BÀI GIẢNG HÀM SỐ LIÊN TỤC

Mục tiêu

❖ Kiến thức

- + Nắm được khái niệm hàm số liên tục tại một điểm, trên một khoảng, trên một đoạn.
- + Nắm được các định lí cơ bản về hàm số liên tục

❖ Kĩ năng

- + Chứng minh được hàm số liên tục tại một điểm, liên tục trên một khoảng, liên tục trên một đoan
- + Nắm vững phương pháp giải dạng bài toán tìm tham số để hàm số liên tục

I. LÍ THUYẾT TRỌNG TÂM

1. Hàm số liên tục tại một điểm

Định nghĩa 1

Cho hàm số $y=f\left(x\right)$ xác định trên khoảng K và $x_0\in K$. Hàm số $y=f\left(x\right)$ được gọi là liên tục tại x_0 nếu $\lim_{x\to x_0}f\left(x\right)=f\left(x_0\right)$.

2. Hàm số liên tục trên một khoảng, trên một đoạn

Định nghĩa 2

Hàm số y = f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm của khoảng đó. Hàm số y = f(x) được gọi là liên tục trên đoạn $\begin{bmatrix} a;b \end{bmatrix}$ nếu nó liên tục trên khoảng $\begin{pmatrix} a;b \end{pmatrix}$ và $\lim_{x \to a^+} f(x) = f(a), \lim_{x \to b^-} f(x) = f(b).$

Hàm số không liên tục tại điểm x_0 được gọi là gián đoạn tại điểm x_0 .

Hàm số liên tục trên khoảng (a; b)

Hàm số không liên tục trên khoảng (a; b)

Nhận xét: Đồ thị của hàm số liên tục trên một khoảng là một "đường liên" trên khoảng đó

3. Một số định lí cơ bản

Định lí 1

- a) Hàm đa thức liên tục trên \mathbb{R}
- b) Hàm phân thức hữu tỉ và hàm số lượng giác liên tục trên từng khoảng xác định của chúng.

Định lí 2

Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x_0 .

Khi đó

a) Các hàm số
$$y = f(x) + g(x)$$
, $y = f(x) - g(x)$

và
$$y = f(x).g(x)$$
 liên tục tại x_0 ;

b) Hàm số
$$\frac{f(x)}{g(x)}$$
 liên tục tại x_0 nếu $g(x_0) \neq 0$

Định lí 3

Nếu hàm số y = f(x) liên tục trên đoạn [a;b]. $f(a) \neq f(b)$ thì với mỗi số thực M nằm giữa f(a) và f(b), tồn tại ít nhất một điểm $c \in (a;b)$ sao cho f(c) = M

Hệ quả

Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm $c \in (a; b)$ sao cho f(c) = 0

Nói cách khác: Nếu hàm số y = f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (a;b).

II. CÁC DẠNG BÀI TẬP

Dạng 1: Hàm số liên tục tại một điểm, trên một tập

4 Phương pháp giải

Sử dụng định nghĩa hàm số y = f(x) xác định **Ví dụ.** Cho hàm số

trên khoảng K và $x_0 \in K$.

Hàm số liên tục tại x_0 nếu $\lim_{x\to x_0} f(x) = f(x_0)$

Bước 1. Tìm giới hạn của hàm số $\lim_{x\to x_0} = f(x)$ và

$$f(x) = \begin{cases} \frac{x^3 - 27}{x^2 - x - 6} &, khi \ x \neq 3 \\ \frac{27}{5} &, khi \ x = 3 \end{cases}$$

Xét tính liên tục của hàm số tại điểm x = 3

Hướng dẫn giải

Hàm số xác định trên $\,\mathbb{R}\,$

Ta có
$$f(3) = \frac{27}{5}$$
 và

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^3 - 27}{x^2 - x - 6} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{(x - 3)(x + 2)}$$
$$= \lim_{x \to 3} \frac{x^2 + 3x + 9}{x + 2} = \frac{27}{5}$$

Bước 2. Nếu tồn tại $\lim_{x\to x_0} f(x)$ thì ta so sánh Ta thấy $\lim_{x\to 3} f(x) = f(3)$ nên hàm số liên tục tại $\lim_{x\to x} f(x)$ với $f(x_0)$.

 $f(x_0)$

Hàm số liên tục trên một tập ta sử dụng định nghĩa

2 và các định lí.

Chú ý:

1. Nếu hàm số liên tục tại x_0 thì trước hết hàm số phải xác định tại điểm đó

2.
$$\lim_{x \to x_0} f(x) = k \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = k$$

3. Hàm số
$$y = \begin{cases} f(x), & khi \ x \neq x_0 \\ g(x), & khi \ x = x_0 \end{cases}$$
 liên tục tại

$$x = x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = g(x_0)$$

4. Hàm số
$$f(x) = \begin{cases} f(x), & khi \ x \ge x_0 \\ g(x), & khi \ x < x_0 \end{cases}$$
 liên tục tại

điểm
$$x = x_0$$
 khi và chỉ khi

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} g(x) = f(x_0)$$

♣ Ví dụ mẫu

Ví dụ 1. Cho hàm số
$$f(x) - \begin{cases} \frac{x-3}{\sqrt{2x+3}-3} & \text{khi } x < 3\\ \left(x-1\right)^2 & \text{khi } x \geq 3 \end{cases}$$
. Xét tính liên tục của hàm số tại điểm $x=3$

Hướng dẫn giải

Ta có
$$\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} (x-1)^2 = 4$$

$$\lim_{x \to 3^{-}} = \lim_{x \to 3^{-}} \frac{x - 3}{\sqrt{2x + 3} - 3} = \lim_{x \to 3^{-}} \frac{\sqrt{2x + 3} + 3}{2} = 3$$

Do đó
$$\lim_{x\to 3^{-}} f(x) \neq \lim_{x\to 3^{+}} f(x)$$

Vậy hàm số gián đoạn tại x = 3

Ví dụ 2. Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt[3]{4x} - 2}{x - 2}, & khi \ x \neq 2 \\ a, & khi \ x = 2 \end{cases}$$
. Tìm a để hàm số liên tục tại điểm $x = 2$

Hướng dẫn giải

Hàm số xác định trên $\,\mathbb{R}\,$

Ta có
$$f(2) = a$$
 và $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{x - 2} = \lim_{x \to 2} \frac{4}{\sqrt[3]{(4x)^2 + 2\sqrt[3]{4x} + 4}} = \frac{1}{3}$

Vậy để hàm số liên tục tại điểm x = 2 thì $\lim_{x \to 2} f(x) = f(2) \Leftrightarrow a = \frac{1}{3}$

Ví dụ 3. Cho hàm số
$$f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{x^3 + 1} & khi \ x < -1 \\ m^2 x^2 + 2mx - 5 & khi \ x \ge -1 \end{cases}$$

Tìm *m* để hàm số liên tục tại điểm x = -1

Hướng dẫn giải

Hàm số xác định trên \mathbb{R}

Ta có:
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^4 - 5x^2 + 4}{x^3 + 1} = \lim_{x \to -1^{-}} \frac{(x - 1)(x^2 - 4)}{x^2 - x + 1} = 2$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} (m^2 x^2 + 2mx - 5) = m^2 - 2m - 5 = f(-1)$$

Hàm số liên tục tại x = -1 khi và chỉ khi

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x) = f(-1) \iff m^{2} - 2m - 5 = 2 \implies m = 1 \pm \sqrt{2}$$

Ví dụ 4. Cho hàm số
$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & khi \ x \neq -1 \\ 2, & khi \ x = -1 \end{cases}$$

Xét tính liên tục của hàm số trên toàn bộ tập xác định

Hướng dẫn giải

Hàm số xác đinh trên $D = \mathbb{R}$

Với $x \ne -1$ thì $f(x) = \frac{x^2 - 1}{x + 1} = x - 1$ là hàm số liên tục trên tập xác định.

Do đó hàm số liên tục trên $(-\infty; -1)$ và $(-1; +\infty)$

Với
$$x = -1$$
 ta có $\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2$

$$Vi f(-1) = 2 \neq \lim_{x \to -1} f(x)$$

Vậy hàm số liên tục trên các khoảng $(-\infty; -1)$ và $(-1; +\infty)$; hàm số không liên tục tại điểm x=-1

Ví dụ 5. Cho hàm số
$$f(x) = \begin{cases} \frac{a^2(x-2)}{\sqrt{x+2}-2} & khi \ x > 2\\ (1-a)x & khi \ x \le 2 \end{cases}$$

Tìm a để hàm số liên tục trên tập xác định.

Hướng dẫn giải

Hàm số xác định trên \mathbb{R}

Với x > 2 ta có $f(x) = \frac{a^2(x-2)}{\sqrt{x+2}-2}$ là hàm số liên tục trên từng khoảng xác định.

Do đó hàm số f(x) liên tục trên $(2; +\infty)$

Với x < 2 ta có f(x) = (1-a)x là hàm số liên tục trên tập xác định. Do đó hàm số f(x) liên tục trên $(-\infty; 2)$

Với
$$x = 2$$
 ta có $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (1 - a)x = 2(1 - a) = f(2)$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{a^{2}(x-2)}{\sqrt{x+2}-2} = \lim_{x \to 2^{+}} a^{2}(\sqrt{x+2}+2) = 4a^{2}$$

Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại x = 2, nên

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Leftrightarrow 4a^{2} = 2(1-a) \Leftrightarrow \begin{bmatrix} a = -1 \\ a = \frac{1}{2} \end{bmatrix}$$

Vậy a = -1; $a = \frac{1}{2}$ là những giá trị cần tìm.

Bài tập tự luyện dạng 1

Câu 1: Hàm số có đồ thị như hình bên gián đoạn tại điểm có hoành độ bằng bao nhiều?

A. 0 **B.** 1 **C.** 2 **D.** 3

Câu 2: Cho hàm số y = f(x) có đồ thị như hình bên. Chọn khẳng định đúng.

- **A.** Hàm số liên tục trên $\mathbb R$
- **B.** Hàm số liên tục trên $(-\infty; 4)$
- C. Hàm số liên tục trên $(1; +\infty)$
- D. Hàm số liên tục trên (1; 4)

Câu 3: Hàm số $f(x) = \frac{x^2 + 1}{x^2 + 5x + 6}$ liên tục trên khoảng nào sau đây?

- A. $(-\infty; 3)$
- **B.** (2; 2019)
- C. (-3; 2)
- **D.** $(-3; +\infty)$

Câu 4: Cho hàm số $f(x) = \begin{cases} 3x + 2 & khi \ x < -1 \\ x^2 - 1 & khi \ x \ge -1 \end{cases}$. Khẳng định nào sau đây đúng?

- **A.** f(x) liên tục trên \mathbb{R}
- **B.** f(x) liên tục trên $(-\infty; -1]$
- C. f(x) liên tục trên $[-1; +\infty)$
- **D.** f(x) liên tục tại x = -1

Câu 5: Giá trị của a để các hàm số $f(x) = \begin{cases} x + 2a & khi \ x < 0 \\ x^2 + x + 1 & khi \ x \ge 0 \end{cases}$ liên tục tại x = 0 bằng

- **A.** $\frac{1}{2}$
- **B.** $\frac{1}{4}$

C. 0

D. 1

Câu 6: Cho hàm số $y = f(x) = \begin{cases} 2x^2 - 2 & khi \ x \ge 1 \\ \frac{2x - a}{x^2 + 1} & khi \ x < 1 \end{cases}$. Giá trị của a để hàm số liên tục tại $x_0 = 1$ là

A. 1

B. 2

C. 3

D. 4

Câu 7: Cho hàm số $f(x) = \begin{cases} (x+1)^2, & x > 1 \\ x^2 + 3, & x < 1. \text{ Tìm } k \text{ để } f(x) \text{ gián đoạn tại } x = 1 \\ k^2, & x = 1 \end{cases}$

- **A.** $k \neq \pm 2$
- **B.** $k \neq 2$

- **C.** $k \neq -2$
- **D.** $k \neq \pm 1$

Câu 8: Cho hàm số $f(x) = \sqrt{x^4 - 4}$. Tìm khẳng định đúng trong các khẳng định sau:

(I) f(x) liên tục tại x = 2

(II) f(x) gián đoạn tại x = 2

(III) f(x) liên tục trên đoạn [-2; 2]

A. Chỉ (I) và (III)

B. Chỉ (I)

C. Chi (II)

D. Chỉ (II) và (III)

Câu 9: Tìm khẳng định đúng trong các khẳng định sau

(I) $f(x) = x^5 - 3x^2 + 1$ liên tục trên \mathbb{R}

(II)
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$
 liên tục trên $(-1; 1)$

(III) $f(x) = \sqrt{x-2}$ liên tục trên $[2; +\infty)$

A. Chỉ (I) và (III)

B. Chỉ (I)

C. Chi (II)

D. Chỉ (II) và (III)

Câu 10: Tìm khẳng định đúng trong các khẳng định sau:

(I)
$$f(x) = \frac{\sqrt{x+1}}{x-1}$$
 liên tục với mọi $x \ne 1$

(II) $f(x) = \sin x$ liên tục trên \mathbb{R}

(III)
$$f(x) = \frac{|x|}{x}$$
 liên tục tại $x = 1$

A. Chỉ (I) đúng

B. Chỉ (I) và (II)

C. Chỉ (I) và (III)

D. Chỉ (II) và (III)

Câu 11: Cho hàm số $f(x) = \begin{cases} \cos \frac{\pi x}{2} & khi \ |x| \le 1 \\ |x-1| & khi \ |x| > 1 \end{cases}$. Khẳng định nào sau đây đúng nhất?

A. Hàm số liên tục tại x = 1 và x = -1

B. Hàm số liên tục tại x = 1, không liên tục tại x = -1

C. Hàm số không liên tục tại x = 1 và x = -1

D. Hàm số liên tục tại x = -1, không liên tục tại x = 1

Câu 12: Cho hàm số $f(x) = \begin{cases} \frac{x^2 - 3}{x - \sqrt{3}} & khi \ x \neq \sqrt{3} \\ 2\sqrt{3} & khi \ x = \sqrt{3} \end{cases}$. Tìm khẳng định đúng trong các khẳng định sau:

(I) f(x) liên tục tại $x = \sqrt{3}$

(II) f(x) gián đoạn tại $x = \sqrt{3}$

(III) f(x) liên tục trên \mathbb{R}

A. Chỉ (I) và (II)

B. Chỉ (II) và (III)

C. Chỉ (I) và (III)

D. Cả (I), (II), (III) đều đúng

Câu 13: Hàm số nào sau đây không liên tục tại x = 1

A.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & khi \ x \neq 1 \\ 3x - 1 & khi \ x = 1 \end{cases}$$

B.
$$f(x) = \begin{cases} x^2 - 2 & khi \ x \neq 1 \\ 2 - 3x & khi \ x = 1 \end{cases}$$

C.
$$f(x) = \begin{cases} \frac{2x^2 - x - 1}{x - 1} & khi \ x \neq 1 \\ 2x - 1 & khi \ x = 1 \end{cases}$$
 D. $f(x) = \begin{cases} -\frac{1}{x} & khi \ x > 1 \\ 2x - 3 & khi \ x \leq 1 \end{cases}$

D.
$$f(x) = \begin{cases} -\frac{1}{x} & khi \ x > 1 \\ 2x - 3 & khi \ x \le 1 \end{cases}$$

Câu 14: Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để hàm số

$$f(x) = \begin{cases} \frac{\sqrt{ax+1}-1}{x}, & khi \ x \neq 0 \\ 4x^2 + 5b, & khi \ x = 0 \end{cases}$$
 liên tục tại $x = 0$

A.
$$a = 5b$$

B.
$$a = 10b$$

C.
$$a = b$$

D.
$$a = 2b$$

Câu 15: Cho hàm số
$$f(x) = \begin{cases} \sqrt{2x-4} + 3 & khi \ x \ge 2 \\ \frac{x+1}{x^2 - 2mx + 3m + 2} & khi \ x < 2 \end{cases}$$

Tìm các giá trị của tham số thực m để hàm số liên tục trên \mathbb{R}

A.
$$m = 3$$

B.
$$m = 4$$

C.
$$m = 5$$

D.
$$m = 6$$

Câu 16: Cho hàm số $f(x) = \begin{cases} \frac{2x^3}{1+x}, & 0 \le x \le 1. \text{ Khẳng định nào sau đây đúng?} \end{cases}$

A.
$$f(x)$$
 liên tục trên \mathbb{R}

B.
$$f(x)$$
 liên tục trên $\mathbb{R} \setminus \{0\}$

C.
$$f(x)$$
 liên tục trên $\mathbb{R} \setminus \{1\}$

D.
$$f(x)$$
 liên tục trên $\mathbb{R} \setminus \{0; 1\}$

Câu 17: Giá trị a để các hàm số $f(x) = \begin{cases} \frac{\sqrt{2x+1}-1}{x(x+1)}, & khi \ x \neq 0 \\ a, & khi \ x = 0 \end{cases}$ liên tục tại điểm x = 0 là

Câu 18: Giá trị của a để các hàm số $f(x) = \begin{cases} f(x) = \frac{\sqrt[3]{2x+6}-2}{\sqrt{3x+1}-2}, & khi \ x \neq 1 \\ a, & khi \ x = 1 \end{cases}$ liên tục tại điểm x = 1 là

A. 1

B. 2

Câu 19: Giá trị của a để hàm số $f(x) = \begin{cases} \frac{\sqrt{4x+1}-1}{ax^2+(2a+1)x}, & khi \ x \neq 0 \\ 3, & khi \ x = 0 \end{cases}$ liên tục tại điểm x = 0 là

A.
$$\frac{1}{2}$$

C. $-\frac{1}{6}$

D. 1

Câu 20: Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{3x+1-2}}{x^2-1}, & khi \ x>1 \\ \frac{a(x^2-2)}{x-3}, & khi \ x \le 1 \end{cases}$ liên tục tại điểm x = 1 là

Câu 21: Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x+4-2}}{x}, & khi \ x>0 \\ mx^2+2x+\frac{1}{4}, & khi \ x\leq 0 \end{cases}$ m là tham số

Tìm m để hàm số liên tục tại x = 0

- **A.** $m = \frac{1}{2}$
- **B.** m = 0
- **C.** m = 1

Câu 22: Cho hàm số $f(x) = \begin{cases} \frac{\sqrt[3]{4x} - 2}{x - 2}, & khi \ x \neq 2 \\ ax + 3, & khi \ x = 2 \end{cases}$. Tìm a để hàm số liên tục trên \mathbb{R}

- **A.** a = -1 **B.** $a = \frac{1}{6}$

Câu 23: Cho hàm số $f(x) = \begin{cases} \frac{3 - \sqrt{9} - x}{x}, & 0 < x < 9 \\ m, & x = 0 \end{cases}$. Giá trị của m để f(x) liên tục trên $[0; +\infty)$ là $\frac{3}{x}$, $x \ge 9$

A. $\frac{1}{3}$

D. 1

Câu 24: Cho hàm số $f(x) = \begin{cases} \sin x, & khi \ |x| \le \frac{\pi}{2} \\ ax + b, & khi \ |x| > \frac{\pi}{2} \end{cases}$. Tìm giá trị của a, b để hàm số liên tục trên \mathbb{R}

- A. $\begin{cases} a = \frac{2}{\pi} \\ b = 1 \end{cases}$ B. $\begin{cases} a = \frac{2}{\pi} \\ b = 2 \end{cases}$ C. $\begin{cases} a = \frac{1}{\pi} \\ b = 0 \end{cases}$ D. $\begin{cases} a = \frac{2}{\pi} \\ b = 0 \end{cases}$

Câu 25: Cho hàm số $f(x) = \begin{cases} \sqrt{\frac{x^2 + 1}{x^3 - x + 6}} & khi \ x \neq 3; \ x \neq 2 \\ b + \sqrt{3} & khi \ x = 3; \ b \in \mathbb{R} \end{cases}$. Giá trị của b để f(x) liên tục tại x = 3

là

- **A.** $\sqrt{3}$
- **B.** $-\sqrt{3}$
- C. $\frac{2\sqrt{3}}{2}$
- **D.** $-\frac{2\sqrt{3}}{2}$

Câu 26: Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt[3]{x+7} - \sqrt{3x+1}}{x-1}, & khi \ x \neq 1 \\ ax, & khi \ x = 1 \end{cases}$$
. Giá trị của a để hàm số liên tục tại $x_0 = 1$

là

C.
$$\frac{-2}{3}$$

Câu 27: Cho hàm số
$$f(x) = \begin{cases} \frac{x^{2017} + x - 2}{\sqrt{2019x + 1} - \sqrt{x + 2019}} & khi \ x \neq 1 \\ k & khi \ x = 1 \end{cases}$$
. Tim k để hàm số $f(x)$ liên tục

tai x = 1

A.
$$k = 2\sqrt{2020}$$

A.
$$k = 2\sqrt{2020}$$
 B. $k = \frac{2019.\sqrt{2020}}{2}$ **C.** $k = 1$

C.
$$k = 1$$

D.
$$k = \frac{20018}{2019} \sqrt{2020}$$

Câu 28: Cho hàm số $f(x) = \begin{cases} \sin x, & khi \cos x \ge 0 \\ 1 + \cos x, & khi \cos x < 0 \end{cases}$. Hàm số f có bao nhiều điểm gián đoạn trên

khoảng (0; 2019)?

Dạng 2: Chứng minh phương trình có nghiệm

Phương pháp giải

* Để chứng minh phương trình f(x) = 0 có một nghiệm trên D, ta chứng minh hàm số y = f(x)liên tục trên D chứa đoạn [a; b] sao cho f(a).f(b) < 0

Ví du 1.

Chứng minh rằng phương trình $x^{2020} + 3x^5 - 1 = 0$ có nghiệm.

Hướng dẫn giải

Ta có hàm số $f(x) = x^{2020} + 3x^5 - 1$ liên tục trên $\mathbb{R} \text{ và } f(0).f(1) = -3 < 0$

Suy ra phương trình f(x) = 0 có ít nhất một nghiệm thuộc (0; 1)

* Để chứng minh phương trình f(x) = 0 có knghiệm trên D, ta chứng minh hàm số y = f(x)liên tục trên D và tồn tại k đoạn nhau $\left[a_{i};\,a_{i+1}\right]\left(i=1,\,2,\,3,...,k\right)$ nằm trong D sao cho $f(a_i).f(a_{i+1}) < 0$

♣ Ví dụ mẫu

Ví dụ 1. Chứng minh phương trình $x^2 \sin x + x \cos x + 1 = 0$ có ít nhất một nghiệm.

Hướng dẫn giải

Ta có hàm số $f(x) = x^2 \sin x + x \cos x + 1$ liên tục trên \mathbb{R} và $f(0).f(\pi) = -\pi + 1 < 0$

Suy ra phương trình f(x) = 0 có ít nhất một nghiệm thuộc $(0; \pi)$

Ví dụ 2. Chứng minh rằng phương trình $x^3 + 2x = 4 + 3\sqrt{3 - 2x}$ có đúng một nghiệm.

Hướng dẫn giải

Điều kiện xác định: $x \le \frac{3}{2}$

Ta có
$$x^3 + 2x = 4 + 3\sqrt{3 - 2x} \Leftrightarrow x^3 + 2x - 3\sqrt{3 - 2x} - 4 = 0$$

Xét hàm số $f(x) = x^3 + 2x - 3\sqrt{3 - 2x} - 4$ liên tục trên $\left(-\infty; \frac{3}{2}\right]$ và

$$f(0) = -4 - 3\sqrt{3} < 0, \ f\left(\frac{3}{2}\right) = \frac{19}{8} > 0 \Rightarrow f(0).f\left(\frac{3}{2}\right) < 0$$

Do đó phương trình f(x) = 0 có ít nhất một nghiệm

Giả sử phương trình f(x) = 0 có hai nghiệm x_1 ; x_2

Khi đó
$$f(x_1) - f(x_2) = 0$$

$$\Leftrightarrow$$
 $(x_1^3 - x_2^3) + 2(x_1 - x_2) - 3(\sqrt{3 - 2x_1} - \sqrt{3 - 2x_2}) = 0$

$$\Leftrightarrow (x_1 - x_2) \underbrace{\left(x_1^2 + x_1 x_2 + x_2^2 + 2 + \frac{6}{\sqrt{3 - 2x_1} + \sqrt{3 - 2x_2}}\right)}_{p} = 0$$

$$\Leftrightarrow x_1 = x_2 \text{ (vì } B = \left(x_1 + \frac{x_2}{2}\right)^2 + \frac{3x_2^2}{4} + 4 + \frac{6}{\sqrt{3 - 2x_1} + \sqrt{3 - 2x_2}} > 0\text{)}$$

Vậy phương trình có đúng một nghiệm.

Ví dụ 3. Chứng minh rằng phương trình $\sqrt{x^5 + 2x^3 + 15x^2 + 14x + 2} = 3x^2 + x + 1$ có đúng năm nghiệm phân biệt.

Hướng dẫn giải

Phương trình đã cho tương đương với $x^5 + 2x^3 + 15x^2 + 14x + 2 = (3x^2 + x + 1)^2$

$$\Leftrightarrow x^5 - 9x^4 - 4x^3 + 18x^2 + 12x + 1 = 0$$
 (1)

Xét hàm số $f(x) = 5 -9x^4 - 4x^3 + 18x^2 + 12x + 1$ liên tục trên \mathbb{R}

Ta có:
$$f(-2) = -95 < 0$$
, $f(-1) = 1 > 0$, $f(-\frac{1}{2}) = -\frac{19}{32} < 0$

$$f(0) = 1 > 0$$
, $f(2) = -47$, $f(10) = 7921 > 0$

Do đó phương trình f(x) = 0 có ít nhất năm nghiệm thuộc các khoảng

$$(-2; -1), (-1; -\frac{1}{2}), (-\frac{1}{2}; 0), (0; 2), (2; 10)$$

Mặt khác f(x) là đa thức bậc năm nên có tối đa năm nghiệm.

Vậy phương trình đã cho có đúng năm nghiệm.

Bài tập tự luyện dạng 2

Câu 1: Trong các khẳng định sau

- (I) f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm
- (II) f(x) không liên tục trên [a; b] và $f(a).f(b) \ge 0$ thì phương trình f(x) = 0 vô nghiệm
- (III) f(x) liên tục trên đoạn [a; b] và f(a).f(b) > 0 thì tồn tại ít nhất một số $c \in (a; b)$ sao cho f(c) = 0
- (IV) f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một số $c \in (a;b)$ sao cho f(c) = 0

Số khẳng định đúng là

A. 1 **B.** 2 **C.** 3 **D.** 4

Câu 2: Cho hàm số f(x) xác định trên [a; b]. Khẳng định nào sau đây đúng?

- **A.** Nếu hàm số f(x) liên tục trên [a;b] và f(a)f(b)>0 thì phương trình f(x)=0 không có nghiệm trong khoảng (a;b)
 - **B.** Nếu f(a) f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a; b)
- C. Nếu hàm số f(x) liên tục, tăng trên [a;b] và f(a)f(b)>0 thì phương trình f(x)=0 không có nghiệm trong khoảng (a;b)
- **D.** Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a; b) thì hàm số f(x) phải liên tục trên (a; b)
- **Câu 3:** Cho phương trình $2x^4 5x^2 + x + 1 = 0$. Khẳng định nào sau đây đúng?
 - $\boldsymbol{A.}$ Phương trình đã cho không có nghiệm trong khoảng $\left(-1;\,1\right)$
 - **B.** Phương trình đã cho chỉ có một nghiệm trong khoảng (-2; 1)
 - C. Phương trình đã cho có ít nhất một nghiệm trong khoảng (0; 2)
 - **D.** Phương trình đã cho không có nghiệm trong khoảng (-2; 0)
- **Câu 4:** Tìm các giá trị của tham số m sao cho phương trình $x^3 3x^2 + (2m 2)x + m 3 = 0$ có ba nghiệm x_1, x_2, x_3 thỏa mãn $x_1 < -1 < x_2 < x_3$

A. m > -5 **B.** m < -5 **C.** $m \le -5$ **D.** m < -6

Câu 5: Cho các số thực a, b, c thỏa mãn 4a+c>8+2b và a+b+c<-1. Khi đó số nghiệm thực phân biệt của phương trình $x^3+ax^2+bx+c=0$ bằng

A. 1

B. 2

C. 3

D. 0

Câu 6: Cho phương trình $x^3 + ax^2 + bx + c = 0$ (1) trong đó a, b, c là các tham số thực. Chọn khẳng định đúng trong các khẳng định sau

- A. Phương trình (1) vô nghiệm với mọi a, b, c
- **B.** Phương trình (1) có ít nhất một nghiệm với mọi a, b, c
- C. Phương trình (1) có ít nhất hai nghiệm với mọi a, b, c
- **D.** Phương trình (1) có đúng ba nghiệm phân biệt với mọi a, b, c

Câu 7: Tìm giá trị của tham số m để phương trình $(m^2 - 5x + 6)(x + 5)^{2019}(x^{2020} + 2x) + 2x - 1 = 0$ có nghiệm

A. $m \in \{2; 3\}$

B. $m \in \mathbb{R} \setminus \{2; 3\}$

C. $m \in \emptyset$

D. $m \in \mathbb{R}$

ĐÁP ÁN

Dạng 1. Hàm số liên tục tại một điểm, trên một tập

1-B	2-D	3-В	4-C	5-A	6-B	7-A	8-B	9-A	10-D
11-A	12-C	13-C	14-B	15-C	16-A	17-A	18-C	19-C	20-D
21-B	22-D	23-С	24-D	25-D	26-C	27-A	28-D		

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1:

Dựa vào hình vẽ đồ thị ta thấy hàm số gián đoạn tại điểm x = 1

Câu 2:

Dựa vào hình vẽ đồ thị ta thấy hàm số liên tục trên (1; 4)

Câu 3:

Điều kiện xác định của hàm số $x^2 + 5x + 6 \neq 0 \Leftrightarrow \begin{cases} x \neq -2 \\ x \neq -3 \end{cases}$

Do đó hàm số đã cho gián đoạn tại điểm có hoành độ bằng -2 và -3

Câu 4:

Hàm số xác định trên \mathbb{R}

Ta có:
$$f(-1) = 0$$
; $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (x^2 - 1) = 0$, $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (3x + 2) = -1$

Suy ra
$$f(-1) = \lim_{x \to -1^+} f(x) \neq \lim_{x \to -1^+} f(x)$$

Vậy hàm số đã cho liên tục trên nửa khoảng $[-1; +\infty)$ và khoảng $(-\infty; -1)$

Câu 5:

Hàm số xác đinh trên \mathbb{R}

Ta có:
$$f(0) = 1$$
, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x^2 + x + 1) = 1$

Hàm số đã cho liên tục tại điểm x = 0 khi và chỉ khi $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + 2a) = 1 \Leftrightarrow a = \frac{1}{2}$

Câu 6:

Hàm số xác định trên \mathbb{R}

Ta có:
$$f(1) = 0$$
, $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x^2 - 2) = 0$

Hàm số đã cho liên tục tại điểm $x_0 = 1$ khi và chỉ khi $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(\frac{2x - a}{x^2 + 1} \right) = 0 \Leftrightarrow a = 2$

Câu 7:

Hàm số xác đinh trên $\mathbb R$

Ta có:
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x+1)^2 = 4$$
, $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2+3) = 4$

Vậy hàm số đã cho gián đoạn tại x=1 khi và chỉ khi $f(1) \neq 4 \Leftrightarrow k^2 \neq 4 \Leftrightarrow k \neq \pm 2$

TOANMATH.com

Câu 8:

Điều kiện xác định:
$$x^2 - 4 \ge 0 \Leftrightarrow \begin{bmatrix} x \le -2 \\ x \ge 2 \end{bmatrix}$$

Ta có: $f(2) = \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \sqrt{x^2 - 4} = 0$. Do đó hàm số đã cho liên tục tại x = 2

$$f(-2) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \sqrt{x^2 - 4} = 0$$
. Do đó hàm số đã cho liên tục tại $x = -2$

Câu 9:

(I) $f(x) = x^5 - 3x^2 + 1$ là hàm số có tập xác định trên $\mathbb R$. Do đó hàm số f(x) liên tục trên $\mathbb R$

(II)
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$
 có tập xác định $D = (-\infty; -1) \cup (1; +\infty)$.

Do đó f(x) gián đoạn trên khoảng (-1; 1)

(III) Hàm số
$$f(x) = \sqrt{x-2}$$
 có tập xác định $D = [2; +\infty)$

Ta có:
$$f(2) = \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \sqrt{x-2} = 0$$
. Do đó hàm số liên tục trên $[2; +\infty)$

Câu 10:

(I)
$$f(x) = \frac{\sqrt{x+1}}{x-1}$$
 có tập xác định $D = (-1; +\infty)$. Do đó (I) sai

(II)
$$f(x) = \sin x$$
 có tập xác định $D = \mathbb{R}$. Do đó $f(x)$ liên tục trên \mathbb{R}

(III)
$$f(x) = \frac{|x|}{x}$$
 có tập xác định $D = \mathbb{R} \setminus \{0\}$. Do đó $f(x)$ liên tục tại $x = 1$

Câu 11:

$$f(x) = \begin{cases} \cos\frac{\pi x}{2} & khi \ |x| \le 1 \\ |x-1| & khi \ |x| > 1 \end{cases} \Leftrightarrow f(x) = \begin{cases} 1-x & khi \ x < -1 \\ \cos\frac{\pi x}{2} & khi \ -1 \le x \le 1 \end{cases}$$
 Khi đó ta có:
$$x-1 & khi \ x > 1$$

+)
$$f(-1) = \cos\left(-\frac{\pi}{2}\right) = 0$$
, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (1-x) = 0$. Suy ra $f(1) = \lim_{x \to 1^{-}} f(x)$

Do đó hàm số liên tục tại x = -1

+)
$$f(1) = \cos\left(\frac{\pi}{2}\right) = 0$$
, $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1) = 0$. Suy ra $f(1) = \lim_{x \to 1^+}$. Do đó hàm số liên tục tại $x = 1$

Câu 12:

Tập xác định: $D = \mathbb{R}$

Ta có:
$$f(\sqrt{3}) = 2\sqrt{3}$$
, $\lim_{x \to \sqrt{3}} f(x) = \lim_{x \to \sqrt{3}} \left(\frac{x^2 - 3}{x - \sqrt{3}} \right) = \lim_{x \to \sqrt{3}} \left(\frac{\left(x - \sqrt{3}\right)\left(x + \sqrt{3}\right)}{x - \sqrt{3}} \right) = \lim_{x \to \sqrt{3}} \left(x + \sqrt{3}\right) = 2\sqrt{3}$

Do đó hàm số liên tục tại $x = \sqrt{3}$. Vậy hàm số liên tục trên \mathbb{R}

Câu 13:

Xét
$$f(x) = \begin{cases} \frac{2x^2 - x + 1}{x - 1} & khi \ x \neq 1 \\ 2x - 1 & khi \ x = 1 \end{cases}$$
 có tập xác định $D = \mathbb{R}$

Ta có:
$$f(1) = 1$$
, $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x^2 - x - 1}{x - 1} = \lim_{x \to 1} \frac{2(x - 1)\left(x + \frac{1}{2}\right)}{x - 1} = \lim_{x \to 1} 2\left(x + \frac{1}{2}\right) = 3$

Suy ra $f(1) \neq \lim_{x \to 1} f(x)$. Do đó hàm số gián đoạn tại điểm x = 1

Câu 14:

Ta có f(0) = 5b

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{ax+1} - 1}{x} = \lim_{x \to 0} \frac{ax}{\left(\sqrt{ax+1} + 1\right)} = \lim_{x \to 0} \frac{a}{\sqrt{ax+1} + 1} = \frac{a}{2}$$

Hàm số liên tục tại x = 0 khi và chỉ khi $f(0) = \lim_{x \to 0} f(x) \Leftrightarrow 5b = \frac{a}{2} \Leftrightarrow a = 10b$

Câu 15:

Ta có:
$$f(2) = 3$$
, $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (\sqrt{2x - 4} + 3)$, $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x + 1}{x^2 - 2mx + 3m + 2}$

Hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi hàm số f(x) liên tục tại x = 2

$$\Leftrightarrow \lim_{x \to 2^{-}} \frac{x+1}{x^2 - 2mx + 3m + 2} = 3 \Leftrightarrow \frac{3}{6-m} = 3 \Leftrightarrow m = 5$$

Câu 16:

Ta có
$$\lim_{x \to 1^-} x^2 = \lim_{x \to 1^-} \frac{2x^3}{1+x} = 1 \Leftrightarrow \lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1)$$
 nên hàm số liên tục tại $x = 1$

Ta cũng ó\có $\lim_{x\to 0^+} \frac{2x^3}{1+x} = \lim_{x\to 0^-} x \sin x = 0 \Leftrightarrow \lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(1)$ nên hàm số liên tục tại x=0

Câu 17:

Ta có
$$\lim_{x\to 0} \frac{\sqrt{2x+1}-1}{x(x+1)} = \lim_{x\to 0} \frac{2}{(x+1)(\sqrt{2x+1}+1)} = 1$$

Suy ra a = f(0) = 1 thì hàm số liên tục tại điểm x = 0

Câu 18:

Ta có
$$\lim_{x \to 1} \frac{\sqrt[3]{2x+6}-2}{\sqrt{3x+1}-2} = \lim_{x \to 1} \frac{2(\sqrt{3x+1}+2)}{3(\sqrt[3]{(2x+6)^2}+2\sqrt[3]{2x+6}+4)} = \frac{2}{9}$$

Vậy $f(1) = \frac{2}{9}$ thì hàm số liên tục tại x = 1

Câu 19:

Ta có
$$\lim_{x\to 0} \frac{\sqrt{4x+1}-1}{ax^2+(2a+1)x} = \lim_{x\to 0} \frac{4}{(ax+2a+1)(\sqrt{4x+1}+1)} = \frac{2}{2a+1}$$

Hàm số liên tục tại x = 0 thì $\frac{2}{2a+1} = 3 \Leftrightarrow a = -\frac{1}{6}$

Câu 20:

Ta có
$$\lim_{x \to 1^{-}} \frac{a(x^2 - 2)}{x - 3} = \frac{a}{2}$$
, $\lim_{x \to 1^{+}} \frac{\sqrt{3x + 1} - 2}{x^2 - 1} = \lim_{x \to 1^{+}} \frac{3}{(x + 1)(\sqrt{3x + 1} + 2)} = \frac{3}{8}$

Để hàm số liên tục tại x = 1 thì $\frac{a}{2} = \frac{3}{8} \Leftrightarrow a = \frac{3}{4}$

Câu 21:

Ta có
$$\lim_{x\to 0^+} \frac{\sqrt{x+4}-2}{x} = \lim_{x\to 0^+} \frac{1}{\sqrt{x+4}+2} = \frac{1}{4}; \lim_{x\to 0^-} \left(mx^2+2x+\frac{1}{4}\right) = 2x+\frac{1}{4}$$

Để hàm số liên tục tại x = 0 thì $2m + \frac{1}{4} = \frac{1}{4} \Leftrightarrow m = 0$

Câu 22:

Ta có
$$\lim_{x\to 2} \frac{\sqrt[3]{4x} - 2}{x - 2} = \lim_{x\to 2} \frac{4}{\sqrt[3]{16x^2 + 2\sqrt[3]{4x} + 4}} = \frac{1}{3}$$
; $f(2) = 2a + 3$

Để hàm số liên tục trên \mathbb{R} thì $2a+3=\frac{1}{3} \Leftrightarrow a=-\frac{4}{3}$

Câu 23:

Ta có
$$\lim_{x \to 9^{-}} \frac{3 - \sqrt{9 - x}}{x} = \frac{1}{3}$$
; $\lim_{x \to 9^{+}} \frac{3}{x} = \frac{1}{3}$ và $f(9) = \frac{1}{3}$ nên hàm số liên tục tại $x = 9$

Ta cũng có
$$\lim_{x\to 0^+} \frac{3-\sqrt{9-x}}{x} = \lim_{x\to 0^+} \frac{1}{3+\sqrt{9-x}} = \frac{1}{6} \text{ và } f(0) = m$$

Vậy để hàm số liên tục trên $[0; +\infty)$ thì $m = \frac{1}{6}$

Câu 24:

Ta có
$$\lim_{x \to \frac{\pi}{2}^{-}} \sin x = 1$$
; $\lim_{x \to \frac{\pi}{2}^{+}} \sin x = -1$; $\lim_{x \to \frac{\pi}{2}^{+}} ax + b = \frac{a\pi}{2} + b$; $\lim_{x \to \frac{\pi}{2}^{-}} ax + b = -\frac{a\pi}{2} + b$

Để hàm số liên tục trên
$$\mathbb{R}$$
 thì
$$\begin{cases} \frac{a\pi}{2} + b = 1 \\ -\frac{a\pi}{2} + b = -1 \end{cases} \Leftrightarrow \begin{cases} a = \frac{2}{\pi} \\ b = 0 \end{cases}$$

Câu 25:

Ta có
$$\lim_{x\to 3} \sqrt{\frac{x^2+1}{x^3-x+6}} = \frac{\sqrt{3}}{3}$$
. Để hàm số liên tục tại $x=3$ thì $b+\sqrt{3} = \frac{\sqrt{3}}{3} \Leftrightarrow b = -\frac{2\sqrt{3}}{3}$

Câu 26:

Ta có
$$\lim_{x \to 1} \frac{\sqrt[3]{x+7} - \sqrt{3x+1}}{x-1} = \lim_{x \to 1} \frac{\sqrt[3]{x+7} - 2}{x-1} + \lim_{x \to 1} \frac{2 - \sqrt{3x+1}}{x-1}$$

$$= \lim_{x \to 1} \frac{1}{\sqrt[3]{(x+7)^2} + 2\sqrt[3]{x+7} + 4} + \lim_{x \to 1} \frac{-3}{2 + \sqrt{3x+1}}$$

$$= \frac{1}{12} - \frac{3}{4}$$

$$= -\frac{2}{3}$$

$$f(1) = a$$

Để hàm số liên tục tại x = 1 thì $a = -\frac{2}{3}$

Câu 27:

Ta có
$$\lim_{x \to 1} \frac{x^{2017} + x - 2}{\sqrt{2019x + 1} - \sqrt{x + 2019}} = \lim_{x \to 1} \frac{x^{2017} - 1}{\sqrt{2019x + 1} - \sqrt{x + 2019}} + \lim_{x \to 1} \frac{x - 1}{\sqrt{2019x + 1} - \sqrt{x + 2019}}$$

$$= \lim_{x \to 1} \frac{\left(x^{2016} + x^{2015} + \dots + x + 1\right)\left(\sqrt{2019x + 1} + \sqrt{x + 2019}\right)}{2018} + \lim_{x \to 1} \frac{\sqrt{2019x + 1} + \sqrt{x + 2019}}{2018}$$

$$= \frac{2017\sqrt{2020}}{1009} + \frac{\sqrt{2020}}{1009} = 2\sqrt{2020}$$

Để hàm số liên tục tại x = 1 thì $k = 2\sqrt{2020}$

Câu 28:

Xét hàm số
$$f(x)$$
 trên đoạn $[0; 2\pi]$, khi đó $f(x) = \begin{cases} \sin x, & khi \ x \in \left[0; \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}; 2\pi\right] \\ 1 + \cos x, & khi \ x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right) \end{cases}$

Ta có
$$\lim_{x\to 0^+} f(x) = 0 = f(0); \lim_{x\to 2\pi^-} f(x) = 0 = f(2\pi)$$

Hàm số rõ ràng liên tục trên các khoảng $\left[0; \frac{\pi}{2}\right]; \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$ và $\left(\frac{3\pi}{2}; 2\pi\right]$

Ta xét tại $x = \frac{\pi}{2}$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} (1 + \cos x) = 1; \quad \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \sin x = 1; \quad f\left(\frac{\pi}{2}\right) = 1$$

TOANMATH.com

Như vậy
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^{+}} f(x) = f\left(\frac{\pi}{2}\right)$$
 nên hàm số $f(x)$ liên tục tại điểm $x = \frac{\pi}{2}$

Ta xét tại
$$x = \frac{3\pi}{2}$$

$$\lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} f\left(x\right) = \lim_{x \to \left(\frac{3\pi}{2}\right)^{+}} \sin x = -1; \quad \lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} f\left(x\right) = \lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} \left(1 + \cos x\right) = 1$$

Vì
$$\lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} f(x) \neq \lim_{x \to \left(\frac{3\pi}{2}\right)^{+}} f(x)$$
 nên hàm số $f(x)$ gián đoạn tại điểm $x = \frac{3\pi}{2}$

Do đó, trên đoạn $[0; 2\pi]$ hàm số chỉ gián đoạn tại điểm $x = \frac{3\pi}{2}$.

Do tính chất tuần hoàn của hàm số $y = \cos x$ và $y = \sin x$ suy ra hàm số gián đoạn tại các điểm $x = \frac{3\pi}{2} + k2\pi, k \in \mathbb{Z}$

Ta có
$$x \in (0; 2018) \Leftrightarrow 0 < \frac{3\pi}{2} + k2\pi < 2018 \Leftrightarrow -\frac{3}{4} < k < \frac{1009}{\pi} - \frac{3}{4} \approx 320,42$$

Vì $k \in \mathbb{Z}$ nên $k \in \{0, 1, 2, ..., 320\}$. Vậy hàm số f có 321 điểm gián đoạn trên khoảng (0; 2018)

Dạng 2. Chứng minh phương trình có nghiệm

1-B	2-C	3-C	4-B	5-C	6-B	7-D		

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 2:

Vì f(a)f(b) > 0 nên f(a) và f(b) cùng dương hoặc cùng âm. Mà f(x) liên tục, tăng trên [a;b] nên đồ thị hàm f(x) nằm trên hoặc nằm dưới trục hoành trên [a;b]. Vậy phương trình f(x) = 0 không có nghiệm trong khoảng (a;b)

Câu 3:

Đặt
$$f(x) = 2x^4 - 5x^2 + x + 1$$
, hàm số $f(x)$ liên tục trên $(0; 2)$

Ta có f(0) = 1; $f(1) = -1 \Rightarrow f(0).f(1) < 0$ nên phương trình đã cho có ít nhất một nghiệm trong khoảng (0; 2)

Trang 20

Câu 4:

Đặt
$$f(x) = x^3 - 3x^2 + (2m - 2)x + m - 3$$
. Ta thấy hàm số liên tục trên $\mathbb R$

Điều kiện cần:
$$af(-1) > 0 \Leftrightarrow -m-5 > 0 \Leftrightarrow m < -5$$

Điều kiện đủ: với m < -5 ta có

+)
$$\lim_{x \to -\infty} f(x) = -\infty$$
 nên tồn tại $a < -1$ sao cho $f(a) < 0$

TOANMATH.com

Mặt khác f(-1) = -m - 5 > 0. Suy ra f(a).f(-1) < 0

Do đó tồn tại $x_1 \in (a; -1)$ sao cho $f(x_1) = 0$

+)
$$f(0) = m - 3 < 0$$
, $f(-1) > 0$. Suy ra $f(0).f(-1) < 0$

Do đó tồn tại $x_2 \in (-1; 0)$ sao cho $f(x_2) = 0$

+)
$$\lim_{x \to +\infty} f(x) = +\infty$$
 nên tồn tại $b > 0$ sao cho $f(b) > 0$

Mặt khác
$$f(0) < 0$$
. Suy ra $f(0).f(b) < 0$

Do đó tồn tại $x_3 \in (0; b)$ sao cho $f(x_3) = 0$. Vậy m < -5 thỏa mãn yêu cầu bài toán

Câu 5:

Xét phương trình: $x^3 + ax^2 + bx + c = 0$ (1)

$$\text{D}\check{a}\text{t: } f(x) = x^3 + ax^2 + bx + c$$

Từ giả thiết
$$\begin{cases} 4a+c>8+2b \Rightarrow -8+4a-2b+c>0 \\ a+b+c<-1 \Rightarrow 1a+b+c<0 \Rightarrow f\left(1\right)<0 \end{cases}$$

Do đó f(-2).f(1) < 0 nên phương trình (1) có ít nhất một nghiệm trong (-2; 1)

Ta nhận thấy:

$$\lim_{x\to -\infty} f(x) = -\infty \text{ mà } f(-2) > 0 \text{ nên phương trình (1) có ít nhất một nghiệm } \alpha \in (-\infty; -2)$$

Tương tự: $\lim_{x \to +\infty} f(x) = +\infty$ mà f(1) < 0 nên phương trình (1) có ít nhất một nghiệm $\beta \in (1; +\infty)$

Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm.

Câu 6:

Xét hàm số $f(x) = x^3 + ax^2 + bx + c$ liên tục trên \mathbb{R}

$$\lim_{x \to -\infty} f(x) = -\infty; \lim_{x \to +\infty} f(x) = +\infty \text{ nên sẽ tồn tại số } \alpha \to -\infty \text{ và } \beta \to +\infty \text{ sao cho } f(\alpha).f(\beta) < 0$$

Vậy phương trình (1) có ít nhất một nghiệm với mọi a, b, c.

Ta lại có với a = b = 0; c = 1 thì phương trình có đúng một nghiệm thực

Câu 7:

Bổ đề: Phương trình đa thức bậc lẻ $a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + ... + a_1x + a_0 = 0$ luôn có ít nhất một nghiệm, với mọi giá trị của a_i , $i = \overline{2n+1}$, 0

Chứng minh:

+ Xét hàm số $f(x) = a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + ... + a_1x + a_0$ đây là hàm đa thức, xác định trên $\mathbb R$ nên liên tục trên $\mathbb R$

Ta có:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[a_{2n+1} x^{2n+1} + a_{2n} x^{2n} + ... + a_1 x + a_0 \right] = +\infty$$
 nên tồn tại $x_1 \in \mathbb{R}$ sao cho $f(x_1) > 0$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} \left[a_{2n+1} x^{2n+1} + a_{2n} x^{2n} + \ldots + a_1 x + a_0 \right] = -\infty \text{ nên tồn tại } x_2 \in \mathbb{R} \text{ sao cho } f(x_2) < 0$$

Do đó tồn tại $x_0 \in (x_1; x_2)$ sao cho $f(x_0) = 0$

Vậy phương trình đa thức bậc lẻ luôn có ít nhất một nghiệm, với mọi giá trị của a_i , $i = \overline{2n+1, 0}$

Áp dụng:

Đặt
$$f(x) = (m^2 - 5x + 6)(x + 5)^{2019}(x^{2020} + 2x) + 2x - 1$$
 Hàm số $f(x)$ liên tục trên \mathbb{R}

+ Xét
$$m^2 - 5m + 6 \Leftrightarrow \begin{bmatrix} m = 2 \\ m = 3 \end{bmatrix}$$
. Khi đó phương trình trở thành $2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}$

+ Xét
$$m^2 - 5m + 6 \neq 0 \Rightarrow \begin{cases} m \neq 2 \\ m \neq 3 \end{cases}$$
.

Hàm f(x) có bậc cao nhất là 2019 + 2020 = 4039 là đa thức bậc lẻ nên f(x) = 0 có ít nhất một nghiệm với $\forall m \in \mathbb{R}$