CSC 355 Database Systems Lecture 11

Eric J. Schwabe
School of Computing, DePaul University
Spring 2020

Today:

- Relational Database Design
 - Functional Dependencies
 - Closures and Keys
 - Boyce-Codd Normal Form (BCNF)

Relational Database Design

Start with a set of attributes

$$R = \{A_1, A_2, ..., A_n\}$$

- (Can also be written as a *universal relation* $R(A_1, A_2, ..., A_n)$...)
- Construct a *decomposition* of R into relations $D = \{R_1, R_2, ..., R_m\}$
 - Each R_i is a subset of R

Relational Database Design

- The decomposition $D = \{R_1, R_2, ..., R_m\}$ should satisfy the following conditions:
 - 1. The union of the R_i's is R
 - 2. Redundancy has been removed from the R_i's
 - 3. Dependencies among attributes in R are preserved
 - 4. The original relation R can be recovered from D
- Conditions 2.-4. have to be formalized...

Redundancy

- *Redundancy* occurs when more than one record in a table stores the same information
 - Wastes space
 - Allows update and deletion anomalies
- We eliminate redundancy by identifying (and perhaps removing) functional dependencies in R

Functional Dependencies

- A set of attributes $Y = \{Y_1, Y_2, ..., Y_n\}$ is functionally dependent on a set of attributes $X = \{X_1, X_2, ..., X_m\}$ if and only if every pair of tuples that have the same values for X must also have the same values for Y
 - Also "X functionally determines Y" or " $X \rightarrow Y$ "
 - X is called the *determinant*
- (Less formally, "the values of X uniquely determine the values of Y"...)

Functional Dependencies

- "Every pair of tuples that have the same values on X also have the same values on Y"
 - For X to functionally determine Y, this condition must be *satisfied by every possible relation state*
 - If some relation state does not satisfy the condition because two tuples have the same values on X but different values on Y, then X does not functionally determine Y

Finding Functional Dependencies

- DVD (DVDID , MovieID , Title , Genre , Length , Rating)
- GRADING (CNumber , CTitle , SID , SName , Grade)
- PERSON (First, Last, Address, City,
 State, Zip)
- ASSIGNMENT (EID, ELName, EFName, Project, Hours)

Closures

- ◆ For F and a set of attributes X, the set X⁺ is called the *closure of X* (*with respect to F*).
- ◆ X⁺ is the set of all attributes that can be determined from X using anything in F
 - To find X⁺: Start with just X ... the add any other attributes you can determine from X using F ... then add any other attributes you can determine from those ... and so on ... until you can't add any more.
- If X^+ includes the set Y, then $X \rightarrow Y$ can be derived from the set F

Equivalence

- Two sets F_1 and F_2 of functional dependencies are *equivalent* if and only if both of the following are true:
 - Every functional dependency in F₁ can be derived from the set F₂
 - Every functional dependency in F₂ can be derived from the set F₁
- Use closure to test each functional dependency

Definitions of Keys

- A set of attributes X is a *superkey* of R if X determines all attributes of R (i.e., if $X^+ = R$)
- A set of attributes X is a *candidate key* of R if X is a superkey, but no proper subset Y of X is a superkey
- An attribute is *prime* if it is contained in some candidate key (and is *non-prime* otherwise)

Eliminating Redundancy

- Functional dependencies whose determinants are not superkeys (i.e, that do not include candidate keys) indicate that there is redundancy in a relation
 - If there aren't any... then we're done!
 - If there are... then we use the functional dependencies to construct a decomposition that gets rid of the redundancy

BCNF

- A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial functional dependency X→Y in R, X is a superkey
 - "Every determinant must contain a candidate key"
 - A relation in BCNF will not have any redundancy, since every functional dependency in the relation will have a superkey as its determinant

Removing a Functional Dependency

- ◆ Suppose R contains the functional dependency X→Y where X is <u>not</u> a superkey
- Replace R with two relations:
 - R Y
 - No longer contains $X \rightarrow Y$
 - X U Y
 - Contains $X \rightarrow Y$, but X is a superkey in this relation
 - (Be sure that Y contains the complete closure of X...)

BCNF Decomposition Algorithm

Set D = {R}

While there is some Q in D that is not in BCNF:

Choose a Q that is not in BCNF

Find an X→Y in Q that violates BCNF

Replace Q with two relations:

Q - Y and (X union Y)

(When finished, all relations in D will be in BCNF)

Next:

- More Relational Database Design
 - Boyce-Codd Normal Form (BCNF)
 - Dependency preservation
 - Lossless join