Question 1:

$$R(A, B, C, D, E, G, H, I, J), F = \{EC \rightarrow B, C \rightarrow D, G \rightarrow BH, H \rightarrow ACD, E \rightarrow GHI, IJ \rightarrow EG\}$$

Q(1): All the candidate keys, Prime and non-prime attributes

A(1): There are two candidate keys for R: $\{I, J\}, \{E, J\}$

Prime attributes: *E*, *I*, *J*

Non-prime attribute: A, B, C, D, G, H

Q(2): Total number of super keys, List 5 of them.

A(2): There are two candidate keys: $\{I, J\}$, $\{E, J\}$, And there are six non-prime attributes.

To construct a super key, we need to select one or two keys from the candiadte keys and also need to select equal or large than zero non-prime attributes.

So the total number of super key is:

$$\left(C_2^1 + C_2^2\right) * \left(C_6^0 + C_6^1 + C_6^2 + C_6^3 + C_6^4 + C_6^5 + C_6^6\right)$$

the result is 192

List 5 of them: $\{A, I, J\}, \{B, I, J\}, \{C, I, J\}, \{D, I, J\}, \{G, I, J\}$

Q(3): Highest normal form of R

A(3): The highest normal form of R is 1NF

Proof:

1: A Relational Database Management System does not enable multi-valued or composite attribute. So,

the relation R is in 1st normal form.

2: Because $E \to GHI$ and according to the projectivity of armstrong's axioms. We can get $E \to G$. So G is partially functionally dependent on the candidate key $\{E, J\}$

Q(4): minimal cover F_m for F

A(4):

step1: break right side into individual attributes:

$$\{EC \to B, C \to D, G \to H, G \to B, H \to A, H \to C, H \to D, E \to G, E \to H, E \to I, IJ \to E, IJ \to G\}$$

step2: for
$$EC oup B$$
, $in F - \{EC oup B\}$, B is in $\{E,C\}^+ = \{A,B,C,D,E,G,H,I\}$, delete for $C oup D$, $in F - \{C oup D\}$, D is not in $\{C\}^+ = \{C\}$, reserve for $G oup B$, $in F - \{G oup B\}$, B is not in $\{G\}^+ = \{G,H,A,C,D\}$, reserve for $G oup H$, $in F - \{G oup H\}$, H is not in $\{G\}^+ = \{G,B\}$, reserve

for
$$H oup A$$
, $in F - \{H oup A\}$, A is not in $\{H\}^+ = \{H, C, D\}$, reserve for $H oup C$, $in F - \{H oup C\}$, C is not in $\{H\}^+ = \{H, A, D\}$, reserve for $H oup D$, $in F - \{H oup D\}$, D is in $\{H\}^+ = \{H, A, C, D\}$, delete for $E oup G$, $in F - \{E oup G\}$, G is not in $\{E\}^+ = \{E, H, I, A, C, D, B\}$, reserve for $E oup H$, $in F - \{E oup H\}$, H is in $\{E\}^+ = \{E, G, I, B, H, A, C, D\}$, delete for $E oup I$, $in F - \{E oup I\}$, I is not in $\{E\}^+ = \{E, G, H, B, A, C, D\}$, reserve for $IJ oup E$, $in F - \{IJ oup E\}$, E is not in $\{IJ\}^+ = \{I, J, G, B, H, A, C, D\}$, delete for $IJ oup G$, $III oup G$, $IIII oup G$, $IIII oup G$, $IIIII oup G$, $IIIIII oup G$, $IIIII oup G$

step3: For $II \rightarrow E$, it can not be divided again.

The final result is $\{C \to D, G \to B, G \to H, H \to A, H \to C, E \to G, E \to I, IJ \to E\}$

Q(5): If the the decomposition is dependency-preserving?

A(5): It is NOT dependency-preserving

$$R_1 = \{A, B, E\}, F_1 = \{\Phi\}$$

$$R_2 = \{C, D, H\}, F_2 = \{C \to D\}$$

$$R_3 = \{E, G, H, I, J\}, F_3 = \{E \to GHI, IJ \to EG\}$$
we verify that $G \to BH$ can not be inferred by $F_1 \cup F_2 \cup F_3$.
$$\{G\}^+|_{F_1 \cup F_2 \cup F_3} = \{G\}, \text{ so it is not dependency-preserving}$$

Q(6): If the decomposition satisfies the lossless join property?

