

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : D05C 15/00, 17/00	A1	(11) International Publication Number: WO 95/30788 (43) International Publication Date: 16 November 1995 (16.11.95)
(21) International Application Number: PCT/US95/05531		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 2 May 1995 (02.05.95)		
(30) Priority Data: 08/239,317 6 May 1994 (06.05.94) US		Published <i>With international search report.</i>
(71) Applicant: POLYLOOM CORPORATION OF AMERICA [US/US]; 1131 Broadway Street, Dayton, TN 37321 (US).		
(72) Inventors: FINK, Wilbert, E.; 1704 Sherwood Circle, Villanova, PA 19085 (US). AUGUSTE, Jean-Claude; 201 Horseshoe Circle, Dayton, TN 37321 (US).		
(74) Agent: MILLER, Samuel, C., III; Burns, Doane, Swecker & Mathis, Washington & Prince Streets, P.O. Box 1404, Alexandria, VA 22313-1404 (US).		

(54) Title: IMPROVEMENTS IN CARPET MAKING

(57) Abstract

The disclosure relates to a process for manufacturing carpet, an apparatus used in a carpet manufacturing process and carpet made by the process and with the apparatus. The process includes providing a carpet base having a primary backing penetrated by yarn, applying heat to the underside of the base, extruding a heated sheet of polymer and continuously contacting the heated extruded sheet of polymer with the base thereby integrally fusing the base to the extruded sheet. The apparatus includes a source of carpet precursor (30), a heated source for heating the underside of the carpet (32), an extruder (52) and a casting roll (56) against which the extruded sheet (36) and heated carpet (34) are pressed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KR	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroun	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Dominican	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

- 1 -

IMPROVEMENTS IN CARPET MAKING

The contents of Serial No. 07/833,093 filed February 10, 1992, now U.S. Patent No. 5,240,530, is hereby incorporated by reference.

5

FIELD OF THE DISCLOSURE

10 The disclosure relates to methods for making carpets, and in particular, improved techniques for securing face yarn to one or more backing layers, including use of an extruded sheet. The disclosure also relates to apparatus for manufacturing carpet in accordance with these methods, and to the improved carpet produced thereby.

15

BACKGROUND

20 Most carpets are composite structures in which the face fiber forming the pile, i.e., the surface of the carpet, penetrates at least one backing layer. The base portions of the facing yarn extend through the backing and are exposed on the bottom surface of the primary backing. Such carpets may be cut pile or loop pile. Aspects of the present invention are also applicable to woven or knitted carpets such as Berber carpets and certain sports surfaces.

25 The basic manufacturing approach to the commercial production of tufted carpeting is to start with a woven scrim or primary carpet backing and to feed this into a tufting machine or a loom. The carpet face fiber is needled through and embedded in the primary carpet backing thus forming a carpet precursor or base sometimes called griegé goods. Upstanding loops on the upper side of the carpet may be cut to produce cut pile carpet. Yarn loops or knots are usually exposed on the underside of the griegé goods.

- 2 -

Griege goods are typically backed with an adhesive coating in order to secure the face yarn to the primary backing. Low cost carpet often receives only a latex adhesive coating as the backing. This type of carpet is widely used in boats and is called marine backed carpet.

5 Typically, the marine backed carpets are backed with a latex adhesive coating that is water and/or mildew resistant. Higher cost carpet often receives both a latex adhesive coating and a secondary backing.

10 The face fiber or yarn used in forming the pile of a tufted carpet is typically made of any one of a number of types of fiber, e.g., nylon, acrylics, polypropylene, polyethylene, polyamides, polyesters, wool, cotton, rayon and the like. Face yarns used in carpet include bulk

15 continuous filament (bcf) yarns which are made up of tens or hundreds of individual fibers. Fibrillated polypropylene grass yarn is also often used as a face yarn.

Primary backings for tufted pile carpets are typically woven or non-woven fabrics made of one or more natural or synthetic fibers or yarns, such as jute, wool, polypropylene, polyethylene, polyamides, polyesters, nylon and rayon. Films of synthetic materials, such as polypropylene, polyethylene and ethylene-propylene copolymers may also be used to form the primary backing.

20 Likewise, secondary backings for tufted pile carpets are typically woven or non-woven fabrics made of one or more natural or synthetic fibers or yarns.

The application of the latex adhesive involves coating the bottom surface of the thus formed griege goods with a latex polymer binder such as a styrene-butadiene copolymer.

30 The coated griege goods are then passed through an oven to dry the latex adhesive coating. In this way the face fibers are attached to the primary backing by the latex binder.

35 It is known in the art to subject the back of griege goods to a gas flame to reduce the bulk of the protruding

- 3 -

fac yarn, particularly in greige goods with larg knots, in order to r duce th amount of latex adhesive necessary to provide a smooth, well-covered surface. It is also known to apply pressure and low level heat (i.e. below yarn melting temperature) to flatten the knots prior to the application of the latex adhesive.

If desired, a secondary backing may be bonded to the undersurface of the primary backing. To produce tufted carpets with a secondary backing, the bottom surface of the greige goods is coated with a latex polymer binder. Thus, the secondary backing is applied to the coated bottom surface and the resulting structure is passed through an oven to dry the latex adhesive coating to bond the secondary backing to the greige goods.

The above-described methods have disadvantages in that they require a drying step and thus an oven to dry the latex polymer binder. The drying step increases the cost of the carpet and limits production speed. Furthermore, it has been reported that latex adhesive compositions generate gases that may be the cause of headaches, watery eyes, breathing difficulties and nausea, especially when used in tightly sealed buildings. See Herligy, The Carpet & Rug Industry, October 1990. In addition, overheating of the carpet may occur during drying of the latex which in turn may affect the shade of the carpet.

Consequently, carpet manufacturers have been attempting to develop a new approach for the preparation of tufted carpets. One new approach is the preparation of tufted carpets with a hot-melt adhesive composition instead of a latex composition.

