וֹנְחַלְתֶם אוֹתָה אִישׁ כְּאַחִיו" יחזקאל מז 11"

מיזוג הצעות תקציב budget-proposal aggregation

:פ"אראל סגל-הלוי ע"פ

.Freeman, Pennock, Peters, Wortman (2021)

:הקלט

- •כסף בקופה: C.
- .(סעיפי תקציב) m,...,1
 - .n,...,1 אזרחים:
- :לכל אזרח i יש תקציב אידיאלי
- $p_{i,1},...,p_{i,m};$ $p_{i,1}+...+p_{i,m}=C$
 - $\mathbf{d}_{1},...,\mathbf{d}_{m}$:וקטור \mathbf{d} המייצג תקציב
 - $\bullet d_1 + \ldots + d_m = C.$
 - יא: d התועלת של אזרח i מהתקציב
- • $u_i(d) = -Sum[j=1,...,m] | d_{j-}p_{i,j}|$

חימום: סעיף אחד

- •נניח שצריך להחליט רק על תקציב החינוך.
 - p_i אומר מספר י p_i
 - אלגוריתם א: רוב.
- חסר משמעות; אולי לכל מספר יש תומך 1.
 - אלגוריתם ב: ממוצע.•
- . אזרחים מגלה אמת, אפילו כשיש רק 2 אזרחים
 - אלגוריתם ב: קבוע שרירותי.
 - לא יעיל פארטו.•
 - אלגוריתם ג: דיקטטור.•
- לא *אנונימי* מפלה בין אזרחים שונים. האם יש אלגוריתם מגלה-אמת, יעיל ואנונימי?

אלגוריתם החציון

-סדר את ההצבעות בסדר עולה:

• $p_1 \le p_2 \le ... \le p_n$ (עגל למעלה). n/2 מספר 2). •

משפט. אלגוריתם החציון אנונימי ויעיל-פארטו. הוכחה. אנונימי – ברור לפי הגדרה. יעיל-פארטו – כי יש אנשים שהצביעו מעל החציון – והם יפסידו אם הערך הנבחר יקטן; ויש אנשים שהצביעו מתחת לחציון – והם יפסידו אם הערך הנבחר יגדל. ***

אלגוריתם החציון

•סדר את ההצבעות בסדר עולה:

 $\bullet p_1 \le p_2 \le \ldots \le p_n$ \bar{n} בחר את הצבעה מספר n/2 (עגל למעלה). משפט. אלגוריתם החציון מגלה-אמת. הוכחה. נניח שהחציון האמיתיx = x, ואזרח כלשהו $p_i < x$ כיח כי $p_i < x$ ו אינו מרוצה מהבחירה הזאת – נניח כי אנשים שהצביעו לפחות x=1, ולכן יש x=1 אנשים שהצביעו x. האזרח i *אינו* ביניהם. לכן, אם i ישנה את הצבעתו באופן כלשהו, יהיו לפחות n/2 אנשים i שהצביעו לפחות x, והחציון יהיה לפחות x. לכן לא ירויח מהשינוי. ההוכחה למקרה p_i>x דומה.

אלגוריתם החציון – עוד שימושים אלגוריתם החציון יכול לשמש לבחירת ערך בנושאים רבים נוספים שהם *חד-ממדיים:*

- •כמה ימים בשנה צריך להיות שעון קיץ?
- •מה צריך להיות מספר השרים בממשלה?
 - •מה יהיה גובה המס על שדות הגז?
- ?לאיזו טמפרטורה לכוון את המזגן במשרד

שני סעיפי תקציב

- נניח שיש רק שני סעיפים בתקציב: התקציב לאיזור הצפון והתקציב לאיזור הדרום.
- אפשר להשתמש באלגוריתם החציון לאיזור
 הצפון, ואת שאר התקציב לתת לדרום.
 - •נניח ש:
 - ;100% מהאזרחים בצפון, מצביעים 51%•
 - .0% מהאזרחים בדרום, מצביעים 49%•
 - •אלגוריתם החציון נותן 100% לצפון.
 - •לא הוגן כלפי תושבי הדרום.

