Supplemental Material for 'Using lineage age to augment search space exploration in lexicase selection'

Karen Suzue, Charles Ofria, and Alexander Lalejini

2024-08-01

Contents

1	Inti	roduction	5
	1.1	About our supplemental material	5
	1.2	Contributing authors	5
2	Sign	nalGP instruction set	7
	2.1	Default Instructions	8
	2.2	Problem-specific instructions	9
3	Dat	a availability	11
	3.1	Source code	11
	3.2	Experimental results	11
4	Pro	gram synthesis experiments	13
	4.1	Dependencies	13
	4.2	Setup	15
	4.3	Interval 100 with age order limit 10	21

4 CONTENTS

Introduction

This is not intended as a stand-alone document, but as a companion to our manuscript.

1.1 About our supplemental material

As you may have noticed (unless you're reading a pdf version of this), our supplemental material is hosted using GitHub pages. We compiled our data analyses and supplemental documentation into this nifty web-accessible book using bookdown.

The source code/configuration files for this supplemental material can be found in this GitHub repository.

Our supplemental material includes the following:

- GP instruction set (Section 2)
- Experiment data availability (Section 3)
- GP data analysis + statistics (Section 4)

1.2 Contributing authors

- Karen Suzue
- Charles Ofria
- Alexander Lalejini

SignalGP instruction set

Below, we document the instruction set used in our GP system for our experiments.

Abbreviations:

- EOP: End of program
- Reg: local register
 - Reg[0] indicates the value at the register specified by an instruction's first argument, Reg[1] indicates the value at the register specified by an instruction's second argument, and Reg[2] indicates the value at the register specified by the instruction's third argument.
 - Reg[0], Reg[1], etc: Register 0, Register 1, etc.
- Input: input buffer
 - Follows same scheme as Reg
- Output: output buffer
 - Follows same scheme as Reg
- Global: global memory buffer
 - Follows same scheme as Reg
- Arg: Instruction argument
 - Arg[i] indicates the i'th instruction argument (an integer encoded in the genome)
 - E.g., Arg[0] is an instruction's first argument

Instructions that would produce undefined behavior (e.g., division by zero) are treated as no operations.

2.1 Default Instructions

I.e., instructions used across all diagnostic tasks.

Instruction	Arguments Used	Description
Nop	0	No operation
Not	1	Reg[0] = !Reg[0]
Inc	1	Reg[0] = Reg[0] + 1
Dec	1	Reg[0] = Reg[0] - 1
Add	3	Reg[0] = Reg[1] +
		Reg[2]
Sub	3	Reg[0] = Reg[1] -
		Reg[2]
Mult	3	Reg[0] = Reg[1] *
		Reg[2]
Div	3	$\operatorname{Reg}[0] = \operatorname{Reg}[1] /$
		Reg[2]
Mod	3	Reg[0] = Reg[1] %
		Reg[2]
Nand	2	Reg[0] = !(R1g[0] &
		Reg[2])
TestEqu	3	Reg[0] = Reg[1] ==
		Reg[2]
TestNEqu	3	$\operatorname{Reg}[0] = \operatorname{Reg}[1] !=$
		Reg[2]
TestLess	3	Reg[0] = Reg[1] <
		Reg[2]
TestLessEqu	3	$\operatorname{Reg}[0] = \operatorname{Reg}[1] <=$
		Reg[2]
TestGreater	3	$\operatorname{Reg}[0] = \operatorname{Reg}[1] >$
-		Reg[2]
TestGreaterEqu	3	$\operatorname{Reg}[0] = \operatorname{Reg}[1] >=$
		Reg[2]
SetMem	2	Reg[0] = Arg[1]
Terminal	1	Reg[0] = double value
		encoded by
G . 11	2	instruction tag
CopyMem	2	$\operatorname{Reg}[0] = \operatorname{Reg}[1]$
SwapMem	2	Swap(Reg[0], Reg[1])
InputToWorking	2	Reg[0] = Input[1]
WorkingToOutput	2	Output[1] = Reg[0]
If	1	If $\operatorname{Reg}[0] \stackrel{!}{=} 0$,
		proceed. Otherwise
		skip to the next Close
		or EOP.

