Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

Version: April 26, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
$\overline{\mathbf{A},\mathbf{B},\mathbf{C},\dots}$	Matrices
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$	Tensors
$A, B, C, \dots, \mathcal{A}, \mathcal{B}, C, \dots, A, \mathbb{B}, \mathbb{C}, \dots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \ldots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x\left[\left((n-m)\right)_{N}\right],x\left((n-m)\right)_{N}$	Circular shift in m samples within a
	N-samples window [11, 16]

2.2 Common functions

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and codomain is B	
$\mathbf{f}:A\to\mathbb{R}^n$	A vector-valued function \mathbf{f} , i.e., $n \geq 2$	
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or	
	x(t)	
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or	
	x(t)	
$f', f^{(1)}, x'(t)$	1th derivative of the function f or	
	x(t)	
$f'', f^{(2)}, x''(t)$	2th derivative of the function f or	
	x(t)	
$arg \max f(x)$	Value of x that minimizes x	
$x \in \mathcal{A}$		
$ \operatorname*{argmin}_{x\in\mathcal{A}}f(x) $	Value of x that minimizes x	
$\frac{x \in \mathcal{A}}{f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})}$	Infimum, i.e., $f(\mathbf{x}) =$	
$\mathbf{y} \in \mathcal{A}$	$\min \{ g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \mathrm{dom}(g) \},\$	
	which is the greatest lower bound of	
	this set [3]	
$f(\mathbf{x}) = \sup g(\mathbf{x}, \mathbf{y})$	Supremum, i.e., $f(\mathbf{x}) =$	
$\mathbf{y} \in \mathcal{A}$	$\max \{ g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g) \},$	
	which is the least upper bound of	
	this set [3]	
$f \circ g$	Composition of the functions f and	
	g	
*	Convolution (discrete or continuous)	
*, N	Circular convolution [7, 16]	

2.4 Transformations

W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [11]
$\mathcal{F}\{\cdot\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
 Z {⋅}	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$

X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$
$X(e^{j\omega})$	Discrete-time Fourier transform
	(DTFT) of $x[n]$
$X[k], X(k), X_k$	Discrete Fourier transform (DFT) or
	fast Fourier transform (FFT) of $x[n]$,
	or even the Fourier series (FS) of the
	periodic signal $x(t)$
$\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$	Discrete Fourier series (DFS) of $\tilde{x}[n]$
X(z)	z-transform of $x[n]$

${\bf 3}\quad {\bf Probability, statistics, and stochastic processes}$

3.1 Operators and symbols

$\mathrm{E}\left[\cdot\right],\mathbf{E}\left[\cdot\right],E\left[\cdot\right]$	Statistical expectation operator [6, 15]
$\overline{\mathbf{E}_{u}\left[\cdot\right],\mathbf{E}_{u}\left[\cdot\right],E_{u}\left[\cdot\right],\mathbb{E}_{u}\left[\cdot\right]}$	Statistical expectation operator with
	respect to u
$\langle \cdot \rangle$	Ensamble average
$\operatorname{var}\left[\cdot\right], \operatorname{VAR}\left[\cdot\right]$	Variance operator [2, 10, 14, 18]
$\operatorname{var}_{u}\left[\cdot\right]\left[\cdot\right], \operatorname{VAR}_{u}\left[\cdot\right]$	Variance operator with respect to u
$cov[\cdot], COV[\cdot]$	Covariance operator [2]
$\operatorname{cov}_{u}[\cdot], \operatorname{COV}_{u}[\cdot]$	Covariance operator with respect to
	u
$\mu_{\scriptscriptstyle X}$	Mean of the random variable x
$\mu_{\rm x}, { m m}_{ m x}$	Mean vector of the random variable
	x [4]
μ_n	nth-order moment of a random vari-
	able
$\frac{\sigma_x^2, \kappa_2}{\mathcal{K}_x, \mu_4}$	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
κ_n	nth-order cumulant of a random vari-
	able
$ ho_{x,y}$	Pearson correlation coefficient be-
	tween x and y
$a \sim P$	Random variable a with distribution
	P
$\mathcal R$	Rayleigh's quotient

