Лабораторная работа №3. Смежные классы группы по ее подгруппе

Задание 3. Определить для заданной подгруппы $H \subset S_{4:}$

- а) элементы из H;
- б) левые и правые смежные классы группы S_4 по H.

I) $H = \langle (1\ 2\ 3), (1\ 3) \rangle$.

Порядок выполнения:

- 1. Перечислить все элементы из S_4 .
- 2. Найти все элементы из $H = \langle (1\ 2\ 3), (1\ 3) \rangle$, составив таблицу Кэли для H.
- 3. Определить |H|, $|S_4|H| = |S_4|/|H|$, является ли H подгруппой индекса 2? (т.е. содержащей $|S_4|/2 = 4!/2 = 12$ элементов).
- 4. Найти все левые и правые смежные классы из S_4 / H .
- 5. Проверить выполнение условия $\forall \pi \in S_4$: $\pi H = H\pi$. В каких случаях это условие можно не проверять (т.е. ответ заранее известен) и почему?

Решение:

1. Разобьем элементы из S_4 на 4 попарно не пересекающихся множества:

$$S_4 (1 \to 1) = \{ \pi \in S_4 \mid \pi(1) = 1 \} = \{ e, (2 3), (2 4), (3 4), (2 3 4), (2 4 3) \};$$

$$S_4 (1 \to 2) = \{ \pi \in S_4 \mid \pi(1) = 2 \} = \{ (1 2), (1 2)(3 4), (1 2 3), (1 2 4), (1 2 3 4), (1 2 4 3) \};$$

$$S_4 (1 \to 3) = \{ \pi \in S_4 \mid \pi(1) = 3 \} = \{ (1 3), (1 3)(2 4), (1 3 2), (1 3 4), (1 3 2 4), (1 3 4 2) \};$$

$$S_4 (1 \to 4) = \{ \pi \in S_4 \mid \pi(1) = 4 \} = \{ (1 4), (1 4)(2 3), (1 4 2), (1 4 3), (1 4 2 3), (1 4 3 2) \}.$$

2. Составим таблицу Кэли для H (первоначально включаем в нее e, элементы из $\{(1\ 2\ 3), (1\ 3)\}$ и обратные к ним.

	e	(1 3)	(1 2 3)	(1 3 2)
e	e	(1 3)	(1 2 3)	(1 3 2)
(1 3)	(1 3)	e	(1 2)	(2 3)
(1 2 3)	(1 2 3)	(2 3)	(1 3 2)	e
(1 3 2)	(1 3 2)	(12)	e	(1 2 3)

$$(1\ 3)(1\ 2\ 3) = (1\ 2);$$
 $(1\ 3)(1\ 3\ 2) = (2\ 3);$

$$(1\ 2\ 3)(1\ 3) = (2\ 3);$$
 $(1\ 2\ 3)(1\ 2\ 3) = (1\ 3\ 2);$

$$(1\ 3\ 2)(1\ 3) = (1\ 2);$$
 $(1\ 3\ 2)(1\ 3\ 2) = (1\ 2\ 3).$

Добавляем новые элементы в таблицу вместе с обратными к ним, т.е. добавляем: (1 2), (2 3):

	e	(1 3)	(1 2 3)	(1 3 2)	(12)	(2 3)
e	e	(1 3)	(1 2 3)	(1 3 2)	(12)	(2 3)
(1 3)	(1 3)	e	(12)	(2 3)	(1 2 3)	(1 3 2)
(1 2 3)	(1 2 3)	(2 3)	(1 3 2)	e	(1 3)	(12)
(1 3 2)	(1 3 2)	(12)	e	(1 2 3)	(2 3)	(1 3)
(12)	(12)	(1 3 2)	(2 3)	(13)	e	(1 2 3)
(2 3)	(23)	(1 2 3)	(1 3)	(1 2)	(1 3 2)	e

Заполняем таблицу. Первая строка заполняется тривиальным образом.

