Гомоморфизмы колец, идеалы, фактор-кольца

Определение 1.1 (Гомоморфизм колец). $h:R\to S$ - гомоморфизм, определённый так: $a\equiv b\Leftrightarrow h(a)=h(b)$

Определение 1.2 (Ядро кольца). $h:R\to S$ - гомоморфизм, тогда ядро кольца $\operatorname{Ker} h=\{a\in R:h(a)=0\}$

Теорема 1.3. Ядро кольца - подкольцо

Доказательство. Пусть $\operatorname{Ker} h$ - ядро кольца R по гомоморфизму $R \to S$, тогда

- 1. Ker $h \neq \emptyset$
- 2. $\forall x, y \in \text{Ker } h : h(x + (-y)) = h(x) + h(-y) \stackrel{??}{=} h(x) h(y) \stackrel{1.2}{=} 0 \Rightarrow x + (-y) \in \text{Ker } h$

П

3. $\forall x, y \in \text{Ker } h : h(x \circ y) = h(x) \circ h(y) = 0 \circ 0 = 0 \Rightarrow x \circ y \in \text{Ker } h$

По ?? ядро $\operatorname{Ker} h$ является группой

Определение 1.4 (Идеал). R - кольцо, $\mathcal{I} \subseteq R$ - идеал (левый, правый, двусторонний), если

- 1. *I* подкольцо
- 2. для любого $x \in R$ $x\mathcal{I} \subseteq \mathcal{I}$ (левый идеал), $\mathcal{I}x \subseteq \mathcal{I}$ (правый идеал)

Теорема 1.5. Ядро кольца - идеал

Доказательство. Пусть $\operatorname{Ker} h$ - ядро кольца R по гомоморфизму $R \to S$, тогда

- 1. по теореме 1.1
- 2. (a) $\forall x \in R, y \in \text{Ker } h: h(xy) = h(x)h(y) = h(x)*0 = 0 \Rightarrow xy \in \text{Ker } h \Rightarrow x \, \text{Ker } h \subseteq \text{Ker } h$
 - (b) $\forall x \in R, y \in \operatorname{Ker} h : h(yx) = h(y)h(x) = 0 * h(x) = 0 \Rightarrow yx \in \operatorname{Ker} h \Rightarrow \operatorname{Ker} h * x \subseteq \operatorname{Ker} h$

По определению идеала ядро $\operatorname{Ker} h$ является идеалом

Пример 1.6 (Пример идеалов).

Теорема 1.7. R - ассоциативное кольцо c единицей или R - тело или R тогда и только тогда когда в R Нет других идеалов, кроме $\{0\}$ и R
Определение 1.8 (Булевое кольцо).
Теорема 1.9. Пусть I - двухсторонний идеал в R , тогда отношение \equiv : $x\equiv y \Leftrightarrow x-y\in I$ является конгруэнтностью
Доказательство.
Следствие 1.10. Существует фактор-алгебра $R/_{\equiv}$, такая что ???
Следствие 1.11. $I=\operatorname{Ker} h,$ где $h:R o R/_{ extstyle \equiv}$
Доказательство.
Определение 1.12 (Простой идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - простой идеал, если $ab \in I \Leftrightarrow a \in I$ или $b \in I$
Определение 1.13 (Максимальный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - максимальный идеал, если для любого идеала $J:I\subseteq J,I\neq J$ выполняется $J=R$
Определение 1.14 (Главный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - главный идеал, если для некоторого $a \in R$ $I = aR$
Пример 1.15 (??????).
Лемма 1.16. Если I и J - идеалы, то $I+J$ тоже идеал
Доказательство.
Теорема 1.17. Пусть R - ассоциативное, коммутативное кольцо c единицей, I - идеал, тогда
1. I - простой идеал $\Leftrightarrow R/I$ - целостное
$2.$ I - максимальный идеал $\Leftrightarrow R/I$ - поле
Доказательство.