Miscellaneous Paper CHL-97-10 October 1997

1995 Annual Index of Wind Wave Directional Spectra Measured at Harvest Platform

by Charles E. Long

| Dept. | Company | Compan

Approved For Public Release; Distribution Is Unlimited

19971106 138

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

1995 Annual Index of Wind Wave Directional Spectra Measured at Harvest Platform

by Charles E. Long

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers

Washington, DC 20314-1000

Under Work Unit 32484

Waterways Experiment Station Cataloging-in-Publication Data

Long, Charles E.

1995 annual index of wind wave directional spectra measured at Harvest Platform / by Charles E. Long; prepared for U.S. Army Corps of Engineers.

115 p. : ill. ; 28 cm. — (Miscellaneous paper ; CHL-97-10)

Includes bibliographic references.

1. Wind waves — California — Point Conception — Statistics. 2. Ocean waves — California — Point Conception — Statistics. 3. Water waves — California — Point Conception — Statistics. 4. Frequency spectra. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Coastal and Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Title: Index of wind wave directional spectra measured at Harvest Platform. VI. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station); CHL-97-10. TA7 W34m no.CHL-97-10

Contents

Preface
1—Introduction
2—Directional Gauge 3
Gauge Location and Array Geometry3Pressure Gauges and Data Path3Collection Schedule and Data Set Size4
3—Primary Data Analysis
Error Checking
4—Characterizing Parameters
Wave Height, Peak Frequency, and Peak Direction 14 Circular Moment Parameters 15 Quartile Parameters 16 Summary of Parameters 18
5—Accessing Spectra
5—Summary
References
Appendix A: Table of Collection Times and Bulk Parameters
Appendix B: Time Series Graphs of Bulk Parameters
Appendix C: Listing of FORTRAN Computer Program
Appendix D: Listing of Sample Data File

Appendix E: Notation	 	 ٠.	 	٠.	٠.	 	 	 	-	 	٠.	٠.	 . E1	
SF 298														

Preface

This report indexes parameters of and describes means of access to a series of wind wave frequency-direction spectral observations made with a six-element, high-resolution directional wave gauge at Texaco Oil Company's Harvest Platform. The work was motivated by a need to publicize these results so they can be used by all investigators interested in natural wind wave energy distributions at a deepwater site near the exposed California coast. This effort was authorized by Headquarters, U.S. Army Corps of Engineers (HQUSACE), under Civil Works Coastal Navigation Hydrodynamics Program Research Work Unit 32484, "Directionality of Waves in Shallow Water." Funds were provided through the Coastal and Hydraulics Laboratory (CHL), U.S. Army Engineer Waterways Experiment Station (WES), under the program management of Ms. Carolyn M. Holmes, CHL. Messrs. John H. Lockhart, Jr., Charles Chesnutt, and Barry W. Holliday were HQUSACE Technical Monitors.

This report was prepared by Dr. Charles E. Long, under the direct supervision of Mr. William A. Birkemeier, Chief, Field Research Facility (FRF), CHL, and Mr. Thomas W. Richardson, Chief, Engineering Development Division (EDD), CHL. General supervision was provided by Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Director and Assistant Director, CHL, respectively.

Mr. David D. McGehee, Prototype Measurement and Analysis Branch, EDD, CHL, was instrumental in coordinating the efforts of CHL and the State of California in data archiving and gauge maintenance by the Coastal Data Information Program (CDIP) at Scripps Institution of Oceanography (SIO). Data transfer between SIO and the FRF was coordinated under the direction of Dr. Richard J. Seymour, CDIP, with particularly helpful assistance from Ms. Julianna Thomas, CDIP.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Robin R. Cababa, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

In late December 1992, a high-resolution directional wave measuring system became fully operational on Texaco Oil Company's Harvest Platform to make long-term observations of the deep-ocean wind wave climate in the vicinity of the Southern California Bight (Figure 1). Such observations are necessary to

Figure 1. Southern California Bight and location of Harvest Platform

provide ground truth for interpreting satellite imagery of the ocean surface, test evolution and propagation models of open-ocean wind waves, and establish seaward boundary conditions for models of wave propagation and transformation from deep water to coastal regions. The purpose of this report is to encourage broad use of these observations by parametrically describing 2,433 wind wave frequency-direction spectral estimates obtained in calendar year 1995, and identifying a means whereby an investigator can access these spectra. These results are from the third year of collection. Results from the first and second years are described by Long (1995a) and Long (1996), respectively.

For completeness, this report briefly describes the directional gauge geometry and data collection scheme (Chapter 2), error checking procedures and basic directional estimation algorithm (Chapter 3), and definitions of parameters used to characterize the observations (Chapter 4). Appendix A contains a table of these characterizing parameters, and acts as an index for the 1995 database. Time series graphs of these parameters are presented in Appendix B. Chapter 5 describes how data can be obtained as well as the data format and file-naming scheme. Data format is illustrated in Appendix C, which lists a FORTRAN program that can read a data file, and Appendix D, which shows a sample data file.

2 Directional Gauge

Gauge Location and Array Geometry

As indicated in Figure 1, Harvest Platform is located about 20 km (10.8 n.m.) west of Point Conception, California, in water with a mean depth of 202 m (663 ft). Waves originating in the greater Pacific Ocean can reach the platform via relatively unobstructed paths from the north, west, and south. The mean water depth ensures deepwater wave conditions for waves with lengths shorter than about 400 m (1,312 ft), or frequencies higher than about 0.06 Hz. Spectra reported herein are processed at frequencies between 0.04 and 0.16 Hz, so it is likely that directional spectra for frequencies between 0.04 and 0.06 Hz are affected somewhat by refraction.

Directional wave detection is achieved with a spatial array of six subsurface pressure gauges mounted on the Harvest Platform framework. Figure 2 shows a plan view of relative gauge positions, and the array orientation in a geophysical reference frame. Gauge spacing takes advantage of the maximum horizontal dimensions of Harvest Platform, and allows directional estimation for waves in the frequency band noted in the previous paragraph. All gauges are mounted at a depth of 15.72 m (51.57 ft) below mean sea level, which ensures they will not protrude through the sea surface under extreme wave conditions that have been observed at this site. To avoid aliasing in directional estimation, the lower resolution wavelength limit is two times the shortest lag spacing of the array. In the Harvest Platform array, this limit is 45.4 m (149.0 ft), which corresponds to a wave frequency of about 0.18 Hz. Signal analysis used in this report was limited further to 0.16 Hz to be conservatively clear of aliasing effects.

Pressure Gauges and Data Path

Individual sensors were Model TJE absolute pressure sensors manufactured by Sensotec Transducer Company with operating ranges of 0 to 100 psia (0 to 689.5 kPa), and a manufacturer's stated accuracy of ± 0.1 percent of full scale. The six gauges on Harvest Platform were sampled simultaneously at 1 Hz,

Personal communication, 1991, Dr. R. J. Seymour, Coastal Data Information Program (CDIP), Scripps Institution of Oceanography (SIO).

Figure 2. Dimensions and orientation of the Harvest Platform array

digitized, and then fed to a concentrator where the set of samples was buffered. Buffered signals were periodically transmitted to shore through a telephone connection, and ultimately stored as collection files on the main computer of the Coastal Data Information Program (CDIP), Ocean Engineering Research Group, Scripps Institution of Oceanography, La Jolla, CA. Each collection time series is 8,192 sec (2 hr 16 min 32 sec) in length.

Data processing for results presented in this report was not performed at the CDIP site, and so is independent of the processing done and published by that group (Scripps Institution of Oceanography, *Monthly reports*). Data collections were transferred to the Field Research Facility (FRF) of the U.S. Army Engineer Waterways Experiment Station's Coastal and Hydraulics Laboratory for processing by high-resolution techniques that are different from those used by CDIP. Data transfer was accomplished over an electronic network.

Collection Schedule and Data Set Size

Collections were made eight times daily, at approximately 3-hr intervals. Nominal collection start times were 0200, 0500, 0800, 1100, 1400, 1700, 2000, and 2300 Greenwich Mean Time (GMT). Actual collection start times varied by several minutes on either side of these nominal start times because the amount of time required to establish a phone link varied from collection to collection. There are several periods of several days duration where collections are virtually continuous. These occur when CDIP shifts to a collection mode intended to

detect tsunami waves, and result in up to 12 directional spectral estimates daily instead of the normal eight.

Of the possible 2,920 collections during calendar year 1995 (assuming eight collections per day), a total of 2,433 collections were acquired and processed as frequency-direction spectra. A number of collections were lost because of the inability to establish or maintain electrically clean phone links to the concentrator on Harvest Platform. An additional number of collections were not processed because data did not satisfy error-checking constraints described in Chapter 3 of this report.

3 Primary Data Analysis

Primary data processing was done by checking data quality through a series of spectral intercomparisons, and, for data of sufficient quality, computing frequency-direction spectra. All steps rely on Fourier analysis of pressure gauge time series data, and subsequent computation of cross-spectral densities. A discussion of error-checking procedures then leads logically to the subsequent steps involved in frequency-direction spectral computation.

Error Checking

The first step in data processing is computation of discrete estimates of frequency autospectra of pressure signals, and surface-corrected cross-spectral densities of signals from all pairs of gauges. Cross spectra are denoted in complex form as $C_{ij}(f_n) - iQ_{ij}(f_n)$, where $C_{ij}(f_n)$ is the coincident spectrum, $Q_{ij}(f_n)$ is the quadrature spectrum, i and j (as subscripts) are indices ranging in value from 1 to 6 that refer to the gauge numbers shown in Figure 2, and f_n is the n^{th} of a set of N discrete frequencies. Frequency autospectra are denoted $S(f_n)$, and, if surface corrected with the linear wave pressure response function (Dean and Dalrymple 1984), are identically equal to $C_{ii}(f_n)$. All spectra are computed using Welch's method (Welch 1967) with standard Fourier analysis techniques (Bendat and Piersol 1971).

In a collection, the 8,192-sec time series from each gauge is analyzed in 15 half-lapped segments of 1,024 sec duration. Each segment is demeaned, tapered with a variance-preserving window, and converted to the frequency domain with a discrete Fourier transform. At this point, the analysis is split into two parts: estimates of pressure autospectra from each gauge at depth, and estimates of surface-corrected cross spectra of sea surface displacement. Raw cross-spectral estimates are formed for all gauge pairs using temporally corresponding transformed segments of pressure data corrected to represent sea surface displacement. Raw autospectral estimates are formed for each of the 15 transform segments for each individual gauge. At the error-checking stage, autospectral estimates are not surface corrected.

¹ For convenience, symbols and abbreviations are listed in the notation (Appendix E).

For both autospectra and cross spectra, smooth estimates are formed by averaging raw estimates over all 15 segments, and averaging results over 10 adjacent frequency bands. Final resolution frequency bandwidth is df = 0.00977 Hz, and the pass band of frequencies ranges from 0.044 to 0.162 Hz, which corresponds to (N =) 13 discrete frequency bands. Degrees of freedom for spectral estimates range from 160 to about 200, depending on the extent to which the second halves of time series segments are correlated with the first halves (Welch 1967).

Autospectral intercomparisons

One part of error checking is a graphic intercomparison of signal means and autospectra, an example of which is shown in the lower left graph of Figure 3. Frequency autospectral estimates of data from all six pressure gauges are plotted on the same set of axes from the first resolvable frequency band out to the temporal Nyquist frequency. If a pressure gauge is malfunctioning, its autospectrum will deviate obviously from the main group of curves.

The small inset graph in the lower left graph of Figure 3 is an analysis of signal means. The closely packed group of symbols of nearly constant value represents the deviations of the segment means from the median of the set of segment means for each of the 15 segments. If a gauge develops signal drift problems, it will be obvious as a symbol that deviates from the main group of symbols. Triangle symbols in the small inset graph show the deviation of the indicated water surface from mean sea level (gauge height off the bottom plus median of gauge mean depths for each segment minus the total long-term mean ocean depth of 202 m), and is therefore an indication of tide stage at Harvest Platform for each of the 15 segments in a collection.

Coherence and phase comparisons

The next step in error checking is computation of a dimensionless cross spectrum $M_{ii}(f_n)$, defined by

$$M_{ij}(f_n) = \frac{C_{ij}(f_n) - iQ_{ij}(f_n)}{\sqrt{C_{ii}(f_n)} \sqrt{C_{ii}(f_n)}}$$
(1)

Equation 1 is used in error checking in the form of coherence and phase estimates. Coherence of signals from gauges i and j at discrete frequency f_n is

$$\Gamma_{ij}^{2}(f_{n}) = |M_{ij}(f_{n})|^{2} \tag{2}$$

Signal phase difference of gauge i relative to gauge j at frequency f_n is

$$\phi_{ij}(f_n) = \tan^{-1}\left(\frac{\operatorname{Im}[M_{ij}(f_n)]}{\operatorname{Re}[M_{ij}(f_n)]}\right)$$
(3)

Figure 3. Autospectral intercomparison and frequency-direction spectral estimate

where Re[] and Im[] are the real and imaginary parts, respectively, of the entity contained in square brackets.

Signals from multiple pairs of gauges having redundant lag (or spatial separation) vectors in a uniform wave field are expected to have identical cross spectra. In the Harvest Platform array there are several such sets of pairs as can be seen in Figure 2. In terms of coherences and phases, one would expect

$$\Gamma_{14}(f_n) = \Gamma_{23}(f_n) = \Gamma_{56}(f_n)$$
 $\Phi_{14}(f_n) = \Phi_{23}(f_n) = \Phi_{56}(f_n)$ (4)

as well as

$$\Gamma_{12}(f_n) = \Gamma_{43}(f_n)$$
 $\Phi_{12}(f_n) = \Phi_{43}(f_n)$ (5)

and

$$\Gamma_{15}(f_n) = \Gamma_{46}(f_n)$$
 $\Phi_{15}(f_n) = \Phi_{46}(f_n)$ (6)

Figure 4 is an example of coherence and phase comparisons, showing graphs of the functions named in Equations 4, 5, and 6 (upper, middle, and lower sets of graphs in Figure 4, respectively). This type of error checking is useful for isolating cases where a data point is dropped during telephone transmission from the data buffer, resulting in an apparent temporal shift of data from one gauge relative to data from the other gauges. Such a shift causes a significant phase error in cross spectra, and is readily apparent in a graphic display like Figure 4.

The combined effects of intercomparing frequency autospectra and coherence and phase functions for the pressure gauge array on Harvest Platform provide clear indications of faulty or suspect data. When such conditions are detected in a collection, frequency-direction spectra are not computed. Such rigorous examination of the data ensures that only high-quality time series are used in directional estimation.

Frequency-Direction Spectra

Estimates of frequency-direction spectra are made using the iterative maximum likelihood estimator (IMLE) developed by Pawka (1983). Estimates are made by iterative approximations of directional distribution functions $D(f_n, \theta_m)$, which are related to corresponding frequency-direction spectra $S(f_n, \theta_m)$ by

$$D(f_n, \theta_m) = \frac{S(f_n, \theta_m)}{S(f_n)} \tag{7}$$

where θ_m is a discrete angle indicating the direction from which wave energy arrives, measured counterclockwise from true north (Figure 2), and $S(f_n)$ is the (surface-corrected) frequency spectrum. The direction index m ranges from m=1 to m=M=181, while direction ranges from $\theta_1=-180$ deg to $\theta_{181}=180$ deg in steps of $d\theta=2$ deg. The directional distribution function has the property

$$\sum_{m=1}^{M} D(f_n, \theta_m) d\theta = 1$$
 (8)

Figure 4. Sample coherence and phase function comparisons

which must be satisfied in all estimates.

The lowest order estimate is the maximum likelihood estimate described by Davis and Regier (1977), which takes the form

$$D_0(f_n, \theta_m) = \frac{a_0}{d\theta \sum_{i=1}^{I} \sum_{j=1}^{I} M_{ij}^{-1}(f_n) e^{i\vec{k}_n(\theta_m) \cdot (\vec{x}_i - \vec{x}_j)}}$$
(9)

where a_0 is a factor of order 1 that is used to satisfy Equation 8, I is the number of gauges, the $M_{ij}^{-1}(f_n)$ are elements of the inverse of the dimensionless cross-spectral matrix defined by Equation 1, $\vec{k}_n(\theta_m)$ is wave number vector, and \vec{x}_i and \vec{x}_j are coordinate position vectors of gauges i and j, respectively. The wave number vector $\vec{k}_n(\theta_m)$ is

$$\vec{k}_n(\theta_m) = k_n \cos \theta_m \hat{e}_x + k_n \sin \theta_m \hat{e}_y \tag{10}$$

where $\hat{\boldsymbol{e}}_x$ and $\hat{\boldsymbol{e}}_y$ are spatial coordinate unit vectors in the x- and y-directions, respectively, and k_n is wave number vector magnitude, which is related with gravitational acceleration g to frequency f_n and water depth d through the linear wave dispersion relation

$$4\pi^2 f_n^2 = g k_n \tanh k_n d \tag{11}$$

As used in this report, horizontal coordinates are such that x increases to the north, and y increases to the west.

An IMLE result is achieved by iterating through several computational steps. At the r^{th} iteration, an estimate ${}^rM_{ij}(f_n)$ of the observed cross-spectral matrix $M_{ij}(f_n)$ is computed from the previous directional distribution function estimate $D_{r-1}(f_n,\theta_m)$ by

$${}^{r}M_{ij}(f_{n}) = \sum_{m=1}^{M} D_{r-1}(f_{n}, \theta_{m}) e^{i\vec{k}_{n}(\theta_{m})\cdot(\vec{x}_{i} - \vec{x}_{j})} d\theta$$
 (12)

A new intermediate directional distribution function estimate $D_r^{\prime}(f_n, \theta_m)$ is computed using the cross-spectral matrix of Equation 12 in the expression

$$D_{r}^{I}(f_{n}, \theta_{m}) = \frac{a_{r}}{d\theta \sum_{i=1}^{I} \sum_{j=1}^{I} {^{r}M_{ij}^{-1}(f_{n}) e^{i\vec{k}_{n}(\theta_{m})\cdot(\vec{x}_{i} - \vec{x}_{j})}}$$
(13)

where a_r is adjusted so that Equation 8 is satisfied for $D_r'(f_n, \theta_m)$. A correction is found for $D_r'(f_n, \theta_m)$ by first computing

$$\lambda_r(f_n, \theta_m) = 1 - \frac{D_r'(f_n, \theta_m)}{D_0(f_n, \theta_m)} \tag{14}$$

and then finding a new directional distribution function estimate $D_r(f_n, \theta_m)$ from

$$D_r(f_n, \theta_m) = D_r'(f_n, \theta_m) \left[1 + \frac{|\lambda_r(f_n, \theta_m)|^{\beta+1}}{\gamma \lambda_r(f_n, \theta_m)} \right]$$
(15)

The parameters β and γ in Equation 15 control the rate of convergence of the estimator. As used by Pawka (1983), the values $\beta = 1$ and $\gamma = 5$ were used for all estimates discussed in this report.

In each iterative loop, a convergence check ϵ_r is computed as the sum of the squares of the magnitudes of the differences of elements of the estimated cross spectrum of Equation 12 and the measured cross spectrum of Equation 1. This takes the form

$$\epsilon_r = \sum_{i=1}^{I} \sum_{j=1}^{I} | {}^{r} M_{ij}(f_n) - M_{ij}(f_n) |^2$$
 (16)

Iteration continues as long as ϵ_r decreases between successive iterations, or until an upper limit R of iterations has been completed. In computations reported herein, R = 30.

Equations 9 to 16 form the basis of the IMLE technique. For the iteration r that satisfies the convergence check, the frequency-direction spectrum at frequency f_n is formed from

$$S(f_n, \theta_m) = S(f_n) D_r(f_n, \theta_m)$$
(17)

The complete frequency-direction spectrum is formed when Equations 9 through 17 are evaluated for all frequencies.

An example of such a spectrum is illustrated in Figure 3. The upper graph is a three-dimensional plot of $S(f_n, \theta_m)$, and the lower right graph is a contour plot of the spectrum. The right panel in the three-dimensional plot is a linear graph of the discrete frequency spectrum $S(f_n)$, which is related to the frequency-direction spectrum through Equations 7 and 8 by

$$S(f_n) = \sum_{m=1}^{M} S(f_n, \theta_m) d\theta$$
 (18)

The left panel in the three-dimension plot is a linear graph of the direction spectrum $S(\theta_m)$, which is the directional analog of the frequency spectrum. The direction spectrum is defined by

$$S(\theta_m) = \sum_{n=1}^{N} S(f_n, \theta_m) df$$
 (19)

Because $S(\theta_m)$ represents total wave energy in each direction bin, it is a particularly useful function from which to derive direction-sensitive characterizing parameters for a given frequency-direction spectrum as a whole. A set of such characterizing parameters is defined in Chapter 4.

Special Notes for 1995

It should be noted that array gauge 6 (Figure 2) failed in early January 1995, and was not repaired until late in 1996. Consequently, most of the 1995 results reported herein are based on a five-element array consisting of gauges 1 through 5. Loss of gauge 6 results in some loss of detailed resolution in directional estimation. Bulk parameters, like mean direction and directional spread, are relatively unaffected, but details of directional modes at the same frequency (e.g., two separate wave trains propagating in directions that differ by a small angle) tend to be less clear.

The quality of error checking is also affected by the loss of gauge 6 because there are no cross-spectral estimates between gauges 2 and 6 to compare with those between gauges 1 and 5 (as displayed in Figure 4) to determine if the timing of gauge 5 is correct. In results presented here, it is assumed that gauge 5 is operating properly unless its frequency spectrum disagrees with frequency spectra from the other four gauges (in intercomparisons like that illustrated in Figure 3), or frequency-direction spectral estimates show unusually large directional spreads.

Additionally, a large storm along the U.S. west coast in December 1995 disrupted communications with Harvest Platform, and repairs were not effected until January 1996. The intensity of this storm is indicated by the rapid and large increase in characteristic wave height shown in Figure B12 for December 12, 1995. Consequently, there are no results for the period 13-31 December, 1995.

4 Characterizing Parameters

To effect a summary description of the Harvest Platform database, frequency-direction spectra are characterized with a set of parameters. These descriptors are called bulk parameters because they are derived from extremal or integral properties of spectra, and so represent only part of the frequently more complicated directional structure of the wind wave field. A more exhaustive treatment of directional spectral structure at Harvest Platform is given by Long (1995b). For the purposes of the present report, nine parameters are used. These parameters are: characteristic wave height, peak frequency, two measures of characteristic direction, two measures of directional spread, two measures of asymmetry of directionally distributed wave energy, and a measure of kurtosis of directional distributions. This chapter contains the mathematical definitions of these parameters.

Wave Height, Peak Frequency, and Peak Direction

Characteristic wave height H_{mo} is defined using the conventional definition of four times the standard deviation of sea surface displacement. H_{mo} can be defined in terms of the full frequency-direction spectrum, the frequency spectrum defined by Equation 18, or the direction spectrum defined by Equation 19. A definition that relates all of these entities is

$$\frac{H_{mo}^{2}}{16} = \sum_{n=1}^{M} \sum_{m=1}^{N} S(f_{n}, \theta_{m}) df d\theta = \sum_{n=1}^{N} S(f_{n}) df = \sum_{m=1}^{M} S(\theta_{m}) d\theta$$
 (20)

It should be noted that H_{mo} reported herein is lower than what would be found in conventional analysis because directional computations were truncated at 0.16 Hz instead of the nominal 0.3-Hz limit for wind waves. Consequently, contributions to H_{mo} from high-frequency parts of wind wave spectra are not represented.

Peak frequency f_p is defined as the discrete frequency at which the frequency spectrum $S(f_n)$ is maximum. This definition is conventional, in that it is the usual characteristic frequency defined for nondirectional gauges. For convenience, Appendix A lists both f_p and its inverse, peak period T_p (= $1/f_p$).

Peak direction θ_p is defined as the direction of maximum variance density in the directional distribution associated with the peak frequency. In symbols, θ_p is the discrete direction at which $S(f_p, \theta_m)$ is a maximum. It is interpreted as the direction of the most energetic waves at the frequency containing the greatest overall energy.

Circular Moment Parameters

Kuik, van Vledder, and Holthuijsen (1988) proposed a useful set of parameters that define mean wave direction, directional spread, skewness, and kurtosis based on circular moments of directional distribution functions. Though derived for directional distributions at individual frequencies, the definitions can be applied to any directional distribution function. For the purposes of characterizing a frequency-direction spectrum as a whole, the direction spectrum $S(\theta_m)$, as defined by Equation 19, is used herein because it represents total wave energy in any given direction arc.

To define a directional distribution function (one that integrates to unit area) from the direction spectrum, $S(\theta_m)$ must be normalized by its own area. By Equation 20, this area is identically $\frac{1}{16}H_{mo}^2$, so the appropriate directional distribution function is

$$D(\theta_m) = \frac{16}{H_{mo}^2} S(\theta_m) \qquad m = 1, 2, ..., M$$
 (21)

Circular moments in terms of $D(\theta_m)$ adapted from definitions by Kuik, van Vledder, and Holthuijsen (1988) are

$$m_1 = \sum_{m=1}^{M} \cos(\theta_m - \theta_0) D(\theta_m) d\theta$$
 (22)

$$n_1 = \sum_{m=1}^{M} \sin(\theta_m - \theta_0) D(\theta_m) d\theta$$
 (23)

$$m_2 = \sum_{m=1}^{M} \cos(2\theta_m - 2\theta_0) D(\theta_m) d\theta$$
 (24)

$$n_2 = \sum_{m=1}^{M} \sin(2\theta_m - 2\theta_0) D(\theta_m) d\theta$$
 (25)

where θ_0 is the mean direction defined by requiring $n_1 = 0$. With this constraint, Equation 23 can be solved to find

$$\theta_0 = \tan^{-1} \left[\frac{\sum_{m=1}^{M} D(\theta_m) \sin \theta_m d\theta}{\sum_{m=1}^{M} D(\theta_m) \cos \theta_m d\theta} \right]$$
(26)

With θ_0 determined by Equation 26, moments m_1 , m_2 , and n_2 can be computed from Equations 22, 24, and 25, respectively.

Kuik, van Vledder, and Holthuijsen (1988) define a measure of directional spread (herein called *circular width*) σ as

$$\sigma = (2 - 2 m_1)^{1/2} \tag{27}$$

a measure of asymmetry of a directional distribution (circular skewness) γ as

$$\gamma = \frac{-n_2}{\left(\frac{1}{2} - \frac{1}{2} m_2\right)^{3/2}} \tag{28}$$

and a measure of the flatness of a directional distribution (circular kurtosis) δ as

$$\delta = \frac{6 - 8 \, m_1 + 2 \, m_2}{\left(2 - 2 \, m_1\right)^2} \tag{29}$$

Quartile Parameters

Two parameters that are modestly more intuitive than the corresponding circular parameters, and are also useful for characterizing spread and asymmetry in a directional distribution function are the quartile spread $\Delta\theta$ and quartile asymmetry A used by Long and Oltman-Shay (1991). The concept is based on the fact that any directional distribution function integrates to unity such that an integral from the direction of minimum energy $\theta_{m_{min}}$ (where m_{min} is the discrete direction index at which minimum energy occurs) to any arbitrary angle creates a function $I(\theta_m - \theta_{m_{min}})$ that increases monotonically from zero to an upper limit of unity. The directions at which this integral (interpolated as necessary from discrete data) has the values $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ are the first quartile, median, and third

quartile directions of the directional distribution, respectively. Differences among these directions then provide information about the spread and asymmetry of the distribution.

Using $D(\theta_m)$ as a representative directional distribution function, the integral function is

$$I(\theta_m - \theta_{m_{min}}) = \sum_{l=m_{min}}^m D(\theta_l) d\theta$$
 (30)

where θ_i is the dummy discrete independent variable of summation, and the cyclic nature of the distribution function is employed if necessary. Quartile directions satisfy

$$I(\theta_{25\%} - \theta_{m_{min}}) = 0.25 \tag{31}$$

$$I(\theta_{50\%} - \theta_{m_{min}}) = 0.50 \tag{32}$$

and

$$I(\theta_{75\%} - \theta_{m_{min}}) = 0.75 \tag{33}$$

A measure of directional spread $\Delta\theta$ is the span of the two middle quartiles

$$\Delta\theta = \theta_{75\%} - \theta_{25\%} \tag{34}$$

and has the specific interpretation that it is the arc subtending the central 50 percent of the energy distribution.

A measure of asymmetry of a distribution is the ratio of the directional width of the third quartile to that of the second quartile. By taking the natural logarithm of this ratio, a symmetric distribution has an asymmetry parameter A near zero, and that for a skewed distribution acquires a positive or negative sign if the skewness is toward larger or smaller angles, respectively. The asymmetry parameter is thus defined as

$$A = \ln \left[\frac{\theta_{75\%} - \theta_{50\%}}{\theta_{50\%} - \theta_{25\%}} \right]$$
 (35)

Summary of Parameters

The nine bulk parameters $(H_{mo}, f_p, \theta_p, \theta_0, \sigma, \gamma, \delta, \Delta\theta, \text{ and } A)$ defined here are useful for classifying general wind wave energy distributions. For reference as an index of processed data from the 1995 collection year, these parameters are listed in Appendix A, and plotted as time series in Appendix B. Graphs in Appendix B provide an overview of the directional wave climate at Harvest Platform, and specific parametric values can be determined from the listing in Appendix A. An evaluation of the accuracy of these parameters, relationships among these parameters, and examples of frequency-direction spectra classified by ranges of these parameters are given by Long (1995b).

5 Accessing Spectra

Frequency-direction spectra computed from Harvest Platform data are currently stored on electro-optical media in binary, unformatted form, and so are not "on line" in the sense of common data networks. Nonetheless, an individual interested in obtaining these spectra can readily do so by communicating with the FRF via:

Surface mail

Chief, Field Research Facility

1261 Duck Road

Kitty Hawk, NC 27949-4472

Telephone

(919) 261-3511

FAX

(919) 261-4432

or any of the following internet addresses:

c.long@cerc.wes.army.mil c.baron@cerc.wes.army.mil w.birkemeier@cerc.wes.army.mil

On request, all or part of the spectral database can be converted to 80-column ASCII format and copied either to portable magnetic tape media or to an anonymous file transfer protocol (ftp) account that is accessible through common computer networks. Data will be in the form of a set of files with one spectral estimate per file. Files will be named HPyymmddhhmm.ASC, where yymmdd represents year, month, and day, and hhmm represents hour and minute (GMT) of a collection start time from which a spectrum is estimated. For convenience, dates and times of parameter listings in Appendix A are in the yymmdd and hhmm mnemonic forms.

On receipt by a user, spectral data files can be read using the format statements shown in the sample FORTRAN program listed in Appendix C. The header of the FORTRAN program listing identifies all the variables contained in a data file. For reference, Appendix D is a listing of a sample data file, and shows locations of variables within the file.

6 Summary

This is the third of a series of four reports describing results from a high-resolution directional wave gauge installed on the Texaco Oil Company Harvest Platform. The purpose of this gauge is long-term monitoring of the directional wind wave climate at a deepwater site that can be used to represent open ocean conditions for waves approaching the coast of southern California. This report indexes parameters of and describes a means of access to 2,433 frequency-direction spectral observations made during calendar year 1995.

The primary intent of this report is to publicize these observations so that they can be used by researchers interested in seaward boundary conditions in coastal wave propagation models, studies of ocean wave evolution, comparison studies with locally deployed low-resolution directional wave gauges, and ground truth in remote sensing research. Improved knowledge resulting from such studies will enhance abilities to model the physics of open ocean wave processes, and the consequent nearshore wave climate required in coastal engineering computations as such waves propagate landward.

References

- Bendat, J. S., and Piersol, A. G. (1971). Random data: Analysis and measurement procedures. Wiley-Interscience, New York.
- Davis, R. E., and Regier, L. A. (1977). "Methods for estimating directional wave spectra from multi-element arrays," *Journal of Marine Research* 35, 453-77.
- Dean, R. G., and Dalrymple, R. A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs, NJ.
- Kuik, A. J., van Vledder, G. Ph., and Holthuijsen, L. H. (1988). "A method for the routine analysis of pitch-and-roll buoy wave data," *Journal of Physical Oceanography* 18, 1020-34.
- Long, C. E. (1995a). "1993 annual index of wind wave directional spectra measured at Harvest Platform," Miscellaneous Paper CERC-95-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . (1995b). "Directional wind wave characteristics at Harvest Platform," Technical Report CERC-95-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . (1996). "1994 annual index of wind wave directional spectra measured at Harvest Platform," Miscellaneous Paper CERC-96-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Long, C. E., and Oltman-Shay, J. M. (1991). "Directional characteristics of waves in shallow water," Technical Report CERC-91-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Pawka, S. S. (1983). "Island shadows in wave directional spectra," *Journal of Geophysical Research* 88, 2579-91.
- Scripps Institution of Oceanography. *Monthly reports*. Coastal Data Information Program, University of California, San Diego.

Welch, P. D. (1967). "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms," *IEEE Transactions on Audio and Electroacoustics* AU-15, 70-3.

Appendix A Table of Collection Times and Bulk Parameters

Table Collec		Times	and E	Bulk P	aram	eters				-	
Date	Time GMT	H _{mo} m	f _ρ Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
950101 950101 950101 950101 950101 950101 950102 950102 950102 950102 950102 950103 950103 950103 950103 950103 950104 950104 950104 950104 950104 950104 950104	0158 0458 0758 1057 1357 1357 1657 2014 2257 0157 0458 1358 1657 1958 2258 0458 1358 1657 2257 0158 0457 0758 1151 1658 1958 2257	3.20 2.73 2.51 2.55 2.61 2.63 2.73 2.85 3.16 3.48 3.26 2.81 2.66 3.11 3.71 3.49 3.69 3.73 3.73 3.72 3.54 2.87 4.14 4.39 4.26	0.074 0.064 0.064 0.064 0.064 0.074 0.074 0.054 0.054 0.054 0.064 0.064 0.074 0.074 0.074 0.074 0.074	13.6 15.6 15.6 15.6 15.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13	82 78 82 80 80 78 70 74 74 74 82 80 84 88 80 84 86 82 82 84 86 86 88 88	87 87 89 89 87 85 85 85 85 87 91 102 90 91 102 91 102 114 111	0.41 0.45 0.49 0.47 0.45 0.46 0.46 0.45 0.42 0.44 0.50 0.66 0.53 0.54 0.55 0.57 0.75 1.06 0.66 0.75	0.65 0.67 0.60 0.50 0.84 1.13 0.90 0.54 0.58 0.69 0.73 0.77 0.96 0.94 1.29 1.33 1.34 1.42 1.21	7.13 5.66 5.43 5.69 5.86 6.57 5.77 5.25 6.30 7.41 6.99 7.41 6.35 5.50 3.98 5.16 5.23 5.34 4.95 4.91 5.17 3.75 1.69 3.10 2.85 3.29	22 28 29 29 27 20 26 31 26 23 20 25 25 27 23 31 31 28 44 118 64 52 46	0.24 0.40 0.47 0.37 0.49 0.33 0.37 0.17 0.16 0.49 0.43 1.01 0.69 0.42 0.62 0.62 0.62 0.62 0.62 0.62
950105 950105 950105 950105	0158 0458 0757 1731	4.02 3.91 4.16 4.19	0.093 0.093 0.074 0.083	10.7 10.7 13.6 12.0	90 88 84 86	106 99 93 87	0.56 0.56 0.55 0.47	0.47 0.32 0.18 0.38	3.87 3.98 4.12 5.86	40 39 35 25	0.31 0.41 0.60 0.01
									(Sh	eet 1	of 47)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
950105 950105	1958 2257	3.99 3.80	0.083 0.083	12.0 12.0	86 88	86 86	0.46 0.45	0.45 0.49	6.02 6.24	24 25	0.05 -0.05
950106 950106 950106 950106 950106	0758 1058 1657 1957 2257	3.95 3.94 3.09 2.46 2.77	0.083 0.083 0.054 0.054 0.054	12.0 12.0 18.5 18.5 18.5	74 76 84 84 80	74 74 82 88 111	0.47 0.46 0.45 0.61 1.08	0.39 0.44 0.37 1.96 1.92	5.46 6.34 6.97 6.60 2.24	26 23 23 20 124	-0.09 -0.18 -0.04 0.31 1.84
950107 950107 950107 950107 950107 950107 950107	0148 0458 0751 1057 1356 1957 2258	3.45 3.67 3.58 3.36 3.32 4.28 5.54	0.064 0.064 0.054 0.054 0.054 0.064	15.6 15.6 15.6 18.5 18.5 15.6	84 80 80 82 78 86 86	124 113 114 114 108 93 89	1.05 0.80 0.76 0.76 0.64 0.46	1.09 0.62 0.54 0.63 0.48 0.76 0.30	2.04 2.69 2.44 2.76 2.98 5.75 6.03	106 70 73 67 53 24 22	0.79 0.36 0.51 0.30 0.23 0.65 0.24
950108 950108 950108 950108 950108	1058 1358 1658 1957 2258	3.83 3.49 3.58 3.85 4.06	0.064 0.074 0.074 0.074 0.074	15.6 13.6 13.6 13.6 13.6	82 84 80 76 78	89 90 87 82 82	0.43 0.43 0.41 0.41 0.40	1.11 0.98 0.72 0.82 0.86	7.70 7.39 7.81 7.17 8.15	21 21 21 22 20	0.46 0.49 0.35 0.39 0.32
950109 950109 950109 950109 950109 950109 950109 950109	0158 0451 0756 1107 1354 1651 1958 2258	3.63 3.26 2.66 2.63 2.97 3.70 4.09 4.26	0.074 0.083 0.074 0.083 0.083 0.074 0.054 0.064	13.6 12.0 13.6 12.0 12.0 13.6 18.5	78 80 84 88 82 80 80 82	85 88 92 93 91 87 89	0.42 0.44 0.47 0.44 0.42 0.39 0.43 0.64	1.02 0.98 0.86 0.84 0.78 0.66 1.27	7.77 7.37 6.59 7.26 6.91 7.67 7.84 4.53	22 24 26 22 22 21 21 30	0.44 0.38 0.33 0.20 0.38 0.53 0.46 0.68
950110 950110 950110 950110 950110 950110	0158 1052 1401 1658 1958 2258	4.48 4.76 4.61 4.64 4.14 4.01	0.064 0.064 0.064 0.074 0.064 0.064	15.6 15.6 15.6 13.6 15.6	88 72 76 76 80 82	107 93 91 91 95 93	0.73 0.68 0.60 0.57 0.55 0.54	1.32 1.50 1.61 1.27 0.87 1.01	3.18 3.52 4.24 3.96 4.02 4.48	51 45 33 34 35 30	0.99 1.15 0.87 0.69 0.54 0.37
950111 950111 950111 950111	0158 0458 1358 2251	4.00 4.24 4.62 4.44	0.074 0.074 0.054 0.064	13.6 13.6 18.5 15.6	76 78 82 78	91 87 85 83	0.52 0.50 0.43 0.41	1.02 0.94 1.10 0.96	4.74 5.63 7.84 8.49	31 25 17 19	0.40 0.37 0.14 0.16
950112 950112 950112 950112 950112 950112 950112	0158 0458 1058 1358 1657 1957 2256	4.19 3.90 3.86 3.57 3.41 3.75 3.53	0.064 0.064 0.064 0.064 0.064 0.074 0.064	15.6 15.6 15.6 15.6 15.6 13.6 15.6	80 80 78 76 74 76	84 86 85 85 83 83 83	0.42 0.43 0.40 0.42 0.42 0.42 0.42	0.71 0.90 0.78 1.16 1.21 0.75 0.66	7.94 8.64 8.74 7.75 7.60 7.01 7.89	19 19 19 20 20 25 22	0.32 0.33 0.28 0.37 0.44 0.67 0.50
950113 950113 950113 950113 950113 950113	0158 0458 0758 1058 1148 1400 1718 1959	2.94 2.78 2.65 2.68 2.65 2.22 2.12 2.13	0.064 0.074 0.083 0.074 0.074 0.074 0.083 0.083	15.6 13.6 12.0 13.6 13.6 13.6 12.0	78 78 80 74 72 72 72 76 80	84 85 86 82 81 82 83 83	0.41 0.45 0.45 0.46 0.47 0.48 0.48	0.82 0.63 0.49 0.96 0.88 1.08 1.02	8.71 7.25 6.55 6.36 6.27 6.29 5.92 6.69	19 22 25 24 25 26 26 26 24	0.34 0.31 0.17 0.43 0.43 0.59 0.40 0.25
							<u></u>		(SF	neet 2	of 47)

