

L5 - Relační vrstva L6 - Prezentační vrstva L7 - Aplikační vrstva

- Vrstvy orientované na podporu aplikací
- L5 Relační / session vrstva
 - Podpora služeb pro řízení relace dialogu
 - Reálně dnes není implementována
- L6 Prezentační vrstva
 - Prezentace dat transformace dat z formátu, který potřebuje aplikace do formátu vhodného pro přenos sítí
 - Reálně dnes není implementována
- L7 Aplikační vrstva
 - Vrstva umožňující síťové fungování aplikací
 - Postupem času výrazně zobecněná podoba

L5 – Relační vrstva

- Relační / session vrstva
- Zajišťuje spolehlivý přenos mezi aplikacemi
 - Tedy může opět překrývat nedostatky nižší vrstev
- V rámci ISO/OSI byla vrstva navržena, ale reálně je dnes její funkce zajišťována až na aplikační úrovni
 - Tedy funkce této a prezentační vrstvy také jsou třeba a jsou požívané, ale jsou realizované v konkrétních aplikacích různě, nikoliv prostřednictvím služeb relační vrstvy
- Základní úkoly
 - Tvorba, udržování a ukončování relace session
 - Řízení dialogu
 - Realizace synchronizačních bodů pro přenos
 - Řízení transakcí
- Příklady protokolů relační vrstvy
 - X.225, X.215
- Příklad protokolu, který relační vrstvy "nahrazuje" v rámci TCP/IP může být například RPC

L5 - Relační vrstva: Udržování relací

- Zajistit udržení relace pro dvě komunikující aplikace bez ohledu na reálné chování L4 vrstvy
 - Jedna relace v jednom L4 spojení
 - Nejjednodušší situace navážu jedno spojení a realizuji jeden HTTP request například
 - Není nic před a nic po relace si odpovídají 1:1 a tedy není "téměř" třeba nic řešit
 - Jedna relace je realizována ve více L4 spojeních
 - Například v e-shopu koš dáte položku do koše v rámci jednoho TCP spojení, ale pak odejdete od PC a až se vrátí vaší TCP spojení je již díky timeoutu uzavřené, ale svůj košík stále chcete
 - Řešení pomocí session na úrovni aplikace / nebo cookie nebo kombinace, ale vše na aplikační vrstvě
 - Více relací prostřednictvím jednoho L4 spojení
 - Tedy zas v rámci e-shopu například možnost změnit identitu odhlášení a přihlášení na jiného uživatele
 - Opět reálně realizované na L7 v rámci session / záznamech v DB

L5 – Relační vrstva: Řízení dialogu

- Možnost zavádět dodatečná omezení komunikace
 - Dodatečná realizovaná NAD L4
 - Tedy L4 komunikace může podporovat full-duplex, ale na L5 nemusí být podporován
- Realizace může být řešena formou "předávání pověření"
- Podobně jako na L2 v Token Ringu "Jen ten kdo má token slovo smí vysílat"
- Reálně se samozřejmě předávání řeší jen pro polo-duplexní model
- Možné způsoby realizace
 - Simplexní
 - Komunikace vedená jen jedním směrem
 - Polo-duplexní
 - Zde je třeba řídit pověření na úrovni L4 může být komunikace full-duplexní, ale charakter aplikace vyžaduje jeho omezení na polo-duplexní princip "otázek a odpovědí"
 - V rámci HTTP posílám požadavek a čekám na odpověď sice můžu poslat více požadavků paralelně, ale ty tvoří samostatné session
 - Full-duplexní
 - Komunikace je možná oběma směry bez omezení

L5 - Relační vrstva: Synchronizace

- Vytváření synchronizační body v komunikaci
- Snaží se řešit situaci, kdy jsou data na úrovni L4 v pořádku přenesena, ale v rámci aplikace pak nejsou v pořádku zpracována
 - Například všechna přijímaná data tisknu na tiskárně a dojde papír
- Aby bylo možné navázat na předchozí případ, zavádí se kontrolní synchronizační body checkpointy
- Tyto body mohou být dvojího druhu
 - Hlavní synchronizační body major potvrzované
 - Definují bod v rámci komunikace, ke kterému už ale odesílatel nemá připravená data
 - Mezi hlavními body jsou vedlejší kontrolní body
 - Vedlejší kontrolní body minor nepotvrzované
 - Leží mezi dvěma hlavními body
 - V rámci komunikace je možné se k jednotlivým vedlejším kontrolním bodům vracet a odesílatel musí mít tato data připravena k znovu odeslání
 - Poslední hlavní kontrolní bod definuje oblast kam až se můžu v datech vrátit
 - Jednotlivé vedlejší kontrolní body až k poslednímu hlavnímu kontrolnímu bodu definují kroky po kterých se mohu vracet

