CHAPTER 3

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of simple quantum systems. Some of these are "accidental" features of specific potentials (the even spacing of energy levels for the harmonic oscillator, for example), but others seem to be more general, and it would be nice to prove them once and for all (the uncertainty principle, for instance, and the orthogonality of stationary states). The purpose of this chapter is to recast the theory in a more powerful form, with that in mind. There is not much here that is genuinely *new*; the idea, rather, is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The state of a system is represented by its wave function, observables are represented by operators. Mathematically, wave functions satisfy the defining conditions for abstract vectors, and operators act on them as linear transformations. So the natural language of quantum mechanics is linear algebra.

But it is not, I suspect, a form of linear algebra with which you are immediately familiar. In an N-dimensional space it is simplest to represent a vector, $|\alpha\rangle$, by the N-tuple of its components, $\{a_n\}$, with respect to a specified orthonormal basis:

$$|\alpha\rangle \to \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}.$$
 [3.1]

¹If you have never studied linear algebra, you should read the Appendix before continuing.

The **inner product**, $\langle \alpha | \beta \rangle$, of two vectors (generalizing the dot product in three dimensions) is the complex number,

$$\langle \alpha | \beta \rangle = a_1^* b_1 + a_2^* b_2 + \dots + a_N^* b_N.$$
 [3.2]

Linear transformations, T, are represented by **matrices** (with respect to the specified basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix multiplication:

$$|\beta\rangle = T|\alpha\rangle \rightarrow \mathbf{b} = \mathbf{Ta} = \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1N} \\ t_{21} & t_{22} & \cdots & t_{2N} \\ \vdots & \vdots & & \vdots \\ t_{N1} & t_{N2} & \cdots & t_{NN} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{pmatrix}.$$
[3.3]

But the "vectors" we encounter in quantum mechanics are (for the most part) functions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix notation is awkward, at best, and manipulations that are well-behaved in the finite-dimensional case can be problematic. (The underlying reason is that whereas the finite sum in Equation 3.2 always exists, an infinite sum—or an integral—may not converge, in which case the inner product does not exist, and any argument involving inner products is immediately suspect.) So even though most of the terminology and notation should be familiar, it pays to approach this subject with caution.

The collection of *all* functions of x constitutes a vector space, but for our purposes it is much too large. To represent a possible physical state, the wave function Ψ must be *normalized*:

$$\int |\Psi|^2 \, dx = 1.$$

The set of all square-integrable functions, on a specified interval,²

$$f(x)$$
 such that
$$\int_a^b |f(x)|^2 dx < \infty,$$
 [3.4]

constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians call it $L_2(a, b)$; physicists call it **Hilbert space**.³ In quantum mechanics, then,

² For us, the limits (a and b) will almost always be $\pm \infty$, but we might as well keep things more general for the moment.

³Technically, a Hilbert space is a **complete inner product space**, and the collection of square-integrable functions is only *one example* of a Hilbert space—indeed, every finite-dimensional vector space is trivially a Hilbert space. But since L_2 is the arena of quantum mechanics, it's what physicists generally *mean* when they say "Hilbert space." By the way, the word **complete** here means that any Cauchy sequence of functions in Hilbert space converges to a function that is also in the space: it has no "holes" in it, just as the set of all real numbers has no holes (by contrast, the space of all *polynomials*, for example, like the set of all rational numbers, certainly *does* have holes in it). The completeness of a *space* has nothing to do with the completeness (same word, unfortunately) of a *set of functions*, which is the property that any other function can be expressed as a linear combination of them.

We define the inner product of two functions, f(x) and g(x), as follows:

$$\langle f|g\rangle \equiv \int_a^b f(x)^* g(x) \, dx.$$
 [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space), their inner product is guaranteed to exist (the integral in Equation 3.6 converges to a finite number).⁴ This follows from the integral **Schwarz inequality**:⁵

$$\left| \int_{a}^{b} f(x)^{*} g(x) \, dx \right| \le \sqrt{\int_{a}^{b} |f(x)|^{2} \, dx \int_{a}^{b} |g(x)|^{2} \, dx}. \tag{3.7}$$

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner product (Problem 3.1(b)). Notice in particular that

$$\langle g|f\rangle = \langle f|g\rangle^*.$$
 [3.8]

Moreover, the inner product of f(x) with itself,

$$\langle f|f\rangle = \int_a^b |f(x)|^2 dx, \qquad [3.9]$$

is real and non-negative; it's zero only when f(x) = 0.

A function is said to be **normalized** if its inner product with itself is 1; two functions are **orthogonal** if their inner product is 0; and a *set* of functions, $\{f_n\}$, is **orthonormal** if they are normalized and mutually orthogonal:

$$\langle f_m | f_n \rangle = \delta_{mn}. \tag{3.10}$$

Finally, a set of functions is **complete** if any *other* function (in Hilbert space) can be expressed as a linear combination of them:

$$f(x) = \sum_{n=1}^{\infty} c_n f_n(x).$$
 [3.11]

⁴In Chapter 2 we were obliged on occasion to work with functions that were *not* normalizable. Such functions lie *outside* Hilbert space, and we are going to have to handle them with special care, as you will see shortly. For the moment, I shall assume that all the functions we encounter *are* in Hilbert space.

⁵For a proof, see F. Riesz and B. Sz.-Nagy, Functional Analysis (Unger, New York, 1955), Section 21. In a finite dimensional vector space the Schwarz inequality, $|\langle \alpha | \beta \rangle|^2 \le \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle$, is easy to prove (see Problem A.5). But that proof assumes the existence of the inner products, which is precisely what we are trying to establish here.

⁶What about a function that is zero everywhere except at a few isolated points? The integral (Equation 3.9) would still vanish, even though the function itself does not. If this bothers you, you should have been a math major. In physics such pathological functions do not occur, but in any case, in Hilbert space two functions that have the same square integral are considered equivalent. Technically, vectors in Hilbert space represent equivalence classes of functions.

If the functions $\{f_n(x)\}\$ are orthonormal, the coefficients are given by Fourier's trick:

$$c_n = \langle f_n | f \rangle, \tag{3.12}$$

as you can check for yourself. I anticipated this terminology, of course, back in Chapter 2. (The stationary states for the infinite square well (Equation 2.28) constitute a complete orthonormal set on the interval (0, a); the stationary states for the harmonic oscillator (Equation 2.67 or 2.85) are a complete orthonormal set on the interval $(-\infty, \infty)$.)

Problem 3.1

- (a) Show that the set of all square-integrable functions is a vector space (refer to Section A.1 for the definition). *Hint:* The main problem is to show that the sum of two square-integrable functions is itself square-integrable. Use Equation 3.7. Is the set of all *normalized* functions a vector space?
- (b) Show that the integral in Equation 3.6 satisfies the conditions for an inner product (Section A.2).

*Problem 3.2

- (a) For what range of ν is the function $f(x) = x^{\nu}$ in Hilbert space, on the interval (0, 1)? Assume ν is real, but not necessarily positive.
- (b) For the specific case v = 1/2, is f(x) in this Hilbert space? What about xf(x)? How about (d/dx)f(x)?

3.2 OBSERVABLES

3.2.1 Hermitian Operators

The expectation value of an observable Q(x, p) can be expressed very neatly in inner-product notation:⁷

$$\langle Q \rangle = \int \Psi^* \hat{Q} \Psi \, dx = \langle \Psi | \hat{Q} \Psi \rangle.$$
 [3.13]

$$\hat{Q}[af(x) + bg(x)] = a\hat{Q}f(x) + b\hat{Q}g(x),$$

for any functions f and g and any complex numbers a and b. They constitute linear transformations (Section A.3) on the space of all functions. However, they sometimes carry a function inside Hilbert

⁷Remember that \hat{Q} is the operator constructed from Q by the replacement $p \to \hat{p} \equiv (\hbar/i)d/dx$. These operators are **linear**, in the sense that

Now, the outcome of a measurement has got to be *real*, and so, *a fortiori*, is the *average* of many measurements:

$$\langle Q \rangle = \langle Q \rangle^*. \tag{3.14}$$

But the complex conjugate of an inner product reverses the order (Equation 3.8), so

$$\langle \Psi | \hat{Q} \Psi \rangle = \langle \hat{Q} \Psi | \Psi \rangle.$$
 [3.15]

and this must hold true for any wave function Ψ . Thus operators representing observables have the very special property that

$$\langle f|\hat{Q}f\rangle = \langle \hat{Q}f|f\rangle \quad \text{for all } f(x).$$
 [3.16]

We call such operators hermitian.

Actually, most books require an ostensibly stronger condition:

$$\langle f|\hat{Q}g\rangle = \langle \hat{Q}f|g\rangle$$
 for all $f(x)$ and all $g(x)$. [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever you like. The essential point is that a hermitian operator can be applied either to the first member of an inner product or to the second, with the same result, and hermitian operators naturally arise in quantum mechanics because their expectation values are real:

Well, let's *check* this. Is the momentum operator, for example, hermitian?

$$\langle f | \hat{p}g \rangle = \int_{-\infty}^{\infty} f^* \frac{\hbar}{i} \frac{dg}{dx} dx = \frac{\hbar}{i} f^* g \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \left(\frac{\hbar}{i} \frac{df}{dx} \right)^* g dx = \langle \hat{p}f | g \rangle.$$
 [3.19]

I used integration by parts, of course, and threw away the boundary term for the usual reason: If f(x) and g(x) are square integrable, they must go to zero at $\pm \infty$.

space into a function *outside* it (see Problem 3.2(b)), and in this case the domain of the operator may have to be restricted.

⁸ Actually, this is not quite true. As I mention in Chapter I, there exist pathological functions that are square-integrable but do *not* go to zero at infinity. However, such functions do not arise in physics, and if you are worried about it we will simply restrict the domain of our operators to exclude them. On *finite* intervals, though, you really *do* have to be more careful with the boundary terms, and an operator that is hermitian on $(-\infty, \infty)$ may *not* be hermitian on $(0, \infty)$ or $(-\pi, \pi)$. If you're wondering about the infinite square well, it's safest to think of those wave functions as residing on the infinite line—they just happen to be *zero* outside (0, a).

Notice how the complex conjugation of i compensates for the minus sign picked up from integration by parts—the operator d/dx (without the i) is not hermitian, and it does not represent a possible observable.

