The Elements of Statistical Learning

統計的学習の基礎

nukui

2019年1月3日

- 1 序章
- 2 教師あり学習の概要

2.1

K クラス分類問題の目標変数 t_k が、第 k 要素のみが 1 で他の要素は 0 である K 次元ベクトルによって表されているとする。予測結果 \hat{y} を全ての要素の和が 1 となるように正規化したとき、 \hat{y} の最大要素を持つクラスへの分類と $||t_k - \hat{y}||$ を最小化するクラスへの分類が等価であることを示せ。

 \hat{y} の最大要素が第j 要素であるとする。

$$||t_k - \hat{y}||^2 - ||t_j - \hat{y}||^2$$

$$= \{ \sum_{i \neq k} \hat{y_i}^2 + (1 - \hat{y_k})^2 \} - \{ \sum_{i \neq j} \hat{y_i}^2 + (1 - \hat{y_j})^2 \}$$

$$= \hat{y_j}^2 + (1 - \hat{y_k})^2 - \hat{y_k}^2 - (1 - \hat{y_j})^2$$

$$= 2(\hat{y_j} - \hat{y_k})$$

よって、k=j のとき、 $||t_k-\hat{y}||$ が最小になることがわかる。以上より、 \hat{y} の最大要素を持つクラスへの分類 j と、 $||t_k-\hat{y}||$ を最小化するクラスへの分類が等価であることがわかる。

2.2

図 2.5 の試行の例においてベイズ決定境界を求めよ。

(青色クラス)2 次元ガウス分布 $N((1,0)^T,\mathbf{I})$ から生成された 10 個の平均ベクトル(青色クラス)を $\{m_1,m_2,...,m_{10}\}$ とし、2 次元ガウス分布 $N((0,1)^T,\mathbf{I})$ から生成された 10 個の平均ベクトル(オレンジ色クラス)を $\{n_1,n_2,...,n_{10}\}$ とする。

2.2.1

 $\{m_1,m_2,...,m_{10}\}$ と $\{n_1,n_2,...,n_{10}\}$ の値がすでにわかっていると仮定する。このとき、ベイズ決定境界上の点xの条件は

$$\Pr$$
(青色 $|x) = \Pr($ オレンジ色 $|x)$

となる。

$$\frac{\Pr(青色 \mid x)}{\Pr(\texttt{オレンジ色} \mid x)} = \frac{\Pr(青色 \mid x)\Pr(x)}{\Pr(\texttt{オレンジ色} \mid x)\Pr(x)} = \frac{\Pr(x \mid \texttt{青色})\Pr(\texttt{青色})}{\Pr(x \mid \texttt{オレンジ色})\Pr(\texttt{オレンジ色})}$$

 $\Pr($ 青色 $) = \Pr($ オレンジ色) なので、結局、ベイズ決定境界の式は

$$\Pr(x|$$
 青色) = $\Pr(x|$ オレンジ色)

と表せる。10 個の平均ベクトルのどれが選ばれるかは等確率であり、i 番目のベクトルが選ばれた時には、平均 m_i (または n_i) で、分散 I/5 の 2 変数ガウス分布に従うので、ベイズ決定境界上の点 x の条件式は

$$\sum_{i=1}^{10} \frac{1}{10} \frac{\sqrt{5}}{2\pi} \exp\{-\frac{5(x-m_i)^T(x-m_i)}{2}\} = \sum_{i=1}^{10} \frac{1}{10} \frac{\sqrt{5}}{2\pi} \exp\{-\frac{5(x-n_i)^T(x-n_i)}{2}\}$$

