

Rapid NLP annotation through binary decisions, pattern bootstrapping and active learning

Ines Montani Explosion Al

Why we need annotations

- o Machine Learning is "programming by example"
- o annotations let us specify the **output** we're looking for
- o even unsupervised methods need to be evaluated on labelled examples

Why annotation tools need to be efficient

- o annotation needs **iteration**: we can't expect to define the task correctly the first time
- o good annotation teams are **small** and should collaborate with the **data scientist**
- o lots of high-value opportunities need **specialist knowledge** and expertise

Why annotation needs to be semi-automatic

- o impossible to perform boring, unstructured or multi-step tasks reliably
- o humans make **mistakes** a computer never would, and vice versa
- humans are good at context, ambiguity and precision, computers are good at consistency, memory and recall

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

2. Mechanical Turk or external annotators

Problem: If your results are bad, is it your label scheme, your data or your model?

"But it's
just cheap click work.
Can't we outsource
that?"

"But annotation sucks!"

1. Excel spreadsheets

Problem: Excel. Spreadsheets.

2. Mechanical Turk or external annotators **Problem:** If your results are bad, is it your label scheme, your data or your model?

3. Unsupervised learning

Problem: So many clusters – but now what?

Labelled data is not the problem. It's data collection.

Ask simple questions, even for complex tasks – ideally binary

- o better annotation speed
- o better, easier-to-measure reliability
- o in theory: **any task** can be broken down into a sequence of binary (yes or no) decisions it just makes your gradients sparse

Active learning with pattern bootstrapping

- o tell the computer the **rules**, annotate the **exceptions**
- o build rules semi-automatically using word vectors
- o avoid annotating what the model already knows
- o instead, let the statistical model suggest examples it's **most uncertain** about

Terminology Lists

Charlottesville

Terminology Lists


```
"label": "GPE",
"pattern": [
   {"lower": "virginia"}
```

Named Entity Recognition

Microsoft Announces Major Solar Buy in Virginia GPE

SOURCE: The New York Times

Text Classification

COMPENSATION

Morgan Stanley's **James Gorman Receives \$7.4 Million** in Stock, Options

SOURCE: Bloomberg


```
"label": "COMPENSATION",
"pattern": [
   {"ent_type": "PERSON"},
   {"lemma": "receive"},
   {"ent_type": "MONEY"}
```

Text Classification

COMPENSATION

Morgan Stanley's **James Gorman Receives \$7.4 Million** in Stock, Options

SOURCE: Bloomberg

Iterate on your code and your data.

EXPLOSIO

the part you work on

"Regular" programming

"Regular" programming

Machine Learning

If you can master annotation...

- o ... you can try out **more ideas** quickly. Most ideas don't work but some succeed wildly.
- o ... fewer projects will fail. Figure out **what works** before trying to scale it up.
- o ... you can build entirely **custom solutions** and nobody can lock you in.

Thanks!

** Explosion Al explosion.ai

Follow us on Twitter

@_inesmontani

@explosion_ai