Precision Machine Design

Topic 11

Error Budgets

Alexander H. Slocum
Walter M. May and A. Hazel May Professor of
Mechanical Engineering
Massachusetts Institute of Technology

$$\frac{1}{\odot} = \odot$$

Background:

Find the time to immerse yourself in some Books

FUNdaMENTALS of Design

http://web.mit.edu/2.75/resources/FUNdaMENTALS.ht ml

Free on-line text!

Reminder: Precision Machine Design Roadmap

Determine Deflections **Functional** • Loads Requirements Power Error Axis_error_apportionment_ Apportionment estimator Develop Stick Figures Design Structural Loops Error Error Budget Analysis _Spreadsheet Detailed design

Error Budgets

- A fast low cost method to help evaluate concepts before detailed solid models, FEA (which will not catch geometric errors...), because:
 - Nothing is perfect
 - Need to estimate accuracy and repeatability of concepts
 - Need to better predict loads/life of bearings!
- Start with basics
 - Stick figures
 - Structural loop
 - Error Budget Spreadsheets
 - Homogeneous Transformation Matrices
 - Model Error Motions

"If in other sciences we should arrive at certainty without doubt and truth without error, it behooves us to place the foundations of knowledge in mathematics"

Roger Bacon

Error Budgets

- Error budgets are useful for estimating the accuracy and/or repeatability of a machine
 - They can also be useful for helping to predict misalignment loads on bearings
- Four primary types of error include
 - Geometric
 - Load-induced
 - Thermal
 - Process
- For high precision machines, the magnitude of each will be about equal if there is a balanced allocation of resources
 - During the concept phase, develop the geometric-based error budget based on error allocation (e.g., geometric)
 - Spreadsheet uses Homogeneous Transformation Matrices to sum up errors from modules (coordinate systems)
 - This lets you investigate the overall geometry (and spacing) of elements as well as initial stiffness and load estimates
 - Next, use solid models and FEA to check on load-induced and thermal deflections

Example: Two Axis System

CSR: locate it at the tool point to close loop

Key Issue: Angular Errors

- As axes are stacked on top of each other, keeping track of the affect of small angular errors on toolpoint motion becomes daunting
 - "Sine errors" are not so simple, and even "cosine" errors start to add up

Key Issue: Angular Errors

- As axes are stacked on top of each other, keeping track of the affect of small angular errors on toolpoint motion becomes daunting
 - "Sine errors" are not so simple, and even "cosine" errors start to add up

	Value	Units	Variable	Equation		4.49	<u>.</u>
X length	100	mm	Xlen	·	igr,		
Y length	50	mm	Ylen	. 1 80	in the state of th		
Diagonal	111.8	mm	Dlen	1111	2657		
Angle	0.464	radians	Ad		6	Å	4
	26.57	degrees		180*Ad/PI()	\		
Imposed pitch	0.1	radians	pitch				
	5.73	degrees		pitch*180/PI()			
Tip displacement using diagona	I				· \	9	20.00
X direction	4.49	mm	Dxd	Dlen*(COS(Ad-pitch)-COS(Ad))	\ i/	10.23	3
Y direction	-10.23	mm	Dyd	Dlen*(SIN(Ad-pitch)-SIN(Ad))	100.00	-1	
					1		
Tip displacement using X directi	ion length onl	У	-			1	' '
X direction	-0.50	mm	Xxd	Xlen*(COS(-pitch)-COS(0))		V	I
Y direction	-9.98	mm	Xyd	Dlen*(SIN(Ad-pitch)-SIN(Ad))			-
Error in using simple X distance	·				0.50	9.98	/ یو
X direction	4.99	mm	dDX	Dxd-Xxd	0.50	· ·	5.73
Y direction	-0.25	mm	dDY	Dyd-Yyd			7-91

Keeping track of all the errors:

