# Aprendizaje automatizado

MÍNIMOS CUADRADOS

Gibran Fuentes Pineda Febrero 2023

## Regresión

- · Salida continua (cuantitativa)
- · Ejemplos: predicción de temperatura de un cuarto, etc.



## Prediciendo el precio de casas

• ¿Cómo podemos ajustar nuestra función f para modelar la relación entre el tamaño y el precio de casas?

| Tamaño (m²) | Precio (USD) |  |
|-------------|--------------|--|
| 489.59      | 489.59       |  |
| 556.08      | 556.08       |  |
| 570.35      | 570.35       |  |
| 772.84      | 772.84       |  |
| 970.95      | 970.95       |  |
| 1162.00     | 1162.00      |  |
| 1263.10     | 1263.10      |  |
| :           | :            |  |



## Prediciendo el precio de casas

 Podemos hacer presuposiciones sobre f, por ejemplo que la relación es lineal:

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$



## ¿Cómo medimos la calidad del ajuste?

 Definimos una función de error, por ejemplo la suma de errores cuadráticos:

$$E(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \right\}^{2}$$



## ¿Cómo medimos la calidad del ajuste?

 Definimos una función de error, por ejemplo la suma de errores cuadráticos:

$$E(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2}$$



· Objetivo: encontrar el valor de  $\theta$  que minimice  $E(\theta)$ 

$$\hat{m{ heta}} = rg \min_{m{ heta}} E(m{ heta})$$

## ¿Cómo medimos la calidad del ajuste?



#### Modelando relaciones no lineales

· ¿Qué función se ajusta a estos datos?



#### Modelando relaciones no lineales

· Podemos ajustar un polinomio de la siguiente forma<sup>1</sup>

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \theta_1 \cdot x^2 + \dots + \theta_d \cdot x^d$$

<sup>&</sup>lt;sup>1</sup>Nota que esta forma no está considerando interacciones

· Podemos usar uno lineal nuevamente

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$



· O uno cuadrático

$$f_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2$$



· Grado 3

$$f_{\theta}(x) = \theta_0 + \theta_1 + \theta_2 \cdot x^2 + \theta_3 \cdot x^3$$



· O grado 9

$$f_{\theta}(x) = \theta_0 + \theta_1 + \theta_2 \cdot x^2 + \cdot x + \cdots + \theta_9 \cdot x^9$$



## El problema de la generalización

 Comparamos los desempeños con distintos grados de polinomio usando el error cuadrático medio (ECM)

$$E(\boldsymbol{\theta}) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2}$$



# ¿Por qué está sobreajustando?

|            | d = 0 | d = 1 | d = 3  | d = 9       |
|------------|-------|-------|--------|-------------|
| $\theta_0$ | 0.05  | 0.78  | -0.33  | -17.62      |
| $\theta_1$ |       | -1.54 | 12.32  | 762.18      |
| $	heta_2$  |       |       | -36.32 | 12071.82    |
| $\theta_3$ |       |       | 25.14  | 98135.73    |
| $	heta_4$  |       |       |        | -459092.41  |
| $\theta_5$ |       |       |        | 1301097.36  |
| $	heta_6$  |       |       |        | -2263938.71 |
| $\theta_7$ |       |       |        | 2358449.27  |
| $	heta_8$  |       |       |        | -1347197.15 |
| $\theta_9$ |       |       |        | 324015.43   |

## ¿Cómo evito el sobreajuste?

· Penalizando parámetros con valores grandes

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{2}^{2}$$

·  $\lambda$  determina la ponderación que se le da al término de penalización

## ¿Cómo evito el sobreajuste?

|            | $\log \lambda = -\infty$ | $\log \lambda = -18$ | $\log \lambda = 0$ |
|------------|--------------------------|----------------------|--------------------|
| $\theta_0$ | 0.35                     | 0.35                 | -17.62             |
| $	heta_1$  | 232.37                   | 4.74                 | -0.05              |
| $\theta_2$ | -5321.83                 | -0.77                | -0.06              |
| $\theta_3$ | 48568                    | -31.97               | -0.05              |
| $	heta_4$  | -231639.30               | -3.89                | -0.03              |
| $	heta_5$  | 640042.26                | 55.28                | -0.02              |
| $\theta_6$ | -1061800.52              | 41.32                | -0.01              |
| $\theta_7$ | 1042400.18               | -45.95               | -0.00              |
| $	heta_8$  | -557682.99               | <b>-91.53</b>        | 0.00               |
| $\theta_9$ | 125201.43                | 72.68                | 0.01               |

## Mínimos cuadrados penalizados



## Mínimos cuadrados penalizados



## Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

## Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

- Con expansión de funciones base  $\phi$ 

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) = \sum_{i=1}^{d} \theta_{i} \cdot \phi(\mathbf{x})_{i}$$

## Regresión lineal

· Modelo lineal

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \sum_{i=1}^{d} \theta_i \cdot x_i$$

