Discrete Math Def. x is congruent mod n Lecture 33 to y means (note: x,y & Z, n & IN = {1,2 ... } Modular Arithmetic First def X-y is a multiple of n ImeZ, x-y = m·n Second def x & y have the same remainder when divided by n (recall: r & \(\delta_{01}, \ldots_{n-1}\(\delta_{} \)

 $\frac{notation}{x is congruent to y mod n'}$ (equivalent) $x \equiv y \mod n$

①:
$$5-13 = -8 = (-2)4$$

50 yes, $5 = 13 \mod 4$

(2):
$$5 = 1.4 + 1$$

$$13 = 3.4 + 1$$

$$13 = 1 \mod 4$$

$$a-b = mn + o$$

Div. alg. to
$$a
ightharpoonup n$$

$$a = q_1 n + r_2$$
Subtract then
$$b = q_2 n + r_2$$

$$a - b = (q_1 - q_2) n$$

$$a-b = (q_1 - q_2) n + (r-r)$$

$$= (q_1 - q_2) n$$

ex] which integers are congruent to 6 mod 8? i.e. solve
$$x = 6 \mod 8$$

$$\chi - 6 = m \cdot 8$$

Select
$$m=1: X-6=8 \longrightarrow X=14$$
 $M=0: X-6=0 \longrightarrow X=6$

$$10 = -1: \quad x - 6 = -8 \longrightarrow \boxed{x = -2}$$

$$10 = -1: \quad x - 6 = -8 \longrightarrow \boxed{x = 32}$$

note: all solutions are of the form 8m + 6

most people ignor/don't write

$$\mathbb{Z}_{3} = \{0, 1, 2\}$$

$$2 + _3 2 = 1$$

[X3/	0	1	2
	6	0	٥	0
)	0	1	2
	2	0	2	1

mult table for I 3

this works in any In!

this lets us do orizhoutic mod n

note
$$2 \cdot 42 = 0$$

$$7 \cdot 1$$

$$8 \cdot 1 \cdot 2 \cdot 10$$

$$8 \cdot 10 \cdot 10$$

in familiar beis like IR $a \times = b$

if a = 0, we can solve

this by "dividing by a"

i.e. by "multiplying by a"

$$\frac{ex}{4x} = 12$$
 $\frac{4}{4x} = \frac{1}{1} \cdot \frac{3}{12}$

in \mathbb{Z}_n If $a \neq 0 \mod n$, then maybe we can find \tilde{a}^1 to hultiply book sider by! $X = \tilde{a}^1 \cdot b \mod n$

not all a $\in \mathbb{Z}$ have "multi-inverses mod n (warning ex: $2 \in \mathbb{Z}$, 2 has no inv. mod 4!!) $(2 \times = 3 \mod 4 \text{ has possible solutions!})$

What we actually ned:

ax = b mod n

has solutions if & only if gcd (a, n) | b

ex 2x = 3 mod 4

gal(2,4) = 2 $ZY3 \longrightarrow no$ Solution

$$ex$$
 $3x = 6 \mod 9$

$$gcd(3,9) = 3$$
, $3/6$

one solution:
$$\chi = 2$$

(also have
$$(x=2, x=5, x=8,)$$

one solution
$$X_0 + \frac{n}{g(d(a_1n))}$$

$$\frac{1}{2} + \frac{q}{3} =$$

thre solutions: 2,5,8