Zu diesem Dokument sind eine oder mehrere Berichtigung/en erschienen. Sie sind online recherchier- und kostenfrei bestellbar unter <a href="www.beuth.de">www.beuth.de</a>

# **DIN EN 61709**



ICS 31.020

Ersatz für DIN EN 61709:1999-01 Siehe Anwendungsbeginn

Elektrische Bauelemente -

Zuverlässigkeit –

Referenzbedingungen für Ausfallraten und Beanspruchungsmodelle zur Umrechnung (IEC 61709:2011);

Deutsche Fassung EN 61709:2011

Electric components -

Reliability -

Reference conditions for failure rates and stress models for conversion (IEC 61709:2011); German version EN 61709:2011

Composants électriques -

Fiabilité -

Conditions de référence pour les taux de défaillance et modèles de contraintes pour la conversion (CEI 61709:2011);

Version allemande EN 61709:2011

Gesamtumfang 88 Seiten

DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE



# Anwendungsbeginn

Anwendungsbeginn für die von CENELEC am 2011-07-29 angenommene Europäische Norm als DIN-Norm ist 2012-01-01.

Für DIN EN 61709:1999-01 gilt eine Übergangsfrist bis zum 2014-07-29.

#### **Nationales Vorwort**

Vorausgegangener Norm-Entwurf: E DIN IEC 61709:2008-08.

Für diese Norm ist das nationale Arbeitsgremium K 132 "Zuverlässigkeit" der DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE (www.dke.de) zuständig.

Die enthaltene IEC-Publikation wurde vom TC 56 "Dependability" erarbeitet.

Das IEC-Komitee hat entschieden, dass der Inhalt dieser Publikation bis zu dem Datum (stability date) unverändert bleiben soll, das auf der IEC-Website unter "http://webstore.iec.ch" zu dieser Publikation angegeben ist. Zu diesem Zeitpunkt wird entsprechend der Entscheidung des Komitees die Publikation

- bestätigt,
- zurückgezogen,
- durch eine Folgeausgabe ersetzt oder
- geändert.

Für den Fall einer undatierten Verweisung im normativen Text (Verweisung auf eine Norm ohne Angabe des Ausgabedatums und ohne Hinweis auf eine Abschnittsnummer, eine Tabelle, ein Bild usw.) bezieht sich die Verweisung auf die jeweils neueste gültige Ausgabe der in Bezug genommenen Norm.

Für den Fall einer datierten Verweisung im normativen Text bezieht sich die Verweisung immer auf die in Bezug genommene Ausgabe der Norm.

Der Zusammenhang der zitierten Normen mit den entsprechenden Deutschen Normen ergibt sich, soweit ein Zusammenhang besteht, grundsätzlich über die Nummer der entsprechenden IEC-Publikation. Beispiel: IEC 60068 ist als EN 60068 als Europäische Norm durch CENELEC übernommen und als DIN EN 60068 ins Deutsche Normenwerk aufgenommen.

# Änderungen

Gegenüber DIN EN 61709:1999-01 wurden folgende Änderungen vorgenommen:

- a) Änderung des Normtitels "Bauelemente der Elektrotechnik";
- b) Überarbeitung des Hauptteiles der Norm;
- c) neuer Anhang A "Ausfallarten von Bauelementen";
- d) neuer Anhang B "Ausfallratenvorhersage";
- e) neuer Anhang C "Betrachtungen zur Entwicklung einer Datenbasis über Ausfallraten";
- f) neuer Anhang D "Potentielle Quellen für Ausfallratendaten und Methoden für die Auswahl";
- g) neuer Anhang E "Überblick über Bauelementeklassifikation".

#### Frühere Ausgaben

DIN EN 61709: 1999-01

# EUROPÄISCHE NORM EUROPEAN STANDARD NORME EUROPÉENNE

EN 61709

August 2011

ICS 31.020

Ersatz für EN 61709:1998

Deutsche Fassung

# Elektrische Bauelemente – Zuverlässigkeit – Referenzbedingungen für Ausfallraten und Beanspruchungsmodelle zur Umrechnung (IEC 61709:2011)

Electric components –
Reliability –
Reference conditions for failure rates and stress models for conversion
(IEC 61709:2011)

Composants électriques – Fiabilité – Conditions de référence pour les taux de défaillance et modèles de contraintes pour la conversion (CEI 61709:2011)

Diese Europäische Norm wurde von CENELEC am 2011-07-29 angenommen. Die CENELEC-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist.

Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Zentralsekretariat oder bei jedem CENELEC-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CENELEC-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Zentralsekretariat mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CENELEC-Mitglieder sind die nationalen elektrotechnischen Komitees von Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, Ungarn, dem Vereinigten Königreich und Zypern.

# **CENELEC**

Europäisches Komitee für Elektrotechnische Normung European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique

Zentralsekretariat: Avenue Marnix 17, B-1000 Brüssel

#### Vorwort

Der Text des Schriftstücks 56/1422/FDIS, zukünftige 2. Ausgabe von IEC 61709, ausgearbeitet von dem IEC/TC 56 "Dependability", wurde der IEC-CENELEC Parallelen Abstimmung unterworfen und von CENELEC am 2011-07-29 als EN 61709 angenommen.

Diese Europäische Norm ersetzt EN 61709:1998.

EN 61709:2011 beinhaltet folgende signifikante Änderungen gegenüber EN 61709:1998:

- Es wurden eine Reihe von Bauelement-Typen hinzugefügt und die Modelle für eine große Anzahl von Bauelementen aktualisiert.
- Es wurde neue Anhänge über Zuverlässigkeitsvorhersagen, über Datenquellen von Ausfallraten und mit Informationen zur Klassifizierung von Bauelementen hinzugefügt.

Es wird auf die Möglichkeit hingewiesen, dass einige Elemente dieses Dokuments Patentrechte berühren können. CEN und CENELEC sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Nachstehende Daten wurden festgelegt:

 spätestes Datum, zu dem die EN auf nationaler Ebene durch Veröffentlichung einer identischen nationalen Norm oder durch Anerkennung übernommen werden muss

(dop): 2012-04-29

 spätestes Datum, zu dem nationale Normen, die der EN entgegenstehen, zurückgezogen werden müssen

(dow): 2014-07-29

Der Anhang ZA wurde von CENELEC hinzugefügt.

# Anerkennungsnotiz

Der Text der Internationalen Norm IEC 61709:2011 wurde von CENELEC ohne irgendeine Abänderung als Europäische Norm angenommen.

In der offiziellen Fassung sind unter "Literaturhinweise" zu den aufgelisteten Normen die nachstehenden Anmerkungen einzutragen:

| IEC 60300-3-2:2004     | ANMERKUNG | Harmonisiert als EN 60300-3-2:2005 (nicht modifiziert).    |
|------------------------|-----------|------------------------------------------------------------|
| IEC 60721 (alle Teile) | ANMERKUNG | Harmonisiert in der Reihe EN 60721.                        |
| IEC 61360 (alle Teile) | ANMERKUNG | Harmonisiert in der Reihe EN 61360.                        |
| IEC 61360-1:2009       | ANMERKUNG | Harmonisiert als EN 61360-1:2010 (nicht modifiziert).      |
| IEC 61360-4:2005       | ANMERKUNG | Harmonisiert als EN 61360-4:2005 (nicht modifiziert).      |
| IEC 61649:2008         | ANMERKUNG | Harmonisiert als EN 61649:2008 (nicht modifiziert).        |
| IEC 61703              | ANMERKUNG | Harmonisiert als EN 61703.                                 |
| IEC 62308              | ANMERKUNG | Harmonisiert als EN 62308.                                 |
| ISO 10303-11:1994      | ANMERKUNG | Harmonisiert als EN ISO 10303-11:1995 (nicht modifiziert). |
| ISO 10303-31           | ANMERKUNG | Harmonisiert als EN ISO 10303-31.                          |
|                        |           |                                                            |

2

# Inhalt

| Vorwor | t                                                         | Seite |
|--------|-----------------------------------------------------------|-------|
|        | ing                                                       |       |
| 1      | Anwendungsbereich                                         |       |
| 2      | Normative Verweisungen                                    |       |
| 3      | Begriffe und Formelzeichen                                |       |
| 3.1    | Begriffe                                                  |       |
| 3.2    | Formelzeichen                                             |       |
| 4      | Kontext und Bedingungen                                   |       |
| 4.1    | Ausfallarten                                              |       |
| 4.2    | Berücksichtigung des Beanspruchungsprofils                |       |
| 4.3    | Lagerungsbedingungen                                      |       |
| 4.4    | Umgebungsbedingungen                                      |       |
| 5      | Allgemeine Referenzbedingungen und Beanspruchungsmodelle  |       |
| 5.1    | Empfohlene allgemeine Referenzbedingungen                 |       |
| 5.2    | Allgemeine Beanspruchungsmodelle                          |       |
| 6      | Spezifische Referenzbedingungen und Beanspruchungsmodelle |       |
| 6.1    | Integrierte Halbleiter-Schaltkreise                       | 20    |
| 6.2    | Diskrete Halbleiter                                       | 25    |
| 6.3    | Optoelektronische Bauelemente                             | 29    |
| 6.4    | Kondensatoren                                             | 34    |
| 6.5    | Widerstände und Widerstandsnetzwerke                      | 37    |
| 6.6    | Induktivitäten, Transformatoren und Spulen                | 39    |
| 6.7    | Mikrowellenbauelemente                                    | 40    |
| 6.8    | Sonstige passive Bauelemente                              | 41    |
| 6.9    | Elektrische Verbindungsstellen                            | 42    |
| 6.10   | Steckverbinder und Steckfassungen                         | 42    |
| 6.11   | Relais                                                    | 43    |
| 6.12   | Schalter und Tasten                                       | 45    |
| 6.13   | Signal- und Meldelampen                                   | 47    |
| Anhang | g A (normativ) Ausfallarten von Bauelementen              | 49    |
| Anhang | g B (informativ) Vorhersage der Ausfallrate               | 51    |
| B.1    | Allgemeines                                               | 51    |
| B.2    | Vorhersage der Ausfallrate für Baugruppen                 | 51    |
| B.2.1  | Allgemeines                                               | 51    |
| B.2.2  | Annahmen und Grenzen                                      | 52    |
| B.2.3  | Vorgehensweise für die Vorhersage der Ausfallrate         | 52    |
| B.2.4  | Vorhersagemodelle                                         | 53    |
| B.2.5  | Berücksichtigung von Beanspruchungsprofilen               | 54    |

|         |                                                                                                                              | Seite |
|---------|------------------------------------------------------------------------------------------------------------------------------|-------|
| B.2.6   | Weitere Methoden der Zuverlässigkeitsvorhersage                                                                              |       |
| B.2.7   | Gültigkeitsbetrachtungen für Zuverlässigkeitsmodelle und Vorhersagen                                                         |       |
| B.3     | Bauelementebetrachtungen                                                                                                     | 58    |
| B.3.1   | Bauelementemodell                                                                                                            | 58    |
| B.3.2   | Bauelementekennzeichnung                                                                                                     | 58    |
| B.4     | Allgemeine Betrachtungen zur Ausfallrate                                                                                     | 58    |
| B.4.1   | Allgemeines                                                                                                                  | 58    |
| B.4.2   | Allgemeines Verhalten der Ausfallrate von Bauelementen                                                                       | 59    |
| B.4.3   | Erwartungswerte für die Ausfallrate                                                                                          | 60    |
| B.4.4   | Ursachen für abweichende Ausfallraten                                                                                        | 60    |
| Annex   | C (informativ) Betrachtungen zur Entwicklung einer Datenbasis über Ausfallraten                                              | 61    |
| C.1     | Allgemeines                                                                                                                  | 61    |
| C.2     | Erfassung der Datensammlung – Erfassungsprozess                                                                              | 61    |
| C.3     | Zu erfassende Daten und Art der Datenerfassung                                                                               | 61    |
| C.4     | Berechnung und Entscheidung                                                                                                  | 62    |
| C.5     | Datenattribute für Ausfallraten-Datenbasis                                                                                   | 62    |
| Anhan   | ng D (informativ) Potentielle Quellen für Ausfallratendaten und Methoden für die Auswahl                                     | 64    |
| D.1     | Allgemeines                                                                                                                  | 64    |
| D.2     | Auswahl der Datenquelle                                                                                                      | 64    |
| D.3     | Anwenderdaten                                                                                                                | 65    |
| D.4     | Herstellerdaten                                                                                                              | 65    |
| D.5     | Handbuch-Zuverlässigkeitsdaten                                                                                               | 66    |
| Anhan   | ng E (informativ) Überblick über Bauelementeklassifikation                                                                   | 71    |
| E.1     | Allgemeines                                                                                                                  | 71    |
| E.2     | Das System von IEC 61360                                                                                                     | 71    |
| E.3     | Andere Systeme                                                                                                               | 80    |
| E.3.1   | NATO-Produktnummern                                                                                                          | 80    |
| E.3.2   | UNSPSC-Codes                                                                                                                 | 80    |
| E.3.3   | STEP/EXPRESS                                                                                                                 | 81    |
| E.3.4   | IECQ                                                                                                                         | 81    |
| E.3.5   | ECALS                                                                                                                        | 81    |
| E.3.6   | ISO 13584                                                                                                                    | 81    |
| E.3.7   | MIL-Spezifikationen                                                                                                          | 81    |
| Anhan   | ng F (informativ) Beispiele                                                                                                  | 82    |
| Literat | turhinweise                                                                                                                  | 84    |
| Anhan   | ng ZA (normativ) Normative Verweisungen auf internationale Publikationen mit ihren entsprechenden europäischen Publikationen | 86    |
|         | Auswahl der Beanspruchungsfelder entsprechend Betriebsstrom und -spannung                                                    |       |
| Bild 2  | <ul> <li>Auswahl der Beanspruchungsfelder entsprechend Betriebsstrom und -spannung</li> </ul>                                | 46    |

|                                                                                                           | Seite |
|-----------------------------------------------------------------------------------------------------------|-------|
| Bild B.1 – Beanspruchungsprofil                                                                           |       |
| Bild B.2 – Mittelung der Ausfallraten                                                                     | 56    |
| Tabelle 1 – Grundlegende Umgebungen                                                                       | 14    |
| Tabelle 2 – Werte für umgebungsbedingte Parameter für grundlegende Umgebungen                             | 15    |
| Tabelle 3 – Empfohlene Referenzbedingungen für umgebungsbedingte und mechanische Beanspruchung            | 16    |
| Tabelle 4 – Beanspruchungsfaktor für Umgebungsbedingungen $\pi_{E}$                                       | 19    |
| Tabelle 5 – Speicher                                                                                      | 20    |
| Tabelle 6 – Mikroprozessoren und Peripherie, Mikrokontroller und Signalprozessoren                        | 21    |
| Tabelle 7 – Digitale Familien- und Bus-Interface-Schaltkreise, Bustreiber- und Empfängerschaltungen       | 21    |
| Tabelle 8 – Analoge integrierte Schaltkreise (IC)                                                         | 21    |
| Tabelle 9 – Anwendungsspezifische integrierte Schaltkreise (ASICs)                                        | 22    |
| Tabelle 10 – Konstanten für Spannungsabhängigkeit                                                         | 23    |
| Tabelle 11 – Faktor $\pi_{U}$ für digitale integrierte CMOS-Schaltkreise                                  | 23    |
| Tabelle 12 – Faktor $\pi_{U}$ für bipolare analoge integrierte Schaltkreise                               | 23    |
| Tabelle 13 – Konstanten für Temperaturabhängigkeit                                                        | 23    |
| Tabelle 14 – Faktor $\pi_T$ für integrierte Schaltkreise (ohne EPROM, FLASH-EPROM, OTPROM, EEPROM, EAROM) | 24    |
| Tabelle 15 – Faktor $\pi_{T}$ für EPROM, FLASH-EPROM, OTPROM, EEPROM, EAROM                               |       |
| Tabelle 16 – Transistoren allgemein, niederfrequent                                                       | 25    |
| Tabelle 17 – Mikrowellen-Transistoren, z. B. RF > 800 MHz                                                 | 25    |
| Tabelle 18 – Dioden                                                                                       | 26    |
| Tabelle 19 – Leistungshalbleiter                                                                          | 26    |
| Tabelle 20 – Konstanten für Spannungsabhängigkeit der Transistoren                                        | 27    |
| Tabelle 21 – Faktor $\pi_{U}$ für Transistoren                                                            | 27    |
| Tabelle 22 – Konstanten für Temperaturabhängigkeit der diskreten Halbleiter                               | 27    |
| Tabelle 23 – Faktor $\pi_{T}$ für Transistoren, Referenz- und Mikrowellendioden                           | 28    |
| Tabelle 24 – Faktor $\pi_{T}$ für Dioden (ohne Referenz- und Mikrowellendioden) und Leistungshalbleiter   | 28    |
| Tabelle 25 – optoelektronische Halbleiter-Signalempfänger                                                 | 29    |
| Tabelle 26 – Leuchtdioden (LED, IRED), Laserdioden und optische Sende-Bauelemente                         | 29    |
| Tabelle 27 – Optokoppler und Lichtschranken                                                               | 30    |
| Tabelle 28 – Passive optoelektronische Bauelemente                                                        | 30    |
| Tabelle 29 – Transceiver, Transponder und optische Subsysteme                                             | 30    |
| Tabelle 30 – Konstanten für Spannungsabhängigkeit der Phototransistoren                                   | 31    |
| Tabelle 31 – Faktor $\pi_{U}$ für Phototransistoren                                                       | 31    |
| Tabelle 32 – Konstanten für Stromabhängigkeit der LEDs und IREDs                                          | 32    |

|                                                                                                   | Seite |
|---------------------------------------------------------------------------------------------------|-------|
| Tabelle 33 – Faktor $\pi_{	extsf{I}}$ für LEDs und IREDs                                          | 32    |
| Tabelle 34 – Konstanten für Temperaturabhängigkeit der optoelektronischen Bauelemente             | 32    |
| Tabelle 35 – Faktor $\pi_{T}$ für optoelektronische Bauelemente                                   | 33    |
| Tabelle 36 – Kondensatoren                                                                        | 34    |
| Tabelle 37 – Konstanten für Spannungsabhängigkeit der Kondensatoren                               | 35    |
| Tabelle 38 – Faktor $\pi_{\sf U}$ für Kondensatoren                                               | 35    |
| Tabelle 39 – Konstanten für Temperaturabhängigkeit der Kondensatoren                              | 36    |
| Tabelle 40 – Faktor $\pi_{T}$ für Kondensatoren                                                   | 37    |
| Tabelle 41 – Widerstände und Widerstandsnetzwerke                                                 | 38    |
| Tabelle 42 – Konstanten für Temperaturabhängigkeit der Widerstände                                | 38    |
| Tabelle 43 – Faktor $\pi_{T}$ für Widerstände                                                     | 39    |
| Tabelle 44 – Induktivitäten, Transformatoren und Spulen                                           | 39    |
| Tabelle 45 – Konstanten für Temperaturabhängigkeit der Induktivitäten, Transformatoren und Spulen | 39    |
| Tabelle 46 – Faktor $\pi_{T}$ für Induktivitäten, Transformatoren und Spulen                      | 40    |
| Tabelle 47 – Mikrowellenbauelemente                                                               | 40    |
| Tabelle 48 – Sonstige passive Bauelemente                                                         | 41    |
| Tabelle 49 – Elektrische Verbindungen                                                             | 42    |
| Tabelle 50 – Steckverbinder und Steckfassungen                                                    |       |
| Tabelle 51 – Relais                                                                               |       |
| Tabelle 52 – Faktor $\pi_{ES}$ für Schwachstromrelais                                             | 44    |
| Tabelle 53 – Faktor $\pi_{ES}$ für allgemeine Schaltrelais                                        |       |
| Tabelle 54 – Faktor $\pi_{ES}$ für KFZ-Relais                                                     | 45    |
| Tabelle 55 – Konstanten für Temperaturabhängigkeit der Relais                                     | 45    |
| Tabelle 56 – Faktor $\pi_{T}$ für Relais                                                          | 45    |
| Tabelle 57 – Schalter und Tasten                                                                  | 46    |
| Tabelle 58 – Faktor $\pi_{ES}$ für Schalter und Tasten für Schwachstromanwendungen                | 47    |
| Tabelle 59 – Faktor $\pi_{ES}$ für Schalter und Tasten für höhere elektrische Belastbarkeit       | 47    |
| Tabelle 60 – Signal- und Meldelampen                                                              | 47    |
| Tabelle 61 – Faktor $\pi_{\sf U}$ für Signal- und Meldelampen                                     | 48    |
| Tabelle A.1 – Ausfallarten – Integrierte Schaltkreise (ICs)(digital)                              | 49    |
| Tabelle A.2 – Ausfallarten – Transistoren, Dioden, Optokoppler                                    | 49    |
| Tabelle A.3 – Ausfallarten – Kondensatoren                                                        | 50    |
| Tabelle A.4 – Ausfallarten – Widerstände, induktive Bauelemente, Relais                           |       |
| Tabelle C.1 – Attribute für Datenbasis für Zuverlässigkeitsvorhersagen                            |       |
| Tabelle D.1 – Quellen für Ausfallratendaten                                                       |       |
| Tabelle E.1 – Klassifikationsbaum (IEC 61360)                                                     | 72    |

# **Einleitung**

Diese Internationale Norm ist für die Zuverlässigkeitsvorhersage von Bauelementen bestimmt, die in Geräten verwendet werden, und zielt auf Organisationen, die ihre eigenen Ausfallratendaten haben, und sie beschreibt, wie diese Daten zur Durchführung von Zuverlässigkeitsvorhersagen angegeben und verwendet werden können.

Sie kann von einer Organisation auch dazu verwendet werden, eine Ausfallratensammlung zu erstellen, und sie beschreibt die Referenzbedingungen, für die Feldausfallraten angegeben werden sollten. Die in diese Norm übernommenen Referenzbedingungen sind typisch für die Mehrzahl der Bauelementeanwendungen in Geräten, werden jedoch Bauelemente unter anderen Bedingungen betrieben, dann kann der Anwender diese Bedingungen als seine Referenzbedingungen angeben.

Die vorgestellten Beanspruchungsmodelle ermöglichen die Extrapolation der Ausfallraten auf andere Betriebsbedingungen, was wiederum die Ausfallratenvorhersage auf der Baugruppenebene erlaubt. Dies ermöglicht die Abschätzung der Auswirkung von Entwicklungsänderungen oder Änderungen der Umgebungsbedingungen auf die Bauelementezuverlässigkeit. Die Zuverlässigkeitsvorhersage ist in der frühen Entwicklungsphase von elektrischen Geräten äußerst nützlich. Sie kann zum Beispiel dazu verwendet werden, potentielle Zuverlässigkeitsprobleme aufzuzeigen, Strategien für die logistische Unterstützung zu planen und Entwicklungskonzepte zu bewerten.

Die hier angegebenen Beanspruchungsmodelle sind von Natur aus generisch und so einfach wie möglich, jedoch vergleichbar mit komplexeren Gleichungen in anderen Modellen.

Diese Norm enthält keine Ausfallratenwerte, aber sie beschreibt, wie Ausfallraten angegeben und verwendet werden können. Diese Vorgehensweise ermöglicht Anwendern, die relevantesten und aktuellsten Ausfallraten für Vorhersagen von der von ihnen ausgewählten Quelle auszuwählen. Diese Norm enthält auch Information über die Auswahl der Daten, die in den dargestellten Modellen verwendet werden können.

# 1 Anwendungsbereich

Diese Internationale Norm gibt Anleitung, wie Ausfallratendaten für die Zuverlässigkeitsvorhersage von elektrischen Bauelementen in Geräten eingesetzt werden können.

Die Referenzbedingungen sind numerische Werte von Beanspruchungen, die typischerweise für Bauelemente in der Mehrzahl der Anwendungen beobachtet werden. Referenzbedingungen sind nützlich, da sie die Grundlage für die Berechnung von Ausfallraten unter beliebigen Bedingungen unter Verwendung von Beanspruchungsmodellen bilden, die die tatsächlichen Beanspruchungen berücksichtigen. Die bei Referenzbedingungen angegebenen Ausfallraten ermöglichen realistische Zuverlässigkeitsvorhersagen, die in der frühen Entwicklungsphase durchgeführt werden.

Die in dieser Norm beschriebenen Beanspruchungsmodelle sind generisch und können, wenn notwendig, als Basis für die Umrechnung der Ausfallratendaten von diesen Referenzbedingungen zu den tatsächlichen Betriebsbedingungen verwendet werden. Dies vereinfacht die Vorgehensweise bei der Vorhersage. Die Umrechnung der Ausfallratendaten ist nur innerhalb der angegeben Beanspruchungsgrenzwerte der Bauelemente zulässig.

Diese Norm enthält auch Hinweise, wie eine Ausfallratensammlung erstellt werden kann, um Ausfallraten bereitzustellen, die mit den zugehörigen Beanspruchungsmodellen verwendet werden können. Es werden Referenzbedingungen für Ausfallratendaten festgelegt, damit Daten von verschiedenen Quellen auf einheitlicher Basis verglichen werden können. Werden Daten über Ausfallraten in Übereinstimmung mit dieser Internationalen Norm angegeben, dann ist keine zusätzliche Information über die festgelegten Bedingungen notwendig.

In dieser Norm sind keine Werte für Ausfallraten angegeben – sie stellt vielmehr Modelle bereit, mit denen Ausfallraten, die auf andere Weise erhalten wurden, von einer Betriebsbedingung zu einer anderen Betriebsbedingung umgerechnet werden können.

#### DIN EN 61709:2012-01 EN 61709:2011

Für die in dieser Norm beschriebene Vorhersagemethode wird davon ausgegangen, dass die verwendeten Bauelemente innerhalb ihrer Brauchbarkeitsdauer verwendet werden. Die Methoden in dieser Norm können allgemein angewendet werden, sie werden aber spezifisch auf die Bauelementefamilien angewendet, die in Abschnitt 6 und Abschnitt E.2 angegeben sind.

# 2 Normative Verweisungen

Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

IEC 60050-191, International Electrotechnical Vocabulary – Part 191: Dependability and quality of service

IEC 60605-6, Equipment reliability testing – Part 6: Tests for the validity and estimation of the constant failure rate and constant failure intensity

IEC 60721-3-3, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 3: Stationary use at weather protected locations

IEC 60721-3-4, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 4: Stationary use at non-weatherprotected locations

IEC 60721-3-5, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 5: Ground vehicle installations

IEC 60721-3-7, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 7: Portable and non-stationary use

# 3 Begriffe und Formelzeichen

# 3.1 Begriffe

Für die Anwendung dieses Dokuments gelten die Begriffe nach IEC 60050-191 und die folgenden Begriffe.

#### 3.1.1

#### elektrisches Bauteil

Bauteil mit leitenden Anschlüssen, die mit Spannungen oder Strömen beaufschlagt werden dürfen oder Spannungen oder Ströme liefern können

[IEC 61360-1:2009, 2.18]

ANMERKUNG Der Begriff "Elektrisches Bauteil" schließt die allgemein verwendenden Begriffe "elektronisches Bauelement", "elektrisches Bauelement" und "elektromechanisches Bauelement" ein.

#### 3.1.2

#### Ausfall (einer Einheit)

Beendigung der Fähigkeit, eine geforderte Funktion zu erfüllen

ANMERKUNG 1 Wenn die Beendigung der Fähigkeit durch einen latenten Fehlzustand verursacht wird, dann tritt der Ausfall auf, wenn bestimmte Umstände zusammentreffen.

ANMERKUNG 2 Der Ausfall einer Einheit ist ein Ereignis, der zum Fehlzustand dieser Einheit führt, was ein Zustand ist.

#### 3.1.3

#### Ausfallart

Art, in der Ausfälle auftreten

ANMERKUNG Eine Ausfallart kann durch den Verlust der Funktion oder den erfolgten Zustandsübergang definiert sein.

#### 3.1.4

# momentane Ausfallrate Ausfallrate

Grenzwert – falls er existiert – des Quotienten der bedingten Wahrscheinlichkeit, dass der Zeitpunkt des Ausfalls einer nicht instand zu setzenden Einheit in ein gegebenes Zeitintervall  $(t,t+\Delta t)$  fällt, durch Dauer  $\Delta t$  dieses Zeitintervalls, wenn  $\Delta t$  gegen null geht, unter der Bedingung, dass die Einheit im Zeitintervall (0,t) nicht ausgefallen ist

ANMERKUNG 1 Die momentane Ausfallrate  $\lambda(t)$  wird durch die Gleichung

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \cdot \frac{F(t + \Delta t) - F(t)}{R(t)} = \frac{f(t)}{R(t)}$$

ausgedrückt.

Dabei sind F(t) und f(t) die Verteilungsfunktion und die Wahrscheinlichkeitsdichte des Ausfallzeitpunktes, R(t) ist die Zuverlässigkeitsfunktion bezogen auf die Zuverlässigkeit  $R(t_1,t_2)$  durch R(t)=R(0,t).

ANMERKUNG 2 Siehe IEC 61703.

ANMERKUNG 3 Andere im Englischen verwendete Begriffe für die momentane Ausfallrate sind "hazard function", "hazard rate" und "force of mortality" (Abkürzung FOM).

ANMERKUNG 4 In dieser Norm wird  $\lambda(t)$  über der Zeit als konstant angenommen.

#### 3.1.5

#### Referenzbedingungen

Beanspruchungen sind so gewählt, dass sie der Mehrzahl der Bauelementeanwendungen in Geräten entsprechen.

ANMERKUNG Die Beanspruchungen beinhalten elektrische Beanspruchungen, Temperatur und Umgebungsbedingungen.

#### 3.1.6

# Ausfallrate unter Referenzbedingungen

Ausfallrate unter den in dieser Norm angegeben Referenzbedingungen

ANMERKUNG Die Ausfallrate ist bauelementespezifisch, d. h. sie beinhaltet die Auswirkung der Komplexität, der Gehäusetechnologie, die Abhängigkeit von Herstellern und den Herstellprozess usw.

#### 3.1.7

#### **Betriebszyklus**

festgelegte Folge von Betriebsbedingungen

[IEC 60050-151:2001, 151-16-02]

ANMERKUNG Der Betriebszyklus gibt an, ob Bauelemente während des Betriebes dauernd oder intermittierend beansprucht werden. Dauerbetrieb ist als Betrieb über einen längeren Zeitraum bei konstanter oder wechselnder Belastung definiert (z. B. Leitsysteme, Fernsprechvermittlungseinrichtungen). Aussetzbetrieb ist als Betrieb bei konstanter oder wechselnder Belastung während des betriebsfähigen Zustandes definiert (z. B. numerische Maschinensteuerungen, Straßenverkehrsampeln).

# 3.1.8

#### Vorhersage

Berechnungsvorgang zur Ermittlung des vorhergesagten Wertes einer Größe

ANMERKUNG Die Benennung "Vorhersage" kann auch zur Bezeichnung des vorhergesagten Wertes einer Größe benutzt werden.

#### DIN EN 61709:2012-01 EN 61709:2011

#### 3.1.9

#### **Bauelement**

wesentlicher Bestandteil einer Einrichtung, der nicht physisch in kleinere Bestandteile aufgeteilt werden kann, ohne seine spezifische Funktion zu verlieren

[IEC 60050:2001, 151-11-21]

#### 3.1.10

#### Ausrüstung

#### **Betriebsmittel**

einzelnes Gerät oder Gesamtheit von Einrichtungen oder Geräten oder Gesamtheit der wesentlichen Einrichtungen einer Anlage oder alle zur Ausführung einer bestimmten Aufgabe notwendigen Einrichtungen

ANMERKUNG Beispiele für Ausrüstungen oder Betriebsmittel sind ein Transformator, die Ausrüstung einer Schaltstation oder eine Messeinrichtung.

[IEC 60050-151:2001, 151-11-25]

#### 3.1.11

#### Brauchbarkeitsintervall

#### Brauchbarkeitszeit

Zeitintervall von der ersten Anwendung bis zu dem Zeitpunkt, bei dem die Anwenderanforderungen aufgrund der Wirtschaftlichkeit oder Veralterung nicht mehr erfüllt sind

#### 3.1.12

#### Drift

Differenz zwischen dem Endwert einer Kenngröße am Ende eines spezifizierten Zeitintervalls und dem Startwert, wenn alle anderen Betriebsbedingungen konstant gehalten wurden

ANMERKUNG Die Verwendung des Begriffs "Drift" mit Bezug auf die unmittelbare Änderung einer Kenngröße als direkte Reaktion auf geänderte Betriebsbedingungen (zum Beispiel Temperatur) wird abgelehnt.

[IEC 60747-1:2006, 3.6.1, modifiziert]

#### 3.1.13

# Ersatztemperatur (eines Halbleiterbauelements)

theoretischer Temperaturwert, der mit Hilfe einer vereinfachten Darstellung des thermischen und elektrischen Verhaltens des Halbleiterbauelements berechnet werden kann

[IEC 60050-521: 2002, 521-05-14, modifiziert]

#### 3.1.14

#### **Ersatz-Sperrschichttemperatur**

Ersatztemperatur des Übergangs eines Halbleiterbauelements

[IEC 60050-521:2002, 521-05-15]

ANMERKUNG Die Ersatztemperatur ist nicht notwendigerweise die höchste Temperatur im Bauelement.

#### 3.2 Formelzeichen

In dieser Norm werden folgende Formelzeichen angewendet:

S Anzahl der Schaltspiele je Stunde

E<sub>a</sub> Aktivierungsenergie eines Ausfallprozesses

 $I_{\sf op}$  Betriebsstrom

I<sub>rat</sub> Bemessungsstrom

I<sub>ref</sub> Referenzstrom

Pop Betriebsverlustleistung

P<sub>rat</sub> Bemessungsverlustleistung

P<sub>ref</sub> Referenzverlustleistung

 $R(t_1,t_2)$  Überlebenswahrscheinlichkeit zwischen den zwei Zeitpunkten  $t_1$  and  $t_2$ 

R<sub>th</sub> Wärmewiderstand

R<sub>th,amb</sub> Wärmewiderstand (gegen die Umgebung)

S<sub>ref</sub> Referenz-Schaltspiele je Stunde

T<sub>amb</sub> Umgebungstemperatur in Kelvin

*T*<sub>0</sub> Referenzumgebungstemperatur in Kelvin

 $T_{\text{ref}}$  Referenztemperatur in Kelvin

 $U_{\mathsf{op}}$  Betriebsspannung

 $U_{\rm rat}$  Bemessungsspannung

 $U_{\text{ref}}$  Referenzspannung

 $t_{\mathrm{p}}$  Zeitanteil mit Teillast für eine Baugruppe

 $t_{\rm i}$  Zeitanteil des Stillstands für eine Baugruppe

 $t_{\rm f}$  Zeitanteil mit Volllast für eine Baugruppe

β Formparameter der Weibull-Verteilung

Δ*T* tatsächliche Eigenerwärmung in Grad Celsius

 $\Delta T_{\rm ref}$  Referenzeigenerwärmung in Grad Celsius

 $\theta_{
m amb}$  Umgebungstemperatur in Grad Celsius

 $\theta_{op}$  Betriebstemperatur in Grad Celsius<sup>N1)</sup>

- für Kondensatoren die tatsächliche Kondensatortemperatur,
- für diskrete Halbleiter und optoelektronische Bauelemente die tatsächliche Sperrschichttemperatur,
- für Induktivitäten die tatsächliche mittlere Wicklungstemperatur,
- für integrierte Schaltkreise (ICs) die tatsächliche Ersatz-Sperrschichttemperatur,
- für sonstige elektronische Bauelemente die tatsächliche Umgebungstemperatur,
- für Widerstände die tatsächliche mittlere Temperatur des Widerstandselementes

Nationale Fußnote: Die folgenden vier Zeilen gehören nicht zu  $\theta_{amb}$ , wie in der IEC-Publikation fälschlich aufgeführt, sondern zu  $\theta_{op}$ .

