MAT338 Tópicos de Análisis

Manuel Loaiza Vasquez, Jemisson Coronel Baldeón

30 de abril del 2020

Pontificia Universidad Católica del Perú Lima, Perú manuel.loaiza@pucp.edu.pe, a20173133@pucp.edu.pe

Solucionario de los problemas 36-40 del capítulo 2 del libro *Introduction to Analytic Number Theory* de Tom Apostol para el curso dictado por el PhD. Alfredo Poirier el ciclo 2020-1.

36. Si $k \geq 1$ entonces $\mu_k(n^k) = \mu(n)$

Prueba. Lo dividiremos en dos casos:

- Si n=1, es fácil ver que cumple $\mu_k(1^k)=1=\mu(1)$.
- Si n no es libre de cuadrados, entonces existe un p primo tal que $p^2 \mid n$. En este caso, es fácil ver por definición que

$$\mu(n) = 0$$

Ahora como $p^2 \mid n$, entonces $p^{2k} \mid n^k$, además es fácil notar que $p^{k+1} \mid p^{2k}$ (ya que $k+1 \leq 2k$, que es lo mismo que $1 \leq k$). Tenemos que $p^{k+1} \mid n^k$, entonces

$$\mu_k(n^k) = 0$$

Claramente cumple que $\mu_k(n^k) = \mu(n)$.

- Si n es libre de cuadrados, entonces n se puede expresar como el producto $n=p_1\cdot p_2\dots p_r,$ entonces tenemos que

$$\mu(n) = (-1)^r$$

Ahora también sabemos que $n^k = p_1^k \cdot p_2^k \dots p_r^k,$ entonces por la definición, obtenemos que

$$\mu_k(n^k) = (-1)^r$$

Claramente se cumple que $\mu_k(n^k) = \mu(n)$.

Finalmente, como cumple en los tres casos, tenemos que

$$\mu_k(n^k) = \mu(n)$$
, donde $k \ge 1$

37. Cada función μ_k es multiplicativa.

Prueba. Dado $k \geq 1$ fijo pero arbitrario y dos números enteros positivos M y N tales que (M,N)=1. Primero analicemos MN=1, en este caso M=1 y N=1.

$$\mu_k(1) = 1 = 1 \cdot 1 = \mu_k(1)\mu_k(1)$$

Luego analicemos cuando existe p tal que $p^{k+1} \mid MN$. Por el teorema de divisibilidad, $p^{k+1} \mid M$ o $p^{k+1} \mid N$, pero no puede dividir a ambos porque son coprimos. Sin pérdida de generalidad, supongamos que divide a M, luego, por definición, tenemos lo siguiente

$$\mu_k(MN) = 0$$

$$= 0 \cdot \mu_k(N)$$

$$= \mu_k(M)\mu_k(N)$$

Finalmente, consideremos que podemos expresar a M y N de la siguiente forma, incluyendo el caso que r_m y r_n sean 0.

$$M = p_1^k p_2^k \dots p_{r_m}^k \prod_{i > r_m} p_i^{\alpha_i}, \ \alpha_i < k$$

$$N = q_1^k q_2^k \dots q_{r_n}^k \prod_{j > r_n} q_j^{\beta_j}, \ \beta_j < k$$

por lo cual no comparten ningún factor primo, por lo tanto, podemos multiplicar con tranquilidad. Ahora calculemos μ del producto

$$\mu(MN) = \mu(p_1^k p_2^k \dots p_{r_m}^k q_1^k q_2^k \dots q_{r_n}^k \prod_{i > r_m} p_i^{\alpha_i} \prod_{j > r_n} q_j^{\beta_j})$$

$$= (-1)^{r_m + r_n}$$

$$= (-1)^{r_m} (-1)^{r_n}$$

$$= \mu(M)\mu(N)$$

38. Si $k \geq 2$ tenemos que

$$\mu_k(n) = \sum_{d^k \mid n} \mu_{k-1} \left(\frac{n}{d^k} \right) \mu_{k-1} \left(\frac{n}{d} \right)$$

