BUTTBR WORTHS LONDON-BOSTON Sydaey-Wellingtan-Durban-Foronto

To Vittoria

Aluminum Alloys: Structure and Properties

L. F. Mondolfo

Composition

PURITY

Primary aluminam is produced in a variety of grades, normally ranging from 99% to better than 99,399%. Three different types, corresponding to different production methods, can be distinguished:

may contain up to [% impurities and very seldom exceeds 99.3% purity. 2. Refined Aluminum is produced by electrorefining the commercially pure metal 1. Commercially Pure Aluminum is the metal that comes from the reduction of Alo, in the electrolytic cell and it is the bulk of the commercial production. It

in the three layer cell. Ju purily ranges from 99,9% to 99,99 + %.

J. Zone Refined Alumlirum is produced by zone refaining and, with proper starting muterial and technique, can produce metal with less than one ppm impurities.

This purity has been produced by zone refining metal electrodeposited from organic baths [1-4]

designed as commercial processes; the starting stock is commercial material rather than material abready refined; and no repealed refining is done, as vormal in zone Preezs refining methods [5,6], also based on fractionary crystallisation, are refuing Therefore, the product from this process is much closer in parity to elecrelytically refined than to zane refined.

Secondary aluminum is produced by remelting sabrication acras or absolute equipment and is usually rocovered in the form of asloys. Even when high-quality scrap such as electrical cable or bus bar is remelted, the 'excondery pure aluminum' that results is tess pure that the corresponding primary because of the unavoidable con-

tamination with other materials.

Most of the mountains found in the primary metal come from the raw materials should thaustic, sods, carded, etc.); therefore, to a great extent the raw materials should control the mature and level of impurities. However, this is not the only factors control the mature and level of impurities. substantial variations in composition are found between different batches from the same source. The data in Table II show that differences of mose than one arder of msgnitude can be found delween lots of the same origin, but that metal from widely separated sources may differ fear.

Several analyses of various grades of primary metal are shown in Table 1.2

When grades or purities are considered it must be remembered that the purity is calculated
by deducing from 100 the sum of the oneighted impurities. Although reliable 1shoratories
cathes once 15-13 element which are the most common and abundant impurities, there is a
lower limit (0.001% or 0.001% at best) below which the impurity is not reported. These minot
amounts, together with the non-analysed impurities, may be sufficient to downshift the grade of
the metal, especially for the purer grades.

Control of the Contro

								-												_
Grade	Source	Cu	Fe	SI	Mg	Na	Cd	Compo Zn	sition Ag	(ppm) Ma	٧	n	co	Cr	Q4	Sb	As	Sc	Sm	Rd
Electrorefined	Al A2	1	1 4	<3	100 3	2 1	<1 <1	\$ 5	₹ 1											7
Electroreflaced	BI BZ B3	. 22 . 21	5 4 (0	10 6 30	10 . 4 5	1 1 2	2 <1 3	<5 <5 <5	<1	` <1 <1 <1										,7
Electromained	C1 C2 C3 C4	40 • 1 • 4 35	80 50 6 29					36 9 40 57				40 3 1 5								8
Commercial	D1 D2 D3 D4 D5 D6 D7 D8	120 260 650 900 450 170 80 20	500 1 700 2 800 6 900 2 900 1 700 840 240	٠				150 220 340 230 430 670 900 t 400		900 510 120 50	50 8- 210 380 190 100- 80	160 220 300 550 170 120 70	•							8 .
Electrorefined	Canadian Hungarian Polith	189 8 – 12 5	25 84 25	14 22 17			•	3 2 1	•	0.25° 0.2 0.3			0.3 3 0.5	7 7–13 3	1.8 1.6 0.5	<0.1 <0.1 <0.1	<0.5 0.5-9 <0.5	0,2-0.	0.5 0.3 0.05	

Table 1.2

RANGES OF ANALYSES FOR VARIOUS GRADES OF ALIMINUM AND THEORETICAL AND EXPERIMENTAL PARTITION COEFFICIENT (A) POR THE VARIOUS ELEMENTS, THE SIGN & INDICATES THAT THE ELEMENT IS BELOW THE LIMIT OF DETECTION OF THE ANALYTICAL MISTRID USED

•				т рьегел (въш)	Zone	Davililan	eoessicieni
Element	Commercial 99.6–99.8	Proces refined	Electrorefixed	Deposited from organic bath	refined	Theoretical	Experimentel
Ag '	0.1–1	Alexa-	0.001-0.1	0.000 50.002	0,001<0.1	0.2-0.9	∢1
At	0.008-0.5		0.006-0.3	0,003-0.04	0.000 01-0.03	•	
Αυ Λα	0.001-0.5		0.000 1-0.001	<0.000 04-0.000 1	0.000 1-0.03	•	0,2
B	0.1-2	<10	0.001-0.1	-	<0.01 .		
Ba	0.1-10	•••	0.05-2	' <0.006	0.001-0.03	0.5	41
Be	0.01-1	<1-<10	<0.1	•	•	0.1-0.27	0.1-0.2
Bi	<10	. <10	0.01-0.2	<0.1	<0.003-0.1	₹00,0	0.45
Br	<0.1		<0.04	•	<0.01-<0.02		
Č	0.1-100		1=2		0.2–2		_
	0.1-50	<1-<10	0.1-0.2	<0.05-0.3	0.02-2	0.07-0.08	60.0
Ca	0.01-5	<10	0.005-3	<0.005-0.01	0.0002~0.2	<0.001-0.065	0.0667
C4 Cc		710	0.01-0.3	40,000	<0.003<0.01	<0.01	0.005
<u>C</u> e	0.01-1		0.01-3		0.2-100		
ÇĪ	0.1-10	<10	0.004-0.4	<0.01	<0.000 1-0.01	0.Û 2	0,014
Co	0.1-5	<2-10	4.0-10.0	0.004	0.01-0.5	1.75-2	0.52
Cr	2-50	C2-10	0.000 1-0.01	<0.0003	0.000 2-<0.1		
Cs	<0.01	S-10	0.4-5	0.25-0.35	0.000 6-0.4	0.14-0.17	0,14-0.17
Cn	5-100	2-10	0.01-0.6	Q445—025	<0.004<0.01		
Dy	<1		(0.0)		<0.01		
2r					< 0.000 6-< 0.001	•	
Eu			<0.01		<0.1		
F	3-5		<0.1	0.5-3	0.01-0.6	0.02-0.03	0.02-1
Pc	400-200 0	_<10-40	1.5-30		0.000 1-0.05	0.22	0,002
Ga	10-200	10-30	0.005–2	. 0.1-40	<0.000 1-<0.01	31-4	••••
G4			0.01-0.04		<0.001-<0.03	0,06-0.13	0.13
G¢ Hr	<1	•	<0.03	A 600 C G CC)	0.000 1-0.02	13	2,5
Ħr	<0.001		0.000 4-0.07	0.000 8-0.001	E000 1-0.02	-	

