Reading and Writing Arithmetic: Automating Ring Equalities in Agda

ANONYMOUS AUTHOR(S)

We present a new library which automates the construction of equivalence proofs between polynomials over commutative rings and semirings in the programming language Agda [Norell and Chapman 2008]. It is asymptotically faster than Agda's existing solver. We use reflection to provide a simple interface to the solver, and demonstrate a novel use of the constructed relations: step-by-step solutions.

Additional Key Words and Phrases: proof automation, equivalence, proof by reflection, step-by-step solutions

```
lemma : \forall x y \rightarrow x + y * 1 + 3 \approx 2 + 1 + y + x

lemma x y = begin

x + y * 1 + 3 \approx \langle \text{refl } \langle \text{+-cong } \rangle *\text{-identity}^r y \langle \text{+-cong } \rangle \text{ refl } \{3\} \rangle

x + y + 3 \approx \langle \text{+-comm } x y \langle \text{+-cong } \rangle \text{ refl } \rangle

y + x + 3 \approx \langle \text{+-comm } (y + x) 3 \rangle

3 + (y + x) \approx \langle \text{sym } (\text{+-assoc } 3 y x) \rangle

2 + 1 + y + x \blacksquare lemma = solve NatRing

(a) A Tedious Proof (b) The Solver
```

Fig. 1. Comparison Between A Manual Proof and The Automated Solver

1 INTRODUCTION

Doing mathematics in dependently-typed programming languages like Agda has a reputation for being tedious, awkward, and difficult. Even simple arithmetic identities like the one in Fig. 1 require fussy proofs (Fig. 1a).

This need not be the case! With some carefully-designed tools, mathematics in Agda can be easy, friendly, and fun. This work describes one such tool: an Agda library which automates the construction of these kinds of proofs, making them as easy as Fig. 1b.

As you might expect, our solver comes accompanied by a formal proof of correctness. Beyond that, though, we also strove to satisfy the following requirements:

Friendliness and Ease of Use Proofs like the one in Fig. 1a aren't just boring: they're *difficult*. The programmer needs to remember the particular syntax for each step ("is it +-comm or +-commutative?"), and often they have to put up with poor error messages.

We believe this kind of difficulty is why Agda's current ring solver [Danielsson 2018] enjoys little widespread use. Its interface (Fig. 2) is almost as verbose as the manual proof, and it requires programmers to learn another syntax specific to the solver.

Our solver strives to be as easy to use as possible: the high-level interface is simple (Fig. 1b), we don't require anything of the user other than an implementation of one of the supported algebras, and effort is made to generate useful error messages.

1:2 Anon.

lemma = +-*-Solver.solve 2 ($\lambda x y \rightarrow x :+ y :* con 1 :+ con 3 := con 2 :+ con 1 :+ y :+ x$) refl

Fig. 2. The Old Solver

Performance Typechecking dependently-typed code is a costly task. Automated solvers like the one presented here can greatly exacerbate this cost: in our experience, it wasn't uncommon for Agda's current ring solver to spend upwards of 10 minutes proving a single identity. In practice, this means two things: firstly, large libraries for formalizing mathematics (like

Meshveliani [2018]) can potentially take hours to typecheck (by which time the programmer has understandably begun to reconsider the whole notion of mathematics on a computer); secondly, certain identities can simply take too long to typecheck, effectively making them "unprovable" in Agda altogether!

The kind of solver we provide here is based on Coq's [Team 2018] ring tactic, described in Grégoire and Mahboubi [2005]. While we were able to apply the same optimizations that were applied in that paper, we found that the most significant performance improvements came from a different, and somewhat surprising part of the program. The end result is that our solver is asymptotically (and practically) faster than Agda's current solver.

Educational Features While our solver comes with the benefit of formal correctness, it's still playing catch-up to other less-rigorous computer algebra systems in terms of features. These features have driven systems like Wolfram|Alpha [Wolfram Research, Inc. 2019] to widespread popularity among (for instance) students learning mathematics.

We will take just one of those features ("pedagogical", or step-by-step solutions [The Development Team 2009]), and reimplement it in Agda using our solver. In doing so, we will explore some of the theory behind it, and present a formalism that describes the nature of "step-by-step" solutions.

2 OVERVIEW OF THE PROOF TECHNIQUE

There are a number of ways we can automate proofs in a dependently-typed programming language, including Prolog-like proof search [Kokke and Swierstra 2015], Cooper's algorithm over Presburger arithmetic [Allais 2011], etc. Here, we will use a reflexive technique [Boutin 1997] in combination with sparse Horner Normal Form. The high-level diagram of the proof strategy is presented in Fig. 3.

The identity we'll be working with is the lemma in Fig. 1: the left and right hand side of the equality are at the bottom of the diagram. Our objective is to link those two expressions up through repeated application of the ring axioms. We do this by converting both expressions to a normal form (seen at the top of the diagram), and then providing a proof that this conversion is correct according to the ring axioms (the correct function in the diagram). Finally, we link up all of these proofs, and if the two normal forms are definitionally equal, the entire thing will typecheck, and we will have proven the equality.

2.1 The Expr AST

 In Agda, we can't manipulate the expressions we want to prove directly: instead, we will construct an AST for each expression, and then do our manipulation on that.

The AST type (Expr) has a constructor for each of the ring operators, as well as constructors for both variables and constants. The ASTs for both expressions we want to prove can be seen on either side of Fig. 3. Constants are constructed with K, and variables are referred to by their de Bruijn index (so *x* becomes 1 0).

From here, we can "evaluate" the AST in one of two ways: in a non-normalized way ($[\![_]\!]$), or in a normalizing way ($[\![_\downarrow\!]\!]$). This means that the goal of the correct function is to show equivalence between $[\![_]\!]$ and $[\![_\downarrow\!]\!]$.

Finally, we *don't* want to force users to construct the Expr AST themselves. This is where reflection comes in: it automates this construction (the path labeled quoteTerm in the diagram) from the goal type.

2.2 Almost Rings

So far, we have been intentionally vague about the precise algebra we're using. As in Grégoire and Mahboubi [2005, section 5], we use an algebra called an *almost-ring*. It has the regular operations (+, * (multiplication), -, 0, and 1), such that the following equations hold:

$$0 + x = x \tag{1}$$

$$x + y = y + x \tag{2}$$

$$x + (y + z) = (x + y) + z$$
 (3)

$$1 * x = x \tag{4}$$

$$x * y = y * x \tag{5}$$

$$x * (y * z) = (x * y) * z \tag{6}$$

$$(x+y)*z = x*z + y*z$$
 (7)

$$0 * x = 0 \tag{8}$$

$$-(x*y) = -x*y \tag{9}$$

$$-(x+y) = -x + -y (10)$$

The equations up to 8 represent a pretty standard definition of a (commutative) semiring. From there, though, things are different. The normal definition of a commutative ring would have (instead of 9 and 10) the following:

$$x + -x = 0 \tag{11}$$

The reason for the difference is *flexibility*. Under this formulation, we can admit types like \mathbb{N} which don't have additive inverses. Instead, these types can simply supply the identity function for -, and then 9 and 10 will still hold.

1:4 Anon.

A potential worry is that because we don't require x + -x = 0 axiomatically, it won't be provable in our system. Happily, this is not the case: as long as 1 + -1 reduces to 0 in the coefficient set, the solver will verify the identity.

In the library, the algebra is represented by the AlmostCommutativeRing type, a record with fields for each of the ring axioms, defined over a user-supplied equivalence relation. Just as in Agda's current solver, we also ask for one extra function: a weakly decidable predicate to test if a constant is equal to zero.

```
is-zero : \forall x \rightarrow Maybe (0# \approx x)
```

This function is used to speed up some internal algorithms in the solver, but it isn't an essential component. By making it *weakly* decidable, we allow users to skip it (is-zero = const nothing) if their type doesn't support decidable equality, or provide it (and get the speedup) if it does.

