

Figure 1A

Figure 1B

BEST AVAILABLE COPY

Figure 3A

Figure 3B

Figure 3C

G129E R130M WT U87MG WT

Figure 2A

Figure 2B

Figure 2C

BEST AVAILABLE COPY

Figure 3D

WT GR -

TSP1 →

Figure 3E

Muristirone: [WT] [G129R]
- + - +

TSP1 →

Anti-TSP-1

Figure 4

Figure 5A

Figure 5B

Figure 5C

Figure 5D

Figure 5E

Figure 6

Figure 7

Figure 8

Figure 9A

Figure 9B

Figure 10A

Figure 10B

Figure 11A

IP	Cbl			D/N Syk		
PI	Vector		5	NS	5	NS
Stimulation with sRBCs (mins.)						

Figure 11B

IP	Cbl			+PP1(10 μ M)		
PI	Control		5	NS	5	NS
Stimulation with sRBCs (mins.)						

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 1.7

Figure 18

Figure 19

Fig. 20A

1760 1770 1780 1790 1800
 ACAAAATGTTCACTTTGGTAAATACGTTCTTCATACCAGGACAGAG
 TGTTTACAAAGTGAAAACCATTATGCAAGAAGTATGGCTGGTCTC
 D K M F H F W V N T F F I P G P E>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

>ClaI
 |
 >BsiXI
 |
 >BsiQI >TaqI
 | |
 1810 1820 1830 1840 1850
 GAAACCTCAGAAAAAGTGGAAAATGGAAGTCTTGTGATCAGGAAATCGA
 CTTGGAGTCTTTACCTTTACCTTCAGAAACACTAGTCCTTAGCT
 E T S E K V E N G S L C D Q E I D>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

>RsaI
 |
 1860 1870 1880 1890 1900
 TAGCATTTGCAGTATAGAGCGTGCAGATAATGACAAGGAGTATCTTGAC
 ATCGTAAACGTCATATCTCGCACGTCTATTACTGTTCCCTCATAGAACATG
 S I C S I E R A D N D K E Y L V>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

1910 1920 1930 1940 1950
 TCACCCCTAACAAAAAACGATCTTGACAAAGCAAACAAAGACAAGGCCAAC
 AGTGGGATTGTTTTGCTAGAACTGTTCGTTGTTCTGTTCCGGTTG
 L T L T K N D L D K A N K D K A N>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

1960 1970 1980 1990 2000
 CGATACCTCTCTCCAATTTAACGGTGAACACTATACCTTACAAAAACAGT
 GCTATGAAGAGAGGTTAAATTCCACTTGTATGAAATGTTTTGTCA
 R Y F S P N F K V K L Y F T K T V>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

2010 2020 2030 2040 2050
 AGAGGAGCCATCAAATCCAGAGGCTAGCAGTTCAACTCTGTGACTCCAG
 TCTCCTCGGTAGTTAGGTCTCCGATCGTCAAGTTGAAGACACTGAGGTC
 E E P S N P E A S S S T S V T P>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

>BsiQI
 |
 2060 2070 2080 2090 2100
 ATGTTAGTGACAATGAACCTGATCATTATAGATATTCTGACACCACTGAC
 TACAATCAGTACTTGGACTAGTAATATCTATAAGACTGTGGTGACTG
 D V S D N E P D H Y R Y S D T T D>
HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC>

>BscCI
 |
 2110 2120 2130 2140 2150
 TCTGATCCAGAGAATGAACCTTTGATGAAGATCAGCATTACAAATTAC

Fig. 20B (continued)

CTTCTGCCATCTCTCCTCCTTTCTTCAGCCACAGGCTCCAGACAT
GAAGACGGTAGAGAGAGGAGGAAAAAGAAGTCGGTGTCCGAGGGTCTGTA

M>

_>

>EcoRV

960 970 980 990 1000
GACAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGATATCAAG
CTGTCGGTAGTAGTTCTCTAGCAATCGTCTTGTTCCTATAGTTC
T A I I K E I V S R N K R R Y Q>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

>TaqI

1010 1020 1030 1040 1050
AGGATGGATTGACTTAGACTTGACCTATATTTATCCAAATATTATTGCT
TCCTACCTAACGCTGAATCTGAACCTGGATATAATAGGTTATAAACGA
E D G F D L D L T Y I Y P N I I A>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

>PstI

1060 1070 1080 1090 1100
ATGGGATTTCTGCAGAAAGACTTGAGGTGTATACAGGAACAATATTGA
TACCTAACAGGACGTCTTCTGAACCTCCACATATGTCCTGTTATAACT
M G F P A E R L E G V Y R N N I D>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