Вторая строка таблицы Кэли:

$$(1\ 3)(1\ 2) = (1\ 2\ 3), \qquad (1\ 3)(2\ 3) = (1\ 3\ 2).$$

Третья строка таблицы Кэли:

$$(1\ 2\ 3)(1\ 2) = (1\ 3), \qquad (1\ 2\ 3)(2\ 3) = (1\ 2).$$

Четвертая строка таблицы Кэли:

$$(1\ 3\ 2)(1\ 2) = (2\ 3), \qquad (1\ 3\ 2)(2\ 3) = (1\ 3).$$

Пятая строка таблицы Кэли:

$$(1\ 2)(2\ 3) = (1\ 2\ 3).$$

Шестая строка таблицы Кэли:

$$(2\ 3)(1\ 2) = (1\ 3\ 2).$$

Множество смежных классов S_4/H содержит $|S_4|/|H| = 24/6 = 4$ смежных класса вида σH , где σ - любая подстановка из S_4/H , например, $\sigma = (1\ 4)$.

Ответ: Множество S_4/H содержит четыре смежных класса:

1)
$$H = \{e, (1\ 3), (1\ 2\ 3), (1\ 3\ 2), (1\ 2), (2\ 3)\} = (1\ 3) H = (1\ 2\ 3) H = (1\ 3\ 2) H = (1\ 2\ 3) H = (1\ 3\ 2) H = (1\ 2\ 3) H = (1\ 3\ 2) H =$$

2)
$$(1 \ 4) \ H = \{(1 \ 4), (1 \ 4)(1 \ 3), (1 \ 4)(1 \ 2 \ 3), (1 \ 4)(1 \ 3 \ 2), (1 \ 4)(1 \ 2), (1 \ 4)(2 \ 3)\} = \{(1 \ 4), (1 \ 3 \ 4), (1 \ 2 \ 4), (1 \ 2 \ 4), (1 \ 4)(2 \ 3)\} = (1 \ 4) \ H = (1 \ 3 \ 4) \ H = (1 \ 3 \ 2 \ 4) \ H = (1 \ 2 \ 4) \ H = (1 \ 4)(2 \ 3) \ H;$$

$$H(1 4) = \{(1 4), (1 3)(1 4), (1 2 3)(1 4), (1 3 2)(1 4), (1 2)(1 4), (2 3)(1 4)\} =$$

= $\{(1 4), (1 4 3), (1 4 2 3), (1 4 3 2), (1 4 2), (2 4)(1 3)\} = H(1 4) = H(1 4 3) =$
= $H(1 4 2 3) = H(1 4 3 2) = H(1 4 2) = H(2 4)(1 3);$

$$(1\ 4)\ H \neq H\ (1\ 4)\$$
т.к. $(1\ 3\ 4)\in (1\ 4)\ H$, но $(1\ 3\ 4)\not\in H\ (1\ 4);$

3) $(2 4) H = \{(2 4), (2 4)(1 3), (2 4)(1 2 3), (2 4)(1 3 2), (2 4)(1 2), (2 4)(2 3)\} = \{(2 4), (2 4)(1 3), (1 4 2 3), (1 3 4 2), (1 4 2), (2 3 4)\} = (2 4) H = (2 4)(1 3) H = (1 4 2 3) H = (1 3 4 2) H = (1 4 2) H = (2 3 4) H;$ $H(2 4) = \{(2 4), (1 3)(2 4), (1 2 3)(2 4), (1 3 2)(2 4), (1 2)(2 4), (2 3)(2 4)\} = \{(2 4), (1 3)(2 4), (1 2 4 3), (1 3 2 4), (1 2 4), (2 4 3)\} = H(2 4) = H(1 3)(2 4) = H(1 2 4 3) = H(1 3 2 4) = H(1 2 4) = H(2 4 3);$ $(2 4) H \neq H(2 4) \text{ T.K.} (1 4 2 3) \in (2 4) H, \text{ Ho} (1 4 2 3) \notin H(2 4);$ $4) (3 4) H = \{(3 4), (3 4)(1 3), (3 4)(1 2 3), (3 4)(1 3 2), (3 4)(1 2), (3 4)(2 3)\} = \{(3 4), (1 4 3), (1 2 4 3), (1 4 3 2), (3 4)(1 2), (2 4 3)\} = (3 4) H = (1 4 3) H = (1 4 3) H = (1 4 3) H = (1 4 3 2) H = (3 4), (1 3)(3 4), (1 2 3)(3 4), (1 3 2)(3 4), (1 2)(3 4), (2 3)(3 4)\} = \{(3 4), (1 3 4), (1 3 3 4), (1 3 4 2), (1 2)(3 4), (2 3 4)\} = H(3 4) = H(1 3 4) = H(1 3$

II) $H = \langle (2\ 3\ 4), (1\ 4\ 3) \rangle$.

Порядок выполнения:

- 1. Перечислить все элементы из S_4 .
- 2. Найти все элементы из $H = \langle (1 \ 4 \ 3), (2 \ 3 \ 4) \rangle$, составив таблицу Кэли для H.

 $(3\ 4)\ H \neq H\ (3\ 4)\ \text{T.K.}\ (2\ 4\ 3) \in (3\ 4)\ H$, Ho $(2\ 4\ 3) \notin H\ (3\ 4)$.

- 3. Определить |H|, $|S_4/H| = |S_4|/|H|$, является ли H подгруппой индекса 2? (т.е. содержащей $|S_4|/2 = 4!/2 = 12$ элементов).
- 4. Найти все левые и правые смежные классы из S_4 / H .
- 5. Проверить выполнение условия $\forall \pi \in S_4$: $\pi H = H\pi$. В каких случаях это условие можно не проверять (т.е. ответ заранее известен) и почему?

Решение:

1. Разобьем элементы из S_4 на 4 попарно не пересекающихся множества:

$$S_4 (1 \to 1) = \{ \pi \in S_4 \mid \pi(1) = 1 \} = \{ e, (2 3), (2 4), (3 4), (2 3 4), (2 4 3) \};$$

 $S_4 (1 \to 2) = \{ \pi \in S_4 \mid \pi(1) = 2 \} = \{ (1 2), (1 2)(3 4), (1 2 3), (1 2 4), (1 2 3 4), (1 2 4 3) \};$
 $S_4 (1 \to 3) = \{ \pi \in S_4 \mid \pi(1) = 3 \} = \{ (1 3), (1 3)(2 4), (1 3 2), (1 3 4), (1 3 2 4), (1 3 4 2) \};$
 $S_4 (1 \to 4) = \{ \pi \in S_4 \mid \pi(1) = 4 \} = \{ (1 4), (1 4)(2 3), (1 4 2), (1 4 3), (1 4 2 3), (1 4 3 2) \};$

2. Составим таблицу Кэли для H (первоначально включаем в нее e, элементы из $\{(1\ 4\ 3), (2\ 3\ 4)\}$ и обратные к ним.

	e	(1 4 3)	(1 3 4)	(2 3 4)	(2 4 3)
e	e	(1 4 3)	(1 3 4)	(2 3 4)	(2 4 3)
(1 4 3)	(1 4 3)	(1 3 4)	e	(1 4 2)	(1 4)(2 3)
(1 3 4)	(1 3 4)	e	(1 4 3)	(1 3)(2 4)	(1 3 2)
(2 3 4)	(2 3 4)	(1 2 3)	(14)(23)	(2 4 3)	e
(2 4 3)	(2 4 3)	(1 3)(2 4)	(1 2 4)	e	(2 3 4)

$$(1 \ 4 \ 3)(2 \ 3 \ 4) = (1 \ 4 \ 2);$$
 $(1 \ 4 \ 3)(2 \ 4 \ 3) = (1 \ 4)(2 \ 3);$

$$(1\ 3\ 4)(2\ 3\ 4) = (1\ 3)(2\ 4); \qquad (1\ 3\ 4)(2\ 4\ 3) = (1\ 3\ 2);$$

$$(2\ 3\ 4)(1\ 4\ 3) = (1\ 2\ 3);$$
 $(2\ 3\ 4)(1\ 3\ 4) = (1\ 4)(2\ 3);$

$$(2 4 3)(1 4 3) = (1 3)(2 4);$$
 $(2 4 3)(1 3 4) = (1 2 4).$

Добавляем новые элементы в таблицу вместе с обратными к ним, т.е. добавляем: $(1\ 4\ 2)$, $(1\ 2\ 4)$, $(1\ 4)(2\ 3)$, $(1\ 3)(2\ 4)$, $(1\ 3\ 2)$, $(1\ 2\ 3)$:

	e	(1 4 3)	(1 3 4)	(2 3 4)	(2 4 3)	(1 2 4)	(1 4 2)	(1 2 3)	(1 3 2)	(1 4)(2 3)	(1 3)(2 4)	(1 2)(3 4)
e	e	(1 4 3)	(1 3 4)	(2 3 4)	(2 4 3)	(1 2 4)	(1 4 2)	(1 2 3)	(1 3 2)	(1 4)(2 3)	(1 3)(2 4)	(1 2)(3 4)
(1 4 3)	(1 4 3)	(1 3 4)	e	(1 4 2)	(1 4)(2 3)	(1 2 3)	(1 3)(2 4)	(1 2)(3 4)	(2 4 3)	(1 3 2)	(2 3 4)	(1 2 4)
(1 3 4)	(1 3 4)	e	(1 4 3)	(1 3)(2 4)	(1 3 2)	(1 2)(3 4)	(2 3 4)	(1 2 4)	(1 4)(2 3)	(2 4 3)	(1 4 2)	(1 2 3)
(2 3 4)	(2 3 4)	(1 2 3)	(1 4)(2 3)	(2 4 3)	e	(1 3 4)	(1 2)(3 4)	(1 3)(2 4)	(1 4 2)	(1 2 4)	(1 4 3)	(1 3 2)
(2 4 3)	(2 4 3)	(1 3)(2 4)	(1 2 4)	e	(2 3 4)	(1 4)(2 3)	(1 3 2)	(1 4 3)	(1 2)(3 4)	(1 3 4)	(1 2 3)	(1 4 2)
(1 2 4)	(1 2 4)	(2 4 3)	(1 3)(2 4)	(1 2 3)	(1 2)(3 4)	(1 4 2)	e	(1 4)(2 3)	(1 3 4)	(2 3 4)	(1 3 2)	(1 4 3)
(1 4 2)	(1 4 2)	(1 2)(3 4)	(1 3 2)	(1 4)(2 3)	(1 4 3)	e	(1 2 4)	(2 3 4)	(1 3)(2 4)	(1 2 3)	(1 3 4)	(2 4 3)
(1 2 3)	(1 2 3)	(1 4)(2 3)	(2 3 4)	(1 2)(3 4)	(1 2 4)	(1 3)(2 4)	(1 4 3)	(1 3 2)	e	(1 4 2)	(2 4 3)	(1 3 4)
(1 3 2)	(1 3 2)	(1 4 2)	(1 2)(3 4)	(1 3 4)	(1 3)(2 4)	(2 4 3)	(1 4)(2 3)	e	(1 2 3)	(1 4 3)	(1 2 4)	(2 3 4)
(1 4)(2 3)	(14)(23)	(2 3 4)	(1 2 3)	(1 4 3)	(1 4 2)	(1 3 2)	(2 4 3)	(1 3 4)	(1 2 4)	e	(1 2)(3 4)	(1 3)(2 4)
(1 3)(2 4)	(1 3)(2 4)	(1 2 4)	(2 4 3)	(1 3 2)	(1 3 4)	(1 4 3)	(1 2 3)	(1 4 2)	(2 3 4)	(1 2)(3 4)	e	(1 4)(2 3)
(1 2)(3 4)	(1 2)(3 4)	(1 3 2)	(1 4 2)	(1 2 4)	(1 2 3)	(2 3 4)	(1 3 4)	(2 4 3)	(1 4 3)	(1 3)(2 4)	(1 4)(2 3)	e

Заполняем таблицу. Первая строка заполняется тривиальным образом.

Вторая строка таблицы Кэли:

$$(1 \ 4 \ 3)(1 \ 2 \ 4) = (1 \ 2 \ 3),$$
 $(1 \ 4 \ 3)(1 \ 4 \ 2) = (1 \ 3)(2 \ 4),$ $(1 \ 4 \ 3)(1 \ 2 \ 3) = (1 \ 2)(3 \ 4),$

$$(1\ 4\ 3)(1\ 3\ 2) = (2\ 4\ 3),$$
 $(1\ 4\ 3)(1\ 4)(2\ 3) = (1\ 3\ 2),$ $(1\ 4\ 3)(1\ 3)(2\ 4) = (2\ 3\ 4).$

Добавляем также в таблицу новый элемент $(1\ 2)(3\ 4)$ (он обратен самому себе). При этом $(1\ 4\ 3)(1\ 2)(3\ 4)=(1\ 2\ 4)$.

Третья строка таблицы Кэли:

$$(1\ 3\ 4)(1\ 2\ 4) = (1\ 2)(3\ 4),$$

$$(1\ 3\ 4)(1\ 4\ 2) = (2\ 3\ 4),$$

$$(1\ 3\ 4)(1\ 2\ 3) = (1\ 2\ 4),$$

$$(1\ 3\ 4)(1\ 3\ 2) = (1\ 4)(2\ 3),$$

$$(1\ 3\ 4)(1\ 4)(2\ 3) = (2\ 4\ 3),$$

$$(1\ 3\ 4)(1\ 3)(2\ 4) = (1\ 4\ 2),$$

$$(1\ 3\ 4)(1\ 2)(3\ 4) = (1\ 2\ 3).$$

Четвертая строка таблицы Кэли

$$(2\ 3\ 4)(1\ 2\ 4) = (1\ 3\ 4),$$

$$(2\ 3\ 4)(1\ 4\ 2) = (1\ 2)(3\ 4),$$

$$(2\ 3\ 4)(1\ 2\ 3) = (1\ 3)(2\ 4),$$

$$(2\ 3\ 4)(1\ 3\ 2) = (1\ 4\ 2),$$

$$(2\ 3\ 4)(1\ 4)(2\ 3) = (1\ 2\ 4),$$

$$(2\ 3\ 4)(1\ 3)(2\ 4) = (1\ 4\ 3),$$

$$(2\ 3\ 4)(1\ 2)(3\ 4) = (1\ 3\ 2).$$

Пятая строка таблицы Кэли:

$$(2 4 3)(1 2 4) = (1 4)(2 3),$$

$$(2 4 3)(1 4 2) = (1 3 2),$$

$$(243)(123) = (143),$$

$$(2 4 3)(1 3 2) = (1 2)(3 4),$$

$$(2 4 3)(1 4)(2 3) = (1 3 4),$$

$$(2 4 3)(1 3)(2 4) = (1 2 3),$$

$$(2 4 3)(1 2)(3 4) = (1 4 2).$$

Шестая строка таблицы Кэли:

$$(1\ 2\ 4)(1\ 4\ 3) = (2\ 4\ 3),$$

$$(1\ 2\ 4)(1\ 3\ 4) = (1\ 3)(2\ 4),$$

$$(124)(234) = (123),$$

$$(1\ 2\ 4)(2\ 4\ 3) = (1\ 2)(3\ 4),$$

$$(1\ 2\ 4)(1\ 2\ 4) = (1\ 4\ 2),$$

$$(1\ 2\ 4)(1\ 2\ 3) = (1\ 4)(2\ 3),$$

$$(1\ 2\ 4)(1\ 3\ 2) = (1\ 3\ 4),$$

$$(1\ 2\ 4)(1\ 4)(2\ 3) = (2\ 3\ 4),$$

$$(1\ 2\ 4)(1\ 3)(2\ 4) = (1\ 3\ 2),$$

$$(1\ 2\ 4)(1\ 2)(3\ 4) = (1\ 4\ 3).$$

Седьмая строка таблицы Кэли:

$$(1 \ 4 \ 2)(1 \ 4 \ 3) = (1 \ 2)(3 \ 4),$$

$$(1 \ 4 \ 2)(1 \ 3 \ 4) = (1 \ 3 \ 2),$$

$$(1 \ 4 \ 2)(2 \ 3 \ 4) = (1 \ 4)(2 \ 3),$$

$$(1 4 2)(2 4 3) = (1 4 3),$$

$$(1 \ 4 \ 2)(1 \ 4 \ 2) = (1 \ 2 \ 4),$$

$$(1 \ 4 \ 2)(1 \ 2 \ 3) = (2 \ 3 \ 4),$$

$$(1 \ 4 \ 2)(1 \ 3 \ 2) = (1 \ 3)(2 \ 4),$$

$$(1 \ 4 \ 2)(1 \ 4)(2 \ 3) = (1 \ 2 \ 3),$$

$$(1 \ 4 \ 2)(1 \ 3)(2 \ 4) = (1 \ 3 \ 4),$$

$$(1 \ 4 \ 2)(1 \ 2)(3 \ 4) = (2 \ 4 \ 3).$$

Восьмая строка таблицы Кэли:

$$(1\ 2\ 3)(1\ 4\ 3) = (1\ 4)(2\ 3),$$

$$(1\ 2\ 3)(1\ 3\ 4) = (2\ 3\ 4),$$

$$(1\ 2\ 3)(2\ 3\ 4) = (1\ 2)(3\ 4),$$

$$(1\ 2\ 3)(2\ 4\ 3) = (1\ 2\ 4),$$

$$(1\ 2\ 3)(1\ 2\ 4) = (1\ 3)(2\ 4),$$

$$(1\ 2\ 3)(1\ 4\ 2) = (1\ 4\ 3),$$

$$(1\ 2\ 3)(1\ 2\ 3) = (1\ 3\ 2),$$

$$(1\ 2\ 3)(1\ 4)(2\ 3) = (1\ 4\ 2),$$

$$(1\ 2\ 3)(1\ 3)(2\ 4) = (2\ 4\ 3),$$

$$(1\ 2\ 3)(1\ 2)(3\ 4) = (1\ 3\ 4).$$

Девятая строка таблицы Кэли:

$$(1\ 3\ 2)(1\ 4\ 3) = (1\ 4\ 2),$$

$$(1\ 3\ 2)(1\ 3\ 4) = (1\ 2)(3\ 4),$$

$$(1\ 3\ 2)(2\ 3\ 4) = (1\ 3\ 4),$$

$$(1\ 3\ 2)(2\ 4\ 3) = (1\ 3)(2\ 4),$$

$$(1\ 3\ 2)(1\ 2\ 4) = (2\ 4\ 3),$$

$$(1\ 3\ 2)(1\ 4\ 2) = (1\ 4)(2\ 3),$$

 $(1\ 3\ 2)(1\ 3\ 2) = (1\ 2\ 3),$ $(1\ 3\ 2)(1\ 4)(2\ 3) = (1\ 4\ 3),$ $(1\ 3\ 2)(1\ 3)(2\ 4) = (1\ 2\ 4),$ $(1\ 3\ 2)(1\ 2)(3\ 4) = (2\ 3\ 4).$

Десятая строка таблицы Кэли:

$$(1 \ 4)(2 \ 3)(1 \ 4 \ 3) = (2 \ 3 \ 4),$$
 $(1 \ 4)(2 \ 3)(1 \ 3 \ 4) = (1 \ 2 \ 3),$ $(1 \ 4)(2 \ 3)(2 \ 3 \ 4) = (1 \ 4 \ 3),$ $(1 \ 4)(2 \ 3)(2 \ 4 \ 3) = (1 \ 4 \ 2),$ $(1 \ 4)(2 \ 3)(1 \ 2 \ 4) = (1 \ 3 \ 2),$ $(1 \ 4)(2 \ 3)(1 \ 4 \ 2) = (2 \ 4 \ 3),$ $(1 \ 4)(2 \ 3)(1 \ 3 \ 2) = (1 \ 3 \ 4),$ $(1 \ 4)(2 \ 3)(1 \ 3 \ 2) = (1 \ 2 \ 4),$ $(1 \ 4)(2 \ 3)(1 \ 3)(2 \ 4) = (1 \ 2)(3 \ 4),$ $(1 \ 4)(2 \ 3)(1 \ 2)(3 \ 4) = (1 \ 3)(2 \ 4).$

Одиннадцатая строка таблицы Кэли:

$$(1\ 3)(2\ 4)(1\ 4\ 3) = (1\ 2\ 4),$$
 $(1\ 3)(2\ 4)(1\ 3\ 4) = (2\ 4\ 3),$ $(1\ 3)(2\ 4)(2\ 3\ 4) = (1\ 3\ 2),$ $(1\ 3)(2\ 4)(2\ 4\ 3) = (1\ 3\ 4),$ $(1\ 3)(2\ 4)(1\ 2\ 4) = (1\ 4\ 3),$ $(1\ 3)(2\ 4)(1\ 4\ 2) = (1\ 2\ 3),$ $(1\ 3)(2\ 4)(1\ 2\ 3) = (1\ 4\ 3),$ $(1\ 3)(2\ 4)(1\ 3\ 2) = (2\ 3\ 4),$ $(1\ 3)(2\ 4)(1\ 4)(2\ 3) = (1\ 2)(3\ 4),$ $(1\ 3)(2\ 4)(1\ 2)(3\ 4) = (1\ 4)(2\ 3).$

Двенадцатая строка таблицы Кэли:

$$(1\ 2)(3\ 4)(1\ 4\ 3) = (1\ 3\ 2),$$
 $(1\ 2)(3\ 4)(1\ 3\ 4) = (1\ 4\ 2),$ $(1\ 2)(3\ 4)(2\ 3\ 4) = (1\ 2\ 4),$ $(1\ 2)(3\ 4)(2\ 4\ 3) = (1\ 2\ 3),$ $(1\ 2)(3\ 4)(1\ 2\ 4) = (2\ 3\ 4),$ $(1\ 2)(3\ 4)(1\ 4\ 2) = (1\ 3\ 4),$ $(1\ 2)(3\ 4)(1\ 3\ 2) = (2\ 4\ 3),$ $(1\ 2)(3\ 4)(1\ 3\ 2) = (1\ 4)(2\ 3),$ $(1\ 2)(3\ 4)(1\ 4)(2\ 3) = (1\ 3)(2\ 4),$ $(1\ 2)(3\ 4)(1\ 3)(2\ 4) = (2\ 3\ 4).$

Поскольку $|H| = 12 = |S_4|/2$, то H является нормальной подгруппой и $\forall \pi \in S_4$: $\pi H = H\pi$. При этом S_4/H содержит два смежных класса H, σH , где σ - любая подстановка из S_4/H , например, $\sigma = (1\ 2)$.

Ответ: Множество S_4/H содержит два смежных класса:

1)
$$H = \{e, (1 \ 3 \ 4), (1 \ 4 \ 3), (2 \ 3 \ 4), (2 \ 4 \ 3), (1 \ 2 \ 4), (1 \ 4 \ 2), (1 \ 2 \ 3), (1 \ 3 \ 2),$$
 $(1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\} = (1 \ 3 \ 4) H = (1 \ 4 \ 3) H = (2 \ 3 \ 4) H = (2 \ 4 \ 3) H =$
 $= (1 \ 2 \ 4) H = (1 \ 4 \ 2) H = (1 \ 2 \ 3) H = (1 \ 3 \ 2) H = (1 \ 2)(3 \ 4) H = (1 \ 3)(2 \ 4) H = (1 \ 4)(2 \ 3) H;$
2) $(1 \ 2) H = \{(1 \ 2), (1 \ 2)(1 \ 3 \ 4), (1 \ 2)(1 \ 4 \ 3), (1 \ 2)(2 \ 3 \ 4), (1 \ 2)(2 \ 4 \ 3), (1 \ 2)(1 \ 2 \ 4),$
 $(1 \ 2)(1 \ 4 \ 2), (1 \ 2)(1 \ 3 \ 2), (1 \ 2)(1 \ 3 \ 4), (1 \ 2)(1 \ 3)(2 \ 4), (1 \ 2)(1 \ 4)(2 \ 3)\} =$
 $= \{(1 \ 2), (1 \ 3 \ 4 \ 2), (1 \ 4 \ 3 \ 2), (1 \ 2 \ 3 \ 4), (1 \ 2 \ 4 \ 3), (2 \ 4), (1 \ 4), (2 \ 3), (1 \ 3), (3 \ 4), (1 \ 3 \ 2 \ 4),$
 $(1 \ 4 \ 2 \ 3)\} = (1 \ 3 \ 4 \ 2) H = (1 \ 4 \ 3 \ 2) H = (1 \ 2 \ 4 \ 3) H = (1 \ 4 \ 3 \ 4) H = (1 \ 4 \ 4 \ 3) H =$