Parameter Efficient Fine Tuning: Blazing fast fine-tuning!

Abbie Petulante
DSI Postdoctoral Fellow

VANDERBILT UNIVERSITY®

Data Science Institute

Discovery through data.

Training a Model

Training from scratch

Start with randomized weights

Train them fully to fit to a dataset

Fine-Tuning

Start with existing weights

Keep tuning them with additional or new data

Training a Model

Training from scratch

Start with randomized weights

Train them fully to fit to a dataset

Fine-Tuning

Start with existing weights

Keep tuning them with additional or new data

PEFT

Start with existing weights and **freeze them**

Train a much smaller set of *new* parameters

Training a Model

Training from scratch

Start with randomized weights

Train them fully to fit to a dataset

Fine-Tuning

Start with existing weights

Keep tuning them with additional or new data

PEFT

Start with existing weights and **freeze them**

Train a much smaller set of *new* parameters

Less compute needed

Fewer model adaptations

PEFT (Parameter Efficient Fine-Tuning)

- Strategies to fine tune much less of the model
 - Typically, <few%
 - With largely the same results!

- <u>Core idea</u>: large models are typically overparameterized critical changes for new tasks reside in smaller, lower-dimensional subspaces
- Generally, most PEFT methods are modular (can be added/removed)

Common PEFT Methods

Prompt/Prefix Tuning

Adapters

Low-Rank Adaptations (LoRA / DoRA)

Prompt/Prefix Tuning

<u>Idea:</u> Train *virtual tokens* (a small set of learned vectors) that steer the model to a desired behavior

 "Virtual tokens" - trainable vectors that act like tokens but aren't in the vocabulary

• learned representation vectors, not weight updates

Prompt/Prefix Tuning

Method	What it learns	Where it's Added
Soft-Prompt Tuning	<i>k</i> trainable embedding vectors (no text form)	Prepended to the input embedding sequence once
Prefix Tuning	k learned key/value vectors per layer	Injected into each layer's attention KV-store

- Like custom "hidden context" that doesn't need to correspond to real words
- Changes where embedding exists in the hidden space

Common PEFT Methods

Prompt/Prefix Tuning

Adapters

Low-Rank Adaptations (LoRA / DoRA)

<u>Idea:</u> Strategically insert additional "mini" layers (modules) between existing layers of the model (like plug-ins)

- Mini layers have few weights
- Train just the adapter modules, not the original model weights
- Lightweight and modular: Adapters can be swapped out for different tasks easily

Variant	Placement in Transformer block	Description / use-case
Houlsby (Sequential)	After both Attention and FFN (2 per block)	Classic bottleneck MLP; best quality, still <3 % params
Post-Attention (Bapna)	After Attention only	Fewer params/latency; popular in MT
IA ³ / Pfeiffer "vector"	Multiplicative scale vectors inside each block	Ultra-light (~0.05 %); merges away at inference
Parallel adapter	Runs alongside sub-layer, outputs summed	Keeps critical path short; good for real-time
Input/Output-only	One before first layer, one after last	Simplest plug-in; lowest quality but tiny

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

model.add_adapter("sst2", config="houlsby", reduction_factor=16)
model.train_adapter("sst2")

#set up standard training loop, train config, etc
trainer.train()

model.save_adapter("./sst2_adapter", "sst2")
```

Common PEFT Methods

Prompt/Prefix Tuning

Adapters

Low-Rank Adaptations (LoRA + flavors)

Low Rank Adaptations

<u>Idea:</u> Instead of updating a whole weight matrix, add a weight update that is created from much smaller, trainable matrices

- Low rank matrices = very few parameters
 - Very quick to train!
 - Original weight matrices remain frozen

Full Fine-Tuning

All weights of the model are fair game to edit

$$\begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \times \begin{bmatrix} W_{1,4} W_{2,4} W_{3,4} \\ W_{1,5} W_{2,5} W_{3,5} \end{bmatrix} = \begin{bmatrix} n_4 \\ n_5 \end{bmatrix}$$

All weights update, at each step, by α * update

Low Rank Adaptations (LoRA)

Only low rank matrices A/B are tuned

Low-Rank Adaptations

LoRA Flavor	How Implemented	Extra Parameters
Standard LoRA (orig. Hu + al. 2021)	Add rank- r (8–32) ΔW to chosen weight matrices	2 · d · r per target weight
QLoRA (Dettmers 23)	Freeze 4-bit quantized base weights; train LoRA in 16-bit	Same ΔW params as standard, but less VRAM
Selective-Layer LoRA	Apply LoRA only to top-N layers <i>or</i> only to Q,V matrices	Proportional to layers chosen—often < 0.05 % total
LoRA++ / Dropout-LoRA	Adds dropout & rescaling in the LoRA branch, sometimes adapter-bias	Same as standard
DoRA (Weight-Decomposed LoRA)	Decompose each weight into magnitude (γ) + direction; train γ (scalar per row/col) and a LoRA update for only direction	Same as standard + γ adds O(<i>d</i>) scalars per matrix