3 THE INTERFACE

 A decent interface is crucial if we want the solver to be broadly useful. We strove to make our interface as simple and *small* as possible. Aside from the AlmostCommutativeRing type described above, the user-facing portion of our library consists of just two macros: solve and solveOver. Each of these infer the goal from their context, and automatically construct the required machinery to prove the equality.

solve is demonstrated in Fig. 1b. It takes a single argument: an implementation of the algebra. solveOver is designed to be used in conjunction with manual proofs, so that a programmer can automate a "boring" section of a larger more complex proof. It is called like so:

```
lemma : \forall x y \rightarrow x + y * 1 + 3 \approx 2 + 1 + y + x

lemma x y =

begin

x + y * 1 + 3 \approx \langle +-\text{comm}(x + y * 1) 3 \rangle

3 + (x + y * 1) \approx \langle \text{ solveOver}(x :: y :: []) \text{ Nat.ring } \rangle

3 + y + x \equiv \langle \rangle

2 + 1 + y + x \blacksquare
```

As well as the AlmostCommutativeRing implementation, this macro takes a list of free variables to use to compute the solution.

Because this interface is quite small, it's worth pointing out what's missing, or rather, what we *don't* require from the user:

- We don't ask the user to construct the Expr AST which represents their proof obligation. Compare this to Fig. 2: we had to write the type of the proof twice (once in the signature and again in the AST), and we had to learn the syntax for the solver's AST.
 - As well as being more verbose, this approach is less composable: every change to the proof type has to be accompanied by a corresponding change in the call to the solver. In contrast, the call to solveOver above effectively amounts to a demand for the compiler to "figure it out!" Any change to the expressions on either side will result in an *automatic* change to the proof constructed.
- We don't ask the user to write any kind of "reflection logic" for their type. In other words, we don't require a function which (for instance) recognizes and parses the user's type in the

reflected AST, or a function which does the opposite, converting a concrete value into the AST that (when unquoted) would produce an expression equivalent to the quoted value. This kind of logic is complex, and very difficult to get right. While some libraries can assist with the task [Norell 2018; van der Walt and Swierstra 2013] it is still not fully automatic.

Finally, despite the simplicity and ease-of-use described above, the solver is *not* specialized to a small number of types like \mathbb{N} and so on. The whole library, including the reflection-based interface, will work with any type with an AlmostCommutativeRing instance.

3.1 Reflection

Agda has good support for reflection, which we will use to build our interface. Agda's reflection system consists of three main parts:

Term The representation of Agda's AST, retrievable via quoteTerm.

Name The representation of identifiers, retrievable via quote.

TC The type-checker monad, which includes scoping and environment information, can raise type errors, unify variables, or provide fresh names. Computations in the **TC** monad can be run with unquote.

While quote, quoteTerm, and unquote provide all the functionality we need, they're somewhat low-level and noisy (syntactically speaking). Agda also provides a mechanism (which it calls "macros") to package metaprogramming code so it looks like a normal function call (as in solve).

Reflection is obviously a powerful tool, but it has a reputation for being unsafe and error-prone. Agda's reflection system doesn't break type safety, but we *are* able to construct Terms which are ill-typed, which often result in confusing error-messages on the user's end. Unfortunately, constructing ill-typed terms is quite easy to do: every quoted expression comes with heaps of contextual information, making the whole thing very fragile. Variables, for instance, are referred to by their de Bruijn indices, meaning that the same Term can break if it's simply moved under a lambda.

All of that considered, we feel we managed to construct a reasonably robust reflection-based interface. In doing so, we came up with the following general guidelines for metaprogramming in Agda:

Supply the minimal amount of information. There were several instances where, in constructing a term, we were tempted to supply explicitly some argument that Agda usually infers. Universe levels were a common example. In general, though, this is a bad idea: AST manipulation is fragile and error-prone, so the chances that you'll get some argument wrong are very high. Instead, you should *leverage* the compiler, relying on inference over direct metaprogramming as much as possible.

Don't assume structure. A common pattern we used to try and find arguments to an *n*-ary function was to simply extract the last *n* visible arguments to the function. While in theory we might be able to statically know all of the implicit and explicit arguments that will be used at the call-site, it's much simpler to ignore them, and try our best to be flexible. Remember, none of this is typed, so if something changes (like, say, a new universe level in AlmostCommutativeRing) in the order of arguments, you'll get type errors where you call solve, not where it's implemented.

Ask for forgiveness, not permission. We could also here say "don't roll your own type-checker". While it may seem good and fastidious to rigorously check the structure of the arguments given to a macro, often we found better results by assuming the argument was correct (where possible), and then carefully structuring the output in such a way to funnel a type error to the place where the input was incorrect. For instance, one section of the solver

1:6 Anon.

algorithm expects a proof that the two normal forms of the equations are the same. Here, we simply supply refl, assuming that they are, in fact, the same. When they're *not*, for instance, in the following type:

```
x + y * 1 + 3 \approx 2 + 1 + y + y
```

A call to solve will provide the reasonably helpful error message:

```
x \neq y of type N
```

Try and implement as much of the logic outside of reflection as possible Finally, after all of that, we advise minimizing the amount of actual metaprogramming code in a program, and confining it to the edges as much as possible. With great power comes with poor error messages, fragility, and a loss of first-class status. Therefore, If something can be done without reflection, *do it*, and use reflection as the glue to get from one standard representation to another.

At the core of the implementation you will find the following function:

```
toExpr : Term \rightarrow Term toExpr (def (quote AlmostCommutativeRing._+_) xs) = getBinOp (quote _\oplus_) xs toExpr (def (quote AlmostCommutativeRing._*_) xs) = getBinOp (quote _\otimes_) xs toExpr (def (quote AlmostCommutativeRing._^_) xs) = getExp xs toExpr (def (quote AlmostCommutativeRing.__) xs) = getUnOp (quote \ominus_) xs toExpr v@(var x_) with x N.<? numVars ... | yes p = v ... | no \neg p = constExpr v toExpr v = constExpr v
```

This function is called on the Term representing one side of the target equality. It converts it to the corresponding Expr. In other words, it performs the following transformation:

```
x + y * 1 + 3 \rightarrow 10 \oplus 11 \otimes K1 \oplus K3
```

It also demonstrates the principles described above. The first four clauses all match for the ring operators. Taking exponentiation as an example, it calls off to the getExp function, which is implemented as follows:

```
getExp : List (Arg Term) \rightarrow Term
getExp (x \langle :: \rangle y \langle :: \rangle []) = quote _\( \odots \) \( \cdot \) \( \cdo \) \( \cdo \) \( \cdo \) \( \cdo \) \( \cdot \) \( \cdo \) \( \cd
```

As described above, this function looks only for the last two visible arguments to the exponentiation operator, ignoring all else. When it finds them, it applies the corresponding constructor for Expr, using the $\cdots?::$ function, which fills in all the hidden arguments we want the compiler to infer.

Looking back to toExpr, we notice that the last line is a catch-all, which simply constructs a constant expression. This is the trick which lets us avoid any custom quotation machinery from the user. It's also more robust than asking for custom quotation machinery: if, for instance, there's a function call or something similar hidden in this case, quotation won't work. This solution, though, which just packages up the expression as-is, will have no trouble.

4 PERFORMANCE

 Type-checking proof-heavy Agda code is notoriously slow, so the solver had to be carefully optimized to avoid being so slow as to be unusable. We'll start by first describing the unoptimized solver, and demonstrate how to improve its performance iteratively.

4.1 Horner Normal Form

The representation used in Agda's current ring solver (and the one we'll start out with here) is known as Horner Normal Form. A polynomial (more specifically, a monomial) in *x* is represented as a list of coefficients of increasing powers of *x*. As an example, the following polynomial:

$$3 + 2x^2 + 4x^5 + 2x^7 \tag{12}$$

Is represented by the following list:

Operations on these polynomials are similar to operations in positional number systems.

And finally, evaluation of the polynomial (given x) is a classic example of the foldr function.

[_] : Poly
$$\rightarrow$$
 Carrier \rightarrow Carrier
[xs] ρ = foldr ($\lambda y ys \rightarrow \rho * ys + y$) 0# xs

4.2 Sparse Encodings

Our first avenue for optimization comes from Grégoire and Mahboubi [2005]. Our list encoding above is quite wasteful: it always stores an entry for each coefficient, even if it's zero. Since expressions with long strings of zeroes are common (things like x^{10}), it stands to reason that removing them should improve performance.

