成 绩

中国矿业大学 2015 级硕士研究生课程考试试卷

考	试	科	目	数理统计
考	试	时	间_	2015.11
研	究 刍	上 姓	名_	
学			号_	
所	在	学	院	
任	课	教	师	

中国矿业大学研究生院培养管理处印制

题号	1	11	111	四	五	六	七	八	总分	
得分										

一、(15分)设总体 X的概率密度为

$$f(x,\theta) = \begin{cases} \theta, & 0 < x < 1, \\ 1 - \theta, & 1 \le x < 2, \\ 0, & 其他. \end{cases}$$

其中 θ 是未知参数(0< θ <1), X_1, X_2, \cdots, X_n 为来自总体 X的简单随机样本,记 N为样本值 X_1, X_2, \cdots, X_n 中小于 1 的个数. 求:

- (1) θ 的矩估计;
- (2) θ 的最大似然估计.

二、(15 分) 设某城市大学毕业的成人比例 p=0.3,作假设检验 H_0 : p=0.3, H_1 : $p \neq 0.3$. 随机抽取 200 个成人,设 X 是样本里大学毕业的人数. 设其拒绝域为

$$W = \{X < 48 \text{ if } X > 72 \}$$

(1) H_0 成立时,求第一类错误的概率 α ; (2) H_1 成立且 p=0. 2 时,求第二类错误的概率 β . $(\Phi(1.85)=0.9678,\Phi(1.41)=0.9207,\Phi(5.66)\approx 1)$

三、 $(10 \, \text{分})$ 设某种砖头的抗压强度 $X \sim N(\mu, \sigma^2)$,今随机抽取 20 块砖头,测得数据如下 $(\text{kg} \cdot \text{cm}^{-2})$:

(1) 求 μ 的置信度为 0.95 的置信区间. (2) 求 σ^2 的置信度为 0.95 的置信区间. 已知

$$\overline{x} = 76.6, s = 18.14$$
, $t_{0.025}(19) = 2.093$, $\chi^2_{0.025}(19) = 32.852$, $\chi^2_{0.975}(19) = 8.907$

四、 $(10\, eta)$ 假设六个整数 1, 2, 3, 4, 5, 6 被随机地选择,重复 60 次独立实验中出现 1, 2, 3, 4, 5, 6 的次数分别为 13, 19, 11, 8, 5, 4。问在 5%的显著性水平下是否可以认为下列假设成立: $(\alpha=0.05)$ H_0 : $p(\xi=1)=p(\xi=2)=\cdots=p(\xi=6)=\frac{1}{6}$ 。 $(\chi^2_{0.05}(5)=11.07)$

五、(15 分) 某工厂正常生产时,排出的污水中动植物油的浓度 $X \sim N(10,1)$,今阶段性抽取 10 个水样,测得平均浓度为 10.8 (mg/L),标准差为 1.2 (mg/L),问该工厂生产是否正常? $(\alpha=0.05,t_{0.025}(9)=2.2622,\chi_{0.025}^2(9)=19.023,\chi_{0.975}^2(9)=2.700)$

六、(15分)为研究温度对某个化学过程的影响,收集到如下数据(规范化形式):

建立一元线性回归模型 $y = \beta_0 + \beta_1 x$, 求

- (1) 回归系数的最小二乘估计和经验回归直线;
- (2) 对回归方程进行显著性检验 ($\alpha = 0.01$);($F_{0.01}(1,9) = 10.56$, $t_{0.005}(9) = 3.250$)
- (3) $x_0 = 3$ 时, y_0 的预测值。

七、(15 分)考察温度对某一化工产品得率的影响,选了五种不同的温度,在同一温度下做了三次实验,测得其得率如下(表一),填写下列方差分析表(表二),给出具体的计算表达式,并根据方差分析表分析温度对得率有无显著影响。($\alpha=0.01$, $F_{0.01}(4,10)=5.99$)

(提示:可把原始数据均减去90后再计算)

温度	60	65	70	75	80
	90	91	96	84	84
得率	92	93	96	83	86
	88	92	93	88	82

(表一)

方差分析表

变差来源	平方和	自由度	均方和	F值
温度(组间)	$S_A^{}=$	$f_1 =$	$MS_1 =$	F=
误差(组内)	$S_E^{}=$	$f_2 =$	$MS_2 =$	\
总计	$S_T = 298.4$	f =	\	\

(表二)

八、(5分)案例分析:大家都听过狼来了的故事,试解释其中的数学原理?

伊索寓言"孩子与狼"讲的是一个小孩每天到山上放羊,山里有狼出没.第一天,他在山上喊: "狼来了,狼来了!",山下的村民闻声便去打狼,可到山上,发现狼没有来;第二天仍是如此;第三天,狼真的来了,可无论小孩怎么喊叫,也没有人来救他,因为前两次他说了谎,人们不再相信他了.