- 18. Prove the corollary of the Triangle Proportionality Theorem.
- 19. Prove the Triangle Angle-Bisector Theorem.

Complete.

- **20.** AD = 21, DC = 14, AC = 25, $AB = \frac{?}{}$
- **21.** AC = 60, CD = 30, AD = 50, BC = ?
- **22.** AB = 27, BC = x, $CD = \frac{4}{3}x$, AD = x, $AC = \frac{?}{}$
- **23.** AB = 2x 12, BC = x, CD = x + 5, AD = 2x 4, $AC = \frac{?}{}$

- 24. Three lots with parallel side boundaries extend from the avenue to the boulevard as shown. Find, to the nearest tenth of a meter, the frontages of the lots on Martin Luther King Avenue.
- 25. The lengths of the sides of $\triangle ABC$ are BC = 12, CA = 13, and AB = 14. If M is the midpoint of CA, and P is the point where \overline{CA} is cut by the bisector of $\angle B$, find MP.
- 26. Prove: If a line bisects both an angle of a triangle and the opposite side, then the triangle is isosceles.

Ex. 24

- 27. Discover and prove a theorem about planes and transversals suggested by the corollary of the Triangle Proportionality Theorem.
 - 28. Prove that there cannot be a triangle in which the trisectors of an angle also trisect the opposite side.
 - **29.** Can there exist a $\triangle ROS$ in which the trisectors of $\angle O$ intersect \overline{RS} at Dand E, with RD = 1, DE = 2, and ES = 4? Explain.
 - **30.** Angle E of $\triangle ZEN$ is obtuse. The bisector of $\angle E$ intersects \overline{ZN} at X. J and K lie on \overline{ZE} and \overline{NE} with ZJ = ZX and NK = NX. Discover and prove something about quadrilateral ZNKJ.

- ★ 32. In $\triangle RST$, U lies on \overline{TS} with TU:US=2:3. M is the midpoint of RU. \overrightarrow{TM} intersects \overrightarrow{RS} in V. Find the ratio RV:RS.
- * 33. Prove Ceva's Theorem: If P is any point inside $\triangle ABC$, then $\frac{AX}{YB} \cdot \frac{BY}{YC} \cdot \frac{CZ}{ZA} = 1$.

(Hint: Draw lines parallel to CX through A and B. Apply the Triangle Proportionality Theorem to $\triangle ABM$. Show that $\triangle APN \sim \triangle MPB$. $\triangle BYM \sim$ $\triangle CYP$, and $\triangle CZP \sim \triangle AZN$.)

