Programação Funcional (COMP0393)

Leila M. A. Silva

Revisão de Conceitos Matemáticos

Aula 2

- Álgebra racionarmos sobre números
- Álgebra Booleana raciocinarmos sobre *afirmações* Ex: "4 é par"
- Variáveis uma expressão booleana V ou F
 Ex: x = "4 é par", y = "5 é par" o valor de x é V e o de y é F.
- Operações básicas da álgebra booleana:
 - •e (and) ∧ (&&)
 - •ou (or) V (||)
 - •não (not) ¬ (not)
- Outras operações podem ser construídas a partir das operações básicas

 Tabelas Verdade das operações booleanas: mostra o valor de uma expressão booleana para todos os possíveis valores das variáveis da expressão

X	y	x and y	x or y	not x	
V	V	V	V	F	
V	F	F	V	F	
F	V	F	V	V	
F	F	F	F	V	

Ex: x = "4 'e par", y = "5 'e par", z = x and y; o valor de z 'e F.

 Assim como nas expressões algébricas ordinárias, é possível construir e avaliar expressões que combinam as operações booleanas básicas.

```
Ex: Seja x = V, y = F a expressão

x and ((not y) \text{ or } y)

Pode ser avaliada como

V and ((not F) \text{ ou } F) = V and (V \text{ or } F)

= V and V

= V
```


- Algumas propriedades algébricas básicas das operações booleanas básicas:
 - Comutatividade:

```
x and y = y and x;

x or y = y or x
```

Associatividade:

```
(x \text{ and } y) \text{ and } z = x \text{ and } (y \text{ and } z);

(x \text{ or } y) \text{ or } z = x \text{ or } (y \text{ or } z)
```

Distributividade:

$$x$$
 and $(y \text{ or } z) = (x \text{ and } y) \text{ or } (x \text{ and } z);$
 $x \text{ or } (y \text{ and } z) = (x \text{ or } y) \text{ and } (x \text{ or } z)$

• Elementos identidade:

• Exercício: Construa a tabela verdade para a propriedade da distributividade para verificar que é correta, ou seja as expressões dos lados esquerdo e direito são equivalentes.

x and (y or z) = (x and y) or (x and z)

 Exercício: Construa a tabela verdade para a propriedade da distributividade para verificar que é correta, ou seja as expressões dos lados esquerdo e direito são equivalentes.

x and (y or z) = (x and y) or (x and z)

x	у	Z	y or z	x and (y or z)	x and y	x and z	(x and y) or (x and z)
V	V	V	V	V	V	V	V
V	V	F	V	V	V	F	V
V	F	V	V	V	F	V	V
V	F	F	F	F	F	F	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	F

Coleções

- Conjuntos
- Listas

- Uma coleção de objetos sem repetição e não ordenada
- Notação: {}, N(naturais), Z
 (inteiros), Q (racionais), R (reais)
- Ex: {1,2,4}
- sem repetição => {1,2,4}={1,1,2,4}
- não ordendada =>{1,2,4} ={2,1,4}

- Elemento ou Membro de um conjunto (∈)
- Ex: $1 \in \{1,2,4\}, -2 \in \mathbb{Z}, -2 \notin \mathbb{N}$
- Cardinalidade: quantidade de elementos do conjunto (||)
- Ex: |{1,2,4}| é 3
- Conjunto vazio: {} ou Ø, |{}| é zero.

Notação para conjuntos com muitos elementos:

```
{ variável de referência: condição}
```

- •Ex: $\{x : x > 0, x \text{ \'e par}\} \Rightarrow \{2,4,6,...\}$
- Subconjunto: *A* ⊆ *B* ⇒ todo elemento de *A* é também elemento de *B*.
 - •Ex: $\{1,2\} \subseteq \{1,2,4\}$
- Conjunto Potência: conjunto de todos os subconjuntos de um conjunto

•Ex:
$$A = \{1, 2, 4\}$$

$$P^A = \{\emptyset, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\}\}$$
Leila Silva

- Operações sobre conjuntos
 - União: U
 - Interseção: ∩
 - Diferença: -
 - Diferença simétrica: \
 - Produto Cartesiano: X
 - Ex: $A = \{1,2,4\}; B = \{2,3\}$ $A \cup B = \{1,2,3,4\}; A \cap B = \{2\}; A-B = \{1,4\}; A \setminus B = \{1,4,3\}$ $A \times B = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3)\}$

Exercício de Fixação

- Sejam os conjuntos $A = \{2,5,7\}; B = \{4,8,10\}.$ Determine:
 - Um subconjunto de A;
 - ii. O conjunto potência de B;
 - iii. $A \cup B$;
 - iv. $A \cap B$;
 - ν . A-B;
 - vi. $A \setminus B$;
 - vii. $A \times B$.

