N. GREGORY

MANK

PRINCIPLES OF

ECONOMICS

Eight Edition

CHAPTER

13

The Costs of Production

Premium PowerPoint Slides by: V. Andreea CHIRITESCU Eastern Illinois University

Active Learning 1 Brainstorming costs

You run Ford Motor Company.

- List three different costs you have.
- List three different business decisions that are affected by your costs

Look for the answers to these questions:

- What is a production function? What is marginal product? How are they related?
- What are the various costs? How are they related to each other and to output?
- How are costs different in the short run vs. the long run?
- What are "economies of scale"?

Total Revenue, Total Cost, Profit

 We assume that the firm's goal is to maximize profit.

the amount a firm receives from the sale of its output

 $TR = P \times Q$

the market value of the inputs a firm uses in production

- 'The cost of something is what you give up to get it.'
- Explicit costs
 - Require an outlay of money
 - E.g., paying wages to workers.
- Implicit costs
 - Do not require a cash outlay
 - E.g., the opportunity cost of the owner's time.
- Total cost = Explicit + Implicit costs

Explicit vs. Implicit Costs: An Example

You need \$100,000 to start your business. The interest rate is 5%.

- Case 1: borrow \$100,000
 - explicit cost = \$5000 interest on loan
- Case 2: use \$40,000 of your savings, borrow the other \$60,000
 - explicit cost = \$3000 (5%) interest on the loan
 - implicit cost = \$2000 (5%) foregone interest you
 could have earned on your \$40,000.

In both cases, total (exp + imp) costs are \$5000

Economic Profit vs. Accounting Profit

- Accounting profit
 - =total revenue minus total explicit costs
- Economic profit
 - =total revenue minus total costs (including explicit and implicit costs)
 - Accounting profit ignores implicit costs, so it's higher than economic profit.

Economic Profit is Best

Economic profit vs. accounting profit

The equilibrium rent on office space has just increased by \$500/month.

Determine the effects on accounting profit and economic profit if:

- a. you rent your office space
- b. you own your office space

Active Learning 2

Answers

The rent on office space increases \$500/month.

- a. You rent your office space.
- Explicit costs increase \$500/month. Accounting profit & economic profit each fall \$500/month.
- b. You own your office space.
- Explicit costs do not change, so accounting profit does not change.
- Implicit costs increase \$500/month (opp. cost of using your space instead of renting it) so economic profit falls by \$500/month.

- Production function
 - Relationship between
 - Quantity of inputs used to make a good
 - And the quantity of output of that good
 - Gets flatter as production rises

EXAMPLE 1: Farmer Jack

Example

Example 1:

- Farmer Jack grows wheat.
- He has 5 acres of land (fixed resource).
- He can hire as many workers as he wants.
 - The quantity of output produced varies with the number of workers hired

EXAMPLE 1: Farmer Jack's Production Function

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use 2 as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Marginal Product

- Marginal product
 - Increase in output that arises from an additional unit of input
 - Other inputs constant
 - Slope of the production function
- Marginal product of labor, MPL

$$- MPL = \Delta Q/\Delta L$$

 If Jack hires one more worker, his output rises by the marginal product of labor.

EXAMPLE 1: Total & Marginal Product

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Diminishing MPL

- Diminishing marginal product
 - Marginal product of an input declines as the quantity of the input increases
 - Production function gets flatter as more inputs are being used:
 - The slope of the production function decreases

EXAMPLE 1: MPL = Slope of Prod Function

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Why MPL Is Important

- 'Rational people think at the margin'
- When Farmer Jack hires an extra worker
 - His costs rise by the wage he pays the worker
 - His output rises by MPL
 - Comparing them helps Jack decide whether he should hire the worker.

Why MPL Diminishes

- Farmer Jack's output rises by a smaller and smaller amount for each additional worker. Why?
 - As Jack adds workers, the average worker has less land to work with and will be less productive.
 - In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.).

EXAMPLE 1: Farmer Jack's Costs

Farmer Jack must pay \$1000 per month for the land, regardless of how much wheat he grows.

The market wage for a farm worker is \$2000 per month.

 So Farmer Jack's costs are related to how much wheat he produces....

EXAMPLE 1: Farmer Jack's Costs

*	Q (bushels of wheat)	Cost of land	Cost of labor	Total cost	
0	0	\$1,000	\$0	\$1,000	
1	1000	\$1,000	\$2,000	\$3,000	
2	1800	\$1,000	\$4,000	\$5,000	
3	2400	\$1,000	\$6,000	\$7,000	
4	2800	\$1,000	\$8,000	\$9,000	
5	3000	\$1,000	\$10,000	\$11,000	

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

EXAMPLE 1: Farmer Jack's Total Cost Curve

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Marginal Cost

- Marginal cost, MC
 - Increase in total cost arising from an extra unit of production
 - Marginal cost = Change in total cost /Change in quantity
 - $-MC = \Delta TC / \Delta Q$
 - Increase in total cost
 - From producing an additional unit of output

