Image Colorization and Upscaling using DC-GANs

Nathan Frison¹ Hubert Gruniaux¹ Antoine Groudiev¹

¹École Normale Supérieure - PSL firstname.name@ens.psl.eu

January 31, 2025

Problem statement

Image colorization
Image upscaling

Generative Adversarial Networks (GANs)

Proposed approaches

Possible approaches

LAB color space

U-Net model

Results

Colorization results

Upscaling results

Problem statement

The image colorization problem

Problem statement

The image upscaling problem

Problem statemen

Image colorization

Generative Adversarial Networks (GANs)

Proposed approache

Possible approaches

LAB color space

U-Net mode

Results

Colorization results

Upscaling results

Generative Adversarial Networks (GANs)

- The generator G_{θ_G} takes a random noise vector z as input and outputs an image $G_{\theta_C}(z)$.
- The discriminator D_{θ_D} takes an image x as input and outputs a probability $D_{\theta_D}(x)$ that the image is real.
- Minimax game problem:

$$\min_{\theta_G} \max_{\theta_D} V(G_{\theta_G}, D_{\theta_D}) = \min_{\theta_G} \max_{\theta_D} \mathbb{E}_x[\log D_{\theta_D}(x)] + \mathbb{E}_z[\log(1 - D_{\theta_D}(G_{\theta_G}(z)))]$$

Generative Adversarial Networks (GANs)

Image colorization or upscaling

Change the generator to fit the colorization/upscaling problem using conditional GANs:

- Replace the noise vector z by a grayscale/lows-res image z.
- The generator G_{θ_G} takes a grayscale/lows-res image z as input and outputs an enhanced image $G_{\theta_G}(z)$.
- The discriminator receives both the enhanced image and the enhanced image (condition) as input, and outputs a probability $D_{\theta_D}(x|z)$ that the image is real.

Problem statement

Image colorization
Image upscaling

Generative Adversarial Networks (GANs)

Proposed approaches

Possible approaches

LAB color space

U-Net model

Results

Colorization results

Upscaling results

Possible approaches

Goal: build a pipeline transforming a grayscale and low-res image into a colorized, high-res image.

Two different possibilities:

- Two-step approach: colorize and upscale the image using two GANs trained separately.
- **Single-step approach**: colorize and upscale the image at the same time, using a single GAN trained.

Using the LAB color space

Idea for colorization: instead of trying to learn the three RGB channels, learn only the two channels A and B of the LAB color space, given the channel L.

Idea for upscaling: learn to upscale the L channel, and use bicubic interpolation for the A and B channels.

Figure 1: Standard grayscale is very similar to the L channel.

Generator model: U-Net

As a generator, we use the U-Net model, mostly used in segmentation tasks.

Problem statement

Image colorization Image upscaling

Generative Adversarial Networks (GANs)

Proposed approaches

Possible approaches

LAB color space

U-Net model

Results

Colorization results

Upscaling results

Results: colorization

Figure 3: Colorization results for U-Net trained on Imagenette (XX epochs)

Results: upscaling

Results: integrated approach

References

- 1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
- 2. Nazeri, Kamyar, Eric Ng, and Mehran Ebrahimi. "Image colorization using generative adversarial networks." Articulated Motion and Deformable Objects: 10th International Conference, AMDO 2018, Palma de Mallorca, Spain, July 12-13, 2018, Proceedings 10. Springer International Publishing. 2018.
- 3. Anwar, Saeed, et al. "Image colorization: A survey and dataset." Information Fusion (2024): 102720.
- 4. Wang, Xintao, et al. "Esrgan: Enhanced super-resolution generative adversarial networks." Proceedings of the European conference on computer vision (ECCV) workshops. 2018.