chapitre 1 Propriétés structurelles des GRI

Section 4

Modularité

et en plus c'est le TP4

Fabien de Montgolfier fm@irif.fr

25 février 2022

Rappels

La modularité de Newman

L'algorithme décrémental

Pour une implémentation efficace

Quels graphes ont grande modularité?

Propriétés communes des réseaux

En plus de la grande taille on a (presque toujours) :

- 1. Distribution des degrés : peu de riches beaucoup de pauvres
- Distribution des distances : tout le monde proche de tout le monde (effet small world)
- 3. Éxistence d'un cœur : les riches se connaissent, pas les pauvres
- 4. Composante connexe géante
- 5. **Transitivité** forte (= coefficient de clustering) : les amis de mes amis sont mes amis
- 6. Navigabilité (pas toujours) : on peut atteindre une cible de proche en proche. Ex : routage IP.
- existence de communautés (pas toujours non plus) : sous-graphes denses ayant un sens.

Clustering : intérêt

- 1. Une étude de cas sur un graphe donné (sociologie, biologie,... *ologie)
- 2. On le découpe (partition) en clusters
- 3. Ces clusters disent des choses sur le graphe et permettent d'appréhender sa compexité *ologique

Questions

- Qu'est-ce qu'un bon clustering?
- Comment en calculer un?

On voudrait ça :

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4 Rappels

Calcul de communautés

Problème du calcul des communautés

Trouver une **partition** des sommets en c sous-graphes (c fourni à l'avance) tels leur densité soit maximale

unicité très peu garantie! Dépend fortement de la définition et de l'algorithme qui l'implémente

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

Rappels

Calcul de communautés

Problème (à formulation floue) du calcul des communautés

Trouver une **partition** (ou un recouvrement) des sommets en *c* sous-graphes (*c* fourni à l'avance ou pas) tels leur densité (Moyenne ? Minimale ?) soit maximale

unicité très peu garantie! Dépend fortement de la définition et de l'algorithme qui l'implémente

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

La modularité de Newman

Rappels

La modularité de Newman

L'algorithme décrémental

Pour une implémentation efficace

Quels graphes ont grande modularité

Définitions

Soit G = (V, E) un graphe non orienté

Partition

 $P = V_1..V_k$ tel que chaque sommet appartient à un et un seul ensemble V_i , aucun V_i n'est vide.

Cluster

L'un des V_i

Clustering

Algorithme (et pas coefficient, ici!)

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

La modularité de Newman

Modularité

Informellement

La proportion des *liens internes* de la partition moins la proportion de liens internes de la même partition mais sur le graphe rebranché aléatoirement.

Donc un calcul en deux parties

- ► Pourcentage d'arêtes internes
- ► Soustraction du null model

Notations

- ightharpoonup m(i,j) le nombre d'arêtes entre le cluster V_i et le cluster V_j
- ▶ En particulier m(i, i) est le nombre d'arêtes **internes** au cluster V_i
- ightharpoonup On a $\sum_{i,j} m(i,j) = m$.
- $ightharpoonup e_{ij} = rac{m(i,j)}{m}$ proportion d'arêtes entre V_i et V_j

Null Model

Si on recombinait les arêtes du graphe au hasard en respectant les degrés (ce que l'on appelle un $null\ model$), alors la probabilité qu'il y ait une arête du sommet u au sommet v serait

$$\frac{\deg(u)}{2m} \times \frac{\deg(v)}{2m}$$

On définit a_{ij} la proportion d'arêtes entre les clusters V_i et V_j dans le *null model* :

$$a_{ij} = \sum_{u \in V_i, v \in V_j} \frac{deg(u) \times deg(v)}{4m^2}$$

On peut remarquer que si i = j:

$$a_{ii} = \frac{\left(\sum_{v \in V_i} deg(v)\right)^2}{4m^2}$$

Modularité de Newman

Modularité de la partition P des sommets de G

$$Q(P) = \sum_{i=1}^{I=K} e_{ii} - a_{ii}$$

et en développant

$$Q(P) = \sum_{i=1}^{i=k} \left(\frac{m(i,i)}{m} - \frac{\left(\sum_{u \in V_i} deg(u) \right)^2}{4m^2} \right)$$

Valeurs de Q?

