Critério da Fatoração: Caso Multiparamétrico

ESTAT0078 - Inferência I

Prof. Dr. Sadraque E. F. Lucena

sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/inferencia1

Teorema 8.1: Critério da Fatoração de Neyman

Sejam X_1, \ldots, X_n uma amostra aleatória da distribuição da variável aleatória X com função de densidade (ou de probabilidade) f(x). Temos, então, que a estatística $T = (T_1, \ldots, T_r)$ é conjuntamente suficiente para θ , se

$$L(\theta; x) = h(x_1, \dots, x_n) g_{\theta}(T_1(x), \dots, T_n(x)),$$

em que

- $h(x_1, ..., x_n)$ só envolve $x_1, ..., x_n$ (não envolve θ);
- $g_{\theta}(T(x_1,\ldots,x_n))$ envolve $\theta \in T_1(x),\ldots,T_n(x)$.

Exemplo 8.1

Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim N(\mu, \sigma^2)$. Use o critério da fatoração para determinar duas estatísticas conjuntamente suficientes (μ, σ^2) .

(i) Lembrete

$$X \sim N(\mu, \sigma^2)$$
: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$

Exemplo 8.2

Seja X_1, \ldots, X_n uma amostra aleatória da variável aleatória X com distribuição Gama (α, β) . Encontre uma estatística conjuntamente suficiente para (α, β) .

(i) Lembrete

$$X \sim \operatorname{Gama}(\alpha, \beta)$$
: $f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}, x > 0, \alpha, \beta > 0$

Definição 8.1

Dizemos que duas estatísticas T_1 e T_2 são equivalentes se existir uma relação 1:1 entre elas.

- Em outra palavras, T_1 e T_2 são equivalentes se T_1 puder ser obtida a partir de T_2 e vice-versa.
- Nesse caso, temos que, se T_1 é suficiente para θ , então T_2 também é suficiente para θ . Esse resultado vale também para o caso multidimensional.

Exemplo 8.3

Considerando o Exemplo 8.1, $\overline{X} = \frac{\sum\limits_{i=1}^n X_i}{n}$ é suficiente para μ ?

Fim

