FEUILLE 9 : ANALYSE ASYMPTOTIQUE

I EXERCICES TECHNIQUES

Exercice 1

Calculer les limites suivantes :

- $\lim_{x \to 0} \frac{\ln(\cos(3x))}{\sin^2 x}$ Faire un quotient d'équivalents.
- **b.** $\lim_{x\to 1} \frac{x^2-1}{\mathrm{e}^{2x-1}-\mathrm{e}^x}$ Faire le changement de variable h=x-1 puis faire un quotient d'équivalents.
- c. $\lim_{x\to 1} \frac{(x^2-3x+2)\sin(\pi x)}{\ln(x^2-2x+2)}$ Faire comme à la question précédente.
- **d.** $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$ Ecrire la puissance sous forme d'une exponentielle et faire un DL du numérateur.
- e. $\lim_{x\to 0} \frac{1}{x^2} \frac{1}{\tan^2 x}$ Faire un DL du second terme.

Exercice 2

Calculer les $DL_n(0)$ dans les cas suivants :

a.
$$\frac{1}{\sqrt{1-x}}$$
 $n=5$

b.
$$\frac{1}{\sin x} - \frac{1}{x}$$
 $n = 1$
c. $2\operatorname{Arctan}(e^x)$ $n = 3$
d. $(\ln(1+x))^2$ $n = 4$

c.
$$2\operatorname{Arctan}(e^x)$$
 $n=3$

d.
$$(\ln(1+x))^2$$
 $n=4$

Exercice 3

Trouver un équivalent simple au voisinage du réel a dans les cas suivants :

a.
$$\frac{\sqrt{1+3x}}{\ln(1+x)}$$
 $a=0$

$$\mathbf{b.} \quad \frac{1 - \cos(2x)}{x^2} \qquad a = 0$$

$$\mathbf{c.} \quad \sqrt{x} - \sqrt{\sin x} \qquad a = 0$$

c.
$$\sqrt{x} - \sqrt{\sin x}$$
 $a = 0$
d. $\frac{1}{x} - \frac{1}{x\sqrt{1 - x^2}}$ $a = 0$ puis $a = 1$

e.
$$\frac{x \ln(x)}{(1-x^2)^{\frac{3}{2}}}$$
 $a=0$ puis $a=1$

II EXERCICES SUR LES DÉVELOPPEMENTS LIMITES

Exercice 4

Montrer que

$$((f = o_a(g)) \land (g = O_a(u))) \Longrightarrow (f = o_a(u))$$

Ecrire f et g comme des produits.

Exercice 5

Comparer au voisinage de $+\infty$ les fonctions $x \mapsto (\ln x)^{\ln x}$ et $x \mapsto (\ln x)^{x \ln x}$. Calculer $\lim_{t \to \infty} \frac{f}{a}$.

Exercice 6

Calculer les limites suivantes :

a.
$$\lim_{x \to 0} \frac{(1 - e^x)\sin x}{x^2 + x^3}$$

b.
$$\lim_{x \to 1} \frac{e^{x^2 + x} - e^{2x}}{\cos(\frac{\pi}{2}x)}$$

$$\mathbf{c.} \quad \lim_{x \to +\infty} \left(\frac{x^2 + 2x - 3}{x^2 - x + 1} \right)^x$$

d.
$$\lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan(\pi x)$$

e.
$$\lim_{x\to 0} \frac{\ln(1+2\tan x)}{e^{\sin x}-1}$$

$$\mathbf{f.} \quad \lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{\tan(4x)}}$$

Ecrire la puissance sous forme d'une exponentielle, puis faire le $DL_1\left(\frac{\pi}{4}\right)$ de tan x et composer avec ln; faire ensuite apparaître un quotient comme un taux d'accroissement.

g.
$$\lim_{x \to 1} \frac{x^x - x}{\ln(x) \ln\left(1 + \sqrt{x^2 - 1}\right)}$$
 Remarquer que $\ln x \underset{x \to 1}{\sim} x - 1$.

$$\mathbf{h.} \quad \lim_{x \to a} \left(2 - \frac{x}{a}\right)^{\tan \frac{\pi x}{2a}} \quad \text{où } a \in \mathbb{R}^* \quad \text{Faire le changement de variable } h = x - a.$$

