Математический Анализ 3 семестр

Данил Заблоцкий

13 ноября 2023 г.

Оглавление

1	Наз	вание	2
	1.1	Название	2
	1.2	Производные высших порядков	3
	1.3	Экстремумы функций многих переменных	4
	1.4	Условный экстремум функции многих переменных	12
2	Teo	рия рядов	19
	2.1	Числовые ряды	19
		2.1.1 Гармонический ряд	20
		2.1.2 Основные свойства сходящихся рядов	20
	2.2	Сходимость знакопеременных рядов	32
	2.3	Свойства сходящихся рядов	36
	2.4	Умножение рядов	40
	2.5	Двойные и повторные ряды	42
	2.6	Поточечная и равномерная сходимость семейства функций	48
	2.7	равномерная сходимость функциональных рядов	53

Глава 1

Название

1.1 Название

Следствие. D - область в \mathbb{R}^n , $f:D\to\mathbb{R}$ дифференцируема на D и $\forall x\in D$ df(x)=0, то есть $\forall i$ $\frac{\delta f}{\delta x_i}=0$. Тогда f-const.

Доказательство. $x_0 \in D$, $B(x_0, \rho) \subset D$, $\forall x \in B(x_0, \rho)$, $[x_0, x] \subset B(x_0, \rho) \subset D$. $f(x) - f(x_0) = f'(\xi)(x - x_0)$. $f(x) - f(x_0) = 0 \implies f(x) = f(x_0)$.

Построим путь из точки x_0 к некоторой точке $x \in D$, $\gamma:[0;1] \to D$, $\gamma(0) = x_0$, $\gamma(1) = x$. По определению пути, γ - непрерывна. Тогда $\exists \delta$:

$$\forall 0 \le t \le \delta \implies \forall x \in B(x_0, \rho), \quad \gamma(t) \in B(x_0, \rho) \implies f(\gamma(t)) = f(x_0), \ t \in [0, \delta]$$

Пусть $\Delta = \sup \delta \implies f(\gamma(\Delta)) = f(x_0)$. Покажем, что $\Delta = 1$. Пусть $\Delta < 1(0+1)$. Построим шар $B(\gamma(\Delta), \rho_{\Delta}) \subset D$. Тогда $\exists \epsilon > 0$:

$$\Delta - \epsilon < t < \Delta + \epsilon$$

Но тогда $f(\gamma(\Delta + \epsilon)) = f(x_0)$ (так как точка $\gamma(\Delta + \epsilon) \in B(\gamma(\Delta), \rho_{\Delta})$). Это противоречит с тем, что $\Delta = \sup \delta \implies \Delta = 1 \implies \gamma(1) = x$, $f(x) = f(x_0) \implies$ так как $x \in D$ - произвольная точка, то имеем, что $\forall x \in D$:

$$f(x) = f(x_0) \implies f(x) - const$$

Теорема 1.1.1 (Достаточное условие дифференцируемости функции). Пусть D - область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f$ имеет непрерывную часть произведения в каждой окрестности точки $x\in D$.

Тогда f - дифференцируема в точке x.

Доказательство. Без ограничения общности, что окрестность точки $x_0 \in D$ является шаром $B(x_0, \rho) \subset D$.

Пусть $h: x_0 + h \in B(x_0, \rho)$. Здесь $x_0 = (x^1, x^2, \dots, x^n)$, $x_0 + h = (x^1 + h^1, x^2 + h^2, \dots, x^n + h^n)$. Заметим, что точки $x_1 = (x^1, x^2 + h^2, \dots, x^n + h^n)$, $x^2 = (x^1, x^2, \dots, x^n + h^n)$, ..., $x_{n-1} = (x^1, x^2, \dots, x^{n-1}, x^n + h^n) \in B(x_0, \rho)$. $f(x_0 + h) - f(x_0) = f(x_0 + h) - f(x_1) + f(x_1) - f(x_2) + f(x_2) - \dots - f(x_{n-1}) + f(x_{n-1}) - f(x_0) = f(x^1 + h^1, \dots, x^n + h^n) - f(x^1, x^2 + h^2, \dots, x^n + h^n) + f(x^1, x^2 + h^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) + f(x^1, x^2, \dots, x^n + h^n) - \dots - f(x^1, x^2, \dots, x^{n-1}, x^n) + f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) + f(x^1, x^2, \dots, x^n + h^n) + f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x^n + h^n) + f(x^1, x^2, \dots, x^n + h^n) - f(x^1, x^2, \dots, x$ $\frac{\delta f}{\delta x^2}(x^1, x^2 + \theta^2 h^2, \dots, x^n + h^n) \cdot h^2 + \dots + \frac{\delta f}{\delta x^n}(x^1, x^2, \dots, x^n + \theta^n h^n) \cdot h^n.$ Используя непрерывность частных производных, запишем: $f(x_0 + h) - f(x_0) = \frac{\delta f}{\delta x_1}(x^1, x^2, \dots, x^n) \cdot h^1 + \alpha^1(h^1) + \dots + \frac{\delta f}{\delta x_n}(x^1, x^2, \dots, x^n) \cdot h^2 + \alpha^n(h^n),$ где $\alpha^1, \alpha^2, \dots, \alpha^n$ стремятся к нулю при $h \to 0$.

Это означает, что $f(x_0+h)-f(x_0)=L(x_0)\cdot h+\underset{h\to 0}{o}(h)$, где $L(x_0)=\frac{\delta f}{\delta x_1}(x_0)h^1+$ $\ldots + \frac{\delta f}{\delta x^n}(x_0) \cdot h^n = df(x_0) \implies$ по определению f(x) дифференцируема в точке

1.2Производные высших порядков

Определение 1.2.1 (Вторая производная по двум переменным). Пусть $f:D\to\mathbb{R},\ D$ - область в \mathbb{R}^n . Производная по переменной x^i от производной по переменной x^j называется **второй производной** функции f по переменным x^i, x^j и обозначается:

$$\frac{\delta^2 f}{\delta x^i \delta x^j}(x), \quad f''_{x^i x^j}(x)$$

Теорема 1.2.1 (О смешанных производных). Пусть D - область в \mathbb{R}^n , f: $D \to \mathbb{R}, x \in D, f$ имеет в D непрерывно смешанные производные (2-го порядка).

Тогда эти производные не зависят от порядка дифференцирования.

Доказательство. Пусть $\frac{\delta^2 f}{\delta x^i \delta x^j}$ и $\frac{\delta^2 f}{\delta x^j \delta x^i}$ - непрерывны в точке $x \in D$. Так как остальные переменные фиксированы, то можно считать, что f зависит только от двух переменных.

Тогда $D \subset \mathbb{R}^2$, $f: D \to \mathbb{R}$ и $\frac{\delta^2 f}{\delta x \delta y}$ и $\frac{\delta^2 f}{\delta y \delta x}$ - непрерывны в точке $x_0 = (x, y) \in$ D.

Покажем, что $\frac{\delta^2 f}{\delta x \delta y} = \frac{\delta^2 f}{\delta y \delta x}$. Рассмотрим функции $\phi(t) = f(x + t \cdot \Delta x, y + \Delta y) - f(x + t \cdot \Delta x, y), \ \psi(t) = f(x + t \cdot \Delta x, y)$ $f(x + \Delta x, y + t \cdot \Delta y) - f(x, y + t \cdot \Delta y), t \in [0, 1].$

Имеем, что $\phi(1) - \phi(0) = f(x + \Delta x, y + \Delta y) = f(x + \Delta x, y) - f(x, y + \Delta y) +$

$$ψ(1) - ψ(0) = f(x + Δx, y + Δy) - f(x, y + Δy) - f(x + Δx, y) + f(x, y).$$

Τογμα $φ(1) - φ(0) = ψ(1) - ψ(0).$

Тут нужно дописать, фотки в галерее

Доказательство. Рассмотрим функцию $\phi(t) = f(x+th)$. Применим формулу Тейлора к $\phi(t)$:

$$\phi(1) = \phi(0) + \frac{1}{1!} \cdot \phi'(0) \cdot (1-0) + \frac{1}{2!} \cdot \phi''(0) \cdot (1-0)^2 + \frac{1}{3!} \cdot \phi'''(0) \cdot (1-0)^3 + \dots + \frac{1}{k!} \cdot \phi^{(k)} \cdot (1-0)^k$$

$$\phi(1) = f(x+h); \quad \phi(0) = f(x);$$

$$\phi'(0) = f'(x+th) \cdot (x+th)_k'|_{t=0} = \left(\frac{\delta f(x+th)}{\delta x^1} \frac{\delta f(x+th)}{\delta x^2} \dots \frac{\delta f(x+th)}{\delta x^n}\right) \cdot \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix} =$$

$$= \left(\frac{\delta f(x+th)}{\delta x^1} \cdot h' + \frac{\delta f(x+th)}{\delta x^2} \cdot h^2 + \dots + \frac{\delta f}{\delta x^n} (x+th) \cdot h^n\right)|_{t=0} = \frac{\delta f(x)}{\delta x^1} \cdot h^1 + \frac{\delta f}{\delta x^2} (x) \cdot h^2 +$$

$$\dots + \frac{\delta f}{\delta x^n} (x) \cdot h^n = \left(\frac{\delta}{\delta x^1} \cdot h^1 + \dots + \frac{\delta}{\delta x^n} \cdot h^n\right) f(x).$$

$$\phi''(0) = \left(\sum_{i=1}^n \frac{\delta f(x+th)}{\delta x^i} h^i\right)_t'|_{t=0} = \left(\sum_{i=1}^n \sum_{j=1}^n \frac{\delta^2 f(x+th)}{\delta x^i \delta x^j} h^i h^j\right)|_{t=0} = \sum_{i=1}^n \sum_{j=1}^n \frac{\delta^2 f(x)}{\delta x^i \delta x^j} h^i h^j =$$

$$\left(\frac{\delta}{\delta x^1} + \dots + \frac{\delta}{\delta x^n} h^n\right)_t^2 f(x)$$

 $(\frac{1}{\delta x^1} + \ldots + \frac{1}{\delta x^n} n)$ f(x) И так далее. Подстановки получившиеся выражаем в (*) и получим искомое.

1.3 Экстремумы функций многих переменных

Определение 1.3.1. Пусть X - метрическое пространство $f: X \to \mathbb{R}$. Точка $x_0 \in X$ называется точкой локального максимума (минимума), если:

$$\exists u(x_0) \subset X : \forall x \in u(x_0) \quad f(x) \leq f(x_0) \ (f(x) \geq f(x_0))$$

Точки локального максимума и минимума называются точками локального экстремума.

Теорема 1.3.1 (Необходимое условие локального экстремума). Пусть D - область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ x_0\in D$ - точка локального экстремума, тогда в точке x_0

$$\forall i = \overline{1, n} \quad \frac{\delta f(x_0)}{\delta x^i} = 0$$

Доказательство. Фиксируем все переменные за исключением x^i , тогда можно рассмотреть $f(x^1,\ldots,x^i,\ldots x^n)$ как функцию одной переменной, для которой x_0 - точка локального экстремума $\Longrightarrow \frac{\delta f}{\delta x^i}(x_0) = 0$.

$$i$$
 - произвольная $\Longrightarrow \forall i$ - выполняется.

Определение 1.3.2. Пусть D - область в \mathbb{R}^n , $f:D\to\mathbb{R}^k$ - дифференцируемо в точке $x_0\in D$, x_0 называется критической точкой функции f(x), если

$$rank\Im f(x_0) < min(n, k),$$

где $\Im f(x_0)$ - матрица Якоби функции $f(x_0)$.

Пример 1. $f: \mathbb{R}^3 \to \mathbb{R}^2$

$$f(x,y,z) = \begin{pmatrix} x \cdot y \\ y-z \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\Im f(x,y,z) = \begin{pmatrix} \frac{\delta u}{\delta x} & \frac{\delta u}{\delta y} & \frac{\delta u}{\delta z} \\ \frac{\delta v}{\delta x} & \frac{\delta v}{\delta y} & \frac{\delta v}{\delta z} \end{pmatrix} = \begin{pmatrix} y & x & 0 \\ 0 & 1 & -1 \end{pmatrix} \implies \begin{cases} x=0 \\ y=0 & -(x_0) \text{ (критические точки)} \end{cases}$$
 ческие точки)

 $n = 3, \ k = 2$

Множество точек прямой, получаемой пересечением плоскостей x = 0 и y = 0 - множество критических точек функции f(x, y, z).

Определение 1.3.3. Пусть D - область в \mathbb{R}^n , $f: D \to \mathbb{R}^n$, f имеет непрерывные вторые производные в точке $x_0 \in D$. На касательном пространстве $T\mathbb{R}^n_{(x_0)}$ определим квадратичную форму

$$Q(h) = \sum_{i,j=1}^{n} \frac{\delta^{2} f}{\delta x^{i} \delta x^{j}} (x_{0}) h^{i} \cdot h^{j}$$
$$Q: T\mathbb{R}^{n} \to \mathbb{R}$$
$$02.10$$

Пример 2. $S = \mathbb{R}^n$ - поверхность в \mathbb{R}^n

$$t^i(x^i) = \frac{\pi}{2} \cdot \arctan x^i$$

$$\mathfrak{I} = \begin{pmatrix} \frac{\delta t^1}{\delta x^1} & \frac{\delta t^1}{\delta x^2} & \dots & \frac{\delta t^1}{\delta x^n} \\ \frac{\delta t^2}{\delta x^1} & \frac{\delta t^2}{\delta x^2} & \dots & \frac{\delta t^2}{\delta x^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta t^n}{\delta x^1} & \frac{\delta t^n}{\delta x^2} & \dots & \frac{\delta t^n}{\delta x^n} \end{pmatrix} = \begin{pmatrix} \frac{2}{\pi} \cdot \frac{1}{1 + (x^1)^2} & 0 & \dots & 0 \\ 0 & \frac{2}{\pi} \cdot \frac{1}{1 + (x^2)^2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{2}{\pi} \cdot \frac{1}{1 + (x^n)^2} \end{pmatrix}$$

Утверждение 1.3.1. Пусть задана система уравнений

$$\begin{cases} F^{1}(x^{1},...,x^{n}) = 0 \\ \vdots \\ F^{n-k}(x^{1},...,x^{n}) = 0 \end{cases},$$

здесь $F^i(x) \in C^{(1)}$. Кроме того,

$$\begin{vmatrix} \frac{\delta F^1}{\delta x^1} & \dots & \frac{\delta F^1}{\delta x^n} \\ \vdots & \ddots & \vdots \\ \frac{\delta F^{n-k}}{\delta x^1} & \dots & \frac{\delta F^{n-k}}{\delta x^n} \end{vmatrix} (x) \neq 0, \quad \forall x \in \mathbb{R}^n$$

Тогда решение этой системы является k-мерной поверхностью в \mathbb{R}^n .

Доказательство. По теореме о неявной функции, система

$$\begin{cases} F^{1}(x^{1},...,x^{n}) = 0 \\ \vdots \\ F^{n-k}(x^{1},...,x^{n}) = 0 \end{cases}$$

эквивалентна системе

$$\begin{cases} x^{k+1} = f^{1}(x^{1}, \dots, x^{k}) \\ x^{k+2} = f^{2}(x^{1}, \dots, x^{k}) \\ \vdots \\ x^{n-k} = f^{n-k}(x^{1}, \dots, x^{k}) \end{cases}$$

Получим:

$$t^{1} = x^{1}$$

$$t^{2} = x^{2}$$

$$\vdots$$

$$t^{k} = x^{k}$$

$$t^{k+1} = x^{k+1} - f^{1}(x^{1}, \dots, x^{k}) = 0$$

$$t^{k+2} = x^{k+2} - f^{2}(x^{1}, \dots, x^{k}) = 0$$

$$\vdots$$

$$t^{n} = x^{n-k} - f^{n-k}(x^{1}, \dots, x^{k}) = 0$$

Таким образом построенное отображение является диффиоморфизмом ⇒ решение системы

$$\begin{cases} F^1(x^1,\ldots,x^n) = 0 \\ \vdots & -k \text{-мерная поверхность в } \mathbb{R}^n. \\ F^{n-k}(x^1,\ldots,x^n) = 0 \end{cases}$$

Определение 1.3.4 (Локальная карта или параметризация поверхности, касательное пространство). Пусть S-k-мерная поверхность в \mathbb{R}^n , $x_0 \in S$ и $\phi: U(x_0) \to I^n$ - диффиоморфизм:

$$\phi(U(x_0) \cap S) = I^k$$

Ограничение ϕ^{-1} на I^k будем называть **локальной картой** или **параметризацией поверхности** S в окрестности точки x_0 .

