Banachräume

Mathematisches Seminar Wintersemester 2022

Patrick Müller

Fakultät Angewandte Natur- und Geisteswissenschaften

25. Oktober 2022

FH_'W-S

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Prof. Dr. Michael Bodewig Prof. Dr. Christian Zirkelbach

Inhalt

- Grundlagen
 - Vektorraum
 - Metrische Räume
 - Normierte Räume
- Banachräume
 - Konvergenz in normierten Räumen
 - Vollständigkeit
 - Abgeschlossenheit
 - Separabilität
 - Satz von Baire
 - Kompaktheit
 - Satz von Heine Borel
 - Vollständigkeit der Folgen- und Funktionenräume
- Abbildungsverzeichnis
- 4 Literatur

Stefan Banach

Abb.: Stefan Banach beim Chillen [StefanBanach]

Vektorraum

Wiederholung

Ein Vektorraum X über einem Körper $\mathbb K$ ist eine nichtleere Menge, die abgeschlossen ist bezüglich der Addition von Elementen aus X (den Vektoren) und Multiplikation mit Elementen aus $\mathbb K$ (den Skalaren) sowie Assoziativ- und Distributivgesetze erfüllt sind.

Metrische Räume

Hinweis

Wir interessieren uns für normierte Räume, doch viele Aussagen gelten auch allgemeiner auf metrischen Räumen. Auf diese Eigenschaft wollen wir nicht verzichten.

Abb.: Hierarchie mathematischer Räume [Hirarchie]

Metrische Räume

Definition 1.1

(vgl. Ref. [Forster], Definition S.3): Sei X eine Menge. Eine Metrik auf X ist eine Abbildung $d: X \times X \to \mathbb{R}_0^+$, die für alle $x, y, z \in X$ die folgenden Eigenschaften erfüllt:

- (i) $d(x, y) = 0 \Leftrightarrow x = y$ (Nichtdegeneriertheit)
- (ii) d(x, y) = d(y, x) (Symmetrie)
- (iii) $d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung)

Das Paar (X, d) einen *metrischen Raum*, wobei d(x, y) einen Abstand zwischen den zwei Punkten x und y definiert.

Normierte Räume

Definition 1.2

(vgl. Ref. [Werner], Definition I.1.1): Eine Norm ist eine Abbildung

$$\|\cdot\|: X \to \mathbb{R}_0^+, x \mapsto \|x\|$$

von einem \mathbb{K} -Vektorraum X in die nicht negativen reellen Zahlen $\mathbb{R}_0^+:=[0,\infty)$, die für alle $x,y\in X$ und $\lambda\in\mathbb{K}$ folgende Eigenschaften erfüllt:

- (i) $||x|| = 0 \Leftrightarrow x = 0 \in X$ (Nichtdegeneriertheit)
- (ii) $\|\lambda x\| = |\lambda| \|x\|$ (Homogenität)
- (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung)

Das Paar $(X, \|\cdot\|)$ ist ein normierter Vektorraum.

Wenn klar ist, welche Norm benutz wird, schreiben wir dafür kurz X.

Normierte Räume

Beispiel

Wir definieren für $x \in X$ und Funktionen $f : D \subset X \to \mathbb{R}$ die Normen:

Summennorm:
$$\|x\|_1:=|x_1|+|x_2|+\cdots+|x_n|=\sum_{i=1}^n|x_i|$$
 Maximumsnorm: $\|x\|_\infty:=\max_{x\in D}(|x_1|,|x_2|,\cdots|x_n|)$ Supremumsnorm: $\|f\|_\infty:=\sup_{x\in D}|f(x)|$ Euklidische Norm: $\|x\|_2:=\sqrt{\sum_{i=1}^n|x_i|^2}$ p-Norm: $\|x\|_\rho:=\left(\sum_{i=1}^n|x_i|^p\right)^{\frac{1}{\rho}}$ für $\rho\geq 1$

Konvergenz in normierten Räumen

Definition 2.1

Sie $(x_k)_{k\in\mathbb{N}}=(x_1,x_2,x_3,...)$ eine Folge aus Elementen $x_k\in X$ des Vektorraums, dann *konvergiert* diese gegen $x\in X$, wenn gilt:

$$||x-x_k|| \to 0$$
 für $k \to \infty$

Man schreibt dann $x_k \to x$ für $k \to \infty$ oder $\lim_{n \to \infty} x_k = x$.

