Homework

Ding Yaoyao, 516030910572

2017 - 11

Exercise 2-1

1

The 3 left cosets of H in A_4 are:

The 6 left cosets of H in S_4 are:

$$(1), (12)(34), (13)(24), (14)(23)$$

$$(123), (134), (243), (142)$$

$$(234), (132), (143), (124)$$

$$(12), (34), (1324), (1423)$$

$$(13), (24), (1234), (1432)$$

$$(14), (23), (1243), (1342)$$

8

There are 2 left cosets of $\langle a^4 \rangle$ and they are:

 $\langle a^2 \rangle$

and

$$\{a, a^3, a^5, \cdots, a^{29}\}$$

11

Let G be a group and $H \leq G$. Then aH is a left coset of H generated by $a \in G$. We have:

$$(aH)^{-1} = H^{-1}a^{-1} = Ha^{-1}$$

So $(aH)^{-1}$ is a right coset of H generated by a^{-1} .

$$x \in a(H_1 \cap H_2) \Leftrightarrow x = ah(h \in H_1 \text{ and } h \in H_2)$$

$$\Leftrightarrow x \in aH_1 \text{ and } x \in aH_2 \Leftrightarrow x \in aH_1 \cap aH_2$$
 So $a(H_1 \cap H_2) = aH_1 \cap aH_2$.

20

The factors of 33 are 1,3,11,33, so the order of every element in G must be one of them. For any $g \in G$, if ord(g) = 3 or ord(g) = 33 then we find the element we want(it is g or g^{11}). So we only need to prove that such group G does not exist:

$$ord(g) = 11$$
 for any non-unit $g \in G$

Let S_1, S_1, \ldots, S_k be all the different cyclic subgroup of G. Beacuse every element in G can generate a cyclic subgroup, we have $G = \bigcup S_i$. For all $i \neq j$, $S_i \cap S_j = \{e\}$ (If $g \in S_i \cap S_j$ and $g \neq e$, we have $S_i = S_j = \langle g \rangle$). There is only one cyclic subgroup contains 1 element which is $\{e\}$ and other cyclic subgroup has 11 elements in it. So we have:

$$|G| = 1 + 10(k - 1) = 33 \quad (k \in \mathbb{Z})$$

Such k does not exist, so such group G does not exist. Above all, every group G follow |G| = 33 has an element whose order is 3.

22

Let $\phi: G \to G(a \to a^n)$ be the map(G is abelian and finite).

- injective: $\phi(a) = \phi(b) \Leftrightarrow a^n = b^n \Leftrightarrow (ab^{-1})^n = e \Leftrightarrow ord(ab^{-1}) \mid n$. We also have $ord(ab^{-1}) \mid |G|$, so $ord(ab^{-1}) \mid gcd(n, |G|) = 1$, then $ord(ab^{-1}) = 1$, which means a = b.
- surjective: Beacuse G is finite and ϕ is injective, $|G| = |\phi(G)|$. We also have $\phi(G) \subseteq G$. Then we have $\phi(G) = G$.
- homomorphic: $\phi(ab) = (ab)^n = a^n b^n = \phi(a)\phi(b)$

Above all, ϕ is an automorphism of G.

Exercise 2-2

2

C(G) is not empty because $e \in C(G)$. For all $a, b \in C(G)$ and $x \in G$, we have:

$$ab^{-1}x = a(x^{-1}b)^{-1} = a(bx^{-1})^{-1} = axb^{-1} = xab^{-1}$$

So $ab^{-1} \in C(G)$ and $C(G) \leq G$.

For all $g \in G$, gC(G) = C(G)g (because gx = xg holds for all $x \in C(G)$), so C(G) is a normal subgroup of G.

