

2024 FS CAS PML 1 Feature Engineering 1.7 Nachträge

Werner Dähler 2024

1 Feature Engineering - AGENDA

- Feature Engineering
 - 11. Einführung
 - 12. Exploration
 - 13. Transformation
 - 14. Konstruktion
 - 15. Selektion
 - 16. Implementation
 - 17. Nachträge
 - 171.NA Imputation mit ML Methoden
 - 172. Automatische Feature Selektion mit ML Methoden
 - 173. Feature Selektion mit PCA
- 2. Klassifikation
- 3. Regression
- 4. Validierung und Mehr

1.7.1 NA Imputation mit ML Methoden

- Wiederholung zum Umgang mit Missing Values (NAs, Kapitel 1.3.1.3): die Optionen
 - entfernen von Beobachtungen mit NAs
 - entfernen von Features mit NAs
 - einsetzen (NA Imputation)
 - einsetzen eines willkürlichen Wertes
 - einsetzen eines errechneten Wertes (Mean, Median, Modalwert)
 - einsetzen eines (mittels ML) geschätzten wahrscheinlichsten Wertes
- dabei bieten sich, je nach Skalierung des betreffenden Features folgende Methodengruppen an:
 - metrisch: Regression
 - kategorial: Klassifikation

1.7.1 NA Imputation mit ML Methoden

1.7.1.1 Metrisch mit Regression: "age"

- das bisherige Vorgehen zur prädiktiven Modellierung wird dazu etwas modifiziert
- um beispielsweise für "age" gültige Werte für NAs zu ermitteln, kann wie folgt vorgegangen werden
 - laden der Rohdaten bank_data.csv und entfernen ungünstiger Variablen ("default", "pdays", "poutcome")
 - entfernen aller Beobachtungen mit NAs, ausser bei "age"
 - One-Hot Encoding auf allen nicht numerischen Variablen
 - train test split
 - train: alle Instanzen für welche age nicht NAn ist
 - test: alle übrigen Instanzen
 - features target split: das Target ist dabei die Variable, welche NAs aufweist und wo diese eingesetzt werden sollen (hier also "age")

1.7.1 NA Imputation mit ML Methoden

1.7.1.1 Metrisch mit Regression: "age"

Trainieren einer Linearen Regression und Vorhersagen der Werte für die Instanzen mit NAs

Rekombinieren des Data Frame aus den Komponenten (X_train, y_train, X_test und

y_test)

(vgl. [ipynb])

1.7.1 NA Imputation mit ML Methoden

1.7.1.1 Metrisch mit Regression: "age"

- durch das anschliessende Rekombinieren werden die Instanzen, für welche NAs ermittelt und eingesetzt wurden, am Ende des Data Frame angehängt
- zu Demozwecken wurde vorgängig noch ein Index hinterlegt, welcher die Rows mit NAs in "age" markiert

```
na_idx = data.age.isna()
                                               print(new data.age[na idx].head())
print(data.age[na idx].head())
      NaN
                                                      62,270798
20
      NaN
                                               20
                                                      38.102409
34
      NaN
                                               34
                                                      41.409065
101
      NaN
                                               101
                                                      44,357099
                                                      39,134023
327
      NaN
                                               327
```

1.7.1 NA Imputation mit ML Methoden

1.7.1.2 Kategorial mit Klassifikation: "marital"

- analoges Vorgehen mit folgenden Modifikationen: ([ipynb])
 - One-Hot Encoding ebenfalls auf allen nicht numerischen Variablen, ausser "marital", welche hier die Rolle des Targets spielen wird
- eine Sichtung der Situation vor und nach Einsetzen zeigt untenstehende Ergebnisse

```
na idx = data.marital.isna()
print(data.marital[na idx].head())
                                             print(new data.marital[na idx].head())
553
                                             553
                                                      married
        NaN
1582
        NaN
                                             1582
                                                      married
1698
        NaN
                                             1698
                                                      married
1801
        NaN
                                             1801
                                                       single
                                                       single
2274
        NaN
                                             2274
```

1.7.1 NA Imputation mit ML Methoden

1.7.1.3 sklearn.impute.KNNImputer

- die Klasse KNNImputer bietet Imputation zum Auffüllen fehlender Werte unter Verwendung des k-Nächste-Nachbarn-Ansatzes
- standardmässig wird eine euklidische Distanzmetrik, die fehlende Werte unterstützt, nan_euclidean_distances, verwendet, um die nächsten Nachbarn zu finden
- jeder fehlende Wert wird mit Hilfe der Werte der nächsten Nachbarn, die einen Wert für die Variable haben, eingesetzt (nur numerische Features!)
- die Anwendung folgt der gängigen scikit-learn API (vgl. [ipynb])

```
from sklearn.impute import KNNImputer
imp = KNNImputer()
imp.fit(data)
new_data = pd.DataFrame(imp.transform(data), columns=data.columns)
```

 die Transformation des Ergebnisses als Data Frame ist hier angebracht, da Ergebnis von .transform() ein ndarray ist