Definition 2.2 (Epsilon-Schreibweise)

Die Folge $(x_k)_{k\in\mathbb{N}}$ konvergiert gegen $x\in X$, wenn gilt:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} : ||x - x_k|| \le \epsilon \ \text{für alle } k \ge N$$

Konvergenz in normierten Räumen

Problem

Wir müssen in der Lage sein, ein $x \in X$ zu erraten, um die Definition 2.1 oder 2.2 zu benutzen.

Definition 2.3

Eine Folge $(x_k)_{k\in\mathbb{N}}$ in X ist eine *Cauchy-Folge*, wenn gilt:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} : ||x_k - x_l|| \le \epsilon \ \text{für alle } k, l \ge N$$

Konvergenz in normierten Räumen

Lemma 2.4

Jede konvergente Folge ist eine Cauchy-Folge.

Frage

Ist mit dem Lemma 2.3 unser Problem gelöst?

Antwort

Nein, leider nicht. : (Die "problematische" Definition 2.1 oder 2.2 erfüllt Definition 2.3, jedoch nicht umgekehrt.

Gute Nachricht

In sehr vielen Räumen gilt auch die Umkehrung, also: Jede Cauchy-Folge ist konvergent. :)

Vollständigkeit

Definition 2.5

(vgl. Ref. [Werner], S.472) Ein Raum heißt vollständig, wenn in ihm jede Cauchy-Folge konvergiert.

Beispiel ...

Satz 2.6

Jeder Raum X kann vervollständigt werden. Es gibt einen vollständigen Raum \hat{X} mit einer Isometrie $\varphi: X \to \hat{X}$, so dass $\varphi(X)$ dicht in \hat{X} liegt. Der Raum \hat{X} heißt Vervollständigung von X.

Definition 2.7

(vgl. Ref. [Alt], S.28) Ein normierter Vektorraum X heißt Banachraum, wenn er vollständig (bezüglich der induzierten Metrik) ist.

Vollständigkeit

Lösung

Wir beschränken uns auf Banachräume

Noch eine gute Nachricht

Die meisten Räume, mit denen man sich in der angewandten Mathematik beschäftigt, sind Banachräume.

Vollständigkeit

Satz 2.8

(vgl. Ref. [Clason], Satz 3.8) Ist E ein endlichdimensionaler Vektorraum, so sind alle Normen auf E äquivalent.

Vollständigkeit bleibt beim Übergang zu äquivalenten Normen erhalten. Da $(E,\|\cdot\|_2)$ vollständig ist, können wir folgern:

Folgerung 2.9

(Ref. [**Clason**], Folgerung 3.9) Alle endlichdimensionalen normierten Vektorräume sind vollständig und somit Banachräume.

Folgerung 2.10

(Ref. [Clason], Folgerung 3.4) Sind $\|\cdot\|_1$ und $\|\cdot\|_2$ äquivalente Normen auf X, dann ist $(X,\|\cdot\|_1)$ ein Banachraum genau dann, wenn $(X,\|\cdot\|_2)$ ein Banachraum ist.

Im folgenden sei (X, d) ein metrischer Raum.

Definition 2.11

Wir definieren für $x \in X$ und r > 0

- (i) die offene Kugel $U_r(x) := \{ y \in X : d(x, y) < r \}$
- (ii) die abgeschlossene Kugel $B_r(x) := \{ y \in X : d(x,y) \le r \}$ um den Punkt x mit Radius r.

Definition 2.12 (offene Menge)

Eine Menge $O \subset X$ heißt *offen*, wenn jedes Element $x \in O$ ein innerer Punkt von O ist.

Definition 2.13 (offene Menge - Epsilon-Schreibweise)

Eine Menge $O \subset X$ heißt offen, wenn gilt:

$$\forall x \in O \ \exists \epsilon > 0 : U_{\epsilon}(x) \subset O$$

Definition 2.14 (abgeschlossene Menge)

Eine Menge $A \subset X$ heißt *abgeschlossen*, wenn die Menge $X \setminus A$ offen ist.

Definition 2.15 (beschränkte Menge)

[Offene Abgeschlossene Mengen]

 $A \subset X$ heißt beschränkt, falls sie einen endlichen Durchmesser besitzt:

$$diam(A) = \sup_{x,y \in A} d(x,y) < \infty$$

Abb.: (a) offene Teilmengen in \mathbb{R}^2 . (b) abgeschlossene Teilmengen in \mathbb{R}^2 . (c) Teilmengen des \mathbb{R}^2 , welche weder offen noch abgeschlossen sind.

