Projet de Recyclage des Eaux Usées avec Intelligence Artificielle

(PFA et Club innovation)

1. Introduction

Le recyclage des eaux usées est une solution durable pour réduire la consommation d'eau et optimiser son utilisation. Ce document décrit un projet à petite échelle intégrant l'intelligence artificielle (IA) et le traitement des données pour améliorer l'efficacité du recyclage de l'eau.

2. Composants de Base

Composant	Description
Réservoir de collecte	Installation d'un réservoir pour recueillir les eaux usées. Un filtre à mailles fines élimine les débris.
Filtration	Utilisation de filtres à sédiments pour éliminer les impuretés et contaminants.
Stockage	Conservation de l'eau filtrée dans un réservoir propre avec couvercle pour éviter la contamination.
Distribution	Installation de tuyaux pour acheminer l'eau recyclée vers les zones d'utilisation (irrigation).
Pompes	Intégration de pompes pour automatiser le débit d'eau vers les points d'utilisation.

3. Automatisation et Surveillance avec IA

3.1 Capteurs et Collecte de Données

- Capteurs de niveau d'eau : Suivi du volume d'eau stockée.
- Capteurs de qualité de l'eau : Surveillance des paramètres (pH, turbidité, conductivité) pour garantir une eau utilisable.

• Capteurs de température et humidité du sol : Optimisation de l'irrigation pour minimiser le gaspillage.

3.2 Traitement des Données avec IA

L'intelligence artificielle analyse les données des capteurs pour :

- **Prédire les besoins en eau** en fonction des données météorologiques et des habitudes d'utilisation.
- **Détecter les anomalies** dans la qualité de l'eau et recommander des actions correctives.
- **Optimiser l'irrigation** en adaptant la distribution d'eau selon les conditions du sol et la météo.

3.3 Microcontrôleur et Automatisation

Un **Arduino ou Raspberry Pi** est utilisé pour :

- Collecter et traiter les données des capteurs.
- Contrôler les pompes.
- Envoyer des alertes lorsque l'eau atteint un niveau critique ou lorsqu'un filtre doit être changé.

4. Interface Utilisateur et Tableau de Bord

Une **application web** ou un **dashboard IoT** permet aux utilisateurs de surveiller et contrôler le système en temps réel.

Fonctionnalités:

- Affichage des niveaux d'eau et de qualité.
- Historique de consommation et tendances.
- Notifications d'alerte (qualité d'eau, maintenance requise).
- Commande à distance des pompes et vannes.

5. Flux du Système Informatique

- 1. Collecte des eaux : Eaux usées recueillies dans le réservoir.
- 2. **Pré-filtration**: Élimination des grosses particules.
- 3. Stockage: Eau propre stockée pour réutilisation.

- 4. Surveillance par IA: Analyse des données capteurs pour prédire les besoins en eau.
- 5. **Distribution automatique** : Irrigation ou remplissage des réservoirs selon les besoins.

6. Conclusion

Ce projet de recyclage des eaux usées intègre **IA et IoT** pour une gestion intelligente et écoresponsable. Il permet d'optimiser l'utilisation de l'eau et de réduire le gaspillage, tout en étant adaptable à différentes échelles.