Problem 1. Consider the real valued function $f(x,y,z)=(2-(x^2+y^2)^{1/2})^2+z^2$ on $\mathbb{R}^3\setminus\{(0,0,z)\}$. Show that 1 is a regular value of f. Identify the manifold $M=f^{-1}(1)$.

First we calculate the partials

$$\frac{\partial f}{\partial x} = x \left(2 - \frac{4}{(x^2 + y^2)^{1/2}}\right), \quad \frac{\partial f}{\partial y} = y \left(2 - \frac{4}{(x^2 + y^2)^{1/2}}\right), \quad \frac{\partial f}{\partial z} = 2z$$

Then the critical points of f are those for which f_* is not surjective. The manifold is the torus T^2 .

Problem 2. Show that the manifold M of Problem 1 is transverse to the surface

$$N = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 4\}$$

Identify the manifold $M \cap N$.

The manifold is two disjoint copies of S^1 .

Problem 3. Show that the manifold M of Problem 1 is not transverse to the surface

$$N = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}$$

Is $M \cap N$ a manifold?

It is a manifold and it is a single copy of S^1 .