Definition 2.16

Für $M \subset X$ definieren wir:

- (i) das Innere $M^{\circ} = M \setminus \partial M$
- (ii) den *Abschluss* $\bar{M} = M \cup \partial M$

Abb.: (a) eine Teilmenge M des \mathbb{R}^2 . (b) das Innere von M. (c) der Rand von M. (d) der Abschluss von M. [OffeneAbgeschlosseneMengen]

Satz 2.17 (Folgenkriterium für Abgeschlossenheit)

Eine Teilmenge $A \subset X$ ist genau dann abgeschlossen, wenn der Grenzwert jeder konvergenten Folge in A ein Element von A ist.

Damit kann man oft die Abgeschlossenheit einer Menge widerlegen. Beispiel ...

Wiederholung

Ein Unterraum ist eine Teilmenge, die abgeschlossen bezüglich der Vektorraumoperationen ist.

Satz 2.18

(Ref. [Clason], Lemma 3.5) Sei $(X,\|\cdot\|)$ ein Banachraum und $U\subset X$ ein Unterraum. Dann ist $(U,\|\cdot\|)$ ein Banachraum genau dann, wenn U abgeschlossen ist.

Nützlicher Satz, um z.z, dass ein normierter Vektorraum vollständig ist. 18/39

Hinweis

Vollständigkeit ist immer auf einem Raum selbst definiert.

Abgeschlossenheit hingegen auf Teilmengen eines umfassenden Raums.

Satz 2.19

Sei $A \subset \mathbb{R}^n$ versehen mit der euklidischen Metrik, dann gilt:

A ist abgeschlossen $\Leftrightarrow A$ ist bezüglich der induzierten Metrik vollständig

Separabilität

Definition 2.20 (dichte Menge)

Eine Menge $M \subset X$ heißt *dicht* in X, wenn eine der folgenden äquivalenten Aussagen zutrifft:

- (i) Zu jedem $x \in X$ und r > 0 existiert ein Punkt $y \in M$: d(x, y) < r
- (ii) Zu jedem $x \in X$ und r > 0 existiert ein Punkt $y \in M$: $y \in U_r(x)$
- (iii) Zu jedem $x \in X$ existiert eine Folge $(x_n)_{n \in \mathbb{N}}$ von Punkten aus M: $\lim_{n \to \infty} x_n = x$
- (iv) Die abgeschlossene Hülle der Menge M ist der ganze Raum: $\bar{M}=X$

Definition 2.21 (separable Menge)

Existiert eine Menge $S \subset X$, die abzählbar und dicht in X ist, so heißt diese *separabel*.

Die Separabilität kann als eine Art Größenabmessung für normierte Räume angesehen werden.

Separabilität

Beispiel

- \mathbb{R}^n ist separabel, da \mathbb{Q}^n abzählbar ist und dicht in \mathbb{R}^n liegt.
- Die Folgenräume ℓ^p für $1 \le p < \infty$ sind separabel.
- Der Raum c_0 der Nullfolgen ist mit der Supremumsnorm ein separabler Banachraum.
- Der Banachraum ℓ^{∞} der beschränkten Folgen ist nicht separabel.

Satz 2.22 (Satz von Baire)

(X, d) sei ein vollständiger metrischer Raum. Der abzählbare Schnitt dichter Mengen liegt dicht:

(i) Sein U_n offene dichte Teilmengen von $X. \Rightarrow \bigcap_{n \in \mathbb{N}} U_n$ ist dicht in X.

Insbesondere gilt: $\bigcap_{n\in\mathbb{N}}U_n\neq\emptyset$

Abb.: Satz von Baire

Definition 2.23 (Mengenkategorisierung nach Baire)

- (i) $M \subset X$ nirgends dicht in $X \Leftrightarrow (\bar{M})^{\circ} = \emptyset$
- (ii) $M\subset X$ von 1.Kategorie in $X\Leftrightarrow M=\bigcup_{n\in\mathbb{N}}\delta_n$, δ_n nirgends dicht
- (iii) $M \subset X$ von 2.Kategorie in $X \Leftrightarrow M$ ist nicht von von 1.Kategorie

Satz 2.24 (Äquivalente Varianten des Satzes)

Folgende Aussagen sind äquivalent zu Satz 2.22:

- (ii) Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von abgeschlossenen Teilmengen von X mit leerem Inneren, so hat auch $\bigcup_{n\in\mathbb{N}} A_n$ ein leeres Inneres.
- (iii) Jede offene nicht leere Teilmenge von X ist von 2.Kategorie, d.h. sie lässt sich als eine abzählbare Vereinigung von nirgends dichten Teilmengen darstellen. Insbesondere ist (X,d) in sich selbst von 2.Kategorie.

