Adaptive Sampling Optimization for Real-Time Path Tracing

Group member:

Haochen Yang

Background and Motivation

Path tracing is a Monte Carlo rendering technique that simulates global illumination by randomly sampling light transport paths. While it produces physically accurate results, it suffers from **noise** due to the stochastic nature of Monte Carlo integration. Noise reduction typically requires a large number of samples per pixel (spp), but real-time applications (e.g., games, VR) impose strict computational budgets (e.g., 1,000–10,000 samples per frame).

Key Challenges:

- Variance Heterogeneity: Noise is concentrated in high-variance regions (e.g., shadow boundaries, caustics, specular surfaces). Uniform sampling wastes resources on low-variance regions.
- 2. **Dynamic Scenes**: Variance distribution changes with camera/object motion, necessitating adaptive sampling strategies.

Objective: Design an optimization framework to dynamically allocate samples across pixels, minimizing overall noise under a fixed sample budget, while maintaining real-time performance.

Principles of Path Tracing and Monte Carlo Integration

1. Rendering Equation:

The radiance $L(p, \omega_o)$ at point p in direction ω_o is computed as:

$$L(p,\omega_o) = L_e(p,\omega_o) + \int_{\Omega} f_r(p,\omega_i,\omega_o) L(p,\omega_i) \cos heta\, d\omega_i$$

where f_r is the BRDF (Bidirectional Reflectance Distribution Function), L_e is emitted radiance, and Ω is the hemisphere of incoming directions.

2. Monte Carlo Estimation:

The integral is approximated using N random samples:

$$L(p)pprox rac{1}{N}\sum_{i=1}^{N}rac{f_{r}L_{i}\cos heta}{p(\omega_{i})}$$

where $p(\omega_i)$ is the sampling PDF (Probability Density Function). The **variance** of this estimator is inversely proportional to N:

$$Var(L) \propto rac{\sigma_p^2}{N}$$

Here, σ_p^2 depends on scene complexity (e.g., light paths, materials).

3. Adaptive Sampling:

Instead of uniform sampling ($N_p=const$), allocate more samples to pixels with higher variance σ_p^2 . This minimizes the **mean squared error (MSE)** of the image.

Mathematical Optimization Model

1. Problem Definition:

Let the image resolution be $W \times H$, and the total sample budget per frame be N_{total} . For each pixel p, allocate N_p samples such that:

$$\sum_{p=1}^{W imes H} N_p \leq N_{total}, \quad N_p \geq 0.$$

2. Objective Function:

Minimize the total noise (variance) while penalizing excessive sampling costs:

$$\min_{\{N_p\}} \sum_{p=1}^{W imes H} \left(rac{\sigma_p^2}{N_p} + \lambda N_p
ight)$$

- \circ **Term 1**: $\frac{\sigma_p^2}{N_p}$ represents the pixel's variance, inversely proportional to its sample count.
- \circ **Term 2**: λN_p penalizes large N_p to balance noise and computation.
- $\circ \; \; \lambda$ is a hyperparameter controlling the trade-off (e.g., $\lambda = 0.1$ prioritizes noise reduction).

3. Constraints:

Sample Budget:

$$\sum_p N_p \leq N_{total}$$

Non-negativity:

$$N_p \geq 0 \quad orall p$$

References

- 1. Veach, E., & Guibas, L. J. (1997). *Robust Monte Carlo Methods for Light Transport Simulation*. ACM SIGGRAPH.
- 2. Kajiya, J. T. (1986). The Rendering Equation. ACM SIGGRAPH.
- 3. Moon, B., et al. (2014). *Adaptive Rendering Based on Weighted Local Regression*. ACM Transactions on Graphics.
- 4. Pharr, M., et al. (2016). *Physically Based Rendering: From Theory to Implementation*. Morgan Kaufmann. (Chapter 13: Monte Carlo Integration)