《大学物理(下)》期末复习提要

第九章 静电场

1. 电场强度

- (1) 库仑定律: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \vec{e}_r$ 其中 $\vec{e}_r = \vec{r}/r$ $\epsilon_0 = 8.85$ 几 $^{\circ}$ 飞 小
- (2) 电场强度定义: $\vec{E} = \frac{\vec{F}}{q_0}$
- (3) 点电荷的电场强度: $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \vec{e}_r$
- (4) 电场强度通量:

任意曲面 $\Phi_{\rm e} = \int_{S} \vec{E} \cdot d\vec{S} = \int_{S} E dS \cos \theta \quad (\theta: 曲面 \vec{S}) \oplus \hat{C}$ 的夹角)

闭合曲面 $\Phi_{\rm e} = \iint_{S} \vec{E} \cdot d\vec{S} = \iint_{S} E dS \cos \theta$ (\vec{S} 的方向取外法线方向)

(5) 高斯定理: $\Phi_{e} = \prod_{S} \vec{E} \ d\vec{S} = \frac{1}{\varepsilon_{0}} \sum_{g} q$ (表明电场为有源场)

(6) 电场强度计算

① 电场强度叠加原理:

点电荷系: $\vec{E} = \sum_{i=1}^{n} \vec{E}_{i} = \frac{1}{4\pi\epsilon_{0}} \sum_{i=1}^{n} \frac{Q_{i}}{r_{i}^{2}} \vec{e}_{i}$ (直角坐标系下,将 \vec{E}_{i} 分解再解析求矢量和)

连续带电体: $\mathrm{d}\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{\mathrm{d}q}{r^2}\vec{e}_r$ $\mathrm{d}q=egin{cases}\lambda\mathrm{d}l & 线电荷\\\sigma\mathrm{d}s & \mathrm{面}电荷\\\rho\mathrm{d}v & 体电荷 \end{cases}$

$$\vec{E} = \int d\vec{E} = \int \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \vec{e}_r \qquad E_x = \int dE_x \qquad E_y = \int dE_y \qquad E_z = \int dE_z$$

② 高斯定理(带电体具有高度对称性)

 $\iint_{\mathcal{S}} \vec{E} \cdot d\vec{S} = E \cdot 4\pi r^2 = \frac{\sum q_i}{\varepsilon_0}$ 电荷分布具有球对称性,作球面为高斯面

 $\iint_{S} \vec{E} \cdot d\vec{S} = E \cdot 2\pi r h = \frac{\sum q_{i}}{\varepsilon_{0}}$ 电荷分布具有柱面对称性,作圆柱面为高斯面

△ 一些带电体电场的电场强度分布:

均匀带电球壳:
$$E = \begin{cases} 0 & r < R \\ \frac{q}{4\pi\epsilon_0 r^2} & r \geq R \end{cases}$$
 方向: 沿径矢方向

无限长均匀带电直导线:
$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$
 方向: 沿垂直于直线的径矢方向

无限大均匀带电平面: $E = \sigma/2\varepsilon_0$ 方向: 垂直于平面

2. 电势

- (2) 电势定义: $V_A = \frac{E_{pA}}{\sigma}$ $V_A = \int_{r_A}^{r_0} \vec{E} \cdot d\vec{l}$ r_0 :电势零点

电势能
$$E_{pA} = q_0 V_A$$

(3) 电势差:
$$U_{AB} = \int_{r_A}^{r_B} \vec{E} \cdot d\vec{l} = V_A - V_B$$

(4) 电场力做功:
$$W_{AB} = q_0 \int_{AB} \vec{E} \cdot d\vec{l} = q_0 U_{AB} = q_0 (V_A - V_B) = E_{pA} - E_{pB}$$

(5) 点电荷电势:
$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$
 ($V_{\infty} = 0$)

- (6) 电势计算:
 - ① 电势叠加原理:

点电荷系:
$$V = \sum_{i=1}^n V_i = \sum_{i=1}^n \frac{1}{4\pi\epsilon_0} \frac{Q_i}{r_i}$$

点电荷系:
$$V = \sum_{i=1}^n V_i = \sum_{i=1}^n \frac{1}{4\pi\epsilon_0} \frac{Q_i}{r_i}$$

连续带电体: $\mathrm{d}V = \frac{\mathrm{d}q}{4\pi\epsilon_0 r}$ $V = \int \mathrm{d}V = \int \frac{\mathrm{d}q}{4\pi\epsilon_0 r}$

