1

Воспользуемся методом Якоби для решения уравнения Ax=b, который сходится, если A имеет диагональное преобладание. A=D+L+U, где L — нижняя треугольная часть, U — верхняя треугольная часть, D — диагональ.

$$(D+L+U)x=b\Rightarrow Dx=-(L+U)x+b\Rightarrow x=D^{-1}(b-(L+U)x).$$

Положим $x_{k+1} = D^{-1}(b - (L+U)x_k)$. Переписывая в виде $x_{k+1} = Bx_k + q$, получаем:

$$B = -D^{-1}(L+U), q = D^{-1}b = \begin{pmatrix} \frac{b_1}{A_{11}} \\ \dots \\ \frac{b_n}{A_{nn}} \end{pmatrix}, Bx_k = -D^{-1}(L+U)x_k = -\begin{pmatrix} \frac{1}{A_{11}} \sum_{j \neq 1} A_{1j}(x_k)_j \\ \dots \\ \frac{1}{A_{nn}} \sum_{j \neq n} A_{nj}(x_k)_j \end{pmatrix}.$$

2

$$x_{k+1} = Bx_k$$

Если ||B|| < 1, $x_k \to \mathbf{0}$ (все компоненты предела одинаковы). Если ||B|| > 0, x_k расходится. Если B = I, $x_k \to x_0$, но для произвольной ||B|| = 1 нет сходимости.