Listas

- Sequências ordenadas de objetos
- Notação: <1,2,3> ou (1,2,3)
- Ordem e repetição são importantes:

 Comprimento ou tamanho da lista: número de elementos da lista.

Ex: A lista <1,1,2,4> tem tamanho 4;

A lista vazia, <>, tem tamanho zero.

- Par ordenado: lista com dois elementos. Ex: (1,2)
- Listas iguais: tamanhos iguais e elementos iguais e na mesma ordem. Ex: <1,2,4>=<1,2,4>; <1,2,4> ≠ <1,4,2>

Listas

- Operações sobre listas:
 - Concatenação: ++

Leila Silva

Relações

 Conjunto de pares ordenados, ou seja, conjunto de listas de dois elementos

Ex:
$$R = \{(1,3), (2,4), (3,5)\}$$

- Notação: *x R y* ⇔ (*x*,*y*) ∈ *R*; 1 *R* 3 e 1 **K** 4
- Todas as operações de conjunto se aplicam a relações pois relações são conjuntos.
- Relação inversa *R*⁻¹: inverte-se a ordem de todos os pares ordenados da relação.

Ex:
$$R = \{(1,3), (2,4), (3,5)\}; R^{-1} = \{(3,1), (4,2), (5,3)\}$$

Relações

- Sejam *A* e *B* dois conjuntos.
 - Relação binária *R* sobre *A*: *R*⊆*A*×*A*
 - Relação binária R de A em B: $R \subseteq A \times B$
 - $Ex: A = \{1, 2, 4\}; B = \{7, 8\}$

$$R = \{(1,1), (4,2)\}$$

$$R = \{(1,1), (4,2)\}$$
 \Rightarrow relação sobre A

$$R = \{(1,7), (2,8)\}$$

$$R = \{(1,7), (2,8)\}$$
 \Rightarrow relação de A em B

Relações

- Sejam A e B dois conjuntos. Seja R uma relação binária de A em B. Então
 - **domínio** de *R* é subconjunto de *A* − *dom R*;
 - **imagem** de R é subconjunto de B im R;
- Ex: $A = \{1,2,4\}; B = \{7,8,9\}; R = \{(1,8),(1,9),(2,8)\}$

Leila Silva

• Sejam *A* e *B* dois conjuntos. Seja *f* uma relação binária de *A* em *B*. Chamamos *f* de *função* se (*a*,*b*) ∈ *f* e (*a*,*c*) ∈ *f* impliquem em *b*=*c*. Ex:

$$R = \{(1,8), (1,9), (2,8)\}$$

$$f=\{(1,8),(2,8),(4,9)\}$$

- Notação: $f(x)=y \Leftrightarrow (x,y) \in f$; $f: A \to B$ Ex: $f = \{(1,3), (2,4), (3,5)\} \implies f(1)=3; f(2)=4; f(3)=5$
- Domínio e imagem (idêntico a relações)
- Composição de funções
 Sejam os conjuntos A, B e C e sejam f: A→B; g: B→C.
 Então, a função g ∘ f, chamada de composição de g e f, é uma função de A para C definida por

$$(g \circ f)(x) = g(f(x)),$$

em que $x \in A$.

• Ex: A ={1,2,4}; B={7,8,9}; C={10,12, 13} $f: A \rightarrow B; f={(1,7),(2,9),(4,8)}$ $g: B \rightarrow C; g ={(7,13),(8,10), (9,13)}$

$$(g \circ f) = \{(1,13), (2,13), (4,10)\}$$

Leila Silva

- Podemos pensar uma função como uma máquina com entrada e saída.
 - Introduz-se um número na máquina, aperta-se o botão e obtém-se uma resposta

Leila Silva 23

 Não necessária a função precisa ser uma fórmula algébrica

Leila Silva

24

 As funções podem ser combinadas para que possamos solucionar problemas maiores

Exercícios Recomendados

- Realize alguns exercícios sobre os principais conceitos, escolhendo um livro de Matemática Discreta de sua preferência.
- Sugestão:
 - Edward R. Scheinermann, Matemática Discreta: Uma Introdução, Cengage Learning, 2011.