EXAMPLE 1: Total and Marginal Cost

	Q (bushels of wheat)	COST		Marginal Cost (<i>MC</i>)
$\Delta Q = 1000$	0	\$1,000 -	ATC - \$2000	ድ ጋ በበ
$\Delta \mathbf{Q} = 1000$	1000	\$3,000	Δ TC = \$2000	\$2.00
$\Delta Q = 800$	1000	ΨΟ,ΟΟΟ	Δ TC = \$2000	\$2.50
	- 1800	\$5,000 -	<	• • • •
$\Delta \mathbf{Q} = 600$	0400	Ф7 000	Δ TC = \$2000	\$3.33
$\Delta Q = 400$	2400	\$7,000	∆ TC = \$2000	\$5.00
$\Delta Q = 200$	2800	\$9,000 -	Δ TC = \$2000	\$10.00
Δ Q – 200	3000	\$11,000 -	Δ1 C - φ2000	Ψ10.00

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

EXAMPLE 1: The Marginal Cost Curve

Q				\$12	
(bushels of wheat)		MC		\$10 ⁻	
0	\$1,000		Marginal Cost (\$)	\$8 -	
1000	\$3,000	\$2.00	nal (\$6 -	
1800	\$5,000	\$2.50	/argi	\$4 -	
	· •	\$3.33	_	\$2 -	•
2400	\$7,000	\$5.00			
2800	\$9,000	\$10.00		\$0 	1
3000	\$11,000				

^{© 2018} Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Why MC Is Important

- Farmer Jack is rational and wants to maximize his profit
 - To increase profit, should he produce more or less wheat?
 - Farmer Jack needs to "think at the margin"
 - If the cost of additional wheat (MC) is less than the revenue he would get from selling it, then Jack's profits rise if he produces more.

Fixed and Variable Costs

- Fixed costs, FC, do not vary with the quantity of output produced
 - For Farmer Jack, FC = \$1000 for his land
 - Other examples: cost of equipment, loan payments, rent
- Variable costs, VC, vary with the quantity of output produced
 - For Farmer Jack, VC = wages he pays workers
 - Other example: cost of materials
- Total cost = Fixed cost + Variable cost

EXAMPLE 2: Production Costs

- Our second example is more general, applies to any type of firm producing any good with any types of inputs.
 - Calculate and graph TC knowing FC and VC
 - Calculate and graph marginal and average costs
 - Understand the relationship between marginal cost and average cost

EXAMPLE 2: Costs: TC = FC + VC

Q	FC	VC	TC
0	\$100	\$0	\$100
1	100	70	170
2	100	120	220
3	100	160	260
4	100	210	310
5	100	280	380
6	100	380	480
7	100	520	620

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

EXAMPLE 2: Marginal Cost

Q	TC	МС
0	\$100	_
1	170	\$70
2	220	50
	220	40
3	260	50
4	310	
5	380	70
		100
6	480	140
7	620	

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

EXAMPLE 2: Average Fixed Cost, AFC

Q	FC AFC	
0	\$100	n/a
1	100	\$100
2	100	50
3	100	33.33
4	100	25
5	100	20
6	100	16.67
7	100	14.29

EXAMPLE 2: Average Variable Cost, AVC

Q	VC	AVC
0	\$0	n/a
1	70	\$70
2	120	60
3	160	53.33
4	210	52.50
5	280	56.00
6	380	63.33
7	520	74.29

EXAMPLE 2: Average Total Cost

Q	TC	ATC	AFC	AVC
0	\$100	n/a	n/a	n/a
1	170	\$170	\$100	\$70
2	220	110	50	60
3	260	86.67	33.33	53.33
4	310	77.50	25	52.50
5	380	76	20	56.00
6	480	80	16.67	63.33
7	620	88.57	14.29	74.29

Average total cost (ATC) equals total cost divided by the quantity of output:

$$ATC = TC/Q$$

Also,

$$ATC = AFC + AVC$$

EXAMPLE 2: Average Total Cost, usually U-shaped

Q	TC ATC	
0	\$100	n/a
1	170	\$170
2	220	110
3	260	86.67
4	310	77.50
5	380	76
6	480	80
7	620	88.57

EXAMPLE 2: The Various Cost Curves Together

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

EXAMPLE 2: ATC and MC

When MC < ATC, ATC is falling.

When MC > ATC, ATC is rising.

The MC curve crosses the ATC curve at the ATC curve's minimum.

© 2018 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website or school-approved learning management system for classroom use.

Active Learning 3

Calculating costs

Fill in the blank spaces of this table.

FC=50

Q	VC	TC	AFC	AVC	ATC	MC
0		\$50	n/a	n/a	n/a	\$10
1	10	60	50	\$10	\$60.00	7 .
2	30	80	25	15	40	30
3	60	110	16.67	20	36.67	<i>(</i> (5)
4	100	150	12.50	25	37.50	
5	150	260	10	30	40	<u>りり</u> 60
6	210	260	8.33	35	43.33	00