1. (worth 9 points) Let function f be defined by the polynomial below:

$$f(x) = 7x^5 + 2x^4 - 4x^3 + 5x^2 + 8x + 3$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
f(−x) •	$-7x^5 + 2x^4 + 4x^3 + 5x^2 - 8x + 3$
-f(x) ●	$7x^5 - 2x^4 - 4x^3 - 5x^2 + 8x - 3$
-f(-x)	$-7x^5 - 2x^4 + 4x^3 - 5x^2 - 8x - 3$

2. (worth 20 points) In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	$\frac{f(x)}{5}$	g(x) 3	h(x)
1	5	3	6
2	8	6	9
3	6	5	8
4	1	9	3
5	4	8	7
6	2	7	4
7	3	4	2
8	7	2	1
9	9	1	5

3. (worth 3 points) Evaluate h(3).

$$h(3) = 8$$

4. (worth 3 points) Evaluate $g^{-1}(7)$.

$$g^{-1}(7) = 6$$

5. (worth 3 points) Assuming f is an **even** function, evaluate f(-4).

If function f is even, then

$$f(-4) = 1$$

6. (worth 3 points) Assuming g is an **odd** function, evaluate g(-2).

If function g is odd, then

$$g(-2) = -6$$

7. (worth 15 points) A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain. Let polynomial p be defined with the following equation:

$$p(x) = x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^3 + (-x)$$

 $p(-x) = -x^3 - x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^3 - x)$$
$$-p(-x) = x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. (worth 10 points) I have drawn half of a function. Draw the other half to make it even or odd.

9. (worth 10 points) Let function f be defined with the equation below.

$$f(x) = 3(x-7)$$

a. Evaluate f(25).

step 1: subtract 7 step 2: multiply by 3

$$f(25) = 3((25) - 7)$$
$$f(25) = 54$$

b. Evaluate $f^{-1}(42)$.

step 1: divide by 3 step 2: add 7

$$f^{-1}(x) = \frac{x}{3} + 7$$

$$f^{-1}(42) = \frac{(42)}{3} + 7$$

$$f^{-1}(42) = 21$$

10. (worth 6 points) The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

$$b(7) = 8$$

b. Evaluate $b^{-1}(3)$.

$$b^{-1}(3) = 1$$

- 11. (worth 18 points) Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-6	6	-6	6
-1	8	-8	8	-8
0	0	0	0	0
1	8	-8	8	-8
2	-6	6	-6	6

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.