.529	0.554	0.529	0.551	
avg. UC/DM	0.387	0.378	0.387	0.373	0.387	0.376	0.387	0.375	
semi-elasticity of C/Y	-3.716	-3.724	-3.020	-3.012	-3.454	-3.440	-4.258	-4.220	
Parameter									
bargaining power, θ		0.454		0.512		0.476		0.423	
enforcement cost level, $ u$		0.020		0.019		0.016		0.016	
DM1 matching prob, σ_1		0.189		0.184		0.189		0.201	
deposit operating cost, k		0.002		0.002		0.002		0.002	
DM utility level, A		0.618		0.598		0.611		0.642	
DM utility curvature, γ		0.398		0.427		0.408		0.378	

Note: C, R, DM, UC, Y denote currency in circulation, reserves, DM transactions, unsecured credit and nominal GDP, respectively.

Figure 11: Money demand for currency

References

- Berentsen, A., Camera, G. & Waller, C. (2007), 'Money, credit and banking', *Journal of Economic Theory* **135**(1), 171–195.
- Berentsen, A., Huber, S. & Marchesiani, A. (2015), 'Financial innovations, money demand, and the welfare cost of inflation', *Journal of Money, Credit and Banking* **47**(S2), 223–261.
- Bethune, Z., Choi, M. & Wright, R. (2020), 'Frictional goods markets: Theory and applications', *The Review of Economic Studies* **87**(2), 691–720.
- Durkin, T. A. (2000), 'Credit cards: Use and consumer attitudes, 1970-2000', Federal Reserve Bulletin **86**, 623.
- Freeman, S. & Huffman, G. W. (1991), 'Inside money, output, and causality', *International Economic Review* pp. 645–667.
- Gu, C., Mattesini, F., Monnet, C. & Wright, R. (2013), 'Banking: A new monetarist approach', *Review of Economic Studies* **80**(2), 636–662.

- Gu, C., Mattesini, F. & Wright, R. (2016), 'Money and credit redux', *Econometrica* **84**(1), 1–32.
- Kalai, E. (1977), 'Proportional solutions to bargaining situations: Interpersonal utility comparisons', *Econometrica* pp. 1623–1630.
- Lotz, S. & Zhang, C. (2016), 'Money and credit as means of payment: A new monetarist approach', *Journal of Economic*
- Theory **164**, 68–100.

 Wang, L., Wright, R. & Liu, L. Q. (2019), 'Sticky prices and costly credit', *International Economic Review*.