Théorie des Ensembles et Arithmétique

0

Ce document présente quelques bases de théorie des ensembles et d'arithmétique.

Table des matières			1.3.2.	Ensemble de tous les ensembles	28
		1.4.	Constru	uction de \mathbb{N}	28
1. Théorie des ensembles	3		1.4.1.	Définition	28
1.1. Logique du premier ordre	3		1.4.2.	Relation d'ordre : définition	29
1.1.1. Symboles logiques	3		1.4.3.	Principe de récurrence	29
1.1.2. Égalité	4		1.4.4.	Relation d'ordre : propriétés	
1.1.3. Symboles non logiques	4		1.4.5.	Récurrence forte	
1.1.4. Termes	5		1.4.6.	Suites ; définition par récurrence	
1.1.5. Formules	5 5		1.4.7.	Sous-ensembles de ℕ, bornes, et	
1.1.6. Parenthèses, symboles (,), [,] et ,1.1.7. Formule à nombre non spécifié de	3		1	éléments extrémaux	35
paramètres	5		1.4.8.	Addition	36
1.1.8. Quantificateur d'unicité	6		1.4.9.	Soustraction	
1.1.9. Sémantique	6			Multiplication	40
1.1.10. Relations binaires	7			Puissance	
1.1.11. Réciproque	8			Puissances de fonctions	43
1.1.12. Contraposée	8			Puissances d'ensembles	44
1.1.13. NAND et NOR	8			Produit cartésien de plusieurs en-	77
1.1.14. XOR	8		1.4.14.	sembles	45
1.1.15. Tables de vérité	9	1.5.	Constru	uction de \mathbb{Z}	45
1.1.16. Quelques propriétés	9	1.5.	1.5.1.	Définition	45
1.1.17. Valeur de vérité Indéfinie	10		1.5.1.	Relation d'ordre	45
1.1.18. Quelques schémas de raisonnement	11		1.5.2.	Addition	46
1.1.19. Un exemple : arc-en-ciel à minuit ?	11				49
1.1.20. Théorème d'incomplétude de Gödel	12		1.5.4.	Opposé	
1.2. Théorie ZF(C)	12		1.5.5.	Soustraction	50
1.2.1. La théorie de Zermelo	12		1.5.6.	Multiplication	
1.2.2. Intersection	15		1.5.7.	Puissance	
1.2.3. Schéma d'axiomes de remplacement1.2.4. Axiome de fondation	15	4.6	1.5.8.	Factoriel	
1.2.4. Axiome de fondation	17 17	1.6.			54
1.2.6. Produit Cartésien	18		1.6.1.		54
1.2.7. Graphe de relation binaire	18		1.6.2.	Cas de l'ensemble des entiers naturels	60
1.2.8. Relation d'ordre	18		1.6.3.	Ensemble défini par une liste d'élé-	
1.2.9. Partition	22			ments	
1.2.10. Relation d'équivalence	22		1.6.4.	Intervalle de \mathbb{N} ou \mathbb{Z}	
1.2.11. Fonctions	22		1.6.5.	Ensemble dénombrable	
1.2.12. Axiome du choix	26		1.6.6.	Théorème de Cantor-Bernstein	
1.2.13. Lemme de Zorn (en théorie ZFC) .	27	1.7.		nts de théorie des groupes	
1.2.14. Ensembles et séquences ordonnées .	27		1.7.1.	Définitions	66
1.3. Quelques notations et résultats	27		1.7.2.	Quelques résultats	68
1 3 1 Pásumá des notations	27		173	Groupe quotient	68

2.	Arit	hmétiq	ue	70	2.4. Les groupes $\mathbb{Z} / (n\mathbb{N})$ et $(\mathbb{Z} / (n\mathbb{N}))^*$	78
	2.1.		pts fondamentaux		2.4.1. Définition	78
			Division euclidienne		premier	78
			re en base b		2.4.3. Cyclicité pour $(\mathbb{Z}/(p^m\mathbb{N}))^*$ pour p premier	78
	2.3.		res premiers		A. Codes Haskell, C/C++ et Rust	7 9
			Théorème de Bachet-Bézout		A.1. Écriture d'un entier naturel en base $b cdot$	
			Théorème du reste chinois	76	A.2. Test de primalité A.3. PGCD	
		2.3.4.	Décomposition en produit de facteurs premiers	77	A.4. Crible d'Érastosthène	81
		2.3.5.	Petit théorème de Fermat	77	B. Liste des 1000 premiers nombres premiers	84

1. Théorie des ensembles

1.1. Logique du premier ordre

La logique du premier ordre, aussi appelée *logique des prédicats* ou *calcul des prédicats du premier ordre*, est un cadre semi-formel permettant de définir des théories. On peut la voir comme un langage, ou comme un ensemble d'éléments de langage. Elle est utilisée tant en mathématiques qu'en philosophie, linguistique et informatique. Nous l'aborderons ici principalement d'un point de vue mathématique.

On considère ici une notion très basique du terme langage, que l'on considère formé de deux éléments :

- Un ensemble (au sens intuitif du terme) de *symboles*.
- Des règles de formations de *phrases* à partir des symboles.

Dans cette vision, les symboles constituent les fondations du langage, premettant de contruire les phrases, porteuses de sens.² On sépare parfois les symboles en deux catégories : *fondamentaux* s'ils forment un ensemble unsécable, ou *composites* s'ils sont formés d'autres symboles.

Intuitivement, la logique du premier ordre a pour symboles des variables (décrivant un domaine d'objets non logiques, c'est-à-dire non définis par la logique du premier ordre elle-même) quantifiées (par les quantificateurs « pour tout » et « il existe ») ou non, des symboles non logiques, ainsi que des connecteurs, utilisés pour construire des phrases, appelées *formules*. Ces dernières sont aussi appelées *propositions*, *énoncés* ou *prédicats*.

Elle est une extension de la *logique propositionelle*, qui exprime des énoncés, ou *propositions*, aussi appelés *prédicats*, auxquels on attribue une valeur dite de *vérité*: vrai ou faux. Chaque proposition est soit vraie soit fausse, et ne peut être les deux simultanément. Ces énoncés peuvent être liés par conjonction, disjonction, implication, équivalence, ou modifés par négation. La logique du premier ordre contient, en outre, des variables et quantificateurs, ce qui la rend plus expressive. On peut dire qu'elle contient la logique propositionelle, au sens où cette dernière est équivalente à la logique du premier ordre élaguée des variables et quantificateurs.

Une théorie définie dans le cadre de la logique du premier ordre porte sur un domaine de discours spécifié que les variables quantifiées décrivent, permettant de définir des prédicats sur ce domaine, auxquels un ensemble d'axiomes tenus pour vrais permet d'associer une valeur de vérité. Un prédicat ne peut avoir pour arguments que des variables sur ce domaine, et seules les variables peuvent être quantifiés. Cela distingue la logique du premier ordre des logiques d'ordre supérieur, où un prédicat peut avoir un prédicat plus général comme argument ou des quantificateurs de prédicats peuvent être autorisés.

Plus formellement, une théorie définie dans le cadre de la logique du premier ordre se compose des éléments suivants :

- Un *alphabet*, c'est-à-dire un ensemble (au sens intuitif du terme) de symboles, dont certaines chaînes forment des *termes*. On divise généralement les symboles et deux catégories : les *symboles logiques*, dont la signification est fixée, et les *symboles non logiques*, dont le sens n'est pas univoquement défini par la théorie et doit être défini au cas par cas. Certains de ces symboles sont définis par la logique du premier ordre ; d'autres peuvent être propres à la théorie.
- Un *domaine de discours* non vide que les variables décrivent (si x désigne une variable, la formule $\exists x V$ est toujours vraie (voir ci-dessous pour sa signification)).
- Des *règles de formation*, exprimant comment construire les termes et formules. Là encore, certaines sont définies par la logique du premier ordre et d'autres peuvent être propres à la théorie.
- Des *formules* (aussi appelées *propositions*) obtenues à partir de ces règles, exprimant des prédicats. (Le terme *prédicat* est aussi utilisé pour désigner une formule elle-même.) Une proposition est toujours vraie ou fausse³, et ne peut être simultanément vraie et fausse. Deux formules seront dites *équivalentes* si elles prennent toujours la même valeur de vérité.
 - Si f et g sont deux formules équivalentes, g et f sont équivalentes.
 - Si f et g sont trois formules telles que f et g sont équivalentes et g et h sont équivalentes, alors f et h sont équivalentes.
- Un ensemble d'axiomes, ou propositions tenues pour vraies. Ces axiomes permettent en général de déterminer la valeur de vérité d'autres prédicats.

1.1.1. Symboles logiques

Les symboles logiques incluent :

^{1.} On adopte ici le point de vue que la logique du premier ordre ne repose pas sur une théorie vue comme plus fondamentale. Ses concepts fondamentaux sont ainsi définis intuitivement (puisque nous n'avons aucun concept plus fondamental qui permettrait de les définir formellement), d'où le qualificatif de « semi-formel », et non « formel ».

^{2.} Ce sens étant défini, in fine, par un élément extérieur au langage, par exemple l'intuition de qui l'utilise.

^{3.} À moins d'inclure la valeur de vérité indéfinie, voir section 1.1.17.

- Le symbole de quantification universelle \forall (« pour tout »).
- Le symbole de quantification existentielle \exists (« il existe »).
- Le connecteur de conjonction \land («et»): si P et Q sont deux formules, $P \land Q$ est vraie si P et Q sont vraies et fausse sinon.
- Le connecteur de disjonction \lor (« ou ») : si P et Q sont deux formules, $P \lor Q$ est vraie si P est vraie ou si Q est vraie et fausse sinon.
- Le connecteur de négation \neg (« non ») : si P est une formule, $\neg P$ est vraie si P est fausse et fausse si P est vraie.
- Le connecteur d'implication \Rightarrow (« implique ») : si P et Q sont deux formules, $P \Rightarrow Q$ est fausse si P est vraie et Q est fausse et vraie sinon. La formule $P \Rightarrow Q$ est ainsi équivalente à $Q \lor \neg P$ (voir ci-dessous pour la signification des parenthèses et les règles d'évaluation).
- Le connecteur \Leftarrow : si P et Q sont deux formules, $P \Leftarrow Q$ est fausse si P est fausse et Q est vraie et vraie sinon. La formule $P \Leftarrow Q$ est ainsi équivalente à $P \lor \neg Q$.
- Le connecteur biconditionnel \Leftrightarrow (« est équivalent à ») : si P et Q sont deux formules, $P \Leftrightarrow Q$ est vraie si P et Q sont soit toutes deux vraies soit toutes deux fausses, et fausse sinon. La formule $P \Leftrightarrow Q$ est ainsi équivalente à $(P \land Q) \lor (\neg P \land \neg Q)$. Notons que, si P et Q sont deux prédicats, si $P \Leftrightarrow Q$ est vrai, alors $(\neg P) \Leftrightarrow (\neg Q)$ est vrai aussi.
- Un ensemble infini de *variables*, souvent notées par des lettres grecques ou latines, éventuellement avec des indices ou exposants. Les variables sont interprétées comme décrivant un domaine d'objets de base, qui ne peut être vide. Elles sont aussi parfois appelées *paramètres*.

On définit également les constantes de vérité V pour « vraie » et F pour « fausse ». Si f est une formule, ces deux constantes de vérité sont équivalentes, respectivements, aux formules $f \lor (\neg f)$ et $f \land (\neg f)$. Enfin, on peut définir le connecteur (non standard) de vérité \sharp : si f est une formule, $\sharp f$ est vraie si f est vraie et fausse sinon. (Avec ces notations, $\sharp f$ a toujours la même valeur de vérité que f. On introduit ce nouveau connecteur uniquement pour pouvoir exprimer la véracité d'une formule dans le cadre de la théorie ; il sera très peu employé dans la suite.) Ce dernier connecteur ne rendant pas la théorie plus expressive, on l'omettra dans la suite sauf mention contraire.

Pour être plus formel, on peut ne définir dans un premiers temps que les variables et constantes de vérité, puis les symboles non logiques, les termes, et enfin les autres symboles logiques avec les formules qu'ils permettent de construire et l'égalité (voir ci-dessous). On adoptera ce point de vue dans la suite. Pour le moment, les symboles logiques (y compris l'égalité définie ci-dessous) ne sont donnés que comme une liste de symboles utilisés, qui prendront leur sens lorsque les formules et la sémantique seront définies.

1.1.2. Égalité

La *logique du premier ordre avec égalité* inclut un autre symbole logique, =, définissant une relation binaire, dite *égalité*, satisfaisant les axiomes suivants :

- Axiome de réciprocité : $\forall x (x = x)$.
- Réflexivité : $\forall x \, \forall y \, [(x = y) \Rightarrow (y = x)].$
- Transitivité : $\forall x \forall y \forall z [((x = y) \land (y = z)) \Rightarrow (x = z)].$
- Schéma d'axiomes de Leibniz : Soit P un prédicat à une variable. On a : $\forall x \forall y [(x = y) \Rightarrow (P(x) \Leftrightarrow P(y))]$.

Deux objets x et y définis par une théorie sont dits égaux si x = y. On considèrera alors qu'il s'agit du même objet. En particulier, changer l'un pour l'autre dans une formule ne modifie pas sa valeur de vérité.

Si x, y et z sont trois objets, on notera parfois par x = y = z la formule $(x = y) \land (y = z)$.

1.1.3. Symboles non logiques

Un symbole non logique est un symbole n'ayant pas de signification donnée par la logique du premier ordre. Il représentent généralement un prédicat, pouvant dépendre de variables placées à sa droite, éventuellement entre parenthèses.

1.1.4. Termes

Les termes sont définis comme suit :

- Toute variable est un terme.
- Si Pest un prédicat ne dépendant d'aucune variable, alors Pest un terme.
- Si Pest un prédicat dépendant des variables $a_1 \dots a_N$, alors $Pa_1 \dots a_N$, aussi noté $P(a_1 \dots a_N)$, est un terme.
- En présence de l'égalité, si x et y sont deux variables, alors x = y est un terme.

1.1.5. Formules

Les formules sont définies de la manière suivante :

- Tout terme est une formule.
- Si x est une variable et f une formule, alors $\exists x f$ et $\forall x f$ sont des formules.
- D'autres formules sont construites à l'aide des autres symboles logiques :
 - Si f est une formule, alors $\neg f$ (et $\sharp f$, si on l'admet dans la théorie) sont des formules.
 - Si f et g sont deux formules n'ayant aucune variable liée en commun, alors $f \lor g$, $f \land g$, $f \Rightarrow g$, $f \Leftarrow g$ et $f \Leftrightarrow g$ sont des formules.

Une variable apparaissant dans une formule (aussi dite *paramètre* de la formule) est dite *liée* si elle est quantifiée (*i.e.*, si l'une de ses occurrences est immédiatement précédée d'un quantificateur) et *libre* si elle ne l'est pas. On impose parfois (et on le fera par la suite sauf mention contraire) qu'une même variable ne puisse être quantfiée plus d'une fois dans une même formule. Si une formule F contient des variables libres $a_1a_2...$, et si $\alpha_1\alpha_2...$ sont autant d'éléments définis par une théorie, on note parfois $F\alpha_1\alpha_2...$ ou $F(\alpha_1\alpha_2...)$ la formule obtenue à partir de F en remplaçant $a_1a_2...$ par $\alpha_1\alpha_2...$. Comme annoncé ci-dessus, à chaque formule correspond une unique valeur de vérité, vraie ou fausse. Ainsi, une formule non vraie est fausse, une formule vraie est non fausse, une formule fausse est non vraie et une formule non fausse est vraie.

Une formule peut être représentée par un symbole non logique. Ce lien peut être noté par le dit symbole suivi de « : » puis de la dite formule ; on dira de ce lien qu'il *définit* le symbole non logique, qui peut alors être employé comme un terme, avec la valeur de vérité associée à la formule qui lui est liée. Une formule ne peut contenir de symbole non logique qui ne soit précédemment défini.

Parfois, une virgule «, » est utilisée pour séparer deux parties d'une formule et la rendre plus lisible, sans en modifier le sens. Chaque partie d'une formule ainsi définie doit être une formule à part entière.

Une formule faisant partie d'une autre formule est dite *sous-formule*.

1.1.6. Parenthèses, symboles (,), [,] et ,

Une formule peut contenir des parenthèses ouvrantes (ou [et fermantes) ou], pour peu qu'à chaque parenthèse ouvrante corresponde une parenthèse fermante («)» pour «(» ou «]» pour «[») placée à sa droite et réciproquement, et que ce qui se trouve entre une parenthèse ouvrante et la parenthèse fermante correspondante constitue une formule. Dans la suite, nous incluerons parfois des parenthèses qui ne sont pas strictement nécessaires (au sens où les enlever donnerait lieu à une formule équivalente, voir ci-dessous) par soucis de lisibilité.

1.1.7. Formule à nombre non spécifié de paramètres

Il est parfois utile de considérer des formules avec un nombre non spécifié de variables. Celles-ci peuvent alors être collectivement désignés par une suite de symboles séparés de points de suspensions, par exemple $a_1 \cdots a_p$. Notons formellement S cette séquence. Les notations $\forall S$ et $\exists S$ désignent, respectivement, les séquences de quantification universelles et existentielles pour chacune des variables. Ainsi,

- Si la séquence S est vide, i.e. ne contient aucune variable, alors ∀S et ∃S ne représentent rien : si f est une formule,
 ∀S f et ∃ f représentent simplement f.
- Si S = a où a est une variable, $\forall S$ représente $\forall a$ et $\exists S$ représente $\exists a$.

^{4.} Afin de simplifier les tournures de phrases, on parlera parfois, quand il n'y a pas de confusion possible, simplement de « variables » ou « paramètres » d'une formule pour désigner ses variables libres.

- Si S = ab où a et b sont deux variables, $\forall S$ représente $\forall a \forall b$ et $\exists S$ représente $\exists a \exists b$.
- Si $S = a_1 a_2 \cdots a_p$ où $a_1, a_2, ..., a_p$ sont des variables, $\forall S$ représente $\forall a_1 \forall a_2 ... \forall a_p$ et $\exists S$ représente $\exists a_1 \exists a_2 ... \exists a_p$.

1.1.8. Quantificateur d'unicité

En logique du premier ordre avec égalité, on définit le quantificateur \exists ! de la manière suivante : si P est un prédicat à un paramètre libre x et d'éventuels autres paramètres dénotés par $a_1 \dots a_p$, la formule \exists ! $x Pxa_1 \dots a_p$ est équivalente à $(\exists x Pxa_1 \dots a_p) \land (\forall x \forall y (Pxa_1 \dots a_p \land Pya_1 \dots a_p) \Rightarrow (x = y))$.

Moins formellement, on définit l'unicité de la manière suivante : dans le cadre d'une théorie définie en logique du premier ordre avec égalité, si *P* est un prédicat à un paramètre libre, on dira qu'*il existe au plus un unique objet satisfaisant P* si et seulement si le prédicat suivant est vrai :

$$\forall x \, \forall y \, (P(x) \land P(y)) \Rightarrow (x = y).$$

On dira qu'il existe exactement un objet satisfaisant P si et seulement si le prédicat suivant est vrai :

$$(\forall x \, \forall y \, (P(x) \land P(y)) \Rightarrow (x = y)) \land (\exists x \, P(x)).$$

Ce dernier pourra être abrégé en :

$$\exists ! x P(x).$$

1.1.9. Sémantique

Les règles énoncées ci-dessus, complétées par des règles propres à chaque théorie, permettent (au moins dans certains cas) d'attribuer une valeur de vérité (vraie ou fausse) à une formule. Les parenthèses (et) (ou [et]), indiquent que, pour évaluer la valeur d'une formule (vraie ou fausse), la formule délimitée par la premiere (à gauche) et la seconde (à droite) est évaluée en tant que formule indépendante. Si une formule est construite à partir d'autres formules, sa valeur peut dépendre des leurs, et peut être explicitée par une table de vérité (voir ci-dessous).

Cinq autres règles sont :

- Les variables n'ont pas de sens intrinsèque. Ainsi, si f est une formule faisant intervenir une variable x, et si y est une variable n'apparaissant pas dans f, alors remplacer toutes les occurrences de x par y dans f ne peut modifier sa valeur de vérité. On considèrera que la formule obtenue est la même (ou que les deux séquences de symboles représentent la même formule).
- Si f est une formule et x et y deux variables qui ne sont pas quantifiées dans f, alors les formules $\forall x \forall y f$ et $\forall y \forall x f$ sont équivalentes.
- Si f est une formule et x et y deux variables qui ne sont pas quantifiées dans f, alors les formules $\exists x \exists y f$ et $\exists y \exists x f$ sont équivalentes.
- La valeur de vérité d'une formule est inchangée par le remplacement d'une sous-formule par une formule équivalente.
- Si une formule peut s'écrire comme une séquence de sous-formules et de connecteurs telle qu'elle prend toujours la même valeur de vérité lorsque ces sous-formules sont remplaxées indépendamment par V ou F, alors elle cette valeur de vérité.

Si f est une formule et x une variable n'apparaissant pas comme variable liée dans f, la formule $\exists x f$ est vraie s'il existe au moins une valeur possible pour x telle que la formule obtenue en remplaçant x par cette valeur dans f est vraie, et fausse si toutes les formules obtenues en remplaçant x par chacune de ses valeurs possible sont fausses. Sous les mêmes conditions, la formule $\forall x f$ est fausse s'il existe au moins une valeur possible pour x telle que la formule obtenue en remplaçant x par cette valeur dans f est fausse, et vraie si toutes les formules obtenues en remplaçant x par chacune de ses valeurs possible sont vraies. On formalise cela par les règles suivantes :

- si x est une variable, alors $\forall x \, V$ est vraie;
- si x est une variable et f une formule, si $\forall x f$ est vraie, alors f est équivalente à V;
- pour toute variable x et toute formule f, la formule $\forall x f$ est équivalente à $\neg(\exists x \neg f)$

- soit f et g deux formules à un paramètre libre; les formules $(\forall x \ f(x)) \land (\forall y \ g(y))$ et $\forall x \ (f(x) \land g(x))$ sont équivalentes;
- soit f et g deux formules et x une variable; si $\forall x f$ et $\forall x (f \Rightarrow g)$ sont vraies, alors $\forall x g$ est vraie;
- soit f et g deux formules et x une variable; si $\exists x f$ et $\exists x (f \Rightarrow g)$ sont vraies, alors $\exists x g$ est vraie;
- soit f et g deux formules et x une variable; si $\forall x f$ et $\exists x (f \Rightarrow g)$ sont vraies, alors $\exists x g$ est vraie;
- soit f et g deux formules et x une variable; si $\exists x f$ et $\forall x (f \Rightarrow g)$ sont vraies, alors $\exists x g$ est vraie;

Trois conséquences immédiates sont (en remplaçant f par $\neg f$ et en notant que $\neg(\neg f)$) est équivalente à f pour toute formule f):

- si x est une variable, alors $\exists x \text{ F}$ est fausse (en effet, sa négation est $\forall x \text{ V}$, qui est vraie);
- pour toute variable x et toute formule f, la formule $\exists x \ f$ est équivalente à $\neg(\forall x \ \neg f)$.
- soit f et g deux formules à un paramètre libre; les formules $(\exists x \ f(x)) \lor (\exists y \ g(y))$ et $\exists x \ (f(x) \lor g(x))$ sont équivalentes.

Stricto sensu, il est donc possible de se passer d'un de ces deux quantificateurs, ou de voir l'un d'eux comme fondamental et l'autre comme dérivé. Par exemple, on peut voir le quantificateur \exists comme le seul quantificateur fondamental, et définir \forall *via* l'équivalence de \forall x f et \neg (\exists x \neg f) pour toute variable x et toute formule f.

L'ordre d'évaluation des differents termes d'une formule est déterminé par les règles suivantes :

- L'évaluation s'effectue de gauche à droite sauf si cela est contraire à une des règles ci-dessous.
- Les prédicats sont évalués en premier.
- Ordre d'évaluation des connecteurs et quantificateurs : d'abords les quantificateurs ∃ et ∀, puis ¬, puis (en présence de l'égalité) =, puis ∧ et ∨ (avec la même priorité), puis ⇒, ← et ⇔ (avec la même priorité).
- Lorsqu'une parenthèse ouvrante est atteinte, la formule se trouvant entre elle et la parenthèse fermante correspondante est évaluée en priorité.

Ainsi, par exemple, si f est une formule et x une variable, la formule $\forall x (f \Leftrightarrow f)$ est vraie. En effet,

- la formule $f \Leftrightarrow f$ est vraie que f soit vraie ou fausse, donc elle est vraie,
- la formule $\forall x (f \Leftrightarrow f)$ est donc vraie.

Un connecteur binaire C est dit *transitif* si, pour toutes formules f, g et h, les formules (fCg)Ch et C(gCh) sont équivalentes. Un connecteur binaire C est dit *symmétriques* si, pour toutes formules f et g, les formules fCg et gCf sont équivalentes.

Dans la suite, si C désigne un connecteur transitif et si f, g et h sont trois formules, on omettra parfois les parenthèses dans des formules de la forme (fRg)Rh ou fR(gRh). Plus généralement, on omettra parfois les parenthèses lorsque toutes les manières d'ajouter des parenthèses pour obtenir une formule correctement formée donnent des formules équivalentes.

1.1.10. Relations binaires

Une théorie définie dans le cadre de la logique du premier ordre peut inclure des relations binaires entre les objets de son domaine de discours, chacune étant représentée par un symbole. Si x et y sont deux variables, et R le symbole dénotant une relation binaire, alors x R y est un terme. L'égalité est un exemple de reation binaire, avec pour symbole =. Soit P un prédicat dépendant de deux variables. On peut définir une relation binaire R par la formule

$$\forall x \forall y ((x R y) \Leftrightarrow Pxy),$$

ignifiant que, pour chaque x et chaque y, x R y est vrai si et seulement si Pxy est vrai. Autrement dit, cette formule signiie que les prédicats Pxy et x R y sont équivalents.

Lors de l'évaluation d'une formule, et sauf mention contraire, les relations binaires autres que l'égalité sont prioritaires sur cette dernière, mais pas sur le connecteur \neq .

1.1.11. Réciproque

Soit f et g deux formules n'ayant pas de quantificateur et P: $f \Rightarrow g$. On suppose que le connecteur reliant f et g peut être évalué en dernier. La réciproque de P est la formule $g \Rightarrow f$.

Plus généralement, on définit la réciproque d'une formule formée de variables quantifiées et d'une formule de cette forme par celle obtenue en prenant la contraposée de cette dernière : si Q est une séquence de variables quantifiées (de la forme $\forall a_1 \dots \forall a_n \exists b_1 \dots \exists b_m \dots$, où les formules $\forall a_1 \dots \forall a_n$ et $\forall b_1 \dots \forall b_m$ sont comprises comme pouvant contenir chacune, et indépendamment, aucune, une seule, ou plusieurs variables quantifiées), la réciproque de la formule Q $f \rightarrow q$ est Q $g \Rightarrow f$.

1.1.12. Contraposée

Soit f et g deux formules n'ayant pas de quantificateur et $P: f \Rightarrow g$. On suppose que le connecteur reliant f et g peut être évalué en dernier. La *contraposée* de P est la formule $\neg g \Rightarrow \neg f$. La formule P et sa contraposée ont toujours la même valeur de vérité (elles sont vraies si f est fausse ou g est vraie et fausses sinon).

Plus généralement, on définit la contraposée d'une formule formée de variables quantifiées et d'une formule de cette forme par celle obtenue en prenant la contraposée de cette dernière : si Q est une séquence de variables quantifiées (de la forme $\forall a_1 \dots \forall a_n \exists b_1 \dots \exists b_m \dots$, où les formules $\forall a_1 \dots \forall a_n$ et $\forall b_1 \dots \forall b_m$ sont comprises comme pouvant contenir chacune, et indépendamment, aucune, une seule, ou plusieurs variables quantifiées), la contraposée de la formule $Qf \rightarrow q$ est $Q(\neg g \Rightarrow \neg f)$. La contraposée d'une formule a toujours la même valeur de vérité que la formule initiale.

1.1.13. NAND et NOR

Notons que chacun des connecteurs peut être construit à l'aide d'un unique connecteur, que l'on note ici \circ , appelé NAND, définit de la manière suivante : si f et g sont deux formules, alors $f \circ g$ est une formule, vraie si et seulement si f et g ne sont pas toutes deux vraies. En effet, si f et g sont deux formules, et en considérant que deux formules sont équivalentes si elles prennent toujours la même valeur,

- $\neg f$ est équivalente à $f \circ f$,
- $f \wedge g$ est équivalente à $\neg (f \circ g)$,
- $f \lor g$ est équivalente à $(\neg f) \circ (\neg g)$,
- $f \Rightarrow g$ est équivalente à $(\neg f) \lor g$,
- $f \Leftarrow g$ est équivalente à $f \lor (\neg g)$,
- $f \Leftrightarrow g$ est équivalente à $(f \land g) \lor ((\neg f) \land (\neg g))$.

Un tel connecteur, permettant de construire tous les autres, est dit universel.

Il existe un autre connecteur universel, appelé *NOR*, que l'on note dans ce paragraphe \times , défini par : si f et g sont deux formules, alors $f \circ g$ est une formule, vraie si et seulement si f et g sont toutes deux fausses. En effet, si f et g sont deux formules, $\neg f$ est équivalente à $f \times f$ et $f \wedge g$ à $(\neg f) \times (\neg g)$, donc $f \circ g$ est équivalente à $[(f \times f) \times (g \times g)] \times [(f \times f) \times (g \times g)]$. Puisque le connecteur \circ est universel, le connecteur \times l'est donc aussi.

1.1.14. XOR

On définit le connecteur XOR, noté \oplus , de la manière suivante : si f et g sont deux formules, alors $f \oplus g$ est une formule vraie si f est vraie et g est fausse ou si f est fausse et g est vraie, et fausse sinon. Si f et g sont deux formules, alors $f \oplus g$ est équivalente à $f \Leftrightarrow (\neg g)$.

L'utilité du connecteur XOR découle des trois propriétés suivantes :

- Il est symmétrique : si f et g sont deux formules, $f \oplus g$ est équivalente à $g \oplus f$ (en effet, toutes deux sont vraies si une des formules f et g est vraie et l'autre est fausse, et fausse sinon).
- Il est *transitif*: si f, g et h sont trois formules, $(f \oplus g) \oplus h$ est équivalente à $f \oplus (g \oplus h)$ (en effet, toutes deux sont vraies soit si les trois formules f, g et h sont vraies ou si une d'entre elles est vraie et les deux autres sont fausses, et fausses sinon).
- Soit f une formule, $f \oplus f$ est toujours fausse.

Notons aussi que, si f est une formule, $f \oplus F$ est équivalente à f et $f \oplus V$ à $\neg f$.

1.1.15. Tables de vérité

Les valeurs de formules construites à partir d'autres formules peuvent être consignées dans des tableaux appelés *tables de vérité*, contenant sur la première ligne plusieurs formules et sur les autres leurs valeurs (un tiret indiquant qu'elle peut prendre la valeur vraie ou fausse). En voici un exemple, pour deux formules f et g:

f	g	$\neg f$	$f \wedge g$	$f \vee g$	$f \Rightarrow g$	$f \Leftarrow g$	$f \Leftrightarrow g$
F	F	V	F	F	V	V	V
F	V	V	F	V	V	F	F
V	F	F	F	V	F	V	F
V	V	F	V	V	V	V	V

On peut utiliser des tables de vérités pour montrer l'équivalence entre plusieurs formules. Montrons par exemple les trois propriétés énoncées section 1.1.14. Pour trois formules f, g et h, on a :

f	g	h	$f \oplus g$	$g \oplus f$	$(f \oplus g) \oplus h$	$f \oplus (g \oplus h)$	$f \oplus f$
F	F	F	F	F	F	F	F
F	F	V	F	F	V	V	F
F	V	F	V	V	V	V	F
F	V	V	V	V	F	F	F
V	F	F	V	V	V	V	F
V	F	V	V	V	F	F	F
V	V	F	F	F	F	F	F
V	V	V	F	F	V	V	F

On remarque, comme attendu, que

- Les formules $f \oplus g$ et $g \oplus f$ prennent toujours la même valeur.
- Les formules $(f \oplus g) \oplus h$ et $f \oplus (g \oplus h)$ prennent toujours la même valeur.
- La formule $f \oplus f$ est toujours fausse.

1.1.16. Quelques propriétés

Les propriétés suivantes peuvent être facilement démontrées en écrivant les tables de vérités correspondantes :

- Soit f une formule. La formule $f \land F$ est toujours fausse et $f \lor V$ est toujours vraie.
- Soit f une formule. Les formule $f \land V$, $f \lor F$, $f \land f$, $f \lor f$ et $f \Leftrightarrow V$ ont la même valeur de vérité que f.
- Le connecteur ∧ est symmétrique : Soit f et g deux formules ; si f ∧ g est vraie, alors f et g sont toutes deux vraies, donc g ∧ f l'est également.
- Le connecteur \land est transitif : Soit f, g et h trois formules, $f \land (g \land h)$ a la même valeur de vérité que $(f \land g) \land h$. En effet, toute deux sont vraies si et seulement si f, g et h sont toutes trois vraies.
- Soit f, g et h trois formules; si $f \land g$ et $g \land h$ sont vraies, alors $f \land h$ l'est également.
- Le connecteur ∨ est symmétrique : Soit f et g deux formules ; si f ∨ g est vraie, alors au moins une des deux formules f et g est vraie, donc g ∨ f l'est également.
- Le connecteur \vee est transitif : Soit f, g et h trois formules, $f \vee (g \vee h)$ a la même valeur de vérité que $(f \vee g) \vee h$. En effet, toutes deux son vraies si et seulement si au moins une des deux formules f, g et h est vraie.
- Le connecteur \Leftrightarrow est symmétrique : Soit f et g deux formules ; si $f \Leftrightarrow g$ est vraie, alors $g \Leftrightarrow f$ l'est également.
- Le connecteur \Leftrightarrow est transitif : Soit f, g et h trois formules, $f \Leftrightarrow (g \Leftrightarrow h)$ a la même valeur de vérité que $(f \Leftrightarrow g) \Leftrightarrow h$. En effet, toutes deux son vraies si et seulement si les trois formules f, g et h ont la même valeur de vérité.
- Soit *f*, *g* et *h* trois formules.
 - Si $f \Leftrightarrow g$ et $g \Leftrightarrow h$ sont vraies, alors $f \Leftrightarrow h$ l'est également.
 - Si $f \Rightarrow g$ et $g \Rightarrow h$ sont vraies, alors $f \Rightarrow h$ l'est également.
 - Si $f \Leftarrow g$ et $g \Leftarrow h$ sont vraies, alors $f \Leftarrow h$ l'est également.

- Soit f et g deux formules. Alors, $\neg(f \land g)$ a la même valeur de vérité que $(\neg f) \lor (\neg g)$. En effet, toutes deux sont vraies si au moins une des formules f et g est fausse, et fausses sinon.
- Soit f et g deux formules. Alors, $\neg(f \lor g)$ a la même valeur de vérité que $(\neg f) \land (\neg g)$. En effet, toutes deux sont vraies si les deux formules f et g sont fausses, et fausses sinon.
- Soit f et g deux formules. Si $f \Leftrightarrow g$ est vraie, alors $\neg f \Leftrightarrow \neg g$ l'est aussi.
- Soit f et g deux formules; la formule $f \Leftrightarrow g$ est équivalente à $(f \Rightarrow g) \land (g \rightarrow f)$.
- Le connecteur \land est distributif sur \lor : si f, g et h sont trois formules, les deux formules $f \land (g \lor h)$ et $(f \land g) \lor (f \land h)$ ont la même valeur de vérité (toutes deux sont vraies si et seulement si f ainsi qu'au moins une des deux formules g et h sont vraies).
- Le connecteur \vee est distributif sur \wedge : si f, g et h sont trois formules, les deux formules $f \vee (g \wedge h)$ et $(f \vee g) \wedge (f \vee h)$ ont la même valeur de vérité (toutes deux sont vraies si f est vraie ou si g et h sont toutes deux vraies et fausses sinon).
- Soit f et g deux formules. Si $f \Rightarrow g$, alors $f \land g$ est équivalente à f et $f \lor g$ est équivalente à g.
- Soit f et g deux formules. Alors $f \Leftrightarrow g$ et $(\neq f) \Leftrightarrow (\neg g)$ sont équivalentes. (Elles sont toutes deux vraies si f et g ont la même valeur de vérité et fausses sinon.)
- Soit f, g, h et i quatre formules. Si $f \Rightarrow g$ et $h \Rightarrow i$ sont vraies, alors $(f \land h) \Rightarrow (g \land i)$ et $(f \lor h) \Rightarrow (g \lor i)$ sont vraies.
- Une conséquence de ces deux derniers points est que, avec les notations du second, si $f \Leftrightarrow g$ et $h \Leftrightarrow i$ sont vraies, alors $(f \land \neg h) \Leftrightarrow (g \land \neg i)$ est vraie.

Attention : Si f, g et h sont trois formules, savoir que $f \lor g$ et $g \lor h$ sont vraies n'implique pas que $f \lor h$ l'est également. (En effet, si f et h sont fausse alors que g est vraie, les deux premières sont vraies mais la troisième est fausse.)

1.1.17. Valeur de vérité Indéfinie

On peut étendre la logique du premier ordre en posant une troisième valeur de vérité, dite *indéfinie*. La constante de vérité correspondante est notée l. Toute formule est alors associée à une (et une seule) des trois valeurs de vérité vraie, fausse ou indéfinie.

La table de vérité suivante donne les valeurs de formules obtenues à partir de deux formules f et g ainsi que d'un connecteur :

f	g	$\neg f$	$f \wedge g$	$f \vee g$	$f \Rightarrow g$	$f \Leftarrow g$	$f \Leftrightarrow g$
F	F	V	F	F	V	V	V
F	ı	V	F	1	V	1	1
F	V	V	F	V	V	F	F
1	F	1	F	1	I	V	1
1	- 1	1	1	1	I	1	1
1	V	1	1	V	V	1	1
V	F	F	F	V	F	V	F
V	- 1	F	I	I	I	V	I
V	V	F	V	V	V	V	V

On a alors les équivalences :

- $f \Rightarrow g$ est équivalente à $(\neg f) \lor g$,
- $f \Leftarrow g$ est équivalente à $f \lor (\neg g)$,
- $f \Leftrightarrow g$ est équivalente à $(f \land g) \lor ((\neg f) \land (\neg g))$.

Dans la suite, sauf mention contraire explicite, on considèrera que les deux seules valeurs de vérité possibles sont « vraie » et « fausse ». Un point de vue intermédiaire est de considérer que seules les formules ayant au moins une variable libre peuvent prendre la valeur indéfinie. L'essentiel de ce qui suit reste valable sous ce point de vue.

1.1.18. Quelques schémas de raisonnement

Pour démontrer qu'une formule est vraie, on remplacera souvent certains quantificateurs et connecteurs par des mots ayant la même signification afin de les rendre plus faciles à suivre, en suivant les règles énoncées ci-dessus. Nous présentons ici brièvement quelques idées souvent utilisées pour démontrer des formules, de manière informelle. On se place dans le cadre d'une théorie comprenant la logique du premier ordre et portant sur un certain domaine de discours définissant des objets.

Raisonnement par l'absurde : Un type de raisonnement revenant souvent est le raisonnement par l'absurde : si f et g sont deux formules, si $f \Rightarrow g$ est vraie et g est fausse, alors f est nécessairement fausse. En pratique, pour montrer qu'une formule f est fausse, on peut donc trouver une formule g telle que g est fausse et $f \Rightarrow g$.

Plus formellement, si f et g sont deux formules, on a :

$$((f\Rightarrow g)\land (\neg g))\Leftrightarrow (((\neg f)\lor g)\land (\neg g))\Leftrightarrow (((\neg f)\land (\neg g))\lor (g\land (\neg g)))\Leftrightarrow (((\neg f)\land (\neg g))\lor F)\Leftrightarrow ((\neg f)\land (\neg g)).$$

Donc, si $(f \Rightarrow g) \land (\neg g)$ est vraie, alors $\neg f$ est vraie, donc f est fausse.

Prouver une propriété de la forme $\forall x \ P(x) \Rightarrow Q(x)$: Soit P et Q deux prédicats à un paramètre libre. Pour prouver que la formule $\forall x \ P(x) \Rightarrow Q(x)$ est vraie, on pourra prendre un objet x pouvant être n'importe-quel objet du domaine de discours de la théorie et montrer que, si P(x) est vrai, alore Q(x) l'est également.

Prouver l'unicité d'un objet satisfaisant une propriété en montrant que deux objets la satisfaisant sont égaux : On se place ici dans le cadre de la logique du premier ordre avec égalité. Soit P un prédicat à un paramètre libre. Pour montrer qu'il existe au plus un unique objet x tel que P(x) est satisfait, on pourra montrer que si x et y sont deux objets tels que P(x) et P(y) sont vrais, alors x = y. Pour montrer qu'il en existe exactement un, on montrera en outre qu'il existe un objet x tel que P(x) est vrai.

Équivalence: Soit f et g deux formules. Si on peut montrer qur $f \Rightarrow g$ et $g \Rightarrow f$ sont vraies, alors $f \Leftrightarrow g$ est vraie.

1.1.19. Un exemple : arc-en-ciel à minuit?

Pour rendre cela un peu plus concret, éxaminons un exemple d'application. On se restreint ici à la logique propositionelle, sans variables ni quantificateurs. Considérons les prédicats suivants :

- P_1 : « Le soleil brille. »
- P_2 : «Il pleut.»
- P_3 : «Il y a un arc-en-ciel.»
- P_4 : « Il fait jour. »
- P_5 : «Il est minuit.»
- P_6 : « Si le soleil brille, il fait jour. »
- P_7 : «À minuit, il ne fait pas jour.»
- P_8 : «Il y a un arc-en-ciel si et seulement si le soleil brille et il pleut.»

Alors,

- P_6 est équivalent à : $P_1 \Rightarrow P_4$.
- P_7 est équivalent à : $P_5 \Rightarrow \neg P_4$.
- P_8 est équivalent à : $P_3 \Rightarrow (P_1 \land P_2)$.

Posons-nous la question : en admettant P_6 , P_7 et P_8 , peut-il y avoir un arc-en-ciel à minuit ? Évidemment, non ! En effet, la contraposée de P_6 est $\neg P_4 \Rightarrow \neg P_1$. Si P_7 et P_6 (et donc sa contraposée) sont vrais, alors $(P_5 \Rightarrow \neg P_4) \land (\neg P_4 \Rightarrow \neg P_1)$ est vrai. Puisque le connecteur \Rightarrow est transitif, cela implique $P_5 \Rightarrow \neg P_1$. Or, la contraposée de P_8 est $\neg (P_1 \land P_2) \Rightarrow \neg P_3$. Si P_8 est vrai, sa contraposée l'est aussi. Si, de plus, P_1 est faux, alors $\neg (P_1 \land P_2)$ est vrai, et donc $\neg P_3$ est vrai. Donc, si P_8 est vrai, $\neg P_1 \Rightarrow \neg P_3$. En utilisant une dernière fois la transitivité du connecteur \Rightarrow , on obtient donc $P_5 \Rightarrow \neg P_1$ si P_6 , P_7 et P_8 sont vrais. Cela peut se récrire formellement :

$$P_6 \wedge P_7 \wedge P_8 \Rightarrow (P_5 \Rightarrow \neg P_1).$$

1.1.20. Théorème d'incomplétude de Gödel

1.2. Théorie ZF(C)

1.2.1. La théorie de Zermelo

La théorie de Zermelo, aussi dite « théorie Z » est une axiomatisation, dans le cadre de la logique du premier ordre avec égalité, de la théorie des ensembles. Elle fait intervenir des objets, appelés *ensembles*, et leurs relations, notamment des relations binaires. Une de ces relations est l'*appartenance*, désignée par le symbole \in . Si x et y sont deux ensembles, alors $x \in y$ est une proposition bien formée (il s'agit d'un terme). Si elle est vraie, on dira que x est un élément de y, que x appartient à y, que x est dans y, que y contient x, ou que y possède x. On définit aussi la relation \ni par : $x \ni y$ est équivalente à $y \in x$. On a donc : $\forall x \forall y (x \ni y) \Leftrightarrow (y \in x)$ et la relation \notin par $\forall x \forall y (x \notin y) \Leftrightarrow \neg(x \in y)$. Pour l'évaluation d'une formule, les relations \in et \ni sont (comme toute autre relation binaire) prioritaires par rapport à l'égalité, mais pas par rapport à \neg .

On définit la relation d'inclusion \subset par : $a \subset b$ est équivalent à $\forall x (x \in a) \Rightarrow (x \in b)$, autrement dit,

$$\forall a \, \forall b \, ((a \subset b) \Leftrightarrow (\forall x \, (x \in a) \Rightarrow (x \in b))).$$

Si $a \subset b$, on dira que *a est un sous-ensemble de b*, ou que *a est inclus dans b*. Notons que, pour tout ensemble $a, a \subset a$ est vrai. On définit aussi la relation \supset par :

$$\forall a \, \forall b \, ((a \supset b) \Leftrightarrow (\forall x \, (x \in a) \Leftarrow (x \in b))).$$

La théorie Z comporte six axiomes (l'axiome d'extensionnalité et les cinq axiomes de construction) ainsi qu'un schéma d'axiomes, correspondant à un axiome par formule à un paramètre libre.

Axiome d'extensionnalité : Si deux ensembles possèdent les mêmes éléments, alors ils sont égaux.

$$\forall a \, \forall b \, (\forall x \, ((x \in a) \Leftrightarrow (x \in b)) \Rightarrow (a = b)).$$

La réciproque est une conséquence directe des propriétés de l'égalité en logique du premier ordre. On définit la relation \neq par : $\forall a \, \forall b \, (a \neq b) \Leftrightarrow \neg (a = b)$.

Lemme : On définit la relation R sur les ensembles par : soit a et b deux ensembles (a R b) a la même valeur de vérité que $(\forall x (x \in a) \Leftrightarrow (x \in b))$. Alors, les trois prédicats suivants sont vrais :

- $\forall x (x R x)$ (réciprocité)
- $\forall x \forall y (x R y) \Rightarrow (y R x)$ (réflexivité)
- $\forall x \forall y \forall z ((x R y) \land (y R z)) \Rightarrow (x R z)$.

Cela suggère que l'axiome d'extensionalité est compatible avec la définition de l'égalité en logique du premier ordre (même s'il manque le schéma d'axiomes de Leibniz pour assurer la cohérence).

Démonstration:

- Soit *x* un ensemble. Pour tout *y*, *y* ∈ *x* a la même valeur de vérité que *y* ∈ *x* (trivialement, puisqu'il s'agit de la même formule). Donc, ∀*y*(*y* ∈ *x*) ⇔ (*y* ∈ *x*). Donc, *x R x*.
- Soit x et y deux ensembles tels que x R y. Puisque x = y, on a : $\forall z \ z \in x \Leftrightarrow z \in y$. Puisque le connecteur \Leftrightarrow est symmétrique, on a donc : $\forall z \ z \in y \Leftrightarrow z \in y$. Donc, y R x.
- Soit x, y et z trois ensembles tels que x R y et y R z. Pour tout ensemble a, on a a ∈ x ⇔ a ∈ y et a ∈ y ⇔ a ∈ z.
 Donc, par transitivité du connecteur ⇔, a ∈ x ⇔ a ∈ z. Cela étant valable pour tout ensemble a, on en déduit que x R z.

Démonstration bis : À titre d'exercice, re-faisons ces courtes démonstrations de manière pus formelle.

• Soit f la formule à deux paramètres libres x et y donnée par : $f: y \in x$. La formule $\forall x \forall y (f \Leftrightarrow f)$ est vraie. Donc, $\forall x \forall y (y \in x) \Leftrightarrow (y \in x)$ est vraie. Donc, $\forall x x R x$ est vraie.

^{5.} En effet, soit x un ensemble, $x \in a$ a toujours la même valeur de vérité que lui-même, donc $(x \in a) \Rightarrow (x \in a)$ est vrai.

^{6.} En effet, soit deux ensembles a et b tels que a = b, et soit x un ensemble, et P le prédicat à un paramètre libre définit par Py: $x \in y$, puisque a = b, on doit avoir $P(a) \Leftrightarrow P(b)$, et donc $(x \in a) \Leftrightarrow (x \in b)$.

- Soit f la formule à deux paramètres libres a et x donnée par : f : a ∈ x, et g la formule à deux paramètres libres a et y donnée par : g : a ∈ y. Les deux formules f ⇔ g et g ⇔ f sont équivalentes (elles sont toutes deux vraies si f et g ont la même valeur de vérité et fausses sinon). Donc, les formules ∀a(f ⇔ g) et ∀a(g ⇔ f) sont équivalentes. Puisque ∀a(f ⇔ g) est équivalente à x R y et ∀a(g ⇔ f) à y x, on en déduit que x R y et y R x sont équivalentes. Donc, (x R y) ⇒ (y R x) est équivalente à h ⇒ h, où h est la formule donnée par h : x R y. Puisque h ⇒ h est vraie que h soit vraie ou fausse, elle est vraie. Donc, ∀x∀y(h ⇒ h) est vraie. Donc, ∀x∀y(x R y) ⇒ (y R x) est vraie.
- Soit f la formule à deux paramètres libres a et x donnée par : f : a ∈ x, g la formule à deux paramètres libres a et y donnée par : g : a ∈ y, et h la formule à deux paramètres libres a et z donnée par : h : a ∈ z. Alors, ((f ⇔ g) ∧ (g ⇔ h)) ⇒ (f ⇔ h) est vraie quelles que soient les valeurs de vérité de f, g et h. Donc, si ∀a((f ⇔ g) ∧ (g ⇔ h)) est vraie, alors ∀a(f ⇔ h) est vraie. Donc, si ∀a(f ⇔ g) et ∀a(g ⇔ h) sont vraies, alors ∀a(f ⇔ h) est vraie. Puisque ∀a(f ⇔ g) est équivalente à x R y, ∀a(g ⇔ h) est équivalente à y R z, et ∀a(f ⇔ h) est équivalente à x R z, on en déduit que ((x R y) ∧ (y R z)) ⇒ (x R z) est toujours vraie. Donc, ∀x ∀y ∀z((x R y) ∧ (y R z)) ⇒ (x R z) est vraie.

Lemme : La relation ⊂ satisfait les trois propriétés suivantes :

- *Réflexivité* : $\forall x \ x \subset x$.
- Antisymétrie : $\forall x \forall y (x \subset y) \land (y \subset x) \Rightarrow (x = y)$.
- $\bullet \ \textit{Transitivit\'e} : \forall x \forall y \forall z \, (x \subset y) \wedge (y \subset z) \Rightarrow (x \subset z).$

Démonstration:

- Soit x un ensemble. Pour tout élément e de x, on a (par définition), $e \in x$. Donc, le prédicat $\forall e (e \in x) \Rightarrow (e \in x)$ est vrai. Donc, $x \in x$.
- Soit x et y deux ensembles tels que x ⊂ y et y ⊂ x. Soit e un ensemble. Si e ∈ x est vrai, alors e ∈ y est vrai aussi puisque x ⊂ y. Si e ∈ x est faux, alors e ∈ y est faux aussi, sans quoi on aurait e ∈ y et donc e ∈ x puisque y ⊂ x. Cela montre que ∀e (e ∈ x) ⇔ (e ∈ y) est vrai. Donc, d'après l'axiome d'extensionnalité, x = y est vrai.
- Soit x, y et z trois ensembles tels que $x \subset y$ et $y \subset z$. Soit e un ensemble. Si $e \in x$, alors $e \in y$ puisque $x \subset y$, et donc $e \in z$ puisque $y \subset z$. Cela motre que le prédicat $\forall e (e \in x) \Rightarrow (e \in z)$ est vrai. Donc, $x \subset z$.

