BOND DISSOCIATION ENERGIES IN ORGANIC COMPOUNDS

BOND DISSOCIATION ENERGIES IN ORGANIC COMPOUNDS

Yu-Ran Luo

Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Luo, Yu-Ran.

Handbook of bond dissociation energies in organic compounds / Yu-Ran Luo.

o. cm

Includes bibliographical references and indexes.

ISBN 0-8493-1589-1 (alk. paper)

1. Organic compounds--Handbooks, manuals, etc. 2. Chemical bonds--Handbooks, manuals, etc. 3. Dissociation--Handbooks, manuals, etc. I. Title.

QD257.7 .L86 2002 547'.1224--dc21

2002031322

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1589-1
Library of Congress Card Number 2002031322
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

То

Dr. Sidney W. Benson

who introduced me to the field of thermochemical kinetics during my postdoctoral work at the University of Southern California

Preface

Three of the most fundamental concepts in organic chemistry are structure, energetics and reactivity, and their interrelationships. Sometimes, attempting to discover reliable data on bond dissociation energies (BDEs) or the strengths of chemical bonds may be a frustrating exercise, analogous to seeking a needle in a haystack.

I began to collect experimental and theoretical values for BDEs in 1990. Four years later, Dr. S.E. Stein of the National Institute of Standards and Technology (NIST) encouraged me to continue in this task, essential for chemical kinetics, free radical chemistry, organic thermochemistry, and physical organic chemistry.

A variety of methods exist for determining BDE values, but almost none are accurate to better than "chemical accuracy" ($\pm 1~\rm kcal/mol$, 1 calorie = 4.184 joules). The BDE values of many important compounds have been measured many times; for example, the C–H BDE in methane has been determined about 50 times since the 1930s. BDE values continue to be a source of lively controversy among scientists.

The data presented in this book are from experiments only, although theoretical calculations are very interesting. Collecting experimental BDE data has been like taking a class in the history of chemistry, with many prominent scientists having made significant contributions to the problems surrounding the BDEs. These include E.W.R. Steacie, L. Pauling, M. Szwarc, N.N. Semenov, and S.W. Benson.

The author is very happy to acknowledge the great help, encouragement, and discussions of many scientists in preparing this manuscript. These scientists are Professors S.W. Benson, F.W. Bordwell, Y.T. Lee, R.H. Byrne, A.M. Dean, J.F. Liebman, V.D. Parker, and I.R. Slagle (all of U.S.); P.D. Pacey, J.L. Holmes, D.A. Armstrong, and E. Tschuikow-Roux (all of Canada); J.A. Kerr, R. Walsh, and M.J. Pilling (all of U.K.); C. Rüchardt (Germany); K.D. King (Australia); X.Z. Zhao and J.P. Cheng (China); A.J. Colussi (Argentina); J.A.M. Simões (Portugal); J.A. Seetula (Finland); Drs. S.E. Stein and W. Tsang (NIST); T.J. Wallington (Ford Motor Company); M. Tirtowidjojo (Dow Chemical Company); K.U. Ingold, D.D.M. Wayner (NRC, Canada); and E.T. Denisov (Russia). I also would like to thank the reviewers for their suggestions and comments.

All comments and suggestions are welcomed. Anyone may contact me by e-mail at luo@molenergetics.com.

Yu-Ran Luo

List of notations and abbreviations

AE appearance energy measurements

AP appearance potentials

AOP acidity-oxidation potential measurements BDE bond dissociation energy (or enthalpy)

CID collision-induced dissociation

detect. detection

DH i.e., BDE, where H emphasizes the BDE is an enthalpy change of

thermochemistry

electrochem. electrochemical technique EA electron affinity measurements

EPR electron paramagnetic resonance spectrometry

ESR electron spin resonance spectrometry

FT-ICR Fourier transform ICR

FT-MS Fourier transform mass spectrometry
FT-IR Fourier transform infrared spectrometry

GPA gas-phase acidity measurements GC gas chromatographic analysis

HPLC high performance liquid chromatography ICR ion cyclotron resonance spectrometry

IE electron impact method IR infrared spectrometry MS mass spectrometry

NMR nuclear magnetic resonance spectrometry

PAC photoacoustic calorimetry

PIMS photoionization mass spectrometry

photobromin. photochlorin. photodetach. photodissocn. photoelectr. photoelectron photoelectron photoelectron photobromination photochlorination photochlorin

re-anal. re-analysis of experimental data, i.e., revised

re-cal. re-calculated BDEs from experimental data, i.e., revised

recommended value

spectrom. spectrometry

SPST single-pulse shock tube technique

TR-PAC	time-resolved photoacoustic calorimetry
UV/VIS	ultraviolet and visible spectrometry detection
VLPP	very low pressure pyrolysis technique
VLPR	very low pressure reactor method

Contents

Chapter One Introduction

- 1.1 A database of the BDEs
- 1.2 What is the BDE?
- 1.3 Why we need reliable BDEs
- 1.4 Scope of this book
- 1.5 On energy units
- 1.6 How to search for BDEs in this book
- 1.7 How to use the tables of the BDE data

Chapter Two Experimental methods for measuring BDEs

Chapter Three Tabulated BDEs of C-H bonds

- 3.1 Chain saturated hydrocarbons
- 3.2 Chain unsaturated hydrocarbons
- 3.3 Cyclic hydrocarbons
- 3.4 Aromatic hydrocarbons
- 3.5 Halogenated hydrocarbons
- 3.6 Organic compounds containing heteroatoms
 - 3.6.1 C–H BDEs with α -OH, -OR, -C(O), and -C(O)O
 - 3.6.2 C–H BDEs with α -N, -CN, -NO, -NO₂, and -NN
 - 3.6.3 C-H BDEs with α -O, -N, and their groups
 - 3.6.4 C–H BDEs with α -C(S), -S, -SO, and -SO₂
 - 3.6.5 C–H BDEs with other heteroatoms at α -position

Chapter Four Tabulated BDEs of C-C bonds

- 4.1 Saturated hydrocarbons
- 4.2 Chain unsaturated hydrocarbons
- 4.3 Aromatic hydrocarbons
- 4.4 Halogenated hydrocarbons
- 4.5 Organic compounds containing heteroatoms
 - 4.5.1 Organic compounds containing oxygen atoms
 - 4.5.2 Organic compounds containing nitrogen atoms
 - 4.5.3 Organic compounds containing sulfur atoms

Chapter Five Tabulated BDEs of C-halogen bonds 5.1 C-F bonds 5.2 C-Cl bonds 5.3 C-Br bonds 5.4 C-I bonds Chapter Six Tabulated BDEs of O-X bonds 6.1 O-H bonds 6.1.1 O–H bonds in nonphenols 6.1.2 O-H bonds in oximes and hydroxylamines 6.1.3 O–H bonds in phenols 6.1.4 O-H bonds in sterically hindered phenols 6.2 O-O bonds 6.3 O-C bonds 6.3.1 O–C bonds in alcohols 6.3.2 O–C bonds in ethers 6.3.3 O-C bonds in esters, acids, and anhydrides 6.3.4 O–C bonds in peroxides and peroxys 6.3.5 O-C bonds in other species 6.4 O-N bonds 6.5 O-S, O-halogen, and O-P bonds Chapter Seven Tabulated BDEs of N–X bonds N-H bonds 7.1 7.1.1 N–H bonds in nonanilines 7.1.2 N–H bonds in anilines 7.1.3 N–H bonds in cyclic compounds 7.2 N-N bonds 7.3 N-C bonds 7.4 N-S bonds 7.5 N-halogen bonds Chapter Eight Tabulated BDEs of S-X bonds 8.1 S-H bonds 8.2 S–S bonds 8.3 S–C bonds 8.4 S-halogen and S-P bonds Chapter Nine Tabulated BDEs of Si-, Ge-, Sn-, P-, and Se-X bonds 9.1 Si-X bonds 9.2 Ge-X bonds 9.3 Sn-X bonds 9.4 P-X bonds 9.5 Se-X bonds

Chapter Ten Tabulated BDEs in some inorganic compounds

Chapter Eleven Heats of formation of atoms, inorganic and organic radicals

- 11.1 Gaseous atoms
- 11.2 Small inorganic radicals in the gas phase
- 11.3 Organic radicals in the gas phase
 - 11.3.1 C-centered radicals
 - 11.3.2 O-centered radicals
 - 11.3.3 N-centered radicals
 - 11.3.4 S-centered radicals
 - 11.3.5 Si-, Ge-, and Sn-centered radicals
- 11.4 Group additivity values for organic radicals
 - 11.4.1 GAVs of C/H radicals
 - 11.4.2 GAVs of O/C/H radicals
 - 11.4.3 GAVs of N/C/H/O radicals
 - 11.4.4 GAVs of S/C/H/O radicals

References

chapter one

Introduction

1.1 A database of the BDEs

Chemistry and biochemistry are based on the concept of chemical bonds. The breaking and making of chemical bonds are involved in most chemical reactions. Chemists, biochemists, and chemical engineers thus need a complete database of the experimental data of bond dissociation energies (BDEs).

This book contains the experimental BDE data of **2700** bonds in **2400** organic compounds. It is the first comprehensive book on experimental BDE data. It is very helpful to end users searching for BDE data.

1.2 What is the BDE?

The homolytic BDE is defined as the enthalpy change in the following fission:

$$R - X \to R + X \tag{1.1}$$

The BDE, DH°(R–X), of an R–X bond is derived in the usual way from heats of formation of the species involved in the previous reaction:

$$DH^{\circ}(R-X) = \Delta_{\iota}H^{\circ}(R) + \Delta_{\iota}H^{\circ}(X) - \Delta_{\iota}H^{\circ}(RX)$$
(1.2)

Here $\Delta_f H^o$ represents the heats of formation of the respective species in the ideal gas state at standard pressure and a reference temperature of 298.15 K. The BDE is also called the bond dissociation enthalpy.

Today, heats of formation, $\Delta_f H^o(RX)$, of about **four thousand** organic compounds are known. Most of them are available in the following publications: 1994FRE/KAB, 1994PED, 1994GUR/VEY, 1989COX/WAG, 1988LIA/BAR, 1986PED/NAY, and http://webbook.nist.gov. The experimental uncertainty of heats of formation of organic compounds is generally within the "chemical accuracy" ($\pm 1 \, \text{kcal/mol}$, 1 calorie = $\pm 4.184 \, \text{joules}$). From Equation 1.2, measurements of BDEs are equivalent to measurements of heats of formation of free radicals, and vice versa. Experimental BDEs can be determined directly, and can be derived from Equation 1.2. For example, we may derive the BDE values of CH₃–X and C₂H₅–X, where X = H, F, Cl, Br, I, OH, SH, NH₂, CN, NO, NO₂, CH₃, and C₂H₅, if $\Delta_f H^o(CH_3)$ and $\Delta_f H^o(C_2H_5)$ are known.

The number of organic compounds confirmed is about **twenty million**. We must estimate the heats of formation of organic compounds and BDEs using *ab initio* MO theory,

density functional theory (DFT), semiempirical methods (such as PM3, AM1), molecular mechanics, group additivity, and others. The theoretical calculations are very interesting, but calculated BDEs are not included in this book.

1.3 Why we need reliable BDEs

The BDE measurements of organic compounds started in the 1930s. Szwarc first summarized many experimental BDEs in organic compounds (1950SZW). The earlier experimental data were collected by several publications: 1946STE, 1958COT, 1958SEM, 1962MOR, and 1966VED/GUR. Since then, almost all of these data have been updated. For example, the H–C BDE value in benzene increases to 111.2 ± 0.8 kcal/mol (1994BER/ELL) from 102 kcal/mol (1966VED/GUR).

The equilibrium constant K_{eq} is very sensitive to any error in the BDEs. An error of 1, 2, or 3 kcal leads to an error of a factor of 5.4, 29.2, or 158, respectively, in the equilibrium constant K_{eq} at 298 K! The currently experimental uncertainty of the absolute majority of BDE data is within 1 to 2 kcal/mol, which means the uncertainty is more than "chemical accuracy" (± 1 kcal/mol). Experimental BDE values thus will continue to be a source of lively controversy among scientists now and in the foreseeable future.

Several senior reviewers made efforts to update known BDEs as soon as possible, such as 1966KER, 1969GOL/BEN, 1970ONE/BEN, 1978BEN, 1982MCM/GOL, 1988COL, 1994BER/ELL, 1996TSA, and 1999COH. However, the number of experimental BDEs is increasing sharply. For example, the *CRC Handbook of Chemistry and Physics* (2002CRC) collected the BDEs of about **400** bonds in organic compounds. Now we have collected experimental data for more than **2700** bonds. Chemists, biochemists, and chemical engineers need a new publication which completely compiles the BDEs available.

By the way, a good BDE database of diatomic molecules can be found in Section 9 of the *CRC Handbook of Chemistry and Physics* (2002CRC), which collects over **800** data. BDEs of diatomic and smaller molecules can also be derived by using the *NIST-JANAF Thermochemical Table* (1998CHA).

1.4 Scope of this book

Experimental BDEs of many important organic compounds have been remeasured many times. A typical example is C–H BDE in methane. It has been reported up to 50 times since the 1930s, and the value spreads from an early 98 kcal/mol to the current 105 kcal/mol. We have collected all experimental data; however, it is not necessary to copy all of the data into this book, because most users are concerned with reliable experimental values only.

This book will present recent experimental data for the given bonds, a maximum of five values for each bond. Which is the most reliable or best data for the BDEs? It is hard to answer this question. Recent measurements are likely to be more reliable generally. Readers may search more experimental data by using the references listed.

The BDEs have been tabulated based on the center atom in the radicals. They are distinguished by C–X, O–X, N–X, S–X, Si–X, Ge–X, Sn–X, P–X, and Se–X BDEs, and are organized in Chapters Three through Nine.

The BDE data in some but not all inorganic compounds are listed in Chapter Ten. At present, this book does not collect the BDE data in metallorganic compounds. A great number of experimental data for ionic species are beyond the scope of this book, because

these data have been available in other databases: 1988LIA/BAR and http://webbook.nist.gov.

1.5 On energy units

The SI unit of energy is joule (1 calorie = 4.184 joules). There are three options for energy units: (1) joule only, (2) calories only, and (3) both units. Using both units is a better choice.

Why? There are two reasons: (1) most heats of formation of radicals and BDEs used to be measured in kcal/mol and (2) the range of the BDE values for common organic species is from about 40 (as RO–OR) to 110 (as H– C_6H_5 , H– C_2H_3) kcal/mol. As you know, a lower number is easy to remember in everyday life; it is the same in science. For example, we may easily remember 105.0 kcal/mol of H–CH $_3$ BDE rather than 439.3 kJ/mol.

1.6 How to search for BDEs in this book

We encountered a great number of experimental BDEs from over 1000 publications. The data are like "goods" in a large department store: they should be organized on different "shelves" or locations for our "shopping." In this book, these data are managed in various categories. The chemical bonds with most similar structural environments are assembled in tables: "goods shelves." There are 49 tables for BDE data in this book. All tabulated values of the BDEs are systematized by the following seven orders:

- 1. **Bond class**, such as C–H, C–C, C–O, C–N, C–S, C–F, C–Cl, C–Br, C–I, and so on.
- 2. Heteroatom(s) and functional group(s) at α-position (relative to the broken bond), such as O, CO, C(O)O, N, CN, NO, NO₂, NN, S, SO, SO₂, and more. The heteroatom(s) and functional group(s) have significant influence on the BDEs. Organic chemistry is usually organized by the concept of functional groups. Therefore, users must first figure out heteroatom(s) and functional group(s) before searching the data. For example:
 - The primary C–H BDE in C₆H₅CH₂–H is listed in Table 3.4. In this book, the **boldface** emphasizes the dissociated atom or group.
 - The secondary C–H BDE in PhCH₂COCH₃ is listed in Table 3.6.1. There is a CO group at the α-position of the C–H bond.
 - The secondary C–H BDE in PhCOCH₂NMe₂ is listed in Table 3.6.3. There are a CO group and an N atom at the α-position of the C–H bond.
 - The secondary C–H BDE in PhCOCH₂SO₂Ph is listed in Table 3.6.4. There are a CO group and a SO₂ group at the α-position of the C–H bond.
- 3. **Bond order** (triple, double, and single) and the **bond degree** (primary, secondary, or tertiary). The compounds with triple bond and primary BDEs are listed first.
- 4. **Saturated or unsaturated** compounds. Saturated ones are listed first.
- 5. **Molecular size**. The BDEs of smaller molecules are arranged first.
- 6. **Molecular shape (chain or cyclic)**. The BDEs of chain molecules are arranged first.
- While substituent(s)-containing, please first search the bonds in the parent molecules. For example, the C-H BDEs in substituted toluene are listed under C₆H₅CH₂-H.

Two indexes may also help your search, one of compound classes and the other of compound names.

1.7 How to use the tables of the BDE data

All BDE data are filed into 49 different tables. How can you find the BDEs? Let us see a first example, the C–H BDE in methane:

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
methane	(1) 105.0 ± 0.1	439.3±0.4	(1) VLPP	(1) 1987DOB/BEN
	(2) 105.3 ± 0.7	440.6±2.9	(2) PIMS detection	(2) 1988RUS/SEE(b)
CH ₃ - H	(3) 104.8±0.2	438.5±0.8	(3) Spectrometric detection	(3) 1988RUS/SEE
$\Delta_{\rm f}$ H°(R) = 35.06±0.1 (146.69±0.4)	(4) 105.3±0.6	440.6±2.5	(4) Resonance detection	(4) 1991NIC/DIJ
	(5) 104.99 ± 0.03	439.28±0.13	(5) AE, revised	(5) 1999RUS/LIT

The first column in this table shows the broken bonds. The **boldface** emphasizes the dissociated atom or group; here the H is **boldfaced**. For example, $CH_3CH_2CH_2CH_3$ shows a secondary C–H bond in n-butane is broken; $(CH_3CH_2)_3N$ shows a secondary C–H bond in triethylamine is broken. All expressions are similar. The heat of formation of free radicals is shown in this cell. Chapter Eleven includes tables of all $\Delta_iH^o(R)$.

The second column shows the experimental values of BDEs for the given bond. The numbers (1), (2), (3), (4), and (5) show five different resources or references. The recommended value is emphasized by **boldface**.

The third column shows various experimental methods for the relevant BDE value. For an explanation of terms, see the Notations and Abbreviations list in this book.

The fourth column shows the references for the given experimental methods and for the relevant BDE value. A maximum of five values are provided. This is sufficient for most users. Readers can search for more references while using the references here.

Following are another three examples:

- 1. The C–O BDE in methoxybenzene or anisole. The experimental data of BDE(C–O) are from four different methods. The first three values are contributed from independent measurements of different research groups. The last one is derived by Equation 1.2, in which heats of formation of the parent molecules are taken from the given reference, and heats of formation of atoms and radicals are taken from Chapter Eleven.
- 2. The weakest H–O BDEs in four tocopherols (vitamin E). They emphasize the difference of experimental H–O BDEs in gas phase and in liquid phase.
- 3. The H–N BDEs in substituted diphenylamine. They show the effect of various remote substituents Y on the H–N BDEs.

The broken bonds (boldface =	BD (bold f recommen references in	face = ided data;	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
methoxybenzene or anisole	(1) 64.8	271.1	(1) VLPP	(1) 1989SUR/KAF
	(2) 65.2	272.8	(2) Tubular flow	(2) 1993ARE/LOU
CH_3 - OC_6H_5			reactor	
	(3) 65.3	273.2	(3) VLPP	(3) 2001PRA/HEE
	$(4) 64.2 \pm 1.7$	268.6±7.1	(4) Derived from	(4) 1986PED/NAY
			$\Delta_{\!\scriptscriptstyle f} H^{\scriptscriptstyle o}$ in ref.	

α-tocopherol

$$\begin{array}{c} \overset{\text{H}}{\underset{\text{R}_7}{\text{CH}_3}} \overset{\text{R}_5}{\underset{\text{CH}_3}{\text{CH}_2}} \overset{\text{CH}_2\text{CH}_2\text{CH}_2\text{CHCH}_2}{\underset{\text{CH}_3}{\text{CH}_3}} \overset{\text{H}}{\underset{\text{CH}_3}{\text{CH}_3}} \overset{\text{H}}{\underset{\text$$

R ₇ CH ₃ CH ₃				
$R_5 = R_7 = CH_3$ (vitamin E)	(1) 80.4	336.4	(1) Estimated by rate constants	(1) 1985BUR/DOB
	(2) 78.9	330.1	(2) EPR	(2) 1992JAC/HOS
	(3) 78.9	330.1	(3) EPR	(3) 1994LUC/PED
	(4) 80.9 ± 1.0 , in solution	338.5±4.2	(4) AOP	(4) 1996BOR/LIU
	(5) 79.3 , in solution	331.8	(5) APC	(5) 1996WAY/LUS
	(5) 77.3 , in gas	323.4		
$δ$ -tocopherol $R_5 = R_7 = H$	(5) 82.2, in solution	343.9		
	(5) 80.2, in gas	335.6		
	(6) 81.9	342.8	(6) Correlation	(6) 2000DEN/DEN
β -tocopherol $R_5 = CH_3$, $R_7 = H$	(6) 80.2	335.6		
γ -tocopherol $R_5 = H$, $R_7 = CH_3$	(6) 80.1	335.1		

diphenylamine, substituted

The broken bonds (boldface –	BDI (boldf a recommeno references in p	ace = ded data;	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
Y = p-Br	(1) 88.1 (2) 87.0	368.6 364.2	(1) AOP (2) Correlation	(1) 1993BOR/ZHA (2) 2000DEN/DEN
p-MeO	(1) 84.2 (2) 83.3 (4) 81.8	352.3 348.6 342.2		
p-Me	(2) 85.4(3) 86.3 in sol.(3) 86.2 in	357.5 361.1 in sol. 360.7 in	(3) PAC	(3) 1997MAC/WAY
	gas (4) 83.3	gas 348.5	(4) EPR	(4) 2002PRA/DIL
p-tBu	(2) 85.8	358.8		
$p-N(CH_3)_2$	(4) 79.5	332.6		

chapter two

Experimental methods for measuring BDEs

The object of most end users is to find reliable data. However, it is very helpful if the users know the sources of experimental BDE data.

A very concise description of experimental methods is summarized below. It provides main methods, measured quantities, applications, and references. It is hoped that it may help the reader to better interpret the tables of BDE data from Chapters Three through Ten.

Table 2.1 A Summary of Main Experimental Methods for Measuring BDEs

Experimental Methods	Measured Quantities	Applications	References
Spectrometry	Spacing of vibrational energy levels	Diatomic molecules in gas phase	(1) 1968GAY (2) 1970DAR (3) 1979HUB/HER
Pyrolysis kinetics, including	Concentration of atoms, free radicals, and molecules vs. time at	Species in gas and solution phase	105007744
• Toluene carrier tech	different temperatures, using various detecting		1950SZW
 Very low pressure pyrolysis (VLPP) 	techniques, such as GC, HPLC, MS, FT-IR, UV/VIS, EPR, NMR,		(1) 1973GOL/SPO(2) 1979ROS/KIN(3) 1982MCM/GOL
• Shock tubes	resonance fluorescence, chemiluminescence, etc.		(1) 1992DOU/MAC (2) 1997KIE/ZHA
 Single-pulse shock tubes (SPST) 			(1) 1981TSA (2) 1999TSA
 Laser-powered pyrolysis 			(1) 1982MCM/LEW(2) 1984LEW/GOL

Table 2.1 (continued) A Summary of Main Experimental Methods for Measuring BDEs

Experimental Methods	Measured Quantities	Applications	References
Chemical equilibrium and kinetics	Concentration of atoms, free radicals, and molecules at one or several temperatures, using various detecting methods	Species in gas and solution phase	(1) 1966KER (2) 1977KER (3) 1982CAS/GRI (4) 1982MCM/GOL (5) 1984PAC/WIL (6) 1990KOE/SCO (7) 1990HAL (8) 1992WAL (9) 1994BER/ELL
	Correlation between BDEs and rate constants or activation energies		(1) 1966KER (2) 1978KAT/RAJ (3) 2000DEN/DEN
Photolysis, including	Concentration at one or several temperatures, using various analytical methods	Species in gas and solution phase	_
• UV			(1) 1971LAU/OKA (2) 1995BOY/NOZ
• Radiolysis			(1) 1990LIN/SHE (2) 2001DAS
• Laser			(1) 1987CHU/FOL(2) 1988PEN/CAO(3) 1997BEC/CAR
• Photosensitized			1967LOU/LAI
Mass spectrometry (MS), including	Measure the given quantities and describe their correlation with BDEs	Species in gas phase	2001ERV
• Electron impact	Ion intensities vs. electron energy		(1) 1979BER(2) 1984HOL/LOS(3) 1992HOL
• Guided ion beam	Ion intensities vs. ion kinetic energy		(1) 1995ARM (2) 1998DET/ERV
• High pressure	Ion intensities vs. temperature		(1) 1994BUS/KEM(2) 1994BOW(3) 1999MCM

• Ion cyclotron resonance (ICR)	Ion intensities vs. time, vs. electron or photon energy		(1) 1980DEF/MCI (2) 2000BOR/ING (3) 1999ABB/NOT
• High temperature	Ion intensities vs. temperature		1984MAR
• Photoionization (PIMS)	Ion intensities vs. photon energy		(1) 1994BER/ELL (2) 1994BAR
• Pulsed high pressure	Ion intensities at one or several temperatures		(1) 1989MEO (2) 1993SHA/KEB
• Kinetic method	Ion intensities		1994COO/PAT
• Kinetic energy release distributions	Ion intensities vs. product kinetic energy		1992BEA
Photospectrometry, including	Measure the given quantities and describe their correlation with BDEs	Species in gas phase	
• Photoelectron	Electron count vs. electron kinetic energy		(1) 1984MEA (2) 1994BER/ELL
• Electron photo-detachment	Ion intensities vs. photon energy		(1) 1987WET/BRA (2) 1989CHE/ALB
• Flowing afterglow	Ion intensities vs. time, or vs. ion kinetic energy		(1) 1992SQU (2) 1994BER/ELL
Collision-induced dissociation	Collision energy vs. cross section		(3) 1994WEN/SQU (4) 2001HAM/WEN
Electrochemical, including acidities and oxidation potentials (AOP)	Acidity, reversible redox potentials	Species in solution	(1) 1993BOR/ZHA (2) 1993WAY/PAR (3) 1993ARN/FLO (4) 1995BOR/SAT
Photoacoustic calorimetry (PAC)	Amplitude of photoacoustic signal and solution transmittance	Species in solution	(1) 1989KAM/GIL (2) 1994PET (3) 1999LAA/MUL (4) 1999SAN/LAG
			(4) 19993A N / I A -

chapter three

Tabulated BDEs of C-H bonds

3.1 Chain saturated hydrocarbons

Table 3.1 C-H BDEs in Chain Saturated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^{\circ}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
$\Delta_{f}\Pi(K)$, Keal/Hol (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
methane	(1) 105.0 ± 0.1	439.3±0.4	(1) VLPP	(1) 1987DOB/BEN	
CH_3 – H Δ_f H°(R) = 35.06±0.1	(2) 105.3±0.7	440.6±2.9	(2) PIMS detection	(2) 1988RUS/SEE(b)	
(146.69 ± 0.4)	(3) 104.8±0.2	438.5±0.8	(3) Spectrometric detection	(3) 1990SEE/RUS	
	(4) 105.3±0.6	440.6±2.5	(4) Resonance fluorescence detection	(4) 1991NIC/DIJ	
	(5) 104.99±0.03	439.28±0.13	(5) AE, revised	(5) 1999RUS/LIT	
ethane	(1) 100.5±0.5	420.5±2.1	(1) Kinetics	(1) 1984PAC/WIN	
CH_3CH_2 - H $\Delta_t H^o(R) = 28.4 \pm 0.3$ (118.8 \pm 1.3)	(2) 100.5 ± 0.5	420.5±2.1	(2) Resonance fluorescence detection	(2) 1986BRO/LIG	
` ,	(3) 100.8 ± 0.7	421.7±2.9	(3) PIMS detection	(3) 1988RUS/SEE(b)	
	(4) 101.0 ± 0.4	422.6±1.7	(4) PIMS detection	(4) 1992SEA/PIL	
	(5) 100.5 ± 0.3	420.5±1.3	(5) VLPP	(5) 1997DOB/BEN	
propane	(1) 99.9±1.0	418.0±4.2		(1) 1982CAS/GRI	
CH ₃ CH ₂ CH ₂ - H	(2) 99.8±2	417.6±8.4	(2) AE	(2) 1992HOL	

Table 3.1 (continued) C-H BDEs in Chain Saturated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(boldfarecommend	BDEs (boldface = recommended data; references in parentheses)			
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References	
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 23.8 \pm 0.5$	(3) 100.9 ± 0.5	422.2±2.1	(3) SPST	(3) 1996TSA	
(100±2)	(4) 101.2±0.5	423.4±2.1	(4) PIMS detection	(4) 1997SEE/SLA	
propane CH ₃ CH ₂ CH ₃	(1) 98.1 ± 0.7	410.5±2.9	(1) PIMS detection	(1) 1988RUS/SEE(b)	
$\Delta_{\rm f}$ H°(R) = 21.0±0.7 (88±3)	(2) 98.9 ± 0.6	413.8±2.5	(2) PIMS detection	(2) 1990SEE/RUS	
	(3) 98.6 ± 0.4	412.5±1.7	(3) PIMS detection	(3) 1992SEA/PIL	
	(4) 97.8 ± 0.5	409.2±2.1	(4) PIMS detection	(4) 1997SEE/SLA	
	(5) 97.4±1.0	407.5±4.2	(5) SPST	(5) 1999TSA	
butane CH ₃ CH ₂ CH ₂ CH ₃ - H	(1) 101±2	422.6±8.4	(1) Electron impact	(1) 1958COT	
$\Delta_f H^o(R) = 18.6 \pm 0.5$	(2) 100.2	419.2	(2) AE	(2) 1988HOL/LOS	
(77.8 ± 2.1)	(3) 100.7	421.3	(3) SPST	(3) 1990WAL/TSA	
	(4) 101.7 ± 0.5	425.5±2.1	(4) PIMS detection	(4) 1997SEE/SLA	
butane	(1) 99.1±0.4	414.6±1.7	(1) PIMS	(1) 1990SEE/RUS	
CH ₃ CH ₂ CH ₂ CH ₃			detection		
Δ_{i} H°(R) = 16.2±0.5 (67.8±2.1)	(2) 98.3 ± 0.5	411.1±2.2	(2) Resonance fluorescence detection	(2) 1992SEA/PIL	
	$(3) 98.6 \pm 0.5$	412.5±2.1	(3) Review	(3) 1996TSA	
	(4) 98.3 ± 0.5	411.3 ± 2.1	(4) PIMS	(4) 1997SEE/SLA	
	(5) 97.4±1.0	407.5±4.2	(5) SPST	(5) 1999TSA	
isobutane	(1) 100.2 ±1	419.2±4.2	(1) Exp. analysis	(1) 1976BEN	
$(CH_3)_2CHCH_2$ - H	(2) 99.3±2	415.5±8.4	(2) AE	(2) 1992HOL	

$\Delta_{\rm f} H^{\rm o}({\rm R}) = 16.7 \pm 1.0$ (70±4)	(3) 101.6±0.5	425.1±2.1	(3) PIMS detection	(3) 1997SEE/SLA
` '	(4) 100.9±1	422.0±4.2	(4) SPST	(4) 1999TSA
isobutane	(1) 95.6±0.7	400.0±2.9	(1) SPST	(1) 1985TSA
$(CH_3)_3C-H$ $\Delta_f H^o(R) = 11.5\pm0.7$ (48 ± 3)	(2) 95.0 (3) 95.5±0.7	397.5 399.6±2.9	(2) VLPP (3) Resonance fluorescence	(2) 1987BEN/KON (3) 1991SEA/PIL
	(4) 95.5±0.3	399.6±1.3	detection (4) Resonance fluorescence	(4) 1992SEA/PIL
	(5) 95. 7± 0. 7	400.4±2.9	detection (5) Recommend.	(5) 1996TSA
neopentane (CH ₃) ₃ CCH ₂ –H	(1) 99.4±1	415.9±4.2	(1) Polanyi correlation	(1) 1966KER
$\Delta_t H^{\circ}(R) = 8.7 \pm 2$	(2) 100.3 ± 1	419.7±4.2	(2) Kinetics	(2) 1969LAR/HAR
(36.4 ± 8.2)	$(3) 99.4 \pm 1$	415.9 ± 4.2	(3) SPST	(3) 1969TSA
	$(4)\ 101.0\pm2$	422.6 ± 8.4	(4) Review	(4) 1982MCM/GOL
	(5) 101.1	423	(5) Laser flash photolysis	(5) 2001IMR/DOB
2-methylbutane	(1) 91.6±2	383.3±8.4	(1) SPST	(1) 1969TSA
$(CH_3CH_2)CH(CH_3)_2$	$(2) 96.5\pm1$	403.8 ± 4.2	(2) SPST	(2) 1981TSA
$\Delta_{f}H^{o}(R) = 7$ (29)	(3) 92.6	387.4	(3) Photoelectron spectroscopy	(3) 1986KRU/BEA
()	(4) 95.8	400.8	(4) SPST	(4) 1999TSA
pentane $nC_5H_{11}\text{-}\mathbf{H}$ $\Delta_fH^o(R)=13 \end{(54.4)}$	100.2	419.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentane $CH_3CH_2(CH_2)_2CH_3$ $\Delta_iH^o(R) = 12$ (50.2)	99.2	415.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 3.1 (continued) C-H BDEs in Chain Saturated Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _r H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
2-methylpentane $(C_3H_7)CH(CH_3)_2$ $\Delta_fH^\circ(R)=0.8\pm2$ (3.3 ± 8.2)	94.7±2	396.2±8.4	Pyrolysis	1983SER/GOR
2,3-dimethylbutane $CH_3CH(CH_3)CH(CH_3)_2$ $\Delta_tH^\circ(R) = 0.7 \pm 2.4$ (3.1 ± 10)	95.4±3.1	399.2±13.0	Equilibrium study	2000KIR/KOR
hexane nC_6H_{13} –H $\Delta_f H^o(R) = 8 \tag{33.5}$	99.0	414.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexane $CH_3CH_2(CH_2)_3CH_3$ $\Delta_1H^0(R) = 7$ (29.3)	98.0	410.0	Derived from $\Delta_{_{\! f}}\!H^{\circ}$ in ref.	1986PED/NAY
heptane $CH_3CH_2(CH_2)_4CH_3$ $\Delta_i H^o(R) = 2$ (8.2)	98.0	410.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

3.2 Chain unsaturated hydrocarbons

Table 3.2 C-H BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
acetylene HC = C - H $\Delta_t H^{\circ}(R) = 135.1 \pm 0.7$ (565.3 ± 2.9)	(1) 134.9 ± 1.2 (2) 132.9 ± 0.7 (3) 133.1 ± 0.7 (3) 132.8 ± 0.7 (4) 133.3 ± 0.1 (5) 131.3 ± 0.7		(1) AE (2) Photoelectric detachment (3) GPA (3) Recommend. (4) Photolysis (5) Electron affinity	(1) 1979BER(2) 1990ERV/GRO(3) 1994BER/ELL(4) 1994MOR/ASH(5) 2002KIR/TSC	
propyne $CH_3-C\equiv C-H$ $\Delta_t H^{\circ}(R) = 121.0\pm 3.0$ (506.3 ± 12.6)	130.2±3.0 at 0K	544.8±12.6 at 0K	Photoelectric spectroscopy	1995ROB/POL	
diaicetylene HC≡C−C≡C− H	128.8±2.9 at 0K	539.0±12.0 at 0K	Ion beam tandem MS	2000SHI/ERV	
propyne $CH=C-CH_2-H$ $\Delta_t H^{\circ}(R) = 81.0\pm 1.0$ (339±4)	(1) 89.2±2.4 (2) 87.2±2 (3) 90.3±3 (4) 88.9±1.0 (5) 91.8±1.0	373.2±10.0 364.8±8.4 377.8±12.6 372.0±4.2 384.1±4.2	(1) VLPP (2) AE (3) GPA (4) Recommend. (5) SPST	(1) 1979KIN/NGU (2) 1988HOL/POS (3) 1995ROB/POL (4) 1996TSA (5) 1999TSA	
2-butyne $CH_3C \equiv C - CH_2 - H$ $\Delta_t H^o(R) = 70.2 \pm 2$ (293.7 \pm 8.4)	(1) 90.7 (2) 87.4±2 (3) 84.8	379.5 365.7±8.4 354.8	(1) SPST (2) VLPP (3) Correlation	(1) 1978TSA (2) 1982NGU/KIN (3) 2000DEN/DEN	
1-butyne $HC=C-CH_2-CH_3$ $\Delta_i H^o(R) = 70.5\pm 2.2$ (295.0 ± 9.2)	(1) 85.0 (2) 87.3 (3) 83.1±2.2 (4) 82.9	355.6 365.3 347.7±9.2 346.8	(1) VLPP (2) SPST (3) Review (4) Correlation	(1) 1981NGU/KIN (2) 1981TSA (3) 1982MCM/GOL (4) 2000DEN/DEN	

Table 3.2 (continued) C-H BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1-penten-3-yne CH_2 = CH - C = C - CH_2 - H $\Delta_t H^{\circ}(R) = 84.0$ (351.5)	86.8	363.3	VLPP	1992STA/KIN
2-pentyne $CH_3C = C - CH_2 - CH_3$ $\Delta_i H^{\circ}(R) = 65.2 \pm 2.2$ (272.8 ± 9.2)	87.3±2.3	365.3±9.6	VLPP	1981KIN/NGU
1-pentyne $HC = C - CH_2CH_2CH_3$ $\Delta_i H^{\circ}(R) = 66.2 \pm 2$ (277.0 ± 8.4)	83.6±2	349.8±8.4	AE	1976LOS/TRA
3-methyl-1-butyne $HC = C - CH(CH_3)_2$ $\Delta_t H^{\circ}(R) = 61.5 \pm 2.2$ (257.3 ± 9.2)	(1) 82.5 ± 2 (2) 81.0±2.3	345.2±8.4 338.9±9.6	(1) AE (2) VLPP	(1) 1976LOS/TRA (2) 1977KIN
4-methyl-2-pentyne $CH_3C = C - CH(CH_3)_2$ $\Delta_t H^{\circ}(R) = 53.0 \pm 2.2$ (221.8 ± 9.2)	82.3±2.7	344.3±11.3	VLPP	1981KIN/NGU
5-decyne $CH_3(CH_2)_3C \equiv CCH_2(CH_2)_2CH_3$	83.2	348.0	Correlation	2001TUM/DEN
ethylene $H_2C=CH-H$ $\Delta_tH^{\circ}(R) = 71.6\pm0.8$ (299.6±3.3)	(1) 111.1±2.2 (2) 110.1±2 (3) 110.2±2 (4) 111.2±0.8	464.8±9.2 460.7±8.4 461.1±8.4 465.3 ±3.3	(1) ICR (2) Kinetics (3) Review (4) Recommend.	(1) 1980DEF/MCI (2) 1981STE/ROW (3) 1982MCM/GOL (4) 1994BER/ELL

	(5) 110.2±0.4	461.1±1.3	(5) FT-IR-GC detection	(5) 1996KAI/WAL
allene $CH_2=C=CH-H$ $\Delta_f H^o(R) = 81.0\pm 1$ (338.9 ± 4)	(1) 92.4±1.2 (2) 88.7±3	386.6±5.0 371.1±12.6	(1) Kinetics (2) GPA	(1) 1971WAL (2) 1995ROB/POL
propene $CH_3CH=CH-H$ $\Delta_i H^{\circ}(R) = 63.8\pm1.5$ (266.9 ± 6)	(1) 109±2.4 (2) 111.1	456.1±10.0 464.8	SPST	(1) 1988CUI/HE (2) 1999TSA
propene CH_2 = CH - CH_2 - H $\Delta_f H^o(R) = 40.8 \pm 0.7$ (171 ± 3)	(1) 86.7±1.5 (2) 87.2±0.5 (3) 88.8±0.4 (4) 88.2±0.7 (5) 87.0±1.1	362.8±6.3 364.8±2.1 371.5±1.7 368.6±2.9 364.0±4.6	(1) VLPP(2) Pulse shock tube(3) GPA(4) Recommend.(5) PIMS detection	(1) 1979ROS/KIN (2) 1991ROT/BAU (3) 1996ELL/DAV (4) 1996TSA (5) 1997SEE/SLA
(Z)-2-butene (Z)-CH ₃ CH=CH-CH ₂ - H $\Delta_{\rm f}$ H°(R) = 34.9±2 (146±8)	(1) 89.7 (2) 85.0	375.3 355.8	(1) SPST (2) Correlation	(1) 1999TSA (2) 2000DEN/DEN
(E)-2-butene (E)-CH ₃ CH=CH–CH ₂ –H	85.3	356.8	Correlation	2000DEN/DEN
1-butene CH_2 = CH - CH_2 - CH_2 - H $\Delta_t H^{\circ}(R) = 46.0$ (192.5)	98.1	410.5	Photoelectron spectroscopy	1984SCH/HOU
1-butene CH ₂ =CH–CH ₂ –CH ₃	(1) 82.3 (2) 81.5±1.5 (3) 82.6±1.3	344.3 341.0±6.3 345.6±5.4	(1) SPST (2) Pyrolysis (3) Review	(1) 1969TSA (2) 1970TRE (3) 1982MCM/GOL

Table 3.2 (continued) C-H BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _i H ^o (R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
$\Delta_i H^{\circ}(R) = 31.8 \pm 1.5$ (133.1 \pm 6.3)	(4) 83.8	350.6	(4) Proton affinity	(4) 1987LIA/AUS
	(5) 83.5	349.2	(5) Correlation	(5) 2001TUM/DEN
isobutene CH ₂ =C(CH ₃)-CH ₂ - H	(1) 86.2±1 (2) 86.7 ± 0.6	360.7±4.2 362.8±2.5	(1) Pyrolysis (2) Shock tube	(1) 1977TRE/WRI (2) 1991ROT/BAU
$\Delta_{\rm f} H^{\rm o}({\rm R}) = 30.6 \pm 0.6$	(3) 89.1	372.8	(3) SPST	(3) 1999TSA
(128.0±2.5)	(4) 85.5	357.6	(4) Correlation	(4) 2001TUM/DEN
1,3-pentadiene	(1) 79.8±1.0	333.9±4.2	(1) Iodination	(1) 1973ONE/BEN
$CH_2 = CHCH = CHCH_2$ - H $\Delta_i H^o(R) = 49\pm 3$	(2) 79.7 ± 1.0 (3) 83.0 ± 3	333.5±4.2 347.3±12.6	(2) Pyrolysis (3) Review	(2) 1980TRE(3) 1982MCM/GOL
(205±12.6)	(1)			(-)
2,3-pentadiene CH ₃ CH=C=CHCH ₂ - H	87.3	365.0	Correlation	2000DEN/DEN
1,4-pentadiene $(CH_2=CH)_2CH-H$ $\Delta_i H^{\circ}(R) = 49.7\pm1.0$ (207.9 ± 4.2)	(1) 79.5±1.7 (2) 76.4 (3) 76.6±1.0 (3) 76.6±1.0	332.6±7.1 319.7 320.5 ± 4.2 320.5±4.2	(1) Isomerization (2) Pyrolysis (3) PAC (3) AE	(1) 1970EGG/JOL (2) 1982TRE (3) 1991CLA/CUL
1-pentene CH_2 = $CHCH_2$ - CH_2 C H_3 Δ_i H°(R) = 26.2±2 (109.6±8.4)	(1) 82.5±2 (2) 83.4	345.2±8.4 348.8	(1) AE (2) Correlation	(1) 1976LOS/TRA (2) 2000DEN/DEN
2-methyl-1-butene CH ₂ =C(CH ₃)-CH ₂ CH ₃	83.0	347.3	Correlation	2000DEN/DEN
3-methyl-1-butene CH ₂ =CH-CH(CH ₃) ₂	(1) 79.5 ± 1.7 (2) 76.4	332.6 ± 7.1 319.7	(1) Isomerization (2) Pyrolysis	(1) 1970EGG/JOL (2) 1982TRE

$\Delta_{\rm f}$ H°(R) = 20.8±2 (87.0±8.4)	(3) 83.1	347.7	(3) Reanalysis of pyrolysis data	(3) 1998BRO/BEC
	(4) 81.2	339.6	(4) Correlation	(4) 2000DEN/DEN
3-methyl-2-butene CH ₃ CH=C(CH ₃)CH ₂ – H	84.2	352.4	Correlation	2000DEN/DEN
2-ethyl-1-propene CH_2 = $C(CH_3CH_2)$ - CH_2 - H Δ_i H°(R) = 26.2±2 (109.6±8.4)	85.1±2	356.1±8.4	AE	1976LOS/TRA
(E)-2-pentene (E)-CH ₃ CH=CHC H ₂ CH ₃	(1) 81.7±1.5	341.8±6.3	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
(E)-CH ₃ CH-CHCH ₂ CH ₃	(2) 82.5	345.2	(2) Correlation	(2) 2000DEN/DEN
(Z)-2-pentene	(1) 80.6±1.5	337.2	(1) Derived from $\Delta_t H^\circ$ in ref.	(1) 1986PED/NAY
(Z)-CH ₃ CH=CHCH ₂ CH ₃	(2) 82.6	345.4	(2) Correlation	(2) 2000DEN/DEN
1-hexene CH ₂ =CHC H (CH ₂) ₂ CH ₃	83.4	348.8	Correlation	2001TUM/DEN
3-methyl-1,4-pentadiene $(CH_2=CH)_2C(CH_3)$ – H Δ_t H°(R) = 46.3 (202.0)	77	322.2	PAC	1999LAA/MUL
(Z)-4-methyl-2-pentene (Z)-(CH ₃) ₂ CHCH=CHCH ₃	79.8	333.9	Correlation	2001TUM/DEN
4-methyl-3-pentene $(CH_3)_2C=CHCH_2CH_3$	79.3	331.9	Correlation	2001TUM/DEN

Table 3.2 (continued) C-H BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_c H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
2,3-dimethyl-2-butene $(CH_3)_2C=C(CH_3)-CH_2-H$ $\Delta_tH^\circ(R) = 9.5\pm1.5$ (39.7 ± 6.3)	(1) 78.0±1.0 (2) 84.7	326.4±4.2 354.3	(1) Iodination (2) Correlation	(1) 1973ROD/WU (2) 2001TUM/DEN
2,3-dimethy-1-butene $CH_2=C(CH_3)-CH(CH_3)_2$ $\Delta_t H^o(R) = 9\pm1.5$ (37.7±6.3)	(1) 76.3±1.0 (2) 84.3	319.2 352.8	(1) Iodination (2) Correlation	(1) 1973ROD/WU (2) 2001TUM/DEN
(Z)-2,5-dimethyl-3-hexene (Z)-(CH ₃) ₂ CHCH=CHCH(CH ₃) ₂	80.3	336.1	Correlation	2001TUM/DEN
1,3-octediene CH ₂ =CHCH=CHCH ₂ (CH ₂) ₂ CH ₃	79.3	332.0	Correlation	2001TUM/DEN
1-octene $CH_2 = CHCH_2(CH_2)_4CH_3$	83.4	348.9	Correlation	2000DEN/DEN
(E)-2-octene (E)-CH ₃ CH=CHCH ₂ (CH ₂) ₃ CH ₃	81.9	342.7	Correlation	2000DEN/DEN
1,8-nonediene CH ₂ =CHCH ₂ (CH ₂) ₄ CH=CH ₂	83.6	349.8	Correlation	2001TUM/DEN
Z,Z-2,8-decediene $CH_3CH=CH(CH_2)_4CH=CHCH_3$	81.6	341.6	Correlation	2001TUM/DEN
1-hexadecene CH ₂ =CHCH ₂ (CH ₂) ₁₂ CH ₃	83.4	348.8	Correlation	2001TUM/DEN

allyl triphenyl phosphonium bromide Ph ₃ P+CH ₂ CH=CH ₂ Br	85.9	359.4	AOP	1996ZHA/FRY
3-phenyl-allyl triphenyl phosphonium bromide Ph ₃ P+C H ₂ CH=CHPh Br ⁻	81.0	338.9	AOP	1996ZHA/FRY

3.3 Cyclic hydrocarbons

Table 3.3 C-H BDEs in Cyclic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(bold i recommen	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
cyclopropene				
NAH H				
$\Delta_{\rm f} H^{\rm o}(R) = 105.1 \pm 4.1$ (439.7±17.2)	90.4±4.0	378.3±12.6	ICR	1980DEF/MCI
cyclopropane				
K H H				
$\Delta_{\rm f} H^{\rm o}(R) = 66.9 \pm 0.3$ (279.9 \pm 1.3)	(1) 101±3	422.6±12.6	(1) Polanyi correlation	(1) 1966KER
	(2) 100.2 ± 0.4 (3) 106.3 ± 0.25		(2) Kinetics (3) VLPP	(2) 1978APP/KLU (3) 1979BAG/BEN
	(4) 105.9±2.7 (5) 102.5	443.1±11.3 429.0	(4) ICR(5) Correlation	(4) 1980DEF/MCI (5) 2001TUM/DEN
methylcyclopropane				
CH ₂				
$\Delta_i H^{\circ}(R) = 51.1 \pm 1.6$ (213.8 \pm 6.7)	97.4±1.6	407.5±6.7	Iodination	1971MCM/GOL
				(continued)

Table 3.3 (continued) C-H BDEs in Cyclic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
$\Delta_{\rm f}$ (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
cyclobutane				
₩ _H				
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 51.4 \pm 1.0$ (215.1 \pm 4.2)	(1) 95±3	397.5±12.6	(1) Polanyi correlation	(1) 1966KER
	(2) 96.5	403.8	(2) Polanyi correlation	(2) 1971FER/WHI
	(3) 96.8 ± 1.0	405.0 ± 4.2	(3) Iodination	(3) 1972MCM/GOL
	(4) 97.8 ± 0.3	409.2 ± 1.3	(4) Kinetics	(4) 1978APP/KLU
	(5) 100.0	418.5	(5) Correlation	(5) 2001TUM/DEN
6,6-dimethylfulvene	84.5	353.5	AOP	1989BOR/HAR
Me 6 CH ₂ H				
1,3-cyclopentadienes, substituted	86.5±2	361.9±8.4	VLPP	1981STE
CH ₂ · H				
12	(1) 02 0 1 2 2	246.010.2	(1) ICD	(1) 1000DEF /MCM
1,3-cyclopentadienes, substituted	(1) 82.9±2.2 (2) 81.2	346.9±9.2 339.7	(1) ICR (2) AOP	(1) 1980DEF/MCM(2) 1988BOR/CHE
Substituted	(3) 83.9 ± 0.5	351.0±2.1	(3) Electrochem.	(3) 1991PAR/HAN
H	(4) 81.5±2.7	341.0±11.3	(4) ICR	(4) 1997ROM/JAN
2 2 4 3	(5) 82.5 ± 1	345.2±4.2	(5) Reflected shock tube	(5) 2001ROY/BRA
at 1 site H $\Delta_i H^o(R) = 63.9 \pm 2.0$ (267.4 \pm 8.4)				
at 1,4 site Ph ₂	(6) 75	313.8	(6) AOP	(6) 1991BOR/CHE

1,3-cyclopentadienes, substituted R = Me(1)77322.2 (1) AOP (1) 1989BOR/HAR Δ_tH^o(pentamethyl-cyclopentadienyl) = 16.1 ± 1.0 (67.4 ± 4.2) Ph (1)78326.4 (2)74.1310.0 (2) Pyrolysis (2) 1995ROT/HUN cyclopentene $\Delta_{f}H^{o}(R) = 38.4 \pm 1.0$ $(1) 82.3 \pm 1$ 344.3 ± 4.2 (1) Iodination (1) 1970FUR/GOL(b) (160.7 ± 4.2) 343.1±8.4 (2) AE (2) 1976LOS/TRA $(2)82\pm2$ (3) Correlation (3) 81.9342.5 (3) 2000DEN/DEN cyclopentane, substituted $\Delta_{f}H^{o}(R) = 25.3 \pm 1.0$ (1) Iodination $(1) 94.9 \pm 1$ 397.1±4.2 (1) 1970FUR/GOL (105.9 ± 4.2) 397.5±8.4 (2) AE (2) 1976LOS/TRA $(2) 95.0\pm 2$ X = H $(3) 96.0 \pm 0.2$ 401.7 ± 0.8 (3) Kinetics (3) 1978APP/KLU (4) 95.6 \pm 1 400.0 ± 4.2 (4) Radical buffer (4) 1982CAS/GRI (5)97.6408.5 (5) Correlation (5) 2001TUM/DEN Me (5)93.7392.2 Et (5)93.7392.3 Ph (6) 81.9 342.7 (6) Correlation (6) 1995TUM/DEN 3-tert-butylbicyclo[1.1.1]-109.7±3.3 459.0±13.8 GPA 2002REE/KAS pentane

Table 3.3 (continued) C-H BDEs in Cyclic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
spiropentane				
H				
$\Delta_{\rm f} H^{\rm o}(R) = 91.0 \pm 1.0$ (380.7 \pm 4.2)	98.8±1.0	413.4±4.2	Polanyi correlation	1971FER/WHI
1,3-cyclohexadiene				
THH H				
$\Delta_{\rm f} {\rm H^o}({\rm R}) = 47.6$ (199.2)	(1) 73±5 (2) 73.2 (3) 74.3 (4) 74.3 (5) 79.1	305.4 306.3 310.9 310.9 331.1	(1) Review(2) Kinetics(3) VLPP(4) PAC(5) Correlation	(1) 1982MCM/GO (2) 1985DEA (3) 1991STE/BRO (4) 1997LAA/MUI (5) 2001TUM/DEN
1,4-cyclohexadiene, substituted				
X H				
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 48.2 \pm 1.2$	(1) 70	292.9	(1) Pyrolysis	(1) 1968JAM/SUA
(201.7 ± 5.0) X = H	(2) 76.0±1.2 (3) 73±2 (4) 77 (5) 75.0	318.0±5.0 305.4±8.4 322.2 313.7	(2) SPST(3) PAC(4) PAC(5) Correlation	(2) 1986TSA(3) 1989GRI/WAY(4) 1999CIR/KOR(5) 2001TUM/DEN
Me	(5) 80.4	336.4		

$\Delta_f H^{\circ}(R) = 28.6 (119.7)$ X = H $X' = H$		(1) 81.9 (2) 81.6 (3) 81.0	342.7 341.4 338.9	(1) AOP(2) Correlation(3) Correlation	(1) 1988BOR/CHE(2) 2000DEN/DEN(3) 2001TUM/DEN
Me	Н	(3) 79.5	332.7		
cyclohexer	ne, substituted	78.0	326.2	Correlation	2001TUM/DEN
Me Me cyclohexai	ne, substituted				
$\Delta_{f}H^{o}(R) = 0$ $X = H$	18±1.5 (75.3±6.3)	(1) 96.2 (2) 99.5 (3) 96.4±0.6 (4) 98 (5) 97.6	402.5 416.3 403.3±2.5 410.0 408.4	(1) Kinetics(2) SPST(3) EPR(4) PAC(5) Correlation	(1) 1978APP/KLU (2) 1981TSA (3) 1982CAS/GRI (4) 1999CIR/KOR (5) 2001TUM/DEN
Me		(5) 94.3	394.6		
Et		(5) 94.5	395.4		
CH=C	$^{\circ}H_{2}$	(5) 81.7	341.8		
Ph		(6) 85.2	356.4	(6) Correlation	(6) 2000DEN/DEN
cyclohexai	ne, substituted				
Z 🟏	1				
E					
(Z)-1,2-Me	2	93.9	392.9	Correlation	2001TUM/DEN
(E)-1,2-Me	2	97.4	407.5		
(Z)-1,3-Me	2	93.9	392.9		
(E)-1,3-Me	2	93.2	389.9		
(Z)-1,4-Me	2	93.7	392.0		
(E)-1,4-Me	2	94.8	396.6		

Table 3.3 (continued) C-H BDEs in Cyclic Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1,3,5-cycloheptatriene				
H				
$\Delta_{\rm f}$ H°(R) = 68.2±3 (285.3±12.6)	(1) 82.9±7	346.9±29.3	(1) Electron impact	(1) 1960HAR/HON
	(2) 73 ± 1	305.4 ± 4.2	(2) Pyrolysis	(2) 1969VIN/DAU
	(3) 73 ± 2	305.4 ± 8.4	(3) ICR	(3) 1979BAR/SCO
	(4) 76.6 ± 3	320.5 ± 12.6	(4) ICR	(4) 1980DEF/MCM
	(5) 73.2±2	306.3±8.4	(5) Review	(5) 1982MCM/GOL
1,3-cycloheptadiene	83.0	347.3	Correlation	2001TUM/DEN
H				
cycloheptene	82.9	346.9	Correlation	2001TUM/DEN
H				
cycloheptane, substituted				
X				
$\Delta_{\rm f}$ H°(R) = 12.1±1.0 (50.6±4.2)				
X = H	(1) 93.3	389.1±12.6	(1) Polanyi correlation	(1) 1966KER
	(2) 94.0 (3) 92.5±1	393.3 387.0±4.2	(2) Kinetics(3) Photobromin.	(2) 1970JON/WHI (3) 1971FER/WHI
	(4) 92.5±1 (5) 96.5	387.0±4.2 403.8	(4) Review	(4) 1982MCM/GOL
Me	(5) 93.0	389.0	(5) Correlation	(5) 2001TUM/DEN
Et	(5) 93.8	392.4		

norbornene

- $\Delta_{f}H^{o}(R) = 32.6 \pm 2.5$ (136.4 ± 10.5)
- (1) 96.7 ± 2.5 (2)99.4
- **404.6**±**10.5** Iodination

415.9

- (1) 1970ONE/BAG
- (2) 1971DAN/TIP

quadricyclane

 $\Delta_{\rm f} H^{\rm o}({\rm R}) = 138.3 \pm 1.3$

 (578.6 ± 5.4)

109.4±1.3

457.7±5.4 Ion flow tube

1996LEE/DEP

quadricyclane

 $\Delta_{f}H^{\circ}(R) = 140.4 \pm 1.3$ (587.4 ± 5.4) 111.5±1.3

 466.5 ± 5.4 Ion flow tube

1996LEE/DEP

norboradine

 $\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 122.3 \pm 1.9$

 (511.7 ± 7.9)

115.6±1.9

 483.7 ± 7.9 Ion flow tube

1996LEE/DEP

cubane

 $\Delta_{\rm f} H^{\rm o}(R) = 198.6 \pm 4$

 (830.9 ± 16.7)

 102 ± 4

426.8±16.7 GPA

1997HAR/EMR

Table 3.3 (continued) C-H BDEs in Cyclic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
bicyclooctane				
Z H				
$ \Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 22.0 $ (92.0)	97.7	408.8	Kinetics	1971DAN/TIP
cyclooctadiene	79.3	331.8	Correlation	2001TUM/DEN
H				
cyclooctene	85.4	357.2	Correlation	2001TUM/DEN
H _H				
cyclooctane, substituted				
X				
X = H	95.7	400.2	Correlation	2001TUM/DEN
Me	94.4	395.0		
Et	93.7	392.2		
spiro[2.5]-octa-4,6-diene	70.7	295.6	Correlation	2001TUM/DEN
H H				
cyclononane cyclo-C ₉ H ₁₇ – H	96.3	403.9	Correlation	2001TUM/DEN

adamantane ", H					
12					
$\Delta_{\rm f} { m H}^{\rm o}({ m R}, { m at} \ 1 { m sit}$	e) = 12.3 (51.5)	(1) 97.0 (2) 96.2	405.8 402.5	(1) Kinetics (2) AP	(1) 1971DAN/TIP (2) 1998AUB/HOL
	(01.0)	(3) 98.5 (4) 93.0	412.0	(3) Correlation (4) Derived	(3) 2001TUM/DEN (4) 2001MAT/LEB
$\Delta_{\rm f} { m H}^{\rm o}({ m R},{ m at}2{ m sit}$	e) = 14.8 (61.9)	(2) 100.2 (3) 98.5	419.2 412.0	(5) Photoelectr. spectroscopy	(5) 1986KRU/BEA
	, ,	(3) 98.4	411.7	1 17	
cyclodecane		96.7	404.5	Correlation	2001TUM/DEN
cyclo-C ₁₀ H ₁₉ –H	I				
cycloundecane		96.7	404.7	Correlation	2001TUM/DEN
cyclo-C ₁₁ H ₂₁ –H					
cyclododecane		98.0	410.0	Correlation	2001TUM/DEN
cyclo-C ₁₂ H ₂₃ -H					
(Z)-decalin		93.5	391.1	Correlation	2001TUM/DEN
H					
Н					
(E)-decalin		95.6	400.0	Correlation	2001TUM/DEN
THE STATE OF THE S					
H N					
(Z)-pinane		90.2	377.4	Correlation	2001TUM/DEN
Me Me 4 H					
Me					

3.4 Aromatic hydrocarbons

Table 3.4 C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol kJ/mol		parentheses)	References
benzene				
₩ H				
$\Delta_{\rm f} H^{\rm o}(R) = 78.9 \pm 0.8$ (330.1±3.3)	(1) 112.3±1 (2) 111.2±0.8	469.9±4.2 465.3±3.3	(1) Iodination (2) GPA, recommend.	(1) 1967ROD/GOL (2) 1994BER/ELL
	(3) 113.5±0.5 (4) 113.3±2 (5) 112.9 ± 0.5	474.9±2.1 474±8 472.2±2.2	(3) Ion flow tube (4) Recommend. (5) GPA, revised	(3) 1995DAV/BIE (4) 1996TSA (5) 2002ERV/DET
phenyl				
H H				
C–H at site 2	79.9±3.1	334.3	CID	1994WEN/SQU
3	95.3±3.2	398.7		
4	110.6±3.4	462.8±14.2		
benzene, substituted				
_Y √ H				
$Y = 2-C(O)O^{-}$	113.9	476.6	Correlation	1998NAS/SQU
3-C(O)O ⁻	110.4	461.9		
4-C(O)O-	112.3	469.9		
2-C(O)OH $\Delta_{\rm f}$ H°(R) = -7.9 (-33.1)	114.5	479.1		
3-C(O)OH $\Delta_{\rm f}$ H°(R) = -8.4 (-35.1)	114.0	477.0		

4-C(O)OH $\Delta_f H^o(R) = -8.6 (-36.0)$	113.8	476.1		
toluene				
$CH_2 \stackrel{\frac{1}{3}}{\longrightarrow} H$				
$\Delta_{\rm f} H^{\rm o}(R) = 48.4 \pm 1.5$ (202.5 \pm 6.3)	(1) 87.9±1.5 (2) 88.1±2.2 (3) 88.6 (4) 88.5±1.5 (5) 89.6±1.0	367.8±6.3 368.6±9.2 370.7 370.3 ± 6.3 375±4	(1) VLPP(2) ICR(3) SPST(4) Recommend.(5) Recommend.	(1) 1979ROS/GOL (2) 1980DEF/MCI (3) 1990WAI/TSA (4) 1994BER/ELL (5) 1996TSA
toluene, substituted				
$CH_2 = H$				
Y = 3-F	(2) 89.3	373.6	(1) Photoelectr. spectroscopy	(1) 1986HAY/KRU
4-F	(2) 89.7	375.1	(2) Correlation	(2) 2000DEN/DEN
3-Cl	(2) 89.1	373.0		
4-Cl	(2) 88.7	371.3		
3-Br	(2) 89.7	375.4		
4-Br	(3) 90.8	380.1	(3) Correlation	(3) 2002KRO/TUM
2-CH ₃	(1) 87.3 (2) 89.6	365.3 375.0		
3-CH ₃	(1) 87.8 (2) 88.8	367.4 371.4		
4-CH ₃	(1) 87.7 (2) 88.4	366.9 369.7		
4-Et	(3) 87.0	363.9		
2-Pr	(3) 87.6	366.6		
3-Pr	(3) 86.8	363.2		
4-Pr	(3) 87.0	363.9		
4-tBu	(2) 89.4	374.1		
3-CN	(3) 88.7	371.0		
4-CN	(3) 88.0	368.0		

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	d atom) (boldface = reco		Methods (references in	
Δ_{f} I (K), Real/ IIIol (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
3-NO ₂	(3) 89.6	375.0		
4-NO ₂	(2) 89.2 (4) 86.5	373.4 361.9	(4) AOP	(4) 1995BOR/ZHA(c
4-PhO	(2) 89.7	375.4		
4-PhSO ₂	(5) 88	368.2	(5) AOP	(5) 1993ZHA/BOR
4-CH ₂ OCH ₃	(3) 85.4	357.5		
3-MeO	(3) 90.5	378.8		
4-MeO	(3) 86.6	362.5		
3-EtOC(O)	(3) 89.1	372.7		
4-EtOC(O)	(3) 89.4	374.1		
2,4-Cl ₂	(3) 88.6	370.9		
3,4-Cl ₂	(2) 88.3	369.6		
2,3-Me ₂	(3) 89.5	374.3		
2,4-Me ₂	(2) 89.1	373.0		
3,5-Me ₂	(2) 89.5	374.3		
2,3,4,5,6-Me ₅	(2) 88.6	370.9		
3-CH ₂	(6) 90.7±2.9	379.5±12.1	(6) CID	(6) 2000HAM/WEN
3,5-(CH ₂ ·)	(7) 88.2±5.0	369.0±20.9	(7) CID	(7) 2001HAM/WEN

ethylbenzene, substituted

p-C ₂ H ₅	(6) 86.3	361.1	(6) Correlation	(6) 2002KRO/TUM
p-Br	(6) 87.1	364.4	(6) Correlation	
p-tBu	(6) 86.5	361.9		
p-MeOC(O)	(6) 87.0	364.1		
prop-2-enylbenzene PhCH ₂ CH=CH ₂	84.4	353.1	Correlation	1995TUM/DEN
n-propylbenzene $PhCH_2C_2H_5$	(1) 86.1 (2) 87.5	360.2 366.2	(1) Proton affinity (2) Correlation	(1) 1982MEO (2) 2000DEN/DEN
i-propylbenzene, substituted				
Ċ(CH ₃) ₂				
$Y = 2.5-Me_2$	86.7	362.8	Correlation	2002KRO/TUM
4-t-Bu	83.5	349.3		
t-butylbenzene $C_6H_5C(CH_3)_2CH_2$ - H	98.7	413.0	Correlation	2002KRO/TUM
(E)-1-phenylpropene (E)-Ph-CH=CH-CH ₂ - H	78.9±2.6	330.1±10.9	FT-MS	2002GLA/MAK
1-phenylcyclobutene	85.6±2.6	358.2±10.9	FT-MS	2002GLA/MAK
7 6 5 1 4 1 1 1 H H H H				
cyclopentylbenzene	88.0	268.2	Correlation	2002KRO/TUM

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_i H^{\circ}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		d Methods (references in	
Δ_{i} (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
cyclohexylbenzene	85.2	356.4	Correlation	2002KRO/TUM
₩ T				
diphenylmethane	(1) 84±2	351.5±8.4		(1) 1991STE/BRO
Ph ₂ CH ₂	(2) 82	343.1	(2) AOP	(2) 1991BOR/CHE
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 72.2 \pm 1.0$	(3) 84.5 ± 0.5	353.5±2.1	` '	(3) 1991PAR/HAN
(302.1 ± 4.2)	(4) 85.8	359.0	(4) Reanal. of	(4) 1998BRO/BEC
	(5) 85.3	356.9	pyrolysis data (5) Correlation	(5) 2000DEN/DEN
diphenylmethane, substituted $(p-PhC_6H_4)_2CH_2$	80	334.7	AOP	1989BOR/HAR
1,2-diphenylethane PhCH ₂ CH ₂ Ph	87.0	364.1	Correlation	2000DEN/DEN
2-phenylpropane	(1) 83.6	349.8	(1) VLPP	(1) 1981ROB/STE
$Ph(CH_3)_2C-H$	(2) 84.4±1.5	353.1±6.3	(2) Review	(2) 1982MCM/GOL
$\Delta_{\rm f} H^{\rm o}({\rm R}) = 32.0 \pm 1.0$	(3) 83.2 ± 1	348.1 ± 4.2	(3) PAC	(3) 1997LAA/BOR
(133.9 ± 4.2)	(4) 87.3	365.3	(4) Reanal. of pyrolysis data	(4) 1998BRO/BEC
	(5) 84.8	354.7	(5) Correlation	(5) 2000DEN/DEN
1,1-diphenylethane	(1) 81±2	338.9±8.4	(1) VLPP	(1) 1981STE
Ph ₂ C(CH ₃)C- H	(2) 82.8	346.4	(2) Reanal. of pyrolysis data	(2) 1998BRO/BEC
	(3) 83.9	351.0	(3) Correlation	(3) 2000DEN/DEN

thiphenylmethane, substituted

Δ_{f} H°(Ph ₃ C) = Y = p-H Y' =	(392.0±8	3.4)	(1) 81±2 (2) 80.8±3 (3) 79.0 (4) 82.7 (5) 85.4	338.9±8.4 338.1±12.6 330.5 346.0 357.3	(1) AOP(2) AOP(3) AOP(4) Correlation(5) Correlation	(1) 1991PAR/HAN (2) 1993BOR/ZHA(b) (3) 1997ARN/FLO (4) 2000DEN/DEN (5) 2002KRO/TUM
Y = p-MeO	p-MeO	p-MeO	(3) 78.1	326.8		
p-MeO	p-MeO	р–Н	(3) 79.3	331.8		
p-Me	p-Me	p-Me	(3) 79.0	330.5		
p-MeO	р–Н	р–Н	(3) 80.7	337.6		
p-Me	p-Me	р–Н	(3) 80.3	336.0		
p-Me	р–Н	р–Н	(3) 79.1	331.0		
p-tBu	p-tBu	p-tBu	(3) 74.4	311.3		
thiphenylme substituted (p–HC ₆ F ₄) ₃ C			82.3	344.3	AOP	1993BOR/ZHA(b)
1,1,3,3-tetrap Ph ₂ C=CHC(pene	77	322.2	AOP	1989BOR/HAR
1,1,3,5,5-pen 4-pentadiene Ph ₂ C=CHCF	e		75.1	314.2	АОР	1991BOR/CHE
benzocyclob	utene		92±4	384.9±16.7	FT-MS	2000GLA/MAK

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(boldface = r data; re	DEs recommended rerences ntheses)	Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
benzocyclobutadiene	114±4	477.0±16.7	FT-MS	2000BRO/KAS(b)
OT KH				
indane H				
H				
$\Delta_{i}H^{o}(indanyl) = 48.8\pm2.0$ (204.2±8.4)	85.9	359.4	Correlation	2000DEN/DEN
indene				
$\Delta_{f}H^{o}(indenyl) = 71$ (297.1)	(1) 84±3 (2) 81.5±0.5 (3) 81.1±2.4 (4) 83.0 (5) 81.2	351.5±12.6 341.0±2.1 339.3±10.0 347.3 339.7	(1) Review(2) Electrochem.(3) ICR(4) Reanal. of pyrolysis data(5) Correlation	(1) 1982MCM/GOL (2) 1991PAR/HAN (3) 1997ROM/JAN (4) 1998BRO/BEC (5) 2001TUM/DEN
indene, substituted				
H 12 H				
Y = 2-Br	(1) 80.9	338.5	(1) AOP	(1) 1992BOR/SAT
3-Ме	(1) 77.6	324.7		
3-t-Bu	(1) 78.5	328.4		
2-Ph	(1) 79.3 (2) 84±3	331.8 351.5±12.6	(2) VLPP	(2) 1981STE

3-Ph	(1) 75.3	315.1
3-MeO	(1) 76.4	319.7
3-MeS	(1) 74.1	310.0
2-PhS	(1) 80.2	335.6
3-CN	(1) 77.9	325.9
$3-c-C_4H_8N$	(1) 70.3	294.1
2 -c- C_4H_8N	(1) 83.5	349.4
$3-c-C_5H_{10}N$	(1) 72.3	302.5
$2-c-C_5H_{10}N$	(1) 82.5	345.2
3-c-OC ₄ H ₈ N	(1) 73.4	307.1
2-c-OC ₄ H ₈ N	(1) 82.8	346.4
$2-(4-MeOC_6H_4)$	(1) 79.3	331.8
$2-(4-MeC_6H_4)$	(1) 79.1	331.0
3-C(O)NH ₂	(1) 77.7	322.2
2-C(O)OMe	(1) 79.2	331.4
3-C(O)OMe	(1) 77.6	324.7
6-NO ₂ –3-Me	(1) 78.4	328.0
1,2,3-Ph ₃	(1) 75.8	317.1

tetralin

 $\Delta_{\rm f} H^{\rm o}(R) = 37 \pm 1.2$ (1) PAC (1) 1997LAA/MUL (1) 82.9 ± 1.2 346.9 ± 5.0 (154.8 ± 5.0) 349.6 (2) Correlation (2) 2000DEN/DEN (2)83.6X = HX' = H(3)82.6345.6 (3) Correlation (3) 2002KRO/TUM (4)79.3331.8 Me Η (4) Correlation (4) 1995TUM/DEN (3) 80.4336.4 Me 336.8 Me (4) 80.51,5,7-trimethyltetralin 80.9 338.4 Correlation 2002KRO/TUM

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1,4-dihydronaphthalene	83.0	347.3	Reanal. of pyrolysis data	1997RUC/GER
1,2-dihydronaphthalene	(1) 86.0	359.8	(1) Reanal. of pyrolysis data	(1) 1997RUC/GER
H H	(2) 80.4	336.4	(2) Correlation	(2) 2002KRO/TUM
naphthalene				
$\Delta_{\rm f} {\rm H^o}({\rm R}) = 96.0 \pm 1.3 \ (401.7 \pm 5.4)$	(1) 112.2±1.3 (2) 113.4±5.2		(1) FT MS (2) Negative ion	(1) 2000REE/KAS (2) 2001LAR/SQU
	(3) 112.8±3.3	472.0±14.0	cycle (3) Negative ion spectroscopy	(3) 2001ERV/RAM
naphthalene				

$\Delta_{\rm f} H^{\rm o}({\rm R}) = 95.7 \pm 1.4$ (400.4±5.9)	(1) 111.9±1.4 (2) 115.4±4.9	468.2 ± 5.9 482.8±20.5	(1) FT MS (2) Negative ion cycle	(1) 2000REE/KAS (2) 2001LAR/SQU
	(3) 113.8±4.8	476.0±20	(3) Negative ion spectroscopy	(3) 2001ERV/RAM

1-methyl-naphthalene

 $\Delta_f H^o(1-naphthylmethyl) =$

(1) 84.3±1.5

352.7±6.3 (1) VLPP

(1) 1980MCM/TRE

60.4 (252.7)

(2) 85.1±1.5

356.1±**6.3** (2) Review

(2) 1982MCM/GOL

X = H

X' = H

(3)87.3

365.1

(3) Correlation

(3) 2000DEN/DEN

CN

Η

(4)81.3

340.2

(4) AOP

(4) 1988BOR/CHE(b)

Η

Me

(5)86.8

363.3

(5) Correlation

(5) 2002KRO/TUM

2-methyl-naphthalene

X = HY = H (1)85.6

358.3

(1) Correlation

(1) 2002KRO/TUM

Me

(1)87.1

364.6

SO₂Ph CN

Η

Η

(2)89

372.4 340.6 (2) AOP (3) AOP (2) 1988BOR/BAU

Η

Η

Η 3-Me

6-Me

(3)81.4(1)86.8

(1)87.3

363.1

365.2

(3) 1988BOR/CHE(b)

1-ethylnaphthalene

87.1

364.4

Correlation

2000DEN/DEN

4,5-methylene-phenathrene

81

338.9

AOP

1989BOR/HAR

CH -
§

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

(bo dissoc	The broken bonds (boldface = dissociated atom) $\Delta_{l}H^{o}(R)$, kcal/mol		BDEs (boldface = recommended data; references in parentheses)		
•	xJ/mol)	kcal/mol kJ/mol		(references in parentheses)	References
9,10-dihydro substituted	oanthracene,				
H X'					
	hydroanthracen-	(1) 78	326.4	(1) AOP	(1) 1988BOR/CHE
9-y1) = 62.4		(2) 78	326.4	(2) PAC	(2) 1989GRI/SIM
X = H, X'	= H	(3) 77	322.2	(3) Kinetics	(3) 1990MAL/MCM
		(4) 76.3	319.2	(4) VLPP	(4) 1991STE/BRO
		(5) 83.0	347.3	(5) Reanal. of pyrolysis data	(5) 1997RUC/GER
Н	Ph	(6) 79	330.5	(6) AOP	(6) 1991BOR/CHE
		(5) 84.5	353.5		
Me	Me	(7) 77 (5) 81.5	322.2 341.0	(7) PAC	(7) 1989GRI/SIM
9,10-dihydro substituted	oanthracene,	84.9	355.2	Reanal. of pyrolysis data	1997RUC/GER
Ph Ph					
substituted	oanthracene,	83.3	348.5	Reanal. of pyrolysis data	1997RUC/GER
Me H H Me					

xanthece, substituted

(1) 74 (2) 75.5 (3) 75.2 (4) 80.7	309.6 315.9 314.6 337.6	(1) VLPP(2) AOP(3) AOP(4) Reanal. of pyrolysis dat	(1) 1991STE/BRO (2) 1991BOR/CHE (3) 1997ARN/FLO (4) 1997RUC/GER a
(4) 77.6	324.7		
(5) 69	288.7	(5) AOP	(5) 1992ZHA/BOR
(6) 82	343.1	(6) AOP	(6) 1988BOR/CHE
(5) 76 (3) 74.6 (7) 76.7	318.0 312.1 320.9	(7) AOP	(7) 1993ARN/FLO
(5) 75.6	316.3		
(5) 74.3 (7) 76.2	310.9 318.8		
(5) 76.8 (7) 76.4	321.3 319.7		
(5) 73.9 (7) 78.1	309.2 326.8		
(5) 78.3 (7) 78.1	327.6 326.8		
	(2) 75.5 (3) 75.2 (4) 80.7 (4) 77.6 (5) 69 (6) 82 (5) 76 (3) 74.6 (7) 76.7 (5) 75.6 (5) 74.3 (7) 76.2 (5) 76.8 (7) 76.4 (5) 73.9 (7) 78.1 (5) 78.3	(2) 75.5 315.9 (3) 75.2 314.6 (4) 80.7 337.6 (4) 77.6 324.7 (5) 69 288.7 (6) 82 343.1 (5) 76 318.0 (3) 74.6 312.1 (7) 76.7 320.9 (5) 75.6 316.3 (5) 74.3 310.9 (7) 76.2 318.8 (5) 76.8 321.3 (7) 76.4 319.7 (5) 73.9 309.2 (7) 78.1 326.8 (5) 78.3 327.6	(2) 75.5 315.9 (2) AOP (3) 75.2 314.6 (3) AOP (4) 80.7 337.6 (4) Reanal. of pyrolysis dat (4) 77.6 324.7 (5) 69 288.7 (5) AOP (6) 82 343.1 (6) AOP (5) 76 318.0 (7) AOP (3) 74.6 312.1 (7) 76.7 320.9 (5) 75.6 316.3 (5) 74.3 310.9 (7) 76.2 318.8 (5) 76.8 321.3 (7) 76.4 319.7 (5) 73.9 309.2 (7) 78.1 326.8 (5) 78.3 327.6

9,10-dihydroacridine, substituted

$X = NH$ NCH_3	80.0 80.0	334.8 334.8	Reanal. of pyrolysis data	1997RUC/GER
thioxanthece	74.6	312.1	AOP	1997ARN/FLO

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(boldface = 1 data; re	DEs recommende eferences entheses)	d Methods _ (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
10-hydroanthracen-9-one	80.2	335.6	Reanal. of pyrolysis data	1997RUC/GER	
fluorene, substituted					
H H H					
$\begin{split} \Delta_i H^o(9\text{-fluorenyl}) &= 71.7 \pm 2.0 \\ &(300.0 \pm 8.4) \end{split}$ $Y &= H$	(1) 80.1 (2) 82.2 (3) 81.2±2.4 (4) 82.0±2	335.1 343.9 339.7±10.0 343.1 ± 8.4	(1) VLPP(2) Electrochem.(3) ICR(4) Reanal. of pyrolysis data	(1) 1991STE/BRO(2) 1992PAR(3) 1997ROM/JAN(4) 1994RAK/VER	
	(5) 82.6	345.6	(5) Reanal. of pyrolysis data	(5) 1997RUC/GER	
2-PhSO ₂	(6) 80	334.7	(6) AOP	(6) 1992ZHA/BOR	
2-CN	(6) 80	334.7			
2-NO ₂	(6) 81	338.9			
2-MeO	(7) 80	334.7	(7) AOP	(7) 1994ZHA/BOR(b)	
$2-Me_2N$	(6) 80	334.7			
2-PhSO ₂	(8) 79.7	333.5	(8) AOP	(8) 1993ZHA/BOR	
2,7-Br ₂ -9-CO ₂ Me	(6) 76.5	320.1			
fluorene, substituted X H					
X = 9-CN	(1) 74.8	313.0	AOP	(1) 1991BOR/ZHA	

