Extending Gottesman Types Beyond the Clifford Group

Programming Languages for Quantum Computing, 2021 Robert Rand, Aarthi Sundaram, Kartik Singhal and Brad Lackey

What types?

What types?

Daniel Gottesman, The Heisenberg Interpretation of Quantum Computing

 \mathbf{H}

$$X \to Z$$

$$Z \to X$$

-H

S

$$X \to Y$$

$$Z\to Z$$

$$-S$$

CNOT

$$X \otimes I \to X \otimes X$$

$$I \otimes X \to I \otimes X$$

$$Z \otimes I \to Z \otimes I$$

$$I \otimes Z \to Z \otimes Z$$

What types?

Daniel Gottesman, The Heisenberg Interpretation of Quantum Computing

H
$$X \to Z$$

$$Z \to X$$
S
$$X \to Y$$

$$Z \to Z$$

$$Z \to Z$$

CNOT
$$X \otimes I \to X \otimes X$$

 $I \otimes X \to I \otimes X$
 $Z \otimes I \to Z \otimes I$
 $I \otimes Z \to Z \otimes Z$

Rand, Sundaram, Singhal, Lackey, Gottesman Types for Quantum Programs

 $H: X \to Z$ means H takes a ± 1 eigenstate of X (i.e. $|+\rangle, |-\rangle$) to a +1 eigenstate of Z (i.e. $|0\rangle, |1\rangle$)

Too Many Types?

 $H: X \to Z$

 $H: Z \to X$

 $S: X \to Y$

 $S: Z \rightarrow Z$

 $CNOT: X \otimes I \rightarrow X \otimes X$

 $CNOT: I \otimes X \rightarrow I \otimes X$

 $CNOT: Z \otimes I \rightarrow Z \otimes I$

 $CNOT: I \otimes Z \rightarrow Z \otimes Z$

Too Many Types?

 $H: X \to Z$

 $H: Z \to X$

 $S: X \to Y$

 $S: Z \rightarrow Z$

 $CNOT: X \otimes I \rightarrow X \otimes X$

 $CNOT: I \otimes X \rightarrow I \otimes X$

 $CNOT: Z \otimes I \rightarrow Z \otimes I$

 $CNOT: I \otimes Z \rightarrow Z \otimes Z$

Intersection Types!

 $H: (X \to Z) \cap (Z \to X)$

 $S: (X \to Y) \cap (Z \to Z)$

 $CNOT: (X \otimes I \to X \otimes X) \cap (I \otimes X \to I \otimes X) \cap (Z \otimes I \to Z \otimes I) \cap (I \otimes Z \to Z \otimes Z)$

 $CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)$

 $|0\rangle \otimes |\psi_1\rangle$

 $CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)$

separable!

 $|0\rangle \otimes |\psi_1\rangle$

 $CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)$

```
separable!  |0\rangle \otimes |\psi_1\rangle |0\rangle \otimes |\psi_2\rangle |\psi_3\rangle \otimes |0\rangle   CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)
```

```
separable!  |0\rangle \otimes |\psi_1\rangle |0\rangle \otimes |\psi_2\rangle |\psi_3\rangle \otimes |0\rangle \qquad |\theta\rangle   CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)
```

```
separable!
|0\rangle \otimes |\psi_{1}\rangle |0\rangle \otimes |\psi_{2}\rangle |\psi_{3}\rangle \otimes |0\rangle |\theta\rangle
CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)
CNOT: (Z_{1} \rightarrow Z_{1}) \cap (Z_{2} \rightarrow Z \otimes Z)
```

```
separable!
|0\rangle \otimes |\psi_{1}\rangle |0\rangle \otimes |\psi_{2}\rangle |\psi_{3}\rangle \otimes |0\rangle |\theta\rangle
CNOT: (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)
CNOT: (Z_{1} \rightarrow Z_{1}) \cap (Z_{2} \rightarrow Z \otimes Z)
CNOT: (Z_{1} \cap Z_{2}) \rightarrow (Z_{1} \cap Z \otimes Z)
```

```
separable!
|0\rangle \otimes |\psi_{1}\rangle |0\rangle \otimes |\psi_{2}\rangle |\psi_{3}\rangle \otimes |0\rangle |\theta\rangle
CNOT: (Z \otimes I \to Z \otimes I) \cap (I \otimes Z \to Z \otimes Z)
CNOT: (Z_{1} \to Z_{1}) \cap (Z_{2} \to Z \otimes Z)
CNOT: (Z_{1} \cap Z_{2}) \to (Z_{1} \cap Z \otimes Z)
CNOT: (Z_{1} \cap Z_{2}) \to (Z_{1} \cap Z_{2})
```

```
separable!
|0\rangle \otimes |\psi_{1}\rangle |0\rangle \otimes |\psi_{2}\rangle |\psi_{3}\rangle \otimes |0\rangle |\theta\rangle
CNOT : (Z \otimes I \rightarrow Z \otimes I) \cap (I \otimes Z \rightarrow Z \otimes Z)
CNOT : (Z_{1} \rightarrow Z_{1}) \cap (Z_{2} \rightarrow Z \otimes Z)
CNOT : (Z_{1} \cap Z_{2}) \rightarrow (Z_{1} \cap Z \otimes Z)
CNOT : (Z_{1} \cap Z_{2}) \rightarrow (Z_{1} \cap Z_{2})
```

CNOT behaves classically on classical inputs!

