

Antonio Muñoz Barrientos
26 de febrero de 2024
Machine learning y Deep learning
Examen Parcial 1: Machine_Learning
Aplicado al Reconocimiento de Firmas.

Etapa 1: Cheques firmados a mano

Ilustración 1 Cheques firmados a mano

Etapa 2: Algoritmo de Segmentación

- 1. Leer la imagen y convertirla a un arreglo de valores
- 2. Se divide en 4 para extraer solo el cuadrante donde se encuentre la firma
- 3. Binarizamos la imagen
- 4. Extraemos todos los contornos en la imagen binaria
- 5. Ordenamos los contornos de mayor a menor por cantidad de contenido
- 6. Asignar media_anterior = False
- 7. Asignar median_index = 7
- 8. Por cada contorno en contornos:
 - a. Obtenemos el cuadrado del contorno (x,y,w,h)
 - b. Si $x \le 3$ o $y \le 3$ pasar al siguiente contorno
 - c. Si media_anterior es False:

- i. Calcular la media de los valores (x,y,w,h)
- ii. Actualizar media_anterior = media
- iii. Actualizar valores del rectángulo x,y,w,h
- iv. Dibujar los contornos obtenidos
- d. Si media_anterior es True:
 - i. Calcular la media de los valores (x,y,w,h)
 - ii. Si media media_anterior <= median_index:
 - I. xmin = x_anterior
 - II. ymin = y_anterior
 - III. xmax = x
 - IV. ymax = y
 - V. h_actual = h
 - VI. w_actual = w
 - VII. Dibujar los contornos obtenidos
 - VIII. Media anterior = False
 - iii. Si no
 - I. Obtener las coordenadas del rectángulo de la firma (ymin, y_max + h_actual), (xmin, x_max + w_actual)
 - II. Fin recorrer contornos
- 9. Recortar la firma con las coordenadas del cuadrado obtenido
- 10. Obtener la imagen con los contornos obtenidos.

Base de datos de firmas extraídas

Etapa 3: Creación de la base de datos

Primero debemos escalar las firmas al mismo tamaño para obtener mejores resultados, en este caso las transformaremos a imágenes de 300 x 300.

Con el uso de morfología matemática logramos obtener variables que nos permitan describir la firma en términos de datos. Primero sacamos el área y el perímetro de la firma utilizando un proceso de erosión y dilatación (opening), para posteriormente obtener el contorno. Con la suma de los valores del contorno tenemos el área y con la longitud del arreglo del contorno tenemos el perímetro.

Ilustración 4: Imagen con opening

Ilustración 3: Firma con opening

Luego a cada imagen le aplicamos una máscara (kernel) de 3 diferentes estructuras, un círculo, un rectángulo y una línea diagonal. Todos los pixeles que tenga los mismos bits activados entre la máscara y la imagen se suman. En total tenemos 13 estructuras diferentes. Esto nos genera el siguiente dataset:

	Firma	area	perimetro	EE1	EE2	EE3	EE4	EE5	EE6	EE7	EE8	EE9	EE10	EE11	EE12
0	1	89401.0	1196.0000	77343	71802	68519	65235	59617	56343	53357	50557	47956	57244	55767	54411
1	2	89401.0	1196.0000	75624	69832	66454	63108	57309	54050	50913	47893	45031	54335	52598	50933
2	3	85728.5	1456.4680	78115	72815	69442	65994	59750	56359	53209	50421	47884	57266	55670	54217
3	4	89401.0	1196.0000	76647	70481	66758	63051	56611	53175	50050	47149	44470	54444	52771	51155
4	5	87465.5	1578.4092	78157	72959	69448	65947	59892	56600	53631	50915	48376	57703	56166	54728
5	6	87994.0	1431.2548	77357	72169	68963	65796	60388	57441	54797	52352	50171	56762	55161	53678
6	7	89378.0	1202.8284	74758	68345	64566	60953	54967	51435	48150	45105	42418	50945	48969	47200
7	8	87638.0	1566.3675	78412	73394	70123	66827	61416	58358	55546	52853	50271	59095	57652	56265
8	9	89339.0	1207.6569	80841	74080	69921	66284	60573	57371	54510	51972	49819	59659	58093	56580
9	10	87800.5	1486.4680	76254	70650	67319	64050	58500	55405	52615	49988	47574	55704	54197	52782
10	11	87589.5	1533.2965	75801	69670	66019	62514	56821	53538	50554	47998	45683	53154	51504	50036
11	12	89401.0	1196.0000	73546	67554	63884	60259	54280	50846	47669	44751	42062	50148	48345	46745
12	13	87709.5	1537.9239	79424	75028	72210	69380	64361	61579	58977	56529	54216	61516	60091	58748
13	14	89401.0	1196.0000	77856	72638	69345	66114	60740	57715	54872	52224	49796	57199	55572	54083
14	15	89401.0	1196.0000	78813	74225	71067	67909	62358	59279	56435	53898	51506	60377	59088	57872

