State of the Art Architectures Xilinx and Altera

Mark L. Chang

ACME Seminar

June 30, 2003

The Timeline

- 1998 Xilinx Virtex
- 1999 Xilinx Virtex-E
- 2000 Xilinx Virtex-II
- June 2000
 - Altera Nios soft-core processor ships
 - Excalibur announced

The Timeline

- Sept. 2000
 - Excalibur architecture unveiled
- April 2001
 - Xilinx MicroBlaze soft-core processor ships
- October 2001
 - Excalibur ships

The Timeline

- February 2002
 - Altera Stratix announced
- March 2002
 - Xilinx Virtex-II Pro ships
- June 2002
 - Stratix ships

Head-to-Head

- Xilinx Virtex-II Pro
 - 1.5v 130nm copper
 - 125,136 logic cells
 - 10Mb RAM
 - 556 18x18 multipliers
 - Up to four PowerPC405 cores

- Altera Stratix
 - 1.5v 130nm copper
 - 114,140 logic elements
 - 10Mb RAM
 - 224 9x9 multipliers
 - No hard processor cores (Excalibur, based on Apex 20k)

Xilinx Virtex-II Pro

Altera Stratix

Xilinx Virtex CLB

Virtex Slice

Half Slice

3-State Buffers

11

Altera Stratix

Logic Array Blocks (LABs)

Logic Element

Embedded RAM

- Xilinx Block SelectRAM
 - 18Kb dual-port RAM arranged in columns
- Altera TriMatrix Dual-Port RAM
 - $-M512 512 \times 1$
 - $-M4K 4096 \times 1$
 - $-M-RAM-64K \times 8$

Xilinx: Embedded Multipliers

Altera: Embedded DSP Blocks

- Two DSP Block columns per device
- Number varies by height of column
- Can implement:
 - Eight 9x9 multipliers
 - Four 18x18 multipliers
 - One 36x36 multiplier
- Contains adder/subtracter/accumulator
- Registered inputs can become shift register

Altera Multiplier Sub-block

Virtex: Active Interconnect

Virtex Hierarchical Interconnect

Altera: MultiTrack Interconnect

- Direct link between LABs and adjacent blocks
- Row interconnects
 - 4, 8, and 24 blocks left or right
- Column interconnects
 - 4, 8, and 16 blocks up or down

Stratix: R4 Interconnect

Big Differences

- Xilinx
 - 3DES bitstream decrypter on-board
 - RocketIO serial transceivers
 - Partial reconfiguration
- Altera
 - Documented self-reconfiguration in Excalibur

Xilinx MicroBlaze

Altera Nios

Virtex PowerPC Core

PowerPC 405

- Five-stage pipeline
- Independent instruction and data caches
 - 16KB two-way set associative (256 x 32B)
 - Write-back or write-through data cache
- Static branch prediction
- Real memory management unit
 - TLB, memory protection
- 300MHz+, 420 MIPS

Interface to Virtex

- On-Chip Memory Controller (OCM)
 - Interface between PowerPC core and BRAM
 - Separate data and instruction OCMs
 - Scratch-pad memory
 - Bi-directional data transfer to FPGA blocks
 - Storage is interrupt service routines
- Processor Local Bus

Processor Local Bus

Excalibur ARM Core

ARM 922T

- Single "stripe" embedded in Apex 20K
- Five-stage pipeline
- 8KB 64-way set-associative instruction and data caches
- 256KB internal single-port SRAM
- 128KB internal dual-port SRAM
- All FPGA interface through ABMA buses

ARM922T Stripe

Head-to-Head

- Implement 97 customer designs
- Sizes up to 61,000 LEs
- Basic unit of comparison: LE
 - 4-LUT, register, and anything else associated
- 80% are more efficient on Altera
- Uses on average 9% fewer LEs
- 41% are >10% more efficient

Logic Utilization

DSP Block vs. 18x18 MUL

Table 4. Stratix vs. Virtex-II Pro Multiplier Implementation Resource Requirement Comparison

Multiplier Size	Resources			
	Stratix		Virtex-II Pro	
	DSP Block	LE (2)	18x18 Multiplier Block	LE (2)
Signed 9x9	1/8 (1)	0 [0]	1	0 [36]
Signed 18x18	1/4 (1)	0 [0]	1	0 [72]
Signed 36x36	1	0 [0]	4	326 [397]
18x18 MAC	1/2	0 [0]	1	49 [134]
18x18 Complex Multiplication	1	0 [0]	4	76 [153]
4 Tap, 16-bit FIR Filters with Parallel Inputs	1	[0]	4	[280]
4 Tap, 16-bit FIR Filters with Serial Inputs	1	[0]	4	[199]

Memory Comparison

Table 5. Stratix and Virtex-II Pro Memor	v Resources Usage Comparison
_	, , , , , , , , , , , , , , , , , , , ,

Memory Size	Stratix Memory Resources	Virtex-II Pro Memory Resources
< 1K bits	One or two M512s	LEs used as distributed SelectRAM+
		One 18Kb block SelectRAM+ (94+% unused)
1K bits - 10K bits	Multiple M512s or M4Ks	LEs used as distributed SelectRAM+
		One 18Kb block SelectRAM+ (44-94% unused)
>= 10 Kbits	M4Ks or M-RAM	1 or Multiple 18Kb block SelectRAM+

Lattice Semiconductor ispXPGA

- E²CMOS built-in to FPGA die stores configurations
- Non-volatile, but still SRAM-based for infinite reconfigurability
- Four 4-LUTs per block
- Two flip-flops per 4-LUT
- Small embedded RAMs

ispXPGA

Actel ProASIC

Actel ProASIC