L5 - Relační vrstva: Řízení transakcí

- Relační vrstva zavádí
 - aktivity činnost například přenos souboru
 - Činnost od připojení k ukončení spojení
 - Aktivita je ohraničena hlavními synchronizačními body
 - dialogová jednotka
 - Přenášená data například přenos jednoho souboru je jedna dialogová jednotka
 - Dialogová jednotka může obsahovat více vedlejších synchronizačních bodů
- Jednotlivé aktivity jsou na sobě nezávislé
 - Zda proběhla předchozí aktivita nemá žádný vztah k následující aktivita
- Každá dialogová jednotka musí proběhnout celé nebo vůbec
 - Tedy se jedná o atomické operace

L6 - Prezentační vrstva

- Zajišťuje konverzi aplikačních dat do podoby vhodné pro přenos počítačovou sítí
 - Univerzální formát tedy vlastně popis jaká data přenáším a jak mohou vypadat
 - Můžeme mít dva přístupy:
 - "Jednofázová" data nepopisuji, ale pouze přenáším, ale z definice protokol vím, o jaká data jde a jak s nimi pracovat
 - XDR External Data Representation Přenáší jen data musím vědět jaká data jsou přenášena
 - "Dvoufázové" řešení
 - Abstraktní syntaxe
 - Popis dat / datových struktur
 - ASN.1 Abstract Syntax Notation
 - Přenosová syntaxe
 - Jak bude vypadat ten samotný přenos
 - BER Basic Encoding Rules
 - TLV type Length Value
 - Nemusím vědět jaká data přenáším, protože o jaké data se jedná je součástí přenášených dat
 - Komprese data
 - Snaha snížit velikost přenášených dat
 - Šifrování dat
 - Snaha zabezpečit data během přenosu
- Pro každý řešený problém může existovat a být podporováno více variant
 - Na začátku musí proběhnout dohoda jak přenášet
 - Obě strany znají několik možností / protokolů a musí se dohodnout na nejvýhodnější kombinaci
 - Dnes využíváno například pro šifrování SSL

L7 – Aplikační vrstva

- V obou modelech je aplikační vrstva, ale má dramaticky jiný význam
 - OSI/OSI jedná se o službu poskytovanou aplikacím
 - Společné služby
 - Vytvoření asociace vzájemná komunikace navázání spojení
 - Typy služeb
 - » Volání vzdálených podprogramů
 - » Transakční zpracování atomické operace
 - » Spolehlivý přenos dat
 - Specifické služby
 - Konkrétní služby, které požadujeme
 - Např
 - » Přenos souborů (FTP, TFTP, ...)
 - » Adresářové služby (Novell, MS AD, ...)
 - » Vzdálený přístup k terminálu (RDP, SSH, Telnet, ...)
 - » Přenos zpráv(Email, Instant messaging)
 - TCP/IP jedná o prostředí, kde opravdu běží samotná aplikace
 - Jednotlivé aplikace si výše uvedené problémy řeší samostatně
 - Můžeme definovat dva typy aplikací
 - Systémové to co je třeba pro fungování sítě
 - » DNS, LDAP, DHCP, SNMP, ...
 - Uživatelské to co požaduje uživatel
 - » FTP, HTTP, SMTP, SSH, ...

