Introduction to Zero-Knowledge Proofs

Distributed Lab

August 22, 2024

Plan

- Introduction
 - Classical Proofs
 - Goal of the course
- Relations. Languages. NP Statements.
 - Language of true statements. Examples.
- Interactive Proofs
 - Interactive Proof System

Introduction

Classical Proofs

- First proofs you have probably encountered were geometry proofs.
- You were given axioms and you can prove certain statements x using them.
- The proof π is a sequence of logical steps that lead from axioms to the statement. Essentially, you have a witness w that proves the statement.
- Your teacher is the verifier V who checks your proof, while you are the prover P.
- This is a classical proof and in a sense, it is a non-interactive proof.

S	Statements	
1.	Given: M is the midpoint of AD and BC_	

- 2. AM ≅ MD BM ≅ MC
- $3. \angle AMB \cong \angle DMC$
- △ABM≅△DMC
- 5. ∠ A ≅∠D
- 6. AB || CD

4/26

1. Given

- 2. Definition of
- Midpoint
- 3. Vertical Angles Theorem
- 4. SAS Thm
- 5. CPCTC
- 6. Converse of Alt. Interior Angles Thm

Figure: Geometry proof.

Motivation

Note

However, we cannot use such proofs in the digital world.

- Proofs must be verified by computers. Therefore, we need to develop mathematic framework to be able to program them.
- This leads to the question: what is statement? What is proof? What is witness? How to formally define them?
- We need to formalize these concepts.

Figure: Hmm...

The most basic setting

- We have a **prover** \mathcal{P} and a **verifier** \mathcal{V} .
- Prover \mathcal{P} wants to prove some statement x to the verifier.
- Prover \mathcal{P} has a **witness** w that contains all necessary information to prove the statement x. He sends π as a proof.
- Verifier \mathcal{V} wants to be convinced that the statement x is true.

Figure: Typical setup for cryptographic proofs.

The Goal of SNARKs, STARKs etc.

We will try to solve the following problems:

- **Completeness:** If x is true, π proofs the statement.
- **Soundness:** If x is false, the prover \mathcal{P} should not be able to convince the verifier \mathcal{V} via any π^* .
- **Zero-knowledge:** π does not reveal anything about w.
- **Argument of knowledge:** Sometimes, the prover \mathcal{P} should convince the verifier \mathcal{V} that besides x is true, he **knows** the witness w.
- Succinctness: The proof should be short, ideally polylogarithmic in the size of the statement $(\pi = \text{polylog}(|x|)) + \text{fast verification}$.
- **Arithmetization:** We need to convert the statement *x* into some algebraic form + make it relatively universal.

Note

SNARK, STARK, etc. will solve these problems!

Example to demonstrate the goal

Example

Given a hash function $H:\{0,1\}^* \to \{0,1\}^\ell$, $\mathcal P$ wants to convince $\mathcal V$ that he knows the preimage $x \in \{0,1\}^*$ such that H(x)=y.

- **Zero-knowledge:** The prover \mathcal{P} does not want to reveal *anything* about the pre-image x to the verifier \mathcal{V} .
- Argument of knowledge: Proving y has a pre-image is useless. \mathcal{P} must show he knows $x \in \{0,1\}^*$ s.t. H(x) = y.
- Succinctness: If the hash function takes n operations to compute, the proof should be **much** shorter than n operations. **State-of-art**: size is $polylog(n) = O((\log n)^c)$. Verification time is also typically polylogarithmic (or even O(1) in some cases).

8/26

Note

But first, let us start with the basics.

Relations. Languages. NP Statements.

Language

Definition (Relation)

Given two sets \mathcal{X} and \mathcal{Y} , the **relation** is $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$.

- \mathcal{X} is typically a set of **statements**.
- \mathcal{Y} is a set of witnesses.

