Math 620: §3.4 Isomorphisms and §3.5 Cyclic Groups

Due on Monday, October 26, 2015

 $Boynton\ 10:00$

Kailee Gray

Exercise 3.4.10

Show that the group $\{f_{m,b}: \mathbb{R} \to \mathbb{R} \mid f(x) = mx + b, m \neq 0\}$ of affline functions from \mathbb{R} to \mathbb{R} (under composition of functions) is isomorphic to the group of all 2×2 matrices over \mathbb{R} of the form $M = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$ (under matrix multiplication).

Proof. Let $A = \{f_{m,b} : \mathbb{R} \to \mathbb{R} \mid f(x) = mx + b, m \neq 0\}$ and let

$$F = \left\{ B \in M(2, \mathbb{R}) | B \text{ is of the form } \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \right\}. \text{ Define } \varphi : A \to F \text{ by } \varphi \left(f_{m,b} \right) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$$

(one-to-one) Consider $f_{a,b}$, $f_{c,d} \in A$ where $\varphi(f_{a,b}) = \varphi(f_{c,d})$. Then, $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix}$ so a = c and b = d. Therefore, ax = cx, so ax + b = cx + d. Thus, $f_{a,b} = f_{c,d}$.

(onto) Let
$$\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \in F$$
. Then, $f(x) = mx + b \in A$ and $\varphi(f(x)) = \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$.

(homomorphism) Let $f_{a,b}$, $f_{c,d} \in A$ so $a,b,c,d \in \mathbb{R}$ and $a,c \neq 0$. Then, $f_{a,b} \circ f_{c,d} = a(cx+d) + b = acx + ad + b$.

So
$$\varphi(f_{a,b} \circ f_{c,d}) = \varphi(f(x) = acx + ad + b) = \begin{bmatrix} ac & ad + b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} = \varphi(f_{a,b})\varphi(f_{c,d})$$

Thus, φ is a group isomorphism from A to F which, by definition 3.4.1, implies $A \cong F$. \square

Exercise 3.4.13: Let C_2 be the subgroup $\{\pm 1\}$ of the multiplicative group \mathbb{R}^{\times} . Show that \mathbb{R}^{\times} is isomorphic to $\mathbb{R}^+ \times C_2$.

Define $\varphi : \mathbb{R}^{\times} \to \mathbb{R}^{+} \times C_{2}$ by $\varphi(r) = (|r|, \frac{r}{|r|})$. Notice |r| = r if r > 0 and |r| = -r if r < 0, so $\frac{r}{|r|} = \pm 1 \in C_{2}$. Also, |r| > 0 implies $|r| \in \mathbb{R}^{+}$ Since $r \in \mathbb{R}^{\times}$ implies $r \neq 0$, φ is well defined.

(one-to-one) Consider $r_1, r_2 \in \mathbb{R}^{\times}$ where $\varphi(r_1) = \varphi(r_2)$. Then, $(|r_1|, \frac{r_1}{|r_1|}) = (|r_2|, \frac{r_2}{|r_2|})$ so $|r_1| = |r_2|$ and $\frac{r_1}{|r_1|} = \frac{r_2}{|r_2|}$. $|r_1| = |r_2|$ implies $r_1 = \pm r_2$. However, $\frac{r_1}{|r_1|} = \frac{r_2}{|r_2|}$ implies $\frac{r_1}{r_2} = \frac{|r_1|}{|r_2|}$ and so $\frac{r_1}{r_2} > 0$. Thus, either $r_1 > 0$ and $r_2 > 0$ or $r_1 < 0$ and $r_2 < 0$. Suppose $r_1 > 0$ and $r_2 > 0$. Then, $|r_1| = r_1$ and $|r_2| = r_2$ so $r_1 = r_2$. If $r_1 < 0$ and $r_2 < 0$, $|r_1| = -r_1$ and $|r_2| = -r_2$ so $-r_1 = -r_2$ implies $r_1 = r_2$.

