$\underset{Corrig\acute{e}}{\operatorname{Relations}}\; \underset{Corrig\acute{e}}{\operatorname{Binaires}}\;$

DARVOUX Théo

Décembre 2023

xercices.	
Exercice 16.1	2
Exercice 16.2	2
Exercice 16.3	3
Exercice 16.4	3
Exercice 16.5	4
Exercice 16.6	4

Soit \mathscr{R} la relation définie sur \mathbb{R} par :

$$x \mathcal{R} y \iff xe^y = ye^x.$$

- 1. Montrer que \mathscr{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Préciser le cardinal de la classe d'équivalence d'un réel x.
- 1. Réflexivité : Soit $x \in \mathbb{R}$, on a bien que $xe^x = xe^x$.

Symétrie : Soient $x, y \in \mathbb{R}$ tels que $xe^y = ye^x$, on a bien $ye^x = xe^y$.

Transitivité : Soient $x, y, z \in \mathbb{R}$ tels que $xe^y = ye^x$ et $ye^z = ze^y$. Montrons que $xe^z = ze^x$.

D'après la première égalité, $y = xe^{y-x}$.

On remplace y dans la seconde : $xe^{y-x+z} = ze^y$.

On divise par e^y : $xe^{z-x}=z$. On multiplie par e^x : $xe^z=ze^x$.

On a bien $x \mathcal{R} z$.

2. Soient $x, y \in \mathbb{R}$.

On a $x \mathcal{R} y \iff xe^y = ye^x \frac{x}{e^x} = \frac{y}{e^y}$.

On pose $f: x \mapsto \frac{x}{e^x}$. La classe d'équivalence de x est alors $\{y \in \mathbb{R} \mid f(x) = f(y)\}$.

La question revient à chercher le nombre d'éléments dans \mathbb{R} qui ont la même image par f.

On a que f est dérivable et $f': x \mapsto \frac{1-x}{e^x}$. Alors :

x	$-\infty$ 1 $+\infty$
f'(x)	+ 0 -
f	$-\infty$ $\xrightarrow{\frac{1}{e}}$ 0

Alors, pour $x \in]-\infty, 0]$, |[x]| = 1, pour x = 1, |[x]| = 1 et sinon, |[x]| = 2.

On considère la relation \mathcal{R} définie sur \mathbb{N}^* par

$$p \mathcal{R} q \iff \exists n \in \mathbb{N}^* : p^n = q.$$

Montrer que \mathcal{R} est une relation d'ordre partiel sur \mathbb{N}^* .

Réflexivité : Soit $p \in \mathbb{N}^*$. On a $p^1 = p$, donc $p \mathcal{R} p$.

Antisymétrie : Soient $p, q \in \mathbb{N}^*$ tels que $\exists n \in \mathbb{N}^* \mid p^n = q$ et $\exists m \in \mathbb{N}^* \mid q^m = p$. Montrons que p = q.

On a $p^n = q$ donc $p^{nm} = q^m = p$. De plus, $q^m = p$, donc $q^{nm} = p^n = q$.

Ainsi, $p = p^{nm}$ et $q = q^{nm}$. Alors, soit p = q = 1, soit n = m = 1 et alors p = q dans tous les cas.

Transitivité : Soient $p, q, r \in \mathbb{N}^*$ tels que $\exists n \in \mathbb{N}^* \mid p^n = q$ et $\exists m \in \mathbb{N}^* \mid q^m = r$. Montrons que $p \mathcal{R} r$.

On a que $p^n = q$ donc $p^{nm} = q^m = r$. Or $nm \in \mathbb{N}^*$, donc $p \mathscr{R} r$.

 \mathscr{R} est bien une relation d'ordre sur \mathbb{N}^* .

Ce n'est pas un ordre total : il n'existe pas d'entier n tel que $2^n = 3$ ou $3^n = 2$, par exemple.

Exercice 16.3 $[\blacklozenge \blacklozenge \lozenge]$

Soit $n \in \mathbb{N}^*$.

