Irrationalität

Stefan Gabler & Daniel Winkler

3. Mai 2017

Oliver (2003)

"A quantitative and qualitative test of the Allais paradox using health outcomes"

Überblick

Experiment

2 Axiome der Erwartungsnutzentheorie

Rationalität unter VWL-Studierenden

1. Entscheidung

- A Sie bekommen €100 mit Sicherheit.
- B Sie haben eine 10% Chance auf €500, eine 89% Chance auf €100 und eine 1% Chance nichts zu bekommen.

2. Entscheidung

- C Sie haben eine 11% Chance auf €100 und eine 89% Chance nichts zu gewinnen.
- D Sie haben eine 10% Chance auf €500 und eine 90% Chance nichts zu gewinnen.

• Unabhängigkeit von (irrelevanten) Alternativen. Für alle $x, y, z \in \mathsf{A}^1$ und alle $\alpha \in (0,1)$:

$$x \succ y \Rightarrow \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z$$
 (Unabhängigkeit)

② Für alle $x, y, z \in A$:

$$x \succ y \succ z \Rightarrow x \succ z$$
 (Transitivität)

Für alle $x, y \in A$ gilt eine und nur eine der folgenden Relationen:

$$x \succ y$$
 oder $y \succ x$ oder $x \sim y$ (Vollständigkeit & Asymmetrie)

3 Es existieren ein $\alpha \in [0, 1]$, sodass wenn $x \succ y \succ z$:

$$y \sim \alpha x + (1 - \alpha)z$$
 (Stetigkeit)

¹Menge der Alternative

① Unabhängigkeit von (irrelevanten) Alternativen. Für alle $x, y, z \in A^1$ und alle $\alpha \in (0, 1)$:

$$x \succ y \Rightarrow \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z$$
 (Unabhängigkeit)

② Für alle $x, y, z \in A$:

$$x \succ y \succ z \Rightarrow x \succ z$$
 (Transitivität)

Für alle x, y ∈ A gilt eine und nur eine der folgenden Relationen:

$$x \succ y$$
 oder $y \succ x$ oder $x \sim y$ (Vollständigkeit & Asymmetrie)

3 Es existieren ein $\alpha \in [0,1]$, sodass wenn $x \succ y \succ z$:

$$y \sim \alpha x + (1 - \alpha)z$$
 (Stetigkeit)

4 / 4

¹Menge der Alternative

① Unabhängigkeit von (irrelevanten) Alternativen. Für alle $x,y,z\in {\rm A}^1$ und alle $\alpha\in(0,1)$:

$$x \succ y \Rightarrow \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z$$
 (Unabhängigkeit)

② Für alle $x, y, z \in A$:

$$x \succ y \succ z \Rightarrow x \succ z$$
 (Transitivit

Für alle $x, y \in A$ gilt eine und nur eine der folgenden Relationen:

$$x \succ y \text{ oder } y \succ x \text{ oder } x \sim y$$
 (Vollständigkeit & Asymmetrie)

3 Es existieren ein $\alpha \in [0,1]$, sodass wenn $x \succ y \succ z$:

$$y \sim \alpha x + (1 - \alpha)z$$
 (Stetigkeit)

4 / 4

[†]Menge der Alternative

• Unabhängigkeit von (irrelevanten) Alternativen. Für alle $x, y, z \in \mathsf{A}^1$ und alle $\alpha \in (0,1)$:

$$x \succ y \Rightarrow \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z$$
 (Unabhängigkeit)

② Für alle $x, y, z \in A$:

$$x \succ y \succ z \Rightarrow x \succ z$$
 (Transitivität)

Für alle $x, y \in A$ gilt eine und nur eine der folgenden Relationen:

$$x \succ y$$
 oder $y \succ x$ oder $x \sim y$ (Vollständigkeit & Asymmetrie)

3 Es existieren ein $\alpha \in [0, 1]$, sodass wenn $x \succ y \succ z$:

$$y \sim \alpha x + (1 - \alpha)z$$
 (Stetigkeit)

¹Menge der Alternative