Statistika Deskriptif_1

Pertemuan 2 - Mata Kuliah Statistika

@harsawara

54	75	46	75	83	61	74	86	49	50	49	56	51	90	64
70	63	46	51	48	48	66	62	51	86	73	87	74	86	51
75	88	63	79	88	71	63	78	50	77	71	70	59	64	81
46	53	72	85	75	92	74	89	53	79	90	84	70	91	49
51	49	86	61	57	58	65	53	61	60	53	48	57	88	76
45	68	63	62	75	75	87	91	57	58	46	81	65	60	88
75	91	71	86	59	49	51	81	67	85	66	66	60	91	76
72	51	63	78	89	75	86	79	80	47	65	77	47	74	68
90	45	76	89	87	49	92	73	89	84	59	51	88	48	50
87	58	79	88	83	65	51	84	82	84	50	68	55	73	52

- informasi apa yang bisa kita peroleh dari data-data tersebut?
 kesimpulan seperti apa yang bisa dibuat?

Beberapa Kajian dalam Statistika Deskriptif

Ukuran Pemusatan Mean, Median dan Modus

3

1. Kegunaan

digunakan untuk menyajikan ringkasan

data kategorik ataupun data numerik yang

dikategorikan

untuk data kualitatif

untuk data kuantatif

Tabel Preferensi Jenis Pekerjaan dari 100 Alumni

Tabel Preferensi Penghasilan dari 100 Alumni

Penghasilan Mingguan	Jumlah Karyawan	kolom frekuensi
(dalam Dollar)	(f)	— variabel
> 301 – 400	9 ←	— frekuensi
401 – 500	16	kelas ke-1 —— kelas ke-1
501 – 600	33	— Kelas ke-1
→ 601 700 ←	22	— batas atas
701 – 800	14	kelas ke-4
801 – 900	6	— batas bawah kelas ke-4

2. Elemen

76	81	81	84	79	79	77	84	82	82
85									
74	80	83	83	73	78	82	84	75	83

Aturan Sturges: jumlah kelas = 1 + 3,332 log n

• Aturan Lind: n ~ 2^k

· Aturan Kauro Ishikawa

Jumlah Data	Jumlah Kelas
< 50	5 - 7
50 - 100	6 - 10
100 - 250	7 - 12
> 250	10 - 25

	Tinggi (inch)	Ť
	72 – 74	3
	75 – 77	5
	78 – 80	7
	81 – 83	10
	84 – 86	5
/		$\Sigma f = 30$

Jumlah Kelas: 5

Lebar Kelas: $\frac{X \text{maks - } X \text{min}}{\text{Jumlah Kelas}} = 2.6 \sim 3$

Batas Bawah Kelas-1:

ini bisa menggunakan nilai terendah dalam data atau lebih kecil

Tinggi (inch)	f	Tepi Kelas	Frekuensi Relatif	Frekuensi Relatif Persen	Frekuensi Kumulatif <	Frekuensi Kumulatif >
72 – 74	3	71,5 - 74,5	3/30 = 0,100	3/30 x 100% = 10%	3	30
75 – 77	5	74,5- 77,5	5/30 = 0,167	5/30 x 100% = 16,7%	8	27
78 – 80	7	77,5 – 80,5	7/30 = 0,233	7/30 x 100% = 23,3%	15	22
81 – 83	10	80,5 – 83,5	10/30 = 0,333	10/30 x 100% = 33,3%	25	15
84 – 86	5	83,5 – 86,5	5/30 = 0,167	5/30 x 100% = 16,7%	30	5
	Σ f = 30		Σ = 1,000	Σ = 100%		

titik tengah dari limit atas suatu kelas dan limit bawah dari 🗸 kelas berikutnya

lebar kelas = tepi atas - tepi bawah

PIE Chart

Ogive

Beberapa bentuk grafik lainnya

diagram gambar/lambang

Varities of App	Varities of Apples in a food store							
Red Delicious	* * *							
Golden Delicious	(4) (4) (5)							
Red Rome	* * * *							
McIntosh	• •							
Jonathan	(4) (4) (5)							

