Vector PDE	Nonzero Pattern	Description	Iterative Solver	Solver Tol. (2-norm)	Precisions Solver/PrecCalc/Pre cStorage	#dof	Precond	number of V-cycle in an iteration	StructMG④	SysPFMG	BoomerAMG	
Rhd-3T	3d7	Data are from radiation hydrodynamics [1]. The matrix is discretized from three-temperature equations and extracted from a timestep in the time-dependent simulation. It is highly anisotropic (see nonzero values distribution in Figure 2 in our paper and analysis in [1]).	CG (Sym.)	r / b < 1e-9	FP64/FP32/FP16	6.30M	0.0	1	Enable ZeroGuess Coarsen: 3D full Smoother: sym PGS on all levels except for direct solve on coarsest level Interp: cell_3d8 Restrict: cell_3d8	Enable ZeroGuess Coarsen: 1D semi ① Relax type: 2 (Red-Black G.S.)	Coarsen type: 8 (PMIS) ② Strong threshold: 0.25 Interp: 6 (extended+i) Max rowsum: 0.9 Aggressive levels: 1 Relax type: 6 (Sym G.S./Jacobi hybric Other:default	네)
Oil-4C	3d7	Data are from petroleum reservoir simulation [2]. The matrix is discretized by the Fully Implicit Method (FIM) and extracted from a timestep in the time-dependent simulation. It is highly anisotropic due to inhomogeneous permeability [3]. Settings of SPE1 and SPE10 benchmarks are combined to generate large enough cases.	GMRES (Non-sym.)	r / b 	FP64/FP32/FP16	31.5M	0.0	1	Enable ZeroGuess Coarsen: 3D full Smoother: sym PGS on all levels Interp: cell_3d8 Restrict: cell_3d8	Not Applicable	NumFunctions: 4 SetNodal: 2 coarsen type: 6 (Falgout) Relax type: 26 (Sym G.S./Jacobi hybrid) Relax order: 1 (C-F) ② Other: default	
Solid-3D	3d15	Data are from a linear elastic material model, characterized by its isotropic and homogeneous nature. The material exhibits a Poisson's ratio of 0.25. It is a relatively well-conditioned system compared to other cases in our paper. The elastic body is a cube, with each face subjected to fixed boundary conditions.	CG (Sym.)	r / b < 1e-9	FP64/FP32/FP16	11.8M	0.0	1	Enable ZeroGuess Coarsen: 3D full Smoother: sym PGS on all levels except for direct solve on coarsest level Interp: cell_3d64 Restrict: cell_3d8	Enable ZeroGuess Coarsen: 1D semi ① Relax type: 2 (Red-Black G.S.)	AMG Version in our paper (without InterpVector) NumFunctions: 3 SetNodal: 4 Coarsen type: 10 (HMIS) Interp type: 6 (extended+i) Relax type: 26 (Sym G.S./Jacobi hybrid) Other: default	AMG Version from Reviewer#1 and #4 (with InterpVector) NumFunctions: 3 Nodal: 4 Nodal Diag:1 Coarsen type: 8 (PMIS) Aggressive levels: 1 Interp type: 6 (extended+i) Pmax: 6 Relax type: 16 (Chebyshev) for up and down, 8 for coarsest InterpVecVariant: 2 (GM-2) InterpVecQMax: 4 Strong threshold: 0.25 ③ Other: default
Scalar PDE	Nonzero Pattern	Description	Iterative Solver	Solver Tol. (2-norm)	Precisions Solver/PrecCalc/Pre	#dof	Precond Tol.	number of V-cycle in an iteration	StructMG4	SMG	PFMG	BoomerAMG
Rhd	3d7	Rhd comes from the same problem with Rhd-3T. Data are from radiation hydrodynamics [1]. By decoupling the radiation diffusion equation from the above Rhd-3T system through operator splitting, an anisotropic scalar linear system is derived.	CG (Symmetric Positive Definite)	r / b 	FP64/FP32/FP16	2.10M	0.0	1	Enable ZeroGuess Coarsen: 3D full Smoother: sym PGS on all levels except for direct solve on coarsest level Interp: cell_3d8 Restrict: cell_3d8	Enable ZeroGuess Coarsen: 1D semi ① Other: default	Enable ZeroGuess Coarsen: 1D semi (1) RAP type: 0 (Galerkin) Relax type: 1 (weighted Jacobi) Other: default	Coarsen type: 8 (PMIS) (2) Strong threshold: 0.25 Interp type: 6 (extended+i) Max rowsum: 0.9 Aggressive levels: 1 Relax type: 6 (Sym G.S./Jacobi hybrid) other:default
Oil	3d7	Oil comes from the same problem with Oil-4C. Data are from petroleum reservoir simulation [2]. It decouples one component from the above Oil-4C system by the Implicit Pressure Explicit Composition (IMPEC) method. The derived matrices are still highly anisotropic.	GMRES (Non-sym.)	r / b 	FP64/FP32/FP16	31.5M	0.0	1	Enable ZeroGuess Coarsen: 3D full Smoother: sym PGS on all levels Interp: cell_3d8 Restrict: cell_3d8	Not Applicable	Not Applicable	Coarsen type: 10 (HMIS) Strong threshold: 0.3 ② Interp type: 6 (extended+i) Pmax elemts: 5 Max rowsum: 0.9 Aggressive levels: 1 Relax type: 6 (Sym G.S./Jacobi hybrid) Relax weights: 1.1 ② Relax order: 1 (C-F) ② Other:default
Weather	3d19	Data are from the operational weather forecasting system of China Meteorological Administration [4]. This case is of 2km resolution of Chinese region. The matrices are month-dependent, and we use the one in December 2018. They are highly anisotropic due to irregular earth topography and nonuniform latitudinal spacing. The right-hand-side vectors are extracted from the time-dependent operational simulation.	GMRES (Non-sym.)	r 	FP32/FP32/FP16	637M	0.0	1	Enable ZeroGuess Coarsen: 2D semi Smoother: LGS or ILU (both are good) on finest level, and LGS on other coarser levels Interp: cell_2d16 Restrict: cell_2d4	Enable ZeroGuess Coarsen: 1D semi ① Other: default	Enable ZeroGuess Coarsen: 1D semi ① RAP type: 0 (Galerkin) Relax type: 1 (weighted Jacobi) Other: default	Coarsen type: 10 (HMIS) Strong threshold: 0.25 Interp: 6 (extended+i) Pmax elemts: 5 Aggressive levels: 1 Relax type: 6 (Sym G.S./Jacobi hybrid) Other:default

