4. Linear Hypothesis Tests ECON8011 Microeconometrics

Burcu Duzgun Oncel *

*Marmara University Department of Economics

Spring2023

Table of contents

Hypothesis Tests

Applications

Testing Linear Hypothesis about β

- 1. $H_0 = \beta_i = 0$. This sets up the hypothesis that the regressor X_i has no influence on Y. This type of test is very common and is often referred to simply as a significance test.
- 2. $H_0 = \beta_i = \beta_{i0}$. Here β_{i0} . is some specified value. If, for instance, β_i a price elasticity one might wish to test that the elasticity is -1.
- 3. $H_0 = \beta_2 + \beta_3 = 1$. If the β indicate labor and capital elasticities in a production function, this formulation hypothesizes constant returns to scale.
- 4. $H_0: \beta_3 = \beta_4$. This hypothesizes that X_3 and X_4 have the same coefficient.
- This sets up the hypothesis that the complete set of regressors has no effect on Y.

no effect on
$$Y$$
.
$$H_0: \begin{bmatrix} \beta_2 \\ \beta_3 \\ . \\ . \\ \beta_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ . \\ . \\ 0 \end{bmatrix}$$

- ► For the foregoing examples we have:
 - 1. $\mathbf{R} = [0....0 \ 1 \ 0....0]$ r = 0 q = 1 with 1 in the *ith* position.
 - 2. $\mathbf{R} = [0....0 \ 1 \ 0....0]$ $r = \beta_{i0}$ q = 1 with 1 in the *ith* position.
 - 3. $\mathbf{R} = [0 \ 1 \ 1 \ 0....0] \quad r = 1 \quad q = 1$
 - 4. $\mathbf{R} = [0 \ 0 \ 1 \ -1....0] \quad r = 0 \quad q = 1$
 - 5. $\mathbf{R} = [\mathbf{0} \ \mathbf{I_{k-1}}]$ r = 0 q = k-1 where $\mathbf{0}$ is a vector of k-1 zeros

► The efficient way to proceed is to derive a testing procedure for the general linear hypothesis:

$$H_0: \mathbf{R}\beta - \mathbf{r} = \mathbf{0}$$

- ▶ Given the OLS estimator, an obvious step is to compute the vector $\mathbf{R}\beta \mathbf{r} = \mathbf{0}$.
- This vector measures the discrepancy between expectation and observation.
- $Arr R\hat{\beta} = R\beta$
- $Var(R\beta) = \sigma^2 R(X'X)^{-1}R'$

$$H_0: \beta_i = 0$$

- ► This sets up the hypothesis that the regressor X_i has no influence on Y.
- ► This type of test is very common and is often refereed to simply as a significance test.

$$t=rac{\hat{eta_i}}{{
m se}(\hat{eta_i})}$$
 with $(n-k)$ degrees of freedom.

$$H_0: \beta_i = \beta_{i,0}$$

- ▶ Here $\beta_{i,0}$ is some specified value.
- ▶ For instance β_i denotes price elasticity one might wish to test that the elasticity is -1.

$$t=rac{\hat{eta}_i-eta_{i,0}}{{
m se}(\hat{eta}_i)}$$
 with $(n-k)$ degrees of freedom.

▶ Instead of testing specific hypotheses about β_i one may compute a 95 percent confidence interval for β_i by:

$$\hat{eta}_i + t_{0.025} se(\hat{eta}_i)$$
 and $\hat{eta}_i - t_{0.025} se(\hat{eta}_i)$

$$H_0: \beta_2 + \beta_3 = 1$$

▶ If the β 's indicate labor and capital elasticities in a production function, this formulation hypothesizes constant returns to scale.

$$t = \frac{\hat{\beta}_2 + \hat{\beta}_3 - 1}{\sqrt{var(\hat{\beta}_2 + \hat{\beta}_3)}}$$
 with $n - k$ degrees of freedom.

