Cadenas de Markov en Tiempo Continuo

Taller de filogenética bayesiana en RevBayes

Enero 2025

Cadenas de Markov en tiempo continuo (CTMC- Continuous-time Markov chains)

• Procesos estocásticos que nos permiten seguir la evolución de las tasas evolutivas para caracteres discretos y continuos en macroevolución.

• Las cadenas de Markov usualmente se denotan utilizando la siguiente notación matemática

$${X(t), t \ge 0}$$

En esta notación el proceso estocástico X(t) denota el valor de estado o caracter en el tiempo t y el tiempo es medido en millones de años.

Propiedad Markoviana

La pérdida de memoria

"El futuro, sólo depende del presente pero no del pasado".

Ejemplo con colores

Estamos interesados en entender cómo una variable es discreta con dos estados (azul y rojo) han evolucionado y cambiado en el tiempo.

- 1. La evolución de azul (estado 0) a rojo (estado 1) sucede con parámetro : q_{01}
- 2. La evolución de rojo (estado 1) al azul (estado 0): q_{10}

Estos parámetros se interpretan como tasas instantáneas de transición

El Modelo

La matriz Q

(Zenil-Ferguson et al. 2017,2018)

¿Qué es la matriz Q?

• La matriz Q es la derivada de la matriz de probabilidad

$$P'(t) = P(t)Q$$

ullet Los elementos de la matriz $\,Q\,$ son las tasas de transición

Interpretando las tasas de transición

Para evolucionar de azul a rojo en un linaje vamos a esperar en promedio $1/q_{01}\,$

unidades de tiempo.

¿Cuál es la probabilidad de evolucionar de azul a rojo?

$$P(t) = e^{Qt}$$

$$(P(t)) = \frac{1}{q_{01} + q_{10}} \begin{pmatrix} q_{10} + q_{01}e^{-(q_{01} + q_{10})t} & q_{01} - q_{01}e^{-(q_{01} + q_{10})t} \\ q_{10} - q_{10}e^{-(q_{01} + q_{10})t} & q_{01} + q_{10}e^{-(q_{01} + q_{10})t} \end{pmatrix}$$

Calculando la función de verosimilitud de una CTMC en una filogenia

Calculando la función de verosimilitud de una CTMC en una filogenia

Pasado Presente

Calculando la función de verosimilitud de una CTMC en una filogenia

Probabilidades en la raíz

Azul	Rojo
$\pi(azul)$	$\pi(rojo)$

- 1. Asumir probabilidades uniformes. $\pi(azul) = \pi(rojo) = 1/2$
- 2. Verosimilidades pesadas por el promedio. Por ejemplo, fijamos la raíz en azul, y calculamos la verosimilitud del resto del árbol. Al final tenemos una verosimilitud fijada en azul $L_{azul}\,$ y en rojo $L_{rojo}\,$ calculamos la relativa

3. Calculamos la distribución estacionaria (esta es una propiedad de las CTMC que no hemos discutido pero que existe bajo ciertas condiciones)

Probabilidades en la raíz

• Mi favorita: Asumir que es incierta pero es una variable aleatoria y coestimarla en el MCMC

$$(\pi(Blue), \pi(Red))$$