Supervised learning

Perceptron

Perceptron 1 / 35

Section 1

The perceptron (regression)

Perceptron 2 / 35

Where we see a first neuron

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

Perceptron 3 / 35

Characterisation

The elements of the **w** vector are called the weights of the perceptron.

Given an input vector x, the output of the perceptron is a linear combination of its input.

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

The set of functions representable by a perceptron is the set of linear functions. That's our hypothesis space \mathcal{H}_{perc} .

An even simpler dataset

Х	Υ	
m^2	Price (€)	
24	102 000	
46	140 000	
50	353 600	
211	892 000	
74	198 000	

Perceptron for predicting the price

We have a single feature (x_1 : squared meters), thus a function representable by a perceptron would have the form:

$$h_w(sqm) = w_0 + w_1 \times x_1$$

where we can interpret:

- w_0 as the base price
- lacksquare w_1 as the price per squared meters

Perceptron 6 / 35

Perceptron for predicting the price

Making an educated guess we could set:

$$w_0 = 10000 \ (\leqslant)$$

 $w_1 = 3000 \ (\leqslant/m^2)$

Perceptron: prediction error

For an example (x,y) and predictor h_w

prediction error
$$=|y-h_w(x)|$$
 (length of red segments) L_2 loss: $L_2(y,\hat{y})=(y-h_w(x))^2$ (squared error)

This leads to the empirical loss (for L_2) over the entire dataset E:

$$EmpLoss_{L_2,E}(h_w) = \sum_{(x,y)\in E} \frac{(y - h_w(x))^2}{|E|}$$

Finding the best hypothesis

I want the hypothesis \hat{h}^* , with the minimum empirical loss:

$$\hat{h}^* = \underset{h_w \in \mathcal{H}_{perc}}{\operatorname{arg\,min}} \ EmpLoss_{L_2, E}(h_w)$$

For the perceptron, this means finding the best weights \hat{w}^* in the weight space.

$$\hat{w}^* = \underset{w}{\operatorname{arg\,min}} \, EmpLoss_{L_2,E}(h_w)$$

Posing $Loss(w) = EmpLoss_{L_2,E}(h_w)$, we obtain:

$$\hat{w}^* = \operatorname*{arg\,min}_{w} Loss(w)$$

Perceptron 9 / 35

Gradient: direction of steepest ascent

In any point w of the function, the gradient defines the direction of steepest ascent:

$$\vec{\nabla}g(w)$$

It can be computed from the partial derivatives:

$$\vec{\nabla}g(w) = \begin{bmatrix} \frac{\delta}{\delta w_0} g(w) \\ \frac{\delta}{\delta w_1} g(w) \\ \vdots \\ \frac{\delta}{\delta w_m} g(w) \end{bmatrix}$$

Figure: Gradient of $f(x, y) = -(\cos^2(x) + \cos^2(y))^2$

Gradient descent

From a point w, compute a new candidate w' by following the direction of steepest descent (opposite of the gradient).

$$w' = w - \alpha \times \vec{\nabla}g(w)$$

The distance traveled is parameterized by the step size α .

Since the function is decreasing in this direction, there is a good chance that

$$g(w') < g(w)$$

Gradient descent

Applying this repeatedly, we get the gradient descent algorithm:¹

 $w \leftarrow$ any value in the parameter space while not converged do $w \leftarrow w - \alpha \times \vec{\nabla} Loss(w)$

Typical convergence criteria: stop when the update did not provide an improvement for the last k iterations (e.g. k=5).

¹Recal that Loss(w) is shortcut for $EmpLoss_{L,E}(h_w)$

Computing the gradient (L_2 loss, single example)

Partial derivative of the L_2 loss for a single example (x, y):

$$\frac{\delta}{\delta w_i} Loss(w) = \frac{\delta}{\delta w_i} (y - h_w(x))^2$$
$$= 2(y - h_w(x)) \times \frac{\delta}{\delta w_i} (y - h_w(x))$$

Applied to our system with a single feature (x_1) we obtain:

$$\frac{\delta}{\delta w_0} Loss(w) = -2(y - h_w(x))$$
$$\frac{\delta}{\delta w_1} Loss(w) = -2(y - h_w(x)) \times x_1$$

Perceptron 13 / 35

Update rules

Updating the weights based on a single example:²

$$w_0 \leftarrow w_0 + \alpha \times (y - h_w(x))$$

$$w_1 \leftarrow w_1 + \alpha \times (y - h_w(x)) \times x_1$$

Updating the weights based on the entire training set E:

$$w_0 \leftarrow w_0 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x))$$
$$w_1 \leftarrow w_1 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_1$$

²Note that the -2 factor from the previous equation is included in α term.

