DRINKING WATER SURVEILLANCE PROGRAM

COBOURG WATER TREATMENT PLANT

REPORT FOR 1991 AND 1992

COBOURG WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

MARCH 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

COBOURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Cobourg water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration, and disinfection. This plant has a design capacity of $36.3 \times 1000 \, \text{m}^3/\text{day}$. The Cobourg water treatment plant serves a population of approximately 15,000.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Cobourg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

	SITE								
SCAN	RAW TESTS	RAW TESTS POSITIVE %POSITIVE		TESTS	TREATED TESTS POSITIVE %POSITIVE	>0S111VE	SHI	SHIRLEY ST TESTS POSITIVE %POSITIVE	SITIV
BACTER I OLOGICAL	39	25	79	13	2	38	12	4	33
CHEMISTRY (FIELD)	07	07	100	84	82	26	99	63	95
CHEMISTRY (LABORATORY)	328	272	82	336	242	72	745	373	78
METALS	336	102	30	335	%	28	206	202	39
CHLOROAROMATICS	154	0	0	140	0	0	126	0	
CHLOROPHENOLS	9	0	0	9	0	0	•	•	
PESTICIDES AND PCB	358	0	0	336	0	0	198	0	
PHENOLICS	14	-	7	14	-	7	٠	٠	
POLYAROMATIC HYDROCARBONS	51	0	0	34	0	0	34	0	
SPECIFIC PESTICIDES	. 58	0	0	56	0	0	٠		
VOLATILES	750	0	0	420	99	13	358	87	-
RADIONUCLIDES	7	-	14	7	2	28	٠		
	1,779	177		1,751	787		1,742	069	

DRINKING WATER SURVEILLANCE PROGRAM

COBOURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated at the Cobourg water treatment plant in June, 1991. This is the first published report for the combined years of 1991 and 1992.

PLANT DESCRIPTION

The Cobourg water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, clarification (upflow clarifier), filtration, and disinfection. This plant has a design capacity of $36.3 \times 1000 \, \text{m}^3/\text{day}$. The Cobourg water treatment plant serves a population of approximately 15,000.

The sample day flows ranged from 10.5 x 1000 m^3/day to 17.9 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it

was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemicals dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- -THE TREATED AND DISTRIBUTED WATER;
- -ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- -POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 3 of 18 treated and distributed water samples with a maximum reported value of 17.5°C .

CHEMISTRY (LABORATORY)

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in all 25 treated and distributed water samples with a maximum reported value of 138.4 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 2 of 26 treated and distributed water samples with a maximum reported value of 140 ug/L.

The presence of elevated lead in the standing samples in the distribution system indicates that household taps should be flushed, until the coolest water temperature is obtained, before water is used for consumption. The concentration of lead and other metals can increase while the water is standing in the service line and home plumbing. The health related ODWO for lead is applied to the free flowing sample.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs have been revised to replace the aesthetic phenolic objective with objectives for specific phenols.

Phenolics were found at a positive level in 1 of the 14 treated and distributed water samples analyzed. The maximum observed level was 1.4 ug/L.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples

from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 26 treated and distributed water samples analyzed. The maximum observed level was 29.4 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available quidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Cobourg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

COBOURG WTP 220000825

UTM #:

177285954870450

DISTRICT:

PETERBOROUGH CENTRAL

REGION: DISTRICT OFFICER:

J. BOURQUE

SUPERINTENDENT:

C. ROSS

ADDRESS:

6 DARCY ST.

COBOURG, ONTARIO

416-372-3612

MUNICIPALITY: AUTHORITY: COBOURG

MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

7.710 (X 1000 M3)

DESIGN CAPACITY:

36.370 (X 1000 M3/DAY)

RATED CAPACITY: - (X 1000 M3/DAY)

MUNICIPALITY POPULATION

COBOURG 15,000

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
TOTAL CHLORINE RESIDUAL	LAB TREATED TREATED	EVERY 3 DAYS CONTINUOUS
РН	LAB RAW LAB SETTLED LAB FILTERED	VARIABLE VARIABLE VARIABLE
TURBIDITY	LAB RAW LAB SETTLED LAB FILTERED CLARIFIER FILTERED	WEEKLY WEEKLY CONTINUOUS CONTINUOUS

DRINKING WATER SURVEILLANCE PROGRAM COROURG MTP SAMPLE DAY CONDITIONS

3.00 3.00 2.25 24.00 1.20	FLOW (1000M3) 12.040 17.921 13.870 12.125 12.992 13.872	CHLORINE	COMBULATION ALUM LIQUID 36.00 23.90 13.00 9.00 15.40	CHLORINE CHLORINE .52 .56 1.30 1.00 1.00
	13.630 15.035 16.035 .000 12.620 10.550	20 28. 28. 27.	24.07 19.30 37.90 32.90 39.60 30.20	1.20 1.30 1.00 1.00

, KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
! EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
! PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
! RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken

No Data: Result Unreliable

! UN

!UR No Data: Unpreserved Sample Required

A Approximate Value

A3C Approximate, Total Count Exceeded 300 Colonies

A> Approximate Value, Exceeded Normal Range

APS Additional Peak, Less Than, Not Priority Pollutant

ARO Additional Information In Laboratory Report

CRO Calculated Result Only

NAF Not All Required Tests Found

RID Ioncal Calculated on Incomplete Data Set

RMP P and M-Xylene Not Separated

RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

	MIP
	COBOURG WTP
	AND 1992 C
	AND
	1991
TABLE 4	E PROGRAM 1991
	DRINKING WATER SURVEILLANCE PRO
	WATER
	DRINKING

DIST. SYSTEM SHIRLEY ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST, SYSTEM RAW TREATED SHIRLEY ST FREE FLOW

GUIDELINE = 0 (A1)		•									•			GUIDELINE = 500 (A3)								•	•		•	•	
DET'N LIMIT = 0	•			٠										DET'N LIMIT = 0	<=> 7	3 <=>	2 (=>	-	20	^=> •	<=> 2	21	2 <=>	• !		92) <=>
DET'N														DET 'N	\=>	8 <=>	3 <=>	5 ce>	<=> 0	1 0	13	17	2 <=>	2 (=)	14	230	(i)
CT/100ML)	BDL	0	7	BDL	-		S	0	0	0	0	M	0	MF (CT/ML)					•	•			,	•			
FECAL COLIFORM MF	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 SEP.	1992 NOV	STANORO PLATE CNT MF (CT/ML	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 SEP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	UKINKING WATER	SURVEILLANCE PR	URINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBSONG WIT
ATMENT PLANT	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM	DIST. SYSTEM	DIST. SYSTEM
	TREATED	SHIRLEY ST	SHIRLEY ST
	,	FREE FLOW	STANDING

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP

DIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = N/A		• 60	000.	.020		•	000.	.200	.010	.200	•		•		.100	GUIDELINE = N/A		.200	.010			.200	.200	.020	.200					.100
DIST SHIR STAN	0																0														
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT =	000	•			.100	.200			•					.100		DET'N LIMIT =	.200			.200	.100			•	٠	•	•		.100	•
TREATMENT PLANT TREATED		000		005.	300	.200	.200	.200	.200	.100	.200	.100	000.	.300	.100	.200		.200	000.	.200	007	007	009*	007	.500	.420	.500	009.	.300	007.	007.
TREATMENT PLANT RAW	CHEMISTRY (FIELD)		•					•	•	•		•					FREE (MG/L)								•			•	•	•	
	CHEMIST CHLORINE (COMB) (MG/L		NOC 1 441	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV	FLD CHLORINE FREE (MG/L	1991 JUN		1991 AUG			1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

			•	
	GUIDELINE = N/A		,	GUIDEL INE = 6.5-8.5 (A4)
DIST. SYSTEM SHIRLEY ST STANDING		. 200		7.300 7.400 7.200 7.200 7.100 7.100
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0	008.	. 200	DET'N LIMIT = N/A 7.400 7.200 7.400 7.400
TREATMENT PLANT TREATED	(FIELD)	500 500 500 500 500 600 600 600 600 600	009. 009. 009. 009.	7.200 7.400 7.400 7.200 7.200 7.200 7.200 7.200 7.000 7.000 7.300
TREATMENT PLANT RAW	-	,		7.400 7.600 7.600 7.600 7.400 7.400 7.400 7.400 7.400 7.400 7.400 7.400 7.400 7.600 7.600 7.600 7.600
	CHEMISTR FLD CHLORINE (TOTAL) (MG/L	1991 JUL 1991 AUG 1991 SEP 1991 OCT 1992 JAN 1992 FEB	1992 MAR 1992 APR 1992 MAY 1992 JUN 1992 SEP 1992 NOV	FLD PH (DHNSLESS) 1991 JUN 1991 JUL 1991 AUG 1991 OCT 1991 OCT 1992 ANN 1992 ARR 1992 APR 1992 ANN 1992 ANN 1992 ANN 1992 ANN 1992 ANN 1992 OUV

	= 15 (A3)	GUIDELINE = 1.0 (A1)
OIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = 15 (A3)	11,000 14,000 2,500 3,200 3,200 3,200 3,000 14,000 14,000 1,200 2,200 2,200 2,200 2,200 3,200 1,
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = N/A	16.000 17.500 17.500 16.500 16.500 250 240 400
TREATMENT PLANT TREATED	ELD)	4,000 13,000 11,000 12,000 12,000 5,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 170 180 170 180 180 180 180 180 180 180 180 180 18
TREATMENT PLANT RAW	CHEMISTRY (FIELD) E (DEG.C)	1,500 6,000 10,000 7,000 10,000 2,000 2,000 2,000 1,600 1,600 1,600 1,600 1,200 1,200 1,200 2,700 1,200 1,200 1,200 1,200 2,700 1,20
	CHEM FLD TEMPERATURE (DEG.C	1991 JUN 1991 JUL 1991 JUL 1991 OCT 1992 JAN 1992 JAN 1992 JAN 1992 JUN 1992 JUN 1992 JUN 1991 JUL 1991 JUL 1991 OCT 1991 OCT 1991 OCT 1991 OCT 1992 JUN 1992 FEB 1992 FEB 1992 JUN 1992 JUN 199

DIST. SYSTEM SHIRLEY ST

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW SHIRLEY ST

	0 0 0 0 0	GUIDELINE = 30-500 (A4)	-	00	00		00	00	00	00	00		00	•	00	00	GUIDELINE = 100 (F2)		00	00		00	. 06	00	8	06		00		00	50	GUIDELINE = 0.2 (A1)	
STANDING	1			96.2	97.300		93.100	94.600	92.4	93.600	7.76		88.700		89.600	93.1			40.4	40.200		39.0	39.6	38.6	36.9	41.000		39.600		39.500	39.850	_	
FREE FLOW		DET'N LIMIT = 0.2	007.96	95.800	97,700	006.96	93.000	94.500	92,900	006*96	94.700		87,500		009.06		DET'N LIMIT = 0.20	39.400	40.600	40.200	40.700	38.600	40.100	37.000	36.500	41.000		39.000		39.300	•	DET'N LIMIT = 0.001	
	LABORATORY)		96.300	95.100	97.100	93.800	93.800	94.500	92,000	92.300	93.400	91.200	87.300	92.200	86.400	91.600	5 a a a a a a a a a a a a a a a a a a a	40.000	39.800	40.800	41.000	37.600	40.000	38.500	35,900	40.500	39.900	39.100	38.700	37,500	39.500	, s	BOL
	CHEMISTRY (LABORATORY)	^	102.500	102.600	102,100	101,000	97.800	100.000	97.500	95.600	006.66	99.500	006.66	102.100	009.66	100.300	_	38.600	40.200	40.400	41.200	38.500	39.900	37.800	35.400	39.800	38.950	39.000	38.800	38.200	38.250	^	BOL
		ALKALINITY (MG/L	1991 JUN			1991 SEP				1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN		1992 NOV	CALCIUM (MG/L	1991 JUN	-		1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR		1992 MAY			1992 NOV	CYANIDE (MG/L	20 SAMPLES

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP

	GUIDELINE = 250 (A3)		GUIDELINE = 5 (A3)
DIST. SYSTEM SHIRLEY ST STANDING	-	23.000 24.000 23.700 23.500 23.600 22.600 22.600 22.600 22.600 22.600 22.600	1.000 1.500 1.000 1.000 1.000 1.000
DIST, SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.20	23, 000 23, 000 22, 500 22, 500 23, 300 23, 500 22, 500 22, 500 22, 500	.500 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1 1.000 <1
TREATMENT PLANT TREATED		23.000 23.800 23.800 23.800 23.000 23.000 23.000 23.000 23.000 23.000 23.000 23.000	500 5 500 5 500 6 500 6 500 6 500 6 500 6 60 6
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	21.800 22.000 21.700 21.700 22.700 22.700 22.700 21.800 21.800 21.600 21.600 21.600	1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,000 <1 1,500 <1 1,5
	CHLORIDE (MG/L	1991 JUN 1991 JUN 1991 AUG 1991 OCT 1992 FEB 1992 PAR 1992 MAR 1992 MAR 1992 HAR 1992 HAR 1992 HAR 1992 HAR 1992 HAR	COLOUR (HZU 1991 JUIN 1991 JUIN 1991 AUG 1992 JAN 1992 ARR 1992 MR 1992 MR 1992 MR 1992 ARR 1992 MR 1992 MR 1992 ARR 1992 MR 1992 ARR 1992 ARR 1992 ARR 1992 ARR

	GUIDELINE = 400 (F2)															GUIDELINE = 5.0 (A3)														
DIST. SYSTEM SHIRLEY ST STANDING	GUIDEL	•	327	321		313	319	333	331	327		320		319	326	GUIDEI		1.700	1.600		1.700	1.600	1.500	1.400	1.600		1.300		1.400	1.400
DIST, SYSTEM D SHIRLEY ST SI FREE FLOW S	DET'N LIMIT = 1.0	325	326	322	325	313	318	332	328	328		318	•	319		DET'N LIMIT = 0.10	1.300	1.700	1.700	1.600	1.800	1.700	1.500	1.200	1.400		1.300	•	1,300	٠
TREATMENT PLANT TREATED	BORATORY)	325	325	321	323	314	318	333	328	324	318	318	329	316	323		1,500	1,600	1,700	1.300	1.900	1.700	1.500	1.400	1.500	1.500	1.200	1.300	1.500	1.400
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	321	320	320	319	315	315	327	354	316	311	311	321	309	314	ON (MG/L)	1.800	1.800	1.800	1.600	1.800	1.800	2.000	1.600	2.100	2.000	2.100	1.600	2.000	1.900
	CONDUCTIVITY (UMHO/CM				1991 SEP					1992 MAR	1992 APR	1992 MAY		1992 SEP		DISS ORG CARBON (MG/L	1991 JUN			1991 SEP		1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR			1992 SEP	

_	
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP	Σ
ROGKAM 1991 AND	DIST. SYSTEM SHIRLEY ST STANDING
SURVEILLANCE P	DIST. SYSTEM SHIRLEY ST FREE FLOW
DRINKING WATER	REATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED THE SHIRLEY ST FREE FLOW
	TREATMENT PLANT RAW

