CBM414 - Procesamiento digital de señales biomédicas Clase 11 - Resolución en frecuencia y ventanas

David Ortiz, Ph.D.

Escuela de Ingeniería Biomédica Universidad de Valparaíso

Expectativa de aprendizaje

Al finalizar la clase, el estudiante será capaz de analizar el efecto del ventaneo sobre el espectro de una señal, comprender el compromiso entre resolución en frecuencia y fuga espectral, y aplicar distintas ventanas en el procesamiento espectral.

Clase anterior:

Convolución 4.1.1-4.1.3

Clase de hoy:

• Resolución en frecuencia y ventaneo 9.1

Esta presentación es una recopilación del texto guía de Orfanidis y no contiene todos los temas abordados en clase. Por favor, reportar posibles errores al correo david.ortiz@uv.cl.

Discrete Time Fourier Transform (DTFT)

Las replicas están separadas por la "banda de resguardo" $\delta=f_s-2f_{max}$ y notamos que el teorema de muestreo (Nyquist, $f_s\geq 2f_{max}$) garantiza que $\delta>0$, i.e., las bandas en frecuencia no se superponen. Si las replicas no se superponen, se cumple

$$T\hat{X}(f) = X(f), \quad \text{para} \ -\frac{f_s}{2} \leq f \leq \frac{f_s}{2}, \quad \hat{X}(f) := \sum_{n=-\infty}^{\infty} x(nT)e^{-2\pi j f T n},$$

Ventaneo

Sin embargo, $\hat{X}(f)$ no se puede calcular porque requiere que $-\infty < n < \infty$. En la práctica, limitamos las muestras a $0 \le n < L-1$, es decir,

$$\hat{X}(f) := \sum_{n = -\infty}^{\infty} x(nT)e^{-2\pi jfTn} \quad \Rightarrow \quad \hat{X}_L(f) := \sum_{n = 0}^{L-1} x(nT)e^{-2\pi jfTn}$$

Esto equivale a procesar x(nT) en una ventana w(n) de longitud L, o un registro de duración $T_L = LT$

Ventaneo

Podemos escribir

Podemos escribir
$$w(n) = \begin{cases} 1 & 0 \leq n \leq L-1 \\ 0 & \text{o.c.} \end{cases} \quad \text{y} \quad x_L(m) = w(m) \cdot x(m) = \begin{cases} x(m) & 0 \leq m \leq L-1 \\ 0 & \text{o.c.} \end{cases}$$

para este caso, w(n) se conoce como ventana cuadrada. Considerando $\omega = 2\pi f/f_s = 2\pi fT$, reemplazamos en la DTFT

$$\hat{X}(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$\hat{X}(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

$$\hat{X}_L(\omega) = \sum_{n=0}^{L-1} x(n)e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x_L(n)e^{-j\omega n} \quad \{ \text{DTFT de la señal ventaneada } x_L(n) \}$$

En la medida que L aumenta, $\hat{X}_L(\omega)$ es una mejor aproximación de $\hat{X}(\omega)$

NOTA IMPORTANTE: En el libro se describe $\hat{X}(\omega)$ sin el gorro, es decir $X(\omega)$. En la clase trabajaremos con $\hat{X}(\omega)$ para facilitar el análisis

Ventaneo

Los efectos de multiplicar por w(n) (registro finito) son:

- 1. Se reduce la resolución de frecuencia $\Delta f = \frac{1}{T_c}$, conocido como principio de incertidumbre
- 2. Se introducen frecuencias espúreas en el espectro, debido al corte abrupto de x(n). Este fenómeno se conoce como "Frequency leakage" o "derramamiento de frecuencias".

Considerando el teorema de la convolución, tenemos

$$x_L(m) = w(m) \cdot x(m) \quad \Rightarrow \quad \hat{X}_L(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}(\omega') \hat{W}(\omega - \omega') d\omega' = \frac{1}{2\pi} \hat{X}(\omega) * \hat{W}(\omega)$$

donde $\hat{W}(\omega)$ es la DTFT de w(n) (ventana rectangular)

$$\hat{W}(\omega) \text{ es la DTFT de } w(n) \text{ (ventana rectangular)}$$

$$\hat{W}(\omega) = \sum_{n=0}^{L-1} w(n) e^{-j\omega n} = \frac{1-e^{-jL\omega}}{1-e^{-j\omega}} = \frac{\sin(\omega L/2)}{\sin(\omega/2)} e^{-j\omega(L-1)/2}$$

6

Para el ancho del lóbulo principal usamos

$$\Delta \omega_w = rac{2\pi}{L} \left[rac{ ext{rad}}{ ext{muestras}}
ight],$$
 $\Delta f_\omega = rac{f_s}{L} = rac{1}{LT} = rac{1}{T_L} \left[ext{Hz}
ight]$

