MATH 325 Q1: LINEAR ALGEBRA III, PART 10

Spectral Theorem

The following result is called the spectral theorem for unitary and hermitian \mathbb{C} -linear maps.

Theorem. Let $(V, \langle -, - \rangle)$ be an inner product space and $\alpha : V \to V$ a unitary or hermitian \mathbb{C} -linear map. Then there exists an orthogonal basis of V consisting of eigenvectors of α .

Proof. Step 1. Let λ be an eigenvalue of α and $v \neq 0$ the corresponding eigenvector. Thus $\alpha(v) = \lambda v$. Let $W = \mathbb{C} \cdot v$ be the subspace generated by v. This is an α -invariant subspace of V of dimension 1 since v is an eigenvector. We claim that W^{\perp} is also α -invariant. Indeed, let $w \in W^{\perp}$. We have to show $\langle \alpha(w), v \rangle = 0$, or equivalently $\langle v, \alpha(w) \rangle = 0$.

Case 1. Let α be unitary. Then

$$\bar{\lambda} \cdot \langle \alpha(w), v \rangle = \langle \alpha(w), \lambda v \rangle = \langle \alpha(w), \alpha(v) \rangle = \langle v, w \rangle,$$

where the last equation is due to the fact that α is unitary. Since $w \perp v$ we have $\langle v, w \rangle = 0$ and so by above equality $\bar{\lambda} \cdot \langle \alpha(w), v \rangle = 0$. Note that $\lambda \neq 0$ because α being unitary is invertible. Therefore $\langle \alpha(w), v \rangle = 0$ as claimed.

Case 2. Assume now that α is hermitian. Then $\alpha = \alpha^*$ and hence we have

$$\langle v, \alpha(w) \rangle \, = \, \langle v, \alpha^*(w) \rangle \, = \, \langle \alpha(v), w \rangle \, = \, \langle \lambda \cdot v, w \rangle \, = \, \lambda \cdot \langle v, w \rangle \, = \, 0$$

(the last equality holds since $v \perp w$). This implies $\langle v, \alpha(w) \rangle = 0$, as required.

Step 2. Remind that we proved before that the restriction of α to W^{\perp} is also hermitian if α is hermitian and is also unitary if α is unitary. Hence by induction on dimension of vector space, there is an orthogonal basis v_2, \ldots, v_n of W^{\perp} consisting of eigenvectors of $\alpha|_{W^{\perp}}$. Thus letting $v_1 := v$ we get that the vectors v_1, v_2, \ldots, v_n form an orthogonal basis of V consisting of eigenvectors of α .

Corollary. Let A be a hermitian $n \times n$ -matrix. Then there exists an unitary $n \times n$ -matrix U, such that

$$U^* \cdot A \cdot U = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A.

Proof. By the theorem above applied to the linear map

$$\alpha_A: \mathbb{C}^n \longrightarrow \mathbb{C}^n, \quad v \mapsto A \cdot v$$

there exists an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of α_A or equivalently of eigenvectors of A. Therefore, A is diagonalizable. If U is the matrix whose columns are the vectors of this basis then U is the base change matrix, hence $U^{-1}AU$ is the diagonal matrix, whose diagonal entries are eigenvalues of A. On the other hand U is unitary (because its columns is an orthonormal basis of \mathbb{C}^n), hence $U^*U = I_n$ and this implies $U^{-1} = U^*$. Therefore,

$$U^{-1}AU = U^* \cdot A \cdot U$$

is a diagonal matrix with entries the eigenvalues of A.

Remark. Note that all eigenvalues above are real numbers because the matrix U^*AU is also hermitian.

Polar decomposition

Recall that any complex number $z \neq 0$ can be uniquely written as

$$z = r \cdot e^{i\alpha} = r(\cos(\alpha) + i \cdot \sin(\alpha),$$

where r > 0 is a real number and α is a real number in the interval $[0, 2\pi)$. Our goal is to show that a similar decomposition, called *polar decomposition*, exists also for any invertible complex $n \times n$ -matrix.

