Matrix-Circle

SHREYASH CHANDRA PUTTA

October 13, 2022

Contents

1 Problem Statement	1	4.		
	_	4	0/	
2 Solution	1	3.		
2 Solution	1	2		//

1 Problem Statement

To find angle QPR of the triangle PQR which is inscribed in the circle $x^2+y^2=25$. If Q and R have co-ordinates (3,4) and (-4,3) respectively .

Symbol	Value	Description
Q	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	given point
R	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	given point
О	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	center of given circle

Table 1: Parameters

Figure 1: triangle inscribed in Circle and its angle QPR

2 Solution

Given that Points given are on the circle forms an inscribed triangle forms by joining the points (3,4),(-4,3) and any point on the given circle

Let
$$\mathbf{Q} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, $\mathbf{R} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Given equation of circle is $\mathbf{x}^{\mathsf{T}}\mathbf{I} \mathbf{x} = 25$.

The direction vector of the line joining two points A, B is given by

The angle between two vectors is given by

(9)

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1}$$

$$\theta = \cos^{-1} \frac{\mathbf{n} \mathbf{1}^{\mathsf{T}} \mathbf{n} \mathbf{2}}{\|\mathbf{n} \mathbf{1}\| \|\mathbf{n} \mathbf{2}\|}$$

From eq1 we get direction vectors of **Q**, **O** By substituting **n1** and **n2** we get and **R**, **O** as m1 and m2 respectively

$$\mathbf{m1} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \tag{2}$$

$$\mathbf{m2} = \begin{pmatrix} -4\\3 \end{pmatrix} - \begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} -4\\3 \end{pmatrix} \tag{3}$$

 $\angle QOR = 90^{\circ} \tag{10}$

The Central Angle Theorem states that the measure of inscribed angle is always half the measure of the central angle.

The normal vector to m is defined by:

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0. \tag{4}$$

From eq4 and eq2 weget

$$\begin{pmatrix} 3 & 4 \end{pmatrix} \mathbf{n} \mathbf{1} = 0 \tag{5}$$

by eq5 we can cansider:

$$\mathbf{n1} = \begin{pmatrix} -4\\3 \end{pmatrix}$$

From eq4 and eq3 weget

$$(-4 \ 3) \mathbf{n2} = 0$$

by solving eq7 we consider:

$$\mathbf{n2} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

i.e $\angle QOR = 2\angle QPR$ (11)

by eq11 and eq10

$$\angle QPR = 45^{\circ}$$
 (12)

where, P is on major arc of the given circle

Additional:

(6) Let **P**' is any point on minor arc of the given circle

Then,

$$\angle QP'R = 180^{\circ} - \angle QPR \tag{13}$$

From eq13 and eq12

$$\angle QP'R = 135^{\circ} \tag{14}$$

(7)

3 Software

Download the following code using,

 $\begin{array}{c} svn\ co\ https://github.com/chanduputta/\\ FWC-Module1Assignments/blob/\\ main/circle/circle.py \end{array}$

and execute the code by using command

Python3 circle.py

4 Conclusion

We found the $\angle QPR$ of the $\triangle PQR$ which is inscribed in the circle $x^2 + y^2 = 25$. Where P is any point on the circle.