AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2020. május 14. 8:00

Időtartam: 180 perc

Pótlapok száma Tisztázati Piszkozati

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Automatikai	és	elektronikai	ismeretek
emelt szint			

Azonosító								
jel:								

Fontos tudnivalók

Az írásbeli dolgozat megoldásához segédeszközként csak szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép, rajzeszközök, sablonok, vonalzók és függvénytáblázat használhatók. Az íráshoz kék vagy fekete tollat, a rajzoláshoz grafitceruzát kell használni. Az egyszerű, rövid feladatokat a feladatlapon, a kérdések alatt rendelkezésre álló szabad helyen kell megoldani.

A számítást igénylő feladatoknál ügyelni kell az összefüggés (képlet) helyes felírására, a szakszerű behelyettesítésre és a helyes számolásra. Ezek bármelyikének hiánya pontlevonást jelent. A végeredmény csak akkor fogadható el teljes pontszámmal, ha annak számértéke és mértékegysége kifogástalan.

A feladatok megoldásánál ügyelni kell az írásbeli dolgozat rendezettségére, az áttekinthetőségre, a szabványos jelölések alkalmazására, a műszaki, formai és esztétikai elvárásoknak való megfelelésre. Ezek hiánya pontlevonást jelent. A megoldásban az esetleges hibás részeket egy ferde vonallal kell áthúzni.

2011 írásbeli vizsga 2 / 16 2020. május 14.

Egyszerű, rövid feladatok

Maximális pontszám: 40

1. Mekkora nagyságú áram (I) keletkezik U=1 V villamos feszültség hatására egy l=40 m hosszú, A=0.75 mm² keresztmetszetű rézvezeték ($\rho=0.018$ $\Omega\cdot$ mm²/m) belsejében? 3 pont

I =

2. Határozza meg az R = 1,8 k Ω ellenállásokból álló kapcsolás eredő ellenállását (Re)! 3 pont

 $R_e =$

3. Számítással ellenőrizze, hogy egy P=0.25 W teljesítményű és R=2.2 k Ω nagyságú ellenállást U=24 V feszültségről táplálhatunk-e! Válaszát indokolja meg! 3 pont

 $U_{max} =$

Indoklás:

4. Számítsa ki az alábbi áramkörben az I1 áram nagyságát!

3 pont

 $I_1 =$

5. Egy RL áramkör határfrekvenciája $f_h = 19.5$ kHz. Határozza meg az R ellenállás értékét, ha az induktivitás L = 2 mH (R)! 2 pont

R =

6. Egy váltakozó áramú körben S=120~VA látszólagos teljesítményt és $P_h=100~W$ hatásos teljesítményt mérünk. Mekkora az áramkörben a meddő teljesítmény (P_m)?

 $P_{m} =$

7. Párhuzamos RC áramkörben R = 80 Ω és X_C = 60 Ω . Mekkora az áramkör impedanciája (Z)? 3 pont

Z =

8. Zener-dióda (ZPD9.1) mért adatai: $U_{Z1} = 8.8 \text{ V}$ $U_{Z2} = 8,95 \text{ V}$ $I_{Z1} = 10,5 \text{ mA}$ $I_{Z2} = 28 \text{ mA}$ Adja meg a fenti adatokhoz tartozó differenciális ellenállást (rD)!

2 pont

 $r_D =$

9. Egy erősítőkapcsolás adatai: $A_U = 30$ feszültségerősítés, $R_{be} = 10$ k Ω bemeneti ellenállás, $R_t = 2 k\Omega$ terhelő ellenállás. Határozza meg az áramerősítő tényezőt (A_i)! 3 pont

 $A_i =$

- 10. Készítse el egy neminvertáló AC erősítő rajzát! Használja a következő alkatrészeket:
 - 1 db műveleti erősítő (IC),
 - 3 db ellenállás (R₁, R₂, R₃),
 - 2 db kondenzátor (Cbe, Cki)!

A bemeneti és a kimeneti feszültségeket tüntesse fel!

3 pont

11. Nevezze meg az alábbi jelleggörbe alapján a hozzá tartozó áramköri elemet!

2 pont

Megnevezés:

Azonosító								
jel:								

12. Írja le a decimális 5-ös számot a következő bináris kódolásokban!

3 pont

Decimális	BCD kód	Gray-kód	Excess-3 kód
5			

13. Írja le az alábbi V–K-tábla segítségével a logikai függvény egyszerűsített, algebrai alakját! 2 pont

 $F^3 =$

14. Nevezze meg az ábrán látható szabályzót!

3 pont

Megnevezés:

15. Az irányítástechnikában használt melyik segédenergiára igazak az alábbi állítások? Az állítások betűjelét írja a táblázat megfelelő cellájába! 3 pont

- a) Nagy teljesítménysűrűség, pontos pozicionálás, a mozgás egyenletessége független a terheléstől.
- b) Forgómozgás előállítása egyszerű, nincs károsanyag-kibocsátás, hosszabb túlterhelésre érzékeny.
- c) A használt anyag mindenhol korlátlanul rendelkezésre áll, nem tűz- és robbanásveszélyes, segítségével nagy forgási, mozgási sebesség érhető el.

Segédenergia	Villamos	Pneumatikus	Hidraulikus
	segédenergia	segédenergia	segédenergia

								_
Azonosító								
iel:								
J-1.								

Összetett feladatok

Maximális pontszám: 80

Összesen: 20 pont

1. feladat Passzív négypólus vizsgálata

Az ábrán egy ohmos ellenállásokból álló négypólust tartalmazó áramkör látható.

