

TVec Resident Control of the Control

$$X_{c} = \frac{1}{2\pi f c}$$

$$X_{c} = \frac{1}{2\pi f c}$$

$$D_{c} \cdot X_{c} = \frac{1}{0} = 2 \left(S_{c} \right)$$

$$D_{c} \cdot E = 10V$$

$$T = 20$$

$$T =$$

Region -> Amplifiers

AC Signal

 $I_{c} = \beta I_{B}$ $\vdots \beta = I_{B} \rightarrow |P|$

FIXED-BIAS CONFIGURATION

C)
$$V_E \Rightarrow Emiffen to Genound

 $V_E = 0V$
 $V_E = 0 \Rightarrow V_B - V_E = 0 \Rightarrow V_B = 0$$$

- VCE = VCL - ICRE

negative sign revealing that the junction is reversed-biased, = 12 - 235 × 2 2

$$\frac{-1}{3} = \frac{\sqrt{ce - \sqrt{ge}}}{Rg} = \frac{12 - 0.7}{240} = 0.047 \text{ m A}$$

$$I_{C_{\text{sat}}} = \frac{V_{CC}}{R_C} = \frac{12 \text{ V}}{2.2 \text{ k}\Omega} = 5.45 \text{ mA}$$

Effect of β variation on the response of the fixed-bias configuration of Fig. 4.7.

β	$I_B(\mu A)$	$I_C(mA)$	$V_{CE}(V)$
	47.08	2.35	6.83→ Examp Le . 4.
→ 50 →100	47.08	4.71	1.64

 $70 - \sqrt{6.83 - 164}$ in the value = 76.83 - 164 - 76.7

The BJT collector current is seen to change by 100% due to the 100% change in the value of β . The value of I_B is the same, and V_{CE} decreased by 76%.

Effect of β variation on the response of the emitter-bias configuration of Fig. 4.23.

β	$I_{B}\left(\mu A\right)$	$I_C(mA)$	$V_{CE}\left(V\right)$	
50	40.1	2.01	13.97 → Exampl	e 4.4
100	36.3	3.63	9.11	

Now the BJT collector current increases by about 81% due to the 100% increase in β . Notice that I_B decreased, helping maintain the value of I_C —or at least reducing the overall change in I_C due to the change in β . The change in V_{CE} has dropped to about 35%. The network of Fig. 4.23 is therefore more stable than that of Fig. 4.7 for the same change in β .

EMITTER-BIAS CONFIGURATION

The dc bias network of Fig. 4.17 contains an emitter resistor to improve the stability level over that of the fixed-bias configuration. The more stable a configuration, the less its response will change due to undesireable changes in temperature and parameter

EXAMPLE 4.4

a.
$$I_B$$
. C) $V_{CC} - I_C R_C - V_{CE} - I_E R_E = 0$
b. I_C .

7. V_{CE} . $V_{CE} - V_{CE} - I_{CR} - I_{$