Instruction	Arguments Used	Description
While	1	While $Reg[0] != 0$,
		loop. Otherwise skip
		to next Close or EOP.
Close	0	Indicate the end of a
		control block of code
		(e.g., loop, if).
Break	0	Break out of current
		control flow (e.g.,
		loop).
Call	0	Call a function, using
		this instruction's tag
		to determine which
-		function is called.
Routine	0	Same as call, but local
		memory is shared.
		Sort of like a jump
		that will jump back
		when the routine ends.
Return	0	ends. Return from the
Return	Ü	current function call.
WorkingToGlobal	2	Global[1] = $\text{Reg}[0]$
GlobalToWorking	$\frac{2}{2}$	Reg[1] = Reg[0]
FullGlobalToWorking	0	Copy entire global
Tuli Global 10 Working	U	memory buffer into
		working memory
		buffer
FullWorkingToGlobal	0	Copy entire working
	O	memory buffer into
		global memory buffer
		510000 illelifory buller

Note that Nand performs a bitwise operation.

2.2 Problem-specific instructions

Each problem has problem-specific instructions for producing output.

2.2.1 Bouncing Balls

• SubmitOutput

2.2.2 Dice Game

• SubmitOutput

2.2.3 GCD

 $\bullet \quad SubmitOutput \\$

2.2.4 Grade

- SubmitA
- SubmitB
- SubmitC
- SubmitD
- SubmitF

2.2.5 Snow Day

• SubmitOutput

Data availability

3.1 Source code

Source code for this work can be accessed on GitHub: https://github.com/amlalejini/age-based-lex.

3.2 Experimental results

Data generated from our experiments used in analyses are available online, archived in an OSF repository: https://osf.io/efb4j/.

Program synthesis experiments

```
experiment_slug <- "2024-05-20-inj-int"

working_directory <- paste0(
   "experiments/",
   experiment_slug,
   "/analysis/"
)

if (exists("bookdown_wd_prefix")) {
   working_directory <- paste0(
      bookdown_wd_prefix,
      working_directory
  )
}</pre>
```

4.1 Dependencies

```
library(tidyverse)
## Warning: package 'ggplot2' was built under R version
    4.2.3
## Warning: package 'dplyr' was built under R version
    4.2.3
```

```
## Warning: package 'stringr' was built under R version
## — Attaching core tidyverse packages
     tidyverse 2.0.0 —
## v dplyr
                1.1.4
                                        2.1.4
                           v readr
## v forcats
                1.0.0
                           v stringr
                                        1.5.1
## v ggplot2
                3.5.1
                                        3.2.1
                           v tibble
                                        1.3.0
## v lubridate 1.9.3
                           v tidyr
## v purrr
                1.0.2
## — Conflicts
     tidyverse_conflicts() -
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                      masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib">http://conflicted.r-lib</a>
   .org/>) to force all conflicts to become errors
library (cowplot)
## Warning: package 'cowplot' was built under R version
    4.2.3
## Attaching package: 'cowplot'
## The following object is masked from 'package:lubridate
   ' :
##
       stamp
library (RColorBrewer)
library (khroma)
library (rstatix)
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
##
        filter
library (knitr)
library(kableExtra)
```

4.2. SETUP 15

```
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
source ("https://gist.githubusercontent.com/benmarwick/2
   a1bb0133ff568cbe28d/raw/
   fb53bd97121f7f9ce947837ef1a4c65a73bffb3f/geom_flat_
    violin.R")
library (ggpattern)
print(version)
##
## platform
                   aarch64-apple-darwin20
## arch
                   aarch64
## os
                   darwin20
## system
                   aarch64, darwin20
## status
## major
                   4
## minor
                   2.1
## year
                   2022
\#\# month
                   06
## day
                   23
## svn rev
                   82513
## language
                  R
## version.string R version 4.2.1 (2022-06-23)
## nickname
                  Funny-Looking Kid
```

