Lineare Algebra II: Ubung 11

Tutorin: Elena, Di 14-16

June 28, 2011

Aufgabe 1

Gesucht: Normalform der Quadrik $F = \{(x, y, z) \in \mathbb{R}^3 | x^2 + 4xz - 3y^2 + 6yz + z^2 + x + 2y - z + 5 = 0\} \subset \mathbb{R}^3$. Also ist $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch:

$$f(x) = \tilde{x}^t \begin{pmatrix} 1 & 0 & 2 \\ 0 & -3 & 3 \\ 2 & 3 & 1 \end{pmatrix} \tilde{x} + \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}^t \tilde{x} + 5$$
setze also $M := \begin{pmatrix} 1 & 0 & 2 \\ 0 & -3 & 3 \\ 2 & 3 & 1 \end{pmatrix}, b := \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, c := 5.$

- (1) M symmetrisieren \checkmark
- (2) Feststellen: $b \in ImM$?

Löse Lineares Gleichungssystem:

$$\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & -3 & 3 & | & 2 \\ 2 & 3 & 1 & | & -1 \end{pmatrix} \stackrel{III-2I}{\leadsto} \begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & -3 & 3 & | & 2 \\ 0 & 3 & -3 & | & -3 \end{pmatrix} \stackrel{III+II}{\leadsto} \begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & -3 & 3 & | & 2 \\ 0 & 0 & 0 & | & -1 \end{pmatrix}$$

Also können hat f nach Translation die Form (eliminiere Konstante)

$$f(x,y,z) = x^2 + 4xz - 3y^2 + 6yz + z^2 + x + 2y - z$$

(3) Normalisiere mit quadratischer Ergänzung nach 5.32 $=(x+2z)^2-3z^2-3y^2+6yz+x+2y-z$ Setze x' = x + 2z', y' = y, z' = z $\Rightarrow (x + 2z)^2 - 3z^2 - 3y^2 + 6yz + x + 2y - z = x'^2 - 3z'^2 - 3y'^2 + 6y'z' + x' - 3z' + 2y'$

$$\Rightarrow (x+2z)^2 - 3z^2 - 3y^2 + 6yz + x + 2y - z = x'^2 - 3z'^2 - 3y'^2 + 6y'z' + x' - 3z' + 2y'$$

$$= x'^2 - 3(z'^2 - 2y'z' + y'^2) + 3y'^2 - 3y'^2 + x' - 3z' + 2y' = x'^2 - 3(z' - y')^2 + x' - 3z' + 2y'$$

$$= x'^2 - 3(z'^2 - 2y'z' + y'^2) + 3y'^2 - 3y'^2 + x' - 3z' + 2y' = x'^2 - 3(z' - y')$$
Setze $x'' = x'$, $y'' = y'$, $z'' = z' - y''$

$$\Rightarrow x'^2 - 3(z' - y')^2 + x' - 3z' + 2y' = x''^2 - 3z''^2 + x'' - 3(z'' - y'') + 2y''$$

$$= x''^2 - 3z''^2 + x'' - 3z'' + 3y'' + 2y'' = x''^2 - 3z''^2 + x'' - 3z'' + 5y''$$
Setze $x''' = x''$, $z''' = z''$, $y''' = x''' - 3z''' + 5y''$

Setzle
$$x'''^2 - 3z''^2 + x'' - 3z''' + 5y'' = x'''^2 - 3z'''^2 + y'''$$

Setzle $x'''' = x''', y'''' = y''', z'''' = \sqrt{3}z'''$

$$\Rightarrow x''''^2 - z''''^2 + y''''$$
 ist Normalform.

(Die Form passt auch dazu, dass M einen pos. Eigenwert, einen neg. Eigenwert, und rg(M) = 2 ist, sowie $b \notin ImM$.)

Aufgabe 2

Sei $s \in \mathbb{R}, F_s \subset \mathbb{R}^3$ mit

$$F_s = \left\{ (x, y, z) \in \mathbb{R}^3 | x^2 + (2s^2 + 1)y^2 + (2s^2 + 1)z^2 - 2xy + 2xz - 2yz - \left(2s^2 - 3s + 1\right) = 0 \right\}$$

$$f(x) = \tilde{x}^t \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2s^2 + 1 & -1 \\ 1 & -1 & 2s^2 + 1 \end{pmatrix} \tilde{x} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}^t \tilde{x} - (2s^2 - 3s + 1)$$

setze also
$$M:=\left(\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 2s^2+1 & -1 \\ 1 & -1 & 2s^2+1 \end{array} \right), b:=\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right), c:=-\left(2s^2-3s+1\right).$$

Es ist also M symmetrisch, und $b \in ImM$. Linearer Term ist bereits eliminiert. Normalisiere mit quadratischer Ergänzung nach 5.32

$$x^{2} + (2s^{2} + 1)y^{2} + (2s^{2} + 1)z^{2} - 2xy + 2xz - 2yz - (2s^{2} - 3s + 1)$$

$$= (x^{2} - 2xy + y^{2}) - y^{2} + (2s^{2} + 1)y^{2} + (2s^{2} + 1)z^{2} + 2xz - 2yz - (2s^{2} - 3s + 1)$$

$$= (x - y)^{2} + 2s^{2}y^{2} + (2s^{2} + 1)z^{2} + 2xz - 2yz - (2s^{2} - 3s + 1)$$
Setze $x' = x - y', y' = y, z' = z$

$$\Rightarrow (x - y)^{2} + 2s^{2}y^{2} + (2s^{2} + 1)z^{2} + 2xz - 2yz - (2s^{2} - 3s + 1)$$

