Chap 7. Torsion	Same true for $G \leq Mod(S_{g,n})$
Thm. (Fenchel-Nielsen)	GI <∞ much much harder.
Any fin.order fe Mod (Sg,n)	Cor. 25 # Ø
has a rep $\varphi \in Homeo^{\dagger}(S_{g,n})$	Mad (S) is torsion free.
More: q can be chosen to	Pf.f Cor.
be isometry of a hyp./Eucl.	Mod (Sg,n) apping Mod (Sg,n+b)
	1 torsion free. nontrivial rotation
Pf. Later chapter.	nontrivial of a little of the string of a little of the string of the st

Torelli Ker Mod (Sg) -> Sp2g7L q = homeo of space with isolated fixed pts Thm I(Sg) is torsion free. Pf. Say fe I(Sg) WLOG 922. L(q) = sum of degrees of $1 < |f| < \infty$. at each fixed \rightarrow pt, rotation. \rightarrow representative φ fixed pts. degree: deg of induced map on at p S' = UTX Apply Lefschetz fp.t. $L(\varphi) = \underbrace{\tilde{\mathcal{L}}(-1)^{i} \operatorname{tr}(\varphi_{*}: H_{i}(S_{j}) \rightarrow H_{i}(S_{j}))}_{}$ If q is a rotation at P then degree of 9 at P #fixed pts 1 - 2g + 1= 2-2g < O is... +1

Proof uses Norbifolds 84(g-1) Thm Thm. 922, G < Mad(Sg) X = hyp. surface |G| < ∞ G ≤ Isom (X) finite. ⇒ 1G1 ≤ 84(g-1). ~ Y = X/G orbifold. · For Gabelian answer: 49+4 examples X = 0 G = 7L/3 Y = 0· Bound is (not) realized for so many 9. · Realized For 9=3 $G = \frac{1}{42}$ · Larson. {g: bound is realized} has same frequency in N as cubes.

Want to show for any Y=X/G, In Y, images of fixed pts are marked $\chi(Y) \leq -1_{42}$ and label of a marked pt is IGI/# preimages # marked 2-29
8419-1) $\chi(Y) = (2-2g(Y)) - m$ Y = (:) + \(\frac{1}{p_i}\)\times \(\lambda\) \(\lambda\) Pf. Just check Only possibility is $Y = \begin{pmatrix} \cdot 2 \\ \cdot j \end{pmatrix}$ $\chi(Y) = -1/42$ Fact. $\chi(x) = |G|\chi(Y)$.

Pf of 84 (g-1)

Riemann-Hurwitz formula

Realizing Finite Groups Thm. G = finite gp ∃ 9 s.t. G ≤ Mod (Sg) Pf#1 Build Sg From Cayley graph For G. vertices - tori edges --- annuli vertices: G Can replace 39"? edges: differ by generator Yes for cyclic groups. GO Cayley graph by left mult.

Brendle-tails: Change of coords:
only 6 such etts
only 6 reeded, indep Generating MCG with torsion Thm Mod (Sg) is generated by elts of order 2. Choose involution s, s(a)=b. Mod (Sg) is perfect. [Ta, S] = Ta(STaS-1) [Mod (Sg), Mod (Sg)] = TaTb product <[Ta, Tb]: i(a,b)=1> of order 2 Similarly TasTa,5 Suffices to write is a product of 2 elts [Ta, Tb] = TT elts of order = [Ta,Tb] = prod of 2