Td 9 - Diagonalisation

Éléments propres

1.1 Définitions

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Définition 1 (Couple propre)

Soient $\lambda \in \mathbb{R}$ et $\vec{X} \in \mathbb{R}^n$.

 Équation des couples propres Le couple (λ, \vec{X}) est **propre** pour A si

$$A\vec{X} = \lambda \vec{X}$$
 avec $\vec{X} \neq \vec{0}$

On dit alors que:

- $\rightarrow \lambda$ est une **valeur propre** de A.
- $ightharpoonup \vec{X}$ est un **vecteur propre** de A, associé à la valeur propre λ .

Définition 2 (Sous-espaces propres)

- Sous-espace propre associé à λ C'est **l'ensemble** $E_{\lambda}(A)$ des vecteurs propres associés à la $vp \lambda$ $(avec \vec{0})$
- Reformulation On a

$$A\vec{X} = \lambda \vec{X} \iff (A - \lambda I_n)\vec{X} = \vec{0}$$

Ainsi, on a

$$E_{\lambda}(A) = \operatorname{Ker}(A - \lambda I_n)$$

Définition 3 (Spectre)

Définition

L'ensemble des valeurs propres λ de $A \in \mathcal{M}_n(\mathbb{R})$ s'appelle le **spectre** de A, noté $\mathrm{Sp}(A)$.

Caractérisation

	$\lambda \in \operatorname{Sp}(A)$	$(\Leftrightarrow \lambda \ valeur \ propre \ de \ A)$
ssi	$\operatorname{Ker}(A - \lambda I_n) \neq \{\vec{0}\}$	$(E_{\lambda}(A) \ sous-espace \ propre \ associé)$
ssi	$A - \lambda I_n$ n'est pas inversible	$(\Leftrightarrow A - \lambda I_n \ a \ll du \ noyau \gg)$

• **Vérification pour** λ (donnée): résolution de $A\vec{X} = \lambda \vec{X}$

(pivot de Gauss → pas difficile)

Exercice 1 (Vérification de valeurs propres)

Pour chaque cas ci-dessous:

- 1. Résoudre l'équation des vecteurs propres pour chaque λ proposé.
- 2. Calculer la somme des dimensions des sous-espaces propres trouvés.

$$A = \begin{bmatrix} 3 & -3 \\ 2 & -4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 4 & 6 & 9 \end{bmatrix}$$
$$\lambda = 0, 1, 2, -3 \qquad \lambda = 0, -1, 1, 2 \qquad \lambda = 0, -1, 1, 2 \qquad \lambda = 0, -2, 14$$

1.2 Matrices triangulaires

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure.

Notons $d_1, ..., d_n$ ses coefficients diagonaux

Proposition 4 (Inversibilité)

T est inversible \Leftrightarrow ses coeff^{ts} diag^x sont tous non-nuls. $\Leftrightarrow d_1 \neq 0, d_2 \neq 0, ..., d_n \neq 0.$

Proposition 5 (Valeurs propres)

Le spectre de T est $Sp(T) = \{d_1, d_2, ..., d_n\}$. Ainsi, λ valeur propre de $T \iff \lambda$ sur la diagonale de T.

Exercice 2 (Matrices triangulaires)

Pour chacune des matrices triangulaires suivantes :

- 1. Trouver ses valeurs propres
- 2. Déterminer le sous-espace propre associé
- 3. La somme des dimensions des sous-espaces propres $\stackrel{?}{=}$ nb. de colonnes

$$T_{1} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \qquad T_{2} = \begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix} \qquad T_{3} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$T_{4} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & -4 & 0 \end{bmatrix} \qquad T_{5} = \begin{bmatrix} 2 & 3 & 6 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix} \qquad T_{6} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & -4 & 2 \end{bmatrix}$$

1.3 Spectre d'une matrice compagnon

Exercice 3 (ÉCRICOME 2013: une matrice compagnon)

On pose
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -9 & 6 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$
 et pour $\lambda \in \mathbb{R}$, on note $X_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix}$

Enfin, on note *R* le polynôme défini par : $\forall x \in \mathbb{R}$, $R(x) = x^3 - 6x^2 + 9x - 3$.