Démonstration bis :

- Soit f la formule $f: e \in x$. La formule $f \Rightarrow f$ est vraie que f soit vraie ou fausse, donc elle est vraie. Donc, $\forall e \ (f \Rightarrow f)$ est vraie. Donc, $\forall e \ (e \in x) \Rightarrow (x \in x)$) est vraie. Donc, $x \in x$ est vraie.
- La formule $(x \subset y) \land (y \subset x)$ est équivalente à : $(\forall e (e \in x \Rightarrow e \in y)) \land (\forall f (f \in y \Rightarrow f \in x))$, et donc à $\forall e ((e \in x \Rightarrow e \in y) \land (e \in y \Rightarrow e \in x))$. Puisque $(e \in x \Rightarrow e \in y) \land (e \in y \Rightarrow e \in x)$ est équivalente à $(e \in x \Leftrightarrow e \in y)$, la formule $(x \subset y) \land (y \subset x)$ est équivalente à x = y. Donc, $((x \subset y) \land (y \subset x)) \Rightarrow (x = y)$ est toujours vraie. Donc, $\forall x \forall y ((x \subset y) \land (y \subset x)) \Rightarrow (x = y)$ est vraie.
- La formule $(x \subset y) \land (y \subset z)$ est équivalente à $(\forall e \ e \in x \Rightarrow e \in y) \land (\forall f \ f \in y \Rightarrow f \in z)$, donc à $\forall e \ ((e \in x \Rightarrow e \in y) \land (e \in y \Rightarrow e \in z))$. Soit f, g et h trois formules, $((f \Rightarrow g) \land (g \Rightarrow h))$ est équivalente à $(f \Rightarrow h) \land (f \Rightarrow g)$. Donc, la formule $(x \subset y) \land (y \subset z)$ est équivalente à $(\forall e \ e \in x \Rightarrow e \in y) \land (\forall f \ f \in y \Rightarrow f \in z)$, donc à $\forall e \ ((e \in x \Rightarrow e \in z) \land (e \in x \Rightarrow e \in y))$, et donc à $(\forall e \ (e \in x \Rightarrow e \in z)) \land (\forall f \ (f \in x \Rightarrow f \in y))$, et donc à $(x \subset z) \land (x \subset y)$. Puisque, si g et h sont deux formules, $g \land h \Rightarrow g$ est touours vraie, on en déduit que $((x \subset y) \land (y \subset z)) \Rightarrow (x \subset z)$ est vraie.

Lemme : La proposition $\forall a \ \forall b \ (a = b) \Leftrightarrow [(a \subset b) \land (b \subset a)]$ est vraie. Autrement dit, pour tous ensembles a et b, la formule a = b est équivalente à $(a \subset b) \land (b \subset a)$.

Démonstration : Soit *a* et *b* deux ensembles.

- Supposons d'abord que a = b. Soit x tel que $x \in a$. Puisque a = b, on a $x \in b$. Donc, $\forall x (x \in a) \Rightarrow (x \in b)$. Donc, $a \subset b$. Puisque l'égalité est symmétrique, on montre de même en échangeant les rôles de a et b que $b \subset a$. Donc, $(a \subset b) \land (b \subset a)$.
- Supposons maintenant que $(a \subset b) \land (b \subset a)$. Soit x un ensemble. Si $x \in a$, et puisque $a \subset b$, alors $x \in b$. De même, si $x \in b$, et puisque $b \subset a$, alors $x \in a$. Donc, $\forall x (x \in a) \Leftrightarrow (x \in b)$. Donc, a = b.

On a donc montré que les formules a = b et $(a \subset b) \land (b \subset a)$ son équivalentes, au sens où chacune est vraie qi l'autre l'est (et donc, également, fausse si l'autre l'est).

Démonstration bis : La formule $(a \subset b) \land (b \subset a)$ est équivalente à : $(\forall x (x \in a \Rightarrow x \in b)) \land (\forall y (y \in b \Rightarrow y \in a))$, et donc à $\forall x ((x \in a \Rightarrow x \in b) \land (x \in b \Rightarrow x \in a))$. Si f et g sot deux formules, $(f \Rightarrow g) \land (g \Rightarrow f)$ est équivalente à $f \Leftrightarrow g$ (toutes deux sont vraies si f et g sont toutes deux fausses et fausses sinon). Donc, $(x \in a \Rightarrow x \in b) \land (x \in b \Rightarrow x \in a)$ est équivalente à $x \in a \Leftrightarrow x \in b$. Donc, la formule $(a \subset b) \land (b \subset a)$ est équivalente à $\forall x \ x \in a \Leftrightarrow x \in b$, et donc à a = b.

Donc, la formule $((a \subset b) \land (b \subset a)) \Leftrightarrow (a = b)$ est toujours vraie. Donc, la formule $\forall a \forall b ((a \subset b) \land (b \subset a)) \Leftrightarrow (a = b)$ est vraie.

Axiome de la paire : La paire formée par deux ensembles est un ensemble :

$$\forall a \, \forall b \, \exists c \, \forall x \, ((x \in c) \Leftrightarrow ((x = a) \lor (x = b))).$$

Si a et b sont deux ensembles, on note $\{a,b\}$ leur paire. Il s'agit de l'ensemble contenant a et b mais aucun autre (au sens de « non égal à a ni à b ») ensemble. Cet ensemble est unique d'après l'axiome d'extensionnalité. Si de plus b=a, alors $\{a,b\}$ ne contient qu'un seul élément. Il peut alors être abrégé en $\{a\}$. Puisque, pour tout x, la formule $(x=a) \lor (x=a)$ est équivalente à x=a, on a:

$$\forall x (x \in \{a\}) \Leftrightarrow (x = a).$$

Axiome de la réunion : Pour tout ensemble a, il existe un ensemble qui est l'union des éléments de a :

$$\forall a \,\exists b \,\forall x \,((x \in b) \Leftrightarrow (\exists y \,((y \in a) \lor (x \in y)))).$$

La réunion d'un ensemble a est notée $\cup a$. Cet ensemble est unique d'après l'axiome d'extensionnalité. Si a et b sont deux ensembles, $\{a,b\}$ est aussi un ensemble d'après l'axiome de paire. La réunion de cet ensemble est notée $a \cup b$. Soit a, b et c trois ensembles. On note $\{a,b,c\}$ l'ensemble $\{a,b\} \cup \{c\}$.

Axiome de l'ensemble des parties : La collection des parties d'un ensemble est un ensemble :

$$\forall a \,\exists b \,\forall x \,((x \in b) \Leftrightarrow (x \subset a)).$$

Cet ensemble est unique d'après l'axiome d'extensionnalité.

Schéma d'axiomes de compréhension : Pour tout prédicat P à une variable libre x et chaque ensemble a, il existe un ensemble qui a pour éléments l'ensemble des éléments de a vérifiant la propriété P, c'est-a-dire :

$$\forall a \,\exists b \,\forall x \,[(x \in b) \Leftrightarrow ((x \in a) \land Px)].$$

Avec les mêmes notations, cet ensemble est noté $\{x \in a | Px\}$. Il est unique d'après l'axiome d'extensionnalité. (En effet, si deux ensembles satisfont l'énoncé de l'axiome obtenu pour un même ensemble et une même propriété, alors tout élémen de l'un appartient à l'autre.) Ce schéma d'axiomes implique qu'il existe un ensemble vide, noté \emptyset , pourvu qu'au moins un ensemble a existe—ce qui est nécessairement le cas puisque, en logique du premier ordre, les domaines d'interprétation des variables d'objets de base, ici les ensembles, sont non vides. On peut en effet le définir par : $\emptyset = \{x \in a | x \neq x\}$. Puisque tout ensemble x satisfait x = x, il n'existe aucun x tel que $x \in \emptyset$; autrement dit, la formule suivante est vraie : $\forall x \, x \notin \emptyset$. Cet ensemble est unique d'après l'axiome d'extensionnalité.

Lemme : Le prédicat suivant est vrai : $\forall x \varnothing \subset x$.

Démonstration : Soit x un ensemble. La formule $\emptyset \subset x$ est équivalente à : $\forall e \ (e \in \emptyset) \Rightarrow (e \in x)$. Or, pour tout ensemble $e, e \in \emptyset$ est faux, donc $(e \in \emptyset) \Rightarrow (e \in x)$ est vrai. Donc, $\forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est vrai. Donc, $\emptyset \subset x$ est vrai.

Démonstration bis : Puisque $\forall e \ e \ \not\in \emptyset$ est vraie, $e \notin \emptyset$ est équivalente à V. Donc, $e \in \emptyset$ (qui est sa négation) est équivalente à F. Donc, si f est une formule, $(e \in \emptyset) \Rightarrow f$ est toujours vraie. Donc, $(e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V. Donc, $\forall x \ \forall e \ (e \in \emptyset) \Rightarrow (e \in x)$ est équivalente à V.

Lemme : Le prédicat suivant est vrai : $\forall x \, x \subset \emptyset \Rightarrow x = \emptyset$.

Démonstration : Soit x un ensemble satisfaisant $x \subset \emptyset$. Pour tout ensemble y, on a $y \notin \emptyset$, donc $y \notin x$.

Lemme : Soit E un ensemble. Alors $E \cup \emptyset = E$ et $E \cap \emptyset = \emptyset$.

Démonstration : Soit e un ensemble. Si $e \in E$, alors $(e \in E) \lor (e \in \emptyset)$ est vrai, donc $e \in (E \cup \emptyset)$. Sinon, et puisque $e \in \emptyset$ est faux, alors $(e \in E) \lor (e \in \emptyset)$ est faux, donc $e \in (E \cup \emptyset)$ est faux. On a donc : $\forall e (e \in E) \Leftrightarrow (e \in (E \cup \emptyset))$. Donc, $E = E \cup \emptyset$.

Soit e un ensemble. Puisque $e \in \emptyset$ est faux, $(e \in \emptyset) \land (e \in E)$ est faux. Donc, $e \in (E \cap \emptyset)$ est faux. Cela montre que $E \cap \emptyset = \emptyset$.

L'axiome de compréhension peut aussi être utilisé pour définir la différence de deux ensembles. Soit A et B deux ensembles. On note $A \setminus B$ l'ensemble $\{x \in A | x \notin B\}$.

Lemme : Soit A et B deux ensembles tels que $B \in A$. Alors, $(A \setminus B) \cup B = A$.

Démonstration : Soit x un élément de A. Si $x \in B$, alors $x \in (A \setminus B) \cup B$. Sinon, $x \in A \setminus B$, donc $x \in (A \setminus B) \cup B$. Donc, dans tous les cas, $x \in (A \setminus B) \cup B$.

Soit x un élément de $x \in (A \setminus B) \cup B$. Alors, $x \in A \setminus B$ ou $x \in B$. Si $x \in A \setminus B$, alors $x \in A$ puisque $A \setminus A$. Donc, dans tous les cas, $x \in A$.

On a donc montré que : $\forall x (x \in A) \Leftrightarrow (x \in (A \setminus B) \cup B)$, et donc que $(A \setminus B) \cup B = A$.

Notons qu'il s'agit bien d'un schéma d'axiomes, c'est-à-dire une méthode permettant de construire des axiomes, et non d'un seul axiome : puisqu'on ne peut pas quantifier les prédicats en logique du premier ordre, ce shéma définit un axiome pour chaque prédicat à un paramètre libre. En théorie Z, on considère le prédicat obtenu à partir de tout prédicat P à une variable libre comme vrai.

Ce schéma peut être reformulé en notant que, si P est un prédicat à une variable libre x et d'autres variables libres éventuelles $a_1 \cdots a_p$, et si $\alpha 1 \ldots \alpha_p$ est une collection d'ensembles pouvant remplacer $a_1 \ldots a_p$, alors le prédicat Q défini par $Q: Px\alpha 1 \cdots \alpha_p$ a une unique variable libre x. Le schéma d'axiomes de compréhension peut ainsi être reformulé de la manière suivante : Pour tout prédicat P à une variable libre x et d'éventuels autres variables libres collectivement notées $a_1 \ldots a_p$, pour chaque valeur des variables $a_1 \cdots a_p$ et chaque ensemble b, il existe un ensemble qui a pour éléments l'ensemble des éléments de b vérifiant la propriété b b b0 ensemble des éléments de b1 vérifiant la propriété b1 existe un ensemble qui b2 ensemble des éléments de b3 ensemble b4 vérifiant la propriété b5 ensemble b6 ensemble b6 ensemble b7 ensemble b8 ensemble b8 ensemble b9 ensemble b9

$$\forall a_1 \dots a_p \, \forall b \, \exists c \, \forall x \, [(x \in c) \Leftrightarrow ((x \in b) \land Pxa_1 \dots a_p)].$$

(Dans cette formule, il est entendu que le premier quantificateur est absent si P n'a qu'une seule variable libre.)

Axiome de l'infini : Il existe un ensemble contenant l'ensemble vide et clos par application du successeur $x \mapsto x \cup \{x\}$. Formellement, cet axiome s'écrit :

$$\exists Y (\emptyset \in Y) \land (\forall y ((y \in Y) \Rightarrow (y \cup \{y\} \in Y))).$$

L'ensemble ainsi défini contient \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$, ...

1.2.2. Intersection

Soit a et b deux ensembles. On appelle *intersection* de a et b, notée $a \cap b$, l'ensemble

$$a \cap b = \{x \in a | x \in b\}.$$

Cet ensemble existe d'après le schéma d'axiomes de compréhension, en considérant la formule à un paramètre $Px: x \in b$. Il est unique d'après l'axiome d'extensionnalité. On $a: \forall x x \in a \cap b \Leftrightarrow (x \in a \land x \in b)$. Notons que cette définition est symmétrique : $\forall a \forall b (a \cap b) = (b \cap a)$. Elle est aussi transitive : si a, b et c sont trois ensembles, on a $(a \cap b) \cap c = a \cap (b \cap c)$. (Ces deux propriétés sont des conséquence de la symmétrie et de la transitivité du connecteur \land .) On pourra noter ce l'ensemble $a \cap (b \cap c)$ par $a \cap b \cap c$.

De même, on a : $\forall x \, x \in a \cup b \Leftrightarrow (x \in a \lor x \in b)$. On en déduit aisément que $a \cup b = b \cup a$ et, si c est un ensemble, $(a \cup b) \cup c = a \cup (b \cup c)$. On pourra noter ce l'ensemble $a \cup (b \cup c)$ par $a \cup b \cup c$.

1.2.3. Schéma d'axiomes de remplacement

La théorie de Zermelo plus cet axiome donne la théorie ZF.

Énoncé : Soit F une formule à deux variables libres (notées en première et second position) et d'éventuels paramètres notés $a_1 \dots a_n$. Alors,

$$\forall a_1 \dots a_p \ \left(\forall x \, \forall y \, \forall z \, \left[(Fxya_1 \dots a_p \wedge Fxza_1 \dots a_p) \Rightarrow (z = y) \right] \right) \Rightarrow \left(\forall b \, \exists c \, \forall z \, \left[(z \in c) \Leftrightarrow (\exists x \, [(x \in b) \wedge (Fxza_1 \dots a_p)]) \right] \right).$$

Lemme : Pour un choix donné des paramètres tel que le membre de gauche de l'implication est satisfait et pour tout b, l'ensemble c définit par $\forall z \ [(z \in c) \Leftrightarrow (\exists x \ [(x \in b) \land (Fxza_1 \dots a_p)])]$ est unique d'après l'axiome d'extensionnalité.

La démonstration de ce lemme est relativement triviale. Écrivons-mà cependant explicitement par soucis de clarté.

Démonstration : Soit *F* une formule à deux variables libres notées en première et seconde position et d'éventuels paramètres, collectivement notés *a*. Fixons les paramètres *a* tels que la formule

$$\forall x \, \forall y \, \forall z \, [(Fxya \wedge Fxza) \Rightarrow (z = y)]$$

est vraie.

Soit b un ensemble. Soit c_1 et c_2 deux ensembles satisfaisant :

$$(z \in c_1) \Leftrightarrow (\exists x [(x \in b) \land (Fxza)])$$

et

$$(z \in c_2) \Leftrightarrow (\exists x [(x \in b) \land (Fxza)]).$$

Alors,,

- Soit z un ensemble. Si $z \in c_1$, il existe un élément x de b tel que Fxza est vrai. Donc, $z \in c_2$.
- Soit z un ensemble. Si $z \in c_2$, il existe un élément x de b tel que Fxza est vrai. Donc, $z \in c_1$.

Les deux ensembles c_1 et c_2 sont donc égaux d'après l'axiome d'extensionnalité.

Si F est une formule à deux variables libres sans autres paramètres, le schéma d'axiomes de remplacement donne :

$$(\forall x\,\forall y\,\forall z\;[(Fxy\wedge Fxz)\Rightarrow (z=y)])\Rightarrow (\forall b\,\exists c\,\forall z\;[(z\in c)\Leftrightarrow (\exists x\,[(x\in b)\wedge (Fxz)])])\,.$$

Lemme : Le schéma d'axiomes de compréhension est une conséquence du schéma d'axiomes de remplacement, obtenue en prenant Fxy : $(x = y) \land P(x)$.

Démonstration : (On peut aisément étendre cette démonstration au cas où le prédicat P a d'autres paramètres que x en ajoutant les mêmes paramètres à F.) On admet le schéma d'axiomes de remplacement. Soit P un prédicat à un paramètre libre. Soit F la formule à deux paramètres libres définie par Fxy: $(x = y) \land P(x)$. Pour tous y et z, si Fxy et Fxz, alors x = y et x = z, donc y = z par réflexivité et transitivité de l'égalité. Soit b un ensemble. D'après l'axiome obtenu par le schéma d'axiomes de copréhension pour la formule F, on peut choisir un ensemble c tel que :

$$\forall z (z \in c) \Leftrightarrow (\exists x ((x \in b) \land (Fxz))).$$

Cette formule est équivalente à :

$$\forall z (z \in c) \Leftrightarrow (\exists x ((x \in b) \land (x = z) \land P(x))).$$

Puisque la relation \wedge est symmétrique et transitive, la formule $\exists x \, ((x \in b) \wedge (x = z) \wedge P(x))$ est équivalente à $\exists x \, ((x = z) \wedge ((x \in b) \wedge P(x)))$. Or, pour tout z, la formule $\exists x \, ((x = z) \wedge ((x \in b) \wedge P(x)))$ est équivalente à $(z \in b) \wedge P(z)$. En effet,

- Si cette dernière est vraie, alors, puisque z=z est toujours vrai par réciprocité de l'égalité, $(z=z) \land ((z \in b) \land P(z))$ est vraie, et donc il existe une valeur de x(z) telle que $(x \in b) \land (x=z) \land P(x)$ est vraie.
- Si elle est fausse, alors il n'existe aucune valeur de x telle que $(x = z) \land ((x \in b) \land P(x))$ est vraie puisque, si x = z est vrai, $(x \in b) \land P(x)$ a la même valeur de vérité que $(z \in b) \land P(z)$ et est donc fausse.

Ainsi, l'ensemble *c* satisfait :

$$\forall z (z \in c) \Leftrightarrow ((z \in b) \land P(z)).$$

On a donc montré que :

$$\forall b \,\exists c \,\forall z \,(z \in c) \Leftrightarrow ((z \in b) \land P(z))$$
.

П

Lemme : En présence du schéma d'axiomes de remplacement, l'axiome de la paire est une conséquence des autres.

Démonstration : Tout d'abord, d'après le schéma d'axiomes de compréhension, l'ensemble vide \varnothing existe. Son seul sous-ensemble est lui-même. En effet, on a $\varnothing \subset \varnothing$ (puisque chaque ensemble est un sous-ensemble de lui-même ; une autre façon de voir cela est que $(x \in \varnothing) \Rightarrow (x \in \varnothing)$ est vraie pour tout x puisque le membre de gauche est toujours faux) et, si $a \subset \varnothing$, alors $\forall x x \notin a$ (sans quoi on aurait $x \in a$ et donc $x \in \varnothing$, ce qui est impossible par définition de l'ensemble vide), et donc $a = \varnothing$. Donc, l'ensemble des parties de \varnothing est l'ensemble ne contenant que \varnothing . Cet ensemble est noté $\{\varnothing\}$. Ce nouvel ensemble contient deux sous-ensembles : \varnothing et $\{\varnothing\}$. (Ce sont bien des sous-ensembles car tout élément d'un de ces ensembles doit être \varnothing , qui est un élément de $\{\varnothing\}$ et, si $a \subset \{\varnothing\}$, a ne peut contenir d'autre élément que \varnothing ; il doit donc être égal soit à \varnothing (s'il ne contient pas \varnothing) soit à $\{\varnothing\}$ (s'il le contient).) D'après l'axiome de l'ensemble des parties, l'ensemble $\{\varnothing\}$ contenant uniquement \varnothing et $\{\varnothing\}$ existe donc.

Soit A et B deux ensembles. Considérons la formule à deux variables libres F définie par :

$$Fxy$$
: $[(x = \emptyset) \land (y = A)] \lor [(x = \{\emptyset\}) \land (y = B)].$

Notons que $\{\emptyset\} \neq \emptyset$ puisque $\emptyset \in \{\emptyset\}$ et $\emptyset \notin \emptyset$. F satisfait :

$$\forall x \forall y \forall z ([(Fxy) \land (Fxz)] \Rightarrow [y = z]).$$

(Car, si le membre de gauche est vrai, soit $x = \emptyset$, y = A, z = A, soit $x = \{\emptyset\}$, y = B, z = B.) Soit C l'ensemble défini par l'axiome de remplacement pour F, en prenant pour l'ensemble noté b dans la définition l'ensemble $\{\emptyset, \{\emptyset\}\}$. Alors, pour tout d, $d \in C$ si et seulement si il existe x tel que $x \in \{\emptyset, \{\emptyset\}\}$ et Fxd. On a donc deux (et seulement deux) possibilités : $x = \emptyset$ et d = A, ou $x = \{\emptyset\}$ et d = B. Donc, $[d \in C] \Leftrightarrow [(d = A) \lor (d = B)]$. L'ensemble C est donc la paire $\{A, B\}$.

En admettant le schéma d'axiomes de remplacement, on peut donc s'affranchir du schéma d'axiomes de compréhension et de l'axiome de la paire. La théorie ZF est ainsi définie par quatre axiomes et un schéma d'axiomes.

1.2.4. Axiome de fondation

Cet axiome peut être inclus ou non dans la théorie ZFC, selon les auteurs. Dans la suite, on ne l'inclura pas sauf mention contraire explicite.

Énoncé : Tout ensemble x non vide possède un élément y n'ayant aucun élément commun avec x : $\forall x, [x \neq \emptyset \Rightarrow (\exists y \ y \in x \land y \cap x = \emptyset)].$

Corrolaire 1 : Aucun ensemble ne peut être un élément de lui-même.

Démonstration : Soit y un ensemble quelconque, et considérons l'ensemble $x = \{y\}$. (Cet ensemble existe d'après l'axiome de la paire : il s'agit de la paire formée par y et lui-même.) Alors, x est non vide et ne contient qu'un élément (y). D'après l'axiome de fondation, on a donc $y \cap x = \emptyset$. Puisque $y \in x$, cela implique $y \notin y$ (sans quoi on aurait $y \in y \cap x$).

Corrolaire 2 : Soit deux ensembles x et y. Si $x \in y$, alors $y \notin x$.

Démonstration : Soit x et y deux ensembles tels que $x \in y$. Considérons l'ensemble $z = \{x, y\}$ (qui existe d'après l'axiome de la paire). L'ensemble z est non vide et ne contient que les éléments x et y. Donc, d'après l'axiome de fondation, $x \cap z = \emptyset$ ou $y \cap z = \emptyset$. Mais $x \in y$, donc $x \in (y \cap z)$, donc la formule $y \cap z = \emptyset$ est fausse. On a donc $x \cap z = \emptyset$, et donc, puisque $y \in z$, $y \notin x$.

^{7.} Montrons cela plus rigoureusement. Tout d'abords, A et B appartiennent à C. En effet, on a $\emptyset \in \{\emptyset, \{\emptyset\}\}$ et $F \otimes A$, donc $A \in C$, et $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}\}$ et $F \otimes B$, donc $B \in C$.

Soit X un élément de C. On peut choisir un élément x de $\{\emptyset, \{\emptyset\}\}$ tel que FxX. Cela laisse deux possibilités : $x = \emptyset$ ou $x = \{\emptyset\}$. Si $x = \emptyset$, FxX implique X = A. Si $x = \{\emptyset\}$, FxX implique X = B. Dans les deux cas, on a bien $(X = A) \land (X = B)$. Ainsi, $(X \in C) \Leftrightarrow ((X = A) \lor (X = B))$ est vrai.

1.2.5. Couples

Définition : Soit deux ensembles x et y. D'après l'axiome de la paire, $\{x\}$ et $\{x,y\}$ existent. En utilisant à nouveau l'axiome de la paire, l'ensemble $\{\{x\}, \{x,y\}\}$ existe. On l'appelle le *couple* de x et y, noté (x,y).

Lemme : Soit a, b, c et d quatre ensembles tels que (a, b) = (c, d). Alors a = c et b = d.

Démonstration : On distingue deux cas selon que a et b sont égaux ou non. Supposons d'abord que a = b. Alors, $(a,b) = \{\{a\}\}$. Puisque $\{c\} \in (c,d)$ et (c,d) = (a,b), on en déduit que $\{c\} \in \{\lower length le$

Supposons maintenant $a \neq b$. Puisque $\{c\} \in (c,d)$, et (c,d) = (a,b), on a $\{c\} = \{a\}$ ou $\{c\} = \{a,b\}$. Montrons que la seconde égalité est impossible. Si elle était vraie, puisque $a \in \{a,b\}$, on aurait $a \in \{c\}$, donc a = c, et, puisque $b \in \{a,b\}$, on aurait $b \in \{c\}$, donc b = c, et donc (par symmétrie et transitivité de l'égalité) b = a, ce qui est impossible $a \neq b$. Ainsi, $\{c\} = \{a,b\}$ est nécessairement fausse, et donc $\{c\} = \{a\}$. Donc, $c \in \{a\}$, et donc c = a.

Puisque $\{a,b\} \in (a,b)$ et (a,b) = (c,d), on a $\{a,b\} \in (c,d)$. Donc, $\{a,b\} = \{c\}$ ou $\{a,b\} = \{c,d\}$. On vient de voir que la première égalité est fausse, donc $\{a,b\} = \{c,d\}$. Donc, $b \in \{c,d\}$. Donc, b = c ou b = d. Puisque a = c et $b \neq a$, la première égalité est fausse. Donc, b = d.

Soit x et y deux ensembles et z=(x,y). On dit parfois que x est la première composante de z et y sa deuxième composante, ou seconde composante.

1.2.6. Produit Cartésien

Soit a et b deux ensembles, c l'ensemble des parties de a et d l'ensemble des parties de $a \cup b$. Soit e l'ensemble des parties de $c \cup d$. Soit e l'ensemble des parties de e et e ensemble des parties de e ensemble des parties de e et e l'ensemble des parties de e et e l'ensemble des parties de e ensemble des parties

$$Px: \exists \alpha \, \exists \beta \, (\alpha \in a) \land (\beta \in b) \land (x = (\alpha, \beta)).$$

On note $a \times b$ et on appelle *produit Cartésien de a et b* l'ensemble des éléments de e satisfaisant la propriété P. Cet ensemble existe d'après le schéma d'axiomes de compréhension.

Soit a et b deux ensembles et c un sous-ensemble de $a \times b$. On appelle domaine de c l'ensemble $\{x \in a | \exists y \ y \in b \land (x,y) \in c\}$.

Lemme : Soit a, b, a' et b' quatre ensembles tels que $a' \subset a$ et $b' \subset b$. Alors $a' \times b' \subset a \times b$.

Démonstration : Soit z un élément de $a' \times b'$. On peut choisit un élément x de a' et un élément y de b' tels que z = (x, y). Puisque a' est un sous-ensemble de a, on a $x \in a$. Puisque b' est un sous-ensemble de b, on a $y \in b$. Donc, $(x, y) \in a \times b$. Donc, $z \in a \times b$.

Lemme : Soit *E* un ensemble. On a : $E \times \emptyset = \emptyset$ et $\emptyset \times E = \emptyset$.

Démonstration:

- Supposons par l'absurde qu'il existe un ensemble z tel que z ∈ E × Ø. Alors, il existe un élément x de E et un élément y de Ø tels que z = (x, y). Puisque y ∈ Ø est faux pour tout ensemble y, cela est impossible. Ainsi, z ∈ E × Ø est faux pour tout ensemble z, et donc E × Ø = Ø.
- Supposons par l'absurde qu'il existe un ensemble z tel que z ∈ Ø × E. Alors, il existe un élément x de Ø et un élément y de E tels que z = (x, y). Puisque x ∈ Ø est faux pour tout ensemble x, cela est impossible. Ainsi, z ∈ Ø × E est faux pour tout ensemble z, et donc Ø × E = Ø.

1.2.7. Graphe de relation binaire

Soit a et b deux ensembles. Un graphe de relation binaire sur a et b est un sous-ensemble de $a \times b$. À un graphe de relation binaire G est associé une relation binaire G définie par : $\forall a \forall b \ (aRb) \Leftrightarrow ((a,b) \in G)$. On dira alors que la relation G est définie sur G est des définies sur G est de G

L

1.2.8. Relation d'ordre

Soit E un ensemble. Une relation binaire \leq définie sur $E \times E$ est dite *relation d'ordre* sur E si elle satisfait les trois propriétés suivantes :

- Réflexivité : $\forall x \, x \in E \Rightarrow x \leq x$.
- Antisymétrie: $\forall x \forall y \ x \in E \land y \in E \land (x \leq y) \land (y \leq x) \Rightarrow x = y$.
- Transitivité: $\forall x \forall y \forall z \ x \in E \land y \in E \land z \in E \land (x \le y) \land (y \le z) \Rightarrow x \le z$.

Une relation d'ordre \leq sur E est dite relation d'ordre total si la formule suivante est vraie : $\forall x \in E \ \forall y \in E \ (x \leq y) \ \lor \ (y \leq x)$. Un élément e de E tel que : $\forall f \ f \in E \land f \leq e \Rightarrow f = e$ est dit minimal (pour l'ensemble E et pour la relation \leq); on dit aussi que E admet e pour élément minimal pour la relation \leq . Un élément e de E tel que : $\forall f \ f \in E \land e \leq f \Rightarrow f = e$ est dit maximal (pour l'ensemble E et pour la relation \leq); on dit aussi que E admet e pour élément maximal pour la relation \leq . Un ensemble muni d'une relation d'ordre est dit ordonné. Un ensemble muni d'une relation d'ordre total est dit totalement ordonné.

Lemme : Soit E un ensemble et \leq une relation d'ordre total sur E. Alors, E admet au plus un élément maximal et au plus un élément minimal pour la relation \leq .

Démonstration : Soit a et b deux éléments maximaux de E pour la relation \leq . Puisque \leq est une relation d'ordre total sur E, $a \leq b$ ou $b \leq a$. Puisque a est un élément maximal, $a \leq b$ implique a = b. Puisque a = b bonc, et puisque l'égalité est symmétrique, on a dans tous les cas a = b. Cela montre que a = b admet au plus un seul élément maximal pour la relation a = b.

Soit a et b deux éléments minimaux de E pour la relation \leq . Puisque \leq est une relation d'ordre total sur E, $a \leq b$ ou $b \leq a$. Puisque b est un élément minimal, $b \leq a$ implique b = a. Donc, et puisque l'égalité est symmétrique, on a dans tous les cas a = b. Cela montre que b = a admet au plus un seul élément minimal pour la relation \leq .

Un élément minimal d'un enemble totalement ordonné est dit le *minimum* de cet ensemble. Un élément maximal d'un enemble totalement ordonné est dit le *maximum* de cet ensemble.

Lemme : Soit E un ensemble et \leq une relation d'ordre sur E. Soit e un élément de E tel que : $\forall x \in E e \leq x$. Alors e est un élément minimal de E pour \leq .

Démonstration : Soit x un élément de E tel que $x \le e$. On a $(x \le e) \land (e \le x)$. Par antisymétrie de la relation \le , on en déduit x = e.

Lemme : Soit E un ensemble et \leq une relation d'ordre total sur E. Soit e un élément de E. Alors, le prédicat $\forall f \in E \ e \leq f$ est équivalent à dire que e est l'élément minimal de E.

Démonstration:

- Supposons le prédicat ∀f ∈ Ee ≤ f vrai. Soit f un élément de E tel que f ≤ e. On a alors e ≤ f et f ≤ e, donc f = e par antisymétrie de la relation ≤. Ainsi, e est un élément minimal de E pour ≤. Puisque ≤ est une relation d'ordre total, cet élément minimal est unique.
- (Nous adoptions ici une approche un brin pédestre.) Supposons que e est l'élément minimal de E pour \leq . Soit f un élément de E. Puisque \leq est une relation d'ordre total, $e \leq f \lor f \leq e$ est vrai. Puisque e est l'élément minimal de E pour e, e puisque e est vrai. (Ici, on pourrait directement conclure que, puisque e et implique e et donc e et donc e est première formule est équivalente à e est plus formellement via le calcul des prédicats.) Cette dernière formule peut se récrire en : e ev e est vrai. La conjonction de ces deux prédicats donne : e est e

Lemme : Soit E un ensemble et \leq une relation d'ordre sur E. La relation \geq sur E définie par : $\forall x \forall y \ x \in E \land y \in E \Rightarrow (x \geq y \Leftrightarrow y \leq x)$ est une relation d'ordre sur E. En outre, si \leq est une relation d'ordre total, alors \geq l'est aussi.

Démonstration

• Réflexivité : Soit x un élément de E. On a $x \le x$ par réflexivité de la relation \le , donc $x \ge x$.

- Antisymétrie : Soit x et y deux éléments de E tels que $x \ge y$ et $y \ge x$. Alors, $y \le x$ et $x \le y$. Par antisymétrie de la relation \le , on en déduit que x = y.
- Transitivité : Soit x, y et z trois éléments de E tels que $x \ge y$ et $y \ge z$. Alors, $y \le x$ et $z \le y$. Par transitivité de la relation \le , on en déduit que $z \le x$, et donc $x \ge z$.
- Supposons que ≤ est une relation d'ordre total. Soit x et y deux éléments de E. Alors, x ≤ y ou y ≤ x. Donc, y ≥ x ou x ≥ y.

Soit E un ensemble, \leq une relation d'ordre total sur E et F un sous-ensemble de E. On dit que F est borné supérieurement (dans E et pour la relation \leq) s'il existe un élément m de E tel que : $\forall e \ (e \in F) \Rightarrow (e \leq m)$. On dit alors que cet élément est une borne supérieure de E (dans E et pour la relation E). On dit que E est borné inférieurement (dans E et pour la relation E) s'il existe un élément E de E tel que : E0. On dit alors que cet élément est une borne inférieure de E1 (dans E2 et pour la relation E3).

Une relation binaire < antisymétrique, transitive et telle que $\forall x \, x \in E \Rightarrow \neg(x < x)$ (antireflexivité) est dite *relation d'ordre strict*. (cette dernière propriété et l'antisymmétrie impliquent qu'il n'existe pas d'éléments x et y de E tels que $(x < y) \land (y < x)$.) Si \leq est une relation d'ordre sur un ensemble E, alors la relation < définie par : pour tout éléments a et b de E, $a < b \Leftrightarrow (a \leq b) \land (a \neq b)$ est une rélation d'ordre strict. En effet,

- Soit x un élément de E, $x \neq x$ est fausse, donc x < x est fausse.
- Soit x et y deux éléments de E tels que x < y et y < x, alors $x \le y$ et $y \le x$, donc x = y. La relation < est bien antisymétrique.
- Soit x, y et z trois éléments de E lets que x < y et y < z. Alors x ≤ y et y ≤ z, donc x ≤ z. Par ailleurs, si on avait x = z, alors y ≤ x, et donc y = x, ce qui est impossible puisque x < y. Donc, x ≠ z. On en déduit que x < z. Ainsi, la relation < est bien transitive.

Lemme : Soit *E* un ensemble et \leq une relation d'ordre sur *E*. La relation < sur *E* définie par : $\forall x \forall y \ x \in E \land y \in E \Rightarrow (x < y \Leftrightarrow (y \leq x \land x \neq y))$ est une relation d'ordre strict sur *E*.

Démonstration:

- Antiréflexivité : Soit x un élément de E. Puisque x = x, la formule $x \neq x$ est fausse, donc x < x est fausse.
- Antisymétrie : Soit x et y deux éléments de E tels que x < y et y < x. Alors, $x \le y$ et $y \le x$. Puisque \le est une relation d'ordre, cela implique x = y.
- Transitivité: Soit x, y et z trois éléments de E tels que x < y et y < z. On a $x \le y$ et $y \le z$. Puisque \le est une relation d'ordre, cela implique $x \le z$. Par ailleurs, z ne peut pas être égal à x car on aurait alors $x \le y$ et $y \le x$, d'où y = x, ce qui est incompatible avec x < y. Donc, $x \le z$ est fausse, et donc x < z est vraie.

Lemme : Soit *E* un ensemble et < une relation d'ordre strict sur *E*. La relation \leq sur *E* définie par : $\forall x \forall y \ x \in E \land y \in E \Rightarrow (x \leq y \Leftrightarrow (y \leq x \lor x = y))$ est une relation d'ordre sur *E*.

Démonstration :

- Réflexivité : Soit x un élément de E. Puisque x=x est vrai par réflexivité de l'égalité, $x\leq x$ est vrai.
- Antisymétrie : Soit x et y deux éléments de E tels que $x \le y$ et $y \le x$. Alors, x < y ou x = y. De même, y < x ou x = y. Puisque x < y et y < x ne peuvent être simultanément vrais, on en déduit que x = y.
- Transitivité: Soit x, y et z trois éléments de E tels que $x \le y$ et $y \le z$. On a x < y ou x = y. Dans le second cas, le second prédicat de l'hypothèe donne $x \le z$. Supposons maintenant x < y. On a de même y < z ou y = z. Dans le second cas, le premier prédicat de l'hypothèe donne $x \le z$. Supposons maintenant y < z. Puisque x < y, y < z, et car < est une relation d'ordre strict, donc transitive, on en déduit x < z, et donc $x \le z$. Le prédicat $x \le z$ est donc vrai dans tous les cas.

Lemme : Soit *E* un ensemble, \leq une relation d'ordre sur *E*, et < la relation d'ordre strict sur *E* définie par : $\forall x \forall y (x \in E \land y \in E) \Rightarrow (x < y \Leftrightarrow (x \leq y \land x \neq y))$. Alors, soit *x*, *y* et *z* trois éléments de *E*,

- Si x < y et $y \le z$, alors x < z.
- Si $x \le y$ et y < z, alors x < z.

Démonstration : Notons d'abord que, dans les deux cas, on a $x \le y$ et $y \le z$, donc $x \le z$ par transitivité de la relation \le . In suffit donc de montrer que $x \ne z$. Supposons par l'absurde que x = z. Alors,

- Dans le premier cas, on a x < y, donc $x \le y$, et $y \le x$. On a donc y = x. Mais cela est incompatible avec x < y.
- Dans le second cas, on a $x \le y$ et y < x, donc $y \le x$. On a donc y = x. Mais cela est incompatible avec y < x.

Dans les deux cas, la formule x = z est donc nécessairement fausse, donc $x \neq z$ est vraie.

Lemme : Soit E un ensemble, \leq une relation d'ordre sur E, et < la relation d'ordre strict sur E définie par : $\forall x \forall y (x \in E \land y \in E) \Rightarrow (x < y \Leftrightarrow (x \leq y \land x \neq y))$. Alors, soit x et y deux éléments de E, les formules $x \leq y$ et $(x < y) \lor (x = y)$ sont équivalentes.

Démonstration : Puisque la formule $(x = y) \lor (x \neq y)$ est toujours vraie, on a : $(x \leq y) \Leftrightarrow ((x \leq y) \land ((x = y) \lor (x \neq y)))$. Utilisant la distributivité de \land sur \lor , cela donne : $(x \leq y) \Leftrightarrow (((x \leq y) \land (x = y)) \lor ((x \leq y) \land (x \neq y)))$. Puisque la relation \leq est réflexive, $(x = y) \Rightarrow (x \leq y)$, donc $(x \leq y) \land (x = y)$ est équivalente à x = y. En outre, par définition de la relation <, $(x \leq y) \land (x \neq y)$ est équivalente à x < y. Donc, $(x \leq y) \Leftrightarrow ((x = y) \lor (x < y))$.

Lemme : Soit *E* un ensemble et < une relation d'ordre strict sur *E*. La relation > sur *E* définie par : $\forall x \forall y \ x \in E \land y \in E \Rightarrow (x > y \Leftrightarrow y < x)$ est une relation d'ordre strict sur *E*.

Démonstration:

- Soit x un élément de E. Le prédicat x < x est faux puisque < est une relation d'ordre struct, donc x > x l'est aussi.
- Antisymétrie : Soit x et y deux éléments de E tels que x > y et y > x. Alors, y < x et x < y. Par antisymétrie de la relation <, on en déduit que x = y.
- Transitivité : Soit x, y et z trois éléments de E tels que x > y et y > z. Alors, y < x et z < y. Par transitivité de la relation <, on en déduit que z < x, et donc x > z.

Soit E un ensemble, \le une relation d'ordre sur E et < la relation d'ordre strict définie par : pour tout éléments a et b de E, $a < b \Leftrightarrow (a \le b) \land (a \ne b)$. Alors, soit a, b et c trois éléments de E tels que $a \le b$ et b < c, on a a < c. En effet, on a $a \le c$ par transitivité de la relation \le et $a \ne c$ (sans quoi on aurait b < a, et donc $b \le a$, donc b = a, ce qui est contradictoire avec b < a).

Lemme : Soit E un ensemble et \leq une relation d'ordre total définie sur E. Alors la relation > définie sur E par : pour tous éléments x et y de E, $a > b \Leftrightarrow \neg(a \leq b)$ est une relation d'ordre strict.

Démonstration:

- Antiréflexivité : Soit x un élément de E. La formule $x \le x$ est vraie, donc x > x est fausse.
- Antisymétrie : Soit x et y deux éléments de E tels que x > y et y > x. Alors, $\neg(x \le y)$ et $\neg(y \le x)$. Puisque \le est une relation d'ordre total, cela implique $y \le x$ et $x \le y$, et donc x = y.
- Transitivité: Soit x, y et z trois éléments de E tels que x > y et y > z. On a $\neg(x \le y)$ et $\neg(y \le z)$. Puisque \le est une relation d'ordre total, cela implique $y \le x$ et $z \le y$, et donc $z \le x$. Par ailleurs, z ne peut pas être égal à x car on aurait alors $y \le x$ et $x \le y$, d'où y = x, ce qui est incompatible avec x > y. Donc, $x \le z$ est fausse, et donc x > z.

Lemme : Soit E un ensemble et < une relation d'ordre strict définie sur E, telle que : $\forall x \in E \ \forall y \in E(x < y) \ \lor (y < x) \ \lor (x = y)$. Alors la relation \geq définie sur E par : pour tous éléments x et y de E, $a \geq b \Leftrightarrow \neg (a < b)$ est une relation d'ordre total.

Démonstration:

- Réflexivité : Soit x un élément de E. La formule x < x est fausse, donc $x \ge x$ est vraie.
- Antisymétrie : Soit x et y deux éléments de E tels que $x \ge y$ et $y \ge x$. Alors, $\neg(x < y)$ et $\neg(y < x)$. Donc, x = y.
- Transitivité: Soit x, y et z trois éléments de E tels que $x \ge y$ et $y \ge z$. On a $\neg(x < y)$ et $\neg(y < z)$. Donc, $(y < x) \lor (x = y)$ et $(z < y) \lor (y = z)$. Si x = y, alors $y \le z$ implique $x \le z$. Si y = z, alors $x \le y$ implique $x \le y$. Si $x \ne y$ et $y \ne z$, on a y < x et z < y. Par transsitivité de la relation <, on a donc z < x. Par antisymétrie, on a donc z < x. Par antisymétrie, on a donc z < x. La formule $z \ge z$ est ainsi vraie dans tous les cas.
- Soit x et y deux éléments de E. On a $(x < y) \lor (y < x) \lor (x = y)$. Si x < y est vraie, alors y < x est fausse, donc $y \ge x$ est vraie. Si y < x est vraie, alors x < y est fausse, donc $x \ge y$ est vraie. Enfin, si x = y est vraie, alors $x \le y$ est vraie. Dans tous les cas, on a bien $(x \le y) \lor (y \le x)$.

Vocabulaire : Soit E un ensemble et \leq une relation d'ordre sur E. Soit \geq , < et > les relations définies par : pour tous éléments a et b de E,

- $a \ge b \Leftrightarrow b \ge a$,
- $a < b \Leftrightarrow (a \le b \land a \ne b)$,
- $a > b \Leftrightarrow b < a$.

Alors, soit a et b deux éléments de E, et s'il n'y a pas d'ambiguité,

- si $a \le b$, on dira que a est inférieur ou égal à b,
- si $a \ge b$, on dira que a est supérieur ou égal à b,
- si a < b, on dira que a est strictement inférieur à b,
- si a > b, on dira que a est strictement supérieur à b.

Notation : Soit E un ensemble, \ge une relation d'ordre sur E, et < la relation d'ordre strict sur E définie par : pour tous éléments a et b de E, $a < b \Leftrightarrow (a \le b \land a \ne b)$. Si a_0 , a_1 , a_2 , ..., a_n sont des éléments de E (avec a_n possiblement absent) et R_1 , R_2 , ..., R_n (où R_n est absent si R_n l'est) des symboles chacun identique à R_n ou R_n est absent si R_n l'est) des symboles chacun identique à R_n lest absent si R_n l'est) des symboles chacun identique à R_n lest absent si R_n l'est) des symboles chacun identique à R_n lest absent si R_n l'est) des symboles chacun identique à R_n lest absent si R_n l'est) des symboles chacun identique à R_n lest absent si R_n

$$a_0 R_1 a_1 R_2 a_2 \dots$$

signifie:

$$(a_0 \ R_1 \ a_1) \wedge (a_1 \ R_2 \ a_2) \dots$$

1.2.9. Partition

Soit E et P deux ensembles. On dit que P est une partition de E si les quatre propriétés suivantes sont satisfaites :

- $\forall p (p \in P) \Rightarrow (p \subset E)$,
- $\emptyset \notin P$,
- $\forall e (e \in E) \Rightarrow (\exists p \ p \in P \land e \in p)$
- $\bullet \ \, \forall p \, \forall q \, (p \in P) \wedge (q \in P) \wedge ((p \cap q) \neq \emptyset) \Rightarrow (p = q).$

1.2.10. Relation d'équivalence

Soit E un ensemble. Une relation binaire \sim définie sur $E \times E$ est dite relation d'équivalence sur E si elle satisfait les trois propriétés suivantes :

- Réflexivité : $\forall x \, x \in E \Rightarrow x \sim x$
- Symétrie: $\forall x \forall y (x \in E) \land (y \in E) \land (x \sim y) \Rightarrow (y \sim x)$.
- Transitivité: $\forall x \forall y \forall z (x \in E) \land (y \in E) \land (z \in E) \land (x \sim y) \land (y \sim z) \Rightarrow (x \sim z)$.

Soit E un ensemble et \sim une relation d'équivalence sur E. Pour tout $x \in E$, on définit la classe d'équivalence de x pour \sim , notée ici [x], par : $[x] = \{y \in E | y \sim x\}$. Notons que, pour tout élément x de E, $[x] \subset E$. Donc, l'ensemble des classes d'équivalences existe d'après le schéma d'axiomes de compréhensions. (Pour voir cela, prendre pour ensemble l'ensemble des parties de E et pour propriété Py: $\exists x (x \in E) \land (y = [x])$.)

Lemme : Soit x et y deux éléments de E. Si $x \sim y$, alors [x] = [y].

Démonstration : Suppsosons $x \sim y$. Soit $z \in [x]$. On a $z \sim x$. Par symétrie et transitivité de la relation \sim , on en déduit $z \sim y$. Donc, $z \in [y]$. On en déduit $[x] \subset [y]$. Par symétrie, on a aussi $y \sim x$, et donc, en utilisant le même argument et échangeant les rôles de x et y, on montre que $[y] \subset [x]$. Ainsi, [y] = [x].

Lemme : L'ensemble des classes d'équivalence de E pour la relation \sim forme une partition de E.

Démonstration : Notons F cet ensemble. Vérifions qu'il satisfait les quatre propriétés d'une partition de E.

- Soit $f \in F$. On peut choisir un élément y de E tel que f = [y]. Puisque $[y] \subset E$, on en déduit $f \subset E$.
- Pour tout élément f de F, il existe x tel que $x \in E$ et f = [x], et donc $x \in f$, ce qui montre que $f \neq \emptyset$. Donc, $\emptyset \notin F$.
- Soit $x \in E$. On a $x \in [x]$ et $[x] \in F$.
- Soit $f \in F$ et $g \in F$ tels que $f \cap g \neq \emptyset$. On peut choisir un élément x de $f \cap g$. Soit $y \in E$ et $z \in E$ tels que f = [y] et g = [z]. On a $x \sim y$ et $x \sim z$. Par symétrie et transitivité de la relation \sim , on en déduit $y \sim z$. Donc, [y] = [z], et donc f = g.

1.2.11. Fonctions

Soit a un ensemble. La séquence de symboles « $\forall x (x \in a) \Rightarrow$ » incluse dans une formule est parfois simplifiée en « $\forall x \in a$ » ou en « $\forall x \in a$,». La séquence de symboles « $\exists x (x \in a) \land$ » incluse dans une autre formule est parfois simplifiée en « $\exists x \in a$ » ou en « $\exists x \in a$,». Ainsi, si f est une formule, la formule $\forall x \in a$, f (éventuellement sans la virgule) est considérée comme identique à $\forall x (x \in a) \Rightarrow f$ (au sens où ces suites de symboles représentent la même formule) et $\exists x \in a$, f (éventuellement sans la virgule) est considérée comme identique à $\exists x (x \in a) \land f$.

Définition : Soit deux ensembles X et Y. Une fonction, ou application, f de X vers Y (ou de X dans Y, ou de X sur Y) est un ensemble (parfois appelé graphe) tel que :

$$\forall z [(z \in f) \Rightarrow (\exists x \exists y [(x \in X) \land (y \in Y) \land (z = (x, y))])],$$
$$\forall x [(x \in X) \Rightarrow [\exists y (x, y) \in f]]$$

et

$$\forall y \forall y' ([\exists x ((x, y) \in f \land (x, y') \in f)] \Rightarrow (y = y')).$$

La première condition est équivalente à dire que f est un sous-ensemble de $X \times Y$, i.e., à : $f \in X \times Y$. La seconde et la troisième sont équivalentes à dire que, pour tout élément x de X, il existe un unique élément y de Y tel que $(x, y) \in f$, c'est-à-dire : $\forall x \, [(x \in X) \Rightarrow [\exists \, !y(x, y) \in f]]$. Avec ces mêmes notations, pour tout x appartenant à X, on note f(x) (ou, quand il n'y a pas d'ambiguité, f(x) l'unique élément y de Y tel que $(x, y) \in f$. On dit alors que y est l'image de x ou que x est un antécédent de y par f. On dit aussi que f(x) as f(x) de f(

On dit que f est définie sur X, ou que X est le domaine de définition de f. La notation $f: X \to Y$, signifie que f est une fonction de X vers Y.

Soit X et Y deux ensembles. L'ensemble des fonctions de X vers Y existe : il s'agit du sous-ensemble de l'ensemble des parties de $X \times Y$ (qui existe d'après l'axiome de l'ensemble des parties) satisfaisant la seconde et la troisième conditions ci-dessus (qui existe donc d'après le schéma d'axiomes de compréhension)⁸. Cet ensemble est noté $\mathcal{F}(X,Y)$, ou parfois (quand il n'y a pas d'ambiguité) Y^X . Notons que, si deux fonctions f et g de X vers Y satisfont $\forall x \in X$, f(x) = g(x), alors f = g. Une fonction f de X vers Y peut ainsi être définie de manière unique par la donnée de f(x) pour tout élément x de X.

Lemme : Soit *E* et *F* deux ensembles non vides et *P* un prédicat à deux paramètres libres tel que, pour tout élément *e* de *E*, il existe un unique élément *f* de *F* tel que *Pe f* est vrai, *i.e.*,

$$\forall e \in E, (\exists f \in F, Pef) \land (\forall f \in F, \forall g \in F, Pef \land Peg \Rightarrow f = g).$$

Alors l'ensemble G définit par $G = \{g \in E \times F | \exists e \in E \exists f \in Fg = (e, f) \land Pef \}$ est une fonction de E vers F.

Démonstration : Montrons que l'ensemble G satisfait les trois conditions pour être une fonction de E vers F.

- Soit g un élément de G. Par définition de cet ensemble, on peut choisir un élément e de E et un élément f de F tel que g = (e, f). Donc, $g \in E \times F$. Cela montre que G est un sous-ensemble de $E \times F$.
- Soit *e* un élément de *E*. Par définition de *P*, on peut choisir un élément *f* de *F* tel que *Pe f* est vrai. Alors, (*e*, *f*) est un élément de *G*.
- Soit e un élément de E et y et y' deux éléments de F tels que $(e, f) \in G$ et $(e, f') \in G$. Alors, Pef et Pef' sont vrais. Donc, f = f'.

Lemme : Soit E et F deux ensembles et f et g deux fonctions de E vers F. On suppose que : $\forall x \in E$, f(x) = g(x) est vrai. Alors, f = g.