#### DIN EN 61709:2012-01 EN 61709:2011

θ<sub>0</sub> Referenzumgebungstemperatur in Grad Celsius

 $\theta_{\text{ref}}$  Referenztemperatur in Grad Celsius

- für Kondensatoren die Kondensatortemperatur unter Referenzbedingungen,
- für diskrete Halbleiter und optoelektronische Bauelemente die Sperrschichttemperatur unter Referenzbedingungen,
- für Induktivitäten die mittlere Wicklungstemperatur unter Referenzbedingungen,
- für integrierte Schaltkreise die Ersatz-Sperrschichttemperatur unter Referenzbedingungen,
- für sonstige elektronische Bauelemente die Bauelementetemperatur unter Referenzbedingungen,
- für Widerstände die mittlere Temperatur des Widerstandselementes unter Referenzbedingungen

 $\lambda_{\rm f}$  Ausfallrate bei Volllast für die Baugruppe

An Ausfallrate bei Teillast für die Baugruppe

λ<sub>i</sub> Ausfallrate bei Stillstand für die Baugruppe

 $\lambda_{component}$  Ausfallrate eines Bauelementes

 $\lambda_{
m mode}$  Ausfallrate einer Ausfallart eines Bauelementes

 $\lambda_{S}$  Ausfallrate eines Systems

Ausfallrate unter Betriebsbedingungen
 Ausfallrate unter Referenzbedingungen

π<sub>I</sub> Faktor für Stromabhängigkeit

 $\pi_{ES}$  Faktor für Abhängigkeit von der elektrischen Beanspruchung

 $\pi_{\mathsf{E}}$  Faktor für Abhängigkeit von Umgebungsbedingungen

 $\pi_{op}$  Faktor für Beanspruchungsprofil

 $\pi_{S}$  Faktor für Abhängigkeit von der Schalthäufigkeit

 $\pi_{\mathsf{T}}$  Faktor für Temperaturabhängigkeit  $\pi_{\mathsf{U}}$  Faktor für Spannungsabhängigkeit

# 4 Kontext und Bedingungen

#### 4.1 Ausfallarten

Die bevorzugte Kenngröße für Zuverlässigkeitsdaten von elektrischen Bauelementen ist die (momentane) Ausfallrate. Es ist zu beachten, dass das exakt beobachtete Ereignis, das festgestellt wird, eine Ausfallart ist, obwohl es oft allgemein als Ausfall definiert wird.

In Geräten wird ein Ausfall (eine Ausfallart) oder ein Funktionsausfall durch eine Bauelementeausfallart verursacht, wobei diese Bauelementeausfallart für den vom Gerät ausgeführten Anwendungsfall von Bedeutung ist.

Es sollte beachtet werden, dass ein Bauelement viele Funktionen hat und davon fallweise nur einige für eine spezielle Anwendung verwendet werden. Ein Funktionsausfall auf Geräteebene tritt nur dann auf, wenn ein Ausfall der Bauelementefunktion auftritt, die diese Gerätefunktion unterstützt.

Außerdem ist für einen Schaltkreis das Vorhandensein von Bauelementefunktionen in Bezug auf die Anforderungen des Entwicklers notwendig; das wird nicht immer den ganzen Funktionsumfang des Bauelementes

umfassen, und eine spezielle Funktion wird nicht immer in Bezug auf funktionale Kenngrößen bis zu der im Datenblatt angegebenen Leistungsgrenze und Belastbarkeit betrieben werden.

Handbücher definieren üblicherweise die Ausfallrate als einen Gesamtwert, der alle Ausfallarten einschließt. Das bedeutet, dass die Bauelementeausfallrate als Summe der Ausfallraten aller Ausfallarten betrachtet werden kann:

$$\lambda_{\text{component}} = \sum_{i=1}^{n} (\lambda_{\text{mode}})_{i}$$
 (1)

Dabei ist  $(\lambda_{\text{mode}})_i$  die Ausfallrate des Bauelementes, in dem die Ausfallart i auftritt, und n die Anzahl der Ausfallarten.

Ausfallarten sind im Anhang A angegeben, und weitere Details über Ausfälle enthält Anhang B.

# 4.2 Berücksichtigung des Beanspruchungsprofils

Einer der wesentlichen Faktoren, die die Bauelementezuverlässigkeit beeinflussen, ist das Beanspruchungsprofil. Dieses wird abhängig von der auftretenden Beanspruchungsart variieren. Dies kann Dauerbetrieb über der Zeit auf festem Niveau, Dauerbetrieb über der Zeit auf veränderlichem Niveau oder sporadisch entweder auf festem oder veränderlichem Niveau sein. In einigen Fällen könnte das Ein- und Ausschalten signifikant und von größerer Bedeutung sein als die stationären Betriebsbedingungen. Die sorgfältige Betrachtung des Beanspruchungsprofils ist notwendig, um völlig zu verstehen, wie es die Bauelementezuverlässigkeit beeinflusst.

Das Beanspruchungsprofil kann auf der Kalenderzeit oder auf der aktuellen Betriebszeit basierend berücksichtigt werden, oder es kann Zyklus-bezogen sein (z. B. wie oft eine Einheit verwendet wird).

# 4.3 Lagerungsbedingungen

Bauelemente unter Lagerungsbedingungen sind nicht vor Ausfällen geschützt. Die in dieser Norm angegebenen Beanspruchungsmodelle für die Faktoren für die Abhängigkeit von Umgebungsbedingungen treffen jedoch möglicherweise nicht zu, da sie nur Betriebsbedingungen berücksichtigen. Unter Lagerungsbedingungen können unterschiedliche Ausfallmechanismen auftreten, die in den Modellen nicht berücksichtigt sind.

Lagerungsbedingungen sollten getrennt von Betriebsbedingungen behandelt werden. Sie können das Ausfallverhalten der Bauelemente im späteren Betrieb beeinflussen.

#### 4.4 Umgebungsbedingungen

Die Umgebung trägt zum Ausfall bei, der während der Betriebsdauer des Gerätes auftritt. Deshalb sollten die Dauer und Intensität der umgebungsbedingten Beanspruchungen im Betriebsmodell des Gerätes berücksichtigt werden.

Eine strengere Umgebung kann öfter auftretende Ausfälle verursachen als eine weniger strenge. Es gibt normalerweise mehrere Umgebungsaspekte, die für einen spezifischen Ausfall relevant sind und die alle verstanden werden sollten. Die örtliche Lage der Umgebung ist ebenfalls wichtig, z. B. sind bei einem Flugzeug die Umgebungen in der Kabine und am Triebwerk sehr unterschiedlich.

Die Umgebung kann in Form mehrerer Parameter beschrieben werden. IEC 60721-3-3 beschreibt die Umgebung in Form von

- klimatischen Bedingungen,
- speziellen klimatischen Bedingungen,
- biologischen Bedingungen,
- chemisch aktiven Substanzen,
- mechanisch aktiven Substanzen,
- mechanischen Bedingungen (sowohl statisch als auch dynamisch).

#### DIN EN 61709:2012-01 EN 61709:2011

Alle oben angegebenen Bedingungen sind im Allgemeinen für die Gerätezuverlässigkeit von Bedeutung (Ausfallrate), und es ist sinnvoll zu berücksichtigen, dass die Zuverlässigkeit von Bauelementen und damit die von den Geräten abnimmt, wenn die umgebungsbedingte Beanspruchung zunimmt (siehe Reihe IEC 60721 hinsichtlich einer detaillierten quantitativen Beschreibung der umgebungsbedingten Parameter für jede Umgebung).

In dieser Norm wird angenommen, dass die klimatischen und mechanischen Bedingungen die wichtigsten sind, und dies gilt auch für viele Standardanwendungen von Bauelementen. Es kann jedoch Situationen geben, in denen z. B. chemische Bedingungen eine höhere Ausfallrate ergeben könnten.

Deshalb werden nur die klimatischen und mechanischen Parameter zur Beschreibung der Auswirkung der Referenz-Umgebungen auf die Ausfallrate verwendet. Die Temperatur wird jedoch in dieser Norm getrennt betrachtet, und der Einfachheit halber werden drei grundlegende Umgebungen ausgewählt, die konventionell mit E1, E2 und E3 bezeichnet werden. Diese Umgebungen beziehen sich auf allgemeine Anwendungssituationen im Einsatz unter Berücksichtigung spezifischer Werte für die umgebungsbedingten Parameter. Diese sind in Tabelle 1 festgelegt.

#### Tabelle 1 - Grundlegende Umgebungen

| E1 | Stationäre Anwendung in wettergeschützten Einsatz-<br>orten                                  | Diese Umgebung ist höchst unempfindlich gegenüber dem Wetter im Freien, und die Luftfeuchtigkeit wird innerhalb festgelegter Grenzen geregelt.  Das ist typisch für Geräte der Nachrichtentechnik und Computer, die in Gebäuden verwendet werden. Dies schließt Büroumgebungen mit ein. |
|----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E2 | Stationäre Anwendung in teilweise wettergeschützten und nicht wettergeschützten Einsatzorten | Diese Umgebung weist thermische und mechanische Beanspruchungen auf, die direkt durch natürliche Umgebungsbedingungen beeinflusst sind.  Das ist typisch für Geräte, die im Freien installiert sind.                                                                                    |
| E3 | Tragbare und ortsveränder-<br>liche Anwendung, Installation<br>in Bodenfahrzeugen            | Diese Umgebung weist mechanische Beanspruchung und starke Temperaturgradienten auf.  Das ist typisch für auf Fahrzeugen installierte Geräte oder tragbare Geräte.                                                                                                                       |

Es können andere Umgebungen festgelegt werden, zu Einzelheiten siehe 5.2.5.

Tabelle 2 enthält die Werte der umgebungsbedingten Parameter und ihre Beziehung zu den in den entsprechenden IEC-Normen angegebenen Klassen.

Der Einfluss der Umgebung kann als eine Änderung der Ausfallrate unter Anwendung eines Faktors für die Umgebungsabhängigkeit  $\pi_{\mathsf{E}}$  beschrieben werden (siehe Tabelle 4). Es ist zu beachten, dass  $\pi_{\mathsf{E}}$  ein diskreter Faktor ist, da er auf nichtkontinuierlichen Daten basiert und eine große Anzahl unterschiedlicher untergeordneter Faktoren zusammenfasst.

Tabelle 2 – Werte für umgebungsbedingte Parameter für grundlegende Umgebungen

| Grundlegende Umgebungen                         | E1                                        | E1 E2                            |                                                                                                           | E3                                     |                                                                                |                     |  |
|-------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|---------------------|--|
|                                                 | Stationäre An<br>in wetterges<br>Einsatzo | chützten                         | Stationäre Anwendung<br>in teilweise wetterge-<br>schützten und nicht wetter-<br>geschützten Einsatzorten |                                        | Tragbare und ortsveränderlich<br>Anwendung, Installation in<br>Bodenfahrzeugen |                     |  |
| Temperaturänderungsrate                         | ≤ 0,5 °C                                  | /min                             | > 0,5 °C/                                                                                                 | min min                                | > 0,5 °C/n                                                                     | nin                 |  |
| Stationäre Vibration, sinusförmig               | 2 Hz bis 9 Hz<br>9 Hz bis 200 Hz          | < 1,5 mm<br>≤ 5 m/s <sup>2</sup> | 2 Hz bis 9 Hz<br>9 Hz bis 200 Hz                                                                          | $\leq$ 3 mm $\leq$ 10 m/s <sup>2</sup> | 2 Hz bis 9 Hz > 3 mm<br>9 Hz bis 200 Hz ≥ 10 m/s<br>200 Hz bis 500 Hz ≥ 15 m/s |                     |  |
| Nichtstationäre Vibration einschließlich Schock | ≤ 70 m                                    | /s²                              | ≤ 250 m                                                                                                   | ı/s²                                   | > 250 m/s <sup>2</sup>                                                         |                     |  |
| IEC 60721-3-3-Klassen                           | 3K1 3K2 3K3 3K4<br>3M1 3M2 3M3            | 1 3K5 3K6                        | 3K7 3K7L 3K8 3K<br>3K9 3K10 3M4 3M                                                                        |                                        | -                                                                              |                     |  |
| IEC 60721-3-4-Klassen                           | _                                         |                                  | _                                                                                                         |                                        | 4K1 4K2 4K3 4K4 4k                                                             | (4H 4K4L            |  |
| IEC 60721-3-5-Klassen                           | _                                         |                                  | -                                                                                                         |                                        | 5K1 5K2 5K3 5K4 5K4H 5K4L<br>5K5 5K6 5M1 5M2 5M3                               |                     |  |
| IEC 60721-3-7-Klassen                           |                                           |                                  | -                                                                                                         |                                        | 7K1 7K2 7K3 7K4 7K5                                                            |                     |  |
| ETS 300 019-1-3-Klassen                         | 3.1; 3.2; 3.3                             |                                  | 3.4; 3.5                                                                                                  |                                        | _                                                                              |                     |  |
| ETS 300 019-1-4-Klassen                         | _                                         |                                  | 4.1; 4.1                                                                                                  | IE                                     | _                                                                              |                     |  |
| ETS 300 019-1-8-Klassen                         | 8.1 + N                                   | ote                              | _                                                                                                         |                                        | _                                                                              |                     |  |
| ETS 300 019-1-5-Klassen                         | _                                         |                                  | _                                                                                                         |                                        | 5.1; 5.2                                                                       |                     |  |
| ETS 300 019-1-7-Klassen                         | _                                         |                                  | _                                                                                                         |                                        | 7.1; 7.2; 7.3                                                                  | 7.1; 7.2; 7.3; 7.3E |  |

Der Einfachheit halber enthält diese Norm nur drei Umgebungen. Der Anwender kann jedoch unter Verwendung der gleichen Methodik jede Umgebung beschreiben und den dazugehörigen Umgebungsanwendungseffekt  $\pi_{E}$  festlegen, wie in 5.2.5 beschrieben.

# 5 Allgemeine Referenzbedingungen und Beanspruchungsmodelle

# 5.1 Empfohlene allgemeine Referenzbedingungen

Allgemeine Referenzbedingungen sind solche, die für alle Bauelementtypen gelten. In dieser Norm schließen diese elektrische Beanspruchungen, Temperatur und Umgebungsbedingungen ein. Wenn erforderlich und wenn Modelle verfügbar sind, können diese auf der spezifischen Bauelementeebene berücksichtigt werden.

Die Empfehlungen in Tabelle 3 sollten von einer Organisation verwendet werden, es sei denn, diese sind für die normalen Einsatzbedingungen der Geräte dieser Organisation nicht zutreffend. Der Organisation bleibt es dann unbenommen, ihre eigenen entsprechenden Referenzbedingungen zu wählen.

Die gewählten Werte sind typisch für die Mehrzahl der Bauelemente-Betriebsbedingungen. Jede Organisation sollte Bedingungen wählen, die näher an den eigenen aktuellen Erfahrungen liegen, wenn diese von den in Tabelle 3 angegebenen abweichen.

Allgemeine Modelle sind nicht verfügbar.

Tabelle 3 – Empfohlene Referenzbedingungen für umgebungsbedingte und mechanische Beanspruchung

| Beanspruchungsart                | Referenzbedingung <sup>a</sup>                 |
|----------------------------------|------------------------------------------------|
| Umgebungstemperatur <sup>b</sup> | <i>θ</i> <sub>0</sub> = 40 °C                  |
| Umgebungsbedingung               | Umgebung E1 (siehe Tabelle 1)                  |
| Sonderbeanspruchungen            | In dieser Norm nicht angesprochen <sup>c</sup> |

Die unter diesen Bedingungen angegeben Ausfallraten gelten nur für Bauelemente, die nicht während des Transports bzw. der Lagerung beschädigt wurden.

- Im Sinne dieser Norm ist die Umgebungstemperatur die Temperatur des Mediums direkt am Bauelement während der Betriebszeit des Gerätes ohne Berücksichtigung einer möglichen Eigenerwärmung des Bauelementes. Die Umgebung des Bauelementes sollte festgelegt sein.
- Sonderbeanspruchungen schließen Wind, Regen und Schnee, Vereisung, Tropf-, Sprüh-, Spritz- oder Strahlwasser, Staub (chemisch wirksam oder nicht wirksam), Einwirkung von tierischen Schädlingen, aggressiven Gasen, radioaktive Strahlung usw. ein. Diese Beanspruchungen können in Bezug auf Ausfälle signifikant sein, nach allgemein guter Praxis sollten sie jedoch durch Entwicklungspraktiken berücksichtigt werden. Es kann Fälle geben, in denen ihr Einfluss durch anwendbare Modelle behandelt werden kann. Diese Beanspruchungen haben einen derart weiten Bereich von Einflüssen, dass es nicht angebracht wäre, sie in dieser Norm anzusprechen.

# 5.2 Allgemeine Beanspruchungsmodelle

#### 5.2.1 Allgemeines

Bauelemente werden nicht immer unter Referenzbedingungen betrieben. In solchen Fällen werden die betrieblichen Bedingungen zu Ausfallraten führen, die von denen unter Referenzbedingungen abweichen. Deshalb werden gegebenenfalls Modelle für Beanspruchungsfaktoren benötigt, mit denen die Ausfallraten unter Referenzbedingungen in Werte unter Betriebsbedingungen (tatsächliche Umgebungstemperatur und tatsächliche elektrische Beanspruchung der Bauelemente) und umgekehrt umgerechnet werden können. Im Abschnitt 6 sind spezifische Beanspruchungsmodelle und Werte für  $\pi$ -Faktoren für Bauelementearten angegeben, und sie sollten für die Umrechnung von Referenzausfallraten in Ausfallraten unter Feldeinsatzbedingungen verwendet werden. Sie sind ein Maß für die Veränderung der Ausfallrate aufgrund der Änderungen von Beanspruchung oder Bedingungen. Sind jedoch spezifischere Modelle für bestimmte Bauelementearten anwendbar, dann sollten sie verwendet und ihre Anwendung begründet und dokumentiert werden.

Die Umrechnung der Ausfallraten ist nur innerhalb der festgelegten Grenzwerte der Bauelemente zulässig.

Die Bauelementeausfallrate unter Betriebsbedingungen berechnet sich zu:

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{U}} \cdot \pi_{\text{I}} \cdot \pi_{\text{T}} \cdot \pi_{\text{E}} \cdot \pi_{\text{S}} \cdot \pi_{\text{ES}}$$
 (2)

#### Dabei ist

 $\lambda_{ref}$  die Ausfallrate unter Referenzbedingungen;

 $\pi_{\mathsf{U}}$  der Faktor für Spannungsabhängigkeit;

 $\pi_{l}$  der Faktor für Stromabhängigkeit;

 $\pi_{\mathsf{T}}$  der Faktor für Temperaturabhängigkeit;

 $\pi_{\mathsf{E}}$  der Faktor für die Abhängigkeit von Umgebungsbedingungen;

 $\pi_{S}$  der Faktor für die Abhängigkeit von der Schalthäufigkeit;

 $\pi_{\mathsf{ES}}$  der Faktor für die Abhängigkeit von der elektrischen Beanspruchung.

# 5.2.2 Beanspruchungsfaktor $\pi_{\mathsf{U}}$ für Spannungsabhängigkeit

$$\pi_{\mathsf{U}} = \exp\left\{ C_3 \left[ \left( \frac{U_{\mathsf{op}}}{U_{\mathsf{rat}}} \right)^{C_2} - \left( \frac{U_{\mathsf{ref}}}{U_{\mathsf{rat}}} \right)^{C_2} \right] \right\}$$
 (3)

Dabei ist

 $U_{op}$  die Betriebsspannung in V;

 $U_{ref}$  die Referenzspannung in V;

 $U_{\rm rat}$  die Bemessungsspannung in V;

 $C_2$ ,  $C_3$  sind Konstanten.

Gleichung (3) ist ein empirisches Modell zur Beschreibung der Spannungsabhängigkeit von Ausfallraten.

ANMERKUNG Wenn es für einige Bauelementetypen notwendig ist, absolute Spannungswerte zu verwenden, dann kann die Gleichung modifiziert werden zu  $\pi_{\rm U} = \exp\left\{ \ C_1 \left( U_{\rm op}^{C_2} - U_{\rm ref}^{C_2} \right) \ \right\}$  mit  $C_1 = C_3 / U_{\rm rat}^{C_2}$ .

# 5.2.3 Beanspruchungsfaktor $\pi_1$ für Stromabhängigkeit

$$\pi_{\mathsf{I}} = \exp\left\{ C_4 \left[ \left( \frac{I_{\mathsf{op}}}{I_{\mathsf{rat}}} \right)^{C_5} - \left( \frac{I_{\mathsf{ref}}}{I_{\mathsf{rat}}} \right)^{C_5} \right] \right\} \tag{4}$$

Dabei ist

 $I_{op}$  der Betriebsstrom in A;

 $I_{ref}$  der Referenzstrom in A;

 $I_{\text{rat}}$  der Bemessungsstrom in A;

 $C_4$ ,  $C_5$  sind Konstanten.

Gleichung (4) ist ein empirisches Modell zur Beschreibung der Stromabhängigkeit von Ausfallraten.

# 5.2.4 Beanspruchungsfaktor $\pi_T$ für Temperaturabhängigkeit

$$\pi_{\mathsf{T}} = \exp\left[\frac{E_{\mathsf{a1}}}{k_0} \left(\frac{1}{T_{\mathsf{ref}}} - \frac{1}{T_{\mathsf{op}}}\right)\right] \tag{5}$$

Gleichung (5) ist ein empirisches Modell basierend auf der Arrhenius-Gleichung, und sie beschreibt die Temperaturabhängigkeit von Ausfallraten. Idealerweise sollte diese Berechnung für jede Ausfallart durchgeführt werden, aber es ist allgemeine Praxis, die Berechnung unter Mittelung aller Aktivierungsenergien für alle Ausfallarten durchzuführen. Es sollte beachtet werden, dass im letzteren Fall die Aktivierungsenergie wegen der unterschiedlichen Aktivierungsenergien der zu Grunde liegenden Ausfallarten auch eine Funktion der Temperatur sein kann. Aber dieser Effekt wird im Allgemeinen nicht berücksichtigt.

In bestimmten Fällen ist es zweckmäßig, ein komplexeres Modell mit zwei Aktivierungsenergien zu verwenden, um die Temperaturabhängigkeit der Ausfallraten zu beschreiben. In solch einem Fall kann das folgende in Gleichung (6) dargestellte Modell verwendet werden. Die Anwendung des Modells mit zwei Aktivierungsenergien ( $E_{\rm a1}$ ,  $E_{\rm a2}$ ) wird als ausreichend angesehen, den Zusammenhang zwischen Temperatur und Ausfallrate zu modellieren. (Dies ist mitunter als "konkurrierende Risiken" bekannt, siehe JESD-85 zu Details.)

Diese erweiterte Arrhenius-Gleichung ist standardisiert, um temperaturabhängige Aktivierungsenergien zu vermeiden, wenn die Referenztemperatur  $T_{ref}$  geändert wird.

$$\pi_{\mathsf{T}} = \frac{A \cdot \exp(E_{\mathsf{a1}} \cdot z) - (1 - A) \cdot \exp(E_{\mathsf{a2}} \cdot z)}{A \cdot \exp(E_{\mathsf{a1}} \cdot z_{\mathsf{ref}}) - (1 - A) \cdot \exp(E_{\mathsf{a2}} \cdot z_{\mathsf{ref}})}$$
(6)

mit den Hilfsvariablen

$$z = \frac{1}{k_0} \left( \frac{1}{T_0} - \frac{1}{T_{op}} \right)$$
 und  $z_{ref} = \frac{1}{k_0} \left( \frac{1}{T_0} - \frac{1}{T_{ref}} \right)$  in (eV)<sup>-1</sup>

Dabei ist in den Gleichungen (5) und (6)

A eine Konstante;

 $E_{a1}$ ,  $E_{a2}$  sind Aktivierungsenergien in eV;

 $k_0$  = 8,616 ·10<sup>-5</sup> eV/K;

 $T_0$  = 313 K;

 $T_{\text{ref}} = (\theta_{\text{ref}} + 273) \text{ in K};$ 

 $T_{\text{op}}$  =  $\left(\theta_{\text{op}} + 273\right)$  in K.

Die oben verwendeten Temperaturen  $\, heta_{\rm ref}\,$  und  $\, heta_{
m op}\,$  in Grad Celcius bedeuten

für integrierte Schaltkreise (ICs):

 $\theta_{\text{ref}}$ : Ersatz-Sperrschichttemperatur unter Referenzbedingungen;

 $\theta_{op}$ : tatsächliche Ersatz-Sperrschichttemperatur;

für diskrete Halbleiter und optoelektronische Bauelemente:

 $\theta_{ref}$ : Sperrschichttemperatur unter Referenzbedingungen;

 $\theta_{op}$ : tatsächliche Sperrschichttemperatur;

– für Kondensatoren:

 $\theta_{ref}$ : Kondensatortemperatur unter Referenzbedingungen;

 $\theta_{on}$ : tatsächliche Kondensatortemperatur;

für Widerstände:

 $\theta_{ref}$ : mittlere Temperatur des Widerstandselementes unter Referenzbedingungen (z. B., Schicht);

 $\theta_{op}$ : tatsächliche mittlere Temperatur des Widerstandselementes;

für Induktivitäten:

 $\theta_{ref}$ : mittlere Wicklungstemperatur unter Referenzbedingungen;

 $\theta_{\mathrm{op}}$ : tatsächliche mittlere Wicklungstemperatur;

- für sonstige elektrische Bauelemente:

 $\theta_{\text{ref}}$ : Referenz-Umgebungstemperatur;

 $\theta_{\text{op}}$ : tatsächliche Umgebungstemperatur.

# 5.2.5 Beanspruchungsfaktor $\pi_{\mathsf{E}}$ für Umgebungsbedingungen

#### 5.2.5.1 Allgemeines

Einige Daten-Handbücher enthalten Anleitungen zur Umrechnung einer Ausfallratenschätzung von einer Umgebungsbedingung in eine andere. Das Konzept erscheint logisch, aber es beinhaltet einige Risiken. Deshalb konzentriert sich diese Norm mehr auf Situationen, bei denen die Basis-Ausfallraten bei Umgebungsbedingungen gesammelt werden, die ähnlich zu denen in der praktischen Anwendung der Bauelemente sind. Siehe B.4.4 hinsichtlich weiterer Informationen.

Der Einfluss der umgebungsbedingten Anwendungsbedingungen auf das Bauelement hängt wesentlich von der Auslegung des Gerätes ab, z. B. wird es beim Einsatz des Gerätes auf Schiffen oder in der Kfz-Umgebung statt in geschützten Räumen (Laborbedingungen) keinen Einfluss durch die Umgebungsbedingungen geben, wenn das Bauelement im Gerät geschützt ist. Ob und welche Umgebungseinflüsse vorkommen, hängt deshalb wesentlich vom Gerätehersteller ab. Es ist die Aufgabe einer Organisation, für eine spezifische Umgebung zu entwickeln. Kann der Einfluss dieser Beanspruchungen nicht vermieden werden, dann sind spezifische Untersuchungen für diese Geräte notwendig.

Kommen die einzig verfügbaren Ausfallratendatenbücher von einer Quelle mit sehr unterschiedlichen Umgebungsbedingungen, dann ergibt sich die Notwendigkeit für einen Beanspruchungsfaktor für Umgebungsbedingungen. Die Verwendung eines solchen Beanspruchungsfaktors für Umgebungsbedingungen bedeutet anzunehmen, dass eine härtere Umgebung die Aktivierung interner Ausfallmechanismen in einer vorhersagbaren mehr oder weniger linearen Weise verursacht. Es gibt Situationen, in denen diese Annahme falsch ist. Wenn ein Bauelement, das für stationäre Geräte entwickelt wurde, unter harten Schlag- und Vibrationsbedingungen verwendet wird – was alle Bauelemente in einigen Stunden zerstören kann –, dann könnte ein  $\pi_{\rm E}$ -Faktor berechnet werden, aber dieser ist nicht sinnvoll. Die einzige Lösung ist, das Bauelement nicht in dieser Umgebung zu verwenden.

Der Beanspruchungsfaktor für Umgebungsbedingungen  $\pi_{\mathsf{F}}$  sollte mit Vorsicht gehandhabt werden.

Stationäre Anwendung in wettergeschützten Einsatzorten

E1

E2

Tragbare und ortsveränderliche Anwendung, Installation in Bodengeschützten Einsatzorten

E3

1

Tabelle 4 – Beanspruchungsfaktor für Umgebungsbedingungen  $\pi_{\mathsf{E}}$ 

ANMERKUNG Ausfallratendatenbücher eines Bauelementeherstellers geben oft Hinweise, wie die Ausfallrate auf andere Betriebs- und Umgebungsbedingungen überführt werden kann.

# 5.2.5.2 Faktor $\pi_S$ für die Abhängigkeit von der Schalthäufigkeit

Dieser  $\pi$ -Faktor berücksichtigt die Anzahl S der Schaltspiele je Stunde und wird nur für Relais verwendet.

a) 
$$\pi_S = 1 \text{ für } 0.01 < S < S_{ref}$$
 (7)

ANMERKUNG Bei geringer Schaltspielanzahl je Stunde (S < 0.01) kann der Faktor  $\pi_S = 1$  für hermetisch abgedichtete Öffnerkontakte, die normalerweise geschlossen sind, oder bei geringer Last für nicht abgedichtete Schließerkontakte, die normalerweise geöffnet sind, den Wert 100 annehmen.

b) 
$$\pi_S = S/S_{ref}$$
 für  $S > S_{ref}$  (8)

Dabei ist

S die Schaltspielanzahl je Stunde;

 $S_{\text{ref}}$  die Referenz-Schaltspielanzahl je Stunde.

# 5.2.5.3 Faktor $\pi_{\mathsf{ES}}$ für die Abhängigkeit von der elektrischen Beanspruchung

Dieser  $\pi$ -Faktor ist nur für bestimmte Bauteile anwendbar und wird im Detail in den entsprechenden Abschnitten erklärt.

#### 5.2.6 Sonstige Einflussfaktoren

Andere Beanspruchungsfaktoren sind für einzelne Bauelementetypen im Abschnitt 6 angegeben, soweit die Abhängigkeit bekannt ist.

Derzeit können keine allgemein anwendbaren Umrechnungsmethoden für die Abhängigkeit der Ausfallrate von Luftfeuchtigkeit, Luftdruck, mechanischer Beanspruchung usw. angegeben werden.

Sofern die Abhängigkeit der Ausfallrate von diesen Beanspruchungen bekannt ist, sollte sie berücksichtigt werden.

Ist die Abhängigkeit der Ausfallrate von diesen Beanspruchungsarten nicht bekannt, aber als Funktion dieser Beanspruchungsarten zu erwarten, können entsprechende Untersuchungen erforderlich sein.

# 6 Spezifische Referenzbedingungen und Beanspruchungsmodelle

# 6.1 Integrierte Halbleiter-Schaltkreise

#### 6.1.1 Referenzbedingungen

Die folgenden Empfehlungen für die Referenztemperaturen in Tabelle 5 bis Tabelle 9 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten.

Die Referenz-Eigenerwärmung  $\Delta T_{\text{ref}} = P_{\text{ref}} \cdot R_{\text{th,amb}}$  ist anzugeben, wenn Referenztemperaturen verwendet werden, die von den in den Tabellen angegebenen abweichen.

Für jeden integrierten Schaltkreis werden im Allgemeinen zwei Wärmewiderstände berücksichtigt, einer zwischen Sperrschicht und Gehäuse und der andere zwischen Gehäuse und Umgebung. Der oben angegebene Wärmewiderstand  $R_{\rm th.amb}$  sollte der sein, der für die betrachtete Anwendung am bedeutendsten ist.

Wird eine Ausfallrate für eine Umgebungstemperatur von 40 °C angegeben, dann sind die Referenzverlustleistung  $P_{\text{ref}}$  und der Wärmewiderstand  $R_{\text{th,amb}}$  zur Umgebung, für welche der Wert gilt, mit anzugeben.

Tabelle 5 - Speicher

|            | Bauelemen     | t                                                        | θ <sub>ref</sub> (°C) | Anmerkung |
|------------|---------------|----------------------------------------------------------|-----------------------|-----------|
| Bipolar    | RAM, FIFO     | statisch                                                 | 75                    |           |
|            | PROM          |                                                          | 75                    |           |
| MOS, CMOS, | RAM           | dynamisch                                                | 55                    |           |
| BICMOS     | RAM, FIFO     | statisch langsam (≥ 30 ns)<br>statisch schnell (< 30 ns) | 55                    | _         |
|            | ROM mask      |                                                          | 55                    |           |
|            | EPROM, OTPROM | UV löschbar                                              | 55                    |           |
|            | FLASH         |                                                          | 55                    |           |
|            | EEPROM, EAROM |                                                          | 55                    |           |

Tabelle 6 - Mikroprozessoren und Peripherie, Mikrokontroller und Signalprozessoren

|         | Bauelement                               | θ <sub>ref</sub> (°C) | Anmerkung |
|---------|------------------------------------------|-----------------------|-----------|
| Bipolar |                                          | 70                    |           |
| NIMOS   | Anzahl der Transistoren ≤ 50 k           | 70                    |           |
| NMOS    | Anzahl der Transistoren > 50 k           | 90                    |           |
|         | Anzahl der Transistoren ≤ 5 k            | 50                    |           |
| CMOC    | Anzahl der Transistoren > 5 k bis 50 k   | 60                    | _         |
| CMOS    | Anzahl der Transistoren > 50 k bis 500 k | 80                    |           |
|         | Anzahl der Transistoren > 500 k          | 90                    |           |
| BICMOS  |                                          | 75                    |           |

Tabelle 7 – Digitale Familien- und Bus-Interface-Schaltkreise, Bustreiber- und Empfängerschaltungen

|         | Bauelement                                                                                                                 |                         | θ <sub>ref</sub> (°C) | Anmerkung      |
|---------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------|
| Bipolar | TTL, -LS, -A(L)S, -F                                                                                                       | Logik                   | 45                    |                |
|         | Bus-Interface                                                                                                              |                         | 55                    |                |
|         | TTL S                                                                                                                      | Logik + Bus-Interface   | 80                    | _              |
|         | ECL                                                                                                                        | 10 k                    | 65                    |                |
|         |                                                                                                                            | 100 k                   | 75                    |                |
|         | 10(L\                                                                                                                      | /)E(L) / 100(LV)E(I)(P) | 60                    |                |
| CMOS    | HCMOS, CMOS B, ACMOS (FCT, HC, A(U),C, LVX), (LVC, LCX, LV) (VCX, ALVC, AVC, AHC, VHC) Logik Analogschalter, Bus-Interface |                         | 45                    | II EV          |
|         | Bus-Interface                                                                                                              | GTL(p)                  | 50                    | $U_{ref} = 5V$ |
|         | Bustreiber / Receiver RS422, RS423, RS485, CAN etc. RS232, RS644/899, CML etc.                                             |                         | 55                    |                |
| BICMOS  | Logik                                                                                                                      |                         | 45                    |                |
|         | Bus-Interface                                                                                                              | ABT, BCT                | 50                    |                |
|         |                                                                                                                            | LVT, ALVT               | 50                    |                |
|         |                                                                                                                            | GTL(p)                  | 50                    | _              |
|         |                                                                                                                            | BTL, ETL                | 95                    |                |
|         | Bustreiber / Receiver                                                                                                      |                         | 55                    |                |

Tabelle 8 – Analoge integrierte Schaltkreise (IC)

| Bauelement                                                  | i .                     | θ <sub>ref</sub> (°C) | Anmerkung               |
|-------------------------------------------------------------|-------------------------|-----------------------|-------------------------|
| Operationsverstärker, Komparatoren und Spannungsüberwachung | Bipolar, BIFET<br>CMOS  | 55<br>45              | $U_{ref}/U_{rat} = 0.7$ |
| Referenzelemente                                            | alle Technologien       | 45                    |                         |
| Schaltregler                                                | alle Technologien       | 55                    |                         |
| Leistungsverstärker und Regler (alle Technologien)          | ≤ 1 W<br>> 1 W          | 70<br>90              |                         |
| Hochfrequenz IC (> 100 MHz)                                 |                         |                       | _                       |
| HF-Modulator, Demodulator PLL, VCO                          | bipolar<br>CMOS, BICMOS | 65<br>45              |                         |
| Transmitter, Receiver                                       | bipolar<br>CMOS, BICMOS | 70<br>45              |                         |
| Leistungsverstärker / Receiver                              | GaAs                    | 80                    |                         |

Tabelle 9 – Anwendungsspezifische integrierte Schaltkreise (ASICs)

|                   | Bauelement                      |                             | θ <sub>ref</sub> (°C) | Anmerkung |
|-------------------|---------------------------------|-----------------------------|-----------------------|-----------|
| ASICs, Full Custo | om, Gate Arrays, Telecom ICs, A | /D-Konverter                |                       |           |
| Bipolar           | TTL                             |                             | 55                    |           |
|                   | ECL                             |                             | 70                    |           |
|                   | HV (> 50 V)                     |                             | 80                    |           |
| NMOS              |                                 |                             | 55                    |           |
| CMOS, BICMOS      | digital, analog / gemischt Anza | ahl der Transistoren ≤ 50 k | 55                    |           |
|                   | Anzahl der Tra                  | nsistoren > 50 k bis 50 M   | 70                    |           |
|                   | Anzah                           | l der Transistoren > 50 M   | 80                    |           |
|                   | HV (> 50 V)                     |                             | 75                    |           |
| Programmierbare   | ASICs (PLD) nicht löschbar      |                             |                       | _         |
| Bipolar           | TTL                             |                             | 80                    |           |
|                   | ECL                             |                             | 85                    |           |
| CMOS              | (anti-fuses)                    |                             | 80                    |           |
| Programmierbare   | ASICs (PLD) löschbar            |                             |                       |           |
| NMOS, CMOS        | RAM basis                       |                             | 80                    |           |
|                   | EPROM basis Anz                 | zahl der Transistoren ≤ 5 k | 70                    |           |
|                   | EEPROM basis Anz                | zahl der Transistoren > 5 k | 80                    |           |
|                   | Flash-EPROM                     |                             | 80                    |           |

# 6.1.2 Beanspruchungsfaktoren

#### 6.1.2.1 Modelle

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2)<sup>N2)</sup> ist:

$$\lambda = \lambda_{ref} \cdot \pi_{U} \cdot \pi_{T}$$
 für digitale CMOS und bipolare analoge integrierte Schaltkreise (ICs); (9)

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{T}}$$
 für alle sonstigen integrierten Schaltkreise (IC). (10)

Die Beanspruchungsfaktoren für Spannungs- und Temperaturabhängigkeit sind in 6.1.2.2 und 6.1.2.3 angegeben.

