Name: _____ Student No.: _____

?. If P is the set of divisors of 150 with partial order 'is a divisor of', which one of the following is **not** an immediate predecessor of 30?

(A) 10, (B) 15, (C) 5, (D) 6.

Answer: $\boxed{\mathbf{C}}$: In the partial order we can fit both 10 and 15 between 5 and 30.

?. Suppose $X = \{x, y, z\}$, $Y = \{a, b\}$ and $Z = \{p, q, r\}$ while $R = \{(x, a), (x, b), (y, b), (z, a)\}$ is a relation between X and Y and $S = \{(a, p), (a, q), (b, q), (b, r)\}$ is a relation between Y and Z. Which one of the following pairs is **not** in $S \circ R$?

(A)
$$(x,q)$$
, (B) (y,q) , (C) (z,r) , (D) (z,q) .

Answer: \square : We have xRa and aSq so answer is not A. We have yRb and bSq so answer is not B. We have zRa and aSq so answer is not D.

- ?. Suppose $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$, $T = \{0, 2, 4, 6\}$ and $f : S \to T$ is given by f(k) = r where r is the remainder when 6k is divided by 8. Then f is
- (A) Injective but not surjective, (B) Surjective but not injective,
- (C) Bijective, (D) Neither injective nor surjective.

Answer: $\boxed{\text{B}}$: Multiplying the numbers in $\{0,1,2,3,4,5,6,7\}$ by 6 gives $\{0,6,12,18,24,30,36,42\}$. The remainders mod 8 of these numbers are $\{0,6,4,2,0,6,4,2\}$.

?. The inverse of f(x) = (2x + 3)/(4x - 2) is

(A)
$$g(y) = (2y+3)/(4y+2)$$
, (B) $g(y) = (2y-3)/(4y-2)$, (C) $g(y) = (2y-3)/(4y+2)$, (D) $g(y) = (2y+3)/(4y-2)$.

Answer: \boxed{D} : If y = (2x+3)/(4x-2) then 4xy - 2y = 2x+3 so that 4xy - 2x = 2y+3 and x = (2y+3)/(4y-2).