9-SO ₂ Ph	(1) 81.9	342.7	
9-PhS	(1) 74.6	312.1	
9-Me ₂ N	(1) 71.5	299.2	
$9-(2,4,6-Me_3C_6H_2)$	(2) 74.5	311.7	(2) 1991BOR/ZHA
9-PhCH ₂ (Me)N	(3) 72.5	303.3	(3) 1992ZHA/BOR
9-(iPr) ₂ N	(3) 73	305.4	
9-Me — Me	(3) 76	318.0	
9 – N—	(3) 68	284.5	
9 – N—	(3) 72	301.2	
9 - N-	(3) 72	301.2	
9 - N-	(3) 71	297.1	
9-Ph	(6) 74	309.6	
9-C ₆ F ₅	(4) 78.2	327.2	(4) 1993ZHA/BOR
9-mesityl	(6) 74.5	311.7	(5) 1994ZHA/BOR(b)
9-MeOCO	(6) 76	318.0	(6) 1994ZHA/BOR(c)
$9-c-C_4H_8N$	(6) 68	284.5	
$9-c-C_5H_{10}N$	(6) 72	301.2	
9-PhCH(Me)N	(6) 72.5	303.3	
9-CH(Me)(CH ₂) ₂ C(Me)NH	(6) 72	301.2	
9-C(Me) ₂ (CH ₂) ₂ C(Me) ₂ N	(6) 71	297.1	
9-Me $\Delta_{c}H^{o}(R) = 64.1\pm2$	(7) 75.4	315.5	(7) 1994BOR/ZHA
	$(8) 79.7 \pm 2$	333.5	(8) 1998BRO/BEC

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
9-Et	(7) 76.2	318.8		
9-n-Pr	(7) 76.1	318.4		
9-iPr	(7) 77.3	323.4		
9-sBu	(7) 75.1	314.2		
9-tBu	(7) 79.9	334.3		
9 -neo C_5H_{11}	(7) 73.6	307.9		
9-PhC(Me) ₂ CH ₂	(7) 73.8	308.8		
9-PhCH ₂	(7) 75.9	317.6		
9-MeS	(7) 74.6	312.1		
9-EtS	(7) 74.3	310.9		
9-iPrS	(7) 74.3	310.9		
9-tBuS	(7) 74.8	313.0		
9-PhS	(7) 74.8	313.0		
9-MeSO ₂	(7) 82.1	343.5		
9-EtSO ₂	(7) 81.4	340.6		
9-iPrSO ₂	(7) 81.1	339.3		
9-PhSO ₂	(7) 79.7	333.5		
9-(p-BrPh)SO ₂	(7) 82	343.1		
9-MeO	(7) 73.0	305.4		
9-EtO	(7) 72.9	305.0		
9-iPrO	(7) 72.7	304.2		
9-tBuO	(7) 74.0	309.6		
9-PhO	(7) 74.3	310.9		
9-Me ₃ SiCH ₂	(9) 76.3	319.2		(9) 1996ZHA/BOF
9-Me ₃ N ⁺ , Cl ⁻	(5) 84.6	354.0		
9-PyN+, Br-	(4) 80.9	338.5		

(5) 81.6	341.4		
(10) 83.0	347.3		(10) 2000CHE/LI
(10) 82.6	345.6		
(10) 77.6	324.7		
(10) 78.7	329.3		
(10) 77.3	323.4		
(4) 85.7	358.6		
79.3	332.0	Correlation	2002KRO/TUM
83.7	350.0	Correlation	2000DEN/DEN
78.8	329.7	Correlation	1995STUM/DEN
75.8	317.0	Correlation	
	(10) 83.0 (10) 82.6 (10) 77.6 (10) 78.7 (10) 77.3 (4) 85.7 79.3	(10) 83.0 347.3 (10) 82.6 345.6 (10) 77.6 324.7 (10) 78.7 329.3 (10) 77.3 323.4 (4) 85.7 358.6 79.3 332.0	(10) 83.0 347.3 (10) 82.6 345.6 (10) 77.6 324.7 (10) 78.7 329.3 (10) 77.3 323.4 (4) 85.7 358.6 79.3 332.0 Correlation 78.8 329.7 Correlation

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ,H°(R), kcal/mol	BD (boldface = re data; ref in parer	ecommended ferences	Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
9-anthracenylmethane, substituted				
H-XCH-X				
Y				
Y = H, $X = H\Delta_t H^o(9-anthracenylmethyl) =$	(1) 81.0	338.9	(1) Analysis of exp.	(1) 1980MCM/TRE
80.7 (337.6)	(2) 81.8 (3) 81.5 (4) 84.1 ± 0.5	342.3 341.0 351.9 ± 2.1	(2) Review(3) AOP(4) Electrochem.	(2) 1982MCM/GOL (3) 1991BOR/CHE (4) 1991PAR/HAN
CN	(5) 78.7 (6) 78.9	329.3 330.1	(5) AOP (6) AOP	(5) 1991BAU/FAS(b) (6) 1993ZHA/BOR(b)
MeO	(5) 77.4 (6) 77.5	323.8 324.3		
PhO	(5) 78.6 (6) 79.9	328.7 334.3		
PhCO	(6) 84.2	352.3		
NO ₂	(6) 86.1	360.2		
PhS	(6) 81.0	338.9		
PhSO ₂	(6) 84.7	354.4		
Y = CN, X = MeO	(5) 73.7	308.4		
PhO	(5) 72.9	305.0		
anthracene, substituted $H = \frac{\xi}{\xi} - CH_2$				
Y = Cl	(1) 80.8	338.1	(1) AOP	(1) 1993ZHA/BOR(b)
Me	(1) 81.8 (2) 78.1	342.3 326.7	(2) Correlation	(2) 2002KRO/TUM

MeO	(1) 81.4	340.6
Ph	(1) 81.8	342.3
СНО	(1) 80.4	336.4
PhCO	(1) 82.3	344.3
CN	(1) 80	334.7
NO_2	(1) 82.6	345.6
PhS	(1) 80.8	338.1

9-phenanthrenylmethane

 $\Delta_f H^o(9$ -phenanthrenylmethyl) 85.1 ± 1.5 356.1 ± 6.5 **VLPP** 1982MCM/GOL = 74.4(311.3)9,10-dihydrophenanthrene (1)89.6374.9 (1) Reanal. of (1) 1997RUC/GER pyrolysis data 343.7 (2) 2000DEN/DEN (2)82.1(2) Correlation (3) Correlation (3) 2002KRO/TUM (3)81.6341.6 phenalene $(1) 64 \pm 3$ 267.8 ± 12.6 (1) AOP (1) 1990BAU/GOS (2)74.0309.6 (2) 1997RUC/GER (2) Reanal. of pyrolysis data

276.1±12.6

318.0

(1) AOP

(2) Reanal. of

pyrolysis data

 $(1) 66 \pm 3$

(2)76.0

(continued)

(1) 1990BAU/GOS

(2) 1997RUC/GER

benzanthrene

Table 3.4 (continued) C-H BDEs in Aromatic Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
triphenylene radical cation	86.0±4.8	359.9±20.0	PIMS	1997LIN/LIF
1,2-benzofluorence	78.7	329.3	AOP	1991BOR/CHE
2,3-benzofluorence	(1) 78.8 (2) 78.4	329.7 328.0	(1) VLPP (2) AOP	(1) 1991STE/BRO (2) 1991BOR/CHE
methylbenzo(b)phenanthrene	88.6	370.8	Correlation	2002KRO/TUM
6-methylchrysene	85.7	358.7	Correlation	2002KRO/TUM

1,2-dihydropyrene	81.6	341.4	Correlation	2000DEN/DEN
1,2,3,6-tetrahydropyrene	81.6	341.4	Correlation	2002KRO/TUM
(E)-9,10-diphenyl-9, 10-dihydroanthracene	81.5	341.0	Reanal. of pyrolysis data	1997RUC/GER
(Z)-9,10-diphenyl-9, 10-dihydroanthracene	79.4	332.2	Reanal. of pyrolysis data	1997RUC/GER
dodecahedrane H	92±3	384.9±12.6	FT-MS	2000BRO/KAS(a)

3.5 Halogenated hydrocarbons

Table 3.5 C-H BDEs in Halogenated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BD (boldface = re data; ref in paren	ecommended erences	Methods (references in	
$\Delta_{\rm f}$ (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
trifluoromethane CF_3 - H Δ_i H°(R) = -111.4±0.9 (-466.1±3.8)	(1) 106.7±1 (2) 107 (3) 107.4 (4) 106.3±1.3 (5) 108.9	446.4±4.2 447.7 449.4 444.8±5.4 455.6	(1) Photolysis(2) Review(3) Derived(4) Recommend.(5) SPST	(1) 1972BAS/WHI (2) 1982MCM/GOL (3) 1997ASH/RUS (4) 1998CHA (5) 1999TSA
difluoromethane CHF ₂ – \mathbf{H} $\Delta_i \mathbf{H}^{\circ}(\mathbf{R}) = -57.1 \pm 1$ (-238.9 ± 4.2)	(1) 97.4±1.3 (2) 101±2 (3) 103.2±1 (4) 101±2 (5) 101.8±1.1	407.5±5.4 422.6±8.4 431.8±4.2 422.6±8.4 425.8±4.6	(1) Kinetics(2) Elimination(3) Iodination(4) Kinetics(5) Review	(1) 1969PRI/PER (2) 1971KER/TIM (3) 1983PIC/ROD (4) 1983MAR/PAR (5) 2001LAZ/PRO
fluoromethane $CH_2F-\mathbf{H}$ $\Delta_rH^o(R)=-7.6\pm1$ (-31.8 ± 4.2)	(1) 101.3±1 (2) 100±2	423.8 ± 4.2 418.4±8.4	(1) Iodination (2) Kinetics	(1) 1983PIC/ROD (2) 1983MAR/PAR
chlorodifluoromethane $CClF_2$ – \mathbf{H} $\Delta_f H^o(R) = -66.7 \pm 2$ (-279.1 ± 8.4)	(1) 101.6±1 (2) 100.7 ±2	425.1±4.2 421.7±8.4	(1) Review (2) Photobromin.	(1) 1982MCM/GOL (2) 1992MIY/TSC
dichlorofluoromethane CCl_2F – H $\Delta_t H^o(R) = -21.3 \pm 2$ (-89.0 ± 8.4)	(1) 98.9±1.2 (2) 98.2±2 (3) 97.7	413.8±5.0 410.9±8.4 408.8	(1) Bromination (2) Photobromin. (3) Review	(1) 1987TSC/PAD (2) 1992MIY/TSC (3) 1997POU/PAU
chlorofluoromethane CHCIF–H $\Delta_{_{\!f}}H^{\circ}(R) = -14.5 \pm 2.4 \\ (-60.7 \pm 10.0)$	(1) 100.8±2.4 (2) 99.4	421.7 ± 10.0 415.9	(1) Bromination (2) Review	(1) 1987TSC/PAD (2) 1997POU/PAU

trichloromethane	(1) 95.8±1	400.8±4.2	(1) Bromination	(1) 1973MEN/GOL
CCl ₃ -H	(2) 95.2	398.3	(2) Review	(2) 1983WEI/BEN
$\Delta_{t}H^{o}(R) = 17.0\pm0.6$ (71.1±2.5)	$(3) 94.9 \pm 2$	397.1±8.4	(3) Electron impact	(3) 1988HOL/LOS
	(4) 93.8 ± 0.6	392.5±2.5	(4) PIMS detection	(4) 1991HUD/JON
dichloromethane	(1) 99.0±2	414.2±8.4	(1) Toluene	(1) 1958PRI/TRO
CHCl ₂ - H			carrier tech.	
$\Delta_{\rm f} H^{\rm o}({\rm R}) = 22.3 \pm 1.0$	$(2) 98.4 \pm 1.2$	411.7 ± 5.0	(2) Bromination	(2) 1987TSC/PAD
(93.3±4.2)	(3) 97.2±2	406.7±8.4	(3) Electron impact	(3) 1988HOL/LOS
	(4) 96.2 ± 0.6	402.5±2.7	(4) PIMS detection	(4) 1996SEE
	(5) 97.3±1.0	407.1±4.2	(5) Review	(5) 1997POU/PAU
chloromethane	(1) 100.8±1	421.7±4.2	(1) Bromination	(1) 1987TSC/PAD
CH_2CI-H $\Delta_t H^{\circ}(R) = 28.0 \pm 0.7$	(2) 99.4±2	415.9±8.4	(2) Electron impact	(2) 1988HOL/LOS
(117.2±2.9)	(3) 100.1 ± 0.6	419.0±2.3	(3) PIMS detection	(3) 1996SEE
	(4) 100±2 (5) 99.9	418.4±8.4 418	(4) Review (5) FT-ICR	(4) 1997POU/PAU (5) 2000BOR/ING
bromochloromethane CHBrCl–H $\Delta_t H^o(R) = 36.8\pm3$ (154.0±13)	93.9 91.3	393 382.0	FT-ICR	2000BOR/ING
tribromomethane CBr_3 – H $\Delta_f H^o(R) = 49.0\pm 2 \qquad (205.0\pm 8.4)$	(1) 96.0±1.6 (2) 95.4±2	401.7±6.7 399.2±8.4	(1) Bromination (2) Electron impact	(1) 1971KIN/GOL (2) 1988HOL/LOS
dibromomethane	(1) 103.7±2	433.9±8.4	(1) Toluene	(1) 1958PRI/TRO
$\mathrm{CHBr}_2\!\!-\!\!\mathbf{H}$	(2) 99. 7±1.8	417.1±7.5		(2) 1987TSC/PAD
	(2) 99. 7± 1.8 (3) 97.9±2	417.1±7.5 409.6±8.4	(2) Bromination (3) Electron impact	(2) 1987TSC/PAD (3) 1988HOL/LOS

Table 3.5 (continued) C-H BDEs in Halogenated Hydrocarbons

The broken bonds $ (\textbf{boldface} = \\ \text{dissociated atom}) \\ \Delta_i H^o(R), \text{kcal/mol} \\ (\text{kJ/mol}) $	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
bromomethane $CH_2Br-\textbf{H}$ $\Delta_t H^o(R) = 40.4\pm 1 \end{(169.0} \pm 4.2)$	(1) 102.0±2 (2) 101.6±1 (3) 100.8±2	426.8±8.4 425.1±4.2 421.7±8.4	(1) Toluene carrier tech.(2) Bromination(3) Electron impact	(1) 1958PRI/TRO(2) 1987TSC/PAD(3) 1988HOL/LOS
diiodomethane CHI ₂ – \mathbf{H} $\Delta_{\rm f}$ H°(R) = 79.8±2.2 (333.9±9.2)	103±2	431.0±8.4	Review	1970ONE/BEN
iodomethane $CH_2I\mathbf{H}$ $\Delta_{_{\!f}}H^{\circ}(R)=54.9\pm2 \end{magnetical}$ (229.7 ± 8.4)	(1) 103±2 (2) 103.5±2 (3) 103.2±0.7	431.0±8.4 433.0±8.4 431.6±2.8	(1) Review(2) Electron impact(3) Kinetics	(1) 1970ONE/BEN (2) 1988HOL/LOS (3) 2002SEE
pentafluoroethane CF_3CF_2 – \mathbf{H} $\Delta_t \mathbf{H}^{\circ}(\mathbf{R}) = -213.4 \pm 1$ (-892.9 ± 4.2)	(1) 103.1±1.5 (2) 102.7 ± 0.5		(1) Kinetics (2) Photolysis	(1) 1972BAS/WHI (2) 1981EVA/WHI
1,1,2,2-tetrafluoroethane CHF ₂ CF ₂ - H $\Delta_{\rm f}$ H°(R) = -158.9±4.5 (-664.8±18.8)	103.0±4.5	431.0±18.8	Review	1996ZAR/WES
1,2,2-trifluoroethane CH_2FCF_2 – H $\Delta_fH^{\circ}(R) = -107.5 \pm 3.5$ (-449.8 ± 14.6)	103.5±3.5	433.0±14.6	Review	1996ZAR/WES

1,2,2-trifluoroethane CHF ₂ CFH -H Δ_t H°(R) = -109 ± 3.5 (-456.1 ± 14.6)	102.0±3.5	426.8±14.6	Review	1996ZAR/WES
1,1,1-trifluoroethane CF_3CH_2 – \mathbf{H} $\Delta_i \mathbf{H}^{\circ}(\mathbf{R}) = -123.6 \pm 2$ (-517.1 ± 8.4)	106.7±1.1	446.4±4.5	Kinetics	1974WU/ROD
1,1-difluoroethane CH_3CF_2 – \mathbf{H} $\Delta_t H^{\circ}(R) = -72.3 \pm 2$ (-302.5 ± 8.4)	99.5±1	416.3±4.2	Iodination	1977PIC/ROD
1,2-difluoroethane $CH_2FCHF-H$ $\Delta_iH^\circ(R) = -57.0\pm 3$ (-238.5 ± 12.6)	98.8±3	413.4±12.6	UV-flash photolysis	1983MAR/PAR
1,1-difluoroethane $CHF_2CH_2-\mathbf{H}$ $\Delta_t H^{\circ}(R) = -68.3\pm3.5$ (-285.8 ± 14.6)	103.5±3.5	433.0±14.6	Review	1996ZAR/WES
fluoroethane CH_2FCH_2 – \mathbf{H} $\Delta_iH^\circ(R)=-14.2\pm2$ (-59.4 ± 8.4)	(1) 103.6 ±2 (2) 100.8±2	433.5±8.4 421.7±8.4	(1) Review (2) Photobromin.	(1) 1996ZAR/WES (2) 1996MIY/OZA
fluoroethane CH ₃ CHF- H Δ_i H°(R) = -16.8±2 (-70.3±8.4)	(1) 97.3±2 (2) 98.2±2	407.1±8.4 410.9±8.4	(1) Bromination (2) Photobromin.	(1) 1987TSC/SAL(b) (2) 1996MIY/OZA
1-chloro-2,2,2-trifluoro-ethane CF ₃ CHCl– H	101.8±1.5	425.9±6.3	Review	1982MCM/GOL
				(continued)

Table 3.5 (continued) C-H BDEs in Halogenated Hydrocarbons

The broken bonds (boldface = dissociated atom) $\Delta_{l}H^{o}(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
1-bromo-1-chloro-2,2, 2-trifluoroethane CF_3CClBr – H $\Delta_tH^o(R) = -120.5\pm 2$ (-504.2 ± 8.4)	96.6±1.5	404.2±6.3	Review	1982MCM/GOL
2-chloro-1,2,2-trifluoro-ethane $CCIF_2CHF$ - \mathbf{H} $\Delta_tH^o(R) = -107.7\pm3$ (-450.6 ± 12.6)	98.5±0.5	412.1±2.1	Pyrolysis	1998SKO/DYM
pentachloroethane CCl_3CCl_2 – H Δ_t H°(R) = 8.4±1.3 (35.1±5.4)	(1) 95.8 (2) 95±2	400.8 397.5±8.4	(1) Photochlorin. (2) Shock tube	(1) 1969FRA/HUY (2) 1976LEW
1,1,2,2-tetrachloroethane $CHCl_2CCl_2$ - H $\Delta_iH^o(R) = 5.6 \pm 2$ (23.4 ± 8.4)	94±2	393.3±8.4	Shock tube	1976LEW
1,1-dichloroethane CH ₃ CCl ₂ - H	(1) 93.4±0.4	390.6±1.5	(1) PIMS detection	(1) 1996SEE
$\Delta_{\rm f} H^{\rm o}(R) = 10.2 \pm 0.4$ (42.7±1.7)	(2) 95.1±1.2	397.9±5.0	(2) Kinetics	(2) 1999MIY/TSC
chloroethane CH_3CHCl – \mathbf{H} $\Delta_t H^{\circ}(R) = 18.3 \pm 0.4$	(1) 95.7 (2) 98.2±2	400.4 410.9±8.4	(1) Bromination (2) Electron impact	(1) 1987TSC/SAL(b) (2) 1988HOL/LOS
(76.6±1.5)	(3) 96.5±1 (4) 97.2 ± 0.4	403.8±4.2 406.6±1.5		(3) 1990MIY/TSC (4) 1996SEE

chloroethane CH ₂ ClCH ₂ - H	(1) 101.7±2	425.5±8.4	(1) Electron impact	(1) 1988HOL/LOS
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 22.2 \pm 0.6$ (93.0±2.4)	(2) 100.7±1 (3) 101.1 ± 0.6	421.3±4.2 423.1±2.4	(2) Photobromin.	(2) 1990MIY/TSC (3) 1998SEE
1,1-dibromoethane CH_3CBr_2 – \mathbf{H} $\Delta_t H^{\circ}(R) = 33.5 \pm 1.3$ (140.2 ± 5.4)	94.9±1.2	397.1±5.0	Kinetics	1999MIY/TSC
bromoethane CH_2BrCH_2 – H $\Delta_t H^{\circ}(R) = 32.3$ (135.1)	99.2±2	415.1±8.4	Electron impact	1988HOL/LOS
bromoethane $CH_3CHBr-H$ $\Delta_iH^o(R) = 30.3$	(1) 96.4 (2) 94.2±2	403.3 394.1±8.6	(1) Bromination (2) Electron impact	(1) 1987TSC/SAL(b) (2) 1988HOL/LOS
(126.8)	(3) 97.2 ± 1	406.7±4.2	(3) Photobromin.	(3) 1990MIY/TSC
trifluoroethylene CF ₂ =CF- H	111.0±2.0	464.4±8.4	Correlation	1981STE/ROW
1,1-difluoroethylene CF_2 = CH - H $\Delta_i H^{\circ}(R) = -22.2 \pm 2$ (-92.9 ± 8.4)	110±2	460.2±8.4	Correlation	1981STE/ROW
(Z)-1,2-difluoroethylene CHF=CF- \mathbf{H} $\Delta_{t}\mathbf{H}^{\circ}(\mathbf{R})=-12.1\pm2$ (-50.6 ±8.4)	110±2	460.2±8.4	Correlation	1981STE/ROW
1,1-difluoro-2-chloroethylene CF ₂ =CCl–H	109±2	456.1±8.4	Correlation	1981STE/ROW

Table 3.5 (continued) C-H BDEs in Halogenated Hydrocarbons

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
(E)-1,2-chloro-2- fluoro-ethylene CFCl=Cl-H	108±2	451.9±8.4	Correlation	1981STE/ROW
(Z)-1,2-dichloroethylene CHCl = CCl-H $\Delta_t H^o(R) = 56.1\pm 2$ (234.7±8.4)	107±2	447.7±8.4	Correlation	1981STE/ROW
chloroethylene $CH_2 = CCl-H$ $\Delta_t H^o(R) > 60.4$ (>252.7)	>103.6	>433.5	PIMS detection	1989RUS/SEN
1,1,1,2,2,3,3-heptafluoro- propane CF ₃ CF ₂ CF ₂ – H	(1) 104±2 (2) 103.3	435.1±8.4 432.2	(1) Review (2) Bromination	(1) 1982MCM/GOL (2) 1983EVA/WEE
1,1,1,2,3,3,3-heptafluoro- propane CF ₃ CF H CF ₃	103.5±0.6	433.0±2.5	Kinetics	1983EVA/WEE
1-chloropropane $CH_3CH_2CHCl-H$ $\Delta_iH^o(R) = 13.5\pm0.8$ (56.6 ± 3.3)	97.3±0.8	407.0±3.5	Derived	1998SEE
1-chloropropane CH ₂ ClC H ₂ CH ₃	97.8±0.9	409.3±3.9	Derived	1998SEE
1-fluoropropene CH ₂ = CH-CHF- H	88.6±1.1	370.7±4.6	VLPP	1973ALF/GOL

1-chloropropene CH ₂ = CH-CHCl- H	88.6±1.1	370.7±4.6	VLPP	1973ALF/GOL
1-bromopropene $CH_2 = CH-CHBr-H$ $\Delta_t H^o(R) = 48.1\pm1.1$ (201.3 ± 4.6)	89.4±1.1	374.0±4.6	VLPP	1973ALF/GOL
pentafluorobenzene $C_6F_5\text{-}\mathbf{H}$ $\Delta_f H^o(R) = -130.9 \pm 2$ (-547.7 ± 8.4)	113.9	476.6	Toluene carrier tech.	1974KRE/PRI
9-pentafluorophenyl fluorine 9- $C_6F_5Fl\mathbf{H}$	78.2	327.2	AOP	1993BOR/ZHA(b)
tri(2,3,5,6-tetrafluoro- phenyl)phenyl methane (p–HC ₆ F ₄) ₃ CH	82.3	344.3	AOP	1993BOR/ZHA(b)

3.6 Organic compounds containing heteroatoms

3.6.1 C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

Table 3.6.1 C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
methanol H – CH_2OH $\Delta_i H^o(R) = -4.08 \pm 0.8$ (-17.07 ± 3.35)	(1) 95.9±1.5 (2) 96.0 (3) 96.2±0.2 (4) 96.06 ± 0.15 (5) 96.2±0.3	401.2±6.3 401.7 402.5±0.8 401.92±0.63 402.5±1.3	(1) Iodination(2) SPST(3) PIMS detect.(4) Recommend.(5) Resonance fluorescence	(1) 1973ONE/BEN(2) 1981TSA(3) 1993RUS/BER(4) 1994BER/ELL(5) 1996DOB/BER
ethanol CH ₃ CH ₂ OH	(1) 93±1.0 (2) 94.6	389.1±4.2 395.8	(1) Iodination (2) SPST	(1) 1973ALF/GOL (2) 1981TSA

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
$\Delta_{f}H^{\circ}(R) = -13.3\pm0.8$ (-55.6 ± 3.5)	(3) 94.8 (4) 98±2 (5) 95.9±1	396.6 410.0±8.4 401.2±4.2	(3) Electron impact(4) PIMS detect.(5) Review	(3) 1991HOL/LOS (4) 1994RUS/BER (5) 1999ATK/BAU
ethanol CH_3CH_2OH $\Delta_fH^\circ(R) = -7.0$ (-29.3)	101.3	423.8	MS	1990TAK
propanol $CH_3CH_2CH_2OH$ $\Delta_tH^\circ(R) = -19.4\pm1$ (-81 ± 8)	(1) 93.7 (2) 93.2	392.0 389.9	(1) SPST (2) Correlation	(1) 1999TSA (2) 2000DEN/DEN
propanol $CH_3CH_2CH_2OH$ $\Delta_tH^\circ(R) = -18.8\pm 2$ (-78.7 ± 8.4)	94.3±2	394.6±8.4	AE	1992HOL
propanol $CH_3CH_2CH_2OH$ $\Delta_t H^{\circ}(R) = -16.0\pm 2$ (-66.9 ± 8.4)	97.1±2	406.3±8.4	AE	1992HOL
propan-2-ol $(CH_3)_2CHOH$ $\Delta_tH^{\circ}(R) = -26.3\pm 1$ (-110.0 ± 4.2)	(1) 91±1 (2) 89.3±1.7 (3) 91.7±2 (4) 93.0	380.7±4.2 373.6±7.1 383.7±8.4 389.1	(1) Review (2) PAC (3) AE (4) Correlation	(1) 1982MCM/GOL (2) 1989KAM/GRI (3) 1992HOL (4) 2000DEN/DEN
propan-2-ol $(CH_{3})_{2}CHOH$ $\Delta_{f}H^{o}(R) = -23.0\pm1$ (-96.2 ± 4.2)	94.3±2	394.6±8.4	AE	1992HOL

allyl alcohol CH_2 = $CHCH_2OH$ $\Delta_tH^o(R) = 0\pm 2$ (0 ± 8.4)	(1) 81.6±1.8 (2) 80.1 (3) 85.2	341.4±7.5 355.1 356.5	(1) Iodination(2) PAC(3) Correlation	(1) 1973ALF/GOL (2) 1992ARN/CAL (3) 2000DEN/DEN
2-methylpropan-2-ol $(CH_3)_3COH$ $\Delta_fH^o(R) = -26.8\pm 2$ (-112.1 ± 8.4)	(1) 100.0±2.0 (2) 99.1 (3) 100.0	418.4±8.4 414.6 418.6	(1) Review (2) APC (3) Correlation	(1) 1982MCM/GOL (2) 1989KAM/GRI (3) 2000DEN/DEN
penta-1,4-dien-3-ol $(CH_2=CH)_2CHOH$ $\Delta_tH^o(R) = 22.1\pm 2$ (92.5 ± 8.4)	89	372.4	PAC	1991CLA/CUL
cyclohexanol OH H	92.4	386.7	Correlation	2000DEN/DEN
benzyl alcohol $C_6H_5CH_2OH$	87.5	366.3	Correlation	2000DEN/DEN
1-phenylethanol PhMeC(OH)- H	88.3	369.4	Correlation	2000DEN/DEN
diphenylmethn-1-ol Ph ₂ CHOH $\Delta_t H^o(R) = 36.4 \pm 1.5$ (152.3 ± 6.3)	75.4±1.5	315.5±6.3	PAC	1992ARN/CAL
ethane-1,2-diol $(CH_2OH)_2$ $\Delta_f H^{\circ}(R) = -52.6\pm 2$ (-220.1 ± 8.4)	(1) 89.6±2.2 (2) 92.1 (3) 95.6	374.9±9.2 385.3 400.0	(1) PAC (2) AE (3) Correlation	(1) 1989KAM/GRI (2) 1992HOL (3) 2000DEN/DEN

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
Δ_{f} (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1,4-butanediol HOCH ₂ (CH ₂) ₂ (OH)CH– H	95.4	399.2	Correlation	2000DEN/DEN
dimethyl ether CH_3OCH_3 $\Delta_fH^o(R)=0\pm1 \qquad (0\pm4.2)$	(1) 95.5 (2) 93±1 (3) 96.1 (4) 95.3	399.6 389.1 402.1 398.7	(1) Photodissocn.(2) Review(3) Review(4) Correlation	(1) 1967LOU/LAI (2) 1969GOL/BEN (3) 1999ATK/BAU (4) 2000DEN/DEN
difluoromethyl trifluoromethyl ether $\mathrm{CHF_2OCF_3}$	106±1	443.5±4.2	Kinetics	1995HSU/DEM
bis(difluoromethyl) ether CHF ₂ OCHF ₂	104±1	435.1±4.2	Kinetics	1995HSU/DEM
methyl trifluoromethyl ether CH_3OCF_3	102±1	426.8±4.2	Kinetics	1995HSU/DEM
ethyl methyl ether $CH_3OCH_2CH_3$ $\Delta_tH^\circ(R) = -10.8\pm2$ (-45.2 ± 8.4)	93.0	389.1	AE	1991HOL/LOS
diethyl ether $CH_3CH_2OCH_2CH_3$ $\Delta_f H^o(R) = -19.4 \pm 1$ (-81.2 ± 4.2)	(1) 91.7±0.4 (2) 93 (3) 94.8	383.7±1.7 389.1 396.5	(1) VLPP (2) PAC (3) Correlation	(1) 1984KON/BEN (2) 1986BUR/MAJ (3) 2000DEN/DEN
diisopropyl ether (CH ₃) ₂ CHOCH(CH ₃) ₂	(1) 93.9 (2) 90.4	392.9 378.2	(1) Reanal. of pyrolysis data (2) Correlation	(1) 1998BRO/BEC (2) 2000DEN/DEN

ethyl tert-butyl ether CH ₃ CH ₂ Ot-C(CH ₃) ₃	96.9	405.4	Reanal. of pyrolysis data	1998BRO/BEC
dibenzyl ether PhCH ₂ OCH ₂ Ph	84.8	354.6	Correlation	2000DEN/DEN
cyclohexyl methyl ether cyclo-C ₆ H ₁₁ –OMe	89.9	376.3	Correlation	2000DEN/DEN
dimethoxymethane $(MeO)_2CH_2$	92.9	388.7	Correlation	2000DEN/DEN
1,1-dimethoxyethane (MeO) ₂ CmeH	88.2	368.9	Correlation	2000DEN/DEN
Oxirane O_{H}^{H} $\Delta_{h}H^{\circ}(R) = 35.8\pm1.5$	100.5±1.5	420.5±6.5	Pyrolysis	1984BAL/KEE
(149.8±6.3)				
tetrahydrofuran O H H				
$\Delta_{\rm f} H^{\rm o}(R) = -4.3 \pm 1.5$ (-18.0±6.3)	(1) 92±1 (2) 92.1 ± 1.6 (3) 92	384.9±4.2 385.3±6.7 384.9	(1) Kinetics(2) PAC(3) PAC	(1) 1982MCM/GOL (2) 1997LAA/MUL (3) 2000KRA/CIR
formaldehyde HCO-H $\Delta_{_{\rm f}}H^{\circ}(R) = 9.96 \pm 0.20$ (41.67 ± 0.84)	(1) 87.0±1.0 (2) 88.8±0.5 (3) 88.0 (4) 88.04±0.16	364.0±4.2 371.5±2.1 368.2 368.40±0.67	(1) Iodination(2) Electron impact(3) Photolysis(4) Recommend.	(1) 1982MCM/GOL (2) 1985TRA (3) 1987CHU/FOL (4) 1994BER/ELL

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) $\Delta_i H^{\circ}(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
formyl fluoride FCO-H	101.1	423.0	Derived from $\Delta_f H^o$ in ref.	1998СНА
ethanal or acetadehyde CH ₃ CO–H $\Delta_{\rm f}$ H°(R) = -2.4±0.2	(1) 87.1±1.3 (2) 87.3±2.0	364.4±5.4 365.3±8.4	(1) Iodination (2) Electron impact	(1) 1973ONE/BEN (2) 1984HOL/LOS
(-10.0±0.8)	(3) 89.3±0.5 (4) 89.4 ± 0.3 (5) 88.7	373.6±2.1 374.0±1.3 371.1	(3) PIMS detect.(4) Recommend.(5) SPST	(3) 1992NII/GUT (4) 1994BER/ELL (5) 1999TSA
trifluoroacetadehyde CF ₃ CO–H	91±2	380.7±8.4	Bromination	1970AMP/WHI
propanal C_2H_5CO-H $\Delta_tH^{\circ}(R) = -7.7\pm1$ (-32.3 ± 4.2)	(1) 87.4±1.0 (2) 89.5 (3) 88.7	365.7±4.2 374.5 371.1	(1) Kinetics(2) Electrochem.(3) Derived	(1) 1973WAT/THO (2) 1995LUN/DAA (3) 2000ATK/BAU
propenal CH_2 = $CHCO$ - H $\Delta_t H^{\circ}(R) = 15.3 \pm 2$ (64.0 ± 8.4)	(1) 87±1 (2) 89.1	364.0±4.2 372.8	(1) Iodination (2) Electrochem.	(1) 1973ALF/GOL (2) 1995LUN/DAA
furfurol O C(O) H	90.5	378.7	Correlation	2000DEN/DEN
benzaldehyde C_6H_5CO – H $\Delta_tH^\circ(R) = 27.8\pm2.6$ (116.3 ± 10.9)	(1) 86.9±1.0 (2) 88.7 ± 2.6 (3) 88.9	363.6±4.2 371.1±10.9 372.0	(1) Iodination(2) PAC(3) Electrochem.	(1) 1982MCM/GOL (2) 1989SIM/GRI (3) 1995LUN/DAA

ketene H– CH = C = $O\Delta_f H^o(R) = 41.9 \pm 2(175.3 \pm 8.4)$	105.3±2.1	440.6±8.8	Recommend.	1994BER/ELL
acetone CH_3COCH_3 $\Delta_f H^o(R) = -8.1 \pm 0.7$ (-33.9 ± 3)	(1) 98.3±1.8 (2) 92±2 (3) 94 (4) 100.9 (5) 95.9 ± 0.7	411.3±7.5 384.9±8.4 393.3 422.2 401.2 ± 2.9	 (1) Bromination (2) AE (3) AOP (4) SPST (5) Derived from Δ_fH°(R) in ref. 	(1) 1970KIN/GOL (2) 1984HOL/LOS(b) (3) 1990BOR/HAR (4) 1999TSA (5) 2001BOU/CHA
ethyl methyl ketone MeCOCH ₂ Me $\Delta_{\rm f} H^{\rm o}(R) = -16.8 \pm 1.7 \\ (-70.3 \pm 7.1)$	(1) 92.3±1.7 (2) 94.0	386.2±7.1 393.3	(1) Iodination (2) Correlation	(1) 1970SOL/GOL (2) 2000DEN/DEN
diethyl ketone EtCOCH ₂ Me $\Delta_{\rm f} H^{\rm o}(R) = -25.7 \pm 5 \\ (-107.5 \pm 20.9)$	88	368.2	AOP	1990BOR/HAR
methyl tert-butyl ketone CH_3COtBu $\Delta_f H^{\circ}(R) = -27.6 \pm 3$ (-115.5 ± 12.6)	94	393.3	AOP	1990BOR/HAR
diiso-propyl ketone $Me_2CHCOCHMe_2$ $\Delta_f H^{\circ}(R) = -41.5 \pm 5$ (-173.6 ± 20.9)	(1) 85 (2) 93.6	355.6 391.5	(1) AOP (2) Correlation	(1) 1990BOR/HAR (2) 2000DEN/DEN
methyl phenyl ketone CH_3COPh $\Delta_f H^o(R) = 20.2 \pm 3 \end{math}$ (84.5 \pm 12.6)	(1) 93 (2) 90.7	389.1 379.6	(1) AOP (2) Correlation	(1) 1990BOR/ZHA (2) 2000DEN/DEN
methyl p- NO_2 -phenyl ketone $CH_3CO(p-NO_2-C_6H_4)$	89	372.0	AOP	1995ZHA/BOR

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
ethyl phenyl ketone $MeCH_2COPh$ $\Delta_tH^o(R) = 9.9\pm 5$ (41.4 ± 20.9)	(1) 88 (2) 89.4 (3) 92.9	368.2 374.2 388.7	(1) AOP (2) Correlation (3) Reanal. of pyrolysis data	(1) 1990BOR/HAR (2) 2000DEN/DEN (3) 1998BRO/BEC
benzyl methyl ketone PhCH ₂ COMe	82.3	344.3	AOP	1992BOR/JI
benzyl phenyl ketone PhCH ₂ COPh	82.5	345.2	AOP	1990BOR/HAR
dibenzyl ketone $PhCH_2COCH_2Ph$ $\Delta_iH^o(R) = 32.1\pm 3$ (134.3 ± 12.6)	(1) 83 (2) 87.1	347.3 364.5	(1) AOP (2) Correlation	(1) 1990BOR/HAR (2) 2000DEN/DEN
propylphenyl phenyl ketone PhCH ₂ CH ₂ COPh	88.5	370.3	AOP	1990BOR/HAR
iso-propyl phenyl ketone PhCOCHMe ₂	(1) 86 (2) 87.2 (3) 89.9	359.8 365.0 376.1	(1) AOP (2) Correlation (3) Reanal. of pyrolysis data	(1) 1990BOR/HAR (2) 2000DEN/DEN (3) 1998BRO/BEC
diphenylmethyl methyl ketone Ph ₂ CHCOCH ₃	82	343.1	AOP	1990BOR/HAR
diphenylmethyl phenyl ketone Ph ₂ CHCOPh	83	347.3	АОР	1990BOR/HAR

cyclopentanone,	substituted
-----------------	-------------

H X X					
$\Delta_{\rm f}$ H° (cyclopentanor -10±3 (-41.8±12.6) X = H, X' = H	•	(1) 88 (2) 94.8	368.2 396.5	(1) AOP (2) Correlation	(1) 1991BOR/GAL (2) 2000DEN/DEN
Me Me	((1) 89	372.4		
cyclohexanone H H O	Ģ	94.1	393.9	Correlation	2000DEN/DEN
formic acid H –C(O)OH Δ_t H°(R) = -46.5±0. (-194.6±2)	7 2.9) ((1) 98 (2) 93.2 (3) >89.5 (4) 96.6 (5) 97.4±0.7	410.0 389.9 >374.5 404.2 407.5±2.9	(1) Correlation (2) Electron impact (3) Review (4) Review (5) Gas-phase basicity	(1) 1973MCK/DUN (2) 1991HOL/LOS (3) 1994BER/ELL (4) 1994BER/ELL (5) 2000RUS/LIT
acetic ion CH ₃ C(O)O	((1) 91.9±1.7 (2) 96.1 (3) ~95	384.5±7.1 402.0 ~397.5	(1) APC (2) Derived (3) Review	(1) 1989KAM/GRI (2) 1994YU/RAU (3) 2002REE/KAS
acetic acid $CH_3C(O)OH$ $\Delta_iH^o(R) = -60.2\pm 2.$ $(-251.9\pm$	9 (12.0) ((1) 96.1 (2) 93.9±2.0 (3) 95.3±2.9 (4) 95.9 (5) 98.7±0.8	402.1 392.9±8.4 398.7 ±1 2.1 401.3 413.0±3.3	(1) Correlation (2) AE (3) CID (4) Correlation (5) Calorimetry	(1) 1984NON/WAL (2) 1991HOL/LOS (3) 1994WEN/SQU (4) 2000DEN/DEN (5) 2001LAG/DIO
chloroacetic acid ClCH ₂ C(O)OH		(1) 95.3 (2) 91.0±0.9	398.7 380.7±3.9	(1) Correlation (2) Combination	(1) 2000DEN/DEN (2) 2002LAG/DIO
propanoic acid CH ₃ C H ₂ C(O)OH	Ģ	95.3	398.8	Correlation	2000DEN/DEN

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
Δ_{f} (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1-methyl propanoic acid (CH ₃) ₂ CHC(O)OH	93.0	389.0	Correlation	2000DEN/DEN
cyclohexacarboxylic acid	93.0	389.0	Correlation	2000DEN/DEN
benzenacetic acid PhCH ₂ C(O)OH	87.9	367.8	Correlation	2000DEN/DEN
glycolic acid (OH)C H ₂ C(O)OH	92.6	387.5	Correlation	2000DEN/DEN
2,2-dimethyl-propanoic acid (CH ₃) ₃ CC(O)OH	99.2	415.1	Correlation	2000DEN/DEN
methyl formate $ \mathbf{H}\text{-C(O)OCH}_3 $ $ \Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{o}}(\mathrm{R}) = -40.5\pm2 $ $ (-169.5\pm8.4) $	(1) 92.7±1 (2) 95.4	387.9±4.2 399.2	(1) Kinetics (2) Electron impact	(1) 1969SOL/BEN (2) 1991HOL/LOS
acetic acid methyl ester CH ₃ C(O)OCH ₃	(1) 93.9	392.9	(1) Electron impact	(1) 1991HOL/LOS
$\Delta_{\rm f}$ H°(R) = -56.6±2 (-236.8±8.4)	(2) 97.1±2.5	406.3±10.5	(2) FT-ICR	(2) 2002KAR/JAN
acetic acid methyl ester CH ₃ C(O)OCH ₃	96.7	404.6	Correlation	2000DEN/DEN

acetic acid ethyl ester $CH_3C(O)OCH_2CH_3$ $\Delta_tH^o(R) = -62.2\pm3$ (-260.2 ± 12.6)	(1) 96 (2) 95.4	401.7 399.5	(1) AOP (2) Correlation	(1) 1995BOR/ZHA (2) 2000DEN/DEN
acetic acid isopropyl ester CH ₃ C(O)OCH(CH ₃) ₂	93.8	392.3	Correlation	2000DEN/DEN
acetic acid phenyl ester $CH_3C(O)OPh$ $\Delta_tH^o(R) = -16.7(-69.9)$	100.2±1.3	419.2±5.4	Iodination	1973ALF/GOL
oxalic acid dimethyl ester CH ₃ C(O)OC(O)OCH ₃	96.5	403.8	Correlation	2000DEN/DEN
acetic acid anhydride CH ₃ C(O)OC(O)CH ₃	97.0	406.0	Correlation	2000DEN/DEN
ethyl propanoate CH ₃ CH ₂ C(O)OEt	95.6	400.0	Reanal. of pyrolysis data	1998BRO/BEC
ethyl 2-phenylacetate PhCH ₂ C(O)OEt	(1) 84.0 (2) 88.6	351.5 370.7	(1) AOP (2) Reanal. of pyrolysis data	(1) 1994ZHA/BOR(e) (2) 1998BRO/BEC
2-methoxy-1-phenylethan-1- one PhCOCH ₂ OMe	81	338.9	AOP	1990BOR/HAR
2-ethoxy-1-phenylethan-1-one PhCOCH ₂ OEt	80.6	337.2	AOP	1994BOR/ZHA

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1-phenyl-2-phenoxyethan-1- one PhCOCH ₂ OPh	80.6	337.2	AOP	1994BOR/ZHA
pentane-2,4-dione CH ₂ (COMe) ₂	(1) 91.6 (2) 87.7	383.3 366.9	(1) AOP (2) Reanal. of pyrolysis data	(1) 1995BOR/ZHA (2) 1998BRO/BEC
1,3-diphenylpropane-1, 3-dione CH ₂ (COPh) ₂	(1) 93 (2) 92	389.1 384.9	AOP	(1) 1990BOR/HAR (2) 1991BOR/HAR
ethyl methyl butane-1, 4-dioate CH ₂ (COMe)(C(O)OEt)	92.9	388.7	AOP	1995BOR/ZHA
malonic acid dimethyl ester $CH_2(MeOC(O))_2$	(1) 90.5 (2) 93.3	378.7 390.4	(1) AOP (2) Correlation	(1) 1991BAU/FAS(c) (2) 2000DEN/DEN
ethyl methyl propane-1, 3-dioate CH ₂ (C(O)OEt)(C(O)OMe)	92.3	386.2	АОР	1996ZHA/BOR
oxilic axcid diethyl ester CH ₂ (C(O)OEt) ₂	(1) 95.0 (2) 94.8	397.5 396.5	(1) AOP (2) Correlation	(1) 1993ZHA/BOR (2) 2000DEN/DEN
1-phenylbutane-1,3-dione PhCOCH ₂ COMe	92	384.9	AOP	1990BOR/HAR

3-methylpentane-2,4-dione (Me)CH(COMe) ₂	84.7	354.4	Reanal. of pyrolysis data	1998BRO/BEC
dimethyl 2-methyl propane- 1,3-dioate MeCH(C(O)OMe) ₂	(1) 90.5 (2) 90.8	378.7 379.9	AOP	(1) 1994ZHA/BOR(e) (2) 1996ZHA/BOR
ethyl 2-methylpropanoate Me ₂ CHC(O)OEt	92.6	387.4	Reanal. of pyrolysis data	1998BRO/BEC
ethyl methyl 2-ethyl propane- 1,3-dioate EtCH(C(O)OEt)(C(O)OMe)	89.6	374.9	AOP	1996ZHA/BOR
diethyl 2-ethyl propane-1, 3-dioate EtCH(C(O)OEt) ₂	91.5	382.8	AOP	1996ZHA/BOR
oxilic acid bis(1-methylethyl) ester (Me ₂ CHC(O)O) ₂	93.9	392.9	Correlation	2000DEN/DEN
diethoxy 2-phenylpropane-1, 3-dione PhCH(C(O)OEt) ₂	85.3	356.9	AOP	1993ZHA/BOR
ethyl 2-phenylpropanoate PhCHMe(C(O)OEt)	85.6	358.2	Reanal. of pyrolysis data	1998BRO/BEC
diethyl 2-(1,1-dimethyl- 1silaethyl) propane-1,3-dioate Me ₃ SiCH ₂ CH(CO ₂ Et) ₂	87.3	365.3	AOP	1996ZHA/BOR
ethyl methyl 2-(1,1-dimethyl- 1silaethyl) propane-1,3-dioate Me ₃ SiCH(CO ₂ Et)(CO ₂ Me)	85.2	365.5	AOP	1996ZHA/BOR

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(bold recommen	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
2-methyl furan O CH₂ → H	86.5±2	361.9±8.4	VLPP	1981STE
β-propiolactone O CH ₂ CH ₂ H	99.4±2.3	415.9±9.6	FT-ICR	2002KAR/JAN
γ-butyrolactone O CH ₂ H H ₂ C CH ₂	94.8±2.3	396.6±9.6	FT-ICR	2002KAR/JAN
1,4-dioxane				
$\Delta_{f}H^{o}(R) = -31.5\pm3$ (-131.8±12.6)	(1) 96.0 (2) 96.6	401.7 404.3	(1) PAC (2) Correlation	(1) 2000KRA/CIR (2) 2000DEN/DEN
δ -valerolactone				
H ₂ H ₂ C,C,CH ₂ H—C,C,CO	89.2±2.3	373.2±9.6	FT-ICR	2002KAR/JAN
ε-caprolactone H ₂ C CH ₂ CH ₂ CH ₂ H CO H	92.8±2.4	388.3±10.0	FT-ICR	2002KAR/JAN

2,2-dimethyl-1,3-dioxae-4,				
6-dione				
O Ne Me				
X = H	92.6	387.4	AOP	1994ZHA/BOR(e)
Me	87.5	366.1		
1,7,7-trimethyl bicyclo(2.2.1) heptane-2-one H ₃ C CH ₃ H CH ₃ O	95	397.5	AOP	1991BOR/JI
benzocyclobutenone H H	90.5±3.1	378.7±13.0	FT-MS	1999BRO/KAS
indan-2-one H H O	79.1	331.0	AOP	1994ZHA/BOR(e)
3-hydrobenzo(b)furan-2-one	80.1	335.1	AOP	1994ZHA/BOR(e)
isochroman-3-one	83.4	348.9	AOP	1994ZHA/BOR(e)
~ ~ ~ ·				(continued)

Table 3.6.1 (continued) C–H BDEs with α -OH, -OR, -C(O), and -C(O)O

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
3-(2-naphthyl)-3H-4,5, 6,-trihydropyran-2-one	81.8	342.3	AOP	1994ZHA/BOR(e)	
ethyl fluorene-9-carboxylate	76.1	318.4	АОР	1993BOR/ZHA(b)	
ethyl octafluoro-fluorene-9- carboxylate H CO ₂ E t	80.7	337.6	AOP	1993BOR/ZHA(b)	

3.6.2 C–H BDEs with α -N, -CN, -NO, -NO₂, and -NN

Table 3.6.2 C–H BDEs with α -N, -CN, -NO, -NO₂, and -NN

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol kJ/mol		parentheses)	References
methylamine	(1) 93±2.5	389.1±10.5	(1) VLPP	(1) 1975KIN/GOL
CH_3NH_2	(2) 96.6	404.2	(2) SPST	(2) 1981TSA
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 36.3 \pm 2$	(3) 93.9 ± 2	392.9 ± 8.4	(3) Electron	(3) 1983BUR/CAS
(151.9 ± 8.4)			impact	
	(4) 88.7	371.1	(4) VLPP	(4) 1984GRE/COL

2-azaprop-1-ene CH ₃ N=CH ₂	97.5±3.5	407.9±14.6	VLPP	1993LAZ/PAP
ethylamine	(1) 94.0	393.3	(1) SPST	(1) 1981TSA
$CH_3CH_2NH_2$	(2) 90.1 ± 2	377.0 ± 8.4	(2) Electron	(2) 1983BUR/CAS
$\Delta_f H^o(R) = 26.7 \pm 2$ (111.7 \pm 8.4)	(3) 97.1	406.7	impact (3) Reanal. of pyrolysis data	(3) 1998BRO/BEC
triethylamine	(1) 85.0	355.6	(1) SPST	(1) 1981TSA
$(C_2H_5)_2NCH_2CH_3$	(2) 91.0 ± 2.4	381 ± 10.0	(2) PAC	(2) 1997WAY/CLA
$\Delta_{\rm f} H^{\rm o}({\rm R}) = 16.4 \pm 0.5$	(3) 90.7 ± 0.4	379.5 ± 1.7	(3) PAC	(3) 1999DOM/DIN
(68.6 ± 2.1)	(4) 89 (5) 91.2±2	372.4 381.6±8.4	(4) PAC (5) PAC	(4) 2000KRA/CIR (5) 2002LAL/ALL
tributylamine $(nBu)_2NC\mathbf{H}_2(nPr)$	(1) 91.0±2.4 (2) 89.5±2	381±10.0 374.5±8.4	PAC	(1) 1997WAY/CLA (2) 2002LAL/ALL
iso-propylamine	(1) 95.2	398.3	(1) SPST	(1) 1981TSA
$(CH_3)_2CHNH_2$ $\Delta_tH^{\circ}(R) = 16.7\pm2$	(2) 88.9 ± 2	372.0±8.4	(2) Electron impact	(2) 1983BUR/CAS
(69.9 ± 8.4)	(3) 94.2	394.1	(3) Reanal. of pyrolysis data	(3) 1998BRO/BEC
dimethylamine CH_3NHCH_3 $\Delta_fH^\circ(R)=30.5\pm2$ (127.6 ± 8.4)	87±2	364.0±8.4	Electron impact	1981GRI/LOS
trimethylamine	(1) 84±2	351.5±8.4	(1) Electron impact	(1) 1981GRI/LOS
$(CH_3)_3N$ $\Delta_t H^{\circ}(R) = 33.2 \pm 2$	(2) 87.0±1.0	364.0±4.2	(2) VLPP	(2) 1984GRE/COL
(138.9 ± 8.4)	(3) 87.5	366.1	(3) PAC	(3) 1993CLA/WAY
	(4) 88.9±2.4 (5) 91	372±10.0 380.7	(4) PAC (5) PAC, revised	(4) 1997WAY/CLA (5) 1999LAA/MUL
tert-butyldimethylamine t-BuN(CH ₃) ₂	90.0±1.2	376.6±5.0	PAC	1999DOM/DIN
tert-butyldimethylamine t -BuN(C \mathbf{H}_3) ₂	90.0±1.2	376.6±5.0	PAC	1999DOM/DIN

Table 3.6.2 (continued) C–H BDEs with $\alpha\text{-N}$, -CN, -NO, -NO $_{\!\scriptscriptstyle 2}$, and -NN

The broken bonds (boldface = dissociated atom) $\Delta_i H^{\circ}(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
phynelmethylamine PhCH ₂ NH ₂	88.0	368.2	Correlation	2000DEN/KHU
dimethylbenzylamine PhCH ₂ N(CH ₃) ₂	84.9	355.3	Correlation	2000DEN/KHU
phenyldiethylamine PhN(CH ₂ CH ₃) ₂	91.6±1.0	383.3±4.2	PAC	1999DOM/DIN
diphenylmethylamine Ph_2NCH_3	90.7±0.4	379.5±1.7	PAC	1999DOM/DIN
phenyldibenzylamine PhN(CH ₂ Ph) ₂	85.4±2.1	357.3±8.8	PAC	1999DOM/DIN
tribenzylamine N(CH ₂ Ph) ₃	(1) 89.1±0.6 (2) 86.3	372.8±2.5 361.1	(1) PAC (2) Correlation	(1) 1999DOM/DIN (2) 2000DEN/KHU
phenyldiallylamine PhN(CH ₂ CH=CH ₂) ₂	81.1±0.7	339.3±2.9	PAC	1999DOM/DIN
triallylamine N(CH ₂ CH=CH ₂) ₃	82.6±0.8	345.6±3.3	PAC	1999DOM/DIN
N,N-dimethylaniline, substituted $CH_2 \stackrel{?}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{\stackrel{!}{$				

Y = H $\Delta_t H^o(R, \text{ for } Y = H) = 63.6 \pm 3$	(1) 91.7±1.3 (2) 85.7	383.7±5.4 358.4	(1) PAC (2) Correlation	(1) 1999DOM/DIN (2) 2000DEN/KHU
(266.1±12.6)				
4-Cl	(1) 89.8±1.4	375.7±5.9		
4-Me	(1) 89.9±2.5	376.1±10.5		
4-CF ₃	(1) 92.2±1.7	385.8±7.1		
2-tBu	(1) 94.7±1.3	396.2±5.4		
2,2-Me ₂	(1) 90.2±1.5	377.4±6.5		
pyrrolidine H N H				
$\Delta_{\rm f} {\rm H}^{\circ}({\rm R}) = 34.1 \pm 3$ (142.7 \pm 12.6)	(1) 90.1±2.4 (2) 87	377±10.0 364.0	PAC	(1) 1997WAY/CLA (2) 2000KRA/CIR
cyclohexalamine, subst	ituted			
$X_1 = H, X_2 = H$	94.6	395.9	Correlation	2000DEN/KHU
H, Me	89.8	375.9		
Me, Me	88.1	368.6		
piperidine				
NH H				
$\Delta_{\rm f} {\rm H}^{\circ}({\rm R}) = 28.6$ (119.7)	(1) 89.5 (2) 92.0±2.4 (3) 90.7	374.5 385±10.0 379.6	(1) PAC(2) PAC(3) Correlation	(1) 1993CLA/WAY (2) 1997WAY/CLA (3) 2000DEN/KHU
				(continued)

Table 3.6.2 (continued) C–H BDEs with $\alpha\text{-N}$, -CN, -NO, -NO $_{\!_{2}}$ and -NN

The broken bonds (boldface = dissociated atom) $\Delta_t H^{\circ}(R)$, kcal/mol	BD (boldi recommen references in	face = nded data;	Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
morpholine NH H O J H	(1) 90.8 (2) 93.0±2.4 (3) 94 (4) 92±2	379.9 389±10.0 393.3 384.9±8.4	PAC	(1) 1993CLA/WAY (2) 1997WAY/CLA (3) 1999LAA/MUL (4) 2002LAL/ALL	
dicyclohexylamine	89.6	374.9	Correlation	2000DEN/KHU	
methyl isocyanide H – CH_2NC $\Delta_i H^o(R) = 78.0 \pm 2.7$ (326.4 ± 11.3)	91.0±2.1	380.7±8.8	Photoelectron	1987MOR/ELL(b)	
methanenitrile H-CN $\Delta_{\rm f} H^{\rm o}(R) = 105.5 \pm 1.1 \end{tabular}$ (441.4 \pm 4.6)	(1) 126.1±0.4 (2) 126.3±0.2		(1) Recommend. (2) Photolysis	(1) 1994BER/ELL (2) 2000COO/LAN	
acetonitrile CH_3CN $\Delta_i H^o(R) = 60.4\pm 1$ (252.6 ± 4.2)	(1) 93±2.5 (2) 94.8±2.1 (3) 95.5±1.7 (4) 96 (5) 97.0±1	389.1±10.5 396.6±8.8 399.6±7.1 401.7 405.8±4.2	(1) Review(2) Photoelectr.(3) PAC(4) PAC(5) Negative ion cycle	(1) 1982MCM/GOL (2) 1987MOR/ELL(b) (3) 1989KAM/GRI (4) 1995WAY/LUS (5) 2000LAF/SZA	
propanenitrile CH_3CH_2CN $\Delta_fH^o(R) = 54.2\pm2.3$ (226.7±12.6)	(1) 89.8±2.3 (2) 94.0 ±3 (3) 90±2 (4) 94.9	375.7±9.6 393.3±12.6 376.6±8.4 397.1	 (1) VLPP (2) Derived from Δ_tH° in ref. (3) AP (4) Reanal. of pyrolysis data 	(1) 1975KIN/GOD (2) 1986PED/NAY (3) 1993HOL/LOS (4) 1998BRO/BEC	

phenylacetonitrile PhCH ₂ CN	82.3	344.3	AOP	1993BOR/ZHA(b)
pentafluorophenyl acetonitrile $C_6F_5CH_2CN$	83.8	350.6	AOP	1993BOR/ZHA(b)
methae-1,1-dicarbonitrile $CH_2(CN)_2$	(1) 90 (2) 87.6	376.6 366.5	(1) AOP (2) Reanal. of pyrolysis data	(1) 1991BOR/CHE (2) 1998BRO/BEC
2-aminoethanenitrile CH ₂ (CN)(NH ₂)	84.9	355.2	Reanal. of pyrolysis data	1998BRO/BEC
2-methylpropanenitrile $(CH_3)_2CHCN$ $\Delta_tH^\circ(R) = 45.5\pm3 \ (190.4\pm12.6)$	(1) 86.5±2.0 (2) 91.9	361.9±8.4 384.5	(1) VLPP (2) Reanal. of pyrolysis data	(1) 1976KIN/GOD (2) 1998BRO/BEC
2-phenyl propanenitrile Ph(Me)CHCN	80	334.7	AOP	1988BOR/CHE(b)
diphenylacetonitrile Ph ₂ CHCN	(1) 77.5 (2) 76.8	324.3 321.3	AOP	(1) 1988BOR/CHE(b) (2) 1993BOR/ZHA(b)
di(pentafluorophenyl)- acetonitrile $(C_6F_5)_2$ CHCN	81.7	341.8	AOP	1993BOR/ZHA(b)
methylmethae-1, 1-dicarbonitrile MeCH(CN) ₂	84.6	354.0	Reanal. of pyrolysis data	1998BRO/BEC
phenylmethane-1, 1-dicarbonitrile PhCH(CN) ₂	77	322.2	AOP	1992ZHA/BOR

Table 3.6.2 (continued) C–H BDEs with $\alpha\text{-N}$, -CN, -NO, -NO $_{\!_{2}}$ and -NN

The broken bonds (boldface = dissociated atom) $\Delta_{t}H^{o}(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
2-cyclohexyl-2-phenyl- ethanenitrile c-C ₆ H ₁₁ CH(Ph)CN	81	338.9	AOP	1992BOR/ZHA
2-phenyl-propanenitrile MeCH(Ph)CN	80	334.7	AOP	1992BOR/ZHA
phenylmethane-1, 1-dicarbonitrile CNCH(Ph)CN	77	322.2	AOP	1992BOR/ZHA
2-phenyl-2-(2-pyridyl)- ethanenitrile c-PyNCH(Ph)CN	76	318.0	AOP	1992BOR/ZHA
nitromethane CH_3NO_2 $\Delta_fH^o(R) = 27.5 \pm 3.0$ (115.1 ± 12.6)	(1) 97.4 (2) 96.3	407.5 402.9	(1) AOP (2) Derived	(1) 1994BOR/SAT (2) 2000MIR/VOR
nitroethane $CH_3CH_2NO_2$ $\Delta_fH^o(R) = 14.8\pm3$ (61.9 ± 12.6)	91.4	382.4	AOP	1994BOR/SAT
2-nitropropane Me_2CHNO_2 $\Delta_fH^o(R) = 1.5\pm 3$ (6.3 ± 12.6)	86.8	363.2	AOP	1994BOR/SAT
nitrocyclopropane $c-C_3H_5NO_2$	88.4	369.9	AOP	1994BOR/SAT

nitrocyclopetane c-C ₅ H ₉ NO ₂	86.8	363.2	AOP	1994BOR/SAT
nitrocyclohexane c-C ₆ H ₁₁ NO ₂	88.6	370.7	AOP	1994BOR/SAT
1-phenylnitroethane, substituted				
NO ₂ C + H CH ₃				
$\Delta_{\rm f} H^{\rm o}(R) = 40.4 \pm 3$	85.4	357.3	AOP	1995BOR/ZHA(c)
(169.0 ± 12.6) Y = H				
4-F	86.1	360.2		
4-Me	85.6	358.2		
3-MeO	86.9	363.6		
4-MeO	84.9	355.2		
3-NO ₂	86.1	360.2		
4-NO ₂	86.9	363.6		
3,5-(NO ₂) ₂	88.7	371.1		
nitro(phenylmethoxy) methane PhCH ₂ OCH ₂ NO ₂	86.1	360.2	AOP	1994BOR/SAT
1-aza-1-methyoxy-3-pheny l-2-benzylpro-1-ene $(PhCH_2)_2C=NOMe$	82.9	346.9	AOP	1992ZHA/BOR
pyrrole NH				
//3 //				
C-H bond at 2 and 3 site	118.4±1	495.4±4.2	Shock tube	1991MAC/COL

Table 3.6.2 (continued) C–H BDEs with α -N, -CN, -NO, -NO $_2$, and -NN

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol (kJ/mol)	(bold i recommer	BDEs (boldface = recommended data; references in parentheses)		
	kcal/mol	kJ/mol	(references in parentheses)	References
$ \Delta_{t}H^{o}(pyrrol-2-yl) = 92.2 $ (385.8) $ \Delta_{t}H^{o}(pyrrol-3-yl) = 92.2 $ (385.8)				
pyridine				
C-H bond at 2 site	(1) 105±0.2 (2) 102.7	439.3±0.8 429.7	Shock tube	(1) 1997KIE/ZHA (2) 1992DOU/MAC
at 3 site	(1) 112±2	468.6 ± 8.4		
at 4 site	(1) 112±2	468.6 ± 8.4		
$\Delta_{f}H^{\circ}(pyrid-2-yl) = 86.5$ (361.9) $\Delta_{f}H^{\circ}(pyrid-3-yl) = 93.5$ (391.2) $\Delta_{f}H^{\circ}(pyrid-4-yl) = 93.5$ (391.2)				
pyrimidine				
S N N N N N N N N N N N N N N N N N N N				
C–H bond at 2 site	(1) 98±2 (2) 95.8	410.0±8.4 400.8	Shock tube	(1) 1997KIE/ZHA (2) 1992DOU/MAC
at 4 site	(1) 103±2 (2) 102.8	431.0±8.4 430.1		
at 5 site	(1) 112±2 (2) 111.2	468.6±8.4 465.3		
$\Delta_{f}H^{o}(pyrimid-2-yl) = 92.7\pm2$ (387.9±8.4)			

$\Delta_t H^o(\text{pyrimid-4-yl}) = 97$				
$\Delta_{t}H^{o}(pyrimid-5-yl) = 10$	108.4±8.4) 106.7±2			
	446.4±8.4)			
pyridine, substituted				
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$				
2-CH ₃	87.2	365.0	Correlation	2002KRO/TUM
3-CH ₃	90.4	378.2		
4-CH ₃	86.5	362.1		
2,4,6-(CH ₃) ₃	87.7	366.9		
piperazine	(1) 90	376.6	(1) PAC	(1) 1993CLA/WAY
	(2) 93	389.1	(2) PAC, revised	(2) 1999LAA/MUL
H N 4 3				
1 2 WH N H H				
quinline, substituted				
N N				
$\begin{array}{c c} & & \downarrow \\ \hline 6 & 5 & 4 & 3 \\ \hline \end{array} - CH_2 - \begin{array}{c} \xi \\ \xi \\ \end{array} + H$				
2-CH ₃	87.6	366.6	Correlation	2002KRO/TUM
3-CH ₃	88.9	372.1		
4-CH ₃	86.1	360.1		
5-CH ₃	87.5	366.3		
6-CH ₃	88.7	371.0		
7-CH ₃	88.7	371.0		
8-CH ₃	90.3	377.8		

Table 3.6.2 (continued) C–H BDEs with α -N, -CN, -NO, -NO $_2$, and -NN

The broken bonds (boldface = dissociated atom) Δ _c H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	·	References
2-benzyl pyridine H CH CH	(1) 82.3 (2) 82	344.3 343.1	(1) VLPP (2) AOP	(1) 1984ROS/MCM (2) 1992ZHA/BOR
3-benzyl pyridine	84	351.5	AOP	1992ZHA/BOR
4-benzyl pyridine N CH CH	(1) 82.3 (2) 83	344.3 347.3	(1) VLPP (2) AOP	(1) 1984ROS/MCM (2) 1992ZHA/BOR
fluorene, substituted				
R = \(\sum_N	66	276.1	AOP	1992ZHA/BOR(b)
N	68	284.5		
<u></u>	72	301.2		
N—	71.5	299.2		
N—	72	301.2		

fluorene, substituted

10-methyl-9, 10-dihydro-acridine, substituted

X = H	72.0±1.6	301.2±6.7	Electronchem.	1998ANN/FRA
CN	71.3±1.5	298.3±6.3		
benzyl trimethylammonium	90.5	378.7	AOP	1993ZHA/BOR
chloride PhCH ₂ ⁺ NMe ₃ Cl ⁻				
3-methyl-1-benzylpyridinium bromide	84.7	354.4	AOP	1993ZHA/BOR
PhCH ₂ N ⁺ Br ⁻				

Table 3.6.2 (continued) C–H BDEs with α -N, -CN, -NO, -NO₂, and -NN

The broken bonds (boldface = dissociated atom) Δ _ε H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
1-benzyl pyridinium chloride PhCH ₂ +NPy Cl ⁻	84.7	354.4	AOP	1993ZHA/BOR	
1-acetonitrile trimethyl-ammonium chloride Me ₃ +NCH ₂ CN Cl ⁻	95.3	398.7	AOP	1990BOR/ZHA	
1-acetonitrile pyridinium chloride PyN [±] CH ₂ CN Cl ⁻	87.6	366.5	AOP	1990BOR/ZHA	

3.6.3 C–H BDEs with α -O, -N and their groups

Table 3.6.3 C–H BDEs with α -O, -N and their groups

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
(1Z)-2-aza-2-methoxy-1, 1-phenylvinylamine PhC(NH ₂)=NOC H ₃	94.9	397.1	AOP	1992BOR/JI	
2-methoxyethanenitrile (CN)CH ₂ OMe	90.3	377.8	Reanal. of pyrolysis data	1998BRO/BEC	
N,N-dimethylacetamide Me ₂ NC(O)CH ₃	91.0	380.9	Correlation	2000DEN/KHU	

methyl 2-(dimethylamino)-acetate Me ₂ NCH ₂ C(O)Me	77	322.2	PAC	1993CLA/WAY
N-iso-propylacetamide (CH ₃) ₂ CHNHC(O)Me	93.1	389.5	Correlation	2000DEN/KHU
glycine ion NH ₂ CH ₂ C(O)O ⁻	≤82.0	≤343.0	Electrochem.	1997ZHA/LIN
glycine NH ₂ CH ₂ C(O)OH	≤78.6	≤329.0	Electrochem.	1997ZHA/LIN
methyl-2-aminoacetate NH ₂ CH ₂ C(O)OMe	84.3	352.7	Reanal. of pyrolysis data	1998BRO/BEC
ethyl 2-aminoacetate NH ₂ CH ₂ C(O)OEt	79–83	330.5–347.3	PAC	1993CLA/WAY
ethyl 3-(dimethylamino) prooanoate Me ₂ N(CH ₂) ₂ C(O)OEt	88.0	368.0	Correlation	2000DEN/KHU
2-(dimethylamino)-1- phenylethan-1-one N(CH ₃) ₂ CH ₂ C(O)Ph	78.3	327.6	Reanal. of pyrolysis data	1998BRO/BEC
glycine anhydride NH ₂ CH ₂ C(O)OCH ₂ NH ₂	81.3±3.6	340±15	PAC	1998JON/WAY
nitro(phenylmethoxy) methane PhCH ₂ OCH ₂ NO ₂	86.1	402.1	AOP	1994BOR/SAT

Table 3.6.3 (continued) C–H BDEs with $\alpha\text{-O, -N}$ and their groups

The broken bonds (boldface = dissociated atom) $\Delta_{\rm f} {\rm H}^{\rm o}({\rm R})$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
tert-butyl-2-aminopropanoate NH ₂ CHMeC(O)OtBu	81.3	340.2	Reanal. of pyrolysis data	1998BRO/BEC
2-hydroxypropanenitrile (CN)CHMe(OH)	87.3	365.3	Reanal. of pyrolysis data	1998BRO/BEC
alanine anhydride Me(NH ₂)CHC(O)OCHNH ₂ Me	77.7±3.6	325.0±15	PAC	1998JON/WAY
2-methoxy-2-phenylethane- nitrile MeOCH(Ph)CN	77.5	324.3	AOP	1992BOR/ZHA
2-phenyl-2-phenoxyethane- nitrile PhOCH(Ph)CN	79.5	332.6	AOP	1992BOR/ZHA
ethyl 2-cyano-2-phenyl- acetate C ₆ H ₅ C H (CN)C(O)OEt	80.9	338.5	AOP	1993BOR/ZHA(b)
ethyl 2-cyano-2-pentafluoro- phenyl-acetate $C_6F_5CH(CN)C(O)OEt$	85.2	356.5	AOP	1993BOR/ZHA(b)
4,4-dimethyl pyrrolidin-3-one	78	326.4	PAC	1993CLA/WAY

3-ethyl-4,4-dimethyl-1,

3-oxazolidine

X = Me

82.1

343.5

PAC

1993CLA/WAY

C(O)OMe

84.1

351.9

2-oxomorpholine

(1) 75(2) 78

313.8 326.4 (1) PAC

(2) PAC, revised

(2) PAC, revised

(1) 1993CLA/WAY(2) 1999LAA/MUL

morpholine

(1) 91(2) 94

380.7 393.3 (1) PAC

(1) 1993CLA/WAY(2) 1999LAA/MUL

4,5,5-trimethyl morpholin-2-one

X = H

CH₃

75.3

77.5

315.1 324.3 PAC

1993CLA/WAY

phenyl piperazin-2-yl ketone, substituted

R = Me

73

305.4

AOP

1992ZHA/BOR(b)

Et

72

301.2

Table 3.6.3 (continued) C–H BDEs with $\alpha\text{-O, -N}$ and their groups

The broken bonds (boldface = dissociated atom) $\Delta_f H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
1,4-diazaperhydroine-2, 5-dione, substituted				
H N Bu Me				
X = H	92.4	386.6	Reanal. of pyrolysis data	1998BRO/BEC
Me	89.4	374.0		
phenyl piperidyl ketone	94.4	395.0	Correlation	2000DEN/KHU
N—Ph				
morpholin-4-yl phenyl ketone	83.3	348.6	Correlation	2000DEN/KHU
ON-HPh H				
1-phenyl 2, 2-dipiperidylethan-1-one, analogues				
$\left(X N\right)_{2} C - COPh$				
$X = CH_2$	74	309.6	AOP	1992ZHA/BOR(b)
O	75	313.8		

fluorene, substituted

MeO OMe OMe OMe
$$R = N - 69 \qquad 288.7 \quad AOP \qquad 1992ZHA/BOR(b)$$

ethyl-2-cyano-2phenylacetate, substituted

011				
Y = H	80.3	336.0	AOP	2000CHE/LIU
F	80.3	336.0		
Cl	80.8	338.1		
Me	80.0	334.7		
MeO	78.3	327.6		
$MeCO_2$	82.0	343.1		
CF ₃	82.2	343.9		
CN	83.2	348.1		
···				

3.6.4 C–H BDEs with α -C(S), -S, -SO, and -SO₂

Table 3.6.4 C–H BDEs with α -C(S), -S, -SO, and -SO₂

The broken bonds (boldface = dissociated atom) Δ,H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
thioformaldehyde H– $C(S)H\Delta_f H^{\circ}(R) = 71.8\pm 2(300.4\pm 8.4)$	95.5±1.2	399.6±5.0	Recommend.	1994BER/ELL	
methanethiol CH ₃ SH $\Delta_{\rm f}$ H°(R) = 36.3±2 (151.9±8.4)	(1) 92.4±2.0 (2) 93.9±2.0	386.6±8.4 392.9±8.4	(1) PIMS (2) Recommend.	(1) 1992RUS/BER (2) 1994BER/ELL	

Table 3.6.4 (continued) C–H BDEs with $\alpha\text{-C(S)},$ -S, -SO, and -SO $_2$

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
dimethyl sulfide CH_3SCH_3 $\Delta_fH^o(R) = 32.7\pm1.4$ (136.8 ± 5.9)	93.7±1.4	392.0±5.9	Resonance fluorescence	1994JEF/NIC
phenyl methyl sulfide PhSC H_3 $\Delta_t H^o(R) = 64.2\pm3$ (268.6 ± 12.6)	93.0	389.1	АОР	1993ZHA/BOR
benzyl phenyl sulfide $PhCH_2SPh$ $\Delta_tH^\circ(R) = 104.1\pm3$ (435.6 ± 12.6)	(1) 84.2 (2) 82.2	352.3 343.9	АОР	(1) 1993ZHA/BOR (2) 1998BOR/LIU
di(phenylthio)phenyl methane (PhS) ₂ CHPh	81.5	341.0	AOP	1992BOR/ZHA
phenyl diphenylmethyl sulfide PhSCHPh ₂	82.4	344.8	AOP	1992BOR/ZHA
dimethyl sulfoxide CH_3SOCH_3 $\Delta_tH^\circ(R) = 5.7\pm3$ (23.8 ±12.6)	94	393.3	AOP	1998BOR/LIU
dimethyl sulfone $CH_3SO_2CH_3$ $\Delta_tH^\circ(R) = -42.3\pm3$ (-177.0 ± 12.6)	99	414.2	AOP	1991BOR/HAR

methyl trofluoromethyl sulfone CH ₃ SO ₂ CF ₃	103	431.0	AOP	1991BOR/HAR
methyl phenyl sulfone CH_3SO_2Ph $\Delta_tH^\circ(R) = -13.7\pm3$ (-57.3 ± 12.6)	99	414.2	AOP	1991BOR/HAR
methyl p-NO ₂ -phenyl sulfone $CH_3SO_2(p-NO_2-C_6H_4)$	95	397.5	AOP	1995ZHA/BOR
benzyl methyl sulfone PhC H_2 SO $_2$ Me $\Delta_i H^o(R) = -26.1\pm 3$ (-109.2 ± 12.6)	91	380.7	AOP	1992ZHA/BOR
benzyl trifluoromethyl sulfone PhCH ₂ SO ₂ CF ₃	89	372.4	AOP	1992ZHA/BOR
benzyl tert-butyl sulfone PhCH ₂ SO ₂ tBu	90	376.6	AOP	1992ZHA/BOR
benzyl phenyl sulfone $PhCH_2SO_2Ph$ $\Delta_tH^\circ(R)=1.7\pm3$ (7.1 ± 12.6)	(1) 89.7 (2) 90.2	376.3 377.4	AOP	(1) 1998BOR/LIU (2) 1992ZHA/BOR
di(methyl sulfonyl) methane $CH_2(CH_3SO_2)_2$	101.4	424.3	AOP	1994BOR/ZHA
di(trifluoromethyl sulfonyl) methane CH ₂ (CF ₃ SO ₂) ₂	113	472.8	AOP	1991BOR/HAR

Table 3.6.4 (continued) C–H BDEs with α -C(S), -S, -SO, and -SO $_2$

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
Δ _f H (K), Kcal/ filol (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
di(ethyl sulfonyl) methane CH ₂ (EtSO ₂) ₂	101.3	423.8	AOP	1994BOR/ZHA
di(isopropyl sulfonyl) methane CH_2 (iPrSO $_2$) $_2$	100.1	418.8	AOP	1994BOR/ZHA
di(t-butyl sulfonyl) methane $CH_2(tBuSO_2)_2$	99.7	417.1	AOP	1994BOR/ZHA
di(phenyl sulfonyl) methane $CH_2(PhSO_2)_2$	98	410.0	AOP	1994BOR/ZHA
((diphenylmethyl) sulfonyl)-benzene Ph_2CHSO_2Ph $\Delta_tH^o(R) = 24.4\pm3$ (-102.1 ± 12.6)	87.3	365.3	АОР	1991BOR/ZHA
di(phenylthio) methane $\mathrm{CH_2(SPh)_2}$	89	372.4	AOP	1995ALN/ZHA
benzyl dibutylsulfonium ${\rm PhCH_2}^{\pm}{\rm S(nBu)_2}$	83.8	350.6	AOP	1998CHE/LIU
benzyl dibutylsulfonium, substituted H CH *SMe ₂				

Y = H	(2) 83.1	347.7	AOP	(1) 1998CHE/LIU
p-Me	(2) 82.5	345.2		(2) 2000CHE/LIU
p-CN	(2) 86.0	359.8		
p-MeO	(1) 84.6	354.0		
p-MCO ₂	(2) 92.0	384.9		
-				
phenyl phenylsulfonyl methane, substituted H				
Y——CH—SO ₂ Ph				
Y = H	90.3	377.8	AOP	1998BOR/LIU
Me	89.1	372.8		
Cl	91.8	384.1		
Br	90.4	378.2		

3.6.5 C–H BDEs with other heteroatoms at α -position

Table 3.6.5 C–H BDEs with other Heteroatoms at α-Position

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
2,2-dimethyl-2-silapropane H – CH_2SiMe_3 $\Delta_i H^o(R) = -7.6\pm1.5$ (-32 ± 6)	100±1.5	418	Iodination	1999WAL	
2,2,3, 3-tetramethyl-2-silabutane \mathbf{H} - $\mathbf{CH}_2\mathbf{C}(\mathbf{CH}_3)_2\mathbf{SiMe}_3$ $\Delta_i\mathbf{H}^o(\mathbf{R}) = -29.8$ (-125)	97.8±1.2	409±5	Iodination	1999WAL	
alkyldioxaborolanes H–CH ₂ B(RO) ₂	98.6	412.5	EPR	2000WAL/MCC	

chapter four

Tabulated BDEs of C-C bonds

4.1 Saturated hydrocarbons

Table 4.1 C-C BDEs in Saturated Hydrocarbons

The broken bonds (boldface =		(bold recomme	BDEs (boldface = recommended data; references in parentheses)		
,	ated group)	kcal/mol	kJ/mol	(references in parentheses)	References
ethane CH ₃ –CH ₃		90.2±0.2	377.4±0.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
propane CH ₃ -C ₂ H ₅		88.5±0.5	370.3±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butane CH ₃ -nC ₃ H ₇		88.9±0.7	372.0±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
isobutane CH ₃ –iC ₃ H ₇		88.2±0.9	369.0±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentane CH ₃ -nC ₄ H ₉		88.8±0.7	371.5±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methylbut CH ₃ -iC ₄ H ₉	ane	88.5±1.1	370.3±4.6	Derived from $\Delta_f H^\circ$ in ref.	1986PED/NAY