# 6.1.2.2 Spannungsabhängigkeit, Faktor $\pi_U$

Die Spannungsabhängigkeit wird nur für digitale CMOS und bipolare analoge integrierte Schaltkreise (ICs) nach Gleichung (3) $^{\rm N3)}$  berücksichtigt. Es werden die in Tabelle 10 angegebenen Konstanten  $C_1$ ,  $C_2$  und  $C_3$  angewendet, sofern dafür keine anderen Werte angegeben sind. Die Ergebnisse sind in Tabelle 11 und Tabelle 12 dargestellt.

Nationale Fußnote: Im IEC-Original steht hier fälschlicherweise Gleichung (1), richtig ist jedoch Gleichung (2).

Nationale Fußnote: Im IEC-Original steht hier fälschlicherweise Gleichung (9), richtig ist jedoch Gleichung (3).

# Tabelle 10 - Konstanten für Spannungsabhängigkeit

| Integrierter Schaltkreis | $U_{ref}/U_{rat}$ | $U_{ref}$ | C <sub>1</sub>      | C <sub>2</sub> | C <sub>3</sub> |
|--------------------------|-------------------|-----------|---------------------|----------------|----------------|
| Digitale CMOS-Familie    | _                 | 5 V       | 0,1 V <sup>-1</sup> | 1              | -              |
| Analog                   | 0,7               | _         | _                   | 4,4            | 1,4            |

# Tabelle 11 – Faktor $\pi_{\mathsf{U}}$ für digitale integrierte CMOS-Schaltkreise

| $U_{op}(V)$      | ≤ 3 | 4   | 5 | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|------------------|-----|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Faktor $\pi_{U}$ | 0,8 | 0,9 | 1 | 1,1 | 1,2 | 1,3 | 1,5 | 1,6 | 1,8 | 2,0 | 2,2 | 2,5 | 2,7 |

# Tabelle 12 – Faktor $\pi_{\mathsf{U}}$ für bipolare analoge integrierte Schaltkreise

| $U_{\sf op}/U_{\sf rat}$ | ≤ 0,3 | 0,4  | 0,5  | 0,6  | 0,7 | 0,8 | 0,9 | 1,0 |
|--------------------------|-------|------|------|------|-----|-----|-----|-----|
| Faktor $\pi_{U}$         | 0,75  | 0,77 | 0,80 | 0,87 | 1,0 | 1,3 | 1,8 | 3,0 |

# 6.1.2.3 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach Gleichung (6)<sup>N4)</sup> angegebene Zusammenhang gilt nur bis Bemessungssperrschichttemperatur. Dabei werden die in Tabelle 13 angegebenen Konstanten A,  $E_{\rm a1}$  und  $E_{\rm a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 14 und Tabelle 15 dargestellt.

Tabelle 13 – Konstanten für Temperaturabhängigkeit

|                                                              | A   | E <sub>a1</sub> (eV) | E <sub>a2</sub> (eV) |
|--------------------------------------------------------------|-----|----------------------|----------------------|
| Integrierte Schaltkreise (ohne EPROM, OTPROM, EEPROM, EAROM) | 0,9 | 0,3                  | 0,7                  |
| EPROM, OPTROM, EEPROM, EAROM                                 | 0,3 | 0,3                  | 0,6                  |

Der Faktor  $\pi_{T}$  folgt aus Tabelle 14 und Tabelle 15

als eine Funktion der tatsächlichen Ersatz-Sperrschichttemperatur

$$\theta_{\rm op} = \theta_{\rm amb} + P_{\rm op} \cdot R_{\rm th,amb} \qquad \text{in } {}^{\circ}C^{\rm N5)}$$
 (11)

und als eine Funktion der Ersatz-Sperrschichttemperatur unter Referenzbedingungen (siehe 6.1)

$$\theta_{\text{ref}} = 40 + \Delta T_{\text{ref}}$$
 in °C, (12)

wobei  $\Delta T_{ref}$  gemessen oder berechnet wird mit  $\Delta T_{ref} = P_{ref} \cdot R_{th,amb}$ .

Nationale Fußnote: Gleichung (6) statt Gleichung (5).

Nationale Fußnote:  $P_{op}$  statt P.

# DIN EN 61709:2012-01 EN 61709:2011

Tabelle 14 – Faktor  $\pi_{\rm T}$  für integrierte Schaltkreise (ohne EPROM, FLASH-EPROM, OTPROM, EEPROM, EAROM)

| θ <sub>ref</sub> (°C) |       |       |       |       |      |      |      |      |      | Faktor : | τ <sub>T</sub> für θ | op (°C) |      |      |      |     |     |      |     |     |     |     |
|-----------------------|-------|-------|-------|-------|------|------|------|------|------|----------|----------------------|---------|------|------|------|-----|-----|------|-----|-----|-----|-----|
| (siehe 5.6.1)         | ≤ 25  | 30    | 35    | 40    | 45   | 50   | 55   | 60   | 65   | 70       | 75                   | 80      | 85   | 90   | 95   | 100 | 110 | 120  | 130 | 140 | 150 | 175 |
| 40                    | 0,54  | 0,67  | 0,82  | 1     | 1,2  | 1,5  | 1,8  | 2,2  | 2,7  | 3,3      | 4,1                  | 5,1     | 6,3  | 7,7  | 9,6  | 12  | 18  | 28   | 44  | 67  | 102 | 275 |
| 45                    | 0,44  | 0,54  | 0,67  | 0,82  | 1    | 1,2  | 1,5  | 1,8  | 2,2  | 2,7      | 3,4                  | 4,1     | 5,1  | 6,3  | 7,8  | 9,7 | 15  | 23   | 36  | 55  | 83  | 225 |
| 50                    | 0,36  | 0,45  | 0,55  | 0,67  | 0,82 | 1    | 1,2  | 1,5  | 1,8  | 2,2      | 2,8                  | 3,4     | 4,2  | 5,2  | 6,4  | 8   | 12  | 19   | 29  | 45  | 68  | 184 |
| 55                    | 0,3   | 0,37  | 0,45  | 0,55  | 0,67 | 0,82 | 1    | 1,2  | 1,5  | 1,8      | 2,3                  | 2,8     | 3,4  | 4,2  | 5,3  | 6,5 | 10  | 16   | 24  | 37  | 56  | 150 |
| 60                    | 0,24  | 0,3   | 0,37  | 0,45  | 0,55 | 0,67 | 0,82 | 1    | 1,2  | 1,5      | 1,8                  | 2,3     | 2,8  | 3,5  | 4,3  | 5,3 | 8,2 | 13   | 20  | 30  | 46  | 123 |
| 65                    | 0,2   | 0,24  | 0,3   | 0,37  | 0,45 | 0,55 | 0,67 | 0,82 | 1    | 1,2      | 1,5                  | 1,9     | 2,3  | 2,8  | 3,5  | 4,4 | 6,7 | 10   | 16  | 24  | 37  | 100 |
| 70                    | 0,16  | 0,2   | 0,24  | 0,3   | 0,37 | 0,45 | 0,54 | 0,67 | 0,82 | 1        | 1,2                  | 1,5     | 1,9  | 2,3  | 2,9  | 3,6 | 5,5 | 8,5  | 13  | 20  | 30  | 82  |
| 75                    | 0,13  | 0,16  | 0,2   | 0,24  | 0,3  | 0,36 | 0,44 | 0,54 | 0,66 | 0,81     | 1                    | 1,2     | 1,5  | 1,9  | 2,3  | 2,9 | 4,5 | 6,9  | 11  | 16  | 25  | 67  |
| 80                    | 0,11  | 0,13  | 0,16  | 0,2   | 0,24 | 0,29 | 0,36 | 0,44 | 0,54 | 0,66     | 0,81                 | 1       | 1,2  | 1,5  | 1,9  | 2,3 | 3,6 | 5,69 | 8,6 | 13  | 20  | 54  |
| 85                    | 0,087 | 0,11  | 0,13  | 0,16  | 0,2  | 0,24 | 0,29 | 0,36 | 0,44 | 0,54     | 0,66                 | 0,81    | 1    | 1,2  | 1,5  | 1,9 | 2,9 | 4,5  | 7   | 11  | 16  | 44  |
| 90                    | 0,07  | 0,086 | 0,11  | 0,13  | 0,16 | 0,19 | 0,24 | 0,29 | 0,35 | 0,43     | 0,53                 | 0,66    | 0,81 | 1    | 1,2  | 1,5 | 2,4 | 3,7  | 5,6 | 8,7 | 13  | 36  |
| 95                    | 0,057 | 0,07  | 0,085 | 0,1   | 0,13 | 0,16 | 0,19 | 0,23 | 0,29 | 0,35     | 0,43                 | 0,53    | 0,65 | 0,81 | 1    | 1,2 | 1,9 | 3    | 4,6 | 7   | 11  | 29  |
| 100                   | 0,046 | 0,056 | 0,069 | 0,084 | 0,1  | 0,13 | 0,15 | 0,19 | 0,23 | 0,28     | 0,35                 | 0,43    | 0,53 | 0,65 | 0,81 | 1   | 1,5 | 2,4  | 3,7 | 5,6 | 8,5 | 23  |

# Tabelle 15 – Faktor $\pi_{\rm T}$ für EPROM, FLASH-EPROM, OTPROM, EEPROM, EAROM

| θ <sub>ref</sub> (°C) |      | Faktor $\pi_{T}$ für $oldsymbol{	heta_{op}}$ (°C) |     |      |      |      |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------------|------|---------------------------------------------------|-----|------|------|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| lei ·                 | ≤ 25 | 30                                                | 35  | 40   | 45   | 50   | 55 | 60  | 65  | 70  | 75  | 80  | 85  | 90  | 95  | 100 | 110 | 120 | 130 | 140 | 150 | 175 |
| 55                    | 0,16 | 0,22                                              | 0,3 | 0,41 | 0,55 | 0,75 | 1  | 1,3 | 1,8 | 2,3 | 3,1 | 4,0 | 5,2 | 6,7 | 8,6 | 11  | 18  | 28  | 43  | 65  | 96  | 238 |

#### 6.2 Diskrete Halbleiter

## 6.2.1 Referenzbedingungen

Die folgenden Empfehlungen für die Referenztemperaturen in Tabelle 16 bis Tabelle 19 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten.

Die Referenz-Eigenerwärmung  $\Delta T_{\text{ref}} = P_{\text{ref}} \cdot R_{\text{th,amb}}$  ist anzugeben, wenn andere als die in den Tabellen 16 bis 19 angegebenen Referenztemperaturen verwendet werden. Wird eine Ausfallrate für eine Umgebungstemperatur von 40 °C angegeben, dann sind die Referenzverlustleistung  $P_{\text{ref}}$  und der Wärmewiderstand  $R_{\text{th,amb}}$  zur Umgebung, für welche der Wert gilt, mit anzugeben.

Für diskrete Halbleiter werden im Allgemeinen zwei Wärmewiderstände berücksichtigt, einer zwischen Sperrschicht und Gehäuse und der andere zwischen Gehäuse und Umgebung. Der oben angegebene Wärmewiderstand  $R_{\text{th.amb}}$  sollte der sein, der für die betrachtete Anwendung am bedeutendsten ist.

Tabelle 16 - Transistoren allgemein, niederfrequent

|          |                  | Bauelement                                  | θ <sub>ref</sub> (°C) | Anmerkung               |
|----------|------------------|---------------------------------------------|-----------------------|-------------------------|
| Bipolar, | universal        | z. B. TO18, TO92, SOT(D)(3)23 oder ähnliche | 55                    |                         |
| Transist | tor Arrays       |                                             | 55                    |                         |
| Bipolar, | Kleinleistung    | z. B. TO5, TO39, SOT223, SO8, SMA-SMC       | 85                    |                         |
| Bipolar, | Leistung         | z. B. TO3, TO220, D(D)-Pack                 | 100                   | $U_{ref}/U_{rat} = 0,5$ |
| FET      | Sperrschicht     |                                             | 55                    |                         |
|          | MOS              |                                             | 55                    |                         |
| MOS Le   | eistung (SIPMOS) | z. B. TO3, TO220, D(D)-Pack                 | 100                   |                         |

Tabelle 17 - Mikrowellen-Transistoren, z. B. RF > 800 MHz

|          | Bauelement                                                  | θ <sub>ref</sub> (°C) | Anmerkung               |
|----------|-------------------------------------------------------------|-----------------------|-------------------------|
| Bipolar  | Breitband, Kleinsignal<br>Leistung                          | 55<br>125             |                         |
| GaAs FET | Kleinsignal, rauscharm<br>mittlere Leistung<br>Hochleistung | 95<br>110<br>145      | $U_{ref}/U_{rat} = 0.5$ |
| MOSFET   | Breitband, Kleinsignal<br>Leistung                          | 55<br>125             |                         |

Tabelle 18 - Dioden

| Bauelement                                     |                              | θ <sub>ref</sub> (°C) | Anmerkung |
|------------------------------------------------|------------------------------|-----------------------|-----------|
| Universal-Diode (auch mit Avalanche-Charakter) |                              | 55                    |           |
| Schottky-Diode                                 |                              | 55                    |           |
| Begrenzungsdiode (Suppressordiode)             |                              | 40                    |           |
| Z-Diode, (P <sub>tot</sub> < 1 W)              | Spannungsschutz <sup>a</sup> | 40                    |           |
| Z-Diode, Leistung                              | Stabilisation <sup>b</sup>   | 100                   |           |
| Referenzdiode                                  |                              | 45                    |           |
| Mikrowellen-Diode, Kleinsignal                 | Detektordiode                | 45                    |           |
|                                                | Kapazitätsdiode              | 45                    | _         |
|                                                | Mischerdiode                 | 70                    |           |
|                                                | Pindiode                     | 55                    |           |
| Mikrowellen-Diode, Leistung                    | Speichervaraktor             | 100                   |           |
|                                                | Gunndiode                    | 160                   |           |
|                                                | Impattdiode                  | 180                   |           |
|                                                | Pindiode                     | 100                   |           |
| Hochspannungsgleichrichterdiode                |                              | 85                    |           |

Bei der Anwendung für Spannungsschutz kann ohne Eigenerwärmung gerechnet werden ( $\theta_{ref}$  = 40 °C).

Tabelle 19 - Leistungshalbleiter

| Bauelement                                                 | θ <sub>ref</sub> (°C)         | Anmerkung |
|------------------------------------------------------------|-------------------------------|-----------|
| Gleichrichterdioden (auch mit Avalanche-Charakter)         | 70                            |           |
| Gleichrichterbrücken                                       | 85                            |           |
| Schottky-Dioden                                            | 85                            |           |
| Thyristoren                                                | 85                            | _         |
| TRIACs, DIACs                                              | 85                            |           |
| Sondergefertigte und kundenspezifische Leistungshalbleiter | Rücksprache mit<br>Hersteller |           |

# 6.2.2 Beanspruchungsfaktoren

# 6.2.2.1 Allgemeines

Die spezifischen Beanspruchungsmodelle sind für die Umrechnung der Ausfallraten zwischen unterschiedlichen Bedingungen angegeben. Diese Umrechnungsmodelle enthalten Konstanten, die Mittelwerte für die einzelnen Bauelementearten von verschiedenen Herstellern (festgelegt aufgrund von Feldeinsatzerfahrung und Laborprüfungen) sind.

#### 6.2.2.2 Modelle

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2) ist:

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{U}} \cdot \pi_{\text{T}} \quad \text{für Transistoren}; \tag{13}$$

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{T}}$$
 für Dioden<sup>1)</sup> und Leistungshalbleiter<sup>2)</sup>. (14)

b Bei der Anwendung für Stabilisation muss die Eigenerwärmung berücksichtigt werden.

<sup>1)</sup> Universal-, Schottky-, Begrenzer- und Zener-Dioden.

<sup>2)</sup> Gleichrichterdioden, Brückendioden, Thyristoren, TRIACs und DIACs.

Die Beanspruchungsfaktoren für Spannungs- und Temperaturabhängigkeit sind in 6.2.2.3 und 6.2.2.4 angegeben. Strom kann auch ein wesentlicher Faktor sein.

# 6.2.2.3 Spannungsabhängigkeit für Transistoren, Faktor $\pi_{_{ m II}}$

Die Spannungsabhängigkeit wird nur für Transistoren nach Gleichung (3) $^{N6)}$  berücksichtigt. Es werden die in Tabelle 20 angegebenen Konstanten A,  $C_2$  und  $C_3$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 21 dargestellt.

Tabelle 20 – Konstanten für Spannungsabhängigkeit der Transistoren

| $U_{ref}/U_{rat}$ | $C_{2}$ | $C_3$ |
|-------------------|---------|-------|
| 0,5               | 8,0     | 1,4   |

Tabelle 21 – Faktor  $\pi_{\mathsf{U}}$  für Transistoren

| $U_{ m op}/U_{ m rat}$ | ≤ 0,6 | 0,65 | 0,7  | 0,75 | 0,8  | 0,85 | 0,9  | 0,95 | 1 |
|------------------------|-------|------|------|------|------|------|------|------|---|
| Faktor $\pi_{U}$       | 1     | 1,04 | 1,08 | 1,14 | 1,26 | 1,46 | 1,82 | 2,52 | 4 |

# 6.2.2.4 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach Gleichung  $(6)^{N7}$  angegebene Zusammenhang gilt nur bis zur Bemessungssperrschichttemperatur. Dabei werden die in Tabelle 22 angegebenen Konstanten A,  $E_{a1}$  und  $E_{a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Das Ergebnis ist in Tabelle 23 und Tabelle 24 dargestellt.

Tabelle 22 – Konstanten für Temperaturabhängigkeit der diskreten Halbleiter

| Bauelement                                                                                 | A   | $E_{a1}$ | $E_{a2}$ |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----|----------|----------|--|--|--|--|--|
|                                                                                            |     | (eV)     | (eV)     |  |  |  |  |  |
| Transistoren, Referenz- und Mikrowellendioden                                              | 0,9 | 0,3      | 0,7      |  |  |  |  |  |
| Dioden (ohne Referenz- und Mikrowellendioden)<br>Leistungshalbleiter <sup>a</sup>          | 1,0 | 0,4      | -        |  |  |  |  |  |
| <sup>a</sup> Gleichrichterdioden, -brücken, Schottkydioden, Thyristoren, TRIACs und DIACs. |     |          |          |  |  |  |  |  |

Der Faktor  $\pi_{\mathsf{T}}$  folgt aus Tabelle 23 und Tabelle 24

als eine Funktion der tatsächlichen Sperrschichttemperatur

$$\theta_{\rm op} = \theta_{\rm amb} + P_{\rm op} \cdot R_{\rm th,amb} \quad \text{in } {}^{\circ}{\rm C}^{\rm N8)}$$
 (15)

und als eine Funktion der Sperrschichttemperatur unter Referenzbedingungen (siehe 6.2.1)

$$\theta_{\text{ref}} = 40 + \Delta T_{\text{ref}}$$
 in °C, (16)

wobei  $\Delta T_{\text{ref}}$  gemessen oder berechnet wird mit  $\Delta T_{\text{ref}} = P_{\text{ref}} \cdot R_{\text{th,amb}}$ .

Nationale Fußnote: Gleichung (3) statt Gleichung (13).

Nationale Fußnote: Gleichung (6) statt Gleichung (5).

Nationale Fußnote:  $P_{op}$  statt P.

DIN EN 61709:2012-01 EN 61709:2011

Tabelle 23 – Faktor  $\pi_{\mathsf{T}}$  für Transistoren, Referenz- und Mikrowellendioden

| θ <sub>ref</sub> (°C) |         |         |         |         |         |         |         |         |         |       |       | Fa    | ktor $\pi_1$ | für θ <sub>ο</sub> | p (°C) |       |       |       |      |      |      |      |      |      |      |     |     |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|-------|--------------|--------------------|--------|-------|-------|-------|------|------|------|------|------|------|------|-----|-----|
| (siehe<br>6.2.1)      | ≤ 25    | 30      | 35      | 40      | 45      | 50      | 55      | 60      | 65      | 70    | 75    | 80    | 85           | 90                 | 95     | 100   | 110   | 120   | 125  | 130  | 140  | 145  | 150  | 160  | 175  | 180 | 200 |
| 40                    | 0,54    | 0,67    | 0,82    | 1       | 1,2     | 1,5     | 1,8     | 2,2     | 2,7     | 3,3   | 4,1   | 5,1   | 6,3          | 7,7                | 9,6    | 12    | 18    | 28    | 35   | 44   | 67   | 83   | 102  | 153  | 275  | 332 | 689 |
| 45                    | 0,44    | 0,54    | 0,67    | 0,82    | 1       | 1,2     | 1,5     | 1,8     | 2,2     | 2,7   | 3,4   | 4,1   | 5,1          | 6,3                | 7,8    | 9,7   | 15    | 23    | 29   | 36   | 55   | 68   | 83   | 125  | 225  | 272 | 563 |
| 55                    | 0,3     | 0,37    | 0,45    | 0,55    | 0,67    | 0,82    | 1       | 1,2     | 1,5     | 1,8   | 2,3   | 2,8   | 3,4          | 4,2                | 5,3    | 6,5   | 10    | 16    | 19   | 24   | 37   | 45   | 56   | 84   | 150  | 182 | 377 |
| 70                    | 0,16    | 0,2     | 0,24    | 0,3     | 0,37    | 0,45    | 0,54    | 0,67    | 0,82    | 1     | 1,2   | 1,5   | 1,9          | 2,3                | 2,9    | 3,6   | 5,5   | 8,5   | 11   | 13   | 20   | 25   | 30   | 46   | 82   | 99  | 206 |
| 85                    | 0,087   | 0,11    | 0,13    | 0,16    | 0,2     | 0,24    | 0,29    | 0,36    | 0,44    | 0,54  | 0,66  | 0,81  | 1            | 1,2                | 1,5    | 1,9   | 2,9   | 4,5   | 5,6  | 7    | 11   | 13   | 16   | 24   | 44   | 53  | 110 |
| 95                    | 0,057   | 0,07    | 0,085   | 0,10    | 0,13    | 0,16    | 0,19    | 0,23    | 0,29    | 0,35  | 0,43  | 0,53  | 0,65         | 0,81               | 1      | 1,2   | 1,9   | 3     | 3,7  | 4,6  | 7    | 8,6  | 11   | 16   | 29   | 35  | 72  |
| 100                   | 0,046   | 0,056   | 0,069   | 0,084   | 0,1     | 0,13    | 0,15    | 0,19    | 0,23    | 0,28  | 0,35  | 0,43  | 0,53         | 0,65               | 0,81   | 1     | 1,5   | 2,4   | 3,0  | 3,7  | 5,6  | 6,9  | 8,5  | 13   | 23   | 28  | 58  |
| 110                   | 0,03    | 0,036   | 0,045   | 0,055   | 0,067   | 0,081   | 0,099   | 0,12    | 0,15    | 0,18  | 0,22  | 0,28  | 0,34         | 0,42               | 0,52   | 0,65  | 1     | 1,5   | 1,9  | 2,4  | 3,6  | 4,5  | 5,6  | 8,3  | 15   | 18  | 38  |
| 125                   | 0,015   | 0,019   | 0,023   | 0,028   | 0,035   | 0,043   | 0,052   | 0,063   | 0,078   | 0,095 | 0,12  | 0,14  | 0,18         | 0,22               | 0,27   | 0,34  | 0,52  | 0,81  | 1    | 1,2  | 1,9  | 2,3  | 2,9  | 4,3  | 7,8  | 9,4 | 20  |
| 145                   | 0,006 6 | 0,008 1 | 0,009 9 | 0,012   | 0,015   | 0,018   | 0,022   | 0,027   | 0,033   | 0,041 | 0,05  | 0,061 | 0,076        | 0,094              | 0,12   | 0,14  | 0,22  | 0,34  | 0,43 | 0,53 | 0,81 | 1    | 1,2  | 1,85 | 3,3  | 4,0 | 8,3 |
| 160                   | 0,003 5 | 0,005 4 | 0,004 4 | 0,006 6 | 0,008 0 | 0,009 8 | 0,012   | 0,015   | 0,018   | 0,022 | 0,027 | 0,033 | 0,041        | 0,051              | 0,063  | 0,074 | 0,12  | 0,19  | 0,24 | 0,3  | 0,44 | 0,54 | 0,67 | 1    | 1,87 | 2,2 | 4,6 |
| 180                   | 0,001 6 | 0,002 0 | 0,002 5 | 0,003 0 | 0,003 7 | 0,004 5 | 0,005 5 | 0,006 7 | 0,008 2 | 0,01  | 0,012 | 0,015 | 0,019        | 0,023              | 0,029  | 0,036 | 0,055 | 0,085 | 0,11 | 0,13 | 0,2  | 0,25 | 0,31 | 0,46 | 0,83 | 1   | 2,1 |

Tabelle 24 – Faktor  $\pi_{\mathsf{T}}$  für Dioden (ohne Referenz- und Mikrowellendioden) und Leistungshalbleiter

| θ <sub>ref</sub> (°C) |       | Faktor $\pi_{T}$ für $\theta_{op}$ (°C) |       |       |      |      |      |      |      |      |      |      |      |      |      |     |     |     |     |     |     |      |     |     |     |     |     |
|-----------------------|-------|-----------------------------------------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| (siehe 6.2.1)         | ≤ 25  | 30                                      | 35    | 40    | 45   | 50   | 55   | 60   | 65   | 70   | 75   | 80   | 85   | 90   | 95   | 100 | 110 | 120 | 125 | 130 | 140 | 145  | 150 | 160 | 175 | 180 | 200 |
| 40                    | 0,47  | 0,61                                    | 0,79  | 1     | 1,3  | 1,6  | 2    | 2,4  | 3    | 3,7  | 4,4  | 5,4  | 6,5  | 7,7  | 9,2  | 11  | 15  | 20  | 24  | 27  | 36  | 41   | 47  | 61  | 87  | 98  | 151 |
| 55                    | 0,24  | 0,31                                    | 0,4   | 0,51  | 0,64 | 0,80 | 1    | 1,2  | 1,5  | 1,9  | 2,3  | 2,7  | 3,3  | 3,9  | 4,7  | 5,5 | 7,6 | 10  | 12  | 14  | 18  | 21   | 24  | 31  | 44  | 50  | 77  |
| 70                    | 0,13  | 0,17                                    | 0,21  | 0,27  | 0,35 | 0,43 | 0,54 | 0,67 | 0,82 | 1    | 1,2  | 1,5  | 1,8  | 2,1  | 2,5  | 3,0 | 4,1 | 5,6 | 6,5 | 7,5 | 9,9 | 11,3 | 13  | 17  | 24  | 27  | 41  |
| 85                    | 0,074 | 0,095                                   | 0,12  | 0,16  | 0,2  | 0,25 | 0,31 | 0,38 | 0,46 | 0,57 | 0,69 | 0,83 | 1    | 1,2  | 1,4  | 1,7 | 2,3 | 3,2 | 3,7 | 4,3 | 5,6 | 6,4  | 7,3 | 9,5 | 14  | 15  | 23  |
| 100                   | 0,044 | 0,056                                   | 0,072 | 0,092 | 0,12 | 0,15 | 0,18 | 0,22 | 0,28 | 0,34 | 0,41 | 0,49 | 0,59 | 0,71 | 0,84 | 1   | 1,4 | 1,9 | 2,2 | 2,5 | 3,3 | 3,8  | 4,4 | 5,6 | 8,0 | 9,0 | 14  |

# 6.3 Optoelektronische Bauelemente

## 6.3.1 Referenzbedingungen

Die folgenden Empfehlungen für die Referenztemperaturen in Tabelle 25 bis Tabelle 29 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten.

Die Referenz-Eigenerwärmung  $\Delta T_{\text{ref}} = P_{\text{ref}} \cdot R_{\text{th,amb}}$  ist anzugeben, wenn Referenztemperaturen verwendet werden, die von den in den Tabellen 25 bis 29 angegebenen abweichen.

Wird eine Ausfallrate für eine Umgebungstemperatur von 40 °C angegeben, dann sind die Referenzverlustleistung  $P_{\text{ref}}$  und der Wärmewiderstand  $R_{\text{th.amb}}$  zur Umgebung, für welche der Wert gilt, mit anzugeben.

Für optoelektronische Bauelemente werden im Allgemeinen zwei Wärmewiderstände berücksichtigt, einer zwischen Sperrschicht und Gehäuse und der andere zwischen Gehäuse und Umgebung. Der oben angegebene Wärmewiderstand  $R_{\rm th,amb}$  sollte derjenige sein, der für die betrachtete Anwendung am bedeutendsten ist.

Tabelle 25 - optoelektronische Halbleiter-Signalempfänger

| Bauelement                                           | Referenz-Sperrschicht-temperatur $\theta_{\mathrm{ref}}$ (°C) | Anmerkung                             |
|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|
| Phototransistor Plastik und hermetisch gekapselt     | 45                                                            | $U_{\text{ref}}/U_{\text{rat}} = 0.5$ |
| Photodiode (Si und Si PIN, InP, InP APD, Ge, Ge APD) | 45                                                            |                                       |
| Photoelement                                         | 45                                                            |                                       |
| Detektormodul                                        | 40                                                            | _                                     |
| Solarbauelement                                      | 40                                                            |                                       |

Tabelle 26 - Leuchtdioden (LED, IRED), Laserdioden und optische Sende-Bauelemente

| Bauelement                                                                    | Referenz-Sperrschicht-temperatur $\theta_{\mathrm{ref}}$ (°C) | Anmerkung               |
|-------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| Leuchtdiode sichtbares Licht (radial und SMT, Leistungsgehäuse (> 100 mA DC)) | 45                                                            | $I_{ref}/I_{rat} = 0.5$ |
| LED, IRED ((AI)GaAs, InP)                                                     | 75                                                            |                         |
| Laserdiode (GaAs 880 nm, InP 1 300 nm, InP 1 500 nm)                          | 75                                                            |                         |
| Laser-Array, Pump-Laser / Pump-Laser gekühlt<br>(GaAs 980 nm, InP 1 480 nm)   | 45                                                            |                         |
| Laser-Sendemodul                                                              | Rücksprache mit<br>Hersteller                                 |                         |
| Displays (LED)                                                                | 55                                                            |                         |
| Displays (LCD, Vakuumfluoreszenz)                                             | Rücksprache mit<br>Hersteller                                 | -                       |
| Optische Verstärker (SOA)                                                     | 45                                                            |                         |
| Glasfiber (EDFA)                                                              | Rücksprache mit<br>Hersteller                                 |                         |
| Modulatoren (InP, LiNbO₃)                                                     | 40                                                            |                         |

Tabelle 27 – Optokoppler und Lichtschranken

|               | Bauelement                               | Referenz-Sperrschicht-temperatur $\theta_{\rm ref}$ (°C) | Anmerkung |
|---------------|------------------------------------------|----------------------------------------------------------|-----------|
| Optokoppler   | mit bipolarem Ausgang                    | 55                                                       |           |
|               | mit FET-Ausgang                          | 65                                                       |           |
|               | mit nachgeschalteter Elektronik          | 55                                                       |           |
|               | mit nachgeschalteter Leistungselektronik | 65                                                       | _         |
| Lichtschranke | mit Dioden-/Transistorausgang            | 55                                                       |           |
|               | mit nachgeschalteter Elektronik          | 55                                                       |           |

# Tabelle 28 - Passive optoelektronische Bauelemente

| Bauelement                                                                      | Referenz-Sperrschicht-temperatur $\theta_{\rm ref}$ (°C) | Anmerkung                          |
|---------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|
| LWL-Steckverbinder (n-fach)                                                     | 40                                                       |                                    |
| LWL-Anschlussfaser (LWL-Faser und ein Stecker)                                  | 40                                                       | _                                  |
| LW-Leitung                                                                      | 40                                                       |                                    |
| DCF-Faser (Dispersion compensating fibre)                                       | 40                                                       |                                    |
| Isolatoren                                                                      | 40                                                       |                                    |
| Zirkulatoren                                                                    | 40                                                       | Keine Temperatur-                  |
| Optische Multiplexer, Demultiplexer (Dünnfilm, arrayed-waveguide grating (AWG)) | 40                                                       | abhängigkeit zu<br>berücksichtigen |
| Optische Attenuatoren (Festwert, elektromechanisch)                             | 40                                                       |                                    |
| Schalter (elektromagnetisch, MEMS)                                              | 40                                                       |                                    |
| Koppler, Splitter, Filter (Dünnfilm, Bragg)                                     | 40                                                       |                                    |

# Tabelle 29 - Transceiver, Transponder und optische Subsysteme

|                                   | Bauelement                    | Referenz-Sperrschicht-temperatur $\theta_{\rm ref}$ (°C) | Anmerkung                                               |
|-----------------------------------|-------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| Transceiver, Transponder          | SFF, SFP                      | 40                                                       |                                                         |
|                                   | Xponder / Long Haul tunable   |                                                          |                                                         |
| Optische Spektrumanalysatoren     | (OPA, komplex / OSA, komplex) |                                                          |                                                         |
| Aktive Dispersionskompensatore    | en                            | Rücksprache mit Hersteller                               | _                                                       |
| Wavelength selective switch       |                               |                                                          |                                                         |
| Wavelength blocker                |                               |                                                          |                                                         |
| Ground trip current (GTC) Interre | upter (elektro-mechanisch)    | 40                                                       | Keine Temperatur-<br>abhängigkeit zu<br>berücksichtigen |

#### 6.3.2 Beanspruchungsfaktoren

#### 6.3.2.1 Allgemeines

Die spezifischen Beanspruchungsmodelle sind für die Umrechnung der Ausfallraten zwischen unterschiedlichen Bedingungen angegeben. Diese Umrechnungsmodelle enthalten Konstanten. Sie sind Mittelwerte für die einzelnen Bauelementearten von verschiedenen Herstellern (festgesetzt aufgrund von Feldeinsatzerfahrung und Laborprüfungen).

#### 6.3.2.2 Modelle

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2) ist:

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{U}} \cdot \pi_{\text{T}}$$
 für Phototransistoren; (17)

$$\lambda = \lambda_{ref} \cdot \pi_{T}$$
 für sonstige optische Halbleiter-Signalempfänger, Optokoppler und (18)

 $Lichtschranken, \, LWL\text{-}Steckverbinder \, und \, LWL\text{-}Anschlussfasern,$ 

Transceiver, Transponder;

$$\lambda = \lambda_{ref} \cdot \pi_{l} \cdot \pi_{T}$$
 für Licht-emittierende Halbleiter (LEDs) und Infrarot-emittierende (19)

Dioden (IREDs);

$$\lambda = \lambda_{\text{ref}}$$
 für sonstige optische Bauelemente. (20)

Die Beanspruchungsfaktoren für Spannungs-, Strom- und Temperaturabhängigkeit sind in 6.3.2.3 bis 6.3.2.5 angegeben.

#### 6.3.2.3 Spannungsabhängigkeit, Faktor $\pi_{II}$

Die Spannungsabhängigkeit wird nur für Phototransistoren nach Gleichung (3)<sup>N9)</sup> berücksichtigt. Es werden die in Tabelle 30 angegebenen Konstanten  $C_2$  und  $C_3$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 31 dargestellt.

Tabelle 30 - Konstanten für Spannungsabhängigkeit der Phototransistoren

| $rac{U_{\sf ref}}{U_{\sf rat}}$ | $C_{2}$ | $C_3$ |
|----------------------------------|---------|-------|
| 0,5                              | 8,0     | 1,4   |

Tabelle 31 – Faktor  $\pi_U$  für Phototransistoren

| $rac{U_{op}}{U_{rat}}$ | ≤ 0,6 | 0,65 | 0,7  | 0,75 | 0,8  | 0,85 | 0,9  | 0,95 | 1 |
|-------------------------|-------|------|------|------|------|------|------|------|---|
| Faktor $\pi_{U}$        | 1     | 1,04 | 1,08 | 1,14 | 1,26 | 1,46 | 1,82 | 2,52 | 4 |

# 6.3.2.4 Stromabhängigkeit, Faktor $\pi_{l}$

Die Stromabhängigkeit wird nur für LEDs und IREDs nach Gleichung (4)<sup>N10)</sup> berücksichtigt. Es werden die in Tabelle 32 angegebenen Konstanten  $C_4$  und  $C_5$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 33 dargestellt.

N9) Nationale Fußnote: Gleichung (3) statt Gleichung (17).

N10) Nationale Fußnote: Gleichung (4) statt Gleichung (19).