Soient $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et $y = (y_1, ..., y_n) \in \mathbb{R}^n$. On note $x \leq y$ si

$$\forall k \in [1, n] : \sum_{i=1}^{k} x_i \le \sum_{i=1}^{k} y_i.$$

- 1. Montrer que \leq est une relation d'ordre sur \mathbb{R}^n .
- 2. Si n > 2, montrer qu'il s'agit d'un ordre partiel.
- 1. Réflexivité : Soit $x \in \mathbb{R}^n$. On a bien que $\forall k \in [1, n] \sum_{i=1}^k x_i \leq \sum_{i=1}^k x_i$.

Antisymétrie : Soient $x, y \in \mathbb{R}^n$. Supposons que $x \leq y$ et $y \leq x$. Montrons que x = y. On a que $\forall k \in [\![1,n]\!], \ \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i \ \wedge \sum_{i=1}^k y_i \leq \sum_{i=1}^k x_i$. Par antisymétrie de \leq , $\forall k \in [\![1,n]\!] \ \sum_{i=1}^k x_i = \sum_{i=1}^k y_i$. Par récurrence triviale sur k, on peut montrer que tous les éléments sont égaux 1 à 1.

i.e. On initialise avec k=1 pour obtenir $x_1=y_1$, on suppose $x_k=y_k$ et on a $\sum_{i=1}^{k-1} x_i + x_k$ Transitivité :

Soient $x, y, z \in \mathbb{R}^n$ tels que $x \leq y$ et $y \leq z$. Montrons que $x \leq z$. On a que $\forall k \in [1, n], \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i \leq \sum_{i=1}^k z_i$. Par transitivité de \leq , $x \leq z$.

2. Soient x = (0, 2) et y = (1, 0). On a $\sum_{i=1}^{2} x_i \ge \sum_{i=1}^{2} y_i$ et $\sum_{i=1}^{1} x_i \le \sum_{i=1}^{1} y_i$: x et y ne sont pas comparables, \leq est un ordre partiel.

Sur \mathbb{R}_{+}^{*} , on définit une relation binaire en posant que deux réels strictement positifs sont en relation, ce qu'on note $x \mathcal{R} y$ si et seulement si

$$\exists (p,q) \in (\mathbb{N}^*)^2 \ px = qy$$

- 1. Démontrer que \mathcal{R} est une relation d'équivalence.
- 2. Démontrer que pour cette relation, deux classes d'équivalence sont nécessairement en bijection.
- 1. Réflexivité : Soit $x \in \mathbb{N}^*$. On a que $1 \cdot x = 1 \cdot x$ donc $x \mathcal{R} x$.

Symétrie : Soient $x, y \in \mathbb{N}^*$ tels que $\exists (p, q) \in \mathbb{N}^*$ px = qy. On a qy = px donc $y \mathcal{R} x$.

Transitivité : Soient $x, y, z \in \mathbb{N}^*$ tels que $\exists (p, q) \in \mathbb{N}^*$ px = qy et $\exists (p', q') \in \mathbb{N}^*$ p'y = q'z.

On a $y = \frac{p}{a}x$ donc $p'\frac{p}{a}x = q'z$. Alors pp'x = qq'z et $x \mathcal{R} z$.

2. Soient [x] et [y] deux classes d'équivalence de \mathscr{R} avec $x, y \in \mathbb{R}_+^*$.

On pose $f: \begin{cases} [x] \to [y] \\ a \mapsto \frac{a}{x}y \end{cases}$

Pour $a \in [x]$, on a $f(a) \in [y]$: $\exists (p,q) \in (\mathbb{N}^*)^2 \ pa = qx \ \text{Alors} \ a = \frac{q}{p}x \ \text{et} \ f(a) = \frac{q}{p}\frac{x}{x}y \iff pf(a) = qy.$

On a f injective : Soient $a, a' \in [x]$ tels que f(a) = f'(a) on a $\frac{y}{x}a = \frac{y}{x}a'$ donc a = a'.

On a f surjective : Soit $b \in [y]$: $\exists (p,q) \in (\mathbb{N}^*)^2$ pb = qy, alors $b = \frac{q}{p}y$.