② 定义法
$$V = \int_{r}^{r_0} \vec{E} \cdot d\vec{l}$$

△ 均匀带电球壳电势:

$$V = \begin{cases} \frac{q}{4\pi\epsilon_0 R} & r < R \\ \frac{q}{4\pi\epsilon_0 r} & r \ge R \end{cases}$$

第十章 静电场中的导体

1. 静电平衡

- (1) 电场强度条件:
 - ①导体内部 $\vec{E} = 0$
 - ②导体表面 \vec{E} 的方向: 垂直于导体表面; 大小: $E = \frac{\sigma}{\varepsilon_0}$
- (2) 电势条件: 导体是一等势体, 导体表面是一等势面。
- (3) 电荷分布: 导体内部无净电荷,导体所带电荷只能分布在导体表面,电荷面密度与导体表面的曲率半径成反比。

2. 电容

- (1) 孤立导体电容: $C = \frac{Q}{V}$
- (2) 电容器电容: $C = \frac{Q}{U}$ $U = \int_{+}^{-} \vec{E} \cdot \vec{d} \cdot \vec{l}$ Δ 平行板电容器电容: $C = \varepsilon_0 \frac{S}{d}$
- (3) 电容器的串并联:

串联: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$ 特点: 各电容器电荷相等, 总电压等于各电容器电压之和

并联: $C = C_1 + C_2 + ... C_n$ 特点: 各电容器电压相等,总电荷等于各电容器电荷之和

(4) 电容器储存电能:
$$W_e = \frac{1}{2}UQ = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CU^2$$

3. 静电场的能量

能量密度:
$$w_e = \frac{1}{2}\varepsilon_0 E^2$$
 总能量: $W_e = \int_V w_e dV = \int_V \frac{1}{2}\varepsilon_0 E^2 dV$

第十一章 稳恒磁场

1. 毕奥-萨伐尔定律

$$d\vec{B} = \frac{\mu_0 I d\vec{l}}{4\pi r^2} \times \vec{e}_r \qquad \vec{e}_r = \vec{r}/r \qquad \mu_0 = 4\pi \times 10^{-7} \, \mathbf{N} \cdot \mathbf{A}^{-2}$$

大小:
$$dB = \frac{\mu_0 I dl}{4\pi r^2} \, \mathbf{s} \, \mathbf{i} \, \mathbf{d} \qquad \qquad \dot{\pi} \, \mathbf{n} \colon \, I d\vec{l} \times \vec{r} \quad (\, \dot{\pi} \, \mathbf{f} \, \mathbf{g} \, \dot{\mathbf{g}} \, \mathbf{g})$$

$$\vec{B} = \int d\vec{B} \qquad B_x = \int dB_x \qquad B_y = \int dB_y \qquad B_z = \int dB_z$$

△一些典型的载流导线产生的磁场的磁感强度

①有限长载流直导线:
$$B = \frac{\mu_0 I}{4\pi r_0} (\cos\theta_1 - \cos\theta_2) \quad 方向: \ \text{右手螺旋}$$

 θ_{l} : 电流始端到场点连线与电流正向之间的夹角

 θ_{0} : 电流末端到场点连线与电流正向之间的夹角

② 无限长载流直导线:
$$B = \frac{\mu_0 I}{2\pi r}$$
 ③半无限长端点处: $B = \frac{\mu_0 I}{4\pi r}$

- ④直导线延长线上一点: B=0
- ⑤载流圆环圆心处: $B = \frac{\mu_0 I}{2R}$ 方向: 右手螺旋

⑥载流圆弧圆心处:
$$B = \frac{\mu_0 I}{2R} \cdot \frac{l_{\text{M}}}{l_{\text{M}}} = \frac{\mu_0 I}{2R} \cdot \frac{\theta}{2\pi}$$
 θ : 为弧长对应的圆心角

⑦无限长长直密绕螺线管: $B = \mu_0 nI$ n: 单位长度的匝数

 \triangle 多段载流导线: 磁场叠加 $\vec{B} = \sum \vec{B}_i$

2. 磁场的高斯定理

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad (磁场为无源场)$$

磁通量 $\Phi_m = \int_s \vec{B} \cdot d\vec{S} = \int_s B dS \cos \theta$ (θ : 曲面 \vec{S} 单位法线矢量与 \vec{B} 的夹角)

