

Cloud & Infrastructure as a Service (laaS)

Key Takeaways

Throughout the DevOps Bootcamp, we will install and configure

Deploy own Applications on Servers

- We don't install it locally on our laptop!
- More realistic: Install them on remote dedicated servers in cloud

What is Infrastructure as a Service (laaS)?

- Offers compute, storage and networking resources on demand
- Instead of:

Company buys own server

- You manage own servers and infrastructure
- If something breaks, you need to fix it

Delegate Infrastructure Management

- Move your physical infrastructure to cloud
- You just rent the servers on demand

What is Cloud Computing?

- Cloud Computing is the **delivery of computing services** including servers, storage, databases, networking, software **over the internet** ("the cloud")
- laaS is 1 of 4 types of cloud services. Others: Software as a Service (SaaS), Platform as a Service (PaaS)

Infrastructure as a Service Providers

Most used laaS Providers

• AWS is the most used : Powerful, but complex (learn in later module)

• **DigitalOcean**: Easier to start

to run packaged java application (jar file)

- Servers on DigitalOcean are called "Droplets"
- Droplets are Linux-based virtual machines (VMs)

Summary of Steps:

- 1. Pre-Requisite: Create DigitalOcean account (with new signup credits free tier)
- 2. Configure SSH keys
- 3. Create a Droplet with Linux Ubuntu distribution
- 4. Open SSH port 22 on server using firewall configuration
- 5. **SSH into the server** using its public IP address
- 6. **Install Java** to run Java applications on it

to run packaged java application (jar file)

Configure SSH keys

To be able to access
 any server on DO from
 local computer using
 SSH

to run packaged java application (jar file)

Create a Droplet

With Linux Ubuntu distribution

to run packaged java application (jar file)

Open SSH port 22

- Open SSH port 22 on the server by creating a new
 Firewall configuration
- **Inbound** Rules = for incoming traffic
- Outbound Rules = for outgoing traffic

to run packaged java application (jar file)

SSH into the server

By using its public IP address

```
nana@macbook /Users/nana

ssh root@164.90.218.238

The authenticity of host '164.90.218.238 (164.90.218.238)' can't be established.

ED25519 key fingerprint is SHA256:n@oxPfRCc@XtO/hNi7UdUsW55ItfjpelgOY1BV1cxAk.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
```


to run packaged java application (jar file)

Install Java

1. Check if java is installed and

get installation commands


```
root@ubuntu-s-1vcpu-1gb-fra1-01:~# apt install openjdk-8-jre-headless
Reading package lists... Done
Building depende by tree
Reading state int
The following additional packages will be installed:
 ca-certificates-java fontconfig-config fonts-dejavu-core java-common libavahi-client3
 libavahi-common-data libavahi-common3 libcups2 libfontconfig1 libjpeg-turbo8 libjpeg8 liblcms2-2
 libnspr4 libnss3 libpcsclite1 libxi6 libxrender1 libxtst6 x11-common
Suggested packages:
 default-jre cups-common liblcms2-utils pcscd libnss-mdns fonts-dejavu-extra fonts-ipafont-gothic
 fonts-ipafont-mincho fonts-wgy-microhei fonts-wgy-zenhei fonts-indic
The following NEW packages will be installed:
 ca-certificates-java fontconfig-config fonts-dejavu-core java-common libavahi-client3
 libavahi-common-data libavahi-common3 libcups2 libfontconfig1 libjpeg-turbo8 libjpeg8 liblcms2-2
 libnspr4 libnss3 libpcsclite1 libxi6 libxrender1 libxtst6 openjdk-8-jre-headless x11-common
0 upgraded, 20 newly installed, 0 to remove and 16 not upgraded.
Need to get 30.7 MB of archives.
After this operation, 111 MB of additional disk space will be used.
Do you want to continue? [Y/n] Y
```

```
root@ubuntu-s-1vcpu-1gb-fra1-01:~# java

Command 'java' not found, but can be installed with:

apt install openjdk-11-jre-headless apt install default-jre apt install openjdk-8-jre-headless apt install openjdk-13-jre-headless apt install openjdk-14-jre-headless # version 13.0.3+3-1ubuntu2 # version 14.0.1+7-1ubuntu1

root@ubuntu-s-1vcpu-1gb-fra1-01:~# apt update
```


Run packaged Java Application - 1

on prepared DigitalOcean server

In **real world**, applications will run on a remote server!

Server prepared to run java application

Summary of Steps:

- 1. Build jar file
- 2. Copy to remote server
- 3. Run the application

Run packaged Java Application - 2

on prepared DigitalOcean server

1. Build Jar File

```
nana@macbook /Users/nana/java-:
% gradle build
BUILD SUCCESSFUL in 8s
7 actionable tasks: 7 executed
```

2. Copy to Remote Server

```
nana@macbook /Users/nana/java-react-example [master]
% scp build/libs/java-react-example.jar root@164.90.218.238:/root
java-react-example.jar
command .jar file source locally user public IP destination

remote server information
```


Run packaged Java Application - 3

on prepared DigitalOcean server

3. Run the application

```
. .
                                               nana — root@ubuntu-s-1vcpu-512mb-10gb-fra1-01: ~ — ssh root@164.90.218.238 — 119×31
                   root@ubuntu-s-1vcpu-512mb-10gb-fra1-01: ~ -- ssh root@164.90.218.238
                                                                                                ~/java-react-example
|root@ubuntu-s-1vcpu-512mb-10gb-fra1-01:~# ls
java-react-example.jar snap
root@ubuntu-s-1vcpu-512mb-10gb-fra1-01:~# java -jar java-react-example.jar
 :: Spring Boot ::
                                      (v2.7.11)
                                                          main] com.coditorium.sandbox.Application
2023-05-01 17:25:16.636 INFO 5170 --- [
n using Java 1.8.0_362 on ubuntu-s-1vcpu-512mb-10gb-fra1-01 with PID 5170 (/root/java-react-
in /root)
2023-05-01 17:25:16.649 INFO 5170 --- [
                                                          main] com.coditorium.sandbox.Application
et, falling back to 1 default profile: "default"
```


Security Best Practices

- Create separate Linux user on remote server (as you learned in Linux module)
 - Every cloud platform's configuration for their remote servers is different
 - On a droplet, by default you work with the "root" user
 - Create a new "admin" user
 - Using the "admin" user, create own users for each application you run (e.g. nexus, jenkins, my-app)
- Give it only the permission it needs to run that application
- Don't work with the root user!