1.7.1 NA Imputation mit ML Methoden

1.7.1.4 sklearn.impute.IterativeImputer

- relativ neu, daher noch als "experimental" bezeichnet
- eine Strategie zur Imputation fehlender Werte durch Modellierung jedes Merkmals mit fehlenden Werten als Funktion anderer Merkmale in einer Round-Robin-Methode
- bei jedem Schritt wird eine Merkmalsspalte als Target y bezeichnet und die anderen Merkmalsspalten werden als Features X behandelt
- ein Regressor wird an (X, y) für bekanntes y angepasst
- dann wird der Klassifikator verwendet, um die fehlenden Werte von y vorherzusagen
- dies wird für jedes Merkmal in einer iterativen Weise durchgeführt und dann für max_iter Imputationsrunden wiederholt
- die Ergebnisse der letzten Imputationsrunde werden zurückgegeben
- vgl. [ipynb]

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.1 Klassifikationsmodelle

- wie in Kapitel 2.2.1.7 gesehen, benötigen einige Klassifikatoren (insbesondere regelbasierte Methoden) Feature Importance intern zur Modellbildung
- diese Information kann danach konsolidiert aus dem trainierten Modell extrahiert werden
- um maximale Information zur Importance zu gewinnen, sind gegenüber dem bisherigen Vorgehen zwei Punkte zu beachten
 - die Modelle werden nicht auf gesplitteten Daten gebildet (es sollen ja keine Modelle evaluiert werden)
 - allfällig vorangehendes One-Hot Encoding ist mit dem Parameter drop_first=False
 (Default) durchzuführen, um alle möglichen Ausprägungen berücksichtigen zu können
- aus den ermittelten Importances kann anschliessend beispielsweise eine Liste erstellt werden, um auf die gewünschte Anzahl Features zu filtern

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.1 Klassifikationsmodelle

- Schritte des in [ipynb] hinterlegten Codes
 - laden der Rohdaten
 - minimales Feature Engineering
 - kein Train Test Split!
 - One-Hot Encoding auf den Features
 - trainieren eines Modells mit RandomForestClassifier
 - extrahieren von .feature_importances_ und mit Feature-Namen zusammenkombinieren in einem Data Frame best, welcher nach Importances abnehmend sortiert ist

	feature	importance
1	duration	0.220319
3	pdays	0.087773
8	euribor3m	0.087118
9	nr.employed	0.068184
0	age	0.057070
7	cons.conf.idx	0.053401

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.1 Klassifikationsmodelle

 aus diesem Data Frame kann anschliessend ein Filter sel_vars erstellt werden, um auf die besten Features einzuschränken

```
sel_vars = best.head(6).feature.tolist()
new_X = X[sel_vars]
print(new_X.info())
```

#	Column	Non-Null Count	Dtype
0	duration	1832 non-null	float64
1	pdays	1832 non-null	int64
2	euribor3m	1832 non-null	float64
3	nr.employed	1832 non-null	float64
4	age	1832 non-null	float64
5	cons.conf.idx	1832 non-null	float64

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.2 Regressionsmodelle

- für die Beurteilung der Wichtigkeit der Features kann bei regelbasierten Methoden gleich vorgegangen werden wie bei Klassifikationsmodellen
- bei OLS Methoden, insbesondere Lasso und Ridge kann über ein Tuning des Parameters alpha auf die Wichtigkeit der einzelnen Features geschlossen werden (vgl. Kap. 3.2.2)
- bei Lasso Regression schränkt der Regularisierungsparameter alpha die Koeffizienten ein
- je grösser alpha, umso mehr Koeffizienten erhalten den Wert 0
- man kann davon ausgehen, dass bei kleinem alpha die Koeffizienten weniger wichtiger Features auf 0 gesetzt werden, bei kontinuierlichem Erhöhen von alpha dann jene mehr und mehr wichtiger Features

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.2 Regressionsmodelle

- zur untenstehenden Visualisierung (vgl. [ipynb])
 - minimales Feature Engineering auf den Rohdaten
 - Features Target Split
 - kein Train Test Split (hier nicht notwendig)
 - Iteration über einen Bereich von alpha, wobei die Sequenz logarithmisch erzeugt wird
 - in jedem Iterationsschritt wird
 - das Modell trainiert
 - die ermittelten Koeffizienten in einer Liste hinterlegt
 - danach werden die Koeffizienten den Werten von alpha gegenübergestellt

