A Survey On Low-Resource Machine Translation

Outline

- ➤ Language-independent challenges in low-resource setting
 - Insufficient parallel data
 - Insufficient monolingual data
 - Lack of computational linguistic studies
- ➤ Language-specific challenges in low-resource setting
 - Complex morphological system
 - Lack of standard orthography
- > Solutions
 - Data augmentation (data-wise)
 - ➤ Hyperparameter tuning, transfer learning (model-wise)
 - ➤ Build computational linguistic tools from scratch (data-and-model-wise)

Language-Independent Challenges in Low-Resource Setting

- ➤ Insufficient parallel data
 - ➤ hard to build translation model
- ➤ Insufficient monolingual data
 - ➤ hard to build language model
 - ➤ hard to train good semantic representation (embedding)

Insufficient Parallel Data

Language	Code	Main location	Speakers	Languages	Train	Dev	Test
Aymara	aym	Bolivia	1,677,100	es-aym	6,531	996	1,003
Asháninka	cni	Peru	35,200	es-cni	3,883	883	1,003
Bribri	bzd	Costa Rica	7,000	es-bzd	7,506	996	1,003
Guarani	gn	Paraguay	6,652,790	es-gn	26,032	995	1,003
Hñähñu	oto	Mexico	88,500	es-oto	4,889	599	1,003
Nahuatl	nah	Mexico	410,000	es-nah	16,145	672	1,003
Quechua	quy	Peru	7,384,920	es-quy	125,008	996	1,003
Rarámuri	tar	Mexico	9,230	es-tar	14,720	995	1,003
Shipibo-Konibo	shp	Peru	22,500	es-shp	14.592	996	1,003
Wixarika	hch	Mexico	52,500	es-hch	8,966	994	1,003

Insufficient Monolingual Data

Towast language	Wikij	pedia	Bible		
Target language	Size (MB)	Sentences	Size (MB)	Sentences	
Hñähñu	-	-	1.4	7.5K	
Wixarika	-	-	1.3	7.5K	
Nahuatl	5.8	61.1K	1.5	7.5K	
Guarani	3.7	28.2K	1.3	7.5K	
Bribri	-	-	1.5	7.5K	
Rarámuri	-	-	1.9	7.5K	
Quechua	5.9	97.3K	4.9	31.1K	
Aymara	1.7	32.9K	5	30.7K	
Shipibo-Konibo	-	-	1	7.9K	
Asháninka	-	-	1.4	7.8K	
Spanish	1.13K	5M	-	-	
Total	1.15K	5.22M	19.8	125.3K	

Language-Specific Challenges in Low-Resource Setting

- Complex morphological system
 - ➤ Sentence-word (Jeffrey C. Micher, 2018)

Qanniqlaunngikkalauqtuqlu qanniq-lak-uq-nngit-galauq-tuq-lu snow-a_little-frequently-NOT-although-3.IND.S-and "And even though it's not snowing a great deal,"

Language-Specific Challenges in Low-Resource Setting

- ➤ Lack of standard orthography ((Jeffrey C. Micher, 2018)
 - Same word, various spellings

Haamalaujunut
Hamalakkunnit
Hammalakkut
Hammalakkunnut
Hammalat
Hammalat

Solutions

- ➤ Data-wise
 - ➤ Back translation
 - ➤ Iterative back translation
- ➤ Model-wise
 - ➤ Hyperparameter tuning
 - ➤ Empirical hyperparameters selection
 - ➤ Transfer learning
 - ➤ Transfer knowledge from high-source to low-resource
- ➤ Data-model-wise
 - ➤ Build computational linguistic tools from scratch

Back Translation

- ➤ A method to generate silver (synthetic) parallel data
- ➤ Let src-tgt be a language pair (where src is low-resource)
 - > train a tgt-src MT model T0 with gold parallel data
 - collect extra monolingual data of tgt (mono_tgt)
 - translate mono_tgt to src with T0 (silver data gotten)
 - > train a src-tgt MT model with gold and silver data

➤ If tgt is high-resource language -> much silver data

Back Translation

➤ (Hoang et al. 2018)

Iterative Back Translation

➤ (Hoang et al. 2018) (Feldman et al. 2020)

Algorithm 1 Iterative Back-Translation

Input: parallel data D^p , monolingual source, D^s , and target D^t text

- 1: Let $T_{\leftarrow} = D^p$
- 2: repeat
- 3: Train target-to-source model Θ_{\leftarrow} on T_{\leftarrow}
- 4: Use Θ_{\leftarrow} to create $S = \{(\hat{s}, t)\}$, for $t \in D^t$
- 5: Let $T_{\rightarrow} = D^p \cup S$
- 6: Train source-to-target model Θ_{\rightarrow} on T_{\rightarrow}
- 7: Use Θ_{\rightarrow} to create $S' = \{(s, \hat{t})\}$, for $s \in D^s$
- 8: Let $T_{\leftarrow} = D^p \cup S'$
- 9: until convergence condition reached

Output: newly-updated models Θ_{\leftarrow} and Θ_{\rightarrow}

Iterative Back Translation

Hyperparameter Tuning

- ➤ (Sennrich et al. 2019)
 - ➤ Model with lower capacity (fewer layers)
 - ➤ Smaller vocabulary for BPE
 - ➤ Higher frequency threshold for subword units
 - ➤ Lower pre-set max vocabulary size
 - ➤ Smaller batch size
 - ➤ Higher dropout rate

Transfer Learning

- ➤ (Zoph et al. 2016)
- ➤ Let a low-resource language be L and the real desired MT model to be L-English.
 - > collect large parallel data for example: French and English.
 - > train a French-English MT model M0 with large data
 - ➤ initialize a new model M1 with same weights of M0
 - English embeddings are retained and frozen
 - ➤ L's tokens are randomly mapped to French embeddings
 - > jointly train L's embedding and M1

Computational Linguistic Tools

- Inuktitut Morphological Analyzer
 - ➤ The Uqailaut Project (Farley, 2009)
 - ➤ A rule-based morphological segmentation model
 - piqujivungaarutiksanut ->pi^qu^ji^vungaa^ruti^ksa^nut

Thank You!