n-Dimensional Distribution Functions And Their Marginals

M. Sklar translated by Gheis Hamati

December 8, 2004

Abstract

This is a translation of the original article by M. Sklar in the 1959 issue of $Comptes\ Rendus\ de\ L'académie\ des\ Sciences\ de\ Paris$, entitled "Fonctions de Répartition a N Dimensions et Leurs Marges." This is the first work to coin the word copula.

Mr. M. Fréchet has studied the problem of determining distribution function whose marginal distributions are given. In what follows, we consider this problem from a new point of view.

Theorem 1 Let G_n be an n-dimensional distribution function, having marginal distributions $F_1, F_2, ..., F_n$. Let \mathbb{R}_k be the set of values of $F_k, k = 1, 2, ..., n$. Then, there exists a unique function H_n , defined on the Cartesian product $\mathbb{R}_1 \times \mathbb{R}_2 \times ... \mathbb{R}_n$, such that

$$G_n(x_1,...,x_n) = H_n(F_1(x_1),...,F_n(x_n)).$$

Definition 1 We will call copula (having n dimensions) any continuous and non-decreasing function C_n , defined on $[0,1]^n$, satisfying the following conditions:

- (i) $C_n(0,\ldots,0)=0$, and
- (ii) $C_n(1,\ldots,1,\alpha,1,\ldots,1) = \alpha$.

Theorem 2 The function H_n of Theorem 1 can be extended (in general, non-uniquely) to a copula C_n . Being an extension of H_n , the copula C_n satisfies the condition

$$G_n(x_1,\ldots,x_n)=H_n(F_1(x_1),\ldots,F_n(x_n)).$$

Theorem 3 Let one-dimensional distribution functions F_1, \ldots, F_n be given. Let C_n be any n-dimensional copula. Then, the function

$$G_n(x_1,\ldots,x_n)=C_n(F_1(x_1),\ldots,F_n(x_n))$$

is an n-dimensional distribution function having marginals F_1, F_2, \ldots, F_n .

Theorems 1-3 reduce Fréchet's problem to the problem of characterizing copulas with n dimensions. There is but one copula with 1 dimension, P_1 , which satisfies the condition $P_1(x) = x$ for any $x \in [0,1]$. For n > 1, the set of n-dimensional copulas is infinite, limited by two particular functions.

Theorem 4 Any n-dimensional copula C_n satisfies the inequality

$$L_n \leq C_n \leq M_n$$

where the bounds L_n, M_n are defined as

$$L_n(a_1, \dots a_n) = \max \{0, \sum_{k=1}^m \alpha_k - n + 1\}$$

 $M_n(a_1, \dots a_n) = \min \{\alpha_1, \dots, \alpha_n\}.$

For $n \geq 1$, the functions $P_n = \prod_{k=1}^n \alpha_k$ defined on $[0,1]^n$ are *n*-dimensional copulas. They determine the correlation scheme of *n* independent random variables.

But copulas have structure generally simpler than distribution functions. We can use this simplicity by introducing the notion of "quasi-inverse" of a monotone function.

Definition 2 Let f be a monotone function of a real variable. Add to the set of points (x.f(x)) all closed segments of the form [(x, f(x+), (x, f(x-))]. Reflect the resulting set about the line y = x. Remove from the reflected set all vertical segments except for a point in each. Any set thus obtained is a graph of a function, which we call a quasi-inverse of f.

According to this definition, any one-dimensional distribution function F possesses at least one quasi-inverse function F^* defined and non-decreasing on the closed interval [0,1] and taking finite values in (0,1). Among such values, there is one which will make F^* left-continuous on (0,1) and continuous at 0 and 1.

Theorem 5 Let Q_n be a function of n variables, integrable in \mathbb{R}^n with respect to a distribution function G_n . Let C_n be a copula such that

$$G_n(x_1,...,x_n) = C_n(F_1(x_1),...,F_n(x_n)),$$

where F_1, \ldots, F_n are the marginal distributions of G_n . Then,

$$\int_{\mathbb{R}^{n}} Q_{n}(x_{1}, \dots, x_{n}) dG_{n}(x_{1}, \dots, x_{n})$$

$$= \int_{U^{n}} Q_{n}(F_{1}^{*}(\alpha_{1}), \dots, F_{n}^{*}(\alpha_{n})) dC_{n}(\alpha_{1}, \dots, \alpha_{n}).$$
(1)

The expression on the right-hand side of (1) may be simpler than that of the left-hand side. This is the case, for example, if C_n is absolutely continuous, as is the case $C_n = P_n$; or n = 2 and $C_2 = L_2$ or $C_2 = M_2$; or if n = 3 and $C_3 = M_3$.

Translator's Note. This is a partial answer to a question by Zhengao Huang.