

INSIEMI E OPERAZIONI

(parte 2)

STEFANIA BANDINI

OPERAZIONI SU INSIEMI: UNIONE

Dati due insiemi S e T si denota l'**unione** di S e T come

$$S \cup T$$

cioè l'insieme degli elementi che stanno in S oppure in T

$$S \cup T = \{x \mid x \in S \lor x \in T\}$$

$$A \cup B = \{a, b, c, d, e\}$$

OPERAZIONI SU INSIEMI: UNIONE

ESEMPI

- 1. $\{rosso, giallo\} \cup \{arancio\} = \{rosso, giallo, arancio\}$
- 2. $\{rosso, giallo\} \cup \{arancio, giallo\} = \{rosso, giallo, arancio\}$
- 3. $\{x \mid x > 3 \text{ e } x \leq 20\} \cup \{x \mid x > 100 \text{ e } x < 101\} = \{4, 5, ..., 20\}$
- 4. $\{x \mid Madre(x, Anna)\} \cup \{x \mid Padre(x, Anna)\}$ è l'insieme formato dal padre e dalla madre di Anna
- 5. $\{x \mid x > 3\} \cup \{x \mid x \le 12\} = \{x \mid x > 3 \text{ oppure } x \le 12\} = \{4, 5, ..., 12\}$

ADECI STUDIO DE LA COLOR DE LA

FONDAMENTI DELL'INFORMATICA

OPERAZIONI SU INSIEMI: UNIONE

L'unione di due insiemi S e T, $S \cup T = \{x | x \in S \ oppure \ x \in T\}$, è l'insieme di tutti gli oggetti che sono elementi di S oppure di T. Per l'operazione \cup valgono le seguenti proprietà:

- 1. $S \cup S = S$ (Idempotenza).
- 2. $S_1 \cup S_2 = S_2 \cup S_1$ (Commutatività).
- 3. $S \cup \emptyset = S = \emptyset \cup S$ (Elemento neutro).
- 4. $S_1 \cup S_2 = S_2$ sse $S_1 \subseteq S_2$ (Assorbimento).
- 5. $(S_1 \cup S_2) \cup S_3 = S_1 \cup (S_2 \cup S_3)$ (Associatività).
- 6. $S_1 \subseteq S_1 \cup S_2$, $S_2 \subseteq S_1 \cup S_2$.

OPERAZIONI SU INSIEMI: INTERSEZIONE

Dati due insiemi S e T si denota l'**intersezione** di S e T come

$$S \cap T$$

cioè l'insieme degli elementi che stanno **sia** in *S* **che** in *T*

$$S \cap T = \{x \mid x \in S \land x \in T\}$$

$$A \cap B = \{b, e\}$$

ADECI STUD

FONDAMENTI DELL'INFORMATICA

OPERAZIONI SU INSIEMI: INTERSEZIONE

L'intersezione di due insiemi S e T, scritto $S \cap T = \{x | x \in S \ e \ x \in T\}$, è l'insieme di tutti gli oggetti che sono elementi sia di S che di T. S e T sono disgiunti se la loro intersezione è vuota. Esempio

- 1. $\{rosso, giallo\} \cap \{arancio, giallo\} = \{giallo\}.$
- 2. $\{rosso, giallo\} \cap \{arancio, blu\} = \{\} = \emptyset.$
- 3. $\{x \mid x > 3 \ e \ x \le 20\} \cap \{x \mid x > 100 \ e \ x < 101\} = \emptyset$.
- 4. $\{x|Madre(Anna,x)\}\cap\{x|Padre(Giovanni,x)\}$ è l'insieme formato dai figli di Anna e Giovanni.