L7 - Aplikační vrstva: Systémové aplikace

- Může dále dělit dle použití
 - Adresářové služby
 - Specifické typy databází
 - DNS, LDAP, "MS AD"
 - Konfigurační služby
 - BOOTP, DHCP
 - Služby síťového managementu
 - SNMP, RMON
 - Bezpečnostní služby
 - Kerberos, SASL, "MS AD"

L7 - Aplikační vrstva:Systémové aplikace: DNS

- DNS Domain Name System
- Převod jména na IP a zpět
 - proteus.fav.zcu.cz < > 147.228.63.11
- Databáze s více typy záznamů
 - A, AAAA, CNAME? MX, TXT, ...
- Přenáší data nešifrovaně
- Používá TCP i UDP protokol a ve výchozím stavu port 53
- Odpověď může být cachovaná
- Odpověď může být
 - autoritativní
 - Od serverů uvedených v WHOIS DB autoritativní jmenné servery
 - Neautoritativní
 - Od cachujícího serveru

L7 - Aplikační vrstva:Systémové aplikace: DNS II.

- Typické využití TCP a UDP v DNS
 - UDP klasické komunikace dotaz odpověď
 - Předpokládáme malá data nečekáme, že dojde k chybě
 - Těch dotazů může být hodně a snadno se mohou opakovat
 - TCP typicky synchronizace zón
 - U přenosu zónových souborů se jedná o větší celky dat
 - Tento přenos je třeba aby byl spolehlivý a nejde zde o čas jak rychle se povede
 - Rozuměj, vteřiny nehrají roli
- DNS není v základu nijak zabezpečené a je možné poměrně snadno
 - Podvrhnout odpověď pokud jsem na vhodném místě mohu odpovídat a jiný DNS server a tím přesměrovat provoz
 - Podvrhnout dotaz jedná se o UDP, tedy datagramy, které nemají navazované spojení, pokud vytvořím falešný – s falešným odesílatelem – DNS servery na něj odpoví, ale NE mě, ale podvrženému odesilateli a tím dojde na základě "zrcadla" k DDOS
- Zabezpečení DNS se řeší až s příchodem DNSSEC a podepisováním zónových záznamů
 - Zatím není povinné a tedy ani masivně rozšířené

L7 – Aplikační vrstva: Systémové aplikace: DHCP

- Protokol sloužící k auto-konfiguraci nastavení sítě
- Používá UDP protokol dva porty
 - 67/UDP port na kterém se klienta ptá serveru
 - Respektive na začátku se ptá všech broadcastem protože žádné nastavení sítě nemá
 - Tím že nastavení sítě nemá, jedná se L2 broadcast
 - Zdrojová MAC je nastavena na MAC klienta
 - Zdrojová IP je 0.0.0.0 a cílová je 255.255.255.255
 - 68/UDP port na kterém server odpovídá
 - Odpověď jde opět broadcastem(ale může i s cílovou MAC pro klienta) se zdrojovou MAC adresou serveru, IP zdrojová je server, cílová je 255.255.255.255 (dokud není konfigurace hotová, klient IP nemá)
- Provoz, tím že se používá broadcast je omezen na LAN
- Pokud v dané LAN není DHCP server, je možné požadavek "předat" dále do jiné sítě, pokud je routeru DHCP Realy Agent
 - Mimo vlastní síť jde požadavek běžně unicastově protože může projít pře více LAN
- V síti by měl být pouze 1 DHCP server jinak nastává problém
 - Ono jich tedy může být více, ale musí tvořit cluster spolupracovat jako fail-over / balancer
 - Pokud je jich více síť nemusí fungovat správně
 - Od koho adresu mám jde najít v logu nebo tcpdumpu
 - Servery mohou mít i stejnou IP pak je můžeme rozlišit pomocí ARP MAC

L7 - Aplikační vrstva:Systémové aplikace: SNMP

- SNMP Simple Network Management Protocol
 - Protokol sloužící pro podporu správy sítě a sběru dat
- Používá více portů
 - Nezabezpečená komunikace agenta UDP 161
 - Například klasické dotazy agenta "Kolik dat proteklo přes interface etho?"
 - Asynchronní nezabezpečené trapy UDP 162
 - Pokud v síti nastane nějaká monitorovaná událost, umí o tom SNMP asynchronně informovat server zařízení kde problém nastal kontaktuje server
 - Velice výhodné tam, kde máme málo událostí šetříme linku a například adresy za NAT a tedy "nemůžeme" jiné monitoringy jako např Icinga2
 - Zabezpečená komunikace agenta UDP 10161 dostupné až od verze SNMPv3
 - Zabezpečené asynchronní trapy UDP 10162 dostupné až od verze SNMPv3
- Informace shromažďuje ve vlastní konfigurovatelné databázi MIB
 - Nemá pevný obsah, ale definuje identifikátory OID a k nim hodnoty
 - Např. 1.3.6.1.2.1.2.2.1.5
 - Využívá k popisu dat podmnožinu ASN.1
 - Tedy "jako by" prezentační vrstvu
- Nejčastěji se používá jako podkladová platforma pro sběr nejrůznějších dat o IT systémech
 - Protože ve velkém množství zařízení je přímo podporován
- Sice k němu existuje "modernější" nástupce RMON, ale ten se zatím masivně neprosadil