Hot-melt adhesives are amorphous polymers that soften and flow sufficiently to wet and penetrate the backing surfaces and tuft stitches of carpets upon application of sufficient heat. Furthermore, hot-melt adhesives tend to adhere to the backing surfaces and/or tuft stitches. That is, hot-melt adhesives stick to backing surfaces and tuft

- 4 -

stitches.

By the use of hot-melt adhesive, the necessity of drying the composition after application is eliminated and further, when a secondary backing material is desired, it
5 can be applied directly after the hot-melt composition is applied with no necessity for a drying step.

Both latex adhesive based carpet and hot-melt adhesive based carpet have the disadvantage that they are not readily recyclable. Thus, large quantities of carpet
10 trimmings and scrap produced during the manufacture of carpet and used carpet are sent to landfills. Consequently, carpet manufacturers spend a substantial sum on landfill costs. Such carpets are not recyclable after their useful life.

15 Thus, conventional carpet and carpet manufacturing processes have inherent problems. Specifically, the adhesives used to adhere the tufts of face fiber to the primary backing and to adhere the secondary backing to the primary backing include compositions which require lengthy
20 drying times thus slowing down the manufacturing process. In addition, the latex compositions may produce noxious gases which create health hazards. Likewise, many of the hot-melt compositions conventionally employed in the manufacture of carpet do not result in reproducible
25 consistency regarding scrim bonds, tuft pull strength and fuzz resistance. Finally, the use of conventional latex adhesives and hot-melt adhesives prevent carpet from being efficiently recycled.

In the parent application, there is disclosed certain
30 methods for producing carpet. According to the teachings of that application, a thermoplastic polymer sheet may be extruded into contact with griege goods to integrally fuse the primary backing, face yarn and extruded sheet. In a preferred embodiment the yarn, backings and extruded sheet
35 are made of the same polymer, e.g. polypropylene. Cut pile carpet is presented as exemplifying the use of the methods.

- 5 -

Trimmings, scrap and used carpet made in this fashion may be readily recycled because of their homogeneous chemical composition. No latex or adhesive application is required. Nor is a backing step required, though it may also be employed in some products.

5 Use of the techniques of the parent application have been found to present special problems when employed in the manufacture of loop pile carpet made with multi-fiber face yarns. In use, the closed loops of the carpets can be
10 readily caught or snagged, for example by passing traffic. As a result long fibers may be pulled from the yarn leaving an undesirable surface fuzz after periods of wear.

15 It is known to test conventional carpets for integrity by the so-called VELCRO® test. VELCRO is a registered trademark for the well-known hook and loop fastening material. In this test a roller coated with VELCRO® hook material is rolled repeatedly over the loop pile of the carpet, for example ten times. The carpet is then inspected for protruding fibers or fuzz.

20 It is known that latex adhesives, if properly applied, can provide sufficient binding of carpet fibers to permit manufacture of loop pile carpets which can pass the VELCRO® test. It is important that any proposal to replace the use of conventional adhesives be likewise capable of producing
25 a carpet in which the face yarn or fibers are securely attached to the carpet, and, in particular, capable of producing loop pile carpet made with bcf face yarn which can pass the VELCRO® test.

30 The present application includes disclosure of improved techniques for manufacturing carpet while retaining various advantages of the methods initially disclosed in the parent application.

SUMMARY OF THE DISCLOSURE AND OBJECTS

35

The present disclosure relates to a method and

- 6 -

apparatus for producing a carpet and the resulting carpet product. In preferred embodiments, the carpet may be readily recycled to provide input feedstock for the making of new carpet.

5 In accordance with preferred embodiments of the present invention a method is disclosed for making carpet in which a tufted, woven or knitted carpet precursor is provided. In a preferred embodiment the carpet precursor or carpet base comprises a primary backing penetrated by
10 face yarn so that first portions of the yarn protrude from an upper side of the backing to form the pile of the carpet and so that knots or back loops of the yarn are exposed on the underside of the carpet base. Heat is applied to the underside of the carpet base. Advantageously this may be
15 accomplished by pressing the carpet base against a heated roller whose surface is maintained at a temperature near or above the melting temperature of the face yarn or backing. A heated sheet of polymer may then be extruded onto the underside of the carpet base, thereby integrally fusing the
20 yarn knots or back loops and the extruded sheet to form a carpet product. Scraps, trimmings and used carpet made by this process may be recycled as polymer feedstock for extrusion in making new carpet.

25 It is an object of the present invention to provide an improved process for manufacturing carpets made of thermoplastic polymers.

30 It is another object of the present invention to provide a process for manufacturing a recyclable carpet made entirely of thermoplastic polymers.

35 It is another object of the present invention to provide a process for manufacturing a carpet made from thermoplastic polymers which satisfies commercial requirements relating to resistance to fuzzing, yarn integrity, tuft binding and lamination strength.

35 The present disclosure also relates to carpet making machinery. In one embodiment carpet precursor is supplied

- 7 -

to an arrangement of rollers including a fluid heated roller which is pressed against the underside of the carpet precursor. An extruder directly extrudes a hot thermoplastic sheet onto the heated underside of the carpet precursor. The laminate so formed is pressed against a cooled casting roll.

In an alternate embodiment of the present invention, a preformed sheet of thermoplastic polymer is simultaneously heated and laminated with carpet precursor in an apparatus including a continuous moving surface or belt. The belt is differentially heated so that it is relatively hot at the location where it first contacts the polymer sheet. The belt is moved and cooled so that it readily separates from the underside of the carpet after the carpet precursor and polymer sheet have been integrally fused.

Accordingly, it is an object of the present invention to provide machinery for producing a carpet from a carpet precursor fused with a polymer sheet.

The present disclosure also relates to certain novel carpet products. A preferred carpet is made entirely of the same isotactic or crystalline thermoplastic polymer, e.g. polypropylene. The face yarn is a bulk continuous filament yarn with multiple fibers. The yarn is tufted in a primary backing and laminated with a polymer sheet so that the yarn back loops, primary backing and sheet are integrally fused and so that substantially all the yarn fibers are secured in place.