The solution is to store what's known as a "power index" with every coefficient. Intuitively, you can think of it as the "distance to the next non-zero coefficient". Taking 12 again as an example, we would now represent it as follows:

In Agda, we can go one step further, by disallowing zeroes in the representation altogether. This statically ensures that the polynomial is always in its smallest possible form. We don't include that detail here (it is in the library), instead we will use this somewhat simplified type:

1:8 Anon.

345 346

347

349 351

353

355

368

375 376 377

373

374

379 380 381

382

383

378

384 385 386

387

388

Poly : Set cPoly = List (Carrier $\times \mathbb{N}$)

Next, we turn our attention to the task of adding multiple variables. Luckily, there's an easy way to do it: nesting. The idea is that a polynomial in n variables is the same as before, except that its coefficients are themselves polynomials in n-1 variables. A polynomial in 0 variables in just a constant. It's perhaps more clearly expressible in types:

```
Poly : \mathbb{N} \to Set c
Poly zero = Carrier
Poly (suc n) = List (Poly n \times \mathbb{N})
```

Before jumping into proving this, though, it's worth noting that another opportunity for a "sparse" encoding has arisen. This time, polynomials which don't include every variable contain gaps. In a polynomial of n variables, a constant will always be stored behind n layers of nesting (we also prove that this minimal form is maintained).

The solution is another index: this time an "injection" index. This represents "how many variables to skip over before you get to the interesting stuff". This particular optimization is considerably more complex than the previous, though: the number of variables in a polynomial is a type-relevant piece of information, so any *manipulation* of that index will have to justify itself to the typechecker.

4.3 Hanging Indices

The problem is a common one: we have a piece of code that works efficiently, and we now want to make it "more typed", by adding more information to it, without changing the complexity class or slowing it down.

We found the following strategy to be useful: first, write the untyped version of the code, forgetting about the desired invariants as much as possible. Then, to add the extra type information, look for an inductive type which participates in the algorithm, and see if you can "hang" some new type indices off of it.

In our case, the injection index (distance to the next "interesting" polynomial) was simply stored as an N, and the information we needed was the number of variables in the inner polynomial, and the number of variables in the outer. All of that is stored in the following proof of \leq :

```
data \leq (m:\mathbb{N}):\mathbb{N} \to \text{Set where}
   m \le m : m \le m
   \leq-s : \forall {n}
               \rightarrow (m \le n : m \le n)
                \rightarrow m \leq suc n
```

A value of type $n \le m$ mimics the inductive structure of the N we were storing to represent the distance between n and m. We were able to take this analogy to the extreme: where we needed an equivalent of Ordering:

```
data Ordering : \mathbb{N} \to \mathbb{N} \to \text{Set where}
              : \forall m \ k \to \text{Ordering } m \text{ (suc } (m+k))
  equal : \forall m \rightarrow \text{Ordering } m m
  greater: \forall m \ k \rightarrow \text{Ordering (suc } (m + k)) \ m
```

We were able to construct one, with transitivity replacing addition.