zdroj: https://www.fi.muni.cz/~kas/pv090/referaty/2015podzim/snmp.html

L7 – Aplikační vrstva: Uživatelské aplikace

- Může dále dělit dle použití
 - Přenos souborů
 - TFTP, FTP, SCP, Rsync, HTTP
 - Vzdálený přístup
 - Telnet, X-window, SSH, RDP, VNC
 - Přenos zpráv
 - SMTP/POP/IMAP, Skype, Jabber, ...

L7 – Aplikační vrstva: Uživatelské aplikace: TFTP

- TFTP Trivial File Transfer Protocol
- Používá UDP port 69
- Nepodporuje žádné zabezpečení či ověření
- Nepodporuje žádné složitější operace než download a upload souboru
 - To je ovšem na jednu stranu výhodné, protože je možné jej integrovat do HW či použít na velice nízké úrovni v OS, protože je jednoduchý
- Typicky se používá na
 - přenos základní konfigurace routeru/switche
 - Boot bezdiskových stanic v kombinaci s DHPC a např NFS
 - Přes DHCP zjistíme nastavení sítě a info, odkud máme stáhnout kernel TFTP a odkud máme připojit rootFS – NFS
- Díky omezeným možnostem se příliš nehodí na větší a časté přenosy

L7 – Aplikační vrstva: Uživatelské aplikace: FTP

- FTP File Transfer Protokol
- Slouží pro přenos souborů filozoficky se jedná o zdokonalení TFTP
- Používá TCP protokol
 - Protože potřebuje mít jistotu správného přenosu
- Používá více TCP portů v základu 20/TCP a 21/TCP a další náhodně zvolené dle zvoleného módu
- Kromě prostého přenosu souborů umožňuje i další operace
 - Přenos může být binární nebo textový
 - Je možné procházet a vylistovávat adresáře
 - Je dostupné podpora ověření jménem a hesel
 - Ale je zachována i možnost anonymního přístupu
 - Je dostupné podpora šifrování pomocí SSL
 - Jen v novějších verzích v základní je jméno a heslo posíláno v plain podobě
 - SSL verze nepoužívá extra port, ale je v rámci řídícího portu 21 dohodnuto, zda je SSL podporované a požadované oběma stranami
 - Jsou dostupné dva operační módy
 - Aktivní/normální mód
 - · Pasivní mód

L7 – Aplikační vrstva: Uživatelské aplikace: FTP: Aktivní mód

- Aktivní / normální móde
 - Jedná se o výchozí chování
 - Klient se portu 21 připojí k serveru provede ověření atd
 - Před přenosem zvolí klient port na kterém začne poslouchat / očekávat spojení od serveru
 - Tento port je na server přenesen v rámci session na portu 21 a příkazem PORT
 - Server se připojí k klientovy na zvoleném portu s odchozím port 20 na straně serveru
 - Problém nastává v případě, že je klientem za NATem
 - Klient na privátní IP sice poslouchá na portu, ale server se k němu nemůže pře veřejnou IP připojit, protože v NAT není adekvátní záznam pro nový port
 - Lze řešit pomocí speciálních modulů pro NAT, které poslouchají provoz na porty 21 a dovolují doplnit NAT tabulky pro realizaci přenosu
 - Problém nastává ve chvíli, kdy je provoz na jiném portu nebo kdy je provoz tunelován
 - Protože pak přídavný modul nemá jak zjistit potřebné parametry
 - Problém může nastat i v případě použití state/established connection firewallu na serveru
 - Ten blokuje veškeré odchozí spojení, kterému nepředchází požadavek a navázání komunikace ze strany klienta
 - Cílem je blokování backdooru, ale zde se vlastně otevře náhodný port na který může kdokoliv přistoupit

