Teoría de Lenguajes

Clase Teórica 6 Gramáticas regulares

Primer Cuatrimestre 2024

Bibliografía

Capítulo 3, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- ▶ Definición de gramática regular.
- ▶ Teorema: Para cada gramatica regular G existe un AFND M tal que $\mathcal{L}(G) = \mathcal{L}(M).$
- ▶ Teorema: Para cada AFD M existe una gramática regular G tal que $\mathcal{L}(G) = \mathcal{L}(M).$

La jerarquía de Chomsky (Noam Chomsky en 1956).

Es una clasificación jerárquica de tipos de gramáticas formales que generan lenguajes formales.

Noam Chomsky

La jerarquía de Chomsky

Gramáticas

Definición Una gramática es una 4-upla $G = \langle V_N, V_T, P, S \rangle$ donde

- $ightharpoonup V_N$ es un conjunto de símbolos llamados no-terminales (también, variables o categorías sintácticas)
- ▶ V_T es un conjunto de símbolos terminales (tal como lo era Σ en los ejemplos anteriores)
- ▶ *P* es el conjunto de "producciones", que es un conjunto finito de

$$(V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*,$$

estas producciones son entonces pares ordenados (α, β) , que usualmente son notados como $\alpha \to \beta$.

▶ $S \in V_N$ es el símbolo distinguido de V_N .

La jerarquía de Chomsky

Gramáticas de tipo 0 (gramáticas sin restricciones) $\alpha \rightarrow \beta$,

Gramáticas de tipo 1 (gramáticas sensibles al contexto) $\alpha \to \beta$, con $|\alpha| \le |\beta|$

Gramáticas de tipo 2 (gramáticas libres de contexto) $A \rightarrow \gamma$ con $A \in V_N$.

Gramáticas de tipo 3 (gramáticas regulares). $A \rightarrow a, \ A \rightarrow aB$, $A \rightarrow \lambda$ con $A, B \in V_N, a \in V_T$.

Forma sentencial de una gramática $G = \langle V_N, V_T, P, S \rangle$

- ▶ S es una forma sentencial de G.
- ► Si $\alpha\beta\gamma$ es una forma sentencial de G, y $(\beta \to \delta) \in P$, entonces $\alpha\delta\gamma$ es también una forma sentencial de G.

Derivación directa en G Si $\alpha\beta\gamma\in (V_N\cup V_T)^*$ y $(\beta\to\delta)\in P$, se dice que $\alpha\delta\gamma$ se deriva directamente en G de $\alpha\beta\gamma$ y se denota como

$$\alpha\beta\gamma \xrightarrow{G} \alpha\delta\gamma$$
.

Entonces, $\underset{C}{\rightarrow}$ es una relación sobre $(V_N \cup V_T)^*$, es decir,

$$\underset{G}{\rightarrow} \subseteq (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$
.

Podemos componer la relación $\underset{G}{\rightarrow}$ consigo misma, 0 o más veces...

Clausura de Kleene de la relación de derivación $\underset{G}{\rightarrow}$

$$\left(\begin{array}{c} \overrightarrow{\ }_{G} \right)^{0} = id_{(V_{N} \cup V_{T})^{*}} \\ \text{Si } k0, \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{k} = \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{k-1} \circ \overrightarrow{\ }_{G} \\ \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{+} = \displaystyle \bigcup_{k=1}^{\infty} \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{k} \\ \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{*} = \left(\begin{array}{c} \overrightarrow{\ }_{G} \end{array} \right)^{+} \cup id_{(V_{n} \cup V_{T})^{*}}$$

Definición

Denotaremos con $\frac{k}{G}$ a la potencia k de la relación $\stackrel{\rightarrow}{G}$.

Definición Denotaremos con $\overset{+}{\underset{G}{\rightarrow}}$ y con $\overset{*}{\underset{G}{\rightarrow}}$ a las clausura transitiva y a la clausura transitiva y reflexiva de $\overset{-}{\underset{G}{\rightarrow}}$ respectivamente.

Definición Lenguaje generado por una gramática $G=\langle V_N,V_T,P,S\rangle$, el cual se denotará como $\mathcal{L}\left(G\right)$,

$$\mathcal{L}\left(G\right)=\left\{\alpha\in V_{T}^{*}:S\xrightarrow{f}_{G}^{+}\alpha\right\}$$

Teorema

Dada una gramática regular $G = \langle V_n, V_T, P, S \rangle$ existe un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ tal que $\mathcal{L}(G) = \mathcal{L}(M)$.

Demostración del teorema

Definamos M de la siguiente manera:

- $\blacktriangleright \ Q = V_N \cup \{q_f\}$, para mayor claridad, llamaremos q_A al estado correspondiente al no terminal A
- $ightharpoonup \Sigma = V_T$
- $ightharpoonup q_0 = q_S$
- $q_B \in \delta(q_A, a) \Leftrightarrow A \to aB \in P$
- $q_f \in \delta (q_A, a) \Leftrightarrow A \to a \in P$
- $ightharpoonup q_A \in F \Leftrightarrow A \to \lambda \in P$
- $ightharpoonup q_f \in F$.

Lema: Para todo $w \in V_T^*$, Si $A \stackrel{*}{\Rightarrow} wB$ entonces $q_B \in \delta(q_A, w)$.

Demostración del lema. Por inducción en la longitud de w. Caso base |w|=0, es decir $w=\lambda$. Como $A\stackrel{*}{\Rightarrow} A$ y $q_A\in\delta\left(q_A,\lambda\right)$,

$$A \stackrel{*}{\Rightarrow} A \Leftrightarrow q_A \in \delta(q_A, \lambda)$$
.

Caso $|w|=n+1, n\geq 0$, es decir, $w=\alpha a$ con $\alpha=n$. Asumamos h.i. para longitud n, es decir, vale para α .

$$\begin{split} A & \stackrel{*}{\Rightarrow} \alpha a B \\ & \Leftrightarrow \exists C \in V_N, A \stackrel{*}{\Rightarrow} \alpha C \wedge C \to a B \in P \\ & \Leftrightarrow \exists q_C \in Q, q_C \in \delta\left(q_A, \alpha\right) \wedge q_B \in \delta\left(q_C, a\right) \text{ por h.i.} \\ & \Leftrightarrow q_B \in \delta\left(\delta\left(q_A, \alpha\right), a\right) \\ & \Leftrightarrow q_B \in \delta\left(q_A, \alpha a\right) \end{split}$$

$$wa \in \mathcal{L}(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} wa$$

$$\Leftrightarrow \left(\exists A \in V_N, S \stackrel{*}{\Rightarrow} wA \land A \to a \in P\right) \lor$$

$$\left(\exists B \in V_N, S \stackrel{*}{\Rightarrow} waB \land B \to \lambda \in P\right) \text{ (únicas dos formas)}$$

$$\Leftrightarrow (\exists q_A \in Q, q_A \in \delta(q_S, w) \land q_f \in \delta(q_A, a)) \lor$$

$$(\exists q_B \in Q, q_B \in \delta(q_S, wa) \land q_B \in F)$$
 (por el Lema)

$$\Leftrightarrow q_f \in \delta\left(q_S, wa\right) \vee (\exists q_B \in Q, q_B \in \delta\left(q_S, wa\right) \wedge q_B \in F)$$

$$\Leftrightarrow wa \in \mathcal{L}(M)$$
.

$$\lambda \in \mathcal{L}(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} \lambda$$
$$\Leftrightarrow S \to \lambda \in P$$
$$\Leftrightarrow q_S \in F$$
$$\Leftrightarrow \lambda \in \mathcal{L}(M).$$

Teorema

Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ existe una gramática regular $G = \langle V_n, V_T, P, S \rangle$ tal que $\mathcal{L}(G) = \mathcal{L}(M)$.

Demostración

Debemos definir gramática G. $V_N=Q$, (llamaremos A_p al no terminal correspondiente a $p \in Q$).

$$V_T = \Sigma$$

$$S = A_{q_0}$$

$$A_p \to aA_q \in P \Leftrightarrow \delta(p, a) = q$$

$$A_p \to a \in P \Leftrightarrow \delta(p, a) = q \in F$$

$$S \to \lambda \in P \Leftrightarrow a_0 \in F$$

Asumamos Lema: $\delta(p, w) = q$ si y solo si $A_p \stackrel{*}{\Rightarrow} wA_q$.

$$wa \in \mathcal{L}(M) \Leftrightarrow \delta(q_0, wa) \in F$$

$$\Leftrightarrow \exists p \in Q, \delta(q_0, w) = p \land \delta(p, a) \in F$$

$$\Leftrightarrow \exists A_p, A_{q_0} \stackrel{*}{\Rightarrow} wA_p \land A_p \to a \in P$$

$$\Leftrightarrow A_{q_0} \stackrel{*}{\Rightarrow} wa$$

$$\Leftrightarrow wa \in \mathcal{L}(G)$$

$$\lambda \in \mathcal{L}(M) \Leftrightarrow q_0 \in F$$

 $\Leftrightarrow S \to \lambda \in P$

Lema: $\delta(p, w) = q$ si y solo si $A_p \stackrel{*}{\Rightarrow} wA_q$.

Demostración. Por inducción en la longitud de w.

Para $w=\lambda$, es cierto que $\delta\left(p,\lambda\right)=p$ y que $A_{p}\overset{*}{\Rightarrow}A_{p}$, por lo tanto $\delta\left(p,\lambda\right)=p\Leftrightarrow A_{p}\overset{*}{\Rightarrow}A_{p}$.

Asumamos h.i. vale para α de longitud n, con $n \geq 0$, y veamos que vale para para $w = \alpha a$.

$$\begin{split} \delta\left(p,\alpha a\right) &= q \Leftrightarrow \exists r \in Q, \delta\left(p,\alpha\right) = r \wedge \delta\left(r,a\right) = q \\ &\Leftrightarrow \exists A_r, A_p \overset{*}{\Rightarrow} \alpha A_r \wedge A_r \to a A_q \in P \text{ por h.i.} \\ &\Leftrightarrow A_p \overset{*}{\Rightarrow} \alpha a A_q. \end{split}$$