Table A1 (Continued)											—
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Υ	δ	Δθ deg	А
950113	2259	1.88	0.093	10.7	78	87	0.49	0.85	5.83	28	0.56
950114 950114 950114 950114 950114 950114 950114	0159 0459 0759 1059 1359 1658 2001 2302	2.00 2.00 2.14 2.29 2.38 2.39 2.39 2.83	0.083 0.093 0.064 0.064 0.064 0.064 0.064	12.0 10.7 15.6 15.6 15.6 15.6 15.6	84 86 86 76 82 86 84 82	89 89 87 87 88 89 89	0.45 0.48 0.44 0.43 0.41 0.40 0.43 0.38	0.82 0.62 0.50 0.70 0.68 0.71 0.43 0.40	7.09 6.36 6.93 7.17 8.17 8.96 7.97 9.30	21 22 23 24 20 17 20 18	0.28 0.11 0.03 0.37 0.34 0.24 0.28 0.24
950115 950115 950115 950115 950115 950115 950115	0200 0500 0800 1102 1409 2000 2300	2.87 3.06 3.22 3.19 3.32 3.79 4.14	0.064 0.074 0.074 0.074 0.074 0.064 0.074	15.6 13.6 13.6 13.6 13.6 15.6	88 84 86 86 86 88 86	86 87 90 89 90 90	0.38 0.36 0.36 0.36 0.35 0.39	0.05 0.16 -0.21 -0.23 -0.13 -0.91 -0.75	9.37 10.71 9.46 9.83 9.97 7.68 6.94	19 16 19 16 17 19 24	0.00 0.24 0.26 0.25 0.23 0.16 0.12
950116 950116 950116 950116 950116 950116 950116	0153 0500 0753 1100 1400 1700 2000 2300	4.19 4.12 4.07 3.90 3.66 3.90 4.00 3.52	0.074 0.074 0.074 0.074 0.074 0.074 0.083 0.093	13.6 13.6 13.6 13.6 13.6 13.6 12.0 10.7	82 80 78 80 64 74 84 68	82 80 77 75 69 69 68 66	0.41 0.43 0.45 0.49 0.49 0.47 0.51 0.53	-0.41 -0.67 -0.36 -0.22 0.05 -0.12 -0.22 0.01	6.19 5.92 5.16 4.48 3.77 4.26 3.29 3.30	25 22 27 33 39 33 44 44	0.05 0.05 0.05 -0.10 0.02 -0.30 -0.47 -0.15
950117 950117 950117 950117 950117 950117 950117	0200 0500 0800 1105 1413 1704 2002 2301	3.29 2.92 2.74 2.63 2.28 2.13 2.03 1.96	0.083 0.083 0.083 0.083 0.093 0.093 0.093	12.0 12.0 12.0 12.0 10.7 10.7 10.7	60 72 70 62 66 88 84 80	66 68 70 68 64 65 64 65	0.50 0.48 0.50 0.52 0.53 0.53 0.54 0.53	0.10 -0.07 -0.05 0.14 0.18 0.05 0.02 0.26	3.80 4.39 4.35 3.71 3.63 3.69 3.70 4.20	40 35 33 41 46 47 48 43	0.09 -0.27 0.01 0.14 -0.04 -0.31 -0.45 -0.17
950118 950118 950118 950118 950118 950118 950118 950118	0200 0453 0757 1101 1358 1701 1957 2258	2.07 2.08 2.06 2.01 1.91 1.90 1.75 1.86	0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7 10.7 10.7 10.7	60 64 62 64 72 70 68 68	67 61 59 58 62 64 64 64	0.51 0.51 0.51 0.52 0.53 0.51 0.55 0.53	0.33 0.43 0.61 0.55 0.41 0.50 0.77 0.69	4.71 4.72 4.92 5.23 4.77 5.31 5.30 5.40	38 37 36 36 38 35 34 33	0.09 -0.18 -0.16 -0.11 -0.04 -0.15 -0.16 -0.30
950119 950119 950119 950119 950119 950119	0159 0500 0759 1058 1400 1702 2002 2302	2.07 2.23 2.08 2.25 2.54 2.79 2.87 2.55	0.054 0.054 0.083 0.074 0.083 0.064 0.064	18.5 18.5 12.0 13.6 12.0 15.6 15.6	66 68 64 66 66 68 66	62 62 62 65 67 67 68 67	0.46 0.52 0.54 0.49 0.47 0.44 0.47	0.95 0.76 0.62 0.84 0.64 0.62 0.41 1.03	7.30 5.99 5.49 6.69 7.14 8.12 7.45 7.53	33	-0.49 -0.34 -0.58 -0.01 0.00 0.05 0.07 0.11
950120	0202 0502 0756 1055 1401	2.67 2.27 2.02 2.01 2.50	0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6	64 66 68 66 70	66 70 73 77 94	0.48 0.51 0.55 0.69 0.95	0.98 0.88 1.08 2.24 2.18	7.48 6.24 5.92 5.46 3.15	20 27 29 26 72	0.26 0.33 0.15 0.72 1.10
									(Sh	eet 3	of 47)

Table A1 (Continued)												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	A	
950120 950120 950120	1727 2002 2302	2.57 2.79 2.81	0.064 0.064 0.064	15.6 15.6 15.6	70 72 70	99 99 91	0.74 0.78 0.63	0.88 1.36 1.07	3.41 3.48 3.83	57 57 46	0.33 0.67 1.00	
950121 950121 950121 950121 950121 950121 950121	0203 0502 0801 1102 1702 2001 2302	3.08 3.05 3.66 4.14 3.83 3.38 3.01	0.064 0.064 0.064 0.064 0.064 0.064 0.074	15.6 15.6 15.6 15.6 15.6 15.6 13.6	72 76 78 80 74 74 76	87 91 88 88 82 81 84	0.53 0.54 0.53 0.48 0.46 0.48	1.04 0.89 1.08 0.56 0.99 1.02 1.08	4.79 4.87 5.32 5.80 7.03 6.77 6.83	34 33 28 24 23 24 25	0.85 0.27 0.30 0.27 0.37 0.44 0.48	
950122 950122 950122 950122	0202 0502 0801 1055	2.57 2.14 1.99 2.30	0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6	80 84 84 80	87 91 93 91	0.50 0.50 0.53 0.52	0.98 0.80 1.19 1.64	6.71 6.51 6.07 6.58	26 26 24 25	0.37 0.18 0.34 0.47	
950123 950123 950123 950123	1101 1415 2004 2303	4.19 4.43 4.04 4.17	0.064 0.064 0.074 0.074	15.6 15.6 13.6 13.6	82 84 84 80	90 92 88 83	0.74 0.77 0.46 0.43	4.19 5.11 1.05 0.56	5.64 5.44 10.58 9.73	22 24 19 20	0.63 0.74 0.22 0.21	
950124 950124 950124 950124 950124 950124	0203 0502 0802 1109 1401 1659	3.82 3.40 3.15 2.73 2.70 2.75	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	80 78 82 78 78 80	84 85 87 90 92 94	0.43 0.43 0.41 0.63 0.70 0.63	0.79 0.79 1.03 1.92 2.06 1.79	9.66 8.55 8.53 5.46 4.85 4.91	22 23 20 29 33 30	0.20 0.29 0.26 0.46 0.65 0.65	
950125 950125 950125 950125 950125	1051 1404 1709 2006 2304	2.06 1.87 1.88 1.78	0.083 0.083 0.103 0.093 0.103	12.0 12.0 9.7 10.7 9.7	82 80 84 78 76	100 97 96 92 94	0.88 0.79 0.73 0.63 0.64	2.15 1.65 1.57 1.28 1.08	3.35 3.54 3.58 3.79 3.69	63 46 43 37 41	1.23 0.43 0.61 0.34 0.37	
950126 950126 950126 950126 950126 950126 950126	0203 0505 0759 1110 1400 1704 2004	1.74 1.67 1.66 1.60 1.52 1.50 1.46	0.103 0.103 0.103 0.113 0.113 0.113	9.7 9.7 9.7 8.9 8.9 8.9	82 82 84 92 88 90 84	92 97 101 107 106 101 97	0.67 0.73 0.74 0.71 0.72 0.70 0.67	1.06 1.07 0.80 0.54 0.54 0.69 0.54	3.61 3.16 2.63 2.62 2.54 2.71 2.81	40 48 57 55 61 53 52	0.36 0.58 0.67 0.68 0.62 0.44 0.24	
950127 950127 950127 950127	0204 0504 0804 1109 1409 1715 2318	1.43 1.38 1.30 1.21 1.19 1.23 1.38	0.123 0.064 0.064 0.064 0.074 0.064 0.074	8.2 15.6 15.6 15.6 13.6 13.6	74 78 78 82 70 70 82	94 93 91 93 85 85 79	0.67 0.64 0.64 0.68 0.69 0.64 0.59	0.82 1.01 1.16 0.94 1.24 1.02 1.07	3.23 3.70 3.87 3.39 3.58 3.57 4.35	45 38 35 42 43 44 36	0.29 0.45 0.51 0.45 0.51 0.26	
950128 950128 950128 950128 950128 950128	0203 0503 0802 1055 1402 1702 2002 2302	1.42 1.47 1.47 1.55 1.47 1.39 1.36 1.36	0.074 0.074 0.074 0.083 0.083 0.074 0.074	13.6 13.6 13.6 12.0 12.0 13.6 13.6 13.6	80 78 76 86 84 68 86 86 84	78 77 77 75 76 78 82 82	0.58 0.55 0.54 0.54 0.54 0.53 0.54 0.52	0.92 1.14 0.93 0.67 0.80 0.99 0.64 0.59	4.54 4.91 5.07 4.88 4.80 5.07 4.69 5.09	36 34 36 37 33 33 32	-0.14 0.02 0.04 -0.19 -0.15 0.19 -0.18 -0.08	
	(Sheet 4 of 47)											

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _ρ Hz	T _p sec	θ_{p} deg	θ ₀ deg	σ	γ	δ	Δθ deg	A
950129 950129 950129 950129 950129 950129 950129	0201 0503 0803 1102 1401 1703 2003 2303	1.47 1.47 1.70 2.08 2.38 2.95 2.91 3.10	1	10.7 10.7 10.7 9.7 15.6 15.6 13.6	84 70 70 74 72 72 76 76	79 77 77 78 77 77 80 79	0.49 0.50 0.47 0.46 0.41 0.39 0.37	0.71 0.89 0.94 0.76 0.88 0.44 0.34	5.48 5.75 7.14 7.50 8.28 8.53 9.14 7.79	32 32 25 23 21 18 18 22	-0.07 0.12 0.22 0.13 0.37 0.41 0.21
950130 950130 950130 950130 950130 950130 950130 950130	0203 0503 0803 1119 1415 1722 2004 2304	3.48 3.17 2.90 2.84 2.55 2.48 2.17 2.26	0.074 0.074 0.074 0.074 0.074 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0	76 78 76 76 76 76 76 86 78	79 79 81 83 81 81 85 84	0.36 0.38 0.40 0.42 0.42 0.42 0.47 0.43	0.37 0.35 0.40 0.33 0.51 0.65 0.78	10.60 10.34 8.78 8.30 8.57 8.03 6.63 7.26	17 17 21 24 21 21 25 25	0.25 0.13 0.23 0.16 0.14 0.24 -0.01 0.31
950131 950131 950131 950131 950131 950131 950131	0205 0504 0805 1109 1405 1753 2004 2304	2.25 2.00 1.91 1.88 1.79 1.87 1.85 1.81	0.083 0.083 0.083 0.083 0.093 0.093 0.093	12.0 12.0 12.0 12.0 10.7 10.7 10.7	78 74 84 78 82 80 90 88	82 82 86 87 87 88 90	0.41 0.48 0.50 0.51 0.50 0.53 0.51 0.50	1.20 1.28 0.97 1.06 1.03 1.11 0.72	9.18 6.87 6.25 5.88 6.11 5.48 5.56 6.07	19 25 27 27 23 27 23 23 23	0.29 0.38 0.04 0.26 0.14 0.23 -0.05 0.06
950201 950201 950201 950201 950201 950201 950201	0205 0503 0805 1104 1404 1834 2304	1.79 1.67 1.81 2.21 2.71 2.87 3.01	0.083 0.083 0.083 0.083 0.083 0.074 0.074	12.0 12.0 12.0 12.0 12.0 13.6 13.6	84 88 82 80 86 92 90	88 91 90 88 87 89	0.51 0.53 0.53 0.51 0.44 0.42 0.42	1.18 1.11 1.18 1.23 0.94 0.47 0.58	6.06 5.63 5.51 5.81 7.36 8.29 7.79	23 25 26 25 20 16 18	0.10 0.06 0.30 0.34 0.02 -0.24 -0.14
950202 950202 950202 950202 950202 950202 950202	0203 0504 0803 1059 1403 1702 2003	3.14 2.91 3.17 3.38 3.54 3.53 3.77	0.074 0.074 0.074 0.074 0.064 0.064 0.064	13.6 13.6 13.6 15.6 15.6 15.6	88 84 82 80 84 82 80	89 86 84 85 85 86 84	0.44 0.43 0.48 0.47 0.47 0.44 0.45	0.84 1.20 1.18 1.08 0.94 1.03 0.98	7.12 8.03 6.92 6.47 6.51 7.81 7.12	18 17 20 21 20 18 21	0.09 0.10 0.13 0.31 0.06 0.21 0.17
950203 950203 950203 950203 950203 950203 950203	0500 0754 1100 1401 1707 2004 2304	3.73 3.35 2.91 2.98 3.00 3.05 3.10	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6	80 80 78 80 78 74 84	84 87 87 88 84 81 82	0.45 0.50 0.53 0.52 0.50 0.51	1.19 1.27 1.26 1.09 1.35 1.49 1.30	7.09 6.16 5.24 5.22 5.98 6.11 5.73	18 22 28 28 22 23 25	0.20 0.34 0.32 0.24 0.40 0.38 0.02
950204 950204 950204 950204 950204 950204	0203 0503 0803 1103 1404 1703 2003 2303	2.94 2.60 2.21 2.32 2.45 2.30 2.33 2.15	0.064 0.074 0.074 0.074 0.074 0.074 0.074 0.074	15.6 13.6 13.6 13.6 13.6 13.6 13.6	80 80 82 82 70 78 76 78	86 89 94 87 83 83 81 85	0.54 0.56 0.67 0.62 0.57 0.53 0.54 0.59	1.21 1.27 0.99 1.20 1.29 1.44 1.48 1.41	4.90 4.77 3.50 3.98 4.41 5.57 5.73 4.62	29 28 39 35 33 24 23 28	0.35 0.42 0.47 0.11 0.49 0.25 0.24 0.28
<u></u> <u>_</u>									(She	eet 5	of 47)

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	А
950205 950205 950205 950205 950205 950205 950205	0203 0504 0803 1104 1404 1704 2003 2304	1.90 1.69 1.51 1.49 1.43 1.28 1.33	0.074 0.074 0.083 0.074 0.083 0.083 0.083	13.6 13.6 12.0 13.6 12.0 12.0 12.0	74 76 84 92 88 84 86 72	89 88 90 93 89 91 90	0.60 0.61 0.65 0.67 0.66 0.68 0.70 0.66	0.83 1.14 0.87 0.67 0.74 0.62 0.88 0.72	4.36 4.24 3.60 3.03 3.31 3.19 3.29 3.29	35 32 36 45 43 44 42 43	0.10 0.47 0.19 0.07 0.12 0.24 0.18 0.27
950206 950206 950206 950206 950206 950206 950206	0204 0528 0804 1058 1416 1656 2003 2302	1.56 1.81 2.01 1.97 2.22 2.64 3.46 3.60	0.064 0.074 0.074 0.074 0.074 0.074 0.064	15.6 13.6 13.6 13.6 13.6 13.6 13.6	68 72 74 74 76 86 82 80	87 84 82 85 84 86 82 82	0.63 0.58 0.54 0.59 0.52 0.46 0.38 0.40	1.03 1.13 1.43 1.34 1.02 0.58 0.38 0.62	3.60 4.40 5.56 4.61 5.43 6.48 8.63 8.42	39 32 22 31 28 21 17 18	0.47 0.53 0.45 0.38 0.18 -0.02 -0.01
950207 950207 950207 950207 950207 950207 950207 950207	0204 0504 0803 1220 1356 1708 2003 2304	3.55 3.30 3.23 3.21 3.54 3.71 3.25 3.04	0.064 0.064 0.064 0.064 0.074 0.074	15.6 15.6 15.6 15.6 15.6 13.6 13.6	78 82 84 80 80 82 84 84	82 84 85 84 83 84 87 88	0.40 0.41 0.39 0.41 0.39 0.40 0.40	0.68 0.56 0.59 0.61 0.63 0.46 0.64	8.99 8.89 9.66 8.90 8.74 7.78 8.72 7.82	20 19 17 20 19 22 19 21	0.14 0.11 0.09 0.15 0.19 0.14 0.22 0.23
950208 950208 950208 950208 950208 950208 950208 950208	0153 0453 0749 1051 1357 1704 2003 2303	2.89 2.89 2.46 2.31 2.23 2.14 2.01 1.77	0.074 0.074 0.083 0.083 0.083 0.083 0.074 0.064	13.6 13.6 12.0 12.0 12.0 12.0 13.6 15.6	84 74 94 82 84 78 78 76	87 84 89 86 85 86 83 87	0.46 0.44 0.49 0.53 0.53 0.56 0.59	0.69 0.85 0.56 0.78 0.64 0.73 0.73	6.50 6.55 5.55 5.10 4.93 4.38 3.96 3.58	24 26 31 32 29 36 37 40	0.13 0.34 -0.09 0.12 0.00 0.02 0.08 0.41
950209 950209 950209 950209 950209 950209 950209 950209	0203 0503 0804 1103 1401 1701 2003 2303	1.80 1.99 1.89 1.87 1.73 1.60 1.62	0.064 0.064 0.064 0.074 0.064 0.074 0.074	15.6 15.6 15.6 13.6 15.6 15.6 13.6	76 78 78 74 74 78 88 74	86 82 82 80 85 84 85 82	0.63 0.55 0.57 0.58 0.66 0.64 0.66	1.21 1.05 1.23 0.86 0.92 1.01 0.83 0.86	3.92 5.08 4.84 4.18 3.33 3.72 3.33 3.52	33 24 26 34 43 35 43 40	0.55 0.16 0.18 0.35 0.49 0.30 0.00
950210 950210 950210 950210 950210 950210 950210 950210	0203 0504 0803 1113 1412 1712 2002 2303	1.56 1.55 1.49 1.39 1.29 1.27 1.42 1.50	0.074 0.074 0.074 0.074 0.074 0.074 0.083 0.044	13.6 13.6 13.6 13.6 13.6 13.6 12.0 22.5	82 76 82 86 80 76 74 78	83 84 86 88 89 91 86 82	0.67 0.60 0.59 0.60 0.63 0.65 0.65	0.62 0.72 0.67 0.51 0.71 0.73 0.81 0.97	3.27 4.15 4.12 4.04 3.67 3.31 3.64 4.45	42 34 35 34 40 43 40 31	0.03 0.23 0.07 0.01 0.35 0.57 0.58 0.32
950211 950211 950211 950211 950211 950211	0202 0502 0802 1102 1402 1702	1.49 1.59 1.71 1.81 2.01 2.13	0.044 0.054 0.054 0.054 0.054 0.054	22.5 18.5 18.5 18.5 18.5 18.5	80 72 70 70 72 70	84 80 77 75 76 74	0.63 0.62 0.55 0.49 0.48 0.50	1.05 1.14 1.88 2.28 2.68 2.00	4.52 4.83 6.38 7.88 7.93 7.13	28 28 18 12 11 17	0.32 0.57 0.53 0.33 0.24 0.11
	<u>_</u>	·							(SI	eet 6	of 47)

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_p deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950211 950211	2002 2303	2.31 2.12	0.064 0.064	15.6 15.6	72 72	74 74	0.56 0.52	1.24 1.66	5.50 6.54	29 23	0.19 0.18
950212 950212 950212 950212 950212 950212 950212 950212	0202 0503 0802 1101 1403 1724 2003 2302	2.00 1.90 1.90 1.82 1.73 1.61 1.58	0.064 0.064 0.064 0.064 0.064 0.074 0.074	15.6 15.6 15.6 15.6 15.6 13.6 13.6	68 70 70 70 64 62 64 66	74 75 73 75 72 71 75 77	0.54 0.58 0.56 0.61 0.61 0.63 0.67 0.65	1.76 1.72 1.59 1.18 1.94 2.23 1.54 1.39	6.08 5.52 5.98 4.32 4.97 4.76 3.95 4.06	19 19 19 30 23 24 36 37	0.52 0.42 0.16 0.21 0.46 0.73 0.61
950213 950213 950213 950213 950213 950213 950213	0203 0456 0803 1055 1403 1651 2003 2303	1.40 1.36 1.24 1.19 1.23 1.10 1.07	0.074 0.074 0.074 0.074 0.074 0.074 0.064 0.064	13.6 13.6 13.6 13.6 13.6 13.6 15.6	68 64 66 64 56 58 174 176	78 80 93 93 88 106 119	0.69 0.76 0.85 0.84 0.86 0.92 0.92	1.47 1.48 0.83 0.81 1.06 0.37 -0.20 0.09	3.64 3.15 2.15 2.12 2.16 1.75 1.64	38 53 86 86 90 100 104 103	0.54 1.18 1.38 1.39 1.48 0.61 -0.47 0.23
950214 950214 950214 950214 950214 950214 950214	0203 0502 0944 1123 1356 1707 2002 2302	1.12 1.15 1.45 1.54 1.76 1.72 1.70	0.064 0.074 0.074 0.074 0.083 0.074 0.074	15.6 13.6 13.6 13.6 12.0 13.6 13.6	44 42 44 48 44 42 40 44	108 93 73 71 61 61 65 73	0.93 0.93 0.89 0.85 0.72 0.73 0.76 0.77	0.22 0.56 1.91 2.16 2.62 2.29 2.04 1.73	1.62 1.73 2.68 3.02 4.23 4.09 3.64 3.31	105 108 78 62 35 45 48 53	0.48 0.55 1.67 1.50 0.95 0.95 0.72 0.47
950215 950215 950215 950215 950215 950215 950215	0205 0502 0802 1102 1402 1702 2002 2301	1.94 1.79 1.74 1.81 1.74 1.79 1.50 1.60	0.123 0.123 0.083 0.132 0.123 0.132 0.074 0.132	8.2 8.2 12.0 7.6 8.2 7.6 13.6 7.6	48 46 50 50 42 48 50 26	68 66 71 69 69 70 76 75	0.65 0.72 0.72 0.71 0.70 0.69 0.79 0.78	2.17 2.19 1.81 1.73 1.43 1.21 1.13 0.68	4.73 4.00 3.78 3.89 3.69 3.47 2.95 2.61	37 46 52 48 48 52 60 69	0.45 1.13 1.27 0.98 0.28 0.68 0.44 0.08
950216 950216 950216 950216 950216 950216 950216 950216	0203 0452 0803 1103 1403 1702 2002 2302	1.57 1.49 1.41 1.16 1.19 1.19 1.10 0.96	0.132 0.132 0.132 0.083 0.083 0.093 0.083 0.083	7.6 7.6 7.6 12.0 12.0 10.7 12.0 12.0	48 48 46 50 40 106 114 110	69 72 71 85 91 91 97	0.70 0.75 0.82 0.84 0.85 0.81 0.86 0.80	1.42 1.15 0.74 0.69 0.41 0.29 0.12 0.31	3.56 2.93 2.40 2.39 2.17 2.21 2.14 2.47	53 63 76 73 79 71 78 66	0.93 0.82 0.64 0.34 -0.11 -0.47 -0.16 -0.06
950217 950217 950217 950217 950217 950217 950217 950217	0202 0503 0803 1102 1404 1704 2003 2252	0.93 0.96 1.02 1.08 1.15 1.22 1.20 1.08	0.083 0.093 0.103 0.093 0.093 0.162 0.162 0.162	12.0 10.7 9.7 10.7 10.7 6.2 6.2 6.2	108 46 40 44 44 42 48 54	97 88 87 76 76 67 68 72	0.81 0.80 0.86 0.80 0.77 0.68 0.72 0.72	0.41 0.67 0.64 1.34 1.23 1.25 1.06 1.29	2.41 2.38 2.18 2.87 2.92 3.57 3.36 3.48	67 70 80 68 64 49 52 48	-0.30 0.01 0.09 0.84 0.78 0.33 0.33
	0152 0455 0803	1.05 1.10 1.06	0.074 0.083 0.083	13.6 12.0 12.0	56 68 66	72 71 68	0.70 0.68 0.64	1.85 1.52 1.40	4.26 4.26 4.64	37 37 38	0.35 0.13 0.11
									(Sh	eet 7	of 47)

Table	A1 (Contir	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
950218 950218 950218 950218 950218	1102 1402 1702 2002 2303	1.09 1.32 1.34 1.47 1.59	0.074 0.083 0.162 0.083 0.074	13.6 12.0 6.2 12.0 13.6	72 70 70 68 68	76 74 71 72 71	0.59 0.55 0.52 0.48 0.45	1.47 1.57 1.36 1.13 1.40	5.40 6.02 6.52 7.04 8.22	27 26 25 23 20	0.16 0.13 0.05 0.20 0.23
950219 950219 950219 950219 950219 950219 950219	0203 0503 0803 1102 1403 1703 2002 2303	1.80 2.08 2.26 2.11 2.10 1.93 1.79	0.083 0.083 0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	68 72 68 68 68 70 74 72	72 73 71 73 75 73 77 78	0.43 0.39 0.38 0.41 0.45 0.44 0.42	1.25 1.11 1.06 0.88 1.05 0.89 0.67 0.81	8.97 10.33 9.76 8.52 6.97 7.87 7.74 7.55	21 18 19 23 26 23 23 25	0.22 0.07 0.20 0.35 0.29 0.12 0.12
950220 950220 950220 950220 950220 950220	0201 0503 0803 1103 1356 1702	1.89 1.98 2.00 1.98 2.02 2.26	0.083 0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0 12.0	72 74 72 70 68 70	79 78 76 76 75 76	0.44 0.41 0.39 0.43 0.43	0.80 0.79 0.98 1.28 0.56 0.56	7.70 8.17 9.47 8.96 6.67 7.55	25 22 21 21 28 24	0.28 0.20 0.19 0.36 0.33 0.35
950221 950221 950221 950221 950221 950221	0812 1054 1403 1634 2003 2303	2.05 1.91 2.14 2.31 2.16 2.01	0.083 0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0 12.0	76 76 74 70 80 74	77 80 81 79 78 78	0.42 0.44 0.42 0.44 0.42 0.42	0.66 0.80 0.57 0.23 0.31 0.62	8.07 7.84 7.01 6.10 7.24 7.37	22 23 26 31 25 24	0.04 0.20 0.24 0.11 -0.04 0.20
950222 950222 950222 950222 950222 950222 950222	0203 0502 0802 1413 1704 2002 2302	1.89 1.91 1.81 1.81 1.71 1.68 1.69	0.083 0.083 0.083 0.093 0.093 0.083 0.083	12.0 12.0 12.0 10.7 10.7 12.0 12.0	72 76 80 74 76 78 76	78 78 78 76 75 77	0.44 0.49 0.48 0.51 0.51 0.51	0.67 0.54 0.52 0.57 0.64 0.63	6.99 5.59 5.51 5.43 5.69 5.79 5.39	27 31 30 29 28 27 29	0.14 0.10 -0.06 0.05 -0.09 -0.06 0.08
950223 950223 950223 950223 950223 950223 950223 950223	0202 0503 0802 1100 1403 1703 2003 2303	1.80 1.70 1.69 1.60 1.69 1.47 1.48 1.32	0.083 0.083 0.083 0.083 0.093 0.093 0.093 0.093	12.0 12.0 12.0 12.0 10.7 10.7 10.7	72 70 72 68 72 70 72 68	76 78 76 75 74 75 75 75	0.50 0.52 0.51 0.53 0.52 0.57 0.57	0.87 0.60 0.79 1.13 0.71 0.81 0.81 0.93	5.45 5.30 5.72 5.40 5.14 4.56 4.46 4.52	29 33 28 29 31 36 37 35	0.14 0.08 0.17 0.32 0.02 0.11 0.08 0.12
950224 950224 950224 950224 950224 950224 950224	0203 0503 0803 1056 1402 1705 2302	1.23 1.18 1.08 1.05 0.98 0.90 0.92	0.093 0.093 0.093 0.093 0.103 0.103 0.103	10.7 10.7 10.7 10.7 9.7 9.7 9.7	78 64 56 56 54 58 92	75 75 76 78 80 84 87	0.62 0.63 0.68 0.69 0.71 0.74	0.84 1.09 1.09 1.19 1.14 0.82 0.79	3.95 3.94 3.59 3.49 3.23 2.73 2.79	41 41 46 49 51 58 53	-0.05 0.20 0.32 0.43 0.32 0.28 -0.06
950225 950225 950225 950225 950225 950225	0202 0502 0802 1102 1402 1701	0.96 1.22 1.46 1.55 1.37 1.35	0.074 0.074 0.083 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0 12.0	74 68 96 86 70 68	83 78 84 82 85 87	0.70 0.65 0.56 0.55 0.64 0.70	1.29 1.68 0.87 1.17 1.36 1.20	3.41 4.16 4.76 4.96 3.78 3.08	42 32 35 31 37 43	0.40 0.33 -0.13 -0.06 0.33 0.37
									(Sh	eet 8	of 47)

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$ Date GMT m Hz sec deg deg Q V δ deg A										
Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_p deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
2002 2302	1.30 1.39	0.093 0.093	10.7 10.7	68 72	93 97	0.76 0.79	0.98 0.77	2.63	57 84	0.55 1.13
0202 0502 0801 1102 2024 2302	1.34 1.24 1.25 1.26 1.29 1.40	0.093 0.064 0.064 0.064 0.064 0.064	10.7 15.6 15.6 15.6 15.6	64 160 170 168 176 174	103 107 115 121 116 126	0.84 0.86 0.88 0.86 0.88 0.84	0.57 0.29 0.01 -0.18 0.06 -0.38	1.85 1.67 1.67 1.69 1.67 1.87	94 95 96 93 98 86	1.11 0.96 0.52 -0.23 0.53 -0.65
0202 0501 0827 1103 1403 1709 2002 2302	1.35 1.29 1.34 1.41 1.41 1.36 1.35	0.064 0.074 0.064 0.064 0.074 0.074 0.074	15.6 13.6 15.6 15.6 13.6 13.6 13.6	174 172 172 174 42 42 42 172 42	126 123 126 118 108 110 109 108	0.88 0.88 0.90 0.92 0.94 0.94 0.92	-0.40 -0.44 -0.58 -0.31 -0.01 -0.01 0.03 -0.02	1.73 1.82 1.82 1.65 1.48 1.52 1.62	94 97 107 112 114 110	-0.56 -0.64 -0.86 -0.31 0.00 0.18 0.23 -0.11
0503 0802 1402 1703 2000 2301	1.17 1.16 1.15 1.18 1.10 1.12	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	164 170 44 46 170 164	126 112 102 109 119 119	0.87 0.89 0.91 0.92 0.88 0.84	-0.54 -0.02 0.19 0.03 -0.17 -0.29	1.98 1.70 1.72 1.58 1.81 1.91	86 99 104 110 92 86	-0.59 0.13 0.05 0.04 0.12 -0.27
0202 0502 0802 1102 1458 1702 2002 2302	1.06 1.08 1.03 1.11 1.05 1.04 1.10	0.074 0.074 0.074 0.064 0.064 0.064 0.064	13.6 13.6 13.6 15.6 15.6 15.6 15.6	168 156 166 164 76 74 74 74	116 121 118 114 112 112 110 104	0.88 0.85 0.86 0.83 0.82 0.80 0.78 0.76	-0.24 -0.47 -0.18 -0.13 0.18 0.19 0.23 0.53	1.82 2.03 1.91 2.03 1.93 2.02 2.04 2.32	93 82 88 83 86 81 80 73	0.00 -0.53 0.00 0.19 0.63 0.46 0.55 0.88
0202 0502 0759 1100 1402 1703 2000 2258	1.27 1.46 1.37 1.64 1.66 1.60 1.62 1.73	0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	84 80 84 80 78 82 80 80	103 99 98 98 95 97 97	0.72 0.68 0.68 0.69 0.61 0.59 0.62 0.57	0.70 0.88 0.86 1.43 1.32 1.01 0.71 0.75	2.66 2.87 3.07 4.00 4.72 4.04 3.58 4.01	60 53 51 41 36 34 42 38	1.19 1.10 0.79 0.70 0.60 0.46 0.35 0.45
0200 0500 0753 1049 1349 1701 1948 2249	1.54 1.48 1.43 1.49 1.44 1.45 1.38	0.074 0.074 0.083 0.083 0.064 0.074 0.074	13.6 13.6 12.0 12.0 15.6 13.6 13.6	82 80 78 74 78 76 68 74	96 100 97 97 92 89 91 94	0.57 0.63 0.65 0.64 0.64 0.59 0.67 0.65	0.75 0.71 0.75 0.76 0.98 0.93 0.85 0.73	4.01 3.28 3.18 3.17 3.50 3.88 3.10 3.23	37 45 46 47 41 36 50 49	0.38 0.48 0.47 0.50 0.52 0.55 0.56 0.68
0149 0449 0749 1049 1349 1659 1959	1.33 1.34 1.35 1.24 1.24 1.25 1.15	0.074 0.054 0.054 0.054	13.6 18.5 18.5 18.5	80 74 74 78 78 76 78	89 86 85 87 84 84 85	0.64 0.67 0.69 0.74 0.70 0.68 0.70	0.77 0.77 0.76 0.48 0.95 0.85 0.87	3.52 3.17 2.91 2.60 3.17 3.11 3.15	39 47 52 62 46 50 49	0.40 0.51 0.60 0.18 0.45 0.51 0.48
	GMT 2002 2302 0202 0502 0801 1102 2024 2302 0202 0501 0827 1103 1403 1709 2002 2302 0503 0802 1402 1703 2000 2301 0202 0502 0802 1102 1458 1702 2002 2302 0202 0502 0759 1100 1402 1703 2000 2258 0200 0759 1100 1402 1703 2000 2258	GMT m 2002 1.30 2302 1.39 0202 1.24 0801 1.25 1102 1.26 2024 1.29 2302 1.40 0202 1.35 0501 1.29 0827 1.34 1403 1.41 1709 1.36 2002 1.35 2302 1.33 0503 1.17 0802 1.33 0503 1.17 0802 1.33 0503 1.17 0802 1.06 0503 1.10 2301 1.12 0202 1.06 0502 1.08 0802 1.03 1102 1.11 1458 1.05 1702 1.04 2002 1.27 0502 1.46 0759 1.37 1100	GMT m Hz 2002 1.30 0.093 2302 1.39 0.093 0202 1.34 0.093 0502 1.24 0.064 0801 1.25 0.064 1102 1.26 0.064 2024 1.29 0.074 2302 1.40 0.064 0501 1.29 0.074 0827 1.34 0.064 1103 1.41 0.074 1709 1.36 0.074 2002 1.35 0.074 1709 1.36 0.074 2002 1.35 0.074 2002 1.35 0.074 2002 1.35 0.074 2002 1.35 0.074 2002 1.35 0.074 1703 1.18 0.074 1402 1.15 0.074 1703 1.18 0.074 0502 1.06 0.074 <td>GMT m Hz sec 2002 1.30 0.093 10.7 2302 1.39 0.093 10.7 0502 1.24 0.064 15.6 0801 1.25 0.064 15.6 1102 1.26 0.064 15.6 2024 1.29 0.064 15.6 2302 1.40 0.064 15.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 1103 1.41 0.064 15.6 1103 1.41 0.074 13.6 1709 1.36 0.074 13.6 2302 1.35 0.074 13.6 2302 1.35 0.074 13.6 2002 1.36 0.074 13.6 2002 1.36 0.074 13.6</td> <td>GMT m Hz sec deg 2002 1.30 0.093 10.7 68 2302 1.39 0.093 10.7 72 0202 1.34 0.093 10.7 64 0502 1.24 0.064 15.6 160 0801 1.25 0.064 15.6 176 1102 1.26 0.064 15.6 176 2302 1.40 0.064 15.6 176 2302 1.35 0.064 15.6 176 0501 1.29 0.074 13.6 172 0827 1.34 0.064 15.6 174 1031 1.41 0.064 15.6 174 1403 1.41 0.064 15.6 174 1403 1.41 0.074 13.6 42 2002 1.35 0.074 13.6 172 1103 1.17 0.074 13.6 164</td> <td>GMT m Hz sec deg deg 2002 1.30 0.093 10.7 68 93 2302 1.39 0.093 10.7 72 97 0202 1.34 0.093 10.7 64 103 0502 1.24 0.064 15.6 160 107 0801 1.25 0.064 15.6 170 115 1102 1.26 0.064 15.6 176 116 2024 1.29 0.064 15.6 174 126 0501 1.29 0.074 13.6 172 123 0827 1.34 0.064 15.6 174 126 0501 1.29 0.074 13.6 42 108 1709 1.36 0.064 15.6 174 126 0503 1.41 0.064 15.6 174 118 1403 1.41 0.074 13.6 <t< td=""><td> GMT m</td><td> Common</td><td> COMT M</td><td> GMT m</td></t<></td>	GMT m Hz sec 2002 1.30 0.093 10.7 2302 1.39 0.093 10.7 0502 1.24 0.064 15.6 0801 1.25 0.064 15.6 1102 1.26 0.064 15.6 2024 1.29 0.064 15.6 2302 1.40 0.064 15.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 0501 1.29 0.074 13.6 1103 1.41 0.064 15.6 1103 1.41 0.074 13.6 1709 1.36 0.074 13.6 2302 1.35 0.074 13.6 2302 1.35 0.074 13.6 2002 1.36 0.074 13.6 2002 1.36 0.074 13.6	GMT m Hz sec deg 2002 1.30 0.093 10.7 68 2302 1.39 0.093 10.7 72 0202 1.34 0.093 10.7 64 0502 1.24 0.064 15.6 160 0801 1.25 0.064 15.6 176 1102 1.26 0.064 15.6 176 2302 1.40 0.064 15.6 176 2302 1.35 0.064 15.6 176 0501 1.29 0.074 13.6 172 0827 1.34 0.064 15.6 174 1031 1.41 0.064 15.6 174 1403 1.41 0.064 15.6 174 1403 1.41 0.074 13.6 42 2002 1.35 0.074 13.6 172 1103 1.17 0.074 13.6 164	GMT m Hz sec deg deg 2002 1.30 0.093 10.7 68 93 2302 1.39 0.093 10.7 72 97 0202 1.34 0.093 10.7 64 103 0502 1.24 0.064 15.6 160 107 0801 1.25 0.064 15.6 170 115 1102 1.26 0.064 15.6 176 116 2024 1.29 0.064 15.6 174 126 0501 1.29 0.074 13.6 172 123 0827 1.34 0.064 15.6 174 126 0501 1.29 0.074 13.6 42 108 1709 1.36 0.064 15.6 174 126 0503 1.41 0.064 15.6 174 118 1403 1.41 0.074 13.6 <t< td=""><td> GMT m</td><td> Common</td><td> COMT M</td><td> GMT m</td></t<>	GMT m	Common	COMT M	GMT m

