Комплексные числа в геометрии

- 1. На биссектрисе AA_1 неравнобедренного треугольника ABC построены квадраты AA_1DE и AA_1FG (точки B и F лежат в разных полуплоскостях относительно прямой AA_1). Докажите, что прямые BD, CF и EG пересекаются в одной точке.
- 2. На медианах AA_1 и BB_1 неравнобедренного треугольника ABC построили равнобедренные прямоугольные треугольники AA_1K и BB_1L таким образом, что вершины K и L прямых углов расположены в той же полуплоскости относительно соотвествующих медиан, что и сторона AB. Точка H основание высоты, проведённой из вершины C. Докажите, что отрезок KL перпендикулярен стороне AB тогда и только тогда, когда AB = 2CH.
- 3. На диаметре AB окружности ω выбраны точки P и Q такие, что 0 < AP < AQ < AB. Через точки P и Q проведены две параллельные прямые ℓ_p и ℓ_q соответственно. Прямая ℓ_p пересекает окружность ω в точках P_1 и P_2 , а прямая ℓ_q пересекает окружность ω в точках Q_1 и Q_2 , точки P_1 и Q_1 лежат в одной полуплоскости относительно прямой AB. Прямые AQ_1 и P_1B пересекаются в точке R_1 , а прямые AQ_2 и P_2B пересекаются в точке R_2 . Докажите, что середины отрезков P_1P_2 , Q_1Q_2 и R_1R_2 лежат на одной прямой.
- 4. На полуокружности с диаметром AB и центром O отмечена точка D. Точки E и F середины меньших дуг AD и BD соответственно. Оказалось, что прямая, соединяющая точки пересечения высот треугольников ADF и BDE, проходит через точку O. Найдите градусную меру угла AOD.
- 5. Четырёхугольник ABCD вписан в окружность. Докажите, что ортоцентры треугольников ABC, BCD, CDA и DAB лежат на одной окружности, равной данной.
- 6. В окружность вписаны два треугольника $A_1A_2A_3$ и $B_1B_2B_3$ так, что $A_1B_1\parallel A_2B_2\parallel A_3B_3$. Докажите, что перпендикуляры из точек A_i на $B_{i+1}B_{i+2}, i=\overline{1,3},$ пересекаются в некоторой точке P, перпендикуляры из B_i на $A_{i+1}A_{i+2}, i=\overline{1,3},$ пересекаются в некоторой точке Q, причём P и Q лежат на той же окружности и $PQ\parallel A_iB_i$.
- 7. **Теорема Ньютона.** Докажите, что в описанном четырёхугольнике середины диагоналей коллинеарны центру вписанной окружности.
- 8. **Теорема Гаусса.** Прямая пересекает прямые, проходящие через стороны AB, BC, CA треугольника ABC в точках C_1 , A_1 , B_1 соответственно. Докажите, что середины отрезков AA_1 , BB_1 и CC_1 лежат на одной прямой.

Комплексные числа в геометрии

- 9. **Теорема Паскаля.** Докажите, что точки пересечения прямых, содержащих противоположные стороны вписанного шестиугольника, лежат на одной прямой.
- 10. **Теорема Монжа.** Докажите, что во вписанном четырёхугольнике прямые, проходящие через середины сторон (диагоналей) перпендикулярно противоположным сторонам (диагоналям), пересекаются в одной точке.
- 11. Точки P и Q движутся с одинаковой постоянной скоростью v по двум прямым, пересекающимся в точке O. Докажите, что на плоскости существует неподвижная точка A, расстояния от которой до точек P и Q в любой момент времени равны.
- 12. Через точки A_1 , A_2 , B_1 , B_2 , C_1 , C_2 проходят соответственно равномерно вращающиеся прямые a_1 , a_2 , b_1 , b_2 , c_1 , c_2 , совершающие полный оборот за одну минуту. В произвольный момент времени t точку пересечения прямых a_1 и a_2 обозначим через A(t), прямых b_1 и b_2 через B(t), а прямых c_1 и c_2 через C(t). Оказалось, что в течение одной минуты нашлись два различные момента времени t_1 и t_2 такие, что ориентации треугольников $A(t_1)B(t_1)C(t_1)$ и $A(t_2)B(t_2)C(t_2)$ совпадали, а сами треугольники были правильными. Докажите, что в любой момент времени t треугольник A(t)B(t)C(t) является правильным.
- 13. Точки H и O ортоцентр и центр описанной окружности треугольника ABC соответственно. Точка K середина отрезка AH. Прямая ℓ проходит через точку O, а точки P и Q ортогональные проекции точек B и C на ℓ соответственно. Докажите, что $KP+KQ\geqslant BC$.
- 14. Точки H и G ортоцентр и центр масс, соответственно, остроугольного треугольника ABC, в котором $AB \neq AC$. Прямая AG пересекает описанную окружность треугольника ABC в точках A и P. Точка P' симметрична точке P относительно прямой BC. Докажите, что равенства $\angle CAB = 60^\circ$ и HG = GP' равносильны.