Bazy danych

Wykład 2_2

Temat: Integralność relacyjnej bazy danych

Sławomir Świętoniowski

slawomir-swietoniowski@wp.pl

Plan wykładu

- 1. Założenia relacyjnego modelu danych przypomnienie.
- 2. Definicja podstawowych pojęć.
- 3. Normalizacja bazy danych: 1NF, 2NF, 3NF.

Model relacyjny - historia

Główny twórca:

Edgar F. Codd (23 VIII 1923 - 18 IV 2003)

Źródło: Wikipedia (http://en.wikipedia.org).

Ważniejsze publikacje:

- "A Relational Model of Data for Large Shared Data Banks", 1970, CACM 13, No. 6.
- "Extending the Relational Database Model to Capture More Meaning", ACM Transactions on Database Systems, 1979, Vol. 4, No. 4, pp. 397-434.
- "Relational Database: A Practical Foundation for Productivity", Communications of ACM, 1982, Vol. 25, No. 2.
- "The Relational Model for Database Management: Version 2", Reading, Mass., Addison-Wesley, 1990.

Model relacyjny – podstawowe założenia

- Każda tabela w bazie danych ma jednoznaczną nazwę.
- Każda kolumna ma jednoznaczną nazwę w ramach jednej tabeli.
- Wszystkie wartości kolumny muszą być tego samego typu zdefiniowane na tej samej dziedzinie
- Porządek kolumn w tabeli nie jest istotny.
- Każdy wiersz w tabeli musi być różny powtórzenia nie są dozwolone.
- Porządek wierszy nie jest istotny.
- Każda wartość pola tabeli (na przecięciu kolumna/wiersz) powinna być atomowa – nie może być ciągiem, ani zbiorem.

Plan wykładu

- 1. Założenia relacyjnego modelu danych przypomnienie.
- 2. Definicja podstawowych pojęć.
- 3. Normalizacja bazy danych: 1NF, 2NF, 3NF.

Def. 1 Relacja matematyczna

Niech dane będą zbiory $D_1, D_2, ..., D_n$.

Relacją matematyczną *R* nad tymi zbiorami nazywamy dowolny podzbiór iloczynu kartezjańskiego nad tymi zbiorami, tzn.

$$R \subseteq D_1 \times D_2 \times ... \times D_n = \{(d_1, d_2, ..., d_n): d_i \in D_i, i=1,2, ...,n\}.$$

Przykład:

R: > (relacja większości)

$$D_1 = \{3, 4\}$$

$$D_2 = \{1, 2, 3\}$$

$$D_1 \times D_2 = \{(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)\}$$

$$R \subseteq D_1 \times D_2 = \{(3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$$

Na podstawie: PANKOWSKI T., Podstawy baz danych, Wydawnictwo Naukowe PWN, Warszawa, 1992.

Def. 2. Wiersz

Zbiór atrybutów (kolumn): $U=\{A_1,A_2,...\}$. Dla każdego $A\in U$, DOM(A) jest zbiorem wartości **dziedziną** (domeną) atrybutu A.

Wierszem typu U nazywamy dowolną funkcję:

$$f: U \to \bigcup \{DOM(A): A \in U\}$$

taką, że dla dowolnego $A \in U$, $f(A) \in DOM(A)$.

Zbiór wszystkich wierszy typu U oznaczamy jako: WIERSZ(U).

Na podstawie: PANKOWSKI T., Podstawy baz danych, Wydawnictwo Naukowe PWN, Warszawa, 1992.

Wiersz - przykład

```
Zbiór atrybutów: U = \{imie, nazwisko, wiek\}.
DOM(imie) = \{Jan, Andrzej\}
DOM(nazwisko) = \{Nowak, Kowalski, Jabłoński\}
DOM(wiek) = \mathbb{N} \cap [1; 130]
Przykładowy wiersz typu U:
r(U) = \{(imie, Andrzej), (nazwisko, Nowak), (wiek, 22)\}
WIERSZ(U) = \{
\{(imie, Jan), (nazwisko, Nowak), (wiek, 1)\},\
\{(imie, Jan), (nazwisko, Nowak), (wiek, 2)\},\
{(imię, Andrzej), (nazwisko, Jabłoński), (wiek, 130)} }
```

Def. 3. Relacja (tabela)

Relacją (ang. relation) typu U nazywamy dowolny, skończony podzbiór zbioru WIERSZ (U).