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _ο deg	σ	Υ	δ	Δθ deg	А
950304	2259	1.15	0.054	18.5	74	88	0.75	0.82	2.91	60	0.83
950305 950305 950305 950305 950305 950305 950305	0159 0459 0759 1059 1359 1659 1959 2259	1.21 1.30 1.08 1.07 1.12 1.15 1.16 1.15	0.064 0.064 0.064 0.064 0.064 0.064 0.142 0.162	15.6 15.6 15.6 15.6 15.6 7.0 6.2	70 76 72 74 74 134 130 126	82 82 83 92 106 112 114 107	0.63 0.61 0.70 0.76 0.78 0.77 0.74	1.28 0.92 1.30 0.77 0.01 -0.20 -0.53 -0.48	4.50 4.12 3.36 2.59 1.99 2.05 2.43 2.45	32 33 43 62 78 74 62 65	0.77 0.27 0.83 1.13 0.14 -0.54 -1.13 -1.04
950306 950306 950306 950306 950306 950306 950306	0159 0459 0759 1101 1359 1659 1959 2300	1.97 2.34 2.07 1.77 1.58 1.74 2.08 1.91	0.142 0.132 0.132 0.132 0.142 0.123 0.142 0.132	7.0 7.6 7.6 7.6 7.0 8.2 7.0	66 36 24 34 34 34 26 38	68 54 51 55 59 53 52 62	0.68 0.61 0.63 0.67 0.71 0.66 0.61	0.64 1.18 1.52 1.43 1.21 1.46 1.46 0.81	3.01 3.66 3.73 3.19 2.80 3.33 3.84 2.85	51 41 39 50 64 49 40 59	0.17 0.23 0.29 1.11 1.41 1.21 0.41 0.95
950307 950307 950307 950307 950307 950307 950307 950307	0159 0453 0759 1057 1401 1723 1959 2259	1.80 1.89 1.97 1.96 2.03 2.04 2.08 1.85	0.074 0.074 0.074 0.083 0.074 0.074 0.074	13.6 13.6 13.6 12.0 13.6 13.6 13.6	40 40 40 38 94 90 92 92	71 65 68 73 81 81 83 86	0.62 0.60 0.62 0.65 0.61 0.59 0.60 0.62	0.46 0.62 0.50 0.19 -0.08 -0.11 -0.12	2.85 2.94 2.85 2.45 2.89 3.13 3.18 3.09	59 56 56 63 55 49 48 50	0.35 0.95 0.34 -0.41 -0.75 -0.69 -0.69
950308 950308 950308 950308 950308 950308 950308 950308	0159 0459 0756 1100 1357 1706 1955 2255	1.84 1.63 1.49 1.51 1.54 1.49 1.36 1.37	0.074 0.083 0.054 0.054 0.054 0.054 0.054	13.6 12.0 18.5 18.5 18.5 18.5 15.6	92 84 80 80 80 82 80 78	87 89 91 93 97 95 99	0.59 0.60 0.64 0.60 0.62 0.58 0.62	0.03 0.22 0.23 0.18 0.50 0.79 0.70	3.54 3.85 3.17 3.74 3.77 4.62 4.09 3.70	40 39 46 38 41 33 41 43	-0.24 0.11 0.33 0.24 0.42 0.54 0.35 0.24
950309 950309 950309 950309 950309 950309 950309	0155 0755 1055 1348 1655 1952 2255	1.45 1.58 1.63 1.87 1.87 2.15 2.23	0.064 0.064 0.064 0.064 0.064 0.074 0.093	15.6 15.6 15.6 15.6 15.6 13.6 10.7	80 114 112 108 110 112 106	101 104 104 105 108 106	0.57 0.49 0.51 0.46 0.50 0.49 0.51	0.77 0.58 0.39 0.33 0.24 0.42 0.57	4.42 5.42 4.97 5.89 4.79 5.41 5.69	35 31 34 26 30 29 29	-0.08 -0.35 -0.75 -0.32 -0.34 -0.39 -0.16
950310 950310 950310 950310 950310 950310 950310	0155 0455 0755 1044 1354 1955 2254	2.68 3.52 3.95 3.85 4.18 3.97 3.64	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	108 82 84 86 88 82 84	105 94 97 112 116 114 110	0.54 0.63 0.70 0.92 0.90 0.73 0.73	0.75 1.89 2.41 2.39 1.83 0.99 0.91	6.14 6.42 5.57 3.19 3.06 3.10 2.90	31 32 33 71 73 60 62	-0.23 0.83 0.87 0.93 0.87 0.69 0.95
950311 950311 950311 950311 950311	0155 0455 0754 1055 1354 1654	3.73 3.91 4.18 4.00 4.06 4.10	0.074 0.074 0.074 0.074 0.064 0.074	13.6 13.6 13.6 13.6 15.6 13.6	80 78 80 80 78 80	103 98 95 94 93 92	0.67 0.64 0.55 0.59 0.60 0.55	1.14 1.09 1.27 1.35 1.36 1.42	3.60 3.63 4.68 4.24 4.18 4.78	48 47 31 34 37 29	0.77 0.99 0.78 0.78 1.06 0.96
	1								(She	et 10	of 47)

Table	A1 (Conti	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_{ρ} deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
950311 950311	1954 2255	4.09 3.96	0.074 0.064	13.6 15.6	82 78	95 97	0.58 0.60	1.48 1.22	4.64 4.02	29 39	0.93 0.91
950312 950312 950312 950312 950312 950312 950312	0155 0455 0754 1048 1355 1648 1955 2255	4.02 4.10 4.20 3.87 3.78 3.63 3.69 3.65	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	80 80 82 84 82 80 86 86	93 91 93 93 94 90 93 92	0.56 0.50 0.51 0.47 0.48 0.50 0.47	1.40 1.54 1.06 0.89 1.06 1.21 0.73 0.61	4.71 5.80 5.49 5.70 5.67 5.67 5.87 5.67	32 25 29 27 28 28 26 27	0.73 0.65 0.47 0.38 0.57 0.65 0.34 0.38
950313 950313 950313 950313 950313 950313 950313	0155 0455 0748 1115 1355 1655 1954 2255	3.29 3.27 3.34 2.93 2.36 2.40 2.82 3.33	0.074 0.074 0.074 0.074 0.074 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0	80 78 82 84 84 76 74 72	90 89 88 92 93 88 84 79	0.51 0.53 0.47 0.49 0.54 0.54 0.50	0.83 0.71 0.71 0.71 1.09 0.99 1.08	5.07 4.64 5.50 5.52 5.19 4.84 5.38 7.22	31 35 28 28 27 35 28 20	0.42 0.18 0.44 0.32 0.62 0.55 0.49 0.54
950314 950314 950314 950314 950314 950314 950314	0155 0455 0755 1054 1354 1655 1955 2254	2.92 2.82 2.89 3.65 3.80 4.10 4.04 3.96	0.083 0.083 0.083 0.064 0.074 0.064 0.074	12.0 12.0 12.0 15.6 13.6 15.6 15.6	78 78 76 78 78 76 76 74 72	83 82 82 82 82 79 79 79	0.46 0.47 0.45 0.38 0.39 0.39 0.41 0.42	0.83 0.76 0.97 0.62 0.70 0.57 0.37 0.46	6.14 6.15 6.93 8.53 8.77 8.67 7.08 6.64	24 25 23 18 18 16 20 21	0.12 0.21 0.34 0.24 0.31 0.26 0.28 0.38
950315 950315 950315 950315 950315 950315 950315	0155 0455 0755 1055 1354 1655 1956 2255	3.76 3.54 3.18 3.42 3.20 2.91 3.17 3.25	0.074 0.074 0.074 0.074 0.074 0.083 0.074 0.113	13.6 13.6 13.6 13.6 13.6 12.0 13.6 8.9	80 80 76 74 78 74 74 77	82 81 80 78 76 71 70 70	0.38 0.40 0.45 0.43 0.46 0.51 0.55 0.53	0.37 0.24 0.33 0.42 -0.12 -0.04 -0.16	8.57 7.82 6.35 6.91 5.81 4.67 3.82 3.77	17 17 24 21 23 30 37 38	0.23 0.11 0.25 0.35 -0.01 -0.19 -0.30 -0.41
950316 950316 950316 950316 950316 950316 950316	0155 0455 0755 1059 1355 1645 1956 2256	2.96 2.90 2.99 2.93 2.87 2.80 2.86 2.89	0.083 0.123 0.123 0.093 0.113 0.113 0.113 0.123	12.0 8.2 8.2 10.7 8.9 8.9 8.9	84 80 72 74 76 84 86 78	73 66 62 65 67 68 64 62	0.55 0.57 0.56 0.55 0.56 0.60 0.61 0.58	-0.08 0.07 0.18 0.18 0.15 0.07 0.11	3.87 3.63 3.75 3.80 3.80 3.47 3.03 3.23	37 45 44 43 44 47 56 52	-0.51 -0.48 -0.39 -0.35 -0.46 -0.65 -0.56 -0.61
950317 950317 950317 950317 950317 950317 950317 950317	0156 0456 0756 1105 1352 1652 1952 2252	2.79 2.62 2.33 2.46 2.24 2.07 1.89 1.81	0.113 0.123 0.123 0.093 0.113 0.132 0.083 0.083	8.9 8.2 8.2 10.7 8.9 7.6 12.0	86 74 84 86 88 24 86 78	65 63 66 70 65 66 70	0.59 0.56 0.60 0.58 0.61 0.66 0.67 0.64	0.20 0.31 0.39 0.31 0.45 0.54 0.51	3.15 3.84 3.63 3.75 3.42 3.21 3.20 3.51	46 51 48 50 57 56	-0.47 -0.35 -0.36 -0.35 -0.49 -0.48 -0.52 -0.22
	0152 0452 0752	1.58	0.083 0.162 0.162	12.0 6.2 6.2	86 86 82	74 73 77	0.61 0.64 0.70	0.78 0.74 0.77	3.86 3.60 3.19	46	-0.18 -0.27 -0.15
									(Shee	et 11	of 47)

Table	Table A1 (Continued) Time H_{ma} f_{a} T_{a} θ_{a} θ_{0} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _ρ Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A	
950318 950318 950318 950318 950318	1052 1349 1653 1952 2252	1.51 1.59 1.88 2.01 2.09	0.074 0.074 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0	88 78 74 80 76	81 81 80 78 78	0.70 0.62 0.56 0.56 0.51	0.75 0.96 1.24 1.11 0.83	3.37 3.99 4.81 5.09 6.16	46 38 29 27 25	-0.17 0.15 0.20 -0.12 0.08	
950319 950319 950319 950319 950319 950319 950319	0145 0452 0752 1052 1352 1652 1952 2252	2.30 2.35 2.30 2.35 2.72 3.08 2.98 3.20	0.083 0.083 0.083 0.064 0.064 0.074 0.074	12.0 12.0 12.0 15.6 15.6 13.6 13.6	80 76 78 78 76 78 78 76	78 77 76 76 77 77 79 77	0.52 0.53 0.53 0.54 0.50 0.49 0.53 0.48	0.84 1.16 0.78 0.87 0.88 0.54 0.91	5.26 5.52 5.46 5.22 5.90 5.49 5.45 6.77	29 26 28 30 24 27 25 20	-0.06 -0.05 -0.13 -0.12 0.06 -0.04 0.00 -0.01	
950320 950320 950320 950320 950320 950320	0152 0453 0752 1119 1353 1642	3.59 3.22 2.94 2.65 2.56 2.35	0.074 0.074 0.074 0.083 0.074 0.074	13.6 13.6 13.6 12.0 13.6 13.6	78 78 78 78 80 82	78 78 76 73 79 87	0.46 0.51 0.56 0.59 0.59 0.62	0.90 0.78 0.74 0.87 1.06 1.11	6.78 5.48 4.73 4.45 4.56 4.11	21 26 30 37 31 27	0.01 -0.08 -0.16 -0.22 -0.06 0.12	
950321 950321 950321 950321 950321 950321	0753 1053 1352 1653 1950 2252	3.28 3.82 4.18 4.21 4.13 4.44	0.074 0.074 0.074 0.074 0.074 0.064	13.6 13.6 13.6 13.6 13.6	62 54 64 72 70 68	74 70 67 68 67 70	0.55 0.55 0.61 0.53 0.55 0.55	1.53 0.88 1.17 0.65 0.82 0.78	4.94 4.57 4.30 4.67 4.56 4.84	31 38 33 34 36 31	0.41 0.25 0.17 -0.27 -0.04 -0.02	
950322 950322 950322 950322 950322 950322 950322	0452 0752 1053 1416 1653 1953 2246	3.95 3.58 3.25 3.11 3.31 3.53 3.47	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	72 62 52 64 72 84 80	71 70 70 74 76 85 88	0.57 0.59 0.62 0.61 0.66 0.73 0.73	0.91 1.01 1.25 1.19 0.97 0.71 0.77	4.21 4.34 4.17 4.36 3.41 2.72 2.77	39 39 41 38 47 58 56	-0.11 0.18 0.33 0.18 0.07 0.05 0.30	
950323 950323 950323 950323 950323 950323 950323 950323	0152 0452 0752 1056 1403 1653 1952 2252	3.63 3.98 4.69 4.58 4.78 4.54 4.29 4.09	0.074 0.074 0.074 0.064 0.074 0.064 0.064 0.074	13.6 13.6 13.6 15.6 15.6 15.6 15.6 15.6	74 74 72 66 64 60 62 60	80 76 71 70 69 64 63 63	0.67 0.62 0.54 0.58 0.52 0.53 0.53	0.90 0.86 0.69 0.96 0.86 0.99 0.90	3.26 3.88 4.47 4.44 5.18 5.18 4.97 5.13	45 34 33 34 28 30 33 33	0.26 0.00 -0.24 0.06 0.10 0.26 0.11 0.21	
950324 950324 950324 950324 950324 950324 950324 950324	0152 0452 0745 1056 1351 1652 1952 2244	3.89 3.76 3.85 3.44 3.30 3.08 3.36 3.46	0.074 0.074 0.074 0.074 0.083 0.074 0.074	13.6 13.6 13.6 12.0 13.6 13.6 13.6	58 54 52 56 52 50 44 46	64 63 61 62 60 60 57 55	0.56 0.55 0.55 0.54 0.52 0.58 0.53 0.56	1.05 1.00 1.04 0.99 1.29 1.00 0.88 0.83	4.84 4.84 4.79 4.81 5.42 4.34 4.50 4.34	35 37 37 39 33 45 42 42	0.18 0.14 0.40 0.36 0.54 0.47 0.61 0.40	
950325 950325 950325 950325 950325	0152 0453 0745 1052 1352	2.74 2.43 2.45 2.38 2.23	0.083 0.074 0.074 0.083 0.093	12.0 13.6 13.6 12.0 10.7	48 38 34 42 36	59 59 58 59 55	0.56 0.58 0.58 0.55 0.55	0.84 1.04 1.02 1.10 1.11	4.45 4.68 4.28 4.70 4.90	43 43 46 44 42	0.37 0.31 0.55 0.92 0.67	
	<u> </u>								(She	et 12	of 47)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	$\theta_{ ho}$ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A	
950325 950325 950325	1652 1952 2252	2.14 2.49 2.19	0.103 0.093 0.093	9.7 10.7 10.7	30 50 34	57 54 55	0.61 0.53 0.56	0.99 1.13 1.18	4.28 5.36 4.96	47 35 41	0.37 0.20 0.57	
950326 950326 950326 950326 950326 950326 950326	0152 0452 0752 1052 1352 1652 1946 2249	2.06 1.99 2.04 2.23 2.36 1.93 1.63 1.50	0.093 0.103 0.103 0.103 0.103 0.093 0.093 0.103	10.7 9.7 9.7 9.7 9.7 10.7 10.7 9.7	40 32 44 34 36 46 42 40	52 52 54 48 47 51 50 51	0.54 0.55 0.53 0.50 0.49 0.53 0.56 0.60	1.44 1.41 1.26 1.43 1.48 1.45 2.14 2.25	5.62 5.23 5.50 5.96 6.63 5.89 6.45 5.64	36 39 35 31 29 32 27 30	0.62 0.71 0.61 0.54 0.35 0.36 0.60	
950327 950327 950327 950327 950327 950327 950327 950327	0152 0452 0752 1106 1352 1652 1952 2253	1.42 1.53 1.46 1.42 1.34 1.26 1.08	0.103 0.103 0.113 0.103 0.132 0.123 0.123	9.7 9.7 8.9 9.7 7.6 8.2 8.9 8.2	36 40 28 36 26 24 46 46	52 50 50 52 52 53 59 65	0.62 0.61 0.62 0.60 0.66 0.66 0.69	1.64 1.70 1.51 1.61 1.43 1.63 2.06 2.08	4.88 5.30 4.84 5.17 4.15 4.44 4.52 4.19	43 36 43 40 52 45 40	1.09 0.53 0.73 0.70 0.85 0.33 0.54 0.87	
950328 950328 950328 950328 950328 950328 950328 950328	0153 0453 0753 1052 1353 1652 1952 2252	1.20 1.22 1.20 1.24 1.29 1.15 1.03	0.083 0.083 0.152 0.064 0.064 0.064 0.074	12.0 12.0 6.6 15.6 15.6 15.6 13.6	44 36 44 72 74 66 74 64	66 64 63 68 74 71 81 74	0.69 0.67 0.64 0.72 0.71 0.74 0.79	1.74 1.82 1.70 1.68 1.38 2.26 1.63 1.79	4.01 4.30 4.82 3.88 3.75 3.88 3.18 3.76	45 43 38 45 43 38 46 39	0.46 0.04 0.19 0.00 0.01 0.20 0.25 0.33	
950329 950329 950329 950329 950329 950329 950329 950329	0152 0453 0752 1052 1349 1649 1952 2252	1.17 1.15 1.13 1.20 1.12 1.07 1.04 0.93	0.074 0.074 0.074 0.074 0.083 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0 12.0	66 76 74 76 76 72 84 78	74 79 82 78 77 76 84 86	0.69 0.71 0.75 0.71 0.74 0.75 0.77 0.80	2.00 1.51 1.55 1.67 1.63 1.65 1.38 1.49	4.31 3.74 3.50 4.03 3.61 3.56 3.23 3.00	33 37 38 35 41 42 43 44	0.25 0.03 0.28 -0.13 -0.08 0.15 0.01 0.43	
950330 950330 950330 950330 950330 950330 950330 950330	0152 0453 0752 1052 1352 1653 1952 2252	0.94 0.86 0.85 0.86 0.88 0.81 0.85 0.84	0.083 0.083 0.093 0.093 0.093 0.093 0.093 0.093	12.0 12.0 10.7 10.7 10.7 10.7 10.7	78 72 72 82 82 82 78 76 78	83 86 81 88 87 86 89 90	0.75 0.81 0.80 0.82 0.78 0.82 0.86 0.90	1.56 1.45 1.79 1.39 1.36 1.46 1.41	3.35 2.83 3.26 2.89 3.09 3.03 2.59 2.33	39 57 44 49 42 47 71 84	0.12 0.78 0.43 0.33 0.11 0.38 1.10 0.84	
950331 950331 950331 950331 950331 950331 950331	0152 0452 0752 1052 1352 1658 1952 2252	0.86 0.87 0.81 0.74 0.75 0.78 0.75 0.77	0.103 0.103 0.103 0.103 0.103 0.103 0.113 0.113	9.7 9.7 9.7 9.7 9.7 9.7 8.9 8.9	84 82 86 80 86 86 86 86	89 88 88 89 94 88 92 92	0.86 0.78 0.88 0.87 0.81 0.79 0.83 0.82	1.16 1.15 0.78 1.06 0.88 0.87 0.95 0.75	2.51 2.90 2.32 2.48 2.58 2.61 2.52	70 45 79 74 63 53 63 69	0.54 0.43 0.37 0.77 0.71 0.27 0.73 0.60	
	0153 0453	0.73 0.79	0.113 0.083	8.9 12.0	90 88	94 91	0.77 0.76	0.69 0.65	2.84	56 58	0.27 0.31	
									(She	et 13	of 47)	

Table	Table A1 (Continued) Time H_{mo} f_{ρ} T_{ρ} θ_{ρ} θ_{0} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A	
950401 950401 950401 950401 950401 950401	0752 1052 1353 1652 1952 2253	1.03 1.38 1.59 2.68 3.43 3.99	0.162 0.162 0.162 0.142 0.123 0.113	6.2 6.2 6.2 7.0 8.2 8.9	84 18 76 20 72 70	69 55 63 53 52 52	0.73 0.68 0.58 0.52 0.50 0.50	0.58 0.73 0.52 0.31 0.23 0.19	3.05 3.40 4.07 3.41 3.56 3.52	58 57 45 49 46 45	-0.53 0.17 -0.41 -0.28 -0.48 -0.40	
950402 950402 950402 950402 950402 950402 950402	0153 0452 0753 1052 1353 1653 1953 2252	3.86 3.75 3.70 3.23 3.45 3.33 3.00 2.79	0.074 0.103 0.074 0.093 0.074 0.074 0.074	13.6 9.7 13.6 10.7 13.6 13.6 13.6	54 -6 70 62 62 70 74 66	62 34 66 63 59 61 63 61	0.44 1.21 0.42 0.45 0.48 0.51 0.55 0.51	0.23 1.39 0.10 0.34 0.39 -0.02 -0.09	4.74 1.85 5.88 5.54 4.90 4.40 4.21 5.20	32 143 26 30 37 38 42 29	0.03 1.64 -0.15 0.05 -0.31 -0.40 -0.70	
950403 950403 950403 950403 950403 950403 950403	0152 0453 0752 1121 1356 1653 1952 2249	2.68 2.69 2.65 2.30 2.38 2.25 1.98	0.074 0.074 0.074 0.074 0.083 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0 12.0	70 64 58 60 56 64 62 54	65 68 64 64 63 65 67	0.49 0.49 0.46 0.53 0.59 0.58 0.65 0.71	0.58 0.77 1.03 1.27 1.56 1.03 1.55 2.03	5.88 5.50 6.55 6.29 5.30 4.79 4.50 4.12	29 33 28 30 38 41 38 39	-0.31 0.28 0.27 0.23 0.25 0.04 0.09 0.31	
950404 950404 950404	0153 0452 0752	1.71 1.65 1.64	0.083 0.083 0.064	12.0 12.0 15.6	52 50 56	69 75 75	0.70 0.74 0.81	1.91 1.58 1.59	4.05 3.41 3.01	40 47 50	0.25 0.22 0.18	
950405 950405 950405 950405 950405	1047 1347 1704 1955 2255	1.82 1.97 2.07 1.84 1.78	0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0	70 76 76 80 74	72 72 72 78 75	0.57 0.57 0.52 0.54 0.54	1.55 1.21 1.30 1.22 1.44	5.60 5.41 6.17 5.81 5.68	27 30 27 26 28	0.01 -0.31 -0.25 -0.25 0.00	
950406 950406 950406 950406 950406 950406 950406 950406	0155 0455 0755 1053 1353 1652 1952 2252	1.84 1.86 1.89 1.70 1.80 1.73 1.63	0.083 0.083 0.093 0.093 0.093 0.093 0.083 0.083	12.0 12.0 10.7 10.7 10.7 10.7 12.0 12.0	78 60 64 62 76 80 62 68	74 70 71 73 72 71 74 76	0.56 0.53 0.52 0.58 0.55 0.58 0.57	1.50 1.47 1.45 1.58 1.27 1.29 1.50 1.68	5.66 5.83 5.99 5.15 5.53 5.08 5.10 4.67	29 31 29 33 32 36 32 33	-0.27 0.16 0.22 0.14 -0.11 -0.09 0.23 0.14	
950407 950407 950407 950407 950407 950407 950407	0153 0752 1057 1352 1652 1952 2252	1.51 1.56 1.70 1.78 1.91 1.91	0.093 0.093 0.083 0.083 0.064 0.074 0.074	10.7 10.7 12.0 12.0 15.6 13.6	58 60 62 60 60 54 62	73 71 71 74 70 67 71	0.61 0.60 0.58 0.62 0.59 0.59 0.59	1.73 1.92 2.06 1.30 1.70 2.05 1.91	4.86 4.94 5.60 4.33 5.03 5.53 5.47	33 30 28 37 34 32 30	0.11 0.53 0.36 0.23 0.44 0.56 0.33	
950408 950408 950408 950408 950408 950408 950408	0152 0452 0752 1052 1352 1652 2252	1.89 2.12 2.21 2.69 3.72 4.77 4.74	0.083 0.093 0.074 0.083 0.074 0.074	12.0 10.7 13.6 12.0 13.6 13.6	68 68 62 66 66 70 -8	73 68 69 68 66 66 37	0.63 0.59 0.52 0.49 0.48 0.65	1.65 1.37 1.18 0.96 0.57 0.22 1.43	4.78 4.85 5.66 6.08 5.90 3.93 1.68	33 35 29 26 25 43 167	0.07 -0.13 0.18 0.05 0.06 -0.15 1.26	
									(She	et 14	of 47)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A	
950409 950409 950409 950409 950409 950409 950409	0152 0452 0752 1045 1352 1652 1952 2252	4.45 4.20 4.16 4.02 3.92 4.10 4.28 4.09	0.074 0.074 0.074 0.064 0.074 0.074 0.074 0.103	13.6 13.6 13.6 15.6 13.6 13.6 13.6 9.7	-6 66 68 72 70 66 66 66	47 67 65 65 63 61 62 63	1.26 0.68 0.48 0.46 0.53 0.51 0.50 0.49	1.06 0.43 0.10 0.08 -0.04 0.13 0.12 0.26	1.59 3.84 4.89 5.04 4.01 4.03 4.49 5.39	163 46 31 32 42 42 38 32	0.81 0.03 -0.18 -0.20 -0.43 -0.21 -0.15 -0.21	
950410 950410 950410 950410 950410 950410 950410	0152 0452 0747 1054 1652 1952 2245	3.63 3.38 3.29 3.09 2.69 2.69 2.50	0.083 0.074 0.083 0.093 0.083 0.083 0.083	12.0 13.6 12.0 10.7 12.0 12.0 12.0	72 66 68 68 70 64 68	64 67 64 61 62 62 67	0.47 0.50 0.51 0.52 0.57 0.54 0.51	0.18 0.24 0.18 0.20 0.43 0.62 0.54	5.32 5.05 4.49 4.86 4.86 5.11 5.22	34 36 38 39 41 36 34	-0.37 -0.05 -0.14 -0.54 -0.22 -0.12 -0.15	
950411 950411 950411 950411 950411 950411 950411	0152 0452 0752 1050 1348 1652 1952 2252	2.46 2.32 2.37 2.19 2.06 2.00 1.73 1.64	0.083 0.083 0.132 0.083 0.083 0.142 0.083 0.083	12.0 12.0 7.6 12.0 12.0 7.0 12.0 12.0	62 68 46 62 62 68 68 66	69 69 64 65 65 66 67 69	0.63 0.57 0.54 0.52 0.61 0.64 0.65	0.80 0.93 1.32 1.42 1.42 1.55 1.65	4.34 4.86 5.60 6.29 5.25 4.89 4.92 4.21	40 38 36 31 37 39 36 42	0.38 0.00 0.26 0.07 0.04 -0.18 -0.14 0.09	
950412 950412 950412 950412 950412 950412 950412	0152 0452 0752 1051 1412 1645 1952 2252	1.56 1.57 1.44 1.35 1.61 1.52 1.70	0.083 0.083 0.083 0.083 0.074 0.074 0.074	12.0 12.0 12.0 12.0 13.6 13.6 13.6	66 74 58 54 50 52 52 48	74 74 77 76 71 71 67 69	0.75 0.76 0.78 0.76 0.78 0.76 0.71 0.80	1.95 1.84 1.81 2.15 2.44 2.65 3.12 2.75	3.73 3.55 3.48 3.75 3.60 3.90 4.67 3.66	41 45 45 43 42 38 30 45	0.35 0.10 0.34 0.62 0.69 0.87 1.05 1.28	
950413 950413 950413 950413 950413 950413 950413	0145 0452 0752 1054 1345 1652 1952 2252	1.77 1.60 1.67 1.96 1.89 1.76 1.63 2.00	0.074 0.074 0.083 0.083 0.083 0.083 0.083 0.162	13.6 13.6 12.0 12.0 12.0 12.0 12.0 12.0	46 48 48 48 48 72 76 52	66 68 65 60 63 75 77	0.80 0.76 0.76 0.66 0.71 0.70 0.69	2.46 2.43 3.02 3.22 2.56 1.55 1.56 1.08	3.54 3.83 4.06 5.43 4.60 3.88 4.13 4.16	47 42 36 29 39 42 41 43	1.35 1.33 1.11 1.01 0.69 0.07 0.06 0.05	
950414 950414 950414 950414 950414 950414 950414	0149 0452 0752 1052 1352 1652 1952 2245	2.64 2.54 2.38 2.24 2.42 2.37 3.36 3.95	0.142 0.132 0.132 0.123 0.123 0.113 0.132 0.103	7.0 7.6 7.6 8.2 8.2 8.9 7.6 9.7	24 24 30 40 30 50 24 50	54 56 59 61 62 55 49 46	0.59 0.56 0.55 0.56 0.57 0.57 0.54 0.47	0.90 0.74 0.66 0.78 0.53 0.60 0.37 0.46	4.03 4.29 4.33 4.20 3.85 3.99 3.76 4.97	49 47 46 44 50 48 45 34	0.26 -0.12 0.08 0.18 0.06 0.25 -0.03 -0.17	
950415 950415 950415 950415	0152 0745 1045 1345	3.87 3.19 3.17 2.99	0.113 0.103 0.093 0.093	8.9 9.7 10.7 10.7	54 30 58 28	52 57 56 53	0.47 0.51 0.51 0.51	0.38 0.52 0.76 0.66	4.87 4.14 4.66 4.64	35 43 36 43	-0.18 0.21 0.08 0.17	
950416 950416	0152 0452	1.84 1.85	0.103 0.162	9.7 6.2	88 88	73 76	0.60	0.48 0.35	4.18 4.32	43 38	-0.25 -0.28	
									(Shee	et 15	of 47)	

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p	$ heta_{ ho}$ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950416 950416 950416 950416 950416	0745 1045 1352 1652 2245	1.82 2.13 3.04 3.12 3.72	0.132 0.093 0.093 0.093 0.083	7.6 10.7 10.7 10.7 12.0	78 74 74 72 62	74 74 75 69 64	0.61 0.58 0.48 0.50 0.52	0.33 0.54 0.28 0.04 0.31	3.98 4.12 5.24 4.73 4.51	40 37 30 35 33	-0.18 -0.03 0.04 -0.17 0.12
950417 950417 950417 950417 950417 950417	0152 0445 0752 1052 1352 1652 1945	3.47 3.39 3.03 2.75 2.85 2.84 2.35	0.083 0.083 0.083 0.083 0.093 0.093 0.103	12.0 12.0 12.0 12.0 10.7 10.7 9.7	60 58 58 52 50 56 62	63 60 59 58 58 58	0.53 0.51 0.53 0.55 0.54 0.52 0.59	0.52 0.63 0.65 1.01 1.08 1.18	4.30 4.84 5.09 5.24 5.45 6.20 5.35	36 32 31 34 33 28 32	0.15 0.04 0.01 0.30 0.32 0.06 -0.18
950418 950418 950418 950418 950418 950418 950418	0152 0445 0750 1050 1348 1642 2249	2.06 1.81 1.76 2.87 4.24 5.10 5.38	0.103 0.064 0.074 0.142 0.103 0.103 0.093	9.7 15.6 13.6 7.0 9.7 9.7 10.7	64 68 64 80 60 58	63 74 73 66 52 55	0.76 0.78 0.73 0.69 0.60 0.50	1.28 1.71 1.92 0.95 0.59 0.49 0.28	3.59 3.45 3.79 3.65 4.03 5.46 5.54	50 44 39 51 45 31 32	-0.15 0.28 0.56 -0.24 -0.33 -0.22 -0.39
950420 950420 950420 950420	1549 1646 1952 2252	1.83 2.01 3.22 3.99	0.074 0.074 0.132 0.123	13.6 13.6 7.6 8.2	58 64 64 60	79 74 54 49	0.83 0.76 0.63 0.58	1.06 1.11 0.66 0.46	2.78 3.23 3.74 4.10	62 50 50 47	0.52 0.38 -0.32 -0.40
950421 950421 950421 950421 950421 950421 950421	0145 0746 1047 1352 1652 1952 2252	3.42 2.99 3.09 2.95 2.68 2.79 2.46	0.113 0.103 0.103 0.093 0.083 0.083 0.083	8.9 9.7 9.7 10.7 12.0 12.0	54 68 64 54 60 48 62	52 59 61 56 61 58	0.56 0.53 0.52 0.57 0.61 0.58 0.56	0.71 0.93 0.87 0.93 0.79 0.89 0.94	4.66 5.48 5.83 4.96 4.48 4.89 5.00	42 38 34 41 41 41 35	-0.14 -0.29 -0.16 0.06 0.05 0.26 -0.10
950422 950422 950422 950422 950422 950422 950422 950422 950422	0152 0452 0752 0827 1052 1352 1652 1952 2252	2.44 2.41 2.27 2.18 2.27 2.12 1.75 1.69 1.52	0.083 0.083 0.083 0.083 0.093 0.074 0.074 0.083 0.083	12.0 12.0 12.0 12.0 10.7 13.6 13.6 12.0 12.0	60 56 56 50 48 66 60 64 58	54 62 60 59 55 62 61 63	0.61 0.59 0.60 0.60 0.58 0.63 0.63 0.63	1.05 1.20 1.56 1.68 1.60 1.44 1.68 1.59 2.39	4.43 4.80 4.93 5.24 5.21 4.81 5.53 4.91 6.51	42 32 34 33 34 36 28 35 23	-0.24 0.15 0.18 0.30 0.28 -0.25 0.06 -0.15 0.29
950423 950423 950423 950423 950423 950423 950423	0152 0452 0752 1052 1352 1653 1952 2252	1.60 1.60 1.42 1.17 1.12 1.07 0.97 1.08	0.083 0.093 0.103 0.064 0.064 0.064 0.074	12.0 10.7 9.7 15.6 15.6 15.6 13.6	58 56 60 68 66 64 66 74	60 59 67 79 77 76 79 84	0.60 0.58 0.64 0.74 0.73 0.74 0.79	2.23 2.21 2.27 1.41 1.82 2.27 1.90 1.30	5.84 6.13 5.12 3.36 3.69 3.94 3.41 3.39	29 27 28 45 37 34 37 41	0.04 -0.01 0.26 0.45 0.71 0.67 0.79 0.67
950424 950424 950424 950424 950424 950424	0152 0452 0752 1052 1652 1953	0.95 0.96 0.98 0.97 0.98 1.02	0.074 0.074 0.074 0.083 0.083 0.083	13.6 13.6 13.6 12.0 12.0	66 72 68 78 90 70	81 86 87 96 97 88	0.74 0.75 0.79 0.80 0.84 0.86	1.52 1.36 1.17 0.69 0.42 0.76	3.34 3.09 2.79 2.40 2.19 2.47	46 45 59 69 78 72	1.13 0.80 0.91 0.78 0.39 0.44
<u></u>									(She	eet 16	of 47)

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	γ	δ	Δθ deg	А
950424	2252	1.17	0.083	12.0	76	78	0.78	1.10	2.94	57	0.19
950425 950425 950425 950425 950425 950425 950425	0152 0452 0752 1352 1653 1952 2252	1.10 1.22 1.29 1.47 1.57 1.64	0.162 0.162 0.152 0.152 0.152 0.152 0.152	6.2 6.2 6.6 6.6 6.6 6.6	84 52 26 26 26 24 28	82 77 65 65 57 54 63	0.76 0.81 0.78 0.75 0.73 0.72 0.72	1.03 0.79 1.03 1.06 1.29 1.24 1.02	2.97 2.51 2.83 2.90 3.21 3.23 2.94	54 70 66 61 61 60 62	0.18 0.31 0.33 0.30 0.81 0.83 0.70
950426 950426 950426 950426 950426 950426 950426	0152 0452 0752 1052 1353 1653 2252	1.50 1.46 1.52 1.47 1.38 1.28	0.152 0.152 0.142 0.152 0.162 0.152 0.064	6.6 6.6 7.0 6.6 6.2 6.6 15.6	66 26 28 26 28 30 60	68 61 61 63 66 73 79	0.75 0.74 0.74 0.76 0.76 0.85 0.82	0.79 1.09 1.15 1.09 1.22 0.92 1.03	3.17 2.93 2.93 2.83 2.91 2.27 2.57	58 66 66 66 64 85 70	0.07 0.64 0.59 0.55 0.65 0.69 1.06
950427 950427 950427 950427 950427 950427 950427	0152 0452 0752 1053 1352 1652 1952 2252	1.19 1.21 1.14 1.22 1.19 1.12 1.08 1.12	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	62 64 66 60 64 64 66 60	87 92 93 88 86 96 94 93	0.80 0.82 0.78 0.78 0.77 0.86 0.81 0.84	0.98 0.67 0.71 0.69 1.13 0.68 0.79 0.88	2.44 2.27 2.43 2.38 2.69 1.99 2.22 2.27	72 78 68 71 65 87 78 81	1.57 1.24 0.86 0.83 1.64 1.16 1.12
950428 950428 950428 950428 950428 950428	0152 0452 0752 1052 1352 1652 1953	1.23 1.24 1.18 1.29 1.23 1.22	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	62 58 60 60 58 58 70	90 89 92 92 91 88 98	0.80 0.82 0.83 0.80 0.86 0.82 0.82	1.19 1.12 0.99 1.00 0.93 1.11 0.79	2.49 2.44 2.40 2.39 2.12 2.46 2.25	70 74 73 73 86 71 77	1.34 1.11 0.80 0.94 0.98 0.92 0.92
950429 950429 950429 950429 950429 950429 950429 950429	0151 0452 0752 1052 1352 1652 1952 2252	1.37 1.18 1.18 1.28 1.26 1.27 1.39 1.54	0.083 0.074 0.074 0.074 0.074 0.074 0.074	12.0 13.6 13.6 13.6 13.6 13.6 13.6	62 70 60 62 62 60 62 52	97 106 106 108 107 99 98 99	0.80 0.91 0.93 0.89 0.93 0.90 0.88 0.86	0.61 0.45 0.40 0.34 0.46 0.68 0.58 0.43	2.29 1.72 1.63 1.67 1.73 1.96 1.96	71 104 110 103 108 98 95 91	0.29 0.96 0.74 0.68 0.73 0.76 0.73
950430 950430 950430 950430 950430 950430 950430 950430	0153 0453 0752 1052 1352 1652 2028 2252	1.54 1.59 1.49 1.48 1.58 1.36 1.42 1.37	0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	58 56 60 58 64 56 62 54	88 84 88 89 89 92 89 91	0.78 0.80 0.83 0.86 0.81 0.87 0.84 0.86	0.89 1.18 1.03 1.01 0.89 0.75 0.93 0.76	2.46 2.57 2.38 2.21 2.40 2.18 2.24 2.11	68 67 72 80 68 80 78 88	0.61 0.74 0.92 1.06 0.91 0.53 1.07 0.82
950501 950501 950501 950501 950501 950501	0452 0752 1052 1352 1652 1952	1.18 1.11 1.09 1.10 1.04 1.05	0.074 0.074 0.074 0.074 0.083 0.074	13.6 13.6 13.6 13.6 12.0 13.6	56 -178 60 62 58 62	105 110 110 109 106 100	0.90 0.94 0.93 0.88 0.90 0.87	0.43 0.36 0.26 0.28 0.43 0.68	1.80 1.74 1.70 1.86 1.94 2.16	104 110 107 97 96 86	0.53 0.53 0.38 0.33 0.39 0.67
								<u>l</u>	(She	et 17 (of 47)