· diagram dahan-daun

	Tes Kedua				Tes Pertama																				
								6	4	4	7														
					4	3	2	2	5	6	9														
	9	7	6	6	3	3	3	1	6	1	3	4	5	6	8										
9	9	6	6	5	5	2	1	0	7	o	1	1	1	1	2	3	3	3	4	5	5	6	6	6	9
	9	5	4	4	2	2	1	0	8	3	4	4	5	5	9										
			9	9	9	9	8	2	9	1	4	5	7												

nilai pencilan atau outlier, yaitu nilai yang sangat kecil atau sangat besar atau jauh dari nilai observasi lainnya

titik tempat di mana nilai-nilai suatu gugus data cenderung mengelompok, menunjukkan titik tengah suatu histogram atau kurva distribusi frekuensi

Ukuran Pemusatan

Rerata Hitung (Mean)

Nilai \bar{x} (mean sampel) memungkinkan bervariasi, karena diambil dari sampel yang berbeda, dan bergantung pada nilai observasi tiap sampel

sampel

populasi

<u>Kelemahan:</u>

rentan terhadap keberadaan nilai pencilan

 $\bar{x} = \frac{\sum x}{n}$

 $\mu = \frac{\sum x}{N}$

data pencilan

Negara Bagian	Washington	Oregon	Alaska	Hawai	California
Populasi (ribuan)	5.136	2.977	587	1.160	→ 30.867

Mean tanpa California : (5.136 + 2.977 + 587 + 1.160) / 4 = **2.465**

Mean dengan California: (5.136 + 2.977 + 587 + 1.160 + 30.867) / 5 = 8.145,4

Data tunggal (ungrouped data)

$$\bar{x} = \frac{\sum x}{n} \quad \text{atau} \quad \mu = \frac{\sum x}{N}$$

76	81	81	84	79	79	77	84	82	82
85	79	79	72	75	81	82	80	85	77
74	80	83	83	73	78	82	84	75	83

$$\bar{x} = \frac{\sum x}{n} = \frac{2319}{30} = 77.3$$

Ukuran Pemusatan

Rerata Hitung (Mean)

O Data berkelompok (grouped data)

$$\bar{x} = \frac{\sum m.f}{\sum f}$$
 atau $\mu = \frac{\sum m.f}{\sum f}$

Tinggi (inch)	f	Nilai tengah (m)	m.f
72 – 74	3	73	219
75 – 77	5	76	380
78 – 80	7	79	553
81 – 83	10	82	820
84 – 86	5	85	425
	Σf = 30		Σ m.f = 2397

$$\bar{x} = \frac{\sum m.f}{\sum f} = \frac{2397}{30} = 79.9$$

Statistika Deskriptif

#part2

$$Me = X_{\frac{n+1}{2}} \qquad Me = \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}$$

Data berjumlah ganjil

Data berjumlah genap

tersebut telah

diurutkan

Data tunggal (ungrouped data)

$$X_{\frac{n}{2}}$$
 $X_{\frac{n}{2}+1}$

Data berkelompok (grouped data)

$$Me = B_m + i \left(\frac{\frac{n}{2} - f_{km}}{f_m} \right)$$

di mana:

Bm = tepi bawah kelas median

i = interval kelas

n = ukuran sampel data

fkm = frekuensi kumulatif sebelum

median

fm = frekuensi pada kelas median

Tinggi (inch)	f
72 – 74	3
75 – 77	5
78 – 80	7
81 – 83	10
84 – 86	5
	Σ f = 30

Karena data berjumlah genap, maka data median terletak diantara data ke-15 dan data ke-16

Dalam table, data ke-15 terletak pada kelas ke-3, sementara data ke-16 terletak pada kelas ke-4

