Q7:

restart;

r1 := r1; r2 := r2; p := p; b := 0; Co := Co; yo := yo;

Cobb Douglas Production Function:

$$Z := 2; m := \frac{1}{8}; n := \frac{1}{4};$$

$$Z := 2$$
 (1)

$$m := \frac{1}{8} \tag{1}$$

$$n := \frac{1}{4} \tag{1}$$

 $cobb := Z \cdot x1^m x2^n$;

$$cobb := 2 x I^{1 | 8} x 2^{1 | 4}$$
 (2)

y := cobb; #Change production function (quad or cobb).

$$y := 2 x I^{1/8} x 2^{1/4}$$
 (3)

 $VC := r1 \cdot x1 + r2 \cdot x2$; FC := b; TotalCost := VC + FC;

Cost Functions: Variable Cost (VC), Fixed Cost (FC), Total Cost (TC)

$$VC := r1 x1 + r2 x2$$

$$FC := b$$

$$TotalCost := r1 x1 + r2 x2 + b \tag{4}$$

 $TVP := p \cdot y$; $Profit_Function := TVP - TotalCost$; $\# TVP = Total \ Value \ Product$, $Profit_fun = Profit$.

$$TVP := 2 p x 1^{1/8} x 2^{1/4}$$

Profit Function :=
$$2 p x 1^{1/8} x 2^{1/4} - r1 x 1 - r2 x 2 - b$$
 (5)

Cost := TotalCost;

$$Cost := r1x1 + r2x2 + b \tag{6}$$

 $LC := Cost + \lambda \cdot (yo - y); \# Lagrangean function. \lambda is lagrangean multiplier.$

$$LC := rIxI + r2x2 + b + \lambda \left(yo - 2xI^{1/8}x2^{1/4} \right)$$
 (7)

LCf1 := diff(LC, x1); LCf11 := diff(LCf1, x1); #FOC and SOC of lagrangean function wrt x1

$$LCfI := rI - \frac{\lambda x 2^{1/4}}{4 x I^{7/8}}$$

$$LCf11 := \frac{7 \lambda x 2^{1/4}}{32 x I^{15/8}}$$
 (8)

 $LCf2 := diff(LC, x2); LCf22 := diff(LCf2, x2); \#FOC \ and \ SOC \ of \ lagrangean \ function \ wrt \ x2$

$$LCf2 := r2 - \frac{\lambda x I^{1/8}}{2 x 2^{3/4}}$$

$$LCf22 := \frac{3 \lambda x I^{1/8}}{8 x 2^{7/4}}$$
 (9)

LCf12 := diff(LCf1, x2); LCf21 := diff(LCf2, x1);

Cross differentiation of LCf1 and LCf2 wrt x2 and x1 respectively. Gives interdependence of

factors.

$$LCf12 := -\frac{\lambda}{16 x I^{7 | 8} x 2^{3 | 4}}$$

$$LCf21 := -\frac{\lambda}{16xI^{7/8}x2^{3/4}}$$
 (10)

 $LCF\lambda := diff(LC, \lambda); \#FOC \text{ of lagrangean function wrt } \lambda.$

$$LCF\lambda := yo - 2xI^{1/8}x2^{1/4}$$
 (11)

 $LCf1\lambda := solve(LCf1, \lambda); \# \lambda from LCf1.$

$$LCfI\lambda := \frac{4 rI xI^{7 \mid 8}}{x2^{1 \mid 4}}$$
 (12)

 $LCf2\lambda := solve(LCf2, \lambda); \# \lambda \text{ from } LCf2.$

$$LCf2\lambda := \frac{2 r2 x2^{3/4}}{xl^{1/8}}$$
 (13)

 $EP_C_x1 := solve(LCf1\lambda = LCf2\lambda, x1); \# Expansion path X1$

$$EP_C_x1 := \frac{r2 x2}{2 r1} \tag{14}$$

 $EP_C_x2 := solve(LCf1\lambda = LCf2\lambda, x2); \# Expansion Path X2$

$$EP_C_x2 := \frac{2 r l x l}{r^2}$$
 (15)

