Tổng hợp các công thức lớp 10

1. Các công thức về bất đẳng thức:

- + Tính chất 1 (tính chất bắc cầu): a > b và $b > c \Leftrightarrow a > c$
- + Tính chất 2: $a > b \Leftrightarrow a + c > b + c$

Tức là: Nếu cộng 2 vế của bắt đẳng thức với cùng một số ta được bất đẳng thức cùng chiều và tương đương với bất đẳng thức đã cho.

 $H\hat{e}$ quả (Quy tắc chuyển vế): $a > b + c \Leftrightarrow a - c > b$

+ Tính chất 3:

$$\begin{cases} a > b \\ c > d \end{cases} \Rightarrow a + c > b + d$$

+ *Tính chất 4*:

$$a > b \Leftrightarrow a.c > b.c \text{ n\'eu } c > 0$$

hoặc $a > b \Leftrightarrow c.c < b.c$ nếu c < 0

+ Tính chất 5:

$$\begin{cases} a > b > 0 \\ c > d > 0 \end{cases} \Rightarrow a.c > b.d$$

Nếu nhân các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc chia hai vế của 2 bất đẳng thức cùng chiều.

+ Tính chất 6:

$$a > b > 0 \implies a^{n} > b^{n}$$
 (n nguyển dương)

+ Tính chất 7:

$$a > b > 0 \Rightarrow \sqrt[n]{a} > \sqrt[n]{b}$$
 (n nguyên dương)

+ Bất đẳng thức Cauchy (Cô-si):

Nếu
$$a \ge 0$$
 và $b \ge 0$ thì $\frac{a+b}{2} \ge \sqrt{a.b}$. Dấu = xảy ra khi và chỉ khi: $a = b$

Tức là: Trung bình cộng của 2 số không âm lớn hơn hoặc bằng trung bình nhân của chúng. *Hệ quả 1:* Nếu 2 số dương có tổng không đổi thì tích của chùng lớn nhất khi 2 số đõ bằng nhau.

Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.

<u>Hệ quả 2:</u> Nếu 2 số dương có tích không đổi thì tổng của chùng nhỏ nhất khi 2 số đó bằng nhau.

Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng diện tích hình vuông có chu vi nhỏ nhất.

+ Bất đẳng thức chứa giá trị trị tuyệt đối:

$$|x| = \begin{cases} x > 0 & \text{n\'eu x 0} \\ -x > 0 & \text{n\'eu x < 0} \end{cases}$$

Từ định nghĩa suy ra: với mọi $x \in R$ ta có:

a.
$$|\mathbf{x}| \ge 0$$

b.
$$|\mathbf{x}|^2 = \mathbf{x}^2$$

c.
$$x \le |x|$$
 và $-x \le |x|$

Định lí: Với mọi số thực a và b ta có:

$$|a+b| \le |a| + |b|$$
 (1)

$$|a-b| \le |a|+|b| \qquad (2)$$

$$|a+b| = |a| + |b|$$
 khi và chỉ khi a.b ≥ 0

$$|a-b| = |a| + |b|$$
 khi và chỉ khi $a.b \le 0$

2. Các công thức về phương trình bậc

hai:
$$ax^2 + bx + c = 0 (a \ne 0)$$

a. Công thức nghiệm của phương trình bậc hai: $\Delta = b^2 - 4ac$

 $\Delta < 0$: Phương trình vô nghiệm.

 $\Delta = \mathbf{0}$: Phương trình có nghiệm kép:

$$X_1 = X_2 = -\frac{b}{2a}$$

 $\Delta > 0$: Phương trình có 2 nghiệm phân biệt:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

b. Công thức nghiệm thu gọn của phương trình bậc hai:

Nếu "b chẵn" (ví dụ $b=4;2\sqrt{3};2m-2(m+1);...$) ta dùng công thức nghiệm thu gọn.

$$\Delta' = b'^2 - ac \left(b' = \frac{b}{2}\right)$$

 $\Delta' < 0$: Phương trình vô nghiệm.