Maka perhitungan median-nya adalah

$$Me = B_m + i\left(\frac{\frac{n}{2} - f_{km}}{f_m}\right) = 80.5 + 3\left(\frac{\frac{30}{2} - 15}{10}\right) = 80.5$$

Data yang hanya memiliki 1 modus disebut unimodal; 2 modus dengan frekuensi sama disebut bimodal dan lebih dari 2 modus disebut multimodal

nilai yang memiliki frekuensi tertinggi dalam suatu gugus data

Data tunggal (ungrouped data)

Data berkelompok (grouped data)

$$Mo = B_m + i \left(\frac{d_1}{d_1 + d_2} \right)$$

di mana:

Bm = tepi bawah kelas median

i = interval kelas

d1 = frekuensi kelas modus - frekuensi sebelum kelas modus

d2 = frekuensi kelas modus - frekuensi setelah kelas modus

Tinggi (inch)	f	
72 – 74	3	
75 – 77	5	
78 – 80	7	
81 – 83	10	
84 – 86	5	
	Σ f = 30	

Data tersaji hanya memiliki 1 kelas modus, maka data modus terletak pada kelas ke-4

Maka perhitungan modus-nya adalah

$$Mo = B_m + i\left(\frac{d_1}{d_1 + d_2}\right) = 80.5 + 3\left(\frac{3}{3+5}\right) = 80.5 + 1,125 = 81.625$$

Ukuran Pemusatan

Hubungan antara Mean, Median dan Modus

Nilai mean akan sangat dipengaruhi oleh pencilan di ekor sebelah kanan (pencilan mayor)

Untuk suatu histogram yang simetris, dan kurva frekuensi dengan sebuah puncak, nilai mean, media dan modus adalah sama

Nilai mean akan sangat dipengaruhi oleh pencilan di ekor sebelah kiri (pencilan minor)

Vo Range

Range = Xmaks - Xmin

hanya ditentukan oleh 2 data (nilai yang lain dalam data diabaikan)

Sepertihalnya <u>mean</u>, nilai range dipengaruhi oleh adanya 'outlier/pencilan'

skor Kelas B memiliki variabilitas yang lebih rendah (lebih berkerumun rapat) daripada skor Kelas A

Kelas C dan D memiliki rentang yang sama, tetapi memiliki penyebaran skor yang berbeda

Ukuran Penyebaran

Kegunaan

digunakan untuk mengukur ketersebaran suatu data

mengukur penyimpangan setiap skor dari rata-rata - dan <u>kemudian</u> menghitung rata-rata semua penyimpangan

3 Standard Deviation

digunakan untuk menunjukkan seberapa dekat nilai-nilai suatu data dengan nilai rerata

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$$

$$= \sqrt{\frac{576,7}{29}}$$

$$= \sqrt{19,89}$$

$$s_{\chi} = 4,46$$

76	81	81	84	79	79	77	84	82	82
85	79	79	72	75	81	82	80	85	77
74	80	83	83	73	78	82	84	75	83

$$\bar{x} = \frac{\sum x}{n} = \frac{2319}{30} = 77.3$$

(76 – 77,3)2	(85 – 77,3)2	(74 - 77,3)2
(81 – 77,3)2	(79 – 77,3)2	(80 – 77,3)2
(81 – 77,3)2	(79 – 77,3)2	(83 – 77,3)2
(84 - 77,3)2	(72 - 77,3)2	(83 – 77,3)2
(79 - 77,3)2	(75 - 77,3)2	(73 - 77,3)2
(79 - 77,3)2	(81 – 77,3)2	(78 – 77,3)2
(77 - 77,3)2	(82 – 77,3)2	(82 – 77,3)2
(84 - 77,3)2	(80 – 77,3)2	(84 – 77,3)2
(82 - 77,3)2	(85 – 77,3)2	(75 – 77,3)2
(82 – 77,3)2	(77 - 77,3)2	(83 – 77,3)2