Tabelle 32 - Konstanten für Stromabhängigkeit der LEDs und IREDs

| $rac{I_{ m ref}}{I_{ m rat}}$ | $C_{4}$ | $C_{5}$ |
|--------------------------------|---------|---------|
| 0,5                            | 1,4     | 8,0     |

# Tabelle 33 – Faktor $\pi_{l}$ für LEDs und IREDs

| $\frac{I_{\rm op}}{I_{\rm rat}}$ | ≤ 0,6 | 0,65 | 0,7  | 0,75 | 0,8  | 0,85 | 0,9  | 0,95 | 1 |
|----------------------------------|-------|------|------|------|------|------|------|------|---|
| Faktor $\pi_{ m l}$              | 1     | 1,04 | 1,08 | 1,14 | 1,26 | 1,46 | 1,82 | 2,52 | 4 |

# 6.3.2.5 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach Gleichung (5) angegebene Zusammenhang gilt nur bis zur Bemessungssperrschichttemperatur. Es werden die in Tabelle 34 angegebenen Werte für die Konstante  $E_{\rm a1}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 35 dargestellt.

Tabelle 34 – Konstanten für Temperaturabhängigkeit der optoelektronischen Bauelemente

| Bauelement                             |          | E <sub>a1</sub> |
|----------------------------------------|----------|-----------------|
|                                        |          | (eV)            |
| Optischer Halbleiter-Signalempfänger   | Si       | 0,3             |
|                                        | InP      | 0,7             |
|                                        | Ge       | 0,6             |
| Leuchtdioden (LED)                     |          | 0,65            |
| Infrarotdioden (IRED)                  | (AI)GaAs | 0,65            |
|                                        | InP      | 1,0             |
| Halbleiter-Laser                       | GaAs     | 0,6             |
|                                        | InP      | 0,8             |
| Optokoppler und Lichtschranken         |          | 0,5             |
| LWL-Steckverbinder; LWL-Anschlussfaser |          | 0,3             |
| Transceiver, Transponder               |          | 0,4             |

Der Faktor  $\pi_T$  folgt aus Tabelle 35

- als eine Funktion der tatsächlichen Sperrschichttemperatur

$$\theta_{op} = \theta_{amb} + P_{op} \cdot R_{th,amb}$$
 in °C (21)

und als eine Funktion der Sperrschichttemperatur unter Referenzbedingungen (siehe 6.3.1)

$$\theta_{\text{ref}} = 40 + \Delta T_{\text{ref}}$$
 in °C, (22)

wobei  $\Delta T_{\text{ref}}$  gemessen oder berechnet wird mit  $\Delta T_{\text{ref}} = P_{\text{ref}} \cdot R_{\text{th,amb}}$ .

Tabelle 35 – Faktor  $\pi_{\mathsf{T}}$  für optoelektronische Bauelemente

| Optische  | r Halb               | oleiter-S                                                     |                                        |         |         |           | <i>n</i> <sub>T</sub> 10 |         |                      |                             |          |        |         |          |          |      |      |
|-----------|----------------------|---------------------------------------------------------------|----------------------------------------|---------|---------|-----------|--------------------------|---------|----------------------|-----------------------------|----------|--------|---------|----------|----------|------|------|
|           | $\theta_{\rm ref}$   | leiter-Signalempfänger Faktor $\pi_{T}$ für $	heta_{op}$ (°C) |                                        |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
| Si        | 40                   | 0,57                                                          | 0,69                                   | 0,83    | 1       | 1,2       | 1,4                      | 1,7     | 2                    | 2,3                         | 2,6      | 3,1    | 3,5     | 4        | 4,6      | 5,3  | 6    |
|           | 45                   | 0,48                                                          | 0,58                                   | 0,7     | 0,84    | 1         | 1,2                      | 1,4     | 1,6                  | 1,9                         | 2,2      | 2,6    | 3       | 3,4      | 3,9      | 4,4  | 5    |
| InP       | 40                   | 0,27                                                          | 0,42                                   | 0,66    | 1       | 1,5       | 2,2                      | 3,3     | 4,8                  | 6,8                         | 9,7      | 14     | 19      | 26       | 36       | 48   | 65   |
|           | 45                   | 0,18                                                          | 0,28                                   | 0,44    | 0,66    | 1         | 1,5                      | 2,2     | 3,2                  | 4,5                         | 6,4      | 9      | 13      | 17       | 24       | 32   | 43   |
| Ge        | 40                   | 0,33                                                          | 0,48                                   | 0,7     | 1       | 1,4       | 2                        | 2,8     | 3,8                  | 5,2                         | 7        | 9,4    | 12      | 16       | 21       | 28   | 36   |
| Ge        | 45                   | 0,23                                                          | 0,34                                   | 0,49    | 0,7     | 1         | 1,4                      | 1,9     | 2,7                  | 3,7                         | 4,9      | 6,6    | 8,8     | 12       | 15       | 20   | 25   |
| Leuchtdi  | ode (s               | sichtbar                                                      | es Lich                                | t (LED) | und Inf | rarot (IF | RED))                    |         |                      |                             |          |        |         |          |          |      |      |
|           | $\theta_{ m ref}$    | Faktor $\pi_{T}$ für $\theta_{op}$ (°C)                       |                                        |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
|           | 45                   | 0,20                                                          | 0,31                                   | 0,46    | 0,68    | 1         | 1,4                      | 2,1     | 2,9                  | 4,1                         | 5,6      | 7,7    | 11      | 14       | 19       | 25   | 33   |
| (AI)GaAs  | 55                   | 0,099                                                         | 0,15                                   | 0,22    | 0,33    | 0,49      | 0,7                      | 1       | 1,4                  | 2                           | 2,7      | 3,7    | 5,1     | 6,9      | 9,2      | 12   | 16   |
|           | 75                   | 0,026                                                         | 0,04                                   | 0,06    | 0,088   | 0,13      | 0,19                     | 0,27    | 0,38                 | 0,53                        | 0,73     | 1      | 1,4     | 1,8      | 2,4      | 3,2  | 4,3  |
| InP       | 75                   | 0,004                                                         | 0,007                                  | 0,013   | 0,024   | 0,043     | 0,076                    | 0,13    | 0,22                 | 0,37                        | 0,62     | 1      | 1,6     | 2,5      | 4        | 6,1  | 9,3  |
| Halbleite | rlaser               |                                                               |                                        |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | $\theta_{ m ref}$    |                                                               |                                        |         |         |           |                          | Fakto   | or π <sub>T</sub> fü | r <i>θ</i> <sub>op</sub> (° | C)       |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
| GaAs      | 75                   | 0,035                                                         | 0,051                                  | 0,074   | 0,11    | 0,15      | 0,21                     | 0,3     | 0,41                 | 0,55                        | 0,75     | 1      | 1,3     | 1,7      | 2,3      | 3    | 3,8  |
| InP       | 75                   | 0,035                                                         | 0,051                                  | 0,074   | 0,11    | 0,15      | 0,21                     | 0,3     | 0,41                 | 0,55                        | 0,75     | 1      | 1,3     | 1,7      | 2,3      | 3    | 3,8  |
| Optokop   | pler u               | nd Lich                                                       | tschran                                | ıke     |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | $\theta_{ { m ref}}$ | Faktor $\pi_{T}$ für $oldsymbol{	heta_{op}}$ (°C)             |                                        |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
|           | 55                   | 0,17                                                          | 0,23                                   | 0,32    | 0,43    | 0,57      | 0,76                     | 1       | 1,3                  | 1,7                         | 2,2      | 2,8    | 3,5     | 4,4      | 5,5      | 6,8  | 8,5  |
|           | 65                   | 0,1                                                           | 0,14                                   | 0,19    | 0,25    | 0,34      | 0,45                     | 0,59    | 0,77                 | 1                           | 1,3      | 1,6    | 2,07    | 2,6      | 3,3      | 4,05 | 5,01 |
| LWL-Stee  | ckvert               | oinder;                                                       | LWL-Ar                                 | nschlus | sfaser; | Modula    | itor; Wa                 | velengt | th selec             | tive sw                     | itch; Wa | avelen | gth-Blo | cker     |          |      |      |
|           | $\theta_{ m ref}$    |                                                               | Faktor $\pi_{T}$ für $	heta_{op}$ (°C) |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
|           | 40                   | 0,57                                                          | 0,69                                   | 0,83    | 1       | 1,2       | 1,4                      | 1,7     | 2                    | 2,3                         | 2,6      | 3,1    | 3,5     | 4        | 4,6      | 5,3  | 6    |
| Transcei  | ver, Tı              | ranspoi                                                       | nder                                   | l       | l       |           |                          |         | l                    |                             |          |        |         | <u>I</u> | <u>I</u> | l    |      |
|           | $\theta_{\rm ref}$   | -                                                             | Faktor $\pi_{T}$ für $	heta_{op}$ (°C) |         |         |           |                          |         |                      |                             |          |        |         |          |          |      |      |
|           | (°C)                 | ≤ 25                                                          | 30                                     | 35      | 40      | 45        | 50                       | 55      | 60                   | 65                          | 70       | 75     | 80      | 85       | 90       | 95   | 100  |
|           | 40                   | 0,47                                                          | 0,61                                   | 0,79    | 1       | 1,3       | 1,6                      | 2       | 2,4                  | 3                           | 3,7      | 4,4    | 5,4     | 6,5      | 7,7      | 9,2  | 11   |
|           |                      | - ,                                                           | 1 -,                                   | 1 -,. • | 1 -     | .,,       | ٠,٠                      | _       | ı -, ·               | · -                         | 1 -,-    | .,.    | -, -    | ٠,,٠     | , ,      | ,_   |      |

#### 6.4 Kondensatoren

#### 6.4.1 Referenzbedingungen

Die Empfehlungen für die Referenztemperaturen in Tabelle 36 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten.

Tabelle 36 - Kondensatoren

| Kondensatortyp                                                                              | Referenz-Kondensator-<br>temperatur $\theta_{\rm ref}$ (°C) | Anmerkung                                 |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--|--|
| Metallfolie                                                                                 |                                                             |                                           |  |  |
| Polystyrol, Polypropylen, Polycarbonat, Polyethylenterephtalat  Metallisierter Film         | -                                                           |                                           |  |  |
| Polypropylen, Polycarbonat, Polyethylenterephthalat, Acetyl-Cellulose  Metall-Papier (Film) |                                                             | 50 % der                                  |  |  |
| Glimmer                                                                                     | 40                                                          | Bemessungsspan-<br>nung bei 40 °C         |  |  |
| Glas Azetyl-Cellulose                                                                       | _                                                           | $U_{\text{ref}} / U_{\text{rat}} = 0,5$   |  |  |
| Keramik                                                                                     | ]                                                           |                                           |  |  |
| Tantal-Elektrolyt                                                                           |                                                             |                                           |  |  |
| - flüssiger Elektrolyt                                                                      |                                                             |                                           |  |  |
| - fester Elektrolyt                                                                         |                                                             |                                           |  |  |
| Aluminium-Elektrolyt                                                                        |                                                             | 80 % der<br>Bemessungsspan-               |  |  |
| - flüssiger Elektrolyt                                                                      | 40                                                          | nung bei 40 °C                            |  |  |
| - fester Elektrolyt                                                                         |                                                             | $U_{\text{ref}}$ / $U_{\text{rat}}$ = 0,8 |  |  |
| Veränderbare Kondensatoren                                                                  | 40                                                          | _                                         |  |  |

#### 6.4.2 Beanspruchungsfaktoren

#### 6.4.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2) ist:

$$\lambda = \lambda_{\mathsf{ref}} \cdot \pi_{\mathsf{u}} \cdot \pi_{\mathsf{T}}^{3)} \tag{23}$$

Die Beanspruchungsfaktoren für Spannungs- und Temperaturabhängigkeit sind in 6.4.2.2 und 6.4.2.3 angegeben.

#### 6.4.2.2 Spannungsabhängigkeit, Faktor $\pi_{II}$

Die Spannungsabhängigkeit wird nur für Festwert-Kondensatoren nach Gleichung (3)<sup>N11)</sup> berücksichtigt.

Für veränderbare Kondensatoren gilt  $\pi_{IJ} = 1$ .

Aluminiumelektrolytische Bauelemente mit flüssigem Elektrolyt sind elektrochemische Bauelemente mit einem besonders breiten Technologiebereich. Deswegen sind die angegebenen Konstanten und Faktoren nur Schätzungen für die Werte. Spezifischere Werte können in den einschlägigen Bauelementespezifikationen angegeben sein oder können zwischen Anwender und Hersteller vereinbart werden.

Nationale Fußnote: Gleichung (3) statt Gleichung (23).

Es werden die in Tabelle 37 angegebenen Konstanten  $\it C_2$  und  $\it C_3$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 38 dargestellt.

Tabelle 37 – Konstanten für Spannungsabhängigkeit der Kondensatoren

| Kondesatortyp                                                                                                                        | $rac{U_{ref}}{U_{rat}}$ | C <sub>2</sub> | C <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|
| Papier, Metallpapier  Metallisierter Polypropylenfilm  Metallisierter Polyäthylenterephtalatfilm  Metallisierter Celluloseacetatfilm | 0,5                      | 1,07           | 3,45           |
| Polycarbonatfilm-Metallfolie<br>Metallisierter Polycarbonatfilm                                                                      | 0,5                      | 1,50           | 4,56           |
| Polystyrolfilm Polyäthylenterephtalatfilm-Metallfolie Polypropylenfilm-Metallfolie                                                   | 0,5                      | 1,29           | 4,0            |
| Glas                                                                                                                                 | 0,5                      | 1,11           | 4,33           |
| Glimmer                                                                                                                              | 0,5                      | 1,12           | 2,98           |
| Keramik                                                                                                                              | 0,5                      | 1,0            | 4,0            |
| Aluminium-Elektrolyt, flüssiger Elektrolyt                                                                                           | 0,8                      | 1,0            | 1,36           |
| Aluminium-Elektrolyt, fester Elektrolyt                                                                                              | 0,8                      | 1,9            | 3,0            |
| Tantal-Elektrolyt, flüssiger Elektrolyt                                                                                              | 0,5                      | 1,0            | 1,05           |
| Tantal-Elektrolyt, fester Elektrolyt                                                                                                 | 0,5                      | 1,04           | 9,8            |

Tabelle 38 – Faktor  $\pi_{\rm U}$  für Kondensatoren

| Manual and a stantant                                                                                                              |       |       |      | Fak  | tor $\pi_{\sf U}$ f | ür $U_{op}/$ | $U_{rat}$ |     |     |     |
|------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|------|---------------------|--------------|-----------|-----|-----|-----|
| Kondensatortyp                                                                                                                     | 0,1   | 0,2   | 0,3  | 0,4  | 0,5                 | 0,6          | 0,7       | 0,8 | 0,9 | 1   |
| Papier, Metallpapier, Metallisierter Polypropylenfilm Metallisierter Polyäthylenterephtalatfilm Metallisierter Celluloseacetatfilm | 0,26  | 0,36  | 0,50 | 0,71 | 1                   | 1,40         | 2,0       | 2,9 | 4,2 | 6,1 |
| Polycarbonatfilm-Metallfolie<br>Metallisierter Polycarbonatfilm                                                                    | 0,23  | 0,30  | 0,42 | 0,63 | 1                   | 1,7          | 2,9       | 5,2 | 9,8 | 19  |
| Polystyrolfilm Polyäthylenterephtalatfilm-Metallfolie Polypropylenfilm-Metallfolie                                                 | 0,24  | 0,32  | 0,45 | 0,66 | 1                   | 1,5          | 2,4       | 3,9 | 6,4 | 11  |
| Glas                                                                                                                               | 0,19  | 0,28  | 0,42 | 0,64 | 1                   | 1,6          | 2,5       | 4,0 | 6,3 | 10  |
| Glimmer                                                                                                                            | 0,32  | 0,42  | 0,55 | 0,74 | 1                   | 1,4          | 1,9       | 2,6 | 3,6 | 5   |
| Keramik                                                                                                                            | 0,20  | 0,30  | 0,45 | 0,67 | 1                   | 1,5          | 2,2       | 3,3 | 5,0 | 7,4 |
| Aluminium-Elektrolyt, flüssiger Elektrolyt                                                                                         | 0,39  | 0,44  | 0,51 | 0,58 | 0,67                | 0,76         | 0,87      | 1,0 | 1,2 | 1,3 |
| Aluminium-Elektrolyt, fester Elektrolyt                                                                                            | 0,15  | 0,16  | 0,19 | 0,24 | 0,31                | 0,44         | 0,64      | 1,0 | 1,6 | 2,8 |
| Tantal-Elektrolyt, flüssiger Elektrolyt                                                                                            | 0,66  | 0,73  | 0,81 | 0,90 | 1                   | 1,1          | 1,2       | 1,4 | 1,5 | 1,7 |
| Tantal-Elektrolyt, fester Elektrolyt                                                                                               | 0,021 | 0,054 | 0,14 | 0,37 | 1,0                 | 2,7          | 7,4       | 20  | 56  | 154 |

## 6.4.2.3 Temperaturabhängigkeit, Faktor $\pi_{\mathsf{T}}$

Der nach Gleichung (6) angegebene Zusammenhang gilt nur bis zur maximal zulässigen Bauelementetemperatur. Es werden die in Tabelle 39 angegebenen Konstanten A,  $E_{\rm a1}$  und  $E_{\rm a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 40 dargestellt.

Tabelle 39 - Konstanten für Temperaturabhängigkeit der Kondensatoren

| Kondensatortyp                                                                                                                                                                                                                                        | A     | <i>E</i> <sub>a1</sub> (eV) | <i>E</i> <sub>a2</sub> (eV) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-----------------------------|
| Papier Metallpapier Metallisierter Polypropylenfilm Metallisierter Polyäthylenterephtalatfilm Metallisierter Celluloseacetatfilm Polyäthylenterephtalatfilm-Metallfolie Polypropylen-Metallfolie Polystyrolfilm-Metallfolie Metallisierter Papierfilm | 0,999 | 0,5                         | 1,59                        |
| Polycarbonatfilm-Metallfolie<br>Metallisierter Polycarbonatfilm                                                                                                                                                                                       | 0,998 | 0,57                        | 1,63                        |
| Glas, Glimmer                                                                                                                                                                                                                                         | 0,86  | 0,27                        | 0,84                        |
| Keramik                                                                                                                                                                                                                                               | 1,0   | 0,35                        | _                           |
| Aluminium-Elektrolyt, flüssiger Elektrolyt                                                                                                                                                                                                            | 0,87  | 0,5                         | 0,95                        |
| Aluminium-Elektrolyt, fester Elektrolyt                                                                                                                                                                                                               | 0,40  | 0,14                        | 0                           |
| Tantal-Elektrolyt, flüssiger Elektrolyt                                                                                                                                                                                                               | 0,35  | 0,54                        | 0                           |
| Tantal-Elektrolyt, fester Elektrolyt                                                                                                                                                                                                                  | 0,961 | 0,27                        | 1,1                         |
| Veränderliche Kondensatoren                                                                                                                                                                                                                           | 1,0   | 0,15                        | _                           |

– Der Faktor  $\pi_{\mathsf{T}}$  folgt aus Tabelle 40 als eine Funktion der tatsächlichen Kondensatortemperatur

$$\theta_{\rm op} = \theta_{\rm amb} + \Delta T$$
 in °C, (24)

wobei  $\Delta T$  die Temperaturänderung aufgrund der Betriebsbedingungen ist;

und als eine Funktion der Kondensatortemperatur unter Referenzbedingungen (siehe Tabelle 36)

$$\theta_{\text{ref}} = 40 \,^{\circ}\text{C}.$$
 (25)

Tabelle 40 – Faktor  $\pi_{\mathsf{T}}$  für Kondensatoren

| Kondensatortyp                                                                                                                                                                                                                                             | Kondensator-<br>temperatur<br>unter Referenz- |      |      |     |      | Fak | tor $\pi$ | T für | $	heta_{\sf op}$ (° | 'C) <sup>a</sup> |     |     |     |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|------|-----|------|-----|-----------|-------|---------------------|------------------|-----|-----|-----|-----|-----|
| Kondensatortyp                                                                                                                                                                                                                                             | bedingungen $	heta_{ m ref}$ (°C)             | ≤ 20 | 30   | 40  | 50   | 60  | 70        | 80    | 85                  | 90               | 100 | 105 | 110 | 120 | 125 |
| Papier Metallpapier Metallisierter Polypropylenfilm Metallisierter Polyäthylenterephtalatfilm Metallisierter Celluloseacetatfilm Polyäthylenterephtalatfilm- Metallfolie Polypropylenfilm-Metallfolie Polystyrolfilm-Metallfolie Metallisierter Papierfilm | 40                                            | 0,28 | 0,54 | 1,0 | 1,8  | 3,1 | 5,2       | 9     | 12                  | 16               | 33  | 49  | 77  | 210 | 350 |
| Polycarbonatfilm-Metallfolie<br>Metallisierter Polycarbonatfilm                                                                                                                                                                                            | 40                                            | 0,24 | 0,50 | 1,0 | 1,9  | 3,6 | 6,7       | 13    | 18                  | 27               | 63  | 100 | 170 | 510 | 900 |
| Glas, Glimmer                                                                                                                                                                                                                                              | 40                                            | 0,45 | 0,67 | 1,0 | 1,5  | 2,5 | 4,2       | 7,5   | 10                  | _                | _   | _   | _   | _   | _   |
| Keramik                                                                                                                                                                                                                                                    | 40                                            | 0,41 | 0,65 | 1,0 | 1,5  | 2,2 | 3,1       | 4,4   | 5,1                 | 6                | 8,1 | 9,3 | 11  | 14  | 16  |
| Aluminium-Elektrolyt,<br>flüssiger Elektrolyt                                                                                                                                                                                                              | 40                                            | 0,26 | 0,51 | 1,0 | 1,9  | 3,7 | 7,2       | 14    | 20                  | 28               | 55  | 77  | 110 | 210 | 290 |
| Aluminium-Elektrolyt,<br>fester Elektrolyt                                                                                                                                                                                                                 | 40                                            | 0,88 | 0,94 | 1,0 | 1,1  | 1,2 | 1,2       | 1,3   | 1,4                 | 1,4              | 1,5 | 1,6 | 1,6 | 1,8 | 1,8 |
| Tantal-Elektrolyt,<br>flüssiger Elektrolyt                                                                                                                                                                                                                 | 40                                            | 0,74 | 0,83 | 1,0 | 1,3  | 1,8 | 2,7       | 4     | 5                   | _                | _   | _   | _   | _   | _   |
| Tantal-Elektrolyt,<br>fester Elektrolyt                                                                                                                                                                                                                    | 40                                            | 0,49 | 0,7  | 1,0 | 1,45 | 2,2 | 3,7       | 7     | 10                  | 15               | 32  | 49  | 73  | 170 | 250 |
| Veränderliche Kondensatoren                                                                                                                                                                                                                                | 40                                            | 0,68 | 0,83 | 1,0 | 1,2  | 1,4 | 1,6       | 1,9   | 2                   | 2,2              | 2,5 | 2,6 | 2,8 | 3,1 | 3,3 |

## 6.5 Widerstände und Widerstandsnetzwerke

## 6.5.1 Referenzbedingungen

Die Empfehlungen für die Referenz-Widerstandselementtemperaturen in Tabelle 41 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten. Die Referenz-Eigenerwärmung  $\Delta T_{\rm ref}$  ist anzugeben, wenn andere Referenztemperaturen verwendet werden.

Tabelle 41 – Widerstände und Widerstandsnetzwerke

| Bauelement                                         | Referenztemperatur des Widerstands- elementes $\theta_{\rm ref}$ (°C) | Anmerkung                               |
|----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|
| Kohleschicht                                       | 55                                                                    |                                         |
| Metallschicht                                      | 55                                                                    | 50 % der                                |
| Netzwerke (Schichtschaltung) je Widerstandselement | 55                                                                    | Bemessungsleistung                      |
| Metalloxidschicht                                  | 85                                                                    | bei 40 °C                               |
| Draht                                              | 85                                                                    | $P_{\text{ref}} / P_{\text{rat}} = 0,5$ |
| Veränderbare                                       | 55                                                                    |                                         |

#### 6.5.2 Beanspruchungsfaktoren

#### 6.5.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2) ist:

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\mathsf{T}} \tag{26}$$

Die Beanspruchungsfaktoren für die Temperaturabhängigkeit sind in 6.5.2.2 angegeben.

#### 6.5.2.2 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach Gleichung (6) angegebene Zusammenhang gilt nur bis zur maximal zulässigen Temperatur des Widerstandselementes. Es werden die in Tabelle 42 angegebenen Konstanten A,  $E_{\rm a1}$  und  $E_{\rm a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Die Ergebnisse sind in Tabelle 43 dargestellt.

Tabelle 42 - Konstanten für Temperaturabhängigkeit der Widerstände

| A     | $E_{a1}$ (eV) | $E_{a2}$ (eV) |
|-------|---------------|---------------|
| 0,873 | 0,16          | 0,44          |

Der Faktor  $\pi_T$  folgt aus Tabelle 43

als eine Funktion der tatsächlichen Temperatur des Widerstandselementes

$$\theta_{\rm op} = \theta_{\rm amb} + \Delta T$$
 in °C, (27)

wobei  $\Delta T = P_{\rm op} \cdot R_{\rm th,amb} = \left(\theta_{\rm max} - 40\right) \cdot \left(P_{\rm op} / P_{\rm rat}\right)^{\rm N12)}$  in Grad Celsius die Temperaturänderung aufgrund der Betriebsbedingungen ist (mit  $\theta_{\rm max}$  als Bemessungstemperatur des Widerstandselementes),

 und als eine Funktion der mittleren Temperatur des Widerstandselementes unter Referenzbedingungen (siehe Tabelle 41)

$$\theta_{\text{ref}} = 40 + \Delta T_{\text{ref}}$$
 in °C. (28)

 $<sup>^{\</sup>rm N12)}$  Nationale Fußnote:  $P_{\rm op}$  statt P.

Tabelle 43 – Faktor  $\pi_{\mathsf{T}}$  für Widerstände

| Bauelement     | θ <sub>ref</sub> (°C) | Faktor $\pi_{T}$ für $\theta_{op}$ (°C) |      |      |      |      |      |      |     |     |     |     |     |
|----------------|-----------------------|-----------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| Bauelement     | (siehe 6.5.1)         | ≤ 25                                    | 30   | 40   | 50   | 60   | 70   | 80   | 90  | 100 | 110 | 120 | 125 |
| Mide wet to de | 55                    | 0,49                                    | 0,56 | 0,71 | 0,89 | 1,1  | 1,4  | 1,8  | 2,2 | 2,8 | 3,6 | 4,6 | 5,1 |
| Widerstände    | 85                    | 0,25                                    | 0,28 | 0,35 | 0,45 | 0,56 | 0,71 | 0,89 | 1,1 | 1,4 | 1,8 | 2,3 | 2,6 |

#### 6.6 Induktivitäten, Transformatoren und Spulen

#### 6.6.1 Referenzbedingungen

Die Empfehlungen für die Referenztemperaturen in Tabelle 44 basieren auf einer Bauelemente-Umgebungstemperatur von 40 °C und entsprechen der Mehrzahl der Bauelementeanwendungen in Geräten. Die Referenz-Eigenerwärmung  $\Delta T_{\rm ref}$  ist anzugeben, wenn andere Referenztemperaturen verwendet werden.

Tabelle 44 - Induktivitäten, Transformatoren und Spulen

| Bauelement                             |                 | Mittlere Referenz-Windungs-temperatur $\theta_{\rm ref}$ (°C) | Anmerkung                               |
|----------------------------------------|-----------------|---------------------------------------------------------------|-----------------------------------------|
| Induktivitäten für EMV-Anwendungen     | ≤ 3A<br>> 3A    | 60<br>85                                                      | 50 % der                                |
| NF-Drosseln und Übertrager             | ≤ <b>25</b> kHz | 55                                                            | Bemessungs-<br>leistung bei 40 °C       |
| HF-Drosseln und Übertrager             | > 25 kHz        | 55                                                            | $P_{\text{ref}} / P_{\text{rat}} = 0.5$ |
| Netztransformatoren und Übertrager für | Schaltnetzteile | 85                                                            |                                         |

#### 6.6.2 Beanspruchungsfaktoren

#### 6.6.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen nach Gleichung (2) ist:

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{T}} \tag{29}$$

Die Beanspruchungsfaktoren für die Temperaturabhängigkeit sind in 6.6.2.2 angegeben.

#### 6.6.2.2 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach Gleichung (6) angegebene Zusammenhang gilt nur bis zur maximal zulässigen Windungstemperatur. Es werden die in Tabelle 45 angegebenen Konstanten A,  $E_{\rm a1}$  und  $E_{\rm a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind. Das Ergebnis ist in Tabelle 46 dargestellt.

Tabelle 45 – Konstanten für Temperaturabhängigkeit der Induktivitäten, Transformatoren und Spulen

| A     | $E_{a1}$ (eV) | Е <sub>а2</sub><br>(eV) |
|-------|---------------|-------------------------|
| 0,996 | 0,06          | 1,13                    |

Der Faktor  $\pi_{\mathsf{T}}$  folgt aus Tabelle 46

als eine Funktion der tatsächlichen mittleren Windungstemperatur

$$\theta_{\rm op} = \theta_{\rm amb} + \Delta T$$
 in °C, (30)

wobei  $\Delta T$  die Temperaturänderung aufgrund der Betriebsbedingungen ist,

- und als eine Funktion der mittleren Wicklungstemperatur unter Referenzbedingungen (siehe Tabelle 44)

$$\theta_{\text{ref}} = 40 + \Delta T_{\text{ref}}$$
 in °C, (31)

wobei  $\Delta T_{\text{ref}}$  gemessen oder berechnet wird mit  $0.5 \cdot P_{\text{rat}}$  .

Tabelle 46 – Faktor  $\pi_{\mathsf{T}}$  für Induktivitäten, Transformatoren und Spulen

| Bauelement      | θ <sub>ref</sub> (°C) | Faktor $\pi_{T}$ für $	heta_{op}$ (°C) |      |      |      |      |      |      |     |     |     |     |     |
|-----------------|-----------------------|----------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| Dauelellielli   | (siehe 6.6.1)         | ≤ 25                                   | 30   | 40   | 50   | 60   | 70   | 80   | 90  | 100 | 110 | 120 | 125 |
| Induktivitäten, | 55                    | 0,79                                   | 0,82 | 0,89 | 0,96 | 1,1  | 1,2  | 1,5  | 2,3 | 4,3 | 8,8 | 19  | 29  |
| Transformatoren | 60                    | 0,75                                   | 0,78 | 0,84 | 0,91 | 1    | 1,1  | 1,5  | 2,2 | 4   | 8,4 | 18  | 27  |
| und Spulen      | 85                    | 0,43                                   | 0,44 | 0,48 | 0,52 | 0,57 | 0,66 | 0,83 | 1,3 | 2,3 | 4,8 | 10  | 15  |

#### 6.7 Mikrowellenbauelemente

#### 6.7.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 47 angegeben.

Tabelle 47 - Mikrowellenbauelemente

| Bauelement                                      | Referenz-Bauelemente-temperatur $\theta_{\rm ref}$ (°C) | Anmerkung                                   |  |  |  |  |  |  |  |
|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| Mikrowellenelemente                             |                                                         |                                             |  |  |  |  |  |  |  |
| Hohlleiter                                      | ]                                                       |                                             |  |  |  |  |  |  |  |
| Mikrowellencharge (Load)                        |                                                         |                                             |  |  |  |  |  |  |  |
| Festes Dämpfungsglied                           |                                                         |                                             |  |  |  |  |  |  |  |
| Veränderliches Dämpfungsglied                   | 40                                                      |                                             |  |  |  |  |  |  |  |
| Feste Elemente                                  | 40                                                      |                                             |  |  |  |  |  |  |  |
| Richtungskoppler                                |                                                         |                                             |  |  |  |  |  |  |  |
| Feste Stichleitungen (fixed stubs)              |                                                         |                                             |  |  |  |  |  |  |  |
| Mikrowellenkammern (cavities)                   |                                                         | Temperatur und elektri-                     |  |  |  |  |  |  |  |
| Veränderliche Elemente                          |                                                         | sche Beanspruchung                          |  |  |  |  |  |  |  |
| Abgestimmte Stichleitungen (tuned stubs)        |                                                         | haben keinen Einfluss auf die Ausfallraten. |  |  |  |  |  |  |  |
| Abgestimmte Mikrowellenkammern (tuned cavities) |                                                         | ule Ausialifateri.                          |  |  |  |  |  |  |  |
| Ferritbauelement (Transmitter)                  |                                                         |                                             |  |  |  |  |  |  |  |
| Ferritbauelement ( Receiver)                    |                                                         |                                             |  |  |  |  |  |  |  |
| RF/Mikrowellen Passives                         | 40                                                      |                                             |  |  |  |  |  |  |  |
| Filter                                          |                                                         |                                             |  |  |  |  |  |  |  |
| Isolator                                        |                                                         |                                             |  |  |  |  |  |  |  |
| Zirkulator                                      |                                                         |                                             |  |  |  |  |  |  |  |
| Splitter/Kombinator (splitter/combiner)         |                                                         |                                             |  |  |  |  |  |  |  |
| Synthesizer                                     |                                                         |                                             |  |  |  |  |  |  |  |

## 6.7.2 Beanspruchungsfaktoren

Derzeit sind keine Erfahrungswerte für die Anwendung von Temperatur und elektrische Beanspruchungen bekannt.

## 6.8 Sonstige passive Bauelemente

#### 6.8.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 48 angegeben.

Tabelle 48 - Sonstige passive Bauelemente

| Bauelement                                                                                                                                         | Referenz-Bauelemente-temperatur $	heta_{ m ref}$ (°C) | Anmerkung                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| Varistoren                                                                                                                                         |                                                       |                                                 |
| PTC-Thermistoren, NTC-Thermistoren                                                                                                                 |                                                       |                                                 |
| Überspannungableiter (Surge arresters)                                                                                                             |                                                       |                                                 |
| Keramische Resonatoren (Ceramic resonators)                                                                                                        |                                                       |                                                 |
| Filter                                                                                                                                             |                                                       |                                                 |
| Oberflächenwellenfilter (Surface wave filter (SAW)),<br>Oberflächenwellenoszillatoren (SAW-Oszillatoren),<br>spannungsgeregelte Oszillatoren (VCO) | 40                                                    | Temperatur und elektrische Bean-spruchung haben |
| Piezoelektrische Bauelemente (Wandler und Sensoren)                                                                                                | 40                                                    | keinen Einfluss auf                             |
| Kristalle                                                                                                                                          |                                                       | die Ausfallraten.                               |
| Kristalloszillatoren: XO (clock), VCXO (spannungsgeregelt), TCXO (temperaturkompensiert), OCXO (temperaturstabilisiert)                            |                                                       |                                                 |
| Durchführungskondensatoren, -filter                                                                                                                |                                                       |                                                 |
| Sicherungen                                                                                                                                        |                                                       |                                                 |

#### 6.8.2 Beanspruchungsfaktoren

Derzeit sind keine Erfahrungswerte für die Anwendung von Temperatur und elektrische Beanspruchungen bekannt.

#### 6.9 Elektrische Verbindungsstellen

#### 6.9.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 49 angegeben.

Tabelle 49 - Elektrische Verbindungen

| Bauelement                                     | Leiterquerschnitt (mm²) | θ <sub>ref</sub> (°C)                             | Anmerkung                               |  |
|------------------------------------------------|-------------------------|---------------------------------------------------|-----------------------------------------|--|
| Löten (manuell, maschinell)                    | _                       |                                                   |                                         |  |
| Drahtanschlüsse für Hybridschaltungen (Al, Au) | _                       |                                                   |                                         |  |
| Draht-Wickeln                                  | 0,05 bis 0,5            |                                                   | 50 % des Bemessungs-                    |  |
| Crimpen (manuell, maschinell)                  | 0,05 bis 300            | stromes für den angeschlossener Leiterquerschnitt |                                         |  |
| Klammern (Termi-Point)                         | 0,1 bis 0,5             |                                                   | angeschlossenen                         |  |
| Einpressen                                     | 0,3 bis 2               |                                                   | ·                                       |  |
| Schneid-Klemmen                                | 0,05 bis 1              |                                                   | $I_{\text{ref}} / I_{\text{rat}} = 0.5$ |  |
| Schrauben                                      | 0,5 bis 16              |                                                   |                                         |  |
| Klemmen (Federkraft)                           | 0,5 bis 16              |                                                   |                                         |  |

#### 6.9.2 Beanspruchungsfaktoren

Derzeit sind keine Erfahrungswerte für die Anwendung von Temperatur und elektrische Beanspruchungen bekannt.