It is an object of the present invention to provide a carpet made entirely of isotactic thermoplastic polymer in which the face yarn is securely fused to its backing.

It is another object of the present invention to provide a loop pile carpet made of recyclable thermoplastic polymer which is resistant to fuzzing when the pile is abraded.

It is another object of the present invention to provide a carpet made from isotactic thermoplastic polymer

- 8 -

which has satisfactory tuft binding and lamination strength.

These and other objects and features will be apparent from the detailed descriptive material which follows.

5

BRIEF DESCRIPTION OF THE DRAWINGS

10 Figure 1 is a cross-sectional view of a carpet being manufactured in accordance with a preferred embodiment of the present invention;

Figure 2a is a side schematic view of an apparatus used in the making of carpet, employing a heated roller;

Figure 2b is a pictorial view of an apparatus of the type described generally in connection with Figure 2a;

15 Figure 3 is a graph illustrating the estimated temperatures of carpet components as a function of time for the apparatus of Figures 2;

Figure 4 is a side schematic view of an apparatus used in the making of carpet, employing a heated plate;

20 Figure 5 is a side schematic view of an apparatus used in making carpet employing a continuous, temperature-controlled surface;

Figures 6a is a cross-sectional view of a cut pile carpet precursor;

25 Figure 6b is a cross-sectional view of a cut pile carpet made in accordance with the teachings of the present invention;

Figure 7a is a cross-sectional view of a carpet precursor for a loop pile carpet;

30 Figure 7b is a cross-sectional view of a loop pile carpet made in accordance with the teachings of the present invention; and

35 Figure 7c is a cross-sectional view of a loop pile carpet with secondary backing made in accordance with the teachings of the present invention.

- 9 -

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

- According to the present invention, a thermoplastic polymer sheet is laminated with a carpet precursor to form a carpet product with desirable physical properties.
- Generally, the carpet precursor is made of a face yarn which interpenetrates a backing or grid defining the plane of the finished carpet. The carpet precursor may be woven or knitted. In preferred embodiments, face yarn is tufted in a primary backing. The thermoplastic polymer sheet is laminated to the underside of the carpet precursor. A carpet product with excellent physical properties, which is capable of being recycled, may be made using the techniques and apparatus described as follows.
- Figure 1 illustrates some of the features of a carpet product of a preferred embodiment of the present invention. A primary backing layer is designated by the numeral 10. Face yarn is tufted in the primary backing forming a yarn pile 12 on the upper side of the carpet and back loops or knots 14. The tufted primary backing 16 is referred to here as the carpet precursor, carpet base or griuge goods. On the left-hand side of Figure 1, the carpet face yarn is loosely secured to the backing 10 by the tufting process to a degree sufficient for movement of the precursor for further processing, but the precursor is not sufficiently mechanically stable for use as a finished carpet.
- The precursor is laminated with a polymer sheet 18 to form the carpet product 20. Advantageously, the sheet is an extruded sheet of thermoplastic polymer. The carpet precursor is integrally fused with it.

IMPROVED METHODS AND APPARATUS FOR CARPET MANUFACTURE

- With continued reference to Figure 1, an improved method of making a carpet product is generally illustrated. Heat is applied to the underside of the carpet precursor at

- 10 -

location 22 sufficient to heat the underside to above the melting point of the constituent thermoplastic polymer. A heated sheet of thermoplastic polymer 18 is brought in contact with the heated carpet precursor at location 24 whereby the laminated carpet product 20 is produced. The carpet product may either be the finished carpet or subjected to further processing, e.g. application of additional backings.

An apparatus for producing a carpet product is illustrated in Figures 2a and 2b. Carpet precursor or griegé goods 30 are supplied at location 31 with the carpet pile facing downwardly. The carpet precursor is placed in contact with a heated roller 32, whereby the underside of the carpet precursor is heated. This results in heating of the back loop or knots of the carpet precursor which may be partially melted. The heated carpet precursor 34 travels downstream in the apparatus for lamination with a thermoplastic polymer sheet 36.

The heated roller 32 may advantageously be a fluid or oil heated roller although other means may be employed to uniformly heat the surface of the roller such as electrical resistance elements. When heated fluid is employed, the fluid enters the system at 38 (while shown in Figure 2a off-center, the fluid inlet is typically at the center of the roll), is circulated in the roller 32 and exits at 40 (while shown in Figure 2a off-center, the fluid outlet is typically at the center of the roll). The oil is reheated and recirculated in a closed loop system designated generally by numeral 41. Advantageously, the system is operated to maintain the surface of the roller 32 at a uniform temperature across the width of the roller. The optimum surface temperature of the roller is dependent on a number of variables including the structure and composition of the carpet precursor, line speed, roller pressure and the area of the contact between the roller 32 and the carpet precursor. In the system illustrated in

- 11 -

Figure 2, the roller 32 is 5.9 inch s in diameter. The surface of the roll r may be maintained between 330°F and 650°F or even higher and preferably between 400°F and 500°F. At a line speed of about 10 feet per minut , th 5 preferred roller surface temperature was about 400 to 450°F using certain common carpet precursors as described in greater detail in the examples below.

The roller 32 may be provided with a surface or coating which resists sticking. In the system illustrated 10 in Figure 2, the roller 32 is wrapped with teflon tape. A doctor blade 42 may be provided to remove built-up polymer melted from the underside of the carpet precursor.

