杭州电子科技大学信息工程学院学生考试卷(A)卷

考试课程	工程数学(概率	区部分)	考试日期	2014 年	- 1月	日	成绩	
课程号	J0907100	教师号		任调	!教师姓	名		
考生姓名		学号			年级		专业	

题号	1	11	11)	四	五.
得分					

注意: 答案请写在试卷上,请务必保持卷面整洁! 考试时间 120 分钟!

- 1. 设随机事件 A , B 互不相容,且满足 P(A) > 0 , P(B) > 0 , 则下列结论中正确的是 ()
 - A. \overline{A} 与 \overline{B} 互不相容; B. \overline{A} 与 \overline{B} 相容 C. $P(\overline{A}|B)=1$; D. $P(A|\overline{B})=1$

- 2. 设 $P\{X = k\} = ak$ (k = 1,2,3,4) 为离散型随机变量 X 的分布律,则常数 a = 0
 - A. 1/12
- B. 1/10
- C. 1/15
- 3. 设事件 A, B 满足 P(A) > 0, P(B) > 0, 下面条件 () 成立时,事件 A 和 B 一定独立.
 - (A) $P(\overline{A \cup B}) = P(\overline{A})P(\overline{B})$ (B) $P(\overline{AB}) = P(\overline{A})P(\overline{B})$
- - (C) P(A | B) = P(A)P(B)
- (D) $P(A \mid B) = P(\overline{A})$
- 4. 若 X 的概率密度函数为 $f(x) = \begin{cases} a\cos x, & \frac{-\pi}{2} \le x \le \frac{\pi}{2}, \\ & \text{则系数 } a = ($
- (B) 1/4

- 5. 已知随机变量 $X\sim N(0,1)$, $\Phi(x)$ 、 $\varphi(x)$ 分别表示 X 的分布函数和密度函数,则有().

- (A) $\Phi(-a) = \Phi(a)$ (B) $\varphi(0) = \frac{1}{2}$ (C) $\Phi(0) = \frac{1}{2}$ (D) $\varphi(-x) = 1 \varphi(x)$
- 6. 对于任意两个随机变量 X 与 Y ,若 E(XY) = E(X)E(Y) ,则一定有()

- A. D(XY) = D(X)D(Y);
- B. D(X + Y) = D(X) + D(Y)
- C. X与Y相互独立;
- D. X 与 Y 不独立

得	
分	

二、填空题(每小题 4 分, 共 24 分)

- 1. 袋中装有3个白球与4个黑球,每次从袋中任取一球,取出的球不再放回,求第三次取到白球的概
- 2. 已知 $P(\overline{B}) = 0.2$, $P(\overline{AB}) = 0.6$, 则 $P(A|B) = _____$.
- 3. 设随机变量 X 具有如下分布律,则常数 θ =_____.

X	0	1	2	3
Р	1/9	$2\theta(1-\theta)$	1/9	(1–2 <i>\theta</i>)

- 4. 设随机变量 $X \sim \pi(\lambda)$,已知 $P(X=0) = e^{-4}$,则 $\lambda =$
- 5. 随机变量 $X \sim N(-2,1)$, $Y \sim \pi(2)$, 且 X 和 Y 相互独立, Z = X 2Y + 5, 则 E(Z) =
- 6. 设 $X \sim N(3, 6^2)$, $\Phi(x)$ 为标准正态分布函数,则概率 $P\{|X| < 3\} =$ _____.

(其中 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$)

得	
分	

三. 判断题 (每题 2 分, 共 10 分, 正确打勾, 错误打叉)

- 1. 若某事件的概率为 0,则该事件必为不可能事件.
- 2. 若事件 A 和 B 互不相容,且 P(A) > 0, P(B) > 0 ,则事件 A 和 B 必不相互独立. (
- 3. 若事件 *A*, *B*, *C* 两两独立,则 *A*, *B*, *C* 相互独立. ()
- 4. 设实函数 f(x)满足 $\int_{-\infty}^{+\infty} f(x) dx = 1$,则实函数 f(x) 必为一概率密度函数. ()
- 5. 设X为一连续型随机变量,则其分布函数F(x)必为一连续函数. ()

得 分

四. 计算题 (本题有4个小题,共36分)

- 1. (本小題 8 分) 已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{16}$, 求
- (1) 事件 A,B,C 至少发生一个的概率; (2) 事件 A,B,C 全不发生的概率.

2. (本题 8 分) 某机器生产的螺栓长度(cm)服从参数为 μ = 10.05, σ = 0.06 的正态分布,规定长度

在范围 10.05 ± 0.12 cm 内为合格品,求该机器生产的螺栓的合格率(已知 $\Phi(2)=0.9772$).

3. (本题 10 分) 某工厂有甲、乙、丙三个车间,生产同一产品时各占比例为 45%、35%、20%,已知三车间的次品率分别为 5%、4%、2%,求:1) 任取一件产品为合格品的概率;2) 如果抽到了次品,请问来自甲、乙、丙三个车间的概率.

- 4. (本小题 10 分) 设随机变量 X 的分布函数为 F(x) = $\begin{cases} 0, & x < 0 \\ 0.3, & 0 \le x < 1 \\ 0.8, & 1 \le x < 3 \end{cases}$ 1, $x \ge 3$
- (1 求随机变量 X 的分布律; (2) 求 $P(\frac{1}{2} < X \le 3)$; (3) 求 $P(X \ge 2)$.

得 分

五. 综合题 (本小题 12 分)

设随机变量 X 的密度函数为 $f(x) = \begin{cases} Ax^2 + Bx, & 0 < x < 1 \\ 0, & 其它 \end{cases}$,且 $E(X) = \frac{1}{2}$,求

(1) $A \cap B$ 的值; (2) X 的分布函数; (3) D(X).