Sample Exam

- 1. Suppose that $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$, and we want to test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. Consider a test that rejects H_0 if either $\bar{X}_n < c_1$ or $\bar{X}_n > c_2$.
 - (a) What is the power function $\beta(\mu)$ of the test? In your answer, use the notation $\Phi(z)$ to denote $P(Z \leq z)$ where $Z \sim N(0, 1)$.
 - (b) Determine the values of the constants c_1 and c_2 such that $\beta(\mu_0) = 0.1$ and the function $\beta(\mu)$ is symmetric with respect to the point $\mu = \mu_0$. Again, write your answer in terms of Φ .
 - (c) Show that both the size 0.1 Wald test and the size 0.1 likelihood ratio test have the form in (b).
- 2. Suppose we take a random sample of size n from a population of people. Let X_1 denote the number of individuals with a particular genotype AA, X_2 denote the number with Aa, and X_3 denote the number with aa. Assuming the gene frequencies are in equilibrium, the Hardy-Weinberg law says that the genotypes AA, Aa, and aa occur with probability $p_1 = (1-\theta)^2$, $p_2 = 2\theta(1-\theta)$, and $p_3 = \theta^2$, respectively.
 - (a) What is the likelihood function for θ , treating $X = (X_1, X_2, X_3)$ as a sample from the multinomial distribution with size n and $p = (p_1, p_2, p_3)$?
 - (b) Find the maximum likelihood estimator for θ under this model.
 - (c) Find the asymptotic distribution for the maximum likelihood estimator.
- 3. Let X_1, \ldots, X_n be an *iid* sample from the distribution with PDF

$$f(x;\theta) = (\theta + 1)x^{\theta}$$

for $0 \le x \le 1$ and $\theta > -1$.

- (a) Find the method of moments estimate of θ .
- (b) Find the MLE of θ .
- (c) Find an estimate of the standard error of the MLE, based on an asymptotic argument.
- (d) Suppose instead of using the estimate in (c), we use the bootstrap to estimate the standard error of the MLE. Give the algorithm for doing this.

- 4. Consider a Bayesian model in which, conditional on unknown parameter θ , X_1, \ldots, X_n are *iid* Bernoulli random variables, with $P(X_i = 1) = \theta$, and the prior distribution is Beta(a, b).
 - (a) Find the posterior distribution for θ , conditioning on X_1, \ldots, X_n . It is fine to write the family and specify its parameters; you do not need to write out the PDF or CDF.
 - (b) Show that the posterior mean can be written as a weighted average of the prior mean and the MLE for θ , which is \bar{X}_n .
 - (c) Suppose we use squared error loss, and let $\hat{\theta}_n$ be the Bayes estimator based on observing X_1, \ldots, X_n . Show that the sequence of Bayes estimators is consistent for θ , i.e. that $\hat{\theta}_n \stackrel{P}{\to} \theta$ as $n \to \infty$.
- 5. Let X_1, \ldots, X_n be *iid* with PDF f(x) on [0,1]. Let h_n be a positive constant and define

$$\hat{f}(0) = \frac{Y_n}{nh_n}$$

where Y_n is the number of observations in the interval $[0, h_n]$. Show that if $h_n \to 0$ and $nh_n \to \infty$ then $\hat{f}(0) \stackrel{P}{\to} f(0)$. Hints:

- You may assume that $f(x) \approx f(0 + xf'(0))$ and that for all x, |f'(x)| < C for some finite C.
- Note that $Y_n \sim Binomial(n, p_n)$ where $p_n = \int_0^{h_n} f(x) dx$.
- Since $Y_n \sim Binomial(n, p_n)$, $Var(Y_n) = np_n(1 p_n)$. But since p_n is small, you can use the approximation $Var(Y_n) \approx np_n$.
- 6. Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

for i = 1, ..., n, with $\epsilon_1, ..., \epsilon_n$ iid and $\epsilon_i \sim Normal(0, \sigma^2)$.

Note: you do not need to carry out any matrix computations below, only need to identify the matrices in the computations.

- (a) Find an unbiased estimator for σ^2 (we consider X_1, \ldots, X_n as given).
- (b) Find the MLE for σ^2 (we consider X_1, \ldots, X_n as given).
- (c) Carry out a test for testing $H_0: \beta_2 = 0$ vs. $H_1: \beta_2 \neq 0$.
- (d) Describe a cross-validation method, with detailed procedures, for making a model selection between $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$ and $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$.