Table 4.1 (continued) C-C BDEs in Saturated Hydrocarbons

The broken bonds (boldface =	(bold) recommer	BDEs (boldface = recommended data; references in parentheses)		
dissociated group)	•	kJ/mol	(references in parentheses)	References
2-methylbutane CH ₃ -sC ₄ H ₉	88.0±0.7	368.2±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2-dimethylpropane $\mathbf{CH_3}$ – $\mathbf{tC_4H_9}$	86.9±0.7	363.6±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpentane CH ₃ -CH(CH ₃)C ₃ H ₇	88.9±1.0	372.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methylpentane CH ₃ -CH(C ₂ H ₅) ₂	87.4±1.0	365.7±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butane C_2H_5 – C_2H_5	86.8±0.6	363.2±2.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentane C_2H_5 - nC_3H_7	87.3±0.7	365.3±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
isopentane C_2H_5 – iC_3H_7	86.1±0.9	360.2±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexane C_2H_5 – nC_4H_9	86.9±0.8	363.6±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpentane $\mathbf{C_2H_5}$ -i $\mathbf{C_4H_9}$	86.9±1.3	363.6±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methylpentane C_2H_5 -s C_4H_9	85.7±0.8	358.6±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

2,2-dimethylbutane C_2H_5 - tC_4H_9	84.5±0.9	353.5±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpentane C_3H_7 – iC_3H_7	86.6±1.3	362.3±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexane nC_3H_7 - nC_3H_7	87.5±0.8	366.1±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpentane $\mathbf{nC_3H_7}$ -i $\mathbf{C_3H_7}$	86.6±1.0	362.3±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
heptane $\mathbf{nC_3H_7}$ – $\mathbf{nC_4H_9}$	87.3±0.9	365.3±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylhexane $\mathbf{nC_3H_7}$ – $\mathbf{iC_4H_9}$	84.2±1.3	352.3±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methylhexane $\mathbf{nC_3H_7}$ - $\mathbf{sC_4H_9}$	85.7±0.9	358.6±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2-dimethylpentane $\mathbf{nC_3H_7}$ – $\mathbf{tC_4H_9}$	84.6±1.0	354.0±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2,3-dimethylbutane iC_3H_7 - iC_3H_7	84.5±1.1	353.5±4.6	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-methylhexane iC ₃ H ₇ –nC ₄ H ₉	86.1±1.1	360.2±4.6	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2,4-dimethylpentane iC_3H_7 - iC_4H_9	85.9±1.3	359.4±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.1 (continued) C-C BDEs in Saturated Hydrocarbons

The broken bonds (boldface = dissociated group)	BDEs (boldface = recommended data; references in parentheses)		Methods	
	kcal/mol	kJ/mol	(references in parentheses)	References
2,3-dimethylpentane iC ₃ H ₇ -sC ₄ H ₉	84.7±1.0	354.4±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2,2,3-trimethylbutane iC_3H_7 - tC_4H_9	81.5±1.1	341.0±4.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
octane nC_4H_9 - nC_4H_9	87.0±0.9	364.0±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylheptane $\mathbf{nC_4H_9}$ – $\mathbf{iC_4H_9}$	86.8±1.3	363.2±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methylheptane nC_4H_9 -s C_4H_9	85.6±0.9	358.2±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2-dimethylhexane nC_4H_9 - tC_4H_9	83.9±1.0	351.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,5-dimethylhexane iC_4H_9 - iC_4H_9	86.6±1.5	362.3±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,4-dimethylhexane iC_4H_9 -s C_4H_9	85.3±1.3	356.9±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
$2,3,4$ -trimethylpentane iC_4H_9 - tC_4H_9	81.3±1.3	340.3±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3,4-dimethylhexane $\mathbf{sC_4H_9}$ – $\mathbf{sC_4H_9}$	83.3±0.8	348.5±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

2,2,3-trimethylpentane \mathbf{s} - $\mathbf{C}_4\mathbf{H}_9$ - \mathbf{t} $\mathbf{C}_4\mathbf{H}_9$	80.4±1.0	336.4±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2,3,3-tetramethylbutane $\mathbf{tC_4H_9}$ – $\mathbf{tC_4H_9}$	77.1±1.0	322.6±4.2	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
2,3-trimethylpentane iC_3H_7 -C(CH ₃) ₂ C ₂ H ₅	79.7±1.5	333.5±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
nonane nC_4H_9 - nC_5H_{11}	86.1±2.0	360.2±8.4	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
2,2-dimethylheptane nC_4H_9 -neo C_5H_{11}	81.8±2.0	342.3±8.4	Derived from $\Delta_i H^o$ in ref.	1994PED
2,2,5-trimethylhexane iC_4H_9 -neo C_5H_{11}	85.9±2.0	359.4±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
2,2,3,3,-tetramethylpentane tC_4H_9 -C(CH ₃) ₂ C ₂ H ₅	75.3±1.5	315.1±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2,4,4-tetramethypentane $\mathbf{tC_4H_9}$ -neo $\mathbf{C_5H_{11}}$	78±2.2	326.4±9.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylnonane nC_6H_{13} - iC_4H_9	86.8±2.0	363.2±8.4	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
5-methylnonane nC ₄ H ₉ -CH(CH ₃)(nC ₄ H ₉)	87.4±2.0	365.7±8.4	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
dodecane nC_6H_{13} - nC_6H_{13}	85.0±2.0	355.6±8.4	Derived from $\Delta_f H^\circ$ in ref.	1986PED/NAY

Table 4.1 (continued) C-C BDEs in Saturated Hydrocarbons

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
methylcyclopentane CH ₃ -c-C ₅ H ₉	85.6±1.2	358.2±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methylcyclohexane CH ₃ -c-C ₆ H ₁₁	90.1±1.8	377.0±7.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethylcyclobutane C_2H_5 -c- C_4H_7	86.1±1.3	360.2±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethylcyclopentane C_2H_5 -c- C_5H_9	84.0±1.3	351.5±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethylcyclohexane C_2H_5 -c- C_6H_{11}	87.4±1.3	365.7±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
propylcyclopentane nC_3H_7 –c- C_5H_9	84.4±1.3	353.1±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
propylcyclohexane nC ₃ H ₇ -c-C ₆ H ₁₁	87.8±2.0	367.4±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butylcyclohexane nC ₄ H ₉ -c-C ₆ H ₁₁	85.3±1.5	356.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclohexaxylcyclohexane c-C ₆ H ₁₁ -c-C ₆ H ₁₁	88.2±2.0	369.0±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

1-adamantylmethane	(1) 84.3±3	352.7±12.6	 (1) Derived from Δ_tH° in ref. (2) Derived 	(1) 1988LIA/BAR
1-adamantyl- CH ₃	(2) 82.5	345.2		(2) 2001MAT/LEB
2-adamantylmethane 2-adamantyl-CH ₃	90.5±3	378.7±12.6	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

4.2 Chain unsaturated hydrocarbons

Table 4.2 C-C BDEs in Chain Unsaturated Hydrocarbons

	roken bonds oldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
,	ated group)	kcal/mol	kJ/mol	parentheses)	References
acetylene CH≡CH		229.5±1.0	960.2±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethylene CH ₂ =CH ₂		174.1±1.5	728.4±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
propyne CH₃-C≡CH		126.0±1.0	527.2±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-butyne C ₂ H ₅ –C≡CH		124.0±1.0	518.8±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-butyne CH ₃ -CH ₂ C≡	СН	(1) 76.0±2 (2) 76.6 ± 1.2	318.0±8.4 320.5±5.0	(1) VLPP(2) Derived from Δ_fH° in ref.	(1) 1978KIN (2) 1986PED/NAY
2-butyne CH ₃ -C≡CCF	I	121.3±3.2	507.5±13.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-pentyne CH ₃ -CH ₂ C≡	CCH ₃	73.7±1.5	308.4±6.3	VLPP	1982NGU/KIN

Table 4.2 (continued) C-C BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
2-methy-1-butyne CH ₃ -CH(CH ₃)C≡CH	73±2	305.4±8.4	VLPP	1981NGU/KIN
2-methy-1-pentyne CH ₃ -CH(CH ₃)C≡CCH ₃	76.7±1.5	320.9±6.3	VLPP	1981KIN/NGU
2,2-dimethy-1-butyne $CH_3-C(CH_3)_2C\equiv CH$	70.7±1.5	295.8±6.3	VLPP	1977KIN
2,2-dimethy-1-pentyne $CH_3-C(CH_3)_2C\equiv CCH_3$	72.5±1.5	303.3±6.3	VLPP	1981KIN/NGU
1-hexyne nC_3H_7 -CH ₂ C=CH	73.2±1.5	306.3±6.3	VLPP	1981KIN
2-ethyl-1-pentyne $\mathbf{sC_4H_9}$ - $\mathbf{CH_2C}$ = \mathbf{CH}	71.7±1.5	300.0±6.3	SPTS	1978TSA
1,2-butadiene CH ₃ -CH=CCH ₂	86.0±1.4	359.8±5.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,3-butadiene C ₂ H ₃ -CH=CH ₂	116.9±1.5	489.1±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-methylcyclopropene CH ₃ -cyclopro-en-1-yl	81.4±5	340.6±20.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

1-butene CH ₃ -CH ₂ CH=CH ₂	(1) 76.5±2.2 (2) 75.9±0.9	320.1±9.2 317.6±3.8	(1) VLPP (2) Derived from $\Delta_f H^\circ$ in ref.	(1) 1981NGU/KIN (2) 1986PED/NAY
1-butene C ₂ H ₅ -CH=CH ₂	100.0±1.0	418.4±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(E)-2-butene (E)-CH ₃ -CH=CHCH ₃	101.6±2.0	425.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-2-butene (Z)-CH ₃ -CH=CHCH ₃	102.6±2.0	429.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-pentadiene C ₂ H ₅ -CH=C=CH ₂	80.6±1.5	337.2±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,4-pentadiene C ₂ H ₃ -CH ₂ CH=CH ₂	87.2±1.2	364.8±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(E)-1,3-pentadiene (E)-CH ₂ =CH-CH=CHCH ₃	117.2±2.0	490.4±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-1,3-pentadiene (Z)-CH ₂ =CH-CH=CHCH ₃	118.5±2.0	495.8±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-pentene C ₂ H ₅ -CH ₂ CH=CH ₂	74.3±1.5	310.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(E)-2-pentene (E)-CH ₃ -CH ₂ CH=CHCH ₃	77.6±2.2	324.7±9.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-2-pentene (Z)-CH ₃ -CH ₂ CH=CHCH ₃	78.6±2.2	328.9±9.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.2 (continued) C-C BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated group)	kcal/mol	kJ/mol	parentheses)	References	
2-pentene C ₂ H ₅ -CH=CHCH ₃	99.8±2.0	417.6±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
2-methyl-1-butene CH ₃ -CH ₂ C(CH ₃)=CH ₂	(1) 72.0±2 (2) 74.1 ± 1.0	301.2±8.4 310.0±4.2	(1) Kinetics (2) Derived from $\Delta_f H^o$ in ref.	(1) 1981STE/ROW (2) 1986PED/NAY	
3-methyl-1-butene CH ₃ -CH(CH ₃)CH=CH ₂	72.3±1.5	302.5±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY	
3,3-dimethyl-1-butene CH ₃ -C(CH ₃) ₂ CH=CH ₂	(1) 68.1±1.5 (2) 67.5 ± 1.5	284.9±6.3 282.4±6.3	(1) Derived(2) Derived from Δ_fH° in ref.	(1) 1982MCM/GOL (2) 1986PED/NAY	
3-methyl-1-butene iC ₃ H ₇ -CH=CH ₂	99.2±1.5	415.1±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
1,5-hexadiene C ₃ H ₅ -C ₃ H ₅	61.5±1.0	257.3±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
1-hexene nC ₃ H ₇ -CH ₂ CH=CH ₂	(1) 70.7±2 (2) 75.0 ± 1.0	295.8±8.4 313.8±4.2	(1) SPST (2) Derived from $\Delta_f H^o$ in ref.	(1) 1976TSA (2) 1986PED/NAY	
1-hexene nC ₄ H ₉ -CH=CH ₂	100.6±1.3	420.9±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
(E)-2-hexene (E)-C ₂ H ₅ -CH ₂ CH=CHCH ₃	76.2±2.4	318.8±10.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	

(Z)-2-hexene (Z)-C ₂ H ₅ -CH ₂ CH=CHCH ₃	76.6±2.4	320.5±10.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-hexene C ₃ H ₇ -CH=CHCH ₃	100.5±2.0	420.5±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-methyl-1-pentene C ₂ H ₅ -CH ₂ C(CH ₃)=CH ₂	73.2±1.0	306.3±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
3-methyl-1-pentene C ₂ H ₅ -CH(CH ₃)CH=CH ₂	70.8±1.5	296.2±6.3	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY
3-methyl-1-pentene $\mathbf{sC_4H_9}$ –CH=CH ₂	99.6±1.0	416.6±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
4-methyl-1-pentene iC ₃ H ₇ -CH ₂ CH=CH ₂	74.1±1.0	310.0±4.2	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY
4-methyl-1-pentene iC_4H_9 -CH=CH ₂	100.6±1.5	420.9±6.3	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
(E)-4-methyl-2-pentene (E)- iC ₃ H ₇ -CH=CHCH ₃	99.5±2.0	416.3±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
(Z)-4-methyl-2-pentene (Z)-iC ₃ H ₇ -CH=CHCH ₃	100.5±2.0	420.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3,3-dimethyl-1-butene tC_4H_9 -CH=CH ₂	97.7±1.3	408.8±5.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
1-heptene nC ₄ H ₉ -CH ₂ CH=CH ₂	74.3±1.0	310.9±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.2 (continued) C-C BDEs in Chain Unsaturated Hydrocarbons

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
5-methyl-1-hexene iC ₄ H ₉ -CH ₂ CH=CH ₂	73.2±1.5	306.3±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
5-methyl-1-hexene $\mathbf{nC_3H_7}$ – $\mathbf{CH_2C(CH_3)}$ = $\mathbf{CH_2}$	70.1±1.6	293.3±6.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,4-dimethyl-1-pentene iC_3H_7 - $CH_2C(CH_3)$ = CH_2	71.6±1.5	299.6±6.3	Derived from $\Delta_{_f}H^o$ in ref.	1986PED/NAY
4,4-dimethyl-1-pentene $\mathbf{tC_4H_9}$ - $\mathbf{CH_2}\mathbf{CH}$ = $\mathbf{CH_2}$	71.9±1.5	300.8±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
(E)-4,4-dimethyl-2-pentene (E)-tC ₄ H ₉ -CH=CHCH ₃	96.6±2.0	404.2±8.4	Derived from $\Delta_{_f}H^o$ in ref.	1986PED/NAY
(Z)-4,4-dimethyl-2-pentene (Z)- $\mathbf{tC_4H_9}$ -CH=CHCH ₃	100.5±2.0	420.5±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
2,4,4-trimethyl-1-pentene $\mathbf{tC_4H_9}$ - $\mathbf{CH_2C(CH_3)}$ = $\mathbf{CH_2}$	68.6±2.0	287.0±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-octene $\mathbf{nC_5H_{11}}$ – $\mathrm{CH_2CH}$ = $\mathrm{CH_2}$	73.3±1.5	306.7±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
3-cyclopentylpropene c-pentyl -CH ₂ CHCH ₂	71.9±1.5	300.8±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
vinylcyclohexane ${\bf c\text{-}hexayl\text{-}CHCH}_2$	91.3±2.0	382.0±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

4.3 Aromatic hydrocarbons

Table 4.3 C-C BDEs in Aromatic Hydrocarbons

The broken bonds (boldface =	(boldi recommen	BDEs (boldface = recommended data; references in parentheses)		
dissociated group)	kcal/mol	kJ/mol	(references in parentheses)	References
methylbenzene CH ₃ -C ₆ H ₅	102.0±1.0	426.8±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
vinylbenzene C_2H_3 – C_6H_5	115.2±1.3	482.0±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethylbenzene, substituted				
Y CH ₃				
Y = H	(1) 74.1 (2) 75.8±1.0 (3) 76.4 ± 1.7	310.0 317.1 319.7 ± 7.1	 (1) VLPP (2) Derived (3) Derived from Δ_tH° in ref. 	(1) 1980BAR/STE (2) 1982MCM/GOL (3) 1986PED/NAY
2-Me	(1) 72.9	305.0		
3-Ме	(1) 73.8	308.8		
4-CH ₂ =CH	(4) 70.6	295.4	(4) VLPP	(4) 1986ROB/STE
2,6-Me ₂	(1) 71.2	297.9		
3,6-Me ₂	(1) 72.5	303.8		
3,5-Me ₂	(1) 73.5	307.5		
ethylbenzene C_2H_5 – C_6H_5	100.2±1.0	419.2±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclopropylbenzene $c-C_3H_5-C_6H_5$	109.8±1.2	459.4±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.3 (continued) C-C BDEs in Aromatic Hydrocarbons

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated group)	kcal/mol	kJ/mol	parentheses)	References	
prop-2-enylbenzene C ₂ H ₃ -CH ₂ C ₆ H ₅	87.9	367.8	Derived from $\Delta_f H^o$ in ref.	1999VER(c)	
propylbenzene C ₂ H ₅ -CH ₂ C ₆ H ₅	74.9±1.7	313.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
propylbenzene nC ₃ H ₇ -C ₆ H ₅	100.8±1.0	421.7±4.2	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY	
iso-propylbenzene CH ₃ -CH(CH ₃)C ₆ H ₅	(1) 73.8 (2) 74.6 ± 1.5	308.8 312.1±6.3	(1) VLPP (2) Recal.	(1) 1981ROB/STE (2) 1984ROS/MCM	
iso-propylbenzene iC_3H_7 – C_6H_5	98.9±1.2	413.8±5.0	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY	
butylbenzene nC_4H_9 – C_6H_5	100.6±1.0	420.9±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
butylbenzene nC_3H_7 – $CH_2C_6H_5$	75.3±1.7	315.1±7.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
4-phenyl-1-butene CH ₂ =CHCH ₂ -CH ₂ C ₆ H ₅	61.4±2	256.9±8.4	VLPP	1979KIN/NGU	
2-methyl-1-phenylpropane iC_3H_7 - $CH_2C_6H_5$	74.5±1.7	311.7±7.1	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY	
2-methylpropylbenzene iC_4H_9 - C_6H_5	100.7±1.5	421.3±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	

4-phenyl-1-butyne C ₆ H ₅ CH ₂ −CH ₂ C≡CH	61.4±2	256.9±8.4	VLPP	1979KIN/NGU
2-phenyl-propane CH ₃ -CH(CH ₃)C ₆ H ₅	74.6±1.5	312.1±6.3	VLPP	1981ROB/STE
2-phenylbutane C ₂ H ₅ -CH(CH ₃)C ₆ H ₅	73.7±1.5	308.4±6.3	VLPP	1981ROB/STE
tert-butylbenzene CH_3 - $C(CH_3)_2C_6H_5$	72.5±2.0	303.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
((1Z)-prop-1-enyl)benzene CH ₃ -CH ₂ CHCHPh	70.6	295.4	VLPP	1986ROB/STE
1,1-diphenylethane $\mathbf{CH_3}$ - $\mathbf{CH}(C_6\mathbf{H}_5)_2$	71.3	298.3	VLPP	1984ROS/MCM
2,2-diphenylpropane CH ₃ -C(CH ₃)(C ₆ H ₅) ₂	69.5±2	290.8±8.4	VLPP	1981STE
biphenyl $C_6H_5-C_6H_5$	114.4±1.5	478.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
diphenylmethane C_6H_5 – $CH_2C_6H_5$	90.4±2.0	378.2±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
bibenzyl $C_6H_5CH_2CH_2C_6H_5$	62.6±2.2	261.9±9.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
triphenylmethane C_6H_5 -CH(C_6H_5) ₂	86.3±2.0	361.1±8.4	Derived from $\Delta_f H^\circ$ in ref.	1986PED/NAY

Table 4.3 (continued) C-C BDEs in Aromatic Hydrocarbons

The broken bonds (boldface =	BD (bold) recommer references in	face = nded data;	Methods (references in	
dissociated group)	kcal/mol	•	parentheses)	References
tetraphenylmethane $C_6H_5-C(C_6H_5)_3$	77.5±3	324.3±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,1,2,2-tetraphenylethane Ph ₂ CH–CHPh ₂	59.1±2	247.3±8.4	Derived from $\Delta_f H^o$ in ref.	1990BEC/DOG
1,2,2,2-tetraphenylethane PhCH ₂ –CPh ₃	54.8±3.5	229.3±14.6	Derived from $\Delta_{f}H^{o}$ in ref.	1990BEC/DOG
1-methylindene CH ₃	72.4	302.9	VLPP	1986ROB/STE
1-methylnaphthalene CH ₃ -naphth-1-yl	103.8±2.0	434.3±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1988LIA/BAR
2-methylnaphthalene CH ₃ -naphth-2-yl	105.3±2.0	440.6±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
cyclohexylbenzene c-C ₆ H ₁₁ -C ₆ H ₅	98.7±2.0	413.0±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
ethyl-1-naphthalene CH ₃ -1-naphthymethyl	72.9±1.5	305.0±6.3	VLPP	1980MCM/TRE
ethyl-9-anthracene CH ₃ -9-anthracenylmethyl	67.6±1.5	282.8±6.3	VLPP	1980MCM/TRE

ethyl-9-phenanthrene CH ₃ -9-phenanthrenylmethyl	72.9±1.5	305.0±6.3	VLPP	1980MCM/TRE
cyclohexene	74.8	313.0	Derived	1997DOR/PUG
tetralin	72.9	305.0	SPST	1994TSA/CUI

4.4 Halogenated hydrocarbons

Table 4.4 C-C BDEs in Halogenated Hydrocarbons

The broken bonds (boldface =	(bold recommen	DEs face = nded data; n parentheses)	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
tetrafluoroethylene CF ₂ =CF ₂	(1) 76.3	319.2	(1) Pyrolysis, MS detect.	(1) 1968ZMB/UY
-	(2) 68.7	287.4	(2) Derived from $\Delta_f H^\circ$ in ref.	(2) 2002CRC
tetrachloroethylene CCl ₂ =CCl ₂	110.6	462.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
perfluoroethane CF ₃ -CF ₃	(1) 93±2 (2) 98.7±2.5 (3) 96.4±5.2	389.1±8.4 413.0±10.5 403.3±21.8	(1) Pyrolysis (2) Kinetics (3) Review	(1) 1965TSC (2) 1967COO/WHI (3) 2001LAZ/PRO
pentafluoroethane CF ₃ -CHF ₂	95.5±2	399.6±8.4	Derived from $\Delta_f H^o$ in ref.	1975CHE/ROD

Table 4.4 (continued) C–C BDEs in Halogenated Hydrocarbons

The broken bonds (boldface =	(bold recommen	DEs face = nded data; n parentheses)	Methods (references in		
dissociated group)	kcal/mol	kJ/mol	parentheses)	References	
chloropentafluoroethane $\mathbf{CF_3}\text{-}\mathbf{CClF}_2$	89.3±3	373.6±12.5	Derived from $\Delta_f H^o$ in ref.	2002CRC	
1,1,1,2-tetrafluoroethane CF ₃ -CH ₂ F	95±2	397.5±8.4	Derived from $\Delta_f H^o$ in ref.	1975CHE/ROD	
1-bromo-1-chloro-2,2, 2-trifluoroethane CF ₃ -CHBrCl	90.4±2.5	378.2±10.5	Derived from $\Delta_f H^o$ in ref.	2002CRC	
1-bromo-2,2,2-trifluoroethane $\mathbf{CF_3}$ - $\mathbf{CH_2}\mathbf{Br}$	95.0±2	397.5±8.4	Derived from $\Delta_i H^o$ in ref.	2002CRC	
1,1,1-trifluoro-2-iodoethane $\mathbf{CF_3}$ – $\mathbf{CH_2}\mathbf{I}$	97.6±2.5	408.4±10.5	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC	
1,1,1-trifluoroethane CF ₃ -CH ₃	101.2±1.1	423.4±4.6	Kinetics	1973ROD/FOR	
1,1,2,2-tetrafluoroethane CHF ₂ -CHF ₂	91.4±3.7	382.4±15.5	SPST	1971MIL/HAR	
1,2-dichlorotetrafluoroethane CCIF ₂ -CCIF ₂	90.5±3	378.7±12.6	Derived from $\Delta_i H^o$ in ref.	2002CRC	
1,1,2-trifluoroethane CHF ₂ -CH ₂ F	94.2±4	394.1±16.7	Derived from $\Delta_f H^o$ in ref.	1968LAC/SKI	

1,2-difluoroethane CH ₂ F-CH ₂ F	88±2	368.2±8.4	Thermal elimination	1971KER/TIM
1,1-difluoroethane CHF ₂ -CH ₃	96.8±2	405.0±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
fluoroethane CH ₂ F-CH ₃	(1) 90.4±3 (2) 93.2 ±2	378.2±12.6 389.9±8.4	 (1) Derived from Δ_tH° in ref. (2) Derived from Δ_tH° in ref. 	(1) 1975CHE/ROD (2) 1998SMI
1-chloro-1-fluoroethane CHCIF-CH ₃	95.5±3	399.6±12.6	Derived from $\Delta_f H^o$ in ref.	2002CRC
perfluoropronene CF ₃ -CF=CF ₂	85±2.5	355.6±10.5	SPST	1995НЕ
perchloroethane CCl ₃ -CCl ₃	(1) 70.1±3.5 (2) 68.3 ± 1.5	293.3±14.6 285.8±6.3	 (1) Derived (2) Derived from Δ_tH° in ref. 	(1) 1997CIO/LIU (2) 2002CRC
1,1,1,2-tetrachloro-2, 2-difluoroethane CCl ₃ -CClF ₂	67.4±3	282.0±12.6	Derived from $\Delta_f H^o$ in ref.	2002CRC
pentachloroethane CCl ₃ -CHCl ₂	(1) 75.4±3.9 (2) 73.2 ±2	315.5±16.3 306.3±8.4	(1) Derived (2) Derived from $\Delta_f H^o$ in ref.	(1) 1997CIO/LIU (2) 2002CRC
1,1,1,2-tetrachloroethane CCl ₃ –CH ₂ Cl	(1) 82.3±3 (2) 77.4 ± 2	344.3±12.6 323.8±8.4	(1) Derived (2) Derived from $\Delta_t H^o$ in ref.	(1) 1997CIO/LIU (2) 1998NIST

Table 4.4 (continued) C–C BDEs in Halogenated Hydrocarbons

The broken bonds (boldface = dissociated group)	(bold recommen	DEs face = nded data; n parentheses)	Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
1,1,1-trichloroethane CCl ₃ –CH ₃	(1) 87.6±2.0 (2) 86.6±1.5	366.5±8.4 362.3±6.3	(1) Derived(2) Derived from Δ_iH° in ref.	(1) 1997CIO/LIU (2) 2002CRC
1,1,2,2-tetrachloroethane CHCl ₂ -CHCl ₂	(1) 84.0±4.7 (2) 80.3 ±2	351.5±19.7 336.0±8.4	(1) Derived (2) Derived from $\Delta_f H^o$ in ref.	(1) 1997CIO/LIU (2) 2002CRC
1,1,2-trichloroethane CHCl ₂ -CH ₂ Cl	86.5±4.0	361.9±16.7	Derived	1997CIO/LIU
1,1-dichloroethane CHCl ₂ -CH ₃	(1) 89.8±3.3 (2) 87.3 ± 0.8	375.7±13.8 365.1±3.3	Derived	(1) 1997CIO/LIU (2) 1998SEE
1,1-bromochloroethane CHBrCl–CH ₃	91.9	384.5	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
1,2-dibromo-1, 2-dichloro-ethane CHClBr-CHClBr	82.4±3	344.8±12.6	Derived from $\Delta_{_f}$ H $^{\circ}$ in ref.	2002CRC
1,2-dichloroethane CH ₂ Cl–CH ₂ Cl	(1) 87.2±3.3 (2) 86.2 ± 2.0	364.8±13.8 360.7±8.4	 (1) Derived (2) Derived from Δ_fH° in ref. 	(1) 1997CIO/LIU (2) 2002CRC
	(3) 87.1±1.3	364.6 ± 5.3	(3) Derived	(3) 2002LAG/DIO
1,1-dibromoethane CHBr ₂ -CH ₃	89.1	372.8	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
1-bromo-2-chloroethane CH ₂ Br-CH ₂ Cl	89.4	374.0	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

1,2-dibromoethane CH ₂ Br-CH ₂ Br	89.8±2	375.7±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-diiodoethane CH ₂ I-CH ₂ I	92.5±2.5	387.0±10.5	Derived from $\Delta_f H^o$ in ref.	1994CAR/LAY
chloroethane CH ₃ -CH ₂ Cl	89.8±2.2	375.7±9.2	Derived	1997CIO/LIU
bromoethane CH ₃ –CH ₂ Br	90.3±2	377.8±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iodoethane CH ₃ -CH ₂ I	91.9±2	384.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
perfluoropropane $\mathbf{CF_3}\mathbf{CF_2}\mathbf{CF_3}$	101.4±3	424.3±13.6	Derived from $\Delta_i H^o$ in ref.	2002CRC
3,3,3-trifluoroprop-1-yne CF₃–C≡CH	122.7	513.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
3,3,3-trifluoropropene CF ₃ -CH=CH ₂	107±3	447.7±12.6	Derived from $\Delta_f H^o$ in ref.	2002CRC
fluoropropane CH ₃ -CH ₂ CH ₂ F	91.6±3	383.3±12.6	Derived from $\Delta_f H^o$ in ref.	1998SMI
fluoropropane CH ₃ CH ₂ -CH ₂ F	101.5±3	424.7±12.6	Derived from $\Delta_f H^o$ in ref.	1998SMI
1-chloropropane CH ₃ -CH ₂ CH ₂ Cl	88.8±0.6	371.4±2.8	Derived	1998SEE

Table 4.4 (continued) C-C BDEs in Halogenated Hydrocarbons

The broken bonds (boldface =	BD (bold i recommer references in	face = nded data;	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
2-chloropropane CH ₃ -CHClCH ₃	87.8±0.5	367.5±2.0	Derived	1998SEE
1,2-dichloropropane CH ₂ Cl–CHClCH ₃	85.2±2.0	356.5±8.4	Derived from $\Delta_{i}H^{o}$ in ref.	2002CRC
1,3-dichloropropane CH ₂ CI–CH ₂ CCIH ₂	88.2±2	369.0±8.4	Derived from $\Delta_i H^o$ in ref.	2002CRC
2,2-dichlororopane CH ₃ -CCl ₂ CH ₃	86.7±2	362.8±8.4	Derived from $\Delta_i H^o$ in ref.	2002CRC
1,2-dibromopropane CH ₂ Br–CHBrCH ₃	87.8±2	367.4±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
1,3-dichlorobutane CH ₂ CICH ₂ -CHClCH ₃	87.1±2	364.4±8.4	Derived from $\Delta_{_{\!f}}\!H^{\circ}$ in ref.	2002CRC
1,4-dichlorobutane CH ₂ CICH ₂ -CH ₂ CCICH ₂	88.2±2	369.0±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
2,3-dibromobutane CH ₃ CHBr-CHBrCH ₃	85.0±2	355.6±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
1-bromobutane CH ₂ Br-C ₃ H ₇	89.8±2	375.7±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
2-bromobutane CH ₃ CHBr-C ₂ H ₅	87.5±2	366.1±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

1-chlorobutane CH ₂ Cl-C ₃ H ₇	88.7±2	371.1±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chlorobutane CH ₃ CHCl-C ₂ H ₅	85.2±2	356.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-chlorobutane CH ₂ Cl–iC ₃ H ₇	87.1±2	364.4±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-bromopentane CH ₂ Br–nC ₄ H ₉	89.8±2	375.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-chloropentane CH ₂ Cl-nC ₄ H ₉	88.4±2	369.9±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-chloropentane CH ₂ ClCH ₂ -C ₃ H ₇	87.8±2	367.4±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chloro-3-methyl-butane CH ₂ Cl–iC ₄ H ₉	87.6±2	366.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chloro-3-methyl-butane CH ₂ ClCH ₂ -iC ₃ H ₇	86.1±2	360.2±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-bromohexane CH ₂ Cl–nC ₅ H ₁₁	88.8±2	371.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chlorohexane CH ₂ ClCH ₂ -nC ₄ H ₉	85.7±2	358.6±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
fluorononane CH ₂ FCH ₂ -nC ₇ H ₁₃	90.0±3	376.6±12.6	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER

Table 4.4 (continued) C-C BDEs in Halogenated Hydrocarbons

The broken bonds (boldface =	BD (bold) recommer references in	ace = ded data; Method		·	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References	
2,2-difluorononane CH ₃ CF ₂ -nC ₇ H ₁₃	91.2±3	381.6±12.6	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER	
(chloromethyl)benzene $CH_2Cl-C_6H_5$	102.7	429.7	Derived from $\Delta_{f}H^{\circ}$ in ref.	2002VER/KRA	
(bromomethyl)benzene $\mathbf{CH_2Br}$ – $\mathbf{C_6H_5}$	100.3	419.7	Derived from $\Delta_f H^o$ in ref.	2002VER/KRA	
(iodomethyl)benzene $\mathbf{CH_2I-C_6H_5}$	103.4	432.6	Derived from $\Delta_{t}H^{o}$ in ref.	2002VER/KRA	
(trifluoromethyl)benzene $\mathbf{CF_3}$ – $\mathbf{C_6}\mathbf{H_5}$	110.7±3	463.2±12.6	Derived from $\Delta_{_f}$ H $^{\circ}$ in ref.	1994PED	
pentafluorophenylmethane $\mathbf{CH_3}$ – $\mathbf{C_6F_5}$	105.0	439.3	Derived	1975CHO/GOL	
pentafluorophenyl trifluoromethane $\mathbf{CF_3}$ – $\mathbf{C}_6\mathbf{F}_5$	104.0	435.1	Derived	1975CHO/GOL	
(2,2,2-trifluoroethyl)benzene CF ₃ -CH ₂ C ₆ H ₅	86.1±3	360.2±12.6	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER	
(3,3-difluoropropyl)benzene CHF ₂ -CH ₂ CH ₂ C ₆ H ₅	97.8±4	409.2±16.7	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER	

(3,3-difluoropropyl)benzene CHF ₂ CH ₂ -CH ₂ C ₆ H ₅	79.1±3	331.0	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER
bipentafluorophenyl C_6F_5 – C_6F_5	116.7	488.3	Combustion	1979PRI/SAP
(2,2,2-trifluoro-1-phenyl- ethyl)benzene CF ₃ -CHPh ₂	84.2±4	352.3±16.7	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER
(2,2,2-trifluoro-1, 1-diphenyl-ethyl)benzene CF ₃ -CPh ₃	69.5±4	290.8±16.7	Derived from $\Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{o}}$ in ref.	1997SCH/VER
(3-fluoro-1, 1-diphenyl-propyl)benzene CH ₂ FCH ₂ -CPh ₃	65.7±4	279.1±16.7	Derived from $\Delta_{\rm f}{ m H}^{ m o}$ in ref.	1997SCH/VER
(3,3-difluoro-1, 1-diphenyl-propyl)benzene CHF ₂ CH ₂ –CPh ₃	63.1±4	264.0±16.7	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER

4.5 Organic compounds containing heteroatoms

4.5.1 Organic compounds containing oxygen atoms

Table 4.5.1 C-C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =	BD (boldi recommen references in	ace = ded data;	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
ethanol CH ₃ -CH ₂ OH	87.2±1.0	364.8±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2,2-trifluoroethanol CF ₃ -CH ₂ OH	96.9±1.5	405.4±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC

Table 4.5.1 (continued) C-C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =	BDI (boldfa recommend references in	ace = ded data;	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
1-propanol C ₂ H ₅ -CH ₂ OH	85.3±1.2	356.9±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2,3,3-tetrafluoro-1-propanol CHF ₂ CF ₂ -CH ₂ OH	90.7±2	379.5±8.4	Derived from $\Delta_{f}H^{o}$ in ref.	2002CRC
1-butanol C ₃ H ₇ -CH ₂ OH	85.4±0.8	357.3±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-1-propanol iC ₃ H ₇ -CH ₂ OH	84.8±1.0	354.8±4.2	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
1-pentanol C ₄ H ₉ –CH ₂ OH	85.0±1.0	355.6±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-1-butanol sC ₄ H ₉ -CH ₂ OH	84.3±1.0	352.7±4.2	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
3-methyl-1-butanol iC ₄ H ₉ –CH ₂ OH	84.6±1.3	354.0±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexanol nC ₅ H ₁₁ -CH ₂ OH	84.4±1.3	353.1±5.4	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
benzyl alcohol C_6H_5 – CH_2OH	98.8±1.3	413.4±5.4	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY
2-propanol CH ₃ -CH(CH ₃)OH	87.9±1.2	409.6±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

2-butanol C ₂ H ₅ –CH(CH ₃)OH	86.0±1.2	359.8±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-pentanol C ₃ H ₇ -CH(CH ₃)OH	86.1±1.2	360.2±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-methyl-2-butanol iC ₃ H ₇ -CH(CH ₃)OH	83.9±1.3	351.0±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl alcohol CH ₃ –C(CH ₃) ₂ OH	83.5±1.2	349.4±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-2-butanol C_2H_5 – $C(CH_3)_2OH$	81.2±1.2	339.7±5.0	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
3-pentanol C_2H_5 -CH(C_2H_5)OH	84.8±1.2	354.8±5.0	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
ethylene glycol HOH ₂ C-CH ₂ OH	85.6±1.5	358.2±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
1,2-propylene glycol CH ₃ CH(OH)–CH ₂ OH	86.2±1.8	360.7±7.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
1,2-propanediol HOCH ₂ –CH(CH ₃)OH	84.2±1.3	352.3±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,3-butanediol OH(CH ₃)CH–CH(CH ₃)OH	90.5±1.5	378.7±6.3	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY
2-aminoethan-1-ol NH ₂ CH ₂ -CH ₂ OH	80.2±2.5	335.6±10.5	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

Table 4.5.1 (continued) C-C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =	(bold) recommen	DEs face = nded data; parentheses)	Methods (references in		
dissociated group)	kcal/mol	kJ/mol	parentheses)	References	
ethyl methyl ether CH ₃ –CH ₂ OCH ₃	86.8±1.2	363.2±5.0	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
ethyl propyl ether $\mathbf{C_2H_5}$ – $\mathbf{CH_2OCH_3}$	85.3±1.2	356.9±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
1,2-methyloxyethane CH ₃ OCH ₂ -CH ₂ OCH ₃	81.0±2.5	338.9±10.5	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR	
2-ethyl furan	75±2	313.8±8.4	VLPP	1981STE	
6-(tert-butyl)-2-[3-(tert-butyl)-2-hydroxyphenyl]phenyl OH OH OH Me ₃ C CMe ₃	83.1	347.7	EPR	2001LUC/PED	
acetaldehyde CH ₃ –C(O)H	84.8±0.4	354.8±1.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
trichloroacetaldehyde CCl ₃ -C(O)H	73.9±1.2	309.2±5.0	Derived from $\Delta_f H^o$ in ref.	2002CRC	
acetyl fluoride CH ₃ –C(O)F	99.8±1.5	417.6±6.3	Derived from $\Delta_t H^o$ in ref.	2002CRC	

acetyl chloride CH ₃ -C(O)Cl	87.9±1.5	367.8±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
trichloroacetyl chloride CCl ₃ -C(O)Cl	69.1±1.5	289.1±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
dichloroacetyl chloride CHCl ₂ –C(O)Cl	74.7±2	312.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
chloroacetyl chloride CCIH ₂ -C(O)Cl	81.3±2	340.2±8.4	Derived from $\Delta_{f}H^{o}$ in ref.	2002CRC
propanal C ₂ H ₅ –C(O)H	82.7±0.5	346.0±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-2-butenal CH ₃ CH=CH-C(O)H	97.8±2.0	409.2±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
outanal C ₃ H ₇ –C(O)H	82.7±1.0	346.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpropanal C ₃ H ₇ –C(O)H	82.5±1.2	345.2±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentanal nC ₄ H ₉ -C(O)H	83.2±0.7	348.1±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
neptanal ${\sf nC_6H_{13}C(O)H}$	81.0±2.0	338.9±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
oenzaldehyde C ₆ H ₅ -C(O)H	97.6±1.0	408.4±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY

Table 4.5.1 (continued) C–C BDEs in Organic Compounds Containing Oxygen Atoms

	рг	DEs	0 ,0	
The broken bonds (boldface =	(bold recommen	face = nded data; parentheses)	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
propanal CH ₃ -CH ₂ C(O)H	82.0±2.4	343.1±10.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butanal C ₂ H ₅ -CH ₂ C(O)H	79.8±2.5	333.9±10.5	Derived from $\Delta_{_f}$ H $^{\circ}$ in ref.	1986PED/NAY
pentanal C ₃ H ₇ -CH ₂ C(O)H	80.9±2.5	338.5±10.5	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
heptanal C_5H_{11} – $CH_2C(O)H$	78.5±3	328.4±12.6	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
3-phenylpropanone $C_6H_5CH_2$ - $CH_2C(O)H$	67.9±1.5	284.1±6.3	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
dimethyl ketone CH ₃ -C(O)CH ₃	84.1±0.5	351.9±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
bromoacetone CH ₂ Br–C(O)CH ₃	85.9±1.5	359.4±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
chloroacetone CH ₂ I-C(O)CH ₃	83.5±2.5	349.4±10.5	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
ethyl methyl ketone CH_3 – $C(O)C_2H_5$	84.3±0.5	352.7±2.1	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
ethyl methyl ketone C_2H_5 – $C(O)CH_3$	83.0±0.7	347.3±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

diethyl ketone C_2H_5 – $C(O)C_2H_5$	82.3±1.2	344.3±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl propyl ketone C_3H_7 – $C(O)CH_3$	83.3±0.7	348.5±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl propyl ketone C_3H_7 – $C(O)C_2H_5$	82.3±1.3	344.3±5.4	Derived from $\Delta_f H^o$ in ref.	1994PED
iso-propyl methyl ketone iC_3H_7 – $C(O)CH_3$	81.3±0.9	340.2±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iso-propyl ethyl ketone iC_3H_7 – $C(O)C_2H_5$	81.6±1.5	341.4±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
butyl methyl ketone nC ₄ H ₇ -C(O)CH ₃	82.9±1.3	346.9±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl methyl ketone tC ₄ H ₉ -C(O)CH ₃	78.7±1.0	329.3±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl ethyl ketone tC_4H_9 – $C(O)C_2H_5$	78.8±1.0	329.7±4.2	Derived from $\Delta_f H^o$ in ref.	1994PED
benzyl methyl ketone C ₆ H ₅ CH ₂ -C(O)CH ₃	70.1±2	293.3±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
benzyl phenyl ketone $C_6H_5CH_2$ – $C(O)C_6H_5$	71.2±3	297.9±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl methyl ketone CH ₃ –CH ₂ C(O)CH ₃	86.5±3	361.9±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.5.1 (continued) C–C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =	(boldf recommen	BDEs (boldface = recommended data; references in parentheses)			
dissociated group)	kcal/mol	kJ/mol	(references in parentheses)	References	
butyl methyl ketone C ₃ H ₇ -CH ₂ C(O)CH ₃	82.4±1.5	344.8±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC	
trifluoromethyl phenyl ketone CH ₃ -C(O)C ₆ H ₅	85.0	355.6	Photolysis	1997ZHA/CHE	
trifluoromethyl phenyl ketone $\mathbf{CF_3}$ – $\mathbf{C(O)C_6H_5}$	73.8±2	308.8±8.4	VLPP	1977COL/ZAB	
ethyl phenyl ketone C_2H_5 – $C(O)C_6H_5$	82.2±2.8	343.9±11.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
diphenyl ketone C_6H_5 – $C(O)C_6H_5$	94.7±4	396.2±16.7	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR	
benzyl phenyl ketone PhCH ₂ -C(O)Ph	71.2±3.5	297.9±14.6	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
bibenzyl ketone PhCH ₂ -C(O)CH ₂ Ph	65.4	273.6	Review	1982MCM/GOL	
1,2-propanedione CH ₃ C(O)–C(O)H	72.3±2.0	302.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC	
biacetyl CH ₃ C(O)-C(O)CH ₃	73.4±1.0	307.1±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	

bibenzoyl C ₆ H ₅ C(O)–C(O)C ₆ H ₅	68.9±4	288.3±16.7	Review	1982MCM/GOL
2,4-pentanedione CH ₃ C(O)-CH ₂ C(O)CH ₃	80.8±2	338.1±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
acetic acid CH ₃ -C(O)OH	92.0±2	384.9±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
trifluoroacetic acid CF ₃ –C(O)OH	88.6±2	370.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
chloroacetic acid CCIH ₂ –C(O)OH	85.5±2	357.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
bromoacetic acid CH ₂ Br–C(O)OH	85.6±2	358.2±8.4	Derived from $\Delta_f H^o$ in ref.	2001DOR/NOV
glycine NH ₂ CH ₂ -C(O)OH	83.5±2	349.4±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
N-methylglycine CH ₃ NHCH ₂ -C(O)OH	71.8±2	300.4±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
propenoic acid C ₂ H ₃ –C(O)OH	104.1±2	435.5±8.4	Derived from $\Delta_f H^o$ in ref.	1998NIST
propanoic acid C ₂ H ₅ –C(O)OH	90.8±1.5	379.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-chloropropanoinc acid CH ₃ CHCl–C(O)OH	85.5±2	357.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

Table 4.5.1 (continued) C–C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
butanoic acid C ₃ H ₇ –C(O)OH	91.0±1.5	380.7±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentanoic acid C ₄ H ₉ -C(O)OH	89.7±1.5	375.3±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
3-methylbutanoic acid $\mathbf{sC_4H_9}$ –C(O)OH	91.6±3	383.3±12.6	Derived from $\Delta_{_f}H^o$ in ref.	1986PED/NAY
2,2-dimethylpropanoic acid tC ₄ H ₉ -C(O)OH	82.5±4	345.2±16.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexanoic acid C ₅ H ₁₁ –C(O)OH	88.8±1.5	371.5±6.3	Derived from $\Delta_{f}H^{o}$ in ref.	1994PED
heptanoic acid C ₆ H ₁₃ -C(O)OH	89.7±1.5	375.3±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
benzoic acid Ph-C(O)OH	102.7±2	429.7±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
2-phenylacetic acid PhCH ₂ -C(O)OH	67	280.3	Review	1970ONE/BEN
diphenylacetic acid Ph ₂ CH–C(O)OH	59.4±3	248.5±12.6	Review	1970ONE/BEN
naphthlene-1-carboxylic acid $C_{10}H_7$ -1-C(O)OH	102.8±2.0	430.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

naphthlene-2-carboxylic acid $C_{10}H_7$ -2-C(O)OH	104.8±2.0	438.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
glycolic acid HOCH ₂ –C(O)OH	88.8±1.3	371.5±5.4	Derived from $\Delta_f H^o$ in ref.	2001DOR/NOV
oxalic acid HOC(O)-C(O)OH	80.0±1.5	334.7±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
sarcosine CH ₃ NHCH ₂ –C(O)OH	72.0±4	301.2±16.7	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
L-alanine CH ₃ CH(NH ₂)–C(O)OH	79.2±4	331.4±16.7	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
acetic acid methyl ester CH ₃ -C(O)OCH ₃	86.2±3	360.7±12.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl acrylate C ₂ H ₃ -C(O)OCH ₃	110.7±1.5	463.2±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
butanoic acid C ₂ H ₅ -CH ₂ C(O)OH	81.9±3	342.7±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
β-alanine NH ₂ CH ₂ -CH ₂ C(O)OH	77.1±4	322.6±16.7	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
dimethyl oxalate CH ₃ OC(O)–C(O)OCH ₃	76.3±1.5	319.2±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
diketene O=C=CH -CH=C=O	129.3±2.5	541.0±10.5	Derived from $\Delta_f H^\circ$ in ref.	2002CRC

Table 4.5.1 (continued) C–C BDEs in Organic Compounds Containing Oxygen Atoms

The broken bonds (boldface =		BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated gr		kcal/mol	kJ/mol	parentheses)	References
2-chlorooxirane		89.8±2.5	375.7±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyoxirane		93.5±2.5	391.2±10.5	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
proline NH C(O)OH		74.6±2.5	312.1±10.5	Derived from $\Delta_{_f}H^\circ$ in ref.	1988LIA/BAR

4.5.2 Organic compounds containing nitrogen atoms

Table 4.5.2 C-C BDEs in Organic Compounds Containing Nitrogen Atoms

The broken bonds (boldface =		BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated		kcal/mol	kJ/mol	parentheses)	References
cyanogen CN-CN		(1) 137.7±1.6	576.1±6.7	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
		(2) 137.1	573.6	(2) Derived	(2) 2002MAT/LEB
formyl cyanide HC(O)– CN		109.3±2	457.3±8.4	Derived from $\Delta_f H^o$ in ref.	1996BOR/ING
thioformyl cyani HC(S)-CN	de	127.2±2	532.2±8.4	Derived from $\Delta_f H^o$ in ref.	1996BOR/ING
trifluoroacetonit CF ₃ -CN	rile	134.1±2	561.0±8.4	Derived	1982MCM/GOL

acetonitrile CH ₃ -CN	(1) 125.2±2.2	523.8±9.2	(1) Derived from $\Delta_f H^o$ in ref.	(1) 1986PED/NAY
	(2) 124.7	521.7	(2) Derived	(2) 2002MAT/LEB
ethynylnitrile CH=C- CN	143.9	602.1	Photolysis	1973OKA/DIB
2-propenenitrile CH ₂ CH– CN	133.9±1.8	560.2±7.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
propanenitrile C ₂ H ₅ - CN	121.6±1.8	508.7±7.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-butenenitrile CH ₂ CH=CH ₂ - CN	111.4±2	466.1±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
butanenitrile C ₃ H ₇ -CN	121.3±2.0	507.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpropanenitrile iC ₃ H ₇ -CN	120.9±2.0	505.8±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentanenitrile nC ₄ H ₉ -CN	121.6±2.0	508.8±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2-dimethylpropanenitrile tC_4H_9 – CN	117.7±2.0	492.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclobutanecarbonitrile c-C ₄ H ₇ - CN	122.7±2.0	513.4±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclopentanecarbonitrile $c-C_5H_9$ – CN	120.5±2.0	504.2±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.5.2 (continued) C–C BDEs in Organic Compounds Containing Nitrogen Atoms

The broken bonds (boldface =		(bold recommen	DEs face = nded data; n parentheses)	Methods (references in	
`	ted group)	kcal/mol	kJ/mol	parentheses)	References
cyclohexanec c-C ₆ H ₁₁ - CN	carbonitrile	122.4±2.0	512.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
benzonitrile C_6H_5 – CN		132.8±2.0	555.6±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
heptanenitril nC ₆ H ₁₃ - CN	e	120.9±2.0	505.8±8.4	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
propanenitril CH ₃ –CH ₂ CN		83.2±3	348.1±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butanenitrile C ₂ H ₅ -CH ₂ CN		(1) 76.9±1.7 (2) 80.8±2	321.7±7.1 338.1±8.4	(1) VLPP (2) Derived from $\Delta_f H^o$ in ref.	(1) 1975KIN/GOD (2) 1986PED/NAY
3-butenenitri C ₂ H ₃ -CH ₂ CN		110.4±2	461.9±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
pentanenitril nC ₃ H ₇ -CH ₂ C		81.7±3	341.8±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylbuta iC ₃ H ₇ -CH ₂ Cl		73±2	305.4±8.4	VLPP	1975KIN/GOD
heptanenitril nC_5H_{11} – CH_2C_5		80.8±3	338.1±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

octanenitrile nC ₆ H ₁₃ -CH ₂ CN	80.5±3	336.8±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methylpropanenitrile CH ₃ -CH(CH ₃)CN	(1) 78.8±2 (2) 79.5 ±2	329.7±8.4 332.6±8.4	 (1) VLPP (2) Derived from Δ_fH° in ref. 	(1) 1975KIN/GOD (2) 1986PED/NAY
2,2-dimethyl propanenitrile CH ₃ -C(CH ₃) ₂ CN	(1) 74.7±1.6 (2) 81.4±4	312.5±6.7 340.6±16.7	 (1) VLPP (2) Derived from Δ_fH° in ref. 	(1) 1976KIN/GOD (2) 1998NIST
propanedinitrile (CN)CH ₂ – CN	102.4±3	428.4±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butanedinitrile (CN)CH ₂ -CH ₂ CN	70.7±4	295.8±16.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tetramethylbutanedinitrile (CN)C(CH ₃) ₂ -C(CH ₃) ₂ CN	61.2±3	256.1±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methy-2-phenyl- propanenitrile CH ₃ -C(CH ₃)(CN)C ₆ H ₅	59.9	250.6	Pyrolysis	1982MEO
pyridine, substituted R -pyridyl				
4 3 1 N				
R = 2-Me	(1) 97.9±2	409.6±8.4	(1) Derived from $\Delta_f H^o$ in ref.	(1) 1986PED/NAY
3-Me	(1) 103.2±2	431.8±8.4		
4-Me	(1) 103.7±2	433.9±8.4		
2-CH ₂ Ph	(2) 86.7	362.8	(2) VLPP	(2) 1984ROS/MCM

 Table 4.5.2 (continued)
 C-C BDEs in Organic Compounds Containing Nitrogen Atoms

The broken bonds (boldface = dissociated group)	BDEs (boldface = recommended data; references in parentheses)		Methods	
	kcal/mol	kJ/mol	(references in parentheses)	References
2-methyl-piperidine CH ₃ -pyrerid-2-yl	83.4±2	348.9±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-piperidine CH ₃ -pyrerid-2-yl	83.4±2	348.9±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-ethylpyridine CH ₃ -2-pyridylmethyl	75.5±2.9	315.9±12.1	VLPP	1981BAR/STE
3-ethylpyridine CH ₃ -3-pyridylmethyl	73.9±2.6	309.2±10.9	VLPP	1981BAR/STE
4-ethylpyridine CH ₃ -4-pyridylmethyl	74.6±2.6	312.1±10.9	VLPP	1981BAR/STE
ethylamine CH ₃ -CH ₂ NH ₂	82.7±2.3	346.0±9.6	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
propylamine C ₂ H ₅ –CH ₂ NH ₂	81.5±2.3	341.0±9.6	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
phenylmethylamine $\mathbf{C_6H_5}\!\!-\!\!\mathrm{CH_2}\!\mathrm{NH_2}$	94.2±2.5	394.1±10.5	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
benzyl methylamine C ₆ H ₅ CH ₂ -CH ₂ NH ₂	68.0±2	284.5±8.4.0	Pyrolysis	1977COL/BEN
2-propylamine CH ₃ -CH(CH ₃)NH ₂	81.8±2.3	342.3±9.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

2-methylpropylamine CH ₃ -C(CH ₃) ₂ NH ₂	73.4±2.5	307.1±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-ethanediamine NH ₂ CH ₂ -CH ₂ NH ₂	68.4±3	286.2±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-propanediamine NH ₂ CH ₂ -CH(CH ₃)NH ₂	75.8±3	317.1±12.6	Derived from $\Delta_{\rm f}{ m H^o}$ in ref.	1986PED/NAY
2-methyl-1,2-propanediamine NH ₂ CH ₂ -C(CH ₃) ₂ NH ₂	74.6±3	312.1±12.6	Derived from $\Delta_{\rm f}{ m H^o}$ in ref.	1986PED/NAY
2-(2-pyridyl)pyridine NC ₅ H ₄ -C ₅ H ₄ N	103.9±3	434.7±12.6	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
2-methylpiperidine NH **CH ₃	83.9±3	351.0±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

4.5.3 Organic compounds containing sulfur atoms

 Table 4.5.3
 C-C BDEs in Organic Compounds Containing Sulfur Atoms

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
ethylthiol CH ₃ -CH ₂ SH	82.5±2.2	345.2±9.2	Derived from $\Delta_{\rm f}{ m H}^{ m o}$ in ref.	1986PED/NAY
1-propanethiol C ₂ H ₅ –CH ₂ SH	80.9±2.4	338.5±10.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-butanethiol C ₃ H ₇ –CH ₂ SH	81.1±2.5	339.3±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 4.5.3 (continued) C-C BDEs in Organic Compounds Containing Sulfur Atoms

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
2-methyl-1-propanethiol iC₃H₁–CH₂SH	80.6±2.5	337.2±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-pentanethiol C ₄ H ₉ -CH ₂ SH	81.2±2.5	339.7±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-1-butanethiol $\mathbf{sC_4H_9}$ –CH ₂ SH	80.0±2.5	334.7±10.5	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
3-methyl-1-butanethiol iC ₄ H ₉ –CH ₂ SH	80.5±2.5	336.8±10.5	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
2,2-dimethyl-1-propanethiol tC ₄ H ₉ –CH ₂ SH	78.7±2.5	329.3±10.5	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
1-hexanethiol nC ₅ H ₁₁ -CH ₂ SH	80.3±2.5	336.0±10.5	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
1-heptanethiol nC ₆ H ₁₃ -CH ₂ SH	80.2±2.5	335.6±10.5	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
phenylmethane-1-thiol C_6H_5 -CH $_2$ SH	93.2±2.5	389.9±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-ethanethiol HSCH ₂ -CH ₂ SH	74.9±2.8	313.4±11.7	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1986PED/NAY
ethyl methyl sulfide CH ₃ -CH ₂ SCH ₃	82.0±2.0	343.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

methyl propyl sulfide C ₂ H ₅ -CH ₂ SCH ₃	80.8±2.0	338.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl phenyl sulfide CH ₃ -CH ₂ SC ₆ H ₅	80.9±2.0	338.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dibenzyl sulfide C ₆ H ₅ -CH ₂ SC ₆ H ₅	97.1±2.0	406.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

chapter five

Tabulated BDEs of C-halogen bonds

5.1 C–F bonds

Table 5.1 C-F BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
cyanogen fluoride F–CN	112.3±1.2	469.9±5.0	AE	1978DAY/GOW	
tetrafluoromethane F -CF ₃	129.6±1.0	542.2±4.2	Recommend.	1998CHA	
trifluoromethane F-CHF ₂	(1) 127 (2) 127.6 ± 1.4	531.4 533.9±5.9	(1) Bromination (2) Review	(1) 1987TSC/PAD (2) 2001LAZ/PRO	
difluoromethane F–CH ₂ F	118.6±2.1	496.2±8.8	Review	2001LAZ/PRO	
chlorofluoromethane F-CF ₂ Cl	117±6	489.5±25.1	Kinetics	1972FOO/TAI(b)	
dichlorofluoromethane F-CFCl ₂	110±6	460.2±25.1	Kinetics	1972FOO/TAI(b)	

The broken bonds (boldface =	(bold recomme	DEs Iface = ended data; n parentheses	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
chlorodifluoromethane F-CHFCl	110.5±2.4	462.3±10.0	Derived	1987TSC/PAD
chlorofluoromethane F-CH ₂ Cl	111.2±2.3	465.3±9.6	Derived	1987TSC/PAD
fluoroiodomethane F–CH ₂ I	≤110.0	≤460.2	Infrared chemiluminescenc	2002ARU/VIJ e
fluoromethane F-CH ₃	(1) 112.8 (2) 110.0 ± 2.0	472.0 460.2±8.4	 (1) Review (2) Derived from Δ_tH° in ref. 	(1) 1988LIA/BAR (2) 1998CHA
	(3) 109.8±1.2	459.4±5.0	(3) Review	(3) 2001LAZ/PRO
difluoroethyne F–C≡CF	124±5	518.8±21	Review	1996ZAR/WES
tetrafluoroethylene F-CF=CF ₂	130.6±3	546.4±12.6	Derived from $\Delta_t H^o$ in ref.	2002CRC
hexafluoroethane F-CF ₂ CF ₃	(1) 126.8±1.8 (2) 127.2 ± 1. 5		(1) Derived (2) Review	(1) 1982MCM/GOL (2) 2001LAZ/PRO
1,1,1,2-tetrafluoroethane F–CH ₂ CF ₃	109.4	457.7	Derived	1975CHE/ROD
1,1,1-trifluoroethane F-CF ₂ CH ₃	124.8±2	522.2±8.4	Derived	1975CHE/ROD

vinyl fluoride \mathbf{F} – $\mathbf{C}_2\mathbf{H}_3$		123.7±3	517.6±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
fluoroethane $F-C_2H_5$		113.1±2	473.1±8.4	Derived from $\Delta_f H^o$ in ref.	1998SMI
1-fluopropane F–C ₃ H ₇		(1) 111.1±3	464.8±12.6	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
37		(2) 113.5±2	474.9±8.4	(2) Derived from $\Delta_t H^o$ in ref.	(2) 1998SMI
2-fluopropane F–iC ₃ H ₇		(1) 110.1±5	460.7±20.9	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
1 103117		(2) 115.4 ± 2	482.8±8.4	(2) Derived from $\Delta_t H^o$ in ref.	(2) 1998SMI
2-fluoro-2-met F-tC ₄ H ₉	thylpropane	117.0±2	489.5±8.4	Derived from $\Delta_f H^o$ in ref.	1998SMI
fluorobenzene F-C ₆ H ₅		125.6±2	525.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
hexafluoroben F-C ₆ F ₅	nzene	114	477.0	Derived	1975CHO/GOL
fluorocyclohex F-c-C ₆ H ₁₁	xane	117.4±2	491.2±8.4	Derived from $\Delta_f H^o$ in ref.	1997SCH/VER
(fluoromethyl) $F-CH_2C_6H_5$)benzene	97.6±2	408.4±8.4	Derived from $\Delta_t H^o$ in ref.	(1) 1997SCH/VER
1-C11 ₂ C ₆ 11 ₅					(2) 2002VER/KRA
formyl fluorid F-COH	le	119.0±2.5	497.9±10.5	Derived from $\Delta_f H^o$ in ref.	1998CHA

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
fluoroformyl fluoride F-COF	127.9±3	535.1±12.6	PIMS	1995BUC/JOH	
acetyl fluoride F-C(O)CH ₃	122.3±3	511.7±12.6	Derived from $\Delta_f H^o$ in ref.	2002CRC	

5.2 C–CI bonds

Table 5.2 C-CI BDEs

The broken bonds (boldface =	(boldi recommer	BDEs (boldface = recommended data; references in parentheses)			
dissociated atom)	kcal/mol	kJ/mol	(references in parentheses)	References	
cyanogen chloride Cl-CN	(1) 100.8±1.2 (2) 101.5 ± 2.0	421.7±5.0 424.7±8.4	(1) AP (2) Derived from $\Delta_f H^o$ in ref.	(1) 1978DAY/GOW (2) 2002CRC	
trichlorofluoromethane $\mathbf{Cl}\text{-}\mathbf{CFCl}_2$	(1) 72±2 (2) 70.5	301.2±8.4 295.0	(1) Kinetics(2) Electron capture detection	(1) 1972FOO/TAI(b) (2) 1989CHE/ALB	
dichlorodifluoromethane CI-CF ₂ Cl	(1) 76±2 (2) 73.4±2.5 (3) 76.4 ± 2.0	318.0±8.4 307.1±10.5 319.7±8.4	 (1) Kinetics (2) Electron capture detection (3) Derived from Δ_tH° in ref. 	(1) 1972FOO/TAI(b) (2) 1989CHE/ALB (3) 2002CRC	
chlorotrifluoromethane $\mathbf{Cl}\text{-}\mathbf{CF}_3$	(1) 86.1±0.8 (2) 86.2±3	360.2±3.3 360.7±12.6	(1) Kinetics (2) Kinetics	(1) 1967COO/WHI (2) 1983MAR/PAR	

	(3) 85.8 ± 1.3 (4) 89.1	359.0 ± 5.4 372.8	(3) Review (4) Electron capture detection	(3) 1998CHA (4) 1989CHE/ALB
chlorofluoromethane Cl–CH ₂ F	84.7±2.8	354.4±11.7	Derived	1987TSC/PAD
dichlorofluoromethane Cl-CHFCl	(1) 82.7±3.2 (2) 83.4	346.0±13.4 348.9	(1) Derived (2) Electron capture detection	(1) 1987TSC/PAD (2) 1989CHE/ALB
tetrachloromethane Cl-CCl ₃	(1) 70.4±1 (2) 70.8±1.3 (3) 70 (4) 70.9	294.6±4.2 296.2±5.4 292.9 296.6	(1) Bromination (2) Correlation (3) Derived (4) Review	(1) 1973MEN/GOL (2) 1978KAT/RAJ (3) 1983WEI/BEN (4) 2001LAZ/PRO
trichloromethane Cl-CHCl ₂	(1) 76.2 (2) 80.9±1 (3) 73.6	318.8 338.5±4.2 307.9	(1) Correlation (2) Derived (3) Electron capture detection	(1) 1978KAT/RAJ (2) 1987TSC/PAD (3) 1989CHE/ALB
dichloromethane Cl–CH ₂ Cl	(4) 76.6±1.5 (1) 79.3 (2) 80.9±1.0 (3) 77.9	331.8 338.5 325.9	(1) Correlation (2) Derived (3) Electron capture detection	(4) 2001LAZ/PRO (1) 1978KAT/RAJ (2) 1987TSC/PAD (3) 1989CHE/ALB
	(4) 80.8 (5) 78.5	338.1 328.4	(4) Review(5) Correlation	(4) 2001LAZ/PRO (5) 1995DEN
chloroiodomethane Cl-CH ₂ I	≤ 72.0	≤ 301.2	Infrared chemiluminescence	2002ARU/VIJ
chloromethane CI–CH ₃	83.7±0.4	350.2±1.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

The broken bonds (boldface = dissociated atom)	BD (boldf recommen references in kcal/mol	ace = ded data;	Methods (references in parentheses)	References
chloroethyne Cl-C≡CH	104.1±2	435.6±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
2-chloroethanenitrile Cl-CH ₂ CN	63.9	267.4	CID	2002POU/UPS
(Z)-1,2-dichloroethylene (Z)-ClCH=CH–Cl	88.2	369.0	Electron capture detection	1989CHE/ALB
(E)-1,2-dichloroethylene (E)-ClCH=CH-Cl	88.4	369.9	Electron capture detection	1989CHE/ALB
1,2-dichloroethylene g-CH2=CCl-Cl	93.4	390.8	Electron capture detection	1989CHE/ALB
1,1,2-trichloroethylene CICH=CCl-Cl	93.6	391.6	Electron capture detection	1989CHE/ALB
tetrachloroethylene CCl ₂ =CCl- C I	91.7	383.7	Electron capture detection	1989CHE/ALB
vinyl chloride Cl-CH=CH ₂	91.7±1.0	383.7±4.2	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
chlorotrifluoroethylene Cl-CF=CF ₂	103.9±2	434.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

chloropentafluoroethane Cl-CF ₂ CF ₃	(1) 82.7±1.7 (2) 78±2 (3) 82.0±1.2	346.0±7.1 326.4±8.4 343.1±5.0	Kinetics	(1) 1967COO/WHI (2) 1972FOO/TAI(b) (3) 1989TAC/SAL
dichlorotetrafluoroethane CI-CF ₂ CF ₂ Cl	(1) 78±2 (2) 79.2±5	326.4±8.4 331.4±20.9	Kinetics	(1) 1972FOO/TAI(b) (2) 1989TAC/SAL
1,1,1-trichloro-2, 2,2-trifluoroethane Cl-CCl ₂ CF ₃	(1) 71 (2) 73.6	297.1 307.9	Correlation	(1) 1978KAT/RAJ (2) 1995DEN
hexachloroethane Cl-CCl ₂ CCl ₃	(1) 72.6 (2) 71.7 (3) 71.5	303.8 300.0 299.2	(1) Photochlorin.(2) Correlation(3) Derived	(1) 1969FRA/HUY (2) 1995DEN (3) 1997CIO/LIU
pentachloroethane Cl-CHClCCl ₃	79.0±1	330.5±4.2	Pyrolysis	1982BEN/WEI
pentachloroethane Cl-CCl ₂ CHCl ₂	(1) 67.8 (2) 74.5	283.7 311.7	(1) Derived (2) Correlation	(1) 1997CIO/LIU (2) 1995DEN
1,1,1,2-tetrachloroethane Cl–CCl ₂ CH ₂ Cl	76.0	318.0	Correlation	1995DEN
1,1,1-trichloroethane Cl–CCl ₂ CH ₃	(1) 70 (2) 78.5	292.9 328.4	Correlation	(1) 1978KAT/RAJ (2) 1995DEN
1,1-dichloroethane CI–CHClCH ₃	(1) 79.5±2.1 (2) 78.4 ± 0.4	332.6±8.8 327.9 ±1.8	Derived	(1) 1997CIO/LIU (2) 1998SE
1,2-dichloroethane Cl-CH ₂ CH ₂ Cl	(1) 79.1	331.0	(1) Electron capture detection	(1) 1989CHE/ALB
	(2) 83.2±2.3 (3) 82.5 ± 1.2	348.1±9.6 345.1±5.0	(2) Derived (3) Derived	(2) 1997CIO/LIU (3) 1998SEE

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
1,1-bromochloroethane Cl–CHBrCH ₃	79.3±2.0	331.8±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
chloroethane Cl-CH ₂ CH ₃	84.2±0.8	352.3±3.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-chloro-1-propene CI-CH ₂ CH=CH ₂	71.3±1.2	298.3±5.0	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
3-chloro-2-methyl-1-propene CI-CH ₂ C(CH ₃)=CH ₂	66.2	277.0	Correlation	1995DEN
1-chloropropane Cl–nC ₃ H ₇	84.3±1.0	352.7±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,3-dichloropropane CI–CH ₂ CH ₂ CH ₂ Cl	83.4	348.9	Electron capture detection	1989CHE/ALB
2-chloropropane Cl−iC₃H ₇	84.6±1.5	354.0±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,4-dichloro-2-butene Cl-CH ₂ CH=CHCH ₂ Cl	67.0	280.3±6.3	Correlation	1995DEN
1-chlorobutane CI - nC_4H_9	84.5±1.0	353.5±4.2	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
1-chloro-2-methylpropane Cl -i C_4H_9	83.8±1.5	350.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

2-chlorobutane Cl-sC ₄ H ₉	83.7±1.5	350.2±6.3	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-chloro-2-methylpropane $Cl-tC_4H_9$	84.1±1.5	351.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-chloropentane Cl–nC ₅ H ₁₁	83.8±1.5	350.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-chloro-2-methylbutane CI - $C(CH_3)_2(C_2H_5)$	84.3±1.5	352.7±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-chlorohexane Cl–CH(CH ₃)(C ₄ H ₉)	84.8±1.5	354.8±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
chlorocyclohexane Cl–cycloC ₆ H ₁₁	86.1±2	360.2±6.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
chlorobenzene, substituted				
CI				
Y = H	(1) 95.5±1.5	399.6±6.3	(1) Derived from	(1) 1986PED/NAY
	(2) 95.1±2.5	397.9±10.5	Δ _t H° in ref. (2) Electron capture detection	(2) 1989CHE/ALB
2-Cl	(2) 92.2	385.8		
3-Cl	(2) 89.9	376.1		
4-Cl	(2) 93.7	392.0		
2-Me	(2) 93.7	392.0		
2-CF ₃	(2) 93.0	389.1		
4-CF ₃	(2) 93.0	389.1		
3-CH ₃ CO	(2) 92.2	385.8		
4-CH ₃ CO	(2) 91.4	382.4		

Table 5.2 (continued) C-CI BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
3-F-4-Cl	(2) 91.6	383.3			
2-CF ₃ -4-Cl	(2) 90.3	377.8			
3,5-Cl ₂	(2) 94.5	395.4			
2,4,5-Cl ₃	(2) 94.4	395.0			
chloropentafluorobenzene $\operatorname{Cl-C_6F_5}$	91.6±2	383.3±8.4	Derived	1982MCM/GOL	
chlorocyclohexane Cl-C ₆ H ₁₁	85.1±2	356.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
trichloro phenyl methane $\text{Cl-CCl}_2\text{C}_6\text{H}_5$	66.5	278.2	Correlation	1995DEN	
benzyl chloride CI–CH ₂ C ₆ H ₅	(1) 72.9±2	305.0±8.4	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY	
	(2) 71.6	299.6	*	(2) 1992AND/GOR	
benzyl chloride, substituted CH ₂ + CI					
Y = 3-F	68.5	286.8	Correlation	1998DEN	
4-F	69.1	289.0			
3-Cl	69.1	289.0			
3-Me	69.1	289.0			
4-Me	69.9	292.5			
3-CF ₃	68.4	286.2			
3-MeO	69.2	289.6			

4-tBu	69.8	291.9		
4-CN	67.0	280.3		
3,4-Cl ₂	68.3	285.6		
3,5-Cl ₂	66.7	279.2		
3,5-(CF ₃) ₂	66.3	277.6		
1-chloronaphthalene Cl-1-naphthyl	(1) 93.4±3	390.8±12.6	(1) Electron capture detection	(1) 1989CHE/ALB
	(2) 96.3 ± 2.7	402.9±11.3	(2) Derived from $\Delta_f H^o$ in ref.	(2) 1986PED/NAY
2-chloronaphthalene Cl-2-naphthyl	91.9±2.7	384.5±11.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-adamantyl chloride Cl-1-adamantyl	(1) 83.8±3	350.6±12.6	Derived from $\Delta_t H^0$ in ref.	(1) 1999FLO/DAV
Cr 1 udumurty1	(2) 90.4±3	378.2±12.6	ди исте.	(2) 2002LI/BAE
2,2,2-trichloroethanenitrile CNCCl ₂ –Cl	62.2	260.2	Correlation	1995DEN
2,2-dichloroethanenitrile CNCHCl-Cl	70.7	295.8	Correlation	1995DEN
carbonyl chloride Cl–C(O)Cl	76.2±2	318.8±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
acetyl chloride Cl-C(O)CH ₃	84.6±2	354.0±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chloroacetyl chloride Cl-CH ₂ C(O)Cl	64.7	270.7	Correlation	1995DEN

The broken bonds (boldface =	BDI (boldfa recommend references in p	ace = ded data;	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
benzoyl chloride Cl–C(O)C ₆ H ₅	81.5±2	341.0±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chloro-1-phenylethan-1-one Cl–CH ₂ C(O)C ₆ H ₅	73.9	309.0	VLPP	1999DOR/HEM
2-chloroacetic acid Cl-CH ₂ C(O)OH	(1) 66.6 (2) 74.3 ± 0.5	278.7 310.9±2.2	(1) Correlation (2) Calorimetry	(1) 1995DEN (2) 2001LAG/DIO
2,2-dichloroacetic acid CI–CCIHC(O)OH	67.2	281.2	Correlation	1995DEN
2,2,2-trichloroacetic acid CI–CCl ₂ C(O)OH	66.3	277.4	Correlation	1995DEN
methyl 2-chloroacetate Cl-CH ₂ C(O)OCH ₃	72.1	301.7	Correlation	1995DEN
ethyl 2,2-dichloroacetate CI–CCIHC(O)OC ₂ H ₅	68.8	287.9	Correlation	1995DEN
ethyl 2,2,2-trichloroacetate CI–CCl ₂ C(O)OC ₂ H ₅	66.7	279.1	Correlation	1995DEN
phenyl 2-chloroacetate Cl-C(O)OC ₆ H ₅	(1) 81 (2) 87	338.9 364.0	(1) PAC (2) PAC, revised	(1) 1989SIM/GRI (2) 1999LAA/MUL

diethyl 2, 2-dichloropropane-1,3-dioate Cl-CCl(C(O)OEt) ₂	67.3	281.6	Correlation	1995DEN
chlorothioformyl chloride Cl-C(S)Cl	63.4±0.5	265.3±2.1	Photolysis	1977OKA

5.3 C–Br bonds

Table 5.3 C-Br BDEs

The broken bonds (boldface =	(bold recommen	DEs face = nded data; parentheses)	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
cyanogen bromide Br-CN	87.8±1.2	367.4±5.0	AE	1978DAY/GOW
bromotrifluoromethane Br– CF ₃	(1) 70.6±3.0 (2) 69.6 (3) 71.0 (4) 70.8 ± 0.3 (5) 69.4±1.2	295.4±12.6 291.6 297.1 296.2±1.3 290.4±5.0	(1) Kinetics (2) Derived (3) Correlation (4) PIMS (5) Review	(1) 1972FER/WHI(b) (2) 1983EVA/WEE (3) 1995DEN (4) 1997ASH/RUS (5) 1998CHA
bromotrichloromethane Br -CCl ₃	55.3±1	231.4±4.2	Bromination	1973MEN/GOL
tetrabromomethane Br –CBr ₃	56.2±1.8	235.1±7.5	Bromination	1971KIN/GOL
bromochlorodifluoromethane Br –CF ₂ Cl	64.5±1.5	269.9±6.3	Review	1982MCM/GOL
bromodifluoromethane Br- CHF ₂	69±2	288.7±8.4	Bromination	1974OKA/WHI

The broken bonds (boldface =	(bold recommen	DEs face = nded data; parentheses)	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
tetrabromomethane Br –CBr ₃	(1) 56.2±1.8 (2) 54.7 ± 2.3	235.1±7.5 228.9±9.6	(1) Bromination (2) Review	(1) 1971KIN/GOL (2) 2001LAZ/PRO
tribromomethane \mathbf{Br} - \mathbf{CHBr}_2	(1) 64.8 (2) 65.7±3.1	271.1 274.9±13.0	(1) Electron capture detection (2) Review	(1) 1989CHE/ALB (2) 2001LAZ/PRO
dibromomethane Br– CH ₂ Br	(1) 69.8±2 (2) 65.8 (3) 69.3±2.4	292.0±8.4 275.3 290.0 ±10.0	(1) Bromination (2) Electron capture detection (3) Review	(1) 1987TSC/PAD (2) 1989CHE/ALB (2) 2001LAZ/PRO
bromomethane Br– CH ₃	70.3±0.5	294.1±2.1	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
(Z)-1,2-dibromoethylene (Z)-CHBr=CH -Br	<83.8	<350.6	Electron capture detection	1989CHE/ALB
(E)-1,2-dibromoethylene (E)-CHBr=CH- Br	<83.3	<348.5	Electron capture detection	1989CHE/ALB
vinyl bromide Br–CH=CH ₂	79.4±1.5	332.2±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
bromopentafluoroethane Br –CF ₂ CF ₃	(1) 68.6±1.5 (2) 68.8 (3) 67.7 ± 1.5	287.0±6.3 287.9 283.3±6.3	(1) Kinetics (2) Derived (3) Derived from $\Delta_f H^o$ in ref.	(1) 1972FER/WHI (2) 1983EVA/WEE (3) 2002CRC

1,1-dibromo-1-chloro-2,2,2-trifluoroethane Br –CClBrCF ₃	60.0±1.5	251.0±6.3	Review	1982MCM/GOL
1-bromo-1-chloro-2,2,2- trifluoroethane Br -CHClCF ₃	65.7±1.5	274.9±6.3	Review	1982MCM/GOL
1-bromo-1,1-difluoroethane Br –CF ₂ CH ₃	68.6±1.3	287.0±5.4	Kinetics	1977PIC/ROD
1-bromo-2-chloroethane Br –CH ₂ CH ₂ Cl	69.9±2.0	292.5±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
1,1-bromochloroethane Br -CHClCH ₃	65±2	272.0±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
bromoethane Br- C ₂ H ₅	70.0±1.0	292.9±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-bromo-1-propene Br-CH ₂ CH=CH ₂	56.7±1.2	237.2±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(E)-1-bromo-1-propene (E)- Br -CH=CHCH ₃	80.0±1.2	334.7±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-1-bromo-1-propene (Z)- Br -CH=CHCH ₃	80.7±1.2	337.6±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-bromopropane Br –nC ₃ H ₇	(1) 66.7 (2) 71.3±1.0	279.1 298.3 ± 4.2	 (1) Derived (2) Derived from Δ_fH^o in ref. 	(1) 1983EVA/WEE (2) 1986PED/NAY

The broken bonds (boldface =	(bold recommen	DEs face = nded data; parentheses)	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
2-bromopropane Br –iC ₃ H ₇	(1) 65.5 (2) 71.5 ± 1.5	274.1 299.2±6.3	(1) Derived (2) Derived from $\Delta_t H^o$ in ref.	(1) 1983EVA/WEE (2) 2002CRC
1,3-dibromopropane Br -CH ₂ CH ₂ CH ₂ Br	77.6	324.7	Electron capture detection	1989CHE/ALB
1-bromo-heptafluoropropane Br -CF ₂ CF ₂ CF ₃	66.5±2.5	278.2±10.5	Kinetics	1967COO/WHI
2-bromo-heptafluoropropane CF ₃ CF Br CF ₃	(1) 65.5±1.1 (2) 65.4	274.1±4.6 273.6	(1) Review (2) Kinetics	(1) 1982MCM/GOL (2) 1983EVA/WEE
1,1,1-tribromopropane Br– CBr ₂ CH ₂ CH ₃	60.8	254.4	Correlation	1995DEN
1-bromobutane Br –nC ₄ H ₉	70.9±1	296.6±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-bromobutane Br –sC ₄ H ₉	71.7±1	300.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-bromo-2-methylpropane \mathbf{Br} - $\mathbf{tC_4H_9}$	70.0±1.5	292.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-bromopentane Br –nC ₅ H ₁₁	70.5±1	295.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