 $\Delta' = 0$: Phương trình có nghiệm kép:

$$X_1 = X_2 = -\frac{b'}{a}$$

 $\Delta' > 0$: Phương trình có 2 nghiệm phân biệt:

$$x_1 = \frac{-b' - \sqrt{\Delta'}}{a}$$
, $x_1 = \frac{-b' + \sqrt{\Delta'}}{a}$

<u>Chú ý</u>: $ax^2 + bx + c = 0 = a(x - x_1)(x - x_2)$ với x_1, x_2 là hai nghiệm của phương trình bậc 2: $ax^2 + bx + c = 0$

c. Định lí Viet:

Nếu phương trình bậc 2 $ax^2 + bx + c = 0$ có 2 nghiệm x_1, x_2 thì:

$$\begin{cases} S = X_1 + X_2 = -\frac{b}{a} \\ P = X_1 \cdot X_2 = \frac{c}{a} \end{cases}$$

d. Các trường hợp đặc biệt của phương trình bậc 2:

e. Dấu của nghiệm số: $ax^2 + bx + c = 0 (a \ne 0)$

- Phương trình có 2 nghiệm **trái dấu:** $X_1 < 0 < X_2 \Leftrightarrow P < 0$
- Phương trình có 2 nghiệm **dương phân biệt:** $0 < x_1 < x_2$

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ P > 0 \\ S > 0 \end{cases}$$

- Phương trình có 2 nghiệm âm phân biệt $x_1 < x_2 < 0$

$$\Leftrightarrow \begin{cases} \Delta > 0 \\ P > 0 \\ S < 0 \end{cases}$$

3. Các công thức về dấu của đa thức:

a. Dấu của nhị thức bậc nhất: $f(x) = ax + b(a \neq 0)$

x	-∞	$-\frac{b}{a}$	+∞
ax+b	trái dấu a	0	cùng dấu a

"Phải cùng, trái trái"

b. Dấu của tam thức bậc hai:

$$f(x) = ax^2 + bx + c(a \neq 0)$$

 \triangle <0 : f(x) cùng dấu với hệ số a

 $\triangle = 0$: f(x) cùng dấu với hệ số a với mọi $x \neq \frac{-b}{2a}$

 $\triangle = 0 : f(x) \text{ có } 2 \text{ nghiệm } x_1, x_2$

	-∞	\mathbf{X}_{i} \mathbf{X}	+00
F(x)	cùng dấu a	0 trái dấu a	0 cùng dấu a

c. Dấu của đa thức bậc ≥ 3: Bắt đầu từ ô bên phải cùng dấu với hệ số a của số mũ cao nhất, qua nghiệm đơn đổi dấu, qua nghiệm kép không đổi dấu.

4. Các công thức về điều kiện để tam thức không đổi dấu trên R.

Cho tam thức bậc hai: $f(x) = ax^2 + bx + c (a \ne 0)$

$$f(x) > 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta < 0 \end{cases} \qquad f(x) \ge 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}$$
$$f(x) < 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta < 0 \end{cases} \qquad f(x) \le 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

$$f(x) < 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta < 0 \end{cases} \qquad f(x) \le 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

5. Các công thức toán lớp 10 về phương trình và bất phương trình chứa trị tuyệt đối

$$|A| = \begin{cases} A & \text{, khi} \quad A \ge 0 \\ -A & \text{, khi} \quad A < 0 \end{cases}$$

$$|A| = B \Leftrightarrow \begin{bmatrix} A \ge 0 \\ A = B \\ A < 0 \\ -A = B \end{bmatrix}$$

$$|A| = B \Leftrightarrow \begin{cases} B \ge 0 \\ A = B \\ A = -B \end{cases}$$

$$|A| = |B| \Leftrightarrow A = B$$
 $A = -B$

b. Bất phương trình:

$$|A| < B \Leftrightarrow \begin{cases} A < B \\ A > -B \end{cases}$$
 $|A| \le B \Leftrightarrow \begin{cases} A \le B \\ A \ge -B \end{cases}$

$$|A| > B \Leftrightarrow \begin{bmatrix} A < -B \\ A > B \end{bmatrix}$$
 $|A| \ge B \Leftrightarrow \begin{bmatrix} A \le -B \\ A \ge B \end{bmatrix}$

$$|A| < |B| \Leftrightarrow A^2 < B^2 \Leftrightarrow A^2 - B^2 < 0 \Leftrightarrow (A - B)(A + B) < 0$$