Solución 1. Como todo problema, lo dividiremos en 3 casos:

- Si n=1, es fácil notar que cumple ya que $\mu_k(1)=1=\mu_{k-1}(1)\cdot\mu_{k-1}(1)$
- Si existe p tal que $p^{k+1} \mid n$, entonces, es fácil notar que

$$\mu_k(n) = 0$$

Ahora demostraremos que el factor $\mu_{k-1}\left(\frac{n}{d}\right)$ de la parte derecha siempre es 0 para todo d tal que $d^k \mid n$. Empezaremos asignando a $ord_p(n) = w$ y $ord_p(d) = \alpha$.

Como tenemos que $p^{k+1} \mid n$, entonces $w \geq k+1$. También tenemos que $d^k \mid n$, entonces $w \geq k \cdot \alpha$ (que es lo mismo que $\alpha \leq \frac{w}{k}$). Ahora veremos $ord_p(\frac{n}{d}) = ord_p(n) - ord_p(d) = w - \alpha$.

$$ord_p(\frac{n}{d}) = w - \alpha \ge w - \frac{w}{k} \ge w \cdot \frac{k-1}{k} \ge \frac{k^2 - 1}{k} > k - 1$$

Con lo cual tenemos que $ord_p(\frac{n}{d}) \geq k \implies p^k \mid \frac{n}{d}$ y ,por definición, tenemos que $\mu_{k-1}(\frac{n}{d}) = 0$.

Con esto concluimos que cada sumando de la derecha siempre es 0. Entonces cumple que

$$\mu_k(n) = 0 = \sum_{d^k \mid n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right)$$

- Todos los casos restantes, aquí podemos expresar a n de la siguiente forma:

$$n = p_1^k p_2^k \dots p_a^k q_1^{k-1} q_2^{k-1} \dots q_b^{k-1} t_1^{\alpha_1} \dots t_c^{\alpha_c}$$

donde $\alpha_i < k-1$ y todos los p's, q's y t's son distintos dos a dos. Asignaremos a $P = p_1p_2 \dots p_a$, $Q = q_1q_2 \dots q_b$ y $T = t_1^{\alpha_1} \dots t_c^{\alpha_c}$ con lo cual tenemos que $n = P^kQ^{k-1}T$ (además, es fácil notar que P, Q y T son coprimos). Por definición, tenemos que

$$\mu_k(n) = (-1)^a$$

Ahora veremos en que casos se anula la parte de la derecha. Si analizamos $\mu_{k-1}\left(\frac{n}{d^k}\right)$, tenemos que

$$\mu_{k-1}\left(\frac{n}{d^k}\right) = \mu_{k-1}\left(\frac{P^k Q^{k-1} T}{d^k}\right)$$

Supongamos que $d \nmid P$, entonces se pueden expresar $d = gd_1$ y $P = gP_1$ donde $(d_1, P_1) = 1$. Ahora como $d^k \mid P^k Q^{t-1}T \implies d_1^k \mid P_1^k Q^{k-1}T \implies d_1^k \mid Q^{k-1}T$, entonces existe un primo d_p tal que $d_p^k \mid Q^{k-1}$ o $d_p^k \mid T$ (ya que Q y T son

coprimos); sin embargo, por definición, el exponente de todo primo que está en Q^{k-1} y T es a lo más k-1, con lo cual es imposible que exista d_p .