L7 – Aplikační vrstva: Uživatelské aplikace: FTP: Pasivní mód

Pasivní móde

- Je řešením problému aktivního módu a NATu
- Klient se připojí k serveru na portu 21 a provede ověření atd.
 - A přepne komunikaci do pasivního módu příkazem pasv
- Server zvolí náhodný port na kterém začne očekávat přenos
 - Zvolen typicky z dynamického rozsahu portů
- Klient se druhým spojením připojí k serveru na dohodnutý port s odchozím portem 20
- Zde problém s NATem nenastává, protože veškerá komunikace je inicializována ze strany klienta
- Do pasivního módu je nutné se přepnout ještě před přenosem samotným i jinými příkazy
 - Protože i například vylistování adresáře je realizováno mimo port 21 a tedy by bylo blokováno

L7 – Aplikační vrstva: Uživatelské aplikace: Telnet / SSH

- Protokoly pro vzdálené připojení na terminál (ale ne jen to)
- Telnet starší a nešifrovaný, TCP port 23
 - Přesto, že jej dnes SSH nahradilo, stále se používá tam, kde SSH není podporováno, například switche či routery
 - Tím, že není šifrovaný je jednodušší na implementaci
 - Jelikož se jedná o protokol založený na přenosu text, je dnes hojně využíván k testování odolně orientovaných protokolů
 - Například HTTP, ale především POP a IMAP
- SSH modernější a nativně šifrované
 - Používá TCP port 22
 - Přenos může být nejen šifrovaný, ale i komprimovaný
 - Podporuje různé druhy autentizace
 - Jméno a heslo
 - Klíče např RSA
 - Externí ověření ala Kerberos
 - Umožňuje "tunelovat" další protokoly
 - ssh root@muj_server -L 3307:localhost:3306
 - Na localhost:3307 vám bude "poslouchat" mysql ze server muj_server, ale reálně bude spojení tunelované pomocí SSH

L7 – Aplikační vrstva: Uživatelské aplikace: SCP / Rsync

- SCP umožňuje přenos souborů prostřednictvím SSH spojení
 - Stejně jako SSH používá TCP port 22
 - Na rozdíl od FTP podporuje od počátku šifrování celé komunikace ne jen přihlášení
 - Funguje ve dvou režimech
 - SCP dávkové zpracování příkazů umí jen download/upload souborů
 - SFTP Secure FTP- umožňuje interaktivní zpracování požadavků, stejně jako FTP klient
 - Podporuje chroot
 - Tedy při zadání cd / v klientovi neskončíte v rootu serveru, ale v přeneseném root, který je specifický pro každého klienta
- Rsync je program, který pomocí SSH dokáže přenášet soubory
 - Tedy obdobná funkce jako FTP/SCP, ale "chytřejším způsobem"
 - Rsync umí přenášet jen rozdíly nebo jen zobrazit jaká data být přenášel
 - Rsync umí navázat na předchozí přenos

L7 – Aplikační vrstva:Uživatelské aplikace: VNC

- VNC protokol sloužící k zobrazení vzdáleného grafického terminálu
 - Nativně používá port TCP 5900
 - Ověření probíhá na základě sdíleného hesla
 - Ale to není povinné, je možný i neautentizovaný přístup
 - Protokol není v základu nijak šifrován
 - To je možné obejít například použitím SSH tunelu/VPN či speciálních rozšíření
 - Provoz není komprimován a přenáší se celé obrazovky
 - Velice náročný na přenos, především tam, kde je změn hodně
 - Velice často má problém se synchronizací myši
 - Dat/změn je hodně a musí kromě stahování změn přenášet zpět na server pozici myši, což se děje se zpožděním myš pak "ujíždí"
- V zásadě funguje jako "vzdálený pohled na obrazovku", tedy je společné pro všechny uživatele
 - Na rozdíl od RDP, které vytváří separátní session pro každého uživatele
- VNC se dnes samo o sobě na vzdálený přístup příliš nepoužívá a nahrazováno modernějším RDP
- Ale stále je používáno jako součást dalších systémů
 - Například pro vzdálený přístup na konzolu virtualizovaných systému, kde požadován grafický interface –
 Microsoft Windows / MACOS

