Задачей Домашнего задания по курсу Электроника является создание генератора периодического сигнала сложной формы, вид которой схематично изображён на рис.1.

Рис. 1. Выходной сигнал генератора

Исходными данными для проектирования являются:

 T_1, T_2 – длительности «полупериодов» сигнала;

 au_1 , au_2 — длительности линейных переходных процессов от первого «полупериода» ко второму и от второго к первому;

 $U_{\scriptscriptstyle 1},\ U_{\scriptscriptstyle 2}$ – значения постоянных уровней «полупериодов» сигнала;

 $R_{\rm H}$ – сопротивление нагрузки генератора.

Предлагается разработать генератор, согласно блок-схеме, приведённой на рис. 2. Разрешаются другие технические решения, реализующие заданные параметры.

Рис. 2. Блок-схема генератора

Разработанный проект следует реализовать в системе Proteus с использованием моделей только реальных электронных компонентов.

Разработку проекта рекомендуется начать с двухтактного усилителя мощности. Его можно реализовать по схеме, представленной на рис. Марки транзисторов операционного усилителя (ОУ), входящих в его состав, следует выбрать, исходя из задания. Максимальный коллекторный ток транзисторов должен быть не меньше максимально возможного тока через нагрузку

Рис. З Двухтактный усилитель мощности

 $I_{
m Hmax}$. Напряжение питания ОУ должно быть не меньше максимального напряжения на нагрузке, а его максимальный выходной ток — не меньше, чем $I_{
m Hmax}/eta$, где eta — статический коэффициент усиления транзисторов по току. Если ток через нагрузку имеет настолько большое значение, что не удаётся подобрать подходящий ОУ и транзисторы, следует использовать составные транзисторы (рис. 3a).

Рис. За. Усилитель мощности с составными транзисторами

После сборки усилителя мощности следует убедиться в его адекватной работе. Для этого необходимо на вход усилителя подать импульсный сигнал, соответствующий заданию, и убедиться, что усилитель мощности повторяет этот сигнал как без нагрузки, так и с номинальной нагрузкой. Импульсный сигнал с требуемыми парамет-

рами легко получить в системе Proteus с помощью встроенного генератора импульсов, устанавливая требуемые значения его параметров – Initial Voltage, Pulsed Voltage, Pulse Width, Period, Rise Time и Fall Time.

Допускается иное схемное решение усилителя мощности. Однако отказ от применения операционного усилителя вызывает значительное расхождение между входным и выходным сигналами, а также большие сложности с устранением переходных искажений.

Собрав усилитель мощности и убедившись в правильности его работы, следует реализовать каскад, преобразующий прямоугольное напряжение с «полупериодами» $T_1 + \tau_1$ и $T_2 + \tau_2$, и с как можно более крутыми фронтом и спадом, в импульсное напряжение требуемой формы. Предлагается разработать его на основе классической схемы интегратора на ОУ (рис. 4).

Выходной сигнал интегратора определяется выражением

$$U_{\scriptscriptstyle \mathrm{BMX}} = U_{\scriptscriptstyle 0} - \frac{1}{RC} \int\limits_{\scriptscriptstyle 0}^{t} U_{\scriptscriptstyle \mathrm{BX}} dt \,,$$

следовательно, скорость его изменения равна

$$\frac{dU_{\text{BMX}}}{dt} = -\frac{U_{\text{BX}}}{RC}.$$

Рис. 4. Интегратор на операционном усилителе

Поскольку участки ли-

нейного изменения сигнала рис. 1 имеют скорость нарастания $(U_1-U_2)/\tau_1$ и спада $(U_2-U_1)/\tau_2$, возникает возможность подавать на вход интегратора периодический сигнал с «полупериодами» длительностью $T_1+\tau_1$ и $T_2+\tau_2$, в каждом из которых сигнал имеет постоянное значение U_0 и $-U_0$ соответственно, а разную скорость нарастания выходного сигнала интегратора обеспечивать разным значением постоянной времени RC, как это изображено на рис. 5.

Рис. 5. Формирователь прообраза сигнала рис. 1

При этом удобно для разных «полупериодов» использовать разные величины сопротивлений резисторов $R_{_1}=\frac{\tau_1 U_0}{C \left(U_1-U_2\right)}$ и $R_{_2}=\frac{\tau_2 U_0}{C \left(U_1-U_2\right)}$. Значения сопротивлений $R_{_1}$ и $R_{_2}$, конечно, определяются максимальным выходным током ОУ: $R=U_0/I_{\rm max}$, который, как правило, имеет значение не более 5 мА.