7 a.:

 $x2s \ cost := (solve((eval(LCF\lambda, x1 = EP_C \ x1)), \ x2));$

#X2Star: Cost Minimizing Input x2 Demand Function, [Constrained Input Deman Function x2.] $= \frac{yo^4 2^{5/6} rI^4}{}$

$$= \frac{yo^4 2^{5/6} rI^4}{8 \left(\sqrt{2} r2 yo^4 rI^{11}\right)^{1/3}}$$

$$8 \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}$$

$$x^{2s} = \frac{y^{0} 2^{5/6} r^{14}}{8 \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^{4} \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(\frac{1}{2} + \frac{1\sqrt{3}}{2}\right)^{4} \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(-\frac{1}{2} + \frac{1\sqrt{3}}{2}\right)^{4} \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^{4} \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}, \frac{y^{0} 2^{5/6} r^{14}}{8 \left(\sqrt{2} r^{2} y^{0} r^{11}\right)^{1/3}}$$

$$\frac{yo^{4} 2^{5 \mid 6} rI^{4}}{8 \left(-\frac{1}{2} - \frac{I\sqrt{3}}{2}\right)^{4} \left(\sqrt{2} r2 yo^{4} rI^{11}\right)^{1 \mid 3}}, \frac{yo^{4} 2^{5 \mid 6} rI^{4}}{8 \left(\sqrt{2} r2 yo^{4} rI^{11}\right)^{1 \mid 3}}, \frac{yo^{4} 2^{5 \mid 6} rI^{4}}{8 \left(\frac{1}{2} - \frac{I\sqrt{3}}{2}\right)^{4} \left(\sqrt{2} r2 yo^{4} rI^{11}\right)^{1 \mid 3}}, \frac{yo^{4} 2^{5 \mid 6} rI^{4}}{8 \left(\frac{1}{2} - \frac{I\sqrt{3}}{2}\right)^{4} \left(\sqrt{2} r2 yo^{4} rI^{11}\right)^{1 \mid 3}}, \frac{yo^{4} 2^{5 \mid 6} rI^{4}}{8 \left(\frac{\sqrt{3}}{2} - \frac{I}{2}\right)^{4} \left(\sqrt{2} r2 yo^{4} rI^{11}\right)^{1 \mid 3}}$$

 $x1s \ cost := simplify(eval(EP \ C \ x1, x2 = x2s \ cost));$

X1Star: Cost Minimizing Input x1 Demand Function. [Constrained Input Deman Function x1.]

$$xIs_cost := \frac{r2 yo^4 2^{2/3} rI^3}{16 \left(r2 yo^4 rI^{11}\right)^{1/3}}$$
 (17)

7 b:

 $CostStar := simplify(eval(TotalCost, [x1 = x1s_cost, x2 = x2s_cost])); #CostStar: Minimum Cost for the production of given level of output. Indirect Conditional Cost Function.$

$$CostStar := \frac{3 2^{2/3} r I^4 r 2 y o^4 + 16 (r 2 y o^4 r I^{11})^{1/3} b}{16 (r 2 y o^4 r I^{11})^{1/3}}$$
(18)

#7 c: Shephard's Lemma:

ConstantOutput Input Demand x1 := simplify(diff(CostStar, r1));

This should be equal to x1s cost. Constant-Output input Demand Function x1.

ConstantOutput_Input_Demand_x1 :=
$$\frac{r2 yo^4 2^{2/3} rI^3}{16 (r2 yo^4 rI^{11})^{1/3}}$$
 (19)

ConstantOutput Input Demand x2 := simplify(diff(CostStar, r2));

This should be equal to x1s cost. Constant-Output input Demand Function x2.

ConstantOutput_Input_Demand_x2 :=
$$\frac{rI^4 yo^4 2^{2/3}}{8 (r2 yo^4 rI^{11})^{1/3}}$$
 (20)