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А	
950502 950502 950502 950502 950502 950502 950502	0152 0452 0752 1051 1352 1659 1952	1.10 1.02 0.98 0.95 0.93 0.91 0.90	0.074 0.074 0.083 0.083 0.074 0.074	13.6 13.6 12.0 12.0 13.6 13.6	70 72 62 58 62 62 80	99 101 100 101 108 105 99	0.83 0.80 0.84 0.83 0.83 0.79	0.76 0.76 0.64 0.47 0.28 0.32 0.63	2.27 2.23 2.13 2.02 2.07 2.02 2.43	79 81 83 85 84 85 66	0.84 1.00 0.63 0.46 0.29 0.46 0.56	
950503 950503 950503 950503 950503 950503 950503 950503	0232 0531 0752 1050 1351 1650 1951 2250	1.06 1.32 1.38 1.33 1.25 1.26 1.19	0.162 0.152 0.162 0.162 0.152 0.162 0.162 0.162	6.2 6.6 6.2 6.6 6.2 6.2 6.2	100 58 60 64 56 54 58 62	89 80 77 77 72 72 72 72 73	0.71 0.63 0.65 0.66 0.69 0.68 0.71 0.71	0.64 0.79 0.79 0.86 0.98 0.77 1.20	2.97 3.50 3.42 3.45 3.60 3.45 3.53 3.47	52 45 45 46 51 49 48 48	-0.04 0.12 0.15 0.22 0.66 0.29 0.44 0.35	
950504 950504 950504 950504 950504 950504 950504	0450 0750 1050 1350 1654 1950 2250	1.32 1.23 1.29 1.17 1.17 1.60 2.02	0.162 0.162 0.152 0.162 0.152 0.142 0.142	6.2 6.6 6.2 6.6 7.0 7.0	58 58 60 60 56 60 28	59 64 64 67 64 57	0.62 0.68 0.63 0.71 0.70 0.61 0.55	1.41 1.23 1.55 1.31 1.67 1.30 1.22	4.56 3.79 4.48 3.43 3.94 4.78 5.22	38 44 37 51 42 40 38	0.01 0.23 0.15 0.38 0.48 -0.22 0.23	
950505 950505 950505 950505 950505 950505 950505	0150 0450 0744 1051 1351 1650 1951 2250	2.12 2.15 2.39 2.60 2.71 2.53 2.26 2.07	0.132 0.113 0.103 0.103 0.093 0.103 0.103	7.6 8.9 9.7 9.7 10.7 9.7 9.7	28 46 40 38 38 38 42 36	48 49 48 46 46 48 50	0.49 0.47 0.44 0.45 0.42 0.46 0.49 0.54	1.44 1.55 1.52 1.61 1.87 1.63 1.67 1.58	6.57 7.66 7.96 7.91 8.78 7.44 6.82 5.95	32 25 25 26 22 26 26 33	0.06 0.11 0.21 0.40 0.42 0.36 0.30 0.27	
950506 950506 950506 950506 950506 950506 950506 950506	0151 0451 0751 1050 1350 1650 1950 2251 2337	2.03 1.84 1.85 2.25 2.55 2.33 2.47 2.88 2.76	0.103 0.113 0.113 0.113 0.103 0.103 0.103 0.103 0.103	9.7 8.9 8.9 9.7 9.7 9.7 9.7	36 44 48 56 50 46 48 30 28	52 55 57 56 52 51 52 47 45	0.53 0.51 0.52 0.48 0.42 0.45 0.49 0.44	1.52 1.85 1.28 1.26 1.28 1.17 0.97 1.20 1.22	5.94 6.79 5.82 6.81 7.73 7.13 5.71 6.76 6.71	33 28 31 27 23 26 34 29 32	0.21 0.49 0.34 -0.07 0.01 0.20 0.16 0.16 0.42	
950507 950507 950507 950507 950507 950507 950507	0151 0451 0751 1050 1350 1651 1951 2251	2.74 2.56 2.59 2.13 2.05 2.07 1.92 1.65	0.093 0.093 0.093 0.103 0.103 0.103 0.103 0.113	10.7 10.7 10.7 9.7 9.7 9.7 9.7 9.7 8.9	46 42 44 36 38 40 46 32	47 47 48 47 46 45 49 48	0.45 0.43 0.43 0.49 0.48 0.46 0.58 0.58	1.20 1.48 1.55 1.48 2.11 2.40 1.46 2.09	7.33 8.23 8.63 7.13 8.00 8.93 6.04 5.95	29 25 23 29 23 19 28 36	0.10 0.20 0.23 0.31 0.52 0.33 0.16 0.76	
950508 950508 950508 950508 950508 950508 950508	0151 0451 0751 1051 1351 1651 1738	1.37 1.24 1.16 1.11 1.15 1.16 1.21	0.113 0.113 0.123 0.113 0.064 0.064 0.064	8.9 8.9 8.2 8.9 15.6 15.6	38 38 38 36 30 68 72	45 55 68 64 78 73 79	0.64 0.73 0.93 0.89 0.96 0.87 0.88	2.93 2.53 1.88 2.12 1.00 1.44 1.17	6.04 4.40 2.59 2.84 1.98 2.56 2.36	26 39 89 65 114 71 83	0.33 0.79 1.43 1.08 0.92 0.58 0.71	
	1	<u>l</u>							(She	et 18	of 47)	

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
950508 950508	1951 2251	1.27 1.24	1	15.6 15.6	74 74	83 97	0.86 0.91	1.21 0.63	2.56 1.85	62 103	0.79 1.28
950509 950509 950509 950509 950509 950509 950509	0151 0451 0751 1051 1351 1651 1951 2330	1.17 1.25 1.20 1.27 1.29 1.39 1.30 1.29	0.064 0.074 0.074 0.074 0.074 0.074 0.074 0.083	15.6 13.6 13.6 13.6 13.6 13.6 13.6	176 172 172 80 72 78 178 72	106 112 111 108 110 116 120 118	0.94 0.92 0.93 0.89 0.91 0.89 0.91	0.36 0.00 0.21 0.58 0.39 0.23 0.05	1.70 1.68 1.66 1.84 1.67 1.69 1.59	104 102 101 97 102 98 101 104	1.27 0.45 1.04 1.70 1.20 1.07 0.46 0.94
950510 950510 950510 950510 950510 950510 950510 950510	0151 0451 0751 1050 1350 1650 1950 2251	1.34 1.48 1.74 2.18 2.47 2.57 3.04 3.11	0.083 0.083 0.054 0.054 0.064 0.064 0.074	12.0 12.0 18.5 18.5 15.6 15.6 15.6 13.6	78 176 68 72 72 66 68 72	114 112 91 83 76 75 72 70	0.90 0.87 0.75 0.64 0.69 0.65 0.61	0.38 0.38 1.40 1.65 1.77 1.82 1.23 0.59	1.59 1.69 2.94 4.53 4.22 4.66 4.71 4.49	102 98 48 31 31 27 29 31	1.36 1.44 1.00 0.32 0.27 0.65 0.19 -0.25
950511 950511 950511 950511 950511 950511 950511	0150 0450 0750 1053 1351 1650 1950 2251	3.08 3.13 3.03 2.83 2.43 2.39 2.32 2.59	0.064 0.074 0.074 0.074 0.074 0.074 0.074 0.152	15.6 13.6 13.6 13.6 13.6 13.6 13.6 6.6	70 70 64 72 76 68 66 62	67 65 65 71 72 71 69 63	0.56 0.55 0.53 0.54 0.56 0.57 0.56 0.58	0.59 0.76 0.68 0.54 0.61 0.80 0.82 0.59	4.53 4.69 4.68 4.95 4.63 4.56 4.74 3.96	34 36 32 31 35 34 32 43	-0.44 -0.26 -0.07 -0.15 -0.15 0.05 0.15 -0.07
950512 950512 950512 950512 950512 950512 950512 950512	0151 0451 0750 1050 1351 1650 1950 2251	2.90 2.91 2.51 2.32 2.39 2.63 2.50 2.48	0.132 0.123 0.132 0.132 0.083 0.083 0.074 0.083	7.6 8.2 7.6 7.6 12.0 12.0 13.6 12.0	66 24 64 70 80 62 62 60	56 54 58 65 67 63 64 65	0.54 0.56 0.55 0.53 0.54 0.50 0.51 0.52	0.64 0.67 0.83 0.51 0.37 0.66 1.16	4.02 3.86 4.64 4.64 4.44 5.44 6.24 6.19	43 48 41 37 39 31 27 29	-0.09 0.08 -0.22 -0.35 -0.27 -0.02 0.03 0.21
950513 950513 950513 950513 950513 950513 950513	0150 0451 0751 1051 1350 1650 1950 2251	2.38 2.03 2.22 2.49 3.21 3.53 3.22 3.09	0.074 0.083 0.083 0.083 0.083 0.083 0.083 0.083	13.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0	66 66 62 64 60 66 64 66	69 70 69 70 64 63 65 69	0.54 0.58 0.56 0.55 0.51 0.51 0.52 0.52	0.78 1.12 1.09 1.35 0.66 0.79 0.89 1.01	5.12 4.95 5.25 5.55 5.04 5.22 5.79 5.93	36 34 32 31 35 34 32 30	0.17 0.02 0.18 0.25 0.05 -0.21 0.02 0.10
950514 950514 950514 950514	0151 0833 1040 1352 1652 1952 2252	3.25 2.77 2.57 2.62 2.56 2.32 2.37	0.083 0.083 0.083 0.093 0.083 0.083 0.083	12.0 12.0 12.0 10.7 12.0 12.0 12.0	60 70 66 74 58 58 44	66 67 68 69 64 65 64	0.49 0.57 0.56 0.57 0.58 0.68 0.68	0.78 1.10 1.34 1.05 1.52 1.88 1.87	5.97 4.99 5.40 4.99 5.48 4.34 4.36	31	0.29 -0.16 0.00 -0.11 0.29 0.24 0.36
950515	0152 0452 0752 1052	2.26 2.08 2.08 1.91	0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7	58 62 66 64	64 69 71 76	0.65 0.69 0.73 0.76	1.73 1.97 1.71 1.31	4.50 4.07 3.58 3.14	37 36 40 48	0.20 0.25 0.05 0.17
		······································							(Shee	et 19	of 47)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950515 950515 950515 950515	1351 1651 1951 2251	1.78 1.97 1.80 1.74	0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7	50 72 50 50	75 73 76 82	0.79 0.78 0.81 0.83	1.65 1.46 1.30 1.08	3.05 3.08 2.76 2.49	50 50 59 69	0.53 -0.05 0.66 0.51
950516 950516 950516 950516 950516 950516	0451 0751 1051 1351 1651 1951 2251	1.55 1.45 1.32 1.34 1.36 1.43	0.093 0.093 0.093 0.103 0.103 0.113 0.103	10.7 10.7 10.7 9.7 9.7 8.9 9.7	62 76 82 36 34 36 44	80 92 89 85 77 75 81	0.87 0.87 0.91 0.92 0.93 0.89 0.87	1.20 0.87 0.76 0.79 1.08 1.29	2.32 2.12 2.04 1.92 2.05 2.37 2.34	87 93 97 106 106 90 85	1.01 1.13 0.68 0.77 0.93 0.89 0.78
950517 950517 950517 950517 950517 950517 950517 950517	0151 0451 0751 1050 1351 1651 1951 2251	1.38 1.31 1.30 1.30 1.30 1.44 1.82 1.59	0.103 0.103 0.113 0.064 0.103 0.103 0.103	9.7 9.7 8.9 15.6 9.7 9.7 9.7	56 48 50 40 42 44 38 40	71 77 74 82 75 69 57 63	0.83 0.84 0.88 0.94 0.92 0.81 0.69 0.78	1.27 1.27 1.21 0.85 1.06 1.65 1.97	2.73 2.48 2.33 1.84 2.12 3.04 4.12 3.37	61 74 92 113 98 55 43 50	0.75 0.93 1.02 1.11 1.00 0.65 0.70 0.63
950518 950518 950518 950518 950518 950518 950518 950518	0151 0451 0751 1051 1351 1644 1951 2251	1.46 1.89 2.22 2.22 2.16 2.11 2.17 1.71	0.103 0.103 0.103 0.103 0.103 0.093 0.103 0.093	9.7 9.7 9.7 9.7 9.7 10.7 9.7	44 36 38 42 46 38 36 42	67 59 50 46 54 47 48 54	0.79 0.63 0.57 0.60 0.69 0.60 0.59	1.63 1.77 2.05 2.25 2.16 2.60 2.62 2.60	3.16 4.61 5.67 5.65 4.65 5.99 6.04 4.14	55 41 33 32 30 25 28 32	0.82 0.31 0.66 0.24 0.40 0.64 0.61
950519 950519 950519 950519 950519 950519 950519 950519	0151 0451 0751 1032 1332 1632 1932 2232	1.73 1.78 1.76 1.89 1.84 1.68 1.77	0.103 0.093 0.103 0.103 0.103 0.093 0.093 0.103	9.7 10.7 9.7 9.7 9.7 10.7 10.7	38 40 32 28 40 38 44 44	54 50 50 48 51 55 55 68	0.72 0.68 0.72 0.71 0.72 0.80 0.74 0.91	2.27 3.01 2.71 2.89 2.77 2.54 2.78 1.63	4.07 4.88 4.28 4.49 4.29 3.51 4.19 2.49	43 28 39 34 30 49 31 89	0.99 0.67 1.01 0.66 0.81 1.47 0.85 1.63
950520 950520 950520 950520 950520 950520 950520	0132 0432 0732 1033 1332 1632 1932	1.57 1.35 1.58 1.67 1.55 1.53 1.49	0.064 0.064 0.093 0.103 0.064 0.064	15.6 15.6 10.7 9.7 15.6 15.6	38 44 38 38 36 40 40	76 80 64 67 83 89 86	0.97 0.94 0.88 0.95 1.05 1.04	1.15 1.13 2.17 1.78 0.77 0.66 0.74	1.91 2.04 2.84 2.32 1.54 1.50	113 101 79 105 130 127 122	1.80 1.61 1.83 2.09 1.43 1.49
950521 950521 950521 950521 950521 950521 950521 950521	0132 0432 0732 1032 1332 1632 1932 2232	1.41 1.29 1.34 1.29 1.12 1.21 1.08 1.04	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	-180 46 -180 -178 -174 180 -176 180	131 121 114 131 129 126 131 126	1.01 1.03 1.07 1.04 1.06 1.08 1.08	-0.68 -0.35 -0.21 -1.04 -0.80 -0.74 -0.91 -0.76	1.63 1.49 1.32 1.76 1.66 1.55 1.68 1.72	123 124 135 131 136 135 137 129	-1.04 -0.79 -0.57 -1.16 -0.80 -0.94 -0.98 -0.87
950522 950522 950522	0132 0432 0732	0.98 1.03 1.07	0.064 0.074 0.064	15.6 13.6 15.6	-180 178 -178	130 136 127	1.02 0.98 1.01	-0.92 -1.10 -0.68	1.86 1.94 1.70	126 117 119	-0.87 -1.14 -0.74
			<u></u>						(She	et 20	of 47)

Table A1 (Continued) Time H _{ma} f _a T _a θ _a θ _a Δθ											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950522 950522 950522 950522	1032 1333 1932 2232	1.12 1.09 1.12 1.19	0.074 0.162 0.162 0.152	13.6 6.2 6.2 6.6	20 22 82 78	93 99 96 74	1.04 1.06 0.96 0.86	0.33 0.08 0.45 1.08	1.55 1.42 1.80 2.61	128 131 109 68	0.38 0.18 0.72 0.08
950523 950523 950523 950523 950523 950523 950523	0432 0831 1032 1333 1554 1647 1932 2232	1.64 1.64 1.74 1.67 1.95 2.05 2.22 2.17	0.123 0.113 0.113 0.113 0.103 0.103 0.103 0.103	8.2 8.9 8.9 8.9 9.7 9.7 9.7	40 32 28 22 24 26 28 28	59 55 52 50 51 48 46 44	0.73 0.70 0.68 0.69 0.69 0.63 0.58 0.61	1.92 1.98 2.10 2.11 1.83 2.12 2.35 2.46	3.87 4.11 4.43 4.47 4.31 5.28 6.25 6.00	45 46 44 44 46 37 31 34	0.44 0.73 0.70 0.52 0.32 0.30 0.33 0.86
950524 950524 950524 950524 950524 950524 950524 950524	0132 0432 0732 1047 1332 1515 1633 1932 2226	2.19 2.05 2.26 2.49 2.56 2.38 2.45 2.80 2.43	0.103 0.103 0.103 0.103 0.093 0.093 0.093 0.093 0.093	9.7 9.7 9.7 9.7 10.7 10.7 10.7 10.7	36 38 38 36 38 34 28 40 40	47 52 53 48 46 50 48 48 51	0.62 0.69 0.68 0.69 0.72 0.80 0.76 0.82 0.81	2.28 2.80 2.66 3.62 3.49 3.71 3.44 3.60 3.39	5.64 4.93 4.86 5.32 4.93 4.18 4.60 4.07 4.01	34 35 36 29 32 37 36 39	0.52 0.48 0.52 0.60 0.48 0.83 0.44 0.57 0.92
950525 950525 950525 950525 950525 950525 950525 950525	0132 0432 0732 1032 1332 1632 1932 2232	2.48 2.30 2.13 2.04 1.79 1.72 1.66 1.66	0.093 0.093 0.093 0.103 0.103 0.064 0.064	10.7 10.7 10.7 9.7 9.7 15.6 15.6	38 40 38 28 36 36 32 32	47 53 56 51 59 70 74 79	0.76 0.83 0.87 0.88 0.94 1.05 1.03	4.12 3.70 3.30 3.36 2.59 1.69 1.30 1.24	4.78 3.82 3.42 3.45 2.88 2.02 1.90 1.86	29 39 46 53 76 134 128 131	0.69 1.12 1.21 1.29 1.38 1.88 1.46 1.36
950526 950526 950526 950526 950526 950526 950526	0432 0732 1032 1333 1632 1932 2232	1.54 1.50 1.49 1.42 1.35 1.26	0.074 0.064 0.074 0.074 0.064 0.074	13.6 15.6 13.6 15.6 15.6 13.6	36 36 36 30 38 40 38	76 82 90 81 89 95 89	0.97 1.01 1.02 1.01 1.01 1.01 1.00	1.38 0.98 0.65 0.95 0.63 0.52 0.76	2.05 1.76 1.55 1.82 1.63 1.59 1.71	120 123 124 120 119 119 118	1.46 1.12 1.04 0.96 0.99 0.97 1.08
950527 950527 950527 950527 950527 950527 950527	0432 0732 1033 1333 1632 1932 2232	732							1.14 1.15 0.95 0.63 0.36 0.41 0.40		
950528 950528 950528 950528 950528	0132 0432 0732 1447 1633	1.59 1.74 1.74 1.72 1.83	0.142 0.132 0.132 0.132 0.132	7.0 7.6 7.6 7.6 7.6	46 38 38 38 38 36	65 63 64 62 60	0.76 0.72 0.73 0.72 0.74	1.63 1.95 1.66 1.97 1.98	3.29 3.66 3.28 3.64 3.61	48 43 45 41 42	0.52 0.43 0.53 0.47 0.42
950530 950530 950530 950530 950530	0733 1033 1335 1625 1932	2.18 2.02 1.86 2.01 1.93	0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6	60 58 56 60 58	69 70 69 69 71	0.68 0.74 0.79 0.70 0.74	2.59 2.49 2.71 2.63 2.74	4.51 3.91 3.68 4.36 4.06	20 30 32 23 27	0.51 0.68 1.00 0.43 0.79
(Sheet 21 of 47)											

Table A1 (Continued) Time H_{mo} f_n T_n θ_n θ_0 $\Delta\theta$														
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ _ο deg	σ	Y	δ	Δθ deg	А			
950530	2232	1.71	0.074	13.6	56	68	0.75	2.41	3.92	31	0.57			
950531 950531 950531 950531 950531 950531 950531	0132 0433 1027 1415 1633 1719 1932 2232	1.82 1.96 1.78 1.56 1.57 1.56 1.40	0.074 0.074 0.074 0.083 0.083 0.083 0.083	13.6 13.6 13.6 12.0 12.0 12.0 12.0	56 58 56 58 60 56 58	68 68 68 72 74 75 70 72	0.75 0.72 0.72 0.79 0.80 0.80 0.77 0.79	2.36 2.61 2.43 1.67 1.84 1.68 1.87	3.80 4.17 4.02 3.13 3.12 3.08 3.37 3.24	31 28 30 54 51 51 45 44	0.62 0.68 0.71 0.93 0.92 0.68 0.74 0.99			
950601 950601 950601 950601 950601 950601 950601	0133 0433 0732 1033 1333 1632 1932 2233	1.38 1.35 1.51 1.35 1.51 1.59 1.63 1.67	0.083 0.083 0.083 0.093 0.093 0.123 0.113 0.113	12.0 12.0 12.0 10.7 10.7 8.2 8.9 8.9	56 54 54 48 42 56 40	72 76 65 69 61 59 60 54	0.78 0.78 0.73 0.74 0.73 0.72 0.70 0.68	1.77 1.60 2.20 1.93 2.28 2.48 2.32 2.95	3.06 2.90 3.93 3.55 3.94 4.17 4.30 4.79	52 60 35 41 38 37 35 27	1.09 1.30 0.54 0.57 0.66 0.59 0.18 0.62			
950602 950602 950602 950602 950602 950602	0133 0433 1032 1633 1932 2233	1.58 1.67 1.67 1.45 1.70 1.80	0.113 0.103 0.162 0.113 0.142 0.132	8.9 9.7 6.2 8.9 7.0 7.6	44 48 48 44 30 32	55 56 56 57 55 54	0.67 0.63 0.65 0.67 0.64 0.61	2.92 2.72 2.21 2.06 2.05 2.00	2.72 5.16 27 0.5 2.21 4.57 34 0.2 2.06 4.13 37 0.5 2.05 4.40 36 0.3 2.00 4.86 35 0.2 1.98 5.09 37 0.2					
950603 950603 950603 950603 950603	0133 0433 0732 1033 1332 2232	1.91 1.98 1.77 1.79 1.88 2.37	0.142 0.132 0.132 0.132 0.123 0.123	7.0 7.6 7.6 7.6 8.2 7.6	28 26 38 36 34 32	52 54 55 57 56 52	0.60 0.58 0.59 0.58 0.63 0.56	1.98 1.72 1.96 2.07 2.12 1.81	5.09 4.97 5.09 5.37 4.69 5.73	37 37 33 32 35 35	0.29 -0.07 0.29 0.23 0.40 0.21			
950604 950604 950604 950604 950604 950604 950604	0200 0433 0732 1033 1332 1632 1933 2232	2.37 2.30 2.27 2.31 2.26 2.36 2.31 2.05	0.123 0.113 0.123 0.123 0.132 0.132 0.132 0.132	8.2 8.9 8.2 7.6 7.6 7.6	48 34 40 32 28 34 28 30	49 51 53 51 48 51 48 49	0.53 0.54 0.57 0.55 0.56 0.57 0.59 0.58	1.90 1.83 1.86 1.94 2.03 1.84 1.75 1.80	6.65 6.08 5.54 6.02 6.12 5.54 5.50 5.41	30 33 35 35 32 36 37 37	0.03 0.29 0.35 0.37 0.22 0.19 0.24 0.37			
950605 950605 950605 950605 950605 950605 950605	0132 0500 0732 1032 1333 1632 1932 2232	2.38 2.39 2.44 3.24 3.65 4.13 4.60 4.46	0.123 0.123 0.132 0.123 0.113 0.103 0.103 0.103	8.2 8.2 7.6 8.2 8.9 9.7 9.7	32 38 42 46 46 52 54 52	48 0.54 1.89 6.22 31 0.19 47 0.53 1.85 6.39 30 0.32 48 0.50 1.80 6.66 28 0.19 48 0.45 1.22 7.24 26 0.04 46 0.43 1.09 6.99 29 -0.01 48 0.42 0.76 6.66 29 -0.27 50 0.41 0.74 6.60 28 -0.32 49 0.41 0.82 6.31 28 -0.14								
950606 950606 950606 950606 950606 950606 950606	0133 0432 0732 1032 1332 1632 1932 2233	4.45 4.24 4.44 4.04 4.07 4.14 4.60 4.92	0.093 0.093 0.093 0.093 0.083 0.093 0.093	10.7 10.7 10.7 10.7 12.0 10.7 10.7	54 58 60 58 58 52 48 50	53 55 57 55 54 53 52 52	0.41 0.41 0.42 0.44 0.42 0.42 0.40 0.40	0.55 0.65 0.43 0.46 0.62 0.90 0.92 0.67	6.04 6.60 5.62 5.19 6.06 6.87 6.83 5.90	29 27 28 34 29 24 25 26	-0.12 -0.18 -0.14 -0.04 -0.26 -0.01 0.08 0.05			
									(She	et 22	of 47)			

Table	A1 (Contir	nued)								-:	
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	А	
950607 950607 950607 950607 950607 950607 950607	0433	4.17 3.77 3.81 3.92 3.95 3.44 3.27 3.21	0.083 0.093 0.093 0.093 0.093 0.083 0.093 0.093	12.0 10.7 10.7 10.7 10.7 10.7 12.0 10.7	52 54 50 48 52 50 48 50	54 54 55 55 56 54 54 55	0.41 0.41 0.42 0.41 0.40 0.41 0.43	0.77 0.84 0.92 0.78 0.95 1.71 1.62 1.39	6.57 7.12 7.00 6.57 7.43 9.10 8.12 7.44	26 26 25 26 23 20 22 23	0.09 -0.06 0.20 0.41 0.18 0.29 0.43 0.31	
950608 950608 950608 950608 950608 950608 950608	0133 0432 0734 1029 1332 1635 1933 2232	3.03 2.90 2.62 2.55 2.32 1.96 1.87 2.04	0.093 0.093 0.093 0.093 0.103 0.103 0.103	10.7 10.7 10.7 10.7 9.7 10.7 9.7 9.7	48 48 44 42 44 46 46 50	54 54 52 54 54 55 54 55	0.44 0.48 0.50 0.51 0.51 0.57 0.54	1.42 1.74 2.11 1.76 2.08 2.62 2.23 2.44	7.21 7.33 7.29 6.59 7.04 6.71 6.67 6.86	26 26 25 30 26 25 26 27	0.31 0.48 0.45 0.62 0.52 0.53 0.45 0.17	
950609 950609 950609 950609 950609 950609 950609	0133 0432 0732 1032 1337 1633 1933 2232	1.81 1.72 1.37 1.21 1.24 1.14 1.14	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7 8.9	44 44 46 42 32 30 36 38	53 57 59 59 59 60 60	0.58 0.58 0.68 0.73 0.75 0.74 0.77	2.81 2.83 3.00 2.76 2.06 2.12 2.36 2.53	6.35 6.48 5.11 4.34 3.71 3.94 3.82 3.67	28 28 31 36 47 43 42 44	0.42 0.38 0.54 0.64 0.54 0.11 0.34 0.62	
950610 950610 950610 950610 950610 950610	0433 0732 1032 1332 1632 1932 2232	1.11 1.00 0.94 1.04 1.11 1.16 1.46	0.103 0.093 0.103 0.162 0.162 0.162 0.054	9.7 10.7 9.7 6.2 6.2 6.2 18.5	66 64 32 56 24 66 68	64 63 70 64 57 59 61	0.73 0.77 0.79 0.75 0.74 0.68 0.64	1.80 1.84 1.32 1.67 1.58 1.56 1.47	0 3.77 43 -0.18 4 3.55 46 -0.03 2 2.98 58 0.28 7 3.53 48 0.25 8 3.64 52 0.05 6 4.33 41 -0.49			
950611 950611 950611 950611 950611 950611	0133 0433 0803 1032 1332 1632	2.11 2.25 2.30 2.30 2.69 2.85	0.064 0.064 0.074 0.074 0.074 0.074	15.6 15.6 13.6 13.6 13.6	70 70 66 62 62 60	69 66 62 60 58 59	0.50 0.49 0.52 0.57 0.47 0.50	0.98 0.68 1.19 1.64 0.82 0.86	7.19 6.45 7.51 6.42 6.77 6.31	16 19 20 28 27 30	-0.06 -0.40 -0.35 -0.18 -0.37 -0.04	
950612 950612 950612 950612 950612 950612	0732 1032 1334 1633 1932 2232	3.02 3.12 2.91 2.98 2.90 2.76	0.074 0.074 0.074 0.074 0.074 0.074 0.083	13.6 13.6 13.6 13.6 13.6 12.0	58 60 58 58 58 58	57 60 60 58 57 59	0.46 0.44 0.47 0.47 0.43 0.45	44 1.04 7.10 24 -0.11 47 1.12 6.68 26 0.01 47 0.98 6.19 27 -0.14 43 1.33 8.42 21 -0.46				
950613 950613 950613 950613 950613 950613	0132 0430 1054 1338 1634 1933 2233	2.73 2.72 2.54 2.33 2.62 2.79 2.33	0.074 0.074 0.083 0.083 0.074 0.083 0.083	13.6 13.6 12.0 12.0 13.6 12.0	60 62 62 58 66 68 64	61 63 64 62 65 67 67	0.47 0.46 0.48 0.53 0.48 0.48	0.89 1.09 1.42 1.13 0.70 0.94 1.37	6.04 7.42 7.30 5.48 6.07 6.10 6.93	30 25 20 30 27 26 25	-0.02 0.01 0.17 0.31 -0.01 -0.08 0.11	
950614 950614 950614	0133 0433 0511	2.30 2.17 2.15	0.083 0.083 0.083	12.0 12.0 12.0	62 64 68	68 73 71	0.49 0.53 0.54	1.48 1.28 1.45	6.45 5.06 5.43	26 32 28	0.26 0.23 0.17	
(Sheet 23 of 47)												

Table A1 (Continued) Time $H_{}$ f_{-} T_{-} θ_{-} θ_{-} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	А
950614 950614 950614 950614	0733 1041 1329 1634	1.89 1.67 1.69 1.88	0.093 0.103 0.054 0.054	10.7 9.7 18.5 18.5	64 58 62 142	75 80 87 96	0.63 0.69 0.74 0.77	1.16 0.93 0.72 0.26	3.62 3.03 2.45 1.83	39 49 76 83	0.24 0.44 1.00 0.80
950615 950615 950615 950615 950615 950615 950615	0134 0434 0734 1034 1327 1634 1934 2234	1.87 1.92 1.92 1.75 1.85 1.95 1.87	0.054 0.054 0.054 0.054 0.054 0.054 0.054	18.5 18.5 18.5 18.5 18.5 18.5 18.5	142 140 142 140 142 136 164 154	117 122 127 130 131 121 122 121	0.83 0.69 0.66 0.68 0.67 0.75 0.77	-0.47 -0.96 -1.18 -1.10 -1.14 -0.65 -0.52 -0.31	2.39 2.71 3.14 3.23 3.31 2.26 2.15 2.10	76 60 51 46 44 73 79 76	-1.13 -1.63 -1.53 -1.16 -0.97 -1.04 -0.73 -0.67
950616 950616 950616 950616 950616 950616 950616	0134 0434 0734 1034 1334 1634 1931	1.86 2.23 2.41 2.67 2.71 2.87 2.86	0.054 0.113 0.113 0.103 0.103 0.103 0.103	18.5 8.9 8.9 9.7 9.7 9.7	78 70 74 74 70 72 70	108 96 91 88 84 82 78	0.72 0.69 0.68 0.66 0.65 0.63	0.35 0.67 0.99 1.11 1.22 1.23 1.43	2.20 2.47 2.72 3.09 3.30 3.61 4.20	71 66 58 41 38 35 31	0.92 0.93 1.19 0.87 0.70 0.38 0.36
950617 950617 950617 950617 950617	0747 1033 1333 1633 1933	2.44 2.25 1.84 1.88 1.63	0.103 0.103 0.064 0.103 0.064	9.7 9.7 15.6 9.7 15.6	54 54 60 50 54	75 71 85 78 96	0.68 0.71 0.79 0.80 0.89	1.31 1.95 1.06 1.22 0.48	3.28 3.71 2.41 2.50 1.78	45 37 77 79 97	0.59 0.55 1.26 1.39 0.84
950618	0833	1.24	0.064	15.6	60	90	0.83	0.63	2.17	79	1.03
950619 950619 950619 950619	1333 1633 1933 2233	2.34 2.66 2.72 3.00	0.123 0.132 0.123 0.123	8.2 7.6 8.2 8.2	52 52 54 48	57 57 56 55	0.51 0.51 0.46 0.45	1.75 1.57 1.06 1.35	6.43 6.29 6.74 6.96	27 28 26 26	0.25 0.14 0.03 0.31
950620 950620 950620 950620 950620 950620 950620 950620	0133 0433 0733 1033 1333 1633 1932 2233	2.98 2.96 2.48 2.32 2.41 2.42 2.57 2.38	0.123 0.113 0.123 0.093 0.113 0.093 0.093 0.103	8.2 8.9 8.2 10.7 8.9 10.7 10.7	50 54 50 56 50 50 52 50	53 54 56 58 55 56 56	0.42 0.41 0.45 0.43 0.44 0.44 0.43	1.10 1.03 1.30 1.21 1.41 1.50 1.57	7.77 7.59 7.54 8.33 8.47 8.04 8.33 7.67	25 23 25 22 23 22 22 22 26	0.07 -0.02 0.20 0.11 0.27 0.32 0.25 0.27
950621 950621 950621 950621 950621 950621 950621 950621	0133 0433 0733 1033 1331 1634 1933 2233	2.21 2.08 2.02 2.27 2.29 2.06 1.76 1.85	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	50 54 50 54 48 52 50 48	56 59 56 59 54 55 56 56	0.45 0.45 0.47 0.44 0.41 0.45 0.49	1.32 1.59 2.07 1.73 2.03 2.49 2.76 2.39	7.67 8.21 8.43 8.39 10.09 9.60 8.86 8.08	26 25 24 25 21 19 19 22	0.18 0.18 0.28 0.18 0.28 0.19 0.31 0.39
950622 950622	0133 0433	1.77 1.74	0.103 0.113	9.7 8.9	44 46	55 56	0.49 0.50	1.79 2.08	7.08 7.25	29 27	0.69 0.33
950623 950623 950623 950623	0134 0434 1033 1940	1.93 1.77 1.50 1.51	0.113 0.113 0.113 0.123	8.9 8.9 8.9 8.2	38 36 48 48	48 49 58 59	0.48 0.51 0.61 0.66	2.04 2.53 2.86 2.95	7.67 7.52 5.83 5.16	26 28 27 26	0.61 0.58 0.47 0.61
	<u>. l</u>								(She	et 24	of 47)

Table	Table A1 (Continued) Time H _{ma} f ₀ T ₀ θ ₀ θ ₀ Δθ										
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
950623	2234	1.47	0.113	8.9	34	53	0.69	2.76	4.87	35	0.44
950624 950624 950624 950624 950624 950624 950624	0134 0434 0734 1034 1334 1634 1934 2234	1.42 1.41 1.22 1.31 1.37 1.48 1.53 1.36	0.103 0.113 0.113 0.113 0.113 0.113 0.103	9.7 8.9 8.9 8.9 8.9 8.9 8.9	46 48 46 46 42 44 42 38	57 59 62 59 59 55 61 71	0.69 0.70 0.74 0.74 0.79 0.70 0.77	2.75 3.31 3.19 3.14 3.03 3.44 2.73 1.72	4.67 4.71 4.24 4.20 3.83 5.08 3.82 2.50	30 25 28 28 35 28 38 90	0.47 0.48 0.81 0.87 1.00 0.63 0.78 1.24
950625 950625 950625 950625 950625 950625 950625	0134 0434 0735 1034 1401 1631 1934 2234	1.38 1.45 1.37 1.27 1.25 1.22 1.28 1.34	0.113 0.113 0.113 0.113 0.074 0.074 0.103 0.103	8.9 8.9 8.9 13.6 13.6 9.7 9.7	46 60 48 44 44 50 50 48	70 72 67 72 76 77 73 73	0.87 0.86 0.88 0.95 0.99 0.97 0.90 0.91	2.00 1.99 2.16 1.75 1.41 1.48 2.08 2.12	2.78 2.83 2.77 2.28 2.01 2.07 2.63 2.63	69 67 86 112 118 117 99 97	1.09 1.09 1.58 1.98 1.85 1.91 2.02 2.06
950626 950626 950626 950626 950626	0134 0434 0734 1033 1333	1.33 1.16 1.09 1.00 1.05	0.113 0.103 0.113 0.113 0.113	8.9 9.7 8.9 8.9 8.9	48 50 50 50 50	71 69 69 86 73	0.84 0.86 0.90 0.96 0.91	2.41 2.33 2.06 0.98 1.77	3.11 2.93 2.66 1.82 2.44	54 79 92 107 97	1.28 2.00 1.88 1.85 1.92
950627 950627 950627 950627	1315 1632 1933 2232	0.76 0.85 0.64 0.53	0.064 0.103 0.064 0.064	15.6 9.7 15.6 15.6	52 50 48 48	101 91 110 119	0.96 0.92 0.93 0.95	0.30 0.64 -0.11 -0.48	1.76 1.74 1.74 1.69	105 102 104 111	0.53 1.34 -0.45 -1.05
950628 950628	0202 0433	0.76 0.85	0.103 0.103	9.7 9.7	48 48	102 93	0.94 0.90	0.09 0.42	1.57 1.63	109 100	0.06 0.87
950630	1341	0.75	0.074	13.6	166	121	0.92	-0.47	1.81	101	-0.88
950701 950701 950701 950701	0938 1032 1333 1933	0.77 0.79 0.73 0.77	0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6	168 164 164 166	135 136 136 130	0.85 0.84 0.86 0.92	-1.12 -1.40 -1.46 -1.10	2.37 2.60 2.51 2.10	87 77 83 98	-1.09 -1.46 -1.58 -1.35
950702 950702 950702 950702 950702 950702 950702	0133 0433 0733 1033 1404 1933 2233	0.73 0.71 0.69 0.70 0.68 0.71 0.74	0.074 0.074 0.083 0.083 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0 12.0 12.0	170 170 160 172 174 164 164	140 137 136 130 128 127 131	0.82 0.90 0.82 0.89 0.92 0.90 0.87	-1.48 -1.22 -1.51 -0.94 -0.87 -0.93 -1.17	2.81 2.47 2.78 2.07 2.02 2.09 2.28	66 88 69 97 103 94 89	-0.96 -1.08 -1.18 -0.93 -1.06 -1.00 -1.33
950703 950703 950703 950703 950703 950703 950703 950703	0133 0433 0733 1033 1333 1633 1933 2233	0.66 0.70 0.73 0.81 0.91 0.96 1.07 1.26	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	168 160 172 62 62 70 72 66	121 109 109 95 84 84 88 79	0.90 0.92 0.95 0.87 0.82 0.76 0.77	-0.57 -0.28 -0.04 0.48 1.11 1.12 0.81 1.13	1.94 1.75 1.75 1.97 2.37 2.95 2.65 3.01	95 99 101 90 79 52 62 55	-0.63 -0.43 0.21 0.90 1.92 1.38 1.19
950704 950704	0733 1033	1.27 1.41	0.074 0.074	13.6 13.6	62 68	74 72	0.71 0.65	1.24 1.40	3.28 4.05	47 34	0.49 0.15
									(She	et 25	of 47)