Альтернативным решением может явиться использование одного резистора и прямоугольного напряжения с разными значениями постоянных уровней $U_{_{\mathrm{BX}1}} = \frac{RC}{\tau} \big(U_1 - U_2 \big)$ и $U_{_{\mathrm{BX}2}} = \frac{RC}{\tau} \big(U_2 - U_1 \big)$, как это показано на рис. 6.

Рис. 6. Альтернативный способ формирования сигнала рис. 1

В этом случае прямоугольный сигнал с уровнями $U_{_{\rm BX1}}$ и $U_{_{\rm BX2}}$ легко может быть получен из симметричного прямоугольного сигнала с уровнями $U_{_0}$ и $-U_{_0}$ (рис. 7).

Рис. 7. Формирования постоянных уровней рис. 6

Сигнал рис. 5 является только прообразом требуемого сигнала рис.1, потому что вместо уровней $U_{\scriptscriptstyle 1}$ и $U_{\scriptscriptstyle 2}$ он имеет уровни $U_{\scriptscriptstyle \rm Hac}$ и $-U_{\scriptscriptstyle \rm Hac}$.

После сборки и отладки формирователя прообраза сигнала следует обеспечить его двустороннее ограничение уровнями $U_{\scriptscriptstyle 1}$ и $U_{\scriptscriptstyle 2}$. Это можно обеспечить одним из вариантов рис. 8. Можно также использовать питание операционного усилителя на рис. 5 – 7 собственными источниками питания, выдающими напряжение, отличное от напряжений общего питания $\pm E$. Величины напряжения стабилизации стабилитронов должны быть равны заданным напряжениям $U_{\scriptscriptstyle 1}$ и $U_{\scriptscriptstyle 2}$. При необходимости (для точной установки уровней ограничения) можно включить последовательно со стабилитроном импульсный диод (в прямом направлении), падение напрякотором жения на составляет 0,6...0,7 B.

Как это следует из рис. 5-7, на вход формирователя импульсов необходимо подать прямоугольный

Рис. 8. Варианты двустороннего ограничения сигнала схем рис. 5-7

сигнал с длительностями «полупериодов» $T_1 + \tau_1$ и $T_2 + \tau_2$. Самым простым решением этой проблемы является использование мультивибратора на операционном усилителе, схема которого приведена на рис. 9. Мультивибратор выдаёт сигнал прямоугольной формы с «полупериодами»

$$T_{\rm l} = RC \ln \frac{U_{_{\rm HAC+}} \! \left(R_{\rm l} + 2R_{\rm 2}\right)}{U_{_{\rm HAC+}} \! \left(R_{\rm l} + R_{\rm 2}\right) + U_{_{\rm HAC-}} \! R_{\rm 2}} \quad \text{w} \quad T_{\rm 2} = RC \ln \frac{U_{_{\rm HAC-}} \! \left(R_{\rm l} + 2R_{\rm 2}\right)}{U_{_{\rm HAC-}} \! \left(R_{\rm l} + R_{\rm 2}\right) + U_{_{\rm HAC+}} \! R_{\rm 2}} \, ,$$

которые в случае $R_{\rm l}=R_{\rm 2}$, $U_{_{
m Hac-}}=-U_{_{
m Hac+}}$ принимают значения: $T_{\rm l}=T_{\rm 2}=RC\ln 3$.

Добиться разных значений T_1 и T_2 в этом случае можно, обеспечив заряд и разряд конденсатора через разные сопротивления, как это изображено на рис. 10.

Рис. 10. Мультивибратор с различными длительностями «полупериодов»

Порядок разработки устройства.

1. Получить требуемые параметры выходного сигнала устройства:

 $T_{1},\;T_{2}$ – длительности «полупериодов» сигнала;

 $au_1, \ au_2$ — длительности линейных переходных процессов от первого «полупериода» ко второму и от второго к первому;

 $U_1,\ U_2$ – значения постоянных уровней «полупериодов» сигнала;

 $R_{
m H}$ – сопротивление нагрузки генератора.

(См. рис. 1)

2. Исходя из полученных значений параметров, выбрать марки операционных усилителей и транзисторов, входящих в состав проектируемого устройства — операционный усилитель должен работать при напряжении источников питания, не меньшем, чем уровни U_1 и U_2 , транзисторы усилителя мощности должны работать при напряжении коллектор-эмиттер, не меньшем

$$\left|U_{\mathrm{1}}-U_{\mathrm{2}}
ight|$$
 и токах, не меньших $I_{\mathrm{H}}=\max\Biggl(\dfrac{\left|U_{\mathrm{1}}\right|}{R_{\mathrm{H}}},\dfrac{\left|U_{\mathrm{2}}\right|}{R_{\mathrm{H}}}\Biggr).$

3. Собрать в системе Proteus двухтактный усилитель мощности по схеме рис. 3 или рис. 3., работающий на номинальную нагрузку сопротивлением $R_{\rm H}$. Убедиться в адекватной работе усилителя на нагрузку с сопротивлением $R_{\rm H}$ со входным сигналом рис. 1 с заданными параметрами. Сигнал можно получить, используя встроенный генератор импульсов системы Proteus.

