Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Лабораторна робота № 2

з дисципліни «Спеціальні розділи математики-2. Чисельні методи»

на тему

«Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами. Звичайний метод Гауса та метод квадратних коренів»

Виконав:

студент гр. ІС-34

Колосов Ігор

Викладач:

доц. Рибачук Л.В.

Зміст

1. Постановка задачі

Розв'язати систему рівнянь з кількістю значущих цифр m = 6.

Якщо матриця системи симетрична, то розв'язання проводити за методом квадратних коренів, якщо матриця системи несиметрична, то використати метод Гауса.

Вивести всі проміжні результати (матриці A, що отримані в ході прямого ходу методу Гауса, матрицю зворотного ходу методу Гауса, або матрицю T та вектор y для методу квадратних коренів) та розв'язок системи.

Навести результат перевірки: вектор нев'язки r = b - Ax, де x – отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m — отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки:

$$\delta = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - x_{mk})^2} ,$$

де x — отриманий у програмі розв'язок, x_m — отриманий у Mathcad розв'язок.

Зазвичай при використанні для обчислень 4-байтових чисел (тип *float* y Visual C++) порядок δ :

- у методі Гауса 10⁻⁴ 10⁻⁶,
- у методі квадратних коренів $10^{-5} 10^{-7}$, бувають і повні співпадіння рішень до 6 знаків після коми.

2. Вихідна система рівнянь

10	(1,00 0,42 0,54 0,66)	(0,3)
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	(0,66 0,44 0,22 1,00)	(0,9)

3. Проміжні результати

```
1. matrix A
1.00, 0.42, 0.54, 0.66
0.42, 1.00, 0.32, 0.44
0.54, 0.32, 1.00, 0.22
0.66, 0.44, 0.22, 1.00
```

2. vector b 0.30, 0.50, 0.70, 0.90

```
6. matrix U
1.00000, 0.00000, 0.00000, 0.00000
0.42000, 0.90752, 0.00000, 0.00000
0.54000, 0.10270, 0.83538, 0.00000
0.66000, 0.17939, -0.18533, 0.70560
```

4. Вектор нев'язки

```
    7. vector y

            0.30, 0.41, 0.59, 1.05

    8. vector x

            -1.25779, 0.04349, 1.03917, 1.48239

    9. a @ x (should be aprox equal b)

            0.30, 0.50, 0.70, 0.90

    10. a @ x - b

            -0.000000, 0.0000000, -0.0000000, -0.0000000
```

5. Розв'язок задачі у Mathcad

$$\mathbf{a} := \begin{pmatrix} 1.00 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1.0 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1.0 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1.0 \end{pmatrix}$$

$$b := (0.3 \ 0.5 \ 0.7 \ 0.9)$$

u := cholesky(a)

$$\mathbf{u} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.42 & 0.908 & 0 & 0 \\ 0.54 & 0.103 & 0.835 & 0 \\ 0.66 & 0.179 & -0.185 & 0.706 \end{pmatrix}$$

$$y := \frac{b}{u^T} = (0.3 \ 0.412 \ 0.593 \ 1.046)$$

$$x := \frac{y}{u} = (-1.258 \ 0.043 \ 1.039 \ 1.482)$$

$$\mathbf{r} := \mathbf{b}^{\mathbf{T}} - \mathbf{a} \cdot \mathbf{x}^{\mathbf{T}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 Вектор нев'язки

6. Порівняння розв'язку у Mathcad та власного

Програмне рішення sol := $(-1.25779 \ 0.04349 \ 1.03917 \ 1.48239)$

Середньоквадратична похибка

error :=
$$\sqrt{\frac{1}{4}} \cdot \sum_{k=1}^{4} \left[\left(sol^{T} \right) - x^{T} \right]^{2} = \begin{pmatrix} 2.808 \times 10^{-11} \\ 1.453 \times 10^{-11} \\ 2.81 \times 10^{-11} \\ 1.663 \times 10^{-11} \end{pmatrix}$$

