TickerMind

Senior Engineering Project SFWRTECH 4FD3

Submitted by:

Carter Glynn
Darren Morrison

Fourth Year

Under the Mentorship of

Harjot DhaliwalProfessor

ENGINEERING

Software Engineering Technology Department

McMaster School of Engineering Practice and Technology, Hamilton May 2025

TickerMind

Carter Glynn, Darren Morrison

Dept. Engineering Practice and Technology

McMaster University

Hamilton, Canada

Keywords— **Mathematics** Education, Learning Educational Progress, Key Concepts, Self-Reflection, Insights, **Professional** Application, Mathematical Mathematical Competence, **Scholarly** Development, Foundations, Course Experience, Analytical Skills, Realworld Applications, Problem-solving, Integration of Knowledge, Dedication and Commitment, Collaborative Learning, Practicality of Mathematics, Future Growth and Development

TABLE OF TABLES

Tab	ole 1: Project activity schedule	3
Figu	TABLE OF FIGURES ure 1: UML of project Architecture	4
	TABLE OF CONTENTS	
Tab	ole of Tables	2
Tab	ole of Figures	2
Tab	ple of Contents	2
1.	Introduction	2
2.	Objectives	2
3.	Solution Methodology	2
4.	Validation Strategy	3
5.	Ethics and Sustainability Considerations	3
6.	Commercialization	3
7.	Proposed Timeline	3

1. Introduction

The financial markets, such as stocks, cryptocurrencies, and forex, are dynamic, data-intensive, and real-time, and thus traders and investors must rapidly process vast amounts of information. Existing market analysis tools do not have real-time sentiment analysis or are centralized, subscription-based models, which are limiting in their access.

Our senior engineering project aims at developing a stock scanner integrating latest market information and sentiment from a local large language model (LLM) as well as varied news feeds. The software will empower retail investors and small-sized

traders by providing actionable information, making sophisticated market analysis inclusive, and democratizing its availability. Its benefits will be enhanced decision-making, lower analysis cost, and access-oriented design emphasizing inclusivity and ease of accessibility.

2. Objectives

- Develop a stock scanner that aggregates real-time information for stocks, cryptocurrencies, and forex.
- Use a local LLM to perform sentiment analysis of news feeds and social media posts.
- Integrate multiple data sources (e.g., news APIs, market data feeds) to provide end-to-end market analysis.
- Develop an easy-to-use, intuitive user interface for retail investors.
- Make ethical use, data privacy, and accessibility part of the system design and implementation.

3. SOLUTION METHODOLOGY

The stock scanner will be a software application with the following modules:

Data	Fetches real-time market data (e.g.,
Aggregation	stock prices, crypto prices, forex rates)
Module	via APIs like Alpha Vantage or Binance.
Sentiment	A local LLM (e.g., LLaMA or a fine-
Analysis	tuned open-source model) examines
Module	news articles and social media posts to
	ascertain market sentiment.
User	A web-based dashboard built with
Interface	React and Tailwind CSS for usability
	and accessibility.
Backend	A Python-based server with FastAPI for
	data processing and LLM inference.
Software	Python, React, FastAPI, PostgreSQL (for
	data storage), Hugging Face
	Transformers (for LLM), news APIs
	(e.g., NewsAPI), market data APIs.
Hardware	A mid-range GPU (e.g., NVIDIA RTX
	3060) for local LLM inference,
	standard development laptops, and a
	server for deployment.
Development	Version control system Git,
Tools	containerization using Docker, and
	testing using PyTest.

4. VALIDATION STRATEGY

System performance will be tracked through:

System performance will be tracked through:			
Quantitative	Sentiment analysis accuracy (e.g.,		
Metrics	precision, recall, F1-score vs. labeled		
	data).		
	Data aggregation and LLM inference		
	latency (target: <2 seconds for real-		
	time updates).		
	System uptime and reliability (target:		
	99.9% uptime in testing).		
Qualitative	Accessibility conformity (e.g., WCAG		
Metrics	2.1 standards).		
Validation	Week 8: Prototyping testing of data		
Stages	aggregation and UI functionality.		
	Week 9: Sentiment analysis		
	validation with initial samples.		
	Week 13: Real-time data and user		
	feedback full system testing.		
	Week 14: Final check against all		
	performance criteria.		

5. ETHICS AND SUSTAINABILITY CONSIDERATIONS

Ethical	Maintain data privacy by employing a local
Design	LLM, eschewing external data sharing.
	Employ clear sentiment analysis algorithms
	transparently to eliminate bias.
Ethical	Offer straightforward user instructions to
Usage	avert misuse (e.g., manipulative trading).
	Feature disclaimers on financial risks.
Ethical	Create UI for varied users, such as visual or
Usage	motor-impaired users, with high-contrast
	themes and keyboard navigation.
Human-	Provide the tool as an open-source project
Centric	for affordability reasons. Provide support
Design	for multiple languages in the UI to
	accommodate global users.
Equity	Redistribute inference energy consumption
And	of LLM. Use cloud providers that are
Inclusivity	dedicated to renewable energy for hosting.

6. COMMERCIALIZATION

Importance	Rated 8/10. The scanner provides critical
to Users	insights for retail investors, enhancing

	financial decision-making, though not a matter of survival.	
Uniqueness	Rated 6/10. While other tools (e.g.,	
	TradingView, Bloomberg) exist, our focus	
	on local LLM-based sentiment analysis and	
	open-source accessibility is distinctive.	
Competitive	Cheaper: Free or low-cost compared to	
Advantages	premium subscription-based tools.	
	Easier to Use: Intuitive UI designed for	
	non-expert users.	
	Performs Better: Local LLM reduces	
	latency and enhances privacy compared to	
	cloud-based solutions.	

7. Proposed Timeline

Table 1: Project activity schedule

No.	Activity	Week
1	Research and suitability analysis	2
2	Project specification and architecture design	3
3	Data pipeline and UI/UX design	4
4	LLM fine-tuning and backend design	5
5	Prototype integration and testing	6
6	Midterm recess	7
7	Prototype discussion and midterm submission	8
8	Sentiment analysis validation and UI refinement	9
9	Data aggregation module development	10
10	Sentiment analysis and backend development	11
11	Full system integration and optimization	12
12	Final testing and user feedback	13

Stock Scanner/Screener System Architecture React Frontend Bisplays stock data, scanner results, and sentiment analysis to users User Interface Handles API requests, coordinates FastAPI Backend FastAPI Backend Scraping, LLM processing, and data storage Local LLM Analyzes scraped content Database Stores stock data and sentiment analysis results API API API External Content Stock Market API External Content

Figure 1: UML of project Architecture