In []:

In [62]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [63]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\Fitness.csv")
a
```

Out[63]:

	SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unna
0	ANU	70.0	80.0	75.0	60.0	72.0	55.0	412.0	NaN	NaN	
1	BABU	30.0	48.0	35.0	45.0	25.0	37.0	220.0	NaN	NaN	
2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	NaN	NaN	
3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	NaN	NaN	
4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	NaN	NaN	
5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	NaN	NaN	
6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	NaN	NaN	
7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	NaN	NaN	
8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	NaN	NaN	
9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	NaN	NaN	
10	MONTHLY SALES	556.0	544.0	522.0	571.0	532.0	468.0	NaN	3193.0	NaN	
11	NaN	NaN	NaN	NaN	NaN	NaN	NaN	3189.0	NaN	NaN	•

In [64]:

a=a.head(10)

а

Out[64]:

	SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unnamed: 10
0	ANU	70.0	80.0	75.0	60.0	72.0	55.0	412.0	NaN	NaN	NaN
1	BABU	30.0	48.0	35.0	45.0	25.0	37.0	220.0	NaN	NaN	NaN
2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	NaN	NaN	NaN
3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	NaN	NaN	NaN
4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	NaN	NaN	NaN
5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	NaN	NaN	NaN
6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	NaN	NaN	NaN
7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	NaN	NaN	NaN
8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	NaN	NaN	NaN
9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	NaN	NaN	NaN
4 (>

In [65]:

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	SALESMAN	10 non-null	object
1	JAN	10 non-null	float64
2	FEB	10 non-null	float64
3	MAR	10 non-null	float64
4	APR	10 non-null	float64
5	MAY	10 non-null	float64
6	JUN	10 non-null	float64
7	TOTAL SALES	10 non-null	float64
8	Unnamed: 8	0 non-null	float64
9	Unnamed: 9	0 non-null	float64
10	Unnamed: 10	0 non-null	float64
11	Unnamed: 11	6 non-null	object
	C3 1 C 4 / 4	0) 1 1 (0)	

dtypes: float64(10), object(2)

memory usage: 1.1+ KB

In [66]:

```
# to display summary of statastic
a.describe()
```

Out[66]:

	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unname
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	(
mean	55.600000	54.400000	52.200000	57.100000	53.200000	46.800000	318.900000	N
std	21.618922	20.408059	18.819612	10.671353	19.135772	19.577765	85.296151	N
min	29.000000	25.000000	15.000000	45.000000	25.000000	25.000000	210.000000	N
25%	35.000000	37.500000	46.000000	48.500000	37.500000	30.000000	249.750000	N
50%	60.000000	51.000000	49.500000	56.500000	54.500000	46.000000	320.500000	N:
75%	73.750000	69.750000	65.750000	63.750000	64.250000	62.500000	378.750000	N:
max	85.000000	85.000000	77.000000	77.000000	88.000000	73.000000	462.000000	N
4								•

In [67]:

```
# to display colum heading
a.columns
```

Out[67]:

In [68]:

sns.pairplot(a)

Out[68]:

<seaborn.axisgrid.PairGrid at 0x20b022c0a30>

In [70]:

```
sns.displot(a["JAN"])
```

Out[70]:

<seaborn.axisgrid.FacetGrid at 0x20b06197a30>

In [71]:

```
b=a[['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN']]
b
```

Out[71]:

	JAN	FEB	MAR	APR	MAY	JUN
0	70.0	80.0	75.0	60.0	72.0	55.0
1	30.0	48.0	35.0	45.0	25.0	37.0
2	65.0	54.0	49.0	54.0	35.0	65.0
3	85.0	71.0	68.0	77.0	88.0	73.0
4	55.0	25.0	45.0	50.0	53.0	30.0
5	35.0	45.0	15.0	45.0	45.0	25.0
6	75.0	66.0	59.0	65.0	56.0	30.0
7	29.0	35.0	49.0	48.0	35.0	55.0
8	35.0	35.0	50.0	59.0	67.0	73.0
9	77.0	85.0	77.0	68.0	56.0	25.0

In [72]:

```
sns.heatmap(b.corr())
```

Out[72]:

<AxesSubplot:>

In [74]:

```
x=a[['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN']]
y=a['JUN']
```

In [75]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [76]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[76]:

LinearRegression()

In [77]:

```
lr.intercept_
```

Out[77]:

2.842170943040401e-14

In [78]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[78]:

Co-efficientJAN 4.883879e-16 FEB -7.929938e-16

MAR 2.783923e-16

APR -5.970916e-16

MAY 2.364108e-16

JUN 1.000000e+00

In [79]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[79]:

<matplotlib.collections.PathCollection at 0x20b06f9d7c0>

In [80]:

```
lr.score(x_test,y_test)
```

Out[80]:

1.0

In [81]:

```
lr.score(x_train,y_train)
```

Out[81]:

1.0

```
In [82]:
from sklearn.linear_model import Ridge,Lasso
In [83]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[83]:
Ridge(alpha=10)
In [84]:
rr.score(x_test,y_test)
Out[84]:
0.9999415201052156
In [85]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[85]:
Lasso(alpha=10)
In [86]:
la.score(x_test,y_test)
Out[86]:
0.9980875315557293
In [ ]:
```