Note that the complex number $e^{i\alpha} = \cos(\alpha) + i \cdot \sin(\alpha)$ can be viewed as a matrix of size 1×1 and it has the property

$$e^{i\alpha} \cdot \overline{e^{i\alpha}} = (\cos(\alpha) + i \cdot \sin(\alpha)) \cdot \overline{(\cos(\alpha) + i \cdot \sin(\alpha))} = 1.$$

As we already know, matrices of an arbitrary size $n \times n$ with the similar property are called unitary. We next want to introduce an analogue of positive real numbers for matrices.

Definition. Let A be a hermitian complex $n \times n$ -matrix. We say that A is positive definite if

$$\langle A \cdot v, v \rangle > 0$$

for all vectors $0 \neq v \in \mathbb{C}^n$.

Example. If A is an invertible $n \times n$ -matrix then we claim that two matrices

$$A^* \cdot A$$
, $A \cdot A^*$

are hermitian and positive definite. Indeed, we proved before that for arbitrary matrices A, B we have $(AB)^* = B^*A^*$. Therefore, these matrices $A^* \cdot A$, $A \cdot A^*$ are hermitian because for instance

$$(A^*A)^* = (A^*)(A^*)^* = A^*A$$

Furthermore, Since A and A^* are invertible we have $A \cdot v \neq 0$ and $A^* \cdot v \neq 0$ for all $v \in V \setminus \{0\}$. Hence by axiom (**P**) we have $\langle Av, Av \rangle > 0$ and $\langle A^*v, A^*v \rangle > 0$ for all $v \neq 0$ and so

$$0 \, < \, \langle Av, Av \rangle \, = \, \langle v, (A^* \cdot A)v \rangle \, = \, \langle (A^* \cdot A)v, v \rangle \, ,$$

and by analogous reasoning $\langle (A \cdot A^*)v, v \rangle > 0$.

Lemma. Let A be a hermitian $n \times n$ -matrices. Then

- (i) A is positive definite if and only if all eigenvalues of A are > 0.
- (ii) If the matrix A is positive definite then A is invertible and the inverse A^{-1} is also positive definite.

Proof. Part (i): Since A is hermitian we know that all eigenvalues of A are real numbers. Assume first that A is positive definite and let λ be an eigenvalue of A with the corresponding eigenvector $v \in \mathbb{C}^n$. Thus $Av = \lambda v$. Since A is positive definite we then get

$$0 < \, \langle Av, v \rangle \, = \, \langle \lambda v, v \rangle \, = \, \lambda \cdot \langle v, v \rangle \, ,$$

and so $\lambda > 0$.

Conversely, let v_1, \ldots, v_n be an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A, say $A \cdot v_i = \lambda_i \cdot v_i$ for $i = 1, \ldots, n$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. Assume that all of them are positive.

Let $v \in \mathbb{C}^n \setminus \{0\}$. We have to show that $\langle Av, v \rangle > 0$. We can write $v = \sum_{i=1}^n a_i \cdot v_i$ for some complex numbers a_1, \ldots, a_n . Then we have

$$\langle A \cdot v, v \rangle = \langle \sum_{i=1}^{n} a_i \cdot A \cdot v_i, \sum_{j=1}^{n} a_j \cdot v_j \rangle$$

$$= \langle \sum_{i=1}^{n} (a_i \lambda_i) \cdot v_i, \sum_{i=1}^{n} a_j \cdot v_j \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i \cdot \lambda_j \cdot \bar{a}_j) \cdot \langle v_i, v_j \rangle \quad \text{by (L1), (L2)}$$

$$= \sum_{i=1}^{n} \lambda_i \cdot |a_i|^2 \cdot ||v_i||^2 \quad \text{since } v_i \perp v_j \text{ for } i \neq j$$

$$= \sum_{i=1}^{n} \lambda_i \cdot |a_i|^2 \quad \text{since } ||v_i||^2 = 1.$$

By assumption all $\lambda_i > 0$ and so we get

$$\langle A \cdot v, v \rangle = \sum_{i=1}^{n} \lambda_i \cdot |a_i|^2 > 0.$$

Therefore $\langle A \cdot v, v \rangle > 0$ for all $v \neq 0$ in \mathbb{C}^n , and so the matrix A is positive definite.