5

Let $G = S_4, K = \{(1), (12)(34), (13)(24), (14)(23)\}, H = \{(1), (12)(34)\}.$

6

• \Rightarrow : If $ab \in H$ and $H \subseteq G$, we assume $ab = h \in H$ and then

$$ba = babb^{-1} = bhb^{-1} \in H$$

• \Leftarrow : For every $h \in H$ and $g \in G$, we have $(hg^{-1})g \in H$, then $g(hg^{-1}) = ghg^{-1} \in H$. So $H \leq G$.

9

For all $a, b \in N(H)$, we have $aHa^{-1} = H$ and $bHb^{-1} = H$, then

$$(ab^{-1})H(ab^{-1})^{-1} = ab^{-1}Hba^{-1} = a(bH^{-1}b^{-1})^{-1}a^{-1}$$

= $a(bHb^{-1})^{-1}a^{-1} = aH^{-1}a^{-1} = aHa^{-1} = H$

So $ab^{-1} \in N(H)$, which means $N(H) \leq G$. For all $n \in N(H)$, we have

$$nHn^{-1} = H$$

which means $H \subseteq N(H)$.

10

- \Rightarrow : Let $\phi(x) = gxg^{-1}$ be an inner automorphism of G. For all $h \in H$, we have $\phi(h) = ghg^{-1} \in H$ (beacuse H is a normal subgroup of G), which means $\phi(H) \subseteq H$.
- \Leftarrow : For every $g \in G$, it can generate an inner automorphism $\phi(x) = gxg^{-1}$. Beacuse $\phi(H) \subseteq H$, we have $gHg^{-1} \subseteq H$. Beacuse for all $g \in G$ we have $gHg^{-1} \subseteq H$, then H is a normal subgroup of G.

11

For every $x \in G$, we can get a left coset of H generated by x : xH. Beacuse

$$|G/H| = [G:H] = m$$

we have

$$(xH)^m = x^m H^m = x^m H = eH$$

which means $x^m \in H$.

Exercise 2-3

1

 $x \to |x|$ and $x \to x^2$ are two homomorphisms. When $a=1, \ x \to ax$ is also a homomorphism.

- $\phi: x \to |x|: \phi(G) = R^+ \text{ and } Ker(\phi) = \{1, -1\}$
- $\phi: x \to x$: $\phi(G) = G$ and $Ker(\phi) = \{1\}$
- $\phi: x \to x^2$: $\phi(G) = R^+$ and $Ker(\phi) = \{1, -1\}$

6

Let's call that map ϕ . For every $x, y \in \mathbb{C}^*$, we have

$$\phi(xy) = (xy)^6 = x^6y^6 = \phi(x)\phi(y)$$

so ϕ is a homomorphism.

Solve the following equation

$$\phi(x) = x^6 = 1$$

we can get 6 solutions: $\{1, w, w^2, w^3, w^4, w^5\}$ $(w = e^{\frac{i\pi}{3}})$. And the kernal of ϕ is

$$Ker(\phi) = \{1, w, w^2, w^3, w^4, w^5\}(w = e^{\frac{i\pi}{3}})$$

7

For every $q \in \{0, 1, 2, \dots, m-1\}$, we can define a homomorphism:

$$\phi_q(n) = qn \bmod m$$

16

⇒:

$$\phi(a) = \phi(b) \Rightarrow \phi(ab^{-1}) = e' \Rightarrow ab^{-1} \in Ker(\phi)$$
$$\Rightarrow Ker(\phi)a = Ker(\phi)b \Rightarrow aKer(\phi) = bKer(\phi)$$

(The last steps use the conclusion that $Ker(\phi)$ is a normal subgroup of G).