(onto) Consider $(r,c) \in \mathbb{R}^+ \times C_2$. Then, r > 0 and $c = \pm 1$. First, consider $(r,1) \in \mathbb{R}^+ \times C_2$. Then, for some $r \in \mathbb{R}^\times$ such that r > 0, $\varphi(r) = (|r|, \frac{r}{|r|}) = (r, \frac{r}{r}) = (r, 1) \in \mathbb{R}^+ \times C_2$. Next, consider $(r, -1) \in \mathbb{R}^+ \times C_2$. For some $r \in \mathbb{R}^\times$ such that r < 0, $\varphi(r) = (|r|, \frac{r}{|r|}) = (-r, \frac{r}{-r}) = (-r, -1) \in \mathbb{R}^+ \times C_2$.

(homomorphism) Let $r_1, r_2 \in \mathbb{R}^{\times}$ so $r_1, r_2 \neq 0$. Then, $\varphi(r_1 r_2) =$

$$\left(r_1r_2, \frac{r_1r_2}{|r_1r_2|}\right) = \left(r_1 \cdot r_2, \frac{r_1r_2}{|r_1||r_2|}\right) = \left(r_1 \cdot r_2, \frac{r_1}{|r_1|} \cdot \frac{r_2}{|r_2|}\right) = \left(r_1, \frac{r_1}{|r_1|}\right) \cdot \left(r_2, \frac{r_2}{|r_2|}\right) = \varphi(r_1)\varphi(r_2).$$

Thus, φ defines a group isomorphism from \mathbb{R}^{\times} to $\mathbb{R}^{+} \times C_{2}$ which, by definition 3.4.1, implies $\mathbb{R}^{\times} \cong \mathbb{R}^{+} \times C_{2}$.

Exercise 3.4.15: Let G be any group, and let a be a fixed element of G. Define a function $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$ for all $x \in G$. Show that ϕ_a is an isomorphism.

Proof. Let G be any group, and let a be a fixed element of G. Define a function $\phi_a: G \to G$ by $\phi_a(x) = axa^{-1}$ for all $x \in G$.

(one-to-one) Consider $x_1, x_2 \in G$ where $\phi(x_1) = \phi(x_2)$. Then, $ax_1a^{-1} = ax_2a^{-1}$. Notice

$$ax_1a^{-1}a = ax_2a^{-1}a$$
 multiply on the right by a
 $ax_1e = ax_2e$ because $a^{-1}a = e$, the identity element in G
 $a^{-1}ax_1 = a^{-1}ax_2$ because $x_1e = x_1$ and $x_2e = x_2$. Then, multiply on the left by $a^{-1}ex_1 = ex_2$ because $a^{-1}a = e$
 $x_1 = x_2$ because $ex_1 = x_1$ and $ex_2 = x_2$

(onto) Consider $x_1 \in G$. Then, $a, a^{-1} \in G$ implies $a^{-1}x_1a \in G$, so

$$\phi(a^{-1}x_1a) = a(a^{-1}x_1a)a^{-1}$$
 by definition of ϕ
 $= (aa^{-1})x_1(aa^{-1})$ G is a group so the operation of G is associative
 $= (e)x_1(e)$ because $aa^{-1} = e$
 $= (ex_1)(e)$ G is a group so the operation of G is associative
 $= x_1$ definition of the identity element

(homomorphism) Let $x_1, x_2 \in G$. Then, by the associative law of G and the definition of the identity element and inverses in G we have,

$$\phi(x_1x_2) = a(x_1x_2)a^{-1} = a(x_1ex_2)a^{-1} = a(x_1(a^{-1}a)x_2)a^{-1} = (ax_1a^{-1})(ax_2a^{-1}) = \phi(x_1)\phi(x_2).$$

Thus, ϕ defines a group isomorphism from G to G.

Exercise 3.4.16: Let G be any group. Define $\phi: G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.

(a) Prove that ϕ is one-to-one and onto.