1-bromohexane Br –nC ₆ H ₁₃	70.1±1	293.3±4.2	Derived from $\Delta_f H^c$ in ref.	1986PED/NAY
bromobenzene, substituted				
y				
Y = H	(1) 83.5±2.5	349.4±10.5	(1) Electron capture detection	(1) 1989CHE/ALB
	(2) 80.4 ± 1.5	336.4±6.3	(2) Derived from $\Delta_f H^\circ$ in ref.	(2) 1986PED/NAY
2-F	(3) 82.0	343.1	(3) Correlation	(3) 1995DEN
2-Me	(3) 83.9	351.0		
3-CF3	(3) 79.9	334.3		
bromotoluene, substituted				
Y ← CH ₂ -3-Br				
Y = p-H	(1) 60.0±3	251.1±12.6	(1) Derived from $\Delta_f H^o$ in ref.	(1) 1986PED/NAY
	(2) 55.9	233.9	(2) Electrochem.	(2) 1992AND/GO
	(3) 60.7±1 (4) 55.1±2.5	254±4 230.5±10.5	(3) PAC (4) Derived from	(3) 1997LAA/BOR (4) 1998NIST
			$\Delta_{\!\scriptscriptstyle f} H^{\scriptscriptstyle o}$ in ref.	
	(5) 56.1 ±2	234.7±8.4	(5) Derived from $\Delta_f H^o$ in ref.	(5) 2002VER/KRA
p-F	(6) 58.9	246.4	(6) AOP	(6) 1993ZHA
p-Br	(6) 57.6	241.0		
p-CN	(1) 60.9±1 (6) 54.4	255±4 227.6		
p-Me	(6) 59.7	249.8		
p-t-Bu	$(1) 60.0\pm1$	251±4		
m-CF ₃	(1) 60.9±1	255.0±4		
(1-bromovinyl)benzene CH ₂ =CH Br Ph	63.4	265.3	Correlation	1995DEN
(2-bromovinyl)benzene Br -CH=CHPh	65.1	272.4	Correlation	1995DEN

The broken bonds (boldface =	BD (bold f recommen references in	ace = ded data;	Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
benzyl bromide Br –CH ₂ C ₆ F ₅	53.8±1.5	225.1±6.3	Toluene carrier tech	1980KOM/KRE
(1,2,2,2-tetraethyl)benzene Br –CBr ₂ CHBrPh	60.3	252.3	Correlation	1995DEN
1-bromonaphthalene Br –C ₁₀ H ₇	79.3	331.8	Electron capture detection	1989CHE/ALB
(1,2-dibromo-2-phenylethyl)- benzene $(PhCH\mathbf{Br})_2$	62.9	263.2	Correlation	1995DEN
acetyl bromide Br– C(O)CH ₃	(1) 64 (2) 69.8±2	267.8 292.0±8.4	 (1) Photolysis (2) Derived from Δ_tH° in ref. 	(1) 1995SU/DIB (2) 2002CRC
benzoyl bromide Br -C(O)C ₆ H ₅	(1) 64.1 (2) 66.1±2	268.2 276.6±8.4	(1) Review(2) Derived from Δ_tH° in ref.	(1) 1970ONE/BEN (2) 1994PED
1-bromoacetone Br-CH ₂ C(O)CH ₃	62.5	261.5	VLPP	1978ZAB/BEN
2-bromo-1-phenylethan-1-one \mathbf{Br} - $\mathbf{CH}_2\mathbf{C}(\mathbf{O})\mathbf{C}_6\mathbf{H}_5$	64.8	271.0	VLPP	1999DOR/HEM
2-bromoacetic acid Br –CH ₂ C(O)OH	(1) 63.6 (2) 61.5 ± 0.9	266.1 257.4±3.7	(1) Correlation (2) Calorimetry	(1) 1995DEN (2) 2001LAG/DIO

2,2,2-tribromoacetic acid Br –CBr ₂ C(O)OH	60.8	254.4	Correlation	1995DEN
ethyl 2,2-dibromoacetate Br –CHBrC(O)OC ₂ H ₅	62.9	263.2	Correlation	1995DEN
ethyl 2,2,2-tribromoacetate Br –CBr ₂ C(O)OC ₂ H ₅	58.9	246.4	Correlation	1995DEN
diethyl 2-bromopropane-1,3- dioate Br– CH(C(O)OEt) ₂	63.5	265.7	Correlation	1995DEN
diethyl 2,2-dibromopropane- 1,3-dioate Br -CBr(C(O)OEt) ₂	61.4	256.9	Correlation	1995DEN

5.4 C–I bonds

Table 5.4 C-I BDEs

The broken bonds (boldface =	BD (bold i recommer references in	face = nded data;	Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
cyanogen iodide I-CN	(1) 72.5±1.2 (2) 77.1	303.3±5.0 322.6	(1) AP(2) Derived from Δ_tH° in ref.	(1) 1978DAY/GOW (2) 2002CRC	
trifluoroiodomethane I–CF ₃	(1) 52.6±1.1 (2) 53.5 (3) 54.4±0.5 (4) 54.3±0.3 (5) 53.9±1.3	220.1±4.6 223.8 227.6±2.1 227.2±1.3 225.5±5.4	(1) Kinetics(3) Kinetics(2) Kinetics(4) PIMS(5) Review	(1) 1975OKA/WHI (2) 1984AHO/WHI (3) 1991SKO/DYM (4) 1997ASH/RUS (5) 1998CHA	
chloroiodomethane I–CH ₂ Cl	48.8±0.2	204.2±0.8	Kinetics	1996SKO/DYM	

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
diiodomethane I–CH ₂ I	(1) 51.9 ± 2.0	217.1±8.4	$\Delta_f H^o$ in ref.	(1) 1993CAR/LAY
	(2) 50.6	211.7	(2) Correlation	(2) 1995DEN
iodomethane I–CH ₃	57.1±0.5	238.9±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentafluoroiodoethane I–CF ₂ CF ₃	(1) 51.2±1 (2) 52.3 (3) 52.4 ± 0.5	214.2±4.2 218.8 219.2 ±2.1	Kinetics	(1) 1976WU/ROD (2) 1984AHO/WHI (3) 1991SKO/DYM
1,1,1-trifluoro-2-iodoethane I–CH ₂ CF ₃	(1) 56.3±1 (2) 52.9	235.6 ± 4.2 221.3	(1) Iodination (2) Correlation	(1) 1973WU/ROD (2) 1995DEN
1-chloro-1,1,2-trifluoro-2- iodoethane I-CHFCCIF2	48.3±0.5	203±2.0	Kinetics	1998SKO/DYM
1,1-difluoro-1-iodoethane I–CF ₂ CH ₃	52±1	217.6±4.2	Review	1982MCM/GOL
1-fluoro-1,1-diiodoethane I–CFICH ₃	52.1±1	218.0±4.2	Iodination	1976PIC/ROD
1-chloro-2-iodoethane I-CH ₂ CH ₂ Cl	54.2	226.8	Correlation	1995DEN
1-chloro-2-bromoethane I–CH ₂ CH ₂ Br	53.0	221.8	Correlation	1995DEN

pentafluoro-2-iodopropane CF ₃ CFICF ₃	51.4	215.1	Kinetics	1984AHO/WHI
iodoethylene $\textbf{I-CH=CH}_2$	61.9±1.0	259.0±4.2	Photo- fragmentation	1989CAO/ZHA
iodoethane $I-C_2H_5$	55.8±1.5	233.5±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-iodo-1-propene I–CH ₂ CH=CH ₂	44.4±1.5	185.8±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(Z)-1-iodo-1-propene I–CH=CHCH ₃	68.6±2	287.0±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
(E)-1-iodo-1-propene I–CH=CHCH ₃	67.0±2	280.3±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
1-iodopropane I–nC ₃ H ₇	56.6±1	236.8±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-iodopropane I–iC ₃ H ₇	(1) 56.1 ± 1.5 (2) 53.4	234.7±6.3 223.4	 (1) Derived from Δ_fH° in ref. (2) Correlation 	(1) 1986PED/NAY (2) 1995DEN
1,3-diiodopropane I–CH ₂ CH ₂ CH ₂ I	54.4	227.6	Correlation	1995DEN
1-iodononafluorobutane $I-C_4F_9$	49.2	205.8	Kinetics	1991SKO/DYM
2-iodobutane I–sC ₄ H ₉	54.1	226.4	Correlation	1995DEN

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
2-iodo-2-methylpropane	(1) 54.3 ± 1.5	227.2±6.3	(1) Derived from	(1) 1986PED/NAY
I–tC ₄ H ₉	(2) 52.1	218.0	$\Delta_{\rm f} {\rm H^o}$ in ref. (2) Correlation	(2) 1995DEN
1-iodo-3,3-dimethylpropane $I-CH_2(CH_3)_3$	55.7	233.0	Correlation	1995DEN
iodobenzene $I-C_6H_5$	65.0±1	272.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentafluoroiodobenzene	(1) 65.4±2	273.6±8.4	(1) Toluene	(1) 1976KOM/KRE
$I-C_6F_5$	(2) <72.1	<301.7	carrier tech (2) Electron capture detection	(2) 1989CHE/ALB
iodobenzene, substituted				
Y 1				
Y = 2-F	65.9	275.7	Correlation	1995DEN
2-Cl	65.1	272.4		
2-Br	64.2	268.6		
2-I	63.6	266.1		
2-Me	65.7	274.9		
2-CF ₃	63.2	264.4		
2-NH ₂	66.7	279.1		
2-NO ₂	65.6	274.5		
2-MeO	66.6	278.7		
2-Et	65.5	274.1		
2-EtO	66.7	279.1		

2-Ph	64.8	271.1		
2,6-Me ₂	65.9	275.7		
iodocyclohexane I-c-C ₆ H ₁₁	(1) 55.5±1.5	232.2±6.3	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
v 1	(2) 54.3	227.2	(2) Correlation	(2) 1995DEN
benzyl iodide	(1) 45.4	190.0	(1) Shock wave	(1) 1990HIP/TRO
$I-CH_2C_6H_5$	(2) 43.9 ± 2	183.7±8.4	(2) Derived from $\Delta_t H^o$ in ref.	(2) 1998NIST
	(3) 43.5±2	182.0±8.4	(3) Derived from $\Delta_f H^o$ in ref.	(3) 2002VER/KRA
(2-iodoethyl)benzene I–CH ₂ CH ₂ C ₆ H ₅	54.9	229.7	Correlation	1995DEN
1-iodonaphthalene	(1) 65.6 ± 2.5	274.5±10.5	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
I–1-naphthyl	(2) 65.3	273.2	(2) Correlation	(2) 1995DEN
2-iodonaphthalene	(1) 65.0±2.5	272.0±10.5	(1) Derived from	(1) 1986PED/NAY
I–2-naphthyl	(2) 65.7	274.9	$\Delta_{\rm f} {\rm H^o}$ in ref. (2) Correlation	(2) 1995DEN
1-adamantyl iodide I –1-adamantyl	53.7	224.7	Correlation	1995DEN
iodoacetonitrile I-CH ₂ CN	44.7±2	187.0±8.4	Derived from $\Delta_f H^o$ in ref.	2000LAF/SZA
acetyl iodide I–C(O)CH ₃	53.3±2	223.0±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
benzoyl iodide I-C(O)C ₆ H ₅	50.7±2	212.1±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
iodoacetic acid I-CH ₂ C(O)OH	(1) 51.2 (2) 47.2±0.6	214.2 197.8±2.7	(1) Correlation (2) Calorimetry	(1) 1995DEN (2) 2001LAG/DIO	
3-iodopropanioc acid I-CH ₂ CH ₂ C(O)OH	54.5	228.0	Correlation	1995DEN	
ethyl 2-iodoacetate I-CH ₂ C(O)OC ₂ H ₅	51.9	217.1	Correlation	1995DEN	
pyridine iodide					
5 4 3 \$ 1 N N					
C–I at 2 site	63.1	264.0	Correlation	1995DEN	
3	65.2	272.8			
4	64.9	271.5			

chapter six

Tabulated BDEs of O-X bonds

6.1 O–H bonds

6.1.1 O-H bonds in nonphenols

Table 6.1.1 O-H BDEs in Nonphenols

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	(bold i recommer	BDEs (boldface = recommended data; references in parentheses)			
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References	
water	(1) 119.30 ± 0.05		(1) Recommend.	(1) 1994BER/ELL	
НО-Н	(2) 118.81 ± 0.07		(2) Recommend.	(2) 2002RUS/WAG	
$\Delta_i H^{\circ}(R) = 9.40 \pm 0.05$ (39.33±0.21)	(3) 118.88±0.01	497.38±0.06	(3) Photolysis	(3) 2000HAR/HWA	
methanol	(1) 104.4±1	436.8±4.2	(1) Kinetics	(1) 1974BAT/CHR	
CH ₃ O- H	(2) 104.2 ± 0.9	436.0 ± 3.8	(2) Photoelectr.	(2) 1986MEO/SIE	
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 4.1 \pm 0.9$	(3) 104.2 ± 0.9	436.0 ± 3.8	(3) Recommend.	(3) 1994BER/ELL	
(17.2 ± 3.8)	$(4)\ 104.9\pm0.7$	439±3	(4) CID	(4) 1999DET/ERV	
	(5) 104.6±0.7	437.7±2.8	(5) GPA, revised	(5) 2002ERV/DET	
trifluoromethanol	(1) 109	456.1	(1) Pyrolysis	(1) 1982BAT/WAL	
CF ₃ O-H	(2) 120±3	502.1±12.6	(2) FT-IR	(2) 1993WAL/HUR	
$\Delta_{\rm f} \overset{3}{\text{H}^{\circ}}(R) = -151.8 \pm 1.7$ (-635.1 ± 7.1)	(3) 124.7±3.6	521.7±15.1	(3) Flowing afterglow tech	(3) 1996HUE/DUN	
	(4) 117.5	491.6	(4) PIMS	(4) 1997ASH/APP	
	(5) 118.8	497.1	(5) Recommend.	(5) 2000REI/PRA	
ethyn-1-ol HC≡CO–H	105.9±2.1	443.1	Photoelectr.	1983OAK/JON	

Table 6.1.1 (continued) O-H BDEs in Nonphenols

The broken bonds (boldface = dissociated atom) Δ_i H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
$\Delta_{\rm f}$ (kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
ethanol C_2H_5O-H $\Delta_tH^{\circ}(R) = -3.7\pm0.8$ (-15.5 ± 3.3)	(1) 104.2±1 (2) 104.6 ± 0.8 (3) 103.0 (4) 105.2±1.2 (5) 104.7±0.8	436.0±4.2 437.6±3.3 431.0 440.0±5.0 438.1±3.3	(1) Pyrolysis(2) Recommend.(3) AOP(4) CID(5) GPA, revised	(1) 1974BAT/CHR (2) 1994BER/ELL (3) 1996BOR/LIU (4) 1999DET/ERV (5) 2002ERV/DET
vinyl alcohol CH_2 = CHO - H $\Delta_t H^{\circ}(R) = 4.4 \pm 0.3$ (18.4 ± 1.3)	85	355.6	FT-ICR	2001BOU/CHA
1-propanol nC_3H_7O-H $\Delta_iH^o(R) = -7.2\pm 2$ (-30.1 ± 8.4)	(1) 105.9±2 (2) 103.4±1	443.1±8.4 432.6±4.2	(1) Review (2) Pyrolysis	(1) 1973BEN/ONE (2) 1974BAT/CHR
2-propanol iC_3H_7O-H $\Delta_iH^\circ(R) = -12.5$ (-52.3)	(1) 104.7±1 (2) 103.9 (3) 105.9±1.0 (4) 105.7 ± 0.7	438.1±4.2 434.7 443±4 442.3±2.8	(1) Pyrolysis (2) AOP (3) CID (4) GPA, revised	(1) 1974BAT/CHR (2) 1996BOR/LIU (3) 1999DET/ERV (4) 2002ERV/DET
1-butanol nC_4H_9O-H $\Delta_tH^o(R) = -15$ (-62.8)	101.9±1	426.3±4.2	Pyrolysis	1974BAT/CHR
2-butanol sC_4H_9O-H $\Delta_iH^o(R) = -16.6$ (69.5)	105.5±1	441.4±4.2	Pyrolysis	1974BAT/CHR
tert-butyl alcohol tC ₄ H ₉ O–H	(1) 105.1±1 (2) 105.5	439.7±4.2 441.4	(1) Pyrolysis (2) AOP	(1) 1974BAT/CHR (2) 1996BOR/LIU

$\Delta_i H^{\circ}(R) = -22.3$ (-93.3)	(3) 106.6±0.7 (4) 105.5 (5) 106.3 ± 0.7	446±3.0 441.4 444.9±2.8	(3) CID (4) PAC (5) GPA, revised	(3) 1999DET/ERV (4) 2000REI/PRA (5) 2002ERV/DET
neopentyl alcohol tBuCH ₂ O– H	102.3±1	428.0±4.2	Pyrolysis	1974BAT/CHR
benzyl alcohol $C_6H_5CH_2O-H$ $\Delta_fH^\circ(R) = 25.6\pm3.0$ (107.1 ± 12.6)	101.7	425.5	AOP	1996BOR/LIU
1,3-cyclohexadione	92	384.9	AOP	1994BOR/SAT
tropolone O H	88	368.2	AOP	1994BOR/SAT
acetic acid $CH_{3}C(O)O\text{-}\mathbf{H}$ $\Delta_{f}H^{\circ}(R) = -49.6\pm1$ (-207.5 ± 4.2)	(1) 106.4 (2) 105.8±2	445.2 442.7	(1) Electrochem. (2) Review	(1) 1963EBE (2) 1973BEN/ONE
propanoic acid $C_2H_5C(O)O-H$ $\Delta_tH^o(R) = -54.6\pm 1$ (-228.4 ± 6.4)	106.4±2	445.2	Review	1973BEN/ONE
butanoic acid $nC_3H_7C(0)O-H$ $\Delta_fH^o(R) = -59.6\pm 1$ (-249.4 ± 4.2)	105.9±2	443.1	Review	1973BEN/ONE

Table 6.1.1 (continued) O-H BDEs in Nonphenols

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
(kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
benzoic acid $C_6H_5C(O)O-H$ $\Delta_tH^o(R) = -17.4\pm 2 \; (-72.8\pm 8.4)$	105	439.3	AOP	1994BOR/SAT
hydroperoxide HOO-H	(1) 87.2±1.0	364.8±6.4	(1) Laser magnetic resonance	(1) 1980HOW
$\Delta_{\rm f} H^{\rm o}(R) = 3.5 \ (14.6)$	(2) 88.2 ± 1.0	369.0 ± 4.2	(2) Review	(2) 1983SHU/BEN
	$(3) 87.9 \pm 0.8$	367.8±3.3	(3) GPA	(3) 1998LIT/RUS
	(4) 87.8±0.5	367.4±2.1	(4) Photoelectron spectra	(4) 2002RAM/BLA
methyl hydroperoxide CH ₃ OO– H	(1) 88. 5± 0. 5	370.3±2.1	(1) VLPP	(1) 1984KON/ BEN(b)
$\Delta_{\rm f} {\rm H}^{\circ}({\rm R}) = 2.2 \pm 1.2 \ (9.2 \pm 5.0)$	(2) 87.2	365	(2) Electrochem.	(2) 1996JON
trifluoromethyl hydroperoxide CF ₃ OO–H	91.5	383	Electrochem.	1996JON
fluoromethyl hydroperoxide $\mathrm{CH_2FOO-}\mathbf{H}$	90.6	379	Electrochem.	1996JON
trichloromethyl hydroperoxide CCl ₃ OO– H	92.3	386	Electrochem.	1996JON
dichloromethyl hydroperoxide CHCl ₂ OO– H	91.5	383	Electrochem.	1996JON
chloromethyl hydroperoxide CH ₂ ClOO– H	90.3	379	Electrochem.	1996JON

tribromomethyl hydroperoxide CBr ₃ OO–H	91.5	383	Electrochem.	1996JON
bromomethyl hydroperoxide $\mathrm{CH_2BrOO-H}$	90.6	379	Electrochem.	1996JON
ethyl hydroperoxide C ₂ H ₅ OO–H	(1) 86.8 (2) 84.8±2.2	363 354.8	(1) Electrochem. (2) GPA	(1) 1996JON (2) 2001BLA/RAM
2-chloroethyl hydroperoxide CH ₃ CHClOO- H	90.1	377	Electrochem.	1996JON
2,2-dichloroethyl hydroperoxide CH ₃ CCl ₂ OO–H	91.5	383	Electrochem.	1996JON
1,1,1-trifluoro-2-chloroethyl hydroperoxide CF ₃ CHClOO– H	91.8	384	Electrochem.	1996JON
pentachloroethyl hydroperoxide C ₂ Cl ₅ OO–H	91.5	383	Electrochem.	1996JON
iso-propyl hydroperoxide iC_3H_7OO-H	85.1	356	Electrochem.	1996JON
allyl hydroperoxide CH_2 = $CHCH_2OO$ - H $\Delta_fH^o(R) = 21.2 (88.7)$	(1) 89 (2) 86.8	372.4 363	(1) Photolysis (2) Electrochem.	(1) 1981RUI/BAY (2) 1996JON
tert-butyl hydroperoxide t - C_4 H_9 OO– H	(1) 89.4 (2) 82.2	374.0 344	(1) VPPR (2) Electrochem.	(1) 1983HEN/BEN (2) 1996JON

Table 6.1.1 (continued) O-H BDEs in Nonphenols

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references		
	kcal/mol	kJ/mol	in parentheses)	References	
	(3) 88.2 (4) 85.0±2.0	369.0 355.6±8.4	(3) Review (4) Photoelectr. spectroscopy	(3) 1997BEN/COH (4) 1998CLI/WEN	
	(5) 84.2±2.1	352.3±8.8	(5) GPA	(5) 2001BLA/RAM	
benzyl hydroperoxide $C_6H_5CH_2OO-H$	86.8	363	Electrochem.	1996JON	
p-NO ₂ -benzyl hydroperoxide p-NO ₂ -C ₆ H ₄ CH ₂ OO-H	87.5	366	Electrochem.	1996JON	
diphenylmethyl hydroperoxide (C ₆ H ₅) ₂ CHOO– H	88.4	370	Electrochem.	1996JON	
phenyl hydroperoxide, substituted					
Y O O Y H					
Y = H	91.8	384	Electrochem.	1996JON	
p-Cl	92.0	385			
p-Me	91.5	383			
р-ОН	91.3	382			
p-CN	92.1	385			
p-Ph	93.2	389			
p-CO ₂	92.0	385			
methaneperoxycarboxylic acid CH ₃ C(O)OO-H	92.3	386	Electrochem.	1996JON	

2,2-dichloro-2-hydro- peroxyethane CCl ₂ (CN)OO-H	91.8	384	Electrochem.	1996JON
hydroperoxymethan-ol OHCH ₂ OO–H	88.0	368	Electrochem.	1996JON
2-hydroperoxypropan-ol (CH ₃) ₂ C(OH)OO–H	86.5	362	Electrochem.	1996JON
1-hydroperoxyacetone CH ₃ C(O)CH ₂ OO–H	88.0	368	Electrochem.	1996JON
α -CO $_2$ methyl hydroperoxide (CO $_2$ -)CH $_2$ OO- H	87.5	366	Electrochem.	1996JON
2-hydroperoxyethanenitrile (CN)CH ₂ OO– H	89.9	376	Electrochem.	1996JON
α -CO ₂ ⁻ -chloromethyl hydroperoxide (CO ₂ ⁻)CHClOO–H	90.3	378	Electrochem.	1996JON
α -CO ₂ ⁻ -dichloromethyl hydroperoxide (CO ₂ ⁻)CCl ₂ OO-H	90.3	378	Electrochem.	1996JON
2,2-dichloro-2-hydroperoxy- ethanenitrile (CN)CCl ₂ OO-H	91.8	384	Electrochem.	1996JON
naphth-1-yl hydroperoxide 1-C ₁₀ H ₇ OO–H	93.9	393	Electrochem.	1996JON

Table 6.1.1 (continued) O-H BDEs in Nonphenols

ć	The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol BDEs (boldface = recommended data; references in parentheses)		Methods (references			
_	(kJ/m		kcal/mol	kJ/mol	in parentheses)	References
naphth 2-C ₁₀ H ₇		roperoxide	93.2 390 E		Electrochem.	1996JON
	9-anthracenyl hydroperoxide 9-C ₁₄ H ₉ OO- H		93.9	393	Electrochem.	1996JON
Mes = 1	CR(OH) nesityl	D			AOR	1007POP /711A
R ₁ Mes	R ₂ Mes	R H	82.2	343.9	AOP	1997BOR/ZHA
Mes	Mes	Mes	82.6	345.6		
Mes	Mes	Me ₃ Si	82.4	344.8		
Mes	Mes	Ph	79.9	334.3		
Mes	Mes	iPr	78.6	328.9		
Mes	Mes	tBu	78.3	327.6		
Mes	Ph	Mes	83.7	350.2		
Me_5C_6	Me_5C_6	Н	82.3	344.3		
Н	Н	Me	83	347.3		
nitrous H –ON(Δ _f H°(R)		3.09)	78.3±0.5	327.6±2.1	Review	1976BEN
nitric a H–ON(Δ _f H°(R)		1.1)	104±1	435.1±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
	 2,2-dimeylsilaethanol H–OSiMe₃		118.3	495	Derived	1998BEC/WAL

6.1.2 O-H bonds in oximes and hydrolamines

Table 6.1.2 O–H BDEs in Oximes and Hydrolamines

	roken bonds oldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references		
,	ated group)	kcal/mol	kJ/mol	in parentheses)	References	
oximes						
H_C=N-C) ^X /H					
R = Me		98.2	410.9	AOP	1992BOR/JI	
Et		98.1	410.5			
CH ₃ CO		89.6	374.9			
PhCO		88.9	372.0			
NH_2		88.8	371.5			
oximes						
$R_1 > C = N$	0 ³ / ₄ H					
$R_1 = Me R$	$_{2}$ = Me	(1) 95.8 (2) 94.1	400.8 393.7	(1) AOP (2) Correlation	(1) 1992BOR/JI (2) 2000DEN/DEN	
Et	Et	(1) 92.3 (2) 90.6	386.2 379.1			
iPr	rPr	(3) 87.7 (2) 86.0	366.9 359.8	(3) AOP	(3) 1995BOR/ ZHA(b)	
Me	tBu	(3) 91.1	381.2			
iPr	tBu	(2) 84.3 (4) 84.3 (5) 86.0	352.7 352.7 359.8	(4) EPR (5) AOP	(4) 1973MAH/MEN (5) 1996BOR/LIU	
tBu	tBu	(2) 80.9 (3) 84.2 (4) 80.9 (5) 82.6	338.5 352.3 338.5 345.6			
tBu	adamantyl	(3) 81.7 (4) 80.0	341.8 334.7			
tBu	$c-C_5H_9$	(3) 90.7	379.5			

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface = dissociated group)		BDEs (boldface = recommended data; references in parentheses)		Methods (references	
		kcal/mol	kJ/mol	in parentheses)	References
Ph	Ph	(1) 89.0	372.4		
PhCH ₂	PhCH ₂	(1) 89.1	372.8		
Me	Et ₂ NCH ₂	(1) 91.4	382.4		
Me	NH_2	(1) 86.7	362.8		
Ph	NH ₂	(1) 86.9	363.6		
cyclohexanone, oximes c-C ₅ H ₁₀ C=NO–H		(1) 90.3	377.8	(1) AOP	(1) 1995BOR/ ZHA(b)
		(2) 88.6	370.7	(2) Correlation	(2) 2000DEN/DEN
cycloundercanane, oximes c-C ₁₁ H ₂₂ C=NO–H		90.3	377.8	AOP	1992BOR/JI
oximes, substitu	ıted				
(Z)-PhCH=NO- (E)-PhCH=NO-		90.2 86.9	377.4 363.6	AOP	1995BOR/ZHA(b)
(Z)-p-MeC ₆ H ₄ C (E)-p-MeC ₆ H ₄ C	H=NO -H	89.0 86.5	372.4 361.9		
(Z)-p-MeOC ₆ H ₄ (E)-p-MeOC ₆ H ₄		89.9 87.5	376.1 366.1		
(Z)-m-NO ₂ C ₆ H ₄ (E)-m-NO ₂ C ₆ H ₄		88.6 86.9	370.7 363.6		
(Z)-p-NO ₂ C ₆ H ₄ C	CH=NO-H	88.0	368.2		
(Z)-PhCHCHCI	H=NO-H	88.6	370.7		
(Z)-CH3C(Ph)=I $(E)-CH3C(Ph)=I$		91.1 89.4	381.2 374.0		
(Z)-Me ₂ NCH ₂ C (E)-Me ₂ NCH ₂ C		92.0 88.5	384.9 370.3		
(Z) - $(c$ - $C_4H_8N)CI$	$H_2C(Ph)=NOH$	88.6	370.7		
(E)-Me ₂ NCH ₂ C	(Ph)=NOH	87.6	366.5		

(Z) - $(c$ - $C_4H_8N)CH_2C(Ph)=NOH$	89.1	372.8		
(E)-Me ₂ NCH ₂ CH ₂ C(Ph)=NOH	88.7	371.1		
2-(hydroxyimino)-1,7, 7-trimethylbicyclo [2.2.1]-heptane	88.1	368.6	AOP	1995BOR/ZHA(b
N—OH				
norcamphor, oximes R=NO-H	87.6	366.5	AOP	1995BOR/ZHA(b
fluorene, oximes Fl=NO– H	87.5	366.1	AOP	1992BOR/JI
(hydroxyimino)-2, 7-dibromo-fluorenylmethane 2,7-BrFl=NO– H	89.6	375.3	AOP	1992BOR/JI
(hydroxyimino)-2-PhSO ₂ - fluorenylmethane 2-PhSO ₂ Fl=NO -H	89.0	372.4	AOP	1992BOR/JI
oximes, substituted				
Y = H	88.1	368.6	AOP	1998BOR/ZHA
p-Cl	87.8	367.4		
p-Br	87.6	366.5		
p-MeO	87.8	367.4		

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
dissociated group)	kcal/mol	kJ/mol	in parentheses)	References
p-Me	88.0	368.2		
p-CF ₃	87.9	367.8		
p-CN	87.8	367.4		
m-NO ₂	88.6	370.7		
p-NO ₂	88.4	369.9		
oximes, substituted				
Y C(Me) NO H				
Y = H	88.4	369.9	AOP	1998BOR/ZHA
p-Cl	89.0	372.4		
p-Br	89.0	372.4		
p-Me	89.0	372.4		
p-MeO	88.9	372.0		
p-CF ₃	88.9	372.0		
p-CN	88.8	371.5		
p-NO ₂	88.8	371.5		
hydroxylamines, substituted				
$R_1 \rightarrow NO + H$				
$R_1 = CF_3 R_2 = CF_3$	(1) 85.3	356.9	(1) EPR	(1) 1984DOB/ING
Et Et	(2) 69.5 (3) 75.9 (4) 72.8	290.8 317.6 304.5	(2) Kinetics(3) AOP(4) Correlation	(2) 1978CAC/LIS (3) 1996BOR/LIU (4) 2000DEN/DEN
tBu tBu	(3) 68.2 (5) <69.6	285.3 291.2	(5) EPR	(5) 1973MAH/MEN

hydroxamic acid, substituted

R' = iPr	R = Ph	(1) 79.3 (2) 81.2	331.8 339.7
tBu	Ph	(1) 78.0 (2) 79.9	326.4 334.3
Ph	Ph	(2) 84.1	351.9
Ph	$p\text{-BrC}_6H_4$	(2) 84.0	351.5
Ph	p -CN– C_6H_4	(2) 84.2	352.3
tBu	$p-O_2N-C_6H_4$	(1) 80.2	335.6
tBu	$p ext{-}MeO ext{-}C_6H_4$	(1) 75.9	317.6
tBu	$n-C_{10}H_{21}$	(1) 75.8	317.1
tBu	$N(CH_2)_5$	(1) 74.4	311.3

(1) 1990PER/BER

(2) 1996BOR/LIU

hydroxylamines, substituted R(tBu)NO–H

 $3,5-(tBu)-C_6H_3$

 $R = iPrCH_2C(O)$

Ph

= ' '
PhCH ₂ CH ₂ C(O)
$CH_3(CH_2)_9C(O)$

76.1 318.6

336.8

316.5

317.2

(1) 80.5

75.6

75.8

Correlation

(1) EPR

(2) AOP

2000DEN/DEN

C(O)CHCHPh 76.8 321.4 $4-NO_2C_6H_4$ 80.2 335.6 $4-MeOC_6H_4C(O)$ 73.5 307.7

N-(tert-butyl)-N-hydroxy-carboxamide, substituted

R = PhCH = CH $PhCH_2CH_2$ 76.8 76.2

321.3 318.8 EPR

1983JEN/PER

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface =	(boldi recommen	BDEs (boldface = recommended data; references in parentheses)		
dissociated group)	kcal/mol	kJ/mol	(references in parentheses)	References
CH ₃ (CH2) ₉	75.8	317.1		
(CH ₃) ₂ CHCH ₂	75.6	316.3		
N	74.4	311.3		
N-(tert-butyl)-N-hydroxy- benzamide, substituted				
Y—————————————————————————————————————				
Y = H	77.2	323.0	EPR	1983JEN/PER
Ph	76.7	320.9		
NO ₂	79.4	332.2		
MeO	75.1	314.2		
hydroxy-N-piperidine, substituted	74.4	311.1	Correlation	2000DEN/DEN
0 0 N H N H H H H H H H H H H H H H H H				
phenylamine, substituted $(4-R-C_6H_4)_2NO-H$				
R = MeO	71.8	300.3	Correlation	2000DEN/DEN
t-Bu	70.9	296.5		

1-hydroxy-pyrrolidine, substituted

$$X = CONH_2$$
 69.6 291.0 Correlation 2000DEN/DEN C(O)OH 69.3 290.1 OH 69.1 289.1

1-hydroxy-tetrahydroimidazole

X	Y	Z				
Me	OH	Н	71.9	300.9	Correlation	2000DEN/DEN
Me	Me	Н	69.5	290.8		
Me	Me	Me	68.6	286.9		
Me	Me	p-FC ₆ H ₄	69.8	292.0		
Me	Me	p-MeC ₆ H ₄	69.5	290.7		
Me	Me	Ph	69.9	292.6		
Me	Н	PhC(O)CH=	71.4	298.7		
	_					

298.7

71.4

1-hydroxy-pyrrolidine, substituted

Correlation 2000DEN/DEN

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
dissociated group)	kcal/mol	kJ/mol	in parentheses)	References
hydroimidazole, substituted				
Me Me Me				
X = Me	70.6	295.2	Correlation	2000DEN/DEN
iPr	70.5	294.9		
CCl ₃	71.0	296.9		
Ph	70.3	294.2		
p-FC ₆ H ₄	70.8	296.1		
p-ClC ₆ H ₄	70.5	294.9		
C(O)NH ₂	71.0	296.9		
$CH_3C_6H_4$	71.0	296.9		
C(O)Me	71.0	296.9		
CH=N-tBu	70.5	294.8		
CH=NOH	70.8	296.1		
hydroimidazole, substituted	74.6	312.2	Correlation	2000DEN/DEN
Me N Ph Me N Me Me				
hydroimidazole, substituted Me N Ph Me N Ph Me N O	71.0	297.1	Correlation	2000DEN/DEN

2,5-dihydrioimidazole, substituted

X	Y	Z				
Me	NMeOH	Ph	74.1	310.0	Correlation	2000DEN/DEN
Me	Me	Me	73.1	305.8		
Me	Me	$BrCHCH_3$	73.1	305.8		
Me	Me	$p\text{-BrC}_6H_4$	73.1	305.8		
Me	Me	$CHBr_2$	74.4	311.1		
Me	Me	p-ClC ₆ H ₄	73.2	306.3		
Me	Me	CHCl ₂	74.0	309.8		
Me	Me	p-FC ₆ H ₄	73.1	305.8		
Me	NHMe	Ph	74.0	309.8		
Me	Me	CH ₂ Br	73.2	306.3		
Me	Me	p-MeOC ₆ H ₄	72.5	303.4		
Me	Me	p-MeC ₆ H ₄	72.6	303.6		
Me	Me	Ph	72.8	304.5		

2,5-dihydropyrrole, substituted

X = C1	Y = H	70.1	293.1	Correlation	2000DEN/DEN
COMe	Н	70.3	294.3		
CONH ₂	Н	70.1	293.1		
C(O)OH	Н	69.6	291.0		
C(O)OMe	Н	70.1	293.1		
Br	Br	70.2	293.7		

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface =		(boldi recommen	BDEs (boldface = recommended data; references in parentheses)			
	dissociated gr	oup)	kcal/mol	kJ/mol	in parentheses)	References
(C(O)OMe	Br	70.1	293.1		
(СОМе	Br	70.4	294.5		
N-hy	vdroxyphthalin	nide	>86	>359.8	EPR	2002MIN/PUN
$\overline{}$	ridinol NO-≟H		77.0	322.2	AOP	1996BOR/LIU(b)
Me Me H Z	rdin-1-ol, subs					
X	Y	Z				
H	Н	Н	(1) 69.6 (2) 69.7 (3) 71.2	291.2 291.6 297.7	(1) EPR(2) AOP(3) Correlation	(1) 1973MAH/ME(2) 1996BOR/LIU(3) 2000DEN/DEN
	PhC(O)O	Н	(3) 71.2	297.7		
H						

1-hydroxy-piperidine, substituted

X = Cl	Н	73.6	307.9	Correlation	2000DEN/DEN
Br	Н	72.5	303.4		
substitute O N	v-piperidn-4-one, d Me —O H Me	71.8	300.4	EPR	1973MAH/MEN
1-hydroxy 6-tetra-hy substitute	dropyridine,	70.7	295.9	Correlation	2000DEN/DEN
1-hydroxy 6-tetra-hy substitute Me———————————————————————————————————	dropyrimidine, ed e Me h O Me Me	73.8	308.8	Correlation	2000DEN/DEN
7-aza-bicy heptan-7- N 0	ol	(1) 77.0 (2) 78.0	322.2 326.4	(1) EPR (2) AOP	(1) 1973MAH/MEN (2) 1996BOR/LIU
9-azabicy nonane-9-	-ol	76.2	318.8	EPR	1973MAH/MEN

Table 6.1.2 (continued) O-H BDEs in Oximes and Hydrolamines

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
dissociated group)	kcal/mol	kJ/mol	in parentheses)	References
hydroxydiazacycloheptane, substituted OH Me Me NH Me NH	72.7	304.3	Correlation	2000DEN/DEN

1,2-dihydroquinoline, substituted

$X = C(CF_3)2OH$	70.5	294.9	Correlation	2000DEN/DEN
CPh3	69.2	289.5		

6.1.3 O-H bonds in phenols

Table 6.1.3 O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) Δ,H°(R), kcal/mol	(bold recommen	DEs face = nded data; parentheses)	Methods (references in		
(kJ/mol)	kcal/mol kJ/mol		parentheses)	References	
phenol	(1) 89.5±1	374.5±4.2	(1) VLPP	(1) 1989SUR/KAF	
PhO- H	(2) 88.3±1.5	369.4 ± 6.3	(2) SPST	(2) 1990WAL/TSA	
$\Delta_{\rm f} H^{\rm o}({\rm R}) = 12.9 \pm 1.5$	(3) 90.4 ± 1	378.2 ± 4.2	(3) AOP	(3) 1996BOR/LIU	
(54 ± 6)	in sol.	in sol.			
	(4) 88.0±1.5 in gas	368.2 ± 6.3 in gas	(4) Recommend.	(4) 1996TSA	
	(5) 87.3±1.5 in gas	365.3±6.3 in gas	(5) PAC	(5) 1997WRI/CAR	

pentafluorophenol C ₆ F ₅ O–H	85.5	357.7	Correlation	2000DEN/DEN
phenols, substituted				
Y-OXH				
Y = p-F	(1) 91.2 (3) 87.4±0.5	381.6 365.7±2.1	(1) AOP	(1) 1990ARN/ AMA
	(5) 84.5 (14) 87.2	353.5 365.0	(2) AOP (3) Pulse	(2) 1991BOR/ CHE(b) (3) 1990LIN/SHE
_	(4.1) 00.0		radiolysis	
m-F	(14) 89.0	372.7	(4) EPR	(4) 1996LUC/PED
o-F	(14) 86.3	361.0	(5) Electrochem.	(5) 1992PAR
p-Cl	(1) 93.4 (2) 90.3 (3) 87.6±0.5 (8) 91.1 (12) 90.9	390.8 378.0±2.0 366.5±2.1 381.0 380.3	(6) EPR	(6) 1973MAH/ MEN
m-Cl	(2) 91.8 (14) 88.4	384.1 369.9	(7) PAC	(7) 2001SIL/MAT
o-Cl	(2) 90.0 (14) 86.1	376.6 359.9	(8) AOP	(8) 1997ZHU/ZHA
p-Br	(2) 90.7 (3) 88.1±0.5 (5) 85.2 (8) 91.3 (14) 89.0	379.5 368.6±2.1 356.5 382.0 372.3	(9) AOP	(9) 1994ZHA/BOR
o-Br	(14) 86.4	361.8	(10) Electrochem.	(10) 1991PAR/HAN
p-I	(3) 87.9±0.3 (5) 85.1	367.8±1.3 356.1	(11) EPR	(11) 1994LUC/PED
р-Ме	(1) 87.2 (2) 88.7 (3) 86.1±0.5 (4) 88.2±0.6 (8) 89.4	364.8 371.1 360.2±2.1 369.0±2.5 374.0	(12) AOP	(12) 1996BOR/LIU
m-Me	(2) 89.4 (14) 87.6	374.0 366.7	(13) Electrochem.	(13) 1975MAH/ DAR

Table 6.1.3 (continued) O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BD (bold f recommen references in	ace = ded data;	Methods (references	
$\Delta_{\rm f}$ (kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
o-Me	(2) 88.2 (12) 90.0 (14) 86.1	369.0 376.6 359.9	(14) Correlation	(14) 2000DEN/DEN
p-CN	(1) 93.1 (2) 94.2 (3) 92.9±0.7 (5) 90.1 (8) 94.9	389.5 394.1 388.7±2.9 377.0 397.0		
m-CN	(2) 93.9 (14) 89.3	392.9 373.6		
o-CN	(14) 88.0	368.1		
p-NO ₂	(1) 93.8 (2) 94.7 (3) 94.2±1.4 (5) 91.3 (8) 95.4	392.5 396.2 394.1±5.9 382.0 399.0		
m-NO ₂	(2) 94.3 (14) 87.7	394.6 366.9		
o-NO ₂	(14) 86.9	363.4		
p-MeO	(1) 86.3 (3) 82.6±0.5 (4) 82.8±0.2 (8) 85.1 (13) 84.0	361.1 345.6±2.1 346.4±0.8 356.0 351.5		
m-MeO	(2) 90.2 (12) 90.8 (14) 88.4	377.4 379.9 369.8		
o-MeO	(2) 86.0 (14) 84.2	359.8 352.1		
p-O ⁻	(2) 73.0 (3) 72.4	305.4 302.9		
р-ОН	(2) 81.5 (3) 80.2 (8) 82.2 (13) 84.6 (14) 84.1	341.0 335.6 344.0 354.0 352.0		

m-OH	(2) 90.9 (14) 88.2	380.3 369.1
о-ОН	(14) 81.2	339.6
p-NH ₂	(2) 77.3 (3) 75.5 (8) 77.9 (14) 80.8	323.4 315.9 326.0 338.1
m-NH ₂	(2) 88.0 (8) 88.0 (14) 87.8	368.2 368.0 367.2
o-NH ₂	(14) 85.3	356.7
p-CF ₃	(2) 95.3 (8) 95.8 (14) 91.4	398.7 401.0 382.4
m-CF ₃	(2) 93.8 (14) 92.2	392.5 385.7
p-tBu	(2) 88.7 (4) 85.3±0.5 (8) 89.4 (13) 86.5 (14) 86.1	371.1 356.9±2.1 374.0 361.9 360.1
o-tBu	(14) 84.6	354.0
p-Ph	(2) 87.6 (8) 88.2 (13) 85.0 (14) 88.1	366.5 369.0 355.6 368.7
o-Ph	(14) 86.5	361.9
$o-C_2H_3$	(14) 85.8	358.9
p-CH ₂ OH	(14) 85.7	358.7
p-C(O)OH	(14) 88.8	371.7
p-MeCO ₂	(1) 88.9	372.0
m-EtCO ₂	(13) 89.9 (14) 90.7	376.1 379.4
p-Me ₂ N	(2) 80.3 (3) 74.1 (8) 79.8 (14) 78.6	336.0 310.0 334.0 328.9
m-Me ₂ N	(2) 87.9 (14) 86.2	367.8 360.6

Table 6.1.3 (continued) O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol	BD (boldf recommen references in	face = ided data;	Methods (references	
(kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
p-MeSO ₂	(2) 95.0 (8) 95.6			
m-MeSO ₂	(2) 92.3 386.2 (14) 90.7 379.5			
p-MeCO	(2) 92.8 (3) 90.3±0.5 (5) 87.5 (8) 93.5 (14) 88.8	388.3 377.8±2.1 366.1 391.0 371.6		
m-MeCO	(2) 91.8 (14) 90.0	384.1 376.5		
o-MeCO	(14) 86.8	363.0		
p-PhCO	(2) 92.5 (8) 93.2 (14) 90.8	387.0 390.0 379.9		
p-COO-	(3) 89.9±0.5 (5) 87.1	376.1 364.4		
o-(CH ₂) ₃ CHO	(14) 86.9	363.6		
p-BuO	(14) 83.1	347.8		
phenols, disubstituted $3,5-Cl_2$	(2) 93.9 (14) 92.3	392.9 386.2	(2) AOP	(2) 1991BOR/ CHE(b)
3,5-Me ₂	(2) 89.1 (8) 88.2 (12) 89.7 (14) 87.2	372.8 369.0 375.3 364.7	(4) EPR	(4) 1996LUC/PED
2,3-Me ₂	(14) 85.0	355.5	(7) PAC	(7) 2001SIL/MAT
2,4-Me ₂	(14) 86.2	360.5	(8) AOP	(8) 1997ZHU/ZHA
2,6-Me ₂	(2) 85.5 (4) 84.5±0.4 (8) 87.2 (14) 84.8	357.7 353.5±1.7 365.0 354.6	(10) Electrochem.	(10) 1991PAR/ HAN
3,4-Me ₂	(14) 84.8	354.6	(12) AOP	(12) 1996BOR/LIU

2-Me-4-tBu	(14) 86.0	359.9	(13) Electrochem	(13) 1975MAH/ DAR
2-tBu-4-Me	(14) 86.2	360.5	(14) Correlation	(14) 2000DEN/ DEN
2,6-tBu ₂ (also see Table 6.1.4)	(2) 82.1 (4) 82.8±0.2 (8) 82.7 (13) 85.1 (14) 82.8	343.5 346.4±0.8 346.0 356.1 346.4		
2,4-tBu ₂	(14) 85.9	359.5		
$3,5$ -tBu $_2$	(4) 86.6±0.3 (7) 90.3±0.5 (13) 86.9 (14) 86.6	362.3 377.8 363.6 362.4		
2,6-(MeO) ₂	(4) 83.2±0.2	347.9		
3,5-(MeO) ₂	(4) 86.7 ± 0.3	362.8		
2-OH-4-tBu	(14) 81.8	342.4		
2-Me-4-OH	(14) 83.6	349.8		
2-tBu-4-MeO	(14) 82.1	343.4		
phenols, trisubstituted 3,4,5-Cl ₃	(2) 93.1 (14) 91.4	389.5 382.4	(2) AOP	(2) 1991BOR/CHE(b
2,4,5-Me ₃	(14) 85.3	356.8	(6) EPR	(6) 1973MAH/MEN
$2,4,6$ -tBu $_3$ (also see Table $6.1.4$)	(6) 81.2 (8) 82.2	339.7 344	(8) AOP	(8) 1997ZHU/ZHA
	(9) 82.6 (11) 81.2±0.1 (18) 81.3	345.6 339.7±0.4 340.2	(9) AOP	(9) 1994ZHA/BOR
2,4-tBu ₂ –6-Me	(14) 85.1	355.9	(11) EPR	(11) 1994LUC/PED
2,6-Me ₂ –4-Cl	(14) 84.0	351.4	(14) Correlation	(14) 2000DEN/DEN
3,5-Me ₂ -4-CH ₂ C(O)OH	(14) 83.7	350.3	(15) EPR	(15) 1996LUC/PED
2,6-Me ₂ -4-CN	(14) 84.6	354.0	. ,	, , , , , , , , , , , , , , , , , , , ,
2,6-Me ₂ -4-NH ₂ CH ₂	(14) 92 2	348.1	(16) EPR	(16) 2002LUC/MUC
- /0 1/102 1 1 (1120112	(14) 83.2	0 10.1		

Table 6.1.3 (continued) O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) $\Delta_t H^{\circ}(R)$, kcal/mol	(bol recomm	BDEs Idface = Inended data; in parentheses)	Methods (references	
(kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
2-OH-3,6-tBu ₂	(14) 81.1	339.5		
2,3-MeO-4-OH	(14) 82.2	343.8		
2,3-Me ₂ –4-MeO	(14) 79.2	331.4		
2-S(CH ₂) ₂ CN–4-Me–6-MePhCH	(14) 83.1	347.5		
2-Me-4-NH ₂ CH ₂ -6-tBu	(14) 83.8	350.6		
3,6-tBu ₂ –4-Me	(7) 80.5±0.9 (11) 80.7±0.3	336.8 337.6		
2 -tBu -4 , 6 -Me $_2$	(14) 85.1	355.8		
1,3-tBu ₂ –5-OH	(15) 79.3±0.3 (16) 80.7±0.3	331.8 337.6		
2,5-t-pentyl-4-OH	(16) 80.8 ± 0.2	338.1±0.8		
$4-C_3H_7-2,5-di-OH$ (propyl gallate)	(16) 82.6±0.3	345.6±1.3		
4-C ₈ H ₁₇ –2,5-di-OH (octyl gallate)	(16) 82.5±0.3	345.2±1.3		

phenols, substituted

Me	MeO	Me	` '		331.4 333.0	
tBu	t-Bu	Н	(3) 84.1	82.1	351.9	343.5

phenols, substituted

Y = Hin sol. in gas in sol. in gas 2-MeO (1) PAC (1) 1999HEE/KOR (1) 89.286.2 373.2 360.7 2,6-(MeO)₂ (1)88.686.6 370.7 362.3 2,4-(MeO)₂ (1)81.979.7 342.7 333.5 $2,4,6-(MeO)_3$ (1)83.581.5 348.4 341.0 4-MeO 321.7 (1)78.976.9 330.1 81.4 (2) 1996WAY/LUS (2)83.8350.6 340.6

phenols, tetrasubstituted

$$R_4$$
 R_5
 R_3
 R_1
 R_1

$$R_1 = R_4 = R_5 = Me$$
 (1) 79.2 ± 0.2 331.4 ± 0.8 (1) EPR (1) $1996LUC/PED$ $R_2 = H, R_3 = MeO$ (2) EPR (2) $1991COR/COL$ $R_3 = H$ (3) EPR (3) $2002LUC/MUG$ $R_1 = R_2 = R_3 = R_5 = Me$ (4) 83.9 351.2 (4) Correlation (4) $2000DEN/DEN$ $R_2 = R_5 = H, R_3 = OH$ (3) 80.8 ± 0.2 338.1 ± 0.8 $R_1 = R_4 = CMe_2Et$ $R_1 = R_5 = OH, R_2 = R_4 = H$ (3) 82.6 ± 0.3 345.6 ± 1.3 $R_3 = C(O)OC_3H_7$ $R_1 = R_5 = OH, R_2 = R_4 = H$ (3) 82.5 ± 0.3 345.2 ± 1.3 $R_3 = C(O)OC_8H_{17}$ $R_1 = R_2 = R_4 = Me$ (4) 82.4 344.7 $R_3 = OH, R_5 = H$

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BD (boldf recommen references in	ace = ded data;	Methods (references	
(kJ/mol)	kcal/mol kJ/mol		in parentheses)	References
phenols, pentasubstituted				
R_4 R_5 R_3 R_2 R_1				
$R_1 = R_2 = R_4 = R_5 = Me$ $R_3 = MeO$	` '		(1) EPR (2) EPR	(1) 1996LUC/PED (2) 1991COR/COL
$R_1 = R_2 = R_3 = R_4 = R_5 = Me$	(3) 81.4	340.5	(3) Correlation	(3) 2000DEN/DEN
4,4'-dihydroxybiphenyl	(1) 85.2 (2) 85.5	356.5 357.7	(1) Electrochem. (2) Pulse radiolysis	(1) 1975MAH/DAR (2) 2001DAS
3-hydroxypyridine ⟨○ √ O	95	397.5	AOP	1993BOR/SIN
5-pyrimidinols				
Y N O 14,				
Y = H	(1) 91.1	381.2	(1) Estimated by exp.	2001PRA/DIL
o-CH ₃ o-CH ₃ p-CH ₃	(2) 85.2±0.5	356.5±2.1	(2) EPR	
o-tBu o-tBu p-CH ₃	(2) 84.10±0.25	351.87±1.05		
o-CH ₃ o-CH ₃ p-N(CH ₃) ₂	(2) 78.16±0.25	327.02±1.05		
chroman-6-ol, substituted	78.3±0.2	327.6±0.8	EPR	1996LUC/PED

$\alpha\text{-tocopherol}$

$$\begin{array}{c} H \\ \hline \\ O \\ \hline \\ R_7 \\ \hline \\ CH_3 \\ \end{array} \begin{array}{c} CH_2 (CH_2CH_2CHCH_2)_3 \\ \hline \\ CH_3 \\ \end{array}$$

$R_5 = R_7 = CH_3$ (vitamin E)	(1) 80.4	336.4	(1) Estimated by rate constants	(1) 1985BUR/DOB
	(2) 78.9	330.1	(2) EPR	(2) 1992JAC/HOS
	(3) 78.9	330.1	(3) EPR	(3) 1994LUC/PED
	$(4) 80.9 \pm 1$	338.5	(4) AOP	(4) 1996BOR/LIU
	in sol.			
	(5) 79.3 in sol.	331.8	(5) APC	(5) 1996WAY/LUS
	(5) 77.3 in gas	323.4		
δ -tocopherol $R_5 = R_7 = H$	(5) 82.2 in sol. (5) 80.2 in gas (6) 81.9		(6) Correlation	(6) 2000DEN/DEN
β -tocopherol $R_5 = CH_{3}, R_7 = H$	(6) 80.2	335.6		
γ -tocopherol $R_5 = H$, $R_7 = CH_3$	(6) 80.1	335.1		

chroman, substituted

2000DEN/DEN
2000DEIV/ DEIV
_

Table 6.1.3 (continued) O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol	(bold recommen	DEs face = nded data; parentheses)	Methods (references		
(kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References	
2,2,5,7,8-pentamethyl	78.5	328.4			
2,5,7,8-tetramethy 1-2- CH ₂ OH	79.1	331.0			
2H-chromene, substituted 2,2,5,7,8-pentamethyl	79.2	331.5	Correlation	2000DEN/DEN	
H 22, 0 6 3 1 2					
ubiquinol-2	82.3	344.3	Correlation	2000DEN/DEN	
CH ₃ O CH ₃ (CH ₂ CHC(CH ₃)CH ₂) ₂ H					
ubiquinol-6 $\begin{array}{c} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CHC} \\ \text{(CH}_2 \\ \text{CHC} \\ \text{(CH}_3 \\ \text{)CH}_2 \\ \text{)}_6 \\ \text{H} \end{array}$	82.3	344.3	Correlation	2000DEN/DEN	
ubiquinol-10 CH ₃ CH ₃ CH ₃ (CH ₂ CHC(CH ₃)CH ₂) ₁₀ H	80.5 in sol. 78.5 in gas	336.8 in sol. 328.4 in gas	Correlation	1999HEE/KOR	

5,7-dimethy-tocol, DMT RO- H	79.7	333.5	PAC	2000DEN/DEN
dihydrobenzofuran, substituted				
0 1 2 3 Y				
Y = 2,2,6,7-tetramethyl	78.8	329.7	Correlation	2000DEN/DEN
2,4,6,7-tetramethyl	78.0	326.4		
2,4,6,7-tetramethyl- 2-C(O)OH	79.8	334.0		
2,2,4,6,7-pentamethyl	77.9	326.0		
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues				
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues X = O	81.3	340	Electrochem.	2001MAL/JON
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues HXO X = O S	80.5	337	Electrochem.	2001MAL/JON
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues HXO X = O S Se	80.5 80.5	337 336	Electrochem.	2001MAL/JON
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues HXO X = O S	80.5	337	Electrochem.	2001MAL/JON
Se	80.5 80.5	337 336	Electrochem.	2001MAL/JON
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues HXOXX X = O S Se Te tetrahydroquinoline,	80.5 80.5	337 336	Electrochem.	2001MAL/JON
furan-5-ol and its 1-thio, 1-seleno, and 1-telluro analogues HXO X = O S Se Te tetrahydroquinoline, substituted	80.5 80.5	337 336	Electrochem. Correlation	2001MAL/JON

Table 6.1.3 (continued) O-H BDEs in Phenols

The broken bonds (boldface = dissociated atom) $\Delta_{r}H^{\circ}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references	
(kJ/mol)	kcal/mol	kJ/mol	in parentheses)	References
hydroxynaphthalene, substituted				
H–O bond at 1 site Δ_{r} H°(R) = 39.5 (165.3)	(1) 84.5 (2) 84.0	353.5 351.5	(1) Electrochem.(2) AOP	(1) 1975MAH/DAR (2) 1991BOR/ CHE(b)
	(3) 82.1	343.4	(3) Correlation	(3) 2000DEN/DEN
2 site	(1) 86.5	361.9		
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 41.6$	(2) 88.0	368.2		
(174.1)	(3) 84.6	353.8		
1 site with 5-OH	(1) 83.6	349.8		
2 site with 6-Br	(2) 88.5	370.3		
hydroxyfluorene				
7 9 12 0 22 H				
H–O bond at 1 site	(1) 82.0	343.1	(1) Electrochem.	(1) 1975MAH/DAR
3 site	(2) 80.9	338.3	(2) Correlation	(2) 2000DEN/DEN
hydroxy-phenanthrene				
H 34 0 10 9 10 9				
H–O bond at 1 site	84.8	354.7	Correlation	2000DEN/DEN
2 site	87.7	367.0		
3 site	86.6	362.5		
4 site	85.1	356.2		

pyrene, substituted

H-O bond a	t 3 site	(1) 80.2	335.6	(1) Electrochem.	(1) 1975MAH/ DAR
	3 site with 8-OH	(1) 79.0 (2) 75.5	330.5 315.9	(2) Correlation	(2) 2000DEN/DEN
	3 site with 10-OH	(1) 79.2 (2) 75.9	331.4 317.7		

6.1.4 O-H bonds in sterically hindered phenols

Table 6.1.4 O-H BDEs in Sterically Hindered Phenols

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
phenols, substituted	(2) 82.1	343.5	(2) AOP	(2) 1991BOR/CHE(b)
AD.	(4) 82.8 ± 0.2	346.4 ± 0.8	(4) EPR	(4) 1996LUC/PED
tBu	(8) 82.7	346.0	(8) AOP	(8) 1997ZHU/ZHA
0, #	(13) 85.1	356.1	(13) Electrochem.	(13) 1975MAH/DAR
tBu tBu	(14) 82.8	346.4	(14) Correlation	(14) 2000DEN/DEN

352.4

340.0

(4) EPR

(6) EPR

phenols, substituted tBu

p-NC

p-HS

(14) 84.2

(14) 81.3

(6) 1973MAN/MEN

(2) 1991BOR/CHE(b)

(4) 1996LUC/PED

Table 6.1.4 (continued) O-H BDEs in Sterically Hindered Phenols

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(boldf erecommend	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
p-Me	(4) 81.0 (7) 80.5±0.9 (8) 80.1 (17) 79.9±0.2 (18) 79.9±0.1	338.9 336.9±3.6 335 334.3±0.8 334.4±0.5	(7) EPR	(7) 2001SIL/MAT
p-Et	(8) 80.1	335.0	(8) AOP	(8) 1997ZHU/ZHA
p-NO	(14) 82.7	346.0	(9) AOP	(9) 1994ZHA/BOR
p-NO ₂	(8) 86.3 (10) 86.7 (14) 85.6 (15) 84.9	361.0 362.8 358.0 355.2	(10) Electrochem.	(10) 1991PAR/HAN
p-NH ₂	(14) 80.0	334.6	(11) EPR	(11) 1994LUC/PED
p-NH ₂ CH ₂	(14) 77.2	322.9	(14) Correlation	(14) 2000DEN/DEN
p-CN	(15) 84.2	352.4	(15) EPR	(15) 2002BRI/LUC
p-MeO	(4) 78.3 (8) 79.6 (9) 79.7 (11) 77.6±0.4 (14) 78.2	327.6 333.0 333.5 324.7±1.3 327.1	(16) EPR	(16) 1994LUC/PED
p-MeC(O)NH	(14) 78.1	326.7	(17) EPR	(17) 1988COR/COL
p-HO(O)CCH ₂	(14) 80.5	336.9	(18) EPR	(18) 2000PED/COR
p-MeC(O)CH ₂	(14) 81.9	342.8		
p-CNCH ₂	(14) 74.4	311.1		
p-MeC(O)	(14) 83.1	347.8		
p-HC(O)	(14) 83.1 (15) 84.2	347.8 352.3		
p-HO(O)C	(14) 83.4 (15) 84.3	348.8 352.7		
p-MeOC(O)	(8) 82.7 (9) 84.3 (15) 84.1	346.0 352.7 351.9		

p-tBuOC(O)	(14) 83.1	347.8
p-tBu	(6) 81.2 (8) 82.2 (9) 82.6 (11) 81.2±0.1 (18) 81.3	339.7 344.0 345.6 339.7±0.4 334.0
p-tBuO	(14) 79.2	331.3
p-BuS	(14) 81.5	341.0
p-RS	(16) 81.0	338.9
p-Ph	(14) 80.7 (15) 81.2	337.7 339.7
p-PhO	(14) 80.6	337.2
p-PhS	(14) 82.8	346.4
p-PhCH ₂	(14) 81.2	339.7
p-PhCH=CH	(15) 78.9	330.1
p-Ph ₂ CH	(14) 81.8	342.3
p-(CH ₂) ₂ Ph	(14) 81.3	340.0
p-(CH ₂) ₂ tBu	(14) 81.2	339.8
p-C ₁₈ H ₃₇ OC(O)CH ₂ CH ₂ (octadecyloxyoxo-2'- ethyl)	(14) 81.2	339.8
p-C ₁₈ H ₃₇ O (octadecyloxy)	(14) 78.5	328.6
p-C ₂₄ H ₄₉ O (tetracozyloxy)	(14) 78.7	329.2

phenols, substituted

Y = Ph	(8) 84.8	355.0	(8) AOP	(8) 1997ZHU/ZHA
	(9) 85.3	356.9	(9) AOP	(9) 1994ZHA/BOR
HO(O)CCH ₂	(14) 77.9	325.9	(14) Correlation	(14) 2000DEN/DEN

Table 6.1.4 (continued) O-H BDEs in Sterically Hindered Phenols

The broken bonds (boldface = dissociated atom) $\Delta_c H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
phenols, substituted O–H bond	81.3	340.0	Correlation	2000DEN/DEN
0—————————————————————————————————————				
R = - Ph $Ph $ Ph				
phenols, substituted H	81.9	342.8	Correlation	2000DEN/DEN
ethane, substituted O–H bond tBu OH tBu OH tBu tBu tBu	81.5	341.0	Correlation	2000DEN/DEN
methane, substituted O–H bond CH_2				
3,5-Bu ₂	81.3	340.0	Correlation	2000DEN/DEN
2,6-Bu ₂	81.4	340.5		

methane, substituted O-H bond, CR ₄ R = tBu tBu CH ₂ CH ₂ C(O)OCH ₂	81.5	340.9	Correlation	2000DEN/DEN
disulfide, substituted O-H bond PhMeHC OH CHMePh S-S-S-	80.0	334.8	Correlation	2000DEN/DEN
benzene, substituted O-H bond R R = CH ₂ tBu tBu tBu	82.4	344.9	Correlation	2000DEN/DEN
ether, substituted O-H bond, R-O-R H "\frac{H}{V} O Ph $(CH_2)_2C(O)O(CH_2)_2$	81.0	339.0	Correlation	2000DEN/DEN
indophenol, substituted tBu tBu tBu tBu tBu tBu tBu	78.2	327.1	Correlation	2000DEN/DEN

Table 6.1.4 (continued) O-H BDEs in Sterically Hindered Phenols

The broken bonds (boldface = dissociated atom) $\Delta_{r}H^{o}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
silane, substituted O–H bond, SiR ₄ tBu R = H CH ₂ CH ₂ O tBu	81.5	341.0	Correlation	2000DEN/DEN
sulfide, substituted CHMePh O H S—CH2Ph Me	81.3	340.1	Correlation	2000DEN/DEN
sulfide, substituted O-H bond, RCH ₂ SCH ₂ R tBu R = OXH	81.2	339.8	Correlation	2000DEN/DEN
sulfide, substituted CHMePh O H Me Me HO CHMePh	80.1	335.2	Correlation	2000DEN/DEN
sulfide, substituted CHMePh O H Me				

$X = S(CH_2)_4 CN$	82.6	345.5	Correlation	2000DEN/DEN
SCH ₂ CH ₃	81.4	340.7		
sulfide, substituted CHMePh	81.4	340.4	Correlation	2000DEN/DEN
MeS—O _p r _H CHMePh				
4-[(4-hydroxyphenylthio)-methylthio]phenyl, substituted	81.0±0.4	338.9±1.3	EPR	1994LUC/PED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
4-[(4-hydrophenyl)- methylene]cyclohexa-2, 5-dien-1-one, substituted	78.8±0.3	329.7±12.6	EPR	1994LUC/PED
O = CH - CH - CM + CM				
galvinol tBu	78.7	329.1	Correlation	2000DEN/DEN
H O CH O O				

6.2 *O–O bonds*

Table 6.2 O-O BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
hydroperoxide HO -OH	51±1	213.4±4.2	Review	1982MCM/GOL
fluoride hydroperoxide HO -OF	46.1±2	192.9±8.4	Derived from $\Delta_{_{\!f}}\!H^{\circ}$ in ref.	1998COL/GRE
bromine hydroperoxide HO-OBr	33.6±2	140.6±8.4	Derived from $\Delta_f H^o$ in ref.	1998COL/GRE
difluoroperoxide FO-OF	47.7	199.6	Derived from $\Delta_f H^o$ in ref.	1994FRE/KAB
dichloroperoxide CIO-OCl	17.9±4	74.9	Derived from $\Delta_f H^o$ in ref.	1994NIC/FRI
pernitric acid HO –ONO ₂	39±2	163.2±8.4	Derived	1978BAL/GOL
methyl hydroperoxide HO –OCH ₃	46.7±1.5	195.4±6.3	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2001DOR/NOV
trifluoromethyl hydroperoxide HO –OCF ₃	48.6±5	203.3±20.9	Derived from $\Delta_{_f}$ H $^{\circ}$ in ref.	1997JPL
tert-butyl hydroperoxide HO –OtC ₄ H ₉	43.0±0.5	179.9±2.1	Pyrolysis	1992SAH/RIG

1-hydroperoxy-2, 2-dimethylpropane HO–OCH ₂ C(CH ₃) ₃	46.3±1.9	193.7±7.9	Pyrolysis	1974BAT/CHR
methaneperoxycarboxylic acid HO-OC(O)CH ₃	40.6±0.5	169.9±2.1	Pyrolysis	1992SAH/RIG
ethaneperoxycarboxylic acid HO– OC(O)C ₂ H ₅	40.6±0.5	169.9±2.1	Pyrolysis	1992SAH/RIG
dimethyl peroxide CH ₃ O-OCH ₃	37.6±2	157.3±8.4	Pyrolysis	1974BAT/CHR
ditrifluoromethyl peroxide CF ₃ O-OCF ₃	(1) 46.2±1 (2) 47.5±0.5	193.3±4.2 198.7±2.1	(1) Pyrolysis (2) VLPP	(1) 1976DES/FOR (2) 2000REI/PRA
diethyl peroxide $C_2H_5O-OC_2H_5$	37.9±1	158.6±4.2	Pyrolysis	1974BAT/CHR
dipropyl peroxide nC_3H_7O –On C_3H_7	37.1±1	155.2±4.2	Pyrolysis	1974BAT/CHR
diiso-propyl peroxide iC ₃ H ₇ O-OiC ₃ H ₇	37.7	157.7	Pyrolysis	1974BAT/CHR
disec-butyl peroxide sC_4H_9O –Os C_4H_9	36.4±1	152.3±4.2	Pyrolysis	1983BAT
ditert-butyl peroxide tBuO-OtBu	(1) 38.0±1 (2) 38.2±0.5 (3) 38.9±0.5 (4) 37.5±2.4	159.0±4.2 159.8±2.1 162.8±2.1 156.7±9.9	(1) Pyrolysis (2) Pyrolysis (3) VLPP (4) PAC	(1) 1983BAT (2) 1992SAH/RIG (3) 2000REI/PRA (4) 2001SAN/MUR

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
dineopentyl peroxide tBuCH ₂ O –OCH ₂ tBu	36.4±1	152.3	Pyrolysis	1977TRE/WRI
di-1,1-dimethylpropyl peroxide EtC(Me) ₂ O-OC(Me) ₂ Et	39.3±1	164.4±4.2	VLPP	1973PER/GOL
ditert-nonafluorobutyl peroxide (CF ₃) ₃ CO–OC(CF ₃) ₃	35.5±1.1	148.5±4.6	Pyrolysis	1977IRE/GOR
di(sulfur pentafluoro) peroxide $\mathbf{SF}_5\mathbf{O} ext{-}\mathbf{OSF}_5$	37.2	155.6	Pyrolysis	1978CZA/SCH
di(sulfur pentafluoro) trioxide SF ₅ O-OOSF ₅	30.3	126.8	Pyrolysis	1981CZA/SCH
tert-butyl 1,1-dimethyl- 1-silaethyl peroxide (CH ₃) ₃ CO–OSi(CH ₃) ₃	47	196.6	Pyrolysis	1978MAR/COM
2,2-diethyl-2-germabutyl tert-butyl peroxide tBuO-OGeEt ₃	46	192.5	Pyrolysis	1965SKI
2,2-diethyl-2-stannabutyl tert-butyl peroxide tBuO-OSnEt ₃	46	192.5	Pyrolysis	1961HER

trifluoromethoxy-trifluoro- methyl peroxide CF ₃ OO-OCF ₃	30.3±2	126.8±8.4	Pyrolysis	1981CZA/SCH
chlorofluorotrioxide FCIOO -O	58.4	244.3	Review	1970ONE/BEN
chlorotrioxide ClO- OO	7.7	32.2	Derived from $\Delta_f H^o$ in ref.	1997JPL
diacetyl peroxide CH ₃ C(O)O-OC(O)CH ₃	(1) 30.4±2	127.2±8.4	(1) Photodetach.	(1) 1975REE/BRA
	(2) 36	150.6	(2) Derived	(2) 1998COL/GRE
propanoyloxy propanoate C ₂ H ₅ C(O)O-OC(O)C ₂ H ₅	(1) 30.4±2	127.2±8.4	(1) Photodetach.	(1) 1975REE/BRA
	(2) 36	150.6	(2) Derived	(2) 1998COL/GRE
butanoyloxy butanoate	(1) 30.4±2	127.2±8.4	(1) Photodetach.	(1) 1975REE/BRA
nC ₃ H ₇ C(O)O–OC(O)nC ₃ H ₇	(2) 36	150.6	(2) Derived	(2) 1998COL/GRE

6.3 O-C bonds

6.3.1 O–C bonds in alcohols

Table 6.3.1 O-C BDEs in Alcohols

The broken bonds (boldface = dissociated atoms	BD (bold) recommer references in	face = nded data;	Methods (references in	
or groups)	kcal/mol	kJ/mol	parentheses)	References
trifluoromethanol HO –CF ₃	≤115.2±0.3	≤482.0±1.3	PIMS	1997ASH/APP
methanol HO –CH ₃	(1) 92.7±0.2 (2) 92.8 (3) 92.00±0.17	387.9±0.8 388.3 384.93±0.71	Δ_f H° in ref. (2) Derived	(1) 1986PED/NAY (2) 2001KOS/MIR(a) (3) 2002RUS/WAG

Table 6.3.1 (continued) O-C BDEs in Alcohols

The broken bonds (boldface = dissociated atoms	(boldf recommen	BDEs (boldface = recommended data; references in parentheses)		
or groups)	kcal/mol	kJ/mol	(references in parentheses)	References
ethanol HO- C ₂ H ₅	94.0±0.7	393.3±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2,2-trifluoroethanol HO– CH ₂ CF ₃	98.1±2	410.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
allyl alcohol HO -CH ₂ CH=CH ₂	80.0±1	334.7±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-propen-1-ol HO –CH=CHCH ₃	103.0±1.5	431.0±6.3	Derived from $\Delta_t H^o$ in ref.	1994PED
1-propanol HO –nC ₃ H ₇	94.2±0.7	394.1±2.9	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-propanol HO –iC ₃ H ₇	95.6±1	400.0±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
1-butanol HO –nC ₄ H ₉	93.7±1	392.0±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-butanol HO–sC ₄ H ₉	95.2±1	398.3±4.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
2-methyl-1-propanol \mathbf{HO} –i C_4H_9	94.7±1	396.2±4.2	Derived from $\Delta_{\!_f}\!H^{\!\scriptscriptstyle o}$ in ref.	1986PED/NAY
2-methyl-2-propanol HO – tC_4H_9	95.7±1	400.4±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

1-pentanol HO–nC ₅ H ₁₁	92.8±1.5	388.3±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-pentanol HO -CH(CH ₃)(nC ₃ H ₇)	95.7±1	400.4±4.2	Derived from $\Delta_f H^o$ in ref.	2002CRC
3-pentanol HO -CH(C ₂ H ₅) ₂	95.9±1	401.2±4.2	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-methyl-2-butanol HO –C(CH ₃) ₂ (C ₂ H ₅)	95.1±1.5	397.9±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
1-hexanol HO-C ₆ H ₁₃	92.9±2	388.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-hexanol HO-C ₆ H ₁₃	96.1±1.5	402.1±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
phenol HO-C ₆ H ₅	111.3±1	465.7±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pentafluorophenol HO –C ₆ F ₅	107	447.7	Derived	1975CHO/GOL
benzyl alcohol HO –CH ₂ C ₆ H ₅	(1) 81.2 (2) 81.8 ± 1.8	339.7 342.3 ± 7.5	 (1) VLPP (2) Derived from Δ_tH° in ref. 	(1) 1979ROS/GOL (2) 1986PED/NAY
cyclopentanol c-C ₅ H ₉ -OH	92.7±1.5	387.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclohexanol c-C ₆ H ₁₁ -OH	95.8±1.5	400.8±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 6.3.1 (continued) O-C BDEs in Alcohols

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
or groups)	kcal/mol	kJ/mol	parentheses)	References
1-adamantanol 1-adamantyl -OH	(1) 92.5	387.9	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1988LIA/BAR
1-adamanty1-O11	(2) 91.6	383.3	(2) Derived	(2) 2001MAT/LEB
2-adamantanol 2-adamantyl- OH	98.5	412.1	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
1-naphthol 1-C ₁₀ H ₇ - OH	112.5±1.5	470.7±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-naphthol 2-C ₁₀ H ₇ - OH	112.3±1.5	469.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dimethylaminomethanol (CH ₃) ₂ (NH ₂)C- OH	74.7±1.5	312.5±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
pyridinol, HO -pyridinyl				
1N HO 3 2				
2-OH	95.9±1	401.2±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
3-OH	113.3±2	474.0±8.4		
4-OH	112.7±2	471.5±8.4		

6.3.2 O–C bonds in ethers

Table 6.3.2 O–C BDEs in Ethers

The broken bonds (boldface = dissociated atoms or groups)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
dimethyl ether CH ₃ -OCH ₃	83.2±1.0	348.1±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl methyl ether $\mathbf{CH_3}$ – $\mathbf{OC_2}\mathbf{H_5}$	83.1±1.0	347.7±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl methyl ether CH ₃ O-C ₂ H ₅	84.2±1.3	352.3±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
divinyl ether C_2H_3 – OC_2H_3	78.0±2.5	326.4±10.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
ethyl vinyl ether C_2H_3 – OC_2H_5	101.6±1.5	425.1±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl vinyl ether C_2H_5 – OC_2H_3	65.2±2.5	272.8±10.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-chloroethyl vinyl ether CH ₂ ClCH ₂ –OC ₂ H ₃	66.0±2.5	276.1±10.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
diethyl ether C_2H_5 – OC_2H_5	84.9±1.5	355.2±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-chloroethyl ethyl ether CH ₂ CICH ₂ -OC ₂ H ₅	90.5±2	379.1±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

Table 6.3.2 (continued) O-C BDEs in Ethers

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
or groups)	kcal/mol	kJ/mol	parentheses)	References	
methyl 2-methyl-vinyl ether CH ₃ -OC(CH ₃)=CH ₂	66.3	277.4	VLPP	1978ZAB/BEN	
methyl propyl ether CH ₃ –OnC ₃ H ₇	84.8±1.5	354.8±6.3	Derived from $\Delta_t H^o$ in ref.	1994PED	
methyl propyl ether CH ₃ O–nC ₃ H ₇	84.8±1.5	354.8±6.3	Derived from $\Delta_t H^o$ in ref.	1994PED	
iso-propyl methyl ether CH ₃ -OiC ₃ H ₇	82.8±1.5	346.4±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC	
iso-propyl methyl ether CH ₃ O-iC ₃ H ₇	85.3±1.0	356.9±4.2	Derived from $\Delta_t H^o$ in ref.	2002CRC	
ethyl propyl ether C_2H_5 – OC_3H_7	84.8±2.0	354.8±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
ethyl propyl ether C ₂ H ₅ O-C ₃ H ₇	84.8±1.2	354.8±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
propyl vinyl ether C ₂ H ₃ –OC ₃ H ₇	103.0±2.2	431.0±9.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY	
propyl vinyl ether C_3H_7 -OC $_2$ H $_3$	65.5±2.5	274.1±10.5	Derived from $\Delta_t H^o$ in ref.	1994PED	
butyl methyl ether C_4H_9 –OCH $_3$	81.8±1.5	342.3±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC	

butyl methyl ether $ extbf{C}_4 extbf{H}_9 ext{O-CH}_3$	84.4±1.5	353.1±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
tert-butyl methyl ether tC ₄ H ₉ –OCH ₃	83.5±1.5	349.4±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl methyl ether tC ₄ H ₉ O–CH ₃	80.6±1.5	337.2±6.3	Derived from $\Delta_t H^o$ in ref.	2002CRC
ethyl propyl ether C ₂ H ₅ –OC ₃ H ₇	86.3±2.2	361.1±9.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
ethyl propyl ether C ₂ H ₅ O–C ₃ H ₇	85.2±1.5	356.5±6.3	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
butyl vinyl ether C ₄ H ₉ O–C ₂ H ₃	100.2±2.0	419.2±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
outyl vinyl ether C ₄ H ₉ –OC ₂ H ₃	65.3±2.5	273.2±10.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
ert-butyl ethyl ether C ₄ H ₉ –OC ₂ H ₅	82.9±1.5	346.9±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
tert-butyl ethyl ether cC ₄ H ₉ O–C ₂ H ₅	81.1±1.5	339.3±6.3	Derived from $\Delta_t H^o$ in ref.	2002CRC
dipropyl ether C ₃ H ₇ –OC ₃ H ₇	86.5±2.2	361.9±9.2	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
diiso-propyl ether iC ₃ H ₇ –OiC ₃ H ₇	84.8±2.0	354.8±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 6.3.2 (continued) O-C BDEs in Ethers

