

0

Álgebra Linear

Matrizes

Profa. Elba O. Bravo Asenjo eoba@uenf.br

Referências Bibliográficas

Matrizes

Definição.

Uma $matriz\ real\ A$ de ordem $m\times n$ é uma tabela de mn números reais, dispostos em m linhas e n colunas, onde m e n são números inteiros positivos.

Uma matriz real A de ordem mxn pode ser representanda por A_{mxn} ou por $A = [a_{ij}]_{mxn}$, ou também por $A = (a_{ij})_{mxn}$, onde $i \in \{1, ..., m\}$ é o índice da linha e $j \in \{1, ..., n\}$ é o índice da coluna do termo genérico da matriz.

 $M_{mxn}(\mathbb{R})$ representa o conjunto de todas as matrizes reais de ordem m x n.

Exemplo 1

templo 1

1. Uma matriz
$$3 \times 2$$
:
$$\begin{bmatrix}
 2 & -3 \\
 1 & 0 \\
 \sqrt{2} & 17
 \end{bmatrix}$$

2. Uma matriz 2×2 : $\begin{pmatrix} 5 & 3 \\ -1 & 1/2 \end{pmatrix}$

De acordo com o número de linhas e colunas de uma matriz, podemos destacar os seguintes casos particulares:

- m=1: matriz linha
- n=1: matriz coluna
- m = n: matriz quadrada. Neste caso, escrevemos apenas A_n e dizemos que "A é uma matriz quadrada de ordem n". Representamos o conjunto das matrizes reais quadradas de ordem n por $M_n(\mathbb{R})$ (ou, simplesmente, por M_n).

Exemplo 2

1. matriz linha
$$1 \times 4$$
: 2 -3 4 $1/5$

2. matriz coluna 3×1 : 17

3. Matriz quadrada de ordem 4

$$A = \begin{bmatrix} 3 & -2 & 0 & 1 \\ 5 & 3 & -2 & 7 \\ 0.5 & -3 & 3.14 & 14 \\ -5 & 0 & -1 & 6 \end{bmatrix}$$

A Diagonal Principal de A é formada por: 3, 3, 3.14, 6

A Diagonal Secundária de A é formada por: 1, −2, −3, −5

Exemplo 3. Construir a matriz $A \in M_{2x4}(\mathbb{R})$, $A = (a_{ij})$, tal que

$$a_{ij} = \begin{cases} i^2 + j, & \text{se } i = j \\ i - 2j, & \text{se } i \neq j \end{cases}$$

A matriz procurada é do tipo $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$.

Exemplo 3

Seguindo a regra de formação dessa matriz, temos:

$$a_{11} = 1^{2} + 1 = 2$$

$$a_{12} = 1 - 2(2) = -3$$

$$a_{22} = 2^{2} + 2 = 6$$

$$a_{13} = 1 - 2(3) = -5$$

$$a_{14} = 1 - 2(4) = -7$$

$$a_{21} = 2 - 2(1) = 0$$

$$a_{23} = 2 - 2(3) = -4$$

$$a_{24} = 2 - 2(4) = -6$$

$$Logo, A = \begin{bmatrix} 2 & -3 & -5 & -7 \\ 0 & 6 & -4 & -6 \end{bmatrix}.$$

Igualdade de Matrizes

Definição.

Duas matrizes
$$A, B \in M_{m \times n}(\mathbb{R}), A = (a_{ij}), B = (b_{ij}),$$
 são iguais quando $a_{ij} = b_{ij}, \forall i \in \{1, ..., m\}, \forall j \in \{1, ..., n\}.$

Exemplo 4. Determinar a, b, c e d para que as seguintes matrizes sejam iguais.

$$\begin{bmatrix} 2a & 3b \\ c+d & 6 \end{bmatrix} e \begin{bmatrix} 4 & -9 \\ 1 & 2c \end{bmatrix}$$

Igualdade de Matrizes

Pela definição de igualdade de matrizes, podemos escrever:

$$\begin{bmatrix} 2a & 3b \\ c+d & 6 \end{bmatrix} = \begin{bmatrix} 4 & -9 \\ 1 & 2c \end{bmatrix} \Rightarrow \begin{cases} 2a=4 \\ 3b=-9 \\ c+d=1 \\ 6=2c \end{cases}$$

