

实习课题展示

——文本分类

小组成员: 汪宇豪

CONTENS

一、数据预处理

二、传统机器学习算法

三、神经网络

数据预处理

无关信息

英文/中英文混合文本

She has 100 refereed publications including 44 papers published at leading.....

Shehas100refereedpublicationsincluding44paperspublishedatleading

爬取谷歌翻译网站

爬取百度翻译网站

调用百度翻译API

1 PART

■ Google 翻译

文文	字	■ 文档					
检测	到中文	中文	英语	德语	~		4
交流 吕荣文教授于2018年8月17-20日参加了在加拿大大瀑布市举 × 办的第十届全球华人化工学者研讨会 吕荣文教授于2018年8月17-20日参加了在加拿大大瀑布市举办的第十届全球华人化工学者研讨会(10th Global Chinese Chemical Engineers Symposium, GCCESC-10)。全球华人化工学者研讨会(Global Chinese Chemical Engineers Symposium)起源于2009年8月,由加拿大西安大略大学杰出教授祝						1	

1 PART 问题

Engineers Symposium)起源于2009年8月,由加拿大西安大略大学

问题

■ Google 翻译

pkuseg

pkuseg中文分词工具

- 1. 多领域分词。支持了新闻领域, 网络领域, 医药领域, 旅游领域, 以及混合领域的分词预训练模型。
- 2. 更高的分词准确率
- 3. 支持用户自训练模型
- 4. 支持词性标注

1 PART 对比结果

预处理方法	在测试集的准确率
j i eba中文分词	86. 6%
谷歌翻译+jieba中文分词	89. 2%
谷歌翻译+pkuseg中文分词	87. 0%
pkuseg中文分词+空格英文分词	87. 1%
pkuseg中文分词+nltk英文分词	87. 9%
pkuseg中文分词+英文谷歌翻译	86. 5%

传统机器学习算法

PART 对比结果

算法	测试集的准确率
朴素贝叶斯	85.5%
随机梯度下降	93. 2%
logistic回归	90.8%
支持向量机	36. 3%
线性支持向量机	93.5%
MLP	93.4%
K近邻	82.9%
随机森林	88.6%
梯度boosting	90.1%
adaboost	58.6%
决策树	85.6%
rocchio	74. 8%

神经网络

第一步:调参

五个参数

max_features 作为特征的单词个数maxlen 每个样本取特征词个数embedding_dim 嵌入层维度之一epochs 训练轮数batch_size 每次训练的batch大小

1. LSTM

嵌入层+LSTM+全连接层

88. 7%

2. Bi-LSTM

嵌入层+Bi-LSTM+全连接层

89.1%

训练时间略长

3. GRU

嵌入层+GRU+全连接层

86.4%

训练时间短

第三步:卷积神经网络(CNN)

92.3%

第三步:卷积神经网络(CNN)

92.2%

1.1 CNN-LSTM

88.9%

1.2 CNN-BiLSTM

89.6%

2.1 LSTM-CNN

89.7%

90.2% 2. 2 BiLSTM-CNN Dropout Output Bi-LSTM Convolution Max Pooling Fully-Connected Layer Layer Layer Layer

LSTM-CNN-BiLSTM?

结论

问题与解决

谢!

