

N1.5: CHAIN RULE

The 'chain rule' is used to differentiate a function which is the *composition* of two simpler functions

If
$$y = g[u]$$
 where $u = h(x)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

Examples

Differentiate $y = (2x - 1)^4$

Let
$$u = 2x - 1$$
, then $y = u^4$

$$\frac{du}{dx} = 2$$
 and $\frac{dy}{du} = 4u^3$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= 4u^3 . 2$$

$$= 8u^3$$

$$= 8(2x - 1)^3$$

 $= 8(2x - 1)^3$ [since u = 2x - 1]

2) Find the derivative of $y = \frac{1}{\sqrt[3]{5t^2 + 2t + 1}}$

$$y = (5t^2 + 2t + 1)^{\frac{-1}{3}}$$
 [change to index form for easier differentiation]

Let
$$u = 5t^2 + 2t + 1$$
, then $y = \frac{1}{\sqrt[3]{u}} = u^{-\frac{1}{3}}$

$$\frac{du}{dt} = 10t + 2 \text{ and } \frac{dy}{du} = \frac{-1}{3}u^{\frac{-4}{3}}$$

$$\frac{dy}{dt} = \frac{dy}{du} \times \frac{du}{dt}$$

$$= \frac{-1}{3}u^{\frac{-4}{3}} \cdot (10t + 2)$$

$$= \frac{-1}{3}(5t^2 + 2t + 1)^{\frac{-4}{3}} \cdot (10t + 2)$$
 [since $u = 5t^2 + 2t + 1$]

$$= \frac{-(10t+2)}{3} (5t^2 + 2t + 1)^{\frac{-4}{3}}$$
 [after simplifying]

3) Differentiate $y = \sin 5x$

$$y = \sin 5x$$
Let $y = \sin(u)$ where $u = 5x$

$$\frac{dy}{du} = \cos(u) \text{ and } \frac{du}{dx} = 5$$
Then
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \cos(u). 5$$

$$= 5\cos(5x)$$

4). If
$$f(x) = \cos^3 x$$
 find $f'(x)$

$$y = cos^3x = [cos(x)]^3$$

Let $y = u^3$ where $u = cos(x)$
 $\frac{dy}{du} = 3u^2$ and $\frac{du}{dx} = -sin(x)$

Then
$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
$$= 3u^2.(-sinx)$$

$$= 3\cos^2 x.(-\sin x)$$
$$= -3\sin x\cos^2 x$$

5) Differentiate $(log_e 4x)^3$

Let $y=u^3$ where $u=log_e v$ and v=4x [The chain rule can be extended to three or more functions!!]

$$\begin{aligned} \frac{dy}{du} &= 3u^2 \cdot \frac{du}{dv} = \frac{1}{v} \text{ and } \frac{dv}{dx} = 4 \\ \frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} \\ &= 3u^2 \cdot \frac{1}{v} \cdot 4 \\ &= 3(\log_e v)^2 \cdot \frac{1}{4x} \cdot 4 \\ &= 3(\log_e 4x)^2 \cdot \frac{1}{4x} \cdot 4 \\ &= \frac{3}{x} (\log_e 4x)^2 \end{aligned}$$

Exercise

Find the derivatives of the following functions

1)
$$y = \tan 3x$$

2)
$$f(x) = \log_{\theta} \left(\frac{x}{2}\right)$$

$$3) \quad y = \sin\left(\frac{\pi}{4} - 2x\right)$$

4)
$$y = \cos^2 x$$

5)
$$f(x) = e^{\sin x}$$

$$6) y = \sqrt{1 - \cos 5x}$$

Answers

$$2) \frac{1}{x}$$

$$3) -2\cos\left(\frac{\pi}{4} - 2x\right)$$

5)
$$e^{\sin x} \cos x$$

$$6) \ \frac{5\sin 5x}{2\sqrt{1-\cos 5x}}$$