G3d Conditions for Special Parallelogram Proofs

Show that the quadrilateral with vertices E(-1, 5), F(2, 4), G(0, -3), and H(-3, -2) is a parallelogram. (hint: you can do any of the ways we've covered)

slope of
$$\overline{EF}$$
 = slope of \overline{GH} = $-\frac{1}{3}$
 $EF = GH = \sqrt{10}$

Since one pair of opposite sides are | | and \cong , *EFGH* is a parallelogram by Theorem 6-3-1.

G3c Conditions for Special Parallelogram Proofs

Objective: I can use coordinate geometry to prove that a given quadrilateral is a rectangle, rhombus, or square.

Homework: page 422-423: 4, 5, 9, 10, 20-23, 28, Quiz next week (Wednesday) AND a TEST! (Friday)

G3c Conditions for Special Parallelogram Proofs April 12th, 2018

What do you call a crushed angle?

How did the square get to the park?

G3c Conditions for Special Parallelogram Proofs April 12th, 2018

Use the website to match each quadrilateral to a set of special parallelogram conditions/properties!

https://www.geogebra.org/m/fyFP4EwG#material/ZnYkbW3N

THEOREM		EXAMPLE
6-5-1	If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle. (\square) with one rt. $\angle) \rightarrow$ rect.	$A \longrightarrow D$
6-5-2	If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle. (\square) with diags. $\cong) \rightarrow$ rect.	$ \begin{array}{c} B \\ A \\ \hline AC \cong \overline{BD} \end{array} $

eorems Conditions for Rhombuses			
	THEOREM	EXAMPLE	
5-5-3	If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus. (\square) with one pair cons. sides \cong \longrightarrow rhombus)	$F \longrightarrow G$ $E \longrightarrow H$	
5-5-4	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. $(\square$ with diags. \bot \rightarrow rhombus)	F H	
5-5-5	If one diagonal of a parallelogram bisects a	E G	

Use coordinate geometry to determine the most precise name for the quadrilateral with the given vertices:

A(-2, 1), B(4, 0), D(-2.5, -2), C(3.5, -3)

Use coordinate geometry to determine the **most precise** name for the quadrilateral with the given vertices.

A(0, 5) B(6, 4) C(5, -2) D(-1, -1) Square

P(-9, 4) Q(6, 9) R(9, 0) S(-6, -5)

Rectangle

Use the diagonals to determine whether a parallelogram with vertices A(2, 7), B(7, 9), C(5, 4), and D(0, 2) is a rectangle, rhombus, or square. Give all the names that apply.

 $AC \neq BD$, so ABCD is not a rect. or a square. The slope of AC = -1, and the slope of BD = 1, so $AC \perp BD$. ABCD is a rhombus.