7510 HW 6

Duncan Wilkie

6 October 2022

Problem 1 (D&F 4.5.4). Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D_{12} and $S_3 \times S_3$.

Solution. $|D_{12}|=12=2^2\cdot 3$ and $|S_3\times S_3|=3!\cdot 3!=3^2\cdot 2^2$, so the Sylow 2-subgroups are of order 4 in each case, and the Sylow 3-subgroups of order 3 and 9, respectively. By Sylow's theorem, the number of Sylow p-subgroups must divide m, if $|G|=p^{\alpha}m$. Therefore, $n_2(D_{12})\mid 3$, $n_3(D_{12})\mid 4$, $n_2(S_3\times S_3)\mid 9$, and $n_3(S_3\times S_3)\mid 4$. Accordingly, $n_2(D_{12})\in\{1,3\}$, $n_3(D_{12})\in\{1,2,4\}$, $n_2(S_3\times S_3)\in\{1,3,9\}$, and $n_3(S_3\times S_3)\in\{1,2,4\}$. The condition $n_p\equiv 1\pmod{p}$ eliminates $n_3=2$ for both groups. The standard presentation for D_{12} is $\left\langle s,r\middle|s^2=r^6=1,sr=r^{-1}s\right\rangle$. Some subgroups of order 4 are:

$$\langle s, r^3 \rangle = \{1, s, r^3, sr^3\}$$

 $\langle sr, r^3 \rangle = \{1, sr, r^3, sr^4\}$
 $\langle sr^5, r^3 \rangle = \{1, sr^2, r^3, sr^5\}$

By the above, this is exhaustive for $n_2(D_{12})$. All groups of order 3 are cyclic, and any cyclic group involving s is of order 2, so the only possible groups come from the rotations. The only Sylow 3-subgroup one is therefore $\langle r^2 \rangle$.

Now for $S_3 \times S_3$. Subgroups in each axis of order 2 will generate product subgroups of order 4. Subgroups of S_3 of order 2 are generated by transpositions: $(1\ 2), (2\ 3),$ and $(1\ 3).$ The corresponding subgroups of order 4 are constructed by making two choices with replacement from this list, and taking the product of subgroups of S_3 so-generated. There are $3^2=9$ ways to choose 2 items from a list of 3 elements with replacement, which is the largest possibility, so this is an exhaustive description of $Syl_2(S_3 \times S_3)$. The unique subgroup S_3 of order 3 consists of 3-cycles: $\{1,(1\ 2\ 3),(1\ 3\ 2)\}$. It is also normal, since it's of index 2; if N,N' are normal, then $N\times N'$ is a normal subgroup as well: $(g,g')(n,n')(g,g')^{-1}=(gng^{-1},g'n'g'^{-1})$, and each element is in N and N' by normality of the axis subgroups. Therefore, the product of the 3-cycle subgroups is a normal Sylow p-subgroup, and $n_3(S_3 \times S_3)=1$.

Problem 2 (D&F 4.5.17). If |G| = 105, then G has a normal Sylow 5-subgroup and a normal Sylow 7-subgroup.

Proof. $|G| = 3 \cdot 5 \cdot 7$; accordingly, by Sylow's theorem, $n_5 \mid 21$ and $n_7 \mid 15$. Additionally, $n_5 \cong 1 \pmod{5}$ and $n_7 \cong 1 \pmod{7}$, and since $3 \equiv 3 \pmod{5}$, $7 \equiv 2 \pmod{5}$, and all the factors of 15 are less than 7, the only admissible values are $n_5 = n_7 = 1$. By Corollary 20, then, the Sylow 5- and 7-subgroups of G are normal.

Problem 3 (D&F 4.5.33). *If* P *is a normal Sylow* p-subgroup of G and H *is any other subgroup of* G, then $P \cap H$ *is the unique Sylow* p-subgroup of H.

Proof. Since $P \subseteq G$, $N_G(P) = G$, so $H \subseteq N_G(P)$. Then by the diamond isomorphism theorem, $P \cap H \subseteq H$, and $PH/P \cong H/P \cap H$. In particular,

$$|PH|/|P| = |H|/|P \cap H| \Leftrightarrow |P \cap H| = \frac{|H||P|}{|PH|}$$

Since PH is a group, and trivially $H \leq PH$, by Lagrange's theorem $|H| \mid |PH|$, so letting |PH|/|H| = k,

$$|P \cap H| = \frac{|P|}{k} = \frac{p^{\alpha}}{k}$$

This must be an integer, which can only happen if $k=p^{\alpha'}$, meaning $|P\cap H|=p^{\alpha-\alpha'}$, i.e. $P\cap H$ is a p-subgroup. We now need to prove $p\nmid |H|/p^{\alpha-\alpha'}=|PH|/|P|=|PH|/p^{\alpha}$. Since $PH\leq G$, $|PH|\mid |G|$, so $|PH|/p^{\alpha}\mid |G|/p^{\alpha}$. The latter has no factor of p by assumption that P is a Sylow p-subgroup, so $P\cap H$ is in fact a Sylow p-subgroup. Since it's normal, it's unique.

