- 1. 绪论
- 2. 模型评估和选择
 - 。 2.1. 经验误差与过拟合
 - 。 2.2. 偏差和方差
- 3. 线性模型
 - 3.1. 对数几率回归
 - 。 3.2. 线性判别分析

1. 绪论

Supervised Learning

Unsupervised Learning

generalization "泛化"

Generally we assume that all sampling space obey a distribution D, our samples all independent and identically distributed.(i,i,d)

induction 归纳 ——> generalization

deduction 演绎 ——> specialization

```
By simply, Assume Sampling space x and hypothesis space H are discrete. & PCh/x, Ea) represent
algorithm \mathcal{E}_{a} output probability h based on train data x. Make f = ground true function. Eat train
data 主外的误差
                                             Eote (Ea/x,f) = Exex= P(x) I(hix) + fix) P(h/x, Ea)
                                                                                                                                          tax function, True=1. False=0
Considering binary classification, Ground true function X > {0.1}, function space {0.1} (以 对 有 可能的 十定
均匀分布对误差求和,(若ft的分布则~半的fxtX的A prediction different from 1/12)
                                     Feore (Sa/x,f) = FE FOR I (h(x) + f(x)) P(h/x, Sa)
                                                                                                                                                                                                                                                      0
                                                                                          = Z p(x) Z p(h/x, Ea) ZI (h(x) + f(x))
                                                                                                                                                                                                                                                     Ø
                                                                                         = 2 P(N/X, En) $ P(N/X, En) $2 1X1
                                                                                                                                                                                                                                                     (3)
                                                                                          = \(\frac{1}{2}\) \(\frac{1}{16}\) \(\frac{1}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1}{16}\) \(\frac{1
                    M free Lunch -> Total Error has no relationship with Learning algorithm
\bigcirc - \bigcirc Assume Sampling space only contains two samples: \mathcal{X} = \{x_1, x_2\}, |\mathcal{X}| = 2, \exists \beta \not\in \mathcal{A} Ground true function:
                               fic fix11=0, fix21=0
                              f2: f2(x1)=0. f2(x2)=1?
                            fi: fix1-1, fix2)=0:
                           tui f3(X1)=1, f3(X2)=1:
    一共有 2181=22=4个函数, 扩是任何能格样布映射到2011的函数且服从约目布
```

在这里我们假设真实的目标函数 f 为"任何能将样本映射到 $\{0,1\}$ 的函数且服从均匀分布",但是实际情形并非如此,通常我们只认为能高度拟合已有样本数据的函数才是真实目标函数,例如,现在已有的样本数据为 $(x_1,0)$, $(x_2,1)$,那么此时 f_2 才是我们认为的ground true function. Since we haven't collect or even they don't exist $\{(x_1,0),(x_2,0)\}$, $\{(x_1,1),(x_2,1)\}$, $\{(x_1,1),(x_2,0)\}$, 所以 f_1 , f_3 , f_4 都不算真实目标函数。

connectionism 联接主义
perceptron 感知机
Symbolism 符号主义
statistical learning 统计学习
Support Vector Machine SVM
Crowdsourcing 众包
Ensemble Learning

2. 模型评估和选择

2.1. 经验误差与过拟合

Generalization error 泛化误差 training error 经验误差,训练误差 overfitting 过拟合 Underfitting 欠拟合 model selection hold-out 留出法 cross validation 交叉验证法

2.2. 偏差和方差

Bias-variance decomposition 偏差-方差分解

Test dataset X, Yo是X的标记, Y是X真实标记,f(X;p)为训练集D上学得模型f在X上的predict Output.以Regression为134,Learning algorithm的期望预测;

fix1=Eo[fix;0)

鄉样本數相目的不測 练集轻的话:

Varix)= Eo [(fixip) - fix))]

Mise i

E= Eo [(8,-y)]

Bias:期望输出和真实标论的差别:

Ma(2(x) = (fix) -y)2

for easy of allocusion. Assume roise expect is zero, that is, Eo[yo-y]=0

 $E(f(0)) = E_0 \left[(f(x_1,0) - y_0)^2 \right]$

= EO [(fix10) - fix) + fix)-yot)

E(x+y) = E(x) + E(y) = E(x) + E(x)

= + E_0[21 f(xi0) - f(x)) · f(x)] - E_0[2(f(xi0) - f(x)) · yo)

ELAXTB 1- ACINTB

 $= \cdots + E_0 \left[2 f(x_1 o) \cdot \hat{f}(x) - 2 \hat{f}(x) \cdot \hat{f}(x) \right] - \cdots$