*Problem 3.3 Show that if $\langle h|\hat{Q}h\rangle = \langle \hat{Q}h|h\rangle$ for all functions h (in Hilbert space), then $\langle f|\hat{Q}g\rangle = \langle \hat{Q}f|g\rangle$ for all f and g (i.e., the two definitions of "hermitian"—Equations 3.16 and 3.17—are equivalent). Hint: First let h=f+g, and then let h=f+ig.

Problem 3.4

- (a) Show that the *sum* of two hermitian operators is hermitian.
- (b) Suppose \hat{Q} is hermitian, and α is a complex number. Under what condition (on α) is $\alpha \hat{Q}$ hermitian?
- (c) When is the *product* of two hermitian operators hermitian?
- (d) Show that the position operator $(\hat{x} = x)$ and the hamiltonian operator $(\hat{H} = -(\hbar^2/2m)d^2/dx^2 + V(x))$ are hermitian.

Problem 3.5 The **hermitian conjugate** (or **adjoint**) of an operator \hat{Q} is the operator \hat{Q}^{\dagger} such that

$$\langle f|\hat{Q}g\rangle = \langle \hat{Q}^{\dagger}f|g\rangle$$
 (for all f and g). [3.20]

(A hermitian operator, then, is equal to its hermitian conjugate: $\hat{Q} = \hat{Q}^{\dagger}$.)

- (a) Find the hermitian conjugates of x, i, and d/dx.
- (b) Construct the hermitian conjugate of the harmonic oscillator raising operator, a_+ (Equation 2.47).
- (c) Show that $(\hat{Q}\hat{R})^{\dagger} = \hat{R}^{\dagger}\hat{Q}^{\dagger}$.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically prepared systems, all in the same state Ψ , you do *not* get the same result each time—this is the *indeterminacy* of quantum mechanics. Question: Would it be possible to prepare a state such that every measurement of Q is certain to return the same value (call it q)? This would be, if you like, a **determinate state**, for the observable Q. (Actually, we already know one example: Stationary states are determinate states of the Hamiltonian; a measurement of the total energy, on a

⁹I'm talking about *competent* measurements, of course—it's always possible to make a *mistake*, and simply get the wrong answer, but that's not the fault of quantum mechanics.

particle in the stationary state Ψ_n , is certain to yield the corresponding "allowed" energy E_n .)

Well, the standard deviation of Q, in a determinate state, would be zero, which is to say,

$$\sigma^2 = \langle (\hat{Q} - \langle Q \rangle)^2 \rangle = \langle \Psi | (\hat{Q} - q)^2 \Psi \rangle = \langle (\hat{Q} - q) \Psi | (\hat{Q} - q) \Psi \rangle = 0. \quad [3.21]$$

(Of course, if every measurement gives q, their average is also q: $\langle Q \rangle = q$. I also used the fact that \hat{Q} , and hence also $\hat{Q} - q$, is a *hermitian* operator, to move one factor over to the first term in the inner product.) But the only function whose inner product with itself vanishes is 0, so

$$\hat{Q}\Psi = q\Psi. \tag{3.22}$$

This is the eigenvalue equation for the operator \hat{Q} ; Ψ is an eigenfunction of \hat{Q} , and q is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of
$$\hat{Q}$$
. [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, q.

Note that the eigenvalue is a number (not an operator or a function). You can multiply any eigenfunction by a constant, and it is still an eigenfunction, with the same eigenvalue. Zero does not count as an eigenfunction (we exclude it by definition—otherwise every number would be an eigenvalue, since $\hat{Q} = q = 0 = 0$ for any operator \hat{Q} and all q). But there's nothing wrong with zero as an eigenvalue. The collection of all the eigenvalues of an operator is called its **spectrum**. Sometimes two (or more) linearly independent eigenfunctions share the same eigenvalue; in that case the spectrum is said to be **degenerate**.

For example, determinate states of the total energy are eigenfunctions of the Hamiltonian:

$$\hat{H}\psi = E\psi. \tag{3.24}$$

which is precisely the time-independent Schrödinger equation. In this context we use the letter E for the eigenvalue, and the lower case ψ for the eigenfunction (tack on the factor $\exp(-iEt/\hbar)$ to make it Ψ , if you like; it's still an eigenfunction of H).

Example 3.1 Consider the operator

$$\hat{Q} \equiv i \frac{d}{d\phi},\tag{3.25}$$

where ϕ is the usual polar coordinate in two dimensions. (This operator might arise in a \overline{phy} sical context if we were studying the bead-on-a-ring; see Problem 2.46.) Is \hat{Q} hermitian? Find its eigenfunctions and eigenvalues.

Solution: Here we are working with functions $f(\phi)$ on the *finite* interval $0 \le \phi \le 2\pi$, and stipulate that

$$f(\phi + 2\pi) = f(\phi).$$
 [3.26]

since ϕ and $\phi + 2\pi$ describe the same physical point. Using integration by parts,

$$\langle f|\hat{Q}g\rangle = \int_0^{2\pi} f^*\left(i\frac{dg}{d\phi}\right)d\phi = if^*g\Big|_0^{2\pi} - \int_0^{2\pi} i\left(\frac{df^*}{d\phi}\right)g\,d\phi = \langle \hat{Q}f|g\rangle.$$

so \hat{Q} is hermitian (this time the boundary term disappears by virtue of Equation 3.26). The eigenvalue equation,

$$i\frac{d}{d\phi}f(\phi) = qf(\phi), \qquad [3.27]$$

has the general solution

$$f(\phi) = Ae^{-iq\phi}. ag{3.28}$$

Equation 3.26 restricts the possible values of the q:

$$e^{-iq2\pi} = 1 \implies q = 0, \pm 1, \pm 2, \dots$$
 [3.29]

The spectrum of this operator is the set of all integers, and it is nondegenerate.

Problem 3.6 Consider the operator $\hat{Q} = d^2/d\phi^2$, where (as in Example 3.1) ϕ is the azimuthal angle in polar coordinates, and the functions are subject to Equation 3.26. Is \hat{Q} hermitian? Find its eigenfunctions and eigenvalues. What is the spectrum of \hat{Q} ? Is the spectrum degenerate?

3.3 EIGENFUNCTIONS OF A HERMITIAN OPERATOR

Our attention is thus directed to the *eigenfunctions of hermitian operators* (physically: determinate states of observables). These fall into two categories: If the spectrum is **discrete** (i.e., the eigenvalues are separated from one another) then the eigenfunctions lie in Hilbert space and they constitute physically realizable states. If the spectrum is **continuous** (i.e., the eigenvalues fill out an entire range) then the eigenfunctions are not normalizable, and they do not represent possible wave functions (though *linear combinations* of them—involving necessarily a spread in eigenvalues—may be normalizable). Some operators have a discrete spectrum only (for example, the Hamiltonian for the harmonic oscillator), some have only a continuous spectrum (for example, the free particle Hamiltonian), and some have both a discrete part and a continuous part (for example, the Hamiltonian for a

finite square well). The discrete case is easier to handle, because the relevant inner products are guaranteed to exist—in fact, it is very similar to the finite-dimensional theory (the eigenvectors of a hermitian *matrix*). I'll treat the discrete case first, and then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator have two important properties:

Theorem 1: Their eigenvalues are real.

Proof: Suppose

$$\hat{Q}f = qf.$$

(i.e., f(x) is an eigenfunction of \hat{Q} , with eigenvalue q), and \hat{Q}

$$\langle f | \hat{Q} f \rangle = \langle \hat{Q} f | f \rangle$$

 $(\hat{Q} \text{ is hermitian})$. Then

$$q\langle f|f\rangle = q^*\langle f|f\rangle$$

(q is a number, so it comes outside the integral, and because the first function in the inner product is complex conjugated (Equation 3.6), so too is the q on the right). But $\langle f|f\rangle$ cannot be zero (f(x)=0) is not a legal eigenfunction), so $q=q^*$, and hence q is real. QED

This is comforting: If you measure an observable on a particle in a determinate state, you will at least get a real number.

Theorem 2: Eigenfunctions belonging to distinct eigenvalues are *orthogonal*.

Proof: Suppose

$$\hat{Q}f = qf$$
, and $\hat{Q}g = q'g$,

and \hat{Q} is hermitian. Then $\langle f|\hat{Q}g\rangle=\langle \hat{Q}f|g\rangle$, so

$$q'\langle f|g\rangle = q^*\langle f|g\rangle$$

(again, the inner products exist because the eigenfunctions are in Hilbert space by assumption). But q is real (from Theorem 1), so if $q' \neq q$ it must be that $\langle f|g \rangle = 0$. QED

¹⁰It is here that we assume the eigenfunctions are in Hilbert space—otherwise the inner product might not exist at all.

That's why the stationary states of the infinite square well, for example, or the harmonic oscillator, are orthogonal—they are eigenfunctions of the Hamiltonian with distinct eigenvalues. But this property is not peculiar to them, or even to the Hamiltonian—the same holds for determinate states of *any* observable.

Unfortunately, Theorem 2 tells us nothing about degenerate states (q' = q). However, if two (or more) eigenfunctions share the same eigenvalue, any linear combination of them is itself an eigenfunction, with the same eigenvalue (Problem 3.7(a)), and we can use the **Gram-Schmidt orthogonalization procedure** (Problem A.4) to construct orthogonal eigenfunctions within each degenerate subspace. It is almost never necessary to do this explicitly (thank God!), but it can always be done in principle. So even in the presence of degeneracy the eigenfunctions can be chosen to be orthogonal, and in setting up the formalism of quantum mechanics we shall assume that this has already been done. That licenses the use of Fourier's trick, which depends on the orthonormality of the basis functions.

In a *finite*-dimensional vector space the eigenvectors of a hermitian matrix have a third fundamental property: They span the space (every vector can be expressed as a linear combination of them). Unfortunately, the proof does not generalize to infinite-dimensional spaces. But the property itself is essential to the internal consistency of quantum mechanics, so (following Dirac¹¹) we will take it as an *axiom* (or, more precisely, as a restriction on the class of hermitian operators that can represent observables):

Axiom: The eigenfunctions of an observable operator are *complete*: Any function (in Hilbert space) can be expressed as a linear combination of them.¹²

Problem 3.7

- (a) Suppose that f(x) and g(x) are two eigenfunctions of an operator \hat{Q} , with the same eigenvalue q. Show that any linear combination of f and g is itself an eigenfunction of \hat{Q} , with eigenvalue q.
- (b) Check that $f(x) = \exp(x)$ and $g(x) = \exp(-x)$ are eigenfunctions of the operator d^2/dx^2 , with the same eigenvalue. Construct two linear combinations of f and g that are *orthogonal* eigenfunctions on the interval (-1, 1).