Касательным пространством (или плоскостью) к S в точке x_0 называется k-мерная плоскость, заданная уравнением

$$x = x_0 + x'(0) \cdot t, \quad x_0 = (x_0^1, x_0^1, \dots, x_0^n)$$

$$x(t) = \begin{cases} x^1(t^1, \dots, t^k) \\ x^2(t^1, \dots, t^k) \\ \vdots \\ x^n(t^1, \dots, t^k) \end{cases}, \quad x'(t) = \begin{pmatrix} \frac{\delta x^1}{\delta t^1} & \dots & \frac{\delta x^1}{\delta t^k} \\ \vdots & \ddots & \vdots \\ \frac{\delta x^n}{\delta t^1} & \dots & \frac{\delta x^n}{\delta t^k} \end{pmatrix} (t)$$

Таким образом касательное пространство задается системой (из $x = x_0 + x'(0) \cdot t$)

$$\begin{cases} x^{1} = x_{0}^{1} + \frac{\delta x^{1}}{\delta t^{1}}(0)t^{1} + \dots + \frac{\delta x^{1}}{t^{k}}(0)t^{k} \\ x^{2} = x_{0}^{2} + \frac{\delta x^{2}}{\delta t^{1}}(0)t^{1} + \dots + \frac{\delta x^{2}}{t^{k}}(0)t^{k} \\ \vdots \\ x^{n} = x_{0}^{n} + \frac{\delta x^{n}}{\delta t^{1}}(0)t^{1} + \dots + \frac{\delta x^{n}}{t^{k}}(0)t^{k} \end{cases}$$

Пример 3. 1. Пусть $\gamma = \gamma(t)$ - гладкая кривая в \mathbb{R}^3 , $\gamma : \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$

Обозначим $x_0 = x(0)$, $y_0 = y(0)$, $z_0 = z(0)$.

 $x=x_0+x'(0)\cdot t$: $x=x_0+x'(0)\cdot t$ - касательное пространство к кривой γ в точке x_0

$$\left\{ \begin{array}{l} x = x_0 + x'(0) \cdot t \\ y = y_0 + y'(0) \cdot t \\ z = z_0 + z'(0) \cdot t \end{array} \right. , \text{ иначе} \left\{ \begin{array}{l} x - x_0 = x'(0) \cdot t \\ y - y_0 = y'(0) \cdot t \\ z - z_0 = z'(0) \cdot t \end{array} \right.$$

$$\frac{x - x_0}{x'(0)} = \frac{y - y_0}{y'(0)} = \frac{z - z_0}{z'(0)} = t$$

$$2. \ x^2 + y^2 + z^2 = 1$$

Пусть $z_0 > 0$, тогда в окрестности точки (x_0, y_0, z_0) сферу можно параметризовать следующими уравнениями:

$$\begin{cases} x = u \\ y = v \\ z = \sqrt{1 - u^2 - v^2} \end{cases}$$

Касательное пространство к сфере в точке (x_0, y_0, z_0) :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \begin{pmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v} \\ \frac{\delta z}{\delta u} & \frac{\delta z}{\delta v} \end{pmatrix} (u_0, v_0) \cdot \begin{pmatrix} u \\ v \end{pmatrix} \Longrightarrow$$

$$\begin{cases} x = x_0 + \frac{\delta x}{\delta u} (u_0, v_0) \cdot u + \frac{\delta x}{\delta v} (u_0, v_0) \cdot v \\ y = y_0 + \frac{\delta y}{\delta u} (u_0, v_0) \cdot u + \frac{\delta y}{\delta v} (u_0, v_0) \cdot v \\ z = z_0 + \frac{\delta z}{\delta u} (u_0, v_0) \cdot u + \frac{\delta z}{\delta v} (u_0, v_0) \cdot v \end{cases}$$

$$\begin{cases} x = x_0 + u \\ y = y_0 + v \\ z = z_0 - \frac{u_0}{\sqrt{1 - u_0^2 - v_0^2}} \cdot u - \frac{v_0}{\sqrt{1 - u_0^2 - v_0^2}} \cdot v \end{cases}$$

Утверждение 1.3.2. Пусть S-k-мерная поверхность в \mathbb{R}^n задается системой уравнений

$$\left\{ \begin{array}{ll} F^1(x^1,\ldots,x^n) = 0 \\ \vdots \\ F^{n-k}(x^1,\ldots,x^n) = 0, \end{array} \right., \text{ причем} \left| \begin{array}{ll} \frac{\delta F^1}{\delta x^{k+1}} & \ldots & \frac{\delta F^1}{\delta x^n} \\ \vdots & \ddots & \vdots \\ \frac{\delta F^{n-1}}{\delta x^{k+1}} & \ldots & \frac{\delta F^{n-1}}{\delta x^n} \end{array} \right| (x_0) \neq 0.$$

Тогда касательная плоскость к S в точке x_0 задается системой уравнений:

$$\begin{cases} \frac{\delta F^{1}}{\delta x^{1}}(x_{0}) \cdot (x^{1} - x_{0}^{1}) + \frac{\delta F^{1}}{\delta x^{2}}(x_{0})(x^{2} - x_{0}^{2}) + \dots + \frac{\delta F^{1}}{\delta x^{n}}(x_{0})(x^{n} - x_{0}^{n}) = 0 \\ \vdots \\ \frac{\delta F^{n-k}}{\delta x^{1}}(x_{0}) \cdot (x^{1} - x_{0}^{1}) + \frac{\delta F^{n-k}}{\delta x^{2}}(x_{0})(x^{2} - x_{0}^{2}) + \dots + \frac{\delta F^{n-k}}{\delta x^{n}}(x_{0})(x^{n} - x_{0}^{n}) = 0 \end{cases}$$

или кратко

$$F'(x_0) \cdot (x - x_0) = 0$$

Доказательство. Обозначим (x^1,\ldots,x^k) = $u,\;(x^{k+1},\ldots,x^n)$ = v

$$F = \left(\begin{array}{c} F^1 \\ \vdots \\ f^{n-k} \end{array}\right)$$

Тогда условия утверждения запишем в виде:

$$F(u, v) = 0, \quad |F'_v(u_0, v_0)| \neq 0$$

Тогда по теореме о неявной функции система $\left\{\begin{array}{l} F^1(x^1,\dots,x^n)=0\\ \vdots\\ F^{n-k}(x^1,\dots,x^n)=0, \end{array}\right.$ эквивалентна системе

Тогда касательная плоскость задается (роль $t = \begin{pmatrix} t^1 \\ \vdots \\ t^k \end{pmatrix}$ играет $u = \begin{pmatrix} x^1 \\ \vdots \\ x^k \end{pmatrix}$).

Тогда систему можно записать в виде:

$$\begin{cases} x^{1} = t^{1} \\ \vdots \\ x^{k} = t^{k} \\ x^{k+1} = f^{1}(t^{1}, \dots, t^{k}) \\ \vdots \\ x^{n} = f^{n-k}(t^{1}, \dots, t^{k}) \end{cases}$$

$$t_0 = (t_0^k, \dots, t_0^k) = (x_0^1, \dots, x_0^k)$$

$$x'(t_0) = \begin{pmatrix} \frac{\delta x^1}{\delta t^1} & \cdots & \frac{\delta x^1}{\delta t^k} \\ \vdots & \ddots & \vdots \\ \frac{\delta x^k}{\delta t^1} & \cdots & \frac{\delta x^k}{\delta t^k} \\ \frac{\delta f^1}{\delta t^1} & \cdots & \frac{\delta f^1}{\delta t^k} \\ \vdots & \ddots & \vdots \\ \frac{\delta f^{n-k}}{\delta t^1} & \cdots & \frac{\delta f^{n-k}}{\delta t^k} \end{pmatrix} (t_0)$$

$$x = x_0 + x'(t_0) \cdot t$$

$$\begin{cases} x^{1} = x_{0}^{1} + 1 \cdot t^{1} \\ \vdots \\ x^{k} = x_{0}^{k} + 1 \cdot t^{k} \\ x^{k+1} = x^{k+1} + \frac{\delta f^{1}}{\delta t^{k}}(t_{0}) \cdot t^{1} + \dots + \frac{\delta f^{1}}{\delta t^{k}}(x_{0}) t^{k} \\ \vdots \\ x^{n} = x^{n} + \frac{\delta f^{n-k}}{\delta t^{k}}(t_{0}) t^{1} + \dots + \frac{\delta f^{n-k}}{\delta t^{k}}(x_{0}) t^{k} \end{cases}$$

$$u = (x^{1}, \dots, x^{k}) \quad v = (x^{k+1}, \dots, x^{n}) \quad v = (x^{k+1}, \dots, x^{n}) \quad v = (x^{k+1}, \dots, x^{n}) \quad v = f(u)$$

$$f'(u_0) = -[F'_x(u_0, v_0)]^{-1} \cdot F'_u(u_0, v_0)$$

$$\begin{cases} x^1 - x_0^1 = t^1 \\ \vdots \\ x^k - x_0^k = t^k \\ x^{k+1} - x_0^{k+1} = \frac{\delta f^1}{\delta t^k}(t_0) \cdot (x^1 - x_0^1) + \dots + \frac{\delta f^1}{\delta t^k}(x_0) \cdot (x^k - x_0^k) \\ \vdots \\ x^n - x_0^n = \frac{\delta f^{n-k}}{\delta t^k}(t_0) \cdot (x^1 - x_0^1) + \dots + \frac{\delta f^{n-k}}{\delta t^k}(x_0) \cdot (x^k - x_0^k) \\ \begin{cases} u - u_0 = u - u_0 \\ v - v_0 = f'(u_0) \cdot (u - u_0) \end{cases} \implies \begin{cases} u - u_0 = u - u_0 \\ v - v_0 = -[F'_v(u_0, v_0)]^{-1} \cdot F'_u(u_0, v_0) \end{cases} \implies \begin{bmatrix} F'_v(u_0, v_0)](v - v_0) + F'_u(u_0, v_0) \cdot (u - u_0) = 0 \end{cases}$$

Итак, мы вывели, что если поверхность задана линейным уравнением $\left\{ \begin{array}{ll} F'(x^1,\ldots,x^n)=0\\ \vdots\\ F^{n-k}(x^1,\ldots,x^n)=0 \end{array} \right. \\ \left. \begin{array}{ll} \text{или } P(x)=0,\ F=\begin{pmatrix} F'(x)\\ \vdots\\ F^{n-k}(x) \end{array} \right),\ x=(x^1,\ldots,x^n),\ x_0=(x^1,\ldots,x^n), \ x_0=(x^1,\ldots,x^n). \end{array}$

Тогда уравнение касательной плоскости кратко записывается:

$$F_x'(x_0) \cdot (x - x_0) = 0$$

Обозначим $x - x_0 = \xi$, то есть:

$$\xi = \begin{pmatrix} \xi^1 \\ \vdots \\ \xi^n \end{pmatrix} = \begin{pmatrix} x' - x_0' \\ \vdots \\ x^n - x_0^n \end{pmatrix}$$

Таким образом получаем, что уравнение касательной пространства имеет вид:

$$F_x'(x_0) \cdot \xi = 0$$

Таким образом касательнаое пространство к поверхности заданной уравнением F(x) = 0 в точке x_0 состоит из векторов ξ , удовлетворяет уравнению

$$F_x'(x_0) \cdot \xi = 0 \tag{1.1}$$

Теорема 1.3.2 (О структуре касательных пространства). Пусть S-k-мерная поверхность в \mathbb{R}^n , $x_0 \in S$. Тогда касательное пространство TS_{x_0} в точке x_0 состоит из направляющих векторов касательных к гладким кривым на поверхности S, проходящих через точку x_0 .

Доказательство. Пусть x=x(t) – гладкая кривая в \mathbb{R}^n , то есть $\begin{cases} x'=x'(t) \\ \vdots \\ x^n=x^n(t) \end{cases}$, $t\in\mathbb{R},\ x_0=x(t_0)$

Касательный вектор в точке x_0 к кривой имеет вид

$$\begin{pmatrix} \frac{dx'}{dt}(t_0) \\ \vdots \\ \frac{dx^n}{dt}(t_0) \end{pmatrix} = \begin{pmatrix} x^{1'}(t_0) \\ \vdots \\ x^{1n}(t_0) \end{pmatrix}$$

1. Пусть S-k-мерная поверхность, задана системой уравнений F(x)=0 и пусть x=x(t) – гладкая кривая на S. Покажем, что вектор $x'(t_0)=\begin{pmatrix} \frac{dx'}{dt}(t_0)\\ \vdots\\ \frac{dx^n}{dt}(t_0) \end{pmatrix}, \ x'(t_0)\in TS_{x_0}, \ x_0=x(t_0),$ то есть покажем, что $x'(t_0)$ удовлетворяет уравнению $F_x'(x_0)\cdot \xi=0$.

Так как кривая x = x(t) лежит на S, то F(x(t)) = 0 — верно. Продифференцируем F(x(t)) = 0 по t в точке x_0 :

$$F_x'(x_0) \cdot x'(t_0) = 0$$

- это и есть уравнение касательного пространства, то есть $x'(t_0)$ удовлетворяет уравнению касательной кривой $F_x'(x_0) \cdot \xi = 0$.
- 2. Пусть $\xi = (\xi^1, \xi^2, \dots, \xi^n) \in TS_{x_0}$, то есть ξ удовлетворяет уравнению $F'_x(x_0) \cdot \xi = 0$

Покажем, что \exists гладкая кривая l на поверхности S:

- 1. $x_0 \in l$
- 2. ξ ялвяется направляющим вектором касательной к l в точке x_0

Поверхность S задана системой уравнений:

$$\begin{cases} F^{1}(x) = 0 \\ \vdots \\ F^{n-k}(x) = 0 \end{cases}$$
 (1.2)

Пусть

$$\begin{vmatrix} \frac{\delta F'}{\delta x^{k+1}} & \cdots & \frac{\delta F'}{\delta x^n} \\ \vdots & \ddots & \vdots \\ \frac{\delta F^{n-k}}{\delta x^{k+1}} & \cdots & \frac{\delta F^{n-k}}{\delta x^n} \end{vmatrix} (x_0) \neq 0$$

По теореме о неявной функции, система (1.4) эквивалентна системе

$$\begin{cases} x^{k+1} = f^{1}(x^{1}, \dots, x^{k}) \\ \vdots \\ x^{n} = f^{n-k}(x^{1}, \dots, x^{k}) \end{cases}$$
 (1.3)

Обозначим $u = (x', \dots, x^k), v = (x^{k+1}, \dots, x^n),$ тогда (1.3) имеет вид

$$v = f(u)$$

Тогда по утверждению касательное пространство задается уравнениями:

$$\begin{cases} x^{k+1} = x_0^{k+1} + \frac{\delta f'}{\delta x'}(x_0)(x' - x'_0) + \dots + \frac{\delta f^1}{\delta x^k}(x_0)(x^k - x_0^k) \\ \vdots \\ x^n = x_0^n + \frac{\delta f^{n-k}}{\delta x^1}(x_0)(x' - x'_0) + \dots + \frac{\delta f^{n-k}}{\delta x^k}(x_0)(x^k - x_0^k) \end{cases}$$
(1.4)

Пусть

$$\eta = \begin{pmatrix} \eta' \\ \vdots \\ \eta^k \\ \eta^{k+1} \\ \vdots \\ \eta^n \end{pmatrix} = \begin{pmatrix} x^1 - x_0^1 \\ \vdots \\ x^k - x_0^k \\ x^{k+1} - x_0^{k+1} \\ \vdots \\ x^n - x_0^n \end{pmatrix}$$

Тогда система (1.4) примет вид

$$\begin{cases}
\eta^{k+1} = \frac{\delta f'}{\delta x'}(x_0) \cdot \eta' + \dots + \frac{\delta f'}{\delta x^k}(x_0) \cdot \eta^k \\
\vdots \\
\eta^n = \frac{\delta f^{n-k}}{\delta x'}(x_0) \cdot \eta' + \dots + \frac{\delta f^{n-k}}{\delta x^k}(x_0) \cdot \eta^k
\end{cases} (1.5)$$

Таким образом, если вектор $\xi \in TS_{x_0}$, то он полностью определяется своими первыми k координатами, а остальные можно волучить с помощью системы (1.5).