L7 – Aplikační vrstva:Uživatelské aplikace: RDP

- RDP Remote Desktop protokol "Vzdálená plocha" protokol sloužící k zobrazení vzdáleného grafického terminálu
 - Nahrazuje VNC a řeší jeho nedostatky
 - Spojení je šifrované
 - Podporuje komprese
 - Přihlášení je ověřené na serveru na kterém služba běží
 - Tedy nemá své extra jméno a heslo jako heslo u VNC, ale reálně dojde k přihlášení uživatele / vytvoření session/relace, na kterou je možné i navázat
 - Session může být na serveru i více pro různé uživatele
 - Ve výchozím stavu funguje na TCP portu 3389
 - Původně bylo jen součástí Microsoft Windows Serverů
 - Dnes dostupné na všech Microsoft Windows, ale u v dalších systémech jako je např Linux
 - A to jak klient rdesktop / xfreerdp tak i server xrdp
 - Nepřenáší kompletní obrazovku, ale jen změny
 - Výrazně úspornější než VNC

L7 – Aplikační vrstva: Uživatelské aplikace: Emailové služby

- Emailové služby jsou složeny z více komponent
 - MUA Mail User Agent například Outlook nebo Thunderbird
 - Slouží k obsluze pošty na straně klienta, tedy stahování, zpracování a tvorbu emailů
 - Používá více protokolů POP3/POP3s, IMAP/IMAPS, SMTP/SMTPS, HTTP/HTTPS, MAPI, ...
 - MTA Mail Transfer Agent
 - Slouží k přenosu emailu od klienta k serveru a mezi servery samotnými
 - Používá protokol SMTP/SMTPS
 - MDA Mail Delivery Agent
 - Slouží k doručení email od MTA do schránky uživatele
 - Může se jednat o komunikaci pomocí pipe nebo pomocí LMTP protokolu

L7 – Aplikační vrstva: Uživatelské aplikace: Emailové služby: POP3/POP3S

- Nejstarší protokol na stahování pošty
 - Neumí pracovat se složkami na serveru
 - Stahuje celé zprávy
 - Umí nechat na serveru kopie zpráv X dnů zpět
- Používat může dva porty
 - TCP 110 pro nešifrované spojení
 - TCP 995 pro šifrované spojení
 - To je realizováno na základě SSL certifikátu o těch si řekneme více u HTTPS
- Komunikace je založena na principu přenosu textu, takže v nešifrované podobě je možné přímo vidět jméno a heslo
- Tím, že POP je textový protokol, je k jeho ověření/ladění možní použít telnet nebo openssl
 - Nešifrovaná verze:
 - telnet localhost 110
 - login pepa
 - · pass pepa
 - Šifrovaná verze :
 - openssl s_client -connect localhost:995
 - Příkazy jsou pak stejné, protože i protokol je stejný, jen je zabalený do SSL

L7 – Aplikační vrstva: Uživatelské aplikace: Emailové služby: IMAP/IMAPS

- Modernější náhrada POP protokolu
 - Podporuje složky na serveru včetně vnořených
 - Podporuje stahování pouze hlaviček emailu
 - Dovoluje přesouvat/filtrovat zprávy na serveru bez nutnosti stažení zprávy
 - Dokáže synchronizovat obsah mezi více klienty
- Používat může více portů
 - TCP 143 či TCP 220 pro "nešifrované" spojení
 - "nešifrované" protože už umožňuje versi STARTTLS a tedy, že i na portu 143 může být provoz šifrován, pokud se klient a server dohodnou, že je to požadováno a podporováno oběma stranami
 - TCP 993 pro šifrované spojení
 - To je realizováno na základě SSL certifikátu o těch si řekneme více u HTTPS
- Vnitřní komunikace je stejně jako u POP textová a tedy dovoluje ověření pomocí telnet/openssl
 - Nešifrovaná verze:
 - telnet localhost 143
 - . login pepa password pepa
 - Šifrovaná verze :
 - openssl s_client -connect localhost:993
 - Příkazy jsou opět stejné, protože i protokol je stejný, jen je zabalený do SSL

