Geometric primitives #

2D point

$$x = \begin{bmatrix} x \\ y \end{bmatrix} : x = (x, y) \in \mathbb{R}^2$$

3D point

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x = (x, y, z) \in \mathbb{R}^3$$

20 Planar transformations transformation matrix Translation [1/t] 3x		<i>→ 3D</i>			
	Eransformation	matrix	#DOF	Preserves	lcon
	Translation	[1/t]2=3	2 →3	onentation	\square
	Evolidean Similarity	[R/t]	3	lengths	\Diamond
1- identidad	6 martin	[all 7			
/			7	angles	\Diamond
A - alin	Affine	[A]	6	parallelism	
K + rotation	Projective	[H]	→ 12 8	straight line	1
			→15	- , ungra me	2