Datamining & Neural Networks: Excercise Session 3

In this session we investigate methods of dimensionality reduction and input selection using the MATLAB Neural Network Toolbox and Netlab 3.2 (downloadable from http://cl.ly/Rw0P). The code in this document was written for MATLAB version R2010b or later.

Consider the following problems

(1) Dimensionality reduction by PCA analysis

Consider the example of a biomedical application discussed in doc chodataset. The dataset consists of 264 data points with 21 inputs and 3 outputs.

(a) Investigate PCA analysis in order to achieve a dimensionality reduction

```
%% Load the choles data
% This will create a 21x264 choInputs matrix of 264 input patterns
% and a 3x264 matrix choTargets of output patterns
doc cho_dataset
load cho_dataset
%% Standardize the variables
doc mapstd;
[pn, std_p] = mapstd(choInputs);
[tn, std_t] = mapstd(choTargets);
%% PCA
doc processpca;
[pp, pca_p] = processpca(pn, 'maxfrac', 0.001);
[m, n] = size(pp)
```

In this case the 21 inputs are reduced to 4 inputs.

(b) For the case of 21 inputs, define a training, validation and test set and apply the Levenberg-Marquardt algorithm:

```
%% Set indices for test, validation and training sets

Test_ix = 2:4:n;

Val_ix = 4:4:n;

Train_ix = [1:4:n 3:4:n];

%% Configure a network

net = fitnet(5);

net.divideFcn = 'divideind';
```

```
net.divideParam = struct('trainInd', Train_ix, ...
'valInd', Val_ix, ...
'testInd', Test_ix);
[net, tr] = train(net, pn, tn);
%% Get predictions on training and test
Yhat_train = net(pn(:, Train_ix));
Yhat_test = net(pn(:, Test_ix));
```

Investigate whether the performance can be improved by means of Bayesian regularization (*trainbr*). Compare the results on test data.

(c) Compare the training results of the case of 21 inputs (original inputs) and 4 inputs (after dimensionality reduction by PCA) by applying *trainbr*. Which choice would you make between the two options? Motivate your choice.

(2) Input selection by Automatic Relevance Determination (ARD)

In order to apply ARD, download the Netlab software from http://www.ncrg.aston.ac.uk/netlab/ or use the following link to get to the download's page directly: http://cl.ly/Rw0P You can run the Netlab programs within Matlab. Consider the

• Run the demo demard

following experiments:

- Run the demo *demev1*
- Consider the UCI dataset ionosphere data (file ionstart.mat) with 351 data points and 33 inputs. Solve this binary classification problem as a nonlinear regression problem with targets ±1 by writing a matlab program which is based on *demard.m*. Which inputs are most relevant? Try to reduce the network by taking the most relevant inputs and retrain. Discuss the obtained results.