

WISMO-CDMA

Dual-Band Embedded Module Hardware Specification

Reference: WM_Dpt_Projet_Type_N° ordre

Level: 1.5

Date: 17 May 2002

Document Information

Level	Date	History of the evolution	Writer
Rev 1	12/17/01		CNowak
Rev 2	03/07/02		CNowak

	Name	Function	Date	Signature
Written by	CNowak			
Checked by				
Approved by				

Distribution List

•

Contents

1	WISMOCDMA	A Introduction	8
1.1	Scope		8
1.2	Applicabl	e Standards	8
1.3	Safety ar	nd Governmental Agency Approval	8
2	Product Feat	tures	9
2.1	General S	Specifications WISMOCDMA module:	9
2.2		ıres	
2.3	Baseban	d Features	9
3	Detailed Des	scription	11
3.1			
3	.1.1 Tra 3.1.1.1	ansmitter RFT3100-1	
	3.1.1.1	Transmitter Specification	
3		ceiver 12	
	3.1.2.1 3.1.2.2	RFR3100IFR3000	
	3.1.2.2		
3		nthesizer	
3.2		d	
3	.2.1 Po	wer ON-OFF	
	3.2.1.1		
	3.2.1.1.2	Mode Two	15
	3.2.1.1.3	Mode Three	15
	3.2.1.2	Vcc_Out	
2	3.2.1.3	Charging	
3	.2.2 Dig 3.2.2.1	gital MSM5101	
	3.2.2.2	Memory	
3	•	stem Connector	16
	3.2.3.1	System Connector Description	
	3.2.3.2 3.2.3.3	I/O Description Parameters System Connector Names and Pinouts	
	3.2.3.4	GPx_INT	
	3.2.3.5	Keypad	
	3.2.3.6 3.2.3.6.1	I/O InterfacesUART – 1	
	3.2.3.6.2		

Page: 3/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son

autorisation préalable.

	3.2.3.6.3	R-UIM	22
	3.2.3.6.4	USB	24
	3.2.3.6.5	LCD	26
	3.2.3.7 3.2.3.8 3.2.3.8.1	General Purpose ADCAudioMIC	27
	3.2.3.8.2	Speaker	28
	3.2.3.8.3	Ringer	29
	3.2.3.8.4	Vibra	30
4	Electrical Sp	recification	31
4.	1.1 Abs 1.2 Red	rical Specificationssolute Maximum Ratingscommended Operating Conditions Characteristics	31 31
4.2	Power Co	onsumption	33
4.3	Timing Ch	haracteristics	33
5	Mechanical .		34
5.1	PCR dime	ension	34

Figures

Figure 3-1	RF Block Diagram	11
Figure 3-2	Baseband Block Diagram	14
Figure 3-3	Interrupt Sense Circuit	
Figure 3-4	Multiplexing Arrangement for Keypad COLs	
Figure 3-5	Multiplexing Arrangement for UART-2	22
Figure 3-6	Multiplexing Arrangement for R-UIM	
Figure 3-7	Multiplexing Arrangement for USB	
Figure 3-8	Example Connections for Philips PDIUSBP11 Transceiver	25
Figure 3-9	Example Connections for Micrel MIC2550 Transceiver	25
Figure 3-10	MIC 1 Differential Interface	28
Figure 3-11	MIC 2 Single-Ended Interface	28
Figure 3-12	SPK 1 Differential Interface	
Figure 3-13	SPK_2 Single-Ended Interface	29
Figure 3-14	Ringer Circuit	30

Tables

Table 3-1	I/O Pin Parameters	16
Table 3-2	System Connector Pin Assignment	
Table 3-3	Signal Name and Alternate Function	
Table 3-4	UART-1 Pin Names and Numbers	
Table 3-5	LCD Pin Numbers and Names	26
Table 3-6	GPADC Analog Input Spec.	27
Table 4-1	Absolute Maximum Ratings	31
Table 4-2	Recommended Operating Conditions	
Table 4-3	DC Characteristics	
Table 4-4	Power Consumption	

Overview

1 WISMOCDMA Introduction

1.1 Scope

Code Division Multiple Access, a cellular technology also known as **IS-95**, competes with GSM technology for dominance in the cellular world. There are now different variations, but the original CDMA is now known as **cdmaOne**. Developed originally by Qualcomm and enhanced by Ericsson, CDMA is characterized by high capacity and small cell radius, employing spread-spectrum technology and a special coding scheme. The Telecommunications Industry Association (TIA) adopted CDMA, in 1993. By December 2000, there were 27 million subscribers on **cdmaOne** systems worldwide. Over 35 countries have either commercial or trial activity ongoing. Enhancing today's data capabilities is the 1XRTT CDMA standard - this next evolutionary step for **cdmaOne** operators will provide packet data rates up to 144 kbps, significant capacity increases as well as extended battery life for handsets. This development is based on 1XRTT technology into an embedded module.

