Introduction to Machine Learning Linear Regression

Prof. Chang-Chieh Cheng
Information Technology Service Center
National Chiao Tung University

Overview

- The main concept of error-based models
 - Given a set of data instances $X = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$ and each data instance \mathbf{x}_i has a target y_i
 - Design an error-based model M with a set of parameters w.
 - w satisfies the following equation

$$\mathbf{w} = \underset{\mathbf{w}'}{\operatorname{arg \, min}} \sum_{i=1}^{m} D(y_i, M_{\mathbf{w}'}(\mathbf{x}_i))$$

- where $D(y, y_m)$ is the error of real target y and predicted target y_m .
- Therefore, we can predict a query **q** by the model *M* with *w*.

$$y_q = M_{\mathbf{w}}(\mathbf{q})$$

Overview

- How to choose a model to fit the training data?
 - Line
 - Polynomial
 - Nonlinear model
- How to decide *w*?
 - · Gradient descent

Single-variable linear equation

•
$$\mathbf{x} = \{x\}$$
$$y = w_0 + w_1 x$$

Multi-variable linear equation

 $= \mathbf{w} \cdot \mathbf{x}$

•
$$\mathbf{x} = \{x_0, x_1, x_2, ..., x_n\}$$
, where $x_0 = 1$

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

$$= \sum_{j=0}^{n} w_j x_j$$

4

- A dataset that includes office rental prices and a number of descriptive features for 10 Dublin city-centre offices.
 - Size(x) → Rental price(y)

			BROADBAND	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING	PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

- Example
 - Size(x) Rental price(y)

$$y = w_0 + w_1 x$$

$$w_0 = ?$$

$$w_1 = ?$$

• Query: x = 730, y = ?

- L₂-norm minimization
- Let $\mathbf{w} = [w_0, w_1]$

$$\mathbf{w} = \underset{\mathbf{w}'}{\arg\min} \frac{1}{2} \sum_{i=1}^{m} (y_i - (w'_0 + w'_1 x_i))^2$$

Error surface

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

Finding a w such that its error is minimum

Least square method

$$Ax = b$$
,

A is an m x n matrix x is a n-d vector b is a m-d vector If A and b are known, what is x?

$$Ax = b$$
$$A^{T} Ax = A^{T} b$$

 A^{T} A is an $n \times n$ matrix and is invertible. Then,

$$(A^{T} A)^{-1}(A^{T} A)x = (A^{T} A)^{-1}A^{T}b$$

 $x = (A^{T} A)^{-1}A^{T}b$

- Least square method
- numpy.linalg.lstsq(A, b)
 - Returns:
 - x
 residuals: |b A*x|²
 rank: int
 - Singular values of A

```
import numpy as np
A = np.matrix([[1, 2], [2, 3], [3, 4]]) # 3 x 2 matrix
b = np.array([1, 5, 6]) # 3 x 1 array
R = np.linalg.lstsq(A, b, rcond = None)
x = R[0]
print(x) # [ 3.5 -1. ]
print(A * x.reshape(2, 1))
'''
    [[1.5]
    [4. ]
    [6.5]]
```

- Given a function $f(x) = w_0 + w_1 x$
 - if f(2) = 10; f(4) = 50; f(8) = 75; f(10) = 20
 - What are w_0 and w_1 ?

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 8 \\ 1 & 10 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 10 \\ 50 \\ 75 \\ 20 \end{bmatrix}$$

$$Aw = y$$

- Given a function $f(x) = aw_2^2 + bw_1 + w_0$
- if f(2) = 10; f(4) = 50; f(8) = 75; f(10) = 20
 - What are w_0 , w_1 , and w_2 ?

