# Today

- Recap & questions from homework
- Pair programming: Q4 prediction intervals
- Frequentist inference algorithms
  - -Im
  - prediction intervals
  - bootstrap

#### Miscellaneous

- 00\_big\_ideas\_in\_data\_science.md
  - central ideas and theory
- 00\_fundamental\_algorithms.md
  - all the algorithms as we encounter them
- 00\_portfolio\_checklist.md
  - keep track of what you need to submit

## Homework check in

Please fill out the survey

#### Git skills

- Branching & merging
  - git branch branch\_name
  - git checkout branch\_name
  - git merge branch\_name
- Trying something out
- Contribute to a collaborative project
  - work in a branch
  - changes merged after review

## Frequentist inference algorithms

- Inference algorithms in Im are frequentist
- All frequentist inferences are based on the sampling distribution
- The sampling distribution is the frequentist approach to considering all the ways data could have happened (i.e. looking back)
- CI & p-values for parameters (betas)
- CI & prediction intervals for mean(y | x), aka "the line"

## Confidence vs prediction intervals

CI: uncertainty in mean response (estimation uncertainty)



# Pair programming

Q4 prediction intervals

## Confidence vs prediction intervals

CI: uncertainty in mean response (estimation uncertainty)



## Confidence vs prediction intervals

CI: uncertainty in mean response (estimation uncertainty)



### Sampling distribution algorithm

```
repeat very many times
sample data from the population
fit the model
estimate the parameters
plot sampling distribution (histogram) of the parameter estimates
```

### Bootstrap algorithm

```
repeat very many times

generate data based on the sample 
fit the model
estimate the parameters
plot sampling distribution (histogram) of the parameter estimates
```

## Bootstrap algorithms

- Non-parametric bootstrap
  - resample the data
- Empirical bootstrap
  - resample the residuals
- Parametric bootstrap
  - generate data from a distribution
  - use estimated parameters of the distribution

## Huge advantage

 Can obtain uncertainty for any quantity that can be calculated from any fitted model

## Code (e.g. empirical bootstrap)

```
for ( i in 1:10000 ) {
      e boot <- sample(e fit, replace=TRUE)</pre>
      df booty \leftarrow coef(fit)[1] + coef(fit)[2]*df boot<math>x + e boot
      fit boot <-lm(y \sim x, data=df boot)
      boot beta0[i] <- coef(fit boot)[1]</pre>
      boot beta1[i] <- coef(fit boot)[2]</pre>
                 Bootstrap distribution beta_0
                                           Bootstrap distribution beta_1
                                          80
                0.04
 plug in
                0.03
                                                                  Pseudocode
             Density
                                       Density
                                                                  For many times
                0.02
                                                                    Resample errors from model fit (with
                                                                  replacement)
                0.0
                                                                    Create new y-values at original x values
                                                                    Fit the model
                                                                    Keep parameter estimates
                       20
                          30
                             40
                                            8.0
                                                  9.0
                                                      10.0
                                                           11.0
                        boot beta0
                                                  boot beta1
```

# Bootstrap: further reading

#### Brief exposition:

James G, Witten D, Hastie T, Tibshirani R (2021). An Introduction to Statistical Learning: With Applications in R, Second edition. Springer, New York. Chapter 5.2.

#### Definitive references:

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Application. Cambridge University Press, Cambridge; New York, NY, USA.

Efron B, Tibshirani R (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.

## **Bootstrapped CI**

- Learning goals
  - Understand how bootstrap algorithms mimic the sampling distribution algorithm
  - Gain intuition for the plug in principle by using it directly
  - Using simulation, understand how the sampling distribution is the basis for frequentist inference
  - Develop algorithms from first principles that can be applied to any model

# Code a bootstrapped CI

- Use your linear data
- CI for  $\beta_0$ ,  $\beta_1$
- CI for y|x (aka the line)

- Use empirical bootstrap
- Use percentile method