Fantomas4xFitter manual

November 12, 2024

1 Installing Fantomas4xFitter

To download the Fantômas module for xFitter follow the steps below:

- 1. Download the 2.2.0_FutureFreeze branch from the Fantomas4xFitter github page: https://github.com/lucaskotz/Fantomas4xFitter.git. You can download via Download zip or git clone.
- 2. Build the Fantomas4xFitter directory. Use the command ./make.sh install while in the main Fantomas4xFitter directory.

The Fantômas module is implemented in a way that you do not need to manually change anything to have xFitter recognize the parameterization class.

2 Running the Fantômas examples

We include several examples that are separated into different directories, showcasing the features unique to the Fantômas module. These examples are located in examples/Fantomas folder. The examples are based off the settings and data used in the π^+ fit from arXiv:2311.08447. The output for each example is also provided for each fit within each example. Each example is run similarly to any other xFitter fit. Below are the steps to run the provided example add_CP/fit1. These steps may be extended to the other example fits outlined in the subsequent subsections:

1. Enter the example fit directory. Using fit1 of the add_CP example:

cd examples/Fantomas/add_CP/fit1

2. Link datafiles to fit directory: While in the add_CP/fit1 directory:

3. Link the xFitter executable to fit directory: While in add_CP/fit1 directory:

```
ln -sf ../../../bin/xfitter .
```

4. Run the xFitter executable within the add_CP/fit1 directory:

```
./xfitter
```

5. Optional: Create figures from the fit output. First, create a link, similar to the xFitter executable and then run the executable. While in the add_CP/fit1 directory:

```
ln -sf ../../../bin/xfitter-draw .
./xfitter-draw output
```

The steps above rely on the use of soft-linking the xFitter executable to each fit directory. This is to prevent the use of other xFitter executables the user may have installed. You may replace the use of soft-linking with alias by skipping step 3 above and using the following line:

alias xfitter /path/to/Fantomas4xFitter/bin/xfitter

This allows the user to skip step 3 subsequent fits as the line above only needs to be run once. Note that if you use alias instead of ln -sf, then you would use the command xfitter instead of ./xfitter during step 4. The same can be applied to step 5 for xfitter-draw.

$2.1 \quad add_{-}CP$

This example, located at examples/Fantomas/add_CP, contains fits demonstrating the process of adding an additional control point to the metamorphs. The order of the metamorphs, defined by the parameters in steering_fantomas.txt, is the only input that differs in each of the fits in the add_CP example. Below, I discuss each fit in greater detail:

- 1. fit1: The three metamorphs have $N_{m,eff} = 0$, with two fixed control points at $x_{\text{CP1/2,FIX}} = 10^{-3}$, 0.8 and no free control points.
- 2. fit2: A free control point is added to each of the three metamorphs at $x_{\text{CP1,FREE}} = 0.4$, making $N_{m,eff} = 1$ with a total of 3 control points.
- 3. fit3: An additional free control point is added to the sea and valence metamorphs at $x_{\text{CP2,FREE}} = 0.6$, making $N_{m,eff} = 2$ for the sea and valence. The gluon remains a metamorph of $N_{m,eff} = 1$ as it does not have an additional control point.

Figure 1: The evolution of χ_0^2 is presented for all four fits within in the example add_CP. The vertical black lines differentiate the χ_0^2 values from the various fits. The first one separates fit1(Blue) from fit2(Blue) and the second line separates fit2 from fit3(Red) and fit3_Cgfix(Green).

4. fit3_Cgfix: Like fit3, this fit uses $N_{m,\text{eff}}=2$ for the sea and valence and $N_{m,\text{eff}}=1$ for the gluon. The key difference is that in fit3_Cgfix, C_g is fixed at $C_g=2.133$, a value obtained from fit2. The χ^2 curve for C_g is notably flat, complicating convergence in fit3 due to the high number of free parameters (12) in xFitter. By fixing C_g in fit3_Cgfix, convergence is successfully achieved.

In addition to demonstrating the procedure for adding control points to metamorph parameterizations, this example illustrates the evolution of the best fit over successive iterations. We print out the χ^2 quoted by **xFitter** when an improvement in χ^2 is detected, which we call χ_0^2 . The list of χ_0^2 values was taken from each fit within this example to portray how χ_0^2 evolves over iterations as seen in Fig. 1.

2.2 alpha_x

This example contains two fits to demonstrate the effect α_x inside the modulator function has on the overall fit. The two fits included define the sea and valence metamorphs as a

 $N_{m,eff} = 2$ with $x_{\text{CP1/2,FREE}} = 0.2, 0.4$ and $x_{\text{CP1,FIX}} = 10^{-3}, 0.8$. The gluon metamorph is defined with $N_{m,eff} = 0$ with $x_{\text{CP1,FIX}} = 10^{-3}, 0.8$.

The differences between the fits are outlined below:

- 1. fit1: $\alpha_x = 0.3$ by setting xPower within the Fantômas steering card for each flavor.
- 2. fit2: $\alpha_x = 1$. by setting xPower within the Fantômas steering card for each flavor.