Entonces necesariamente $d \mid P$. Además

$$\frac{P^k Q^{k-1} T}{d^k} = \left(\frac{P^k}{d^k}\right) Q^{k-1} T$$

y es fácil notar que los tres factores son coprimos, entonces por lo que vimos en el problema anterior tenemos que

$$\mu_{k-1}(\frac{n}{d}) = \mu_{k-1}\left(\frac{P^k}{d^k}\right)\mu_{k-1}(Q^{k-1})\mu_{k-1}(T)$$

Si $\frac{P}{d} > 1$, entonces $\mu_{k-1}(\frac{P^k}{d^k}) = 0$, ya que si $\frac{P}{d}$ tiene un divisor primo $p_0 \implies p_0^k \mid \frac{P^k}{d^k}$. Por lo que este término no se anula en el único caso de que $\frac{P}{d} = 1 \iff d = P$.

$$\sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k} \right) \mu_{k-1} \left(\frac{n}{d} \right) = \sum_{d \neq P} \mu_{k-1} \left(\frac{n}{d^k} \right) \mu_{k-1} \left(\frac{n}{d} \right) + \mu_{k-1} \left(\frac{n}{P^k} \right) \mu_{k-1} \left(\frac{n}{P} \right)$$
$$= 0 + \mu_{k-1} (Q^{k-1}T) \mu_{k-1} (P^{k-1}Q^{k-1}T)$$

Si analizamos $Q^{k-1}T=q_1^{k-1}q_2^{k-1}\dots q_b^{k-1}t_1^{\alpha_1}\dots t_c^{\alpha_c}$ tenemos que $\mu_{k-1}(Q^{k-1}T)=(-1)^b$ y como $P^{k-1}Q^{k-1}T=p_1^{k-1}p_2^{k-1}\dots p_a^{k-1}q_1^{k-1}q_2^{k-1}\dots q_b^{k-1}t_1^{\alpha_1}\dots t_c^{\alpha_c}$, tenemos que $\mu(P^{k-1}Q^{k-1}T)=(-1)^{a+b}$. Por lo tanto su producto es $(-1)^b(-1)^{a+b}=(-1)^{2b}(-1)^a=(-1)^a$.

$$\sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right) = (-1)^a$$

Entonces concluimos que

$$\mu_k(n) = (-1)^a = \sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right)$$

Solución 2. Separaremos el problema en tres casos.

-Primero analicemos n=1. El único divisor que tiene 1 es 1, por lo cual

$$\sum_{d^{k+1}} \mu_{k-1} \left(\frac{1}{d^k} \right) \mu_{k-1} \left(\frac{1}{d} \right) = \mu_{k-1}(1) \mu_{k-1}(1) = 1 \cdot 1 = 1 = \mu_k(1)$$

-Luego analicemos cuando existe $p^{k+1} \mid n$, para algún p primo. Aquí analizaré todos los posibles divisores d.

$$n = p_1^{a_1k + b_1} \dots p_r^{a_rk + b_r} \prod_{i>r} p_i^{\alpha_i}, \ \alpha_i \le k, \ a_jk + b_j \ge k + 1, \ j = 1, \dots, r$$

y d es un divisor de n tal que $d^k \mid n$. Supongamos que $(d^k, p_i) = 1, i = 1, ..., r$, es decir, es un divisor que no comparte un factor primo con los elementos que tienen exponentes mayores o iguales que k + 1, entonces

$$\mu_{k-1}\left(\frac{n}{d^k}\right)\mu_{k-1}\left(\frac{n}{d}\right) = \mu_{k-1}(p_1^{a_1k+b_1}\dots p_r^{a_rk+b_r}X)\mu_{k-1}(Y) = 0$$

pues $p_j^k \mid p_j^{a_jk+b_j} \implies \mu_{k-1}(p_1^{a_1k+b_1}\dots p_r^{a_rk+b_r}X) = 0$. Ahora analicemos cuando el divisor comparte al menos un factor primo, es decir, $(d^k, p_i) \neq 1$, $i = 1, \dots, r$. Supongamos que

$$d = p_i^c X, \ (p_i^c, X) = 1, \ c \le a$$

pues $p_i^{ck} \mid p_i^{ak+b}$ mostaré que en este caso $\mu_{k-1}\left(\frac{n}{d}\right)$ siempre es igual a 0.

$$\frac{n}{d} = \frac{p_i^{a_i k + b_i} Y}{p_i^c X}$$
$$= p_i^{a_i k + b_i - c} Z$$