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
or groups)	kcal/mol	kJ/mol	parentheses)	References	
2-ethyl-2-methylpropane (C ₂ H ₅)C(CH ₃) ₂ -OCH ₃	84.4±2.0	353.1±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED	
tert-butyl isopropyl ether $\mathbf{tC_4H_9}$ -Oi $\mathbf{C_3H_7}$	84.7±2.0	354.4±8.4	Derived from $\Delta_{f}H^{o}$ in ref.	1994PED	
tert-butyl isopropyl ether tC_4H_9O – iC_3H_7	84.3±2.0	352.7±8.4	Derived from $\Delta_t H^o$ in ref.	1994PED	
dibutyl ether nC_4H_9 –On C_4H_9	83.3±2.0	348.5±8.4	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY	
disec-butyl ether $\mathbf{sC_4H_9}$ –Os $\mathbf{C_4H_9}$	85.9±2.0	359.4±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
ditert-butyl ether tC ₄ H ₉ –OtC ₄ H ₉	75.8±2.0	317.1±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY	
butyl tert-butyl ether nC₄H₉– OtC ₄ H ₉	82.3±2.0	344.3±8.4	Derived from $\Delta_t H^o$ in ref.	1994PED	
butyl tert-butyl ether nC ₄ H ₉ O-tC ₄ H ₉	83.2±2.0	348.1±8.4	Derived from $\Delta_{f}H^{o}$ in ref.	1994PED	
sec-butyl tert-butyl ether $\mathbf{tC_4H_9}\text{-OsC}_4\text{H}_9$	85.8±2.0	359.0±8.4	Derived from $\Delta_t H^o$ in ref.	1994PED	
sec-butyl tert-butyl ether $tC_4H_9O-sC_4H_9$	84.7±2.0	354.4±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED	

iso-butyl tert-butyl ether iC_4H_9 –Ot C_4H_9	82.6±2.0	345.6±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
pentyl tert-butyl ether nC₅H₁₁−OtC₄H9	81.7±2.0	341.8±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
methoxybenzene or anisole C_6H_5 -OCH $_3$	99.2±1.4	415.1±5.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methoxybenzene or anisole ${\rm CH_3\text{-}OC_6H_5}$	(1) 64.8 (2) 65.2	271.1 272.8	(1) VLPP (2) Tubular flow reactor	(1) 1989SUR/KAF (2) 1993ARE/LOU
	(3) 65.3 (4) 64.2 ± 1.7	273.2 268.6±7.1	(3) VLPP(4) Derived from Δ_tH° in ref.	(3) 2001PRA/HEE (4) 1986PED/NAY
methyl pentafluorophenyl ether $\mathbf{CH_3}\text{-}\mathbf{OC}_6\mathbf{F}_5$	60.8	254.4	VLPP	1989SUR/KAF
anisoles, substituted O-1-CH ₃				
Y = m-F	(1) 64.4	269.4	VLPP	(1) 1989SUR/ KAF(b)
o-F	(1) 61.6	257.7		(2) 1989SUR/KAF
p-F	(1) 62.4	261.1		(3) 2001PRA/HEE
m-Cl	(2) 63.7	266.5		
o-Cl	(2) 61.3	256.5		
p-Cl	(2) 62.4	261.1		
o-Br	(2) 61.8	258.6		
m-NH ₂	(1) 63.1	264.0		
o-NH ₂	(1) 56.1	234.7		
p-NH ₂	(1) 60.5	253.1		
m-OH	(2) 63.8	266.9		
o-OH	(2) 56.3	235.6		

Table 6.3.2 (continued) O-C BDEs in Ethers

The broken bonds (boldface = dissociated atoms or groups)	BDEs (boldface = recommended data; references in parentheses)		Methods	
	kcal/mol	kJ/mol	(references in parentheses) Re	References
	(3) 58.1	243.1		
p-OH	(2) 61.0 (3) 62.6	255.2 261.9		
m-Me	(1) 63.0	263.6		
o-Me	(1) 60.9	254.8		
p-Me	(1) 61.6	257.7		
m-MeO	(2) 62.4	261.1		
o-MeO	(2) 59.3 (3) 61.2	248.1 256.1		
p-MeO	(2) 59.3 (3) 62.2	248.1 260.2		
o-CH ₂ OH	(1) 61.0	255.2		
m-COCH ₃	(1) 63.7	266.5		
o-COCH ₃	(1) 62.0	259.4		
p-COCH ₃	(1) 64.1	268.2		
o-CH=CH ₂	(1) 61.0	255.2		
m-CN	(1) 64.6	270.3		
o-CN	(1) 63.4	265.3		
p-CN	(1) 63.8	266.9		
m-NO ₂	(1) 63.0	263.6		
o-NO ₂	(1) 62.1	259.8		
p-NO ₂	(1) 64.6	270.3		
p-CF ₃	(3) 67.5	282.4		
2-CHO-4-OH	(3) 62.3	260.7		
,2-dimethoxybenzene EH ₃ –OR	60.5	253.1	VLPP	1989SUR/KAF
,4-dimethoxybenzene C H ₃ –OR	60.7	254.0	VLPP	1989SUR/KAF

ethyl phenyl ether C ₂ H ₅ -OC ₆ H ₅	(1) 64.1 (2) 65.6±2.5	268.2 274.1	(1) VLPP (2) Derived from $\Delta_f H^o$ in ref.	(1) 1977COL/ZAB (2) 1986PED/NAY
phenyl vinyl ether C_2H_3 – OC_6H_5	(1) 70.0 (2) 79.1 ± 2.5	292.9 331.0±10.5	 (1) Pyrolysis (2) Derived from Δ_tH° in ref. 	(1) 1993HEN (2) 1986PED/NAY
	(3) 76.0	318.0	(3) Pyrolysis	(3) 1997SCH/DOR
phenyl vinyl ether $C_2H_3O-C_6H_5$	(1) 76.6 ± 5.0	320.5±20.9	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1986PED/NAY
- 0	(2) 75.9	317.6	(2) Pyrolysis	(2) 1997SCH/DOR
diphenyl ether C_6H_5 – OC_6H_5	(1) 75.0 (2) 79.4 ± 2	313.8 332.2±8.4	 (1) Pyrolysis (2) Derived from Δ_tH° in ref. 	(1) 1993ARE (2) 1986PED/NAY
	(3) 78.8	329.7	(3) Pyrolysis	(3) 1997SCH/DOR
allyl phenyl ether $\mathbf{CH_2} \!\!=\!\! \mathbf{CHCH_2} \!\!-\!\! \mathbf{OC}_6\mathbf{H}_5$	49.8±2	208.4±8.4	VLPP	1977COL/ZAB
phenyl benzyl ether $\mathbf{C_6H_5CH_2}\text{-}\mathrm{OC_6H_5}$	52.1	218.0	Pyrolysis	1993ARE
2,3-benzoanisole	57.5	240.6	VLPP	1989SUR/KAF
0 - 1 CH ₃				
3,4-benzoanisole $O = CH_3$	61.0	255.2	VLPP	1989SUR/KAF
32/				

	The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
	dissociated atoms or groups)		kcal/mol	kcal/mol kJ/mol		References
pip	eridinol, su	ubstituted				
CH ₃	O TR CH					
R =	CH_3		(1) 47±1	196.6	(1) VLPP	(1) 1999CIR/KOR
	c-C ₆ H ₁₁		(1) 40	167.4	(1) PAC	
	C ₆ H ₇ (1, 4-cyclohex	xadienyl)	(1) 18	75.3	(1) PAC	
	$C_4H_7O(\alpha-1)$	tetrahydrofuryl)	(1) 48	200.8	(1) PAC	
	$(C_2H_5)_2NC$	CHCH ₃	(1) 38	159.0	(1) PAC	
	$C_6H_5CH_2$		(2) 32	133.9	(2) PAC	(2) 1998SKE/BEL
	C ₆ H ₅ CHC	CH ₃	(2) 30 (3) 33 (4) 27	125.5 138.1 113.0	(3) PAC (4) PAC	(3) 1995LI/HOW (4) 1995VER/GEO
	C ₆ H ₅ C(CH	$(H_3)_2$	(2) 26 (5) 26	108.8 108.8	(5) PAC	(5) 1998KOT/MAR
	enylmetho stituted	oxy) piperidine,				
	R ₁ R ₂					
R_1	R_2	X			Thermolysis	1998SKE/BEL
Н	Н	Н	30.6	128.0	-	
Me	Н	Н	28.4	118.8		
Me	Me	Н	24.6	102.9		
Н	Н	ОН	31.4	131.4		

tropylium phenoxides, substituted				
Y-()-0+()				
Y = H	91.6±0.3	383.3±1.3	Electrochem.	1993ARN/FLO(b)
F	91.2±0.3	381.6±1.3		
Cl	93.4 ± 0.4	390.8±1.7		
Br	89.0 ± 0.4	372.4±1.7		
NO ₂	93.8 ± 0.4	392.5±1.7		
CN	93.1±0.3	389.5±1.3		
MeO	86.3 ± 0.4	361.1±1.7		

6.3.3 O-C bonds in acids, esters, and anhydrides

Table 6.3.3 O-C BDEs in Acids, Esters, and Anhydrides

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
or groups)	kcal/mol	kJ/mol	parentheses)	References	
methyl formate CH ₃ -OC(O)H	(1) 86.8	363.2	(1) Electron capture detect.	(1) 1989CHE/ALB	
	(2) 84.5±2.3	353.5±9.6	(2) Derived from $\Delta_f H^o$ in ref.	(2) 1994PED	
formic acid HC(O) –OH	109.9±0.5	459.8±2.1	Derived from $\Delta_i H^o$ in ref.	1994LIA/LIE	
acetic acid CH ₃ C(O)–OH	110.3±1	461.5±4.2	Derived from $\Delta_f H^o$ in ref.	1994LIA/LIE	
propenoic acid C₂H₃C(O)–OH	107.7±2.5	450.6±10.5	Derived from $\Delta_f H^o$ in ref.	1998NIST	

Table 6.3.3 (continued) O-C BDEs in Acids, Esters, and Anhydrides

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
or groups)	kcal/mol	kJ/mol	parentheses)	References
propanoic acid C ₂ H ₅ C(O)–OH	110.5±2	462.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
benzoic acid C ₆ H ₅ C(O)–OH	107.5±2.5	449.8±10.5	Derived from $\Delta_f H^o$ in ref.	1994PED
methyl acetate CH ₃ C(O)O-CH ₃	84.3±1.2	352.7±5.0	Derived from $\Delta_f H^o$ in ref.	2002CRC
methyl acetate CH ₃ C(O)–OCH ₃	100.5±1.5	420.5±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
ethyl chloroformate CIC(O)–OC ₂ H ₅	101.7±2	425.5±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
methyl acrylate CH ₂ =CHC(O)–OCH ₃	98.4±2	411.7±8.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
ethyl acetate C ₂ H ₅ -OC(O)CH ₃	84.9±1.3	355.2±5.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iso-propyl acetate iC ₃ H ₇ –OC(O)CH ₃	86.5±1.5	361.9±1.5	Derived from $\Delta_f H^o$ in ref.	1994PED
butyl acetate C ₄ H ₉ –OC(O)CH ₃	85.0±1.5	355.6±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
vinyl acetate CH ₃ C(O)–OC ₂ H ₃	75.8±1.5	317.1±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC

propanoinc acid ethyl ester C_2H_5 –OC(O) C_2H_5	84.6±1.5	354.0±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
butanoic acid 1-methylpropyl ester $\mathbf{sC_4H_9}\text{-OC(O)C}_3\text{H}_7$	86.9±1.5	363.6±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
vinyl acetate CH ₃ C(O)–OC ₂ H ₃	80.3±3	336.0±12.6	Derived from $\Delta_f H^o$ in ref.	1994PED
formic acid phenyl ester HC(O) –OC ₆ H ₅	74.4±3	311.3±12.6	Derived from $\Delta_f H^o$ in ref.	1994PED
acetic acid phenyl ester CH ₃ C(O)–OC ₆ H ₅	77.3±3	323.4±12.6	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
methyl benzoate C ₆ H ₅ C(O)–OCH ₃	(1) 100.7±3 (2) 97.9±3		 (1) Derived from Δ_tH° in ref. (2) Derived from Δ_tH° in ref. 	(1) 1986PED/NAY (2) 2002ROU/TEM
phenyl benzoate C ₆ H ₅ C(O)-OC ₆ H ₅	74.8±3	313.0±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dimethoxymethane CH ₃ OCH ₂ -OCH ₃	87.4±2.0	365.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
acetic anhydride CH ₃ C(O)–OC(O)CH ₃	(1) 83.5 (2) 84.8±1.5	349.4 354.8±6.3	 (1) Electron capture detect. (2) Derived from Δ_fH° in ref. 	(1) 1989CHE/ALB (2) 1986PED/NAY
propanoic anhydride $C_2H_5C(O)\text{-OC}(O)C_2H_5$	87.3±3	365.3±12.6	Derived from $\Delta_f H^o$ in ref.	1994PED
benzoic anhydride C ₆ H ₅ C(O)–OC(O)C ₆ H ₅	86.6±2.5	362.3±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

6.3.4 O–C bonds in peroxides and peroxys

Table 6.3.4 O-C BDEs in Peroxides and Peroxys

The broken bonds (boldface = dissociated atoms	(bold recommen	BDEs (boldface = recommended data; references in parentheses)		
or groups)	kcal/mol	kJ/mol	(references in parentheses)	References
ethyl hydroperoxide C ₂ H ₅ -OOH	79.4±5	332.2±20.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl hydroperoxide tC ₄ H ₉ –OOH	73.9±1	309.2±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dimethyl peroxide CH ₃ -OOCH ₃	67.3±1.5	281.6±6.3	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
bis(trifluoromethyl) peroxide $\mathbf{CF_3} ext{-OOCF}_3$	86.4±2	361.5±8.4	Pyrolysis	1983BAT/WAL
tert-butylperoxide tC_4H_9 -OOt C_4H_9	70.7±2	295.8±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
methyl peroxy CH ₃ - OO	(1) >30.3 (2) 32.2±1.5	>126.8 134.7±6.5	(1) VLPR (2) Equilibrium study	(1) 1984KON/BEN (2) 1982KHA/NIA
	(3) 32. 7± 0.9	137.0±3.8	(3) Reanal.	(3) 1998KNY/ SLA(b)
trifluoromethyl peroxy CF ₃ -OO	35.3	147.7	Derived from $\Delta_t H^o$ in ref.	1992LIG/COX
chlorodifluoromethyl peroxy CClF ₂ –OO	30.5	127.6	Derived from $\Delta_f H^o$ in ref.	1992LIG/COX

dichlorofluoromethyl peroxy CCl_2F - OO	29.8	124.7	Derived from $\Delta_f H^o$ in ref.	1992LIG/COX
chloromethylperoxy CH ₂ Cl -OO	29.3±2.5	122.4±10.5	Reanal.	1998KNY/SLA(b)
dichloromethylperoxy CHCl ₂ -OO	25.9±2.0	108.2±8.2	Reanal.	1998KNY/SLA(b)
trichloromethylperoxy CCl ₃ – OO	22.0±1.5	92.0±6.4	Reanal.	1998KNY/SLA(b)
ethylperoxy C_2H_5 – OO	(1) 34.1±0.5 (2) 31.3±1.1 (3) 35.5±2.0	142.7±2.1 130.1±4.6 148.4±8.4	(1) PIMS (2) Review (3) Reanal.	(1) 1990WAG/SLA (2) 1997BEN/COH (3) 1998KNY/SLA(b)
2-chloroethylperoxy CH ₃ CHCl -OO	31.4±0.4	131.2±1.8	Reanal.	1998KNY/SLA(b)
2,2-dichloroethylperoxy CH ₃ CCl ₂ –OO	26.8±0.5	112.2±2.2	Reanal.	1998KNY/SLA(b)
iso-propylperoxy iPr -OO	(1) 39.7 (2) 32.2±1.3 (3) 37.1±2.3	166.1 134.7±5.4 155.4±9.6	(1) PIMS (2) Review (3) Reanal.	(1) 1985SLA/RAT (2) 1997BEN/COH (3) 1998KNY/SLA(b)
allylperoxy CH ₂ =CHCH ₂ -OO	(1) 18.2	76.1	(1) Flash photolysis	(1) 1982MOR/PIL
	(2) 18.4	77.0		(2) 1998KNY/SLA
2-chloro- 2-methylethyl-peroxy (CH ₃) ₂ CCl –OO	32.5±0.9	136.0±3.8	Reanal.	1998KNY/SLA(b)

Table 6.3.4 (continued) O-C BDEs in Peroxides and Peroxys

The broken bonds (boldface = dissociated atoms or groups)	(bold f recommen	BDEs (boldface = recommended data; references in parentheses)		
	kcal/mol	kJ/mol	(references in parentheses)	References
tert-butylperoxy tBu- OO	(1) 30.2±1.1 (2) 36.7±1.9 (3) 36.5±1.8	126.4±4.6 153.6±7.9 152.8±7.4	(1) VLPR (2) PIMS (3) Reanal.	(1) 1983HEN/BEN (2) 1986SLA/RAT (3) 1998KNY/ SLA(b)
cyclohetylperoxy c-C ₆ H ₁₁ -OO	24	100.4	PAC	2000KRA/CIR
cyclohexadienylperoxy c-C ₆ H ₇ –OO	12	50.2	PAC	2000KRA/CIR
benzylperoxy $C_6H_5CH_2$ - OO	(1) 22.0±1.5 (2) 21.0±1	92.0±6.0 87.9±4.2	(1) Photolysis (2) Laser induced fluorescence	(1) 1993FEN/NOZ (2) 1993ELM/MIN
α-OH-methylperoxy HOCH ₂ -OO	16.3±0.3	68.2±1.3	Review	1997BEN/COH
α -NH ₂ -methylperoxy NH ₂ CH ₂ - OO	36.5±1.8	152.8±7.4	Reanal.	1998KNY/SLA(b)
pyrrolidin-2-yl-peroxy c-C ₄ H ₈ N –OO	10	41.8	PAC	2000KRA/CIR
(ethylmethylamino) methyl-peroxy (C ₂ H ₅)N(CH ₃)CH ₂ - OO	25	104.6	PAC	2000KRA/CIR
acetyl peroxy CH ₃ C(O)– OO	38.7±5	161.9±20.9	Derived from $\Delta_f H^o$ in ref.	1991BRI/CAR

tetrahydrofuran-2-yl-peroxy C ₄ H ₇ O –OO	32	133.9	PAC	2000KRA/CIR
dioxan-2-yl-peroxy C ₄ H ₇ O ₂ –OO	34	142.3	PAC	2000KRA/CIR

6.3.5 O–C bonds in other species

Table 6.3.5 O-C BDEs in Other Species

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
or groups)	kcal/mol	kJ/mol	parentheses)	References	
carbon dioxide O=CO	127.2±0.1	532.2±0.4	Spectroscopy	1970DAR	
carbon oxysulfide O =CS	145.4	608.4	Derived from $\Delta_{f}H^{o}$ in ref.	2002CRC	
trifluoromethyl hypochlorite CIO-CF ₃	≤88.4±0.3	≤369.9±1.3	PIMS	1997ASH/APP	
methyl nitrite Me-ONO	58.9	246.4	Derived from $\Delta_{t}H^{o}$ in ref.	1998NIST	
methyl nitrate Me -ONO ₂	81.0	338.9	Derived from $\Delta_{f}H^{o}$ in ref.	1998NIST	
1-methoxy-1,1-dimethy l-1-silaethane Me –OSiMe ₃	96.3	403	Derived	1998BEC/WAL	

Table 6.3.5 (continued) O-C BDEs in Other Species

The broken bonds (boldface = dissociated atoms	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
or groups)	kcal/mol	kJ/mol	parentheses)	References	
1-ethoxy-1,1-dimethyl- 1-silaethane Et-OSiMe ₃	98.5	412	Derived	1998BEC/WAL	
2H-3,4-dihydropyran	61.2	256	Derived	1997DOR/PUG	
2,3-dihydro-1,4-dioxin	60.5	253	Derived	1997DOR/PUG	
chromane O	60.9	255	Derived	1997DOR/PUG	
2,3-dihydro-1,4-benzodioxin	60.2	252	Tubular flow reactor	1994SCH/ARE	

6.4 O-N bonds

Table 6.4 O-N BDEs

The broken bon (boldface =	ds (bold recomme references in	BDEs (boldface = recommended data; references in parentheses)			
dissociated group dinitrogen oxide O-N ₂	40.0	kJ/mol 167.4	parentheses) Derived from $\Delta_t H^o$ in ref.	References 2002CRC	
nitrogen dioxide O- NO	72.9	305.0	Review	1965BEN	
nitrate $ O-NO_2 $	47.3±0.8 at 0K	197.9±3.3 at 0K	Photodissocn.	1993DAV/KIM	
nitric oxide NO- NO	9.7±0.5	40.6±2.1	Review	1976BEN	
dinitrogen trioxide O ₂ N- ONO ₂	8.8	36.8	Derived from $\Delta_t H^o$ in ref.	2002CRC	
nitrous acid HO- NO	49.4	206.7	Review	1982MCM/GOL	
fluoronitrooxy FO- NO	34.6±7	144.8±29.3	Derived from $\Delta_t H^o$ in ref.	1997JPL	
chloronitrooxy ClO- NO	33	138.1	Derived from $\Delta_t H^o$ in ref.	1997JPL	
bromonitrooxy BrO– NO	16.3±2	68.2±8.4	Derived from $\Delta_f H^o$ in ref.	1998COL/GRE	

Table 6.4 (continued) O-N BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
nitric acid HO– NO ₂	49.3	206.3	Derived from $\Delta_f H^o$ in ref.	1982MCM/GOL
fluoronitrooxy FO– NO ₂	30.8±3	128.9±12.6	Derived from $\Delta_f H^o$ in ref.	1997JPL
chloronitrooxy ClO-NO ₂	26.6±3	111.3±12.6	Derived from $\Delta_i H^o$ in ref.	1990AND/FAH
bromonitrooxy BrO-NO ₂	27.8±3	116.3±12.6	Derived from $\Delta_f H^o$ in ref.	1996ORL/TYN
nitric peracid HOO-NO ₂	(1) 23±2 (2) 24.1	96.2±8.4 100.8	 (1) Pyrolysis (2) Derived from Δ_tH° in ref. 	(1) 1978BAL/GOL (2) 1994NIST
	(3) 22.8±0.8 at 0K	95.3±3.4 at 0K	(3) Derived	(3) 1995ZAB
methyl nitrite CH ₃ O– NO	41.8±1	174.9±4.2	Pyrolysis	1977BAT/MIL
ethyl nitrite C ₂ H ₅ O– NO	42.0±1.3	175.7±5.4	Pyrolysis	1977BAT/MIL
propyl nitrite nC ₃ H ₇ O– NO	40.1±1.8	167.8±7.5	Pyrolysis	1974BAT/CHR
1-propyl nitrite iC ₃ H ₇ O– NO	41.0±1.3	171.5±7.5	Pyrolysis	1974BAT/CHR
butyl nitrite nC ₄ H ₉ O- NO	42.5±1.5	177.8±6.5	Pyrolysis	1974BAT/CHR

iso-butyl nitrite iC ₄ H ₉ O– NO	42.0±1.5	175.7±6.5	Pyrolysis	1974BAT/CHR
sec-butyl nitrite sC ₄ H ₉ O– NO	41.5±0.8	173.6±3.3	Pyrolysis	1974BAT/CHR
tert-butyl nitrite tC ₄ H ₉ O– NO	40.9±0.8	171.1±3.3	Pyrolysis	1974BAT/CHR
tert-amyl nitrite tAmO– NO	40.9±1	171.1±0.4	Kinetics	1979ISL
alkyl nitrite RO- NO	40.8±1	170.7±4.2	Review	1981BAT/ROB
phenyl nitrite C ₆ H ₅ O– NO	20.8	87.0	Kinetics	1998BER/CAR
alkyl nitrate RO– NO ₂	40.7±0.5	170.3±2.1	Review	1981BAT/ROB
methyl nitrate CH ₃ O– NO ₂	41.2±1	172.4±4.2	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
ethyl nitrate C ₂ H ₅ O–N O ₂	41.0±1	171.5±4.2	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
propyl nitrate C ₃ H ₇ O– NO ₂	42.3±1	177.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iso-propyl nitrate iC ₃ H ₇ O- NO 2	41.1±1	172.0±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
nitrooxy acetate CH ₃ C(O)OO– NO ₂	(1) 26.0±2 (2) 28.4 ± 0.7	108.8±8.4 118.8±2.9	(1) Pyrolysis (2) Kinetics	(1) 1977HEN/KEN (2) 1991BRI/CAR
methyl nitroperoxy CH ₃ OO–NO ₂	20.7±2	86.6±8.4	Derived from $\Delta_f H^o$ in ref.	1983PAT/GOL
1-methylvinyl nitroperoxy CH ₂ =C(CH ₃)OO– NO ₂	26.0±2.0	108.8±8.4	Pyrolysis	1977HEN/KEN
(hydroxyimino)ethane HO-N=CHCH ₃	49.7	207.9	Review	1970ONE/BEN
nitroso formate, substituted				
$R = CH_3$	112	468.6	AOP	2000XIA/ZHU
CH ₂ CH ₃	113	472.8		
CH(CH ₃) ₂	113	472.8		
nitroso benzoate, substituted				
Y = H	111	464.4	AOP	2000XIA/ZHU
Br	112	468.6		
Me	110	460.2		
MeO	109	456.1		
NO ₂	119	497.9		

methoxyamine CH ₃ O-NH ₂	55.2	231.0	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
methylhydroxylamine HO –NHCH ₃	65.4	273.6	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

6.5 O-S, O-halogen, and O-P bonds

Table 6.5 O-S, O-Halogen, and O-P BDEs

	BDEs (boldface = The broken bonds (boldface = recommended data; references in parentheses)			Methods (references in		
,	ated atom)	kcal/mol	kJ/mol	parentheses)	References	
oxythio radio	cal	36.2	151.5	Derived from $\Delta_f H^o$ in ref.	1993BAL/CAS	
sulfur dioxid	le	132±2	552.3±8.4	Spectroscopy	1970DAR	
hydroxythio HO-SH	1	70.6±4	295.4±16.7	Derived from $\Delta_f H^o$ in ref.	1993OHA/DEP	
sulfur trioxic O –SO ₂	de	83.2	348.1	Derived from $\Delta_f H^o$ in ref.	2002CRC	
methylthio p OO–SCH ₃	peroxy	11	46.0	Pulse laser photolysis	1992TUR/BAR	
oxyhydrodis HO –S ₂	ulfide	13.7±2	57.3±8.4	Derived from $\Delta_f H^o$ in ref.	1997JPL	
sulfenic acid HO-SOH		75.4±3	315.5±12.6	Derived from $\Delta_f H^o$ in ref.	1978BEN	

Table 6.5 (continued) O-S, O-Halogen, and O-P BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
sulfuric acid HO –S(OH)O ₂	(1) 93.4±2 (2) 92.5±2	390.8±8.4 387.0±8.4	Derived from $\Delta_f H^o$ in ref.	(1) 1997JPL (2) 1998CHA	
methanesulfenic acid HO –SCH ₃	73.1±3	305.9±12.6	Derived from $\Delta_f H^o$ in ref.	1996HUN/SHE	
methanesulfonic acid HO –SO ₂ CH ₃	86.6±3	362.3±12.6	Derived from $\Delta_f H^o$ in ref.	2000GUT/GAL	
trifluoromethyl hypofluorite F –OCF ₃	43.5±0.5	182.0±2.1	Pyrolysis	1968CZA/CAS	
hydrochlorous acid Cl-OH	(1) 60±3 (2) 56.2 (3) 57.2	251.0±12.6 235.1 239.3	 (1) Review (2) Derived from Δ_tH° in ref. (3) Derived from Δ_tH° in ref. 		
trifluoromethyl hypochlorite Cl–OCF ₃	≤52.8±2	≤220.9±8.4	PIMS	1997ASH/RUS	
chlorine dioxide O-CIO	59.0±3.0	246.9±12.6	Pyrolysis	1968CZA/CAS	
bromine dioxide O–BrO	50.4±2.0	210.9±8.4	Derived from $\Delta_f H^o$ in ref.	2001KLE/THO	
hydrobromous acid Br -OH	(1) 56±3 (2) 51±1	234.3±12.6 213.4±4.2	Review	(1) 1966KER (2) 1999JUR	

hydroiodous acid I–OH	(1) 56.0±3 (2) > 50.9	234.3±12.6 > 213.0	(1) Review(2) Derived from Δ_fH° in ref.	(1) 1966KER (2) 2000GIL/TAL
trifluorophosphino-1-one O =PF ₃	(1) 130±5 (2) 129	543.9±20.9 539.8	Review	(1) 1966KER (2) 1973BEN
trichlorophosphino-1-one O =PCl ₃	(1) 122±5 (2) 124	510.4±20.9 518.8	Review	(1) 1966KER (2) 1973BEN
tribromophosphino-1-one O =PBr ₃	(1) 119±5 (2) 122	497.9±20.9 510.4	Review	(1) 1966KER (2) 1973BEN
triethylphosphino-1-one O=P(CH ₃) ₃	139	581.6	Review	1973BEN
ethyl ethylphosphate $\mathbf{O}=P(OC_2H_5)_3$	148	619.2	Review	1973BEN
phosphinotris (dimethylamino)-1-one O =P(N(CH ₃) ₂) ₃	128	535.6	Review	1973BEN
triphenylphosphino-1-one O =PPh ₃	130	543.9	Review	1973BEN

chapter seven

Tabulated BDEs of N–X bonds

7.1 N–H bonds

7.1.1 N–H bonds in Nonanilines

Table 7.1.1 N-H BDEs in Nonanilines

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
$\Delta_{f}\Pi$ (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
ammonia $H-NH_2$ $\Delta_f H^o(R) = 45.1\pm0.3$ (188.7±1.3)	(1) 108.2±0.3 (2) 107.57± 0.06	452.7±1.3 450.08± 0.24	(1) Recommended (2) Photolysis	(1) 1994BER/ELL (2) 1996MOR/ASH	
difluoroammonia H–NF ₂	75.7±2.5	316.7±10.5	Calorimetry	1969PAN/ZER	
hydrazoic acid $ \begin{array}{l} H-N_3 \\ \Delta_t H^o(R) = 112 \pm 5 \\ (468.6 \pm 20.9) \end{array} $	(1) 92±5 (2) 94 (3) 92.7±3.1 (4) <88.7± 0.5 at 0K (5) 93.8±5	384.9±20.9 393.3 387.9±13.0 <371.1± 2.1 at 0K 392.5±20.9	(-)	(1) 1981PEL/JAC(2) 1991BOR/CHE(3) 1993JEN(4) 1999ZHA/XU(5) 2002CRC	
nitrosyl hydride H–NO $\Delta_f H^{\circ}(R) = 21.58$ (90.29)	46.9±0.1	196.2±0.4	Spectrometry	1996DIX	

Table 7.1.1 (continued) N–H BDEs in nonanilines

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)) Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
nitrous acid H – NO_2 $\Delta_f H^o(R) = 7.91 (33.10)$	78.3±0.5	327.6±2.1	Review	1982MCM/GOL
isocyanic acid H–NCO	(1)≤109.6±0.4 at 0 K (2) 107.7	≤ 458.6 ±1.7 at 0 K 450.6	(1) Photolysis (2) Derived from $\Delta_t H^o$ in ref.	(1) 1996BRO/BER (2) 1998NIST
isothiocyanic acid H–NCS	≤ 97±0.2 at 0 K	≤ 405.8± 0.8 at 0 K	PIMS	1994RUS/BER(b)
methylamine CH_3NH_2 $\Delta_tH^\circ(R)=44.0\pm2$ (184.1 ± 8.4)	(1) 103±2.5 (2) 101.2±3 (3) 101.6 ±2	431.0±10.5 423.4±12.6 425.1±8.4	(1) VLPP (2) AE (3) Review	(1) 1972GOL/SOL (2) 1973SHA/FRA (3) 1988COL
tert-butylamine $tBuNH_2$ $\Delta_t H^o(R) = 22.8\pm3.0$ (95.4 ± 12.6)	(1) 100 (2) 93.3±2 (2) 95±2	418.4 390.4±8.4 397.5±8.4	(1) AOP (2) PAC	(1) 1998BOR/LIU (2) 2002LAL/ALL
benzylamine $C_6H_5CH_2NH_2$ $\Delta_fH^{\circ}(R) = 68.9\pm3$ (288.3±12.6)	100	418.4	AOP	1998BOR/LIU
1-naphthanlenamine ${\sf RNH}_2$	89.6	374.7	Correlation	2000DEN/DEN
2-naphthanlenamine RNH ₂	90.7	379.5	Correlation	2000DEN/DEN

dimethylamine (CH ₃₎₂ NH $\Delta_{\rm f}$ H°(R) = 37.8±2 (158.2±8.2)	(1) 95±2.5 (2) 94.6 ± 2	397.5±10.5 395.8±8.4	(1) VLPP (2) Review	(1) 1972GOL/SOL (2) 1988COL
propylamine phosphonium bromide (n-PrN H –P ⁺ Ph ₃)Br ⁻	92.7	387.9	AOP	1995CHE/LIU
hydrazine $ \begin{aligned} \mathbf{H-NHNH}_2 \\ \Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{o}}(\mathrm{R}) &= 58.2 \ (243.5) \end{aligned} $	87.5	366.1	Pyrolysis	1988GRE/COL
amonomethan enitrile $\mathrm{NH_2CN}$	99	414.2	AOP	1990BOR/HAR(b)
urea $(N\mathbf{H}_2)_2 C = O$ $\Delta_t H^o(R) = 0.2 \pm 3.0$ (0.8 ± 12.6)	111	464.4	AOP	1991BOR/JI(b)
thiourea $(NH_2)_2C=S$ $\Delta_t H^o(R) = 46.4\pm3$ (194.1 ± 12.6)	93	389.1	AOP	1991BOR/JI(b)
1-aminoethane-1-thione $\mathrm{CH_3CSNH_2}$	91	380.7	AOP	1991BOR/JI(b)
aminophenylmethane- 1-thione PhCSNH ₂	91	380.7	AOP	1991BOR/JI(b)
bis(phenylamino)methane- 1-thione (PhNH) ₂ C=S	87	364.0	AOP	1991BOR/JI(b)

Table 7.1.1 (continued) N–H BDEs in Nonanilines

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
aminomethanamidine $(NH_2)_2C=NH$ $\Delta_tH^\circ(R)=59.9\pm3$ (250.6 ± 12.6)	104	435.1	AOP	1991BOR/JI(b)
diphenylmethanimine Ph ₂ C=N H	117	489.5	AOP	1991BOR/JI(b)
benzylphenylthioamine $C_6H_5CH_2NHSPh$	86.9	363.6	AOP	1998BOR/LIU
formamide HCONH ₂ $\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 11.9 \pm 3$ (49.8 ± 12.6)	108.5	454.0	AOP	1995BOR/ZHA
acetamide CH_3CONH_2 $\Delta_tH^o(R) = -1.6\pm3$ (-6.7 ± 12.6)	107.5	449.8	AOP	1991BOR/JI(b)
2-ethyl-pentanamide ${\rm Et_3CCONH_2}$	109	456.1	AOP	1995BOR/ZHA
tert-butanamide ${\it tBuCONH}_2$	109	456.1	AOP	1995BOR/ZHA
benzamide PhCONH ₂	107	447.7	AOP	1991BOR/JI

methyl aminooate CH ₃ OC(O)NH ₂	105	439.3	AOP	1997ZHA/BOR
ethyl aminooate C ₂ H ₅ OC(O)NH ₂	105.3	440.6	AOP	1994ZHA/BOR(e)
N-methylacetamide CH ₃ CON H Me	(1) 103.9 (2) 106.5	434.7 445.6	AOP	(1) 1990BOR/ZHA (2) 1995BOR/ZHA
N-(tert-butyl)-2,2-dimethyl propanamine tBuCONHtBu	110.5	462.3	AOP	1995BOR/ZHA
acetohydrazide ${\rm MeCONHNH_2}$	82	343.1	AOP	1997ZHA/BOR
benzenecarbohydrazide ${\tt PhCONHNH}_2$	80.3	336.0	AOP	1997ZHA/BOR
N-[(1E)-buta-1,3-dienyl]- benzamide PhCONHPh	97	405.8	AOP	1991BOR/JI(b)
benzenesulfonamide $PhSO_2NH_2$	105	439.3	AOP	1997ZHA/BOR
hydrazinophenyl sulfone PhSO ₂ NHNH ₂	81	338.9	AOP	1997ZHA/BOR
ethanamidine CH ₃ C(=NH)NH ₂	102	426.8	AOP	1991BOR/JI(b)

Table 7.1.1 (continued) N–H BDEs in Nonanilines

The broken bonds (boldface = dissociated atom) $\Delta_{l}H^{o}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
benzenecarboxamidine PhC(=NH)NH ₂	102	426.8	AOP	1991BOR/JI(b)
diethyl(iminophenylmethyl)- amine PhC(=NH)NEt ₂	119	497.9	AOP	1991BOR/JI(b)
[(1Z)-2-aza-1,2-diphenyl- vinyl]phenylamine PhC(=NPh)NHPh	92	384.9	AOP	1991BOR/JI(b)
[((1Z)-2-aza-1,2-diphenyl-vinyl)amino]dimethylamine PhC(=NPh)NHNMe ₂	85	355.6	AOP	1991BOR/JI(b)
[imino(phenylamino)methyl]- phenylamine (PhNH) ₂ C=NH	92	384.9	AOP	1991BOR/JI(b)
[(1E)-2-aza-1,2-diphenyl-vinyl(amino)amino]-dimethylamine PhC(NHNMe2)=NPh	84.7	354.4	AOP	1992BOR/JI
(tert-butyl)phenylthioamine tBuN H SPh	87.1	364.4	AOP	1998BOR/LIU
phenyl-N-(phenylcarbonyl- amino)carboxamide PhCONHNHCOPh	89.3	373.6	AOP	1997ZHA/BOR

diphenyl(phenylamino) amine, substituted

$$\bigvee_{\mathsf{Y}} \bigvee_{\mathsf{N} \leftarrow \mathsf{N} \leftarrow \mathsf{NPh}_2}^{\mathsf{H}}$$

AOP

1997ZHA/BOR

$$2,4-(NO_2)_2$$

phenylphenylthioamine, substituted

$$Y = H$$

AOP

1998BOR/LIU

MeO CN

352.3

phenyl(phenylsulfonyl)amine, substituted

$$Y = H$$

AOP

1998BOR/LIU

Br

395.0 372.8

MeO CN

96.6

404.2

di-2-naphthamine $(2-C_{10}H_7)_2NH$

360.2

Correlation

2000DEN/DEN

hydrazines, substituted

Table 7.1.1 (continued) N-H BDEs in Nonanilines

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
Y = H	72.6	303.8	AOP	1997ZHA/BOR	
p-Cl	73.0	305.4			
p-Me	71.9	300.8			
p-Et	76.3	319.2			
p-CF ₃	77.9	325.9			
p-CN	77.8	325.5			
bis(1,1-dimethyl-1-silaethyl)- amine \mathbf{H} - $\mathbf{N}(\mathbf{SiMe_3})_2$	110.9	464.0	Derived	1998BEC/WAL	

7.1.2 N–H bonds in anilines

Table 7.1.2 N-H BDEs in Anilines

(boldface = reco	BDEs (boldface = recommended data; references in parentheses)			
(kJ/mol) kcal/	mol kJ/mol	(references in parentheses)	References	
Aniline or benzenamine (1) $88.0\pm$	2.0 368.2±8.4	(1) VLPP	(1) 1978COL/BEN	
PhNH -H (2) 92.3	386.2	(2) AOP	(2) 1993BOR/ZHA	
$\Delta_{\rm f} H^{\rm o}(R) = 58.4 \pm 1$ (3) 89.1	372.8	(3) Electrochem.	(3) 1994JON/LIN	
(244.3 ± 4.2) (4) 92.2 i	n sol. 385.8 in sol.	(4) PAC	(4) 1997MAC/WAY	
(4) 89.7 i	n gas 375.3 in gas			
anilines, monosubstituted				

3-Cl	(4) 92.6	387.4	(3) PAC	(3) 1997MAC/WAY
4-Cl	(4) 92.4	386.6	(4) AOP	(4) 1993BOR/ZHA
3-Br	(4) 93.2	389.9	(5) AOP	(5) 1997ZHU/ZHA
4-Br	(4) 92.3	386.2	(6) Correlation	(6) 2000DEN/DEN
4-I	(1) 89.1	372.8		
2-CN	(4) 95.1	397.9		
3-CN	(4) 94.1	393.7		
4-CN	(1) 91.8 (4) 95.2	384.1 398.3		
2-CF ₃	(2) 92.5	387.0		
3-CF ₃	(2) 93.2 (4) 95.7 (5) 96.6	390.0 400.4 404.2		
4-CF ₃	(1) 92.0 (4) 96.5	384.9 403.8		
2-CH ₃	(2) 90.6	379.0		
4-CH ₃	(1) 88.7 (3) 87.5 in gas (3) 90.0 in sol. (4) 92.0	371.1 366.1 in gas 376.6 in sol. 384.9		
4-NH ₂	(1) 86.0	359.8		
4-NO ₂	(4) 96.7	404.6		
4-tBu	(1) 88.9 (6) 92.1	372.0 385.6		
4-CH ₃ CO	(1) 90.6 (3) 94.2 (4) 93.8	379.1 394.1 392.6	(1) Electrochem.	(1) 1994JON/LIN
2-CH ₃ O	(2) 88.7 (3) 90.4	371.0 378.2	(2) Electrochem.	(2) 1995JON/LIN
3-CH ₃ O	(3) 93.9	392.9	(3) AOP	(3) 1993BOR/ZHA
4-CH ₃ O	(1) 87.2	364.8	(4) Correlation	(4) 2000DEN/DEN
3-CF ₃ SO ₂	(3) 95.7	400.4		
anilines, di- and trisubstituted				
2,4-Me ₂	(2) 88.0	368		
3,4-Me ₂	(2) 88.7	371		

Table 7.1.2 (continued) N–H BDEs in Anilines

The broken bonds (boldface = dissociated atom) $\Delta_i H^{\circ}(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
Δ_{f} (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
3,5-Me ₂	(2) 90.3	378		
2,4-(MeO) ₂	(2) 87.7	367		
3,4-(MeO) ₂	(2) 88.4	370		
3,5-(MeO) ₂	(2) 91.5	383	(2) Electrochem.	(2) 1995JON/LIN
3,5(CF ₃) ₂	(4) 97.2	406.7	(4) AOP	(4) 1993BOR/ZHA
2-NO ₂ -4-Cl	(4) 97.6	408.4		
3-NO ₂ -4-Cl	(4) 97.6	408.4		
2,4,6-Cl ₃	(4) 95.5	399.6		
Y = H p-Me p-Br	69.8 67.9 72.4	292.0 284.1 302.9	AOP	1998CHE/LU
N-methyl-phenylamine PhNHMe $\Delta_{t}H^{o}(R) = 57.6\pm1.5$ (241.0 ± 6.3)	(1) 89.3 (2) 87.5±2 (3) 91.9	373.6 366.1±8.4 384.5	(1) AOP (2) VLPP (3) Correlation	(1) 1993BOR/ZHA (2) 1978COL/BEN (3) 2000DEN/DEN
phenyl-1-naphthlamine $1-C_{10}H_7NHC_6H_5$	85.3	357.1	Correlation	2000DEN/DEN
phenyl-2-naphthlamine $2-C_{10}H_7NHC_6H_5$	86.7	362.9	Correlation	2000DEN/DEN

benze	4-methoxy-N-phenyl- penzenamine 4-CH ₃ OC ₆ H ₄ NHPh N-(4-phenoxy)phenyl-2- naphthalenamine 2-C ₁₀ H ₇ NHC ₆ H ₄ (4'-C ₆ H ₅ O)		85.1	355.9	Correlation	2000DEN/DEN
napht			83.5	349.5	Correlation	2000DEN/DEN
alkylo	oxy(2-nitro	ophenyl)amir	ne			
R ₆	v N−OR ≻−NO ₂					
R	R_4	R_6				
Me	Н	NO ₂	75.4	315.5	AOP	1996STA/ZAR
Me	NO ₂	Н	76.1	318.4		
Me	NO_2	NO ₂	77.6	324.7		
iPr	NO ₂	NO ₂	78.0	326.4		
N-phe substi	enylacetar ituted COCH	H ₃				
Y = H	<u>_</u> , .		(1) 98.9 (3) 99.5	413.8 416.3	AOP	(1) 1993BOR/ZHA(b)
p-	-Cl		(2) 98.7	413.0		(2) 1993CHE/ZHA
	-Br		(2) 99.1	414.6		(3) 1991BOR/JI
p-	-Me		(2) 97.1	406.3		
p-	-MeO		(2) 95.3	398.7		
p-	-MeCO		(2) 100.0	418.4		
p-	-CF ₃		(2) 101.6	425.1		
p-	-CN		(2) 101.1 (2) 101. 5	423.0 424.7		
p-	-NO ₂		(2) 102.0	426.8		

Table 7.1.2 (continued) N–H BDEs in Anilines

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
diethyl(phenylamino)- phosphino-1-one, substituted PhNHPO(OEt) ₂ PO(OEt) ₂ H				
Y = H	(1) 94.7	396.2	AOP	(1) 1991BOR/ZHA
p-Me	(2) 94.9(2) 93.5	397.1 391.2		(2) 1998CHE/LU
p-MeCO	(2) 97.3	407.1		
p-p-CN	(2) 98.9	413.8		
p-NO ₂	(2) 100.6	420.9		
phenyl(phenylsulfonyl)amine PhNHSO ₂ Ph	93.2	389.9	AOP	1998BOR/LIU
phenyl-N-benzamide PhNHCOPh	97.3	407.1	AOP	1993CHE/ZHA
(dimethylamino)-N- benzamide PhNHCONMe ₂	92.7	387.9	AOP	1998CHE/XIA
2,2,2-trifluoro-N-phenyl-acetamide PhNHCOCF ₃	99.6	416.7	AOP	1993ZHA/BOR(b)
phenylphenylthioamine PhNHSPh	82.6	345.6	AOP	1998BOR/LIU

phenyl(phenylamino)methane- 1-thione PhNHSOPh	90.2	377.4	AOP	1998BOR/LIU
phenylhydrazine				
Y NH2				
X = H	72.9	305.0	AOP	1998CHE/LU
p-Me	72.2	302.1		
p-CN	77.9	325.9		
aniline phosphonium bromide, substituted				
P ⁺ Ph ₃ Br ⁻ H				
Y = H	68.4	286.2	AOP	1998CHE/LU
p-Me	68.8	287.9		
p-CN	64.8	271.1		
p-CF ₃	64.5	269.9		
N-(phenylamino)acetamide PhNHNHCOMe	78.6	328.9	AOP	1997ZHA/BOR
1,2-diphenylhydrazine PhN H NHPh	73.1	305.9	FT-ICR	1991ING/FOK
diphenylamine	(1) 87.3	365.3	(1) Kinetics	(1) 1987VAR/DEN
Ph_2N-H	(2) 87.5	366.1	(2) AOP	(2) 1992ZHA/BOR
$\Delta_{\rm f} {\rm H}^{\rm o}({\rm R}) = 87.5 \pm 1.5$	(3) 85.8±0.7	359.0	(3) EPR	(3) 1999LUC/PED
(366.1±6.3)	(4) 89.2 in sol.	373.2 in sol.	(4) PAC	(4) 1997MAC/WAY
	(4) 87.2 in gas (5) 87.2	364.8 in gas 364.7	(5) Correlation	(5) 2000DEN/DEN

Table 7.1.2 (continued) N–H BDEs in Anilines

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
diphenylamine, substituted				
Ph				
Y = m-F	(1) 88.4	369.9	AOP	(1) 1993BOR/ZHA
p-Me	(1) 86.9	363.6		
m-Me	(1) 87.6	366.5		
p-MeO	(1) 85.6 (4) 85.1	358.2 356.1		
p-PhNH	(1) 79.2 (2) 79.9	331.4 334.3		(2) 1994ZHA/BOR
p-NO ₂	(1) 90.4 (3) 91.0 (4) 89.1	378.2 380.7 372.9		(3) 1991BOR/ZHA (4) 2000DEN/DEN
diphenylamine, substituted				
Y = p-Br	(1) 88.1 (2) 87.0	368.6 364.2	(1) AOP (2) Correlation	(1) 1993BOR/ZHA (2) 2000DEN/DEN
p-MeO	(1) 84.2 (2) 83.3 (4) 81.8	352.3 348.6 342.2		
p-Me	(2) 85.4 (3) 86.3 in sol. (3) 86.2 in gas (4) 83.3		(3) PAC (4) EPR	(3) 1997MAC/WAY (4) 2002PRA/DIL
p-tBu	(2) 85.8	358.8		
p-N(CH ₃) ₂	(4) 79.5	332.6		
N-1-[3,7-bis(1,1-dimethyl- ethyl)naphthalenyl- benzenamine 1-(3,7-tBu ₂ -C ₁₀ H ₅)N H Ph	82.4	344.9	Correlation	2000DEN/DEN

$^{-}$ 4-(1,1-dimethylethyl)-N-phenyl-benzenamine $^{-}$ 4-tBu- $^{-}$ C $_{6}$ H $_{4}$ NHPh	86.1	360.3	Correlation	2000DEN/DEN
N,N'-di(4-isopropylphenyl-)- p-phenylendiamine 4-tBu-C ₆ H ₄ NH-4- C ₆ H ₄ NHC ₆ H ₄ -t-Bu	79.7	333.6	Correlation	2000DEN/DEN
N,N'-di-2-naphthyl-p- phenylendiamine $4-(2-C_{10}H_7NH)C_6H_4NH-2'-$ $C_{10}H_7$	82.8	346.6	Correlation	2000DEN/DEN
N,N'-dioctyl-p-phenyl- endiamine 4-C ₈ H ₁₇ NHC ₆ H ₄ NHC ₈ H ₁₇	82.9	346.9	Correlation	2000DEN/DEN
$N_{1}N_{2}$ -diphenyl-p-phenylendiamine $4-C_{6}H_{5}NH-4-C_{6}H_{4}NHPh$	85.1	355.9	Correlation	2000DEN/DEN
N-phenyl-N'-isopropyl-p-phenylendiamine $4-(C_6H_5NH)C_6H_4NH$ -iPr	83.5	349.2	Correlation	2000DEN/DEN
9H-carbazole 1,2-C ₆ H ₄ NH–1',2'-C ₆ H ₄	88.8	371.6	Correlation	2000DEN/DEN
4-(1,1-dimethylethyl)-N-[4- (1,1-dimethylethyl)phenyl]-1- naphthalenamine 1[NHC ₆ H ₄ -4tBu]-4'-BuC ₁₀ H ₆	84.2	352.1	Correlation	2000DEN/DEN

7.1.3 *N*–*H* bonds in cyclic compounds

Table 7.1.3 N–H BDEs in Cyclic Compounds

The broken bonds (boldface = dissociated atom) $\Delta_{\rm f} {\rm H}^{\circ}({\rm R})$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
pyrrole $ \begin{array}{c c} & & & \\ & & & &$				
$\Delta_{f}H^{o}(R) = 70.8\pm3$ (296.2±12.6)	(1) 99±6 (2) 97	414.2±25.1 405.8	(1) Photodetach. (2) AOP	(1) 1975RIC/STE (2) 1991BOR/JI(b)
2-pyrrolidone O 1N N H	107	447.7	AOP	1995BOR/SHI
1,3-oxazolidin-2-one	105.8	442.7	AOP	1994ZHA/BOR(e)
4-benzyl-1,3-oxazolidin-2-one O O O O O O O O O O O O O	105.7	442.2	AOP	1994ZHA/BOR(e)
1,3-oxazolin-2-one	91.0	380.7	AOP	1994ZHA/BOR(e)

1-phenylpyrazolidin-3-one H O N Ph Ph 4 5/	73.9	309.2	AOP	1997ZHA/BOR
succinimide H N O N O	(1) 91.7 (2) 92.5 (3) 118±3	383.7 387.0 493.7	(1) AOP (2) AOP (3) Electrochem.	(1) 1992ARE/VEN (3) 1992BAU/DAV (3) 1993LIN/JON
2,4,5-triphenylimidazole Ph N Ph H H	89.5	374.5	AOP	1994ZHA/BOR
aminopyridine				
H–N at site 2	87	364.0	AOP	1993BOR/SIN
3	94	393.3		
4	84	351.5		

2-piperidone, analogues

X = O 109.5 458.1 AOP 1995BOR/SHI S 91 380.7

Table 7.1.3 (continued) N-H BDEs in Cyclic Compounds

The broken bonds (boldface = dissociated atom) $\Delta_f H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
2,6-piperidione				
H N 1 X X				
X = H	(1) 115±3	481.2	Electrochemical	(1) 1998LIN/MER
CH_3	(2) 104.5	437.2		(2) 1992BAU/DAV
2-pyridone, analogues				
$H = \begin{cases} \sqrt{\frac{6}{6}} & \sqrt{\frac{6}{5}} \\ \sqrt{\frac{2}{3}} & \sqrt{\frac{3}{5}} \end{cases}$				
X = O	98	410.0	AOP	1993BOR/SIN
S	81	338.9		
4-pyridone, analogues				
$H = \begin{cases} 1 & 4 \\ 1 & 4 \\ 2 & 3 \end{cases} X$				
X = O	99	414.2	AOP	1993BOR/SIN
S	82	343.1		
1,2,4,5-tetrahydropyridazine- 3,6-dione	87.7	366.9	AOP	1997ZHA/BOR
N + H				

1,4-dihydropyridine, substituted				
E tCO ₂ H X CO ₂ E t				
CH ₃ — CH ₃				
X = H	86.2	360.7	AOP	2000CHE/LU
i-Pr	89.4	374.0		
Ph	90.8	379.9		
4-MeOC_6H_4	90.5	378.7		
$4\text{-MeC}_6\text{H}_4$	90.6	379.1		
4-ClC ₆ H ₄	91.2	381.6		
4 -CNC $_6$ H $_4$	92.8	388.3		
3-hydrobenzoxazol-2-one	94.8	396.6	AOP	1994ZHA/BOR(e)
12 O N H				
phthalimide	89.1	372.8	AOP	1992ARN/VEN
N-1-H				
1H-2-hydroindazol-3-one	77.7	325.1	AOP	1997ZHA/BOR
O NH N 3 H				
indole	90.8	379.9	Electrochem.	1994JON/LIN
H 				
(N)				
				(continued)

Table 7.1.3 (continued) N-H BDEs in Cyclic Compounds

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
2-quinolone, analogues H N X					
X = O	101	422.6	AOP	1993BOR/SIN	
S	83	347.3			
2,3-dihydrophthalazine-1, 4-dione	86.8	363.2	AOP	1997ZHA/BOR	
2,2,4-trimethyl-1,2,3, 4-tetrahydroquinoline H N Me Me Me	88.1	368.6	Correlation	2000DEN/DEN	
carbazole $ \begin{array}{c} H \\ N \\ 9 \\ \end{array} $ $ X = H $	(1) 92.7	387.9	AOP	(1) 1991BOR/ZHA	
$\Delta_{\rm f} H^{\rm o}(R) = 91.6 \pm 2$ (383.3 ± 8.4)	(2) 93.6	391.6		(2) 1992ARN/VEN	

Br

(1)93.6

391.6

3,6-dibromocarbazole

(2)94.3

394.6

phenothiazine, analogues

Y = O

(1) 79.7

 $(2) 77.2 \pm 0.3$

333.5

323.0±1.3

(1) AOP (2) EPR (1) 1993BOR/ZHA(2) 1999LUC/PED

S

(1) 82.3

344.3

(2) 79.3 ± 0.3 331.8 ± 1.3

Se

 $(2) 80.4 \pm 0.4$

336.4±1.7

iminostilbene, or 5H-dibenzolb flazenine

(1) 84.6

354.0

(1) AOP

(1) 1991BOR/CHE

5H-dibenzo[b,f]azepine

(2) 85.3

 $(3) 82.4 \pm 0.5$

356.9

344.8±2.1

(2) AOP (3) EPR (2) 1994ZHA/BOR(3) 1999LUC/PED

N N

5H,10H,11H-dibenzo[b,f]azepine

H N 87.0 364.0

AOP

1991BOR/ZHA

phenothioazine, substituted

 $R_1 = R_9 = Me$, $R_3 = R_7 = H$

77.7±0.4

325.1±1.7 EPR

1999LUC/PED

 $R_1 = R_9 = H$, $R_3 = R_7 = OMe$

 76.2 ± 0.3

318.8±1.3

 $R_1 = R_9 = H$, $R_3 = R_7 = CMe_3$

 78.1 ± 0.4

326.8±1.7

Table 7.1.3 (continued) N-H BDEs in Cyclic Compounds

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
$R_1 = R_9 = H$, $R_3 = R_7 = Cl$	79.8±0.4	333.9±1.7		
$R_1 = R_9 = H$, $R_3 = R_7 = NO_2$	81.0±1.0	338.9±4.2		
2-spirocyclohexyl-4- (spiro-tetrahydrofuran-2)- 1,2,3,4-tetrahydroquinoline	86.2	360.7	Correlation	2000DEN/DEN

7.2 *N*–*N* bonds

Table 7.2 N-N BDEs

The broken bonds (boldface =	(bold recomme	DEs Iface = nded data; n parentheses)	Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
dinitrogen trioxide ON –NO ₂	8.8	36.8	Derived from $\Delta_f H^o$ in ref.	2002CRC	
dinitrogen tetraoxide $\mathbf{O_2N}\text{-}\mathrm{NO}_2$	13.2	55.2	Derived from $\Delta_t H^o$ in ref.	2002CRC	
hydrazine $\mathbf{H_2N}$ – $\mathbf{NH_2}$	67.4	282.0	Derived from $\Delta_f H^o$ in ref.	2002CRC	
tetrafluorohydrazine F_2N – NF_2	21±1	87.9±4.2	Calorimetry	1969PAN/ZER	

$ \begin{array}{l} \text{methylhydrazine} \\ \mathbf{NH_2}\text{-}\mathbf{NHCH_3} \end{array} $	64.9±2	271.5±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,1-dimethylhydrazine NH ₂ -N(CH ₃) ₂	62.7±2	262.3±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
phenylhydrazine $\mathbf{NH_2}$ - $\mathbf{NHC_6}\mathbf{H_5}$	55.0±2	230.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1,2-dimethylhydrazine (CH ₃)NH–NH(CH ₃)	66.0±3	276.1±12.6	Derived from $\Delta_f H^o$ in ref.	2002CRC
dimethyl(methylamino)amine $(CH_3)_2N$ -NH (CH_3)	60.8	254.4	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
N-nitrodimethylamine (CH ₃) ₂ N- NO ₂	(1) 43.8	183.3	(1) Derived from $\Delta_{f}H^{o}$ in ref.	(1) 1986PED/NAY
3/2 2	(2) 39.6	165.7	(2) Derived	(2) 2001KOS/MIRb

amino-N-nitroso-N-phenyl-amide, substituted

R = Me

Y = H		92.7	387.9	AOP	1998CHE/XIA
Cl		93.4	390.8		
Br	•	93.5	391.2		
I		93.4	390.8		
Mo	e	91.8	384.1		
Mo	eO	90.4	378.2		
Mo	eCO	94.9	397.1		
NO	O_2	96.4	403.3		

The broken bonds (boldface =	(bold i recommer	BDEs (boldface = recommended data; references in parentheses)		
dissociated atom)	kcal/mol	kJ/mol	(references in parentheses)	References
nitrosophenyl(phenyl- colfonyl)-amine, substituted				
N S Ph				
Υ = H	92.6	387.4	AOP	1998CHE/XIA
Cl	93.8	392.5		
Me	91.7	383.7		
MeO	89.0	372.4		
MeCO	95.2	398.3		
NO ₂	97.1	406.3		
diethyl(nitrosophenylamino)- phosphino-1-one, substituted O OE t N OE t				
Κ = H	94.7	94.7	AOP	1998CHE/XIA
Cl	95.7	400.4		
Br	95.7	400.4		
Me	93.4	390.8		
NO ₂	100.5	420.5		
nitrosoindole	94.1	393.7	AOP	2000ZHU/HE

Table 7.2 (continued) N–N BDEs

	The broken bonds		Es f ace = aded data; parentheses)	Methods (references in	
,	ted atom)	kcal/mol	kJ/mol	parentheses)	References
$Y_1 = H$	$Y_2 = H$	87.7	366.9	AOP	2000ZHU/HE
m-Cl	Н	88.6	370.7		
m-Me	Н	87.8	367.4		
p-Me	Н	87.1	364.4		
p-NO ₂	Н	90.6	379.1		
p-MeO	Н	85.8	359.0		
p-MeO	p-MeO	84.4	353.1		
methylnitroso H ₂ NN(Me)–N	•	42.9	179.6	Combustion	1998LEB/CHI

7.3 N–C bonds

Table 7.3 N-C BDEs

The broken bonds (boldface = dissociated atom) Δ _r H°(R), kcal/mol	(bold : recommen	DEs face = nded data; parentheses)	Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
diazomethane CH ₂ =N ₂	< 41.8	< 174.9	UV photolysis	1971LAU/OKA
isocyanic acid HN=CO	≤122.1±0.3	≤510.9±1.3	Photolysis	1996BRO/BER
cyanogen azide N ₃ –CN	109.5±5	458.1±20.9	Derived from $\Delta_f H^o$ in ref.	1998NIST
1-aza-1-diazoethene N ₃ -CH ₃	80.1±5	335.1±20.5	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR

azadiazophenylmethane N_3 – C_6H_5	89.8±5	374.5±20.9	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
1-aza-1-diazo-2,2,2- triphenylethane N_3 -C(C_6H_5) ₃	46.6	195.0	Review	1974PEP/ERL
nitrosyl cyanide NC- NO	28.8±2.5	120.5±10.5	Electron impact	1975GOW/JON
nitrosomethane CH ₃ -NO	(1) 40.0±0.8 (2) 41.1	167.4±3.3 172.0	(1) Pyrolysis (2) Visible spectroscopy	(1) 1973BAT/MIL (2) 1990MCC/PFA
nitroso-trifluoromethane CF ₃ – NO	(1) 31±3 (2) 42.8±2 (3) 39.9	129.7±12.6 179.1±8.4 167.0	(1) Electron impact(2) Pyrolysis(3) Visible spectroscopy	(1) 1973CAR/GOW (2) 1979GLA/MAI (3) 1990MCC/PFA
nitroso-trichloromethane CCl ₃ - NO	(1) 32±3 (2) 29.9	133.9±12.6 125.0	(1) Electron impact (2) Pulse photolysis	(1) 1973CAR/GOW (2) 1995LEY/MAS
3-nitroso-1-propene CH ₂ CHCH ₂ – NO	26.3	110.0	Flash photolysis	1995BOY/NOZ
2-nitroso-propane iC ₃ H ₇ – NO	36.5±3	152.7±12.6	Electron impact	1972CAR/GOW
nitroso-tert-butane tC_4H_9 – NO	(1) 29±3 (2) 39.5±1.5 (3) 39.9	121.3±12.6 165.3±6.3 167.0	(1) Electron impact (2) VLPP (3) Laser excitation	(1) 1973CAR/GOW (2) 1974CHO/MEN (3) 1986NOB/QUI

Table 7.3 (continued) N–C BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
2,2-dimethyl-1- nitrosopropane tBuCH ₂ - NO	36	150.6	Electron impact	1972CAR/GOW
nitrosobenzene C ₆ H ₅ - NO	(1) 51.5±1 (2) 54.2±0.5 (3) 52.4±1.4	215.5 226.8±2.1 219.2±5.9	 (1) VLPP (2) Pyrolysis (3) Derived from Δ_iH° in ref. 	(1) 1975CHO/GOL (2) 1997PAR/DYA (3) 1998NIST
nitroso-pentafluorobenzene	(1) 62.0±5	259.4±20.9	(1) Electron impact	(1) 1973CAR/GOW
C ₆ F ₅ - NO	(2) 50.5 ± 1	211.3±4.2	(2) VLPP	(2) 1975CHO/GOL
nitrosotoluene $C_6H_5CH_2$ - NO	29.4	123.0	Flash photolysis	1995BOY/NOZ
nitromethane CH ₃ – NO ₂	(1) 60.8 (2) 63.7	254.4 266.5	(1) Review (2) Electron capture detect.	(1) 1981BAT/ROB (2) 1989CHE/ALB
	(3) 60.8	254.4	(3) Derived	(2) 2000MIR/VOR
nitroethylene C_2H_3 – NO_2	71.5	299.2	Derived from Δ _f H° in ref.	1999BUR
nitroethane C_2H_5 – NO_2	(1) 58.6 (2) 60.8	245.2 254.4	(1) Review (2) Derived from $\Delta_f H^o$ in ref.	(1) 1981BAT/ROB (2) 1986PED/NAY
(E)-nitro-propylene-2 (CH ₃)CH=CH-NO ₂	69.3	290.0	Derived from $\Delta_f H^o$ in ref.	1999BUR

nitrocyclopropane cyclo- C_3H_5 - NO_2	70.6	295.4	Derived from $\Delta_f H^o$ in ref.	1999BUR
1-nitropropane nC ₃ H ₇ - NO ₂	61.3	256.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-nitropropane iC ₃ H ₇ -NO ₂	(1) 59.0 (2) 62.1	246.9 259.8	(1) Review (2) Derived from $\Delta_f H^o$ in ref.	(1) 1981BAT/ROB (2) 1986PED/NAY
1-nitrobutane	(1) 60.9	254.8	Derived from	(1) 1986PED/NAY
nC_4H_9 - NO_2	(2) 61.2	256.0	$\Delta_{ m f} { m H^o}$ in ref.	(2) 2002KOS/MIR
2-nitrobutane sC ₄ H ₉ -NO ₂	62.9	263.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-2-nitropropane tC_4H_9 - NO_2	(1) 58.5 (2) 61.8	244.8 258.6	(1) Review (2) Derived from $\Delta_f H^o$ in ref.	(1) 1981BAT/ROB (2) 1986PED/NAY
nitropentane nC_5H_{11} - NO_2	(1) 60.4±1.5	252.7±6.3	(1) Derived from $\Delta_t H^o$ in ref.	(1) 1997VER
511 2	(2) 60.2 ± 1.5	251.9±6.3	4-1	(2) 1999BUR
nitrohexane nC ₆ H ₁₃ -NO ₂	60.2	251.9	Derived from $\Delta_f H^o$ in ref.	1999BUR
nitrobenzene C ₆ H ₅ – NO ₂	(1) 71.3±1 (2) 71.4±2 (3) 70.7 ±1	298.3±4.2 298.7±8.4 295.8 ± 4.2	 (1) Review (2) VLPP (3) Derived from Δ_tH° in ref. 	(1) 1981BAT/ROB (2) 1985GON/LAR (3) 1986PED/NAY
	(4) 71.8	300.4	(4) Derived from $\Delta_f H^o$ in ref.	(4) 2002KOS/MIR

Table 7.3 (continued) N–C BDEs

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
nitrobenzene, substituted				
Y = $3-NH_2$ $\Delta_f H^o(3-NH_2-C_6H_4) =$ 76.5 (320.1)	(1) 70.5	295.0	(1) Pyrolysis	(1) 1975MAT/NAS
$Y = 4-NH_2$ $\Delta_f H^o (4-NH_2-C_6H_4) =$ 78.3 (327.8)	(1) 72.2	302.0		
$3-NO_2$ $\Delta_f H^{\circ}(3-NO_2-C_6H_4) = 81.4\pm2.4 (340.6\pm10.0)$	(1) 66.5 (2) 73.2±2.4	278.2 306.3±10.0	(2) VLPP	(2) 1985GON/LAR
$ 4-NO2 \Delta_t H^o (4-NO2-C6H4) = 72.3 (302.7) $	(1) 67.0	280.3		
2-Me Δ_{t} H°(2-Me– C_{b} H ₄) = 75.3±2.5 (315.1±10.5)	(2) 70.2±2.5	293.7±10.5		
4-Me $\Delta_t H^o(3-NO_2-C_6H_4) =$ 70.9±2.3 (296.6±9.6)	(2) 71.4±2.3	298.7±9.6		
$3,5-(NO_2)_2$ $\Delta_1 H^{\circ}(3,5-(NO_2)_2-C_6H_3) = 73.0 (305.4)$	(1) 66.0	276.1		
2-Me-4-NO_2 $\Delta_f \text{H}^{\circ}(2\text{-Me-4-NO}_2 - \text{C}_6 \text{H}_3) = 70.6 \pm 2 \text{ (295.4} \pm 8.4)$	(2) 70.6±2	295.4±8.4		
phenylnitromethane $C_6H_5CH_2$ – NO_2	49.0	205.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-nitronaphthalene 1-naphtyl- NO ₂	77.3±1.6	323.4±6.7	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dinitromethane R ₂ (NO ₂)C- NO ₂	48.8±2.5	204.2±10.5	Review	1981BAT/ROB

dinitromethane (NO ₂)CH ₂ -NO ₂	(1) 48.8±2.5 (2) 49.5	204.2±10.5 207.1	(1) Review (2) Derived from	(1) 1981BAT/ROB (2) 1986PED/NAY
	(3) 52.2	218.4	$\Delta_{\rm f} {\rm H^o}$ in ref. (3) Derived	(3) 2000MIR/VOR
trinitromethane (NO ₂) ₂ CH– NO ₂	(1) 43.7±2.5 (2) 45.1	182.8±10.5 188.9	(1) Review (2) Derived	(1) 1981BAT/ROB (2) 2000MIR/VOR
tetra-nitromethane (NO ₃) ₃ C-NO ₂	(1) 40.5±1 (2) 42.1	169.5±4.2 176.1	(1) Review (2) Derived	(1) 1981BAT/ROB (2) 2000MIR/VOR
2-nitrofuran	70.4	294.6	Pyrolysis	1987PRO/NAZ
methylamine CH ₃ –NH ₂	85.7±0.5	358.6±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
difluoro(trifluoromethyl)- amine $\mathbf{CF_3}$ -NF ₂	67.7	283.3	Derived from $\Delta_f H^o$ in ref.	1977PED/RYL
ethylamine C_2H_5 - NH_2	84.8±1.5	354.8±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclopropylamine c-C ₃ H ₅ - NH ₂	93.4±0.6	390.8±2.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-propylamine nC ₃ H ₇ -NH ₂	85.7±0.7	358.6±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-propylamine iC ₃ H ₇ - NH ₂	86.1±0.9	360.2±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclobutylamine c-C ₄ H ₇ - NH ₂	86.6±1.2	362.3±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

Table 7.3 (continued) N–C BDEs

The broken bonds (boldface = dissociated atom)	(boldi recommen	BDEs (boldface = recommended data; references in parentheses)		
Δ _f H°(R), kcal/mol (kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
1-butylamine nC ₄ H ₉ - NH ₂	85.7±0.7	358.2±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-butylamine sC_4H_9 – $\mathbf{NH_2}$	86.4±0.7	361.5±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iso-butylamine $\mathrm{iC_4H_9}$ – $\mathrm{NH_2}$	85.4±1.2	257.3±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-2-propylamine tC_4H_9 – NH_2	85.6±1.5	358.2±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclopentyamine c-C ₅ H ₉ -NH ₂	83.5±1.2	349.4±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-pyridylamine pyridin-2-yl- NH ₂	103.6	433.5	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
3-pyridylamine pyridin-3-yl- NH ₂	104.6	437.6	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
4-pyridylamine pyridin-4-yl- NH ₂	107.6	450.2	Derived from $\Delta_f H^o$ in ref.	1988LIA/BAR
aniline or benzenamine C_6H_5 – $\mathbf{NH_2}$	103.2±1.0	431.8±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclohexylamine c-C ₆ H ₁₁ - NH ₂	88.2±1.5	369.0±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

benzylamine C ₆ H ₅ CH ₂ - NH ₂	(1) 71.1±1 (2) 72. 6± 1.8	297.5±4.2 303.8±7.5	(1) VLPP (2) Derived from	(1) 1972GOL/SOL (2) 1986PED/NAY
	(3) 72.9±1.8	305.0±7.5	$\Delta_f H^o$ in ref. (3) Derived from	(3) 1999VER
	(4) 72.9±1, 0 K	305.4	$\Delta_{\rm f}{ m H^o}$ in ref. (4) Shock tube	(4) 2002SON/GOL
1-naphthylamine 1-naphtyl– NH ₂	103.4±2	432.6±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-naphthylamine 2-naphtyl– NH ₂	108.9±2	455.6±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
formamide HC(O)– NH ₂	101.4±2	424.3±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
acetamide CH ₃ C(O)– NH ₂	99.7±2	417.1±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
2,2-bis(difluoroamino) propane (CH ₃) ₂ (NF ₂)C–NF ₂	(1) ~47 (2) 47.8	~196.6 200.0	(1) Pyrolysis (2) Pyrolysis/ FTIR	(1) 1993FOK/GRE (2) 2002PAR/CHA
methyl hydrazine CH ₃ - NHNH ₂	70.7±2.5	295.8±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
phenyl hydrazine C ₆ H ₅ - NHNH ₂	88.6±2.5	370.7±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
N,N,N'N'-methyl- methanediamine (CH ₃) ₂ N-CH ₂ N(CH ₃) ₂	55.6±3	232.6±12.6	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dimethylamine CH ₃ -NHCH ₃	(1) 82.2±2.5 (2) 81.9	343.9±10.5 342.7	Derived	(1) 1982MCM/GOL (2) 2001KOS/MIR(b)
ethyl methylamine C ₂ H ₅ -NHCH ₃	79.8±1	333.9±4.2	Derived	1982MCM/GOL

Table 7.3 (continued) N–C BDEs

The broken bonds (boldface = dissociated atom) $\Delta_i H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
phenyl methylamine C ₆ H ₅ -NHCH ₃	100.6±2.5	420.9±10.5	Derived	1982MCM/GOL
benzyl methylamine $C_6H_5CH_2$ -NHCH $_3$	68.7±2	287.4±8.4	VLPP	1972GOL/SOL
trimethylamine CH ₃ -N(CH ₃) ₂	(1) 75.5±2.5 (2) 79.3	316.3±10.5 331.8	Derived	(1) 1982MCM/GOL (2) 2001KOS/MIR(b)
ethyl dimethylamine C_2H_5 -N(CH ₃) ₂	72.3±2	305.2±8.4	Derived	1982MCM/GOL
phenyl dimethylamine C_6H_5 -N(CH $_3$) ₂	93.2±2.5	389.9±10.5	Derived	1982MCM/GOL
benzyl dimethylamine $C_6H_5CH_2-N(CH_3)_2$	(1) 62.1±2.5 (2) 66.8	259.8±10.5 279.5	 (1) VLPP (2) Derived from Δ_fH° in ref. 	(1) 1972GOL/SOL (2) 1999VER
1-methylpyrrile CH ₃ -pyrrol-1-yl	81.3±2	340.2±8.4	Derived from $\Delta_{\rm f} H^{\rm o}$ in ref.	2002CRC
N-methylaniline CH_3 -NHC $_6$ H $_5$	(1) 71.4±2 (2) 68.9	298.7±8.4 288.3	(1) VLPP (2) Pyrolysis	(1) 1978COL/BEN (2) 1990BEC/DOG
N-ethylaniline C_2H_5 -NHC $_6H_5$	73.3±2	306.7±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
N_1N' -methylaniline $CH_3-N(CH_3)C_6H_5$	70.8	296.2	VLPP	1978COL/BEN

dimethyl phenylamine $C_6H_5(CH_3)N$ - CH ₃	70.8±2	296.2±8.4	VLPP	1978COL/BEN
dimethyl benzylamine (CH ₃) ₂ N–CH ₂ Ph	62.1±2	259.8±8.4	VLPP	1972GOL/SOL
azomethane CH ₃ -N ₂ CH ₃	52.5	219.7	Pyrolysis	1970BEN/ONE
azohexafluoroethane $\mathbf{CF_3}$ - $\mathbf{N_2}\mathbf{CF_3}$	55.2	231.0	Pyrolysis	1970BEN/ONE
azoethane $C_2H_5-N_2C_2H_5$	50	209.2	Pyrolysis	1970BEN/ONE
azoisopropane iC_3H_7 – $N_2iC_3H_7$	47.3	197.9	Pyrolysis	1970BEN/ONE
azobutane nC_4H_9 – $N_2nC_4H_9$	50	209.2	Pyrolysis	1970BEN/ONE
azoisobutane iC_4H_9 – $N_2iC_4H_9$	49	205.0	Pyrolysis	1970BEN/ONE
azo-2-butane $\mathbf{sC_4H_9}$ – $\mathbf{N_2sC_4H_9}$	46.7	195.4	Pyrolysis	1970BEN/ONE
azotertbutane $tC_4H_9-N_2tC_4H_9$	43.5	182.0	Pyrolysis	1970BEN/ONE
azotoluene $C_6H_5CH_2-N_2CH_2C_6H_5$	37.6	157.3	Pyrolysis	1970BEN/ONE

Table 7.3 (continued) N–C BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
bis(1,1-dimethyl-silaethyl)- methylamine CH ₃ -N(SiMe ₃) ₂	87	364	Derived	1998BEC/WAL
methyl isocyanide CH ₃ -NC	101.5±2.2	424.7±9.2	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
ethyl isocyanide C ₂ H ₅ - NC	100.1±1.7	418.8±7.1	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
amonomethan enitrile H_2N – $\mathbb{C}N$	118.8±3	497.1±12.6	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2001BIS/HOO
carboxamide HC(O)–NH ₂	99.1	414.6	Derived from $\Delta_{_f}H^{\circ}$ in ref.	1988LIA/BAR
N,N-dimethylformamide HC(O) –N(CH ₃) ₂	93.7±2	392.0±8.4	Derived from $\Delta_{_f}H^{\circ}$ in ref.	2002CRC
N,N-dimethylacetamide CH ₃ C(O)–N(CH ₃) ₂	91.4	382.4	Derived from $\Delta_{f}H^{o}$ in ref.	1986PED/NAY
N-(aminocarbonyl)acetamide HC(O)–NHC(O)NH ₂	115.6±2	483.7±8.4	Derived from $\Delta_{r}H^{o}$ in ref.	2002CRC
N-methylglycine or sarcosine HO(O)CCH ₂ -NHCH ₃	71.6±2	299.6±8.6	Derived from $\Delta_f H^o$ in ref.	2002CRC

7.4 N–S bonds

Table 7.4 N-S BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
(tert-butyl)nitrosothio t-BuS– NO	27.5	115.1	AOP	2001LU/WIT
(benzyl)nitrosothio PhCH ₂ S– NO	28.8	120.5	AOP	2001LU/WIT
(phenyl)nitrosothio, substituted				
y S NO				
Y = H	19.4±1.3	81.2±5.4	AOP	2001LU/WIT
2-Cl	19.3±1.5	80.8±6.3		
3-C1	20.9 ± 1.4	87.4±5.9		
4-Cl	19.2±1.4	80.3±5.9		
3-Me	19.9±1.2	83.3±5.0		
4-Me	21.4±1.2	89.5±5.0		
4-MeO	21.0±1.9	87.9±7.9		
4-NO ₂	18.6±1.5	77.8 ± 6.3		

7.5 N–halogen bonds

Table 7.5 N-Halogen BDEs

The broken bonds (boldface =	Methods (references in			
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References
nitrosyl fluoride F–NO	56.25	235.35	Derived from $\Delta_f H^o$ in ref.	1998CHA

Table 7.5 (continued) N-Halogen BDEs

The broken bonds (boldface =	BD (bold) recommer references in	face = nded data;	Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
nitryl fluoride F–NO ₂	52.9	221.3	Derived from $\Delta_f H^o$ in ref.	1998CHA	
nitrogen trifluoride ${\bf F-NF}_2$	60.7	254.0	Derived from $\Delta_f H^o$ in ref.	1998CHA	
nitrosyl chloride Cl–NO	38.2	159.8	Derived from $\Delta_f H^o$ in ref.	2002CRC	
nitryl chloride Cl–NO ₂	34	142.3	Derived from Δ _f H° in ref.	2002CRC	
nitrogen chlorofluoride Cl–NF ₂	~32	~133.9	Kinetics	1967PET	
nitrosyl bromide Br –NO	28.7	120.1	Derived from $\Delta_f H^o$ in ref.	2002CRC	
nitryl bromide Br-NO ₂	19.6±1.7	82.0±7.1	Resonance fluorescence	1991KRE/NIC	
nitrogen bromofluoride Br –NF ₂	<54.3	<227.2	Kinetics	1972CLY/CON	
nitrosyl iodide I–NO	18.6±0.1	77.8±0.4	UV spectrom.	1981FOR/HIP	
nitryl iodide I–NO ₂	18.3±1.0	76.6±0.4	Spectroscopy	1976VAN/TRO	

N-halogenosuccinimide

X = C1

 $(1) 73 \pm 4$

305.4±16.7 Electrochem.

(1) 1993LIN/JON

Br

 $(2) 66\pm 2$

 276.1 ± 8.4

(2) 1998LIN/MER

1-bromo-2,6-piperidione

 65.0 ± 2

 272.0 ± 8.4

Electrochem.

