Module 06 - Transshipment Problem

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Make a visual graph of your data like what we saw for the sample problem
 - o https://excalidraw.com
 - o https://mermaid.live
 - o https://dreampuf.github.io/GraphvizOnline
 - o Powerpoint

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints. Hint: This one differs a bit from the sample problem in terms of Balance-of-Flow

MIN =

37x03+27x05+25x08+30x15+39x23+34x24+39x25+37x26+38x+27+48X46+49x54+30x57+34x65+27x67+29x73+42x75+35x78

				Tot	al Trans	ortation Cost -	>[\$	35,368.00			
							Т					
Ship	From		То	Ur	nit Cost		N	lodes	Inflow	Outflow	Net Flow	
163	0 Candy Button Bay	3	Gummy Grotto	\$	37.00		0 C	Candy Button Bay	0	342	-342	2
49	0 Candy Button Bay	5	Jolly Rancher Range	\$	27.00		1 [Oulce de Leche Dunes	0	257	-257	7
130	0 Candy Button Bay	8	Sour Patch Prairie	\$	25.00		2 F	rozen Fudge Fjords	0	299	-299	9
257	1 Dulce de Leche Dunes	5	Jolly Rancher Range	\$	30.00	;	3 6	Gummy Grotto	163	0	163	
0	2 Frozen Fudge Fjords	3	Gummy Grotto	\$	39.00	4	4 F	lazelnut Haven	163	0	163	3
163	2 Frozen Fudge Fjords	4	Hazelnut Haven	\$	34.00		5 J	olly Rancher Range	306	216	90)
0	2 Frozen Fudge Fjords	5	Jolly Rancher Range	\$	39.00	(6 N	Iolten Mocha Marsh	136	0	136	3
136	2 Frozen Fudge Fjords	6	Molten Mocha Marsh	\$	37.00	-	7 R	ainbow Sprinkle Summit	216	0	216	6
0	2 Frozen Fudge Fjords	7	Rainbow Sprinkle Summit	\$	38.00	8	8 S	our Patch Prairie	130	0	130)
0	4 Hazelnut Haven	6	Molten Mocha Marsh	\$	48.00		Г					
0	5 Jolly Rancher Range	4	Hazelnut Haven	\$	49.00							
216	5 Jolly Rancher Range	7	Rainbow Sprinkle Summit	\$	30.00							
0	6 Molten Mocha Marsh	5	Jolly Rancher Range	\$	34.00							
0	6 Molten Mocha Marsh	7	Rainbow Sprinkle Summit	\$	27.00							
0	7 Rainbow Sprinkle Summit	3	Gummy Grotto	\$	29.00							
0	7 Rainbow Sprinkle Summit	5	Jolly Rancher Range	\$	42.00							
0	7 Rainbow Sprinkle Summit	8	Sour Patch Prairie	\$	35.00							

Model Optimized for Minimal Transportation Cost

Implement your formulation into Excel and be sure to make it neat. This section should include:

- A text explanation of what your model is recommending

- Update your graph from the EDA section to bold/color the links being used (and show how much is going through that link)

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

Follow these steps to complete this section:

- 1. Describe the necessity of the Balance-of-Flow for this problem type
- 2. What happens when you change your model to make Total Supply > Total Demand (i.e. add 115 units to one of the sources)
- 3. What happens when you rerun your model?
- 4. What do you need to change to make your model work again?
- 5. Make the changes and report on your findings.
 - a. PS there is a small chance that the source you added 115 to may make your model infeasible. If so, add the 115 units to a different source.