= \(\dagger + 2\f(\chi) \) \[\int_0 \] \[\f(\chi) \] \[- \cdot - \f(\chi) \] \[\f(\chi) \] \

fixiDI和Jo是两个互相独创的

降析変量, Gixyコ=Erx)E(Y) = -··· + O - [2Eo[fixip)·yo]-2fix)·Eo(yo)]

= ... + 0 - { $2E_0(f(x:0) \cdot E_0(y_0) - 2\hat{f}(x) \cdot E_0(y_0)$ } ($E_0(f(x:0)) = \hat{f}(x)$)

=... to - {0}

= $E_0[f(x_1,0) - \hat{f}(x_2)^2] + E_0[f(x_1) - y + y - y_0)^2]$

= Eo [(f(x):0) f(x))2) + Eo[(f(x) - y)2]+ Eo[(y-y)2] + 2Eo[(f(x)-y)2y-y]

赚期望为0

= 60 [f(x:0) - 7(x)] + (f(x)-y) + 60[(yoy)2]

Enf:07 = 6:as2(x) + Var(x)+ E2

偏差: 對單海期望發測和真实結果的偏為程度,刻画單法預概分能力

ik: 数据状动造成的影响

噪歌 任何即 第五达到的期望近化误差不累 即学的题有自的2年度。

3. 线性模型

Linear model
Nonlinear model
Comprehensibility 可解释性
Linear regression *Euclidean* distance
least square method
parameter estimation

```
f(x) = W(x) + W(x2 + W)x3 + ... Wd xd + 6 => f(x) = wTx + b
                                                                                                                                                                                                        f(xi)=WXi+b 使 f(xi)公公
                                                                                                                                 How to Gladate the w and b? The key point is to measure the distance between fix and y
                                                                                                                                                                                                                                          (w^{*},b^{*})=avgmin \stackrel{\mathcal{L}}{\underset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}
                                                                                                  Least square method:找到一条直线,使所有样有到直线上的欧氏距离之和最小
                                                                                                                                                                                                                                                          E(w,b) = \sum_{i=1}^{m} (y_i - w_{i})^2 ( parameter estimation)
                                                                                                                E(wb) 是凸函数, 当它关于w和b的是数为O对, 得到w和b的最优解
                                                                                                       G函数: f(xith) ∈ f(xi)+f(xi),或2阶号联负(恒大于0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \frac{\partial G(Mb)}{\partial b} = \sum_{i=1}^{M} \frac{\partial}{\partial b} \left[ y_i - w x_i - b \right]^{2}
= \sum_{i=1}^{M} \left[ 2(y_i - w x_i - b) \cdot (\gamma_1) \right]
= 2(mb - \sum_{i=1}^{M} (y_i - w x_i)) = 0
                                agimb) = I'm aw [ yi -wxi b)2
                                                                                                                           = Zi= [2. ( yi-wxi-6). (-xi))
                                                                                                                           = xx [2.(wxi - 1; xi +6xi)]
                                                                                                                               =2·(w 公成一点以外+6点以)
                                                                                                                                    = 2 (w = xi2 - $ (42-61xi) =0
                     \Rightarrow \begin{cases} w \stackrel{\sim}{\Sigma} \chi_i^2 = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} b \chi_i \end{cases} \Leftrightarrow w \stackrel{\sim}{\Sigma} \chi_i^2 = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} (\bar{y} - w \bar{\chi}) \chi_i \end{cases}
b = \frac{1}{M} \stackrel{\sim}{\Sigma} (y_i - w \chi_i) \Rightarrow b = \bar{y} - w \bar{\chi} \qquad w \stackrel{\sim}{\Sigma} \chi_i^2 = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} \chi_i^2 \chi_i + w \bar{\chi} \stackrel{\sim}{\Sigma} \chi_i \end{cases}
w \stackrel{\sim}{\Sigma} \chi_i^2 = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} \chi_i^2 \chi_i + w \bar{\chi} \stackrel{\sim}{\Sigma} \chi_i \qquad w \stackrel{\sim}{\Sigma} \chi_i^2 = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} \chi_i^2 \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i - \stackrel{\sim}{\Sigma} J_i \chi_i = \stackrel{\sim}{\Sigma} J_i \chi_i 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      W = \frac{\sum_{i=1}^{M} y_i y_i - \widehat{y}_i \sum_{i=1}^{M} y_i}{\sum_{i=1}^{M} y_i^2 - \widehat{y}_i} \sum_{i=1}^{M} y_i