GUIDELINE = 1.5 (A1)		GUIDELINE = 80-100 (A4)	
GUIDELIN	. 120 . 100 . 100 . 120 . 120 . 120 . 120	. 100 . 080 GUIDELIN	135,000 132,000 131,000 131,200 131,200 137,000 134,000 134,000
DET'N LIMIT = 0.01	.100 .100 .120 .120 .120 .120 .120	.100 	133.000 135.000 137.600 137.600 134.400 126.000 138.000 132.000
CHEMISTRY (LABORATORY))	1.20	.120	135.000 135.000 136.000 138.000 133.500 137.000 137.000 137.000 137.000 137.000 137.000
CHEMISTRY (100 120 120 120 120 120 120 120 120 120	140	131.000 135.000 136.000 131.300 134.700 125.000 135.000 132.000 132.000 131.000
FLUORIDE (MG/L	1991 JUN 1991 JUL 1991 SEP 1991 OCT 1991 OCT 1992 PEB 1992 PEB 1992 PEB 1992 ARR		1991 JUN 1991 JUL 1991 SEP 1991 SEP 1991 NOV 1992 JAN 1992 ARR 1992 ARR 1992 ARR 1992 JUN 1992 SEP 1992 SEP

	OIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = N/A		1.689 NAF	2.968	•	.487 NAF	1.820	1,081	3.684	2.683	•	.923		1.410	970 1	1	GUIDELINE = 10 (F2)	•	1.400	1.500		1.490	1.380	1.500	1.470	1.570		1.520		1.510	1.513
•	DIST. SYSTEM DIS SHIRLEY ST SHI FREE FLOW STA	DET'N LIMIT = N/A	.288	1.972 NAF	5.999	1.449 NAF	.585 NAF	417.	3,343	696.7	2.678		1.735	•	606.	TAM OOO	KE 000.	DET'N LIMIT = 0.01	1.550	1.400	1.450	1.370	1.490	1.410	1.410	1.460	1.550	•	1.530		1.500	•
	TREATMENT PLANT TREATED		1.408 NAF	.885 NAF	1.298	1.484 NAF	2,233	1.105	1,706	4.127	2.691	1.309	1.837	.892 NAF	5.00	950		_	1.500	1.400	1.550	1.390	1.460	1.410	1.450	1.480	1.560	1.524	1.530	1.640	1.535	1.497
	TREATMENT PLANT	CHEMISTRY (LABORATORY)	1.850 NAF	.207 NAF	1,798	1.440 NAF	1.883	860.	1.775	600.7	3,123	896.	.054	.740 NAF	.650	1 555		^	1.600	1.450	1.500	1.380	1.460	1.390	1.450	1.400	1.520	1.523	1.540	1.490	1.520	1.499
	⊢œï	IONCAL (DMNSLESS	1001		1991 AUG					1992 FEB		1992 APR						POTASSIUM (MG/L	1991 JUN	1991 JUL	_	1991 SEP				1992 FEB				1992 JUN		1992 NOV

⊢ ₩	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM SHIRLEY ST FREE FLOW	DIST. SYSTEM SHIRLEY ST STANDING	
:	CHEMISTRY (LABORATORY)	BORATORY)			
LANGELIERS INDEX	(DMNSLESS)		DET'N LIMIT = N/A		GUIDELINE = N/A
	727				
	.472 NAF	.174 NAF		.126 NAF	A.F.
	.322			. 189	
	.386		. 263		
	.393			.307	
	.358	760.		.180	
	.373	.255		. 248	
	.506	.356		.364	
	.537	. 294		.314	
	925.	.278			
	867.	070.	060.	.122	
	.394	.218			
	.428	.228	.248	.176	
	.431	. 125		. 136	
MAGNESIUM (MG/L	^		0ET'N LIMIT = 0.1		GUIDELINE = 30.0 (F2)
	8.300	8.500	8.600		
	8.400	8.500	8.200	8.300	
	7.900	7.900	7,700	7.800	
	8.550	8.750	8.700	٠	
	8.550	8.650	8.600	8.300	
	8.550	8.200	8.300	8.350	
	8.500	8.750	8.600	8.600	
	8.370	8.620	8.470	8.430	
	8.710	8.680	8.620	8.650	
	8.450	8.420	•		
	8.480	8.480	8.510	8.410	
	8.550	8.540			
	8.600	8.730	8.610	8.610	•

	GUIDELINE = 200 (A4)					GUIDELINE = 0.05 (F2)	
DIST. SYSTEM SHIRLEY ST STANDING	5	11.400	12.000	12.200	12.000	1	
DIST. SYSTEM D SHIRLEY ST S FREE FLOW S	DET'N LIMIT = 0.20	12.400 11.200 12.000	11.500 12.200 11.200	12.300	12.000	DET'N LIMIT = 0.002	108 100.00.00.00.00.00.00.00.00.00.00.00.00.
TREATMENT PLANT TREATED	1 1 1 1 1 1	12.600 11.600 11.800	11.300 11.800 11.000	12.100 12.800 12.010	12.100 11.990 11.620	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	801 801 902 1002 1002 1002 1003 1004 1006 100
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	12.400 11.800 12.000	11.200	12.700 12.700 12.010	11.900 12.100 11.580	(MG/L)	.002 4 .026 4 .008 4 .006 4 .006 4 .006 4 .007 4 .008 4 .008 4 .008 4
	SOOIUM (MG/L		1991 SEP 1991 OCT 1991 NOV			AMMONIUM TOTAL (MG/L	1991 JUN 1991 JUL 1991 AUG 1991 SEP 1991 NOV 1992 JAN 1992 HAR 1992 ARR 1992 ARR 1992 ARR 1992 ARR 1992 AU 1992 AU

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

DIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = N/A		200	.180		.190	.150	.170	.140	.180		.140	•	.150	.170	GUIDELINE = 6.5-8.5 (A4)		7.980	8.040		8.190	8.050	8.140	8.270	8.170		8.020		8.070	8.010
DIST. SYSTEM DIST SHIRLEY ST SHIR FREE FLOW STAN	DET'N LIMIT = 0.02	.270	.220	.170	.130	.170	.140	.150	.200	.160		.130	•	.170		DET'N LIMIT = N/A	8.170	8.010	8.040	8.120	8.160	8.070	8.160	8.330	8.210		8.000	. •	8.140	
TREATMENT PLANT TREATED	(LABORATORY)	.210	.180	.200	.130	.170	.130	.170	.120	.200	.150	.160	.150	.140	.150	1 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.280	8.040	7.980	8.140	8.240	7.960	8.150	8.280	8.160	8.160	7.950	8.110	8.160	8.010
TREATMENT PLANT RAW	₹.	.370	.250	.220	.160	.270	.190	.250	.190	.220	.220	.220	.300	. 210	.280		8.320	8.300	8.150	8.210	8.260	8.200	8.250	8.420	8.380	8.330	8.350	8.240	8.290	8.290
	CHEMIS CHEMIS NITROGEN TOT KJELD (MG/L	1991 JUN		1991 AUG							1992 APR				1992 NOV	PH (DMNSLESS)	1991 JUN		1991 AUG				1992 JAN			1992 APR				1992 NOV

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 CUBCORG WIF	OIST. SYSTEM SHIRLEY ST STANDING	005 GUIDELINE = N/A						•				•	•			02 GUIDELINE = 0.40 (F2)								•				
SURVEILLANCE PROGR.	DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.0005														DET'N LIMIT = 0.002									•			
DRINKING WATER	TREATMENT PLANT TREATED		BDL OOO <i< td=""><td>108</td><td>108</td><td>T> 000.</td><td>108</td><td>108</td><td>BOL</td><td>8D1</td><td>108</td><td>801</td><td>BOL</td><td>80F</td><td>BOL</td><td>5 5 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>.002 <1</td><td>. 002 <t< td=""><td>BDL</td><td>BDL</td><td>.005 <1</td><td>BOL</td><td>BDL</td><td>BDL</td><td>T> 400.</td><td>. B0L</td><td>.002 <t< td=""><td>. 000 ×1</td></t<></td></t<></td></i<>	108	108	T> 000.	108	108	BOL	8D1	108	801	BOL	80F	BOL	5 5 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.002 <1	. 002 <t< td=""><td>BDL</td><td>BDL</td><td>.005 <1</td><td>BOL</td><td>BDL</td><td>BDL</td><td>T> 400.</td><td>. B0L</td><td>.002 <t< td=""><td>. 000 ×1</td></t<></td></t<>	BDL	BDL	.005 <1	BOL	BDL	BDL	T> 400.	. B0L	.002 <t< td=""><td>. 000 ×1</td></t<>	. 000 ×1
	TREATMENT PLANT RAW	CHEMISTRY (LABORATORY) REACT (MG/L)	T> 100.	1> 000	1> 000.	T> 000.	T> 000.	T> 100.	BOL	108	108	108	108		.001 <t< td=""><td>AL (MG/L)</td><td>.015</td><td>T> 600°</td><td>T> 400.</td><td>T> 500.</td><td>.012</td><td>T> 700.</td><td>.012</td><td>T> 700.</td><td>T> 800.</td><td>.002 <t< td=""><td>T> 700.</td><td>.018</td></t<></td></t<>	AL (MG/L)	.015	T> 600°	T> 400.	T> 500.	.012	T> 700.	.012	T> 700.	T> 800.	.002 <t< td=""><td>T> 700.</td><td>.018</td></t<>	T> 700.	.018
		CHEMISTR PHOSPHORUS FIL REACT (MG/L		1991 JUL			1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV	PHOSPHORUS TOTAL (MG/L	1001				1991 OCT		1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	 1992 JUN

	GUIDELINE = 500 (A3)															GUIDELINE = 500 (A3)														
DIST. SYSTEM SHIRLEY ST STANDING	GUIDEL		213.000 CRO	209,000 CRO		203.000 CRO	207.000 CRO	216.000 CRO	215.000 CRO	213.000 CRO		208.000 CRO		207.000 CRO	212.000 CRO		·	33.130	31.250		31.430	32.440	32.730	32.390	33.470		37.010		35.740	35.890
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = N/A	211.000 CRO	212,000 CRO	209,000 CRO	211.000 CRO	203.000 CRO	207.000 CRO	216.000 CRO	213.000 CRO	213.000 CRO		207.000 CRO		207.000 CRO		DET'N LIMIT = 0.20	30,830	33.610	30.890	32.380	31.770	32.080	32.550	32.140	33.400	•	36.240		35.030	
TREATMENT PLANT TREATED	(BORATORY)	211.000 CRO	211,000 CRO	209,000 CRO	210.000 CRO	204.000 CRO	207.000 CRO	216.000 CRO	213.000 CRO	211,000 CRO	207.000 CRO	207.000 CRO	214.000 CRO	205.000 CRO	210.000 CRO		30,600	33.050	30.980	33.760	31.720	31.360	34.230	32,100	33.660	34.220	36.080	34.620	36.300	35.240
TREATMENT PLANT RAW	CHEMISTRY (LABORATORY)	209.000 CRO	208,000 CRO	208.000 CRO	207.000 CRO				211.000 CRO	205.000 CRO	202.000 CRO	202.000 CRO	209.000 CRO	201.000 CRO	204.000 CRO	(26.820	26.890	27.460	27.610	30.680	27.910	28.400	26.610	26.590	25.990	26.410	25.830	26,180.	27.100
	RESIDUE FILTRATE	1001 JUN			1991 SEP			1992 JAN							1992 NOV	SULPHATE (MG/L	1991 JUN	1991 JUL						1992 FEB			1992 MAY			1992 NOV

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

DIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = 1.0 (A1)		.210	.240		.280	.270	.180 <	.100 <1	.200 <⊺		.140 <t< th=""><th></th><th>.300</th><th>.220 <t< th=""><th></th></t<></th></t<>		.300	.220 <t< th=""><th></th></t<>	
DIST. SYSTEM DIST SHIRLEY ST SHIF FREE FLOW STAN	DET*N LIMIT = 0.05	090.	.150	.260	120 <1	. 250	.180 <	. 160 <t< td=""><td>T> 090.</td><td>.150 <t< td=""><td></td><td>180 <t< td=""><td></td><td>.760</td><td>•</td><td></td></t<></td></t<></td></t<>	T> 090.	.150 <t< td=""><td></td><td>180 <t< td=""><td></td><td>.760</td><td>•</td><td></td></t<></td></t<>		180 <t< td=""><td></td><td>.760</td><td>•</td><td></td></t<>		.760	•	
TREATMENT PLANT TREATED	(LABORATORY)	.110	.130	.230	.060 <	.220 <	.180 <t< td=""><td>.210 <t< td=""><td>1> 090.</td><td>.240 <7</td><td>1> 061.</td><td>1> 071.</td><td>.240 <t< td=""><td>1> 021.</td><td>. 140 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td>1> 090.</td><td>.240 <7</td><td>1> 061.</td><td>1> 071.</td><td>.240 <t< td=""><td>1> 021.</td><td>. 140 <t< td=""><td></td></t<></td></t<></td></t<>	1> 090.	.240 <7	1> 061.	1> 071.	.240 <t< td=""><td>1> 021.</td><td>. 140 <t< td=""><td></td></t<></td></t<>	1> 021.	. 140 <t< td=""><td></td></t<>	
TREATMENT PLANT RAW	CHEMISTRY (LAE	1.400	1.000	.880	.950	5,000	2.400	2.600	1.330	056	1.160	2.700	1.610	1.670	5.800	
	TURBIDITY (FTU		1991 JUL									1992 MAY		1992 SEP		

	GUIDELINE = N/A				SUIDELINE = 100 (A4)
DIST. SYSTEM SHIRLEY ST STANDING	GUIDELI	80L 80L	80L 80L .060 <7	BO. BO. BO.	25.000 90.000 72.000 34.000 14.000 40.000 34.000 34.000 34.000
DIST. SYSTEM DIST SHIRLEY ST SHIR FREE FLOW STAN	DET'N LIMIT = 0.05	108 108 108	108 108 108	80i 80i 80i	DET'N LIMIT = 0.10 59.000 59.000 100.000 69.000 61.000 38.000 38.000 34.000 56.000
TREATED PLANT DISTREATED FREI	0ET*	108 801 108	108 108 108	708 708 708 708	57.000 67.000 86.000 140.000 79.370 <1 43.000 33.000 37.000 38.000 39.000 39.000
TREATMENT PLANT TRI	METALS)	108 801 801	108 108 108 108	108 108 108 108	7,000 13,000 7,900 19,000 34,000 35,000 55,000 7,200 7,200 7,200 9,200 9,200 31,000
<u>∓</u>	SILVER (UG/L	1991 JUN 1991 JUL 1991 AUG	1991 SEP 1991 OCT 1992 NOV 1992 FEB 1992 MAR	1992 APR 1992 MAY 1992 JUN 1992 SEP 1992 NOV	ALUMINUM (UG/L 1991 JUN 1991 JUL 1991 JUL 1991 SEP 1991 OCT 1992 JAN 1992 FEB 1992 APR 1992 MAR 1992 MAR 1992 LIN 1992 CEP 1992 CEP 1992 CEP 1992 CEP 1992 CEP

