MH212 31 st man 2000 Friday.	
6 Determine whether the series \(\frac{1}{n!} \) Converge	1
solution.	
Apply ratio test let an = In!	
$\frac{\lambda_{m}}{n \rightarrow \infty} = \lim_{n \rightarrow \infty} \frac{(n+n)!}{(n+n)!}$	
= lim nt lin 1 no not not not	
Sine the limit is less than I, the scries \$ 1 conver	5
by the ratio test.	
7. De termine the sonvergence of the series 5 C-St	<i>'</i>
John ton.	
This is an alternating series 5 (-1) " by IF	
by 20, bn = 5 by Como no to nically decreas	(وط
and him by to then the deien converse	20 .
7-0	1
tige by = 1	
6 20 : 2 Ane	
bny = 1 = 1 = bn is decreasing	
$\lim_{n \to \infty} \frac{1}{n} = 0$	
N-100	

3/4 May 2024. The resore, by the atternating series test Since the same 5 (-1) convega but not absolutely, it converge conditionally. 1900 Test the sovier for aboute and conditional comegence & Comp Abodute convegence test $\frac{\infty}{n=1}$ $\frac{(-1)^n n}{n^2+1} = \frac{\infty}{n^2+1}$ We compare the series to 5 h $\frac{n}{n^2+1} = \frac{n}{n^2} = \frac{1}{n}$ Since In diverse (harmonic bries), we suspect Zin diverses as well To confirm we use the limit comparison test with by = 1 1 = 1 = 1 = 1 = 1 = 1 Since the limit is a positive finite number and 19 15 & OEP = 1 the series diverges 2 Conditional Converge ce test 17 0 = P = 1, we apply the afternating series tox an = 1 which is positive, decreasing and Therefore, if OZP = 1, the series converges conditionally by the alternating series test i.e For P>1: the series 5 (-D) converses For Oly=1: the seis > (-D) Convess conditionally. Fransise the seies Dr. Conditional convege so or assaule convesore

31st May 2024

MTH 212 An = \(\text{p} \), which is positive, decreasing and lim \(\) = \(\text{NP} \) \(\text{Decreasing and lim } \(\) \(\) \(\) = \(\) absolutely. · For OZPE1: the series $\frac{2}{n^2}$ (-1) Converges Conditionally. Conditionally. (2) Examine the series for Conditional Convergence or absolute Convergence. n+1 187 Consider the absolute Convergence