Title

D. Zack Garza

January 20, 2020

Contents

1 Chapter 1 1

1 Chapter 1

Proposition 1.1: Fix an ideal $\mathfrak{a} \subseteq R$. There is a correspondence

 $\left\{\mathfrak{b}\ \middle|\ \mathfrak{a} \subseteq \mathfrak{b} \, \trianglelefteq \, R\right\} \iff \left\{\tilde{\mathfrak{b}} \, \trianglelefteq \, R/\mathfrak{a}\right\}.$

Proof: ?

Proposition 1.2: TFAE

- R is a field
- R is simple, i.e. the only ideals of R are 0, R.
- Every homomorphism $\phi: R \to S$ for S an arbitrary ring is injective.

Proof: ?

Proposition: Maximal ideals are prime.

Proof: ?

Proposition: If $\mathfrak{p} \subseteq R$ is prime, R/\mathfrak{p} is a domain. If $\mathfrak{m} \subseteq R$ is maximal, R/\mathfrak{r} is a field.

Proof: ?

Theorem 1.3: Every ring R has a nontrivial maximal ideal $I \neq 0$, and every ideal is contained in a maximal ideal.

Proof: ?

Corollary 1.5: Every non-unit of R is contained in a maximal ideal.

Proof: ?

Proposition 1.6: If $A \setminus \mathfrak{m} \subset R^{\times}$, then A is a local ring with \mathfrak{m} its maximal ideal. If \mathfrak{m} is maximal and $1 + m \in R^{\times}$ for all $m \in \mathfrak{m}$, then A is a local ring.

Proof: ?

Proposition: If $f \in k[x_1, \dots x_n]$ is irreducible over k, then (f) is prime.

Proposition: \mathbb{Z} is a PID, and (p) is prime iff p is zero or a prime number, and every such ideal is maximal.

Proposition: $k[\{x_i\}]$ has maximal ideals that are not principal iff n > 1.

Exercise: Characterize the maximal and prime ideals of $k[x_1, \dots, x_n]$? Is this a field, domain, PID, UFD, a local ring, ...?

Proposition: Every nonzero prime ideal in a PID is maximal.

Proof: ?

Definition: The set $\operatorname{nil}(A)$ of all nilpotent elements in a ring A is the nilradical of A. The set $J(A) = \bigcap_{\mathfrak{m} \in \operatorname{Spec}_{\max}(A)} \mathfrak{m}$ is the Jacobson radical.,

Proposition 1.7: $\operatorname{nil}(A) \leq R$ is an ideal and A/\mathfrak{R} has no nonzero nilpotent elements.

Proof: ?

Proposition 1.8: $\operatorname{nil}(A) = \bigcap \mathfrak{p} \in \operatorname{Spec}(A)\mathfrak{p}$ is the intersection of all prime ideals of A.

Proof: ?

Proposition 1.9: $x \in J(A)$ iff $1 - xa \in A^{\times}$ for all $a \in A$.

Proposition: If $(m), (n) \leq \mathbb{Z}$ then $(m) \cap (n) = (\gcd(m, n))$ and (m)(n) = (mn).

Exercise: If $\mathfrak{a} \leq k[x_1, \cdots, x_m]$, characterize \mathfrak{a}^n .

Exercise: Show that $\mathfrak{a},\mathfrak{b} \leq A$ are coprime iff there exist $a \in \mathfrak{a}, b \in \mathfrak{b}$ such that a+b=1.

Proposition 1.10: Let $\{mfa_i\} \leq A$ be a family of ideals and define $\phi: A \to \prod A/\mathfrak{a}_i$.

- 1. If $\{\mathfrak{a}_i\}$ are pairwise coprime, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$
- 2. ϕ is surjective iff $\{\mathfrak{a}_i\}$ are pairwise coprime.
- 3. ϕ is injective iff $\bigcap \mathfrak{a}_i = (0)$.

Exercise: Show that the union of ideals is not necessarily an ideal.

Proposition 1.11:

- a. Let $\{\mathfrak{p}_i\}$ be a set of prime ideals and let $\mathfrak{a} \in \bigcup \mathfrak{p}$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.
- b. Let $\{\mathfrak{a}_i\}$ be ideals and $\mathfrak{p} \supseteq \bigcap \mathfrak{a}_i$ be prime. $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i, and if $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.

Exercise: Let $A = \mathbb{Z}$, and characterize the ideal quotient (m:n).

Exercise 1.12:

- 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- 3. $((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- 4. $(\bigcap \mathfrak{a}_i : \mathfrak{b}) = \bigcap (\mathfrak{a}_i : \mathfrak{b})$

5.
$$(\mathfrak{a}: \sum \mathfrak{b}_i) = \bigcap (\mathfrak{a}: \mathfrak{b}_i)$$

Proposition: For $\mathfrak{a} \subseteq A$, $\sqrt{\mathfrak{a}}$ is an ideal.