Table	Table A1 (Continued) Time H_{mn} f_n T_n θ_n θ_n $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А	
950704 950704 950704 950704	1333 1633 1933 2233	1.43 1.57 1.68 1.66	0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6	66 66 62 28	71 70 63 65	0.72 0.64 0.67 0.71	1.35 1.62 1.48 1.18	3.36 4.31 3.87 3.27	44 31 42 52	0.19 0.16 -0.03 -0.08	
950705 950705 950705 950705 950705 950705 950705 950705	0133 0433 0733 1029 1333 1706 2004 2233	1.68 1.60 1.67 1.76 1.81 1.54 1.50	0.074 0.074 0.083 0.083 0.132 0.083 0.083 0.083	13.6 13.6 12.0 12.0 7.6 12.0 12.0	66 62 68 68 64 58 58 60	64 67 71 69 64 66 67	0.69 0.69 0.61 0.60 0.64 0.65 0.71	1.62 1.57 1.57 1.58 1.78 1.94 1.59	3.71 3.71 4.61 4.53 4.25 4.29 3.53 3.80	41 39 30 31 37 34 44 39	-0.06 0.15 0.00 -0.06 -0.12 0.33 0.43 0.31	
950706 950706 950706 950706 950706 950706 950706 950706	0133 0433 0730 0750 1033 1333 1633 1958 2233	1.52 1.61 1.38 1.31 1.41 1.34 1.17 1.35	0.132 0.142 0.132 0.132 0.142 0.093 0.093 0.162 0.152	7.6 7.0 7.6 7.6 7.0 10.7 10.7 6.2 6.6	32 62 58 60 60 62 58 68 66	61 60 64 72 69 70 76 68 73	0.65 0.64 0.67 0.73 0.70 0.71 0.78 0.71 0.72	1.77 1.75 1.94 1.51 1.30 1.24 1.29 1.30	4.28 4.49 4.31 3.25 3.53 3.35 2.86 3.48 3.51	39 37 36 44 42 45 58 44 41	0.04 -0.10 0.17 0.45 0.25 0.34 0.86 -0.21 0.26	
950707 950707 950707 950707 950707 950707	0433 0733 1333 1633 1933 2233	0.97 1.04 0.89 0.81 0.76 0.74	0.162 0.152 0.162 0.162 0.074 0.074	6.2 6.6 6.2 6.2 13.6	54 54 58 58 60 56	64 63 79 82 98 90	0.78 0.79 0.86 0.84 0.91 0.88	1.71 1.58 1.32 1.30 0.56 0.93	3.31 3.10 2.58 2.61 1.99 2.11	51 54 78 74 92 93	0.50 0.53 1.24 1.43 0.93 1.05	
950708 950708 950708 950708 950708 950708 950708	0133 0433 0733 1033 1333 1633 2233	0.72 0.72 0.72 0.72 0.73 0.65 0.61	0.162 0.103 0.162 0.113 0.162 0.074 0.074	6.2 9.7 6.2 8.9 6.2 13.6	54 50 44 48 50 50 48	86 82 74 76 70 93 99	0.88 0.87 0.89 0.91 0.89 0.96 0.98	0.98 1.15 1.47 1.40 1.68 0.68 0.53	2.16 2.22 2.41 2.35 2.62 1.70	93 89 89 89 82 108 116	1.22 1.40 1.51 1.61 1.43 1.35 0.99	
950709 950709 950709 950709 950709 950709 950709 950709	0131 0433 0733 1033 1333 1633 1933 2233	0.63 0.60 0.58 0.66 0.66 0.62 0.88 1.12	0.074 0.074 0.162 0.162 0.162 0.162 0.162	13.6 13.6 6.2 6.2 6.2 6.2 6.2 6.2	54 46 48 50 52 52 30	94 90 83 79 78 88 59 48	0.97 1.01 0.96 0.96 0.92 0.97 0.76 0.65	0.84 0.80 1.01 1.26 1.33 0.83 2.23 2.30	1.80 1.73 1.86 2.03 2.16 1.75 3.93 5.18	112 117 110 111 105 113 35 38	1.39 1.35 1.61 1.70 1.54 1.48 0.24 0.55	
950710 950710 950710 950710 950710 950710 950710	0133 0433 0733 1032 1332 1632 1933 2233	1.08 1.14 1.10 1.13 1.31 1.38 1.29 1.09	0.152 0.152 0.152 0.152 0.152 0.152 0.152	6.6 6.6 6.6 6.6 6.6 6.6	28 24 28 30 30 28 38 52	47 47 49 49 50 50	0.62 0.61 0.60 0.58 0.53 0.55 0.63	2.29 2.56 2.42 1.94 1.32 1.31 1.72	5.59 5.78 6.13 5.29 4.70 5.71 6.35 4.92	36 33 31 36 44 39 31 36	0.42 0.01 0.18 0.56 0.83 0.23 0.08 0.05	
950711 950711 950711	0133 0433 0733	1.01 1.09 1.15	0.162 0.162 0.142	6.2 6.2 7.0	28 34 62	56 55 58	0.65 0.59 0.54	1.35 1.33 1.35	4.28 4.71 5.30	45 41 34	0.14 0.27 -0.15	
									(Sh	eet 26	of 47)	

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Υ	δ	Δθ deg	А
950711 950711 950711 950711 950711	1033 1333 1633 1933 2233	1.19 1.17 1.12 1.14 1.14	0.152 0.152 0.162 0.162 0.152	6.6 6.6 6.2 6.2 6.6	56 32 32 58 54	57 57 57 56 57	0.54 0.59 0.63 0.60 0.62	1.70 1.41 1.48 1.55 1.74	5.99 4.72 4.54 5.48 5.14	31 40 42 30 34	0.03 0.29 0.25 -0.16 0.17
950712 950712 950712 950712 950712 950712 950712 950712	0133 0433 0827 1031 1358 1633 1933 2233	1.30 1.37 0.99 0.94 1.13 1.72 2.01 2.18	0.152 0.152 0.162 0.162 0.162 0.162 0.142 0.132	6.6 6.6 6.2 6.2 6.2 6.2 7.0 7.6	26 22 26 54 48 48 28 52	56 49 60 66 61 52 49	0.68 0.61 0.70 0.74 0.67 0.57 0.51	1.07 1.32 1.59 1.58 1.48 1.17 1.15	3.57 4.42 3.90 3.68 4.28 4.82 5.67 7.63	57 45 47 44 42 39 36 27	0.52 0.18 0.26 0.51 0.59 0.27 0.10
950713 950713 950713 950713 950713 950713	0133 0433 0730 1033 1333 2022 2235	2.16 2.04 1.90 1.58 1.52 1.62 1.55	0.132 0.123 0.123 0.132 0.132 0.132 0.132	7.6 8.2 8.2 7.6 7.6 7.6 8.2	34 48 50 46 50 78 64	49 55 58 57 59 62 62	0.47 0.52 0.52 0.56 0.59 0.55 0.53	1.46 1.21 1.33 1.71 1.85 1.10 1.92	6.35 5.01 5.72 6.04 5.66 5.23 6.92	29 37 34 33 33 39 26	0.19 0.49 0.65 0.45 0.26 -0.07
950714 950714 950714 950714 950714 950714	0135 0435 0940 1328 1541 1933 2152	1.63 1.60 1.47 1.48 1.52 1.63 1.38	0.132 0.123 0.123 0.132 0.123 0.103 0.103	7.6 8.2 8.2 7.6 8.2 9.7 9.7	54 66 58 48 42 32 40	57 59 59 62 56 47 49	0.53 0.57 0.56 0.60 0.64 0.59 0.65	1.73 1.47 2.50 2.04 2.07 2.65 3.29	6.66 5.69 6.59 5.93 5.50 6.42 5.87	28 34 25 32 37 32 26	0.05 -0.24 -0.02 0.35 0.67 0.71 0.51
950715 950715 950715 950715 950715 950715 950715	0144 0444 0744 1044 1344 1706 2013	1.25 1.41 1.93 1.87 1.75 1.79 1.83	0.103 0.103 0.113 0.113 0.103 0.103 0.103 0.093	9.7 9.7 8.9 8.9 9.7 9.7	46 48 48 46 42 44 50	60 65 55 51 52 60 59	0.69 0.66 0.52 0.54 0.59 0.65 0.60	2.91 2.06 2.60 3.18 3.05 2.52 2.63	4.79 4.65 7.62 7.70 6.52 5.03 5.79	30 36 22 20 25 35 28	0.78 0.41 0.25 0.28 0.62 0.72 0.27
950716 950716 950716 950716 950716 950716 950716 950716	0146 0440 0742 1042 1342 1642 1943 2242	1.55 2.01 2.12 1.92 1.60 1.48 1.47	0.103 0.103 0.103 0.103 0.103 0.093 0.103 0.103	9.7 9.7 9.7 9.7 9.7 10.7 9.7	50 52 48 48 42 50 50 46	66 59 53 56 56 67 66 74	0.77 0.57 0.55 0.64 0.75 0.82 0.84 0.92	2.65 3.83 3.84 3.56 2.87 2.47 2.23 1.58	3.79 7.06 7.69 5.74 4.29 3.33 3.04 2.23	33 18 19 23 31 42 52 108	0.61 0.32 0.12 0.33 0.49 0.85 0.92 1.90
950717 950717 950717 950717 950717	0144 0442 0745 1043 1341 1643 1942 2247	1.38 1.16 1.07 1.11 1.18	0.103 0.103 0.103 0.103 0.093 0.093 0.103 0.103	9.7 9.7 9.7 9.7 10.7 10.7 9.7	48 46 44 42 44 44 40 38	68 66 61 66 75 71 61	0.87 0.84 0.84 0.94 0.97 0.93 0.91 0.92	2.25 2.47 2.51 2.04 1.63 1.77 2.50 2.27	2.12 2.37 2.81	86 55 52 110 114 106 93 101	2.11 1.61 1.35 2.08 2.58 2.15 2.05 1.89
950718	0146 0447 0744	0.93	0.103 0.113 0.113	9.7 8.9 8.9	44 46 46	69 78 69	0.93 0.97 0.89	1.58 1.22 1.75		104 112 94	1.76 2.06 1.84
									(Shee	et 27 d	of 47)

Table	Table A1 (Continued) Time H_{mo} f_0 T_0 θ_0 θ_0 $\Delta\theta$										
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
950718 950718 950718 950718 950718	1036 1336 1636 1936 2232	0.91 0.88 0.92 1.00 0.87	0.113 0.103 0.113 0.113 0.113	8.9 9.7 8.9 8.9 8.9	38 44 42 42 38	75 76 70 68 68	0.93 0.95 0.93 0.94 0.93	1.32 1.36 1.50 1.46 1.38	2.11 2.10 2.26 2.18 2.24	108 107 101 107 99	1.46 1.95 1.97 1.68 1.32
950719 950719 950719 950719 950719 950719	0433 0733 1033 1333 1633 1933 2233	0.81 0.82 0.77 0.74 0.68 0.77	0.113 0.113 0.113 0.074 0.074 0.074	8.9 8.9 8.9 13.6 13.6 13.6	40 36 38 42 40 40 40	78 82 82 101 107 88 83	0.95 1.01 0.98 0.99 1.03 1.00	1.08 0.74 0.71 0.12 -0.04 0.50 0.77	1.97 1.63 1.63 1.53 1.49 1.62	103 117 113 113 122 109 111	1.52 1.34 1.36 -0.08 -0.43 0.82 1.36
950720 950720 950720 950720 950720 950720 950720 950720 950720 950720 950720	0133 0432 0733 1033 1140 1230 1333 1413 1509 1933 2229	0.50 0.69 0.72 0.75 0.78 0.76 0.76 0.74 0.72	0.074 0.074 0.074 0.074 0.113 0.103 0.103 0.113 0.074 0.113 0.113	13.6 13.6 13.6 13.6 8.9 9.7 9.7 8.9 13.6 8.9 8.9	42 40 34 40 38 38 36 38 40 38 42	116 95 88 76 74 71 73 73 77 65 85	0.95 0.97 1.01 0.93 0.92 0.92 0.94 0.95 0.96 0.93 0.89	-0.49 0.24 0.47 1.00 1.10 1.36 1.16 1.24 1.08 1.74 0.59	1.61 1.50 1.53 1.89 2.03 2.16 2.01 2.05 1.96 2.51 2.24	114 109 116 103 98 100 103 104 105 92 87	-0.93 0.26 0.66 1.74 1.81 1.70 1.72 1.54 1.89 0.60
950721 950721 950721 950721	0433 0733 1033 1933	0.62 0.65 0.74 0.58	0.074 0.074 0.103 0.103	13.6 13.6 9.7 9.7	46 40 34 42	85 72 62 77	0.92 0.87 0.85 0.94	0.70 1.30 1.91 1.07	1.75 2.34 2.89 2.12	102 90 72 99	1.36 1.57 1.55 1.47
950722 950722 950722 950722 950722 950722 950722	0133 0732 1033 1333 1633 1933 2233	0.53 0.54 0.57 0.58 0.59 0.77 0.91	0.074 0.113 0.113 0.162 0.162 0.162 0.162	13.6 8.9 8.9 6.2 6.2 6.2 6.2	50 46 46 54 64 60 62	98 85 81 89 90 68 73	0.93 0.95 0.91 0.94 0.93 0.75 0.69	0.28 0.85 1.08 0.64 0.68 1.51 1.57	1.50 1.77 2.07 1.75 1.84 3.35 3.79	107 111 101 108 106 46 38	0.66 1.63 1.37 1.23 1.13 0.31 0.52
950723 950723 950723 950723 950723 950723 950723 950723	0133 0433 0733 1033 1406 1633 1933 2233	1.13 1.15 1.25 1.33 1.43 1.64 1.64	0.162 0.152 0.152 0.152 0.162 0.162 0.152 0.152	6.2 6.6 6.6 6.2 6.6 6.6 6.6	62 64 68 46 28 28 48 42	62 63 64 62 55 54 51 52	0.62 0.63 0.60 0.58 0.60 0.56 0.52 0.56	1.45 1.53 1.63 1.31 1.26 0.87 1.09 0.94	4.92 4.59 5.21 5.22 4.79 4.79 6.17 5.03	32 34 34 38 43 43 33 39	-0.07 -0.28 -0.16 0.19 0.03 0.07 0.12 0.14
950724 950724 950724 950724 950724 950724 950724	0133 0733 1033 1331 1632 1931 2233	1.68 1.70 1.79 1.97 2.00 1.96 1.74	0.142 0.142 0.142 0.132 0.132 0.132 0.132	7.0 7.0 7.0 7.6 7.6 7.6 7.6	36 52 64 42 42 62 50	50 58 56 54 53 55 53	0.53 0.49 0.45 0.45 0.48 0.49 0.50	1.02 0.72 0.80 0.82 0.52 0.44 0.57	5.04 6.90 7.26 6.81 5.71 5.86 5.40	40 31 30 32 35 33 35	0.53 0.12 -0.01 0.26 0.13 -0.16 0.05
	0133 0433 0733 1033	1.67 1.53 1.67 1.59	0.142 0.142 0.142 0.132	7.0 7.0 7.0 7.6	34 36 66 70	51 54 58 59	0.52 0.49 0.46 0.45	0.66 0.82 0.73 0.70	5.37 6.18 6.90 7.15	39 35 31 31	0.25 0.14 -0.23 -0.22
	!								(She	et 28	of 47)

Table	A1 (Contir	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950726	0733	1.22	0.142	7.0	56	59	0.51	2.16	7.45	24	0.10
950726	1033	1.19	0.132	7.6	56	61	0.52	2.36	7.68	18	0.25
950726	1333	1.21	0.132	7.6	50	56	0.51	2.11	8.09	21	0.31
950726	1633	1.11	0.132	7.6	56	58	0.58	2.19	5.95	25	0.04
950726	1933	1.12	0.132	7.6	54	57	0.57	2.36	6.50	24	-0.02
950726	2233	1.25	0.132	8.2	56	59	0.50	3.02	8.83	13	0.10
950727 950727 950727 950727 950727 950727	0433 0733 1033 1330 1703 2230	1.00 0.90 0.85 0.88 0.87	0.123 0.132 0.132 0.132 0.064 0.064	8.2 7.6 7.6 7.6 15.6	56 52 54 54 56 52	65 71 81 84 94 108	0.64 0.79 0.83 0.90 0.92 0.95	2.80 2.07 1.14 0.99 0.41 -0.12	4.98 3.18 2.26 2.05 1.59 1.63	18 57 87 93 100 103	0.36 1.75 1.77 1.84 1.37
950728	0130	0.81	0.064	15.6	52	107	0.91	-0.01	1.50	104	-0.56
950728	0430	0.78	0.064	15.6	48	108	0.93	-0.03	1.51	109	-0.54
950728	0730	0.89	0.064	15.6	46	114	0.91	-0.45	1.58	106	-1.20
950728	1315	0.93	0.103	9.7	44	89	0.95	0.53	1.57	107	1.47
950728	1630	0.97	0.074	13.6	42	88	0.94	0.58	1.64	108	1.24
950728	2230	0.90	0.074	13.6	52	90	0.91	0.70	1.85	97	1.34
950729	0130	0.98	0.162	6.2	56	75	0.83	1.51	2.73	73	1.24
950729	0430	1.24	0.162	6.2	66	67	0.68	1.77	4.04	34	-0.15
950729	0730	1.74	0.152	6.6	66	61	0.54	1.69	6.07	30	-0.34
950729	1029	1.89	0.132	7.6	62	60	0.53	2.03	6.53	27	-0.12
950729	1928	2.46	0.123	8.2	56	54	0.54	1.81	6.58	29	-0.17
950730	0130	2.14	0.113	8.9	58	61	0.55	2.33	7.25	23	0.13
950730	0429	1.94	0.113	8.9	52	59	0.57	3.94	7.46	18	0.34
950730	0730	1.84	0.113	8.9	50	59	0.62	3.86	6.75	20	0.59
950730	2229	1.74	0.093	10.7	52	59	0.71	5.42	5.79	18	0.50
950731	0129	1.75	0.093	10.7	52	64	0.76	4.22	4.76	23	0.80
950731	0429	1.96	0.093	10.7	50	61	0.73	4.48	5.29	21	0.61
950731	0729	1.94	0.093	10.7	52	60	0.65	4.29	6.37	21	0.58
950731	1629	1.70	0.093	10.7	52	63	0.73	4.08	4.95	22	0.60
950731	1929	1.69	0.093	10.7	50	62	0.74	4.23	5.00	25	0.76
950731	2229	1.86	0.093	10.7	54	62	0.71	4.65	5.47	18	0.49
950801	0129	1.82	0.093	10.7	54	66	0.75	3.79	4.58	24	0.74
950801	0429	1.81	0.093	10.7	52	68	0.80	3.12	3.83	39	1.04
950801	0729	1.81	0.093	10.7	46	65	0.83	2.77	3.63	44	0.79
950801	1029	1.73	0.103	9.7	54	69	0.84	3.16	3.64	38	0.82
950801	1328	1.68	0.093	10.7	56	73	0.82	2.73	3.33	41	1.34
950801	1953	1.77	0.093	10.7	54	65	0.75	3.03	4.28	32	0.53
950801	2228	1.55	0.103	9.7	64	71	0.87	2.27	3.06	51	0.55
950802 950802 950802 950802 950802 950802 950802	0429 0729 1029 1329 1629 1929 2229	1.38 1.47 1.47 1.30 1.28 1.21 1.19	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	44 52 54 54 54 54 52	70 72 74 77 73 74 76	0.89 0.83 0.85 0.90 0.87 0.85 0.88	2.15 2.20 2.10 1.79 2.09 1.82 1.74	2.82 3.04 2.99 2.46 2.76 2.70 2.48	78 54 53 97 84 80 94	1.45 1.07 0.94 2.07 1.85 1.72
950803	0129	1.15	0.103	9.7	50	69	0.85	2.26	2.96	66	1.68
950803	0429	1.24	0.103	9.7	48	64	0.78	2.65	3.64	35	0.88
950803	1029	1.49	0.103	9.7	48	56	0.66	3.74	5.47	19	0.37
950803	1329	1.43	0.103	9.7	50	61	0.69	3.21	4.84	22	0.73
950803	1629	1.46	0.103	9.7	48	59	0.68	2.89	4.85	28	0.84
									(She	et 29	of 47)

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A		
950803 950803	1929 2229	1.48 1.29	0.113 0.113	8.9 8.9	48 48	58 64	0.66 0.77	3.44 2.34	5.45 3.75	21 41	0.70 1.00		
950804 950804 950804 950804 950804 950804	0129 0429 0729 1329 1629 1929 2258	1.19 1.22 1.33 1.45 1.42 1.39	0.103 0.103 0.103 0.113 0.103 0.103 0.103	9.7 9.7 9.7 8.9 9.7 9.7	48 50 44 46 48 48 56	65 62 60 63 60 59 68	0.76 0.71 0.67 0.66 0.66 0.66	2.48 2.64 2.50 2.36 2.95 2.78 2.29	3.79 4.49 4.58 4.77 5.26 5.24 3.77	36 29 37 37 29 29 36	1.22 0.70 1.21 0.66 0.67 0.73 0.61		
950805 950805 950805 950805 950805 950805	0429 0729 1029 1629 1929 2225	0.97 0.95 1.07 1.14 1.22 1.01	0.103 0.113 0.113 0.093 0.103 0.103	9.7 8.9 8.9 10.7 9.7 9.7	48 46 46 52 54 50	73 71 65 62 64 66	0.80 0.81 0.75 0.67 0.65 0.71	1.82 1.94 2.22 3.26 2.92 2.38	3.14 3.23 3.94 5.07 5.18 4.22	52 52 43 23 26 36	1.10 0.99 1.05 0.73 0.71 0.87		
950806 950806 950806 950806 950806 950806 950806 950806	0129 0429 0729 1029 1329 1629 1929 2229	1.11 1.09 1.17 1.15 1.13 1.13 1.27 1.19	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	50 46 48 46 44 52 48 48	61 60 61 61 61 63 61 60	0.66 0.71 0.64 0.73 0.74 0.75 0.68 0.74	2.97 3.17 2.75 2.76 2.80 2.99 3.10 2.96	5.30 4.72 5.44 4.57 4.51 4.44 5.38 4.58	27 31 29 38 37 33 31 38	0.83 1.23 1.03 1.00 0.69 0.49 0.61 0.71		
950807 950807 950807 950807 950807 950807 950807	0153 0429 0729 1329 1629 1929 2229	1.20 1.12 1.02 1.54 1.63 1.88	0.113 0.113 0.113 0.142 0.142 0.132 0.132	8.9 8.9 7.0 7.0 7.6 7.6	46 48 42 42 76 54 36	60 62 68 62 62 57 55	0.74 0.78 0.87 0.68 0.61 0.59 0.61	3.48 3.16 2.41 2.02 1.42 1.78 1.41	3.48				
950808 950808 950808 950808 950808 950808 950808 950808	0129 0429 0729 1028 1328 1628 1928 2228	1.95 1.98 2.22 2.25 2.54 2.52 2.31 2.37	0.132 0.123 0.113 0.103 0.093 0.093 0.093 0.093	7.6 8.2 8.9 9.7 10.7 10.7 10.7	32 62 50 48 38 46 46 44	58 57 57 60 53 55 58 61	0.56 0.53 0.51 0.57 0.56 0.57 0.59 0.62	1.25 1.44 1.47 1.66 1.83 2.65 2.46 2.00	5.46 6.13 6.47 5.96 6.25 6.94 6.30 5.34	41 36 30 35 36 28 29 38	0.04 -0.10 0.41 0.65 0.81 0.63 0.52 0.51		
950809 950809 950809 950809 950809 950809 950809 950809	0129 0429 0727 1027 1329 1629 1929 2229	2.21 2.37 2.21 2.01 2.18 2.27 2.03 1.95	0.093 0.093 0.093 0.103 0.093 0.093 0.103 0.103	10.7 10.7 10.7 9.7 10.7 9.7 9.7 9.7	44 46 46 48 40 34 48 46	63 60 62 68 60 55 59	0.66 0.62 0.64 0.66 0.65 0.61 0.59 0.63	2.01 2.14 1.94 1.80 1.76 1.74 2.35 2.40	4.84 5.36 4.94 4.57 4.70 5.20 6.20 5.48	43 37 38 41 44 42 30 35	0.74 0.41 0.55 0.28 0.69 0.53 0.53		
950810 950810 950810 950810 950810 950810	0129 0729 1029 1629 1929 2229	1.84 1.86 1.97 2.30 2.30 2.20	0.103 0.103 0.132 0.132 0.123 0.123	9.7 9.7 7.6 7.6 8.2 8.2	32 32 40 40 28 38	57 57 62 55 49 52	0.64 0.61 0.60 0.55 0.57 0.55	1.71 1.20 1.45 1.47 1.94 1.57	4.63 4.51 4.66 5.21 5.65 5.60	44 46 41 39 35 35	0.50 0.33 0.25 0.64 0.42 0.45		
									(She	et 30	of 47)		

Table	A1 (Contir	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950811 950811 950811 950811 950811 950811	0129 0729 1029 1329 1629 1926 2226	2.16 1.80 1.64 1.63 1.65 1.60 1.80	0.123 0.132 0.142 0.142 0.142 0.152 0.142	8.2 7.6 7.0 7.0 7.0 6.6 7.0	32 34 36 34 40 34 48	51 56 59 59 65 59 64	0.56 0.60 0.66 0.67 0.68 0.64 0.61	1.42 1.72 1.82 1.66 1.29 1.57	5.00 5.09 4.41 4.17 3.84 4.52 4.51	38 40 41 48 49 42 43	0.46 0.38 0.32 0.60 0.33 0.33
950812 950812 950812 950812 950812 950812 950812 950812 950812	0126 0426 0726 1026 1326 1626 1659 1926 2226	1.84 1.92 1.68 1.69 1.75 1.99 1.93 1.97	0.142 0.142 0.123 0.113 0.123 0.103 0.103 0.103	7.0 7.0 8.2 8.9 8.2 9.7 8.9 9.7	46 46 50 48 46 42 40 44 50	62 58 64 63 62 60 60 56	0.63 0.56 0.58 0.58 0.59 0.55 0.57 0.54 0.55	1.31 1.71 1.68 2.02 2.05 1.32 1.24 1.48 2.04	4.53 5.59 5.22 5.78 5.74 4.86 4.69 5.76 6.37	41 35 36 33 36 43 45 36 28	0.52 0.60 0.36 0.59 0.74 0.92 0.71 0.64 0.49
950813 950813 950813 950813 950813 950813	0126 0426 0726 1240 1626 1926 2226	1.66 1.85 1.84 1.94 2.08 2.17 1.84	0.113 0.113 0.103 0.103 0.103 0.103 0.103	8.9 8.9 9.7 9.7 9.7 9.7	48 42 46 48 42 42 46	60 58 56 54 53 49 54	0.59 0.61 0.53 0.54 0.51 0.47 0.53	2.45 1.69 1.95 3.17 2.06 2.20 2.03	6.11 5.08 6.49 7.90 7.15 8.39 7.01	30 41 31 22 28 22 27	0.56 0.73 0.51 0.29 0.76 0.44 0.52
950814 950814 950814 950814 950814 950814 950814	0126 0426 0708 1008 1308 1608 1908 2234	1.98 2.05 2.17 2.16 2.19 2.06 1.97 1.87	0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	46 44 42 46 46 42 38 42	56 57 54 53 55 53 52	0.50 0.50 0.50 0.47 0.48 0.52 0.56 0.57	1.99 1.59 1.32 1.72 1.65 1.96 1.83 2.50	7.85 7.02 6.32 7.99 7.96 7.18 6.29 6.97	25 30 34 27 25 31 35 30	0.71 0.51 0.55 0.38 0.34 0.62 0.87 0.70
950815 950815 950815 950815 950815 950815 950815 950815	0108 0408 0734 1008 1308 1633 1908 2208	1.59 1.82 2.05 1.88 1.44 1.62 1.69 1.60	0.103 0.113 0.113 0.113 0.113 0.113 0.113 0.113	9.7 8.9 8.9 8.9 8.9 8.9 8.9	52 46 50 48 50 38 38 38	62 58 55 52 58 51 55	0.78 0.54 0.46 0.53 0.72 0.63 0.62 0.67	1.73 2.29 2.33 2.33 3.27 2.71 2.48 2.96	3.88 7.11 8.99 7.74 4.95 6.08 5.89 5.46	41 28 21 24 28 30 35	0.32 0.42 0.27 0.17 0.39 0.46 0.44
950816 950816 950816 950816 950816	0129 0408 0708 1026 1327 1626 1927 2226	1.47 1.33 1.38 1.33 1.33 1.37 1.23 1.27	0.113 0.123 0.123 0.132 0.103 0.093 0.123 0.103	8.9 8.2 8.2 7.6 9.7 10.7 8.2 9.7	48 44 38 38 44 40 34 32	58 61 56 58 61 60 61 61	0.69 0.71 0.67 0.72 0.77 0.78 0.79 0.77	2.78 2.69 2.74 2.65 2.60 2.69 2.24 2.17	4.92 4.56 5.18 4.46 4.01 4.02 3.79 3.94	35 36 36 39 41 41 47 48	0.33 0.59 0.45 0.57 0.59 0.46 0.34 0.21
950817 950817 950817 950817	0426 1026 1327 1626 1926 2226	1.88 1.58 1.49 1.68 1.74	0.132 0.142 0.142 0.152 0.152 0.152	7.6 7.0 7.0 6.6 6.6 7.0	36 30 32 66 28 30	55 55 57 59 55 54	0.57 0.63 0.62 0.61 0.60 0.60	1.90 1.78 1.96 1.64 1.40 1.41	6.08 5.16 5.35 5.24 4.99 4.79	36 40 36 38 41 43	0.29 0.15 0.07 -0.14 0.00 0.23
									(She	et 31	of 47)

Table	Table A1 (Continued) Time H_{mo} f_{ρ} T_{ρ} θ_{ρ} θ_{o} $\Delta\theta$										
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
950818 950818 950818 950818 950818 950818 950818 950818	0126 0426 0726 1026 1338 1626 1926 2226	2.08 1.95 1.90 1.87 1.73 1.74 1.83	0.132 0.132 0.132 0.132 0.132 0.123 0.123	7.6 7.6 7.6 7.6 7.6 8.2 8.2 8.2	34 36 36 68 50 52 62 50	53 53 58 60 59 59 60 60	0.55 0.55 0.57 0.56 0.61 0.57 0.59	1.14 1.67 1.41 1.69 2.03 2.28 2.08 1.86	5.18 5.71 5.31 5.83 5.56 6.15 5.52 5.72	40 35 37 33 32 28 32 35	0.24 0.26 -0.01 -0.03 0.06 0.13 -0.01
950819 950819 950819 950819 950819 950819 950819 950819	0126 0726 1026 1356 1626 1926 2000 2226	1.84 1.74 1.81 1.88 2.02 1.85 1.84	0.123 0.113 0.113 0.113 0.113 0.113 0.113	8.2 8.9 8.9 8.9 8.9 8.9	54 48 48 50 44 44 44	61 59 57 56 53 53 53	0.56 0.59 0.61 0.63 0.60 0.62 0.64 0.70	2.26 2.75 2.80 2.56 3.30 3.36 3.36 2.81	6.23 6.09 5.77 5.62 6.35 6.20 5.84 4.70	29 27 28 29 24 24 24 32	0.18 0.48 0.35 0.21 0.38 0.40 0.42
950820 950820 950820 950820 950820 950820 950820 950820	950820 0426 1.62 0.113 8.9 46 52 0.71 3.64 5.16 27 0.22 950820 0723 1.62 0.113 8.9 48 53 0.72 3.18 4.82 31 0.15 950820 1025 1.33 0.113 8.9 46 60 0.83 3.40 3.69 31 1.03 950820 1626 1.19 0.123 8.2 54 73 0.90 2.49 2.87 86 2.13 950820 1926 1.10 0.123 8.2 54 75 0.90 2.32 2.77 89 2.05 950820 2226 1.12 0.113 8.9 48 69 0.90 2.78 2.96 80 2.00 950820 2303 1.09 0.113 8.9 48 69 0.91 2.83 2.99 80 2.00										0.44 0.22 0.15 1.03 2.13 2.05 2.00 2.00
950821 950821 950821 950821 950821 950821 950821	0426 0726 1026 1326 1626 1926 2226	1.14 1.21 1.27 1.20 1.16 1.13 1.06	0.113 0.113 0.113 0.103 0.113 0.113	8.9 8.9 8.9 9.7 8.9 8.9	46 48 44 48 52 50	66 64 62 62 66 68 73	0.91 0.87 0.83 0.87 0.89 0.89	2.96 3.55 3.42 3.31 3.08 2.64 2.24	3.06 3.45 3.67 3.38 3.15 3.05 2.67	79 40 33 47 63 63 100	2.10 1.61 1.10 1.53 1.80 1.48 2.22
950822 950822 950822 950822 950822	0726 1325 1625 1925 2225	0.85 0.81 0.79 0.74 0.75	0.074 0.132 0.074 0.074 0.074	13.6 7.6 13.6 13.6 13.6	46 38 28 180 180	93 90 99 110 113	1.05 1.06 1.08 1.08 1.05	0.68 0.78 0.41 -0.01 -0.11	1.48 1.58 1.40 1.30 1.32	127 130 132 129 126	1.46 1.28 0.81 0.11 -0.14
950823 950823	0125 1025	0.74 0.93	0.074 0.142	13.6 7.0	176 42	98 75	1.05 0.88	0.40 1.40	1.41 2.48	128 77	0.88 0.84
950824 950824 950824 950824 950824 950824	0636 1025 1325 1625 1925 2225	1.49 1.61 1.82 1.62 1.78 1.74	0.132 0.123 0.123 0.132 0.132 0.132	7.6 8.2 8.2 7.6 8.2 7.6	30 38 28 30 28 36	63 57 54 51 54 55	0.62 0.60 0.60 0.62 0.59 0.56	0.84 1.41 0.98 1.14 1.05 1.11	3.69 4.20 3.65 3.89 4.11 5.07	54 47 53 53 47 39	0.26 0.95 0.70 0.93 0.49 0.42
950825 950825 950825 950825 950825 950825 950825 950825	0125 0425 0725 1025 1325 1625 1925 2225	1.67 1.51 1.43 1.45 1.58 1.56 1.53 1.67	0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132	7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	36 36 32 30 30 30 30 30 34	54 58 56 54 53 53 51 53	0.56 0.59 0.60 0.58 0.56 0.58 0.58	1.08 0.91 1.14 1.30 1.14 0.97 1.06 1.18	4.24 3.90 4.39 4.61 4.95 4.27 4.48 5.13	44 52 48 44 40 49 46 39	0.77 0.78 0.80 0.64 0.33 0.75 0.61 0.40
									(She	et 32	of 47)

Table A1 (Continued) Time H_{ma} f_{a} T_{a} θ_{a} θ_{a} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	A
950826 950826 950826 950826 950826 950826 950826	0125 0425 0725 1024 1325 1625 1957 2257	1.74 1.65 1.64 1.91 1.85 1.83 1.71	0.132 0.132 0.132 0.132 0.132 0.142 0.132	7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	34 32 32 36 42 30 24 64	57 56 58 57 56 56 56 62	0.57 0.57 0.61 0.55 0.58 0.63 0.63	0.98 0.95 0.93 1.34 1.07 1.02 1.16	4.93 4.99 4.61 5.35 4.66 4.26 4.31 4.72	40 42 46 39 45 49 46 40	0.20 0.01 0.14 0.25 0.44 0.34 0.03 -0.02
950827 950827 950827 950827 950827 950827 950827 950827	0154 0425 0725 1025 1325 1625 1925 2225	1.79 1.62 1.49 1.64 1.64 1.56 1.40	0.132 0.132 0.132 0.132 0.142 0.142 0.142 0.142	7.6 7.6 7.6 7.6 7.0 7.0 7.0	82 86 78 78 26 24 32 34	64 62 67 64 63 59 61 65	0.58 0.66 0.67 0.65 0.68 0.72 0.75	0.62 1.16 1.46 1.66 1.19 1.35 1.76	4.27 4.13 4.03 4.35 3.74 3.59 3.61 3.79	44 47 43 42 51 55 51 45	-0.37 0.03 -0.24 -0.31 -0.36 0.16 0.44 -0.13
950828 950828 950828 950828 950828 950828 950828 950828	0125 0425 0725 1025 1325 1625 1925 2225	1.47 1.71 1.68 1.58 1.53 1.50 1.58	0.132 0.132 0.123 0.132 0.132 0.132 0.142 0.142	7.6 7.6 8.2 7.6 7.6 7.6 7.0	82 80 34 28 74 28 28 28	68 64 61 64 65 63 60 65	0.71 0.66 0.65 0.69 0.65 0.71 0.71	1.30 1.44 1.64 1.39 1.27 1.45 1.34 1.39	3.58 4.08 4.34 3.79 4.11 3.67 3.70 3.56	49 45 44 48 44 49 52 48	-0.41 -0.19 0.16 -0.29 -0.74 -0.24 -0.01 -0.29
950829 950829 950829 950829 950829 950829 950829 950829	0125 0425 0725 1027 1327 1627 1927 2228	1.53 1.66 1.71 1.60 1.61 1.71 1.59	0.142 0.142 0.132 0.132 0.132 0.132 0.142 0.132	7.0 7.0 7.6 7.6 7.6 7.6 7.6 7.6	80 28 32 70 70 28 28 74	66 58 57 62 63 58 54 60	0.70 0.65 0.65 0.63 0.60 0.60 0.65 0.63	1.28 1.14 1.64 1.37 1.20 0.83 1.37 1.26	3.67 3.98 4.51 4.58 4.71 4.30 4.33 4.49	49 51 44 42 38 47 47 43	-0.46 -0.10 0.27 -0.65 -0.60 -0.15 0.31 -0.16
	0127 0427 0727 1027 1327 1627 1927 2227	1.64 1.69 1.63 1.59 1.84 2.10 2.22 2.13	0.132 0.132 0.132 0.132 0.132 0.132 0.123 0.123 0.123	7.6 7.6 7.6 7.6 7.6 8.2 8.2 8.2	76 28 34 80 34 76 72 72	60 57 61 65 60 58 57	0.62 0.62 0.62 0.60 0.56 0.52 0.54	1.05 1.09 1.30 1.05 1.06 0.74 0.76 0.91	4.24 4.19 4.32 4.44 4.77 4.87 4.72 5.04	45 49 45 43 42 40 42 38	-0.41 0.03 -0.11 -0.31 -0.09 -0.17 -0.42 -0.23
950831 950831 950831 950831 950831 950831	0127 0427 0727 1027 1325 1627 1927 2224	1.99 1.98 1.95 1.95 1.84 1.58 1.55	0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.132 0.132	8.2 8.2 8.2 8.2 8.2 8.2 7.6 7.6	66 72 30 32 68 70 72 66	60 60 58 59 60 64 63 63	0.52 0.54 0.56 0.56 0.55 0.64 0.65	1.41 0.96 1.04 0.93 1.46 1.10 0.97 1.22	5.70 4.80 4.57 4.45 5.41 4.91 4.02 3.99	43 44 34 34 43	-0.18 -0.66 -0.17 -0.21 -0.14 -0.41 -0.41 -0.19
950901 950901 950901 950901	0127 0427 0727 1327 1546 1928	1.39 1.39 1.35 1.45 1.40 1.40	0.132 0.132 0.142 0.142 0.142 0.142	7.6 7.6 7.0 7.0 7.0 7.0	70 30 76 68 62 38	63 61 68 66 65 61	0.67 0.65 0.66 0.63 0.63	1.15 1.35 1.00 1.50 1.46 1.23	3.65 4.02 3.63 4.37 4.44 4.28	44 42 36	-0.20 -0.19 -0.61 -0.14 -0.03 0.06
(Sheet 33 of 47)										et 33	of 47)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
950902 950902 950902 950902 950902 950902 950902	0127 0427 0727 1028 1327 1627 2227	1.15 1.27 1.52 1.65 1.61 1.64 1.31	0.142 0.142 0.162 0.142 0.132 0.152 0.142	7.0 7.0 6.2 7.0 7.6 6.6 7.0	70 60 60 64 64 60 66	65 65 63 61 62 58 61	0.66 0.71 0.55 0.55 0.55 0.55 0.54	1.57 1.27 1.26 1.16 1.42 1.25 1.47	4.05 4.03 5.35 5.49 5.51 5.46 5.15	38 39 31 33 31 34 34	-0.30 0.15 0.02 -0.03 -0.11 -0.27 -0.24
950903 950903 950903 950903 950903 950903 950903	0127 0427 0727 1027 1351 1627 2227	1.32 1.35 1.28 1.20 1.15 1.25	0.152 0.162 0.152 0.152 0.162 0.162 0.162	6.6 6.2 6.6 6.2 6.2 6.2	64 64 62 68 68 60 64	61 62 60 67 67 67	0.56 0.57 0.60 0.69 0.66 0.65 0.75	1.58 1.30 1.44 1.40 1.35 1.22	5.71 5.22 4.88 3.79 4.14 3.86 3.20	32 33 34 39 40 42 48	-0.15 -0.13 -0.22 -0.17 -0.13 0.21 -0.01
950904 950904 950904 950904 950904 950904 950904	0127 0427 0727 1028 1328 1628 1928 2227	1.19 1.74 1.68 1.65 1.43 1.75 1.94 1.93	0.162 0.152 0.132 0.132 0.142 0.142 0.142 0.142	6.2 6.6 7.6 7.0 7.0 7.0 7.0	56 62 62 30 52 62 24 24	58 54 56 57 60 56 52 51	0.67 0.58 0.59 0.62 0.62 0.58 0.54 0.57	1.40 0.99 1.39 1.41 1.41 1.20 1.04	3.92 4.67 4.96 4.55 4.65 4.71 4.91 4.72	42 42 38 41 40 40 40 41	0.13 -0.43 -0.59 -0.16 0.13 -0.22 -0.10 0.14
950905 950905 950905 950905 950905 950905 950905	0127 0427 0728 1027 1627 1921 2227	1.93 1.81 1.47 1.36 1.32 1.37	0.132 0.132 0.142 0.152 0.142 0.132 0.132	7.6 7.6 7.0 6.6 7.0 7.6	32 64 62 62 66 62 66	55 56 63 63 65 68 70	0.54 0.52 0.62 0.64 0.59 0.55 0.58	1.16 1.47 1.51 1.24 1.36 1.89 1.82	4.95 5.60 4.60 4.46 4.73 5.67 5.62	37 34 36 35 33 24 23	-0.03 -0.27 -0.10 -0.10 -0.15 0.24 0.16
950906 950906 950906 950906 950906 950906 950906	0127 0427 0727 1027 1357 1927 2227	1.35 1.54 1.45 1.40 1.32 1.33 1.32	0.132 0.123 0.123 0.123 0.132 0.132 0.123 0.113	7.6 8.2 8.2 7.6 8.2 8.9	66 58 52 62 60 60 68	69 62 63 63 62 67 75	0.55 0.56 0.55 0.59 0.62 0.62	1.86 1.57 1.85 2.13 2.00 2.96 3.16	5.81 5.60 5.82 5.58 5.31 5.95 6.35	26 32 29 29 31 21 14	0.09 0.06 0.15 0.02 0.00 0.28 0.25
950907 950907 950907 950907 950907 950907 950907	0127 0427 0728 1028 1331 1627 1927 2227	1.26 1.30 1.19 1.46 1.47 1.52 1.52	0.113 0.113 0.123 0.123 0.113 0.113 0.123 0.113	8.9 8.2 8.2 8.9 8.9 8.9	66 64 64 62 64 58 60 60	73 69 71 70 70 68 70 67	0.72 0.80 0.81 0.73 0.72 0.75 0.75 0.75	2.53 2.29 2.29 2.92 2.68 2.98 2.58 3.00	4.74 4.13 3.68 4.55 4.70 4.31 3.99 4.53	23 31 30 25 27 30 32 28	0.27 0.26 0.33 0.35 0.17 0.39 0.42 0.31
950908 950908 950908 950908 950908 950908 950908 950908	0127 0427 0727 1027 1327 1627 1927 2227	1.36 1.40 1.37 1.28 1.37 1.23 1.29 1.31	0.093 0.123 0.123 0.123 0.123 0.103 0.103 0.113	10.7 8.2 8.2 8.2 8.2 9.7 8.9 8.9	62 58 54 62 58 60 56	73 65 62 64 69 72 68 67	0.75 0.75 0.75 0.77 0.73 0.75 0.76 0.77	2.63 2.15 1.99 1.95 1.95 2.22 1.90 2.18	4.01 3.93 3.89 3.60 3.91 3.81 3.56 3.64	29 37 38 44 28 36 40 38	0.63 0.01 0.02 0.34 0.36 0.45 0.31 0.38
950909	0203	1.32	0.123	8.2	58	70	0.77	2.03	3.51	41	0.53
									(She	et 34	of 47)