3.2 Stochastic processes

$r_{x}(au), R_{x}(au)$	Autocorrelation function of the signal	
	x(t) or $x[n]$ [15]	
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$	
	in linear (f) or angular (ω) frequency	
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear	
	or angular (ω) frequency	
R_{x}	(Auto)correlation matrix of $\mathbf{x}(n)$	
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and	
	d[n] or $x(t)$ and $d(t)$ [15]	
$\overline{\mathbf{R}_{xy}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and	
•	$\mathbf{y}(n)$	
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector	
	1 1 1/)	
	between $\mathbf{x}(n)$ and $d(n)$	
	between $\mathbf{x}(n)$ and $d(n)$ [dinizAdaptiveFiltering1997]	
$c_x(\tau), C_x(\tau)$. ,	
$c_{x}(\tau), C_{x}(\tau)$	[dinizAdaptiveFiltering1997]	
$c_{x}(\tau), C_{x}(\tau)$ $C_{x}, K_{x}, \Sigma_{x}, \text{cov} [x]$	[dinizAdaptiveFiltering1997] Autocovariance function of the signal	
	[dinizAdaptiveFiltering1997] Autocovariance function of the signal $x(t)$ or $x[n]$ [15]	
	[dinizAdaptiveFiltering1997] Autocovariance function of the signal $x(t)$ or $x[n]$ [15] (Auto)covariance matrix of \mathbf{x} [10, 14,	
$\mathbf{C}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}}, \mathbf{\Sigma}_{\mathbf{x}}, \operatorname{cov}\left[\mathbf{x}\right]$	[dinizAdaptiveFiltering1997] Autocovariance function of the signal $x(t)$ or $x[n]$ [15] (Auto)covariance matrix of \mathbf{x} [10, 14, 18, 24]	

3.3 Functions

$Q(\cdot)$	<i>Q</i> -function, i.e., $P[N(0,1) > x]$ [18]
$erf(\cdot)$	Error function [18]
$erfc(\cdot)$	Complementary error function i.e.,
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$ [18]
P[A]	Probability of the event or set A [14]
$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
	[14]
$p(x \mid A)$	Conditional PDF or PMF [14]
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_{X}(\omega), M_{X}(j\omega), E\left[e^{j\omega X}\right]$	First characteristic
	function (CF) of x
	[the odorid is Machine Learning Bayesian 2020a,
	18]

$M_X(t), \Phi_X(-jt), E[e^{tX}]$	Moment-generating	func-	
	tion (MGF)	of x	
	[theodoridisMachineI	earningBayes	sian 2020a,
	18]		
$\Psi_x(\omega), \ln \Phi_x(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic fur	nction	
$K_x(t), \ln E\left[e^{tx}\right], \ln M_x(t)$	Cumulant-generating	function	
	(CGF) of x [10]		

3.4 Distributions

$\mathcal{N}(\mu, \sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a real-valued white Gaussian process with mean equal to μ and power spectral density equal to $N_0/2$, e.g., $s(t) \sim \mathcal{N}(\mu, N_0/2)$
$CN(\mu, \sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a complex-valued white Gaussian process with mean equal to μ and power spectral density equal to N_0 , e.g., $s(t) \sim CN(\mu, N_0)$
$\mathcal{N}(\mu,\Sigma)$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$C\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\frac{\mathcal{U}(a,b)}{\chi^2(n),\chi_n^2}$	Uniform distribution from a to b
$\chi^2(n), \chi_n^2$	Chi-square distribution with n degree of freedom (assuming that the Gaussians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(\alpha, \beta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(lpha, heta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter m and spread parameter Ω

Rayleigh(σ)	Rayleigh distribution with scale pa-
	rameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second
	moment $\Omega = E\left[x^2\right] = 2\sigma^2$
$\overline{\mathrm{Rice}(s,\sigma)}$	Rice distribution with noncentrality
	parameter (specular component) s
	and σ
$\overline{\mathrm{Rice}(A,K)}$	Rice distribution with Rice factor
	$K = s^2/2\sigma^2$ and scale parameter $A =$
	$s^2 + 2\sigma^2$

