Announcements:

HW9 posted (due Wed. 11/29 9am)

No class or office hours Mon. 11/27

Remark 6.1.9:

a) G* is always connected

b) If G is connected, $|V(G)| = |\{faces of G^*\}|$ and $|V(G^*)| = |\{faces of G^*\}|$

c) (G*) * = G \iff G is connected

Pf: Homework!

Thm 6.1.14: Let G be a connected graph.

Let $D \subseteq E(G)$, and let $D^* \in E(G^*)$ be the corresponding edges in G^* . Then,

D is the edge \Longrightarrow D* is a minimal edge cut.

What can we say about the numbers of vertices n:= |V(G)|, edges e:= |E(G)| and faces f of a planar graph?

Euler's Formula: For any conn. planar graph G, n-e+f=2

Remark: This is the tip of the ice berg of one of the most important ideas in algebraic topology, called the Euler characteristic. For instance, for a graph drawn on a g-hole torus with no crossings,

Pf of Euler's formula:

Application: regular polyhedra

Def: A polyhedron is a 3D solid whose boundary consists of polygons, called faces. The edges/vertices are the edges/vertices of the polygons.

Def: A regular polyhedron is a solid whose boundary consists of identical regular polygons with the same number of faces around each vertex.

View these as a graph on a sphere, and "pull open" the back face to make a plane graph

Cor: Every polyhedron satisfies n-e+f=2

Let's determine all the regular polyhedra:

n ventices

e edges

f faces

faces have l edges

Vertices have k faces

8-12+6=2