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
950909 950909 950909 950909 950909 950909	0427 0727 1102 1327 1627 2227	1.23 1.15 1.18 1.22 1.13 1.07	0.123 0.123 0.113 0.123 0.103 0.113	8.2 8.2 8.9 8.2 9.7 8.9	58 54 62 58 66 64	71 71 76 75 77 79	0.77 0.86 0.83 0.79 0.83 0.90	2.13 1.92 1.63 1.91 1.37 1.20	3.57 2.88 2.83 3.20 2.78 2.35	39 62 56 46 58 88	0.49 1.13 0.91 0.82 0.46 1.18
950910 950910 950910 950910 950910 950910	0427 0727 1027 1104 1327 1927 2227	1.13 0.99 1.05 1.05 1.13 1.07	0.123 0.074 0.083 0.113 0.083 0.093 0.093	8.2 13.6 12.0 8.9 12.0 10.7	72 64 60 58 66 72 60	78 84 82 78 79 86 80	0.79 0.88 0.84 0.83 0.83 0.84 0.81	1.35 1.12 1.16 1.27 1.37 0.92 1.32	2.97 2.30 2.34 2.66 2.63 2.37 2.71	48 86 83 71 69 76 61	0.33 1.27 1.35 1.07 1.00 0.72
950911 950911 950911 950911 950911 950911	0124 0428 0728 1027 1628 1927 2227	1.10 1.07 0.96 0.96 1.03 1.01	0.093 0.093 0.093 0.103 0.103 0.103 0.083	10.7 10.7 10.7 9.7 9.7 9.7 9.7	66 68 72 56 68 78 68	84 82 85 83 84 84	0.80 0.77 0.82 0.80 0.74 0.77	1.33 1.44 1.23 1.21 1.07 1.13 1.12	2.82 2.92 2.63 2.65 2.88 2.94 2.85	63 51 69 66 54 50 55	0.99 0.67 0.90 0.83 0.77 0.35 0.76
950912 950912 950912 950912 950912 950912 950912 950912 950912	0128 0427 0727 0806 1027 1327 1627 1927 2227	1.06 1.35 1.25 1.23 1.22 1.39 1.62 1.74 1.60	0.083 0.083 0.083 0.093 0.093 0.093 0.162 0.162	12.0 12.0 12.0 12.0 10.7 10.7 10.7 6.2 6.2	58 66 58 56 56 62 60 62	80 75 70 70 69 70 68 62 65	0.69 0.62 0.66 0.67 0.69 0.63 0.61 0.65 0.66	1.36 1.36 1.88 1.87 1.77 1.70 1.40 1.26 1.34	3.36 4.11 4.22 4.09 4.01 4.44 4.23 3.90 3.77	46 35 35 37 32 34 41 40	0.79 0.17 0.76 0.85 0.77 0.43 0.32 -0.13 0.15
950913 950913 950913 950913 950913 950913 950913	0127 0427 0728 1028 1327 1627 1928 2227	1.60 1.89 2.07 1.87 1.98 2.40 2.36 2.34	0.162 0.152 0.152 0.152 0.064 0.142 0.142 0.132	6.2 6.6 6.6 15.6 7.0 7.0	26 68 68 24 58 62 64 64	64 63 61 56 57 56 59 58	0.70 0.62 0.62 0.66 0.65 0.59 0.56 0.57	1.26 1.08 1.04 1.38 1.64 1.33 1.13	3.48 4.04 4.09 4.17 4.64 4.72 5.03 4.86	47 43 42 44 38 38 37 37	0.02 -0.22 -0.45 -0.13 -0.31 -0.34 -0.42 -0.28
950914 950914 950914 950914 950914 950914 950914	0128 0427 0727 1101 1327 1627 1927 2227	2.21 2.28 2.37 2.49 2.37 2.36 2.61 2.49	0.142 0.142 0.132 0.132 0.074 0.074 0.074 0.132	7.0 7.6 7.6 13.6 13.6 13.6 7.6	56 58 58 58 54 54 54 58 60	56 59 58 57 55 60 57 55	0.62 0.57 0.52 0.53 0.51 0.53 0.50 0.47	1.42 1.18 1.21 1.22 1.71 1.53 1.14 1.10	4.61 5.12 6.12 5.79 6.95 6.05 6.07 6.71	39 32 29 28 24 30 29 30	-0.06 -0.15 -0.10 -0.14 0.02 0.20 -0.26 -0.33
950915 950915 950915 950915 950915 950915 950915 950915	0127 0428 0727 0852 1028 1327 1627 1927 2227	2.42 2.41 2.43 2.54 2.39 2.25 2.25 2.16 2.04	0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.132 0.132	8.2 8.2 8.2 8.2 8.2 8.2 7.6 7.6	60 62 60 56 60 60 58 62 60	57 59 56 55 58 58 59 55 52	0.46 0.46 0.46 0.44 0.45 0.45 0.50	1.02 1.25 1.37 1.43 1.16 1.30 1.43 1.16	7.04 7.26 7.61 8.06 7.70 7.73 8.28 6.42 6.94	27 27 27 27 27 27 27 24 34 32	-0.33 -0.15 -0.21 -0.01 -0.07 -0.12 -0.02 -0.32 -0.31
	(Sheet 35 of 47)										

Table	Table A1 (Continued) Time H_{mo} f_0 T_0 θ_0 θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	γ	δ	Δθ deg	A	
950916 950916 950916 950916 950916 950916 950916 950916	0128 0427 0727 1028 1327 1627 1927 2227	1.59 1.42 1.43 1.31 1.05 0.94 0.91 0.81	0.132 0.142 0.142 0.162 0.093 0.093 0.093	7.6 7.0 7.0 6.2 10.7 10.7 10.7	62 54 66 32 64 66 58 56	57 59 60 58 66 78 75 75	0.58 0.63 0.64 0.69 0.73 0.82 0.82	1.61 1.76 1.50 2.12 2.36 1.74 2.03 2.19	5.52 5.17 4.88 4.68 4.27 3.09 3.16 3.02	35 36 40 39 37 54 52 64	-0.18 0.06 -0.21 0.02 0.11 0.73 0.88 1.19	
950917 950917 950917 950917 950917 950917 950917 950917 950917	0127 0427 0504 0727 1027 1327 1627 1927 2227	0.74 0.73 0.71 0.69 0.72 0.71 0.96 1.23	0.093 0.093 0.093 0.093 0.093 0.162 0.162 0.152	10.7 10.7 10.7 10.7 10.7 10.7 6.2 6.2 6.6	60 58 54 50 52 64 64 62 66	85 98 93 92 93 90 72 64 68	0.90 0.98 1.00 1.02 1.00 1.00 0.72 0.63 0.62	1.75 0.77 1.18 1.09 0.94 1.28 2.84 2.18 2.30	2.49 1.79 1.97 1.94 1.77 2.00 4.34 5.42 5.55	93 113 120 119 121 120 26 31 29	1.76 1.26 1.49 1.33 1.42 1.56 0.35 0.04 0.02	
950918 950918 950918 950918 950918 950918 950918	0127 0427 0727 1027 1328 1926 2227	1.33 1.37 1.50 1.50 1.50 1.49	0.152 0.142 0.132 0.142 0.142 0.083 0.093	6.6 7.0 7.6 7.0 7.0 12.0	70 74 64 56 56 76 74	68 71 64 61 67 73 70	0.61 0.62 0.62 0.66 0.64 0.67 0.63	2.43 2.07 2.10 2.45 2.14 1.73 1.66	5.62 5.23 5.58 5.01 5.05 4.26 4.51	27 29 31 34 32 37 38	-0.07 -0.35 -0.01 0.11 0.20 -0.17 -0.16	
950919 950919 950919 950919	1027 1327 1627 2227	1.75 1.68 1.50 1.45	0.103 0.113 0.113 0.103	9.7 8.9 8.9 9.7	70 60 58 50	79 79 81 82	0.65 0.71 0.72 0.81	1.49 1.63 1.34 1.17	4.46 3.76 3.40 2.61	33 39 46 67	0.23 0.54 0.31 0.73	
950920 950920 950920 950920 950920 950920 950920	0127 0427 0727 1028 1327 1627 2227	1.55 1.44 1.40 1.40 1.34 1.30	0.113 0.113 0.113 0.123 0.054 0.054 0.054	8.9 8.9 8.9 8.2 18.5 18.5	52 46 60 66 60 64 170	79 81 80 84 98 98 113	0.82 0.81 0.92 0.94 0.94 0.91	1.53 1.22 0.98 0.93 0.54 0.60	2.78 2.62 2.18 2.03 1.65 1.77	75 71 97 104 108 101 109	1.33 0.80 0.78 1.00 1.14 1.26 0.13	
950921 950921 950921 950921 950921 950921 950921 950921	0127 0427 0727 1028 1327 1627 1927 2227	1.23 1.31 1.23 1.29 1.31 1.34 1.33	0.054 0.103 0.054 0.064 0.064 0.064 0.064 0.074	18.5 9.7 18.5 15.6 15.6 15.6 13.6	64 58 62 62 80 80 78 78	105 95 97 93 86 92 93 87	0.92 0.89 0.88 0.87 0.84 0.84 0.84	0.25 0.64 0.50 0.69 0.81 0.83 0.72	1.60 1.79 1.87 1.98 2.33 2.29 2.17 3.17	104 98 97 95 82 85 87 31	0.73 1.25 1.10 1.31 0.89 1.26 1.24 0.73	
950922 950922 950922 950922 950922 950922 950922 950922	0127 0427 0800 1028 1326 1627 1928 2227	1.59 1.68 1.65 1.84 1.78 1.74 1.71	0.074 0.074 0.083 0.083 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0 12.0 12.0	80 80 78 76 76 80 82 74	90 92 88 90 92 93 94 86	0.74 0.72 0.69 0.71 0.73 0.73 0.68	1.11 1.28 1.29 1.06 1.22 1.30 1.12	2.85 3.08 3.58 3.11 3.10 3.07 3.09 3.86	46 35 34 39 41 43 44 30	1.30 1.31 0.77 0.60 0.74 0.93 0.86 0.49	
950923 950923	0427 0727	2.16 2.28	0.054 0.054	18.5 18.5	64 64	78 78	0.64 0.65	2.30 2.24	4.87 4.72	22 25	1.00 0.89	
									(She	eet 36	of 47)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$										
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
950923 950923 950923 950923 950923	1027 1327 1657 1928 2227	2.50 2.63 2.82 2.79 2.79	0.054 0.054 0.064 0.064 0.064	18.5 18.5 15.6 15.6 15.6	66 66 66 70 68	75 76 74 81 78	0.60 0.61 0.61 0.68 0.65	2.33 2.31 2.36 1.73 2.38	5.37 5.23 5.53 4.06 4.70	20 20 21 30 23	0.75 0.80 0.52 0.69 0.57
950924 950924 950924 950924 950924 950924 950924	0128 0427 0727 1027 1327 1627 1952 2227	3.05 2.99 2.91 2.81 2.85 2.68 2.56 2.30	0.064 0.064 0.064 0.074 0.074 0.074 0.074	15.6 15.6 15.6 15.6 13.6 15.6 13.6	70 66 64 64 66 66 64 66	78 77 73 74 76 76 77	0.60 0.64 0.59 0.62 0.62 0.64 0.73	2.11 2.17 2.96 2.31 2.52 2.43 2.27 1.86	5.21 4.82 6.09 5.20 5.29 4.89 3.83 3.38	24 27 20 24 24 26 32 41	0.37 0.53 0.49 0.57 0.56 0.71 0.88 0.53
950925 950925 950925 950925 950925 950925 950925	0127 0727 1043 1327 1627 1927 2225	2.33 2.27 2.66 2.82 2.76 2.95 3.06	0.074 0.074 0.064 0.064 0.064 0.064	13.6 13.6 15.6 15.6 15.6 15.6	62 62 62 58 58 56 60	76 71 70 65 62 58 60	0.70 0.69 0.64 0.57 0.56 0.51 0.52	2.02 2.60 2.14 2.76 2.55 2.78 1.61	4.11 4.65 4.89 6.62 6.89 8.12 6.44	35 25 29 20 19 15 25	0.34 0.41 0.52 0.53 0.37 0.14
950926 950926 950926 950926 950926 950926 950926	0125 0427 0727 1327 1627 1927 2227	3.21 3.06 3.07 2.69 2.92 2.89 2.78	0.074 0.074 0.074 0.074 0.074 0.074 0.083	13.6 13.6 13.6 13.6 13.6 13.6 12.0	58 56 58 58 54 58 60	58 61 61 62 59 61 64	0.48 0.46 0.47 0.49 0.46 0.47	1.79 1.72 2.05 2.10 2.34 2.24 2.33	7.60 7.72 7.89 7.63 8.69 8.51 7.76	23 22 22 23 20 20 19	-0.07 0.19 0.21 0.11 0.17 0.08 0.09
950927 950927 950927 950927 950927	0127 0427 0727 1335 1930	2.42 2.28 2.30 2.12 1.94	0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0	60 62 60 54 56	65 67 66 64 73	0.55 0.52 0.58 0.64 0.70	2.21 2.77 2.54 2.29 1.94	6.27 7.21 5.98 5.00 3.80	20 17 21 31 38	0.17 0.19 0.29 0.24 0.59
950928 950928 950928 950928 950928 950928 950928 950928	0130 0430 0730 1037 1339 1637 1937 2238	1.84 2.05 2.04 1.93 2.05 2.21 2.16 2.22	0.093 0.064 0.064 0.064 0.064 0.064 0.103 0.064	10.7 15.6 15.6 15.6 15.6 15.6 9.7 15.6	58 58 54 60 50 50 50	74 72 72 75 75 74 68 69	0.69 0.67 0.68 0.74 0.72 0.71 0.72 0.71	2.04 1.98 2.36 1.85 1.52 1.34 1.77	3.85 4.09 4.18 3.37 3.29 3.20 3.46 3.47	34 33 29 40 46 51 45 45	0.84 0.64 0.50 0.61 0.52 0.69 0.65 0.36
950929 950929 950929 950929 950929	0138 0438 0738 1028 1927	2.43 2.39 2.44 2.55 2.77	0.093 0.093 0.074 0.074 0.123	10.7 10.7 13.6 13.6 8.2	58 58 56 60 60	64 67 66 67 64	0.66 0.60 0.58 0.54 0.51	2.03 1.78 1.99 1.68 1.05	4.46 4.79 5.31 5.68 5.96	34 33 30 30 30	0.18 0.31 0.27 0.18 0.06
950930 950930 950930 950930 950930	0427 0727 1027 1327 1627 1927 2227	2.13 2.25 2.35	0.093 0.083 0.093 0.083 0.083 0.113 0.093	10.7 12.0 10.7 12.0 12.0 8.9 10.7	56 54 58 58 58 56 54	61 60 61 64 62 60 59	0.48 0.48 0.52 0.52 0.54 0.50 0.51	1.68 1.83 2.19 2.12 1.81 1.45 1.69	7.44 7.93 7.12 7.01 6.67 6.79 6.83	23 23 23 23 25 28 26	0.20 0.26 0.11 0.23 0.15 0.07 0.16
									(Shee	et 37 d	of 47)

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	А
951001 951001 951001 951001 951001 951001	0127 0427 0724 1627 1927 2227	2.04 2.21 2.25 2.16 2.35 2.23	0.093 0.113 0.103 0.103 0.103 0.103	10.7 8.9 9.7 9.7 9.7 9.7	58 58 58 54 54 56	61 59 59 57 56 58	0.51 0.50 0.49 0.49 0.47 0.47	1.44 1.23 1.45 1.77 1.63 1.82	6.55 6.57 7.32 7.78 7.83 8.25	24 25 24 20 22 20	0.15 0.04 0.06 0.16 0.02 0.08
951002 951002 951002 951002 951002 951002	0127 0427 1337 1627 1927 2227	2.01 2.02 2.07 2.05 2.01 1.90	0.103 0.103 0.103 0.103 0.103 0.093	9.7 9.7 9.7 9.7 9.7 10.7	54 54 50 46 50	56 55 51 50 52 55	0.50 0.52 0.54 0.55 0.59 0.59	1.89 1.95 1.93 2.73 2.47 2.47	7.40 6.94 6.94 7.05 6.32 6.13	22 25 24 23 23 26	0.05 0.03 -0.02 0.19 0.07 0.04
951003 951003 951003 951003 951003 951003 951003	0128 0421 0727 1033 1627 1927 2228	1.87 1.75 1.83 1.99 1.77 1.94 2.20	0.074 0.103 0.103 0.113 0.074 0.083 0.103	13.6 9.7 9.7 8.9 13.6 12.0 9.7	56 52 52 54 52 54 52	57 57 56 57 58 59 56	0.62 0.63 0.59 0.59 0.68 0.67 0.59	2.46 2.94 3.09 3.07 2.89 2.70 2.42	5.62 5.58 6.43 6.32 4.92 4.91 5.92	25 22 20 23 23 24 26	-0.22 0.13 0.00 0.10 0.20 0.20 0.04
951004 951004 951004 951004 951004 951004 951004	0127 0427 0725 1021 1327 1628 1922 2228	2.49 2.60 2.60 2.91 2.97 2.93 2.77 2.66	0.113 0.103 0.103 0.103 0.103 0.093 0.093 0.074	8.9 9.7 9.7 9.7 9.7 10.7 13.6	56 54 54 54 54 48 54 54	55 52 53 54 54 49 53 56	0.54 0.56 0.57 0.53 0.49 0.53 0.57 0.59	2.06 2.28 2.51 3.17 3.41 3.38 3.22 3.60	6.50 6.60 6.62 7.92 9.46 8.42 7.27 7.03	25 28 27 19 16 19 18 17	-0.10 -0.18 -0.23 -0.19 -0.13 -0.07 -0.24 -0.10
951005 951005 951005 951005 951005 951005 951005	0127 0727 1027 1327 1627 1927 2228	2.32 2.23 2.42 2.57 2.20 1.85 1.92	0.083 0.074 0.074 0.083 0.083 0.083 0.083	12.0 13.6 13.6 12.0 12.0 12.0 12.0	56 50 52 48 52 50 50	61 59 58 53 58 62 63	0.66 0.69 0.63 0.61 0.73 0.79 0.80	3.25 3.74 3.89 3.86 3.43 3.01 2.77	5.43 5.15 6.06 6.51 4.61 3.80 3.58	20 19 16 18 21 28 31	0.20 0.38 0.25 0.18 0.26 0.76 0.99
951006 951006 951006 951006 951006 951006 951006	0127 0427 1016 1328 1627 1928 2227	1.86 1.69 1.66 1.62 1.33 1.32	0.093 0.093 0.093 0.093 0.064 0.093 0.103	10.7 10.7 10.7 10.7 15.6 10.7 9.7	52 46 46 48 50 50 48	64 61 64 58 70 78 73	0.79 0.83 0.87 0.81 0.92 0.94 0.88	3.06 3.02 2.51 3.04 1.90 1.55 1.76	3.74 3.41 3.01 3.65 2.49 2.18 2.59	27 35 61 34 103 109 89	0.75 0.99 1.57 0.69 1.91 2.09 1.65
951007 951007 951007 951007 951007 951007 951007	0428 0727 1027 1327 1628 1927 2228	1.74 1.67 1.59 1.79 1.88 1.90	0.113 0.113 0.113 0.074 0.083 0.113 0.083	8.9 8.9 13.6 12.0 8.9 12.0	48 58 50 48 48 48 50	60 69 62 57 53 51 54	0.76 0.83 0.76 0.69 0.66 0.67 0.63	2.63 1.74 2.73 3.40 3.27 3.62 3.40	3.85 2.85 3.90 5.06 5.60 5.54 5.95	37 53 34 26 26 24 22	0.52 0.61 0.61 0.45 0.11 -0.05 0.10
951008 951008 951008 951008 951008	0128 0427 0725 1027 1327	2.14 2.06 2.01 1.71 2.01	0.093 0.103 0.083 0.093 0.103	10.7 9.7 12.0 10.7 9.7	48 42 44 44 48	53 52 52 53 55	0.58 0.60 0.63 0.64 0.60	3.62 3.23 3.54 3.61 3.39	7.12 6.12 5.98 6.03 6.36	19 23 21 21 21	0.25 0.46 0.43 0.51 0.33
	(Sheet 38 of 47)										

1

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
951008 951008	1627 1927	1.84 1.78	0.103 0.093	9.7 10.7	44 48	54 57	0.60	3.05 3.08	6.33 5.25	26 25	0.41 0.39
951009 951009 951009 951009 951009 951009	0128 0428 0727 1028 1332 1629 2229	1.64 1.67 1.63 1.72 1.85 2.04 1.93	0.113 0.113 0.113 0.123 0.123 0.132 0.132	8.9 8.9 8.9 8.2 8.2 7.6 7.6	48 52 50 50 52 60 56	62 63 60 61 60 59 62	0.68 0.67 0.65 0.65 0.67 0.62 0.69	2.50 2.27 2.58 2.60 2.09 2.03 2.24	4.64 4.42 4.95 4.94 4.51 4.92 4.28	32 34 30 28 34 35 35	0.49 0.30 0.40 0.38 0.22 -0.06 0.27
951010 951010 951010 951010 951010 951010 951010 951010	0129 0433 0730 1031 1330 1630 1933 2231	1.88 1.90 2.02 1.98 2.02 1.95 1.91	0.132 0.132 0.074 0.083 0.083 0.074 0.074	7.6 7.6 13.6 12.0 12.0 13.6 13.6	52 56 52 52 52 50 52 52	68 67 64 62 63 60 65	0.74 0.69 0.71 0.72 0.72 0.76 0.83 0.83	1.95 2.21 2.57 2.68 2.92 2.81 2.58 2.33	3.64 4.06 4.17 4.24 4.31 3.96 3.31 3.17	40 30 29 29 24 32 43 49	0.65 0.51 0.56 0.48 0.57 0.46 0.93 1.17
951011 951011 951011 951011 951011 951011	0131 0733 1329 1631 1931 2231	1.80 1.63 1.63 1.68 1.71 1.77	0.083 0.064 0.083 0.083 0.083 0.083	12.0 15.6 12.0 12.0 12.0 12.0	52 46 48 48 44 44	76 80 84 72 74 63	0.86 0.96 0.96 0.90 0.92 0.82	1.80 1.15 1.06 1.82 1.64 2.25	2.61 1.87 1.86 2.54 2.29 3.20	91 114 113 92 111 46	1.90 1.83 1.67 1.56 1.77 0.81
951012 951012 951012 951012 951012 951012 951012 951012	0131 0433 0731 1031 1332 1658 1938 2238	1.77 2.47 3.07 2.93 2.97 3.23 3.00 2.98	0.064 0.074 0.064 0.064 0.113 0.074 0.074 0.093	15.6 13.6 15.6 15.6 8.9 13.6 13.6	48 52 56 52 50 54 54 52	65 63 57 55 56 56 62 56	0.81 0.69 0.57 0.58 0.57 0.52 0.78 0.55	2.26 2.55 3.07 3.44 3.94 2.70 1.81 2.53	3.39 4.48 6.81 7.03 7.48 7.77 3.66 6.91	29 23 21 17 23 41 26	0.71 0.17 -0.05 0.10 0.30 -0.01 0.48 0.06
951013 951013 951013 951013 951013 951013	0138 0440 0738 1037 1339 1638 1936 2238	2.84 3.08 3.48 3.04 3.32 3.34 2.95 2.70	0.074 0.093 0.083 0.074 0.083 0.083 0.083 0.083	13.6 10.7 12.0 13.6 12.0 12.0 12.0	50 54 54 52 52 56 52 50	59 59 58 56 55 58 56 56	0.56 0.48 0.44 0.49 0.46 0.47 0.52 0.58	2.91 2.78 3.10 3.23 2.96 2.16 2.57 3.41	6.75 8.89 10.69 9.18 9.45 8.42 7.71 7.07	24 19 16 17 17 21 24 21	0.43 0.22 0.14 0.25 0.19 0.06 0.11 0.29
951014 951014 951014 951014 951014	0139 0440 0738 1038 1336 1640 2240	2.36 2.52 2.47 2.29 2.03 2.05 2.17	0.093 0.083 0.083 0.093 0.093 0.093 0.093	10.7 12.0 12.0 10.7 10.7 10.7 12.0	50 50 52 48 46 48 52	60 59 57 57 62 61 66	0.63 0.58 0.58 0.62 0.78 0.72 0.73	3.48 3.50 3.35 3.62 3.12 3.10 2.89	5.96 6.67 6.81 6.17 3.93 4.37 4.19	24 21 22 20 32 27 28	0.44 0.38 0.21 0.38 0.74 0.49 0.38
951015 951015 951015 951015 951015	0139 0737 1038 1340 1638 1938 2239	2.07 2.00 1.97 2.08 2.06 2.09 1.86	0.083 0.064 0.064 0.064 0.064 0.064 0.074	12.0 15.6 15.6 15.6 15.6 15.6 13.6	50 62 58 58 56 60 56	66 74 69 72 68 75 71	0.79 0.87 0.83 0.84 0.78 0.81 0.80	2.79 1.97 2.40 2.25 2.73 2.00 2.26	3.60 2.74 3.21 3.08 3.69 3.01 3.32	30 78 39 49 28 47 42	0.50 1.48 0.83 1.31 0.73 1.08 0.91
									(She	et 39	of 47)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Υ	δ	Δθ deg	А
951016 951016 951016 951016 951016 951016 951016	0138 0436 0736 1036 1336 1637 1937 2236	1.86 1.78 1.79 1.69 1.72 1.80 2.14 2.45	0.074 0.074 0.074 0.074 0.083 0.074 0.162 0.142	13.6 13.6 13.6 13.6 12.0 13.6 6.2 7.0	60 62 62 56 62 58 60 62	82 74 72 74 75 61 55	0.88 0.78 0.76 0.84 0.83 0.70 0.63 0.59	1.03 1.84 2.08 1.83 1.80 2.66 1.97 1.32	2.34 3.19 3.56 2.90 2.95 4.63 5.31 5.13	83 39 32 53 48 27 35 41	0.97 0.56 0.41 0.92 0.63 0.03 -0.27 -0.23
951017 951017 951017 951017 951017 951017 951017 951017 951017	0137 0437 0737 0815 1036 1339 1637 1938 2238	2.04 1.82 1.77 1.78 1.81 1.65 1.59 1.30 1.28	0.142 0.083 0.142 0.083 0.142 0.152 0.152 0.152 0.152	7.0 12.0 7.0 12.0 7.0 6.6 6.6 6.6 7.0	64 60 54 58 56 58 62 64 64	57 61 62 62 56 62 63 70 68	0.62 0.63 0.60 0.59 0.57 0.63 0.59 0.63	1.84 2.20 2.16 2.14 2.35 2.02 2.24 2.35 2.16	5.34 5.43 5.45 5.72 6.65 5.26 5.99 5.23 4.97	37 33 32 30 28 31 27 26 27	-0.45 0.01 0.29 0.17 0.02 0.16 -0.02 0.23 0.13
951018 0138 1.41 0.142 7.0 58 66 0.56 2.25 6.31 26 0.24 951018 0440 1.55 0.123 8.2 56 63 0.56 2.58 6.55 23 0.24 951018 0738 1.75 0.123 8.2 54 59 0.54 2.07 6.51 25 0.26 951018 1301 1.54 0.132 7.6 62 62 0.54 1.99 7.10 28 -0.01 951018 1455 1.55 0.132 7.6 56 58 0.57 2.39 6.57 28 0.07 951018 1640 1.50 0.132 7.6 56 61 0.58 2.02 5.87 27 0.20 951018 1938 1.42 0.132 7.6 52 65 0.58 1.60 5.07 34 0.60 951018 2240 1.31 0											
951019 951019 951019 951019 951019 951019 951019	0140 0439 0738 1340 1640 1939 2238	1.21 1.34 1.42 1.72 1.86 1.73 1.66	0.142 0.142 0.142 0.083 0.083 0.093 0.083	7.0 7.0 7.0 12.0 12.0 10.7 12.0	52 50 50 50 48 52 44	63 59 56 58 53 58 56	0.60 0.58 0.58 0.52 0.47 0.49 0.55	1.78 2.26 2.45 2.16 2.79 2.47 2.01	5.12 5.96 6.37 7.00 9.51 8.49 6.44	32 28 25 25 18 20 28	0.52 0.55 0.42 0.41 0.31 0.39 0.45
951020 951020 951020 951020 951020 951020	0138 0740 1040 1340 1940 2238	1.63 1.72 1.74 1.66 1.54 1.36	0.093 0.083 0.093 0.083 0.083 0.083	10.7 12.0 10.7 12.0 12.0 12.0	48 48 40 42 72 54	59 60 60 61 66 67	0.55 0.53 0.57 0.57 0.53 0.57	1.80 1.52 1.34 1.46 1.09 1.26	6.48 5.84 5.17 5.15 5.28 5.04	32 33 39 39 35 36	0.23 0.47 0.56 0.42 -0.10 0.09
951021 951021 951021 951021 951021 951021 951021	0440 0739 1038 1339 1638 1938 2238	1.20 1.14 1.04 1.39 1.97 2.94 2.99	0.093 0.093 0.054 0.064 0.064 0.064 0.074	10.7 10.7 18.5 15.6 15.6 15.6 15.6	42 66 66 62 62 56	69 73 74 70 62 58 55	0.62 0.62 0.64 0.57 0.51 0.41 0.42	1.00 1.20 1.44 1.33 0.53 0.42 0.89	4.09 4.35 4.45 5.26 5.26 6.09 7.10	45 38 36 30 33 27 25	-0.11 0.16 0.46 0.33 -0.12 -0.33 -0.08
951022 951022 951022 951022 951022	1038 1338 1711 1938 2238	3.76 3.76 3.70 3.36 3.03	0.074 0.064 0.074 0.074 0.074	13.6 15.6 13.6 13.6 13.6	56 58 58 56 56	55 53 54 53 55	0.37 0.39 0.39 0.39 0.42	0.91 0.60 0.67 0.89 1.36	10.26 8.59 8.93 10.06 9.60	17 23 19 18 16	-0.16 -0.47 -0.39 -0.44 -0.23
951023 951023 951023	0138 0439 0740	2.91 2.78 2.63	0.074 0.074 0.074	13.6 13.6 13.6	56 54 58	56 55 58	0.46 0.43 0.42	1.10 1.22 1.16	7.93 8.80 9.62	22 22 17	-0.16 -0.06 -0.05
									(She	et 40	of 47)

Table	A1 (Conti	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
951023 951023 951023 951023 951023	1037 1338 1638 1939 2241	2.36 2.21 2.32 2.10 1.60	0.074 0.074 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0	54 52 50 54 60	58 56 56 57 66	0.46 0.43 0.50 0.50 0.52	1.70 1.62 1.21 1.45 2.52	8.75 9.63 6.24 7.02 8.17	18 19 31 24 18	0.25 0.19 0.30 0.14 0.46
951024 951024 951024 951024 951024 951024 951024	0139 0439 0741 1029 1330 1629 1929 2229	1.60 1.73 1.55 1.05 1.04 1.25 1.24 1.33	0.083 0.093 0.103 0.113 0.093 0.054 0.054	12.0 10.7 9.7 8.9 10.7 18.5 18.5	58 50 56 68 66 60 60 62	66 59 63 80 83 74 71 76	0.53 0.54 0.55 0.72 0.72 0.67 0.68 0.76	2.13 1.98 2.20 1.94 1.58 2.49 3.03 2.50	7.01 6.39 6.77 4.28 3.86 4.71 5.00 3.79	23 28 27 32 42 24 20 31	0.48 0.44 0.37 0.67 0.95 0.85 1.17 1.49
951025 951025 951025 951025 951025 951025 951025	0129 0431 0751 1036 1252 1533 1929	1.50 1.61 2.03 1.99 2.25 2.60 2.76	0.064 0.064 0.064 0.064 0.074 0.074	15.6 15.6 15.6 15.6 13.6 13.6	56 58 56 54 50 56	71 65 63 61 57 52 56	0.74 0.67 0.62 0.64 0.59 0.52 0.63	2.88 3.15 3.26 3.62 3.71 2.84 2.03	4.23 5.20 6.14 6.00 7.20 8.18 5.37	26 22 21 16 14 19 28	1.21 0.63 0.35 0.37 0.05 0.01 -0.24
951026 951026 951026 951026 951026 951026	0730 1026 1327 1700 1927 2227	1.96 1.82 1.61 1.52 1.69 1.59	0.083 0.093 0.083 0.083 0.162 0.162	12.0 10.7 12.0 12.0 6.2 6.2	56 52 52 54 64 62	61 63 66 64 65 70	0.65 0.71 0.79 0.75 0.75 0.78	3.18 3.18 2.76 2.44 2.23 2.02	5.55 4.67 3.72 3.98 3.91 3.45	22 25 35 39 38 39	0.13 0.41 0.80 0.42 0.08 0.26
951027 951027 951027 951027 951027 951027 951027	0127 0427 0727 1327 1627 1928 2227	1.38 1.42 1.50 1.24 1.35 1.52 1.48	0.093 0.093 0.142 0.093 0.132 0.103 0.132	10.7 10.7 7.0 10.7 7.6 9.7 7.6	62 58 52 60 60 66 68	80 76 72 82 77 73 73	0.82 0.77 0.78 0.84 0.79 0.69 0.68	1.88 2.06 1.96 1.54 1.95 2.15 2.38	2.96 3.32 3.32 2.79 3.18 4.27 4.49	61 49 48 67 51 32 26	1.42 1.30 0.66 1.31 1.09 0.29 0.29
951028 951028 951028 951028 951028 951028 951028	0127 0427 1028 1327 1627 1927 2227	1.54 1.77 1.89 1.89 1.96 2.06 1.87	0.064 0.064 0.064 0.074 0.074 0.074 0.074	15.6 15.6 15.6 13.6 13.6 13.6	60 54 62 58 58 60 58	79 69 68 68 65 65	0.76 0.68 0.60 0.59 0.54 0.51 0.55	1.80 2.19 2.21 2.69 2.83 2.46 2.47	3.19 4.27 5.39 5.96 7.08 7.46 6.51	47 32 23 19 19 20 21	1.23 0.78 0.26 0.47 0.34 0.15 0.30
951029 951029 951029 951029 951029 951029 951029 951029	0127 0427 0727 1027 1328 1628 1927 2227	1.71 1.93 1.95 1.86 1.65 1.63 1.46 1.38	0.074 0.074 0.074 0.074 0.083 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0 12.0 12.0	60 56 54 58 62 64 60 60	71 64 64 63 70 72 71 71	0.64 0.54 0.61 0.55 0.58 0.58 0.64 0.63	2.18 2.31 2.00 2.47 2.55 2.13 2.12 1.96	4.71 6.41 5.28 6.79 6.23 5.61 4.80 4.72	26 22 31 20 19 24 29 27	0.63 0.49 0.40 0.31 0.52 0.39 0.75 0.63
951030	0127 0427 0727 1028 1334	1.41 1.47 1.50 1.39 1.28	0.083 0.083 0.083 0.083 0.093	12.0 12.0 12.0 12.0 10.7	60 56 56 60 58	73 71 70 74 74	0.64 0.63 0.61 0.64 0.67	1.89 1.79 1.82 1.68 1.64	4.51 4.47 4.75 4.43 4.03	34 37 33 34 39	0.85 0.94 0.86 0.70 0.91
									(Shee	et 41	of 47)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ _o deg	σ	γ	δ	Δθ deg	А
951030	1627	1.27	0.083	12.0	60	77	0.68	1.63	3.88	40	0.91
951030	1928	1.25	0.074	13.6	56	78	0.70	1.43	3.67	45	0.58
951030	2224	1.13	0.083	12.0	60	77	0.70	1.64	3.76	42	0.87
951031	0128	1.15	0.083	12.0	54	81	0.72	1.15	3.14	53	0.55
951031	0428	1.07	0.083	12.0	56	82	0.73	1.32	3.11	53	0.70
951031	0727	1.16	0.083	12.0	54	81	0.67	1.21	3.50	46	0.30
951031	1627	1.03	0.093	10.7	74	92	0.73	0.97	2.85	55	0.59
951031	1927	1.11	0.093	10.7	72	90	0.73	0.87	2.80	55	0.53
951031	2221	1.05	0.093	10.7	86	92	0.75	1.00	2.78	54	0.47
951101	0121	1.08	0.103	9.7	94	98	0.78	0.57	2.31	71	0.38
951101	0421	1.08	0.083	12.0	82	96	0.74	0.70	2.51	61	0.41
951101	0721	0.96	0.083	12.0	78	105	0.77	0.43	2.22	77	0.88
951101	1021	1.09	0.083	12.0	82	95	0.75	0.86	2.64	62	0.85
951101	1321	1.08	0.093	10.7	64	91	0.77	1.00	2.72	58	0.53
951101	1927	1.11	0.064	15.6	60	93	0.75	0.79	2.68	66	0.55
951102 951102 951102 951102 951102 951102 951102	0127 0427 0728 1027 1328 1629 1929	1.15 1.27 1.41 1.42 1.53 1.67	0.064 0.064 0.064 0.064 0.074 0.074	15.6 15.6 15.6 15.6 13.6 13.6	58 60 56 58 58 54 56	91 84 83 77 75 74 74	0.73 0.71 0.75 0.68 0.65 0.66 0.62	0.74 1.34 1.29 1.79 1.65 1.47	2.66 3.05 2.85 3.88 4.08 3.76 4.36	66 50 58 38 37 42 39	0.71 1.11 1.06 0.77 0.73 0.62 1.09
951103	0729	1.79	0.074	13.6	54	65	0.59	1.95	5.44	30	0.71
951103	1032	1.96	0.074	13.6	54	66	0.55	1.62	5.52	31	0.32
951103	1630	1.83	0.083	12.0	56	60	0.58	1.73	5.13	35	0.28
951103	1930	1.95	0.113	8.9	48	56	0.54	1.64	5.64	30	0.33
951103	2230	2.12	0.083	12.0	46	55	0.50	2.03	7.09	25	0.33
951104 951104 951104 951104 951104 951104	0130 0430 0730 1030 1630 1930 2231	2.22 2.07 1.84 1.68 1.65 1.52 1.41	0.093 0.083 0.083 0.083 0.093 0.093 0.103	10.7 12.0 12.0 12.0 10.7 10.7 9.7	54 52 54 56 52 48 46	58 57 60 64 58 57 58	0.44 0.46 0.50 0.52 0.49 0.55 0.56	2.31 2.24 2.77 2.10 2.64 2.54 2.31	9.11 8.72 8.07 6.96 8.50 6.84 6.45	20 22 18 22 20 23 26	0.23 0.17 0.40 0.32 0.39 0.61 0.73
951105 951105 951105 951105 951105 951105 951105 951105	0130 0431 0731 1031 1330 1630 1929 2230	1.37 1.32 1.31 1.28 1.29 1.27 1.27	0.103 0.103 0.103 0.093 0.113 0.162 0.162 0.162	9.7 9.7 9.7 10.7 8.9 6.2 6.2 6.2	50 54 48 50 48 50 58 52	60 61 57 61 59 59 60 62	0.58 0.60 0.60 0.60 0.62 0.60 0.61 0.66	2.36 2.71 2.89 2.69 2.30 2.18 1.97 2.19	6.16 6.23 6.38 5.99 5.63 5.81 5.67 5.11	27 26 25 27 30 32 31 31	0.53 0.30 0.45 0.46 0.53 0.31 0.10
951106	0131	1.27	0.162	6.2	58	65	0.63	1.68	5.16	34	0.16
951106	0731	1.89	0.064	15.6	50	58	0.54	2.48	7.69	23	0.30
951106	1031	1.92	0.064	15.6	50	56	0.54	3.59	8.53	15	0.77
951106	1331	2.08	0.064	15.6	52	56	0.48	3.17	9.80	17	0.27
951106	1716	2.44	0.064	15.6	46	55	0.47	2.07	8.55	22	0.43
951106	1930	2.40	0.074	13.6	52	57	0.45	1.42	8.42	26	0.25
951107	0131	2.10	0.074	13.6	52	66	0.79	1.02	3.37	53	0.42
951107	0431	2.38	0.074	13.6	50	60	0.46	1.26	7.92	26	0.52
951107	0731	2.20	0.074	13.6	56	62	0.47	1.63	8.69	23	0.28
951107	1029	2.03	0.083	12.0	58	64	0.47	1.74	9.13	21	0.26
									(She	et 42	of 47)