To prove (ii) we note first that by the spectral theorem there exists an unitary matrix U, such that

$$U^* \cdot A \cdot U = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} =: D,$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A. These eigenvalues are all > 0 by (i), and so the diagonal matrix D is invertible. Hence also

$$A = (U^*)^{-1}DU^{-1} = U \cdot D \cdot U^*$$

is invertible (we used here that $U^*U = \operatorname{Id}_n$ which implies $(U^*)^{-1} = U$).

To show that the inverse A^{-1} is positive definite we first observe that the above equality $A = U \cdot D \cdot U^*$ implies

$$A^{-1} = (U^*)^{-1}D^{-1}U^* = UD^{-1}U^*.$$

So A^{-1} is also hermitian. It remains to note that the eigenvalues of A^{-1} are λ_i^{-1} , $i=1,\ldots,n$.

Corollary. Let A be a complex $n \times n$ -matrix. If A is unitary and positive definite then $A = I_n$.

Proof. We proved before that all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A have absolute value 1, and by the lemma above they are real numbers > 0. Therefore all eigenvalues of A are equal to 1. Also, we proved before that there is a unitary matrix U, such that U^*AU is a diagonal matrix whose diagonal entries are the eigenvalues of A. Thus

$$U^* \cdot A \cdot U = \mathrm{Id}_n$$
.

But this implies that $U^* \cdot A = U^{-1} = U^*$, and so $A = I_n$ as claimed. \square

Theorem. Let A be a positive definite $n \times n$ -matrix. Then there exists a unique positive definite $n \times n$ -matrix B, such that

$$A = B^2$$
.

Proof. Existence. By the Spectral theorem there exists an unitary matrix U whose columns are the orthonormal basis consisting of eigenvectors v_1, \ldots, v_n of A, such that

$$U^* \cdot A \cdot U = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A with the corresponding eigenvectors v_1, \ldots, v_n . Since the eigenvalues of A are all > 0 (by the lemma above) they all have a positive square root $\sqrt{\lambda_i}$, and we have

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \sqrt{\lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_n} \end{pmatrix}^2.$$

Setting

$$D := \begin{pmatrix} \sqrt{\lambda_1} & & & \\ & \sqrt{\lambda_2} & & \\ & & \ddots & \\ & & & \sqrt{\lambda_n} \end{pmatrix}$$

and $B := U \cdot D \cdot U^*$ one can easily checks that

$$B^2 = A$$
.

The matrix B is hermitian since

$$B^* = (U \cdot D \cdot U^*)^* = (U^*)^* \cdot D^* \cdot U^* = U \cdot D \cdot U^* = B.$$

It remains to note that B is also positive definite since all its eigenvalues are $\sqrt{\lambda_i}$ are positive real numbers.

Uniqueness. Step 1. It is enough to show that if $E_{\lambda}(A) \subset \mathbb{C}^n$ is the eigenspace of A corresponding to an eigenvalue $\lambda \in \{\lambda_1, \ldots, \lambda_n\}$, and C is a positive definite matrix, such that $C^2 = A$ then $C \cdot v = \sqrt{\lambda} \cdot v$ for all $v \in E_{\lambda}(A)$ (because any vector in \mathbb{C}^n can be written uniquely as a sum of vectors from E_{λ_i} and hence any matrix can be restored if we know its action on vectors from E_{λ_i}).

