

On the Equation ax - by = 1Author(s): J. W. S. Cassels

Source: American Journal of Mathematics, Vol. 75, No. 1 (Jan., 1953), pp. 159-162

Published by: The Johns Hopkins University Press Stable URL: http://www.jstor.org/stable/2372624

Accessed: 05/09/2011 01:48

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics.

ON THE EQUATION $a^x - b^y = 1.*$

By J. W. S. Cassels.

1. The solution of the title equation in integers x, y for given integers a > 1, b > 1 has been dicussed by W. J. LeVeque [2]. The second paragraph of this note shows that y is odd if x > 1, and that any prime divisor of y which is less than x divides a, and vice versa. The third paragraph proves simply a stronger form of LeVeque's theorem, that there is at most one solution, which can be specified completely. The third paragraph uses the results of the second only to secure a slight refinement of the enunciation.

It is conjectured that there are only a finite number of nontrivial solutions a, b, x, y of the equation.

2. We first have the trivial

Theorem I. (x, y) = 1.

Proof. Suppose that $x = px_1$, $y = py_1$ for p > 1. Then $a_1^p - b_1^p = 1$ with $a_1 = a^{x_1}$, $b_1 = b^{y_1}$; which is clearly impossible.

THEOREM II. If x > 1, then $2 \uparrow y$.

Proof. Otherwise, by the preceding argument we should have a solution a, b, x, y of $a^x - b^2 = 1$ with odd prime x. But then $1 + ib = \epsilon (p + iq)^x$, $p^2 + q^2 = a$ for some unit ϵ and by replacing p + iq by $\eta(p + iq)$ with a suitable unit η we may suppose that $\epsilon = 1$. Equating coefficients we now have

$$1 = p(p^{x-1} - \frac{1}{2}x(x-1)p^{x-3}q^2 + \cdots \pm xq^{x-1}),$$

and so $p = \pm 1$. By considering conguences modulo x we have p = 1, and so

(1)
$$(x-1)/2 - (x-1)(x-2)(x-3)q^2/4! + \cdots \pm q^{x-1} = 0.$$

Since $2 \mid (1 \pm i)^x$ we have $\mid q \mid > 1$. Let r be a prime divisor of q. We shall show that all the terms on the left of (1) except the first are

^{*} Received September 8, 1952.

divisible by a higher power of r than that dividing (x-1)/2; which contradicts (1). It is enough to show that for $k \ge 2$ the fraction

$$2(x-2)\cdot\cdot\cdot(x-2k+1)q^{2k-3}/(2k)!$$

$$= (x-2)\cdot\cdot(x-2k+1)/(2k-2)!\cdot q^{2k-3}/k(2k-1)$$

does not have r in its denominator when reduced. The first factor is an integer. For $k \ge 4$ we have $r^{2k-3} \mid q^{2k-3}$, but $r^{2k-3} \ge 2^{2k-3} > k(2k-1)$, so then the statement is certainly true. For k=2,3 we have $r \mid q^{2k-3}$, but $r^2 \upharpoonright k(2k-1)$ since k(2k-1)=6,15 respectively is squarefree, and again the statement is true. Hence the assumption that $a^x-b^2=1$ is soluble leads to a contradiction.

We require two trivial lemmas.

LEMMA 1. Let p be an odd prime and c > 1 an integer. Then $f = (c^p - 1)/(c - 1)$ is prime to p or divisible by p but not by p^2 according as $c \not\equiv 1$ (p) or $c \equiv 1$ (p). The number f, f/p respectively is odd, greater than 1 and prime to c - 1.

Further, $g = (c^p + 1)/(c + 1)$ is prime to p or divisible by p but not by p^2 according as $c \not\equiv -1$ (p) or $c \equiv -1$ (p). The number g, g/p respectively is odd and prime to c + 1; it is greater than 1 except when

$$(2) c=2, p=3.$$

Proof. If q is a prime divisor of c-1, then $f=1+c+\cdots c^{p-1} \equiv p$ (q) and so $q \mid f$ implies q=p. If c=1+rp, then

$$f \equiv 1 + (1 + rp) + (1 + 2rp) + \cdots + (1 + (p-1)rp) \equiv p(p^2)$$

and so the greatest common divisor of c-1, f is 1 or p. In particular f is odd if c is odd. If c is even, then $f \equiv 1/1$ (2) is again odd. Finally, it is obvious that f > p.

As before, the greatest common divisor of g and c+1 is 1 or p, and g is odd. Also

$$\frac{g}{p} = \frac{c^p + 1}{p(c+1)} \ge \frac{2^p + 1}{p \cdot 3} \ge \frac{2^3 + 1}{3 \cdot 3} = 1,$$

with equality in both places only if c = 2, p = 3.

LEMMA 2. Let c > 1. If c is even, then c + 1, c - 1 are coprime. If c is odd, then one of c + 1, c - 1 say $c \pm 1$, is not divisible by 4; and then $\frac{1}{2}(c \pm 1)$ is prime to $c \mp 1$.

