Λογική Σχεδίαση - Λύσεις Προόδου Ακ. Έτους 2022 – 2023 -Τμήμα Α

Θέμα 1°

Α Ερώτημα:

Μετατροπή του 215 από δεκαδικό σε δυαδικό:

Διά 2	Πηλίκο	Υπόλοιπο (Ψηφίο)	Θέση Bit #
(215)/2	107	1	0
(107)/2	53	1	1
(53)/2	26	1	2
(26)/2	13	0	3
(13)/2	6	1	4
(6)/2	3	0	5
(3)/2	1	1	6
(1)/2	0	1	8

 $⁼⁽¹¹⁰¹⁰¹¹¹⁾_2$

Με 12 ψηφία (με κόκκινο τα ψηφία που προσθέτω για να γίνει 12-ψήφιος ο αριθμός):

(0000 1101 0111)2

Μετατροπή του (215)₁₀ = (0000 1101 0111)₂ από δυαδικό σε δεκαεξαδικό:

0000	1101	0111
0	D	7
= (0D7) ₁₆		

Με τον ίδιο τρόπο:

 $(329)_{10} = (000101001001)_2 = (149)_{16}$

 $(613)_{10} = (001001100101)_2 = (265)_{16}$

Συνολικά:

Δεκαδικό	Δυαδικό	Δεκαεξαδικό
215	0000 1101 0111	0D7
329	0001 0100 1001	149
613	0010 0110 0101	265

Β Ερώτημα:

Αντίθετος του (215)10 ως συμπλήρωμα του 2:

Ξεκινώ από δεξιά στον δυαδικό αριθμό, αφήνω ως έχουν τα ψηφία μέχρι και το πρώτο '1' και μετά συμπληρώνω τα υπόλοιπα ψηφία. Για το $(215)_{10} = (000011010111)_2$ το πρώτο '1' το συναντάμε στη θέση 0, άρα

 $(000011010111)'_2 = (111100101001)_2$

Με τον ίδιο τρόπο, για τους (329) $_{10}$ και (613) $_{10}$ αντίστοιχα, είναι:

 $(000101001001)'_2 = (111010110111)_2$

 $(001001100101)'_2 = (110110011011)_2$

Αντίθετος του 215 ως συμπλήρωμα του 16:

Υπολογίζω το συμπλήρωμα ως προς 15, και προθέτω μια μονάδα:

	F(15)	F(15)	F(15)
-	0	D(13)	7
	F(15)	2	8
Προσθέτω το 1		+	1
	F	2	9

ή

Από τον αντίθετο του (215)10 στο δυαδικό:

1111	0010	1001
F	2	9

Με τον ίδιο τρόπο:

Αντίθετος του (329)10 ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)	F(15)
-	1	4	9
	E(14)	B(11)	6
Προσθέτω το 1		+	1
	F	R	7

ή

Από τον αντίθετο του (329)10 στο δυαδικό:

1110	1011	0111
E	В	7

Αντίθετος του (613)₁₀ ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)	F(15)
-	2	6	5
	D(13)	9	A(10)
Προσθέτω το 1		+	1
	D	9	В

ή

Από τον αντίθετο του (613)10 στο δυαδικό:

1101	1001	1011
D	9	В

Συνολικά, τα συμπληρώματα είναι:

Δεκαδικός	Αντίθετος Δυαδικός (12 ψηφία)	Αντίθετος Δεκαεξαδικός (3 ψηφία)
215	1111 0010 1001	F29
329	1110 1011 0111	EB7
613	1101 1001 1011	D9B

Γ Ερώτημα:

$$\alpha + \beta = (215)_{10} + (329)_{10} = (544)_{10}$$

Δυαδική πρόσθεση:

			1	1	1		1	1	1	1	1		Κρατούμενα
	0	0	0	0	1	1	0	1	0	1	1	1	(215) ₁₀
+	0	0	0	1	0	1	0	0	1	0	0	1	(329) ₁₀
	0	0	1	0	0	0	1	0	0	0	0	0	(544) ₁₀

Δυαδική αφαίρεση (με χρήση συμπληρώματος του 2):

$$\alpha - \gamma = (215)_{10} - (613)_{10} = -(398)_{10}$$

				1			1	1	1	1	1		Κρατούμενα
	0	0	0	0	1	1	0	1	0	1	1	1	(215)10
+	1	1	0	1	1	0	0	1	1	0	1	1	Συμπλήρωμα του 2 (613)10
	1	1	1	0	0	1	1	1	0	0	1	0	-(398)10

Προσοχή, δεν έχουμε κρατούμενο, άρα το αποτέλεσμα είναι αρνητικό. Το μέτρο του είναι ίσο με τον αντίθετο ως προς συμπλήρωμα του 2. Δηλαδή, $(111001110010)_2' = (000110001110)_2 = (398)_{10}$.

Δεκαεξαδική πρόσθεση:

	1	1		Κρατούμενα
	0	D(13)	7	(215)10
+	1	4	9	(329)10
	2	2	0	(544) ₁₀

Δεκαεξαδική αφαίρεση (με χρήση συμπληρώματος του 16):

	1	1		Κρατούμενα
	0	D(13)	7	(513) ₁₀
+	D(13)	9	B(11)	(Συμπλήρωμα του 2 (318) ₁₀
	Е	7	2	-(398)10

Προσοχή, δεν έχουμε κρατούμενο, άρα το αποτέλεσμα είναι αρνητικό. Το μέτρο του είναι ίσο με τον αντίθετο ως προς συμπλήρωμα του 16. Δηλαδή, $(E72)_{16}' = (18E)_{16} = (398)_{10}$.

Θέμα 2ο

Α Ερώτημα:

Πίνακας Αληθείας της συνάρτησης f:

m _i	x	у	Z	x' + y'	(x + y)'	f
0	0	0	0	1	1	1
1	0	0	1	1	1	1
2	0	1	0	1	0	0
3	0	1	1	1	0	0
4	1	0	0	1	0	0
5	1	0	1	1	0	0
6	1	1	0	0	0	0
7	1	1	1	0	0	0

Πίνακας Αληθείας της συνάρτησης g:

w	x	у	Z	wxy'z	WXZ	wxyz	g
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	1	1	1	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

Β Ερώτημα:

Από τον πίνακα αληθείας της f, προκύπτουν οι ελαχιστόροι (όπου f = 1)) και μεγιστόροι (όπου f = 0). Άρα:

 $f=\Sigma(0,1)$

 $f = \Pi(2, 3, 4, 5, 6, 7)$

Γ Ερώτημα:

$$f(x, y, z) = (x + y)'(x' + y') = x'y'(x' + y') = x'y'x' + x'y'y' = x'y' + x'y' = x'y'$$

$$g(w, x, y, z) = wxy'z + wxz + wxyz = wxz(y + y') + wxz = wxz1 + wxz = wxz + wxz = wxz$$

Δ Ερώτημα:

Με βάση το θεώρημα DeMorgan:

$$f(x, y, z)' = (x'y')' = (x')' + (y')' = x + y$$

$$g(w, x, y, z)' = (wxz)' = w' + x' + z'$$

Ε Ερώτημα:

Ζ

Visual Paradigm Online Free Edition