Exercise 1.13:

1.
$$\sqrt{\mathfrak{a}} \supseteq \mathfrak{a}$$

$$2. \ \sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$$

3.
$$\sqrt{\mathfrak{ab}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$$

4.
$$\sqrt{\mathfrak{a}} = (1) \iff \mathfrak{a} = (1)$$

5.
$$\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$$

5. $\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$. 6. For \mathfrak{p} prime, $\sqrt{\mathfrak{p}^n} = \mathfrak{p}$ for all $n \ge 1$.

Proposition 1.14:
$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{a} \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$$

Proposition 1.15: Let D be the set of zero-divisors in A. Then $D = \bigcup_{x \neq 0} \sqrt{\operatorname{Ann}(x)}$.

Exercise: Let $(m) \leq \mathbb{Z}$ where $m = \prod p_i^{k_i}$, and show that $\sqrt{(m)} = (p_1 p_2 \cdots) = \bigcap (p_i)$.

Proposition 1.16: If $\sqrt{\mathfrak{a}}$, $\sqrt{\mathfrak{b}}$ are coprime then \mathfrak{a} , \mathfrak{b} are coprime.

Exercise: Show that if $f: A \to B$ and $\mathfrak{a} \triangleleft A$, it is not necessarily the case that $f(\mathfrak{a}) \triangleleft B$.

Exercise: Show that if \mathfrak{b} is prime then $A \cdot f^{-1}(\mathfrak{b})$ is prime, but if \mathfrak{a} is prime then $B \cdot f(\mathfrak{a})$ need not be prime.

Exercise: Let $f: \mathbb{Z} \to \mathbb{Z}[i]$ be the inclusion, and show that

- $\langle (\rangle f(\langle 2 \rangle)) = \langle (1+i)^2 \rangle$, which is not prime in $\mathbb{Z}[i]$
- (Nontrivial) If $p=1 \mod 4$, then $\langle f(\langle p \rangle) \rangle$ is the product of two distinct prime ideals
- If $p = 3 \mod 4$ then $\langle f(\langle p \rangle) \rangle$ is prime.

Proposition: Write $\mathfrak{a}^e \coloneqq \langle f(\mathfrak{a}) \rangle$ and $\mathfrak{b}^c = \langle f^{-1}(\mathfrak{b}) \rangle$. Let $C = \{\mathfrak{b}^c \mid \mathfrak{b} \preceq B\}$ and $E = \{\mathfrak{a}^e \mid \mathfrak{a} \preceq A\}$. Then

- $\begin{array}{l} 1. \ \mathfrak{a} \subseteq \mathfrak{a}^{ec} \ \mathrm{and} \ \mathfrak{b} \supset \mathfrak{b}^{ce}, \\ 2. \ \mathfrak{b}^{c} = \mathfrak{b}^{cec} \ \mathrm{and} \ \mathfrak{a}^{e} = \mathfrak{a}^{ece} \\ 3. \ C = \Big\{ \mathfrak{a} \trianglelefteq A \ \Big| \ \mathfrak{a}^{ec} = \mathfrak{a} \Big\} \ \mathrm{and} \ E = \Big\{ \mathfrak{b} \trianglelefteq B \ \Big| \ \mathfrak{b}^{ce} = \mathfrak{b} \Big\}.$
- 4. The map φ: C → E given by φ(a) = a^{ec} is a bijection with inverse b → b^c.
 5. If a ∈ C then a = b^c = b^{ec} = a^{ec}, and if a = a^{ec} then a is the contraction of a^e.

Exercise 1.18:

$$\begin{split} &(\mathfrak{a}_1+\mathfrak{a}_2)^{\mathfrak{e}}=\mathfrak{a}_1^{\mathfrak{e}}+\mathfrak{a}_2^{\mathfrak{e}}, & (\mathfrak{b}_1+\mathfrak{b}_2)^c \geq \mathfrak{b}_1^{\mathfrak{e}}+\mathfrak{b}_2^{\mathfrak{e}} \\ &(\mathfrak{a}_1\cap\mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^{\mathfrak{e}}\cap\mathfrak{a}_2^e, & (\mathfrak{b}_1\cap\mathfrak{b}_2)^c = \mathfrak{b}_1^{\mathfrak{e}}\cap\mathfrak{b}_3^{\mathfrak{e}} \\ &(\mathfrak{a}_1\mathfrak{a}_2)^{\mathfrak{e}}=\mathfrak{a}_1^{\mathfrak{e}}\mathfrak{a}_2^{\mathfrak{e}}, & (\mathfrak{b}_1\mathfrak{b}_2)^{\mathfrak{e}} \supseteq \mathfrak{b}_1^{\mathfrak{e}}\mathfrak{b}_2^{\mathfrak{e}} \\ &(\mathfrak{a}_1:\mathfrak{a}_2)^e \subseteq (\mathfrak{a}_1^{\mathfrak{e}}:\mathfrak{a}_2^{\mathfrak{e}}), & (\mathfrak{b}_1:\mathfrak{b}_2)^c \subseteq (\mathfrak{b}_1^{\mathfrak{e}}:\mathfrak{b}_2^{\mathfrak{e}}) \\ &r(\mathfrak{a})^e \subseteq r\left(\mathfrak{a}^e\right), & r(\mathfrak{b})^c = r\left(\mathfrak{b}^c\right) \end{split}$$