¹¹P. A. M. Dirac, *The Principles of Quantum Mechanics*. Oxford University Press, New York (1958).

¹²In some specific cases completeness is provable (we know that the stationary states of the infinite square well, for example, are complete, because of Dirichlet's theorem). It is a little awkward to call something an "axiom" that is *provable* in some cases, but I don't know a better way to handle it.

Problem 3.8

- (a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real. Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.
- (b) Do the same for the operator in Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is *continuous*, the eigenfunctions are not normalizable, and the proofs of Theorems 1 and 2 fail, because the inner products may not exist. Nevertheless, there is a sense in which the three essential properties (reality, orthogonality, and completeness) still hold. I think it's best to approach this subtle case through specific examples.

Example 3.2 Find the eigenfunctions and eigenvalues of the momentum operator.

Solution: Let $f_p(x)$ be the eigenfunction and p the eigenvalue:

$$\frac{\hbar}{i}\frac{d}{dx}f_p(x) = pf_p(x).$$
 [3.30]

The general solution is

$$f_p(x) = Ae^{ipx/\hbar}.$$

This is not square-integrable, for any (complex) value of p—the momentum operator has no eigenfunctions in Hilbert space. And yet, if we restrict ourselves to real eigenvalues, we do recover a kind of ersatz "orthonormality." Referring to Problems 2.24(a) and 2.26,

$$\int_{-\infty}^{\infty} f_{p'}^{*}(x) f_{p}(x) dx = |A|^{2} \int_{-\infty}^{\infty} e^{i(p-p')x/\hbar} dx = |A|^{2} 2\pi \hbar \, \delta(p-p'). \quad [3.31]$$

If we pick $A = 1/\sqrt{2\pi\hbar}$, so that

$$f_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}.$$
 [3.32]

then

$$\langle f_{p'}|f_p\rangle = \delta(p-p'). \tag{3.33}$$

which is strikingly reminiscent of *true* orthonormality (Equation 3.10)—the indices are now continuous variables, and the Kronecker delta has become a Dirac delta, but otherwise it looks just the same. I'll call Equation 3.33 **Dirac orthonormality**.

Most important, the eigenfunctions are *complete*, with the sum (in Equation 3.11) replaced by an integral: Any (square-integrable) function f(x) can be written in the form

$$f(x) = \int_{-\infty}^{\infty} c(p) f_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} c(p) e^{ipx/\hbar} dp.$$
 [3.34]

The expansion coefficient (now a function, c(p)) is obtained, as always, by Fourier's trick:

$$\langle f_{p'}|f\rangle = \int_{-\infty}^{\infty} c(p)\langle f_{p'}|f_p\rangle dp = \int_{-\infty}^{\infty} c(p)\delta(p-p') dp = c(p').$$
 [3.35]

Alternatively, you can get them from Plancherel's theorem (Equation 2.102), for the expansion (Equation 3.34) is nothing but a Fourier transform.

The eigenfunctions of momentum (Equation 3.32) are sinusoidal, with wavelength

$$\lambda = \frac{2\pi\hbar}{p}. ag{3.36}$$

This is the old de Broglie formula (Equation 1.39), which I promised to prove at the appropriate time. It turns out to be a little more subtle than de Broglie imagined, because we now know that there is actually *no such thing* as a particle with determinate momentum. But we could make a normalizable wave *packet* with a narrow range of momenta, and it is to such an object that the de Broglie relation applies.

What are we to make of Example 3.2? Although none of the eigenfunctions of \hat{p} lives in Hilbert space, a certain family of them (those with real eigenvalues) reside in the nearby "suburbs," with a kind of quasi-normalizability. They do not represent possible physical states, but they are still very useful (as we have already seen, in our study of one-dimensional scattering).¹³

Example 3.3 Find the eigenfunctions and eigenvalues of the position operator. Solution: Let $g_y(x)$ be the eigenfunction and y the eigenvalue:

$$x g_{y}(x) = y g_{y}(x).$$
 [3.37]

¹³ What about the eigenfunctions with nonreal eigenvalues? These are not merely non-normalizable—they actually blow up at $\pm \infty$. Functions in what I called the "suburbs" of Hilbert space (the entire metropolitan area is sometimes called a "rigged Hilbert space"; see, for example, Leslie Ballentine's Quantum Mechanics: A Modern Development, World Scientific, 1998) have the property that although they have no (finite) inner product with themselves, they do admit inner products with all members of Hilbert space. This is not true for eigenfunctions of \hat{p} with nonreal eigenvalues. In particular, I showed that the momentum operator is hermitian for functions in Hilbert space, but the argument depended on dropping the boundary term (in Equation 3.19). That term is still zero if g is an eigenfunction of \hat{p} with a real eigenvalue (as long as f is in Hilbert space), but not if the eigenvalue has an imaginary part. In this sense any complex number is an eigenvalue of the operator \hat{p} , but only real numbers are eigenvalues of the hermitian operator \hat{p} —the others lie outside the space over which \hat{p} is hermitian.

Here y is a fixed number (for any given eigenfunction), but x is a continuous variable. What function of x has the property that multiplying it by x is the same as multiplying it by the constant y? Obviously it's got to be zero, except at the one point x = y; in fact, it is nothing but the Dirac delta function:

$$g_{y}(x) = A\delta(x - y).$$

This time the eigenvalue *has* to be real; the eigenfunctions are not square-integrable, but again they admit *Dirac* orthonormality:

$$\int_{-\infty}^{\infty} g_{y'}^*(x) g_y(x) dx = |A|^2 \int_{-\infty}^{\infty} \delta(x - y') \delta(x - y) dx = |A|^2 \delta(y - y'). \quad [3.38]$$

If we pick A = 1, so

$$g_{y}(x) = \delta(x - y). \tag{3.39}$$

then

$$\langle g_{y'}|g_{y}\rangle = \delta(y - y'). \tag{3.40}$$

These eigenfunctions are also *complete*:

$$f(x) = \int_{-\infty}^{\infty} c(y) \, g_y(x) \, dy = \int_{-\infty}^{\infty} c(y) \delta(x - y) \, dy, \tag{3.41}$$

with

$$c(y) = f(y) \tag{3.42}$$

(trivial, in this case, but you can get it from Fourier's trick if you insist).

If the spectrum of a hermitian operator is *continuous* (so the eigenvalues are labeled by a continuous variable—p or y, in the examples; z, generically, in what follows), the eigenfunctions are not normalizable, they are not in Hilbert space and they do not represent possible physical states; nevertheless, the eigenfunctions with real eigenvalues are Dirac orthonormalizable and complete (with the sum now an integral). Luckily, this is all we really require.

Problem 3.9

- (a) Cite a Hamiltonian from Chapter 2 (other than the harmonic oscillator) that has only a discrete spectrum.
- (b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only a continuous spectrum.

(c) Cite a Hamiltonian from Chapter 2 (other than the finite square well) that has both a discrete and a continuous part to its spectrum.

Problem 3.10 Is the ground state of the infinite square well an eigenfunction of momentum? If so, what is its momentum? If not, why not?

3.4 GENERALIZED STATISTICAL INTERPRETATION

In Chapter 1 I showed you how to calculate the probability that a particle would be found in a particular location, and how to determine the expectation value of any observable quantity. In Chapter 2 you learned how to find the possible outcomes of an energy measurement and their probabilities. I am now in a position to state the **generalized statistical interpretation**, which subsumes all of this and enables you to figure out the possible results of *any* measurement, and their probabilities. Together with the Schrödinger equation (which tells you how the wave function evolves in time) it is the foundation of quantum mechanics.

Generalized statistical interpretation: If you measure an observable Q(x, p) on a particle in the state $\Psi(x, t)$, you are certain to get *one of the eigenvalues* of the hermitian operator $\hat{Q}(x, -i\hbar d/dx)$. If the spectrum of \hat{Q} is discrete, the probability of getting the particular eigenvalue q_n associated with the orthonormalized eigenfunction $f_n(x)$ is

$$|c_n|^2$$
, where $c_n = \langle f_n | \Psi \rangle$. [3.43]

If the spectrum is continuous, with real eigenvalues q(z) and associated Diracorthonormalized eigenfunctions $f_z(x)$, the probability of getting a result in the range dz is

$$|c(z)|^2 dz$$
 where $c(z) = \langle f_z | \Psi \rangle$. [3.44]

Upon measurement, the wave function "collapses" to the corresponding eigenstate. 14

The statistical interpretation is radically different from anything we encounter in classical physics. A somewhat different perspective helps to make it plausible: The eigenfunctions of an observable operator are *complete*, so the wave function can be written as a linear combination of them:

$$\Psi(x,t) = \sum_{n} c_n f_n(x).$$
 [3.45]

¹⁴In the case of continuous spectra the collapse is to a narrow *range* about the measured value, depending on the precision of the measuring device.

(For simplicity, I'll assume that the spectrum is discrete; it's easy to generalize this argument to the continuous case.) Because the eigenfunctions are *orthonormal*, the coefficients are given by Fourier's trick:¹⁵

$$c_n = \langle f_n | \Psi \rangle = \int f_n(x)^* \Psi(x, t) \, dx.$$
 [3.46]

Qualitatively, c_n tells you "how much f_n is contained in Ψ ," and given that a measurement has to return one of the eigenvalues of \hat{Q} , it seems reasonable that the probability of getting the particular eigenvalue q_n would be determined by the "amount of f_n " in Ψ . But because probabilities are determined by the absolute square of the wave function, the precise measure is actually $|c_n|^2$. That's the essential burden of the generalized statistical interpretation. ¹⁶

Of course, the *total* probability (summed over all possible outcomes) has got to be *one*:

$$\sum_{n} |c_n|^2 = 1. ag{3.47}$$

and sure enough, this follows from the normalization of the wave function:

$$1 = \langle \Psi | \Psi \rangle = \left\langle \left(\sum_{n'} c_{n'} f_{n'} \right) \middle| \left(\sum_{n} c_{n} f_{n} \right) \right\rangle = \sum_{n'} \sum_{n} c_{n'}^* c_n \langle f_{n'} | f_n \rangle$$
$$= \sum_{n'} \sum_{n} c_{n'}^* c_n \delta_{n'n} = \sum_{n} c_{n}^* c_n = \sum_{n} |c_n|^2.$$
[3.48]

Similarly, the expectation value of Q should be the sum over all possible outcomes of the eigenvalue times the probability of getting that eigenvalue:

$$\langle Q \rangle = \sum_{n} q_n |c_n|^2.$$
 [3.49]

Indeed,

$$\langle Q \rangle = \langle \Psi | \hat{Q} \Psi \rangle = \left\langle \left(\sum_{n'} c_{n'} f_{n'} \right) \middle| \left(\hat{Q} \sum_{n} c_{n} f_{n} \right) \right\rangle,$$
 [3.50]

¹⁵Notice that the time dependence—which is not at issue here—is carried by the coefficients; to make this explicit, we should really write $c_n(t)$.