## 6.10 Steckverbinder und Steckfassungen

#### 6.10.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 50 angegeben.

Tabelle 50 - Steckverbinder und Steckfassungen

| Bauelement                                                                                                                           |                                                                                      | θ <sub>ref</sub> (°C)     | Anmerkung                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|-----------------------------|--|
| Steckkontakte, die ohne elektrische Last gesteckt werden müssen (Gold oder vergleichbar korrosionsbeständig, Silber, Zinn, sonstige) |                                                                                      |                           |                             |  |
|                                                                                                                                      | arunter fallen auch Stecker, die mit eingeschränkter ach Datenblatt gesteckt werden. | 40                        | Betriebsstrom innerhalb der |  |
| Steckkontakte, die für Stecken mit elektrischer Last vorgesehen sind                                                                 |                                                                                      |                           | Datenblattgrenzwerte        |  |
| Koaxialstecker                                                                                                                       |                                                                                      |                           |                             |  |
| Zeitspanne: B                                                                                                                        | Bis zum Zeitintervall, das 90 % der Bauelemente überleben.                           |                           |                             |  |
| Betriebszyklus: F                                                                                                                    | Für die elektrische Beanspruchung ist der Betriebszyklus im Betr                     | riebszustand Dauerbetrieb | oder Aussetzbetrieb.        |  |
| Steckhäufigkeit: ≤                                                                                                                   | 1 Steckzyklus je 1 000 Stunden.                                                      |                           |                             |  |

#### 6.10.2 Beanspruchungsfaktoren

Derzeit sind keine Erfahrungswerte für die Anwendung von Temperatur und elektrische Beanspruchungen bekannt.

#### 6.11 Relais

#### 6.11.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 51 angegeben.

Tabelle 51 - Relais

| Bauelement                   | Elektrische Kontaktbeanspruchung                                                                       | θ <sub>ref</sub> (°C) | Anmerkung                                             |
|------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|
| Schwachstromrelais           | $(0,5 < U \le U_{\text{rat}}) \text{ V}_{\text{AC}}$ und $(0 < I \le 0,1) \text{ A bei ohmscher Last}$ |                       | Betriebsstrom innerhalb der Datenblattgrenzwerte      |
| Allgemeine Schaltrelais      | ( $0 < U \le 13$ ) V und ( $0,1 < I \le I_{\text{rat}}$ ) A bei ohmscher Last und AC                   | 40                    | Elektrische Kontaktbean-                              |
| KFZ-Relais                   | ( $0 < U \le 13$ ) V und<br>( $0,1 < I \le I_{\text{rat}}$ ) A bei ohmscher Last                       |                       | spruchung (siehe Bean-<br>spruchungsfelder in Bild 1) |
| Zeitspanne: Bis zum Zei      | tintervall, das 90 % der Relais überleben.                                                             |                       |                                                       |
| Betriebszyklus: Der Betriebs | szyklus kann innerhalb der im Datenblatt festgeleg                                                     | ıten Grenzen gev      | vählt werden (für Spule und                           |

Betriebszyklus: Der Betriebszyklus kann innerhalb der im Datenblatt festgelegten Grenzen gewählt werden (für Spule und Kontaktsatz).

Schaltspiele: Bis zu der im Datenblatt angegebenen maximalen Schaltspielanzahl.

#### 6.11.2 Beanspruchungsfaktoren

#### 6.11.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen ist:

$$\lambda = \lambda_{\mathsf{ref}} \cdot \pi_{\mathsf{ES}} \cdot \pi_{\mathsf{S}} \cdot \pi_{\mathsf{T}} \tag{32}$$

Dabei ist

 $\pi_{\mathsf{ES}}$  der Faktor für die Abhängigkeit von der elektrischen Beanspruchung;

 $\pi_{S}$  der Faktor für die Abhängigkeit von der Schalthäufigkeit;

 $\pi_{\mathsf{T}}$  der Faktor für die Temperaturabhängigkeit.

Die Werte der Beanspruchungsfaktoren sind in 6.11.2.3 und 6.11.2.4 angegeben.

## 6.11.2.2 Abhängigkeit von der Schalthäufigkeit, Faktor $\pi_{S}$ = 1

Dieser  $\pi_S$ -Faktor berücksichtigt die Anzahl S der Schaltspiele je Stunde. Mit Gleichungen (7) und (8) gilt:

- $\pi_S = 1$  für  $S \le 1$ ;
- $\qquad \pi_S = S \quad \text{für } S > 1.$

#### 6.11.2.3 Abhängigkeit von der elektrischen Beanspruchung, Faktor $\pi_{\mathsf{ES}}$

Die Faktoren  $\pi_{\rm ES}$  in Tabelle 52 bis Tabelle 54 basieren auf der Auswahl des Beanspruchungsfeldes in Bild 1 und auf der Art der Last.

Funkgelöschte Kontakte können wie Kontakte bei ohmscher Last behandelt werden.

Der Bemessungsstrom  $I_{\rm rat}$  und die Bemessungsschaltspannung  $U_{\rm rat}$  werden der Relaisspezifikation der einzelnen Relaisarten entnommen.

Für den Fall, dass unterschiedliche Beanspruchungsbedingungen vorkommen, sollte ein Beanspruchungsprofil berücksichtigt werden (anderenfalls sollte der höhere Beanspruchungsfaktor angewendet werden).



Bild 1 – Auswahl der Beanspruchungsfelder entsprechend Betriebsstrom und -spannung

Tabelle 52 – Faktor  $\pi_{\mathsf{ES}}$  für Schwachstromrelais

| Lastfeld       |              | Faktor $\pi_{ES}$ für                  |                |  |  |  |
|----------------|--------------|----------------------------------------|----------------|--|--|--|
| (siehe Bild 1) | ohmsche Last | kapazitive <sup>a</sup> und Lampenlast | induktive Last |  |  |  |
| 1              | 2            | 2                                      | _              |  |  |  |
| 2              | 1            | 8                                      | 8              |  |  |  |
| 3              | 2            | 20                                     | 40             |  |  |  |
| 4              | 8            | 40                                     | _              |  |  |  |

Tabelle 53 – Faktor  $\pi_{ES}$  für allgemeine Schaltrelais

|                                   | Faktor $\pi_{ES}$ für |    |                                        |    |                |    |
|-----------------------------------|-----------------------|----|----------------------------------------|----|----------------|----|
| <b>Lastfeld</b><br>(siehe Bild 1) | ohmsche Last          |    | kapazitive <sup>a</sup> und Lampenlast |    | induktive Last |    |
| (4.5 = 1 )                        | DC                    | AC | DC                                     | AC | DC             | AC |
| 1, ohne Golddeckschicht           | 50                    | 50 | 2                                      | 1  | -              | _  |
| 1, mit Golddeckschicht            | 20                    | 10 | 2                                      | 1  | -              | -  |
| 2                                 | 20                    | 10 | 10                                     | 5  | 10             | 5  |
| 3                                 | 2                     | 1  | 10                                     | 5  | 20             | 10 |
| 4                                 | 10                    | 2  | 10                                     | 5  | 50             | 20 |

Der maximal zulässige Spitzenstrom (nach Relaisspezifikation) darf nicht überschritten werden.

Tabelle 54 – Faktor  $\pi_{\mathsf{ES}}$  für KFZ-Relais

| Lastfeld       | Faktor $\pi_{ES}^{\ \ a}$ für |                                        |                |  |
|----------------|-------------------------------|----------------------------------------|----------------|--|
| (siehe Bild 1) | ohmsche Last                  | kapazitive <sup>b</sup> und Lampenlast | induktive Last |  |
| 3              | 1                             | 2 (1)                                  | 2 (1)          |  |
| 4              | 1                             | 2 (1)                                  | 5 (1)          |  |

<sup>&</sup>lt;sup>a</sup> Die Klammerwerte gelten für Wolfram-Vorlauf-Kontakt.

#### 6.11.2.4 Temperaturabhängigkeit, Faktor $\pi_T$

Der nach den Gleichungen (5) und (6) angegebenen Zusammenhänge gelten nur bis zur Bauelemente-Bemessungstemperatur. Es werden die in Tabelle 55 angegebenen Konstanten A,  $E_{\rm a1}$  und  $E_{\rm a2}$  angewendet, sofern keine anderen Werte dafür angegeben sind.

Tabelle 55 - Konstanten für Temperaturabhängigkeit der Relais

| Tragende Konstruktion | A     | Е <sub>а1</sub><br>(eV) | E <sub>a2</sub> (eV) |
|-----------------------|-------|-------------------------|----------------------|
| Kunststoff            | 1,0   | 0,175                   | -                    |
| Metall, Glas, Keramik | 0,006 | 0,646                   | 0                    |

Die berechneten Faktoren  $\pi_T$  sind in Tabelle 56 dargestellt und sind von der Umgebungstemperatur  $\theta_{amb}$  abhängig.

Tabelle 56 – Faktor  $\pi_T$  für Relais

| Turnanda Kanatuultian                                           | Faktor $\pi_{T}$ für die mittlere Umgebungstemperatur $	heta_{amb}^{}}$ |                  |     |   |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|------------------|-----|---|--|--|
| Tragende Konstruktion                                           | ≤ 40 °C 70 °C 100 °C 125                                                |                  |     |   |  |  |
| Kunststoff                                                      | 1                                                                       | 1,8              | 2,8 | 4 |  |  |
| Metall, Glas, Keramik         1         1         1,3         2 |                                                                         |                  |     |   |  |  |
| <sup>a</sup> Gilt nur bis zur maximal zulässigen Umgebungster   | nperatur nach Rela                                                      | isspezifikation. |     |   |  |  |

#### 6.12 Schalter und Tasten

#### 6.12.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 57 angegeben.

b Der maximal zulässige Spitzenstrom (nach Relaisspezifikation) darf nicht überschritten werden.

Tabelle 57 - Schalter und Tasten

| Bauelement                                               | Elektrische<br>Kontaktbeanspruchung                                                                                                             | θ <sub>ref</sub> (°C) | Anmerkung                                                          |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------|
| Dipfix- und Kodierschalter                               | Innerhalb der im Datenblatt angegebenen Grenzen                                                                                                 |                       | Betriebsstrom inner-                                               |
| Schalter und Tasten für<br>Schwachstromanwendungen       | $egin{aligned} \left(0,5 < U \leq U_{rat}\right)  V_{AC} \ & \\ \left(0,1 < I \leq I_{rat}\right)  A \ & \\ bei   ohmscher  Last \end{aligned}$ | _                     | halb der Datenblatt-<br>grenzwerte<br>Elektrische Kontakt-         |
| Schalter und Tasten für höhere elektrische Belastbarkeit | $ig(0,5 < U \le 13ig) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                    |                       | beanspruchung (siehe<br>Beanspruchungsfelder<br>in 6.12.2, Bild 2) |
| Zeitspanne: Bis zum Zeitinterv                           | all, das 90 % der Schalter und Tasten übe                                                                                                       | rleben.               |                                                                    |
| Betriebszyklus: Der Betriebszyklu                        | s kann innerhalb der im Datenblatt festgele                                                                                                     | egten Grenzen gewäh   | It werden.                                                         |

#### 6.12.2 Beanspruchungsfaktoren

#### 6.12.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen ist:

$$\lambda = \lambda_{\mathsf{ref}} \cdot \pi_{\mathsf{ES}} \tag{33}$$

Dabei ist  $\pi_{ES}$  der Faktor für Abhängigkeit von der elektrischen Beanspruchung. Die Werte der Beanspruchungsfaktoren sind in 6.12.2.2 angegeben.

#### 6.12.2.2 Abhängigkeit von der elektrischen Beanspruchung, $\pi_{ES}$

a) Für Dipfix-Schalter, Kodierschalter und Folientasten:

$$\pi_{\mathsf{ES}} = 1$$

b) Für sonstige Schalter und Tasten:

Die Faktoren  $\pi_{\rm ES}$  in Tabelle 58 und Tabelle 59 basieren auf der Auswahl des Beanspruchungsfeldes in Bild 2 und auf der Art der Last.

Der Bemessungsstrom  $I_{\rm rat}$  und die Bemessungsschaltspannung  $U_{\rm rat}$  werden der Spezifikation der einzelnen Schalter und Tasten entnommen.



Bild 2 – Auswahl der Beanspruchungsfelder entsprechend Betriebsstrom und -spannung

Tabelle 58 – Faktor  $\pi_{\rm ES}$  für Schalter und Tasten für Schwachstromanwendungen

| Lastfeld       | Faktor $\pi_{ES}$ für              |                |    |  |  |
|----------------|------------------------------------|----------------|----|--|--|
| (siehe Bild 2) | ohmsche Last                       | induktive Last |    |  |  |
| 1              | 2                                  | 2              | -  |  |  |
| 2              | 1                                  | 8              | 8  |  |  |
| 3              | 2                                  | 20             | 40 |  |  |
| 4              | 8                                  | 40             | _  |  |  |
| 4              | 8 genstrom (siehe Datenblatt) darf | 40             | -  |  |  |

Tabelle 59 – Faktor  $\pi_{\mathsf{ES}}$  für Schalter und Tasten für höhere elektrische Belastbarkeit

|                            | Faktor $\pi_{ES}$ für |              |    |                                        |    |         |
|----------------------------|-----------------------|--------------|----|----------------------------------------|----|---------|
| Lastfeld<br>(siehe Bild 2) | ohmso                 | ohmsche Last |    | kapazitive <sup>a</sup> und Lampenlast |    | ve Last |
| (                          | DC                    | AC           | DC | AC                                     | DC | AC      |
| 1, ohne Golddeckschicht    | 50                    | 50           | 2  | 1                                      | -  | _       |
| 1, mit Golddeckschicht     | 20                    | 10           | 2  | 1                                      | -  | _       |
| 2                          | 20                    | 10           | 10 | 5                                      | 10 | 5       |
| 3                          | 2                     | 1            | 10 | 5                                      | 20 | 10      |
| 4                          | 10                    | 2            | 10 | 5                                      | 50 | 20      |

## 6.13 Signal- und Meldelampen

## 6.13.1 Referenzbedingungen

Die Referenzbedingungen sind in Tabelle 60 angegeben.

Tabelle 60 - Signal- und Meldelampen

|                 | Bauelement                                                                                                                           | Umgebungs-<br>temperatur<br>$\theta_{\mathrm{ref}}$ (°C) | Anmerkung               |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|--|
| Glühlampen      |                                                                                                                                      | 40                                                       | Bemessungsspannung nach |  |
| Glimmlampen     |                                                                                                                                      | 40                                                       | Spezifikationen         |  |
| Zeitspanne:     | Bis zum Zeitintervall, das 93,5% der Lampen überleben.                                                                               |                                                          |                         |  |
| Betriebszyklus: | Betriebszyklus: Der Betriebszyklus ist Dauerbetrieb: für Aussetzbetrieb ergibt sich die Betriebsdauer aus der Summe der Brennzeiten. |                                                          |                         |  |

#### 6.13.2 Beanspruchungsfaktoren

#### 6.13.2.1 Modell

Die Ausfallrate unter Betriebsbedingungen als Funktion der Betriebsspannung nach Gleichung (2)<sup>N13)</sup> ist

$$\lambda = \lambda_{\text{ref}} \cdot \pi_{\text{U}} \tag{34}$$

## 6.13.2.2 Spannungsabhängigkeit, Faktor $\pi_{\mathsf{U}}$

Der Beanspruchungsfaktor  $\pi_{\mathsf{U}}$  für die Spannungsabhängigkeit ist in Tabelle 61 angegeben.

Tabelle 61 – Faktor  $\pi_{\rm U}$  für Signal- und Meldelampen

|             | Lampentyp                                                                                             |        | Faktor $\pi_{U}$ für $U_{op}/U_{rat}$ |      |      |      |     |      |     |      |     |      |
|-------------|-------------------------------------------------------------------------------------------------------|--------|---------------------------------------|------|------|------|-----|------|-----|------|-----|------|
|             | Lampentyp                                                                                             | ≤ 0,70 | 0,80                                  | 0,85 | 0,90 | 0,95 | 1,0 | 1,05 | 1,1 | 1,15 | 1,2 | 1,30 |
| Glühlampen  | Signal- und Meldelampen,<br>Eisenbahn-Signallampen;<br>Kleinspannung-Straßen-<br>verkehrssignallampen | 0,02   | 0,10                                  | 0,20 | 0,30 | 0,60 | 1,0 | 1,70 | 3,0 | 4,50 | 7,0 | 17,0 |
|             | Halogenglühlampen                                                                                     | _      | _                                     | _    | -    | 0,60 | 1,0 | 1,7  | 3,0 | _    | 1   | -    |
|             | Hochvolt-Straßenverkehrs-<br>signallampen                                                             | -      | -                                     | -    | -    | 0,60 | 1,0 | 2,0  | 4,0 | -    | ı   | ı    |
| Glimmlampen | (mit erforderlichem<br>Vorwiderstand)                                                                 | _      | -                                     | -    | 0,5  | 0,7  | 1   | 1,3  | 1,6 | 2,0  | -   | ı    |

ANMERKUNG 1 Die Ausfallrate kann abhängig von Bauart und Belastung höher sein bei Gleichspannungsbetrieb, bei höherer Umgebungstemperatur, bei mechanischer und elektrischer Stoßbelastung oder bei Schaltbetrieb mit Abweichungen vom konzipierten Schaltbetrieb.

ANMERKUNG 2 Nähere Angaben sind beim Hersteller zu erfragen.

Nationale Fußnote: Gleichung (2) statt Gleichung (34).

# Anhang A (normativ)

#### Ausfallarten von Bauelementen

Die Ausfallart ist eine Beschreibung dessen was den Ausfall für einen bestimmten Bauelementetyp verursacht. Es gibt im Allgemeinen drei Arten von Ausfällen – Vollausfall, Teilausfall oder Driftausfall (Degradation), jedoch treffen die meisten Datenhandbücher diese Unterscheidung nicht, sondern sie geben eine Gesamtausfallrate eines Bauelementes an, die alle Ausfälle aufgrund der Ausfallarten abbildet.

Information über Ausfallarten ist jedoch hilfreich, da es die Auftretensrate der Ausfallarten ist, die beobachtet wird und einen nützlichen Beitrag für Zuverlässigkeitsanalysen liefert wie z. B. zur Diagnoseabdeckung und für Sicherheitsanalysen, um die Kritikalität der Systeme zu berechnen.

Dieser Anhang enthält nähere Angaben über summarische Ausfallarten, die für diesen Zweck hilfreich sind. Diese summarischen Ausfallarten, wie sie im Allgemeinen auf Schaltkreisebene wahrgenommen werden, sind den tatsächlichen physikalischen Ausfallarten, die sie repräsentieren, übergeordnet und enthalten oft etliche untergeordnete Ausfallarten.

Die hier aufgeführten Daten stammen aus einer Reihe von Quellen wie zum Beispiel den in Tabelle D.1 angegebenen. Mit Hilfe der Tabellen kann die geschätzte Ausfallrate abhängig von den Ausfallarten aufgeteilt werden, wenn ein spezifischer Wert für die Gesamtausfallrate angegeben ist.

Für Vorhersagezwecke sind Ausfallarten von Bauelementen in den Tabellen A.1 bis A.4 angegeben.

Tabelle A.1 - Ausfallarten - Integrierte Schaltkreise (ICs) (digital)

|                                    | Input/Output<br>fixiert zu 0 | Input/Output<br>fixiert zu 1 |  |
|------------------------------------|------------------------------|------------------------------|--|
|                                    | (%)                          | (%)                          |  |
| Integrierte Schaltkreise (digital) | 50                           | 50                           |  |

Tabelle A.2 - Ausfallarten - Transistoren, Dioden, Optokoppler

|              |         | Kurzschluss | Unterbrechung | Drift |
|--------------|---------|-------------|---------------|-------|
|              |         | (%)         | (%)           | (%)   |
| Transistoren | Silicon | 85          | 15            | -     |
|              | GaAs    | 95          | 5             | -     |
| Dioden       | Silicon | 85          | 15            | _     |
|              | GaAs    | 95          | 5             | _     |
| Optokoppler  |         | 10          | 50            | 40    |
| Laserdioden  |         | 85          | 15            | _     |

Tabelle A.3 – Ausfallarten – Kondensatoren

|                          |                    |                         | Kurzschluss | Unterbrechung | Drift |
|--------------------------|--------------------|-------------------------|-------------|---------------|-------|
|                          |                    |                         | (%)         | (%)           | (%)   |
| Keramik                  | NPO-COG            |                         | 70          | 10            | 20    |
|                          | X7R-X5R            |                         | 90          | 10            | _     |
|                          | 5ZU-Y5V-Y4T        |                         | 90          | 10            | _     |
|                          | Durchführungsko    | ondensatoren            | 70          | 30            | _     |
|                          | flüssiger          | Nennspannung<br>< 350 V | 30          | 30            | 40    |
| Aluminium-<br>Elektrolyt | Elektrolyt         | Nennspannung<br>> 350 V | 50          | -             | 50    |
|                          | fester Elektrolyt  |                         | 10          | 90            | _     |
| Tantal-                  | flüssiger Elektrol | yt                      | 80          | 20            | _     |
| Elektrolyt               | fester Elektrolyt  |                         | 80          | 20            | _     |
| Metallfolie              |                    |                         | 10          | 90            | _     |
| Glimmer                  |                    | 40                      | 40          | 20            |       |
| Veränderliche            |                    | 40                      | 10          | 50            |       |
| Sonstige Techr           | nologien           |                         | 10          | 90            | _     |

Tabelle A.4 – Ausfallarten – Widerstände, induktive Bauelemente, Relais

|                    |                         | Unterbrechung | Kurzschluss | Drift |
|--------------------|-------------------------|---------------|-------------|-------|
|                    |                         | (%)           | (%)         | (%)   |
| Widerstände        | Kohlefilm               | 100           | -           | -     |
|                    | Metallfilm              | 40            | -           | 60    |
|                    | Draht                   | 100           | -           | -     |
|                    | Veränderliche           | 80            | -           | 20    |
|                    | Widerstandsnetzwerke    | 40            | -           | 60    |
| Induktive Baueleme | ente                    | 80            | 20          | -     |
| Relais             | Allgemeine<br>Anwendung | 80            | 20          | -     |
|                    | Leistungsrelais         | 80            | 20          | _     |
|                    | Quecksilberrelais       | 50            | 50          | _     |
|                    | Elektronisches Relais   | 80            | 20          | _     |
|                    | Koaxial-Relais          | 80            | 20          | _     |

## Anhang B (informativ)

## Vorhersage der Ausfallrate

## **B.1** Allgemeines

Zuverlässigkeitsvorhersagen werden im gesamten Lebenszyklus von Geräten auf verschiedenen Ebenen und mit verschiedenen Detaillierungsgraden durchgeführt, um die Zuverlässigkeit der Geräte zu beurteilen, festzulegen und zu verbessern.

Die erfolgreiche Zuverlässigkeitsvorhersage von Geräten erfordert im Allgemeinen ein Modell, das die Struktur des Gerätes berücksichtigt. Der Detaillierungsgrad in diesem Modell wird von den zum Zeitpunkt verfügbaren Informationen abhängen (z. B. Stückliste, Schaltplan usw.), und mehrere Zuverlässigkeitsmodelle sind abhängig vom Problem verfügbar (z. B. Zuverlässigkeitsblockdiagramme, Fehlzustandsbaumanalysen, Zustandsraum-Methoden usw.).

Während der Entwurfs- und frühen Entwicklungsphase ist die Vorhersage der Ausfallrate zur Schätzung der Geräteausfallrate anwendbar, um zu überprüfen, ob Zuverlässigkeitsziele erreicht werden können, und zu helfen, Entscheidungen über die Produktarchitektur zu treffen (z. B. Anwendung von Redundanz, Kühlung usw.).

Die Vorgehensweisen in dieser Norm können verwendet werden, um die Vorhersage der Ausfallrate bei Referenz- und Betriebsbedingungen durchzuführen (parts count and parts stress method).

## B.2 Vorhersage der Ausfallrate für Baugruppen

#### **B.2.1** Allgemeines

Die Vorhersage der Ausfallrate wird im Allgemeinen auf der Baugruppenebene durchgeführt. Vorhersagen sind für verschiedene wichtige Tätigkeiten im Lebenszyklus von Geräten nützlich, wo sie zusätzlich zu vielen anderen wichtigen Vorgehensweisen zur Absicherung von Zuverlässigkeitszielen angewendet werden.

Beispiele für solche Tätigkeiten:

- bewerten, ob Zuverlässigkeitsziele erreicht werden können;
- ermitteln und entschärfen möglicher Entwicklungsschwachstellen;
- vergleichen von alternativen Entwicklungskonzepten;
- beurteilen von Entwicklungen;
- bereitstellen von Daten für Zuverlässigkeitsanalysen für Baugruppen höherer Ebene;
- durchführen von Kostenberechnungen, z. B. Lebenszykluskosten;
- festlegen von Zielsetzungen für Zuverlässigkeitsprüfungen;
- planen logistischer Unterstützungsstrategien, z. B. Ersatzteile und Ressourcen.

Die Vorhersage der Ausfallrate wird häufig in Verbindung mit anderen Werkzeugen verwendet, die verwendet werden können, den Vorhersageprozess zu verbessern, um die Wirklichkeit durch die Einführung von Baugruppenstruktur und wichtigen Maßnahmen besser abzubilden.

Ausfallraten, die für die Ersatzteilbevorratung und für die Lebenszykluskostenberechnung verwendet werden, erfordern besondere Aufmerksamkeit. Für diese Aktivitäten sollten die Ausfallraten alle Ursachen einschließen, auch Entwicklungsfehler, Geräteausfälle und abhängige Ausfälle (Struktur), um eine realistisches Abbild von dem zu geben, was geschieht oder im Feldeinsatz während der Betriebsphase im Lebenszyklus geschehen wird. Siehe auch Anhang C (Datenbasis).

#### B.2.2 Annahmen und Grenzen

Vorhersagen der Ausfallrate basieren auf den folgenden Annahmen, die sich aufgrund der Fokussierung auf physikalische Ausfälle, die über der Zeit zufällig auftreten, ergeben.

Die Annahmen für Ausfallratenanalysen sind folgende:

- Das Vorhersagemodell unterstellt, dass ein Ausfall eines jeden Bauelementes zu einem Ausfall der Baugruppe führen wird. Die für die Vorhersage notwendigen Bauelementeausfallraten werden für das betrachtete Zeitintervall als konstant angenommen. Obwohl bekannt ist, dass dies für einige Bauelemente realistisch ist, trifft das für die Mehrzahl nicht zu, aber die Annahme vereinfacht die Aufgabe wesentlich.
- Bauelementeausfälle werden als unabhängig voneinander betrachtet. Es wird kein Unterschied zwischen Voll-, Teil- und Driftausfällen gemacht.
- Die Bauelemente werden innerhalb ihrer Spezifikationen eingesetzt.
- Entwicklungs- und Herstellungsprozesse der Bauelemente und des betrachteten Gerätes sind beherrscht.

Die Grenzen von Ausfallratenvorhersagen sind folgende:

- Sie k\u00f6nnen keinen Beweis liefern, dass ein Zuverl\u00e4ssigkeitsziel erreicht worden ist.
- Aufgrund der statistischen Natur der verfügbaren Information eignet sich die Vorhersage am besten für große Bauelemente- und Baugruppenanzahlen.
- Die Ergebnisse hängen von der Vertrauenswürdigkeit der Datenquelle ab.
- Die Annahme einer konstanten Ausfallrate wird nicht immer richtig sein. In solchen Fällen kann diese Methode zu fehlerhaften Ergebnissen führen. Es kann notwendig sein, andere Modelle zu verwenden, um das Lebensdauerende oder die Lebensdauererwartung zu bestimmen.
- Ausfallratendatenbücher und Beanspruchungsmodelle sind möglicherweise für neue Bauelementetypen nicht vorhanden.
- Nichtberücksichtigte Beanspruchungen können vorherrschen und die Ausfallrate beeinflussen.

#### B.2.3 Vorgehensweise für die Vorhersage der Ausfallrate

Der Prozess für die Zuverlässigkeitsvorhersage mit Ausfallraten besteht aus den folgenden Schritten:

- a) Festlegen und verstehen der zu analysierenden Baugruppe:
  - beschaffen von Informationen über die Struktur, wie z. B. Funktions- und Zuverlässigkeitsblockdiagramme, wenn verfügbar, um zu überprüfen, ob die Annahme einer Zuverlässigkeits-Serienschaltung zutrifft;
  - beschaffen von Stücklisten oder Teilelisten;
  - beschaffen von Bauelementespezifikationen oder Datenblättern für alle verwendeten Bauelemente in den Fällen, in denen eine Ausfallratenanalyse bei Betriebsbedingungen durchgeführt werden soll;
  - beschaffen von notwendigen Schalt- und Stromlaufplänen;
  - festlegen der Betrachtungsgrenzen aus den Baugruppenspezifikationen und den Stromlaufplänen;
  - ermitteln der Funktionen und Anforderungen für die Baugruppe, im Besonderen verstehen, was ein Ausfall ist.
- b) Wenn eine Vorhersage der Ausfallrate bei Betriebsbedingungen durchgeführt wird, sind für jedes Bauelement Informationen über die Betriebsbedingungen zu beschaffen, wenn sie sich von den angegebenen Referenzbedingungen unterscheiden:
  - bestimmen von Betriebstemperaturen;
  - ermitteln der tatsächlichen elektrischen Beanspruchungen;
  - ermitteln von Beanspruchungsprofilen, wenn notwendig;
  - bestimmen der maßgeblichen umgebungsbedingten Beanspruchungen;

- auswählen der Datenquelle entsprechend der Anleitung in Anhang D;
- verwenden der Beanspruchungsmodelle, die in 5.2 festgelegt sind;
- aufsummieren der Bauelementeausfallraten.
- c) Dokumentieren der Ergebnisse, Begründung für Auswahl und aller gemachten Annahmen:
  - Für die Darstellung von Ergebnissen wird keine Anleitung gegeben, da viele Organisationen ihre eigene Berichtsstruktur festlegen oder diese in kommerzieller Software vorgegebenen verwenden.
  - Die Begründung für die Auswahl der verwendeten Datenquellen und Methoden sollte dokumentiert werden.
  - Alle getroffenen Annahmen sollten angegeben werden, damit die Gültigkeit der Vorhersage bewertet werden kann.

#### **B.2.4** Vorhersagemodelle

## B.2.4.1 Allgemeines

Die Ausfallrate der Baugruppe wird berechnet, indem man die Ausfallraten der Bauelemente in jeder Kategorie aufsummiert. Dies gilt unter der Annahme, dass ein Ausfall eines jedes Bauelementes zum Geräteausfall führt, sonst auch bekannt als Ketten- oder Serienkonfiguration.

In den folgenden Modellen wird angenommen, dass die Ausfallrate unter Referenz- oder Betriebsbedingungen konstant ist. Die Begründung für die Annahme konstanter Ausfallraten sollte angegeben werden. Dies kann in Form von Analysen der wahrscheinlichen Ausfallmechanismen, der zugehörigen Ausfallverteilungen usw. erfolgen.

#### B.2.4.2 Vorhersage der Ausfallrate unter Referenzbedingungen (Parts count)

Sind die Dauern bis zum Ausfall im betrachteten Zeitintervall exponential verteilt, dann wird die Ausfallrate für Baugruppen in einer Serienkonfiguration<sup>N14)</sup> unter Referenzbedingungen folgendermaßen berechnet:

$$\lambda_{S} = \sum_{i=1}^{n} (\lambda_{ref})$$
 (B.1)

Dabei ist

 $\lambda_{ref}$  Ausfallrate unter Referenzbedingungen;

n Anzahl der Bauelemente.

Die eingeführten Referenzbedingungen sind typisch für die Mehrzahl der Bauelementeanwendungen in Geräten. Es wird angenommen, dass die unter Referenzbedingungen angewendete Ausfallrate bauelementespezifisch ist, d. h. sie beinhaltet die Auswirkungen der Komplexität, der Gehäusetechnologie, unterschiedlicher Hersteller und des Herstellprozesses usw.

#### B.2.4.3 Vorhersage der Ausfallrate unter Betriebsbedingungen (Parts stress analysis)

Bauelemente werden nicht immer unter Referenzbedingungen betrieben. In solchen Fällen werden die tatsächlichen Betriebsbedingungen zu Ausfallraten führen, die von denen unter Referenzbedingungen abweichen. Deshalb werden Modelle für Beanspruchungsfaktoren benötigt, mit denen die Ausfallraten unter Referenzbedingungen zu Werten unter Betriebsbedingungen (tatsächliche Umgebungstemperatur und tatsächliche elektrische Beanspruchung der Bauelemente) und umgekehrt umgerechnet werden können.

N14) Nationale Fußnote: Im Sinne der Zuverlässigkeit.

Die Ausfallrate für Baugruppen unter Betriebsbedingungen wird folgendermaßen berechnet:

$$\lambda_{S} = \sum_{i=1}^{n} (\lambda)_{i} = \sum_{i=1}^{n} (\lambda_{ref} \cdot \pi_{U} \cdot \pi_{I} \cdot \pi_{E} \cdot \pi_{S} \cdot \pi_{ES})_{i}$$
(B.2)

Dabei ist

 $\lambda_{\text{ref}}$  die Ausfallrate unter Referenzbedingungen;

 $\pi_U$  der Faktor für Spannungsabhängigkeit;

 $\pi_{l}$  der Faktor für Stromabhängigkeit;

 $\pi_{T}$  der Faktor für Temperaturabhängigkeit;

 $\pi_E$  der Faktor für Abhängigkeit von Umgebungsbedingungen;

 $\pi_{S}$  der Faktor für Abhängigkeit von der Schalthäufigkeit;

 $\pi_{\text{ES}}$  der Faktor für Abhängigkeit von der elektrischen Beanspruchung;

n die Anzahl der Bauelemente.

Im Abschnitt 6 sind für Bauelementekategorien spezifische Beanspruchungsmodelle und Werte für die  $\pi$ -Faktoren angegeben, die für die Umrechnung von Referenzausfallraten in Ausfallraten bei Feldeinsatzbedingungen verwendet werden sollten. Sind jedoch spezifischere Modelle für bestimmte Bauelementetypen verfügbar, dann sollten diese Modelle verwendet und ihre Anwendung begründet und dokumentiert werden

Die Umrechnung der Ausfallraten ist nur innerhalb der festgelegten Grenzwerte der Bauelemente zulässig.

#### B.2.5 Berücksichtigung von Beanspruchungsprofilen

#### B.2.5.1 Allgemeines

Die Beanspruchungsdauer (Summe der Betriebszeiten und Stillstandzeiten) kann die Ausfallrate beeinflussen. Ein (maximaler) Zeitbereich der Beanspruchung, in dem die Ausfallrate beobachtet wurde, sollte deshalb immer in der Ausfallratenspezifikation enthalten sein. Das ist die Zeit, in der die angegebene konstante Ausfallrate erwartet werden kann.

Mechanische Beanspruchungen von Bauelementen, die höher sind als die nach Bauelementespezifikation zulässigen, sollten durch die entsprechende Geräteauslegung vermieden werden. Wenn höhere Beanspruchungen nicht vermieden werden können, dann sollten sie bei der Durchführung der Zuverlässigkeitsvorhersage von Geräten berücksichtigt werden.

#### **B.2.5.2** Beanspruchungsprofil für Bauelemente

Die Bauelemente werden während der Betriebszeit des Gerätes nicht immer kontinuierlich beansprucht. Während der Betriebsperioden können Pausen ohne elektrische Belastung der Baugruppen sein. Dies kann durch den Faktor für das Beanspruchungsprofil  $\pi_{op}$  berücksichtigt werden. Damit erhält man mit Gleichung (B.3) die Ausfallrate bei Aussetzbetrieb zu

$$\lambda_{\mathsf{op}} = \lambda \cdot \pi_{\mathsf{op}} \tag{B.3}$$

mit

$$\pi_{\mathsf{op}} = W + \rho \cdot (1 - W) \tag{B.4}$$

#### Dabei ist

- $\lambda$  die Ausfallrate für das spezifische Bauelement:
  - für die Vorhersage der Ausfallrate bei Referenzbedingungen  $\lambda = \lambda_{ref}$
  - für die Vorhersage der Ausfallrate bei Betriebsbedingungen ergibt sich die Ausfallrate mit den in Abschnitt 6 angegebenen Gleichungen, basierend auf Gleichung (2);
- $\pi_{\text{op}}$  der Faktor für das Beanspruchungsprofil;
- W das Verhältnis von der Bauelemente-Beanspruchungsdauer zur Betriebszeit der Baugruppe,  $0 \le W \le 1$ :
- ho eine Konstante. Dies ist der Anteil von Bauelementen, die ohne elektrische Beanspruchung ausfallen, und dies berücksichtigt die Erfahrung, dass auch nicht beanspruchte Bauelemente ausfallen können,  $0 \le \rho \le 1$ ; eine typische Annahme ist  $\rho$  = 0,1, wenn aus der Einsatzerfahrung keine Werte bekannt sind.