PROPRIETA' DELL'INTERSEZIONE

Per l'operazione ∩ valgono le seguenti proprietà:

- 1. $S \cap S = S$ (Idempotenza).
- 2. $S_1 \cap S_2 = S_2 \cap S_1$ (Commutatività).
- 3. $S \cap \emptyset = \emptyset \cap S = \emptyset$.
- 4. $(S_1 \cap S_2) \cap S_3 = S_1 \cap (S_2 \cap S_3)$ (Associatività).
- 5. $S_1 \cap S_2 = S_1$ sse $S_1 \subseteq S_2$ (Assorbimento).
- 6. $S_1 \cap S_2 \subseteq S_1$.
- 7. $S_1 \cap S_2 \subseteq S_2$.

PROPRIETA' DELL'UNIONE DELL'INTERSEZIONE

 \cup e \cap sono legate dalle seguenti proprietà distributive

1.
$$S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$$
.

2.
$$S_1 \cup (S_2 \cap S_3) = (S_1 \cup S_2) \cap (S_1 \cup S_3)$$
.

Complementazione di Insiemi

Dato un insieme U che chiamiamo universo, la differenza di un sottoinsieme S di U rispetto a U si chiama complemento di <math>S in U, oppure complemento di <math>S, se l'insieme U può essere sottinteso. Per indicare il complemento di <math>S scriviamo \overline{S} . In maniera intensionale possiamo descrivere \overline{S} come

$$\overline{S} = \{x | x \in U \ e \ x \not \in S\}.$$

Proprietà della complementazione

1.
$$\overline{U} = \emptyset$$
.

2.
$$\overline{\emptyset} = U$$
.

3.
$$\overline{\overline{S}} = S$$
.

4.
$$\overline{(S_1 \cup S_2)} = \overline{S_1} \cap \overline{S_2}$$
 (Legge di De Morgan per \cup).

5.
$$\overline{(S_1 \cap S_2)} = \overline{S_1} \cup \overline{S_2}$$
 (Legge di De Morgan per \cap).

6.
$$S \cap \overline{S} = \emptyset$$
.

7.
$$S \cup \overline{S} = U$$
.

8.
$$S_1 = S_2$$
 sse $\overline{S}_1 = \overline{S}_2$.

9.
$$S_1 \subseteq S_2$$
 sse $\overline{S}_2 \subseteq \overline{S}_1$.

COMPLEMENTAZIONE

OPERAZIONI SU INSIEMI: DIFFERENZA

Dati due insiemi S e T si definisce **differenza** tra S e T il seguente insieme

$$S - T (o S \setminus T)$$

cioè l'insieme degli elementi che stanno in S ma non in T

$$S - T = \{x \mid x \in S \land x \notin T\}$$

BICOCC A

FONDAMENTI DELL'INFORMATICA

Differenza di insiemi

Dati due insiemi X e Y chiamiamo $Y \setminus X$ (scritto anche Y - X) insieme differenza di X in Y: l'insieme costituito da tutti gli elementi di Y che non sono elementi di X. Definiamo $S \setminus T = \{x | x \in S \ e \ x \notin T\}$.

Per l'operazione \ valgono le seguenti proprietà:

- 1. $S \setminus S = \emptyset$.
- 2. $S \setminus \emptyset = S$.
- 3. $\emptyset \backslash S = \emptyset$.
- 4. $(S_1 \backslash S_2) \backslash S_3 = (S_1 \backslash S_3) \backslash S_2 = S_1 \backslash (S_2 \cup S_3)$.
- 5. $S_1 \backslash S_2 = S_1 \cap \overline{S}_2$.

Esempio

1. Sia $S = \{a, b, c, d, e\}$ e $T = \{a, c, f, g, e, h\}$.

$$S \backslash T = \{x | x \in S \ e \ x \not\in T\} = \{b, d\}$$

2. Sia \mathbb{N} l'insieme dei naturali, \mathcal{P} l'insieme dei numeri pari e \mathcal{D} l'insieme dei numeri dispari: $\mathbb{N} \setminus \mathcal{D} = \mathcal{P}$.