L7 – Aplikační vrstva: Uživatelské aplikace: Emailové služby: SMTP/SMTPS

- Protokol sloužící k přenosu emailu od klienta na server a následně mezi servery
- Používat může více portů
 - TCP 25 pro "nešifrované" spojení
 - "nešifrované" protože už umožňuje STARTTLS a tedy, že i na portu 25 může být provoz šifrován, pokud se klient a server dohodnou, že je to požadováno a podporováno oběma stranami
 - TCP 465 pro šifrované spojení
 - To je realizováno na základě SSL certifikátu o těch si řekneme více u HTTPS
 - TCP 587 pro šifrované spojení s podporou autentizace
 - Šifrování je řešeno pomocí STARTTLS
 - Dnes už je možné jak autentizaci tak šifrování provozovat i na portu 25
 - Ale používají se o zbylé dva a to jednak kvůli zpětné kompatibilitě, druhak proto ,že port 25 bývá často při odchodu provozu z ISP blokován
- Stejně jako pop/imap je i SMTP textově orientován, takže základní připojení možné opět ověřit pomocí telnet/openssl
 - Nešifrovaně: telnet muj_server 25
 - Šifrovaně: openssl s_client -connect muj_server:25

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS

- Hyper Text Transfer Protokol
- Běžně funguje na dvou portech TCP
 - http nešifrovaná verze port 80
 - https šifrovaná verze port 443
 - Jedná se o HTTP, který je "obalen" šifrováním, ale uvnitř je stejný
- Původní verze přijala dotaz, poslala odpověď + návratový kód a spojení ukončila
 - To se v situaci kdy jedna HTML stránka má X částí jak JS, CSS, obrázky, atd ukázalo jako extrémně nevýhodné
 - Protože režie navázání spojení, forku procesu na serveru atd je drahá dlouhá
 - Nyní podporuje keep-alive spojení spojení zůstává otevřeno definovaný čas i po vyřízení požadavku, protože se očekává, že přijdou další - šetříme zdroje
- HTTP je bezstavový, stavovost relaci přináší až podpora cookie / session
 - Session může fungovat i bez podpory cookie, ale není o to obvyklé
 - Cookie představují bezpečnostní riziko proto se dnes musí "potvrzovat", že o nich víte a souhlasíte

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS – typy požadavků

GET

- Nejběžnější požadavek dej mi soubor / stránku / data
- Celá požadovaná URL např /login.php?username=pepa&heslo=pepa se zaznamenává do logu
 - Proto se nepoužívá k přenosu formulářů či k přihlašování

POST

- Běžně používaný k přenosu dat od klienta k serveru
 - Může jít o formulář s daty, ale i soubor či soubory
- Do logů se propisuje jen URL, např /login.php, ale předávaná data už ne

PUT / DELETE

- vytvoření/smazání objektu na serveru
- HEAD
 - Stejně jako GET, ale vrací jen hlavičku odpovědi a ne data
 - Používá se k testovacím účelům

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS – návratové kódy

- Každá odpověď obsahuje informaci o stavu vyřízení požadavku
 - Odpověď v rámci L7 níže může být více chyb, které jsou pro HTTP díky TCP transparentní
- Návratové kódy jsou členěné "po stovkách" do skupin
 - 1xx informativní
 - 2xx úspěšné
 - Nejčastěji 200 OK
 - 3xx přesměrování
 - Nebyla vrácena požadovaná odpověď, ale požadavek byl přesměrován na novou adresu, kde snad odpověď najdeme
 - 4xx chyba vyvolaná / způsobená klientem
 - Přesněji chyba vzniklá v důsledky chování klienta, např
 - 401 přístup na stránku, která vyžaduje autentizaci
 - 403 požadavek na soubor, kterou server nemůže otevřít kvůli oprávnění na FS
 - 404 požadavek na neexistující stránku
 - 5xx interní chyba serverů

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS – zabezpečení

- HTTP protokol nepodporuje šifrování
- To přichází až s rozšířením na HTTPS
- Šifrování zajišťují SSL certifikáty
 - Před samotným přenosem dat je vytvořeno šifrované spojení a tím je pak přenášen HTTP protokol
 - Certifikáty mohou být
 - Vlastní nepodepsané každý si jej pomocí openssl může vystavit sám
 - Problém je, že prohlížeč mu typicky nevěří
 - Podepsané vlastní certifikační autoritou
 - Pomocí openssl si vytvoříte i certifikační autoritu a tu naimportujete do prohlížeče
 - Váš prohlížeč už certifikátu věří, ale jen váš
 - Podepsané obecné známou certifikační autoritou
 - Placené např Thawte, kupují se na 1 rok, pak je třeba jej obnovit
 - Zdarma iniciativa Let's Encrypt vystavují se zdarma na kratší dobu např 3 měsíce
- Certifikát "složité heslo s přidanou hodnotou" je možné použít jak k šifrování tak i k ověření identity proti strany
 - Pokud certifikát podepsala nějaká obecně uznávaná autorita, byl nejprve jeho žadatel prověřen, takže pak máte vyšší jistotu, že se opravdu bavíte avizovanou protistranou
 - Samozřejmě i to lze za určitých okolností například pomocí AD wildcard certifikátu zneužít

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS – Proxy/cache

- Téměř každý HTTP klient browser umí cachovat požadavky
 - Cílem je snížit opakovaný přenos dat a zrychlit odezvu webu
 - Vzniká zde problém neplatného/zastaralého obsahu cache
- HTTP požadavek nemusí jít na server přímo, ale může jít přes HTTP Proxy
- "běžná" proxy funguje podobně jako cache na klientovi, ale jednotná pro celou síť
 - Opět s cílem snížit duplicitní přenosy, ale zde pro celou síť
 - S možností filtrace požadavků např * porno* je zakázaný požadavek
 - S možností autentizace/autorizace požadavků např na facebook.com se může, ale jen pokud znám jméno a heslo
 - Myšleno jméno a heslo k přístupu přes proxy server následně se ještě logujete na facebook.com
 - Může zde docházet i k filtraci na úrovni IP adrese
 - Tedy vybrané IP VLAN pana ředitele smí na NET bez omezení, jiná VLAN má část obsahu zakázaný
 - Defakto se jedná o "firewall", ale na L7 vrstvě
 - » Na L7 znamená, že nutně musím rozumět danému protokolu
- Proxy může logovat veškerá požadavky a používá se tak často jako podklad pro report provozu v rámci organizace
- Typickým představitelem proxy je například Squid

L7 – Aplikační vrstva: Uživatelské aplikace: HTTP/HTTPS – Reverzní proxy

- Druhým typem proxy je reverzní proxy
 - Běžná proxy zaštiťuje organizaci a propouští provoz dále do internetu
 - Reverzní proxy je typicky na straně serverů a zprostředkovává komunikaci klienta s jedním či více vybranými servery
 - Cíle nasazení jsou částečně shodné s klasickou proxy
 - Cachování požadavků proxy může například statická data jako JS/CSS odbavovat výrazně rychleji než server za ní
 - Filtrace požadavků na základě URL
 - Přepis požadavků tedy změna části nebo celé URL či přesměrování
 - Zároveň je možné reverzní proxy použít pro zvýšení stability / dostupnost
 - Proxy pak může fungovat ve dvou režimech a rozdělovat provoz mezi dva a více zdrojů
 - Fail-over
 - » Dostupných zdrojů mám sice více, ale používám jen jeden a další přepnu až v případě výpadku primárního zdroje
 - Balancer
 - » Mám více zdrojů, které používán současně a rozděluji mezi ně provoz
 - » Krom toho, že zvyšuji dostupnost jako fail-over, dovedu zde i provoz škálovat do šířky
 - » Dnes typická konfigurace většiny větších serverů

L7 – Aplikační vrstva: Obecně známé a používané protokoly

- Aplikačních protokolů je dnes obrovské množství
- Ale základních a nejčastějších byste měli vědět
 - K čemu slouží a jak cca fungují
 - Na jakých portech a jakými protokoly fungují
- Jedná se především o :
 - HTTP(TCP/80) / HTTPS(TCP/443)
 - POP3(TCP/110) / POP3S(TCP/995) / IMAP(TCP/143/220) / IMAPS(TCP/993)
 - SMTP(TCP/25)/SMTPS(TCP/587)
 - TFTP(UDP/69)/ FTP(TCP/20+21) / SCP(TCP/22) / RSYNC (TCP/873/22)
 - Telnet (TCP/23) / SSH(TCP/22) / RDP(TCP/3389) / VNC (TCP/5900)
 - DHCP (UDP/67+68) / DNS (TCP+UDP/53)