Solve the following:

$$2(A^{T} + B)$$
where $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 1 \\ -2 & 2 \\ 0 & 3 \end{bmatrix}$.

$$A^{T} = \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 1 & 2 \end{bmatrix}, A^{T} + B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ -2 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ 1 & 5 \end{bmatrix}$$

$$2(A^{7}+B)=2\begin{bmatrix}1 & 1\\ 1 & 3\\ 1 & 5\end{bmatrix}=\begin{bmatrix}2 & 2\\ 2 & 6\\ 2 & 10\end{bmatrix}$$

· Exam next Wednes day

- Still need some blue books

- final details about Exam told on Monday

- Goal for studying:

· understand all webassign problems

· understand all problems introduced in lectures

Ly be able to follow each step

13 aim to know why each step is done

Meeting Multiplication

<u>ex</u>
Let A be 3x4 and B be 4x2
Is AB defined? (3x4) (1/x2) So yes AB is defined 1 = 2 it has dimensions 3x2.
Is BA defined?
(4x2) (3x4) So no BA is not 2 \ne 1 \tag{5}
to order mouters here &
ex is AA^T defined? Yes, if A was man $(m \times n) (n \times m)$ AA^T is $m \times m$
is ATA defined? Yes, ATA nxn (hxm) (mxn) 1 = 1
if m#n A=[2 3 1] then AAT # ATA

In general AB # BA

Simpler Ceise:

If A was a row vector with dimension 1×m and B was a m×1 col vector.

AB would be defined and have dimension 1×1

But we can treat 1×1 matrices exactly as numbers.

To get this number, we will mutiply entries in A (from left to right) with entries in B (from top to bottom) and add them all tagether.

$$\begin{bmatrix} 5 & 3 & 2 \\ 2 & 3 & 2 \\ 4 & 5 & 6 \end{bmatrix} = 5 + 1 + 3 + 2 + 2 + 4 = 19$$

$$[2 \quad 3]\begin{bmatrix} 7\\1 \end{bmatrix} = 2*7 + 3*1 = 14 + 3 = 17$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \\ 0 \\ 2 \end{bmatrix} = 1.5 + 1.8 + 2.0 + 3.2 = 19$$

Matrix multiplication is defined as follows:

The ij-th entry of AB is the cesult of multiplying the 1-th row of A with the j-th ad of B.

$$\frac{ex}{(3-1)} * (6-2) = \frac{(12)\binom{6}{0}}{(1-1)\binom{6}{0}} * (12)\binom{1}{1} = \binom{6}{10} * (12)\binom{1}{1} =$$

the 1,1 enty is $(1 \ 2)(6) = 1.6 + 2.0 = 6$

1,2 $(1 2)(\frac{2}{1}) = 1.2 \cdot 2.1 \cdot 4$

 $(3 \ 4) \begin{pmatrix} 6 \\ 0 \end{pmatrix} = 3.6 + 4.0 \cdot 16$

 $(3.4)(\frac{2}{1})=3.7+4.1=10$

$$\frac{ex}{A^{2}}\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix}$$
 $B^{2}\begin{pmatrix} 5 & 7 \\ 0 & 4 \end{pmatrix}$
 3×2

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 5 & 7 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 15 \\ 0 & 4 \\ -5 & 5 \end{pmatrix}$$

AB defined, 3×2

$$(AB)_{11}$$
 $(1 2) {5 \choose 0} = 1.5 + 2.0 = 5$

$$(AB)_{12}$$
 $(12)(\frac{7}{4})=1.7+2.4=15$

$$(AB)_{21}$$
 $(0.1)(\frac{5}{0}) = 0.5 + 1.0 = 0$

$$(AB)_{31}$$
 = -5
 $(AB)_{31}$

<u>e</u>	people who read the best	seeple who
Luid of to Rues	100	350
Princess Bride	125	250
To Kill a Madamplied	200	150

Suppose 20% of people who read the book own the book.

Suppose 5% of people who saw the movie own the mark.

Hw nany am the broke or am morte?

Well for each story (# who (earl it) ro. 20 + (# who workled it) * 0.05 $125 25 0 0 0.20 = \begin{bmatrix} 37.5 \\ 37.5 \\ 47.5 \end{bmatrix}$ $1200 15 0 0 0.05 = \begin{bmatrix} 37.5 \\ 47.5 \end{bmatrix}$ $1230 0 0.05 = \begin{bmatrix} 37.5 \\ 47.5 \end{bmatrix}$

Just the move?
$$\begin{bmatrix}
100 & 350 \\
125 & 250 \\
200 & 150
\end{bmatrix}
\begin{bmatrix}
0 \\
0.05
\end{bmatrix} = \begin{bmatrix}
17.5 \\
12.5 \\
7.5
\end{bmatrix}$$

We can get all of these at once
$$\begin{bmatrix} 100 & 350 \\ 125 & 250 \\ 2w & 150 \end{bmatrix} \begin{bmatrix} 0.20 & 0 \\ 0 & 665 \end{bmatrix} = \begin{bmatrix} 20 & 17.5 \\ 25 & 12.5 \\ 40 & 7.5 \end{bmatrix}$$

$$(3x2)$$

$$(2x2)$$

Recall 1 times any number is just that number.

Is there some similar '1' matrix? Yes, we

Call it the identity matrix.

The identity matrix, I, is

- square - has 1's on the diagonal - has 0's everywhere else

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1.1 & +2.0 & 1.0 + 2.1 \\ 3.1 & +4.0 & 3.0 + 4.1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Questian? Given a matrix A can we find a mation B such that AB = I ? Here B would be called the inverse of A or A-1 Buy before talking about that let's understand matrices and variables. ex What is $[5 \ 2 \ 3] \begin{bmatrix} x \\ y \\ -7 \end{bmatrix} = 5x + 2y + 3z$ 50 5x+2y+3z=7 (=) [5 23][x]=7This works for systems of equations too! 5x + 2y + 3z = 7 6y + z = 0 (=) $\begin{bmatrix} 5 & 2 & 3 \\ 0 & 6 & 1 \\ -1 & -3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 1 \end{bmatrix}$

Now our system looks like A X = B

How would we solve ax = b if a,b when numbers? - divide by a - multiply by a's inverse We count divide by A but if A-1 $(A^{-1}A=1)$ then AX=B multiply boll sides by A A X * A B $TX = A^{-1}B$ X = A B In one sense, this is exactly What we've been

In one sense, this is exactly What we've been doing with reducing the augmented matrix of a system. But remember this method dienit always give a unique solution

Lif the inconsistent system (ie no culutions) then there's no A-1

Lif redundant system (ie infinite solution) then there's no A-1