4.2 Setup

```
# Configure our default graphing theme
theme_set(theme_cowplot())
# Create a directory to store plots
plot_directory <- paste0(working_directory, "plots/")
dir.create(plot_directory, showWarnings=FALSE)</pre>
```

4.2.1 Load summary data

```
summary_data_loc <- paste0(working_directory, "data/</pre>
   aggregate.csv")
summary data <- read_csv(summary_data_loc)
## Rows: 2700 Columns: 61
## — Column specification
## Delimiter: ","
## chr (11): ANCESTOR_FILE_PATH, EVAL_MODE,
   ORG INJECTION MODE, POP INIT MODE, ...
## dbl (50): AGE_LEX_AGE_ORDER_LIMIT,
   EVAL_CPU_CYCLES_PER_TEST, MAX_ACTIVE_THRE...
##
## i Use 'spec()' to retrieve the full column
   specification for this data.
## i Specify the column types or set 'show col types =
   FALSE' to quiet this message.
summary_data <- summary_data %%
  mutate (
    PROBLEM = as. factor(PROBLEM)
    SELECTION = as.factor(SELECTION),
    EVAL\_MODE = as.factor(EVAL\_MODE),
    NUM\_COHORTS = as.factor(NUM\_COHORTS),
    TEST_DOWNSAMPLE_RATE = as.factor(TEST_DOWNSAMPLE_RATE
    AGE LEX_AGE_ORDER_LIMIT = as.factor(AGE_LEX_AGE_ORDER
       _LIMIT),
    RECOMB PER FUNC SEQ RECOMB RATE = as.factor(RECOMB
       PER_FUNC_SEQ_RECOMB_RATE),
    ORG_INJECTION_COUNT = as.factor(ORG_INJECTION_COUNT),
    ORG_INJECTION_MODE = factor(
      ORG INJECTION MODE,
      levels = c(
        "none",
        "random",
        "recombine-random",
        "recombine—complement"
    ),
    inject_cond = str_c(SELECTION, ORG_INJECTION_MODE,
       sep = "_"),
    ORG INJECTION INTERVAL = as.factor(ORG INJECTION
       INTERVAL),
    .keep = "all"
```

4.2. SETUP 17

```
) %>%
  mutate (
    inject\_cond = factor(
      inject_cond,
      levels = c(
        "age-lexicase_random",
        "lexicase_random",
        "lexicase none"
      ),
      labels = c(
        "age-lex\_inj-rand",
        "lex_inj-rand",
        "lex_inj-none"
    ),
    sol_descends_injected = elite_elite_age != update &
       found_solution == "1"
solution_counts <- summary_data %%
  group_by(
    PROBLEM,
    SELECTION,
    AGE LEX AGE ORDER LIMIT,
    ORG_INJECTION_COUNT,
    ORG_INJECTION_MODE,
    ORG_INJECTION_INTERVAL,
    inject cond
  ) %>%
  summarize (
    solution_count = sum(found_solution == "1"),
    replicates = n(),
    no\_solution\_count = n() - sum(found\_solution == "1"),
    elite_from_injected = sum(elite_elite_age != update),
    sol_from_injected = sum(elite_elite_age != update &
       found_solution == "1")
  )
## 'summarise()' has grouped output by 'PROBLEM', '
   SELECTION',
## 'AGE_LEX_AGE_ORDER_LIMIT', 'ORG_INJECTION_COUNT', '
   ORG_INJECTION_MODE',
## 'ORG_INJECTION_INTERVAL'. You can override using the
    '. groups 'argument.
\# print(solution\_counts, n=208)
```

