Dask dataframes

Just like numpy arrays, Dask implements an equivalent of the Pandas dataframe. Let's briefly remember what a dataframe is by loading some tabular data:

```
In [2]: import pandas as pd
In [3]: births = pd.read_csv('../Data/Birthdays.csv')
In [3]: births
```

Out[3]:

	Unnamed: 0	state	year	month	day	date	wday	births
0	1	AK	1969	1	1	1969-01-01	Wed	14
1	2	AL	1969	1	1	1969-01-01	Wed	174
2	3	AR	1969	1	1	1969-01-01	Wed	78
3	4	AZ	1969	1	1	1969-01-01	Wed	84
4	5	CA	1969	1	1	1969-01-01	Wed	824
	:							
372859	372860	VT	1988	12	31	1988-12-31	Sat	21
372860	372861	WA	1988	12	31	1988-12-31	Sat	157
372861	372862	WI	1988	12	31	1988-12-31	Sat	167
372862	372863	WV	1988	12	31	1988-12-31	Sat	45
372863	372864	WY	1988	12	31	1988-12-31	Sat	18

372864 rows × 8 columns

A dataframe is a table where each line represents an observation and that can contain numerical values or categorical values (it can contain lists or other complex objects, but rather shouldn't). Each line has an index that can be used to recover that line:

```
In [4]: births.loc[0]
Out[4]: Unnamed: 0
                                 1
        state
                                ΑK
                              1969
        year
        month
                                 1
        day
                                 1
                       1969-01-01
        date
        wday
                              Wed
        births
                                14
        Name: 0, dtype: object
```

One can recover each variable either for a specific index:

```
In [5]: births.loc[0].state
Out[5]: 'AK'
```

or for the entire dataframe:

```
In [6]: births.state
Out[6]:
                     ΑK
         1
                     AL
         2
                     AR
         3
                     AZ
         4
                     \mathsf{CA}
         372859
                     ۷T
         372860
                    WA
         372861
                    WΙ
         372862
                    WV
         372863
                    WY
         Name: state, Length: 372864, dtype: object
```

Dataframes also support numpy-like indexing:

```
In [7]: births.state == 'AK'
Out[7]:
        0
                    True
                   False
        2
                   False
        3
                   False
                   False
        372859
                   False
        372860
                   False
        372861
                   False
        372862
                   False
        372863
                   False
        Name: state, Length: 372864, dtype: bool
```

In [8]: births[births.state == 'AK']

Out[8]:

	Unnamed: 0	state	year	month	day	date	wday	births
0	1	AK	1969	1	1	1969-01-01	Wed	14
51	52	AK	1969	1	2	1969-01-02	Thurs	20
102	103	AK	1969	1	3	1969-01-03	Fri	20
153	154	AK	1969	1	4	1969-01-04	Sat	16
204	205	AK	1969	1	5	1969-01-05	Sun	18
	:							
372609	372610	AK	1988	12	27	1988-12-27	Tues	38
372660	372661	AK	1988	12	28	1988-12-28	Wed	40
372711	372712	AK	1988	12	29	1988-12-29	Thurs	31
372762	372763	AK	1988	12	30	1988-12-30	Fri	28
372813	372814	AK	1988	12	31	1988-12-31	Sat	29

7306 rows × 8 columns

In []: births.mean()

Pandas is a huge library that offers all necessary tools for advanced data science and is used in many other packages such as the plotting library seaborn or the machine learning packages scikit-learn (you can learn a bit more about Pandas e.g. here (https://github.com/guiwitz/Pandas course).

Import as dask-dataframe

We import now the same csv file, but now as a dask-dataframe and not a pandas-dataframe:

```
In [4]: from dask import dataframe as dd
In [5]: births_da = dd.read_csv('.../Data/Birthdays.csv')
In [8]: len(births_da.compute())
Out[8]: 372864
In [6]: births_da
```

Out [6]: Dask DataFrame Structure:

	Unnamed: 0	state	year	month	day	date	wday	births
npartitions=1								
	int64	object	int64	int64	int64	object	object	int64

Dask Name: from-delayed, 3 tasks

Again, we see that there are no actual data there. All Dask did was to read the first lines to figure out the columns and types. If we want to have a clearer idea of the file content we can use head ():

In [7]: births_da.head()

Out[7]:

	Unnamed: 0	state	year	month	day	date	wday	births
0	1	AK	1969	1	1	1969-01-01	Wed	14
1	2	AL	1969	1	1	1969-01-01	Wed	174
2	3	AR	1969	1	1	1969-01-01	Wed	78
3	4	AZ	1969	1	1	1969-01-01	Wed	84
4	5	CA	1969	1	1	1969-01-01	Wed	824