¹⁶Again, I am scrupulously avoiding the all-too-common assertion " $|c_n|^2$ is the probability that the particle is in the state f_n ." This is nonsense. The particle is in the state Ψ , period. Rather, $|c_n|^2$ is the probability that a measurement of Q would yield the value q_n . It is true that such a measurement will collapse the state to the eigenfunction f_n , so one could correctly say " $|c_n|^2$ is the probability that a particle which is now in the state Ψ will be in the state f_n subsequent to a measurement of Q"... but that's a completely different assertion.

but $\hat{Q}f_n = q_n f_n$, so

$$\langle Q \rangle = \sum_{n'} \sum_{n} c_{n'}^* c_n q_n \langle f_{n'} | f_n \rangle = \sum_{n'} \sum_{n} c_{n'}^* c_n q_n \delta_{n'n} = \sum_{n} q_n |c_n|^2.$$
 [3.51]

So far, at least, everything looks consistent.

Can we reproduce, in this language, the original statistical interpretation for position measurements? Sure—it's real overkill, but worth checking. A measurement of x on a particle in state Ψ must return one of the eigenvalues of the position operator. Well, in Example 3.3 we found that every (real) number y is an eigenvalue of x, and the corresponding (Dirac-orthonormalized) eigenfunction is $g_Y(x) = \delta(x - y)$. Evidently

$$c(y) = \langle g_y | \Psi \rangle = \int_{-\infty}^{\infty} \delta(x - y) \Psi(x, t) \, dx = \Psi(y, t), \tag{3.52}$$

so the probability of getting a result in the range dy is $|\Psi(y, t)|^2 dy$, which is precisely the original statistical interpretation.

What about momentum? In Example 3.2 we found that the eigenfunctions of the momentum operator are $f_p(x) = (1/\sqrt{2\pi\hbar}) \exp(ipx/\hbar)$, so

$$c(p) = \langle f_p | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x, t) \, dx.$$
 [3.53]

This is such an important quantity that we give it a special name and symbol: the **momentum space wave function**, $\Phi(p, t)$. It is essentially the *Fourier transform* of the (**position space**) wave function $\Psi(x, t)$ —which, by Plancherel's theorem, is its *inverse* Fourier transform:

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) \, dx; \qquad [3.54]$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{ipx/\hbar} \Phi(p,t) dp.$$
 [3.55]

According to the generalized statistical interpretation, the probability that a measurement of momentum would yield a result in the range dp is

$$|\Phi(p,t)|^2 dp. ag{3.56}$$

Example 3.4 A particle of mass m is bound in the delta function well $V(x) = -\alpha \delta(x)$. What is the probability that a measurement of its momentum would yield a value greater than $p_0 = m\alpha/\hbar$?

Solution: The (position space) wave function is (Equation 2.129)

$$\Psi(x,t) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2} e^{-iEt/\hbar}$$

(where $E = -m\alpha^2/2\hbar^2$). The momentum space wave function is therefore

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \frac{\sqrt{m\alpha}}{\hbar} e^{-iEt/\hbar} \int_{-\infty}^{\infty} e^{-ipx/\hbar} e^{-m\alpha|x|/\hbar^2} dx = \sqrt{\frac{2}{\pi}} \frac{p_0^{3/2} e^{-iEt/\hbar}}{p^2 + p_0^2}$$

(I looked up the integral). The probability, then, is

$$\frac{2}{\pi}p_0^3 \int_{p_0}^{\infty} \frac{1}{(p^2 + p_0^2)^2} dp = \frac{1}{\pi} \left[\frac{pp_0}{p^2 + p_0^2} + \tan^{-1} \left(\frac{p}{p_0} \right) \right]_{p_0}^{\infty}$$
$$= \frac{1}{4} - \frac{1}{2\pi} = 0.0908$$

(again, I looked up the integral).

Problem 3.11 Find the momentum-space wave function, $\Phi(p, t)$, for a particle in the ground state of the harmonic oscillator. What is the probability (to 2 significant digits) that a measurement of p on a particle in this state would yield a value outside the classical range (for the same energy)? *Hint:* Look in a math table under "Normal Distribution" or "Error Function" for the numerical part—or use Mathematica.

Problem 3.12 Show that

$$\langle x \rangle = \int \Phi^* \left(-\frac{\hbar}{i} \frac{\partial}{\partial p} \right) \Phi \, dp.$$
 [3.57]

Hint: Notice that $x \exp(ipx/\hbar) = -i\hbar(d/dp) \exp(ipx/\hbar)$.

In momentum space, then, the position operator is $i\hbar \partial/\partial p$. More generally,

$$\langle Q(x, p) \rangle = \begin{cases} \int \Psi^* \hat{Q}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi \, dx, & \text{in position space;} \\ \int \Phi^* \hat{Q}\left(-\frac{\hbar}{i} \frac{\partial}{\partial p}, p\right) \Phi \, dp, & \text{in momentum space.} \end{cases}$$
[3.58]

In principle you can do all calculations in momentum space just as well (though not always as *easily*) as in position space.

3.5 THE UNCERTAINTY PRINCIPLE

I stated the uncertainty principle (in the form $\sigma_x \sigma_p \ge \hbar/2$), back in Section 1.6, and you have checked it several times, in the problems. But we have never actually proved it. In this section I will prove a more general version of the uncertainty principle, and explore some of its implications. The argument is beautiful, but rather abstract, so watch closely.

3.5.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (Equation 3.21):

$$\sigma_A^2 = \langle (\hat{A} - \langle A \rangle) \Psi | (\hat{A} - \langle A \rangle) \Psi \rangle = \langle f | f \rangle,$$

where $f \equiv (\hat{A} - \langle A \rangle)\Psi$. Likewise, for any other observable, B,

$$\sigma_B^2 = \langle g|g\rangle$$
, where $g \equiv (\hat{B} - \langle B\rangle)\Psi$.

Therefore (invoking the Schwarz inequality, Equation 3.7),

$$\sigma_A^2 \sigma_B^2 = \langle f|f\rangle\langle g|g\rangle \ge |\langle f|g\rangle|^2.$$
 [3.59]

Now, for any complex number z,

$$|z|^2 = [\text{Re}(z)]^2 + [\text{Im}(z)]^2 \ge [\text{Im}(z)]^2 = \left[\frac{1}{2i}(z-z^*)\right]^2.$$
 [3.60]

Therefore, letting $z = \langle f | g \rangle$,

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} [\langle f | g \rangle - \langle g | f \rangle]\right)^2.$$
 [3.61]

But

$$\begin{split} \langle f|g\rangle &= \langle (\hat{A} - \langle A\rangle)\Psi | (\hat{B} - \langle B\rangle)\Psi \rangle = \langle \Psi | (\hat{A} - \langle A\rangle)(\hat{B} - \langle B\rangle)\Psi \rangle \\ &= \langle \Psi | (\hat{A}\hat{B} - \hat{A}\langle B\rangle - \hat{B}\langle A\rangle + \langle A\rangle\langle B\rangle)\Psi \rangle \\ &= \langle \Psi | \hat{A}\hat{B}\Psi \rangle - \langle B\rangle\langle \Psi | \hat{A}\Psi \rangle - \langle A\rangle\langle \Psi | \hat{B}\Psi \rangle + \langle A\rangle\langle B\rangle\langle \Psi | \Psi \rangle \\ &= \langle \hat{A}\hat{B}\rangle - \langle B\rangle\langle A\rangle - \langle A\rangle\langle B\rangle + \langle A\rangle\langle B\rangle \\ &= \langle \hat{A}\hat{B}\rangle - \langle A\rangle\langle B\rangle. \end{split}$$

Similarly,

$$\langle g | f \rangle = \langle \hat{B} \hat{A} \rangle - \langle A \rangle \langle B \rangle,$$

SO

$$\langle f|g\rangle - \langle g|f\rangle = \langle \hat{A}\hat{B}\rangle - \langle \hat{B}\hat{A}\rangle = \langle [\hat{A},\hat{B}]\rangle,$$

where

$$[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}$$

is the commutator of the two operators (Equation 2.48). Conclusion:

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2.$$
 [3.62]

This is the (generalized) uncertainty principle. You might think the i makes it trivial—isn't the right side negative? No, for the commutator of two hermitian operators carries its own factor of i, and the two cancel out.¹⁷

As an example, suppose the first observable is position $(\hat{A} = x)$, and the second is momentum $(\hat{B} = (\hbar/i)d/dx)$. We worked out their commutator back in Chapter 2 (Equation 2.51):

$$[\hat{x}, \hat{p}] = i\hbar$$
.

So

$$\sigma_x^2 \sigma_p^2 \ge \left(\frac{1}{2i}i\hbar\right)^2 = \left(\frac{\hbar}{2}\right)^2$$
,

or, since standard deviations are by their nature positive,

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}.\tag{3.63}$$

That's the original Heisenberg uncertainty principle, but we now see that it is just one application of a much more general theorem.

There is, in fact, an "uncertainty principle" for every pair of observables whose operators do not commute—we call them **incompatible observables**. Incompatible observables do not have shared eigenfunctions—at least, they cannot have a complete set of common eigenfunctions (see Problem 3.15). By contrast, compatible (commuting) observables do admit complete sets of simultaneous eigenfunctions. ¹⁸

¹⁷More precisely, the commutator of two hermitian operators is itself *anti*-hermitian ($\hat{Q}^{\dagger} = -\hat{Q}$), and its expectation value is imaginary (Problem 3.26).