1.2 Applicable Standards

- 14.4 kbps Data Services IS-707
- 14.4 kbps Radio Link Protocol and Inter-band Operations TSB-74
- Addendum 1 (to the IS-2000 standard) TIA/EIA/IS-2000 PN-4756 (Ballot Version)
- CDMA Data Services Revision for IS-95B IS-707A
- CDMA Data Services Revision for cdma2000 Rel. 0 IS-707A-1
- CDMA Dual-Mode Air Interface Standard IS-95A, IS-95B
- CDMA Voice Coder Standards IS-96
- cdma2000: Signaling Layer 2 Standard for Spread Spectrum Systems
- PN-4430 (Ballot Resolution Version 0.14, to be published as TIA/EIA-IS-2000.4)
- IS-95 adapted for 1900 MHz frequency band J-STD-008
- Medium Access Control (MAC) for cdma2000 Spread
- PN-4429 (Ballot Resolution Version, to be published as TIA/EIA-IS-2000.3)
- TIA/EIA-95-B
- Option 3: Enhanced Variable Rate (max 8 kbps) Voice Coder (EVRC) IS-127
- OTA Update: Roaming System Selection and Programming Block IS-683A
- Physical Layer Standard for cdma2000 Spread Spectrum Systems PN-4428 (Ballot Resolution Version, to be published as TIA/EIA-IS-2000.2)
- Short Message Service including mobile origination IS-637A
- Upper Layer (Layer3) Signaling Standard for cdma2000 Spread Spectrum Systems PN-4431 (Ballot Resolution Version 1.06, to be published as TIA/EIA-IS-2000.5)

1.3 Safety and Governmental Agency Approval

The WISMOCDMA CDMA module shall comply with the following standards or guidelines:

- Formal Qualification Test, as mutually specified by Wavecom and manufacturer.
- IEC950, for electrical safety
- UL950, for electrical safety
- FCC Part 15B power supply, conducted requirements only
- FCC Part 22 (800 MHz), Part 24 (1900 MHz)
- SAR

Wavecom confidential ©

Page : **8/34**

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

- CSA for Canada
- Canada IC-133
- CDG 1, 2, 3
- IS-98D

2 Product Features

2.1 General Specifications WISMOCDMA module:

Support voice communication
 Wireless interface
 Interface connector.
 CDMA2000 (IS-95C)

Wireless data rate
 144 kbps

Supporting OS
 All via AT Commands MS Windows CE 3.0

Current consumption

Receive Mode Max 150mA
Transmission Mode Max 770mA
Sleep Mode 3.8mA

Dimension
 58 x 32 x 5.9 mm (Including shielding)

Weight

Operating Temperature -30°C ~ +60°C

- Mode CDMA

- Band (CDMA2000) - (Dual Band)

Band class 0 (800MHz)

Band class 1 (USPCS 1900MHz)

AntennaTestRF PadRF Connector

2.2 RF Features

- WISMOCDMA CDMA module shall support Rx and Tx specifications per IS-98D and IS-95A/IS-95B, Sections 2.1.2 through 2.1.3.1.1, 2.1.4, 2.2.3, and 2.1.3.1.9 through 2.1.3.1.10 as well as the corresponding portions of Section 6.
- WISMOCDMA CDMA module shall pass CDG-2 and CDG-3 interoperability testing specifications on Lucent, Nortel and Motorola infrastructures.

2.3 Baseband Features

The WISMOCDMA uses the Qualcomm MSM5105 and PM1000 for its Baseband hardware. The features of this solution include:

MSM5105

- Embedded QDSP2000 digital signal processor core, enabling features such as voice recognition, voice memo, speech compression, acoustic echo cancellation,
- 16-bit wide Flash and SRAM support
- Standard MIDI ringer
- Voice mode V1 (EVRC, IS-96A, PureVoice^a), all radio configurations
- High-speed data using both fundamental and supplemental channels
- ARM7TDMI
- General-Purpose Interface Bus
- Microprocessor power down modes

Wavecom[©]confidential ©

Page : **9 / 34**

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

- Internal watchdog and sleep timers
- Battery Management
- Charge Control
- Linear voltage regulation
- Programmable voltages for Digital and RF
- LCD Light driver
- Keypad Light driver
- Ringer driver
- Vibra driver
- RTC circuit
- SBI control