 $\cdot$  Con expansión de funciones base  $\phi$ 

$$f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) = \sum_{i=1}^{d} \theta_i \cdot \phi(\mathbf{x})_i$$

· Lineal en los parámetros  $oldsymbol{ heta}$ 

## Interpretación probabilística

• Asumiendo ruido  $\epsilon$  con distribución normal en el modelo

$$y = f_{\theta}(\mathbf{x}, \boldsymbol{\theta}) + \epsilon$$

## Interpretación probabilística

 $\cdot$  Asumiendo ruido  $\epsilon$  con distribución normal en el modelo

$$y = f_{\theta}(\mathbf{x}, \boldsymbol{\theta}) + \epsilon$$

 Tratamos de modelar la probabilidad condicional de la salida dados los datos y parámetros

$$P(y|\mathbf{x}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}(y|f_{\boldsymbol{\theta}}(\mathbf{x}, \boldsymbol{\theta}), \sigma^2)$$

 Se busca minimizar el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= -\sum_{i=1}^{n} \log \mathcal{N}(y^{(i)}|f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \sigma^{2})$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} - \frac{n}{2} \log 2\pi\sigma^{2}$$

 Se busca minimizar el negativo de la verosimilitud logarítmica

$$NVL(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log P(y^{(i)}|\mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= -\sum_{i=1}^{n} \log \mathcal{N}(y^{(i)}|f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \sigma^{2})$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} - \frac{n}{2} \log 2\pi \sigma^{2}$$

· Equivalente a minimizar suma de errores cuadráticos

$$E(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2}$$

· Reformulando NVL

$$NVL(\boldsymbol{\theta}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} - \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

· Reformulando NVL

$$NVL(\theta) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\theta)^{\top} (\mathbf{y} - \mathbf{X}\theta)$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X}\theta - \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \theta^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \theta^{\top} \mathbf{X}^{\top} \mathbf{X}\theta$$

· Derivando con respecto a  $oldsymbol{ heta}$  e igualando a cero

$$\mathsf{X}^{\top}\mathsf{X}\boldsymbol{\theta} = \mathsf{X}^{\top}\mathsf{y}$$

· Reformulando NVL

$$NVL(\boldsymbol{\theta}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \frac{1}{2} \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} - \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$$

· Derivando con respecto a heta e igualando a cero

$$\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\top}\mathbf{y}$$

· El estimador de máxima verosimilitud es

$$\hat{\boldsymbol{\theta}}_{EMV} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

## ¿Y si tenemos múltiples variables de salida?

· Solución de mínimos cuadrados

$$\hat{\boldsymbol{\Theta}}_{EMV} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$$

Equivalente a

$$\hat{\boldsymbol{\theta}_{REMV}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}_{k}$$

### Obteniendo el estimador de máximo a posteriori

 $\cdot$  Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{MAP} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

### Obteniendo el estimador de máximo a posteriori

 $\cdot$  Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \phi(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

\* Equivalente a minimizar suma de errores cuadráticos con los parámeros penalizados con la norma  $\ell_2$ 

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$

### Obteniendo el estimador de máximo a posteriori

 $\cdot$  Asumiendo distribución a priori normal sobre heta

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{MAP}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} log \mathcal{N}(\boldsymbol{y}^{(i)}|\boldsymbol{\theta}_{0} + \boldsymbol{\theta}^{\top} \phi(\mathbf{x}^{(i)}), \sigma^{2}) \\ &+ \sum_{j=0}^{d} log \mathcal{N}(\boldsymbol{\theta}_{j}|\boldsymbol{0}, \tau^{2}) \end{split}$$

\* Equivalente a minimizar suma de errores cuadráticos con los parámeros penalizados con la norma  $\ell_2$ 

$$\tilde{E}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - \mathbf{y}^{(i)} \}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2}$$

· Derivando  $ilde{\it E}( heta)$  con respecto a heta e igualando a cero

$$\hat{\boldsymbol{\theta}}_{ridge} = (\lambda \cdot \mathbf{I}_D + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

## Regularización con norma $\ell_1$

· Cuando la regularización es por norma  $\ell_1$  se conoce como LASSO

$$\hat{\boldsymbol{\theta}}_{\text{LASSO}} = \underset{\boldsymbol{\theta}}{\text{arg min}} \left[ \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{1} \right]$$

## Regularización con norma $\ell_1$

· Cuando la regularización es por norma  $\ell_1$  se conoce como LASSO

$$\hat{\boldsymbol{\theta}}_{\text{LASSO}} = \underset{\boldsymbol{\theta}}{\text{arg min}} \left[ \frac{1}{2} \cdot \sum_{i=1}^{n} \left\{ f_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \boldsymbol{\theta}) - y^{(i)} \right\}^{2} + \frac{\lambda}{2} \cdot \|\boldsymbol{\theta}\|_{1} \right]$$

 Optimización cuadrática: no existe solución cerrada pero existen algoritmos eficientes

# Regularización con diferentes normas



Imagen tomada de C. Bishop. PRML, 2009