 $^{^{18}}$ This corresponds to the fact that noncommuting matrices cannot be simultaneously diagonalized (that is, they cannot both be brought to diagonal form by the same similarity transformation), whereas commuting hermitian matrices *can* be simultaneously diagonalized. See Section A.5.

For example, in the hydrogen atom (as we shall see in Chapter 4) the Hamiltonian, the magnitude of the angular momentum, and the z component of angular momentum are mutually compatible observables, and we will construct simultaneous eigenfunctions of all three, labeled by their respective eigenvalues. But there is no eigenfunction of position that is also an eigenfunction of momentum, because these operators are *incompatible*.

Note that the uncertainty principle is not an extra assumption in quantum theory, but rather a consequence of the statistical interpretation. You might wonder how it is enforced in the laboratory—why can't you determine (say) both the position and the momentum of a particle? You can certainly measure the position of the particle, but the act of measurement collapses the wave function to a narrow spike, which necessarily carries a broad range of wavelengths (hence momenta) in its Fourier decomposition. If you now measure the momentum, the state will collapse to a long sinusoidal wave, with (now) a well-defined wavelength—but the particle no longer has the position you got in the first measurement. ¹⁹ The problem, then, is that the second measurement renders the outcome of the first measurement obsolete. Only if the wave function were simultaneously an eigenstate of both observables would it be possible to make the second measurement without disturbing the state of the particle (the second collapse wouldn't change anything, in that case). But this is only possible, in general, if the two observables are compatible.

*Problem 3.13

(a) Prove the following commutator identity:

$$[AB, C] = A[B, C] + [A, C]B.$$
 [3.64]

(b) Show that

$$[x^n, p] = i\hbar nx^{n-1}.$$

(c) Show more generally that

$$[f(x), p] = i\hbar \frac{df}{dx}, \qquad [3.65]$$

for any function f(x).

¹⁹Niels Bohr was at pains to track down the *mechanism* by which the measurement of x (for instance) destroys the previously existing value of p. The crux of the matter is that in order to determine the position of a particle you have to poke it with something—shine light on it. say. But these photons impart to the particle a momentum you cannot control. You now know the position, but you no longer know the momentum. His famous debates with Einstein include many delightful examples, showing in detail how experimental constraints enforce the uncertainty principle. For an inspired account see Bohr's article in *Albert Einstein: Philosopher-Scientist*, edited by P. A. Schilpp, Tudor, New York (1949).

*Problem 3.14 Prove the famous "(your name) uncertainty principle," relating the uncertainty in position (A = x) to the uncertainty in energy $(B = p^2/2m + V)$:

$$\sigma_x \sigma_H \geq \frac{\hbar}{2m} |\langle p \rangle|.$$

For stationary states this doesn't tell you much—why not?

Problem 3.15 Show that two noncommuting operators cannot have a complete set of common eigenfunctions. *Hint*: Show that if \hat{P} and \hat{Q} have a complete set of common eigenfunctions, then $[\hat{P}, \hat{Q}]f = 0$ for any function in Hilbert space.

3.5.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that *hit* the position-momentum uncertainty limit ($\sigma_x \sigma_p = \hbar/2$): the ground state of the harmonic oscillator (Problem 2.11) and the Gaussian wave packet for the free particle (Problem 2.22). This raises an interesting question: What is the *most general* minimum-uncertainty wave packet? Looking back at the proof of the uncertainty principle, we note that there were two points at which *inequalities* came into the argument: Equation 3.59 and Equation 3.60. Suppose we require that each of these be an *equality*, and see what this tells us about Ψ .

The Schwarz inequality becomes an equality when one function is a multiple of the other: g(x) = cf(x), for some complex number c (see Problem A.5). Meanwhile, in Equation 3.60 I threw away the real part of z; equality results if Re(z) = 0, which is to say, if $\text{Re}\langle f|g\rangle = \text{Re}(c\langle f|f\rangle) = 0$. Now, $\langle f|f\rangle$ is certainly real, so this means the constant c must be purely imaginary—let's call it ia. The necessary and sufficient condition for minimum uncertainty, then, is

$$g(x) = iaf(x)$$
, where a is real. [3.66]

For the position-momentum uncertainty principle this criterion becomes:

$$\left(\frac{\hbar}{i}\frac{d}{dx} - \langle p \rangle\right)\Psi = ia(x - \langle x \rangle)\Psi.$$
 [3.67]

which is a differential equation for Ψ as a function of x. Its general solution (Problem 3.16) is

$$\Psi(x) = Ae^{-a(x-\langle x\rangle)^2/2\hbar}e^{i\langle p\rangle x/\hbar}.$$
 [3.68]

Evidently the minimum-uncertainty wave packet is a gaussian—and the two examples we encountered earlier were gaussians.²⁰

 $^{^{20}}$ Note that it is only the dependence of Ψ on x that is at issue here—the "constants" A, a, $\langle x \rangle$, and $\langle p \rangle$ may all be functions of time, and for that matter Ψ may evolve away from the minimal form. All I'm asserting is that if, at some instant, the wave function is gaussian in x, then (at that instant) the uncertainty product is minimal.

Problem 3.16 Solve Equation 3.67 for $\Psi(x)$. Note that $\langle x \rangle$ and $\langle p \rangle$ are constants.

3.5.3 The Energy-Time Uncertainty Principle

The position-momentum uncertainty principle is often written in the form

$$\Delta x \, \Delta p \ge \frac{\hbar}{2}; \tag{3.69}$$

 Δx (the "uncertainty" in x) is loose notation (and sloppy language) for the standard deviation of the results of repeated measurements on identically prepared systems.²¹ Equation 3.69 is often paired with the **energy-time uncertainty principle**,

$$\Delta t \ \Delta E \ge \frac{\hbar}{2}.\tag{3.70}$$

Indeed, in the context of special relativity the energy-time form might be thought of as a consequence of the position-momentum version, because x and t (or rather, ct) go together in the position-time four-vector, while p and E (or rather, E/c) go together in the energy-momentum four-vector. So in a relativistic theory Equation 3.70 would be a necessary concomitant to Equation 3.69. But we're not doing relativistic quantum mechanics. The Schrödinger equation is explicitly non-relativistic: It treats t and x on a very unequal footing (as a differential equation it is first-order in t, but second-order in x), and Equation 3.70 is emphatically not implied by Equation 3.69. My purpose now is to derive the energy-time uncertainty principle, and in the course of that derivation to persuade you that it is really an altogether different beast, whose superficial resemblance to the position-momentum uncertainty principle is actually quite misleading.

After all, position, momentum, and energy are all dynamical variables—measurable characteristics of the system, at any given time. But time itself is not a dynamical variable (not, at any rate, in a nonrelativistic theory): You don't go out and measure the "time" of a particle, as you might its position or its energy. Time is the *independent* variable, of which the dynamical quantities are *functions*. In particular, the Δt in the energy-time uncertainty principle is not the standard deviation of a collection of time measurements; roughly speaking (I'll make this more precise in a moment) it is the *time it takes the system to change substantially*.

²¹ Many casual applications of the uncertainty principle are actually based (often inadvertently) on a completely different—and sometimes quite unjustified—measure of "uncertainty." Conversely, some perfectly rigorous arguments use other definitions of "uncertainty." See Jan Hilgevoord. *Am. J. Phys.* **70**, 983 (2002).

As a measure of how fast the system is changing, let us compute the time derivative of the expectation value of some observable, Q(x, p, t):

$$\frac{d}{dt}\langle Q\rangle = \frac{d}{dt}\langle \Psi | \hat{Q}\Psi \rangle = \left\langle \frac{\partial \Psi}{\partial t} \middle| \hat{Q}\Psi \right\rangle + \left\langle \Psi \middle| \frac{\partial \hat{Q}}{\partial t} \middle| \Psi \right\rangle + \left\langle \Psi \middle| \hat{Q}\frac{\partial \Psi}{\partial t} \right\rangle.$$

Now, the Schrödinger equation says

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$

(where $H = p^2/2m + V$ is the Hamiltonian). So

$$rac{d}{dt}\langle Q
angle = -rac{1}{i\hbar}\langle \hat{H}\Psi|\hat{Q}\Psi
angle + rac{1}{i\hbar}\langle \Psi|\hat{Q}\hat{H}\Psi
angle + \left\langle rac{\partial \hat{Q}}{\partial t}
ight
angle.$$

But \hat{H} is hermitian, so $\langle \hat{H}\Psi | \hat{Q}\Psi \rangle = \langle \Psi | \hat{H} \hat{Q}\Psi \rangle$, and hence

$$\frac{d}{dt}\langle Q\rangle = \frac{i}{\hbar}\langle [\hat{H}, \hat{Q}]\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle.$$
 [3.71]

This is an interesting and useful result in its own right (see Problems 3.17 and 3.31). In the typical case where the operator does not depend explicitly on time, ²² it tells us that the rate of change of the expectation value is determined by the commutator of the operator with the Hamiltonian. In particular, if \hat{Q} commutes with \hat{H} , then $\langle Q \rangle$ is constant, and in this sense Q is a conserved quantity.

Now, suppose we pick A = H and B = Q, in the generalized uncertainty principle (Equation 3.62), and assume that Q does not depend explicitly on t:

$$\sigma_H^2 \sigma_Q^2 \ge \left(\frac{1}{2i} \langle [\hat{H}, \hat{Q}] \rangle\right)^2 = \left(\frac{1}{2i} \frac{\hbar}{i} \frac{d \langle Q \rangle}{dt}\right)^2 = \left(\frac{\hbar}{2}\right)^2 \left(\frac{d \langle Q \rangle}{dt}\right)^2.$$

Or, more simply,

$$\sigma_H \sigma_Q \ge \frac{\hbar}{2} \left| \frac{d\langle Q \rangle}{dt} \right|.$$
 [3.72]

Let's define $\Delta E \equiv \sigma_H$, and

$$\Delta t \equiv \frac{\sigma_Q}{|d\langle Q\rangle/dt|}.$$
 [3.73]

²²Operators that depend explicitly on t are quite rare, so almost always $\partial \hat{Q}/\partial t = 0$. As an example of explicit time dependence, consider the potential energy of a harmonic oscillator whose spring constant is changing (perhaps the temperature is rising, so the spring becomes more flexible): $Q = (1/2)m[\omega(t)]^2x^2$.