- lacktriangle Terme de gauche : densité d'arêtes internes $\in [0,1]$
- lacktriangle Terme de droite : densité d'arêtes internes après shuffle $\in [0,1]$
- ▶ Donc $Q \in [-1, 1]$
- Interprétation :
 - ► Négatif : mauvais clustering
 - Nul : non signifiant
 - Positif : bon clustering
 - 1 = clustering parfait?
- ▶ En fait $Q \in [-0.5, 1[$
- ► En particulier $Q \leq 1 \frac{DegréMax^2}{4m^2}$

Modularité d'un graphe

$$Q(G) = \max_{P} \{Q(P)\}$$

Tout graphe a modularité ≥ 0

Démonstration : c'est la qualité d'un clustering en un seul cluster

Théorème [Brandes & al 2008]

Calculer Q(G) est NP-complet

Il va donc falloir un algorithme d'approximation, ce qui est appelé une **heuristique**

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

La modularité de Newman

Remarques diverses

Bornes

- Le clustering trivial $\{V\}$ a modularité 0
- ▶ Un clustering en k clusters a modularité $\in [-0.5, 1 \frac{1}{k}]$
- ▶ Un graphe à n sommets a donc modularité $\in [0, 1 \frac{1}{n}]$

Classes ayant la pire modularité : 0

- Étoiles K_{1,n}
- \triangleright Graphes complet K_n

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

La modularité de Newman

Conclusion sur la modularité

Il y a deux défintions de la modularité

- ► Modularité d'une partition (facile à calculer)
- ► Modularité d'un graphe (difficile à calculer)

Il y a donc deux usages de la modularité

- ► Comme objectif à maximiser pour un algorithme de clustering
- ► Comme paramètre de graphe dans un discours *ologique

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

L'algorithme décrémental

Rappels

La modularité de Newman

L'algorithme décrémental

Pour une implémentation efficace

Quels graphes ont grande modularité

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

L'algorithme décrémental

L'algorithme décrémental

Auteurs

équipes de Vincent Blondel à Louvain-la-neuve et de Matthieu Latapy à Paris

Principe

Cet algorithme est décrémental ou encore aggrégatif

- on part d'une partition triviale P^1 où chaque cluster est fait d'un unique sommet (il y a donc k = n clusters).
- ▶ À chaque étape t (t de 1 à n) on fusionne deux clusters.
- ightharpoonup On arrive donc à P_n avec un seul cluster
- Q(G) est la meilleure modularité de toutes ces partitions rencontrées

L'algorithme est glouton

Quels clusters et prendre pour les fusionner en un cluster, à chaque étape?

Ceux, parmis les $O(k^2)$ choix possibles, les deux qui vont faire le plus augmenter la modularité.

Notez que la modularité peut diminuer d'une étape à l'autre (quand aucune fusion n'améliore la modularité)

En effet, la modularité initiale est légèrement négative :

$$Q(P^{1}) = -\frac{\sum_{v} deg(v)^{2}}{4m^{2}}$$
 (2)

tandis que la modularité finale est $Q(P^n) = 0$. Entre les deux on espère s'être approché de 1.

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

L'algorithme décrémental

Complexité

Variantes

Il y a d'autres façons de faire, telles que la "Méthode de Louvain". Attention, la page Wikipedia éponyme contient plusieurs erreurs, par exemple la complexité ne peut pas être baissée jusqu'à $O(n \log n)$ (ce qui est plus petit que la taille du graphe dans certains cas!!).

Complexité naïve

Pour t de 1 à n

- Regarder les $(n+1-t)^2$ paires de cluster
- ► Choisir les deux qui augementent le plus la modularité
- Les fusionner

Calcul de Q() en O(m) donc en tout $O(n^3m)$

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

— Pour une implémentation efficace

Rappels

La modularité de Newman

L'algorithme décrémental

Pour une implémentation efficace

Quels graphes ont grande modularité

Améliorons la complexité

$$Q(P) = \sum_{i=1}^{i=k} \left(\frac{m(i,i)}{m} - \frac{\left(\sum_{u \in V_i} deg(u)\right)^2}{4m^2} \right)$$

Amélioration 1 : la somme des degrés

Chaque cluster connaît sa somme des degrés (attribut d'un cluster). Fusionner deux clusters additionne seulement ces sommes

Amélioration 2 : le nombre d'arêtes internes

m(i,i) peut être

- ightharpoonup Calculé à la volée en O(m)
- ► Dans une matrice
- ► Dans une HashMap

Incrément de modularité (amélioration 3)

Quand on fusionne les clusters V_a et V_b en V_c :

$$Q(P^{t+1}) - Q(P^t) = (e_{cc} - a_{cc}) - (e_{aa} - a_{aa}) - (e_{bb} - a_{bb})$$

- Ne dépend que de deux clusters
- $e_{cc} (e_{aa} + e_{bb}) = \frac{m(a,b)}{m}$
- Les a_{ii} dépendent de $somDeg(i) = \sum_{x \in V_i} deg(x)$ stocké
- donc au final calcul en temps constant : $Q(P^{t+1}) Q(P^t) =$

$$\frac{m(a,b)}{m} - \frac{(somDeg(a) + somDeg(b))^2}{4m^2} + \frac{(somDeg(a))^2}{4m^2} + \frac{(somDeg(b))^2}{4m^2}$$

Usage d'un tas (amélioration 4)

- ▶ Enfin au lieu de regarder les k^2 paires à chaque étape on a un tas de paires de clusters (file de priorité)
- Permet d'avoir la meilleure paire en temps constant
- ightharpoonup chaque cluster V_c crée à l'étape k appartient à k-1 nouvelles paires
- inutile de mettre ces k-1 paires dans le tas : seule la meilleure paire (V_c, V_d) pour un certain V_d peut être mise dans le tas

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

Quels graphes ont grande modularité?

Rappels

La modularité de Newman

L'algorithme décrémental

Pour une implémentation efficace

Quels graphes ont grande modularité?

Publication de [Newman et Givran 2004]

Values approaching Q=1, which is the maximum, indicate strong community structure. In practice, values for such networks typically fall in the range from about 0.3 to 0.7. Higher values are rare.

Donc il est largement admis par les *ologues que plus la modularité est élevée, plus le graphe a intrinsèquement des clusters, cachés, qu'il n'y a plus qu'à « retrouver »par un algorithme de clustering Mais voyons...

chapitre 1 Propriétés structurelles des GRI Section 4 Modularité et en plus c'est le TP4

— Quels graphes ont grande modularité ?

Le tore

▶ Prenons un tore carré de $n = a \times a$ sommets

Le tore

- ▶ Prenons un tore carré de $n = a \times a$ sommets
- ► Coupons-le en $k = b^2$ clusters carrés
- ► Terme de gauche

$$\sum_{i=1}^{i=k} \left(\frac{m(i,i)}{m} \right) = \frac{m-2ab}{m} = 1 - \frac{b}{a}$$

Somme des degrés d'un cluster = 4 x sa surface. Terme de droite =

$$\frac{\left(\sum_{u \in V_i} deg(u)\right)^2}{4m^2}) = k \frac{(4(a/b)^2)^2}{(4a^2)^2} = \frac{1}{b^2}$$

Le tore

- ightharpoonup Prenons un tore carré de $n = a \times a$ sommets
- ► Coupons-le en $k = b^2$ clusters carrés

$$\sum_{i=1}^{i=k} \left(\frac{m(i,i)}{m} \right) = \frac{m-2ab}{m} = 1 - \frac{b}{a}$$
Somme des degrés d'un cluster = 4 × s

▶ Somme des degrés d'un cluster = $4 \times \text{sa}$ surface. Terme de droite =

$$\frac{\left(\sum_{u \in V_i} deg(u)\right)^2}{4m^2}) = k \frac{(4(a/b)^2)^2}{(4a^2)^2} = \frac{1}{b^2}$$

- ▶ prenons $b = \sqrt[6]{n}$. On a alors $Q(P_{carré}) = 1 \frac{2}{\sqrt[3]{n}}$

Les tores ont donc modularité asymptotiquement 1. Ce clustering d'un tore 1000×1000 a modularité 0.98

Et en fait [Montgolfier, Soto, Viennot 2011]

- Les graphes de degrés en power law de paramètre $\gamma > 5$ et de degré moyen d ont une modularité minimale de 2/d
- Des classes régulières ont modularité asymptotiquement 1 :
 - Grilles et (hyper)tores,
 - hypercube
 - ► Arbres de degré *o*(*n*)
- Cela n'était pas l'intuition de Newman!
- ▶ Donc : une modularité élevée d'indique donc pas une « strong community structure » ni la présence de clusters "naturels".
- La modularité doit être prise comme un objectif à maximiser, pas comme un paramètre de graphe.