Step 2 (diagonalizability). To show this we first observe that from the existence of Jordan normal forms it follows that the Jordan normal form of C^2 has the same number of Jordan blocks as the Jordan normal form of C. Since $C^2 = A$ is diagonalizable this implies that C is also diagonalizable. Moreover, all eigenvalues of C are positive real numbers (because C is positive definite.

Step 3 (counting dimensions of eigenspaces). Let $\rho > 0$ be an eigenvalue of C and v a corresponding eigenvector. Then we have

$$A \cdot v = C \cdot (C \cdot v) = C \cdot (\rho \cdot v) = \rho^2 \cdot v$$

and so $\rho^2 \in \{\lambda_1, \ldots, \lambda_n\}$, i.e. since ρ is positive we have $\rho = \sqrt{\lambda_i}$ for some $1 \leq i \leq n$, and moreover the eigenvector v of C is in the eigenspace of A corresponding to the eigenvector λ_i .

This implies that if

$$\mu_1, \ldots, \mu_l \in \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$$

are all different eigenvalues of A with the corresponding eigenspaces $E_{\mu_j}(A)$, $1 \le i \le l$, and

$$\rho_1, \rho_2, \ldots, \rho_k$$

are the different eigenvalues of C with corresponding eigenspaces $E_{\rho_j}(C)$, $1 \leq j \leq k$ then

(i)
$$\{\rho_1, \ldots, \rho_k\} \subseteq \{\sqrt{\mu_1}, \ldots, \sqrt{\mu_l}\}$$
, and

(ii) if $\rho_i = \sqrt{\mu_j}$ for some $1 \le i \le k$ and $1 \le j \le l$ then $E_{\rho_i}(C) \subseteq E_{\mu_j}(A)$.

Since both A and C are diagonalizable we have

$$n = \sum_{i=1}^{k} \dim_{\mathbb{C}} E_{\rho_i}(C) = \sum_{j=1}^{l} \dim_{\mathbb{C}} E_{\mu_j}(A),$$

and so (after reordering if necessary) we have l = k, $\rho_j = \sqrt{\mu_j}$, and $E_{\rho_j}(C) = E_{\mu_j}(A)$ for all $1 \leq j \leq l$. But this implies that if λ is an eigenvalue of A then $C \cdot v = \sqrt{\lambda} \cdot v$ for all $v \in E_{\lambda}(A)$ as claimed. We are done.

We are in position to prove the **polar decomposition** for invertible matrices.

Corollary. Let A be an invertible $n \times n$ -matrix. Then there exists a positive definite matrix P and a unitary matrix U (both $n \times n$ -matrices), such that

$$A = P \cdot U$$
.

This decomposition is unique, i.e. if P' and U' are other positive definite and unitary matrices, respectively, such that $A = P' \cdot U'$, then P = P' and U = U'.

Proof. Existence. As observed before the matrix $A \cdot A^*$ is positive definite. By the theorem above there exists a unique positive definite matrix P, such that $P^2 = A \cdot A^*$. Set $U = P^{-1} \cdot A$. Then $A = P \cdot U$.

We claim that U is unitary. Indeed, since P is hermitian, so is P^{-1} . Therefore we have

$$(P^{-1}\cdot A)\cdot (P^{-1}\cdot A)^* = P^{-1}\cdot (A\cdot A^*)\cdot P^{-1} = P^{-1}\cdot P^2\cdot P^{-1} = \mathrm{I}_n\,,$$
 i.e. $U=P^{-1}\cdot A$ is unitary.

Uniqueness. Let P, Q be positive definite matrices and U, V unitary matrices, such that

$$P \cdot U \, = \, A \, = \, Q \cdot V \, .$$

Then

$$A \cdot A^* = (P \cdot U) \cdot (P \cdot U)^* = P \cdot (U \cdot U^*) \cdot P = P^2$$

and by the analogous computation also $A \cdot A^* = Q^2$. But all matrices P, Q, and $A \cdot A^*$ are positive definite and so by uniqueness assertion of the above Theorem we have P = Q which in turn implies U = V. We are done.