The state of the s

Element Commerce		Freeze	Amoun Electrorefined	i preseni (ppm)	Zône	Parillion coefficient				
	99.6-99.8	refined	i	Deposited from organic both	refined .	Theoretical	Experiment			
Hg ·	<0.001		0.000 4-<0.07	<0,001	100>-100000					
ī			0.000 5-0.01		0.000 1-0,003					
In			<0.003		<0.003-<0.01					
			<0.003—<0.1		<0.0030.01	`<0.001	D.01			
Ir K	45.61		<0;00\$	•	<0'00₹	<0.001	0.01			
	10.05		0.002-0.7	<0.15-0.8	<0.01-1 .	<0.001				
la Li	0.01~10		0.01-10		<0.001-0,1	<0.01	∢1			
	1-10		0,003-0.02		•	. 0.45	0.73			
Lu	- 4-		0,002		€0,000 (-<0,003	•				
Mg	S-S0	2- 0</td <td>1-20</td> <td></td> <td>0.1-0.3</td> <td>· 0.45—0,5</td> <td>>0.3</td>	1-20		0.1-0.3	· 0.45—0,5	>0.3			
Mn	5–50	<10	0.01-1	E0.0~8 000.0	0,0¢6 – 0,6	0.7-0.9	0.5			
Mo	0,1-1		-D.005 - 0.4	<0.01	0.002 5-0.Z	2-2.5	2			
N	!=7	<1 - 10	<2–20		≪0.1–0.2		•			
No .	0.1-500		0-01-10		0.01-1	<0.000 1	0,000 14-0			
NP			<0.01	3	10.0>	1.5	1.57			
Nd	0. 1 − 1		0.1-0.2		(0.01					
Ni	1-20	<10	0,02-3	< 0.03	<0.001-0.3	0.00E-0.01	<0.03-0.			
0	1—100 ,		1-10		Q.5 .					
Os S			0,008		<0.008		•			
P ≯b	1~30		0.1-10	'	0,04					
	1-50	10	0.01-10		0,004-0.25	0.01-0.12	0.134			
Pd Pr-	Anl. a 1	·	<0.001-<0.01		<0.001—<0.01	<0.04	<1			
Pr Pt	0.01-0.1		0.02-0.1		<0.001<0.003	<0.001	•			
Rb			0.5		໌ <0≾					
	<0.1		<0.003-0.05	<0.0040.D5	<0.005-<0.01					
Re			<0.005		<0.005					
Rh			<0.01		<0.01					
Ru S			<0.03		<0.03	•				
•	0.2-20		0,2–15		0.06—1.1					
	•				•		•			
		•				1				
÷ <u></u>	· · · ·		·- <u>··</u>	,		• •	· 			
<u>è</u> , <u>← = ′</u>	••,						> 			
Sb	0.01-2	. <u>-</u>	0.02-1.5	0.05-0.3	0.000 02-03	0.01-0.1	0.01-0.0			
55 55	0.011	· . <u>-</u> ·	<0.01~1.5	0,003-0,004	0.005-0.5	• •	0.75-0.			
Sb Se Se	1.0>	20-40	<0.011.5 0.003<0.02		0.006-0.5 <0.000 2-<0.02	0.01-0.1	0.75-0. 0.75			
Sb Se Se Si	0.0 i1 <0.1 200100 0	20-40	<0.011.5 0,003<0.02 J30	0,003-0,004	0.005-0.5 <0.000 2-<0.02 0.1-0.8	• •	0.75-0. 0.75			
Sb Se Se Si Sm	0.01–1 <0.1 200–100 0 0.4		<0.011.5 0.003<0.02 130 0.0050.4	0,003-0,004	0.006-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03	0.01 – 0.1 0.13	0.75-0. 0.75 0.09-0,			
Sb Sc Sc Si Sm Sn	0.011 <0.1 200100 0 0.4 0.130	20-40 <10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2	0,003-0,004	0.006-0.3 <0.000 2-<0.02 0:1-0.8 <0.000 1-0.03 <0.000 1	0.01-0.1	0.75-0. 0.75 0.09-0,			
Sb Sc Sc Si Sm Sn Sr	0.01–1 <0.1 200–100 0 0.4		<0.01-1.5 0,003-0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5	0.003-0.004 <0.001	0.006-0.5 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.006 1 <0.006-<0.5	0.01-0.1 0.13 <0.000 1	0.75-0. 0.75 0.09-0,			
Sb Sc Sc Si Sm Sn Sr Ta	0.01J <0.1 200100 0 0.4 0.130 0.010.1		<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1	0,003-0,004	0.006-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.006-<0.5 <0.01	0.01 – 0.1 0.13	0.75-0. 0.75 0.09-0.			
Sb Se Sc Si Sm Sn Sn Ta To	0.011 <0.1 200100 0 0.4 0.130 0.010.1		<0.01-1.5 0.003-<0.02 -30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1	0.003-0.004 <0.001	0.006-0.5 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.000 1 <0.006-<0.5 <0.01 <0.001-0.003	0.01-0.1 0.13 <0.000 1	0.75-0. 0.75 0.09-0. 0.000			
Sb Sc Si Sm Sh Ta To	0.011 <0.1 200-100 0 0.4 0.130 0.010.1		<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.01 0.003-0.1 0.006-<0.03	0.003-0.004 <0.001 <0.006 <0.002-0.008	0.005-0.5 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.006-<0.5 <0.01 <0.001-0.003 <0.000 1-<0.05	0.01-0.1 0.13 <0.000 1 1.69	0.75-0. 0.75 0.09-0. 0.000:			
SD SE	0.011 <0.1 200-100 0 0.4 0.130 0.010.1 0.010.1 <0.04	<10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-0.20	0.003-0.004 <0.001	0.005-0.5 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.006-<0.5 <0.01 <0.001-0.003 <0.000 1-<0.05 <0.000 01-<0.003	0.01-0.1 0.13 <0.000 1 1.69	0.75-0. 0.75 0.09-0. 0.000:			
See	0.011 <0.1 200-100 0 0.4 0.130 0.010.1		<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-<0.03 0.002-0.20 0.01-<10	0.003-0.004 <0.001 <0.006 <0.002-0.008	0.006-0.5 <0.000 2-<0.002 0.1-0.8 <0.000 1-0.03 <0.006-<0.5 <0.01 <0.001-0.003 <0.000 1-<0.05 <0.000 01-<0.003	0.01-0.1 0.13 <0.000 1 1.69	0.75-0.1 0.75 0.09-0. 0.000-1			
