

Outline

- Project Overview
- Business Problem
- Data Understanding
- Data Cleaning
- Data Analysis
- Data Modelling
- Conclusion
- Recommendations

Project Overview

• This project aims at identifying customer churn patterns and build a customer churn prediction model to help **SyriaTel Telecommunication** company take proactive measures to retain atrisk customers.

To address this issue, SyriaTel have requested **CodeTribe3** researchers to build a churn prediction system that can identify customers likely to churn in the near future.

Business Problem

The Project seeks to investigate:

 Any predictable or discernible patterns in customer behaviors that can aid in identification of customers who are likely to churn from SyriaTel company, enabling SyriaTel to implement proactive retention strategies and reduce churn rate.

Data Understanding

The SyriaTel data contains information about customer attributes, call usage, charges and customer service interactions with the churn column acting as our target variable

- 3333 rows
- 20 columns

- Int64
- Object
- Bool
- Float64

Columns included;

- total day min
- total day charge
- total eve min
- total intl charge
- phone number
- voice mail plan etc.

Data Cleaning

Exploratory Data Analysis

Univariate Analysis

Univariate Analysis

❖ Bivariate & Multivariate Analysis

Data Modelling

Vanilla Model: Decision Tree Classifier

Model 2: Random Forest Classifier

confusion_matrix for Decision Tree

[[533 33]

[20 81]]

DecisionTree

		precision	recall	f1-score	support
	0	0.96	0.94	0.95	566
	1	0.71	0.80	0.75	101
accur	racy			0.92	667
macro	avg	0.84	0.87	0.85	667
weighted	avg	0.93	0.92	0.92	667

Decision Tree Test ROC AUC Score: 0,8718381555470035

confusion_matrix for Random Forest [[548 18] [27 74]]

Random Forest

	precision	recall	f1-score	support
0	0.95	0.97	0.96	566
1	0.80	0.73	0.77	101
accuracy			0.93	667
macro avg	0.88	0.85	0.86	667
weighted avg	0.93	0.93	0.93	667

Random Forest Classifier Test ROC AUC Score: 0.850435573592695

Model 4: XGBOOST Classifier

confusion_matri [[436 130] [41 60]] KNN classificat					
	precision	recall	f1-score	support	
	'				
0	0.91	0.77	0.84	566	
1	0.32	0.59	0.41	101	
accuracy			0.74	667	
macro avg	0.61	0.68	0.62	667	
weighted avg	0.82	0.74	0.77	667	

confusion_matrix for XGBoost [[546 20] [26 75]]

	precision	recall	f1-score	support
0	0.97	0.98	0.98	566
1	0.90	0.82	0.86	101
accuracy			0.96	667
macro avg	0.94	0.90	0.92	667
weighted avg	0.96	0.96	0.96	667

Test ROC AUC Score: 0.9029405590735751

Model 5 : Tuned XGBOOST

confusion_matrix for XGBoost
[[550 16]
[35 66]]

	precision	recall	f1-score	support
0	0.94	0.97	0.96	566
1	0.80	0.65	0.72	101
accuracy			0.92	667
macro avg	0.87	0.81	0.84	667
weighted avg	0.92	0.92	0.92	667

Test ROC AUC Score: 0.8125983976489523

Model Evaluation

We assessed their performance using two metrics: F1-score and Test ROC AUC Score.

Among the four models, XG Boost had the highest F1-score of 0.934 and ROC AUC Score of 0.910 which indicates that it can make more accurate predictions compared to the other models.

Conclusion

Gradient Boosting (XGBoost) was our best model to predict churn patterns.

Customer churn is existent in each state however we can't fully attribute the relationship to a specific state or certain reason.
Other attributable factors include:

- Regional Preferences
- Competition
- Service Quality
- Demographics
- Regulation

There is an increasing relationship between the number of customer service calls and customer churn

The different times of day a call was made influences the likelihood of churn, however not directly. The area code does not highly affect churning but could be attributable due to insufficient network masts or lack of product knowledge in specific area code.

Recommendations

Enhance Network Coverage

Putting the Customer First with Personalized Experience

Proactive Customer Support

Introduce Value-Added Services and Offers

Regular Communication

Customer Feedback and Surveys

Community Engagement

Stephen Ndirangu

Kithinji Murungi

Stephen Gathai

Jael Akech

MariaCharlote Mbiyu

Muthoni Kahura

Maureen Wangonyo