If the error surface has the minimum, then

$$\mathbf{w} = \arg\min_{\mathbf{w}'} \frac{1}{2} \sum_{i=1}^{m} (y_i - (w'_0 + w'_1 x_i))^2$$

$$\frac{d^{\frac{1}{2}\sum_{i=1}^{m}(y_i-(w_0+w_1x_i))^2}}{d\mathbf{w}} = \mathbf{0}$$

- Multi-variable linear model
 - $\mathbf{x} = \{x_0, x_1, x_2, ..., x_n\}$, where $x_0 = 1$
 - $\mathbf{w} = \{w_0, w_1, w_2, ..., w_n\}$

$$\mathbf{w} = \operatorname*{arg\,min}_{\mathbf{w}'} \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}' \cdot \mathbf{x})^2$$

$$\frac{\partial \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x})^2}{\partial w_j}$$

• If
$$m = 1$$

$$\frac{\partial f(x,y)g(x,y)}{\partial x}$$

$$= \frac{\partial f(x,y)}{\partial x}g(x,y) + f(x,y)\frac{\partial g(x,y)}{\partial x}$$

$$\frac{\partial \frac{1}{2} (y - \mathbf{w} \cdot \mathbf{x})^{2}}{\partial w_{j}} = (y - \mathbf{w} \cdot \mathbf{x}) \frac{\partial (y - \mathbf{w} \cdot \mathbf{x})}{\partial w_{j}}$$

$$= (y - \mathbf{w} \cdot \mathbf{x}) \frac{\partial (y - w_{0}x_{0} - w_{1}x_{1} - \dots - w_{j}x_{j} - \dots - w_{n}x_{n})}{\partial w_{j}}$$

$$= -x_{j} (y - \mathbf{w} \cdot \mathbf{x})$$

• For m > 1

$$\frac{\partial \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x})^2}{\partial w_j}$$

$$= \sum_{i=1}^{m} \frac{\partial \frac{1}{2} (y_i - \mathbf{w} \cdot \mathbf{x})^2}{\partial w_j}$$

$$=\sum_{i=1}^{m}-x_{ij}(y_i-\mathbf{w}\cdot\mathbf{x}_i)$$

To minimize error

$$w'_{j} = -\frac{\partial \frac{1}{2} \sum_{i=1}^{m} (y_{i} - \mathbf{w} \cdot \mathbf{x})^{2}}{\partial w_{j}}$$

• •
$$w_j' = \sum_{i=1}^m x_{ij} (y_i - \mathbf{w} \cdot \mathbf{x}_i)$$

- Therefore, increasing w_j by w'_j can let total error to approach zero
 - where α is an adjustment factor called **learning rate**

$$w_j = w_j + \alpha w_j'$$

Algorithm

- Data set: $\{\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_m\}$ • each $\mathbf{x}_i=\{x_{i0},x_{i1},x_{i2},\dots,x_{in}\}$, where $x_{i0}=1$
- $\mathbf{w} = \{w_0, w_1, w_2, ..., w_n\}$
- 1. Initializing w
- 2. k = 0
- 3. do
- 4. for j = 0 to n

5.
$$w'_j = \sum_{i=1}^m x_{ij}(y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$

$$6. w_j = w_j + \alpha w_j'$$

- 7. k = k + 1
- 8. until all w'_i < a small value or $k \ge$ the maximum iterations

• Learning rate α is difficult to choose

• A typical range of α is [0.00001, 10]

- Initial value of w
 - choosing random value uniformly from the range [-0.2, 0.2]

- A dataset that includes office rental prices and a number of descriptive features for 10 Dublin city-centre offices.
 - x_1 : Size, x_2 : Floor, x_3 : Broadband rate,
 - $w_0 + w_1x_1 + w_2x_2 + w_3x_3 = \text{Rental price}$

			BROADBAND	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING	PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

- α = 0.00000002
- $\mathbf{w} = \begin{bmatrix} -0.146 & 0.185 & -0.044 & 0.119 \end{bmatrix}$
- SSE = 1067571.59

$$w'_1 = \sum_{i=1}^m x_{i1} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 2412074$$

$$\alpha w_1' = 0.23324148$$

$$w_1 = w_1 + \alpha w_i' = 0.185 + 0.23324148 = 0.233$$

- α = 0.00000002
- $\mathbf{w} = \begin{bmatrix} -0.146 & \mathbf{0.233} & -0.044 & 0.119 \end{bmatrix}$
- SSE = 886723.04

$$w'_1 = \sum_{i=1}^m x_{i1}(y_i - \mathbf{w} \cdot \mathbf{x}_i) = 2195616.08$$

$$w_1 = w_1 + \alpha w_j' = 0.27691232$$

-
- After 100 iterations
 - $\mathbf{w} = \begin{bmatrix} -0.1513 & 0.6270 & -0.1781 & 0.0714 \end{bmatrix}$
 - SSE = 2913.5