Démonstration : Soit z un élément de f. On peut choisir un élément x de E et un élément y de F tel que z = (x, y). Puisque $x \in E$, on peut choisir un élément y' de F tel que $(x, y') \in g$. On a alors y = f(x) et y' = g(x). Puisque f(x) = g(x), on en déduit y' = y. Donc, $(x, y) \in g$, et donc $z \in g$. Cela montre que $f \subset g$.

Soit z un élément de g. On peut choisir un élément x de E et un élément y de F tel que z = (x, y). Puisque $x \in E$, on peut choisir un élément y' de F tel que $(x, y') \in f$. On a alors y = g(x) et y' = f(x). Puisque g(x) = f(x), on en déduit y' = y. Donc, $(x, y) \in f$, et donc $z \in f$. Cela montre que $g \subset f$.

On a donc bien f = g.

Soit E et F deux ensembles et f une fonction de E vers F. On dit que

^{8.} Pour être tout à fait rigoureux, le prédictat à employer pour utiliser l'axiome de compréhension est la conjonction de ces deux conditions, qui peut s'écrire : $(\forall x [(x \in X) \Rightarrow [\exists y (x, y) \in f]]) \land [\forall w \forall w' ([\exists z ((z, w) \in f \land (z, w') \in f)] \Rightarrow (w = w'))].$

- f est injective (ou une injection) si $\forall x \ \forall y [f(x) = f(y) \Rightarrow x = y]$. Puisque chaque élément de f est dans $E \times F$, cela est équivalent à : $\forall x \in E \ \forall y \in F[f(x) = f(y) \Rightarrow x = y]$.
- f est *surjective* (ou *une surjection*) si $\forall y \in F \exists x [f(x) = y]$. Puisque chaque élément de f est dans $E \times F$, cela est équivalent à : $\forall y \in F \exists x \in E[f(x) = y]$.
- f est bijective (ou une bijection) si elle est à la fois injective et surjective, ce qui est équivalent à : $\forall y \in F \exists ! x [f(x) = y]$ et à : $\forall y \in F \exists ! x \in E[f(x) = y]$.

L'image de la fonction f, notée $\operatorname{Im}(f)$, est l'ensemble $\{y \in F | \exists x (x \in E) \land f(x) = y\}$. Pour tout sous-ensemble G de F, on note $f^{-1}(G)$ l'ensemble $\{x \in E | f(x) \in G\}$. S'il n'y a pas d'ambiguité, et si $y \in F$, on notera parfois $f^{-1}(y)$ l'ensemble $f^{-1}(\{y\})$. (Les ensembles ainsi obtenus pour différentes valeurs de y sont deux-à-deux disjoints. En effet, soit y et z deux éléments de F et $x \in E$. Si $x \in f^{-1}(y) \cap f^{-1}(z)$, on a f(x) = y et f(x) = z, et donc y = z. Ainsi, si $y \neq z$, $f^{-1}(y) \cap f^{-1}(z)$ est vide.) Notons que, pour tout élément y de F, on a $f^{-1}(y) \neq \emptyset \Leftrightarrow y \in \operatorname{Im}(f)$.

Lemme : Soit E un ensemble. Soit I l'ensemble $\{z \in E \times E \exists x \in E \ z = (x, x)\}$. Alors, I est une bijection de E vers E, appelée *fonction identité* sur E. En outre, pour tout élément x de E, I(x) = x.

Démonstration:

- Montrons d'abord que *I* est une fonction de *E* vers *E*.
 - Soit z iun élément de I. Alors il existe un élément x de E tel que z = (x, x). Donc, il existe un élément y de E (il suffit de prendre y = x) tel que z = (x, y). La première condition est donc satisfaite.
 - Soit x un élément de E. On a $(x, x) \in I$. Donc, il existe un élément y de E (il suffit de prendre y = x) tel que $(x, y) \in E$. La deuxième condition est donc satisfaite.
 - Soit y et y' deux éléments de E et x un élément de E tel que $(x, y) \in I$ et $(x, y') \in I$. Alors, il existe deux éléments x' et x'' de E tels que (x, y) = (x', x') et (x, y') = (x'', x''). La première égalité donne x = x' et y = x', donc x = y. La seconde égalité donne x = x'' et y' = x'', donc x = y'. Donc, y = y'. La ptroisième condition est donc satisfaite.
- Soit x un élément de E. On a $(x, x) \in I$, donc I(x) = x.
- Montrons qu'elle est injective. Soit x et y deux éléments de E tels que I(x) = I(y). Alors, puisque I(x) = x et I(y) = y, et par réflexivité et ransitivité de l'égalité, x = y.
- Montrons qu'elle est surjective. Soit y un élément de E. Alors, I(y) = y, donc il existe un élément x de E (il suffit de prendre x = y) tel que I(x) = y.

Lemme : Soit E et F deux ensembles, f une fonction de E vers F, I_E la fonction identité ur E et I_F la fonction identité sur F. Alors, $f \circ I_E = I_F \circ f = f$.

Démonstration : Tout d'abord, puisque I_E est une fonction de E vers E, I_F une fonction de E vers F, et f une fonction de E vers F, $f \circ I_E$ et $I_F \circ f$ sont deux fonctions de E vers F. Soit x un élément de E. On a : $(f \circ I_E)(x) = f(I_E(x)) = f(x)$ et $(I_F \circ f)(x) = I_F(f(x)) = f(x)$. Cela étant vrai pour tout élément x de E, on en déduit $f \circ I_E = f$ et $I_F \circ f = f$.

Soit *E* un ensemble.

- S'il existe une fonction de E vers \emptyset , alors $E = \emptyset$ (en effet, soit f une telle fonction, si E contenait un élément x, f(x) serait un élément de \emptyset , ce qui est impossible).
- La seule fonction de \emptyset vers E est \emptyset . Elle est toujours injective. Elle est surjective (et donc bijective) si et seulement si $E = \emptyset$.

Soit E et F deux ensembles. Alors,

- Si *E* est non vide et s'il existe une injection *f* de *E* vers *F*, alors il existe une surjection de *F* vers *E*. En effet, une telle surjection peut être construite de la manière suivante. Soit *a* un élément de *E*. Soit *P* la propriété à deux variables libres définie par : *Pyx* : [(*y* ∈ Im(*f*)) ∧ (*f*(*x*) = *y*)] ∨ [(*y* ∉ Im(*f*)) ∧ (*x* = *a*)]. Alors, l'ensemble {*z* ∈ *F* × *E*|∃*x*∃*y*(*z* = (*y*, *x*)) ∧ (*Pyx*)} est une fonction de *F* vers *E* et est surjective.
- S'il existe une surjection f de E vers F, et si l'on admet l'axiome du choix (voir ci-dessous), alors il existe une injection de F vers E. En effet, soit X l'ensemble des f⁻¹(y) pour y ∈ F (cet ensemble existe d'après l'axiome de l'ensemble des parties et le schéma d'axiome de compréhension : il s'agit de l'ensemble des parties p de F telles que ∃y(y ∈ F) ∧ (p = f⁻¹(y))), soit g une fonction qui à chaque élément de cet ensemble associe un de ses éléments⁹, et soit h l'ensemble {z ∈ F × E | ∃x ∈ E ∃y ∈ F(x = g(f⁻¹(y))) ∧ (z = (y, x))}; alors h est une fonction injective de F vers E. (Elle est bien injective. En effet, si y et y' sont deux élément de f ayant la même image x, alors x ∈ f⁻¹(y) et x ∈ f⁻¹(y'), donc f(x) = y et f(x) = y', donc y = y'.)

^{9.} Cela est possible car, pour tout élément y de F, $f^{-1}(y)$ est non vide puisque f est surjective.

Ces deux résultats étant importants, récrivons-les et démontrons-les plus formellement.

Lemme : Soit E et F deux ensembles. On suppose que E est non vide et qu'il existe une injection de E vers F. Alors, il existe une surjection de F vers E.

Démonstration : Soit f une injection de E vers F. Soit a un élément de E (un tel élément existe puisque E est non vide). Définissons la propriété P à deux paramètres libres par :

$$Pxy$$
: $[(y \in Im(f)) \land (f(x) = y)] \lor [(y \notin Im(f)) \land (x = a)]$.

Soit *g* l'ensemble défini par :

$$g = \{ z \in F \times E | \exists x \exists y (z = (y, x)) \land (Pxy) \}.$$

Montrons que g est une fonction de F vers E et qu'elle est surjective :

- Soit z un élément de g. Alors, on peut choisir un élément x de F et un élément y de E tels que z=(x,y). La première condition pour être une fonction est donc satisfaite.
- Soit y un élément de F. Si y ∈ Im(f), alors on peut choisir un élément x de E tel que f(x) = y. On a donc (y, x) ∈ F × E et Pxy. Donc, (y, x) ∈ g. On a donc montré que ∃x(y, x) ∈ g. La deuxième condition pour être uns fonction est donc bien satisfaite.
- Soit x et x' deux éléments de E et y un élément de F tels que $(y, x) \in g$ et $(y, x') \in g$. Alors, Pxy et Px'y sont vraies. Si $y \in \text{Im}(f)$, cela implique f(x) = y et f(x') = y, donc f(x) = f(x'), et donc (puisque f est injective) x = x'. Sinon, cela implique x = a et x' = a, donc x = x'. Dans tous les cas, on a x = x'. La troisième condition pour tre une fonction est donc satisfaite.
- Soit x un élément de E. On a f(x) ∈ Im(f) et f(x) = f(x), donc Pxf(x) est vraie. Puisque x ∈ E et f(x) ∈ F, (f(x), x) ∈ F × E. Donc, (f(x), x) ∈ g. Il existe donc un élément y de F (égal à f(x)) tel que g(y) = x. Cela montre que g est surjective.

Lemme : Soit E et F deux ensembles. On suppose qu'il existe une surjection de E vers F. On admet également l'axiome du choix (voir ci-dessous). Alors, il existe une injection de F vers E.

Démonstration : Soit f une surjection de E vers F. Soit & l'ensemble des parties de E. Soit X l'ensemble définit par :

$$X = \{ p \in \mathcal{E} | \exists y (y \in F) \land (p = f^{-1}(\{y\})) \}.$$

Soit p un élément de X. On peut choisir un élément y de F tel que $p = f^{-1}(\{y\})$. Puisque f est surjective, on peut choisir un élément x de E tel que f(x) = y. Donc, $f(x) \in \{y\}$. Donc, $x \in f^{-1}(\{y\})$. Donc, $x \in p$. Cela montre que X ne contient pas \emptyset .

D'après l'axiome du choix, il existe donc une fonction de X vers $\cup X$ qui à chaque élément x de X associe un élément de x. Soit g une telle fonction. Puisque chaque élément de X est un sous-ensemble de E, $\cup X$ en est également un. En effet, soit e un élément de $\cup X$, il existe un élément x de X tel que $e \in x$; puisque $x \in E$, on a donc $e \in E$. Donc, g est une fonction de X vers E. Notons h l'ensemble défini par :

$$h = \{z \in F \times E | \exists x \in E \exists y \in F(x = g(f^{-1}(\{y\}))) \land (z = (y, x))\}.$$

Montrons que h est une fonction de F vers E.

- Par définition, h est un sous-ensemble de $F \times E$, et satisfait donc la première condition.
- Soit y un élément de F. Alors, $f^{-1}(\{y\})$ est un élément de X. Soit x l'élément de E défini par $x = g(f^{-1}(\{y\}))$. On a $(y, x) \in h$.
- Soit y un élément de F et x et x' deux éléments de E tels que $(y, x) \in h$ et $(y, x') \in h$. Alors, $x = g(f^{-1}(\{y\}))$ et $x' = g(f^{-1}(\{y\}))$. Donc, x = x'.

L'ensemble h est donc bien une fonction de F vers E.

Montrons que h est injective. Soit y et y' deux éléments de F tels que h(y) = h(y'). Puisque $h(y) = g(f^{-1}(\{y\}))$ et $g(f^{-1}(\{y\})) \in f^{-1}(\{y\})$, on a $h(y) \in f^{-1}(\{y\})$, et donc f(h(y)) = y. De même, puisque $h(y') = g(f^{-1}(\{y'\}))$ et $g(f^{-1}(\{y'\})) \in f^{-1}(\{y'\})$, on a $h(y') \in f^{-1}(\{y'\})$, et donc f(h(y')) = y'. Puisque h(y) = h(y'), on en déduit que y = y'. Ainsi, h est bien injective.

Soit E et F deux ensembles, f une fonction de E vers F et E' un sous-ensemble de E. Pour simplifier les notations, on note parfois $\{f(x)|x \in E'\}$ ou F(E') l'ensemble $\{y \in F | \exists x (x \in E') \land (f(x) = y)\}$.

Composition de deux fonctions : Soit E, F et G trois ensembles. Soit f une fonction de E vers F et g une fonction de F vers G. La *composée* de g et f, notée $g \circ f$, est la fonction de E vers G définie par : $\forall x \in E(g \circ f)(x) = g(f(x))$. Plus formellement, $g \circ f = \{z \in E \times G | \exists x \in E = (x, g(f(x)))\}$.

Lemme : L'ensemble ainsi défini est bien une fonction de *E* vers *G*.

Démonstration:

- Soit z un élément de $g \circ f$. Alors, on peut choisir un élément x de E tel que z = (x, g(f(x))). Puisque f est une fonction de E vers F, $f(x) \in F$. Puisque g est une fonction de F vers G, $g(f(x)) \in F$. Donc, $z \in E \times G$.
- Soit x un élément de E. Alors $(x, g(f(x))) \in g \circ f$.
- Soit y et y' deux ensembles. Soit x un ensemble tel que $(x, y) \in g \circ f$ et $(x, y') \in g \circ f$. Alors, on peut choisir un élément x' de E tel que $(x, y) \in (x', g(f(x')))$ et un élément x'' de E tel que (x, y') = (x'', g(f(x''))). On a donc x = x', y = g(f(x')), x = x'' et y' = g(f(x'')). Donc, y = g(f(x)) et y' = g(f(x)). Donc, y = y'.

Remarque : Avec les mêmes notations, si f et g sont deux injections, alors $g \circ f$ en est aussi une. En effet, soit x et y deux éléments de G tels que $(g \circ f)(x) = (g \circ f)(y)$, on a g(f(x)) = g(f(y)), donc f(x) = f(y), et donc x = y.

Remarque : Avec les mêmes notations, si f et g sont deux surjections, alors $g \circ f$ en est aussi une. En effet, soit z un élément de G, il existe un élément y de F tel que g(y) = z et un élément x de E tel que f(x) = y; on a donc $(g \circ f)(x) = z$.

Remarque : Avec les mêmes notations, si f et g sont deux bijections, alors $g \circ f$ en est aussi une. En effet, il s'agit d'une injection et d'une surjection d'après les deux points précédents.

Lemme (associativité de la composition de fonctions) : Soit E, F, G et H quatre ensembles. Soit f, g et h des fonctions respectivement de E vers F, de F vers G et de G vers H. Alors $h \circ (g \circ f) = (h \circ g) \circ f$.

Démonstration : Montrons d'abord que $h \circ (g \circ f)$ et $(h \circ g) \circ f$ sont deux fonctions de E vers H. Puisque f est une fonction de E vers F et g une fonction de F vers G, $g \circ f$ et une fonction de E vers G. Donc, $h \circ (g \circ f)$ est une fonction de E vers G. Puisque G et une fonction de G vers G0 et G1 vers G2 et une fonction de G3 et une fonction de G4 vers G5. Donc, G6 et une fonction de G7 vers G8 et une fonction de G8 vers G9 et une fonction de G9 vers G9.

Montrons maintenant qu'elles sont égales. Soit x un élément de E. On a : $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$. Par ailleurs, $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$. Donc, $(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$. On en déduit que $h \circ (g \circ f) = (h \circ g) \circ f$.

Inverse d'une bijection : Soit E et F deux ensembles et f une bijection de E vers F. L'ensemble $\{z \in F \times E | \exists x \in E \exists y \in Fz = (y,x) \land (x,y) \in f\}$ est une fonction de F vers E (puisque, pour chaque élément y de F, il existe un unique élément x de E tel que $(x,y) \in f$). On montre facilement qu'il s'agit d'une bijection (pour chaque élément x de E, il existe un unique élément y de E dont l'image est E : il s'agit de E (son image est bien E par définition et, soit E un élément de E tel que E qu'image de E est l'antécédant de E par E distinct de E (son image est E notée E notée E et notée E et démontrons-le plus formellement.

Lemme : Soit E et F deux ensembles. On suppose qu'il existe une bijection, notée f, de E vers F. Alors il existe une unique fonction g de F vers E telle que, pour tout élément x de E, g(f(x)) = x. En outre, cette fonction est bijective.

Démonstration : Soit g l'ensemble défini par :

$$g = \{ z \in F \times E | \exists x \in E \exists y \in Fz = (y, x) \land (x, y) \in f \}.$$

Montrons d'abord que g est une fonction de F vers E.

- Soit z un élément de g. Alors, il existe un élément y de F et un élément x de E tels que z = (y, x).
- Soit y un élément de F. Puisque f est surjective, on peut choisir un élément x de E tel que f(x) = y. Alors, $(y, x) \in F \times E$ et $(x, y) \in f$, donc $(y, x) \in g$.
- Soit y un élément de F et x et x' deux éléments de E tels que $(y, x) \in g$ et $(y, x') \in g$. Alors, $(x, y) \in f$ et $(x', y) \in f$, donc f(x) = y et f(x') = y, donc f(x) = f(x'). Puisque f est injective, on en déduit que x = x'.

Ainsi, g est bien une fonction de F vers E.

Montrons qu'elle est unique. Soit h une fonction de F vers E telle que, pour tout élément x de E, h(f(x)) = x. Soit y un élément de F. Puisque f est surjective, on peut choisir un élément x de E tel que y = f(x). On a alors g(y) = x et h(y) = x. Donc, h(y) = g(y). Cela étant vrai pour tout élément y de F, on en déduit que h = g.

Montrons maintenant que g est bijective.

- Soit y et y' deux éléments de F tels que g(y) = g(y'). Puisque (y, g(y)) ∈ g, on a (g(y), y) ∈ f, donc f(g(y)) = y.
 De même, puisque (y', g(y')) ∈ g, on a (g(y'), y') ∈ f, donc f(g(y')) = y'. Puisque g(y') = g(y), cela implique f(g(y)) = y', et donc y = y'. Cela montre que g est injective.
- Soit x un élément de E. Notons y l'élément de F définit par y = f(x). Alors, $(y, x) \in F \times E$ et $(x, y) \in F$. Donc, $(y, x) \in g$. Donc, g(y) = x. Cela montre que g est surjective.

Puisque g est injective et surjective, il s'agit bien d'une bijection.

1.2.12. Axiome du choix

Énoncé: Pour tout ensemble X d'ensembles non vides, il existe une fonction sur X qui à chaque ensemble x appartenant à X associe un élément de x:

$$\forall X \left[(\emptyset \notin X) \Rightarrow (\exists f : X \to \cup X \forall x \left[(x \in X) \Rightarrow (\exists y \left[((x, y) \in f) \land (y \in x) \right]) \right] \right].$$

Cette formule peut se récrire plus simplement (au prix d'avoir une partie mal définie pour $x \notin X$):

$$\forall X \left[(\emptyset \notin X) \Rightarrow (\exists f : X \to \cup X \, \forall x \in X (f(x) \in x)) \right].$$

La théorie ZF plus l'axiome du choix est appelée théorie ZFC.

1.2.13. Lemme de Zorn (en théorie ZFC)

1.2.14. Ensembles et séquences ordonnées

1.3. Quelques notations et résultats

1.3.1. Résumé des notations

Résumons ici quelques notations utiles pour la suite, de manière informelle :

• Le symbole \neg représente la négation : si P est une proposition, la proposition $\neg P$ est fausse si P est vraie et inversement. Sa table de vérité est donnée ci-dessous, où « V » indique « vraie » et « F » indique « fausse » :

$$\begin{array}{c|c} P & \neg P \\ \hline V & F \\ F & V \end{array}.$$

• Les symboles ∧ et ∨ représentent respectivement les connecteurs « et » et « ou ». Les symboles ⇒ et ← représentent l'implication vers la droite et vers la gauche. Le symbole ⇔ représente l'équivalence. Soit *P* et *Q* deux propositions, on a ainsi la table de vérité suivante, où « V » indique « vraie » et « F » indique « fausse » :

\boldsymbol{P}	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$	
V	V	V	V	V	V	V	_
V	F	F	V	F	V	F	
F	V	F	V	V	F	F	
F	F	F	F	V	V	V	

- Les symboles ∀ et ∃ représentent respectivement les quantificateurs universel (« pour tout ») et existentiel (« il existe »).
- On note \in la relation d'appartenance et \notin sa négation : $\forall x \forall y \ x \notin y \Leftrightarrow (x_i n y)$.
- L'ensemble vide est noté Ø.
- Soit a un ensemble. On note $\{a\}$ l'ensemble contenant uniquement a.
- Soit a et b deux ensembles. On note {a, b} la paire de a et b, i.e. l'ensemble définit par :

$$\forall x \, x \in \{a, b\} \Leftrightarrow ((x = a) \land (x = b))$$

• Soit E un ensemble et P un prédicat à un paramètre libre. L'ensemble $\{x \in E | Px\}$ (noté F dans la formule ci-dessous) est le sous-ensemble de E défini par :

$$\forall x \, x \in F \Leftrightarrow x \in E \land Px$$
.

On note (a,b) le couple formé par a et b, définit par : $(a,b) = \{\{a\}, \{a,b\}\}.$

• Soit E et F deux ensembles. L'union de E et F, notée $E \cup F$, est l'ensemble défini par :

$$E \cup F = \{x | (x \in E) \lor (x \in F)\}.$$

L'intersection de E et F, notée $E \cap F$, est l'ensemble défini par :

$$E \cap F = \{x | (x \in E) \land (x \in F)\}.$$

La différence de E et F, notée $E \setminus F$, est l'ensemble défini par :

$$E \setminus F = \{x | (x \in E) \land (x \notin F)\}.$$

• Soit E et F deux ensembles. On dit que E est inclus dans F, et on note $E \subset F$ ou $F \supset E$, si la proposition suivante est vraie : $\forall x \, x \in E \Rightarrow x \in F$.

1.3.2. Ensemble de tous les ensembles

Lemme: Il n'existe pas d'ensemble de tous les ensembles.

Démonstration : Supposons par l'absurde que l'ensemble de tous les ensembles existe, et notons-le U. Définissons l'ensemble X par : $X = \{e \in U | e \notin e\}$ 10 , et considérons la propriété $P : X \in X$. Alors,

- Si Pest vraie, $X \in X$, donc, par définition de cet ensemble, X n'est pas un élément de X, et donc Pest fausse.
- Si Pest fausse, $X \notin X$, donc, par définition de cet ensemble, X est un élément de X, et donc Pest vraie.

Ainsi, la propriété P ne peut être ni vraie ni fausse, ce qui constitue une contradiction. On en déduit que l'hypothèse de départ est fausse.

NB: Si on inclus la valeur de vérite « indéfinie » dans la théorie, alors cette démonstration montre seulement que, avec les mêmes notations, la propriété *P* est indéfinie.

NB: Le résultat est évident si l'on inclus l'axiome de fondation dans la théorie, puisqu'alors aucun ensemble ne peut être élément de lui-même.

1.4. Construction de N

1.4.1. Définition

L'ensemble des entiers naturels, noté \mathbb{N} , est défini de la manière suivante. Notons Cl le prédicat à un paramètre libre défini par :

$$Cl(A) : (\emptyset \in A) \land (\forall a (a \in A \Rightarrow a \cup \{a\} \in A)).$$

D'après l'axiome de l'infini, il existe un ensemble A tel que Cl(A) est vrai. Soit Ent le prédicat à un paramètre libre défini par :

$$\operatorname{Ent}(x): \forall A (\operatorname{Cl}(A) \Rightarrow x \in A).$$

Soit I un ensemble tel que Cl(I) est vrai. L'ensemble \mathbb{N} est défini par :

$$\mathbb{N} = \{x \in I | \text{Ent}(x) \}.$$

Notons que cette définition ne dépend pas du choix de *I*. Notons aussi que $\emptyset \in \mathbb{N}$ et $\forall n \, n \in \mathbb{N} \Rightarrow n \cup \{n\} \in \mathbb{N}$.

Démonstration:

Montrons d'abord que Ø ∈ N. Puisque Cl(I) est vrai, Ø ∈ I. Soit A un ensemble tel que Cl(A) est vrai. Alors, Ø ∈ A. Donc, Ent(Ø) est vrai. On a donc Ø ∈ I ∧ Ent(Ø). Donc, Ø ∈ N.

^{10.} Cet ensemble existe d'après le schéma d'axiomes de compréhensions. En ré-utilisant les notations de l'énoncé de cet axiomes, il s'agit de l'ensemble obtenu en prenant a = U et $Px : x \notin x$.

- Soit n un élément de N. Alors, n ∈ I. Puisque Cl(I) est vrai, on en déduit que n ∪ {n} ∈ I. Soit A un ensemble tel que Cl(A) est vrai. Puisque Ent(n) est vrai, n ∈ A. Alors, puisque Cl(A) est vrai, n ∪ {n} ∈ A. On en déduit que Ent(n ∪ {n}) et vrai. On a donc n ∪ {n} ∈ I ∧ Ent(n ∪ {n}). Donc, n ∪ {n} ∈ N.
- Motrons finalement que la définition de \mathbb{N} ne dépends pas du choix de I. Soit J un ensemble tel que Cl(J) est vrai. Soit \mathbb{M} l'ensemble défini par : $\mathbb{M} = \{x \in J | Ent(x)\}$. Il s'agit de montrer que $\mathbb{M} = \mathbb{N}$.

Soit x un élément de \mathbb{N} . Puisque $\mathrm{Cl}(J)$ et $\mathrm{Ent}(x)$ sont vrais, $x \in J$ est vrai aussi. Donc, $x \in J \wedge \mathrm{Ent}(x)$. Donc, $x \in \mathbb{M}$. Cela montre que $\mathbb{N} \subset \mathbb{M}$.

Soit y un élément de \mathbb{M} . Puisque $\mathrm{Cl}(\mathrm{I})$ et $\mathrm{Ent}(y)$ sont vrais, $y \in I$ est vrai aussi. Donc, $y \in I \land \mathrm{Ent}(x)$. Donc, $y \in \mathbb{N}$. Cela montre que $\mathbb{M} \subset \mathbb{N}$.

On a donc $\mathbb{M} = \mathbb{N}$.

On notera souvent 0 l'ensemble \emptyset . Pour tout élément n de \mathbb{N} , on notera n+1 l'ensemble $n \cup \{n\}$, appelé *successeur* de n. Cela définit une application Suc de \mathbb{N} vers lui-même, qui à un élément n associe n+1. Notons que, pour tout entier naturel n, on a $n \subset n+1$. Les premiers entiers sont notés de la manière suivante en base 10 (voir section 2.2 pour une définition générale de la base) :

n	n+1
0	1
1	2
2	3
2	4
4	5
5	6
6	7
7	8
8	9
9	10

NB: Notons que $Cl(\mathbb{N})$ est vraie et, si E est un ensemble tel que Cl(E) est vraie, alors $\mathbb{N} \subset E$. En ce sens, \mathbb{N} est le plus petit ensemble satisfaisant Cl.

Démonstration:

Tout d'abord, on a vu ci-dessus que $\emptyset \in \mathbb{N}$ et $\forall n n \in \mathbb{N} \Rightarrow n \cup \{n\} \in \mathbb{N}$. Donc, $Cl(\mathbb{N})$ est vrai.

Soit E un ensemble tel que Cl(E) est vrai. Soit x un élément de \mathbb{N} . Alors, Ent(x) est vrai, donc $x \in E$. Ainsi, $\mathbb{N} \subset E$.

Un élément de \mathbb{N} est dit *entier naturel* (ou parfois simplement *entier* quand il n'y a pas de confusion possible avec d'autres définitions). Il est dit *non nul* s'il est différent de 0.

Lemme : Soit n un élément de \mathbb{N} et m un ensemble tel que $m \subset n+1$. Alors $n \in m$ ou $m \subset n$.

Démonstration : Si $n \in m$, le résultat est vrai. Supposons que $n \notin m$. Soit x un élément de m. Puisque $m \subset n+1$, on a $x \in n+1$, et donc $x \in n$ ou $x \in n$. La seconde option est impossible puisqu'elle impliquerait x = n, et donc $x \in n$, en contradiction avec notre hypothèse. Donc, $x \in n$. Cela étant vrai pour tout élément $x \in m$, on en déduit $x \in n$.

Définition : On note \mathbb{N}^* l'ensemble $\mathbb{N} \setminus \{0\}$.

1.4.2. Relation d'ordre : définition

On définit une relation binaire, notée \leq , sur \mathbb{N} par : pour tous éléments n et m de \mathbb{N} ,

$$n \le m \Leftrightarrow n \subset m$$
.

Il sagit d'une relation d'ordre puisque la relation \subset est réflexive, antisymétrique et transitive. On définit la relation d'ordre strict < par pour tous éléments n et m de \mathbb{N} ,

$$n < m \Leftrightarrow (n \le m \land m \ne n).$$

Notons que, pour tout élément n de \mathbb{N} , $0 \le n$ (puisque l'ensemble vide est un sous-ensemble de tout ensemble) et n < n+1 (en effet, on a $n \subset n+1$, donc $n \le n+1$, et $n \ne n+1$; nous démontrerons ce point dans la Section 1.4.4—pour le

moment, nous avons seulement montré que $n \le n+1$). Par antisymétrie, le premier point implique que le seul élément n de $\mathbb N$ satisfaisant $n \le 0$ est 0 lui-même.

On définit aussi la relation d'ordre \geq et la relation d'ordre strict > sur $\mathbb N$ par : pour tous éléments n et m de $\mathbb N$, $n \geq m \Leftrightarrow m \leq n$ et $n > m \Leftrightarrow m < n$.

1.4.3. Principe de récurrence

Lemme (principe de récurrence) : Soit P une formule à un paramètre libre. On suppose que P(0) est vraie et que, pour tout élément n de \mathbb{N} , $P(n) \Rightarrow P(n+1)$ est vraie. Alors, P(n) est vraie pour tout $n \in \mathbb{N}$.

Démonstration : Soit E l'ensemble défini par $E = \{n \in \mathbb{N} | P(n)\}$. Puisque P(0) et vraie, on a $0 \in E$. En outre, pour tout $n \in E$, P(n) est vrai, donc P(n+1) est vrai aussi, et donc $n+1 \in E$. Donc, Cl(E) est vraie. Donc, $\mathbb{N} \subset E$. Soit $n \in \mathbb{N}$, on a donc $n \in E$, et donc P(n) est vraie.

Récurrence finie : Soit E un sous-ensemble non vide de \mathbb{N} tel que : $\forall n \in E$, $\forall m \in \mathbb{N}$, $m \le n \Rightarrow m \in E$. Soit P une formule à un paramètre libre. On suppose que P(0) est vraie et que, pour tout $n \in E$ tel que $n+1 \in E$, $P(n) \Rightarrow P(n+1)$ est vraie. Alors, P(n) est vraie pour tout $n \in E$.

Démonstration : Notons que $0 \in E$. Définissons la formule Q à un paramètre libre par $Q(n) : P(n) \lor (n \notin E)$. Alors Q(0) est vraie. En outre, soit $n \in \mathbb{N}$ tel que Q(n) est vraie, soit $n + 1 \in E$, donc $n \in E$, donc P(n) est vraie, donc P(n + 1) est vraie, et donc Q(n + 1) est vraie, soit $n + 1 \notin E$ et donc Q(n + 1) est vraie. Par récurrence, Q(n) est vraie pour tout $n \in \mathbb{N}$. Soit $n \in E$. Puisque Q(n) est vraie et que $n \notin E$ ne peut être vraie, on en déduit que P(n) est vraie.

Donnons un exemple facile de démonstration par récurrence.

Lemme : Soit *n* un entier naturel. Alors n = 0 ou il existe un entier naturel *m* tel que n = m + 1.

Remarque : On montre Section 1.4.4 que deux entiers naturels a et b satisfaisant a+1=b+1 sont égaux. Donc, l'entier naturel m défini par l'énoncé du lemme est unique.

Démonstration : Soit P le prédicat à un paramètre défini par : P(n) : $n = 0 \lor (\exists m \in \mathbb{N}, n = m + 1)$. Tout d'abord, P(0) est vrai puisque 0 = 0 est vrai. Soit n un élément de \mathbb{N} . Alors P(n + 1) est vrai puisqu'il existe un entier naturel m tel que n + 1 = m + 1—il suffit de prendre m = n. Par récurrence, P(n) est donc vrai pour tout élément n de \mathbb{N} .

Définition : Soit n un entier naturel tel que $n \neq 0$. L'entier naturel m tel que n = m + 1 est noté n - 1. Notons que, pour tout entier naturel n, (n + 1) - 1 = n et, si $n \neq 0$, (n - 1) + 1 = n.

Cet exemple est conceptuellement très simple car la seconde étape du raisonnement ne fait pas appel au fait que le prédicat est vrai au rang précédent. Donnons maintenant un exemple légèrement moins aisé, et plus proche de la manière dont la démonstration par récurrence fonctionne la plupart du temps. On admet momentanément que, pour tout entier naturel n, $n + 1 \neq n$, et donc $n \notin n$. (Cela sera démontré, sans utiliser le lemme suivant, section 1.4.4.)

Lemme : Soit n et m deux entiers naturels. S'il existe une bijection de n vers m, alors n = m.

Démonstration : Considérons le prédicat suivant, dépendant d'un paramètre libre n : Pour tout entier naturel m, s'il existe une bijection de n vers m, alors n = m.

Pour n = 0, le résultat est aisé : la seule fonction de 0 vers un ensemble est \emptyset , dont l'image est \emptyset . Si E est un ensemble et s'il existe une biection de 0 vers E, alors $E = \emptyset = 0$.

Soit n un entier naturel pour lequel le prédicat est vrai. Soit m un entier naturel et f une bijection de n+1 vers m. Puisqu'une telle bijection existe et n+1 est non vide (il contient au moins n), m ne peut être égal à 0 (il contient au moins les images des éléments de n+1). Donc, d'après le lemme précédent, on peut choisir un entier naturel k tel que m=k+1. Montrons qu'il existe une bijection de n vers k. On aura alors n=k, donc n+1=k+1, et donc n+1=m, et le lemme sera montré par récurrence.

On a : $m = k \cup \{k\}$. Soit g la fonction de m vers m définie par g(k) = f(n), g(f(n)) = k (notons que cela est toujours possible car ces deux conditions sont équivalentes si f(n) = k) et g(x) = x pour tout élément x de m tel que $x \notin \{k, f(n)\}$. Supposons avoir montré que g est une bijection de m vers m. Alors, $g \circ f$ est une bijection de m + 1 vers m et $(g \circ f)(n) = k$. Soit m la fonction de m vers m définie par : pour tout élément m de m de m la fonction de m vers m définie par : pour tout élément m de m la fonction de m vers m definie par : pour tout élément m de m la fonction de m vers m de m la fonction de m la fonction de m vers m la fonction de m la foncti

un élément x de n+1 tel que $(g \circ f)(x) = y$. En outre, $y \in k$, donc $y \ne k$. Puisque $(g \circ f)(n) = k$, cela implique $x \ne n$, et donc $x \in n$. On a donc h(x) = y. Donc, h est surjective. La fonction h est ainsi une bijection de n vers k.

Il nous reste à montrer que la fonction g est bijective. Montrons d'abord qu'elle est injective. Soit x et y deux éléments de m tels que g(x) = g(y). Si ni x ni y ne sont dans $\{f(n), k\}$, alors g(x) = x et g(y) = y, donc x = y. Si $x \in \{f(n), k\}$, alors $y \in \{f(n), k\}$ (sans quoi on aurait $g(x) \in \{f(n), k\}$ et $g(y) \notin \{f(n), k\}$). De même, si $y \in \{f(n), k\}$, alors $x \in \{f(n), k\}$. Supposons x = k. Alors, g(x) = f(n), donc g(y) = f(n). Si y = f(n), on a g(y) = k, ce qui contredit g(x) = g(y) sauf si f(n) = k. Donc, y = k ou y = f(n) et f(n) = k. Dans les deux cas, on a y = k, et donc y = x. Enfin, supposons x = f(n). Alors, g(x) = k, donc g(y) = k. Si y = k, on a g(y) = f(n), ce qui contredit g(x) = g(y) sauf si k = f(n). Donc, y = f(n) ou y = k et k = f(n). Dans les deux cas, on a k = f(n)0, et donc k = f(n)2. Ainsi, k = f(n)3 est bien injective.

Montrons qu'elle est surjective. Soit y un élément de m. Si $y \notin \{k, f(n)\}$, on a g(y) = y. Si $y \in \{k, f(n)\}$, on a y = k ou y = f(n). Dans le premier cas, g(f(n)) = y. Dans le second cas, g(k) = y. Dans tous les cas, il existe donc un élément x de m tel que g(x) = y. Ainsi, g est surjective. Il s'agit donc bien d'une bijection.

1.4.4. Relation d'ordre : propriétés

Lemme : Pour tout élément n de \mathbb{N} , $0 \le n$.

Démonstration : Évident car $\emptyset \subset E$ pour tout ensemble E.

Lemme : Pour tout élément n de \mathbb{N} , $n \le 0 \Rightarrow n = 0$.

Corrolaire : Il n'existe aucun élément n de \mathbb{N} tel que n < 0.

Démonstration : Conséquence directe du lemme précédent et de l'antisymétrie de ≤.

Lemme : Pour tout élément n de \mathbb{N} , on a $n \neq 0 \Rightarrow 0 \in n$.

Démonstration : On procède par récurrence. Soit $P: n \neq 0 \Rightarrow 0 \in n$. Pour n = 0, le résultat est évident car $n \neq 0$ est fausse, donc P(0) est vraie. Soit n un élément de \mathbb{N} tel que P(n) est vraie. Si n = 0, $n + 1 = \{\emptyset\}$, donc $0 \in n + 1$, donc P(n + 1) est vraie. Si $n \neq 0$, $0 \in n$, donc, puisque $n \in n + 1$, donc P(n + 1) est vraie. Par récurrence, on en déduit que P(n) est vraie pour tout élément n de \mathbb{N} .

Lemme : Soit n un élément de \mathbb{N} . Pour tout élément m de \mathbb{N} tel que $n \le m$, on a $m \notin n$. En particulier, pour tout élément n de \mathbb{N} , on a $n+1 \ne n$. Puisque $n \subset n+1$, $n \le n+1$, donc cela implique n < n+1.

Démonstration : Montrons d'abord que la première partie du lemme implique bien le cas particulier. Soit n un élément de \mathbb{N} . On a $n \in n+1$. Si la première partie du lemme est vraie, on a aussi $n \notin n$, d'où $n+1 \neq n$.

Montrons maintenant la première partie du lemme. On procède par récurrence. La propriété attendue est évidente pour 0 puisqu'il s'agit de l'ensemble vide.

Soit n un élément de \mathbb{N} et supposons que, pour tout élément m de \mathbb{N} tel que $n \leq m$, $m \notin n$. Soit m un élément de \mathbb{N} tel que $n + 1 \leq m$. Puisque $n \subset n + 1$ et $n + 1 \subset m$, on a $n \subset m$, et donc $n \leq m$. Donc, $m \notin n$. En outre, $n \in n + 1$ et $n \notin n$ (puisque $n \leq n$), donc $n + 1 \subset n$ ne peut être vrai, donc $m \neq n$, donc $m \notin \{n\}$. Puisque $n + 1 = n \cup \{n\}$, on en déduit $m \notin n + 1$. La propriété attendue est donc vraie pour n + 1.

Par récurrence, la propriété est vraie pour tout élément n de \mathbb{N} .

Lemme : Soit n un élément de \mathbb{N} . Pour tout élément m de \mathbb{N} tel que $m \in n$, on a n > m.

Démonstration : On procède par récurrence sur n. Pour n=0, le résultat est évident puisqu'aucun élément m de $\mathbb N$ ne satisfait $m \in 0$. Soit n un élément de $\mathbb N$ satisfaisant la propriété énoncée dans le lemme. Soit m un élément de $\mathbb N$ tel que $m \in n+1$. Alors, $m \in n$ ou m=n.

- Si $m \in n$, on a n > m. En outre, d'après le lemme précédent, on a n + 1 > n. Donc, n + 1 > m.
- Si m = n, on a n + 1 > m d'après le lemme précédent.

Ainsi, n + 1 satisfait également la propriété énoncée dans le lemme. Par récurrence, on en déduit qu'elle est vraie pour tout élément n de \mathbb{N} .

Lemme : Soit n un élément de \mathbb{N} . Pour tout élément m de \mathbb{N} tel que m < n, on a $m \in n$.

Démonstration : On procède par récurrence. Pour n=0, le résultat est évident puisqu'il n'existe aucun élément m de $\mathbb N$ tel que m<0. Soit n un élément de $\mathbb N$ tel que, pour tout élément m de $\mathbb N$ tel que m< n, $m\in n$. Soit m un élément de $\mathbb N$ tel que m< n+1. Montrons d'abord que $n\not\in m$. Si on avait $n\in m$, alors on aurait m>n d'après le lemme précédent, d'où $n\subset m$ et (puisque $n\in m$) $n+1\subset m$, en contradiction avec m< n+1. Donc, $n\not\in m$. Donc, puisque $m\subset n+1$, $m\subset n$. (En effet, soit x un élément de m, on a $x\in n+1$, donc $x\in n$ ou $x\in n$); la seconde option est impossible car $n\not\in m$, donc $m\in n$.) Donc, $m\le n$. Si m=n, on a $m\in n+1$. Sinon, m< n, donc $m\in n$, et donc $m\in n+1$. Dans les deux cas, $m\in n+1$. Ainsi, la propriété énoncée dans le lemme est vraie pour n+1. Par récurrence, on en déduit qu'elle l'est pour tout élément n de $\mathbb N$.

Corrolaire : Soit n et m deux éléments de \mathbb{N} . D'après les deux lemmes précédents, les propositions $m \in n$ et m < n sont équivalentes.

Lemme : Soit *n* un élément de \mathbb{N} . Pour tout élément *m* de \mathbb{N} tel que $m \notin n$, on a $n \leq m$.

Démonstration : On procède par récurrence sur n. Pour n = 0, le résultat est évident car $0 \le m$ pour tout élément m de $\mathbb N$. Soit n un élément de $\mathbb N$ tel que, pour tout élément m de $\mathbb N$ tel que $m \notin n$, $n \le m$. Soit m un élément de $\mathbb N$ tel que $m \notin n + 1$. Alors, $m \notin n$ (donc $n \le m$) et $m \ne n$, donc n < m. D'après le lemme précédent, cela implique $n \in m$. Puisque n < m, on a en outre $n \subset m$. Donc, $n + 1 \subset m$. Donc, $n + 1 \le m$. On en déduit que le résultat est vrai pour n + 1. Par récurrence, il est vrai pour tout élément n de $\mathbb N$.

Corrolaire : Soit n et m deux élément de \mathbb{N} . Les formules $m \notin n$ et $n \leq m$ sont équivalentes.

Démonstration : Soit n et m deux éléments de \mathbb{N} . Si $n \le m$, alors $n \subset m$. Puisque $m \notin m$, cela implique $m \notin n$. Donc, $(n \le m) \Rightarrow (m \notin n)$. Le lemme précédent montre en outre que $(n \le m) \Leftarrow (m \notin n)$. Donc, $(n \le m) \Leftrightarrow (m \notin n)$.

Corrolaire : Soit n et m deux éléments de $\mathbb N$ tels que $n \notin m$ et $m \notin n$. Alors $m \le n$ et $n \le m$, et donc n = m.

Lemme : La relation d'ordre \leq sur \mathbb{N} est une relation d'ordre total.

Démonstration : Soit n et m deux éléments de \mathbb{N} . Alors, $m \in n$ ou $m \notin n$. Dans le premier cas, n > m, donc m < n, et donc $m \le n$. Dans le second cas, $n \le m$.

Corrolaire : Soit n et m deux éléments de \mathbb{N} . Si $n \le m$ est fausse, alors $m \le n$ est vraie (d'après le lemme précédent) et $n \ne m$ est vraie (car $n \le n$), donc m < n est vraie. Donc, $\neg (n \le m) \Rightarrow (m < n)$. Par ailleurs, si m < n, alors $n \le m$ est fausse (sans quoi on aurait $m \subset n$ et $n \subset m$, et donc n = n). Ainsi, $\neg (n \le m)$ est équivalente à n < n, et donc à n > m. De même, $\neg (n \ge m)$ est équivalente à n < n, et donc à n < m.

Corrolaire : Soit n et m deux éléments de \mathbb{N} . Puisque \leq est une relation d'ordre totale, on a $n \leq m$ ou $n \geq m$. Donc, n < m ou n = m ou n > m.

Notons que, si deux éléments n et m de \mathbb{N} satisfont n+1=m+1, on a soit n=m soit $n\in m$ et $m\in n$. La seconde possibilité implique m< n et n< m, qui ne peuvent être stisfaites simultanément (car cela impliquerait $m\leq n$ et $n\leq m$, d'où n=m, ce qui est incompatible avec m< n). On en déduit le lemme suivant :

Lemme : Soit n et m deux éléments de \mathbb{N} . Si n+1=m+1, alors n=m.

Lemme : Soit n un élément de \mathbb{N} . Pour tout élément m de \mathbb{N} tel que m < n + 1, on a $m \le n$. La réciproque est évidente puisque n < n + 1 : pour tout élément m de \mathbb{N} , si $m \le n$, m < n + 1. Donc, pour tout élément m de \mathbb{N} , on a $m < n + 1 \Leftrightarrow m \le n$.

Corrolaire : En prenant la négation de la formule de chaque côté du connecteur \Leftrightarrow , on obtient, pour tout élément m de $\mathbb{N} : m \ge n+1 \Leftrightarrow m > n$.

Démonstration : Soit m un élément de \mathbb{N} tel que m < n + 1. Alors $m \subset n \cup \{n\}$. Si $n \in m$, on a m > n, donc $n \subset m$, et donc $n + 1 \subset m$ et donc $n + 1 \leq m$, ce qui est impossible par hypothèse. On en déduit que $n \notin m$, donc que $m \subset n$, et donc que $m \leq n$. Ainsi, $\forall m \in \mathbb{N}$ $m < n + 1 \Rightarrow m \leq n$. Cela montre la première partie du lemme, de laquelle le reste découle.

^{11.} En effet, puisque $n \in n+1$ et $m \in m+1$, la formule n+1=m+1 implique $(n \in m+1) \land (m \in n+1)$, d'où $((n=m) \lor (n \in m)) \land ((m=n) \lor (m \in n))$. En utilisant deux fois la distributivité de \land sur \lor ainsi que sa symétrie, cette formule se récris $((n=m) \land (m=n)) \lor ((n=m) \land (m \in n)) \lor ((n \in m) \land (m \in n))$. Puisque $(n=m) \land (m \in n)$ et $(n \in m) \land (m=n)$ ne peuvet être vraies, et par symétrie de l'égalité, cette formule est équivalente à $(n=m) \lor (n \in m) \land (m \in n)$.

Lemme : Pour tout entier naturel n, on a : $n = \{m \in \mathbb{N} | m < n\}$.

Démonstration : On procède par récurrence. Tout d'abord, il n'existe aucun entier naturel m tel que m < 0. Donc, $\{m \in \mathbb{N} | m < 0\} = \emptyset = 0$. Soit n un entier naturel tel que $n = \{m \in \mathbb{N} | m < n\}$. Puisque $n + 1 = n \cup \{n\}$, on a : $n + 1 = \{m \in \mathbb{N} | m < n \lor m = n\}$. Cela peut se récrire : $n + 1 = \{m \in \mathbb{N} | m \le n\}$. D'après le lemme précédent, cela est équivalent à : $n + 1 = \{m \in \mathbb{N} | m < n + 1\}$. Par récurrence, le résultat attendu est donc vrai pour tout entier naturel.

Lemme (récurrence en partant d'un rang non nul) : Soit n un entier naturel et P un prédicat à un paramètre. On suppose que P(n) est vrai et que, pour tout entier naturel m tel que $m \ge n$, $P(m) \Rightarrow P(m+1)$. Alors, $\forall m \in \mathbb{N}, m \ge n \Rightarrow P(n)$.

Démonstration : On procède par récurrence. Soit Q le prédicat à un paramètre libre défini par Q(m) : $m \ge n \Rightarrow P(n)$. Si n = 0, P(0) est vrai, donc Q(0) l'est aussi. Si $n \ne 0$, n > 0, donc $0 \ge n$ est fausse et Q(0) est vraie. Dans tous les cas, Q(0) est vraie.

Soit m un entier naturel tel que Q(m) est vrai. Alors,

- Si m + 1 < n, $n \ge m + 1$ est fausse, donc Q(m + 1) est vrai.
- Si m + 1 = n, P(m + 1) est vrai, donc Q(m + 1) est vrai.
- Si m+1 > n, $m \ge n$, donc P(m) est vrai (puisque Q(m) l'est), donc P(m+1) est vrai, donc Q(m+1) est vrai. On a donc montré que, pour tout entier naturel m, $Q(m) \Rightarrow Q(m+1)$. Par récurrence, Q(m) est donc vrai pour tout entier

Définition : Soit a et b deux entiers naturels. On définit l'ensemble [a, b] par :

$$\llbracket a, b \rrbracket = \{ n \in \mathbb{N} | (n \ge a) \land (n \le b) \}.$$

Notons que $[a, b] = \emptyset$ si a > b. En effet, dans ce cas, tout élément x de $\mathbb N$ satisfaisant $x \ge a$ satisfait x > b, et donc ne satisfait pas $x \ge b$.

Lemme : Soit *n* un entier naturel. On a : [0, n-1] = n.

Démonstration:

naturel m.

- Soit x un élément de [0, n-1]. Puisque [0, n-1] est un sous-ensemble de \mathbb{N} , $x \in \mathbb{N}$. En outre, $x \le n-1$. Puisque (n-1)+1=n, n-1 < n, et donc x < n. Donc, $x \in n$.
- Soit x un élément de n. Puisque n est un sous-ensemble de \mathbb{N} , $x \in \mathbb{N}$. Donc, $x \ge 0$. En outre, x < n. Donc, $x \le n 1$. Donc, $x \in [1, n 1]$.

1.4.5. Récurrence forte

Lemme (principe de récurrence forte) : Soit P une formule à un paramètre libre. On suppose que P(0) est vraie et que, pour tout élément n de \mathbb{N} , la formule $(\forall m \in \mathbb{N} \ m \le n \Rightarrow P(m)) \Rightarrow P(n+1)$ est vrai. Alors, pour tout élément n de \mathbb{N} , P(n) est vraie.

Démonstration : Considérons la formule à un paramètre libre Q définie par $Q(n): \forall m \in \mathbb{N} \ m \leq n \Rightarrow P(m)$. Notons que, d'après la seconde hypothèse faite sur P, pour tout élément n de $\mathbb{N} \ Q(n) \Rightarrow P(n+1)$. Montrons que Q(n) est vraie pour tout élément n de \mathbb{N} . Tout d'abord, Q(0) est équivalente à P(0) (car le seul élément m de \mathbb{N} tel que $m \leq 0$ est 0). Donc, Q(0) est vraie. Soit $n \in \mathbb{N}$ tel que Q(n) est vraie. Soit $m \in \mathbb{N}$ tel que $m \leq n+1$. Alors, $m \leq n$ ou m = n+1. Si $m \leq n$, P(m) est vraie car Q(n) est vraie. Si, m = n+1, P(m) est vraie puisque Q(n) est vraie et $Q(n) \Rightarrow P(n+1)$. Donc, Q(n+1) est vraie. Par récurrence, on en déduit que Q(n) est vraie pour tout élément n de \mathbb{N} .

Montrons que cela implique le lemme. Soit n un élément de \mathbb{N} . On a vu que Q(n) est vraie. Donc, pour tout élément m de \mathbb{N} tel que $m \le n$, P(m) est vraie. Puisque $n \le n$ par reflexivité de la relation d'ordre, P(n) est vraie.

1.4.6. Suites; définition par récurrence

Définition : Soit E un ensemble non vide. Une *suite* u d'éléments de E est une fonction de $\mathbb N$ vers E. Si u est une suite d'éléments de E et n un élément de $\mathbb N$, l'élément u(n) de E est parfois noté u_n . Si f est une formule dépendant d'un paramètre libre telle que, pour tout élément n de $\mathbb N$, f(n) = u(n), la suite u est parfois notée $(f(n))_{n \in \mathbb N}$.

