Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 10

Bartłomiej Boczek, Aleksander Piotrowski, Łukasz Śmigielski

Spis treści

1.	Punkt 1																								2
2.	Punkt 2																								3
3.	Punkt 3																								6
4.	Punkt 4																							1	10
5.	Punkt 5																							1	11

Sterowanie:

$$G1 = 31\%, G2 = 36\%.$$

Wartości wyjściowe stabilizują się następująco:

$$T1_{pp} = 33.75$$
°C, $T2_{pp} = 36.62$ °C

Narysować otrzymane przebiegi na jednym rysunku. Czy właściwości statyczne obiektu można określić jako (w przybliżeniu) liniowe? Jeśli tak – wyznaczyć wzmocnienie statyczne procesu.

Rys. 2.1. Skrośne odpowiedzi skokowe procesu dla trzech różnych zmian sygnału sterującego G1 rozpoczynając z punktu pracy – pomiar na T3

Rys. 2.2. Skrośne odpowiedzi skokowe procesu dla trzech różnych zmian sygnału sterującego G2 rozpoczynając z punktu pracy – pomiar na T1

2. Punkt 2 5

Rys. 2.3. Charakterystyka statyczna procesu T1(G1,G2)

Rys. 2.4. Charakterystyka statyczna procesu T3(G1,G2)

Uzasadnić wybór parametrów optymalizacji.

Rys. 3.1. Odpowiedź skokowa wyjścia 1 przy skoku wejścia 1

Rys. 3.2. Odpowiedź skokowa wyjścia 1 przy skoku wejścia 2

Rys. 3.3. Odpowiedź skokowa wyjścia $2~\mathrm{przy}$ skoku wejścia 1

Rys. 3.4. Odpowiedź skokowa wyjścia 2 przy skoku wejścia 2

Rys. 3.5. Porównanie odpowiedzi skokowej (wyjścia 1 przy skoku wejścia 1) i aproksymowanej

Rys. 3.6. Porównanie odpowiedzi skokowej (wyjścia 1 przy skoku wejścia 2) i aproksymowanej

Rys. 3.7. Porównanie odpowiedzi skokowej (wyjścia 2 przy skoku wejścia 1) i aproksymowanej

Rys. 3.8. Porównanie odpowiedzi skokowej (wyjścia 2 przy skoku wejścia 2) i aproksymowanej

Dobrane nastawy regulatora DMC wynoszą: $D=110;\,N=130;\,N_u=6;\,\lambda=1,8;$

Rys. 4.1. Przebiegi sygnałów z regulatora DMC przy zerowym zakłó-ceniu

Dla dwóch skoków amplitudy sygna?u warto?ci zadanej dostrojone zosta?y algorytmy DMC oraz PID. Podczas dostrajania wykorzystany zosta? optymalizator ga, a nast?pnie zosta?y naniesione drobne r?czne poprawki. Dla obydwu algorytmów jako wspó?czynnik jako?ci zosta? wykorzystany b??d ?redniokwadratowy.

Nastawy DMC:

$$D = 300; N = 130; N_u = 6; \lambda = 0.01;$$

B??d: E = 3269,5.

Nastawy PID:

$$K=14,\!307\,542;\, T_i=38,\!320\,299;\, T_d=6,\!677\,860;\, T_s=0,\!5. \text{ B??d: } E=2699,\!8.$$

Nastawy te powinny by? dostrojone na rzeczywistym obiekcie, co wynika z pewnych niedok?adno?ci modelu.

Rys. 5.1. Odpowied? dla dwóch skoków sygna?u zadanego - regulacja PID

Rys. 5.2. Odpowied? dla dwóch skoków sygna?
u zadanego - regulacja DMC