	5 (A1)															000 (A2)														
	GUIDELINE = 25 (A1)															GUIDELINE = 1000 (A2)														
_	100		~	~		~	₽		₽			~		~	~	GUID														
DIST. SYSTEM SHIRLEY ST STANDING		•	.150	T> 097.	•	. 560	075	BDL	.420 <t< td=""><td>80F</td><td>•</td><td>. 900 <t< td=""><td>•</td><td>.280 <</td><td>.510</td><td></td><td>•</td><td>23.000</td><td>24.000</td><td>٠</td><td>21.000</td><td>24.950</td><td>24.000</td><td>22.000</td><td>23.000</td><td>•</td><td>26.000</td><td>•</td><td>24.000</td><td>24.000</td></t<></td></t<>	80F	•	. 900 <t< td=""><td>•</td><td>.280 <</td><td>.510</td><td></td><td>•</td><td>23.000</td><td>24.000</td><td>٠</td><td>21.000</td><td>24.950</td><td>24.000</td><td>22.000</td><td>23.000</td><td>•</td><td>26.000</td><td>•</td><td>24.000</td><td>24.000</td></t<>	•	.280 <	.510		•	23.000	24.000	٠	21.000	24.950	24.000	22.000	23.000	•	26.000	•	24.000	24.000
SHI	9															05														
YSTEM ST OW	DET'N LIMIT = 0.10	.330 <t< td=""><td>.150 <t< td=""><td>T> 097.</td><td>.310 <t< td=""><td>.610 <t< td=""><td>.320 <t< td=""><td>80L</td><td>.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>T> 097.</td><td>.310 <t< td=""><td>.610 <t< td=""><td>.320 <t< td=""><td>80L</td><td>.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 097.	.310 <t< td=""><td>.610 <t< td=""><td>.320 <t< td=""><td>80L</td><td>.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.610 <t< td=""><td>.320 <t< td=""><td>80L</td><td>.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.320 <t< td=""><td>80L</td><td>.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 L	.330 <t< td=""><td>.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<></td></t<>	.140 <t< td=""><td></td><td>.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<></td></t<>		.670 <t< td=""><td></td><td>.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<></td></t<>		.350 <t< td=""><td>.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<></td></t<>	.400 <t< td=""><td>DET'N LIMIT = 0.05</td><td>.000</td><td>000.</td><td>000.</td><td>23.000</td><td>.000</td><td>.120</td><td>000:</td><td>000.</td><td>000</td><td></td><td>23.000</td><td>•</td><td>24.000</td><td>000.</td></t<>	DET'N LIMIT = 0.05	.000	000.	000.	23.000	.000	.120	000:	000.	000		23.000	•	24.000	000.
DIST. SYSTEM SHIRLEY ST FREE FLOW	פביא נו															DET 'N LI	20	22	77	23	ຂ	5	22	2	54		23		77	2
LANT	_	~	<u>`</u>		₽	, ,	.	~	, <	<u>.</u>		~		~	.280 <t< td=""><td>-</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></t<>	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
TREATMENT PLANT TREATED		.340	.170	7490	700	.710	.550	. 160	300	.310	108 101	.590	B01	.230	.280		21.000	22.000	23.000	22.000	21.000	24.060	22,000	20.000	24.000	20.000	24.000	24.000	23.000	22.000
TREATME TREATED																														
LANT		.	<u>-</u>						_			_	.710 <t< td=""><td>.950 <t< td=""><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></t<></td></t<>	.950 <t< td=""><td>_</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td></t<>	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
TREATMENT PLANT RAW	METALS)	.830	.610	.890	.91	.910	BDL	.870	1.100	1.000 <t< td=""><td>.610</td><td>1.300</td><td>.7</td><td>.950</td><td>1.100</td><td></td><td>22.000</td><td>22.000</td><td>24.000</td><td>24.000</td><td>21.000</td><td>24.740</td><td>24.000</td><td>22.000</td><td>26.000</td><td>22.000</td><td>25.000</td><td>26.000</td><td>23.000</td><td>24.000</td></t<>	.610	1.300	.7	.950	1.100		22.000	22.000	24.000	24.000	21.000	24.740	24.000	22.000	26.000	22.000	25.000	26.000	23.000	24.000
TREA	2 ^															^														
	LUG/L	NAC	705	AUG	SEP	100	NOV	JAN	FEB	MAR	APR	MAY	NOS NOS	SEP	NOV	n	NON	Ju	AUG	SEP	001	NOV	JAN	FEB	MAR	APR	MAY	NO.	SEP	٠ ا
	ARSENIC (UG/L	1991		18						1992	1992	1992				BARIUM (UG/L	1991	1991						1992						1992

	GUIDELINE = 5000 (A1)																GUIDELINE = 6800 (D4)														
DIST. SYSTEM SHIRLEY ST STANDING	109			33.000	24.000		28.000	27.000	27.000	27.000	37.000		27.000		24.000	30.000	100		BOL	BOL		BOL	BOL	80F	B01	BOL		BOL		BOL	BOL
	DET'N LIMIT = 2.00	000	23.000	30.000	24.000	25.000	28.000	26.000	25.000	24.000	27.000	•	25.000	•	25.000	29.000	DET'N LIMIT = 0.05	108	BOL	B0L	BOL	B01	BOL	BOL	BOL	BDL		BOL		BOL	801
TREATMENT PLANT DIST. SYSTEM TREATED SHIRLEY ST FREE FLOW		,,	24.000	29.000	25.000	25.000	29,000	42.440	26,000	25.000	26.000	28.000	26.000	24.000	24.000	30.000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BOL	BOL	BDL	BOL	BOL	BOL	BDL	80F	BDL	BOL	BDL	.130 <1	BDL	BOL
TREATMENT PLANT RAW	METALS)		25.000	29.000	26.000	25.000	28,000	40.330	26.000	26.000	25.000	27.000	26.000	23.000	25.000	30.000		BDL	B0F	BOL	BDL	BOL	BDL	BOL	B0L	BOL	BOL	B0L	.110 <1	B01	BDL
	BORON (UG/L			1991 JUL	1991 AUG								1992 MAY		1992 SEP		BERYLLIUM (UG/L	1991 JUN	1991 JUL		1991 SEP		1991 NOV		1992 FEB		1992 APR			1992 SEP	

	5.0 (A1)															N/A														
DIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = 5.0 (A1)		BDL	BOL		BOL	BOL	.060 <t< th=""><th>.210 <t< th=""><th>801</th><th></th><th>BDL</th><th></th><th>B0L</th><th>BOL</th><th>GUIDELINE =</th><th></th><th>.050 <1</th><th>.110 <t< th=""><th></th><th>.120 <t< th=""><th>.170 <t< th=""><th>.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.210 <t< th=""><th>801</th><th></th><th>BDL</th><th></th><th>B0L</th><th>BOL</th><th>GUIDELINE =</th><th></th><th>.050 <1</th><th>.110 <t< th=""><th></th><th>.120 <t< th=""><th>.170 <t< th=""><th>.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	801		BDL		B0L	BOL	GUIDELINE =		.050 <1	.110 <t< th=""><th></th><th>.120 <t< th=""><th>.170 <t< th=""><th>.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>		.120 <t< th=""><th>.170 <t< th=""><th>.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<></th></t<></th></t<>	.170 <t< th=""><th>.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<></th></t<>	.110 <t< th=""><th>.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<></th></t<>	.210 <t< th=""><th>.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<></th></t<>	.100 <t< th=""><th></th><th>.780 <1</th><th></th><th>.210 <1</th><th>1> 041.</th></t<>		.780 <1		.210 <1	1> 041.
DIST. SYSTEM DIS SHIRLEY ST SH FREE FLOW ST	DET'N LIMIT = 0.05	B0L	BDL	108	801	BOL	108	BDL	BOL	BOL		BDL		BDL	80L	DET'N LIMIT = 0.02	.080 <1	T> 090.	.080 <t< td=""><td>.100 <⊺</td><td>.100 <t< td=""><td>.140 <t< td=""><td></td><td>.170 <1</td><td>.170 <</td><td></td><td>.270 <1</td><td></td><td>.240 <1</td><td>.130 <</td></t<></td></t<></td></t<>	.100 <⊺	.100 <t< td=""><td>.140 <t< td=""><td></td><td>.170 <1</td><td>.170 <</td><td></td><td>.270 <1</td><td></td><td>.240 <1</td><td>.130 <</td></t<></td></t<>	.140 <t< td=""><td></td><td>.170 <1</td><td>.170 <</td><td></td><td>.270 <1</td><td></td><td>.240 <1</td><td>.130 <</td></t<>		.170 <1	.170 <		.270 <1		.240 <1	.130 <
TREATMENT PLANT TREATED	J	BOL	B0L	BOL	B01	108	T> 090.	BDL	B0L	BOL	1> 090.	B0L	80F	BDL	BDL		.090 <t< td=""><td>.070 <t< td=""><td></td><td></td><td>.140 <t< td=""><td>BDL</td><td>.090 <t< td=""><td>1> 061.</td><td>.250 <1</td><td>.230 <1</td><td>.260 <t< td=""><td>1> 071.</td><td>.210 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.070 <t< td=""><td></td><td></td><td>.140 <t< td=""><td>BDL</td><td>.090 <t< td=""><td>1> 061.</td><td>.250 <1</td><td>.230 <1</td><td>.260 <t< td=""><td>1> 071.</td><td>.210 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>			.140 <t< td=""><td>BDL</td><td>.090 <t< td=""><td>1> 061.</td><td>.250 <1</td><td>.230 <1</td><td>.260 <t< td=""><td>1> 071.</td><td>.210 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.090 <t< td=""><td>1> 061.</td><td>.250 <1</td><td>.230 <1</td><td>.260 <t< td=""><td>1> 071.</td><td>.210 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<>	1> 061.	.250 <1	.230 <1	.260 <t< td=""><td>1> 071.</td><td>.210 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<>	1> 071.	.210 <t< td=""><td>.150 <t< td=""></t<></td></t<>	.150 <t< td=""></t<>
IREATMENT PLANT RAW	METALS)	BOL	BDL	B0L	B0L	801	BDL	.060 <t< td=""><td>108</td><td>BOL</td><td>BOL</td><td>108</td><td>BDL</td><td>BDL</td><td>108</td><td></td><td>T> 090.</td><td>. 080 <t< td=""><td></td><td>.100 <t< td=""><td>.180 <t< td=""><td>.200 <t< td=""><td>.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108	BOL	BOL	108	BDL	BDL	108		T> 090.	. 080 <t< td=""><td></td><td>.100 <t< td=""><td>.180 <t< td=""><td>.200 <t< td=""><td>.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.100 <t< td=""><td>.180 <t< td=""><td>.200 <t< td=""><td>.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.180 <t< td=""><td>.200 <t< td=""><td>.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.150 <t< td=""><td>190 <1</td><td>.170 ≺⊺</td><td>. 190 <1</td><td>.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<></td></t<>	190 <1	.170 ≺⊺	. 190 <1	.240 <t< td=""><td>.200 <⊤</td><td>.210 <t< td=""><td>.220 <t< td=""></t<></td></t<></td></t<>	.200 <⊤	.210 <t< td=""><td>.220 <t< td=""></t<></td></t<>	.220 <t< td=""></t<>
	CADMIUM (UG/L	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV	COBALT (UG/L	1991 JUN	1991 JUL	1991 AUG			1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

DIST. SYSTEM SHIRLEY ST STANDING

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW TREATED SHIRLEY ST FREE FLOW

CHROMIUM (UG/L	^		DET'N LIMIT = 0.50	GUIDELINE = 50.0 (A1)
	2.500 <t< td=""><td>2.100 <⊺</td><td>2.500 <t< td=""><td></td></t<></td></t<>	2.100 <⊺	2.500 <t< td=""><td></td></t<>	
1991 JUL	3.700 <1	3.500 <t< td=""><td>3.600 <1</td><td>4.500 <t< td=""></t<></td></t<>	3.600 <1	4.500 <t< td=""></t<>
	2.000 <t< td=""><td>1.200 <t< td=""><td>1.800 <t< td=""><td>1.200 <t< td=""></t<></td></t<></td></t<></td></t<>	1.200 <t< td=""><td>1.800 <t< td=""><td>1.200 <t< td=""></t<></td></t<></td></t<>	1.800 <t< td=""><td>1.200 <t< td=""></t<></td></t<>	1.200 <t< td=""></t<>
	.860 <t< td=""><td>.890 <t< td=""><td>.750 <1</td><td>•</td></t<></td></t<>	.890 <t< td=""><td>.750 <1</td><td>•</td></t<>	.750 <1	•
	2,700 <i< td=""><td>2.500 <t< td=""><td>2.300 <t< td=""><td>2.400 <t< td=""></t<></td></t<></td></t<></td></i<>	2.500 <t< td=""><td>2.300 <t< td=""><td>2.400 <t< td=""></t<></td></t<></td></t<>	2.300 <t< td=""><td>2.400 <t< td=""></t<></td></t<>	2.400 <t< td=""></t<>
	5.990 <1	7.280 <t< td=""><td>.550 <1</td><td>.520 <t< td=""></t<></td></t<>	.550 <1	.520 <t< td=""></t<>
	1.000 <t< td=""><td>1,000 <t< td=""><td>.830 <1</td><td>.910 <t< td=""></t<></td></t<></td></t<>	1,000 <t< td=""><td>.830 <1</td><td>.910 <t< td=""></t<></td></t<>	.830 <1	.910 <t< td=""></t<>
	1> 077.	.630 <t< td=""><td>BOL</td><td>BOL</td></t<>	BOL	BOL
	.630 <t< td=""><td>.580 <t< td=""><td>.690 <t< td=""><td>2.100 <t< td=""></t<></td></t<></td></t<></td></t<>	.580 <t< td=""><td>.690 <t< td=""><td>2.100 <t< td=""></t<></td></t<></td></t<>	.690 <t< td=""><td>2.100 <t< td=""></t<></td></t<>	2.100 <t< td=""></t<>
	1,400 <1	1,500 <t< td=""><td>•</td><td></td></t<>	•	
	1> 099.	.720 <t< td=""><td>.760 <t< td=""><td>.640 <1</td></t<></td></t<>	.760 <t< td=""><td>.640 <1</td></t<>	.640 <1
	BDL	.620 <t< td=""><td>•</td><td></td></t<>	•	
	1.200 <⊤	.950 <t< td=""><td>.870 <t< td=""><td>.590 <t< td=""></t<></td></t<></td></t<>	.870 <t< td=""><td>.590 <t< td=""></t<></td></t<>	.590 <t< td=""></t<>
	1.900 <t< td=""><td>2,000 <1</td><td>1.800 <t< td=""><td>1.900 <t< td=""></t<></td></t<></td></t<>	2,000 <1	1.800 <t< td=""><td>1.900 <t< td=""></t<></td></t<>	1.900 <t< td=""></t<>
COPPER (UG/L			DET'N LIMIT = 0.50	GUIDELINE = 1000 (A3)
	1,000 <⊺	.920 <1	3,500 <1	
	1,000 <t< td=""><td>1,100 <t< td=""><td>3.000 <1</td><td>19,000</td></t<></td></t<>	1,100 <t< td=""><td>3.000 <1</td><td>19,000</td></t<>	3.000 <1	19,000
	1.200 <7	1,200 <t< td=""><td>4.000 <1</td><td>47.000</td></t<>	4.000 <1	47.000
	1.400 <1	.900 <t< td=""><td>3.300 <t< td=""><td></td></t<></td></t<>	3.300 <t< td=""><td></td></t<>	
	1,400 <t< td=""><td>.820 <t< td=""><td>4.200 <1</td><td>37.000</td></t<></td></t<>	.820 <t< td=""><td>4.200 <1</td><td>37.000</td></t<>	4.200 <1	37.000
	2,130 <t< td=""><td>2.200 <t< td=""><td>2.900 <t< td=""><td>16.000</td></t<></td></t<></td></t<>	2.200 <t< td=""><td>2.900 <t< td=""><td>16.000</td></t<></td></t<>	2.900 <t< td=""><td>16.000</td></t<>	16.000
	1.900 <t< td=""><td>1,100 <t< td=""><td>2.500 <t< td=""><td>26.000</td></t<></td></t<></td></t<>	1,100 <t< td=""><td>2.500 <t< td=""><td>26.000</td></t<></td></t<>	2.500 <t< td=""><td>26.000</td></t<>	26.000
	1.200 <t< td=""><td>1,300 <t< td=""><td>2.700 <1</td><td>72,000</td></t<></td></t<>	1,300 <t< td=""><td>2.700 <1</td><td>72,000</td></t<>	2.700 <1	72,000
	1,000 <7	750 <1	4.800 <t< td=""><td>4.100 <t< td=""></t<></td></t<>	4.100 <t< td=""></t<>
	1.100 <1	.870 <t< td=""><td></td><td>•</td></t<>		•
	1,400 <t< td=""><td>1.200 <t< td=""><td>4.700 <1</td><td>88.000</td></t<></td></t<>	1.200 <t< td=""><td>4.700 <1</td><td>88.000</td></t<>	4.700 <1	88.000
	1.500 <t< td=""><td>1.000 <t< td=""><td>•</td><td></td></t<></td></t<>	1.000 <t< td=""><td>•</td><td></td></t<>	•	
1992 SEP	.830 <t< td=""><td>.840 <t< td=""><td>4.800 <1</td><td>19.000</td></t<></td></t<>	.840 <t< td=""><td>4.800 <1</td><td>19.000</td></t<>	4.800 <1	19.000
	1.100 <t< td=""><td>1.300 <t< td=""><td>3,800 <t< td=""><td>30.000</td></t<></td></t<></td></t<>	1.300 <t< td=""><td>3,800 <t< td=""><td>30.000</td></t<></td></t<>	3,800 <t< td=""><td>30.000</td></t<>	30.000