Homogeneous Transformation Matrices

- Abbe errors (i.e., angular errors amplified by distances) are root cause of biggest errors
 - All those rotations about all those axes can become very confusing.
- HTMs help to model how motions in one link in a serial chain reflect through the chain

$$\begin{bmatrix} X_{N} \\ Y_{N} \\ Z_{N} \\ 1 \end{bmatrix} = {}^{N}T_{N+1} \begin{bmatrix} X_{N+1} \\ Y_{N+1} \\ Z_{N+1} \\ 1 \end{bmatrix} \qquad {}^{N}T_{N+1} = \begin{bmatrix} O_{ix} & O_{iy} & O_{iz} & P_{x} \\ O_{jx} & O_{jy} & O_{jz} & P_{y} \\ O_{kx} & O_{ky} & O_{kz} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Each column represents the *direction cosines* of the rotated axes
 - To avoid confusion about order of rotation, one HTM per axis of rotation
 - For small angular error motions, order not important
 - The spreadsheet does the math, so you do not have to worry about it
 - Just use good modeling technique

Homogeneous Transformation Matrices

• HTMs in particular enable modeling of "Abbe errors" as they cascade through the machine

Example: A Single Axis' HTMs

- Consider a single axis moving in the X direction, with a tool tip extending from the plane of the center of stiffness, and $\varepsilon_{\rm X} = \varepsilon_{\rm V} = \varepsilon_{\rm Z} = 0.001$ radians
- The individual HTMs to provide the location of the tool tip in the center of stiffness coordinate system are:

45	Tool tip coordinate vector				
46	xt	1			
47	yt	1			
48	zt	1			
49		1			
50	HTM for epsx_1				
51		1	0	0	0
52		0	0.9999995	-0.001	0
53		0	0.001	0.9999995	0
54		0	0	0	1
55					
56	HTM for epsy_1				
57		0.9999995	0	0.001	0
58		0	1	0	0
59		-0.001	0	0.9999995	0
60		0	0	0	1
61					
62	HTM for epsz_1				
63		0.9999995	-0.001	0	0
64		0.001	0.9999995	0	0
65		0	0	1	0
66		0	0	0	1
67		10.11			

© 2020 Alexander Slocum 10-11 10/4/23

Error Budgets:

Spreadsheets & Modeling Techniques

- Open kinematic chain machines are straightforward to model
- Closed kinematic chains require local calculation of error motion or an equivalent open-chain model
 - E.g., kinematic coupling error motions
 - Bridge-type machines
 - Method 1:
 - Widely spaced bearings that simply support a bridge component are condensed to a single "very accurate" bearing that supports a cantilever
 - For example, the accuracy of this bearing is based on error motions of a carriage supported by bearings which are spaced the bridge-width apart
 - Method 2:
 - Place the center of stiffness (and the CS) essentially in the middle of the bridge...

Error Gains

- "Error Gains" enable accounting for the sign of errors
 - A random error has no sign, yet there is an implied sign that occurs with random rotational error motions due to the way rotations are done mathematically
 - From Error Budget Spreadsheet.xls: Axes' CS and Loads
- Errors at the tool tip are calculated by multiplying each error's gain by each error as it occurs within the machine
 - All the errors and their contributions to the total can thus be kept separate

In the case of random errors, their absolute values can then be combined without one error cancelling another (e.g., for average of errors)

Error gain ma	atrix: rotational er	rors' effects (in	this coordinate s	j
	epsx's gains	epsy's gains	epsz's gains	
deltaX	0.000	-213.000	45.000	
deltaY	213.000	0.000	10.000	
deltaZ	-45.000	-10.000	0.000	

S_X α E_y = -ε₂y + δ_X Sy α -ε_X 2 + ε₂ X + δ_y S₂ α -ε_X y -ε_y X + δ₃

Error Gain

• The gain for a rotation error about the Z1 axis will depend on the location of the tool tip (Coordinate System 4) with respect to the reference coordinate system (CS1 = CSR in simplest case)

Using Error Gains for Total Error Estimation

- For a particular machine geometry, a spreadsheet can compute the Error Gains
 - Each error in each axis has a unique gain that depends on machine axes' positions
 - Gains have a sign: indicate magnitude and direction of the resulting toolpoint error
 - Random errors in a coordinate system's location are multiplied by their gain to create an assessment of all random errors including their "signs" (direction)
- Different combination methods can be applied
 - Sum of all errors may lead to random errors cancelling (too liberal)
 - Sum of absolute value of all errors (too conservative)
 - Root Square Sum of all errors (liberal)
 - Average of Sum of absolute value of all errors & RSS (fair estimate)
 - Ideally probabilistic methods would be used in a Matlab or Python based program
 - E.g., Monte Carlo simulation
 - See "An error budgeting framework for engineering design" MIT SM thesis, Andrew Duenner
- Which method?
 - Develop experience and intuition by design, predict, measure, compare results with predictions!