$$|A| \le |B| \iff A^2 \le B^2 \iff A^2 - B^2 \le 0$$

6. Các công thức toán lớp 10 về phương trình và bất phương trình chứa ẩn dưới dấu căn bậc hai

a. Phương trình:

$$\sqrt{A} = B \Leftrightarrow \begin{cases} B \ge 0 \\ A = B^2 \end{cases}$$

$$\sqrt{A} = \sqrt{B} \Leftrightarrow \begin{cases} A \ge 0 (B \ge 0) \\ A = B \end{cases}$$

b. Bất phương trình:

$$\sqrt{A} > B \Leftrightarrow \begin{cases} B < 0 \\ A \ge 0 \\ B \ge 0 \\ A > B^2 \end{cases}$$

$$\sqrt{A} > B \Leftrightarrow \begin{cases} B < 0 \\ A \ge 0 \\ B \ge 0 \\ A > B^2 \end{cases}$$

$$\sqrt{A} \ge B \Leftrightarrow \begin{cases} B < 0 \\ A \ge 0 \\ A \ge 0 \\ A \ge B^2 \end{cases}$$

$$\sqrt{A} < B \Leftrightarrow \begin{cases} A \ge 0 \\ B > 0 \\ A < B^2 \end{cases}$$

$$\sqrt{A} \le B \Leftrightarrow \begin{cases}
A \ge 0 \\
B \ge 0 \\
A \le B^2
\end{cases}$$

$$\sqrt{A} < \sqrt{B} \Leftrightarrow \begin{cases}
A \ge 0 \\
A < B
\end{cases}$$

$$\sqrt{A} \le \sqrt{B} \Leftrightarrow \begin{cases}
A \ge 0 \\
A < B
\end{cases}$$

7. Các công thức toán lớp 10 lượng giác

a. Định nghĩa giá trị lượng giác:

b. Các công thức lượng giác cơ bản:

1)
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
 3) $\sin^2 \alpha + \cos^2 \alpha = 1$ 5) $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$

2)
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$
 4)1+ $\tan^2 \alpha = \frac{1}{\cos^2 \alpha}$ 6) $\tan \alpha \cdot \cot \alpha = 1$

c. Các giá trị lượng giác đặc biệt:

	00	300	450	600	900	1200	135°	1500	1800
Góc	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tg	0	$\frac{1}{\sqrt{3}}$	1	√3	11	-√3	1	$-\frac{1}{\sqrt{3}}$	0
cotg	11	√3	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	1	-√3	Н

d. Công thức cộng:

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \quad ; \sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b \quad ; \sin(a-b) = \sin a \cos b - \sin b \cos a$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \quad ; \tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

e. Công thức nhân đôi:

$$\sin 2a = 2\sin a \cos a$$

$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

f. Công thức hạ bậc:

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
; $\cos^2 x = \frac{1 + \cos 2x}{2}$; $\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$

g. Công thức nhân ba:

$$\sin 3a = 3\sin a - 4\sin^3 a$$
; $\cos 3a = 4\cos^3 a - 3\cos a$

h. Công thức biến đổi tích thành tổng:

$$\cos a \cos b = \frac{1}{2} \Big[\cos(a-b) + \cos(a+b) \Big]$$

$$\sin a \sin b = \frac{1}{2} \Big[\cos(a-b) - \cos(a+b) \Big]$$

$$\sin a \cos b = \frac{1}{2} \Big[\sin(a-b) + \sin(a+b) \Big]$$

i. Công thức biến đổi tổng thành tích:

$$\cos a + \cos b = 2\cos \frac{a+b}{2}\cos \frac{a-b}{2}$$
$$\cos a - \cos b = -2\sin \frac{a+b}{2}\sin \frac{a-b}{2}$$
$$\sin a + \sin b = 2\sin \frac{a+b}{2}\cos \frac{a-b}{2}$$
$$\sin a - \sin b = 2\cos \frac{a+b}{2}\sin \frac{a-b}{2}$$

<u>k. Cung liên kết:</u> Sin – bù; \cos – đối; phụ – chéo; hơn kém π - tan, cot. - Hai cung bù nhau: α và π – α

$$\sin(\pi - \alpha) = \sin \alpha$$

 $\cos(\pi - \alpha) = -\cos \alpha$
 $\tan(\pi - \alpha) = -\tan \alpha$
 $\cot(\pi - \alpha) = -\cot \alpha$