Water cooled nip roll 44 may be provided which, 15 together with the tension in the running carpet precursor, hold the underside of the carpet precursor against the heated roller. With reference to Figure 2b, which shows some additional aspects of the apparatus of Figure 2a in perspective view, the heated roller and auxiliary rollers are designated 32' and 44', respectively. The auxiliary 20 rollers 44' are rotatably mounted to a pivoting bar assembly 46. The pressure of the carpet precursor against the heated roller is controlled by applying pressure to the pivoting bar assembly 46 by means of hydraulic actuators 48. The pressure at nips 50 and 50' have been desirably 25 controlled to provide a contact pressure at a tangential point between the nip rolls 50 and 50' and chill roll 32 of between 1 and 4 pounds per linear inch of width with a gap setting between the respective rolls prior to introducing the carpet precursor of between zero and one inch. The 30 contact pressure and gap setting will depend upon the thickness and density of the carpet precursor. In the apparatus of Figure 2, the hydraulic pressure may typically be set at 60 to 80 pounds per square inch to obtain the desired contact pressure at the recited gap setting.

35 Referring once more to Figure 2a, the rollers 44 may be mounted so that their axes of rotation can be

- 12 -

selectively positioned along lines 45. An additional roller 47 may be provided, whose axis of rotation may be selectively positioned along line 49. During line start-up, rollers 44 and 47 may be moved downwardly so that the path of the greige goods 30 is located out of contact with the heated roller 32, to thereby prevent overheating of the greige goods as it is being threaded into the line. In addition, during operation, the location of rollers 44 along lines 45 may be adjusted to vary the heat input into the greige goods. Thus, the heated roller temperature can be maintained constant and the wrap angle (i.e. residence time) of the greige goods adjusted for line parameter variations such as greige goods weight.

As shown in Figure 2a, the heated carpet precursor 34 travels a short distance "d" to be laminated with the polymer sheet 36. Advantageously, this distance is as short as possible to minimize heat loss from the carpet precursor. The heated carpet precursor 34 may contact the heated polymer sheet directly extruded downwardly onto the underside of the carpet precursor. The sheet is formed by forcing a polymer feedstock 50 through an extrusion die 52. In examples discussed below, the extrusion die temperature is about 510°F. It is desirable that the extruded sheet be above its melting temperature when it contacts the carpet precursor, advantageously 100°F or more above the melting temperature.

The extruded sheet and carpet precursor together pass between nip roll 54 and casting or chill roll 56. As shown in Figure 2b, the nip roller 54' may be rotatably mounted on parallel pivoting arms 58. The nip roller and pivoting arms exert a pressure against the upper side of the carpet precursor which consequently presses the extruded sheet against the casting roller 56'. A contact pressure at a tangential point between the nip roller 54 and the chill roller 56 of between 1 and 4 pounds per linear inch of width with a gap setting between the respective rolls prior

- 13 -

to introducing the carpet precursor of between zero and one inch has been desirably utilized. The contact pressure and gap setting will depend upon the thickness and density of the carpet precursor. Advantageously, the casting roller 5 is maintained at a controlled temperature. In the examples discussed below, that temperature is 130°F.

A carpet product 60 is produced which may be subjected to additional processing. Optionally a secondary woven backing or co-extruded backing (not shown) may be 10 simultaneously laminated to the extruded sheet 36 at the casting roll 56.

In order to control shrinking of the carpet precursor or carpet product, a tenter frame (not shown) may be employed during the preheating and lamination operations or 15 thereafter.

Various polymers have been extruded or laminated onto carpet precursors. Trials have been conducted using polypropylene homopolymer (prime virgin 5 mils), polypropylene copolymer (recycled from shrink film), 20 polypropylene homopolymer (recycled from fiber), and thermoplastic elastomer polypropylene blend (50/50 blend). In all the trials, the extruded sheet exhibited good bonding strength to the back of the carpet. The griage goods used in the trials included a polypropylene primary 25 backing with polypropylene face fiber and a polypropylene primary backing with nylon face fiber. In addition, certain carpet trials included a secondary backing of woven polypropylene. The secondary backing was found to exhibit good adhesion with all the polymer types listed.

The extrusion trials were conducted with a 1.5 inch diameter, 24:1 (barrel length to diameter ratio), Sterling extruder. The extruder had a 20 horsepower DC drive and a single stage screw. The extruder was equipped with three heating zones, a screen pack collar and a pressure gauge. 35 Speed was controlled by a variable resistor dial and a tachometer was connected to an RPM dial for speed

- 14 -

indication. Typical extruder temperatures range from 340°F to 580°F and pressures from 1000-3000 psi. Typical melt temperatures range from 450-580°F.

The apparatus used in the examples described below included a heated roller of the type shown in Figure 2. In that apparatus, the die width was 12 inches. The molten polymer from the die was deposited on a water cooled casting roll (7.9 inch diameter, 13 inch width). Water was passed through helical passages within the casting roll at high velocity to cool the casting roll as required. The nip roll was 3 inches in diameter. The casting roll assembly was driven by an eddy current clutch and a 1.5 horsepower motor.

While speeds of 10 feet per minute were actually used in the examples described below, it is contemplated that higher speeds would be used in commercial production. In particular, since there is no drying step, speeds of 100 to 300 feet per minute appear possible. Carpet widths of 12 to 15 feet may be produced. Such speeds and widths require appropriate material and handling capability to move large rolls in and out of the process quickly. Thus, in contrast to conventional processes, the factor limiting line speed may be material handling and not the conventional adhesive drying step, which is eliminated in the practice of the present method.

Figure 3 presents a calculated temperature profile for the apparatus of Figure 2 in graphical form. Temperature is represented on the vertical axis; time/position is represented on the horizontal axis. Trace 70 represents the back loop temperature at various points in the process designated by letters A through E which correspond to similarly labeled locations in the apparatus of Figure 2(a). Trace 72 represents the carpet face temperature at the points A through E of Figure 2(a). The dotted line 74 represents the melting temperature of the back loop yarn. Figure 3 illustrates a temperature profile in which the

- 15 -

back loops ar maintained above their melting temperature, while the temperature of the carpet face always remains below the melting temperature.

Figure 4 is a schematic side view of an alternativ embodiment of the present invention. The underside of a carpet precursor 80 is passed in contact with an electrically heated plate 82. The carpet precursor 80 may be pressed between the electrically heated plate 82 and a second plate 84 whose temperature is not controlled.