4 Statistical signal processing

$\mathbf{\nabla} f, \mathbf{g}$	Gradient descent vector
$\nabla_x f, \mathbf{g}_x$	Gradient descent vector with respect
	X
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic gradient descent (SGD)
$J(\cdot), \mathcal{E}(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\hat{x}(t)$ or $\hat{x}[n]$	Estimate of $x(t)$ or $x[n]$
$\hat{\boldsymbol{\mu}}_{x},\hat{\mathbf{m}}_{x}$	Sample mean of $x[n]$ or $x(t)$
$\frac{\hat{\boldsymbol{\mu}}_{\mathbf{x}}, \hat{\mathbf{m}}_{\mathbf{x}}}{\hat{r}_{x}(\tau), \hat{R}_{x}(\tau)}$	Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$
$\hat{r}_{\scriptscriptstyle \mathcal{X}}(au), \hat{R}_{\scriptscriptstyle \mathcal{X}}(au)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\hat{S}_{x}(f), \hat{S}_{x}(j\omega)$	Estimated power spectral density
	(PSD) of $x(t)$ in linear (f) or angular
	(ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\hat{r}_{x,d}(\tau), \hat{R}_{x,d}(\tau)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$
	in linear or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$
$\hat{\rho}_{x,y}$	Estimated Pearson correlation coeffi-
	cient between x and y
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of
	the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix

$\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathrm{xy}},\hat{\mathbf{K}}_{\mathrm{xy}},\hat{\mathbf{\Sigma}}_{\mathrm{xy}}$	Sample cross-covariance matrix
w, θ	Parameters, coefficients, or weights
	vector
$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
W	Matrix of the weights
J	Jacobian matrix
H	Hessian matrix
Ĥ	Estimate of the Hessian matrix

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
L	Lower matrix
U	Upper matrix
$\overline{\mathbf{C}}$	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
S	Symmetric matrix
Q	Orthogonal matrix
$\overline{\mathbf{I}_N}$	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
$\overline{1_N}$	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [X]_{i_1,i_2,,i_N}$	Element	in	the	position
2, 2, 7, 1,	(i_1,i_2,\ldots,i_n)	(N) of t	he tenso	r X
$\mathcal{X}^{(n)}$	nth tensor	of a nor	ntempora	al sequence

$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
$\mathbf{x}_{n:}$	nth row of the matrix X
$\mathbf{x}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor X
$\mathbf{x}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$
$X_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$X_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$X_{:,i_2,:}$	Lateral slices slice of the thrid-order
	tensor $\boldsymbol{\mathcal{X}}$
$\overline{\mathbf{X}_{i_3},\mathbf{X}_{:,:,i_3}}$	Frontal slices slice of the thrid-order
3 773	tensor $\boldsymbol{\mathcal{X}}$

5.3 General operations

$\langle \mathbf{a}, \mathbf{b} \rangle$, $\mathbf{a}^{ op} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$	Inner or dot product
$\mathbf{a} \circ \mathbf{b}, \mathbf{a} \mathbf{b}^{ op}$	Outer product
\otimes	Kronecker product
\odot	Hadamard (or Schur) (elementwise)
	product
.⊙n	nth-order Hadamard power
$\cdot \circ \frac{1}{n}$	nth-order Hadamard root
\oslash	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
\otimes	Kronecker Product
$\overline{\times_n}$	n-mode product

5.4 Operations with matrices and tensors

\mathbf{A}^{-1}	Inverse matrix
$\mathbf{A}^{+}, \mathbf{A}^{\dagger}$	Moore-Penrose left pseudoinverse
\mathbf{A}^{T}	Transpose
$\mathbf{A}^{-\top}$	Transpose of the inverse, i.e.,
	$\left(\mathbf{A}^{-1}\right)^{\top} = \left(\mathbf{A}^{\top}\right)^{-1} [8, 17]$
\mathbf{A}^*	Complex conjugate
\mathbf{A}^{H}	Hermitian
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm
$\ \mathbf{A}\ $	Matrix norm

$ \mathbf{A} , \det(\mathbf{A})$	Determinant
$\frac{1}{\operatorname{diag}\left(\mathbf{A}\right)}$	The elements in the diagonal of A
E [A]	Vectorization: stacks the columns of
	the matrix A into a long column vec-
	tor
$\mathbf{E}_d\left[\mathbf{A}\right]$	Extracts the diagonal elements of a
	square matrix and returns them in a
	column vector
$\mathbf{E}_{l}\left[\mathbf{A} ight]$	Extracts the elements strictly below
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathbf{E}_{u}\left[\mathbf{A}\right]$	Extracts the elements strictly above
	the main diagonal of a square matrix
	in a column-wise manner and returns
	them into a column vector
$\mathbf{E}_b\left[\mathbf{A}\right]$	Block vectorization operator: stacks
	square block matrices of the input
	into a long block column matrix
unvec (A)	Reshapes a column vector into a ma-
	trix
$\mathrm{tr}\{\mathbf{A}\}$	trace
$X_{(n)}$	n-mode matricization of the tensor X

