

Dr. Mark C. Paulk SE 4381, Software Project Planning and Management

Management Topics

1. Modern project management	9. Reducing project duration
PMBOK	10. Leadership
2. Organization strategy and project selection	11. Teams
	12. Outsourcing
3. Organization: structure and culture	13. Monitoring progress
4. Defining the project	14. Project closure
5. Estimating times and costs	15. International projects
6. Developing a project plan	16. Oversight
7. Managing risk	17. Agile PM
8. Scheduling resources and cost	Critical chain project management

Project Control

"How does a project get one year late?

- ... One day at a time."
 - Fred Brooks, The Mythical Man Month

Control

- holds people accountable
- prevents small problems from mushrooming into large problems
- keeps focus

Project Monitoring System

Involves determining what data to collect

How, when, and who will collect the data

Analysis of the data

Reporting current progress

Typical Questions

What is the current status of the project in terms of schedule and cost?

How much will it cost to complete the project?

When will the project be completed?

Are there potential problems that need to be addressed now?

What, who, and where are the causes for cost or schedule overruns?

What did we get for the dollars spent?

If there is a cost/schedule overrun midway in the project, can we forecast the overrun at completion?

Important Status Information

Start with a summary of what the audience should be aware of

Based on the current WBS and activity network

- include prior plan info as appropriate in reporting progress

Includes a graphic describing progress

- earned value chart
- burndown chart
- milestone / tracking charts
- Gantt chart

Includes status against identified risks

- status is NOT the same as impact / probability
- risks evolve as the project progresses

Key Measurement Questions

Are we measuring the right thing?

- Goal / Question / Metric (GQM)
- business objectives ⇔ data
 - cost (dollars, effort)
 - schedule (duration, effort)
 - functionality (size)
 - quality (defects)

Are we measuring it right?

operational definitions

Goal-Driven Measurement

Goal / Question / Metric (GQM) paradigm

- V.R. Basili and D.M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," IEEE Transactions on Software Engineering, November 1984.

SEI variant: goal-driven measurement

- Robert E. Park, Wolfhart B. Goethert, and William A. Florac, "Goal-Driven Software Measurement – A Guidebook," CMU/SEI-96-HB-002, August 1996.

ISO 15939 and PSM variant: measurement information model

- John McGarry, David Card, et al., <u>Practical Software</u> <u>Measurement: Objective Information for Decision</u> <u>Makers</u>, Addison-Wesley, Boston, MA, 2002.

SEI Core Measures

Dovetails with SEI's adaptation of goal-driven software measurement

Checklist-based approach with strong emphasis on operational definitions

Measurement areas where checklists have already been developed include:

- effort (person hours)
- size (SLOC)
- schedule
- quality (defects)

See http://www.sei.cmu.edu/measurement/index.cfm

MITRE Metrics for Software Management

Software size Software personnel

Software volatility Computer resources utilization

Design complexity

Schedule progress

Design progress

Testing progress

Computer software unit development progress

H. Schultz, "Software Management Metrics," MITRE, ESD-TR-88-001, May 1988.

Incremental release content

Hewlett Packard's FURPS

Functionality

- capabilities, security

Usability

- human factors, aesthetics, consistency, documentation

Reliability

 recoverability, MTTF, frequency/severity of failure, predictability, accuracy

Performance

speed, efficiency, resource consumption, throughput, response time

Supportability

testability, extensibility, adaptability, maintainability, compatibility, configurability, servicability, installability, localizability

Putnam and Myers' Five Core Metrics

Size

- quantity of function, usually in SLOC or function points

Productivity

functionality produced for the time and effort expended

Time

- duration of the project in calendar months

Effort

- amount of work expended in person-months

Reliability

defect rate (or mean time to defect)

Operational Definitions

The rules and procedures used to capture and record data

What the reported values include and exclude

Operational definitions should meet two criteria

- Communication will others know what has been measured and what has been included and excluded?
- Repeatability would others be able to repeat the measurements and get the same results?

SLOC Definition Considerations

Whether to include or exclude

- executable and/or non-executable code statements
- code produced by programming, copying without change, automatic generation, and/or translation
- newly developed code and/or previously existing code
- product-only statements or also include support code
- counts of delivered and/or non-delivered code
- counts of operative code or include dead code
- replicated code

When the code gets counted

 at estimation, at design, at coding, at unit testing, at integration, at test readiness review, at system test complete

Example of Schedule Considerations

Critical Design Review (CDR) was completed 15 June 2013

What does this mean?

- the internal review was completed?
- the review was held?
- high-priority action items were closed?
- all action items were closed?
- sign-off from the customer was obtained?

