

Session 2.3 - Ensamblado

Pedro J. Sola Campoy

BU-ISCIII

<u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

05-09 Noviembre 2018, 1ª Edición Programa Formación Continua, ISCIII

Assembly

Reconstruct a representation of the original DNA from shorter DNA sequences or small fragments known as reads

- De novo: with no previous knowledge of the genome to be assembled. It overlap the end of the end of each read in order to créate a longer sequence.
- Assembly with reference: A similar but not identical genome guides the assembly process. Map reads over supplied genome.

Assembly: contig y scaffold

- Contig: continuous sequence made up of overlaping shorter sequences
- Scaffold: two or more contigs located and rearranged according to spatial information(pair-end, mate pair, reference)

Assembly: gaps

- Sequencing gaps: Position and orientation known by spatial information
- Physical gaps: No information about adjacent contigs

Gene Cloning, Lodge et al.

Assembly: Algorithms

- Overlap, Layout, Consensus (OLC overlap graph):
 - 0 first overlaps among all the reads are found
 - L then it carries out a layout of all the reads and overlaps information on a graph
 - Removes redundant and low quality overlaps
 - C and finally the consensus sequence is inferred

Ex. Newbler, Mira, Celera Assembler, CAP3, PCAP, Phrap, Phusion.

X: CTCGGCCCTAGG
||| ||||
Y: GGCTCTAGGCCC

Take reads that make up a contig and line them up

Take *consensus*, i.e. majority vote

https://pt.slideshare.net/anton_alexandrov/combining-de-bruijn-graph-overlap-graph-and-microassembly/12?smtNoRedir=1

Assembly: Algorithms

• De Brujin Graph (DBG: k-mer graph)

Chopping reads into much shorter k-mers (fixed length fragments) and then using all the k-mers to form a DBG and infer the contigs.

- Nodes in the graph are k-mers
- Edges represent consecutive k-mers(which overlap by k-n symbols)

Ex. SPAdes, ABySS, Velvet, AllPaths, Soap....

https://medium.com/@han_chen

Algorithms: DBG

Why choosing DBG:

- Sequencing bias
- Sequence errors
- Sequence length

DBG Flaws:

- Millions of pieces
 - Much, much shorter than the genome
 - Lots of them look similar
- Missing pieces
 - Some parts can't be sequenced easily
 - Dirty Pieces Multiplex
 - Lots of errors in reads
- Repeats
 - If they are longer than the read length
 - Causes nodes to be shared, locality confusion, galaxyproject.github.io/training-material/topics/assembly/tutorials/debruijn-graph-assembly/slides.html#23

Assembly: Errors

- A. Gaps non sequenced region
- B. Long repeats
 - Cuimera
- Collapsed repetitive regions
 - C. Terminal
 - D. Intersticial

Nature Reviews | Genetics

Genetic variation and the de novo assembly of human genomes

Chaisson et al.

Unicycler

- Lower k
 - More connections
 - Less chance of resolving small repeats
 - Higher k-mer coverage
- <u>Higher k</u>
 - Less connections
 - More chance of resolving small repeats
 - Lower k-mer coverage
 - Fragmented graph with dead ends
- Optimum value for k will balance these effects.

https://galaxyproject.github.io/training-material/topics/assembly/tutorials/debruijn-graph-assembly/slides.html#23

Unicycler

single-copy contigs. The bridge sequence comes from the graph path between the two contigs, not the long reads, providing greater accuracy.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.p cbi.1005595

When multiple possible bridge paths exist, the best path is chosen based on agreement with the long-read consensus sequence.

Unicycler

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.p

Assembly: Metrics

- sum = total bases number
- n = contigs number
- average = average contig length
- largest = largest contig
- N50 = length of the shortest contig where 50% of sum is held
- L50 = number of contigs which have 50% of the genome
- N90 = length of the shortest contig where 90% of sum is held.
- L90 = number of contigs which have 90% of the genome

Assembly: Scaffolding

From draft:

Order contigs (Nucmer, if there is reference it can be used to align and guide)
Fill the GAPs (GapFiller, fill sequencing gap (not physical gap)
Solve repeated sequence ambiguities (Expander)
Resequence with different library:

- Longer fragments and/or distance
- Tools for assembly improvement

SSPACE (Scaffolding) REAPR (evaluate scaffolding, breaking incorrect scaffolds)

Assembly visualyzing

Artemis, ACT (comparación de dos o más secuencias)

Assembly: Evaluation

- Software that evaluate differets algorithms & parameters iMetAMOS, Koren et al., BMCBioinformatics 2014, 15:126
 GAGE-B, Magoc et al., Bioinformatics 2013,29(14):1718-25
- Graph evaluation: Bandage, Wick R.R., Schultz M.B., Zobel J. & Holt K.E. (2015)
- Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8
- Metrics for a good assembly:

Large N50 Sum closest to expected Low n Low L50

Assembly: Evaluation - Quast

Graph evaluation: Bandage, Wick R.R., Schultz M.B., Zobel
 J. & Holt K.E. (2015)

Assembly: Evaluation - Quast

 Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8

₩ 5	Show heatmap						
Worst Median Best							
Genome statistics	RA_L2073_paired_assembly	RA_L2391_paired_assembly	RA_L2677_paired_assembly	RA_L2978_paired_assembly	RA_L2281_paired_assembly	RA_L2450_paired_assembly	RA_L2701_paired_assembly
Genome fraction (%)	81.079	88.828	84.92	90.172	85.733	88.172	92.463
Duplication ratio	1	1	1.001	1.001	1.001	1	1
# genomic features	1736 + 824 part	2113 + 600 part	1881 + 768 part	2157 + 611 part	1992 + 637 part	2073 + 643 part	2368 + 412 part
Largest alignment	16612	33 033	21 336	25 068	29 638	30 305	40 471
Total aligned length	2 405 510	2 635 297	2 519 300	2 675 166	2 543 440	2 615 874	2743222
NGA50	3176	6162	4234	5948	5104	5358	9519
LGA50	267	151	219	153	166	166	96
Misassemblies							
# misassemblies	23	1	14	2	17	12	4
Misassembled contigs length	84193	9611	45 868	6390	111 490	72 879	37 962
Mismatches							
# mismatches per 100 kbp	17	18.78	15	16.71	341.39	15.75	13.49
# indels per 100 kbp	1.21	1.25	1.87	1.94	7.27	1.45	0.87
# N's per 100 kbp	0	0	0	0	0	0	0
Statistics without reference							
# contigs	748	546	684	569	569	584	392
Largest contig	16612	33 033	21 336	25 068	30915	30 305	40 471
Total length	2 440 656	2 676 227	2 562 578	2714287	2 629 607	2 618 624	2 787 129
Total length (>= 1000 bp)	2 439 127	2 676 227	2 559 569	2714287	2 628 029	2 615 105	2 785 415
Total length (>= 10000 bp)	257 236	739 181	320 638	811 392	700516	658319	1 419 641
Total length (>= 50000 bp)	0	0	0	0	0	0	0

Extended report

Assembly: Evaluation - Quast

 Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8

Assembly: Assemblers

Name	Туре	Technologies	Author	Presented /Last updated	Licence*	Homepage
<u>DNASTAR</u> Lasergene Genomics Suite	(large) genomes, exomes, transcriptomes, metagenomes, ESTs	Illumina, ABI SOLiD, Roche 454, Ion Torrent, Solexa, Sanger	DNASTAR	2007 / 2016	С	link
Newbler	genomes, ESTs	454, Sanger	454/Roche	2004/2012	С	link
Canu	Small and large, haploid/diploid genomes	PacBio/Oxford Nanopore reads	Koren et al. ^[8]	2001 / 2018	os	link
SPAdes	(small) genomes, single- cell	Illumina, Solexa, Sanger, 454, Ion Torrent, PacBio, Oxford Nanopore	Bankevich, A et al.	2012 / 2017	os	link
Velvet	(small) genomes	Sanger, 454, Solexa, SOLiD	Zerbino, D. et al.	2007 / 2011	os	link

^{*}Licences: OS = Open Source; C = Commercial; C / NC-A = Commercial but free for non-commercial and academics

Assembly: Specials assemblers

- Diploid genomes recovering genomes from metagenomic data
- Metagenomics
- Plasmids
- Transcriptome

Assembly: Categories

Standards for Sequencing Viral Genomes in the Era of HighThroughput Sequencing. Ladner *et al.*