TYPE Q2T2222 QUAD N-P-N SILICON TRANSISTOR

BULLETIN NO. DL-S 7311703, APRIL 1972-REVISED MARCH 1973

DESIGNED FOR MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very-Low Saturation Voltage
- hFE... Guaranteed from 100 μA to 500 mA
- High f_T . . . 250 MHz Min at 20 V, 20 mA

NC-No internal connection

mechanical data

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	EACH TOTAL
	TRIODE DEVICE
Collector-Base Voltage	60 V
Collector-Emitter Voltage (See Note 1)	30 V
Emitter-Base Voltage ,	5 V
Continuous Collector Current	
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	
Storage Temperature Range	
Lead Temperature 1/16 Inch from Case for 10 Seconds	← 260°C →

NOTES: 1. This value applies between 0.01 mA and 500 mA collector current when the emitter-base diode is open-circuited.

2. Derate linearly to 150°C free-air temperature at the rates of 4 mW/°C for each triode and 12 mW/°C for the total device.

†Previous editions of this data sheet showed higher power dissipation ratings which have been found to be in error. The new ratings correct these errors and do not represent product changes.

USES CHIP N24

TYPE Q2T2222 QUAD N-P-N SILICON TRANSISTOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITION	ONS	MIN	MAX	UNIT
VIBRICEC	Collector-Base Breakdown Voltage	I _C = 10 μA,	IE = 0	· · ·	60		٧
V(BR)CEC	Collector-Emitter Breakdown Voltage	1 _C = 10 mA,	1 _B = 0,	See Note 3	30		ν
V(BR)EBC	Emitter-Base Breakdown Voltage	le = 10 μA,	1C = 0	-	5		٧
СВО	Collector Cutoff Current	V _{CB} = 50 V,	IE = 0			10	nΑ
		V _{CB} = 50 V,	!E = 0,	T _A = 100°C		3	μА
I _{EBO}	Emitter Cutoff Current	VEB = 3 V.	IC = 0			10	nΑ
hFE	Static Forward Current Transfer Ratio	V _{CE} = 10 V,	I _C = 100 μA		35		
		V _{CE} = 10 V,	I _C = 1 mA		50		
		V _{CE} = 10 V	I _C = 10 mA	See Note 3	75		
		V _{CE} = 10 V,	I _C = 150 mA		100	300	
		V _{CE} = 10 V,	I _C = 500 mA		30		
		V _{CE} = 1 V,	I _C = 150 mA		50		
VBE	Base-Emitter Voltage	I _B = 15 mA,	1 _C = 150 mA	See Note 3		1.3	.,
		1 _B = 50 mA,	I _C = 500 mA			2.6	\ \ \
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 15 mA,	I _C = 150 mA	See Note 3		0.4	٠.,
		I _B = 50 mA,	IC = 500 mA			1.6	L V
h _{fe}	Small-Signal Common-Emitter	V _{CF} = 10 V,	1c = 20 mA,	f = 100 MHz	2.5		
	Forward Current Transfer Ratio	ACE - 10 0,	1C - 20 IIIA,	1 - 100 MI12	1 2.5		
fŢ	Transition Frequency	V _{CE} = 10 V,	Ic = 20 mA,	See Note 4	250		MHz
C _{obo}	Common-Base Open-Circuit Output Capacitance	V _{CB} = 10 V,	IE = 0,	f ≈ 1 MHz		8	pF
Cibo	Common-Base Open-Circuit Input Capacitance	VEB = 0.5 V,	IC = 0,	f = 1 MHz		25	рF
Re(h _{ie})	Real Part of Small-Signal	V 10 V	V, I _C = 20 mA,	f = 300 MHz		60	Ω
	Common-Emitter Input Impedance	VCE = 10 V,			1	00	٠.,

- NOTES: 3. These parameters must be measured using pulse techniques, $t_W = 300~\mu s$, duty cycle $\leq 2\%$.
 - 4. To obtain f_T , the $|h_{fe}|$ response with frequency is extrapolated at the rate of -6 dB per octave from f = 100 MHz to the frequency at which $|h_{fe}|$ = 1.

switching characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS†	TYP	UNIT
t _d Delay Time	V _{CC} = 30 V, I _C = 150 mA, I _{B(1)} = 15 mA	, 8	ns
t _r Rise Time	VBE(off) = -0.5 V, See Figure 1	12	ns
t _S Storage Time	V _{CC} = 30 V, I _C = 150 mA, I _{B(1)} = 15 mA	, 190	ns
t _f Fall Time	I _{B(2)} = -15 mA, See Figure 2	30	ns

[†]Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES

FIGURE 2-STORAGE AND FALL TIMES

- NOTES: a. The input waveforms have the following characteristics: for figure 1, $t_f \le 2$ ns, $t_W \le 200$ ns, duty cycle $\le 2\%$; for figure 2, $t_f \le 5$ ns, $t_W \approx 100$ μ s, duty cycle $\le 17\%$.
 - b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_f \le 5$ ns, $R_{in} \ge 100$ k Ω , $C_{in} \le 12$ pF.