5.5 Operations with vectors

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
$diag(\mathbf{a})$	Diagonalization: a square, diagonal
	matrix with entries given by the vec-
	tor a

5.6 Decompositions

Λ	Eigenvalue matrix [22]
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition[22]
R	Upper triangular matrix of the QR
	decomposition[22]

U	Left singular vectors[22]
$rac{\mathrm{U}_r}{\Sigma}$	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse [22]
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal
V	Right singular vectors [22]
V_r	Right singular nondegenerated vec-
	tors
$\operatorname{eig}\left(\mathbf{A} ight)$	Set of the eigenvalues of A [5, 14, 17]
$\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots bracket$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor $\boldsymbol{\mathcal{X}}$ from the
	outer product of column vectors of \mathbf{A} ,
	B, C,
$[\![\pmb{\lambda};\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	NI 1 1 CANIDE
	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	COMP/PARAFAC (CP) decom-

5.7 Spaces

$\operatorname{span}\left\{\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right\}$	Vector space spanned by the argument vectors [8]
$C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A}),	Columnspace, range or image, i.e.,
$\operatorname{span} \{\mathbf{A}\}, \operatorname{image}(\mathbf{A})$	the space span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, where
	\mathbf{a}_i is the ith column vector of the ma-
	$\text{trix } \mathbf{A} \ [15, 22]$
$C(\mathbf{A}^{H})$	Row space (also called left
	columnspace) [15, 22]
$\overline{N(\mathbf{A})}$, nullspace(\mathbf{A}), null(\mathbf{A}), kernel(\mathbf{A})	Nullspace (or kernel space) [15, 22,
	23]
$N(\mathbf{A}^{H})$	Left nullspace
rank A	Rank, that is, $\dim(\operatorname{span}\{A\}) =$
	$\dim \left(\mathrm{C} \left(\mathbf{A} \right) \right) \left[15 \right]$
nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
a ⊥ b	a is not orthogonal to b

5.8 Inequalities

$X \le 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space $\mathbb{R}^n[3]$
$a <_K b$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space $\mathbb{R}^n[3]$
$a \le b$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space
	\mathbb{R}^n .[3]
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space
	$\mathbb{R}^n[3]$
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	${\bf B}-{\bf A}$ belongs to the conic subset K
	in the space $\mathbb{S}^n[3]$
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space $\mathbb{S}^n[3]$
$\mathbf{A} \leq \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathbb{S}_{+}^{n} , in the space
	$\mathbb{S}^n[3]$
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	$\mathbb{S}^n[3]$

6 Communication systems

B	One-sided bandwidth of the trans-
	mitted signal, in Hz
\overline{W}	One-sided bandwidth of the trans-
	mitted signal, in rad/s
x_i	Real or in-phase part of x
	Imaginary or quadrature part of x
$\frac{x_q}{f_c, f_{RF}}$	Carrier frequency (in Hertz)
f_L	Carrier frequency in L-band (in
	Hertz)

Intermediate frequency (in Hertz)
Sampling frequency or sampling rate
(in Hertz)
Sampling time interval/duration/pe-
riod
Bit rate
Bit interval/duration/period
Chip interval/duration/period
Symbol/signaling[18] interval/dura-
tion/period
Transmitted signal in RF
Transmitted signal in FI
Lowpass (or baseband) equivalent
signal or envelope complex of trans-
mitted signal
Received signal in RF
Received signal in FI
Lowpass (or baseband) equivalent
signal or envelope complex of re-
ceived signal
Signal phase
T + 1 1 1
Initial phase
Initial phase Noise in RF
Noise in RF Noise in FI
Noise in RF Noise in FI Noise in baseband
Noise in RF Noise in FI Noise in baseband Timing delay
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated)
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated)
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency -
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated)
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency Frequency error (Doppler frequency -
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency - estimated)
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency Frequency error (Doppler frequency - estimated) Transmitted signal amplitude
Noise in RF Noise in FI Noise in baseband Timing delay Timing error (delay - estimated) Phase offset Phase error (offset - estimated) Linear Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency Frequency error (Doppler frequency - estimated) Angular Doppler frequency - estimated)