	WIP	
	OBOURG	
	1992 (
	AND	
	18	
ADLE 4	PROGRAM	
	SURVEILLANCE	
	WATER	
	DRINKING	

DIST. SYSTEM SHRLEY ST STANDING	GUIDELINE = 300 (A3)		9.500 <t< th=""><th>21.000 <7</th><th></th><th>18.000 <t< th=""><th>9.500 <t< th=""><th>8.600 <t< th=""><th>26.000 <t< th=""><th>B01</th><th></th><th>44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	21.000 <7		18.000 <t< th=""><th>9.500 <t< th=""><th>8.600 <t< th=""><th>26.000 <t< th=""><th>B01</th><th></th><th>44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	9.500 <t< th=""><th>8.600 <t< th=""><th>26.000 <t< th=""><th>B01</th><th></th><th>44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	8.600 <t< th=""><th>26.000 <t< th=""><th>B01</th><th></th><th>44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	26.000 <t< th=""><th>B01</th><th></th><th>44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<></th></t<>	B01		44.000 <t< th=""><th></th><th>50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<></th></t<>		50.000 <t< th=""><th>41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></t<>	41.000 <t< th=""><th> GUIDELINE = 1.0 (A1)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	 GUIDELINE = 1.0 (A1)														
DIST. SYSTEM DISHIBLY ST SHIRLEY ST SH	DET'N LIMIT = 6.00	15,000 <₹	15.000 <1	26.000 <1	13.000 <t< td=""><td>16.000 < 7</td><td>12.000 <t< td=""><td>10,000 <t< td=""><td>23.000 <1</td><td>16.000 <t< td=""><td></td><td>21.000 <t< td=""><td></td><td>190.000</td><td>220.000</td><td>DET'N LIMIT = 0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	16.000 < 7	12.000 <t< td=""><td>10,000 <t< td=""><td>23.000 <1</td><td>16.000 <t< td=""><td></td><td>21.000 <t< td=""><td></td><td>190.000</td><td>220.000</td><td>DET'N LIMIT = 0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<>	10,000 <t< td=""><td>23.000 <1</td><td>16.000 <t< td=""><td></td><td>21.000 <t< td=""><td></td><td>190.000</td><td>220.000</td><td>DET'N LIMIT = 0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	23.000 <1	16.000 <t< td=""><td></td><td>21.000 <t< td=""><td></td><td>190.000</td><td>220.000</td><td>DET'N LIMIT = 0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>		21.000 <t< td=""><td></td><td>190.000</td><td>220.000</td><td>DET'N LIMIT = 0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		190.000	220.000	DET'N LIMIT = 0.02														
TREATMENT PLANT TREATED		BOL	BOL	108	B0L	B0L	8.520 <t< td=""><td>B0L</td><td>8,000 <t< td=""><td>108</td><td>BDL</td><td>BDL</td><td>B01</td><td>108</td><td>708</td><td></td><td>108</td><td>BDL</td><td>108</td><td></td><td>108</td><td>B0L</td><td>.030 <t< td=""><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B01</td></t<></td></t<></td></t<>	B0L	8,000 <t< td=""><td>108</td><td>BDL</td><td>BDL</td><td>B01</td><td>108</td><td>708</td><td></td><td>108</td><td>BDL</td><td>108</td><td></td><td>108</td><td>B0L</td><td>.030 <t< td=""><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B01</td></t<></td></t<>	108	BDL	BDL	B01	108	708		108	BDL	108		108	B0L	.030 <t< td=""><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B01</td></t<>	108	108	108	108	108	108	B01
TREATMENT PLANT TREATMENT PLANT RAW	· METALS	22,000 <1	20.000 <1	13.000 <1	21.000 <t< td=""><td>45.000 <t< td=""><td>40.700 <t< td=""><td>50.000 <t< td=""><td>16.000 <t< td=""><td>13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	45.000 <t< td=""><td>40.700 <t< td=""><td>50.000 <t< td=""><td>16.000 <t< td=""><td>13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	40.700 <t< td=""><td>50.000 <t< td=""><td>16.000 <t< td=""><td>13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	50.000 <t< td=""><td>16.000 <t< td=""><td>13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	16.000 <t< td=""><td>13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	13.000 <t< td=""><td>9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	9.000 <t< td=""><td>28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<></td></t<>	28.000 <t< td=""><td>8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<></td></t<>	8.300 <t< td=""><td>15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<></td></t<>	15.000 <t< td=""><td>40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<></td></t<>	40.000 <t< td=""><td>^</td><td>108</td><td>108</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108</td><td>108</td><td>B0L</td><td>108</td><td>108 801</td><td></td><td>T> 040.</td></t<>	^	108	108	108	108	108	B0L	108	108	108	B0L	108	108 801		T> 040.
	IRON (UG/L	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV	 MERCURY (UG/L	1991 JUN	1991 JUL	1991 AUG	1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR	1992 MAY	1992 JUN	1992 SEP	1992 NOV

TREATED
7,00
.680
.640
.360 <t< td=""></t<>
T> 044.
BOL
.290 <⊺
009.
1.100
.270 <t< td=""></t<>
.750
.360 <t< td=""></t<>
.340 <t< td=""></t<>
. 190 <t< td=""></t<>
1.200
1.100
1.100
001.1
1 200
1.200
1,000
1.200
1.100
1.300
.550
1.300
1.100

AND 1992 COBOURG WTP	ST		GUIDELINE = 350 (03)		BDL	.300 <t< td=""><td></td><td>1.000 <1</td><td>.560 <t< td=""><td>.810 <t< td=""><td>.100</td><td>.200 <t< td=""><td>•</td><td>3.400</td><td>•</td><td>1.500 <t< td=""><td>. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1.000 <1	.560 <t< td=""><td>.810 <t< td=""><td>.100</td><td>.200 <t< td=""><td>•</td><td>3.400</td><td>•</td><td>1.500 <t< td=""><td>. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.810 <t< td=""><td>.100</td><td>.200 <t< td=""><td>•</td><td>3.400</td><td>•</td><td>1.500 <t< td=""><td>. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.100	.200 <t< td=""><td>•</td><td>3.400</td><td>•</td><td>1.500 <t< td=""><td>. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<></td></t<></td></t<>	•	3.400	•	1.500 <t< td=""><td>. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<></td></t<>	. 990 <t< td=""><td>GUIDELINE = 10 (A1)</td><td></td><td>4.300</td><td>.300</td><td>• •</td><td>4.700</td><td>.310</td><td>.100</td><td>.000</td><td>.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<></td></t<>	GUIDELINE = 10 (A1)		4.300	.300	• •	4.700	.310	.100	.000	.420 <t< td=""><td></td><td>7.300</td><td>• •</td><td>2.400</td><td>2.700</td><td></td></t<>		7.300	• •	2.400	2.700	
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP	DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST SHIRLEY ST FREE FLOW STANDING		DET'N LIMIT = 0.20	.810 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2,300</td><td></td><td>•</td><td>.380 <7</td><td>DET'N LIMIT = 0.05</td><td></td><td></td><td></td><td></td><td>4 T> 094.</td><td></td><td></td><td>/7</td><td></td><td></td><td>7 T> 094.</td><td></td><td>.800</td><td></td><td></td></t<>		•								2,300		•	.380 <7	DET'N LIMIT = 0.05					4 T> 094.			/7			7 T> 094.		.800		
DRINKING WATER	TREATMENT PLANT TREATED		_	.910 <t< td=""><td>B0F</td><td>1.200 <1</td><td>1.100 <t< td=""><td>1.200 <t< td=""><td>BDL</td><td>T> 070</td><td>1.800 <t< td=""><td>1,700 <t< td=""><td>1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	B0F	1.200 <1	1.100 <t< td=""><td>1.200 <t< td=""><td>BDL</td><td>T> 070</td><td>1.800 <t< td=""><td>1,700 <t< td=""><td>1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.200 <t< td=""><td>BDL</td><td>T> 070</td><td>1.800 <t< td=""><td>1,700 <t< td=""><td>1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	T> 070	1.800 <t< td=""><td>1,700 <t< td=""><td>1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,700 <t< td=""><td>1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.800 <t< td=""><td>1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.900 <t< td=""><td>.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.410 <t< td=""><td>1.100 <↑</td><td>. 690 <</td><td></td><td>.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.100 <↑	. 690 <		.130 <t< td=""><td>. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	. 110 <t< td=""><td>. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<></td></t<>	. 070 <t< td=""><td>T> 090.</td><td>801</td><td>.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<></td></t<>	T> 090.	801	.250 <t< td=""><td>80F</td><td>.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<></td></t<>	80F	.300 <t< td=""><td>80F</td><td>801</td><td>.080 ·</td><td>80L</td><td>T> 070.</td><td>066.</td><td></td></t<>	80F	801	.080 ·	80L	T> 070.	066.	
	TREATMENT PLANT RAW	METALS	^	1.200 <1	80L	1,200 <⊤	1.300 <t< td=""><td>1,300 <t< td=""><td>80F</td><td>1,000 <1</td><td>2,000 <t< td=""><td>1.900 <1</td><td>1.800 <t< td=""><td>1.800 <t< td=""><td>1> 079.</td><td>1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,300 <t< td=""><td>80F</td><td>1,000 <1</td><td>2,000 <t< td=""><td>1.900 <1</td><td>1.800 <t< td=""><td>1.800 <t< td=""><td>1> 079.</td><td>1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80F	1,000 <1	2,000 <t< td=""><td>1.900 <1</td><td>1.800 <t< td=""><td>1.800 <t< td=""><td>1> 079.</td><td>1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.900 <1	1.800 <t< td=""><td>1.800 <t< td=""><td>1> 079.</td><td>1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.800 <t< td=""><td>1> 079.</td><td>1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1> 079.	1.500 <t< td=""><td>.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.910 <t< td=""><td></td><td>T> 011.</td><td>.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		T> 011.	.120 <t< td=""><td>T> 090.</td><td>T> 001.</td><td>. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 090.	T> 001.	. 180 <t< td=""><td>.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.310 <t< td=""><td>.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.240 <t< td=""><td>.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.070 <t< td=""><td>.080 <</td><td>BDL</td><td>.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.080 <	BDL	.130 <t< td=""><td>.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.080 <t< td=""><td>. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<></td></t<>	. 080 <t< td=""><td>. 150 <t< td=""><td></td></t<></td></t<>	. 150 <t< td=""><td></td></t<>	
		,	NICKEL (UG/L	1991 JUN		1991 AUG					1992 FEB	1992 MAR		1992 MAY				LEAD (UG/L	1001					1991 NOV	1992 JAN						1992 SEP		, , , , , , , , , , , , , , , , , , , ,

TREATMENT PLANT TREATED
•
•
•
₽.
9.
₹.
ż.
.3
.28
.380 <1
.550
BOL
8
1.300
80F
80 F
1.100
BOL
80L
108 80 F
80
B
1.3

OIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = N/A		180.000	190.000		170.000	190.000	190.000	180.000	190.000		200.000		180.000	180.000	GUIDELINE = N/A		801	801		.720 <⊺	.800 <⊺	.760 <1	. 990 <1	3.500 <t< th=""><th>•</th><th>3.400 <t< th=""><th></th><th>.780 <t< th=""><th>.870 <t< th=""><th>GUIDELINE = 13 (D4)</th><th></th></t<></th></t<></th></t<></th></t<>	•	3.400 <t< th=""><th></th><th>.780 <t< th=""><th>.870 <t< th=""><th>GUIDELINE = 13 (D4)</th><th></th></t<></th></t<></th></t<>		.780 <t< th=""><th>.870 <t< th=""><th>GUIDELINE = 13 (D4)</th><th></th></t<></th></t<>	.870 <t< th=""><th>GUIDELINE = 13 (D4)</th><th></th></t<>	GUIDELINE = 13 (D4)	
DIST. SYSTEM DISTINCT SHIRLEY ST SHIRLEY ST SHIRLEY STAN	DET'N LIMIT = 0.10	170.000	170.000	180.000	180.000	170.000	180.000	180.000	180.000	200.000	•	190.000	•	180.000	190.000	DET'N LIMIT = 0.50	1.300 <⊤	BDL	801	BDL	.640 <t< td=""><td>.880 <t< td=""><td>.740 <t< td=""><td>1.100 <t< td=""><td>3.900 <1</td><td></td><td>3.500 <t< td=""><td>•</td><td>.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.880 <t< td=""><td>.740 <t< td=""><td>1.100 <t< td=""><td>3.900 <1</td><td></td><td>3.500 <t< td=""><td>•</td><td>.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.740 <t< td=""><td>1.100 <t< td=""><td>3.900 <1</td><td></td><td>3.500 <t< td=""><td>•</td><td>.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<></td></t<></td></t<></td></t<>	1.100 <t< td=""><td>3.900 <1</td><td></td><td>3.500 <t< td=""><td>•</td><td>.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<></td></t<></td></t<>	3.900 <1		3.500 <t< td=""><td>•</td><td>.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<></td></t<>	•	.710 <t< td=""><td>. 990 <1</td><td>DET'N LIMIT = 0.05</td><td></td></t<>	. 990 <1	DET'N LIMIT = 0.05	
TREATMENT PLANT TREATED	1	170.000	170.000	180,000	180.000	170,000	187,670	190,000	180,000	200.000	160.000	190.000	190.000	180.000	180.000		1,300 <t< td=""><td></td><td>80F</td><td>.530 <t< td=""><td>. 700 <t< td=""><td>1.390 <t< td=""><td>1,000 <1</td><td>.890 <t< td=""><td>3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		80F	.530 <t< td=""><td>. 700 <t< td=""><td>1.390 <t< td=""><td>1,000 <1</td><td>.890 <t< td=""><td>3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 700 <t< td=""><td>1.390 <t< td=""><td>1,000 <1</td><td>.890 <t< td=""><td>3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.390 <t< td=""><td>1,000 <1</td><td>.890 <t< td=""><td>3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	1,000 <1	.890 <t< td=""><td>3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<></td></t<>	3.500 <t< td=""><td></td><td>3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<></td></t<>		3.600 <t< td=""><td></td><td>1> 099.</td><td>1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<></td></t<>		1> 099.	1.000 <t< td=""><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td></t<>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TREATMENT PLANT RAW	METALS	170.000	170.000	180.000	180,000	170.000	181.790	190,000	180,000	200.000	160.000	190,000	190.000	180,000	180.000	^	2,700 <1	1.300 <t< td=""><td></td><td>1,700 <t< td=""><td>2.900 <t< td=""><td>3.970 <t< td=""><td>2.500 <t< td=""><td>1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1,700 <t< td=""><td>2.900 <t< td=""><td>3.970 <t< td=""><td>2.500 <t< td=""><td>1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.900 <t< td=""><td>3.970 <t< td=""><td>2.500 <t< td=""><td>1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.970 <t< td=""><td>2.500 <t< td=""><td>1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.500 <t< td=""><td>1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,500 <t< td=""><td>4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	4.000 <t< td=""><td>4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<></td></t<>	4,000 <t< td=""><td>7 × 009.7</td><td>2,300 <1</td><td>1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<></td></t<>	7 × 009.7	2,300 <1	1.300 <t< td=""><td>2.500 <t< td=""><td>^</td><td></td></t<></td></t<>	2.500 <t< td=""><td>^</td><td></td></t<>	^	
_	STRONTIUM (UG/L	1991 JUN	1991 JUL			_				1992 MAR		1992 MAY		1992 SEP	1992 NOV	TITANIUM (UG/L	1001						1992 JAN	_	_	1992 APR	1992 MAY	1992 JUN	1992 SEP		THALLIUM (UG/L	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP

T	GUIDELINE = 100 (A1)		•	190 <f< th=""><th>20 <f< th=""><th></th><th>80 <t< th=""><th>70 <1</th><th>50 <1</th><th>20 <⊺</th><th>90 <t .<="" th="" ·=""><th></th><th>.100 <1</th><th></th><th>.090 <t< th=""><th>.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t></th></t<></th></f<></th></f<>	20 <f< th=""><th></th><th>80 <t< th=""><th>70 <1</th><th>50 <1</th><th>20 <⊺</th><th>90 <t .<="" th="" ·=""><th></th><th>.100 <1</th><th></th><th>.090 <t< th=""><th>.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t></th></t<></th></f<>		80 <t< th=""><th>70 <1</th><th>50 <1</th><th>20 <⊺</th><th>90 <t .<="" th="" ·=""><th></th><th>.100 <1</th><th></th><th>.090 <t< th=""><th>.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t></th></t<>	70 <1	50 <1	20 <⊺	90 <t .<="" th="" ·=""><th></th><th>.100 <1</th><th></th><th>.090 <t< th=""><th>.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<></th></t>		.100 <1		.090 <t< th=""><th>.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	.130 <t< th=""><th>ALL THE TAXABLE MAN</th><th>2010</th><th>•</th><th>10</th><th>06</th><th></th><th>10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	ALL THE TAXABLE MAN	2010	•	10	06		10 <t< th=""><th>20 <⊺</th><th>80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<>	20 <⊺	80 <t< th=""><th>70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<></th></t<>	70 <t< th=""><th>.370 <1</th><th></th><th>,450 <t< th=""><th></th><th></th></t<></th></t<>	.370 <1		,450 <t< th=""><th></th><th></th></t<>		
M OIST. SYSTEM SHIRLEY ST STANDING	= 0.05	,	- 1		027.		↓		<₹ .250	₽			01.				- 0.05		ŗ		<1 .590			<							
I DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.05	010	063.	081.	067.	.190	.300	.630	.250	.240	.240		BOL	•	.090 ح	. 110 <t< td=""><td>70 U = 11M11 W1730</td><td></td><td>•</td><td></td><td>067.</td><td>.380</td><td></td><td></td><td></td><td></td><td>.380</td><td></td><td>1> 055°</td><td></td><td></td></t<>	70 U = 11M11 W1730		•		067.	.380					.380		1> 055°		
TREATMENT PLANT TREATED	1			1> 061.	.240 <t< td=""><td>. 190 <t< td=""><td>.300 <i< td=""><td>.310 <t< td=""><td>.280 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></i<></td></t<></td></t<>	. 190 <t< td=""><td>.300 <i< td=""><td>.310 <t< td=""><td>.280 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></i<></td></t<>	.300 <i< td=""><td>.310 <t< td=""><td>.280 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></i<>	.310 <t< td=""><td>.280 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.280 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.230 <1	.200 <1	. 150 <t< td=""><td>T> 090.</td><td>.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 090.	.110 <t< td=""><td>.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.070 <t< td=""><td>.130 <</td><td></td><td></td><td>.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.130 <			.340 <t< td=""><td>BDL</td><td>T> 097.</td><td>009.</td><td>.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	T> 097.	009.	.390 <t< td=""><td>.260 <₹</td><td>. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.260 <₹	. 160 <t< td=""><td>.320 <1</td><td>.540</td><td>.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<></td></t<>	.320 <1	.540	.390 <t< td=""><td>.620</td><td>.080 <t< td=""><td></td></t<></td></t<>	.620	.080 <t< td=""><td></td></t<>	
TREATMENT PLANT RAW	METALS					.320 <⊺	.340 <t< td=""><td>.410 <t< td=""><td>.420 <t< td=""><td>.300 <ī</td><td>.360 <t< td=""><td>.350 <t< td=""><td>.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.410 <t< td=""><td>.420 <t< td=""><td>.300 <ī</td><td>.360 <t< td=""><td>.350 <t< td=""><td>.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.420 <t< td=""><td>.300 <ī</td><td>.360 <t< td=""><td>.350 <t< td=""><td>.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <ī	.360 <t< td=""><td>.350 <t< td=""><td>.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.350 <t< td=""><td>.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.340 <t< td=""><td>.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td>.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.300 <t< td=""><td>.290 <</td><td></td><td></td><td>1> 090.</td><td>BDL</td><td>.260 <⊺</td><td>.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<></td></t<>	.290 <			1> 090.	BDL	.260 <⊺	.210 <t< td=""><td>.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<></td></t<>	.290 <t< td=""><td>.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<></td></t<>	.120 <t< td=""><td>.120 <⊤</td><td>.180 <⊤</td><td>.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<></td></t<>	.120 <⊤	.180 <⊤	.340 <t< td=""><td>BDL</td><td>.130 <⊤</td><td>BDL</td><td>1</td></t<>	BDL	.130 <⊤	BDL	1
	URANIUM (UG/L					71 SEP											MANANTHA CICAL	100	NOL 10		71 AUG				2 JAN				2 MAY	1992 JUN	
	URANIL	5	2	5	8	189	\$	18	1992	1992	1992	1992	1992	1992	1992	1992	VAMAN		1991	1991	1991	1991	1991	1991	1992	1992	1992	19	1992	Š	

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP	DIST. SYSTEM SHIRLEY ST STANDING	GUIDELINE = 5000 (A3)	33.000 71.000 64.000 19.000 52.000 170.000 3.100 17.000 24.000	
TABLE 4 SURVEILLANCE PROGRAM 1	DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.20	21.000 2.900 3.400 1.900 <t 2.500 3.100 4.500 5.400 4.700 13.000</t 	
ORINKING WATER	TREATMENT PLANT TREATED		7.200 2.400 1.400 <1 .630 <1 .630 <1 .630 <1 2.500 3.200 3.200 1.600 <1 2.400 11.000	
	TREATMENT PLANT RAW	METALS	3.200 3.000 2.200 2.200 4.500 4.500 2.900 1.400 <1 2.600 2.600 1.400 <1 2.600 2.600 <1 1.600 <1 1.600 <1 2.600	
		ZINC (UG/L	1991 JUN 1991 JUL 1991 AUG 1991 SEP 1991 NOV 1992 FEB 1992 ARR 1992 ARR 1992 ARR 1992 JUN 1993 LIN 1993 JUN 1993 SEP	

= 450 (04)		= N/A		= N/A	,	= N/A		= 10000 (1)		= 38000 (D4)		N/A		= 10 (C1)		= 1900 (04)											
GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE											
) } } ! ! ! !	٠		٠	,	•	1 1 1 1 1 1 1	٠		٠	; ; ; ; ;	٠		٠		•		•	•	•			٠			٠		
= 1.000		= 5.000	_	= 1.000	_	= 1.000	_	= 5.000	_	= 1.000	_	= 5.000		= 1.000	_	= 1.000	0 <t< td=""><td>3 :</td><td>3 3</td><td></td><td>_</td><td>. د</td><td></td><td></td><td></td><td></td><td>0 <1</td></t<>	3 :	3 3		_	. د					0 <1
DET'N LIMIT	80	DET'N LIMIT	80	DET'N LIMIT	BD	DET'N LIMIT		DET'N LIMIT	. 80	DET'N LIMIT	80	DET'N LIMIT	8	DET'N LIMIT		DET'N LIMIT	5.00	<u> </u>	4	8 8	BD	8	88	1	90	ä	2.000
	_	_	_		_	_	_	:	_	:			_			-		3:	3 3	E	_	.			_	. 0 -	
, , , , , ,	8		8		品		8		8		8		8		8	1 2 1 5 6 6	5.00	≚ :	₹ ≤	S	8	8.	5.00	.00	90	2.00	801
MATICS		^		^		^		^		^		^		^		_											
OROARO NG/L	80f	CNG/L	BD1	(NG/L	BDL	(NG/L	BDL	CNG/L	BDL	CNG/L	BDL	CNG/L	BDL	7	BDL		BDL	AF	¥ 2	BDL	BOL	80F	g g	BDL	BDL	g 8	1 da
CHL ACHLOROBUTADIENE (30 SAMPLES	-TRICHLOROBENZENE	30 SAMPLES	4-TETCLOROBENZENE	30 SAMPLES	5-TETCLOROBENZENE	30 SAMPLES	-TRICHLOROBENZENE	30 SAMPLES	5-TETCLOROBENZENE	30 SAMPLES	-TRICHLOROBENZENE	30 SAMPLES	ACHLOROBENZENE (NG	30 SAMPLES	ACHLOROETHANE (NG/	1991 JUN										
	CHIOROAROMATICS . DET'N LIMIT = 1.000 GUIDELINE = 450 (D4)	COMATICS DET'N LIMIT = 1.000 L BDL BDL	COMATICS DET'N LIMIT = 1.000 BDL BDL DET'N LIMIT = 5.000	CHLOROAROMATICS ADIENE (NG/L) BDL BDL BDL BDL BDL BDL BDL BDL	CMATICS DET'N LIMIT = 1.000 BDL DET'N LIMIT = 5.000 BDL BDL BDL BDL BDL BDL BDL	OMATICS BDL BDL BDL BDL DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 BDL BDL BDL BDL BDL	OMATICS BOL BOL BOL BOL BOL COLUMN COL	OMATICS BDL BDL BDL BDL BDL BDL BDL BD	OMATICS BDL BDL BDL BDL BDL BDL BDL BD	9MATICS BOL BOL BOL BOL BOL BOL BOL COLUMNIT = 1.000 BOL BOL BOL BOL BOL BOL BOL	94ATICS BDL BDL BDL BDL BDL BDL BDL BD	980L BDL BDL BDL	9MATICS BDL BDL BDL BDL BDL BDL BDL BD	9MATICS BDL BDL BDL BDL BDL BDL BDL BD	OAROMATICS	OAROMATICS	DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DET'N LIMIT = 5.000 DET'N LIMIT = 5.000 DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DET'N LIMIT = 5.000 DET'N LIMIT = 1.000 DET'N LIMIT = 5.000 DET'N LIMIT = 5.000	SDL BDL BDL	SOR OWATICS	SOR OWATICS	SOR OWATICS DET'N LIMIT = 1.000	SOUR OWATICS DET'N LIMIT = 1.000	SDL SDL	SDL SDL	SOR OWATICS DET'N LIMIT = 1.000	SOUR OWANTICS DET'N LIMIT = 1.000 SOUR	### PET'N LIMIT = 1.000 ### BDL #### BDL ###################################

GUIDELINE = 74000 (D4) TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP GUIDELINE = N/A GUIDELINE = N/A GUIDELINE = N/A GUIDELINE = N/A DIST, SYSTEM SHIRLEY ST STANDING DET'N LIMIT = 5.000 DET'N LIMIT = 5.000 DET'N LIMIT = 5.000 DET'N LIMIT = 1.000 DET'N LIMIT = 1.000 DIST. SYSTEM SHIRLEY ST ¥ 801 801 801 801 801 FREE FLOW . **8**0 ള **B**01 펿 TREATMENT PLANT TREATMENT PLANT RAW TRFATFN 80L ¥ SE 80L 80L 펿 80 80 CHLOROAROMATICS A 801 801 801 801 801 26A-TRICHLORDTOLUENE (NG/L ם 236-TRICHLOROTOLUENE (NG/L 245-TRICHLOROTOLUENE (NG/L ם PENTACHLOROBENZENE (NG/L OCTACHLOROSTYRENE (NG/L 30 SAMPLES 30 SAMPLES 30 SAMPLES 1992 JAN 1992 FEB 1992 MAR 1992 APR 1992 JUN 1992 SEP 1992 NOV NOV NOV <u>§</u>

BOL

30 SAMPLES

	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (04)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0 G	•	DET'N LIMIT = 10.0		DET'N LIMIT = 100.0		DET'N LIMIT = 20.0 G		DET'N LIMIT = 10.00 G	
ANT		BOL	0	BOL	0	BOL	0	BOL	0	BOL	0	
EATMENT PLANT	HENOLS	BOL	NOL (NG/L)	BOL	NOL (NG/L	BDL	OL (NG/L)	108	OL (NG/L)	BOL	(NG/L)	
TREA	CHLOROPI 234-TRICHLOROPHENOL (NG/L	2 SAMPLES	2345-TETCHLOROPHENOL (NG/L	2 SAMPLES	2356-TETCHLOROPHENOL (NG/L	2 SAMPLES	245-TRICHLOROPHENOL (NG/L	2 SAMPLES	246-TRICHLOROPHENOL (NG/L	2 SAMPLES	PENTACHLOROPHENOL (NG/L	

