THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

HW #2, due January 29, 2015

Reading Assignment: Chapter 3 (all)

Chapter 4 (through Section 4.3)

Written Assignment:

- 1. Given the vectors $\mathbf{A} = 2\hat{\mathbf{x}} + 4\hat{\mathbf{y}} + 10\hat{\mathbf{z}}$ and $\mathbf{B} = -5\hat{\mathbf{r}} + \hat{\boldsymbol{\phi}} 3\hat{\mathbf{z}}$, determine
 - (a) $\mathbf{A} + \mathbf{B}$ at P(0,2,-5) in the Cartesian system, and
 - (b) the angle between **A** and **B** at P(0,2,-5).
- 2. Let $\mathbf{H} = 5r\sin\phi\,\hat{\mathbf{r}} rz\cos\phi\,\hat{\boldsymbol{\phi}} + 2r\,\hat{\mathbf{z}}$. At point $P(2,30^\circ,-1)$, determine
 - (a) the component of **H** normal to r = 2, and
 - (b) the component of **H** tangential to $\phi = 30^{\circ}$.
- 3. Determine the gradients of the following fields:
 - (a) $U = e^{x+2y} \cosh(z)$, and
 - (b) $T = \frac{3z}{r} \cos \phi$.
- 4. Given $\mathbf{F} = r^2 \sin \phi \,\hat{\mathbf{r}} + z \cos \phi \,\hat{\phi} + rz \,\hat{\mathbf{z}}$, calculate the total flux of \mathbf{F} outward through the hollow cylinder defined by $2 \le r \le 3$, $0 \le z \le 5$.
- 5. Given $\mathbf{A} = r \sin \phi \, \hat{\mathbf{r}} + r^2 \, \hat{\boldsymbol{\phi}}$, determine $\oint_L \mathbf{A} \cdot d\mathbf{l}$ if L is the path drawn in the figure.

6. Let $V = \frac{\sin \theta \cos \phi}{R}$. (a) Is ∇V conservative? (b) Is ∇V solenoidal? Why (not)?