7 Discrete mathematics

7.1 Set theory

A + B	Set addition (Minkowski sum), i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
	[12]
A-B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A\ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \ \forall \ \mathbf{y} \in \mathcal{Y}\}\ [12]$
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
ALLE	$\frac{\text{in } B [20]}{Color for the property of the property of$
$A \cup B$	Set of union
$A \cap B$	Set of intersection
$\frac{A \times B}{A^n}$	Cartesian product
$A^{\prime\prime}$	$\underbrace{A\times A\times \cdots \times A}$
	n times
A^{\perp}	Orthogonal complement of A , e.g.,
4 o P	$N\left(\mathbf{A}\right) = C\left(\mathbf{A}^{T}\right)^{\perp} [3]$
$A \oplus B$	Direct sum, i.e., each $\mathbf{v} \in (\Sigma_{\mathbf{v}} \mid \mathbf{v} \mid \mathbf{v})$
	$\{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a
	unique representation of $\sum \mathbf{a}_i$ with
	$\mathbf{a}_i \in S_i$. That is, they expand to a space. Note that $\{S_i\}$ might not be
	orthogonal each other [8]
	* *
$A \oplus B$	Direct sum of two space that are or-
	thogonal and span a <i>n</i> -dimensional
	space, e.g., $C(\mathbf{A}^{T}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{T})^{\perp} =$
	\mathbb{R}^n (this decomposition of \mathbb{R}^n is
	called the orthogonal decomposition
	induced by A) [3]
\overline{A}, A^c	Complement set (given U)
#4, 4	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \dots, n$
$\frac{U}{2^A}$	$\frac{\text{Universe}}{\text{Power set of } A}$
\mathbb{R}	Set of real numbers
	Set of real numbers Set of complex numbers
\mathbb{Z}	Set of complex numbers Set of integer number
$\frac{\mathbb{Z}}{\mathbb{B} = \{0, 1\}}$	Boolean set
	Empty set
N	Set of natural numbers
1/4	per of natural numbers

TZ - (TD (ZI)	D 1 1 (C.11)
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space
	[3]
K ₊₊	Positive real (or complex) space, i.e.,
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\} \ [3]$
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices
	in $\mathbb{R}^{n\times n}$ [3]
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive
	semidefinite matrices in $\mathbb{R}^{n\times n}$ [3]
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
	definite matrices in $\mathbb{R}^{n\times n}$, i.e., \mathbb{S}^n_{++}
	$\mathbb{S}^n_+ \setminus \{0\} [3]$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
$\boxed{[a,b),(a,b]}$	Half-opened intervals of a real set
	from a to b

7.2 Quantifiers, inferences

\forall	For all (universal quantifier) [9]
3	There exists (existential quantifier)
	[9]
∄	There does not exist [9]
3!	There exist an unique [9]
∄ ∃! ∈ • ···	Belongs to [9]
∉	Does not belong to [9]
7	Because [9]
<u> ,:</u>	Such that, sometimes that paranthe-
	ses is used [9]
$\overline{}$,,(·)	Used to separate the quantifier with
	restricted domain from the its scope,
	e.g., $\forall x < 0 (x^2 > 0)$ or $\forall x < 0$
	$0, x^2 > 0$ [9]
:.	Therefore [9]

7.3 Propositional Logic

$\neg a$	Logical negation of a [20]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[20]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[20]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[20]$
$a \rightarrow b$	Implication (or conditional) state-
	ment[20]
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[20]
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology[20]

7.4 Operations

a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$Re \{x\}$	Real part of x
$\overline{\text{Im}\left\{x\right\}}$	Imaginary part of x
∠.	Phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$
x div y	Quotient [20]
$x \equiv y \pmod{m}$	Congruent, i.e., $m \setminus (x - y)$ [20]
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$ [9]
$a \setminus b, a \mid b$	b is a positive integer multiple of a ,
	i.e., $\exists n \in \mathbb{Z}_{++} \mid b = na \ [9, \ 20]$
$a \ \ b, a \ \ b$	b is not a positive integer multiple of
	$a, \text{ i.e., } \nexists n \in \mathbb{Z}_{++} \mid b = na \ [9, 20]$
[·]	Ceiling operation [9]
[·]	Floor operation [9]