1. Montrer que R' admet deux racines réelles distinctes $r_1 < r_2$.

(que l'on précisera)

- **2.** Dresser le tableau de variations de R en y ajoutant les valeurs de R en r_1 et r_2 .
- **3.** Justifier que R admet trois racines a,b,c avec $0 < a < r_1 < b < r_2 < c$.

(On ne cherchera pas à calculer ces racines).

- **4.** Calculer AX_{λ} , pour $\lambda \in \mathbb{R}$ et montrer que X_{λ} est vecteur propre de A ssi $R(\lambda) = 0$.
- **5.** Montrer qu'on peut écrire $A = PDP^{-1}$, où D diagonale et P inversible à expliciter.

(**Suite** : application à l'étude d'un endomorphisme sur l'espace des matrices)

Polynômes annulateurs 2

Recherche de polynômes annulateurs

Exercice 4 (Calculs d'inverses et polynômes annulateurs)

Pour chaque matrice ci-dessous

- 1. Calculer M^2
- **2.** Trouver $a,b \in \mathbb{R}$ tels que $M^2 = aM + bI$. En déduire un polynôme annulateur Π_M .
- **3.** En déduire l'inverse de M sous la forme $M^{-1} = \alpha M + \beta I$.

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & -2 \\ 5 & -4 \end{bmatrix} \qquad D = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{bmatrix} \qquad E = \begin{bmatrix} -3 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & -3 \end{bmatrix}$$

2.2 Valeurs propres et polynômes annulateurs

Proposition 6 (Les valeurs propres sont racines)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

On suppose que *A* admet $P(X) \in \mathbb{R}[X]$ pour polynôme annulateur, soit : P(A) = 0.

Alors toutes les valeurs propres de A sont racines de P(X).

En d'autres termes : si $\lambda \in \operatorname{Sp}(A)$, alors $P(\lambda) = 0$.

(Que **ne dit pas** cette proposition?)

Exercice 5 (Une matrice stochastique)

Soient $p, q \ge 0$ avec p + q = 1. On étudie la matrice $S = \begin{bmatrix} 0 & 0 & p \\ 0 & 0 & q \\ 1 & 1 & 0 \end{bmatrix}$.

- 1. Calculer S^3 .
- **2.** En déduire, selon la parité de n, la valeur de S^n .
- **3.** Trouver les valeurs propres de *S*, et déterminer les sous-espaces propres associés.

Exercice 6 (Matrices « compagnons »)

Pour chaque matrice

- 1. Vérifier que le polynôme correspondant est annulateur.
- **2.** Vérifier que ses racines sont valeurs propres de la matrice.
- **3.** Combien vaut la somme des dimensions des sous-espaces propres?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$
$$X^{3} - 1 \qquad X^{3} + 1 \qquad X^{3} - 3X^{2} + 3X - 1 \qquad X^{3} + 2X^{2} - X - 2$$

3 Suites linéaires récurrentes

Exercice 7 (Suite linéaire récurrente double)

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_1 = 0 \\ u_{n+2} = u_{n+1} + 6u_n, \quad \forall n \in \mathbb{N}. \end{cases}$

- **1.** Résoudre l'équation caractéristique $r^2 = r + 6$.
- **2.** Soit (a_n) la suite géométrique (r^n) . Montrer $[\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} + 6a_n] \Leftrightarrow r^2 r 6 = 0$.
- **3.** Résoudre pour $(u_n) = (\lambda(-2)^n + \mu 3^n)$ les conditions initiales $\int u_0 = 1$ **4.** En déduire le terme général de (u_n) .

Exercice 8 (Suite linéaire récurrente triple)

Soit (u_n) la suite définie par :

t
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = 10, & u_1 = u_2 = 0 \\ \forall n \in \mathbb{N}, & u_{n+3} = 7u_{n+1} + 6u_n. \end{cases}$$

Pour
$$n \in \mathbb{N}$$
, on pose $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$.