Anwendungsbeispiele

- Der Satz von Baire ermöglicht elegante Beweise zentraler Sätze der klassischen Funktionalanalysis
- Basis eines Banachraums
- Existenz nirgends differenzierbarer Funktionen

Satz 2.25

Jede Basis eines unendlichdimensionalen Banachraumes ist überabzählbar.

Anwendungsbeispiel (Existenz nirgends differenzierbarer Funktionen)

Auf [0,1] existieren stetige Funktionen, die an keiner Stelle differenzierbar sind. Wir setzen für $n \in \mathbb{N}$:

$$O_n := \left\{ f \in C[0,1] \middle| \forall t \in [0,1] : \sup_{0 < |h| < \frac{1}{n}} \left| \frac{f(t+h) - f(t)}{h} \right| > n \right\}$$

Versieht man den Vektorraum C[0,1] mit der Supremumsnorm, lässt sich zeigen, dass O_n offen und dicht in C[0,1] liegt.

$$\overset{\mathsf{Satz}}{\Longrightarrow}\overset{\mathsf{von}\;\mathsf{Baire}}{\Longrightarrow}\mathsf{Der}\;\mathsf{Raum}\;D:=\bigcap_{n\in\mathbb{N}}O_n\;\mathsf{liegt}\;\mathsf{dicht}\;\mathsf{in}\;\mathcal{C}[0,1].$$

Die Funktionen in D sind stetig und an keiner Stelle differenzierbar.

Im Folgenden sei (X, d) ein metrischer Raum.

Definition 2.26 (Kompaktheit)

 $K \subset X$ heißt kompakt, falls jede offene Überdeckung

$$K \subset \bigcup_{i \in I} U_i \text{ mit } U_i \subset X$$

eine endliche Teilüberdeckung

$$K \subset U_{i_1} \cup U_{i_2} \cup \cdots \cup U_{i_n} \text{ mit } i_1, ..., i_n \in I$$

besitzt.

Definition 2.27 (Folgenkompaktheit)

 $K \subset X$ heißt *folgenkompakt*, falls jede Folge in K eine konvergente Teilfolge besitzt, die in K konvergiert.

Definition 2.28 (Totalbeschränktheit)

 $K \subset X$ heißt *totalbeschränkt*, falls für alle $\epsilon > 0$ eine endliche Überdeckung mit offenen Kugeln existiert, d.h es existiert eine Menge von Punkten $x_1,...,x_N \in K$ (ϵ -Netz), so dass gilt:

$$K\subset \bigcup_{n=1}^N U_\epsilon(x_n)$$

Satz 2.29

Für $K \subset X$ sind äquivalent:

- (i) K ist kompakt
- (ii) K ist folgenkompakt
- (iii) K ist vollständig und totalbeschränkt
- (i) ⇔ (iii) ist eine Verallgemeinerung des Satzes von Heine-Borel

Ist (K, d) ein metrischer Raum und K kompakt, spricht man auch von einem kompakten Raum.

Abb.: Eigenschaften kompakter Mengen [KompakterRaum]

Lemma 2.30

Ist $K \subset X$ kompakt und $C \subset K$ abgeschlossen, dann ist auch C kompakt.

Lemma 2.31

(Ref [Forster] Satz 2, S.38) Seien $a_v, b_v \in \mathbb{R}, a_v \leq b_v, v = 1, 2, ..., n$. Dann ist der abgeschlossene Quader

 $Q := \{(x_1, ..., x_n) \in \mathbb{R}^n : a_v \le x_v \le b_v\}$ kompakt in \mathbb{R}^n .

Lemma 2.32

(Ref. [Clason], Lemma 2.10) Ein kompakter metrischer Raum ist separabel.

Die Umkehrung gilt allerdings nicht.

Beweis ...

Satz von Heine Borel

Satz 2.33 (Satz von Heine-Borel)

 $K \subset \mathbb{R}^n$ ist $kompakt \Leftrightarrow K$ ist abgeschlossen und beschränkt

Beweis ...

Abb.: Boxen in Boxen in Boxen in Boxen...

Schlechte Nachricht

Ist der umgebene Raum jedoch unendlichdimensional dann gilt diese Äquivalenz nicht.

