Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

zu zeigen: $\forall_{L \in \mathbb{NP}} L \leq_m^p SAT$.

Sei $L \in NP$. Dann existiert NTM M mit L = T(M) & Polynom p beschränkt Laufzeit von M.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Annahme: M hält bei Eingabe $x = x_1 x_2 \dots x_n \in \Sigma^n$ nach genau p(n) Schritten.

Wir konstruieren eine Polynomzeitreduktion f, sodass gilt $x \in L \Leftrightarrow f(x) := F_M(x) \in SAT$.

Zu konstruierende Formel $F_M(x)$ besitzt folgende boolesche Variablen:

	Var.	Indizes	Bedeutung
	$Z_{t,j}$	$0 \le t \le p(n)$ $1 \le j \le k$	$z_{t,j} = 1 \Leftrightarrow nach\ t\ Schritten\ ist\ M\ im\ Zustand\ z_j$
	$p_{t,i}$	$0 \le t \le p(n) - p(n) \le i \le p(n)$	$p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten ist Kopf auf Pos. } i$
	$b_{t,i,a}$	$0 \le t \le p(n) - p(n) \le i \le p(n)$	$b_{t,i,a} = 1 \Leftrightarrow nach\ t\ Schritten\ befindet\ sich\ auf$
		$a \in \Gamma$	Bandposition i das Zeichen a
		<u>'</u>	

Theorem

SAT ist NP-vollständig.

Beweis (Skizze: SAT ist NP-schwer)

$$F_{\mathcal{M}}(x) := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Anfang
$$A:=z_{0,1}\wedge p_{0,0}\wedge \bigwedge b_{0,i,\varkappa_i}\wedge \bigwedge b_{0,i,\square}\wedge \bigwedge b_{0,i,\square}$$

Anfang
$$A := z_{0,1} \land p_{0,0} \land \bigwedge p_{0,1} \land \bigwedge$$

Anfang
$$A:=z_{0,1}\wedge p_{0,0}\wedge \bigwedge b_{0,i,\mathsf{x}_i}\wedge \bigwedge$$

$$0 \le i < n \qquad -p(n) \le i < 0 \qquad n \le i \le p(n)$$

$$\mathsf{mit}\ \gamma\in\{-1,0,1\}\ \mathsf{(das\ heißt}\ L=-1, N=0, R=1)$$

$$T_2:=\bigwedge(\overline{p_{t,i}}\wedge b_{t,i,a})\to b_{t+1,i,a}$$

$$\begin{array}{c} 0 \! \leq \! t \! < \! p(n) \\ -p(n) \! \leq \! i \! \leq \! p(n) \end{array}$$
 Mathias Weller (TU Berlin) $a \! \in \! \Gamma$ Berechenbarkeit und Komplexität

Ende $F := \bigvee z_{p(n),j}$

89 / 90

 $z_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_i$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$

 $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Theorem

SAT ist NP-vollständig.

 $z_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_i$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$F_{\mathcal{M}}(x) := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Randbedingungen $R := R_z \wedge R_p \wedge R_b$:

Zustände
$$R_z := \bigwedge_{0 \le t \le p(n)} \operatorname{genau_eins}(z_{t,1}, \dots, z_{t,k})$$

Kopfpositionen $R_p := \bigwedge \text{genau_eins}(p_{t,-p(n)}, \dots, p_{t,p(n)})$ $0 \le t \le p(n)$

$$\begin{array}{c} \mathsf{Bandinhalte} \ R_b := \bigwedge_{\substack{0 \leq t \leq p(n) \\ -p(n) \leq i \leq p(n)}} \mathsf{genau_eins}(b_{t,i,a_1}, \dots, b_{t,i,a_\ell}) \\ \mathsf{genau_eins}(y_1, \dots, y_q) := \bigvee_{i = t} y_i \land \bigcap_{\substack{y_i \vee y_j \\ y_i \neq y_i}} \mathsf{genau_eins}(y_i, \dots, y_q) \\ \end{array}$$

Berechenbarkeit und Komplexität

 $1 \le i \le a$ $1 \le i \le a$

Mathias Weller (TU Berlin)

Theorem

SAT ist NP-vollständig.

 $z_{t,j} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Zustand } z_j$ $p_{t,i} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Kopfpos} = i$ $b_{t,i,a} = 1 \Leftrightarrow \text{nach } t \text{ Schritten: Band}[i] = a$

Beweis (Skizze: SAT ist NP-schwer)

$$F_M(x) := A \wedge T_1 \wedge T_2 \wedge F \wedge R$$

Formelgröße:

$$|A| \in O(p(n))$$
 $|F| \in O(1)$ $|T_1| \in O((p(n))^2)$ $|T_2| \in O((p(n))^2)$ $|R| \in O((p(n))^3)$

Korrektheit:

Beobachtung: $F_M(x)$ modelliert akzeptierenden Berechnungspfad im Zustandsgraphen von M(x)

$$x \in L \Leftrightarrow$$
 es gibt akzeptierenden Berechnungspfad im Zustandsgraphen von $M(x)$ $\Leftrightarrow F_M(x)$ erfüllbar

TOBF & PSPACE Theorem

TQBF ist PSPACE-vollständig.

Beweis (Skizze: TQBF ist PSPACE-schwer)

zu zeigen: $\forall_{L \in PSPACE} L \leq_m^p TQBF$.

Sei $L \in PSPACE$. Dann existiert DTM M mit L = T(M), platzbeschränkt durch Polynom p.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_1, \square, E)$ mit $\Gamma = \{a_1 = \square, \dots, a_\ell\}$ und $Z = \{z_1, \dots, z_k\}$.

Sei \mathcal{K}_{\times} die Menge aller möglichen Konfigurationen von M bei Eingabe \times

Sei $S \in \mathcal{K}_{\times}$ die Startkonfiguration von M bei Eingabe x. Argument ähnlich zu Satz v. Savitch:

 $\rightarrow |\operatorname{reach}_{x}(Q, R, j)| \approx O(1) + |\operatorname{reach}_{x}(Q, R, \lceil j/2 \rceil)| \in O(\log j) \rightarrow \checkmark$

M akzeptiert $x \Leftrightarrow \exists_{T \in \mathcal{K}_x} T$ akzeptierend \land reach_x $(S, T, k \cdot p(n) \cdot |\Gamma|^{p(n)})$ $\operatorname{reach}_{x}(Q,R,j)$ es gibt einen Q-R-Pfad der Länge $\leq j$ im Konfigurationsgraph von M(x)

$$\mathsf{reach}_{\mathsf{X}}(Q,R,j) \coloneqq \begin{cases} R \text{ ist Folgekonfiguration von } Q \lor (Q=R) & \mathsf{falls } j=1 \\ \exists_{C \in \mathcal{K}_{\mathsf{X}}} \forall_{D,D' \in \mathcal{K}_{\mathsf{X}}} \left((D=Q \land D'=C) \lor (D=C \land D'=R) \right) \\ & \to \mathsf{reach}_{\mathsf{X}}(D,D',\lceil j/2 \rceil) & \mathsf{falls } j>1 \end{cases}$$

Mathias Weller (TU Berlin) Berechenbarkeit und Komplexität