Afirmo que $a_i k + b_i - c \ge k$. De la división tenemos lo siguiente

$$ak + b \ge ck$$

$$ak + b - c \ge ck - c$$

$$= ck - c + k - k$$

$$= k + k(c - 1) - c$$

$$= k + k(c - 1) - c + 1 - 1$$

$$= k + k(c - 1) - (c - 1) - 1$$

$$= k + (k - 1)(c - 1) - 1$$

$$ak + b - c \ge k + (k - 1)(c - 1) - 1$$

Sabemos que $k \geq 2$, si c > 1 tenemos que

$$ak + b - c \ge k + (k - 1)(c - 1) - 1 \ge k$$

y si c = 1, tenemos que

$$a_ik + b_i \ge k + 1$$

$$a_ik + b_i - c \ge k + 1 - c$$

$$a_ik + b_i - c \ge k$$

Por lo tanto $p_i^{a_ik+b_i-c} \ge p_i^k$ y $p_i^{a_ik+b_i-c} \mid p_i^{a_ik+b_i-c} \implies \mu_{k-1}(p_i^{a_ik+b_i-c}Z) = 0$. Sea cual sea el valor de d, tenemos que siempre uno de los factores de la sumatoria da 0 y, por lo tanto, el producto es 0, así que, al sumar todos estos

$$\sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right) = 0 = \mu_k(n)$$

-Ahora liquidaremos el último caso, analicemos cuando n se puede escribir de la siguiente forma

$$n = p_1^k p_2^k \dots p_r^k \prod_{i>r} p_i^{\alpha_i}, \ \alpha_i < k$$

y d es un divisor de n tal que $d^k \mid n$

$$d = q_1 q_2 \dots q_m, \ m \le r$$

y q_i es algún p_j que se encuentra elevado a la k en la descomposición de n. Así tenemos lo siguiente

$$\frac{n}{d^k} = s_1^k s_2^k \dots s_{r-m}^k \prod_{i>r} p_i^{\alpha_i}$$

$$\frac{n}{d} = s_1^k s_2^k \dots s_{r-m}^k s_{r-m+1}^{k-1} \dots s_r^{k-1} \prod_{i>r} p_i^{\alpha_i}$$

donde s_i es algún p_j que se encuentra elevado a la k en la descomposición de n. Reemplazando esto en $\sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right)$ obtenemos

$$\sum_{d^k|n} \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k \prod_{i>r} p_i^{\alpha_i}) \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k s_{r-m+1}^{k-1} \dots s_r^{k-1} \prod_{i>r} p_i^{\alpha_i})$$

Como μ_k es multiplicativa para todo $k \ge 1$ entonces separo la expresión anterior

$$\sum_{d^k|n} \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k) \mu_{k-1}(\prod_{i>r} p_i^{\alpha_i}) \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k s_{r-m+1}^{k-1} \dots s_r^{k-1}) \mu_{k-1}(\prod_{i>r} p_i^{\alpha_i})$$

$$\sum_{d^k|n} \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k) \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k s_{r-m+1}^{k-1} \dots s_r^{k-1}) (\mu_{k-1}(\prod_{i>r} p_i^{\alpha_i}))^2$$

Asimismo, sabemos que $\mu_{k-1}(\prod_{i>r} p_i^{\alpha_i}) = \pm 1 \implies (\mu_{k-1}(\prod_{i>r} p_i^{\alpha_i}))^2 = 1$, pues $\alpha_i < k \implies \alpha_i \le k-1$, para todo i > r. Por lo tanto, nuestra expresión se reduce a

$$\sum_{d^k|n} \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k) \mu_{k-1}(s_1^k s_2^k \dots s_{r-m}^k s_{r-m+1}^{k-1} \dots s_r^{k-1})$$