4.2.2 Success rates across injection intervals

```
plot <- solution_counts %%
  ggplot (
    aes (
      x = inject\_cond,
      y = solution_count,
      fill = ORG_INJECTION_INTERVAL,
      pattern_angle = inject_cond
  ) +
 geom_col_pattern(
    position = "dodge",
    pattern = "stripe",
    pattern_color = "gray",
    pattern_fill = "gray",
    pattern_spacing = 0.03,
    pattern\_density = 0.05,
    \# position = position\_dodge(width = 0.4)
  ) +
 geom_text(
    aes(y = -0.7, label = solution\_count),
    position = position_dodge(width=0.9)
  ) +
  scale_fill_bright() +
  scale_color_bright() +
  scale_x_discrete(
    name = "Inject_{\perp} condition"
  ) +
  scale_y_continuous(
    "Solution _ count "
  ) +
  facet_grid(
   PROBLEM \sim AGE LEX AGE ORDER LIMIT
  theme (
      legend. position = "right",
```

4.2. SETUP 19

PROBLEM	SELECTION	AGE_LEX_AGE_
bouncing-balls	age-lexicase	10
bouncing-balls	age-lexicase	10
bouncing-balls	age-lexicase	10
bouncing-balls	age-lexicase	20
bouncing-balls	age-lexicase	20
bouncing-balls	age-lexicase	20
bouncing-balls	lexicase	10
bouncing-balls	lexicase	20
dice-game	age-lexicase	10
dice-game	age-lexicase	10
dice-game	age-lexicase	10
dice-game	age-lexicase	20
dice-game	age-lexicase	20
dien game	ara lavienca	20

```
axis.text.x = element_text(
        angle = 30,
        hjust = 1
      panel.border = element_rect(color = "gray", size =
         2)
    )
## Warning: The 'size' argument of 'element_rect()' is
   deprecated as of ggplot2 3.4.0.
## i Please use the 'linewidth' argument instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last lifecycle warnings()' to see
   where this warning was generated.
ggsave (
  filename = paste0(plot_directory, "solutions-bar.pdf"),
  plot = plot,
  width = 10,
  height = 15
plot
```


4.3 Interval 100 with age order limit 10

4.3.1 Problem-solving success

```
plot <- solution_counts %>%
  filter (ORG_INJECTION_INTERVAL == "100" & AGE_LEX_AGE_
     ORDER\_LIMIT == "10") \%\%
  ggplot (
    aes (
      x = inject\_cond,
      y = solution_count,
      fill = inject\_cond
  ) +
  geom_col() +
  geom_text(
    aes(y = -0.7, label = solution\_count),
    position = position_dodge(width=0.9)
  scale_fill_bright() +
  scale_color_bright() +
  scale_x_discrete(
    name = "Inject condition",
    limits = c("age-lex_inj-rand", "lex_inj-rand", "lex_
        inj—none"),
    labels = c("Inject \setminus nAge \cup el.", "Inject \setminus nNo \cup Age", "
        Standard\nLex.")
  ) +
  scale_y_continuous(
    "Solution _ count "
  facet_wrap(
    ~ PROBLEM,
    nrow = 1
  ) +
  theme (
      legend. position = "none",
      axis.text = element_text(
        size = 18
      axis.title = element_text(
        size = 18
      strip.text = element_text(
        size = 18
```

```
),
    # axis.text.x = element_text(
    # angle = 30,
    # hjust = 1
    #),
    panel.border = element_rect(color = "gray", size = 2)
)
ggsave(
filename = paste0(plot_directory, "solutions-bar-i100-ol10.pdf"),
    plot = plot,
    width = 18,
    height = 8
)
plot
```