Exercice 7

Calculer le $\mathrm{DL}_n(0)$ dans les cas suivants :

a. Arctan²
$$x$$
 $n=5$

a.
$$\arctan^2 x$$
 $n=5$
b. $\frac{e^x}{\sqrt{1+x}}$ $n=3$

$$\mathbf{c.} \quad \ln \frac{\sin x}{x} \qquad n = 4$$

d.
$$\ln(1 + \cos x)$$
 $n = 4$

$$e. \quad \frac{e^x - \cos x - x}{x - \ln(1+x)} \qquad n = 2$$

e.
$$\frac{e^x - \cos x - x}{x - \ln(1 + x)}$$
 $n = 2$
f. $\frac{\operatorname{Arcsin} x}{\sqrt{1 - x^2}}$ $n = 5$ Ecrire $\frac{1}{\sqrt{1 - x^2}} = (1 - x^2)^{-\frac{1}{2}}$

g.
$$\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
 $n=2$ Ecrire la puissance sous forme d'une exponentielle.

h.
$$(\sin x - x + x^3 + x^4)^p$$
 $n = 3p$ où $p \in \mathbb{N}^*$

Exercice 8

Calculer les $DL_n(a)$ dans les cas suivants :

Faire des changements de variables et se ramener à des $DL_n(0)$.

a.
$$\tan x$$
, $a = \frac{\pi}{4}$, $n = 4$

b.
$$\frac{e^x}{\sin x}$$
, $a = \frac{\pi}{2}$, $n = 2$

c.
$$x^{\frac{1}{x-1}}$$
, $a = 1$, $n = 2$

Exercice 9

Déterminer l'ensemble des solutions de l'équation différentielle (ED) suivante, en précisant le domaine sur lequel elles sont définies, puis déterminer s'il en existe qui sont définies sur \mathbb{R} :

(ED)
$$xy' + 2y = \frac{x}{1+x^2}$$

III EXERCICES D'APPLICATIONS A L'ETUDE LOCALE DE FONCTIONS

Exercice 10

On considère la fonction f définie sur $]0,1[\cup]1,+\infty[$ par :

$$f(x) = \frac{2x \ln x}{x - 1}$$

- a. Montrer que f est prolongeable par continuité en 1 et que ce prolongement, noté g, est dérivable. Faire un $\mathrm{DL}_3(1)$ de f(x).
- **b.** Déterminer l'équation de la tangente à la courbe de g au point d'abscisse 1, ainsi que leurs positions respectives.

Exercice 11

Faire l'étude locale en 0 (limite, dérivabilité, éventuelle tangente à la courbe) des fonctions suivantes : Faire des $\mathrm{DL}_n(0)$ des fonctions.

a.
$$f(x) = \frac{x^x - 1}{\ln(x^2 + x)}$$

b.
$$g(x) = \tan x \operatorname{Arctan}\left(\frac{\sqrt{x^2 + 1} - 1}{x}\right)$$

c.
$$h(x) = \left(\frac{1+2^x}{2}\right)^{\frac{1}{x}}$$

d.
$$u(x) = \left(\frac{\ln(1+x)}{x}\right)^{\ln x}$$

Exercice 12

Montrer que les courbes des fonctions suivantes admettent des asymptotes en $\pm \infty$; les déterminer et donner la position des courbes par rapport aux asymptotes :

Faire des développements asymptotiques.

$$\mathbf{a.} \quad f(x) = x \operatorname{Arctan} \frac{x}{x-1}$$

b.
$$g(x) = (x^2 - 1) \ln \left| \frac{x - 1}{x + 1} \right|$$
 Vérifier que pour $x \notin \{-1, 0, 1\}$ on $a : \ln \left| \frac{x - 1}{x + 1} \right| = \ln \left| 1 - \frac{1}{x} \right| - \ln \left| 1 + \frac{1}{x} \right|$

$$\mathbf{c.} \quad h(x) = x \sqrt{\frac{x-1}{x+1}}$$

d.
$$u(x) = \frac{x^2 - x + 2}{x + 1} e^{-\frac{1}{x}}$$

LES BONS REFLEXES

- ₹ Attention à ne pas "composer" des équivalents.
- \maltese Ne JAMAIS écrire un équivalent à 0. JAMAIS JAMAIS JAMAIS
- ♣ Pour des calculs de limites, ne pas hésiter à effectuer des DL d'ordre 2 ou 3.
- \maltese Si on ne "pousse" pas assez l'ordre d'un DL, le résultat est faux. Si on le "pousse" trop, c'est plus long, mais ce n'est pas faux.