The Formal Semantics of Programming Languages / Chapter1-3

Wataru Yachi

JAIST

month DD, YYYY

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$.

Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. That is $\theta(y) = Y$. Either $y \in Y$ of $y \notin Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. That is $\theta(y) = Y$. Either $y \in Y$ of $y \notin Y$.

■ If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. That is $\theta(y) = Y$. Either $y \in Y$ of $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

Claim

A set X and $\mathcal{P}ow(X)$ are never in 1-1 correspondence for any X.

Proof.

Proof by contradiction. Consider a set X and its powerset $\mathcal{P}ow(x)$. Let $\theta: X \to \mathcal{P}ow(X)$ be a 1-1 correspondence between X and $\mathcal{P}ow(X)$. Suppose $Y = \{x \in X \mid x \notin \theta(x)\}$. Y is a subset of X and therefore in correspondence with a $y \in X$. That is $\theta(y) = Y$. Either $y \in Y$ of $y \notin Y$.

- If $y \in Y$ then $y \notin Y$, because $y \notin \theta(y)$.
- If $y \notin Y$ then $y \in \theta(y)$, so $y \in Y$.

In either case, we have contradiction.