Table A1 (Continued) Time H_{ma} f_a T_a θ_a θ_a $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А
951107 951107 951107	1330 1631 2231	2.20 2.13 1.69	0.074 0.074 0.074	13.6 13.6 13.6	54 44 60	62 58 65	0.44 0.47 0.50	1.18 1.02 2.22	8.16 6.86 7.77	26 33 21	0.20 0.20 0.22
951108 951108 951108 951108 951108 951108 951108 951108	0131 0431 0731 1031 1331 1631 1931 2231	1.55 1.74 1.46 1.39 1.37 1.33 1.00	0.083 0.083 0.083 0.093 0.083 0.093 0.093 0.083	12.0 12.0 12.0 10.7 12.0 10.7 10.7 12.0	60 50 54 56 56 52 52 60	65 58 62 63 63 62 63 73	0.49 0.47 0.54 0.54 0.52 0.54 0.63 0.66	2.39 2.24 2.44 2.56 2.34 2.11 2.51 2.27	8.01 8.54 7.22 7.35 7.36 6.56 5.54 4.57	20 21 23 22 23 28 28 28 27	0.25 0.35 0.32 0.29 0.34 0.26 0.41 0.72
951109 951109 951109 951109 951109 951109 951109	0130 0431 0730 1028 1330 1631 2231	1.05 1.20 1.26 1.20 1.44 1.34	0.093 0.162 0.152 0.152 0.142 0.162 0.162	10.7 6.2 6.6 6.6 7.0 6.2 6.2	62 60 58 56 60 60 50	70 62 57 63 61 62 51	0.59 0.59 0.60 0.65 0.52 0.54 0.60	2.03 1.93 2.36 2.46 2.69 2.12 1.74	5.53 5.52 5.97 5.16 8.02 6.97 5.60	25 28 29 24 21 23 33	0.39 0.09 -0.11 0.29 0.02 -0.04 -0.09
951110 951110 951110 951110 951110 951110 951110 951110	0130 0431 0731 1048 1333 1631 1931 2230	2.18 2.28 2.22 2.02 1.97 2.07 1.98 1.74	0.142 0.132 0.123 0.113 0.103 0.103 0.103	7.0 7.6 8.2 8.9 9.7 9.7 9.7	58 56 56 58 54 54 56	49 53 55 58 59 59 60 63	0.51 0.47 0.42 0.45 0.46 0.48 0.51 0.55	0.82 1.16 1.79 2.45 2.74 2.16 2.31 3.11	5.77 7.53 10.41 10.18 9.66 8.43 7.93 7.29	34 27 20 18 16 21 22 20	-0.33 -0.31 -0.08 0.04 0.08 0.32 0.18 0.28
951111 951111 951111 951111 951111 951111 951111	0130 0731 1031 1331 1631 1931 2231	1.51 1.43 1.16 1.19 1.23 1.20 0.98	0.103 0.103 0.103 0.103 0.103 0.103 0.113	9.7 9.7 9.7 9.7 9.7 9.7 8.9	56 54 60 60 62 56 58	67 67 74 76 72 69 76	0.61 0.64 0.74 0.75 0.66 0.71 0.78	2.71 2.56 2.40 2.16 2.28 2.51 2.20	5.77 5.39 4.00 3.72 4.90 4.49 3.45	26 31 34 40 29 34 41	0.68 0.56 0.72 0.80 0.41 0.55 0.83
951112 951112 951112 951112 951112 951112 951112 951112	0131 0431 0731 1031 1331 1631 1930 2230	0.92 0.98 0.90 0.89 1.02 1.32 1.89 2.44	0.113 0.103 0.113 0.103 0.054 0.064 0.064 0.064	8.9 9.7 8.9 9.7 18.5 15.6 15.6	54 58 60 60 58 52 56 60	81 83 81 83 76 63 60 61	0.83 0.87 0.84 0.84 0.81 0.63 0.56 0.45	1.56 1.57 1.82 1.77 2.24 3.48 3.74 3.91	2.75 2.57 2.87 2.80 3.26 6.04 7.87	66 83 60 65 46 17 14	1.23 1.59 1.08 1.48 1.50 0.64 0.24
951113 951113 951113 951113 951113 951113	0130 0431 0731 1031 1331 1631 1931 2231	2.49 2.61 2.72 2.60 2.26 2.34 2.26 2.18	0.064 0.064 0.074 0.074 0.074 0.074 0.074	15.6 15.6 13.6 13.6 13.6 13.6 13.6	56 58 56 56 58 56 56 56 58	59 58 58 59 61 60 59 60	0.43 0.40 0.42 0.43 0.46 0.46 0.46	3.48 3.34 3.12 2.47 3.01 3.14 2.71 2.61	12.21 13.89 12.42 11.39 10.66 10.61 10.19 9.50	11 12 12 16 13 14 17 18	0.14 0.01 0.15 0.08 0.14 0.19 0.17 0.05
951114 951114	0130 0430 0730 1031	1.91 1.92 1.69 1.65	0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0	60 58 64 58	63 63 66 64	0.47 0.48 0.52 0.51	2.46 2.13 2.04 2.25	9.37 8.05 7.41 7.55	17 20 24 24	0.15 0.27 0.05 0.16
				······································		· · · · · · · · · · · · · · · · · · ·			(She	et 43	of 47)

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	А
951114 951114 951114 951114	1330 1631 1930 2231	1.40 1.36 1.40 1.38	0.083 0.083 0.093 0.093	12.0 12.0 10.7 10.7	62 64 68 54	68 70 66 63	0.57 0.55 0.54 0.55	2.34 2.00 1.46 1.64	6.61 6.31 6.37 5.90	24 25 29 32	0.21 0.22 -0.08 0.20
951115 951115 951115 951115 951115 951115 951115 951115	0130 0431 0731 1032 1332 1632 1932 2232	1.22 1.25 1.37 1.52 1.46 1.42 1.79	0.093 0.093 0.093 0.162 0.162 0.162 0.162	10.7 10.7 10.7 6.2 6.2 6.2 6.2 6.2	60 60 58 60 62 60 60	62 65 63 61 63 58 52 56	0.53 0.56 0.50 0.50 0.51 0.54 0.50	1.65 1.46 1.32 1.13 1.07 0.95 0.47 0.52	6.53 6.30 6.89 6.50 7.02 5.70 5.45 5.16	27 27 26 29 27 31 35 34	0.10 0.22 0.19 0.09 0.01 -0.24 -0.45 -0.29
951116 951116 951116 951116 951116 951116 951116 951116	0132 0432 0732 1032 1332 1632 1931 2232	1.56 1.62 1.72 1.76 1.79 1.72 1.93 2.05	0.152 0.074 0.074 0.083 0.083 0.083 0.083 0.083	6.6 13.6 13.6 12.0 12.0 12.0 12.0	62 72 78 78 66 70 72 70	63 66 73 75 74 75 75 75	0.50 0.48 0.46 0.48 0.45 0.45 0.45	0.64 0.79 0.62 0.42 0.70 0.91 0.48 0.63	6.20 6.35 6.65 6.00 6.81 7.05 6.95 6.48	29 28 26 29 26 24 25 27	-0.08 -0.19 -0.14 -0.09 0.06 0.15 0.08 0.13
951117 951117 951117 951117 951117 951117 951117	0132 0432 0732 1035 1356 1634 1933 2233	2.07 1.96 2.14 1.89 1.81 1.75 1.63 1.60	0.083 0.083 0.083 0.083 0.083 0.093 0.093	12.0 12.0 12.0 12.0 12.0 10.7 10.7	66 64 60 56 64 64 72 62	72 75 71 72 73 76 79 78	0.43 0.47 0.51 0.53 0.54 0.57 0.58 0.61	1.00 1.31 1.29 1.14 1.36 1.52 1.06 1.37	7.49 6.88 6.09 5.34 5.26 4.95 4.35 4.15	24 26 31 35 31 32 38 37	0.17 0.41 0.67 0.36 0.40 0.50 0.14 0.25
951118 951118 951118 951118 951118 951118 951118	0433 0732 1033 1333 1633 1933 2258	1.36 1.53 1.85 2.17 2.46 2.79 3.12	0.103 0.054 0.054 0.064 0.064 0.064	9.7 18.5 18.5 15.6 15.6 15.6	66 66 70 66 70 68	81 78 75 75 71 72 71	0.65 0.62 0.58 0.52 0.48 0.46 0.45	1.70 1.85 1.83 1.68 2.00 1.13 0.83	4.12 4.71 5.07 6.07 7.00 7.03 7.02	36 30 25 21 19 23 23	0.89 1.10 0.70 0.38 0.32 0.10 0.20
951119 951119 951119 951119 951119 951119 951119 951119	0132 0429 0732 1032 1332 1632 1932 2254	3.00 2.72 2.84 2.84 2.79 2.47 2.29 2.39	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	68 74 66 68 64 66 72 56	71 70 68 69 68 71 72 69	0.48 0.49 0.45 0.46 0.46 0.52	0.81 0.67 0.77 0.82 1.05 1.06 0.82 0.76	6.20 6.14 6.85 6.81 7.03 6.47 5.50 4.84	28 28 25 27 25 28 35 39	0.07 -0.15 0.14 0.01 0.21 0.23 -0.03 0.47
951120 951120 951120 951120 951120 951120 951120	0132 0732 1033 1325 1633 1932 2232	2.19 1.99 2.22 1.98 1.80 1.45 1.40	0.074 0.083 0.083 0.083 0.083 0.083 0.083	13.6 12.0 12.0 12.0 12.0 12.0 12.0	66 60 60 60 50 50	72 69 69 71 70 73 72	0.50 0.53 0.50 0.54 0.55 0.67 0.65	0.92 1.60 0.94 1.15 1.55 1.47 1.43	5.76 5.98 5.54 5.22 5.65 3.91 4.16	31 28 33 34 33 45 44	0.15 0.46 0.18 0.15 0.39 0.45 0.34
951121	0132 0432 0732	1.18 1.03 0.89	0.083 0.093 0.083	12.0 10.7 12.0	56 56 58	79 -84 89	0.72 0.76 0.80	1.45 1.07 0.94	3.37 2.78 2.65	47 57 64	0.36 0.40 0.52
	(Sheet 44 of 47)										

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
951121 951121 951121 951121	1056 1332 1633 1933	0.87 0.95 1.12 1.27	0.083 0.083 0.064 0.064	12.0 12.0 15.6 15.6	78 74 64 64	100 99 89 87	0.80 0.78 0.71 0.67	0.81 0.78 1.44 1.33	2.33 2.26 3.16 3.55	79 78 45 41	0.97 1.05 0.66 0.31
951122 951122 951122 951122 951122 951122 951122	0134 0433 0733 1033 1333 1632 1956 2234	2.00 2.43 2.34 2.41 2.42 2.44 2.13 1.97	0.074 0.083 0.083 0.074 0.074 0.083 0.083 0.083	13.6 12.0 12.0 13.6 13.6 12.0 12.0	80 76 64 58 56 60 60 56	81 79 76 73 71 70 73 75	0.49 0.46 0.48 0.49 0.50 0.48 0.55	1.13 1.11 1.19 0.94 1.03 1.08 1.00 0.83	5.97 6.82 6.35 5.62 5.57 6.04 5.21 4.43	27 23 27 31 32 31 34 40	0.05 0.18 0.30 0.23 0.37 0.40 0.34 0.02
951123 951123 951123 951123 951123 951123 951123	0133 0434 0734 1034 1334 1701 1933 2235	1.92 1.70 1.69 1.61 1.82 1.72 1.78 2.21	0.093 0.083 0.093 0.093 0.093 0.103 0.103	10.7 12.0 10.7 10.7 10.7 9.7 9.7 18.5	84 48 70 58 68 66 70 68	74 69 70 68 66 70 74 71	0.58 0.58 0.56 0.57 0.55 0.56 0.55	0.78 1.17 1.19 1.21 1.01 1.21 1.16 1.20	4.30 4.64 5.07 5.09 4.96 5.18 5.13 6.49	41 38 34 36 36 32 30 23	-0.16 0.02 -0.01 0.23 -0.03 0.03 0.11 0.18
951124 951124 951124 951124 951124 951124 951124	0135 0434 0734 1033 1635 1933 2233	2.57 2.89 2.75 2.81 2.74 2.79 2.53	0.054 0.064 0.064 0.064 0.074 0.074	18.5 15.6 15.6 15.6 13.6 13.6	66 64 64 68 60 70 66	67 67 66 69 67 71	0.45 0.45 0.45 0.45 0.48 0.50 0.55	1.09 0.98 1.23 1.18 1.23 1.09	7.40 7.36 8.16 8.32 6.55 6.05 5.35	19 21 20 19 27 27 30	0.15 0.11 0.09 0.03 0.27 -0.02 0.15
951125 951125 951125 951125 951125 951125 951125	0133 0435 0734 1334 1635 1933 2233	2.58 2.66 2.91 2.98 2.55 2.44 2.57	0.074 0.074 0.074 0.074 0.083 0.074 0.074	13.6 13.6 13.6 13.6 12.0 13.6 13.6	64 70 72 70 58 70 68	69 70 72 71 70 72 71	0.50 0.47 0.46 0.43 0.47 0.50 0.46	1.31 1.25 0.86 1.10 1.13 1.28 0.94	6.47 6.92 6.43 7.55 6.43 6.17 6.48	25 25 24 23 30 27 25	0.21 -0.01 0.05 0.02 0.11 0.06 0.09
951126 951126 951126 951126 951126 951126 951126	0133 0734 1034 1333 1634 1933 2233	2.89 3.20 3.03 3.00 3.09 3.16 3.35	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	66 64 66 62 62 60 60	68 67 65 63 62 59 61	0.44 0.45 0.44 0.48 0.48 0.46 0.43	1.03 0.84 0.90 0.89 0.81 0.62 0.81	7.05 6.36 6.81 5.77 5.87 5.66 7.36	25 26 26 30 30 29 24	0.09 0.08 -0.06 0.01 -0.06 0.00 0.03
951127 951127 951127 951127 951127 951127 951127	0134 0434 0734 1033 1334 1634 2231	3.30 3.14 2.97 2.82 3.06 2.87 2.50	0.083 0.103 0.093 0.103 0.103 0.083 0.083	12.0 9.7 10.7 9.7 9.7 12.0 12.0	62 56 54 56 58 56 56	63 59 60 59 60 58 59	0.41 0.38 0.41 0.44 0.39 0.41 0.43	0.87 1.34 1.06 1.07 1.10 1.38 2.03	7.77 10.06 8.26 8.39 9.25 8.92 9.66	22 18 24 24 21 21 20	0.07 0.13 0.25 0.04 0.06 0.14 0.15
951128 951128 951128 951128 951128	0432 0733 1334 1635 1935	2.29 2.11 2.00 1.78 1.59	0.103 0.093 0.093 0.103 0.123	9.7 10.7 10.7 9.7 8.2	52 52 56 46 48	54 57 59 60 62	0.41 0.45 0.44 0.48 0.53	1.80 1.67 2.53 1.60 1.49	10.18 8.81 10.42 7.83 6.44	17 20 16 32 32	0.11 0.21 0.16 0.54 0.38
(Sheet 45 of 47)											

Table	Table A1 (Continued)										
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	A
951128	22 3 5	1.68	0.123	8.2	46	58	0.50	1.71	7.49	29	0.43
951129 951129 951129 951129 951129 951129	0435 0736 1056 1334 1928 2236	1.26 1.27 1.22 1.19 1.07 1.11	0.123 0.103 0.103 0.103 0.103 0.113	8.2 9.7 9.7 9.7 9.7 8.9	60 58 56 54 54 54	68 68 67 64 65 66	0.59 0.58 0.59 0.60 0.62 0.63	1.76 1.82 2.07 2.19 1.79 1.98	5.90 6.13 6.14 6.04 5.37 5.12	28 29 29 27 31 31	0.24 0.49 0.39 0.35 0.38 0.47
951130 951130 951130 951130 951130 951130 951130 951130	0136 0437 0736 1036 1334 1632 1935 2233	1.05 1.11 1.23 1.52 1.65 1.82 1.90	0.103 0.113 0.162 0.103 0.152 0.142 0.142	9.7 8.9 6.2 9.7 6.6 7.0 7.0	56 50 52 54 56 54 48 58	67 61 62 57 55 54 52 53	0.67 0.66 0.61 0.55 0.54 0.52 0.51	1.99 2.15 1.57 1.55 1.45 0.97 0.97	4.72 5.00 5.22 6.29 6.59 6.29 6.44 6.97	32 32 33 32 31 31 31 30	0.43 0.50 0.32 0.08 -0.02 0.00 0.05 -0.09
951201 951201 951201 951201 951201 951201 951201 951201	0136 0437 0737 1036 1335 1636 1936 2235	1.84 1.85 1.96 2.25 2.45 2.61 2.54 2.58	0.093 0.093 0.064 0.064 0.074 0.074	10.7 10.7 15.6 15.6 15.6 13.6 13.6	56 62 62 62 64 64 64 66	54 58 60 61 62 63 63 63	0.48 0.53 0.50 0.46 0.43 0.45 0.47	1.49 1.20 1.07 1.28 0.78 0.78 0.76	7.81 6.57 7.60 7.96 8.86 8.24 7.08 7.52	28 28 23 17 17 20 20 24	-0.05 -0.22 -0.27 -0.27 -0.24 -0.18 -0.05
951202 951202 951202 951202 951202 951202 951202 951202	0136 0435 0734 1036 1335 1639 1937 2237	2.21 2.08 2.03 1.96 2.24 2.23 2.18 2.46	0.083 0.083 0.083 0.083 0.083 0.083 0.093	12.0 12.0 12.0 12.0 12.0 12.0 10.7	62 64 66 68 68 68 58 64	62 64 65 67 63 58 57	0.46 0.45 0.44 0.46 0.48 0.47 0.46 0.44	1.14 0.99 1.19 1.14 0.70 0.43 0.83 0.46	7.90 8.14 8.47 7.83 6.68 5.50 6.60 6.77	20 20 20 24 29 33 27 27	-0.10 -0.09 -0.05 -0.05 -0.25 -0.48 -0.15
951203 951203 951203 951203 951203 951203	0137 0438 0737 1037 1343 1528	2.41 2.00 1.77 1.65 1.54 1.49	0.093 0.093 0.093 0.093 0.103 0.103	10.7 10.7 10.7 10.7 9.7 9.7	64 64 52 60 64 66	58 60 62 67 65 64	0.47 0.48 0.54 0.52 0.53 0.52	0.43 0.91 1.05 1.15 0.90	5.90 6.96 5.32 5.84 5.94 5.90	32 29 38 31 31 31	-0.30 -0.18 0.16 0.29 0.02 -0.08
951207 951207 951207 951207 951207	1032 1335 1635 1937 2235	1.32 1.45 1.24 1.08 0.99	0.162 0.162 0.162 0.162 0.162	6.2 6.2 6.2 6.2	46 46 76 60 74	58 57 59 59 61	0.58 0.55 0.59 0.60 0.63	1.31 0.87 0.83 1.07 0.98	5.48 5.30 4.58 4.49 4.23	35 37 43 41 45	0.28 0.26 -0.05 0.01 -0.25
951208 951208 951208 951208 951208 951208 951208 951208	0135 0435 0735 1036 1438 1635 1935 2235	0.95 0.98 1.02 1.04 1.13 1.20 1.26	0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162	6.2 6.2 6.2 6.2 6.2 6.2 6.2	58 58 24 60 62 32 24 60	64 60 55 56 60 59 56 60	0.65 0.61 0.61 0.59 0.58 0.57 0.59	0.77 0.96 0.91 1.12 0.82 0.71 0.53 0.54	3.85 4.75 4.16 4.99 4.50 4.20 3.77 4.90	47 39 48 39 42 45 49 38	0.14 0.02 0.03 -0.07 -0.09 -0.06 -0.25 0.02
951209 951209	0134 0435	1.25 1.23	0.162 0.083	6.2 12.0	60 36	61 57	0.49 0.54	0.61 0.88	5.91 5.17	29 40	-0.13 0.12
									(She	et 46	of 47)

Table A1 (Concluded)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	A
951209 951209 951209 951209 951209 951209	0737 1036 1331 1637 1936 2237	1.16 1.12 1.10 1.06 1.04 1.00	0.083 0.083 0.083 0.083 0.083 0.093	12.0 12.0 12.0 12.0 12.0 10.7	70 60 66 76 74 70	60 66 68 71 73 72	0.55 0.53 0.55 0.53 0.49 0.49	0.75 0.91 0.60 0.42 0.69 0.89	4.95 5.40 5.02 4.92 6.11 6.09	40 33 35 34 26 26	-0.24 0.27 0.07 -0.15 -0.09 0.07
951210 951210 951210 951210 951210 951210 951210 951210	0137 0437 0736 1036 1336 1636 1935 2237	1.02 1.03 1.00 0.98 0.96 0.99 1.03	0.093 0.093 0.093 0.103 0.093 0.093 0.103 0.074	10.7 10.7 10.7 9.7 10.7 10.7 9.7 13.6	74 82 80 66 68 84 74 68	75 79 76 73 77 77 76 74	0.48 0.53 0.51 0.55 0.52 0.54 0.50	0.78 1.04 0.81 0.89 0.82 0.89 1.01 1.63	5.99 6.45 5.69 6.14 5.79 5.47 6.04 7.60	29 28 31 30 31 34 27 22	0.01 -0.09 -0.08 0.16 0.13 -0.03 0.03 0.20
951211 951211 951211 951211 951211 951211 951211 951211	0136 0437 0734 1034 1333 1634 1934 2234	1.45 2.01 2.61 3.24 3.05 2.55 2.32 2.33	0.083 0.083 0.083 0.074 0.074 0.083 0.083	12.0 12.0 12.0 13.6 13.6 12.0 12.0 13.6	66 68 74 76 80 82 84 78	72 72 75 76 79 81 84 82	0.40 0.36 0.34 0.35 0.37 0.38 0.37	1.70 0.82 0.27 0.00 -0.08 -0.02 0.40 0.62	10.02 10.05 10.29 9.63 8.19 9.25 10.84 8.56	17 19 17 17 21 19 16 20	0.26 0.21 0.06 0.02 -0.05 -0.01 0.02 0.23
951212 951212 951212 951212 951212 951212 951212	0150 0434 0734 1035 1335 1635 1935	3.21 3.40 3.39 3.39 3.66 5.17 5.75	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	72 72 80 80 76 76 76 74	79 80 83 86 86 81 82	0.37 0.38 0.37 0.39 0.41 0.40 0.41	0.22 0.19 0.25 0.38 0.41 0.49 0.54	7.39 6.92 7.82 7.39 6.62 6.92 7.43	23 25 20 21 25 23 22	0.38 0.19 0.21 0.34 0.41 0.30 0.42
	(Sheet 47 of 47)										

Appendix B Time Series Graphs of Bulk Parameters

Figure B1. Bulk data for January 1995 (Continued)

Figure B1. (Concluded)

Figure B2. Bulk data for February 1995 (Continued)

Figure B2. (Concluded)

Figure B3. Bulk data for March 1995 (Continued)

Figure B3. (Concluded)

Figure B4. Bulk data for April 1995 (Continued)

Figure B4. (Concluded)

Figure B5. Bulk data for May 1995 (Continued)

Figure B5. (Concluded)

Figure B6. Bulk data for June 1995 (Continued)

Figure B6. (Concluded)

Figure B7. Bulk data for July 1995 (Continued)

Figure B7. (Concluded)

Figure B8. Bulk data for August 1995 (Continued)

Figure B8. (Concluded)

Figure B9. Bulk data for September 1995 (Continued)

Figure B9. (Concluded)

Figure B10. Bulk data for October 1995 (Continued)

Figure B10. (Concluded)

Figure B11. Bulk data for November 1995 (Continued)

Figure B11. (Concluded)

Figure B12. Bulk data for December 1995 (Continued)

Figure B12. (Concluded)

Appendix C Listing of FORTRAN Computer Program

```
program readascii
\ensuremath{\text{c}} Sample FORTRAN program containing statements necessary to read
   ASCII files of Harvest Platform frequency-direction spectra.
  This example reads a file called HPyymmddhhmm.ASC, where the
  string yymmddhhmm is a date/time group entered by the user.
   In other applications, the I/O statements may need modification
   to suit a user's system.
c Variable names, units and meanings are:
С
       f(nf)..[Hz] frequency at index nf
  angle(na)..[degrees CCW from true north] direction at index na from
             which wave energy is arriving
      sf(nf)..[m^2/Hz] frequency spectral density at f(nf)
c ddf(nf,na)..[deg^(-1)] directional distribution function at f(nf)
             and angle(na), which is the frequency-direction
             spectral density at f(nf) and angle(na) normalized by
             sf(nf)
c fds(nf,na)..[m^2/(Hz*deg)] frequency-direction spectrum at f(nf)
             and angle(na), computed from ddf(nf,na) and sf(nf)
   gpat(nf)..gauge pattern used at f(nf)
    iter(nf)..# of IMLE iterations for convergence at f(nf)
   datetime..[character*10] Date and Greenwich Mean Time of
             beginning of data collection in the order year,
             month, day, hour, minute, and in the form
             yymmddhhmm (2-digit year, no blanks in any field)
        Hmo..[m] Energy-based characteristic wave height equal
             to 4*sigma, where sigma^2 is the variance of sea
             surface displacement
         fp..[Hz] frequency at peak of frequency spectrum
        thp..[deg] direction at peak of directional distribution
              at f(nf) = fp
С
     ifimle..algorithm flag: [1]=IMLE estimate, [0]=MLE estimate
С
      istot..[sec] duration of data collection
       sfrq..[Hz] data sampling frequency
```

Figure C1. Listing of FORTRAN Computer Program (Sheet 1 of 3)

```
ifwindo..windowing flag: [0]=no windowing of data segments,
              [1]=segments windowed (Kaiser-Bessel window)
С
     ifdtrnd..detrending flag: [0]=no detrending, [1]=linear trend
С
              removed from data segments
С
        nfft..# of points in each data ensemble
С
       nensb..# of half-lapped segments of cross-spectral computations
c
       nband..# of raw frequency bands averaged in frequency smoothing
С
       idgfr..degrees of freedom in cross-spectral computations
С
С
              (based on contiguous segments only)
C
        nfrq..number of output frequency bands, equals range of index
С
¢
       delfs..[Hz] output frequency bandwidth
С
        nang..number of output angle bins, equals range of index na
      delang..[deg] output angle bin width
С
С
        dmin..[m] minimum ensemble segment water depth at reference
С
             gauge 'rname' during collection
С
        dbar..[m] mean water depth at gauge 'rname' during collection
С
        dmax..[m] maximum ensemble segment water depth at reference
С
              gauge 'rname' during collection
С
       rname..[character*5] reference gauge id for depth computations
С
С
С
      character*5
                          rname
      character*6
                       gpat(13)
      character*10
                       indattim,
                                     datetime
      character*80
                         infile
                                       sf(13),
      dimension
                         f(13),
                                                   iter(13)
                                  ddf(13,181), fds(13,181)
                     angle(181),
      dimension
С
c get file-naming date/time group from user
      write(*,'(2x,''Enter date/time group (yymmddhhmm)...'')')
      read(*,'(a10)') indattim
                                                   !date/time string
C
   define input data file
С
С
      infile='HP'//indattim(1:10)//'.ASC'
С
   open, read, and close data file
С
С
      open(10, file=infile, status='old', form='formatted')
С
     read(10,
                   f10.2, f10.5, f10.1,
                                               i10,
                                                       i10,
     & '( a10,
                  · i10,/, i10, i10, i10,
           f10.5,
                                      i10,
                                              i10,
                                                       i10,
                                      i10,/, f10.1,
            i10,
                                                     f10.2,
           f10.2,
                    f10.2,
                            5x,a5)')
                                      thp, ifimle,
    &
       datetime,
                     Hmo,
                               fp,
           sfrq, ifwindo, ifdtrnd,
                                            nensb, nband,
    æ
                                     nfft,
                                            delang,
                                                      dmin,
           idgfr,
                    nfrq,
                            delfs,
                                     nang,
                    dmax,
                            rname
           dbar,
С
     read(10,'(10f8.1)') (angle(na),na=1,nang)
С
     do 10 nf=1,nfrq
       read(10,
                   f10.5, f10.6, 4x,a6, i10)
f(nf), sf(nf), gpat(nf), iter(nf)
        '( i10,
                                                 i10)')
             if,
       read(10,'(8f10.7)') (ddf(nf,na),na=1,nang)
10
     continue
     close(10)
```

Figure C1. (Sheet 2 of 3)

```
c compute frequency-direction spectrum fds(nf,na) from ddf(nf,na) c and sf(nf)
c do 20 nf=1,nfrq do 25 na=1,nang fds(nf,na)=sf(nf)*ddf(nf,na)
25 continue
20 continue
c at this point, all relevant variables are defined and arrays c are loaded; subsequent computations or operations can be done c at the user's discretion...
c end
```

Figure C1. (Sheet 3 of 3)

Appendix D Listing of Sample Data File

```
9506251934
                1.28
                       0.10303
                                     48.0
                                                         8192
                                                                1.00000
         Λ
                1024
                            15
                                      10
                                                                0.00977
                                                           13
                                                                               181
       2.0
              202.56
                        202.77
                                   202.93
                                              20201
 -180.0 -178.0 -176.0 -174.0
                                  -172.0
                                           -170.0
                                                  -168.0
                                                          -166.0
                                                                   -164.0
                                                                           -162.0
 -160.0
         -158.0
                 -156.0
                         -154.0
                                  -152.0
                                           -150.0
                                                   -148.0
                                                           -146.0
                                                                   -144.0
                                                                           -142.0
 -140.0
         -138.0
                 -136.0
                          -134.0
                                  -132.0
                                           -130.0
                                                   -128.0
                                                           -126.0
                                                                   -124.0
 -120.0
          -118.0
                 -116.0
                          -114.0
                                   -112.0
                                           -110.0
                                                   -108.0
                                                           -106.0
                                                                   -104.0
                                                                            -102.0
                   -96.0
 -100.0
          -98.0
                           -94.0
                                   ~92.0
                                            -90.0
                                                    -88.0
                                                            -86.0
                                                                    -84.0
                                                                             -82.0
  -80.0
          -78.0
                   -76.0
                           -74.0
                                   -72.0
                                            -70.0
                                                    -68.0
                                                            -66.0
                                                                    -64.0
                                                                             -62.0
  -60.0
           -58.0
                   -56.0
                           -54.0
                                   -52.0
                                            -50.0
                                                    -48.0
                                                            -46.0
                                                                    -44.0
                                                                             -42.0
  -40.0
           -38.0
                   -36.0
                           ~34.0
                                   -32.0
                                            -30.0
                                                    -28.0
                                                            -26.0
                                                                    -24.0
                                                                             -22.0
  -20.0
           -18.0
                   -16.0
                           -14.0
                                   -12.0
                                            -10.0
                                                     -8.0
                                                             -6.0
                                                                     -4.0
                                                                             -2.0
    0.0
            2.0
                    4.0
                             6.0
                                     8.0
                                            10.0
                                                     12.0
                                                             14.0
                                                                     16.0
   20.0
           22.0
                    24.0
                            26.0
                                    28.0
                                            30.0
                                                     32.0
                                                             34.0
                                                                     36.0
                                                                             38.0
                    44.0
   40.0
           42.0
                            46.0
                                    48.0
                                            50.0
                                                     52.0
                                                             54.0
                                                                     56.0
                                                                             58.0
   60.0
           62.0
                    64.0
                            66.0
                                    68.0
                                            70.0
                                                     72.0
                                                             74.0
                                                                     76.0
                                                                             78.0
   80.0
           82.0
                    84.0
                            86.0
                                    88.0
                                            90.0
                                                     92.0
                                                             94.0
                                                                     96.0
                                                                             98.0
  100.0
           102.0
                   104.0
                           106.0
                                   108.0
                                            110.0
                                                    112.0
                                                            114.0
                                                                            118.0
                                                                    116.0
  120.0
           122.0
                   124.0
                           126.0
                                   128.0
                                           130.0
                                                    132.0
                                                            134.0
                                                                    136.0
                                                                            138.0
  140.0
          142.0
                  144.0
                           146.0
                                   148.0
                                            150.0
                                                    152.0
                                                            154.0
                                                                    156.0
                                                                             158.0
  160.0
           162.0
                  164.0
                           166.0
                                   168.0
                                           170.0
                                                    172.0
                                                            174.0
                                                                    176.0
                                                                            178.0
  180.0
            0.04443 0.006535
                                  12345
                                                30
0.0034494 0.0032592 0.0030229 0.0028054 0.0026057 0.0024223 0.0022539 0.0020996
0.0019581 0.0018285 0.0017098 0.0016009 0.0015014 0.0014102 0.0013267 0.0012502
0.0011803 0.0011162 0.0010575 0.0010039 0.0009548 0.0009099 0.0008689 0.0008313
0.0007971 0.0007658 0.0007371 0.0007110 0.0006872 0.0006654 0.0006456 0.0006275
0.0006111 0.0005962 0.0005826 0.0005703 0.0005591 0.0005490 0.0005399 0.0005317
0.0005244 0.0005178 0.0005120 0.0005068 0.0005022 0.0004983 0.0004950 0.0004921
0.0004898 0.0004879 0.0004865 0.0004856 0.0004851 0.0004850 0.0004853 0.0004860
0.0004871 0.0004886 0.0004905 0.0004928 0.0004954 0.0004984 0.0005018 0.0005055
0.0005096 0.0005140 0.0005188 0.0005240 0.0005295 0.0005354 0.0005416 0.0005482
0.0005551 0.0005625 0.0005702 0.0005783 0.0005869 0.0005958 0.0006052 0.0006151
0.0006255 0.0006364 0.0006479 0.0006599 0.0006726 0.0006860 0.0007000 0.0007148
0.0007304 0.0007469 0.0007643 0.0007826 0.0008019 0.0008222 0.0008437 0.0008663
0.0008900 0.0009150 0.0009413 0.0009689 0.0009980 0.0010284 0.0010605 0.0010940
0.0011292 0.0011661 0.0012048 0.0012455 0.0012879 0.0013326 0.0013795 0.0014287
0.0014805 0.0015349 0.0015924 0.0016530 0.0017168 0.0017845 0.0018562 0.0019322
0.0020128 0.0020985 0.0021897 0.0022867 0.0023900 0.0025002 0.0026175 0.0027428
0.0028760 0.0030185 0.0031700 0.0033317 0.0035039 0.0036866 0.0038811 0.0040880
0.0043074 0.0045397 0.0047861 0.0050456 0.0053196 0.0056093 0.0059118 0.0062290
0.0065625 0.0069071 0.0072625 0.0076293 0.0080010 0.0083770 0.0087505 0.0091171
0.0094701 0.0097992 0.0100995 0.0103592 0.0105720 0.0107287 0.0108214 0.0108454
0.0107968 0.0106776 0.0104858 0.0102302 0.0099140 0.0095481 0.0091417 0.0087042
0.0082467 0.0077790 0.0073088 0.0068442 0.0063904 0.0059525 0.0055352 0.0051398
0.0047679 0.0044193 0.0040954 0.0037947 0.0035832
```