Построим кривую в \mathbb{R}^n , то есть зададим ее уравнением x = x(t):

$$l: \begin{cases} x' = x'_0 + \xi't \\ \vdots \\ x^k = x_0^k + \xi^k t \\ x^{k+1} = f^1(x'_0 + \xi't, \dots, x_0^k + \xi^k t) \\ \vdots \\ x^n = f^{n-k}(x'_0 + \xi't, \dots, x_0^k + \xi^k t) \end{cases}, v = f(u)$$

$$(1.6)$$

Пусть точка x_0 соответствует параметру t = 0

$$x(0) = \begin{cases} x' = x'_0 \\ \vdots \\ x^k = x_0^k \\ x^{k+1} = f^1(x'_0, \dots, x_0^k) \\ \vdots \\ x^n = f^{n-k}(x'_0, \dots, x_0^k) \end{cases},$$

то есть кривая проходит через точку x_0 .

Далее, функция f удовлетворяет условию $v = f(u) \iff F(u, v) = 0$. Тогда $F(u, f(u)) = 0 \implies l$, заданная система (1.6), $l \in S$.

Таким образом построили гладкий путь, лежащий на поверхности S, проходящий через точку $x_0 \in S$, вектор $x'(t_0)$ — его касательный вектор $\in TS_{x_0}$

1.4 Условный экстремум функции многих переменных

Задача. Дана функция $u = f(x^1, \dots, x^n)$ и дана поверхность, заданная уравнениями:

$$\begin{cases} F^{1}(x^{1}, \dots, x^{n}) = 0 \\ \vdots \\ F^{k}(x^{1}, \dots, x^{n}) = 0 \end{cases}$$
 (1.7)

Нужно найти точку $x_0 = (x_0^1, \dots, x_0^n)$, в которой

$$f(x_0^1, \dots, x_0^n) = \max_{(\min)} f(x^1, \dots, x^n),$$

где max (min) берется по всем точкам (x_0^1, \ldots, x_0^n) , удовлетворяющих уравнениям (1.7).

Геометрическая формулировка.

Задача. Пусть система (1.7) задает в пространстве \mathbb{R}^n *m*-мерную поверхность S. Найти точку $x_0 \in S$:

$$\exists U_r(x_0) = U(x_0) \cap S : \forall x \in U_s(x_0)$$

$$f(x) \leq f(x_0)$$
 (или $f(x) \geq f(x_0)$)

Определение 1.4.1 (линия уровня (c-уровень)). Пусть $f: D \to \mathbb{R}, \ D \in \mathbb{R}^n$ – область. Линией уровня (c-уровнем) функции f называется множество

$$N_c = \{x \in D \mid f(x) = c\}$$

Теорема 1.4.1 (необходимое условие условного локального экстремума). Пусть система уровнений

$$\begin{cases} F^{1}(x^{1}, \dots, x^{n}) = 0 \\ \vdots \\ F^{n-k}(x^{1}, \dots, x^{n}) = 0 \end{cases}$$
 (1.8)

задает (n-k)-мерную гладкую поверхность S в $D \in \mathbb{R}^n$, D — область. Функция $f:D \to \mathbb{R}$ — гладкая. Если $x_0 \in S$ является точкой условного локального экстремума для функции f, то существует такой набор чисел $\lambda_1, \lambda_2, \ldots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{k} \lambda_i \cdot gradF^i(x_0)$$

Доказательство теоремы.

Лемма 1.4.1. Если x_0 – точка условного локального экстремума для функции f и x_0 не является критической для функции f (то есть $df(x_0) \neq 0$), то касательное пространство $TS_{x_0} \subset TN_{x_0}$, где

$$N_{x_0} = \{x \in D \mid f(x) = f(x_0)\}$$

- поверхность уровня, проходящая через x_0 .

Доказательство леммы. Пусть $\xi \in TS_{x_0}$. Пусть x = x(t) – гладкая кривая на $S: x(0) = x_0, x'(0) = \xi$.

Так как точка x_0 – условный экстремум, для функции f, то точка t = 0 есть локальный экстремум для функции f(x(t)) $\underset{th}{\Longrightarrow}$ $\underset{Fermat's}{\Longrightarrow}$

$$[f(x(t))]'_t(0) = 0 \iff f'_x(x_0) \cdot x'_t(0) = 0 \tag{1.9}$$

Касательное пространство к N_{x_0} в точке x_0 имеет уравнение:

$$f_x'(x_0) \cdot \xi = 0 \tag{1.10}$$

Заметим, что (1.9) и (1.10) – одно и то же уравнение, то есть

$$x'_t(0) = \xi \implies x'_t(0) \in TN_{x_0}$$

Касательное пространство TS_{x_0} задается уравнениями

$$\begin{cases}
\frac{\delta F^{1}}{\delta x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\delta F^{1}}{\delta x^{n}}(x_{0}) \cdot \xi^{n} = 0 \\
\vdots \\
\frac{\delta F^{n-k}}{\delta x^{1}}(x_{0}) \cdot \xi^{1} + \dots + \frac{\delta F^{n-k}}{\delta x^{n}}(x_{0}) \cdot \xi^{n} = 0
\end{cases} ,$$
(1.11)

но $\forall i = \overline{1, n-k}$:

$$\left\{\frac{\delta F^{i}}{\delta x^{1}} \cdot (x_{0}); \dots; \frac{\delta F^{i}}{\delta x^{n}}\right\} = grad F^{i}(x_{0})$$

Перепишем (1.11) в виде:

$$\begin{cases} (gradF^{1}(x_{0}), \xi) = 0 \\ \vdots \\ (gradF^{n-k}(x_{0},), \xi) = 0 \end{cases}$$
 (1.12)

Касательное пространство TN_{x_0} к $N_{x_0} = \{x \in D \mid f(x) = f(x_0)\}$ задается уравнением: $f'(x_0) \cdot \xi = 0$. Заметим, что $f'(x_0) = gradf(x_0) = \{\frac{\delta f(x_0)}{\delta x^1}, \ldots, \frac{\delta f(x_0)}{\delta x^n}\} \Longrightarrow f'(x_0) \cdot \xi = 0 \Longleftrightarrow$

$$\iff (fradf(x_0), \xi) = 0 \tag{1.13}$$

Таким образом из леммы следует, что $\forall \xi$ удовлетворяет системе уравнений (1.12), так же удовлетворяет уравнению (1.13), то есть из того, что $\forall i \in \overline{1, n-k} \ \xi \perp grad F^i(x_0) \implies \xi \perp frad f(x_0) \implies \exists \lambda_1, \ldots, \lambda_{n-k} \in \mathbb{R}$:

$$fradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0)$$

Метод Лагранжа

Пусть требуется найти условный экстремум функции $f:D\to\mathbb{R},\ D$ — область в \mathbb{R}^n , на поверхности S, заданной системой уравнений

$$\begin{cases} F^{1}(x^{1}, \dots, x^{n}) = 0 \\ \vdots \\ F^{k}(x^{1}, \dots, x^{n}) = 0 \end{cases}$$

Составим функцию Лагранжа:

$$L(x,\lambda) = L(x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^k) =$$

$$= f(x^1,\ldots,x^n) + \sum_{i=1}^k \lambda^i \cdots F^i(x^1,\ldots,x^n),$$

 $\lambda = (\lambda^1, \dots, \lambda^k), \ \lambda^i \in \mathbb{R}$ – коэффициент, в общем случае пока неизвестен. Необходимое условие локального экстремума для функции L:

$$\begin{cases}
\frac{\delta L}{\delta x^{1}} = \frac{\delta f}{\delta x^{1}} + \sum_{i=1}^{k} \lambda^{i} \cdot \frac{\delta F^{i}}{\delta x^{1}} = 0 \\
\vdots \\
\frac{\delta L}{\delta x^{n}} = \frac{\delta f}{\delta x^{n}} + \sum_{i=1}^{k} \lambda^{i} \cdot \frac{\delta F^{i}}{\delta x^{n}} = 0 \\
\frac{\delta L}{\delta \lambda^{1}} = F^{1}(x^{1}, \dots, x^{n}) = 0 \\
\vdots \\
\frac{\delta L}{\delta \lambda^{k}} = F^{k}(x^{1}, \dots, x^{n}) = 0
\end{cases}$$
(1.14)

Определение 1.4.2 (условный экстремум). Пусть $f: D \to \mathbb{R}, \ D \in \mathbb{R}^n$ – область, S – поверхность в D, условным экстремумом функции f называется экстремум функции $f|_{S}$.

Достаточное условие условного локального экстремума

Пусть $f: D \to \mathbb{R}, \ D \in \mathbb{R}^n$ — область, $f \in C^{(2)}$ $(D, \mathbb{R}), \ S$ — (n-k)-мерная поверхность в D, заданная системой уравнений

$$\begin{cases} F^{1}(x^{1},\ldots,x^{n}) = 0 \\ \vdots \\ F^{k}(x^{1},\ldots,x^{n}) = 0 \end{cases}$$

Функция Лагранжа

$$L(x,\lambda) = f(x^{1},...,x^{n}) + \sum_{i=0}^{k} \lambda_{i} \cdot F^{i}(x^{1},...,x^{n}).$$

Здесь $\lambda_1, \ldots, \lambda_k$ выбираются таким образом, чтобы было выполнено необходимое условие условного экстремума в точке x_0 .

Теорема 1.4.2 (достаточное условие условного экстремума). Если при введенных выше условиях квадратичная форма

$$Q(\xi) = \sum_{i,j=1}^{n} \frac{\delta^{2} L}{\delta x^{i} \delta x^{j}} (x_{0}) \cdot \xi^{i} \cdot \xi^{j},$$
$$(\xi = (\xi^{1}, \dots, \xi^{n}))$$

Если:

- 1. Определена на TS_{x_0}
 - (a) Если Q знакоположительная, то точка x_0 точка условного локального min

- (b) Если Q знакоотрицательная, то точка x_0 точка условного локального тах
- 2. Если Q может принимать значения разных знаков, то в точке x_0 условного экстремума не наблюдается

Доказательство. Заметим, что $f|_S$ и $L|_S$ совпадают. В самом деле, если $x \in S$, то

$$L(x,\lambda) = f(x) + \frac{1}{2} \cdot \sum_{i=1}^{k} \lambda_i \cdot F^i(x) = f(x).$$

Поэтому покажем, что условие знакопостоянства Q является достаточным для экстремума функции $L|_{\mathfrak{s}}$.

Имеем, что

$$\begin{cases} \frac{\delta L}{\delta x^1}(x_0) = 0 \\ \vdots \\ \frac{\delta L}{\delta x^n}(x_0) = 0 \end{cases}$$

По формуле Тейлора:

$$L|_{S}(x) - L(x_{0}) = \sum_{i,j=1}^{n} \frac{\delta^{2} L(x_{0})}{\delta x^{i} \delta x^{j}} (x^{i} - x_{0}^{i}) \cdot (x^{j} - x_{0}^{j}) + o(||x - x_{0}||^{2})$$
(1.15)

Так как S-m-мерная (m=n-k) поверхность, то существует гладкое отображение $x(t):\mathbb{R}^m\to\mathbb{R}^n:\ x=x(t)\in S\ \forall t\in\mathbb{R}^m,\ x(0)=x_0.$ Отображение x(t) биективно отображает $\mathbb{R}^>$ на $U_S(x_0)=U(x_0)\cap S$.

Если $x \in S$, то условие дифференцируемости x(t):

$$x - x_0 = x(t) - x(0) = x'(0) \cdot t + o(||t||)$$

или

$$\begin{cases} x^{1} - x_{0}^{1} = \frac{\delta x^{1}}{\delta t^{1}}(0) \cdot t^{1} + \dots + \frac{\delta x^{1}}{\delta t^{m}}(0) \cdot t^{m} + d(||t||) \\ \vdots \\ x^{n} - x_{0}^{n} = \frac{\delta x^{n}}{\delta t^{1}}(0) \cdot t^{1} + \dots + \frac{\delta x^{n}}{\delta t^{m}}(0) \cdot t^{m} + d(||t||) \\ \text{или кратко} \end{cases}$$

$$\begin{cases} x^{1} - x_{0}^{1} = \sum_{i=1}^{m} \frac{\delta x^{1}}{\delta t^{i}}(0) \cdot t^{i} + o(||t||) \\ \vdots \\ x^{n} - x_{0}^{n} = \sum_{i=1}^{m} \frac{\delta x^{n}}{\delta t^{i}}(0) \cdot t^{i} + o(||t||) \end{cases}$$

$$(1.16)$$

Подставим (1.16) в (1.15):

$$L|_{S}(x) - L(x_{0}) = \frac{1}{2} \cdot \sum_{i,j=1}^{n} \frac{\delta^{2}L(x_{0})}{\delta x^{i} \delta x^{j}} \cdot \left(\sum_{\alpha=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}}(0) \cdot t^{\alpha} + o(||t||)\right) \cdot \left(\sum_{\beta=1}^{m} \frac{\delta x^{j}}{\delta t^{\beta}}(0) \cdot t^{\beta} + o(||t||)\right) + o(||x - x_{0}||^{2}) \stackrel{(*)}{=}$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \frac{\delta^{2}L(x_{0})}{\delta x^{i} \delta x^{j}} \cdot \left[\left(\sum_{\alpha=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}}(0) \cdot t^{\alpha}\right) \cdot \left(\sum_{\beta=1}^{m} \frac{\delta x^{i}}{\delta t^{\beta}}(0) \cdot t^{\beta}\right) + \left(\sum_{\alpha=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}}(0) t^{\alpha}\right) \cdot o(||t||) + \left(\sum_{\beta=1}^{m} \frac{\delta x^{i}}{\delta t^{\beta}}(0) \cdot t^{\beta}\right) \cdot \left(||t|| + o(||t||)\right] + o(||x - x_{0}||^{2}) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\delta^{2}L(x_{0})}{\delta x^{i} \delta x^{j}} \cdot \left(\sum_{\alpha,\beta=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}} \cdot \frac{x^{i}}{\delta t^{\beta}} \cdot t^{\alpha} \cdot t^{\beta} + o(||t||^{2}) = \frac{||t||^{2}}{2} \cdot \sum_{i,j=1}^{n} \frac{\delta^{2}L(x_{0})}{\delta x^{i} \delta x^{j}} \cdot \left(\sum_{\alpha,\beta=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}} \cdot \frac{\delta x^{j}}{\delta t^{\beta}} \cdot \frac{t^{\alpha}}{||t||} \cdot \frac{t^{\beta}}{||t||} + o(||t||^{2}) = \frac{||t||^{2}}{2} Q(\xi) + o(||t||^{2}).$$

Таким образом получаем, что

$$L|_{S}(x) - L(x_0) = \frac{||t||^2}{2} \cdot Q(\xi) + o(||t||^2), \ \xi \in TS_{x_0}.$$

Тогда, если Q > 0, то

$$L|_{S}(x) - L(x_0) > 0 \implies x_0 \min L|_{S}(x) \implies x_0 \min f|_{S}$$

Если Q < 0, то

$$L|_S(x)-L(x_0)<0 \implies x_0 \text{ max } L|_S(x) \implies x_0 \text{ max } f|_S \ (\forall x \in U_S(x_0))$$

Если Q — знакопеременна, то x(t) не для всех $x \in U_S(x_0)$ разность $L|_S(x)$ — $L(x_0)$ имеет постоянный знак \Longrightarrow в этом случае в точке x_0 нет экстремума. Докажем (*), то есть покажем, что

$$o(||t||) \cdot \sum_{\alpha=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}} \cdot t^{\alpha} = o(||t||^{2})$$

И

$$o(||x - x_0||^2) = o(||t||^2), \ x \in S.$$

В самом деле,

$$\left| \sum_{\alpha=1}^{m} \frac{\delta x^{i}}{\delta t^{\alpha}}(0) \cdot t^{\alpha} \right| \leq \sum_{\alpha=1}^{m} \left| \frac{\delta x^{i}}{\delta t^{\alpha}}(0) \right| \cdot \left| t^{\alpha} \right| \leq ||t|| \cdot \sum_{\alpha=1}^{m} \left| \frac{\delta x^{i}}{\delta t^{\alpha}}(0) \right| = A \cdot ||t||$$

Таким образом,

$$o(||t||) \cdot \left| \sum_{\alpha=1}^{m} \frac{\delta x^{i}(0)}{\delta t^{\alpha}} \cdot t^{\alpha} \right| \leq o(||t||) \cdot O(||t||) = \omega(t) \cdot ||t|| \cdot \gamma(t) \cdot ||t|| =$$

$$= \left| \text{где } \omega(t) \to 0 \text{ при } t \to 0, \ \gamma(t) - \text{ограниченная функция} \right| =$$

$$= \alpha(t) \cdot ||t||^{2} = o(||t||^{2}), \ \alpha(t) \to 0, \ t \to 0$$

Далее, если $x \in S$, то

$$||x - x_0||^2 = \left\| \left(\begin{array}{c} x^1 - x_0^1 \\ \vdots \\ x^n - x_0^n \end{array} \right) \right\|^2 \stackrel{(1.16)}{=} \left\| \left(\begin{array}{c} \sum_{\alpha=1}^m \frac{\delta x^1}{\delta t^{\alpha}} \cdot t^{\alpha} + \dots \\ \sum_{\alpha=1}^m \frac{\delta x^1}{\delta t^{\alpha}} \cdot t^{\alpha} + \dots \end{array} \right) \right\|^2 =$$

$$= \left(\sum_{\alpha=1}^m \frac{\delta x^1}{\delta t^{\alpha}} \cdot t^{\alpha} + o(||t||) \right)^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\delta x^n}{\delta t^{\alpha}} + o(||t||) \right)^2 =$$

$$= \left(\sum_{\alpha=1}^m \frac{\delta x^1}{\delta t^{\alpha}} \cdot t^{\alpha} \right)^2 + \dots + \left(\sum_{\alpha=1}^m \frac{\delta x^n}{\delta t^{\alpha}} \right)^2 + o(||t||^2) \le$$

$$\le \left(\max_{\alpha} \frac{\delta x^1}{\delta t^{\alpha}} \right)^2 \cdot \left(\frac{\alpha=1}{m} t^{\alpha} \right)^2 + \dots + \left(\max_{\alpha} \left(\frac{\delta x^n}{\delta t^{\alpha}} \right) \right)^2 \cdot \left(\sum_{\alpha=1}^n t^{\alpha} \right)^2 \le$$

$$\le ||t||^2 \cdot$$

ДОПИСАТЬ

Глава 2

Теория рядов

2.1 Числовые ряды

Определение 2.1.1 (ряд, член ряда, n-мерный член ряда, частичная сумма). **Рядом** называется выражение

$$a_1 + a_2 + \ldots + a_n + \ldots$$

где $a_i \in \mathbb{R}$.