Se	0.011 <0.1 200-100 0 0.4 0.130 0.010.1 0.010.1 <0.04	<10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-<0.05 0.002-0.20 0.01-<10 <0.005-0.1	0.003-0.004 <0.001 <0.006 <0.002-0.008	<pre>0.006-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.000 -0.5 <0.01 <0.001-0.003 <0.000 1-<0.05 <0.000 01-<0.003 <0.000 01-</pre>	0.01-0.1 0.13 <0.000 1 1.69	0.75-0. 0.75 0.09-0. 0.000:			
See SSI STATE TO THE	0.011 <0.1 200-100 0 0.4 0.130 0.010.1 0.010.1 <0.04	<10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.01 0.003-0.1 0.003-0.1 0.002-0.03 0.002-0.00 0.005-0.1 <0.005-0.1	0.003-0.004 <0.001 <0.006 <0.002-0.008	<pre>0.005-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.000 1 <0.001 <0.001 <0.003 <0.000 1-<0.03 <0.000 1-<0.03 <0.000 1-<0.03 <0.000 01-<0.003 <0.000 01-<0.00</pre>	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13	0.75=0. 0.75 0.09=0. 0.000: 1.66 ≪1 0.04			
See Si Si Si Si Ta Fi	0.01-1 <0.1 200-100 0 0.4 0.1-30 0.01-0.1 0.1 0.01-0.1 <0.04 10-100	<10 <10-20 '	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.003-0.1 0.002-0.20 0.01-<10 <0.005-0.1 <0.005-0.1 <0.005-0.30 0.002-0.30	0.003-0.004 <0.001 <0.006 <0.002-0.008	0.005-0.5 <0.000 2-<0.002 0.1-0.8 <0.000 1-0.00 <0.006-<0.5 <0.01 <0.001-0.003 <0.000 1-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.005-0.5 <0.005	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13	0.75=0. 0.75 0.09=0. 0.000: 1.66 ≪1 0.04			
Sees Sim Staff The UV	0.011 <0.1 200-100 0 0.4 0.130 0.010.1 0.1 0.010.1 <0.04 10-100	<10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-0.0 0.002-0.20 0.01-<10 <0.005-0.1 <0.003-0.1 <0.005-0.1 <0.005-0.1 <0.003-0.1	<0.003—0.004 <0.001 <0.006 <0.002—0.008 0.002	0.005-0.5 <0.000 2-<0.002 0.1-0.8 <0.000 1-0.00 <0.006-<0.5 <0.01 <0.001-0.003 <0.000 1-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.005-0.5 <0.005 <0.003-0.5 <0.003 <0.003-0.5	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13	0.75=0. 0.75 0.09=0. 0.000: 1.66 ≪1 0.04			
See si se	0.01-J <0.1 200-100 0 0.4 0.1-30 0.01-0.1 0.3 0.01-0.1 <0.04 10-100 5-100 0.01-0.2	<10 <10-20 '	<0.01-1.5 0.003-0.002 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.01 0.003-0.1 0.005-0.20 0.01-<10 <0.005-0.30 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1 <0.003-0.1	0.003-0.004 <0.001 <0.006 <0.002-0.008	0.005-0.5 <0.000 2-<0.002 0.1-0.8 <0.000 1-0.03 <0.000 1 <0.005-<0.5 <0.01 <0.001-0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.005-0.5 <0.005 <0.003-<0.01 <0.003-<0.01 <0.000 05-0.7 <0.000 02-0.3	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13	0.75=0. 0.75 0.09=0. 0.000: 1.66 ≪1 0.04			
See Si	0.011 <0.1 200-100 0 0.4 0.130 0.010.1 0.1 0.010.1 <0.04 10-100	<10 <10-20 '	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-<0.05 0.002-0.20 0.01-<10 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1	<0.003—0.004 <0.001 <0.006 <0.002—0.008 0.002	0.006-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.000 1-0.03 <0.001 <0.001 <0.001 <0.003 <0.000 1-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 02-0.3 <0.000 02-0.7 <0.003-0.5 <0.000 2-0.3 <0.000 2-0.3	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13	0.75=0.1 0.75 0.09=0. 0.000:1 1.66 ≪1 0.04			
See	0.01-1 <0.1 200-100 0 0.4 0.1-30 0.01-0.1 0.3 <0.04 10-100 5-100 0.01-0.2 0.01-0.2	<10-20 ' <10-10	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.01 0.003-0.1 0.003-0.1 0.002-0.20 0.01-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1	0.003-0.004 <0.001 <0.006 <0.002-0.008 0.002	0.005-0.5 <0.000 2-<0.002 0.1-0.8 <0.000 1-0.03 <0.000 1 <0.005-<0.5 <0.01 <0.001-0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.005-0.5 <0.005 <0.003-<0.01 <0.003-<0.01 <0.000 05-0.7 <0.000 02-0.3	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13 0.001 2.5 1.5	0.75=0. 0.75 0.09=0. 0.000: 1.66 ≪1 0.04			
See Si	0.01-J <0.1 200-100 0 0.4 0.1-30 0.01-0.1 0.3 0.01-0.1 <0.04 10-100 5-100 0.01-0.2	<10 <10-20 '	<0.01-1.5 0.003-<0.02 1-30 0.005-0.4 0.01-2 <0.01-0.5 <0.1 0.003-0.1 0.005-<0.05 0.002-0.20 0.01-<10 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1 <0.005-0.1	<0.003—0.004 <0.001 <0.006 <0.002—0.008 0.002	0.006-0.3 <0.000 2-<0.02 0.1-0.8 <0.000 1-0.03 <0.000 1-0.03 <0.001 <0.001 <0.001 <0.003 <0.000 1-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 01-<0.003 <0.000 02-0.3 <0.000 02-0.7 <0.003-0.5 <0.000 2-0.3 <0.000 2-0.3	0.01-0.1 0.13 <0.000 1 1.69 0.08 8-13 0.001 2.5 1.5	0.09-0. 0.000-1 1.66 ≪1 0.04 0.015			

