Decision Tree Classification

Guest Lecturer: Joshua Ervin

Example: Predicting potential loan defaults

- Data: discrete for now (e.g. credit rating: excellent, fair, poor)
- Goal: Given a new loan application, predict whether or not the applicant will default on their loan:

Credit	Term	Income	Y
excellent	3 years	high	safe
fair	5 years	low	risky
fair	3 years	high	risky
poor	3 years	high	risky

Decision Tree

- Internal Node: A node that tests a feature
- Branch: Splits input data based on the value of a feature
- Leaf: Assigns a class to data (i.e. SAFE, RISKY)

Decision Stumps

9+9+14

Excellent

SAFE

Choice 1: Split on Credit

START 22:18

CREDIT

SAFE

9:4

pollev.com/cse416

O How do we decide which split to make?

Fair

Always pick the split which maximizes accuracy

N = 90

$$accuracy = \frac{\#correct\ predictions}{\#data\ points}$$

Greedy Algorithm for Growing a Decision Tree

- Start with a single root node
- Repeat while the <u>stopping rule</u> is not met
 - Choose a feature x[i] to split that maximizes classification accuracy
- Stopping Rule:
 - 1) Do not branch if all data has the same label (pure)
 - o 2) We have already split on that feature before

Classification Accuracy:

Early Stopping Rules

Stopping Rules:

- 1) Do not branch if all data has the same label (pure)
- o 2) We have already split on that feature before
- 3*) If adding a branch does not increase accuracy, should we still branch?

701				
x[1]	x[2]	У		
-1	-1	-1		
-1	+1	+1		
+1	-1	+1		
+1	+1	-1		

VAD

XOR: Root

x[1]	x[2]	У
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

# Levels	Accuracy
0	50%
1	?
2	?

KEY +1:-1

+1 2:2

XOR: 1 Split

x[1]	x[2]	У
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

# Levels	Accuracy
0	50%
1	50%
2	?

XOR: 2 Splits

x[1]	x[2]	У
-1	-1	-1
-1	+1	+1
+1	-1	+1
+1	+1	-1

# Levels	Accuracy
0	50%
1	50%
2	100%

- We've been making an assumption so far that our data takes on discrete values.
- How do we know here to split our data? There are an infinite number of possible splits we can make.

Credit	Term	Income	Υ
excellent	3 years	\$105,000.00	safe
fair	5 years	\$63,000.00	risky
fair	3 years	\$85.000.00	risky
poor	3 years	\$99,000.00	risky

Key Insight: Sort the data and split halfway between each pair of adjacent points. There will always be a finite number of splits. How many splits are there?

O(n bgn)

Which split is best? Pick the one that maximizes accuracy.

START Real Valued Data 8:8 age <= 21 <= 21 age > 21 > 21 age 30k SAFE 5:4 3:4 Income 20k <=20k >20k 10k income SAFE **RISKY** 3:0 30 0:4 10 20 Age

Probabilistic Prediction

Overfitting

- Similar to regression, training error monotonically non-increases with model complexity.
- Model complexity with decision trees is commonly measured in the depth of the tree.
- Two methods for preventing overfitting:
 - 1) Early stopping
 - Stop the tree before it can get too complex
 - o 2) Pruning
 - Create a complex tre and make it more simple

Overfitting

Overfitting: Early Stopping

- Stopping Rules:
 - 1) All data in the subset have the same label
 - o 2) No more features left to split
- Early Stopping Rule
 - Only grow up to a max depth hyperparameter (choose via validation)
 - Can be difficult to know the depth.
 - Oftentimes the correct tree is one that is imbalanced
 - Don't split if there is not a sufficient decrease in error
 - Problem: difficult to classify XOR problems

Exercise: Overfitting and cross validation

Max Height	Fold-1 Error	Fold-2 Error	Fold-3 Error	Test Error
5	10.3	14.2	12.5	14.5
10	5.6	4.3	7.3	8.7
15	3.1	10.4	8.8	6.9

```
cross-validation(data d, folds k):
  fold_1, fold_k = split_data(d, k)

for each model m:
  for i from 1 to k:
    model = train_model(m, fold -i)
    err = error(model, fold_i)
    avg_err = average err over folds
  keep track of m with smallest avg_err
```

return m with smallest avg_err

212 cor malidation 25.7 validation 27.9 nalidation

Overfitting: Pruning

- Basic Idea: Train a tall, overfit model and then simplify it.
- Pruning is defined by a quality metric that balances classification error and model complexity.

$$Loss(T) = Error(T) + \lambda r(T)$$

Total(+) = Ermr (+) + 2# (eens (+)

<= 21

Pruning Algorithm

- Consider some arbitrary split
- Compute the error if the split is taken away
- Compute the penalty of keeping the split
- Pick whichever one minimizes loss
- Repeat 1-4 for all splits

Tree	Error	# Leaves	Total
Т	0.25	4	0.43
T'	0.26	3	0.41

Decision Trees for Regression

- Error measured by mean squared error
- Prediction is the mean value of all partitions in the sample