Para la altura relativa del lóbulo principal usamos

$$R = 20 \log_{10} \left| \frac{\hat{W}(\omega)}{\hat{W}(0)} \right|_{\omega = \frac{3\pi}{L}}$$

$$\approx 20 \log_{10} \left(\frac{2}{3\pi} \right) = -13.46 dB$$

Ilustración del efecto del ventaneo

Ejemplo: Consideremos el caso de una sinusoide compleja análoga de frecuencia f_1 y su versión muestreada

$$x(t) = e^{2\pi j f_1 t}, \quad -\infty < t < \infty \quad \Rightarrow \quad x(n) = e^{2\pi j f_1 n T} = e^{j\omega_1 n}, -\infty < n < \infty$$

donde $\omega_1 = 2\pi f_1 T = 2\pi f_1/f_s$. Su espectro (TF) será

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi jft}dt = \int_{-\infty}^{\infty} e^{-2\pi j(f-f_1)t}dt = \delta(f-f_1).$$

Si $|f_1| \le f_s/2$ (se cumple el teorema del muestreo)

$$\hat{X}(\omega) = \hat{X}(f) = \frac{1}{T}X(f) = \frac{1}{T}\delta(f - f1)$$
 \Rightarrow $\hat{X}(\omega) = \frac{1}{T}\delta(f - f1)$

Considerando la propiedad del delta de Dirac $|a|\delta(ax)=\delta(x)$, podemos expresar el espectro en términos de ω

$$2\pi\delta(\omega - \omega_1) = \frac{1}{T}2\pi T\delta(2\pi T f - 2\pi T f_1) = \frac{1}{T}\delta(f - f_1) \Rightarrow \boxed{\frac{1}{T}\delta(f - f_1) = 2\pi\delta(\omega - \omega_1)}$$

Así, el espectro de la señal muestreada será

$$X(\omega) = 2\pi\delta(\omega - \omega_1), \quad -\pi \le \omega \le \pi \tag{1}$$

Por otra parte, la versión de ventaneada de la función x(n) es

$$x(n) = e^{2\pi j f_1 nT} = e^{j\omega_1 n}, -\infty < n < \infty \quad \Rightarrow \quad x_L(n) = e^{j\omega_1 n}, n = 0, \dots, L-1$$

Recordando el teorema de la convolución

$$x_L(m) = w(m) \cdot x(m) \quad \Rightarrow \quad X_L(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega') W(\omega - \omega') d\omega' = \frac{1}{2\pi} X(\omega) * W(\omega)$$
(2)

e insertando (1) en (2), obtenemos el espectro

$$X_L(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega') W(\omega - \omega') d\omega' = \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \delta(\omega' - \omega_1) W(\omega - \omega') d\omega'$$
$$= W(\omega - \omega_1)$$

Otra ventana aparte de la rectangular

- El ancho del lóbulo principal determina la resolución en frecuencia.
- Por otro lado, los lóbulos laterales ocasionan la fuga de frecuencias e impiden detectar otras sinusoides de menor amplitud.

Para minimizar los lóbulos laterales, es posible utilizar otras ventanas distintas a las rectangulares. Por ejemplo la ventana *Hamming*

$$w(m) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi m}{L-1}\right) & 0 \le m \le L-1\\ 0 & \text{o.c.} \end{cases}$$

Ejemplo La sinusoide $x(t)=\cos(2\pi f_0 t)$, donde $f_0=50$ Hz, es muestreada a una tasa de $f_s=1$ kHz. La señal muestreada es $x(n)=\cos(\omega_0 n)$, donde $\omega_0=2\pi f_0/f_s=2\pi\cdot 50/1000=0.1\pi$ radianes/muestra. Una porción de longitud-L de x(n) es ventaneada mediante una ventana rectangular y una ventana de Hamming, es decir, para $n=0,1,\ldots,L-1$:

$$\begin{split} x_L(n) &= w_{\rm rec}(n) x(n) = \cos(\omega_0 n) \\ x_L(n) &= w_{\rm ham}(n) x(n) = \left[0.54 - 0.46 \cos\left(\frac{2\pi n}{L-1}\right)\right] \cos(\omega_0 n) \end{split}$$

La siguiente figura muestra los espectros correspondientes, $|X_L(\omega)|$, graficados sobre el subintervalo de Nyquist, $0 \le \omega \le 0.2\pi$.

Expectativa de aprendizaje

Al finalizar la clase, el estudiante será capaz de analizar el efecto del ventaneo sobre el espectro de una señal, comprender el compromiso entre resolución en frecuencia y fuga espectral, y aplicar distintas ventanas en el procesamiento espectral.

Clase de hoy:

• Resolución en frecuencia y ventaneo 9.1

Próxima clase:

• DFT y DFT inversa 10.1, 10.6

Referencias:

1. S. J. Orfanidis, *Introduction to signal processing*. Rutgers University, 2010. Disponible en https://eceweb1.rutgers.edu/~orfanidi/intro2sp/2e/