Introduction to Electronics (Practice paper - 5)

Topic: MOSFET and Amplifiers

1. For the n-channel MOSFET as shown in Fig. 1 has $K_n = 0.2 \text{ mA/V}^2$ and $V_{Th} = 1 \text{ V}$. Given that $V_{DD} = 10 \text{ V}$ and $R_D = 1 \text{ k}\Omega$. Find (a) the region operation, (b) V_{GS} (c) V_{DS} and (d) i_D .

- 2. For the circuit in Figure 2, the p-channel transistor has threshold voltage $(V_{Th}) = -0.8 \text{ V}$ and $K_p = 200 \ \mu\text{A/V}^2$. Determine V_S and V_{SD} .
- 3. A particular n-channel MOSFET has parameters $V_{Th} = 0.6 \text{ V}$, $L = 0.8 \mu m$, $t_{ox} = 200 \text{ Å}$, and $\mu_n = 600 \text{ cm}^2/\text{V}$ –s. A drain current of $I_D = 1.2 \text{ mA}$ is required when the device is biased in the saturation region at $V_{GS} = 3 \text{ V}$. Determine the required channel width of the device.
- **4.** For a p-channel enhancement-mode MOSFET, the parameters are $K_P = 2 \text{ mA/V}^2$ and $V_{TP} = -0.5 \text{ V}$. The gate is at ground potential, and the source terminals is at +5 V. Determine I_D when the drain terminal voltage is: (a) $V_D = 0 \text{ V}$, (b) $V_D = 2 \text{ V}$, (c) $V_D = 4 \text{ V}$, and (d) $V_D = 5 \text{ V}$.
- **5.** In the circuit shown in Fig. 3, the transistor parameters are $V_{Th} = 0.8 \text{ V}$ and $K_n = 0.5 \text{ mA/V}^2$. Calculate (i) Drain current I_D , (ii) Gate-source voltage (V_{GS}) , and (iii) Drain-source voltage (V_{DS}) .
- **6.** The transistors (M_1 & M_2) in the circuit shown in Fig. 4 have parameters $V_{Th} = 0.4 \text{ V}$ and $K_n' = 120 \text{ }\mu\text{A/V}^2$. (a) If the width-to-length ratios of M_1 and M_2 are (W/L)₁ = (W/L)₂ = 30, determine V_{GS1} , V_{GS2} , V_O , and I_D . (b) Repeat part (a) if the width-to-length ratios are changed to (W/L)₁ = 30 and (W/L)₂ = 15.
- 7. In the circuit shown in Fig. 5, find the value of R_S and R_D when $V_D = -3$ V and $I_D = 0.5$ mA. The transistor parameters are given as $K'_p = 30$ μ A/V², W/L = 20 and $V_{Th} = -1.2$ V.

Fig. 5

8. The circuit shown in Fig. 6 have transistor parameters $V_{Th} = -1.75$ V and $K_p = 3$ mA/V². The drain current (I_D) in the circuit is 5 mA, $V_{SD} = 6$ V and $R_{in} = 80$ k Ω . Find R_1 , R_2 and R_D .

- **9.** In the common-source amplifier circuit shown in Fig. 7 using an n-channel MOSFET quiescent values are $I_{DQ} = 6$ mA, $V_{GSQ} = 2.8$ V, and $V_{DSQ} = 10$ V. The transconductance is $g_m = 2.2$ mA/V. Consider, $\lambda = 0$, $R_L = 1$ k Ω , $A_v = -1$, and $R_{in} = 100$ k Ω . Find R_1 , R_2 , R_S , R_D , K_n , and V_{Th} .
- 10. The parameters of the circuit shown in Fig. 8 are $V_{DD} = 5 \text{ V}$, $R_1 = 520 \text{ k}\Omega$, $R_2 = 320 \text{ k}\Omega$, $R_D = 10 \text{ k}\Omega$, and $R_{Si} = 0$. Assume transistor parameters of $V_{Th} = 0.8 \text{ V}$, $K_n = 0.20 \text{ mA/V}^2$, and $\lambda = 0$. (a) Determine the small-signal transistor parameters g_m and r_o . (b) Find the small-signal voltage gain. (c) Calculate the input and output resistances. (d) Repeat (a) and (b) considering $R_{Si} = 1 \text{ k}\Omega$.
- 11. Consider the NMOS amplifier with saturated load in Fig. 9. The transistor parameters are $V_{Th_D} = V_{Th_N} = 0.6 \text{ V}$, $k_n' = 100 \,\mu\text{A/V}^2$, $\lambda = 0$, and $(W/L)_L = 1$. Estimate the W/L ratio of M_D for realizing the overall small-signal voltage gain |Av| = 5.

Fig. 9

Please Note: For n-channel MOSFET

 $K_n = \frac{1}{2}\mu_n C_{ox} \frac{W}{L}$ is the conduction parameter

$$K_n = \frac{1}{2} K_n' \frac{W}{L}$$

 $K_n' = \mu_n C_{ox}$ is the process conduction parameter