$$= x'^{2} + 2s^{2}y'^{2} + (2s^{2} + 1)z'^{2} + 2x'z' - (2s^{2} - 3s + 1)$$

$$= (x'^{2} + 2x'z' + z'^{2}) - z'^{2} + 2s^{2}y'^{2} + (2s^{2} + 1)z'^{2} - (2s^{2} - 3s + 1)$$

$$= (x' + z')^{2} + 2s^{2}y'^{2} + 2s^{2}z'^{2} - (2s^{2} - 3s + 1)$$
Setze $x'' = x' + z'', z'' = z', y'' = y'$

$$\Rightarrow (x' + z')^{2} + 2s^{2}y'^{2} + 2s^{2}z'^{2} - (2s^{2} - 3s + 1)$$

$$= x''^{2} + 2s^{2}y''^{2} + 2s^{2}z''^{2} - (2s^{2} - 3s + 1)$$

$$= x''^{2} + 2s^{2}y''^{2} + 2s^{2}z''^{2} - (2s^{2} - 3s + 1)$$

Fall 1:
$$s = 0$$

 $\Rightarrow x''^2 + 2s^2y''^2 + 2s^2z''^2 - (2s^2 - 3s + 1) = x''^2$ ist Normalform.

Fall 2:
$$s \neq 0$$

Setze
$$x''' = x'', y''' = \sqrt{2s^2}y'', z''' = \sqrt{2s^2}z''$$

 $\Rightarrow x''^2 + 2s^2y''^2 + 2s^2z''^2 - (2s^2 - 3s + 1) = x'''^2 + y'''^2 + z'''^2 - (2s^2 - 3s + 1)$

Fall 2a:
$$s = 1 \lor s = \frac{1}{2}$$

Da hier $2s^2 - 3s + 1 = 0$ hat f die Form: $f(x, y, z) = x'''^2 + y'''^2 + z'''^2 - 0$

Fall 2b:
$$s \neq n1 \land s \neq n2$$

Nach normalisieren der Konstante hat f die Form:

$$f(x, y, z) = x'''^2 + y'''^2 + z'''^2 - 1$$

Aufgabe 3

Sei b der Linearterm und c die Konstante einer Quadrik.

Fall	Normalform	Name	Skizze
(1) mit $b \neq 0$			
(1a) mit $c \neq 0$			
, ,	$-x^2 - y^2 = 1$	Ø	
(1b) mit $c = 0$			
, ,	$x^2 + y^2 - z = 0$	ellipt. Paraboloid	
	,	<u>-</u>	
	$x^2 - y^2 - z = 0$	hyperb. Paraboloid	
	2 0	1 1 77 1 1	
	$x^2 - y = 0$	parabol. Zylinder	
(2) mit b = 0			
(2a) mit $c \neq 0$			
(24) 11110 0 / 0	$x^2 + y^2 + z^2 = 1$	Ellipsoid	
		E mpsora	
	$x^{2} - y^{2} - z^{2} = 1$ $x^{2} + y^{2} - z^{2} = 1$	Ø	
	$x^2 + y^2 - z^2 = 1$	einschaliges Hyperboloid	
	2 2 2 4	. 1 1, 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$-x^2 - y^2 + z^2 = 1$	zweischaliges Hyperboloid	

	3 . 3 .	111	1
	$x^2 + y^2 = 1$	ellipt. Zylinder	
	9 9		
	$-x^2 + y^2 = 1$	hyperb. Zylinder	
	$x^2 = 1$	zwei Ebenen	
	$-x^2 = 1$	Ø	
(2b) mit $c = 0$			
, ,	$x^2 + y^2 + z^2 = 0$	Ein Punkt	
	$\begin{bmatrix} x & y + z = 0 \end{bmatrix}$	Lili I uliku	
	$x^2 + y^2 - z^2 = 0$	elliptischer Kegel	
	$\begin{bmatrix} x & y - z & 0 \end{bmatrix}$	curbanenter 17e8er	
	$x^2 + y^2 = 0$	Gerade	
	$\downarrow \qquad \downarrow \qquad$	Gerade	
	$x^2 - y^2 = 0$	Ebenenschnitt	
	$x - y^- = 0$	ъвененясини	

$x^2 = 0$	Ebene	

Aufgabe 4

```
Sei \mathbb C ein \mathbb R-VR mit Basis \{1,i\}.

(a)

Basis von \mathbb C \otimes_{\mathbb R} \mathbb C ist \{1 \otimes 1, 1 \otimes i, i \otimes 1, i \otimes i\}, Basis von \mathbb C \otimes_{\mathbb R} \mathbb R ist \{1 \otimes 1, i \otimes 1\}

(b)

Basis von \mathbb C \otimes_{\mathbb C} \mathbb C ist \{1 \otimes 1\}

(c)

Sei V ein K-VR mit Basis \{v_i\} \subset V, sei 1 das neutrale Element der Multiplikation in K.

Dann ist \{1 \otimes v_i\} eine Basis von K \otimes_K V mit \dim K \otimes_K V = \dim V

Dann ex. die bijektive Funktion \rho: K \otimes_K V \to V, 1 \otimes v_i \mapsto v_i

\Rightarrow K \otimes_K V \simeq V

Dann ist \{v_i \otimes 1\} eine Basis von V \otimes_K K mit \dim V \otimes_K K = \dim V

Dann ex. die bijektive Funktion \rho: V \otimes_K K \to V, v_i \otimes 1 \mapsto v_i

\Rightarrow V \otimes_K K \simeq V
```