Ilustración 5: Data set de firmas

Para crear más muestras correctas de nuestra firma (datos sintéticos positivos) calculamos la media de cada columna. Con un valor aleatorio determinamos si al valor de la media le sumamos, restamos o no hacemos nada con la desviación estándar. Gracias a esta forma aleatoria podemos generar diferentes muestras pero que sigan en el mismo rango de valores. También le asignamos el valor de válido 1 para saber que si es nuestra firma. Generamos 45 datos sintéticos para obtener 60 muestras de nuestra firma.

Ilustración 6: Datos sintéticos

Ahora generamos datos sintéticos negativos con valores aleatorios que no se crucen con nuestros valores correctos, esto para evitar que haya confusiones. Asignamos el valor de válido como 0 para identificar que no es nuestra firma. Generamos 60 para obtener 60 muestras no correctas de nuestra firma.

	Firma	Valido	area	perimetro	EE1	EE2	EE3	EE4	EE5	EE6	EE7	EE8	EE9	EE10	EE11	EE12
0	61	0	6825	7563	2684	8555	777	1848	9583	4115	2195	4367	4557	7353	1952	4899
1	62	0	6198	9162	1105	8756	7398	9893	5148	7641	8305	1384	601	3995	3846	9355
2	63	0	8373	4145	8809	3940	6620	449	7021	4838	1347	8380	8002	4733	8685	8253
3	64	0	8356	9810	709	6017	179	9752	6408	3801	5740	4330	7924	8473	3104	347
4	65	0	2350	529	194	1383	8877	7791	1091	5914	1701	9907	502	378	8007	2681
5	66	0	2443	9029	1469	2651	7533	3848	4568	1555	8910	7592	9376	5404	1152	1721
6	67	0	8043	8644	8757	1550	7327	6227	3470	4671	852	8411	6698	4523	4088	3850
7	68	0	3088	4651	4242	957	6272	5363	8114	8830	8888	9931	856	2094	8596	3054
8	69	0	4681	6895	8385	7505	9532	4634	2209	1852	6790	4085	4173	2671	3935	5363
9	70	0	4094	8770	5511	8878	4283	6244	236	2231	1658	8337	396	9656	7119	7330
10	71	0	9531	330	7883	1048	297	9967	7864	6463	7074	8838	1582	6534	2048	7850
11	72	0	2359	4785	5527	6737	1666	6880	9628	4393	5784	9885	6700	3968	917	567
12	73	0	2770	7836	1227	7564	8629	4625	3449	6415	1079	4079	6735	7193	6400	5183
13	74	0	2004	8424	8551	6868	9045	6876	1228	5846	6239	6656	9781	6718	8402	2198
14	75	0	2664	4141	8584	6538	4329	5363	1664	3162	9090	5452	893	6895	4182	8454
15	76	0	9981	3281	6119	7372	247	8675	2294	3668	703	2095	1678	3745	8789	9902
16	77	0	7326	962	4805	3558	9572	5820	9380	7950	4070	5116	1044	1906	3731	7527
17	78	0	2983	6334	4302	6308	9869	1094	7593	4991	5189	490	3456	7910	6431	7706

Ilustración 7: Datos sintéticos negativos

Juntamos ambas muestras y obtenemos nuestro data set terminado.

