SAMB for "grapheneAB"

Generated on 2023-06-12 22:54 by MultiPie $1.1.7\,$

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1']
 - spinless
- Unit cell:

$$a=2.435,\ b=2.435,\ c=10.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$a_1 = \begin{pmatrix} 2.435 & 0 & 0 \end{pmatrix}$$

 $a_2 = \begin{pmatrix} -1.2175 & 2.10877185821511 & 0 \end{pmatrix}$

 $\boldsymbol{a}_3 = \begin{pmatrix} 0 & 0 & 10.0 \end{pmatrix}$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position		
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$		

• Kets: dimension = 3

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket
1	$s@A_1$	2	$p_x@B_1$	3	$p_y@B_1$

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	posit	tion	mapping
S_1	A_1	$\left(\frac{1}{3} \frac{2}{3}\right)$	3 0)	[1,2,3,4,5,6,7,8,9,10,11,12]
S_2	B_1	$\left(\frac{2}{3} \frac{1}{3}\right)$	$\left(\frac{1}{3} 0\right)$	[1,2,3,4,5,6,7,8,9,10,11,12]

 $\bullet\,$ Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	B_1	A_1	1	1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,2,7,10]
	b_2	B_1	A_1	1	1	$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[3,6,8,11]
	b_3	B_1	A_1	1	1	$\begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & 0 \end{pmatrix}$ @ $\begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[4,5,9,12]
B_2	b_4	A_1	A_1	1	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & 0 \end{pmatrix}$	[1,-3,-8,10]
	b_5	A_1	A_1	1	1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \end{pmatrix}$	[2, -5, 7, -12]
	b_6	A_1	A_1	1	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{5}{6} & \frac{2}{3} & 0 \end{pmatrix}$	[-4,6,-9,11]
B_3	b ₇	B_1	B_1	1	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & 0 \end{pmatrix}$	[1,-2,-7,10]
	b_8	B_1	B_1	1	1	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{6} & \frac{5}{6} & 0 \end{pmatrix}$	[3,-6,8,-11]
	b ₉	B_1	B_1	1	1	$ \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{2}{3} & \frac{5}{6} & 0 \end{pmatrix} $	[-4,5,-9,12]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_1')}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1')}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1')}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_1')}$$
 [M₂, S₂]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(s,A_1')}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1')}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_1')}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_3 = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E')}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{1,0}^{(b,E')}]}{2} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E')}] \otimes \mathbb{Y}_{4}[\mathbb{Q}_{1,1}^{(b,E')}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{3}(\boldsymbol{k}) &= \frac{\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E')}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A'_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{1,0}^{(k,E')}]}{2} - \frac{\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E')}] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A'_{1})}] \otimes \mathbb{F}_{3}[\mathbb{T}_{1,0}^{(k,E')}]}{2} \\ &+ \frac{\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E')}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(u,A'_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{1,1}^{(k,E')}]}{2} - \frac{\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E')}] \otimes \mathbb{U}_{4}[\mathbb{T}_{0}^{(u,A'_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{1,1}^{(k,E')}]}{2} \end{split}$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_1')}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{Y}_5[\mathbb{Q}_0^{(b,A_1')}]$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1')}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A_1')}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1')}$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A_1')}]$$

$$\hat{\mathbb{Z}}_5(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_0^{(a,A_1')}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1')}] \otimes \mathbb{F}_6[\mathbb{Q}_0^{(k,A_1')}]$$

No. 6
$$\hat{\mathbb{Q}}_{3}^{(A_{1}')}$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_6 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{Q}_{2,0}^{(a,E')}] \otimes \mathbb{Y}_7[\mathbb{Q}_{1,0}^{(b,E')}]}{2} - \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,1}^{(a,E')}] \otimes \mathbb{Y}_8[\mathbb{Q}_{1,1}^{(b,E')}]}{2}$$

$$\hat{\mathbb{Z}}_{6}(\boldsymbol{k}) = -\frac{\sqrt{2}\mathbb{X}_{3}[\mathbb{Q}_{2,0}^{(a,E')}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(s,A'_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{1,0}^{(k,E')}]}{2} - \frac{\sqrt{2}\mathbb{X}_{4}[\mathbb{Q}_{2,1}^{(a,E')}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(s,A'_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(k,E')}]}{2}$$

No. 7
$$\hat{\mathbb{Q}}_3^{(A_1')}$$
 [M₂, B₃]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_5[\mathbb{M}_1^{(a,A_2')}] \otimes \mathbb{Y}_9[\mathbb{T}_3^{(b,A_2')}]$$

$$\hat{\mathbb{Z}}_7(\boldsymbol{k}) = \mathbb{X}_5[\mathbb{M}_1^{(a,A_2')}] \otimes \mathbb{U}_2[\mathbb{Q}_0^{(s,A_1')}] \otimes \mathbb{F}_9[\mathbb{T}_3^{(k,A_2')}]$$

