BINARY MULTIPLIER

- **→** To Multiply two unsigned binary numbers.
- **→** Sequential Multiplier
- **→** Uses one adder and a shift register.

Fig. 8-13 Block Diagram of Binary Multiplier

- **→** Initially Multiplier in Q and Multiplicand in B
- \rightarrow With S = 0 no action and circuit is in state T0
- \rightarrow Multiplication process starts when S = 1 and control goes to T1.
- → Register A and C set to 0 and counter P set to n, the number of bits in multiplier.
- **→** System goes to T2.

- **→** Multiplier bit Q0 is checked and if = 1, multiplicand B added to partial product A.
- **→** Carry from addition transferred to C
- \rightarrow Partial product in A and C left unchanged if Q0 = 0
- → P decremented, next state is T3.
- → Registers CAQ shifted once to right

Fig. 8-14 ASM Chart for Binary Multiplier

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Design steps:

- **→** Design of register operations in the datapath
- **→** Design of control logic

Diamond boxes determine the conditions for next state transition

Register transfer operations come from State and Conditional boxes

 T_0 : Initial state

$$T_1$$
: $A \leftarrow 0$, $C \leftarrow 0$, $P \leftarrow n$

$$T_2: P \leftarrow P - 1$$

if
$$(Q_0)$$
= 1 then $(A \leftarrow A + B, C \leftarrow C_{out})$

 T_3 : shift right CAQ, $C \leftarrow 0$

(b) Register transfer operations

Fig. 8-15 Control Specifications for Binary Multiplier

In the design of control logic:

- **→** Establish required sequence of operations & provide signals to control register transfer operations.
- **→** Sequence specified in state diagram
- **→** Signals for controlling register operations:
- T1 (for clearing A and C), T2 (for decrementing P)
 T3(for shifting CAQ), Q0 to decide whether to add B or not

Fig. 8-16 Control Block Diagram

Inputs S and Z, outputs T0, T1, T2, T3 L = T2Q0 to load sum into A if Q0 = 1 while in T2.

State assignment for control

State	Binary	Gray code	One-Hot
T0	00	00	0001
T1	01	01	0010
T2	10	11	0100
T3	11	10	1000

Control logic design using sequence register and decoder

- → An n bit sequence register is a circuit with n flip-flops
- → Multiplier having four states and two inputs needs two flip-flops for the register and a 2:4 decoder for outputs

State Table:

Present state		Inputs		Next state		Outputs			
G1	G0	S	Z	G1	G0	T0	T1	T2	T3
0	0	0	X	0	0	1	0	0	0
0	0	1	\mathbf{X}	0	1	1	0	0	0
0	1	\mathbf{X}	${f X}$	1	0	0	1	0	0
1	0	\mathbf{X}	${f X}$	1	1	0	0	1	0
1	1	\mathbf{X}	0	1	0	0	0	0	1
1	1	\mathbf{X}	1	0	0	0	0	0	1

- **→** Input columns have don't care entries whenever the input variable is not used to determine the next state
- → Outputs are functions of present state, generated with a Decoder with two inputs (G1 G0) and four outputs (T0 –T3)
- Next state of G1 is equal to 1 when the present state is T1, when the present state is T2, when the present state is T3, provided Z = 0

So we write:

$$DG1 = T1 + T2 + T3Z'$$

Similarly:

$$DG0 = T0S + T2.$$

Fig. 8-17 Logic Diagram of Control for Binary Multiplier Using a Sequence Register and Decoder

Use of One Hot assignment which uses one Flip-flop per state

Single 1 propagates from one flip-flop to another under the control of decision logic.

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Fig. 8-18 One Flip-Flop Per State Controller

Fig. 8-13 Block Diagram of Binary Multiplier

T1 (for clearing A, C and load P), T2 (for decrementing P) T3(for shifting CAQ), T2Q0 to decide whether to Load A or not

Design with Multiplexers

- **→** Combinational circuit can be implemented with Multiplexers instead of gates.
- → Results in regular pattern of three level of components.
 - 1. Multiplexers that determine next state of register
 - 2. Registers that hold the present state
 - 3. Decoders that provide separate output for control state

Predefined standard cell in many ICs.

Fig. 8-19 Example of ASM Chart with Four Control Inputs

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

- → State boxes left empty as it is only to design Control sequence
- **→** Binary assignments specified at upper right corner
- **→** Decision boxes specify state transition as a function of four control inputs w, x, y,z
- → Three level control implementation includes MUX, registers and decoders

Multiplexer input conditions

Present		Next					
state		state		Input	Inputs		
G1	$\mathbf{G0}$	G1	G0	conditions	MUX1	MUX2	
0	0	0	0	w'			
0	0	0	1	W	0	W	
0	1	1	0	X			
0	1	1	1	x'	1	x '	
1	0	0	0	y'			
1	0	1	0	yz'	yz'+yz = y	yz	
1	0	1	1	yz			
1	1	0	1	y'z			
1	1	1	0	y			
1	1	1	1	y'z'	y + y'z' = y + z'	y'z+y'z'=y'	

Fig. 8-20 Control Implementation with Multiplexers

Design Example: Count number of 1's in a register

Two registers R1 and R2 and Flip-flop E

- **→**System counts number of 1's in R1 and sets R2 to that number.
- **→**Done by shifting each bit in R1 one at a time into E, E checked by control and if 1 R2 is incremented.
- **→** Control uses external input S to start and uses status input E and Z from datapath. Z = 1 when R1 = 0

Fig. 8-21 ASM Chart for Count-of-Ones Circuit

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

Fig. 8-22 Block Diagram for Count-of-Ones

Multiplexer input conditions

Present state s			Next tate	Input	Inputs		
\mathbf{G}	l G 0	\mathbf{G}	1 G0	conditions	MUX1	MUX2	
0	0	0	0	S'			
0	0	0	1	S	0	S	
0	1	0	0	Z			
0	1	1	0	Z'	Z'	0	
1	0	1	1	None	1	1	
1	1	1	0	E'			
1	1	0	1	E	Ε'	E	

Fig. 8-23 Control Implementation for Count-of-Ones Circuit