Privacy Homomorphism

Dr. Vivaksha Jariwala

Associate Professor

Wireless Sensor Networks

Wireless Sensor Networks

- A Sensor Network is a network of such sensors that can Sense specified parameter relating to their environment
 - Process them either locally or in a distributed manner
 Communicate processed information to base station
- WSNs gaining popularity low cost solution to real world challenges
- Military, environmental monitoring, health monitoring, home appliances, civilian, societal surveillance applications

Challenges in Ensuring Security

- Ensuring secure communication in Wireless Sensor Networks is a challenge.
- The challenges are due to: ([Akyildiz][Karlof et al])
 - the open-to-all wireless communication, deployment in evasive environments
 - inherently resource intensive security algorithms, inherently resource starved WSN nodes
 - conventional route-centric multihop protocols not directly applicable - data-centric multihop communication
 - In-network processing.....what is it ?????

In-network Processing

- In-network processing is.....
 - processing done on-the-fly on a packet in transmission
 - enables reduced packet transmissions to the base station
 - leads to a fundamental distinction between datacentric multihop communication and route-centric multihop communication
- An example to understand better.....

Motivation: In-network Processing

- Major and dominant application scenario for WSNs is
 - environmental monitoring
 - wherein data sensed at different distributed locations is transmitted to a central point viz. base station.

Motivation: In-network Processing

- The data collected is required to
 - be analyzed further, that eventually serves to initiate some action.
 - such analysis is typically based on pre-computation of an optimum e.g.
 - computing the minimum/maximum/sum/average/variance/duplicate elimination....
- Where to do such pre computations?
 - Two alternatives
 - at the central point i.e. the base-station OR
 - in the network itself
- Which one of the two is a better alternative ?

Motivation: In-network Processing

 Which one of the two viz. computation at the base station or in-network computation is a better

alternative?

- Centralized Pre-computation
 - □ Leaf nodes....9 messages
 - □ Level 1.....12 messages
 - □ Level 2......13 messages
 - □ Total messages = 34
- De-centralized pre-computation
 - □ Leaf nodes....9 messages
 - □ Level 1......3 messages
 - □ Level 2.....1 message
 - □ Total messages = 13

In-network Processing

- In-network processing is.....
 - processing done on-the-fly on a packet in transmission
 - enables reduced packet transmissions to the base station
 - Data-centric multihop communication
 - yielding finer granularity of processing
 - necessary in the resource starved sensor nodes
 - Route-centric multihop communication
 - offers coarse granularity of processing
 - tolerable in the resource rich conventional PCs

Data Aggregation...

Data Aggregation...

- Aggregating the data from multiple sensors to eliminate redundant transmission and provide fused information to the base station
- It usually involved the fusion of data from multiple sensors at intermediate nodes and transmission of aggregated data to base station (sink)
- Desirable Properties
 - Energy efficiency
 - Network Lifetime
 - Data Accuracy
 - Latency

Data Aggregation: An example

Data Aggregation: consequences

- Data aggregation
 - is an efficient way to minimize energy consumption on sensors, but it also creates new security challenges.
 - in a multihop sensor network, a forwarder node
 - by default observes the incoming data, that it has to process
 - can potentially manipulate data coming from its children in the routing tree and affect the aggregation result.
 - this can happen at forwarders as well as the aggregators.
 - identification information of the data is lost once it is aggregated, making the detection of malicious nodes more difficult.
- WSNs are deployed in hostile environments, making the sensors susceptible to attack by an adversary.

What could be the solution strategy?

- Use Secure Data Aggregation
- What could be Secure Data Aggregation ?
- What could it be based on ?

Secure Data Aggregation

def:

 Secure Data Aggregation is the efficient delivery of the single processed/summarized result reported to an off-site user (or a base station), obtained from a number of raw sensor readings,

 maintaining their privacy in such a way that ensures these reported raw readings have not been altered in the process. (adapted from

[Przydatek et al]).

Primary Objectives

- Confidentiality
- Robustness of data
 - Message/entity authentication
- Privacy of the data sensed

Why Secure Data Aggregation?

