Krzysztof Pszeniczny

nr albumu: 347208 str. 1/3 Seria: 9

Zadanie 1

$$a) \implies b$$

Mamy, że istnieje baza unitarna B, że f ma tam postać diagonalną i $M(f) = diag(a_1, ..., a_n)$. Oczywiście f^* ma w tej bazie postać $M(f^*) = M(f)^* = diag(\overline{a_1}, ..., \overline{a_n})$.

Niech P będzie wielomianem, który w punkcie a_i ma wartość $\overline{a_i}$ (oczywiście jeśli $a_i = a_j$, to $\overline{a_i} = \overline{a_j}$, zatem usuwając nadmiarowe warunki uzyskamy zbiór różnych a_i , i wtedy stosujemy wielomian interpolacyjny).

Wtedy na bazie $B = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ widzimy, że $f^*(\mathbf{b_i}) = \overline{a_i}\mathbf{b_i} = P(a_i)\mathbf{b_i} = P(f)(a_i\mathbf{b_i})$. Zatem w ogólności $f^* = P(f)$.

$$b) \implies a)$$

Dowolne dwa wielomiany od f komutują, więc w szczególności f oraz $w(f) = f^*$.

$$a) \implies c$$

$$\text{Mamy } |f(v)|^2 = \langle f(v), f(v) \rangle = \langle v, f^*(f(v)) \rangle = \langle v, f(f^*(v)) \rangle = \langle f^*(v), f^*(v) \rangle = |f^*(v)|^2.$$

$$c) \implies a$$

Mamy $\langle \nu, f^*(f(\nu)) \rangle = \langle f(\nu), f(\nu) \rangle = |f(\nu)|^2 = |f^*(\nu)|^2 = \langle f^*(\nu), f^*(\nu) \rangle = \langle \nu, f(f^*(\nu)) \rangle$. Zatem oznaczając $\varphi = f^* \circ f - f \circ f^*$ mamy $\forall_{\nu} \langle \nu, \varphi(\nu) \rangle = 0$. Niech w będzie wektorem własnym przekształcenia φ z wartością własną λ . Wtedy $0 = \langle w, \varphi(w) \rangle = \langle w, \lambda w \rangle = \overline{\lambda} \langle w, w \rangle$. Zatem $\overline{\lambda} = 0$, czyli φ ma wszystkie wartości własne równe 0. Zatem φ jest nilpotentny. Ale $\varphi^* = (f^* \circ f - f \circ f^*)^* = f^* \circ f - f \circ f^* = \varphi$, zatem φ jest unitarny. Zatem posiada on bazę złożoną z wektorów własnych, a jak stwierdziliśmy, ma wszystkie wartości własne zerowe. Zatem $\varphi = 0$, czyli φ of φ of φ of

$$b) \implies d$$

Niech $v \in W$. Wtedy $f^*(v) = w(f)(v) = \sum_i a_i f^i(v)$, lecz $f^i(v) \in W$, bo W jest f-niezmiennicze, zatem $f^*(v) \in W$.

$$d) \implies a$$

Na mocy faktu z ćwiczeń istnieje baza unitarna e_1, \ldots, e_n , że w niej f ma postać górnotrójkątną. Oznaczmy macierz f w tej bazie przez $T = (t_{ij})_{ij}$. Wtedy macierz f* w tej bazie to $T^* = (\overline{t_{ji}})_{ij}$.

Jedyny być może niezerowy wyraz w pierwszej kolumnie to ten w pierwszym wierszu, zatem $lin(\mathbf{e}_1)$ jest przestrzenią f*-niezmienniczą. Stąd pierwsza kolumna macierzy T* ma jedyny być może niezerowy element w pierwszej kolumnie w pierwszym wierszu. Ale ta kolumna to dokładnie pierwszy wiersz macierzy T.

Zatem pierwszy wiersz macierzy T jest zerowy za wyjątkiem wyrazu na przekątnej. Analogicznie patrzymy teraz na drugą kolumnę macierzy T: jedyny być może niezerowy wyraz to t_{22} (bo wiemy, że $t_{12}=0$). Stąd $lin(\mathbf{e}_2)$ jest f-niezmiennicza i rozumując analogicznie jak poprzednio uzyskujemy, że $t_{2k}=0$ dla $k\neq 2$.

