HOMEWORK 7 SOLUTIONS - MATH 4341

Problem 1. (a) Construct an explicit homeomorphism from any open interval $(a, b) \subset \mathbb{R}$ to the open interval (-1, 1).

(b) Construct an explicit homeomorphism from any open interval $(a, b) \subset \mathbb{R}$ to \mathbb{R} .

Proof. (a) Define $f:(a,b) \to \mathbb{R}$ by $f(x) = 2\frac{x-a}{b-a} - 1$ for all $x \in (a,b)$. Since a < x < b, we have $0 < \frac{x-a}{b-a} < 1$ which implies that $f(x) \in (-1,1)$. So $f:(a,b) \to (-1,1)$ is a continuous function.

For every $y \in (-1,1)$, the equation $y = f(x) = 2\frac{x-a}{b-a} - 1$ has a unique solution $x = a + \frac{1}{2}(b-a)(y+1)$. Since -1 < y < 1, we have a < x < b, i.e. $x \in (a,b)$.

Hence $f:(a,b)\to (-1,1)$ is a continuous bijective function, and $f^{-1}(y)=a+\frac{1}{2}(b-a)(y+1)$. Since $f^{-1}:(-1,1)\to (a,b)$ is continuous, f is a homeomorphism.

(b) We already know that $g:(-1,1)\to\mathbb{R}$ given by $g(x)=\tan\left(\frac{\pi}{2}x\right)$ is a homeomorphism. Hence $g\circ f:(a,b)\to\mathbb{R}$ given by $(g\circ f)(x)=\tan\left(\pi\left(\frac{x-a}{b-a}-\frac{1}{2}\right)\right)$ is a homeomorphism from (a,b) to \mathbb{R} .

Problem 2. Let $C \subset \mathbb{R}^2$ be the unit circle $x^2 + y^2 = 1$. Construct an explicit homeomorphism from $C \setminus \{(1,0)\}$ to \mathbb{R} .

Proof. Let $f: C\setminus\{(1,0)\}\to\mathbb{R}$ be defined by $f((x,y))=\frac{y}{1-x}$. Note that $(0,\frac{y}{1-x})$ is the point of intersection of the y-axis and the line passing through the points (1,0) and (x,y). [Explanation: The equation of the line passing through the points (1,0) and (x,y) is (1-t)(1,0)+t(x,y)=(1-t+tx,ty). At the point of intersection with the y-axis we have $1-t+tx=0\Longrightarrow t=\frac{1}{1-x}$, so the y-coordinate is $ty=\frac{y}{1-x}$.]

f is bijective, since its inverse is given by $f^{-1}(z)=(\frac{z^2-1}{z^2+1},\frac{2z}{z^2+1})$ for $z\in\mathbb{R}$. Note that $(\frac{z^2-1}{z^2+1},\frac{2z}{z^2+1})$ is the point of intersection of $C\setminus\{(1,0)\}$ and the line passing through the points (1,0) and (0,z). It is obtained by solving x,y from the equations $x^2+y^2=1$ and $\frac{y}{1-x}=z$. [Explanation: $y=z(1-x)\Longrightarrow 1-x^2=y^2=z^2(1-x)^2\Longrightarrow 1+x=z^2(1-x)\Longrightarrow x=\frac{z^2-1}{z^2+1}\Longrightarrow y=z(1-x)=\frac{2z}{z^2+1}$.]

Both f and f^{-1} are continuous, hence f is a homeomorphism.

Problem 3. Show that the set of all irrational numbers $\mathcal{I} \subset \mathbb{R}$ is not connected.

Proof. Let $U = \mathcal{I} \cap (-\infty, 0)$ and $V = \mathcal{I} \cap (0, \infty)$. Then $\mathcal{I} = U \cup V$ is a separation (why?).

Problem 4. Suppose that A is a connected subset of \mathbb{R} . Show that if a < b are real numbers in A, then the closed interval [a, b] is contained in A.

Proof. Assume there exists $r \in (a, b)$ such that $r \notin A$. Let $U = A \cap (-\infty, r)$ and $V = A \cap (r, \infty)$. Then $A = U \cup V$ is a separation (why?), which contradicts the connectedness of A. Hence $[a, b] \subset A$.