一向容题

考虑如下两模型:

模型 1:
$$Y = \beta_0 + \beta_1 X_1$$
 + e 模型 2: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e$

1. (II') 记息为模型 2 中 β_2 的 OLS 估计, ρ_{12} 为 X_1 与 X_2 的样本相关系数,证明

$$Var(\hat{\beta}_2) = \frac{1}{(1-\rho_{12}^2)} \frac{\sigma^2}{SX_2X_2}$$

2. (8') 分别记在模型1和模型2下系数β₁的最小二乘(OLS)估计为β₁和β₁。 什么 人情况下,β₁和β₁相等? 说明理由。

(B') 对于模型 1. 在 σ^2 未知情形下, 试证明 $F = t^2$, 其中F 为检验回归方程显著性的F 统计量, t 为假设检验H: $\beta_1 = 0$ 的t 统计量。

4. (12') 假设模型 1 正确,并且 $y\sim N(\beta_0 1_n + \beta_1 x_1, \sigma^2 I_n)$ 。分别记在模型 1 和模型 2 下的拟合值向量为 y_1 和 y_2 ,残差平方和为RSS₁和RSS₂,证明:

(a) $\Delta = \hat{y}_1 - \hat{y}_2$ 与RSS₂相互独立;

(b) RSS₂与RSS₁-RSS₂相互独立。

二 计算题 (写出必要的计算过程)

下表是某年度22名学生的统计课三次考试成绩,包括期末Y,两次预考X₁和X₂。

行号	Y	X 1	X2	行号	Y	X ₁	X_2
1	68	74	67	12	75	74	76
2	75	75	76	13	81	82	80
3	85	81	79	14	91	95	90
4	94	94	96	15	80	76	82
5	86	88	90	16	94	94	93
6	90	92	83	17	94	95	93
7	86	93	95	18	97	90	96

8	68	50					
9	55	68	69	19	79	80	82
10	60	66	67	20	84	81	87
11	69	69	72	21	65	68	64
	91	90	92	22	83	83	82

部分回归输出结果如下:

均值							
1 -01E	y:	81.364	X1:	82.182	\tilde{x}_2 :	82.318	

增广矩阵

$$\begin{bmatrix} \chi_c^T \chi_c & \chi_c^T y \\ y^T \chi_c & SYY \end{bmatrix} = \begin{bmatrix} 2047.273 & 1951.818 & 2169.545 \\ 1951.818 & 2182.773 & 2220.455 \\ 2169.545 & 2220.455 & 2611.091 \end{bmatrix},$$

$$(\chi_c^T \chi_c)^{-1} = \begin{bmatrix} 3.312 & -2.96 \\ -2.96 & 3.106 \end{bmatrix} \times 10^{-3},$$

(18')利用最小二乘估计法分别对模型 1 和模型 2 拟合这 22 组数据,给出拟合回归方程,并分别计算两者的残差均方6²和测定系数R²。哪个模型拟合效果好?说明理由。

- 2. (16') 对于模型 1. 假设随机误差项 e~N(0,σ²In)。
 - (a) 检验其回归方程的显著性,检验水平 $\alpha = 0.05$ 。(给出临界值并得出结论)
 - (b) 检验其回归方程是否经过原点, 检验水平α = 0.05。(同上要求)
- 3. (8') 对于模型 2, 假设 $\beta_1 + \beta_2 = 1$ 成立, 求此时的拟合回归方程。
- 4. (12') 新的一年度第一次预考成绩已出来,全班平均成绩为80,请预测第二 次预考的平均成绩。期末平均成绩预测又是多少?分别利用模型1和模型2 进行预测。两者是否一致?

 作史: 图对于等种行道 == 131 产 证明而推查下的预测值 担等

(10') 利用最小二乘估计法用过原点的模型

 $Y = \beta_1 X_1 + \beta_2 X_2 + e$

拟合这22组数据,给出拟合回归方程。另外,

- (a) 其残差均方自由度为多少?
- (b) 其与模型 2 相比, 你选择哪个模型? (置信水平95%, 给出临界值)