

传感器覆盖

简介

• 覆盖的好处

- 防范实物撞击
- 防止水分和灰尘进入
- 防止感应噪声和传感器故障
- o ESD 防护
- 改善设计美感

• 覆盖策略很重要

- 需要四个传感器将对象限定一个空间中
- 复杂的几何形状和障碍物会限制可见数量
- 覆盖物通常不会改善性能。
- 目标是最大程度减小任何影响。

- 传感器记录激光击中开始时和持续期间的时间戳,以估算中心
- 通过创建射线图与光学相关联
 - o d = 定位器与传感器的距离
 - h = 传感器高度
 - $Ø_1$ = 定位器与传感器之间的入射角

可使用简单的三角函数确定 Ø_{lead}
和 Ø_{trail}。

$$\emptyset_{lead} = tan^{-1} \frac{a'}{d+b'} = tan^{-1} \frac{\left(\frac{h+\cos\Theta_1}{2}\right)}{\left(d+\frac{h+\sin\Theta_1}{2}\right)}$$

$$\emptyset_{trail} = tan^{-1} \frac{a}{b} = tan^{-1} \frac{\left(\frac{h * cos \Theta_1}{2}\right)}{\left(d - \frac{h * sin \Theta_1}{2}\right)}$$

- 角度很小,很难表达,所以需要使用一些"滴答数"
- 计算激光扫描过整个传感器所用时间内的系统时钟周期数 $t[ticks] = \frac{\theta * f_{commer}}{\omega_{max}}$

• 电机速度: 60 Hz

• 系统时钟频率: 48 MHz

• 综合起来:

$$t_{lead} = tan^{-1} \frac{\left(\frac{h * cos O_1}{2}\right)}{\left(d + \frac{h * sin O_1}{2}\right)} * \left(\frac{48 \times 10^6}{120\pi}\right)$$
$$t_{trail} = tan^{-1} \frac{\left(-\frac{h * cos O_1}{2}\right)}{\left(d - \frac{h * sin O_1}{2}\right)} * \left(\frac{48 \times 10^6}{120\pi}\right)$$

• t_{trail} 得出负数,以便在绘图时实现更好的可视化

- 可在各个角度和距离得出计算式, 以预测光学-机械系统的性能
- 距离减小时,滴答数增加
- 角度增大时,滴答数减小。
- ± 90°时不记录滴答数

无遮盖的传感器的滴答数与角度

VALVE

- 创建了一个测试夹具,以使用实际零件和覆盖物生成这些曲线
- 通过可视化估算的传感器中心并调整传感器 x-y 位置直至输出平稳,从而对装置进行校准

)2016 Valve Corporation。保留所有权利。

反射透明

反射透明孔洞

漫射透明

漫射透明 孔洞

6mm 垫片

- 创建覆盖物以测量常见 设计策略的效果
 - 反射与漫射
 - 。 孔洞与无孔洞
 - 传感器与覆盖物的间距
- 使用红色激光器进行测试。定位器激光器为830nm,但结果仍适用。

选定结果

蓝点表示前沿,绿点表示后沿,红 点为中心

选定结果

蓝点表示前沿,绿点表示后沿,红 点为中心

• 架构

- 建议: 漫射孔洞用不透明材料围住
 - 塞子
 - 双料注塑
 - 单独的窗口/塞子,固定到外壳上
 - 遮罩
 - 单料注塑件,表面做涂装和激光蚀刻
 - 帯有 IML 的单料注塑件
- 。 不建议
 - 无孔洞漫射
 - 在无孔洞的情况下使用透明材料
 - 将不透明遮罩置于透明材料与传感器之间

尽早在设计中选择一种架构方式。

• 孔洞属性

- 外表面
 - 平整且平行于传感器顶部
 - 某些曲面可能也能选用,但应进行测试
 - 不建议使用复杂的曲面
- 开口大小
 - 太小,没有足够的光射入。
 - 一开始可以选用 6mm 直径的开口
 - 可以使用较大的窗口,但需要增加漫射。
- 厚度
 - 尽可能薄
 - 通常受制造方法所限。
- 表面抛光
 - 建议采用磨砂质地
 - 避免光亮的表面

- 传感器定位
 - 传感器间隙应尽可能小
 - 传感器有效区域应在开口的中心

• 材料

- 红外透明材料
 - PC 和 PMMA 是很好的基底材料,并且适用于原型设计
 - 生产时,使用红外添加剂滤掉可见光
 - 颜色将是黑色或很深的红色、蓝色等
- 红外不透明材料
 - 除了红外不透明之外,其他限制很少
 - 可为与红外透明材料相称的颜色

建议的透光属性 0度入射角		
材料	400 - 700 nm	830 nm
红外透明	<10%	>90%
红外不透明	<1%	<1%

15

参考对象中使用的材料

总结

- 创建了理论和试验模型
- 最佳实践
 - 。 架构
 - 几何形状
 - 表面抛光
 - 材料
- 及早考虑覆盖策略,因为它会影响整体设计