1998LIN/MER

<u>'</u>

chapter eight

Tabulated BDEs of S-X bonds

8.1 S–H bonds

Table 8.1 S-H BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	(bold recommen	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
oxythio radical H–SO	41.3	172.8	Kinetics	1978WHI/GAR
oxythio H–SOH	79.0±3.5	330.5±14.6	Ion flow tube	1993OHA/DEP
hydrogen sulfide HS–H $\Delta_{\rm f} {\rm H^o}({\rm R}) = 34.18 \pm 0.68$	(1) 91.1±1 (2) 92.9±2	381.2±4.2 388.7±8.4	(1) Iodination (2) Electron photodetach.	(1) 1979HWA/BEN (2) 1980JAN/REE
(143.01±2.85)	(3) 91.2 ± 0.7	381.6±2.9	(3) Resonance fluorescence	(3) 1992STI/NIC
	(4) 91.2±0.7 (5) 91.2±0.1	381.6±2.9 381.4±0.5	(4) Recommend.(5) Photolysis	(4) 1994BER/ELL (5) 1996WIL/HOW
hydrogen disulfide H-SSH Δ_i H°(R) = 27.6±3.5 (115.5±14.6)	76±3.5	318.0±14.6	Ion flow tube	1993OHA/DEP
methylthiol H–SCH ₃	(1) 88.1 (2) 86.4±2.2	369.6 361.5±9.2	(1) VLPP (2) Photoelectr.	(1) 1977COL/BEN(b) (2) 1987MOR/ELL

Table 8.1 (continued) S-H BDEs

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol	(bold i recommer	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
$\Delta_{\rm f} H^{\rm o}(R) = 29.8 \pm 0.4$ (124.7±1.7)	(3) 87.4 (4) 87.4±0.5	365.7 365.7±2.1	(3) Resonance fluorescence (4) Recommend.	(3) 1992NIC/KRE (4) 1994BER/ELL
	(5) 87.0±0.4	364.0±1.7	(5) Photolysis	(5) 1999BIS/CHO
H-SCD ₃	(6) 88.3±2	369.4±8.4	(6) Electron photodetach.	(6) 1980JAN/REE
ethylthiol \mathbf{H} –SC ₂ \mathbf{H}_5	(1) 88.6±2	370.7±8.4	(1) Electron photodetach.	(1) 1980JAN/REE
$\Delta_{f}H^{o}(R) = 24.1$ (101)	(2) 87.3	365.3		(2) 1986PED/NAY
propylthiol H–SC ₃ H ₇	(1) 88.6±2	370.7±8.4	(1) Electron photodetach.	(1) 1980JAN/REE
$ \Delta_{f}H^{o}(R) = 19.1 $ (80)	(2) 87.4	365.7	(2) Derived from $\Delta_f H^o$ in ref.	(2) 1986PED/NAY
iso-propylthiol \mathbf{H} – \mathbf{S} – \mathbf{i} C ₃ \mathbf{H} ₇ $\Delta_{\mathbf{f}}$ \mathbf{H} °(\mathbf{R}) = 17.9±2 (74.9±8.4)	88.4±2	369.9±8.4	Electron photo- detachment	1980JAN/REE
tert-butylthiol $H-S-tC_4H_9$ $\Delta_tH^\circ(R) = 10.5\pm 2$ (43.9 ± 8.4)	88.6±2	370.7±8.4	Electron photo- detachment	1980JAN/REE
alkyl thiol H–SR	87.4	365.7	Review	1992NIC/KRE
thioacetic acid H–SCOCH ₃	88.6	370.7	Electrochem.	1999ZHA/LIN

thiobenzoic acid H–SCOPh	87.0	364.0	Pulse radiolysis	1998ZHA/LIN
methanedifulfide $\mathbf{H}\text{-SSCH}_3$	79±3.5	330.5±14.6	Ion flow tube	1993OHA/DEP
benzenethiol PhS-H $\Delta_{_{\!f}}H^{\circ}(R)=58.0\pm1.1 \end{tabular}$ (242.7 ± 4.6)	(1) 83.3±2 (2) 79.4 (3) 80 (4) 80.8 (5) 83.5±1.1	348.5±8.4 332.2 334.7 338.1 349.4±4.5	(1) VLPP (2) AOP (3) AOP (4) Correlation (5) TR-PAC	(1) 1982MCM/GOL (2) 1992VEN/AMA (3) 1996ARM/SUN (4) 2000DEN/DEN (5) 2002SAN/MUR
benzenethiol, substituted				
Y = 2-Cl	(1) 80.0	334.7	(1) AOP	(1) 1994BOR/ZHA(b)
3-Cl	(1) 80.1 (4) 80.3	335.1 335.8	(2) AOP	(2) 1992VEN/AMA
4-Cl	(1) 79.2 (4) 79.9 (5) 86.1±0.8	331.4 334.1 360.4±3.5	(3) AOP	(3) 1997ZHU/ZHA
4-Br	(1) 79.3 (2) 80.2	331.8 335.6	(4) Correlation	(4) 2000DEN/DEN
4-NH ₂	(1) 69.8 (2) 70.0	292.0 292.9	(5) TR-PAC	(5) 2002SAN/MUR
2-Me	(1) 78.8	329.7		
3-Me	(1) 78.9 (4) 80.8	330.1 338.1		
4-Me	(1) 78.3 (2) 77.8 (3) 78.4 (4) 80.0 (5) 84.8±1.0	327.6 325.5 328.0 334.8 354.9±4.1		
4-MeO	(1) 76.9 (2) 76.2 (3) 78.6 (4) 78.7 (5) 83.3±1.0	321.7 318.8 328.9 329.3 348.5±4.0		
3-CF ₃	(4) 80.8	338.1		
4-CF ₃	(1) 80.9 (5) 86.0±0.9	338.5 359.9±3.9		

Table 8.1 (continued) S-H BDEs

The broken bonds (boldface = dissociated atom) Δ _i H°(R), kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
Δ_{i}^{rr} (kJ/mol)	kcal/mol	kJ/mol	parentheses)	References	
2-MeCO ₂	(1) 78.7	329.3			
4-NO ₂	(1) 81.4 (2) 81.6	340.6 341.4			
4-OH	(2) 76.0	318.0			
4-EtO	(4) 78.8	329.6			
4-tBu	(4) 80.7	337.7			
2,4,6-Me ₃	(4) 80.4	336.6			
benzoylthiolate, substituted O C S H					
Y = H	87.4	365.7	AOP	2000ZHA/LIN	
CH_3	87	364.0			
CH ₃ O	87	364.0			
CF ₃	86	359.8			
CN	86	359.8			
phenylmethane-1-thiol PhCH ₂ S-H $\Delta_{\rm f}$ H°(R) = 58.9 (246.4)	(1) 86.9 (2) 87.8	363.6 367.4	(1) AOP (2) Correlation	(1) 1994BOR/ZHA(b) (2) 1996DEN	
naphthalenethiol					
H–S at site 1	(2) 78.5	328.4	(1) AOP	(1) 1994BOR/ZHA(b)	

2

(1) 77.9

(2) 78.1

325.9

326.8

(2) Correlation

(2) 2000DEN/DEN

thio-α-tocopherol	80.0	334.7	Correlation	2000DEN/DEN
$\begin{array}{c c} H & R_5 \\ \hline S & CH_2(CH_2CH_2CHCH_2)_3H \\ \hline R_7 & CH_3 & CH_3 \end{array}$				

8.2 S–S bonds

Table 8.2 S-S BDEs

The broken bonds (boldface =	(bold recommen	DEs face = nded data; parentheses)	Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
hydrogen disulfide HS –SH	64.7±1	270.7±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
methanehydrodifulfide CH ₃ S– SH	65.0	272.0	Derived	1999ARM
alkylhydrodifulfide RS- SH	65.2	272.8	Derived	1999ARM
dimethyl disulfide CH ₃ S–SCH ₃	(1) 64 (2) 62.9±2.6 (3) 65.2±0.9	267.8 263.2±10.9 272.8 ±3.8	(1) Electrochem.(2) Mol. beam(3) Resonance fluorescence	(1) 1992NUZ (2) 1988PEN/CAO (3) 1992NIC/KRE
diethyl disulfide C ₂ H ₅ S–SC ₂ H ₅	66.1	276.6	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
dipropyl disulfide C ₃ H ₇ S–SC ₃ H ₇	66.2	277.0	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
dialkyl disulfide RS –SR	66.2	277.0	Derived	1999ARM

Table 8.2 (continued) S–S BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated group)	kcal/mol	kJ/mol	parentheses)	References
diphenyl disulfide C ₆ H ₅ S–SC ₆ H ₅	(1) 47 (2) 51.2 ±3	196.6 214.2 ±12.6	(1) Electrochem.(2) Derived from Δ_fH° in ref.	(1) 1992NUZ (2) 1986PED/NAY
	(3) 55±2	230±8.4	(3) AOP	(3) 1991BAU/FAS
hydrogen trisulfide HS -SSH	54.4±4	227.6±16.7	Derived	1978BEN
hydrogen tetrasulfide HSS-SSH	44.6±5	186.6±20.9	Derived	1978BEN
methyl methyl disulfanyl dissulfide MeSS –SSMe	32.9	137.7	Derived	1986HAW/GRI
ethyl ethyl disulfanyl dissulfide EtSS-SSEt	32.8	137.2	Derived	1986HAW/GRI
iso-propyl iso-propyl disulfanyl dissulfide iPrSS–SSPr	32.0	133.9	Derived	1986HAW/GRI
tert-butyl tert-butyl disulfanyl dissulfide tBuSS –SStBu	32.4	135.6	Derived	1986HAW/GRI

8.3 S–C bonds

Table 8.3 S-C BDEs

The broken bonds (boldface = dissociated group) Δ _t H°(R), kcal/mol	(bold) recommer	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
Carbon disulfide S =CS	(1) 102.9±3 at 0K (2) 94.2	430.5±12. 6 at 0K 394.1	(1) MS (2) Derived from $\Delta_f H^o$ in ref.	(1) 1980MIL/ERE (2) 2002CRC
carbon oxysulfide S=CO	73.7	308.4	Derived from $\Delta_f H^o$ in ref.	2002CRC
methanethiol HS —CH ₃	(1) 74±1.5 (2) 74.7±1	309.6±6.3 312.5±4.2	(1) Review (2) Resonance fluorescence	(1) 1978BEN (2) 1992NIC/KRE
ethanethiol HS -C ₂ H ₅	73.6±0.5	307.9±2.1	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-propanethiol HS—nC ₃ H ₇	74.2±0.7	310.5±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-propanethiol HS–iC ₃ H ₇	73.4±0.9	307.1±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-butanethiol HS –nC ₄ H ₉	73.9±0.7	309.2±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-butanethiol HS –sC ₄ H ₉	73.5±0.7	307.5±2.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2-methyl-1-propanethiol HS – iC_4H_9	74.1±1.1	310.0±4.6	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY

Table 8.3 (continued) S–C BDEs

The broken bonds (boldface = dissociated group) Δ,H°(R), kcal/mol	(bold i recommen	BDEs (boldface = recommended data; references in parentheses)		
(kJ/mol)	kcal/mol	kJ/mol	(references in parentheses)	References
2-methyl-2-propanethiol HS – tC_4H_9	72.0±0.9	301.2±3.8	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
cyclopentanethiol HS –c-C ₅ H ₉	71.0±1.2	297.1±5.0	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-pentanethiol HS –nC ₅ H ₁₁	73.5±1.5	307.5±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
2-methyl-2-butanethiol HS -C(CH ₃)2(C ₂ H ₅)	71.6±1.5	299.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
2,2-dimethyl-1-propanethiol HS –neoC5H ₁₁	73.7±2.0	308.4±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
1-hexanethiol HS –nC ₆ H ₁₃	73.2±1.5	306.3±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
benzenethiol \mathbf{HS} – $\mathbf{C}_{6}\mathbf{H}_{5}$	86.5±2	361.9±8.4	Review	1978BEN
cyclohexanethiol HS–cC ₆ H ₁₁	72.9±1.4	305.0±5.9	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
benzenemethanethiol $\mathbf{HS}\text{-}\mathbf{CH}_2\mathbf{C}_6\mathbf{H}_5$	60.4±1.8	252.7±7.5	Derived from $\Delta_i H^o$ in ref.	1986PED/NAY
thioacetic acid HS -C(O)CH ₃	73.6±1.5	307.9±6.3	Derived from $\Delta_f H^\circ$ in ref.	2002CRC

dimethyl sulfide CH ₃ S-CH ₃	(1) 77.2±2 (2) 73.6±0.8	323.0±8.4 307.9±3.3	(1) Pyrolysis (2) Resonance fluorescence	(1) 1977COL/BEN (2) 1992NIC/KRE
ethyl methyl sulfide $\mathbf{CH_3S}$ – $\mathbf{C_2H_5}$	72.4±1	302.9±4.2	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl methyl sulfide $\mathbf{C_2H_5S}$ – $\mathbf{CH_3}$	73.4±1.5	307.1±6.3	Derived from $\Delta_{\rm f}{ m H^o}$ in ref.	1986PED/NAY
methyl propyl sulfide CH ₃ S-C ₃ H ₇	73.3±1.5	306.7±6.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl propyl sulfide C ₃ H ₇ S–CH ₃	73.9±1.5	309.2±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
iso-propyl methyl sulfide CH ₃ S–iC ₃ H ₇	72.4±1.5	302.9±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butyl methyl sulfide CH ₃ S-C ₄ H ₉	72.8±1.5	304.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl methyl sulfide $\mathbf{CH_3S}$ – $\mathbf{tC_4H_9}$	70.4±1.5	294.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl propyl sulfide C ₂ H ₅ S–C ₃ H ₇	72.9±1.5	305.0±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
ethyl propyl sulfide $C_3H_7S-C_2H_5$	72.5±1.5	303.3±6.3	Derived from $\Delta_f H^o$ in ref.	2002CRC
ethyl isopropyl sulfide C_2H_5S –i C_3H_7	73.4±1.5	307.1±6.3	Derived from $\Delta_f H^\circ$ in ref.	2002CRC

Table 8.3 (continued) S-C BDEs

The broken bonds (boldface = dissociated group) Δ _i H°(R), kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
cyclopentyl methyl sulfide CH ₃ S–c-C ₅ H ₉	70.6±1.5	295.4±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl pentyl sulfide $CH_3S-C_5H_{11}$	71.9±1.5	300.8±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
diethyl sulfide $C_2H_5S-C_2H_5$	72.5±1.5	303.3±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
ethyl butyl sulfide $C_2H_5S-C_4H_9$	73.0±1.5	305.4±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
tert-butyl ethyl sulfide C_2H_5S – tC_4H_9	71.1±1.5	297.5±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
dipropyl sulfide C ₃ H ₇ S-C ₃ H ₇	72.8±1.5	304.6±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl phenyl sulfide $CH_3S-C_6H_5$	85.4±1.5	357.3±6.3	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl phenyl sulfide $\mathbf{C_6H_5S-CH_3}$	(1) 69.4±2 (2) 66.5 ± 2.5	290.4±8.4 278.2±10.5	(1) VLPP(2) Derived from Δ_iH° in ref.	(1) 1977COL/BEN (2) 1994PED
ethyl phenyl sulfide C_2H_5S – C_6H_5	84.6±2	354.0±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY

ethyl phenyl sulfide C_2H_5 – $\mathbf{SC_6H_5}$	64.5±1.5	269.9±6.3	Derived from $\Delta_f H^o$ in ref.	1994PED
benzyl methyl sulfide CH ₃ S–CH ₂ Ph	61.4±2	256.9±8.4	VLPP	1977COL/BEN
diphenyl sulfide $C_6H_5S-C_6H_5$	(1) 78.3±2.5 (2) 76±2	327.6±10.5 318±8.4	 (1) Derived from Δ_fH° in ref. (2) AOP 	(1) 1986PED/NAY (2) 1991BAU/FAS
dimethyl disulfide CH ₃ -SSCH ₃	56.6	236.8	AE	1986HAW/GRI
ethyl methyl disulfide C_2H_5 –SSC H_3	56.2	235.1	AE	1986HAW/GRI
iso-propyl methyl disulfide iC ₃ H ₇ -SSCH ₃	54.5	228.0	AE	1986HAW/GRI
methyl tert-butyl disulfide tC ₄ H ₉ –SSCH ₃	52.6	220.1	AE	1986HAW/GRI
methanesulfenic acid HOS-CH ₃	68.1±3	284.9±12.6	Derived from $\Delta_f H^o$ in ref.	1996HUN/SHE
methanesulfonic acid HOSO ₂ –CH ₃	77.5±3	324.3±12.6	Derived from $\Delta_f H^o$ in ref.	2000GUT/GAL
dimethyl sulfone CH_3SO_2 – CH_3 $\Delta_tH^\circ(CH_3SO_2) = -57.2$ (-239.3)	66.8	279.5	Iodination	1971SOL/BEN

Table 8.3 (continued) S–C BDEs

The broken bonds (boldface = dissociated group) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
methyl sulfone radical CH ₃ -SO ₂	21.4	89.5	Derived from $\Delta_f H^o$ in ref.	1971SOL/BEN
ethyl methyl sulfone CH ₃ SO ₂ -C ₂ H ₅	68.9±2	288.3±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
iso-propyl methyl sulfone CH ₃ SO ₂ - iC ₃ H ₇	67.5±2	282.4±8.4	Derived from $\Delta_{t}H^{o}$ in ref.	1986PED/NAY
allyl methyl sulfone H ₃ CSO ₂ – C ₃ H ₅	55.0±2.5	230.1±10.5	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
butyl methyl sulfone H ₃ CSO ₂ –C ₄ H ₉	71.3±2	298.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl tert-butyl sulfone H_3CSO_2 – tC_4H_9	67.6±2	282.8±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methyl phenol sulfone H ₃ CSO ₂ – C ₆ H ₅	82.3±2	344.3±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
benzyl methyl sulfone CH ₃ SO ₂ -CH ₂ Ph	56.2±2	235.1±8.4	Derived from $\Delta_f H^o$ in ref.	1986PED/NAY
methylthiocarbonitrile CH ₃ S– CN	97.0±2	405.8±8.4	Derived from $\Delta_t H^o$ in ref.	1986PED/NAY
S-ethyl thioacetate C_2H_5S -C(O)CH ₃	76.2±2	318.8±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

S-propyl thioacetate C ₃ H ₇ S-C(O)CH ₃	76.5±2.0	320.1±8.4	Derived from $\Delta_f H^o$ in ref.	1994PED
pentafluorosulfur trifluoromethane F_sS – CF_3	93.7±10.3 at 0 K	392.0±43 at 0 K	Threshold photoelectron	2001CHI/KEN
methanedisulfur radical CH ₃ – SS	49.4	206.7	Derived from $\Delta_f H^o$ in ref.	1986HOW/GRI
ethanedisulfur radicals C_2H_5 – SS	48.7	203.8	Derived from $\Delta_f H^o$ in ref.	1986HOW/GRI
propane-2-disulfur radical iC ₃ H ₇ -SS	48.4	202.5	Derived from $\Delta_f H^o$ in ref.	1986HOW/GRI
2-methylpropane-2-disulfur radical tC_4H_9 –SS	46.9	196.2	Derived from $\Delta_f H^o$ in ref.	1986HOW/GRI

8.4 S-halogen and S-P bonds

Table 8.4 S-Halogen BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom)	kcal/mol	kJ/mol	parentheses)	References	
sulfur hexafluoride F-SF ₅	(1) 92.2	385.8	(1) High pressure MS	(1) 1990SIE/AUS	
J	(2) 100.4 ± 2.4	420±10	(2) SPST	(2) 1992TSA/HER	
chloromethylsulfone Cl–SO ₂ CH ₃	(1) 70.3 (2) 70	(1) 294 (2) 293	PAC	(1) 1994CHA/GRI (2) 1999LAA/MUL	

Table 8.4 (continued) S-Halogen BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated atom)	kcal/mol	· ·	,	References
chlorophenylsulfone Cl–SO ₂ Ph	(1) 70.5 (2) 71	(1) 295.0 (2) 297.0	PAC	(1) 1994CHA/GRI (2) 1999LAA/MUL
iodothio I–SH	49.4±2	206.7±8.4	Kinetics	1979HWA/BEN(b)
iodosulfoxide I–SO	130.1±1.5 at 0K	544.3±6.3 at 0 K	Spectroscopy	1971OKA
iodomethylthio I–SCH ₃	49.3±1.7	206.3±7.1	VLPP	1983SHU/BEN
trifluorophosphino-1-thione \mathbf{S} = PF_3	100	418.4	Review	1973BEN
trichlorophosphino-1-thione \mathbf{S} =PCl $_3$	68	284.5	Review	1973BEN
tribromophosphino-1-thione S =PBr ₃	94	393.3	Review	1973BEN

chapter nine

Tabulated BDEs of Si-, Ge-, Sn-, P- and Se-X bonds

9.1 Si-X bonds

Table 9.1 Si-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
silane SiH_3 – H $\Delta_t H^{\circ}(R) = 47.9 \pm 0.6$ (200.4 ± 2.5)	(1) 90.3±1.2 (2) 91.8±0.5 (3) 91.7±0.5 (4) 91.5±2 (5) 91.8±0.5	377.8±5.0 384.1±2.1 383.7±2.1 382.8±8.4 384±2	 Iodination PIMS detect. Recommended Review Review 	(1) 1981DON/WAL (2) 1991SEE/FEN (3) 1994BER/ELL (4) 1995CHA (5) 1998BEC/WAL
methyl saline MeSiH ₂ – \mathbf{H} $\Delta_t \mathbf{H}^{\circ}(\mathbf{R}) = 33.7 \pm 1.5$ (141 ± 6)	(1) 89.6±2 (2) 92.3±3 (3) 92.7 ± 1.2		(1) Iodination(2) Review(3) Revised	(1) 1989WAL (2) 1995CHA (3) 1998BEC/WAL
dimethylsaline Me ₂ SiH–H Δ_t H°(R) = 18.6±1.5 (78±6)	(1) 89.4±2 (2) 93.5±1.2	374.0±8.4 391±5	(1) Iodination (2) Revised	(1) 1989WAL (2) 1998BEC/WAL
trimethylsaline Me ₃ Si–H	(1) 90.3±1.4 (2) 95.0±0.5	377.8±5.9 397.5±2.1	(1) Iodination (2) Flash photolysis	(1) 1989WAL (2) 1994KAL/GUT

Table 9.1 (continued) Si-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_c H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
$\Delta_{\rm f} {\rm H}^{\circ}({\rm R}) = 3.6 \pm 1.7 \ (15 \pm 7)$	(3) 92.0	385	(3) VLPP	(3) 1994BUL/WAL
	(4) 94.6 ± 1.7	396 ± 7	(4) Revised	(4) 1998BEC/WAL
Me_3Si – D	(5) 93.0	389.1	(5) Kinetics	(5) 1981ELL/POT
disilane $H_5 Si_2 - H$ $\Delta_t H^\circ(R) = 55.9 \pm 2.0$ (234 ± 8)	(1) 86.3±2	361.1±8.4	(1) Iodination	(1) 1989WAL
	(2) 89.1 ±2	373±8	(2) Revised	(2) 1998BEC/WAL
3-ethyl-silapentane $(C_2H_5)_3$ Si–H	(1) 90.1	377.0	(1) PAC	(1) 1987KAM/HAW
	(2) 95.1	397.9	(2) Review	(2) 1995CHA
	(3) 96	401.7	(3) PAC, revised	(3) 1999LAA/MUL
	(4) 94.6 ± 1	396 ±4	(4) Review	(4) 1998BEC/WAL
pentamethyl disilane (CH ₃) ₃ Si(CH ₃) ₂ Si- H	(1) 85.3±2	356.9±8.4	(1) PAC	(1) 1987KAM/HAW
	(2) 90.3	377.8	(2) Review	(2) 1995CHA
	(3) 91	380.7	(3) PAC, revised	(3) 1999LAA/MUL
	(4) 89.9 ±1	376 ± 4	(4) Review	(4) 1998BEC/WAL
3(1,1-dimethyl-1-silaethyl)-	(1) 79.0	330.5	(1) PAC	(1) 1987KAM/HAW
2,2,4,4,-tetramethyl-2,3,4-	(2) 83.9	351.0	(2) Review	(2) 1995CHA
trisilapentane	(3) 84.0	351.5	(3) PAC, revised	(3) 1999LAA/MUL
[(CH ₃) ₃ Si] ₃ Si–H	(4) 83.7±1	350 ± 4	(4) Review	(4) 1998BEC/WAL
2,2,3,4,4-pentamethyl-3- silapentane $(tBu)_2$ MeSi– H	89.1	372.8	Correlation	1998DEN
3-(tert-butyl)-2,2,4,4- tetramethyl-3-silapentane (tBu) ₃ Si– H	86.6	362.3	Correlation	1998DEN

1-phenyl-sila $C_6H_5SiH_2-H$ $\Delta_fH^o(R) = 62.$ (26	1	(1) 88.2±1.2 (2) 90.1 (2) 91.3±1.2	369.0±5 377.0 382±5	(1) Iodination(2) Review(3) Revised	(1) 1989WAL(2) 1995CHA(3) 1998BEC/WAL
trimethylthic (CH ₃ S) ₃ Si–H		(1) 82.5 (2) 87.4 (3) 87.0	345.2 365.7 364.0	(1) PAC (2) Review (3) PAC, revised	(1) 1992CHA/GUE (2) 1995CHA (3) 1999LAA/MUL
triisopropylt (iPrS) ₃ Si–H	hiosilamethane	(1) 85.6 (2) 90.0	358.2 376.6	(1) PAC (2) PAC, revised	(1) 1991CLA/GRI (2) 1999LAA/MUL
substituted R ₁ R ₂ MeSi-H	yl silamethane,	(1) 01 0 1 0 1	202.0.12	(1) ICB	(1) 1000MET (CAL
$R_1 = Ph$ R_2		(1) 91.3±3.1	382.0±13	(1) ICR	(1) 1989WET/SAL
Ph	F Cl	(2) 92.1	385.4	(2) Correlation	(2) 1998DEN
Ph Ph	Cl	(2) 90.0	376.6		
rn Ph	C_6F_5 Ph ₃ Si	(2) 89.7(2) 83.1	375.5 347.7		
Ph	tBuCH,	(2) 83.1	366.2		
Me	$3-CF_3-C_6H_4$	(2) 87.1	364.2		
1-Np	$C_{6}H_{5}$	(2) 87.2	365.0		
1-Np	$3-F-C_6H_4$	(2) 88.2	369.2		
1-Np	3-MeO-C ₆ H ₄	(2) 87.5	366.2		
1-Np	3-CF ₃ -C ₆ H ₄	(2) 88.3	369.6		
1-Np	$3\text{-Me-C}_6\text{H}_4$	(2) 86.9	363.6		
1-Np	$4-CF_3-C_6H_4$	(2) 88.6	370.7		
1-Np	4 -MeO–C $_6$ H $_4$	(2) 86.6	362.4		
dimethyl pho PhMe ₂ Si– H	enyl silamethane	(1) 85.6 (2) 88.7 (3) 90.1±1.7	354.0 371.0 377±7	(1) PAC (2) Correlation (3) Review	(1) 1990DIA/DIO (2) 1998DEN (3) 1998BEC/WAL

Table 9.1 (continued) Si-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_f H^o(R)$, kcal/mol (kJ/mol)	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
	kcal/mol	kJ/mol	parentheses)	References
diphenyl silamethane Ph ₂ SiH– H	(1) 86.0 (2) 87.7 (3) 90.6 ± 1.7	359.8 366.8 379 ±7	(1) PAC (2) Correlation (3) Review	(1) 1990DIA/DIO (2) 1998DEN (3) 1998BEC/WAL
diphenyl methyl silamethane Ph ₂ MeSi– H	(1) 81.7 (2) 87.5 (3) 86.3±2.4	341.8 366.2 361±10	(1) PAC (2) Correlation (3) Review	(1) 1990DIA/DIO (2) 1998DEN (3) 1998BEC/WAL
triphenyl silamethane,				
R_3Si-H $R = C_6H_5$	(1) 84.1 (2) 86.4 (3) 88.7 ± 0.5	351.9 361.8 371±2	(1) PAC(2) Correlation(3) Review	(1) 1990DIA/DIO(2) 1998DEN(3) 1998BEC/WAL
3-CF ₃ -C ₆ H ₄	(2) 89.3	373.6		
trifluorosilane SiF ₃ - H $\Delta_{\rm f}$ H $^{\circ}$ (R) = -235.9±4.8 (-987±20)	(1) 100.1±1.2 (2) 103.2 ± 1.2	418.8±5.0 432±5	(1) Iodination (2) Revised	(1) 1989WAL (2) 1998BEC/WAL
trichlorosilane $SiCl_3$ – H $\Delta_f H^o(R) = -77 \pm 2$ (-322 ± 8)	(1) 91.3±1.2 (2) 94.4 ± 1.2	382.0±5.0 395±5	(1) Iodination (2) Revised	(1) 1989WAL (2) 1998BEC/WAL
tribromosilane SiBr ₃ – H	79.8±2	334.0±8.0	Derived from $\Delta_t H^o$ in ref.	2002CRC
methyl silane SiH ₃ –CH ₃	89.6±1.2	375±5	Derived	1998BEC/WAL

2-silapropane MeSiH ₂ - CH ₃	90.1±1.7	377±7	Derived	1998BEC/WAL
trimethylsaline Me ₂ SiH–CH ₃	92.5±1.7	387±7	Derived	1998BEC/WAL
tetramethylsaline Me ₃ Si–CH ₃	(1) 91.6 (2) 94.2 ±2	383.0 394±8	(1) VLPP (2) Derived	(1) 1994BUL/WAL (2) 1998BEC/WAL
trimethyl sec-butylsilane Me ₃ Si– sBu	99	414.2	Pyrolysis	1980DAV/WOO
trimethyl allylsilane Me ₃ Si–C ₃ H ₅	70	292.9	Pyrolysis	1980DAV/WOO
disilane SiH ₃ - SiH ₃	76.7±1	321±4	Derived	1998BEC/WAL
trisilane $\mathbf{SiH_3}\text{-}\mathbf{Si}_2\mathbf{H}_5$	74.8±2	313±8	Derived	1998BEC/WAL
tetrasilane $\mathbf{H_5Si_2}$ – $\mathbf{Si_2H_5}$	73.1	306	Derived	1998BEC/WAL
hexamethyl disilane Me ₃ Si–SiMe ₃	(1) 80.5 (2) 79.3 ± 2.9	336.8 332±12	(1) Pyrolysis (2) VLPP	(1) 1975DAV/HOW (2) 1994BUL/WAL
hexaphenyl disilane Ph ₃ Si –SiPh ₃	88.0	368.2	Derived	1981WAL
2-methyl-2-silapropan-2-ol Me ₃ Si -OH	132.6±2	555±8	Derived	1998BEC/WAL

Table 9.1 (continued) Si-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_{\rm f} {\rm H}^{\rm o}({\rm R})$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
1-methoxy-1,1-dimethyl- 1-silaethane Me ₃ Si– OMe	122.6±2.6	513±11	Derived	1998BEC/WAL
1-ethoxy-1,1-dimethyl- 1-silaethane Me ₃ Si- OEt	122.4±2.6	512±11	Derived	1998BEC/WAL
2,2,6,6-tetramethyl-4-oxa- 3,5-disilapentane Me ₃ Si- OSiMe ₃	136.0	569	Derived	1998BEC/WAL
nitrososilane H ₃ Si- NO D ₃ Si- NO	37.8±1.4 38.4±1.4	158.2±5.7 160.8±5.7	Laser photolysis MS	1997KRA/KAL
nitroso trimethylsilane Me ₃ Si– NO	44.8±1.0	187.4±4.2	Laser photolysis, MS detect.	1995KRA/NII
(1,1-dimethyl-1-silaethyl)- methylamine Me ₃ Si– NHMe	100.1±2	412±8	Derived	1998BEC/WAL
(1,1-dimethyl-1-silaethyl)- dimethylamine Me ₃ Si- NMe ₂	97.5±2	408±8	Derived	1998BEC/WAL
tri(1,1-dimethyl-1-silaethyl)- amine Me ₃ Si- N(SiMe ₃) ₂	108.7	455	Derived	1998BEC/WAL

fluorosilane SiH ₃ - F	152.5±1.2	638±5	Derived	1998BEC/WAL
trimethyl fluorosilane Me ₃ Si–F	~159.9±4.8	669±20	Derived	1989WAL
tetrafluorosilane SiF ₃ –F	166.6±1.5	697±6	Derived	1998BEC/WAL
chlorosilane SiH ₃ -Cl	109.5±1.7	458±7	Derived	1998BEC/WAL
trimethyl chlorosilane Me ₃ Si–Cl	112.8±2	472±8	Derived	1989WAL
tetrachlorosilane SiCl ₃ -Cl	110.4±2.2	462±9	Derived	1998BEC/WAL
bromosilane SiH ₃ - Br	89.9±2.2	376±9	Derived	1998BEC/WAL
trimethyl bromosilane Me ₃ Si –Br	96.0±2	402±8	Derived	1989WAL
tetrabromosilane SiBr ₃ - Br	89.9±5.3	376±22	Derived	1998BEC/WAL
iodosilane SiH ₃ - I	71.5±2	299±8	Derived	1998BEC/WAL
trimethyl iodosilane Me ₃ Si –I	(1) 76.9 (2) 76.7 ± 2	321.7 320.9 ±8.4	(1) UV spectrom. (2) Derived	(1) 1979DON/WAL (2) 1989WAL

Table 9.1 (continued) Si-X BDEs

The broken bonds (boldface = dissociated atom) Δ _t H°(R), kcal/mol		BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
1	mol)	kcal/mol	kJ/mol	parentheses)	References	
tetraiodosiland SiI ₃ – I	е	67.9±6.2	284±26	Derived	1998BEC/WAL	
2-silaeth-1-ene SiH ₂ = CH ₂	2	34.9±1	146±4	Review	1998BEC/WAL	
2-silapro-1-ene MeHSi= CH ₂	e	36.8±2.9	154±12	Review	1998BEC/WAL	
2-methyl-2-sila Me ₂ Si=CH ₂	apro-1-ene	38.5±2.9	161±12	Review	1998BEC/WAL	
disilene SiH ₂ = SiH ₂		27.0±2	113±8	Review	1998BEC/WAL	
silaforaldehyd SiH ₂ = O	le	61.2±6	256±25	Review	1998BEC/WAL	

9.2 *Ge–X bonds*

Table 9.2 Ge-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
(kJ/mol)	kcal/mol	kJ/mol	parentheses)	References
germane	(1) 78.0±1	326.4	(1) VLPP	(1) 1987AGR/SET
GeH ₃ -H	$(2) 82.6 \pm 2.4$	345.6 ± 10.0	(2) VLPP	(2) 1983NOB/WAL
$\Delta_{\rm f} H^{\rm o}(R) = 53 \pm 2$	(3) 83.4 ± 2	348.9 ± 8.4	(3) Recommend.	(3) 1994BER/ELL
(221.8 ± 8.4)	$(4) 85.6 \pm 2.1$	358.2 ± 8.8	(4) FT-ICR	(4) 1993DEC/GAL
	(5) 82.5	345.2	(5) Electron affinity	(5) 2001MOR/RIV

trimethylgermane Me ₃ Ge–H	(1) 81.7±2.4 (2) 82	341.8±10.0 343.1	(1) VLPP (2) AE	(1) 1979DON/WAL (2) 1979JAC
1110300 11	(3) 81.6 ± 0.5	341.4±2.1	(3) PAC	(3) 1991CLA/GRI
	$(4)\ 79.8\pm3.5$	333.9 ± 14.6	(4) Electron	(4) 1995BRI/SAL
	(5) 87	364	photodetach. (5) PAC, revised	(5) 1999LAA/MUL
triethyl germane (C ₂ H ₅) ₃ Ge–H	(1) 82.3 (2) 86.0	344.3 359.8	(1) PAC(2) PAC, revised	(1) 1991CLA/GRI (2) 1999LAA/MUL
tri-tert-butyl germane (tBu) ₃ Ge–H	(1) 82.6 (2) 88.0	345.6 368.2	(1) PAC (2) PAC, revised	(1) 1991CLA/GRI (2) 1999LAA/MUL
3 -(1,1-dimethyl-1-silaethyl)-3-germa-2,2,4,4-tetramethyl-2,4-disilapentane (Me $_3$ Si) $_3$ Ge–H	73.1	305.8	Correlation	2002DRO/DEN
phenylgermane, substituted (2,4,6-Me ₃ –C ₆ H ₂)GeH ₂ –H	80.7	337.5	Correlation	2002DRO/DEN
diphenylgermane, substituted $(2,4,6-Me_3-C_6H_2)_2GeH-H$	80.5	336.8	Correlation	2002DRO/DEN
2-germa-1-phenylfromtane $(PhCH_2)(C_2H_5)GeH-H$	81.6	341.6	Correlation	2002DRO/DEN
2-germa-1,3-diphenyl-2- benzylpropane (PhCH ₂) ₃ Ge– H	77.7	324.9	Correlation	2002DRO/DEN
phenyl germane PhH ₂ Ge- H	(1) 79.2 (2) 86.0	331.4 359.8	(1) PAC (2) PAC, revised	(1) 1991CLA/GRI (2) 1999LAA/MUL

Table 9.2 (continued) Ge-X BDEs

The broken bonds (boldface = dissociated atom) $\Delta_t H^o(R)$, kcal/mol		BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
$\Delta_{f}\Pi$ (kJ/n		kcal/mol	kJ/mol	parentheses)	References
diphenyl germa Ph ₂ HGe– H	ane	(1) 79.5 (2) 85.0	332.6 355.6	(1) PAC (2) PAC, revised	(1) 1991CLA/GRI (2) 1999LAA/MUL
triphenyl germ Ph ₃ Ge -H	ane	(1) 80.2 (2) 86.0 (3) 77.1	335.6 359.8 322.5	(1) PAC (2) PAC, revised (3) Correlation	(1) 1991CLA/GRI (2) 1999LAA/MUL (3) 2002DRO/DEN
methoxygerma H ₂ Ge(OMe)–H		81.5	341.0	Electron affinity	2001MOR/RIV
dimethoxygern HGe(OMe) ₂ –H		82.6	345.6	Electron affinity	2001MOR/RIV
digermane H ₃ Ge -GeH ₃		67.2±3	281.2±8.4	Derived from $\Delta_f H^o$ in ref.	2002CRC

9.3 Sn–X bonds

Table 9.3 Sn-X BDEs

The broken bonds (boldface =	(boldface = r data; re	BDEs (boldface = recommended data; references in parentheses)		
dissociated atom or group)	kcal/mol	kJ/mol	(references in parentheses)	References
trimethylstannane	(1) 74	309.6	(1) PAC	(1) 1991CLA/GRI
Me ₃ Sn–H	(2) 75±3.5	313.8±14.6	(2) Electron photodetach.	(2) 1995BRI/SAL
	(3) 78.0	326.4	(3) PAC, revised	(3) 1999LAA/MUL
	(4) 76.1 (5) 77±4	318.5 322±17	(4) Correlation(5) Derived	(4) 2002DRO/DEN (5) 2002BEC/BOG

tributylstannane (nBu) ₃ Sn– H	(1) 73.7±2.0 (2) 78.0	308.4±8.4 326.4	(1) PAC (2) PAC, revised	(1) 1986BUR/MAJ (2) 1999LAA/MUL
triphenylstannane Ph ₃ Sn –H	70.4 71.3	294.6 298.3	Correlation	2002DRO/DEN
2,2-dimethyl-2-stannapropane Me ₃ Sn– Me	64.0	267.8	Derived	1988GRI/KAM
2,2-dimethyl-2-stannabutane Me ₃ Sn–Et	60.0	251.0	Derived	1988GRI/KAM
2,2,3-trimethyl-2-stanna-butane Me ₃ Sn –iPr	55.4	231.8	Derived	1988GRI/KAM
2,2,3,3-tetramethyl-2-stanna- butane Me ₃ Sn -tBu	50.4	310.9	Derived	1988GRI/KAM

9.4 P–X bonds

Table 9.4 P-X BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		d Methods (references in		
dissociated atom or group)	kcal/mol	kJ/mol	parentheses)	References	
phosphine H ₂ P– H	83.9±0.5	351.0±2.1	Recommended	1994BER/ELL	
octylphosphine CH ₃ (CH ₂) ₇ PH -H	89.7	375.3	PAC	1999LAA/MUL	
ethylphosphine C ₂ H ₅ PH -H	89.7	375.3	MS	1969BOG/GRI	

Table 9.4 (continued) P-X BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in		
dissociated atom or group)	kcal/mol	kJ/mol	parentheses)	References	
α-CN-proyulphosphine NC(CH ₂) ₃ PH- H	89.2	373.4	Correlation	2002DRO/DEN	
di(α -CN-proyul)phosphine [NC(CH ₂) ₃] ₂ P– H	88.3	369.5	Correlation	2002DRO/DEN	
dibutylphosphine $[CH_3(CH_2)_3]_2P$ – H	89.6	375.0	Correlation	2002DRO/DEN	
diethylphosphine (CH ₃ CH ₂) ₂ P– H	90.3	377.8	Correlation	2002DRO/DEN	
dicyclohexylphosphine (cyclo-C ₆ H ₁₁) ₂ P– H	85.5 86.9	357.6 363.6	Correlation	2002DRO/DEN	
diphosphine H ₂ P–PH ₂	61.2	256.1	MS	1969MCA/LOS	
tetrachlorodiphosphine Cl ₂ P-PCl ₂	58	242.7	MS	1963SAN/MOS	
tetraiododiphosphine I_2P – PI_2	73	305.4	MS	1969FIN/HAM	
(diethylphosphino)diethylphosphine $(C_2H_5)_2P-P(C_2H_5)_2$	86	359.8	MS	1968GRI/BOG	

9.5 Se-X bonds

Table 9.5 Se-X BDEs

The broken bonds (boldface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
dissociated atom or group)	kcal/mol	kJ/mol	parentheses)	References
hydrogen selenide HSe –H	80.05±0.18	334.93±0.75	Recommend.	1994BER/ELL
benzeneselnol C ₆ H ₅ Se -H	78±4	326.4±16.7	ICR	1996LEE/LI

chapter ten

Tabulated BDEs in some inorganic compounds

Table 10.1 BDEs in Some Inorganic Compounds

The broken bonds (boldface =		(bold: recommer	BDEs (boldface = recommended data; references in parentheses)		
	iated atom)	kcal/mol	kJ/mol	(references in parentheses)	References
H ₂ N– H		108.2±0.3	452.7±1.3	Recommend.	1994BER/ELL
HN- H		97.0	405.8	Derived from $\Delta_{\scriptscriptstyle f} H^{\scriptscriptstyle o}$ in ref.	1998NIST
N-H		≤81.0	≤338.9	Spectroscopy	2002CRC
H ₂ N- NH ₂		67.4	282.0	Derived from $\Delta_f H^o$ in ref.	1998NIST
H –N ₃		93.8	392.5	Derived from $\Delta_f H^o$ in ref.	2002CRC
H ₂ P– H		83.9±0.5	351.0±2.1	Recommend.	1994BER/ELL
HP -H		75.3	315.1	Derived from $\Delta_f H^o$ in ref.	1998NIST

Table 10.1 (continued) BDEs in Some Inorganic Compounds

The broken bonds (boldface =		BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
•	ated atom)	kcal/mol	kJ/mol	parentheses)	References
Р–Н		71.0	297.1	Spectroscopy	2002CRC
H_2P – PH_2		61.2	256.1	Derived from $\Delta_f H^o$ in ref.	2002CRC
F-PH ₂		110.3±2.5	461.5±10.5	Derived from $\Delta_f H^o$ in ref.	2000FER/ALC
H ₂ As- H		76.3±0.2	319.2±0.8	Recommend.	1994BER/ELL
HAs–H		52.1	218.0	Derived from $\Delta_f H^o$ in ref.	1998NIST
As-H		65.5±0.9	274.1±3.8	PIMS	1988BER
H ₂ Sb–H		68.9±0.5	288.3±2.1	Recommend.	1994BER/ELL
- Н ₃ С- Н		105.0±0.1	439.3±0.4	VLPP	1987DOB/BEN
H ₂ C- H		110.3	461.5	Derived from $\Delta_f H^o$ in ref.	1998NIST
- НС- Н		100.8	421.7	Derived from $\Delta_f H^o$ in ref.	1998NIST
С–Н		80.9	338.5	Spectroscopy	2002CRC

H ₃ Si– H	91.7±0.5	383.7±2.1	Recommend.	1994BER/ELL
H ₂ Si –H	71.0±2	297.1±8.4	Derived	1989WAL
HSi –H	76.7	320.9	Derived	1989WAL
Si–H	69.8	292	Derived	1998BEC/WAL
H ₃ Ge– H	83.4±2.0	348.9±8.4	Recommend.	1994BER/ELL
Ge-H	≤76.9	≤321.7	Spectroscopy	1966KLY/LIN
НО-Н	119.30±0.05	499.15±0.21	Recommend.	1994BER/ELL
О-Н	102.20	426.60	Spectroscopy	2002CRC
HS-H	91.2±0.7	381.6±2.9	Recommend.	1994BER/ELL
S-H	82.3±2.3	344.3±9.6	Spectroscopy	2002CRC
HSe- H	80.05±0.18	334.93±0.75	Recommend.	1994BER/ELL
Se-H	~43.0	~180	Spectroscopy	2002CRC
НТе -Н	66.2±1.2	277.0±5.0	Recommend.	1994BER/ELL
Те -Н	64.1	268.2	Spectroscopy	2002CRC

Table 10.1 (continued) BDEs in Some Inorganic Compounds

	oken bonds Idface =	BDEs (boldface = recommended data; references in parentheses)		Methods (references in	
•	ated atom)	kcal/mol	kJ/mol	parentheses)	References
N ₂ H ₃ - H		87.5	366.1	Derived from $\Delta_f H^o$ in ref.	1998NIST
N_2H_2 –H		44.8	187.4	Derived from $\Delta_f H^o$ in ref.	1998NIST
OS-H		54.3	227.2	Derived from $\Delta_f H^o$ in ref.	1998NIST
O ₂ S- H		34.2	143.5	Derived from $\Delta_f H^o$ in ref.	1998NIST
ON-H		46.7	195.4	Derived from $\Delta_f H^o$ in ref.	1998NIST
O ₂ N-H		79.0	330.5	Derived from $\Delta_f H^o$ in ref.	1998NIST
F ₂ N- F		60.6	253.6	Derived from $\Delta_f H^o$ in ref.	1998NIST
FN-F		58.8	246.0	Derived from $\Delta_f H^o$ in ref.	1998NIST
N-F		82.0	343.1	Spectroscopy	1979HUB/HER
O -N		150.70±0.03	630.53±0.13	Spectroscopy	2002CRC

O-NO	72.9	305.0	Review	1965BEN
O-NO ₂	47.3±0.8 at 0 K	197.9±3.3 at 0 K	Photodissocn.	1993DAV/KIM
ON-ON	9.7±0.5	40.6±2.1	Review	1976BEN
ON-NO ₂	8.8	36.8	Derived from $\Delta_f H^o$ in ref.	2002CRC
O_2N-NO_2	13.2	55.2	Derived from $\Delta_t H^o$ in ref.	2002CRC
O ₂ N-ONO ₂	24.6	102.9	Derived from $\Delta_{f}H^{o}$ in ref.	2002CRC
O -N ₂	40.0	167.4	Derived from $\Delta_{f}H^{o}$ in ref.	2002CRC
HO-NO	49.4	206.7	Review	1982MCM/GOL
HO-NO ₂	49.3	206.3	Review	1982MCM/GOL
HOO-NO ₂	23±2	96.2±8.4	Derived	1978BAL/GOL
O =O	119.11±0.04	498.36±0.17	Spectroscopy	2002CRC
S =S	101.65	425.30	Spectroscopy	2002CRC
O=S	123.78±0.01	517.90±0.04	Spectroscopy	2002CRC (continued)

Table 10.1 (continued) BDEs in Some Inorganic Compounds

	oken bonds ldface =	(bold recomme	DEs Iface = nded data; n parentheses)	Methods (references in	
`	iated atom)	kcal/mol	kJ/mol	parentheses)	References
N≡N		225.94±0.14	945.33±0.59	Spectroscopy	2002CRC
C –C		143.75	601.45	Spectroscopy	2002CRC
C -N ₂		29.5±0.8	123.4±3.3	Derived from $\Delta_f H^o$ in ref.	2000BIS/HOO

chapter eleven

Heats of formation of atoms, inorganic and organic radicals

11.1 Gaseous atoms

Table 11.1 Heats of Formation of Gaseous Atoms

	$\Delta_{ m f} H^{ m o}$			Δ	_f H°
Atom	kcal/mol	kJ/mol	Atom	kcal/mol	kJ/mol
Ag	68.1±0.2	284.9±0.8	Fe	99.30	415.47
Al	78.87 ± 0.96	330.0±4.0	Ga	65.00	271.96
As	53.53 ± 0.53	223.97±2.22	Ge	89±2	372.4±8.4
Au	20.0 ± 1.3	83.7±5.4	Н	52.103±0.001	217.998±0.006
В	133.84	560.00	Hf	147.80	618.40
Ba	42.801	179.08	Hg	14.67 ± 0.01	61.38±0.04
Be	77.438	324.00	I	25.516±0.01	106.76±0.04
Bi	27.7 ± 1.0	95.0 ± 4.2	In	48.2±2.2	201.7±9.2
Br	26.735	111.86	Ir	122.92±0.50	514.30±2.09
C	171.29 ± 0.11	716.68 ± 0.45	K	21.27	89.00
Ca	42.495	177.80	La	92.16 ± 0.68	385.59±2.85
Cd	26.721 ± 0.048	111.80±0.20	Li	38.074	159.30
Cl	28.992 ± 0.002	121.301±0.008	Mg	35.158	147.10
Co	101.98	426.68	Mn	67.701	283.26
Cr	95.0	397.48	Mo	157.50	658.98
Cs	18.28	76.50	N	112.97 ± 0.096	472.68 ± 0.40
Cu	80.688	337.60	Na	25.645	107.30
F	18.97 ± 0.072	79.38±0.30	Nb	175.20	733.04

Table 11.1 (continued) Heats of Formation of Gaseous Atoms

	Δ	_f H°			$\Lambda_{\rm f} { m H}^{ m o}$
Atom	kcal/mol	kJ/mol	Atom	kcal/mol	kJ/mol
Ni	102.80	430.12	Si	107.55	450.00
O	59.555 ± 0.024	249.18±0.10	Sn	71.99 ± 0.36	301.21±1.5
Os	164.1 ± 5.0	686.6±20.9	Sr	39.197	164.00
P	75.619	316.39	Ta	186.90	782.00
Pb	46.654	195.20	Te	47.0	196.6
Pd	77.44 ± 0.50	324.01±2.09	Th	144±1	602.5±4.2
Pt	86.10	360.24	Ti	113.20	473.63
Rb	19.34	80.92	Tl	34.5±1.7	144.3±7.1
Rh	106.74 ± 0.50	446.60±2.09	U	127±2	531.4±8.4
Ru	129.47	541.70	V	123.20	515.47
S	66.200	276.98	W	203.40	851.03
Sb	38.5 ± 1.5	161.1±6.3	Y	93.62±0.57	391.71±2.38
Sc	86.0 ± 1.1	358.8±4.6	Zn	31.171	130.42
Se	7.7 ± 1.4	32.2±5.9	Zr	145.80	610.03

Data resource: http://webbook.nist.gov

11.2 Small inorganic radicals in the gas phase

Table 11.2 Heats of Formation of Small Inorganic Radicals

	$\Delta_{ m f} { m H^o}($	R)	
Inorganic radicals	kcal/mol	kJ/mol	References
ON	21.58	90.29	1998CHA
NO ₂	7.91	33.10	1998CHA
ONOO	19.8	82.8	1993DAV/KIM
sym-NO ₃	15.8	66.1	1976BEN
N_2O	19.61	82.05	1998CHA
NH	90.0	376.56	1998CHA
NH ₂	45.1±0.3	188.7±1.3	1994BER/ELL
HNO	27.0	113.0	1996DIX

N_3	112±5	468.6±20.9	1982MCM/GOL
N_2H_3	58.2	78.2	1988GRE/COL
$(Z)-N_{2}H_{2}$	50.9	212.97	1998CHA
NF ₂	10.1	42.26	1998CHA
NF	50	209.2	1979HUB/HER
HNO	23.8	99.58	1998CHA
FNO	-15.7	-65.69	1998CHA
CINO	12.36	51.71	1998CHA
BrNO	19.63	82.13	1998CHA
INO	26.8	112.13	1998CHA
NCN	111.1±0.7	464.8±2.9	1999BIS/CHO
ОН	9.40 ± 0.05	39.33±0.21	1994BER/ELL
SH	34.18 ± 0.68	143.01±2.85	1994BER/ELL
SSH	27.6±3.5	115.5±14.6	1993OHA/DEP
SO	1.2	5.01	1998CHA
SO ₂	-70.95	-296.84	1998CHA
SO ₃	-94.6	-395.77	1998CHA
S_2O	-13.5	-56.48	1998CHA
HSO	-1.0	-4.2	1987LOV/WAN
HSO ₂	-53	-221.8	1980BOY/GUP
HOSO ₂	-92	385	1984MAR
SF	3.1	12.97	1998CHA
SF ₂	-70.9	-296.65	1998CHA
SF ₃	-120.23	-503.03	1998CHA
SF ₄	-178.3 ± 3.0	-763.16	1998CHA
SF ₅	-210.3 ± 4.8	-908.45	1998CHA
HSe	34.6±0.5	144.8±2.1	1994BER/ELL
НТе	37.9±1.2	156.8±5.0	1994BER/ELL
PH_2	33.1±0.6	138.5±2.5	1994BER/ELL
РН	60.6	253.55	1998CHA
AsH ₂	40.1±0.3	167.8±1.3	1994BER/ELL
AsH	40.1	167.8	1988BER

Table 11.2 (continued) Heats of Formation of Small Inorganic Radicals

	$\Delta_{ m f} H$	°(R)	
Inorganic radicals	kcal/mol	kJ/mol	References
SbH ₂	51.5±0.6	215.5±2.5	1994BER/ELL
FO	26.0	108.78	1998CHA
ClO	24.2	101.22	1998CHA
BrO	31.9	133.5	1988LIA/BAR

11.3 Organic radicals in the gas phase

11.3.1 C-centered radicals

Table 11.3.1 Heats of Formation of C-Centered Radicals

	$\Delta_{ m f}$	$\Delta_{\rm f} H^{ m o}({ m R})$		
C-centered radicals	kcal/mol	kJ/mol	References	
СН	142.0	594.13	1998CHA	
CH ₂ (triplet)	93.3±1.0	390.4±4.2	1985BUN/SEA	
CH ₂ (singlet)	102.4±1.0	428.4 ± 4.2	1985BUN/SEA	
*CH ₃ , methyl	35.06±0.1	146.69 ± 0.42	1987DOB/BEN	
°C ₂ H, acetenyl, CH≡C°	135.1±0.7	565.3±2.9	1994BER/ELL	
*C ₂ H ₂ , CH ₂ =C**	100.3±4	419.7±16.7	1999AHM/PET	
°C ₂ H ₃ , vinyl, CH ₂ =C°H	71.6±0.8	299.6±3.3	1994BER/ELL	
${}^{\bullet}C_2H_5$, ethyl, $CH_3C^{\bullet}H_2$	28.4 ± 0.3	118.8±1.3	1997DOB/BEN	
°C ₃ H ₃ , propargyl, CH≡CC°H ₂	81.0±1	339 ± 4	1996TSA	
*C ₃ H ₃ , CH ₃ C≡C**	121±3	506.3±12.6	2000SHI/ERV	
${}^{\bullet}C_3H_3$, $CH_2=C=CH^{\bullet} \leftrightarrow CH=CC^{\bullet}H_2$	81.0±1	339.0 ± 4.2	1996TSA	
°C ₃ H ₃ , cyclopro-2-en-1-yl	105.1±4.1	439.7±17.2	1980DEF/MCI	
${}^{\bullet}C_3H_5$, allyl, CH_2 = $CHC{}^{\bullet}H_2$	40.8 ± 0.7	171±3	1996TSA	
°C ₃ H ₅ , CH ₃ CH=C°H	63.8±1.5	267±6	1999TSA	
C ₃ H ₅ , CH ₃ C=CH ₂	55.3	231.4	1990TAK	
°C₃H₅, cyclopropyl	66.9±2.5	279.9±10.5	1979BAG/BEN	
n-C ₃ H ₇ , • n-propyl, CH ₃ CH ₂ C•H ₂	23.9 ± 0.5	100±2	1996TSA	
i-C ₃ H ₇ ,• i-propyl, CH ₃ C•HCH ₃	21.0±0.7	88±3	1988RUS/SEE(b)	
°C ₄ H ₅ , CH ₃ C≡CC°H ₂	70.2±2	293.7±8.4	1982NGU/KIN	

°C ₄ H ₅ , CH≡CC°HCH ₃	70.5±2.2	295.0±9.2	1981NGU/KIN
°C ₄ H ₇ , CH ₃ CH=CHC°H ₂	34.9 ± 2.0	146±8	1999TSA
*C ₄ H ₇ , CH ₂ =CHCH ₂ C*H ₂	46.0	192.5	1984SCH/HOU
°C ₄ H ₇ , CH ₂ =C(CH ₃)C°H ₂	30.6±0.6	128.0±2.5	1991ROT/BAU
°C ₄ H ₇ , CH ₂ =CHC°HCH ₃	31.8±1.5	133.1±6.5	1987LIA/AUS
°C ₄ H ₇ , cyclopropylmethyl	51.1±1.6	213.8±6.7	1971MCM/GOL
°C ₄ H ₇ , cyclobutyl	51.4±1.0	215.1±4.2	1972MCM/GOL
n-C ₄ H ₉ , n-butyl, CH ₃ CH ₂ CH ₂ C*H ₂	18.6 ± 0.5	77.8±2.1	1990WAL/TSA
i- C_4H_9 , i-butyl, (CH ₃) ₂ CHC H ₂	16.7±1.0	70±4	1999TSA
s-C ₄ H ₉ , s-butyl, CH ₃ C*HCH ₂ CH ₃	16.2 ± 0.5	67.8±2.1	1992SEA/PIL
t - C_4H_9 , $^{\bullet}t$ -butyl, (CH_3) $_3C^{\bullet}$	11.5±0.7	48±3	1996TSA
°C ₅ H ₅ , CH ₂ =CHC≡CC°H ₂	84.0	351.5	1992STA/KIN
°C ₅ H ₅ , cyclopenta-1,3-dien-5-yl	63.9±2	267.4±8.4	1997ROM/JAN
°C ₅ H ₇ , CH ₃ C≡CC°HCH ₃	65.2±2.2	272.8±9.2	1981KIN/NGU
${}^{\bullet}C_5H_{7}$, $CH\equiv CC^{\bullet}HC_2H_5$	66.2±2	277.0±8.4	1976LOS/TRA
°C ₅ H ₇ , CH≡CC°(CH ₃) ₂	61.5±2.2	257.3±9.2	1977KIN
°C ₅ H ₇ , CH ₂ =CHCH=CHC°H ₂	49±3	205±12.6	1982MCM/GOL
°C ₅ H ₇ , (CH ₂ =CH) ₂ C°H	49.7±1.0	208.0±4.2	1991CLA/CUL
*C ₅ H ₇ , CH ₃ CH=C=CHC*H ₂	66.9	278.0	2001TUM/DEN
[•] C ₅ H ₇ , spiropentyl	91.0±1.0	380.7±4.2	1971FER/WHI
°C ₅ H ₇ , cyclopent-1-en-3-yl	38.4±1.0	160.7±4.2	1970FUR/GOL(b)
°C ₅ H ₉ , cyclopentyl	25.3±1.0	105.9 ± 4.2	1982CAS/GRI
°C ₅ H ₉ , CH ₂ =CHC°HCH ₂ CH ₃	26.2±2	109.6±8.4	1976LOS/TRA
[•] C ₅ H ₉ , CH ₃ CH=CHC [•] H(CH ₃)	22	92	1988LIA/BAR
°C ₅ H ₉ , CH ₃ CH=C(CH ₃)C°H ₂	22.0	92.0	2001TUM/DEN
C ₅ H ₉ , CH ₂ =CHC(CH ₃) ₂	20.8±2	87.0 ± 8.4	1970EGG/JOL
[•] C ₅ H ₉ , CH ₂ =C(CH ₃)C [•] H(CH ₃)	22.4	93.7	2001TUM/DEN
[•] C ₅ H ₉ , CH ₂ =C(C [•] H ₂)CH ₂ CH ₃	27.3	114.2	2001TUM/DEN
°C ₅ H ₉ , CH ₂ =CH(CH ₂) ₂ C°H ₂	42.9	179.5	1996CAM/AUT
nC_5H_{11} , $CH_3CH_2CH_2CH_2C$	13	54.4	1988LIA/BAR
${}^{\bullet}C_{5}H_{11'}(C_{2}H_{5})_{2}C^{\bullet}H$	11.2	47.0	1996CAM/AUT
[•] C ₅ H ₁₁ , (nC ₃ H ₇)(CH ₃)C [•] H	12	50.2	1988LIA/BAR

Table 11.3.1 (continued) Heats of Formation of C-Centered Radicals

	$\Delta_{ m f}$ I	H°(R)	
C-centered radicals	kcal/mol	kJ/mol	References
•C ₅ H ₁₁ , (CH ₃) ₃ C•CH ₂	8.7±2	36.4±8.4	1969LAR/HAR
•C ₅ H ₁₁ , (C ₂ H ₅)(CH ₃) ₂ C•	7.0	29	1999TSA
°C ₆ H ₅ , phenyl	78.9±0.8	330.1±3.3	1994BER/ELL
°C ₆ H ₇ , cyclohexa-1,3-dien-5-yl	47.6	199.2	1991STE/BRO
°C ₆ H ₇ , cyclohexa-1,4-dien-3-yl	48.2±1.2	201.7±5.0	1986TSA
${}^{\bullet}C_6H_{9}$, $CH_3C\equiv CC^{\bullet}(CH_3)_2$	53.0±2.2	221.8±9.2	1981KIN/NGU
°C ₆ H ₉ , (CH ₂ =CH) ₂ C°(CH ₃)	46.3	193.7	1999LAA/MUL
${}^{\bullet}\text{C}_6\text{H}_9$, cyclohexa-1-en-3-yl	28.6	119.7	1988BOR/CHE
°C ₆ H ₁₁ , CH ₂ =CH(CH ₂) ₃ C°H ₂	37.9	158.6	1996CAM/AUT
°C ₆ H ₁₁ , CH ₂ =CHC°H(CH ₂) ₂ CH ₃	21.3	89.0	2001TUM/DEN
•C ₆ H ₁₁ , CH ₂ =C(CH ₃)C•(CH ₃) ₂	9.0±1.5	37.7±6.3	1973ROD/WU
°C ₆ H ₁₁ , (CH ₃) ₂ C=C(CH ₃)C°H ₂	9.5±1.5	39.7±6.3	1973ROD/WU
*C ₆ H ₁₁ , (CH ₃) ₂ C=CHC*H(CH ₃)	11.3	47.3	2001TUM/DEN
°C ₆ H ₁₁ , (Z)-CH ₃ CH=CHC°(CH ₃) ₂	13.0	54.4	2001TUM/DEN
°C ₆ H ₁₁ , cyclohexyl	18±1.5	75.3±6.3	1981TSA
nC ₆ H ₁₃ , CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ C+	8	33.5	1988LIA/BAR
°C ₆ H ₁₃ , (nC ₄ H ₉)(CH ₃)C°H	7	29.7	1988LIA/BAR
${}^{\bullet}\text{C}_6\text{H}_{13}$, 2-methyl-2-pentyl	0.8±2	3.3 ± 8.4	1983SER/GOR
${}^{\bullet}\text{C}_6\text{H}_{13}$, 3-methyl-3-pentyl	3.4	14.2	1996CAM/AUT
${}^{\bullet}\text{C}_6\text{H}_{13}$, 2,3-dimethyl-2-butyl	0.7 ± 2.4	3.1±10	2000KIR/KOR
C ₇ H ₃ , (CH=C) ₃ C	187.5	784.5	1990TAK
${}^{\bullet}\text{C}_7\text{H}_7$, benzyl, $\text{C}_6\text{H}_5\text{C}{}^{\bullet}\text{H}_2$	48.4±1.5	202.5 ± 6.3	1994BER/ELL
°C ₇ H ₇ , quadricyclolan-5-yl	138.3 ± 1.3	578.6±5.4	1996LEE/DEP
°C ₇ H ₇ , quadricyclolan-4-yl	140.4±1.3	587.4±5.4	1996LEE/DEP
°C ₇ H ₇ , norborna-2,5-dien-7-yl	122.3±1.9	511.7±7.9	1996LEE/DEP
°C ₇ H ₇ , cyclohepta-1,3,5-trien-7-yl	68.2±3	285.3±12.6	1980DEF/MCI
°C ₇ H ₉ , (CH ₂ =CH) ₃ C°	65.5	274.0	1990TAK
°C ₇ H ₁₁ , norborn-1-yl	32.6±2.5	136.4±10.5	1970ONE/BAG
°C ₇ H ₁₁ , cycloheptenyl	28.5	119.2	2001TUM/DEN
°C ₇ H ₁₃ , cycloheptyl	12.1±1	50.6±4.2	1971FER/WHI

C ₇ H ₁₃ , cyclo-[C(CH ₃)(CH ₂) ₅]	5.4	22.6	2001TUM/DEN
[•] C ₇ H ₁₃ , cyclo-[C [•] (CH ₂ CH ₃)(CH ₂) ₄]	11.2	47.0	2001TUM/DEN
[•] C ₇ H ₁₅ , (nC ₅ H ₁₁)(CH ₃)CH [•]	2	8.4	1988LIA/BAR
°C ₈ H ₇ , cubyl	198.6±4	831.0±16.7	1997HAR/EMR
°C ₈ H ₉ , C ₆ H ₅ C°H(CH ₃)	40.4	169.0	1982MCM/GOL
°C ₈ H ₉ , 1-phenyl-eth-2-yl	55.9	234.0	1989FRE/OLM
°C ₈ H ₉ , p-CH ₃ C ₆ H ₄ C°H ₂	40	167.4	1986HAY/KRU
°C ₈ H ₉ , m-CH ₃ C ₆ H ₄ C°H ₂	40	167.4	1986HAY/KRU
°C ₈ H ₉ , o-CH ₃ C ₆ H ₄ C°H ₂	40	167.4	1986HAY/KRU
[•] C ₈ H ₁₁ , C ₆ H ₅ C [•] (CH ₃) ₂	32.0	134.0	1997LAA/BOR
${}^{\bullet}\text{C}_8\text{H}_{13}$, CH_2 =CHCH=CHC ${}^{\bullet}\text{H}(\text{CH}_2)_2\text{CH}_3$	31.2	130.5	2001TUM/DEN
°C ₈ H ₁₃ , CH ₂ =CHC°H(CH ₂) ₃ CH=CH ₂	31.2	130.5	2001TUM/DEN
°C ₈ H ₁₃ , bicyclooct-1-yl	22.0	92.0	1971DAN/TIP
°C ₈ H ₁₅ , CH ₂ =CHC°H(CH ₂) ₄ CH ₃	11.9	49.8	2001TUM/DEN
°C ₈ H ₁₅ , (E)-CH ₃ CH=C°(CH ₂) ₄ CH ₃	7.1	29.7	2001TUM/DEN
[•] C ₈ H ₁₅ , (Z)-(CH ₃) ₂ C [•] CH=CHCH(CH ₃) ₂	2.2	9.2	2001TUM/DEN
°C ₈ H ₁₅ , cyclooctanyl	14.2	59.4	2001TUM/DEN
^o C ₈ H ₁₅ , cyclo-[C ^o (CH ₂ CH ₃)(CH ₂) ₅]	2.4	10.0	2001TUM/DEN
[•] C ₈ H ₁₅ , (E)-cyclo-[C [•] (CH ₃)CH(CH ₃)(CH ₂) ₄]	-2.1	-8.8	2001TUM/DEM
${}^{\bullet}C_{8}H_{15}, (Z)\text{-cyclo-}[C^{\bullet}(CH_{3})CH(CH_{3})(CH_{2})_{4}]$	1.5	6.3	2001TUM/DEM
°C ₉ H ₇ , indenyl	71	297.1	1982MCM/GOL
°C ₉ H ₉ , indanyl-1	48.8 ± 2	204.2 ± 8.4	2000DEN/DEN
${}^{\bullet}C_9H_{11}$, 2,6-dimethylbenzyl	29.8	124.7	1980BAR/STE
${}^{\bullet}C_9H_{11}$, 3,6-dimethylbenzyl	29.8	124.7	1980BAR/STE
${}^{\bullet}C_9H_{11}$, 3,5-dimethylbenzyl	29.8	124.7	1980BAR/STE
°C ₉ H ₁₇ , cyclononanyl	12.5	52.3	2001TUM/DEN
${}^{ullet}C_{10}H_{7}$, naphth-1-yl	96.0±1.3	401.7±5.4	2000REE/KAS
${}^{ullet}C_{10}H_{7}$, naphth-2-yl	95.7±1.4	400.4±5.9	2000REE/KAS
${}^{ullet}C_{10}H_{11}$, tetralin-1-yl	37±1.2	154.8±5.0	1997LAA/MUL
°C ₁₀ H ₁₃ , 1-phenyl-but-4-yl	45.9	192.0	1989FRE/OLM
${}^{\bullet}C_{10}H_{13'}$ ($C_6H_5CH_2$)(C_2H_5) $C^{\bullet}H$	44.1	184.5	1989FRE/OLM
•C ₁₀ H ₁₃ , (C ₆ H ₅ CH ₂ CH ₂)(CH ₃)C•H	44.1	184.5	1989FRE/OLM

Table 11.3.1 (continued) Heats of Formation of C-Centered Radicals

	$\Delta_{ m f} F$	H°(R)	
C-centered radicals	kcal/mol	kJ/mol	References
*C ₁₀ H ₁₅ , 1-adamantyl	12.3	51.5	1986KRU/BEA
${}^{\bullet}C_{10}H_{15}$, 2-adamantyl	14.8	61.9	1986KRU/BEA
°C ₁₀ H ₁₉ , cyclodecanyl	7.7	32.2	2001TUM/DEN
${}^{ullet}C_{11}H_{9}$, 1-naphthylmethyl	60.4	252.7	1982MCM/GOL
°C ₁₁ H ₂₁ , cycloundecanyl	1.8	7.5	2001TUM/DEN
°C ₁₂ H ₂₃ , cyclododecanyl	-9.2	-38.5	2001TUM/DEN
°C ₁₃ H ₉ , 9-fluorenyl	71.1	297.5	1994RAK/VER
${}^{\bullet}C_{13}H_{11}$, $(C_6H_5)_2C^{\bullet}H$	72.2±1.0	302.1±4.2	1991PAR/HAN
${}^{ullet}C_{13}H_{11}$, 9-methyl-9-fluorenyl	64.1	268.2	1994RAK/VER
${}^{ullet}C_{14}H_{11}$, 9,10-dihydroanthracen-9-yl	62.4	261.0	1991STE/BRO
${}^{ullet}C_{15}H_{11}$, 9-anthracenylmethyl	80.7	337.6	1991PAK/HAN
${}^{ullet}C_{15}H_{11}$, 9-phenanthrenylmethyl	74.4	311.3	1982MCM/GOL
[•] C ₁₆ H ₃₁ , CH ₂ =CHC [•] H(CH ₂) ₁₂ CH ₃	-28.4	-118.8	2001TUM/DEN
${}^{ullet}C_{19}H_{15}$, trityl, $(C_6H_5)_3C^{ullet}$	93.7±2	392.0±8.4	1991PAR/HAN
${}^{ullet}C_{35}H_{25}$, pentamethylcyclopentadienyl	16.1	67.4	1995ROT/HUN
CF	57.5±2.4	240.6±10.0	1991GUR/VEY
CF_2	-44.6 ± 1.5	-186.6 ± 6.3	1978ROD
FC*(O)	-41	-171.5	1998CHA
CHF	34.2±3.0	143.0±12.6	1997POU/PAU
CCIF	7.4 ± 3.2	31.0±13.4	1997POU/PAU
CCI	120	502.0	1998CHA
CCl ₂	54.0	226	2000BOR/ING
ClC*(O)	-5.2	-21.8	1990NIC/KRE
CHCl	78.0 ± 2.0	326.4±8.4	1997POU/PAU
CClBr	63.8	267	2000BOR/ING
CBr	122	510.45	1998CHA
CBr ₂	77.4	324	2000BOR/ING
CI	<86.8	<363.2	1977VOG/MIS
*CF ₃	-111.4±0.9	-466.1±3.8	1997ASH/RUS

•CHF ₂	-57.1±1	-238.9±4.2	1983PIC/ROD
•CH ₂ F	-7.6 ± 1	-31.8 ± 4.2	1983PIC/ROD
•CClF ₂	-66.7 ± 2	-279.0 ± 8.4	1992MIY/TSC
•CCl ₂ F	-21.3±2	-89.0 ± 8.4	1992MIY/TSC
*CHClF	-14.5±2.4	-60.7±10.0	1987TSC/PAD
•CCl ₃	17.0±0.6	71.1±2.5	1991HUD/JON
*CHCl ₂	22.3±1.0	93.3±4.2	1997POU/PAU
*CH ₂ Cl	28.0 ± 0.7	117.2±2.9	1996SEE
*CHBrCl	36.8±3	154.0±13	2000BOR/ING
*CHBr ₂	45.0±2.2	188.3±9.2	1987TSC/PAD
•CBr ₃	49.0±2	205.0 ± 8.4	1988HOL/LOS
*CH ₂ Br	40.4 ± 1	169.0 ± 4.2	1987TSC/PAD
*CHI ₂	79.8±2.2	333.9±9.2	1970ONE/BEN
*CH ₂ I	54.9±2	229.7±8.4	1988HOL/LOS
C ₂ F, FC≡C	110±5	460.0±21	1996ZAR/WES
•C ₂ F ₃ , CF ₂ =C•F	-45.9 ± 2	-192.0 ± 8.4	1983SPY/SAU
*C ₂ F ₂ H, CF ₂ =C*H	-22.2±2	-92.9 ± 8.4	1981STE/ROW
°C ₂ F ₂ H, CHF=C°F	-12.1±2	-50.6 ± 8.4	1981STE/ROW
*CCl ₂ H, CHCl=C*Cl	56.1±2	234.7±8.4	1981STE/ROW
*CClH ₂ , CH ₂ =C*Cl	>60	>251.0	1989RUS/SEN
*C ₂ F ₅ , CF ₃ C*F ₂	-213.4±1	-892.9 ± 4.2	1981EVE/WHI
°C ₂ HF ₄ , CF ₃ C°HF	-162.7 ± 2.3	-680.8 ± 9.6	1983MAR/PAR
°C ₂ HF ₄ , CHF ₂ C°F ₂	-158.9	-664.8	1996ZAR/WES
•C ₂ H ₂ F ₃ , CF ₃ C•H ₂	-123.6 ± 2	-517.1±8.4	1974WU/ROD
° C ₂ H ₂ F ₃ , CH ₂ FC ° F ₂	-107.5	-449.8	1996ZAR/WES
°C ₂ H ₂ F ₃ , CHF ₂ C°HF	-109	-456.0	1996ZAR/WES
°C ₂ H ₂ F ₂ Cl, CF ₂ ClC°H ₂	-74.3±1.7	-310.9±7.0	1994PAD/CHE
° C ₂ H ₃ F ₂ , CH ₃ C ° F ₂	-72.3±2	-302.5 ± 8.4	1977PIC/ROD
° C ₂ H ₃ F ₂ , CHF ₂ C ° H ₂	-68.3	-285.8	1996ZAR/WES
•C ₂ H ₃ F ₂ , CH ₂ FC•HF	-57.0	-238.5	1996ZAR/WES
•C ₂ H ₄ F, CH ₃ C•HF	-16.8±2	-70.3 ± 8.4	1996MIY/OZA
°C ₂ H ₄ F, CH ₂ FC°H ₂	-14.2 ± 2	-59.4 ± 8.4	1996MIY/OZA

Table 11.3.1 (continued) Heats of Formation of C-Centered Radicals

C-centered radicals	$\Delta_{\rm f} H^{ m o}({ m R})$		
	kcal/mol	kJ/mol	References
*C ₂ F ₄ Cl, CF ₂ ClC*F ₂	-164	-686	1972FOO/TAI
[•] C ₂ F ₃ ClBr, CF ₃ C [•] ClBr	-120.5 ± 2	-504.2 ± 8.4	1982MCM/GOL
°C ₂ HF ₃ Cl, CClF ₂ C°HF	-107.7±3	-450.6±12.6	1998SKO/DYM
°C ₂ Cl ₅ , CCl ₃ C°Cl ₂	8.4±1.3	35.1±5.4	1969FRA/HUY
°C ₂ HCl ₄ , CHCl ₂ C°Cl ₂	5.6±2	23.4±8.4	1976LEW
°C ₂ H ₃ Cl ₂ , CH ₃ C°Cl ₂	10.2 ± 0.4	42.5±1.7	1996SEE
°C ₂ H ₄ Cl, CH ₃ C°HCl	18.3 ± 0.4	76.5±1.6	1996SEE
°C ₂ H ₄ Cl, CH ₂ ClC°H ₂	22.2±0.6	93.0±2.4	1998SEE
•C ₂ H ₃ Br ₂ , CH ₃ C•Br ₂	33.5±1.3	140.2±5.4	1999MIY/TSC
[•] C ₂ H ₄ Br, BrCH ₂ C [•] H ₂	32.3	135.1	1988HOL/LOS
°C ₂ H ₄ Br, CH ₃ C°HBr	30.3	126.8	1990MIY/TSC
$n-C_3F_{7'}$ CF_3CF_2C F_2	104±2	435.1 ± 8.4	1982MCM/GOL
i-C ₃ F ₇ , CF ₃ C*FCF ₃	103.6±0.6	433.5±2.5	1983EVE/WEE
°C ₃ H ₆ Cl, CH ₃ CH ₂ C°HCl	13.5	56.6	1998SEE
${}^{\bullet}C_6F_5$	-130.9 ± 2	-547.7 ± 8.4	1974KRE/PRI
HOC*H ₂	-4.08 ± 0.8	-17.07±3.35	1994BER/ELL
HOCH ₂ C•H ₂	-7	-29.3	1990TAK
CH ₃ C*HOH	-13.3±0.8	-55.6 ± 3.5	2001SUN/BOZ
°C₂H₃O, oxiran-2-yl	35.8±1.5	149.8±6.3	1984BAL/KEE
CH ₃ CH ₂ C*HOH	-19.4±1	-81 ± 4	1999TSA
(CH ₃)C*HCH ₂ OH	18.8±2	78.7 ± 8.4	1992HOL
HOCH ₂ CH ₂ C*H ₂	-16.0 ± 2	-66.9 ± 8.4	1992HOL
(CH ₃) ₂ C*OH	-26.3±1	-110.0 ± 4.2	1982MCM/GOL
•CH ₂ CH(OH)CH ₃	-15.0 ± 2.8	-62.8 ± 11.7	2002SUN/BOZ
•CH ₂ C(OH)(CH ₃) ₂	-35.2±2	-147.3 ± 8.4	1992HOL
$(CH_2=CH)_2C^{\bullet}OH$	22.1±2	92.5±8.4	1991CLA/CUL
CH ₂ =CHC•HOH	0 ± 2	0 ± 8.4	1973ALF/GOL
Ph ₂ C•OH	36.4±1.5	152.3±6.3	1973TRE
$(CH_3)_2(CH_2)C^{\bullet}OH$	-26.8±2	-121.1±8.4	1982MCM/GOL
CH ₃ OC•H ₂	0±1	0±4.2	1999ATK/BAU

