1 Problem 1-2: A New Order

Let G be an undirected graph on N vertices where each vertex has degree at most 2.

1.1 (a)

Suppose that we perform a BFS of G. Let v_1, \ldots, v_N be the vertices of G in the order they are visited in the search. Prove or disprove: every edge in G is of the form (v_i, v_{i+1}) or (v_i, v_{i+2}) for some i.

Lemma 1.1. If G be an undirected graph on N vertices where each vertex has degree at most 2, then every layer L_i in a BFS has at most 2 vertices.

Proof. **Proof By Induction:** On i, $L_i = \{$ number of vertices in layer L_i at distance $i\}$

Base Case: i = 0

i=0. $L_0=\{v_0\}\,,v_0$ only vertex in layer $L_0.$ This base case holds because there is only one vertex in L_0

Base Case: i = 1

Case 1:

This case holds true because v_0 has a degree of 2 and layer L_1 has 2 vertices.

Case 2:

This case holds true because v_0 has a degree of 1 and layer L_1 has 1 vertices.

Induction Hypotheses:

 $\forall i \leq k \quad L_i = \{ \text{Has at most 2 vertices} \}$

Induction Step:

For k + 1 we want to show $L_{k+1} = \{$ Has at most 2 vertices $\}$

Case 1:

Layer L_k has 1 vertex and it has 1 child.

Layer L_{k+1} has one vertex, and thus Case 1 holds true.

Case 2:

Layer L_k has 2 vertices and only one vertex has 1 child.

Layer L_{k+1} has one vertex, and thus Case 2 holds true.

${\bf Case \ 3:}$

Layer L_k has 2 vertices and each vertex has 1 child.

Layer L_{k+1} has 2 vertices, and thus Case 3 holds true.

Layer L_k has 2 vertices and each vertex has 0 children. A BFS search will never reach L_{k+1} because there are no additional vertices to ${\rm search.}$