- Hai cung đối nhau: α và $-\alpha$

$$cos(-\alpha) = cos\alpha$$
 $sin(-\alpha) = -sin\alpha$

$$tan(-\alpha) = -tan\alpha$$

$$\cot(-\alpha) = -\cot\alpha$$

- Hai cung phụ nhau: $\alpha_{\mathrm{v\grave{a}}} \frac{\pi}{2} - \alpha$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

$$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$$

- Hai cung hơn kém $\,\pi\,$: $\,lpha\,$ và $\,lpha\pm\pi\,$

$$\sin(\alpha \pm \pi)$$
 = $-\sin\alpha$
 $\cos(\alpha \pm \pi)$ = $-\cos\alpha$
 $\tan(\alpha \pm \pi)$ = $\tan\alpha$
 $\cot(\alpha \pm \pi)$ = $\cot\alpha$

- Hai cung hơn kém $\frac{\pi}{2}$: $\alpha_{\text{Và}} \alpha + \frac{\pi}{2}$

$$\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha$$

$$\cos\left(\alpha + \frac{\pi}{2}\right) = -\sin\alpha$$

$$\tan\left(\alpha + \frac{\pi}{2}\right) = -\cot\alpha$$

$$\cot\left(\alpha + \frac{\pi}{2}\right) = -\tan\alpha$$

l. Công thức tính $\sin x, \cos x, \tan x$ theo $\tan \frac{x}{2}$:

Nếu đặt
$$t = tan \frac{x}{2}$$
 thì: $sin x = \frac{2t}{1+t^2}$; $cos x = \frac{1-t^2}{1+t^2}$ $tan x = \frac{2t}{1-t^2}$

m. Một số công thức khác:

$$\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right)$$
$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = -\sqrt{2} \cos \left(x + \frac{\pi}{4} \right)$$

$$\cot x + \tan x = \frac{2}{\sin 2x}$$

$$\cot x - \tan x = 2\cot 2x$$

$$1 \pm \sin 2x = (\sin x \pm \cos x)^{2}$$

$$\sin^{4} x + \cos^{4} x = (\sin^{2} x + \cos^{2} x)^{2} - 2\sin^{2} x \cos^{2} x = 1 - \frac{1}{2}\sin^{2} 2x$$

$$\sin^{6} x + \cos^{6} = (\sin^{2} x + \cos^{2} x)(\sin^{4} x - \sin^{2} x \cos^{2} x + \cos^{4} x) = 1 - \frac{3}{4}\sin^{2} 2x$$

II. Công thức toán lớp 10 phần Hình học

1. Các công thức toán lớp 10 về hệ thức lượng

trong tam giác:

Cho ABC, ký hiệu - a, b, c: đô dài 3 canh

- R: bán kính đường tròn ngoại tiếp

$$\begin{cases} a^2 = b^2 + c^2 - 2bc\cos A \\ b^2 = a^2 + c^2 - 2ac\cos B \\ c^2 = a^2 + b^2 - 2ab\cos C \end{cases}$$

$$\text{Dinh lí sin: } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$m_{b}^{2} = \frac{2b^{2} + 2c^{2} - a^{2}}{4}$$
$$m_{b}^{2} = \frac{2a^{2} + 2c^{2} - b^{2}}{4}$$
$$m_{\xi}^{2} = \frac{2a^{2} + 2b^{2} - c^{2}}{4}$$

Công thức tính độ dài trung tuyến:

2. Các công thức toán lớp 10 về hệ thức lượng

trong tam giác vuông

$$BC^2 = AB^2 + AC^2$$
 (dinh lí Pitago)
 $AB^2 = BH.BC$ $AC^2 = CH.BC$
 $AH^2 = BH.CH$
 $AH.BC = AB.AC$
1 1 1

3. Các công thức tính diện tích:

Tam giác thường:

$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c (h_a, h_b, h_c) : \text{ dô dài 3 đường cao}$$

$$S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$$

$$S = \frac{abc}{AB}$$

$$S = pr_{\text{(r: bán kính đường tròn nội tiếp,}} p = \frac{a+b+c}{2} : nửa chu vi)$$

$$S = \sqrt{p(p-a)(p-b)(p-c)} \text{(Công thức Hê-rông)}$$

Tam giác vuông: $S = \frac{1}{2}x$ tích 2 cạnh góc vuông

Tam giác đều cạnh a:
$$S = \frac{a^2 \cdot \sqrt{3}}{4}$$

$$S = \frac{a^2 \cdot \sqrt{3}}{4}$$

Hình vuông cạnh a:
$$S = a^2$$

Hình chữ nhật:
$$S = dai \times rong$$

Hình bình hành:
$$S = day \times cao$$
 hoặc $S = AB.AD.\sin A$

Hình thoi:
$$S = day \times cao$$
 hoặc $S = AB.AD. \sin A$ hoặc

$$S = \frac{1}{2} \times tich 2 dwờng chéo$$

Hình tròn: $S = \pi R^2$

4. Công thức toán 10 về phương pháp tọa độ trong mặt phẳng Oxy

a. Úng dụng tích vô hướng của hai vectơ

Cho ba điểm: $A(x_A; y_A); B(x_B; y_B); C(x_C; y_C)$. Ta có:

- Tọa độ véctor
$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$$

- Tọa độ trung điểm I của AB là:
$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$
.

- Tọa độ trọng tâm G của
$$\triangle ABC$$
 là: $G\left(\frac{x_A+x_B+x_C}{3}; \frac{y_A+y_B+y_C}{3}\right)$

Cho các vec-to $a(x_1, y_1), b(x_2, y_2)$ và các điểm $A(x_1, y_1), B(x_2, y_2)$:

$$a.b = x_1 x_2 + y_1 y_2$$

$$|\vec{a}| = \sqrt{x_1^2 + y_1^2}$$

$$d = AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\cos(a,b) = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}$$

$$a \perp b \Leftrightarrow x_1 x_2 + y_1 y_2 = 0$$

b. Phương trình của đường thẳng:

Cho $\stackrel{\textstyle \sqcup}{a}=(a_1;a_2)_{\mbox{là VTCP}}$ của d., $\stackrel{\textstyle \sqcup}{h}=(A;B)_{\mbox{là VTPT}}$ của d .

Điểm $M(x_0; y_0)$ thuộc d.

- PT tham số của d: $x = x_0 + a_1 t$

$$y = y_0 + a_2 t$$

- PT chính tắc của d:
$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}$$

- PT tổng quát của d: $A(x - x_0) + B(y + y_0) = 0$ hoặc: Ax + By + C = 0

c. Khoảng cách:

+ Khoảng cách từ điểm $M(x_{\mbox{\tiny 0}},\,y_{\mbox{\tiny 0}})$ đến đương thẳng (d) : Ax+By+C=0

$$MH = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

+ Khoảng cách giữa hai đường thẳng song song: $Ax + By + C_1 = 0$ và $Ax + By + C_2 = 0$ $|C_1-C_2|$ $\sqrt{A^2 + R^2}$

d. Vị trí tương đối 2 đường thẳng:

$$(d_1): A_1 \times B_1 \times C_1 = 0,$$
 $(d_2): A_2 \times B_2 \times C_2 = 0$

$$*(d_1) \cap (d_2) \neq \phi \Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2} * (d_1) / (d_2) \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$$

$$*(d_1) \equiv (d_2) \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} * (d_1) \perp (d_2) \Leftrightarrow A_1 A_2 + B_1 B_2$$

e. Góc giữa 2 đường thẳng:

(d₁): A₁ x + B₁ y + C₁ = 0, (d₂): A₂ x + B₂ y + C₂ = 0,
$$\alpha = (d_1, d_2)$$

$$\cos \alpha = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$

d. Phương trình đường phân giác của góc tạo bởi 2 đường thẳng (d_i) và (d_i):

$$\frac{A_1x + B_1y + C_1}{\sqrt{A_1^2 + B_1^2}} = \pm \frac{A_2x + B_2y + C_2}{\sqrt{A_2^2 + B_2^2}}$$
 (góc nhọn lấy dấu – , góc tù lấy dấu +)

e. Phương trình đường tròn:

Đường tròn tâm I(a; b), bán kính R có phương trình:

Dang 1:
$$(x-a)^2 + (y-b)^2 = R^2$$

Dang 2:
$$x^2 + y^2 - 2ax - 2by + c = 0$$

$$R = \sqrt{a^2 + b^2 - c}$$
, điều kiên: $a^2 + b^2 - c > 0$