1110 1120 1130 1140 1150
TGATGTAGTAAGGTTTGATTCAAAGCATAAAAACCATTACAAGATAT
ACTACATCATTCACACCTAAGTTCTGTATTTGGTAATGTTCTATA
D V V R F L D S K H K N H Y K I>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

>PstI

1160 1170 1180 1190 1200
ACAATCTATGTGCTGAGAGACATTATGACACCGCCAATTTAACGTGCAGA
TGTTAGATACACGACTCTCTGTAAACTGTGGCGGTTAAATTGACGTCT
Y N L C A E R H Y D T A K F N C R>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

1210 1220 1230 1240 1250
GTTGCACAGTATCCTTTGAAGACCATAACCCACCACAGCTAGAACCTAT
CAACGTGTCAAGGAAACTCTGGTATTGGGTGGTGTGATCTTGAATA
V A Q Y P F E D H N P P Q L E L I>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

>BglII

1260 1270 1280 1290 1300
CAAACCCCTCTGTGAAGATCTGACCAATGGCTAAGTGAAGATGACAATC
GTTTGGGAAGACACTCTAGAACTGGTACCGATTCACTTCTACTGTTAG
K P F C E D L D Q W L S E D D N>
____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC____>

Fig. 20B

1310 1320 1330 1340 1350
 ATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGACGGACTGGTGTAAATG
 TACAACGTCGTTAAGTGACATTCGACCTTCCCTGCCTGACCACATTAC
 H V A A I H C K A G K G R T G V M>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1360 1370 1380 1390 1400
 ATTTGTGCATATTATTGCATCGGGCAAATTTAAAGGCACAAGAGGC
 TAAACACGTATAAATAACGTAGCCCCGTTAAAAATTCCGTGTTCTCCG
 I C A Y L L H R G K F L K A Q E A>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1410 1420 1430 1440 1450
 CCTAGATTTATGGGAAAGTAAGGACCAAGAGACAAAAAGGGAGTCACAA
 GGATCTAAAATACCCCTTCATTCTGGTCTGTGTTTCCCTCAGTGT
 L D F Y G E V R T R D K K G V T>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1460 1470 1480 1490 1500
 TTCCCAGTCAGAGGCCTATGTATATTATAGCTACCTGCTAAAAAAT
 AAGGGTCAGTCTCCGCGATAACATATAATAATATCGATGGACGATTGTTA
 I P S Q R R Y V Y Y Y S Y' L L K N>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1510 1520 1530 1540 1550
 CACCTGGATTACAGACCCGTGGCACTGCTGTTTACAAGATGATGTTGA
 GTGGACCTAACATGTCGGCACCGTGACGACAAAGTGTCTACTACAAACT
 H L D Y R P V A L L F H K M M F E>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1560 1570 1580 1590 1600
 AACTATTCCAATGTTCACTGGCGGAACCTGCAATCCTCAGTTGTGGTCT
 TTGATAAGGTTACAAGTCACCGCCTGACGTTAGGAGTCACACCCAGA
 T I P M F S G G T C N P Q F V V>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

1610 1620 1630 1640 1650
 GCCAGCTAAAGGTGAAGATATATTCCCTCCAATTCAAGGACCCACGCCGG
 CGGTCGATTCCACTCTATATAAGGAGGTTAACGCTGGTGCGCCGCC
 C Q L K V K I Y S S N S G P T R R>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

>RsaI

1660 1670 1680 1690 1700
 GAGGACAAGTTCATGTTACTTGTGAGTTCCCTCAGCCATTGCCTGTGTGG
 CTCCTGTTCAAGTACATGAAACTCAAGGGAGTCGGTAACGGACACACACC
 E D K F M Y F E F P Q P L P V C G>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

>EcoRV

1710 1720 1730 1740 1750
 TGATATCAAAGTAGAGTTCTCCACAAACAGAACAGATGCTAAAAAGG
 ACTATAGTTTCATCTCAAGAAGGTGTTGTCTGTCTACGAGTTTCC
 D I K V E F F H K Q N K M L K K>
 _____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

Fig. 20B (continued)

(8)

AGACTAGGTCTCTTACTTGAAAACACTTCTAGTCGTAAGTGTTAATG
S D P E N E P F D E D Q H S Q I T>
_____HOMOLOG OF HUMAN MUTATED IN MULTIPLE ADVANC_____>

2160
AAAAGTCTGA
TTTCAGACT
K V * >

Fig. 20B (continued)