Adatok: $R_1 = 1 \text{ k}\Omega$, $R_2 = 3 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, $U_g = 25 \text{ V}$, $R_g = 200 \Omega$

- a) Nyitott kapcsolóállások esetén, számítással határozza meg a négypólus "H" paramétereit (H₁₁, H₁₂, H₂₁, H₂₂)!
- b) Zárt kapcsolóállások esetén határozza meg az illesztett terhelő ellenállást (R_{till})! Illesztett terhelésnél számítsa ki a négypólus bemeneti ellenállásának értékét (R_{be})!
- c) Zárt K1 és nyitott K2 esetén határozza meg a négypólus U1, U2 feszültségeit (U1, U2)!
- d) Zárt K₁ és nyitott K₂ esetén határozza meg a négypólus U₂/U₁ feszültségátvitelét viszonyszámban és decibelben (A_u, A_u^{dB})!

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 7 / 16 2020. május 14.

Azonosító								
jel:								

2. feladat Összesen: 20 pont

Párhuzamos rezgőkör számítása

A jobb oldali ábrán látható párhuzamos rezgőkör egy elméletileg modellezett veszteséges tekercsből és egy veszteséges kondenzátorból került összeállításra.

Adatok:

C = 3 nF (a kondenzátor kapacitása)

 $r_{vc} = 50~\Omega$ (a kondenzátor soros veszteségi ellenállása)

 $R_{VL} = 800 \text{ k}\Omega$ (a tekercs párhuzamos veszteségi ellenállása)

f₀ = 12 kHz (a rezgőkör rezonanciafrekvenciája)

- a) Határozza meg a veszteséges áramköri elemekből létrehozott párhuzamos rezgőkör veszteségi ellenállását és jósági tényezőjét (R_v, Q₀)!
- b) Számítsa ki a párhuzamos rezgőkör sávszélességét (B₀)!
- c) Milyen értékű párhuzamos terhelő ellenállással kell terhelni a rezgőkört, hogy a sávszélessége duplájára növekedjék (R_t)? Állítását számítással bizonyítsa be!
- d) Határozza meg a párhuzamos rezgőkör induktivitását (L)!

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 9 / 16 2020. május 14.

Azonosító								
jel:								

3. feladat Összesen: 20 pont

Műveleti erősítős kapcsolás jellemzőinek számítása

Az alábbi műveleti erősítővel felépített váltakozó áramú erősítőn méréseket végeztünk.

Mérési eredmények: $U_{be} = 90 \text{ mV}$; $I_{be} = 20 \mu\text{A}$; $I_{ki} = 1 \text{ mA}$

Az alkatrészek adatai: $R_g = 450 \Omega$; $R_2 = 108 k\Omega$; $C_1 = 10 \mu F$; $C_2 = 15 \mu F$

A műveleti erősítő ideálisnak tekinthető.

- a) Számítsa ki az erősítő bemeneti ellenállását (Rbe)!
- b) Határozza meg az R₁ soros és az R₃ kompenzáló ellenállások értékét!
- c) Számítsa ki a feszültségerősítést (A_{Uv}) és a kimeneti feszültséget (U_{ki})!
- d) Határozza meg a meghajtógenerátor feszültségét (Ug), a terhelő ellenállás (Rt) értékét és teljesítményét (Pt)!
- e) Határozza meg az erősítő alsó határfrekvenciáját (fa)!

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 11 / 16 2020. május 14.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

4. feladat Összesen: 20 pont

Logikai függvény megvalósítása

Egy vezérlő logika bemeneteire 4 bites bináris kódszavak érkeznek. A kimeneten akkor kell logikai "1"-nek lennie, ha a bemenetre érkező kódszó kisebb mint 4, vagy nagyobb mint 10. Az " A" változó a 2³ helyi értékű függvényváltozó.

- a) Írja fel a feladatot megvalósító logikai függvény igazságtáblázatát!
- b) Írja fel a függvény sorszámos diszjunktív és sorszámos konjunktív alakját!
- c) Ábrázolja a függvényt grafikusan!
- d) Írja fel a legegyszerűbb konjunktív alakot!
- e) Alakítsa át a függvényt NOR műveletes alakra és valósítsa meg tetszőleges bemenetszámú NOR kapukkal! A változók csak ponált formában állnak rendelkezésre.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 13 / 16 2020. május 14.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 14 / 16 2020. május 14.

Automatikai és elektronikai ismeretek	Azonosító								
emelt szint	jel:								

2011 írásbeli vizsga 15 / 16 2020. május 14.

Automatikai és elektronikai ismeretek	Azonosító						_
emelt szint	jel:						

	feladat		pon	tszám	
	sorszáma	maximális	elért	maximális	elért
	1.	3			
	2.	3			
	3.	3			
	4.	3		-	
F " " 161 1 . 1	5.	2		1	
Egyszerű rövid feladatok	6.	2			
(elektrotechnika,	7.	3			
elektronika,	8.	2		40	
irányítástechnika témakörből)	9.	3			
temakoroor)	10.	3			
	11.	2			
	12.	3			
	13.	2			
	14.	3			
	15.	3			
Összetett feladatok	1.	20			
	2.	20		80	
(elektrotechnika, elektronika témakörből)	3.	20] o u	
temakoroorj	4.	20		<u>] </u>	
Az írásbeli vizsgarész ponts	záma			120	

javító tanár
pontszáma egész számra kerekítve
elért programb beírt
 dátum

javító tanár

jegyző