#### B.2.5.3 Beanspruchungsprofil für Baugruppen

Die Ausfallrate hängt von der Beanspruchung ab. Ist ein Bauelement zum Beispiel 24 Stunden je Tag in Betrieb, dann wird es während eines Jahres im Mittel öfter ausfallen als dasselbe Bauelement, das nur 12 Stunden je Tag betrieben wird, wobei angenommen wird, dass die Betriebsbedingungen ähnlich sind. Eine Ausfallratenvorhersage kann auch unterschiedliche Beanspruchungsniveaus berücksichtigen. Durch Berücksichtigung von Beanspruchungsdauer und -niveaus kann der Unterschied zwischen vorhergesagten und beobachteten Ausfallraten gering gehalten werden.

Die tatsächlichen Beanspruchungen mit wechselnden Beanspruchungsniveaus können zu einem Beanspruchungsprofil kombiniert werden. Ein Beanspruchungsprofil gibt die tatsächliche Dauer der Beanspruchungsniveaus während einer festgelegten Kalenderzeit an, z.B. an einem Tag. Bild B.1 zeigt ein mögliches Beanspruchungsprofil während eines Tages.



Bild B.1 - Beanspruchungsprofil

Die Wechsellastausfallrate  $\lambda_{as}$  erhält man als gewichtetes Mittel der Ausfallraten für die verschiedenen Beanspruchungsniveaus, wie im Bild B.2 dargestellt.

$$\lambda_{as} = \frac{1}{t_f + t_p + t_i} \left( t_f \lambda_f + t_p \lambda_p + t_i \lambda_i \right)$$
(B.5)

#### Dabei ist

- t<sub>f</sub> der Zeitanteil mit Volllast;
- t<sub>n</sub> der Zeitanteil mit Teillast;
- ti der Anteil der Stillstandzeit;
- $\lambda_{\rm f}$  die Ausfallrate bei Volllast für die Baugruppe;
- $\lambda_{\rm p}$  die Ausfallrate bei Teillast für die Baugruppe;
- $\lambda_i$  die Ausfallrate bei Stillstand für die Baugruppe.

Die Stillstandausfallrate wird zu  $\lambda_i = 0.1 \cdot \lambda_f$  angenommen, wenn keine andere Information verfügbar ist.



Bild B.2 - Mittelung der Ausfallraten

#### B.2.6 Weitere Methoden der Zuverlässigkeitsvorhersage

#### B.2.6.1 Ähnlichkeitsanalyse

Die Ähnlichkeitsanalyse schließt die Verwendung von Leistungsdaten von in Betrieb befindlichen Einrichtungen ein, um neu entwickelte Geräte mit Vorgängergeräten zur Vorhersage der Endlebensdauer zu vergleichen, wenn die Anwendungen und Beanspruchungen ähnlich sind. Die Methode der Ähnlichkeitsanalyse wird in IEC 62308 beschrieben.

#### B.2.6.2 Simulation

Simulation ist ein empirischer Ansatz zur Gerätemodellierung, die eine anwendungsnahe Nachbildung der Wirklichkeit mit dem Versuch ermöglichen kann, vorauszusagen, was mit dem Gerät in Zukunft voraussichtlich geschehen wird. Die zugrundeliegenden Techniken, die in diesem Prozess verwendet werden, beinhalten Zufallsstichproben von Ausfallverteilungen und die Darstellung der Gerätestruktur unter Verwendung solcher Methoden wie mathematische Modelle, Reaktionskinetikmodelle und empirische Modelle. Diese Techniken erlauben die ziemlich wirklichkeitsnahe Nachbildung komplexer Geräte, die benutzt werden kann, deren Ausfallverhalten unter verschiedenen Betriebsbedingungen zu verstehen und vorauszusagen, wie die Zuverlässigkeit nach einiger Zeit sein wird.

#### B.2.6.3 Prüfung

Ausfallratendaten können auch von Prüfungen entnommen werden, wobei sie aus Geräte- oder Bauelementeprüfungen herrühren können. Normalerweise werden Prüfungen der Geräte vom Gerätehersteller durchgeführt, während die Prüfung der Bauelemente im Allgemeinen durch den Bauelementehersteller erfolgt.

Die Prüfbedingungen werden selten den Referenzbedingungen entsprechen; häufig wird die Prüfung beschleunigt durchgeführt, d. h. mit erhöhten Beanspruchungen gegenüber den Referenzbedingungen. In

diesen Fällen muss die Ausfallrateninformation mit den in Abschnitt 6 angegebenen Gleichungen zu den Referenzbedingungen umgerechnet werden. Die Ausfallrate sollte basierend auf statistischen Modellen geschätzt werden, wie zum Beispiel die Exponentialverteilung, die Weibull-Verteilung, die Normalverteilung oder die Lognormalverteilung.

In vielen Fällen treten während der Prüfung keine Ausfälle auf, in diesem Fall gibt der Hersteller oft für die Ausfallrate die obere Vertrauensgrenze von 60 % an. Wenn diese Daten jedoch mit den Felddaten verglichen werden, die oft mit der oberen Vertrauensgrenze von 50 % angegeben werden, dann sind die Prüfdaten auf die obere Vertrauensgrenze von 50 % umzurechnen.

Wenn Ausfallraten angegeben werden, die auf Prüfungen basieren, dann sollten die Prüfbedingungen zusammen mit der statistischen Schätzung der Ausfallrate und jede Umrechnung von Prüfbedingungen auf Referenzbedingungen mit angegeben werden. Die für diese Umrechnung verwendeten empirischen Faktoren sollten begründet werden.

Es sollte darauf geachtet werden, dass die Beanspruchung in einer beschleunigten Prüfung nicht Ausfallarten einführt, die für die Anwendung des Bauelementes nicht relevant sind.

#### B.2.6.4 Ausfallphysik

Ausfallphysik ist eine Vorgehensweise zur Zuverlässigkeitsvorhersage-Modellierung mit dem Ziel, physikalische Gesetzmäßigkeiten mit entsprechenden Ausfall-Wahrscheinlichkeitsdichten zu verwenden, um für ausfallfreien Betrieb zu entwickeln und/oder Zuverlässigkeitsziele festzulegen und Ausfallzeiten für Bauelemente vorherzusagen. Sie verwendet Wissen von Ausfallursachenanalysen mit dem Versuch, das "schwächste Glied" einer Entwicklung aufzuzeigen, um sicherzustellen, dass die geplante Gerätelebensdauer aufgrund der Entwicklung übertroffen wird. Die Vorgehensweise kann auch für neue Bauelemente mit neuen Materialien, Technologien und Prozessen verwendet werden, wenn grundlegende physikalische und Beanspruchungsinformationen verfügbar sind. Diese Vorgehensweise befasst sich mit der Brauchbarkeitsdauer eines Produktes.

#### B.2.7 Gültigkeitsbetrachtungen für Zuverlässigkeitsmodelle und Vorhersagen

Bei der Anwendung jeder quantitativen Zuverlässigkeitsvorhersagemethode ist es notwendig, sich ihrer Gültigkeit bewusst zu sein. Wie alle Engineering-Modelle sind die Ausfallratenmodelle Näherungen für die Wirklichkeit, und sie basieren auf den besten Feldeinsatzdaten, die für eine große Vielfalt von Bauelementen und Geräten erhalten werden konnten. Diese Daten werden dann mit vielen vereinfachenden Annahmen analysiert und angepasst, um brauchbare Modelle zu erstellen. Wird dann ein Modell angewendet, werden weitere Annahmen für die Entwicklungsparameter wie zum Beispiel Beanspruchung und Temperatur gemacht.

Deshalb sollte eine Zuverlässigkeitsvorhersage für das Gerät nicht als absoluter Wert für seine Feldausfallrate betrachtet werden. Es wird im Allgemeinen angenommen, dass diese Vorhersagen gut sein können, wenn sie für relative Vergleiche verwendet werden, wie zum Beispiel den Vergleich von Entwicklungsalternativen, oder für Gerätevergleiche. Es ist auch zu beachten, dass Zuverlässigkeitsvorhersagen ungeeignete Entwicklungsentscheidungen, unterdurchschnittliche Qualitätssicherung für gekaufte Teile, schlechte Verarbeitung, mangelhafte Qualitätssicherung von Produkten, Überbeanspruchung im Feldeinsatz usw. nicht berücksichtigen.

Argumente für Zuverlässigkeitsmodelle und Vorhersagen wie die in dieser Norm angegebenen sind folgende:

- Es wird oft Vertrauen in Ausfallratendaten gesetzt, die von einer Vielzahl von Quellen mit mittleren Bedingungen gesammelt werden. Die Genauigkeit und die Gültigkeit solcher Daten können jedoch fragwürdig sein.
- Für Bauelemente mit neuer Technologie sind Ausfallratendaten möglicherweise nicht für alle Bauelemente vorhanden, da auch die vor kurzem veröffentlichen Daten zwangsläufig veraltet sind.
- Während die gegebenen Ausfallratenmodelle anzeigen können, dass eine niedrige Ausfallrate durch eine Herabsetzung einer einzelnen Beanspruchung erzielt werden kann, können in der Praxis andere Beanspruchungen vorherrschen und einzelne Reduzierungen der Beanspruchung allein zur Erzielung hoher Zuverlässigkeit unwirksam machen.

#### DIN EN 61709:2012-01 EN 61709:2011

- Die Methoden liefern nur grobe Schätzungen der Zuverlässigkeit.
- Die Annahme der konstanten Ausfallrate w\u00e4hrend der Brauchbarkeitszeit eines Bauelementes ist nicht immer g\u00fcltig, aber eine solche Annahme liefert brauchbare Werte f\u00fcr vergleichende Analysen.

## B.3 Bauelementebetrachtungen

#### B.3.1 Bauelementemodell

In dieser Norm besteht das betrachtete Bauelement aus dem aktuellen Bauteil selbst (z. B. Silizium-Chip), der Verkapselung (z. B. Gehäuse) und den Anschlusspunkten. Wie die Anschlusspunkte an die Leiterplatte angeschlossen werden, auch Anschlusssystem genannt, z. B. Lötstellen, wird gesondert in einem eigenen Abschnitt behandelt, und dies bedeutet, dass in dieser Norm Ausfälle im Anschlusssystem wie Bauelementeausfälle behandelt werden sollten.

Es wird angenommen, dass jede unter Referenzbedingungen angewendete Ausfallrate bauelementespezifisch ist, d. h. sie beinhaltet die Auswirkung der Komplexität des Bauelements, die Gehäusetechnologie, die Abhängigkeit von Herstellern und den Herstellprozess usw.

Vorsicht ist angebracht, wenn man Ausfallratendaten einiger Datenquellen verwendet, da einige Quellen das Anschlusssystem in der Ausfallrate mit berücksichtigen und einige nicht.

#### B.3.2 Bauelementekennzeichnung

Bauelementekennzeichnung ist das wichtigste Element eines jedes Kodierungssystems, da sie eine eindeutige Identifizierung für jedes Bauelement ermöglicht. Die Kennzeichnung besteht aus den minimalen Daten, die notwendig sind, um eindeutig die wesentlichen Kenngrößen des Bauelementes festzulegen, d. h. jene Kenngrößen, die ihm seine eindeutige Eigenschaft geben und es von allen anderen unterscheiden. Einige Bauelemente-Klassifizierungssysteme sind im Anhang E kurz beschrieben.

Diese Norm empfiehlt die Anwendung der Reihe IEC 61360, die eine eindeutige und unmissverständliche Festlegung von charakteristischen Eigenschaften aller Bauelemente der elektrotechnischen Einrichtungen von den wesentlichen Bauelementen bis zu Unterbaugruppen und kompletten Geräten zur Verfügung stellt. Diese Norm verwendet nur die bauelementebezogenen Aspekte der IEC 61360. Die Bauelemente-Kodierungselemente der IEC 61360 sind im Anhang E beschrieben.

## B.4 Allgemeine Betrachtungen zur Ausfallrate

#### B.4.1 Allgemeines

Die Ausfallrate eines elektrischen Bauelementes hängt von vielen Einflüssen ab, wie z. B. Betriebsphase, Ausfallkriterium, Beanspruchungsdauer, Betriebsart (Dauer- oder Aussetzbetrieb), Umgebungstemperatur und Temperaturzyklenrate, Feuchtigkeit, elektrische Beanspruchung, Schalthäufigkeit, mechanische Beanspruchung, Luftdruck und sonstige Beanspruchungen. Es sollte beachtet werden, dass ein Ausfallratenwert allein ohne Kenntnis der Bedingungen, unter denen der Wert beobachtet wurde oder zu erwarten ist, keine wirkliche Information liefert. Deshalb sollten bei der Angabe einer Ausfallrate immer die Werte für die relevanten Einflüssfaktoren angegeben werden. Es ist möglich, anzugeben, wie die Ausfallrate von einigen dieser Einflüsse abhängt. Diese Abhängigkeit gilt nur innerhalb der für die Bauelemente angegebenen Grenzwerte.

Schätzwerte für die Ausfallrate können sowohl aus Lebensdauerprüfungen als auch aus Felddaten ermittelt werden. Diese geschätzten Ausfallraten gelten nur unter den Bedingungen während der Prüfungen oder bei der Feldbeobachtung. Die Gesetzmäßigkeiten, nach denen solche Schätzwerte bestimmt werden, hängen davon ab, welches statistische Verteilungsgesetz angewendet wird, d. h., ob die "Phase konstanter Ausfallrate" (Exponentialverteilung) oder die "Frühausfall- bzw. Verschleißausfallphase" (z. B. Weibull-Verteilung) vorliegt. Ist die Verteilung der Ausfälle über der Zeit bekannt und werden Schätzwerte für die Ausfallrate berechnet, dann sollte das Ergebnis statistisch interpretiert werden.

Die Dimension der Ausfallrate ist Ausfälle je Einheitenzeit (FIT), aber es ist erwähnenswert, dass die Zeitangabe abhängig von der Bauelementart durch Zyklen, Anzahl Operationen usw. ersetzt werden kann. Im Allgemeinen werden Bauelementeausfallraten in einer der zwei Standardformen angegeben, entweder als Ausfälle ie 10<sup>6</sup> h oder als Ausfälle ie 10<sup>9</sup> h. Im letzteren Fall wird oft die Abkürzung FIT verwendet.

## **B.4.2** Allgemeines Verhalten der Ausfallrate von Bauelementen

Das allgemeine Verhalten der Ausfallrate kann mit der Weibull-Verteilung modelliert werden (siehe Abschnitt 8 in IEC 61649:2008). Ihr Formparameter  $\beta$  modelliert drei Phasen im Lebenszyklus, die im Folgenden einfach erklärt werden können.

#### a) Frühausfallphase ( $\beta$ < 1)

Für einige Bauelemente wird zu Beginn der Betriebsphase manchmal eine höhere Ausfallrate beobachtet, die mit der Zeit abnimmt. Frühausfälle treten aufgrund von Herstellprozessen und Materialschwächen auf, die bei Prüfungen vor der Auslieferung nicht zu Ausfällen führen.

Es gibt einige Bauelemente, die in der Anwendung eine abnehmende Ausfallrate aufweisen werden. Dies liegt normalerweise an Problemen im Bauelementeherstellprozess sowie an Verarbeitungsproblemen (ESD, mechanische Schädigung usw.). Diese Norm unterstützt keine Vorhersage für diese Bauelementetypen, und wenn noch Frühausfälle für ein Bauelement erwartet werden, dann sollte der Beginn der Phase mit konstanter Ausfallrate angegeben werden.

Diese Norm geht von konstanten Ausfallraten aus, daher wird angenommen, dass alle Frühausfälle durch Prozessüberwachung oder durch Aussortieren eliminiert wurden (siehe IEC 61163-2).

#### b) Phase mit konstanter Ausfallrate ( $\beta$ = 1)

Der Formparameter unterstellt hier, dass die Ausfallrate konstant ist. In einigen Fällen tritt dies auf, weil konkurrierende Ausfallraten einen Mittelungseffekt erzeugen, bei dem sich eine konstante Ausfallrate einstellt, während die Ausfallraten der individuellen konkurrierenden Ausfallarten nicht konstant sind.

Im Allgemeinen werden Bauelemente der Elektrotechnik in der Phase mit konstanter Ausfallrate betrieben (vom Ende der Frühausfallphase bis zum Beginn der Verschleißausfallphase), wie es in dieser Norm behandelt wird. Dieses Verhalten kann am besten mit der Exponentialverteilung beschrieben werden, und Verfahren für die Überprüfung der konstanten Ausfallrate sind in IEC 60605-6 angegeben.

#### c) Verschleißausfallphase ( $\beta > 1$ )

Diese Phase weist eine ansteigende Ausfallrate aufgrund der vorherrschenden Auswirkungen von Verschleiß, Alterung oder Ermüdung auf.

In einigen Fällen wird ein Bauelement aufgrund seiner physikalischen und chemischen Beschaffenheit ausschließlich in der Verschleißausfallphase betrieben. Diese Gruppe beinhaltet chemisch-basierte Bauelemente, Bauelemente mit physikalischen Degradationsmechanismen und fast alle Bauelemente mit mechanischer Beeinflussung. Diese Bauelemente werden immer in der Verschleißausfallphase betrieben, und deshalb wird die Ausfallrate immer zunehmen. Dies kann oft durch eine Analyse der Ausfalldaten mit der Weibull-Verteilung bestätigt werden (zu Einzelheiten siehe IEC 61649).

Diese Norm geht davon aus, dass für diese Bauelemente die Ausfallrate für das im Datenblatt festgelegte Zeitintervall gemittelt ist. Da diese Norm nur die Brauchbarkeitszeit des Bauelementes behandelt, ist es wichtig zu wissen, wann die Brauchbarkeitszeit für ein Bauelement aufgrund von Verschleiß endet. Einige Lieferanten legen diesen Zeitpunkt fest, bis zu dem ein bestimmter Prozentsatz von Ausfällen aufgetreten ist (z. B. 10 %). Andere definieren das Ende der Lebensdauer über die Zunahme der Ausfallrate um einen bestimmten Faktor (z. B. doppelte Ausfallrate).

Die Zeitpunkte, die drei Betriebsphasen voneinander trennen, können nicht exakt bestimmt werden. Im Allgemeinen kann sich die Zeitabhängigkeit für jedes einzelne Bauelement signifikant unterscheiden. Wenn Zuverlässigkeitswerte interpretiert werden, ist es wichtig, die physikalischen Gegebenheiten von Ausfallarten und Verteilungen zu ermitteln.

Weitere Einzelheiten zu diesen unterschiedlichen Phasen sind in IEC 61649 und IEC 62308 angegeben.

#### B.4.3 Erwartungswerte für die Ausfallrate

Es wird empfohlen, Ausfallratendaten für Bauelemente unter Umgebungs- und Betriebsbedingungen anzugeben, die in etwa den Bedingungen im Feldeinsatz entsprechen. Dies führt zu den zutreffendsten Vorhersagen. Deshalb werden Daten von Vorgängerprodukten und Felddaten der Organisation, die die Analysen durchführt, bevorzugt.

Ausfallratenwerte, die aus einer Lebensdauerprüfung mit einer einzelnen Stichprobe ermittelt wurden – oder die daraus abgeleiteten Vertrauensgrenzen – sind oft nicht aussagekräftig. Deshalb können die sich ergebenden Streuungen der Vorhersagewerte für Baugruppen und Geräte zu groß sein.

Ausfallratenwerte im Sinne dieser Norm sollten deshalb als statistische "Erwartungswerte" bei Betrieb unter angegebenen Referenzbedingungen für die angegebene Zeitspanne und die Grundgesamtheit der Lose verstanden werden, d. h., es ist zu erwarten, dass sich im künftigen Einsatz unter den angegebenen Bedingungen im Mittel die genannten Werte ergeben.

#### B.4.4 Ursachen für abweichende Ausfallraten

Eine Ausfallrate, die von gesammelten Daten von Geräten ermittelt wurde, wird von all den Gegebenheiten abhängen, unter denen die Geräte betrieben wurden. Infolgedessen sollten die Ausfallratendaten nur für Vorhersagen für Geräte verwendet werden, in denen die Gegebenheiten ähnlich sind. Sind die Gegebenheiten unterschiedlich, dann muss die vorhergesagte Ausfallrate angepasst werden.

Leider sind die Umstände einer Datenerfassung selten ausreichend beschrieben und deshalb basieren alle Daten auf einigen expliziten Annahmen, einigen impliziten Annahmen und einigen nicht adressierten Annahmen.

Es ist wichtig, sich bewusst zu sein, dass eine Ausfallrate nicht eine inhärente und unveränderliche Eigenschaft eines Gerätes ist. Ein Ingenieur, der sich entweder mit der Erfassung oder der Verwendung von Daten befasst, sollte die Faktoren voll verstehen, die die Ausfallratenabweichung und den Betrieb beeinflussen.

Umstände, die Abweichungen der Ausfallraten verursachen können, sind:

#### Bauelementedetail

Beim Sammeln von Daten ist es möglich, dass Informationen, die zur Differenzierung der Ausfallrate wichtig sind, verloren gehen. Dies ist häufig der Fall, wenn eine Taxonomie oder Kategorisierung zur Gruppierung der Bauelementetypen verwendet wird.

#### Eignung für den Einsatz

Die Eignung für den Einsatz hängt mit der Qualität eines Bauelementes zusammen. Wenn eine Vorhersage durchgeführt wird, muss der Analyst, wann immer möglich, versuchen, die Gültigkeit der gemachten Annahmen für die bestimmte Situation zu beurteilen und einzuführen, wenn die durch die Daten repräsentierten Geräte einwandfrei gefertigt wurden, geeignete Ausführungsmaterialien verwendet wurden, richtig gewartet wurden, innerhalb der Auslegungsbedingungen betrieben und nach angemessenen Standards entwickelt wurden.

#### Kombinationen von Ausfallarten

Es ist deshalb große Aufmerksamkeit bei der Verwendung von Ausfalldaten notwendig, um sicherzustellen, dass die beim Sammeln der Ausfalldaten verwendete Definition der Ausfallarten dieselbe ist, wie für die vorhergesagten Ausfallarten, und nicht eine Mischung unterschiedlicher Ausfallartdefinitionen. Das ist von besonderer Bedeutung, wenn Handbuchdaten oder Ausfalldaten von externen Quellen verwendet werden. Wenn die Arten der Ausfallartdefinitionen nicht bestimmt werden können, wird möglicherweise das Ergebnis einer Vorhersage nicht mit dem tatsächlich beobachteten Verhalten übereinstimmen. Siehe 4.1 und Anhang A hinsichtlich mehr Details zu Ausfallarten.

#### Instandhaltung

Die Instandhaltungsstrategie der Geräte beeinflusst erheblich die Anzahl und Schwere der Ausfälle. Ein unzulängliches präventives Instandhaltungsprogramm wird keine Ausfälle verhindern, eine oberflächliche Routineprüfung kann einige potentielle Ausfälle ermitteln, und ein volles präventives Instandhaltungsprogramm kann potentielle Ausfälle vor ihrem Eintritt ermitteln, statt verspätet nach dem Ausfall.

## Annex C (informativ)

## Betrachtungen zur Entwicklung einer Datenbasis über Ausfallraten

## C.1 Allgemeines

Für die erfolgreiche Implementierung und Wartung einer Ausfallratensammlung ist ein organisatorischer Rahmen erforderlich, der sicherstellt, dass Zuverlässigkeitsdaten gesammelt und in Informationen umgewandelt werden, die für die Datenbasis geeignet sind. Sowohl die regelmäßige Aktualisierung als auch die Beseitigung überholter Informationen ist gleichermaßen wichtig.

Die Grundidee hinter den Informationen in den folgenden Abschnitten ist, dass es eine Sammlung von Zuverlässigkeitsdaten gibt, die für die Aufnahme in die Datenbasis aufbereitet ist, von der aus sie von Mitarbeitern oder Organisationen zur Durchführung von Ausfallratenberechnungen auf der nächsthöheren Ebene abgerufen werden können.

## C.2 Erfassung der Datensammlung – Erfassungsprozess

Eine Anleitung zur Datenerfassung findet man in IEC 60300-3-2.

#### C.3 Zu erfassende Daten und Art der Datenerfassung

Der Verwendung von Ausfalldaten bestimmt die Art, wie Daten erfasst werden sollten. Die endgültige Verwendung sollte daher eindeutig definiert sein, bevor Datenerfassungssysteme installiert werden, da es danach sehr schwierig und teuer ist, Änderungen durchzuführen, weil einige Informationen fehlen, die für den Endnutzer wesentlich sind.

Die Vorhersagemodelle sind nicht dazu bestimmt, das physikalische Verhalten der Bauelemente zu beschreiben oder ihre Ausfallmechanismen zu erklären, aber sie repräsentieren die beste Schätzung basierend auf beobachtete Daten. Sie versuchen darstellen, was mit den Geräten unter realen Feldeinsatzbedingungen im stationären Teil des Lebenszyklus passiert.

Ist der Endzweck für die Verwendung von Ausfallmodellen, Entwicklungsziele bereitzustellen, dann sollten Daten vom Feldeinsatz entsprechend gefiltert werden, um von der beobachteten Grundgesamtheit jene Einheiten herauszunehmen, die noch nicht die erforderliche Zuverlässigkeit aufweisen, d. h. Einheiten, die durch Geräteausfälle, Entwicklungsfehler oder Frühausfallverhalten beeinflusst sind.

Werden Daten vom Feldeinsatz analysiert, die von der Prüfung und Reparatur in Reparaturzentren kommen, dann ist ein spezielles Thema, das sorgfältig zu berücksichtigen ist, die Diagnoseabdeckung. Tatsächlich können mehrere Bauelemente (oder sogar eine große Anzahl) während der Reparatur entfernt werden, und der Prozentsatz "No Fault Found" (NFF: kein Fehlzustand gefunden) kann über der im Allgemeinen akzeptierten Grenze von etwa 20 % liegen, die als das Minimum gilt, das normalerweise erreichbar ist.

Wenn das Ergebnis hingegen auf die Dimensionierung der Ersatzteile abzielt (Logistik), entweder auf Bauelemente- oder Geräteebene, dann sollten andere Kriterien bei der Entscheidung, welche Daten erfasst werden, berücksichtigt werden:

- NFF;
- mangelhafte Diagnose;
- fehlerhafte Anwendung von Bauelementen, die zu systematischen Ausfällen führt;
- nicht richtig durchgeführte Wartung und menschliches Versagen;
- externe Faktoren (elektrisch und umgebungsbedingt);
- die Lernkurve von Herstellverfahren;

#### DIN EN 61709:2012-01 EN 61709:2011

- der Fall, bei dem mehrere Bauelemente zwecks Reparatur entfernt werden;
- der Fall, bei dem ein Bauelementeausfall den Ausfall anderer Bauelemente verursacht.

#### C.4 Berechnung und Entscheidung

Ausfallraten in der Datenbasis werden von allen oder einigen der gemeldeten Informationen abgeleitet. Idealerweise werden sie im Feldeinsatz ermittelt, wobei auch Prüfergebnisse von externen Quellen berücksichtigt und diese dann an die Referenzbedingungen angepasst werden.

In Daten, die vom Feldeinsatz stammen, sollten alle Ausfälle einbezogen werden, die während der Prüfung der ausgetauschten Geräte (z. B. Unterbaugruppen) reproduziert werden können. Die einzelnen Gründe für Ausfälle sind hier nicht wichtig (z. B. fertigungsbedingter Fehlzustand eines Bauelementes, Beanspruchung, externe Effekte innerhalb des spezifizierten Wertebereichs). Die Erfahrung zeigt, dass in einigen der beanstandeten Geräte keine Ausfälle gefunden werden können. Diese Geräte sollten für die Ermittlung der Ausfallrate nicht berücksichtigt werden. Für die Anwender kann es notwendig sein, diese NFF-Teile gesondert zu berücksichtigen, wenn für Ersatzteillogistik geplant wird.

Während Vertrauensbereiche für die Intervallschätzung von Daten, die von Prüfungen stammen, nützlich sind, sind sie für die Angabe von Erwartungswerten nicht sinnvoll.

#### C.5 Datenattribute für Ausfallraten-Datenbasis

Tabelle C.1 beschreibt einige der Attribute einer Datenbasis, die für die Zuverlässigkeitsvorhersage geeignet sind.

Tabelle C.1 – Attribute für Datenbasis für Zuverlässigkeitsvorhersagen

| Informationskategorien                                                                                | Detaillierte Information                                                                                                     | Zweck                                                                                                                  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Bauelementekennzeichnung                                                                              | Hersteller,<br>Teilenummer,<br>Hinweis zum Datenblatt                                                                        | Um Bauelement, Herstelllinie und Hersteller herauszufiltern                                                            |
| Bauteilkategorisierung                                                                                | Hauptkategorie der Bauelemente Technologie Komplexität Geometrische Maße Gehäuse Temperaturaspekte                           | Um ähnliche Einheiten herauszufiltern                                                                                  |
|                                                                                                       | Konformitätsbelange – Normen – Nachweise                                                                                     | Um Teile herauszufiltern, die bestimmte regulative Anforderungen erfüllen                                              |
|                                                                                                       | Fertigungspezifische Informationen wie gefährliche Substanzen, Verpackung, Losgrößen, Prüfungen während der Herstellung usw. | Um die Prüfung bezüglich Fertigungsaspekten zu ermöglichen, die ein Rückweisekriterium sein können                     |
| Kategorisierung der Verwendung                                                                        | Funktion/Zweck<br>Umgebungsbedingungen                                                                                       | Um spezifische Anwendungsarten der Teile<br>herauszufiltern, die bestimmte elektrische<br>Beanspruchungen verursachen  |
| (Referenz-)Ausfallrate                                                                                |                                                                                                                              | Um die Referenzausfallrate zu den gegebenen Referenzbedingungen anzugeben                                              |
| (Referenz-)Bedingungen                                                                                |                                                                                                                              | Um die Bedingungen für die gegebene<br>Referenzausfallrate anzugeben                                                   |
| Beanspruchungsmodell                                                                                  | Anwendbare π-Faktoren und ihr mathematischer Zusammenhang                                                                    | Um zu ermitteln, wie Ausfallraten von<br>Referenzbedingungen auf Anwendungs-<br>Betriebsbedingungen umgerechnet werden |
| Information in Bezug zu Elementen des<br>Beanspruchungsmodells                                        | Parameter, Gleichungen oder Tabellen, die zur Berechnung des relevanten Wertes für den <i>π</i> -Faktor notwendig sind       | Um die Werte der $\pi$ -Faktoren zu ermitteln                                                                          |
| Berücksichtigte Daten zur Berechnung<br>der Ausfallrate oder Referenz zur<br>detaillierten Berechnung | Referenz zur detaillierten Berechnung<br>Bauelementestunden                                                                  | Um die volle Information abzurufen Um die Relevanz und Vertrauenswürdigkeit der Daten abzuschätzen                     |
| Vertrauensbereich (wenn überhaupt)                                                                    | Daten wie obere, untere Grenze,<br>Wahrscheinlichkeiten usw.                                                                 | Um die Genauigkeit der gegebenen<br>Ausfallrate abzuschätzen                                                           |
| Weitere Information über die Daten, die<br>Basis für die Ausfallrate sind                             | Alter der Daten<br>Bauelementestunden<br>Ausfälle<br>Vertrauensbereiche und zugehörige Daten                                 |                                                                                                                        |
| Bearbeiterinformation                                                                                 | Bearbeiter der Berechnung<br>Ausgabedatum<br>Datum der Aufnahme in die Datenbasis                                            | Um die Rückverfolgbarkeit sicherzustellen                                                                              |

Zwei konkrete Beispiele für die Anwendung der IEC 61709 als Grundlage für die Entwicklung einer zuverlässigen Datenbasis für Ausfallraten sind die Firmenhandbücher IRPH:2003 und SN 29500 (siehe Datenquellen 8 und  $20^{\text{N15}}$ ) in Tabelle D.5).

N15) Nationale Fußnote: Datenquelle 20 statt Datenquelle 9.

## Anhang D

(informativ)

## Potentielle Quellen für Ausfallratendaten und Methoden für die Auswahl

## D.1 Allgemeines

Wenn man eine Zuverlässigkeitsvorhersage durchführt, ist es ratsam, aktuelle zuverlässige Felddatenquellen zu verwenden, wann immer sie verfügbar und anwendbar sind, solange sie für das Produkt gültig sind.

### D.2 Auswahl der Datenquelle

Daten sollten aus folgenden Quellen in der angegebenen Reihenfolge beschafft werden:

- Anwenderdaten:
- Herstellerdaten;
- Handbuchdaten.

Sind Anwenderdaten für die Vorhersage verfügbar, dann sollten sie verwendet werden. Sind keine Anwender verfügbar, dann sollten Daten des Herstellers überprüft und, wenn als geeignet beurteilt, verwendet werden. Sind keine Herstellerdaten verfügbar, dann sollten Handbuchdaten oder andere Daten überprüft und, wenn als geeignet beurteilt, verwendet werden.

Für den Fall, dass keine Datenquelle gefunden werden kann, sollte eine Risikobewertung durchgeführt werden, um die Notwendigkeit für die Beschaffung weiterer Daten festzustellen, z. B. durch ein Zuverlässigkeitsprüfprogramm, ob Expertenbewertung herangezogen werden soll oder ob die die Tatsache akzeptiert wird, dass keine Daten für das spezielle betrachtete Bauelement vorhanden sind. Risikobewertungstechniken sind z. B. in IEC 60300-3-9 beschrieben.

Es ist jedoch in allen Fällen notwendig, die Begründung für die getroffene Auswahl während der durchgeführten Arbeit anzugeben, um sicherzustellen, dass jede durchgeführte Arbeit technisch korrekt ist. Es ist normalerweise notwendig, die Verwendung der Zuverlässigkeitsvorhersage als eine gültige Zuverlässigkeitstechnik zu begründen, bevor die eigentliche Methode und die verwendeten Datenquellen begründet werden. Um die Verwendung der Technik zu begründen, in diesem Fall die Zuverlässigkeitsvorhersage, sind einige Betrachtungen erforderlich:

- Ist die Zuverlässigkeitsvorhersage die einzige Methode, die vorliegende Aufgabe durchzuführen oder Informationen zu erzeugen, dann sollte begründet werden, warum sie die einzige Methode ist.
- Ist die Zuverlässigkeitsvorhersage nicht die einzige Methode, aber die beste Methode, dann sollte begründet werden, warum sie die beste Methode ist.
- Ist die Zuverlässigkeitsvorhersage nicht die einzige Methode und nicht die beste Methode, dann sollte begründet werden, warum sie verwendet wird.

Ist die Zuverlässigkeitsvorhersage begründet, dann sollte die eigentliche Vorhersagemethodik begründet werden (Ausfallratenanalyse bei Referenzbedingungen oder bei Betriebsbedingungen oder eine Mischform). Dies wird auf die gleiche Weise durchgeführt wie die Begründung für die Vorhersage.

- Ist Methode "X" die einzige Methode, die Vorhersage durchzuführen, dann sollte begründet werden, warum sie die einzige Methode ist.
- Ist Methode "X" nicht die einzige Methode, die Vorhersage durchzuführen, dann sollte begründet werden, warum sie die beste Methode ist.
- Ist Methode "X" nicht die einzige Methode und nicht die beste Methode, dann sollte begründet werden, warum sie verwendet wird.

Sobald die Methodik begründet ist, sollten die Datenquellen, die als Eingangsdaten verwendet werden, begründet werden. Dies wird auf die gleiche Weise durchgeführt.

Die Begründung sollte protokolliert werden, damit die Entscheidungen, die während des Prozesses getroffen wurden, zu einem späteren Zeitpunkt verteidigt werden können. Die Information über die Begründung kann zusammen mit den Ergebnissen einer Vorhersage als Teil einer Zuverlässigkeitsaufgabe verwendet werden (wie zum Beispiel definiert in DEF00-42-3).

#### D.3 Anwenderdaten

Anwenderdaten sind die, die von der Firma aufbereitet worden sind, die die Vorhersage zum alleinigen Zweck durchführt, Zuverlässigkeitsinformationen über Bauelemente zu beschaffen, die auf keine andere Weise erhalten werden können. Daten können zum Beispiel von firmeninterner Prüfung, von Anwendererfahrung, gemachten Erfahrungen oder Expertenurteil kommen.

Wenn Anwenderdaten verfügbar sind, ist zu überprüfen, ob Daten in Übereinstimmung mit anwendbaren Normen gesammelt und dargelegt wurden, und es sollte eine ausführliche Überprüfung der Datensammlung und des Analyseprozesses durchgeführt werden. IEC 60300-3-2 und IEC 60300-3-5 sind verfügbare Leitfäden für diese Prozesse.

Bei Felddaten sollte Folgendes überprüft werden: Datenerfassungsverfahren, Bedeutung der Ausfälle und Analysetechniken. Daten, die zur Quantifizierung des Vorhersagemodells notwendig sind, werden von Quellen erhalten wie zum Beispiel Gewährleistungsaufzeichnungen von Firmen, Instandhaltungsaufzeichnungen von Kunden, Bauelementeherstellern oder Expertenerhebungen von Entwicklungs- oder Kundendienstingenieuren. Sind Ausfallratendaten im Feld erfasst, dann sollten auch die Bedingungen (umgebungsbedingte und funktionelle Beanspruchungen), für die die Werte gelten, mit angegeben werden.