Then

$$\Delta E \, \Delta t \ge \frac{\hbar}{2},\tag{3.74}$$

and that's the energy-time uncertainty principle. But notice what is meant by Δt , here: Since

$$\sigma_Q = \left| \frac{d\langle Q \rangle}{dt} \right| \Delta t,$$

 Δt represents the amount of time it takes the expectation value of Q to change by one standard deviation.²³ In particular, Δt depends entirely on what observable (Q) you care to look at—the change might be rapid for one observable and slow for another. But if ΔE is small, then the rate of change of all observables must be very gradual; or, to put it the other way around, if any observable changes rapidly, the "uncertainty" in the energy must be large.

Example 3.5 In the extreme case of a stationary state, for which the energy is uniquely determined, all expectation values are constant in time ($\Delta E = 0 \Rightarrow \Delta t = \infty$)—as in fact we noticed some time ago (see Equation 2.9). To make something *happen* you must take a linear combination of at least two stationary states—say:

$$\Psi(x,t) = a\psi_1(x)e^{-iE_1t/\hbar} + b\psi_2(x)e^{-iE_2t/\hbar}.$$

If a, b, ψ_1 , and ψ_2 are real,

$$|\Psi(x,t)|^2 = a^2(\psi_1(x))^2 + b^2(\psi_2(x))^2 + 2ab\psi_1(x)\psi_2(x)\cos\left(\frac{E_2 - E_1}{\hbar}t\right).$$

The period of oscillation is $\tau = 2\pi\hbar/(E_2 - E_1)$. Roughly speaking, $\Delta E = E_2 - E_1$ and $\Delta t = \tau$ (for the *exact* calculation see Problem 3.18), so

$$\Delta E \Delta t = 2\pi \hbar$$
.

which is indeed $\geq \hbar/2$.

Example 3.6 How long does it take a free-particle wave packet to pass by a particular point (Figure 3.1)? Qualitatively (an exact version is explored in Problem 3.19), $\Delta t = \Delta x/v = m\Delta x/p$, but $E = p^2/2m$, so $\Delta E = p\Delta p/m$. Therefore,

$$\Delta E \, \Delta t = \frac{p \, \Delta p}{m} \frac{m \, \Delta x}{p} = \Delta x \, \Delta p,$$

which is $\geq \hbar/2$ by the position-momentum uncertainty principle.

²³This is sometimes called the "Mandelstam-Tamm" formulation of the energy-time uncertainty principle. For a review of alternative approaches see Paul Busch, *Found. Phys.* **20**, 1 (1990).

FIGURE 3.1: A free particle wave packet approaches the point A (Example 3.6).

Example 3.7 The Δ particle lasts about 10^{-23} seconds, before spontaneously disintegrating. If you make a histogram of all measurements of its mass, you get a kind of bell-shaped curve centered at 1232 MeV/ c^2 , with a width of about 120 MeV/ c^2 (Figure 3.2). Why does the rest energy (mc^2) sometimes come out higher than 1232, and sometimes lower? Is this experimental error? No, for

$$\Delta E \, \Delta t = \left(\frac{120}{2} \text{ MeV}\right) (10^{-23} \text{ sec}) = 6 \times 10^{-22} \text{ MeV sec},$$

whereas $\hbar/2 = 3 \times 10^{-22}$ MeV sec. So the spread in m is about as small as the uncertainty principle allows—a particle with so short a lifetime just doesn't have a very well-defined mass.²⁴

FIGURE 3.2: Histogram of measurements of the Δ mass (Example 3.7).

 $^{^{24}}$ Actually, Example 3.7 is a bit of a fraud. You can't measure 10^{-23} sec on a stop-watch, and in practice the lifetime of such a short-lived particle is *inferred* from the width of the mass plot, using the uncertainty principle as *input*. However, the point is valid, even if the logic is backwards. Moreover, if you assume the Δ is about the same size as a proton ($\sim 10^{-15}$ m), then 10^{-23} sec is roughly the time it takes light to cross the particle, and it's hard to imagine that the lifetime could be much *less* than that.

Notice the variety of specific meanings attaching to the term Δt in these examples: In Example 3.5 it's a period of oscillation; in Example 3.6 it's the time it takes a particle to pass a point; in Example 3.7 it's the lifetime of an unstable particle. In every case, however, Δt is the time it takes for the system to undergo "substantial" change.

It is often said that the uncertainty principle means energy is not strictly conserved in quantum mechanics—that you're allowed to "borrow" energy ΔE , as long as you "pay it back" in a time $\Delta t \approx \hbar/(2\Delta E)$; the greater the violation, the briefer the period over which it can occur. Now, there are many legitimate readings of the energy-time uncertainty principle, but this is not one of them. Nowhere does quantum mechanics license violation of energy conservation, and certainly no such authorization entered into the derivation of Equation 3.74. But the uncertainty principle is extraordinarily robust: It can be misused without leading to seriously incorrect results, and as a consequence physicists are in the habit of applying it rather carelessly.

*Problem 3.17 Apply Equation 3.71 to the following special cases: (a) Q = 1; (b) Q = H; (c) Q = x; (d) Q = p. In each case, comment on the result, with particular reference to Equations 1.27, 1.33, 1.38, and conservation of energy (comments following Equation 2.39).

Problem 3.18 Test the energy-time uncertainty principle for the wave function in Problem 2.5 and the observable x, by calculating σ_H , σ_x , and $d\langle x \rangle/dt$ exactly.

Problem 3.19 Test the energy-time uncertainty principle for the free particle wave packet in Problem 2.43 and the observable x, by calculating σ_H , σ_x , and $d\langle x \rangle/dt$ exactly.

Problem 3.20 Show that the energy-time uncertainty principle reduces to the "your name" uncertainty principle (Problem 3.14), when the observable in question is x.

3.6 DIRAC NOTATION

Imagine an ordinary vector \mathbf{A} in two dimensions (Figure 3.3(a)). How would you describe this vector to someone? The most convenient way is to set up cartesian axes, x and y, and specify the components of \mathbf{A} : $A_x = \hat{\imath} \cdot \mathbf{A}$, $A_y = \hat{\jmath} \cdot \mathbf{A}$ (Figure 3.3(b)). Of course, your sister might have drawn a different set of axes, x' and y', and she would report different components: $A_x' = \hat{\imath}' \cdot \mathbf{A}$. $A_y' = \hat{\jmath}' \cdot \mathbf{A}$ (Figure 3.3(c)). But it's all the same vector—we're simply expressing it with respect to two different bases ($\{\hat{\imath}, \hat{\jmath}\}$ and $\{\hat{\imath}', \hat{\jmath}'\}$). The vector itself lives "out there in space," independent of anybody's (arbitrary) choice of coordinates.

FIGURE 3.3: (a) Vector A. (b) Components of A with respect to xy axes. (c) Components of A with respect to x'y' axes.

The same is true for the state of a system in quantum mechanics. It is represented by a *vector*, $|\mathcal{S}(t)\rangle$, that lives "out there in Hilbert space," but we can *express* it with respect to any number of different *bases*. The wave function $\Psi(x, t)$ is actually the coefficient in the expansion of $|\mathcal{S}\rangle$ in the basis of position eigenfunctions:

$$\Psi(x,t) = \langle x | \mathcal{S}(t) \rangle. \tag{3.75}$$

(with $|x\rangle$ standing for the eigenfunction of \hat{x} with eigenvalue x), whereas the momentum space wavefunction $\Phi(p,t)$ is the expansion of $|\mathcal{S}\rangle$ in the basis of momentum eigenfunctions:

$$\Phi(p,t) = \langle p|\delta(t)\rangle \tag{3.76}$$

(with $|p\rangle$ standing for the eigenfunction of \hat{p} with eigenvalue p).²⁶ Or we could expand $|\mathcal{S}\rangle$ in the basis of energy eigenfunctions (supposing for simplicity that the spectrum is discrete):

$$c_n(t) = \langle n|\mathcal{S}(t)\rangle \tag{3.77}$$

(with $|n\rangle$ standing for the *n*th eigenfunction of \hat{H})—Equation 3.46. But it's all the same state; the functions Ψ and Φ , and the collection of coefficients $\{c_n\}$, contain exactly the same information—they are simply three different ways of describing the same vector:

$$\Psi(x,t) = \int \Psi(y,t)\delta(x-y) \, dy = \int \Phi(p,t) \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \, dp$$
$$= \sum c_n e^{-iE_n t/\hbar} \psi_n(x). \tag{3.78}$$

 $^{^{25}}$ I don't want to call it g_x (Equation 3.39), because that is its form in the position basis, and the whole point here is to free ourselves from any particular basis. Indeed, when I first defined Hilbert space as the set of square-integrable functions—over x—that was already too restrictive, committing us to a specific representation (the position basis). I want now to think of it as an abstract vector space, whose members can be expressed with respect to any basis you like.

²⁶In position space it would be $f_p(x)$ (Equation 3.32).

Operators (representing observables) are linear transformations—they "transform" one vector into another:

$$|\beta\rangle = \hat{Q}|\alpha\rangle. \tag{3.79}$$

Just as vectors are represented, with respect to a particular basis $\{|e_n\rangle\}$, ²⁷ by their components,

$$|\alpha\rangle = \sum_{n} a_n |e_n\rangle$$
, with $a_n = \langle e_n | \alpha \rangle$; $|\beta\rangle = \sum_{n} b_n |e_n\rangle$, with $b_n = \langle e_n | \beta \rangle$, [3.80]

operators are represented (with respect to a particular basis) by their matrix elements²⁸

$$\langle e_m | \hat{Q} | e_n \rangle \equiv Q_{mn}. \tag{3.81}$$

In this notation Equation 3.79 takes the form

$$\sum_{n} b_{n} |e_{n}\rangle = \sum_{n} a_{n} \hat{Q} |e_{n}\rangle, \qquad [3.82]$$

or, taking the inner product with $|e_m\rangle$,

$$\sum_{n} b_{n} \langle e_{m} | e_{n} \rangle = \sum_{n} a_{n} \langle e_{m} | \hat{Q} | e_{n} \rangle.$$
 [3.83]

and hence

$$b_m = \sum_n Q_{mn} a_n. ag{3.84}$$

Thus the matrix elements tell you how the components transform.

Later on we will encounter systems that admit only a finite number (N) of linearly independent states. In that case $|\mathcal{S}(t)\rangle$ lives in an N-dimensional vector space; it can be represented as a column of (N) components (with respect to a given basis), and operators take the form of ordinary $(N \times N)$ matrices. These are the simplest quantum systems—none of the subtleties associated with infinite-dimensional vector spaces arise. Easiest of all is the two-state system, which we explore in the following example.

