2014 年线代考题

单项选择题

1. 设 A,B 为 n 阶方阵,则必有()

A. |A+B|=|A|+|B| B. |AB|=|BA| C. AB=BA

D.

$$(A+B)^{-1}=A^{-1}+B^{-1}$$

2. 设 $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$,其中 A_1,A_2,A_3 为方阵,且 $|A| \neq 0$,则 $A^{-1} = ($)

A.
$$\begin{pmatrix} & & & A_1^{-1} \ & & A_2^{-1} \ & & & \end{pmatrix}$$

$$\text{B.} \begin{pmatrix} {A_1}^{-1} & & & \\ & {A_2}^{-1} & & \\ & & {A_3}^{-1} \end{pmatrix}$$

C.
$$\begin{pmatrix} & & & A_3^{-1} \\ & & A_2^{-1} & \end{pmatrix}$$

D.
$$\begin{pmatrix} A_3^{-1} & & & \\ & A_2^{-1} & & \\ & & A_1^{-1} \end{pmatrix}$$

3. 向量组(a+1,2,-6),(1,a,-3),(1,1,a-4)线性无关,则a 的取值范围为()

A. 0

- B. 不等于 0

 - C. 1 D. 不等于 1
- 4. 若非齐次线性方程组 AX=b 未知数的个数为 n, 方程的个数为
 - m, 系数矩阵的秩为 r, 则(
 - A. 当 r=m 时, 方程组 AX=b 有解

R	当 r=n	时.	方程组	AX=h	必有唯-	一解
υ.		$H \cup H$	ノノノエシユ	ヘハーレ		ΠΤ

- C. 当 m=n 时,方程组 AX=b 必有唯一解
- D. 当 r<n 时,方程组 AX=b 有无穷多组解
- 5. 设 A,B 均为 3 阶方阵, 且 A 与 B 相似, A 的特征值为 2,3,4,则 $(3B)^{-1}$ 的特征值为()
- A. $\frac{3}{2}$, 1, $\frac{3}{4}$ B. 6, 9, 12 C. $\frac{2}{3}$, 1, $\frac{4}{3}$ D. $\frac{1}{6}$, $\frac{1}{9}$, $\frac{1}{12}$
- 6. 设 A,B 为 n 阶矩阵, 且 R(A)=R(B),则 (
 - A. AB=BA
 - B. 存在可逆矩阵 P,Q,使得 PAQ=R
 - C. 存在可逆矩阵 $P, \oplus P^{-1}AP=B$
 - D. 存在可逆矩阵 C,使 C^T AC=B
- 7. 设 α_1 , α_2 ,..., α_s 均为 n 维列向量,A 为 m×n 矩阵,下列选项正 确的是()
 - A. 若 α_1 , α_2 ,..., α_s 线性相关,则 $A\alpha_1$, $A\alpha_2$,..., $A\alpha_s$ 线性相关;
- 8. 设 A 为 $n(n \ge 2)$ 阶可逆矩阵,交换 A 的第一行与第二行得 B,
 - A^* , B^* 分别为 A,B 的伴随矩阵,则()
 - A. 交换 A^* 的第 1 列与第 2 列得 B^*
 - B. 交换 A^* 的第 1 列与第 2 行得 B^*
 - C. 交换 A^* 的第 1 列与第 2 列得 $-B^*$

D. 交换 A^* 的第1行与第2行得 $-B^*$

	抽穴師	(未 晒 十	0 1 2	= 24 分)
<u> </u>	块工政	($\delta X S$	= 24 m

- 1. n 阶方阵 A 有 n 个线性无关的特征向量是 A 与对角形矩阵相似的______条件;
- 2. 设 n 阶矩阵 A 满足A²-A-2E=0,则A⁻¹=_____.
- 3. 设 a, b, c 是互不相等的数,则向量组 $(1, a, a^2, a^3)$, $(1, b, b^2, b^3)$, $(1, c, c^2, c^3)$ 是线性_____的。
- 4. 设 A 为 n 阶方阵,若 A 有特征值 λ_1 , λ_2 ,……, λ_n ,则 | A-E|=_____.
- 5. 设 a_1 =(0,0,-1,1) T , a_2 =(1,1,-1,0) T , a_3 =(-5,-5,5,0) T , 则 a_1 , a_2 , a_3 的一个最大线性无关为
- 6. R^3 的子空间 W= $\{(x_1, x_2, x_3): \begin{cases} x_1 + x_2 2x_3 = 0 \\ x_1 + 3x_2 4x_3 = 0 \end{cases}$ 的一组基为
- 7. 从 R^2 的基 $\alpha_1\binom{1}{0}$, $\alpha_2=\binom{1}{-1}$ 到基 $\beta_1\binom{1}{1}$, $\beta_2\binom{1}{2}$ 的过渡矩阵为 $\begin{bmatrix}2&3\\-1&-2\end{bmatrix}$
- 8. 设 α 为3 维列向量, α^T 是 α 的转置,若 $\alpha\alpha^T = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$,则 $\alpha^T \alpha =$ ______.
- 三.(本题满分10分)已知 $A=\begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, X=AX+B, 求 X

四. 设方程组
$$\begin{cases} x_1 + x_2 + \lambda x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = 1, \\ \lambda x_1 + x_2 + x_3 = 1 \end{cases}$$

问当λ取何值时,

- 1) 方程组有唯一解;
- 2) 方程组无解;
- 3) 方程组有无数个解, 求其通解(用解向量形式表示)。

五. (本题满分16分)。

已知二次型, $f(x_{1,}x_{2},x_{3})=3x_{1}^{2}+ax_{2}^{2}+6x_{3}^{2}+8x_{1}x_{2}-4x_{1}x_{3}+4x_{2}x_{3}$ 通过正交变换将二次型化成标准型 $f=7y_{1}^{2}+7y_{2}^{2}-2y_{3}^{2}$,

- 1) 写出此二次型对应的矩阵 A;
- 2) 确定 a 的值;
- 3) 求一个正交换 x=Qy, 将二次型化为标准型 $f=7y_1^2+7y_2^2-2y_3^2$ 。

六. 证明题

- 1. 设 A 为 n 阶实对称矩阵,若 A^3 =0,则必有 A=0
- 2. 设 A 是 n 阶实反对称矩阵, 试证: aE=A²为正定矩阵(其中 E 为 n 阶单位矩阵, a> 0)