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.2 Regressionsmodelle

 es wird ersichtlich, wie die Koeffizienten der Features mit Erhöhen von alpha nach und nach auf 0 gesetzt werden

 ein Schitt z.B. an der Stelle alpha=10⁵ schränkt auf die folgenden 7 Features ein


```
['Rooms', 'Distance', 'Bathroom', 'Landsize',
'BuildingArea', 'YearBuilt', 'Propertycount']
```

Regionname_Western Metropolitan Regionname Western Victoria

1.7.2 Automatische Feature Selektion mit ML Methoden

1.7.2.1 Modellbasierte Feature Selection - 1.7.2.1.2 Regressionsmodelle

 dabei werden die Namen der Features wiederum in einer Liste hinterlegt, welche als Filter eingesetzt werden kann

```
new_X = X[sel_vars]
new_X.info()
```

Column	Non-Null Count	Dtype
Rooms	6830 non-null	int64
Distance	6830 non-null	float64
Bathroom	6830 non-null	float64
Landsize	6830 non-null	float64
BuildingArea	6830 non-null	float64
YearBuilt	6830 non-null	float64
Propertycount	6830 non-null	float64
	Rooms Distance Bathroom Landsize BuildingArea YearBuilt	Rooms 6830 non-null Distance 6830 non-null Bathroom 6830 non-null Landsize 6830 non-null BuildingArea 6830 non-null YearBuilt 6830 non-null

1.7.2.2 Iterative Methoden

- die modellbasierten Methoden zur Feature Importance haben aber die Schwäche, dass sich wegen möglicher Interaktionen durch Entfernen einzelner Features die Präferenzen der übrigen neu ändern könnten
- zwei Methoden, welche diesem Umstand entgegenwirken und als Funktionen in sklearn zur Verfügung stehen:
 - sklearn.feature_selection.RFE
 - <u>sklearn.inspection.permutation_importance</u>
- Vorbereitung:
 - aufsetzen auf den Rohdaten
 - entfernen von NAs
 - One-Hot Encoding der Features mit drop_first=False
 - kein Train Test Split

1.7.2.2.1 Iterative Methoden - RFE

(Feature ranking with recursive feature elimination)

- basiert auf einem externen Learner, welcher für die Features einen Gewichtungswert zurückgibt, z.B.
 - Koeffizienten bei linearen Modellen
 - Feature Importance bei Regelbasierten Modellen
- Ziel von Recursive Feature Elimination (RFE) ist es, rekursiv die Auswirkung kleiner werdender Subsets von Features zu untersuchen
- Vorgehen
 - festlegen, wie viele Features ausgewählt werden sollen
 - zuerst wird ein Modell mit allen Features trainiert, danach iterativ das Feature mit dem jeweils kleinsten Gewicht entfernt
 - wiederholen, bis die geforderte Anzahl von Features erreicht ist

1.7.2.2.1 Iterative Methoden - RFE

- mit dem Parameter n_features_to_select von RFE kann eingestellt werden, für wie viele "beste" Features der Support auf True gesetzt werden soll
- letzterer kann danach zu Filtern verwendet werden
- wird der Param auf 1 gesetzt, werden die Ränge für alle Features sichtbar (vgl. [ipynb])

Fazit:		Feature	Ranking	Support
		duration	1	True
 bestes Feature auch hier duration, gefolgt von makroökonomischen Parametern (nr.employed und euribor3m) 	9	nr.employed	2	False
	8	euribor3m	3	False
wie oben gezeigt (vgl. 1.7.2.1.1), kann auch	0	age	4	False
hier mit einem Performance Vergleich der	3	pdays	5	False
Verlust an Vorhersagekraft beurteilt werden	7	cons.conf.idx	6	False

 die Ergebnisse von RFE können verwendet werden, um eine Liste der Feature-Namen zum Filtern zu erstellen ([ipynb])

1.7.2.2.2 Iterative Methoden - permutation_importance

- RFE (vgl. 1.7.2.2.1) bedingt einen externen Learner, welcher Gewichte der einzelnen Features zurückgibt
- permutation_importance umgeht diese "Schwäche" indem die einzelnen Features unabhängig voneinander durch mehrmaliges Permutieren neutralisiert und danach der Scorewert mit einer Baseline verglichen wird
- das Verfahren kann mit jedem beliebigen Learner (Klassifikator oder Regressor) eingesetzt werden
- zum Vorgehen
 - trainieren eines Modells mit den vorbereiteten Daten (vgl. 1.7.2.2.1)
 - ermitteln eines ersten Score Wertes als Baseline
 - für jedes Feature werden die Werte n mal (parameter n_repeats, default=5) zufällig durchmischt (permutiert) und danach der Score Wert unter Anwendung auf das ursprüngliche Modell erneut ermittelt
 - je mehr sich der Score Wert gegenüber der Baseline verschlechtert, umso wichtiger erscheint das betreffende Feature

