Basics of Information Theory

for machine learning

P(A)

Frequentist interpretation

Image from: http://www.shmoop.com/basic-statistics-probability/probability.html

Frequentist interpretation

$$P(x) = \lim_{n_t o \infty} \frac{n_x}{n_t}.$$

Bayesian interpretation

Bayesian interpretation

a reasonable expectation

that represents the state of knowledge

Sources of uncertainty

Image from: http://braveleaps.com/wp-content/uploads/2013/10/Uncertainty2.jpg

Inherent stochasticity

Image from: http://www.science4all.org/wp-content/uploads/2013/01/atom711.jpg

Incomplete observability

Image from:

https://img.clipartfest.com/b4b32c0549e64021f6408edecb1296be from-clipartcom-behind-the-tree-clipart

Model limitations

Image from:

http://static1.squarespace.com/static/5206b718e4b0bdc26006bae2/t/554771abe4b0deabe55d5faa/143074

Probability Mass Function

- The domain of P must be the set of all possible states of x.
- $\forall x \in x, 0 \le P(x) \le 1$.
- $\Sigma x \in xP(x) = 1$.

Uniform distribution

$$P(x = x_i) = 1/k$$

Zipfian distribution

$$f(k;s,N) = rac{1/k^s}{\sum_{n=1}^{N} (1/n^s)}$$

Zipf's Law

Additive smoothing

$$\hat{ heta}_i = rac{x_i + lpha}{N + lpha d} \qquad (i = 1, \ldots, d)$$

Open world

P(president | "Obama") = 0.95

P(town | "Obama") = 0.02

P(something_else | "Obama") = 0.03

Joint probability

	King	Ace
Diamonds	1/4	1/4
Spades	1/4	1/4

Marginal probability

	King	Ace	
Diamonds	1/4	1/4	1/2
Spades	1/4	1/4	1/2
	1/2	1/2	

Conditional probability

$$p(y|x)=p(x,y)/p(x)$$

$$p(x,y)=p(x)\cdot p(y|x)$$

Independence $(x \perp y)$

$$p(x, y) = p(x)p(y)$$
$$p(x|y) = p(x)$$

Independence (cont'd)

Dependent variables

	Red	Blonde	
Stratocaster	1/2	1/8	5/8
Telecaster	1/8	1/4	3/8
	5/8	3/8	

Dependent variables

$$p(y|x)=p(x,y)/p(x)$$

$$P(red) = \frac{5}{8} = 0.625$$

$$P(red, stratocaster) = \frac{1}{2}$$

P(red|stratocaster) =
$$\frac{1}{2} / \frac{5}{8} = 0.8$$

Dependent variables

$$p(y|x)=p(x,y)/p(x)$$

$$P(blonde) = \frac{3}{8} = 0.375$$

$$P(telecaster) = \frac{3}{8}$$

P(blonde,telecaster) =
$$\frac{1}{4}$$

P(blonde|telecaster) =
$$\frac{1}{4}$$
 / $\frac{3}{8}$ = $\frac{2}{3}$ ≈ 0.(6)

Bayes rule

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Gaussian distribution

Gaussian distribution

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \ e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Expectation

$$\mathbb{E}_{\mathbf{x} \sim P}[f(x)] = \sum_{x} P(x)f(x)$$

Expectations are linear

$$\mathbb{E}_{\mathbf{x}}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}_{\mathbf{x}}[f(x)] + \beta \mathbb{E}_{\mathbf{x}}[g(x)]$$

Variance

$$Var(f(x)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2 \right]$$

Covariance

$$Cov(f(x), g(y)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}\left[f(x)\right]\right)\left(g(y) - \mathbb{E}\left[g(y)\right]\right)\right]$$

Binary encoding

Binary encoding

x bits may represent 2^x equally likely events

z equally likely events may be represented by log₂z bits

Other base(s)

x nats may represent e^x equally likely events

z equally likely events may be represented by ln(z) nats

Huffman coding

Message	Code	Probability
a ₁	0	$P_1 = \frac{5}{8}$ \bullet $a_{11}(1)$
a_2	100	$P_2 = \frac{3}{32} \begin{array}{c} 0 & 0 \\ \hline \\ a_{10}(\frac{3}{8}) \end{array}$
a_3	110	$P_3 = \frac{3}{32}$ 0 $a_8(5/32)$
a_4	1110	$P_4 = \frac{1}{32} \stackrel{\bullet}{\checkmark} 1$
a_5	101	$P_5 = \frac{1}{8} \qquad 1$
a_6	1111	$P_6 = \frac{1}{32} + 0$ $a_7 (\frac{1}{16})$

Image from: http://nptel.ac.in/courses/117104069/chapter_7/fig12b.gif

Self-information

$$I(x) = -\log P(x)$$

In(x)

Shannon Entropy

$$H(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim P}[I(x)] = -\mathbb{E}_{\mathbf{x} \sim P}[\log P(x)]$$

Cross-entropy

$$H(P,Q) = -\mathbb{E}_{\mathbf{x} \sim P} \log Q(x)$$

Cross-entropy

$$H(p,q) = -\sum p(x)\,\log q(x)$$

Logistic loss

$$-y\log\hat{y}-(1-y)\log(1-\hat{y})$$

Back to classification

Classification

Mutual information

$$I(X,Y)=H(X)+H(Y)-H(X,Y)$$

PMI

$$ext{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)}$$

Distributed representation

Image from:

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/img/Socher-ImageClassManifold.png

Further reading: probability and statistics

- Probability Theory: The Logic of Science (by E. T. Jaynes) http://bayes.wustl.edu/etj/prob/book.pdf
- 2. Introduction to Statistical Thinking (by Benjamin Yakir) http://pluto.huji.ac.il/~msby/StatThink/IntroStat.pdf
- 3. Introduction to Probability and Statistics Using R (by G. Jay Kerns) https://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf

Further reading: Information Theory

- Information Theory, Inference, and Learning Algorithms (by David MacKay) http://www.inference.phy.cam.ac.uk/itprnn/book.html
- 2. Elements of information theory (by Joy A. Thomas and Thomas M. Cover) http://www.di-srv.unisa.it/professori/uv/TI2/libro.pdf
- Visual Information Theory (by Christopher Olah) <u>http://colah.github.io/posts/2015-09-Visual-Information/</u>
- 4. Information Theory: A Tutorial Introduction (by James V. Stone) http://jim-stone.staff.shef.ac.uk/BookInfoTheory/

Further reading: Machine Learning

 Deep Learning (by Ian Goodfellow, Yoshua Bengio, and Aaron Courville) https://www.deeplearningbook.org/

Thanks!