• =:

$$aKer(\phi) = bKer(\phi) \Rightarrow \phi(aKer(\phi)) = \phi(bKer(\phi))$$
$$\Rightarrow \phi(a)e' = \phi(b)e' \Rightarrow \phi(a) = \phi(b)$$

• $\phi^{-1}(\phi(H)) \subseteq HK$: For any $x \in \phi^{-1}(\phi(H))$, there exists $h \in H$ such $\phi(x) = \phi(h)$, then

$$\phi(xh^{-1}) = e' \Rightarrow xh^{-1} \in K \Rightarrow xh^{-1}h \in Kh \Rightarrow x \in Kh \subseteq KH \Rightarrow x \in HK$$

• $HK \subseteq \phi^{-1}(\phi(H))$: For any $x \in HK$, there exist $h \in H$ and $k \in K$ such x = hk, then

$$\phi(x) = \phi(hk) = \phi(h)$$

which means $x \in \phi^{-1}(\phi(h))$, thus $x \in \phi^{-1}(\phi(H))$.

19

- \Rightarrow : Let $\phi: G_1 \to G_2$ be the epimorphism. There must exist $a \in G_1$ such that $\phi(a) = 1'$. We have $n_2 = ord(1') \mid ord(a)$ and $ord(a) \mid n_1$, thus $n_2 \mid n_1$.
- \Leftarrow : We can construct an epimorphism $\phi(x) = x \mod n_2$.
 - surjective: For any $x \in G'$, x must also belong $G(\text{Beacuse } n_2 \leq n_1)$.
 - homomorphic:

$$\phi(a+b) = ((a+b) \bmod n_1) \bmod n_2 = (a+b) \bmod n_2$$

= $((a \bmod n_2) + (b \bmod n_2)) \bmod n_2 = \phi(a) + \phi(b)$

(Beacuse $n_2 \mid n_1$)

So $G_1 \sim G_2$.

12

We know that $Z_5 \cong U_5$ by the isomorphism $f(x) = e^{\frac{2x\pi}{5}}$, so we only need to consider $\phi: Z_{30} \sim Z_5$.

Let $\phi(1)=a$, we have $ord(a)\mid 5$ and $ord(a)\mid ord(1)=30$. So ord(a)=1 or ord(a)=5. Beacuse ϕ is surjective, so ord(a)=5, thus a can be one of $\{1,2,3,4\}$ and a satisfy gcd(a,5)=1. So $\phi(x)=xa\equiv 0 \Leftrightarrow x\equiv 0 \pmod 5$. So the kernel of ϕ is:

$$Ker(\phi) = \{0, 5, 10, 15, 20, 25\}$$

20

We define $\phi: Z_m \to Z_k(x \to x \bmod k)$. Beacuse $m \ge k$, we can see that ϕ is surjective.

$$\phi(a+b) = ((a+b) \bmod m) \bmod k = (a \bmod k) + (b \bmod k) \bmod k = \phi(a) + \phi(b)$$

Thus ϕ is homomorphic. So ϕ is an epimorphism.

$$\phi(x) = 0 \Leftrightarrow x \bmod k = 0 \Leftrightarrow k \mid x$$

So we can get the kernel of ϕ :

$$Ker(\phi) = \{x \in Z_m \mid k \mid x\} = \{0, k, 2k, \dots, m - k\} = \langle k \rangle$$

By the First Isomorphism Theorem, we have

$$Z_m/\langle k \rangle \cong Z_k$$

Exercise 2-5

1

$$X = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$G = \{(1), (123)(456), (132)(465), (78), (123)(456)(78), (132)(465)(78)\}$$

X	Orbit	Stabilizer
1	$\{1, 2, 3\}$	$\{(1), (78)\}$
2	$\{1, 2, 3\}$	$\{(1), (78)\}$
3	$\{1, 2, 3\}$	$\{(1), (78)\}$
4	$\{4, 5, 6\}$	$\{(1), (78)\}$
5	$\{4, 5, 6\}$	$\{(1), (78)\}$
6	$\{4, 5, 6\}$	$\{(1), (78)\}$
7	$\{7, 8\}$	$\{(1), (123)(456), (132)(465)\}$
8	$\{7, 8\}$	$\{(1), (123)(456), (132)(465)\}$

g	Fixed elements
(1)	$\{1, 2, 3, 4, 5, 6, 7, 8\}$
(123)(456)	{7,8}
(132)(465)	{7,8}
(78)	$\{1, 2, 3, 4, 5, 6\}$
(123)(456)(78)	Ø
(132)(465)(78)	Ø