Injerstentdanjerstendanjer

4.3.1.1 Statistics

```
sol_stats_data <- solution_counts %>%
ungroup() %>%
select(
    PROBLEM,
    ORG_INJECTION_INTERVAL,
```

```
AGE LEX AGE ORDER LIMIT,
    inject_cond,
    solution_count,
    no_solution_count
fisher_results <- data.frame(
  comparison = character(),
  group1 = character(),
  group2 = character(),
  n = integer(),
  p = double(),
  p.adj = double(),
  p.adj.signif = character()
# ORG_INJECTION_INTERVAL
# AGE_LEX_AGE_ORDER_LIMIT
inj_intervals <- levels(sol_stats_data$ORG_INJECTION_
   INTERVAL)
age_limits <- levels(sol_stats_data$AGE_LEX_AGE_ORDER_
   LIMIT)
problems <- levels(sol_stats_data$PROBLEM)</pre>
for (inj_interval in inj_intervals) {
  for (age_limit in age_limits) {
    for (problem in problems) {
      ft_results <- sol_stats_data %%
          PROBLEM == problem & AGE_LEX_AGE_ORDER_LIMIT ==
              age_limit & ORG_INJECTION_INTERVAL == inj_
             interval
        ) %>%
        select(inject_cond, solution_count, no_solution_
           count) %>%
        column_to_rownames(var = "inject_cond") %>%
        pairwise_fisher_test (
          p.adjust.method = "holm"
        ) %>%
        add_significance("p.adj")
      ft_results <- ft_results %%
        mutate(
          problem = rep(problem, nrow(ft_results)),
          inj_interval = rep(inj_interval, nrow(ft_
```

```
results)),
          age_limit = rep(age_limit, nrow(ft_results)),
          .keep = "all"
        ) %>%
        relocate(problem, inj_interval, age_limit)
      fisher_results <- rbind(
        fisher_results,
        ft_results
    }
  }
fisher_results <- as.tibble(fisher_results)
## Warning: 'as.tibble()' was deprecated in tibble 2.0.0.
## i Please use 'as_tibble()' instead.
## i The signature and semantics have changed, see '?
   as_tibble '.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see
   where this warning was generated.
fisher_results <- fisher_results %%
  mutate (
    \# comparison = as.factor(comparison),
    problem = as.factor(problem),
    inj_interval = as.factor(inj_interval),
    age_limit = as.factor(age_limit),
    group1 = as.factor(group1),
    group2 = as.factor(group2),
  ) %>%
  group_by(
    problem
fisher_table <- kbl(fisher_results) %% kable_styling()
save_kable(fisher_table, paste0(plot_directory, "stats_
   table.pdf"))
fisher_table
```