+ JIS 現场現及び当会発行図母、骨外規格をお求めの厚加、本部のほか下配の支部のFAX をご利用下さい。

本 節 〒107-840 東京超遊区記収(丁目)-24

〒880-0014 仙台布利莫区本町3丁月5-22 宏块県野工事会加州 昭路(022)227-8036 福門 夫耳 〒812-0025 福岡市筒多瓜塩屋町1-31 東京生命福岡ビル内 電話(092)282-9080 智法 通信应先:(0.)3553-8002 包度医死:(co)3553-8041 音外規格展表:(co)3583-8040 FAX (03)3583-0462 景質00160-2-195146·第一故院設庁背山太區 当面0109544 〒060-0003 札段市中央区北3条区3丁目1札储大同生会ピル内 昭居(011)261-0045 FAX (011) 221-4020 民替02760-7-4351·北南边鼠行 札奴民向支店 普通0001052 FAX (022)266-0905 疑键02200-4-8166·當上超行 仙台支忠 当班0005092 〒460-0008 名古屋布中区余2丁目6-1 白川ピル別位内 昭路(052)221-6316 FAX (052)203-4805 园巷00800-2-23283·東南照斤 包乌文倍 当区G520306 〒541-6053 - 大阪市中央区本町3丁目4-10 本町知材ピル内 (組括(06)6281-8086 FAX (08) 6261-9114 保贷00910-2-2636·住权股行 角段叮文店 当还0242325 〒730-0011 広島市中区基町5-41 広島南工会別所ビル府 収拾(682)221-7023 FAX (062)223-7568 臣替01340-9-9479·広角展育本盘 登通0656879 **四国 文部 〒760-0023 高松市英町2-2-10 住女生命高松身町ピル内 昭塔(687)821-7851** FAK (087) 821-3261 度替01680-2-1059·百十四位行び位职的文法 普通0029015 fAX (092)282-9116 因音01790-5-21552-質問电行底辺通り支点 曾通0004890 路阿汝德 机烧灰的 果光妆的 耳号汉德 名古图文包

* 当協会のホームペーンをご活用いただき、情報収集などにお奴立てください。 URL: http://www.jsa.or.jp/

JIS ハンドブック 回 非教

2002年1月31日 第1限第1 解發行

定衙:本体7,200円(税別)