Zbiór wszystkich relacji (tabel) typu U oznaczamy: REL(U).

Oznaczenia:

- Relacje typu U: R(U), S(U), T(U),... lub R, S, T, ...
- Wiersze typu U: r(U), s(U), t(U),... lub r, s, t, ...
- Podzbiory *U*: *X*, *Y*, *Z*,
- Wiersz r(U): $r(U) = \{(A_1, a_1), (A_2, a_2), ..., (A_n, a_n)\}$ lub w uproszczeniu: $r(U) = (a_1, a_2, ..., a_n)$ np. r(U) = (Andrzej, Nowak, 22)

Relacja (tabela) – przykład

Tabela: Osoby

lmię	Nazwisko	Wiek
Jan	Kowalski	18
Andrzej	Jabłoński	37
Andrzej	Nowak	25

Def. 4. Zależność funkcyjna

Niech dana będzie tabela R(U) i niech $X, Y \subseteq U$ będą zbiorami atrybutów. Mówimy, że w R spełniona jest zależność funkcyjna $X \to Y$, jeśli dla wszystkich wierszy w relacji R wartości atrybutów ze zbioru Y zależą od wartości atrybutów ze zbioru X. Mówimy wówczas, że Y zależy funkcyjnie od X lub, że X determinuje funkcyjnie Y.

Tabela R

Nr_indeksu	Nazwisko	Przedmiot	Ocena
1000	Kowalski	Bazy danych	4.5
1000	Kowalski	Akademia CISCO	4.0
1003	Morawski	Bazy danych	5.0
1006	Nowak	Bazy danych	3.0
1006	Nowak	Akademia CISCO	4.5

W tabeli R występują poniższe zależności funkcyjne:

Nr_indeksu → *Nazwisko* oraz {*Nr_indeksu*, *Przedmiot*} → *Ocena*

Klucze główne i obce

- Klucz główny (ang. primary key, PK):
 - zbiór atrybutów, który identyfikuje jednoznacznie wiersze tabeli;
 - w tabeli może być kilka kluczy kandydujących, spośród których wybieramy jeden klucz główny (np. w tabeli [Osoba] kluczami kandydującymi mogą być kolumny [NIP], [PESEL], [IdOsoby]).
- Klucz obcy (ang. foreign key, FK):
 - pozwala na łączenie danych z różnych tabel;
 - zbiór atrybutów w tabeli, który czerpie swoje wartości z tej samej dziedziny,
 co klucz główny tabeli powiązanej.

Integralność encji

- Każda tabela musi mieć klucz główny, który jednoznacznie identyfikuje wiersze tej tabeli.
- Klucz główny nie może zawierać wartości pustych (null).
- Zabronione są powtórzenia wierszy w ramach jednej tabeli.

Integralność referencyjna

- Klucz obcy może przyjmować jedną z dwóch wartości:
 - klucz główny z tabeli powiązanej;
 - wartość NULL (jeżeli nie koliduje to z innymi regułami integralności).
- Niedozwolone są wskazania poprzez klucz obcy na wiersz, który nie istnieje.
- Kaskadowa aktualizacja i usuwanie zależą od konkretnego zastosowania (np. jeśli usuwamy fakturę VAT z tabeli [Faktura], to usuwamy także wszystkie jej pozycje z powiązanej tabeli [Pozycja]; natomiast jeśli usuwamy grupę studentów z tabeli [Grupa], to raczej nie usuwamy z bazy wszystkich studentów z tej grupy, zapisanych w powiązanej tabeli [Student]).

Plan wykładu

- 1. Założenia relacyjnego modelu danych przypomnienie.
- 2. Definicja podstawowych pojęć.
- 3. Normalizacja bazy danych: 1NF, 2NF, 3NF.