Table 5: Atomic SAMB group.

group	bra	ket	
M_1	s	s	
M_2	p_x, p_y	p_x, p_y	
M_3	p_x, p_y	s	

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1')}$	M_1	(1)
\mathbb{X}_2	$\mathbb{Q}_0^{(a,A_1')}$	M_2	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$

 $continued \dots$

Table 6

symbol	type	group	form
\mathbb{X}_3	$\mathbb{Q}_{2,0}^{(a,E')}$	M_2	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 \end{pmatrix} $
\mathbb{X}_4	$\mathbb{Q}_{2,1}^{(a,E')}$	M_2	$\begin{pmatrix} -\frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_5	$\mathbb{M}_1^{(a,A_2')}$	M_2	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{1,0}^{(a,E')}$	M_3	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
X ₇	$\mathbb{Q}_{1,1}^{(a,E')}$	M_3	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1')}$	S_1	(1)
\mathbb{Y}_2	$\mathbb{Q}_0^{(s,A_1')}$	S_2	(1)
\mathbb{Y}_3	$\mathbb{Q}_{1,0}^{(b,E')}$	B_1	$ \left(0 -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \right) $
\mathbb{Y}_4	$\mathbb{Q}_{1,1}^{(b,E')}$	B_1	$\left(-\frac{\sqrt{6}}{3} \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_5	$\mathbb{Q}_0^{(b,A_1')}$	B_2	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{Y}_6	$\mathbb{Q}_0^{(b,A_1')}$	B_3	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{Y}_7	$\mathbb{Q}_{1,0}^{(b,E')}$	B_3	$ \left[\begin{array}{ccc} \left(0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \right) \end{array} \right] $
\mathbb{Y}_8	$\mathbb{Q}_{1,1}^{(b,E')}$ $\mathbb{T}_3^{(b,A_2')}$	B_3	$\left(-\frac{\sqrt{6}}{3} \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_9	$\mathbb{T}_3^{(b,A_2')}$	B_3	$\left(\begin{array}{ccc} \sqrt{3}i & -\frac{\sqrt{3}i}{3} & \frac{\sqrt{3}i}{3} \end{array}\right)$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1')}$	S_1	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_0^{(s,A_1')}$	S_2	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\mathbb{U}_3	$\mathbb{Q}_0^{(u,A_1')}$	B_1	$ \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix} $
\mathbb{U}_4	$\mathbb{T}_0^{(u,A_1')}$	B_1	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix} $

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_{1,0}^{(k,E')}$	B_1	$-c_{002} + c_{003}$
\mathbb{F}_2	$\mathbb{Q}_{1,1}^{(k,E')}$	B_1	$-\frac{2\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{002}}{3} + \frac{\sqrt{3}c_{003}}{3}$
\mathbb{F}_3	$\mathbb{T}_{1,0}^{(k,E')}$	B_1	$-s_{002} + s_{003}$
\mathbb{F}_4	$\mathbb{T}_{1,1}^{(k,E')}$	B_1	$-\frac{2\sqrt{3}s_{001}}{3} + \frac{\sqrt{3}s_{002}}{3} + \frac{\sqrt{3}s_{003}}{3}$
\mathbb{F}_5	$\mathbb{Q}_0^{(k,A_1')}$	B_2	$\frac{\sqrt{6}c_{004}}{3} + \frac{\sqrt{6}c_{005}}{3} + \frac{\sqrt{6}c_{006}}{3}$
\mathbb{F}_6	$\mathbb{Q}_0^{(k,A_1')}$	B_3	$\frac{\sqrt{6}c_{007}}{3} + \frac{\sqrt{6}c_{008}}{3} + \frac{\sqrt{6}c_{009}}{3}$
\mathbb{F}_7	$\mathbb{Q}_{1,0}^{(k,E')}$	B_3	$-c_{008} + c_{009}$
\mathbb{F}_8	$\mathbb{Q}_{1,1}^{(k,E')}$	B_3	$-\frac{2\sqrt{3}c_{007}}{3} + \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{3}c_{009}}{3}$
\mathbb{F}_9	$\mathbb{T}_3^{(k,A_2')}$	B_3	$\frac{\sqrt{6}s_{007}}{3} - \frac{\sqrt{6}s_{008}}{3} + \frac{\sqrt{6}s_{009}}{3}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1')}$	0	A_1'	-	_	1
2	$\mathbb{Q}_{1,0}^{(E')}$	1	E'	-	0	x
3	$\mathbb{Q}_{1,1}^{(E')}$	1	E'	_	1	y
4	$\mathbb{Q}_{2,0}^{(E')}$	2	E'	-	0	$ \begin{array}{c} -\sqrt{3}xy\\ \sqrt{3}(x-y)(x+y) \end{array} $
5	$\mathbb{Q}_{2,1}^{(E')}$	2	E'	_	1	$-\frac{\sqrt{3}(x-y)(x+y)}{2}$
6	$\mathbb{Q}_3^{(A_2')}$	3	A_2'	_	_	$\frac{\sqrt{10}x(x^2-3y^2)}{4}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_2')}$	1	A_2'	_	_	Z