A(6): It satisfies the lossless join property

Initially S is

	A	В	С	D	Е	G	Н	I	J
R_1	а	а	b	b	а	b	b	b	Ф
R_2	b	b	а	а	b	b	а	b	b

|--|

 R_1 and R_3 share the same E. Take the $E \rightarrow GHI$

	A	В	С	D	Е	G	Н	I	J
R_1	а	а	b	b	а	а	а	а	b
R_2	b	b	а	а	b	b	а	b	b
R_3	b	b	b	b	а	а	а	а	а

 R_1 , R_2 and R_3 share the same H. Take the $H \rightarrow ACD$

	A	В	С	D	Е	G	Н	I	J
R_1	а	а	b	а	а	а	а	а	b
R_2	а	b	а	а	b	b	а	b	b
R_3	а	b	а	а	а	а	а	а	а

 R_1 and R_3 share the same G. Take the $G \rightarrow BH$

	A	В	С	D	Е	G	Н	I	J
R_1	а	а	b	а	а	а	а	а	b
R_2	а	b	а	а	b	b	а	b	b
R_3	а	а	а	а	а	а	а	а	а

The row of R_3 is all a. So it is lossless

Q(7): step-by-step lossless decomposition of R into BCNF

A(7): Answer is not unique

 $R(A, B, C, D, E, G, H, I, J), F = \{EC \rightarrow B, C \rightarrow D, G \rightarrow BH, H \rightarrow ACD, E \rightarrow GHI, IJ \rightarrow EG\}$ candidate key= $\{I, J\}, \{E, J\}$

step 1: For FD $C \rightarrow D$, C is not a super key, violating BCNF. decompose

$$\{C\}^+ = \{C, D\}$$

 $R_1 = \{C, D\}, key = \{C\}$
 $R_2 = \{A, B, C, E, G, H, I, J\}, key = \{E, J\}, \{I, J\}$

step 2: Check R_1 for BCNF condition, it is OK

step 3: Check R_2 for BCNF condition

 $G \rightarrow BH$ is not a super key, violating BCNF

$${G}^+ = {G, B, H, A, C}$$

$$R_{21} = \{G, B, H, A, C\}, key = \{G\}$$

$$R_{22} = \{G, E, I, J\}, key = \{E, J\}, \{I, J\}$$

step 4: Check R_{21} for BCNF condition:

 $H \rightarrow ACD$ is not a super key, violating BCNF decompose

$${H}^+ = {A, C}$$

$$R_{211} = \{H, A, C\}, key = \{H\}$$

$$R_{212} = \{G, B, H\}, key = \{G\}$$

step 5: check R_{211} for BCNF condition, it is OK

step 6: check R_{212} for BCNF condition, it is OK

step 7: check R_{22} for BCNF condition

 $E \rightarrow GHI$ is not a super key, violating BCNF decompose

$${E}^+ = {G, I}$$

$$R_{221} = \{E, G, I\}, key = \{E\}$$

$$R_{222} = \{E, J\}, key = \{E, J\}$$

step 8: check R_{221} for BCNF condition, it is OK

step 9: check R_{222} for BCNF condition, it is OK

step 10: Check if it is a lossless decomposition

	A	В	С	D	Е	G	Н	I	J
R_1			а	а					

R ₂₁₁	а		а			а		
R ₂₁₂		а			а	а		
R ₂₂₁				а	а		а	
R ₂₂₂				а				а

 R_{222} and R_{221} share the same $E \rightarrow GHI$

	A	В	С	D	Е	G	Н	I	J
R_1			а	а					
R ₂₁₁	а		а				а		
R ₂₁₂		а				а	а		
R ₂₂₁					а	а		а	
R ₂₂₂					а	а		а	а

 R_{222} and R_{212} share the same $G \rightarrow BH$

	A	В	С	D	Е	G	Н	I	J
R_1			а	а					
R ₂₁₁	а		а				а		
R ₂₁₂		а				а	а		
R_{221}					а	а		а	
R ₂₂₂		а			а	а	а	а	а

 R_{222} and R_{211} share the same $H \rightarrow ACD$

	4 11								
	A	В	С	D	Е	G	Н	I	J

R_1			а	а					
R ₂₁₁	а		а				а		
R ₂₁₂		а				а	а		
R_{221}					а	а		а	
R_{222}	а	а	а		а	а	а	а	а

 R_{222} and R_1 share the same $C \rightarrow D$

	A	В	С	D	Е	G	Н	I	J
R_1			а	а					
R ₂₁₁	а		а				а		
R ₂₁₂		а				а	а		
R ₂₂₁					а	а		а	
R ₂₂₂	а	а	а	а	а	а	а	а	а

The last row is all a, so it is a lossless decomposition.

Question 2:

- 1) At checkpoint, T1 T3 T4 start, T2 commits. At crash point, T1 T5 commit. So, T1 T5 redo, T3 T4 undo. (T3 undo can be omitted, as no write operation for T3 before the crash point.)
- 2) Not conflict serializable.

3) Only deadlock part is shown

T1	WL(A)	R(A)					WL(B)	Wait for T3		
Т3			WL(B)	R(B)				WL(C)	Wait for T5	
T5					WL(C)	R(C)			WL(A)	Wait for T1

4) Answer is not unique

T1	WL(A)	R(A)	WL(B)	R(B)	W(A)	UL(A)	W(B)	UL(B)				
T2									WL(C)	R(C)	W(C)	UL(C)
Т3												
T4												
T5												

T1												
T2												
Т3	WL(B)	R(B)	WL(C)	R(C)	W(B)	UL(B)	W(C)	UL(C)				
T4									WL(D)	R(D)	W(D)	UL(D)
T5												

T1												
T2												
T3												
T4	WL(A)	R(A)	W(A)	UL(A)								
T5					WL(C)	R(C)	WL(A)	R(A)	W(C)	UL(C)	W(A)	UL(A)