תקציב הוגן לקבוצות

הגדרה. אלגוריתם לקביעת התקציב נקרא *הוגן לקבוצות* אם, כאשר האזרחים מחולקים לקבוצות וכל קבוצה j נותנת 100% מהתקציב לסעיף j, האלגוריתם מחלק את התקציב בין הסעיפים ביחס ישר לגדלי הקבוצות.

- •אלגוריתם *הממוצע* הוגן לקבוצות, אבל לא מגלה-אמת.
 - •אלגוריתם *החציון* מגלה אמת, אבל לא הוגן לקבוצות.

?האם קיים אלגוריתם מגלה-אמת והוגן לקבוצות

אלגוריתם החציון המוכלל

בחר מראש קבוצה של *הצבעות קבועות*:

• f_1,\ldots,f_k .

•הוסף אותן לקבוצת הצבעות האזרחים:

 $p_1,...,p_n$.

• הפעל את אלגוריתם החציון המקורי על קבוצת n+k ההצבעות (הקבועות ושל האזרחים).

החציון המוכלל - דוגמאות

- .0 הצבעות קבועות, וכולן שוות n-1 אז אלגוריתם החציון המוכלל בוחר את• .min_j p_j ההצבעה המינימלית של אזרח: .C הצבעות קבועות, וכולן שוות n-1 אז אלגוריתם החציון המוכלל בוחר את• :ההצבעה המקסימלית של אזרח .max_i p_i 3)נניח שחצי מההצבעות הקבועות הן 0 והחצי .C השני הן
 - אז אלגוריתם החציון המוכלל בוחר את החציון של הצבעות האזרחים.

החציון המוכלל - תכונות

משפט. לכל קבוצה של הצבעות קבועות, החציון המוכלל הוא אנונימי ומגלה-אמת. הוכחה. זהה לאלגוריתם החציון הרגיל. ***

(משפט, אם יש לכל היותר n-1 הצבעות קבועות, אלגוריתם החציון המוכלל יעיל-פארטו. הוכחה. יש 2/(n+k) הצבעות גדולות או שוות לחציון, וn+k)/2) הצבעות קטנות או שוות לחציון. כאשר k ≤ n-1, שתי הקבוצות כוללות הצבעות .k < (n+k)/2 של אזרחים, כי *** לכן לא קיים שיפור פארטו.

שני סעיפי תקציב - המשך

n-1 נפעיל את אלגוריתם החציון המוכלל עם C-1: C-0 ל-2: C-1 מפוזרות אחיד בין $f_j := C * j \mid n$.

(n-1) הצבעות בסה"כ; החציון הוא ההצבעה ה-2n). משפט. כשיש שני סעיפי תקציב, אלגוריתם החציון המוכלל עם הצבעות קבועות מפוזרות באופן אחיד בין 0 ל-C הוא הוגן לקבוצות. kאנשים תומכים רק בסעיף אkאנשים תומכים רק בסעיף א בסעיף בn-k ו (C נותנים)), נותנים (C) (נותנים 0). החציון המוכלל יהיה בהצבעה *** . C^{*} מס' k, שערכה הוא בדיוק k

תקציב כללי – m סעיפים

מה יקרה אם נריץ את אלגוריתם החציון על כל סעיף בנפרד?

```
- נניח שהתקציב 30, יש 3 נושאים, 3 אזרחים.
הצבעות: (0, 15, 15, 15); (10, 20, 0); (72, 0, 3).
                    א. בלי הצבעות קבועות:
          .28 = חציונים = (10, 15, 15), סכום
ב. עם הצבעות קבועות מפוזרות אחיד 10,20:
                   .35 = סכום ); (10, 15, 10)
    אפשר לנרמל ע"י הכפלה ב: 30/35, אבל
```

האלגוריתם לא יהיה מגלה-אמת.