Successful trials of the apparatus have been run where the surface temparature of the plate 84 was set at 600°F. Alternatively, a radiant heater (not shown) may be substituted for the heated plate 82.

With continuing reference to Figure 4, heated carpet precursor 86 is drawn to the nip 87 formed between nip roller 88 and casting roller 90. A polymer film 92 is extruded directly onto the underside of the heated carpet precursor from extrusion die 94. Casting roll temperatures between 80 and 120°F have been employed. Pressure of between 50 to 70 psi at the nip 87 have been employed.

Temperature variations across the heated plate 82 have been observed to produce variation across the width of the carpet product. Cool areas produce regions in loop pile bcf carpet which fail the VELCRO® test. Hot areas produce regions of apparent excess shrinkage and face yarn damage. In addition, the hot areas may deposit excessive melted polymer onto the heated plate.

Figure 5 is a schematic side view of another embodiment of the present invention. In Figure 5 a carpet precursor 100 is supplied to the apparatus, pile side down. A sheet 102 of polymer is also supplied to the apparatus. The sheet 102 may either be freshly extruded in a manner similar to that described above, or it may be formed at a different time and/or location and supplied from a feed roll.

The apparatus of Figure 5 includes a first

- 16 -

5 differentially heated and cooled surface 104. The surface functions both as a heated surface for integrally fusing the polymer sheet 102 to the carpet precursor 100 and as a casting surface for forming and cooling the underside of the carpet product.

10 In preferred embodiments of the present invention the surface 104 is a continuous belt, which travels around heated cylinder 106 and cooled cylinder 108. Stationery, heating and cooling units 110 and 112 respectively, may also be provided to adjust the temperature profile around the path of travel of the belt 104.

15 In operation, the belt is differentially heated so that it is relatively hot at location 114 where it first contacts the polymer sheet 102. At a downstream location 116 the heated polymer sheet contacts the carpet precursor, the combination of which is moved and cooled as the belt travels from left to right in Figure 5.

20 A lower continuous belt system 118 may be provided for applying pressure to the upper side of the carpet product. An upper surface 120 of the lower belt may be oriented at an angle with respect to the upper belt as illustrated in order to gradually increase the pressure exerted on the carpet product. The temperature of the lower belt 118 may also be controlled in a manner similar to belt 104, albeit 25 at lower temperatures.

At location 122 the carpet product and belt are sufficiently cool that the carpet product readily separates from the belt without leaving significant amounts of melted polymer (preferably no melted polymer) on the belt 104. 30 From this location the carpet product travels downstream in the production line.

- 17 -

CARPET PRODUCTS

Figure 1 illustrates a preferred embodiment of the present invention: a carpet product including a face yarn and a backing material integrally fused with an extruded sheet of polymer.

More specifically, preferred embodiments of the carpet may comprise a primary backing, face yarn protruding from a top surface of the primary backing, and an extruded sheet of a thermoplastic polyolefin polymer integrally fused to back loops or knots of the face yarn and/or to the bottom surface of the primary backing. The fused portions of the carpet product are the result of a heat bond between the carpet precursor and the extruded sheet during the manufacturing process. Likewise, there may be a mechanical bond between the primary backing, the extruded sheet and face yarn, resulting from the thermoplastic polyolefin polymer flowing between and around the fibers making up the primary backing, and the face yarn.

The carpet product of the present invention may also include one or more secondary backing layers integrally fused to the carpet precursor by an extruded polymer sheet.

Various materials generally suitable for the carpet products of the claimed invention are disclosed in parent U.S. Patent No. 5,288,349, incorporated by reference herein.

In one preferred embodiment, the face yarn, backings and extruded sheet comprise the same thermoplastic polymer. Preferably the thermoplastic polymer is an isotactic polyolefin polymer, especially an isotactic polypropylene homopolymer, random impact or block copolymer or terpolymer.

In another embodiment the backings and extruded sheet are formed of one polymer and the face yarn is formed of a different polymer. For example, the backing and extruded sheet are formed of an isotactic polyolefin polymer and the

- 18 -

face yarn is formed of nylon or polyester, or of natural materials such as cotton or wool. In other embodiments, some or all of the backing may be formed from such materials. It is preferred, however, to use a polymer with melting points similar to that of the extruded sheet to facilitate integral fusing with the extruded sheet.

In some carpets the bottom layer (either the extruded sheet or secondary backing) may be formed from a blend of thermoplastic polyolefin polymer and thermoplastic elastomer to provide some properties of the elastomer such as flexibility, non-skid character and other properties similar to rubber.

The primary backing of the carpet product may include any synthetic resin that will integrally fuse with the extruded sheet and may be, for example, a woven or non-woven fabric, a film or a web. Preferably, the primary backing is made of a thermoplastic polyolefin polymer, copolymer or terpolymer.

The secondary backing material, if applied, may preferably include any synthetic resin that will integrally fuse with the extruded sheet. Advantageously, the secondary backing will comprise the same thermoplastic polyolefin polymer, copolymer or terpolymer as the primary backing. Optionally, the secondary backing for the carpets of the present disclosure is a woven or non-woven fabric. Likewise, the secondary backing may be an open weave or leno weave, i.e., tape yarn in the warp direction and spun staple fiber in the fill direction. However, the open weave or spun staple warp is not necessary to obtain a suitable bond as may be required with use of a latex adhesive.

The extruded sheet may be formed from a substantially crystalline or isotactic, thermoplastic polyolefin polymer, copolymer or terpolymer. A preferred thermoplastic polyolefin polymer is isotactic polypropylene homopolymer. The polymer may be a commercial isotactic polypropylene

- 19 -

which is polymerized to a 90 to 98% isotactic content, with the remaining polymer being in the randomly ordered atactic configuration. The degree of isotacticity can be further enhanced by post-reaction solvent extraction of the atactic polypropylene. Both commercial and purified grades of isotactic polypropylene are suitable for use in the extruded sheet of the present invention.

