The group G is isomorphic to the group labelled by $[60, 8]$ in the Small Groups library.
Ordinary character table of $G \cong S3 \times D10$:

Trivial source character table of $G \cong S3 \times D10$ at p = 3:

Trivial source character table of $G = 55 \times 10^{10}$ at $p = 5$.															
Normalisers N_i					N_1								N_2		
p-subgroups of G up to conjugacy in G					P_1								P_2		
Representatives $n_j \in N_i$	1a 2a	a = 2b	5a	2c	10a	5b	10b	1a	2b 2	2a	5a	2c	10a	5b	10b
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 $.2 3 3	-1	3	-1	-1	3	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{.2} \mid 3 3$	1	3	1	1	3	1	0	0	0	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_1 \right $	$_{.2} \mid 3 - 3$	3 - 1	3	1	-1	3	-1	0	0	0	0	0	0	0	0
$ \mid 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \mid 0 \mid $	$_{.2} \mid 3 - 3$	3 1	3	-1	1	3	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{.2} \mid 6 0$	-2	$3*E(5)^2 + 3*E(5)^3$	0	$-E(5)^2 - E(5)^3$	$3*E(5) + 3*E(5)^4$	$-E(5) - E(5)^4$	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{.2} \mid 6 0$	-2	$3*E(5) + 3*E(5)^4$	0	$-E(5) - E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$-E(5)^2 - E(5)^3$	0	0	0	0	0	0	0	0
$ \mid 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \mid 0 \mid $	$_{.2} \mid 6 0$	2	$3*E(5) + 3*E(5)^4$	0	$E(5) + E(5)^4$	$3*E(5)^2 + 3*E(5)^3$	$E(5)^2 + E(5)^3$	0	0	0	0	0	0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{11} \right $	$_{.2} \mid 6 0$	2	$3*E(5)^2 + 3*E(5)^3$	0	$E(5)^2 + E(5)^3$	$3*E(5) + 3*E(5)^4$	$E(5) + E(5)^4$	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11}$	2 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11}$	$_{.2} \mid 1 - 1$	1 1	1	-1	1	1	1	1	1 -	-1	1	-1	1	1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0$	$_{.2}$ 1 1	-1	1	-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
$ \mid 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} \mid 0 \mid $	$_{.2} \mid 1 - 1$	1 - 1	1	1	-1	1	-1	1	-1 -	-1	1	1	-1	1	-1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_1 \right $	$_{.2} \mid 2 = 0$	-2	$E(5) + E(5)^4$	0	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	2	-2	0 E($5) + E(5)^4$	0	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{11}$	$_{.2} \mid 2 = 0$	-2	$E(5)^2 + E(5)^3$	0	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	2	-2	0 E(5)	$(5)^2 + E(5)^3$	0	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_1 \right $	$_{2} 2 0$	2	$E(5) + E(5)^4$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	2	2	0 E($5) + E(5)^4$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_1$	$_{2} \mid 2 0$	2	$E(5)^2 + E(5)^3$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	2	2	0 E(5)	$(5)^2 + E(5)^3$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,25,14)(8,28,17)(10,31,20)(13,34,23)(15,37,26)(18,40,29)(21,43,32)(24,46,35)(27,48,38)(30,51,41)(33,53,44)(36,55,47)(39,56,49)(42,58,52)(45,59,54)(50,60,57)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,42)(8,36)(9,14)(10,50)(13,23)(13$

	1a	5a	5b	2a	3a	15a	15b	6a	2b	10a	10b	2c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	1	1	1	-1	1	1	1	-1
χ_3	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0
χ_4	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0
χ_5	1	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_6	1	1	1	-1	1	1	1	-1	-1	-1	-1	1
χ_7	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0
χ8	2	$E(5)^{2} + E(5)^{3}$	$E(5) + E(5)^4$	0	2	$E(5)^{2} + E(5)^{3}$	$E(5) + E(5)^4$	0	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0
χ_9	2	2	2	2	-1	-1	-1	-1	0	0	0	0
χ_{10}	2	2	2	-2	-1	-1	-1	1	0	0	0	0
χ_{11}	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0	0	0	0
χ_{12}	4		$2*E(5) + 2*E(5)^4$	0	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0	0	0	0