 $CNOT: X_1 \to X \otimes X$

 $CNOT: Z_2 \rightarrow Z \otimes Z$

 $CNOT: X_1 \to X \otimes X$

 $CNOT: Z_2 \rightarrow Z \otimes Z$

 $CNOT: (X_1 \to X \otimes X) \cap (Z_2 \to Z \otimes Z)$

 $CNOT: X_1 \to X \otimes X$

 $CNOT: Z_2 \rightarrow Z \otimes Z$

 $CNOT: (X_1 \to X \otimes X) \cap (Z_2 \to Z \otimes Z)$

 $CNOT: (X_1 \cap Z_2) \rightarrow (X \otimes X \cap Z \otimes Z)$

 $CNOT: X_1 \to X \otimes X$

 $CNOT: Z_2 \rightarrow Z \otimes Z$

 $CNOT: (X_1 \to X \otimes X) \cap (Z_2 \to Z \otimes Z)$

 $CNOT: (X_1 \cap Z_2) \to (X \otimes X \cap Z \otimes Z)$

Bell pair

- Normal forms for types
 - Important for separability, measurement

- Normal forms for types
 - Important for separability, measurement
- Types for measurement

- Normal forms for types
 - Important for separability, measurement
- Types for measurement
- Universality!
 - How do we deal with T?

Goal: A "row echelon form" for types.

Goal: A "row echelon form" for types.

$$X \otimes \dots$$
 $\cap I \otimes Z \dots$
 $\cap I \otimes I \otimes Z \dots$
 $\cap I \otimes I \otimes I \otimes X \dots$

Goal: A "row echelon form" for types.

$$X \otimes \dots$$
 $\cap I \otimes Z \dots$
 $\cap I \otimes I \otimes Z \dots$
 $\cap I \otimes I \otimes I \otimes X \dots$

Rule:

$$\frac{|\psi\rangle:A\cap B}{|\psi\rangle:A\cap AB}$$

$$Z \otimes Z \otimes I$$
 $\cap Z \otimes Z \otimes Z$
 $\cap X \otimes X \otimes I$

$$X \otimes X \otimes I$$
 $\cap Z \otimes Z \otimes I$
 $\cap Z \otimes Z \otimes Z$

$$\begin{array}{c|cccc}
X \otimes X \otimes I \\
 & Z \otimes Z \otimes I
\end{array}$$

$$\begin{array}{c|cccc}
I \otimes I \otimes Z
\end{array}$$

$$X \otimes X \otimes I$$
 $\cap Z \otimes Z \otimes I$
 $\cap I \otimes I \otimes Z$

$$X \otimes X \otimes I$$
 $\cap Z \otimes Z \otimes I$
 $\cap I \otimes I \otimes Z$

$$X \otimes X \otimes I$$

$$\cap Z \otimes Z \otimes I$$

$$\cap I \otimes I \otimes Z$$

```
Z_1
X \otimes X \otimes I
\cap Z \otimes Z \otimes I
\cap I \otimes I \otimes Z
```

$$Z_1$$
 $\cap X \otimes X \otimes I$
 $\cap Z \otimes Z \otimes I$
 $\cap I \otimes I \otimes Z$

$$Z_{1}$$

$$\cap X \otimes X \otimes I$$

$$\cap Z \otimes Z \otimes I$$

$$\cap I \otimes I \otimes Z$$

$$\equiv$$

$$Z_{1} \cap Z_{2} \cap Z_{3}$$

• For any U, $U: N \to UNU^{\dagger}$ (Gottesman 1998)

- For any U, $U: N \to UNU^{\dagger}$ (Gottesman 1998)
- For T, $TZT^{\dagger}=Z$ (trivially), so $T:Z\to Z$

- For any U, $U: N \to UNU^{\dagger}$ (Gottesman 1998)
- For T, $TZT^{\dagger} = Z$ (trivially), so $T: Z \to Z$

• On
$$X$$
, $TXT^{\dagger} = \frac{1}{\sqrt{2}}(X+Y)$, so $T: X \to \frac{1}{\sqrt{2}}(X+Y)$

- For any U, $U: N \to UNU^{\dagger}$ (Gottesman 1998)
- For T, $TZT^{\dagger} = Z$ (trivially), so $T: Z \to Z$

• On
$$X$$
, $TXT^{\dagger} = \frac{1}{\sqrt{2}}(X+Y)$, so $T: X \to \frac{1}{\sqrt{2}}(X+Y)$

• We call these additive types.

• Every 2×2 unitary operator can be expressed as $\delta I + aX + bY + cZ$. For Hermitian operators, we can drop the I term.

