Examen 1: Ejercicios Propuestos

Martínez Macías Samuel Docente: Dr. José Alonso López Miranda

14 de abril de 2023

Índice

1.	Cap	ítulo 2:]	Herra	am	ier	nta	\mathbf{i} S	\mathbf{M}	\mathbf{at}	en	ná	tic	cas	d	e	la	\mathbf{N}	Гe	cá	ni	ca	C	u	án	ti	ca	L		
	1.1.	Ejercicio	2.1 .																										
	1.2.	Ejercicio	2.2 .																										
	1.3.	Ejercicio	2.3 .																										
		Ejercicio																											
	1.5.	Ejercicio	2.5 .																										
	1.6.	Ejercicio	2.6 .																										
	1.7.	Ejercicio	2.12																										
	1.8.	Ejercicio	2.13																										
	1.9.	Ejercicio	2.14																										
	1.10.	Ejercicio	2.15																										
	1.11.	Eiercicio	2.18																										

Resumen

En este documento se encuentra la solución de una serie de problemas de mecánica cuántica tomados del texto [1], capítulo 2, a partir de la notación bra-ket de Dirac.

1. Capítulo 2: Herramientas Matemáticas de la Mecánica Cuántica

1.1. Ejercicio 2.1

Considere los dos estados $|\psi\rangle = i |\phi_1\rangle + 3i |\phi_2\rangle - |\phi_3\rangle$ y $|\chi\rangle = |\phi_1\rangle - i |\phi_2\rangle + 5i |\phi_3\rangle$ en donde $|\phi_1\rangle, |\phi_2\rangle$ y $|\phi_3\rangle$ son ortonormales.

- (a) Calcule $\langle \psi | \psi \rangle$, $\langle \chi | \chi \rangle$, $\langle \psi | \chi \rangle$, $\langle \chi | \psi \rangle$, e infiera $\langle \psi + \chi | \psi + \chi \rangle$. ¿Son iguales los productos $\langle \psi | \chi \rangle$ y $\langle \chi | \psi \rangle$?
- (b) Calcule $|\psi\rangle\langle\chi|$ y $|\chi\rangle\langle\psi|$. ¿Son iguales? Calcule sus trazas y compárelas.
- (c) Encuentre los conjugados Hermitianos de $|\psi\rangle$, $|\chi\rangle$, $|\psi\rangle\langle\chi|$ y $|\chi\rangle\langle\psi|$.

Solución:

(a)

$$\langle \psi | \psi \rangle = (-i \langle \phi_1 | -3i \langle \phi_2 | -\langle \phi_3 |) (i | \phi_1 \rangle + 3i | \phi_2 \rangle - | \phi_3 \rangle)$$

al expandir, los productos internos $\langle \phi_1 | \phi_2 \rangle = \langle \phi_1 | \phi_3 \rangle = \langle \phi_2 | \phi_1 \rangle = \langle \phi_2 | \phi_3 \rangle = \langle \phi_3 | \phi_1 \rangle = \langle \phi_3 | \phi_2 \rangle = 0$, por la condición de ortonormalidad, y de la misma manera los productos internos $\langle \phi_1 | \phi_1 \rangle = \langle \phi_2 | \phi_2 \rangle = \langle \phi_3 | \phi_3 \rangle = 1$. Así,

$$\langle \psi | \psi \rangle = -i^2 \langle \phi_1 | \phi_1 \rangle - 9i^2 \langle \phi_2 | \phi_2 \rangle + \langle \phi_3 | \phi_3 \rangle$$
$$= (1 \times 1) + (9 \times 1) + (1 \times 1)$$
$$= 1 + 9 + 1$$
$$= 11$$

$$\begin{split} \langle \chi | \chi \rangle &= \left(\langle \phi_1 | + i \langle \phi_2 | - 5i \langle \phi_3 | \right) \left(| \phi_1 \rangle - i | \phi_2 \rangle + 5i | \phi_3 \rangle \right) \\ &= 1^2 \langle \phi_1 | \phi_1 \rangle - i^2 \langle \phi_2 | \phi_2 \rangle - 25i^2 \langle \phi_3 | \phi_3 \rangle \\ &= (1 \times 1) + (1 \times 1) + (25 \times 1) \\ &= 1 + 1 + 25 \\ &= 27 \end{split}$$

$$\begin{split} \langle \psi | \chi \rangle &= \left(-i \left\langle \phi_1 \right| - 3i \left\langle \phi_2 \right| - \left\langle \phi_3 \right| \right) \left(\left| \phi_1 \right\rangle - i \left| \phi_2 \right\rangle + 5i \left| \phi_3 \right\rangle \right) \\ &= -i \left\langle \phi_1 \middle| \phi_1 \right\rangle + 3i^2 \left\langle \phi_2 \middle| \phi_2 \right\rangle - 5i \left\langle \phi_3 \middle| \phi_3 \right\rangle \\ &= \left(-i \times 1 \right) + \left(-3 \times 1 \right) + \left(-5i \times 1 \right) \\ &= -i - 3 - 5i \\ &= -3 - 6i \end{split}$$

$$\langle \chi | \psi \rangle = (\langle \phi_1 | + i \langle \phi_2 | - 5i \langle \phi_3 |) (i | \phi_1 \rangle + 3i | \phi_2 \rangle - | \phi_3 \rangle)$$

$$= i \langle \phi_1 | \phi_1 \rangle + 3i^2 \langle \phi_2 | \phi_2 \rangle + 5i \langle \phi_3 | \phi_3 \rangle$$

$$= (i \times 1) + (-3 \times 1) + (5i \times 1)$$

$$= i - 3 + 5i$$

$$= -3 + 6i$$

De aquí notamos que $\langle \psi | \chi \rangle \neq \langle \chi | \psi \rangle$, sin embargo, podemos notar $\langle \psi | \chi \rangle^* = \langle \chi | \psi \rangle$; esto es, $\langle \psi | \chi \rangle$ es el conjugado complejo de $\langle \chi | \psi \rangle$.