- [1] https://doi.org/10.1002/nla.2078
- [2] https://www.spe.org/web/csp/datasets/set02.htm
 [3] https://github.com/OpenCAEPlus/OpenCAEPoro/blob/main/examples/spe10 shows inhomogeneous permeability and porosity
- [4] https://doi.org/10.1007/s11434-008-0494-z
- ①: SMG, PFMG, and SysPFMG could only support 1D semi-coarsening
- 2 Application-specific tuning according to literature [1] for rhd and rhd-3T, and according to OpenCAEPoro (https://github.com/OpenCAEPlus/OpenCAEPoro/blob/main/examples/spe1a/csr.fasp) for oil and oil-4C.
- 3 Reviewer#4 suggests 0.5, and hypre document suggests 0.9 for elasticity problem, but we found 0.25 is better in term of total time.
- 4 StructMG uses cell-centered interpolation/restriction to handle anisotropy in these cases. See https://doi.org/10.1016/0021-9991(92)90168-X for details. Other comments:

Software version: hypre 2.25.0

The types and values of "Solver Tol." are determined by the original applications. "Precond Tol." is set to 0 because multigrids are used as preconditioners. All multigrid preconditioners are applied once (1 V-cycle) inside one iteration. Both pre- and post-smooth numbers are 1.

Experiment results of BoomerAMG with InterpVector in Solid-3D are displayed in the following figure.

Figure: Elasticity problem experiment.

- (a) Strong scaling test on ARM-based machines.
- (b) Weak scaling test on ARM-based machines.
- (c) Strong scaling test on X86 machines.
- (d) Weak scaling test on X86 machines.

Conclusions:

- 1. BoomerAMG with InterpVector greatly reduces the number of iterations but brings about significant setup time.
- 2. BoomerAMG with InterpVector is still the slowest and least scalable in term of total time.
- 3. StructMG and hypre-SysPFMG do not require additional input of InterpVector, but are still faster than BoomerAMG with InterpVector.
- 4. StructMG could still obtain min/max speedups of 7.1x/18x on ARM-based and 3.3x/14x on X86 over BoomerAMG with InterpVector.