Числа a_i называются **членами ряда**, a_n – n-мерным членом ряда.

$$\sum_{n=1}^{\infty} a_n \tag{2.1}$$

 $\begin{array}{c} A_1 = a_1 \\ A_2 = a_1 + a_2 \\ \vdots \end{array}$

. $A_n = a_1 + a_2 + \ldots + a_n$ Числа A_1, A_2, \ldots, A_n называются **частичными суммами** ряда (2.1)

Определение 2.1.2. Говорят, что ряд (2.1) сходится, если существует конечный предел частичных сумм, то есть

$$\exists \lim_{n \to \infty} A_n = A.$$

Тогда сумма бесконечного ряда (2.1) полагается равной

$$A = \sum_{n=1}^{\infty} a_n.$$

Пример 4.

$$10+1+\frac{1}{10}+\frac{1}{10^2}+\dots+\frac{1}{10^n}+\dots=10+\sum_{k=0}^{\infty}\frac{1}{10^k}$$

$$A_n = \frac{1}{10^0}+\frac{1}{10^1}+\dots+\frac{1}{10^n}=\frac{1\cdot(q^k-1)}{q-1}=$$

$$=\frac{\frac{1}{10^n}-1}{\frac{1}{10}-1}=\frac{1-\frac{1}{10^n}}{\frac{9}{10}}=\frac{10}{9}\cdot(1-\frac{1}{10^n})$$

$$\lim_{n\to\infty}A_n=\lim_{n\to\infty}\frac{10}{9}(1-\frac{1}{10^n})=\frac{10}{9}$$

2.1.1 Гармонический ряд

Определение 2.1.3 (среднее гармоническое). Число C называется средним гармоническим чисел a и b $(a, b \neq 0)$, если

$$\frac{1}{c} = \frac{1}{2} \cdot \left(\frac{1}{a} + \frac{1}{b}\right)$$

Определение 2.1.4. Ряд вида

$$\sum_{n=1}^{\infty} \frac{1}{n} \tag{2.2}$$

называется гармоническим.

Покажем, что (2.2) расходится.

В самом деле,

$$\underbrace{\frac{1}{2}}_{>\frac{1}{2}} + \underbrace{\frac{1}{2}}_{\geqslant\frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{>\frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7}}_{>\frac{1}{2}} + \underbrace{\frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12}}_{>\frac{1}{2}} + \dots$$

$$A_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\forall E > 0 \ \exists N: \ \forall n > N \quad |A_n| > E$$

$$\lim_{n \to \infty} A_n = \infty$$

2.1.2 Основные свойства сходящихся рядов

Теорема 2.1.1 (критерий Коши). Ряд (2.1)

$$\sum_{n=1}^{\infty} a_n$$

сходится тогда и только тогда, когда $\forall \epsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N, \ \forall p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| < \epsilon$$

Доказательство. Ряд $\sum_{n=1}^{\infty}$ сходится $\underset{by\ def.}{\Longleftrightarrow}$ $\lim_{n\to} A_n \iff A_n$ — фундаментальная последовательность: $\forall \epsilon > 0\ \exists N\in \mathbb{N}:\ \forall n>N$ и $\forall p>0$

$$|A_n - A_{n+p}| < \epsilon$$

(критерий Коши сходимости последовательности)

Имеем

$$|A_n - A_{n+p}| =$$

$$= |a_1 + a_2 + \ldots + a_n - (a_1 + a_2 + \ldots + a_n + \ldots + a_{n+p})| =$$

$$= |a_{n+1} + \ldots + a_{n+p}| < \epsilon.$$

Пример 5. Докажем, что ряд (2.2) расходится. Если $\exists \epsilon > 0 \ \forall N \ \exists n > N \ \exists p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| \ge \epsilon$$

$$\begin{split} |\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+p}| \geqslant |\frac{1}{n+p} + \frac{1}{n+p} + \ldots + \frac{1}{n+p}| = \\ &= \frac{p}{n+p} = |n=p| = \frac{1}{2}, \end{split}$$

то есть для $\forall N: \epsilon = \frac{1}{2} \quad p = n, \ n = N+1 \implies$ по критерию Коши, гармонический ряд (2.2) расходится.

Замечание. Со всякой последовательностью x_n можно связать ряд, частичными суммами которого являются члены этой последовательности. Пусть:

$$x_1, x_2, \ldots, x_n, \ldots$$

Тогда ряд

$$\underbrace{x_1}_{a_1} + \underbrace{(x_2 - x_1)}_{a_2} + \underbrace{(x_3 - x_2)}_{a_3} + \dots + \underbrace{(x_n - x_{n-1})}_{a_n} + \dots$$

$$A_n = a_1 + \ldots + a_n = x_1 + (x_2 - x_1) + \ldots + (x_n - x_{n-1}) = x_n$$

Теорема 2.1.2 (необходимое условие сходимости ряда). Если ряд (2.1)

$$\sum_{n=1}^{\infty} a_n$$

сходится, тогда

$$\lim_{n\to\infty} a_n = 0$$

Доказательство. Пусть ряд (2.1)

$$\sum_{n=1}^{\infty} a_n$$

сходится, тогда $\exists \lim_{n \to \infty} A_n$,

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} (A_n - A_{n-1}) =$$

$$= \lim_{n\to\infty} A_n - \lim_{n\to\infty} A_{n-1} = 0$$

Определение 2.1.5 (m-ный остаток). Пусть дан ряд (2.1)

$$\sum_{n=1}^{\infty} a_n.$$

Ряд вида

$$\sum_{n=m+1}^{\infty} a_n \tag{2.3}$$

называется m-ным остатком ряда (2.1)

Теорема 2.1.3 (об остатке ряда). Следующие условия эквивалентны:

- 1. Ряд (2.1) сходится
- 2. \forall его состаток сходится
- 3. Некоторый его остаток (2.2) сходится

Доказательство. • 1. \Longrightarrow 2.

Пусть ряд (2.1) сходится и его сумма равна A.

Пусть

$$A_k^* = \sum_{n=m+1}^{m+k} a_n$$

-k-тая частичная сумма ряда (2.2).

Ряд (2.2) сходится, если $\exists A_k^*$:

$$A_k^* = A_{m+k} - A_m$$

$$\lim_{k \to \infty} A_k^* = \lim_{k \to \infty} (A_{m+k} - A_n) =$$

$$= \lim_{k \to \infty} A_{m+k} - \lim_{k \to \infty} A_m = A - A_m$$

- 2. ⇒ 3. очевидно
- 3. \implies 1.

Пусть ряд (2.1)

$$\sum_{n=m+1}^{\infty} A_n$$

- сходится.

Тогда при n > m

$$A_n = A_m + A_{n-m}^* = \sum_{k=m+1}^{m+(n-m)} a_k$$

Ряд (2.1)

$$\sum_{n=1}^{\infty} a_n$$

сходится тогда и только тогда (по определению), когда

$$\exists \lim_{n\to\infty} A_n.$$

Рассмотрим

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} (A_m + A_{n-m}^*) =$$

$$= \lim_{n \to \infty} A_m + \lim_{n \to \infty} A_{n-m}$$

$$\Longrightarrow \exists \lim_{n \to \infty} A_n \Longrightarrow (2.1)$$
 – сходится.

Обозначим α_m – сумма m-того остатка ряда (2.1) = сумме ряда (2.2)

$$\alpha_m = \sum_{n=m+1}^{\infty} a_n$$

((2.1) сходится в этом случае)

Следствие. Ряд (2.1) сходится $\iff \lim_{m \to \infty} \alpha_m = 0$

Доказательство. Самостоятельно 😲

Определение 2.1.6. Пусть даны ряды

(A)
$$\sum_{n=1}^{\infty} a_n; \quad (B) \sum_{n=1}^{\infty} b_n$$

ДОПИСАТЬ

Теорема 2.1.4 (1-ый признак сравнения). Пусть даны ряды

(A)
$$\sum_{n=1}^{\infty} a_n; \quad (B) \sum_{n=1}^{\infty} b_n$$

Причем $a_n > 0$, $b_n > 0 \ \forall n$.

Если $\exists N \in \mathbb{N}: \ \forall n > N \quad a_n \leq b_n$, то

- 1. Из сходимости ряда $(B) \implies$ сходимость ряда (A)
- 2. Из сходимости ряда (A) \implies сходимость ряда (B)

Доказательство. 1. Пусть ряд (B) – сходится \implies по теореме 2.2.1 его частичные суммы ограничены \implies по неравенству $a_n \leqslant b_n$ частичные суммы ряда (A) также ограничены \implies по 2.2.1 ряд (A) сходится.

2. Аналогично

Теорема 2.1.5 (2-ой признак сравнения). Пусть даны ряды

(A) $\sum_{n=1}^{\infty} a_n$; (B) $\sum_{n=1}^{\infty} b_n$

Причем $a_n>0,\ b_n>0\ \forall n.$ Если $\lim_{n\to\infty}\frac{a_n}{b_n}=k,\ k\in[0;\infty],$ то

- 1. При k = ∞ из сходимости (A) \Longrightarrow сходимость ряда (B)
- 2. При k = 0 из сходимости ряда (B) \implies сходимость ряда (A)
- 3. При $0 < k < \infty$ ($k = const \neq 0$) ряды (A) и (B) ведут себя одинаково

Доказательство. Переписать доказательство для несобственных интегралов, заменив слово "интеграл"на слово "ряд".

Теорема 2.1.6 (3-й признак сравнения). Пусть даны ряды

(A)
$$\sum_{n=1}^{\infty} a_n$$
; (B) $\sum_{n=1}^{\infty} b_n$

Причем $a_n > 0, \ b_n > 0 \ \forall n.$ Если $\exists N \in \mathbb{N}: \ \forall n > N$

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n},$$

ТО

- 1. Из сходимости ряда (B) \implies сходимость ряда (A)
- 2. Из расходимости ряда $(A) \implies$ расходимость ряда (B)

Доказательство. Можно считать, что N = 0. Тогда $\forall n > N$ имеем:

$$\frac{a_2}{a_1} \leqslant \frac{b_2}{b_1}; \quad \frac{a_3}{a_2} \leqslant \frac{b_3}{b_2}; \quad \frac{a_4}{a_3} \leqslant \frac{b_4}{b_3}; \quad \dots; \quad \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}.$$

Перемножим левые и правые части:

$$\frac{a_2 \cdot a_3 \cdot a_4 \cdot \ldots \cdot a_{n+1}}{a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n} \leqslant \frac{b_2 \cdot b_3 \cdot b_4 \cdot \ldots \cdot b_{n+1}}{b_1 \cdot b_2 \cdot b_3 \cdot \ldots \cdot b_n},$$

$$\frac{a_{n+1}}{a_1} \leqslant \frac{b_{n+1}}{b_n} \implies a_{n+1} \leqslant \frac{a_1}{b_1} \cdot b_{n+1}.$$

- 1. Если ряд (B) $\sum_{n=1}^{\infty} b_n$ сходится \Longrightarrow сходится ряд $\sum_{n=1}^{\infty} \frac{a_1}{b_1} \cdot b_{n+1} \Longrightarrow$ сходится ряд $\sum_{n=1}^{\infty} a_{n+1} \Longrightarrow \sum_{n=1}^{\infty} a_n$
- 2. Аналогично

Теорема 2.1.7 (интегральный признак Коши-Маклорена). Пусть дан положительный ряд

(A)
$$\sum_{n=1}^{\infty} a_n$$

Если функция f(x) удовлетворяет следующим условиям:

- 1. $f(x): [1; +\infty] \to \mathbb{R}$
- 2. f(x) монотонна
- 3. $f(x) = a_n, \ \forall n \in \mathbb{N}$

тогда ряд (A) и интеграл $\int_1^\infty f(x)dx$ ведут себя одинаково

Доказательство. Ограничимся случаем, когда f(x) монотонно убывает.

Рассмотрим функцию $\phi(x) = a_n$ при $n \le x < n+1$ и $\psi(x) = a_{n+1}$ при $n \le x < n+1$. Тогда $\forall x \in [1; +\infty)$

$$\psi(x) \le f(x) \le \phi(x)$$
.

Отсюда

$$\int_{1}^{N} \psi(x)dx \leq \int_{1}^{N} f(x)dx \leq \int_{1}^{N} \phi(x)dx \implies \sum_{n=1}^{(1)} a_{n+1} \leq \int_{1}^{N} f(x)dx \leq \sum_{n=1}^{N} a_{n}$$

$$partial \ series \ sum \ (A)$$

$$partial \ series \ sum \ (A)$$

Если интеграл сходится, то частичная сумма (1) ограничена \implies ряд (А) сходится. Если интеграл расзодится, то частичная сумма (2) непрерывна \implies ряд (A) – расходится.

Если ряд (A) сходится, то (2) – ограничена $\Longrightarrow \int_1^N f(x)dx$ – ограничен $\Longrightarrow \int_1^\infty f(x)dx$ – сходится. Если ряд (A) расходится \Longrightarrow частичная сумма (1) неограничена \Longrightarrow

интеграл расходится.

1. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ Пример 6.

Рассмотрим $f(x) = \frac{1}{x^p}$ на $[1; +\infty)$ — непрерывно монотонно \downarrow , $f(n) = \frac{1}{n^p}$. $\sum_{n=1}^{\infty}\frac{1}{n^p}$ ведет себя одинаково с интегралом $\int_1^{\infty}\frac{dx}{x^p}$ – сходится при p>1 и расходится при $p\leqslant 1$ — ряд $\sum_{n=1}^{\infty}\frac{1}{n^p}$ сходится при p>1 и расходится

2. $\sum_{n=1}^{\infty}$ $f(x) = \frac{1}{x \ln x}, x \in [e; +\infty), \downarrow$, непрерывна.

$$\int_{e}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_{e}^{b} \frac{d(\ln x)}{\ln x} =$$

$$= \lim_{b \to \infty} (\ln(\ln x)) \Big|_{e}^{b} = \lim_{b \to \infty} \ln(\ln b) = \infty \implies$$

 \implies ряд $\sum_{n=1}^{\infty}\frac{1}{n\ln n}$ расходится (по интегралу Коши-Маклорена)

Теорема 2.1.8 (радикальный признак Коши). Пусть ряд (A) $\sum_{n=1}^{\infty} a_n$ положительный и $\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = q$. Тогда:

- 1. При q < 1 ряд (A) сходится
- 2. При q > 1 ряд (A) расходится
- 3. При q = 1 ?

