Module 21.2: Masked Autoencoder Density Estimator (MADE)

- Suppose the input $\mathbf{x} \in \{0,1\}^n$, then the output layer of an autoencoder also contains n units
- Notice the explicit factorization of the joint distribution $p(\mathbf{x})$ also contains n factors

$$p(\mathbf{x}) = \prod_{k=1}^{n} p(x_k | \mathbf{x}_{< k})$$

• Question: Can we tweak an autoencoder so that its output units predict the n conditional distributions instead of reconstructing the ninputs?

 Note that this is not straightforward because we need to make sure that the kth output unit only depends on the previous k-1 inputs

- Note that this is not straightforward because we need to make sure that the kth output unit only depends on the previous k-1 inputs
- In a standard autoencoder with fully connected layers the kth unit obviously depends on all the input units
- In simple words, there is a path from each of the input units to each of the output units
- We cannot allow this if we want to predict the conditional distributions p(x_k|x_{<k}) (we need to ensure that we are only seeing the given variables x_{<k} and nothing else)

- We could ensure this by masking some of the connections in the network to ensure that y_k only depends on x_{<k}
- We will start by assuming some ordering on the inputs and just number them from 1 to n
- Now we will randomly assign each hidden unit a number between 1 to n-1 which indicates the number of inputs it will be connected to
- For example, if we assign a node the number 2 then it will be connected to the first two inputs
- We will do a similar assignment for all the hidden layers

- Let us see what this means
- For the first hidden layer this numbering is clear - it simply indicates the number of ordered inputs to which this node will be connected
- Let us now focus on the highlighted node in the second layer which has the number 2
- This node is only allowed to depend on inputs x₁ and x₂ (since it is numbered 2)
- This means that it should be only connected to those nodes in the previous hidden layer which have seen only x₁ and x₂

- Now consider the node labeled 3 in the output layer
- This node is only allowed to see inputs x₁ and x₂ because it predicts p(x₃|x₂, x₁) (and hence the given variables should only be x₁ and x₂)
- By the same argument that we made on the previous slide, this means that it should be only connected to those nodes in the previous hidden layer which have seen only x₁ and x₂
- We can implement this by taking the weight matrices W¹, W² and V and applying an appropriate mask to them so that the disallowed connections are dropped

• For example we can apply the following Mask at layer 2

$$\begin{bmatrix} W_{11}^2 & W_{12}^2 & W_{13}^2 & W_{14}^2 & W_{15}^2 \\ W_{21}^2 & W_{22}^2 & W_{23}^2 & W_{24}^2 & W_{25}^2 \\ W_{31}^2 & W_{32}^2 & W_{33}^2 & W_{34}^2 & W_{35}^2 \\ W_{41}^2 & W_{42}^2 & W_{43}^2 & W_{44}^2 & W_{45}^2 \\ W_{51}^2 & W_{52}^2 & W_{53}^2 & W_{54}^2 & W_{55}^2 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

8:19 / 35:20

- The objective function for this network would again be a sum of cross entropies
- The network can be trained using backpropagation such that the errors will only be propagated along the active (unmasked) connections (similar to what happens in dropout)

- Similar to NADE, this model is not designed for abstraction but for generation
- How will you do generation in this model? Using the same iterative process that we used with NADE
- First sample a value of x_1
- Now feed this value of x₁ to the network and compute y₂
- Now sample x₂ from Bernoulli(y₂)
 and repeat the process till you
 generate all variables upto x_n