Now we can now do the same fancy indexing that we did before:

and see that there are still no data there. Let's look at the task graph:

In [9]: subtable.visualize()

Out[9]:

As the file is small, no tasks are parallelized. But we can do this artificially by forcing dask to break the file into smaller chunks:

In [12]: len(births_da.compute())

Out[12]: 372864

In [11]: births_da

	Unnamed: 0	state	year	month	day	date	wday	births
npartitions=4								
	int64	object	int64	int64	int64	object	object	int64

Dask Name: from-delayed, 12 tasks

```
In [13]: subtable = births_da[births_da.state == 'AK']
subtable.visualize()
```


Other classic Pandas applications

One of the main uses of dataframes is the production of statistics, in particular for specific sub-parts of the dataframe through the groupby () function. These operations are supported by Dask as well:

In [18]: births_group_mean.compute()

Out[18]:

	Unnamed: 0	year	month	day	births
state					
AK	186490.363674	1978.499726	6.523542	15.731727	25.374350
AL	186357.881565	1978.492615	6.522566	15.743846	165.039934
AR	186453.473461	1978.497674	6.522845	15.739808	93.600547
ΑZ	186436.387141	1978.496854	6.521067	15.739672	129.580575
CA	186215.389352	1978.484778	6.522048	15.770375	1067.956997
со	186518.550034	1978.501027	6.522930	15.729637	129.552088
СТ	186394.528583	1978.494530	6.519967	15.743572	112.737691
DC	186399.759130	1978.494597	6.521953	15.741622	58.195732
DE	186472.827699	1978.498426	6.522650	15.733817	25.825236
FL	186477.669358	1978.498563	6.523471	15.733817	359.148898
GA	186349.298605	1978.491523	6.524200	15.747881	251.521739
н	186501.362852	1978.499726	6.523542	15.731727	47.265125
IA	186505.551328	1978.500000	6.522310	15.731454	119.108815
ID	186521.236929	1978.500684	6.523542	15.731727	45.567068
IL	186317.537326	1978.489882	6.520919	15.748018	488.039923
IN	186447.118999	1978.496786	6.520996	15.741485	233.006976
KS	186398.155382	1978.494050	6.521680	15.741759	98.729449
KY	186367.933133	1978.492274	6.522768	15.745932	153.559415
LA	186465.618279	1978.497469	6.522917	15.737994	207.178137
MA	186341.089542	1978.490636	6.523718	15.750239	216.457553
MD	186426.612228	1978.495281	6.522637	15.741622	150.657366
ME	186436.477904	1978.495827	6.521959	15.737584	43.806950
МІ	186289.479448	1978.488051	6.519050	15.765806	387.427694
MN	186346.094053	1978.491046	6.519481	15.749829	173.539029
МО	186444.592831	1978.496101	6.521959	15.737447	210.423998
MS	186422.434610	1978.494802	6.522572	15.740082	121.646101
МТ	186539.550034	1978.501027	6.522930	15.729637	34.754825
NC	186514.812509	1978.499658	6.522650	15.733543	240.947448
ND	186541.550034	1978.501027	6.522930	15.729637	32.675702
NE	186542.550034	1978.501027	6.522930	15.729637	69.408077
NH	186468.643678	1978.497126	6.521346	15.735495	36.259442
NJ	186334.745117	1978.489551	6.524519	15.762737	271.122797
NM	186481.319102	1978.497537	6.523262	15.735632	65.893404
NV	186502.294375	1978.498700	6.522239	15.733543	33.046394
NY	186081.586118	1978.475931	6.522296	15.786854	702.754534
ОН	186360.525618	1978.491051	6.520700	15.757754	455.844514
ок	186524.860526	1978.499726	6.522584	15.731727	127.695182

```
In [19]: births_group_mean.births.nlargest(10).compute()
Out[19]: state
                  1067.956997
718.072715
           \mathsf{C}\mathsf{A}
           TX
          NY
                  702.754534
           ΙL
                  488.039923
           0H
                   455.844514
                  444.353615
           PΑ
          ΜI
                   387.427694
                   359.148898
           FL
                   271.122797
          NJ
                  251.521739
          GA
          Name: births, dtype: float64
```

```
In [20]: births_da.state.unique().compute()
Out[20]: 0
                    ΑK
                    ΑL
            1
2
3
                    AR
                    ΑZ
            4
5
6
                    CA
                    C0
                    \mathsf{CT}
            7
8
                    \mathsf{DC}
                    DE
            9
                    FL
            10
                    GA
            11
                    ΗI
            12
                    ΙA
            13
                    ID
            14
                    ΙL
            15
                    ΙN
            16
                    KS
            17
                    ΚY
            18
                    LA
            19
                    MA
            20
                    MD
            21
                    ME
            22
                    ΜI
            23
                   MN
            24
                   MO
            25
                    MS
            26
                   MT
            27
                    NC
            28
                    ND
            29
                    NE
            30
                    NH
            31
                    NJ
            32
                    NM
            33
                    NV
            34
                    NY
            35
                    0H
            36
                    0K
            37
                    0R
            38
                    PΑ
            39
                    RI
            40
                    SC
            41
                    SD
            42
                    \mathsf{TN}
            43
                    \mathsf{TX}
            44
                    UT
            45
                    ۷A
            46
                    VT
            47
                   WA
            48
                   WI
            49
                   WV
            50
            Name: state, dtype: object
```