Lemme (définition par récurrence): Soit E un ensemble non vide et f une fonction de $\mathbb{N} \times E$ vers E. Soit e_0 un élément de E. Il existe une unique fonction u de \mathbb{N} vers E telle que $u(0) = e_0$ et, pour tout $n \in \mathbb{N}$, u(n+1) = f(n, u(n)).

Ce lemme permet notamment de *définir* une suite par récurrence, étant donnés son image de 0 et une fonction f donnant son image de n + 1 connaissant celle de n.

Démonstration : *Unicité :* Soit u et v deux fonctions satisfaisant les propriétés de l'énoncé. Tout d'abord, on a $u(0) = e_0$ et $v(0) = e_0$ par hypothèse, et donc u(0) = v(0). Soit n un élément de \mathbb{N} et supposons u(n) = v(n). Alors, u(n+1) = f(n, u(n)) donne u(n+1) = f(n, v(n)), d'où u(n+1) = v(n+1). Par récurrence, on a donc u(n) = v(n) pour tout élément n de \mathbb{N} .

Éxistence: Une fonction v d'un sous-ensemble non vide de \mathbb{N} dans E est dite f-inductive si elle satisfait les trois propriétés suivantes :

- son domaine D satisfait $\forall x \in D, \forall n \in \mathbb{N}, n \leq x \Rightarrow n \in D$,
- si 0 est dans son domaine, alors $v(0) = e_0$,
- si n est un élément de \mathbb{N} tel que n et n+1 sont tous deux dans son domaine, alors v(n+1)=f(n,v(n)).

Chacune de ces fonctions est un sous-ensemble de $\mathbb{N} \times E$.

Soit v une fonction f-injective. Puisque son domaine est non nul, on peux choisir un élément x de D. Puisque D est un sous-ensemble de \mathbb{N} , on a $x \in \mathbb{N}$. Donc, $0 \le x$, et donc $0 \in D$. Cela montre que 0 appartient au domaine de définition de toute fonction f-inductive.

Soit u l'union de toutes les fonctions f-inductives. (Cet ensemble existe d'après l'axiome de compréhension obtenu avec l'ensemble des parties de $\mathbb{N} \times E$ et la conjonction des trois propriétés définissant une fonction f-inductive.) Montrons que u est une fonction de \mathbb{N} dans E satisfaisant les propriétés de l'énoncé.

Tout d'abord, $\{(0, e_0)\}$ (vu comme une fonction de $\{0\}$ vers E) est f-inductive, donc $(0, e_0) \in u$, et donc 0 appartient au domaine de u. Soit $n \in \mathbb{N}$ tel que n appartient au domaine de u. Soit v une fonction f-inductive dont le domaine contient n et $v' = v \cup \{n+1, f(n, f(v(n)))\}$. On vérifie facilement que v' est une fonction f-inductive avec pour domaine $D \cup \{n+1\}$, où D est le domaine de v. (Il s'agit bien d'une fonction car v en est une et, si n+1 est aussi dans le domaine de v, on a v(n+1) = f(n, f(v(n))); elle satisfait la première propriété car un entier m satisfaisant $m \le n+1$ est égal à n+1 s'il contient n ou satisfait $m \le n$ (et est donc dans le domaine de v) sinon, la seconde car l'image de v0 est égale à v0, donc à v0, la troisième pour tout entier v1 satisfaisant v2 est v3 inductive (si v3 et v4 sont dans son domaines, alors ils sont aussi dans celui de v3, d'où le résultat), et la troisième pour l'entier v4 car v5 et v6. Donc, v7 et v8 et v9 et v9

Soit $n \in \mathbb{N}$ et v et v' deux fonctions f-inductives dont les domaines contiennent n. On montre facilement par récurrence finie que v(n) = v'(n). (Cela est vrai pour n = 0 car v(0) et v'(0) sont tous deux égaux à e_0 et, si un entier m est tel que m+1 appartienne à leurs domaine de définition, alors m y appartient également (puisque m < m+1); si de plus v'(m) = v(m), alors v'(m+1) = f(m, v'(m)) = f(m, v(m)) = v(m+1), donc v'(m+1) = v(m+1).) Donc, u est bien une fonction.

Par ailleurs, on a $u(0) = e_0$. Soit $n \in \mathbb{N}$, n+1 appartient à \mathbb{N} , donc au domaine de u, donc on peut choisir une fonction v f-inductive telle que n+1 appartienne au domaine de v. Puisque n < n+1, n est aussi dans le domaine de v. On a donc v(n+1) = f(n,v(n)) = f(n,u(n)), et donc u(n+1) = f(n,u(n)).

Ce résultat étant particulièrement important pour la suite, nous en donnons ci-dessous une démonstration formulée un brin différemment, et un peu plus détaillée. On reprend les notations du lemme.

Montrons tout d'abord que, si une fonction de $\mathbb N$ dans E satisfaisant les deux propriétés de l'énoncé existe, alors elle est unique. On suppose avoir deux telles fonctions, notées u et v. Montrons qu'elles sont nécéssairement égales. Pour ce faire, il suffit de montrer que, pour tout élément n de $\mathbb N$, u(n) = v(n). On procède par récurrence. D'après la première propriété de l'énoncé, on a $u(0) = e_0$ et $v(0) = e_0$. Donc, u(0) = v(0). Considérons maintenant un élément n de $\mathbb N$ tel que u(n) = v(n). On a f(n, u(n)) = f(n, v(n)). Or, on a aussi, d'après la deuxième propriété de l'énoncé : f(n, u(n)) = u(n+1) et f(n, v(n)) = v(n+1). Donc, u(n+1) = v(n+1). Cela étant vrai pour tout élément n de $\mathbb N$ tel que u(n) = v(n), et puisque u(0) = v(0), on en déduit par récurrence que, pour tout élément n de $\mathbb N$, u(n) = v(n), et donc que u = v. Ainsi, il existe au plus une fonction satisfaisant les conditions de l'énoncé.

Montrons maintenant qu'une telle fonction existe bien. Pour ce faire, définissons d'abord la notion de fonction f-injective de la manière suivante. Une fonction f-injective est une fonction, notée v dans la suite de cette définition, d'un sousensemble non vide D de \mathbb{N} vers E telle que les conditions suivantes sont satisfaites :

- Pour tout élément x de D, pour tout élément n de $\mathbb N$ tel que $n \le x$, $n \in D$. (C'est-à-dire : $\forall x \in D$, $\forall n \in \mathbb N$, $n \le x \Rightarrow x \in D$; dans la suite, on note P_1 le prédicat obtenu en remplaçant D par la formule $\{x \in \mathbb N | \exists y \in \mathbb N (x, y) \in v\}$.)
- Si $0 \in D$, $v(0) = e_0$. (C'est-à-dire : $0 \in D \Rightarrow v(0) = e_0$; dans la suite, on note P_2 le prédicat obtenu en remplaçant D par la formule $\{x \in \mathbb{N} | \exists y \in \mathbb{N} (x, y) \in v\}$.)

^{12.} Cette définition est un peu bancale puisqu'elle dépend de f mais aussi de e_0 . Une appellation plus approppriée serait « f-injective avec élément initial e_0 ». Pour simplifier, et puisque cette notion n'est utilisée que dans cette preuve où e_0 est fixé, nous la raccourcissons en « f-injective », l'élément initial étant implicite.

• Si n est un élément de D tel que $n+1 \in D$, alors v(n+1) = f(n,v(n)). (C'est-à-dire : $\forall n \in D, n+1 \in D \Rightarrow v(n+1) = f(n,v(n))$; dans la suite, on note P_3 le prédicat obtenu en remplaçant D par la formule $\{x \in \mathbb{N} | \exists y \in \mathbb{N} (x,y) \in v\}$.)

Notons que la première condition impose $0 \in D$. En effet, D doit être non vide et, soit x un élément de D (un tel élément existe donc), on a $x \in \mathbb{N}$, donc $0 \le x$, et donc $0 \in D$. La seconde condition peut donc être simplifiée en $v(0) = e_0$.

Toute fonctions f-injective est un sous-ensemble de $\mathbb{N} \times E$. En effet, si v est une telle fonction et z un élément de v, on peut choisir un élément x du domaine D de v et un élément y de E tels que z = (x, y). Puisque D est un sous-ensemble de \mathbb{N} , on a $x \in \mathbb{N}$, et donc $z \in \mathbb{N} \times E$.

En appliquant l'axiome de compréhension avec l'ensemble des parties de $\mathbb{N} \times E$ et la propriété $P: P_1 \wedge P_2 \wedge P_3$, on montre que l'ensemble des fonctions f-inductives existe. Notons qu'il existe au moins une fonction f-injective : $\{(0, e_0)\}$. Il s'agit d'une fonction de $\{0\}$ vers E (en effet, son seul élément est dans $\{0\} \times E$, l'unique élément de $\{0\}$ a une image e_0 , et, si x est un élément de $\{0\}$, et y et y' deux images de x, alors $y = e_0$ et $y' = e_0$, donc y = y'); son domaine est $\{0\}$, qui est bien un sous-ensemble de \mathbb{N} ; le seul élément n de \mathbb{N} satisfaisant $n \le 0$ est 0 lui-même, qui est bien dans D; on a $v(0) = e_0$; il n'existe aucun élément n de n tel que $n+1 \in D$ puisque $n+1 \ne 0$. Notons n l'union de tous les éléments de l'ensemble des fonctions n-injectives. (L'ensemble n existe d'après l'axiome de la réunion.) Nous nous proposons de montrer que n0 est une fonction de n1 vers n2 puis qu'elle satisfait les deux propriétés du lemme.

En tant qu'union de sous-ensembles de $\mathbb{N} \times E$, u en est un également. ¹³ Pour montrer que u est une fonction de \mathbb{N} vers E, il suffit donc de montrer que, pour tout élément n de \mathbb{N} , il existe un unique élément e de E tel que $(n, e) \in u$. On procède par récurrence. Pour n = 0, le résultat est facile à démontrer : $\{(0, e_0)\}$ est une fonction f-inductive, donc $(0, e_0) \in u$. En outre, soit e un élément de e tel que $(0, e) \in E$, il existe une fonction f-inductive e0 telle que e0, e0. La première propriété du lemme donne alors e1 e e2. Ainsi, il existe un unique élément e3 de e4 e e6, tel que e6, e9 e e9.

Soit n un élément de $\mathbb N$ et supposons qu'il existe un unique élément de E, noté e dans la suite de ce paragraphe tel que $(n,e) \in u$. Soit e_1 et e_2 deux éléments de E tels que $(n+1,e_1) \in u$ et $(n+1,e_2) \in u$. On peut trouver deux fonctions f-injectives v_1 et v_2 dont les domaines contiennent n+1 et telles que $v_1(n+1) = e_1$ et $v_2(n+1) = e_1$. Puisque $n \le n+1$, n appartient aussi à leurs domaines de définition. Puisque $(n,v_1(n)) \in u$ et $(n,v_2(n)) \in u$, on a $v_1(n) = e$ et $v_2(n) = e$. Donc, d'après le troisième critère de définition d'une fonction f-infductive, $v_1(n+1) = f(n,e)$ et $v_2(n+1) = f(n,e)$. Donc, $e_1 = f(n,e)$ et $e_2 = f(n,e)$. Donc, $e_1 = e_2$. Il existe donc au plus un élément e' de E tel que $(n+1,e') \in u$. Montrons qu'il existe bien. Soit v une fonction f-inductive dont le domaine de définition contient n. Montrons que $v \cup \{(n+1,f(n,v(n)))\}$ est une fonction f-inductive. Cela montrera que $(n+1,f(n,v(n))) \in u$. Par récurrence, nous aurons alors montré que v est bien une fonction, et que l'image par v d'un élément v de v est une fonction v est une fonction v et que lonque) dont le domaine contient v.

Notons v' l'ensemble $v \cup \{(n+1, f(n, v(n)))\}$ et D le domaine de v. Montrons que v' est une fonction de $D \cup \{n+1\}$ dans E. Soit $m \in D$. Puisque v est une fonction de D vers E, on peut choisir un unique élément e de E tel que $(m, e) \in v$. On a alors $(m, e) \in v'$. Si $m \ne n+1$, il n'existe pas d'autre élément de v' dont la première composante soit n (car le seul élément de v' qui ne soit pas dans v a n+1 pour première composante; un élément de v' dont la première composante est m doit donc être un élément de v, et sa deuxième composante ne peut alors être que e puisque v est une fonction). Si m=n+1, on a v(n+1)=f(n,v(n)) car v est f-injective. Donc, $(n+1,f(n,v(n))) \in v$ et v'=v, donc v' et une fonction et n'a pas plus d'un élément avec n+1 comme première composante. Par ailleurs, si n+1 n'est pas un élément de D, alors le seul élément de v' dont la première composante est v'=v0, alors le seul élément de v'=v1 dont la première composante est v'=v2. Alors le seul élément de v'=v3 donc sa première composante dans v'=v4. Alors le seul élément de v'=v5 donc une non un élément de v'=v5 est une fonction.

Montrons qu'elle est f-injective. Son domaine de définition est celui de v, auquel on ajoute éventuellement n+1. Pour tout élément m de ce domaine distinct de n+1, m est dans le domaine de v, donc pour tout élément k de $\mathbb N$ tel que $k \le m$, k est dans le domaine de v et donc dans celui de v'. Soit m un élément de $\mathbb N$ tel que $m \le n+1$. On a m < n+1 ou m=n+1. Dans le premier cas, on a $m \le n$. Puisque n est dans le domaine de v et car v est f-injective, m y est également, et est donc dans celui de v'. Dans le second cas m est bien dans le domaine de v' puisque $(n+1, f(n, v(n))) \in v'$. Ainsi, la fonction v' satisfait P_1 .

On a v'(0) = v(0), donc, puisque v est f-injective, $v'(0) = e_0$. La fonction v' satisfait donc P_2 . Enfin, soit m un élément du domaine de v',

- Si $m \neq n$ et, et si m+1 est dans le domaine de v', alors m+1 est dans le domaine de v (en effet, si $m \neq n, m+1 \neq n+1$). Donc, puisque $m \leq m+1$, m est dans le domaine de v. Puisque v est f-injective, v(m+1) = f(m, v(m)). Puisque v'(m) = v(m) et v'(m+1) = v(m+1), on en déduit v'(m+1) = f(m, v'(m)).
- Si m = n, on a v'(m+1) = f(n, v(n)). Puisque v'(n) = v(n), on en déduit v'(m+1) = f(m, v'(m)).

Ainsi, v' satisfait P_3 . Cette fonction est donc bien f-injective.

^{13.} En effet, soit $z \in u$, il existe un élément v de l'ensemble des fonctions f-injectives tel que $z \in v$. Soit D son domaine. On a $z \in D \times E$ Puisque D est un sous-ensemble de \mathbb{N} , $D \times E$ est un sous-ensemble de $\mathbb{N} \times E$, donc $z \in \mathbb{N} \times E$.)

Il ne reste plus qu'à montrer que u satisfait les deux propriétés de l'énoncé. Nous avons vu plus haut que $u(0) = e_0$. Soit n un élément de \mathbb{N} . Alors, n+1 appartient à \mathbb{N} et donc au domaine de u, donc il on peut choisir une fonction f-injective v dont le domaine contient n+1. Puisque $n \le n+1$, n appartient aussi au domaine de v. On a donc v(n+1) = f(n, v(n)). Puisque u(n) = v(n) et u(n+1) = v(n+1), on en déduit u(n+1) = f(n, u(n)).

1.4.7. Sous-ensembles de N, bornes, et éléments extrémaux

Lemme : Tout sous-ensemble non-vide de N admet un unique élément minimal pour la relation ≤.

Démonstration:

- *Unicité*: Soit *E* un sous-ensemble de \mathbb{N} non vide et *n* et *m* deux de ses éléments minimaux. Puisque \leq est une relation d'ordre totale et puisqu'ils sont minimaux, on a $n \leq m$ et $m \leq n$. Donc, n = m.
- Existence: On montre par récurrence forte la propriété suivante: Soit *n* un élément de ℕ, tout sous-ensemle de ℕ contennat *n* admet un élément minimal. Pour *n* = 0, cela est évident car, pour tout élément *e* de *E*, *e* ∈ ℕ et donc 0 ≤ *e*; 0 est donc un élément minimal de *E*. Soit *n* un élément de ℕ et supposons la propriété vraie pour tout élément *m* de ℕ tel que *m* ≤ *n*. Soit *E* un sous-ensemble de ℕ contenant *n* + 1. Si *n* + 1 est un élément minimal pour *E*, alors *E* admet un élément minimal. Sinon, on peut choisir un élément *m* de *E* tel que *n* + 1 ≤ *m* est faux, et donc *m* < *n* + 1 est vrai. Puisque *m* < *n* + 1, on a *m* ≤ *n*. Donc, *E* admet un élément infèrieur ou égal à *n*, et donc un élément minimal. Par récurrence sorte, la propriété est vraie pour tout élément *n* de ℕ. Soit *E* un sous-ensemble non vide de ℕ, il existe un élément *n* de ℕ tel que *n* ∈ *E*, donc *E* a un élément minimal.

Ce résultat étant important, donnons-en un énoncé et une démonstration un peu plus détaillés.

Lemme : Soit E un sous-ensemble non vide de \mathbb{N} . Alors il existe un unique élément e de E tel que $\forall x \in E$ $e \leq x$. Puisque \leq est une relation d'ordre total sur \mathbb{N} , cela est équivalent à dire que E admet un unique élément minimal.

Démonstration : Montrons d'abord l'unicité. (Elle découle directement du fait que \leq est une relation d'ordre total sur \mathbb{N} .) Soit e_1 et e_2 deux tels éléments de E. Alors $e_1 \leq e_2$ (propriété de e_1) et $e_2 \leq e_1$ (propriété de e_2). Donc, $e_1 = e_2$. On en déduit qu'un tel élément, s'il existe, est unique.

Montrons maintenant l'existence. Soit P le prédicat à un paramètre libre défini par :

$$P(n): \forall E(E \subset \mathbb{N} \land n \in E) \Rightarrow (\exists e \in E \forall x \in E e \le x). \tag{1.1}$$

On se propose de montrer que P(n) est vrai pour tout élément n de \mathbb{N} par récurrence forte.

Montrons d'abord que P(0) est vrai. Soit E un sous-ensemble de \mathbb{N} tel que $0 \in E$. Pour tout élément x de E, on a $x \in \mathbb{N}$, donc $0 \le x$. Donc, 0 est un élément minimal de E.

Soit n un élément de \mathbb{N} et supposons que P(m) est vrai pour tout élément m de \mathbb{N} tel que $m \le n$. Soit E un sous-ensemble de \mathbb{N} tel que $n+1 \in E$. Alors,

- S'il existe un élément x de E tel que x < n + 1, on a $x \le n$, donc P(x) est vrai, et donc E admet un élément minimal.
- Sinon, pour tout élément x de E, x < n + 1 est faux, donc n + 1 < x est vrai, donc $n + 1 \le x$ et vrai; n + 1 est donc un élément minimal de E.

Dans les deux cas, E admet un élément minimal. On en déduit que P(n + 1) est vrai. Par récurrence forte, on en déduit que P(n) est vrai pour tout élément n de \mathbb{N} .

Soit E un sous-ensemble non vide de \mathbb{N} . Puisque E est non vide, il contient au moins un élément n. Puisque E est un sous-ensemble de \mathbb{N} , $n \in \mathbb{N}$. Donc, P(n) est vrai. Donc, E admet un élément minimal. Cela prouve le lemme.

Lemme : Tout sous-ensemble non-vide de N borné supérieurement admet un unique élément maximal.

Démonstration : On procède par récurrence sur une borne supérieure. La formule P que l'on veut démontrer peut s'écrire :

$$P(n): \forall E ((E \subset \mathbb{N}) \land (\forall e (e \in E) \Rightarrow (e \le n))) \Rightarrow (\exists! m (m \in E) \land (\forall e (e \in E) \Rightarrow (e \le m))). \tag{1.2}$$

Soit E un sous-ensemble non vide de $\mathbb N$ borné supérieurement par 0. Soit e un élément de E. On a $x \le 0$, donc x = 0. Ainsi, $E = \emptyset$ ou $E = \{0\}$. Puisque E est non vide, on en déduit $E = \{0\}$. L'entier 0 est donc un élément maximal de E (puisque $0 \le 0$) et cet élément maximal est unique (puisque E ne contient qu'un élément).

Soit n un entier naturel. On suppose que P(n) est vrai. Soit E un sous-ensemble non vide de \mathbb{N} borné supérieurement par n+1. Si $n+1 \notin E$, alors n est aussi une borne supérieure de E. En effet, soit x un élément de E, on a $x \le n+1$, donc x = n+1 ou x < n+1. Puisque E ne contient pas n+1, on a x < n+1, et donc $x \le n$. Puisque E0 est vrai, E0 admet donc un unique élément maximal.

Supposons maintenant que $n + 1 \in E$. Alors, n + 1 est un élément maximal de E. Puisque \leq est une relation d'ordre total qur \mathbb{N} , cet élément est unique.

Dans les deux cas, P(n + 1) est donc vrai. Par récurrence, cela montre que P(n) est vrai pout tout élément n de \mathbb{N} .

1.4.8. Addition

Définition de l'addition : Soit E l'ensemble des fonctions de \mathbb{N} dans \mathbb{N} . On définit la suite Add d'éléments de E par récurrence de la manière suivante : \mathbb{N}

- On définit Add(0) par : pour tout élément m de \mathbb{N} , Add(0)(m) = m.
- Pour tout élément n de \mathbb{N} , on définit Add(n+1) par : pour tout élément m de \mathbb{N} , Add(n+1)(m) = Add(n)(m) + 1. Notons que, pour tout élément m de \mathbb{N} , on a Add(1)(m) = m+1. Dans la suite, pour tous éléments n et m de \mathbb{N} , on notera l'entier Add(n)(m) par m+n. Pour tous éléments n et m de \mathbb{N} , on a donc m+0=m et m+(n+1)=(m+n)+1.

Lemme : Pour tout élément n de \mathbb{N} , on a 0 + n = n.

Démonstration : On procède par récurrence. Soit P le prédicat à un paramètre libre n définit par : P(n) : 0 + n = n. Par définition de l'addition, 0 + 0 = 0, donc P(0) est vrai. Soit n un élément de \mathbb{N} tel que P(n) est vrai. On a par définition de l'addition : 0 + (n + 1) = (0 + n) + 1. Puisque P(n) est vraie, 0 + n = n, donc, 0 + (n + 1) = n + 1. Donc, P(n + 1) est vraie. Par récurrence, on en déduit que P(n) est vrai pour tout élément n de \mathbb{N} , et donc le lemme.

Lemme : Pour tout élément n de \mathbb{N} , on a 1 + n = n + 1.

Démonstration : On procède par récurrence. Soit P le prédicat à un paramètre libre n définit par : P(n) : 1 + n = n + 1. Par définition de l'addition, 1 + 0 = 1. Puisque 0 + 1 = 1, P(0) est vrai. Soit n un élément de \mathbb{N} tel que P(n) est vrai. On a par définition de l'addition : 1 + (n + 1) = (1 + n) + 1. Puisque P(n) est vraie, 1 + n = n + 1, donc, 1 + (n + 1) = (n + 1) + 1. Donc, P(n + 1) est vraie. Par récurrence, on en déduit que P(n) est vrai pour tout élément n de \mathbb{N} , et donc le lemme.

Lemme : L'addition est commutative : si n et m sont deux éléments de \mathbb{N} , alors n+m=m+n.

Démonstration : On procède par récurrence. Soit P le prédicat à un paramètre libre n définit par : P(n) : $\forall m \in \mathbb{N}$, n+m=m+n. Soit m un élément de \mathbb{N} . On a m+0=m et 0+m=m. Donc, 0+m=m+0. On en déduit que P(0) est vrai.

Soit n un élément de \mathbb{N} tel que P(n) est vrai. Montrons par récurrence que, pour tout élément m de \mathbb{N} , (n+1)+m=m+(n+1). Cela montrera que P(n+1) est vrai. Par récurrence, on en déduira que P(n) est vrai pour tout élément n de \mathbb{N} , et donc le lemme.

On a : (n+1)+0=n+1 et 0+(n+1)=n+1. La propriété attendue est donc vraie pour m=0. Soit m un élément de $\mathbb N$ tel que (n+1)+m=m+(n+1). On a : (n+1)+(m+1)=((n+1)+m)+1. Par hypothèse de récurrence, cela donne (n+1)+(m+1)=(m+(n+1))+1 En utilisant la définition de l'addition, il vient : (n+1)+(m+1)=((m+n)+1)+1. Par ailleurs, (m+1)+(n+1)=((m+1)+n)+1 par définition de l'addition. Puisque P(n) est vraie, cela donne (m+1)+(n+1)=((n+m)+1)+1. En utilisant à nouveau la définition de l'addition, il vient : (m+1)+(n+1)=((n+m)+1)+1. Enfin, puisque P(n) est vraie, n+m=m+n; on déduit donc (n+1)+(m+1)=(m+1)+(n+1). Par récurrence, cela est vrai pour tout élément m de $\mathbb N$.

Lemme : L'addition est associative : si n, m et k sont trois éléments de \mathbb{N} , alors (n+m)+k=n+(m+k).

Démonstration : On procède par récurrence. Soit P le prédicat à un paramètre libre k définit par : P(k) : $\forall n \in \mathbb{N}$, $\forall m \in \mathbb{N}$, (n+m)+k=n+(m+k). Soit n et m deux éléments de \mathbb{N} . On a : n+(m+0)=n+m (car m+0=m) et (n+m)+0=n+m. Cela montre que P(0) est vrai. Soit k un élément de \mathbb{N} tel que P(k) est vrai. Soit n et m deux éléments de \mathbb{N} . On a : (n+m)+(k+1)=((n+m)+k)+1. Puisque P(k) est vrai, cela implique (n+m)+(k+1)=(n+(m+k))+1.

^{14.} Il s'agit bien d'une définition par récurrence, obtenue, en reprenant les notation du premier lemme de la section 1.4.6, avec

[•] e_0 égal à la fonction identité sur \mathbb{N} ,

[•] f la fonction de $\mathbb{N} \times \mathcal{F}(\mathbb{N}, \mathbb{N})$ vers $\mathcal{F}(\mathbb{N}, \mathbb{N})$ définie par : pour tout élément n de \mathbb{N} et tout élément g de $\mathcal{F}(\mathbb{N}, \mathbb{N})$, f(n, g) est la fonction définie par : pour tout élément m de \mathbb{N} , f(n, g)(m) = g(m) + 1.

Par définition de l'addition, il vient (n+m)+(k+1)=n+((m+k)+1). En utilisant à nouveau la définition de l'addition, on obtient : (n+m)+(k+1)=n+(m+(k+1)). Cela montre que P(k+1) est vrai. Par récurrence, on a donc montré que P(k) est vrai pour tout élément k de \mathbb{N} .

Notons que la démonstration de la commutativité peut être simplifiée en admettant l'associativité (et n'a pas été utilisée pour montrer cette dernière) de la manière suivante. Soit P le prédicat à un paramètre libre n définit par : P(n) : $\forall m \in \mathbb{N}$, n+m=m+n et n un élément de \mathbb{N} tel que P(n) est vrai. Pour tout élément m de \mathbb{N} , on a alors (n+1)+m=n+(1+m)=n+(m+1)=(n+m)+1=(m+n)+1=m+(n+1). Donc, P(n+1) est vraie. On montre ainsi que, pour tout élément n de \mathbb{N} , $P(n) \Rightarrow P(n+1)$, sans utiliser de seconde récurrence.

Lemme : Soit *n* et *m* deux éléments de \mathbb{N} tels que $n \neq 0$. Alors m + n > m.

Démonstration : On procède par récurrence. Soit P le prédicat à un paramètre libre définit par : P(n) : $n = 0 \lor (\forall m \in \mathbb{N}, m+n>m)$. Alors, P(0) est vrai. Soit n un élément de \mathbb{N} tel que P(n) est vrai. Soit m un élément de \mathbb{N} . On a : m+(n+1)=(m+n)+1. Donc, m+(n+1)>m+n. Puisque P(n) est vrai, n=0 (et donc m+n=m) ou $n \neq 0$ et m+n>m. Dans tous les cas, $m+n\geq m$. Donc, m+(n+1)>m. On en déduit que P(n+1) est vrai. Par récurrence, P(n) est vrai pour tout élément n de \mathbb{N} .

Corrolaire : Soit n et m deux éléments de \mathbb{N} tels que n+m=0. Alors n=0 et m=0.

Démonstration : Si $m \neq 0$, on a donc n + m > n d'après le lemme. Puisque $n \geq 0$, on en déduit que n + m > 0, ce qui contredit l'énoncé. Donc, n = 0. On montre de meme, en échangeant les rôles de n et m et en utilisant la commutativité de l'addition, que m = 0.

Lemme : Soit n et m deux éléments de \mathbb{N} . Alors $m + n \ge m$.

Démonstration : Si n = 0, m + n = m, donc $m + n \ge m$. Si $n \ne 0$, m + n > m d'après le lemme précédent, donc $m + n \ge m$.

Lemme : Soit *n* et *m* deux éléments de \mathbb{N} . Alors $n + m \ge m$ et, si $n \ne 0$, n + m > n.

Démonstration : On se ramène aux deux lemmes précédents en notant que n + m = m + n par commutativité de l'addition.

Lemme : Soit n, m et k trois éléments de \mathbb{N} tels que m+n=k+n. Alors m=k.

Démonstration : Notons tout d'abord que, pour n = 1, le résultat a déjà été démontré section 1.4.4. Soit P le prédicat à un paramètre libre donné par, pour tout élément n de \mathbb{N} : P(n) : $\forall m \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $m + n = k + n \Rightarrow m = k$. On veut montrer par récurrence sur n que P(n) est vrai pour tout élément n de \mathbb{N} . Pour n = 0, le résultat est aisé à voir : soit n et n deux éléments de n tels que n de n

Lemme : Soit n, m et k trois éléments de \mathbb{N} . On a $(n + k \le m + k) \Leftrightarrow (n \le m)$.

Démonstration : On procède par récurrence sur k. Soit n et m deux entiers naturels. Soit P le prédicat à un paramètre libre k définit par : P(k) : $(n + k \le m + k) \Leftrightarrow (n \le m)$.

P(0) est évidemment vrai puisqu'il sécrit $(n \le m) \Leftrightarrow (n \le m)$.

Soit k un entier naturel tel que P(k) est vrai. Si $n+(k+1) \le m+(k+1)$, alors, par transitivité de l'addition, $(n+k)+1 \le (m+k)+1$. Puisque n+k < (n+k)+1, on a donc n+k < (m+k)+1, et donc $n+k \le m+k$.

Sinon, et puisque \leq est une relation d'ordre total, on a $m+(k+1) \leq n+(k+1)$. Par le même argument (en échangeant le rôles de n et m), il vient $m+k \leq n+k$. En outre, $m+k \neq n+k$ (sans quoi on aurait (m+k)+1=(n+k)+1, donc n+(k+1)=m+(k+1), donc $n+(k+1)\leq m+(k+1)$). Donc, $n+k \leq m+k$ est faux.

On a donc : $(n + (k + 1) \le m + (k + 1)) \Leftrightarrow (n + k \le m + k)$. Puisque P(k) est vrai, on en déduit $(n + (k + 1) \le m + (k + 1)) \Leftrightarrow (n \le m)$. Donc, P(k + 1) est vrai.

Par récurrence, P(k) est ainsi vrai pour tout entier naturel k.

Corrolaire: Avec les mêmes notations, en prenant la négation des deux côtés, il vient : $(n + k) \ge (m + k) \Leftrightarrow (n \ge m)$. En outre, puisque $(n = m) \Rightarrow (n + k = m + k)$ et, d'après un lemme précédent, $(n + k = m + k) \Rightarrow (n = m)$, on a $(n + k = m + k) \Leftrightarrow (n = m)$. Donc, $(n + k) < (m + k) \Leftrightarrow (n < m)$ et $(n + k) \ge (m + k) \Leftrightarrow (n \ge m)$.

1.4.9. Soustraction

Lemme : Soit n et m deux éléments de \mathbb{N} tels que $m \le n$. Alors il existe un unique élément k de \mathbb{N} tel que n = m + k.

Définition : Soit n et m deux éléments de $\mathbb N$ tels que $m \le n$. On note n-m l'élément k de $\mathbb N$ tel que n=m+k.

Démonstration:

- *Unicité*: Soit k et l deux éléments de \mathbb{N} tels que n = m + k et n = m + l. Alors, par symétrie et associativité de l'égalité, m + k = m + l. Par commutativité de l'addition, on a donc k + m = l + m. Donc, k = l.
- Existence: On procède par récurrence sur n. Le prédicat P à un paramètre libre que nous souhaitons montrer est $P(n): \forall m \in \mathbb{N}, \ m \le n \Rightarrow (\exists k \in \mathbb{N}, \ m+k=n)$. Considérons d'abord le cas n=0. Soit m un élément de \mathbb{N} tel que $m \le n$, alors m=0. Donc, m+0=0=n. Le résultat attendu est donc vrai pour n=0. Soit n un élément de \mathbb{N} tel que P(n) est vrai. Soit m un élément de \mathbb{N} tel que $m \le n+1$. Alors, m=n+1 ou m < n+1. Dans le premier cas, m+0=n+1. Dans le second cas, $m \le n$. On peut donc choisir un élément $n \ge n+1$ de $n \ge n+1$. Le résultat attendu est donc vrai pour n+1. Par récurrence, il l'est pour tout élément $n \ge n+1$.

Lemme : Soit *n* un entier naturel. Alors, n - 0 = n et n - n = 0.

Démonstration : Tout d'abord, on a $0 \le n$ puisque n est un entier naturel et $n \le n$ puisque n = n. Donc, n - 0 et n - n existent. On a : n = 0 + n, donc n - 0 = n, et n = n + 0, donc n - n = 0.

Remarque : Soit *n* et *m* deux entiers naturels. Alors, par définition, (n + m) - m = n.

Lemme : Soit n, et m deux éléments de \mathbb{N} tels que n > m et m > 0. Alors n - m < n.

Démonstration : On a : n = (n - m) + m. Puisque m > 0, on en déduit n > n - m.

Lemme : Soit n, m et k trois entiers naturels tels que $n \ge m$. Alors, $n \ge m + k \Leftrightarrow (n - m) \ge k$ et, si $n \ge m + k$, n - (m + k) = (n - m) - k.

Démonstration:

- Si $n m \ge k$, alors $(n m) + m \ge k + m$, donc $n \ge k + m$. Sinon, n m < k, donc (n m) + m < k + m, et donc n < k + m.
- Si $n m \ge k$, on a : ((n m) k) + (m + k) = ((n m) k) + (k + m) = (((n m) k) + k) + m = (n m) = m = n.

Lemme : Soit n, m et k trois entiers naturels tels que $n \le m$. Alors, k + (m - n) = (k + m) - n.

Démonstration : Tout d'abord, $k + m \ge m$ et $m \ge n$, donc $k + m \ge n$. On a : (k + (m - n)) + n = k + ((n - m) + n)k + m.

Lemme : Soit n, m et k trois éléments de \mathbb{N} tels que m > k. Alors m + n > k + n.

Démonstration : Puisque m > k, on peut choisir un entier naturel q tel que m = k + q. En outre puisque $m \neq k$, $q \neq 0$. Donc, n + m = n + (k + q). Par associativité de l'addition, il vient n + m = (n + k) + q. Puisque q > 0, on en déduit n + m > n + k.

Corrolaire : Soit n, m et k trois éléments de \mathbb{N} tels que $m \ge k$. Alors $m + n \ge k + n$.

Démonstration : Puisque $m \ge k$, on a m = k ou m > k. Si m = k, on a m + n = k + n. Si m > k, on a m + n > k + n d'après le lemme précédent. Dans les deux cas, on a bien $m + n \ge k + n$.

Lemme : Soit n, m et k trois entiers naturels tels que $n \le m$. Alors, (n-m) + k = (n+k) - m.

Démonstration : Tout d'abord, $n \ge m$ et $n + k \ge n$, donc $n + k \ge m$. On a : ((n - m) + k) + m = ((n - m) + m) + k = n + kDonc, (n - m) + k = (n + k) - m.

Lemme : Soit n, m et k trois entiers naturels tels que $n \ge m$ et $n - m \ge k$. Alors, (n - m) - k = n - (m + k).

Démonstration : Tout d'abord, puisque $n - m \ge k$, on a $(n - m) + m \ge k + m$, donc $n \ge k + m$. Donc, n - (m + k) existe. En outre, on a ((n - m) - k) + (m + k) = ((n - m) - k) + (k + m) = (((n - m) - k) + k) + m = (n - m) + m = n. Donc, (n - m) - k = n - (m + k).

Lemme: Soit n, m et k trois entiers naturels tels que $n \le m$ et $k \ge m - n$. Alors, k - (m - n) = (k + n) - m.

Démonstration : Tout d'abord, puisque $k \ge m-n$, on a $k+n \ge m$. On a : (k-(m-n))+m = (k-(m-n))+((m-n)+n) = ((k-(m-n))+(m-n))+n = k+n et ((k+n)-m)+m = k+n. Donc, (k-(m-n))+m = (k+n)-m.

Lemme : Soit n, m et k trois entiers naturels tels que $n \ge m$, $n \ge k$ et n - m = n - k. Alors, m = k.

Démonstration : Puisque n - m = n - k, on a n = (n - k) + m. Donc, n = (n + m) - k. Donc, n + k = n + m. On en déduit que k = m.

Lemme : Soit n, m et k trois éléments de \mathbb{N} tels que m+n>k+n. Alors m>k Avec le corrolaire précédent, on a donc $(m+n>k+n) \Leftrightarrow (m>k)$.

Démonstration : On procède par l'absurde. Si m > k est faux, alors $m \le k$ est vrai, donc $m + n \le k + n$ est vrai, ce qui est en conradiction avec m + n > k + n.

Corrolaire : Soit n, m et k trois éléments de \mathbb{N} tels que $m+n \ge k+n$. Alors $m \ge k$. Avec le corrolaire précédent, on a donc $(m+n \ge k+n) \Leftrightarrow (m \ge k)$.

Démonstration : Puisque $m + n \ge k + n$, on a m + n = k + n ou m + n > k + n. Si m + n = k + n, on a m = k. Si m + n > k + n, on a m > k d'après le lemme précédent. Dans les deux cas, on a bien $m + n \ge k + n$.

Lemme : Soit n, m et k trois éléments de \mathbb{N} tels que $n \ge m$ et $n \ge k$. Alors $(n - m \ge n - k) \Leftrightarrow (m \le k)$, $(n - m = n - k) \Leftrightarrow (m = k)$ et $(n - m < n - k) \Leftrightarrow (m < k)$.

Démonstration : Supposons d'abords $m \le k$. Alors, ((n-k)+(k-m))+m=(n-k)+((k-m)+m)=(n-k)+k=n. Donc, (n-k)+(k-m)=n-m Donc, $n-k \le n-m$, donc $n-m \ge n-k$.

Supposons mantenant $n - m \ge n - k$. Alors, m + ((n - m) - (n - k)) = (m + (n - m)) - (n - k) = n - (n - k) = k. Donc, $m \le k$. Cela montre que $(n - m \ge n - k) \Leftrightarrow (m \le k)$.

Par ailleurs, si m = k, alors n - m = n - k et, si n - m = n - k, alors n + k = n + m (obtenu en ajoutant k + m des deux côtés) et donc k = m. Cela montre $(n - m = n - k) \Leftrightarrow (m = k)$.

La troisième équivalence découle directement des deux précédentes en notant que, pour tous entiers naturels a et b, $a < b \Leftrightarrow (a \le b \land a \ne b)$.

1.4.10. Multiplication

Définition de la multiplication : Soit E l'ensemble des fonctions de $\mathbb N$ dans $\mathbb N$. On définit la suite Mul d'éléments de E par récurrence de la manière suivante :

- Pour tout élément m de \mathbb{N} , $\operatorname{Mul}(0)(m) = 0$.
- Pour tout élément n de \mathbb{N} , pour tout élément m de \mathbb{N} , $\mathrm{Mul}(n+1)(m) = \mathrm{Mul}(n)(m) + m$.

Notons que, pour tout élément m de \mathbb{N} , on a Mul(1)(m) = m. Dans la suite, si m et n sont deux éléments de \mathbb{N} , on notera $m \times n$ l'entier Mul(n)(m). Pour tous éléments n et m de \mathbb{N} , on a donc $m \times 0 = 0$, $m \times 1 = m$ et $m \times (n+1) = (m \times n) + m$. La multiplication est prioritaire sur l'addition. Par exemple, si a, b et c sont trois éléments de \mathbb{N} , $a \times b + c$ est équivalent à $(a \times b) + c$ et $a + b \times c$ à $a + (b \times c)$. Le symbole \times est parfois omis quand il n'y a pas de confusion possible. Ainsi, si n et m sont deux entiers naturels, $n \times m$ pourra s'écrire nm.

Lemme : Pour tout entier naturel n, on a $0 \times n = 0$.

Démonstration : On procède par récurrence sur n. Puisque 0 est un entier naturel et par définition de la multiplication, $0 \times 0 = 0$. Donc, le résultat attendu est vrai pour n = 0. Soit n un entier naturel tel que $0 \times n = 0$. Alors, $0 \times (n+1) = 0 + 0$. Puisque 0 + 0 = 0, on en déduit $0 \times (n+1) = 0$. Par récurrence, le résultat attendu est donc vrai pour tout entier naturel.

Lemme : Pour tous entiers naturels n et m, on a $(m+1) \times n = (m \times n) + n$.

П

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre défini par : P(n) : $\forall m \in \mathbb{N}$, $(m+1) \times n = (m \times n) + n$. Pour tout entier naturel m, on a $(m+1) \times 0 = 0$ et $(m \times 0) + 0 = 0 + 0 = 0$. Donc, P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Soit m un entier naturel. Par définition de la multiplication, $(m+1)\times(n+1)=((m+1)\times n)+(m+1)$. Puisque P(n) est vrai, cela donne $(m+1)\times(n+1)=((m\times n)+n)+(m+1)$. En utilisant deux fois l'associativté et la commutativité de l'addition, cela donne $(m+1)\times(n+1)=((m\times n)+m)+(n+1)$. Utilisant à nouveau la définition de la multiplication, cela se récrit en : $(m+1)\times(n+1)=(m\times(n+1))+(n+1)$. Cela étant vrai pour tout élémnt m de \mathbb{N} , on en déduit que P(n+1) est vrai.

Par récurrence, P(n) est donc vrai pour tout entier naturel n, ce qui prouve le lemme.

Lemme : La multiplication est commutative : pour tous entiers naturels n et m, on a $m \times n = n \times m$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre défini par : P(n) : $\forall m \in \mathbb{N}$, $m \times n = n \times m$. Pour tout entier naturel m, on a $m \times 0 = 0$ et $0 \times m = 0$. Donc, P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Soit m un entier naturel. On a : $m \times (n+1) = (m \times n) + m$. Puisque P(n) est vrai, $m \times n = n \times m$. Donc, $m \times (n+1) = (n \times m) + m$. En utilisant le lemme précédent, il vient : $m \times (n+1) = (n+1) \times m$. On en déduit que P(n+1) est vrai.

Par récurrence, P(n) est donc vrai pour tout entier naturel n.

Corrolaire : Pour tout entier naturel n, $1 \times n = n \times 1 = n$.

Corrolaire: Pour tous entiers naturels n et m, $(n + 1) \times m = m \times (n + 1) = (m \times n) + m = (n \times m) + m$.

Lemme : La multiplication est distributive sur l'addition : pour tous entiers naturels n, m et k, on a $n \times (m + k) = (n \times m) + (n \times k)$. (Puisque la multiplication est commutative, on en déduit que, pour tous entiers naturels n, m et k, on a $(m + k) \times n = (m \times n) + (k \times n)$.)

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n) : $\forall m \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $n \times (m + k) = (n \times m) + (n \times k)$.

Soit m et k deux entiers naturels. On a : $0 \times (m+k) = 0$ et $(0 \times m) + (0 \times k) = 0 + 0 = 0$. Donc, $0 \times (m+k) = (0 \times m) + (0 \times k)$. Donc, P(0) est vrai.

Soit *n* un entier naturel et supposons que P(n) est vrai. Soit *m* et *k* deux enters naturels. Alors, $(n + 1) \times (m + k) = (n \times (m + k)) + (m + k)$. Donc, puisque P(n) est vrai, $(n + 1) \times (m + k) = ((n \times m) + (n \times k)) + (m + k)$. Puisque l'addition est associative et commutative, cela implique $(n + 1) \times (m + k) = ((n \times m) + m) + ((n \times k) + k)$. Donc, $(n + 1) \times (m + k) = ((n + 1) \times m) + ((n + 1) \times k)$. Donc, P(n + 1) est vrai.

Par récurrence, on en déduit que P(n) est vrai pour tout entier naturel n, et donc le lemme.

Lemme : La multiplication est associative : pour tous entiers naturels n, m et k, on a $n \times (m \times k) = (n \times m) \times k$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n) : $\forall m \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $n \times (m \times k) = (n \times m) \times k$.

Soit m et k deux entiers naturels. On a : $0 \times (m \times k) = 0$ et $(0 \times m) \times k = 0 \times k = 0$. Donc, $0 \times (m \times k) = (0 \times m) \times k$. On en déduit que P(0) est vrai. Soit n un entier naturel et supposons que P(n) est vrai. Soit m et k deux enters naturels. Alors, $(n+1) \times (m \times k) = (n \times (m \times k)) + (m \times k)$. Puisque P(n) est vrai, cela donne $(n+1) \times (m \times k) = ((n \times m) \times k) + (m \times k)$. En utilisant la distributivité de la multiplication sur l'addition, ceci devient : $(n+1) \times (m \times k) = ((n \times m) + m) \times k$, et donc $(n+1) \times (m \times k) = ((n+1) \times m) \times k$. On en déduit que P(n+1) est vrai.

Par récurrence, on en déduit que P(n) est vrai pour tout entier naturel n, et donc le lemme.

Lemme : Soit n, m et k trois entiers naturels. Si $n \neq 0$ et m > k, alors $n \times m > n \times k$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre défini par : P(n) : $n \neq 0 \Rightarrow \forall m \in \mathbb{N}$, $\forall k \in \mathbb{N}$, $m > k \Rightarrow n \times m > n \times k$. Puisque $0 \neq 0$ est fausse, P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Si n=0, n+1=1; alors, soit m et k deux entiers naturels tels que m>k, puisque nm=m et nk=k, on a nm>nk, donc P(n+1) est vrai. Supposons maintenant $n\neq 0$. Soit m et k deux entiers naturels tels que m>k. Alors, nm>nk. Donc, nm+k>nk+k. Puisque m>k, on a $m\geq k$, donc $k\leq m$, donc, on peut choisir un élément q de $\mathbb N$ tel que m=k+q. Puisque $nm+k+q\geq nm+k$, on en déduit nm+m>nk+k. Donc, (n+1)m>(n+1)k. Cela montre que $P(n)\Rightarrow P(n+1)$ pour tout entier naturel n.

Par récurrence, on en déduit que P(n) est vrai pour tout entier naturel n, et donc le lemme.

Corrolaire : Soit n, m et k trois entiers naturels tels que m > k. Alors $n \times m \ge n \times k$.

Démonstration : Si $n \neq 0$, on a $n \times m > n \times k$ d'après le lemme, et donc $n \times m \geq n \times k$. Si n = 0, on a $n \times m = n \times k = 0$, et donc $n \times m \geq n \times k$. Le résultat attendu est donc vrai dans les deux cas.

Corrolaire: Soit *n* et *m* deux entiers naturels tels que $n \times m = 0$. Alors n = 0 ou m = 0.

Démonstration : Supposons par l'absurde $n \neq 0$ et $m \neq 0$. Alors, m > 0, donc, d'après le lemme précédent, $n \times m > n \times 0$, donc $n \times m > 0$, ce qui contredit l'énoncé.

Corrolaire: Soit a, b, c et d quatre entiers naturels tels que a > c et b > d. Alors ab > cd.

Démonstration : Puisque a > c, a > 0. Donc, puisque b > d, $a \times b > a \times d$. En outre, puisque a > c, $a \times d \ge c \times d$. Donc, $a \times b > c \times d$.

Corrolaire : Soit n, m et k trois entiers naturels tels que $n \neq 0$ et $n \times m = n \times k$. Alors m = k.

Démonstration : On ne peut avoir m > k car cela impliquerait nm > nk, donc $m \le k$. De même, ne peut avoir k > m car cela impliquerait nk > nm; donc $k \le m$. On en déduit que m = k.

Corrolaire : Soit *n* et *m* deux entiers naturels tels que n > 1 et m > 0. Alors $n \times m > m$.

Démonstration : Puisque m > 0 et n > 1, $m \times n > m \times 1$, ce qui donne $n \times m > m$.

Corrolaire : Soit *n* et *m* deux entiers naturels tels que $n \ge 1$. Alors $n \times m \ge m$.

Démonstration : Si m = 0, on a $n \times m = 0$, donc $n \times m = m$. Si n = 1, on a $n \times m = m$. Si aucune de ces conditions n'est satisfaite, m > 0 et n > 1, donc, d'après le corrolaire précédent, $n \times m > m$. Dans tous les cas, on a bien $n \times m \ge m$.

Définition (**factoriel d'un entier naturel**) : On définit par récurrence le factoriel d'un entier naturel, noté par un point d'exclamation à sa droite, de la manière suivante¹⁵ :

- On pose 0! = 1.
- Pour tout entier naturel n, on pose $(n + 1)! = (n!) \times (n + 1)$.

Le factoriel est prioritaire sur la multiplication et sur l'addition.

Lemme : Soit n, m et k trois entiers naturels tels que $m \ge k$. Alors, n(m - k) = nm - nk.

Démonstration : Tout d'abord, puisque $m \ge k$, $nm \ge mk$, donc nm - nk existe.

Montrons l'égalité par récurrence sur n. Soit P le prédicat à un paramètre libre définit par : P(n) : $\forall m \in \mathbb{N} \ \forall k \in \mathbb{N} \ m \geq k \Rightarrow n(m-k) = nm-nk$.

Soit m et k deux entiers naturels tels que $m \ge k$. On a $0 \times (m-k) = 0$ et $0 \times m + 0 \times = 0 + 0 = 0$. Donc, P(0) est vrai. Soit n un entitier naturel tel que P(n) est vrai. Soit m et k deux entiers naturels tels que $m \ge k$. Alors, (n+1)(m-k) = n(m-k) + (m-k). Puisque P(n) est vrai, il vient : (n+1)(m-k) = (nm-nk) + (m-k). Donc, (n+1)(m-k) + (n+1)k = (nm-nk) + (m-k) + (n+1)k = (nm-nk) + (m-k) + (n+1)k = (nm-nk) + (n+1)k = (

Par récurrence, P(n) est donc vrai pour tout élément n de \mathbb{N} , ce qui prouve le lemme.

1.4.11. Puissance

Puissance d'entiers naturels : Soit E l'ensemble des fonctions de \mathbb{N} dans \mathbb{N} . On définit la suite Exp d'éléments de E par récurrence de la manière suivante :

- Pour tout élément m de \mathbb{N} , Exp(0)(m) = 1.
- Pour tout élément n de \mathbb{N} , pour tout élément m de \mathbb{N} , $\operatorname{Exp}(n+1)(m) = \operatorname{Exp}(n)(m) \times m$.

^{15.} Il s'agit bien d'une définition par récurrence, obtenue en prenant (avec les notations du lemme de la section 1.4.6) $E = \mathbb{N}$, $e_0 = 1$ et pour f la fonction de $\mathbb{N} \times \mathbb{N}$ vers \mathbb{N} définie par : $\forall x \in \mathbb{N} \ \forall y \in \mathbb{N} \ f(x,y) = y \times (x+1)$.

Notons que, pour tout élément m de \mathbb{N} , on a $\operatorname{Exp}(1)(m) = m$. Dans la suite, pour tous éléments n et m de \mathbb{N} , on notera l'entier $\operatorname{Exp}(n)(m)$ par m^n . Pour touts éléments n et m de \mathbb{N} , on a donc $m^0 = 1$, $m^1 = m$ et $m^{n+1} = m^n \times m$. L'exponentiation est prioritaire sur la multiplication et l'addition. Par exemple, si a, b et c sont trois éléments de \mathbb{N} , $a^b \times c$ est équivalent à $(a^b) \times c$ et $a^b + c$ est équivalent à $(a^b) + c$.

Lemme : Pour tout entier naturel n, $1^n = 1$.