Firma	area	perimetro	EE1	EE2	EE3	EE4	EE5	EE6	EE7	EE8	EE9	EE10	EE11	EE12	Valido
15	89401.00	1196.00	78813.00	74225.00	71067.00	67909.00	62358.00	59279.00	56435.00	53898.00	51506.00	60377.00	59088.00	57872.00	1
48	88770.20	1389.19	77760.34	72295.16	68895.80	65564.26	59902.78	56742.79	53839.96	51168.45	48710.86	57241.38	55686.20	54234.72	1
20	89621.91	1514.20	79170.29	73956.28	70672.92	67463.12	61974.80	58945.13	56168.33	53611.63	51250.15	59712.55	58266.90	56898.38	1
37	89604.71	1511.67	79141.80	73922.72	70637.01	67424.76	61932.94	58900.64	56121.29	53562.27	51198.85	59662.63	58214.76	56844.57	1
7	89378.00	1202.83	74758.00	68345.00	64566.00	60953.00	54967.00	51435.00	48150.00	45105.00	42418.00	50945.00	48969.00	47200.00	1
49	89658.66	1519.59	79231.13	74027.96	70749.60	67545.06	62064.21	59040.16	56268.80	53717.06	51359.72	59819.18	58378.26	57013.32	1
91	8395.00	4233.00	7112.00	6871.00	1500.00	6325.00	2241.00	9137.00	6641.00	6316.00	8077.00	3522.00	1351.00	4163.00	0
13	87709.50	1537.92	79424.00	75028.00	72210.00	69380.00	64361.00	61579.00	58977.00	56529.00	54216.00	61516.00	60091.00	58748.00	1
75	2664.00	4141.00	8584.00	6538.00	4329.00	5363.00	1664.00	3162.00	9090.00	5452.00	893.00	6895.00	4182.00	8454.00	0
116	1548.00	6132.00	4886.00	3565.00	6101.00	4459.00	2820.00	2152.00	6885.00	1064.00	6756.00	4686.00	6462.00	2759.00	0
16	88469.90	1345.11	77263.20	71709.47	68269.20	64894.73	59172.20	55966.27	53019.00	50307.00	47815.53	56370.07	54776.27	53295.53	1
5	87465.50	1578.41	78157.00	72959.00	69448.00	65947.00	59892.00	56600.00	53631.00	50915.00	48376.00	57703.00	56166.00	54728.00	1
109	4641.00	573.00	1542.00	4382.00	1750.00	7523.00	3961.00	2733.00	1753.00	2270.00	1181.00	2136.00	9033.00	5375.00	0
22	88637.51	1369.71	77540.66	72036.36	68618.92	65268.41	59579.95	56399.66	53477.20	50787.79	48315.24	56856.37	55284.12	53819.71	1
71	9531.00	330.00	7883.00	1048.00	297.00	9967.00	7864.00	6463.00	7074.00	8838.00	1582.00	6534.00	2048.00	7850.00	0
33	87739.32	1237.88	76053.77	70284.59	66744.82	63265.92	57394.85	54077.14	51021.77	48211.28	45637.38	54250.34	52562.59	51010.69	1
82	3988.00	2032.00	1771.00	4923.00	3898.00	6234.00	1470.00	6073.00	4361.00	3741.00	6700.00	3158.00	1157.00	6471.00	0
10	87800.50	1486.47	76254.00	70650.00	67319.00	64050.00	58500.00	55405.00	52615.00	49988.00	47574.00	55704.00	54197.00	52782.00	1
68	3088.00	4651.00	4242.00	957.00	6272.00	5363.00	8114.00	8830.00	8888.00	9931.00	856.00	2094.00	8596.00	3054.00	0
95	3243.00	8583.00	5888.00	4334.00	525.00	3925.00	570.00	9200.00	1965.00	2756.00	5539.00	2147.00	7469.00	6241.00	0

Ilustración 8: Dataset completo

Etapa 4: Entrenamiento de la Red neuronal

Primero es necesario escalar los datos utilizados para el modelo. La red neuronal procesa mucho mejor los datos normalizados. Utilizamos la clase StandarScale() para normalizar los datos.

Ilustración 9: Datos normalizados

Para entrenar la red neuronal dividimos el conjunto de entrenamiento 70% y de prueba 30%. Instanciamos la red neuronal con 101 capas ocultas y el modelo de activación de Relu. Al final obtenemos la matriz de confusión, la precisión y el error globales. La variable objetivo es la columna Valido (1 si es mi firma, 0 no es mi firma).

```
Matriz de confusion:
[[18 0]
[ 0 18]]

Precision global:
1.0

Error global:
0.0

Precision por categoria:
0 1
0 1.0 1.0
```

Ilustración 10: Precisión del modelo

Conclusiones

Gracias a técnicas de procesamiento de imágenes como la binarización y la búsqueda de contornos podemos extraer de cualquier documento una firma. Es importante que debemos tratar de obtener todo el contenido de la firma incluso si esta es de varias partes, gracias a la función construida podemos obtener varias partes de las firmas.

Con el uso de estructuras morfológicas podemos obtener un conjunto de estructuras y características para transformar la firma en datos que el modelo pudiera leer. Luego dividimos el conjunto de datos obtenido para el entrenamiento y prueba del modelo. Se obtuvo una precisión del 100%.

Referencias

- CV2: Guía maestra OpenCV para desarrolladores de Python: https://konfuzio.com/es/cv2/
- OpenCV-Python Tutorials: https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
- OpenCV Resize image using cv2.resize(): https://www.tutorialkart.com/opencv/python/opencv-python-resize-image/#gsc.tab=0
- Morphological Transformations: https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
- OpenCV Morphological Operations: https://pyimagesearch.com/2021/04/28/opencv-morphological-operations/
- sklearn.neural_network.MLPClassifier: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html