8 Electromagnetic waves

Φ	Electric flux (scalar) (in V m)
J	Electric current density vector (in
	A/m^2)
Н	Magnetic field vector (in A/m)

В	Magnetic flux density vector (in $Wb/m^2 = T$)
\overline{q}	Electric charge strength/magnitude
	(in C)
ho	Electric charge density (for volumes)
	(in C/m^3)
$ ho_s$	Electric charge density (for surface)
	$(in C/m^2)$
$ ho_l$	Electric charge density (for volumes)
	(in C/m)
f	Electrostatic force (Coulomb force),
	$(in kg m/s^2)$
ε	Electric permittivity(in F/m) [19]
$arepsilon_r$	Relative electric permittivity or di-
	electric constant (in F/m) [19]
$oldsymbol{arepsilon}_0$	Electric permittivity in vacuum,
	$8.854 \times 10^{-12} \mathrm{F/m}$ [19]
E	Electric field vector (in V/m)
D	Electric flux density, electric dis-
	placement, or electric induction vec-
	tor (in C/m^2)
Ψ	Electric flux
P	Electric polarization of the material
	$(in C/m^2)$
χ_e	Electric susceptibility (for linear and
	isotropic materiais)
μ	Magnetic permeability
μ_0	Magnetic permeability in vacuum

9 Calculus

abla	Vector differential operator (Nabla symbol), i.e., ∇f is the gradient of
	the scalar-valued function f , i.e., f :
	$\mathbb{R}^n o \mathbb{R}$
t,(u,v)	Parametric variables commonly used,
	t for one variable, (u, v) for two vari-
	ables[21]
$\mathbf{r}(t)$	Vector position $(x(t), y(t), z(t))$
	parametrized by $t[21]$
$\mathbf{r}'(t)$	First derivative of $\mathbf{r}(t)$, i.e.,
	the tangent vector of the curve
	(x(t), y(t), z(t)) [21]

$\mathbf{T}(t),\mathbf{u}(t)$	Tangent unit vector of $\mathbf{r}(t)$, i.e.,
	$\mathbf{u}(t) = \mathbf{r}'(t)/ \mathbf{r}'(t) [13, 21]$
$\mathbf{n}(t), \left(\frac{\mathbf{y}'(t)}{ \mathbf{r}'(t) }, -\frac{\mathbf{x}'(t)}{ \mathbf{r}'(t) }\right)$	Normal vector of $\mathbf{r}(t)$, i.e.,
	$\mathbf{n}(t) \perp \mathbf{T}(t)[21]$
C	Contour that traveled by $\mathbf{r}(t)$, for $a \leq$
	$t \le b \ [21]$
L, L(C)	Total length of the contour C
	(which can be defined the vector
	\mathbf{r} , parametrized by t), i.e., $L_C =$
	$\int_a^b \mathbf{r}'(t) \mathrm{d}t[21]$
s(t)	Length of the arc, which can be de-
	fined by the vector \mathbf{r} and t , that is,
	$s(t) = \int_a^t \mathbf{r}'(u) \mathrm{d}u \ (s(b) = L)[21]$
$\mathrm{d}s$	Differential operator of the length of
C ch ch ch ch	the contour C , i.e., $ds = \mathbf{r}'(t) dt$
$\int_C f(\mathbf{r}) \mathrm{d}s , \int_a^b f(\mathbf{r}(t)) \mathbf{r}'(t) \mathrm{d}t$	Line integral of the function $f: \mathbb{R}^n \to \mathbb{R}^n$
a h	\mathbb{R} along the contour C [1, 21]
$\int_C \mathbf{F} \cdot d\mathbf{r} , \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt , \int_C \mathbf{F} \cdot \mathbf{T} ds$	Line integral of vector field F along
ah ah	the contour C [1, 21]
$\int_a^b \mathbf{F}, \int_a^b \mathbf{F} \cdot d\mathbf{r}$	Alternative notation to the line inte-
Ja / Ja	
Ja / Ja	gral, where the parametric variable t
Ja /Ja	goes from a to b , making r goes from
	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1]
$ \frac{\mathcal{G}_{C},\mathcal{G}_{C}}{\mathcal{G}_{C}} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour
\oint_C,\oint_C	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C
	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position
\oint_C,\oint_C	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized
$ \frac{\oint_C, \oint_C}{\mathbf{r}(u, v)} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v)
$ \oint_C, \oint_C \mathbf{r}(u, v) $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u, v), y(u, v), z(u, v))$ parametrized by (u, v) $(\partial x/\partial u, \partial y/\partial u, \partial z/\partial u)$
$ \frac{\oint_C, \oint_C}{\mathbf{r}(u, v)} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u, v), y(u, v), z(u, v))$ parametrized by (u, v) $(\partial x/\partial u, \partial y/\partial u, \partial z/\partial u)$
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 do-
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 domain. This differential operator can
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 domain. This differential operator can be solved in different ways (rectangular, polar, cylindric, etc) [21] Integration domain in which dA is in-
$ \oint_C, \oint_C \mathbf{r}(u, v) $ $ \mathbf{r}_u \mathbf{r}_v \mathbf{d}A $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 domain. This differential operator can be solved in different ways (rectangular, polar, cylindric, etc) [21] Integration domain in which dA is integrated, i.e., $\iint_D f dA$ [21]
$ \begin{array}{c} $	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1] Closed line integral along the contour C Vector position $(x(u,v),y(u,v),z(u,v))$ parametrized by (u,v) $(\partial x/\partial u,\partial y/\partial u,\partial z/\partial u)$ $(\partial x/\partial v,\partial y/\partial v,\partial z/\partial v)$ Differential operator of a 2D area (denoted by D or R) in the \mathbb{R}^2 domain. This differential operator can be solved in different ways (rectangular, polar, cylindric, etc) [21] Integration domain in which dA is in-