- Every 2×2 unitary operator can be expressed as $\delta I + aX + bY + cZ$. For Hermitian operators, we can drop the I term.
- Hence any unitary matrix can be given a type, once additive types are permitted.

- Every 2×2 unitary operator can be expressed as $\delta I + aX + bY + cZ$. For Hermitian operators, we can drop the I term.
- Hence any unitary matrix can be given a type, once additive types are permitted.
- Conveniently, all the typing rules distribute over addition.

$$T^{\dagger} = Z; S; T$$

 $T^{\dagger} = Z; S; T$

 $T^{\dagger}: Z \rightarrow Z$ (trivially)

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T:-Y$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T:-Y=-iXZ$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T: -Y = -iXZ \rightarrow -i\frac{1}{\sqrt{2}}(X+Y)Z$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T: -Y = -iXZ \rightarrow -i\frac{1}{\sqrt{2}}(X+Y)Z = \frac{1}{\sqrt{2}}(-Y+X)$$

$$T^{\dagger} = Z; S; T$$

$$T^{\dagger}: Z \rightarrow Z$$
 (trivially)

$$Z: X \to -X$$

$$S: -X \rightarrow -Y$$

$$T: -Y = -iXZ \rightarrow -i\frac{1}{\sqrt{2}}(X+Y)Z = \frac{1}{\sqrt{2}}(-Y+X)$$

$$T^{\dagger}: (X \to \frac{1}{\sqrt{2}}(X - Y)) \cap (Z \to Z)$$

```
TOFF := H 3; CNOT 2 3; T† 3; CNOT 1 3; T 3; CNOT 2 3; T† 3; CNOT 1 3; T 2; T 3; H 3; CNOT 1 2; T 1; T† 2; CNOT 1 2.
```

```
TOFF := H 3; CNOT 2 3; T† 3; CNOT 1 3; T 3;
CNOT 2 3; T† 3; CNOT 1 3; T 2; T 3;
H 3; CNOT 1 2; T 1; T† 2; CNOT 1 2.
```

• TOFF: $Z_1 \rightarrow Z_1 \cap Z_2 \rightarrow Z_2$, trivially.

```
TOFF := H 3; CNOT 2 3; T† 3; CNOT 1 3; T 3;
CNOT 2 3; T† 3; CNOT 1 3; T 2; T 3;
H 3; CNOT 1 2; T 1; T† 2; CNOT 1 2.
```

• TOFF: $Z_1 \rightarrow Z_1 \cap Z_2 \rightarrow Z_2$, trivially.

• TOFF:
$$Z_3 \to \frac{1}{2}(I \otimes I + Z \otimes I + I \otimes Z + Z \otimes Z) \otimes Z$$

```
TOFF := H 3; CNOT 2 3; T† 3; CNOT 1 3; T 3;
CNOT 2 3; T† 3; CNOT 1 3; T 2; T 3;
H 3; CNOT 1 2; T 1; T† 2; CNOT 1 2.
```

- TOFF: $Z_1 \rightarrow Z_1 \cap Z_2 \rightarrow Z_2$, trivially.
- TOFF: $Z_3 \to \frac{1}{2}(I \otimes I + Z \otimes I + I \otimes Z + Z \otimes Z) \otimes Z$
- Hence TOFF: $Z_1 \cap Z_2 \cap Z_3 \rightarrow Z_1 \cap Z_2 \cap Z_3$

Want: $U: (X \rightarrow aX + bY) \cap (Z \rightarrow Z)$

Have: $|m\rangle : aX + bY$

Want: $U: (X \rightarrow aX + bY) \cap (Z \rightarrow Z)$

Have: $|m\rangle : aX + bY$

Want: $U: (X \rightarrow aX + bY) \cap (Z \rightarrow Z)$

Have: $|m\rangle : aX + bY$

Get:

Want: $U: (X \rightarrow aX + bY) \cap (Z \rightarrow Z)$

Have: $|m\rangle : aX + bY$

$$|m\rangle$$
 U^2 $U|\psi\rangle$

Get: $C:((aX+bY)_1\cap Z_2)\to Z$

Want: $U: (X \rightarrow aX + bY) \cap (Z \rightarrow Z)$

Have: $|m\rangle : aX + bY$

$$|m\rangle$$
 U^2 $U|\psi\rangle$

Get: $C:((aX+bY)_1\cap Z_2)\to Z$

 $C:((aX+bY)_1\cap X_2)\to aX+bY$

Quantify computational limitations of additive types.

- Quantify computational limitations of additive types.
- Normalization for additive types.

- Quantify computational limitations of additive types.
- Normalization for additive types.
- Consider projections: Eg. $\frac{1}{2}(I+Z)$ and $\frac{1}{2}(I-Z)$

- Quantify computational limitations of additive types.
- Normalization for additive types.
- Consider projections: Eg. $\frac{1}{2}(I+Z)$ and $\frac{1}{2}(I-Z)$
- Types for error correcting codes.