Sri Chaitanya IIT Academy

13-12-15_Sr. IPLCO_JEE-ADV_(2012_P2)_RPTA-14_Q'Paper

IIT-JEE-2012-P2-Model

Time:2:00 PM to 5:00 PM

IMPORTANT INSTRUCTIONS

Max Marks: 198

PHYSICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 8)	Q.N: 1 – 8) Questions with Single Correct Choice		-1	8	24
Sec – II(Q.N : 9 – 14)	Sec – II(Q.N : 9 – 14) Questions with Comprehension Type (3 Comprehensions : $2+2+2=6Q$)		-1	6	18
Sec – III(Q.N : 15 – 20)	Questions with Multiple Correct Choice	4	0	6	24
Total			20	66	

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 21 – 28)	Questions with Single Correct Choice	3	-1	8	24
Sec – II(Q.N : 29 – 34)	ec – II(Q.N : $29 - 34$) Questions with Comprehension Type (2 Comprehensions : $3+3 = 6Q$)		-1	6	18
Sec – III(Q.N : 35 – 40)	- 40) Questions with Multiple Correct Choice 4		0	6	24
Total			20	66	

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : (41 – 48)	Questions with Single Correct Choice	3	-1	8	24
Sec – II(Q.N : $(49 - 54)$ Questions with Comprehension Type (3 Comprehensions : $2+2+2=6Q$)		3	-1	6	18
Sec – III(Q.N : 55 – 60)	Questions with Multiple Correct Choice	4	0	6	24
Total				20	66

SR.IPLCO _JEE-ADV_P2

space for rough work

MATHS: Max. Marks: 66

SECTION – I (SINGLE CORRECT CHOICE TYPE)

This section contains **8 multiple choice questions.** Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is **correct**

- In a \triangle ABC for given values of a, b and A if the remaining angles of the two triangles are B_1, C_1 and B_2, C_2 , then the value of $\frac{\sin C_1}{\sin B_1} + \frac{\sin C_2}{\sin B_2}$, is
 - A) 2 cosA
- B) cosA
- C) sinA
- D) 2 sin A
- 42. Incircle of $\triangle ABC$ meets the side BC at D and excircle of $\triangle ABC$ opposite to vertex A meets BC at D^1 then $|MD MD^1| =$ _____ where M is the mid point of BC
 - A) |a-c|
- B) b+c-a
- C) 0
- D) $\frac{a+c}{2}$
- 43. The product of all real values of x satisfying the equation

$$\sin^{-1}\left(\cos\left(\frac{2x^2+10\,|\,x\,|\,+4}{x^2+5\,|\,x\,|\,+3}\right)\right) = \cot\left(\cot^{-1}\left(\frac{2-18\,|\,x\,|}{9\,|\,x\,|}\right)\right) + \frac{\pi}{2} \text{ is}$$

- A) 9
- B) -9
- C) -3
- D) 1

SR.IPLCO _JEE-ADV_P2

space for rough work

- 44. If in a right angled triangle ABC, $4\sin A\cos B 1 = 0$ and $\tan A$ is real then
 - A) angles are in AP
 - B) angles are in GP
 - C) In-radius of triangle ABC is 1
 - D) circum radius of triangle ABC is 1
- 45. Let P be an interior point of triangle ABC and AP, BP, CP meets the sides BC,

CA, AB at D,E,F respectively then the value of $\frac{AF}{FB} + \frac{AE}{EC} - \frac{AP}{PD}$ is

- A) 1
- B) $\frac{1}{2}$
- C)0
- D) 1/3
- 46. The value of $\left[\cos 1 \cos^{-1} 1\right] \left[\sin 1 \sin^{-1} 1\right] + \left[\tan 1 \tan^{-1} 1\right] \left[\cot 1 \cot^{-1} 1\right]$ + $\left[\sec 1 - \sec^{-1} 1\right] - \left[\cos ec1 - \cos ec^{-1} 1\right]$ is equal to (where [x] denotes greatest
 - integer function)
 - A)3
- B)4
- C)5
- D)6

SR.IPLCO _JEE-ADV_P2

space for rough work

Sri Chaitanya IIT Academy

13-12-15_Sr. IPLCO_JEE-ADV_(2012_P2)_RPTA-14_Q'Paper

Number of integral ordered pairs (x,y) satisfying the equation

$$\tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{y}\right) = \tan^{-1}\left(\frac{1}{10}\right) \text{ is}$$

In a triangle the sum of two sides is x and the product of the same two sides is y. 48. If $x^2 - c^2 = y$, where c is the third side of the triangle, then the ratio of the inradius to the circum-radius of the triangle is

A)
$$\frac{3y}{2x(x+c)}$$

B)
$$\frac{3y}{2c(x+c)}$$

A)
$$\frac{3y}{2x(x+c)}$$
 B) $\frac{3y}{2c(x+c)}$ C) $\frac{3y}{4x(x+c)}$ D) $\frac{3y}{4c(x+c)}$

D)
$$\frac{3y}{4c(x+c)}$$

SECTION - II

(COMPREHENSION TYPE)

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

If x,y are real numbers such that xy< 1 then $Tan^{-1}x + Tan^{-1}y = Tan^{-1}\left(\frac{x+y}{1-yy}\right)$

If a,x,y are all +ve real numbers and $xy = a^2 + 1$ then $Tan^{-1}\left(\frac{1}{a+x}\right) + Tan^{-1}\left(\frac{1}{a+y}\right) =$ 49.