1,69	59,29	10,89	
13,69	2,89	7,29	
13,69	2,89	32,49	
44,89	28,09	32,49	
2,89	5,29	18,49	
2,89	13,69	0,49	
0,09	22,09	22,09	
44,89	7,29	44,89	
22,09	59,29	5,29	
22,09	0,09	32,49	

$$(x_i - \bar{x})$$

$$(x_i - \bar{x})^2$$

3. Variansi

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$$

$$s_{x}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{N}$$

Data berkelompok (grouped data)

Tinggi (inch)	f	Nilai tengah (m)	$f_i(m_i-\bar{x})^2$
72 – 74	3	73	142,83
75 – 77	5	76	76,05
78 – 80	7	79	5,67
81 – 83	10	82	44,1
84 – 86	5	85	130,05
	Σf = 30		$\sum_{i=1}^{k} = 398,7$

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{k} f_{i}(m_{i} - \bar{x})^{2}}{\sum_{i=1}^{k} f_{i}}} \qquad \bar{x} = \frac{\sum m.f}{\sum f} = \frac{2397}{30} = 79.9$$

$$=\sqrt{\frac{398,7}{5}}$$

$$s_x = 8,93$$

Apa sebenarnya yang dapat dimanfaatkan dari simpangan baku dan variansi

Kemiringan (Skewness)

Kelancipan (Kurtosis)

Kuartil

$$Q_j = B_q + i \left(\frac{k \frac{n}{4} - f_{k_q}}{f_q} \right)$$

Desil

$$D_j = B_d + i \left(\frac{k \frac{n}{10} - f_{k_d}}{f_d} \right)$$

Persentil

$$P_j = B_p + i \left(\frac{k \frac{n}{100} - f_{k_p}}{f_p} \right)$$

Contoh

75 80 68 53 99 58 76 73 85 88 91 79

Tentukan nilai ketiga kuartil dan tentukan pula posisi 88 dalam hubungannya dengan kuartil!

Pertama, urutkan data dari yang <u>terkecil</u> menuju ke yang <u>terbesar</u>

Q1 = 70,5, menyatakan bahwa ±25% nilai pada sampel mendapat nilai < 70,5

di mana:

Bm = tepi bawah kelas <u>Kuartil/Desil/Persentil yang diinginkan</u>

i = interval kelas

n = ukuran sampel data

fkm = frekuensi kumulatif sebelum kelas <u>Kuartil/Desil/Persentil yang diinginkan</u>

fm = frekuensi pada kelas <u>Kuartil/Desil/Persentil yang diinginkan</u>

nilai < median nilai > median

53 58 68 73 75 76 79 80 85 88 91 99

$$Q_{1} = \frac{68 + 73}{2} \quad Q_{2} = \frac{76 + 79}{2} \quad Q_{3} = \frac{85 + 88}{2}$$

$$= 70.5 = 77.5 = 86.5$$

$$D_7 = \frac{7.(n+1)}{10} = \cdots \qquad 85.3 \qquad \begin{array}{c} \pm 70\% \text{ nilai pada sampel} \\ \text{mendapat nilai < 85,3} \end{array}$$

$$P_{15} = \frac{15.(n+1)}{100} = \cdots \qquad 57.75 \qquad \begin{array}{l} \pm 15\% \text{ nilai pada sampel} \\ \text{mendapat nilai < 57,75} \end{array}$$

$$Q_1 = \frac{1.(n+1)}{4}$$
$$= \frac{1.(12+1)}{4} = 3,25$$

diterjemahkan sebagai :

$$X_3 + 0.25(X_4 - X_3)$$

Sehingga nilai $Q_1 = 68 + 0.25(5) = 69.25$

Q1 = 69,25; menyatakan bahwa ±25% nilai pada sampel mendapat nilai < 69,25

selesdi