Bei Daten aus Prüfungen sollte Folgendes überprüft werden: Prüfungen und Prüfbedingungen für Bauelemente, Losprüfung, Anzahl der Lose, Herstell- und Prüfzeitraum und Ausfallanalyse. Werden Ausfallraten verwendet, die unter Laborprüfbedingungen ermittelt wurden, dann sollte eine Unterscheidung gemacht werden in der Art, wie Ausfallraten erhalten werden, da in den meisten Fällen die für die Prüfung anwendbaren Ausfallkriterien nicht direkt auf die Anwendungen im Feld übertragbar sind und es deshalb ratsam ist, Felddaten zu verwenden, wo immer sie verfügbar und anwendbar sind.

Die angegebenen Ausfallraten sollten als Erwartungswerte für die angegebene Zeitspanne und die Grundgesamtheit der Lose verstanden werden, und sie gelten für den Betrieb unter den angegebenen Bedingungen, d. h., es ist zu erwarten, dass sich im künftigen Einsatz unter den angegebenen Bedingungen im Mittel die genannten Werte ergeben. Vertrauensgrenzen für vorhergesagte Ausfallraten von Bauelementen sind nicht sinnvoll, da sie nur für geschätzte Ausfallraten basierend auf Lebensdauerprüfungen anzuwenden sind.

#### D.4 Herstellerdaten

Herstellerdaten sind diejenigen, die, basierend auf Prüfungen eines bestimmten Bauelementes, vom Hersteller beigestellt werden.

Wenn Herstellerdaten verfügbar sind, ist zu überprüfen, ob Daten in Übereinstimmung mit anwendbaren Normen gesammelt und dargelegt wurden, und es sollte eine ausführliche Überprüfung der Datensammlung und des Analyseprozesses durchgeführt werden. IEC 60300-3-2 und IEC 60300-3-5 sind verfügbare Leitfäden zu diesen Prozessen.

Bei Herstellerdaten sollte Folgendes überprüft werden: verwendete Prüfungen und Prüfbedingungen für Bauelemente, Losprüfung, Anzahl der Lose, Herstell- und Prüfzeitraum und Ausfallanalyse.

Hat ein Hersteller Werte angegeben, die aus beschleunigten Prüfungen mit hoher Beanspruchung stammen, und wurden diese unter undifferenzierter Verwendung von Umrechnungsfaktoren auf normale Beanspruchungsniveaus für eine lange Zeitspanne umgerechnet, dann können diese von den unter Betrieb beobachteten Werten abweichen. Aufgrund der unterschiedlichen Verfahren, die für die Ermittlung von Ausfallraten vom Hersteller (z. B. Worst-Case-Toleranz) und vom Anwender (z. B. Funktion wird aufrechterhalten trotz Parameteränderungen, Fehlerfortpflanzungsgesetz) verwendet werden, können günstigere Werte erreicht werden.

## D.5 Handbuch-Zuverlässigkeitsdaten

Ausfallratendaten von Bauelementen sind in verschiedenen gut bekannten Zuverlässigkeitshandbüchern veröffentlicht. Normalerweise sind die veröffentlichten Daten Bauelementedaten, die von Produkten aus spezifischen Anwendungen, z. B. Fernsprechämtern, stammen. In einigen Fällen sind die Datenquellen nicht genau angegeben und stammen möglicherweise nicht vom Feldeinsatz. Aufgrund dieser Ursachen weichen Ausfallratenvorhersagen oft signifikant von Feldeinsatzbeobachtungen ab und können oft zu irreführenden Schlussfolgerungen führen.

Tabelle D.1 stellt Informationen für den Anwender hinsichtlich Datenquellen für die Ermittlung von Bauelementeausfallraten zur Verfügung. Diese Liste ist nicht umfassend, und es ist nicht beabsichtigt, eine Präferenz für Quellen zu geben. Es bleibt dem Anwender überlassen zu bestimmen, welche Datenquelle für die Anwendung relevant ist. Es ist zu beachten, dass es eine Anzahl von Handbüchern und Normen gibt, die die Zuverlässigkeitsvorhersage beschreiben, aber hier sind nur die aufgeführt, die Daten enthalten.

Tabelle D.1 - Quellen für Ausfallratendaten

| Datenquelle                                                                                                                                                                                                                | Kurze Beschreibung                                                                                                                                                                                                                                                                                                                                                                        | Information über Bezugsquellen                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT&T Reliability manual     (AT&T-Zuverlässigkeitshandbuch)                                                                                                                                                                | Das AT&T-Zuverlässigkeitshandbuch umreißt Vorhersagemodelle und enthält Ausfalldaten von Bauelementen. Die wesentlichen Vorhersagemodelle basieren auf einem abnehmenden Ausfallratenmodell für Frühausfälle, das unter Verwendung von Weibull-Daten modelliert ist, sowie auf einem Ausfallratenmodell für Zustände mit konstanter Ausfallrate. Insofern ist jedes Handbuch einzigartig. | Erhältlich in den meisten guten Buchhandlungen: Klinger, David J., Yoshinao Nakada, and Maria A. Menendez, Editors, AT&T Reliability Manual, Van Nostrand Reinhold, 1990, ISBN:0442318480                                                                                                                                                                                                                                           |
| Data collection for nonelectric reliability handbook. Volume 3, section 1, failure rate data (continued)     (Datensammlung für nichtelektrische Komponenten, Band 3, Kapitel 1, Ausfallratendaten (fortgesetzt))          | Der Rechnerausdruck über nichtelektrische<br>Daten liegt in drei Kapiteln vor:<br>Kapitel I – Ausfallratendaten,<br>Kapitel II – Beanspruchungsniveau-<br>daten/Teilenummer,<br>Kapitel III – Ausfallartverteilungen.                                                                                                                                                                     | Erhältlich vom  National Technical Information Services  http://www.ntis.gov/search/ product.aspx?ABBR=AD841108                                                                                                                                                                                                                                                                                                                     |
| 3. Prediction of Component Failure Rates for PSA on Nuclear Power Plants 1982–1997 (Schätzung von Bauelemente-Ausfallraten für wahrscheinlichkeitstheoretische Sicherheitsbewertungen von Leichtwasserreaktoren 1982–1997) | Dieses Dokument beschreibt die überarbeiteten Bauelementeausfallraten, berechnet durch erneute Vorhersagen von 49 japanischen Leichtwasserreaktoren im Zeitraum von 1982 bis 1997.                                                                                                                                                                                                        | Erhältlich als Dokument: "Prediction of Component Failure Rates for PSA on Nuclear Power Plants 1982–1997". Author:  KIRIMOTO YOSHIHIRO (Cent. Res. Inst. of Electr. Power Ind., Nucl. Inf. Center)  MATSUZAKI AKIHIRO (Cent. Res. Inst. of Electr. Power Ind., Nucl. Inf. Center)  SASAKI ATSUSHI (Cent. Res. Inst. of Electr. Power Ind., Nucl. Inf. Center)  Journal Title: Denryoku Chuo Kenkyujo Genshiryoku Joho Senta Hokoku |

Tabelle D.1 (fortgesetzt)

| Datenquelle                                                                                                                                                | Kurze Beschreibung                                                                                                                                                                                                                                                                                                                                                                                                                                           | Information über Bezugsquellen                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. FIDES                                                                                                                                                   | FIDES ist ein neues Zuverlässigkeitsdaten-<br>Handbuch (seit Januar 2004), entwickelt<br>durch eine Arbeitsgemeinschaft der<br>französischen Industrie unter der Leitung<br>des französischen DoD (DGA).<br>Die FIDES-Methodik basiert auf Ausfall-<br>physik und wird abgesichert durch die                                                                                                                                                                 | FIDES ist auf Anforderung erhältlich unter: fides@innovation.net                                                                                                       |
|                                                                                                                                                            | Analyse von Prüfdaten, Rückwaren und bestehenden Modellierungen.                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |
| 5. Guidelines for process equipment reliability data – with data tables (Leitfaden für Zuverlässigkeitsdaten von Prozesseinrichtungen – mit Datentabellen) | Dieser Leitfaden wurde geschrieben, um Prozesssicherheitsfachleuten und ihre Manager mit den Informationen zu versehen, die zur Schätzung statistischer Ausfallraten für Pumpen, Ventile, Wärmeaustauscher, Instrumente und andere chemische Prozessausrüstungen notwendig sind. Die Ausfallraten sind für das Durchführen einer Risikoanalyse für chemische Prozesse erforderlich, um das Risiko verschiedener Prozess- und Anlagenszenarien vorherzusagen. | Erhältlich vom  Center for Chemical Process Safety/AIChE ISBN: 978-0-8169-0422-8 Electronic ISBN: 978-1-59124-568-1                                                    |
| HRD5: British Telecom handbook of reliability data     (Handbuch der British Telecom über Zuverlässigkeitsdaten)                                           | HRD5 ist ein Zuverlässigkeitsstandard, der von der British Telecommunications plc entwickelt wurde, der auch Modelle für eine große Auswahl von Bauelementen bereitstellt. Im Allgemeinen ist HRD5 ähnlich CNET 93, liefert aber einfachere Modelle und benötigt weniger Datenparameter für die Analyse.                                                                                                                                                     | Die HRD5-Methode ist in einer Reihe von<br>kommerziellen Zuverlässigkeits-Software-<br>paketen verfügbar, aber das ursprüngliche<br>Handbuch ist nicht mehr im Handel. |
| 7. IEEE Gold book                                                                                                                                          | Die IEEE-Richtlinie IEEE Gold book für die Entwicklung von zuverlässigen industriellen und kommerziellen Energieeinrichtungen stellt Daten in Bezug auf Produktzuverlässigkeit zur Verfügung, die in industriellen und kommerziellen Stromverteilungseinrichtungen verwendet werden.                                                                                                                                                                         | Das IEEE Gold book ist erhältlich von: IEEE Customer Service, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331, U.S.A. e-mail: customer.service@ieee.org          |

## Tabelle D.1 (fortgesetzt)

| 8.  | IRPH 2003:<br>Italtel reliability prediction handbook<br>(Zuverlässigkeitsvorhersage-Handbuch<br>von Italtel)                                                                         | Das "Italtel prediction handbook" wurde<br>zuerst 1993 veröffentlicht als Ergebnis der<br>Zusammenarbeit zwischen vielen euro-<br>päischen Organisationen und Firmen,<br>insbesondere einer Arbeitsgruppe<br>bestehend aus British Telecom, Italtel und<br>CNET.                                                                                                                                                    | Das Italtel IRPH 2003 ist auf Anforderung erhältlich von:  Frau E. Di Perna quality@italtel.it                                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                       | Das Ergebnis dieser Studie führte zur Veröffentlichung von drei nahezu identischen Handbüchern von CNET (RDF 93), von Italtel (IRPH 93) und von British Telecom (HRD 5). IRPH 2003 übernimmt die Ausfallratenmodelle von IEC 61709 (1996) mit einigen Vereinfachungen für die einfachere Anwendung. Die Referenzausfallraten stammen hauptsächlich von Felddaten und basieren auf einer Zusammenarbeit mit Siemens. |                                                                                                                                                                                                                        |
| 9.  | MIL-HDBK-217Plus                                                                                                                                                                      | Reliability Information Analysis Center (RIAC), Ersatz-Vorhersagemethodik für MIL-HDBK-217, löst PRISM ab                                                                                                                                                                                                                                                                                                           | http://www.theriac.org/productsandservices/<br>products/217plus/index.swn<br>(checked 17/11/2008)                                                                                                                      |
| 10. | MIL-HDBK-217 MIL-HDBK-217F Reliability prediction of electronic equipment (MIL-HDBK-217F Zuverlässigkeitsvorhersage von elektronischen Einrichtungen)                                 | Das "MIL-HDBK-217 Reliability Prediction of Electronic Equipment" ist seit etwa 40 Jahren die Stütze für Zuverlässigkeitsvorhersagen gewesen, aber es ist seit 1995 nicht mehr aktualisiert worden, und es gibt keine Pläne vom Militär, es zukünftig zu aktualisieren.                                                                                                                                             | Das Handbuch ist im Internet an einer Anzahl von Stellen verfügbar, wie z. B. http://assist.daps.dla.mil/quicksearch (checked 17/11/2008).  Es ist auch in mehreren kommerziell verfügbaren Softwarepaketen enthalten. |
| 11. | NPRD-95                                                                                                                                                                               | Die Daten in NPRD-95 stellen Ausfallraten für eine Vielzahl von Einheiten einschließlich mechanischer und elektromechanischer Teile zur Verfügung.  Das Dokument enthält detaillierte Ausfallratendaten von über 25 000 Teilen für zahlreiche Teilekategorien, gruppiert nach Umgebung und Qualitätsklassen.                                                                                                        | Es ist erhältlich von:  Reliability Analysis Center, 201 Mill Street, Rome, NY 13440-6916, U.S.A.                                                                                                                      |
| 12. | NSWC-94/L07 – Handbook of reliability prediction procedures for mechanical equipment (NSWC-94/L07 – Handbuch über Zuverlässigkeitsvorhersageverfahren von mechanischen Einrichtungen) | Dieses von "Naval Surface Warfare Center  – Carderock Division" entwickelte  Handbuch stellt Ausfallratenmodelle für elementare Klassen mechanischer Bauelemente zur Verfügung.                                                                                                                                                                                                                                     | Erhältlich von: N16) http://www.navsea.navy.mil/nswc/ carderock/pub/mechrel.aspx                                                                                                                                       |

 $<sup>^{\</sup>mbox{\scriptsize N16})}$  Nationale Fußnote: Aktuelle Internetadresse statt http://www.stormingmedia.co.uk/.

## Tabelle D.1 (fortgesetzt)

|                                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13. OREDA:2000                                                                                                                                                                                                                                                                                                | Die vierte Ausgabe des OREDA-Hand-<br>buches wurde im Oktober 2002 veröffent-<br>licht und enthält Daten von OREDA®<br>Phase IV (1993–96) und Phase V<br>(1997–00). Die Handbücher enthalten<br>Zuverlässigkeitsdaten von Offshore-<br>Ausrüstungen, übersetzt in eine Form, die<br>leicht für verschiedene Sicherheits-, Zuver-<br>lässigkeits- und Instandhaltungsanalysen<br>verwendet werden kann. | OREDA 2002 ist erhältlich von:  Det Norske Veritas Veritasveien 1 N-1322 Høvik NORWAY Att.: ENENO753 http://www.dnv.com                                                                         |
| 14. PRISM (RAC / EPRD)                                                                                                                                                                                                                                                                                        | Die Datenbasis des "RAC (EPRD) Electronic Parts Reliability Data Handbook" ist die gleiche wie die, die vorher für das MIL-HDBK-217 verwendet wurde, und wird von einem Software-Werkzeug unterstützt, das unter dem Namen PRISM vermarktet wird.                                                                                                                                                      | PRISM ist erhältlich von: http://src.alionscience.com/prism                                                                                                                                     |
| 15. RDF:2003                                                                                                                                                                                                                                                                                                  | RDF:2003 ist die aktuelle Version des CNET Handbuches.  Dieses Handbuch ist von UTEC übernommen worden und ist als "UTEC80810 Reliability Data Handbook" bekannt. Dieses Handbuch enthält überwiegend die gleichen Bauelemente wie das MIL-HDBK-217.                                                                                                                                                   | Das Handbuch ist erhältlich von:  UTE Union Technique de l'Électricité et de la Communication, L'Immeuble VOLTA, 33, avenue du Général Leclerc – BP 23, 92262 Fontenay-aux- Roses Cedex, France |
| 16. IEC TR 62380, Reliability data handbook – A universal model for reliability prediction of electronics components, PCBs and equipment  (IEC TR 62380: Zuverlässigkeitsdaten- Handbuch – Ein universelles Modell zur Zuverlässigkeitsvorhersage für elektronische Bauelemente, Flachbaugruppen und Geräten) | Dieser technische Report stellt Elemente bereit, um die Ausfallraten montierter elektronischer Bauelemente zu berechnen. Er macht die Durchführung von Untersuchungen zur Zuverlässigkeitsoptimierung von Produkten dank der Einführung von Einflussfaktoren einfacher.  WARNUNG Einige der Vorgehensweisen in IEC/TR 62380 stehen im Widerspruch mit denen in dieser Norm.                            | Erhältlich vom IEC-Fachhandel.                                                                                                                                                                  |
| 17. Reliability data for safety instrumented equipments PDS Data Handbook, 2006 Edition (Zuverlässigkeitsdaten für sichere und fehlertolerante Einrichtungen)                                                                                                                                                 | Zuverlässigkeitsdaten-Dossiers für Feld-<br>bauelemente (Sensoren, Ventile) und<br>Steuerlogik (Elektronik) werden ein-<br>schließlich der Daten für Unterwasser-<br>ausrüstung dargestellt.                                                                                                                                                                                                           | Erhältlich von:  Sydvest, Trondheim, Norway E-mail: post@sydvest.com  http://www.sydvest.com                                                                                                    |
| 18. Reliability failure rate/mode handbook, section 3.1, integrated circuit failure rates (Zuverlässigkeits-Handbuch über Ausfallraten/-arten, Kapitel 3, Ausfallraten von integrierten Schaltungen)                                                                                                          | Das Dokument enthält eine Reihe von Tabellen mit Erfahrungen über Einsatz- ausfallraten für integrierte Schaltungen, ein Vorhersageverfahren für hybride Mikro- schaltungen und eine Reihe von Diagrammen, die die Ausfallraten von integrierten Schaltungen (IS) als Funktion der Temperatur darstellen, die im Wesentlichen von Laborversuchen von IS bei erhöhten Temperaturen ermittelt wurden.    | Erhältlich von:  RIAC, 6000 Flanagan Road, Suite 3, Utica NY 13502-1348  Phone: 315.351.4200 Toll free: 877.363.RIAC (7422)                                                                     |

| 19. Safety equipment reliability handbook, 2nd edition (Sicherheitseinrichtungen – Zuver- lässigkeitshandbuch, 2. Ausgabe) | Diese Veröffentlichung enthält Informationen über Ausfallraten, Ausfallartverteilungen, diagnostische Entdeckungsfähigkeit und Anfälligkeit für gemeinsame Ursachen. Dieses Handbuch wurde erstellt, um diese Informationen in einem spezifischen Format für die Verifizierung der Sicherheitsintegrität bereitzustellen. Die Daten sind so formatiert, dass sie für Sicherheitsverifikationen direkt verwendet werden können und den einfachen Vergleich der Produkteinheiten oder Entwicklungen ermöglichen. | Erhältlich von: ISA http://www.isa.org                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20. Siemens SN 29500                                                                                                       | Die Siemens-Werksnorm SN 29500 "Ausfallraten und Erwartungswerte von Bauelementen" wurde von der Siemens AG für die Anwendung bei Siemens und den Siemens-Gesellschaften als einheitliche Basis für Zuverlässigkeitsvorhersagen entwickelt. SN 29500 basiert auf IEC 61709 und gibt Ausfallraten unter Referenz- bedingungen an, wie sie in dieser Norm beschrieben sind.                                                                                                                                      | Diese Werksnorm ist auf Anforderung erhältlich.                                                                                                                                    |
| 21. TELCORDIA SR-332                                                                                                       | Das Dokument SR-332 "Zuverlässigkeits-<br>vorhersageverfahren für elektronische<br>Geräte" dokumentiert die vorgeschlagenen<br>Methoden für die Vorhersage der<br>Zuverlässigkeit von Bauelementen und<br>Hardware.                                                                                                                                                                                                                                                                                            | Telcordia Technologies, Inc. 8 Corporate Place, PYA 3A-184, Piscataway, NJ 08854-4156, U.S.A. Telcordia SR–332 ist in mehreren kommerziell verfügbaren Softwarepaketen realisiert. |
| 22. Verschiedene Software                                                                                                  | Viele Zuverlässigkeits-Softwareprogramme enthalten Zuverlässigkeitsdaten. In vielen Fällen wurden die Daten einer der oben genannten Quellen entnommen, aber in einigen Fällen sind die Daten softwarespezifisch.                                                                                                                                                                                                                                                                                              | Verschiedene Quellen                                                                                                                                                               |

# Anhang E (informativ)

## Überblick über Bauelementeklassifikation

## E.1 Allgemeines

Die Bauelementekennzeichnung ist das wichtigste Element jedes möglichen Kodifizierungssystems, da es eine eindeutige Kennzeichnung für jedes Beschaffungsbauelement einführt. Die Kennzeichnung besteht aus den minimal notwendigen Daten, die die wesentlichen Kenngrößen des Bauelements festlegen, d. h. jene Kenngrößen, die ihm eine eindeutige Kennzeichnung geben und es von allen anderen unterscheidet. Dieser Anhang gibt einen kurzen Überblick über die allgemeinen Bauelementebeschreibungsnormen, die man vorfinden kann. Leider ist es nicht möglich, eine Übersetzungstabelle zwischen diesen Beschreibungen und der in dieser Norm verwendeten anzugeben.

Diese Normenreihe empfiehlt die Anwendung der Normen der Reihe IEC 61360 zur Festlegung des Bauelementetyps. Der Bauelementebaum ist in Tabelle E.1 beschrieben und ermöglicht Anwendern der Reihe IEC 61360, Bauelementemodelle in diesem Dokument einfach zu finden.

## E.2 Das System von IEC 61360

Diese Normenreihe ist Grundlage für die klare und eindeutige Definition der charakteristischen Eigenschaften (Datenelementtypen) aller Komponenten elektrotechnischer Einrichtungen von elementaren Bauelementen zu Unterbaugruppen bis zu ganzen Geräten. Obwohl sie ursprünglich im Zusammenhang mit der Schaffung einer Basis für den Informationsaustausch über elektrische Bauelemente konzipiert wurde, kann sie auch auf Gebiete außerhalb der ursprünglichen Konzeption angewandt werden wie z.B. Anordnungen von Bauelementen und elektrotechnischen Geräten und Teilgeräten.

Sie dient der Einführung einer Klassifikationshierarchie und der Aufteilung anwendbarer und relevanter Eigenschaften zu jeder der eingeführten Klassen, um die Objekteigenschaften für die zugehörige Klasse völlig zu beschreiben, und unterstützt deshalb den Austausch der Daten zur Beschreibung elektrotechnischer Geräte durch eine definierte Struktur in Bezug auf die Information, die in einer rechnerverständlichen Form ausgetauscht wird.

Die speziell interessierende Norm aus der Reihe IEC 61360 ist die IEC 61360-4, die die IEC-Referenzsammlung der Klassen und der zugehörigen charakteristischen Eigenschaften für elektrische Bauelemente und Materialien zur Verfügung stellt, die in elektrotechnischen Geräten verwendet werden. Tabelle E.1 enthält den Klassifikationsbaum von IEC 61360-4 mit Querverweisen zu den entsprechenden Abschnitten in dieser Norm. In Fällen, in denen es keine Daten in dieser Norm gibt, ist der Abschnitt als "N/A" angegeben (nicht vorhanden). Sind in dieser Norm bezüglich Bauelementetypen detailliertere Angaben als in der IEC 61360-4 vorhanden, dann ist neben der Abschnittsangabe ein "+" vermerkt.

In Tabelle E.1 sind unter den Überschriften L1 bis L5 beschreibende Kennzeichnungen aufgeführt, wie sie in IEC 61360-4 angegeben sind. Jede Kennzeichnung fügt eine weitere Beschreibungsebene für den Bauelementetyp hinzu. Es ist zu beachten, das zur Vollständigkeit jeder dieser Beschreibungen am Anfang die Bezeichnungen "IECREF:CO:EE" für "IEC-Referenzsammlung, Bauelemente, elektrisch-elektronisch" oder "IECREF:CO:EM" für "IEC-Referenzsammlung, Bauelemente, elektromechanisch" notwendig sind. Deshalb würde die vollständige Kodierung für einen "nicht veränderlichen Luftkondensator" sein: "IECREF:CO:EE:CAP:FIX:AIR".

Es ist auch zu beachten, dass nur die Bauelementekategorien in Tabelle E.1 angegeben sind, die geometrischen Daten wurden weggelassen.

Tabelle E.1 - Klassifikationsbaum (IEC 61360)

| Bauelementebeschreibung                                             | I   | EC 61360-4 | 1-Klassifik | ationsbaun | 1   | Abschnitt in |
|---------------------------------------------------------------------|-----|------------|-------------|------------|-----|--------------|
|                                                                     | L1  | L2         | L3          | L4         | L5  | dieser Norm  |
| ELEKTRISCHE BAUELEMENTE                                             |     | •          | •           |            | •   | •            |
| Verstärker                                                          | AMP |            |             |            |     | 6.1+         |
| Verstärker, Niederfrequenz                                          | AMP | LF         |             |            |     | 6.1          |
| Verstärker, Niederfrequenz, Leistung                                | AMP | LF         | PWA         |            |     | 6.1          |
| Verstärker, Niederfrequenzspannung                                  | AMP | LF         | VTA         |            |     | 6.1          |
| Verstärker, Niederfrequenzspannungsdifferenz                        | AMP | LF         | VTA         | DFA        |     | 6.1          |
| Verstärker, Niederfrequenzspannungsdifferenz, wechselstromgekoppelt | AMP | LF         | VTA         | DFA        | ACA | 6.1          |
| Verstärker Niederfrequenzspannungsdifferenz, gleichstromgekoppelt   | AMP | LF         | VTA         | DFA        | OPA | 6.1          |
| Verstärker, Niederfrequenzspannung einseitig                        | AMP | LF         | VTA         | SSA        |     | 6.1          |
| Verstärker, Radiofrequenz                                           | AMP | RF         |             |            |     | 6.1          |
| Verstärker, Breitband                                               | AMP | WB         |             |            |     | 6.1          |
| Antenne                                                             | ANT |            |             |            |     | N/A          |
| Antenne, kapazitiv (Peitschenantenne)                               | ANT | CAP        |             |            |     | N/A          |
| Antenne, induktiv (Ferritantenne)                                   | ANY | IND        |             |            |     | N/A          |
| Antenne, ohmsch (abgestimmter Dipol)                                | ANY | RES        |             |            |     | N/A          |
| Batterie                                                            | BAT |            |             |            |     | N/A          |
| Batterie, primär                                                    | BAT | PRI        |             |            |     | N/A          |
| Batterie, sekundär                                                  | BAT | SEC        |             |            |     | N/A          |
| Kondensator                                                         | CAP |            |             |            |     | 6.4+         |
| Kondensator, fest                                                   | CAP | FIX        |             |            |     | 6.4          |
| Luftkondensator, fest                                               | CAP | FIX        | AIR         |            |     | 6.4          |
| Keramischer Kondensator, fest                                       | CAP | FIX        | CER         |            |     | 6.4          |
| Keramischer Kondensator, fest, Klasse 1                             | CAP | FIX        | CER         | CL1        |     | 6.4          |
| Keramischer Kondensator, fest, Klasse 2                             | CAP | FIX        | CER         | CL2        |     | 6.4          |
| Elektrolytkondensator, fest                                         | CAP | FIX        | ELC         |            |     | 6.4          |
| Kondensator, fest, Elektrolyt, mit festem Tantal-Elektrolyt         | CAP | FIX        | ELC         | STAN       |     | 6.4          |
| Kondensator, fest, Elektrolyt, mit flüssigem Tantal-Elektrolyt      | CAP | FIX        | ELC         | NTAN       |     | 6.4          |
| Kondensator, fest, Elektrolyt, mit festem Aluminium-Elektrolyt      | CAP | FIX        | ELC         | SAL        |     | 6.4          |
| Kondensator, fest, Elektrolyt, mit flüssigem Aluminium-Elektrolyt   | CAP | FIX        | ELC         | NAL        |     | 6.4          |
| Kondensator, fest, Film                                             | CAP | FIX        | FLM         |            |     | 6.4          |
| Kondensator, fest, Glass                                            | CAP | FIX        | GLS         |            |     | 6.4          |
| Kondensator, fest, Glimmer                                          | CAP | FIX        | MIC         |            |     | 6.4          |
| Kondensator, fest, Mehrschicht                                      | CAP | FIX        | MLAY        |            |     | 6.4          |
| Kondensator, fest, Papier                                           | CAP | FIX        | PAP         |            |     | 6.4          |

| Bauelementebeschreibung                                               |          | IEC 61360-4-Klassifikationsbaum |     |     |    |             |  |  |
|-----------------------------------------------------------------------|----------|---------------------------------|-----|-----|----|-------------|--|--|
|                                                                       | L1       | L2                              | L3  | L4  | L5 | dieser Norm |  |  |
| Kondensator, veränderlich                                             | CAP      | VAR                             |     |     |    | 6.4         |  |  |
| Leiter                                                                | CND      |                                 |     |     |    | 6.9+        |  |  |
| Leiter, blank                                                         | CND      | BAR                             |     |     |    | 6.9         |  |  |
| Leiter, isoliert                                                      | CND      | INS                             |     |     |    | 6.9         |  |  |
| Leiter, isoliert, Kabel                                               | CND      | INS                             | CBL |     |    | 6.9         |  |  |
| Leiter, isoliert, Kabel, Leistung                                     | CND      | INS                             | CBL | POW |    | 6.9         |  |  |
| Leiter, isoliert, Kabel, Signal                                       | CND      | INS                             | CBL | SIG |    | 6.9         |  |  |
| Leiter, isoliert, Kabel, Signal, Niederfrequenz                       | CND      | INS                             | CBL | SIG | LF | 6.9         |  |  |
| Leiter, isoliert, Kabel, Signal, Hochfrequenz                         | CND      | INS                             | CBL | SIG | HF | 6.9         |  |  |
| Leiter, isoliert, isolierter Draht (einfacher Leiter)                 | CND      | INS                             | IWR |     |    | 6.9         |  |  |
| Verzögerungsleitung                                                   | DEL      |                                 |     |     |    | N/A         |  |  |
| Diodenbauelement                                                      | DID      |                                 |     |     |    | 6.2+        |  |  |
| Diode, Brückengleichrichter                                           | DID      | BRI                             |     |     |    | 6.2         |  |  |
| Diodenbauelement, Diode                                               | DID      | DIO                             |     |     |    | 6.2         |  |  |
| Diodenbauelement, Diode, Kippdiode                                    | DID      | DIO                             | BOD |     |    | 6.2         |  |  |
| Diodenbauelement, Diode, Gleichrichterdiode                           | DID      | DIO                             | REC |     |    | 6.2         |  |  |
| Diodenbauelement, Diode, Signaldiode                                  | DID      | DIO                             | SIG |     |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode                          | DID      | DIO                             | STB |     |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode,<br>Stromregler          | DID      | DIO                             | STB | CUR |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode,<br>Spannungsreferenz    | DID      | DIO                             | STB | REF |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode,<br>Spannungsregler      | DID      | DIO                             | STB | REG |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode,<br>Stabistor            | DID      | DIO                             | STB | STA |    | 6.2         |  |  |
| Diodenbauelement, Diode, Stabilisationsdiode,<br>Transient Suppressor | DID      | DIO                             | STB | SUP |    | 6.2         |  |  |
| Diodenbauelement, Diode, veränderlich                                 | DID      | DIO                             |     |     |    | 6.2         |  |  |
| Diodenbauelement, Spannungsvervielfacher                              | DID      | VMP                             |     |     |    | 6.2         |  |  |
| Lichtwellenleiter                                                     | FIBOPTIC |                                 |     |     |    | 6.3+        |  |  |
| Lichtwellenleiter, Übertragungsleitungen                              | FIBOPTIC | LINKS                           |     |     |    | 6.3         |  |  |
| Lichtwellenleiter, Steckverbinder                                     | FIBOPTIC | CONN                            |     |     |    | 6.3         |  |  |
| Lichtwellenleiter, geschaltet                                         | FIBOPTIC | SWI                             |     |     |    | 6.3         |  |  |
| Lichtwellenleiter, Verzweigungen                                      | FIBOPTIC | BRA                             |     |     |    | 6.3         |  |  |
| Lichtwellenleiter, Koppler/Splitter                                   | FIBOPTIC | COUP                            |     |     |    | 6.3         |  |  |
| Lichtwellenleiter, Attenuatoren                                       | FIBOPTIC | ATT                             |     |     |    | 6.3         |  |  |

Tabelle E.1 (fortgesetzt)

| Bauelementebeschreibung                                  |          | Abschnitt in |       |     |      |             |
|----------------------------------------------------------|----------|--------------|-------|-----|------|-------------|
|                                                          | L1       | L2           | L3    | L4  | L5   | dieser Norm |
| Lichtwellenleiter, Detektoren                            | FIBOPTIC | DET          |       |     |      | 6.3         |
| Lichtwellenleiter, Isolatoren                            | FIBOPTIC | ISOL         |       |     |      | 6.3         |
| Lichtwellenleiter, Netzwerke                             | FIBOPTIC | NETW         |       |     |      | 6.3         |
| Lichtwellenleiter, Lichtquellen                          | FIBOPTIC | SOURC        |       |     |      | 6.3         |
| Lichtwellenleiter, Modulatoren                           | FIBOPTIC | MOD          |       |     |      | 6.3         |
| Lichtwellenleiter, Sender/Empfänger                      | FIBOPTIC | TXRX         |       |     |      | 6.3         |
| Lichtwellenleiter, Wellenleiter                          | FIBOPTIC | WG           |       |     |      | 6.3         |
| Lichtwellenleiter, Kabel                                 | FIBOPTIC | CAB          |       |     |      | 6.3         |
| Lichtwellenleiter, Filter                                | FIBOPTIC | FIL          |       |     |      | 6.3         |
| Lichtwellenleiter, Linsen                                | FIBOPTIC | LENS         |       |     |      | 6.3         |
| Filter                                                   | FIL      |              |       |     |      | 6.7         |
| IC                                                       | IC       |              |       |     |      | 6.1+        |
| IC, analog/digital                                       | IC       | AD           |       |     |      | 6.1         |
| IC, analog                                               | IC       | ANA          |       |     |      | 6.1         |
| IC, digital                                              | IC       | DIG          |       |     |      | 6.1         |
| IC, digital, Kombi- und sequentielle Schnittstelle (CSI) | IC       | DIG          | CSI   |     |      | 6.1         |
| IC, digital, Mikrokontroller                             | IC       | DIG          | MUC   |     |      | 6.1         |
| IC, digital, Mikroprozessor                              | IC       | DIG          | MUP   |     |      | 6.1         |
| IC, digital, programmierbare Logik-Schaltung (PLD)       | IC       | DIG          | PLD   |     |      | 6.1         |
| IC, digital, Speicher                                    | IC       | DIG          | STO   |     |      | 6.1         |
| IC, digital, Speicher, CAM                               | IC       | DIG          | STO   | CAM |      | 6.1         |
| IC, digital, Speicher, CCD                               | IC       | DIG          | STO   | CCD |      | 6.1         |
| IC, digital, Speicher, RAM                               | IC       | DIG          | STO   | RAM |      | 6.1         |
| IC, digital, Speicher, RAM, dynamisch                    | IC       | DIG          | STO   | RAM | DRAM | 6.1         |
| IC, digital, Speicher, RAM, statisch                     | IC       | DIG          | STO   | RAM | SRAM | 6.1         |
| IC, digital, Speicher, ROM                               | IC       | DIG          | STO   | ROM |      | 6.1         |
| IC, digital, Speicher, Register                          | IC       | DIG          | STO   | REG |      | 6.1         |
| IC, periodisch/DC                                        | IC       | PER          |       |     |      | 6.1         |
| Induktor                                                 | IND      |              |       |     |      | 6.6+ N17)   |
| Induktor, fest                                           | IND      | FIX          |       |     |      | 6.6         |
| Induktor, fest, Ablenkeinheiten                          | IND      | FIX          | DFL   |     |      | 6.6         |
| Induktor, fest, Drossel                                  | IND      | FIX          | CHOKE |     |      | 6.6         |
| Induktor, fest, Spule                                    | IND      | FIX          | COIL  |     |      | 6.6         |

N17) Nationale Fußnote: Für Induktoren: Verweis auf 6.6 statt 6.7.