Technical Performance Measurement

Typically nonfunctional requirements (quality attributes)

- availability
- interoperability
- modifiability
- performance
- security
- testability
- usability

Need to be specified (negotiated) with the customer

Dysfunctional Behavior

Austin's <u>Measuring and Managing Performance</u> in <u>Organizations</u>

motivational versus information measurement

Deming strongly opposed performance measurement, merit ratings, management by objectives, etc.

Dysfunctional behavior resulting from organizational measurement is inevitable unless

- measures are made "perfect"
- motivational use impossible

Control

Control is the process of

- comparing actual performance against plan to identify deviations
- evaluating possible alternative courses of actions
- taking appropriate corrective action

Project control steps

- set up a baseline plan
 - based on WBS, activity network, resource scheduling
- measure progress and performance
 - use earned value to obtain a realistic estimate of performance
- compare plan against actual
- take action

Project Status Tools

Tracking Gantt Chart

- baseline Gantt chart shows original plan
- modern Gantt charts shows precedence network relations

Control Chart

- not Shewart's control chart for statistical process control!
- plots difference between scheduled and actual time on critical path

Gantt Chart Larson and Gray, Figure 13.1

Gantt Chart Key

Baseline Gantt chart shows original schedule

Tracking Gantt chart

- solid bar below original schedule bar actual start and finish times for completed activities
- activities in process show actual start time
- extended bar shows expected remaining duration (re-estimated)

Another Example of a Gantt Chart

Early start... Late start... SLACK!

"Control" Chart Larson and Gray, Figure 13.2

Tracking with CCPM Buffers

Put the "project buffer" at the end of the critical path.

Put a "feeding buffer" where a path merges with the critical path.

Progress is measured only on the critical path.

Monitor all the buffers.

priority list: 1) project buffer; 2) feeding buffer

If there is resource contention, the critical chain may not be the same as the critical path...

Example: Two Simple Tracking Measures

(example from Pete Fuenfhausen, "Sr. Management Reviews: Simple Metrics for Monitoring and Motivating Project Teams," ASEE, Dallas, 2006)

Milestone Chart

Tracking Chart

Used to monitor milestones and commitments

Used at multiple levels in programs

Used to monitor anything that can be planned or projected vs actuals

Multiple variants depending on what is being tracked

The Milestone Chart - Basics

Tracking with the Milestone Chart

The Tracking Chart - Basics

Monitoring with the Tracking Chart

Suspect Plans

The "Straight Line"

The "Step Function"

Usually indicates that not a lot of thought went into the planning

The "Cliff"

More of a "prayer" than a plan

Replanning with the Tracking Chart

Estimate at Completion (EAC)

Forecast of most likely total project costs based on project performance and risk quantification.

EAC_{re} = actuals to date plus a new estimate for all remaining work

original estimating assumptions were fundamentally flawed

EAC_f = actuals to date plus remaining budget modified by a performance factor

- current variances are seen as typical of future variances
- EAC_f = (work remaining) / CPI = (BAC EV) / (EV / AC)

TCPI = actuals to date plus remaining budget

- current variances are seen as atypical
- To Complete Performance Index = (BAC EV) / (BAC AC)

Managing Requirements Volatility

Scope creep

- "minor" refinements
 - "Schedules slip one day at a time." F. Brooks
- goldplating

The key to managing scope creep is change management.

 Requirements Management in CMM(I) is basically putting the requirements under configuration management

Tracking Chart Variants

Most tracking charts measure tasks completed against the plans, but...

Virtually any project attribute can be tracked in a consistent manner using a variant of the basic tracking chart format:

- financial data (plan vs actual spent)
- labor and staffing
- requirements developed
- requirements changes arrivals and fixes
- source code produced
- defects detected / fixed
- test cases executed
- technical measures (memory usage, processor throughput, etc.)
- audits performed

Advanced Uses of the Tracking Chart Setting Management Thresholds

Milestone and Tracking Charts Play Well Together

Putting It Together for a Project

A typical program review runs as follows

- top program risks
- program-level Milestones Chart
 - milestones are the major program phases and deliveries
- financial Tracking Charts
 - capital and expense spending
- staffing profile Tracking Chart
- each functional group briefs their metrics in turn:
 - Milestone Chart first, followed by
 - Tracking Charts relevant for the review period

The only chart in the stack that is not a milestone or tracking chart is the list of risks.

Why It Works – Some Psychology

Repetition

- biweekly progress reviews with senior management
- metrics are always in the same format, so interpreting them becomes natural over time

Simplicity and consistency

- lines always indicate plans or projections
- bars always indicate actuals
- programs and groups are all measured in the same way
- consistency makes automation easy

Graphical representation should match expectations

- up is good
- filled-in is good
- straight across is good

Focus on current data

- keep milestone charts in view for past history and long-term outlook
- review tracking charts just for the work that is in progress or starting soon

Conclusions from the Example

Simple, easy-to-read metrics can be an extremely powerful tool for monitoring and motivating projects.