1. Пусть q < 1. Возьмем число r : q < r < 1. Тогда Доказательство. $\exists N: \ \forall n > N$

$$\sqrt[n]{a_n} < r \implies a_n < r^n$$

 $0 < r < 1 \implies \sum_{n=1}^{\infty} r^n$ — сходится \implies по 1-му признаку сравнения сходится ряд $\sum_{n=1}^{\infty} a_n$

2. Пусть q>1, то существует подпоследовательность $\sqrt[n]{a_{n_i}}\to q$ при $i\to\infty\implies a_{n_i}\to q^{n_i}>1\implies$ ряда $\sum_{n=1}^\infty a_n$ расходится

3. Рассмотрим ряды $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходятся.

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = 1$$

Теорема 2.1.9 (признак Даламбера). Пусть ряд (A) $\sum_{n=1}^{\infty} a_n$ положитель-

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d.$$

Тогда

- 1. При d < 1 ряд (A) сходится
- 2. При d > 1 ряд (A) расходится
- 3. При d = 1 ?

1. Пусть d < 1. Возьмем $d < r < 1 \implies \exists N: \forall n > N$ Доказательство.

$$\frac{a_{n+1}}{a_n} < r$$

$$b_1 = \frac{a_2}{a_1};$$
 $b_2 = \frac{a_3}{a_2};$ $b_3 = \frac{a_4}{a_3};$...; $b_n = \frac{a_{n+1}}{a_n};$...

$$a_2 < r \cdot a_1$$

$$a_2 < r \cdot a_2 < r^2 \cdot a_2$$

 $a_2 < r \cdot a_1 \\ a_3 < r \cdot a_2 < r^2 \cdot a_1$ Можно считать, что N = 0, тогда $\forall n > N$ $a_4 < r \cdot a_3 < r^3 \cdot a_1$.

Так как 0 < r < 1, то $\sum_{n=1}^{\infty} r^n \cdot a_1$ сходится \implies сходится ряд (A) по 1 признаку сравнения.

- 2. Самостоятельно.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = 1;$$

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1.$$

Теорема 2.1.10 (признак Раббе). Пусть (A) $\sum_{n=1}^{\infty} a_n$ – положительная. Ес-

$$\lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}}\right) = r,$$

ТО

- 1. При r > 1 ряд (A) сходится;
- 2. При r < 1 ряд (A) расходится;
- 3. При r = 1 ряд (A) ?

Доказательство. 1. Пусть r > 1. Возьмем p и q:

$$1 .$$

Так как

Так как
$$\lim_{n\to\infty}n\cdot\left(\frac{a_n}{a_{n+1}}-1\right)=r,$$
 то $\exists N_1:\ \forall n>N_1\quad n\cdot\left(\frac{a_n}{a_{n+1}}-1\right)>q,$ то есть

 $\frac{a_n}{a_{n+1}} > 1 + \frac{q}{n}.$ (2.4)

Далее, рассмотрим

$$\lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^p - 1}{\frac{1}{n}} \stackrel{Taylor's}{=} \stackrel{f}{=} \lim_{n \to \infty} \frac{1 + \frac{p}{n} + o\left(\frac{1}{n}\right) - 1}{\frac{1}{n}} = p < q \implies$$

 $\implies \exists N_2: \ \forall n > N_2$

$$\frac{\left(1 + \frac{1}{n}\right)^p - 1}{\frac{1}{n}} < q \implies \left(1 + \frac{1}{n}\right)^p < 1 + \frac{q}{n}.$$
 (2.5)

Сравниваем неравенства (2.4) и (2.5), получим, что при $n > \max(N_1, N_2)$:

$$(1 + \frac{1}{n})^p < 1 + \frac{q}{n} < \frac{a_n}{a_{n+1}} \Longrightarrow$$

$$\implies \frac{a_n}{a_{n+1}} > (1 + \frac{1}{n})^p = \frac{(n+1)^p}{n^p} = \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}}.$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ сходится при p > 1:

$$\frac{a_n}{a_{n+1}} > \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}} \implies a_n \cdot \frac{1}{(n+1)^p} >$$

$$> \frac{1}{n^p} \cdot a_{n+1} \implies \frac{a_{n+1}}{a_n} < \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}}.$$

По 3-му признаку сравнения, ряд (A) сходится при $p > 1 \implies$ при r > 1.

2. Пусть r < 1. Тогда $\exists N: \ \forall n > N$:

$$n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) < 1 \implies$$

$$\implies \frac{a_n}{a_{n+1}} < 1 + \frac{1}{n} = \frac{n+1}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}} \implies$$

$$\implies \frac{a_{n+1}}{a_n} > \frac{\frac{1}{n+1}}{\frac{1}{n}}.$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ — гармонический, расходящийся \implies по 3-му признаку сравнения ряд (A) расходится.

3. Упражнение: привести 2 примера рядов (сходящийся, расходящийся), но r=1 в обоих случаях.

Теорема 2.1.11 (признак Кумера). Пусть дан ряд (A) $\sum_{n=1}^{\infty} a_n$ — положительный. Пусть числа $c_1, c_2, \ldots, c_n, \ldots$: $\forall n > N$ $c_n > 0$ и ряд $\sum_{n=1}^{\infty} \frac{1}{c_n}$ — расходится. Если

$$\lim_{n \to \infty} \left(c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \right) = k,$$

то

- 1. При k > 0 ряд (A) сходится;
- 2. При k < 0 ряд (A) расходится;
- 3. При k = 1 ?

Доказательство. 1. Пусть k > 0. Возьмем 0 .

Тогда $\exists N: \forall n > N$:

$$c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} > p \implies$$

$$\implies c_n \cdot a_n - c_{n+1} \cdot a_{n+1} > p \cdot a_{n+1} > 0 \implies$$

$$\implies c_n \cdot a_n > c_{n+1} \cdot a_{n+1}, \quad \forall n > N$$

Тогда последовательность $\{c_n \cdot a_n\}$ убывает и ограничена снизу \implies последовательность сходится.

Пусть $c = \lim_{n \to \infty} c_n \cdot a_n$. Рассмотрим ряд

$$\sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{m+1}) =$$

$$= (c_1 \cdot a_1 - c_2 \cdot a_2) + (c_2 \cdot a_2 - c_3 \cdot a_3) + \dots + (c_n \cdot a_n - c_{n+1} \cdot a_{n+1}) =$$

$$= c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1}$$

$$\lim_{n \to \infty} \sum_{m=1}^{n} (c_m \cdot a_m - c_{m+1} \cdot a_{n+1}) =$$

$$= \lim_{n \to \infty} (c_1 \cdot a_1 - c_{n+1} \cdot a_{n+1}) = c_1 \cdot a_1 - c \implies$$

 \Longrightarrow сходится ряд $\sum_{n=1}^{\infty}(c_n\cdot a_n-c_{n+1}\cdot a_{n+1})\Longrightarrow$ из того, что $c_n\cdot a_n-c_{n+1}\cdot a_{n+1}>p\cdot a_{n+1}>0$ и 1-го признака сравнения \Longrightarrow ряд $\sum_{n=1}^{\infty}p\cdot a_{n+1}$ сходится \Longrightarrow ряд (A) сходится.

2. Пусть $k < 0 \implies \exists N: \ \forall n > N$

$$\begin{aligned} c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} &< 0 \implies \\ & \implies \frac{a_n}{a_{n+1}} < \frac{c_{n+1}}{c_n} = \frac{\frac{1}{c_n}}{\frac{1}{c+n+1}} \implies \\ & \implies \frac{a_{n+1}}{a_n} > \frac{\frac{1}{c_{n+1}}}{\frac{1}{c_n}}; \end{aligned}$$

 $\sum_{n=1}^{\infty} \frac{1}{c_n}$ расходится \implies по 3-му признаку сравнения ряд (A) расходится.

3. Придумать 2 примера когда k = 0 и ряды сходятся/расходятся.

Теорема 2.1.12 (признак Бертрана). Пусть ряд (A) $\sum_{n=1}^{\infty} a_n$ – положительный. Если

$$\lim_{n\to\infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] = B,$$

то

- 1. При B > 1 ряд (A) сходится;
- 2. При B < 1 ряд (A) расходится;
- 3. При B = 1 ряд (A) ?

Доказательство. Рассмотрим ряд $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$ — расходится. Составим по-

следовательность Кумера:

$$k_{n} = \underbrace{n \cdot \ln n}_{c_{n}} \cdot \frac{a_{n}}{a_{n+1}} - \underbrace{(n+1) \cdot \ln(n+1)}_{c_{n+1}} =$$

$$= \left| \ln(n+1) = \ln(n \cdot \frac{n+1}{n}) = \ln n + \ln(1 + \frac{1}{n}) \right| =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - (n+1) \cdot (\ln n + \ln(1 + \frac{1}{n})) =$$

$$= n \cdot \ln n \cdot \frac{a_{n}}{a_{n+1}} - n \cdot \ln n - \ln n - \ln(1 + \frac{1}{n})^{n+1} =$$

$$= \ln n \cdot \left(n \cdot \frac{a_{n}}{a_{n+1}} - 1 \right) - \ln(1 + \frac{1}{n})^{n+1} =$$

$$= \ln n \cdot \left(n \cdot \left(\frac{a_{n}}{a_{n+1}} - 1 \right) - 1 \right) - \ln(1 + \frac{1}{n})^{n+1};$$

$$\lim_{n \to \infty} k_n =$$

$$= \lim_{n \to \infty} \left[\underbrace{\ln n \cdot \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right)}_{B} - \ln \left(1 + \frac{1}{n} \right) - \ln \left(1 + \frac{1}{n} \right) \right] =$$

$$= B - 1$$

по признаку Кумера, при B-1>0 ряд (A) сходится, при B-1<0 ряд (A) расходится, при B=1-?

Теорема 2.1.13 (признак Гаусса). Ряд (A) $\sum_{n=1}^{\infty} a_n$, $a_n > 0$, $\forall n \in \mathbb{N}$, $\lambda, \mu \in \mathbb{R}$. Если

$$\frac{a_n}{a_{n+1}} = \left(\lambda + \frac{\mu}{n}\right) + O\left(\frac{1}{n^2}\right),$$

ТО

- 1. При $\lambda > 1$, ряд (A) сходится;
- 2. При $\lambda < 1$, ряд (A) расходится;
- 3. При $\lambda = 1$ и
 - (a) $\mu > 1 \implies$ ряд (A) сходится;
 - (b) $\mu \le 1 \implies$ ряд (A) расходится.

Доказательство. 1. Если $\lambda < 1$, то

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \left[\lim_{n \to \infty} (\lambda + \frac{\mu}{n} + O(\frac{1}{n^2}))\right]^{-1} =$$

$$= \left[\lim_{n \to \infty} (\lambda + \frac{\mu}{n} + \frac{1}{n^2} \cdot \Omega(\frac{1}{n^2}))\right]^{-1} = \frac{1}{\lambda},$$

по признаку Даламбера, если $\frac{1}{\lambda} < 1$, то есть $\lambda > 1$, ряд (A) сходится.

2. Если $\lambda > 1$, то

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \left[\lim_{n \to \infty} (\lambda + \frac{\mu}{n} + O(\frac{1}{n^2}))\right]^{-1} =$$

$$= \left[\lim_{n \to \infty} (\lambda + \frac{\mu}{n} + \frac{1}{n^2} \cdot \Omega(\frac{1}{n^2}))\right]^{-1} = \frac{1}{\lambda},$$

по признаку Даламбера, если $\frac{1}{\lambda} > 1$, то есть $\lambda < 1$, ряд (A) расходится.

3. Если $\lambda = 1$

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\mu}{n} + O(\frac{1}{n^2});$$

$$n(\frac{a_n}{a_{n+1}} - 1) = \mu + n \cdot O(\frac{1}{n^2});$$

$$\lim_{n \to \infty} (n \cdot \frac{a_n}{a_{n+1}} - 1) = \lim_{n \to \infty} (\mu + \underbrace{n \cdot \frac{1}{n^2} \cdot \Omega(\frac{1}{n^2})}_{\to 0}) = \mu \implies$$

$$\implies \text{по признаку Реббе} \implies \begin{bmatrix} \mu > 1 \implies (A) \to \leftarrow \\ \mu < 1 \implies (A) \leftarrow \to \end{bmatrix}$$

Пусть μ = 1, тогда

$$\lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) =$$

$$= \lim_{n \to \infty} \ln n \cdot \left(n \cdot \left(1 + \frac{1}{n} + O\left(\frac{1}{n^2} \right) - 1 \right) - 1 \right) =$$

$$= \lim_{n \to \infty} \ln n \cdot \left(1 + n \cdot O\left(\frac{1}{n^2} \right) - 1 \right) = \lim_{n \to \infty} \ln n \cdot n \cdot O\left(\frac{1}{n^2} \right) =$$

$$= \lim_{n \to \infty} (\ln n \cdot n \cdot \frac{1}{n^2} \cdot \Omega\left(\frac{1}{n^2} \right)) = \lim_{n \to \infty} \frac{\ln n}{n} \cdot \Omega\left(\frac{1}{n^2} \right) = 0.$$

В самом деле,

$$\lim_{n\to\infty}\frac{\ln n}{n}=\lim_{n\to\infty}\frac{1}{n}\cdot\ln n=\lim_{n\to\infty}\ln n^{\frac{1}{n}}=\lim_{n\to\infty}\ln \sqrt[3]{n}=0\implies$$

 \implies по прихнаку Бертрана ряд (A) расходится.

2.2 Сходимость знакопеременных рядов

Пусть дан ряд (A) $\sum_{n=1}^{\infty} a_n$. Если $\exists N: \forall n > N \ a_n$ не меняет знак, то исследование сходимости такого ряда сводится к исследованию сходимости положительных рядов. Будем считать, что "+"и "-"бесконечно много. Такие ряды будем называть **знакопеременными**.

Определение 2.2.1 (абсолютно сходящийся ряд). Ряд (A) называется абсолютно сходящимся, если сходится ряд

$$(A^*) \quad \sum_{n=1}^{\infty} |a_n|$$

Утверждение 2.2.1. Если ряд (A) абсолютно сходится, то он сходится.

Доказательство. " \iff "Пусть ряд (A) абсолютно сходящийся, то есть сходится ряд (A*) $\sum_{n=1}^{\infty} |a_n| \implies$ по критерию Коши $\forall \epsilon > 0 \ \exists N : \ \forall n > N \ \forall p > 0$

$$|a_{n+1}| + |a_{n+1}| + \ldots + |a_{n+1}| < \epsilon$$

" \Longrightarrow " Пусть $\epsilon > 0$ задано. Рассмотрим

$$|A_{n+n} - A_n| = |a_{n+1} + \ldots + a_{n+n}| \le |a_{n+1}| + \ldots + |a_{n+n}| < \epsilon$$

$$\implies$$
 ряд (A) сходится.

Определение 2.2.2 (условно сходящийся ряд). Если ряд (A) сходится, а ряд (A^*) расходится, то ряд (A) называется условно сходящимся.

Определение 2.2.3 (знакочередующийся ряд). Ряд (A) называется знакочередующимся, если $\forall n \in \mathbb{N}$ $a_n \cdot a_{n+1} < 0$. Обозначим знакочередующийся ряд:

$$(\overline{A})$$
 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n, \quad a_n > 0 \ \forall n \in \mathbb{N}$

Теорема 2.2.1 (признак Лейбница). Пусть ряд (\overline{A}) $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n$ $(a_n > 0 \ \forall n)$ удовлетворяет условиям:

- 1. $a_1 \ge a_2 \ge a_3 \ge \ldots \ge a_n \ge \ldots$;
- $2. \lim_{n\to\infty} a_n = 0.$

Тогда ряд (\overline{A}) сходится и его сумма $S: 0 < S \le a_1$.