Error Budgets: Stick Figures

- Stick figure:
 - The sticks join at centers of stiffness,
 mass, friction, and help to:
 - Define the sensitive directions in a machine
 - Locate coordinate systems
 - Set the stage for error budgeting
 - The designer is no longer encumbered by cross section size or bearing size
 - It helps to prevent the designer from locking in too early on a concept
- Error budget and preliminary load analysis can indicate required stiffness required for each "stick" and "joint"
 - Appropriate cross sections and bearings can then be deterministically selected

Error Budgets: Structural Loops

- The *Structural Loop* is the path that a load takes from the tool to the work as it passes through axes' Centers of Stiffness (CoS)
 - It contains joints and structural elements that locate the tool with respect to the workpiece
 - It can be represented as a stick-figure to enable a design engineer to create a concept
 - Subtle differences can have a HUGE effect on the performance of a machine
 - The *structural loop* gives an indication of machine stiffness and accuracy

• The product of the length of the structural loop and the characteristic manufacturing and component accuracy (e.g., parts per million) is indicative of machine accuracy (ppm)

Coordinate Systems and System Stiffness

- There are TWO stiffness regimes to consider
 - Stiffness of the connection (e.g., bearings) at the Coordinate System origin (Center of Stiffness) caused by forces and moments applied to the CoS
 - Linear stiffness
 - Rotary stiffness
 - Stiffness of the structure (e.g., cantilever beam)
 - 6x6 stiffness matrix

Error Budgets: Spreadsheets

- Modules from Tool to work position are each defined with respect to adjacent modules all the way back to a reference coordinate system (CS)
 - Start with CS1 as the CS that defines the position of the tool

- Random errors:
 - Bearing motions, mfg errors, thermal
- Systematic errors:
 - Load induced (force, thermal), mfg errors (to be mapped)
 - Deflections modeled using linear & rotational springs at center of stiffness
 - Bearings and structural elements can be included
 - Simple first order approximations can be obtained to roughly size elements
- Solid model and FEA used later to get better estimates

10-19 10/4/23

How to Use Error Budget Spreadsheet

- See the text "How to use Error budget spreadsheet.doc"
- The dilemma is does one use a generic program, or carefully write one's own for the specific design at hand?

 It may take longer to learn and tweak the generic program than to just learn from it and start from scratch with a dedicated program

Example: Coordinate System Location

Example: Coordinate System Location

- Axis 1
 - Origin placed at the Center of Stiffness (CoS) of the two Z axis bearing carriages
 - The tool is located wrt the CoS
- Axis 2
 - Origin placed at the CoS of the four Y axis bearing carriages
 - Axis 1 origin is located wrt the CoS
- Axis 3
 - Origin placed at the CoS of the four X axis bearing carriages
 - Axis 2 origin is located wrt the CoS
- Axis 4
 - Origin placed at the CoS of the X axis structure
 - This forms the reference CS
 - Deflections or mounting errors of the X axis tube cause motions of axis 3
 origin and reflect on up to the toolpoint
- Next step—walk through the details on the spreadsheet

Intuition check: Stiffness Along the Loop

• Type of beam?

round_square_tube_compare.xls				
To estimate size of a motor given desired torque				
By Alex Slocum, Last modified 2020.10.11 by Alex Slocum				
Enters numbers in BOLD , Results in RED				
	units	name	value	
Structural beam modulus of elasticity	MPa	Es	6.67E+04	
Shear Modulus	MPa	Gs	2.58E+04	
Round			X axis	Y axis
OD	mm	R_OD	250	200
wall	mm	R_wall	25	20
Area	mm^2	R_Area	17,671	11,310
1	mm^4	R_I	1.E+08	5.E+07
Ipolar	mm^4	R_Ip	2.E+08	9.E+07
Square				
OD	mm	S_OD	200	
wall	mm	S_wall	20	
Area	mm^2	S_Area	14,400	
Туу	mm^4	S_I	7.87E+07	
Ipolar	mm^4	S_IP	1.17E+08	
Comparison				
Bending stiffness round/square	1.44			
torsional stiffness round/square	1.94			
weight round/square	1.23			

Stiffness Along the Loop

- Effect of linear bearings?
- Bearings are often sized for load/life
 - Linear_Motion_Guide_Life.xls
- End up being much stiffer than the structure when mounted on structure sized for stiffness

Addition of size 25 bearing rails		
width	mm	23
height	mm	23
Area	mm^2	529
Moment of Inertia	mm^4	23,320
Modulus of elasticity	MPa	2.00E+05
distance of centroid to centroid of circle	mm	131.5
Machined groove for bearing rails		
depth	mm	5
area	mm^2	115
Moment of Inertia	mm^4	1198
Plane round section stiffness (EI)	N-mm^2	7.5.E+12
Increase in round section stiffness (EI) by steel linear guide		
rails on top and bottom	N-mm^2	9.2.E+12
Increase in stiffness by mounting steel rails at top and bottom	1	
location on round rail		1.22
Assume simply supported X axis with Y axis loading it		1.22
X axis length	mm	1600
Force from Y axis	N	1000
Deflection (currently)	mm	0.0113
Deflection if rails mounted top and bottom	mm	0.0093
difference	mm	0.0021
Size 25 linear guide carriages		
Stiffness	N/micron	600
Number of carriages per rail		2
Total translational stiffness	N/micron	2400
spacing between carriages on rails on opposite sides of tube	mm	263
Angular stiffness	N-m/rad	4.15E+07
Torsional stiffness of X axis tube structure	N-m/rad	1.46.E+07
Ratio linear bearing torsional stiffness/X axis		2.84
Assume Y axis Cantilevered		
Y axis length	mm	600
Distance from load applied to base of beam	mm	500
Deflection due to Y axis beam bending	mm	0.013
Distance from load applied to center of X axis	mm	625
Deflection due to X axis structure torsion	mm	0.000027
Deflection due to X axis bearings torsion	mm	0.000009
Total torsional deflection	mm	0.000036
দ্বিক্টাত প্রশ্বনding deflection / torsional deflection		10/37/3

Sensor Placement Effects

- If a linear encoder is used to measure an axis' position, it can reduce the Abbe error
- To model the effect of sensor placement, scale the angular error that affects error motions in the direction of sensor action
 - Add sensor location effect as an input in the Error Budget spreadsheet

Error_Budget_Spreadsheet.xls: Summary Worksheet

• Outputs for system and each axis, and input servo axis motions

		Frr	or Budget Spre	adshoot vis				Artical Manhamor Wilson				
			Suumary of R					Machine V ode Arian				
	Writte	en by Aex Sloc		last edit 2016.05.24 by	AHS		,	Add 1 X and Commen				
			3 DoF Bridge N	1achine								
Last use	Last use: 2020.10.11 By: Alex Slocum Please enter edits in "Edit History" Worksheet				A PARTIES AND A							
Inputs in BL	ACK in Yellow backgrour	Input	BE CONSISTAN	WITH UNITS!				Neffent Bursty Vota				
Outputs in RED in Green background Output					YELLOWIN THE							
Axes' coordi	Axes' coordinates and applied loads are defined in worksheet "Axes' CS & Loads"					Sinsteral Loop						
				Servo cells are BOLD PURPLE other	Setting up the str							
						numbers for quick ref and all are used	locations wrt e		-			
Axes' coordinates and applied loads are defined in worksheet "Axes' CS & Loads"				workbook CSs and Loads	motions	to drive chan	ges					
									Х	Υ	Z	Description
								POI location in CS_1 coordinates	0	0	-200	Tool point wrt Z carriage
				he Entire Machine, len	gth dimenson	mm		CS_1 location in CS_2 coordinates		0		Z carriage CoS wrt Y carriage CoS
S	Number of axes		All axes' 0	eometric Errors				CS_2 location in CS_3 coordinates		500		Y carriage CoS wrt X carriage CoS
ĕ	4		Randon		Systematic	F=kX displacement		CS_3 location in CS_4	-150	200	0	X carriage CoS wrt X axis anchor to "rigid frame"
Axe		Sum	RSS	Avg(SUM, RSS)	Sum	Sum		CS_4 coordinates wrt the toolpoint	250	-700	200	Anchor point wrt the cutting point
	deltaX	0.131	0.091	0.111	-0.816	0.009		Sum (must be zero)	0	0	0	
₹	deltaY	0.070	0.046	0.058	0.583	-0.012		X servo (0-600 mm)		200	X servo	Only moves to middle of axis (simply supported tube)
	deltaZ	0.123	0.093	0.108	0.984	-0.064		Y servo motion (0 to 700 mm)		200	Y servo	
	Vector displacement	0.193	0.138	0.165	1.405	0.066		Z servo motion (0-200)		0	Z servo	