Updating our initial $guess^3$

$$w = [10000, 3000]$$

3
With $alpha = 10^{-5}$

$$w' = [10010.53, 4343.82]$$

Repeating the gradient descent step, we eventually converge to our best solution.

$$\hat{w}^* = [9947.29, 4235.02]$$

I should sell my apartment for:

$$9947.29 + 4235.02 \times 165 = 708725 \in$$

Gradient descent (applied to a perceptron with L_2 loss)

 $w \leftarrow$ any value in the parameter space while not converged do $w_0 \leftarrow w_0 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x))$ for $i \in 1 \dots n$ do $w_i \leftarrow w_i + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_i$

Representation trick

In the previous slides, we always had to deal with the w_0 weight specially because it has no corresponding feature.

We can define an artificial feature x_0 that always has the value 1. And reformulate h_m :

$$h_w(x) = \sum_{i \in [0,m]} w_i \times x_i$$

$$h_w(x) = w \cdot x \quad \text{(dot product)}$$

and the update rule (for L_2 loss):

$$w_i \leftarrow w_i + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_i$$

Section 2

A perceptron for classification

Perceptron 19 / 35

A classification problem

I now want to buy a new apartment to replace the one I just sold. To be reactive I built an automated system that sends me any new announce of an apartment for sale.

- Problem: there are dozens of announces every day and I don't have time to look at them all.
- Solution: build an AI system that will predict whether I will be interested in a particular apartment based on a few of its features. If it predicts that I am not interested, it will discard the announce.

Perceptron 20 / 35

A classification problem: dataset

So far, I collect the following information stating whether an announce that I previously saw was interesting.

X				Y
m^2	Num Rooms	Floor	Price (€)	Interesting
24	1	4	102 000	true
46	3	2	140 000	false
50	3	6	353 600	false
211	5	3	892 000	true
74	3	1	198 000	true

Perceptron 21 / 35

A classification problem: dataset visualization

Perceptron 22 / 35

Our previous perceptron

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

$$h_w(x) = w \cdot x$$

Perceptron 23 / 35

Perceptron for classification

$$h_w(x) = Step(w \cdot x)$$
 where $Step(z) = 1$ if $z \geq 0$ and 0 otherwise

Perceptron 24 / 35

The perceptron as a linear classifier

The perceptron defines a **decision boundary** that separates two classes.

Linearly separable Perfectly classifiable by a perceptron

Not linearly separable **Not** perfectly classifiable by a perceptron

Perceptron

25 / 35

The step function

$$h_w(x) = Step(w \cdot x)$$
 where $Step(z) = 1$ if $z \ge 0$ and 0 otherwise

We now have a function that we could train in order to output:

- 1 if the example is in the class (interesting)
- 0 otherwise (not interesting)

Problem: the function is:

- non-differentiable in 0
- the gradient is 0 everywhere else

Perceptron 26 / 35

The perceptron learning rule

Nevertheless, an rule was proposed the **perceptron update rule** (here for a single example (x, y)):

$$w_i \leftarrow w_i + \alpha \times (y - h_w(x)) \times x_i$$

which is identical to the update rule for linear regression (for L_2).

The rule is show to converge to a solution when the data is linearly separable.

Perceptron 27 / 35

The perceptron learning rule (under non separable data)

However the perceptron learning rule is unstable when the data is not linearly separable:

Perceptron 28 / 35

Replacing the step function

Turns out we can replace the step function with one with nicer properties.

$$Logistic(z) = \frac{1}{1 + e^{-z}}$$

and redefine our hypothesis function:

$$h_w(x) = Logistic(w \cdot x) = \frac{1}{1 + e^{-w \cdot x}}$$

Often called the logistic regression.

Perceptron 29 / 35

Back on track: gradient descent

Logistic(x) is differentiable on $]-\infty,\infty[$. This allows us to reuse gradient descent for training:

$$w \leftarrow w - \alpha \times \vec{\nabla} Loss(w)$$

For an L_2 loss we obtain the update rule:

$$w_i \leftarrow w_i + \alpha(y - h_w(x)) \times h_w(x) \times (1 - h_w(x)) \times x_i$$

Perceptron 30 / 35

Training the logistic regression (under non-separable data)

Compared to the step function, the logistic regression tends to converge more quickly and reliably in the presence of noisy and non-separable data.

Perceptron 31 / 35

Section 3

Synthesis

Perceptron 32 / 35

Synthesis

We saw two classes of perceptrons:

- linear regressor
- linear classifier

Both can be trained with gradient descent in attempt to minimize the loss.

In the next course, the perceptron will be a neural unit in a neural network.

Exercises

■ For each of the following datasets, propose a perceptron that would correctly classify it.

Χ	Υ	
-1	Flower	
2	Cat	
1	Flower	
0	Flower	

Χ	Y	
-1	Flower	
2	Cat	
1	Cat	
0	Cat	

Χ	Υ
-1	Flower
2	Flower
1	Cat
0	Cat

Perceptron

Exercises

- I You have N examples in your dataset, each with M features. Give an estimate of the computational cost of a single update step. Does it scale to large-scale datasets (e.g. $N = 10^5, M = 10^4$)
- 2 For the linear regression (regression perceptron), are we guaranteed to find the optimal weights with gradient descent?
- 3 What's a reasonable loss for spam detection? (you can make some assumptions about the proportion of spam)
- What's the update formula of a regression perceptron using the L_1 loss?