ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

15

12

CSE 4203: Discrete Mathematics

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

Describe the worst-case time complexity of the odd-even sort algorithm in terms of the 10 number of comparisons used. Express the complexity in Big-O notation.

The algorithm for odd-even sort algorithm is given in Figure 1.

```
procedure oddEvenSort(a_1, ..., a_n : real numbers with <math>n \ge 2)
 isSorted := False
 while isSorted = False do
      isSorted := True
      i := 1
      while i < n do
           if a_i > a_{i+1} then
               interchange a_i and a_{i+1}
               isSorted := False
           i := i + 2
      i := 2
      while i < n do
           if a_i > a_{i+1} then
               interchange ai and ai+1
               isSorted := False
           i := i + 2
 return
```

Figure 1: Code listing for Question 1(a).

- b) Express the negation of the following propositions using quantifiers, and then express them in English.
 - Some drivers do not obey the speed limit. i.
 - All Swedish movies are serious. ii.
 - No one can keep a secret. iii.
 - There is someone in this class who does not have a good attitude. iv.
 - Every bird can fly. ٧.
- Give big-O estimates (with the values of C and n₀) for the following functions:
 - $(n^2 + 5)(n 1)$ i.
 - $(nlgn + 1)^2 + (lgn + 1)(n^2 + 1)$ ii.
 - $3nlg(n!) + (n^2 + 4)lg(n)$ iii.

	Draw Venn Diagrams showing the followings: (Identify all parts of the diagram with proper	0
b)	Draw Venn Diagrams showing the followings: (Identity an parts	8
٠,	notations) $A \cup B \subset A \cup C \text{ but } B \cap C = \{\}$	
	ii. $A \cap B \subset A \cap C$, but $B \cap C = \{\}$ Write the following complexities in ascending order:	5
c)	$\theta(n^2), \theta(b^n), \theta(n\log n), \theta(n!)$ where $\theta(n)$	
a)	Use logical equivalence to show that following propositions are contradiction: i. $\neg(p \lor \neg(p \land q))$	6
	ii. $\neg((p \lor \neg(p \land q))) \rightarrow (q \lor r))$	
b)	Use truth table to show that:	_
U)	$(n \land (n \rightarrow a) \rightarrow \neg a)$ is a contingency.	6
c)	ii. $((p \to q) \land (q \to r) \to (p \to r))$ is a tautology.	7
	and other has a sign that says "Cheap food is not good". Are the signs saying the same times.	
	Leatify your analyze using predicates, quantification etc.	6
d)	Given that $h(x) = 3x$ and $g(t) = -2t - 2 - h(t)$ and $f(n) = -5n^2 + h(n)$, calculate $h(g(8) + f(2))$.	0
		12
a)	Show that if n is an integer and $n^2 + 5$ is odd, then n is even using	12
	i. A proof by contraposition.	
F)	ii. A proof by contradiction Given premises:	8
b)	"Students who pass the course either do the homework or attend lecture;"	٠
	"Mahid did not attend every lecture;"	
	"Mahid passed the course."	
	Using rules of inference prove the conclusion that "Mahid have done the homework".	
c)	Theorem: If n^2 is positive, then n is positive.	5
,	Proof: Suppose that n^2 is positive. Because the conditional statement "If n is positive, then	

 n^2 is positive" is true, we can conclude that n is positive.

Is there any problem with the proof of this theorem? Give proper arguments to support your answer.