O'REILLY®

Artificial Intelligence Conference

Using deep learning and time-series forecasting to reduce transit delays

Mark Ryan mryan@ca.ibm.com

Alina Zhang alina.li.zhang@gmail.com

theaiconf.com

Introduction

- Starting with a publicly-available, real-world structured dataset on light-rail transit delays:
 - Explore data on delays
 - Prepare dataset
 - Train & assess deep learning model to predict delays
- Example of:
 - Applying deep learning to a tabular dataset
 - Transforming ill-formed address information into map visualizations
 - Combining multiple data types (continuous, categorical and text) in a single deep learning model that incorporates embeddings

The problem: streetcar delays

- Toronto has the biggest network streetcar network in North America
- Advantages: greener / lower labour cost than buses; cheaper than subways
- Major disadvantage: streetcar delays trigger general gridlock
- Goal: Prevent gridlock by predicting and preventing streetcar delays

The solution: DL + TSF

- Apply standard analysis techniques and time series forecasting to analyze the data
- Apply data transformations to prepare it for training
- Generate Keras DL model based on categories of columns in the data (categorical, continuous, and text)
- Iteratively train and assess model to improve accuracy
- Create pipeline to encapsulate data preparation steps + model training

The dataset: overview

- ~70 k records with details of all streetcar delays since January 2014
- No error checking on data entry = messy data:
 - Invalid routes, vehicles, and direction of travel
 - Locations are free-form, inconsistent descriptions
- Interesting, real-world dataset that demands serious effort to prepare for machine learning

1	Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	Vehicle
2	2014-12-01	510	1:28:00 AM	Monday	Spadina and Oxford	Emergency Services	77	87	B/W	4124
3	2014-12-01	306	3:59:00 AM	Monday	Gerrard and Kingsmount Park Rd.	Investigation	41	71	W/B	4044
4	2014-12-01	512	5:02:00 AM	Monday	Exhibition Loop	Late Leaving Garage	8	16	W/B	4171
5	2014-12-01	504	5:36:00 AM	Monday	Queen and Roncesvalles	Late Leaving Garage	6	12	E/B	4233
6	2014-12-01	506	5:52:00 AM	Monday	Coxwell and Gerrard	Mechanical	4	8	E/B	4077

The dataset: variations by year

Delay duration averages

Delay count averages

The dataset: variations by season

Delay duration seasonability

Delay count seasonability

The dataset: messy addresses

Location

Dundas West stnt to Broadview stn

Fleet St. and Strachan Ave.

Queen St. West and Roncesvalles Ave.

Lake Shore Blvd. and Superior St.

Roncy to Neville

Clean custom code

queen st. west
and roncesvalles

lake shore blvd.
and superior st.
roncesvalles to
neville park

Location

dundas west

stationt to

broadview station

fleet st. and strachan

API

0.000000 0.000000 43.636298 -79.409635 43.645335 -79.413184 43.614962 -79.488658 0.000000 0.000000 How to get from messy input addresses to latitude / longitude?

- 1. Clean up location values:
 - Common casing
 - Consistent order of street names
 - Consistent terms (""stn" -> "station";"Roncy" -> "Roncesvalles")
- 2. Apply Google Geocode API:
 - Batch call on cleaned up location values
 - Parse returned JSON and save latitude and longitude values as new features

The dataset: visualize locations

Pixiedust: rough identification of invalid locations

Folium: zero in on hotspots

The dataset: transformations

Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction
2016-01-01 00:00:00	511	02:14:00	Friday	fleet st. and strachan	Mechanical	10.0	20.0	e
2016-01-01 00:00:00	301	02:22:00	Friday	queen st. west and roncesvalles	Mechanical	9.0	18.0	W
2016-01-01 00:00:00	301	03:28:00	Friday	lake shore blvd. and superior st.	Mechanical	20.0	40.0	e
2016-01-01 00:00:00	505	15:42:00	Friday	broadview station loop	Investigation	4.0	10.0	w
2016-01-01 00:00:00	504	15:54:00	Friday	broadview and queen	Mechanical	6.0	12.0	е

Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	 longitude	X	у	z
2017-09-04 00:00:00	13	18:52:00	1	old weston road and st.clair	[1]	27.0	54.0	5	 -79.463024	0.925917	1.065716	0.942998
2016-07-01 00:00:00	4	21:18:00	0	connaught and queen	[1]	8.0	16.0	5	 -79.322360	1.085382	0.939566	0.968273
2016-03-24 00:00:00	7	06:48:00	4	boustead and roncesvalles	[1]	6.0	12.0	4	 -79.451723	0.933501	1.049577	1.002038
2015-08-10 00:00:00	13	13:56:00	1	roncesvalles yard	[5, 6, 7]	4.0	8.0	2	 -79.449050	0.934383	1.044788	1.023267
2017-10-04 00:00:00	5	10:42:00	6	queen and river	[1]	10.0	20.0	5	 -79.356530	1.045211	0.968827	0.990846

- Replace categorical values with numeric IDs
- Tokenize text values
- Replace latitude and longitude values with x, y, z normalizations

The model: layers by category

- Categorize columns in the dataset:
 - Continuous: length of delay
 - Categorical: route, vehicle, direction, time of day, day of week
 - Text: description of incident
 - Spatial: location
- Automatically build a simple Keras model:
 - Build model by iterating through columns by type
 - layers for each column type have distinct characteristics (e.g. GNU for text, embeddings for text and categorical columns)
 - As long as columns are categorized correctly, the model automatically adapts to new schemas / additional columns

The model: layers by category

Categorical

Text

The model: accuracy

- Experiment structure 1: predict whether a delay of less than a threshold occurs given all features:
 - High-water mark accuracy: 71%
- Experiment structure 2: predict whether a delay occurs given all features:
 - Generate augmented dataset with entries for all hour / route / direction combinations
 - Predict whether a delay will occur for a given set of conditions
 - High-water mark accuracy: 72%

Lessons learned

- Deep learning can be applied to medium-sized structured datasets
- Plan for the pipeline from the start
- Don't assume which features are categorical evaluate first
- Build the model to make it easy to add and drop features
- Save time by using pickle to save intermediate dataframes
- Don't underestimate the effort required to convert free-form addresses to latitude and longitude

Next steps

- Complete pipeline to simplify scoring
- Simple web deployment to allow scoring of single data points
- Deployment to allow scoring of batch data points
- Assess model on latest delay data from 2019

Code and data

Repo with code and associated material:

<u> https://github.com/ryanmark1867/ai_conference_june_2019</u>

Original data source: https://www.toronto.ca/city-government/data-

research-maps/open-data/open-data-catalogue/#e8f359f0-2f47-3058-

bf64-6ec488de52da