Démonstration : On procède par récurrence sur n. Pour n = 0, le résultat est vrai par définition de la puissance. Soit m un entier naturel tel que $1^m = 1$. Alors $1^{m+1} = 1^m \times 1 = 1 \times 1 = 1$. Le résultat est donc vrai pour n = m + 1. Par récurrence, on en déduit qu'il est vrai pour tout entier naturel n.

Lemme : Pour tout entier naturel n, $0^{n+1} = 0$.

Démonstration : Soit *n* un entier naturel. On a : $0^{n+1} = 0^n \times 0$. Puisque 0^n est un entier naturel, $0^n \times 0 = 0$. Donc, $0^{n+1} = 0$.

Corrolaire : Soit n un entier naturel tel que $n \ne 0$. Alors, n > 0, donc n - 1 existe et est un entier naturel. Soit m = n - 1. On a : $0^n = 0^{m+1}$. Donc, $0^n = 0$.

Lemme : Soit *n* et *m* deux entiers naturels tels que $m \neq 0$. Alors $m^n \neq 0$.

Démonstration : On procède par récurrence qur n. Pour n = 0, le résultat est évident car $m^0 = 1$. Supposons le résultat vrai pour un entier naturel n. Alors, $m^{n+1} = m^n \times m$. Puisque $m^n \neq 0$ et $m \neq 0$, $m^{n+1} \neq 0$. Par récurrence, on en déduit le lemme.

Lemme : Soit n, m et p trois entiers naturels. Alors, $p^{n+m} = p^n \times p^m$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n) : $\forall p \in \mathbb{N}$, $\forall m \in \mathbb{N}$, $p^{n+m} = p^n \times p^m$. Soit p et m deux entiers naturels. Puisque 0 + m = m, on a $p^{0+m} = p^m$. Par ailleurs, puisque $p^0 = 1$, $p^0 \times p^m = p^m$. Donc, $p^{0+m} = p^0 \times p^m$. Cela montre que P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. On veut montrer que P(n+1) est vrai. Soit m et p deux entiers naturels. Par commutativité et transitivité de l'addition, on a : $p^{m+(n+1)} = p^{m+(1+n)} = p^{(m+1)+n}$. Puisque P(n) est vrai, on en déduit que $p^{m+(n+1)} = p^{m+1} \times p^n$. Par définition de la puissance d'entiers, cela donne $p^{m+(n+1)} = (p^m \times p) \times p^n$. En utilisant l'associativité et la commutativité de la multiplication, il vient : $p^{m+(n+1)} = p^m \times (p^n \times p)$. Enfin, utiliser à nouveau la définition de la puissance d'entiers donne : $p^{m+(n+1)} = p^m \times p^{n+1}$. Cela montre que P(n+1) est vrai. Par récurrence, le prédicat P(n) est donc vrai pour tout entier naturel n, ce qui prouve le lemme.

Lemme : Soit *n*, *m* et *p* trois entiers naturels tels que m > p. Alors, $m^{n+1} > p^{n+1}$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre défini par : P(n) : $\forall m \in \mathbb{N}, \forall p \in \mathbb{N}, m > p \Rightarrow m^{n+1} > p^{n+1}$. Soit m et p deux entiers naturels tels que m > p. On a $m^{0+1} = m^1 = m$ et $p^{0+1} = p^1 = p$. Donc, $m^{0+1} > p^{0+1}$. On en déduit que P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Soit m et p deux entiers naturels tels que m > p. On a $m^{(n+1)+1} = m^{n+1} \times m$ et $p^{(n+1)+1} = p^{n+1} \times p$. Puisque P(n) est vrai, on a $m^{n+1} > p^{n+1}$. Donc, $m^{(n+1)+1} > p^{n+1} \times m$. Puisque m > p, $p^{n+1} \times m \ge p^{n+1} \times p$, et donc $p^{n+1} \times m \ge p^{(n+1)+1}$. Donc, $p^{(n+1)+1} = p^{(n+1)+1}$. On en déduit que $p^{(n+1)} = p^{(n+1)+1}$ est vrai.

Par récurrence, P(n) est donc vrai pour tout entier naturel n, ce qui prouve le lemme.

Corrolaire : Soit n un entier naturel tel que $n \neq 0$. Alors, n > 0, donc n - 1 existe et est un entier naturel. Soit q = n - 1. Soit m et p deux entiers naturels tels que m > p. Alors, $m^n = m^{q+1}$ et $p^n = p^{q+1}$. D'après le lemme précédent, on en déduit $m^n > p^n$.

Corrolaire : Soit m et p deux entiers naturels tels que $m \ge p$. Par définition de la puissance, $m^0 = p^0 = 1$. En outre, si m = p, alors $m^n = p^n$ pour tout entier naturel n et, si m > p, $m^n > p^n$ pour tout entier naturel n distinct de 0 d'après le corrolaire précédent. On en déduit que, pour tout entier naturel n, $m^n \ge p^n$.

Lemme : Soit n, m et p trois entiers naturels tels que m > p. Alors, si n > 1, $n^m > n^p$. (Rappelons que l'on a : $1^m = 1^p = 1$.)

Démonstration : On procède par récurrence sur m. Soit P le prédicat à un paramètre défini par : P(m) : $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, (m > p) \land (n > 1) \Rightarrow n^m > n^p$. Pour m = 0, il n'existe aucun entier naturel p tel que m > p, donc P(0) est vrai.

Soit m un entier naturel tel que P(m) est vrai. Soit n et p deux entiers naturels tels que m+1>p et n>1. Alors, p=m ou p < m. Dans le second cas, puisque P(m) est vrai, on a $n^m > n^p$. Donc, dans les deux cas, $n^m \ge n^p$. En outre, $n \ne 0$, donc $n^m \ne 0$. Puisque n>1 et $n^{m+1}=n^m \times n$, on en déduit que $n^{m+1}>n^m$, et donc $n^{m+1}>n^p$. Donc, $n^m \ne 0$. Pur récurrence, $n^m \ne 0$ est donc vrai pour tout entier naturel n.

1.4.12. Puissances de fonctions

Soit E un ensemble et f une fonction de E vers E. On définit les puissances de f, f^n , pour $n \in \mathbb{N}$ de la manière suivante :

- f^0 est la fonction identité, qui à tout élément x de E associe x.
- Pour tout élément n de \mathbb{N} , $f^{n+1} = f \circ f^n$. (Cela définit bien une fonction de E vers E, commecomposée de deux fonctions de E vers E.)

(Il s'agit d'une définition par récurrence d'une suite de fonctions de E vers E.) Notons que, pour tout entier naturel n tel que $n \neq 0$, on a $f^n = f \circ f^{n-1}$ (puisque n = (n-1) + 1). Notons aussi que $f^1 = f$. La puissance est prioritaire sur \circ .

Lemme : Soit E un ensemble et f une fonction de E vers E. Soit n un entier naturel. Alors, $f^n \circ f = f^{n+1}$.

Démonstration : On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n) : $f^n \circ f = f^{n+1}$. Les deux fonctions $(f^0) \circ f$ et f^1 sont deux fonctions de E dans E (la première, comme composée de fonctions de E dans E). Soit x un élément de E. On a : $(f^0 \circ f)(x) = f^0(f(x)) = f(x) = f^1(x)$. Donc, $f^0 \circ f = f^1$. Donc, et puisque 1 = 0 + 1, P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Les deux fonctions $(f^{n+1}) \circ f$ et $f^{(n+1)+1}$ sont deux fonctions de E dans E (la première, comme composée de fonctions de E dans E). En outre, on a $f^{(n+1)+1} = f \circ f^{n+1}$. Puisque P(n) est vrai, cela donne $f^{(n+1)+1} = f \circ (f^n \circ f)$. Puisque la composition de fonctions est associative, cela donne : $f^{(n+1)+1} = (f \circ f^n) \circ f$. Enfin, en utilisant la définition de la puissance de fonction, il vient : $f^{(n+1)+1} = f^{n+1} \circ f$. Cela montre que P(n+1) est vrai.

Par récurrence, on conclut que P(n) est vrai pour tout entier naturel n, ce qui prouve le lemme.

Lemme : Soit E un ensemble et f une fonction de E vers E. Soit n et m deux entiers naturels. Alors, $f^{n+m} = (f^n) \circ (f^m)$.

Démonstration : (La démonstration est essentiellement identique à celle donnée pour la puissance d'entiers, en utilisant l'associativité de • et le résultat ci-dessus en guise de commutativité. Nous la donnons ici explicitement afin d'être complets.)

On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n) : $\forall m \in \mathbb{N}$, $f^{n+m} = f^n \circ f^m$. Puisque f^0 est la fonction identité, on a $f^0 \circ f^m = f^m$ pour tout entier naturel m. Puisque 0 + m = m pour tout entier naturel m, on en déduit que P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Soit m un entier naturel. On a d'après le lemme précédent : $f^{n+1} \circ f^m = (f^n \circ f) \circ f^m$. En utilisant l'associativité de \circ , il vient : $f^{n+1} \circ f^m = f^n \circ (f \circ f^m)$. La définition de la puissance de fonction donne alors : $f^{n+1} \circ f^m = f^n \circ f^{m+1}$. Puisque P(n) est vrai, cela donne : $f^{n+1} \circ f^m = f^{n+(m+1)}$. Enfin, en utilisant la commutativité et l'associativité de l'addition, il vient : $f^{n+1} \circ f^m = f^{(n+1)+m}$. On en déduit que P(n+1) est vrai.

Par récurrence, on conclut que P(n) pour tout entier naturel n, et donc le lemme.

Lemme : Soit E un ensemble et f une fonction de E vers E. Soit n et m deux entiers naturels. Alors, $f^n \circ f^m = f^m \circ f^n$.

Démonstration: ¹⁶ On procède par récurrence sur n. Soit P le prédicat à un paramètre libre défini par : P(n): $\forall m \in \mathbb{N}$, $f^n \circ f^m = f^m \circ f^n$. Soit m un entier naturel. Puisque f^0 est la fonction identité sur E, on a $f^0 \circ f^m = f^m$ et $f^m \circ f^0 = f^m$. Donc, $f^0 \circ f^m = f^m \circ f^0$. Cela étant vrai pour tout entier naturel m, on en déduit que P(0) est vrai.

Soit n un entier naturel tel que P(n) est vrai. Soit m un entier naturel. Les deux fonctions $f^{n+1} \circ f^m$ et $f^m \circ f^{n+1}$ sont les composées de deux fonctions de E dans E. Ce sont donc encore des fonctions de E dans E. On a : $f^{n+1} \circ f^m = (f^n \circ f) \circ f^m$. L'associativité de la composition de fonctions donne : $f^{n+1} \circ f^m = f^n \circ (f \circ f^m)$. En utilisant la définition de la puissance de fonction, il vient : $f^{n+1} \circ f^m = f^n \circ f^{m+1}$. Puisque P(n) est vrai, cela donne : $f^{n+1} \circ f^m = f^m \circ f^{n+1}$. Cela étant vrai pour tout élément m de \mathbb{N} , on en déduit que P(n+1) est vrai.

Par récurrence, on en déduit que P(n) est vrai pour tout entier naturen n, ce qui prouve le lemme.

16. La démonstration est évidente en utilisant le lemme précédent et la commutativité de l'addition : en admettant ces éléments, on a $f^n \circ f^m = f^{n+m} = f^{m+n} = f^m \circ f^n$. Nous donnons ici unr démonstration alternative, plus pédestre.

1.4.13. Puissances d'ensembles

Soit E un ensemble et n un entier naturel. On note E^n l'ensemble des fonctions de n vers E. (Notons que cela est cohérent avec les notations définies section 1.2.11) Soit n éléments de E notés $e_0, e_1, ..., e_{n-1}$. On note (quand il n'y a pas d'ambiguité avec d'autres notations) $(e_0, e_1, ..., e_{n-1})$ la fonction f de n vers E telle que $f(0) = e_0, f(1) = e_1, ..., f(n-1) = e_{n-1}$. Quand il n'y a pas d'ambiguité, si f est une fonction de n vers E^n et i un élément de $[\![1, n]\!]$, on note parfois f_i l'élément f(i-1) de E.

Soit *n* un entier naturel et *E* un ensemble. Une fonction de *n* vers *E* est parfois appelée *séquence de n éléments de E* ou *n-uplet d'éléments de E*.

1.4.14. Produit cartésien de plusieurs ensembles

Soit n un entier naturel non nul et $E_1, E_2, ..., E_n$ des ensembles (où le dernier symbole est absent si $n \le 2$ et le symbole E_2 est absent si n = 1). On note $E_1 \times E_2 \times \cdots \times E_n$ l'ensemble $(\cdots (E_1 \times E_2) \times \cdots) \times E_n$.

Soit e_1 un élément de E_1 , E_2 un élément de E_2 , ..., e_n un élément de E_n . L'élément $((\cdots (e_1, e_2), \ldots), e_n)$ pourra être noté $(e_1, e_2, \ldots e_n)$ s'il n'y a pas d'ambiguité.

1.5. Construction de \mathbb{Z}

1.5.1. Définition

On définit l'ensemble Z par :

$$\mathbb{Z} = \left\{ z \in \mathbb{N} \times \mathbb{N} \middle| (\exists n \in \mathbb{N}, z = (0, n)) \lor (\exists n \in \mathbb{N}^*, z = (1, n)) \right\}.$$

Pour tout élément n de \mathbb{N} , on note parfois et s'il n'y a pas de confusion possible simplement n l'élément (0, n) et, si $n \neq 0$, -n l'élément (1, n). On note \mathbb{Z}^* l'ensemble $\mathbb{Z} \setminus \{(0, 0)\}$. On qualifie les éléments de \mathbb{Z} d'*entiers* ou *entiers relatifs*, et ceux de \mathbb{N} d'*entiers naturels*.

On définit deux fonctions sgn : $\mathbb{Z} \to \{0,1\}$ et abs : $\mathbb{Z} \to \mathbb{N}$ de la manière suivante. Soit a un élément de \mathbb{Z} . On peut choisir un élément ϵ de $\{0,1\}$ et un élément n de \mathbb{N} tels que $a = (\epsilon, n)$. On pose alors $\mathrm{sgn}(a) = \epsilon$ et abs(a) = n. Le premier est appelé signe de l'entier a et le second, aussi noté |a|, sa valeur absolue.

Notons que, si a et b sont deux entiers tels que |a| = |b| et sgn(a) = sgn(b), alors a = b.

Un entier est dit nul s'il est égal à (0,0).

Soit a et b deux entiers, on a sgn(a) = sgn(b) ou sgn(a) = 1 - sgn(b).

Quand il n'y a pas d'ambiguité, un entier naturel n pourra être identifié à l'entier relatif (0, n). En particulier, (0, 0) est parfois simplement noté 0. Les définitions données dans la suite de cette section sont compatibles avec cette identification.

1.5.2. Relation d'ordre

Définition : On définit la relation binaire \leq sur \mathbb{Z} de la manière suivante.

- Soit *n* et *m* deux éléments de \mathbb{N} , $(0, n) \leq (0, m)$ si et seulement si $n \leq m$.
- Soit *n* et *m* deux éléments de \mathbb{N}^* , $(1, n) \leq (1, m)$ si et seulement si $m \leq n$,
- Soit n un élément de \mathbb{N}^* et m un élément de \mathbb{N} , $(1,n) \leq (0,m)$ est vrai et $(0,m) \leq (1,n)$ est faux.

On définit aussi la relation < par : $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a < b \Leftrightarrow ((a \le b) \land (a \ne b))$, la relation \ge par : $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a \ge b \Leftrightarrow b \le a$, et la relation > par : $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a > b \Leftrightarrow ((a \ge b) \land (a \ne b))$. On a alors :

- Soit n et m deux éléments de \mathbb{N} ,
 - -(0, n) < (0, m) si et seulement si n < m,
 - $-(0, n) \ge (0, m)$ si et seulement si $n \ge m$,
 - -(0,n) > (0,m) si et seulement si n > m.
- Soit *n* et *m* deux éléments de \mathbb{N}^* ,
 - -(1, n) < (1, m) si et seulement si n > m,
 - $-(1, n) \ge (1, m)$ si et seulement si $n \le m$,
 - -(1,n) > (1,m) si et seulement si n < m.
- Soit n un élément de \mathbb{N}^* et m un élément de \mathbb{N} ,
 - -(1, n) < (0, m) est vrai,
 - -(0, m) < (1, n) est faus,
 - $-(1, n) \ge (0, m)$ est faux,
 - (0, *m*) ≥ (1, *n*) est vrai,

- -(1, n) > (0, m) est faux,
- -(0, m) > (1, n) est vrai.

Notons que, pour tous entiers a et b, a > b est équivalent à $\neg (a \le b)$ et a < b est équivalent à $a \ge b$.

Lemme : La relation \leq est une relation d'ordre sur \mathbb{Z} .

Démonstration : Vérifions qu'elle satisfait les trois propriétés définissant une relation d'ordre :

- Réflexivité : Soit x un entier relatif. On peut choisir un élément ϵ de $\{0,1\}$ et un entier naturel n tel que $x=(\epsilon,n)$. Puisque n=n, on a $n \le n$ (dans les deux cas $\epsilon=0$ ou $\epsilon=1$), donc $x \le x$.
- Antisymétrie: Soit x et y deux éléments de \mathbb{Z} tels que $x \le y$ et $y \le x$. On peut choisir deux éléments ϵ et η de $\{0, 1\}$ et deux entiers naturels n et m tels que $x = (\epsilon, n)$ et $y = (\eta, m)$. Montrons d'abord que $\epsilon = \eta$. Si $\epsilon = 0$, alors $x \le y$ implique $\eta = 0$ d'après la contraposée du troisième point de la définition. Si $\epsilon = 1$, alors $y \le x$ implique $\eta = 1$ par le même argument. Dans les deux cas, on a bien $\epsilon = \eta$. Donc, $y = (\epsilon, m)$. D'après les deux premières lignes de la définition de la relation \le sur \mathbb{Z} (et la commutativité du connecteur \wedge dans le cas $\epsilon = 1$), $(x \le y) \wedge (y \le x)$ implique donc $(n \le m) \wedge (m \le n)$. To Donc, n = m. On en déduit que x = y.
- Transitivité : Soit x, y et z trois éléments de \mathbb{Z} tels que $x \le y$ et $y \le z$. Alors,
 - Si $\operatorname{sgn}(z) = 1$, on doit avoir $\operatorname{sgn}(y) = 1$ (puisque $y \le z$) et $\operatorname{sgn}(x) = 1$ (puisque $x \le y$). On peut donc choisir trois entiers naturels n, m et k tels que x = (1, n), y = (1, m) et z = (1, k). En outre, on a $n \ge m$ puisque $x \le y$ et $m \ge k$ puisque $y \le z$. Donc, $n \ge k$.
 - Si sgn(z) = 0 et sgn(y) = 1, on a sgn(x) = 1 puisque $x \le y$. Donc, $x \le z$.
 - Si sgn(z) = 0, sgn(y) = 0, et sgn(x) = 1, alors $x \le z$.
 - Si $\operatorname{sgn}(z) = 0$, $\operatorname{sgn}(y) = 0$, et $\operatorname{sgn}(x) = 0$, alors on peut choisir trois entier naturels n, m et k tels que x = (0, n), y = (0, m) et z = (0, k). Puisque $x \le y$ et $y \le k$, on a $n \le m$ et $m \le k$. Donc, $n \le k$, donc $(0, n) \le (0, k)$ et $x \le z$.

Corrolaire: La relation \geq est une relation d'ordre et les relations < et > sont des relations d'ordre strict sur \mathbb{Z} .

Lemme : La relation \leq est une relation d'ordre total sur \mathbb{Z} .

Démonstration : Soit a et b deux éléments de \mathbb{Z} . On peut choisir deux éléments ϵ et η de $\{0,1\}$ et deux éléments n et m de \mathbb{N} tels que $a = (\epsilon, n)$ et $b = (\eta, m)$.

- Si $\epsilon = 0$ et $\eta = 1$, on a $b \le a$.
- Si $\epsilon = 1$ et $\eta = 0$, on a $a \le b$.
- Si $\epsilon = 0$, $\eta = 0$ et $n \le m$, on a $a \le b$.
- Si $\epsilon = 0$, $\eta = 0$ et $\neg (n \le m)$, on a n > m, donc $m \le n$, et donc $b \le a$.
- Si $\epsilon = 1$, $\eta = 1$ et $n \le m$, on a $b \le a$.
- Si $\epsilon = 1$, $\eta = 1$ et $\neg (n \le m)$, on a n > m, donc $m \le n$, et donc $a \le b$.

Dans tous les cas, on a donc $(a \le b) \lor (b \le a)$.

Corrolaire : La relation \geq est une relation d'ordre total sur \mathbb{Z} .

Définitions : Un entier x est dit :

- positif si $x \ge 0$,
- *négatif* si $x \le 0$,
- *strictement positif* si x > 0,
- strictement négatif si x < 0.

1.5.3. Addition

Définition : On définit l'opération + sur \mathbb{Z} (vue comme une fonction de $\mathbb{Z} \times \mathbb{Z}$ vers \mathbb{Z}) de la manière suivante. Soit n et m deux élément de \mathbb{N} . Alors,

- (0, n) + (0, m) = (0, n + m),
- $\operatorname{si} n \neq 0$ et $m \neq 0$, (1, n) + (1, m) = (1, n + m);
- si $n \neq 0$ et $n \leq m$, (1, n) + (0, m) = (0, m n);

- Si $\epsilon = 0$, $x \le y$ implique $n \le m$ et $y \le x$ implique $m \le n$.

- Sinon, $\epsilon = 1$, donc $x \le y$ implique $m \le n$ et $y \le x$ implique $n \le m$.

^{17.} En effet,

- $\sin n \neq 0$ et n > m, (1, n) + (0, m) = (1, n m);
- si $m \neq 0$ et n < m, (0, n) + (1, m) = (1, m n);
- si $m \neq 0$ et $n \geq m$, (0, n) + (1, m) = (0, n m).

Lemme : Soit z un élément de \mathbb{Z} . Alors z + 0 = z et 0 + z = z.

Démonstration : Éxaminons tour à tour les deux cas possibles, notant que 0 = (0,0) :

- S'il existe un entier naturel n tel que z = (0, n), alors z + 0 = (0, n) + (0, 0) = (0, n + 0) = (0, n) = z et 0 + z = (0, 0) + (0, n) = (0, 0 + n) = (0, n) = z.
- S'il existe un entier naturel non nul n tel que z = (1, n), alors n > 0, donc z + 0 = (1, n) + (0, 0) = (1, n 0) = (1, n) = z et 0 + z = (0, 0) + (1, n) = (1, n 0) = (1, n) = z.

Lemme : L'addition est commutative : pour tous éléments a et b de \mathbb{Z} , a+b=b+a.

Démonstration : Éxaminons les différents cas possibles :

- Si $\operatorname{sgn}(a) = 0$ et $\operatorname{sgn}(b) = 0$, alors a + b = (0, |a| + |b|) et b + a = (0, |b| + |a|). Puisque l'addition d'entiers naturels est commutative, on a |a| + |b| = |b| + |a|, et donc a + b = b + a.
- Si sgn(a) = 1 et sgn(b) = 1, alors a + b = (1, |a| + |b|) et b + a = (1, |b| + |a|). Puisque l'addition d'entiers naturels est commutative, on a |a| + |b| = |b| + |a|, et donc a + b = b + a.
- Si sgn(a) = 0, sgn(b) = 1 et $|a| \ge |b|$, alors a + b = (0, |a| |b|) et b + a = (0, |a| |b|), donc a + b = b + a.
- Si sgn(a) = 0, sgn(b) = 1 et |a| < |b|, alors a + b = (1, |b| |a|) et b + a = (1, |b| |a|), donc a + b = b + a.
- Si sgn(a) = 1, sgn(b) = 0 et |a| > |b|, alors a + b = (1, |a| |b|) et b + a = (1, |a| |b|), donc a + b = b + a.
- Si sgn(a) = 1, sgn(b) = 0 et $|a| \le |b|$, alors a + b = (0, |b| |a|) et b + a = (0, |b| |a|), donc a + b = b + a.

Dans tous les cas, on a bien a + b = b + a.

Lemme : L'addition est associative : pour tous éléments a, b et c de \mathbb{Z} , a + (b + c) = (a + b) + c.

Démonstration : Soit a, b et c trois éléments de \mathbb{Z} . On peut choisir trois éléments κ , μ et ν de $\{0,1\}$ et trois éléments k, m et n de \mathbb{N} tels que $a = (\kappa, k)$, $b = (\mu, m)$ et $c = (\nu, n)$. Alors,

- Si $\kappa = \mu = \nu = 0$, on a (a+b)+c = (0, k+m)+c = (0, (k+m)+n) et a+(b+c) = a+(0, m+n) = (0, k+(m+n)). Puisque l'addition d'entiers naturels est associative, (k+m)+n = k+(m+n). Donc, (0, (k+m)+n) = (0, k+(m+n)), et donc (a+b)+c = a+(b+c).
- Si $\kappa = \mu = \nu = 1$, on a (a+b)+c = (1, k+m)+c = (1, (k+m)+n) et a+(b+c) = a+(1, m+n) = (1, k+(m+n)). Puisque l'addition d'entiers naturels est associative, (k+m)+n = k+(m+n). Donc, (1, (k+m)+n) = (1, k+(m+n)), et donc (a+b)+c = a+(b+c).
- Si $\kappa = \mu = 0$ et $\nu = 1$, on a (a + b) + c = (0, k + m) + c. Donc, (a + b) + c = (0, (k + m) n) si $k + m \ge n$ et (a + b) + c = (1, n (k + m)) sinon. Éxaminons les différentes possibilités pour a + (b + c).
 - Si n > m et (n m) > k, alors n > k + m et a + (b + c) = a + (1, n m) = (1, (n m) k) = (1, n (k + m)). Donc, a + (b + c) = (a + b) + c.
 - Si n > m et $(n m) \le k$, alors $n \le k + m$ et a + (b + c) = a + (1, n m) = (0, k (n m)) = (0, (k + m) n). Donc, a + (b + c) = (a + b) + c.
 - Si $n \le m$, alors $n \le k + m$ et a + (b + c) = a + (0, m n) = (0, k + (m n)) = (0, (k + m) n). Donc, a + (b + c) = (a + b) + c.
- Si $\kappa = \mu = 1$ et $\nu = 0$, on a (a + b) + c = (1, k + m) + c. Donc, (a + b) + c = (1, (k + m) n) si k + m > n et (a + b) + c = (0, n (k + m)) sinon. Éxaminons les différentes possibilités pour a + (b + c).
 - Si $n \ge m$ et $(n m) \ge k$, alors $n \ge k + m$ et a + (b + c) = a + (0, n m) = (0, (n m) k) = (0, n (k + m)). Donc, a + (b + c) = (a + b) + c.
 - Si $n \ge m$ et (n m) < k, alors n < k + m et a + (b + c) = a + (0, n m) = (1, k (n m)) = (1, (k + m) n). Donc, a + (b + c) = (a + b) + c.
 - Si n < m, alors n < k + m et a + (b + c) = a + (1, m n) = (1, k + (m n)) = (1, (k + m) n). Donc, a + (b + c) = (a + b) + c.
- Si $\mu = v$ et $\mu \neq \kappa$, on se ramène aux deux cas précédents en notant que a et c jouent des rôles interchangeables. En effet, si on définit les trois entiers \bar{a} , \bar{b} et \bar{c} par $\bar{a} = c$, $\bar{b} = b$ et $\bar{c} = a$, on a $\bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c}$ d'après les deux cas précédents. En utilisant quatre fois la commutativité de l'addition, cela donne $(\bar{c} + \bar{b}) + \bar{a} = \bar{c} + (\bar{b} + \bar{a})$, et donc (a + b) + c = a + (b + c).
- Si $\mu = v$ et $\mu \neq \kappa$, on se ramène au cas précédent de la manière suivante. Puisque sgn(a) = sgn(c) et $sgn(a) \neq sgn(b)$, et par commutativité de l'addition, on a : (a+b)+c=(b+a)+c=b+(a+c). En utilisant la commutativité

de l'addition, il vient : (a + b) + c = (a + c) + b. Puisque sgn(a) = sgn(c), on a d'après les cas précédents : (a + c) + b = a + (c + b) = a + (b + c). Donc, (a + b) + c = a + (b + c).

Lemme : Soit n et m deux éléments de \mathbb{Z} . Alors,

- $\sin n = (0,0), n+m=m,$
- $\sin n > (0,0), n+m > m$,
- si n < (0,0), n + m < m.

Démonstration : Considérons les différents cas possibles :

- Si n = (0, 0), on a vu que n + m = m.
- Supposons que n > (0,0). Alors, on peut choisir un entier naturel non nul a tel que n = (0,a). Distinguons deux cas :
 - Si $m \ge 0$, on peut choisir un entier naturel b tel que m = (0, b). On a alors n + m = (0, a + b). Puisque a > 0, a + b > b, donc n + m > m.
 - Sinon, on peut choisir un entier naturel non nul b tel que m = (1, b). Si $b \le a$, on a n + m = (0, a b) et, puisque b est non nul, donc n + m > m. Sinon, n + m = (1, b a). Puisque a > 0, b a < b, donc n + m > m.
- Supposons que n < (0,0). Alors, on peut choisir un entier naturel non nul a tel que n = (1,a). Distinguons deux cas :
 - Si m < 0, on peut choisir un entier naturel non nul b tel que m = (1, b). On a alors n + m = (1, a + b). Puisque a > 0, a + b > b, donc n + m < m.
 - Sinon, on peut choisir un entier naturel b tel que m = (0, b). Si $b \le a$, on a n + m = (1, a b), donc n + m < m. Sinon, n + m = (0, b a). Puisque a > 0, b a < b, donc n + m < m.

Lemme : Soit a, b et c trois éléments de \mathbb{Z} . Alors, $(a + c \le b + c) \Leftrightarrow (a \le b)$ et $(a + c < b + c) \Leftrightarrow (a < b)$.

Démonstration : On peut choisir trois éléments α , β et γ de $\{0,1\}$ et trois éléments n, m et k de \mathbb{N} tels que $a=(\alpha,n)$, $b=(\beta,m)$ et $c=(\gamma,k)$. Alors,

- Si $\alpha = \beta = \gamma = 0$, $a + c \le b + c$ est équivalent à $n + k \le m + k$ et $a \le b$ à $n \le m$. Puisque $(n + k \le m + k) \Leftrightarrow (n \le m)$, on en déduit $(a + c \le b + c) \Leftrightarrow (a \le b)$. De même, a + c < b + c est équivalent à n + k < m + k et a < b à n < m. Puisque $(n + k < m + k) \Leftrightarrow (n < m)$, on en déduit $(a + c < b + c) \Leftrightarrow (a < b)$.
- Si $\alpha = \beta = \gamma = 1$, $a + c \le b + c$ est équivalent à $n + k \ge m + k$ et $a \le b$ à $n \ge m$. Puisque $(n + k \ge m + k) \Leftrightarrow (n \ge m)$, on en déduit $(a + c \ge b + c) \Leftrightarrow (a \ge b)$. De même, a + c < b + c est équivalent à n + k > m + k et a < b à n > m. Puisque $(n + k > m + k) \Leftrightarrow (n > m)$, on en déduit $(a + c < b + c) \Leftrightarrow (a < b)$.
- Si $\alpha = 0$, $\beta = 1$ (ce qui implique m > 0) et $\gamma = 0$, $a \le b$ et a < b sont faux. On a deux possibilités :
 - Si k < m, a + c = (0, n + k) et b + c = (1, m k), donc $a + c \le b + c$ et a + c < b + c sont faux.
 - Si $k \ge m$, a + c = (0, n + k) et b + c = (0, k m). Puisque m > 0, k m < k (puisque k = (k m) + m). Puisque $k \le k + n$, on a k m < k + n, donc b + c < a + c, donc $a + c \le b + c$ et a + c < b + c sont faux.
- Si $\alpha = 0$, $\beta = 1$ et $\gamma = 1$, $a \le b$ et a < b sont faux. On a deux possibilités :
 - Si $k \le n$, a + c = (0, n k) et b + c = (1, m + k), donc $a + c \le b + c$ et a + c < b + c sont faux.
 - Si k > n, a + c = (1, k n) et b + c = (1, m + k). Puisque $k n \le k$ (puisque k = (k n) + n) et k < k + m (puisque m > 0), on a k n < k + m, donc b + c < a + c, donc $a + c \le b + c$ et a + c < b + c sont faux.
- Si $\alpha = 1$, $\beta = 0$ et $\gamma = 0$, $a \le b$ et a < b sont vrais. On a deux possibilités :
 - Si k < n, a + c = (1, n k) et b + c = (0, m + k), donc $a + c \le b + c$ et $a + c \ne b + c$, et donc a + c < b + c, sont vrais.
 - Si $k \ge n$, a + c = (0, k n) et b + c = (0, k + m). Puisque k n < k + m (k n < k puisque n > 0 et $k \le k + m$), on a donc $a + c \le b + c$ et $a + c \ne b + c$, et donc a + c < b + c.
- Si $\alpha = 1$, $\beta = 0$ et $\gamma = 1$, $a \le b$ et a < b sont vrais. On a deux possibilités :
 - Si $k \le m$, a + c = (1, n + k) et b + c = (0, m k), donc $a + c \le b + c$ et $a + c \ne b + c$, et donc a + c < b + c, sont vrais.
 - Si k > m, a + c = (1, n + k) et b + c = (1, k m). Puisque k m < k + n (k + n > k puisque n > 0 et $k m \le k$), on a donc $a + c \le b + c$ et $a + c \ne b + c$, et donc a + c < b + c.
- Supposons $\alpha = \beta = 0$ et $\gamma = 1$. Alors,
 - Si $k \le n$ et $k \le m$, on a a + c = (0, n k) et b + c = (0, m k). Donc, $(a + c \le b + c) \Leftrightarrow (n k \le m k)$ et $(a + c = b + c) \Leftrightarrow (n k = m k)$. Puisque (n k) + k = n et (m k) + k = m, $(n k \le m k) \Leftrightarrow (n \le m)$ et $(n k = m k) \Leftrightarrow (n = m)$. Donc, $(n k \le m k) \Leftrightarrow (a \le b)$ et $(n k = m k) \Leftrightarrow (a \le b)$ et $(a + c \le b + c) \Leftrightarrow (a \le b)$ et $(a + c \le b + c) \Leftrightarrow (a \le b)$.

- Si k > n et k > m, on a a + c = (1, k n) et b + c = (1, k m). Donc, $(a + c \le b + c) \Leftrightarrow (k n \ge k m)$ et $(a + c = b + c) \Leftrightarrow (k n = k m)$. Or, $k n \ge k m$ est équivalent à $n \le m$ et k n = k m à n = m. Donc, $(k n \ge k m) \Leftrightarrow (a \le b)$ et $(k n = k m) \Leftrightarrow (a \le b)$ et $(a + c < b + c) \Leftrightarrow (a < b)$.
- Si $k \le n$ et k > m, alors m < n, donc b < a, donc $a \le b$ et a < b sont faux. En outre, a + c = (0, n k) et b + c = (1, k m), donc b + c < a + c, donc $a + c \le b + c$ et a + c < b + c sont faux.
- Si k > n et $k \le m$, alors n < m, donc a < b, donc $a \le b$ et a < b sont vrais. En outre, a + c = (1, k n) et b + c = (0, m k), donc a + c < b + c, donc $a + c \le b + c$ et a + c < b + c sont vrais.
- Supposons $\alpha = \beta = 1$ et $\gamma = 0$. Alors,
 - Si k < n et k < m, on a a + c = (1, n k) et b + c = (1, m k). Donc, $(a + c \le b + c) \Leftrightarrow (n k \ge m k)$ et $(a + c = b + c) \Leftrightarrow (n k = m k)$. Puisque (n k) + k = n et (m k) + k = m, $(n k \ge m k) \Leftrightarrow (n \ge m)$ et $(n k = m k) \Leftrightarrow (n = m)$. Donc, $(n k \ge m k) \Leftrightarrow (a \le b)$ et $(n k = m k) \Leftrightarrow (a \le b)$ et $(a + c \le b + c) \Leftrightarrow (a \le b)$ et $(a + c \le b + c) \Leftrightarrow (a \le b)$.
 - Si $k \ge n$ et $k \ge m$, on a a+c=(0,k-n) et b+c=(0,k-m). Donc, $(a+c \le b+c) \Leftrightarrow (k-n \le k-m)$ et $(a+c=b+c) \Leftrightarrow (k-n=k-m)$. Or, $k-n \le k-m$ est équivalent à $n \ge m$ et k-n=k-m à n=m. Donc, $(k-n \le k-m) \Leftrightarrow (a \le b)$ et $(k-n=k-m) \Leftrightarrow (a=b)$. Donc, $(a+c \le b+c) \Leftrightarrow (a \le b)$ et $(a+c < b+c) \Leftrightarrow (a < b)$.
 - Si k < n et $k \ge m$, alors m < n, donc b > a, donc $a \le b$ et a < b sont vrais. En outre, a + c = (1, n k) et b + c = (0, k m), donc b + c > a + c, donc $a + c \le b + c$ et a + c < b + c sont vrais.
 - Si $k \ge n$ et k < m, alors n < m, donc a > b, donc $a \le b$ et a < b sont faux. En outre, a + c = (0, k n) et b + c = (1, m k), donc a + c > b + c, donc $a + c \le b + c$ et a + c < b + c sont faux.

Dans tous les cas, on a bien $(a + c \le b + c) \Leftrightarrow a \le b$ et $(a + c < b + c) \Leftrightarrow a < b$.

1.5.4. Opposé

Définition : On définit l'opération – sur \mathbb{Z} , vue comme une fonction de \mathbb{Z} vers \mathbb{Z} , de la manière suivante :

- \bullet -(0,0) = (0,0);
- soit *n* un entier naturel non nul, -(0, n) = (1, n).
- soit *n* un entier naturel non nul, -(1, n) = (0, n).

Notons que, pour tout entier z, on a $z = 0 \Leftrightarrow -z = 0$.

Lemme : Soit z un élément de \mathbb{Z} . Alors -(-z) = z.

Démonstration : Éxaminons tout à tour les trois cas possibles :

- Si z = (0, 0), alors -z = z, donc -(-z) = -z = z.
- S'il existe un entier naturel non nul n tel que z = (0, n), alors -z = (1, n), donc -(-z) = (0, n) = z.
- S'il existe un entier naturel non nul n tel que z = (1, n), alors -z = (0, n), donc -(-z) = (1, n) = z.

Dans tous les cas, on a donc bien -(-z) = z.

Lemme : Soit z un élément de \mathbb{Z} . Alors z + (-z) = (0,0).

Démonstration : Éxaminons tout à tour les trois cas possibles :

- Si z = (0,0), alors -z = z, donc z + (-z) = (0,0) + (0,0) = (0,0).
- S'il existe un entier naturel non nul n tel que z = (0, n), alors -z = (1, n), donc z + (-z) = (0, n) + (1, n) = (0, n n) = (0, 0).
- S'il existe un entier naturel non nul n tel que z = (1, n), alors -z = (0, n), donc z + (-z) = (1, n) + (0, n) = (0, n n) = (0, 0).

Dans tous les cas, on a donc bien z + (-z) = (0, 0).

Corrolaire : Soit *n* et *m* deux éléments de \mathbb{Z} . Alors, $-n = -m \Leftrightarrow n = m$.

Démonstration:

- Si n = m, alors -n = -m par propriété de l'égalité.
- Si -n = -m, alors -(-n) = -(-m), donc n = m.

Lemme : Soit n et m deux éléments de \mathbb{Z} . Alors,

- $n \le m \Leftrightarrow (-n) \ge (-m)$,
- $n < m \Leftrightarrow (-n) > (-m)$.

Démonstration : Notons d'abord que, d'après le lemme précédent, la première proposition est équivalente à la seconde. Considérons les différents cas possibles :

- Si n = (0,0) et m = (0,0), alors -n = (0,0) et -m = (0,0), donc n = m et -n = -m, donc $n \le m$ et $(-n) \ge (-m)$.
- S'il existe un entier naturel a tel que n=(0,0) et m=(0,a), alors -n=(0,0) et -m=(1,a), donc $n \le m$ et $(-n) \ge (-m)$.
- S'il existe un entier naturel a tel que n = (0,0) et m = (1,a), alors -n = (0,0) et -m = (0,a), donc n > m et (-n) < (-m).
- S'il existe un entier naturel a tel que n = (0, a) et m = (0, 0), alors -n = (1, a) et -m = (0, 0), donc n > m et (-n) < (-m).
- S'il existe un entier naturel a tel que n=(1,a) et m=(0,0), alors -n=(0,a) et -m=(0,0), donc $n \le m$ et $(-n) \ge (-m)$.
- S'il existe deux entiers naturels on nuls a et b tels que n=(0,a) et m=(0,b), alors -n=(1,a) et -m=(1,b), alors $n \le m \Leftrightarrow a \le b$ et $(-n) \ge (-m) \Leftrightarrow a \le b$.
- S'il existe deux entiers naturels on nuls a et b tels que n = (0, a) et m = (1, b), alors -n = (1, a) et -m = (0, b), alors n > m et (-n) < (-m).
- S'il existe deux entiers naturels on nuls a et b tels que n=(1,a) et m=(0,b), alors -n=(0,a) et -m=(1,b), alors $n \le m$ et $(-n) \ge (-m)$.
- S'il existe deux entiers naturels non nuls a et b tels que n=(1,a) et m=(1,b), alors -n=(0,a) et -m=(0,b), alors $n \le m \Leftrightarrow b \le a$ et $(-n) \ge (-m) \Leftrightarrow b \le a$.

Dans tous les cas, $n \le m$ est bien équivalent à $(-n) \le (-m)$.

Lemme : Soit a et b deux entiers. Alors, -(a + b) = (-a) + (-b).

Démonstration :

Si a = 0, on a -(a+b) = -b et (-a)+(-b) = 0+(-b) = -b. Si b = 0, on a -(a+b) = -a et (-a)+(-b) = (-a)+0 = -a. Dans les deux cas, on a bien -(a+b) = (-a)+(-b).

Supposons maintenant $a \neq 0$ et $b \neq 0$. Distinguons quatres cas possibles :

- Si $\operatorname{sgn}(a) = 0$ et $\operatorname{sgn}(b) = 0$, alors -(a+b) = -((0,|a|) + (0,|b|)) = -(0,|a|+|b|) = (1,|a|+|b|) et (-a) + (-b) = (-(0,|a|)) + (-(0,|b|)) = (1,|a|) + (1,|b|) = (1,|a|+|b|). Donc, -(a+b) = (-a) + (-b).
- Si sgn(a) = 0 et sgn(b) = 1, alors
 - Si |a| = |b|, b = -a, donc a + b = 0, donc -(a + b) = 0 et (-a) + (-b) = (-a) + a = 0. Donc, -(a + b) = (-a) + (-b).
 - Si |a| > |b|, -(a+b) = -((0,|a|) + (1,|b|)) = -(0,|a| |b|) = (1,|a| |b|) et (-a) + (-b) = (-(0,|a|)) + (-(1,|b|)) = (1,|a|) + (0,|b|) = (1,|a| |b|). Donc, -(a+b) = (-a) + (-b).
 - Si |a| < |b|, -(a+b) = -((0,|a|) + (1,|b|)) = -(1,|b| |a|) = (0,|b| |a|) et (-a) + (-b) = (-(0,|a|)) + (-(1,|b|)) = (1,|a|) + (0,|b|) = (0,|b| |a|). Donc, -(a+b) = (-a) + (-b).
- Si sgn(a) = 1 et sgn(b) = 0, alors
 - Si |a| = |b|, b = -a, donc a + b = 0, donc -(a + b) = 0 et (-a) + (-b) = (-a) + a = 0. Donc, -(a + b) = (-a) + (-b).
 - Si |a| > |b|, -(a+b) = -((1,|a|) + (0,|b|)) = -(1,|a| |b|) = (0,|a| |b|) et (-a) + (-b) = (-(1,|a|)) + (-(0,|b|)) = (0,|a|) + (1,|b|) = (0,|a| |b|). Donc, -(a+b) = (-a) + (-b).
 - Si |a| < |b|, -(a+b) = -((1,|a|) + (0,|b|)) = -(0,|b| |a|) = (1,|b| |a|) et (-a) + (-b) = (-(1,|a|)) + (-(0,|b|)) = (0,|a|) + (1,|b|) = (1,|b| |a|). Donc, -(a+b) = (-a) + (-b).
- Si $\operatorname{sgn}(a) = 1$ et $\operatorname{sgn}(b) = 1$, alors -(a+b) = -((1,|a|) + (1,|b|)) = -(1,|a|+|b|) = (0,|a|+|b|) et (-a) + (-b) = (-(1,|a|)) + (-(1,|b|)) = (0,|a|) + (0,|b|) = (0,|a|+|b|). Donc, -(a+b) = (-a) + (-b).

1.5.5. Soustraction

Définition : On définit l'opération – sur \mathbb{Z} (vue comme une fonction de $\mathbb{Z} \times \mathbb{Z}$ vers \mathbb{Z}) de la manière suivante. Soit n et m deux élément de \mathbb{Z} . Alors,

- si n = (0, 0), alors m n = m;
- sinon, m n = m + (-n).

Lemme : Pour tout élément z de \mathbb{Z} , on a :

 $\bullet \ z - z = 0,$

- z 0 = z.
- 0 z = -z.

Démonstration : Soit z un élément de \mathbb{Z} . On a :

- z z = z + (-z) = 0,
- z 0 = z par définition,
- \bullet 0 z = 0 + (-z) = -z.

Lemme : Soit *n* et *m* deux éléments de \mathbb{Z} . Alors (n - m) + m = n.

Démonstration : On a : (n - m) + m = (n + (-m)) + m = n + ((-m) + m) = n + 0 = n.

Lemme : Soit a et b deux élément de \mathbb{Z} . Alors

- Si b > -a, a + b > 0.
- Si b < -a, a + b < 0.

Démonstration : Notons d'abords que le premier résultat implique le second. En effet, si b < -a, on a - b > -(-a), donc, si le premier résultat est vrai, (-a) + (-b) > 0, donc -(a + b) > 0, donc a + b < 0. Montrons donc seulement le premier résultat. Pour ce faire supposons b > -a et distinguons trois cas possibles :

• Si $a \ge 0$ et $b \ge 0$, alors a et b ne peuvent être tous deux nuls (sans quoi on aurait b = -a). Donc, |a| + |b| > 0, donc a + b (égal à (0, |a| + |b|)) est strictement supérieur à 0.

- Si $a \ge 0$ et b < 0, b > -a implique $a \ne 0$ (sans quoi on aurait -a = 0 et donc b > 0) et |b| < |a| (puisque b = (1, |b|), -a = (1, |a|), et b > -a), donc a + b = (0, |a| |b|) et a b > 0.
- Si a < 0, alors -a > 0, donc b > 0. En outre, puisque -a = (0, |a|) et b = (0, |b|), on doit avoir |b| > |a|. Donc, a + b = (0, |b| |a|) et a + b > 0.

Corrolaire : Soit a et b deux élément de \mathbb{Z} . Alors

- Si b > a, b + (-a) > 0, donc b a > 0.
- Si b < a b + (-a) < 0, b a < 0.

Puisque, en outre, b - a = 0 est équivalent à b = a, on a :

- $b = a \Leftrightarrow b a = 0$,
- $b > a \Leftrightarrow b a > 0$,
- $b < a \Leftrightarrow b a < 0$,
- $b \ge a \Leftrightarrow b a \ge 0$,
- $b \le a \Leftrightarrow b a \le 0$.

Lemme : Soit a, b et c trois élément de \mathbb{Z} tels que b > c. Alors, a + b > a + c

Démonstration : On a : (a+b)-(a+c)=(a+b)+((-a)+(-c))=b-c. Puisque b>c, b-c>0, donc (a+b)-(a+c)>0. Si $a+b\leq a+c$ éait vrai, on aurait a+b=a+c, et donc (a+b)-(a+c)=0, ou a+b< a+c, et donc (a+b)-(a+c)<0. Puisqu'aucun de ces deux prédicats est vrai, $a+b\leq a+c$ est faux, donc a+b>a+c est vrai.

1.5.6. Multiplication

Définition : On définit l'opération \times sur \mathbb{Z} (vue comme une fonction de $\mathbb{Z} \times \mathbb{Z}$ vers \mathbb{Z}) de la manière suivante. Soit a et b deux entiers, alors

- si a = 0, alors $a \times b = b \times a = 0$,
- si $a \neq 0$ et $b \neq 0$, $a \times b = (\epsilon, |a| \times |b|)$, où ϵ est égal à 0 si $\operatorname{sgn}(a) = \operatorname{sgn}(b)$ et 1 sinon.

Ces règles sont équivalentes à : soit n et m deux élément de \mathbb{N} , alors

- $(0, n) \times (0, m) = (0, n \times m)$;
- si $n \neq 0$, $(0,0) \times (1,n) = (0,0)$ et $(1,n) \times (0,0) = (0,0)$;
- si $n \neq 0$ et $m \neq 0$, $(1, n) \times (0, m) = (1, n \times m)$;
- si $n \neq 0$ et $m \neq 0$, $(0, n) \times (1, m) = (1, n \times m)$;
- si $n \neq 0$ et $m \neq 0$, $(1, n) \times (1, m) = (0, n \times m)$.

Notons que, dans tous les cas, pour tous entiers relatifs a et b, $|a \times b| = |a| \times |b|$. Notons aussi que, pour tout entier relatif a, $(1,1) \times a = -a$. Le symbole \times est parfois omis quand il n'y a pas de confusion possible.

Lemme : Soit a et b deux entiers relatifs. Si $a \times b = 0$, alors a = 0 ou b = 0.

Démonstration : On peut choisir deux entiers naturels n et m et deux éléments ϵ et η de $\{0,1\}$ tels que $a=(\epsilon,n)$ et $b=(\eta,m)$. On peut aussi choisir un élément μ de $\{0,1\}$ tel que $a\times b=(\mu,n\times m)$. (Avec $\mu=0$ si $\epsilon=\eta$ ou n=0 ou m=0, et $\mu=1$ si $\epsilon\neq\eta,\,n\neq0$ et $m\neq0$.) Si $a\times b=(0,0)$, on a donc $n\times m=0$, donc n=0 ou m=0. Si n=0, ϵ doit être égal à 0 (puisque $(\epsilon,n)\in\mathbb{Z}$), donc n=00. Sinon, n=00, donc n=00 donc n=00 donc n=00 donc n=00.

Lemme : Soit *a* et *b* deux entiers relatifs. Alors,

- Si a = 0 ou b = 0, alors $a \times b = 0$.
- Si a > 0 et b > 0, alors $a \times b > 0$.
- Si a > 0 et b < 0, alors $a \times b < 0$.
- Si a < 0 et b > 0, alors $a \times b < 0$.
- Si a < 0 et b < 0, alors $a \times b > 0$.
- Si |a| = 1, alors $|a \times b| = |b|$.
- Si |a| > 1 et $m \neq 0$, alors $|a \times b| > |b|$.

Démonstration:

- Les six premiers points sont des conséquences directes de la définition de la multiplication.
- Les deux derniers points sont des conséquences diectes du fait que $|a \times b| = |a| \times |b|$.

Lemme : La multiplication est commutative : pour tous éléments a et b de \mathbb{Z} , $a \times b = b \times a$.

Démonstration : Soit a et b deux entiers relatifs. Soit n et m deux entiers naturels et ϵ et η deux éléments de $\{0,1\}$ tels que $a = (\epsilon, n)$ et $b = (\eta, m)$. Alors,

- Si n = 0 ou m = 0, alors a = (0, 0) ou b = (0, 0), donc $a \times b = (0, 0)$ et $b \times a = (0, 0)$, donc $a \times b = b \times a$.
- Sinon, on a $a \times b = (\mu, n \times m)$ et $b \times a = (\mu, m \times n)$, où μ est égal à 0 si $\epsilon = \eta$ et 1 sinon. Puisque la multiplication d'entiers naturels est commutative, $n \times m = m \times n$, donc $a \times b = b \times a$.

Lemme : Soit *n*, *m* et *k* trois entiers relatifs. Alors,

- Si n = 0, $n \times m = n \times k$.
- Si $n \neq 0$, $n \times m = n \times k \Leftrightarrow m = k$.
- Si n > 0, $n \times m > n \times k \Leftrightarrow m > k$.
- Si n < 0, $n \times m > n \times k \Leftrightarrow m < k$.