Dai obtemos a = 2, b = -3, c = 3 e d = -2

Matriz Quadrada de ordem 3

Seja a Matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Matrizes Quadradas Especiais

Seja $A=[a_{ij}] \in M_n\left(\mathbb{R}\right)$ uma matriz quadrada de ordem n. Dizemos que A é uma matriz

- triangular superior, quando $a_{ij} = 0$ se i > j (isto é, possui todos os elementos abaixo da diagonal principal nulos).
- triangular inferior, quando $a_{ij} = 0$ se i < j (isto é, possui todos os elementos acima da diagonal principal nulos).
- diagonal, quando $a_{ij} = 0$ se $i \neq j$ (isto é, possui todos os elementos fora da diagonal principal nulos). Uma matriz diagonal é, ao mesmo tempo, triangular superior e triangular inferior.

Matrizes Quadradas Especiais

• escalar, quando $a_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ k, \text{ se } i = j \end{cases}$, para algum $k \in \mathbb{R}$. Isto é, uma matriz escalar é diagonal e possui todos os elementos da diagonal principal iguais a um certo escalar k.

• identidade, quando $a_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ 1, \text{ se } i = j \end{cases}$. Isto é, a identidade é uma matriz escalar e possui todos os elementos da diagonal principal iguais a 1. Representamos a matriz identidade de ordem n por I_n .

Exemplos

 $\begin{bmatrix} 4 & 1 & 2 \\ 0 & 6 & 3 \\ 0 & 0 & 9 \end{bmatrix}$

triangular superior

triangular superior

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ triangular superior, triangular inferior, diagonal

Exemplos

triangular inferior

triangular superior, triangular inferior, diagonal, escalar

triangular superior, triangular inferior, diagonal, escalar

Matriz Identidade

Matrizes Identidade:

$$I_1 = [1]; \quad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Matriz identidade de ordem n

Matriz Nula

<u>Definição</u>. A matriz nula em $M_{mxn}(\mathbb{R})$ é a matriz de ordem $m \times n$ que possui todos os elementos iguais a zero.

Exemplos:

Matriz Nula 3x3

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Nula 2x3

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Oposta de A

Definição.

Dada $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$, a oposta de A é a matriz $B = (b_{ij}) \in M_{m \times n}(\mathbb{R})$ tal que $b_{ij} = -a_{ij}, \ \forall i \in \{1, ..., m\}, \ \forall j \in \{1, ..., n\}.$ Ou seja, os elementos da matriz oposta de A são os elementos opostos aos elementos de A. Representamos a oposta de A por -A.

Exemplo.

$$A = \begin{bmatrix} 3 & -1 & 0 \\ 2 & \sqrt{3} & 4 \\ 1 & 0 & -8 \\ -6 & 10 & -2 \end{bmatrix}$$

A matriz *Oposta* de
$$A = \begin{bmatrix} 3 & -1 & 0 \\ 2 & \sqrt{3} & 4 \\ 1 & 0 & -8 \\ -6 & 10 & -2 \end{bmatrix}$$
 é a matriz
$$-A = \begin{bmatrix} -3 & 1 & 0 \\ -2 & -\sqrt{3} & -4 \\ -1 & 0 & 8 \\ 6 & -10 & 2 \end{bmatrix}.$$

Adição de Matrizes

<u>Definição</u>. Dadas as matrizes $A = (a_{ij})$ e $B = (b_{ij})$ de ordem $m \times n$, a soma A + B é a matriz $C = (c_{ij})$ de ordem $m \times n$, tal que $c_{ij} = a_{ij} + b_{ij}$, $\forall i \in \{1, ..., m\}$, $\forall j \in \{1, ..., n\}$.

A diferença de A e B, indicada por A - B, é a soma de A com a *oposta* de B, isto é, A - B = A + (-B)

Adição de Matrizes

Exemplos: Sejam as matrizes

$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix},$$

$$C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

Encontrar A + B, A - B, e A + C

Exemplos

Solução

$$A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix} \qquad A - B = \begin{bmatrix} 3 & -1 & 4 \\ -4 & -2 & -5 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 3 & -1 & 4 \\ -4 & -2 & -5 \end{bmatrix}$$

A expressão A + C não está definida pois $A \in C$ têm tamanhos diferentes!