            公司盖松二州盖北盖松二、五荒水, 不盖松二、盖松 盖松二州(盖水)》
                            W = \frac{\sum_{i=1}^{m} \chi_{i}(\chi_{i} - \chi_{i})}{\sum_{i=1}^{m} \chi_{i}^{2} - \mu_{i}(\sum_{i=1}^{m} \chi_{i})^{2}} \qquad W = \frac{\sum_{i=1}^{m} \chi_{i}(\chi_{i} - \chi_{i})}{\sum_{i=1}^{m} \chi_{i}^{2} - \mu_{i}(\chi_{i})} = \frac{\sum_{i=1}^{m} \chi_{i}(\chi_{i} - \chi_{i})}{\sum_{i=1}^{m} \chi_{i}(\chi_{i}^{2} - \chi_{i})}
\frac{\sqrt{9}2\sqrt{3}}{\sqrt{10}} = \sqrt{2}\sqrt{3} = 2\sqrt{3}\sqrt{3} = m\sqrt{3} = 2\sqrt{3}\sqrt{3}, \qquad \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}-\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})} = \frac{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3})}{2\sqrt{3}(\sqrt{3}-\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}+\sqrt{3}\sqrt{3}
                                   黄金 x= (x, x, 12···xm) 、Xd=(x-x,x-x,···xm-x) 、サ=(y,x...yn) 、 2=(y,-9,x-9...x-9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   W = \frac{xd}{x^{\frac{1}{2}}xd}
```

```
Multivariate Linear regression fixi)=WXi+6 使得fixi)公别,
92 E_{\hat{\omega}} = (y - x_{\hat{\omega}})^{T} (y - x_{\hat{\omega}}), \quad (w^{*}, b^{*}) = \underset{\hat{\omega}}{\text{arg min}} \sum_{i=1}^{m} (f(x_{i}) - f_{i})^{2} = \underset{\hat{\omega}}{\text{arg min}} \sum_{i=1}^{m} (f_{i} - (w^{T} \lambda_{i} + b))^{2}
\frac{\partial E_{\hat{\omega}}}{\partial \hat{\omega}} = \frac{\partial}{\partial \hat{\omega}} (y^{T}y - yx_{\hat{\omega}} - \hat{\omega}^{T} x^{T}y + \hat{\omega}^{T} x^{T} x_{\hat{\omega}})
 矩阵微分线: O K(AX)=A 、 RX= K(IX)=I
            \frac{\partial (2j \, a_{ij} \, \lambda_{j}^{2})}{\partial \lambda_{k}} = a_{ik} \Rightarrow \frac{\partial (A_{i} \, \lambda_{j}^{2})}{\partial \lambda_{j}^{2}} = \begin{bmatrix} \frac{\partial (a_{i} \, \lambda_{1} + a_{i} \, \lambda_{2} + a_{i} \, \lambda_{k}^{2})}{\partial \lambda_{1}} & \frac{\partial (a_{i} \, \lambda_{1} + a_{i} \, \lambda_{k}^{2})}{\partial \lambda_{1}} & \frac{\partial (a_{i} \, \lambda_{1} + a_{i} \, \lambda_{k}^{2})}{\partial \lambda_{1}} \end{bmatrix} = \begin{bmatrix} a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots \\ a_{mi} & \cdots & a_{min} \\ \vdots & \vdots & \vdots \\ a_{mi} & \cdots & a_{min} \\ \vdots & \vdots & \vdots \\ a_{min} & \cdots & a_{min} \\ \end{bmatrix} = A
                                                                         2 Px (aTx) = Px (xTa) = a
\frac{\partial a^{T}x}{\partial x} = \frac{\partial x^{T}a}{\partial x} = a \implies \begin{bmatrix} \frac{\partial (a_1x_1 + a_2x_2 + \cdots a_nx_n)}{\partial x_1} \\ \frac{\partial (a_1x_1 + a_2x_2 + \cdots a_nx_n)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a

\frac{\partial |X_i|^2}{\partial X_i} = \frac{\partial X_i X_j}{\partial X_i} = \frac{\partial X_i}{\partial X_i} = 2X_i \Rightarrow \frac{\partial |X_i|}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i^2} = \frac{\partial (X_i^2 + X_i^2 + \dots \times X_n^2)}{\partial X_i
                                               ④ K(xTAx)=(A+AT)X , 若A是对称矩阵, 环(XTAx)=(A+AT)X=2AX
                         + az1 x2 X1 + az2 X2 x2+ az3 x2 x3 + -- azn x2 xn
                                                                                        + anixnxi+ anixnxi2+ anixxnxi3+ ··· ann xn xn
                                                                                                             [2a11X] + (a12+a21) X2 + (a13+a31) X3 + ... (a1n+a11) Xn
                               \frac{\partial(X^{T}AX)}{\partial X_{1}^{2}} = \begin{bmatrix} 2a_{11}X_{1} + (a_{12}+a_{21})X_{2} + (a_{13}+a_{31})X_{3} + \cdots + (a_{2n}+a_{n2})X_{n} \\ (a_{21}+a_{12})X_{1} + 2a_{22}X_{2} + (a_{23}+a_{32})X_{2} + \cdots + (a_{2n}+a_{n2})X_{n} \\ (a_{31}+a_{13})X_{1} + (a_{32}+a_{23})X_{2} + 2a_{33}X_{3} + \cdots + (a_{3n}+a_{n3})X_{n} \\ (a_{n1}+a_{1n})X_{1} + (a_{n2}+a_{n2})X_{2} + \cdots + \cdots + 2a_{nn}X_{n} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}
```