This is a section the user creates to model motion of the machine. It is used to vary relative locations of the Coordinate systems on the workbook tab *CSs and Loads*

Error_Budget_Spreadsheet.xls: Axes' CS and Loads Worksheet

• Inputs for each axis' geometry and loads; outputs for each axis' load & error calcs

	Erro	or Budget Sprea	ıdsheet									
		nate Systems a		d	+ Y							
		by Aex Slocum		months and a second of								
Inputs in BLA	CK in Yellow background cells:	Input from Sur		Right Hand CS	θ,							
•	ED in Green background cells:	Output	,,									
-	nates and applied loads are defined in worksheet "Axes' CS & Lo			θ_z								
	nates and applied loads are defined in worksheet "Axes' CS & Lo			- 2								
7.0.00 000.0.				z 💙	AX							
	Units of length	mm			U _X							
Num	ber of axes used (NOT including reference frame), Naxes	4		Note that axes be	eyond this number are auto	matically "turned o	ff"					
	NOTE axis 1 is the axis (structure) that HOLDS the tool, it doe No	OT have to be I	ocated at tool p	oint)								
	Coordinates of point of interest (POI) in this CS (0,0,0 is at CS ce	nter of stiffnes	s)	Error motions of CS	Origin along & about its ax	es. Values from A	xis 1 worksheet					
00.4	X coordinate of point of interest in this CS	0		Random	Geometric Errors	Systematic G	eometric Errors					
CS 1	Y coordinate of point of interest in CS	0		deltaX	0.005000	deltaX	0.050000					
	Z coordinate of point of interest in CS	-200		deltaY	0.005000	deltaY	0.050000					
1	Coordinates of this CS in the next CS			deltaZ	0.005000	deltaZ	0.050000					
1	Rotation about this CS's X axis to align Y axes (degrees)	0		EpsilonX	0.000050	EpsilonX	0.000500					
	Rotation about resulting Y axis to align axes (degrees)	0		EpsilonY	0.000050	EpsilonY	0.000500					
Enter	rotation about resulting Z axis to align axes (degrees)	0		EpsilonZ	0.000050	EpsilonZ	0.000500					
name					F=kx Displacements +			Next CS CS Origi	n structural	Next CS CS Origin	structural angu	lar displ in
below	X translation of this CS's origin along <u>next</u> CS's X axis	-100	Location of	structural angu	ular displ from next CS	Stiffness of this C	S origin wrt its axes	angular o	lispl	_	this CS	.
below	Y translation of aligned CS along next CS's Y axis	0	CS_1's origin	deltaX	0.000000	KX	2312800	EpsilonX	0.000000	EpsilonX	0	
	Z translation of aligned CS along next CS's Z axis	0	in CS_2	deltaY	0.000000	KY	6335.545185	EpsilonY	0.000000	EpsilonY	0	
=	Resulting ideal coordintes of point of interest in the next CS			deltaZ	-0.000052	KZ	2312800	EpsilonZ	0.000000	EpsilonZ	0	
ЬО	X coordinate of point of interest in <u>next</u> CS	-100.000		EpsilonX	0.000000	KrotX	23262791667	Unity	1	Unity	1	
	Y coordinate of point of interest in <u>next</u> CS	0.000		EpsilonY	0.000000	KrotY	23532375000					
is	Z coordinate of point of interest in <u>next</u> CS	-200.000		EpsilonZ	0.000000	KrotZ	23262791667					
tip	Applied loads at point of interest in this axis' CS			This CS POI F=kx st	ructural displacements		POI displacements	s = Structure com	oliance matrix	* Force & Moment	at POI	
Ξ	Fx=	0		deltaX	0.000000	2.09E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00
tool	Fy=	0		deltaY	0.000000	0.00E+00	6.64E-06	0.00E+00	0.00E+00	0.00E+00		4.98E-08
	Fz=			deltaZ	-0.000417	0.00E+00	0.00E+00	2.09E-05	0.00E+00	-1.56E-07		0.00E+00
ē				EpsilonX	0.00000	0.00E+00	0.00E+00	0.00E+00	6.72E-10	0.00E+00		0.00E+00
ē	unity Mx=			EpsilonY	0.00000	1.56E-07	0.00E+00	-1.56E-07	0.72E-10 0.00E+00	1.56E-09		0.00E+00
where	My=			EpsilonZ	0.000000	0.00E+00	4.98E-08	0.00E+00	0.00E+00	0.00E+00		6.72E-10
	Mz=			LPSHORE	0.00000	0.002+00	4.56E-08	0.001+00	0.002100	0.002+00		0.72L-10
ge	unity											
<u>a</u>	Applied loads at Center of Stiffness in this axis' CS	-	Resulting load	s at this CS Center of	of Stiffness							
carriage	Fx=	0	Fx=	0								
g	Fy=		Fv=	0								
	Fz=		Fz=	-120								
motion	unity		unity	1								
oti	Mx=		Mx=	0								
Ĕ	My=		My=	0								
Z r	Mz=		Mz=	0								
17				1								
	unity	1	unity	1								

