第一周作业答案

于俊骜

2024年9月9日

1

证明收敛列有界且极限唯一。

证明. 先证明极限唯一。

假设收敛列 $\{x_n\}_{n=1}^\infty\subset X$ 有两个极限 x_0,x_0' ,则对于 $\varepsilon=\frac{1}{2}d(x_0,x_0')>0$, $\exists\,N_1,N_2>0$,当 $n>N_1$ 时恒有

$$d(x_n, x_0) < \varepsilon$$

当 $n > N_2$ 时恒有

$$d(x_n, x'_0) < \varepsilon$$

于是, 当 $n > \max\{N_1, N_2\}$ 时

$$d(x_0, x_0') \le d(x_0, x_n) + d(x_0', x_n) < \frac{1}{2}d(x_0, x_0') + \frac{1}{2}d(x_0, x_0') = d(x_0, x_0')$$

矛盾! 因此极限唯一。

沿用上面记号,对 $\varepsilon = 1$, $\exists N > 0$, 当 n > N 时恒有

$$d(x_n, x_0) < \varepsilon = 1$$

因此,对于任意 m,都有

$$d(x_m, 0) \le d(x_m, x_0) + d(x_0, 0) \le \max \left\{ 1, \max_{1 \le i \le n} d(x_i, x_0) \right\} + d(x_0, 0) < +\infty$$

即 $\{x_n\}_{n=1}^{\infty}$ 有界。

证明以下三条命题等价:

- *A* 是闭集;
- $\bar{A}=A$;
- 若 $\{x_n\}_{n=1}^{\infty} \subset A$ 收敛于 x_0 ,则 $x_0 \in A$ 。

证明. $① \Longrightarrow ②$:

由 A 闭知 A^c 开, 于是 $\forall x \in A^c$, $\exists \varepsilon > 0$, 使得 $B_{\varepsilon}(x) \subset A^c$ 。这说明

$$A^c \cap \bar{A} = \varnothing \Longrightarrow \bar{A} \subset A \Longrightarrow \bar{A} = A$$

 $2 \Longrightarrow 3$:

由 $x_n \to x_0$ 知, $\forall \varepsilon > 0$, $\exists x_n \in B_{\varepsilon}(x_0)$, 这说明

$$B_{\varepsilon}(x_0) \cap A \neq \emptyset \Longrightarrow x_0 \in \bar{A} = A$$

 $3 \Longrightarrow 1$:

假设 A 不闭,则 A^c 不开,即 $\exists x_0 \in A^c$,使得

$$B_{\varepsilon}(x_0) \cap A = \emptyset, \ \forall \, \varepsilon > 0$$

我们取

$$x_n \in B_{\frac{1}{n}}(x_0) \cap A$$

则 $x_n \to x_0$,但 $x_0 \notin A$,矛盾!

3

证明 C[0,1] 可分。

证明. 由 Weierstrass 逼近定理,[0,1] 上的实系数多项式在 C[0,1] 上稠密。另一方面,取定

$$f(x) = \sum_{k=0}^{n} a_k x^k \in \mathbb{R}[x]$$

而 $\forall \varepsilon > 0$, $\exists \{b_k\}_{k=0}^n$, 使得 $|a_k - b_k| < \frac{1}{n+1}$ 。 于是对于

$$g(x) = \sum_{k=0}^{n} b_k x^k \in \mathbb{Q}[x]$$

我们有

$$\sup_{x \in [0,1]} |f(x) - g(x)| = \sup_{x \in [0,1]} \left| \sum_{i=0}^{n} (a_k - b_k) x^k \right| \le \sum_{i=0}^{n} |a_k - b_k| < \varepsilon$$

因此,[0,1]上的有理系数多项式在C[0,1]稠密。

最后只要证明 $\mathbb{Q}[x]$ 可数。记 A_n 为 n 次有理系数多项式,则

$$card(\mathbb{Q}) = \aleph_0 \Longrightarrow card(A_n) = \aleph_0^{n+1} = \aleph_0$$

因此

$$\mathbb{Q}[x] = \bigcup_{n=0}^{\infty} A_n$$

是可数集。

4

证明: 映射 $T:X\to Y$ 连续当且仅当任意开集 $U\subset Y$,都有 $T^{-1}U$ 是 X 中开集。

证明. 记 $\mathcal{O}(X)$ 为 X 中开集的全体。

⇒:

任意取定 $\forall U \in \mathcal{O}(Y)$, 对于 $\forall x_0 \in T^{-1}U$, $\exists \varepsilon > 0$, 使得

$$Tx_0 \in U \Longrightarrow B_{\varepsilon}(Tx_0) \subset U$$

由连续性知, $\exists \delta > 0$,当 $d(x,x_0) < \delta$ 时,恒有 $\rho(Tx,Tx_0) < \varepsilon$,这说明

$$B_{\delta}(x_0) \subset T^{-1}U \Longrightarrow T^{-1}U \in \mathcal{O}(X)$$

现在任取以 x_0 为极限的收敛列 $\{x_n\}_{n=1}^{\infty}$ 。对上述 $\delta > 0$, $\exists N > 0$,当 n > N时,我们有 $d(x_n, x_0) < \delta$ 。这说明 $Tx_n \to Tx_0$ 。

⇐=:

 $\forall \varepsilon > 0$,我们有

$$T^{-1}(B_{\varepsilon}(x_0)) \in \mathcal{O}(X)$$

于是 $\exists \delta > 0$ 使得

$$B_{\delta}(x_0) \subset T^{-1}(B_{\varepsilon}(x_0))$$

从而只要 $d(x,x_0)<\delta$,就有 $\rho(Tx,Tx_0)<\varepsilon$ 。这说明 T 在 x_0 连续,结合 x_0 的任意性即得结论。

5

证明: 映射 T 在 x_0 连续当且仅当任取 $\{x_n\}_{n=1}^{\infty} \subset X$,都有

$$x_n \to x_0 \Longrightarrow Tx_n \to Tx_0$$

证明. ⇒:

若 T 在 x_0 连续, $\forall \varepsilon > 0$, $\exists \delta > 0$,当 $d(x_n, x_0) < \delta$ 时,我们有 $\rho(Tx_n, Tx_0) < \varepsilon$ 。 现在任取以 x_0 为极限的收敛列 $\{x_n\}_{n=1}^\infty$ 。对上述 $\delta > 0$, $\exists N > 0$,当 n > N时,我们有 $d(x_n, x_0) < \delta$ 。 这说明 $Tx_n \to Tx_0$ 。

 \Leftarrow

假设 T 在 x_0 不连续,则 $\exists \varepsilon > 0$, $\exists x_n$ 使得 $d(x_n, x_0) < \frac{1}{n}$,但 $\rho(Tx_n, Tx_0) > \varepsilon$,矛盾!

6

证明离散度量空间完备。

证明. 对任取离散度量空间的一个 Cauchy 列 $\{x_n\}_{n=1}^{\infty}$,则对于 $\varepsilon=\frac{1}{2}>0$, $\exists N>0$,使得 n>N 时

$$d(x_n, x_{n+p}) < \varepsilon \Longrightarrow d(x_n, d_{n+p}) = 0 \Longrightarrow x_n = x_{n+p}, \ \forall \, p > 0$$

这说明 $\{x_n\}_{n=1}^{\infty}$ 以 x_{N+1} 为极限。