Dart Scoring System Preliminary Design Review

EN.525.743 – Embedded Systems Development Laboratory
Kevin Parlak

Agenda

- Project Description
- Capabilities & Limitations
- Functional Description
- Interface Description
- Material & Resource Requirements
- Development Plan
- Risks
- References

Project Description

Problem: Currently own steel-tipped dart board with no means of keeping score

Solution: Utilize computer vision techniques to track where dart lands and automatically update game score/statistics

- Computer vision will find, map, and report dart location
 - Based on known dataset with training as game is played
- User interface will update game scores as dart location is identified
- Database will hold score information and be accessible via touchscreen display or mobile device

Bigger Picture:

- System will be capable of two games at first expansion of game selection easy once concept is complete
- Machine learning possible based on user data over time help user get better at playing

Capabilities

- Database shall be capable of holding up to 10 players information
- User interface shall be capable of displaying dart locations live on a dartboard hit map
- Imaging system shall be capable of re-calibrating upon power-up
- User interface/mobile app shall be capable of producing statistics from database entries
 - Hit % by number, win %, double & triple ring, outer & inner bullseye hit %

Limitations

- Database shall only be accessible when connected to home network or WAP
- Imaging system shall only be capable of tracking a single set of darts at a time
 - Player to select profile on physical user interface before throwing
- System shall only host two games
 - "501" (score-based), "Around the World" (knockout-based)
- System shall only be capable of starting games from the physical user interface
- System shall have a two-player limit per game
- Database shall only be capable of adding new profiles from physical user interface
- Mobile app shall only be usable on Android devices

Functional Description

- User will start game, select profile, and choose game to play via touchscreen user interface
- Imaging system will begin looking for dart once user profile is selected
 - Will use identify dart tip location, map to dartboard, and send to scoring system
- Scoring system will receive update and calculate statistics and score
 - Will upload to database and update live hit map for viewing on user interface and mobile device
- System will repeat until winner is declared or game is ended
- Mobile app will show user statistics and scores

Functional Description – Block Diagram

Functional Description – State Machines

Interface Description – Block Diagram

Interface Description – Communication

- Camera Serial Interface
 - Touchscreen interaction driver-free
 - Image acquisition Python libraries for video streaming
- TCP/IP Protocol
 - Python libraries for socket programming
 - Scoring system to imaging system communication
 - Database querying and communication with mobile app

Material Requirements

- Scoring System
 - Raspberry Pi 3B+ with Wi-Fi, Ethernet, and Camera Serial Interface (CSI) connectivity
- User Interface
 - FREENOVE touchscreen monitor for interaction with Pi via CSI
- Imaging System
 - Nvidia Jetson Nano with Ethernet and CSI connectivity
- Camera
 - SainSmart IMX219 8MP module for interaction with Jetson via CSI

Resource Requirements

- Development will occur in Python language
 - Main IDE VS Code with Python extensions (Python, Pylance, IntelliCode)
- Scoring system
 - Database development sqllite3 libraries
 - Wi-Fi communication SSID connection to home network upon imaging of OS
 - User interface driver-free display via CSI; turtle, pyqt5 libraries
- Imaging system
 - Computer vision opency-python libraries
 - Machine learning tensorflow libraries
- Mobile app
 - Main IDE Android Studio
- Additional tools
 - Wireshark packet observation
 - VNC Viewer remote Pi access
- Existing computer vision dart recognition solutions will be heavily relied on

Development Plan – Approach

Utilize online repository for issue and progress tracking

- https://github.com/kparlak/dart-scoring-system
- 1. Get imaging system to produce valid dart positions
 - Little experience with computer vision/machine learning flush out early
- 2. Get scoring system to run both dart games and communicate with imaging system with basic user interaction
 - Minimalist approach to produce core of dart scoring system
- 3. Create user interface for displaying scores
 - Minimal experience with GUI development flush out after core system is functional
- 4. Create mobile application
 - Little experience with mobile apps flush out after full-cycle system is functional

Development Plan – Schedule

Date	Milestone	Progress
9/18 – 10/9	Dart Recognition Development	Dart recognitionDart location mappingTCP/IP communication
10/9 – 10/23	Scoring and Game Development	 TCP/IP communication '501' and 'Around the World' game implementation
10/23 – 10/30	Database Development	Database creationDatabase querying
10/30 – 11/13	User Interface Development	Profile creationScoreboard implementationHit map implementation
11/13 – 11/20	Scoring and Imaging System Integration	Functional system minus mobile app
11/20 – 12/4	Mobile App Development	Beta Android app deploymentDatabase querying

Risks

Known Risks

- 1. Loss of home internet connectivity
- 2. Machine learning for image recognition likely to be difficult
- 3. Consistence lighting and angle viewpoints for imaging system

Mitigation

- Switch Pi to act as wireless access point rather than Wi-Fi client
- 2. Three weeks built-in for imaging system; use known trained datasets from online repositories to feed solution
- 3. Implement calibration routines

References

- Nvidia Jetson Dart Score Implementation
- GitHub OpenCV Steel Darts
- Python Libaries