Proof. (one-to-one) Consider $x_1, x_2 \in G$ and suppose $\phi(x_1) = \phi(x_2)$. Then, $x_1^{-1} = x_2^{-1}$. Since $x_1^{-1}, x_2^{-1} \in G$, x_1^{-1}, x_2^{-1} have inverses in G, so $(x_1^{-1})^{-1} = (x_2^{-1})^{-1}$. Thus, $x_1 = x_2$. (onto) Let $x \in G$. Then, $x^{-1} \in G$ and $\phi(x^{-1}) = (x^{-1})^{-1} = x$.

(b) Prove that ϕ is an isomorphism if and only if G is abelian.

Proof. (⇒) Assume φ is an isomorphism. Then, φ is a homomorphism, so for any x_1, x_2 , $φ(x_1x_2) = φ(x_1)φ(x_2)$. Since $φ(x_1x_2) = (x_1x_2)^{-1} = x_2^{-1}x_1^{-1}$ and $φ(x_1)φ(x_2) = x_1^{-1}x_2^{-1}$. Thus, $x_2^{-1}x_1^{-1} = x_1^{-1}x_2^{-1}$ implies $(x_2^{-1}x_1^{-1})^{-1} = (x_1^{-1}x_2^{-1})^{-1}$. Further, $(x_1^{-1})^{-1}(x_2^{-1})^{-1} = (x_2^{-1})^{-1}(x_1^{-1})^{-1}$. Equivalently, $x_1x_2 = x_2x_1$. Thus, G is abelian. (⇐) Assume G is abelian. Then, for any $x_1, x_2 \in G$, $x_1x_2 = x_2x_1$. We can follow our previous argument backwards to obtain

$$x_1 x_2 = x_2 x_1$$

$$(x_1^{-1})^{-1} (x_2^{-1})^{-1} = (x_2^{-1})^{-1} (x_1^{-1})^{-1}$$

$$(x_2^{-1} x_1^{-1})^{-1} = (x_1^{-1} x_2^{-1})^{-1}$$

$$x_2^{-1} x_1^{-1} = x_1^{-1} x_2^{-1}$$

$$(x_1 x_2)^{-1} = \phi(x_1) \phi(x_2)$$

$$\phi(x_1 x_2) = \phi(x_1) \phi(x_2)$$

Thus, ϕ is a homomorphism. From part (a), we know ϕ is one-to-one and onto. Thus, ϕ is an isomorphism.

Exercise 3.4.22: Let a, b be positive integers, and let gcd(a, b) = d and m = lcm[a, b]. Write d = sa + tb, a = a'd, and b = b'd. Prove that the function $f: \mathbb{Z}_m \times \mathbb{Z}_d \to \mathbb{Z}_a \times \mathbb{Z}_b$ defined by $f(([x]_m, [y]_d)) = ([x + ysa']_a, [x - ytb'])_b$ is an isomorphism.

Proof. (well-defined) Suppose there exists elements in $\mathbb{Z}_m \times \mathbb{Z}_d$ such that $([x_1]_m, [y_1]_d) = ([x_2]_m, [y_2]_d)$. Then,

$$x_1 \equiv x_2 \pmod{m} \text{ and } y_1 \equiv y_2 \pmod{d}.$$
 (1)

Equivalently, for some
$$l, k \in \mathbb{Z}$$
, $x_1 = x_2 + lm$ and $y_1 = y_2 + kd$ (2)

Since a|m, we can write (2) as $x_1 = x_2 + ll'a$ for some $l' \in \mathbb{Z}$. Thus, $x_1 \equiv x_2 \pmod{a}$. Also from (2), we can multiply by a' to obtain $a'y_1 = a'y_2 + a'kd$ which, because a'd = a, we can write $a'y_1 = a'y_2 + ka$. Multiplying by s, we have $sa'y_1 = sa'y_2 + ska$; equivalently $sa'y_1 \equiv sa'y_2 \pmod{a}$. Thus, since $x_1 \equiv x_2 \pmod{a}$ and $sa'y_1 \equiv sa'y_2 \pmod{a}$, we have

