ALGEBRA 1B, Lista 3

Niech G i H będą grupami i $n \in \mathbb{N}_{>0}$.

- 1. Niech $f: G \to H$ będzie homomorfizmem, $G_1 \leqslant G$ i $H_1 \leqslant H$. Udowodnić, że $f(G_1) \leqslant H$ i $f^{-1}(H_1) \leqslant G$.
- 2. Udowodnić, że funkcja

$$f: G \to G, \quad f(g) = g^2$$

jest homomorfizmem wtedy i tylko wtedy, gdy G jest przemienna.

3. Niech $g \in G$. Przyjmijmy, że $\min \emptyset = \infty$. Udowodnić, że:

$$rzad(g) = min\{k \in \mathbb{N}_{>0} \mid g^k = 1\}.$$

4. Udowodnić, że jeśli $f:G\to H$ jest monomorfizmem, to dla każdego $g\in G$ mamy

$$rzad(g) = rzad(f(g)).$$

- 5. Pokazać, że nie istnieje monomorfizm $(\mathbb{Z}_3, +_3) \to (\mathbb{R} \setminus \{0\}, \cdot)$.
- 6. Udowodnić, że $D_6 \ncong A_4$.
- 7. Udowodnić, że $S^1 \cong SO_2(\mathbb{R})$.
- 8. Znaleźć monomorfizm $(\mathbb{Z}_n, +_n) \to (\mathbb{C} \setminus \{0\}, \cdot)$.
- 9. Znaleźć monomorfizm $f: S_n \to \mathrm{GL}_n(\mathbb{Q})$.
- 10. Udowodnić, że $(\mathbb{Q}, +)$ nie jest skończenie generowana.
- 11. Udowodnić, że jeśli $\sigma, \tau \in S_n$ są rozłączne, to

$$\sigma \circ \tau = \tau \circ \sigma, \quad X_{\sigma \circ \tau} = X_{\sigma} \cup X_{\tau}.$$

- 12. Wykazać, że każda permutacja parzysta z S_n $(n \ge 3)$ jest złożeniem pewnej liczby cykli długości 3 (niekoniecznie rozłącznych).
- 13. Udowodnić, że $S_n = \langle (12), (12 \dots n) \rangle$.