Definition (Language of true statements)

Let $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{Y}$ be a relation. We say that a statement $x \in \mathcal{X}$ is a **true** statement if $(x,y) \in \mathcal{R}$ for some $y \in \mathcal{Y}$, otherwise the statement is called **false**. We define by $\mathcal{L}_{\mathcal{R}}$ (the language over relation \mathcal{R}) the set of all true statements, that is:

$$\mathcal{L}_{\mathcal{R}} = \{ x \in \mathcal{X} : \exists y \in \mathcal{Y} \text{ such that } (x, y) \in \mathcal{R} \}.$$

Language Example #1: Semiprimes

Example (Product of Two Primes (Semiprimes))

Claim: number $n \in \mathbb{N}$ is the product of two prime numbers $w = (p, q) \in \mathbb{N} \times \mathbb{N}$. The **relation** is given by:

$$\mathcal{R} = \{(n, p, q) \in \mathbb{N}^3 : n = p \cdot q \text{ where } p, q \text{ are primes}\}$$

In this particular case, the language of true statements is defined as

$$\mathcal{L}_{\mathcal{R}} = \{ n \in \mathbb{N} : \exists w = (p, q) \text{ are primes such that } n = p \cdot q \}$$

- Valid witness #1: $n = 15 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (3, 5).
- **Invalid witness:** $n = 16 \notin \mathcal{L}_{\mathcal{R}}$. There is no valid witness.
- Valid witness #2: $n = 50252009 \in \mathcal{L}_{\mathcal{R}}$. Witness: w = (5749, 8741).

Question: Is n = 27 a true statement? What about n = 26?

4 D > 4 B > 4 E > 4 E > 9 Q P 11 / 26

Language Example #2: Square Root

Reminder

$$\mathbb{Z}_N^{\times}=\{x\in\mathbb{Z}_N:\gcd\{x,N\}=1\}.$$
 Example: $\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}$

Example

Claim: number $x \in \mathbb{Z}_N^{\times}$ is a **quadratic residue** modulo N:

 $(\exists w \in \mathbb{Z}_N^{\times}) : \{x \equiv w^2 \pmod{N}\} \ (w \text{ is modular square root of } x).$

Relation: $\mathcal{R} = \{(x, w) \in (\mathbb{Z}_N^{\times})^2 : x \equiv w^2 \pmod{N}\}$

Language: $\mathcal{L}_{\mathcal{R}} = \{x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \pmod{N} \}.$

Examples for N = 7:

- $4 \in \mathcal{L}_{\mathcal{R}}$ since $5^2 \equiv 4 \pmod{7}$.
- $3 \notin \mathcal{L}_{\mathcal{R}}$ since there is no valid witness for 3.

Question: Is x = 1 a true statement for N = 5? What about x = 4?

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 幻९♡

NP Statements: Demonstration

Well...We are simply going to send witness w to the verifier \mathcal{V} and he will check if the statement is true (meaning, whether $x \in \mathcal{L}_{\mathcal{R}}$).

Figure: Typical setup for cryptographic proofs.

NP Statements

Definition (P Language)

Problem is in the **P** class if exists a polytime algorithm checking $x \in \mathcal{L}$.

Definition (NP Language)

A language $\mathcal{L}_{\mathcal{R}}$ belongs to the **NP** class if there exists a polynomial-time verifier \mathcal{V} such that the following two properties hold:

- Completeness: If $x \in \mathcal{L}_{\mathcal{R}}$, then there is a witness w such that $\mathcal{V}(x,w)=1$ with $|w|=\operatorname{poly}(|x|)$. Essentially, it states that true claims have *short* proofs.
- **Soundness:** If $x \notin \mathcal{L}_{\mathcal{R}}$, then for any w it holds that $\mathcal{V}(x, w) = 0$. Essentially, it states that false claims have no proofs.

Theorem

Any NP problem has a zero-knowledge proof.

Question (aka Motivation)

But can we do better? Sending witness is...Weird...

Figure: Hmm...#2

Interactive Proofs

Solution!

We add two more ingredients:

- Interaction: instead of passively receiving the proof, the verifier V can interact with the prover P by sending challenges and receiving responses.
- Randomness: V can send random coins (challenges) to the prover, which P can use to generate responses.

Prover \mathcal{P} Comp. Unbounded

Probabilistic
Poly-Time (PPT)

Problem Statement

• **Statement:** $x \in \mathcal{L}_{\mathcal{R}}$ where our **language** is defined as:

$$\mathcal{L}_{\mathcal{R}} = \{ x \in \mathbb{Z}_{N}^{\times} : \exists w \in \mathbb{Z}_{N}^{\times} \text{ such that } x \equiv w^{2} \text{ (mod } N) \}$$

• Witness: w = modular square root of x.