3 Input files

Each of the examples contains the necessary input files to run xFitter:

- steering_fantomas.txt: Contains the initial parameters used to create the metamorphs.
- parameters.yaml: Existing xFitter input file. Requires the user to define flavor ID and parameters passed into metamorphs. The flavor ID used in this file must match the ones defined within steering_fantomas.txt.
- steering.txt: Standard xFitter steering card file.
- constants.yaml: Contains the physical constraints used in the analysis.

4 Output files

Along with the new input files, there are four new output files introduced in the xFitter output file.

- 1. output/fantomas_functional_parameters.txt: Contains the full metamorph functional form of each PDF flavor central fit along with the momentum fraction.
- 2. output/steering_fantomas_out.txt: Contains the updated metamorph parameters after xFitter finds the best fit for each PDF.
- 3. output/fantomas_error_log.txt: This file will contain all error messages that arise within the Fantômas module. The errors include:
 - (a) Condition number: A message will appear quoting the condition number of the matrix containing the positions of the control point. It is encouraged to keep this number as low as possible by spreading the control points from each other. Note: the magnitude of the condition number will increase with more control points.
 - (b) **Non-integrable metamorphs**: There will be a warning that appears if it is detected that the metamorph is non-integrable based off the conditions:

$$Sc(1) < -n_{\text{Mellin}} + \epsilon$$

 $Sc(2) < -n_{\text{Mellin}} + \epsilon$ (1)

where Sc(1/2) are the low-/high-x power in the carrier function, n_{Mellin} is the n-th Mellin moment use in the xFitter calculation, and $\epsilon=0.07$ to avoid instabilities in the integration method at x^{-1} and $(1-x)^{-1}$.

4. output/fantomas_chi2.log: This file contains all the χ^2 values from xFitter fitting process when there is an improvement in χ^2 .

4.1 Best fit parameters

4.1.1 add_CP

The χ^2_0 is quoted for each fit within this example in Fig. 1.

	χ_0^2	d.o.f.	$\chi_0^2/\text{d.o.f.}$
fit1	451.44	401	1.126
fit2	448.84	398	1.128
fit3	432.22	396	1.091
fit3_Cgfix	433.44	397	1.092

Table 1: χ_0^2 , degrees of freedom, and $\chi_0^2/\text{d.o.f.}$ values for all four fits within add_CP example.

The minuit δ parameters from output/minuit.out.txt are quoted for each fit within the add_CP example in Tab. 7 and 8. The metamorph parameters from output/steering_fantomas_out.txt are quoted in Tab. 10 and 9.

		l A	A_s	δB	δB_g		s	δB_v	
fi	it1	10 ±	₹8.0	0. ±	0.2	$0. \pm 0.3$		$-0.02 \pm$	0.03
fi	it2	1.0 =	± 0.8	$-0.2 \pm$	0.4	-0.6 ± 0.3		$-0.01 \pm$	0.04
fi	it3	1.1 =	± 0.9	0. ±	1.	$0.1 \pm$	0.7	$-0.3 \pm$	0.5
fit3_	.Cgfix	0.9 =	± 0.4	-0.1 ± 0.3		$0. \pm 0.2$		$-0.30 \pm$	0.09
			δ	C_g	8	δC_s		δC_v	
	fit	1	0.	$\pm 2.$	$0. \pm 2.$		0.0	2 ± 0.02	
	fit	2	-1	$\pm 2.$ 0		$0.\pm 2$ -0		05 ± 0.07	
	fit	3 7.86		± 0.05	-4	. ± 1.	-0	0.3 ± 0.8	
	fit3_C	Cgfix		0.	-4.3	3 ± 0.7	-0	0.3 ± 0.2	

Table 2: Table containing the minuit carrier parameters and their errors located in output/minuit.out.txt for the example add_CP.

		$\delta D_g \mid \delta D_s \mid \delta D_$		δD_v	δE_g			δE_s		δE_v			
	fit1	0		0		0		0		0		0	
	fit2	0		0		0	$2. \pm 4.$		3.75 ± 0.05		$\pm 0.05 \mid 0.06$.08
	fit3	0		0		0	-3	$.\pm 1.$	0	. ± 1.	-	0.2 ± 0	0.9
fit	3_Cgfix	0		0		0	-2	$.\pm 2.$	0.0'	7 ± 0.0	9 –	0.2 ± 0).2
		δF_g		δF_s		δF	$\stackrel{\circ}{v}$	δG_g	δG_s	δG_v			
	fit1		n	/a		n/a		n/a		n/a	n/a	n/a	
	fit2	fit2 0			0		0		n/a	n/a	n/a		
	fit3 0			$1. \pm 1.$		$0.1 \pm$	0.5	n/a	0	0			
	fit3_Cgfix 0		0.	46 ± 0	.04	$0.1 \pm$	0.2	n/a	0	0			

Table 3: Table containing the minuit modulator parameters and their errors located in output/minuit.out.txt for the example add_CP.