Múltiplo Escalar de A

<u>Definição</u>. Se A é uma matriz e c é um escalar, então o produto cA é a matriz obtida pela multiplicação de cada entrada (elemento) da matriz A por c. A matriz cA é chamada múltiplo escalar de A.

Em notação matricial, se $A=[a_{ij}]$ é uma matriz de ordem $m \times n$ e se c é um escalar, então

 $cA = [ca_{ij}]$ matriz de ordem $m \times n$, $\forall i \in \{1, ..., m\}$ e $\forall j \in \{1, ..., n\}$.

Exemplo: Sejam as matrizes

$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix},$$

Exemplos

Então,

$$2B = 2\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$$
$$A - 2B = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ -7 & -7 & -12 \end{bmatrix}$$

Propriedades

Propriedades da soma de matrizes e do múltiplo escalar de uma matriz

Teorema.

Sejam A, B, e C matrizes do mesmo tamanho (da mesma ordem) e sejam r e s escalares, então,

a)
$$A + B = B + A$$

b)
$$(A + B) + C = A + (B + C)$$

c)
$$A + 0 = A$$

d)
$$r(A + B) = rA + rB$$

e)
$$(r + s)A = rA + sA$$

f)
$$r(sA) = (rs)A$$

Produto de Matrizes

Definição. Se A é uma matriz $m \times p$ e B é uma matriz $p \times n$, então o produto AB é a matriz $m \times n$ cujas entradas são determinadas como segue. Para obter a entrada na linha i e coluna j de AB, destaque a linha i de A e a coluna j de B. Multiplique as entradas correspondentes desta linha e desta coluna e então some os produtos resultantes.

Em notação matricial, se $A=(a_{ij})_{mxp}$ e $B=(b_{ij})_{pxn}$, então a matriz produto de A por B é a matriz $AB=C=(c_{ij})_{mxn}$ tal que

$$c_{ij} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

Produto de matrizes

Observação. A definição de multiplicação de matrizes exige que o número de colunas do primeiro fator **A** seja igual ao número de linhas do segundo fator **B** para que seja possível formar o produto **AB**. Assim,

$$A_{mxp}$$
 . $B_{pxn} = C_{mxn}$

Exemplo 1.

Sejam as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} \quad \mathbf{e} \qquad B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}.$$

 c_{13} do produto $AB = C = (c_{ij})_{2x3}$ a) Calcular o elemento ou entrada

$$AB = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} \Box & \Box & 2(6) + 3(3) \\ \Box & \Box & \Box \end{bmatrix} = \begin{bmatrix} \Box & \Box & 21 \\ \Box & \Box & \Box \end{bmatrix}$$

Exemplo 1

b) Calcular o elemento ou entrada c_{22} do produto $AB = C = (c_{ij})_{2x3}$

$$\begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} \Box & \Box & 21 \\ \Box & 1(3) + -5(-2) & \Box \end{bmatrix} = \begin{bmatrix} \Box & \Box & 21 \\ \Box & 13 & \Box \end{bmatrix}$$

Exemplo 2

$$AB = \begin{bmatrix} 3 & 2 & -1 \\ 4 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 3 & 10 & 2 \\ -1 & 5 & 0 & 5 \\ 2 & 6 & 4 & -2 \end{bmatrix} =$$

$$= \begin{bmatrix} 3 - 2 - 2 & 9 + 10 - 6 & 30 + 0 - 4 & 6 + 10 + 2 \\ 4 + 0 + 14 & 12 + 0 + 42 & 40 + 0 + 28 & 8 + 0 - 14 \end{bmatrix} = \begin{bmatrix} -1 & 13 & 26 & 18 \\ 18 & 54 & 68 & -6 \end{bmatrix}$$

Observe que, neste caso, não é possível efetuar BA.

Propriedades do Produto de Matrizes

Teorema.

Supondo que os tamanhos das matrizes são tais que as operações indicadas podem ser efetuadas, valem as seguintes regras da aritmética matricial.

```
a) A(BC) = (AB)C (lei associativa da multiplicação)
```

b)
$$A(B + C) = AB + AC$$
 (lei distributiva à esquerda)

c)
$$(B + C)A = BA + CA$$
 (lei distributiva à direita)

- d) r(AB) = (rA)B = A(rB) para qualquer escalar r
- e) IA = A = AI, onde I é a matriz Identidade.

Observações

- 1. Em geral, $AB \neq BA$. Isto é, em geral, o produto de matrizes não é comutativo.
- 2. A *lei de cancelamento* não é válida para multiplicação de matrizes. Isto é, Se AB = AC, então, em geral, não é verdade que B = C.
- 3. Se AB = 0, então, em geral, não implica que A = 0 ou B = 0. Isto é, é possível um produto de matrizes ser zero sem que nenhum dos fatores seja zero.

Observações:

Sejam as matrizes

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 7 \\ 0 & 0 \end{bmatrix}$$

Então

$$AB = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \quad e \quad BA = \begin{bmatrix} 0 & 3 \\ 0 & 11 \end{bmatrix} \quad Logo \quad AB \neq BA$$

$$AB = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} = AC \quad porém \quad B \neq C$$

$$AD = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ porém } A \neq 0 \text{ e } D \neq 0$$

Matriz Transposta

Definição. Dada uma matriz $A = [a_{ij}]$ de ordem $m \times n$, a transposta de A é a matriz $B = [b_{ji}]$ de ordem $n \times m$ tal que $b_{ji} = a_{ij}$, $\forall i \in \{1, ..., m\}$ e $\forall j \in \{1, ..., n\}$. A transposta de A é denotada como A^T .

Exemplos

Sejam as matrizes

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$

Então

$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

Propriedades da Transposta

<u>Teorema</u>. Se os tamanhos das matrizes são tais que as operações indicadas podem ser efetuadas, então

- $a) (A^T)^T = A$
- b) $(A + B)^T = A^T + B^T$ e $(A B)^T = A^T B^T$
- c) $(kA)^T = k A^T$, onde k é um escalar qualquer
- d) $(AB)^T = B^T A^T$, isto é, a transposta de um produto de matrizes é igual ao produto de suas transpostas em ordem inverso.

Matriz Simétrica e Matriz Anti-Simétrica

<u>Definição</u>. Uma matriz quadrada A é chamada Simétrica se $A^T = A$ e Anti-Simétrica se $A^T = -A$

Exemplos.

As matrizes

$$\begin{pmatrix} 3 & -2 & \sqrt{3} \\ -2 & 5 & 1 \\ \sqrt{3} & 1 & 8 \end{pmatrix}, \quad \begin{pmatrix} 19 & 3/2 \\ 3/2 & -7 \end{pmatrix}$$
 são simétricas.

E as matrizes
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 2 & -1/2 \\ -2 & 0 & 5 \\ 1/2 & -5 & 0 \end{pmatrix}$ são anti-simétricas.

Observações

- 1. Numa matriz simétrica, os elementos em posições simétricas em relação à diagonal principal são iguais.
- 2. Uma matriz anti-simétrica tem, necessariamente, todos os elementos da diagonal principal iguais a zero.

Traço de uma Matriz

Definição. Se A for uma matriz quadrada, então o traço de A, denotado por tr(A), é definido pela soma das entradas na diagonal principal de A. O traço de A não é definido se A não for uma matriz quadrada.

Exemplos.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \text{Então} \quad \text{tr}(A) = a_{11} + a_{22} + a_{33}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$

$$B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$
 Então
$$tr(B) = -1 + 5 + 7 + 0 = 11$$

$$tr(B) = -1 + 5 + 7 + 0 = 11$$

Propriedades do Traço

<u>Teorema</u>. Se os tamanhos das matrizes são tais que as operações indicadas podem ser efetuadas, então,

- a) tr(A + B) = tr(A) + tr(B)
- b) tr(k A) = k tr(A), onde k é um escalar qualquer
- c) tr (A) = tr(A^T)
- d) tr(AB) = tr(BA)