$$x_1 + sa'y_1 \equiv x_2 + sa'y_2 \pmod{a} \tag{3}$$

Similarly, since b|m, we can write (2) as $x_1 = x_2 + ll''b$ for some $l'' \in \mathbb{Z}$. Thus, $x_1 \equiv x_2 \pmod{b}$. Also from (2), we can multiply by b' to obtain $b'y_1 = b'y_2 + b'kd$ which, because b'd = b, we can write $b'y_1 = b'y_2 + kb$. Multiplying by -t, we have $-tb'y_1 = -tb'y_2 - tkb$; equivalently $-tb'y_1 \equiv -tb'y_2 \pmod{b}$. Thus, since $x_1 \equiv x_2 \pmod{b}$ and $-tb'y_1 \equiv -tb'y_2 \pmod{b}$, we have

$$x_1 - tb'y_1 \equiv x_2 - tb'y_2 \pmod{b} \tag{4}$$

Equations (3) and (4) imply $f(([x_1]_m, [y_1]_d)) = f(([x_2]_m, [y_2]_d))$. (homomorphism) Consider any $([x_1]_m, [y_1]_d)$, $([x_2]_m, [y_2]_d)$ in $\mathbb{Z}_m \times \mathbb{Z}_d$. Then, $([x_1]_m, [y_1]_d) + ([x_2]_m, [y_2]_d) = ([x_1]_m + [x_2]_m, [y_1]_d + [y_2]_d)$. By proposition 1.4.2, $([x_1]_m + [x_2]_m, [y_1]_d + [y_2]_d) = ([x_1 + x_2]_m, [y_1 + y_2]_d)$. Thus,

$$f(([x_1]_m, [y_1]_d) + ([x_2]_m, [y_2]_d)) = ([(x_1 + x_2) + (y_1 + y_2)sa']_a, [(x_1 + x_2) - (y_1 + y_2)tb']_b)$$
(5)

We can simplify the expression in equation (5) using the associative and commutative

properties of addition in \mathbb{Z} and proposition 1.4.2:

$$[(x_1 + x_2) + (y_1 + y_2)sa']_a = [x_1 + y_1sa' + x_2 + y_2sa']_a = [x_1 + y_1sa']_a + [x_2 + y_2sa']_a$$
 (6)

$$[(x_1 + x_2) - (y_1 + y_2)tb']_b = [(x_1 + x_2 - y_1tb' - y_2tb']_b = [x_1 - y_1tb']_b + [x_2 - y_2tb']_b$$
 (7)

Equations (6) and (7) imply

$$f(([x_1]_m, [y_1]_d) + ([x_2]_m, [y_2]_d)) = ([x_1 + y_1sa']_a + [x_2 + y_2sa']_a, [x_1 - y_1tb']_b + [x_2 - y_2tb']_b) = ([x_1 + y_1sa']_a, [x_1 - y_1tb']_b) + ([x_2 + y_2sa']_a, [x_2 - y_2tb']_b) = f(([x_1]_m, [y_1]_d)) + f(([x_2]_m, [y_2]_d)).$$
(one-to-one) To show f is one-to-one, we can use proposition 3.4.4. Suppose $f(([x]_m, [y]_d)) = ([0]_a, [0]_b)$. Then,

 $[x+ysa']_a = [0]_a$ and $[x-ytb']_b = [0]_b$ implies x+ysa' = la and x-ytb' = kb for some $l, k \in \mathbb{Z}$.