Kontynuując to rozumowanie uzyskujemy, że T jest macierzą diagonalną. Co na mocy faktu z ćwiczeń jest równoważne normalności f.

Zadanie 2

Na mocy faktu z ćwiczeń, istnieje taka baza unitarna e_1, \ldots, e_n , że endomorfizm, który w bazie standardowej ma macierz A, w tej bazie ma macierz górnotrójkątną T (tj. $A = UTU^{-1}$ dla pewnego $U \in U(n)$).

Wtedy wiemy, że wyrazy na przekątnej macierzy T to jej wartości własne, czyli wartości własne macierzy A, zatem wszystkie mają moduł 1.

Krzysztof Pszeniczny

nr albumu: 347208 str. 2/3Seria: 9

Przypuśćmy, że pewien wyraz macierzy T poza jej przekątną jest niezerowy. Niech i będzie numerem wiersza, w której występuje ten wyraz.

Wiemy, że $|Te_i| \leqslant |e_i|$, gdyż warunek $|Ax| \leqslant |x|$ jest warunkiem niezależnym od wyboru bazy. Jednak $|e_i| = 1$, gdyż wzięliśmy bazę unitarną, zaś $Te_i = \sum\limits_{j\geqslant i} \alpha_{ij}e_j$, gdzie α_{ij} to wyrazy macierzy T. Znów, z unitarności bazy mamy $1=|\mathbf{e_i}|\geqslant |\mathsf{Te_i}|^2=\sum\limits_{j\geqslant i}|a_{ij}|^2$, lecz założyliśmy, że a_{ii} ma moduł 1, a ponadto istnieje jakiś niezerowy wyraz w rozpatrywanym wierszu. Zatem $\sum_{i\geqslant i} |a_{ij}|^2 > 1$.

Otrzymana sprzeczność dowodzi, że macierz T jest diagonalna, skąd mamy jednak $AA^* = (UTU^*)(UTU^*)^* =$ $\mathrm{UTU}^*\mathrm{UT}^*\mathrm{U}^* = \mathrm{UTT}^*\mathrm{U}^*$, lecz $\mathrm{T} = \mathrm{diag}(\lambda_1, \ldots, \lambda_n)$, $\mathrm{T}^* = \mathrm{diag}(\overline{\lambda_1}, \ldots, \overline{\lambda_n})$, skąd $\mathrm{TT}^* = \mathrm{I}$ (bo $|\lambda_i| = 1$), czyli $AA^* = UU^* = I.$

Zadanie 3

Na mocy faktu z wykładu mamy $S_1 = N^2$, $S_2 = M^2$ dla pewnych N, M – symetrycznych, dodatnio określonych.

Wtedy macierz NM^2N jest symetryczna, gdyż $(NM^2N)^T = N^T(M^2)^TN^T = NM^2N$, a także dodatnio określona, gdyż $v^T NM^2 Nv = (MNv)^T (MNv) = |MNv|^2$, co dla $v \neq 0$, skąd $MNv \neq 0$ (bo M, N są dodatnio określone, więc w szczególności nieosobliwe), daje $v^T NM^2 Nv > 0$.

 ${\rm Zatem}\ NM^2N\ {\rm ma}\ {\rm dodatnie}\ {\rm wartości}\ {\rm własne}.\ {\rm Jednak\dot{z}e}\ \chi_{NM^2N}(t)\ =\ {\rm det}(tI-NM^2N)\ =\ {\rm det}(tN^{-1}-NM^2N)$ NM^2) det $N = \det N \det (tN^{-1} - NM^2) = \det (tI - N^2M^2) = \chi_{N^2M^2}(t)$, skąd wartości własne macierzy NM^2N są takie jak macierzy $N^2M^2 = A$.