Démonstration:

- Si n = 0, $n \times m = 0$ et $n \times k = 0$, donc $n \times m = n \times k$.
- Supposons $n \neq 0$. Supposons $n \times m = n \times k$.
 - On a $|n \times m| = |n \times k|$, donc $|n| \times |m| = |n| \times |k|$. Puisque $n \neq 0$, $|n| \neq 0$, donc cela implique |m| = |k|.
 - Si $sgn(n \times m) = 0$, alors $sgn(n \times k) = 0$, donc sgn(n) = sgn(m) et sgn(n) = sgn(k), donc sgn(m) = sgn(k). Sinon, $sgn(n \times m) = 1$, donc $sgn(n \times k) = 1$, donc sgn(m) = 1 - sgn(n) et sgn(k) = 1 - sgn(n), donc sgn(m) = sgn(k).

Donc, m = k.

Réciproquement, si m = k, alors $n \times m = n \times k$.

- Supposons que n > 0. Alors,
 - Si $m \ge 0$ et $k \ge 0$, $n \times m = (0, |n| \times |m|)$ et $n \times k = (0, |n| \times |k|)$. Donc, $n \times m > n \times k \Leftrightarrow |n| \times |m| > |n| \times |k|$. Puisque n > 0, $|n| \ne 0$, donc $|n| \times |m| > |n| \times |k| \Leftrightarrow |m| > |k|$ donc cela donne : $n \times m > n \times k \Leftrightarrow |m| > |k|$. Puisque $m > k \Leftrightarrow |m| > |k|$, on en déduit $n \times m > n \times k \Leftrightarrow m > k$.
 - Si $m \ge 0$ et k < 0, m > k est vrai. En outre, $n \times m \ge 0$ et $n \times k < 0$, donc $n \times m > n \times k$ est vrai.
 - Si m < 0 et $k \ge 0$, m > k est faux. En outre, $n \times m < 0$ et $n \times k \ge 0$, donc $n \times m > n \times k$ est faux.
 - Si m < 0 et k < 0, $n \times m = (1, |n| \times |m|)$ et $n \times k = (1, |n| \times |k|)$. Donc, $n \times m > n \times k \Leftrightarrow |n| \times |m| < |n| \times |k|$. Puisque |n| > 0, cela donne : $n \times m > n \times k \Leftrightarrow |m| < |k|$. Puisque $m > k \Leftrightarrow |m| < |k|$, on en déduit $n \times m > n \times k \Leftrightarrow m > k$.
- Supposons que n < 0. Alors,
 - Si $m \ge 0$ et $k \ge 0$, $n \times m = (1, |n| \times |m|)$ et $n \times k = (1, |n| \times |k|)$. Donc, $n \times m > n \times k \Leftrightarrow |n| \times |m| < |n| \times |k|$. Puisque |n| > 0, cela donne : $n \times m > n \times k \Leftrightarrow |m| < |k|$. Puisque $m < k \Leftrightarrow |m| < |k|$, on en déduit $n \times m > n \times k \Leftrightarrow m < k$.
 - Si $m \ge 0$ et k < 0, m > k est vrai. En outre, $n \times m \le 0$ et $n \times k > 0$, donc $n \times m > n \times k$ est faux.
 - Si m < 0 et $k \ge 0$, m > k est faux. En outre, $n \times m > 0$ et $n \times k \le 0$, donc $n \times m > n \times k$ est vrai.

- Si m < 0 et k < 0, $n \times m = (0, |n| \times |m|)$ et $n \times k = (0, |n| \times |k|)$. Donc, $n \times m > n \times k \Leftrightarrow |n| \times |m| > |n| \times |k|$. Puisque |n| > 0, cela donne : $n \times m > n \times k \Leftrightarrow |m| > |k|$. Puisque $m < k \Leftrightarrow |m| > |k|$, on en déduit $n \times m > n \times k \Leftrightarrow m < k$.

Lemme : La multiplication est associative : pour tous éléments a, b et c de $\mathbb{Z}, a \times (b \times c) = (a \times b) \times c$.

Démonstration: On distingue différents cas:

- Si a = 0, $(a \times b) \times c = 0 \times c = 0$ et $a \times (b \times c) = 0$.
- Si b = 0, $(a \times b) \times c = 0 \times c = 0$ et $a \times (b \times c) = a \times 0 = 0$.
- Si c = 0, $(a \times b) \times c = 0$ et $a \times (b \times c) = a \times 0 = 0$.
- Supposons que a, b et c sont non nuls. Distinguons alors selon les valeurs possibles de (sgn(a), sgn(b), sgn(c)), qui est un élément de $\{0, 1\}^3$:
 - S'il est égal à (0,0,0), on a $(a \times b) \times c = (0, |a| \times |b|) \times c = (0, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (0, |b| \times |c|) = (0, |a| \times (|b| \times |c|))$.
 - S'il est égal à (0,0,1), on a $(a \times b) \times c = (0,|a| \times |b|) \times c = (1,(|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (1,|b| \times |c|) = (1,|a| \times (|b| \times |c|))$.
 - S'il est égal à (0, 1, 0), on a $(a \times b) \times c = (1, |a| \times |b|) \times c = (1, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (1, |b| \times |c|) = (1, |a| \times (|b| \times |c|))$.
 - S'il est égal à (0, 1, 1), on a $(a \times b) \times c = (1, |a| \times |b|) \times c = (0, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (0, |b| \times |c|) = (0, |a| \times (|b| \times |c|))$.
 - S'il est égal à (1,0,0), on a $(a \times b) \times c = (1,|a| \times |b|) \times c = (1,(|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (0,|b| \times |c|) = (1,|a| \times (|b| \times |c|))$.
 - S'il est égal à (1, 0, 1), on a $(a \times b) \times c = (1, |a| \times |b|) \times c = (0, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (1, |b| \times |c|) = (0, |a| \times (|b| \times |c|))$.
 - S'il est égal à (1, 1, 0), on a $(a \times b) \times c = (0, |a| \times |b|) \times c = (0, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (1, |b| \times |c|) = (0, |a| \times (|b| \times |c|))$.
 - S'il est égal à (1, 1, 1), on a $(a \times b) \times c = (0, |a| \times |b|) \times c = (1, (|a| \times |b|) \times |c|)$ et $a \times (b \times c) = a \times (0, |b| \times |c|) = (1, |a| \times (|b| \times |c|))$.

Notons que $(|a| \times |b|) \times |c| = |a| \times (|b| \times |c|)$ puisque la multiplication d'entiers naturels est associative, donc $(a \times b) \times c$ et $a \times (b \times c)$ sont égaux dans ces huit cas.

Dans tous les cas, on a bien $(a \times b) \times c = a \times (b \times c)$.

Lemme : La multiplication est distributive sur l'addition : pour tous éléments a, b et c de $\mathbb{Z}, a \times (b+c) = (a \times b) + (a \times c)$.

Démonstration :

- Si $\operatorname{sgn}(a) = \operatorname{sgn}(b) = \operatorname{sgn}(c) = 0$, alors $a \times (b+c) = a \times (0, |b|+|c|) = (0, |a| \times (|b|+|c|))$ et $(a \times b) + (a \times c) = (0, |a| \times |b|) + (0, |a| \times |c|) = (0, (|a| \times |b|) + (|a| \times |c|))$. Puisque, dans \mathbb{N} , la multiplication est distributive sur l'addition, on a $|a| \times (|b|+|c|) = (|a| \times |b|) + (|a| \times |c|)$, et donc $a \times (b+c) = (a \times b) + (a \times c)$.
- Si sgn(a) = sgn(b) = sgn(c) = 1, alors $a \times (b + c) = a \times (1, |b| + |c|) = (0, |a| \times (|b| + |c|))$ et $(a \times b) + (a \times c) = (0, |a| \times |b|) + (0, |a| \times |c|) = (0, (|a| \times |b|) + (|a| \times |c|))$. Comme précédemment, on a donc $a \times (b + c) = (a \times b) + (a \times c)$.
- Si a = (0,0), alors $a \times (b+c) = (0,0)$ et $(a \times b) + (a \times c) = 0 + 0 = 0$, donc $a \times (b+c) = (a \times b) + (a \times c)$.
- Si b = (0,0), alors $a \times (b+c) = a \times c$ et $(a \times b) + (a \times c) = 0 + (a \times c) = a \times c$, donc $a \times (b+c) = (a \times b) + (a \times c)$.
- Si c = (0,0), alors $a \times (b+c) = a \times b$ et $(a \times b) + (a \times c) = (a \times b) + 0 = a \times b$, donc $a \times (b+c) = (a \times b) + (a \times c)$.
- Si $\operatorname{sgn}(a) = 1$, $\operatorname{sgn}(b) = \operatorname{sgn}(c) = 0$, $b \neq 0$ et $c \neq 0$, alors $a \times (b + c) = a \times (0, |b| + |c|) = (1, |a| \times (|b| + |c|))$ et $(a \times b) + (a \times c) = (1, |a| \times |b|) + (1, |a| \times |c|) = (1, (|a| \times |b|) + (|a| \times |c|))$. Comme précédemment, on a donc $a \times (b + c) = (a \times b) + (a \times c)$.
- Si sgn(a) = 0, sgn(b) = sgn(c) = 1 et $a \neq 0$, alors $a \times (b + c) = a \times (1, |b| + |c|) = (1, |a| \times (|b| + |c|))$ et $(a \times b) + (a \times c) = (1, |a| \times |b|) + (1, |a| \times |c|) = (1, (|a| \times |b|) + (|a| \times |c|))$. Comme précédemment, on a donc $a \times (b + c) = (a \times b) + (a \times c)$.
- Supposons $\operatorname{sgn}(a) = \operatorname{sgn}(c) = 0$, $\operatorname{sgn}(b) = 1$ et $a \neq 0$. Alors, $(a \times b) + (a \times c) = (1, |a| \times |b|) + (0, |a| \times |c|)$. Cette quantité est égale à $(1, |a| \times |b| |a| \times |c|)$ si $|a| \times |b| > |a| \times |c|$, i.e., si |b| > |c|, et à $(0, |a| \times |c| |a| \times |b|)$ sinon. Par ailleurs, b + c est égal à (1, |b| |c|) si |b| > |c| et (0, |c| |b|) sinon. Donc, $a \times (b + c)$ est égal à (1, |a| (|b| |c|)) dans le premier cas et à (0, |a| (|c| |b|)) dans le second. Puisque |a| (|b| |c|) = |a| |b| |a| |c| dans le premier cas et |a| (|b| |c|) = |a| |c| |a| |b| dans le second, on en déduit $a \times (b + c) = (a \times b) + (a \times c)$.
- Supposons $\operatorname{sgn}(a) = \operatorname{sgn}(c) = 1$, $\operatorname{sgn}(b) = 0$ et $b \neq 0$. Alors, $(a \times b) + (a \times c) = (1, |a| \times |b|) + (0, |a| \times |c|)$. Cette quantité est égale à $(1, |a| \times |b| |a| \times |c|)$ si $|a| \times |b| > |a| \times |c|$, i.e., si |b| > |c|, et à $(0, |a| \times |c| |a| \times |b|)$ sinon. Par ailleurs, b + c est égal à (0, |b| |c|) si $|b| \geq |c|$ et (1, |c| |b|) sinon. Donc, $a \times (b + c)$ est égal à

(1, |a| (|b| - |c|)) si |b| > |c| et à (0, |a| (|c| - |b|)) sinon (y compris si |b| = |c|, puisqu'alors (0, |c| - |b|) = (0, 0)). Puisque |a| (|b| - |c|) = |a| |b| - |a| |c| dans le premier cas et |a| (|c| - |b|) = |a| |c| - |a| |b| dans le second, on en déduit $a \times (b + c) = (a \times b) + (a \times c)$.

• Les deux derniers cas, où a et b sont de même signe et c de signe différent avec a, b et c non nuls, se ramènent aux deux cas précédents par commutativité de l'addition. En effet, ces derbiers montrent que $a \times (c+b) = (a \times c) + (a \times b)$, et donc, par commutativité de l'addition, $a \times (b+c) = (a \times b) + (a \times c)$.

1.5.7. Puissance

Puissance d'entiers relatifs : Soit E l'ensemble des fonctions de \mathbb{Z} dans \mathbb{Z} . On définit la suite Exp d'éléments de E par récurrence de la manière suivante :

- Pour tout élément m de \mathbb{Z} , $\operatorname{Exp}(0)(m) = (0, 1)$ (cela définit $\operatorname{Exp}(0)$).
- Pour tout élément n de \mathbb{N} , pour tout élément m de \mathbb{Z} , $\operatorname{Exp}(n+1)(m) = \operatorname{Exp}(n)(m) \times m$ (cela définit $\operatorname{Exp}(n+1)$ à partir de $\operatorname{Exp}(n)$).

Notons que, pour tout élément m de \mathbb{Z} , on a $\operatorname{Exp}(1)(m) = m$. Dans la suite, pour tous éléments n et m de \mathbb{Z} , on notera l'entier $\operatorname{Exp}(n)(m)$ par m^n . Pour tous éléments n et m de \mathbb{Z} , on a donc $m^0 = 1$, $m^1 = m$ et $m^{n+1} = m^n \times m$. L'exponentiation est prioritaire sur la multiplication et l'addition. Par exemple, si a, b et c sont trois éléments de \mathbb{Z} , $a^b \times c$ est équivalent à $(a^b) \times c$ et $a^b + c$ est équivalent à $(a^b) + c$.

Lemme : Soit *n* et *m* deux entiers naturels. Alors, $(0, m)^n = (0, m^n)$.

Démonstration : On procède par récurrence sur n. Pour n = 0, on a $(0, m)^n = (0, 1)$ et $(0, m^n) = (0, 1)$, donc $(0, m)^n = (0, m^n)$. Soit n un entier naturel tel que $(0, m)^n = (0, m^n)$. Alors, $(0, m)^{n+1} = (0, m)^n \times (0, m) = (0, m^n) \times (0, m) = (0, m^n) \times (0, m) = (0, m^n)$. Par récurence, on en déduit que le résultat est vrai pour tout entier narurel n.

Lemme : Soit *n* un entier naturel et *m* un entier naturel non nul. Alors, $(1, m)^{2n} = (0, m^{2n})$ et $(1, m)^{2n+1} = (1, m^{2n+1})$.

Démonstration : On procède par récurrence sur n. Pour n = 0, on a $(1, m)^{2n} = (1, m)^0 = (0, 1) = (0, m^0) = (0, m^{2n})$ et $(1, m)^{2n+1} = (1, m)^{2n} \times (1, m) = (0, 1) \times (1, m) = (1, m) = (1, m^1) = (1, m^{2n+1})$. Donc, $(1, m)^{2n} = (0, m^{2n})$ et $(1, m)^{2n+1} = (1, m^{2n+1})$.

Soit n un entier naurel tel que $(1, m)^{2n} = (0, m^{2n})$ et $(1, m)^{2n+1} = (1, m^{2n+1})$. Alors, $(1, m)^{2(n+1)} = (1, m)^{2n+2} = (1, m)^{(2n+1)+1} = (1, m)^{2n+1} \times (1, m) = (1, m^{2n+1}) \times (1, m) = (0, m^{2n+1} \times m) = (0, m^{2n+1+1}) = (0, m^{2(n+1)})$ et $(1, m)^{2(n+1)+1} = (1, m)^{2(n+1)} \times (1, m) = (0, m^{2(n+1)}) \times (1, m) = (1, m^{2(n+1)} \times m) = (1, m^{2(n+1)+1})$. Donc, $(1, m)^{2(n+1)} = (0, m^{2(n+1)})$ et $(1, m)^{2(n+1)+1} = (1, m^{2(n+1)+1})$. Par récurrence, le résultat attendu est vrai pour tout entier naturel n.

1.5.8. Factoriel

Définition : Soit n un entier relatif. Si $n \ge 0$, alors on peut choisir un entier naturel m tel que n = (0, m). On pose alors n! = m!. Sinon, on pose n! = 0.

1.6. Cardinal

1.6.1. Cardinal fini

Un ensemble *E* est dit *de cardinal fini*, ou simplement *fini*, s'il existe une bijection de *E* vers un entier naturel. S'il n'existe aucun netier naturel *n* tel qu'il existe une bijection de *E* vers *n*, on dit que *E* est *de cardinal infini*, ou simplement *infini*.

Soit E un ensemble et n un entier naturel. On dit que E est de *cardinal* n s'il existe une bijection de E vers n. (Ainsi, par exemple, l'ensemble vide est le seul ensemble de cardinal 0.) Puisqu'il n'existe aucune bijection entre deux entiers naturels non égaux, pour tout ensemble E, il existe au plus un entier naturel n tel que |E| = n. Un ensemble de cardinal fini admet donc au plus un unique cardinal. Soit E un ensemble de cardinal fini, on note (s'il n'y a pas d'ambiguité avec d'autre notations) |E| son cardinal. Si E est un ensemble et n un entier naturel, la notation |E| = n est comprise comme :

^{18.} Notons que *E* est alors de cardinal fini.

^{19.} Soit E un ensemble et n et m deux entiers naturels tels que E est de cardinal n et de cardinal m. Alors, il existe une bijection de E vers n et une bijection de E vers E. Donc, E est une bijection de E vers E est une bijection de E est une bijection

« E est fini et son cardinal est n ». On notera parfois $|E| = \infty$ le prédicat « E est infini » et $|E| \in \mathbb{N}$ le prédicat « E est fini ».

Puisque l'inverse d'une bijection est une bijection, deux conséquences immédiates de ces définitions sont :

- Un ensemble E est fini si et seulement si il existe un entier naturel n tel qu'il existe une bijection de n vers E.
- Soit E un ensemble et n un entier naturel, E est de cardinal n si et seulement si il existe une bijection de n vers E.

Lemme:

- L'ensemble vide Ø est le seul ensemble de cardinal 0.
- Soit a un ensemble. Alors $\{a\}$ et de cardinal 1.
- Soit a et b deux ensembles tels que $a \neq b$. Alors $\{a, b\}$ et de cardinal 2.

Démonstration:

- L'ensemble vide est le seul ensemble en bijection avec 0, égal à Ø. Il est donc le seul ensemble de cardinal 0.
- Soit *a* un ensemble. Alors, {(*a*, 0)} est une fonction de {*a*} vers 1 (son unique élément est dans {*a*} × 1 puisque 1 = {0} et le seul élément de {*a*}, *a*, a une unique image 0) et elle est bijective (le seul élément de 1, 0, a un unique antécédent, *a*).
- Soit a et b deux ensembles tels que a ≠ b. Alors, {(a,0), (b, 1)} est une fonction de {a, b} vers {0, 1}, égal à 2 (en effet, chacun de ses deux éléments est bien dans {a, b} × {0, 1} et chacun des deux éléments de {a, b} a une unique image (0 pour a et 1 pour b)) et elle est bijective (chaqun des deux éléments de 2 a un unique antécédent : a pour 0 et b pour 1).

Soit n un entier naturel et E un ensemble de cardinal n. Soit f une bijection de n vers E. On pourra noter l'ensemble E par la liste de ses éléments, i.e., des f(x) pour x décrivant [0, n-1], séparés par des virgules, entre les crochets $\{et\}: E = \{f(0), f(1), \ldots, f(n-1)\}$. (Dans cette expression, il est implicitement compris que f(n-1) n'est pas présent si $n \le 2$, f(1) n'est pas présent si $n \le 1$, et f(0) n'est pas présent si n = 0.) Ainsi, en accord avec les notations précédemments définies,

- {} désigne l'ensemble vide,
- si a est un ensemble, $\{a\}$ désigne l'ensemble admettant a pour seul élément,
- si a et b sont deux ensembles, $\{a,b\}$ désigne l'ensemble C tel que $\forall c, c \in C \Leftrightarrow ((c=a) \lor (c=b)).$

Plus généralement, soit F un ensemble, n un entier naturel et f une fonction de n vers E. On peu noter $\{f(0), f(1), \dots, f(n-1)\}$ l'ensemble G défini par : $\forall x \ x \in G \Leftrightarrow (\exists i \in [[0, n-1]]) \ f(i) = x$.

Lemme : Avec les mêmes notations, si f est injective, alors G est de cardinal n.

Démonstration : Par définition, f est une surjection de n vers G. En effet, soit x un élément de G, il existe un élément i de [0, n-1], et donc de n, tel que g(i) = x. Si f est aussi injective, alors f est une bijection de n vers G, et f^{-1} est donc une bijection de G vers G.

Lemme : Soit E et F deux ensembles finis de même cardinal. On suppose que $E \subset F$. Alors E = F.

Remarque : La réciproque est évidente : Soit E et F deux ensembles finis, si E = F, alors $E \subset F$. On déduit donc le résultat suivant : si E et F sont finis et ont le même cardinal, alors $E \subset F \Leftrightarrow E = F$.

Démonstration du lemme : On procède par récurrence sur le cardinal n de E et F. Si n=0, on a $E=\emptyset$ et $F=\emptyset$, donc E=F.

Soit n un entier naturel et supposons la propriété attendue vraie pour deux ensembles de cardinal n. Soit E et F deux ensembles de cardinal n+1 tels que $E \subset F$. Puisque le cardinal de E n'est pas 0, E admet au moins un élément (sans quoi E serait égal à \emptyset , et donc de cardinal 0). Soit e un élément de E. Puisque $E \subset F$, on a $e \in F$. Soit E' et F' les ensembles définis par $E' = E \setminus \{e\}$ et $F' = E \setminus \{e\}$. Alors, d'après le lemme précédent, E' et F' sont de même cardinal E0. En outre, pour tout élément E1 de E2, on a E3 de E4, et E5. On en déduit que E' = F'5, et donc, puisque $E = E' \cup \{e\}$ 6 et $E' = F' \cup \{e\}$ 7, que E = F8.

Par récurrence, ce résultat est vrai pour tout entier naturel n.

Lemme : Soit E un ensemble de cardinal fini n. Soit x tel que $x \notin E$. Alors $E \cup \{x\}$ a pour cardinal n + 1.

Démonstration : Notons que, si E est l'ensemble vide, alors $E \cup \{x\} = \{x\}$. La fonction $f: \{x\} \to 1$ définie par f(x) = 0 est bijective, donc $E \cup \{x\}$ a pour cardinal 1.

Soit E un ensemble quelconque. Puisque E a pour cardinal n, il existe une bijection f de E vers n. Soit g la fonction de $E \cup \{x\}$ vers n+1 définie par g(x)=n et g(y)=f(y) pour tout élément y de E. (Cela définit bien une fonction car

x n'est pas dans le domaine de f.)²⁰ Alors, g est injective (car f est injective et n+1 n'est pas dans l'image de f)²¹ et surjective²² Donc, g et une bijection de E vers n+1. Donc, E est de cardinal E0.

Lemme : Soit E un ensemble de cardinal fini n. Soit x tel que $x \in E$. Alors $E \setminus \{x\}$ a pour cardinal n-1.

Démonstration : Notons d'abord que, puisque E contient au moins un élément (x), E ne peut être vide, donc son cardinal ne peut pas être égal à 0. Donc, n-1 est bien un entier naturel. Puisque E a pour cardinal n, il existe une bijection de E vers n. Appelons-là f. Puisque f est une bijection et puisque $n-1 \in n$, on peut choisir un élément f0 de f1 et el que f1. Soit f2 la fonction de f2 vers f3 definie par : f4 vers f5 vers f7 vers f7 vers f8 vers f8 vers f9 ver

- Cela constitue une bonne définition (il s'agit de montrer que $f(g(z)) \in n-1$ pour tout élément z de $E \setminus \{x\}$).
- *h* est injective.
- h est surjective.

Ainsi, h sera une bijection de $E \setminus \{x\}$ vers n-1, d'où le résultat attendu.

Montrons le premier point. Soit z un élément de $E \setminus \{x\}$. Puisque $z \in E$, g(z) est bien défini et un élément de E, et donc f(g(z)) est bien défini et est un élément de n. En outre, $g(z) \neq y$. En effet, si $z \neq y$, on a g(z) = z, et donc $g(z) \neq y$ et, si z = y, on a $x \neq y$ (puisqu'alors $y \in E \setminus \{x\}$) et g(z) = x, donc $g(z) \neq y$. Puisque f est injective et f(y) = n - 1, on en déduit $f(g(z)) \neq n - 1$. Puisque f(x) = n - 1.

Montrons maintenant que h est injective. Soit u et v deux éléments de $E \setminus \{x\}$ tels que h(u) = h(v). Alors, f(g(u)) = f(g(v)). Puisque f est injective, on en déduit g(u) = g(v). Montrons que cela implique u = v. On distingue deux cas :

- Si u = y, on a g(u) = x, donc g(v) = x. Or, pour tout élément z de $E \setminus \{x\}$ tel que $z \neq y$, on a g(z) = z, donc $g(z) \neq x$. Donc, on ne peut pas avoir $v \neq y$. Donc, v = y, et donc v = u.
- Si $u \neq y$, on a g(u) = u et donc g(v) = u. Si v était égal à y, on aurait g(v) = x, ce qui est faux puisque $u \neq x$. Donc, $v \neq y$, et donc g(v) = v. Puisque g(v) = u, on en déduit u = v.

Dans les deux cas, on a bien u = v. Cela montre que h est injective.

Enfin, montrons que h est surjective. Soit a un élément de n-1. Puisque f est surjective, on peut choisir un élément z de E tel que f(z) = a. De plus, z ne peut être égal à y puisque f(y) = n-1 alors que a < n-1 (puisque $a \in n-1$). Distinguons deux cas :

- Si z = x, alors g(y) = z, donc f(g(y)) = a. En outre, puisque $z \neq y$, on a alors $y \neq x$, donc $y \in E \setminus \{x\}$.
- Sinon, g(z) = z, donc f(g(z)) = a. En outre, dans ce cas, $z \in E \setminus \{x\}$.

Dans les deux cas, il existe donc un élément w de $E \setminus \{x\}$ tel que f(g(w)) = a, et donc h(w) = a. Cela montre que h est surjective.

Lemme : Soit n un entier naturel non nul. Soit E un ensemble de cardinal n. Alors il existe un sous-ensemble F de E, de cardinal n-1, et un élément x de E, tels que $E=F\cup\{x\}$.

Démonstration : Puisque $n \neq 0$, $E \neq \emptyset$. On peut donc choisir un élément x de E. Soit $F = E \setminus \{x\}$. D'après le lemme précédent, le cardinal de F est n-1. En outre, on a $E = F \cup \{x\}$, ce qui montre le lemme.

Par soucis de complétude, montrons qu'on a bien $E = F \cup \{x\}$.

^{20.} Plus formellement, on définit l'ensemble g par $g = f \cup \{(x, n)\}$. Alors,

[•] Soit z un élément de g, alors $z \in f$ ou z = (x, n). Dans le premier cas, $z \in E \times n$, donc puisque $E \subset E \cup \{x\}$ et $n \subset n+1$, $z \in (E \cup \{x\}) \times (n+1)$. Dans le second cas, $z \in (E \cup \{x\}) \times (n+1)$ puisque $x \in E \cup \{x\}$ et $n \in n+1$.

[•] Soit a un élément de $E \cup \{x\}$. Si $a \in E$, il existe un unique élément, noté b dans la suite, tel que $(a, b) \in f$. Alors, puisque $f \subset g$, $(a, b) \in g$. Sinon, a = x et $(a, n) \in g$.

[•] Soit a un élément de $E \cup \{x\}$ et b et c deux éléments de n+1 tels que $(a,b) \in g$ et $(a,c) \in g$. Si $a \in E$, alors $a \neq x$, donc $(a,b) \neq (x,n)$ et $(a,c) \neq (x,n)$. Donc, $(a,b) \in f$ et $(a,c) \in f$. Puisque f est une fonction, on en déduit f est une fonction, on a f existe aucun élément de f dont la première composante est f est une fonction, on en déduit f est une fonction, on a f existe aucun élément de f dont la première composante est f existe aucun élément de f dont la première composante est f existe aucun élément de f existe aucun élément d

Agnsi, g est bien une fonction de $E \cup \{x\}$ vers n + 1.

^{21.} Soit a et b deux éléments de $E \cup \{x\}$ tels que g(a) = g(b). Si g(a) = n, puisque $n \notin n$, on a a = x et, puisqu'alors g(b) = n, b = x, donc a = b. Sinon, (a, g(a)) et (b, g(a)) sont deux éléments de f et, puisque f est injective, on a a = b.

^{22.} Soit z un élément de n + 1. Si z = n, on a g(x) = n. Sinon, z < n, donc $z \in n$ et, puisque f est surjective, on peut choisir un élément e de E tel que f(e) = z, et donc g(e) = z.

^{23.} L'ensemble g est bien une fonction de E vers E. En effet, tout élément de g est un élément de $E \times E$ et, soit z un élément de E,

[•] Si $z \notin \{x, y\}$, il existe un unique élément w de E(z lui-même) tel que $(z, w) \in g$.

[•] Si z=x, y est le seul élément w de E tel que $(z,w) \in g$ (y compris si x=y, car alors les deux premières propriétés définissant g sont équivalentes).

Si z = y, x est le seul élément w de E tel que (z, w) ∈ g (y compris si x = y, car alors les deux premières propriétés définissant g sont équivalentes).

- Soit y un élément de E. Si $y = x, y \in \{x\}$. Sinon, $y \in F$. Dans les deux cas, $y \in F \cup \{x\}$. Donc, $E \subset F \cup \{x\}$.
- Soit y un élément de F ∪ {x}. Alors, y ∈ F ou y ∈ {x}. Si y ∈ F, alors y ∈ E puisque F est un sous-ensemble de E. Si x ∈ {x}, alors y = x, et donc y ∈ E. Ainsi, F ∪ {x} ⊂ E.

On a donc bien $E = F \cup \{x\}$.

Lemme : Soit E et F deux ensembles. On suppose que E est fini et $F \subset E$. Alors, F est fini et $|F| \le |E|$. En outre, d'après le lemme précédent, |F| = |E| si et seulement si F = E.

Démonstration : On procéde par récurrence sur le cardinal de E. On veut montrer que le prédicat suivant est vrai : $\forall E \forall F(\mathcal{F}(E) \land |E| = n \land F \subset E) \Rightarrow (\mathcal{F}(F) \land |F| \leq |E|)$, où, pour tout ensemble $X, \mathcal{F}(X)$ est vrai si X est fini et faux sinon.

Si |E| = 0, alors $E = \emptyset$. Soit F tel que $F \subset E$. Alors, $F = \emptyset$. Donc, F est fini et de cardinal égal à celui de E (0). Ainsi, P(0) est vrai.

Soit *n* un entier naturel tel que P(n) est vrai. Soit *E* un ensemble de cardinal n+1 et *F* un sous-ensemble de *E*. Si $F = \emptyset$, *F* est bien fini et de cardinal 0, donc |F| < n+1, donc $|F| \le n+1$, donc |F| < |E|.

Sinon, on peut choisir un élément x de F. Puisque F et un sous-ensemble de F, on a $x \in E$. Donc, $E \setminus \{x\}$ est de cardinal n. En outre, $F \setminus \{x\} \subset E \setminus \{x\}$. En effet, soit y un élément de $F \setminus \{x\}$, on a $y \in F$, donc $y \in E$, et $y \neq x$. Puisque P(n) est vrai, on en déduit que $F \setminus \{x\}$ est fini et de cadinal inférieur ou égal à n. Soit m le cardinal de $F \setminus \{x\}$. Puisque $x \notin F \setminus \{x\}$ et $F = (F \setminus \{x\}) \cup \{x\}$, on en déduit que F est de cardinal m + 1. En outre, puisque $m \leq n$, on a $m + 1 \leq n + 1$, et donc $|F| \leq |E|$.

Lemme : Soit E et F deux ensembles finis tels que $E \cap F = \emptyset$. Alors $E \cup F$ est fini et $|E \cup F| = |E| + |F|$.

Démonstration : On procède par récurrence sur le cardinal de F. Si |F|=0, alors $F=\emptyset$, donc $E\cup F=E$ et $|E\cup F|=|E|=|E|+|F|$.

Soit n un entier naturel et supposons la propriété énoncée dans le lemme vraie pour tout ensemble F de cardinal n. Soit F un ensemble fini de cardinal n+1 tel que $E \cap F = \emptyset$. Puisque $n+1 \neq 0$, F est non vide. Soit x un élément de F. Puisque $E \cap F = \emptyset$, x ne peut être un élément de E. Donc, x n'est pas un élément de $E \cup (F \setminus \{x\})$. Puisque $E \cup F = (E \cup (F \setminus \{x\})) \cup \{x\}$, car $|F \setminus \{x\}| = |F| - 1 = n$ et car $E \cup (F \setminus \{x\}) = \emptyset$, on a donc :

$$|E \cup F| = |E \cup (F \setminus \{x\})| + 1 = |E| + |F \setminus \{x\}| + 1 = |E| + |F| - 1 + 1 = |E| + |F|$$
.

La propriété attendue est donc vraie pour tout ensemble F de cardial n + 1. Par récurence, elle l'est pour tout ensemble F fini.

Lemme : Soit E un ensemble de cardinal fini n. Soit F un sous-ensemble de E Alors $E \setminus F$ est fini et $|E \setminus F| = |E| - |F|$.

Démonstration : Notons d'abord que F et $E \setminus F$ sont deux sous-ensembles de E, donc finis, et $|F| \le |E|$.

Montrons le reste du lemme par récurrence sur |F|. Pour $|F| = \emptyset$, $E \setminus F = E$, donc $|E \setminus F| = |E| = |E| - |F|$.

Soit n un entier naturel et supposons la propriété vraie pour tout sous-ensemble F de E de cardinal n. Soit F un sous-ensemble de E de cardinal n+1. Puisque $n+1 \neq 0$, on peut choisir un élément x de F. Notons que $E \setminus F = (E \setminus (F \setminus \{x\})) \setminus \{x\}$. Donc, et puisque $x \in E \setminus (F \setminus \{x\})$,

$$|E \setminus F| = |E \setminus (F \setminus \{x\})| - 1 = |E| - n - 1 = |E| - (n+1) = |E| - |F|$$
.

La propriété attendue est donc vraie pour tout sous-ensemble F de cardial n + 1. Par récurence, elle l'est pour tout sous-ensemble fini de E, et donc pour tout sous-ensemble de E.

Lemme : Soit E et F deux ensembles. On suppose que E est fini et qu'il existe une surjection de E vers F. Alors F est fini et $|F| \le |E|$.

Démonstration : On procède par récurrence forte sur le cardinal de E. Si |E| = 0, alors $E = \emptyset$. Puisqu'il existe une surjection de E vers F, on en déduit que $F = \emptyset$. Donc, F est fini et |F| = 0 = |E|, donc $|F| \le |E|$.

Soit n un entier naturel et supposons le lemme vrai pour tout ensemble fini E de cardinal infèrieur ou égal à n. Soit E un ensemble de cardinal n+1. Soit F un ensemble tel qu'il existe une surjection de E vers F. Soit f une telle surjection. Soit x un élément de E (un tel élément existe puisque |E| > 0) et soit y l'image de x ar f. Soit E_y l'ensemble des antécédents de y âr f. Alors, E_y est un sous-esemble de E et E_y est non vide puisque $x \in E_y$. Soit g l'ensemble défini par $g = f \setminus \{z \in f | \exists x \in E_y z = (x, y)\}$. Montrons que g est une surjection de $E \setminus E_y$ vers $F \setminus \{y\}$. Cela montrera

que $F \setminus \{y\}$ est fini et $|F \setminus \{y\}| \le |E \setminus E_y|$, et donc, puisque $F = F \setminus \{y\} \cup \{y\}$ et $y \notin F \setminus \{y\}$, que F est fini et $|F| = |F \setminus \{y\}| + 1$, d'où $|F| \le |E \setminus E_y| + 1$. Enfin, puisque $|E \setminus E_y| = |E| - |E_y|$ et $|E_y| \ge 1$, on en déduira $|F| \le |E|$. Montrons que g est une fonction de $E \setminus E_y$ vers $F \setminus \{y\}$.

- Soit z' un élément de g. Puisque g est un sous-ensemble de $f, z \in f$. Donc, on peut choisir un élément x' de E et un élément y' de E tels que E' = (x', y'). En outre, E' = (x', y') ne peut être un élément de E = (x', y') serait égal à E = (x', y') pour un élément E = (x', y') de E = (x', y') pour un élément E = (x', y') de E = (x', y') pour un élément E = (x', y') serait égal à E = (x', y') serait égal à E = (x', y') pour un élément E = (x', y') serait égal à E = (x', y') pour un élément E = (x', y') serait égal à E = (x', y') serait égal à E = (x', y') pour un élément E = (x', y') serait égal à E = (x', y') serait égal à
- Soit x' un élément de E \ E_y. Puisque f est une fonction de E vers F et x' ∈ E, on peut choisir un élément y' de F tel que (x', y') ∈ f. En outre, x' ∉ E_y, donc y' ∈ F \ {y} et (x', y') ∈ g.
- Soit y' et y'' deux éléments de $F \setminus \{y\}$ et x' un élément de $E \setminus E_y$ tels que $(x', y') \in g$ et $(x', y'') \in g$. Puisque g est un sous-ensemble de f, on a $(x', y') \in f$ et $(x', y'') \in f$. Puisque f est une fonction, on en déduit que f est une fonction.

Montrons qu'elle est surjective. Soit y' un élément de $F \setminus \{y\}$. On a $y' \in F$, donc, puisque f est surjective, on peut choisir un élément x' de E tel que $(x', y') \in f$. En outre, $f(x') \neq y$, donc $x' \neq E_y$. Donc, $x' \in E \setminus E_y$ et $(x', y') \in g$.

Lemme : Soit E et F deux ensembles. On suppose que F est fini et qu'il existe une injection de E vers F. Alors E est fini et $|E| \le |F|$.

Démonstration : Si $E = \emptyset$, alors E est fini et |E| = 0, donc $|E| \le |F|$. Sinon, puisqu'il existe une injection de E vers E, alors il existe une surjection de E vers E. D'après le lemme précédent, E est donc fini et $|E| \le |F|$.

Corolaire (contraposée): Soit E et F deux ensembles. On suppose qu'il existe une injection de E vers F et que E est infini. Alors F est infini.

Lemme : Soit E et F deux ensembles de même cardinal fini. Soit f une injection de E vers F. Alors f est une bijection.

Démonstration : On procède par récurrence sur le cardinal de E, noté n. Si n = 0, alors $E = F = \emptyset$. La seule fonction de \emptyset vers lui-même est \emptyset , qui est une bijection.

Soit n un entier naturel et supposons le résultat vrai pour des ensembles de cardinal n. Soit E et F deux ensembles de cardinal n+1 et f une injection de E vers F. Montrons que f est une bijection. Soit e un élément de E (un tel élément existe puisque E n'est pas de cardinal 0, et donc n'est pas l'ensemble vide). Soit g l'ensemble défini par : $g = f \setminus \{(e, f(e))\}$. Montrons que g est une injection de $E \setminus \{e\}$ vers $F \setminus \{f(e)\}$.

- Montrons d'abord qu'il s'agit bien d'une fonction du premier ensemble vers le second.
 - Soit z un élément de g. Alors z est un élément de f, donc on peut choisir un élément x de E et un élément y de F tels que z = (x, y). En outre, z ne peut être égal à (e, f(e)). Puisqu'un élément de E ne peut avoir qu'une image par une fonction, x doit être distinct de e (sans quoi on aurait y = f(e) par unicité de l'image et donc z = (e, f(e))). Puisque f est injective, on doit donc avoir y ≠ f(e) (car le seul élément w de E satisfaisant f(w) = f(e) est e). Donc, z ∈ (E \ {e}) × (F \ {f(e)}).
 - Soit x un élément de $E \setminus \{e\}$. Puisque f est une fonction de E vers F, on peut choisir un élément y de F tel que $(x, y) \in f$. Puisque $x \neq e$, $(x, y) \neq (e, f(e))$, donc $(x, y) \in g$.
 - Soit x un élément de E et y et y' deux éléments de F tels que $(x, y) \in g$ et $(x, y') \in g$. Alors, $(x, y) \in f$ et $(x, y') \in f$. Puisque f est une fonction, on en déduit y = y'.
- Montrons qu'elle est injective. Soit x et x' deux éléments de $E \setminus \{e\}$ tels que g(x) = g(x'). Puisque $(x, g(x)) \in g$ et $(x', g(x')) \in g$, on a $(x, g(x)) \in f$ et $(x', g(x')) \in f$, donc f(x) = g(x) et f(x') = g(x'), donc f(x) = f(x'). Puisque f est injective, on en déduit f(x) = f(x').

Ainsi, g est une injection de $E \setminus \{e\}$ vers $F \setminus \{f(e)\}$. Puisque $e \in E$ et $f(e) \in F$, ces deux ensembles sont de cardinal n, on en déduit que g est une bijection. Montrons qu'alors f est surjective. Soit g un élément de g est une bijection, alors g a un antécédent par g (et cet antécédent est g). Sinon, $g \in F \setminus \{f(e)\}$. Puisque g est une bijection, donc surjective, on peut choisir un élément g de g tel que g(g) = g. Donc, g est une puisque g est un sous-ensemble de g est un adonc g a un antécédent par g (et cet antécédent est g). Ainsi, g est surjective.

La fonction f est donc injective et surjective. C'est donc une bijection.

Lemme : Soit E et F deux ensembles de même cardinal fini. Soit f une surjection de E vers F. Alors f est une bijection.

Démonstration : Si |E| = 0, alors |F| = 0 et $E = F = \emptyset$. La seule fonction de \emptyset vers lui-même est \emptyset , qui est une bijection.

Supposons maintenant |E| > 0. On supose par l'absurde que f n'est pas bijective. Puisque f est surjective, f n'est donc pas injective. On peut donc choisir un élément y de F ayant au moins deux antécédents distincts par f. Notons E_{ν} l'ensemble de ses antécédents, i.e., $E_{\nu} = \{x \in E | f(x) = y\}$. Puisque E_{ν} est un sous-ensemble de E, lui-même

fini, E_y est fini. En outre, on sait qu'il existe deux éléments x et x' de E_y tels que $x \neq x'$, donc $\{x, x'\} \subset E_y$. Puisque $\big|\{x, x'\}\big| = 2$ (en effet, $\{(x, 0), (x', 1)\}$ est une bijection de $\{x, x'\}$ vers 2), on en déduit $\big|E_y\big| \geq 2$. En outre, puisque $E_y \subset E$, $\big|E \setminus E_y\big| = |E| - \big|E_y\big|$. Donc, $\big|E \setminus E_y\big| < |E| - 1$. Donc, $\big|E \setminus E_y\big| < |F \setminus \{y\}|$ (puisque $|F \setminus \{y\}| = |F| - 1 = |E| - 1$).

Définissons l'ensemble g par : $g = f \setminus \{z \in f | \exists x \in E \ z = (x, y)\}$. Montrons que g est une surjection de $E \setminus E_y$ vers $F \setminus \{y\}$. Cela impliquera $|F \setminus \{y\}| \le |E \setminus E_y|$, en contradiction avec le résultat précédent. On pourra alors conclure que l'hypothèse de départ est fausse, et que f doit donc être une bijection.

Montrons d'abord que g et une fonction de $E \setminus E_y$ vers $F \setminus \{y\}$.

- Soit z un élément d g. Puisque $z \in f$, on peut choisir un élément x' de E et un élément y' de F tels que z = (x', y'). Par ailleurs, on doit avoir $y' \neq y$, et donc $x' \notin E_y$ (sans quoi on aurait f(x') = y et donc y' = y). Donc, $z \in (E \setminus E_y) \times (F \setminus \{y\})$.
- Soit x' un élément de $E \setminus E_y$. On a $x' \in E$. Donc, on peut choisir un élément y' de F tel que $(x', y') \in f$. On a alors y' = f(x'), donc (puisque $x' \notin E_y$) $y' \neq y$. Donc, $(x', y') \in g$.
- Soit x', y' et y'' trois ensembles tels que $(x', y') \in g$ et $(x', y'') \in g$. Alors, $(x', y') \in f$ et $(x', y'') \in f$. Puisque f est une fonction, on en déduit y' = y''.

Ainsi, g est bien une fonction de $E \setminus E_y$ vers $F \setminus \{y\}$.

Montrons qu'elle est surjective. Soit y' un élément de $F \setminus \{y\}$. Puisque $y' \in F$ et puisque f est surjective, on peut choisir un élément x' de E tel que f(x') = y'. Puisque $y' \neq y$, (x', y') est donc un élément de g, donc g(x') = y'. La fonction g est donc bien surjective.

Lemme : Soit E et F deux ensembles finis. Alors les ensembles $E \cap F$ et $E \cup F$ sont finis, et $|E \cup F| = |E| + |F| - |E \cap F|$.

Démonstration : On procède par récurrence sur le cardinal de E. On veux montrer le prédicat P à un paramètre libre défini pour tout entier naturel n par : P(n) : $\forall E \, \forall F \, |E| = n \, \land \, |F| \in \mathbb{N} \Rightarrow |E \cap F| \in \mathbb{N} \, \land \, |E \cup F| = |E| + |F| - |E \cap F|$. Montrons d'abord P(0). Soit E un ensemble de cardinal nul et F un ensemble fini. Alors, $E = \emptyset$. Donc, $E \cap F = \emptyset$ et $E \cup F = F$. Donc, $E \cap F$ et $E \cup F$ sont finis, $|E \cap F| = 0$ et $|E \cup F| = |F|$. Donc, $|E \cup F| = |E| + |F| - |E \cap F|$. Cela montre que P(0) est vrai.

Soit n un entier naturel et supposons que P(n) est vrai. Montrons qu'alors P(n+1) est vrai. Soit E un ensemble fini de cardinal n+1 et F un ensemble fini. Puisque n+1>0, E n'est pas l'ensemble vide, donc on peut choisir un élément e de E. Soit E' l'ensemble $E\setminus\{e\}$. Puisque $e\in E$, E' a pour cardinal (n+1)-1, c'est-à-dire n. Donc, $E'\cap F$ et $E'\cup F$ sont finis, et $|E'\cup F|=n+|F|-|E'\cap F|$. Notons m le cardinal de F et k' celui de $E'\cap F$. Distinguons deux cas, selon que e appartienne ou non à F.

Supposons d'abord $e \in F$. Alors, $E \cap F = (E' \cap F) \cup \{e\}^{24}$. Puisque E' ne contient pas $e, e \notin E' \cap F$, donc $E \cap F$ est fini et a pour cardinal k' + 1. Par ailleurs, $E \cup F = E' \cup F^{25}$. Donc, $E \cup F$ est fini et a pour cardinal n + m - k'. Puisque n + m - k' = (n + 1) + m - (k' + 1), on en déduit que $|E \cup F| = |E| + |F| - |E \cap F|$.

Supposons maintenant que $e \notin F$. Alors, $E \cap F = E' \cap F^{26}$. Donc, $E \cap F$ est fini et a pour cardinal k'. Par ailleurs, $E \cup F = (E' \cup F) \cup \{e\}^{27}$. Puisque e n'est pas un élément de E' ni de F, on en déduit $|E \cup F| = |E' \cup F| + 1 = (n + m - k') + 1$. Puisque (n + 1) + m - k' = (n + m - k') + 1, on en déduit $|E \cup F| = |E| + |F| - |E \cap F|$.

Ainsi, pour tout entier naturel n, $P(n) \Rightarrow P(n+1)$. On en conclut que P(n) est vrai pour tout entier naturel n.

24. En effet,

- Soit x un élément de $E \cap F$. Puisque $x \in E$, $x \in E'$ ou x = e. Dans le premier cas, et puisque $x \in F$, $x \in E' \cap F$. Dans le second cas, $x \in \{e\}$.
- Soit x un élément de $(E' \cap F) \cup \{e\}$. Alors, $x \in E' \cap F$ ou x = e. Dans le premier cas, $x \in E \cap F$ puisque E' est un sous-ensemble de E. Dans le second cas, $x \in E \cap F$ puisque e est un élément de E et de F.

25. En effet,

- $E' \cup F \subset E \cup F$ puisque $E' \subset E$.
- Soit x un élément de $E \cup F$. Alors, $x \in F$ ou $x \in E$. Dans le premier cas, $x \in E' \cup F$. Sinon, $x \in E$ et $x \ne e$, donc $x \in E'$, et donc $x \in E' \cup F$.

26. En effet,

- Soit x un élément de $E \cap F$. Puisque $x \in E$, $x \in E'$ ou x = e. Puisque $x \in F$, $x \ne E$. Donc, $x \in E'$ et $x \in F$, donc $x \in E' \cap F$.
- Soit x un élément de $E' \cap F$. Puisque E' est un sous-ensemble de $E, x \in E$. Donc, $x \in E$ et $x \in F$, donc $x \in E \cap F$.

27. En effet.

- Soit x un élément de $E \cup F$. Alors, $x \in F$ ou $x \in E$. Dans le premier cas, $x \in E' \cup F$. Sinon, $x \in E$, donc $x \in E'$ ou x = e. Dans le premier cas, $x \in E' \cup F$. Dans le second, $x \in \{e\}$
- Soit x un élément de (E' ∪ F) ∪ {e}. Alors, x appartient à E', à F ou à {e}. Dans le premier ou le troisième cas, x appartient à E. Dans le second cas, x appartient à F. Donc, dans tous les cas, x ∈ E ∪ F.

Soit E et F deux ensemble finis. Puisque |E| est un entier naturel, P(|E|) est vrai. On en déduit que les ensembles $E \cap F$ et $E \cup F$ sont finis et que $|E \cup F| = |E| + |F| - |E \cap F|$.

Lemme : Soit E et F deux ensembles finis. Alors, $E \times F$ est fini et $|E \times F| = |E| \times |F|$.

Démonstration : On procède par récurrence sur le cardinal de F. Supposons d'abord |F| = 0. Alors, $E = \emptyset$. Donc, $E \times F = \emptyset$. Donc, $E \times F$ est fini et $|E \times F| = 0$. En outre, $|E| \times |F| = |E| \times 0 = 0$. Donc, $|E \times F| = |E| \times |F|$.

Soit n un entier naturel. On suppose l'énoncé du lemme vrai pour tout ensemble fini E et tout ensemble fini F de cardinal n. Soit E un ensemble fini et F un ensemble fini de cardinal n+1. Puisque n+1>0, $F\neq\emptyset$, donc on peut choisir un élément E de E. Soit E l'ensemble défini par : E is E le E le E le cardinal E le cardinal E le E le cardinal le E le cardinal le le E le le cardinal le le le cardinal le le cardinal le le le cardinal le le le le le le le cardinal, on peut choisir une bijection E de E le le le le le le le manière suivante : soit E un élément de E et E

- si $b \neq x$, h((a, b)) = f((a, b)),
- si b = x, $h((a, b)) = |E| \times n + g(a)$.

Montrons maintenant que h est une bijection. Cela montrera que $E \times F$ est fini et de cardinal $|E| \times n + |E|$. Puisque $|E| \times n + |E| = |E| \times (n+1) = |E| \times |F|$, cela montrera le résultat attendu.

- f est surjective : Soit m un élément de $|E| \times n + |E|$. Alors, $m < |E| \times n + |E|$.
 - Si $n < |E| \times n$, m est dans l'image de f, donc on peut choisir un élément a de E et un élément b de F' tel que f((a,b)) = m. Puisque $b \in F'$, $b \in F$ et $b \ne x$. Donc, h((a,b)) = f((a,b)) = m.
 - Sinon, $m |E| \times n \in \mathbb{N}$. En outre, n < |E|. Donc, on peut choisir un élément a de E tel que $g(a) = m |E| \times n$. On a donc $h((a, x)) = |E| \times n + m |E| \times n = m$.
- f est injective: Soit u et v deux éléments de $E \times F$ tels que h(u) = h(v). Soit a et a' deux éléments de E et b et b' deux éléments de F tels que u = (a, b) et v = (a', b'). On a donc h((a, b)) = h((a', b')). Alors,
 - Si b = x, alors $h((a,b)) \ge |E| \times n$, donc $h((a,b')) \ge |E| \times n$. Donc, b' = x. Donc, b = b'. En outre, h((a,b)) = g(a) et h((a',b')) = g(a'). Donc, g(a) = g(a'). Puisque g est injective, on en déduit a = a', donc (a,b) = (a',b'), et donc u = b.
 - Sinon, h((a,b)) = f((a,b)). Donc, $h((a,b)) < |E| \times n$. Donc, $h((a',b')) < |E| \times n$. Donc, $b' \neq x$, et donc h((a',b')) = f((a',b')). On a donc h(u) = h(v). Puisque h est injective, on en déduit u = v.

Ainsi, le résultat attendu est vrai pour toues ensembles finis E et F tels que |F| = n + 1. Par récurrence, il est donc vrai pour tous ensembles finis E et F tels que $|F| \in \mathbb{N}$, et donc pour tous ensembles finis E et F.

Corrolaire : Soit n un entier naturel supérieur ou égal à 2 et E_1 , E_2 , ..., E_n des ensembles finis. Alors, $E_1 \times E_2 \times \cdots \times E_n$ est fini et $|E_1 \times E_2 \times \cdots \times E_n| = \prod_{i=1}^n |E_i|$.