3

Because the action of G on X is transitive, for any $x_1, x_2 \in X$, exist $g \in G$ such that

$$gx_1 = x_2$$

Then for any $x_1, x_2 \in X$, let's consider their orbits

$$gx_1 = x_2 \Rightarrow Ngx_1 = Nx_2 \Rightarrow gNx_1 = Nx_2$$

Beacuse the action g on X is injective, so we have

$$|Nx_1| = |g(Nx_1)| = |Nx_2|$$

So every orbit has the same size.

4

• $gS_xg^{-1} \subseteq S_y$: For any $h \in S_x$, we have hx = x. Then

$$ghg^{-1}y = ghx = gx = y$$

so $ghg^{-1} \in S_y$.

• $S_y \subseteq gS_xg^{-1}$: For any $h \in S_y$, we have hy = y. Then

$$g^{-1}hgx = g^{-1}hy = g^{-1}y = x$$

so $g^{-1}hg \in S_x$. Thus $g^{-1}S_yg \subseteq S_x$, which means $S_y \subseteq gS_xg^{-1}$.

So $S_y = gS_xg^{-1}$.

6

Let the 12 faces be $X=\{\pi_1,\pi_2,\pi_3,\pi_4,\pi_5,\pi_6,\pi_7,\pi_8,\}$ and π_1 be the front face. We have

$$O_{\pi_1} = X$$
$$|S_{\pi_1}| = 5$$

So $|G| = |O_{\pi_1}||S_{\pi_1}| = 40$.

Additional

It's the same as Exercisse 2-5(4).

Exercise 2-6

1

• \Rightarrow : Beacuse there is only one Sylow p-subgroup P, thus for all $g \in G$ we have

$$gPg^{-1} = P,$$

which means P is a normal subgroup of G.

ullet \Leftarrow : By the Sylow Theorem, when P is a Sylow p-subgroup, all the Sylow p-subgroup will be

$$\{gPg^{-1} \mid g \in G\}.$$

Beacuse P is a normal subgroup, $gPg^{-1} = P$ for all $g \in G$, which means there is only one Sylow p-subgroup P.

 $\mathbf{2}$

• $N(P) \subseteq N(N(P))$: For every $g \in N(P)$,

$$gN(P)g^{-1} = N(P) \Rightarrow g \in N(N(P))$$

.

• $N(N(P)) \subseteq N(P)$: For every $g \in N(N(P))$, we have

$$gPg^{-1} \subseteq gN(P)g^{-1} = N(P).$$

So gPg^{-1} is another Sylow p-subgroup of N(P), thus

$$gPg^{-1} = P \Rightarrow g \in N(P)$$

Then we have $N(N(P)) \subseteq N(P)$.

3

The Sylow 2-subgroup of S_4 :

$$\{(1), (1234), (13)(24), (1432), (13), (12)(34), (24), (14)(23)\},$$

$$\{(1), (1324), (12)(34), (1423), (12), (13)(24), (34), (14)(32)\},\$$

$$\{(1), (1243), (14)(23), (1342), (14), (12)(43), (23), (13)(24)\},\$$

4

The Sylow 2-subgroup of A_4 :

$$\{(1), (14)(23), (13)(24), (14)(23)\},\$$

6

By the Sylow Theorem

$$n_5 \mid 24$$
 and $n_5 \equiv 1 \pmod{5}$,

there are two posible values $n_5=1$ or $n_5=6$. But there are more than one Sylow 5-subgroup in S_5 , so $n_5=6$.

$$\{(1), (12345), (13524), (14253), (15432)\}$$

$$\{(1), (13452), (14235), (15324), (12543)\}$$