Proof. Clear

We can now prove

THEOREM III. (i) If p is prime and $p \mid x, p \uparrow b$, then p > y.

(ii) If p is prime and $p \mid y, p \uparrow a$, then p > x.

Proof. We first prove (i) and put $x = px_1$. By Lemmas 1, 2 the numbers $(a^x - 1)/(a^{x_1} - 1)$ and $a^{x_1} - 1$ are coprime, and so $a^{x_1} - 1 = c^y$ for some $c \mid b$. Hence $b^y = (c^y + 1)^p - 1$ and so $b > c^p$, i. e. $b \ge c^p + 1$. Then

$$(c^p+1)^y \le b^y = (c^y+1)^p - 1 < (c^y+1)^p$$

and so p > y ([1] Theorem 19).

For (ii) we first note that p > 2 by Theorem II. Put $y = py_1$ and so, as before, $b^{y_1} + 1 = d^x > 1$ for some $d \mid a$. Hence $a^x = (d^x - 1)^p + 1$ and so $a \le d^p - 1$. Thus

$$(d^{p}-1)^{x} \ge a^{y} = (d^{x}-1)^{p}+1 > (d^{x}-1)^{p},$$

and so p > x.

We call a solution nontrivial if x > 1, y > 1 and deduce

COROLLARY 1. For a non-trivial solution it is impossible that

$$(x, b) = (y, a) = 1.$$

For a later purpose we require

Corollary 2. There are no nontrivial solutions of $2^x - b^y = 1$.

Proof. If y > 1, b > 1 then x > 1 and so y is odd by Theorem II. Hence each prime factor of y is greater than x and in particular $b^y > 2^y > 2^x$, a contradiction.

3. The following theorem enables all solutions of the title equation to be found for given a, b.

THEOREM IV. Let

$$a^x - b^y = 1,$$

where x, y, a > 1, b > 1 are positive integers and the equation is not

$$3^2 - 2^3 = 1.$$

Suppose that ξ, η are the least positive solutions of

$$a^{\xi} \equiv 1 \quad (B), \qquad b^{\eta} \equiv -1 \quad (A),$$

where A, B are the products of the odd primes dividing a, b respectively.

Then $x = \xi$, $y = \eta$; except that x = 2, y = 1 may occur if $\xi = \eta = 1$ and a + 1 is a power of 2.

Proof. We first prove $y = \eta$. Clearly $\eta \mid y$. Suppose y/η is even. Then $b^y \equiv (-1)^{y/\eta} \equiv 1 \not\equiv -1$ (A) unless A = 1, i. e. unless a is a power of 2. But then $a^x = b^y + 1 \equiv 2$ (4) and so $a^x = 2$, b = 1; which is excluded. Hence y/η is odd. Suppose that y/η is divisible by an odd prime p, say $y = py_1, \eta \mid y_1$. Then by the second part of Lemma 1 there is an odd prime q dividing $(b^y + 1)/(b^{y_1} + 1)$ (and so a) but not dividing $b^{y_1} + 1$; except in the case (2) which corresponds to (4). Hence $b^{y_1} + 1 \not\equiv 0$ (q) and a fortiori $b^{y_1} \not\equiv -1$ (A). The contradiction proves $y = \eta$.

We now prove the statements about x. Clearly $\xi \mid x$. The proof that x/ξ is a power of 2 runs exactly as before using now the first part of Lemma 1. If $2\xi \mid x$, say $x = 2x_1$, $\xi \mid x_1$, then a similar argument using Lemma 2 leads to an absurdity unless $a^{x_1} + 1$ contains no odd prime factors, i. e. $a^{x_1} + 1 = 2^m$ for some m > 0. If now $x_1 \neq \xi$, then $2 \mid x_1$ and so $2^m = a^{x_1} + 1 \equiv 2$ (4) i. e. m = a = 1, which is excluded.

Hence $x = \xi$ or $x = 2\xi$, the latter only if

$$(5) a^{\xi} + 1 = 2^m.$$

But (5) implies $\xi = 1$ by Theorem III, Corollary 2. Now $a + 1 = 2^m$, $a^2 - 1 = b^y$ and hence $a - 1 = 2c^y$ for some odd c, where $y \mid (m + 1)$. Finally, $2 = 2^m - 2c^y$ and hence $1 = 2^{m-1} - c^y$. By Theorem III, Corollary 2 this implies c = 1 or $y = \eta = 1$. The case c = 1 gives a = 3 and so the exception (4) of the theorem; and the case $y = \eta = 1$ gives the exception at the end of the enunciation.

TRINITY COLLEGE, CAMBRIDGE, ENGLAND.

REFERENCES.

^[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge, 1934.

^[2] W. J. LeVeque, "On the equation $a^x - b^y = 1$," American Journal of Mathematics, vol. 74 (1952), pp. 325-331.