Name: Ami Sphi & Joseph Kim
"We pludge our house that we've abidd by the
Steven House System"

Department of Mathematical Sciences, Stevens Institute of Technology

Dr. Kathrin Smetana



Homework for

## MA 346 Numerical Methods

Spring 2022 — Homework 6

Submit via Canvas before April 17, 2022, 11:59 p.m..

## Exercise 1 (Numerical Integration)

Consider the following ordinary differential equation (ODE):

$$\frac{du(t)}{dt} = f(t, u(t)) \quad \text{on } [0, T] \text{ with } u(0) = u_0,$$
(1)

where  $u_0 \in \mathbb{R}$  is given and f being continuously differentiable with respect to both arguments. To find an approximation to the function u(t) that solves (1), one can proceed as follows: First one applies the Fundamental Theorem of Calculus (see first lecture) to obtain:

$$u(t) = u(0) + \int_0^t f(s, u(s)) ds.$$
 (2)

We may iterate this procedure as follows:

$$u(t_i) = u(t_{i-1}) + \int_{t_{i-1}}^{t_i} f(s, u(s)) ds,$$
(3)

where  $t_i = i\Delta t$ , i = 1, ..., n, and  $\Delta t = T/n$ ; we decomposed the interval [0, T] in n small subintervals  $[t_{i-1}, t_i]$  of length  $\Delta t$ .

As a second step one approximates the integral on the right-hand side of (3) with a quadrature formula.

a) Employ the following quadrature rule

$$\int_{a}^{b} g(x) dx \approx (b - a)g(a)$$

to approximate the integral on the right-hand side in (3) and therefore obtain a numerical method that approximates  $u(t_i)$  for  $t_i = i\Delta t$ ,  $i = 1, \ldots, n$ .

b) Employ the following quadrature rule

$$\int_{a}^{b} g(x) \, dx \approx (b - a)g(b)$$

to approximate the integral on the right-hand side in (3) and therefore obtain a numerical method that approximates  $u(t_i)$  for  $t_i = i\Delta t$ , i = 1, ..., n.

- c) What difference do you observe between the numerical methods you obtained in a) and b)?
- d) Employ the trapezoidal rule

$$\int_{a}^{b} g(x) \, dx \approx (b - a) \frac{1}{2} (g(a) + g(b))$$

to approximate the integral on the right-hand side in (3) and therefore obtain a numerical method that approximates  $u(t_i)$  for  $t_i = i\Delta t$ ,  $i = 1, \ldots, n$ .

- e) Which method (a), b), or d)) do you think will converge the fastest to the true values of  $u(t_i)$  for a decreasing  $\Delta t$ ? Give a brief justification.
- 1a)  $u(t_i) = u(t_{i-1}) + f(t_{i-1}) u(t_{i-1}) \cdot \Delta t$
- u((1) = u((1)) + f(ti, u(ti-1)) · △+ 16)
- 1c) The numerical method from 1a is equivalent to a left hand reimann-sum of our apx function f().

  (cumulative) (cumulative)

  While 1b is the right hond reimann-sum of our apx. Function S().

- 10)  $u(\lambda_{i}) = u(t_{i-1}) + \Delta_{\frac{1}{2}} \cdot (f(t_{i-1}) u(\lambda_{i-1}) + f(t_{i-1}) u(t_{i-1}))$
- 1e) Notice 1a & 16 are constant aproximations of u(xi), whereas 1c is a linear oproximation of u(xi). Thus since linear systems have a higher order of convergence then constant systems, 1c will converge the fastest!