| Bauelementebeschreibung                                                    |     | Abschnitt in |         |     |      |             |
|----------------------------------------------------------------------------|-----|--------------|---------|-----|------|-------------|
|                                                                            | L1  | L2           | L3      | L4  | L5   | dieser Norm |
| Induktor, fest, Linearitätssteuerungseinheit                               | IND | FIX          | LININUT |     |      | 6.6         |
| Induktor, fest, Antenneninduktoren                                         | IND | FIX          | ANT     |     |      | 6.6         |
| Induktor, fest, Solenoide                                                  | IND | FIX          | SOL     |     |      | 6.6         |
| Induktor, veränderbar                                                      | IND | VAR          |         |     |      | 6.6         |
| Lampe                                                                      | LAM |              |         |     |      | 6.13        |
| LCD                                                                        | LCD |              |         |     |      | 6.3         |
| Mikrowellenbauelemente                                                     | MIC |              |         |     |      | 6.6         |
| Optoelektronische Bauelemente                                              | OPT |              |         |     |      | 6.3         |
| Optoelektronische Bauelemente,<br>Bildaufnahmebauelement                   | OPT | IMAGE        |         |     |      | 6.3         |
| Optoelektronische Bauelemente, Optokoppler                                 | OPT | PHC          |         |     |      | 6.3         |
| Optoelektronische Bauelemente, Photoemmiter                                | OPT | PHE          |         |     |      | 6.3         |
| Optoelektronische Bauelemente, Photoemmiter, Infrarot emittierende Diode   | OPT | PHE          | IRD     |     |      | 6.3         |
| Optoelektronische Bauelemente, Photoemmiter,<br>Laser                      | OPT | PHE          | LAS     |     |      | 6.3         |
| Optoelektronische Bauelemente, Photoemmiter, lichtemittierende Diode (LED) | OPT | PHE          | LED     |     |      | 6.3         |
| Optoelektronische Bauelemente, Photosensor                                 | OPT | PHS          |         |     |      | 6.3         |
| Optoelektronische Bauelemente, Photosensor, Infrarot                       | OPT | PHS          | IR      |     |      | 6.3         |
| Optoelektronische Bauelemente, Photosensor,<br>Ultraviolett                | OPT | PHS          | U       |     |      | 6.3         |
| Optoelektronische Bauelemente, Photosensor, sichtbare Strahlung            | OPT | PHS          | VIS     |     |      | 6.3         |
| Oszillator                                                                 | osc |              |         |     |      | 6.8         |
| Piezoelektrische Bauelemente                                               | PE  |              |         |     |      | 6.8         |
| Gedruckte Schaltung                                                        | PWC |              |         |     |      | N/A         |
| Widerstand                                                                 | RES |              |         |     |      | 6.5         |
| Widerstand, fest                                                           | RES | FIX          |         |     |      | 6.5         |
| Widerstand, fest                                                           | RES | FIX          |         |     |      | 6.5         |
| Widerstand, fest, linear                                                   | RES | FIX          | LIN     |     |      | 6.5         |
| Widerstand, fest, linear, Widerstandsnetzwerk                              | RES | FIX          | LIN     | MUL |      | 6.5         |
| Widerstand, fest, linear, einfach                                          | RES | FIX          | LIN     | SIN |      | 6.5         |
| Widerstand, fest, linear, einfach, Chip                                    | RES | FIX          | LIN     | SIN | CHIP | 6.5         |
| Widerstand, fest, linear, einfach, Sicherung                               | RES | FIX          | LIN     | SIN | FUS  | 6.5         |
| Widerstand, fest, linear, einfach, Kleinleistung                           | RES | FIX          | LIN     | SIN | LP   | 6.5         |

Tabelle E.1 (fortgesetzt)

| Bauelementebeschreibung                                         |       | Abschnitt in |     |         |       |             |
|-----------------------------------------------------------------|-------|--------------|-----|---------|-------|-------------|
|                                                                 | L1    | L2           | L3  | L4      | L5    | dieser Norm |
| Widerstand, fest, linear, einfach, Präzisionswiderstand         | RES   | FIX          | LIN | SIN     | PREC  | 6.5         |
| Widerstand, fest, linear, einfach, Leistung                     | RES   | FIX          | LIN | SIN     | PWR   | 6.5         |
| Widerstand, fest, linear, einfach, Kaltleiter (PTC)             | RES   | FIX          | LIN | SIN     | THERM | 6.5         |
| Widerstand, fest, nichtlinear                                   | RES   | FIX          | NLN |         |       | 6.5         |
| Widerstand, fest, nichtlinear, lichtabhängig                    | RES   | FIX          | NLN | LDR     |       | 6.5         |
| Widerstand, fest, nichtlinear, Thermistor (Heißleiter)          | RES   | FIX          | NLN | TDR     |       | 6.5         |
| Widerstand, fest, nichtlinear, Thermistor, NTC                  | RES   | FIX          | NLN | TDR     | NTC   | 6.5         |
| Widerstand, fest, nichtlinear, Thermistor, PTC                  | RES   | FIX          | NLN | TDR     | PTC   | 6.5         |
| Widerstand, fest, nichtlinear, Varistor                         | RES   | FIX          | NLN | VDR     |       | 6.5         |
| Widerstand, veränderlich                                        | RES   | VAR          |     |         |       | 6.5         |
| Widerstand, veränderlich, Potentiometer                         | RES   | VAR          | POT |         |       | 6.5         |
| Widerstand, veränderlich, Potentiometer, fest                   | RES   | VAR          | POT | PRESET  |       | 6.5         |
| Widerstand, veränderlich, Potentiometer, Drehpräzision          | RES   | VAR          | POT | PRECROT |       | 6.5         |
| Widerstand, veränderlich, Potentiometer, schiebbar              | RES   | VAR          | POT | SLIDE   |       | 6.5         |
| Widerstand, veränderlich, Potentiometer, Kleinleistung, drehbar | RES   | VAR          | POT | LPROT   |       | 6.5         |
| Widerstand, veränderlich, Potentiometer, Leistung, drehbar      | RES   | VAR          | POT | PWRPROT |       | 6.5         |
| Widerstand, veränderlich, variabler Parallelwiderstand          | RES   | VAR          | TT  |         |       | 6.5         |
| Resonator                                                       | RESON |              |     |         |       | 6.8         |
| Sensor                                                          | SEN   |              |     |         |       | N/A         |
| Sensor, Relative Feuchte                                        | SEN   | HUM          |     |         |       | N/A         |
| Sensor, Licht                                                   | SEN   | LGT          |     |         |       | N/A         |
| Sensor, magnetische Feldstärke                                  | SEN   | MGN          |     |         |       | N/A         |
| Sensor, nuklear                                                 | SEN   | NCL          |     |         |       | N/A         |
| Sensor, Druck                                                   | SEN   | PRS          |     |         |       | N/A         |
| Sensor, Näherungssensor                                         | SEN   | PRX          |     |         |       | N/A         |
| Sensor, Temperatur                                              | SEN   | TMP          |     |         |       | N/A         |
| Funkenstrecken                                                  | SPARK |              |     |         |       | N/A         |
| Funkenstrecken, Luft                                            | SPARK | AIR          |     |         |       | N/A         |
| Funkenstrecken, gasgefüllt                                      | SPARK | GAS          |     |         |       | N/A         |
| Transformatoren                                                 | TFM   |              |     |         |       | 6.6         |
| Transformatoren, Leistung                                       | TFM   | POW          |     |         |       | 6.6         |
| Transformatoren, Leistung, fest                                 | TFM   | POW          | FIX |         |       | 6.6         |
| Transformatoren, Leistung, veränderlich                         | TFM   | POW          | VAR |         |       | 6.6         |

| Bauelementebeschreibung                                      |     | Abschnitt in |     |    |    |             |
|--------------------------------------------------------------|-----|--------------|-----|----|----|-------------|
|                                                              | L1  | L2           | L3  | L4 | L5 | dieser Norm |
| Transformatoren, Signalumformer                              | TFM | SIG          |     |    |    | 6.6         |
| Transformatoren, Signalumformer, fest                        | TFM | SIG          | FIX |    |    | 6.6         |
| Transformatoren, Signalumformer, veränderlich                | TFM | SIG          | VAR |    |    | 6.6         |
| Transistoren                                                 | TRA |              |     |    |    | 6.2         |
| Transistoren, bipolar                                        | TRA | BIP          |     |    |    | 6.2         |
| Transistoren, bipolar, Leistung                              | TRA | BIP          | POW |    |    | 6.2         |
| Transistoren, bipolar, Leistung, Niederfrequenz              | TRA | BIP          | POW | LF |    | 6.2         |
| Transistoren, bipolar, Leistung, Hochfrequenz                | TRA | BIP          | POW | HF |    | 6.2         |
| Transistoren, bipolar, Signal                                | TRA | BIP          | SIG |    |    | 6.2         |
| Transistoren, bipolar, Signal, Niederfrequenz                | TRA | BIP          | SIG | LF |    | 6.2         |
| Transistoren, bipolar, Signal, Hochfrequenz                  | TRA | BIP          | SIG | HF |    | 6.2         |
| Transistoren, FET                                            | TRA | FET          |     |    |    | 6.2         |
| Transistoren, FET, Leistung                                  | TRA | FET          | POW |    |    | 6.2         |
| Transistoren, FET, Leistung, Niederfrequenz                  | TRA | FET          | POW | LF |    | 6.2         |
| Transistoren, FET, Leistung, Hochfrequenz                    | TRA | FET          | POW | HF |    | 6.2         |
| Transistoren, FET, Kleinsignal                               | TRA | FET          | SIG |    |    | 6.2         |
| Triggerbauelement                                            | TRG |              |     |    |    | 6.2         |
| Triggerbauelement, doppeltgerichtete Thyristordiode (DIAC)   | TRG | DIA          |     |    |    | 6.2         |
| Triggerbauelement, Thyristor                                 | TRG | THY          |     |    |    | 6.2         |
| Triggerbauelement, Thyristor, Schnellauschaltthyristor       | TRG | THY          | FTO |    |    | 6.2         |
| Triggerbauelement, Thyristor, Abschaltthyristor              | TRG | THY          | GTO |    |    | 6.2         |
| Triggerbauelement, Thyristor, rückwärts sperrend             | TRG | THY          | RVB |    |    | 6.2         |
| Triggerbauelement, doppeltgerichtete Thyristortriode (TRIAC) | TRG | TRI          |     |    |    | 6.2         |
| Röhren                                                       | TUB |              |     |    |    | N/A         |
| Röhren, Elektronenstrahlröhre                                | TUB | CRT          |     |    |    | N/A         |
| Röhren, Elektronenstrahlröhre, farbige Anzeige               | TUB | CRT          | COL |    |    | N/A         |
| Röhren, Elektronenstrahlröhre, einfarbige Anzeige            | TUB | CRT          | MCR |    |    | N/A         |
| Röhren, gasgefüllt                                           | TUB | GAS          |     |    |    | N/A         |
| Röhren, lichtempfindlich                                     | TUB | PHO          |     |    |    | N/A         |
| Röhren, raumladungsgeregelt                                  | TUB | scc          |     |    |    | N/A         |
| Röhren, Raumladungswelle                                     | TUB | SCW          |     |    |    | N/A         |
| Tuner                                                        | TUN |              |     |    |    | N/A         |

Tabelle E.1 (fortgesetzt)

| Bauelementebeschreibung                                                     |     | Abschnitt in |       |      |    |             |
|-----------------------------------------------------------------------------|-----|--------------|-------|------|----|-------------|
|                                                                             | L1  | L2           | L3    | L4   | L5 | dieser Norm |
| ELEKTROMECHANISCHE BAUELEMENTE                                              |     |              |       |      |    |             |
| Steckverbinder                                                              | CON |              |       |      |    | 6.10 N18)   |
| Steckverbinder, Rundsteckverbinder                                          | CON | CIRC         |       |      |    | 6.10        |
| Steckverbinder, IC                                                          | CON | IC           |       |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke                                          | CON | JACK         |       |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Steckerbaugruppe                        | CON | JACK         | ASSY  |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, komplexe<br>Klinkenbretter              | CON | JACK         | CMPLX |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, konzentrischer Typ                      | CON | JACK         | CONC  |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, konzentrischer Typ, Klinke              | CON | JACK         | CONC  | JACK |    | 6.10        |
| Steckverbinder, Stecker und Klinke, konzentrischer Typ, mehrfach            | CON | JACK         | CONC  | MULT |    | 6.10        |
| Steckverbinder, Stecker und Klinke, konzentrischer Typ, Stecker             | CON | JACK         | CONC  | PLUG |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Stift                                   | CON | JACK         | PIN   |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Stift, Klinke                           | CON | JACK         | PIN   | JACK |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Stift,<br>Mehrfachklinke                | CON | JACK         | PIN   | MULT |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Stift, Stecker                          | CON | JACK         | PIN   | PLUG |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Stifttyp, geschirmter Stecker           | CON | JACK         | PIN   | SHLD |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Gleichstrom-<br>Leistung                | CON | JACK         | PWR   |      |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Gleichstrom-<br>Leistung, Kraftfahrzeug | CON | JACK         | PWR   | CAR  |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Gleichstrom-<br>Leistung, Klinke        | CON | JACK         | PWR   | JACK |    | 6.10        |
| Steckverbinder, Stecker und Klinke, Gleichstrom-<br>Leistung, Stecker       | CON | JACK         | PWR   | PLUG |    | 6.10        |
| Steckverbinder, Modular                                                     | CON | MOD          |       |      |    | 6.10        |
| Steckverbinder, gedruckte Leiterplatte                                      | CON | РСВ          |       |      |    | 6.10        |
| Steckverbinder, rechteckig                                                  | CON | RECT         |       |      |    | 6.10        |
| Steckverbinder, Radiofrequenz                                               | CON | RF           |       |      |    | 6.10        |
| Steckverbinder, Steckdosen                                                  | CON | SOCK         |       |      |    | 6.10        |
| Steckverbinder, Steckdose, Antennenleitung                                  | CON | SOCK         | ANT   |      |    | 6.10        |

 $<sup>^{</sup>m N18)}$  Nationale Fußnote: Für Steckverbinder: Verweis auf Abschnitt 6.10 statt 6.1.

| Bauelementebeschreibung                                   |         | Abschnitt in |       |             |    |             |
|-----------------------------------------------------------|---------|--------------|-------|-------------|----|-------------|
|                                                           | L1      | L2           | L3    | L4          | L5 | dieser Norm |
| Steckverbinder, Steckdosen, Sicherungshalter              | CON     | SOCK         | FUSE  |             |    | 6.10        |
| Steckverbinder, Fassungen, IC                             | CON     | SOCK         | IC    |             |    | 6.10        |
| Steckverbinder, Fassungen, Licht                          | CON     | SOCK         | LIGHT |             |    | 6.10        |
| Steckverbinder, Fassungen, polychlorierte Biphenyle (PCB) | CON     | SOCK         | PCB   |             |    | 6.10        |
| Steckverbinder, Fassungen, Leistungsfassung               | CON     | SOCK         | PWR   |             |    | 6.10        |
| Steckverbinder, Fassungen, Signalfassung                  | CON     | SOCK         | SIG   |             |    | 6.10        |
| Steckverbinder, Fassungen, Transistor                     | CON     | SOCK         | TRA   |             |    | 6.10        |
| Steckverbinder, Fassungen, Röhre                          | CON     | SOCK         | TUBE  |             |    | 6.10        |
| Steckverbinder, Fassungen, Quarzkristall                  | CON     | SOCK         | XTAL  |             |    | 6.10        |
| Steckverbinder, Anschlussklemmen                          | CON     | TERM         |       |             |    | 6.10        |
| Steckverbinder, Anschlussklemmen, Anschluss-Array         | CON     | TERM         | ARRY  |             |    | 6.10        |
| Steckverbinder, Anschlussklemmen, Leiterplatte            | CON     | TERM         | BRD   |             |    | 6.10        |
| Steckverbinder, Anschlussklemmen, Stab                    | CON     | TERM         | ROD   |             |    | 6.10        |
| Steckverbinder, Anschlussklemmen, klein                   | CON     | TERM         | SM    |             |    | 6.10        |
| Steckverbinderteil                                        | CONPART |              |       |             |    | 6.10        |
| Steckverbinderteil, Kontakt                               | CONPART | CONTACT      |       |             |    | 6.10        |
| Steckverbinderteil, Zubehör                               | CONPART | ACCY         |       |             |    | 6.10        |
| Steckverbinderteil, Werkzeug                              | CONPART | TOOL         |       |             |    | 6.10        |
| Steckverbinderteil, Gehäuse                               | CONPART | SHELL        |       |             |    | 6.10        |
| Steckverbinderteil, Steckverbinder-Einsatz                | CONPART | INSERT       |       |             |    | 6.10        |
| Sicherung                                                 | FUS     |              |       |             |    | 6.8         |
| Sicherung, stromaktiviert                                 | FUS     | CUR          |       |             |    | 6.8         |
| Sicherung, temperaturaktiviert                            | FUS     | TERM         |       |             |    | 6.8         |
| Lautsprecher                                              | LSP     |              |       |             |    | N/A         |
| Lautsprecher, elektromagnetisch                           | LSP     | ELM          |       |             |    | N/A         |
| Lautsprecher, elektrostatisch                             | LSP     | ELS          |       |             |    | N/A         |
| Lautsprecher, lonenlautsprecher                           | LSP     | ION          |       |             |    | N/A         |
| Lautsprecher, magnetodynamisch                            | LSP     | MGD          |       |             |    | N/A         |
| Lautsprecher, magnetostriktiv                             | LSP     | MGS          |       |             |    | N/A         |
| Lautsprecher, beweglicher Leiter                          | LSP     | MVC          |       |             |    | N/A         |
| Lautsprecher, piezoelektrisch                             | LSP     | PXE          |       |             |    | N/A         |
| Lautsprecher, pneumatisch                                 | LSP     | PNM          |       |             |    | N/A         |
| Mikrofon                                                  | MIC     |              |       |             |    | N/A         |
| Motor                                                     | МОТ     |              |       | <del></del> |    | N/A         |

**Tabelle E.1** (fortgesetzt)

| Bauelementebeschreibung      |     | IEC 61360-4-Klassifikationsbaum |     |    |    |             |  |  |
|------------------------------|-----|---------------------------------|-----|----|----|-------------|--|--|
|                              | L1  | L2                              | L3  | L4 | L5 | dieser Norm |  |  |
| Motor, Linear                | МОТ | LIN                             |     |    |    | N/A         |  |  |
| Motor, Linear, Wechselstrom  | MOT | LIN                             | AC  |    |    | N/A         |  |  |
| Motor, Linear, Gleichstrom   | MOT | LIN                             | DC  |    |    | N/A         |  |  |
| Motor, Linear, Schrittmotor  | MOT | LIN                             | STP |    |    | N/A         |  |  |
| Motor, Linear, universal     | MOT | LIN                             | UNI |    |    | N/A         |  |  |
| Motor, drehend               | MOT | ROT                             |     |    |    | N/A         |  |  |
| Motor, drehend, Wechselstrom | MOT | ROT                             | AC  |    |    | N/A         |  |  |
| Motor, drehend, Gleichstrom  | MOT | ROT                             | DC  |    |    | N/A         |  |  |
| Motor, drehend, Schrittmotor | MOT | ROT                             | STP |    |    | N/A         |  |  |
| Motor, drehend, universal    | MOT | ROT                             | UNI |    |    | N/A         |  |  |
| Relay                        | REL |                                 |     |    |    | 6.11        |  |  |
| Schalter                     | SWI |                                 |     |    |    | 6.12        |  |  |
| Schalter, mechanisch         | SWI | MEC                             |     |    |    | 6.12        |  |  |
| Schalter, Reed               | SWI | REE                             |     |    |    | 6.12        |  |  |
| Schalter, thermostatisch     | SWI | THE                             |     |    |    | 6.12        |  |  |
| MAGNETISCHE TEILE            |     |                                 |     |    |    |             |  |  |
| Dauermagnetische Teile       | HRD |                                 |     |    |    | N/A         |  |  |
| Weichmagnetische Teile       | SFT |                                 |     |    |    | N/A         |  |  |

## E.3 Andere Systeme

#### E.3.1 NATO-Produktnummern

Das NATO-Kodifizierungssystem (NCS) ist seit Mitte der 50er-Jahre eingeführt. Es stellt Standards für die Anwendung von allgemeinen Produktidentifizierungen innerhalb des NATO-Bündnisses bereit. Der NCS-Kennzeichnungsprozess basiert auf dem "Beschaffungsteil"-Konzept, ein Ausdruck, der sich auf ein Teil bezieht, das für die Beschaffung notwendig ist, um den Logistikbedarf zu erfüllen. Es kann aus einem oder mehreren "Produktionsteilen" bestehen (d. h. ein Produkt eines bestimmten Herstellers), die gleichwertige "Grundkenndaten" haben. Das NCS versorgt die NATO-Länder mit einem einheitlichen und gemeinsamen Instrumentarium für die Kennzeichnung, die Klassifikation und die Produktnummerierung der Beschaffungsteile.

#### E.3.2 UNSPSC-Codes

Der "Produkt- und Servicecode der Vereinten Nationen (UNSPSC®)"<sup>N19)</sup> stellt einen offenen spartenübergreifenden Standard zur effizienten genauen Klassifikation von Produkten und Dienstleistungen zur Verfügung. Dieser Code wird verwendet, um alle Produkte und Dienstleistungen zu klassifizieren. Er wurde gemeinsam vom Entwicklungsprogramm der Vereinten Nationen (UNDP) und der Dun & Bradstreet Corporation (D & B) 1998 entwickelt.

Nationale Fußnote: UNSPSC®: United Nations Standard Products and Services Classification®.

#### E.3.3 STEP/EXPRESS

STEP (<u>St</u>andard for the <u>E</u>xchange of <u>P</u>roduct data) ist die umgangssprachliche Bezeichnung für ISO 10303-31. STEP wurde von ISO/TC 184/SC4 entwickelt. und zielt auf den Produktdatenaustausch zwischen rechnergestützten Entwicklungssystemen (z. B. CAD, CAM usw.) und auch auf die langfristige Datenhaltung solcher Daten ab.

EXPRESS ist die Sprache, die innerhalb STEP verwendet wird, um die Semantik der Daten formal zu definieren. Sie ist eine lexikale, objektorientierte Informationsmodellierungssprache und ist in ISO 10303-11:2004 definiert. EXPRESS wird in vielen anderen Aufgabenbereichen außerhalb STEP verwendet.

#### E.3.4 IECQ

IECQ ist eine Gesellschaft, die unterschiedliche Qualifikationsbewertungen an Hersteller von Bauelementen vergibt. Dazu spezifiziert sie die Normen (bezeichnet als "Vordruck für Bauartpezifikationen" Neben Bauelement erfüllen soll. Jede dieser Normen hat eine Nummer, und die Qualität der Bauelemente wird oft durch die Nummer der entsprechenden Norm benannt, zum Beispiel werden diskrete Halbleiterbauelemente unter der Fachgrundspezifikation QC 700000 kodiert.

#### E.3.5 ECALS

Das rechnerlesbare Standardwörterbuch für Halbleiterbauelemente und allgemeine elektronische Bauelemente (normalerweise bezeichnet als das "ECALS-Wörterbuch") wurde im ECALS-Standardisierungsprojekt des Lenkungsausschusses der Japan Electronic and Information Technology Industries Association (JEITA) entwickelt. Es basiert auf dem im ECALS-2-Projekt entwickelten Standard zur Entwicklung einer globalen Wertschöpfungskette für Halbleiter und elektronische Bauelemente, eine der erweiterten Informationsentwicklungsversuchsaufgaben des Japanischen Ministeriums für Internationalen Handel und Industrie (MITI) über die Information-Technologie-Förderungsagentur von Japan. Zur Harmonisierung mit Internationalen Normen ist das ECALS-Wörterbuch weitestgehend in Übereinstimmung und mit Bezug auf die Normen der Reihe IEC 61360 und der Reihe ISO 13584 entwickelt worden.

#### E.3.6 ISO 13584

ISO 13584 ist keine Norm, die elektrische Bauelemente an sich definiert, sie beinhaltet jedoch eine Reihe Internationaler Normen für die rechnerinterpretierbare Darstellung und den Austausch von Teilbibliothekdaten. Die Zielsetzung ist, einen Mechanismus zur Verfügung zu stellen, der zum Übertragen von Teilbibliothekdaten fähig ist, unabhängig von jeglicher Anwendung, die die Teilbibliothek-Daten verwendet. Die Art dieser Beschreibung eignet sich nicht nur für den Austausch von Dateien, die Teile enthalten, sondern auch als eine Grundlage für das Einführen und die gemeinsame Nutzung der Datenbanken von Teilebibliotheksdaten.

### E.3.7 MIL-Spezifikationen

Ein Verteidigungsnorm der Vereinigte Staaten, häufig Militär-Standard "MIL-STD" oder "MIL-SPEC" genannt, hilft, die Standardisierungsziele des US-Verteidigungsministeriums zu erreichen. Entsprechend dem US-Rechnungshof (GAO: Government Accountability Office) beschreiben militärische Spezifikationen "die physikalischen und/oder betriebsbedingten Eigenschaften eines Produktes", während militärische Normen "die Prozesse und die verwendeten Materialien, die für die Herstellung des Produktes verwendet werden, genau beschreiben". Das GAO bestätigt jedoch, dass die Bezeichnungen häufig synonym benutzt werden.

Die MIL-SPEC-Dokumente definieren verschiedene Bauelementetypen, zum Beispiel beschreibt MIL-C-18312 Festkondensatoren mit einem metallisierten Papier-Plastik- oder Plastikfilmdielektrikum in einem hermetisch dichten Metallgehäuse für Gleichstrom-Anwendungen. In vielen Organisationen werden die Bauelementetypen durch die MIL-Spezifikationsnummer beschrieben (in diesem Fall 18312).

N20) Nationale Fußnote: Englisch: "blank detail specifications".

N21) Nationale Fußnote: ECALS: Enterprise Computer-Aided Acquisition & Logistics Support.

# Anhang F (informativ)

## **Beispiele**

#### Integrierter Schaltkreis

Für ein bipolares RAM-Bauelement ist die angegebene Ausfallrate  $\lambda_{\rm ref} = 10^{-7} \, \rm h^{-1}$  bei der Ersatz-Sperrschichttemperatur von  $\theta_{\rm ref} = 75 \, ^{\circ}{\rm C}$  (basierend auf der Bauelemente-Umgebungstemperatur von 40  $^{\circ}{\rm C}$  und der Referenz-Eigenerwärmung von  $\Delta T_{\rm ref}$  von 35  $^{\circ}{\rm C}$ ).

Welchen Wert hat die Ausfallrate bei einer Umgebungstemperatur von  $\theta_{amb}$  = 65 °C bei gleicher Eigenerwärmung von 35 °C?

Schritt (1):  $\lambda = \lambda_{ref} \cdot \pi_T$  für integrierte Schaltungen nach Gleichung (10)

Schritt (2):  $\pi_T = 2.9$  folgt nach Tabelle 14

mit der Ersatz-Sperrschichttemperatur unter Referenzbedingungen

 $\theta_{ref} = 75 \, ^{\circ}\text{C} \, (= 40 \, ^{\circ}\text{C} + 35 \, ^{\circ}\text{C})$ 

und der tatsächlichen Ersatz-Sperrschichttemperatur

 $\theta_{op} = \theta_{amb} + \Delta T_{ref} = 65 \text{ °C} + 35 \text{ °C} = 100 \text{ °C}$ 

Schritt (3): Berechnung durchführen:

Die Ausfallrate bei  $\theta_{amb}$  = 65 °C wird bestimmt zu:

$$\lambda = \lambda_{ref} \cdot \pi_{T} = 10^{-7} h^{-1} \cdot 2,9 = 2,9 \cdot 10^{-7} h^{-1} = 290 \text{ FIT.}$$

### **Transistor**

Für einen Universaltransistor ist die angegebene Ausfallrate unter Referenzbedingungen  $\lambda_{\text{ref}} = 2 \cdot 10^{-8} \text{ h}^{-1}$  bei der Sperrschichttemperatur  $\theta_{\text{ref}} = 55 \,^{\circ}\text{C}$  und dem Referenzspannungsverhältnis  $U_{\text{ref}}/U_{\text{rat}} = 0,5$ . Das Betriebsspannungsverhältnis  $U_{\text{op}}/U_{\text{rat}} = 0,8$ .

Welchen Wert hat die Ausfallrate bei einer Sperrschichttemperatur  $\theta_{op} = 90$  °C?

Schritt (1):  $\lambda = \lambda_{ref} \cdot \pi_U \cdot \pi_T$  für Transistoren nach Gleichung (13)

Schritt (2):  $\pi_U$  = 1,26 folgt nach Tabelle 21 für  $U/U_{\text{rat}}$  = 0,8

Schritt (3):  $\pi_T \approx 4.2$  folgt aus Tabelle 23

mit der Referenz-Sperrschichttemperatur  $\,\theta_{\rm ref} = 55\,^{\circ}{\rm C}\,$  und der tatsächlichen Sperrschichttemperatur  $\,\theta_{\rm op} = 90\,^{\circ}{\rm C}\,$ 

Schritt (4): Berechnung durchführen:

Die Ausfallrate bei  $\theta_{op}$  = 90 °C und  $U_{op}/U_{rat}$  = 0,8 wird bestimmt zu:

$$\lambda = \lambda_{ref} \cdot \pi_{U} \cdot \pi_{T} = 2 \cdot 10^{-8} \, h^{-1} \cdot 1,26 \cdot 4,2 \approx 1,09 \cdot 10^{-7} \, h^{-1} = 106 \, \text{ FIT}.$$

#### Kondensator

Für einen Polypropylenfilm-Metallfolien-Kondensator ist die angegebene Ausfallrate  $\lambda=3,5\cdot 10^{-9}\,\text{h}^{-1}$  bei der Umgebungstemperatur  $\theta_{\text{amb}}$  von 50 °C und dem Referenz-Spannungsverhältnis von  $U_{\text{ref}}/U_{\text{rat}}=0,5$ .

Welchen Wert hat die Ausfallrate bei einer Umgebungstemperatur von  $\theta_{amb}$  = 60 °C und einem Betriebsspannungsverhältnis von  $U_{op}/U_{rat}$  = 0,6 ?

Schritt (1):  $\lambda = \lambda_{ref} \cdot \pi_U \cdot \pi_T$  für Kondensatoren nach Gleichung (23)

Schritt (2): Umrechnung auf Referenzbedingungen

 $\pi_{U}$  = 1 folgt nach Tabelle 38 für  $U_{ref}/U_{rat}$  = 0,5

 $\pi_{\rm T}$  = 1,8 folgt nach Tabelle 40 für  $\theta_{\rm amb}$  =  $\theta_{\rm op}$  = 50 °C

Berechnung durchführen:

Die Ausfallrate bei Referenzbedingungen von  $\theta_{\rm ref}$  = 40 °C und  $U_{\rm ref}/U_{\rm rat}$  = 0,5 (siehe Tabelle 36) wird bestimmt zu:

$$\lambda_{ref} = \lambda / (\pi_U \cdot \pi_T) = 3.5 \cdot 10^{-9} \, h^{-1} / (1 \cdot 1.8) = 1.94 \cdot 10^{-9} \, h^{-1} = 1.94 \, \text{FIT}.$$

Schritt (3): Umrechnung von Referenzbedingungen auf Betriebsbedingungen:

$$\pi_{\rm U}$$
 = 1,5 folgt nach Tabelle 38 für  $U_{\rm op}/U_{\rm rat}$  = 0,6

$$\pi_{T} = 3.1$$
 folgt nach Tabelle 40 für  $\theta_{op} = 60$  °C

Berechnung durchführen:

Die Ausfallrate bei  $\,\theta_{\rm op}$  = 60 °C und  $\,U_{\rm op}\,/U_{\rm rat}$  = 0,6 wird bestimmt zu:

$$\lambda = \lambda_{ref} \cdot \pi_{IJ} \cdot \pi_{T} = 1,94 \cdot 10^{-9} \, h^{-1} \cdot 1,5 \cdot 3,1 \approx 9 \cdot 10^{-9} \, h^{-1} = 9 \, \text{FIT}.$$

### Relais

Ein staubgeschütztes allgemeines Relais mit einem Schließer schaltet einmal je Stunde im Beanspruchungsfeld 4 (siehe Bild 1) unter Motorbelastung bei Wechselstrom (AC):

$$\lambda_{\rm ref} = 4 \cdot 10^{-9} \, {\rm h^{-1}}$$
;  $U = 220 \, {\rm V}$  ,  $I = 4 \, {\rm A}$  ,  $I_{\rm rat} = 16 \, {\rm A}$  , Umgebungstemperatur  $\theta_{
m amb} = 70 \, {\rm ^{\circ}C}$ 

Welchen Wert hat die Ausfallrate unter diesen Bedingungen?

Schritt (1):  $\lambda = \lambda_{ref} \cdot \pi_{ES} \cdot \pi_{S} \cdot \pi_{T}$  für Relais nach Gleichung (31)

Schritt (2):  $\pi_{FS} = 20$  folgt nach Tabelle 53, Beanspruchungsfeld 4, induktive Last

Schritt (3):  $\pi_S = 1$  folgt nach Gleichung (7), ein Schaltspiel je Stunde

Schritt (4):  $\pi_T = 1.8$  folgt nach Tabelle 56 mit  $\theta_{amb} = 70$  °C

Schritt (5): Berechnung durchführen:

Die Ausfallrate unter den oben angegeben Bedingungen wird bestimmt zu:

$$\lambda = \lambda_{ref} \cdot \pi_{FS} \cdot \pi_{S} \cdot \pi_{T} = 4 \cdot 10^{-9} \, h^{-1} \cdot 20 \cdot 1 \cdot 1, 8 = 1,44 \cdot 10^{-7} \, h^{-1} = 144 \, FIT.$$

## Literaturhinweise

IEC 60050-151, International Electrotechnical Vocabulary – Part 151: Electrical and magnetic devices

IEC 60050-521, International Electrotechnical Vocabulary – Part 521: Semiconductor devices and integrated circuits

IEC 60300-3-2:2004, Dependability management – Part 3-2: Application guide – Collection of dependability data from the field

ANMERKUNG Harmonisiert als EN 60300-3-2:2005 (nicht modifiziert).

IEC 60300-3-5, Dependability management – Part 3-5: Application guide – Reliability test conditions and statistical test principles

IEC 60300-3-9, Dependability management – Part 3: Application guide – Section 9: Risk analysis of technological systems

IEC 60721 (all parts), Classification of environmental conditions

ANMERKUNG Harmonisiert in der Reihe EN 60721.

IEC 60747-1:2006, Semiconductor devices – Part 1: General

IEC 61163-2, Reliability stress screening - Part 2: Electronic components

IEC 61360 (all parts), Standard data element types with associated classification scheme for electric components

ANMERKUNG Harmonisiert in der Reihe EN 61360.

IEC 61360-1:2009, Standard data elements types with associated classification scheme for electric items – Part 1: Definitions – Principles and methods

ANMERKUNG Harmonisiert als EN 61360-1:2010 (nicht modifiziert).

IEC 61360-4:2005, Standard data element types with associated classification scheme for electric components – Part 4: IEC reference collection of standard data element types and component classes

ANMERKUNG Harmonisiert als EN 61360-4:2005 (nicht modifiziert).

IEC 61649:2008, Weibull analysis

ANMERKUNG Harmonisiert als EN 61649:2008 (nicht modifiziert).

IEC 61703, Mathematical expressions for reliability, availability, maintainability and maintenance support terms

ANMERKUNG Harmonisiert als EN 61703.

IEC 62308, Equipment reliability - Reliability assessment methods

ANMERKUNG Harmonisiert als EN 62308.

ISO 10303-11:1994, Industrial automation systems and integration – Product data representation and exchange – Part 11: Description methods – The EXPRESS language reference manual

ANMERKUNG Harmonisiert als EN ISO 10303-11:1995 (nicht modifiziert).

ISO 10303-31:1994, Industrial automation systems and integration – Product data representation and exchange – Part 31: Conformance testing methodology and framework: General concepts

ANMERKUNG Harmonisiert als EN ISO 10303-31.

ISO 13584 (all parts), Industrial automation systems and integration – Parts library

Joint Electron Device Engineering Council(s) (JEDEC), JESD85, Methods for calculating failure rates in units of FITS

DEF00-42-3, Ministry of Defence Standard 0042 – Reliability and Maintainability (R&M) Assurance Guidance – Part 3: R&M Case

MIL-C-18312, Capacitor, Fixed, Metallized, (Paper, Paper-Plastic or Plastic Film) Dielectric, D.C. (Hermetically Sealed in Metal Cases)

# Anhang ZA

(normativ)

# Normative Verweisungen auf internationale Publikationen mit ihren entsprechenden europäischen Publikationen

Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

ANMERKUNG Wenn internationale Publikationen durch gemeinsame Abänderungen geändert wurden, durch (mod.) angegeben, gelten die entsprechenden EN/HD.

| <u>Publikation</u> | <u>Jahr</u> | <u>Titel</u>                                                                                                                                                                                 | EN/HD        | <u>Jahr</u> |
|--------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| IEC 60050-191      | _           | International Electrotechnical Vocabulary (IEV) – Chapter 191: Dependability and quality of service                                                                                          | _            | _           |
| IEC 60605-6        | _           | Equipment reliability testing – Part 6: Tests for the validity and estimation of the constant failure rate and constant failure intensity                                                    | _            | _           |
| IEC 60721-3-3      | _           | Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 3: Stationary use at weatherprotected locations     | EN 60721-3-3 | _           |
| IEC 60721-3-4      | _           | Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 4: Stationary use at non-weatherprotected locations | EN 60721-3-4 | -           |
| IEC 60721-3-5      | -           | Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 5: Ground vehicle installations                     | EN 60721-3-5 | -           |
| IEC 60721-3-7      | _           | Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 7: Portable and non-stationary use                  | EN 60721-3-7 | -           |