Differenza simmetrica fra insiemi

La differenza simmetrica di due insiemi S_1 e S_2 è $S_1 \triangle S_2 = (S_1 \backslash S_2) \cup (S_2 \backslash S_1)$.

Valgono le seguenti proprietà:

1.
$$S \triangle S = \emptyset$$
.

2.
$$S \triangle \emptyset = S$$
.

3.
$$S_1 \triangle S_2 = S_2 \triangle S_1$$
.

4.
$$S_1 \triangle S_2 = (S_1 \cap \overline{S}_2) \cup (S_2 \cap \overline{S}_1).$$

5.
$$S_1 \triangle S_2 = (S_1 \cup S_2) \setminus (S_2 \cap S_1)$$
.

DIFFERENZA SIMMETRICA

$$A \Delta B = (A \setminus B) \cup (B \setminus A)$$

ESEMPIO DI UN ESERCIZIO D'ESAME

Scrivere in notazione estensionale i seguenti insiemi:

- $A = \{x \in \mathbb{N} \mid x^2 < 10 \}, B = \{2^n + 1 \mid n \in \mathbb{N}, n \le 3 \}$
 - \circ A= {0,1,2,3},
 - o B= {2,3,5,9}
- A∩B, AUB
 - o {2,3},{0,1,2,3,5,9}
- PowerSet(A-B)
 - \circ A-B = {0,1}, POWERSET(A-B)= {{},{0},{1},{0,1}}

FAMIGLIE DI INSIEMI

La consuetudine tende a distinguere tra singoli oggetti ed insiemi di oggetti, ma tra queste nozioni non vi è una distinzione concettuale.

Ad esempio: ogni uomo è un insieme di cellule, ma ciò non esclude di considerare insiemi i cui elementi siano uomini, ad esempio una famiglia o una classe; a sua volta un condominio è un insieme di famiglie, così come una scuola è un insieme di classi. Dunque non è escluso di poter considerare insiemi i cui elementi siano a loro volta insiemi.

Per una semplice questione di gusto linguistico non si parla quasi mai di "insieme di insiemi", ma si preferisce, come sinonimo, "famiglia di insiemi".

FAMIGLIE DI INSIEMI

Sia $\mathcal F$ un insieme i cui elementi sono insiemi, $\mathcal F$ è una famiglia di insiemi. L'unione di tali insiemi è l'insieme

$$\bigcup \mathcal{F} = \{x : x \text{ appartiene a qualche elemento di } \mathcal{F}\};$$

l'intersezione di tali insiemi è l'insieme

$$\bigcap \mathcal{F} = \{x \mid x \text{ appartiene a tutti gli elementi di } \mathcal{F}\}.$$

In particolare $\bigcup \wp S = S$, per ogni insieme S.

Partizioni di insiemi

Dato $S \neq \emptyset$, una *partizione* di S è una famiglia \mathcal{F} di sottoinsiemi di S tale che:

- 1. ogni elemento di S appartiene a qualche elemento di \mathcal{F} , cioè $\bigcup \mathcal{F} = S$;
- 2. due elementi qualunque di \mathcal{F} sono disgiunti.

PARTIZIONE DI UN INSIEME

Sia A un insieme. Diremo che due o più sottoinsiemi di A formano una partizione di A se soddisfano tre condizioni:

- 1) nessuno deve essere vuoto;
- 2) comunque si prendono due sottoinsiemi A la loro intersezione deve essere vuota;
- 3) la loro unione deve dare tutto l'insieme A.

$$\forall i \in \{1, 2, ..n\}: A_i \neq \emptyset$$

$$A_i \cap A_j = \emptyset \ \forall i \in \{1, 2, ..n\}, \ i \neq j$$

$$\bigcup_{i=1}^n A_i = A$$

A DEC O C C

FONDAMENTI DELL'INFORMATICA

Esempio

Sia $S = \{a, b, c, d, e, f, g, h\}$ e siano $S_1 = \{a, b, c, d\}$, $S_2 = \{a, c, e, f, g, h\}$, $S_3 = \{a, c, e, g\}$ e $S_4 = \{b, d\}$, $S_5 = \{f, h\}$. Si ha che:

- 1. $\mathcal{F}_1 = \{S_1, S_2\}$ non è una partizione perché gli elementi di \mathcal{F}_1 non sono a due a due disgiunti.
- 2. $\mathcal{F}_2 = \{S_1, S_5\}$ non è una partizione perché l'unione degli elementi di \mathcal{F}_2 non copre S (per esempio e resta fuori).
- 3. $\mathcal{F}_3 = \{S_3, S_4, S_5\}$ è una partizione di S.

Sia $Pari=\{x\mid mod(x,2)=0\}$ e sia $Disp=\{x\mid mod(x,2)\neq 0\}$, i due insiemi Pari e Dispari partizionano l'insieme $\mathbb N$ dei naturali.

PARTIZIONE DI UN INSIEME

Sia A un insieme. Diremo che due o più sottoinsiemi di A formano una partizione di A se soddisfano tre condizioni:

- 1) nessuno deve essere vuoto
- 2) comunque si prendono due sottoinsiemi A la loro intersezione deve essere vuota
- 3) la loro unione ci deve dare tutto l'insieme A

Supponendo infatti che nessuno di essi sia vuoto, la loro unione dà tutto l'insieme di partenza ed essi non hanno elementi in comune, quindi presi a due a due la loro intersezione è vuota.

PARTIZIONE DI UN INSIEME

Sia A un insieme non vuoto. Un insieme *M* di sottoinsiemi non vuoti di A è detto **partizione** di A se ogni elemento di A appartiene ad uno ed uno solo di questi sottoinsiemi.

Gli elementi di una partizione M si dicono anche blocchi di M.

ESEMPIO

Sia A = { a, b, c, d, e, f, g}. Una partizione di A è:

$$M = \{ X, Y, Z, T \}$$

essendo $X = \{a, b\}, Y = \{c, e\}, Z = \{f, g\}, T = \{d\}$

Un'altra partizione di A è

$$M' = \{X', Y', Z'\}$$

essendo $X' = \{a, b, d\}, Y' = \{c, e\}, Z' = \{f, g\}$

PARTIZIONE DI UN INSIEME

ESEMPIO

Valutare se gli insiemi

$$A_1 = \{2\}, A_2 = \{4, 8\}, A_3 = \{6\}$$

formano una partizione dell'insieme

 $A = \{x \mid x \in un \text{ numero pari compreso tra } 1 \in 7\}$

PARTIZIONE DI UN INSIEME

ESEMPIO: svolgimento:

Notazione estensionale:

$$A = \{2,4,6\}$$

Vediamo ora se i tre sottoinsiemi di A A_1 , A_2 , A_3 , verificano le tre proprietà della partizione:

- tutti e tre sono non vuoti
- comunque se ne prendono due di essi la loro intersezione è vuota
- la loro unione non e' diversa dall'insieme A

$$A_1 \cup A_2 \cup A_3 = \{2, 4, 6, 8\}$$
 $A = \{2, 4, 6\}$

Possiamo quindi concludere che A_1 , A_2 , A_3 **non** formano una partizione dell'insieme A. Se invece di A avessimo avuto l'insieme B = $\{2,4,6,8\}$ allora avremmo avuto una partizione di tale insieme

PARTIZIONE DI UN INSIEME

Sia A un insieme non vuoto e A_1 , A_2 ..., A_n , n sottoinsiemi non vuoti di A. Tali sottoinsiemi formeranno una partizione di A se:

$$\forall i \in \{1, 2, ..n\}: A_i \neq \emptyset$$

$$A_i \cap A_j = \emptyset \ \forall i \in \{1, 2, ..n\}, \ i \neq j$$

$$\bigcup_{i=1}^{n} A_i = A$$

INSIEMI E OPERAZIONI

(parte 2)

END