The combination of the milestone and tracking charts

- promotes effective team behaviors
- motivates teams to create reasonable plans and stick to them

A robust metrics and senior management review process can be fully implemented in a very short period of time.

Earned Value Management (EVM)

- Define the work
- Schedule and budget
- Measure performance

Relates three independent variables

- Planned Value (PV) estimated cost planned for an activity during a given period
- Actual Cost (AC) costs incurred in accomplishing work on an activity during the given period
- Earned Value (EV) value of the work completed

Variances and Performance Indices

Schedule Variance: SV = EV – PV

Cost Variance: CV = EV - AC

Negative SV and CV are over-runs.

Schedule Performance Index: SPI = EV / PV

Cost Performance Index: CPI = EV / AC

SPI and CPI less than 1 are over-runs.

Earned Value Analysis

Interpreting Performance Indices

Index	CPI (cost)	SPI (schedule)		
>1	under cost	ahead of schedule		
=1	on cost	on schedule		
<1	over cost	behind schedule		

EVM Example

Project budget of \$300K

12 reporting periods

\$97K allocated for first four periods

now is end of period 4

By period	Period 1	Period 2	Period 3	Period 4
Work planned	20	22	25	30
Actual cost	22	24	25	28
Earned value	18	23	23	26

SV and CV CPI and SPI

Cumulative	Period 1	Period 2	Period 3	Period 4
PV	20	42	67	97
AC	22	46	71	99
EV	18	41	64	90
SV =EV-PV	-2	-1	-3	-7
CV =EV-AC	-4	-5	-7	-9
SPI =EV/PV	18/20 =90%	41/42 =98%	64/67 =96%	90/97 =93%
CPI =EV/AC	18/22 =82%	41/46 =89%	64/71 =90%	90/99 =91%

Earned Value Chart (to now)

Earned Value Chart

Earned Value Chart (to end)

Earned Value Chart

An Earned Value Example

Project budget of \$500K, 12 reporting periods

\$300K allocated for first six periods

now is end of period 6

By period	1	2	3	4	5	6
Planned value	10	20	30	30	40	50
Actual cost	8	12	32	40	48	53
Earned value	7	11	22	25	36	41

Cumulative PV, AC, EV

	1	2	3	4	5	6
PV	10	30	60	90	130	180
AC	8	20	52	92	140	193
EV	7	18	40	65	101	142

SV and CV

	1	2	3	4	5	6
PV	10	30	60	90	130	180
AC	8	20	52	92	140	193
EV	7	18	40	65	101	142
SV =EV-PV	-3	-12	-20	-25	-29	-38
CV =EV-AC	-1	-2	-12	-27	-39	-51

CPI and SPI

	1	2	3	4	5	6
PV	10	30	60	90	130	180
AC	8	20	52	92	140	193
EV	7	18	40	65	101	142
SV =EV-PV	-3	-12	-20	-25	-29	-38
CV =EV-AC	-1	-2	-12	-27	-39	-51
SPI =EV/PV	7/10 70%	18/30 60%	40/60 67%	65/90 72%	101/130 78%	142/180 79%
CPI =EV/AC	7/8 88%	18/20 90%	40/52 77%	65/92 71%	101/140 72%	142/193 74%

EVM Terminology

EV – Earned Value

aka BCWP budgeted cost of the work performed

PV – Planned Value

aka BCWS budgeted cost of the work scheduled

AC – Actual Cost

aka ACWP actual cost of the work performed

BAC – Budgeted Cost at Completion

- total budgeted cost of the baseline or project cost accounts

EAC – Estimated Cost at Completion

ETC – Estimated Cost to Complete Remaining Work

VAC – Cost Variance at Completion

- indicates expected actual over- or under-run cost at completion

Measuring Progress

0/100% rule aka binary inch-pebbles

- either done or not done
- used for work packages with very short durations

50/50 rule aka ternary rule

- not started = 0%
- started = 50%
- done = 100%
- used for work packages of short duration and small total costs

Percent complete with weighted monitoring gates

- subjective estimated percent complete with hard, tangible monitoring points
- used on long-duration activities that can be broken into short, discrete work packages

What Does "Done" Mean?

For software modules

- analysis and design completed
- design inspected
- coded
- code inspected
- unit tested
- integration tested
- regression tested
- documented
 - user, maintenance, deployment

• ...

For activities

- "overhead"
- project management processes
- documentation support
- architectural design
- programming environment support
- test environment support
- ...

Does your budget (plan) include all of these activities?

Questions and Answers