Доказательство. Рассмотрим

$$S_{2n} = a_1 - a_2 + a_3 - \dots + a_{2n-1} - a_{2n} =$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}),$

тогда $\forall i: a_i - a_{i+1} \geqslant 0 \implies S_{2n} \geqslant 0 \ \forall n \implies$ последовательность $S_{2n} \nearrow$. С другой стороны,

$$S_{2n} = a_1 - \underbrace{(a_2 - a_3)}_{\geq 0} - \underbrace{(a_4 - a_5)}_{\geq 0} - \dots - \underbrace{(a_{2n-2} - a_{2n-1})}_{\geq 0} - a_{2n}$$

 $\implies S_{2n} \le a_1 \ \forall n.$

Таким образом, S_{2n} не убывает и ограничена сверху \Longrightarrow по теореме Вейерштрасса \Longrightarrow $\exists \lim_{n\to\infty} S_{2n} = S$.

Далее,

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} (S_{2n} + a_{2n+1}) = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1} = S + 0 = S.$$

Таким образом, $\lim_{n\to\infty} S_n = S$.

Так как $0 < S_n \le a_1$ (если $S_n = 0$, то a_1 может быть = 0, что невозможно, так как $a_1 > 0$) \implies (берем пределы от неравенства) $0 < S \le a_1$.

Следствие. Если знакочередующийся ряд (\overline{A}) сходится, то сумма его n-го остатка имеет знак (n+1)-го члена ряда и не больше его по модулю.

Пример 7. 1. Рассмотрим ряд

$$(\overline{H})$$
 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dots,$

по признаку Лейбница:

- (a) $1 > \frac{1}{2} > \frac{1}{3} > \dots > \frac{1}{n}$;
- (b) $\lim_{n \to \infty} \frac{1}{n} = 0$

 \Longrightarrow (\overline{H}) сходится, $0 < S \le 1$;

2. Рассмотрим $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{1}{n}| = \sum_{n=1}^{\infty} \frac{1}{n}$ — расходится \implies ряд (\overline{H}) — условно сходящийся.

Теорема 2.2.2 (признак Абеля и Дирихле). 1. (Абеля) Если

- последовательность $\{a_n\}$ монотонна и ограничена;
- ряд $\sum_{n=1}^{\infty} b_n$ сходится, то

ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

- 2. (Дирихле) Если
 - последовательность $\{a_n\}$ монотонна и $\lim_{n\to\infty} a_n = 0$;
 - частичные суммы ряд (B) $\sum_{n=1}^{\infty} b_n$ ограничены, то есть $\exists k > 0$: $\forall n \mid \sum_{m=1}^{n} b_m < k$, то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

Доказательство теоремы.

Лемма 2.2.1. 1. Если числа a_1, a_2, \ldots, a_n либо не возрастают, либо не убывают;

2. Суммы $B_1=b_1,\ B_2=b_1+b_2,\ \dots,\ B_n=b_1+b_2+\dots+b_n$: $\forall k=1,\dots,n$ $|B_k|\leqslant L$, тогда

$$\left| \sum_{k=1}^{n} a_k \cdot b_k \right| \le L \cdot (|a_1| + |a_n|) \tag{2.6}$$

Доказательство леммы. Рассмотрим

$$a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n =$$

$$= a_1 \cdot B_1 + a_2 \cdot (B_2 - B_1) + a_3 \cdot (B_3 - B_2) + \dots + a_n \cdot (B_n - B_{n-1}) =$$

$$= a_1 \cdot B_1 + a_2 \cdot B_2 - a_2 \cdot B_1 + a_3 \cdot B_3 - a_3 \cdot B_2 + \dots + a_n \cdot B_n - a_n \cdot B_{n-1} =$$

$$= B_1 \cdot (a_1 - a_2) + B_2 \cdot (a_2 - a_3) + B_3 \cdot (a_3 - a_4) + \dots + B_{n-1} \cdot (a_{n-1} - a_n) + a_n \cdot B_n =$$

$$= \sum_{k=1}^{n-1} B_k \cdot (a_k - a_{k-1}) + a_n \cdot B_n.$$

Таким образом,

$$\begin{split} \left| \sum_{k=1}^{n} a_k \cdot b_k \right| &= \left| \sum_{k=1}^{n-1} B_k \cdot \left(a_k - a_{k+1} \right) + a_n \cdot B_n \right| \leq \\ &\leq \sum_{k=1}^{n-1} \left| B_k \right| \cdot \left| a_k - a_{k+1} + \left| a_n \right| \cdot \left| B_n \right| \leq L \cdot \left(\sum_{k=1}^{n-1} \left| a_k - a_{k+1} \right| + \left| a_n \right| \right) = \\ &= L \cdot \left(\left| a_1 \right| + \left| a_n \right| + \left| a_n \right| \right) = L \cdot \left(\left| a_1 \right| + 2 \cdot \left| a_n \right| \right). \end{split}$$

1. Пусть выполнены условия признака Абеля. Тогда $\exists M>0: |a_n| \leq M$. Пусть $\epsilon>0$ задано. Возьмем номер $N: \ \forall n>N, \ \forall p>0$

$$\left| \sum_{k=n+1}^{n+p} b_k \right| < \epsilon^* = \frac{\epsilon}{3 \cdot M}.$$

Частичные суммы ряда $\sum_{n=1}^{\infty}a_n\cdot b_n$ имеют вид S_n = $a_1\cdot b_1+\ldots+a_n\cdot b_n$. По критерию Коши найдем $N_1:\ \forall n>N_1,\ \forall p>0$

$$|S_{n+p} - S_n| < \epsilon,$$

$$\begin{aligned} |a_{n+1} \cdot b_{n+1} + a_{n+2} \cdot b_{n+2} + \ldots + a_{n+p} \cdot b_{n+p}| &\leq \\ &\leq \epsilon^* \cdot (|a_{n+1}| + 2 \cdot |a_{n+p}|) \leq \epsilon^* \cdot 3 \cdot M = \frac{\epsilon}{3 \cdot M} = \epsilon \implies \end{aligned}$$

 \Longrightarrow по критерию Коши ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

2. Пусть выполнены условия признака Дирихле. Так как $\lim_{n\to\infty} a_n=0$, то $\exists N:\ \forall n>N\quad (\epsilon>0$ задано):

$$|a_n| < \frac{\epsilon}{3 \cdot k}, \quad \left| \sum_{k=1}^n b_k \right| \le k.$$

По критерию Коши:

$$|S_{n+p} - S_n| = |a_{n+1} \cdot b_{n+1} + \ldots + a_{n+p} \cdot b_{n+p}| \overset{by \ lemma}{\leqslant} \\ \leqslant k \cdot (|a_{n+1}| + 2 \cdot |a_{n+p}|) < k \cdot \frac{3 \cdot \epsilon}{3 \cdot k} = \epsilon.$$

Пример 8. $\sum_{n=1}^{\infty} \frac{\sin(n \cdot x)}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin(n \cdot x)$

 $a_n = \frac{1}{n} \to 0$ при $n \to \infty$. Оценим частичную сумму $\sum_{n=1}^{\infty} \sin(n \cdot x)$:

$$\sin x + \sin(2 \cdot x) + \sin(3 \cdot x) + \dots + \sin(n \cdot x) =$$

$$= \frac{1}{\sin \frac{x}{2}} \cdot \left(\sin x \cdot \sin \frac{x}{2} + \sin(2 \cdot x) \cdot \sin \frac{x}{2}\right) =$$

$$= \frac{1}{2} \cdot \frac{1}{\sin \frac{x}{2}} \cdot \left(\cos \frac{x}{2} - \cos \frac{3 \cdot x}{2} + \cdot \frac{3 \cdot x}{2} - \cos \frac{5 \cdot x}{2} + \dots \right)$$

$$\dots + \cos \frac{(2 \cdot n - 1) \cdot x}{2} - \cos \frac{(2 \cdot n + 1) \cdot x}{2}\right) =$$

$$= \frac{1}{2} \cdot \frac{1}{\sin \frac{x}{2}} \cdot \left(\cos \frac{x}{2} - \cos \frac{(2 \cdot n + 1) \cdot x}{2}\right) =$$

$$= \frac{2 \cdot \sin \frac{(n + 1) \cdot x}{2} \cdot \sin \frac{n \cdot x}{2}}{2 \cdot \sin \frac{x}{2}}.$$

Тогда

$$\left| \sum_{k=1}^{n} \sin(k \cdot x) \right| = \left| \frac{\sin \frac{(n+1) \cdot x}{2} \cdot \sin \frac{n \cdot x}{2}}{\sin \frac{x}{2}} \right| \le \frac{1}{\sin \frac{x}{2}},$$

 $\tfrac{x}{2} \neq \pi \cdot k, \ k \in \mathbb{Z} \implies x \neq 2 \cdot \pi \cdot k, \ k \in \mathbb{Z}.$

По признаку Дирихле ряд $\sum_{n=1}^{\infty} \frac{\sin(n\cdot x)}{n}$ сходится.

2.3 Свойства сходящихся рядов

Рассмотрим ряд

$$1-1+1-1+1-1+...$$

Если

$$(1-1) + (1-1) + \dots + (1-1) + \dots,$$

 $1 + (-1+1) + (-1+1) + \dots$

Пусть дан ряд

(A)
$$\sum_{n=1}^{\infty} a_n.$$

Cоставим из ряда (A) ряд (\widetilde{A}):

$$\underbrace{(a_1 + a_2 + \ldots + a_{n_1})}_{\widetilde{a}_1} + \underbrace{(a_{n_1+1} + a_{n_1+2} + \ldots + a_{n_2})}_{\widetilde{a}_2} + \ldots$$

$$\ldots + \underbrace{(a_{n_k+1} + \ldots + a_{n_k+1})}_{\widetilde{a}_{k+1}} + \ldots = (\widetilde{A}) \quad \sum_{k=1}^{\infty} \sum_{l=n_{k-1}+1}^{n_k} a_l, \quad a_{n_0} = a_1.$$

Теорема 2.3.1 (сочетательное свойство сходящихся рядов). 1. Если ряд (A) сходится, то для любой возрастающей последовательности n_k ряд (\widetilde{A}) сходится и их суммы совпадают $(A = \widetilde{A})$;

2. Если ряд (\widetilde{A}) сходится и внутри каждой скобки знак не меняется, то ряд (A) сходится и их суммы совпадают, то есть $\widetilde{A} = A$.

 \mathcal{A} оказательство. 1. Пусть ряд (A) сходится, \widetilde{A}_k – частичные суммы ряда (\widetilde{A}):

$$\begin{split} \widetilde{A}_1 &= \widetilde{a}_1 = \sum_{k=1}^{n_1} a_k = A_{n_1} \\ \widetilde{A}_2 &= \widetilde{a}_1 + \widetilde{a}_2 = \sum_{k=n_1+1}^{n_2} a_k = A_{n_1} \\ \vdots \\ \widetilde{A}_k &= A_{n_k} \end{split}$$

Так как ряд (A) сходится, то существует

$$\lim_{k\to\infty}A_{n_k}=A\implies A=\lim_{k\to\infty}A_{n_k}=\lim_{n\to\infty}\widetilde{A}_k=\widetilde{A}$$

2. Пусть ряд (\widetilde{A}) сходится. Имеем, при

$$a_1 > 0$$
: $A_1 < A_2 < ... < A_{n_1}$
 $a_1 < 0$: $A_1 > A_2 > ... > A_{n_1}$

• Далее, если $a_{n_1+1} > 0$, тогда при

• Если же $a_{n_1+1} < 0$, тогда при

$$\begin{array}{ll} a_1 < 0: & A_{n_1} = \widetilde{A}_1 > A_{n_2} = \widetilde{A}_2 \\ a_1 > 0: & A_{n_1} = \widetilde{A}_1 > \widetilde{A}_2 \end{array}$$

Аналогично, пока n меняется от n_k до n_{k+1} , то будем иметь либо $A_{n_k} < A_n < A_{n_{k+1}}$, либо $A_{n_k} > A_n > A_{n_{k+1}}$.

Ряд (\widetilde{A}) — сходится \Longrightarrow $\exists \lim_{k \to \infty} \widetilde{A}_k = \lim_{k \to \infty} \widetilde{A}_{k+1} = \widetilde{A} \Longrightarrow$ по теореме о 2-х миллиционерах:

$$\lim_{k\to\infty} A_n = \widetilde{A}$$

Теорема 2.3.2 (переместительное свойство сходящихся рядов). Если ряд (A) $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то его сумма не зависит от перестановки членов ряда.

Доказательство теоремы. Пусть ряд

$$(A) \quad \sum_{n=1}^{\infty} a_n$$

сходится абсолютно \Longrightarrow ряд

$$(A^*) \quad \sum_{n=1}^{\infty} |a_n|$$

сходится. Пусть ряд

$$(A') \quad \sum_{n=1}^{\infty} a'_n$$

получен из ряда (A) путем перестановки его членов. Покажем, что ряд (A') сходится и A = A' (их суммы совпадают).

1. Пусть (A) – знакоположительный, то есть $\forall n \in \mathbb{N} \quad a_n > 0$. Рассмотрим частичные суммы ряда (A'):

$$A_k' = a_1' + a_2' + \ldots + a_k' = a_{n_1} + a_{n_2} + \ldots + a_{n_k}.$$

Пусть $n' = \max\{n_1, n_2, \dots, n_k\}$. Тогда

$$A'_k \le a_1 + a_2 + \ldots + a_{n_i} + \ldots + a_{n'} = A_{n'},$$

где $A_{n'}-n'$ -я частичная сумма ряда (A). Так как (A) сходится и зна-коположительный $\implies A_{n'} \leqslant A$.

Таким образом получаем, что $\forall k \ A_k' \leqslant A \implies$ последовательность $A_k' \nearrow$ и ограничена \implies

$$\exists \lim_{k \to \infty} A'_k = A' \le A.$$

C другой стороны, ряд (A') получен перестановкой членов ряда $(A) \implies$ $A' \geqslant A \implies A' \leqslant A \leqslant A' \implies A = A'.$

2. Пусть ряд (A) сходится абсолютно, то есть (A^*) $\sum_{n=1}^{\infty} |a_n|$ сходится. C рядом (A) свяжем два ряда:

$$(P) \sum_{n=1}^{\infty} p_n, \quad (Q) \sum_{n=1}^{\infty} q_n,$$

где p_n – положительные члены ряда (A), q_n – отрицательные члены ряда (A), взятые по модулю, причем все члены рядов (P) и (Q) взяты в том же порядке, как они стояли в ряде (A).

Лемма 2.3.1. Если ряд (A) абсолютно сходящийся, то ряды (P) и (Q) сходятся и A = P - Q.

Доказательство леммы. Пусть (A^*) $\sum_{n=1}^{\infty} |a_n| - \text{сходится} \Longrightarrow \sum_{n=1}^{\infty} |a_n| = A^*$. A_n^* — частичные суммы ряда (A^*) . Имеем $P_{n_k} = a_{n_1} + a_{n_2} + \ldots + a_{n_k}$, где $n_1 < n_2 < \ldots < n_k \le n, \quad P_{n_k} \le A_n^*,$

(A)
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$$

(P)
$$\sum_{n=1}^{\infty} p_n = \underbrace{a_1 + a_3 + a_4 + a_6}_{P_2}$$

$$(A^*)$$
 $\underbrace{|a_1| + |a_2| + |a_3| + |a_4| + |a_5|}_{A_5^*} + \dots$

и $Q_{n_m} \leqslant A_n^* \Longrightarrow$ (так как $(A)^*$ сходится) $\Longrightarrow A_n^* \leqslant A^* \leftarrow$ сумма ряда (A^*) и $\Longrightarrow P_{n_k} \leqslant A^*$ и $Q_{n_m} \leqslant A^*$. Далее, $A_n = P_{n_k} - Q_{n_m}$, где $n_k \leqslant n$, $n_m \leqslant n$. При $n \to \infty \Longrightarrow k \to \infty$, $m \to \infty$

Далее, так как (A) сходится абсолютно \Longrightarrow (A) сходится \Longrightarrow

$$\implies \exists A = \lim_{n \to \infty} A_n = \lim_{\substack{m \to \infty \\ k \to \infty}} (P_{n_k} - Q_{n_m}) =$$

$$= \lim_{k \to \infty} P_{n_k} - \lim_{m \to \infty} Q_{n_m} = P - Q.$$

Если ряд (A) сходится абсолютно, то сходится ряд (A^*) , (A^*) – положительный ряд \implies (A^*) сходится (получен путем перестановки членов ряда (A^*)) \Longrightarrow по лемме сходятся ряды (P') и (Q')

ТУТ ХИМИЧЕСКИЕ ФОРМУЛЫ

и
$$A' = P' - Q'$$
.