Démonstration : On procède par récurrence sur n. Pour n = 2, il s'agit du lemme précédent.

Soit m un entier naturel supérieur ou égal à 2 et supposons l'énoncé vrai pour n=m. Soit $E_1, E_2, ..., E_{m+1}$ des ensembles finis. Alors, $E_1 \times E_2 \times \cdots \times E_m$ est fini et de cardinal $\prod_{i=1}^m |E_i|$. Donc, d'après le lemme précédent, $(E_1 \times E_2 \times \cdots \times E_m) \times E_{m+1}$ est fini et de cardinal $(\prod_{i=1}^m E_i) \times |E_{m+1}|$, qui est égal à $\prod_{i=1}^{m+1} |E_i|$. L'énoncé est donc vrai pour n=m+1. Par récurrence, il l'est pour tout entier naturel n supérieur ou égal à n.

Lemme : Soit E un ensemble non vide et F un ensemble infini. Alors $E \times F$ et $F \times E$ sont infinis.

- Soit x et y deux éléments de F tels que f(x) = f(y). Alors, (e, x) = (e, y), donc x = y. Cela montre que f est injective.
- Soit x et y deux éléments de F tels que g(x) = g(y). Alors, (x, e) = (y, e), donc x = y. Cela montre que g est injective.

1.6.2. Cas de l'ensemble des entiers naturels

Lemme : L'ensemble \mathbb{N} est infini.

Démonstration : Montrons par récurrence qu'il n'existe aucune bijection entre un entier naturel n et \mathbb{N} . Pour n = 0, cela est évident car $\mathbb{N} \neq \emptyset$, donc il n'existe pas de bijection entre \mathbb{N} et 0.

Traitons explicitement le cas n=1 (bien que cela ne soit pas strictement nécessaire pour la récurrence). Ce cas est évident car, s'il existe une bijection d'un ensemble E vers 1, alors il existe une bijection de 1 vers E; puisque 1 ne contient qu'un seul élément (0) E ne peux alors contenir qu'un seul élément (l'image de 0 par cette fonction), ce qui est impossible pour \mathbb{N} puisque $0 \in \mathbb{N}$, $1 \in \mathbb{N}$ et $1 \neq 0$.

Soit n un entier naturel tel qu'il n'existe pas de bijection entre n et \mathbb{N} . Montrons qu'il n'existe pas de bijection de n+1 vers \mathbb{N} . Par récurrence, le résultat sera montré pour tout entier naturel.

On procède par l'absurde : on suppose qu'une telle bijection existe, notée f dans la suite, et on montre que cela mène à une contradiction. Définissons la fonction g de n vers $\mathbb N$ par : pour tout élément x de n, g(x) = f(x) si f(x) < f(n) et g(x) = f(x) - 1 sinon. (Cela est possible car, puisque f est injective, on a f(x) > f(n) dans le second cas²⁹, et donc f(x) > 0, donc f(x) - 1 est bien un entier naturel.) Montrons que g est une bijection, ce qui contredira l'hypothèse faite sur n.

Montrons d'abord qu'elle est injective. Soit x et y deux éléments de n tels que g(x) = g(y). Si f(x) < f(n) et f(y) < f(n), alors g(x) = f(x) et g(y) = f(y). Donc, f(x) = f(y). Puisque f est injective, on a donc x = y. Si f(x) > f(n) et f(y) > f(n), alors g(x) = f(x) - 1 et g(y) = f(y) - 1. Donc, f(x) - 1 = f(y) - 1, et donc f(x) = f(y). Puisque f est injective, on a donc f(x) = f(y). Puisque f(x) = f(y) - 1, donc f(x) = f(y). Qui est impossible puisque f(x) = f(x). De même, f(x) > f(x) et f(y) < f(x) est impossible (même argument en échangeant les rôles de f(x) et f(x) est injective.

Montrons maintenant qu'elle est surjective. Soit m un élément de \mathbb{N} . Puisque f est surjective, on peut choisir deux éléments x et y de n+1 tels que f(x)=m et f(y)=m+1. Si m< f(n), alors $x\neq n$, donc $x\in n$ et g(x)=m. Si $m\geq f(n)$, alors m+1>f(n), donc $y\neq n$ et g(y)=m. Dans les deux cas, m a donc un antécédent par g. Ainsi, g est surjective. C'est donc bien une bijection.

Cela est contradictoire avec l'hypothèse qu'il n'existe aucune bijection de n sur \mathbb{N} . On en déduit qu'il n'existe aucune bijection de n+1 vers \mathbb{N} . Par récurrence, on conclut que, pour tout entier naturel n, il n'existe aucune bijection de n vers \mathbb{N} , et donc aucune bijection de \mathbb{N} vers n. L'ensemble \mathbb{N} est donc infini.

Lemme: Soit E un ensemble de cardinal infini. Alors il existe une injection de \mathbb{N} vers E.

Démonstration : Il s'agit de montrer qu'il existe une suite u d'éléments de E deux-à-deux distincts. Pour ce faire, on définit par récurrence une suite u d'éléments de l'ensemble des parties de $\mathbb{N} \times E$ telle que :

- Pour tout entier naturel n, v_n est une injection de n dans E.
- Si n, m et k sont trois entiers naturels tels que k < n, $m \le n$ et k < m, alors $v_n(k) = v_m(k)$.

La suite u définie par $u = \left(v_{n+1}(n)\right)_{n \in \mathbb{N}}$ sera alors une injection de \mathbb{N} dans E. En effet, si n et m sont deux entiers naturels tels que $u_n = u_m$, on a $v_{n+1}(n) = v_{m+1}(m)$. Si n < m, alors n < m+1 et n < n+1, donc $v_{m+1}(n) = v_{n+1}(n)$, donc $v_{m+1}(n) = v_{m+1}(m)$, ce qui est impossible puisque v_{m+1} est une injection. Si m < n, cela donne (même argument en échangeant les rôles de n et m) $v_{n+1}(m) = v_{n+1}(n)$, ce qui est impossible puisque v_{n+1} est une injection. On en déduit que n = m. La suite u sera donc bien une injection de \mathbb{N} dans \mathbb{E} .

Posons d'abord $v_0 = \emptyset$. Il s'agit bien d'une injection de 0 dans E.

Soit n un entier naturel et supposons v_n définit. Puisque le cardinal de E n'est pas n, v_n ne peut être surjective (sans quoi elle serait une bijection de n vers E, et donc E serait de cardinal n, et donc fini). Donc, on peut choisir un élément x de E tel que x n'est pas dans l'image de v_n . Posons $v_{n+1} = v_n \cup \{(n, x)\}$. Alors,

- Puisque $n + 1 = n \cup \{n\}$, v_{n+1} est bien une fonction de n + 1 vers E^{30}
- Puisque v_n est injective et que x n'est pas dans son image, v_{n+1} est injective. (Soit a et b deux éléments de n+1 tels que $v_{n+1}(a) = v_{n+1}(b)$, alors a = b = n si $v_{n+1}(a) = x$ et a et b appartiennent à n sinon, et donc a = b car v_n est injective. (Soit a et b deux éléments de n+1 tels que $v_{n+1}(a) = v_{n+1}(b)$, alors a = b = n si $v_{n+1}(a) = x$ et a et b appartiennent à b sinon, et donc a = b car b est injective.

^{28.} En effet, il devrait exister deux éléments de 1 dont les images sont 0 et 1. Si on note f cette bijection, on aurait f(0) = 0 et f(0) = 1, ce qui est impossible par définition d'une fonction.

^{29.} En effet, puisque $n \notin n$, on a $x \neq n$, donc $f(x) \neq f(n)$. Puisque, dans ce second cas, f(x) < f(n) est faux, $f(x) \ge f(n)$ est vrai, et donc f(x) > f(n).

^{30.} Montrons cela explicitement

⁻ Soit z un éllément de v_{n+1} . Alors, soit $z \in v_n$, et donc $z \in n \times E$, soit z = (n, x) et donc $z \in \{n\} \times E$. Puisque $n+1 = n \cup \{n\}$, on a $z \in (n+1) \times E$ dans les deux cas.

Soit m un élémen de n + 1. Alors m ∈ n ou m = n. Dans le premier cas, puisque v_n est une fonction de n vers E, on peut choisir un élément y de E tel que (m, y) ∈ v_n, et donc (m, y) ∈ v_{n+1}. Dans le second cas, (m, x) ∈ v_{n+1}.

⁻ Soit m un élément de n+1 et y et z deux éléments de E tels que $(m,y) \in v_{n+1}$ et $(m,y') \in v_{n+1}$. Si m=n, alors $m \notin n$, donc $(m,y) \notin v_n$ et $(m,y') \notin v_n$. Donc, (m,y) = (n,x) et (m,y') = (n,x). Donc, y=x et y'=x, donc y=y'. Sinon, $(m,y) \neq (n,x)$ et $(m,y') \neq (n,x)$, donc $(m,y) \in v_n$ et $(m,y) \in v_n$. Puisque v_n et une fonction, on en déduit que là aussi y=y'.

^{31.} Détaillons un peu cet argument. Si $v_{n+1}(a) = x$, alors $v_{n+1}(a)$ n'est pas dans l'image de v_n . Pour tout élément m de n, on a donc $a \neq m$ (sans quoi

• Soit m et k deux entiers naturels tels que $m \le n+1$ et k < m. Si $m \le n$, alors $v_m(k) = v_n(k)$, et donc $v_m(k) = v_{n+1}(k)$. Sinon, m = n+1, donc $v_m = v_{n+1}$, et donc $v_m(k) = v_{n+1}(k)$.

Définition : Soit \mathscr{E} l'ensemble des fonctions d'une partie de \mathbb{Y} vers \mathbb{Y} . On définit par récurrence deux suites d'éléments de \mathscr{E} , notées Σ et Π de la manière suivante :

- Σ_0 et Π_0 sont les fonctions de $\{\emptyset\}$ vers \mathbb{Y} telles que $\Sigma_0(\emptyset) = 0$ et $\Pi_0(\emptyset) = 1$.
- Pour tout entier naturel n, Σ_{n+1} et Π_{n+1} sont les fonctions de l'ensemble des parties de \mathbb{Y} de cardinal n+1 vers \mathbb{Y} telles que, pour tout sous-ensemble y de \mathbb{Y} de cardinal n et tout élément x de \mathbb{Y} tel que $x \notin y$, $\Sigma_{n+1}(y \cup \{x\}) = \Sigma_n(y) + x$ et $\Pi_{n+1}(y \cup \{x\}) = \Pi_n(y) \times x$. (Cela est une bonne définition car tout sous-ensemble de \mathbb{Y} de cardinal n+1 peut s'écrire sous cette forme \mathbb{Y} et car, s'il peut s'écrire sous cette forme de plusieurs manières différentes, le résultat n'en est pas affecté. Ce second point est démontré ci-dessous.)

Soit E un sous-ensemble de \mathbb{Y} de cardinal fini n. On note $\sum E$ l'entier $\Sigma_n(E)$ et $\prod E$ l'entier $\Pi_n(E)$.

Lemme : Soit n un entier naturel et Σ_n et Π_n définis comme ci-dessus. Soit E un sous-ensemble de \mathbb{Y} de cardinal n+1. Soit F_1 et F_2 deux sous-ensembles de E de cardinal n et x_1 et x_2 deux éléments de E tels que $E = F_1 \cup \{x_1\} = F_2 \cup \{x_2\}$. Alors $\Sigma_n(F_1) + x_1 = \Sigma_n(F_2) + x_2$ et $\Pi_n(F_1) \times x_1 = \Pi_n(F_2) \times x_2$.

Démonstration : On procède de la manière suivante :

- On montre d'abord que, si $x_2 = x_1$, alors $F_2 = F_1$. Dans ce cas, le résultat est alors évident.
- On suppose ensuite que $x_2 \neq x_1$. Alors, $n \geq 1$ (car $\{x_1, x_2\} \subset E$, donc $|E| \geq |\{x_1, x_2\}|$, donc $|E| \geq 2$, donc, puisque n = |E| 1, $n \geq 1$), $x_2 \in F_1$ (car $x_2 \in F_1 \cup \{x_1\}$ et $x_2 \notin \{x_1\}$) et $x_1 \in F_2$ (même argument en échangeant les indices 1 et 2). On définit l'ensemble G par $G = F_1 \setminus \{x_2\}$ et montre que $F_2 \setminus \{x_1\} = G$.
- On a alors $\Sigma_n(F_1) + x_1 = \Sigma_{n-1}(G) + x_2 + x_1$ et $\Sigma_n(F_2) + x_2 = \Sigma_{n-1}(G) + x_1 + x_2$. Puisque l'addition est commutative, on en déduit $\Sigma_n(F_1) + x_1 = \Sigma_n(F_2) + x_2$.
- De même, $\Pi_n(F_1) \times x_1 = \Pi_{n-1}(G) \times x_2 \times x_1$ et $\Pi_n(F_2) \times x_2 = \Pi_{n-1}(G) \times x_1 \times x_2$. Puisque la multiplication est commutative, on en déduit $\Pi_n(F_1) \times x_1 = \Pi_n(F_2) \times x_2$.

Notons d'abords que $x_1 \notin F_1$ et $x_2 \notin F_2$. En effet, si $x_1 \in F_1$, on aurait $F_1 = E$, ce qui est impossible puisqu'ils sont de cardinaux différents. Donc, $x_1 \notin F_1$. De même, en remplaçant l'indice 1 par 2, on montre que $x_2 \notin F_2$.

Montrons le premier point. Supposons que $x_2 = x_1$. Soit e_1 un élément de F_1 . Alors, $e_1 \in E$ et $e_1 \neq x_1$. Puisque $x_2 = x_1$, on en déduit $e_1 \neq x_2$. Or, puisque $E = F_2 \cup \{x_2\}$ et $e_1 \in E$, on a $(e_1 \in F_2) \vee (e_1 \in \{x_2\})$. Puisque $e_1 \neq x_2$, $e_1 \in \{x_2\}$ est faux. On en déduit donc que $e_1 \in F_2$. Cela montre que $F_1 \subset F_2$. De même, en échangeant les rôles des indices 1 et 2, on montre que $F_2 \subset F_1$. Ainsi, $F_1 = F_2$ et le résultat attendu est évident (car $x_2 = x_1$ et $F_2 = F_1$). Dans la suite, on suppose que $x_2 \neq x_1$.

Montrons maintenant que l'ensemble G défini par $G = F_1 \setminus \{x_2\}$ satisfait : $G = F_2 \setminus \{x_1\}$. Soit x un élément de G. Puisque F_1 est un sous-ensemble de E, on a $x \in E$. Puisque $x \neq x_2$ et puisque $E = F_2 \cup \{x_2\}$, on en déduit $x \in F_2$. En outre, puisque $x_1 \notin F_1$, $x \neq x_1$. Donc, $x \in F_2 \setminus \{x_1\}$. Cela montre que $G \subset F_2 \setminus \{x_1\}$.

Soit x un élément de $F_2 \setminus \{x_1\}$. Puisque F_2 est un sous-ensemble de E, on a $x \in E$. Puisque $x \neq x_1$ et puisque $E = F_1 \cup \{x_1\}$, on en déduit $x \in F_1$. En outre, puisque $x_2 \notin F_2$, $x \neq x_2$. Donc, $x \in G$. Cela montre que $F_2 \setminus \{x_1\} \subset G$. Ainsi, on a bien $G = F_2 \setminus \{x_1\}$.

Lemme : Soit n et E un sous-ensemble de \mathbb{Y} de cardinal n+1. Soit y un élément de \mathbb{Y} . Soit F l'ensemble définit par : $F = \{x \in \mathbb{Y} | \exists e \in E \ x = ye\}$. Alors, $\sum F = y \sum E$.

Démonstration : Supposons d'abord que $y \neq 0$.

On procède par récurrence sur n. Si n=0, alors $E=\emptyset$, donc $F=\emptyset$ et $\sum E=\sum F=0$. Puisque $y\times 0=0$, on a bien $\sum F=y\sum E$.

Soit n un entier naturel non nul et supposons le résutat vrai. Montrons qu'il reste vrai en remplaçant n par n+1. Soit E un sous-ensemble de \mathbb{Y} de cardinal n+1. Soit e un élément de E (un tel élément existe puisque n+1>0, donc E est non vide). Soit E' l'ensemble définit par $E'=E\setminus\{e\}$. Soit E' l'ensemble définit par : $E'=\{x\in\mathbb{Y}|\exists e\in E\ x=ye\}$ et E' l'ensemble définit par : $E'=\{x\in\mathbb{Y}|\exists e\in E'\ x=ye\}$. Puisque E' est de cardinal E'=E'. En outre, on a E'=E' un effet,

on aurait $v_{n+1}(a) = v_{n+1}(m) = v_n(m)$). Donc, $a \in (n+1) \setminus n$. Donc, a = n. Puisque $v_{n+1}(b) = x$, on a aussi (même argument en remplaçant a par b) b = n, donc a = b.

Sinon, $(a, v_{n+1}(a)) \in v_n$ et $v_{n+1}(b) \neq x$, donc $(b, v_{n+1}(b)) \in v_n$, donc $(b, v_{n+1}(a)) \in v_n$. Puisque v_n est injective, on en déduit a = b. Ainsi, a = b dans tous les cas.

32. Soit E un ensemble de cardinal n+1. Puisque n est un entier naturel, $n+1 \neq 0$. Donc, E n'est pas l'ensemble vide. On peut donc choisir un élément x de E. Soit F l'ensemble défini par $F = E \setminus \{x\}$. On a alors |F| = n, $E = F \cup \{x\}$ et $x \notin F$.

- Soit x un élément de F. Alors, il existe un élémetnt w de E tel que x = yw. Puisque $E = E' \cup \{e\}$, $w \in E'$ ou w = e. Dans le premier cas, $yw \in F'$, donc $x \in F'$. Dans le second cas, yw = ye, donc $x \in \{ye\}$.
- Soit x un élément de $F' \cup \{ye\}$. Si $x \in F'$, on peut choisir un élément w de E' tel que x = yw. Puisque E' est un sous-ensemble de E, $yw \in F$, donc $x \in F$. Sinon, x = ye. Puisque $e \in E$, on a alors $x \in F$.
- Si $ye \in F'$, on pourrait choisir un élément e' de E' tel que ye' = ye. Puisque y > 0, cela impliquerait e' = e, ce qui est impossible puisque $e \notin E'$. DOnc, $ye \notin F$.

Donc,
$$\sum F = \sum F' + ye = y \sum E' + ye = y(\sum E' + e) = y \sum E$$
.

Par récurrece, on en déduit que le résultat est vrai pour tout entier naturel n.

Supposons maintenant y = 0. Alors, $y \sum E = 0$. En outre, F est vide si E est vide ou contient 0 pour seul élément sinon. Dand les deux cas, $\sum F = 0$, donc $\sum F = y \sum E$.

1.6.3. Ensemble défini par une liste d'éléments

Soit p un entier naturel non nul et $a_1, a_2, ..., a_p$ des ensembles. On note $\{a_1, a_2, ..., a_p\}$ l'ensemble contenant exactement $a_1, a_2, ..., a_p$, i.e.,

$$\{a_1,a_2,\dots,a_p\}=\{x|\exists i\,(i\in[\![1,p]\!])\wedge(x=a_i)\}.$$

Supposons les ensembles $a_1, a_2, ..., a_p$ sont deux-à-deux distincts. Alors, l'ensemble $\{a_1, a_2, ..., a_p\}$, noté E dans la suite de ce paragraphe, a pour cardinal p. En effet, la fonction f de p vers E définie par : pour tout élément i de p, $f(i) = a_{i+1}$ est

- surjective : Soit y un élément de E, on peut choisir un entier naturel j dans [1, p] tel que $y = a_j$. Puisque $j \ge 1$, j-1 est un entier naturel. Puisque $j \le p$, j-1 < p, donc $j-1 \in p$. On a $f(j-1) = a_{(j-1)+1} = a_j = y$, donc y a un antécédant par f.
- injective : Soit i et j deux éléments de p tels que f(i) = f(j). Alors, $a_{i+1} = a_{j+1}$. Puisque les ensembles $a_1, a_2, ..., a_p$ sont deux-à-deux distincts (ce qui se traduit par : $\forall i \in [[1, p]] \ i \neq j \Rightarrow a_i \neq a_j$), on a donc i + 1 = j + 1 (sans quoi a_{i+1} serait différent de a_{j+1}) et donc i = j.

La fonction f est donc bijective, ce qui montre que |E| = p.

1.6.4. Intervalle de $\mathbb N$ ou $\mathbb Z$

Lemme : Soit a et b deux éléments de \mathbb{N} . Alors, [a, b] est fini et

- si a > b, |[[a, b]]| = 0,
- sinon, |[[a, b]]| = b a + 1.

Démonstration:

- Supposons a > b. Soit x un élément de [[a, b]], on a x ≥ a, donc x > b, et x ≤ b, ce qui est impossible. On en déduit que [[a, b]] = Ø, donc [[a, b]] est fini et de cardinal 0.
- Supposons $a \le b$ et considérons la fonction f de [a, b] vers b a + 1 définie par : pour tout élément x de [a, b], f(x) = x a. Cette fonction est bien définie car, soit x un élément de [a, b], on a $x \ge a$, donc x a est bien un entier naturel, et $x \le b$, donc $x a \le b a$, donc $x a \in b a + 1$. Montrons qu'elle est bijective.
 - Soit x et y deux éléments de [a, b] tels que f(x) = f(y). Alors, x a = y a. En ajoutant a des deux côtés, on obtent x = y. Ainsi, f est injective.
 - Soit y un élément de b-a+1. Alors, $y \le b-a$. Donc, $y+a \le b$. En outre, puisque $y \ge 0$, $y+a \ge a$. Donc, $y+a \in [a,b]$. On a : f(y+a) = y. Donc, y+a est un antécédent de y par f. On en déduit que f est surjective.

Lemme : Soit a et b deux éléments de \mathbb{Z} . Alors, [a, b] est fini et

- si a > b, |[[a, b]]| = 0,
- sinon, |[[a, b]]| = |b a| + 1.

Démonstration:

- Supposons a > b. Soit x un élément de [[a, b]], on a x ≥ a, donc x > b, et x ≤ b, ce qui est impossible. On en déduit que [[a, b]] = Ø, donc [[a, b]] est fini et de cardinal 0.
- Supposons a ≤ b et considérons la fonction f de [[a, b]] vers |b a| + 1 définie par : pour tout élément x de [[a, b]], f(x) = |x a|. Cette fonction est bien définie car, soit x un élément de [[a, b]], on a x ≥ a, donc x a est positif, et x ≤ b, donc x a ≤ b a, donc |x a| ≤ |b a|, donc |x a| ∈ |b a| + 1. Montrons qu'elle est bijective.

- Soit x et y deux éléments de [a, b] tels que f(x) = f(y). Alors, |x a| = |y a|. Puisque x a et y a sont tous deux positifs, cela implique x a = y a, et donc x = y. Ainsi, f est injective.
- Soit y un élément de |b-a|+1. Alors, $y \le |b-a|$. Donc, $(0,y) \le (0,|b-a|)$. Puisque b-a est positif (puisque $b \ge a$), b-a=(0,|b-a|), et donc $(0,y) \le b-a$. Donc, $(0,y)+a \le b$. En outre, puisque $(0,y) \ge 0$, $(0,y)+a \ge a$. Donc, $(0,y)+a \in [a,b]$. On a : f((0,y)+a)=|(0,y)|=y. Donc, (0,y)+a est un antécédent de y par f. On en déduit que f est surjective.

1.6.5. Ensemble dénombrable

Définition : Un ensemble E est dit *dénombrable* s'il existe une bijection de E vers \mathbb{N} . De manière équivalente, un ensemble E est dénombrable si et seulement si il existe une bijection de \mathbb{N} vers E.

Remarque : Puisque ℕ est infini, un ensemble dénombrable est nécéssairement infini.

Nous montrerons ci-dessous que, \mathbb{N}^2 est dénombrable, et que, en fait, \mathbb{N}^n est dénombrable pour tout élément n de \mathbb{N}^* . Par contre, l'ensemble $\mathcal{F}(\mathbb{N}, \{0, 1\})$ n'est pas dénombrable.

1.6.6. Théorème de Cantor-Bernstein

Théorème : Soit E et F deux ensembles. On suppose qu'il existe une injection de E vers F et une injection de E vers E. Alors, il existe une bijection de E vers F.

Démonstration : Nous nous proposons de démontrer ce théorème en deux étapes :

- Nous montrerons d'abord le lemme suivant : Soit A et B deux ensembles tels que B ⊂ A. On suppose qu'il existe une injection de A vers B. Alors il existe une bijection de A vers B.
- Nous en déduirons le théorème.

Commençons par le second point, qui est le plus facile. On suppose le lemme vrai. Soit E et F deux ensembles. On suppose qu'il existe une injection f de E vers F et une injection g de F vers E. Notons B l'image de g; il s'agit d'un sous-ensemble de E. Considérons l'application u de E vers E définie par E definie par E of. Montrons que cette fonction est une injection. Soit E et E deux éléments de E tels que E qu'(E). On a : E(E). Puisque E est aussi injective, cela implique E0. Puisque E1 est aussi injective, cela implique E2 son tour E3. Ainsi, E3 dest bien injective. Donc, il existe une injection de E3 de E4 est aussi injective, cela implique E5 son tour E6.

D'après le lemme, il existe donc une bijection de E vers B. Notons-la I. Soit h la fonction de F vers B définie par h(x) = g(x) pour tout élément x de F. Puisque g est une injection, h en est aussi une. (Si x et y sont deux éléments de F tels que h(x) = h(y), on a g(x) = g(y) et donc x = y.) En outre, elle est surjective par définition de B. (Soit y un élément de B, il existe un élément x de F tel que g(x) = y et donc h(x) = y.) Donc, h est une bijection. ³³ Considérons la fonction $h^{-1} \circ l$. Puisque l est une bijection de E vers E0 et E1 une bijection de E2 vers E3 et E4 une bijection de E5 vers E5, ce qui montre le théorème.

Montrons maintenant le lemme. Soit A et B deux ensembles tels que $B \subset A$. On suppose qu'il existe une injection u de A vers B. On définit alors par récurrence la suite $(C_n)_{n\in\mathbb{N}}$ de sous-ensembles de A^{34} de la manière suivante :

$$\begin{cases} C_0 = A \setminus B \\ \forall n \in \mathbb{N}^* \ C_n = u \left(C_{n-1} \right) \end{cases}.$$

Notons C la réunion de ces ensembles : $C = \{y \in A | \exists n \in \mathbb{N} \ y \in C_n\}$. 35 Notons que $u(C) \subset C$. En effet, soit x un élément de C, il existe un élément n de \mathbb{N} tel que $x \in C_n$, donc $u(x) \in C_{n+1}$, et donc $u(x) \in C$. Définissons la fonction v de A vers B par : pour tout élément x de A, v(x) = u(x) si $x \in C$ et v(x) = x sinon. (Cette définition est correcte car, pour tout $x \in A$, l'image v(x) de x ainsi définie est dans x. En effet, si $x \in C$, alors x et x et x et x donc $x \in B$, d'où x et x et

Montrons que v est injective. Soit x et y deux éléments de A tels que v(x) = v(y). Alors,

• Si $x \in C$, v(x) = u(x). Donc, v(y) = u(x). Puisque $u(C) \subset C$, cela implique $v(y) \in C$. Si y n'était pas dans C, on aurait v(y) = y, d'où $v(y) \notin C$, ce qui n'est pas le cas. Donc, $y \in C$. Donc, v(y) = u(y). On a donc u(x) = u(y). Puisque u est injective, on en déduit x = y.

^{33.} Autrement dit, la fonction g est une bijection de F vers B.

^{34.} Il s'agit d'une suite d'éléments de l'ensemble des parties de A.

^{35.} Cet ensemble peut aussi être défini plus directement par : $C = \{y \in A | \exists x \in A \setminus B \exists n \in \mathbb{N} u^n(x) = y\}$.

• Si $x \notin C$, on a v(x) = x. Donc, v(y) = x. En outre, y ne peut être un élément de C (en effet, si $y \in C$, alors u(y) = yet donc $u(y) \in C$, ce qui n'est pas le cas). Donc, v(y) = y. On en déduit que y = x.

Motrons maintenant que v est surjective. Soit y un élément de B.

- Si $y \notin C$, on a v(y) = y, donc y est bien dans l'image de v.
- Si $y \in C$, on peut choisir un élément n de \mathbb{N} tel que $y \in C_n$. Cet entier ne peut être égal à 0 puisque $y \in B$ (et donc $y \notin A \setminus B$). Donc, n-1 est un entier naturel et $C_n = u(C_{n-1})$ par définition de C_n . Il existe donc un élément x de C_{n-1} tel que y = u(x). Puisque $x \in C_{n-1}$, $x \in C$, donc v(x) = u(x), et donc v(x) = y.

Ainsi, la fonction v est injective et surjective. C'est donc une bijection.

Corrolaire: Soit E un ensemble. On suppose qu'il existe une injection de \mathbb{N} vers E. Alors, E a un cardinal infini.

Démonstration : Supposons par l'absurde que ce n'est pas le cas, et montrons qu'on aboutit à une contradiction. Soit nle cardinal de E. Il existe une bijection f de E vers n. Puisque $n \subset \mathbb{N}$, f est aussi une injection de E vers \mathbb{N} . Puisqu'il existe aussi une injection de \mathbb{N} vers E, on en déduit d'après le théorème de Cantor-Bernstein qu'il existe une bijection, notée g dans la suite, de $\mathbb N$ vers E. Alors, $f \circ g$ est une bijection de $\mathbb N$ vers n, ce qui est impossible puisque $\mathbb N$ a un cardinal infini. On en déduit que l'hypothèse de départ ne peut qu'être fausse.

Exemple d'application : Bijection entre \mathbb{N} et \mathbb{N}^2 .

- Soit $f: \mathbb{N} \to \mathbb{N}^2$ la fonction définie par : $\forall x \in \mathbb{N}$ f(x) = (x, x). Cette fonction est une injection de \mathbb{N} dans \mathbb{N}^2 .
- Soit $g: \mathbb{N}^2 \to \mathbb{N}$ la fonction définie par : $\forall x \in \mathbb{N} \ \forall y \in \mathbb{N} \ g((x,y)) = 2^x 3^y$. D'après l'unicité de la décomposition d'un entier naturel en produit de facteurs premiers (voir section 2.3.4), la fonction g est injective. En effet, soit deux éléments x et y de \mathbb{N}^2 tels que g(x) = g(y), la première composante de x doit être égale à celle de y par unicité de la décomposition en facteurs premiers, et de même pour leurs secondes composantes; donc, x = y.

Il existe donc une injection de \mathbb{N} dans \mathbb{N}^2 et une injection de \mathbb{N}^2 dans \mathbb{N} . D'après le théorème de Cantor-Bernstein, on en déduit qu'il existe une bijection entre \mathbb{N} et \mathbb{N}^2 .

Exemple d'application 2 : Bijection entre \mathbb{N} et \mathbb{N}^n pour $n \in \mathbb{N}^*$.

- Soit $f: \mathbb{N} \to \mathbb{N}^n$ la fonction définie par : $\forall x \in \mathbb{N}$ f(x) = (x, x, ..., x). Cette fonction est une injection de \mathbb{N} dans
- Puisqu'il existe une infinité de nombres premiers distincts (voir section 2.3.1), on peut en choisir n, par exemple les nplus petits, notés $p_1, p_2, ..., p_n$. Soit $g: \mathbb{N}^n \to \mathbb{N}$ la fonction définie par : $\forall x \in \mathbb{N}^n \ g((x_1, x_2, ..., x_n)) = p_1^{x_1} p_2^{x_2} \cdots p_n^{x_n}$. D'après l'unicité de la décomposition d'un entier naturel en produits de facteurs premiers (voir section 2.3.4), la fonction g est injective.³⁷

Il existe donc une injection de \mathbb{N} dans \mathbb{N}^n et une injection de \mathbb{N}^n dans \mathbb{N} . D'après le théorème de Cantor-Bernstein, on en déduit qu'il existe une bijection entre \mathbb{N} et \mathbb{N}^n .

Contre-exemple: En guise d'exemple d'ensembles qui ne sont pas en bijection, considérons les ensembles \mathbb{N} et $\mathcal{F}(\mathbb{N}, \{0, 1\})$. Nous allons montrer qu'il n'existe pas de surjection du premier vers le second. Suposons par l'absurde qu'au moins une telle surjection existe et appelons l'une d'entre elles f. Considérons l'élément g de $\mathcal{F}(\mathbb{N}, \{0, 1\})$ défini par : ³⁸

$$\forall x \in \mathbb{N} \ g(x) = 1 - f(x)(x).$$

Puisque f est une surjection, on peut choisir un élément x de \mathbb{N} tel que g = f(x). On a alors g(x) = f(x)(x), d'où 1 - f(x)(x) = f(x)(x). Mais cela est impossible puisque $f(x)(x) \in \{0, 1\}, 1 - 0 = 1$ et 1 - 1 = 0, et donc $1 - f(x)(x) \neq 1$ f(x)(x). On en conclut que l'hypothèse de départ est fausse : il n'existe aucune bijection de \mathbb{N} vers $\mathcal{F}(\mathbb{N}, \{0, 1\})$.

Définition : Soit n un entier naturel et u une fonction de n vers \mathbb{Y} . Alors,

- Si n = 0, on définit $\sum u$ par 0 et $\prod u$ par 1.
- Si n = 1, on définit $\sum u$ par u(0) et $\prod u$ par u(0). Si n > 1, on définit $\sum u$ par $u(0) + u(1) + \dots + u(n-1)$ et $\prod u$ par $u(0) \times u(1) \times \dots \times u(n-1)$. On noteras aussi $\sum u$ par $\sum_{i=0}^{n-1} u(i)$ et $\prod u$ par $\prod_{i=0}^{n-1} u(i)$.

36. En effet,

- Soit z un élément de f, z appartient à $E \times n$ et donc à $E \times \mathbb{N}$.
- Soit x un élément de E, il existe un unique ensemble y tel que (x, y) ∈ f puisque f est une fonction.
- La fonction f est injective par définition.
- 37. En effet, si x et y sont éléments de \mathbb{N}^n tels que g(x) = g(y), alors on doit avoir $x_i = y_i$ pour tout entier i dans [1, n], et donc x = y.
- 38. Plus formellement, on peut définir g par :

$$g = \{ z \in \mathbb{N} \times \{0, 1\} | \exists x \in \mathbb{N} \ z = (x, 1 - f(x)(x)) \}.$$

On montre facilement qu'il s'agit bien d'une fonction de \mathbb{N} vers $\{0, 1\}$.

1.7. Éléments de théorie des groupes

Dans cette section, nous donnons quelques concepts de base de théorie des groupes.

1.7.1. Définitions

Définition (magma): Un $magma \mathcal{M}$ est un couple formé par un ensemble M et une $loi de composition interne \cdot sur <math>M$ (parfois appelée opération), c'est-à-dire une fonction de $M \times M$ vers M. Si a et b sont deux éléments de M, on note $a \cdot b$ l'image de (a, b) par \cdot .

Définition (élément neutre) : Soit (M,\cdot) un magma. Un élément e de M est dit élément neutre si

$$\forall m \in M, e \cdot m = m \wedge m \cdot e = m.$$

Un magma admettant un élément neutre est dit unifère.

Lemme: Un magma admet au plus un élément neutre.

Démonstration : Soit (M, \cdot) un magma et e et f deux éléments identités pour ce magma. Puisque e est un élément identité, $e \cdot f = f$. Puisque f est un élément identité, $e \cdot f = e$. Par commutativité et transitivité de l'égalité, on en déduit e = f.

Définition (morphisme de magmas) : Soit (M, \cdot) et (N, *) deux magmas. Une fonction f de M vers N est dite *morphisme de magmas* de (M, \cdot) vers (N, *) si elle satisfait :

$$\forall (a, b) \in M^2$$
, $f(a \cdot b) = f(a) * f(b)$.

Définition (isomorpisme de magmas) : Soit \mathcal{M} et \mathcal{N} deux magmas. Un morphise de magmas f de \mathcal{M} vers \mathcal{N} est dit isomorphisme de magmas s'il est également une bijection.

Lemme : L'image d'un élément neutre par un morphisme de magmas surjectif (et donc, en particulier, par un isomorphisme) est un élément neutre.

Démonstration : Soit (M, \cdot) et (N, *) deux magmas et soit f un morphisme surjectif du premier vers le second. Soit e un élément neutre de (M, \cdot) . On a $f(e) \in N$. Soit g un élément de g. Il s'agit de montrer que g et g

f(e) * f(x) = f(x). Donc, f(e) * y = y. De même, puisque f est un morphisme de magmas, $f(x) * f(e) = f(x \cdot e)$. Puisque e est un élément neutre pour f(x) * f(e) = f(x). Donc, f(x) * f(e) = f(x). Donc, f(x) * f(e) = f(x).

Corrolaire : Soit \mathcal{M} et \mathcal{N} deux magmas. On suppose qu'il existe un morphisme de magmas surjectif de \mathcal{M} vers \mathcal{N} . Si \mathcal{M} est unifère, alors \mathcal{N} l'est aussi. (Car l'image par le morphisme de l'élément neutre de \mathcal{M} est un élément neutre pour \mathcal{N} .)

Lemme: L'inverse d'un isomorphisme de magmas est un isomorphisme de magmas.

Démonstration: Soit (M, \cdot) et (N, *) deux magmas et soit f un isomorphisme du premier vers le second. Soit g l'inverse de f (qui existe et est une bijection puisque f est une bijection). Montrons que g est un morphisme de magmas. Puisque g est également une bijection, il s'agira alors d'un isomorphisme.

Soit a et b deux éléments de N. Puisque f est une bijection, elle est surjective, donc on peut choisir deux éléments c et d de M tels que a = f(c) et b = f(d). On a alors : $g(a) \cdot g(b) = g(f(c)) \cdot g(f(d))$. Puisque g est l'inverse de f, cela donne : $g(a) \cdot g(b) = c \cdot d$.

Par ailleurs, g(a * b) = g(f(c) * f(d)). Puisque f est un morphisme de magmas on a $f(c) * f(d) = f(c \cdot d)$, donc cela donne $g(a * b) = g(f(c \cdot d))$. Puisque g est l'inverse de f, cela donne : $g(a * b) = c \cdot d$. Donc, $g(a * b) = g(a) \cdot g(b)$.

Cela étant vrai pour tous éléments a et b de M, on en déduit que g est un morphisme de magmas, et donc un isomorphisme, de (M,\cdot) vers (N,*).

Définition (associativité) : Soit (M, \cdot) un magma. La loi de composition interne \cdot est dite associative si

$$\forall a \in M, \forall b \in M, \forall c \in M, (a \cdot b) \cdot c = a \cdot (b \cdot c).$$

Le magma (M, \cdot) est alors dit *associatif*. Un magma associatif est aussi appelé *demi-groupe*.

Lemme : Soit \mathcal{M}_1 et \mathcal{M}_2 deux magmas. On suppose que \mathcal{M}_1 est associatif et qu'il existe un morphisme de magmas surjectif de \mathcal{M}_1 vers \mathcal{M}_2 . Alors \mathcal{M}_2 est associatif.

Démonstration : Soit (M,\cdot) et (N,*) deux magmas. On suppose que le premier est associatif et qu'il existe un morphisme de magmas surjectif, f, du premier vers le second. Soit a, b et c trois éléments de N. Puisque f est surjectif, on peut choisir trois éléments d, e et g de M tels que f(d) = a, f(e) = b et f(g) = c. On a alors : (a*b)*c = (f(d)*f(e))*f(g). Puisque f est un morphisme de magmas, $(f(d)*f(e))*f(g) = f(d \cdot e)*f(g) = f((d \cdot e) \cdot g)$. Puisque \cdot est associative, $f((d \cdot e) \cdot g) = f(d \cdot (e \cdot g))$. En utilisant à nouveau le fait que f est un morphisme de magmas, on obtient : $f(d \cdot (e \cdot g)) = f(d)*f(e \cdot g)$ et f(d)*f(e)*f(g) = f(d)*f(g). Enfin, puisque f0, f1, f2, f3, f3, f4, f5, f5, f5, f6, f7, f8, f8, f9, f

Définition (commutativité) : Soit (M, \cdot) un magma. La loi de composition interne \cdot est dite *commutative* si

$$\forall a \in M, \forall b \in M, a \cdot b = b \cdot a.$$

Le magma (M, \cdot) est alors dit *commutatif* ou *abélien*.

Lemme : Soit \mathcal{M}_1 et \mathcal{M}_2 deux magmas. On suppose que \mathcal{M}_1 est commutatif et qu'il existe un morphisme de magmas surjectif de \mathcal{M}_1 vers \mathcal{M}_2 . Alors \mathcal{M}_2 est commutatif.

Démonstration : Soit (M, \cdot) et (N, *) deux magmas. On suppose que le premier est commutatif et qu'il existe un morphise de magmas surjectif, f, du premier vers le second. Soit a et b deux éléments de N. Puisque f est surjectif, on peut choisir deux éléments d et e de f tels que f (f) = f a et f) = f (f) = f0. On a alors : f0 = f0 = f0 = f0. Puisque f0 = f1 = f2 = f3 = f4 = f5 = f6 = f6 = f7 = f8 = f8 = f9 = f9

Définition (monoïde): Un magma unifère et associatif est appelé monoïde.

Définition (monoïde abélien): Un magma unifère, associatif et abélien est dit monoïde abélien.

Définition (morpisme de monoïdes) : Un morphisme de magmas d'un monoïde vers un autre est dit *morphisme de monoïdes*.

Définition (isomorpisme de monoïdes) : Un isomorphisme de magmas d'un monoïde vers un autre est dit *isomorphisme de monoïdes*.

Lemme: L'inverse d'un isomorphisme de monoïdes est un isomorphisme de monoïdes.

Démonstration : Conséquence directe du même résultat pour un isomorphisle de magmas.

Définition (inverse): Soit (M, \cdot) un monoïde et e son élément neutre. Soit m un élément de M. Un élément n de M est dit inverse de m (pour \cdot) si $m \cdot n = e \wedge n \cdot m = e$.

Lemme : Soit (M, \cdot) un monoïde et m un élément de M. Alors, m admet au plus un seul inverse pour \cdot .

Démonstration : Soit (M, \cdot) un monoïde et e son élément neutre. Soit m un élément de M. Soit n et o deux inverse de m pour \cdot . Alors, $(n \cdot m) \cdot o = e \cdot o = o$. Par ailleurs, $n \cdot (m \cdot o) = n \cdot e = n$. Puisque \cdot est associative, $(n \cdot m) \cdot o = n \cdot (m \cdot o)$. Donc, o = n.

Définition (groupe): Soit (M, \cdot) un monoïde. Si chaque élément de M admet un inverse pour \cdot , alors (M, \cdot) est appelé groupe.

Définition (groupe abélien) : Soit (M, \cdot) un monoïde abélien. Si chaque élément de M admet un inverse pour \cdot , alors (M, \cdot) est appelé *groupe abélien*.

Définition (morphisme de groupes) : Un morphisme de magmas d'un groupe vers un autre est dit morphisme de groupes.

Définition (isomorphisme de groupes) : Un isomorphisme de magmas d'un groupe vers un autre est dit *isomorphisme de groupes*.

Lemme: L'inverse d'un isomorphisme de groupes est un isomorphisme de groupes.

Démonstration : Conséquence direct du même résultat pour un isomorphisme de magmas.

Définition (puissance) : Soit (M, \cdot) un monoïde abélien et e son élément neutre. On définit la suite de fonctions $(f_m)_{m \in \mathbb{N}}$ de M vers M par récurrence de la manière suivante :

- Pour tout élément m de M, $f_0(m) = e$.
- Pour tout entier naturel n, pour tout élément m de M, $f_{n+1}(m) = m \cdot f_n(m)$.

Soit n un entier naturel et m un élément de M. On notera m^n l'élément $f_n(m)$.

Définition (cyclicité) : Un groupe anélien (G, \cdot) est dit *cyclique* s'il existe un élément g de G tel que :

$$\forall x \in G, \exists n \in \mathbb{N}, g^n = x.$$

Un tel élément g est dit générateur du groupe.

Définition (sous-groupe): Soit (G, \cdot) un groupe et H un sous-ensemble non-vide de G. Si (H, \cdot) est un groupe, alors il est dit *sous-groupe* de (G, \cdot) .

Lemme : Soit (G, \cdot) un groupe et H un sous-ensemble non-vide de G tel que (H, \cdot) est un groupe. Soit e lélément neutre de (G, \cdot) . Alors $e \in H$.

Démonstration : Puisque (H, \cdot) est un groupe, donc unifere, H est non vide. Soit h un élément de H. Puisque (H, \cdot) est un groupe, l'inverse l de h appartient aussi à H, et donc $l \cdot h$ également. Puisque l est l'inverse de H, $l \cdot h = e$, ce aui conclut la preuve.

1.7.2. Quelques résultats

Lemme: Parmis les ensembles construits précédemment,

- $(\mathbb{N}, +)$, (\mathbb{N}, \times) et (\mathbb{Z}, \times) sont des monoïdes abéliens,
- $(\mathbb{Z}, +)$ est un groupe abélien.

Démonstration: Nous avons déjà démontré tous les éléments nécessaires. En effet,

- Les operations + et × sont des lois de compositions internes sur \mathbb{N} et \mathbb{Z} , donc $(\mathbb{N}, +)$, (\mathbb{N}, \times) , $(\mathbb{Z}, +)$ et (\mathbb{Z}, \times) sont des magmas.
- Les operations + et \times sont associatives et admettent chacune un élément neutre (0 pour la première et 1 pour la seconde) dans \mathbb{N} et \mathbb{Z} , donc $(\mathbb{N}, +)$, (\mathbb{N}, \times) , $(\mathbb{Z}, +)$ et (\mathbb{Z}, \times) sont des monoïdes.
- Les operations + et × sont commutatives, donc $(\mathbb{N}, +)$, (\mathbb{N}, \times) , $(\mathbb{Z}, +)$ et (\mathbb{Z}, \times) sont des monoïdes abéliens.
- Pour tout élément z de \mathbb{Z} , on a z + (-z) = (-z) + z = 0, donc -z est un inverse de z pour +. (\mathbb{Z} , +) est donc un groupe abélien.

1.7.3. Groupe quotient

Définition : Soit (G,\cdot) un groupe abélien et (H,\cdot) un sous-groupe de (G,\cdot) . On définit l'ensemble $G \ / \ H$ comme l'ensemble des classes d'équivalences de G pour la relation R définie par : $\forall g \in G \ \forall g' \in G \ g R g' \Leftrightarrow g^{-1} \cdot g' \in H$, oú un exposant -1 indique l'inverse. Pour tout élément g de G, on note g la classe d'équivalence de G pour G. On définit la loi de composition interne \cdot sur $G \ / \ H$ de la manière suivante : soit G et G deux éléments de G G et un élément G et G et G et un élément G et G et

- La loi de composition interne \cdot sur G/H est bien définie.
- $(G \ / \ H, \cdot)$ est un groupe abélien, appelé groupe quotient de (G, \cdot) et (H, \cdot) .

Démonstration : Pour le premier point, il s'agit de montrer que le résultat ne dépends pas du choix de g_1 et g_2 . Soit c_1 et c_2 deux éléments de G / H. Soit g_1 et g_3 deux éléments de c_1 et g_2 et g_4 deux éléments de c_2 . On a alors g_1Rg_3 et g_2Rg_4 . On peut donc choisir deux éléments h_1 et h_2 de H tels que $g_1^{-1} \cdot g_3 = h_1$ et $g_2^{-1} \cdot g_4 = h_2$. On a alors : $(g_1 \cdot g_2)^{-1} \cdot (g_3 \cdot g_4) = (g_2^{-1} \cdot g_1^{-1}) \cdot (g_3 \cdot g_4) = (g_1^{-1} \cdot g_3) \cdot \cdot (g_2^{-1} \cdot g_4) = h_1 \cdot h_2$. Puisque (H, \cdot) est un groupe, on en déduit que $(g_1 \cdot g_2)^{-1} \cdot (g_3 \cdot g_4) \in H$, donc $(g_1 \cdot g_2)R(g_3 \cdot g_4)$, et donc $\overline{g_1 \cdot g_2} = \overline{g_3 \cdot g_4}$.

Montrons maintenant qu'il s'agit d'un groupe abélien :

- Par définition, · est une loi de composition interne sur G / H.
- Commutativité : Soit c_1 et c_2 deux éléments de G / H. Soit g_1 un élément de c_1 et g_2 un élément de c_2 . On a : $c_1 \cdot c_2 = \overline{g_1 \cdot g_2}$ et $c_2 \cdot c_1 = \overline{g_2 \cdot g_1}$. Puisque (G, \cdot) est abélien, $g_1 \cdot g_2 = g_2 \cdot g_1$, donc $c_1 \cdot c_2 = c_2 \cdot c_1$.

- Soit e l'élément neutre de (G, \cdot) . Soit c un élément de G / H et g un élément de c. On a : $c \cdot \bar{e} = \overline{g \cdot e} = \bar{g} = c$. Par commutativité, cela implique également $\bar{e} \times c = c$. Donc, \bar{e} est un élément neutre de G / H pour \cdot .
- Soit c un élément de G / H et g un élément de c. Notons g^{-1} l'inverse de g et e l'élément neutre de (G, \cdot) . Alors, $c \cdot g^{-1} = \overline{g \cdot g^{-1}} = \overline{e}$. Par commutativité, cela implique également $g^{-1} \times c = \overline{e}$. Puisque \overline{e} est un élément neutre pour \cdot , on conclut que g^{-1} est un inverse de c.

2. Arithmétique

Dans cette partie, nous identifions les entiers naturels à des entiers relatifs et les entiers relatifs positifs à des entier naturels de la manière suivante : pour tout entier naturel n, n est ientifié à (0, n) et réciproquement.

2.1. Concepts fondamentaux

2.1.1. Division euclidienne

On définit (dans cette section seulement) la fonction E de $\mathbb{N} \times \mathbb{N}^*$ vers l'ensemble des parties de \mathbb{N} par :

$$\forall a \in \mathbb{N} \, \forall b \in \mathbb{N}^* \, E(a,b) = \{ n \in \mathbb{N} | \exists k \in \mathbb{N} \, a \ge kb \wedge a - kb = n \}.$$

Définition (division euclidienne) : Soit a un entier naturel et b un entier naturel non nul. L'ensemble E(a,b) est un sous-ensemble de $\mathbb N$ non vide (il contient au moins a puisque $a \ge 0 \times b$ et $a - 0 \times b = a$), donc il admet un unique élément minimal (et donc un minimum) r. Cet élément est appelé *reste de la division euclidienne de a par b*. L'unique entier naturel q tel que r = a - qb ³⁹ est appelé *quotient de la division euclidienne de a par b*. Notons que l'on a : a = qb + r.

Définition : On définit les deux opérations // et % de $\mathbb{N} \times \mathbb{N}^*$ vers \mathbb{N} de la manière suivante : pour tout entier naturel a et tout entier naturel non nul b, a // b est le quotient de la division Euclidienne de a par b et a % b est son reste.

Lemme : Soit *a* un entier naturel et *b* un entier naturel non nul. Soit *r* l'entier naturel défini par r = a % b. Alors, $r \ge 0$ et r < b.

Démonstration:

- Puisque E(a, b) est un sous-ensemble de \mathbb{N} et puisque $r \in E(a, b)$, $r \in \mathbb{N}$, donc $r \geq 0$.
- Supposons par l'absurde que $r \ge b$. Alors, $r b \in \mathbb{N}$ et r b = (a qb) b = a (qb + b) = a (q + 1)b, et donc $r b \in E$. Puisque b > 0, r b < r; cela contredit donc la définition de r comme minimum de E. On en déduit que l'hypothèse de départ est fausse, et donc que r < b.

Lemme : Soit a un entier naturel et b un entier naturel non nul. Soit s un élément de E(a,b) tel que s < b. Alors, s = a % b.

Démonstration : Notons r l'entier a % b. Puisque r et s sont deux éléments de E(a,b), on peut choisir deux éléments q et k de \mathbb{N} tels que r = a - qb et s = a - kb. Donc, s = r + (q - k)b. Si q > k, alors q - k est un entier naturel non nul, donc $(q - k)b \ge b$, et donc (puisque $r \ge 0$) $s \ge b$, ce qui est impossible. Si q < k, alors k - q est un entier naturel non nul, donc $(k - q)b \ge b$, donc $(q - k)b \le -b$, et donc (puisque r < b) s < 0, ce qui est impossible. Donc, q = k, et donc s = r.

