

# Midterm & Concept Review

CS-585

Natural Language Processing

Sonjia Waxmonsky

### Midterm Exam info

- Exam locations and times
  - Midterm: Thurs, Oct. 5, 8:35-9:50am
  - Room: SH-118 (Siegel 118)
- Midterm details
  - Timed: 70 minutes
  - Multiple-choice or similar (bubble answer sheet)
  - Closed book, closed note, no electronics
  - Bring pencils with erasers

## Mid-Term Logistics

#### Remote exam-takers

- Arrangements should already be finalized
- Instructor <u>cannot</u> proctor via zoom or video

#### In-person exam-takes

- Exam will be timed to 70 minutes (for fairness with online sections); most students will not need entire time
- Please arrive by 8:35am to Siegel 118.
- Late arrivers will be promptly seated by teaching staff, exam cannot be extended
- Bring pencils with erasers! (Does not need to be #2)



# Topics – Up to Midterm

|    | Content                                       | Reading            |
|----|-----------------------------------------------|--------------------|
| 1  | Welcome, linguistic concepts                  | MS 3               |
| 2  | Math review 1: probability and linear algebra | MS 2.1             |
| 3  | Math review 2: information theory             | MS 2.2             |
| 4  | Words and pattern matching                    | MS 4.2, E-NLP 4.3  |
| 5  | Lexical representations for NLP               | MS 1.4             |
| 6  | Neural nets 1: neural word embeddings         | E-NLP 14           |
| 7  | Word sense disambiguation                     | MS 7.1-7.3         |
| 8  | Text categorization and naive Bayes           | E-NLP 2.1-2.2, 4.4 |
| 9  | Generalized linear models                     | E-NLP 2.5-2.6      |
| 10 | Neural nets 2: feedforward networks           | E-NLP 3.1-3.3.3    |
| 11 | Sentiment analysis                            | E-NLP 4.1          |
| 12 | Unsupervised methods in NLP                   | E-NLP 5.1          |

## **SAMPLE QUESTIONS**

# Sample Question - Linguistics

You are interested in studying how word meaning is influenced by suffix endings, such as —ed and —ing. Which fields are BEST suited to inform your investigation?

- A. Phonetics and phonology
- B. Morphology and semantics
- C. Historical Linguistics
- D. Image processing

## Sample Question – Information Theory

What is measured with cross-entropy?

- A. The percentage of true positives that are detected in a binary classification model?
- B. The distance between two probability distributions
- C. The randomness or uncertainty of a random variable
- D. Any of the above

## Sample Question – Regular expressions

Which string is matched by the following regular expression? \bhedge-?hog.\b

- A. hedge-hog
- B. hedge-hogs
- C. hedgehog
- D. All of the above





## Sample Question – Neural Networks

You are building a text categorization model, and your teammate shares they were able to **reduce model complexity** by **adding a layer** to their feed forward neural network. What is unusual about this statement?

- A. Neural networks cannot be feed-forward
- **B.** Adding a layer would generally increase complexity, not decrease complexity
- **C.** Complexity should always be increased, not decreased.
- **D.** All of the above

## Sample Question – Metrics

You have built a rules-based text classifier that uses regular expressions to flag text messages that include a telephone number. This tool outputs 1 when it finds any string of 10 digits, and 0 otherwise. What is a good metric to evaluate this text classification tool? Select the BEST answer

- A. Precision
- B. ROC-AUC
- C. Cross-entropy
- D. All of the above

## Review question

- Which of the following are NLP tasks?
- Which correspond to algorithms (or families of algorithms? Which of those are <u>unsupervised</u>?
  - Word sense disambiguation
  - Sentiment analysis
  - Latent semantic analysis
  - word2vec