39

- P' положительный ряд \implies по пункту 1, P сходится;
- Q' положительный ряд \implies по пункту 1, Q сходится

$$\mathsf{U} P' = P, \quad Q' = Q \implies A' = P - Q = A.$$

Теорема 2.3.3 (Римана о перестановке членов условно сходящегося ряда). Если ряд (A) условно сходится, то $\forall B \in \mathbb{R}$ (в том числе $B = \pm \infty$) \exists перестановка ряда (A) такая, что полученный ряд сходится и имеет сумму B. Более того, \exists перестановка ряда (A) такая, что частичные суммы полученного ряда не стремятся ни к конечному, ни к бесконечному пределу.

Доказательство теоремы.

Лемма 2.3.2. Если ряд (A) сходится условно, то ряды (P) и (Q) расходятся.

Доказательство леммы. Рассмотрим $A_n = P_k - Q_m$, где $k \le n, \ m \le n \ (k+m=n)$

$$A_n^* = P_k^* + Q_m^* \quad (k + m = n),$$

 $\lim_{n \to \infty} A_n = A; \quad \lim_{n \to \infty} A_n^* = \infty.$

Допустим, что ряд (P) сходится \implies (P*) сходится, а так же $\exists \lim_{k \to \infty} P_k =$

 $P \implies \exists \lim_{m \to \infty} Q_m = A - P \stackrel{from (*)}{\Longrightarrow} Q^* - \text{сходится} \implies A^*$ имеет предел. Противоречие $\implies P$ расходится.

Для
$$Q$$
 — аналогично.

Пусть $B \in \mathbb{R}$. Возьмем номер $n_1: p_1+p_2+\ldots+p_{n_1} \geqslant B$. Выберем $n_2: p_1+p_2+\ldots+p_{n_1}-q_1-q_2-\ldots-q_{n_2} \leqslant B$.

Более того, элементы p и q будем брать столько, сколько это необходимо для выполнения этого условия.

Возьмем $n_3:\ p_1+p_2+\ldots+p_{n_1}-q_1-q_2-\ldots-q_{n_2}+p_{n_1+1}+p_{n_1+2}+\ldots+p_{n_3}\geqslant B$ и так далее.

Таким образом получим ряд $(p_1 + \ldots + p_{n_1}) + (-q_1 - \ldots - q_{n_2}) + (p_{n_1+1} + \ldots + p_{n_3}) + (-q_{n_2+1} - \ldots - q_{n_4}) + \ldots$ – этот ряд сходится к B.

Действительно, так как ряд (A) сходится, то $\lim_{n\to\infty} a_n = 0$.

Так как количество членов p_i и q_i бралось лишь столько, сколько необходимо, то соответствующие частичные суммы отличаются от B разве что на последнее слогаемое в этой частичной сумме, которое стремится к нулю $\Longrightarrow \lim_{n\to\infty} A'_n = B$.

2.4 Умножение рядов

Пусть даны ряды

(A)
$$\sum_{n=1}^{\infty} a_n$$
, (B) $\sum_{n=1}^{\infty} b_n$.

Составим таблицу:

	a_1	a_2	•••	a_n	•••
b_1	a_1b_1	a_2b_1	•••	$a_n b_1$	•••
b_2	a_1b_2	a_2b_2	•••	$a_n b_2$	•••
:	i	i	٠.	•••	•••
b_n	a_1b_n	a_2b_n	:	$a_n b_n$	•••
-:	i i	i	:	÷	·

Определение 2.4.1 (произведение рядов, форма Коши). Произведением рядов (A) и (B) назовем ряд, членами которого ялвяются элементы на строке таблицы a_ib_j , взятые в произвольном порядке.

Если числа выбираются по диагоналям, то произведение называется формой **Коши**:

$$a_1b_1 + (a_1b_2 + a_2b_1) + \dots$$

Теорема 2.4.1 (Коши о произведении рядов). Если ряды

(A)
$$\sum_{n=1}^{\infty} a_n, \quad (B) \sum_{n=1}^{\infty} b_n$$

абсолютно сходятся, A и B — их суммы, то \forall их произведение абсолютно сходится и равно $A \cdot B$.

Доказательство. Рассмотрим г-тую частичную сумму ряда

$$(A \cdot B)^* \sum_{r=1}^{\infty} |a_{n_r} \cdot b_{k_r}|,$$

$$\begin{split} S_r &= |a_{n_1} \cdot b_{k_1}| + |a_{n_2} \cdot b_{k_2}| + \ldots + |a_{n_r} \cdot b_{k_r}| \leqslant \\ &\leqslant \left(|a_{n_1}| + |a_{n_2}| + \ldots + |a_{n_r}|\right) \cdot \left(|b_{k_1}| + |b_{k_2}| + \ldots + |b_{k_r}|\right) \leqslant \\ &\leqslant \left(|a_1| + |a_2| + \ldots + |a_m|\right) \cdot \left(|b_1| + |b_2| + \ldots + |b_m|\right), \end{split}$$

где $m = \max\{n_1, n_2, \dots, n_r, k_1, k_2, \dots, k_r\}.$

Так как ряды (A) и (B) сходятся абсолютно, то есть сходятся ряды (A*) и (B*), то $S_r \leq A^* \cdot B^* \implies$ последовательность $S_r \nearrow$ и ограничена \implies $\exists \lim_{r \to \infty} S_r \implies$ ряд $(A \cdot B)^*$ сходится \implies ряд

$$(A \cdot B) \quad \sum_{r=1}^{\infty} a_{n_r} \cdot b_{k_r}$$

— сходится, причем его сумма не зависит от порядка суммирования. Будем суммировать ряд $A\cdot B$ по квадратам

$$\underbrace{a_1b_1}_{c_1} + \underbrace{(a_1b_2 + a_2b_2 + a_2b_1)}_{c_2} + \underbrace{(a_1b_3 + a_2b_3 + a_3b_3 + a_3b_2 + b_3b_1)}_{c_3} + \dots$$

$$S_1 = a_1b_1 = A_1 \cdot B_1$$

$$S_2 = c_1 + c_2 = a_1b_1 + (a_1b_2 + a_2b_2 + a_2b_1) = (a_1 + a_2) \cdot (b_1 + b_2) = A_2 \cdot B_2$$

$$S_3 = c_1 + c_2 + c_3 = (a_1 + a_2 + a_3) \cdot (b_1 + b_2 + b_3) = A_3 \cdot b_3$$

$$\vdots$$

$$S_n = A_n \cdot B_n$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (A_n \cdot B_n) = \lim_{n \to \infty} A_n \cdot \lim_{n \to \infty} B_n = A \cdot B$$

2.5 Двойные и повторные ряды

Рассмотрим таблицу (⋆)

	a_{11}	a_{12}	a_{13}	•••	a_{1k}	•••
	a_{21}	a_{22}	a_{23}	•••	a_{2k}	•••
	:	:	:	٠.	•••	•••
	a_{n1}	a_{n2}	a_{n3}	:	a_{nk}	•••
_	:	:	:	:	:	٠.

Определение 2.5.1 (повторный ряд). **Повторным рядом** называется выражение

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk},\tag{2.7}$$

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{nk}.$$
(2.8)

Говорят, что ряд (2.7) сходится, если сходятся все ряды (A_n) по строкам ($\sum_{k=1}^{\infty} a_{n_k} = A_n$) и сходится ряд

$$\sum_{n=1}^{\infty} A_n.$$

Определение 2.5.2. Двойным рядом называется выражение

$$\sum_{n k=1}^{\infty} a_{nk} \tag{2.9}$$

Говорят, что ряд (2.9) сходится, если \exists

$$A = \lim_{\substack{N \to \infty \\ K \to \infty}} = \lim_{\substack{N \to \infty \\ K \to \infty}} \sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}.$$

То есть $\forall \epsilon > 0$ $\exists N_0$ и K_0 : $\forall N > N_0$ и $\forall k > K_0$

$$\left| \underbrace{\sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}}_{A \dots A} - A \right| < \epsilon$$

Определение 2.5.3 (простой ряд). Пусть ряд

$$(U) \quad \sum_{r=1}^{\infty} U_r \tag{2.10}$$

построен из элементов таблицы, взятых в произвольном порядке. Такой ряд будем называть **простым**, связанным с данной таблицей.

Теорема 2.5.1 ("Главная"). Пусть дана таблица

	a_{11}	a_{12}	a_{13}	•••	a_{1k}	•••
	a_{21}	a_{22}	a_{23}	•••	a_{2k}	•••
_	:	:	:	٠.		
	•	•	•	•		
-	a_{n1}	a_{n2}	a_{n3}	:	a_{nk}	•••

и по ней построены ряды

$$\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}a_{nk},\quad \sum_{k=1}^{\infty}\sum_{n=1}^{\infty}a_{nk},\quad \sum_{n,k=1}^{\infty}a_{nk},\quad \sum_{r=1}^{\infty}U_{r}.$$

Если после замены элементов таблицы их модулями хотя бы один из 4-х рядов становится сходящимся, то сходятся остальные и их суммы равны.

Теорема 2.5.2 (о связи сходимости простого и повторного рядов). 1. Если ряд

$$\sum_{r=1}^{\infty} U_r$$

абсолютно сходится, то ряд

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$$

сходится и его сумма равна U.

2. Если после замены элементов таблицы (★) их модулями ряд

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{nk}|$$

сходится, то ряд

$$\sum_{r=1}^{\infty} U_r$$

сходится абсолютно и суммы рядов

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} \quad \& \quad \sum_{r=1}^{\infty} U_r$$

совпадают.

Доказательство. 1. Пусть (U^*) сходится. Покажем, что все ряды по строкам сходятся

$$(A_n) \quad \sum_{k=1}^{\infty} a_{nk} \quad (\forall n \in \mathbb{N})$$

и сходится ряд

$$\sum_{n=1}^{\infty} A_n.$$

Рассмотрим

$$|a_{n1}| + |a_{n2}| + \ldots + |a_{nk}| \le |u_1| + |u_2| + \ldots + |u_r|,$$

где r выбран таким образом, чтобы среди $|u_i|$ были все слагаемые $|a_{n1},\dots,a_{nk}|$.

Таким образом,

$$\underbrace{|a_{n1}| + \ldots + |a_{nk}|}_{A_{nk}^*} \le U^* \implies \exists \lim_{k \to \infty} A_{nk}^* = A_n^* \implies$$

 \Longrightarrow ряд $\sum_{k=1}^{\infty} a_{nk} \ \forall n \in \mathbb{N}$ сходится абсолютно \Longrightarrow он сходится.

Далее, пусть $\epsilon > 0$ задано. Выберем номер $r_0: \ \forall r > r_0$

$$\sum_{i=1}^{\infty} |u_{r+i}| < \frac{\epsilon}{3}.$$

Тогда

$$\bigg|\sum_{i=1}^r u_i - U\bigg| = \bigg|\sum_{i=1}^\infty u_{r+i}\bigg| \leqslant \sum_{i=1}^\infty |u_{r+i}| < \frac{\epsilon}{3}$$

Так как ряды по строкам сходятся, то $\forall n$ выберем m(n):

$$\left| \sum_{k=1}^{m(n)} a_{n_k} - A_n \right| < \frac{\epsilon}{3 \cdot 2^n}.$$

Наконец, выберем номер N_0 такой, что все числа u_1,u_2,\dots,u_{r_0} содержались бы в первых N_0 строчках.

$$\begin{split} \left| \sum_{n=1}^{N} A_n - U \right| &= \\ &= \left| \sum_{n=1}^{N_0} A_n - \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} + \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i + \sum_{i=1}^{r_0} u_i - U \right| \leqslant \\ &\leqslant \sum_{n=1}^{N_0} \left| A_n - \sum_{k=1}^{m(n)} a_{n_k} \right| + \left| \sum_{n=1}^{N_0} \sum_{k=1}^{m(n)} a_{n_k} - \sum_{i=1}^{r_0} u_i \right| + \left| \sum_{i=1}^{r_0} u_i - U \right| \leqslant \\ &\leqslant \frac{\epsilon}{3} + \sum_{i=r_0+1}^{\infty} (u_i) + \frac{\epsilon}{3} \leqslant \frac{\epsilon}{3} \cdot 3 = \epsilon. \end{split}$$

2. Пусть ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{n_k}| = A^*$ сходится.

Тогда $\forall r \; \exists N, K$ такие, что числа u_1, \ldots, u_r содержатся в N первых строчках и K первых столбцах таблицы

$$\sum_{i=1}^{r} |u_i| \leq \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{n_k}| \leq A^* \implies$$

 $\implies |u_r| \nearrow$ и ограничен \implies ряд (U) сходится абсолютно \implies по пункту 1., суммы рядов (U) и (???) равны.

Теорема 2.5.3 (свойства двойных рядов). 1. Если ряд

$$\sum_{n,k=1}^{\infty} a_{nk}$$

сходится, то

$$\lim_{\substack{n\to\infty\\k\to\infty}} a_{nk} = 0$$

2. (Критерий Коши) Ряд

$$\sum_{n,k=1}^{\infty} a_{nk}$$

сходится тогда и только тогда, когда $\forall \epsilon > 0 \ \exists N_0, K_0: \ \forall n > N_0, \ \forall k > K_0, \ \forall p > 0, \ \forall q > 0$

$$\left| \sum_{n=1}^{p} \sum_{k=1}^{q} a_{(N_0+n)(K_0+k)} \right| < \epsilon.$$

3. Если ряд

$$\sum_{n,k=1}^{\infty} a_{nk}$$

сходится, то $\forall c \in \mathbb{R}$ ряд

$$\sum_{n,k=1}^{\infty} (c \cdot a_{nk})$$

сходится, и его сумма равна $c \cdot A$ (где $A = \sum_{n,k=1}^{\infty} a_{nk}$).

4. Если ряд

$$\sum_{n,k=1}^{\infty} a_{nk}$$

сходится и ряд

$$\sum_{n,k=1}^{\infty} b_{nk}$$

сходится, то

$$\sum_{n=1}^{\infty} (a_{nk} + b_{nk}) = A + B,$$

а к тому же - сходится.

5. Если $\forall n, \ \forall k \ a_{nk} \ge 0$, то ряд

$$\sum_{n.k=1}^{\infty} a_{nk}$$

сходится тогда и только тогда, когда его частичные суммы ограничены в совокупности.

Доказательство. 1. Пусть ряд

$$\sum_{n,k=1}^{\infty} a_{nk}$$

сходится. Заметим, что

$$A_{nk} = \sum_{i,j=1}^{n,k},$$

$$a_{nk} = A_{nk} - A_{n(k-1)} - A_{(n-k)k} + A_{(n-1)(k-1)} \implies a_{nk} \to 0.$$

2. (Критерий Коши) На декартовом произведении $\mathbb{N} \times \mathbb{N}$ введем базу:

$$B_{nk} = \{(n, k): n > N_0, k > K_0\}.$$

Тогда критерий Коши сходимости ряда — это есть критерий Коши существования предела функции A_{nk} по данной базе.

- 3. Самостоятельно.
- 4. Самостоятельно.
- 5. " → " Очевидно.

" \leftarrow " Пусть множество $\{A_{nk}\}$ – ограничено. Пусть $A = \sup\{A_{nk}\}$. Покажем, что A – сумма ряда

$$\sum_{n,k=1}^{\infty} a_{nk}.$$

Пусть $\epsilon > 0$ задано. Выберем N_0 и K_0 :

$$A - A_{N_0K_0} < \epsilon$$

ДОПИСАТЬ!!!

Теорема 2.5.4 (о связи сходимости двойного и простого рядов). Если ряд

 $\sum_{n,k=1}^{\infty} |a_{nk}|$ сходится, то сходится ряд $\sum_{r=1}^{\infty} u_r$. И наоборот, если сходится ряд $\sum_{r=1}^{\infty} |u_r|$, то сходится ряд $\sum_{n,k=1}^{\infty} a_{nk}$.

И в обоих случаях суммы рядов равны:

$$\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$$

Доказательство. " \Longrightarrow " Пусть двойной ряд сходится абсолютно, то есть сходится ряд $\sum_{n,k=1}^{\infty}|a_{nk}|$.

Тогда для любого номера $S \exists N, K$ такие, что все числа u_1, \ldots, u_S содержатся в первых N строках и первых K столбцах, тогда:

$$|u_1| + |u_2| + \dots + |u_S| \le \sum_{n=1}^N \sum_{k=1}^K |a_{nk}| \le A^* = \sum_{n,k=1}^\infty |a_{nk}| \implies$$

 \Longrightarrow последовательность U_i^* \nearrow и ограничена \Longrightarrow ряд $\sum_{r=1}^{\infty} u_r$ сходится абсолютно \Longrightarrow сходится.