Example 3.8 Imagine a system in which there are just *two* linearly independent states:²⁹

$$|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

 $^{^{27}\}Gamma$ ll assume the basis is discrete; otherwise *n* becomes a continuous index and the sums are replaced by integrals.

²⁸This terminology is inspired, obviously, by the finite-dimensional case, but the "matrix" will now typically have an infinite (maybe even uncountable) number of elements.

²⁹Technically, the "equals" signs here mean "is represented by," but I don't think any confusion will arise if we adopt the customary informal notation.

The most general state is a normalized linear combination:

$$|\mathcal{S}\rangle = a|1\rangle + b|2\rangle = \begin{pmatrix} a \\ b \end{pmatrix}, \text{ with } |a|^2 + |b|^2 = 1.$$

The Hamiltonian can be expressed as a (hermitian) matrix; suppose it has the specific form

$$\mathbf{H} = \begin{pmatrix} h & g \\ g & h \end{pmatrix},$$

where g and h are real constants. If the system starts out (at t = 0) in state $|1\rangle$, what is its state at time t?

Solution: The (time-dependent) Schrödinger equation says

$$i\hbar \frac{d}{dt}|\delta\rangle = H|\delta\rangle.$$
 [3.85]

As always, we begin by solving the time-independent Schrödinger equation:

$$H|s\rangle = E|s\rangle; ag{3.86}$$

that is, we look for the eigenvectors and eigenvalues of H. The characteristic equation determines the eigenvalues:

$$\det \begin{pmatrix} h - E & g \\ g & h - E \end{pmatrix} = (h - E)^2 - g^2 = 0 \Rightarrow h - E = \mp g \Rightarrow E_{\pm} = h \pm g.$$

Evidently the allowed energies are (h + g) and (h - g). To determine the eigenvectors, we write

$$\begin{pmatrix} h & g \\ g & h \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = (h \pm g) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \Rightarrow h\alpha + g\beta = (h \pm g)\alpha \Rightarrow \beta = \pm \alpha.$$

so the normalized eigenvectors are

$$|\mathfrak{s}_{\pm}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}.$$

Next we expand the initial state as a linear combination of eigenvectors of the Hamiltonian:

$$|\delta(0)\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} (|s_{+}\rangle + |s_{-}\rangle).$$

Finally, we tack on the standard time-dependence $\exp(-iE_nt/\hbar)$:

$$|\mathcal{S}(t)\rangle = \frac{1}{\sqrt{2}} [e^{-i(h+g)t/\hbar} |\mathfrak{s}_{+}\rangle + e^{-i(h-g)t/\hbar} |\mathfrak{s}_{-}\rangle]$$

$$= \frac{1}{2}e^{-iht/\hbar} \left[e^{-igt/\hbar} \begin{pmatrix} 1\\1 \end{pmatrix} + e^{igt/\hbar} \begin{pmatrix} 1\\-1 \end{pmatrix} \right]$$

$$= \frac{1}{2}e^{-iht/\hbar} \begin{pmatrix} e^{-igt/\hbar} + e^{igt/\hbar}\\e^{-igt/\hbar} - e^{igt/\hbar} \end{pmatrix} = e^{-iht/\hbar} \begin{pmatrix} \cos(gt/\hbar)\\-i\sin(gt/\hbar) \end{pmatrix}.$$

If you doubt this result, by all means *check* it: Does it satisfy the time-dependent Schrödinger equation? Does it match the initial state when t = 0?

This is a crude model for (among other things) **neutrino oscillations**. In that case $|1\rangle$ represents the electron neutrino, and $|2\rangle$ the muon neutrino; if the Hamiltonian has a nonvanishing off-diagonal term (g) then in the course of time the electron neutrino will turn into a muon neutrino (and back again).

Dirac proposed to chop the bracket notation for the inner product, $\langle \alpha | \beta \rangle$, into two pieces, which he called **bra**, $\langle \alpha |$, and **ket**, $|\beta \rangle$ (I don't know what happened to the c). The latter is a vector, but what exactly is the former? It's a *linear function* of vectors, in the sense that when it hits a vector (to its right) it yields a (complex) number—the inner product. (When an *operator* hits a vector, it delivers another vector; when a *bra* hits a vector, it delivers a number.) In a function space, the bra can be thought of as an instruction to integrate:

$$\langle f| = \int f^*[\cdots] dx,$$

with the ellipsis $[\cdots]$ waiting to be filled by whatever function the bra encounters in the ket to its right. In a finite-dimensional vector space, with the vectors expressed as columns,

$$|\alpha\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \qquad [3.87]$$

the corresponding bra is a row vector:

$$\langle \alpha | = (a_1^* \, a_2^* \, \dots \, a_n^*).$$
 [3.88]

The collection of all bras constitutes another vector space—the so-called **dual** space.

The license to treat bras as separate entities in their own right allows for some powerful and pretty notation (though I shall not exploit it in this book). For example, if $|\alpha\rangle$ is a normalized vector, the operator

$$\hat{P} \equiv |\alpha\rangle\langle\alpha| \tag{3.89}$$

picks out the portion of any other vector that "lies along" $|\alpha\rangle$:

$$\hat{P}|\beta\rangle = \langle \alpha|\beta\rangle|\alpha\rangle;$$

we call it the **projection operator** onto the one-dimensional subspace spanned by $|\alpha\rangle$. If $\{|e_n\rangle\}$ is a discrete orthonormal basis,

$$\langle e_m | e_n \rangle = \delta_{mn}. \tag{3.90}$$

then

$$\sum_{n} |e_n\rangle\langle e_n| = 1 \tag{3.91}$$

(the identity operator). For if we let this operator act on any vector $|\alpha\rangle$, we recover the expansion of $|\alpha\rangle$ in the $\{|e_n\rangle\}$ basis:

$$\sum_{n} |e_{n}\rangle\langle e_{n}|\alpha\rangle = |\alpha\rangle.$$
 [3.92]

Similarly, if $\{|e_z\rangle\}$ is a *Dirac* orthonormalized continuous basis,

$$\langle e_z | e_{z'} \rangle = \delta(z - z'), \tag{3.93}$$

then

$$\int |e_z\rangle\langle e_z|\,dz=1. \tag{3.94}$$

Equations 3.91 and 3.94 are the tidiest ways to express completeness.

Problem 3.21 Show that projection operators are **idempotent**: $\hat{P}^2 = \hat{P}$. Determine the eigenvalues of \hat{P} , and characterize its eigenvectors.

Problem 3.22 Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle.$$

- (a) Construct $\langle \alpha |$ and $\langle \beta |$ (in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$).
- (b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$, and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- (c) Find all nine matrix elements of the operator $\hat{A} \equiv |\alpha\rangle\langle\beta|$, in this basis, and construct the matrix **A**. Is it hermitian?

Problem 3.23 The Hamiltonian for a certain two-level system is

$$\hat{H} = \epsilon (|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

where $|1\rangle$, $|2\rangle$ is an orthonormal basis and ϵ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$). What is the matrix **H** representing \hat{H} with respect to this basis?

Problem 3.24 Let \hat{Q} be an operator with a complete set of orthonormal eigenvectors:

$$\hat{Q}|e_n\rangle = q_n|e_n\rangle \quad (n=1,2,3,\ldots).$$

Show that \hat{Q} can be written in terms of its spectral decomposition:

$$\hat{Q} = \sum_{n} q_n |e_n\rangle\langle e_n|.$$

Hint: An operator is characterized by its action on all possible vectors, so what you must show is that

$$\hat{Q}|\alpha\rangle = \left\{\sum_{n} q_{n}|e_{n}\rangle\langle e_{n}|\right\}|\alpha\rangle,$$

for any vector $|\alpha\rangle$.

FURTHER PROBLEMS FOR CHAPTER 3

Problem 3.25 Legendre polynomials. Use the Gram-Schmidt procedure (Problem A.4) to orthonormalize the functions 1, x, x^2 , and x^3 , on the interval $-1 \le x \le 1$. You may recognize the results—they are (apart from the normalization)³⁰ Legendre polynomials (Table 4.1).

Problem 3.26 An **anti-hermitian** (or **skew-hermitian**) operator is equal to *minus* its hermitian conjugate:

$$\hat{Q}^{\dagger} = -\hat{Q}. \tag{3.95}$$

- (a) Show that the expectation value of an anti-hermitian operator is imaginary.
- (b) Show that the commutator of two hermitian operators is anti-hermitian. How about the commutator of two *anti*-hermitian operators?

 $^{^{30}}$ Legendre didn't know what the best convention would be; he picked the overall factor so that all his functions would go to 1 at x = 1, and we're stuck with his unfortunate choice.

Problem 3.27 Sequential measurements. An operator \hat{A} , representing observable A, has two normalized eigenstates ψ_1 and ψ_2 , with eigenvalues a_1 and a_2 , respectively. Operator \hat{B} , representing observable B, has two normalized eigenstates ϕ_1 and ϕ_2 , with eigenvalues b_1 and b_2 . The eigenstates are related by

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5.$$

- (a) Observable A is measured, and the value a_1 is obtained. What is the state of the system (immediately) after this measurement?
- (b) If B is now measured, what are the possible results, and what are their probabilities?
- (c) Right after the measurement of B, A is measured again. What is the probability of getting a_1 ? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)
- **Problem 3.28 Find the momentum-space wave function $\Phi_n(p,t)$ for the *n*th stationary state of the infinite square well. Graph $|\Phi_1(p,t)|^2$ and $|\Phi_2(p,t)|^2$, as functions of p (pay particular attention to the points $p = \pm n\pi\hbar/a$). Use $\Phi_n(p,t)$ to calculate the expectation value of p^2 . Compare your answer to Problem 2.4.

Problem 3.29 Consider the wave function

$$\Psi(x, 0) = \begin{cases} \frac{1}{\sqrt{2n\lambda}} e^{i2\pi x/\lambda}, & -n\lambda < x < n\lambda, \\ 0, & \text{otherwise,} \end{cases}$$

where n is some positive integer. This function is purely sinusoidal (with wavelength λ) on the interval $-n\lambda < x < n\lambda$, but it still carries a range of momenta, because the oscillations do not continue out to infinity. Find the momentum space wave function $\Phi(p,0)$. Sketch the graphs of $|\Psi(x,0)|^2$ and $|\Phi(p,0)|^2$, and determine their widths, w_x and w_p (the distance between zeros on either side of the main peak). Note what happens to each width as $n \to \infty$. Using w_x and w_p as estimates of Δx and Δp , check that the uncertainty principle is satisfied. Warning: If you try calculating σ_p , you're in for a rude surprise. Can you diagnose the problem?

