$$A = \begin{bmatrix} 1 & 1 & 2 \\ 4 & 0 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 4 & 0 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 4 & 0 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 0 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 4 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix},$$

3.
$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $BA = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} 1 & -2 & 1 \\ 2 & 3 & -6 & 3 \end{bmatrix}$
 $BA = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & -1$

 $= \begin{cases} \lambda_{1} \alpha_{11} & - - \lambda_{n} \alpha_{1n} \\ \lambda_{1} \alpha_{21} & - - \lambda_{n} \alpha_{2n} \\ \vdots & \vdots \\ \lambda_{1} \alpha_{n1} & - - \lambda_{n} \alpha_{nn} \end{cases}$ 121: AD=1)A $\lambda_i \Omega_{ij} = \lambda_j \Omega_{ij} (i + j \otimes i, j = 1, 2 \dots n)$ '.'〉; 未入; $1.00ij = 0 (j \neq j)$ 一人为对解阵

14 (1) (A+A^T)^T = A^T+A = A+A^T
: 対称矩阵
(A-A^T)^T: A^T-A= - (A-A^T)
: 及対称矩阵
: 1 B+C=
$$\frac{1}{2}$$
·2A=A
: 1 存在
(後设入: B,+C₁=B₂+C₂ 其中B₁,B₂2対称
C,C₂及对称。 B,+B₂, C,+C₂
A^T=B,T+C₁=B₂-C₂
: 1 B, T+C₁=B₂-C₂
: 1 B, T+C₁=B₂-C₂
: 1 B, T+C₁=B₂-C₂
: 1 B, T+C₁=B₂-C₂
: 1 d-C₁=B₂-C₂
: 1 d-C₁=B₂-C₂