On note
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{bmatrix}$$
 et $P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$

1. Réduction de A

- a) Montrer que l'on a $A^3 = 7A + 6I_3$.
- **b)** En déduire que les seules valeurs propres de A sont : -1, -2 et 3.
- c) Montrer que les vecteurs colonnes de P sont des vecteurs propres de A.
- **d)** En déduire que AP = PD, pour D diagonale à préciser, et conclure que $A = PDP^{-1}$.
- **2. Terme général de** (u_n) Pour $n \in \mathbb{N}$, on note : $P^{-1}X_n = Y_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$. a) Montrer que l'on peut écrire $\forall n \in \mathbb{N}$, $X_{n+1} = AX_n$.
 - **b)** Vérifier que (a_n) (b_n) et (c_n) sont des suites géométriques.
 - c) Exprimer X_0 , puis vérifier que $a_0 = 15$, $b_0 = -6$, et $c_0 = 1$.
 - **d)** En déduire l'expression générale de (u_n) .

Variante: approche matricielle

On peut aussi obtenir ce dernier résultat de façon plus « matricielle » comme suit :

- **1.** On a: $\forall n \in \mathbb{N}$, $X_{n+1} = AX_n$ donc $\forall n \in \mathbb{N}$, $X_n = A^n X_0$.
- **2.** Comme $A = PDP^{-1}$ (diagonalisation de A), alors $\forall n \in \mathbb{N}$, $A^n = PL$
- **3.** On a: $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ d'où $\forall n \in \mathbb{N}, D^n = \begin{bmatrix} (-1)^n & 0 & 0 \\ 0 & (-2)^n & 0 \\ 0 & 0 & 3^n \end{bmatrix}$.
- **4.** Comme $P^{-1}X_0 = \begin{pmatrix} 15 \\ -6 \\ 1 \end{pmatrix}$, on trouve donc $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix} = P \begin{pmatrix} 15(-1)^n \\ -6(-2)^n \\ 3^n \end{pmatrix}$
- **5.** On trouve alors $\forall n \in \mathbb{N}, \ u_n = 15(-1)^n 6(-2)^n + 3^n$.

4 Représentation matricielle dans une base

Définition 7 (Applications linéaires)

Soient E, et F deux espaces vectoriels.

Soit $f: E \rightarrow F$ une application.

Alors f est **linéaire** si f préserve les combinaisons linéaires :

$$\forall \lambda, \mu \in \mathbb{R}, \ \vec{u}, \vec{v} \in E,$$

$$\underbrace{f\left(\lambda \vec{u} + \mu \vec{v}\right)}_{\text{image de la c.l.}} = \underbrace{\lambda f\left(\vec{u}\right) + \mu f\left(\vec{v}\right)}_{\text{c.l. des images}} \quad (1)$$

Définition 8 (Vocabulaire *morphisme)

Isomorphisme

Une applⁿ linéaire $f: E \rightarrow F$ inversible.

(bijective)

Endomorphisme

Une application linéaire $f: E \rightarrow E$.

Automorphisme

Un endomorphisme inversible

Définition 9 (Représentation matricielle d'un endomorphisme)

Soit $f: E \to E$ un endomorphisme de E. Soit $\mathcal{B} = (\vec{u}_1, \dots \vec{u}_n)$ une base de E.

La matrice de f dans la base \mathcal{B} est notée $\operatorname{Mat}_B(f) \in \mathcal{M}_n(\mathbb{R})$. C'est la matrice (a_{ij}) définie par :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \left[\begin{array}{cccc} \uparrow & & & \uparrow \\ f(\vec{u}_1) f(\vec{u}_2) & \cdots & f(\vec{u}_n) \\ \downarrow & & \downarrow & \end{array} \right] \begin{array}{c} \rightarrow \vec{u}_1 \\ \rightarrow \vec{u}_2 \\ \vdots \\ \rightarrow \vec{u}_n \end{array}$$

$$\forall j \in [1, n], \quad f(\vec{u}_j) = a_{1j}\vec{u}_1 + a_{2j}\vec{u}_2 + \dots + a_{nj}\vec{u}_n$$

Exercice 9 (Un endomorphisme matriciel (d'après EmLyon 2014))

On considère l'espace $\mathcal{M}_2(\mathbb{R})$ des matrices d'ordre 2 à coefficients réels. On définit :

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{et } \mathcal{F} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$$

1. Montrer que \mathcal{F} est un espace vectoriel et que (A,B,C) est une base de \mathcal{F} .

Pour toute matrice M de \mathcal{F} , on note f(M) = TMT.

- **2.** Montrer que f est un endomorphisme de \mathcal{F} .
- 3. a) Vérifier que T est inversible et démontrer que f est un automorphisme de \mathcal{F} .
 - **b)** (pas encore vu) Est-ce que T est diagonalisable?