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|0\},\ \{m_{001}|0\},\ \{m_{110}|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{120} 0\}$	$\{2_{120} 0\}, \{2_{210} 0\}, \{2_{1-10} 0\}$
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{-6^{+}_{001} 0\}$	$\{-6^{+}_{001} 0\}, \{-6^{-}_{001} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{120} 0\}$	3	$\{2_{210} 0\}$	4	$\{2_{1-10} 0\}$	5	$\{3^{+}_{001} 0\}$
6	$\{3^{-}_{001} 0\}$	7	$\{m_{100} 0\}$	8	$\{m_{010} 0\}$	9	$\{m_{110} 0\}$	10	$\{m_{001} 0\}$
 11	$\{-6^{+}_{001} 0\}$	12	$\{-6^{-}_{001} 0\}$						

Table 14: Character table (point-group part).

	1	2120	3 ⁺ ₀₀₁	m ₁₀₀	m ₀₀₁	-6^{+}_{001}
A'_1	1	1	1	1	1	1
$A_2^{\bar{\prime}}$	1	-1	1	-1	1	1
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1
$A_2^{\dagger\prime}$	1	-1	1	1	-1	-1
$\tilde{E'}$	2	0	-1	0	2	-1
E''	2	0	-1	0	-2	1

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$\begin{array}{c} A_1' \ (A_1'') \\ E' \ (E'') \end{array}$	A_2' (A_2'')	$A_1^{\prime\prime} \ (A_1^\prime)$	$A_2''(A_2')$	E''(E')

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A'_1	A_2'	$A_1^{\prime\prime}$	$A_2^{\prime\prime}$	E'	$E^{\prime\prime}$
A'_1	A'_1	A_2'	$A_1^{\prime\prime}$	$A_2^{\prime\prime}$	E'	$E^{\prime\prime}$
A_2^{\dagger}	1	$A_1^{\overline{\prime}}$	$A_2^{\prime\prime}$	$A_1^{\prime\prime\prime}$	E'	$E^{\prime\prime}$
$A_1^{\tilde{\prime}\prime}$		1	A_1^{7}	A_2^{\dagger}	$E^{\prime\prime}$	E'

 $continued \dots$

Table 16

	A'_1	A_2'	$A_1^{\prime\prime}$	$A_2^{\prime\prime}$	E'	$E^{\prime\prime}$
$A_2^{\prime\prime}$				A'_1	$E^{\prime\prime}$	E'
E'					$A_1' + E'$	$A_1'' + A_2'' + E''$
$E^{\prime\prime}$						$A_1' + E'$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A'_1	A_2'	$A_1^{\prime\prime}$	$A_2^{\prime\prime}$	E'	$E^{\prime\prime}$
_	_	_	_	A_2'	A_2'

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} -1 & -1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} 0 & -1 & -1 \end{pmatrix}$	3	$\begin{pmatrix} -1 & 0 & -1 \end{pmatrix}$	4	$\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	6	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	7	$\begin{pmatrix} 0 & -1 & 1 \end{pmatrix}$	8	$\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$
9	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -1 & -1 & -1 \end{pmatrix}$	11	$\begin{pmatrix} 0 & 1 & -1 \end{pmatrix}$	12	$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_1')}$	$\frac{\sqrt{3}}{6}$									
	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$								

 $continued\ \dots$

Table 19

Table 19										
symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_1^{(A_2^{\prime\prime})}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$
	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$								
$\mathbb{Q}_{1,0}^{(E')}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{6}$								
$\mathbb{Q}_{1,1}^{(E')}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$
	$\frac{\sqrt{2}}{4}$	0								
$\mathbb{Q}_{2,0}^{(E')}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	0	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	0	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$
	$\frac{\sqrt{2}}{4}$	0								
$\mathbb{Q}_{2,1}^{(E')}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$								
$\mathbb{Q}_{2,0}^{(E^{\prime\prime})}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$								
$\mathbb{Q}_{2,1}^{(E^{\prime\prime})}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	0	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$
	$\frac{-\frac{\sqrt{2}}{4}}{\frac{\sqrt{3}}{6}}$	0								
$\mathbb{Q}_3^{(A_2')}$		$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$
	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$								
$\mathbb{Q}_{3,0}^{(E^{\prime\prime})}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	0	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$
	$-\frac{\sqrt{2}}{4}$	0								
$\mathbb{Q}_{3,1}^{(E^{\prime\prime})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$ $\frac{\sqrt{3}}{6}$	$\frac{\sqrt{6}}{6}$								
$\mathbb{Q}_4^{(A_1^{\prime\prime})}$		$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$
	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$								