と表される。

2.2.2

 $\{m_1,m_2,...,m_{10}\}$ と $\{n_1,n_2,...,n_{10}\}$ の値が未知だと仮定した場合、観測された値を頼りに確率を計算することができる。N 個の p 次元ベクトル x_i (i=1,...,N) が青色の点として観測されていて、 y_i (i=1,...,N) がオレンジ色の点として観測されているとする。平均 μ で、分散 σ の 2 変数ガウス分布の x における確率密度関数を $f(x;\mu,\sigma)$ と表すとすると、

$$\begin{split} &\Pr(x \mid \{x_1, x_2, ..., x_N\}, \boldsymbol{\dagger}\boldsymbol{\Xi}\boldsymbol{\Xi}) \\ &= \sum_{m_1, ..., m_{10}} \Pr(\{m_1, ..., m_{10}\} \mid \{x_1, x_2, ..., x_N\}) \Pr(x \mid \{m_1, ..., m_{10}\}) \\ &= \sum_{m_1, ..., m_{10}} \frac{\Pr(\{m_1, ..., m_{10}\}) \Pr(\{x_1, ..., x_N\} \mid \{m_1, ..., m_{10}\})}{\Pr(\{x_1, x_2, ..., x_N\})} \Pr(x \mid \{m_1, ..., m_{10}\}) \\ &= \sum_{m_1, ..., m_{10}} \frac{\{\prod_{i=1}^{10} f(m_i; (1, 0)^T, \mathbf{I})\} \{\prod_{k=1}^N \sum_{j=1}^{10} \frac{1}{10} f(x_k; m_j, \mathbf{I}/5)\}}{\int \{\prod_{i=1}^{10} f(m_i'; (1, 0)^T, \mathbf{I})\} \{\prod_{k=1}^N \sum_{j=1}^{10} \frac{1}{10} f(x_k; m_j', \mathbf{I}/5)\} dm_1' ... dm_{10}'} \Pr(x \mid \{m_1, ..., m_{10}\}) \\ &= \int \{\frac{\{\prod_{i=1}^{10} f(m_i; (1, 0)^T, \mathbf{I})\} \{\prod_{k=1}^N \sum_{j=1}^{10} \frac{1}{10} f(x_k; m_j, \mathbf{I}/5)\} \{\sum_{j=1}^{10} \frac{1}{10} f(x_j; m_j, \mathbf{I}/5)\}}{\int \{\prod_{i=1}^{10} f(m_i'; (1, 0)^T, \mathbf{I})\} \{\prod_{k=1}^N \sum_{j=1}^{10} \frac{1}{10} f(x_k; m_j', \mathbf{I}/5)\} dm_1' ... dm_{10}'} \} dm_1 ... dm_{10} \end{split}$$

となる。また、ベイズ決定境界上の点xの条件式は

$$\Pr(x|\{x_1, x_2, ..., x_N\},$$
青色) = $\Pr(x|\{y_1, y_2, ..., y_N\},$ オレンジ色)

と表される。これを計算機でいい感じに求めることができるのかどうか、知りませんが。。。

2.3

式
$$(2.24)$$
 を導け。
$$d(p,N) = (1-(\frac{1}{2})^{\frac{1}{N}})^{\frac{1}{p}}$$

 ${
m p}$ 次元空間の半径 r の球の体積を Cr^p とおく (C は定数)。半径 1 の球に N 個の点が均一に散らばっていると、原点に最も近い点 x が半径 r の中に入っている確率は

$$Pr(X < r) = 1 - Pr(X \ge r)$$
$$= 1 - \left(\frac{C - Cr^p}{C}\right)^N$$
$$= 1 - \left(1 - r^p\right)^N$$

よって、X の中央値 d は $\Pr(X < d) = \frac{1}{2}$ となる境界なので、

$$1 - (1 - d^p)^N = \frac{1}{2}$$
$$\frac{1}{2} = (1 - d^p)^N$$
$$1 - d^p = (\frac{1}{2})^{\frac{1}{N}}$$
$$d = (1 - (\frac{1}{2})^{\frac{1}{N}})^{\frac{1}{p}}$$

以上より、 $d(p,N)=(1-(\frac{1}{2})^{\frac{1}{N}})^{\frac{1}{p}}$ と求められた。