3 Detailed Description

3.1 RF

Figure 3-1 RF Block Diagram

3.1.1 Transmitter

3.1.1.1 RFT3100-1

- Full up conversion from analog base band to RF
- Integrated I/Q modulator, IF VCO/PLL, SSB up converter, VGA and driver amplifiers
- Eliminates image-reject filter between up converter and driver amplifier
- Includes two cellular and two PCS driver amplifier outputs
- MSM-controlled operation via Serial Bus Interface (SBI)
- TX power control through 85dB dynamic range VGA
- Puncture mode (gated TX power) for extended talk-time performance
- Supply voltage from 2.7 V to 3.3 V
- BCC++ 32-pad plastic chip scale package (5 mm x 5 mm x 0.8 mm)

3.1.1.2 Transmitter Specification

Transmitter performance test specification is CDMA2000 mobile station minimum requirement standard, **3GPP2 TSG C0011-A**.

Operating Frequency
 824MHz ~ 849MHz (Cellular Band)
 1850MHz ~ 1910MHz (PCS Band)

VCO Frequency Range

IF Frequency

ModulationConversion MethodOQPSKHeterodyne

Oscillation Method
 VCTCXÓ & PLL Synthesizer

RF Output Power

Maximum 0.2W

Minimum 10nW (-50dBm) Frequency Stability +/- 300Hz

Open Loop Power Control output Power

Spurious Emission

RX band -81dBm at 1MHz RBW
TX band -61dBm at 1MHz RBW
Other Frequency -47dBm at 30KHz RBW

3.1.2 Receiver

3.1.2.1 RFR3100

- Performs down conversion from RF to CDMA and FM IF
- Dual-band PCS/Cellular
- NF and IIP3 requirements for IS-98
- LNA Gain Control provided for improved dynamic range and Rx performance in the presence of high-level interferers.
- Selective power-down modes for extended standby-time performance
- Supply voltage from 2.7 V to 3.15 V
- 32-pin BCC++ plastic package (5 mm x 5 mm x 0.8 mm)

3.1.2.2 IFR3000

 The circuit blocks within the IFR3000 include the Rx AGC amplifier with 90 dB dynamic range, IF mixer and CDMA/FM low-pass filters for down-converting IF to

Page: 12/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

analog baseband, and analog-to-digital converters (ADC) for converting to digital base band.

- The IFR3000 includes clock generators that drive the digital processor and a voltage controlled
- Oscillator (VCO), which generates the Rx mixer local oscillator (LO) signal.
- 2.7 V to 3.15 V supply voltage
- Low current: 21 mA
- Rx power control through 90 dB dynamic range AGC amplifier
- IF mixer for down-converting IF to analog base band
- Low-pass filtering for CDMA
- 4-bit ADCs convert CDMA I and Q analog base band components to digital base band
- 8-bit ADCs convert FM I and Q analog base band to digital base band
- Clock generators for CDMA operation
- VCO for generation of Rx LO mixing signal and Q-channel DC offset control inputs drive baseband
- DC voltage offset to zero in CDMA signal path
- Selective power-down
- 48-lead BCC

3.1.2.3 Receiver Specification

Receiver performance test specification is CDMA2000 mobile station minimum requirement standard **3GPP2 TSG C.S0011-A**.

Operating Frequency 869MHz ~ 894MHz (Cellular Band) 1930MHz ~ 1990MHz (PCS Band)

VCO Frequency Range

IF Frequency

ModulationConversion MethodHeterodyne

Oscillation Method
 Receiver Sensitivity
 Single Tone Desensitization
 VCTCXO & PLL Synthesizer
 -104dBm @FER 0.5%
 -101dBm @ FER 1%

(FC+/-900KHz @-30dBm)

IMD -101dBm @ FER 1%

(FC+/-900KHz, FC+/-1700KHz @-43dBm)

-90dBm @ FER 1%

(FC+/-900KHz, FC+/-1700KHz @-36dBm)

-79dBm @ FER 1%

(FC+/-900KHz, FC+/-1700KHz @-21dBm)

Conducted Spurious Emission

RX band -81dBm @1MHz RBW
TX band -61dBm @1MHz RBW
Other Frequencies -47dBm @30KHz RBW

3.1.3 Synthesizer

3.2 Baseband

The Baseband is composed of three basic blocks. The Blocks are Power, Digital Processing, and System Connector.

