Games, graphs, and machines

Modular arithmetic

July 31, 2024

Visualising modular arithmetic

Arithmetic modulo 10

- $a \equiv b \pmod{1}0$ if and only if a and b have the same units digit (when written in base 10).
- Arithmetic modulo 10 = units digit arithmetic

$$\overline{7}\cdot\overline{6}=\overline{2}$$

Laws of arithmetic:

Fix d. All the usual laws of arithmetic for $\mathbb Z$ hold for equivalence classes modulo d. That is, + and \times are commutative and associative, have identity elements, and \times distributes over +.

- 1. What is the negative of $\overline{3}$ modulo 7?
- 2. Compute $\overline{3} \times \overline{5} \overline{1}3 \pmod{8}$.

Laws of arithmetic: surprises

But some things are different. For example, it may happen that $a \times b = 0$ but $a \neq 0$ and $b \neq 0$.

Prove that $\overline{4} \cdot \overline{4} = \overline{0} \pmod{8}$ but $\overline{4} \neq \overline{0} \pmod{8}$.

Squares

Notation: $\mathbb{Z}/d\mathbb{Z}$ denotes the equivalence classes of \mathbb{Z} under the equivalence relation \sim_d .

Of the 7 elements of $\mathbb{Z}/d\mathbb{Z}$, which ones are perfect squares?

Square roots

What are the sqaure roots of $\overline{-1}$...

- 1. modulo 5?
- 2. modulo 7?
- 3. modulo 8?