图 集 日本規格協会 発行人 坂 名 名 吾

発行所 拉山日本規格協会的联·维本大田本的政政会社本文用或三島政政共会社

O 2002, Japanese Sundards Association ISBN 4-542-17070-5 Printed in Japan

Ø 107-640 東京衛衛区郡坂1下目1-21

配括 (63) 9553-8607

													<u> 半位 光</u>
合位命令	& th	Si	Fe	Cu	Mn	Mδ	Cr	Zn	2r. Zr+TL Ca. V	TI	その	E(')	AL
											钢型	松計	
1005	-	0.10以下	0.12LLT	TJ280.0	ፈሜይኒ	OCUT	_	ののだよ	CAO.OUT, VOOSET	0.02以下	0.01以下	•	99.85QL
1080	_	0.15JJJ	0.15以下	でいる以下	नस्य	不以20.0	•	7 tien.0	C40.03以下. VO.DS以下	なのなだで	0.02以下	_	99.50以上
1070	_	0.20117	0.25발가	3.04W7	0.03以下	0.03以下	-	OMELT	V 0,0SUF	acutiv	1.031.17		99.70以上
1050	-	0.25以下	のの以下	o.asมา	0.05以下	0.05以下	-	1320.0	V 0.00121F	7.11 <i>0</i> 0,0	TX180.0		99.80以上
1100	_	SI+Fa	0.95XLT	0,05-0.20	0.051XF	_	-	0.10以下	-	•	0.05以下	0.15以下	99.00以下
1200		51+Fa	1.00以下	TURK	0.05以子		-	可以以 工		0.05K/F	0.05LUF	0.15以下	33,00 EL F
11100	_	SI+F4	加班下	0,05-0.20	0.05.XXF	0.30以下	-	0.10以下		6.10以下	0.05以下	マルジュ	39.00til
1N30	-	SI+Fo	0.7LT	0.10以下	0.05#F	0,05LTF	_	0.05以下	1	_	002ET.	-	99.50UL
2014	_	0.50~1.2	0.7以下	3.9-5.0	0,40-1.2	030-0B	O.IOUT	0.25以下	Z:+11 0.20UT	التلالم	0,05以下	0.15以下	经数
2014	रुख	0.50-1.2	0.7517	3,9-5.0	0.40~1.2	0.20-0.R	0.10ELT	0.25以下	7/+T1 0.20以下	0,15以下	0.05JJZ*F	0.15以下	Press
ひ- ←校	庄村(6003)	0,25-1,0	不担AO	0.10KF	Oalif	0.8~1.5	0.3SMF	4 HOLO	-	0.10ELF	0.05以下	0.15EIT	到部
2017	-	0.20-0.0	0.7L/F	35-45	0,40-1.0	0.40-0.8	6.10ET	0.25ሀጉ	2+71 0.20以下	0.15ELF	OWELL	0.15E/F	独都
2219		0.20UT	0.50LLE	EA-6A	0.20-0,40	0,02以下	-	0.10UT	V0,05-0.15, Z-0.100.25	0.02~0.10	0.05EFF	0.13以下	残态
2024	_	0.50137	0.50以下	3.0~4.9	0,30-0.9	12-19	0.10HT	0.25以下	Z++Ti 0.20以下	0.15世子	a,asid°F	0.12f1.L	民邸
2024	心材	0.50以下	o.soul Y	5.B~4.9	0.30-0.9	12-10	0.10以下	0.2CELT	Z;+T; 0.20UF	0.1277.1,	0.05177	0.15CLT	*BAS
8-4代版	应村[1230]	Si+Fe	0.70XXF	0.10117	0.05以下	なのはよ	_	0.10FLF	V 0.05以下	0.03ELT	A.OBELT	-	29.30ELE
3003	-	0.612 F	0.7以下	0.050.20	1.0-1.5	-	~	0.10以下			のの以下	QUERT	残認
5205	_	1、以内	0.7以下	0.05ELF	1.0-1.5	_		O. JOLUT		•••	0.05以下	0.15以 1 (独加
3004	-	0.30237	0.7127	0.25以下	1.0-1.5	QB-LZ		0.25ELT		-	الريز يون	O.ISLUT	FREB
3104	-	.0.6以下	7"XIB.0	0,05-0.25	0.8-14	0.0~1.3	_	0.25以下	CLOSELT. VOOSELT	0,10117	0.051117	0.)5以下	STAR.
3005		0,6ध1下	0.7以下	0.30以下	1.0-1.5	0.20-0.6	0.10XT	0.25以下		0.10以下	のの以下	0.15ELT	残都
४१०ड	_	0.6以下	0.7以下	0.30121	0.30-0.0	0.20-019	0.20EX	0.40HT		OTOMA,	0.02171.1.	0.15t;JT:	使和

税2 化学成分

	10 .		-

単位 9

													半位分
仓金金号	≎-⊭श	51	Fa	Cu	Mn	Mg	C _r	Zn	Zr, Zr+Ti, Ca, V	Ti	+0	业(')	Al
			ļ	1		1	İ				倒々	合計	
5005	_	0.30K/T	0.7以下	0.20以下	0,20ይኒጉ	0,50-1.1	6.10以下	0,25以下		_	000以下	0,15以下	印料
5052	-	0,25 LJ T	0.40以下	0.10KLT	0.10ELT	22-28	0.15-0.36	△10以下	-	-	OOSELLA	4以以下	热胀
5052	_	SI+Fe	THOAD	0.04以下	0.01以下	22-28	0.15-0.55	0.10以下		_	0.05CXF	のは以下	研集
5154		0.25以下	0,40,63子	0.10E/F	0.10年上	2.1 - 3.9	A.15-0.35	0.20以下		0.20四下	0.03527	0.15世下	SKEE.
5254		\$1+Fc	0.45)J.F	0.05ULF	0.01以下	3.1~3.9	0.15-025	0.20以下	-	Q.OSELT	0.03DT	0.15以子	规拟
5454		0.25以下	0.40以下	0.10UT	0.50-1.0	24-10	0.05-0.20	0.251XT	-	0.20ELF	OOSETT	0.15以下	炎 爾
5082		0.20以下	0.35ELT	0.15ELF	0.15HF	4.0~5.0	Q15ELF	0.25UF	-	0.10以下	0.05ELT	のお以下	和此
\$182		0.20127	0.3SUF	0.15QF	020-050	40-50	0.10以下	೧೨೭೮೯	-	0.10UF	OCCUPA	LUME	EQAS
SORZ	_	0,405,7	O.SOLLY.	0.10以下	0.40-1.0	40-49	0.05-0.25	0.25ELT	-	0.15)UF	OWNT	0.15以下	F3184
5096	_	0,40 <u>11</u> 7	0.50 EL*Y	0.10以下	0.20-0.7	3.5~4.3	0.05-0.25	0.25以下	_	0.15H7	0.05以下	0.15以下	推點
SN01		0.15E/F	0.25£17°	0.20以下	0.20ELF	0.20-0.6	-	0.03以下		_	0.05以下	0.10以下	独郡
6061	_	0,40-0,8	0.7ELT	0.25~0.40	0.15UF	0.0-1.2	0.04-0.55	0.25以下		0.15四下	0.05\$17	0.15E/F	初取
7075		0.40ELF	可認定	1.2~2.0	0.30ELF	21-29	0.18-0.28	5.1~6.1	2r+15 0.25.13 T	4.770TO	71420.0	0.15XXT	陸部
7075	砂料	0,4011T	OSO以下	12-20	7点0点0	2.1-2.9	0.18-0.28	5.1-6.1	2/4万 0.25以下	0.20£1F	0.05以下	0.15UY	拉及
今年度	度材(7072)	Si+Pe	0.7以下	0.10EF	0.10UT	0.10以下	-	0.9-1.3	-	_	OUSELT	0.15以下	母部
7N01	_	0.30UT	0.延以下	0.20XIT	0.20~0.7	1.0-20	6.70ELF	4.0-5.0	V0,10以下,Zr 0.25以下	0.20LLF	0.03LLT	0.15以下	聚 數
6023		のよびで	12~17	9.05ELT	_		-		-	_	0.03LX F	0.16以下	部等
6079		0.05-0.30		0.05以下	_		_	0.10ILF		-	0.05 ET	のお以下	ELES

