Predicting Medical Costs Using Regression Analysis

A Data-Driven Approach to Healthcare Insights

LINDA KELLEN AYEBALE (2400721933) KARANZI JOHNMARY (2400721928)

November 21, 2024

Problem Statement

Objective: To predict individual medical costs billed by health insurance, using demographic and lifestyle factors such as age, BMI, smoking status, and region.

Why is this important?

- Helps insurers estimate risk and costs accurately.
- ► Aids in policy pricing for different demographics.
- Provides actionable insights for reducing high medical expenses.

Research Questions

- 1. How do demographic factors like age and region influence medical costs?
- 2. What is the impact of smoking on medical costs compared to other features?
- 3. Does having more children significantly increase medical costs?
- 4. How do BMI levels affect medical costs across different regions?
- 5. Can interactions between features (e.g., smoking and BMI) reveal hidden patterns in cost prediction?

Dataset Overview and Cleaning

Dataset Description:

- Number of Records: 1338
- Features: Age, BMI, Number of Children, Smoking Status, Region, Charges.
- Target Variable: charges (medical costs billed).

Data Cleaning Steps:

- Checked for and confirmed no missing values.
- Categorical variables (sex, smoker, region) were encoded using label encoder and map encoder.

Correlation Matrix

Correlation Insights:

- Age is the most correlated feature with charges, suggesting its strong influence.
- Number of children and bmi have weaker correlations.

Smoking: The Most Influential Factor

Key Insight: Smoking (smoker) has the strongest impact on medical costs:

Smokers incur significantly higher medical costs than non-smokers.

Data Splitting and Training

Data Splitting:

- ▶ Dataset split into Training (70%), Validation (10%), and Testing (20%).
- Random state was set for reproducibility.

Training Process:

- ► Linear Regression:
 - Used as a baseline model.
 - Assumes a linear relationship between features and target.
- Random Forest:
 - Hyperparameters tuned using grid search (e.g., number of trees, max depth).
 - Captures non-linear relationships and interactions between features.

Model Results: Regression vs Random Forest

Regression Metrics:

Dataset	MAE	MSE	RMSE	R ² Score
Training	4251.53	3.77e+07	6144.20	0.742
Validation	3868.68	3.06e+07	5532.54	0.776
Testing	4295.34	3.54e+07	5946.35	0.766

Table: Linear Regression Results

Random Forest Metrics:

Dataset	MAE	MSE	RMSE	R ² Score
Training	1039.27	3.38e+06	1838.65	0.977
Validation	2655.03	2.33e+07	4828.26	0.830
Testing	2548.64	2.09e+07	4567.29	0.862

Table: Random Forest Results

Explainability with SHAP

SHAP Analysis Highlights:

- Smoking (smoker) is the most influential factor, significantly driving up costs.
- Age and BMI also contribute heavily to predictions.

Conclusion

Key Findings:

- Smoking, BMI, and age are the most influential factors in predicting medical costs.
- Random Forest is the best-performing model for this dataset.
- ▶ SHAP analysis provides clear insights into feature importance.

Future Work:

- Incorporate additional features for better predictions (e.g., exercise habits, diet).
- Explore other advanced models like Gradient Boosting for comparison.

Thank you for your attention!