7. Лістинг програми

```
import numpy as np
from lib print import ANSI, printer, highlight, pidx
counter = pidx()
vector b = np.array([0.3, 0.5, 0.7, 0.9]).T
matrix a = np.array([
    [1.00, 0.42, 0.54, 0.66],
    [0.42, 1.00, 0.32, 0.44],
   [0.54, 0.32, 1.00, 0.22],
    [0.66, 0.44, 0.22, 1.00]
1)
a = matrix a.copy()
b = vector b.copy()
n = a.shape[0]
u = np.zeros like(a)
print (printer (
    a, default style=ANSI.Styles.ITALIC,
    text=f"{ANSI.Styles.BOLD} {counter.str()}matrix
A{ANSI.Styles.RESET}"), "\n")
```

```
print(printer(
    b.reshape(-1, 1), default style=ANSI.Styles.ITALIC,
    text=f"{ANSI.Styles.BOLD} {counter.str()} vector
b{ANSI.Styles.RESET}"), "\n")
h ij = highlight([], ANSI.FG.GREEN, 0, "case i == j")
h else = highlight([], ANSI.FG.BLUE, 0, "case else")
h ki = highlight([], ANSI.FG.YELLOW, 0, "u[k, i] at else case")
h kj = highlight([], ANSI.FG.CYAN , 0, "u[k, j] at else case")
for i in range(n):
    for j in range(i, n):
        if i == j:
            sum = np.sum([u[k, i]**2 for k in range(i)])
            u[i, i] = np.sqrt(a[i, i] - sum)
            h ij.indicies.append((i, i))
        else:
            sum = np.sum([u[k, i] * u[k, j] for k in range(i)])
            u[i, j] = (a[i, j] - sum) / u[i, i] # чому тут верхня
трикутна матриця
            for k in range(i):
                h kj.indicies.append((k, j))
                h ki.indicies.append((k, i))
            h else.indicies.append((i, j))
print(printer(a,
        f"{ANSI.Styles.BOLD}{counter.str()}matrix A\n -> (values taken
from A at decomposition step) {ANSI.Styles.RESET}", [h ij, h else],
        print description=True, default style=ANSI.FG.BRIGHT BLACK),
"\n")
print(printer(
        u, formatting="5.5f", higlights=[h ki],
default style=ANSI.FG.BRIGHT BLACK, print description=True,
        text=f"{ANSI.Styles.BOLD}{counter.str()}matrix U (during
decomposition) {ANSI.Styles.RESET}"), "\n")
print(printer(
        u, formatting="5.5f", higlights=[h kj],
default style=ANSI.FG.BRIGHT BLACK, print description=True,
        text=f"{ANSI.Styles.BOLD}{counter.str()}matrix U (during
```

```
decomposition) {ANSI.Styles.RESET}"), "\n")
print(printer(
        u, formatting="5.5f", default style=ANSI.Styles.ITALIC,
        text=f"{ANSI.Styles.BOLD}{counter.str()}matrix
U{ANSI.Styles.RESET}"), "\n")
# T'y = b
y = np.zeros like(b)
for i in range(n):
   sum = np.sum([u[k, i] * y[k] for k in range(i)])
    y[i] = (b[i] - sum) / u[i, i]
print(printer(
        y.reshape(-1, 1), default style=ANSI.FG.GREEN,
        text=f"{ANSI.Styles.BOLD} {counter.str()} vector
y{ANSI.Styles.RESET}"), "\n")
# Tx = y
x = np.zeros like(b)
for i in range (n-1, -1, -1):
    sum = np.sum([u[i, k] * x[k] for k in range(i+1, n)])
    x[i] = (y[i] - sum) / u[i, i]
print (printer (
        x.reshape(-1, 1), default style=ANSI.Styles.ITALIC,
formatting="5.5f",
        text=f"{ANSI.Styles.BOLD}{counter.str()}vector
x{ANSI.Styles.RESET}"), "\n")
print(printer(
        (a @ x).reshape(-1, 1), default style=ANSI.Styles.ITALIC,
        text=f"{ANSI.Styles.BOLD}{counter.str()}a @ x (should be aprox
equal b) {ANSI.Styles.RESET}"), "\n")
print (printer (
        (a @ x - b).reshape(-1, 1), default style=ANSI.Styles.ITALIC,
formatting=".6f",
        text=f"{ANSI.Styles.BOLD}{counter.str()}a @ x - b
{ANSI.Styles.RESET}"), "\n")
print(printer(
```

```
a - u.T @ u, default_style=ANSI.Styles.ITALIC, formatting=".6f",
    text=f"{ANSI.Styles.BOLD}{counter.str()}a - u.T @ u
{ANSI.Styles.RESET}"), "\n")
```