Satz von Heine Borel

Insbesondere ist mit Satz 2.33 die abgeschlossene Einheitskugel

$$B_1(x) = \{x \in \mathbb{K}^n | ||x||_2 \le 1\}$$

im euklidischen Raum kompakt. Betrachten wir nun die abgeschlossene Einheitskugel im Banachraum ($C[0,1],\|\cdot\|_{\infty}$):

$$B_1(x) = \{ f \in C[0,1] \mid ||f||_{\infty} \le 1 \}$$

Es sei $(f_k)_{k\in\mathbb{N}}$ eine Folge von Funktionen $f_k\in (C[0,1],\|\cdot\|_\infty)$. Betrachten wir eine beliebige Teilfolge $(f_{k_j})_{j\in\mathbb{N}}$, dann gilt für beliebige $j\neq I$:

$$||f_{k_j} - f_{k_l}||_{\infty} = \max_{x \in [0,1]} |f_{k_j}(x) - f_{k_l}(x)| = 1$$

Die Teilfolge $(f_{k_j})_{j\in\mathbb{N}}$ ist also keine Cauchy-Folge und besitzt damit keinen Grenzwert in $(C[0,1],\|\cdot\|_{\infty})$. Damit ist die abgeschlossene Einheitskugel hier nicht kompakt.

Satz von Heine Borel

Für allgemeine metrische Räume gilt allerdings die Verallgemeinerung.

Satz 2.34 (Verallgemeinerter Satz von Heine-Borel)

 $K \subset X$ ist kompakt $\Leftrightarrow K$ ist vollständig und totalbeschränkt

Dies ist eine Verallgemeinerung, da für $A \subset \mathbb{R}^n$ gilt:

- A ist vollständig $\Leftrightarrow A$ ist abgeschlossen
- A ist totalbeschränkt ⇔ A ist beschränkt

Definition 2.35 (Der Funktionenraum)

Sei D eine nichtleere Menge und X ein Vektorraum über \mathbb{K} , dann bezeichnet Abb(D,X) die Menge aller Funktionen von D nach X:

$$Abb(D,X) := \{f \mid f : D \to X\}$$

Ist die Menge bezüglich der Addition und Skalarmultiplikation abgeschlossen, spricht man von einem linearen Funktionenraum:

(i)
$$+: Abb(D, X) \times Abb(D, X) \rightarrow Abb(D, X), (f+g)(x) = f(x) + g(x)$$

(ii)
$$\cdot : \mathbb{K} \times Abb(D, X) \rightarrow Abb(D, X), (\lambda f)g(x) = \lambda f(x)$$

Beispiel

Menge aller stetigen Funktionen auf dem Intervall $[a, b] \subset \mathbb{R}$:

$$C[a,b] := \{f : [a,b] \to \mathbb{K} \mid f \text{ ist stetig}\}$$

Satz 2.36

 $(C[a,b], \|\cdot\|_{\infty})$ ist ein Banachraum.

Beweis...

Definition 2.37 (Der Folgenraum)

Wir nennen die Menge aller Folgen über

K den Folgenraum:

$$\mathbb{K}^{\mathbb{N}} := \{ (x_k)_{k \in \mathbb{N}} : x_k \in \mathbb{K} \text{ für } \forall k \in \mathbb{N} \}$$

Auf $\mathbb{K}^{\mathbb{N}}$ sind auch wieder folgende Vektorraumverknüpfungen definiert:

(i)
$$+\mathbb{K}^{\mathbb{N}} \times \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}, (x_k)_{k \in \mathbb{N}} + (y_k)_{k \in \mathbb{N}} := (x_k + y_k)_{k \in \mathbb{N}}$$

(ii)
$$\cdot : \mathbb{K} \times \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}, \lambda(x_k)_{k \in \mathbb{N}} := (\lambda x_k)_{k \in \mathbb{N}}$$

Beispiel

Wir definieren uns Teilmengen (hier sogar Unterräume) des Folgenraums:

$$\ell^{\infty}(\mathbb{K}) := \left\{ x \in \mathbb{K}^{\mathbb{N}} : x = (x_k)_{k \in \mathbb{N}} \text{ ist beschränkt} \right\},$$

$$c(\mathbb{K}) := \left\{ x \in \mathbb{K}^{\mathbb{N}} : x = (x_k)_{k \in \mathbb{N}} \text{ ist konvergent} \right\}$$

Satz 2.38

Der Raum $(\ell^{\infty}(\mathbb{K}), \|\cdot\|_{\infty})$ ist ein Banachraum.

Abbildungsverzeichnis

Literatur

Danke

"Mathematik ist die schönste und mächtigste Schöpfung des menschlichen Geistes." - Stefan Banach

Abb.: Leonardo DiCaprio als Jay Gatsby in The Great Gatsby [LeonardoMeme]