4. Собрать в системе Proteus интегратор по схеме рис. 5. Рекомендуется использовать операционный усилитель того же типа, как и в предыдущем пункте. Резистор интегратора следует выбрать таким, чтобы выходной ток операционного усилителя не превосходил максимально допустимое значе-

ние: $\frac{\left|U_1-U_2\right|}{R_{
m H}} \leq I_{
m BЫX\,max}$, а сопротивления резисторов, согласно формулам

$$R_{1} = \frac{ au_{1}U_{0}}{C(U_{1} - U_{2})}$$
 и $R_{2} = \frac{ au_{2}U_{0}}{C(U_{1} - U_{2})}$.

Допускается собрать интегратор в соответствии с рис. 6 и рис. 7.

Убедиться в адекватной работе интегратора, подав на его вход прямоугольное напряжение (от встроенного генератора импульсов системы Proteus) с «полупериодами» $T_1+\tau_1$ и $T_2+\tau_2$, и убедившись, что его выходное напряжение имеет скорость нарастания $(U_1-U_2)/\tau_1$ и $(U_2-U_1)/\tau_2$.

5. Дополнить схему интегратора двусторонним ограничителем, согласно схемам рис. 8а, рис. 8б и рис. 8в. Напряжения стабилизации стабилитронов выбрать согласно заданным значением. При этом запрещено использовать стабилитрон GENERIC с задаваемыми параметрами или редактировать параметры элементов PROTEUS. Если это необходимо, напряжение стабилизации стабилитрона можно несколько увеличить, включив последовательно с ним диод, прямое падение напряжения на котором составляет примерно 0,6...0,7 В.

Убедиться в адекватной работе интегратора с ограничителем, подав на его вход прямоугольное напряжение (от встроенного генератора импульсов системы Proteus) с «полупериодами» $T_1 + \tau_1$ и $T_2 + \tau_2$, и убедившись, что его выходное напряжение совпадает с требуемым.

Подать сигнал с выхода интегратора с ограничителем на вход усилителя мощности, работающего на номинальную нагрузку, убедиться в адекватной работе системы. В случае значительного расхождения параметров формируемого и требуемого сигналов осуществить необходимую коррекцию значений сопротивлений и емкостей.

5. Собрать в системе Proteus мультивибратор на операционном усилителе по схеме рис. 10. Желательно использовать операционный усилитель той же марки, что и в предыдущих узлах. При этом сопротивления резисторов выбирать согласно формулам $R_1 = \frac{T_1 + au_1}{C \ln 3}$ и $R_2 = \frac{T_2 + au_2}{C \ln 3}$, где ёмкость C может принимать любое значение, при этом максимальное значение выходной тока операционного усилителя $\max \left(\frac{2E}{R_1}, \frac{2E}{R_2} \right)$ не должно превышать 5 мА.

Допустима другая конструкция мультивибратора.

Убедиться в адекватной работе мультивибратора.

Подать сигнал с выхода мультивибратора на вход интегратора с ограничителем, подключённого к усилителю мощности, работающего на номинальную нагрузку, и убедиться в адекватной работе системы в целом.

Часто возникающей проблемой (как правило, неразрешимой для студента) является поиск стабилитрона очень малого напряжения. Эту проблему можно решить двумя способами:

- 1. Использовать диод (или 2-3 последовательно соединённых диода) в прямом включении.
- 2. Построить устройство с параметрами выходного сигнала, «удобными» для проектирования, а затем использовать делитель напряжения, как это изображено на рис. 11.

Рис. 11. Использование делителя напряжения для облегчения проектирования устройства

Можно даже использовать разные делители напряжения для положительных и отрицательных частей сигнала (рис. 12).

Рис. 11. Использование разных делителей напряжения для положительной и отрицательной частей сигнала

Содержание отчёта.

Отчёт по домашнему заданию должен содержать:

- 1. Исходные данные для проектирования.
- 2. Основания для выбора напряжений источников питания, марки операционного усилителя и марок использованных транзисторов.
- 3. Схему усилителя мощности и диаграммы напряжений, иллюстрирующие его работу.
- 4. Схему интегратора с двусторонним ограничителем с расчётом параметров его элементов и диаграммы напряжений, иллюстрирующие его работу.
- 5. Схему мультивибратора с расчётом параметров его элементов и диаграммы напряжений, иллюстрирующие его работу.
 - 6. Схему устройства в целом и диаграмму его выходного напряжения.
 - 7. Модель разработанного устройства в системе Proteus.