诚信应考,考试作弊将带来严重后果!

考试中心填写:

年	月		日
一 考	试	用	

湖南大学课程考试试卷

课程名称: <u>概率统计 A</u>; 课程编码: <u>GE03004</u>; 编号: <u>A</u>; 考试时间: 120 分钟

题 号		$\stackrel{-}{\longrightarrow}$	三	四				总分
应得分	36	4	30	30				100
实得分								
评卷人								

注: 闭卷考试,可使用不带存储功能的计算器。

参考数据

 $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$, $t_{0.05}(15) = 1.7531$, $t_{0.025}(15) = 2.1315$, $t_{0.05}(16) = 1.7459$, $t_{0.025}(16) = 2.1199$,

一、填空题(每小题 4 分,共 36 分)

- 1. 已 知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{8}$,则 A, B, C 全不发生的概率为 .
- 2. 从 (0,1) 中随机地抽取两个数 x 和 y,则满足条件 $xy < \frac{1}{4}$ 的概率是
- 3. 设 $f_1(x)$ 是标准正态分布的概率密度函数, $f_2(x)$ 是 [-1,3] 上均匀分布的概率密度函数,且 $f(x) = \begin{cases} af_1(x), x \leq 0 \\ bf_2(x), x > 0 \end{cases}$ (a > 0, b > 0) 为概率密度函数,

则a,b应满足的关系式为______.

4. 设两个独立的随机变量 X 和 Y 的分布律分别为 $\begin{pmatrix} X \\ P \end{pmatrix} \sim \begin{pmatrix} 1 & 3 \\ 0.3 & 0.7 \end{pmatrix}, \begin{pmatrix} Y \\ P \end{pmatrix} \sim \begin{pmatrix} 2 & 4 \\ 0.4 & 0.6 \end{pmatrix}, 则 <math>Z = X + Y$ 的分布律为

.. 1.

学号:

姓名:

- 二、论述题(4分)
- 10. 请说明参数的区间估计与假设检验的联系。

装订线

(题目不得超过此线

三、计算题(每小题10分,共30分)

- 11. 袋中有 12 个球,其中有 9 个新的,第一次比赛时从中任取 3 个用,比 赛后仍放回袋中,第二次比赛再从袋中任取 3 个,求:
 - (1) 第二次取出的球都是新球的概率;
 - (2) 又已知第二次取出的球都是新球,第一次取到的都是新球的概率。

12. 假设随机变量 X 的绝对值不大于 1, $P\{X=-1\}=\frac{1}{8}, P\{X=1\}=\frac{1}{4}$,在

事件(-1 < x < 1)出现的条件下, X在(-1, 1)内的任一子区间上取值的条件概率与该子区间的长度成正比。试求:

- (1) X的分布函数;
- (2) X取负值的概率。

- 13. 设随机向量(X,Y)的密度函数为 $f(x,y) = \begin{cases} x^2 + Axy, 0 \le x \le 1, 0 \le y \le 2, \\ 0, \quad \text{其他} \end{cases}$, 求:
 - (1) 常数 A;
 - (2) (X,Y)的两个边缘分布的密度函数;
 - (3) 概率 P(X+Y<1)。

装订线(题目不得超过此线

四、计算题 (每小题 10, 共 30 分)

14. 假设随机向量(X,Y)在矩形 $G = \{(x,y): 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀

- (1) U和 V的联合分布;
- (2) U和 V的相关系数 ρ 。

15. 设 X 服从 $(0,\theta)(\theta>0)$ 上的均匀分布, (X_1,X_2,\cdots,X_n) 是取自总体 X 的样本,求 θ 的矩估计量和最大似然估计量,并讨论两个估计量的无偏性。

16. 某食品厂用自动灌装机灌装某种饮料,每灌标准重量为 500ml,方差为62,每 隔一段时间需要检验机器的工作情况。现抽取 9 灌,测得其重量(单位: ml): 495, 510, 505, 498, 503, 492, 512, 497, 506, 假设重量服从正态分布, 根据以往的经验, 方差没有变化。试问该机器是否工作正常? (显著性水平 α =0.05)