חציון מוכלל עם פונקציות עולות

-בחר מראש קבוצה של *פונקציות*:

$$f_1(t), ..., f_{n-1}(t);$$
 $t \text{ in } [0,1].$

•כל הפונקציות *רציפות* ו*עולות*, ומקיימות:

$$f_i(0) = 0;$$
 $f_i(1) = C.$

לכל t בין 0 ל-1, אפשר לחשב לכל נושא, חציון t מוכלל עם הצבעות קבועות קבועות הצבעות הצבעות הצבעות $f_1(t), \dots, f_{n-1}(t)$

 $C \ge t=0$, החציון = המינימום; הסכום, t=0

 $C \le t=1$, החציון המקסימום; הסכום, t=1, החציון

לפי משפט ערך הביניים, קיים *t שעבורו סכום•

(ניתן למצוא ע"י חיפוש בינארי). $C = \mathbf{0}$

. $f_1(t^*)$, ..., $f_{n-1}(t^*)$: חציון מוכלל עם – חציון מוכלל -

חציון מוכלל עם פונקציות עולות

משפט: התוצאה של אלגוריתם החציון המוכלל עם פונקציות עולות אינה תלויה בבחירה של *t. $t_1 < t_2$ נניח שיש שני ערכים של t, נניח שיש שני ערכים של t שעבורם סכום כל הנושאים שווה C. כאשר גדַל, החציון בכל הנושאים לא קטֶן. כיוון שסכום החציונים נשאר זהה, החציון בכל הנושאים *** נשאר זהה.

> משפט: לכל n-1 פונקציות רציפות עולות, אלגוריתם החציון המוכלל מגלה-אמת.

> > *** הוכחה: במאמר.

< איזה פונקציות נבחר כדי שהתקציב יהיה הוגן?

חציון מוכלל עם פונקציות ליניאריות

נגדיר n-1 פונקציות ליניאריות:

$$f_i(t) = C * min(1, i*t), for i = 1, ..., n-1.$$

• הפונקציות רציפות ועולות.

$$\bullet f_i(0) = C * min(1, 0) = 0.$$

 $\bullet f_i(1) = C * min(1, i) = C.$

חציון מוכלל עם פונקציות ליניאריות

משפט. אלגוריתם החציון המוכלל עם פונקציות אלגוריתם החציון המוכלל עם פונקציות $f_i(t) = C * min (1, i*t)$, מוצא תקציב הוגן לקבוצות.

הוכחה. נניח שהאזרחים מחולקים לקבוצות של k_j אזרחים הרוצים לתת 100% לנושא j בלבד. בכל נושא j, יש j אזרחים שמצביעים 0.

:כאשר t=1/n, ההצבעות הקבועות בכל נושא הן

 $f_i(t) = C * min(1, i/n) = C*i/n.$

החציון המוכלל יהיה בהצבעה ה-n, שהיא הקבוע החציון המוכלל יהיה בהצבעה ה-f_{kj}(t) = $\mathbf{C*k_j/n}$ אשהוא $\mathbf{k_{j-n}}$, שהוא הואן. *** לכן זה התקציב שייבחר, והוא הואן. \mathbf{C}

חציון מוכלל עם פונקציות ליניאריות

משפט. אלגוריתם החציון המוכלל עם פונקציות ליניאריות אינו תמיד יעיל פארטו.

:C=30 אזרחים, 9 נושאים, 3 אזרחים, 10=30

.0,0,6;0,0,6;6,6,0,0;

.0,6,0,6,6,6,6,6,0,0.

.6, 0, 0, 6, 6, 6; 0, 0, 6. 6.

עבור 1/15=t, הצבעות קבועות 2, מתקבל:

-4, 4, 4, 4, 4; 2, 2, 3; סכום=30, הפרש=24.

יש שיפור פארטו:

•5, 5, 5, 5, 5, 5; 0, 0, 0; סכום=30, הפרש=20.

מיזוג הצעות תקציב - טרילמה משפט. לא קיים אלגוריתם מגלה-אמת, הוגן לקבוצות, ויעיל-פארטו. הוכחה: במאמר.

מיזוג הצעות תקציב - טרילמה

מגלה אמת	הוגן לקבוצות	יעיל פארטו	
ID	לא	J	אוטיליטרי
I	J	לא	חציון מוכלל
לא	J	J	דיקטטורה הוגנת"