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM- DIST. SYSTEM

	GUIDELINE = 700 (A1)		GUIDELINE = 700 (G)														GUIDELINE = 300 (G)		GUIDELINE = 4000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 7000 (A1)		GUIDELINE = 700 (A1)		GUIDELINE = 900000 (A1)		GUIDELINE = 74000 (D4)	į
SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 1.000	. 108 108	DET'N LIMIT = 1.000	. 108 109	IAW IAW				2.000	-I	ţ	2 000 <1		·	108 108	.000 <t .<="" 1.000="" <t="" th=""><th>DET'N LIMIT = 1.00</th><th>. 801 801 .</th><th>DET'N LIMIT = 1.000</th><th>. 108 108</th><th>DET'N LIMIT = 2.000</th><th>. 801 801</th><th>DET'N LIMIT = 2.00</th><th>. 80L</th><th>0ET'N LIMIT = 2.00</th><th>. BDL BDL .</th><th>DET'N LIMIT = 5.0</th><th>. 80L</th><th>DET'N LIMIT = 2.00</th><th>. 801</th></t>	DET'N LIMIT = 1.00	. 801 801 .	DET'N LIMIT = 1.000	. 108 108	DET'N LIMIT = 2.000	. 801 801	DET'N LIMIT = 2.00	. 80L	0ET'N LIMIT = 2.00	. BDL BDL .	DET'N LIMIT = 5.0	. 80L	DET'N LIMIT = 2.00	. 801
RAU IREATED	PESTICIDES AND PCB ALORIN (NG/L)	30 SAMPLES BOL B	ALPHA BHC (NG/L)	1991 JUN BDL B	JUL 'AW	AUG ! AW	SEP 1 AW	OCT · BOL	NOV BOL	JAN 1.000 <t< td=""><td>1.000 <1</td><td>ADD 1 000 41</td><td>MAY 801</td><td>1.000 ×1</td><td>SEP 80L</td><td>NOV 1.000 <t 1<="" td=""><td>BETA BHC (NG/L)</td><td>30 SAMPLES BOL B</td><td>LINDANE (GAMMA BHC) (NG/L)</td><td>30 SAMPLES BDL B</td><td>ALPHA CHLORDANE (NG/L)</td><td>30 SAMPLES BOL B</td><td>GAMMA CHLORDANE (NG/L)</td><td>30 SAMPLES BOL B</td><td>DIELDRIN (NG/L)</td><td>30 SAMPLES BOL B</td><td>METHOXYCHLOR (NG/L)</td><td>30 SAMPLES BOL B</td><td>ENDOSULFAN 1 (NG/L)</td><td>30 SAMPLES BDL B</td></t></td></t<>	1.000 <1	ADD 1 000 41	MAY 801	1.000 ×1	SEP 80L	NOV 1.000 <t 1<="" td=""><td>BETA BHC (NG/L)</td><td>30 SAMPLES BOL B</td><td>LINDANE (GAMMA BHC) (NG/L)</td><td>30 SAMPLES BDL B</td><td>ALPHA CHLORDANE (NG/L)</td><td>30 SAMPLES BOL B</td><td>GAMMA CHLORDANE (NG/L)</td><td>30 SAMPLES BOL B</td><td>DIELDRIN (NG/L)</td><td>30 SAMPLES BOL B</td><td>METHOXYCHLOR (NG/L)</td><td>30 SAMPLES BOL B</td><td>ENDOSULFAN 1 (NG/L)</td><td>30 SAMPLES BDL B</td></t>	BETA BHC (NG/L)	30 SAMPLES BOL B	LINDANE (GAMMA BHC) (NG/L)	30 SAMPLES BDL B	ALPHA CHLORDANE (NG/L)	30 SAMPLES BOL B	GAMMA CHLORDANE (NG/L)	30 SAMPLES BOL B	DIELDRIN (NG/L)	30 SAMPLES BOL B	METHOXYCHLOR (NG/L)	30 SAMPLES BOL B	ENDOSULFAN 1 (NG/L)	30 SAMPLES BDL B

TABLE 4 DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 COBOURG WTP	SYSTEM ST	9
TABLE 4 PROGRAM 1991	DIST. SYSTEM SHIRLEY ST	
SURVEILLANCE F	DIST. SYSTEM SHIRLEY ST	FREE FLOW
DRINKING WATER	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW SHIRLEY ST	
	TREATMENT PLANT RAW	

. :	GUIDELINE = 74000 (04)		GUIDELINE = 1600 (D3)		GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIOELINE = 3000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)	
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 5.000 G		DET'N LIMIT = 5.000 G	B0t .	DET'N LIMIT = 5.00 G	. 801	DET'N LIMIT = 1.000 G	. BOL .	DET'N LIMIT = 1.000 G		DET'N LIMIT = 5.000 G	BOL	0ET'N LIMIT = 2.000 G	. 108	DET'N LIMIT = 5.000 G	. BOL .	DET'N LIMIT = 20.00 G	. BOL	DET'N LIMIT = 5.000 G	B0L .	0ET'N LIMIT = 1.000 G	BOL	DET'N LIMIT = 5.000 G	ica
TREATMENT PLANT TREATED	NO PCB	BOL	1	BOL		108	1 1 1 1 1 1 1 1 1 1 1 1	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL		B0L		108		BOL		BOL		BOL		BOL		č
TREATMENT PLANT RAW	PESTICIDES AND PCB ENDOSULFAN II (NG/L)	30 SAMPLES BOL	ENDRIN (NG/L)	30 SAMPLES BOL	ENDOSULFAN SULPHATE (NG/L	30 SAMPLES BDL	HEPTACHLOR EPOXIDE (NG/L)	16 SAMPLES BOL	HEPTACHLOR (NG/L)	30 SAMPLES BOL	MIREX (NG/L)	30 SAMPLES BOL	OXYCHLORDANE (NG/L)	30 SAMPLES BOL	0,P-00T (NG/L)	30 SAMPLES BOL	PCB (NG/L)	30 SAMPLES BOL	P,P-000 (NG/L)	30 SAMPLES BOL	P,P-00E (NG/L)	30 SAMPLES BOL	P,P-00T (NG/L)	30 SAMPLES BOL

I.	GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)		GUIDELINE = 10000 (A2)		GUIDELINE = 5000 (A2)		GUIDELINE = 50000 (A2)		GUIDELINE = 206000 (04)													
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 50.000		DET'N LIMIT = 100.0		DET'N LIMIT = 50.00		DET'N LIMIT = 500.0		DET'N LIMIT = 500.0		DET'N LIMIT = 5.00	108	. AM	. iAu	. AM	8 000 st	9,000 <t< th=""><th>. UO i</th><th>noi .</th><th></th><th>noi</th><th></th><th>Do:</th><th>noi</th></t<>	. UO i	noi .		noi		Do:	noi
TREATMENT PLANT TREATED	PC8	BOL	· · · · · · · · · · · · · · · · · · ·	108		108		108	· · · · · · · · · · · · · · · · · · ·	108		BDL	i Au	i Au	A.	. G	10.000 <1	OĐ.	OĐ.	no:	no i	No:	no.i	no i
TREATMENT PLANT RAW	PESTICIDES AND PCB PROMETRYNE (NG/L)	18 SAMPLES BDL	METRIBUZIN (SENCOR) (NG/L)	18 SAMPLES BDL	SIMAZINE (NG/L)	18 SAMPLES BDL	ALACHLOR (LASSO) (NG/L)	18 SAMPLES BDL	METOLACHLOR (NG/L)	18 SAMPLES BDL	HEXACLCYCLOPENTADIEN (NG/L)	1991 JUN 8DL	JUL	AUG	SEP	NON		FEB	MAR	APR	MAY	NOC	SEP	noi non
	PROMETE	18	METRIBU	18	SIMAZII	18	ALACHLO	18	METOLA(18	HEXACL (199.	1991	1891	5 5	1991	1992	1992	1992	1992	1992	199;	1992	1992

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM SHRLEY ST SHIRLEY ST SHRLEY ST STANDING ST ST STANDING ST			DRINKING WATER	TAE SURVEILLANCE PRO	TABLE 4 PROGRAM 1991 AND	TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP
PHENOLICS 4.00 <t .200="" .20<="" .400="" .600="" <t="" th=""><th></th><th>TREATMENT PLANT RAW</th><th></th><th>DIST. SYSTEM SHIRLEY ST FREE FLOW</th><th>DIST. SYSTEM SHIRLEY ST STANDING</th><th></th></t>		TREATMENT PLANT RAW		DIST. SYSTEM SHIRLEY ST FREE FLOW	DIST. SYSTEM SHIRLEY ST STANDING	
JUL	PHENOLICS (UG/	:	, , , , , , , , , , , , , , , , , , ,	DET'N LIMIT =	0.2	GUIDELINE = N/A
JUL .200 <t .600="" .6<="" <t="" td=""><td>1991 JUN</td><td>1> 007.</td><td>T> 004.</td><td></td><td>•</td><td></td></t>	1991 JUN	1> 007.	T> 004.		•	
AUG. 400 47 200	1001	.200 <t< td=""><td>T> 009.</td><td>•</td><td>•</td><td></td></t<>	T> 009.	•	•	
SEP . 400 <t .="" 1.400="" 400="" 400<="" 600="" <t="" oct="" td=""><td>1991 AUG</td><td>T> 004.</td><td>.200 <t< td=""><td></td><td>•</td><td></td></t<></td></t>	1991 AUG	T> 004.	.200 <t< td=""><td></td><td>•</td><td></td></t<>		•	
OCT 600 <t 1.00<="" 400="" <t="" td=""><td>1991 SEP</td><td>T> 004.</td><td>1.400</td><td></td><td>•</td><td></td></t>	1991 SEP	T> 004.	1.400		•	
NOV 1,200 800 <t 800="" 800<="" <t="" td=""><td>1991 OCT</td><td>T> 009.</td><td>T> 004.</td><td></td><td>•</td><td></td></t>	1991 OCT	T> 009.	T> 004.		•	
JAN 801 801 801 801 801 801 801 801 801 801	1991 NOV	1.200	.800 <t< td=""><td>٠</td><td>•</td><td></td></t<>	٠	•	
FEB 801 801 801 801 801 801 801 801 801 801	1992 JAN	108	80F		•	
MAR 801 801 MAP 801 600 <t JUN 800 <t 600="" <t<br="">SEP 801 601 600 <t NOV 801 801 801</t </t></t 	1992 FEB	108	80L		•	
APR 801 600 <t 100<="" 801="" td=""><td>1992 MAR</td><td>108</td><td>80F</td><td></td><td>•</td><td></td></t>	1992 MAR	108	80F		•	
HAY 80L 80L 01M .800 <t .600="" <<="" <t="" td=""><td>1992 APR</td><td>801</td><td>T> 009.</td><td></td><td>•</td><td></td></t>	1992 APR	801	T> 009.		•	
JUN 800 <t .600="" .800="" .80<="" <t="" td=""><td></td><td>80F</td><td>80F</td><td></td><td>•</td><td></td></t>		80F	80F		•	
SEP. 8DL .400 <t NOV 80L 8DL</t 		T> 000.	T> 009°		•	
NOV 80L 80L		BDL	. 400 <t< td=""><td></td><td>•</td><td></td></t<>		•	
		30F	108	•	•	

	TREATMENT PLANT RAW	TREATED	DISI: SISIEM DISI: SISIEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	_
PHENANTHRENE (NG/L	POLYAROMATIC (NG/L)	POLYAROMATIC HYDROCARBONS)	DET'N LIMIT = 10.0	GUIDELINE = N/A
7 SAMPLES	BOL	BDL	801	
ANTHRACENE (NG/L	4G/L)		DET'N LIMIT = 1.0	GUIDELINE = N/A
7 SAMPLES	BDL	BDL	BOL	
FLUORANTHENE (NG/L	(NG/L)		DET'N LIMIT = 20.0	GUIDELINE = 42000 (D4)
7 SAMPLES	BDL	BDL	BDL	
PYRENE (NG/L	(DET'N LIMIT = 20.0	GUIDELINE = N/A
7 SAMPLES	BDL	BDL	108	
NZO(A)ANTHI	BENZO(A)ANTHRACENE (NG/L)		DET'N LIMIT = 20.0	GUIDELINE = N/A
7 SAMPLES	BDL	BOL		
CHRYSENE (NG/L	\rac{1}{\chint}}}}}}} \right.}}}}}}}}}}}}}}}	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT = 50.0	GUIDELINE = N/A
7 SAMPLES.	BDL	BOL	108	
DIMETH. BENZ	DIMETH. BENZ(A)ANTHR (NG/L	^	DET'N LIMIT = 5.0	GUIDELINE = N/A
7 SAMPLES	BOL	BOL	BDL	
BENZO(E) PYRENE (NG/L	ENE (NG/L)		DET'N LIMIT = 50.0	GUIDELINE = N/A
7 SAMPLES	BDL	BOL	801	
NZO(B) FLU	BENZO(B) FLUORANTHEN (NG/L	^	DET'N LIMIT = 10.0	GUIDELINE = N/A
7 SAMPLES	BDL	BOL	BOL	
PERYLENE (NG/L	ر ۲		DET'N LIMIT = 10.0	GUIDELINE = N/A
7 SAMPLES	BDL	BDL	BDL	
BENZO(K) FLUC	BENZO(K) FLUORANTHEN (NG/L	(DET'N LIMIT = 1.0	GUIDELINE = N/A
7 SAMPLES	BOL	BOL	BOL	•
BENZO(A) PYRENE (NG/L	ENE (NG/L)	, p p p p p 1 1 1 5 6 4 1	DET'N LIMIT = 5.0	GUIDELINE = 10 (A1)
7 SAMPLES	BDL	BOL	BDL	

	TREATMENT PLANT RAW	PLANT	TREATMENT PLANT DIST. SYSTEM TREATED SHIRLEY ST FREE FLOW	DIST, SYSTEM SHIRLEY ST FREE FLOW	DIST. SYSTEM SHIRLEY ST STANDING	_	
ZO(G, H, 1)	POLYAROM/ BENZO(G,H,I) PERYLEN (NG/L	COMATIC 3/L	POLYAROMATIC HYDROCARBONS EN (NG/L)	DET'N LIMIT = 20.0	0.	GUIDELINE = N/A	N/A
7 SAMPLES		BDL	BDL	BDL			
ENZO(A,H)	DIBENZO(A, H) ANTHRAC (NG/L	3/1	_	DET'N LIMIT = 10.0	0.	GUIDELINE = N/A	N/A
7 SAMPLES		BDL	BDL	BDL			
ENO(1,2,3	INDENO(1,2,3-C,D) PY (NG/L	3/L	^	DET'N LIMIT = 20.0	0.	GUIDELINE = N/A	N/A
7 SAMPLES		BDL	BDL	BDL			
120(B) CHR	BENZO(B) CHRYSENE (NG/L	^		DET'N LIMIT = 2.0	0	GUIDELINE = N/A	¥ /¥
7 SAMPLES		BDL	BDL	BDL			
CORONENE (NG/L	٧)		t t t t t t t	DET'N LIMIT = 10.0	0.	GUIDELINE = N/A	¥/¥
7 SAMPLES		BDL	BDL	108	•		

	Ħ	
	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP	
	365	
	AND.	STEM
	6	DIST. SYSTEM SHIRLEY ST STANDING
4	ZAM 1	DIST SHIR STAN
TABLE	PROG	
	NCE.	STEM ST
	11.	r. sy
	SURVE	O1S1 SHIF FREE
	AATER	TREATMENT PLANT DIST. SYSTEM TREATED SHIRLEY ST FREE FLOW
	ING	ENT
	DRINK	REATM
		PLAN
		MENT
		TREATMENT PLANT RAW
		- 4

	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	× ×
2,4,5-T (NG/L	SPECIFIC PESTICIDES	1C10ES	DET'N LIMIT = 50.0	GUIDELINE = 280000 (A1)
2 SAMPLES	BOL	BOL	•	
2,4-D (NG/L	^		DET'N LIMIT = 100.0	GUIDELINE = 100000 (A1)
2 SAMPLES	BDL	BDL	•	-
2,4-DB (NG/L	(DET'N LIMIT = 200.0	GUIDELINE = N/A
2 SAMPLES	BOL	BDL		
2,4 D PROPIONIC ACID (NG/L	C ACID (NG/L	•	DET'N LIMIT = 100.0	GUIDELINE ≈ N/A
2 SAMPLES	BDL	BDL		
DICAMBA (NG/L	^		DET'N LIMIT = 50.0	GUIDELINE = 120000 (A1)
2 SAMPLES	108	BDL		
2,4,5-TP (SILVEX) (NG/L	EX) (NG/L)		DET'N LIMIT = 20.00	GUIDELINE = 10000 (A1)
2 SAMPLES	BDL	BDL		
DIAZINON (NG/L	•		DET'N LIMIT = 20.0	GUIDELINE ≈ 20000 (A1)
2 SAMPLES	BOL	BOL		
DICHLOROVOS (NG/L	()	9 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8	DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	BOL	٠	
CHLORPYRIFOS (NG/L	NG/L)	: : : : : : : : : : :	DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BDL	BOL	٠	
ETHION (NG/L	^	• • • • • • • • • • • • • • • • • • •	DET'N LIMIT = 20.0	GUIDELINE = 35000 (G)
2 SAMPLES	. BOL	80f		
MALATHION (NG/L	۱)		DET'N LIMIT = 20.0	GUIDELINE = 190000 (A1)
2 SAMPLES	BOL	BOL	•	
MEVINPHOS (NG/L	۱)		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	BDL		