On note F la matrice de f dans la base (A,B,C) de \mathcal{F} .

- **4.** a) Calculer f(A), f(B), f(C) en fonction de (A,B,C) et en déduire F.
 - **b)** Montrer que $(F I)^2 = 0$.
- **5.** a) Montrer que f n'admet qu'une valeur propre à déterminer.
 - **b)** Déterminer une base et la dimension du sous-espace propre pour f associé à celle-ci.
 - c) $(pas\ encore\ vu)$ Est-ce que f est diagonalisable?

Exercice 10 (Manipulation formelle d'un endomorphisme (EmLyon 2015))

Soit E un espace vectoriel de dimension 3. On note 0_E le vecteur nul de E.

 \int *i* l'application identité de E:

 $i: E \longrightarrow E, \quad x \longmapsto x$

 θ l'application constante nulle de E dans $E: \theta: E \longrightarrow E, x \longmapsto 0_E$.

On considère un endomorphisme f de E tel que : (

 $f \neq \theta$ $f^2 + i \neq \theta \text{ (où } f^2 \text{ désigne } f \circ f.)$ $f \circ (f^2 + i) = \theta$

- a) Montrer que f n'est pas bijectif.
 - **b)** En déduire que 0 est valeur propre de f, puis montrer qu'il existe u appartenant à E tel que : $u \neq 0_E$ et $f(u) = 0_E$.

Soit v_1 appartenant à E tel que : $v_1 \neq 0_E$ et $f(v_1) = 0_E$.

- **2.** Montrer : $Sp(f) = \{0\}$.
- **3.** (pas encore vu) Est-ce que f est diagonalisable?
- **4.** Montrer que $f^2 + i$ n'est pas bijectif, puis en déduire qu'il existe ν appartenant à E tel que : $v \neq 0_E \text{ et } f^2(v) = -v.$

Soit v_2 appartenant à E tel que : $v_2 \neq 0_E$ et $f^2(v_2) = -v_2$. On note $v_3 = f(v_2)$.

- **5.** Montrer : $f(v_3) = -v_2$.
- a) Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de E.
 - **b)** Déterminer la matrice C de f dans la base \mathcal{B} .
- **7.** On note $g = f^2 i$.

Montrer que g est bijectif et exprimer g^{-1} à l'aide de f et de i.

Diagonalisabilité d'un endomorphisme 5

Diagonalisation d'une matrice

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable** si l'on peut écrire avec

 $A = PDP^{-1}$

(c'est une formule de changement de base)

▶ D diagonale : « la matrice des valeurs propres »

(matrice dans une nouvelle base)

P inversible : « la matrice des vecteurs propres »

(matrice de passage)

Condition nécessaire et suffisante de diagonalisabilité:

La matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable ssi la somme des dimensions de ses sous-espaces propres $E_{\lambda}(A)$ vaut n

Exercice 11 (Diagonalisation d'une matrice 2×2)

- Pour $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, on pose $\det(M) = ad bc$ et $\operatorname{tr}(M) = a + d$.

 1. Pour une matrice diagonale $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, calculer $\det(D)$ et $\operatorname{tr}(D)$.
- **2.** (Retour au cas général) Calculer M^2 .
- **3.** En déduire que $T(X) = X^2 tr(M)X + det(M)$ est un polynôme annulateur de M.
- **4.** Montrer que M n'est pas diagonalisable si $tr(M)^2 < 4 \det(M)$.

On suppose que l'on peut factoriser $T(X) = (X - \lambda_1)(X - \lambda_2)$ avec $\lambda_1 < \lambda_2$.

5. En déduire que les vecteurs colonnes de $M-\lambda_i I_2$, pour i=1 ou 2, sont des vecteurs propres de M, et que M est diagonalisable.

Remarque: Polynôme caractéristique d'une matrice 2×2

Le déterminant d'une matrice $A \in \mathcal{M}_2(\mathbb{R})$ indique si les vecteurs colonnes sont colinéaires. On a: (proportionnels)

- ▶ **Inversibilité** [*A* inversible] \iff [det(*A*) \neq 0].
- ▶ Non-inversibilité [A pas inversible] \iff [det(A) = 0].

Ainsi, on trouve le critère suivant pour les valeurs propres d'une matrice 2×2

$$\left[\lambda \in \mathbb{R} \in \operatorname{Sp}(A) \right] \iff \left[\underbrace{\det(A - \lambda \cdot I_2)}_{} = 0 \right].$$

 $\operatorname{trinôme\ du\ 2^{nd}\ deg.}$ et on peut vérifier en développant que : $\det(A-\lambda\cdot I_2)=\lambda^2-\operatorname{tr}(A)\cdot\lambda+\det(A)$

Exercice 12 (Diagonalisabilité de matrices 2 × 2)

Dire si chacune des matrices suivantes sont diagonalisables. Le cas échéant, diagonaliser.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & -3 \\ 2 & -4 \end{bmatrix}$$

Exercice 13 (Une matrice compagnon)

Soit
$$P(X) = X^3 - X^2 - 4X + 4$$
 et $M = \begin{bmatrix} 0 & 0 & -4 \\ 1 & 0 & 4 \\ 0 & 1 & 1 \end{bmatrix}$.

- 1. Par un pivot de Gauss, montrer que la matrice $M \lambda I_3$ est inversible ssi $P(\lambda) \neq 0$.
- **2.** Trouver les racines du polynôme *P*. En déduire les valeurs propres de *M*.
- **3.** Montrer que la matrice $P = \begin{bmatrix} 4 & 4 & 1 \\ -2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ diagonalise la matrice M.

Le cas des matrices symétriques

Exercice 14 (Suite de l'Ex 11)

Soit
$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$
 une matrice symétrique 2×2 .
Montrer que A est diagonalisable.

Proposition 10 (Théorème spectral)

Soit
$$S \in \mathcal{M}_n(\mathbb{R})$$
.

On suppose que S est **symétrique**.

Alors *S* est diagonalisable.

Exercice 15 (Application)

Soit
$$S = \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

- **1.** Montrer que *S* est diagonalisable.
- **2.** Montrer que $S^2 = 9I_3$.
- **3.** Déduire un polynôme annulateur de *S*.
- **4.** Diagonaliser la matrice S.

5.2 Diagonalisation d'un endomorphisme

Exercice 16 (Étude d'un endomorphisme de $\mathcal{M}_2(\mathbb{R})$ (d'après EmLyon 2012))

Soient
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, $P = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$.

0. Vérifier que l'on a BP = PD et en déduire que : $B = PDP^{-1}$.

On considère l'application $h: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), \quad M \longmapsto h(M) = AMB.$

- **1. a)** Vérifier que h est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
 - **b)** Montrer que h est bijectif et exprimer h^{-1} sous une forme analogue à celle de h.

On se propose maintenant de déterminer les valeurs propres de h.

- **2.** Soient $\lambda \in \mathbb{R}$, $M \in \mathcal{M}_2(\mathbb{R})$. On note N = MP, Montrer: $[h(M) = \lambda M] \iff [AND = \lambda N]$.
- **3.** Trouver pour quels réels $\lambda \in \mathbb{R}$ il existe $N \in \mathcal{M}_2(\mathbb{R})$ non-nulle telle que $AND = \lambda N$.

(À cet effet, on pourra noter
$$N = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
)

- **4. a)** En déduire les valeurs propres de h.
 - **b)** Montrer que h est diagonalisable et donner une matrice diagonale représentant h.
- **5.** On note *e* l'endomorphisme identité de $\mathcal{M}_2(\mathbb{R})$.

Montrer:
$$(h - e) \circ (h + e) \circ (h - 4e) \circ (h + 4e) = 0$$
.

Application aux puissances d'une matrice

Proposition 11 (Puissances d'une matrice diagonale)

La puissance n-ième d'une matrice diagonale est la matrice diagonale des puissances n-ièmes.

Exercice 17 (Diagonalisation et puissances)

Pour chacune des matrices suivantes :

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & -3 \\ 2 & -4 \end{bmatrix}.$$

- 1. La diagonaliser $M = PDP^{-1}$.
- **2.** Montrer que l'on a $\forall n \in \mathbb{N}, M^n = P \cdot D^n \cdot P^{-1}$.
- **3.** En déduire l'expression de M^n pour $n \in \mathbb{N}$.

Proposition 12 (Formule du binôme de Newton)

Soient $A, B \in \mathcal{M}_n(R)$.

On suppose que A et B commutent, c'est-à-dire que AB = BA.

Alors pour
$$n \in \mathbb{N}$$
, on a: $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k \cdot B^{n-k}$.

Décomposition de Dunford

Il se trouve que toute matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire de façon unique sous la forme :

$$A = \Delta + N \quad \text{où} \left\{ \begin{array}{l} \Delta \text{ est } \mathbf{diagonalisable} \ (\textit{en tous cas sur} \, \mathbb{C}) \\ N \text{ est } \mathbf{nilpotente} \ (\textit{soit } N^k \ \textit{pour } k \ \textit{assez grand} : k \geqslant p) \\ \Delta \text{ et } N \text{ commutent} : \Delta N = N\Delta. \end{array} \right.$$

Exercice 18 (Application)

On s'intéresse à la matrice $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

- 1. Pour quelle matrice a-t-on $A = \Delta + N$, avec $\Delta = 2I_3$?
- **2.** Calculer N^3 et en déduire N^k pour $k \ge 3$.
- 3. Vérifier que les conditions d'application de la formule du binôme de Newton sont vérifiées.
- **4.** En déduire l'expression de A^n pour $n \in \mathbb{N}$.

Exercice 19 (Version « piège »)

On s'intéresse cette fois à la matrice $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

1. Mêmes questions que dans l'exercice précédent, mais avec $\Delta = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

6 Commutant d'une matrice, et équations

Définition 13 (Commutant)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Le **commutant** de A est l'ensemble CA des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que AM = MA.

Exercice 20 (À chaque fois)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

- **1.** Montrer que le commutant CA de A est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que $A \in CA$.

Exercice 21 (Une équation (EmLyon 2015))

On considère les matrices suivantes :

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix},$$

et le sous-espace vectoriel $\mathcal F$ de $\mathcal M_3(\mathbb R)$ engendré par (A,B,C), c'est-à-dire :

$$\mathcal{F} = \{aA + bB + cC; (a,b,c) \in \mathbb{R}^3\}.$$

- **1.** Déterminer la dimension de *F*.
- **2.** Montrer: $\{M \in \mathcal{M}_3(\mathbb{R}); CM = MC\} = \mathcal{F}$
- **3. a)** Pour $a,b,c \in \mathbb{R}$, calculer la matrice $(aA+bB+cC)^2$. **b)** En déduire une matrice M de $\mathcal{M}_3(\mathbb{R})$ telle que : $M^2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & -12 \\ 0 & 12 & 5 \end{bmatrix}$

Exercice 22 (Diagonalisation et commutant dans $\mathcal{M}_4(\mathbb{R})$ (EmLyon 2013))

Soit
$$A = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix} \in \mathcal{M}_4(\mathbb{R}).$$
 1. Es

- **1.** Est-ce que A est diagonalisable dans $\mathcal{M}_4(\mathbb{R})$?
 - **2. a)** Déterminer les valeurs propres de *A*.
 - **b)** Donner une base du sous-espace propre associé à chaque valeur propre de *A*.
- **3.** a) En déduire deux matrices P et $D \in \mathcal{M}_4(\mathbb{R})$ telles que :
 - on a $A = PDP^{-1}$
 - $\,\blacktriangleright\,\, D$ est diagonale, et ses coefficients diagonaux sont dans l'ordre croissant,
 - ▶ P est inversible, et a ses coefficients diagonaux tous égaux à 1
 - **b)** Calculer P^{-1} .
- **4.** Montrer que CA est un s-e.v. de $\mathcal{M}_4(\mathbb{R})$.
- **5.** Soit $M \in \mathcal{M}_4(\mathbb{R})$. On note $N = P^{-1}MP$. Montrer: $M \in \mathcal{C}A \iff N \in \mathcal{C}D$
- **6.** Déterminer C_D , en utilisant les coefficients des matrices.
- **7.** En déduire que les matrices $M \in CA$ s'écrivent :

$$M = \begin{pmatrix} a & 0 & 0 & b \\ 0 & c & d & 0 \\ 0 & d & c & 0 \\ b & 0 & 0 & a \end{pmatrix}, \text{ où } (a,b,c,d) \in \mathbb{R}^4$$

8. Déterminer une base de CA et la dimension de CA.