Wavecom[®]confidential ©

Page : **13 / 34**

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

The Power block consists of six discrete regulators, which provide power to the module. A charging circuit is provided. If no battery charging is required then those parts may be left off without affecting the performance of the Power Block.

The Digital Processing block consists of the MSM5105 and two memory parts. The memory parts are industry standard SRAM and Flash components. The MSM5105 and the memory will be covered separately below.

The System Connector is a 60-pin dual row surface mount component. The overall board-to-board height is 2mm. There are several zero ohm resisters on the opposite side of the connector that allow for various configurations of signals on the connector.

Each block will be covered in more detail below.

Figure 3-2 Baseband Block Diagram

3.2.1 Power

3.2.1.1 ON-OFF

There are three Modes for powering the module ON and OFF.

3.2.1.1.1 Mode One

Wavecom confidential ©

Page: 14/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

A high input on pin 6 of the system connector cause the module to power ON. A low on pin 6 will cause the module to power OFF.

3.2.1.1.2 Mode Two

This Mode is a keypad input on pin 21 of the system connector. Pin 21 is Row_4 of the keypad system.

A low on this pin will cause the module to power ON, a subsequent low will cause the module to power OFF.

3.2.1.1.3 Mode Three

Mode Three is part of the charging circuit. When a voltage is applied to the charge pins then the module will power ON. The module will power OFF when charge voltage is removed if Software has not sensed a power ON from one of the other Modes.

3.2.1.2 Vcc Out

Power out is provided on pin 40 of the System Connector. Vcc_Out goes active 20ms max. after Power-On is sensed. The Vcc_Out is the same as system digital power and it will go low when the module is turned OFF. The module can provide up to 50mA to the outside system without affecting the module operation.

3.2.1.3 Charging

Charging is provided for Li batteries only. The charging is a function of Software monitoring the voltage on the battery. The charging input is constant current and constant voltage. The battery size is relative to the charger input.

3.2.2 Digital

3.2.2.1 MSM5101

3.2.2.2 Memory

The WISMOCDMA Module has both SRAM and Flash. The system memory bus has a 16-bit wide data bus and a 21-bit address bus. Control lines provide for single byte writes and reads of the SRAM.

WISMOCDMA memory is 512K bytes of SRAM and 2M bytes of Flash. The Flash size allows for user applications needed in product design.

The Flash on the WISMOCDMA can be reprogrammed using the Wavecom Flash Download Window running on a PC.

3.2.3 System Connector

3.2.3.1 System Connector Description

The System Connector has 60 pins and provides the interface between the WISMOCDMA module and the OEM designer's platform. The connector has a 0.5 mm pitch and a stacking height of 3.0 mm. The connector manufacturer is Kyocera/AVX. The mating connector part number is 24-5087-060-X00-861.

3.2.3.2 I/O Description Parameters

Table 3-1 I/O Pin Parameters

Symbol	Description
Туре	
В	Bi-directional
BS	Bi-directional with Schmitt trigger
CCS	Controlled Current Sink
CHV	Input Charging Voltage
1	CMOS input
IS	Input with Schmitt trigger
0	Output
V	Power
Special Circuitry	
А	Analog pad
PU	Contains internal pull-up device
PD	Contains internal pull-down device
KP	Contains an internal weak keeper device. Keepers cannot drive external busses
Н	Digital input where input voltage level may reach up to 3.6 V
(1,2,5, etc.)	Values are the +/- maximum current drive strength in mA for output pins
n[m]	Variable drive strength pins. The number 'n' is the drive strength when the PAD_CTL register bit is clear (0). The Number [m] is the drive strength when the PAD_CTL bit is set (1).