4.3.2 Proportion of solutions that descend from injected programs

problem	inj_interval	age_limit	group1	group2	n	p	p.adj	p.adj.
bouncing-balls	100	10	age-lex_inj-rand	lex_inj-none	60	6.12e-01	1.00e+00	ns
bouncing-balls	100	10	$age-lex_inj-rand$	lex_inj-rand	60	1.00e+00	1.00e+00	ns
bouncing-balls	100	10	lex_inj-none	lex_inj-rand	60	2.37e-01	7.11e-01	ns
dice-game	100	10	$age-lex_inj-rand$	lex_inj-none	60	2.95e-01	5.90e-01	ns
dice-game	100	10	$age-lex_inj-rand$	lex_inj -rand	60	1.92e-01	5.76e-01	ns
dice-game	100	10	lex_inj-none	lex_inj -rand	60	1.00e+00	1.00e+00	ns
gcd	100	10	age-lex_inj-rand	lex_inj-none	60	1.00e+00	1.00e+00	ns
gcd	100	10	age-lex_inj-rand	lex_inj-rand	60	6.01e-01	1.00e+00	ns
gcd	100	10	lex_inj-none	lex_inj-rand	60	7.95e-01	1.00e+00	ns
grade	100	10	age-lex_inj-rand	lex_inj-none	60	7.97e-04	2.39e-03	**
grade	100	10	age-lex_inj-rand	lex_inj-rand	60	1.94e-03	3.88e-03	**
grade	100	10	lex_inj-none	lex_inj-rand	60	1.00e+00	1.00e+00	ns
snow-day	100	10	age-lex_inj-rand	lex_inj-none	60	1.00e+00	1.00e+00	ns
snow-day	100	10	age-lex_inj-rand	lex_inj-rand	60	1.00e+00	1.00e+00	ns
snow-day	100	10	lex_inj-none	lex_inj-rand	60	1.00e+00	1.00e+00	ns
bouncing-balls	100	20	age-lex_inj-rand	lex_inj-none	60	1.00e+00	1.00e+00	ns
bouncing-balls	100	20	age-lex_inj-rand	lex_inj-rand	60	1.00e+00	1.00e+00	ns
bouncing-balls	100	20	lex_inj-none	lex_inj-rand	60	1.00e+00	1.00e+00	ns
dice-game	100	20	age-lex inj-rand	lex_inj-none	60	1.19e-01	3.57e-01	ns
dice-game	100	20	age-lex_inj-rand	lex_inj-rand	60	7.96e-01	7.96e-01	ns
dice-game	100	20	lex_inj-none	lex_inj-rand	60	2.95e-01	5.90e-01	ns
gcd	100	20	age-lex_inj-rand	lex_inj-none	60	5.80e-01	1.00e+00	ns
$\frac{\operatorname{gcd}}{\operatorname{gcd}}$	100	20	age-lex_inj-rand	lex_inj-rand	60	7.92e-01	1.00e+00	ns
$\frac{\operatorname{gcd}}{\operatorname{gcd}}$	100	20	lex_inj-none	lex_inj-rand	60	2.79e-01	8.37e-01	ns
grade	100	20	age-lex_inj-rand	lex_inj-none	60	1.05e-02	2.10e-02	*
grade	100	20	age-lex_inj-rand	lex_inj-none	60	1.03e-02 1.24e-04	3.72e-04	***
grade	100	20	lex_inj-none	lex_inj-rand	60	2.67e-01	2.67e-01	ns
snow-day	100	20	age-lex_inj-rand	lex_inj-none	60	4.92e-01	1.00e+00	ns
snow-day	100	20	age-lex_inj-rand	lex_inj-none	60	1.00e+00	1.00e+00 1.00e+00	
snow-day	100	20	•	- v	60	1.00e+00 1.00e+00	1.00e+00 1.00e+00	ns
	500	10	lex_inj-none	lex_inj-rand	60			ns
bouncing-balls			age-lex_inj-rand	lex_inj-none		3.53e-01	1.00e+00	ns
bouncing-balls	500	10	age-lex_inj-rand	lex_inj-rand	60	3.53e-01	1.00e+00	ns
bouncing-balls	500	10	lex_inj-none	lex_inj-rand	60	1.00e+00	1.00e+00	ns
dice-game	500	10	age-lex_inj-rand	lex_inj-none	60	1.92e-01	5.76e-01	ns
dice-game	500	10	age-lex_inj-rand	lex_inj-rand	60	4.30e-01	8.60e-01	ns
dice-game	500	10	lex_inj-none	lex_inj-rand	60	7.97e-01	8.60e-01	ns
gcd	500	10	age-lex_inj-rand	lex_inj-none	60	3.03e-02	9.09e-02	ns
gcd	500	10	age-lex_inj-rand	lex_inj-rand	60	1.81e-01	3.62e-01	ns
gcd	500	10	lex_inj-none	lex_inj-rand	60	5.80e-01	5.80e-01	ns
grade	500	10	age-lex_inj-rand	lex_inj-none	60	2.37e-02	4.74e-02	*
grade	500	10	$age-lex_inj-rand$	lex_inj-rand	60	1.05e-02	3.15e-02	*
grade	500	10	lex_inj -none	lex_inj-rand	60	1.00e+00	1.00e+00	ns
snow-day	500	10	$age-lex_inj-rand$	lex_inj-none	60	1.00e+00	1.00e+00	ns
snow-day	500	10	$age-lex_inj-rand$	lex_inj-rand	60	2.37e-01	7.11e-01	ns
snow-day	500	10	lex_inj-none	lex_inj-rand	60	2.37e-01	7.11e-01	ns
bouncing-balls	500	20	age-lex_inj-rand	lex_inj-none	60	6.12e-01	1.00e+00	ns
bouncing-balls	500	20	age-lex_inj-rand	lex_inj-rand	60	1.00e+00	1.00e+00	ns
bouncing-balls	500	20	lex_inj-none	lex_inj-rand	60	2.37e-01	7.11e-01	ns
dice-game	500	20	age-lex_inj-rand	lex_inj-none	60	4.22e-01	8.44e-01	ns
dice-game	500	20	age-lex_inj-rand	lex_inj-rand	60	7.96e-01	8.44e-01	ns
dice-game	500	20	lex_inj-none	lex_inj-rand	60	1.87e-01	5.61e-01	ns
gcd	500	20	age-lex_inj-rand	lex_inj-none	60	7.79e-01	1.00e+00	ns
$\frac{\operatorname{gcd}}{\operatorname{gcd}}$	500	20	age-lex_inj-rand	lex_inj-rand	60	5.96e-01	1.00e+00	ns
gcu	500	20	age-iex_iiiJ-taiid	rev_ml-rand	UU	9.906-01	1.006+00	112

```
plot <- solution_counts %>%
  filter (ORG_INJECTION_INTERVAL == "100" & AGE_LEX_AGE_
     ORDER LIMIT == "10") %>%
  ggplot (
    aes (
      x = inject\_cond,
      \# y = solution\_count,
      y = sol\_from\_injected,
      fill = inject\_cond
  ) +
  geom_col(aes(y = solution_count), fill = "grey", alpha
     = 0.8) +
  geom_col() +
 geom_text(
    aes(y = -0.7, label = paste0(sol_from_injected, "/",
        solution_count)),
    position = position_dodge(width=0.9)
  ) +
  scale_fill_bright() +
  scale_color_bright() +
  scale_x_discrete(
    name = "Inject_condition",
    limits = c("age-lex_inj-rand", "lex_inj-rand", "lex_
       inj-none"),
    labels = c("Inject \land nAge \cup Sel.", "Inject \land nNo \cup Age", "
       Standard\nLex.")
  ) +
  scale_y_continuous(
    "Solution _ count "
  ) +
  facet_wrap(
    ~ PROBLEM,
   nrow = 1
  ) +
  theme (
      legend.position = "none";
      axis.text = element_text(
        size = 18
      ),
      axis.title = element_text(
        size = 18
      strip.text = element_text(
        size = 18
      ),
```


