三. 数据处理

1. 逐差法处理数据 (Excel计算)

• 表2-1

L(mm)	H(mm)	D(mm)			
722.7	684.4	47.20			

• 表2-2

序号i	1	2	3	4	5	6	平均值
直径视值	0.601	0.600	0.604	0.606	0.600	0.605	0.603

零差 d_0 (mm)	平均值 $ar{d}$	直径值d(mm)			
0.001	0.603	0.604			

• 表2-3

序号i	1	2	3	4	5	6	7	8	9	10
fi(kg)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
xi+(cm)	1.68	2.02	2.39	2.74	3.10	3.45	3.80	4.17	4.54	4.88
xi-(cm)	1.81	2.20	2.60	3.00	3.40	3.78	4.15	4.51	4.87	5.08
平均xi(cm)	1.75	2.11	2.50	2.87	3.25	3.62	3.98	4.34	4.71	4.98
xi+5 - xi(cm)	1.87	1.87	1.85	1.84	1.73	/	/	/	/	/

• 计算结果 $\overline{\Delta x}$ =1.83 cm

2. 求杨氏模量和不确定度

• 求杨氏模量

杨氏模量:
$$E=rac{8mgLH}{\piar{d}^2D}\cdotrac{1}{\overline{\Delta x}}$$

其中 $m=5\Delta f_i,~g=9.8N/kg,~\pi=3.14159$,其余量代入测量值计算得 $\overline{E}=1.96 imes10^{11}~N/m^2$

• 求不确定度

系统误差: $\Delta_B = \frac{\Delta_{(\!\! k)}}{\sqrt{3}}$,本次实验把B类不确定度当做总不确定度处理

间接量
$$E$$
的误差传递公式为: $u_E = E \cdot \sqrt{\left(\frac{u_L}{L}\right)^2 + \left(\frac{u_H}{H}\right)^2 + \left(-2 \cdot \frac{u_d}{d}\right)^2 + \left(-\frac{u_D}{D}\right)^2 + \left(-\frac{u_{\Delta x}}{\Delta x}\right)^2}$ 经计算,

 $u_L=u_H=0.46188, u_d=0.002309, u_D=0.011547, u_{\Delta x}=0.288675,$ 代入公式计算得, $u_E=0.03\times 10^{11}\ N/m^2$

• 最终结果表示

$$E=\overline{E}\pm u_E=(1.96\pm0.03) imes10^{11}\ N/m^2$$

误差 $\mathrm{E}{=}rac{u_E}{\overline{E}} imes100\%=1.53\%$
置信概率 $\mathrm{P}{=}0.683$

四. 实验结论及现象分析

本次实验,所测量金属丝的杨氏模量为 $E=\overline{E}\pm u_E=(1.96\pm 0.03)\times 10^{11}~N/m^2$,误差 $\mathrm{E}=\frac{u_E}{\overline{E}}\times 100\%=1.53\%$,表明了利用光杠杆测量结果的准确性极高。

通过查表,得知所测结果在铁(1.9)和钢(2.0)之间,可推测金属丝为某类钢丝。

本次实验掌握了利用光杠杆测量微小长度变化的原理,同时研究学习了用拉伸法测量金属丝的杨氏模量,在此基础上,复习了使用逐差法处理实验数据。

对于不确定度的计算,巩固了绪论课程所学知识,使得纸面学习的知识应用到实际的实验当中。

五. 讨论问题

1. 材料相同,但粗细、长度不同的两根钢丝,它们的杨氏模量是否相同?

答:相同。杨氏模量只与材料的物理性质有关,而与材料的大小及形状无关,所以粗细长度不同的两根钢丝的杨氏模量值应当相同。

2. 从误差分析的角度分析为什么同是长度测量,需要采用不同的量具?

答:对于不同的数据,要求的量具量程不同,且要求的精确度不同,所以使用不同的量具进行测量。

3. 实验过程中为什么加力和减力过程, 施力螺母不能回旋?

答:

- 1. 金属丝的形变是滞后的。如果回旋会导致金属丝未能来得及发生形变使得测量的拉力值不准,从 x_i^+ 和 x_i^- 的测量值不同就可以看出。
- 2. 回旋可能会产生回旋误差。因为螺母可能通过齿轮进行传动,而实际齿轮间的咬合是存在空隙的,回旋会导致空隙的宽度没有测量,导致误差增大。
- 4. 用逐差法处理数据的优点是什么? 应该注意什么问题?

答:

优点: 能充分利用已获得的测量数据,减小随机误差对实验结果的影响

注意的问题:系统误差一定的时候才可以使用,这样使用逐差法可以减小随机误差对实验的影响,否则,逐差法没有意义。