Larger files

The birth dataset is not very large and dask doesn't really help because it fits in RAM and the overhead of communication betweeen processes is too important.

Let's look at a case where files are larger and/or our dataset is split between multiple files. This dataset is taken from Zenodo (https://zenodo.org/record/834557#.Xj0fMxP0nOS) and represents an analysis of all edits made to Wikipedia pages from its beginning to 2016.

Data are split among multiple zip files, each containing multiple "largish" (500Mb) CSV files. Let's look at one of them:

```
In [21]: filepath = '../Data/wikipedia/20161101-current_content-part1-12-1728.csv
```

In [22]: wikipedia_changes = dd.read_csv(filepath)

In [23]: wikipedia_changes

Out [23]: Dask DataFrame Structure:

	page_id	last_rev_id	token_id	str	origin_rev_id	in	out
npartitions=9							
	int64	int64	int64	object	int64	object	object

Dask Name: from-delayed, 27 tasks

We see that here Dask decided by default to split the file into 9 partitions becasuse of its size. Let's look at a few lines:

In [24]: wikipedia changes.head()

Out[24]:

	page_id	last_rev_id	token_id	str	origin_rev_id	in	out
0	12	746687538	1623	see	233194	[391426, 988138, 6540619, 6551217, 12116305, 1	[391368, 407005, 6539886, 6540818, 12116304, 1
1	12	746687538	1624	also	233194	[391426, 988138, 6540619, 6551217, 12116305, 1	[391368, 407005, 6539886, 6540818, 12116304, 1
2	12	746687538	3519		178538	[391426, 18309960, 18310083, 47354530, 1328933	[391381, 871060, 18310026, 18310134, 47417405,
3	12	746687538	4507	=	320749	[83542729, 160471915]	[367665, 83543709]
4	12	746687538	4508	=	320749	[83542729, 160471915]	[367665, 83543709]

The page_id corresponds to a specific Wikipedia topic, the str represents a given word that has been added or modified. The in and out arrays represent a sequence of events (referenced by an ID) of adding and removal, i.e. the longer the list, the most often this word has been edited.

Word of caution: Dask imports each partition as a separate dataframe, meaning that if the index is a default numeric index, it restarts for each dataframe. In other words, when querying index = 0, we will here get 9 items:

In [25]: wikipedia_changes.loc[0].compute()

Out[25]:

	page_id	last_rev_id	token_id	str	origin_rev_id	in	out
0	12	746687538	1623	see	233194	[391426, 988138, 6540619, 6551217, 12116305, 1	[391368, 407005, 6539886, 6540818, 12116304, 1
0	593	744804419	36875	by	155262821	[164630979, 167839234, 183617334, 185043789, 1	[164630961, 167839008, 183617090, 185043774, 1
0	700	746750216	1260	check	619139	[61773188, 91845565]	[61773072, 91844748]
0	783	746647937	207927]	655587695	[707531216]	[707530825]
0	864	745162899	76425	I	262349476	[314394579, 347669693, 348610355, 350408772, 4	[314394537, 347669682, 348610301, 350408703, 4
0	991	744928000	3073	important	18972725	[77455083, 87982073, 156235181, 156235404, 163	[77453607, 87981675, 156235168, 156235397, 163
0	1175	746229520	33743]]	576608421	[654529644]	[654529496]
0	1347	746716698	26536	jpg	163084252	[294293698]	[294293671]
0	1537	747000036	174476	</th <th>477994012</th> <th>[489689538, 496207384, 511974564, 602763537, 6</th> <th>[489689469, 496207260, 497925062, 579792032, 6</th>	477994012	[489689538, 496207384, 511974564, 602763537, 6	[489689469, 496207260, 497925062, 579792032, 6