Thus, x = la - ysa' and x = ytb' + kb so

$$la - ysa'$$
 = $ytb' + kb$
 $ytb' + ysa'$ = $la - kb$
 $ytb'd + ysa'd$ = $lad - kbd$ obtained by multiplying by d
 $ytb + ysa$ = $lad - kbd$ $b'd = b$ and $a'd = a$
 $y(tb + sa)$ = $lad - kbd$
 $y(d)$ = $lad - kbd$ $tb + sa = d$
 $y = lad - kb$ $d \neq 0$, so we can divide by d

Thus, y is a linear combination of a and b. By theorem 1.1.6, this implies d|y. Thus, $y \equiv 0 \pmod{d}$. So, y = dc for some $c \in \mathbb{Z}$. Then, since $x + ysa' \equiv 0 \pmod{a}$ and x + ysa' = x + dcsa' = x + cs(da') = x + csa. We have $csa \equiv 0 \pmod{a}$ so $x \equiv 0 \pmod{a}$. From page 22 of Beachy, we know $ab = \gcd(a, b) \operatorname{lcm}[a, b]$. Thus, md = ab. Since $|\mathbb{Z}_m \times \mathbb{Z}_d| = md = ab = |\mathbb{Z}_a \times \mathbb{Z}_b|$ and because we've show f is one-to-one, proposition 2.1.8 implies f is onto. Hence, f is an isomorphism.

Exercise 3.5.3: Give the subgroup diagrams of the groups \mathbb{Z}_{24} and \mathbb{Z}_{36}

 (\mathbb{Z}_{24}) . Note $|\mathbb{Z}_{24}| = 24$ and $\langle 1 \rangle = \mathbb{Z}_{24}$. By corollary 3.5.4(b), if H is a subgroup of \mathbb{Z}_{24} then $H = \langle k \rangle$ for some divisor of 24. So the subgroups of \mathbb{Z}_{24} are $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$, $\langle 12 \rangle$. Also, 24 divides itself so $\langle 24 \rangle = \langle 0 \rangle$ is a subgroup of \mathbb{Z}_{24} . Next by corollary 3.5.4(c) since 3|6, 6|12, and 12|24; 4|12, 12|24; 2|4, 4|8, 8|24; and 2|6, 6|12, and 12|24 we must have the following containments:

$$\langle 3 \rangle \supseteq \langle 6 \rangle \supseteq \langle 12 \rangle \supseteq \langle 24 \rangle ; \langle 2 \rangle \supseteq \langle 4 \rangle \supseteq \langle 8 \rangle \supseteq \langle 24 \rangle ; \langle 4 \rangle \supseteq \langle 12 \rangle \supseteq \langle 24 \rangle \text{ and } \langle 2 \rangle \supseteq \langle 6 \rangle \supseteq \langle 12 \rangle \supseteq \langle 24 \rangle$$

Therefore we have the following subgroup diagram:

 (\mathbb{Z}_{36}) . Note $|\mathbb{Z}_{36}| = 36$ and $\langle 1 \rangle = \mathbb{Z}_{36}$. By corollary 3.5.4(b), if H is a subgroup of \mathbb{Z}_{36} then $H = \langle k \rangle$ for some divisor of 36. So the subgroups of \mathbb{Z}_{36} are $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$, $\langle 9 \rangle$, $\langle 12 \rangle$, $\langle 18 \rangle$. Also, 36 divides itself so $\langle 36 \rangle = \langle 0 \rangle$ is a subgroup of \mathbb{Z}_{36} . Next by corollary 3.5.4(c) since 3|6, 6|12, and 12|36; 3|6, 6|18, 18|36; 3|9, 9|18, 18|36; 2|4, 4|12, 12|36; 2|6, 6|12, 12|36; and 2|6, 6|12, and 12|24 we must have the following containments: $\langle 3 \rangle \supseteq \langle 6 \rangle \supseteq \langle 18 \rangle \supseteq \langle 0 \rangle$; $\langle 3 \rangle \supseteq \langle 6 \rangle \supseteq \langle 12 \rangle \supseteq \langle 0 \rangle$; $\langle 3 \rangle \supseteq \langle 6 \rangle \supseteq \langle 18 \supseteq \langle$

Exercise 3.5.13: Show that in a finite cyclic group of order n, the equation $x^m = e$ has exactly m solutions, for each positive integer m that is a divisor of n.

Proof. By theorem 3.5.2, since |G| = n and G is cyclic, $G \cong \mathbb{Z}_n$. So, we will work in \mathbb{Z}_n . If $x^m = e$ in \mathbb{Z}_n , then $[mx]_n = [0]_n$. Assume m|n. Then, n = dm for some $d \in \mathbb{Z}, d \neq 0$. To show there exists exactly m such $x \in \mathbb{Z}_n$, we will show $\{[x]_n : [mx]_n = [0]_n\} = \{[kd]_n : k \in \mathbb{Z}_m\}. \text{ Let } y \in \{[x]_n : [mx]_n = [0]_n\} \text{ so } 0 \le y < n.$ Then, $my \equiv 0 \pmod{n}$ which implies my = ln. Let l be the smallest positive integer such that my = ln. Since n = dm we have my = ldm and so y = ld. Since $0 \le y < n$, $0 \le my < mn$ and $0 \le my < mdm$. Further $0 \le y < dm$. Since y = ld we have $0 \le ld < dm \text{ so } 0 \le l < m.$ Thus, $y = ld \text{ for } l \in \mathbb{Z}_m \text{ which implies } y \in \{[kd]_n : k \in \mathbb{Z}_m\}.$ Next, suppose $y \in \{[kd]_n : k \in \mathbb{Z}_m\}$. Then, $y \equiv kd \pmod{n}$ for $0 \leq k < m$. Equivalently, $my \equiv mkd \pmod{n}$ so $my \equiv k(dm) \pmod{n}$. Sine k(dm) = k(n) and $k(n) \equiv 0 \pmod{n}$ we have $my \equiv 0 \pmod{n}$. Thus, $y \in \{[x]_n : [mx]_n = [0]_n\}$. Hence, $\{[x]_n : [mx]_n = [0]_n\} = \{[kd]_n : k \in \mathbb{Z}_m\}$. We claim the number of elements in $\{[kd]_n : k \in \mathbb{Z}_m\}$ is m. If there weren't m elements then there must exists some $k_1, k_2 \in \mathbb{Z}_m$ such that $k_1 d \equiv k_2 d \pmod{n}$, but $k_1 \not\equiv k_2 \pmod{m}$. Thus, $k_1 d = k_2 d + bn$ for some $b \in \mathbb{Z}$. Therefore, $k_1d = k_2d + b(dm)$ so $k_1 = k_2 + bm$ which implies $k_1 \equiv k_2 \pmod{m}$. Thus, there are m elements in the set $\{[kd]_n : k \in \mathbb{Z}_m\}$ which is equal to the set $\{[x]_n : [mx]_n = [0]_n\}$. Thus, there are exactly m integers such that $mx \equiv 0 \pmod{n}$.

Therefore, since $G \cong \mathbb{Z}_n$, the equation $x^m = e$ has exactly m solutions for each positive integer m that is divisor of n.

Exercise 3.5.16: Let G be any group with no proper, nontrivial subgroups, and assume that |G| > 1. Prove that G must be isomorphic to \mathbb{Z}_p for some prime p.

Proof. Let G be any group with no proper, nontrivial subgroups, and assume that |G| > 1. Then, $|G| \ge 2$ so G contains an identity element, e, and some other element $g \ne e$. By proposition 3.2.6(a), $\langle g \rangle$ is a subgroup of G. Since G has no proper, nontrivial subgroups, and because $g \ne e$, $\langle g \rangle = G$. Thus, G is cyclic. Suppose $|G| = \infty$. Then, by theorem 3.5.2(a), $G \cong \mathbb{Z}$. However, from page 136 of Beachy, we know \mathbb{Z} has proper subgroups of the form $m\mathbb{Z}$ with $m \in \mathbb{Z}$. Since G has no proper subgroups, $G \not\cong \mathbb{Z}$ and so $|G| \ne \infty$. Thus, |G| = n. So G is a finite cyclic group. On page 136 of Beachy, we know if $G = \langle g \rangle$ is a finite cyclic group, then for every positive divisor m of n, $\langle g^m \rangle$ is a subgroup of G. If $m \ne 1$ and $m \ne n$, then $\gcd(m,n) = m$ and by proposition 3.5.3, $|\langle g^m \rangle| = \frac{n}{m} < n$. Thus, if $m \ne 1$ and $m \ne n$, $\langle g^m \rangle$ is a proper subgroup of G. Since G does not have proper subgroups, this contradiction implies, m = 1 or m = n. Hence, 1, n are the only divisors of n which implies n = p for some prime number p. Then, by theorem 3.5.2, $G \cong \mathbb{Z}_p$ for some prime p.

Exercise 3.5.18: Prove that $\sum_{d|n} \varphi(d) = n$ for any positive integer n.

Proof. Suppose n has N divisors. Then, rewrite $\sum_{d|n} \varphi(d) = \sum_{k=1}^{N} \varphi(d_k)$ where all $d_k|n$ are considered. Consider some cyclic group $G = \langle g \rangle$ with |G| = n. By Theorem 4(5) of Boyton (Cyclic Group handout), for every divisor d_k of n, G has exactly one subgroup of order d_k . Additionally, by Theorem 4(4) of Boyton, every subgroup of G can be as $\langle g^d \rangle$ for some d|n. Thus, consider the collection $\{H_k \leq G : H_k = \langle g^{d_k} \rangle, |H_k| = d_k\}_{k=1}^N$. Define \sim on G where $a \sim b$ if and only if $\langle a \rangle = \langle b \rangle$. By lemma 0.1 below, we know \sim defines an equivalence relation. Let A_k be the equivalence class of H_k . Then, A_k contains all generators of H_k . From Theorem 4(3) of Boyton, we know g^s generates H_k , $|H_k| = d_k$ if and only if $\gcd(s,d_k) = 1$. Thus, H_k has $\varphi(d_k)$ possible generators. So $|A_k| = \varphi(d_k)$. Since A_k are

equivalence classes, $A_k \cap A_j = \emptyset$ for all $k \neq j$. By lemma 0.2 below, $G = \bigsqcup_{k=1}^N A_k$; therefore, $|G| = |\bigsqcup_{k=1}^N A_k|$. Since $\bigsqcup_{k=1}^N A_k$ is a disjoint union, $|\bigsqcup_{k=1}^N A_k| = \sum_{k=1}^N |A_k| = \sum_{k=1}^N \varphi(d_k)$. Also, |G| = n, so $\sum_{k=1}^N \varphi(d_k) = n$.

Lemma 0.1. Define \sim on G where $a \sim b$ if and only if $\langle a \rangle = \langle b \rangle$. Then, \sim is an equivalence relation.

Proof. (reflexive) For any element $a \in G$, $\langle a \rangle = \langle a \rangle$, so $a \sim a$. (symmetric) For any $a, b \in G$, if $a \sim b$, then $\langle a \rangle = \langle b \rangle$. Thus, $\langle b \rangle = \langle a \rangle$ so $b \sim a$. (transitive) Suppose for $a, b, c \in G$, $a \sim b$ and $b \sim c$. Then, $\langle a \rangle = \langle b \rangle$ and $\langle b \rangle = \langle c \rangle$ so $\langle a \rangle = \langle c \rangle$. Thus, $a \sim c$.

Lemma 0.2. $G = \bigsqcup_{k=1}^{N} A_k$.

Proof. First, show $G \subseteq \bigsqcup_{k=1}^N A_k$. Let $g \in G$. Then $\langle g \rangle \leq G$ and since $1 \mid n$ we have $\langle g \rangle \in \{ H_k \leq G : H_k = \left\langle a^{d_k} \right\rangle, |H_k| = d_k \}_{k=1}^N$. Thus, $\langle g \rangle = H_1 = A_1$ Thus, $g \in \bigsqcup_{k=1}^N A_k$. Next, show $G \supseteq \bigsqcup_{k=1}^N A_k$. Let $a \in \bigsqcup_{k=1}^N A_k$. Then $a \in A_k$ for some k. For all $k, A_k \leq G$, so $a \in G$.