Normalizacja bazy danych

- Normalizacja bazy danych jest oparta na teorii modelu relacyjnego.
 Jest to technika projektowa, która polega na odpowiednim porządkowaniu schematu bazy tak, aby spełniał on poniższe wymagania;
 - dane przechowywane w bazie są zawsze w stanie spójności, a ich modyfikacja nie powoduje błędów;
 - wyszukiwanie i modyfikowanie danych jest wydajne;
 - struktura bazy jest przejrzysta i zrozumiała dla projektantów oraz programistów, co ułatwia administrowanie, utrzymanie i rozwijanie.
- Istnieją następujące postaci normalne: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.
 W praktyce zazwyczaj normalizujemy bazę do 2–3NF, wyższe postacie w większości przypadków nie są stosowane.
- Na ogólnym poziomie normalizacja sprowadza się do poniższych zasad:
 - każda tabela powinna mieć klucz, które jednoznacznie identyfikuje wiersze;
 - jedna tabela powinna przechowywać dane na temat jednej encji (klasy obiektów);
 - pola tabeli nie powinny przyjmować wartości NULL;
 - tabele nie powinny zawierać zduplikowanych kolumn, ani wartości danych.

Zalety i wady normalizacji

Zalety normalizacji:

- eliminuje anomalie przy modyfikacji danych, zapewniając ich spójność;
- redukuje nadmiar danych (redundancję), przez co osiągana równowaga pomiędzy zajętością przestrzeni dyskowej i wydajnością;
- przyśpiesza tworzenie indeksów, sortowanie i przeszukiwanie tabel na skutek zmiejszenia ich rozmiaru;
- ułatwia zachowanie integralności referencyjnej;
- prowadzi do struktury relacyjnej, która jest przejrzysta i zrozumiała;
- zmniejsza liczbę kolumn w tabeli, dzięki czemu maleje rozmiar wierszy, więcej wierszy wchodzi na jedną stronę danych – a w konsekwencji przyśpieszane są operacje wejścia-wyjścia.

Wady normalizacji:

 zwiększa liczbę tabel w bazie, przez co wiele z nich musi być złączanych przy wyszukiwaniu lub modyfikacji danych; zmniejsza to wydajność bazy, gdyż złączenia są operacjami bardzo kosztownymi (rozwiązanie → denormalizacja).

Poziomy normalizacji bazy danych

Nieznormalizowany zbiór danych

Kursy_Oceny

KodKursu	NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
				34698, 37798,	Kowalski, Nowak,	Jan, Artur,		
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	3.5; 4.5; 4.0	L1, L2, L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0; 3.5	L1, L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

Problem: w kolumnach [IndeksStud], [NazwiskoStud], [ImieStud], [Ocena], [TypOceny] występuje wiele wartości, które sobie odpowiadają (np. student Jan Kowalski, numer indeksu 34698 za L1 z przedmiotu "INF407" uzyskał ocenę 3.5). Z tego powodu zapis w tabeli może nie być jednoznaczny, a wyszukiwanie danych jest bardzo utrudnione i nieefektywne.

Pierwsza postać normalna (1NF)

Tabela R(U) jest w **pierwszej postaci normalnej** (ang. *first normal form*, 1NF), jeżeli dziedziny DOM(A) wszystkich kolumn $A \in U$ są zbiorami wartości prostych, to znaczy nie są ani zbiorami, ani ciągami elementów należących do zbioru $\cup \{DOM(A): A \in U\}$.

Definicje przytoczone są na podstawie książki:

PANKOWSKI T., Podstawy baz danych, Wydawnictwo Naukowe PWN, Warszawa, 1992, str. 162 - 192.

Baza w 1NF – przykład

Kursy_Oceny (tabela nieznormalizowana)

KodKursı	u NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
				34698, 37798,	Kowalski, Nowak,	Jan, Artur,		
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	3.5; 4.5; 4.0	L1, L2, L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0; 3.5	L1, L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

Kursy_Oceny (pierwsza postać normalna – 1NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
INF407	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L1
INF407	234	Dudek	Damian	37798	Nowak	Artur	4.5	L2
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

Problemy z bazą w 1NF

Kursy_Oceny (pierwsza postać normalna – 1NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
INF407	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L1
INF407	234	Dudek	Damian	37798	Nowak	Artur	4.5	L2
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

- Anomalia usuwania: jeśli usuniemy studenta o numerze indeksu 34668, utracimy informację o kursie "INF517" i jego wykładowcy.
- Anomalia modyfikacji (aktualizacji): jeśli zmienimy wykładowcę przedmiotu "INF407", to: (1) musimy aktualizować jednocześnie trzy kolumny [NrPrac], [NazwiskoPrac] i [ImiePrac]; (2) musimy modyfikować wiele wierszy, co może prowadzić do okresowego zablokowania tabeli albo do sprzeczności danych.
- Anomalia wstawiania (dołączania): nie możemy zapisać nowego studenta na dany przedmiot, dopóki nie będzie on miał przynajmniej jednej oceny z tego przedmiotu (chyba że wstawimy wartość NULL w kolumnach [Ocena] i [TypOceny]).

[Kursy_Oceny] w 1NF – zależności funkcyjne

Kursy_Oceny (pierwsza postać normalna – 1NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
INF407	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L1
INF407	234	Dudek	Damian	37798	Nowak	Artur	4.5	L2
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

Klucz główny: K = {KodKursu, IndeksStud, TypOceny} (drugi kadydat: {NrPrac, IndeksStud, TypOceny})

Zależności funkcyjne:

 $K \to NrPrac, K \to NazwiskoPrac, K \to ImiePrac, K \to NazwiskoStud, K \to ImieStud, K \to Ocena,$

 $\mathsf{KodKursu} \to \mathsf{NrPrac}, \, \mathsf{KodKursu} \to \mathsf{NazwiskoPrac}, \, \mathsf{KodKursu} \to \mathsf{ImiePrac},$

NrPrac → NazwiskoPrac, NrPrac → ImiePrac, IndeksStud → NazwiskoStud, IndeksStud → ImieStud

Źródła problemów:

kolumny: NrPrac, NazwiskoPrac i ImiePrac są zależne od części klucza - kolumny KodKursu; kolumny NazwiskoStud i ImieStud są zależne od części klucza - kolumny IndeksStud.

[Kursy_Oceny] w 1NF – zależności funkcyjne

Cel: chcemy, aby każda kolumna niekluczowa był w pełni zależna od klucza głównego.

Druga postać normalna (2NF)

Tabela R jest w **drugiej postaci normalnej** (ang. second normal form, 2NF), jeżeli jest w 1NF i każda niekluczowa kolumna $A \in U$ jest w pełni zależna funkcyjnie od klucza głównego tej tabeli (i od każdego innego klucza kandydującego).

Normalizacja tabeli do 2NF:

- Przeprowadzamy rozkład (dekompozycję) tabeli względem niepełnych zależności funkcyjnych. W ten sposób dążymy, aby każda tabela odnosiła się do jednej klasy obiektów.
- Tabela jest już w 2NF, jeśli klucz główny jest jednoelementowy.
- Przeprowadzanie tabeli do 2NF nie jest procesem jednoznacznym, tzn. dla jednej tabeli może istnieć wiele równoważnych informacyjnie rozkładów w 2NF.

Normalizacja tabeli [Kursy_Oceny]

Normalizacja tabeli [Kursy_Oceny] do 2NF

Kursy_Oceny (pierwsza postać normalna – 1NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac	IndeksStud	NazwiskoStud	ImieStud	Ocena	TypOceny
INF407	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L1
INF407	234	Dudek	Damian	37798	Nowak	Artur	4.5	L2
INF407	234	Dudek	Damian	34888	Bracki	Krzysztof	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	4.0	L1
INF507	234	Dudek	Damian	34698	Kowalski	Jan	3.5	L2
INF517	345	Choroś	Kazimierz	34668	Morawski	Andrzej	5.0	Egz

Kursy (2 NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac
INF407	234	Dudek	Damian
INF507	234	Dudek	Damian
INF517	345	Choroś	Kazimierz

Studenci (2NF i od razu 3NF)

IndeksStud	NazwiskoStud	ImieStud
34698	Kowalski	Jan
37798	Nowak	Artur
34888	Bracki	Krzysztof
34668	Morawski	Andrzej

Oceny (2NF i od razu 3NF)

KodKursu	IndeksStud	TypOceny	Ocena
INF407	34698	L1	3.5
INF407	37798	L2	4.5
INF407	34888	L1	4.0
INF507	34698	L1	4.0
INF507	34698	L2	3.5
INF517	34668	Egz	5.0

Problemy z bazą w 2NF

Kursy (2 NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac
INF407	234	Dudek	Damian
INF507	234	Dudek	Damian
INF517	345	Choroś	Kazimierz

- Anomalia usuwania: jeśli usuniemy przedmiot "INF517", utracimy informację o wykładowcy; podobnie, usunięcie wierszy dotyczących wykładowcy o numerze "234" powoduje utratę informacji o kursach "INF407" i "INF507".
- Anomalia modyfikacji (aktualizacji): zmiana numeru pracownika (pola "NrPrac") lub jego danych osobowych (pola "NazwiskoPrac" i "ImiePrac") wymaga dokonania aktualizacji w wielu wierszach; może to prowadzić do okresowego zablokowania tabeli albo do sprzeczności danych.
- Anomalia wstawiania (dołączania): nie można zapisać informacji o zatrudnionym pracowniku,
 jeśli nie prowadzi on przynajmniej jednego kursu.

Kursy 2NF – zależności funkcyjne

Kursy (2 NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac
INF407	234	Dudek	Damian
INF507	234	Dudek	Damian
INF517	345	Choroś	Kazimierz

Klucz główny: K = {KodKursu}

Zależności funkcyjne:

KodKursu → NrPrac, KodKursu → NazwiskoPrac, KodKursu → ImiePrac,

NrPrac → NazwiskoPrac, NrPrac → ImiePrac

Źródło problemów:

kolumny: NazwiskoPrac i ImiePrac są zależne funkcyjnie od atrybutu niekluczowego NrPrac (zależność tranzytywna - inaczej przechodnia).

Trzecia postać normalna (3NF)

Tabela *R* jest w **trzeciej postaci normalnej** (ang. *third normal form*, 3NF), jeżeli jest w 2NF i żaden zbiór kolumn niekluczowych nie jest tranzytywnie (przechodnio) zależny od klucza głównego tabeli *R* (ani żadnego innego klucza kandydującego).

Normalizacja tabeli do 3NF:

- Przeprowadzamy rozkład (dekompozycję) relacji względem zależności tranzytywnych.
- Przeprowadzanie relacji z 2NF do 3NF nie jest procesem jednoznacznym,
 tzn. dla jednej relacji może istnieć wiele równoważnych informacyjnie rozkładów w 3NF.

Normalizacja relacji [Kursy] do 3NF

— rozkład (dekompozycja)

Normalizacja relacji [Kursy] do 3NF

— rozkład (dekompozycja)

Kursy (2 NF)

KodKursu	NrPrac	NazwiskoPrac	ImiePrac
INF407	234	Dudek	Damian
INF507	234	Dudek	Damian
INF517	345	Choroś	Kazimierz

Kursy (3 NF)

KodKursu	NrPrac
INF407	234
INF507	234
INF517	345

Kursy (3 NF)

NrPrac	NazwiskoPrac	ImiePrac
234	Dudek	Damian
345	Choroś	Kazimierz

Literatura

- 1. BEYNON-DAVIES P., Systemy baz danych nowe wydanie, WNT, Warszawa 2003.
- 2. MICROSOFT, *Books On-Line* dokumentacja systemu *MS SQL Server*, Microsoft Corp. 1988 2000.
- 3. PANKOWSKI T., *Podstawy baz danych*, Wydawnictwo Naukowe PWN, Warszawa, 1992.
- 4. RANKINS R., JENSEN P., BERTUCCI P., *Microsoft SQL Server 2000. Księga eksperta.*, HELION, Gliwice 2003 (książka dostępna w bibliotece WSIZ "Copernicus").

Bazy danych

Wykład 2_2

Dziękuję za uwagę!