How does $\mathcal P$ and $\mathcal V$ interact? Consider the figure below.

- 1. Sample r from Z_N uniformly
- 2. Send $a = r^2 \ (mod \ N)$

Is **x** indeed a quadr. residue?

I know w s.t. $w^2 = x \pmod{N}$

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from Z_N uniformly
- 2. Send $a = r^2 \ (mod \ N)$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from $oldsymbol{Z_N}$ uniformly
- 2. Send $a = r^2 \pmod{N}$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

Ok, I choose random bit **b**

I know w s.t. $w^2 = x \pmod{N}$

- 1. Sample r from \mathbf{Z}_N uniformly
- 2. Send $a = r^2 \pmod{N}$
- If I gave you the square root of a and ax, you would be convinced that the claim is true, but you learn the witness w.
- Instead, I will send you either r or rw, but you are to choose!

Is x indeed a quadr. residue?

Check if $z^2 = ax^b$

21/26

Ok, I choose random bit b

- If b=0, send z=r
- If b=1, send z=rw (mod N)

August 22, 2024

Quadratic Residue Interactive Proof: Analysis

Interactive Protocol

- **1** \mathcal{P} samples $r \stackrel{R}{\leftarrow} \mathbb{Z}_N^{\times}$ and sends $a = r^2$ to \mathcal{V} .
- ② V sends a random bit $b \in \{0,1\}$ to P.
- **3** \mathcal{P} sends $z = r \cdot w^b$ to \mathcal{V} .
- \mathcal{V} accepts if $z^2 = a \cdot x^b$, otherwise it rejects.
- **1** Repeat $\lambda \in \mathbb{N}$ times.

Lemma

The protocol is **complete** and **sound**.

Completeness. If b = 0, then z = r and thus $z^2 = r^2 = a$, check passes. If b = 1, then z = rw and thus $z^2 = r^2w^2 = ax$, check passes.

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Quadratic Residue Interactive Proof: Analysis

Soundness. The main reason why the protocol is sound is insribed in the theorem below.

Theorem

For any prover \mathcal{P}^* with $x \notin \mathcal{L}_{\mathcal{R}}$, the probability of \mathcal{V} accepting the proof is at most 1/2.

Corollary. After repeating the protocol λ times, we have

$$\Pr[\mathcal{V} \text{ accepts after } \lambda \text{ rounds}] \leq \frac{1}{2^{\lambda}} = \operatorname{negl}(\lambda).$$

Thus, we showed both completeness and soundness of the protocol.

Interactive Protocol Definition

 $\langle \mathcal{P}, \mathcal{V} \rangle (x)$ reads as "interaction between \mathcal{P} and \mathcal{V} on the statement x".

Definition

A pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called an **interactive proof** for a language $\mathcal{L}_{\mathcal{R}}$ if \mathcal{V} is a polynomial-time verifier and the following two properties hold:

- Completeness: For any $x \in \mathcal{L}_{\mathcal{R}}$, $\Pr[\langle \mathcal{P}, \mathcal{V} \rangle(x) = \mathsf{accept}] = 1$.
- **Soundness:** For any $x \notin \mathcal{L}_{\mathcal{R}}$ and for any prover \mathcal{P}^* , we have

$$\Pr[\langle \mathcal{P}^*, \mathcal{V} \rangle(x) = \mathsf{accept}] \leq \mathsf{negl}(\lambda)$$

Definition

The class of interactive proofs (IP) is defined as:

 $IP = \{\mathcal{L} : \text{there is an interactive proof } (\mathcal{P}, \mathcal{V}) \text{ for } \mathcal{L}\}.$

24 / 26

Zero-Knowledge Informal Definition

Definition

An interactive proof system $(\mathcal{P}, \mathcal{V})$ is called **zero-knowledge** if for any polynomial-time verifier \mathcal{V}^* and any $x \in \mathcal{L}_{\mathcal{R}}$, the interaction $\langle \mathcal{P}, \mathcal{V}^* \rangle(x)$ gives nothing new about the witness w.

Definition

The pair of algorithms $(\mathcal{P}, \mathcal{V})$ is called a **zero-knowledge interactive protocol** if it is *complete*, *sound*, and *zero-knowledge*.

anyway?!

Thanks for your attention!