Todo factor $s_i^k \mid n \implies \mu_{k-1}(s_1^k \dots s_{r-m}^k) = 0$. La única posibilidad de que esto sea distinto de 0 es cuando r = m, es decir, $d = p_1 p_2 \dots p_r$. De esta manera, la

sumatoria se reduce a lo siguiente

$$\sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k} \right) \mu_{k-1} \left(\frac{n}{d} \right) = \mu_{k-1} (1) \mu_{k-1} (p_1^{k-1} \dots p_r^{k-1})$$

$$= \mu_{k-1} (p_1^{k-1} \dots p_r^{k-1})$$

$$= (-1)^r$$

$$= \mu_k (n)$$

Finalmente, como cumple todos los casos, tenemos que

$$\mu_k(n) = \sum_{d^k|n} \mu_{k-1} \left(\frac{n}{d^k}\right) \mu_{k-1} \left(\frac{n}{d}\right), \ k \ge 2$$

39. Si $k \ge 1$ tenemos que

$$|\mu_k(n)| = \sum_{d^{k+1}|n} \mu(d)$$

Prueba. Primero veremos el caso clásico de n=1, cumple ya que $|\mu_k(1)|=1=\mu(1).$

Lo dividiremos en 2 casos:

- En caso de que exista un p tal que $p^{k+1} \mid n$. Si esto ocurre, entonces

$$|\mu_k(n)| = 0$$

Lema 1. $d^s \mid p_1^{a_1} \dots p_t^{a_t} \iff d \mid p_1^{\left \lfloor \frac{a_1}{s} \right \rfloor} \dots p_t^{\left \lfloor \frac{a_2}{s} \right \rfloor}, \ y \ probar \ esto \ no \ es \ muy \ difícil.$

Ahora volviendo al problema, sabemos que el $ord_p(n) \ge k+1$, entonces $\left\lfloor \frac{ord_p(n)}{k+1} \right\rfloor \ge 1$. Y si aplicamos el lema $d^{k+1} \mid n \iff d \mid m$ (donde solo nos van a importar el ord_p), además es fácil notar que $p \mid m$, por lo que m > 1.

$$\sum_{d^{k+1}|n}\mu(d)=\sum_{d|m}\mu(d)=0$$
, ya que $m>1$

Con lo cual concluimos que

$$|\mu_k(n)| = 0 = \sum_{d^{k+1}|n} \mu(d)$$

- En caso de que no exista tal p, entonces $ord_q(n) \leq k$ para todo primo q. De aquí es fácil notar que $\mu_k(n) \neq 0$, entonces $\mu_k(n) = \pm 1$ y por lo tanto

$$|\mu_k(n)| = 1$$

Si usamos el lema para la segunda parte

$$\sum_{d^{k+1}\mid n}\mu(d)=\sum_{d\mid 1}\mu(d)=1$$
, ya que $ord_qn\leq k$ para todo primo q

También llegamos que

$$|\mu_k(n)| = 1 = \sum_{d^{k+1}|n} \mu(d)$$

Finalmente llegamos a que

$$|\mu_k(n)| = \sum_{d^{k+1}|n} \mu(d)$$
, para todo n

40. Para cada primo p, la serie de Bell para μ_k está dada por

$$(\mu_k)_p(x) = \frac{1 - 2x^k + x^{k+1}}{1 - x}$$

Prueba. Aplicamos la definición, además, sabemos que $\mu_k(p^m) = 0, m > k$

$$(\mu_k)_p(x) = \sum_{n=0}^{\infty} \mu_k(p^n) x^n$$

$$= \mu_k(1) + \mu_k(p) x + \dots + \mu_k(p^{k-1}) x^{k-1} + \mu_k(p^k) x^k + 0$$

$$= 1 + x + \dots + x^{k-1} - x^k$$

$$= \frac{1 - x^k}{1 - x} - x^k$$

$$= \frac{1 - x^k - x^k + x^{k+1}}{1 - x}$$

$$= \frac{1 - 2x^k + x^{k+1}}{1 - x}$$

Finalmente, hemos probado lo pedido.