Статистическая точность при поиске ЭДМ заряженных частиц в накопительных кольцах

$A E Aксентьев^{1,2}$, Ю $B Сеничев^2$

 1 IKP, Forschungszentrum Jülich, Jülich, Германия

E-mail: a.aksentev@fz-juelich.de

Аннотация. На текущий момент, коллаборация "Juelich Electric Dipole moment Investigations" (JEDI), вместе с настоящими экспериментами по поиску ЭДМ на кольце COSY, разрабатывает концептуальный дизайн кольца для поиска дейтронного электрического дипольного момента (дЭДМ). Одной из главных проблем в изучении ЭДМ является прецессия спина в вертикальной плоскости, вызванная неидеальной установкой элементов ускорителя через магнитный дипольный момент (МДМ). Идея разделения ЭДМ и МДМ основана на измерении полной частоты прецессии спина в различающихся процессах и сравнении результата. Высокая точность измерения прецессии спина достигается путём сбора большого количества статистики. Коллаборация JEDI стремится детектировать ЭДМ на уровне 10^{-29} е·сm, для чего требуется точность оценки частоты $\approx 10^{-9}$ рад/сек. Статистическая точность оценки обусловлена следующими тремя факторами: полное время измерения, определяющее разброс независимой переменной; опибка измерения; временная модуляция и расстояние между точками выборки. В этой статье мы анализируем взаимосвязь между этими факторами, и оцениваем наилучшую достижимую точность в данных условиях.

1. Модель скорости счёта детектора

Мы предположим следующую модель для скорости счёта детектора:

$$N(t) = N_0(t) \cdot \left(1 + P \cdot e^{-t/\tau_d} \cdot \sin(\omega \cdot t + \phi)\right),\tag{1}$$

где au_d время декогеренции, и $N_0(t)$ скорость счёта, связанная с неполяризованным сечением взаимодействия.

Поскольку ток пучка может быть выражен как функция времени в виде

$$I(t) \equiv N^b(t)\nu = I_0 \cdot e^{\lambda_b t},$$

 λ_b время жизни пучка, то ожидаемое число частиц, рассеянных в направлении детектора,в

² Национальный Исследовательский Ядерный Университет "МИФИ," Москва, Россия

течении времени измерения Δt_c :

$$N_{0}(t) = p \cdot \int_{-\Delta t_{c}/2}^{+\Delta t_{c}/2} I(t+\tau) d\tau$$

$$= p \cdot \frac{\nu N_{0}^{b}}{\lambda_{b}} e^{\lambda_{b}t} \cdot \left(e^{\lambda_{b}\Delta t_{c}/2} - e^{-\lambda_{b}\Delta t_{c}/2} \right)$$

$$\approx \underbrace{p \cdot \nu N_{0}^{b} e^{\lambda_{b}t}}_{\text{rate } r(t)} \cdot \Delta t_{c},$$
(2)

где p вероятность "полезного" рассеяния (приблизительно 1%, согласно Ю.В. Сеничеву, д.ф-м.н., проф. (частная переписка, Декабрь 2016)).

Истинное число детектированных частиц будет распределено в соответствии с распределением Пуассона:

$$P_{N_0(t)}(\tilde{N}_0) = \frac{(r(t)\Delta t_c)^{\tilde{N}_0}}{\tilde{N}_0!} \cdot e^{-r(t)\Delta t_c},$$

из чего $\sigma^2_{\tilde{N}_0}(t) = N_0(t).$

Нас интересует математическое ожидание $N_0(t)=\mathrm{E}\left[\tilde{N}_0(t)\right]$, и его дисперсия $\sigma_{N_0}(t)$. Их получают как статистики:

$$\langle \tilde{N}_0(t) \rangle_{\Delta t_{\epsilon}} = \frac{1}{n_{c/\epsilon}} \sum_{i=1}^{n_{c/\epsilon}} \tilde{N}_0(t_i), \ n_{c/\epsilon} = \Delta t_{\epsilon} / \Delta t_c,$$

and

$$\sigma_{\tilde{N}_0(t)|\Delta t_{\epsilon}} = \frac{1}{n_{c/\epsilon}} \sum_{i=1}^{n_{c/\epsilon}} \left(\tilde{N}_0(t_i) - \langle \tilde{N}_0(t_i) \rangle_{\Delta t_{\epsilon}} \right)^2.$$

 (Δt_{ϵ}) время измерения события, Δt_{c} время измерения поляриметрии.) Будучи суммой рандомных переменных, $N_{0}(t)$ распределено нормально.