3.2.3.3 **System Connector Names and Pinouts**

Table 3-2 System Connector Pin Assignment

Pin #	Signal Name	Pin Type	Alt Function 1	Alt Function 2	R-#
1	CHG_IN				
2	CHG_IN				
3-A	R-UIM_CLK	O-3			R601
3-B	DIN_2	IS-PD			R602
4	CHG_IN				
5	GPIO_INT_5	BS-PU1	R-UIM_RST		
6	ON_/OFF	BS-PU1			
7	R-UIM_Data	BS-PU3			
8	GPIO_INT_21	BS-PU3	TX2		
9-A	GPIO_INT_30	BS-PD5	R-UIM_PWR_EN		R636
9-B	/RD	BS-2[3]			R637
10	GPIO_INT_20	BS-PD1	RX2		
11	No Connect				
12	GPI_INT_42	BS-H2-KP		USB-DATA	
13	ROW_0	IS-PU	INT-0		
14	/RST_IO				
15	ROW_1	IS-PU	INT-1		
16	GPI_INT_44	BS-H2-KP		USB-VPI	
17	ROW_2	IS-PU	INT-2		
18	GPI_INT_43	BS-H2-KP		USB-VMI	
19	ROW_3	IS-PU	INT-3		
20-A	GPIO_INT_13	BS-PD3			R654
20-B	Data-0	B-KP2[3]			R653
21	ROW_4	IS-PU	INT-4		
22-A	GPIO_INT_14	BS-PD3-KP			R657
22-B	Data-1	B-KP2[3]			R656
23	GPIO_INT_47	BS-KP3	COL_0	USB-VPO	
24-A	GPIO_INT_16	BS-PD3-KP		USB-SUSPND	R659
24-B	Data-2	B-KP2[3]			R658
25	GPIO_INT_46	BS-KP3	COL_1	USB-VMO	

Wavecom[©]confidential ©

Page: 17/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son

autorisation préalable.

26-A	GPIO_INT_10	BS-PU3-KP			R662
26-B	Data-3	B-KP2[3]			R661
27	GPIO_INT_45	BS-PU3	COL_2	USB-OE	
28-A	GPIO_INT_36	BS-PU3-KP			R664
28-B	Data-4	B-KP2[3]			R663
29-A	GPIO_INT_23	BS-PU3-KP	COL_3		R638
29-B	Data-6	B-KP2[3]			R639
30	RS232-CTS	IS-PD			
31-A	GPIO_INT_22	BS-PU3-KP	COL_4		R641
31-B	Data-7	B-KP2[3]			R642
32	RS232-RX	O-3			
33	Aux_V0-ADC	IA			
34	GPIO_INT_2	BS-PU2[3]	DTR		
35-A	GPIO_INT_7	BS-PU1			R643
35-B	Data-5	B-KP2[3]			R644
36-A	GPIO_INT_3	BS-PU2[3]	DSR		R666
36-B	A1	B-2[3]			R667
37	RS232-RTS	O-3			
38	Bat_Temp	IA			
39	RS232-TX	IS-PD			
40	VCC-Out_2.8v				
41	SPK_1P	OA			
42	MIC_1P	IA			
43	SPK_1N	OA			
44	MIC_1N	IA			
45	SPK_2P	OA			
46	MIC_2P	IA			
47	MBIAS	OA			R646
48	AGND				R632
49	BUZ	O-5			
50	GPIO_INT_40	BS-PU2[3]		LCD_CS	
51	GPIO_INT_19	BS-PU3	DCD-LCD_C/D	RTS2	
52	GPIO_INT_9	BS-PD3-KP	LED_Drv		
53-A	GPIO_INT_8	BS-PD1			R648
53-B	/WR	BS-PU2[3]			R649

Wavecom[©]confidential ©

Page: 18/34 This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Ce document est la propriété exclusive de WAVECOM. Il ne peut être communiqué ou divulgué à des tiers sans son

autorisation préalable.

54	GPIO_INT_18	BS-PD1	RI	CTS2	
55	+Vbatt				
56	VIBRA	O-1			R619
57	+Vbatt				
58	+Vbatt				
59	+Vbatt				
60	+Vbatt				

3.2.3.4 **GPx_INT**

There are 25 General Purpose IO Interrupt pins on the System Connector. Three of the pins are Input Interrupt pins only. Depending on product requirements, 17 GPIO pins can be configured for various functionality. There are 11 GPIO_INT pins that are jumper configurable with other signals, these are shown in Table 3.2 as Pin #-A or B. All GPIO pins can be configured as Interrupts to the system. Table 3-3 shows the alternate functions for each pin. Some pin configurations can only be done in blocks or multiple sets of pins.

Table 3-3 Signal Name and Alternate Function

Pin #	Signal Name	Pin Type	Alt Function 1	Alt Function 2
5	GPIO_INT_5	BS-PU1	R-UIM_RST	
8	GPIO_INT_21	BS-PU3	TX2	
9-A	GPIO_INT_30	BS-PD5	R-UIM_PWR_EN	
10	GPIO_INT_20	BS-PD1	RX2	
12	GPI_INT_42	BS-H2-KP		USB-DATA
16	GPI_INT_44	BS-H2-KP		USB-VPI
18	GPI_INT_43	BS-H2-KP		USB-VMI
20-A	GPIO_INT_13	BS-		
22-A	GPIO_INT_14	BS-		
23	GPIO_INT_47	BS-KP3	COL_0	USB-VPO
24-A	GPIO_INT_16	BS-PD3-KP		
25	GPIO_INT_46	BS-KP3	COL_1	USB-VMO
26-A	GPIO_INT_10	BS-PU3-KP		
27	GPIO_INT_45	BS-PU3	COL_2	USB-OE
28	GPIO_INT_36	BS-		
29-A	GPIO_INT_23	BS-PU3-KP	COL_3	
31-A	GPIO_INT_22	BS-PU3-KP	COL_4	

Wavecom[©]confidential ©

Page: 19/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

34	GPIO_INT_2	BS-PU2[3]	DTR	
35-A	GPIO_INT_7	BS		
36-A	GPIO_INT_3	BS-PU2[3]	DSR	
50	GPIO_INT_40	BS-PU2[3]		
51	GPIO_INT_19	BS-PU3	DCD	
52	GPIO_INT_9	BS-PD3-KP		USB-SUSPND
53	GPIO_INT_8	BS-		
54	GPIO_INT_18	BS-PD1	RI	

3.2.3.5 Keypad

The WISMOCDMA module provides for a 5 x 5 keypad matrix. The five Rows are used to sense key contact closure when connected to an external keypad. The Row pins have active pull-ups built in to reduce the need for external components. ROW pins are dedicated inputs that are mapped to the Interrupt Controller. If the Row pins are used in a keypad they can still be used as interrupt inputs. See Figure 3-3 for Interrupt sense circuit. The five Columns are multi-function GPIO_INT pins. When the GPIO_INT pins are used as Columns their other functions are unavailable. Figure 3-4 shows the Row and Column pins on the System connector.

Figure 3-3 Interrupt Sense Circuit

System Connector ROW 0 ROW 0 Pin 13 ROW 1 **ROW** Pin 15 ROW 2 ROW 2 Pin 17 ROW 3 ROW 3 Pin 19 ROW 4 ROW 4 Pin_ 21 GPIO INT-47 GPIO INT-46 GPIO INT-45 COL 0 USB VPO COL **USB** USB VMO COL 2 USB OE COL 3 COL 4 USB SEL GPIO INT-23 GPIO INT-22

Figure 3-4 Multiplexing Arrangement for Keypad COLs

3.2.3.6 1/0 Interfaces

The WISMOCDMA module has 5 external communication Interfaces. Each Interface and its functions are described below. Not all the Interfaces can be used at the same time.

3.2.3.6.1 UART-1

The UART communicates with serial data that conforms to RS-232 interface protocol. The UART is fully configurable by SW. UART_1 has 4 dedicated pins on the System Connector these are shown in Table 3-4

Table 3-4 UART-1 Pin Names and Numbers

Signal Name	Description	Sys. Conn. #
RS232_RX	Transmit serial data output	32
RS232_TX	Receive serial data input	39
RS232_RTS	Clear to send (INPUT)	30
RS232_CTS	Request to send (OUTPUT)	37

3.2.3.6.2 UART - 2

The UART communicates with serial data that conforms to RS-232 interface protocol. The UART is fully configurable by SW.

UART-2 uses pins 8 and 10 on the System Connector. When UART-2 is selected, R_UIM and GPIO_INT 20 and 21 are not available. When the UART is not selected all GPIO_INT signals and R_UIM signals can be used. Figure 3-5 shows the multiplexing scheme for UART-2.

UART SEL GPIO INT-21 System GPIO INT-20 Connector Pin 8 Pin 10 UIM SEL TX2 RX2 UART 2 R_UIM R-UIM CLK Pin 3 R-UIM DATA Pin 7 Pin 5 GPIO_INT-5 /R-UIM_Reset

Figure 3-5 Multiplexing Arrangement for UART-2

3.2.3.6.3 R-UIM

The R-UIM Interface provides for communication with a CDMA smart card. The R-UIM controller shares functions with the UART, as seen in Figure 3-tt. When the R-UIM is enabled the UART is disabled, but the GPIO INT signals available for use.

The R-UIM Interface consists of Clock, Data, Pwr_En, Pre, and Reset signals. The Cloak and Data are part of the UART block, but the Pwr_En, Pre, and Reset (Control) signals are GPIO_INT lines. The Control signals are under SW control. When the R-UIM is not in use the Control lines are available for User defined functions. Figure 3-6 shows the multiplexing scheme for R-UIM.

R-UIM power is controlled by the Pwr_En signal. This signal is used to enable an LDO regulator in order to supply power to the R-UIM. The R-UIM has a constant current draw of 50 mAs and can spike to 50 mAs above this level. Refer to the R-UIM spec. for further details.

The R-UIM Present signal is not defined in the R-UIM space. This signal maybe a function of the R-UIM card holder. This signal need not be used as the SW will be configured for an R-UIM if one is capable of being used.

Figure 3-6 Multiplexing Arrangement for R-UIM

Page: 23 / 34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

3.2.3.6.4 USB

The WISMOCDMA System Connector contains a USB interface to provide an efficient interconnection between modem and OEM products. The WISMOCDMA USB interface is USB Rev 1.1 compliant. An external USB transceiver is required to implement the interface.

The USB signals are multiplexed with GPIO_INT [0,1,2,6] and GPI_INT [3,4,5], as selected by SW. When the USB is configured the GPx_INT signals are not available. Figure 3-7 shows the multiplexing scheme for the USB.

Figure 3-7 Multiplexing Arrangement for USB

The USB interface supports connections to transceivers with both separate input and output data pins (Philips PDIUSBP11) or with bi-directional data pins (Micrel MIC2550). Selection of the transceiver type is done by SW.

The following figures show the connections between the System Connector and the two transceivers.

Refer to the appropriate data sheet for each transceiver connection requirements.

System PDIUSBP11 Tie high or low Connector Speed D-USB_OE_N USB_VMO D+ USB_VPO USB_DATA USB_VPI USB_VMI USB_SUSPEND Suspend GND

Figure 3-8 Example Connections for Philips PDIUSBP11 Transceiver

Figure 3-9 Example Connections for Micrel MIC2550 Transceiver

3.2.3.6.5 LCD

The WISMOCDMA module has a parallel interface for connecting to an LCD display. Pin 40 provides power to external circuits that will be powered down when the module is OFF. See Table 3-5 for a complete list of pin names and numbers. Read is available on pin 14 when jumper B is installed. The interface can be used for communication with any device that needs a parallel interface.

Table 3-5 LCD Pin Numbers and Names

Pin#	Signal Name	Function
40	Vcc_OUT	Supply Voltage to LCD
50	LCD_CS	Chip Select
51	LCD_D/C	Data or Command select
53	/WR	Write
9	/RD	Read
36	A1	Address 1
20	Data0	Data 0
22	Data1	Data 1
24	Data2	Data 2
26	Data3	Data 3
28	Data4	Data 4
35	Data5	Data 5
29	Data6	Data 6
31	Data7	Data 7

3.2.3.7 General Purpose ADC

The System Connector has 2 General Purpose Analog-to-Digital Converter (GPADC) inputs. Bat_Temp is found on pin 33 and ADC_0 is on pin 38. The 2 inputs are multiplexed into 1 10-bit ADC, Table 3-6 shows the ADC Analog Input Spec. Software controls, which ADC is being read.

Table 3-6 GPADC Analog Input Spec.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Channel Isolation		f = 1KHz</td <td>38</td> <td>50</td> <td></td> <td>dB</td>	38	50		dB
Top Reference Voltage	VRT		2.425	2.5	2.575	V
Full Scale input voltage			6.5 mV		VRT	V
Input Bandwidth		With 200K source impedance			1.0	KHz
Input Resistance			3			M ohm
Input Capacitance					10	pF

3.2.3.8 Audio

The WISMOCDMA provides audio input and output on the System Connector. The System Connector provides for two MICs and two Speakers to be connected. MIC Bias (MBIAS) is provided to limit current consumption when the primary MIC is not being used.

3.2.3.8.1 MIC

The WISMOCDMA System Connector provides two microphone interfaces to the main board. The primary interface (MIC_1) is a differential interface. The secondary interface (MIC_2) is single-ended. The single-ended application is normally used for the headset. MBIAS is provided in under SW control for tuning the MIC off and there by having minimum power consumption. MBIAS provides 1mA of current at 1.8v DC.

Figure 3-10 is example of a differential microphone in a typical handset application.

Figure 3-10 MIC_1 Differential Interface

Figure 3-11 is example of a single-ended microphone in a typical handset application.

Figure 3-11 MIC 2 Single-Ended Interface

3.2.3.8.2 Speaker

The WISMOCDMA System Connector provides two speaker interfaces to the main board. The primary interface (SPK_1) is a differential interface. The secondary interface (SPK_2) is single-ended. The single-ended application is normally used for the headset. The output power for the differential SPK 1 is 35mW for a full-scale +3 dBm0 sine wave into a 32-OHM speaker. The

Wavecom[©]confidential ©

Page: 28/34

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

output power for the single-ended SPK_2 is 8.8mW for a full-scale +3 dBm0 sine wave into a 32-OHM speaker.

Figure 3-12 is example of a differential speaker in a typical handset application.

Figure 3-12 SPK 1 Differential Interface

Figure 3-13 is example of a single-ended speaker in a typical handset application.

Figure 3-13 SPK_2 Single-Ended Interface

3.2.3.8.3 Ringer

SW controls the Ringer generation circuit. The signal on the Ringer pin of the System Connector is a digital pulse stream. The pulse stream can be a single tone or the sum of two different frequencies or DTMF tones.. Figure 3-14 shows a typical application.

Figure 3-14 Ringer Circuit

3.2.3.8.4 Vibra

The Vibra output is controlled by SW. The signal on the Vibra pin of the System Connector is a digital pulse stream. The circuit needed to run the Vibra motor is dependant on the device being used. Refer to the manufacturers requirements for the appropriate drive circuit.

4 Electrical Specification

4.1 DC Electrical Specifications

4.1.1 Absolute Maximum Ratings

Operating the WISMOCDMA under conditions that exceed those listed in Table 4-1 may result in damage to the device. Absolute maximum ratings are limiting values, and are considered individually, while all other parameters are within their specified operating ranges. Functional operation of the WISMOCDMA under any other conditions in Table 4-1 is not implied.

Table 4-1 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage temperature	TS	-55	+150	С
Supply voltage (Battery)	VBATT	-0.5	4.2	Vdc
Supply voltage (Charger)	CHG_IN	-0.5	4.2	Vdc
Voltage applied to any input or output pin	Vin	-0.5	VCC + 0.5	Vdc

4.1.2 Recommended Operating Conditions

Table 4-2 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Ambiant operating temperature	TS	-30	-	+60	С
Battery supply voltage	VBATT	3.6	-	4.2	Vdc
Charger supply voltage	CHG_IN	4.2	4.2	4.2	Vdc

4.1.3 DC Characteristics

Table 4-3 DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
High-level input voltage, CMOS/Schmitt	V_IH	0.65xVccP	-	VccP+0.3	Volts
Low-level input voltage, CMOS/Schmitt	V_IL	-0.3	-	0.35xVccP	Volts
Input high leakage current	I_IH	-	-	2	uA
Input low leakage current	I_IL	-2	-	-	uA
Input high leakage current with pull-down	I_IHPD	10	-	60	uA
Input low leakage current with pull-up	I_ILPU	-60	-	-10	uA
High-level, three-state leakage current	I_OZH	-	-	2	uA
Low-level, three-state leakage current	I_OZL	-2	-	-	uA
High-level, three-state leakage current with pull-down	I_OZHPD	10	-	60	uA
Low-level, three-state leakage current with pull-up	I_OZLPU	-60	-	-10	uA
High-level, three-state leakage current with keeper	I_OZHKP	-25	-	-3	uA
Low-level, three-state leakage current with keeper	I_OZLKP	3	-	25	uA
High-level output voltage, CMOS	V_OH	VccP-0.45	-	VccP	Volts
Low-level output voltage, CMOS	V_OL	0.0	-	0.45	Volts
Input capacitance	C_IN	-	-	15	pF
ADC Full-Scale Input Range	A_FS	GND	-	V_RT	-
ADC Input Serial Resistance	A_ISR	-	5	-	Kohm
ADC Input capacitance	A_C_IN	-	12	-	pF
Input offset voltage at MIC1, MIC2	MV_IO	-5	-	+5	mV
Input bias current at MIC1, MIC2	MI_IB	-200	-	+200	nA
Input capacitance at MIC1, MIC2	M_CI	-	5	-	pF
Input DC Common Mode Voltage	-	0.85	0.9	0.95	V
Microphone Bias supply voltage	MBIAS	1.69	1.8	1.91	V
MBIAS Output DC source current	-	1	1.07	-	mA
Input impedance MIC1, MIC2	M_ZIN	62	72	82	Kohm

4.2 Power Consumption

Table 4-4 Power Consumption

Operating Mode Band —		Average HI_Power = 3.0v	Units	Notes
CDMA RxTx	Cellular	615	mA	
Full Power	PCS	770	IIIA	
CDMA RxTx Average Power	Cellular	340	mA	
	PCS	445	IIIA	
CDMA Rx Active	Cellular	TBD	mA	
	PCS	TBD	IIIA	
CDMA Sleep	Cellular	3.8	mA	
	PCS	3.8	IIIA	

4.3 Timing Characteristics

- 5 Mechanical
- 5.1 **PCB** dimension