Isotactic polypropylene is suitable for use in the extruded layer since it has a relatively specific melting point (about 330°F) and a relatively specific recrystallization point (about 300°F). Atactic or amorphous polypropylene has no specific melting or recrystallization point. Thus, amorphous polypropylene is difficult to integrally fuse to either the primary backing, face fibers, or secondary backing. Furthermore, the tensile strength of the isotactic polypropylene is approximately 28 to 40 times stronger than the tensile strength of the atactic polypropylene. Thus, the extruded sheet does not require the presence of atactic polyolefin to provide the requisite bond strength between the primary backing, tufts of face fiber or secondary backing. In addition, due to the tensile strength of the isotactic polyolefin, carpets with increased delamination strength may be made.

In addition to homopolymer, other classes of polypropylene are commercially available and may be suitable for use in the extruded sheet. These include polypropylene random copolymers, impact or block copolymers, and terpolymers.

The isotactic polypropylene or other crystalline olefin used in the extruded layer may be compounded with inert fillers by either extrusion compounding or mixing operations. Such fillers may include calcium carbonate, silicates, talc, calcium, glass fibers, carbon black and wood flour. Other fillers may be suitable.

The use of such fillers in the extrusion layer may

- 20 -

range from about 0.1% to as high as about 50%. At the high levels, an exceedingly stiff board like material may be made that may be used, e.g., as a trunk liner, mold d floor mat or a door panel in an automobile. Since addition of a 5 filler significantly alters the performance and process ability of the polymer, filled systems may be designed to satisfy a particular product need with minimum effect on other performance aspects.

It is desirable that, for some use applications, 10 carpet made in accordance with the present invention pass the "pill test" (ASTM D-2859) for fire resistance. Thus, in some applications where enhanced flame resistance is required, a fire-retardant may be added to the feedstock used to produce the extruded sheet.

15 Optionally, blends of polyolefins and thermoplastic elastomers may be used to make the extruded sheet or co-extruded layer. The thermoplastic elastomers (TPE's) are a diverse family of rubber-like materials that, unlike vulcanized rubbers, may be processed and recycled as 20 thermoplastics. However, the TPE's are not merely substitutes for thermosetting polymers, they may also replace or improve their properties. There are four general groups of TPE's that may be suitable for use in the present invention. The four general groups include 25 polyurethanes, copolyesters, styrenic block copolymers, and polyolefins. Blending the elastomer with the polyolefin polymer provides some of the properties of the elastomer at a lower cost. The compatibility is good for blends ranging from about 10 to 97% elastomer based on the total amount of 30 thermoplastic polymer and elastomer.

As a class, the TPE's may provide toughness, 35 flexibility over a wide temperature range, and resistance to abrasion, weathering, and a variety of solvents and other chemicals. Thus, the properties of each of the materials in the group may be tailored for use in the carpet of the present invention by polymerization methods,

- 21 -

blending, and incorporation of additives, fillers, and reinforcements to form carpets having enhanced abrasion, weathering and chemical resistance.

Figures 6 and 7 illustrate, by way of example, two types of carpet products made in accordance with the teachings of the present invention. Figure 6 relates to a cut pile, grass carpet and Figure 7 relates to a loop pile carpet with optional secondary backing.

Figure 6a depicts a carpet precursor 200 from which a grass carpet is made. A woven primary backing 202 is interpenetrated by fibrillated isotactic polypropylene yarn 204. Cut yarn ends or tufts 206 form the pile of the carpet. The yarn is loosely secured in place by back loops 208 exposed on the underside of the carpet precursor. In this example the backing 202 is a woven fabric made of polypropylene.

Figure 6b depicts a carpet product 210 made from the carpet precursor of Figure 6a. An extruded sheet 212 of polypropylene has been integrally fused to the carpet precursor 200. As shown in the figure the back loops 208 and portions of the backing 202 have been heat bonded with the extruded sheet 212. Spaces between the primary backing 202 and the extruded sheet 212 may be larger or smaller depending on the penetration of the extruded sheet 212 into the primary backing during manufacture. In fact, the extruded sheet may more or less conform to the shape of the bottom surface of the primary backing. Thus, there may be little, if any, space between the extruded sheet and the primary backing.

The underside 214 of the carpet product made with the surface of the casting roller during processing may be essentially flat due to the cooling contact made melted, so that individual fibrils of the yarn are integrally fused with each other and with the extruded sheet and primary backing 202. This action is believed to enhance the mechanical durability of the resulting carpet.

- 22 -

product.

Figure 7a depicts a carpet precursor 300 from which a level loop pile carpet is made. A woven primary backing 302 is interpenetrated by a multi-fiber face yarn or bulk 5 continuous filament (bcf) yarn 304. Such yarn may be a twisted array of, for example, 120 small denier fibers. Yarn loops or tufts 306 form the pile of the carpet. The yarn is mechanically secured to the backing 302 by back loops 308 exposed on the underside of the carpet precursor. 10 In this example the bcf yarn is made of polypropylene and the backing 302 is a woven fabric also made of polypropylene.

Figure 7b depicts a carpet product 310 made from the carpet precursor of Figure 7a. An extruded sheet 312 of 15 polypropylene has been integrally fused to the carpet precursor 300. As shown in the figure the back loops 308 and portions of the backing have been heat bonded with the extruded sheet 312. As in the example of Figure 6a some voids or spaces may occur between the extruded sheet and 20 carpet precursor.

During manufacture the back loops 308 may be partially melted so that individual fibers making up the bcf yarn are integrally fused with each other and with extruded sheet and primary backing 302. It has been observed 25 experimentally that preheating of the carpet precursor before contacting it with the hot extruded sheet improves the mechanical stability of the resulting carpet product and secures the tufts and component yarn fibers to a sufficient degree that the carpet product can pass the 30 VELCRO test.

Figure 7c depicts a carpet product 320 including an optional secondary backing 322. In this example, the secondary backing is laminated with the hot extruded sheet 312 and integrally fused with it.

- 23 -

GRASS CARPET EXAMPLES

An apparatus substantially as shown and described in connection with Figure 2 was employed to produce grass carpet of the general structure shown and described in connection with Figure 6b. The face yarn is fibrillated film tape fiber made from polypropylene homopolymer with a denier of 3800 and a fibrillation count of 13-17 per tape. The primary backing is a 24x13 plain weave backing with 24 tapes in the warp direction per inch and 13 tapes in the fill direction per inch. The tapes are made from homopolymer polypropylene. The weight of the primary backing is 3.3oz/square yard. The parameters of the examples are set out in the following table.

15

- 24 -

Example	Pre-heat Roll Temp. (°F)	Pre-heat Nip Pressure (PSI)	Extruded Film Thickness (mils)	Average Tuft Bind Strength (pounds)
A	400	60	10	3.84
B	400	60	10	5.10
C	400	80	10	5.18
D	430	80	10	6.25
E	440	60	5	4.51
F	440	60	10	5.72
G	440	60	10	5.87
H	440	80	10	4.35
I	450	80	10	5.02

5 The average tuft bind strength measurements were made
 10 in accordance with ASTM D-1335.

15 Examples A-I were run at a line speed of about
 20 10 feet per minute. The extruded melt temperature
 was measured to be 600°F in the case of Example A and
 625° in the case of Examples B through I. Examples
 A, B and F employed a polypropylene homopolymer
 having a nominal melt flow of 80. Examples C-E and
 G-I employed a ethylene/propylene copolymer having a
 nominal melt flow of 3.5.

25 Two comparative examples were run, which omitted
 the preheating step. The results are reported below.

- 25 -

Example	Extruded Film Thickness (mils)	Average Tuft Bind Strength (pounds)
J	10	1.65
K	10	1.46

5

These examples employing a polypropylene homopolymer having a nominal melt flow of 80 exhibited a lower tuft bind strength.

10

BCF LOOP PILE CARPET EXAMPLES

15

An apparatus substantially as shown and described in connection with Figure 2 was employed to produce bcf loop pile carpet of the general structure shown and described in connection with Figure 7b. The face yarn is a bulk continuous filament yarn made from polypropylene homopolymer. The yarn has a total denier of 2750 with 120 ends in the fiber bundle. The primary backing is as described above. The parameters of the examples are set out in the following table.

20

Example	Pre-heat Roll Temp. (°F)	Pre-heat Nip Pressure (PSI)	Extruded Film Thickness (mils)	Average Tuft Bind Strength (pounds)
L	440	60	10	6.76
M	440	80	10	5.68
N	450	80	10	5.74

- 5 All three samples passed the VELCRO® test and had acceptable tuft bind strength as indicated. Example L employed a polypropylene homopolymer having a nominal melt flow of 80. Examples M and N employed an ethylene/propylene copolymer having a nominal melt flow of 3.5.
- 10 From the foregoing description, one of ordinary skill in the art can ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make changes and modifications of the disclosed techniques to adapt them to various uses and conditions. As such, these changes and modifications are properly 15 within the scope of the range of equivalents of the 20 following claims.

- 27 -

WE CLAIM:

1. A method for manufacturing a carpet product comprising the steps of:

5 providing a carpet base having a primary backing penetrated by isotactic polymer yarn so that first portions of the yarn protrude from an upper side of the backing to form the pile of the carpet and so that second portions of the yarn are exposed
10 on the underside of the carpet base;

15 applying heat to the underside of the carpet base to thereby melt at least part of the exposed portions of the yarn;

20 extruding a heated sheet of isotactic polymer; and

25 continuously contacting the heated underside of the carpet base with the heated extruded sheet of polymer, thereby integrally fusing the second portions of the yarn and the extruded sheet.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
928

- 28 -

wherein the surface of the roller is maintained between 330°F and 650°F.

5 6. The method of claim 4, wherein the carpet base is pressed against the heated roller, and the surface of the roller is maintained between 400°F and 500°F.

10 7. The method of claim 6, wherein the yarn is a multi-fiber yarn and wherein the pressure and temperature of the heated roller are sufficient to deform, in cross-section, the second portions of the yarn.

15 8. The method of claim 4, wherein the carpet base is wrapped at least partially around the heated roller.

20 9. The method of claim 8, wherein the amount to which the carpet base is wrapped around the heated roller is varied to control the heating of the carpet base.

25 10. The method of claim 1, wherein the second portions of the yarn, the primary backing and the extruded sheet are integrally fused.

30 11. The method of claim 1, wherein the carpet is a loop pile carpet, wherein the yarn is a bulk continuous filament yarn made up of plural fibers, and wherein substantially all of the yarn fibers are secured in place by the heating of the carpet base and the contacting with the extruded sheet.

35 12. The method of claim 1, wherein the yarn, primary backing and extruded sheet are made of the

- 29 -

same thermoplastic polymer.

13. The method of claim 12, wherein the extruded sheet is made of recycled portions of the carpet made by the process.

14. The method of claim 13, wherein the thermoplastic polymer is an isotactic polypropylene homopolymer; random impact or block copolymer; or terpolymer.

15. The method of claim 1, wherein the yarn, primary backing and extruded sheet are made of nylon.

16. The method of claim 1, wherein the extruded sheet includes an elastomer.

17. A method for manufacturing a carpet comprising:

20 tufting an isotactic polypropylene primary backing with a multi-fiber isotactic polypropylene yarn to form a carpet base with a portion of the yarn exposed on the underside of the carpet base;

25 contacting the underside of the carpet base along substantially its entire width against the cylindrical surface of a heated roller to thereby heat a contacted portion of the exposed yarn to a temperature above its melting point;

30 contacting the underside of the heated carpet base with a hot, extruded isotactic polypropylene sheet received from an extrusion die; and

35 moving the carpet base and extruded sheet against the surface of a casting roll so that extruded sheet contacts the casting roll.