注(*) その他の元本は、存在が予知される場合以は過程の分析過程において規定を狙える表彙が見られる場合に限り分析を行う。

English translation of the parts describing the composition of 1050's and 6000's based on

a JIS standard.

			Č			d	2	7. 7.4T: O. V	ï	the other	ther	Ī
lloy number	ภ	0	3	Win	SIMI I	5	, uz	Zr, Zr*11, Oa, V		each	sum	ζ
JIS 1050	0.25 or less	0.40 or less	0.0.5 or less	JIS 1050 0.25 or less 0.40 or less 0.0.5 or less 0.05 or less 0.05 or	0.05 or less	ı	0.05 or less	0.05 or less V 0.05 or less 0.03 or less	0.03 or less	0.03 or less	ı	99.50 or more
JIS 1100	Si + Fe 0	Si + Fe 0.95 or less	0.05 - 0.20 0.05 or less	0.05 or less	l	1	0.10 or less	1	I	0.05 or less	0.15 or less	0.05 or less 0.15 or less 99.00 or more
JIS 6061	0.40 - 0.8	0.7 or less	0.15 - 0.40	0.40 - 0.8 0.7 or less 0.15 - 0.40 0.15 or less	0.8 - 1	0.04 - 0.35	.2 0.04 - 0.35 0.25 or less	ι	0.15 or less	0.15 or less 0.05 or less 0.15 or less	0.15 or less	balance