" \longleftarrow "Пусть ряд $\sum_{r=1}^{\infty} |u_r|$ сходится \Longrightarrow $\forall N, K \exists S$: все числа $a_{11}, a_{12}, \ldots, a_{1K}, a_{21}, \ldots, a_{2K}, \ldots, a_{N1}, \ldots, a_{NK}$ содержатся среди чисел u_1,\ldots,u_S . Тогда

$$A_{NK}^* = \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}| \le \sum_{r=1}^{S} |u_r| \le U^* = \sum_{r=1}^{\infty} |u_r| \implies$$

 \Longrightarrow ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится. Покажем, что $\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} u_r$.

Так как ряд $\sum_{r=1}^{\infty} u_r$ сходится абсолютно, то расположим элементы по квадратам:

$$\begin{aligned} a_{11} &= u_{r_1} \\ a_{12} + a_{22} + a_{21} &= u_{r_2} + u_{r_3} + u_{r_4} \\ \vdots \\ A_{nn} &= a_{11} + \ldots + a_{nn} = U_n = u_{r_1} + \ldots + u_{r_n} \\ A &= \lim_{n \to \infty} A_{nn} = \lim_{n \to \infty} U_n = U \end{aligned}$$

Доказательство "Главной". Из четырех предыдущих теорем \Longrightarrow "Главная" теорема.

2.6 Поточечная и равномерная сходимость семейства функций

Определение 2.6.1. Семейство функций – это произвольное множество функций.

Пусть $f: X \times T \to Y$. Если по каким-либо соображениям элементам множества T уделяется особое внимание, то будем их называть **параметрами**.

То есть $\forall t \in T$ можно рассмотреть функцию

$$f_t(x) = f(x, t).$$

В этом случае будем говорить, что задано семейство функций, зависящих от параметра t.

Пример 9. $T = \mathbb{N}$, тогда $f_n(x) = x^n$.

Пусть задано семейство отображений $f_t: X \to Y_\rho, Y$ — метрическое пространство с заданной метрикой $\rho, t \in T$.

Пусть \mathfrak{B} – база на T.

Определение 2.6.2. Будем говорить, что семейство $\{f_t\}$ сходится в точке $x \in X$, если $f_t(x)$ как функция аргумента t имеет предел по базе \mathfrak{B} , то есть $\exists y_x \in Y_\rho: \ \forall \epsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t \in B$

$$\rho(f_t(x), y_x) < \epsilon.$$

Определение 2.6.3. Множество $E = \{x \in X : \{f_t\} \text{ сходится в точке } x\}$ называется областью сходимости семейства $\{f_t\}$ по базе \mathfrak{B} .

Далее, на E введем функцию, положив

$$f(x) = \lim_{\mathfrak{B}} f_t(x).$$

Функция f(x) называется **предельной**.

Определение 2.6.4. Пусть дано семейство $f_t:X\to Y_u$ и $f:X\to Y$. Будем говорить, что f_t сходится по базе $\mathfrak B$ поточечно к f на X, если $\forall x\in X\ \forall \epsilon>0\ \exists B_x\in\mathfrak B:\ \forall t\in B_x$

$$\rho(f_t(x), f(x)) < \epsilon.$$

Обозначение:

$$f_t \underset{\mathfrak{B}}{\rightarrow} f \ (on \ X)$$

Определение 2.6.5. Семейство $\{f_t\}$ сходится равномерно по базе \mathfrak{B} к f на X, если $\forall \epsilon > 0 \ \exists B \in \mathfrak{B} : \ \forall t \in B$ и $\forall x \in X$

$$\rho(f_t(x), f(x)) < \epsilon$$

Обозначение:

$$f_t \underset{\mathfrak{B}}{\rightrightarrows} f \ (on \ X)$$

Определение 2.6.6. Пусть $f_n: X \to \mathbb{R}$ — последовательность функций и $f: X \to \mathbb{R}$. Семейство $\{f_n\}$ сходится поточечно к f на X, если $\forall x \in X \ \exists f(x) = \lim_{n \to \infty} f_n(x), \ \forall \epsilon > 0 \ \exists N: \ \forall n > N$

$$|f_n(x) - f(x)| < \epsilon.$$

Обозначение:

$$f_n \underset{n \to \infty}{\longrightarrow} f \ (on \ X)$$

Определение 2.6.7. Последовательность $\{f_n\}$ равномерно сходится к f на X при $n \to \infty$, если $\forall \epsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \ \forall x \in X$

$$|f_n(x) - f(x)| < \epsilon.$$

Обозначение:

$$f_n \underset{n \to \infty}{\Rightarrow} f \text{ (on } X)$$

Пример 10. $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = x^n$

Имеем при фиксирвоанном x:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0, & -1 < x < 1 \\ 1, & x = 1 \\ +\infty, & x > 1 \\ \nexists, & x \le -1 \end{cases}$$

Таким образом область сходимости этой последовательности E = (-1; 1]. На множестве E определим предельую функцию

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0, & x \in (-1; 1) \\ 1, & x = 1 \end{cases}$$

Покажем, что f_n сходится к f на E неравномерно, то есть $\exists \epsilon > 0 \ \forall N \in$ $\mathbb{N}: \exists n > N \ \exists x \in X:$

$$|f_n(x) - f(x)| \ge \epsilon$$
.

Возьмем $\epsilon = \frac{1}{2}$. Пусть N задано произвольно. Возьмем n = N+1 и $x: x^n = \frac{3}{4}$, то есть $x = \sqrt[n]{\frac{3}{4}}$. Тогда:

$$|f_n(x) - f(x)| = \left| \left(\sqrt[n]{\frac{3}{4}} \right)^n - 0 \right| = \frac{3}{4} > \frac{1}{2}$$

Пример 11. $f_n(x) = \frac{x}{1+n^2x^2}$ $\forall x \in X$:

$$\lim_{n \to \infty} f_n(x) = \frac{x}{1 + n^2 x^2} = 0.$$

Таким образом, $f(x) = 0 \ \forall x \in \mathbb{R}$. Покажем, что $f_n \underset{n \to \infty}{\Rightarrow} f$ на \mathbb{R} . Имеем:

$$|f_n(x) - 0| = \left| \frac{x}{1 + n^2 x^2} \right| = \frac{1}{2n} \cdot \left| \frac{2nx}{1 + n^2 x^2} \right| \le$$

$$\le \left| \begin{array}{c} 0 \le (1 - nx)^2 = 1 + n^2 x^2 - 2nx \implies \\ \implies 2nx \le 1 + n^2 x^2 \end{array} \right| \le$$

$$\le \frac{1}{2n} \cdot 1 = \frac{1}{2n}$$

Пусть $\epsilon > 0$ задано. Возьмем N : $\forall n > N$ $\frac{1}{2n} < \epsilon$, $N = \left[\frac{1}{2\epsilon}\right]$. Таким образом, $\forall n > N \ \forall x \in \mathbb{R}$

$$|f_n(x)| \le \frac{1}{2n} < \frac{1}{2N} = \epsilon \implies$$

$$\implies f_n(x) \underset{n \to \infty}{\Rightarrow} f(x) \text{ Ha } \mathbb{R}^{\infty}$$

Пример 12.
$$f_n(x) = \frac{n \cdot x}{1 + n^2 x^2}, \quad \forall x \in \mathbb{R} \quad f_n(x) = 0$$

Пример 12. $f_n(x) = \frac{n \cdot x}{1 + n^2 x^2}$, $\forall x \in \mathbb{R}$ $f_n(x) = 0$ Покажем, что данное семейство не имеет равномерной сходимости к f. Рассмотрим $f_n(x) - f(x) = f_n(x) = \frac{n \cdot x}{1 + n^2 x^2}$:

$$f'_n(x) = \frac{n \cdot (1 + n^2 x^2) - n \cdot x \cdot (2xn^2)}{(1 + n^2 x^2)^2} = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2} = 0, \quad x = \pm \frac{1}{n}$$

Далее, $f_n(\frac{1}{n})=\frac{1}{2}.$ Возьмем $\epsilon=\frac{1}{4}.$ Тогда если N задано, то выберем n=N+1 и $x=\frac{1}{n}.$

Тогда
$$|f_n(x)|^n = f(x)|_{x=\frac{1}{n}} = \frac{1}{2} > \frac{1}{4} \implies f_n(x) \underset{n \to \infty}{\not \Rightarrow} f(x)$$

Теорема 2.6.1 (критерий Коши сходимости семейства функций). Пусть Y — полное метрическое пространство (М.П.), $f_t: X \to Y, \ t \in T$ — семейство $\{f_t\}$ равномерно сходится на X по базе $\mathfrak{B} \iff \forall \epsilon > 0 \exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$ и $\forall x \in X$

$$\rho(f_{t_1}(x); f_{t_2}(x)) < \epsilon$$

Определение 2.6.8 (равномерная сходимость семейства функций по базе). Будем говорить, что семейство функций $f_t: X \to Y$ равномерно сходится на X по базе \mathfrak{B} , если:

1. $\exists f: X \to Y$:

$$\lim_{\mathfrak{B}} f_t(x) = f(x), \quad \forall x \in X$$

2. f_t сходится равномерно к f на X по базе \mathfrak{B} .

Теорема 2.6.2 (формулировка критерия Коши для последовательности $f_n(x)$). Последовательность $f_n(x)$ равномерно сходится на $X \iff \forall \epsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_n(x) - f_{n+p}(x)| < \epsilon$$

Доказательство. " \Longrightarrow "Проведем доказательство для $Y = \mathbb{R}$.

Пусть семейство f_t сходится равномерно на X по базе \mathfrak{B} , то есть $\exists f(x): X \to \mathbb{R}:$

$$f_t(x) \underset{\mathfrak{R}}{\rightrightarrows} f(x).$$

Покажем, что выполнено условие Коши.

Пусть $\epsilon > 0$ задано. Выберем $B \in \mathfrak{B} : \forall t \in B \ \forall x \in X$

$$\left|f_t(x) - f(x)\right| < \frac{\epsilon}{2}.$$

Тогда $\forall t_1, t_2 \in B \ \forall x \in X$.

$$\begin{aligned} \left| f_{t_1}(x) - f_{t_2}(x) \right| &= \left| f_{t_1}(x) - f(x) + f(x) - f_{t_2}(x) \right| \le \\ &\le \left| f_{t_1}(x) - f(x) \right| + \left| f_{t_2}(x) - f(x) \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

" \longleftarrow "Пусть $\forall \epsilon > 0 \; \exists B \in \mathfrak{B} : \forall t_1, t_2 \in B$ и $\forall x \in X$

$$|f_{t_1}(x) - f_{t_2}(x)| < \epsilon \quad (\star)$$

Зафиксируем $x \in X$. Тогда выражение (\star) есть точная формулировка критерия Коши существования предела функции $f_t(x)$ по базе $\mathfrak{B} \Longrightarrow \forall x \in X \ \exists \lim_{\mathfrak{B}} f_t(x) = f(x)$.

Покажем, что $f_t(x) \stackrel{\longrightarrow}{\underset{\infty}{\longrightarrow}} f(x)$ на X.

В (\star) передем к пределу по базе $\mathfrak B$ по переменной t_1 . Получим, что

$$|f(x) - f_{t_2}(x)| < \epsilon.$$

Таким образом получаем равномерную сходимость семейства $f_{t_2}(x)$ к f на X по базе \mathfrak{B} , то есть $\forall \epsilon > 0 \; \exists B \in \mathfrak{B} \; \forall t_2 \in B$ и $\forall x \in X$

$$|f_{t_2}(x) - f(x)| < \epsilon$$

Следствие. Пусть X,Y — метрические пространства, $E \in X, x_0 \in E$ — предельная точка для E. Семейство $f_t: X \to Y$:

- 1. f_t сходится на E по базе \mathfrak{B} ;
- 2. f_t расходится в точке x_0 по базе \mathfrak{B} ;
- 3. $\forall t \ f_t$ непрерывно в точке x_0 .

Тогда на E семейство f_t сходится неравномерно.

Доказательство. Применим критерий Коши, покажем, что $\exists \epsilon > 0$: $\forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$ и $\exists x \in E$:

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \ge \epsilon.$$

Таким образом f_t расходится в точке x_0 , то $\exists \epsilon > 0: \forall B \in \mathfrak{B} \ \exists t_1, t_2 \in B$:

$$\rho_Y(f_{t_1}(x_0), f_{t_2}(x_0)) \ge \epsilon.$$

Так как f_{t_1} и f_{t_2} непрерывны, то $\exists U(x_0) \in X: \ \forall x \in U(x_0)$

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \ge \epsilon.$$

Возьмем $\forall x \in U(x_0) \cap E \implies$ тогда в x будет выполняться неравенство

$$\rho_Y(f_{t_1}(x), f_{t_2}(x)) \geqslant E \implies$$

 $\implies f_t$ на E сходится неравномерно.

Следствие (из следствия). Если $f_t:(a,b] \to D, \ D$ – область в Y:

- 1. $\forall t \ f_t$ непрерывно в точке b;
- 2. f_t сходится на (a,b) по \mathfrak{B} ;
- 3. f_t расходится в точке b.

Тогда на (a, b) f_t сходится неравномерно.

2.7 равномерная сходимость функциональных рядов

Определение 2.7.1 (функциональный ряд). Пусть $f_n: X \to \mathbb{R}, X$ – произвольное множество.

Функциональным рядом называется выражение вида

$$(\triangle) \quad \sum_{n=1}^{\infty} f_n(x).$$

Говорят, что ряд (Δ) сходится на X поточечно, если на X сходится поточечно последовательность его частичных сумм. Ряд (Δ) равномерно сходится на X, если на X равномерно сходится последовательность его частичных сумм.

Теорема 2.7.1 (критерий Коши равномерной сходимости функциональных рядов). Ряд (Δ) равномерно сходится на $X \iff \forall \epsilon > 0 \; \exists N: \; \forall n > N \; \forall p > 0 \; \forall x \in X$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| < \epsilon$$

Доказательство. Самостоятельно.

Следствие. Если:

- 1. Ряд (\triangle) сходится на (a, b);
- 2. Расходится в точке b;
- 3. $\forall n \ f_n(x)$ непрерывно в точке b.

Тогда ряд (\triangle) сходится на (a,b) неравномерно.

Доказательство. Следует из предыдущих следствий.

Определение 2.7.2. Ряд (\triangle) сходится абсолютно на X, если на X сходится ряд

$$\sum_{n=1}^{\infty} |f_n(x)|$$

Теорема 2.7.2. Пусть ряды

(A)
$$\sum_{n=1}^{\infty} a_n(x)$$
, (B) $\sum_{n=1}^{\infty} b_n(x)$

такие, что:

- 1. $\forall n$ функции $a_n(x)$ и $b_n(x)$ определены на X;
- $2. \exists N: \forall n > N$

$$|a_n(x)| \le b_n(x) \quad \forall x \in X$$

3. Ряд (B) сходится на X равномерно.

Тогда ряд (A) сходится на X равномерно.

Доказательство. Пусть $\epsilon > 0$ задано. Выберем $N: \ \forall n > N, \ \forall p > 0 \ \forall x \in X$

$$b_{n+1}(x) + \ldots + b_{n+p}(x) < \epsilon.$$

Тогда $\forall n > N, \ \forall p > 0, \ \forall x \in X$

$$|a_{n+1}(x) + \dots + a_{n+p}(x)| \le$$

 $\le |a_{n+1}(x)| + \dots + |a_{n+p}(x)| \le b_{n+1}(x) + \dots + b_{n+p}(x) < \epsilon \implies$

 \implies по критерию Коши ряд (A) сходится равномерно на X.

Следствие (Мажорантный признак Вейерштрасса). Пусть

1. $\forall n \exists M_n$:

$$|a_n(x)| \le M_n \quad \forall x \in X$$

2. Ряд $\sum_{n=1}^{\infty} M_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} M_n$ сходится на X абсолютно и равномерно.

Определение 2.7.3 (неубывающая (невозрастающая) последовательность). Последовательность $f_n: X \to \mathbb{R}$ называется неубывающей (невозрастающей) на X, если $\forall x \in X$ последовательность f_n не убывает (не возрастает).

Теорема 2.7.3 (признаки Абеля и Дирихле).