CH ₃ CH ₂ OC•H ₂	-10.8±2	-45.2±8.4	1991HOL/LOS
CH ₃ CH ₂ OC*HCH ₃	-19.4±1	-81.2±4.2	1986BUR/MAJ
HOCH ₂ C*HOH	-52.6 ± 2	-220.1 ± 8.4	1992HOL
C*H=C=O	41.9±2	175.3±8.4	1994BER/ELL
HC*(O)	9.96±0.20	41.67±0.84	1994BER/ELL
CH ₃ C*(O)	-2.4 ± 0.2	-10.0 ± 0.8	1994BER/ELL
CF ₃ C*(O)	-128.4	-537.2	1995TAK/PAS
CH ₃ CH ₂ C*(O)	-7.7±1	-32.3 ± 4.2	2000ATK/BAU
CH ₂ CHC*(O)	19.3±2	80.8 ± 8.4	1995LUN/DAA
$C_6H_5C^{\bullet}(O)$	27.8±2.6	116.3±10.9	1989SIM/GRI
HC(O)CH ₂ •	2.5±2.2	10.5±9.2	1994BER/ELL
CH ₃ C(O)CH ₂ •	-8.1 ± 0.7	-34.0 ± 3	2001BOU/CHA
CH ₃ C(O)C•HCH ₃	-16.8±1.7	-70.3±7.1	1970SOL/BEN
$CH_3C(O)C^{\bullet}=CH_2$	27.1	113.4	1990TAK
C ₂ H ₅ C(O)C*HCH ₃	-25.7±5	-107.5±20.9	1990BOR/HAR
$iPrC(O)C^{\bullet}(CH_3)_2$	-41.5 ± 5	-173.6±20.9	1990BOR/HAR
$tC_4H_9C(O)C^{\bullet}H_2$	-27.6 ± 3	-115.5±12.6	1990BOR/HAR
PhC(O)C*H ₂	20.2±3	84.5±12.6	1990BOR/HAR
PhC(O)C*HCH ₃	9.9±5	41.4±20.9	1990BOR/HAR
PhC*HC(O)CH ₂ Ph	32.1±3	134.3±20.9	1990BOR/HAR
PhC(O)OC•H ₂	-16.7	-69.9	1970SOL/BEN
*C(O)OH	-46.5 ± 0.7	-194.6 ± 2.9	1994BER/ELL
•C(O)OCH ₃	-40.5 ± 2	-169.5 ± 8.4	1991HOL/LOS
C*H ₂ C(O)OH	-60.2 ± 2.9	-252.0 ± 12.0	1994WEN/SQU
C*H ₂ C(O)OCH ₃	-56.6 ± 2	-236.8 ± 8.4	1991HOL/LOS
C*H ₂ C(O)OCH ₂ CH ₃	-62.2 ± 3	-260.2±12.6	1995BOR/ZHA
C*H ₂ C(O)OPh	-6.7	-28.0	1973ALF/GOL
°C ₄ H ₇ O, tetrahydrofuran-2-yl	-4.3 ± 1.5	-18.0 ± 6.3	1982MCM/GOL
°C ₄ H ₈ O, cyclopentanon-2-yl	-10±3	-41.8±12.6	1991BOR/GAL
°C ₄ H ₇ O ₂ , 1,4-dioxan-2-yl	-31.5±3	-131.8±12.6	2000KRA/CIR
°C ₇ H ₅ O ₂ , 2-C(O)OH-°C ₆ H ₄	-7.9	-33.0	1998NAS/SQU
[•] C ₇ H ₅ O ₂ , 3-C(O)OH- [•] C ₆ H ₄	-8.4	-35.0	1998NAS/SQU

Table 11.3.1 (continued) Heats of Formation of C-Centered Radicals

	$\Delta_{_{ m f}}$	$\Delta_{_{\!f}}\!H^{\circ}(R)$		
C-centered radicals	kcal/mol	kJ/mol	References	
•C ₇ H ₅ O ₂ , 4-C(O)OH-•C ₆ H ₄	-8.6	-36.0	1998NAS/SQU	
•CHN ₂	118.2	494.5	1996FUL/HIP	
•CH ₂ NH ₂	36.3±2	151.9±8.4	1983BUR/CAS	
CH ₃ C•HNH ₂	26.7±2	111.7±8.4	1983BUR/CAS	
$(CH_3)_2C^{\bullet}NH_2$	16.7±2	69.9±8.4	1983BUR/CAS	
•CH ₂ NHCH ₃	30.5±2	127.6±8.4	1981GRI/LOS	
•CH ₂ N(CH ₃) ₂	33.2±2	139.0±8.4	1999LAA/MUL	
$(C_2H_5)_2NC^{\bullet}HCH_3$	16.4±0.5	68.6±2.1	1990DOM/DIN	
°CH ₂ N(CH ₃)Ph	63.6±3	266.0±12.6	1999DOM/DIN	
°CH₂NC	78.0±2.7	326.4±11.3	1987MOR/ELL(b	
•CN	105.5±1.1	441.4±4.6	1994BER/ELL	
•CH ₂ CN	60.4±1	252.6 ± 4	2000LAF/SZA	
CH ₃ C*HCN	54.2±3	226.7±12.6	1999SEN/IKE	
$(CH_3)_2C^{\bullet}CN$	45.5±3	190.4±12.6	1998BRO/BEC	
Ph(CH ₃)C*CN	59.4±2	248.5±8.4	1982MEO	
H ₂ C•NN	69.9±0.5	292.5±2.1	2000BIS/HOO	
°CH ₂ NO ₂	27.5±3	115.1±12.6	1994BOR/SAT	
CH ₃ C•HNO ₂	14.8±3	61.9±12.6	1994BOR/SAT	
$(CH_3)_2C^{\bullet}NO_2$	1.5±3	6.3±12.6	1994BOR/SAT	
PhC*HNO ₂	40.4±3	169.0±12.6	1995BOR/ZHA(c	
°C ₆ H ₆ N, 3-NH ₂ -C ₆ H ₄	76.5	320.1	1975MAT/NAS	
°C ₆ H ₄ NO ₂ , 3-NO ₂ -C ₆ H ₄	81.4±2.4	340.6±10.0	1985GON/LAR	
${}^{\bullet}C_6H_3N_2O_4$, 3,5- $(NO_2)_2$ - C_6H_3	73.0	305.4	1975MAT/NAS	
°C ₇ H ₆ NO ₂ , 2-Me-4-NO ₂ -C ₆ H ₃	70.6±2	295.4±8.4	1985GON/LAR	
°C ₄ H ₃ N, pyrrol-2-yl	92.2	385.8	1991MAC/COL	
°C ₄ H ₃ N, pyrrol-3-yl	92.2	385.8	1991MAC/COL	
°C ₄ H ₈ N, pyrrolidin-2-yl	34.1±3	142.7±12.6	2000KRA/CIR	
${}^{\bullet}C_5H_4N$, pyrid-2-yl	86.5	362.0	1997KIE/ZHA	
${}^{\bullet}C_{5}H_{4}N$, pyrid-3-yl	93.5	391.0	1997KIE/ZHA	
°C ₅ H ₄ N, pyrid-4-yl	93.5	391.0	1997KIE/ZHA	

°C₄H ₇ N₂, piperad-2-yl	28.6	119.7	1997WAY/CLA
°C ₄ H ₃ N ₂ , pyrimid-2-yl	92.7	388.0	1997KIE/ZHA
°C ₄ H ₃ N ₂ , pyrimid-4-yl	97.7	409.0	1997KIE/ZHA
°C ₄ H ₃ N ₂ , pyrimid-5-yl	106.7	446.4	1997KIE/ZHA
CS	55.9	233.9	2002CRC
C*(S)H	71.8±2	300.4±8.4	1994BER/ELL
*CH ₂ SH	36.3±2	151.9±8.4	1994BER/ELL
*CH ₂ SCH ₃	32.7±1.4	136.8±5.9	1994JEF/NIC
•CH ₂ SPh	64.2±3	268.6±12.6	1993ZHA/BOR
*CH ₂ SOCH ₃	5.7±3	23.8±12.6	1998BOR/LIU
HOC*(S)S	26.4	110.5	1990MUR/LOV
*CH ₂ SO ₂ CH ₃	-42.3±3	-177.0±12.6	1992BOR/HAR
*CH ₂ SO ₂ Ph	-13.7±3	-57.3±12.6	1992BOR/HAR
PhC*HSO ₂ CH ₃	-26.1±3	-109.2±12.6	1992ZHA/BOR
PhC*HSO ₂ Ph	1.7±3	7.0±12.6	2001ORL/TUR
Ph ₂ C*SO ₂ Ph	24.4±3	102.0±12.6	2001ORL/TUR
Ph ₂ C*SPh	104.1±3	435.6±12.6	2001ORL/TUR
NC*(O)	30.4	127.2	1996ZYR/DRO
*CNO	97.3	407.1	1987KOC/FRE
•CH ₂ SiMe ₃	-7.6±1.5	-32±6	1998BEC/WAL
•CH ₂ C(CH ₃) ₂ SiMe ₃	-29.8	-125	1998BEC/WAL

11.3.2 O-centered radicals

Table 11.3.2 Heats of Formation of O-Centered Radicals

	$\Delta_{_{ m f}} { m H}^{ m o}({ m R})$			
O-centered radicals	kcal/mol	kJ/mol	References	
HO•	9.40±0.05	39.33±0.21	1994BER/ELL	
FO*	26	108.8	1998CHA	
ClO•	24.2	101.3	1998CHA	
BrO•	30	125.5	1998CHA	
IO•	30	125.5	1998CHA	
HOO•	3.5	14.6	1983SHU/BEN	

Table 11.3.2 (continued) Heats of Formation of O-Centered Radicals

O-centered radicals	$\Delta_{ m f} H^{ m o}$		
	kcal/mol	kJ/mol	References
FOO•	6.2	25.9	1987PAG/RAT
ClOO•	23.3	97.5	1991NIC/KRE
OCIO•	22.8	95.4	1994NIC/FRI
NCO•	44.0	184.1	1990TAK
sym-ClO ₃	51.9±5	217.2±21	1992COL/SAN
HSOO*	26.8	112.0	1999ARM
CH ₃ SOO•	18.2	760	1999ARM
CF ₃ SO ₂ O•	-218	-912.0	1995TAK/PAS
O_3	34.1	142.7	1998CHA
NCO•	44.0	184.0	1990TAK
O ₂ NO•	15.4	64.4	1988MCD/DAV
CH ₃ O•	4.1±0.9	17.2±3.8	1994BER/ELL
CH ₂ =CH-O [•]	4.4±0.3	18.4±1.3	2002SEB/BOC
$C_2H_5O^{\bullet}$	-3.7 ± 0.8	-15.5±3.3	1994BER/ELL
$nC_3H_7O^{\bullet}$	-7.2±2	-30.1 ± 8.4	1973BEN/ONE
$iC_3H_7O^{\bullet}$	-12.5	52.3	1974BAT/CHR
$nC_4H_9O^{\bullet}$	-15	62.8	1974BAT/CHR
$sC_4H_9O^{\bullet}$	-16.6	-69.5	1974BAT/CHR
$tC_4H_9O^{\bullet}$	-22.3	-93.3	1997BEN/COH
$C_6H_5O^{\bullet}$	12.9±1.5	54±6	1996TSA
C ₆ H ₅ CH ₂ O [•]	25.6±3	107.1±12.6	1996BOR/LIU
C ₁₀ H ₇ O,* naphthoxy-1	39.5	165.3	1975MAH/DAR
C ₁₀ H ₇ O,* naphthoxy-2	41.6	174.1	1975MAH/DAR
CF ₃ O•	-151.8±1.7	-635.1±7.1	2000REI/PRA
HC(O)O•	-36.0 ± 2	-150.6 ± 8.4	1976BEN
FC(O)O•	-88	368.0	1995TAK/PAS
CH ₃ C(O)O•	-49.6 ± 1	-207.5 ± 4.2	1973BEN/ONE
CF ₃ C(O)O•	-190.5	-797.0	1995TAK/PAS
CH ₃ CH ₂ C(O)O•	-54.6±1	-228.4 ± 4.2	1973BEN/ONE
$nC_3H_7C(O)O^{\bullet}$	-59.6±1	-249.4±4.2	1973BEN/ONE

$C_6H_5C(O)O^{\bullet}$	-17.4±2	-72.8±8.4	1994BOR/SAT
CH ₃ OO•	2.2±1.2	9.0±5.1	1998KNY/SLA(b)
$C_2H_5OO^{\bullet}$	-6.5 ± 2.4	-27.4±9.9	1998KNY/SLA(b)
iC ₃ H ₇ OO•	-15.6 ± 2.7	-65.4±11.3	1998KNY/SLA(b)
tC ₄ H ₉ OO°	-24.3 ± 2.2	-101.5±9.2	1998KNY/SLA(b)
CH ₂ =CHCH ₂ OO*	21.2	88.7	2002LEE/CHE
CH ₃ CH=CHCH ₂ OO*	19.7±1.3	82.6±5.3	1998KNY/SLA
C ₆ H ₅ CH ₂ OO•	27.4±1	114.6±4.2	1993ELM/MIN
c-C ₆ H ₇ OO,• R=cyclohexadienyl	36.2±3	151.6±12.6	2000KRA/CIR
c-C ₆ H ₁₁ OO•	-6.0 ± 2.5	-25.0±10.5	2000KRA/CIR
c-C ₄ H ₈ NOO,* R=pyrrolidin-2-yl	24.2±3	101.3±12.6	2000KRA/CIR
(C ₂ H ₅)N(CH ₃)CHOO•	-8.6 ± 3	-36.0±12.6	2000KRA/CIR
C ₄ H ₇ O-OO,* R=tetrahydrofuran-2-yl	-36.3 ± 4	-152.0±16.7	2000KRA/CIR
$C_4H_7O_2$ -OO,* R=dioxan-2-yl	-65.5 ± 4	-274.0±16.7	2000KRA/CIR
HOCH ₂ OO*	-38.7 ± 0.5	-162.0 ± 2.0	1992LIG/COX
CH ₃ C(O)OO*	-41.1±4.8	-172.0±20.0	1991BRI/CAR
CF ₃ OO•	-146.7±3.7	-614.0±15.4	1992LIG/COX
CF ₂ ClOO•	-97.2±3.5	-406.7±14.6	1992LIG/COX
CFCl ₂ OO•	-51.1	-213.8	1992LIG/COX
CH ₂ ClOO*	-1.2±3.3	-5.1±13.6	1998KNY/SLA(b)
CHCl ₂ OO•	-4.6 ± 2.7	-19.2±11.2	1998KNY/SLA(b)
CCl ₃ OO•	-5.0 ± 2.1	-20.9 ± 8.9	1998KNY/SLA(b)
CH ₃ CHClOO*	-13.1±0.8	-54.7 ± 3.4	1998KNY/SLA(b)
CH ₃ CCl ₂ OO*	-15.2±2.3	-63.8 ± 9.8	1998KNY/SLA(b)

11.3.3 N-centered radicals

Table 11.3.3 Heats of Formation of N-Centered Radicals

	$\Delta_{\rm f} { m H^o}({ m R})$		
N-centered radicals	kcal/mol	kJ/mol	References
ON	21.58	90.29	1998CHA
NO ₂	7.91	33.10	1998CHA
ONOO	17.0	71.1	1998CHA

(continued)

Table 11.3.3 (continued) Heats of Formation of N-Centered Radicals

	$\Delta_{ m f}$	I°(R)	
N-centered radicals	kcal/mol	kJ/mol	References
$\overline{N_2O}$	19.61	82.05	1998CHA
NH	90.0	376.6	1998CHA
•NH ₂	45.1±0.3	188.7±1.3	1994BER/ELL
HON*	27.0	113.0	1996DIX
${}^{ullet}N_3$	112±5	486.6±20.9	1982MCM/GOL
$^{\bullet}N_2H_3$	58.2	243.5	1988GRE/COL
$(Z)-N_2H_2$	50.9	213	1998CHA
NF	50	209.2	1979HUB/HER
•NF ₂	10.1	42.3	1998CHA
FNO	-15.7	-65.7	1998CHA
CINO	12.36	51.71	1998CHA
BrNO	19.63	82.13	1998CHA
INO	26.8	112.1	1998CHA
NCO	31.3	131	1999ARM(b)
NH ₂ C(O)N•H	0.2±3	0.8±12.6	1991BOR/JI(b)
CH ₃ C(O)N [•] H	-1.6±3	-6.7±12.6	1991BOR/JI(b)
NH ₂ C(S)N [•] H	46.4±3	194.0±12.6	2001ORL/TUR
CH ₃ C(S)N [•] H	41.3±3	173.0±12.6	2001ORL/TUR
PhC(S)N°H	73.4±3	307.0±12.6	2001ORL/TUR
HCON*H	11.9±3	49.8±12.6	1995BOR/ZHA
NH ₂ C(NH)N*H	59.9±3	250.6±12.6	1991BOR/JI(b)
•NHCN	79.4	332.2	1993ESP/COR
NCN•	111.1±0.7	464.8±3	1999BIS/CHO
HN*CN	76.3±0.7	319.2±3	2001BIS/HOO
CH ₂ N•H	25.0 ± 3	104.6±12.6	1988GRE/COL
CH ₃ N•H	44.0 ± 2	184.1±8.4	1988COL
tBuN•H	22.8±3	95.4±12.6	1998BOR/LIU
C ₆ H ₅ CH ₂ N•H	68.9±3	288.3±12.6	1998BOR/LIU
C ₆ H ₅ N•H	58.4 ± 1	244.3±4.2	1997MAC/WAY

$(CH_3)_2N^{\bullet}$	37.8±2	158.2±4.2	1988COL
$(C_6H_5)(CH_3)N^{\bullet}$	57.6±1	241.0±6.3	1993BOR/ZHA
$(C_6H_5)_2N^{\bullet}$	87.5±1.5	366.0±6.3	1997MAC/WAY
1-pyrrolyl	70.8±3	269.2±12.6	1991BOR/JI(b)
carbazol-9-yl	91.6±2	383.3±4.2	1992ARE/VEN
CH ₃ N ₂ •	51.5±1.8	215.5±7.5	1987ACS/PET
$C_2H_5N_2$ •	44.8±2.5	187.4±10.5	1987ACS/PET
$iC_3H_7N_2^{\bullet}$	34.9±2	146.0 ± 8.4	this volume
$nC_4H_9N_2^{\bullet}$	33.6±2	140.6 ± 8.4	this volume
$tC_4H_9N_2^{\bullet}$	23.3±2	97.5±4.2	this volume

11.3.4 S-centered radicals

Table 11.3.4 Heats of Formation of S-Centered Radicals

	$\Delta_{\rm f} { m H^o}({ m R})$		
S-centered radicals	kcal/mol	kJ/mol	References
SO	1.2	5.0	1998CHA
SO_2	-70.95	-296.84	1998CHA
SO_3	-94.6	-395.8	1998CHA
S_2O	-13.5	-56.5	1998CHA
HOS*	-0.9 ± 0.7	-3.8±2.9	1993BAL/CAS
HC(O)S*	13.5	56.5	1990TAK
$HS^{\bullet}O_{2}$	-53	-221.8	1980BOY/GUP
HOS*O ₂	-92	-384.9	1984MAR
NCS*	71.7 ± 2	300.0±8.0	1999ARM
HS•	34.18±0.68	143.01±2.85	1994BER/ELL
CH ₃ S•	29.8±0.4	124.7±1.7	1994BER/ELL
$C_2H_5S^{\bullet}$	24.1	101	1999ARM
$nC_3H_7S^{\bullet}$	19.1	80	1999ARM
$C_6H_5S^{\bullet}$	58.0 ± 1.1	242.7 ± 4.6	2002SAN/MUR
$C_6H_5CH_2S^{\bullet}$	58.9	246.0	2001ORL/TUR
CH ₃ S*O ₂	-57.2	-239.3	1971SOL/BEN
HSS*	27.6±3.5	115.5±14.6	1993OHA/DEP

(continued)

Table 11.3.4 (continued) Heats of Formation of S-Centered Radicals

	$\Delta_{\rm f} { m H^o}({ m R})$		
S-centered radicals	kcal/mol	kJ/mol	References
CH ₃ SS•	16.4±2	68.6±8.4	1986HOW/GRI
$C_2H_5SS^{\bullet}$	10.4±2	43.5±8.4	1986HOW/GRI
$iC_3H_7SS^{\bullet}$	3.3±2	13.8±8.4	1986HOW/GRI
$tC_4H_9SS^{ullet}$	-4.6 ± 2	-19.2 ± 8.4	1986HOW/GRI
HOC(S)S*	26.4	110.5	1990MUR/LOV
HC(O)S•	13.5	56.5	1990TAK
SF	3.1	13.0	1998CHA
SF_2	-70.9	-296.7	1998CHA
SF_3	-120.2	-503.0	1998CHA
SF_4	-178.3 ± 3	-746.0±12.6	1998CHA
SF ₅	-210.3 ± 4.8	-879.9±21	1998CHA
SN	63.0	263.6	1998CHA

11.3.5 Si, Ge-, and Sn-centered radicals

Table 11.3.5 Heats of Formation of Si, Ge-, and Sn-Centered Radicals

	$\Delta_{ m f} { m H}^{ m c}$		
Si, Ge-, Sn-centered radicals	kcal/mol	kJ/mol	References
SiF	-4.8	-20.1	1998CHA
SiF ₂	-152.5±1.5	-638±6	1998BEC/WAL
•SiF ₃	-235.9 ± 4	-987 ± 20	1998BEC/WAL
SiCl	47.4	199.6	1998CHA
SiCl ₂	-40.4 ± 0.7	-169 ± 3	1998BEC/WAL
•SiCl ₃	-77.0±2	322±8	1998BEC/WAL
SiBr	56.2	235.1	1988CHA
SiBr_2	-11.0 ± 2	46±8	1998BEC/WAL
•SiBr ₃	-48.2	-201.7	1998CHA
SiI	75.0	313.8	1998CHA
SiI_2	22.0±2	92±8	1998BEC/WAL
${}^{ullet}\mathrm{SiI}_3$	8.4	35.1	1998CHA

SiH	90	376.6	1998CHA
SiH ₂	65.2±0.5	273±2	1998BEC/WAL
•SiH ₃	47.9 ± 0.6	200.4±2.5	1994BER/ELL
MeSi*H ₂	33.7±1.5	141±6	1998BEC/WAL
Me ₂ Si*H	18.6±1.5	78±6	1998BEC/WAL
Me ₃ Si*	3.6±1.6	15±7	1998BEC/WAL
H ₃ SiSi [•] H ₂	55.9±1.5	234±6	1998BEC/WAL
C ₆ H ₅ Si [•] H ₂	65.5	274	1998BEC/WAL
H ₃ SiSi*H	74.6 ± 2	312±8	1998BEC/WAL
MeSi*H	48.3±1.5	202±6	1998BEC/WAL
Me ₂ Si••	32.3±2	135±8	1998BEC/WAL
•GeH ₃	53.0±2	221.8±8.4	1994BER/ELL

11.4 Group additivity values for organic radicals

The group additivity values (GAVs) are available in 1976BEN, and updated GAVs are available in 1993COH/BEN, 1996COH, and 1997BEN/COH.

Table 11.4.1 GAVs of C/H Radicals

	GA	Vs	
C/H radical groups	kcal/mol	kJ/mol	References
•C-(C)(H) ₂	38.4	160.7	1999COH
•C-(C) ₂ (H)	41.0	171.5	1999COH
•C-(C) ₃	41.6	174.1	this volume
$^{\bullet}\text{C}(\text{C}_{\text{d}})(\text{H})_2$	25.9	108.4	this volume
${}^{\bullet}\text{C-(C}_{d})_{2}(\text{H})$	18.5	77.4	this volume
$^{\bullet}$ C-(C)(C _d)(H)	26.2	109.6	this volume
$^{\bullet}$ C-(C) ₂ (C _d)	26.0	108.8	this volume
$^{\bullet}$ C-(C)(C _d) ₂	25.0	104.6	this volume
$^{\bullet}$ C-(C _B)(H) ₂	26.5	110.9	this volume
$^{\bullet}$ C-(C)(C _B)(H)	28.5	119.2	this volume
$^{\bullet}$ C-(C) ₂ (C _B)	30.1	125.9	this volume
$^{\bullet}$ C-(C _B) ₂ (H)	28.3	118.4	this volume
$^{\bullet}$ C- $(C_B)_2(C)$	30.1	125.9	this volume

(continued)

Table 11.4.1 (continued) GAVs of C/H Radicals

	GAV	GAVs	
C/H radical groups	kcal/mol	kJ/mol	References
•C-(C _B) ₃	28.9	120.9	this volume
$^{\bullet}$ C- $(C_{t})(H)_{2}$	26.1	109.2	this volume
$^{\bullet}$ C-(C)(C _t)(H)	28.5	119.2	this volume
$^{\bullet}$ C- $(C)_2(C_t)$	27.8	116.3	this volume
•C _B -	62.5	261.5	this volume
•C _d -(H)	65.3	273.2	this volume
•C _t -	108.0	451.9	this volume
C-(°C)(H) ₃	-10.0	-41.8	1999COH
$C-(C)(^{\bullet}C)(H)_2$	-5.0	-20.9	1999COH
C-(C) ₂ (*C)(H)	-2.4	-10.0	1999COH
C-(C) ₃ (*C)	0.5	2.1	1999COH
C_d -(°C)(H)	8.6	36.0	1999COH
C_d -(°C)(C)	10.2	42.7	1999COH
C _t -(*C)	27.3	114.2	1999COH
C_B -(${}^{\bullet}C$)	5.5	23.0	1999COH

Table 11.4.2 GAVs of O/C/H Radicals

	GAV		
O/C/H radical groups	kcal/mol	kJ/mol	References
•C-(O)(H) ₂	33.5	140.2	this volume
*C-(C)(O)(H)	35.0	146.4	this volume
•C-(C) ₂ (O)	31.6	132.2	this volume
$^{\bullet}$ C-(C _d)(O)(H)	23.0	96.2	1999COH
$^{\bullet}$ C- $(C_d)_2(O)$	30.4	127.2	this volume
$^{\bullet}$ C- $(C_B)_2(O)$	30.4	127.2	this volume
*C-(CO)(H) ₂	32.8	137.2	this volume
*C-(C)(CO)(H)	32.6	136.4	this volume
•O-(C)	14.6	61.1	this volume
*O-(C _d)	-10.8	-45.2	this volume
$^{\bullet}$ O-($C_{\rm B}$)	-2.7	-11.3	this volume

•O-(CO)	4.2	17.6	this volume
*O-(O)	16.4	68.6	this volume
*CO-(H)	10	41.8	this volume
*CO-(C)	7.6	31.8	this volume
*CO-(C _d)	8.0	33.5	this volume
$^{\bullet}$ CO-($^{\circ}$ C _B)	5.9	24.7	1999COH
*CO-(O)	12.0	50.2	this volume
C-(*O)(H) ₃	-10.0	-41.8	1999COH
C-(C)(*O)(H) ₂	-8.1	-33.9	1993COH/BEN
C-(*C)(O)(H) ₂	-8.1	-33.9	1993COH/BEN
$C-(C)_2(^{\bullet}O)(H)$	-7.2	-30.1	1993COH/BEN
C -(C)($^{\bullet}C$)(O)(H)	-7.2	-30.1	1993COH/BEN
C-(C) ₃ (*O)	-6.6	-27.6	1993COH/BEN
$C-(C)_2(^{\bullet}C)(O)$	-6.6	-27.6	1993COH/BEN
C_B -(°O)	-0.9	-3.8	1993COH/BEN
C_d -(*O)(H)	8.6	36.0	1993COH/BEN
C_d -(*CO)(H)	5.0	20.9	1993COH/BEN
C-(*CO)(H) ₃	-10.0	-41.8	1999COH
C-(C)(*CO)(H) ₂	-5.2	-21.8	1993COH/BEN
C _B -(*CO)	3.7	15.5	1993COH/BEN
O-(°C)(H)	-37.9	-158.6	1999COH
O-(°C)(C)	-23.5	-98.3	1993COH/BEN
O-(*O)(C)	-4.5	-18.8	1993COH/BEN
O-(*CO)(H)	-58.0	-242.7	1993COH/BEN
O-(*CO)(C)	-43.1	-180.3	1993COH/BEN
O-(*C)(CO)	-43.1	-180.3	1993COH/BEN
O-(O)(*O)	19.0	79.5	1993COH/BEN
O-(CO)(*O)	-19.0	-79.5	1993COH/BEN
$O-(C_B)(^{\bullet}O)$	-4.6	-19.2	this volume
CO-(°C)(H)	-29.4	-123.0	1993COH/BEN
CO-(*C)(C)	-31.7	-132.6	1993COH/BEN
CO-(C)(°O)	-35.2	-147.3	1993COH/BEN
CO-(H)(*O)	-32.1	-134.3	1993COH/BEN

Table 11.4.3 GAVs of N/C/H/O Radicals

N/C/H/O radical groups	GAVs		
	kcal/mol	kJ/mol	References
•N-(C) ₂	57.8	241.8	this volume
•N-(C)(H)	54.0	225.9	1999COH
*N-(N)(H)	46.8	195.8	1999COH
$^{\bullet}$ N-(C_{B})(H)	42.5	177.8	this volume
$^{\bullet}$ N-(C)(C _B)	51.7	216.3	this volume
C-(*N)(H) ₃	-10.0	-41.8	1999COH
C_{B} -(*N)	-0.5	-2.1	1999COH
$N-(^{\bullet}N)(H)_{2}$	11.4	47.7	1976BEN
N-(*C)(H) ₂	4.8	20.1	1976BEN
N-(*C)(C)(H)	9.0	37.7	1999COH
N-(*C)(C) ₂	24.4	102.1	1976BEN
$N-(^{\bullet}C)(C)(C_B)$	26.2	109.6	1976BEN
*C-(N)(H) ₂	31.5	131.8	this volume
*C-(C)(N)(H)	33.6	140.6	this volume
*C-(C) ₂ (N)	31.9	133.5	this volume
*C-(CN)(H) ₂	60.4	252.6	this volume
*C-(C)(CN)(H)	64.2	268.6	this volume
*C-(C) ₂ (CN)	65.5	274.1	this volume
$^{\bullet}$ C-(C)(C _B)(CN)	44.4	185.8	1999COH
(CN)-(*C)	3.0	12.6	1999COH
(*NN)-(C)	61.5	257.3	1999COH
C-(*NN)(H) ₃	-10.0	-41.8	1999COH
C-(C)(*NN)(H) ₂	-6.7	-28.0	1999COH
$C-(C)_2(^{\bullet}NN)(H)$	-6.6	-27.6	this volume
C-(C) ₃ (*NN)	-8.2	-34.3	this volume
NO ₂ -(*C)	-9.3	-38.9	this volume
$^{\bullet}\text{C-(NO}_2)(\text{H})_2$	36.6	153.1	this volume
*C-(NO ₂)(C)(H)	34.1	142.7	this volume
$^{\bullet}$ C- $(NO_2)(C)_2$	30.8	128.9	this volume
$^{\bullet}$ C-(NO ₂)(C _B)(H)	27.8	116.3	this volume

Table 11.4.4 GAVs of S/C/H/O Radicals

S/C/H/O radical groups	GAVs		
	kcal/mol	kJ/mol	References
*S-(C)	39.5	165.3	this volume
$^{\bullet}$ S-(C_B)	41.6	174.1	this volume
*SO ₂ -(C)	-47.2	-197.5	this volume
° S-(S)	19.4	81.2	this volume
S-(*S)(H)	8.2	34.3	this volume
S-(*S)(C)	6.72	28.15	1993COH/BEN
S-(*C)(H)	4.68	19.58	1993COH/BEN
S-(*C)(C)	11.34	47.45	1993COH/BEN
$S-(^{\bullet}C)(C_B)$	16.2	68.2	1993COH/BEN
SO-(*C)(C)	-14.4	-60.2	1976BEN
SO_2 -($^{\bullet}C$)(C)	-69.7	-291.6	1976BEN
SO_2 -(${}^{\bullet}C$)(C_B)	-72.3	-302.5	1976BEN
*C-(S)(H)	71.8	300.4	this volume
•C-(S)(H) ₂	31.5	131.8	this volume
*C-(SO)(H) ₂	30.1	125.9	this volume
*C-(SO ₂)(H) ₂	38.6	161.5	this volume
$^{\bullet}$ C-(SO ₂)(C _B)(H)	33.8	141.4	this volume
$^{\bullet}$ C-(SO ₂)(C _B) ₂	34.1	142.7	this volume
$^{\bullet}$ C-(S)(C _B) ₂	28.5	119.2	this volume

References

1944-1969

1944KIS/ART Kistiakowsky, G.B. and van Artsdalen, E.R., *J. Chem Phys.*, 12, 479, 1944. 1946STE Steacie, E.W.R., *Atomic and Free Radical Reactions*, Reinhold, New York, 1946.

1950SZW Szwarc, M., Chem. Rev., 47, 75, 1950.

1950SZW/ROB Szwarc, M. and Roberts, J.S., J. Chem. Phys., 18, 561, 1950.

1958COT Cottrell, T.L., The Strength of Chemical Bonds, 2nd ed., Butterworth & Co.,

London, 1958.

1958PRI/TRO Price, S.J.W. and Trotman-Dickenson, A.F., *Trans. Faraday Soc.*, 54, 1630, 1958. Semenov, N.N., *Some Problems in Chemical Kinetics and Reactivity*, Princeton

University Press, 1958.

1958SMI Smith, P., J. Chem. Phys., 29, 681, 1958.

1960HAR/HON Harrison, A.G., Honnen, L.R., Dauben, H.J., and Lossing, F.P., J. Am. Chem.

Soc., 82, 5593, 1960.

1961HER Herzberg, G., Proc. Roy. Soc. (London), A262, 291, 1960.

1962BRY Bryant, W.M.D., J. Polym. Sci., 56, 277, 1962.

1962MOR Mortimer, C.T., Reaction Heats and Bond Strengths, Pergamon Press,

New York, 1962.

1963EBE Eberson, L., Acta Chem. Scand., 17, 2004, 1963.

1963SAN/MOR Sandoval, A.A., Morser, H.C., and Kiser, R.W., J. Phys. Chem., 67, 124, 1963.

1963SCH Schexnayder, C.J., Tabulated Values of Bond Dissociation Energies, Ionization

Potentials, and Electron Affinities of Some Molecules Found in High-Temperature

Chemical Reactions, NBS, Washington, D.C., 1963.

1964HAL/KLE Halman, M. and Klein, Y., J. Chem. Soc., 4324, 1964.

1964MIL/PAL Miller, W.J. and Palmer, H.B., J. Chem. Phys., 40, 3701, 1964.

1965BEN Benson, S.W., J. Chem. Educ., 42, 502, 1965.

1965GRZ/KER Grzechowiak, J., Kerr, J.K., and Trotman-Dickenson, A.F., J. Chem. Soc., 5080,

1965.

1965SKI Skinner, H.A., *Adv. Organometal. Chem.*, 2, 49, 1965. 1965TSC Tschuikow-Roux, E., *J. Phys. Chem.*, 69, 1075, 1965.

1966AMP/COO Amphlett, J.C., Coomber, J.W., and Whittle, E., J. Phys. Chem., 70, 593, 1966. 1966BOT/DIB Botter, R., Dibeler, V.H., Walker, J.A., and Rosenstock, H.M., J. Chem. Phys.,

45, 1298, 1966.

1966BOT/DIB(b) Botter, R., Dibeler, V.H., Walker, J.A., and Rosenstock, H.M., J. Chem. Phys.,

45, 1271, 1966.

1966EGG/BEN Egger, K.W. and Benson, S.W., J. Am. Chem. Soc., 88, 241, 1966.

1966GOL/ROD Golden, D.M. and Rodgers, A.S., and Benson, S.W., J. Am. Chem. Soc., 88,

3196, 1966.

1966HOM/LOS Homer, J.B. and Lossing, F.P., Can. J. Chem., 44, 2211, 1966.

1966KER Kerr, J.A., Chem. Rev., 66, 465, 1966.

1966KLY/LIN Klynning, L. and Lindgren, B., Arkiv. Fysik., 32, 575, 1966.

1966TSA Tsang, W., J. Chem. Phys., 44, 4283, 1966.

1966VED/GRU Vedeneed, V.I., Gruvich, L.V., Kondrat'yev, V.N., Medvedev, V.A., and

Frankevich, Y.L., Bond Energies, Ionization Potentials and Electron Affinities

(Engl. Ed.), Edward Arnold, London, 1966.

1966WAL/GOL Walsh, R., Golden, D.M., and Benson, S.W., J. Am. Chem. Soc., 88, 650, 1966.

1967COO/WHI Coomber, J.W. and Whittle, E., *Trans. Faraday Soc.*, 63, 2656, 1967. Coomber, J.W. and Whittle, E., *Trans. Faraday Soc.*, 63, 1394, 1967. 1967COO/WHI(c) Coomber, J.W. and Whittle, E., *Trans. Faraday Soc.*, 63, 608, 1967. Louks, L.F. and Laidler, K.J., *Can. J. Chem.*, 45, 2763, 1967.

1967PET Petry, R.C., J. Am. Chem. Soc., 89, 4600, 1967.

1967RIT/USC Ritchie, C.D. and Uschold, R.E., J. Am. Chem. Soc., 89, 1721, 1967.

1967ROD/GOL Rodgers, A.S., Golden, D.M., and Benson, S.W., J. Am. Chem. Soc., 89, 4578,

1967.

1967TSA Tsang, W., J. Chem. Phys., 46, 2817, 1967. 1967TUR Turnbull, A.G., Aust. J. Chem., 20, 2059, 1967. 1968CHU Chupka, W.A., J. Chem. Phys., 48, 2337, 1968.

1968CHU/LIF Chupka, W.A. and Liftshitz, C., J. Chem. Phys., 48, 1109, 1968.

1968CZA/CAS Czarnarski, J., Castellano, E., and Schumacher, H.J., J. Chem. Soc. Chem.

Comm., 1255, 1968.

1968DAV/OKA Davis, D.D. and Okabe, H., J. Chem. Phys., 49, 5526, 1968.

1968GAY Gay, A.G., Dissociation Energies and Spectra of Diatomic Molecules, 3rd ed.,

Chapman and Hall, London, 1968.

1968GRI/BOG Grishin, N.N., Bogolyubov, G.M., and Petrov, A.A., J. Gen. Chem. USSR, 38,

2595, 1968.

1968JAM/SUA James, D.G. and Suart, R.D., *Trans. Faraday Soc.*, 64, 2742,1968.
 1968LAC/SKI Lacher, J.R. and Skinner, H.A., *J. Chem. Soc. A*, 1034, 1968.
 1968WAL/PAP Walling, C. and Papioannou, C.G., *J. Phys. Chem.*, 72, 2260,1968.
 1968WIL/HAM Williams, J.M. and Hamill, W.H., *J. Chem. Phys.*, 49, 4467, 1968.

1968ZMB/UY Zmbov, K.F., Uy, O.M., and Margrave, J.L., *J. Am. Chem. Soc.*, 90, 5090, 1968. 1969BER/CHU Berkowitz, J., Chupka, W.A., and Walter, T.A., *J. Chem. Phys.*, 50, 1497, 1969. 1969BOG/GRI Bogolyabov, G.M., Grishin, N.N., and Petrov, A.A., *J. Gen. Chem. USSR*, 39,

1772, 1969.

1969BRE/ROS Brewer, L. and Rosenblatt, G.M., Adv. High Temp. Chem., 2, 1, 1969.

1969CHU/BER Chupka, W.A., Berkowitz, J., and Refaey, K.M., J. Chem. Phys., 50, 1938, 1969.

1969CRU/BEN Cruickshank, F.R. and Benson, S.W., J. Am. Chem. Soc., 91, 1289, 1969. 1969CRU/BEN(b) Cruickshank, F.R. and Benson, S.W., J. Phys. Chem., 73, 733, 1969. 1969DEV/ONE Devore, J.A. and O'Neal, H.E., J. Phys. Chem., 73, 2644, 1969. 1969FEH/MAP Fehlner, T.P. and Mappes, G.W., J. Phys. Chem., 73, 874, 1969. 1969FIE/ABE Field, R.J. and Abell, P., J. Am. Chem. Soc., 91, 7226, 1969.

1969FIN/HAM Finch, A., Hameed, A., Gardner, P.J., and Paul, N., J. Chem. Soc. Chem.

Commun., 391, 1969.

1969FRA/HUY Franklin, J.A., Huybrechts, G.H., and Cillien, C., Trans. Faraday Soc., 65, 2094,

1969.

1969FRE/KRA Frey, H.M. and Krantz, A., *J. Chem. Soc.*, A, 1159, 1969. 1969GOL/BEN Golden, D.M. and Benson, S.W., *Chem. Rev.*, 69, 125, 1969.

1969GOL/GAC Golden, D.M., Gac, N.A., and Benson, S.W., *J. Am. Chem. Soc.*, 91, 2136, 1969. 1969LAR/HAR Larson, C.W. and Hardwidge, E.A., and Rabinovetch, B.S., *J. Chem. Phys.*, 50,

2769, 1969.

1969MCA/LOS McAllister, T. and Lossing, F.P., J. Phys. Chem., 73, 2996, 1969.

1969PAN/ZER Pankratov, A.V., Zercheninov, A.N., Chesnokov, V.I., and Zhdanova, N.N.,

Zh. Fiz. Khim., 43, 394, 1969.

1969PRI/PER Pritchard, G.O. and Person, M.J., *Int. J. Chem. Kinet.*, 1, 509, 1969. 1969SOL/BEN Solly, R.K. and Benson, S.W., *Int. J. Chem. Kinet.*, 1, 427, 1969.

1969TSA Tsang, W., Int. J. Chem. Kinet., 1, 245, 1969.

1969VIN/DAU Vincow, G., Dauben, H.J., Hunter, F.R., and Volland, W.V., J. Am. Chem. Soc.,

91, 2823, 1969.

1969WAL/GOL Walsh, R., Golden, D.M., and Benson, S.W., J. Am. Chem. Soc., 88, 650, 1969.

1970-1979

1970AMP/WHI Amphlett, J.C. and Whittle, E., Trans. Faraday Soc., 66, 2016, 1970.

1970DAR Darwent, D. deB., Bond dissociation energies in simple molecules, NBSDS-

NBS, 31, Washington, D.C., 1970.

1970DUN/PRI Dunlop, A.N. and Price, S.J.W., *Can. J. Chem.*, 48, 3205, 1970. 1970EGG/JOL Egger, K.W. and Jola, M., *Int. J. Chem. Kinet.*, 2, 265, 1970.

1970FUR/GOL Furuyama, S., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 2, 83, 1970. Furuyama, S., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 2, 93, 1970.

1970JOW/WHI Jones, S.H. and Whittle, E., Int. J. Chem. Kinet., 2, 479, 1970.

1970KIN/GOL King, K.D., Golden, D.M., and Benson, S.W., J. Am. Chem. Soc., 92, 5541, 1970. 1970LEY/MAJ Leyland, L.M., Majer, J.R., and Robb, J.C., Trans. Faraday Soc., 66, 898, 1970. O'Neal, H.E., Bagg, J.W., and Richardson, W.H., Int. J. Chem. Kinet., 2, 493, 1970. O'Neal, H.E. and Benson, S.W., Kinetic data gas-phase unimolecular reactions, Washington, D.C., Natl. Ref. Data Serv. NSRDS-NBS 21, 1970.

1970SOL/GOL Solly, R.K., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 2, 381, 1970.

1970TRE Trenwith, A.B., *Trans. Faraday Soc.*, 66, 2805, 1970.

1970TSA Tsang, W., Int. J. Chem. Kinet., 2, 23, 1970. 1970TSA Tsang, W., Int. J. Chem. Kinet., 2, 311, 1970.

1971DAN/TIP Danen, W.C., Tipton, T.J., and Saunders, D.G., J. Am. Chem. Soc., 93, 5186, 1971.

1971FER/WHI Ferguson, K.S. and Whittle, E., Trans. Faraday Soc., 67, 2618, 1971.

1971FUR/GOL Furugama, S., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 3, 237, 1971.

1971KER/TIM Kerr, J.A. and Timlin, D.M., Int. J. Chem. Kinet., 3, 427, 1971.

1971KIN/GOL King, K.D., Golden, D.M., and Benson, S.W., J. Phys. Chem., 75, 987, 1971.

1971LAL/PRI Lalonde, A.C. and Price, S.J.W., *Can. J. Chem.*, 49, 3367, 1971. 1971LAU/OKA Laufer, A.H. and Okabe, H., *J. Am. Chem. Soc.*, 93, 4137, 1971.

1971LOS Lossing, F.P., Can. J. Chem., 49, 357, 1971.

1971MCM/GOL McMillen, D.F., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 3, 359,

1971.

1971MIL/HAR Millward, G.E., Hartig, R., and Tschuikow-Roux, E., J. Phys. Chem., 75, 3195,

1971.

1971OKA Okabe, H., J. Am. Chem. Soc., 93, 7095, 1971.

1971PUT/HAN Puttermans, J.P. and Hanson, A., Ing. Chim. (Brussels), 53, 17, 1971.

Solly, R.K. and Benson, S.W., J. Am. Chem. Soc., 93, 1592, 1971. 1971SOL/BEN 1971SOL/BEN(b) Solly, R.K. and Benson, S.W., Int. J. Chem. Kinet., 3, 509, 1971. 1971WAL Walsh, R., Trans. Faraday Soc., 67, 2085, 1971. 1972ALF/GOL Alfassi, Z.B. and Golden, D.M., J. Phys. Chem., 76, 3314, 1972. 1972BAS/WHI Bassett, J.E. and Whittle, E., J. Chem. Soc. Faraday Trans. 1, 68, 492, 1972. 1972CAR/GOW Carmichael, P.J., Gowenlock, B.G., and Johnson, C.A.F., Int. J. Chem. Kinet., 4, 339, 1972. Clyne, M.A.A. and Connor, J., J. Chem. Soc. Faraday Trans. 1, 68, 1220, 1972. 1972CLY/CON Domenico, A.D., Harland, P.W., and Franklin, J.L., J. Chem. Phys., 56, 5299, 1972DOM/HAR 1972. Ferguson, K.C. and Whittle, E., J. Chem. Soc. Faraday Trans., 1, 68, 306, 1972. 1972FER/WHI Ferguson, K.C. and Whittle, E., J. Chem. Soc. Faraday Trans., 1, 68, 295, 1972. 1972FER/WHI(b) Ferguson, K.C. and Whittle, E., J. Chem. Soc. Faraday Trans., 1, 68, 641, 1972. 1972FER/WHI(c) 1972FOO/TAI Foon, R. and Tait, K.B., J. Chem. Soc. Faraday Trans., 1, 68, 104, 1972. Foon, R. and Tait, K.B., J. Chem. Soc. Faraday Trans., 1, 68, 1121, 1972. 1972FOO/TAI(b) 1972GOL/SOL Golden, D.M., Solly, R.K., Gac, N.A., and Benson, S.W., J. Am. Chem. Soc., 94, 363, 1972. Jonnson, R.P. and Price, S.J.W., Can. J. Chem., 50, 50, 1972. 1972JON/PRI 1972LEY/KEN Levy, J.B. and Kennedy, R.C., J. Am. Chem. Soc., 94, 3302, 1972. 1972MCM/GOL McMillen, D.F., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 4, 487, 1972. Tsang, W., J. Phys. Chem., 76, 143, 1972. 1972TSA Wayatt, J.R. and Stafford, F.E., J. Phys. Chem., 76, 1913, 1972. 1972WAY/STA 1973ALF/GOL Alfassi, Z.B. and Golden, D.M., J. Am. Chem. Soc., 95, 319, 1973. Alfassi, Z.B., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 5, 155, 1973. 1973ALF/GOL(b) Alfassi, Z.B. and Golden, D.M., Int. J. Chem. Kinet., 5, 295, 1973. 1973ALF/GOL(c) Batt, L. and Milne, R.T., Int. J. Chem. Kinet., 5, 1067, 1973. 1973BAT/MIL Bentrude, W.G., in Free Radicals, Vol. II, John Wiley & Sons, New York, 1973, 1973BEN 595. 1973BEN/ONE Benson, S.W. and O'Neal, H.E., in Free Radicals, Vol. II, John Wiley & Sons, New York, 1973, p. 275. Carmichael, P.J., Gowenlock, B.G., and Johnson, C.A.F., J. Chem. Soc. Perkin 1973CAR/GOW Trans. 2, 1853, 1973. 1973DIB/WAL Dibeler, V.H., Walker, J.A., and Rosenstock, H.M., J. Chem. Phys., 59, 2264, 1973. Egger, K.W. and Cocks, A.T., Helv. Chim. Acta, 56, 1516, 1973. 1973EGG/COC Egger, K.W. and Cocks, A.T., Helv. Chim. Acta, 56, 1537, 1973. 1973EGG/COC(b) Ferguson, K.C., Okafo, E.N., and Whittle, E., J. Chem. Soc. Faraday Trans. 1, 69, 1973FER/OKA 295, 1973. Golden, D.M., Spokes, G.N., and Benson, S.W., Angew. Chem., 85, 602, 1973. 1973GOL/SPO Knoll, H., Scherker, K., and Geiseler, G., Int. J. Chem. Kinet., 5, 271, 1973. 1973KNO/SCH 1973MAH/MEN Mahoney, J.R., Mendenhall, G.D., and Ingold, K.U., J. Am. Chem. Soc., 95, 8610, 1973.

McKean, D.C., Duncan, J.L., and Batt, L., Spectrochim. Acta, 29A, 1037, 1973.

Mendenhall, G.D., Golden, D.M., and Benson, S.W., J. Phys. Chem., 77, 2707,

O'Neal, H.E. and Benson, S.W., in Free Radicals, 2, Kochi, J.K. Ed., Wiley,

Okabe, H. and Dibeler, V.H., J. Chem. Phys., 59, 2430, 1973.

New York, 1973, p. 275-359.

1973.

1973MCK/DUN

1973MEN/GOL

1973OKA/DIB

1973ONE/BEN

Perona, M.I. and Golden, D.M., Int. I. Chem. Kinet., 5, 55, 1973. 1973PER/GOL 1973ROD/FOR Rodgers, A.S. and Ford, W.G.F., Int. J. Chem. Kinet., 5, 965, 1973. Rodgers, A.S. and Wu, E.C., I. Am. Chem. Soc., 95, 6913, 1973. 1973ROD/WU 1973SHA/FRA Sharma, D.K.S. and Franklin, J.L., J. Am. Chem. Soc., 95, 6562, 1973. 1973TRE Trenwith, A.B., Trans. Faraday Soc., 69, 1737, 1973. 1973TSA Tsang, W., Int. J. Chem. Kinet., 5, 929, 1973. Watkins, K.W. and Thompson, W.W., Int. J. Chem. Kinet., 5, 791, 1973. 1973WAT/THO Wu, E.C. and Rodgers, A.S., Int. J. Chem. Kinet., 5, 1001, 1973. 1973WU/ROD Batt, L., Christic, K., Milne, R.T., and Summers, A.J., Int. J. Chem. Kinet., 6, 877, 1974BAT/CHR 1974. Calle, L.M. and Kana'an, A.S., Chem. Thermodyn., 6, 935, 1974. 1974CAL/KAN 1974CHO/MEN Choo, K.Y., Mendenhall, G.D., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 6, 813, 1974. 1974KRE/PRI Krech, M.I., Price, S.I.W., and Yared, W.F., Int. I. Chem. Kinet., 6, 257, 1974. Okafo, E.N. and Whittle, E., J. Chem. Soc. Faraday Trans. 1, 70, 1366, 1974. 1974OKA/WHI 1974PEP/ERL Pepekin, V.I., Erlikh, R.D., Matyushin, Y.N., and Lebedev, Y.A., Dokl. Akad. Nauk SSSR, 214, 865, 1974. Watkins, K.W. and Ward, W.W., Int. J. Chem. Kinet., 6, 855, 1974. 1974WAT/WAR 1974WU/ROD Wu, E.C. and Rodgers, A.S., J. Phys. Chem., 78, 2315, 1974. 1975BET/MAC Betowski, D., Mackay, G., Payzant, J., and Bohme, D., Can. J. Chem., 53, 2365, 1975. Burttrill, S.E., Williamson, A.D., and Breton, P.L., J. Chem. Phys., 62, 1586, 1975. 1975BUR/WIL Chen, S.S., Rodgers, A.S., Chao, J., Wilhoit, R.C., and Zwolinski, B.J., J. Phys. 1975CHE/ROD Chem. Ref. Data, 4, 441, 1975. Choo, K.Y., Golden, D.M., and Benson, S.W., Int. J. Chem. Kinet., 7, 713, 1975. 1975CHO/GOL Davidson, I.M.T. and Howard, A.V., J. Chem. Soc. Faraday Trans., 1, 71, 69, 1975DAV/HOW 1975. Gowenlock, B.G., Johnson, C.A.F., Keary, C.M., and Pfaf, J., J. Chem. Soc. 1975GOW/JON Perkin Trans. 2, 71, 351, 1975. 1975KIN/GOD King, K.D. and Goddard, R.D., Int. J. Chem. Kinet., 7, 837, 1975. 1975KIN/GOD(b) King, K.D. and Goddard, R.D., J. Am. Chem. Soc., 97, 4505, 1975. Lossing, F.P. and Traeger, J.C., J. Am. Chem. Soc., 97, 1579, 1975. 1975LOS/TRA Mahoney, L.R. and DaRooge, M.A., J. Am. Chem. Soc., 97, 4722, 1975. 1975MAH/DAR 1975MAT/NAS Matveey, V.G. and Nasin, G.M., Izv. Akad. Nauk SSSR, Ser. Khim., 24, 774, 1975. Okafo, E.N. and Whittle, E., Int. J. Chem. Kinet., 7, 273, 1975. 1975OKA/WHI Okafo, E.N. and Whittle, E., Int. J. Chem. Kinet., 7, 287, 1975. 1975OKA/WHI(b) Paul, S. and Back, M.H., Can. J. Chem., 53, 3330, 1975. 1975PAU/BAC Reed, K.J. and Brauman, J.I., J. Am. Chem. Soc., 97, 1625, 1975. 1975REE/BRA 1975RIC/STE Richardson, J.H., Stephenson, L.M., and Brauman, J.I., J. Am. Chem. Soc., 97, 1160, 1975. Stockbauer, R. and Inghram, M.G., J. Chem. Phys., 62, 4862, 1975. 1975STO/ING 1975VAN/RIN Vanderwielen, A.J., Ring, M.A., and O'Neal, H.E., J. Am. Chem. Soc., 97, 993, 1976BAT/MCC Batt, L. and McCulloch, R.D., Int. J. Chem. Kinet., 8, 491, 1976. 1976BAT/MCC(b) Batt, L. and McCulloch, R.D., Int. J. Chem. Kinet., 8, 911, 1976. Batt, L. and Milne, R.T., Int. J. Chem. Kinet., 8, 59, 1976. 1976BAT/MIL Benson, S.W., Thermochemical Kinetics, 2nd ed., Wiley, New York, 1976. 1976BEN Descamps, B. and Forst, W., J. Phys. Chem., 80, 933, 1976. 1976DES/FOR

Doncaster, A.M. and Walsh, R., J. Chem. Soc. Faraday Trans. 1, 72, 2908, 1976.

1976DON/WAL

King, K.D. and Goddard, R.D., J. Phys. Chem., 80, 546, 1976. 1976KIN/GOD Kominar, R.J., Krech, M.J., and Price, S.J.W., Can. J. Chem., 54, 2981, 1976. 1976KOM/KRE Lewis, D.K., Can. I. Chem., 54, 581, 1976. 1976LEW 1976LOS/TRA Lossing, F.P. and Traeger, J.C., Int. J. Mass Spectrom. Ion Phys., 9, 9, 1976. 1976MCC/DIB McCulloh, K.E. and Dibeler, V.H., J. Chem. Phys., 64, 4445, 1976. McMahon, T.B. and Kebarle, P., J. Am. Chem. Soc., 98, 3399, 1976. 1976MCM/KEB Pickard, J.M. and Rodgers, A.S., Int. J. Chem. Kinet., 8, 809, 1976. 1976PIC/ROD Tsang, W., Int. J. Chem. Kinet., 8, 173, 1976. 1976TSA van den Bergh, H. and Troe, J., J. Chem. Phys., 64, 735, 1976. 1976VAN/TRO Walsh, R. and Wells, J.M., J. Chem. Soc. Faraday Trans. 1, 72, 1212, 1976. 1976WAL/WEL Wu, E.C. and Rodgers, A.S., J. Am. Chem. Soc., 98, 6112, 1976. 1976WU/ROD Batt, L. and Milne, R.T., Int. J. Chem. Kinet., 9, 141, 1977. 1977BAT/MIL Batt, L. and Milne, R.T., Int. J. Chem. Kinet., 9, 549, 1977. 1977BAT/MIL(b) 1977BAT/MIL(c) Batt, L., Milne, R.T., and McCulloch, R.D., Int. I. Chem. Kinet., 9, 567, 1977. Colussi, A.J. and Benson, S.W., Int. J. Chem. Kinet., 9, 307, 1977. 1977COL/BEN 1977COL/BEN(b) Colussi, A.J. and Benson, S.W., Int. J. Chem. Kinet., 9, 295, 1977. 1977COL/BEN(c) Colussi, A.J. and Benson, S.W., Int. J. Chem. Kinet., 9, 161, 1977. 1977COL/ZAB Colussi, A.J., Zabel, F., and Benson, S.W., Int. J. Chem. Kinet., 9, 161, 1977. 1977DON/WAL Doncauster, A.M. and Walsh, R., J. Chem. Soc. Chem. Commun., 446, 1977. 1977HEN/KEN Hendry, D.G. and Kenley, R., J. Am. Chem. Soc., 99, 3198, 1977. Ireton, R., Gorden, A.S., and Tardy, D.C., Int. J. Chem. Kinet., 9, 769, 1977. 1977IRE/GOR Kerle, P., Annu. Rev. Phys. Chem., 28, 445, 1977. 1977KER King, K.D., Int. J. Chem. Kinet., 9, 907, 1977. 1977KIN Okabe, H., J. Chem. Phys., 66, 2058,1977. 1977OKA Pedley, J.B. and Rylance, J., Sussex-N.P.L. Computer Analysed Thermochemical 1977PED/RYL Data: Organic and Organometallic Compounds, University of Sussex, 1977. Pickard, J.M. and Rodgers, A.S., J. Am. Chem. Soc., 99, 691, 1977. 1977PIC/ROD 1977PIC/ROD(b) Pickard, J.M. and Rodgers, A.S., Int. J. Chem. Kinet., 9, 759, 1977. 1977TRE/WRI Trenwith, A.B. and Wrigley, S.P., J. Chem. Soc. Faraday Soc. 1, 73, 817, 1977. 1977VOG/MIS Vogt, D. and Mischke, J., Phys. Lett., 60A, 19, 1977. 1978APP/KLU Applequist, D.F. and Klug, J.H., J. Org. Chem., 43, 1729, 1978. 1978ATR/BAL Atri, G.M., Baldwin, P.R., Evans, G.A., and Walker, R.W., J. Chem. Soc. Faraday Trans. 1, 74, 366, 1978. 1978BAL/GOL Baldwin, A.C. and Golden, D.M., J. Phys. Chem., 82, 644, 1978. 1978BEN Benson, S.W., Chem. Rev., 78, 23, 1978. Caceres, T., Lissi, E.A., and Sanhueza, E., Int. J. Chem. Kinet., 10, 1167, 1978. 1978CAC/LIS Colussi, A.J. and Benson, S.W., Int. J. Chem. Kinet., 10, 1139, 1978. 1978COL/BEN Czarnowski, J. and Schumacher, H.J., Int. J. Chem. Kinet., 10, 111, 1978. 1978CZA/SCH 1978DAY/GOW Day, J.S., Gowenlock, B.G., Johnson, C.A.F., McInally, I.D., and Pfab, J., I. Chem. Soc. Perkin Trans. 2, 1110, 1978. Doncauster, A.M. and Walsh, R., Int. J. Chem. Kinet., 10, 101, 1978. 1978DON/WAL 1978KAT/RAJ Katz, M.G. and Rajbenbach, L.A., Int. J. Chem. Kinet., 10, 955, 1978. King, K.D., Int. J. Chem. Kinet., 10, 545, 1978. 1978KIN 1978KOM/KRE Kominar, R.J., Krech, M.J., and Price, S.J.W., Can. J. Chem., 56, 1589, 1978. Marquaire, P.M. and Come, G.M., React. Kinet. Catal. Lett., 9, 171, 1978. 1978MAR/COM Okafo, E.N. and Whittle, E., Int. J. Chem. Kinet., 10, 591, 1978. 1978OKA/WHI Rodgers, A.S., Fluorine-Containing Free Radicals, ACS Symp., 66, 298, 1978. 1978ROD

Tsang, W., Int. J. Chem. Kinet., 10, 687, 1978.

Tsang, W., Int. J. Chem. Kinet., 10, 1119, 1978.

1978TSA 1978TSA(b) 1978TSA(c) Tsang, W., Int. J. Chem. Kinet., 10, 821, 1978. 1978TSA(d) Tsang, W., Int. J. Chem. Kinet., 10, 41, 1978.

1978WHI/GAR White, J.N. and Gardiner, W.C., Chem. Phys. Lett., 58, 470, 1978.

1978ZAB/BEN Zabel, F. and Benson, S.W., and Golden, D.M., Int. J. Chem. Kinet., 10, 295,

1978.

1979BAG/BEN Baghal-Vajooee, M.H., and Benson, S.W., J. Am. Chem. Soc., 101, 2839, 1979.
1979BAR/SCO Bartmess, J.E., Scott, J.A., and McIver, R.T., J. Am. Chem. Soc., 101, 6046, 1979.
1979BER Berkowitz, J., in *Photoionization, Photodissociation, and Photoelectron*

Spectroscopy, Academic Press, New York, 1979, 285.

1979CZA/SCH Czarnowski, J. and Schumacher, H.J., Int. J. Chem. Kinet., 11, 613, 1979.

1979DEF/HEH DeFrees, D.J., Hehre, W.J., McIver, R.T., and McDaniel, D.H., J. Phys. Chem.,

83, 232, 1979.

1979DON/WAL Doncaster, A.M. and Walsh, R., J. Phys. Chem., 83, 578, 1979.
1979DON/WAL(b) Doncaster, A.M. and Walsh, R., J. Phys. Chem., 83, 3037, 1979.

1979DON/WAL(c) Doncaster, A.M. and Walsh, R., J. Chem. Soc. Faraday Trans. 1, 75, 1126, 1979.

1979EVA/WAL Evans, G.A. and Walker, R.W., J. Chem. Soc. Faraday Trans. 1, 75, 1458, 1979.

1979GLA/MAI Glanzer, K., Maier, M., and Troe, J., Chem. Phys. Lett., 61, 175, 1979.

1979HUB/HER Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, IV,

Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.

1979HWA/BEN Hwang, R.J. and Benson, S.W., *Int. J. Chem. Kinet.*, 11, 579, 1979. 1979HWA/BEN(b) Hwang, R.J. and Benson, S.W., *J. Am. Chem. Soc.*, 101, 2615, 1979.

1979ISL Islm, T.S.A., *J. Bangladesh Acad. Sci.*, 3, 93, 1979. 1979JAC Jackson, R.A., *Organomet. Chem.*, 166, 17, 1979.

1979JAN/BRA Janousek, B.K., Brauman, J.I., and Simons, J., J. Chem. Phys., 71, 2057, 1979.

1979KIN King, K.D., Int. J. Chem. Kinet., 11, 1071, 1979.

1979KIN/NGU King, K.D. and Nguyen, T.T., J. Phys. Chem., 83, 1940, 1979.

1979PIP Piper, L.G., J. Chem. Phys., 70, 3417, 1979.

1979PRI/SAP Price, S.J.W. and Sapiano, H.J., *Can. J. Chem.*, 57, 1468, 1979. 1979ROS/GOL Rossi, M.J. and Golden, D.M., *J. Am. Chem. Soc.*, 101, 1230, 1979.

1979ROS/KIN Rossi, W.J., King, K.D., and Golden, D.M., *J. Am. Chem. Soc.*, 101, 1223, 1979. 1979VAY/BEN Vayjooee, M.H.B. and Benson, S.W., *J. Am. Chem. Soc.*, 101, 2838, 1979.

1979VAY/COL Vayjooee, M.H.B., Colussi, A.J., and Benson, S.W., Int. J. Chem. Kinet., 11, 147,

1979.

1979WAL/TSA Walker, J.A. and Tsang, W., Int. J. Chem. Kinet., 11, 867, 1979.

1980-1989

1980BAL/WAL Baldwin, R.R. and Walker, R.W., J. Chem. Soc. Faraday Trans. 1, 76, 825, 1980.

1980BAR/STE Barton, B.B. and Stein, S.E., J. Phys. Chem., 84, 2141, 1980.

1980BOY/GUP Boyd, R.J., Gupta, A., Langler, R.F., Lownie, S.P., and Pincook, J.A., Can.

J. Chem., 58, 331, 1980.

1980DAV/WOO Davidson, I.M.T. and Wood, I.T., J. Organomet. Chem., 202, C-65, 1980.

1980DEF/MCI DeFeers, D.J., McIver, R.T. Jr., and Hehre, W.J., J. Am. Chem. Soc., 102, 3334,

1980.

1980FRA/JUS Frank, P. and Just, T., Comb. Flame, 38, 231, 1980. 1980HOW Howard, C.J., J. Am. Chem. Soc., 102, 6937, 1980.

1980JAN/REE Janousek, B.K., Reed, K.J., and Brauman, J.I., J. Am. Chem. Soc., 102, 3125,

1980.

Kominar, R.J., Krech, M.J., and Price, S.J.W., Can. J. Chem., 58, 1906, 1980. 1980KOM/KRE 1980MCM/TRE McMillen, D.F, Trevor, P.L., and Golden, D.M., J. Am. Chem. Soc., 102, 7400, 1980. 1980MIL/ERE Miletic, M., Eres, D., Vejikovic, M., and Zmbov, K.F., Int. J. Mass Spectrom. Ion Proc., 35, 231, 1980. Ono, Y. and Ng, C.Y., J. Chem. Phys., 74, 6985, 1980. 1980ONO/NG Trenwith, A.B., I. Chem. Soc. Faraday Trans. 1, 76, 266, 1980. 1980TRE Ayranci, G. and Back, M.H., Int. J. Chem. Kinet., 13, 897, 1981. 1981AYR/BAC Baruch, G., Rajbenbach, L.A., and Horowitz, A., Int. J. Chem. Kinet., 13, 473, 1981BAR/RAJ 1981. Barton, B.D. and Stein, S.E., J. Chem. Soc., Faraday Trans. 1, 77, 1755, 1981. 1981BAR/STE Batt, L., Burrows, J.P., and Robinson, G.N., Chem. Phys. Lett., 78, 467, 1981. 1981BAT/BUR Batt, L. and Robinson, G.N., in Chemistry of the Functional Groups, Patai, S., 1981BAT/ROB Ed., Wiley, New York, 1981, 1035. Canosa, C.E., Marshall, R.M., and Sheppard, A., Int. J. Chem. Kinet., 13, 303, 1981. 1981CAN/MAR 1981CAS/MAR Castelhano, A.L., Marriott, P.R., and Griller, D., J. Am. Chem. Soc., 103, 4263, 1981. 1981CZA/SCH Czarnowski, I. and Schumacher, H.J., Int. I. Chem. Kinet., 13, 639, 1981. 1981DON/WAL Doncaster, A.M. and Walsh, R., Int. J. Chem. Kinet., 13, 503, 1981. 1981ELL/POT Ellul, E., Potzinger, P., Reimann, B., and Camilleri, B., Ber. Bunsenges. Phys. Chem., 85, 407, 1981. Evans, B.S. and Whittle, E., Int. J. Chem. Kinet., 13, 59, 1981. 1981EVA/WHI Forte, E., Hippler, H., and van den Bergh, H., Int. J. Chem. Kinet., 13, 1227, 1981FOR/HIP 1981. Griller, D. and Lossing, F.P., J. Am. Chem. Soc., 103, 1586, 1981. 1981GRI/LOS Heneghan, S.P., Knoot, P.A., and Benson, S.W., Int. I. Chem. Kinet., 13, 677, 1981. 1981HEN/KNO King, K.D., Int. J. Chem. Kinet., 3, 273, 1981. 1981KIN King, K.D. and Nguyen, T.T., Int. J. Chem. Kinet., 13, 255, 1981. 1981KIN/NGU 1981MIL/STE Miller, R.E. and Stein, S.E., J. Phys. Chem., 85, 580, 1981. 1981NGU/KIN Nguyen, T.T. and King, K.D., J. Phys. Chem., 85, 3130, 1981. 1981PEL/JAC Pellerite, M.J., Jackson, R.L., and Brauman, J.I., J. Phys. Chem., 85, 1625, 1981. 1981ROB/STE Robaugh, D.A. and Stein, S.E., Int. J. Chem. Kinet., 13, 445, 1981. Ruiz, R.P., Bayes, K.D., Macpherson, M.T., and Pilling, M.J., J. Phys. Chem., 85, 1981RUI/BAY 1622, 1981. 1981STE Stein, S.E., in New Approaches in Coal Chemistry, ACS Symp. Ser., 169, 97, 1981. Steinkruger, F.J. and Rowland, F.S., J. Phys. Chem., 85, 136, 1981. 1981STE/ROW Tsang, W., in Shock Waves in Chemistry, Lifshitz, A., Ed., Marcel Dekker, 1981TSA New York, 1981, 59. 1981WAL Walsh, R., Acc. Chem. Res., 14, 246, 1981. Yampol'skii, Y.P. and Zelentsov, V.V., React. Kinet. Catal. Lett., 17, 347, 1981. 1981YAM/ZEL Barber, M., Doncaster, A.M., and Walsh, R., Int. J. Chem. Kinet., 14, 669, 1982. 1982BAR/DON 1982BAT/ROB Batt, L. and Robinson, G.N., in Chemistry of the Function Group, Patai, S., Ed., Wiley, New York, 1982, 417. 1982BAT/WAL Batt, L. and Walsh, R., Int. J. Chem. Kinet., 14, 933, 1982. 1982BEN/WEI Benson, S.W. and Weissman, M., Int. J. Chem. Kinet., 14, 1287, 1982. Castelhano, A.L. and Griller, D., J. Am. Chem. Soc., 104, 3655, 1982. 1982CAS/GRI

Hase, W. and Schlege, H.B., J. Phys. Chem., 86, 3901, 1982.

Teital'boim, M.A., Int. J. Chem. Kinet., 14, 1231, 1982.

Khachatryn, L.A., Niazin, O.M., Mantashyan, A.A., Vedeneev, V.I., and

1982HAS/SCH

1982KHA/NIA

1982MCM/GOL McMillen, D.F. and Golden, D.M., Annu. Rev. Chem., 33, 493, 1982.

1982MCM/LEW McMillen, D.F., Lewis, K.E., Smith, G.P., and Golden, D.M., J. Phys. Chem., 86,

709, 1982.

1982MEO Meot-Ner, M., J. Am. Chem. Soc., 104, 5, 1982.

1982MOR/PIL Morgan, C.A., Pilling, M.J., Tulloch, J.M., Ruiz, R.P., and Bayes, K.D., J. Chem.

Soc. Faraday Trans. 2, 78, 1323, 1982.

1982NGU/KIN Nguyen, T.T. and King, K.D., *Int. J. Chem. Kinet.*, 14, 613, 1982. 1982TRE Trenwith, A.B., *J. Chem. Soc. Faraday Trans.* 1, 78, 3131, 1982.

1982TRE/WRI Trenwith, A.B. and Wrigley, S.P., J. Chem. Soc. Faraday Trans., 1, 78, 2337, 1982. 1982WAG/EVA Wagman, D.D., Evans, W.H., Park, V.B., Schumm, R.H., Halow, I., Bailey, S.M.,

Churney, K.L., and Nuttall, R.L., J. Phys. Chem. Ref. Data, 11, Suppl. 2, 1982.

1983BAT Batt, L., in Chemistry of Functional Group, Patai, S., Ed., Wiley, New York,

1983, 49.

1983BAT/WAL Batt, L. and Walsh, R., Int. J. Chem. Kinet., 15, 605, 1983.

1983BUR/CAS Burkey, T.J., Castelhano, A.L., Griller, D., and Lossing, F.P., J. Am. Chem. Soc.,

105, 4701, 1983.

1983EVA/WEE Evans, B.S., Weeks, I., and Whittle, E., J. Chem. Soc. Faraday Trans. 1, 79, 1471,

1993.

1983FRI Friedricj, L.E., J. Org. Chem., 48, 3851, 1983.

 1983HEN/BEN
 Heneghan, S.P. and Benson, S.W., Int. J. Chem. Kinet., 15, 815, 1983.

 1983JEN/PER
 Jenkins, T.C. and Perkins, M.J., J. Chem. Soc. Perkin Trans. 2, 717, 1983.

 1983MAR/PAR
 Martin, J.P. and Paraskevopoulos, G., Can. J. Chem., 61, 861, 1983.

1983NOB/WAL Noble, P.N. and Walsh, R., *Int. J. Chem. Kinet.*, 15, 547, 1983. 1983NOB/WAL(b) Noble, P.N. and Walsh, R., *Int. J. Chem. Kinet.*, 15, 561, 1983.

1983OAK/JON Oakes, J., Jones, M.E., Bierbaum, V.M., and Barney, G., J. Phys. Chem., 87,

4810, 1983.

 1983PAT/GOL
 Patrick, R. and Golden, D.M., Int. J. Chem. Kinet., 15, 1189, 1983.

 1983PIC/ROD
 Pickard, J.M and Rodgers, A.S., Int. J. Chem. Kinet., 15, 569, 1983.

 1983ROS/GOL
 Ross, M.J. and Golden, D.M., Int. J. Chem. Kinet., 15, 1283, 1983.

1983SER/GOR Seres, L., Gorgenyi, M., and Farkas, J., Int. J. Chem. Kinet., 15, 1133, 1983.

1983SHU/BEN Shum, L.G.S. and Benson, S.W., *Int. J. Chem. Kinet.*, 15, 433, 1983. 1983SHU/BEN(b) Shum, L.G.S. and Benson, S.W., *J. Phys. Chem.*, 87, 3479, 1983.

1983SPY/SAU Spyrou, S.M., Sauers, I., and Christophorou, L.G., J. Chem. Phys., 78, 7200,

1983.

1983TRE Trenwith, A.B., *J. Chem. Soc. Faraday Trans.* 1, 79, 2755, 1983.
1983WEI/BEN Weissman, M. and Benson, S.W., *J. Phys. Chem.*, 87, 243, 1983.
1984AHO/WHI Ahonkhai, S.I. and Whittle, E., *Int. J. Chem. Kinet.*, 16, 543, 1984.

1984BAL/DRE Baldwin, R.R., Drewery, G.R., and Walker, R.W., J. Chem. Soc. Faraday Trans.

1, 80, 2827, 1984.

1984BAL/KEE Baldwin, R.R., Keen, A., and Walker, R.W., J. Chem. Soc. Faraday Trans. 1, 1984,

80, 435.

1984CAO/BAC Cao, J.R. and Back, M.H., Int. J. Chem. Kinet., 16, 961, 1984.

1984DEM De Maria, G., in Thermochemistry and its Applications to Chemical and Biological

Systems, NATO-ASI Ser. C119, Reidel, Dordrecht, 1984.

1984DOB/ING Dobe, T. and Ingold, K.U., *J. Am. Chem. Soc.*, 106, 3958, 1984. 1984GRE/COL Grela, M.A. and Colussi, A.J., *J. Phys. Chem.*, 88, 5995, 1984.

1984HOL/LOS Holmes, J.L. and Lossing, F.P., Int. J. Mass Spectrom. Ion Proc., 58, 113, 1984. 1984HOL/LOS(b) Holmes, J.L., Lossing, F.P., and Terlouw, J.K., J. Am. Chem. Soc., 108, 1086,

Holmes, J.L., Lossing, F.P., and Terlouw, J.K., J. Am. Chem. Soc., 108, 1086

1984.

Kondo, O. and Benson, S.W., Int. J. Chem. Kinet., 16, 949, 1984. 1984KON/BEN 1984KON/BEN(b) Kondo, O. and Benson, S.W., J. Phys. Chem., 88, 6675, 1984. 1984LEW/GOL Lewis, K.E., Golden, D.M., and Smith, G.P., I. Am. Chem. Soc., 106, 3905, 1984. 1984LEW/SMI Lewis, K.E. and Smith, G.P., J. Am. Chem. Soc., 106, 4650, 1984. 1984MAR Margitan, J.J., J. Phys. Chem., 88, 3314, 1984. 1984MEA Mead, R.D., Stevens, A.E., and Lineberger, W.C., in Gas Phase Ion Chemistry, Bowers, M.T., Ed., Academic Press, New York, 1984, Vol. III, Chapter 22. Nonhebel, D.C. and Walton, J.C., J. Chem. Soc. Chem. Commun., 731, 1984. 1984NON/WAL 1984PAC/MIM Pacey, P.D. and Wimalaseba, J.H., J. Phys. Chem., 88, 5657, 1984. Pritchard, G.O., Nilsson, W.B., and Kirtman, B., Int. J. Chem. Kinet., 16, 1637, 1984PRI/NIL 1984. 1984ROS/MCM Rossi, M.J., McMillen, D.F., and Golden, D.M., J. Phys. Chem., 88, 5031, 1984. 1984SCH/HOU Schultz, J.C., Houle, F.A., and Beauchamp, J.L., J. Am. Chem. Soc., 106, 7336, 1984. Smith, D., Adams, N.G., and Ferguson, E.E., Int. I. Mass Spectrom. Ion Proc., 1984SMI/ADA 61, 15, 1984. 1984TRA Traeger, J.C., Int. J. Mass Spectrom. Ion Proc., 58, 259, 1984. Tsang, W., Int. J. Chem. Kinet., 6, 2810, 1984. 1984TSA 1985BUN/SEA Bunker, P.R. and Sears, T.J., J. Chem. Phys., 83, 4866, 1985. 1985BUR/DOB Burton, G.W., Doba, T., Gabe, E.J., Hughes, L., Lee, F.L., Prasad, L., and Ingold, K.U., J. Am. Chem. Soc., 107, 7053, 1985. Chase, M.W. Jr., Davies, C.A., Downey, J.R. Jr., Frurip, D.J., McDonald, R.A., 1985CHA/DAV and Syverud, A.N., J. Phys. Chem. Ref. Data, 14, Suppl.1, 1985. 1985DEA Dean, A.M., J. Phys. Chem., 89, 4600, 1985. Gonzalez, A.C., Larson, C.W., McMillen, D.F., and Golden, D.M., J. Phys. 1985GON/LAR Chem., 89, 4809, 1985. Grela, M.A. and Colussi, A.J., Int. J. Chem. Kinet., 17, 257, 1985. 1985GRE/COL Kiefer, J.H., Wei, H.C., Kern, R.D., and Wu, C.H., Int. J. Chem. Kinet., 17, 253, 1985KIE/WEI 1985. 1985RUC/BEC Ruchardt, C. and Beckhaus, H-D., Top. Curr. Chem., 130, 1, 1985. 1985SHA/SEM 1985SLA/RAT

Sharma, R.B., Semo, N.M., and Koski, W.S., Int. J. Chem. Kinet., 17, 831, 1985. Slagle, I.R., Ratajczak, E., Heaven, M.C., Gutman, D., and Wagner, A.F., J. Am.

Chem. Soc., 107, 1838, 1985.

1985TRA Trager, J.C., Int. J. Mass Spectrom. Ion Proc., 66, 271, 1985.

Tsang, W., J. Am. Chem. Soc., 107, 2872, 1985. 1985TSA

Wodtke, A.M. and Lee, Y.T., J. Phys. Chem., 89, 4744, 1985. 1985WOD/LEE

Bordwell, F.G. and Bausch, M.J., J. Am. Chem. Soc., 108, 1979, 1986. 1986BOR/BAU Bordwell, F.G. and Bausch, M.J., J. Am. Chem. Soc., 108, 2473, 1986. 1986BOR/BAU(b)

1986BRO/LIG Brouard, M., Lightfoot, P.D., and Pilling, M.J., J. Phys. Chem., 90, 445, 1986. Burkey, T.J., Majewski, M., and Griller, D., J. Am. Chem. Soc., 108, 2218, 1986. 1986BUR/MAI Frey, H.M., Walsh, R., and Watts, I.M., J. Chem. Soc. Chem. Commun., 1189, 1986. 1986FRE/WAL

1986GRI/WAY Griller, D. and Wayner, D.D. M., Rev. Chem. Intermed., 7, 31, 1986.

Hawari, J.A., Griller, D., and Lossing, F.P., J. Am. Chem. Soc., 108, 3273, 1986. 1986HAW/GRI 1986HAY/KRU Hayashibara, K., Kruppa, G.H., and Beauchamp, J.L., J. Am. Chem. Soc., 108, 5441, 1986.

1986HOL/LOS Holmes, J.L., Lossing, F.P., and Terlouw, J.K., J. Am. Chem. Soc., 108, 1086, 1986. Howari, J.A., Griller, D. and Lossing, F.P., J. Am. Chem. Soc., 108, 3273, 1986. 1986HOW/GRI

Islam, T.S., J. Bangladesh Acad. Sci., 10, 135, 1986. 1986ISL

1986KRU/BEA Kruppa, G.H. and Beauchamp, J.L., J. Am. Chem. Soc., 108, 2162, 1986.

