2.2 Transformations

Transformations

- Transformations are very important in CG and visualization!
 - Position objects in a scene (modeling)
 - Change shape of objects
 - Create copies of objects
 - Projections for virtual cameras
 - Position of projection on actual 2D window
 - Change of coordinate systems
 - Animations

Transformations

Context: Rendering pipeline

Transformations

Spaces in CG applications

Screen Space

Change spaces using transformations!

Transformations determine what is finally seen (visibility)

Viewing Space

Transformations

- Rigid Transformations (Euclidean Transform)
 - Preserves distances
 - Preserves angles

- Similarity Transformations
 - Preserves angles
 - Changes distances

Prof. Dr. Matthias Teßmann

5

Transformations

Linear Transformations

Transformations

Linear Transformations

• Two geometric objects, T_1 and T_2 are congruent if they can be made to coincide by a rigid motion and a positive or negative scaling, i.e. if there exists a scaling factor c <> 0, a translation vector b and an *orthogonal* matrix Q such that

$$T_1 = \mathbf{b} + c\mathbf{Q}T_2$$

T1 und T2 kongruent wenn sie sich umkehrbar lassen bzw. vom einen in den anderen transformieren lassen

Transformations

Basic 2D Transformations

- Matrix multiplication
 - Scaling
 - Rotation
- Different operation of transformations on
 - Locations (points)
 - Displacement vectors
 - Normal vectors (surface normals)
- Matrices used for scale, rotation and shear

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{pmatrix}$$

Transformations

Scaling

Most basic transformation

$$scale(s_x, s_y) = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix}$$

- Change length and possibly direction

• Transformation of a vector
$$\begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s_x x \\ s_y y \end{pmatrix}$$

Transformations

Shearing

- Pushing things sideways (deck of cards)
- Horizontal (y-coordinate constant) and Vertical (x-coordinate constant)
- Can be expressed as rotation about an angle

$$\frac{\text{shear} - x(s)}{0} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$

$$\operatorname{shear} - x(s) = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \qquad \operatorname{shear} - y(s) = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$$

Transformations

Rotation

Vector

$$\mathbf{a} = (a_x, a_y)$$

Length

$$r = \sqrt{a_x^2 + a_y^2}$$

By definition

$$a_x = r \cos \alpha$$

$$a_y = r \sin \alpha$$

Rotation by an angle ⊕, counter-clockwise

$$b_{x} = r\cos(\alpha + \varphi) = r\cos\alpha\cos\varphi - r\sin\alpha\sin\varphi$$

$$b_{\nu} = r \sin(\alpha + \varphi) = r \sin \alpha \cos \varphi + r \cos \alpha \sin \varphi$$

Transformations

Substitute

$$b_x = a_x \cos \varphi - a_y \sin \varphi$$
$$b_y = a_y \cos \varphi + a_x \sin \varphi$$

Matrix from a to b

Transformations

Composition of 2D Transformations

- First $\mathbf{v}_2 = \mathbf{S}\mathbf{v}_1$ or $\mathbf{v}_3 = \mathbf{R}(\mathbf{S}\mathbf{v}_1)$ Second $\mathbf{v}_3 = \mathbf{R}\mathbf{v}_2$

Transformations

Matrix multiplications are associative (R S) T = R (S T)

$$\Rightarrow \mathbf{v}_3 = (\mathbf{RS})\mathbf{v}_1 = \mathbf{M}\mathbf{v}_1$$

- Effects of two consecutive matrix multiplications by one matrix
- Applied from the right side first! Here: first apply S, then R
- Matrix multiplications are NOT commutative
 - The order of transformations does matter
 - Note the difference
 - Scaling, then rotating vs. rotating, then scaling

Transformations

Order does matter

Transformations

3D Transformations

- Rotation about the main xyz-axis
 - Same applies to scale / shear

$$Rot_{x}(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$

$$Rot_{y}(\phi) = \begin{pmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{pmatrix}$$

$$Rot_{z}(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transformations

Arbitrary 3D rotations

- 3D rotations by orthogonal matrices that preserve orientation
- A matrix is orthogonal if

$$O^T \cdot O = O \cdot O^T = I_{nxn}$$
 and $det(O) = 1$

Matrix rows

- orthogonal => inverse == transponierte
- Cartesian coordinates of three mutually orthogonal unit vectors
- Matrix columns
 - Three potentially different mutually orthogonal unit vectors

Transformations

Change of base

• Let \vec{u} , \vec{v} , \vec{w} form an orthonormal system

$$\vec{u} \cdot \vec{u} = \vec{v} \cdot \vec{v} = \vec{w} \cdot \vec{w} = 1$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{u} = 0$$

with

$$\vec{u} = u_x \vec{e}_x + u_y \vec{e}_y + u_z \vec{e}_z$$

$$\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y + v_z \vec{e}_z$$

$$\vec{w} = w_x \vec{e}_x + w_y \vec{e}_y + w_z \vec{e}_z$$

• then the associated rotation matrix is
$$R_{uvw} = \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix}$$

Transformations

- The matrix R_{uvw}
 - Takes the basis uvw to the corresponding cartesian axis via rotation

$$\mathbf{R}_{uvw}\vec{u} = \begin{pmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{pmatrix} \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \begin{pmatrix} \overrightarrow{u} \cdot \overrightarrow{u} \\ \overrightarrow{v} \cdot \overrightarrow{u} \\ \overrightarrow{w} \cdot \overrightarrow{u} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \overrightarrow{e}_x$$

$$\mathbf{R}_{uvw}\vec{v} = \vec{e}_y$$

$$\mathbf{R}_{uvw} \overrightarrow{w} = \overrightarrow{e}_z$$

• If R_{uvw} is a rotation matrix with orthnormal rows then R^{T}_{uvw} is a rotation matrix with orthnormal columns and $\Rightarrow R^{T}_{uvw} = R^{-1}_{uvw}$

 Consequence: change coordinate systems by using the basis vectors of an orthonormal system as columns of a rotation matrix

Transformations

Equivalent representations of rotations in 3D

- Orthogonal matrices
- 3 Euler rotations

- Axis of rotation and angle
- Quaternions
- 2 (planar) reflections

Transformations

For orthogonal transformations

- Algebraic inverse = geometric inverse = transpose
- So, if R_{IIVW} takes v to y then R^T_{IIVW} takes y to v
- Construct rotation about arbitrary vector a

 - Rotate about z-axis
 - Rotate canonical basis back to uvw basis

• Form orthonormal basis with
$$w = a$$
• Rotate basis to canonical basis xyz
• Rotate about z-axis
$$\begin{pmatrix}
u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z
\end{pmatrix}
\begin{pmatrix}
\cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z
\end{pmatrix}$$

Transformations

Transformation of surface normal vectors

Problem: Transformation of surface normals differs from transformation

of underlying surface:

- We have: $\mathbf{n}^T \cdot \mathbf{t} = 0$ and $\mathbf{t}_M = \mathbf{M}\mathbf{t}$ and $\mathbf{n}_N = \mathbf{N}\mathbf{n}$
- Goal: find N, such that $\mathbf{n}_{N}^{T} \cdot \mathbf{t}_{M} = 0$

• And
$$\mathbf{M}^{-1}\mathbf{M} = \mathbf{I}$$

$$\mathbf{n}^{T} \cdot \mathbf{t} = \mathbf{n}^{T}\mathbf{I}\mathbf{t} = \mathbf{n}^{T}\mathbf{M}^{-1}\mathbf{M}\mathbf{t} = 0$$

$$(\mathbf{n}^{T}\mathbf{M}^{-1}) \cdot (\mathbf{M}\mathbf{t}) = (\mathbf{n}^{T}\mathbf{M}^{-1}) \cdot \mathbf{t}_{M} = 0$$

, hence
$$\Rightarrow \mathbf{n}_{M}^{T} = \mathbf{n}^{T} \mathbf{M}^{-1}$$

$$\mathbf{n}_{M} = (\mathbf{n}^{T} \mathbf{M}^{-1})^{T} = (\mathbf{M}^{-1})^{T} \mathbf{n}$$

$$\Rightarrow \mathbf{N} = (\mathbf{M}^{-1})^{T}$$

Transform with the inverse transpose of the original transformation matrix!

Affine Transformations

Linear Transformation and Translation

$$\vec{x} \mapsto A\vec{x} + \vec{b} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

- Characterization
 - Maps lines to lines
 - Parallel lines will be mapped to parallel lines
 - Division rations will be kept
 - Angles are not preserved
- Representation in CG: homogenous coordinates

Affine Transformations

- Dilemma 1
 - Vector $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$: describes a direction in space independent of position
 - You cannot "translate" direction vectors!
- Dilemma 2

$$T = T_1 T_2 T_3 \dots$$

Linear transformations can be simply concatenated by matrix multiplication

$$T_1(\vec{x}) = M_1 \vec{x} + \vec{t}_1$$
 $T_2(\vec{x}) = M_2 \vec{x} + \vec{t}_2$

Affine Transformations

$$\Rightarrow T_2 \left(T_1(\vec{x}) \right) = \mathbf{M}_2 \mathbf{M}_1 \vec{x} + \mathbf{M}_2 \vec{t}_1 + \vec{t}_2$$

Affine Transformations

Homogenous coordinates (simple)

- Add third / fourth (2d/3d) coordinate w (1 for point, 0 for vector)
- Homogenous coordinates (advanced)
 - Identify (x,y) with the line $\{\alpha x, \alpha y, \alpha | \alpha \in \mathbb{R}\}$ in 3D or with any non-zero point on this line (e.g. (x,y,1))
 - Consequence: (x,y,1), (3x,3x,3), (0.5x,0.5y,0.5) represent the same point!
 - Dehomogenization: $(x, y, w) \Rightarrow (\frac{x}{w}, \frac{y}{w})$
 - Analogous in 3D
- Mathematical foundation
 - Projective geometry

$$\vec{p}_H = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longleftrightarrow \vec{p} = \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix}$$

Ωhm

Affine Transformations

- Example: Point in 1D
 - Corresponds to ray in homogenous coordinates
- Rotation in homogenous coordinates
 - Corresponds to translation in cartesian coordinates

Affine Transformations

- What is *w*?
 - For points: w = 1
 - For vectors: w = 0
 - For matrices
 - Add row (0 0 0 1)
 - Rest of remaining column contains \vec{t}
- Result

$$\vec{p} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} m_{00} & m_{01} & m_{02} & t_x \\ m_{10} & m_{11} & m_{12} & t_y \\ m_{20} & m_{21} & m_{22} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 Note: homogenous transformation matrices can also be used for projection transformations

Affine Transformations

Homogenous Coordinates: General form in 3D

$$ec{x} \mapsto \mathbf{M} ec{x} + ec{b} \Rightarrow$$

$$= \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$=egin{pmatrix} ext{lin. Transf.} & ext{Translation} \ m_{11} & m_{12} & m_{13} & b_1 \ m_{21} & m_{22} & m_{23} \ m_{31} & m_{32} & m_{33} \ \end{pmatrix} egin{pmatrix} x \ y \ z \ b_3 \ \end{pmatrix}$$

Affine Transformations

• Affine transformation of point \vec{p}

$$\vec{p}' = \mathbf{M}\vec{p} = \begin{pmatrix} m_{00} & m_{01} & m_{02} & t_x \\ m_{10} & m_{11} & m_{12} & t_y \\ m_{20} & m_{21} & m_{22} & t_z \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} m_{00}x + m_{01}y + m_{02}z + t_x \cdot 1 \\ m_{10}x + m_{11}y + m_{12}z + t_y \cdot 1 \\ m_{20}x + m_{21}y + m_{22}z + t_z \cdot 1 \\ 0 \cdot x + 0 \cdot y + 0 \cdot z + 1 \end{pmatrix} = \begin{pmatrix} x' + t_x \\ y' + t_y \\ z' + t_z \\ 1 \end{pmatrix}$$

• Affine transformation of vector \vec{v}

$$\vec{v}' = \mathbf{M}\vec{v} = \begin{pmatrix} m_{00} & m_{01} & m_{02} & t_x \\ m_{10} & m_{11} & m_{12} & t_y \\ m_{20} & m_{21} & m_{22} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} m_{00}x + m_{01}y + m_{02}z + t_x \cdot 0 \\ m_{10}x + m_{11}y + m_{12}z + t_y \cdot 0 \\ m_{20}x + m_{21}y + m_{22}z + t_z \cdot 0 \\ 0 \cdot x + 0 \cdot y + 0 \cdot z + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \\ 0 \end{pmatrix}$$

Note how direction vectors are not translated!

Affine Transformations

Concatenation of transformations

Regular (cartesian coordinates)

$$T_1(\vec{x}) = M_1 \vec{x} + \vec{t}_1$$
 $T_2(\vec{x}) = M_2 \vec{x} + \vec{t}_2$
 $\Rightarrow T_2(T_1(\vec{x})) = M_2 M_1 \vec{x} + M_2 \vec{t}_1 + \vec{t}_2$

Homogenous coordinates

$$T_1(\vec{x}) = \mathbf{M}_1 \vec{x} \qquad T_2(\vec{x}) = \mathbf{M}_2 \vec{x}$$
$$\Rightarrow T_2 \left(T_1(\vec{x}) \right) = \mathbf{M}_2 \mathbf{M}_1 \vec{x}$$

Affine Transformations

Transformation rules

Multiplication is composition

$$x \stackrel{T}{\mapsto} Tx = y \stackrel{S}{\mapsto} Sy = z \quad \equiv \quad z = A_S \cdot A_T \cdot x$$

- Inverse matrix will inverse the transformation (inverse transformation)
 - Affine transformations are invertible
 - Caution: projection transformations are not generally invertible!
 - But also expressed as a homogenous matrix

Affine Transformations

Common transformations

Translation and scaling

$$T = \begin{pmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad S(a,b,c) = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Rotation around the x-, y-and z-axis (note: φ is in radians)

$$\boldsymbol{R}_{\mathbf{x}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi & 0 \\ 0 & \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{R}_{\mathbf{y}}(\varphi) = \begin{pmatrix} \cos\varphi & 0 & \sin\varphi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\varphi & 0 & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \boldsymbol{R}_{\mathbf{z}}(\varphi) = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0 & 0 \\ \sin\varphi & \cos\varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ωhm

Affine Transformations

Example of a general transformation in 2D

- Rotate with center at c=(cx,cy) by angle φ
- Transl(-c) \rightarrow Rot(ϕ) \rightarrow Transl(c)

- in den Ursprung transformieren um -c
- rotieren
- zurück verschieben auf c

$$\begin{pmatrix} 1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -c_{x} \\ 0 & 1 & -c_{y} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \cos \varphi & -\sin \varphi & (c_y \sin \varphi - c_x \cos \varphi) + c_x \\ \sin \varphi & \cos \varphi & (-c_x \sin \varphi - c_y \cos \varphi) + c_y \\ 0 & 0 & 1 \end{pmatrix}$$

Projections

Projections

Viewing

- Orthographic projection: parallel lines map to parallel lines
- Perspective projection: have 1, 2 or 3 vanishing points

perspective projection

perspective projection with hidden line removal

Ωhm

Projections

The canonical view volume

- Basic problem: map lines to the screen
 - Reuse solution for any viewing condition
- Limit to canonical view volume (x,y,z) in [-1, 1]³
- If screen has nx x ny pixels
 - $x = -1 \Rightarrow left side$
 - $x = +1 \Rightarrow right side$
 - $y = +1 \Rightarrow top$
 - $y = -1 \Rightarrow bottom$
- Note the mapping: "square" ⇒ rectangle
- Projections transform the scene into the canonical view volume

Projections

Orthographic projection

- Viewer looks in direction of negative z-axis
- y-direction: view up
- x-axis: pointing right (right-handed coordinate system)

Projections

Orthographic projection dissected

- First: move to the origin
- Second: scale to match canonical view volume

$$\begin{pmatrix} x_{canonical} \\ y_{canonical} \\ z_{canonical} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{b+t}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Ωhm

Projections

Perspective projection

Projections

Perspective projection

Projections

Perspective projection

- Leave points on z = n plane (view plane)
- Between z = n and z = f lines trough eye point become parallel to z-axis

Projections

Normalizing transform

- Regions close to observer enlarged, distant regions shrink
- Perspective distortion

Projections

Viewport transformation

Maps the projected 2D coordinates to a screen area in the window