Exercise 3.5.19: Let $n=2^k$ for k>2. Prove that \mathbb{Z}_n^{\times} is not cyclic.

Proof. Let $n=2^k$ for k>2. Then, $|\mathbb{Z}_n^{\times}|=2^k>4$. Notice n>4 implies $\frac{n}{2}+1>1$ and $\frac{n}{2}-1>1$ as well as:

 $n+4 < n+n = 2n; \quad n < 2n-4; \quad \frac{n}{2} < n-2; \quad \frac{n}{2}+1 < n-1 \text{ and similarly, } \frac{n}{2} < n; \quad \frac{n}{2}-1 < n-1.$

Thus, $1, \frac{n}{2} \pm 1 \in \mathbb{Z}_n^{\times}$. Notice $\frac{n}{2} \pm 1, n-1$ have order 2 in \mathbb{Z}_n^{\times} :

Because n > 4, $1 \neq \frac{n}{2} + 1 \neq \frac{n}{2} - 1 \neq n - 1$. From above, we know in \mathbb{Z}_n^{\times} , $o(\frac{n}{2} + 1) = o(\frac{n}{2} - 1) = o(n - 1) = 2$. So we have three distinct elements of order 2. Suppose \mathbb{Z}_n^{\times} is cyclic. Then, by theorem 3.5.2(b), $\mathbb{Z}_n^{\times} \cong \mathbb{Z}_n$. Since \mathbb{Z}_n^{\times} has even order, $|\mathbb{Z}_n| = 2l$ for some $l \in \mathbb{Z}^+$. However, by the lemma below, \mathbb{Z}_n has exactly one element of order 2 where \mathbb{Z}_n^{\times} has at least three. By proposition 3.4.3, isomorphisms preserve order. Thus, $\mathbb{Z}_n^{\times} \not\cong \mathbb{Z}_n$ which implies \mathbb{Z}_n^{\times} is not cyclic.

Lemma 0.3. \mathbb{Z}_{2l} has exactly one element of order 2.

Proof. Note l is an element of order 2: $l + l \equiv 0 \pmod{2l}$. If there exists $g \in \mathbb{Z}_{2l}$ with $l \neq g$ and $g \neq 0$ (since 0 has order 1) such that $2g \equiv 0 \pmod{2l}$. Then $g \equiv 0 \pmod{l}$ implies g = hl for some $h \in \mathbb{Z}$. But, $g \in \mathbb{Z}_{2l}$ so 0 < g < 2l and so 0 < hl < 2l implies 0 < h < 2 so 0 < g < 2l and 0 < g < 2l and so 0 < g < 2l implies 0 < g < 2l and 0 < g < 2l implies 0 < g < 2l implies 0 < g < 2l so 0 < g < 2l and 0 < g < 2l implies 0 < g < 2l impl

Exercise 3.5.20: Let G be a group with p^k elements, where p is a prime number and $k \ge 1$. Prove that G has a subgroup of order p.

Proof. Let G be a group with p^k elements, where p is a prime number and $k \geq 1$. Then, $|G| = p^k$. By Lagrange's Theorem, the order of any element in G must divide the order of G. So for any $g \in G$ with $g \neq e$, $|g| = p^l$ for $1 \leq l \leq k$. If |g| = p, then $\langle g \rangle$ is a subgroup of G of order p. If $|g| = p^l$ for $2 \leq p \leq k$, then consider $h = g^{p^{l-1}}$. Since p^l is the smallest integer, t, such that $g^t = e$, $p^{l-1} < p^l$ implies $g^{p^{l-1}} \neq e$. Notice $h = (g^p)^{l-1} = (g^{p^l})^{p^{-1}} = e^{p^{-1}} = e^{-p}$. Therefore $h^p = (e^{-p})^p = e^{\frac{1}{p} \cdot p} = e^1 = e$. So the order of h must divide p. Since $h \neq e$, |h| = p so $\langle h \rangle$ is a subgroup of G of order p.