Figure D1. Listing of sample data file (Sheet 1 of 6)

```
2 0.05420 0.213055
                                   12345
0.0047393 0.0042891 0.0037429 0.0032575 0.0028293 0.0024531 0.0021248 0.0018397
0.0015933 0.0013811 0.0011989 0.0010428 0.0009095 0.0007956 0.0006986 0.0006158
0.0005453 0.0004851 0.0004338 0.0003900 0.0003526 0.0003206 0.0002933 0.0002700
0.0002501 0.0002332 0.0002188 0.0002067 0.0001965 0.0001880 0.0001811 0.0001756
0.0001714 0.0001683 0.0001664 0.0001655 0.0001656 0.0001667 0.0001688 0.0001718
0.0001759 0.0001810 0.0001871 0.0001943 0.0002027 0.0002122 0.0002230 0.0002350
0.0002483 0.0002629 0.0002787 0.0002957 0.0003138 0.0003328 0.0003525 0.0003727
0.0003929 0.0004127 0.0004318 0.0004495 0.0004653 0.0004787 0.0004893 0.0004966
0.0005005 0.0005008 0.0004976 0.0004909 0.0004812 0.0004689 0.0004543 0.0004382
0.0004209 0.0004031 0.0003851 0.0003674 0.0003503 0.0003341 0.0003188 0.0003048
0.0002920\ 0.0002804\ 0.0002702\ 0.0002612\ 0.0002534\ 0.0002469\ 0.0002414\ 0.0002371
0.0002338 0.0002314 0.0002300 0.0002295 0.0002298 0.0002309 0.0002327 0.0002353
0.0002385 0.0002423 0.0002467 0.0002517 0.0002571 0.0002630 0.0002694 0.0002761
0.0002832 0.0002905 0.0002981 0.0003059 0.0003138 0.0003219 0.0003301 0.0003383
0.0003466 0.0003549 0.0003633 0.0003718 0.0003804 0.0003891 0.0003980 0.0004072
0.0004167 0.0004267 0.0004373 0.0004486 0.0004608 0.0004741 0.0004886 0.0005047
0.0005225 0.0005425 0.0005649 0.0005902 0.0006188 0.0006514 0.0006887 0.0007314
0.0007806 0.0008375 0.0009035 0.0009804 0.0010705 0.0011766 0.0013018 0.0014507
0.0016287 0.0018424 0.0020999 0.0024124 0.0027925 0.0032566 0.0038239 0.0045176
0.0053645 \ 0.0063922 \ 0.0076291 \ 0.0090946 \ 0.0107965 \ 0.0127167 \ 0.0148032 \ 0.0169548
0.0190278 0.0208539 0.0222454 0.0230747 0.0232779 0.0228626 0.0219300 0.0206181
0.0190739 0.0174371 0.0158079 0.0142461 0.0127823 0.0114405 0.0102156 0.0091008
0.0080887 0.0071690 0.0063363 0.0055820 0.0050624
        3 0.06396 0.533059
                                  12345
                                                 30
0.0221562 0.0236938 0.0251898 0.0256318 0.0247537 0.0226129 0.0195773 0.0161677
0.0128548 0.0099428 0.0075560 0.0056918 0.0042807 0.0032322 0.0024602 0.0018933
0.0014759 0.0011668 0.0009361 0.0007624 0.0006301 0.0005286 0.0004497 0.0003880 0.0003392 0.0003003 0.0002691 0.0002439 0.0002236 0.0002070 0.0001935 0.0001826
0.0001738 0.0001668 0.0001613 0.0001571 0.0001540 0.0001519 0.0001507 0.0001503
0.0001506 0.0001516 0.0001532 0.0001554 0.0001581 0.0001614 0.0001651 0.0001692
0.0001737 0.0001785 0.0001836 0.0001890 0.0001945 0.0002000 0.0002056 0.0002111
0.0002165 0.0002215 0.0002262 0.0002304 0.0002341 0.0002372 0.0002395 0.0002411
0.0002420 0.0002421 0.0002414 0.0002399 0.0002378 0.0002351 0.0002318 0.0002282
0.0002242 0.0002199 0.0002156 0.0002112 0.0002069 0.0002027 0.0001987 0.0001950
0.0001916 0.0001885 0.0001857 0.0001832 0.0001811 0.0001794 0.0001779 0.0001767
0.0001758 0.0001751 0.0001746 0.0001743 0.0001740 0.0001739 0.0001737 0.0001736
0.0001733 0.0001731 0.0001727 0.0001721 0.0001714 0.0001706 0.0001695 0.0001683
0.0001669 0.0001653 0.0001636 0.0001617 0.0001597 0.0001576 0.0001554 0.0001533
0.0001511 0.0001489 0.0001469 0.0001449 0.0001430 0.0001413 0.0001399 0.0001386
0.0001376 0.0001369 0.0001365 0.0001365 0.0001369 0.0001377 0.0001390 0.0001408 0.0001432 0.0001462 0.0001500 0.0001545 0.0001599 0.0001664 0.0001740 0.0001829
0.0001934 0.0002058 0.0002202 0.0002371 0.0002570 0.0002805 0.0003083 0.0003413
0.0003807 0.0004278 0.0004845 0.0005531 0.0006364 0.0007379 0.0008620 0.0010143
0.0012015 0.0014314 0.0017133 0.0020575 0.0024746 0.0029742 0.0035633 0.0042436 0.0050084 0.0058405 0.0067097 0.0075759 0.0083925 0.0091150 0.0097102 0.0101641
0.0104846 0.0107015 0.0108607 0.0110184 0.0112354 0.0115753 0.0121016 0.0128751
0.0139566 0.0153919 0.0171989 0.0193231 0.0210284
        4 0.07373 1.260555
                                  12345
0.0303035 0.0292184 0.0267653 0.0234318 0.0196995 0.0160181 0.0126991 0.0098939
0.0076287 0.0058557 0.0044952 0.0034633 0.0026851 0.0020987 0.0016560 0.0013201
0.0010639 0.0008669 0.0007144 0.0005954 0.0005017 0.0004275 0.0003681 0.0003203 0.0002815 0.0002499 0.0002239 0.0002025 0.0001847 0.0001700 0.0001577 0.0001474
0.0001388 0.0001317 0.0001259 0.0001211 0.0001172 0.0001142 0.0001119 0.0001103
0.0001093 0.0001089 0.0001090 0.0001097 0.0001109 0.0001126 0.0001148 0.0001175
0.0001207 0.0001244 0.0001287 0.0001334 0.0001386 0.0001443 0.0001505 0.0001571
0.0001642 0.0001715 0.0001791 0.0001868 0.0001945 0.0002021 0.0002094 0.0002162
0.0002224 0.0002278 0.0002322 0.0002355 0.0002376 0.0002383 0.0002377 0.0002358
0.0002327 0.0002285 0.0002232 0.0002172 0.0002105 0.0002034 0.0001961 0.0001887
0.0001813 0.0001741 0.0001673 0.0001608 0.0001547 0.0001491 0.0001440 0.0001395
0.0001354 0.0001319 0.0001288 0.0001263 0.0001241 0.0001225 0.0001212 0.0001203
0.0001199 0.0001197 0.0001199 0.0001204 0.0001212 0.0001223 0.0001237 0.0001253
0.0001271 0.0001291 0.0001313 0.0001336 0.0001362 0.0001388 0.0001415 0.0001444
0.0001473 0.0001502 0.0001532 0.0001562 0.0001592 0.0001622 0.0001652 0.0001682
0.0001711 0.0001740 0.0001769 0.0001799 0.0001828 0.0001858 0.0001888 0.0001920
0.0001953 0.0001989 0.0002026 0.0002068 0.0002113 0.0002162 0.0002218 0.0002280
0.0002350 0.0002429 0.0002519 0.0002621 0.0002739 0.0002874 0.0003029 0.0003208
```

Figure D1. (Sheet 2 of 6)

```
0.0003416 0.0003658 0.0003939 0.0004269 0.0004657 0.0005115 0.0005656 0.0006300
 0.0007068 0.0007987 0.0009091 0.0010421 0.0012027 0.0013968 0.0016316 0.0019155
 0.0022583 0.0026708 0.0031650 0.0037536 0.0044496 0.0052655 0.0062129 0.0073022
 0.0085425 0.0099424 0.0115106 0.0132570 0.0151924 0.0173252 0.0196510 0.0221345
 0.0246819 0.0271075 0.0291195 0.0303470 0.0305797
         5 0.08350 0.687734
                                  12345
                                                  13
 0.0153055 0.0139239 0.0121551 0.0105077 0.0090056 0.0076608 0.0064757 0.0054456
 0.0045610 0.0038093 0.0031762 0.0026468 0.0022068 0.0018427 0.0015423 0.0012951
 0.0010917 0.0009244 0.0007868 0.0006732 0.0005794 0.0005017 0.0004372 0.0003833
 0.0003382 0.0003004 0.0002684 0.0002414 0.0002184 0.0001988 0.0001820 0.0001676
 0.0001552 0.0001444 0.0001351 0.0001271 0.0001200 0.0001139 0.0001086 0.0001040
 0.0001000 0.0000965 0.0000935 0.0000910 0.0000888 0.0000870 0.0000855 0.0000843
 0.0000834 0.0000827 0.0000823 0.0000821 0.0000821 0.0000823 0.0000827 0.0000833
 0.0000841 0.0000850 0.0000861 0.0000874 0.0000888 0.0000904 0.0000921 0.0000939
 0.0000959 0.0000980 0.0001002 0.0001025 0.0001050 0.0001075 0.0001102 0.0001130
 0.0001159 0.0001190 0.0001222 0.0001255 0.0001291 0.0001329 0.0001369 0.0001413
 0.0001460 0.0001511 0.0001568 0.0001630 0.0001700 0.0001779 0.0001869 0.0001970
 0.0002088 0.0002223 0.0002381 0.0002565 0.0002782 0.0003040 0.0003347 0.0003715
0.0004159 0.0004698 0.0005355 0.0006159 0.0007148 0.0008364 0.0009861 0.0011696
0.0013928 0.0016607 0.0019758 0.0023351 0.0027277 0.0031315 0.0035129 0.0038300
0.0040409 0.0041149 0.0040424 0.0038371 0.0035320 0.0031681 0.0027847 0.0024124
0.0020708 0.0017696 0.0015115 0.0012945 0.0011144 0.0009662 0.0008446 0.0007452
0.0006640 0.0005977 0.0005435 0.0004994 0.0004637 0.0004349 0.0004121 0.0003944
0.0003812\ 0.0003720\ 0.0003666\ 0.0003648\ 0.0003664\ 0.0003716\ 0.0003806\ 0.0003935
0.0004107 0.0004330 0.0004609 0.0004955 0.0005380 0.0005901 0.0006536 0.0007312
0.0008261 0.0009425 0.0010857 0.0012624 0.0014809 0.0017521 0.0020893 0.0025091
0.0030317 0.0036811 0.0044853 0.0054745 0.0066788 0.0081240 0.0098233 0.0117673
0.0139118 0.0161661 0.0183910 0.0204080 0.0220273 0.0230862 0.0234898 0.0232315
0.0223843 0.0210747 0.0194487 0.0176439 0.0162421
            0.09326 1.178551 12345
                                                 30
0.0041618 0.0039384 0.0035675 0.0031488 0.0027231 0.0023204 0.0019581 0.0016435
0.0013770 0.0011547 0.0009710 0.0008200 0.0006959 0.0005940 0.0005099 0.0004403
0.0003824 0.0003340 0.0002933 0.0002589 0.0002297 0.0002047 0.0001833 0.0001648
0.0001488 0.0001348 0.0001226 0.0001119 0.0001025 0.0000941 0.0000867 0.0000802
0.0000743 0.0000691 0.0000644 0.0000602 0.0000564 0.0000530 0.0000499 0.0000471
0.0000446 0.0000423 0.0000402 0.0000383 0.0000366 0.0000351 0.0000337 0.0000324
0.0000313 0.0000303 0.0000294 0.0000286 0.0000279 0.0000273 0.0000268 0.0000264 0.0000261 0.0000259 0.0000257 0.0000257 0.0000257 0.0000259 0.0000261 0.0000265
0.0000269 0.0000275 0.0000282 0.0000291 0.0000301 0.0000313 0.0000327 0.0000343
0.0000362 0.0000383 0.0000408 0.0000436 0.0000469 0.0000506 0.0000550 0.0000600
0.0000658 0.0000725 0.0000804 0.0000896 0.0001003 0.0001131 0.0001281 0.0001460 0.0001674 0.0001932 0.0002242 0.0002618 0.0003077 0.0003640 0.0004333 0.0005193
0.0006264 0.0007607 0.0009298 0.0011439 0.0014166 0.0017653 0.0022134 0.0027914
0.0035390 0.0045072 0.0057599 0.0073734 0.0094310 0.0120080 0.0151406 0.0187728
0.0226889 0.0264646 0.0294982 0.0311729 0.0311124 0.0293633 0.0263675 0.0227435
0.0190469 0.0156446 0.0127101 0.0102797 0.0083145 0.0067461 0.0055010 0.0045134
0.0037283 0.0031017 0.0025991 0.0021938 0.0018651 0.0015972 0.0013777 0.0011971
0.0010478 0.0009241 0.0008211 0.0007353 0.0006637 0.0006039 0.0005541 0.0005126
0.0004783 0.0004502 0.0004275 0.0004095 0.0003958 0.0003859 0.0003796 0.0003768
0.0003773 0.0003811 0.0003884 0.0003994 0.0004143 0.0004336 0.0004578 0.0004878
0.0005244 0.0005689 0.0006229 0.0006884 0.0007677 0.0008639 0.0009808 0.0011226
0.0012943 0.0015014 0.0017489 0.0020405 0.0023768 0.0027523 0.0031527 0.0035524
0.0039146 0.0041953 0.0043534 0.0043616 0.0042706
           0.10303 2.140140 12345
0.0003891 0.0003904 0.0003879 0.0003802 0.0003678 0.0003514 0.0003319 0.0003102
0.0002874 0.0002642 0.0002415 0.0002196 0.0001991 0.0001802 0.0001630 0.0001474
0.0001335 0.0001212 0.0001104 0.0001008 0.0000924 0.0000851 0.0000787 0.0000731
0.0000682 0.0000639 0.0000601 0.0000568 0.0000539 0.0000513 0.0000490 0.0000470
0.0000451 0.0000435 0.0000420 0.0000406 0.0000393 0.0000382 0.0000371 0.0000361
0.0000352 0.0000343 0.0000335 0.0000327 0.0000320 0.0000313 0.0000306 0.0000300
0.0000294 0.0000289 0.0000284 0.0000280 0.0000276 0.0000273 0.0000270 0.0000268
0.0000266 0.0000265 0.0000265 0.0000266 0.0000268 0.0000270 0.0000274 0.0000278 0.0000285 0.0000292 0.0000301 0.0000312 0.0000325 0.0000340 0.0000358 0.0000378
0.0000402 0.0000430 0.0000462 0.0000499 0.0000542 0.0000591 0.0000648 0.0000715
0.0000792 0.0000882 0.0000987 0.0001109 0.0001253 0.0001423 0.0001623 0.0001861
0.0002143 0.0002481 0.0002887 0.0003376 0.0003969 0.0004691 0.0005577 0.0006671
0.0008029 0.0009728 0.0011871 0.0014596 0.0018091 0.0022613 0.0028516 0.0036285
```

Figure D1. (Sheet 3 of 6)

```
0.0046584 0.0060299 0.0078581 0.0102824 0.0134501 0.0174718 0.0223309 0.0277517
0.0330796 0.0373151 0.0394290 0.0388680 0.0358755 0.0313318 0.0262645 0.0214444
0.0172661 0.0138337 0.0110931 0.0089313 0.0072305 0.0058881 0.0048221 0.0039697
0.0032834 0.0027273 0.0022742 0.0019033 0.0015985 0.0013473 0.0011398 0.0009680
0.0008256 0.0007073 0.0006090 0.0005271 0.0004589 0.0004019 0.0003542 0.0003143
0.0002809 0.0002529 0.0002293 0.0002095 0.0001929 0.0001790 0.0001674 0.0001578
0.0001499 0.0001435 0.0001385 0.0001347 0.0001321 0.0001305 0.0001300 0.0001306
0.0001321 0.0001348 0.0001385 0.0001434 0.0001496 0.0001571 0.0001661 0.0001766
0.0001888 0.0002026 0.0002182 0.0002353 0.0002539 0.0002737 0.0002942 0.0003147
0.0003345 0.0003526 0.0003682 0.0003802 0.0003865
        8 0.11279 1.462949
                                 12345
0.0005077 0.0004931 0.0004688 0.0004399 0.0004084 0.0003758 0.0003436 0.0003127
0.0002838 0.0002574 0.0002335 0.0002124 0.0001938 0.0001775 0.0001634 0.0001513
0.0001409 0.0001321 0.0001245 0.0001181 0.0001127 0.0001082 0.0001044 0.0001011
0.0000984 0.0000961 0.0000940 0.0000922 0.0000906 0.0000890 0.0000875 0.0000860
0.0000844 0.0000828 0.0000811 0.0000794 0.0000775 0.0000755 0.0000734 0.0000713
0.0000690 0.0000667 0.0000644 0.0000621 0.0000597 0.0000573 0.0000550 0.0000526
0.0000504 0.0000482 0.0000460 0.0000440 0.0000420 0.0000401 0.0000384 0.0000367
0.0000352 0.0000338 0.0000326 0.0000315 0.0000305 0.0000297 0.0000291 0.0000286
0.0000283 0.0000281 0.0000282 0.0000284 0.0000289 0.0000296 0.0000306 0.0000318
0.0000334 0.0000354 0.0000378 0.0000407 0.0000442 0.0000484 0.0000535 0.0000595
0.0000669 0.0000757 0.0000863 0.0000993 0.0001150 0.0001342 0.0001578 0.0001867
0.0002225 0.0002669 0.0003220 0.0003908 0.0004767 0.0005843 0.0007193 0.0008886
0.0011011 0.0013677 0.0017016 0.0021193 0.0026413 0.0032927 0.0041054 0.0051194
0.0063859 0.0079689 0.0099466 0.0124067 0.0154316 0.0190634 0.0232400 0.0277067
0.0319426 0.0351905 0.0366740 0.0359556 0.0331925 0.0290633 0.0244216 0.0199561
0.0160529 0.0128355 0.0102706 0.0082588 0.0066884 0.0054595 0.0044913 0.0037216
0.0031038 0.0026029 0.0021932 0.0018553 0.0015747 0.0013406 0.0011443 0.0009793
0.0008404 0.0007233 0.0006245 0.0005413 0.0004711 0.0004120 0.0003623 0.0003205
0.0002854 0.0002559 0.0002313 0.0002107 0.0001936 0.0001795 0.0001680 0.0001586
0.0001512 0.0001456 0.0001416 0.0001391 0.0001381 0.0001385 0.0001403 0.0001436
0.0001484 0.0001550 0.0001635 0.0001740 0.0001868 0.0002021 0.0002201 0.0002411
0.0002651 0.0002921 0.0003218 0.0003537 0.0003869 0.0004200 0.0004514 0.0004792
0.0005016 0.0005168 0.0005238 0.0005218 0.0005150
          0.12256 0.758719
                                 12345
                                               12
0.0005313 0.0005210 0.0005052 0.0004876 0.0004690 0.0004498 0.0004308 0.0004121
0.0003941 0.0003769 0.0003607 0.0003454 0.0003311 0.0003177 0.0003052 0.0002934
0.0002823 0.0002718 0.0002618 0.0002523 0.0002431 0.0002344 0.0002259 0.0002178
0.0002099 0.0002023 0.0001949 0.0001877 0.0001808 0.0001742 0.0001677 0.0001615
0.0001555 0.0001497 0.0001442 0.0001389 0.0001337 0.0001288 0.0001241 0.0001195 0.0001152 0.0001110 0.0001070 0.0001031 0.0000994 0.0000958 0.0000923 0.0000890
0.0000858 0.0000827 0.0000798 0.0000769 0.0000742 0.0000715 0.0000691 0.0000667
0.0000645 0.0000624 0.0000605 0.0000587 0.0000572 0.0000558 0.0000547 0.0000538
0.0000531 0.0000527 0.0000526 0.0000528 0.0000533 0.0000542 0.0000554 0.0000571
0.0000593 0.0000621 0.0000655 0.0000696 0.0000746 0.0000806 0.0000878 0.0000964
0.0001068 0.0001193 0.0001344 0.0001528 0.0001751 0.0002024 0.0002359 0.0002773
0.0003287 0.0003928 0.0004730 0.0005737 0.0007006 0.0008608 0.0010631 0.0013182
0.0016391 0.0020409 0.0025405 0.0031563 0.0039072 0.0048118 0.0058872 0.0071482
0.0086075 0.0102754 0.0121591 0.0142609 0.0165714 0.0190568 0.0216400 0.0241771
0.0264429 0.0281432 0.0289742 0.0287230 0.0273646 0.0250902 0.0222407 0.0191883
0.0162341 0.0135655 0.0112640 0.0093376 0.0077538 0.0064635 0.0054156 0.0045637
0.0038684 0.0032980 0.0028269 0.0024353 0.0021076 0.0018318 0.0015983 0.0013998
0.0012304 \ 0.0010854 \ 0.0009610 \ 0.0008541 \ 0.0007623 \ 0.0006834 \ 0.0006157 \ 0.0005575
0.0005077 0.0004650 0.0004286 0.0003976 0.0003713 0.0003492 0.0003307 0.0003155
0.0003032 0.0002936 0.0002863 0.0002814 0.0002786 0.0002779 0.0002793 0.0002827
0.0002881 0.0002956 0.0003052 0.0003170 0.0003309 0.0003469 0.0003649 0.0003847
0.0004059 0.0004282 0.0004509 0.0004732 0.0004943 0.0005133 0.0005292 0.0005413
0.0005491 0.0005521 0.0005504 0.0005443 0.0005372
       10 0.13232 0.844614 12345
0.0001893 0.0001935 0.0001992 0.0002051 0.0002112 0.0002175 0.0002239 0.0002303
0.0002368 0.0002432 0.0002494 0.0002553 0.0002605 0.0002649 0.0002682 0.0002700
0.0002701 0.0002683 0.0002642 0.0002579 0.0002494 0.0002387 0.0002263 0.0002126
0.0001979 0.0001828 0.0001678 0.0001531 0.0001392 0.0001262 0.0001142 0.0001033
0.0000935 0.0000848 0.0000770 0.0000701 0.0000640 0.0000585 0.0000537 0.0000495
0.0000457 0.0000423 0.0000393 0.0000366 0.0000342 0.0000320 0.0000300 0.0000282
0.0000266 0.0000252 0.0000238 0.0000227 0.0000216 0.0000206 0.0000198 0.0000190
0.0000183 0.0000178 0.0000173 0.0000170 0.0000167 0.0000165 0.0000165 0.0000166
```

Figure D1. (Sheet 4 of 6)

```
0.0000168 0.0000171 0.0000176 0.0000182 0.0000191 0.0000202 0.0000215 0.0000231
 0.0000251 0.0000275 0.0000304 0.0000339 0.0000381 0.0000432 0.0000493 0.0000568
 0.0000659 0.0000771 0.0000908 0.0001076 0.0001284 0.0001543 0.0001864 0.0002264
 0.0002765 0.0003391 0.0004174 0.0005152 0.0006369 0.0007879 0.0009736 0.0011999
 0.0014723 0.0017955 0.0021722 0.0026033 0.0030868 0.0036192 0.0041962 0.0048150
 0.0054765 0.0061875 0.0069622 0.0078228 0.0087992 0.0099280 0.0112500 0.0128047
 0.0146210 0.0167009 0.0189949 0.0213737 0.0236104 0.0253954 0.0264050 0.0264136
 0.0253904 0.0235173 0.0211136 0.0185172 0.0159953 0.0137101 0.0117311 0.0100648
 0.0086838 0.0075471 0.0066114 0.0058373 0.0051908 0.0046441 0.0041744 0.0037638
 0.0033984 0.0030677 0.0027642 0.0024832 0.0022217 0.0019786 0.0017536 0.0015470
 0.0013592 0.0011902 0.0010398 0.0009073 0.0007916 0.0006912 0.0006048 0.0005307
 0.0004675 0.0004137 0.0003681 0.0003294 0.0002966 0.0002690 0.0002457 0.0002262
 0.0002098 0.0001962 0.0001850 0.0001759 0.0001687 0.0001630 0.0001588 0.0001558
 0.0001540 0.0001532 0.0001533 0.0001543 0.0001560 0.0001584 0.0001613 0.0001648
 0.0001687 0.0001731 0.0001777 0.0001827 0.0001866
       11 0.14209 0.637389
                                  12345
                                                 30
 0.0000587 0.0000621 0.0000671 0.0000727 0.0000789 0.0000858 0.0000934 0.0001017
 0.0001107 0.0001204 0.0001307 0.0001417 0.0001532 0.0001651 0.0001773 0.0001896
0.0002017 0.0002133 0.0002241 0.0002338 0.0002420 0.0002485 0.0002528 0.0002548 0.0002545 0.0002517 0.0002467 0.0002396 0.0002307 0.0002205 0.0002093 0.0001974
0.0001853 0.0001731 0.0001612 0.0001497 0.0001387 0.0001283 0.0001185 0.0001094
0.0001009 0.0000931 0.0000859 0.0000792 0.0000732 0.0000676 0.0000625 0.0000578
0.0000536 0.0000498 0.0000463 0.0000431 0.0000403 0.0000378 0.0000355 0.0000336
0.0000318 0.0000304 0.0000291 0.0000282 0.0000274 0.0000269 0.0000266 0.0000266
0.0000269 0.0000274 0.0000283 0.0000296 0.0000313 0.0000335 0.0000362 0.0000396
0.0000438 0.0000488 0.0000550 0.0000624 0.0000714 0.0000821 0.0000950 0.0001104
0.0001287 0.0001505 0.0001764 0.0002070 0.0002431 0.0002857 0.0003359 0.0003949
0.0004642 0.0005457 0.0006415 0.0007542 0.0008868 0.0010429 0.0012267 0.0014429
0.0016970 0.0019948 0.0023425 0.0027463 0.0032125 0.0037466 0.0043541 0.0050403
0.0058116 0.0066762 0.0076462 0.0087393 0.0099800 0.0114008 0.0130400 0.0149368
0.0171178 0.0195737 0.0222217 0.0248636 0.0271650 0.0286986 0.0290793 0.0281375
0.0260155 0.0231058 0.0198798 0.0167286 0.0138935 0.0114761 0.0094836 0.0078742
0.0065882 0.0055651 0.0047511 0.0041013 0.0035798 0.0031578 0.0028125 0.0025257
0.0022828 0.0020723 0.0018851 0.0017141 0.0015544 0.0014029 0.0012581 0.0011196
0.0009881 0.0008646 0.0007502 0.0006458 0.0005522 0.0004693 0.0003971 0.0003348
0.0002818 0.0002371 0.0001997 0.0001686 0.0001429 0.0001218 0.0001045 0.0000904
0.0000789 0.0000696 0.0000620 0.0000560 0.0000512 0.0000474 0.0000444 0.0000422
0.0000407 0.0000396 0.0000391 0.0000391 0.0000394 0.0000402 0.0000414 0.0000430
0.0000451 0.0000475 0.0000504 0.0000538 0.0000567
           0.15186 0.404460
                                  12345
0.0000676 0.0000677 0.0000683 0.0000695 0.0000713 0.0000739 0.0000773 0.0000817
0.0000872 0.0000941 0.0001025 0.0001128 0.0001253 0.0001403 0.0001582 0.0001793
0.0002036 0.0002313 0.0002619 0.0002947 0.0003286 0.0003617 0.0003921 0.0004175
0.0004360 0.0004461 0.0004470 0.0004390 0.0004228 0.0004002 0.0003730 0.0003430
0.0003120 0.0002814 0.0002523 0.0002254 0.0002009 0.0001792 0.0001601 0.0001435
0.0001292 0.0001169 0.0001064 0.0000975 0.0000900 0.0000836 0.0000783 0.0000738
0.0000700 0.0000668 0.0000641 0.0000619 0.0000599 0.0000583 0.0000569 0.0000557
0.0000546 0.0000536 0.0000526 0.0000517 0.0000508 0.0000499 0.0000490 0.0000481 0.0000471 0.0000462 0.0000453 0.0000445 0.0000437 0.0000431 0.0000426 0.0000423
0.0000422 0.0000424 0.0000430 0.0000441 0.0000456 0.0000478 0.0000508 0.0000548
0.0000601 0.0000671 0.0000764 0.0000887 0.0001053 0.0001277 0.0001585 0.0002015
0.0002622 0.0003491 0.0004748 0.0006580 0.0009252 0.0013116 0.0018592 0.0026070
0.0035722 0.0047217 0.0059496 0.0070848 0.0079444 0.0084083 0.0084680 0.0082152
0.0077890 0.0073226 0.0069159 0.0066335 0.0065160 0.0065939 0.0068992 0.0074731
0.0083700 0.0096536 0.0113818 0.0135711 0.0161415 0.0188591 0.0213262 0.0230717
0.0237315 0.0232141 0.0217270 0.0196550 0.0173921 0.0152299 0.0133298 0.0117482
0.0104763 0.0094718 0.0086792 0.0080396 0.0074963 0.0069974 0.0065002 0.0059749
0.0054087 0.0048066 0.0041875 0.0035778 0.0030038 0.0024855 0.0020344 0.0016537
0.0013398 0.0010858 0.0008828 0.0007220 0.0005950 0.0004950 0.0004162 0.0003539
0.0003045 0.0002652 0.0002337 0.0002084 0.0001879 0.0001712 0.0001576 0.0001463
0.0001368 0.0001288 0.0001220 0.0001161 0.0001108 0.0001061 0.0001018 0.0000977
0.0000940 0.0000904 0.0000871 0.0000839 0.0000810 0.0000782 0.0000758 0.0000736
0.0000717 0.0000701 0.0000689 0.0000680 0.0000677
       13 0.16162 0.401444
                                 12345
0.0001467 0.0001523 0.0001606 0.0001698 0.0001800 0.0001911 0.0002029 0.0002152
0.0002280 0.0002408 0.0002534 0.0002656 0.0002770 0.0002876 0.0002971 0.0003055
0.0003128 0.0003190 0.0003242 0.0003286 0.0003323 0.0003353 0.0003378 0.0003398
```

Figure D1. (Sheet 5 of 6)

```
0.0003414 0.0003425 0.0003431 0.0003432 0.0003428 0.0003418 0.0003401 0.0003377
0.0003346\ 0.0003308\ 0.0003261\ 0.0003208\ 0.0003148\ 0.0003081\ 0.0003009\ 0.0002932
0.0002851 0.0002767 0.0002682 0.0002596 0.0002509 0.0002423 0.0002339 0.0002256
0.0002175 0.0002097 0.0002021 0.0001948 0.0001878 0.0001812 0.0001749 0.0001689
0.0001633 \ 0.0001582 \ 0.0001535 \ 0.0001493 \ 0.0001456 \ 0.0001425 \ 0.0001399 \ 0.0001380
0.0001366 0.0001360 0.0001361 0.0001370 0.0001388 0.0001414 0.0001451 0.0001499
0.0001560\ 0.0001635\ 0.0001725\ 0.0001834\ 0.0001963\ 0.0002115\ 0.0002293\ 0.0002503
0.0002748 0.0003036 0.0003374 0.0003772 0.0004243 0.0004801 0.0005467 0.0006264
0.0007220 0.0008370 0.0009753 0.0011416 0.0013405 0.0015772 0.0018561 0.0021810
0.0025542 0.0029759 0.0034444 0.0039560 0.0045062 0.0050908 0.0057080 0.0063597
0.0070525 0.0077988 0.0086166 0.0095288 0.0105612 0.0117399 0.0130844 0.0145972
0.0162482 0.0179570 0.0195808 0.0209248 0.0217831 0.0220054 0.0215531 0.0205115
0.0190507 0.0173641 0.0156187 0.0139324 0.0123736 0.0109726 0.0097348 0.0086516
0.0077080 0.0068871 0.0061721 0.0055480 0.0050017 0.0045219 0.0040987 0.0037241
0.0033911 0.0030936 0.0028269 0.0025866 0.0023692 0.0021718 0.0019918 0.0018268
0.0016749 0.0015344 0.0014038 0.0012817 0.0011671 0.0010592 0.0009575 0.0008618
0.0007721 0.0006884 0.0006111 0.0005403 0.0004763 0.0004192 0.0003688 0.0003249
0.0002870 0.0002548 0.0002276 0.0002049 0.0001860 0.0001705 0.0001579 0.0001477
0.0001396 0.0001333 0.0001287 0.0001254 0.0001234 0.0001225 0.0001227 0.0001239
0.0001262 0.0001294 0.0001336 0.0001388 0.0001434
```

Figure D1. (Sheet 6 of 6)

Appendix E Notation

<u>Text</u>	Appendix C	
a_0		Normalizing coefficient in maximum likelihood estimate (MLE)
a_{r}		Normalizing coefficient for r^{th} iteration in iterative maximum likelihood estimator (IMLE)
A		Quartile asymmetry parameter
	angle(na)	Element na of an array that represents direction coordinates
$C_{ij}(f_n)$		Coincident spectral density between gauges i and j at frequency f_n
d		Water depth
	datetime	Ten-character string that contains date and time
	dbar	Mean water depth
	ddf(nf,na)	Array element representing the directional distri- bution function at frequency f(nf) and direction angle(na)
dθ	delang	Direction increment
df	delfs	Frequency increment
	dmax	Maximum segment-averaged water depth in a collection

Appendix E Notation E1

Text Appendix C

	dmin	Minimum segment-averaged water depth in a collection
$D(\theta_m)$		Directional distribution function based on $S(\theta_m)$
$D(f_n, \theta_m)$		Directional distribution function at frequency f_n and direction θ_m
$D_0(f_n,\theta_m)$		MLE estimate of directional distribution function at frequency f_n
$D_r(f_n, \theta_m)$		IMLE estimate of directional distribution func- tion at frequency f_n after r^{th} iteration
$D_r'(f_n, \theta_m)$		Intermediate, uncorrected IMLE estimate of directional distribution function at frequency f_n during r^{th} iteration
$\hat{m{e}}_{_{X}}$		Unit vector in the <i>x</i> -direction
$\hat{m{e}}_y$		Unit vector in the y-direction
	fds(nf,na)	Array element representing the frequency-direction spectrum at frequency f(nf) and direction angle(na)
f_n		n^{th} frequency of a set of N discrete frequencies
	f(nf)	Element nf of an array that represents frequency
f_{p}	fp	Peak frequency
g		Gravitational acceleration
	gpat(nf)	Element nf of an array of six-character strings that represent working gauge patterns
hhmm		Mnemonic for time of day
H_{mo}	Нто	Characteristic wave height

Text	Appendix C
<u>1 6 X L</u>	Appendix C

i		Complex notation $\sqrt{-1}$ [in exponent or on main equation line]
		Gauge index [as subscript]
	idgfr	Degrees of freedom in cross-spectral estimation
	ifdtrnd	Flag indicating whether or not data have been detrended
	ifimle	Flag indicating if maximum likelihood or iterative maximum likelihood estimation is used
	ifwindo	Flag indicating whether or not data segments have been windowed
	istot	Total number of seconds duration of a time series
	iter(nf)	Number of iterative maximum likelihood iterations used to compute directional distribution at frequency f(nf)
I		Number of gauges in an array
$I(\theta_m - \theta_{m_{min}})$		Cumulative distribution function
Im[]		Imaginary part of complex entity contained in brackets
j		Gauge index [as subscript]
k_n		Magnitude of wave number vector associated with n^{th} discrete frequency
$\vec{k}_n(\theta_m)$		Wave number vector for wave direction θ_m at n^{th} discrete frequency
l		Summation index
m	na	Index associated with discrete direction
$m_1^{}$		First cosine moment of $D(\theta_m)$
m_2		Second cosine moment of $D(\theta_m)$

Text	Appendix C	
$m_{_{min}}$		Index of discrete direction at which wave energy is minimum
M	nang	Integer number of discrete directions
$M_{ij}(f_n)$		Element of dimensionless matrix of cross spectra between gauges i and j at frequency f_n
$M_{ij}^{-1}(f_n)$		Element of inverse of $M_{ij}(f_n)$
${}^{r}M_{ij}(f_n)$		Estimate of element of dimensionless matrix of cross spectra between gauges i and j at frequency f_n during r^{th} IMLE iteration
${}^r\!M_{ij}^{-1}(f_n)$		Element of inverse of ${}^{r}M_{ij}(f_n)$
n	nf	Index associated with discrete frequency
n_1		First sine moment of $D(\theta_m)$
n_2		Second sine moment of $D(\theta_m)$
	nband	Number of frequency bands averaged in spectral estimation
	nensb	Number of segments into which a data record is divided during spectral estimation
	nfft	Number of data points in a data segment
N	nfrq	Integer number of discrete frequencies
$Q_{ij}(f_n)$		Quadrature spectral density between gauges i and j at frequency f_n
r		Iteration count for IMLE
	rname	Five-character string denoting reference gauge
R		Upper limit of IMLE iterations
Re[]		Real part of complex entity contained in brackets

<u>Text</u>	Appendix C	
	sf(nf)	Element nf of an array that represents the frequency spectrum
	sfrq	Sampling frequency
$S(f_n)$		Frequency spectral density at frequency f_n
$S(\theta_m)$		Direction spectral density at direction θ_m
$S(f_n, \theta_m)$		Frequency-direction spectral density at frequency f_n and direction θ_m
	thp	Peak direction of directional distribution at frequency fp
T_{p}		Peak period
x		Horizontal coordinate increasing northward
$ec{oldsymbol{x}}_i$		Horizontal position vector of gauge i
$ec{m{x}}_{j}$		Horizontal position vector of gauge j
y		Horizontal coordinate increasing westward
yymmdd		Mnemonic for date
β		Exponential convergence rate parameter in IMLE
γ		Convergence rate coefficient in IMLE
		Circular skewness
$\Gamma_{ij}^2(f_n)$		Coherence of signals from gauges i and j at frequency f_n
δ		Circular kurtosis

Appendix E Notation E5

tion

Quartile directional spread parameter

Convergence check parameter at rth IMLE itera-

Δθ

 ϵ_r

<u>Text</u>	Appendix C	
θ_{0}		Mean direction
$\boldsymbol{\theta}_{25\%}$		First quartile direction of cumulative distribution function
θ _{50%}		Median direction of cumulative distribution function
$\theta_{75\%}$		Third quartile direction of cumulative distribution function
$\theta_{_I}$		Ith discrete direction
$\theta_{\scriptscriptstyle m}$		m^{th} direction of a set of M discrete directions
$\theta_{m_{min}}$		Direction of minimum energy
θ_{p}		Peak direction
$\lambda_r(f_n, \theta_m)$		IMLE correction factor at the r^{th} iteration
σ		Circular width parameter
$\Phi_{ij}(f_n)$		Cross-spectral phase between gauges i and j at frequency f_n

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1.	AGENCY USE ONLY (Leave blan	ak) 2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED								
Ì		October 1997	Final report									
	TITLE AND SUBTITLE 1995 Annual Index of Wind W. Platform AUTHOR(S)	5. FUNDING NUMBERS										
	Charles E. Long											
7.	PERFORMING ORGANIZATION N U.S. Army Engineer Waterway 3909 Halls Ferry Road Vicksburg, MS 39180-6199	8. PERFORMING ORGANIZATION REPORT NUMBER Miscellaneous Paper CHL-97-10										
	SPONSORING/MONITORING AGE Headquarters, U.S. Army Corps Washington, DC 20314-1000	10. SPONSORING/MONITORING AGENCY REPORT NUMBER										
11.	11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.											
12a	Approved for public release;			12b. DISTRIBUTION CODE								
13.	spectra observed at the Texaco contour approximately 20 km w gauges, data from which are prodefined, listed, and graphed in t moments (mean direction, width	eristic parameters of and describe Oil Company Harvest Platform of west of Point Conception, Califor occessed with an iterative maximutime series form: characteristic v	during calendar year 19 nia, the platform suppo im likelihood directions wave height, peak frequ wo parameters (direction	2,433 wind wave frequency-direction 95. Located at about the 200-m depth rts a spatial array of six pressure al estimator. Nine parameters are ency, peak direction, four circular anal spread and asymmetry) derived								
14.	SUBJECT TERMS			15. NUMBER OF PAGES								
	Deep water			115								
	Frequency-direction spectra			16. PRICE CODE								
	Wave climate Wind waves			10. 11102 0002								
17.	SECURITY CLASSIFICATION 18 OF REPORT	3. SECURITY CLASSIFICATION 1 OF THIS PAGE	9. SECURITY CLASSIF OF ABSTRACT	ICATION 20. LIMITATION OF ABSTRACT								

UNCLASSIFIED

UNCLASSIFIED