▶ 95 percent confidence interval for the sum $(\beta_2 + \beta_3)$:

$$(\hat{eta}_2+\hat{eta}_3)+t_{0.025}\sqrt{var(\hat{eta}_2+\hat{eta}_3)}$$
 and $(\hat{eta}_2+\hat{eta}_3)-t_{0.025}\sqrt{var(\hat{eta}_2+\hat{eta}_3)}$

$$H_0 = \beta_3 = \beta_4 \text{ or } \beta_3 - \beta_4 = 0$$

▶ This hypothesizes that X_3 and X_4 have the same coefficient.

$$t=rac{\hat{eta_3}-\hat{eta_4}}{\sqrt{ extstyle var}(\hat{eta_3}-\hat{eta_4})}$$
 with $n-k$ degrees of freedom

$$H_0: \beta_2 = \beta_3 = \dots = \beta_k = 0$$

- ► This sets up the hypothesis that the complete set of regressors has no effect on Y.
- It tests the significance of the overall relation.
- ▶ The intercept does not enter into the hypothesis since interest centers on the variation of *Y* around its mean.

$$F = \frac{ESS/(k-1)}{RSS/(n-k)}$$
 with $F(k-1, n-k)$

$$F = \frac{R^2/(k-1)}{1-R^2/(n-k)}$$
 with $F(k-1, n-k)$

- Cross-section data on individuals (from MUS chapter 10)
- Dependent variable docvis is a count. Here do OLS.
- Begin with data description and summary statistics.
 - . use mus10data.dta, clear
 - . quietly keep if year02==1
 - . describe docvis private chronic female income

variable name		display format	value label	variable label
docvis private chronic	byte byte	%8.0g %8.0g %8.0g		number of doctor visits = 1 if private insurance = 1 if a chronic condition
female income	byte float	%8.0g %9.0g		= 1 if female Income in \$ / 1000

, summarize docvis private chronic female income

Variable	0bs	Mean	Std. Dev.	Min	Max
docvis	4412	3.957389	7.947601	0	134
private	4412	.7853581	.4106202	0	1
chronic	4412	.3263826	.4689423	0	1
female	4412	.4718948	.4992661	0	1
income	4412	34.34018	29.03987	-49.999	280.777

▶ OLS regression with default standard errors: assumes i.i.d error

. * OLS regression with default standard errors . regress docvis private chronic female income

Source	SS	df	MS
Model Residual	35771.7188 242846.27	4 4407	8942.92971 55.1046676
Total	278617.989	4411	63.1643594

Number of obs		4412
F(4, 4407) Prob > F		162.29
	=	
R-squared Adi R-squared	=	0.1284
	Ξ	7.4233
KOOT MSE	=	7.4233

docvis	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
private	1.916263	.2881911	6.65	0.000	1.351264	2.481263
chronic	4.826799	.2419767	19.95	0.000	4.352404	5.301195
female	1.889675	.2286615	8.26	0.000	1.441384	2.337967
income	.016018	.004071	3.93	0.000	.0080367	.0239993
_cons	5647368	.2746696	-2.06	0.040	-1.103227	0262465

- ▶ Overall fit poor as $R^2 = 0.13$. Often the case for cross-section data.
- Yet all regressors are statistically significant and have large impact.

- ▶ OLS regression with robust standard errors for OLS estimator.
- Preferred at this permits model error to be heteroskedastic.
 - . * OLS regression with robust standard errors . regress docvis private chronic female income, vce(robust)

Linear regression Number of obs =

F(4, 4407) = 107.01 Prob > F = 0.0000 R-squared = 0.1284 Root MSE = 7.4233

docvis	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
private	1.916263	.2347443	8.16	0.000	1.456047	2.37648
chronic	4.826799	.3001866	16.08	0.000	4.238283	5.415316
female	1.889675	.2154463	8.77	0.000	1.467292	2.312058
income	.016018	.005606	2.86	0.004	.0050275	.0270085
_cons	5647368	.2069188	-2.73	0.006	9704017	159072

Hypothesis Tests Applications

- . * Comparison of standard errors
- . quietly regress docvis private chronic female income
- . estimates store DEFAULT
- quietly regress docvis private chronic female income, vce(robust)
- . estimates store ROBUST
- . estimates table DEFAULT ROBUST, b(%9.4f) se stats(N r2 F)

Variable	DEFAULT	ROBUST
private	1.9163	1.9163
	0.2882	0.2347
chronic	4.8268	4.8268
	0.2420	0.3002
female	1.8897	1.8897
	0.2287	0.2154
income	0.0160	0.0160
	0.0041	0.0056
_cons	-0.5647	-0.5647
	0.2747	0.2069
N	4412.0000	4412.0000
r2	0.1284	0.1284
F	162.2899	107.0104

legend: b/se