	NOTE axis 1 is the axis (structure) that HOLDS the tool, it doe NO		•	ooint)	
	Coordinates of point of interest (POI) in this CS (0,0,0 is at CS ce	nter of stiffnes	s)		Origin along & about its ax
CS 1	X coordinate of point of interest in this CS	0		Random	Geometric Errors
C3 I	Y coordinate of point of interest in CS	0		deltaX	0.005000
	Z coordinate of point of interest in CS	-200		deltaY	0.005000
1	Coordinates of this CS in the next CS			deltaZ	0.005000
1	Rotation about this CS's X axis to align Y axes (degrees)	0		EpsilonX	0.000050
Enter	Rotation about resulting Y axis to align axes (degrees)	0		EpsilonY	0.000050
	rotation about resulting Z axis to align axes (degrees)	0		EpsilonZ	0.000050
name			Location of	_	F=kx Displacements +
below	X translation of this CS's origin along <u>next</u> CS's X axis	-100	CS_1's origin		ular displ from next CS
	Y translation of aligned CS along <u>next</u> CS's Y axis	0	in CS_2	deltaX	0.000000
	Z translation of aligned CS along <u>next</u> CS's Z axis	0	~~ <u>~</u> ~	deltaY	0.000000
POI	Resulting ideal coordintes of point of interest in the next CS	400.000		deltaZ	-0.000052
٥	X coordinate of point of interest in <u>next</u> CS	-100.000		EpsilonX	0.000000
<u>.s</u>	Y coordinate of point of interest in <u>next</u> CS	0.000		EpsilonY	0.000000
Q	Z coordinate of point of interest in <u>next</u> CS	-200.000		EpsilonZ	0.000000
where tool tip is	Applied loads at point of interest in this axis' CS				tructural displacements
70	Fx=	0		deltaX	0.000000
Ö	Fy=	0		deltaY	0.000000
4	Fz=	-20		deltaZ	-0.000417
2	unity	1		EpsilonX	0.000000
he	Mx=	0		EpsilonY	0.000003
3	My=	0		EpsilonZ	0.000000
a)	Mz=	0			
8	unity	1			
Ţ.	Applied loads at Center of Stiffness in this axis' CS		Resulting load	s at this CS Center	of Stiffness
ar	Fx=	0	Fx=	0	
Ö	Fy=	0	Fy=	0	
motion carriage	Fz=	-100	Fz=	-120	
ţi	unity	1	unity	1	
.0	Mx=	0	Mx=	0	
	My=	0	My=	0	
Ν	Mz=	0	Mz=	0	
	unity	1	unity	1	

