Deep Learning Project

Classifying Heart Condition

TABLE OF CONTENTS

OI. Project Goal

Backstory and project objectives

Model Baseline

Classification model

02. Dataset and EDA

Audio files datasets and data analysis

04. Data Preprocessing

Cleaning and processing techniques

05. Neural Networks

Applying different

NN models

01. Objectives

- Approximately 29% of the global deaths are caused by Cardiovascular diseases.
- The main goal of this project is to classify the heart condition from a heart rate audio.

O2. Dataset and EDA

Dataset

Heart sound dataset was collected from physioNet website.

- The dataset contains 1315 original PCG recordings in .wav format.
- Audio files are labeled as 0 "Normal Heart Sound" and 1 "Abnormal Heart Sound".

EDA: Waveplots

EDA: Spectrogram

O3. Model Baseline

•••

Classification Metric

Recall

"the probability that a sick patient is detected by the classifier".

Classification Model

K-Nearest Neighbors

Recall score: 0.6998

O4. Data Preprocessing

Tools

Data Preprocessing

Data Cleaning

Dropping long audio files

Noise Removal

Use noisereduce to remove noise from audio files

Standardize Duration

Making all audio files the same length

05. Neural Network Models

Neural Network Models

Feed Forward Neural Network

Long Short-Term Memory Neural Network

Convolutional Neural Network

Feed Forward Neural Network

• • •

Hyperparameters

Hidden Layers: 2

Units: 100

Epochs: 40

Batch Size: 32

Dropout: 0.5

Recall Score: 0.94

Long Short-Term Memory Neural Network

• • •

Hyperparameters

Hidden Layers: 3

Units: 64, 128

Epochs: 20

Batch Size: 32

Dropout: 0.3, 0.5

Recall Score: 0.96

Convolutional Neural Network

Convolutional Neural Network

• • •

Hyperparameters

Hidden Layers: 2

Units: 64

Epochs: 10

Dropout: 0.3

Neural Network Optimization

• • •

GridSearchCV: Hyperparameter tuning for Feed Forward Neural Network Model

Hyperparameters

Hidden Layers: 2

Units: 100, 32

Epochs: 20

Batch Size: 4

Dropout: 0.3

Recall Score: 0.96

Conclusion

In conclusion, LSTM neural network model has the best performance on classifying heart conditions through audio. While the feed-forward neural network model provides high recall, it suffers from overfitting. We can see that the validation recall of the feed-forward model is always close to one, Which indicates that the model is not learning. On the other hand, CNN performed poorly because it's designed to work effectively on image data.

THANKS!

Do you have any questions?