「アルミニウム材料の基礎と工象技術」爆集委員・執筆者名簿

3.8		뇬			E.																	
2節9年1節		3B, \$83		6 年3 四, 4 部, 6 部	Z	ñ	5年2節, 3節	7章4節	8章11節	10.20		2年	6年159, 2時	1年3時, 8年10第1項			2年46 6年6岁1, 2項, 7點1項		!	是7、后	既ら	1章2節3項のも, 8章B節
图百大学工学的数段 京都大学名誉数校	众大学工学的稳	カイアルミニウ. 4	アクーシック女	4	ロアドットウム	我アルミニウム的技術研究	医存用状盘图在命令存益中教育	アルミニウム工無魁技術研究	· · · · · · · · · · · · · · · · · · ·	母母	万数倒所围合全协加事数	有金属工统器政府原的	每少年二年明初四年	可以與所由合金中以中於	公	アルミニクム時位所見光	ガアルミ	一一般アルミニウム器技俗研究所	在友际企员工期的技术研究所	古可アルミニウム工業的技術研究所	经共工处理形品中的存益分泌的	大韩政
O付上協太师		文	D	9	9	日	百日	1997	₹	1	-	ch Th	*	¥	米	# 13	田中年	松细	20	尼何	古木類	H
	上陽太郎 昭西大学工学館 數段 東部大學名譽教授 4年116,2699年1	上扬太师 园西大学工学的铁段 承都大学名誉教授 4年166, 2岁 9年18月大人 東 太 大 孝 工 学 始 楼 仓 代 郑 所 3年166, 2岁	上扬太师 园西大学工学的铁像 承都大学名誉的役 4年166, 2岁 9年16月大 東京大学工学的 移仓 代别 所 3年166, 2岁 宣光 第一个,4 份 1年1626, 8年16, 35, 宣光 是 光 4 7 元 二 广 4 份 1年1626, 8年16, 35,	上海太郎 国西大学工学的校院 承都大学名誉的役 4年166,2009年1日お犬 女 工 学 日 智 徳 氏 社 シ 野 一 3年166,200年 末 光 ダ イ ア ケ ミ ー ウ. 4 18 1年1626,8年16.35,85 本 女 ギ ア ケ ミ ー ウ. 4 18 181626,8年16.35,85 本 女 ギ フ ケ ミ ー ウ 4 18 18496	上B太师 园西大学工学的铁像 成都大学名誉的役 4年165,20岁 9年184,4次大学工学的 6年3万,344,6万,2岁以北京,20岁,4万,10,4万,141626,8年15,35元,4分,141626,8年15,35元,4分,141626,8年15,35元,4分,141626,8年15,35元,14177,141626,8年15,35元,14177,14174,141626,8年15,35元,14174	上版太郎 関西大学工学的校校 承都大学名誉的校 4年165、20岁 9年16時末 東京大学工学 50 8年18時 70 4年165、20岁 70 7 7 7 7 7 7 7 6 10 161626、8年16、35 8年16、35 8年	上版太师 图图大学工学的收役 承都大学名誉的位 4年16, 2 声 9年16 审约 大 女 工 学 切 物 合 代 3 所 16, 2 声 英 光 女 人 ア ル ミ ー ヴ・ム 昭 14,624、8 年15, 3 声 成 光 か 人 ア ル ミ ー ヴ・ム 昭 14,624、8 年15, 3 市 山利光 昭 右 ア ル ミ ー ウ ム භ 6年3 前 4 前,5 前 4 前 右 ア ル ミ ー ウ ム භ 14,1 前 4,5 前 4 元 ・	上版太师 图图大学工学的收役 承都大学名誉的位 4年156, 25岁 5年16岁 12岁 12岁 12岁 12岁 12岁 12岁 12岁 12岁 12岁 12	上版太郎 関西大学工学節校段 承部大学名誉的 4年155、2節 5年15章 取れ大学工学 節 4年13 所 3年156、2 節 5年156 東北部、 カイアルミーヴ・A 所 1年1525、8年156、3 節 東北アルミニウム 路 研 形 8年9 節 4 位 3 位 元 の 元 の 元 の 元 の 元 の 元 の 元 の 元 の 元 の 元	上版太郎 関西大学工学節校校 承都大学名誉的 4年155、2節 5年156 度 4 大 子 工 学 5 移 元 4 元 6 元 6 元 6 元 6 元 6 元 6 元 6 元 6 元 6	上級太郎 图图大学工学的校保 承德大学名赞特 4年156, 2 声 5年151	上版太郎 国西大学工学的校保 京都大学名誉的 4年156, 256 9年156 時 4 大 女 工 学 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	上版太郎 国面大学工学的校校 承部大学名等的校 4年155、255 5年156 5年15 5年15 5年15 5年15 5年15 5年15 5	上版太郎 国面大学工学的校校 承部大学名替校 4年155、255 5年156 5年156 7 2 2 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 7 5 = 7 4 7 7 8 8 9 9 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	上版太郎 国面大学工学的校校 承部大学名替校 4年155、255 5年156 5年156 7 2 2 4 7 7 6 二 6 7 6 7 7 7 6 二 6 7 6 7 7 7 6 1 7 7 7 7 7 7 7 7 7 7 7 7	上級太师 国西大学工学的校校 承部大学名赞的 4年156、256 9年156 6年156 7 4 7 7 6 5 7 6 7 6 7 6 7 6 7 7 7 6 7 7 7 6 7	上級太郎 国西大学工学的校校 承都大学名赞的 4年156、256 9年156 6年156 7 2 2 4 7 7 6 5 7 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7	上版太郎 国西大学工学的校校 承部大学名替校 4年156、256 9年156 時 大 女 1 イ 7 ル ミ ー ヴ・ム 1 14152 (8 年156 32) 4 元 カ イ 7 ル ミ ー ヴ・ム 10 14152 (8 年156 32) 4 元 カ イ 7 ル ミ ー ヴ・ム 10 14152 (8 年156 32) 4 元 在 カ 7 ル ミ ー ウ ム 10 14152 (8 年156 32) 4 元 元 ウ ム 10 14151 (8 年16 32) 4 元 元 ウ ム 10 14151 (8 年16 32) 4 元 元 ウ ム 10 14151 (8 年16 32) 4 元 元 ウ ム 10 14151 (8 年16 32) 4 元 元 ウ ム 10 14 15 15 15 15 15 15 15 15 15 15 15 15 15	上版太师 国西大学工学的校校 承都大学者被校 4年156、256 9年156 6年156 万 7 7 7 7 7 7 6 1 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	上版太师 国西大学工学的校校 承都大学者被校 4年165、255 9年166 75 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7	正規太郎 国西大学工学的校校 承部大学者等的 4年156、256 9年156 時 大 女 工 ケ ル ミ ー ヴ・ム 昭 1415246 8年156 325 日 東 法 ケ ル ミ ー ヴ・ム 昭 1415246 8年156 325 日 東 法 ケ ル ミ ー ウ ム 昭 1415246 8年156 325 日 和 フ ル ミ ー ウ ム 昭 1421年134 456 556 日 和 フ ル ミ ー ウ ム 昭 1421年134 456 556 日 和 フ ル ミ ー ウ ム 昭 1421年134 456 556 日 和 フ ル ミ ー ウ ム 昭 1421年134 456 556 日 日 和 フ ル ミ ー ウ ム 昭 1421年135 日 日 和 フ ル ミ ー ウ ム 昭 1421年135 日 和 日 日 和 日 和 日 和 日 和 日 和 日 和 日 和 日 和	上級太郎 国首大学工学的校校 承都大学者被校 4年165、255 9年166 75 7 7 7 7 7 6 7 6 7 7 7 7 7 7 7 7 7

(50倍周) 仓佰庆委员長 〇福保委員

「アルミニウム材料の基礎と工業技術」

定価 5,500円

社 団 法 人 「軽 金 属 協 会 「アルミニウム材料の 基礎と工業技術」 編集委員会

昭和60年5月1月第1度第1周路行

発 行

となると思うによくとしています。

〒100 東京都中央区日本橋2丁目1番3号

路行所

(日本隔朝日生命(4) 86話東京(03) 273-3041(代表)

印刷所、株式、会、柱、、阳、条、柱、印、剧、所下454名古屋市中川区十番町3丁目1番地

電話 名古屋(062)652-2368(代表) (無断転載お断り) FAX 652-0219 1985年©

是民

乱丁, 落丁のものは上記印刷所にてお取得えいたします。

.

