Автоматични измервания – биполярен транзистор

Автоматични измервания с LTSpice

Изходна волт-амперна характеристика на транзистор в схема с обща база

Изходна волт-амперна характеристика на транзистор в схема с общ емитер

Автоматични измервания с LTSpice

Автоматичните измервания се извършват посредством оператори .measure

Резултатите от измерванията са достъпни от менюто View > SPICE Error Log

Изходна волт-амперна характеристика на транзистор в схема с обща база

Симулирайте схемата на фигурата за да получите изходна волт-амперна характеристика на транзистор в схема с обща база

.step iee=0.005

Measurement: m1

step	ic(q1)	at
1	0.000995246	5
2	0.00199046	5
3	0.00497593	5

Използвайте резултатите от симулацията за да определите коефициента на предаване на емитерния ток в схема обща база α при I_{E} =2mA и U_{CB} =5V

I _E , mA	2
$I_{\mathcal{C}}$, mA	1.999
α	0.9995

$$\alpha = I_{_C} / I_{_E} = 1.999 / 2 = 0.9995$$

Изходна волт-амперна характеристика на транзистор в схема с общ емитер

Симулирайте схемата на фигурата за да получите изходна волт-амперна характеристика на транзистор в схема с общ емитер.

.meas dc M1 find lc(Q1)*1000 when Vce=5V


```
.step ibb=3e-006
```

.step ibb=1.2e-005

[.]step ibb=7e-006 (Ib = 7μ A)

Measurement: m1

step	ic(q1)*1000		at
1	0.6249	5	
2	1.45394	5	
3	2.48399	5	

Използвайте резултатите от симулацията за да определите коефициента на усилване по ток в схема общ емите β при $I_B=7\mu A$ и Uce=5V

<i>I_B</i> , μΑ	7
I_{c} , mA	1.45
β	207

$$\beta = I_C / I_B = 1.45e-3 / 7e-6 = 207$$

Измерване на t_{off} и t_{on}

Забележка: С цел опростяване, измерванията са на ниво 50% от амплитидата на сигналите, а не на 10% и 90%.

PULSE({Vin} 0 1u 1n 1n 4u 8u)

- .tran 8u
- .param Vin=3V
- .param Vcc=5V
- .measure toff TRIG v(a) VAL={Vin/2} FALL=1 TARG V(c) VAL={Vcc/2} RISE=1
- .measure ton TRIG v(a) VAL={Vin/2} RISE=1 TARG V(c) VAL={Vcc/2} FALL=1

toff=1.13447e-006 FROM 1.0005e-006 TO 2.13497e-006 **ton=2.00088e-007** FROM 5.0015e-006 TO 5.20159e-006

t _{off} [µs]	1.13
t _{on} [µs]	0.2