Analyzer Report (Dataflow)

This report generated by Convolutional Neural Network Inference Analyzer (CNN-IA) to summarize the analysis needed to reach the optimal dataflow exploration for mlp_fc3_batch16 using restricted schedule space.

Memory Architecture:

	L0	L1	L2
Capacity	16	16384	536870912
Access cost	0	3	200
Static cost	0	0	0
Parallel count	256	1	1
Parallel mode	1	0	0
Parallel cost	2	0	0

Precision : 16

Minimum utilization : 0.0%

Outputs can be buffered by mac : 0

Replication to improve utilization : True

Glossary:

- Memory Levels : (L0, L1, L2)
The smallest index the nearest to CPU.

- Loop Notations: (FX, FY, OX, OY, OC, IC, ON)

FX : FILTER WIDTH

FY : FILTER HEIGHT

OX : OUTPUT WIDTH

OY : OUTPUT HEIGHT

OC : OUTPUT CHANNEL

IC : INPUT CHANNEL

ON: BATCH

OC, IC

[cost: 33050440.0pJ, utilization: 0.09765625%]

Loop Blocking (factors):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ОХ	1	1	1
OY	1	1	1
ОС	2	1	25
IC	4	25	1
ON	1	16	1

Loop Partitioning (units):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ох	1	1	1
OY	1	1	1
ос	5	1	1
IC	5	1	1
ON	1	1	1

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6	6	6
FY	6	6	6
ОХ	6	6	6
OY	6	6	6
ос	0	6	0
IC	1	1	6
ON	6	0	6

OC, ON

[cost: 32071160.0pJ, utilization: 0.078125%]

Loop Blocking (factors):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ОХ	1	1	1
OY	1	1	1
ос	2	1	25
IC	1	500	1
ON	4	1	1

Loop Partitioning (units):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ОХ	1	1	1
OY	1	1	1
ос	5	1	1
IC	1	1	1
ON	4	1	1

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6	6	6
FY	6	6	6
ОХ	6	6	6
OY	6	6	6
ос	0	6	0
IC	6	0	6
ON	1	6	6

IC, ON

[cost: 32079160.0pJ, utilization: 0.15625%]

Loop Blocking (factors):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ох	1	1	1
OY	1	1	1
ос	1	250	1
IC	4	1	25
ON	2	1	1

Loop Partitioning (units):

	L0	L1	L2
FX	1	1	1
FY	1	1	1
ох	1	1	1
OY	1	1	1
ос	1	1	1
IC	5	1	1
ON	8	1	1

Loop Ordering (from the innermost):

	L0	L1	L2
FX	6	6	6
FY	6	6	6
ОХ	6	6	6
OY	6	6	6
ОС	6	0	6
IC	0	6	0
ON	1	6	6

Optimal cost

[b: blocking factor, p: partitioning unit]

```
MEM - L2:
    for ( OC, 25b, 1p )

MEM - L1:
    for ( IC, 500b, 1p )

MEM - L0:
    for ( ON, 4b, 4p )
        for ( OC, 2b, 5p )

spatially unrolled loops: (OC)(ON)
```

Optimal utilization

[b: blocking factor, p: partitioning unit]

```
MEM - L2:
    for ( IC, 25b, 1p )

MEM - L1:
    for ( OC, 250b, 1p )

MEM - L0:
    for ( ON, 2b, 8p )
        for ( IC, 4b, 5p )

spatially unrolled loops: (IC)(ON)
```