MATH DEPARTMENT EUCLIDEAN GEOMETRY

Chronicals

Plane-Separation Postulate

Alexander Mendoza June 12, 2023

1 Plane-Separation Postulate

So far we have defined two sets of postulates/axioms, the axioms of incidence and the ruler postulate. Now we are going to define a third one, the *Plane-Separation Postulate*. This postulate states the following:

Let α beff a plane and l a linfe contained within α . There exist two subsets of α , H_1 and H_2 such that:

- $\bullet \ \alpha l = H_1 \cup H_2.$
- H_1 and H_2 are convex sets.
- If $A \in H_1$ and $B \in H_2$, then $\overline{AB} \cap l \neq \emptyset$.

Remember that in general a set \mathcal{A} which contains points is said to be convex if and only if for each pair of points P and Q of \mathcal{A} , $\overline{PQ} \subseteq \mathcal{A}$. Also remember that if the first part of the third item of the list is false, the whole proposition is true. This for definition of implication.

Now that we have a defined the Plane-Separation Postulate, let's make and prove some basic questions.

1.1 Can H_1 and H_2 be empty?

The answer in our current context is no. *Proof.* Let α be a plane and l be a line lying in α , then l separates α in two halves H_1 and H_2 , this by the plane-separation postulate.

Now we are going to prove that H_1 cannot be empty nor contain a single element. We know that there exist two points $A, B \in l$ and a third point C such that $C \in \alpha$ and is non-collinear to A and B, this by the axioms of incidence. Without losing generality, let that point C lie on H_1 . Now, once again by the axioms of incidence, \overrightarrow{CB} exists.

Thus, there exists a point D such that C-D-C and $D \in H_1$. If $D \notin H_1$ then either $D \in l$ or $D \in H_2$. Let us observe what happens in both cases.

When $D \in l$. We know that $l \cap \overrightarrow{BC} = \{C\}$ this by the theorem of intersection of two lines. Then by definition of intersection, $D \in l \cap \overrightarrow{BC}$, thus D = C. This is a contradiction because is given that C - D - C and by definition $D \neq C$.

When $D \in H_2$. To be continue...

1.2 Pasch Theorem