Problem 3.30 Suppose

$$\Psi(x,0) = \frac{A}{x^2 + a^2}. \quad (-\infty < x < \infty)$$

for constants A and a.

- (a) Determine A, by normalizing $\Psi(x, 0)$.
- (b) Find $\langle x \rangle$, $\langle x^2 \rangle$, and σ_x (at time t = 0).
- (c) Find the momentum space wave function $\Phi(p, 0)$, and check that it is normalized.
- (d) Use $\Phi(p, 0)$ to calculate $\langle p \rangle$, $\langle p^2 \rangle$, and σ_p (at time t = 0).
- (e) Check the Heisenberg uncertainty principle for this state.

*Problem 3.31 Virial theorem. Use Equation 3.71 to show that

$$\frac{d}{dt}\langle xp\rangle = 2\langle T\rangle - \left\langle x\frac{dV}{dx}\right\rangle.$$
 [3.96]

where T is the kinetic energy (H = T + V). In a stationary state the left side is zero (why?) so

$$2\langle T \rangle = \left\langle x \frac{dV}{dx} \right\rangle. \tag{3.97}$$

This is called the **virial theorem**. Use it to prove that $\langle T \rangle = \langle V \rangle$ for stationary states of the harmonic oscillator, and check that this is consistent with the results you got in Problems 2.11 and 2.12.

Problem 3.32 In an interesting version of the energy-time uncertainty principle³¹ $\Delta t = \tau/\pi$, where τ is the time it takes $\Psi(x,t)$ to evolve into a state orthogonal to $\Psi(x,0)$. Test this out, using a wave function that is an equal admixture of two (orthonormal) stationary states of some (arbitrary) potential: $\Psi(x,0) = (1/\sqrt{2})[\psi_1(x) + \psi_2(x)]$.

Problem 3.33 Find the matrix elements $\langle n|x|n'\rangle$ and $\langle n|p|n'\rangle$ in the (orthonormal) basis of stationary states for the harmonic oscillator (Equation 2.67). You already calculated the "diagonal" elements (n=n') in Problem 2.12; use the same technique for the general case. Construct the corresponding (infinite) matrices, **X and **P**. Show that $(1/2m)\mathbf{P}^2 + (m\omega^2/2)\mathbf{X}^2 = \mathbf{H}$ is diagonal, in this basis. Are its diagonal elements what you would expect? Partial answer:

$$\langle n|x|n'\rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n'}\delta_{n,n'-1} + \sqrt{n}\delta_{n',n-1}\right).$$
 [3.98]

³¹ See Lev Vaidman, Am. J. Phys. **60**, 182 (1992) for a proof.

Problem 3.34 A harmonic oscillator is in a state such that a measurement of the energy would yield either $(1/2)\hbar\omega$ or $(3/2)\hbar\omega$, with equal probability. What is the largest possible value of $\langle p \rangle$ in such a state? If it assumes this maximal value at time t = 0, what is $\Psi(x, t)$?

Problem 3.35 Coherent states of the harmonic oscillator. Among the stationary states of the harmonic oscillator ($|n\rangle = \psi_n(x)$, Equation 2.67) only n = 0 hits the uncertainty limit ($\sigma_x \sigma_p = \hbar/2$); in general, $\sigma_x \sigma_p = (2n + 1)\hbar/2$, as you found in Problem 2.12. But certain *linear combinations* (known as **coherent states) also minimize the uncertainty product. They are (as it turns out) eigenfunctions of the lowering operator:³²

$$a_{-}|\alpha\rangle = \alpha |\alpha\rangle$$

(the eigenvalue α can be any complex number).

- (a) Calculate $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, $\langle p^2 \rangle$ in the state $|\alpha\rangle$. Hint: Use the technique in Example 2.5, and remember that a_+ is the hermitian conjugate of a_- . Do not assume α is real.
- (b) Find σ_x and σ_p ; show that $\sigma_x \sigma_p = \hbar/2$.
- (c) Like any other wave function, a coherent state can be expanded in terms of energy eigenstates:

$$|\alpha\rangle = \sum_{n=0}^{\infty} c_n |n\rangle.$$

Show that the expansion coefficients are

$$c_n = \frac{\alpha^n}{\sqrt{n!}} c_0.$$

- (d) Determine c_0 by normalizing $|\alpha\rangle$. Answer: $\exp(-|\alpha|^2/2)$.
- (e) Now put in the time dependence:

$$|n\rangle \to e^{-iE_nt/\hbar}|n\rangle$$
,

and show that $|\alpha(t)\rangle$ remains an eigenstate of a_- , but the eigenvalue evolves in time:

$$\alpha(t) = e^{-i\omega t}\alpha.$$

So a coherent state *stays* coherent, and continues to minimize the uncertainty product.

³²There are no normalizable eigenfunctions of the *raising* operator.

(f) Is the ground state ($|n = 0\rangle$) itself a coherent state? If so, what is the eigenvalue?

Problem 3.36 Extended uncertainty principle.³³ The generalized uncertainty principle (Equation 3.62) states that

$$\sigma_A^2 \sigma_B^2 \ge \frac{1}{4} \langle C \rangle^2,$$

where $\hat{C} \equiv -i[\hat{A}, \hat{B}]$.

(a) Show that it can be strengthened to read

$$\sigma_A^2 \sigma_B^2 \ge \frac{1}{4} (\langle C \rangle^2 + \langle D \rangle^2), \tag{3.99}$$

where $\hat{D} \equiv \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle A \rangle \langle B \rangle$. Hint: Keep the Re(z) term in Equation 3.60.

(b) Check Equation 3.99 for the case B = A (the standard uncertainty principle is trivial, in this case, since $\hat{C} = 0$; unfortunately, the extended uncertainty principle doesn't help much either).

Problem 3.37 The Hamiltonian for a certain three-level system is represented by the matrix

$$\mathbf{H} = \begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ b & 0 & a \end{pmatrix},$$

where a, b, and c are real numbers (assume $a - c \neq \pm b$).

(a) If the system starts out in the state

$$|\mathcal{S}(0)\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix},$$

what is $|\mathcal{S}(t)\rangle$?

(b) If the system starts out in the state

$$|\mathcal{S}(0)\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix},$$

what is $|\mathcal{S}(t)\rangle$?

³³For interesting commentary and references, see R. R. Puri, *Phys. Rev. A* 49, 2178 (1994).

Problem 3.38 The Hamiltonian for a certain three-level system is represented by the matrix

$$\mathbf{H} = \hbar\omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Two other observables, A and B, are represented by the matrices

$$\mathbf{A} = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad \mathbf{B} = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

where ω , λ , and μ are positive real numbers.

- (a) Find the eigenvalues and (normalized) eigenvectors of **H**, **A**, and **B**.
- (b) Suppose the system starts out in the generic state

$$|\delta(0)\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix},$$

with $|c_1|^2 + |c_2|^2 + |c_3|^2 = 1$. Find the expectation values (at t = 0) of H, A, and B.

(c) What is $|\mathcal{S}(t)\rangle$? If you measured the energy of this state (at time t), what values might you get, and what is the probability of each? Answer the same questions for A and for B.

* *Problem 3.39

(a) For a function f(x) that can be expanded in a Taylor series, show that

$$f(x + x_0) = e^{i\hat{p}x_0/\hbar} f(x)$$

(where x_0 is any constant distance). For this reason, \hat{p}/\hbar is called the **generator of translations in space**. Note: The exponential of an operator is defined by the power series expansion: $e^{\hat{Q}} \equiv 1 + \hat{Q} + (1/2)\hat{Q}^2 + (1/3!)\hat{Q}^3 + \dots$

(b) If $\Psi(x, t)$ satisfies the (time-dependent) Schrödinger equation, show that

$$\Psi(x, t + t_0) = e^{-i\hat{H}t_0/\hbar}\Psi(x, t)$$

(where t_0 is any constant time); $-\hat{H}/\hbar$ is called the **generator of translations** in time.

(c) Show that the expectation value of a dynamical variable Q(x, p, t), at time $t + t_0$, can be written³⁴

$$\langle Q \rangle_{t+t_0} = \langle \Psi(x,t) | e^{i\hat{H}t_0/\hbar} \hat{Q}(\hat{x},\hat{p},t+t_0) e^{-i\hat{H}t_0/\hbar} | \Psi(x,t) \rangle.$$

Use this to recover Equation 3.71. Hint: Let $t_0 = dt$, and expand to first order in dt.

* *Problem 3.40

- (a) Write down the time-dependent "Schrödinger equation" in momentum space, for a free particle, and solve it. Answer: $\exp(-ip^2t/2m\hbar) \Phi(p, 0)$.
- (b) Find $\Phi(p,0)$ for the traveling gaussian wave packet (Problem 2.43), and construct $\Phi(p,t)$ for this case. Also construct $|\Phi(p,t)|^2$, and note that it is independent of time.
- (c) Calculate $\langle p \rangle$ and $\langle p^2 \rangle$ by evaluating the appropriate integrals involving Φ , and compare your answers to Problem 2.43.
- (d) Show that $\langle H \rangle = \langle p \rangle^2 / 2m + \langle H \rangle_0$ (where the subscript 0 denotes the *stationary* gaussian), and comment on this result.

$$\langle O(t)\rangle = \langle \Psi(x,t)|\hat{O}|\Psi(x,t)\rangle = \langle \Psi(x,0)|\hat{U}^{-1}\hat{O}\hat{U}|\Psi(x,0)\rangle.$$

where $\hat{U} \equiv \exp(-i\hat{H}t/\hbar)$. This says that you can calculate expectation values of Q either by sandwiching \hat{Q} between $\Psi(x,t)^*$ and $\Psi(x,t)$, as we have always done (letting the wave functions carry the time dependence), or else by sandwiching $\hat{U}^{-1}\hat{Q}\hat{U}$ between $\Psi(x,0)^*$ and $\Psi(x,0)$, letting the operator carry the time dependence. The former is called the **Schrödinger picture**, and the latter the **Heisenberg picture**.

³⁴In particular, if we set t = 0, and drop the subscript on t_0 ,