Hur man lär maskiner att tänka

Mattias Villani

Avdelningen för statistik och maskininlärning

Kan vi lära maskiner att tänka?

Vill vi lära maskiner att tänka?

Bör vi lära maskiner att tänka?

Kan vi lära maskiner att se, höra, känna och lukta?

Kan vi lära maskiner att agera på intryck?

Maskininlärning handlar inte bara om maskiner

- även **mjukvara** kan vara Al

Hur lär vi maskiner? Maskininlärning

• Övervakad inlärning barn pekar på ko, pappa säger 'kooo'

 Oövervakad inlärning svarta och vita kor har samma form

 Reinforcement learning ge belöning när barnet säger rätt

Varför fungerar Al nu?

- Enorma mängder data:
 - Sensorer, t ex i mobiler
 - Internet och digitalisering

- Lagra enorma mängder data
- Analysera enorma mängder data
- Små datorer är också kraftfulla

- Stora kommersiella intressen
- Mycket pengar till AI-forskning
- Tusentals smarta AI-forskare

Statistik, Al och jag

- Professor i Statistik
- Statistik på gymnasiet:
 - Data (tabeller, grafer, medelvärde)
 - Sannolikheter
- Vetenskapen om data f\u00f6r att kvantifiera os\u00e4kerhet med sannolikheter.
- En robotdammsugare:
 - använder data från sensorer
 - för att **bestämma var** den är
 - förutsäga var det är mest dammigt
 - **besluta** om bästa städväg

Lära en maskin att känna igen handskrivna siffor

Lära en maskin att känna igen handskrivna siffor

Gråheten i en pixel säger något om siffran

Linjär regression

Binär regression på gråheten i en pixel

10000 dataexempel för träning

Prediktionerna på sex nya exempel

Al systemet är säker på 7:an

10000 träningsexempel

Prediktion: Sannolikhet:

0	1	2	3	4	5	6	7	8	9
			0.01				0.99		

Al systemet är osäker på 2:an

10000 träningsexempel

 Prediktion:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 Sannolikhet:
 0.10
 0.32
 0.03
 0.07
 0.46
 0.02
 0.02

Mer träningsdata ger bättre prediktioner

60000 träningsexempel

Prediktion:	0	1	2	3	4	5	6	7	8	9
Sannolikhet:	0.06		0.64	0.04		0.05	0.20		0.01	

Vi blir bättre på Al över tiden

Modell:	Binär regression	K-nearest neighbors	Support vector machine	3-lager NN	ConvNet
Felprocent:	12%	5%	1.4%	1.53%	0.4%

1998 Idag

Sammanfattning

- Artificiell intelligens kommer omvandla samhället
- Maskiner och mjukvara görs smarta med maskininlärning och statistik
- AI system förbättras snabbt nu:
 - Stora mängder data
 - Snabba datorer och effektiva sensorer
 - Kommersiellt intresse
- Stora möjligheter med AI
- Konsekvenser av AI?

Tack för visat intresse!