TABLE 4

-				
_	TREATMENT PLANT RAW	TREATMENT PLANT TREATED	DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	11E.W
METHYL PARATHIO	SPECIFIC PESTICIDES METHYL PARATHION (NG/L)	ICIDES	DET'N LIMIT = 50.0	GUIDELINE = 9000 (03)
.2 SAMPLES	BOL	108		
METHYLTRITHION (NG/L	(MG/L)		0ET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	108	•	
PARATHION (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 50000 (A1)
2 SAMPLES	BOL	108		-
PHORATE (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = 2000 (A2)
2 SAMPLES	BOL	108		
RELDAN (NG/L	^		DET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	108		
RONNEL (MG/L	^		0ET'N LIMIT = 20.0	GUIDELINE = N/A
2 SAMPLES	BOL	HDL		
CARBOFURAN (NG/L	^		DET'N LIMIT = 2000.0	GUIDELINE = 90000 (A1)
2 SAMPLES	BDL	BOL	٠	
CHLORPROPHAM (CIPC) (NG/L	PC) (NG/L)		DET'N LIMIT = 2000.0	GUIDELINE = 350000 (G)
2 SAMPLES	BDL	BOL		
DIALLATE (NG/L	^		DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES	BDL	BOL		
EPTAM (NG/L	^		DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES	BDL	30L		
1PC (NG/L)			DET'N LIMIT = 2000.0	GUIDELINE = N/A
2 SAMPLES	BOL	B0L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
PROPOXUR (NG/L	^		DET'N LIMIT = 2000.0	GUIDELINE = 140000 (03)
2 SAMPLES	BOL	B0L		•

		DRINKING WATER	SURVEILLANCE PRO	GRAM 1991 AND	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP
	IKEAIMENI PLANI	IKRAIMENI PLANI IKRAIMENI PLANI OISI. STSIEM RAW TREATED SHIRLEY ST FREE FLOW	UISI. STSIEM SHIRLEY ST FREE FLOW	SHIRLEY ST STANDING	
CARBARYL (NG/L	SPECIFIC PESTICIDES)		DET*N LIMIT = 200.0	0.0	GUIDELINE = 90000 (A1)
2 SAMPLES	2 SAMPLES BOL BOL	BOL		٠	
BUTYLATE (NG/L	Ŷ		DET'N LIMIT = 2000.0	0.00	GUIDELINE = 245000 (03)
2 SAMPLES	BOL	108	•	•	

																													c		£	
	GUIDELINE = 5 (A1)		GUIDELINE = 24 (A3)		•											GUIDELINE = 2.4 (A3)								•					GUIDELINE = 30U (A3*)		GUIDELINE = 300 (A3*)	
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.05	108	108 108	.050 <t< td=""><td>BOL</td><td>.050 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>.050 <t< td=""><td></td><td>108</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>BOI</td><td>80L</td><td>BDL</td><td>.100 <t< td=""><td>.050 <t< td=""><td>100 <1</td><td>1,001.</td><td></td><td></td><td>.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	.050 <t< td=""><td>BDL</td><td>BDL</td><td>BOL</td><td>.050 <t< td=""><td></td><td>108</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>BOI</td><td>80L</td><td>BDL</td><td>.100 <t< td=""><td>.050 <t< td=""><td>100 <1</td><td>1,001.</td><td></td><td></td><td>.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	BOL	.050 <t< td=""><td></td><td>108</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>BOI</td><td>80L</td><td>BDL</td><td>.100 <t< td=""><td>.050 <t< td=""><td>100 <1</td><td>1,001.</td><td></td><td></td><td>.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<></td></t<></td></t<></td></t<>		108	BOL	DET'N LIMIT = 0.05	BOI	80L	BDL	.100 <t< td=""><td>.050 <t< td=""><td>100 <1</td><td>1,001.</td><td></td><td></td><td>.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<></td></t<></td></t<>	.050 <t< td=""><td>100 <1</td><td>1,001.</td><td></td><td></td><td>.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<></td></t<>	100 <1	1,001.			.150 <t< td=""><td>• 4</td><td>.200 <t Bn!</t </td><td>DEI'N LIMIT = U.1U</td><td>BOL</td><td>DET'N LIMIT = 0.10</td><td>i</td></t<>	• 4	.200 <t Bn!</t 	DEI'N LIMIT = U.1U	BOL	DET'N LIMIT = 0.10	i
TREATMENT PLANT TREATED		108	· — · · · · · · · · · · · · · · · · · ·	BOL	.050 <t< td=""><td>.050 <⊤</td><td><u> </u></td><td>80L</td><td>BDL</td><td>BDL</td><td>80F</td><td>108 BDL</td><td>108</td><td>BDL</td><td>108</td><td></td><td>-B</td><td>1000.</td><td>BOL</td><td>. 100 <t< td=""><td></td><td></td><td>1 001.</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <⊤	<u> </u>	80L	BDL	BDL	80F	108 BDL	108	BDL	108		-B	1000.	BOL	. 100 <t< td=""><td></td><td></td><td>1 001.</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<></td></t<></td></t<></td></t<></td></t<>			1 001.	. 150 <t< td=""><td>. 100 <t< td=""><td>. 100 <t< td=""><td>. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>. 100 <t< td=""><td>. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<></td></t<></td></t<>	. 100 <t< td=""><td>. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<></td></t<>	. 150 <t< td=""><td>150 cz.</td><td>_</td><td>BDL</td><td>_</td><td>į</td></t<>	150 cz.	_	BDL	_	į
TREATMENT PLANT RAW	VOLATILES	BOL	^	B01	108	80L	10g	80L	108	, 108	B01	80L	BDL	BDL	BDL	7/9/	Rni	108 109	108	.050 <t< td=""><td>BDL</td><td>108 101</td><td>BOL 050 <7</td><td>, IO8</td><td>108</td><td>.050 <₹</td><td>.100 <t< td=""><td>. 100.</td><td>^</td><td>BDL</td><td>•</td><td></td></t<></td></t<>	BDL	108 101	BOL 050 <7	, IO8	108	.050 <₹	.100 <t< td=""><td>. 100.</td><td>^</td><td>BDL</td><td>•</td><td></td></t<>	. 100.	^	BDL	•	
	BENZENE (UG/L	40 SAMPLES	TOLUENE (UG/L	1991 JUN			1991 SEP	1991 NOV			1992 MAR	1992 MAY	1992 JUN	1992 SEP	1992 NOV	ETHYLBENZENE (UG/L	1001	1991 JUL	1991 AUG				1992 JAN 1002 FEB				1992 JUN	1992 SEP	P-XYLENE (UG/L	40 SAMPLES	M-XYLENE (UG/L	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

	•																															
	GUIDELINE = 300 (A3*)															GUIDELINE = 100 (D1)															GUIDELINE = 7 (01)	
DIST. SYSTEM SHIRLEY ST STANDING	.05	•	•	•	•			•				•		•	•	.05	٠		•		•								•	•	.100	٠
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.05	BDL	801	B0L	80f	BOL	801	BOL	BOL	B0L		BOL		BOL	BOL	DET'N LIMIT = 0.05	BOL	BOL	T> 050.	T>-051.	BDL	.200 <	. 100 <	. 150 <t< td=""><td>BOL</td><td></td><td>. 150 <t< td=""><td></td><td>.250 <⊤</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>80L</td></t<></td></t<>	BOL		. 150 <t< td=""><td></td><td>.250 <⊤</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>80L</td></t<>		.250 <⊤	108	DET'N LIMIT = 0.100	80L
TREATMENT PLANT TREATED		BOL	80F	B0L	B0L	108	108	BDL	108	108	80r	108	BDL	108	108		B0L	. 150 <t< td=""><td>BOL</td><td>1> 001.</td><td>B01</td><td>.100 <t< td=""><td>.100 <t< td=""><td>108</td><td>1> 051.</td><td>.100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	1> 001.	B01	.100 <t< td=""><td>.100 <t< td=""><td>108</td><td>1> 051.</td><td>.100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>108</td><td>1> 051.</td><td>.100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<>	108	1> 051.	.100 <t< td=""><td>.100 <t< td=""><td>.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<></td></t<></td></t<>	.100 <t< td=""><td>.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<></td></t<>	.050 <t< td=""><td>. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<></td></t<>	. 150 <t< td=""><td>108</td><td></td><td>BOL</td></t<>	108		BOL
TREATMENT PLANT RAW	VOLATILES)	BOL	BOL	B0L	.050 <t< td=""><td>108</td><td>108</td><td>8DF</td><td>BDL</td><td>8DL</td><td>8DF</td><td>BOL</td><td>80L</td><td>108</td><td>BOL</td><td>(</td><td>B0L</td><td>BOL</td><td>B0L</td><td>.150 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>80F</td><td>. 100 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	108	108	8DF	BDL	8DL	8DF	BOL	80L	108	BOL	(B0L	BOL	B0L	.150 <t< td=""><td>.050 <t< td=""><td>.050 <t< td=""><td>80F</td><td>. 100 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>.050 <t< td=""><td>80F</td><td>. 100 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>80F</td><td>. 100 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<></td></t<></td></t<>	80F	. 100 <t< td=""><td>B0L</td><td>.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<></td></t<>	B0L	.100 <t< td=""><td>.200 <1</td><td>.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<></td></t<>	.200 <1	.150 <t< td=""><td>.150 <7</td><td>.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<></td></t<>	.150 <7	.100 <t< td=""><td>YLENE (UG/L)</td><td>BOL</td></t<>	YLENE (UG/L)	BOL
. -	O-XYLENE (UG/L	1001 JUN			1991 SEP	1991 OCT	1991 NOV	1992 JAN	1992 FEB	1992 MAR	1992 APR				1992 NOV	STYRENE (UG/L	1991 JUN	1991 JUL	_	1991 SEP	1991 OCT			1992 FEB			1992 MAY	1992 JUN	1992 SEP	. 1992 NOV	1,1-DICHLOROETHYLENE (UG/L	40 SAMPLES

X .	GUIDELINE = 50 (A1)															GUIDELINE = 70 (D1)		GUIDELINE = N/A		GUIDELINE = 350 (A1+)															GUIDELINE = 200 (D1))
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 0.50	108	801	80F	80F	BDL	8DL	108	3.000 <t< td=""><td>3.500 <t< td=""><td>•</td><td>4.500 <t< td=""><td></td><td>3.500 <t< td=""><td>1.500 <t< td=""><td>DET'N LIMIT = 0,10</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>801</td><td>DET'N LIMIT = 0.10</td><td>7.000</td><td>4.800</td><td>7.500</td><td>3.800</td><td>6.100</td><td>7.000</td><td>3.900</td><td>3.200</td><td>7.000</td><td>, 100</td><td></td><td>7.800</td><td>10.300</td><td></td><td>DET'N LIMIT = 0.02</td><td>901</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	3.500 <t< td=""><td>•</td><td>4.500 <t< td=""><td></td><td>3.500 <t< td=""><td>1.500 <t< td=""><td>DET'N LIMIT = 0,10</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>801</td><td>DET'N LIMIT = 0.10</td><td>7.000</td><td>4.800</td><td>7.500</td><td>3.800</td><td>6.100</td><td>7.000</td><td>3.900</td><td>3.200</td><td>7.000</td><td>, 100</td><td></td><td>7.800</td><td>10.300</td><td></td><td>DET'N LIMIT = 0.02</td><td>901</td><td></td></t<></td></t<></td></t<></td></t<>	•	4.500 <t< td=""><td></td><td>3.500 <t< td=""><td>1.500 <t< td=""><td>DET'N LIMIT = 0,10</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>801</td><td>DET'N LIMIT = 0.10</td><td>7.000</td><td>4.800</td><td>7.500</td><td>3.800</td><td>6.100</td><td>7.000</td><td>3.900</td><td>3.200</td><td>7.000</td><td>, 100</td><td></td><td>7.800</td><td>10.300</td><td></td><td>DET'N LIMIT = 0.02</td><td>901</td><td></td></t<></td></t<></td></t<>		3.500 <t< td=""><td>1.500 <t< td=""><td>DET'N LIMIT = 0,10</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>801</td><td>DET'N LIMIT = 0.10</td><td>7.000</td><td>4.800</td><td>7.500</td><td>3.800</td><td>6.100</td><td>7.000</td><td>3.900</td><td>3.200</td><td>7.000</td><td>, 100</td><td></td><td>7.800</td><td>10.300</td><td></td><td>DET'N LIMIT = 0.02</td><td>901</td><td></td></t<></td></t<>	1.500 <t< td=""><td>DET'N LIMIT = 0,10</td><td>108</td><td>DET'N LIMIT = 0.100</td><td>801</td><td>DET'N LIMIT = 0.10</td><td>7.000</td><td>4.800</td><td>7.500</td><td>3.800</td><td>6.100</td><td>7.000</td><td>3.900</td><td>3.200</td><td>7.000</td><td>, 100</td><td></td><td>7.800</td><td>10.300</td><td></td><td>DET'N LIMIT = 0.02</td><td>901</td><td></td></t<>	DET'N LIMIT = 0,10	108	DET'N LIMIT = 0.100	801	DET'N LIMIT = 0.10	7.000	4.800	7.500	3.800	6.100	7.000	3.900	3.200	7.000	, 100		7.800	10.300		DET'N LIMIT = 0.02	901	
TREATMENT PLANT TREATED		80f	108	901	108	BDL	B0L	108	3.000 <t< td=""><td>3.500 <t< td=""><td>4.500 <t< td=""><td>4.500 <t< td=""><td>108</td><td>3.000 <t< td=""><td>1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.500 <t< td=""><td>4.500 <t< td=""><td>4.500 <t< td=""><td>108</td><td>3.000 <t< td=""><td>1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	4.500 <t< td=""><td>4.500 <t< td=""><td>108</td><td>3.000 <t< td=""><td>1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<></td></t<></td></t<></td></t<>	4.500 <t< td=""><td>108</td><td>3.000 <t< td=""><td>1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<></td></t<></td></t<>	108	3.000 <t< td=""><td>1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<></td></t<>	1.500 <t< td=""><td>^</td><td>108</td><td></td><td>BDL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>3.200</td><td>7.600</td><td>10.500</td><td>9.700</td><td>006.6</td><td>10.000</td><td>8.700</td><td>006.4</td><td>9.100</td><td>007.8</td><td>10.600</td><td>10.500</td><td>11.800</td><td></td><td></td><td>80L</td><td></td></t<>	^	108		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.200	7.600	10.500	9.700	006.6	10.000	8.700	006.4	9.100	007.8	10.600	10.500	11.800			80L	
TREATMENT PLANT RAW	VOLATILES IDE (UG/L)	80F	BDL	80F	B0L	BDL	108	108	108	BDL	BDL	BDL	BDL	BDL	BDL	MLENE (UG/L	108	IANE (UG/L)	108	()	BDI	108 80L	BDL	BDL	BDL	BDL	108 101	108	7 8	100	1 08	i G	80r	:	HANE (UG/L)	BDL	
	VOLATI METHYLENE CHLORIDE (UG/L		1991 JUL		1991 SEP						1992 APR	1992 MAY		1992 SEP	1992 NOV	T12-DICHLOROETHYLENE (UG/L	40 SAMPLES	1,1-DICHLOROETHANE (UG/L	40 SAMPLES	CHLOROFORM (UG/L	1001		1991 AUG						1992 MAR						111, TRICHLOROETHANE (UG/L	40 SAMPLES	