8.3.5 6000系合金 (AI-Mg-SI系)

u

6000系の中強度、高延佐合金の代波的用途例として自動車用ボディンニ上ががある。こ の用途にはアルミニウム切料としてそのほか2000,5000系合金も用いられている。この用 命の材料に要求される主な性能は弦度(冷延既仮並の引張強さ28~34kgl/mm⁴)と張り出 し性および曲げ加工などの成形性である。

これらの合金は独度と近性 ((向び) のパランスを考慮して、非熱処理合金では強度の高 い中間銅質材より伸びの高い〇村が。熱処理合金では強度的に有利な高温時が材より成形 住にすぐれたT4材が使われる。

6000系合金は2000系合金より耐食性、焼付硬化性にすぐれ、5000系合金で成形時間類と なるリューダースラインが発生しないなどの特徴がある。

因32K6000系合金のMgとSiの組成範囲を示す。Mgr Si 最の増加と共に強度は増加する。 Mgs Si組成よりMg過剰合金はMgs Siの路体化温度での固容量が成少し時効硬化性が低下 ナる10. Si過剰合金は経住は低下するが、しかし時効度化性が高い。

がるが、6000系合金は塗装焼付処理により時効硬化と強度が向上する。6111合金^{#11}は6010 変化を図33*11 に示す。 熟処理合金の2036はこの焼付条件では十分時効吸化せず強度は下 **登芸族付の工程が入る。成形加工、盤装焼付が^{初定して不}歪を与え、時効した場合の強度** 6009-T4村の成形性は5182-0村とほぼ同等でかり、6009-T4村より強度の高い 6010 合金よりSI, Mg量を減らし, Cu母をふやした合金でスプリングパックが少ない特徴があ T4村の成形性は2036-T4材と同等である***/自動車ボディ部材は成形・組み立て後に

かったか (名) 3.1 31.6 9-11 (48) 24.6 2 3. E 17.6 21:1 28.2 ສິ 2.5 10.5 (Fmm\13x0) ("때때/)24) 代極 四32 自制専用ボディソート6000系合金の指成範囲

5111 ŝ

2

(%³/4) !S

5182-0

内は 耐力に及ぼすメトレッチと自然 (2010×十日)の影響⁽¹⁾

X (2.8)

これちの 自動車用ボディシート材にはそのほかがネル剛性、耐デント性が要求される。

eoro-re.) (.91-6009

\$1-9E62

71-0109 71-6009 0-291\$

2.032

みせくコミ国

1.5

5003, 6010合金のT4村は耐デント性が5182 る。 要求性鋭からアウターパネル用には6010。 ント性と板厚, 面力の関係を図3402 に示す。 O材よりすぐれ, 2036-T 4材にほぼ匹敵す 性能に社索材の返厚と耐力が関係する。耐デ 2036, AC120合金のT 4村, 5162-SSF 材が 世用され、インナーパネル用には6009-T4. 51配-0付が使われる,

及ばない。さらに延性向上材として、引張強 **冷延倒板とほぼ同等の引張強さであるが、成** 形性の尺度となる伸びは現状では冷庭網板に しかし、表13に示すようにいずれの合金も \$30kgf/mm³, 伸び30%以上の各種合金¹³¹ が開発されている。

日力・国母 のy3・1 (kgl/mm*・mm) 四M アルミニケム合会のミニパキル、 フラットシートのへこを尽き^{III} 28.8 ・ 遊むな歌なセイクグ 17.9 6.9 0.508

▲フラットシート

かせいいつ

310.0 1.016

8.1.6 8000系合金

がこの系の代表的成形用合金である。8011合金は板巾, 長さ方向での機械的性質や耳串の である、キャップなとしては一般にH14好が使われ,成形性,印刷性,ひきちぎれ性など キャップ材として用いられる8011合金や憩灰機器のフィン材である8006,8007合金など **数動が少なく,かつ耳母が低いなどの特徴をもったノン・イヤリング材 (耳母2%以下)** がナぐれている:

8006, 8007合金はAI-Fe-VM系共晶タイプ合金で、合金組成、連続的造圧延などにより 晶出物, 結晶粒を超積細にして強度および成形性の向上を図っている。 枚りタイプ加工で 坂摩30μのフィンの製造例が報告⁸⁴¹ されている。

押出用合金

8.4.1 神出性に及ぼす合金元素の影響

能となっている。中でも製品材料強度に対して押出性が吸も扱れている(押出圧力が小さ アルミニケムおよびその含金の優れた風延性と低変形抵抗は得出加工にとって非常に有 初な条件となるため,JISあるいはAAの各種医仲別規格合金のほとんどが工業的に押出可

ろ. すなわち。最も辨出圧力の小さい Al-Zn系が最大の限界押出速度を持ち、Al-Si, Al-Cu, Al-MgのI頃に小さくなる。Eleginら4개はMg Cu, Si, Znのようなアルミニウムへの固 ルミニウムの添加元素の影響を関ペ,Gastleちの押出圧力測定結果と同様な傾向を得てい アルミニウムの450とでの押出圧力に及ぼす苞加元素の影響がCastleらWilによって図35 のように報告されており、Mg, Cu, は箏しく押出圧力を増加するが, Siはその効果が少 なく,2nはほとんど押出圧力を増加しないことが分かる。Kukushkineのは押出速度を上げて いった場合に押出製品表面に押出方向と直角に割れが発生する即界押出設度について, ア く、限界段出速度の大きい)合金が工業的に大量生産されることになる。

The partial translation of page 318 in "The Basic and Industrial Technology of Aluminum Materials" (published by Japan Institute of Light Metals, May 1, 1985 edition)

Figure 32 shows the range of Mg and Si compositions of 6000 series alloy. The strength increases along with the increase of the amount of Mg₂Si. An alloy with more excessive Mg than Mg₂Si composition has a reduced amount of solid solution at a solution temperature of Mg₂Si and has a decreased property of age hardening. In an alloy with excessive Si, although the ductility thereof decreases, the property of age hardening is high.

Molding property of 6009-T4 material is almost equal to that of 5182-O material, and the molding property of 6010-T4 material which has higher strength than that of 6009-T4 material is equal to that of 2036-T4 material. A car body member is subjected to coating and baking processes after molding and assembling processes. The change of strength is shown in Figure 33 when predistortion is given on the assumption of molding, coating and baking treatments to harden age. 2036 of a heat-treated alloy is not sufficiently age-hardened in this baking condition and the strength thereof decreases while 6000 series alloy is age-hardened by being subject to the coating and baking

treatment so that the strength thereof improves. 6111 alloy includes smaller Si and Mg amounts than 6010 alloy but larger Cu amount, having a feature of the decreased occurrence of springback.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.