1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №4 по курсу «Моделирование»

на тему: «Моделирование простейшей СМО»

Студент <u>ИУ7-73Б</u> (Группа)	(Подпись, дата)	В. П. Авдейкина (Фамилия И.О.)
Руководитель	(Подпись, дата)	<u>И.В.Рудаков</u> Фамилия И.О.)

СОДЕРЖАНИЕ

1	Условие лабораторной	3
2	Теоретическая часть	4
2.1	1 Используемые законы распределения	4
2.2	2 GPSS	5
3	Практическая часть	7

1 Условие лабораторной

Целью данной работы является разработка программы с графическим интерфейсом для моделирования системы массового обслуживания (СМО) при помощи принципа Δt и событийного принципа и определения максимальной длины очереди, при которой не будет потери сообщений. Рассматриваемая СМО состоит из генератора сообщений, очереди ожидающих обработки сообщений и обслуживающего аппарата (ОА). Генерация сообщений происходит по равномерному закону распределения, время обработки сообщений — согласно нормальному распределению. Необходимо предоставить возможности ручного задания необходимых параметров, а также возможности возврата обработанного сообщения в очередь обработки с заданной вероятностью.

2 Теоретическая часть

3 Управляющая программа имитационной модели

Если программа-имитатор от источника информации обслуживающего аппарата, буферной памяти отображает работу отдельных устройств, то управляющая программа имитирует алгоритм взаимодействия всех устройств системы.

Управляющая программа реализуется по следующим принципам.

Пошаговый принцип

Принцип Δt заключается в последовательном анализе состояний всех блоков системы в момент времени $t+\Delta t$ по заданному состоянию блоков в момент времени t. При этом новое состояние определяется в соответствии с их алгоритмическим описанием с учетом случайных факторов, задаваемых распределениями вероятности. В результате этого решения проводится анализ, позволяющий определить, какие общесистемные события должны имитироваться в программной модели на данный момент времени.

Основной недостаток принципа Δt — значительные затраты машинного времени на анализ и контроль правильности функционирования всей системы. При недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения правильных результатов при моделировании.

Событийный принцип

Характерное свойство моделируемых систем обработки информации — то, что состояния отдельных устройств изменяются в дискретные моменты времени, совпадающие с моментами поступления сообщений в систему, окончания решения той или иной задачи, возникновения аварийных сигналов. Поэтому моделирование и продвижение текущего времени в системе удобно производить, используя событийный принцип, при реализации которого состояния всех блоков имитационной (программной) модели анализируется лишь в момент появления какого-либо события. Момент наступления следующего события определяется минимальным

значением из списка будущих событий, представляющего собой совокупность ближайшего изменения состояния каждого из блоков системы.

3.1 Используемые законы распределения

Закон появления сообщений

Согласно заданию лабораторной работы для генерации сообщений используется равномерный закон распределения. Случайная величина X имеет равномерное распределение на отрезке $[a,\,b]$, если ее плотность распределения f(x) равна:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (2)

Обозначение: $X \sim R[a, b]$.

Интервал времени между появлением i-ого и (i-1)-ого сообщения по равномерному закону распределения вычисляется следующим образом:

$$T_i = a + (b - a) \cdot R,\tag{3}$$

где R — псевдослучайное число от 0 до 1.

Закон обработки сообщений

Для моделирования работы генератора сообщений в лабораторной работе используется распределение Пуассона. Говорят, что случайная величина X имеет распределение Пуассона с параметром $\lambda>0$, если X принимает значения $0,1,2,\ldots,e$ с вероятностями

$$P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{R}_0.$$
 (4)

Функция распределения:

$$F(x) = \frac{\lambda^x}{x!} e^{-\lambda} \tag{5}$$

Функция плотности распределения:

$$f(x) = \sum_{i=0}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$$
 (6)

Обозначение: $X \sim \Pi(\lambda)$.

4 Практическая часть

На рисунке 1 представлен графический интерфейс разработанной программы и пример ее работы.

Лабораторная работа №4 — — ×						
ГЕНЕРАТОР						
Равномерный закон распределения						
a	b					
0	6					
ОБСЛУЖИВАЮЩИЙ АППАРАТ						
Закон распределения Пуассона						
-	lambda					
	4					
ПАРАМЕТРЫ						
Количество заявок	100					
Вероятность возврата заявки	O					
Временной шаг	0.01					
РЕЗУЛ	РЕЗУЛЬТАТ					
Максимальная длина очереди						
Пошаговый подход	Событийный подход					
34	44					

Рисунок 1 — Графический интерфейс разработанной программы