Introduction to Data Science: Homework 3

姓名:鍾日超 系級:資訊 108 學號: F74046080

1.

Туре	Example	Empirical technique	phenomenon	
acyclic directed network	疾病的傳染物質循環	透過疾病通報, 衛生署那裏會有 疾病可能從哪裡 爆發等等資料。 物理現象,例如	以前陣子麻疹爆發為例,可以從傳播圖知道,現在可能已經傳到哪個地區,要如何加以預防,現在將的病患做隔離,可有效地減緩病情的傳播。 從經驗上我們可以以溫度的	
directed network	1.32.10	水的三態可以互相轉換。	改變,去造成水的狀態改變。	
tree	族譜	回家翻翻族譜, 就可以看到由祖 先到我們這一 代,(只是找不到 root node)。	有族譜就可以從上一代判斷 下一代的血型可能為何,以 及許多基因遺傳疾病的判 斷。	
planar network	成大周邊美食 地圖	自己在 google map 上標示好吃的店,可以形成以成大為中心的網路。	可以辨別出位於成大哪方位 的美食較為稀疏、哪裡較為 集中。	
bipartite network	Programmer 的 對於自己熟習 的程式語言	每個人都有自己 所擅長的程式語 言,蒐集做統整 後,得到的結 果。	可以看出現在人普遍都會使用哪些程式語言。	
temporal 物流集散地到 network 收件者家的時 間。		記錄到送貨到各 個區域的時間與 距離。	可以決定出最快速的送件路線。	

2. (a) (b)

۷.	(a) (b)	(0)		
			A	12345
				1 0 0 0 0 1
				2 01 0 1 1
				3 0 0 0 0 0
				2 0 0 1 1 0 3 0 0 0 0 0 4 0 1 1 0 1 5 0 0 0 1 0
				500000
		(b)	^	
	•	(0)	A	
			1	→ { 5 }
			2	→ {1,3,4} —
				. ()
			3	$\rightarrow \{\}$
				\rightarrow { 2,3,5}
			4	-/ { 2, 3, 3 }
				5.1
			5	$\rightarrow \{ Y \}$
300			1000	

projection to square 12345
101100
2100
3100
3100 B projection to circle 0 100000 23456 0

(d)cosine similarity

of $a, b = \frac{1}{\sqrt{4.5}} = \frac{1}{\sqrt{20}}$

Collaboration

Did it with google