SR-FLIPFLOP-USING-CASE

AIM:

To implement SR flipflop using verilog and validating their functionality using their functional tables

SOFTWARE REQUIRED:

Quartus prime

THEORY

SR Flip-Flop SR flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, SR latch operates with enable signal. The circuit diagram of SR flip-flop is shown in the following figure.

This circuit has two inputs S & R and two outputs Qtt & Qtt'. The operation of SR flipflop is similar to SR Latch. But, this flip-flop affects the outputs only when positive transition of the clock signal is applied instead of active enable. The following table shows the state table of SR flip-flop.

S	R	Q t+1t+1	
0	0	Qtt	
0	1	0	
1	0	1	
1	1	-	

Here, Qtt & Qt+1t+1 are present state & next state respectively. So, SR flip-flop can be used for one of these three functions such as Hold, Reset & Set based on the input conditions, when positive transition of clock signal is applied. The following table shows the characteristic table of SR flip-flop. Present Inputs Present State Next State

Present Inputs		Present State	Next State
S	R	Q t	$\mathbf{Q}\ t+1$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	х
1	1	1	Х

By using three variable K-Map, we can get the simplified expression for next state, Qt+1t+1. The three variable K-Map for next state, Qt+1t+1 is shown in the following figure.

The maximum possible groupings of adjacent ones are already shown in the figure. Therefore, the simplified expression for next state Qt+1t+1 is Q(t+1)=S+R'Q(t)Q(t+1)=S+R'Q(t)

ſĠ

Procedure

- / 1.Type the program in Quartus software.
- 2.Compile and run the program.
- 3.Generatethe RTL schematic and save the logic

diagram.

- 4.Create nodes for inputs and outputs togenerate the timing diagram.
- 5.For

different input combinations generate the timing diagram.

PROGRAM

/* Program for flipflops and verify its truth table in quartus using Verilog programming.

Developed by:

AKASH M

RegisterNumber:

24900103 */

RTL LOGIC FOR FLIPFLOPS

TIMING DIGRAMS FOR FLIP FLOPS

RESULTS

Thus, the SR Flip-Flop is designed, and its functionality is validated using the truth table and timing diagrams.