- 30 -

18. The method of claim 17, wherein the underside of the carpet base is at least partially wrapped around the surface of the heated roller which surface is maintained at a temperature between 330°F and 600°F.

5

19. A method for manufacturing a carpet comprising:

10 tufting a primary backing with crystalline thermoplastic polymer yarn to form a carpet base with a portion of the yarn exposed on the underside of the carpet base;

15 contacting the underside of the carpet base along substantially its entire width against the surface of a heated roller to thereby heat the exposed yarn to a temperature above the melting point of the crystalline thermoplastic polymer;

20 providing a sheet of crystalline thermoplastic polymer film;

heating the sheet of polymer film; and
pressing the heated polymer film against the heated underside of the carpet base to integrally fuse the sheet of polymer film with the carpet base.

25 20. The method of claim 19, wherein the sheet of polymer film is provided from a roll of previously extruded crystalline thermoplastic polymer film.

30 21. An apparatus for manufacturing a carpet comprising:

35 a source of carpet precursor having a primary backing interpenetrated by a face yarn wherein both the yarn and the primary backing are made of an isotactic thermoplastic polymer;

a heated roller for heating the underside of the carpet precursor substantially uniformly

- 31 -

across its width;

an extruder for extruding an isotactic thermoplastic polymer sheet directly onto the heated underside of the carpet precursor; and

5 a casting roll against which the extruded sheet and heated carpet precursor are pressed.

22. The apparatus of claim 21, wherein the heated roller is heated by a circulating fluid in its
10 interior.

23. The apparatus of claim 21, wherein the heated roller is pressed against the carpet precursor with sufficient pressure to compress yarn loops or
15 knots on the underside of the carpet precursor.

24. The apparatus of claim 21, wherein the heated roller is heated so that its surface is maintained at a temperature above the melting point
20 of the thermoplastic polymer.

25. The apparatus of claim 24, wherein a cylindrical surface of the heated roller is covered with a material which resists sticking.

26. The apparatus of claim 25, wherein the cylindrical surface of the heated roller is coated with teflon.

30 27. The method of claim 4, wherein the surface of the heated roller resists sticking of the carpet base to the heated roller.

28. A loop pile carpet comprising:
35 a polypropylene primary backing;
a polypropylene bulk continuous filament

- 32 -

yarn made up of plural fibers, said yarn being tufted in said primary backing and having back loops on the underside of the primary backing; and

5 a sheet of polypropylene integrally fused with said back loops, so that substantially all the yarn fibers are secured in place.

10 29. The carpet of claim 28, wherein the yarn back loops are compressed between the primary backing and the polypropylene sheet.

15 30. The carpet of claim 28, further comprising a secondary backing integrally fused to the polypropylene sheet.

31. The carpet of claim 28, wherein the carpet has a tuft bind strength of at least 4 pounds.

20 32. The carpet of claim 28, wherein the sheet of polypropylene is integrally fused with both the back loops and the primary backing.

1/5
*Fig. 1**Fig. 2a*

SUBSTITUTE SHEET (RULE 28)

*Fig. 2b**Fig. 3*

SUBSTITUTE SHEET (RULE 26)

*Fig. 4**Fig. 5*

SUBSTITUTE SHEET (RULE 26)

*Fig. 6a**Fig. 6b*

5/5

*Fig. 7a**Fig. 7b**Fig. 7c*

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/05531

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :D05C 15/00, 17/00
US CL :156/72, 244.11; 428/85

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 156/72, 244.11; 428/85

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS: carpet# and (((isotactic (p) polypropylene) (p) (pile or yarn or tuft#)) (p) (isotactic (p) polypropylene) (p) (backing or scrim)))

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 3,537,946 (TRUAX ET AL) 03 November 1970, see whole document.	1-32
Y	US, A, 5,109,784 (LEPE-CISNEROS) 05 May, 1992, see whole document.	1, 10, 21-22
Y	US, A, 4,705,706 (AVERY) 10 November 1987, see whole document.	17-20, 24-26, 28-32
Y	US, A, 4,624, 878 (EVANS ET AL) 25 November 1986, see whole document.	5, 7, 12-15, 17-20, 23-26, 28-32
Y	US, A, 4,673,604 (FRAIN, III ET AL) 16 June 1987, see whole document.	12-20, 28-32
Y	US, A, 4,028,159 (NORRIS) 07 June 1977, see whole	13-15

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
A document defining the general state of the art which is not considered to be part of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E earlier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	"Z" document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search

23 JUNE 1995

Date of mailing of the international search report

03 AUG 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230Authorized officer: *Debbie Ross*
MICHAEL BALL

Telephone No. (703) 308-2058

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/05531

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 3,928,281 (UCHIGAKI ET AL) 23 December 1975, column 5, lines 31-32.	1-27
Y	US, A, 4,336,286 (TOMARIN) 22 June 1982, column 3, lines 25-28.	1-27
Y	US, A, 4,140,071 (GEE ET AL) 20 February 1979, column 1, lines 9-11; column 2, lines 4-13.	1-27
Y P	US, A, 5,380,574 (KATOH ET AL) 10 January 1995, column 6, lines 13-34.	1-32
Y P	US, A, 5,317,070 (BRANT ET AL) 31 May 1994, see whole document.	1-32
Y	US, A, 4,844,765 (REITH) 04 July 1989, see whole document.	19-20

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US95/05531**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a):

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/05531

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-27, drawn to a method and apparatus for making a carpet.
Group II, claim(s) 28-32, drawn to a loop pile carpet.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: claims in group I are clearly directed to a method/apparatus wherein heat and a thermoplastic polymer binder are explicitly used to fusion form a carpet. However, product claims of group II give no indication that such a heating step was ever used. The sheet of polypropylene which is "integrally fused" in group II could have been formed by solvent removal or some other process.