Zadanie 5

Część a

Wiemy z wykładu, że macierze skośniesymetryczne mają czysto urojone wartości własne. To od razu daje odwracalność macierzy $\lambda I - B$ oraz $\lambda I + B$ dla $\lambda \in \mathbb{R} \setminus \{0\}$. Przemienność jest oczywista, gdyż są to wielomiany od macierzy B, więc jako takie są przemienne.

Część b

Mamy $RR^{T} = (\lambda I - B)(\lambda I + B)^{-1}(\lambda I + B^{T})^{-1}(\lambda I - B^{T}) = (\lambda I - B)(\lambda I + B)^{-1}(\lambda I - B)^{-1}(\lambda I + B)$, co na mocy przemienności jest równe $(\lambda I - B)(\lambda I - B)^{-1}(\lambda I + B)^{-1}(\lambda I + B) = I$.

Gdyby R miała wartość własną -1, to by było $(\lambda I - B)(\lambda I + B)^{-1}\nu = -\nu$, skąd $(\lambda I + B)^{-1}\nu = (\lambda I - B)^{-1}(-\nu)$, $\text{czyli} \left((\lambda I + B)^{-1} + (\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I + B)^{-1} + (\lambda I + B)(\lambda I + B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I + B)^{-1} + (\lambda I + B)(\lambda I + B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I + B)^{-1} + (\lambda I + B)(\lambda I + B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I + B)^{-1} + (\lambda I - B)(\lambda I + B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1}(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} + (\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I - B)(\lambda I - B)^{-1} \right) \nu = 0, \text{czyli} \left((\lambda I -$

Używając przemienności $(\lambda I+B)^{-1}$ z $(\lambda I-B)^{-1}$ mamy $((\lambda I-B)+(\lambda I+B))\left((\lambda I+B)^{-1}(\lambda I-B)^{-1}\right)\nu=0$, co jest sprzecznością, bo zarówno $\lambda I - B + \lambda I + B = 2\lambda I$, jak i $(\lambda I + B)^{-1}$ i $(\lambda I - B)^{-1}$ są izomorfizmami.

Część c

Zapiszmy $A := (I+R)^{-1}(I-R)$. Ponieważ R nie ma wartości własnej -1, to oczywiście I+R jest nieosobliwa. Mamy wtedy (I+R)A = I-R, czyli R(I+A) = I-A, skąd $R = (I-A)(I+A)^{-1}$.

Wystarczy tylko sprawdzić, że $A^T = -A$. Ale mamy $A^T = (I - R^T)(I + R^T)^{-1} = (I - R^T)RR^T(I + R^T)^{-1} = (I - R^T)RR^T(I + R^T)^{-1}$ $(R-I)(R+I)^{-1} = -(I-R)(R+I)^{-1} = -(I+R)^{-1}(I-R) = -A$, gdzie wykorzystaliśmy to, że I+R i I-R to wielomiany macierzy R, zatem są przemienne, skąd I - R i $(I + R)^{-1}$ są przemienne.

Stad mamy, że A spełnia warunki zadania.

Zadanie 6

Niech A będzie macierzą z zadania. Wtedy A ma rzeczywiste wartości własne, zatem istnieje macierz diagonalna $D = diag(\lambda_1, \dots, \lambda_k, 0, 0, \dots, 0)$ (dla $\lambda_1, \dots, \lambda_k \in \mathbb{R}$) oraz macierz ortogonalna $U, \dot{z}e \ A = UDU^T$.

str. 3/3

Jednakże łatwo widzimy, że kładąc $D_i = diag(0,0,\ldots,0,\lambda_i,0,0,\ldots,0)$, gdzie λ_i stoi na i-tym miejscu mamy, że macierze UD_iU^T są symetryczne (bo $D_i^T = D_i$) i są rzędu jeden (bo macierze D_i są takiego rzędu, a mnożenie przez macierz ortogonalną nie zmienia rzędu, gdyż są to macierze nieosobliwe). Ponadto $A = UDU^T = U(D_1 + \ldots + D_k)U^T = UD_1U^T + \ldots + UD_kU^T$, skąd teza.

Seria: 9