Injersteandamid steandamid steand

4.3.3 Lineage age distributions

Distributions of lineage age for solutions that descended from injected programs

```
plot <- summary_data %%
  filter(
   inject_cond == "age-lex_inj-rand" & ORG_INJECTION_
        INTERVAL == "100" &
        AGE_LEX_AGE_ORDER_LIMIT == "10" & PROBLEM %in% c("gcd", "grade") &
        sol_descends_injected
) %%
   ggplot(</pre>
```

```
aes (
      x = PROBLEM,
      \# y = e lite\_e lite\_age,
      y = elite_elite_age / update,
      fill = PROBLEM
    )
  ) +
  \# geom\_flat\_violin(
      position = position\_nudge(x = .2, y = 0),
 #
      alpha = .8,
 #
      adjust = 1.5
 #)+
 geom_point (
    mapping = aes(color = PROBLEM),
    position = position_jitter(width = .2),
    size = .5,
    alpha = 0.8
  ) +
 geom\_boxplot(
    width = .2,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name = "Elite_{\sqcup} age_{\sqcup} (as_{\sqcup}\%_{\sqcup} of_{\sqcup} elapsed_{\sqcup} generations)"
  ) +
  scale_x_discrete(
    name = "Problem"
  ) +
  scale_fill_dark() +
  scale_color_dark() +
 # facet_wrap(
 #
      ~PROBLEM,
 #
      nrow = 1
    \# ncol = 1
 #
 # ) +
 # coord_flip() +
  theme (
    legend.position = "none",
    axis.text.x = element_text(
      angle = 30,
      hjust = 1
    panel.border = element_rect(color = "gray", size = 2)
ggsave (
```

```
filename = paste0(plot_directory, "elite-age-prop.pdf")

plot = plot,
width = 6,
height = 4
)
```