Espaces vectoriels de dimension finie

Calculs de dimension

Exercice 1 (Quelle dimension?)

En déterminant une base, donner la dimension des espaces vectoriels suivants :

- $A = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y z = 0, \ 3x + y + z = 0\}.$
- $B = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x y + 2z t = 0\}.$
- $F = \left\{ \begin{pmatrix} a & b & 0 \\ 0 & a & b \\ c & 0 & a \end{pmatrix}, (a, b, c) \in \mathbb{R}^3 \right\}.$
- $G = \{ P \in \mathbb{R}_4[X] \mid X^2 + 2X + 3 \text{ divise } P \}$
- $S = \{u \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} 4u_n\}.$ (Utiliser la méthode de l'équation caractéristique pour déterminer une base de S)

Exercice 2 (Un hyperplan de polynômes)

Soit F l'ensemble des polynômes de $\mathbb{R}_n[X]$ qui s'annulent en 1. Montrer que F est un hyperplan de $\mathbb{R}_n[X]$ et en donner une base.

Bases en dimension finie

Exercice 3 (Base ou pas?)

Dans chacun des cas suivants, déterminer (avec le moins de calculs possible!) si la famille \mathcal{F} est ou non une base de E:

- 1. Dans $E = \mathbb{R}^3$,
- (a) $\mathcal{F} = ((1, 2, -1), (1, 1, 3)).$
- (b) $\mathcal{F} = ((1,0,-1),(2,1,1),(0,1,2),(1,1,1)).$
- (c) $\mathcal{F} = ((1,0,0), (1,1,1), (0,1,2)).$
- (d) $\mathcal{F} = ((1,0,0), (1,1,1), (0,1,1)).$
- 2. La famille $\mathcal{F} = (X^3, X^3 1, X^3 + X, X^2)$
- (a) Dans $E = \mathbb{R}_3[X]$?
- (b) Dans $E = \mathbb{R}_4[X]$?
- 3. Dans $E = \mathcal{M}_2(\mathbb{R})$,
- (a) $\mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \right)$
- (b) $\mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right)$

Exercice 4 (Génératrice ou pas?)

Déterminer, sans aucun calcul, si les familles de polynômes suivantes sont génératrices de $\mathbb{R}_3[X]$:

- (a) $(X^3 X^2 + 2X 1, X^2 2)$.
- (b) $(X^2 X + 1, X^3 2X, X 1)$.
- (c) $(X^2 + 3X 2, 3X 2, X^3, 2)$.
- (d) $(X^3 2, X^2 + 2X, -1, X 2, X^3 + 2X^2)$.
- (e) $(X^2 + X, X + 1, 3, X^2 + 1, 2X^2 X + 1)$.

Exercice 5 (Complétion/extraction)

- 1. Compléter la famille de l'Exercice 3, 1.(a) en une base de \mathbb{R}^3 .
- 2. Extraire de la famille de l'Exercice 3, 1.(b) une base de \mathbb{R}^3 .

Exercice 6 (Une base de $\mathbb{R}_3[X]$)

Soit $a \in \mathbb{R}^*$.

- 1. Montrer que $(1, X a, (X a)^2, (X a)^3)$ est une base de $\mathbb{R}_3[X]$.
- 2. Déterminer les coordonnées de X et de X^3 dans cette base.
- 3. Comment déterminer simplement les coordonnées de n'importe quel polynôme $P \in \mathbb{R}_3[X]$ dans cette base ?

Exercice 7 (Une autre base pour $\mathbb{R}_n[X]$)

Soit $n \in \mathbb{N}$.

Pour tout $k \in [0, n]$, on pose $P_k(X) = X^k(1-X)^{n-k}$.

Montrer que $(P_0, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.

Indication : Pour montrer que c'est une famille libre, on pensera à évaluer X en une valeur particulière...

Calcul de rang

Exercice 8 (Rang dans \mathbb{R}^3)

Calculer le rang des familles suivantes :

- (a) $\mathcal{F}_1 = ((1,1,0),(0,1,1))$
- (b) $\mathcal{F}_2 = ((1,0,0),(1,1,0),(1,1,1))$
- (c) $\mathcal{F}_3 = ((1,0,1),(0,1,0),(1,1,0),(0,0,1))$
- (d) $\mathcal{F}_4 = ((1,2,3),(3,2,1),(1,1,1))$

Dans chaque cas, dire s'il s'agit d'une famille libre, d'une famille génératrice, d'une base de \mathbb{R}^3 .

Exercice 9 (Rang dans $\mathbb{R}[X]$)

On pose : $P_0 = 1$, $P_1 = X - 1$, $P_2 = 2X^2 + 2$, $P_3 = (X-1)(2X^2 - X)$, $P_4 = X^3$, $P_5 = X^3 - 2X + 1$.

- 1. Calculer $rg(P_0, P_1, P_2, P_3, P_4, P_5)$.
- 2. Cette famille est-elle libre?
- 3. Déterminer l'espace vectoriel qu'elle engendre.

Exercice 10 (Dans $\mathcal{M}_2(\mathbb{R})$)

On pose :
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 1. Calculer rg(A, B, C, D, E).
- 2. Cette famille est-elle libre? Est-elle génératrice de $\mathcal{M}_2(\mathbb{R})$?

Exercices classiques

Exercice 11 (Polynômes de Lagrange (le retour))

Soient x_0, x_1, \ldots, x_n des réels deux à deux distincts. Pour tout $i \in [0, n]$, on définit

$$L_i(X) = \prod_{j \in [0,n] \setminus \{i\}} \left(\frac{X - x_j}{x_i - x_j} \right) \in \mathbb{R}_n[X].$$

- 1. (a) Pour tout $(i,k) \in [0,n]^2$, que vaut $L_i(x_k)$? (b) En déduire que $\mathcal{B} = (L_0, L_1, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Soit $P \in \mathbb{R}_n[X]$ quelconque. Comment P se décompose-t-il dans la base \mathcal{B} ?
- 3. Soient $y_0, y_1, \ldots, y_n \in \mathbb{R}$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que $\forall k \in [0, n], P(x_k) = y_k$. On donnera la décomposition de ce polynôme dans la base \mathcal{B} .

Cet unique polynôme de degré inférieur à n, qui prend les valeurs y_k au (n+1) points x_k , est appelé "Polynôme interpolateur de Lagrange".

Exercice 12 (Indice de nilpotence d'un endomorphisme)

Soit E un espace vectoriel de dimension finie n et $f \in \mathcal{L}(E)$ (f est un endomorphisme de E).

On suppose que f est un endomorphisme **nilpotent** c'est à dire qu'il existe $k \in \mathbb{N}^*$ tel que $f^k = 0$.

On note $p \in \mathbb{N}^*$ le plus petit entier satisfaisant $f^p = 0$. (On l'appelle "l'indice de nilpotence de f")

- 1. Justifier qu'il existe $x_0 \in E$ tel que $f^{p-1}(x_0) \neq 0_E$.
- 2. Montrer que $(x_0, f(x_0), f^2(x_0), \ldots, f^{p-1}(x_0))$ est une famille libre.

Indication: que se passe-t-il en composant par f ? ...

3. En déduire qu'on a forcément $p \le n$. Que dire de la famille précédente dans le cas p = n?