8. Лістинг програми; Додаток: libprint.py

```
import numpy as np
import dataclasses
from typing import List, Tuple
@dataclasses.dataclass
class highlight:
    indicies:List[Tuple[int, int]]
    style:str
    priority: int # 0 heighest
    description:str
def printer(
   array:np.ndarray,
    text:str = "",
    higlights: List[highlight] = [],
    formatting:str = "0.2f",
    separator:str = ", ",
    pre row str:str = " ",
    print description:bool = False,
    print text: bool = True,
    default style:str = "",
    reset style:str = "\033[0m",
):
    higlights = sorted(higlights, key=lambda h: h.priority,
reverse=True)
    if not highights:
        higlights = [highlight([], ANSI.Styles.RESET, 0, "")]
```

```
output = [["" for in range(array.shape[0])] for in
range (array.shape[1])]
   descriptions = ""
   for n, hlght in enumerate(higlights):
        for j, row in enumerate(array):
            for i, val in enumerate(row):
                if (i, j) in hlght.indicies:
                    output[i][j] =
f"{f'{hlght.style}{val:{formatting}}'}{reset style}"
                elif output[i][j] == "":
                    output[i][j] =
f"{f'{default style}{val:{formatting}}{reset style}'}"
       descriptions += f" * {n: 2d}.
{hlght.style}{hlght.description}{reset style}\n"
   mat str = pre row str +
f"\n{pre row str}".join(separator.join(map(str, row)) for row in output)
   out = ""
   if print text:
       out += text + ANSI.Styles.RESET + "\n"
   if print description:
       out += descriptions + ""
   out += mat str
   return out
class pidx:
   def init (self):
       self.counter = 0
   def get(self):
       self.counter += 1
       return self.counter
   def str(self):
        return f"{self.get(): 2d}. "
```

```
class ANSI:
    class Styles:
        RESET = "\033[0m"
        BOLD = "\033[1m"]
        DIM = " \setminus 033[2m"]
        ITALIC = "\033[3m"
        UNDERLINE = "\033[4m"
        BLINK = "\033[5m"]
        REVERSE = "\033[7m"]
        HIDDEN = "\033[8m"]
        STRIKETHROUGH = "\033[9m"
    class FG:
        BLACK = "\033[30m"]
        RED = " \setminus 033[31m"]
        GREEN = " \setminus 033 [32m"]
        YELLOW = "\033[33m"
        BLUE = "\033[34m"]
        MAGENTA = " \setminus 033[35m"]
        CYAN = "\033[36m"]
        WHITE = "\033[37m"
         # Bright colors
        BRIGHT_BLACK = "\033[90m"
        BRIGHT RED = "\OANSI.Sty33[91m"
        BRIGHT GREEN = "\033[92m"]
        BRIGHT_YELLOW = "\033[93m"
        BRIGHT BLUE = "\033[94m"]
        BRIGHT MAGENTA = "\033[95m"
        BRIGHT CYAN = "\033[96m"]
         BRIGHT_WHITE = "\033[97m""
    class BG:
        BLACK = "\033[40m"]
        RED = " \setminus 033[41m"]
        GREEN = "\033[42m"
        YELLOW = "\033[43m"
        BLUE = "\033[44m"]
        MAGENTA = " \setminus 033[45m"]
        CYAN = " \setminus 033 [46m"]
        WHITE = "\033[47m"]
```

```
# Bright colors
        BRIGHT BLACK = "\033[100m"
        BRIGHT RED = "\033[101m"]
        BRIGHT GREEN = "\033[102m"
        BRIGHT_YELLOW = "\033[103m"
        BRIGHT_BLUE = "\033[104m"
        BRIGHT MAGENTA = "\033[105m"
        BRIGHT CYAN = "\033[106m"]
        BRIGHT WHITE = "\033[107m"
if __name__ == "__main ":
   mat = np.random.random((5, 5))
   h1 = highlight([(0, 0), (4, 4)], ANSI.Styles.BOLD + ANSI.BG.GREEN,
0, "aboba1")
   h2 = highlight([(4, 2), (2, 1)], ANSI.Styles.ITALIC + ANSI.BG.RED,
0, "aboba2")
   mat_str = printer(mat, "cool text phronebius id k ksk kssk sk", [h1,
h2])
   print(mat_str)
```