$$\mathbf{A}) Tan^{-1} \left(\frac{1}{a+x+y} \right)$$

B)
$$Tan^{-1} \left(\frac{1}{a - (x + y)} \right)$$

C)
$$Tan^{-1} \left(\frac{1}{a - (x - y)} \right)$$

D)independent of x and y

SR.IPLCO JEE-ADV P2

space for rough work

50. 5
$$Tan^{-1}\frac{1}{8} + 2Tan^{-1}\frac{1}{18} + 3Tan^{-1}\frac{1}{57} =$$

- A) $\frac{\pi}{2}$
- $B)\frac{\pi}{4}$
- $C)\pi$
- $D)\frac{3\pi}{2}$

Paragraph for Questions 51 and 52

AP is a diameter of a unit circle with centre at O. Let AC be an arc of this circle, which subtends angle θ radian at centre O. A tangent line is drawn to the circle at the point A and a segment AB on this tangent is laid off whose length is equal to that of the arc AC (B,C lie on the same side of line AO). A straight line BC is drawn to intersect the diameter line AP at Q. CD is the perpendicular from the point C upon the diameter AP.

- 51. The area of the trapezoid ABCD is
 - A) $\frac{1-\cos\theta}{\theta-\sin\theta}$

B) $(\theta + \sin \theta) \sin^2 \frac{\theta}{2}$

C) $2\cos^2\frac{\theta}{2}(\theta-\sin\theta)$

- D) $\theta(\theta + \sin\theta)$
- 52. The value of the limit $\lim_{\theta \to 0^+} (AQ)$ is
 - A) 0
- B) 1
- C) 2
- D) 3

SR.IPLCO _JEE-ADV_P2

space for rough work

Paragraph for Questions 53 and 54

Let ABC be a triangle such that

$$\left(\cot\frac{A}{2}\right)^2 + \left(2\cot\frac{B}{2}\right)^2 + \left(3\cot\frac{C}{2}\right)^2 = \left(\frac{6s}{7r}\right)^2$$

where s and r denotes its semi-perimeter and its inradius respectively.

- 53. In triangle ABC a:b:c is

- A) 7:13:19 B) 13:40:45 C) 7:20:23 D) 26:81:90.
- 54. $\frac{\cot \frac{A}{2}}{\cot \frac{B}{2}} + \frac{\cot \frac{B}{2}}{\cot \frac{C}{2}} + \frac{\cot \frac{C}{2}}{\cot \frac{A}{2}}$ is equal to
 - A) $\frac{226}{36}$ B) $\frac{225}{36}$

SECTION - III (MULTIPLE CORRECT CHOICE TYPE)

This section contains 6 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct

If $\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$ and $\beta = 3\cos^{-1}\left(\frac{4}{9}\right)$, where the inverse trigonometric functions take 55.

only the principal values, then the correct option(s) is (are)

- A) $\cos \beta > 0$ B) $\sin \beta < 0$ C) $\cos(\alpha + \beta) > 0$ D) $\cos \alpha < 0$

SR.IPLCO JEE-ADV P2

space for rough work

56. Let
$$\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \sin^{-1}\left(\frac{2x}{x^2+1}\right) + \tan^{-1}\left(\frac{2x}{x^2-1}\right) = \frac{2\pi}{3}$$

- A) The number of values of x satisfying the above equation is 2
- B) solution of x are irrational
- C) The sum of the values of x is less than 3
- D) The sum of the values of x is greater than 5
- 57. Let P be an interior point of triangle ABC. Let $P_1 \ge 1, P_2 \ge 2, P_3 \ge 3$ be the lengths of altitudes drawn from P to the sides BC,CA,AB respectively. Let h_1, h_2, h_3 be the lengths of altitudes drawn from A,B,C to the opposite sides. If circles are drawn with all such possible positions of P as centres and $\frac{P_1}{h_1} + \frac{P_2}{h_2} + \frac{P_3}{h_3}$ as radius, then
 - A) some circles meet one side of $\triangle ABC$
 - B) some circles meet two sides of $\triangle ABC$
 - C) some circles meet all sides of $\triangle ABC$
 - D) some circles meet no side of $\triangle ABC$

Sri	Chaitany	va IIT	Academy
J	CHAHAII	, w	Academy

13-12-15_Sr. IPLCO_JEE-ADV_(2012_P2)_RPTA-14_Q'Paper

- In the triangle ABC the medians drawn from vertices B and C are perpendicular. 58. Then the value of $\cot B + \cot C$ can be
- B) $\frac{2}{3}$ C) $\frac{4}{3}$
- D) $\frac{5}{3}$
- A triangle has altitudes of length 4 and 12. If the length of the third altitude is 'p' 59. which is also an integer, then 'p' can be
 - A) 3
- B) 4
- D) 6
- If the ortho-centre of an isosceles triangle lies on the in-circle of the triangle 60. then
 - A) The base angle of the triangle is $\cos^{-1}\frac{2}{3}$
 - B) The triangle is acute
 - C) The base angle of the triangle is $tan^{-1} \frac{\sqrt{5}}{2}$
 - D) If S,I are the circumcentre and in-centre and R is circum-radius of the triangle then $\frac{SI}{R} = \frac{1}{3}$

SR.IPLCO _JEE-ADV_P2

space for rough work