Error_Budget_Spreadsheet.xls: Axes' Errors and Compliances Worksheet

• Input connection's coordinates, parameters for computing stiffness, and errors of elements

1		7 1		1	2	,	,					
A	В	C	D	E	F	G	Н		J	K	L	M
CS 1	Tool Holder						100					100000000000000000000000000000000000000
Geometric errors at CS origin and location and stiffnes	ss of points (o	r bearings) of attachment between coordi	nate systems	ì						Ĭ.	11	
Error motions of CS Origin along & about its axes. Val	ues read used	by "Coordinate Systems" worksheet	-	C/	REFUL a	s this compl	iance matri	x is referenc	ed in the wo	rksheet "CS	and Loads	"
Element	Tool	Bearings (if values needed for this CS)		Tool in toolholder (cantilever beam): X lateral, Y transverse, Z axial								
Structure type	cantilever	Size (e.g., rail width)	25	dx		1.74E-04	0					Fx
Material	steel tool	Fmax (N)	17346	dy		0	1.74E-04	0	2.61E-06	0	0	Fy
Young's Modulus (N/mm^2)	2.00E+05	k @ medium preload (N/mm)	647000	dz		0	0	2.04E-06	0	0	0	Fz
Poison ratio	0.29	ball diameter (mm)	3	thetaX	_=_	0	2.61E-06	0	5.22E-08	0	0	Mx
Shear modulus (N/mm^2)	77519	% deflection max load	0.01	thetaY		-2.61E-06	0	0	0	5.22E-08	0	Му
Beam properties (rectangular tube, or round, else custo	omize)	stiffness est (N/mm)	578200	thetaZ		0	0	0	0	0	6.73E-08	Mz
Position along beam	100	rail width (mm)	25							Y-		1
Length (mm)	100	roll rotary stiffness (Nmm/radian)	101093750							6-		
Height (mm), or OD	25	pitch rotary stiffness (Nmm/radian)	33697917	**1	.6				_		4×1	
Width (mm), ID or fraction of solid cylinder	50%	yaw rotary stiffness (Nmm/radian)	33697917	10-1	J.8	SEL 4	4	KW 9= W	IL.			PoT.
wall (mm)		servo system (if values needed for this CS	6)	1/1	128	341	4	13 2	11	- CE	1000	-3
Area (mm^2)	245	Ballscrew		4	0	(E &	6	0(= N	Y. [STATISTE	7	
I width dimension of beam (mm^4)		Root diameter (mm)	18	11		ALT.	7	E.	A3 3		<u> </u>	
I height dimension of beam (mm ⁴)	9587	Length (mm)	2500				87		_ ku	Co mille has	2	
Ipolar (mm^4)	19175	Modulus	2.00E+05						133	_	1	
I/A stiffness to weight ratio	39	shaft stiffness	2.04E+04						54 8	Baris		-14
ref, simply supported stiffness about Izz (N/mm)	5752	factor to derate stiffness of shaft for nu	3							1		_
Notes: Y axis is + into the page so a + X direction force	causes a - rota	tion about Y axis. Cells not used are colore	d blue									
Net stiffness of CS origin (POA@Center of Stiffness)		Servo stiffness (if applicable, else make								ì	,	
due to attachment points		sure to enter "0"										
Linear stiffness	[]											
KX	1.00E+06	0.00E+00				ļ.						
KY	1.00E+06	0.00E+00				Applic	ation note:	IF using a p	urchased lin	ear table wi	th mfg spec	s for stu
KZ	1.00E+06	0.00E+00				CRITICAL: E	nter Total n	umber of be	earing or att	achment po	nts (up to 1	2) AND
Rotation stiffness		111 1		Numbe	r of atta	ch points =	1					
KrotX	1.00E+08	0.00E+00				NAME OF STREET	Attachmen	t points bet	ween currer	t CS origin a	nd next CS:	usually
KrotY	1.00E+08	0.00E+00				location in	1	2	3	4	5	6
KrotZ	1.00E+08	0.00E+00	1			X	0			0	0	0
Application note: IF using a purchased axis with mfg s						Y	0			0	0	0
number of attach points and then the stiffness and er	ror motion da	ta from the catalog for that "point" (the				Z	0		0	0	0	0
entire table)			N			Linear stiffr		100000				
Additional angular error motions (in event of using a	modular axis)					KX	1.00E+06	0		0	0	0
Random						KY	1.00E+06	0	7.3	0	0	0
EpsilonX (radians)	0					KZ	1.00E+06	0	0	0	0	0
EpsilonY (radians)	0		-29			Rotation st	ffness at th	e point			10/4	/23