Définition (diviseur, multiple) : Soit a et b deux entiers naturels avec $b \neq 0$. Si le reste de la division euclidienne de a par b est 0, on dit que b divise a, ou encore que b est a que a admet a pour diviseur ou que a est a multiple a a a0. On note a1 le prédicat a2 divise a3.

Lemme : Soit a et b deux entiers naturels tels que b|a. Alors, a=0 ou $b \le a$.

Démonstration : En effet, soit q le quotient de la division Euclidienne de a par b. On a : $a = q \times b$. Si q = 0, $q \times b = 0$, donc a = 0. Sinon, q est un entier naturel non nul, donc $q \times b \ge b$, donc $a \ge b$.

Lemme : Soit a et b deux entiers naturels. Alors b divise a si et seulement si il existe un entier naturel q tel que qb = a.

Démonstration:

- Supposons qur b divise a. Soit q le quotient de la division Euclidienne de a par b. Puisque b divise a, le reste de la division Euclidienne de a par b est 0, donc a = qb.
- Soit q un entier naturel tel que a=qb et E l'ensemble définit comme ci-dessus. Alors, $a\geq qb$. Donc, $a-qb\in E$. Puisque a=qb, a-qb=0, donc $0\in E$. En outre, pour tout élément e de e, on a $e\in \mathbb{N}$, donc e0 est un élément minimal de e1. Puisque e2 admet un seul élément minimal, on en déduit que le reste de la division Euclidienne de e2 par e3 est e4.

^{39.} Un tel entier existe car r est un élément de E. Montrons qu'il est bien unique. Soit q et q' deux entiers naturels tels que $a \ge qb$, $a \ge q'b$, r = a - qb et r = a - q'b. Alors, a - qb = a - q'b. Donc, a + q'b = a + qb. Donc, a + q'b = a + qb.

Lemme:

- Tout entier naturel divise 0.
- Tout entier naturel non nul se divise lui-même.
- Tout entier naturel est un multiple de 1.

Démonstration : Soit a un entier naturel. Alors,

- $0 \times a = 0$, donc a|0.
- $1 \times a = a$, donc, si a est non nul, $a \mid a$.
- $a \times 1 = a$, donc 1|a.

Lemme : Soit a, b et c trois entiers naturels tels que a|b et b|c. Alors, a|c.

Démonstration : Puisque a|b, on peut choisir un entier naturel n tel que b=na. Puisque b|c, on peut choisir un entier naturel m tel que c=mb. Donc, c=m(na)=(mn)a. Puisque m et n sont deux entiers naturels, mn en est un aussi. Donc, a|c.

П

Définition : Un entier naturel est dit *pair* s'il est un multiple de 2 et *impair* sinon.

Définition : Soit a et b deux entiers naturels non nuls. L'ensemble de leurs diviseurs communs est un sous-ensemble de \mathbb{N} non vide (il contient au moins 1) et borné supérieurement par le minimum de a et b. Il admet donc un unique élément maximal, appelé *plus grand diviseur commun*, ou pgcd, de a et b. Notons que cet entier est toujours supérieur ou égal à 1. Si n est un entier naturel, on considère que le pgcd de n et 0 (ou de 0 et n) est n. (Ainsi, le pgcd de 0 et 0 est 0.)

Définition : Deux entiers naturels a et b sont dits premiers entre eux si leur pgcd est 1.

Lemme : Soit a et b deux entiers naturels non nuls et c leur pgcd. On note d et e les entiers a // c et b // c. Alors, $a = d \times c$, $b = e \times c$, et d et e sont premiers entre eux.

Démonstration : Puisque c est un diviseur de a, le reste de la division Euclidienne de a par c est 0, donc $d \times c = a$. De même, puisque c est un diviseur de b, le reste de la division Euclidienne de b par c est 0, donc $e \times c = b$.

Supposons par l'absurde que d et e ne soient pas premiers entre eux. Alors, d et e admettent un diviseur commun f tel que f > 1. On peut donc choisir deux entiers naturels non nuls g et h tels que $d = g \times f$ et $e = h \times f$. Donc, $a = g \times f \times c$ et $b = h \times f \times c$. Donc, $f \times c$ est un diviseur commun à a et b. Puisque f > 0 et c > 0, $f \times c > c$, ce qui contredit la définition du pgcd. On en déduit que l'hypothèse de départ est fausse et que d et e sont premiers entre eux.

Des fonctions Haskell, C et Rust calculant le pgcd de deux entiers naturels non nuls sont données en appendice A.3.

2.1.2. Modulo

Soit p, q et r trois entiers relatifs. On écrit $p \equiv r[q]$, ou $p \equiv r \mod q$, ou encore $p \equiv r \pmod q$ le prédicat : il existe un entier relatif k tel que p = r + kq, i.e., $\exists k \in \mathbb{Z} \ p = r + kq$. Si ce prédicat est vrai, on dit que p est égal à r modulo q. Notons que, pour tout entier relatif s, on a alors aussi $p \equiv (r + sq)[q]^{40}$. Notons aussi que l'on a toujours $p \equiv p[q]$ (puisque p = p + 0q).

Lemme : Soit p, q, r et s quatre entiers tels que $p \equiv r[q]$ et $r \equiv s[q]$. Alors, $p \equiv s[q]$.

Démonstration : Puisque $p \equiv r[q]$, on peut choisir un entier k tel que p = r + kq. Puisque $r \equiv s[q]$, on peut choisir un entier l tel que r = s + lq. On a donc : p = (s + lq) + kq = s + (lq + kq) = s + (l + k)q. Puisque $l \in \mathbb{Z}$ et $k \in \mathbb{Z}$, $l + k \in \mathbb{Z}$, et donc $p \equiv s[q]$.

Lemme : Soit p, q et r trois entier naturels tels que $p \equiv r[q]$ et r < q. Alors, r est le reste de la division Enclidienne de p par q.

Démonstration : Puisque p = r[q], on peut choisir un entier relatif k tel que p = r + kq. Donc, p - kq = r. En outre, on doit avoir $k \ge 0$. En effet, si ce n'était pas le cas, on aurait kq = -|k|q et $|k| \ne 0$, donc $kq \le -q$, donc (puisque

^{40.} En effet, soit p, q et r trois entiers relatifs tels que p = r[q] et soit s un entier relatif, on peut choisir un entier relatif k tel que p = r + kq, donc p = (r + sq) + (k - s)q. Puisque k - s est un entier, on en déduit que p = (r + sq)[q].

-q > -r) kq < -r, donc r + kq < 0, ce qui est impossible puisque p est un entier naturel. Donc, avec les notations de la section 2.1.1, $r \in E_{p,q}$. Puisque r < q, on en déduit que r est le reste de la division Enclidienne de p par q.

Remarque : Réciproquement, et par définition du reste de la division euclidienne, si p et q sont deux entiers naturels, alors $p \equiv (p \% q)[q]$.

Corrolaire 1: Soit p, q et r trois entier naturels tels que p = r[q] et r < q. Si $r \ne 0$, alors p n'est pas un multiple de q.

Corrolaire 2 : Soit p, et q deux entier naturels tels que $q \neq 0$ et q|p. Alors, $p \equiv 0[q]$.

Lemme: Soit q, p_1, p_2, r_1 et r_2 cinq entiers relatifs tels que $p_1 \equiv r_1[q]$ et $p_2 \equiv r_2[q]$. Alors,

- $p_1 + p_2 \equiv (r_1 + r_2)[q]$,
- $\bullet \ \ p_1 p_2 \equiv (r_1 r_2) \, [q],$
- $p_1p_2 \equiv (r_1r_2)[q]$.

Démonstration : Choisissons deux entiers k_1 et k_2 tels que $p_1 = r_1 + k_1 q$ et $p_2 = r_2 + k_2 q$. On a :

- $p_1 + p_2 = (r_1 + r_2) + (k_1 + k_2) q$,
- $p_1 p_2 = (r_1 r_2) + (k_1 k_2) q$,
- $p_1p_2 = (r_1r_2) + (r_1k_2 + r_2k_1 + k_1k_2) q$.

Définition: Un entier naturel n est pair si et seulement si $n \equiv 0$ [2] et impair si et seulement si $n \equiv 1$ [2]. On montre ainsi facilement que la somme de deux nombres pairs est paire, la somme de deux impairs est paire (puisque 1 + 1 = 2et 2 = 0 [2]), et la somme d'un pair et d'un impair est impaire.

Notation : Soit a un entier non nul, n un entier naturel non nul et $c_0, c_1, ..., c_n$ des entiers. On abrègera parfois la formule $(c_0 \equiv c_1[a]) \land (c_1 \equiv c_2[a]) \land \cdots \land (c_{n-1} \equiv c_n[a]) \text{ en } c_0 \equiv c_1[a] \equiv c_2[a] \equiv \cdots \equiv c_n[a].$

2.2. Écriture en base b

Soit b un entier naturel strictement supérieur à 1.

Théorème: Soit n un entier naturel. Il existe un unique entier naturel m et une unique séquence $(u_{m-1}, u_{m-2}, \dots, u_0)$ de m éléments de \mathbb{N} tels que les trois conditions suivantes sont satisfaites :

- Si m > 0, $u_{m-1} \neq 0$.
- Pour tout élément i de [0, n-1], $u_i < b$.
- $\bullet \ \sum_{i=0}^{m-1} u_i b^i = n.$

Définition : Pour n non nul, cette séquence est appelée écriture de n en base b. L'écriture de 0 en base b est (0). 41 On omettra parfois les parenthèses et virgules quand il n'y a pas de confusion possible.

Démonstration : On procède par recurrence forte sur n. Soit b un entier naturel strictement supérieur à 1. Pour n0, la séquence vide Ø est la seule à satisfaire les trois propriétés de l'énoncé. En effet, elle les satisfait bien et, si $(u_{m-1},u_{m-2},\ldots,u_0)$ est une séquence de m entiers naturels pour un entier naturel m non nul avec $u_{m-1}>0$, alors $\sum_{i=0}^{m-1}u_ib^i=u_{m-1}b^{m-1}+\sum_{i=0}^{m-2}u_ib^i$, donc $\sum_{i=0}^{m-1}u_ib^i\geq u_{m-1}b^{m-1}$. Puisque b est un entier naturel non nul, b^{m-1} en est un également. Puisque u_{m-1} est également non nul, $u_{m-1}b^{m-1}>0$, donc $\sum_{i=0}^{m-1}u_ib^i>0$.

Soit n un élément de \mathbb{N}^* et supposons qu'à tout entier naturel strictement inférieur à n correspond une unique séquence satisfaisant les trois propriétés de l'énoncé. Distinguons deux cas selon que n est ou non un multiple de b.

Supposons d'abord qu'il n'en est pas un. Puisque n-1 < n, on peut choisir un entier naturel l et l éléments $u_0, u_1, \ldots, u_{l-1}$ de \mathbb{N} tel que la séquence $(u_{l-1}, u_{l-2}, \dots, u_0)$ satisfait les trois propriétés de l'énoncé avec n remplacé par n-1. En outre, si n-1 > 0, alors l > 0 (sans quoi on aurait $\sum_{i=0}^{l-1} u_i b^i = 0$). Si n-1 = 0, on pose l = 1 et $u_0 = 0$. Dans les deux cas, l'entier naturel u_0 est le reste de la division euclidienne de n-1 par b, donc $u_0 < b-1$ (puisque, si $u_0 = b-1$, on aurait $n-1 \equiv b-1$ [b] et donc $n \equiv 0$ [b], donc n serait un multiple de b). Donc, la séquence $(u_{l-1}, u_{l-2}, \dots, u_1, u_0 + 1)$ satisfait les trois propriétés de l'énoncé. En effet,

- Si l=1, alors la séquence ne contient qu'un seul élément, u_0+1 , qui est strictement supérieur à 0. Sinon, $l-1\neq 0$, et $u_{l-1} \neq 0$ par définition.
- Soit *i* un élément de $[\![1,l-1]\!]$, on a $u_i < b$ par définition. En outre, puisque $u_0 < b-1, u_0+1 < b$. Puisque $\sum_{i=0}^{l-1} u_i b^i = n-1$, on a : $(u_0+1) + \sum_{i=1}^{l-1} u_i b^i = (n-1) + 1 = n$.

^{41.} Pour n=0, l'unique séquence satisfaisant les trois propriétés du théorème est la séquence vide Ø. Par convention, on considère que l'écriture de 0 en base b est (0), satisfaisant alors les seconde et troisième hypothèses mais pas la première.

Montrons qu'elle est unique. Supposons avoir deux telles séquences, $(u_{l-1}, u_{l-2}, \dots, u_1, u_0)$ et $(v_{m-1}, v_{m-2}, \dots, v_1, v_0)$, où l et m sont deux entiers naturels non nuls. Alors, l>0 et m>0 (sans quoi la somme d'une de ces séquences serait nulle). En outre, u_0 et v_0 doivent être égaux au reste de la division euclidienne de n par b, et donc distincts de 0. Si l=m=0, les deux séquences sont donc identiques. Suposons l>0 et m>0. Alors, $(u_{l-1},u_{l-2},\dots,u_1,u_0-1)$ et $(v_{m-1},v_{m-2},\dots,v_1,v_0-1)$ satisfont les trois propriétés de l'énoncé avec n remplacé par n-1. En effet,

- $u_{l-1} \neq 0$ et $v_{m-1} \neq 0$ par définition.
- Soit *i* un élément de [0, l-1], on a $u_i < b$ et $v_i < b$ par définition. En outre, puisque $u_0 > 0$ et $v_0 > 0$, $u_0 1$ et $v_0 1$ sont bien des entiers naturels.
- Puisque $\sum_{i=0}^{l-1} u_i b^i = n$ et $\sum_{i=0}^{m-1} v_i b^i = n$, on a : $(u_0 1) + \sum_{i=1}^{l-1} u_i b^i = n 1$ et $(v_0 1) + \sum_{i=1}^{m-1} v_i b^i = n 1$. Par hypothèse de récurrence, elles doivent être identiques, et donc l = m et $(u_{l-1}, u_{l-2}, \dots, u_1, u_0) = (v_{m-1}, v_{m-2}, \dots, v_m, v_0)$. Supposons maintenant que b divise n. Soit q le quotient de la division enclidienne de n par b. On a bq = n. Alors, q < n 42, donc, par hypothèse de récurrence, il admet une unique séquence $(u_{l-1}, u_{l-2}, \dots, u_0)$ satisfaisant les trois conditions de l'énoncé avec n remplacé par q, où l est un élément de \mathbb{N}^* . Alors, $(u_{l-1}, u_{l-2}, \dots, u_0, 0)$ satisfait les conditions de l'énoncé. En effet, les deux premières sont évidentes et $\sum_{l=0}^{l-1} u_l b^{l+1} = bq = n$.

Montrons qu'elle est unique. Supposons avoir deux écritures de n en base b, $(u_{l-1}, u_{l-2}, \ldots, u_1, u_0)$ et $(v_{m-1}, v_{m-2}, \ldots, v_1, v_0)$, où l et m sont deux entiers naturels non nuls. Alors, u_0 et v_0 doivent être égaux au reste de la division euclidienne de n par b, et donc égaux à 0. On a donc : $n = \sum_{i=1}^{l-1} u_i b^i = \sum_{j=1}^{m-1} v_j b^j$. Soit $q = \sum_{i=1}^{l-1} u_i b^{i-1}$. On a aussi : $q = \sum_{j=1}^{m-1} v_j b^{j-1}$ (puisque ce nombre donne aussi n après multiplication par b). Donc, $(u_{l-1}, u_{l-2}, \ldots, u_1)$ et $(v_{m-1}, v_{m-2}, \ldots, v_1)$ satisfont les trois propriétés de l'énoncé avec n remplacé par q. Puisque b > 1, q < n, donc, par hypothèse de recurrence, ces deux séquences sont identiques, donc l = m et $u_i = v_i$ pour tout élément i de [1, l-1]. Puisque $v_0 = u_0 = 0$, les deux séquences correspondant à n sont donc identiques.

Par récurrence forte, le résultat est donc vrai pour tout $n \in \mathbb{N}$.

De fonctions Haskell donnant l'écriture d'un entier dans une base quelconque ou convertissant cette écriture en décimal sont données en appendice .

2.3. Nombres premiers

2.3.1. Définition

Un entier naturel p est dit *premier* s'il admet exactement deux entiers naturels distincts pour diviseurs : 1 et lui-même. On note \mathbb{P} l'ensemble des nombres premiers.

Les premiers nombres premiers sont 2, 3, 5, 7, 11, 13, 17, 19 et 23.

Le seul nombre premier pair est 2. Les deux seuls nombres premiers séparés de 1 sont 2 et 3. (En effet, les nombres premiers strictement supérieurs à 2 sont tous impairs, et donc séparés d'au moins 2.)⁴³ Deux nombres premiers p et q sont dits jumeaux si p - q = 2 ou q - p = 2.

Lemme: Tout entier naturel strictement supérieur à 1 est divisible par au moins un nombre premier.

Démonstration : On procède par récurrence forte. Montrons que, pour tout entier naturel n, $n \le 1$ ou n est divisible par au moins un nombre premier. Le lemme est évidemment vrai pour les nombres 0 et 1 (qui sont tous deux inférieurs ou égaux à 1) et pour 2, qui est lui-même premier (et, comme tout entier naturel, divisible par lui-même).

Soit n un entier naturel strictement supérieur à 2 et supposons que tout entier compris entre 2 et n-1 soit divisible par au moins un nombre premier.

Si n est divisible par un entier l compris entre 2 et n-1 (inclus), alors il existe un nombre permier p divisant l. Il existe alors deux entiers naturels k et q tels que n=kl et l=qp, d'où n=(kq)p. Donc, p divise n.

Si n n'est divisible par aucun entier compris entre 2 et n-1, alors il n'est divisible par aucun entier strictement supérieur à 1 autre que lui-même. En effet, soit m un tel entier, soit m < n, et donc m ne divise pas n, soit m > n, auquel cas il ne peut être un diviseur de n. Donc, n n'est divisible que par 1 et par lui-même (qui sont bien distincts puisque n > 1). Par définition, n est donc un nombre premier. Puisque n est divisible par lui-même, il est divisible par un nombre premier.

Dans les deux cas, *n* est divisible par un nombre premier. Par récurrence forte, on en déduit que le résultat est vrai pour tout entier naturel, et donc que tout entier naturel strictement supérieur à 1 est divisible par au moins un nombre premier.

^{42.} En effet, si $q \ge n$, on aurait bq > n, donc n > n, ce qui est impossible.

^{43.} Soit p et q deux nombres premiers strictement supérieurs à 2. Si p - q = 1, p = q + 1, alors p est pair ou q est pair, ce qui est impossible puisque aucun d'eux n'est divisible par 2.

Lemme : Il existe une infinité de nombres premiers.

Démonstration : Supposons par l'absurde que l'ensemble des nombres premiers et fini. Soit N le cardinal de \mathbb{P} ; N est donc un entier naturel. Notons que $N \ge 3$ puisque 2, 3 et 5 sont premiers. On peut choisir une bijection b de N vers \mathbb{P} . Pour tout entier naturel i strictement infèrieur à N, on note p_{i+1} l'entier naturel b(i). Ainsi, $\mathbb{P} = \{p_1, p_2, \dots, p_N\}$.

Pour tout entier naturel i strictement infèrieur à N, on note p_{i+1} l'entier naturel b(i). Ainsi, $\mathbb{P} = \{p_1, p_2, \dots, p_N\}$. Soit q l'entier définit par : $q \equiv 1 + \prod_{i=1}^N p_i$. Puisque tout nombre premier est strictement supérieur à $0, \prod_{i=1}^N p_i > 0$ 44, donc q > 1. Pour tout entier naturel i tel que $i \in [1, N]$, on a $q \equiv 1$ $[p_i]$, donc le reste de la division euclidienne de q par p_i est 1, et q n'est pas divisible par p_i . Donc, q n'est divisible par aucun nombre premier, ce qui contredit le lemme précédent. On en conclut que l'hypothèse de départ est fausse.

Lemme : Soit p, q et r trois nombres premiers tels que r > q, q > p et r - q = q - p. Alors p = 3 ou q - p est divisible par 3.

Démonstration : Notons a l'entier q - p. Soit b le reste de la division euclidienne de p par p et p celui de la division euclidienne de p par p est divisible par p est premier, on en déduit que p = p et le résultat est établi. Montrons que les autres cas, p et p est divisible par p est premier, on en déduit que p = p et le résultat est établi. Montrons que les autres cas, p et p et p est divisible par p est divisible par p est divisible par p est premier, on en déduit que p est divisible par p

Si b = c = 1, alors $r \equiv (1 + 2)[3] \equiv 3[3] \equiv 0[3]$. Donc, r est divisible par 3. Puisque r est premier, on en déduit que r = 3, ce qui est impossible car p et q sont deux nombres premiers distincts strictement inférieurs à r et qu'il n'existe qu'un seul nombre premier (2) strictement inférieur à 3.

De même, si b = c = 2, alors $r \equiv (2 + 4)[3] \equiv 6[3] \equiv 0[3]$, ce qui est impossible comme nous venons de le voir.

Si b = 1 et c = 2 ou si b = 2 et c = 1, alors q = (1 + 2)[3] = 3[3] = 0[3]. Donc, q est divisible par 3. Puisque q est premier, on en déduit que q = 3. Puisque p est un nombre premier strictement inférieur à q, il ne peut qu'être égal à 2. Donc, a = 3 - 2 = 1, d'où r = q + 1 = 4. Mais 4 n'est pas un nombre premier (puisque $4 = 2 \times 2$ est divisible par 2), donc ce cas est impossible.

Des fonctions Haskell détarminant si un entier naturel est premier et calculant les premier nombres premiers sont données en appendice A.2. (Ces fonctions sont données à titre d'illustration uniquement, et ne sont pas particulièrement efficaces. En particulier, il est en général plus rapide pour calculer les premiers nombre premiers d'utiliser le crible d'Érastosthène, dont une implémentation en C++ et Rust est donnée en appendice A.4.)

2.3.2. Théorème de Bachet-Bézout

Théorème (Bachet-Bézout): Soit a et b deux entiers naturels et c leur plus grand diviseur commun. Il existe deux entiers relatifs p et q tels que pa + qb = c.

Démonstration : Soit $E = \{n \in \mathbb{N}^* | \exists (p,q) \in \mathbb{Z}^2 \ pa + qb \}$. E est un sous-ensemble non vide (il contient au moins a, obtenu pour p = 1 et q = 0) de \mathbb{N} , donc il admet un unique élément minimal r. En outre, par définition de E, r > 0. Montrons qu'il s'agit du plus grand diviseur commun de a et b, ce qui prouvera le théorème. Pour ce faire, nous procédons en deux temps. Nous montrons d'abord que r divise a et b, puis qu'il n'existe aucun diviseur commun à ces deux nombres qui soit strictement supérieur à r.

Notons s le reste de la division euclidienne de a par r. Il existe un entier naturel k tel que a = kr + s, et $0 \le s < r$. Soit p et q deux entiers relatifs tels que pa + qb = r. On a : pa + qb = ka + s, et donc (p - k)a + qb = s. Si s était strictement positif, s serait un élément de \mathbb{N}^* et donc de E. Or, cela est impossible car s < r et r est un élément minimal de E. On en déduit que s = 0, et donc que r divise a. On montre de même, par le même argument et en échangeant les rôles de a et a0, que a1 divise a2. Ainsi, a3 est un diviseur commun de a4 et a5.

Supposons maintenant par l'absurde qu'il existe un autre diviseur commun à a et b, noté t, tel que t > r. On peut choisir deux entiers naturels u et v tels que a = ut et b = vt. Soit p et q deux entiers relatifs tels que pa + qb = r. On a : r = put + qvt, d'où r = (pu + qv)t. Puisque r et t sont tous deux strictement positifs, pu + qv doit l'être aussi. Mais un entier strictement positif est supérieur ou égal à 1, et donc $r \ge t$, en contradiction avec l'hypothèse. On en déduit qu'il n'existe aucun diviseur commun à a et b strictement supérieur à r.

Ainsi, r, qui est un élément de E et peut donc s'écrire qa + pb avec $(p, q) \in \mathbb{Z}^2$, est le plus grand diviseur commun de a et b.

^{44.} Cela se démontre facilement par récurrence sur N.

Lemme: Soit p un nombre premier et a et b deux entiers naturels. Si p divise ab, alors p divise a ou p divise b.

Démonstration : Si p divise a, le résultat est vrai. Supposons que p ne divise pas a. Puisque les seuls diviseurs de p sont 1 et lui-même, et car p ne divise pas a, 1 est le seul diviseur commun à p et a, et donc leur plus grand diviseur commun. D'après le théorème précédent, on peut donc choisir deux entiers relatifs q et r tels que qp + ra = 1. Multiplions cette équation par b. Il vient : qpb + rab = b. Puisque p divise ab, on peut choisir un entier naturel k tel que ab = kp. Donc, qpb + rkp = b. Cette équation peut se récrire : (qb + rk)p = b. Puisque p et p sont tous deux strictement positifs, pb + rk doit l'être aussi, et p divise donc p.

Corrolaire : Soit p un nombre premier, N un entier naturel, et $a_1, a_2, ..., a_N$ des entiers naturels (si $N \neq 0$). Si p divise $\prod_{i=1}^{N} a_i$ (pris égal à 1 si N = 0), alors il existe un élément i de [1, N] tel que p divise a_i .

Démonstration : On procède par récurrence sur N. Soit P le prédicat à un paramètre libre défini par : P(N) : $\forall a \in \mathbb{N}^N p | \prod_{i=1}^N a_i \Rightarrow \exists i \in [[1,N]] | a_i$.

Puisque p est premier, p > 1, donc p ne divise pas 1. Donc, P(0) est vrai.

Si N=1 et $p|\prod_{i=1}^N a_i$, alors, puisque $\prod_{i=1}^N = a_i$, $p|a_i$. Donc, P(1) est vrai.

Le prédicat P(2) est également vrai d'après le lemme précédent.

Soit N un entier naturel tel que P(N) est vrai. Si N=0 ou N=1, alors N+1=1 ou N+1=2, donc P(N+1) est vrai. Supposons maintenant $N \ge 2$.

Soit $a_1, a_2, ..., a_{N+1}$ des entiers naturels tels que $p | a_1 a_2 \cdots a_{N+1}$. Puisque p divise $a_1 a_2 \cdots a_{N+1}$, égal à $(a_1 a_2 \cdots a_N) a_{N+1}$, d'après le lemme précédent, il divise $a_1 a_2 \cdots a_N$ ou a_{N+1} . Dans le second cas, il existe bien un élément i de $[\![1,N+1]\!]$ (N+1) tel que $p | a_i$. Dans le premiers, par hypothèse de récurrence, il existe un élément i de $[\![1,N]\!]$, satisfaisant donc $i \in [\![1,N+1]\!]$, tel que p divise a_i . Ainsi, P(N+1) est vrai.

Par récurrence, P(N) est donc vrai pour tout entier naturel N.

Corrolaire : Soit N un entier naturel, p un nombre premier, et a un entier naturel. Si p divise a^N , alors p divise a.

Démonstration : C'est une application directe du corrolaire précédent avec $a_1 = a_2 = \cdots = a_N = a$.

Corrolaire : Soit a, b, et c trois entiers tels que a et c sont premiers entre eux et b et c sont premiers entre eux. Alors ab et c sont aussi premiers entre eux.

Démonstration : Soit d un diviseur de ab et c. On veut montrer que d doit être égal à 1. Supposons par l'absurde que d > 1. Alors, d admet au moins un diviseur premier e. Puisque e|d et d|ab, on a e|ab. Donc, e|a ou e|b. De même, puisque e|d et d|c, on a e|c. Donc, $(e|a \land e|c) \lor (e|b \land e|c)$. Cela est impossible puisque e > 0, a et c sont premiers entre eux et que b et c sont permiers entre eux. On en déduit que l'hypothèse de départ est fausse et que d doit être égal à 1.

Réciproquement, 1 divise tout entier et donc ab et c. Donc, 1 est le pgcd de ab et c.

Corrolaire: Soit a et b deux entier naturels non nuls, et c un entier naturel non nul premier avec a et avec b. Alors, c est premier avec ab.

Démonstration : Soit d un diviseur commun de c et ab. Supposons par l'absurde que d > 1. Alors d est un entier naturel strictement supérieur à 1, donc il admet un divideur premier p. Puisque $d \mid ab$ et $d \mid c$, $p \mid ab$, donc $p \mid a$ ou $p \mid b$, et $p \mid c$. Cela est impossible puisque a et c sont premiers entre eux (donc $p \mid a \land p \mid c$ est impossible) et b et c sont premiers entre eux (donc $p \mid b \land p \mid c$ est impossible). On en déduit que l'hypothèse est fausse, et donc que d = 1.

Corrolaire : Soit n un entier naturel non nul et $a_1, a_2, ..., a_n$ des entiers naturels non nuls (où a_n est absent si $n \le 2$ et a_2 est absent si n = 1). Soit b un entier naturel non nul premier avec $a_1, a_2, ..., a_n$. Alors, b est premier avec $a_1a_2 ... a_n$.

Démonstration : On procède par récurrence sur n. Pour n égal à 1, le résultat est évident puisque $a_1 a_2 \dots a_n = a_1$.

Soit m un entier naturel non nul et supposons l'énoncé vrai pour n=m. Soit $a_1, a_2, ..., a_m, a_{m+1}$ des entiers naturels non nul et b un entier naturel non nul premier avec chacun d'entre eux. Alors, b est premier avec $a_1a_2...a_m$. Puisqu'il est également premier avec a_{m+1} , on en déduit d'après le corrolaire précédent que b est premier avec $a_1a_2...a_ma_{m+1}$. Donc, l'énoncé est vrai pour n=m+1.

Par récurrence, il l'est pour tout entier naturel non nul *n*.

Corrolaire: Soit a et b deux entier premier entre eux, et c un entier. Si a et b divisent c, alors ab divise c.

Démonstration : Soit a et b deux entiers naturels premiers entre eux, et c un entier tel que a et b divisent c. D'après le théorème de Bachet-Bézout, on peux choisir deux entiers relatifs u et v tels qur ua + vb = 1. Multiplions cette expression par c. Il vient : uac + vbc = c. Puisque a et b divisent c, on peut choisir deux entiers naturels d et e tels que ad = c et e et

Corrolaire : Soit p un entier naturel strictement supérieur à 1, a_1 , a_2 , ..., a_p des entiers naturels deux-à-deux premier entre eux, et b un entier. Si a_i divise b pour tout élément i de [[1, p]], alors $a_1 \times a_2 \times \cdots \times a_p$ divise b.

Démonstration : On procède par récurrence sur p. Pour p=2, il s'agit du corrolaire précédent. Soit p un entier naturel supérieur ou égal à 2 et supposons l'énoncé vrai pour cette valeur. Soit $a_1, a_2, ..., a_p, a_{p+1}$ des entiers naturels deux-à-deux premiers entre eux et b un entier tel que : $\forall i \in [\![1,p+1]\!] a_i \mid b$. Montrons que $a_1 \times a_2 \times \cdots \times a_p \times a_{p+1} \mid b$.

Puisque les nombres $a_1, a_2, ..., a_p, a_{p+1}$ sont deux-à-deux premiers entre eux, $a_1 \times a_2 \times \cdots \times a_p$ et a_{p+1} sont premiers entre eux. Puisque $a_1 \times a_2 \times \cdots \times a_p | b$ (par hypothèse de récurrence) et $a_{p+1}| b$, on conclut d'après le corrolaire précédent que $a_1 \times a_2 \times \cdots \times a_p \times a_{p+1}| b$.

2.3.3. Théorème du reste chinois

Théorème : Soit p un entier naturel strictement supérieur à 1. Soit $n_1, n_2, ..., n_p$ des entiers naturels strictement supérieurs à 1 deux-à-deux premiers entre eux. Soit N l'entier naturel défini par : $N = n_1 n_2 \cdots n_p$. Pour tout p-uplet d'entiers naturels $(a_1, a_2, ..., a_p)$ tel que $a_i < n_i$ pour chaque élément i de $[\![1, p]\!]$, il existe un unique entier naturel n tel que n < N satisfaisant : $\forall i \in [\![1, p]\!]$ $n \equiv a_i [n_i]$.

Démonstration:

- Unicité: Supposons avoir deux tels entiers n et m. Sans perte de généralité, on peut supposer n ≥ m. (Si ce n'est pas le cas, on se ramène à cette situation en inversant les noms de n et m.) Alors, pour tout élément i de [[1, p]], n − m ≡ 0 [n_i]; autrement dit, n_i divise n − m. D'après l'un des corrolaires du théorème de Bachet-Bézout, on en déduit que N divise n − m. Puisque n − m ≥ 0 (par définition d'un entier naturel) et n − m < N, on en déduit que n − m = 0, et donc n = m.
- Existence: Les deux ensembles [[0, N − 1]] et [[0, n₁ − 1]] × [[0, n₂ − 1]] × ··· × [[0, n₂ − 1]] ont le même cardinal fini N. D'après le résultat précédent, la fonction du premier vers le second qui à un entier n apparteant à [[0, N − 1]] associe (n % n₁, n % n₂, ..., n % n₂) est injective. Donc, elle est bijective.

Corrolaire : Soit a et b deux entiers naturels premiers entre eux et strictement supérieurs à 2. Alors il existe au moins quatre entiers naturels x_1 , x_2 , x_3 et x_4 deux à deux distincts, chacun strictement inférieur à ab et tels que, pour tout élément i de $\{1, 2, 3, 4\}$, $x_i^2 \equiv 1$ [ab].

Démonstration : D'après le théorème du reste chinois, on peut choisir quatre entiers x_1, x_2, x_3 et x_4 strictement inférieurs à ab tels que $x_1 \equiv 1$ $[a], x_1 \equiv 1$ $[b], x_2 \equiv (a-1)$ $[a], x_2 \equiv 1$ $[b], x_3 \equiv 1$ $[a], x_3 \equiv (b-1)$ $[b], x_4 \equiv (a-1)$ $[a], x_4 \equiv (b-1)$ [b]. (Ces quatre entiers sont bien deux à deux distincts car aucune paire de deux d'entre eux n'a les deux mêmes restes par les divisions euclidiennes par a et par b; en effet, puisque a > 2 et b > 2, a - 1 n'est pas égal à 1 modulo a (ce sont deux entiers naturels strictements inférieurs à a et distincts puisque a - 2 > 0) et b - 1 n'est pas égal à 1 modulo b.) Puisque $(a - 1) \times (a - 1) = a^2 - 2a + 1$ et $(b - 1) \times (b - 1) = b^2 - 2b + 1$, on a $(a - 1) \times (a - 1) \equiv 1$ [a] et $(b - 1) \times (b - 1) = 1$ [b]. Donc, pour tout élément i de $\{1, 2, 3, 4\}$, on a $x_i^2 \equiv 1$ [a] et $x_i^2 \equiv 1$ [b].

Soit *i* un élément de $\{1, 2, 3, 4\}$. Soit *y* le reste de la division euclidienne de x_i^2 par *ab*. On a $y \equiv x_i^2$ [*a*] et $y \equiv x_i^2$ [*b*]. Donc, $y \equiv 1$ [*a*] et $y \equiv 1$ [*b*]. Puisque $1 \equiv 1$ [*a*] et $1 \equiv 1$ [*b*] et que 1 et *y* sont deux entiers naturels strictement inférieurs à *ab*, on déduit du théorème du reste chinois que y = 1.

Cela étant vrai pour chaque valeur de *i*, on en déduit : $\forall i \in \{1, 2, 3, 4\} x_i^2 \equiv 1 [ab]$.

76

2.3.4. Décomposition en produit de facteurs premiers

Théorème : Tout entier naturel non nul peut s'écrire comme un produit de facteurs premiers, *i.e.*, pour tout entier naturel non nul a, il existe un entier naturel N, un N-uplet (p_1, p_2, \ldots, p_N) de nombres premiers deux-à-deux distincts et un N-uplet (n_1, n_2, \ldots, n_N) d'entiers naturels non nuls tels que

$$a = \prod_{i=1}^{N} p_i^{n_i}.$$

Le couple $((p_1, p_2, ..., p_N), (n_1, n_2, ..., n_N))$ est appelé décomposition de a en produit de facteurs premiers.

Cette décomposition est unique à l'ordre près des facteurs : soit a un entier naturel non nul, si N et M sont deux entiers naturels, (p_1, p_2, \ldots, p_N) un N-uplet de nombres premiers deux-à-deux distincts, (q_1, q_2, \ldots, q_M) un M-uplet de nombres premiers deux-à-deux distincts, (n_1, n_2, \ldots, n_N) un N-uplet d'entiers naturels non nuls et (m_1, m_2, \ldots, m_m) un M-uplet d'entiers naturels non nuls tels que

$$a = \prod_{i=1}^{N} p_i^{n_i} = \prod_{j=1}^{M} q_j^{m_j},$$

alors, pour tout élément i de [1, N], on peut choisir un élément j de [1, M] tel que $q_i = p_i$ et $m_i = n_i$.

(Notons que l'entier j ainsi définit est unique, et ne peut être le même pour deux valeurs différentes de i. Cela définit donc une injection de [1, N] vers [1, M]. Puisque le premier est de cardinal N et le second de cardinal M, cela implique $N \ge M$. En échangeant les rôles des deux décompositions, on montre de même $M \le N$, et donc N = M.)

Démonstration:

- Existence: On procède par récurrence forte sur a. Pour a=1, a est égal au produit vide, donc (\emptyset,\emptyset) convient. Supposons maintenant a>1 et le résultat vrai pour tout entier naturel strictement inférieur à a. Alors, on peut choisir un nombre premier p tel que p|a. On peut donc choisir un entier naturel non nul q tel que pq=a. Puisque p>1, q< a (sans quoi on aurait pq>a). Donc, q admet une décomposition en produit de facteurs premiers. On peut donc choisir un entier naturel N, un N-uplet de nombres premiers (p_1, p_2, \ldots, p_N) deux-à-deux distincts, et un N-uplet d'entiers naturels non nuls $(n_1, n_2, \cdots n_N)$ tels que $k=\prod_{i=1}^N p_i^{n_i}$. On a donc $p\prod_{i=1}^N p_i^{n_i}=a$. S'il existe un élément i_0 de $[\![1,N]\!]$ tel que $p_{i_0}=p$, alors, définissant, pour tout élément i de $[\![1,N]\!]$, $n'_i=n_i+1$ si $i=i_0$ et $n'_i=n_i$ sinon, on a : $\prod_{i=1}^N p_i^{n_i'}=p\prod_{i=1}^N p_i^{n_i}=a$, donc $((p_1,pi2,\ldots,p_N),(n'_1,n'_2,\ldots,n'_N))$ est une décomposition de a et produit de facteurs premiers. Sinon, $((p_1,p_2,\ldots,p_N,p),(n_1,n_2,\ldots,n_N,1))$ est une décomposition de a en produit de facteurs premiers. Dans tous les cas, a admet bien une décoposition en produit de facteurs premiers. Par récurrence forte, on conclut que le résultat est vrai pour tout entier naturel non nul.
- Unicité: Supposons par l'absurde que a admette deux décompositions en produits de facteurs premiers différentes (autrement que par l'ordre des facteurs). Il existe au moins un nombre premier p apparaissant avec des puissances différentes dans ces deux décompositions (cette puissance étant possiblement zéro dans une des deux décompositions si p n'y apparaît pas), c'est-à-dire, avec les notations de l'énoncé, un élément i de [1, N] tel que p_i n'apparaisse pas dans la seconde décomposition ou, si j désigne l'élément de [1, M] tel que $p_i = q_j$, $n_i \neq m_j$. Notons ces deux puissances n_1 et n_2 , avec $n_2 > n_1$ (avec $n_1 = 0$ dans le premier cas). On peut choisir deux entiers naturels k_1 et k_2 tels que $a = p^{n_1}k_1 = p^{n_2}k_2$ et k_1 peut s'écrire comme produit de facteurs premiers distincts de p. On a : $p^{n_2-n_1}k_2 = k_1$ (puisque $p^{n_1}p^{n_2-n_1}k_2 = p^{n_2}k_2 = p^{n_1}k_1$ et $p^{n_1} \neq 0$). Puisque $n_2 > n_1$, $p^{n_2-n_1}k_2 = pp^{n_2-n_1-1}k_2$ et $p^{n_2-n_1-1}k_2$ est un entier naturel. Donc, p divise k_1 . En utilisant le corrolaire du lemme du théorème de Bachet-Bézout, on en déduit qu'il divise au moins l'un des facteurs premiers de l'écriture de k_1 sus-mentionnée. Mais cela est impossible car chacun d'eux est premier et distinct de p, et n'admet donc pas p pour diviseur. On en déduit que p ne peut admettre deux décompositions en produits de facteurs premiers différent autrement que par l'ordre des facteurs.

2.3.5. Petit théorème de Fermat

Théorème : Soit p un nombre premier et a un entier naturel non multiple de p. Alors, $a^{p-1} \equiv 1$ [p].

Démonstration : Pour tout élément i de [1, p-1], on définit l'entier naturels a_i par $a_i = ia$ et on note r_i le reste de la division euclidienne de a_i par p. Montrons d'abords que les r_i ainsi définis sont deux à deux distincts. Cela montrera que

la fonction de p-1 vers $\{r_1,r_2,\ldots,r_{p-1}\}$ associant r_{i+1} à tout élément i de p-1 est injective. Elle est aussi surjective (pour tout élément e de cet ensemble, il existe par définition un élément i de [1,p-1] tel que $e=r_i$; en posant j=i-1, on a $j\in p-1$ et $e=r_{j+1}$). Donc, cela démontrera qu'il s'agit d'une bijection, et donc que [1,p-1] et $\{r_1,r_2,\ldots,r_{p-1}\}$ sont de même cardinal p-1.

On procède par l'absurde. Soit i et j deux éléments de [1, p-1] tels que $j \neq i$ et $r_j = r_i$. On suppose en outre que j > i. (Si ce n'est pas le cas, alors i > j et on se ramène à ce cas en échangeant les rôles de i et j.) On a alors $a_j \equiv a_i [p]$, et donc p divise $a_j - a_i$. Puisque $a_j - a_i = a(j-i)$ et p et p et p sont premiers entre eux, d'après de lemme du théorème de Bachet-Bézout, p divise p i. Mais cela est impossible puisque p i est un entier naturel non nul strictement inférieur à p. Cela montre que les p pour p i est un deux à deux distincts.

En outre, aucun d'eux ne peut être nul d'après le lemme du théorème de Bachet-Bézout puisque, pour chacune des valeur de i dans [1, p-1], p ne divise ni i (puisque i est un entier strictement positif et strictement inférieur à p) ni a, et donc pas a_i . Donc, chacun d'eux appartient à [1, p-1].

Ainsi, l'ensemble $\{r_1, r_2, \dots, r_{p-1}\}$ est inclus dans $[\![1, p-1]\!]$ et a le même cardinal fini. On en déduit que ces deux ensembles sont égaux. On a donc : $\prod_{i=1}^{p-1} r_i = (p-1)!$, et donc, puisque $a_i \equiv r_i[p]$ pour tout élément i de $[\![1, p-1]\!]$, $\prod_{i=1}^{p-1} a_i \equiv (p-1)![p]$. Puisque $\prod_{i=1}^{p-1} a_i = (p-1)!a^{p-1}$, cela donne $(p-1)!a^{p-1} \equiv (p-1)![p]$.

Soustrayant puis factorisant (p-1)!, il vient : (p-1)! $(a^{p-1}-1)=0$ [p]. Donc, p divise (p-1)! $(a^{p-1}-1)$. Puisque p ne divise ni 1, ni 2, ..., ni p-1, et d'après le premier corrolaire du théorème de Bachet-Bézout, on en déduit que p divise $a^{p-1}-1$. On a donc $a^{p-1}-1 \equiv 0$ [p], et donc $a^{p-1}=1$ [p].

Remarque : Avec les mêmes notations, il n'est pas toujours vrai que p-1 est le plus petit entier naturel n tel que $a^n \equiv 1$ [p]. Un contre-exemple est donné par p=17 et a=2: on a $2^8=256=(15\times17)+1$, donc, bien que 17 est premier, 2 n'est pas un multiple de 17 et 8<17-1, $2^8\equiv1$ [17]. Une autre classe de contre-exemples est donnée par tout nombre premier p strictement supérieur à 2 et p=1: on a alors p=1 [p] pour tout entier naturel p=1.

2.4. Les groupes $\mathbb{Z} / (n\mathbb{N})$ et $(\mathbb{Z} / (n\mathbb{N}))^*$

2.4.1. Définition

Soit *n* un entier naturel non nul. ***

À faire

- Définition de la relation d'équivalence
- Définition de l'ensemble $\mathbb{Z} / (n\mathbb{Z})$
- Définition du magma ($\mathbb{Z} / (n\mathbb{Z}), +$)
- preuve que la définition de + est une bonne définition (différent représentants de la même classe → même résutlat)
- preuve qu'il s'agit d'un groupe
- parfois noté simplement $\mathbb{Z} / (n\mathbb{Z})$ quand il n'y a pas de confusion possible
- Définition de l'ensemble $(\mathbb{Z} / (n\mathbb{Z}))^*$ (sans le zéro)
- Définition du magma $(\mathbb{Z} / (n\mathbb{Z}), \times)^*$ (sans le zéro)
- preuve que la définition de × est une bonne définition (différent représentants de la même classe → même résutlat)
- preuve qu'il s'agit d'un groupe
- parfois noté simplement $(\mathbb{Z} / (n\mathbb{Z})) *$ quand il n'y a pas de confusion possible

2.4.2. Cyclicité pour $(\mathbb{Z} / (p\mathbb{N}))^*$ pour p premier

2.4.3. Cyclicité pour $(\mathbb{Z}/(p^m\mathbb{N}))^*$ pour p premier

A. Codes Haskell, C/C++ et Rust

A.1. Écriture d'un entier naturel en base b

A.2. Test de primalité

La fonction isPrime ci-dessous teste si un entier p est un nombre premier. Sa complexité est $O(p^{1/2})$.

La fonction findNPrimes ci-dessous prend un entier naturel N en argument et retourne la liste des N premiers nombres premiers.

```
-- prepend an element to a list
prepend :: a -> [a] -> [a]
prepend x [] = [x]
prepend x (y:l) = y : (prepend x l)
-- last element of a list (Haskell also has a function for that, which should be used in
    real-world
-- applications)
last_list :: [a] -> a
last_list[x] = x
last_list (x:l) = last_list l
-- determine if p is prime given an ordered list of all prime numbers at least up to its
    square root
isPrime_l :: Integer -> [Integer] -> Bool
isPrime_l p [] = True
isPrime_l p (q:l) | isDivisible p q = False
                   q*q > p = True
                  | otherwise = isPrime_l p l
-- find the next prime number given an ordered list of all previous ones
nextPrime :: Integer -> [Integer] -> Integer
nextPrime p l | isPrime l (p+1) l = (p+1)
             | otherwise = nextPrime (p+1) l
```

```
-- find the N next prime numbers given an ordered list of all previous ones
findNextPrimes :: Integer -> [Integer] -> [Integer]
findNextPrimes 0 l = l
findNextPrimes n l = let y = (nextPrime (last_list l) l) in
    findNextPrimes (n-1) (prepend y l)
-- find the N first prime numbers
findNPrimes :: Integer -> [Integer]
findNPrimes n = findNextPrimes (n-1) [2]
```

Version C du test de primalité :

```
bool is_prime(unsigned int n) {
    if (n < 2) {
        return false;
    if (n < 4) {
        return true;
   if (n%2 == 0) {
        return false;
    }
   unsigned int m = 3;
   while (m*m \le n) {
        if (n%m == 0) {
            return false;
        }
        m += 2;
    }
    return true;
}
```

Version Rust du test de primalité :

```
fn is_prime(n: usize) -> bool{
    if n < 2 {
        return false;
    }
    if n < 4 {
        return true;
    }
    if n%2 == 0 {
        return false;
    }
    let mut m: usize = 3;
    while m*m <= n {
        if n%m ==0 {
            return false;
        }
        m += 2;
    }
    true
}</pre>
```

A.3. PGCD

La fonction pgcd ci-dessous prend comme arguments deux entiers naturels et donne leur pgcd.

Version C:

```
int pgcd(unsigned int n, unsigned int m) {
    unsigned int a;
   unsigned int b;
   unsigned int c;
   if (n <= m) {
        a = m;
        b = n;
    } else {
        a = n;
        b = m;
   while (b > 0) {
       c = a - b*(a/b);
        a = b;
        b = c;
    return a;
}
```

Version Rust:

```
fn pgcd(n: usize, m: usize) -> usize {
   let mut a: usize;
   let mut b: usize;
   let mut c: usize;
   if n >= m {
        a = n;
        b = m
   } else {
        a = m;
        b = n;
   while b>0 {
        c = b;
        b = a - (a/b)*b;
        a = c;
    }
    а
```

A.4. Crible d'Érastosthène

Il s'agit d'un algorithme permettant de trouver tous les nombres premiers infèrieurs ou égaux à un entier naturel donné.

Version C++:

```
#include <vector>
// data type to use for numbers
typedef unsigned long number;
// Sieve of Erastosthenes
// return a vector with all the prime numbers no larger than n
std::vector<number> primes_below_n(number n) {
    std::vector<bool> isPrime(n, true);
    isPrime[0] = false;
    number index = 1;
    char alpha = 1;
    number i;
   while (index < n) {</pre>
        i = (index+1)*(index+1)-1;
        while (i < n) {
            isPrime[i] = false;
            i += alpha * (index+1);
        if (index==1) {
            alpha = 2;
        }
        index++;
        while ((!(isPrime[index])) && (index < n)) {</pre>
            index++;
    }
    std::vector<number> res;
    for (number i=0; i<n; i++) {</pre>
        if (isPrime[i]) {
             res.push_back(i+1);
        }
    return res;
}
```

Version Rust⁴⁵:

```
// data type to use for numbers
type Number = usize;

// create an array of bools initialized to true
// implemented as an array of u8, where each u8 codes for 8 bools
fn make_bool_array(length: usize) -> Vec<u8> {
    if length%8==0 {
        vec![255; length/8]
    } else {
        vec![255; length/8+1]
    }
}

// read an entry from an array of bools
fn read_bool_array(array: &Vec<u8>, index: usize) -> bool {
    let index_u8: usize = index/8;
    let index_bit = index%8;
```

^{45.} Cette version est sensiblement plus longue car le compilateur ruste 1.51.0, utilisé pour tester la version Rust, n'optimise pas les vecteurs de type bool—chaque entrée prend ainsi un octet en mémoire. Nous définissons donc des fonctions auxiliaires afin de pouvoir représenter huit bools pour chaque octet, afin de ne pas utiliser plus de mémoire que nécessaire. Le compilateur g++ 7.5.0 avec lequel la version C++ a été testée optimise les vecteurs de type bool pour que chaque entrée ne prenne (en moyenne et pour de grands vecteurs) qu'un bit de mémoire ; il n'est donc pas besoin, pour cette version, d'employer des fonctions auxiliaires.

```
if array[index_u8] & (0b0000_0001 << index_bit) == 0 {</pre>
        false
    } else {
        true
}
// set the value of an entry
fn set_bool_array(array: &mut Vec<u8>, index: usize, val: bool) {
    let index_u8: usize = index/8;
   let index_bit = index%8;
   if val {
        array[index_u8] |= 0b0000_0001 << index_bit;
    } else {
        array[index_u8] &= 255 - (0b0000_0001 << index_bit);
    }
}
// Sieve of Erastosthenes
// return a vector with all the prime numbers no larger than n
fn primes_below_n(n: Number) -> Vec<Number> {
   let mut is_prime = make_bool_array(n as usize);
    set_bool_array(&mut is_prime, 0, false);
   let mut index: Number = 1;
   let mut alpha: Number = 1;
   let mut i: Number;
   while index < n {
        i = (index+1)*(index+1)-1;
        while i < n {
            set_bool_array(&mut is_prime, i, false);
            i += alpha * (index+1);
        if index==1 {
            alpha = 2;
        index+=1;
        while (index < n) && (!read_bool_array(&is_prime, index)) {</pre>
            index+=1;
        }
    let mut res = Vec::<Number>::new();
    for i in 0..n {
        if read_bool_array(&is_prime, i) {
            res.push(i+1);
        }
    return res;
```

B. Liste des 1000 premiers nombres premiers

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241,
251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673,
677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109,
1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249,
1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627,
1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783,
1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,
2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213,
2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347,
2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753,
2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361,
3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527,
3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931,
3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093,
4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409,
4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561,
4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721,
4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,
5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179,
5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501,
5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653,
5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807,
5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939,
5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121,
6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271,
6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397,
6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581,
6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761,
6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907,
6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043,
7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433,
7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561,
7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703,
7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879,
7883, 7901, 7907, 7919
```