- Which one is good?
 - Each iteration only updates w_i
 - Each iteration updates w
 - 1. Initializing w
 - 2. $k = 0, \mathbf{w}' = [0]$
 - 3. do
 - 4. for j = 0 to n

5.
$$w'_j = \sum_{i=1}^m x_{ij} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$

6.
$$\mathbf{w} = \mathbf{w} + \alpha \mathbf{w}'$$

- 7. k = k + 1
- 8. until $|\mathbf{w}'|$ < a small value or $k \ge$ the maximum iterations

Learning rate decay

$$\alpha_k = \alpha_0 \frac{c}{c+k}$$

• where *k* is the number of iteration and *c* is a constant number

Learning rate decay

•
$$\alpha_0 = 0.18$$
, $C = 10$

Learning rate decay

•
$$\alpha_0 = 0.25$$
, $C = 100$

Momentum

- Adam: A Method for Stochastic Optimization
 - D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," International Conference on Learning Representations (ICLR), 2015.
- Algorithm

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
                                                                                  \alpha = 0.001.
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                                                 \beta_1 = 0.9, \, \beta_2 = 0.999 \, \text{and} \, \epsilon = 10^{-8}.
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Convex

 A real-valued function defined on an n-dimensional interval is called convex if the line segment between any two points on the graph of the function lies above or on the graph, in a Euclidean space of at least two dimensions.

https://en.wikipedia.org/wiki/Convex_function

- If the error surface is convex, the gradient descent can find the unique answer
- Otherwise, the answer may not be the best.

- Categorical Descriptive Features
 - Gradient descent requires that all value must be continuous
 - → Differentiable
 - For example, ENERGY RATING has three levels: A, B, and C
 - Treate three binary features to stand for three levels

			Broadband	ENERGY	ENERGY	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	Rating A	RATING B	RATING C	PRICE
1	500	4	8	0	0	1	320
2	550	7	50	1	0	0	380
3	620	9	7	1	0	0	400
4	630	5	24	0	1	0	390
5	665	8	100	0	0	1	385
6	700	4	8	0	1	0	410
7	770	10	7	0	1	0	480
8	880	12	50	1	0	0	600
9	920	14	8	0	0	1	570
10	1 000	9	24	0	1	0	620

Error functions

sum of squared errors =
$$\frac{1}{2} \sum_{i=1}^{n} (t_i - \mathbb{M}(\mathbf{d}_i))^2$$

$$\text{root mean squared error} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n}(t_i - \mathbb{M}(\mathbf{d}_i))^2}{n}}$$

Error functions

Continuous targets

$$R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$$

total sum of squares
$$=\frac{1}{2}\sum_{i=1}^{n}(t_i-\overline{t})^2$$

sum of squared errors
$$=\frac{1}{2}\sum_{i=1}^n(t_i-\mathbb{M}(\mathbf{d}_i))^2$$

Linear Model in Python

- Linear regression in sklearn
 - https://github.com/jameschengcs/ml/blob/master/linear_regr.py

```
import numpy as np
from sklearn import datasets, linear model
diabetes = datasets.load diabetes() # Load the diabetes dataset
diabetes X = diabetes.data[:, np.newaxis, 2]
                       # Get the data[2] as an n\times 1 matrix
diabetes X train = diabetes X[:-20]
diabetes X test = diabetes X[-20:]
diabetes y train = diabetes.target[:-20]
diabetes y test = diabetes.target[-20:]
regr = linear model.LinearRegression()
regr.fit(diabetes X train, diabetes y train)
diabetes y pred = regr.predict(diabetes X test)
print('Coefficients: \n', regr.coef , regr.intercept )
print(diabetes_X_test[0], diabetes y pred[0])
```

Linear Model in Python

- Linear model in tensorflow
 - Example:
 - https://github.com/jameschengcs/ml/blob/master/gd_tf.py