 $= (A + A^T) X$

$$\frac{\partial (2j) \chi_{i} a_{ij} \chi_{j}}{\partial \chi_{i}} = 2j a_{ij} \chi_{j} + 2i \chi_{i} a_{ik} = A\chi + AT\chi = (A + AT)\chi$$
(芒葉介复量在函数表达式中约次出现,可以单独计算函数对有复量的等一次出现的导致,再 把结果加起来) $f(x) = (2\chi + 1)\chi + \chi^{2} \implies f(x) = (2\chi + 1)\chi_{2} + \chi^{3} \implies f(x) = (2\chi + 1)\chi_{3} + \chi^{3} \implies f(x) = (2\chi + 1)\chi_{4} + \chi^{3} \implies f(x) = (2\chi + 1)\chi_{5} + \chi^{3} + \chi^{3}$

3.1. 对数几率回归

Unit-step function 单位阶跃函数 Surrogate function 替代函数 Logistic function Linear Discriminant Analysis LDA

3.2. 线性判别分析

Linear Discriminant Analysis LDA

Dataset: $D=\{(X_i,Y_i)\}_{i=1}^M$,好 $G\{0,1\}$ 、 令 Z_i ,从 Z_i 分别表示第 $i\in\{0,1\}$ 类示例 的集合、均值向量、协能矩阵、 若将 Dataset projecting on 直线 ω , 内 两类 样本的中心在直线上的 投售少分别为 $\omega^T u_0$, $\omega^T u_1$; If projecting all Sampling points on the line ω , 两类 样本协方差分别 为 $\omega^T Z_i \omega$, $\omega^T Z_i \omega$

$$\frac{MoX}{J} = \frac{\|w^T M_0 - w^T M_1\|_{2}^{2}}{w^T \Sigma w + w^T \Sigma w} = \frac{(\|(w^T M_0 - w^T M_1)^T / \|_{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)^T w \|_{2}^{2}}{w^T (\Sigma + \Sigma_1) w} = \frac{\|(M_0 - M_1)$$

Define within-class scatter matrix "类内散发矩阵"

Define hetwen-class scatter matrix

(Since Numerator and denominator are about w, that means, if only related to orientation of w)

拉格朗日東子法: O梯後向量台等高级切线重直
$$\Rightarrow \begin{pmatrix} f = \lambda \nabla g \\ g = 0 \end{pmatrix} \Rightarrow F = f + \lambda g \Rightarrow \begin{pmatrix} \frac{f}{5x} \\ \frac{f}{5y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$L(w,\lambda) = -w^T Sbw + \lambda (w^T Suw - 1)$$

$$\Rightarrow \frac{\partial L(w,\lambda)}{\partial w} = \frac{-\partial (w^T S b w)}{\partial w} + \lambda \frac{\partial (w^T S a w + 1)}{\partial w} = -(S_b + S_b^T) w + \lambda (S_w + S_w^T) w$$

Since So=So, Sw=Sw, So:

$$\frac{\partial L(w,\lambda)}{\partial w} = -2 Sbw + 2 \lambda Sww = 0$$

$$\Rightarrow$$
 $S_{6W} = \lambda S_{W}W$

$$w = \frac{1}{\Lambda} S_{u}(M_0 - M_1)$$
 because the ultimate solution w that we don't care the

Given the stable of digital solution, Generally, we use

Size, only are the orientation, Hence, with the orbitrary value,

Sw = VZVT Extente Land Sw 等值

LDA可以推广到多分类任务中,假定存在N个类,且第i类示例数为 m_i ,我们定理全局散度矩阵: