Assignment 2 (6 frame translation) is due Mon 17 Jan

Please hand in hard copy

Assignment 2. If you need a review, see https://en.wikipedia.org/wiki/Genetic_code

2.1 Then, use the "Standard Genetic Code" table on the last page to generate the **six-frame translations** of the following sequence

```
5' AUGUCGCAGCAG 3'
```

(U is uracil – RNA uses Uracil in place of T, thymine, which is used by DNA)

Feel free to get help from classmates or from an on-line translation program, but a short example will be part of a quiz, so make sure you can do this. (Of course you will be able to use the table of the genetic code for the quiz.)

For example

```
5' ACCUACU 3' complementary strand is
3' UGGAUGA 5'

Frame 1: ACC|UAC|U amino acids TY (U alone is not a codon)
Frame 2: A|CCU|ACU PT (A alone is not a codon)
Frame 3: AC|CUA|CU L (AC and CU alone are not codons)

The reverse of the complementary strand is

5' AGUAGGU 3'

Frame -1: AGU|AGG|U SR
Frame -2: A|GUA|GGU VG
Frame -3: AG|UAG|GU * (stop --UAG tells the ribosome to stop translating the mRNA into protein)
```

2.2 If we change the input sequence to

5' AUGUCGCAACAG 3'

which translations change, and what do they change to?

Amino acids biochemical properties			nonpo	lar polar	basic	acidi	С	Termination		
Standard genetic code										
1st	2nd base									3rd
base		U		С		Α		G		base
U	UUU	(Phe/F)	UCU		UAU	(TyrN) Tyrocino	UGU	(Cys/C) Cysteine	U	
	UUC	Phenylalanine	UCC			UAC	(Tyr/Y) Tyrosine	UGC	(Cys/C) Cystelle	С
	UUA	(Leu/L) Leucine	UCA	(Ser/S) Serine		UAA	Stop (Ochre) [B]	UGA	Stop (Opal) [B]	Α
	UUG		UCG		UAG	Stop (Amber) [B]	UGG	(Trp/W) Tryptophan	G	
С	CUU		CCU	(Pro/P) Proline	CAU	(His/H) Histidine	CGU		U	
	CUC		ccc		CAC		CGC	(Arg/R) Arginine	С	
	CUA		CCA		ille	CAA	(Gln/Q) Glutamine	CGA	(Alg/K) Algillille	Α
	CUG		CCG			CAG	(Gill/Q) Gidianille	CGG		G
A	AUU	(Ile/I) Isoleucine	ACU			AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U
	AUC		ACC	(Thr/T)	AAC	AGC		(Sel/S) Sellile	С	
	AUA		ACA	Threonine		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	Α
	AUG ^[A]	(Met/M) Methionine	ACG			AAG		AGG		G
G	GUU	(Val/V) Valine	GCU			GAU	(Asp/D) Aspartic	GGU		U
	GUC		GCC	(Ala/A) Alanine	ine	GAC	acid	GGC	(Gly/G) Glycine	С
	GUA		GCA		ille	GAA	(Glu/E) Glutamic	GGA	(Gly/G) Glycille	Α
	GUG		GCG			GAG	acid	GGG		G

A The codon AUG both codes for methionine and serves as an initiation site: the first AUG in an mRNA's coding region is where translation into protein begins. [43]

B ^ ^ ^ The historical basis for designating the stop codons as amber, ochre and opal is described in an autobiography by Sydney Brenner^[44] and in a historical article by Bob Edgar.^[45]