Hence there is no simple way to "get the first 10 elements of the dataframe". Instead, it's much simpler for example to ask "give me the first 10 elements of page_id = 593":

```
In [26]: first_words = wikipedia_changes[wikipedia_changes.page_id==593].loc[0:2
     0].compute()
```

Let's see what strings we have here:

```
In [27]: ' '.join(list(first_words.str.values))
```

Out[27]: 'by [[george]] , are puppet - animated films which typically use a diff erent version of a puppet for different'

Seems to be $\frac{\text{this page (https://www.google.com}}{\text{search?q=animated+films+which+typically+use+a+different+version+of+a+puppet+for+different&oq=animated+films+which+typically+use+a+different+version+of+a+puppet+for+different&aqs=chrome..69i57.167j0j4&sourceid=chrome&ie=UTF-8).}$

Compare Pandas and Dask

Let's see how Pandas and Dask compare on this single "largish" (500Mb) file. We can for example count occurrences of single words. We can use the same functions as in Pandas (value_counts) as dasks implements a very close API:

Let's look at the the few most used words or "tokens":

```
In [31]: real_count.head(n = 30)
Out[31]: |
                    256476
                    229648
                    210243
                    181501
          the
                    157474
          [[
                    141926
                    141926
          ]]
                    106560
          of
                    105209
                     90254
                     74325
          and
                     59890
          in
                     57475
          ref
                     54172
                     52983
                     47957
                     47930
          to
                     44798
                     44271
          а
          }}
                     41837
                     41745
          {{
                     39386
          <
                     38841
                     28086
          </
                     27291
          &
                     25329
          is
                     21762
                     18853
          as
                     17466
          for
                     16764
          title
          Name: str, dtype: int64
```

Now we compare the performances of Pandas and Dask:

```
In [32]: %*time
    wikipedia_changes = dd.read_csv(filepath)
    count_str = wikipedia_changes.str.value_counts()
    real_count = count_str.compute()

    CPU times: user 106 ms, sys: 17.2 ms, total: 123 ms
    Wall time: 4.57 s

In [33]: %*time
    wiki_pd = pd.read_csv(filepath)
    count_str = wiki_pd.str.value_counts()

    CPU times: user 4.61 s, sys: 466 ms, total: 5.08 s
    Wall time: 5.11 s
```

We see that Dask doesn't help much in this case.

Multiple large files

We only looked at a tiny part of the dataset. We will now look at much more of it even though still not at the complete one.

Dask offers the very useful feature of being able to open multiple files as one dask-dataframe by using the wild-card * or generating a file list. For example here, we have multiple CSV files in the folder and we can just say:

```
In [35]: wiki_large = dd.read_csv('../Data/wikipedia/2016*.csv')
```

We see many more partitions, meaning that dask indeed considered all files. If we wanted to import the files with pandas we would have more trouble:

Let's time again the same taks as before:

```
In [38]: %%time
    wiki_large = dd.read_csv('../Data/wikipedia/2016*.csv')
    count_str = wiki_large.str.value_counts()
    real_count = count_str.compute()

CPU times: user 292 ms, sys: 48.5 ms, total: 340 ms
Wall time: 16.4 s

In [39]: %%time
    all_files = glob.glob('../Data/wikipedia/2016*.csv')
    wiki_large_pd = pd.concat([pd.read_csv(f) for f in all_files])
    count_str = wiki_large_pd.str.value_counts()

CPU times: user 20.6 s, sys: 2.91 s, total: 23.5 s
Wall time: 24.1 s
```

Exercise

- 1. Create a dask-dataframe from the data in the ../Data/Chicago_taxi folder
- 2. Try to understand the file by looking at the columns
- 3. People have multiple ways of paying. Can you find out which category gives on average the largest tip (use groupby) ?

```
In [ ]: import dask.dataframe as dd
    taxi = dd.read_csv('../Chicago_taxi/chicago.csv')
    taxi
    taxi = dd.read_csv('../Chicago_taxi/chicago.csv', dtype={'taxi_id': 'flo
    at64'})
    # if not specified, get an error at mean().compute()
    taxi_group = taxi.group_by('payment_type')
    mean_val = taxi_group.mean().compute()
    mean_val.tips
```