EECS 16A Designing Information Devices and Systems I Fall 2018 Discussion 14A

1. Orthonormal Matrices and Projections

An orthonormal matrix, **A**, is a matrix whose columns, \vec{a}_i , are:

- Orthogonal (ie. $\langle \vec{a}_i, \vec{a}_i \rangle = 0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to 1, $\|\vec{a}_i\| = 1$). This implies that $\|\vec{a}_i\|_2 = \langle \vec{a}_i, \vec{a}_i \rangle = 1$.
- (a) Suppose that the matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ has linearly indpendent columns. The vector \vec{y} in \mathbb{R}^N is not in the subspace spanned by the columns of \mathbf{A} . What is the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} ?
- (b) Show if $\mathbf{A} \in \mathbb{R}^{N \times N}$ is an orthonormal matrix then the columns, \vec{a}_i , form a basis for \mathbb{R}^N .
- (c) When $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $N \geq M$ (i.e. tall matrices), show that if the matrix is orthonormal, then $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{M \times M}$.
- (d) Again, suppose $\mathbf{A} \in \mathbb{R}^{N \times M}$ where $N \geq M$ is an orthonormal matrix. Show that the projection of \vec{y} onto the subspace spanned by the columns of \mathbf{A} is now $\mathbf{A}\mathbf{A}^T\vec{y}$.

2. Orthogonal Matching Pursuit

Let's work through an example of the OMP algorithm. Suppose that we have a vector $\vec{x} \in \mathbb{R}^4$ that is sparse and we know that it has only 2 non-zero entries. In particular,

$$\mathbf{M}\vec{\mathbf{x}} \approx \vec{\mathbf{y}} \tag{1}$$

$$\begin{bmatrix} | & | & | & | \\ \vec{m}_1 & \vec{m}_2 & \vec{m}_3 & \vec{m}_4 \\ | & | & | & | \end{bmatrix} \vec{x} \approx \vec{y}$$
 (2)

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \approx \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$$
 (3)

where exactly 2 of x_1 to x_4 are non-zero. Use Orthogonal Matching Pursuit to estimate x_1 to x_4 .

- (a) Why can we not solve for \vec{x} directly?
- (b) Why can we not apply the least squares process to obtain \vec{x} ?
- (c) Let us start by reviewing the OMP procedure,

Inputs:

- A matrix **M**, whose columns, \vec{m}_i , make up a set of vectors, $\{\vec{m}_i\}$, each of length n
- A vector \vec{y} of length n
- The sparsity level k of the signal

Outputs:

- A vector \vec{x} , that contains k non-zero entries.
- A error vector $\vec{e} = \vec{y} \mathbf{M}\vec{x}$

Procedure:

- Initialize the following values: $\vec{e} = \vec{y}$, j = 1, k, $\mathbf{A} = \begin{bmatrix} 1 \end{bmatrix}$
- while $(j \le k)$:
 - i. Compute the inner product for each vector in the set, \vec{m}_i , with \vec{e} : $c_i = \langle \vec{m}_i, \vec{e} \rangle$.
 - ii. Column concatenate matrix **A** with the column vector that had the maximum inner product value with \vec{e} , c_i : $\mathbf{A} = \begin{bmatrix} \mathbf{A} & | & \vec{m}_i \end{bmatrix}$
 - iii. Use least squares to compute \vec{x} given the **A** for this iteration: $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{y}$
 - iv. Update the error vector: $\vec{e} = \vec{y} A\vec{x}$
 - v. Update the counter: j = j + 1
- (d) Compute the inner product of every column with the \vec{y} vector. Which column has the largest inner product? This will be the first column of the matrix \bf{A} .
- (e) Now, find the projection of \vec{y} onto the columns of \mathbf{A} (ie. $\text{proj}_{\text{Col}(\mathbf{A})}\vec{y} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{y}$). Use this to update the error vector.
- (f) Now compute the inner product of every column with the new error vector. Which column has the largest inner product? This will be the second column of **A**.
- (g) We now have two non-zero entries for our vector, \vec{x} . Find the values of those two entries.

(Reminder:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
)