Problem 4 (D&F 5.1.4). If A and B are finite groups and p is a prime, then any Sylow p-subgroup of $A \times B$ is of the form $P \times Q$, where $P \in Syl_p(A)$ and $Q \in Syl_p(B)$. Additionally, $n_p(A \times B) = n_p(A)n_p(B)$, and both results generalize to a direct product of arbitrary arity.

Proof. We may write $|A \times B| = |A| \cdot |B| = p^{\alpha}m$, where $p \nmid m$ and $1 \leq \alpha$. Take $A \times 1$ and $1 \times B$; these are subgroups of $A \times B$, and so have orders dividing $p^{\alpha}m$. Accordingly, their orders can be written $p^{\alpha'}m'$ and $p^{\alpha''}m''$, where $p \nmid m', m''$. Now, consider any of the Sylow p-subgroups H of $A \times B$; it will be of order p^{α} . The intersections of H with $A \times 1$ and $A \times B$ are in fact subgroups of both parents by trivial application of the subgroup criterion. Their orders must divide both p^{α} and $p^{\alpha'}m'$ or $p^{\alpha''}m''$ by Lagrange's theorem; they then must be of the form p^{β} , and so their isomorphic image according to $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1 \cong A$ are Sylow $A \times 1 \cong A$ and $A \times 1$

We have by Sylow's theorem that if $|A \times B| = p^{\alpha}m$ where $p \nmid m$, then $n_p(A \times B) \mid m$ and $n_p \cong 1 \pmod{p}$. Additionally, from the property of the product group $|A \times B| = |A| \cdot |B|$, so $n_p(A \times B) \mid |A| \cdot |B|/p^{\alpha}$. $n_p(A)n_p(B) = \frac{|A|}{p^{\alpha}} \frac{|B|}{p^{\alpha'}} = \frac{|A \times B|}{p^{\alpha + \alpha'}}$. According to the above, $p^{\alpha}p^{\alpha'}$ is the order of Sylow p-subgroups, since they're the product of component p-subgroups. Therefore, the above is equal to $n_p(A \times B)$.

Problem 5 (D&F 7.1.11). *If* R *is an integral domain and* $x^2 = 1$ *for some* $x \in R$ *then* $x = \pm 1$.

Proof. By un-distributing,

$$0 = 1 - 1 = 1 - x^{2} = 1 - (x - x) - x^{2} = (1 - x) + x(1 - x) = (1 + x)(1 - x),$$

Since integral domains don't have zero divisors, for the last term to equal zero, then either one or both terms must equal zero. So, $1+x=0 \Leftrightarrow x=-1$, or $1-x=0 \Leftrightarrow x=1$. It should be noted that the "or" in $x=\pm 1$ is not exclusive, as $1=-1 \Leftrightarrow 1+1=0$ holds in e.g. fields of characteristic 2, which are perfectly good integral domains.

Problem 6 (D&F 7.1.14). *If* x *is a nilpotent element of a commutative ring* R, then

1. *x* is either zero or a zero-divisor,

- 2. rx is nilpotent for all $r \in R$,
- 3. 1 + x is a unit in R, and
- 4. the sum of a nilpotent element and a unit is a unit.

Proof. If there exists positive integral m such that $x^m=0$, then x is nilpotent. x can be zero or nonzero; if it's nonzero, then the set of positive integral n for which $x^n=0$ is nonempty (according to existence of m) and bounded below by 2, so there's a least element m' (the smallest power to which x may be taken yielding zero). Then $x^{m'}=x(x^{m'-1})=0$; x and $x^{m'-1}$ are nonzero elements of R that multiply to zero, and so are zero divisors.

Applying commutativity,

$$(rx)^m = \underbrace{rx \cdot rx \cdots rx}_{m \text{ times}} = \underbrace{r \cdot r \cdots r}_{m \text{ times}} \underbrace{x \cdot x \cdots x}_{m \text{ times}} = r^m x^m = r^m \cdot 0 = 0$$

so rx is nilpotent for all $r \in R$.

Note that in

$$(1+x)(1-x+x^2+\cdots\pm x^{m'-1})=1-x+x^2+\cdots+x^{m-1}+x-x^2+x^3+\cdots\pm x^{m'}$$

all the inner terms additively cancel and $x^{m'} = 0$, yielding an overall result of 1. So, (1+x) is a unit with inverse equal to the alternating polynomial.

Suppose $a \in R$ is a unit, i.e. there exists $a^{-1} \in R$ such that $aa^{-1} = 1$. Then $a + x = a(1 + a^{-1}x)$; $a^{-1}x$ is nilpotent by part 2, and by part 3, $1 + a^{-1}x$ is then a unit itself. So this is a product of two units, which has inverse $(1 + a^{-1}x)^{-1}a^{-1}$, and so the sum of a unit an a nilpotent element is a unit.