Lin, C.Y. and Lin, M.C., J. Phys. Chem., 90, 425, 1986. 1986LIN/LIN Meot-Ner, M. and Sieck, L.W., J. Phys. Chem., 90, 6687, 1986. 1986MEO/SIE Noble, M., Ouian, C.X.W., Reisler, H., and Wittng, C., I. Chem. Phys., 85, 5763. 1986NOB/QUI 1986. 1986PED/NAY Pedley, J.B., Naylor, R.D., and Kirby, S.P., Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, New York, 1986. Robangh, D.A. and Stein, S.E., J. Am. Chem. Soc., 108, 3224, 1986. 1986ROB/STE Slagle, I.R., Ratajczak, E., and Gutman, D., J. Phys. Chem., 90, 402, 1986. 1986SLA/RAT Stepanov, R.S., Kruglyakova, L.A., and Buka, E.S., Kinet. Katal., 27, 479, 1986. 1986STE/KRU Tsang, W., J. Phys. Chem., 90, 1152, 1986. 1986TSA Walsh, R., J. Phys. Chem., 90, 389, 1986. 1986WAL 1986WAY/DAN Wayner, D.D.M., Danneberg, J.J., and Griller, D., Chem. Phys. Lett., 131, 189, 1986. 1987ACS/PET Acs. G. and Peter, A., Int. I. Chem. Kinet., 19, 929, 1987. Agrawalla, B.S. and Setser, D.W., J. Chem. Phys., 86, 5421, 1987. 1987AGR/SET 1987BAT Batt, L., Int. Rev. Phys. Chem., 6, 53, 1987. 1987BEN Benson, S.W., J. Chem. Soc. Faraday Trans., 1, 83, 791, 1987. Benson, S.W., Kondo, O., and Marshall, R.M., Int. J. Chem. Kinet., 19, 829, 1987BEN/KON 1987. 1987CHU/FOL Chuang, M.C., Foltz, M.F., and Moore, C.B., J. Chem. Phys., 87, 3855, 1987. Dobos, O. and Benson, S.W., Int. J. Chem. Kinet., 19, 691, 1987. 1987DOB/BEN Kaminska, J.M.K., Hawari, J.A., Griller, D., and Chatgilialoglu, C., J. Am. 1987KAM/HAW Chem. Soc., 109, 5267, 1987. 1987KEE/RUP Kee, R.J., Rupley, F.M., and Miller, J.A., The Chemical Thermodynamic Database, Sandia National Labs Report SAND87-8215B, 1987. Koch, W. and Frenking, G., J. Phys. Chem., 91, 49, 1987. 1987KOC/FRE Lias, S. and Ausloos, P., Int. J. Mass Spectrom Ion Proc., 81, 165, 1987. 1987LIA/AUS Lovejoy, E.R., Wang, N.S., and Howard, C.J., J. Phys. Chem., 91, 5749, 1987. 1987LOV/WAN 1987MAN/BRO Manka, M., Brown, R.L., and Stein, S.E., Int. J. Chem. Kinet., 19, 943, 1987. Martin, J.R., Ring, M.A., and O'Neal, H.E., Int. J. Chem. Kinet., 19, 715, 1987. 1987MAR/RIN Moran, S., Ellis, H.B. Jr., DeFrees, D.J., and McLean, A.D., J. Am. Chem. Soc., 1987MOR/ELL 109, 6004, 1987. Moran, S., Ellis, H.B. Jr., DeFrees, D.J., McLean, A.D., and Ellison, G.B., J. Am. 1987MOR/ELL(b) Chem. Soc., 109, 5996, 1987. Pagsberg, P., Ratajczak, E., Sillesen, A., and Jodkowski, J.T., Chem. Phys. Lett., 1987PAG/RAT 141, 88, 1987. Prokudin, V.G. and Nazin, G.M., Izv. Akad. Nauk SSSR Ser. Khim., 678, 1987. 1987PRO/NAZ Shiromaru, H., Achiba, Y., Kimura, K., and Lee, Y.T., J. Phys. Chem., 91, 17, 1987. 1987SHI/ACH 1987STE/SUR Stein, S.E. and Suryan, M.M., Coal Sci. Technol. (Int. Conf. Coal Sci.), 11, 749, 1987. Tschuikow-Roux, E. and Paddison, S., Int. J. Chem. Kinet., 19, 15, 1987. 1987TSC/PAD Tschuikow-Roux, E., Salomon, D.R., and Paddison, S., J. Phys. Chem., 91, 1987TSC/SAL 3037, 1987. Tschuikow-Roux, E. and Salomon, D.R., J. Phys. Chem., 91, 699, 1987. 1987TSC/SAL(b) 1987VAR/DEN Varlamov, V.T. and Denisov, E.T., Dokl. Akad. Nauk USSR, 293, 126, 1987. Wetzel, D.M. and Brauman, J.I., Chem. Rev., 87, 607, 1987. 1987WET/BRA Wodtke, A.M. and Lee, Y.T., in Molecular Photodissociation Dynamics,

Ashfold, M.N., Baggott, J.E., Eds., Royal Society of Chemistry, London, 1987, 31.

Wu, C.H., Singh, H.J., and Kern, R.D., Int. J. Chem. Kinet., 19, 975, 1987.

Wu, C.H. and Kern, R.D., J. Phys. Chem., 91, 6291, 1987.

Copyright © 2003 by CRC Press LLC

1987WOD/LEE

1987WU/KER 1987WU/SIN

Ed., CRC Press, Boca Raton, 1988, 25. 1988COR/COL Coronel, M.E.J. and Colussi, A.J., Int. J. Chem. Kinet., 20, 749, 1988. 1988CUI/HE Cui, I.P., He, Y.Z., and Tsang, W., Energy and Fuels, 1, 614, 1988. 1988FAH/STE Farhr, A. and Stein, S.E., 22d Int. Symp. Combustion, The Combustion Institute, Pittsburgh, 1023, 1988. Fuji, M., Haijima, A., and Ito, M., Chem. Phys. Lett., 150, 380, 1988. 1988FUJ/HAI 1988GRE/COL Grela, M.A. and Colussi, A.J., Int. J. Chem. Kinet., 20, 713, 1988. Griller, D., Kaminska, J.M.K., and Maccoll, A., J. Mol. Struc. (Thermochem.), 1988GRI/KAM 163, 125, 1988. Holmes, J.L. and Lossing, F.P., J. Am. Chem. Soc., 110, 7339, 1988. 1988HOL/LOS Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D., and 1988LIA/BAR Mallard, W.G., J. Phys. Chem. Ref. Data, 17, Suppl. 1, 1988. Lyman, J.L. and Holland, R., J. Phys. Chem., 92, 7232, 1988. 1988LYM/HOL 1988MCD/DAV McDaniel, A.H., Davidson, J.A., Cantrell, C.A., Shetter, R.E., and Calvert, J.G., J. Phys. Chem., 92, 4172, 1988. 1988MOR/ELL Moran, S. and Ellison, G.B., J. Phys. Chem., 92, 1794, 1988. Mulder, P., Saastad, O.W., and Griller, D., J. Am. Chem. Soc., 110, 4090, 1988. 1988MUL/SAA Murray, K.K., Leopold, D.G., Miller, T.M., and Lineberger, W.C., J. Phys. 1988MUR/LEO Chem., 89, 5442, 1988. 1988PAR/BEN Parmer, S.S. and Benson, S.W., J. Phys. Chem., 92, 2652, 1988. Peng, B., Cao, J., Wen, Y., Zhong, X., Zhang, J., Gu, H., Fang, W., Wu, X., and 1988PEN/CAO Zhu, Q., Wuli Huaxue Xuebao, 4, 225, 1988. Russell, J.J., Seetula, J.A., Senkan, S.M., and Gutman, D., Int. J. Chem. Kinet., 1988RUS/SEE 20, 759, 1988. 1988RUS/SEE(b) Russell, J.J., Seetula, J.A., and Gutman, D., J. Am. Chem. Soc., 110, 3092, 1988. Russell, J.J., Seetula, J.A., and Gutman, D., J. Am. Chem. Soc., 110, 3084, 1988. 1988RUS/SEE(c) 1989BOR/HAR Bordwell, F.G. and Harrelson, J.A., J. Org. Chem., 54, 3101, 1989. Cao, J.R., Zhang, J.M., Zhong, X., Huang, Y.H., Fang, W.Q., Wu, X.J., and 1989CAO/ZHA Zhu, Q.H., Chem. Phys., 138, 377, 1989. 1989CHE/ALB Chen, E.C.M., Albyn, K., Dussack, L., and Wentworth, W.E., J. Phys. Chem., 93, 6827, 1989. Chen, Y., Jonas, D.M., Kinsey, J.L., and Field, R.W., J. Chem. Phys., 91, 3976, 1989. 1989CHE/JON 1989COX/WAG Cox, J.D., Wagman, D.D., and Medvededy, V.A., CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989. Copyright © 2003 by CRC Press LLC

Berkowitz, J., J. Chem. Phys., 89, 7065, 1988.

Ber Bunsenges. Phys. Chem., 92, 329, 1988.

Chem., 1, 225, 1988.

Soc., 110, 8178, 1988.

1988.

1, 209, 1988.

Bordwell, F.G., Acc. Chem. Res., 21, 456, 1988.

Bordwell, F.G. and Algrim, D.I., I. Am. Chem. Soc., 110, 2965, 1988.

Bordwell, F.G., Bausch, M.J., Branca, J.C., and Harrelson, J.A., J. Phys. Org.

Bordwell, F.G., Cheng, J.P., and Harrelson, J.A., J. Am. Chem. Soc., 110, 1229,

Bordwell, F.G., Cheng, J.P., Bausch, M.J., and Bares, J.E., J. Phys. Org. Chem.,

Bordwell, F.G., Cheng, J.P., Seyedrezai, S.E., and Wilson, C.A., J. Am. Chem.

Chateauneuf, J., Lusztyk, J., and Ingold, K.U., J. Am. Chem. Soc., 110, 2886, 1988. Chen, Y., Jonas, D.M., Hamilton, C.E., Green, P.G., Kinsey, J.L., and Field, R.W.,

Colussi, A.I., in Chemical Kinetics of Small Organic Reactions, Vol. 1, Alfassi, B.,

1988BER 1988BOR

1988BOR/ALG

1988BOR/BAU

1988BOR/CHE

1988BOR/CHE(b)

1988BOR/CHE(c)

1988CHA/LUS

1988CHE/JON

1988COL

Freund, H. and Olmstead, W.N., Int. I. Chem. Kinet., 21, 561, 1989. 1989FRE/OLM 1989GRE/KIN Gree, P.G., Kinsey, J.L., and Field, R.W., J. Chem. Phys., 91, 5160, 1989. Griller, D., Simoes, M.I.A., Mulder, P., Sim, B.A., and Wayner, D.D.M., I. Am, 1989GRI/SIM Chem. Soc., 111, 7872, 1989. 1989GRI/WAY Griller, D. and Wayner, D.D.M., Pure Appl. Chem., 61, 717, 1989. 1989KAM/GIL Kaminska, J.M.K., Gilbert, B.C., and Griller, D., J. Am. Chem. Soc., 111, 3311, 1989. Mackie, C., Doolam, K.R., and Nelson, P.F., J. Phys. Chem., 93, 664, 1989. 1989MAC/DOO 1989MAH/FER Mahoney, L.R., Ferris, F.C., and DaRooge, M.A., J. Am. Chem. Soc., 111, 3883, 1989. Markgraf, W.M., Rossi, M.J., and Golden, D.M., J. Am. Chem. Soc., 111, 956, 1989. 1989MAR/ROS Meot-Ner, M., J. Am. Chem. Soc., 111, 2930, 1989. 1989MEO 1989MIS/POL Misyura, A.V., Polumbrik, O.M., and Markovskii, L.N., Org. Chem. USSR, 25, 381, 1989. 1989NOR/NG Norwood, K. and Ng. C.Y., I. Chem. Phys., 91, 2898, 1989. Parmar, S.S. and Benson, S.W., J. Am. Chem. Soc., 104, 3655, 1989. 1989PAR/BEN 1989RED/RAO Reddy, R.R., Rao, T.V.R., and Reddy, A.S.R., Indian J. Pure Appl. Phys., 27, 243, 1989. Russell, J.J., Senkan, S.M., Seetula, J.A., and Gutman, D., J. Phys. Chem., 93, 1989RUS/SEN 5184, 1989. 1989SEG/LAV Segall, J., Lavi, R., Wen, Y., and Witting, C., J. Phys. Chem., 93, 7287, 1989. Simoes, J.A.M. and Griller, D., Chem. Phys. Lett., 158, 175, 1989. 1989SIM/GRI Survan, M.M., Kafafi, S.A., and Stein, S.E., J. Am. Chem. Soc., 111, 1423, 1989. 1989SUR/KAF Survan, M.M., Kafafi, S.A., and Stein, S.E., J. Am. Chem. Soc., 111, 4594, 1989. 1989SUR/KAF(b) 1989SUR/STE Survan, M.M. and Stein, S.E., J. Phys. Chem., 93, 7362, 1989. 1989TAC/SAL Taccone, R.A., Salinovich, O., and Staricco, E.H., Int. J. Chem. Kinet., 21, 331, 1989. 1989TSC/CHE Tschuikow-Roux, E. and Chen, Y., J. Am. Chem. Soc., 111, 9030, 1989. Walsh, R., in The Chemistry of Organosilicon Compounds, Part 1, Patai, S. and 1989WAL Rapport, Z., Eds., Wiley, New York, 1989, 5. 1989WET/SAL Wetzel, D.M., Salomon, K.E., Berger, S., and Brauman, J.I., J. Am. Chem. Soc.,

111, 3835, 1989.

1989WOD/HIN Wodtke, A.M., Hintsa, E.J., Somorjai, J., and Lee, Y.T., Israel J. Chem., 29, 383,

1989.

1990-1999

1990ARN/AMA	Arnett, E.M., Amarnath, K., Harvey, N.G., and Venimadhavan, S., J. Am.
	Chem. Soc., 112, 7346, 1990.
1990BAL/BUN	Baldwin, A.C., Buntine, M.A., and Chandler, D.W., J. Chem. Phys., 93, 6578, 1990.
1990BAU/GOS	Bausch, M.J., Gostowski, R., Jirka, G., Selmarten, D., and Winter, G., J. Org.
	Chem., 55, 5806, 1990.
1990BEC/DOG	Beckhaus, H.D., Dogan, B., Schaetzer, J., Hellmann, S., and Ruchardt, C.,
	Chem. Ber., 123, 137, 1990.
1990BOR/HAR	Bordwell, F.G. and Harrelson, J.A., Can. J. Chem., 68, 1714, 1990.
1990BOR/HAR(b)	Bordwell, F.G., Harrelson, J.A., and Lynch, T.Y., J. Org. Chem., 55, 3337, 1990.
1990BOR/ZHA	Bordwell, F.G. and Zhang, X.M., J. Org. Chem., 55, 6078, 1990.

1990BRA/FRA Braun-Unkhoff, M., Frank, P., and Just, T., Ber. Bunsenges. Phys. Chem., 94,

1417, 1990.

1990CHE/RAU Chen, Y., Rauk, A., and Tschuikow-Roux, E., J. Phys. Chem., 94, 6250, 1990. 1990COL Colussi, A.J., J. Phys. Chem., 94, 8922, 1990. 1990DAV/LEE Davies, I.M., Lee, M.A.H., Pilling, M.I., and Seakins, P.E., Spectrochimica Acta, 46A, 581, 1990. 1990DES/TRO Destriau, M. and Troe, J., Int. J. Chem. Kinet., 22, 915, 1990. 1990DIA/DIO Dias, A.R., Diogo, H.P., Griller, D., de Piedade, M.E.P., and Simoes, J.A.M., in Bonding Energetics in Organometallic Compounds, Marks, T.J., Ed., ACS Symposium Ser. No. 428, Washington, D.C., 1990, Chapter 14. 1990DOB/MAS Dobychin, S.L., Mashendzhinov, V.I., Mishin, V.I., Semenov, V.N., and Shpak, V.S., Dokl. Akad. Nauk SSSR, 312, 1166, 1990. Ervin, K.M., Gronert, S., Barlow, S.E., Gilles, M.K., Harrison, A.G., 1990ERV/GRO Bierbaum, V.M., DePuy, C.H., Lineberger, W.C., and Ellison, G.B., J. Am. Chem. Soc., 112, 5750, 1990. 1990GUT Gutman, D., Acc. Chem. Res., 23, 375, 1990. Halpern, J., in Bonding Energetics in Organometallic Compounds, Marks, T.J., 1990HAL Ed., ACS Symp. Ser. 428, Washington, D.C., chap. 7, 1990. 1990HIP/TRO Hippler, H. and Troe, J., J. Phys. Chem., 94, 3803, 1990. 1990IRA/PET Iraqi, M., Petrank, A., Peres, M., and Lifshitz, C., Int. J. Mass Spectrom. Ion Proc., 100, 679, 1990. 1990KIS/ZHA Kiss, G., Zhang, K., Mukerjee, S.L., Hoff, C.D., and Roper, G.C., J. Am. Chem. Soc., 112, 5657, 1990. 1990KOE/SCO Koening, T., Scott, T.W., and Franz, J.A., in Bonding Energetics in Organometallic Compounds, Marks, T.J., Ed., ACS Symp. Ser. No. 428, Washington, D.C., 1990, Chapter 8. Lind, J., Shen, X., Eriksen, T.E., and Merrnyi, G., J. Am. Chem. Soc., 112, 479, 1990LIN/SHE 1990. Malhotra, R. and McMillen, D.F., Energy Fuel, 4, 184, 1990. 1990MAL/MCM 1990MCC/PFA McCoustra, M.R.S. and Pfab, J., Spectrochim. Acta, 46A, 937, 1990. 1990MIY/TSC Miyokawa, K. and Tschikow-Roux, E., J. Phys. Chem., 94, 715, 1990. 1990MUE/POP Mueller, U. and Popowski, E., Z. Phys. Chem. (Leipzig), 271, 703, 1990. 1990MUR/LOV Murrells, T.P., Lovejoy, E.R., and Ravishankara, A.R., J. Phys. Chem., 94, 2381, 1990. 1990NIC/KRE Nicovich, J.M., Kreutter, K.D., and Wine, P.H., J. Chem. Phys., 92, 3559, 1990. 1990PER/BER Perkins, M.J., Berti, C., Brooks, D.J., Grieson, L., Grimes, J.A.M., Jenkins, T.C., and Smith, S.L., Pure Appl. Chem., 62, 195, 1990. Richards, P.D., Ryther, R.J., and Weitz, E., J. Phys. Chem., 94, 3663, 1990. 1990RIC/RYT Ruscic, B., Schwarz, M., and Berkowitz, J., J. Chem. Phys., 94, 1865, 1990. 1990RUS/SCH Russell, J.J., Seetula, J.A., Gutman, D., Danis, F., Caralp, F., Lightfoot, P.D., 1990RUS/SEE Lesclaux, R., Melius, C.F., and Senkan, S.M., J. Phys. Chem., 94, 3277, 1990. Seetula, J.A. and Gutman, D., J. Phys. Chem., 94, 7529, 1990. 1990SEE/GUT Seetula, J.A., Russell, J.J., and Gutman, D., J. Am. Chem. Soc., 112, 1347, 1990. 1990SEE/RUS 1990SIE/AUS Sieck, L.W. and Ausloos, P.J., J. Phys. Chem., 94, 8374, 1990. 1990TSA/CUI Tsang, W. and Cui, J.P., J. Am. Chem. Soc., 112, 1665, 1990. 1990TAK Takhistov, V.V., Organic Mass Spectrometry, Nauka, Leningrad, 1990. 1990WAG/SLA Wagner, A.F., Slagle, I.R., Sarzynski, D., and Gutman, D., J. Phys. Chem., 94, 1853, 1990. 1990WAL/TSA Walker, J.A. and Tsang, W., J. Phys. Chem., 94, 3324, 1990.

Wayner, D.D.M. and Griller, D., in Adv. Free Radicals Chemistry, Vol. I, JAI

Press, 1990, 159.

1990WAY/GRI

Baer, S., Hippler, H., Rabu, R., Siefke, M., Seitznger, N., and Troe, J., J. Chem. 1991BAE/HIP Phys., 95, 6463, 1991. 1991BAU/FAS Bausch, M.I., Fasano, C.G., and Gostowski, R., Energy & Fuels, 5, 419, 1991. 1991BAU/FAS(b) Bausch, M.I., Fasano, C.G., and Peterson, B.M., I. Am. Chem. Soc., 113, 8384. 1991. 1991BAU/FAS(c) Bausch, M.J., Fasano, C.D., Gostowski, R., Selmarten, D., and Vaughn, A., I. Org. Chem., 56, 5640, 1991. Bausch, M.J. and Gostowski, R., J. Org. Chem., 56, 6260, 1991. 1991BAU/GOS Bausch, M.J., Gostowski, R., Fasano, C.G., Selmarten, D., Vaughn. A., and 1991BAU/GOS(b) Wang, L.H., J. Org. Chem., 56, 7191, 1991. Bordwell, F.G., Cheng, J.P., Ji, G.Z., Satish, A.V., and Zhang, X.M., J. Am. 1991BOR/CHE Chem. Soc., 113, 9790, 1991. Bordwell, F.G. and Cheng, J.P., J. Am. Chem. Soc., 113, 1736, 1991. 1991BOR/CHE(b) Bordwell, F.G., Gallagher, T., and Zhang, X.M., J. Am. Chem. Soc., 113, 3495, 1991. 1991BOR/GAL Bordwell, F.G. and Harrelson, J.A., J. Org. Chem., 56, 4448, 1991. 1991BOR/HAR 1991BOR/JI Bordwell, F.G., Ji, G.Z., and Zhang, X.M., J. Org. Chem., 56, 5254, 1991. 1991BOR/JI(b) Bordwell, F.G., Ji, G.Z., and Zhang, X.M., J. Am. Chem. Soc., 113, 8398, 1991. 1991BOR/VAN Bordwell, F.G., Vanier, N.R., and Zhang, X.M., J. Am. Chem. Soc., 113, 9856, 1991. 1991BOR/ZHA Bordwell, F.G., Zhang, X.M., and Cheng, J.P., J. Org. Chem., 56, 3216, 1991. Bridier, I., Caralp, F., Loirat, H., Lesclaux, R., Veyret, B., Becker, K.H., Reimer, A., 1991BRI/CAR and Zabel, F., J. Phys. Chem., 95, 3594, 1991. 1991CLA/CUL Clatk, K.B., Culshaw, P.N., Griller, D., Lossing, F.P., and Simoes, M.J.A., J. Org. Chem., 56, 5535, 1991. Clark, K.B. and Griller, D., Organometallics, 10, 746, 1991. 1991CLA/GRI Clark, K.B. and Wayner, D.D.M., J. Am. Chem. Soc., 113, 9363, 1991. 1991CLA/WAY Coronel, M.E.J. and Colussi, A.J., An. Asoc. Quim. Argent., 79, 181, 1991. 1991COR/COL Dobis, O. and Benson, S.W., J. Am. Chem. Soc., 113, 6377, 1991. 1991DOB/BEN 1991HOL/LOS Holmes, J.L., Lossing, F.P., and Mayer, P.M., J. Am. Chem. Soc., 113, 9723, 1991. 1991HUG/JON Hudgens, J.W., Jonson, R.D. III, Timonen, R.S., Seetula, J.A., and Gutman, D., J. Phys. Chem., 95, 4400, 1991. Ingemann, S., Fokkens, R.H., and Nibbering, N.M.M., J. Org. Chem., 56, 607, 1991ING/FOK 1991. 1991KOP/ZAB Koppenkastrop, D. and Zabel, F., Int. J. Chem. Kinet., 23, 1, 1991. 1991KRE/NIC Kreutter, K.D., Nicovich, J.M., and Wine, P.H., J. Phys. Chem., 95, 4020, 1991. 1991MAC/COL Mackie, J.C., Colket, M.B., Nelson, P.F., and Esler, M., Int. J. Chem. Kinet., 23, 733, 1991. Nicovich, J.N., van Dijk, C.A., Kreutter, K.D., and Wine, P.H., J. Phys. Chem., 1991NIC/DIJ 95, 9890, 1991. Nicovich, J.M., Kreutter, K.D., Schockelford, C.J., and Wine, P.H., Chem. Phys. 1991NIC/KRE Lett., 179, 367, 1991. 1991PAR/HAN Parker, V.D., Handoo, K.J., Roness, F., and Tilset, M., J. Am. Chem. Soc., 113, 7493, 1991.

1991ROT/BAU Roth, W.R., Bauer, F., Beitat, A., Ebbrecht, T., and Mustfeld, M., *Chem. Ber.*, 124, 1453, 1991.

Trans., 87, 841, 1991.

Paulino, J.A. and Squires, R.R., J. Am. Chem. Soc., 113, 5573, 1991.

Prinslow, D.A. and Armentrout, P.B., J. Chem. Phys., 94, 3563, 1991.

Pilcher, G., Luisa, M., Leitao, P., Yang, M., and Walsh, R., J. Chem. Soc. Faraday

1991PAU/SQU

1991PRI/ARM

1991PIL/LUI

Ruscic, B. and Berkowitz, J., J. Chem. Phys., 95, 4378, 1991. 1991RUS/BER 1991SEA/PIL Seakins, P.W. and Pilling, M.J., J. Phys. Chem., 95, 9874, 1991. 1991SEE/FEN Seetula, I.A., Feng, Y., Gutman, D., Seaking, P.W., and Pilling, M.I., I. Phys. Chem., 95, 1658, 1991. 1991SEE/GUT Seetula, J.A. and Gutman, D., J. Phys. Chem., 95, 3626, 1991. 1991SEG/WEN Segall, J., Wen, Y., Singer, R., and Witting, C., J. Phys. Chem., 95, 8078, 1991. Skorobogatov, G.A., Dymov, B.P., and Khripun, V.K., Kinet. Katal., 32, 252, 1991. 1991SKO/DYM Stein, S.E. and Brown, R.L., J. Am. Chem. Soc., 113, 787, 1991. 1991STE/BRO 1991TSA Tsang, W., J. Phys. Chem. Ref. Data, 20, 221, 1991. Wenthold, P.G., Paulino, J.A., and Squires, R.R., J. Am. Chem. Soc., 113, 7414, 1991WEN/PAU 1991. 1992AND/GOR Andrieux, C.P., Le Gorande, A., and Saveant, J.M., J. Am. Chem. Soc., 114, 6892, 1992. 1992ARN/CAL Arnaut, L.G. and Caldwell, R.A., I. Photobiol, A: Chem., 65, 15, 1992. Arnett, E.M., Venimadhavan, S., and Amarnath, K., J. Am. Chem. Soc., 114, 1992ARN/VEN 5598, 1992. Beauchamp, J.L. and van Koppen, P.A.M., in Energetics of Organometallic 1992BEA/KOP Compounds, NATO-ASI Ser. C367, Kluwer, Dordrecht, 1992. 1992BLU/CHE Blush, J.A. and Chen, P., J. Phys. Chem., 96, 4138, 1992. 1992BOR/CHE Bordwell, F.G. and Cheng, J.P., J. Org. Chem., 57, 6542, 1992. Bordwell, F.G. and Ji, G.Z., J. Org. Chem., 57, 3019, 1992. 1992BOR/JI Bordwell, F.G. and Satish, A.V., J. Am. Chem. Soc., 114, 10173, 1992. 1992BOR/SAT Bordwell, F.G., Zhang, X.M., and Alnajjar, M.S., J. Am. Chem. Soc., 114, 7623, 1992BOR/ZHA 1992. Chatgilialoglu, C., Guerra, M., Guerrini, A., Seconi, G., Clatk, K.B., Griller, D., 1992CHA/GUE Kaminska, J.M.K., and Simoes, M.J.A., J. Org. Chem., 57, 2427, 1992. Cohen, N. and Benson, S.W., in The Chemistry of Alkanes and Cycloalkanes, 1992CHO/BEN Patai, S. and Rappoport, Z., Eds., Wiley, New York, 1992, 215. 1992COL/SAN Colussi, A.J., Sander, S.P., and Friedl, R.R., J. Phys. Chem., 96, 4442, 1992. 1992DOU/MAC Doughty, A. and Mackie, J.C., J. Phys. Chem., 96, 10339, 1992. 1992GIL/ERW Giles, M.K., Erwin, K.M., Ho, J., and Lineberger, W.C., J. Phys. Chem., 96, 1130, 1992. Gilles, M.K., Polak, M.L., and Lineberger, W.C., J. Chem. Phys., 96, 8012, 1992. 1992GIL/POL 1992HOL Holmes, J.L., Int. J. Mass Spectrom. Ion Proc., 118/119, 381, 1992. 1992JAC/HOS Jackson, R.A. and Hosseini, K.M.J., J. Chem. Soc. Chem. Commun., 967, 1992. 1992LAZ/MIC Lazorou, Y., Michael, C.M., and Paragiannakopouos, P., Chem. Phys. Lett., 194, 415, 1992. Lightfoot, P.D., Cox, R.A., Crowley, J.N., Destriau, M., Hayman, G.D., 1992LIG/COX Jenkin, M.E., Mootrgat, G.K., and Zabel, F., Atmos. Environ., 26A, 1905, 1992. Martimba, H.E.K., Crabbendam, A.M., Ingemann, S., and Nibbering, N.M.M., 1992MAR/CRA Int.J. Mass Spectrom. Ion Proc., 114, 85, 1992. 1992MIY/TSC Miyokawa, K. and Tschikow-Roux, E., J. Phys. Chem., 96, 7328, 1992. Nicvovich, J.M., Kreutter, K.D., van Dijk, C.A., and Wine, P.H., J. Phys. Chem., 1992NIC/KRE 96, 2518, 1992. Niiranen, J.T., Gutman, D., and Krasnoperov, L.N., J. Phys. Chem., 96, 5881, 1992NII/GUT Nuzzi, M., Riv. Combust., 46, 1992. 1992NUZ Parker, V.D., J. Am. Chem. Soc., 114, 7458, 1992. 1992PAR 1992RUS/BER Ruscic, B. and Berkowitz, J., J. Chem. Phys., 97, 1818, 1992.

Sahetchian, K.A., Rigny, R., De Maleissye, J. T., Batt, L., Khan, M.A., and 1992SAH/RIG Mathews, S., Int. Symp. Combust. Proc., 24, 637, 1992. 1992SEA/PIL Seakins, P.W., Pilling, M.J., Nirann, J.T., Gutman, D., and Krasnoperov, L.N., I. Phys. Chem., 96, 9847, 1992. 1992SEE/GUT Seetula, J.A. and Gutman, D., J. Phys. Chem., 96, 5401, 1992. 1992SQU Squires, R.R., Acc. Chem. Res., 25, 461, 1992. Staker, W.S., King, K.D., and Nguyen, T.T., Int. J. Chem. Kinet., 24, 781, 1992. 1992STA/KIN 1992STI/NIC Stickel, R.E., Nicovich, J.M., Wang, S., Zhao, Z., and Wine, P.H., J. Phys. Chem., 96, 9875, 1992. 1992TSA/HER Tsang, W. and Herron, J.T., J. Chem. Phys., 96, 4272, 1992. Tsang, W. and Walker, J.A., J. Phys. Chem., 96, 8378, 1992. 1992TSA/WAL 1992TUR/BAR Turnipseed, A.A., Barone, S.B., and Ravishankara, A.R., J. Phys. Chem., 96,

1992 VEN/AMA Turnipseed, A.A., barone, S.B., and Ravisnankara, A.R., J. Phys. Chem., 96, 7502, 1992.

Venimadhavan, S., Amarnath, K., Harvey, N.G., Cheng, J.P., and Arnett, E.M.,

J. Am. Chem. Soc., 114, 221, 1992.

1992WAL Walsh, R. in *Energetics of Organometallic Species*, Simoes, J.A.M., Ed., NATO-ASI Ser. C367, Kluwer, Dordrecht, 1992.

1992ZHA/BOR Zhang, X.M. and Bordwell, F.G., *J. Am. Chem. Soc.*, 114, 9787, 1992. 1992ZHA/BOR(b) Zhang, X.M. and Bordwell, F.G., *J. Org. Chem.*, 57, 4163, 1992.

1993ARE Arends, I.W.C.E., Thesis, Center for Chemistry and the Environments, Gorlaeus Labs, Leiden University, The Netherlands, 1993.

1993ARE/LOU Arends, I.W.C.E., Louw, R., and Mulder, P., *J. Phys. Chem.*, 97, 7914, 1993.

1993ARN/FLO Arnett, E.M., Flowers, R.A., Meekhof, A.E., and Miller, L., *J. Am. Chem. Soc.*, 115, 12603, 1993.

1993ARN/FLO(b) Arnett, E.M. and Flowers, R.A., Chem. Soc. Rev., 22, 9, 1993.

1993BAL/CAS Balucani, N., Casavecchia, P., Stranges, D., and Volpi, G.G., *Chem. Phys. Lett.*, 211, 469, 1993.

1993BEC/FRE Becerra, R., Frey, H.M., Mason, B.P., and Walsh, R., J. Chem. Soc. Faraday Trans., 89, 411, 1993.

1993BOR/SIN Bordwell, F.G., Singer, D.L., and Satish, A.V., *J. Am. Chem. Soc.*, 115, 3543, 1993.

1993BOR/ZHA Bordwell, F.G., Zhang, X.M., and Cheng, J.P., *J. Org. Chem.*, 58, 6410, 1993. 1993BOR/ZHA(b) Bordwell, F.G., Zhang, X.M., and Cheng, J.P., *J. Org. Chem.*, 58, 6067, 1993. 1993BOR/ZHA(c) Bordwell, F.G. and Zhang, X.M., *Acc. Chem. Res.*, 26, 510, 1993.

1993CAR/LAY Carson, A.S., Laye, P.G., Pedley, J.B., and Welsby, A.M., J. Chem. Thermodynamics, 25, 261, 1993.

1993CHE/ZHA Cheng, J.P. and Zhao, Y., Tetrahedron, 49, 5267, 1993.

1993CLA/WAY Clark, K.B., Wayner, D.D.M., Demidji, H.D., and Koch, T.H., *J. Am. Chem. Soc.*, 115, 2447, 1993.

1993COH/BEN Cohen, N. and Benson, S.W., Chem. Rev., 93, 2419, 1993.

1993DAV/KIM Davis, H.F., Kim, B., Johnston, H.S., and Lee, Y.T., J. Chem. Phys., 97, 2172, 1993.
1993DEC/GAL Decouzon, M., Gal, J.F., Gayraud, J., Maria, P.C., Vaglio, G.A., and Vople, P.,
J. Am. Soc. Mass Spectrom., 4, 54, 1993.

Dobe, S., Otting, M., Temps, F., Wagner, H.G., and Ziemer, H., Ber. Bunsenges.

Phys. Chem., 97, 877, 1993.

1993ELM/MIN Elmaimouni, L., Minetti, R., Sawerysin, J.P., and Devolder, P., Int. J. Chem. Kinet., 25, 399, 1993.

1993FEN/NOZ Fenter, F.F., Noziere, B., Caralp, F., and Lesclaux, R., *Int. J. Chem. Kinet.*, 26, 171, 1993.

1993DOB/OTT

Flesch, R.E., Eckart, R., Hottmann, K., and Baumgartel, H., J. Phys. Chem., 97, 1993FLE/ECK 837, 1993. 1993FOK/GRE Fokin, A.V., Grebennikov, V.N., Manelis, G.B., and Nazin, G.M., Dokl, Akad. Nauk., 332, 735, 1993. 1993HEN Heneveld, R.J.P., CCERS-92-04, Center for Chemistry and the Environments, Gorlaeus Labs, Leiden University, The Netherlands, 1993. Holmes, J.L., Lossing, F.P., and Mayer, P.M., Chem. Phys. Lett., 212, 134, 1993. 1993HOL/LOS Jenkins, H.D.B., J. Phys. Chem., 97, 7876, 1993. 1993JEN Lazarou, Y.G. and Paragiannakopoulos, P., J. Phys. Chem., 97, 4468, 1993. 1993LAZ/PAR Lee, M.A.H., Gree, J.B., Pilling, M.J., and Robertson, S.H., J. Phys. Chem., 97, 1993LEE/GRE 860, 1993. 1993LIN/JON Lind, J., Jonsson, M., Eriksen, T.E., Merenyi, G., and Eberson, L., J. Phys. Chem., 97, 1610, 1993. 1993OCC/DAA Occhiakini, D., Daasbjerg, K., and Lund, H., Acta Chem. Scand., 47, 1100, 1993. 1993OHA/DEP O'Hair, R.A.J., DePuy, C.H., and Bierbaum, V.M., J. Phys. Chem., 97, 7955, 1993. 1993RUS/BER Ruscic, B. and Berkowitz, J., J. Chem. Phys., 97, 11451, 1993. 1993RUS/BER(b) Ruscic, B. and Berkowitz, J., J. Chem. Phys., 98, 2568, 1993. 1993SEA/ROB Seaking, P.W., Robertson, S.H., Pilling, M.J., Slage, I.R., Gmurczyk, G.W., Bencsura, A., Gutma, D., and Tsang, W., J. Phys. Chem., 97, 4450, 1993. Sharpe, P. and Kebarle, P., J. Am. Chem. Soc., 115, 782, 1993. 1993SHA/KEB Timonen, R.S., Seetula, J. A., and Gutman, D., J. Phys. Chem., 97, 8217, 1993. 1993TIM/SEE Traeger, J.C. and Holmes, J.L., J. Phys. Chem., 97, 3453, 1993. 1993TRA/HOL 1993WAL/HUR Wallington, T.J., Hurley, M.D., Schneider, W.F., Sehested, J., and Nielsen, O.J., J. Phys. Chem., 97, 7606, 1993. Wavner, D.D.M. and Parker, V.D., Acc. Chem. Res., 26, 287, 1993. 1993WAY/PAR Zhang, X.M., J. Chem. Soc. Perkin Trans. 2, 2275, 1993. 1993ZHA Zhang, X.M., Bordwell, F.G., Vanderpuy, M., and Fried, H.E., J. Org. Chem., 1993ZHA/BOR 58, 3060, 1993. 1993ZHA/BOR(b) Zhang, X.M., Bordwell, F.G., Bares, J.E, Cheng, J.P., and Petrie, B.C., J. Org. Chem., 58, 3051, 1993. Bartmess, J.E., J. Phys. Chem., 98, 6420, 1994. 1994BAR Berkowitz, J., Ellison, G.B., and Gutman, D., J. Phys. Chem., 98, 2744, 1994. 1994BER/ELL 1994BOR/SAT Bordwell, F.G. and Satish, A.V., J. Am. Chem. Soc., 116, 8885, 1994. 1994BOR/ZHA Bordwell, F.G. and Zhang, X.M., J. Am. Chem. Soc., 116, 973, 1994. Bordwell, F.G., Zhang, X.M., Satish, A.V., and Cheng, J.P., J. Am. Chem. Soc., 1994BOR/ZHA(b) 116, 6605, 1994. Bowers, M.T., Acc. Chem. Res., 27, 324, 1994. 1994BOW 1994BUL/WAL Bullock, W.J., Walsh, R., and King, K.D., J. Phys. Chem., 98, 2595, 1994. Bushnell, J.E., Kemper, P.R., Maitre, P., and Borers, M.T., J. Am. Chem. Soc., 1994BUS/KEM 116, 9710, 1994.

1994CAR/LAY Carson, A.S., Laye, P.G., Pedley, J.B., and Welsby, A.M., J. Chem.

Thermodynam., 26, 1103, 1994.

1994CHA/GRI Chatgilialoglu, C., Griller, D., Kaminska, J.M.K., and Lossing, F.P., J. Chem.

Soc. Perkin Trans. 2, 357, 1994.

1994COO/PAT Cooks, R.G., Patrick, J.S., Kotiaho, T., and McLuckey, S.A., Mass Spectrom.

Rev., 13, 287, 1994.

Coronel, M.E.J. and Colussi, A.J., J. Chem. Soc. Perkin Trans. 2, 785, 1994. 1994COR/COL 1994DOU/MAC Doughty, A. and Mackie, J., J. Chem. Soc. Faraday Trans., 90, 541, 1994.

Frenkel, M., Kabo, G.J., Marsh, K.N., Roganov, G.N., and Wilhoit, R.C., 1994FRE/KAB Thermodynamics of Organic Compounds in the Gas State, Volume 1 and 2, Thermodynamics Research Center, College Station, TX, 1994. 1994GUR/VEY Gurvich, L.V., Veyts, I.V., and Alcock, C.B., Thermodynamics Properties of Individual Substances, 4th ed., Vol. III, CRC Press, Boca Raton, 1994. 1994JEF/NIC Jefferson, A., Nicovich, J.M., and Wine, P.H., J. Phys. Chem., 98, 7128, 1994. 1994JON/LIN Jonsson, M., Lind, J., Eriksen, T.E., and Merenyi, G., J. Am. Chem. Soc., 116, 1423, 1994. Kalinovski, I.J. and Gutman, D., J. Phys. Chem., 98, 9551, 1994. 1994KAL/GUT Knyazev, V.D., Dubinsky, I.A., Slagle, I.R., and Gutman, D., J. Phys. Chem., 98, 1994KNY/DUB 11108, 1994. 1994KUO/ZHA Kuo, S.C., Zhang, Z., and Klemm, R.B., J. Phys. Chem., 98, 4026, 1994. Lias, S.G., Liebman, J.F., Levin, R.D., and Kafafi, S.A., NIST Standard 1994LIA/LIE Reference Database 19A, Version 2–01, Washington, D.C., 1994. Lucarini, M., Pedulli, G.F., and Cipollone, M., J. Org. Chem., 59, 5063, 1994. 1994LUC/PED 1994MOR/ASH Mordaunt, D.H. and Ashfold, M.N.R., J. Chem. Phys., 101, 2630, 1994. 1994NIC/FRI Nickolaisen, S., Friedl, R.R., and Sander, S.P., J. Phys. Chem., 98, 155, 1994. NIST Standards Reference Database 25, Structure and Properties Database 1994NIST and Estimated Program, Version 2.01, 1994. 1994PAD/CHE Paddison, S.L., Chen, Y., and Tschuikow-Roux, E., Can. J. Chem., 72, 561, 1994. Pedley, J.B., Thermochemical Data and Structure of Organic Compounds, 1994PED Thermodynamics Research Center, Texas A&M University, College Station, 1994. 1994PET Peters, K.S., Angew. Chem. Int. Ed. Engl., 33, 294, 1994. Rakus, K., Vervkin, S.P., Schatzer, J., Beckhaus, H-D., and Ruchard, C., Chem. 1994RAK/VER Ber., 127, 1095, 1994. Ruscic, B. and Berkowitz, J., J. Chem. Phys., 101, 10936, 1994. 1994RUS/BER Ruscic, B. and Berkowitz, J., J. Chem. Phys., 101, 7975, 1994. 1994RUS/BER(b) 1994SCH/ARE Schraa, G.J., Arends, I.W.C.E., and Mulder, P., J. Chem. Soc. Perkin Trans. 2, 189, 1994. 1994SEE/KAL Seetula, J. A., Kalinovski, I.J., Slagle, I.R., and Gutman, D., Chem. Phys. Lett., 224, 533, 1994. Wenthold, R.G. and Squires, R.R., J. Am. Chem. Soc., 116, 6401, 1994. 1994WEN/SQU 1994WEN/SQU(b) Wenthold, R.G. and Squires, R.R., J. Am. Chem. Soc., 116, 11890, 1994. 1994YU/RAU Yu, D., Rauk, A. and Armstrong, D.A., J. Chem. Soc. Perkin Trans. 2, 2207, 1994. Zhang, X.M. and Bordwell, F.G., J. Am. Chem. Soc., 116, 4251, 1994. 1994ZHA/BOR Zhang, X.M. and Bordwell, F.G., Organometallics, 13, 2920, 1994. 1994ZHA/BOR(b) Zhang, X.M. and Bordwell, F.G., J. Am. Chem. Soc., 116, 904, 1994. 1994ZHA/BOR(c) 1994ZHA/BOR(d) Zhang, X.M. and Bordwell, F.G., J. Am. Chem. Soc., 116, 968, 1994. Zhang, X.M. and Bordwell, F.G., J. Org. Chem., 59, 6456, 1994. 1994ZHA/BOR(e) 1995ALN/ZHA Alnajjar, M.S., Zhang, X.M., Franz, J.A., and Bordwell, F.G., J. Org. Chem., 60, 4976, 1995. Arends, I.W.C.E., Mulder, P., Clark, K.B., and Wayner, D.D.M., J. Phys. Chem., 1995ARE/MUL 99, 8182, 1995. Armentrout, P.B., Acc. Chem. Res., 28, 430, 1995. 1995ARM Bordwell, F.G., Zhang, S., Zhang, X.M., and Liu, W.Z., J. Am. Chem. Soc., 117, 1995BOR/ZHA 7092, 1995. Bordwell, F.G. and Zhang, S., J. Am. Chem. Soc., 117, 4858, 1995. 1995BOR/ZHA(b)

Bordwell, F.G. and Zhao, Y., J. Org. Chem., 60, 6352, 1995.

1995BOR/ZHA(c)

Bordwell, F.G. and Zhang, X.M., J. Phys. Org. Chem., 8, 529, 1995. 1995BOR/ZHA(d) 1995BOY/NOZ Boyd, A.A., Noziere, B., and Lesclaux, R., J. Phys. Chem., 99, 10815, 1995. 1995BRI/SAL Brinkman, E.A., Salomon, K., Tumas, W., and Brauman, J. I., J. Am. Chem. Soc., 117, 4905, 1995. 1995BUC/JOH Buckley, T.J., Johnson, R.D., Huie, R.E., Zhang, Z., Kuo, S.C., and Klemm, B., J. Phys. Chem., 99, 4879, 1995. Chatgilialoglu, C., Chem. Rev., 95, 1229, 1995. 1995CHA 1995CHE/LIU Cheng, J.P. and Liu, H., Chin. Sci. Bull., 40, 1338, 1995. Cheng, J.P., Zhao, Y., and Huan, Z., Sci. China Ser. B: Chem. (Engl. Ed.), 38, 1995CHE/ZHA 1417, 1995. Davico, G.E., Bierbaum, V.M., DePuy, C.H., Ellison, G.B., and Squires, R.R., 1995DAV/BIE J. Am. Chem. Soc., 117, 2590, 1995. Denisov, E.T., Zh. Fiz. Khim., 69, 436, 1995. 1995DEN 1995HE He, Y., Shock Waves, Proc. Int. Symp., 1995, Sturtevant, B., Shepherd, J. E., Hornung, H.G., Eds., World Scientific, Singapore, 1995. 1995HSU/DEM Hsu, K.J. and DeMore, W.B., J. Phys. Chem., 99, 11141, 1995. 1995JON/LIN Jonsson, M., Lind, J., Merenyi, M., and Eriksen, T.E., J. Chem. Soc. Perkin Trans. 2, 61, 1995. 1995KNY/BEN Knyazev, V.D., Bencsura, A., Dubinsky, I.A., Gutman, D., Melius, C.F., and Senkan, S.M., J. Phys. Chem., 99, 230, 1995. Krasnoperov, L.N., Niiranen, J.T., Gutma, D., Melius, C.F., and Allendorf, M.D., 1995KRA/NII J. Phys. Chem., 99, 14347, 1995. 1995LEY/MAS Ley, L., Masanet, J., Caralp, F., and Lesclaux, R., J. Phys. Chem., 99, 1953, 1995. 1995LI/HOW Li, I., Howell, B.A., Matyjaszewski, K., Smith, P.B., and Priddy, D.B., Macromolecules, 28, 6692, 1995. Lund, H., Daasbjerg, K., Occhialini, D., and Pedersen, S.U., Russ. J. 1995LUN/DAA Electrochem., 31, 865, 1995. Robinson, M.S., Polak, M.L., Bierbaum, V.M., DePuy, C.H., and Lineberger, 1995ROB/POL W.C., J. Am. Chem. Soc., 117, 6766, 1995. 1995ROT/HUN Roth, W.R. and Hunold, F., Liebigs Ann. Chem., 1119, 1995. 1995TAK/PAS Takhistov, V.V., Pashina, T.A., Rodin, A.A., Ismagilov, N.G., and Orlov, V.M., Zh. Org. Khim., 31, 1666, 1995. Tumanov, V.E. and Denisov, E.T., Zh. Fiz. Khim., 69, 1572, 1995. 1995TUM/DEN 1995VER/GEO Veregin, R.P.N., Georges, M.K., Hamer, G.K., and Kazmaier, P.M., Macromolecules, 28, 4391, 1995. Wayner, D.D.M., Lusztyk, E., Page, D., Ingold, K.U., Mulder, P., Laarhoven, L.J.J., 1995WAY/LUS and Aldrich, H.S., J. Am. Chem. Soc., 117, 8737, 1995. Tsang, W. and Cui, J.P., Proceed. Int. Symp. Shock Waves, 19th, Marseille, 1995WIN/CUI Springer, Berlin, 1995. Zabel, F., Z. Phys. Chem., 188, 119, 1995. 1995ZAB Zhao, Y. and Bordwell, F.G., J. Org. Chem., 60, 3932, 1995. 1995ZHA/BOR 1996ARM/SUN Armstrong, D.A., Sun, Q., and Schuler, R.H., J. Phys. Chem., 100, 9892, 1996. Benson, S.W. and Cohen, N., in Computational Thermochemistry, ACS Symp. 1996BEN/COH

Ser., 677, 20, 1996.

1996BOR/ING

Born, M., Ingemann, S., and Nibbering, N.M.M., J. Phys. Chem., 100, 17662, 1996.

 1996BOR/LIU
 Bordwell, F.G. and Liu, W.Z., J. Am. Chem. Soc., 118, 10819, 1996.

 1996BOR/LIU(b)
 Bordwell, F.G. and Liu, W.Z., J. Am. Chem. Soc., 118, 8777, 1996.

1996BRO/BER Brown, S.S., Berghout, H.L., and Crim, F.F., J. Chem. Phys., 105, 8103, 1996.

Camaioni, D.M., Autrey, S.T., Salinas, T.B., and Franz, J.A., J. Am. Chem. Soc., 1996CAM/AUT 118, 2013, 1996. Chase, M.W. Ir., I. Phys. Chem. Ref. Data, 25, 1069, 1996. 1996CHA 1996CHA(b) Chase, M.W. Jr., J. Phys. Chem. Ref. Data, 25, 1297, 1996. 1996CHA(c) Chase, M.W. Jr., J. Phys. Chem. Ref. Data, 25, 551, 1996. Cohen, C., J. Phys. Chem. Ref. Data, 25, 1411, 1996. 1996COH Denisov, E.T., Zh. Fiz. Khim., 70, 260, 1996. 1996DEN Dixon, R.N., J. Chem. Phys., 104, 6905, 1996. 1996DIX Dobe, S., Berces, T., Turanyi, T., Marta, F., Grussdorf, J., Temps, F., and 1996DOB/BER Wagner, H. Gg., J. Phys. Chem., 100, 19864, 1996. Dubikhin, V.V., Matveev, V.G., and Nazin, G.M., Izvestiya Akademii Nauk, 1996DUB/MAT Seriya Khimicheskaya, No. 8, 1977, 1996. Ellison, G.B., Davico, G.E., Bierbaum, V.M., and DePuy, C.H., Int. J. Mass 1996ELL/DAV Spectrom. Ion Proces., 156, 109, 1996. Fulle, D., Hamann, H.F., Hippler, H., and Troe, J., J. Chem. Phys., 105, 983, 1996. 1996FUL/HAM 1996FUL/HIP Fulle, D. and Hippler, H., J. Chem. Phys., 105, 5423, 1996. 1996HEC/HIP Heckmann, E., Hippler, H., and Troe, J., 26th Sym. Int. Combust., Combustion Institute, Pittsburgh, 1996, 543 1996HUE/DUN Huey, L.G., Dunlea, E.J., and Howard, C.J., J. Phys. Chem., 100, 6504, 1996. 1996HUN/SHE Hung, W.C., Shen, M.Y., Lee, Y.P., Wang, N.S., and Cheng, B.M., J. Chem. Phys., 105, 7402, 1996. Johnson, R.D. and Hudgens, J.W., J. Phys. Chem., 100, 19874, 1996. 1996JOH/HUD Jonsson, M., J. Phys. Chem., 100, 6814, 1996. 1996JON 1996KAI/WAL Kaiser, E.W. and Wallington, T.J., J. Phys. Chem., 100, 4111, 1996 Lee, H.L., DePuy, C.H., and Bierbaum, V.M., J. Am. Chem. Soc., 118, 5068, 1996. 1996LEE/DEP Leeck, D.T., Li, R., Chyall, L.J., and Kenttamma, H.I., J. Phys. Chem., 100, 6608, 1996LEE/LI 1996. Liu, W.Z. and Bordwell, F.G., J. Org. Chem., 61, 4778, 1996. 1996LIU/BOR 1996LUC/PED Lucarini, M., Pedrielli, P., Pedulli, G.F., Cabiddu, S., and Fattuoni, C., J. Org. Chem., 61, 9259, 1996. 1996MEB/DIA Mebel, A.M., Diau, E.W., Lin, M.C., and Morokuma, K., J. Am. Chem. Soc., 188, 9759, 1996. Miyokawa, K., Ozaki, S., and Yano, T., Bull. Chem. Soc. Jpn., 69, 869, 1996. 1996MIY/OZA 1996MOR/ASH Mordaunt, D.H., Ashfold, M.N.R., and Dixon, R.N., J. Chem. Phys., 104, 6460, 1996. Nicovich, J.N., Wang, S., McKee, M.L., and Wine, P.H., J. Phys. Chem., 100, 1996NIC/WAN 680, 1996. Orlando, J.J. and Tyndall, G.S., J. Phys. Chem., 100, 19398, 1996. 1996ORL/TYN 1996SEE Seetula, J.A., J. Chem. Soc. Faraday Trans., 92, 3069, 1996. Skorobgatov, G.A., Dymov, B.P., and Nedozrelova, I.V., Russ. J. Gen. Chem., 1996SKO/DYM 66, 1777, 1996. 1996STA/ZAR Stanciuc, G., Zarna, N., Spataru, N., Constantinescu, T., Caragheorgheopol, A., and Caldararu, H., Rev. Roum. Chim., 41, 755, 1996. 1996TER/KAB Terentis, A.C. and Kable, S.H., Chem. Phys. Lett., 258, 626, 1996. 1996TSA Tsang, W., in Energetics of Organic Free Radicals, Simoes, J.A.M., Greenberg, A., and Liebman, J.F., Eds., Blackie Academic, New York, 1996, 22.

Wayner, D.D.M., Lusztyk, E., and Ingold, K.U., J. Org. Chem., 61, 6430,

Wilson, S.H.S., Howe, J.D., and Ashfold, M.N.R., Mol. Phys., 88, 841, 1996.

1996.

1996WAY/LUS

1996WIL/HOW

Zarcharah, M.R., Westmoreland, P.R., Burgess, D.R., Tsang, W., and Melius, C.F., 1996ZAR/WES I. Phys. Chem., 100, 8737, 1996. Zhang, X.M. and Bordwell, F.G., J. Org. Chem., 61, 51, 1996. 1996ZHA/BOR 1996ZHA/FRY Zhang, X.M., Fry, A.J., and Bordwell, F.G., J. Org. Chem., 61, 4101, 1996. 1996ZYR/DRO Zyrianov, M., Droz-Georget, T., Sanov, A., and Reisler, H., J. Chem. Phys., 105, 8111, 1996. 1997ARN/FLO Arnett, E.M., Flowers, R.A., Ludwig, R.T., Meekhof, A.E., and Walek, S.A., J. Phys. Org. Chem., 10, 499, 1997. Asher, R.L., Appelman, E.H., Tilson, J.L., Litorja, M., Berkowitz, J., and 1997ASH/APP Ruscic, B., J. Chem. Phys., 106, 9111, 1997. Asher, R.L. and Ruscic, B., J. Chem. Phys., 106, 210, 1997. 1997ASH/RUS 1997BEC/CAR Becerra, R., Carpenter, I.W., and Walsh, R., J. Phys. Chem. A, 101, 4185, 1997. 1997BEN/COH Benson, S.W. and Cohen, N., in *Peroxyl Radicals*, Alfassi, Z.B., Ed., John Wiley, New York, 1997, 49. Bordwell, F.G., Zhang, X.M., Eventova, I., and Rappoport, Z., J. Org. Chem., 1997BOR/ZHA 62, 5371, 1997. 1997CIO/LIU Cioslowski, J., Liu, G., and Moncrieff, D., J. Am. Chem. Soc., 119, 11452, 1997. 1997DEM/SAN DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J., Chemical kinetics and photochemical data for use in stratospheric modelling, IPL Publication 97-4, 1997. Dobis, O. and Benson, S.W., J. Phys. Chem. A, 101, 6030, 1997. 1997DOB/BEN 1997DOR/PUG Dorrestijn, E., Pugin, R., Nogales, M.V.C., and Mulder, P., J. Org. Chem., 62, 4804, 1997. Ellison, G.B., Davico, G.E., Bierbaum, V.M., and DePuy, C.H., Int. J. Mass 1997ELL/DAV Spectrom. Ion. Proc., 156, 109, 1997. Fulle, D., Hamann, H.F., Hippler, H., and Jansch, C.P., Ber. Bunsenges. Phys. 1997FUL/HAM Chem., 101, 1433, 1997. 1997HAR/EMR Hare, M., Emrick, T., Eaton, P.E. and Kass, S., J. Am. Chem. Soc., 119, 237, 1997. 1997JPL DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, JPL Publication 97-4, 1997. http://jpldataeval.jpl.nasa.gov 1997KIE/ZHA Kiefer, J.H., Zhang, Q., Kern, R.D., Yao, J., and Jursic, B., J. Phys. Chem. A, 101, 7061, 1997. Krasnoperov, L.N., Kalinovski, I.J., Niiranen, J.T., and Gutman, D., J. Phys. 1997KRA/KAL Chem. A, 101, 4929, 1997. Laarhoven, L.J.J., Born, J.G.P., Arends, I.W.C.E., and Mulder, P., J. Chem. Soc. 1997LAA/BOR Perkin Trans. 2, 2307, 1997. Laarhoven, L.J.J. and Mulder, P., J. Phys. Chem. B, 101, 73, 1997. 1997LAA/MUL Ling, Y. and Lifshitz, C., J. Mass Spectrom., 32, 1219, 1997. 1997LIN/LIF 1997LIT/RUS Litorja, M. and Riscis, B., J. Chem. Phys., 107, 9852, 1997. 1997MAC/WAY MacFaul, P.A., Wayner, D.D.M., and Ingold, K.U., J. Org. Chem., 62, 3413, 1997. 1997PAR/DYA Park, J., Dyakov, I.V., Mebel, A.M., and Lin, M.C., J. Phys. Chem. A, 101, 6043, 1997. Poutsma, J.C., Paulino, J.A., and Squires, R.R., J. Phys. Chem. A, 101, 5327, 1997. 1997POU/PAU

Romer, B., Janaway, G.A., and Brauman, J.I., J. Am. Chem. Soc., 119, 2249, 1997.

Ruchardt, C., Gerst, M., and Ebenhoch, J., Angew. Chem. Int. Ed. Engl., 36,

1406, 1997.

1997ROM/JAN

1997RUC/GER

van Scheppingen, W., Dorrestiin, E., Arends, I., and Mulder, P., I. Phys. Chem. A. 1997SCH/DOR 101, 5404, 1997. Schaffer, F., Verevkin, S.P., Rieger, H.-J., Beckhaus, H.-D., and Ruchardt, C., 1997SCH/VER Liebios, Ann. Recueil., 1333, 1997. 1997SEE/SLA Seetula, J.A., and Slagle, I.R., J. Chem. Soc. Faraday Trans., 93, 1709, 1997. 1997VER Verevkin, S.P., Thermochimica Acta, 307, 17, 1997. 1997WAY/CLA Wayner, D.D.M., Clark, K.B., Rauk, A., Yu, D., and Armstrong, D.A., J. Am. Chem. Soc., 119, 8925, 1997. Welle, F.M., Beckhaus, H.-D., and Ruchardt, C., J. Org. Chem., 62, 552, 1997. 1997WEL/BEC 1997WRI/CAR Wright, J.S., Carpenter, D.J., McKay, D.J., and Ingold, K.U., J. Am. Chem. Soc., 119, 4245, 1997. 1997ZHA/BOR Zhao, Y., Bordwell, F.D., Cheng, J.P., and Wang, D., J. Am. Chem. Soc., 119, 9125, 1997. 1997ZHA/CHE Zhao, H.Q., Cheung, Y.S., Liao, C.L., Liao, C.X., Ng, C.Y., and Li, W.K., J. Chem. Phys., 107, 7230, 1997. 1997ZHA/LIN Zhao, R., Lind, J., Merenyi, G., and Eriksen, T.E., J. Chem. Soc. Perkin Trans. 2, 569, 1997. Zhu, Q., Zhang, X.M., and Fry, A.J., Polymer Degrad. Stability, 57, 43, 1997. 1997ZHU/ZHA 1998ANN/FRA Anne, A., Fraoua, S., Grass, V., Moiroux, J., and Saveant, J.M., J. Am. Chem. Soc., 120, 2951, 1998. Aubry, C., Holmes, J.C., and Walton, J.C., J. Phys. Chem., A 102, 1389, 1998. 1998AUB/HOL Becerra, R., Boganov, S.E., Egorov, M.P., Faustov, V.I., Nefedov, O.M., and 1998BEC/BOG Walsh, R., J. Am. Chem. Soc., 120, 12657, 1998. 1998BEC/WAL Becerra, R. and Walsh, R., in The Chemistry of Organic Silicon Compounds, vol. 2, Rappoport, Z. and Apeloig, Y., Ed., John Wiley & Sons, 1998, chap. 4. Berho, F., Caralp, F., Rayez, M.T., and Lesclaux, R., J. Phys. Chem. A, 101, 1, 1998BER/CAR 1998. Bordwell, F.G. and Liu, W.Z., J. Phys. Org. Chem., 11, 397, 1998. 1998BOR/LIU 1998BOR/ZHA Bordwell, F.G., Zhao, Y., and Cheng, J.P., J. Phys. Org. Chem., 11, 10, 1998. 1998BRO/BEC Brocks, J., Beckhaus, H.D., Athelstane, L.J.B., and Ruchardt, C., J. Org. Chem., 63, 1935, 1998. Chase, M.W. Jr., NIST-JANAF Thermochemical Table, 4th ed., J. Phys. Chem. Ref. 1998CHA Data, 1998, Monograph 9. 1998CHE/LIU Cheng, J.P., Liu, B., and Zhang, X.M., J. Org. Chem., 63, 7574, 1998. Cheng, J.P., Liu, B., Zhao, Y., and Zhang, X.M., J. Org. Chem., 63, 7072, 1998. 1998CHE/LIU(b) 1998CHE/LU Cheng, J.P., Lu, Y., Liu, B., Zhao, Y., Wang, D., Sun, Y., and Mi, J., Sci. China Ser. B, 41, 215, 1998. Cheng, J.P., Wang, K., Yin, Z., and Lu, Y., Tetradron Lett., 39, 7925, 1998. 1998CHE/WAN 1998CHE/XIA Cheng, J.P., Xian, M., Wang, K., and Zhu, X., J. Am. Chem. Soc., 120, 10266, 1998. Clifford, E.P., Wenthold, P.G., Gareyev, R., Lineberger, W.C., DePuy, C.H., 1998CLI/WEN Bierbaum, V.M., and Ellison, G.B., J. Chem. Phys., 109, 10293, 1998. 1998COL/GRE Colussi, A.J. and Grela, M.A., Int. J. Chem. Kinet., 30, 41, 1998. 1998DEN Denisov, E.T., Russ. Chem. Bull., 47, 1274, 1998. 1998DET/ERV DeTuri, V.F. and Ervin, K.M., Int. J. Mass Spectrom. Ion Proc., 175, 123, 1998. 1998DOS/SIM dos Santos, R.M.B. and Simoes, J.A.M., J. Phys. Chem. Ref. Data, 27, 707, 1998. Jonsson, M., Wayner, D.D.M., Armstrong, D.A., Yu, A., and Eauk, A., J. Chem. 1998JON/WAY

Soc. Perkin Trans. 2, 1967, 1998.

Knyazev, V.D., Bencsura, A., and Slagle, I.R., J. Phys. Chem. A, 102, 1760, 1998.

1998KNY/BEN

Knyazev, V.D. and Slagle, I.R., J. Phys. Chem. A, 102, 8932, 1998. 1998KNY/SLA 1998KNY/SLA(b) Knyazev, V.D. and Slagle, I.R., J. Phys. Chem. A, 102, 1770, 1998. 1998KOT/MAR Kothe, T., Marque, S., Martschke, R., Popov, M., and Fischer, H., J. Chem Soc. Perkin Trans. 2, 1553, 1998. 1998LEB/CHI Lebedev, V.P., Chironov, V.V., Vorob'eva, V.P., and Matyushin, Y.N., Khim. Fiz., 17, 54, 1998. Lind, J. and Merenyi, G., in N-Centered Radicals, Alfassi, Z.B., Ed., Wiley, New 1998LIN/MER York, 1998, 563. Litorja, M. and Ruscis, B., Electron Spectrosc. Relat. Phenom., 1998, 97, 131. 1998LIT/RUS Nash, J.J. and Squires, R.R., J. Mass Spectrom. Ion Proc., 175, 215, 1998. 1998NAS/SQU NIST Chemistry Webbook, Mallard, W.G., Ed., http://webbook.nist.gov. 1998NIST Seetula, J.A., J. Chem. Soc. Faraday Trans., 94, 891, 1998. 1998SEE Skene, W.G., Belt, S.T., Conolly, T.J., Hahn, P., and Scaiano, J.C., 1998SKE/BEL Macromolecules, 31, 9103, 1998. Skorobogatov, G.A., Dymov, B.P., Sterba, R., and Tschuikow-Roux, E., Russ. J. 1998SKO/DYM Gen. Chem., 68, 1104, 1998. 1998SMI Smith, D.W., J. Phys. Chem. A, 102, 7086, 1998. Zhao, R., Lind, J., Merenyi, G., and Eriksen, T.E., J. Am. Chem. Soc., 120, 2811, 1998ZHA/LIN 1998. Zhao, R., Lind, J., Merenyi, G., and Eriksen, T.E., J. Am. Chem. Soc., 120, 2116, 1998ZHA/LIN(b) 1998. Abboud, J.L.M. and Notario, R., in Energetics of Stable Molecular and Reactive 1999ABB/NOT Intermediates, NATO Sci. Ser. C, 535, 281, 1999. 1999AHM/PET Ahmed, M., Peterka, D.S., and Suits, A.G., J. Chem. Phys., 110, 4248, 1999. Armstrong, D.A., in S-Centered Radicals, Alfassi, Z.B., Ed., John Wiley, 1999ARM New York, 1999, Chapter 2. Armstrong, D.A., in N-Centered Radicals, Alfassi, Z.B., Ed., John Wiley, 1999ARM(b) New York, 1999, Chapter 23. 1999ATK/BAU Atkinson, R., Baulsh, D.L., Cox, R.A., Hampson, R.F. Jr., Kerr, J.A., Rossi, M.J., and Troe, J., J. Phys. Chem. Ref. Data, 28, 191, 1999. 1999BIS/CHI Bise, R.T., Chio, H., and Neumark, D.M., J. Chem. Phys., 111, 4923, 1999. 1999BIS/CHO(b) Bise, R.T., Choi, H., Perdson, H.B., Mordaunt, D.H., and Neumark, D.M., I. Chem. Phys., 110, 805, 1999. 1999BIZ/CAB Bizarro, M.M., Cabral, B.C.C., dos Santos, R.M., and Simoes, J.A.M., Pure Appl. Chem., 71, 1249, 1999. Broadus, K.M. and Kass, S.R., J. Chem. Soc. Perkin Trans. 2, 2389, 1999. 1999BRO/KAS Burcal A., J. Phys. Chem. Ref. Data, 28, 63, 1999. 1999BUR Ciriano, M.V., Korth, H.G., van Scheppingen, W.B., and Mulder, P., J. Am. 1999CIR/KOR Chem. Soc., 121, 6375, 1999. Cohen, N., in General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., 1999COH John Wiley, New York, 1999, 317.

J. Org. Chem., 64, 427, 1999.

1999DOR/HEM Dorrestijn, E., Hemmink, S., Hulstman, G., Monnier, L., van Scheppingen, W., and Wulder, P., Eur. J. Org. Chem., 607, 1999.

DeTuri, V.F. and Ervin, K.M., J. Phys. Chem., 103, 6911, 1999.

Dombrowski, G.W., Dinnoncenzo, J.P., Farid, S., Goodman, J.L., and Gould, I.R.,

1999FLO/DAV Flores, H., Davalos, J.Z., Abboud, J.L.M., Castano, O., Gomperts, R., Jimenez, P., Notario, R., and Roux, M.V., J. Phys. Chem. A, 103, 7555, 1999.

1999HEE/KOR de Heer, M.I., Korth, H.G., and Mulder, P., J. Org. Chem., 64, 6969, 1999.

1999DET/ERV

1999DOM/DIN

1999HUN/GRA Hung, R.R. and Grabowski, J.J., J. Am. Chem. Soc., 121, 1359, 1999.

1999JUR Jursic, B.S., J. Mol. Struc. (Theochem.), 467, 173, 1999.

1999LAA/MUL Laarhoven, L.J.J., Mulder, P., and Wayner, D.D.M., Acc. Chem. Res., 32, 342, 1999. 1999LUC/PED Lucarini, M., Pedrielli, P., Pedulli, G.F., Valgimigli, L., Gigmes, D., and Tordo, P.,

J. Am. Chem. Soc., 121, 11546, 1999.

1999MCM McMahon, T.B., in Energetics of Stable Molecules and Reactive Intermediates,

NATO Sci. Ser. C, 535, 259, 1999.

1999MIY/TSC Miyokawa, K. and Tschuikow-Roux, E., *Bull. Chem. Soc. Jpn.*, 72, 1, 1999. 1999RUS/LIT Ruscic, B., Litorja, M., and Asher, R., *J. Phys. Chem.*, A 103, 8625, 1999.

1999SAN/LAG Santos, R.M.B., Lagoa, A.L.C., and Simoes, J., J. Chem. Thermodynam., 31,

1483, 1999.

1999SEE Seetula, J.A., Phys. Chem. Chem. Phys., 1, 4727, 1999.

1999SEN/IKE Sendt, K., Ikeda, E., Bacskay, G.B., and Mackie, J.C., J. Phys. Chem., A 103,

1954, 1999.

1999SIM/SIL Simoes, J.A.M. and da Silva, M.A.V.R., in Energ. Stable Mol. React. Intermed.,

NATO Sci. C, 535, 1, 1999.

1999TSA Tsang, W., in Energ. Stable Mol. React. Intermed., NATO Sci.Ser. C, 535, 323, 1999.

1999VER Verevkin, S.P., *J. Chem. Eng. Data*, 44, 1245, 1999. 1999VER(b) Verevkin, S.P., *Thermochimica Acta*, 332, 27, 1999. 1999VER(c) Verevkin, S.P., *Thermochimica Acta*, 326, 17, 1999.

1999ZHA/LIN Zhao, R., Lind, J.L., Merenyi, G., and Eriksen, T.E., J. Phys. Chem. A, 103, 71, 1999.

1999ZHA/XU Zhang, J., Xu, K., and Amarel, G., Chem. Phys. Lett., 299, 285, 1999.

2000-2002

2000ART/NIZ Artau, A., Nizzi, E., Hill, B.T., Sunderlin, L.S., and Wenthold, P.G., J. Am.

Chem. Soc., 122, 10667, 2000.

2000ATK/BAU Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F. Jr., Kerr, J.A., Rossi, M.J.,

and Troe, J., J. Phys. Chem. Ref. Data, 29, 167, 2000.

2000BIS/HOO Bise, R.T., Hoops, A.A., and Neumark, D.M., J. Chem. Phys., 113, 1, 2000.

2000BOR/ING Born, M., Ingemann, S., and Nibbering, N.M.N., Int. J. Mass Spectrom., 194,

103, 2000.

2000BRO/KAS(a) Broadus, K.M., Kass, S.R., Osswald, T., and Prinzbach, H., J. Am. Chem. Soc.,

122, 10964, 2000.

2000BRO/KAS(b) Brodus, K.M. and Kass, S.R., J. Org. Chem., 65, 6566, 2000.

2000CHE/BOZ Chen, C.J. and Bozzelli, J.W., J. Phys. Chem., A 104, 4997, 2000.

2000CHE/LIU Cheng, J.P., Liu, B., Zhao, Y., Wen, Z., and Sun, Y., J. Am. Chem. Soc., 22, 9987,

2000.

2000CHE/LU Cheng, J.P., Lu, Y., Zhu, X.Q., Sun, Y., Bi, F., and He, J., J. Org. Chem., 65, 3853,

2000.

2000COO/LAN Cook, P.A., Langford, S.R., Ashfold, M.N.R., and Dixon, R.N., J. Chem. Phys.,

113, 994, 2000.

2000DEN/DEN Denisov, E.T. and Denosova, T.G., Handbook of Antioxidants, CRC Press,

New York, 2000.

2000DEN/KHU Denisov, E.T. and Khursan, Russ. J. Phys. Chem., 74, Suppl. 3, S491–7, 2000.

2000FER/ALC Fernandez-Morata, F., Alcami, M., and Gonzalez, L. and Yanez, M., J. Phys.

Chem. A, 104, 8075, 2000.

2000GUT/GAL Guthrie, J.P. and Gallant, R.T., Can. J. Chem., 78, 1295, 2000.

Gilles, M.K., Talukdar, R.K., and Ravishankara, A.R., J. Phys. Chem. A, 104, 2000GIL/TAL 8945, 2000. 2000GLA/MAK Glasovac, Z. and Maksic, M.E., J. Org. Chem., 65, 1818, 2000. Hammad, L.A. and Wenthold, P.W., J. Am. Chem. Soc., 122, 11203, 2000. 2000HAM/WEN 2000HAR/HWA Harich, S.A., Hwang, D.W.H., Yang, X., Lin, J.M., Yang, X., and Dixon, R.N., J. Chem. Phys., 113, 10073, 2000. Kiraly, Z., Kortvelyesi, T., and Seres, L. Phys. Chem. Chem. Phys., 2, 349, 2000. 2000KIR/KOR 2000KOS/MIR Kostikova, L.M., Miroshnichemko, E.A., and Matyushin, Y.N., Inter. Ann. Conf. of ICT, 31st. 2000, 50/1, Karlsruhe, Germany. Kranenburg, M., Ciriano, M.V., Cherkasov, A., and Mulder, P., J. Phys. Chem. A, 2000KRA/CIR 104, 915, 2000. 2000LAF/SZA Lafleur, R.D., Szatary, B., and Baer, T., J. Phys. Chem., A 104, 1450, 2000. 2000LU/ZHU Lu, J.M., Zhu, X.Q., Li, Q., He, J.Q., Xian, M., and Cheng, J.P., Chem. J. Chinese Univ., 21, 570, 2000. 2000MIR/VOR Miroshichenko, E.A., Vorobeva, V.P., and Matyushin, Y.N., Khimicheskaya Fizika, 19(6), 40, 2000. Pedconi, F.F. and Coronel, E.J., An. Asoc. Quim. Argent., 88, 53, 2000. 2000PED/COR Reed, D.R. and Kass, S.R., J. Mass Spectrom., 35, 534, 2000. 2000REE/KAS 2000REI/PRA Reints, W., Pratt, D.A., Korth, H.G., and Mulder, P., J. Phys. Chem. A, 104, 10713, 2000. Ruscic, B. and Litorja, M., Chem. Phys. Lett., 316, 45, 2000. 2000RUS/LIT Seetula, J.A., Phys. Chem. Chem. Phys., 2, 3807, 2000. 2000SEE Shi, Y. and Ervin, K.M., Chem. Phys. Lett., 318, 149, 2000. 2000SHI/ERV 2000SMI/GOL Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Doldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, C.J., Lissianski, V.V., and Qin, Z., GRI-Mech, 2000, http://www.me.berkeley. edu.gri_mech Verevkin, S.P., J. Chem. Thermodynamics, 32, 207, 2000. 2000VER 2000WAL/MCC Walton, J.C., McCarroll, A.J., Chen, Q., Carboni, B., and Nziengui, R., J. Am. Chem. Soc., 122, 5455, 2000. 2000XIA/ZHU Xian, M., Zhu, X.Q., Lu, J., Wen, Z., and Cheng, J.P., Organic Lett., 2, 265, 2000. Yamada, T., Bozzelli, J.W., and Lay, T.H., Int. J. Chem. Kinet., 37, 435, 2000. 2000YAM/BOZ Zhang, F.F., Li, G., Yin, H.F., Chen, H.L., and Zhang, S.Y., Wuji Huaxue 2000ZHA/LI Xuebao, 16, 144, 2000. Zhao, R., Lind, J., Merenyi, G., Jonsson, M., and Reiksen, T.E., J. Phys. Chem. A, 2000ZHA/LIN 104, 8524, 2000. Zheng, Z.R., Evans, D.H., and Nelsen, S.F., J. Org. Chem., 65, 1793, 2000. 2000ZHE/EVA Zhu, X.Q., He, J.Q., Li, Q., Xian, M., Lu, J., and Cheng, J.P., J. Org. Chem., 65, 2000ZHU/HE 6729, 2000. 2001BEC/CAN Becerra, R., Cannady, J.R., and Walsh, R., J. Phys. Chem., A 105, 1897, 2001. 2001BIS/HOO Bise, R.T., Hoops, A.A., and Neumark, D.M., J. Chem. Phys., 114, 9000, 2001. Blanksby, S.J., Ramond, T.M., Davico, G.E., Nimlos, M.R., Kato, S., Bierbaum, M., 2001BLA/RAM Lineberger, W.C., Ellison, G.B., and Okaumura, M., J. Am. Chem. Soc., 123, 9596, 2001. Bouchoux, G., Chamot, R.J., Leblanc, D., Mourgues, P., and Sablier, M., Chem. 2001BOU/CHA Phys. Chem., 2, 235, 2001. Bozzelli, J.W. and Jung, D., J. Phys. Chem., A 105, 3942, 2001. 2001BOZ/JUN

2001CHI/KEN Chim, R.Y.L., Kennedy, R.A., Tuckett, R.P., Zhou, W., Jarvis, G.K., Collins, D.J.,

and Hatherly, P.A., J. Phys. Chem. A, 105, 8403, 2001.

2001DAS Das, T.N., J. Phys. Chem. A, 105, 5954, 2001.

2001DOR/NOV Dorofeeva, O., Novikov, V.P., and Neumann, D.B., J. Phys. Chem. Ref. Data, 30,

475, 2001.

2001ERV Ervin, K.M., Chem. Rev., 101, 391, 2001.

2001ERV/RAM Ervin, K.M., Ramond, T.M., Davoco, G.E., Schwartz, R.L., Casey, S.M., and

Lineberger, W.C., J. Phys. Chem. A, 105, 10822, 2001.

2001HAM/WEN Hammad, L.A. and Wenthold, P.G., J. Am. Chem. Soc., 123, 12311, 2001.

2001IMR/DOB Imrik, K., Dobe, S., and Berces, T., Int. J. Chem. Kinet., 33, 49, 2001.

2001IUPAC IUPAC Subcommittee for Gas Kinetic Data Evaluation,

http://www.iupac-kinetic.ch.cam.ac.uk

2001KLE/THO Klemm, R.B., Thorn, R.P., Stief, L.J., Buckley, T.J., and Johnson, R.D., J. Phys.

Chem. A, 105, 1638, 2001.

2001LAG/DIO Lagoa, A.L.C., Diogo, H.P., Dias, M.P., de Piedade, M.E.M., Amaral, L.M.P.F.,

da Silva, M.A.V.R., Simoes, J.A.M., Guedes, R.C., Cabral, B.J.C., Schwarz, K.,

and Epple, M., Chem. Eur. J., 7, 483, 2001.

2001LAR/SQU Lardin, H.A., Squires, R.R., and Wenthold, P.G., J. Mass Spectrom., 36, 607, 2001.

2001LAZ/PRO Lazarou, Y.G., Promitis, A.V., Paradimitriou, V.C., and Paragiannakopoulos, P.,

J. Phys. Chem. A, 105, 6729, 2001.

2001LU/WIT Lu, J.M., Wittbrodt, J.M., Wang, K., Wen, Z., Schlegel, H.B., Wang, P.G., and

Cheng, J.P., J. Am. Chem. Soc., 123, 2903, 2001.

2001LUC/PED Lucarini, M., Pedulli, G.F., Valgimigli, L., Amorati, R., and Minisci, F., J. Org.

Chem., 66, 5456, 2001.

2001MAL/JON Malmstrom, J., Jonsson, M., Cotgreave, I.A., Hammarstrom, L., Sjodin, M.,

and Engman, L., J. Am. Chem. Soc., 123, 3434, 2001.

2001MAN/AMA Manuel, E., Amaral, L.M.P.F., de Silva, R.M.A.V., Simoes, J.A.M., Guedes, R.C.,

Cabral, B.C., Schwarz, K., and Epple, M., Chem. Eur. J., 7, 483, 2001.

2001MOR/RIV Morgon, N.H. and Riveros, J.M., Int. J. Mass Spectrom., 210/211, 173, 2001.

2001ORL Orlov, Y.D., *Int. Ann. Conference of ICT*, 32nd, 92/1, 2001, Karlsruhe, Germany. 2001ORL/LAV Orlov, Yu. D., Lavrov, V.O., and Lebedev, Y.A., *Russ. Chem. Bull.*, 50, 963, 2001.

2001ORL/TUR Orlov, Yu. D, Turovtsev, V.V., and Lebedev, Y.A., Russ. Chem. Bull., 50, 1570,

2001.

2001PRA/DIL Pratt, D.A., DiLabio, G.A., Brigati, G., Pedulli, G.F., and Valgimigli, L., J. Am.

Chem. Soc., 123, 4625, 2001.

2001PRA/HEE Pratt, D.A., de Heer, M.I., Mulder, P., and Ingold, K.U., J. