含参二次函数零点分布. $1.\int (x) = x^2 + (\alpha - 1)x + 1$, $x \in \mathbb{R}$, $\alpha \in \mathbb{R}$. $\sharp i E$: f(x)在[0,2]上有2个相异零点 <=> Proof: (字):::f(x)有2斤相异零点 :: △>0. 设于例在[0,2]上的两个相异零点分别为×1,×2(其中×1<×2), $0 \le X_1 < X_2 \le 2.$ $0 \le X_1 < -\frac{b}{2a} < X_2 \le 2.$ $-\frac{b}{2a} \in (0, 2).$ · f(x)在(-∞, - 壹]上严格单调递减,在[-壹,+∞)上严格单调递增 $\equiv \chi$: $0 \leq \chi_1 < -\frac{b}{2a}$, $-\frac{b}{2a} < \chi_2 \leq 2$ $f(0) \ge f(x_1) = 0 , 0 = f(x_2) \le f(2)$ (全):·· △>0 : f(x)有所相异感 苦f(一点)>0, :f(x)和向上:f(x)没有零点,看, 若 f(一部)=0, :f似开的上:f似只有一个零点, x=一点, 黏。 $f(-\frac{b}{2a}) < 0$ $f(-\frac{b}{2a}) < 0$ $f(0) \ge 0$ f(0) > 0 = 0. :: 月唯一的x, ∈ (0, - b), s.t. f(x1)=0. 且对∀x∈(-∞,0), f(x)>f(0)>0 f(x)在 $(-\infty, -\frac{1}{20}]$ 上有唯一的零点 x_1 , $x_1 \in (0, -\frac{1}{20})$.
(ii) 若f(0) = 0. $f(-\frac{1}{20}) < 0$, $0 < -\frac{1}{20}$, f(x)在 $(-\infty, -\frac{1}{20}]$ 上严格单调度满

1

:.对Yxe(-0,0),有: f(x)>f(0)=0. 对∀X∈(0, - 点), 有: f(x)<f(0)=0 ·· f(n)在(-0,-5)上有唯一的零点×=0. (1) = 0 (2) > 0 = 0(i) # f(2) > 0 · · · $f(-\frac{1}{2}) < 0$, $-\frac{1}{2} < 2$, f(x) 在 $[-\frac{1}{2}, +\infty)$ 上严格期 :: 引唯一的 $X_2 \in (-\frac{b}{2a}, 2)$, S.t. $f(X_2) = 0$. 且对 $\forall x \in (2, +\infty)$, f(x) > f(2) > 0: f(x)在[-= 1, +0)上有唯一的零点×2, X2∈(-= 2, 2) (ii) 若 f(2) = 0 : $f(-\frac{b}{2a}) < 0$, $-\frac{b}{2a} < 2$, f(x)在 $[-\frac{b}{2a}, +\infty)$ 上严格单调递增 $\therefore \forall x \notin (-\frac{1}{2\alpha}, 2), \quad f(x) < f(2) = 0$ $\forall \forall x \in (2,+\infty), \quad f(x) > f(2) = 0$:: f(x)在[一会, 如)上有唯一的零点 X=2 : f(x)在[-氦,+∞)上有唯一的零点×2, ×2∈(-氦,2]

: f(x)在[0,2]上有两个相异零点。 []