$dS, \mathbf{r}_u \times \mathbf{r}_v dA$	Differential operator of a 2D area in
	a 3D domain (an surface). Note that
	$dS = \mathbf{r}_u \times \mathbf{r}_v dA$ should be accompa-
	nied with the change of the integra-
	tion interval(from S to D)
$A(S), \iint_{S} dS, \iint_{D} \mathbf{r}_{u} \times \mathbf{r}_{v} dA$	Area of the surface S parametrized by
****	(u, v), in which dA is the area defined
	in the D domain (which is form by
	the u -by- v graph)
$\mathrm{d}V$	Differential operator of a shape vol-
	ume (denoted by E) in \mathbb{R}^3 domain,
	i.e., $\iiint_E dV = V$
E	Integration domain in which dV is in-
	tegrated, i.e., $\iiint_E f dV$ [21]
$V, \iint_D f \mathrm{d}A, \iiint_E f \mathrm{d}V$	Volume of the function f over the re-
	gions D (in the case of double inte-
	grais) or E (in the case of triple inte-
	grais)
$\iint_{S} f dS , \iint_{D} f \mathbf{r}_{u} \times \mathbf{r}_{v} dA$	Surface integral over S
$\frac{\iint_{S} f dS, \iint_{D} f \mathbf{r}_{u} \times \mathbf{r}_{v} dA}{\mathbf{n}(u, v), \frac{\mathbf{r}_{u}(u, v) \times \mathbf{r}_{v}(u, v)}{ \mathbf{r}_{u}(u, v) \times \mathbf{r}_{v}(u, v) }}$	Surface integral over S Normal vector of the smooth sur-
$\frac{\iint_{S} f dS, \iint_{D} f \mathbf{r}_{u} \times \mathbf{r}_{v} dA}{\mathbf{n}(u, v), \frac{\mathbf{r}_{u}(u, v) \times \mathbf{r}_{v}(u, v)}{ \mathbf{r}_{u}(u, v) \times \mathbf{r}_{v}(u, v) }}$	Normal vector of of the smooth surface S
	Normal vector of of the smooth sur-
	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$)
	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through
$ \frac{\iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S},}{\iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA} $ $ \frac{\nabla \times \mathbf{F}, \text{curl } \mathbf{F}}{\nabla \cdot \mathbf{F}, \text{div } \mathbf{F}} $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$)
$ \frac{\iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S},}{\iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA} $ $ \nabla \times \mathbf{F}, \text{curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f,$	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F}
$ \frac{\iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S},}{\iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA} $ $ \frac{\nabla \times \mathbf{F}, \text{curl } \mathbf{F}}{\nabla \cdot \mathbf{F}, \text{div } \mathbf{F}} $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$)
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{ curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{ div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $ $ \nabla^{2} \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla(\nabla \cdot \mathbf{F}), \Delta \mathbf{F}, $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$) Vector Laplacian operator (performed on a vector field, i.e., a vector-
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{ curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{ div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $ $ \nabla^{2} \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla(\nabla \cdot \mathbf{F}), \Delta \mathbf{F}, $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$) Vector Laplacian operator (performed on a vector field, i.e., a vector-valued function, $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$).
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{ curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{ div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $ $ \nabla^{2} \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla(\nabla \cdot \mathbf{F}), \Delta \mathbf{F}, $	Normal vector of of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$) Vector Laplacian operator (performed on a vector field, i.e., a vector-valued function, $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$). ∇^2 denotes the scalar (vector) Lapla-
$ \iint_{S} \mathbf{F} \cdot \mathbf{n} dS, \iint_{S} \mathbf{F} \cdot d\mathbf{S}, \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA $ $ \nabla \times \mathbf{F}, \text{ curl } \mathbf{F} $ $ \nabla \cdot \mathbf{F}, \text{ div } \mathbf{F} $ $ \nabla^{2} f, \nabla \cdot (\nabla f), \Delta f, \partial^{2} f/\partial x^{2} + \partial^{2} f/\partial y^{2} + \partial^{2} f/\partial z^{2} $ $ \nabla^{2} \mathbf{F}, \nabla \times \nabla \times \mathbf{F} - \nabla(\nabla \cdot \mathbf{F}), \Delta \mathbf{F}, $	Normal vector of the smooth surface S Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Scalar Laplacian operator (performed on a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$) Vector Laplacian operator (performed on a vector field, i.e., a vector-valued function, $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$).

