

Prof. Sukyung Park **TA.** Giseo Park

Members.

System design

Taehwan Kim Hyunjun Choi Minseok Jang

System integration

Thanh Nguyen Jinsik Kim Motor control

Seung Eon Lee Seonghyeok Park

Vision processing

Chaeree Park

31 May 2019

Table of contents

- Design and Analysis
 - System design
 - Vision processing
 - Motor control
 - System integration
- Prototype Demo video

System design

"Work fast, but keep it cool"

System design

Overall design

System design Collecting system

Key feature

3-in-1 mechanism (pick up, storage, release)

- **Fast** pick up speed (continuous forward movement)
- **Efficient** actuation by using a single motor for both pickup and release
- **Effective** storage space by sharing pick up inlet and release outlet (Ratio of ball area : ramp area = 0.7 : 1)

Nonstop pick -up

Storage area

System design

Detailed design

Ramp design

Problem definition

Ball release failure due to slipping

Detailed design

Add sandpaper on ramp surface to prevent slipping

Build ball fence to prevent ball drop

System design Thermal Analysis

*Target temperature: 28~33°C Ambient temperature: 23 °C

Overall temperature (before)

Part	Temperature(°C)
Converter	62.1
Dynamixel	25.6
myRIO	31.1
NUC	36.9
Battery	26.7
Webcam	31.9

Danger range Potential danger range

Converter

Webcam

myRI0

Nuc

System design

Thermal Analysis

Goal: Keep all potential heat sources within target temperature range

1. Fan & Fin (Converter)

Our fan velocity + fin number:

8.276m/s / 300 fins

 $h_c = 10.45 - v + 10v^{0.5} = 10.45 - 8.276 + 10(8.276)^{0.5} = 31 W/m^2 K$

- Place the converter in front of the fan.
- -Set up a layout so that the fan flow may reach all electronics

System design Thermal Analysis

*Target temperature: 28~33°C Ambient temperature: 23°C

Overall temperature(After)

Part	Temperature(°C)
Converter	28.4
Dynamixel	23.2
myRIO	28.4
NUC	30.3
Battery	24.9
Webcam	29.7

Vision processing (OpenCV)

"Increase pick up & release accuracy with three webcams"

OpenCV

Webcam functions

Counter Webcam

Count the number of balls in the ramp

0.2m~1.2m

Counter Webcam

Top Webcam

Bottom Webcam

Top Webcam

Search for distant blue ball and green ball

Bottom Webcam

- 1. Search for close blue, red and green ball
- 2. Blue-ball-in-basket counter

OpenCV

Troubleshooting

Problem

Inaccurate distance measurement using ball radius

Solution

Matching ball center y-pixel position and actual distance

Distance measurement with ball radius and center y-position

Ball center y position

Ball radius

Problem

Two blue seen as single blue during ball overlap

Solution

Hybrid integration of two different Codes A & B

Vision processing

Vibration analysis

Problem

Analysis

 Vibration analysis with fast and slow vehicle movement (compare mecanum wheel caused error and dynamic vibration caused error)

Distance estimation variation due to vibration

Time [s]

<u>Conclusion:</u> OpenCV distance measurement is not significant, suspension design is not mandatory

"Time is gold"

Reducing debugging time

Previous procedure (3 mins)

- Node finished
- Myrio turn off
- Myrio turn on
- Wait until wifi become activate
- NUC wifi connecting
- rosrun

Time required : 3 mins

Totally saved time (for 100 cycles): about 4 hrs 55 mins

Modified procedure (3 seconds)

- Node finished
- Myrio turn off
- Myrio turn on
- Wait until wifi become activate
- NUC wifi connecting
- rosrun

Time required : 3 seconds

Motor control Autonomous system

Mode 7 : Go right

Lateral motion optimization

40 rpm

Fast movement but high overshoot & vibration

Low vibration but slow movement

 $\frac{\text{If }\theta > 20^{\circ}\text{: }40 \text{ rpm}}{\text{If }\theta < 20^{\circ}\text{: }20 \text{ rpm}}$

Fast and low vibration

Lateral motion optimization

40 rpm

Fast movement but high overshoot & vibration

time : 21s

Low vibration but slow movement

 $\frac{\text{If }\theta > 20^{\circ}\text{: }40 \text{ rpm}}{\text{If }\theta < 20^{\circ}\text{: }20 \text{ rpm}}$

Fast and low vibration

Lateral motion optimization

40 rpm

Fast movement but high overshoot & vibration

time : 21s

Low vibration but slow movement

time : 18s

 $\frac{|f \theta > 20^{\circ}: 40 \text{ rpm}}{|f \theta < 20^{\circ}: 20 \text{ rpm}}$

Fast and low vibration

Lateral motion optimization

40 rpm

Fast movement but high overshoot & vibration

time : 21s

Low vibration but slow movement

time : 18s

 $\frac{\text{lf }\theta > 20^{\circ}\text{: }40 \text{ rpm}}{\text{lf }\theta < 20^{\circ}\text{: }20 \text{ rpm}}$

Fast and low vibration

time : 15s

ROS TEAM

"Guarantee complete pick up and release"

Overall system (revisit and addition)

Collecting phase

Problem definition

SEARCH:

Unstable blue detection at far distance

Infinite loop (turning left ← right)

Solution

Moving forward 2 meters

Ensuring stable blue detection

Returning phase - Alignment to green balls

Problem definition

Inaccurate lateral motion causing:

1. Imprecise alignment to basket with open loop movement

Commanded to move right direction, but it moves forward

2. Unable to detect two green balls

Tunable to detect two green balls together due to imprecise lateral movement

Returning phase - Alignment to green balls

Problem definition

Inaccurate lateral motion causing:

1. Imprecise alignment to basket with open loop movement

2. Unable to detect two green balls

Solution: Aligning at further distance

Guarantee perfect alignment!

Finalized algorithm

Finalized algorithm

Prototype Demo video

THANK YOU CAPSTONE DESIGN I