$$\langle \psi + \chi | \psi + \chi \rangle = \left[(-i+1) \langle \phi_1 | + (-3i+i) \langle \phi_2 | + (-1-5i) \langle \phi_3 | \right] \left[(i+1) | \phi_1 \rangle + (3i-i) | \phi_2 \rangle + (-1+5i) | \phi_3 \rangle \right]$$

$$= (1-i) (1+i) \langle \phi_1 | \phi_1 \rangle + (-2i) (2i) \langle \phi_2 | \phi_2 \rangle + (-1-5i) (-1+5i) \langle \phi_3 | \phi_3 \rangle$$

$$= \left(1-i^2 \right) \langle \phi_1 | \phi_1 \rangle + \left(-4i^2 \right) \langle \phi_2 | \phi_2 \rangle + \left(1-25i^2 \right) \langle \phi_3 | \phi_3 \rangle$$

$$= (2\times1) + (4\times1) + (26\times1)$$

$$= 2+4+26$$

$$= 32$$

(b)

$$\begin{split} |\psi\rangle\langle\chi| &= (i\,|\phi_1\rangle + 3i\,|\phi_2\rangle - |\phi_3\rangle)\,(\langle\phi_1| + i\,\langle\phi_2| - 5i\,\langle\phi_3|) \\ &= i\,|\phi_1\rangle\langle\phi_1| + i^2\,|\phi_1\rangle\langle\phi_2| - 5i^2\,|\phi_1\rangle\langle\phi_3| + 3i\,|\phi_2\rangle\langle\phi_1| + 3i^2\,|\phi_2\rangle\langle\phi_2| - 15i^2\,|\phi_2\rangle\langle\phi_3| \\ &- |\phi_3\rangle\langle\phi_1| - i\,|\phi_3\rangle\langle\phi_2| + 5i\,|\phi_3\rangle\langle\phi_3| \\ &= i\,|\phi_1\rangle\langle\phi_1| - 3\,|\phi_2\rangle\langle\phi_2| + 5i\,|\phi_3\rangle\langle\phi_3| - |\phi_1\rangle\langle\phi_2| + 3i\,|\phi_2\rangle\langle\phi_1| + 5\,|\phi_1\rangle\langle\phi_3| - |\phi_3\rangle\langle\phi_1| \\ &+ 15\,|\phi_2\rangle\langle\phi_3| - i\,|\phi_3\rangle\langle\phi_2| \end{split}$$

por su parte,

$$\begin{split} |\chi\rangle\langle\psi| &= (|\phi_1\rangle - i\,|\phi_2\rangle + 5i\,|\phi_3\rangle)\, \big(-i\,\langle\phi_1| - 3i\,\langle\phi_2| - \langle\phi_3|\big) \\ &= -i\,|\phi_1\rangle\langle\phi_1| + 3i^2\,|\phi_1\rangle\langle\phi_2| - |\phi_1\rangle\langle\phi_3| + i^2\,|\phi_2\rangle\langle\phi_1| + 3i^2\,|\phi_2\rangle\langle\phi_2| + i\,|\phi_2\rangle\langle\phi_3| \\ &\quad - 5i^2\,|\phi_3\rangle\langle\phi_1| - 15i^2\,|\phi_3\rangle\langle\phi_2| - 5i\,|\phi_3\rangle\langle\phi_3| \\ &= -i\,|\phi_1\rangle\langle\phi_1| - 3\,|\phi_2\rangle\langle\phi_2| - 5i\,|\phi_3\rangle\langle\phi_3| - 3\,|\phi_1\rangle\langle\phi_2| - |\phi_2\rangle\langle\phi_1| - |\phi_1\rangle\langle\phi_3| + 5\,|\phi_3\rangle\langle\phi_1| \\ &\quad + i\,|\phi_2\rangle\langle\phi_3| + 15\,|\phi_3\rangle\langle\phi_2| \end{split}$$

Evidentemente notamos que $|\psi\rangle\langle\chi| \neq |\chi\rangle\langle\psi|$; la igualdad se cumpliría si los estados $|\psi\rangle$ y $|\chi\rangle$ fueran proporcionales con la constante de proporcionalidad real.

Para calcular la traza usemos la propiedad $\text{Tr}\{AB\} = \text{Tr}\{BA\}$ y al considerar los productos internos $\langle \phi_1 | \phi_2 \rangle = \langle \phi_1 | \phi_3 \rangle = \langle \phi_2 | \phi_1 \rangle = \langle \phi_2 | \phi_3 \rangle = \langle \phi_3 | \phi_1 \rangle = \langle \phi_3 | \phi_2 \rangle = 0$, por la condición de ortonormalidad, y de la misma manera los productos internos $\langle \phi_1 | \phi_1 \rangle = \langle \phi_2 | \phi_2 \rangle = \langle \phi_3 | \phi_3 \rangle = 1$. Así,

$$Tr\{|\psi\rangle\langle\chi|\} = Tr\{\langle\chi|\psi\rangle\} = \langle\chi|\psi\rangle = -3 + 6i$$
$$Tr\{|\chi\rangle\langle\psi|\} = Tr\{\langle\psi|\chi\rangle\} = \langle\psi|\chi\rangle = -3 - 6i$$

y como podemos notar $\text{Tr}\{|\psi\rangle\langle\chi|\}\neq \text{Tr}\{|\chi\rangle\langle\psi|\}$, nuevamente $\text{Tr}\{|\chi\rangle\langle\psi|\}$ es el conjugado complejo de $\text{Tr}\{|\psi\rangle\langle\chi|\}$.

(c)

$$|\psi\rangle^{\dagger} = \langle \psi| = -i \langle \phi_1| - 3i \langle \phi_2| - \langle \phi_3|$$
$$|\chi\rangle^{\dagger} = \langle \chi| = +1 \langle \phi_1| + i \langle \phi_2| - 5i \langle \phi_3|$$

у

$$\begin{split} |\psi\rangle\langle\chi|^\dagger &= |\chi\rangle\langle\psi| \\ &= -i\,|\phi_1\rangle\langle\phi_1| - 3\,|\phi_2\rangle\langle\phi_2| - 5i\,|\phi_3\rangle\langle\phi_3| - 3\,|\phi_1\rangle\langle\phi_2| - |\phi_2\rangle\langle\phi_1| - |\phi_1\rangle\langle\phi_3| + 5\,|\phi_3\rangle\langle\phi_1| \\ &+ i\,|\phi_2\rangle\langle\phi_3| + 15\,|\phi_3\rangle\langle\phi_2| \\ |\chi\rangle\langle\psi|^\dagger &= |\psi\rangle\langle\chi| \\ &= i\,|\phi_1\rangle\langle\phi_1| - 3\,|\phi_2\rangle\langle\phi_2| + 5i\,|\phi_3\rangle\langle\phi_3| - |\phi_1\rangle\langle\phi_2| + 3i\,|\phi_2\rangle\langle\phi_1| + 5\,|\phi_1\rangle\langle\phi_3| - |\phi_3\rangle\langle\phi_1| \\ &+ 15\,|\phi_2\rangle\langle\phi_3| - i\,|\phi_3\rangle\langle\phi_2| \end{split}$$

1.2. Ejercicio 2.2

Considere los dos estados $|\psi_1\rangle = |\phi_1\rangle + 4i |\phi_2\rangle + 5 |\phi_3\rangle$ y $|\psi_2\rangle = b |\phi_1\rangle + 4 |\phi_2\rangle - 3i |\phi_3\rangle$ en donde $|\phi_1\rangle$, $|\phi_2\rangle$ y $|\phi_3\rangle$ son ortonormales. Encuentre el valor de b tal que $|\psi_1\rangle$ y $|\psi_2\rangle$ sean ortogonales.

Solución:

Para que $|\psi_1\rangle$ y $|\psi_2\rangle$ sean ortogonales su producto interno debe ser igual a cero, i.e., $\langle \psi_1|\psi_2\rangle=0$. Entonces:

$$\langle \psi_1 | \psi_2 \rangle = (\langle \phi_1 | -4i \langle \phi_2 | +5 \langle \phi_3 |) (b | \phi_1 \rangle + 4 | \phi_2 \rangle - 3i | \phi_3 \rangle)$$

al considerar los productos internos $\langle \phi_1 | \phi_2 \rangle = \langle \phi_1 | \phi_3 \rangle = \langle \phi_2 | \phi_1 \rangle = \langle \phi_2 | \phi_3 \rangle = \langle \phi_3 | \phi_1 \rangle = \langle \phi_3 | \phi_2 \rangle = 0$, por la condición de ortonormalidad, y de la misma manera los productos internos $\langle \phi_1 | \phi_1 \rangle = \langle \phi_2 | \phi_2 \rangle = \langle \phi_3 | \phi_3 \rangle = 1$. Así,

$$\langle \psi_1 | \psi_2 \rangle = b \langle \phi_1 | \phi_1 \rangle - 16i \langle \phi_2 | \phi_2 \rangle - 15i \langle \phi_3 | \phi_3 \rangle$$
$$= b - 16i - 15i$$
$$= b - 31i$$

y entonces,

$$\langle \psi_1 | \psi_2 \rangle = 0 \quad \Rightarrow \quad b - 31i = 0$$

y por lo tanto

$$b = 31i$$

1.3. Ejercicio 2.3

Si $|\phi_1\rangle$, $|\phi_2\rangle$ y $|\phi_3\rangle$ son ortonormales, muestre que los estados $|\psi\rangle=i\,|\phi_1\rangle+3i\,|\phi_2\rangle-|\phi_3\rangle$ y $|\chi\rangle=|\phi_1\rangle-i\,|\phi_2\rangle+5i\,|\phi_3\rangle$ satisfacen

- (a) la desigualdad del triángulo y
- (b) la desigualdad de Schwarz.

Solución:

Para dos estados $|\psi\rangle$ y $|\phi\rangle$ en el espacio de Hilbert, la desigualdad de Schwarz está descrita como:

$$\|\langle \psi | \phi \rangle\|^2 \le \langle \psi | \psi \rangle \langle \phi | \phi \rangle \tag{1}$$

y la desigualdad del triángulo,

$$\sqrt{\langle \psi + \phi | \psi + \phi \rangle} \le \sqrt{\langle \psi | \psi \rangle} + \sqrt{\langle \phi | \phi \rangle} \tag{2}$$

Tomando los resultados del ejercicio 2.1 con

$$\langle \psi | \chi \rangle = -3 - 6i$$
$$\langle \psi | \psi \rangle = 11$$
$$\langle \chi | \chi \rangle = 27$$
$$\langle \psi + \chi | \psi + \chi \rangle = 32$$

Entonces, la desigualdad de Schwarz se torna:

$$\|\langle \psi | \chi \rangle\|^2 = \|-3 - 6i\|^2 = 45 \le (11)(27) = 297 = \langle \psi | \psi \rangle \langle \chi | \chi \rangle$$

$$45 < 297$$

y la desigualdad del triángulo:

$$\sqrt{\langle \psi + \chi | \psi + \chi \rangle} \le \sqrt{\langle \psi | \psi \rangle} + \sqrt{\langle \chi | \chi \rangle}$$
$$\sqrt{32} \le \sqrt{11} + \sqrt{27}$$
$$5.657 < 8.513$$

1.4. Ejercicio 2.4

Encuentre la constante α tal que los estados $|\psi\rangle = \alpha |\phi_1\rangle + 5 |\phi_2\rangle$ y $|\chi\rangle = 3\alpha |\phi_1\rangle - 4 |\phi_2\rangle$ sean ortogonales; considere $|\phi_1\rangle$ y $|\phi_2\rangle$ ortonormales.

Solución:

Para que $|\psi\rangle$ y $|\chi\rangle$ sean ortogonales debe cumplirse $\langle\psi|\chi\rangle=0$. Entonces,

$$\langle \psi | \chi \rangle = (\alpha^* \langle \phi_1 | + 5 \langle \phi_2 |) (3\alpha | \phi_1 \rangle - 4 | \phi_2 \rangle)$$

al considerar los productos internos $\langle \phi_1 | \phi_2 \rangle = \langle \phi_2 | \phi_1 \rangle = 0$, por la condición de ortonormalidad, y de la misma manera los productos internos $\langle \phi_1 | \phi_1 \rangle = \langle \phi_2 | \phi_2 \rangle = 1$. Así,

$$\langle \psi | \chi \rangle = 3\alpha^* \alpha \langle \phi_1 | \phi_1 \rangle - 20 \langle \phi_2 | \phi_2 \rangle$$
$$= 3 \|\alpha\|^2 - 20$$

y entonces,

$$\langle \psi | \chi \rangle = 0 \quad \Rightarrow \quad 3 \|\alpha\|^2 - 20 = 0 \quad \Rightarrow \quad \|\alpha\|^2 = 20/3$$

y por lo tanto

$$\alpha = \sqrt{\frac{20}{3}} = \frac{2}{3}\sqrt{15}$$

1.5. Ejercicio 2.5

Si $|\psi\rangle = |\phi_1\rangle + |\phi_2\rangle$ y $|\chi\rangle = |\phi_1\rangle - |\phi_2\rangle$, muestre las siguientes relaciones (note que $|\phi_1\rangle$ y $|\phi_2\rangle$ no son ortonormales):

(a)
$$\langle \psi | \psi \rangle + \langle \chi | \chi \rangle = 2 \langle \phi_1 | \phi_1 \rangle + 2 \langle \phi_2 | \phi_2 \rangle$$

(b)
$$\langle \psi | \psi \rangle - \langle \chi | \chi \rangle = 2 \langle \phi_1 | \phi_2 \rangle + 2 \langle \phi_2 | \phi_1 \rangle$$

Solución:

Calculando $\langle \psi | \psi \rangle$ y $\langle \chi | \chi \rangle$:

$$\langle \psi | \psi \rangle = (\langle \phi_1 | + \langle \phi_2 |) (|\phi_1 \rangle + |\phi_2 \rangle)$$

= $\langle \phi_1 | \phi_1 \rangle + \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_1 \rangle + \langle \phi_2 | \phi_2 \rangle$

у

$$\langle \chi | \chi \rangle = (\langle \phi_1 | - \langle \phi_2 |) (|\phi_1 \rangle - |\phi_2 \rangle)$$

= $\langle \phi_1 | \phi_1 \rangle - \langle \phi_1 | \phi_2 \rangle - \langle \phi_2 | \phi_1 \rangle + \langle \phi_2 | \phi_2 \rangle$

(a) De esta manera,

(b) y también,

$$\begin{split} \langle \psi | \psi \rangle - \langle \chi | \chi \rangle &= \langle \phi_1 | \phi_1 \rangle + \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_1 \rangle + \langle \phi_2 | \phi_2 \rangle - (\langle \phi_1 | \phi_1 \rangle - \langle \phi_1 | \phi_2 \rangle - \langle \phi_2 | \phi_1 \rangle + \langle \phi_2 | \phi_2 \rangle) \\ &= \langle \phi_1 | \phi_1 \rangle + \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_1 \rangle + \langle \phi_2 | \phi_2 \rangle - \langle \phi_1 | \phi_1 \rangle + \langle \phi_1 | \phi_2 \rangle + \langle \phi_2 | \phi_1 \rangle - \langle \phi_2 | \phi_2 \rangle \\ &= 2 \, \langle \phi_1 | \phi_2 \rangle + 2 \, \langle \phi_2 | \phi_1 \rangle \quad \blacksquare \end{split}$$

1.6. Ejercicio 2.6

Considere un estado el cual está dado en términos de tres vectores ortonormales $|\phi_1\rangle$, $|\phi_2\rangle$, y $|\phi_3\rangle$ como sigue:

$$|\psi\rangle = \frac{1}{\sqrt{15}} |\phi_1\rangle + \frac{1}{\sqrt{3}} |\phi_2\rangle + \frac{1}{\sqrt{5}} |\phi_3\rangle,$$

en donde $|\phi_n\rangle$ son eigenestados de un operador \hat{B} tal que: $\hat{B}|\phi_n\rangle = (3n^2 - 1)|\phi_n\rangle$ con n = 1, 2, 3.

- (a) Encuentre la norma del estado $|\psi\rangle$.
- (b) Encuentre el valor esperado de \hat{B} para el estado $|\psi\rangle$.
- (c) Encuentre el valor esperado de \hat{B}^2 para el estado $|\psi\rangle$.

Solución:

(a)

$$\langle \psi | \psi \rangle = \left(\frac{1}{\sqrt{15}} \left\langle \phi_1 \right| + \frac{1}{\sqrt{3}} \left\langle \phi_2 \right| + \frac{1}{\sqrt{5}} \left\langle \phi_3 \right| \right) \left(\frac{1}{\sqrt{15}} \left| \phi_1 \right\rangle + \frac{1}{\sqrt{3}} \left| \phi_2 \right\rangle + \frac{1}{\sqrt{5}} \left| \phi_3 \right\rangle \right)$$

al expandir, los productos internos $\langle \phi_1 | \phi_2 \rangle = \langle \phi_1 | \phi_3 \rangle = \langle \phi_2 | \phi_1 \rangle = \langle \phi_2 | \phi_3 \rangle = \langle \phi_3 | \phi_1 \rangle = \langle \phi_3 | \phi_2 \rangle = 0$, por la condición de ortonormalidad, y de la misma manera los productos internos $\langle \phi_1 | \phi_1 \rangle = \langle \phi_2 | \phi_2 \rangle = \langle \phi_3 | \phi_3 \rangle = 1$. Así,

$$\langle \psi | \psi \rangle = \frac{1}{15} \langle \phi_1 | \phi_1 \rangle + \frac{1}{3} \langle \phi_2 | \phi_2 \rangle + \frac{1}{5} \langle \phi_3 | \phi_3 \rangle$$
$$= \frac{1}{15} + \frac{1}{3} + \frac{1}{5}$$
$$= \frac{3}{5}$$

(b)

$$\langle \psi | \hat{B} | \psi \rangle = \left(\frac{1}{\sqrt{15}} \langle \phi_1 | + \frac{1}{\sqrt{3}} \langle \phi_2 | + \frac{1}{\sqrt{5}} \langle \phi_3 | \right) \hat{B} \left(\frac{1}{\sqrt{15}} | \phi_1 \rangle + \frac{1}{\sqrt{3}} | \phi_2 \rangle + \frac{1}{\sqrt{5}} | \phi_3 \rangle \right)$$

$$= \left(\frac{1}{\sqrt{15}} \langle \phi_1 | + \frac{1}{\sqrt{3}} \langle \phi_2 | + \frac{1}{\sqrt{5}} \langle \phi_3 | \right) \left(\frac{1}{\sqrt{15}} \left[3(1)^2 - 1 \right] | \phi_1 \rangle + \frac{1}{\sqrt{3}} \left[3(2)^2 - 1 \right] | \phi_2 \rangle \right)$$

$$+ \left[3(3)^2 - 1 \right] \frac{1}{\sqrt{5}} | \phi_3 \rangle \right)$$

$$= \left(\frac{1}{\sqrt{15}} \langle \phi_1 | + \frac{1}{\sqrt{3}} \langle \phi_2 | + \frac{1}{\sqrt{5}} \langle \phi_3 | \right) \left(\frac{2}{\sqrt{15}} | \phi_1 \rangle + \frac{11}{\sqrt{3}} | \phi_2 \rangle + \frac{26}{\sqrt{5}} | \phi_3 \rangle \right)$$

$$= \frac{2}{15} \langle \phi_1 | \phi_1 \rangle + \frac{11}{3} \langle \phi_2 | \phi_2 \rangle + \frac{26}{5} \langle \phi_3 | \phi_3 \rangle$$

$$= \frac{2}{15} + \frac{11}{3} + \frac{26}{5}$$

$$\left\langle \hat{B} \right\rangle = \frac{\left\langle \psi | \hat{B} | \psi \right\rangle}{\left\langle \psi | \psi \right\rangle} = \frac{9}{3/5} = 15$$

(c)

$$\left\langle \hat{B}^2 \right\rangle = \frac{\langle \psi | \hat{B}^2 | \psi \rangle}{\langle \psi | \psi \rangle} = \frac{879/5}{3/5} = 293$$

1.7. Ejercicio 2.12

Demuestre que $|\psi\rangle\langle\psi|$ / $\langle\psi|\psi\rangle$ es un operador de proyección, sin importar si $|\psi\rangle$ está normalizado o no.

Solución:

Recordemos que un operador \hat{P} es un operador de proyección si es Hermitiano y es igual a su propio cuadrado:

$$\hat{P}^{\dagger} = \hat{P}, \qquad \hat{P}^2 = \hat{P} \tag{3}$$

Entonces, como podremos notar, el operador de proyección $|\psi\rangle\!\langle\psi|/\langle\psi|\psi\rangle$ es Hermitiano, ya que se cumple

$$\left(\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}\right)^{\dagger} = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$$

Tomemos su cuadrado,

$$\left(\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}\right)^2 = \left(\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}\right) \left(\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}\right) = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle^2} = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$$

Por lo tanto, $|\psi\rangle\langle\psi|/\langle\psi|\psi\rangle$ es un operador de proyección sin importar si el estado $|\psi\rangle$ se encuentra normalizado o no.

1.8. Ejercicio 2.13

En las siguientes expresiones, donde \hat{A} es un operador, especifique la naturaleza de cada expresión (i.e., especifique si es un operador, un bra, o un ket); después encuentre su conjugado Hermitiano.

- (a) $\langle \phi | \hat{A} | \psi \rangle \langle \psi |$
- (b) $\hat{A} |\psi\rangle\langle\phi|$
- (c) $\langle \phi | \hat{A} | \psi \rangle | \psi \rangle \langle \phi | \hat{A}$
- (d) $\langle \psi | \hat{A} | \phi \rangle | \phi \rangle + i \hat{A} | \psi \rangle$
- (e) $(|\phi\rangle\langle\phi|\hat{A}) i(\hat{A}|\psi\rangle\langle\psi|)$

Solución:

- (a) $\langle \phi | \hat{A} | \psi \rangle \langle \psi |$ es un bra, y su conjugado Hermitiano es un ket, $\left(\langle \phi | \hat{A} | \psi \rangle \right)^{\dagger} | \psi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi \rangle | \psi \rangle$.
- (b) $\hat{A} |\psi\rangle\langle\phi|$ es un operador, y su conjugado Hermitiano es otro operador, $(\hat{A} |\psi\rangle\langle\phi|)^{\dagger} = (|\psi\rangle\langle\phi|)^{\dagger} \hat{A}^{\dagger} = |\phi\rangle\langle\psi| \hat{A}^{\dagger}$.
- (c) $\langle \phi | \hat{A} | \psi \rangle | \psi \rangle \langle \phi | \hat{A}$ es un operador, y su conjugado Hermitiano es otro operador, $\left(\langle \phi | \hat{A} | \psi \rangle | \psi \rangle \langle \phi | \hat{A} \right)^{\dagger} = \hat{A}^{\dagger} \left(\langle \phi | \hat{A} | \psi \rangle \right)^{\dagger} (|\psi \rangle \langle \phi |)^{\dagger} = \hat{A}^{\dagger} \langle \psi | \hat{A}^{\dagger} | \phi \rangle | \phi \rangle \langle \psi | = \langle \psi | \hat{A}^{\dagger} | \phi \rangle \hat{A}^{\dagger} | \phi \rangle \langle \psi |.$
- $\text{(d) } \langle \psi | \hat{A} | \phi \rangle \, | \phi \rangle + i \hat{A} \, | \psi \rangle \text{ es un ket, y su conjugado Hermitiano es un bra, } \left(\, \langle \psi | \hat{A} | \phi \rangle \, | \phi \rangle + i \hat{A} \, | \psi \rangle \right)^\dagger = \\ \left(\, \langle \psi | \hat{A} | \phi \rangle \, | \phi \rangle \right)^\dagger + \left(i \hat{A} \, | \psi \rangle \right)^\dagger = \langle \psi | \, \langle \phi | \hat{A}^\dagger | \psi \rangle + \langle \psi | \left(-i \hat{A}^\dagger \right) = \langle \psi | \, \langle \phi | \hat{A}^\dagger | \psi \rangle i \, \langle \psi | \, \hat{A}^\dagger \, .$
- (e) $\left(|\phi\rangle\!\langle\phi|\,\hat{A}\right) i\left(\hat{A}\,|\psi\rangle\!\langle\psi|\right)$ es un operador, y su conjugado Hermitiano es otro operador, $\left(\left(|\phi\rangle\!\langle\phi|\,\hat{A}\right) i\left(\hat{A}\,|\psi\rangle\!\langle\psi|\right)\right)^\dagger = \left(|\phi\rangle\!\langle\phi|\,\hat{A}\right)^\dagger + \left(-i\hat{A}\,|\psi\rangle\!\langle\psi|\right)^\dagger = \hat{A}^\dagger\,|\phi\rangle\!\langle\phi| + |\phi\rangle\!\langle\phi|\left(i\hat{A}^\dagger\right) = \hat{A}^\dagger\,|\phi\rangle\!\langle\phi| + i\,|\phi\rangle\!\langle\phi|\,\hat{A}^\dagger.$

1.9. Ejercicio 2.14

Considere un espacio dos dimensional donde un operador Hermitiano \hat{A} está definido por $\hat{A} |\phi_1\rangle = |\phi_1\rangle$ y $\hat{A} |\phi_2\rangle = -|\phi_2\rangle$; $|\phi_1\rangle$ y $|\phi_2\rangle$ son ortonormales.

- (a) ¿Los estados $|\phi_1\rangle$ y $|\phi_2\rangle$ forman una base?
- (b) Considere el operador $\hat{B} = |\phi_1\rangle\langle\phi_2|$. ¿Es \hat{B} Hermitiano? Muestre que $\hat{B}^2 = 0$.
- (c) Muestre que los productos $\hat{B}\hat{B}^{\dagger}$ y $\hat{B}^{\dagger}\hat{B}$ son operadores de proyección.
- (d) Muestre que el operador $\hat{B}\hat{B}^{\dagger} \hat{B}^{\dagger}\hat{B}$ es unitario.
- (e) Considere $\hat{C} = \hat{B}\hat{B}^{\dagger} + \hat{B}^{\dagger}\hat{B}$. Muestre que $\hat{C} |\phi_1\rangle = |\phi_1\rangle$ y $\hat{C} |\phi_2\rangle = |\phi_2\rangle$

Solución:

(a) Si $|\phi_1\rangle$ y $|\phi_2\rangle$ son ortonormales esto nos dice directamente que son linealmente independientes, por lo que en efecto, forman una base.

$$\langle \phi_1 | \phi_2 \rangle = 0, \qquad \langle \phi_1 | \phi_1 \rangle = 1, \qquad \langle \phi_2 | \phi_2 \rangle = 1$$

(b) Consideremos $\hat{B}^{\dagger}=(|\phi_1\rangle\!\langle\phi_2|)^{\dagger}=|\phi_2\rangle\!\langle\phi_1|$. Y para que \hat{B} sea Hermitiano debería cumplirse $\hat{B}=\hat{B}^{\dagger}$, pero notamos

$$\hat{B} = |\phi_1\rangle\langle\phi_2| \neq |\phi_2\rangle\langle\phi_1| = \hat{B}^{\dagger}$$

por lo que \hat{B} no es Hermitiano. Y así,

$$\hat{B}^{2} = (|\phi_{1}\rangle\langle\phi_{2}|)^{2} = (|\phi_{1}\rangle\langle\phi_{2}|)(|\phi_{1}\rangle\langle\phi_{2}|) = |\phi_{1}\rangle\langle\phi_{2}|\phi_{1}\rangle\langle\phi_{2}| = |\phi_{1}\rangle\langle0)\langle\phi_{2}| = 0$$
(c)

$$\hat{B}\hat{B}^{\dagger} = (|\phi_1\rangle\langle\phi_2|)(|\phi_2\rangle\langle\phi_1|) = |\phi_1\rangle\langle\phi_2|\phi_2\rangle\langle\phi_1| = |\phi_1\rangle\langle\phi_1|$$

Calculamos su conjugado Hermitiano,

$$\left(\hat{B}\hat{B}^{\dagger}\right)^{\dagger} = \left(|\phi_1\rangle\langle\phi_1|\right)^{\dagger} = |\phi_1\rangle\langle\phi_1|$$

Ahora calculamos su cuadrado mismo,

$$(\hat{B}\hat{B}^{\dagger})^{2} = (\hat{B}\hat{B}^{\dagger})(\hat{B}\hat{B}^{\dagger})$$

$$= (|\phi_{1}\rangle\langle\phi_{1}|)(|\phi_{1}\rangle\langle\phi_{1}|) = |\phi_{1}\rangle\langle\phi_{1}|\phi_{1}\rangle\langle\phi_{1}| = |\phi_{1}\rangle\langle\phi_{1}|$$

por lo tanto, $\hat{B}\hat{B}^{\dagger}$ es un operador de proyección.

Por otra parte,

$$\hat{B}^{\dagger}\hat{B} = (|\phi_2\rangle\langle\phi_1|)(|\phi_1\rangle\langle\phi_2|) = |\phi_2\rangle\langle\phi_1|\phi_1\rangle\langle\phi_2| = |\phi_2\rangle\langle\phi_2|$$

Calculamos su conjugado Hermitiano,

$$\left(\hat{B}^{\dagger}\hat{B}\right)^{\dagger} = \left(|\phi_2\rangle\langle\phi_2|\right)^{\dagger} = |\phi_2\rangle\langle\phi_2|$$

Ahora calculamos su cuadrado mismo,

$$\begin{split} \left(\hat{B}^{\dagger}\hat{B}\right)^{2} &= \left(\hat{B}^{\dagger}\hat{B}\right)\left(\hat{B}^{\dagger}\hat{B}\right) \\ &= \left(|\phi_{2}\rangle\langle\phi_{2}|\right)\left(|\phi_{2}\rangle\langle\phi_{2}|\right) = |\phi_{2}\rangle\left\langle\phi_{2}|\phi_{2}\rangle\left\langle\phi_{2}| = |\phi_{2}\rangle\langle\phi_{2}|\right. \end{split}$$

por lo tanto, $\hat{B}^{\dagger}\hat{B}$ es un operador de proyección.

(d) Un operador unitario cumple la relación $\hat{U}\hat{U}^{\dagger} = \hat{U}^{\dagger}\hat{U} = \hat{I}$, entonces, sea $\hat{M} = \hat{B}\hat{B}^{\dagger} - \hat{B}^{\dagger}\hat{B} = |\phi_1\rangle\langle\phi_1| - |\phi_2\rangle\langle\phi_2|$. Calculemos \hat{M}^{\dagger} ,

$$\hat{M}^{\dagger} = (|\phi_1\rangle\langle\phi_1| - |\phi_2\rangle\langle\phi_2|)^{\dagger} = |\phi_1\rangle\langle\phi_1| - |\phi_2\rangle\langle\phi_2|$$

luego,

$$\begin{split} \hat{M}\hat{M}^{\dagger} &= (|\phi_{1}\rangle\langle\phi_{1}| - |\phi_{2}\rangle\langle\phi_{2}|) \left(|\phi_{1}\rangle\langle\phi_{1}| - |\phi_{2}\rangle\langle\phi_{2}|\right) \\ &= |\phi_{1}\rangle\left\langle\phi_{1}|\phi_{1}\right\rangle\left\langle\phi_{1}| - |\phi_{1}\rangle\left\langle\phi_{1}|\phi_{2}\right\rangle\left\langle\phi_{2}| - |\phi_{2}\rangle\left\langle\phi_{2}|\phi_{1}\right\rangle\left\langle\phi_{1}| + |\phi_{2}\rangle\left\langle\phi_{2}|\phi_{2}\right\rangle\left\langle\phi_{2}|\right| \\ &= |\phi_{1}\rangle\langle\phi_{1}| + |\phi_{2}\rangle\langle\phi_{2}| \\ &= \hat{I} \quad \blacksquare \end{split}$$

(e) Considerando $\hat{C} = \hat{B}\hat{B}^{\dagger} + \hat{B}^{\dagger}\hat{B} = |\phi_1\rangle\langle\phi_1| + |\phi_2\rangle\langle\phi_2|$, entonces:

$$\hat{C} |\phi_1\rangle = (|\phi_1\rangle\langle\phi_1| + |\phi_2\rangle\langle\phi_2|) |\phi_1\rangle$$

$$= |\phi_1\rangle \langle\phi_1|\phi_1\rangle + |\phi_2\rangle \langle\phi_2|\phi_1\rangle$$

$$= |\phi_1\rangle \quad \blacksquare$$

y de la misma manera,

$$\hat{C} |\phi_2\rangle = (|\phi_1\rangle\langle\phi_1| + |\phi_2\rangle\langle\phi_2|) |\phi_2\rangle$$

$$= |\phi_1\rangle \langle\phi_1|\phi_2\rangle + |\phi_2\rangle \langle\phi_2|\phi_2\rangle$$

$$= |\phi_2\rangle \quad \blacksquare$$

1.10. Ejercicio 2.15

Pruebe las siguientes dos relaciones:

(a)
$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{[\hat{A},\hat{B}]/2}$$
,

(b)
$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + \left[\hat{A}, \hat{B}\right] + \frac{1}{2!}\left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right] + \frac{1}{3!}\left[\hat{A}, \left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right]\right]$$

 $\label{eq:Pista:Para probar la primera relación, considere definir una función operador <math>\hat{F}(t) = e^{\hat{A}t}e^{\hat{B}t},$ en donde t es un parámetro, \hat{A} y \hat{B} son operadores independientes de t, y haga uso de $\left[\hat{A},G(\hat{B})\right]=\left[\hat{A},\hat{B}\right]dG(\hat{B})/d\hat{B},$ donde $G(\hat{B})$ es una función dependiente del operador \hat{B} .

Solución:

(a) Consideremos la función operador $\hat{F}(t)$:

$$\hat{F}(t) = e^{\hat{A}t}e^{\hat{B}t}$$

Al tomar su derivada, notamos:

$$\begin{split} \frac{\mathrm{d}\hat{F}(t)}{\mathrm{d}t} &= \hat{A}e^{\hat{A}t}e^{\hat{B}t} + e^{\hat{A}t}\hat{B}e^{\hat{B}t} \\ &= \hat{A}e^{\hat{A}t}e^{\hat{B}t} + e^{\hat{A}t}\hat{B}e^{-\hat{A}t}e^{\hat{A}t}e^{\hat{B}t} \\ &= \left(\hat{A} + e^{\hat{A}t}\hat{B}e^{-\hat{A}t}\right)e^{\hat{A}t}e^{\hat{B}t} \\ &= \left(\hat{A} + e^{\hat{A}t}\hat{B}e^{-\hat{A}t}\right)\hat{F}(t) \end{split}$$

sin perdida de la generalidad, tomemos,

$$\frac{\mathrm{d}\hat{F}(t)/\mathrm{d}t}{\hat{F}(t)} = \hat{A} + e^{\hat{A}t}\hat{B}e^{-\hat{A}t}$$

al considerar una aproximación de primer orden en (b), i.e., $e^{\hat{A}t}\hat{B}e^{-\hat{A}t}=\hat{B}+t\left[\hat{A},\hat{B}\right]$:

$$\frac{\mathrm{d}\hat{F}(t)/\mathrm{d}t}{\hat{F}(t)} = \hat{A} + \hat{B} + t\left[\hat{A}, \hat{B}\right]$$

integrando con respecto de t,

$$\int \frac{\mathrm{d}\hat{F}(t)/\mathrm{d}t}{\hat{F}(t)} \mathrm{d}t = \int \left(\hat{A} + \hat{B} + t \left[\hat{A}, \hat{B}\right]\right) \mathrm{d}t$$

$$\int \frac{\mathrm{d}}{\mathrm{d}t} \ln \hat{F}(t) \mathrm{d}t = \left(\hat{A} + \hat{B}\right) t + \frac{t^2}{2} \left[A, B\right]$$

$$\ln \hat{F}(t) = \left(\hat{A} + \hat{B}\right) t + \frac{t^2}{2} \left[A, B\right]$$

lo que implica,

$$\hat{F}(t) = e^{\left(\hat{A} + \hat{B}\right)t + t^2[A, B]/2}$$

$$\hat{F}(t) = e^{\left(\hat{A} + \hat{B}\right)t} e^{t^2[A,B]/2}$$

Finalmente, escogiendo t = 1:

$$e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{\left[\hat{A},\hat{B}\right]/2}$$

(b) Consideremos las funciones de operadores $\hat{G}(t)$ y $\hat{H}(t)$, con \hat{A} independiente de t, definidas como sigue:

$$\hat{G}(t) = e^{+\hat{A}t}$$
 y $\hat{H}(t) = e^{-\hat{A}t}$

Dada su definición, podemos realizar una expansión en series de Taylor para estas funciones de operadores como sigue:

$$\hat{G}(t) = e^{+\hat{A}t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \hat{A}^n$$

$$\hat{H}(t) = e^{-\hat{A}t} = \sum_{n=0}^{\infty} \frac{(-t)^n}{n!} \hat{A}^n$$

Realizando una aproximación a orden 3, obtendremos,

$$e^{+\hat{A}t} = \hat{I} + t\hat{A} + \frac{t^2}{2!}\hat{A}^2 + \frac{t^3}{3!}\hat{A}^3 + \cdots$$
$$e^{-\hat{A}t} = \hat{I} - t\hat{A} + \frac{t^2}{2!}\hat{A}^2 - \frac{t^3}{3!}\hat{A}^3 + \cdots$$

Insertando estos resultados en (b), obtendremos:

$$e^{+\hat{A}t}\hat{B}e^{-\hat{A}t} = \left(\hat{I} + t\hat{A} + \frac{t^2}{2!}\hat{A}^2 + \frac{t^3}{3!}\hat{A}^3 + \cdots\right)(B)\left(\hat{I} - t\hat{A} + \frac{t^2}{2!}\hat{A}^2 - \frac{t^3}{3!}\hat{A}^3 + \cdots\right)$$

Expandiendo y respetando el orden de los conmutadores,

$$\begin{split} e^{+\hat{A}t}\hat{B}e^{-\hat{A}t} &= \hat{I}\hat{B}\hat{I} + \hat{I}\hat{B}\left(-t\hat{A}\right) + \hat{I}\hat{B}\left(\frac{t^2}{2!}\hat{A}^2\right) + \hat{I}\hat{B}\left(-\frac{t^3}{3!}\hat{A}^3\right) + \left(t\hat{A}\right)\hat{B}\hat{I} + \left(t\hat{A}\right)\hat{B}\left(-t\hat{A}\right) \\ &+ \left(t\hat{A}\right)\hat{B}\left(\frac{t^2}{2!}\hat{A}^2\right) + \left(\frac{t^2}{2!}\hat{A}^2\right)\hat{B}\hat{I} + \left(\frac{t^2}{2!}\hat{A}^2\right)\hat{B}\left(-t\hat{A}\right) + \left(\frac{t^3}{3!}\hat{A}^3\right)\hat{B}\hat{I} + \cdots \\ &= \hat{B} - t\hat{B}\hat{A} + \frac{t^2}{2!}\hat{B}\hat{A}^2 - \frac{t^3}{3!}\hat{B}\hat{A}^3 + t\hat{A}\hat{B} - t^2\hat{A}\hat{B}\hat{A} + \frac{3t^3}{3 \cdot 2!}\hat{A}\hat{B}\hat{A}^2 + \frac{t^2}{2!}\hat{A}^2\hat{B} \\ &- \frac{3t^3}{3 \cdot 2!}\hat{A}^2\hat{B}\hat{A} + \frac{t^3}{3!}\hat{A}^3\hat{B} + \cdots \\ e^{+\hat{A}t}\hat{B}e^{-\hat{A}t} &= \hat{B} + t\left(\hat{A}\hat{B} - \hat{B}\hat{A}\right) + \frac{t^2}{2!}\left(\hat{A}^2\hat{B} + \hat{B}\hat{A}^2 - 2\hat{A}\hat{B}\hat{A}\right) + \frac{t^3}{3!}\left(\hat{A}^3\hat{B} - \hat{B}\hat{A}^3 + 3\hat{A}\hat{B}\hat{A}^2 - 3\hat{A}^2\hat{B}\hat{A}\right) \\ &+ \cdots \end{split}$$

De aquí, podemos identificar rápidamente los términos entre paréntesis:

$$\left(\hat{A}\hat{B} - \hat{B}\hat{A}\right) = [A, B]$$

también:

$$\begin{split} \left(\hat{A}^2\hat{B} + \hat{B}\hat{A}^2 - 2\hat{A}\hat{B}\hat{A}\right) &= \hat{A}\hat{A}\hat{B} + \hat{B}\hat{A}\hat{A} - \hat{A}\hat{B}\hat{A} - \hat{A}\hat{B}\hat{A} \\ &= \hat{A}\left(\hat{A}\hat{B}\right) - \hat{A}\left(\hat{B}\hat{A}\right) + \left(\hat{B}\hat{A}\right)\hat{A} - \left(\hat{A}\hat{B}\right)\hat{A} \\ &= \hat{A}\left[A, B\right] + \left[B, A\right]\hat{A} \\ &= \hat{A}\left[A, B\right] - \left[A, B\right]\hat{A} \\ &= \left[A, \left[A, B\right]\right] \end{split}$$

y por último:

Como podemos observar, tenemos !conmutadores anidados!

De esta manera, podemos simplificar (b) de la siguiente manera:

$$e^{+\hat{A}t}\hat{B}e^{-\hat{A}t} = \hat{B} + t[A, B] + \frac{t^2}{2!}[A, [A, B]] + \frac{t^3}{3!}[A, [A, [A, B]]]$$

finalmente, haciendo t = 1, obtenemos nuestro resultado final:

$$e^{+\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, [A, B]]]$$

1.11. Ejercicio 2.18

Considere las siguientes dos matrices:

$$A = \begin{pmatrix} 3 & i & 1 \\ -1 & -i & 2 \\ 4 & 3i & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2i & 5 & -3 \\ -i & 3 & 0 \\ 7i & 1 & i \end{pmatrix}$$

Verifique las siguientes relaciones:

(a)
$$\det\{AB\} = \det\{A\} \det\{B\}$$

(b)
$$\det\{A^T\} = \det\{A\}$$

(c)
$$\det\{A^{\dagger}\}=(\det\{A\})^*$$

(d)
$$\det\{A^*\} = (\det\{A\})^*$$

Solución:

(a)

$$AB = \begin{pmatrix} 3 & i & 1 \\ -1 & -i & 2 \\ 4 & 3i & 1 \end{pmatrix} \begin{pmatrix} 2i & 5 & -3 \\ -i & 3 & 0 \\ 7i & 1 & i \end{pmatrix}$$

$$= \begin{pmatrix} (3 \cdot 2i - i \cdot i + 1 \cdot 7i) & (3 \cdot 5 + i \cdot 3 + 1 \cdot 1) & (-3 \cdot 3 + i \cdot 0 + 1 \cdot i) \\ (-1 \cdot 2i + i \cdot i + 2 \cdot 7i) & (-1 \cdot 5 - i \cdot 3 + 2 \cdot 1) & (1 \cdot 3 - i \cdot 0 + 2 \cdot i) \\ (4 \cdot 2i - 3i \cdot i + 1 \cdot 7i) & (4 \cdot 5 + 3i \cdot 3 + 1 \cdot 1) & (-4 \cdot 3 + 3i \cdot 0 + 1 \cdot i) \end{pmatrix}$$

$$= \begin{pmatrix} 1 + 13i & 16 + 3i & -9 + i \\ -1 + 12i & -3 - 3i & 3 + 2i \\ 3 + 15i & 21 + 9i & -12 + i \end{pmatrix}$$

Usando la regla del triángulo para calcular determinantes 3×3 :

$$\det\{A\} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$
(4)

$$\det\{AB\} = (1+13i)(-3-3i)(-12+i) + (16+3i)(3+2i)(3+15i) + (-9+i)(-1+12i)(21+9i) - (3+15i)(-3-3i)(-9+i) - (1+13i)(3+2i)(21+9i) - (16+3i)(-1+12i)(-12+i) = 726+121i$$

Por su parte, para las matrices A y B tendremos:

$$\det\{A\} = [3 \cdot (-i) \cdot 1] + [i \cdot 2 \cdot 4] + [1 \cdot (-1) \cdot (3i)] - [4 \cdot (-i) \cdot 1] - [3i \cdot 2 \cdot 3] - [1 \cdot (-1) \cdot i] \\
= -11i \\
\det\{B\} = [2i \cdot 3 \cdot i] + [5 \cdot 0 \cdot (7i)] + [(-3) \cdot (-i) \cdot 1] - [7i \cdot 3 \cdot (-3)] - [1 \cdot 0 \cdot (2i)] - [i \cdot (-i) \cdot 5] \\
= -11 + 66i$$

y calculando el producto de estos dos determinantes,

$$\det\{A\}\det\{B\} = (-11i)(-11 + 66i) = 726 + 121i$$

con lo que comprobamos (a):

$$\det\{AB\} = \det\{A\} \det\{B\} = 726 + 121i$$

(b) Primeramente calculamos A^T

$$A^{T} = \begin{pmatrix} 3 & -1 & 4 \\ i & -i & 3i \\ 1 & 2 & 1 \end{pmatrix}$$

continuando con el cálculo de su determinante,

$$\det \left\{ A^T \right\} = \left[3 \cdot (-i) \cdot 1 \right] + \left[(-1) \cdot (3i) \cdot 1 \right] + \left[4 \cdot i \cdot 2 \right] - \left[1 \cdot (-i) \cdot 4 \right] - \left[2 \cdot (3i) \cdot 3 \right] - \left[1 \cdot i \cdot (-1) \right]$$

$$= -11i$$

con lo que comprobamos (b):

$$\det\{A^T\} = \det\{A\} = -11i \quad \blacksquare$$

(c) Primeramente calculamos A^{\dagger}

$$A^{\dagger} = \left(A^{T}\right)^{*} = \begin{pmatrix} 3 & -1 & 4\\ i & -i & 3i\\ 1 & 2 & 1 \end{pmatrix}^{*} = \begin{pmatrix} 3 & -1 & 4\\ -i & i & -3i\\ 1 & 2 & 1 \end{pmatrix}$$

continuando con el cálculo de su determinante,

$$\det \left\{ A^{\dagger} \right\} = [3 \cdot i \cdot 1] + [(-1) \cdot (-3i) \cdot 1] + [4 \cdot (-i) \cdot 2] - [1 \cdot i \cdot 4] - [2 \cdot (-3i) \cdot 3] - [1 \cdot (-i) \cdot (-1)]$$

$$= 11i$$

y por su parte,

$$(\det\{A\})^* = (-11i)^* = 11i$$

con lo que comprobamos (c):

$$\det\left\{A^{\dagger}\right\} = (\det\{A\})^* = 11i \quad \blacksquare$$

(d) Primeramente calculamos A^*

$$A^* = \begin{pmatrix} 3 & i & 1 \\ -1 & -i & 2 \\ 4 & 3i & 1 \end{pmatrix}^* = \begin{pmatrix} 3 & -i & 1 \\ -1 & i & 2 \\ 4 & -3i & 1 \end{pmatrix}$$

continuando con el cálculo de su determinante,

$$\det\{A^*\} = [3 \cdot i \cdot 1] + [-i \cdot 2 \cdot 4] + [1 \cdot (-1) \cdot (-3i)] - [4 \cdot i \cdot 1] - [-3i \cdot 2 \cdot 3] - [1 \cdot (-1) \cdot (-i)] = 11i$$

y por su parte,

$$(\det\{A\})^* = (-11i)^* = 11i$$

con lo que comprobamos (d):

$$\det\{A^*\} = (\det\{A\})^* = 11i$$

Referencias

[1] Nouredine Zettili. Quantum mechanics: concepts and applications. 2003.