3. 安培环路定理

 $\iint \hat{B} \cdot d\vec{l} = \mu_0 \sum I_i$ 电流与回路绕行方向成右手螺旋关系,电流取正,反之取负。

△电流分布在无限长圆柱体圆柱面上时,取积分回路为圆周,由安培环路定理计算磁感强度

$$\iint_{I} \vec{B} \cdot d\vec{l} = B \cdot 2\pi r = \mu_0 \sum_{i} I_{i}$$

4. 磁力

(1) 洛伦兹力 $\vec{F}_{\mathbf{m}} = q(\vec{v} \times \vec{B})$

v □ B : 匀速直线运动

② $\vec{v} \perp \vec{B}$: 匀速圆周运动

$$qvB = m\frac{v^2}{R}$$
 → 回旋半径: $R = \frac{mv}{qB}$ 回旋周期 : $T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$

- ③ \vec{v} 与 \vec{B} 成任一夹角 θ : 螺旋运动
- (2) 安培力

安培定律: $\mathbf{d}\vec{F} = I\mathbf{d}\vec{l} \times \vec{B}$

大小: $dF = IdlB\sin\theta$ 方向: $Id\vec{l} \times \vec{B}$ 的方向(右手螺旋)

 $\vec{F} = \int_{l} \mathbf{d}\vec{F}$

△均匀磁场中,任意载流导线的安培力

大小: $F = BIl \sin \theta$ 方向: 电流× \vec{B} (右手螺旋)

 θ : 电流或等效电流与 \vec{B} 的夹角 l:直导线或任意载流导线始末端点的长度。

第十二章 电磁感应

1. 法拉第电磁感应定律

$$\mathcal{E}_{i} = -N \frac{\mathrm{d}\Phi_{m}}{\mathrm{d}t} = -\frac{\mathrm{d}\psi}{\mathrm{d}t}$$

磁链 (总磁通量): $\psi = N\Phi_m$ 感应电流: $i_R = \frac{\mathcal{E}_i}{R}$ 感应电荷: $q_i = \frac{\left|\psi_2 - \psi_1\right|}{R}$

2. 楞次定律

感应电流产生的磁场,总是要阻碍引起感应电流磁场的磁通量的变化(判断感应电流或感应电动势的方向)

3. 动生电动势 (洛伦兹力提供非静电力)

方向:沿着 $\bar{v} \times \bar{B}$ 的方向或由 ε_i 计算的正负判断,并且由电势低的地方指向电势高的地方。

5

 \triangle 均匀磁场中,直导线平动切割磁力线 $\varepsilon_i = BvL\sin\theta$

4. **感生电动势** (由感生电场引起)

$$\mathcal{E}_{\mathbf{i}} = \iint_{L} \vec{E}_{\mathbf{k}} \cdot \mathbf{d}\vec{l} = -\frac{\mathbf{d}\Phi_{m}}{\mathbf{d}t} = -\int_{S} \frac{\mathbf{d}\vec{B}}{\mathbf{d}t} \cdot \mathbf{d}\vec{s}$$
 $\vec{E}_{\mathbf{k}}$: 感生电场,为非保守场

方向: 规定回路的绕行方向(与面积的单位法线矢量成右手螺旋关系)由 $arepsilon_i$ 计算的正负判断, $arepsilon_i > 0$ 与回路的绕行方向相同, $arepsilon_i < 0$ 与回路的绕行方向相反或由楞次定律判断。

5. 自感与互感

(1) 自感

自感系数:
$$L = \frac{\psi}{I}$$
 自感电动势: $\varepsilon_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$

△ 长直密绕螺线管 $L = \mu_0 n^2 V$

(2) 互感

互感系数:
$$M = \frac{\psi_{21}}{I_1} = \frac{\psi_{12}}{I_2}$$
 互感电动势: $\varepsilon_{12} = -M \frac{\mathrm{d}I_2}{\mathrm{d}t}$ $\varepsilon_{21} = -M \frac{\mathrm{d}I_1}{\mathrm{d}t}$

- 6. 磁场的能量
 - (1) 载流线圈存储的磁能: $W_{\mathbf{m}} = \frac{1}{2}LI^2$
 - (2) 磁场的能量密度: $w_{\rm m} = \frac{B^2}{2\mu_{\rm 0}}$ 磁场能量: $W_{\rm m} = \int_V w_{\rm m} dV$

第十三章 狭义相对论

1. 狭义相对论基本原理

- (1) 相对性原理: 物理定律在所有的惯性系中都具有相同的表达形式。
- (2) 光速不变原理: 真空中的光速是常量,它与光源或观察者的运动无关,即不依赖于惯性系的选择。
- 2. 洛伦兹变换

$$x' = \frac{x - ut}{\sqrt{1 - \left(\frac{u}{c}\right)^2}} \qquad ; \quad y' = y \quad ; \quad z' = z \quad ; \quad t' = \frac{t - \frac{u}{c^2}x}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}$$