Стандартная ошибка среднего, таким образом, есть

$$\begin{split} \sigma_{N_0}(t) &= \sigma_{\tilde{N}_0}(t) / \sqrt{n_{c/\epsilon}} = \sqrt{N_0(t) \frac{\Delta t_c}{\Delta t_\epsilon}} \\ &\approx \sqrt{\frac{p \cdot \nu N_0^b}{\Delta t_\epsilon}} \cdot \Delta t_c \cdot \exp\left(\frac{\lambda_b}{2} \cdot t\right). \end{split}$$

Относительная ошибка растёт:

$$\frac{\sigma_{N_0}(t)}{N_0(t)} \approx \frac{A}{\sqrt{\Delta t_{\epsilon}}} \cdot \exp\left(-\frac{\lambda_b}{2}t\right) = \frac{A}{\sqrt{\Delta t_{\epsilon}}} \cdot \exp\left(\frac{t}{2\tau_b}\right), \ A = \frac{1}{\sqrt{p \cdot \nu N_0^b}}.$$
 (3)

2. Искомая величина

Мероя поляризации пучка является относительная асимметрия скоростей счёта детекторов: [1, стр. 17]

$$\mathcal{A} = \frac{N(\frac{\pi}{2}) - N(-\frac{\pi}{2})}{N(\frac{\pi}{2}) + N(-\frac{\pi}{2})}.$$
 (4)

В нижеследующей симуляции, данные фитированы функцией

$$\mathcal{A}(t) = \mathcal{A}(0) \cdot e^{\lambda_d \cdot t} \cdot \sin(\omega \cdot t + \phi), \qquad (5)$$

с тремя параметрами $\mathcal{A}(0)$, λ_d , и ϕ .

Из-за уменьшающегося числа частиц в пучке измерения асимметрии гетероскедастичны. Из [1, стр. 18], предполагаемая модель гетероскедастичности:

$$\sigma_{\mathcal{A}}^2(t) \approx \frac{1}{2N_0(t)}. (6)$$

3. Условия для максимальной точности

Предполагая Гауссово распределение ошибки с нулевым средним и вариацией σ_{ϵ}^2 , максимально-правдоподобная оценка вариации оценки частоты прецессии асимметрии сечения $\mathcal A$ может быть выражена как

$$\operatorname{var}\left[\hat{\omega}\right] = \frac{\sigma_{\epsilon}^{2}}{X_{tot} \cdot \operatorname{var}_{w}\left[t\right]},$$

with

$$X_{tot} = \sum_{j=1}^{n_{\epsilon}} x_{j} = \sum_{s=1}^{n_{zc}} \sum_{j=1}^{n_{\epsilon/zc}} x_{js},$$

$$\text{var}_{w}[t] = \sum_{i} w_{i} (t_{i} - \langle t \rangle_{w})^{2}, \ \langle t \rangle_{w} = \sum_{i} w_{i} t_{i},$$

$$w_{i} = \frac{x_{i}}{\sum_{j} x_{j}}, \ x_{i} = (\mathcal{A}(0) \exp(\lambda_{d} t_{i}))^{2} \cos^{2}(\omega t_{i} + \phi) = (\mu'_{\phi}(t_{i}))^{2}.$$

В выражении выше: X_{tot} полная информация Фишера выборки, и $\operatorname{var}_w[t]$ мера его дисперсии по времени. Можно заметить, что выбирая подходящие моменты для выборки, можно увеличить фактор X_{tot} , он пропорционален сумме квадратов производных сигнала по времени. Если частота и фаза уже известны до приелемого уровня точности, дальнейшее улучшение может быть достигнуто путём применения схемы выборки, в которой измерения производятся только во время быстрого изменения сигнала (модуляция сэмплинга). Такое улучшение ограничено только скоростью счёта сигнала детектора.

Оба фактора $\text{var}_w\left[t\right]$ и X_{tot} ограничены в результате декогеренции спина. Мы можем выразить $\sum_{j=1}^{n_{\epsilon/zc}} x_{js} = n_{\epsilon/zc} \cdot x_{0s}$, для некоторого среднего значения x_{0s} в данном узле $s.\ n_{\epsilon/zc}$ — число измерений асимметрии в узле. Период времени, в течение которого происходят измерения, Δt_{zc} , обозначим epems сжатия. Величина суммы $\sum_{j=1}^{n_{\epsilon/zc}} x_{js}$ падает экспоненциально в результате декогеренции, следовательно $x_{0s} = x_{01} \exp\left(\lambda_d \cdot \frac{(s-1) \cdot \pi}{\omega}\right)$. Таким образом,

$$X_{tot} = n_{\epsilon/zc} \cdot x_{01} \cdot \frac{\exp\left(\frac{\lambda_d \pi}{\omega} n_{zc}\right) - 1}{\exp\left(\frac{\lambda_d \pi}{\omega}\right) - 1} \equiv n_{\epsilon/zc} \cdot x_{01} \cdot g(n_{zc}); \tag{7}$$