	A	В	С	D						
1	CS 1	Tool Holder								
2	Geometric errors at CS origin and location and stiffness	s of points (or	bearings) of attachment between coordi	nate systems						
3	Error motions of CS Origin along & about its axes. Values read used by "Coordinate Systems" worksheet									
4	Element	Tool	Bearings (if values needed for this CS)							
5	Structure type	cantilever	Size (e.g., rail width)	25						
6	Material	steel tool	Fmax (N)	17346						
7	Young's Modulus (N/mm^2)	2.00E+05	k @ medium preload (N/mm)	647000						
8	Poison ratio	0.29	ball diameter (mm)	3						
9	Shear modulus (N/mm^2)	77519	% deflection max load	0.01						
10	Beam properties (rectangular tube, or round, else custo	stiffness est (N/mm)	578200							
11	Position along beam	100	rail width (mm)	25						
12	Length (mm)	100	roll rotary stiffness (Nmm/radian)	101093750						
13	Height (mm), or OD	25	pitch rotary stiffness (Nmm/radian)	33697917						
14	Width (mm), ID or fraction of solid cylinder	50%	yaw rotary stiffness (Nmm/radian)	33697917						
15	wall (mm)		servo system (if values needed for this CS	5)						
16	Area (mm^2)	245	Ballscrew							
17	I width dimension of beam (mm^4)		Root diameter (mm)	18						
18	I height dimension of beam (mm^4)	9587	Length (mm)	2500						
19	Ipolar (mm^4)	19175	Modulus	2.00E+05						

Notes: Y axis is + into the page so a + X direction force causes a - rotation about Y axis. Cells not used are colored blue

39

5752

shaft stiffness

factor to derate stiffness of shaft for nu

2.04E+04

I/A stiffness to weight ratio

ref, simply supported stiffness about Izz (N/mm)

20

21

CA		s this compli ol in toolhold						; "
dx		1.74E-04	0	0	0	-2.61E-06		Fx
dy		0	1.74E-04	0	2.61E-06	0	0	Fy
dz		0	0	2.04E-06	0	0	0	Fz
thetaX	_=_	0	2.61E-06	0	5.22E-08	0	0	Mx
thetaY		-2.61E-06	0	0	0	5.22E-08	0	Му
thetaZ		0	0	0	0	0	6.73E-08	Mz
1=1	→ 1 S × §	$= \frac{FL^3}{3EI}$ $= \frac{FL^2}{2EI}$	\$ \frac{1}{2}	X = M $X = M$ $E = M$	L ² X3 0	Spindle Shots	1 X I	Po]

Example

- Straight tubular beam
- Create a new workbook to enter dimensions and calculate stiffnesses

100
15
3730150
7460301
1000
7.00E+04
5.22E+08
5.22E+08
5.22E+08

- Assume size 20 linear motion guide (profile rail bearing)
- The axis' beam stiffness is accounted for with a rotational model, divided equally at the four bearing blocks
 - The bearing blocks individual rotational stiffness's are ignored
 - They are very small wrt the rotational stiffness from spacing the blocks apart