Exercise Sheet 01 Operator Algebras

Contributors: Linus Mußmächer, Minona Schäfer

May 3, 2023

1.5

• First, we notice that if p is idempotent we have $(1-p)^2 = 1 - 2p + p^2 = 1 - 2p + p = 1 - p$, so 1-p is also idempotent. Now consider the following two functions:

$$\varphi: \mathcal{A} \to p\mathcal{A} \oplus (1-p)\mathcal{A}, a \mapsto pa \oplus (1-p)a$$
$$\psi: p\mathcal{A} \oplus (1-p)\mathcal{A} \to \mathcal{A}, pa \oplus (1-p)b \mapsto pa+b-pb$$

Concatenation of these two functions yields

$$\psi(\varphi(a)) = \psi(pa \oplus (1-p)a) = pa + a - pa = a$$

$$\varphi(\psi(pa \oplus (1-p)b)) = phi(pa + b - pb) = p(pa + b - pb) \oplus (1-p)(pa + b - pb)$$

$$= p^2a + pb - p^2b \oplus pa - p^2a + b - pb - pb + p^2b$$

$$= pa + pb - pb \oplus pa - pa + b - pb - pb + pb$$

$$= pa \oplus (1-p)b$$

showing that φ is a bijective mapping. Furthermore, φ we have

$$\varphi(a \cdot b) = pab \oplus (1-p)ab = p^2ab \oplus (1-p)^2ab = (pa)(pb) \oplus ((1-p)a)((1-p)b)$$
$$= (pa \oplus (1-p)a)(pb \oplus (1-p)b) = \varphi(a)\varphi(b)$$

and φ is a homomorphism. Because $p \oplus (1-p)$ is the unit in $p \mathscr{A} \oplus (1-p) \mathscr{A}$ and $\varphi(1) = p \oplus (1-p)$, φ is also compatible with the unit.

• Consider the functions c_U and c_V , where $c_U|_U \equiv 1$ and $c_U|_V \equiv 0$ and likewise for c_V . These are continuous, idempotent and $c_U = 1 - c_V$ also holds. Note that these are in fact **not** elements of $C_0(X)$ as U, V need not necessarily be compact. However, above we have not used $p \in \mathcal{A}$ except for the fact that p admits a well-defined multiplication with elements of \mathcal{A} yielding only elements of \mathcal{A} . Since c_U, c_V are still continuous the multiplication of C(X) can be used here. By the argument above we then have $C_0(X) \simeq c_U C_0(X) \oplus c_V C_0(X) \simeq C_0(U) \oplus C_0(V)$ with

$$\varphi: C_0(X) \to C_0(U) \oplus C_0(V), f \mapsto (f \cdot c_U)|_U \oplus (f \cdot c_V)|_V = f|_U \oplus f|_V$$

an isomorphism of unital algebras. To show that this is also an isomorphism of C^* -algebras, we also have to show that φ is continuous and commutes with *. For the continuity, consider

$$\|\varphi(f)\| = \max\{\|f|_U\|, \|f|_V\|\} = \max\{\sup_{x \in U} |f(x)|, \sup_{x \in V} |f(x)|\} = \sup_{x \in X} |f(x)| = \|f\|$$

so φ is in fact even isometric (and thus bounded and continuous). Furthermore, we have

$$\varphi(f)^* = \overline{f|_U \oplus f|_V} = \overline{f|_U} \oplus \overline{f|_V} = \overline{f}|_U \oplus \overline{f}|_V = \varphi(\overline{f})$$

and φ is an isomorphism of C^* -algebras.

1.7

- Assume U is dense in X and consider $a \in C_0(X)$ with aI = 0 (and thus Ia = 0 since $C_0(X)$ is commutative). Let $x_0 \in U$ be any point in U. We want to prove that $a(x_0) = 0$. Since U is open, its complement U^{\complement} is closed. Applying Uryson's Lemma to the compact set $\{x_0\}$ and the closed set U^{\complement} (these sets are disjunct because of $x_0 \in U$) yields the existence of a function $f: X \to \mathbb{C}$ with $f(x_0) = 1$ and $f|_{U^{\complement}} \equiv 0$. Since we have $f \in C_0(U) = I$ because of the latter condition and because ideals are strongly closed with respect to multiplication, we have $af \in aI = 0$, so af is the zero function and in particular $a(x_0)f(x_0) = 0 \Rightarrow a(x_0) = 0$. Repeating this chain of reasoning for any $x_0 \in U$ shows that $a|_U \equiv 0$ and since U is dense in X and a is continuous, we have $a \equiv 0$. This shows that I is an essential ideal.
- Proof by contraposition. Let U be non-dense in X, i.e. there exists a point $x_0 \in X$ admitting an open neighborhood $V \subset X \setminus U$. We once again use Uryson's Lemma, this time for the two disjunct sets $\{x_0\}$ (compact) and V^{\complement} (closed), proving the existence of a function $a: X \to \mathbb{C}$ with $a|_{V^{\complement}} \equiv 0$ and $a(x_0) = 1$, which is therefore not equivalent to the zero function. However, for any $f \in I$ we have $a \cdot f \equiv 0$ since f is zero on U^{\complement} and a is zero on $U \subseteq V^{\complement}$. Therefore, we have aI = 0 but $a \neq 0$ and I cannot be an essential ideal of $C_0(X)$.

1.8