On pose $a \in [x] \mid pa = qx$, donc $a = \frac{q}{n}x$. On a $f(a) = \frac{q}{n}y = b$.

Donc f est bien une fonction bijective de [x] vers [y].

Sur \mathbb{R} , on définit la relation \mathscr{R} par

$$x \mathcal{R} y \iff x^2 + 2y = y^2 + 2x.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur \mathcal{R} .
- 2. Déterminer la classe d'équivalence d'un réel a.
- 1. Réflexivité : On a bien que $x^2 + 2x = x^2 + 2x$.

Symétrie : Soient $x, y \in \mathbb{R}$ tels que $x \mathcal{R} y$, par symétrie de l'égalité, on a $y \mathcal{R} x$.

Transitivité : Soient $x, y, z \in \mathbb{R}$ tels que $x \mathcal{R} y$ et $y \mathcal{R} z$. Par transitivité de l'égalité, $x \mathcal{R} z$.

2. Soit $x \in \mathbb{R}$. On a :

$$x^{2} + 2a = a^{2} + 2x$$

$$\iff x^{2} - a^{2} = 2(x - a)$$

$$\iff (x - a)(x + a) = 2(x - a)$$

$$\iff (x - a)(x + a - 2) = 0$$

Ainsi, soit x = a, soit x = 2 - a.

La classe d'équivalence de a est alors : $[a] = \{2 - a, a\}$.

Soit \mathcal{R} une relation sur un ensemble E.

Pour $x, y \in E$, on note $x \sim y$ s'il existe $n \in \mathbb{N}^*$ et $x_0, ... x_n \in E$ tels que

$$x_0 = x$$
, $x_0 \mathcal{R} x_1$, $x_1 \mathcal{R} x_2$, ..., $x_{n-1} \mathcal{R} x_n$, $x_n = y$.

- 1. Montrer que \sim est une relation transitive sur E.
- 2. On suppose \mathcal{R} réflexive et symétrique. Montrer que \sim est une relation d'équivalence sur E.
- 1. Soient $x, y, z \in E$ tels que $x \sim y$ et $y \sim z$. Montrons $x \sim z$.

Alors il existe $n \in \mathbb{N}^*$ et $0, ..., x_n \in E$, $m \in \mathbb{N}^*$ et $y_0, ..., y_m \in E$ tels que

$$x_0 = x, \ x_0 \ \mathcal{R} \ x_1, \ ..., x_{n-1} \ \mathcal{R} \ x_n = y_0 \ \mathcal{R} \ y_1, \ ..., \ y_{n-1} \ \mathcal{R} \ y_n = z$$

Alors on a m+n éléments de E tels que

$$x_0 = x, \ x_0 \ \mathscr{R} \ x_1, \ ..., \ x_{m+n-1} \ \mathscr{R} \ x_{m+n}, \ x_{m+n} = z.$$

On en conclut que $x \sim z$: \sim est transitive sur E.

2. Réflexivité : Soit $x \in E$. On pose $x_0 = x$ et $x_1 = x$. Par réflexivité de \mathscr{R} , on a $x_0 \mathscr{R}$ x_1 .

Alors on a que $x_0 = x$, $x_0 \mathcal{R} x_1$, $x_1 = x$. C'est exactement $x \sim x$.

Symétrie : Soient $x, y \in E$ tels que $x \sim y$. Il existe $n \in \mathbb{N}^*$ et $x_0, ..., x_n$ tels que [la relation]. Par symétrie de \mathscr{R} , on obtient :

$$x_n = y, \ x_n \ \mathcal{R} \ x_{n-1}, \ ..., \ x_1 \ \mathcal{R} \ x_0, \ x_0 = x$$

On pose alors $(y_0, y_1, ..., y_n) = (x_n, x_{n-1}, ...x_0)$ et on obtient que

$$y_0 = y$$
, $y_0 \mathcal{R} y_1$, ..., $y_{n-1} \mathcal{R} y_n$, $y_n = x$

Alors $y \sim x$ et on en conclut que \sim est réflexive.

On a déjà montré la transitivité de \sim : c'est une relation d'équivalence sur E.