Construction 11

Given a triangle, inscribe a circle in the triangle.

Given: $\triangle ABC$

Construct: A circle tangent to \overline{AB} , \overline{BC} , and \overline{AC}

Procedure:

- 1. Construct the bisectors of $\angle A$ and $\angle B$. Label the point of intersection I.
- 2. Construct a perpendicular from I to \overline{AB} , intersecting \overline{AB} at a point R.
- 3. Using *I* as center and *IR* as radius, draw a circle.

Circle I is tangent to \overline{AB} , \overline{BC} , and \overline{AC} .

Justification: See Theorem 10-1 on page 386.

Classroom Exercises

- 1. Explain how to find the midpoint of \widehat{AB} .
- 2. Explain how to construct the center of the circle containing points A, B, and C.
- 3. Explain how to find the line described.
 - **a.** Parallel to \overline{RS} and passing through P
 - **b.** Parallel to \overline{RS} and tangent to $\bigcirc P$
- 4. Here you see a common method for using just one compass setting for drawing a circle and dividing the circle into six congruent arcs. Explain how the method works.
- 5. Suppose a circle is given. Explain how you can use the method of Exercise 4 to inscribe an equilateral triangle in the circle.
- **6.** Suppose the construction of Exercise 4 has been carried out. Explain how you can then inscribe a regular twelve-sided polygon in the circle.