1.7.2.2.2 Iterative Methoden - permutation_importance

- als Ergebnis liefert die Methode folgende Attribute
 - importances_mean: Mittewert der Importance für jedes Feature
 - importances_std: Standardabweichung der Importance für jedes Feature
 - importances: Einzelwerte für jede Iteration mit jedem Feature
- die Ergebnisse können danach mit geeigneten Methoden visualisiert werden (vgl. [ipynb])

	feature	mean	std
1	duration	0.137555	0.006486
3	pdays	0.042031	0.002264
8	euribor3m	0.022380	0.004200
0	age	0.013100	0.001505
2	campaign	0.007642	0.000913

daraus kann wiederum eine Liste zum Filtern der Features erstellt werden (vgl. [ipynb])

1.7.3 Feature Selektion mit PCA - EXTRA

1.7.3.1 Korrelationen mit erster Hauptkomponente

- bei den bisher gezeigten Selektionsmethoden wurde jeweils der Einfluss der Features auf das Target bewertet d.h. sie sind insbesondere geeignet mit Sicht auf Überwachtes Lernen
- Feature Importance kann allerdings auch mit Sicht auf Unüberwachtes Lernen von Interesse sein
- in Kap. 1.4.2, Feature Konstruktion Dimensionsreduktion mit PCA wurde die Hauptkomponentenanalyse vorgestellt
- diese transformiert die Ausgangsdaten durch Rotation im multidimensionalen Raum so um, dass die Maximale Varianz auf der ersten transformierten Dimension (1. Hauptkomponente) abgebildet wird
- in einem anschliessenden Vergleich kann mit Korrelationskoeffizienten jedes Ausgangsfeatures mit dieser ersten Hauptkomponente der Grad der Repräsentativität der einzelnen Features für den gesamten Datensatz quantifiziert werden
- im Codebeispiel wird das Target 'y' binär numerisch umcodiert, um es wie ein gewöhnliches Feature zu behandeln ner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences - Werner Dähler 2024

1.7.3 Feature Selektion mit PCA - EXTRA

1.7.3.1 Korrelationen mit erster Hauptkomponente

- Vorgehen (vgl. [ipynb])
 - laden der Rohdaten mit minimalem Feature Engineering
 - binär Umcodieren des Targets ("yes" -> 1, "no" -> 0)
 - One-Hot Encoding
 - Standardisieren
 - PCA
 - hinzufügen von PC1 an vorbereitete Daten
 - berechnen der Korrelationsmatrix (Absolutwerte)

	Korrelationsmatrix nach PC1 abnehmend sortieren	euribor3m	0.902998
	Zeile für PC1 entfernen	emp.var.rate	0.901408
	Spalte PC1 anzeigen (z.B. erste 6)	nr.employed	0.846323
▶ da	as Ergebnis kann bedarfsweise wiederum als Liste um Filtern der Features verwendet werden	cons.price.idx	0.677562
		contact_cellular	0.660235
		<pre>contact_telephone</pre>	0.660235

1.7.3 Feature Selektion mit PCA - EXTRA 1.7.3.2 Biplot aus der Library pca

- ein <u>Biplot</u> ist ein erweitertes Streudiagramm, das sowohl Punkte als auch Vektoren zur Darstellung der Struktur verwendet
- vgl. [ipynb]

Workshop 11

Gruppen zu 2 bis 4, Zeit: 45'

ermitteln Sie die Importance der Features der Rohdaten von melb_data.csv unter Einsatz von sklearn.inspection.permutation_importance

- setzen Sie dazu minimales Feature Engineering wie folgt ein:
 - entfernen fragwürdiger Variablen: 'Unnamed: 0', 'Suburb', 'Address', 'SellerG', 'Postcode', 'Bedroom2', 'Date', 'CouncilArea'
 - One-Hot encoding aller verbleibenden kategorialen Variablen (der Parameter dummy_na=True von pd.get_dummies() erstellt auch Dummy-Variablen für NAs)
 - einsetzen von geschätzten Werten für NAs in verbleibenden numerischen Variablen mit sklearn.impute.KNNImputer

- danach:
 - features target split
 - kein train test split
 - ermitteln der Importance unter Einsatz von
 - sklearn.inspection.permutation_importance
 - sklearn.tree.DecisionTreeRegressor
 - tabellarische und graphische Darstellung der Ergebnisse