逆变换:

$$x = \frac{x' + ut'}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}$$
; $y' = y$; $z' = z$; $t = \frac{t' + \frac{u}{c^2}x'}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}$

3. 狭义相对论时空观

- (1) 同时具有相对性:某一惯性系中同时不同地发生的两个事件,在另一与之相对运动的 惯性系中不同时发生;某一惯性系中同时同地发生的两个事件,在其他惯性系也同时发生。
- (2) 时间延缓(动钟变慢)

(3) 长度收缩(动尺变短)

$$l = l_0 \sqrt{1 - \left(\frac{u}{c}\right)^2}$$

 l_0 : 固有长度

4. 相对论力学量

(1) 相对论质量:

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

*m*₀: 静止质量

(2) 相对论动量:

$$= \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \vec{v}$$

(3) 相对论能量:

$$E = mc^2$$

$$\Delta E = (\Delta m)c^2$$

 $E = mc^2$ $\Delta E = (\Delta m)c^2$ fit: $E_0 = m_0c^2$

(4) 相对论动能: $E_{\rm k} = mc^2 - m_0c^2 = E - E_0$

$$E_{\rm k} = mc^2 - m_0 c^2 = E - E_0$$

光子:
$$m_0 = 0$$
 $E =$

第十四章 量子物理

1. 黑体辐射

- (1) 黑体: 能够吸收一切外来电磁辐射的物体。黑体往外辐射能力也最强,且与温度有关。
- (2) 普朗克假设: $\varepsilon = nhv$ ($n = 1, 2, 3, \cdots$) 普朗克常数 $h = 6.63 \times 10^{-34} \mathbf{J} \cdot \mathbf{s}$

2. 光电效应

(1) 爱因斯坦方程: $hv = \frac{1}{2}m_e v_m^2 + W$

截止电压
$$U_c: eU_c = E_{\rm k\,max} = \frac{1}{2} m_e v_m^2;$$
 逸出功 $W = h v_0;$ 红限频率 $v_0 = \frac{W}{h}$

(2) 光的波粒二象性:
$$E = hv$$
; $p = \frac{h}{\lambda}$ ($c = \lambda v$)

3. 康普顿效应

(1) 能量守恒: $hv_0 + m_{e0}c^2 = hv + m_ec^2$ 反冲电子动能 $E_k = m_ec^2 - m_{e0}c^2 = h(v_0 - v)$

(2) 动量守恒: $\vec{p}_{\nu_0} = \vec{p}_e + \vec{p}_{\nu}$ (用几何运算讨论)

(3) 康普顿公式: 散射光子波长变化 $\Delta \lambda = \lambda - \lambda_0 = \frac{h}{m_{e0}c}(1-\cos\theta) = \lambda_c(1-\cos\theta)$

康普顿波长
$$\lambda_{\rm c}=rac{h}{m_{e0}c}=2.48$$
 $\Gamma^{\rm l}$ $\hat{\mathbf{O}}$ $\mathbf{m}=2 imes43$ $\hat{\mathbf{m}}$ \mathbf{m}

4. 氢原子的波尔模型

- (1) 角动量量子化: $L_n = m v_n r_n = n \frac{h}{2\pi} = n\hbar$ $n = 1, 2, 3, \cdots$
- (2) 轨道半径量子化: $r_n = a_0 n^2$ a_0 : 波尔半径
- (3) 能级量子化: $E_n = \frac{E_1}{n^2}$ n = 1, 2, 3, 基态能量 $E_1 = -13.6$ eV

 \triangle n=1 基态,n=2 第一激发态,n=3 第二激发态……; 电离能 $\Delta E = E_{\infty} - E_n = -E_n$

(4) 能级跃迁: $h\nu_{nk} = |E_n - E_k|$

里德伯公式 $\sigma_{nk} = \frac{1}{\lambda} = R_H (\frac{1}{k^2} - \frac{1}{n^2}), \quad n > k \cdot R_H$: 里德伯常数; k = 2时巴尔末系。

5. 实物粒子的波粒二象性

$$E = hv$$
 ; $p = \frac{h}{\lambda}$

德布罗意波长计算: $\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{m_0 v} \sqrt{1 - \left(\frac{v}{c}\right)^2} = \frac{hc}{\sqrt{E_k^2 + 2E_k E_0}}$

非相对论情况v \square c时, $\lambda = \frac{h}{p} = \frac{h}{m_0 v} = \frac{h}{\sqrt{2m_0 E_k}}$

6. 不确定关系 $\Delta x \Delta p_x \geq h$