	gluon -	– metam	orph 0	sea –	metamo	orph 1	valence – metamorph 2			
	Sc(0)	Sc(1)	Sc(2)	Sc(0)	Sc(1)	Sc(2)	Sc(0)	Sc(1)	Sc(2)	
fit1	0.421	-0.374	2.826	9.796	0.733	8.187	2.542	0.743	0.952	
fit2	0.123	-0559	2.133	1.025	0.182	8.039	2.361	0.730	.907	
fit3	1.200	-0.192	9.999	1.093	0.246	3.754	1.219	0.398	0.562	
fit3_Cgfix	0.096	-0.629	2.133	0.892	0.133	3.734	1.297	0.428	0.602	

Table 4: The modulator parameters quoted by output/steering_fantomas_out.txt for all three metamorph cards rounded to the nearest thousandth place for the example add_CP.

	glu	on – me	tamorp	h 0	sea – metamorph 1				
	Sm0	Sm1	Sm2	Sm3	Sm0	Sm1	Sm2	Sm3	
fit1	FIX	FIX	n/a	n/a	FIX	FIX	n/a	n/a	
fit2	FIX	1.730	FIX	n/a	FIX	1.730	2.527	FIX	
fit3	FIX	-1.618	FIX	n/a	FIX	4.146	3.140	FIX	
fit3_Cgfix	FIX	-0.499	FIX	n/a	FIX	3.816	2.989	FIX	

	[val	valence – metamorph 2								
	Sm0	Sm1	Sm2	Sm3						
fit1	FIX	FIX	n/a	n/a						
fit2	FIX	1.730	0.0374	FIX						
fit3	FIX	-0.193	0.142	FIX						
$fit3_Cgfix$	FIX	-0.145	0.135	FIX						

Table 5: The carrier parameters quoted by output/steering_fantomas_out.txt for all three metamorph cards rounded to the nearest thousandth place for the example add_CP. The numbers in bold are the values from the CALC option, which calculates the value at a given point but does not use that point as a control point within the metamorph.

4.1.2 alpha_x

The χ_0^2 is quoted for each fit within this example in Fig. 6.

	χ_0^2	d.o.f.	$\chi_0^2/\mathrm{d.o.f.}$
fit1	441.46	397	1.112
fit2	443.40	397	1.117

Table 6: χ_0^2 , degrees of freedom, and $\chi_0^2/\text{d.o.f.}$ values for all four fits within alpha_x example.

The minuit δ parameters from output/minuit.out.txt are quoted for each fit within the alpha_x example in Tab. 7 and 8. The metamorph parameters from output/steering_fantomas_out.txt are quoted in Tab. 10 and 9.

	A_s	δB_g	δB_s	δB_v	δC_g	δC_s	δC_v
fit1	11±1.0	0.01 ± 0.2	0.2 ± 0.2	0.09 ± 0.07	7.14 ± 0.03	$0.\pm 1.$	0.96 ± 0.05
fit2	0.25 ± 0.02	0.	-1.03 ± 0.04	-0.02 ± 0.01	-20±30	-1.9 ± 0.2	-0.07 ± 0.03

Table 7: Table containing the minuit carrier parameters and their errors located in output/minuit.out.txt for the example alpha_x.

	δD_g	δD_s	δD_v	δE_g	δE_s		δE_v		δF_g	δF_s	δF_v
fit1	0	0	0	0	0.5 ± 0	0.5	$-0.8 \pm$	0.2	n/a	-0.1 ± 0.4	-0.91 ± 0.08
fit2	0	0	0	0	4.3 ± 0.4		0.10 ± 0.02		n/a	$5. \pm 1.$	0.10 ± 0.01
					C+1	,	$g \mid \delta G_s \mid$	δG_{i}	<u>,</u>		
					fit1	n/a		0			
					fit2	n/ϵ	a 0	0			

Table 8: Table containing the minuit modulator parameters and their errors located in output/minuit.out.txt for the example alpha_x.

	\parallel gluon -	– metam	orph 0	sea – i	metamo	rph 1	valence – metamorph 2			
	Sc(0)	Sc(1)	Sc(2)	Sc(0)	Sc(1)	Sc(2)	Sc(0)	Sc(1)	Sc(2)	
fit1	0.567	-0.313	9.995	11.234	0.971	4.599	2.051	0.333	0.904	
fit2	0.123	-0559	2.133	1.025	0.182	8.039	2.361	0.730	.907	

Table 9: The modulator parameters quoted by output/steering_fantomas_out.txt for all three metamorph cards rounded to the nearest thousandth place for the example alpha_x.

	gluc	on – me	etamorp	oh 0	1				valence – metamorph 2			
	Sm0	Sm1	Sm2	Sm3	Sm0	Sm1	Sm2	Sm3	Sm0	Sm1	Sm2	Sm3
fit1	FIX	FIX	n/a	n/a	FIX	0.481	-0.132	FIX	FIX	-0.739	-0.348	FIX
fit2	FIX	FIX	n/a	n/a	FIX	4.296	5.385	FIX	FIX	0.188	0.668	FIX

Table 10: The carrier parameters quoted by output/steering_fantomas_out.txt for all three metamorph cards rounded to the nearest thousandth place for the example alpha_x. The numbers in bold are the values from the CALC option, which calculates the value at a given point but does not use that point as a control point within the metamorph.