- There is a strong conflict between data security and data aggregation protocols.
 - security protocols at the application layer are end-to-end
 - sensor nodes prior to its transmission encrypt/authenticate sensed data
 - to be decrypted only at the base station [Alzaid et al][Lingxuan et al].
 - On the other hand, data aggregation protocols natively use plain data to implement data aggregation at every intermediate node
 - end-to-end integrity check not viable
 - data aggregation results in alterations in sensor data
 - necessary to provide source and data authentication along with data aggregation.

Secure Data Aggregation: Paradigms

- Broadly two paradigms in the literature to ensure Secure Data Aggregation.
 - Using Hop-by-Hop encryption i.e.
 - Secure Data Aggregation using a Link Layer Security Architecture (LLSA)
 - e.g. TinySec, SenSec, MiniSec, FlexiSec, OR IEEE 802.15.4....
 - Using specific adhoc approaches [Sang et. al.]
 - Using End-to-End encryption [Sang et. al.] i.e.
 - Secure Data Aggregation using Homomorphic Encryption
 - focus on imposing security operations on the processed data
 - also known as Concealed Data Aggregation (CDA)

[Ozdemir] [Castellucia] [Piotorwski].

Hop-by-hop Secure Data Aggregation

Hop-By-Hop Secure Data Aggregation

- Secure Data Aggregation using a Link Layer Security Architecture (LLSA)
 - requires multiple encryption-decryption i.e. security operations at each link
 - e.g. TinySec [Karlog et al], MiniSec[Luk et al], SenSec, FlexiSec[Jinwala et al], IEEE 802.15.4 based radio chips...
 - increases overall resource overhead.....why?
 - increases vulnerability to attacks
 - repeated encryption/ decryption at each hop in the network
 - offers only security (and thereby robustness) and not privacy

Questions

- Privacy???
- Difference between confidentiality and privacy??

Privacy

- Privacy is the control over the extent, timing, and circumstances of sharing oneself (physically, behaviourally, or intellectually) with others.
- Examples of activities considered private might include
 - a medical examination;
 - activities within your home;
 - using a restaurant bathroom;
 - entering the office of a reproductive health provider;
 - generally any action for which you have the reasonable expectation of privacy.
- Most things done in public places would not be considered private.

Privacy...

Huge databases exist in various applications

- Medical data
- Consumer purchase data
- Census data
- Communication and media-related data
- Data gathered by government agencies

Can these data be utilized?

- For medical research
- For improving customer service
- For homeland security

Methods for Privacy

- Multiparty Computation
 - Secret Sharing
- Privacy Homomorphism

Conventional Encryption

Privacy Homomorphism

- Privacy Homomorphism is encryption transformation that allows direct computation on encrypted data.
- An encryption algorithm E() is homomorphic, if for given E(x) and E(y) one can obtain E(x * y) without decrypting x,y for some operation *.
- Ek(a + b) or Ek(a x b) from ciphertexts Ek(a) and Ek(b) without the knowledge of the decryption key

Privacy Homomorphism

Secure Data Aggregation: Types

Classical Algorithms

- Domingo Ferrer
- Castellucia
- Combined Approach
- Okamoto Uchiyama
- Goldwasser Micali
- Benaloh
- Elgamal
- RSA
- Paillier

Castellucia

```
Algorithm Casstelluccia ()
Parameters: Select large integer M
Encryption: Message m \in [0, M-1],
Randomly generated key stream k \in [0, M-1]
c = (m+k) \mod M
Decryption: m = (c-k) \mod M
Aggregation: c_{12} = (c_1 + c_2) \mod M
```

Castellucia...

Parameter: select large integer M

Encryption: Message m \in [0,M – 1],

randomly generated key stream k ∈ [0,M – 1]

 $c = (m + k) \mod M$

Aggregation: $c_{12} = (c_1 + c_2) \mod M$

Decryption: $m = (c - k) \mod M$

ECC Based Algorithms

- Elliptic Curve Okamoto Uchiyama (EC-OU)
- Elliptic Curve Paillier (EC-P)
- Elliptic Curve Naccache-Stern (EC-NS)
- Elliptic Curve ElGamal (EC-EG)

Thank You!!!!