Задание по курсу «Технологии параллельного программирования»

Лабораторная работа №4

- 1. Написать параллельную программу, находящую минимальные и максимальные элементы матриц и распараллеленную по принципу конвейера. Программа должна состоять из 4-х параллельных секций (директива sections), которые отвечают за различные шаги программы:
- 1-я секция инициализирует в цикле матрицы произвольным образом.
- **2-я секция.** Как только очередная матрица будет инициализирована 1-й секцией, 2-секция должна находить максимальный элемент в этой матрице.
- **3-я секция** работает аналогично 2-й, только находит минимальный элемент матрицы.
- **4-я секция.** Как только 2-я и 3-я секции закончат обрабатывать очередную матрицу, 4-секция выводит результаты на экран.

Схема работы выглядит следующим образом:

	Шаг 1	Шаг 2	Шаг З	Шаг 4
Секция 1	Инициализация	Инициализация	Инициализация	Инициализация
	матрицы A_1	матрицы A_2	матрицы А3	матрицы A_4
Секция 2		Нахождение	Нахождение	Нахождение
		max A ₁	max A ₂	$\max A_3$
Секция 3		Нахождение	Нахождение	Нахождение
		$\min A_1$	$\min A_2$	$\min A_3$
Секция 4			Вывод тахА1 и	Вывод тах А2 и
			$\min A_1$	$\min A_2$

2. Смоделировать при помощи возможностей OpenMP (другие директивы синхронизации, функции для работы с замками, директива **flush**) работу директивы **barrier**.