$$x_{01} = \frac{1}{\Delta t_{zc}} \int_{-\Delta t_{zc}/2}^{+\Delta t_{zc}/2} \cos^2(\omega \cdot t) dt = \frac{1}{2} \cdot \left(1 + \frac{\sin \omega \Delta t_{zc}}{\omega \Delta t_{zc}}\right), \tag{8}$$

$$n_{\epsilon/zc} = \frac{\Delta t_{zc}}{\Delta t_{\epsilon}}. (9)$$

Уравнение (7) предоставляет средство для оценки предела длительности эксперимента. В Таблице 1, представлены: процент предела полной информации Фишера, время, в течении которого этот предел достигнут (в единицах времени декогеренции), и отношение сигнал/шум к этому времени. Отношение сигнал/шум вычислено в соответствии с:

$$SNR \stackrel{\triangle}{=} \frac{\mathcal{A}(0) \cdot e^{-t/\tau_d}}{\sigma_{\mathcal{A}}(t)} \approx \sqrt{2 \cdot p \cdot \nu N_0^b \cdot \Delta t_c} \cdot \mathcal{A}(0) \cdot \exp\left[-\frac{t}{\tau_d} \cdot \left(1 + \frac{1}{2} \frac{\tau_d}{\tau_b}\right)\right], \tag{10}$$

где, из $\sigma_{\mathcal{A}(0)}/\mathcal{A}(0) \approx 3\%$, фактор перед экспонентой равен 33.

Таблица 1. Количество информации Фишера (в процентах от доступного предела) содержащееся в сэмпле собранном в течение указанного времени, и соответствующее отношение сигнал/шум.

Предел FI (%)	Длительность $(\times \tau_d)$	Сигнал/шум
95	3.0	0.4
90	2.3	1.1
70	1.2	5.5
50	0.7	11.7

4. Симуляция

Мы симулировали данные из двух детекторов с параметрами собранными в таблице 2 для $T_{tot}=1000$ секунд, собранными равномерно с частотой $f_s=375$ Гц. Эти величины выбраны по следующей причине: размер пучка за одно заполнение порядка 10^{11} частиц; если мы хотим иметь время жизни пучка равное времени декогеренции, мы не можем исчерпать больше 75% пучка; только 1% всех рассеяний того сорта, который нам нужен для поляриметрии, так что нам остаётся $7.5 \cdot 10^8$ полезных рассеяний. Измерение скорочти счёта детектора $N_0(t)$ с точностью примерно 3% занимает порядка 2000 событий на детекторе, что ещё убавляет число измерений асимметрии до $3.75 \cdot 10^5 = f_s \cdot T_{tot}$. Ожидается, что длительность одного заполнения орбиты будет 1000 секунд, поэтому $f_s=375$ Гц.

Относительная ошибка скоростей счёта детекторов запечетлена на Рис. 1; асимметрия сечения, вычисленная в соответствии с уравнением (4), показана на Рис. 2. Эти данные фитируются методом Максимального Правдоподобия нелинейной, гетероскедастичной моделью заданной уравнением (5), с функцией дисперсии для весов, заданной уравнением (6). Результаты фитирования собраны в Таблицу 3.

Таблица 2. Параметры скорости счёта детекторов.

	Левый Правый	
$\overline{\phi}$	$-\pi/2$ $+\pi/2$	рад
ω	3	рад/сек
P	0.4	
$ au_d$	721	сек
$ au_b$	721	сек
$N_0(0)$	6730	

Рис. 1. Симулированная относительная ошибка измерения скорости счёта для левого и правого детекторов как функция времени.

Рис. 2. Ожидание (красная линия) и измерения выборки (чёрные точки) асимметрии сечения в симуляции.

Таблица 3. Результаты фитирования асимметрии.

Параметр	Оценка	Ошибка	Единицы
ω	0.400 -0.001 3.000 -1.571	$9.03 \cdot 10^{-5} 7.86 \cdot 10^{-7} 7.55 \cdot 10^{-7} 2.25 \cdot 10^{-2}$	1/сек рад/сек рад

4.1. Улучшение от модуляции

Если начальная оценка частоты, полученная из равномерно-собранной выборки, имеет стандартную ошибку порядка $1\cdot 10^{-6}$ рад/сек, симуляции показывают, что стандартная ошибка оценки может быть улучшена до $\approx 5.8\cdot 10^{-7}$ рад/сек.

Этот проект частично поддерживатеся программой Проекта Российской Академической Преуспеваемости "МИФИ 5/100."

Ссылки

[1] Eversmann D. Analysis of the Spin Coherence Time at the Cooler Synchrotron COSY [master's thesis on the Internet]. [Aachen (Germany)]: Rheinisch-Westfälische Technische Hochschule Aachen (RWTH); 2013 [cited 2017 Feb 28]. Available from: http://wwwo.physik.rwth-aachen.de/fileadmin/user_upload/www_physik/Institute/Inst_3B/Mitarbeiter/Joerg_Pretz/DEMasterarbeit.pdf