395

396

397

398

401

402

404

406

408

409

410 411

412

413

414

415 416

417

418

419

420 421

422

423

424

425 426

427 428

429 430 431

432

433

434 435

436

437

438

439

440

441

```
data \leq -Ordering \{n : \mathbb{N}\} : \forall \{i \ i\}
                                                                                                     \rightarrow (i \le n : i \le n)
                                          \rightarrow (i \le n : i \le n)
                                                                                                     \rightarrow \leq-Ordering i \leq n
                                          \rightarrow (j \le n : j \le n)
                                                                                                                               i≤n
                                          \rightarrow Set
   where
                                                                                         \leq-compare : \forall \{i \ j \ n\}
   \leq-lt : \forall \{i \ j-1\}
                                                                                                             \rightarrow (x: i \leq n)
            \rightarrow (i \le j-1: i \le j-1)
                                                                                                             \rightarrow (y: j \leq n)
            \rightarrow (j \le n : \text{suc } j-1 \le n)
                                                                                                              \rightarrow \leq-Ordering x v
            \rightarrow \leq-Ordering (\leq-trans (\leq-s i\leq j-1) j\leq n)
                                                                                         \leq-compare m \leq m m \leq m = \leq-eq m \leq m
                                                                                         \leq-compare m \leq m (\leq -s y) = \leq -gt m \leq m y
                                     j≤n
   \leq-gt : \forall \{i-1 j\}
                                                                                         \leq-compare (\leq-s x) m\leqm = \leq-lt x m\leqm
                                                                                         \leq-compare (\leq-s x) (\leq-s y)
            \rightarrow (i \le n : \text{suc } i-1 \le n)
            \rightarrow (j \le i-1: j \le i-1)
                                                                                            with \leq-compare x y
                                                                                        ... | \le -\text{It } i \le j-1 = \le -\text{It } i \le j-1 (\le -\text{s } y)
            \rightarrow \leq-Ordering i \leq n
                                                                                        ... | \leq -gt j \leq i-1 = \leq -gt (\leq -s x) j \leq i-1
                                      (\leq -trans (\leq -s j \leq i-1) i \leq n)
   \leq-eq: \forall \{i\}
                                                                                        ... | \leq -eq  = \leq -eq  (\leq -s  x)
```

4.4 Type-Checking Performance

After optimizing the operations on polynomials, we have now *moved* the performance bottleneck. In terms of Fig. 3, we are no longer constrained by normalisation (the two $[\![_\downarrow\downarrow]\!]$ functions), but instead the inocuous-looking refl is slowing us down!

Fig. 4. Time (in seconds) to prove each expression is equal to its expanded form (n = 5 for each).

5 PEDAGOGICAL PROOFS

6 RELATED WORK

REFERENCES

G Allais. 2011. Deciding Presburger Arithmetic Using Reflection. (May 2011). https://gallais.github.io/pdf/presburger10.pdf
 Samuel Boutin. 1997. Using Reflection to Build Efficient and Certified Decision Procedures. In Theoretical Aspects of Computer Software (Lecture Notes in Computer Science), Martín Abadi and Takayasu Ito (Eds.). Springer Berlin Heidelberg, 515–529.
 Nils Anders Danielsson. 2018. The Agda Standard Library. https://agda.github.io/agda-stdlib/README.html
 Benjamin Grégoire and Assia Mahboubi. 2005. Proving Equalities in a Commutative Ring Done Right in Coq. In Theorem Proving in Higher Order Logics (Lecture Notes in Computer Science), Vol. 3603. Springer Berlin Heidelberg, Berlin, Heidelberg, 98–113. https://doi.org/10.1007/11541868_7

1:10 Anon.

Pepijn Kokke and Wouter Swierstra. 2015. Auto in Agda. In *Mathematics of Program Construction (Lecture Notes in Computer Science*), Ralf Hinze and Janis Voigtländer (Eds.). Springer International Publishing, 276–301. http://www.staff.science.uu.nl/~swier004/publications/2015-mpc.pdfhttp://www.staff.science.uu.nl/~swier004/publications/2015-mpc.pdf

Sergei D. Meshveliani. 2018. DoCon-A a Provable Algebraic Domain Constructor. http://www.botik.ru/pub/local/Mechveliani/docon-A/2.02/

Ulf Norell. 2018. Agda-Prelude: Programming Library for Agda. https://github.com/UlfNorell/agda-prelude

Ulf Norell and James Chapman. 2008. Dependently Typed Programming in Agda. (2008), 41.

The Coq Development Team. 2018. The Coq Proof Assistant, Version 8.8.0. https://doi.org/10.5281/zenodo.1219885

The Development Team. 2009. Step-by-Step Math. http://blog.wolframalpha.com/2009/12/01/step-by-step-math/

Paul van der Walt and Wouter Swierstra. 2013. Engineering Proof by Reflection in Agda. In *Implementation and Application of Functional Languages*, Ralf Hinze (Ed.). Vol. 8241. Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173. https://doi.org/10.1007/978-3-642-41582-1_10

Wolfram Research, Inc. 2019. Wolfram|Alpha. Wolfram Research, Inc.. https://www.wolframalpha.com/

A APPENDIX

Text of appendix ...