Three experiments that have identical conditions were performed to measure the initial rate of the reaction

$$2HI(g) \longrightarrow H_2(g) + I_2(g)$$

The results for the three experiments in which only the HI concentration was varied are as follows:

Experiment	[HI] (M)	Rate (M/s)	
1	0.015	1.1×10^{-3}	
2	0.030	4.4×10^{-3}	
3	0.045	9.9×10^{-3}	

Write the rate law for the reaction. Find the value and units of the specific rate constant.

$c \cap$		TI	n	NI
SO	LU	ш	v	IA

1 ANALYZE

The general rate law for this reaction has the form $R = k[HI]^n$. We need to deduce the value of the power n.

2 PLAN

Find the ratio of the reactant concentrations between two experiments, such as 1 and 2, $\frac{[HI]_2}{[HI]_1}$. Then, see how the ratio of concentration affects the ratio of rates, $\frac{R_2}{R}$.

3 COMPUTE

Concentration ratio: $\frac{[\text{HI}]_2}{[\text{HI}]_1} = \frac{0.030 \text{ M}}{0.015 \text{ M}} = 2.0$; rate ratio: $\frac{R_2}{R_1} = \frac{4.4 \times 10^{-3} \text{ M/s}}{1.1 \times 10^{-3} \text{ M/s}} = 4.0$

Thus, when the concentration changes by a factor of 2, the rate changes by a factor of 4, or 2^2 , so the rate law is $R = k[HI]^2$.

To find the value of k, we can rearrange the rate law and substitute known values for any one experiment. Do the following for Experiment 1:

$$k = \frac{R}{[\text{HI}]^2} = \frac{1.1 \times 10^{-3} \text{ M/s}}{(0.015 \text{ M})^2} = 4.9 \text{ M}^{-1} \text{s}^{-1}$$

4 EVALUATE

By comparing items 1 and 3 in the table, we see that when [HI] is tripled, the rate changes by a factor of 9, or 3^2 . This rate change confirms that the order is 2. The same value of k can be calculated from any other experiment. Thus, the rate law and k are correct.

PRACTICE

Answers in Appendix E

- 1. For the reaction $3A \longrightarrow C$, the initial concentration of A was 0.2 M and the reaction rate was 1.0 M/s. When [A] was doubled, the reaction rate increased to 4.0 M/s. Determine the rate law for the reaction.
- **2.** The rate law for a reaction is found to be rate = $k[X]^3$. By what factor does the rate increase if [X] is tripled?

extension

Go to **go.hrw.com** for more practice problems that ask you to determine rate law and rate constant.

