CPSC 340 Tutorial

Week 2

September 13, 2021

Probability Basics I

- p(x) denotes the probability of random variable X taking on the value x, short for P(X = x)
- ▶ $0 \le p(x) \le 1$
- $p(x) = 1 p(\neg x)$

Probability Basics II

- p(x, y) denotes the joint probability of x and y both happening
 - interpreted as the intersection of the events $p(x \cap y)$
 - ightharpoonup p(x,y) = p(y,x)
- $p(x \cup y) = p(x) + p(y) p(x \cap y)$
 - Probability of at least one of them happening

Probability Basics III

- ▶ Marginalization Rule $p(x) = \sum_{y \in Y} p(x, y)$
 - Use it to find out p(x) given its joint probability with another random variable
- **▶** Conditional Probability $p(y|x) = \frac{p(x,y)}{p(x)}$
 - Intuition is that knowing the condition eliminates some options
- ▶ Product Rule p(x, y) = p(x|y)p(y) = p(y|x)p(x)
 - Get this by re-arranging the conditional probability equation
- ▶ Law of Total Probability $p(x) = \sum_{y \in Y} p(x|y) \cdot p(y)$
 - A variant of the marginalization rule
- ▶ Bayes Rule $p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)}$

Probability Basics IV

- ► Independence $x \perp y$
 - $ightharpoonup p(x,y) = p(x) \cdot p(y)$
 - For example, x is rolling a die and y is flipping a coin
- **Conditional Independence** $x_1 \perp x_2 | y$
 - $\rho(x_1, x_2|y) = \rho(x_1|y) \cdot \rho(x_2|y)$
 - equivalently, $p(x_1|x_2, y) = p(x_1|y)$
- See Notes on probability

Naive Bayes

We want to model the probabilities of each class given a data point, then we can predict a new point's label by picking the class that give the highest posterior probability $p(y_i|x_i)$.

$$p(y_i|x_i) = \frac{p(x_i|y_i)p(y_i)}{p(x_i)}$$

$$\propto p(x_i|y_i)p(y_i)$$

$$\approx \left[\prod_{i=1}^d p(x_{ij}|y_i)\right]p(y_i)$$

where the last part comes from the naive conditional independence assumption

Naive Bayes Example

	CPSC	Offer	\$	spam
•	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	0	0
	1	1	0	0
	0	0	1	1
	0	1	1	1
	1	1	1	1

- ► P(spam) =
- ► P(not spam) =
- ► P(CPSC | spam) =
- ► P(CPSC | not spam) =
- ► P(Offer | spam) =
- ► P(Offer | not spam) =
- ► P(\$ | spam) =
- ► P(\$ | not spam) =

Naive Bayes Example

▶ How should we classify an email with [1, 0, 1]:

$$P(spam|CPSC,\$) = ?$$

Naive Bayes in Matrix Form

Naive Bayes in Matrix Form

Naive Bayes in Matrix Form

Training, Testing, and Validation Set

- Given training data, we would like to learn a model to minimize error on the testing data
- How do we decide decision tree depth?
- We care about test error.
- But we can't look at test data.
- So what do we do?????

Training, Testing, and Validation Set

- Given training data, we would like to learn a model to minimize error on the testing data
- One answer: Use part of your train data to approximate test error. Split training objects into training set and validation set:

Train model on the training data. Test model on the validation data

Cross Validation

Isn't it wasteful to only use part of your data? k-fold cross-validation:

Train on k-1 folds of the data, validate on the other fold. Repeat this k times with different

splits, and average the score.

Figure 1: Adapted from Wikipedia

Note: if examples are ordered, split should be random

References

• Based off slides from 2017 and from 2021S by Nam Hee Gordon kim (and from Liconne).