	ž
	COBOURG
	1992
	AND
	1991
TABLE 4	PROGRAM
	DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WTP
	WATER
	DRINKING

	GUIDELINE = 5 (A1)		GUIDELINE = 5 (A1)		GUIDELINE = 5 (01)		GUIDELINE = 50 (A1)		GUIDELINE = 350 (A1+)															GUIDELINE = 0.6 (04)	
OIST. SYSTEM OIST. SYSTEM SHRLEY ST SHIRLEY ST FREE FLOW STANDING	DET'N LIMIT = 0.05	. 801	DET'N LIMIT = 0.20	. BOL	DET'N LIMIT = 0.05	. 108	DET'N LIMIT = 0.10	. 801	DET*N LIMIT ≈ 0.05	7000	250.7	7 050	4.100	5.800	4.200	4.350	3.400	4.350		2.500		7.150	8.900	DET'N LIMIT = 0.05	. BDL
TREATMENT PLANT OIST. SYSTEM TREATED SHIRLEY ST FREE FLOW		108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	108	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 200	2002. 2	002.0	7.450	9.100	007.6	9.250	6.350	9.450	10.100	7.800	10.100	6.450	10.650		B01
TREATMENT PLANT RAW	VOLATILES 1,2 DICHLOROETHANE (UG/L)	40 SAMPLES BOL	CARBON TETRACHLORIDE (UG/L)	40 SAMPLES BOL	1,2-DICHLOROPROPANE (UG/L)	40 SAMPLES BOL	TRICHLOROETHYLENE (UG/L)	40 SAMPLES BOL	DICHLOROBROMOMETHANE (UG/L)	1001 IIIN BDI		Alls	SEP	OCT	NOV		FEB	MAR	APR	MAY	JUN		1992 NOV BDL	112-TRICHLORGETHANE (UG/L)	40 SAMPLES BDL

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 COBOURG WIP

11	GUIDELINE = 350 (A1+)					•	•	•		•			•				GUIDELINE = 65 (A5)		GUIDELINE = 350 (A1+)			,													GUIDELINE = 0.17 (04)		GUIDELINE = 2 (D1)	•	1
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST STANDING FREE FLOW	DET'N LIMIT = 0.10	2.800	3.200	7,600	3,100	700	007 \$		4.000	2.900	2.800		6.300		7.800	7.900	DET'N LIMIT = 0.05	. 108	DET'N LIMIT = 0.20	17 007		13 000.	.600 <1	1> 000.	.800 <t< td=""><td>T> 000.</td><td>BDL</td><td>.800 <t< td=""><td>BDL</td><td></td><td>B01</td><td>• !</td><td>.800 <t< td=""><td>1> 009</td><td>DET'N LIMIT = 0.05</td><td>80r</td><td>DET'N LIMIT = 0.100</td><td>B01</td><td></td></t<></td></t<></td></t<>	T> 000.	BDL	.800 <t< td=""><td>BDL</td><td></td><td>B01</td><td>• !</td><td>.800 <t< td=""><td>1> 009</td><td>DET'N LIMIT = 0.05</td><td>80r</td><td>DET'N LIMIT = 0.100</td><td>B01</td><td></td></t<></td></t<>	BDL		B01	• !	.800 <t< td=""><td>1> 009</td><td>DET'N LIMIT = 0.05</td><td>80r</td><td>DET'N LIMIT = 0.100</td><td>B01</td><td></td></t<>	1> 009	DET'N LIMIT = 0.05	80r	DET'N LIMIT = 0.100	B01	
TREATMENT PLANT TREATED	_	2.800	3.800	6.000	002 7	700	2 900	2.500	000.7	7.600	6.100	9.300	6.800	5.700	007.9	5.500		108	0 0 0 0 0 0 0 1 1 1 1				1> 000.	.800 <t< td=""><td>1.200 <1</td><td>1,000 <1</td><td>108</td><td>1.000 <1</td><td>108</td><td>.800 <1</td><td>108</td><td>108</td><td>1> 008.</td><td>1> 009.</td><td>•</td><td>108</td><td></td><td>80 F</td><td></td></t<>	1.200 <1	1,000 <1	108	1.000 <1	108	.800 <1	108	108	1> 008.	1> 009.	•	108		80 F	
TREATMENT PLANT RAW	VOLATILES ETHANE (UG/L	108	BDI	108	l La	700	801	BUL	108	108	80r	108	BDL	108 80 L	BOL	108		B0L	ال)		BOL	Bol	108	BDL	B0L	B0L	108	BDL	B0L	108	108	BOL	108	108	DETHANE (UG/L	108	E (UG/L)	108	
	VOLATILE CHLORODIBROMOMETHANE (UG/L	1991 JUN							1992 JAN			1992 APR	1992 MAY	1992 JUN			TETRACHLOROETHYLENE (UG/L	40 SAMPLES	BROMOFORM (UG/L												1992 MAY	1992 JUN	1992 SEP	1992 NOV	1122-TETCHLOROETHANE (UG/L	40 SAMPLES	VINYL CHLORIDE (UG/L	19 SAMPLES	

ORINKING WATER SURVEILLANGE P REATMENT PLANT TREATED SHIRLEY ST RAW FREE FLOW

	(01)		10 (03)		5 (A1)		50 (03)		0 (A1)		(01)		0 (A1)													
	GUIDELINE = 70 (D1)		GUIDELINE = 1510 (D3)		GUIDELINE = 5		GUIDELINE = 3750 (D3)		GUIDELINE = 200 (A1)		GUIDELINE = 50 (D1)		GUIDELINE = 350 (A1)													
DIST. SYSTEM SHIRLEY ST STANDING	0 0 0 0 0 0 0 0		* * * * * * * * * * * * * * * * * * *							٠) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	٠						•	•		• •					٠
DIST. SYSTEM SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	BOL	DET'N LIMIT = 0.05	BDL	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.50	11.300	13.350	19.750	11.600	17.300	12.200	10 200	11.750		17.900		20.550	24.700
IREAIMENI PLANI TREATED		BDL		BOL		BDL		BOL		BDL		BDL	· · · · · · · · · · · · · · · · · · ·	10.800	14.500	27.000	19.650	26.800	005.42	16 900	24.650	29.400	23.000	26.400	27.250	28.550
IREAIMENI PLANI RAW	VOLATILES LENE (UG/L)	108	(2/r)	108	ENE (UG/L)	108	ENE (UG/L)	BDL	ENE (UG/L)	BDL	DE (UG/L)	BDL	ANES (UC/L)	BDL	·BDL	BDL	BDL	108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J J J	BDL	BDL	BDL	BDL	BDL	BDL
- α	VOLATILE C12-DICHLOROETHYLENE (UG/L	19 SAMPLES	CHLOROBENZENE (UG/L	40 SAMPLES	1,4-DICHLOROBENZENE (UG/L	40 SAMPLES	1,3-DICHLOROBENZENE (UG/L	40 SAMPLES	1,2-DICHLOROBENZENE (UG/L	40 SAMPLES	ETHYLENE DIBROMIDE (UG/L	40 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JUN		1991 AUG				1992 FFR	1992 MAR			1992 JUN	1992 SEP	1992 NOV

	GUIDELINE = N/A		GUIDELINE ≈ N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (01)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
DIST. SYSTEM DIST. SYSTEM SHIRLEY ST SHIRLEY ST FREE FLOW	DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.04		0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
TREATMENT' PLANT TREATED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	1	108	1	BOL		.050		.110	·	BDL		BOL
TREATMENT PLANT TREATMENT PLANT DIST, SYSTEM RAW FREE FLOW	RADIONUCLIDES	B0L	^	B0L	^	BDL	T (80/L ·)	B0L	(80/L)	060.	-	BDL	(BDL
⊼ 1	COBALT 60 (80/L	2 SAMPLES	CESIUM 134 (BQ/L	2 SAMPLES	CESIUM 137 (80/L	2 SAMPLES	GROSS ALPHA COUNT (BQ/L	1991 OCT	GROSS BETA COUNT (BQ/L	1991 0CT	TRITIUM (BQ/L	2 SAMPLES	100 INE 131 (BQ/L	2 SAMPLES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION STANDARD PLATE COUNT MEMBRANE FILT. TOTAL COLIFORM BACKGROUND MF TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML CT/ML CT/100ML CT/100ML	0 0 0	0 500/ML N/A 5/100ML	(A1) (A3)
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL FIELD TOTAL CHLORINE RESIDUAL FIELD FREE CHLORINE RESIDUAL FIELD PH FIELD TEMPERATURE FIELD TURBIDITY	MG/L MG/L MG/L DMNSLESS DEG.C FTU	0 0 0 n/a n/a n/a	N/A N/A N/A 6.5-8.5 15.0 1.0	(A4) (A3) (A1)
CHEMISTRY (LAB)				
ALKALINITY AMMONIUM TOTAL CALCIUM CHLORIDE COLOUR CONDUCTIVITY CYANIDE DISSOLVED ORGANIC CARBON FLUDRIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM NITRATES (TOTAL) NITRITE NITROGEN TOTAL KJELDAHL PH	MG/L MG/L MG/L TCU UMHO/CM MG/L MG/L MG/L MG/L MG/L MG/L DMNSLESS DMNSLESS MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	0.20 0.002 0.20 0.20 0.50 1.00 0.001 0.10 0.01 0.50 N/A N/A 0.10 0.005 0.001	250.0 5.0 400.0 0.2 5.0 1.5* 80-100 N/A 30.0 10.0 1.0 N/A	(F2) (A3) (A3) (F2) (A1) (A3)
PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL POTASSIUM RESIDUE FILTRATE (CALCULATED TDS) SODIUM SULPHATE TURBIDITY	DMNSLESS MG/L MG/L MG/L MG/L MG/L MG/L FIU	N/A 0.0005 0.002 0.010 N/A 0.20 0.20 0.05	N/A 0.4 10.0 500.0 200.0 500.0	(A4) (F2) (F2) (A3) (A4) (A4) (A1)

^{*} The Maximum Acceptable Concentration (MAC) for <u>naturally occurring fluoride</u> in drinking water is 2.4 mg/L.

CHLOROAROMATICS				
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,4,5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0	450	(D4)
HEXACHLOROETHANE	NG/L	1.0	1900	(D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2.3.4-TRICHLOROPHENOL	NG/L	100.0	- N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(D4)
. 2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	(A1)
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10 0.05	25 1000	(A1) (A2)
BARIUM BERYLLIUM	UG/L UG/L	0.05	. 6800	(04)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	NG\r	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	(47)
COPPER	UG/L	0.50	1000 300	(A3)
IRON LEAD	UG/L UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05 0.10	N/A N/A	
- STRONTIUM THALLIUM	UG/L UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	(04)
URANIUM	UG/L	0.05	100	(A1)
VANAD1UM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				,
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0 10.0	N/A N/A	
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE FLUORANTHENE	NG/L NG/L	5.0 20.0	N/A 42000	(D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A	(04)
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L NG/L	2.0 50.0	7000 300000	(A1) (D3)
AMETRINE ATRATONE	NG/L	50.0	N/A	(03)
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II)	NG/L NG/L	2.0 5.0	74000 74000	(D4) (D4)
ENDOSULFAN 2 (THIODAN II) ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L NG/L	5.0	74000 N/A	(04)
ENDOSCEIAN SOLFIIATE (THIODAN SOLFIIATE)	, -	2.0	11/15	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
FURRILL	110.41	E 0	1400	(07)
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLOROANE	NG/L	2.0	7000 3000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0 5.0	206000	(A1) (D4)
HEXACHLOROCYCLOPENTADIENE	NG/L		4000	(A1)
LINDANE (GAMMA BHC)	NG/L	1.0 5.0	900000	
METHOXYCHLOR	NG/L		50000	(A1)
METOLACHLOR	NG/L	500.0	80000	(A2)
METRIBUZIN (SENCOR)	NG/L	100.0		(A1)
MIREX	NG/L	5.0	N/A 30000	/445
P,P-DDD	NG/L	5.0		(A1)
O,P-DDT	NG/L	5.0 5.0	30000 30000	(A1)
P,P-DDT	NG/L	1.0	30000	(A1) (A1)
P,P-DDE	NG/L			(AI)
OXYCHLORDANE	NG/L	2.0	N/A 3000	(A2)
PCB PROMETONE	NG/L	20.0 50.0	52500	(D3)
	NG/L	50.0	1000	(A2)
PROMETRYNE	NG/L		700000	(D3)
PROPAZINE	NG/L	50.0	10000	
SIMAZINE	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0		(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
PHENOLICS				
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	٠
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(03)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	
MEVINPHOS	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
VOLATILES				
1,1-DICHLOROETHANE	UG/L	0.10	N/A	
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05	200	(A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(A1)
1,2-DICHLOROPROPANE	UG/L	0.05	5	(D1)
1,3-DICHLOROBENZENE	UG/L	0.10	3750	(D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5	(A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200	(D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.	
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.	17 (D4)

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION	0111051 1115	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
BENZENE	UG/L	0.05	5	(A1)
BROMOFORM	UG/L	0.20	350	(A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)
CHLOROBENZENE .	UG/L	0.10	1510	(D3)
CHLOROD I BROMOMETHANE	UG/L	0.10	350	(A1+)
CHLOROFORM	UG/L	0.10	350	(A1+)
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
DICHLOROBROMOMETHANE	UG/L	0.05	350	(A1+)
ETHYLENE DIBROMIDE	UG/L	0.05	50	(D1)
ETHYLBENZENE	UG/L	0.05	2.	4 (A3)
M-XYLENE	UG/L	0.10	300	(A3*)
METHYLENE CHLORIDE	UG/L	0.50	50	(A1)
O-XYLENE	UG/L	0.05	300	(A3*)
P-XYLENE	UG/L	0.10	300	(A3*)
STYRENE	UG/L	0.05	100	(D1)
TETRACHLOROETHYLENE	UG/L	0.05	65	(A5)
TRANS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)
TOLUENE	UG/L	0.05	24	(A3)
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)
TRICHLOROETHYLENE	UG/L	0.10	50	(A1)
VINYL CHLORIDE .	UG/L	0.10	2	(01)
RAD I ONUCL I DES				
TRITIUM	BQ/L	7.0	40000	(A1)
GROSS ALPHA COUNT	BQ/L	0.04	0.	55# (D1)
GROSS BETA COUNT	BQ/L	0.04	N/A	
COBALT 60	BQ/L	0.70	N/A	
CESIUM 134	BQ/L	0.70	N/A	
CESIUM 137	BQ/L	0.70	50	(A1)
IODINE 131	BQ/L	0.70	10	(A1)

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- ${\rm i}/{\rm i}$ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

 $C_{\lambda}H_{\lambda}$

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

-fill to 2 cm from top

-220 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₂) (Caution: HNO, is corrosive)

Volatiles (duplicates)

-45 mL glass vial with septum (OPOPUP)

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

(OWOC), (OWTRI)

Specific Pesticides -as per Organics

(OWCP), (PEOP), (PECAR) -three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only) -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury -250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO3) and potassium dichromate (K2Cr2O7) (Caution: HNO3&K2Cr2O7 are corrosive) Phenols

-250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides (as scheduled)

(PBVOL), (PBEXT)

-4 L plastic jug

-do <u>not</u> rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

-1 L amber glass bottle; instructions

as per organic -250 mL glass bottle -do <u>not</u> rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry

-500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals.

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) -45 mL glass vial with septum

(OPOPUP) (teflon side must be in contact with sample)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan

(OWOC) -do <u>not</u> rinse bottle

-fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