10 Generic mathematical symbols

	Q.E.D.
	Equal by definition
:=, ←	Assignment [20]
≠	Not equal
∞	Infinity

j $\sqrt{-1}$

11 Generic mathematical functions

$O(\cdot), O(\cdot)$	Big-O notation
$\Gamma(\cdot)$	Gamma function
$Q(\cdot)$	Quantization function

12 Abbreviations

wrt.	With respect to
st.	Subject to
iff.	If and only if
EVD	Eigenvalue decomposition, or eigen-
	decomposition [15]
SVD	Singular value decomposition
CP	CANDECOMP/PARAFAC

References

- [1] TM Apostol. Calculus, 2nd Edn., Vol. 2. 1967.
- [2] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Vol. 4. 4. Springer, 2006.
- [3] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge university press, 2004.
- [4] Robert Grover Brown and Patrick YC Hwang. "Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions". In: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions (1997).
- [5] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [6] Paulo SR Diniz. Adaptive Filtering: Algorithms and Practical Implementation. Nowell, MA: Kluwer Academic Publishers, 2002.
- [7] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. Digital Signal Processing: System Analysis and Design. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [8] Gene H Golub and Charles F Van Loan. *Matrix Computations*. JHU press, 2013. ISBN: 1-4214-0859-7.

- [9] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: *Computers in Physics* 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [10] Simon S Haykin. Adaptive Filter Theory. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [11] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.
- [12] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [13] Erwin Kreyszig, K Stroud, and G Stephenson. *Advanced Engineering Mathematics*. Vol. 9. John Wiley & Sons, Inc. 9 th edition, 2006 Page 2 of 6 Teaching methods ..., 2008.
- [14] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd ed. edição. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [15] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [16] Alan V. Oppenheim and Ronald W. Schafer. *Discrete-Time Signal Processing: International Edition.* 3^a edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [17] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cookbook". In: *Technical University of Denmark* 7.15 (2008), p. 510.
- [18] John Proakis and Masoud Salehi. Digital Communications. 5th ed. edição. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [19] Simon Ramo, John R Whinnery, and Theodore Van Duzer. Fields and Waves in Communication Electronics. John Wiley & Sons, 1994. ISBN: 81-265-1525-2.
- [20] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [21] James Stewart. Calculus. Cengage Learning, 2011. ISBN: 1-133-17069-2.
- [22] Gilbert Strang et al. *Introduction to Linear Algebra*. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.
- [23] Sergios Theodoridis. *Machine Learning: A Bayesian and Optimization Perspective*. 2nd ed. Academic Pr. 2020. ISBN: 978-0-12-818803-3.
- [24] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.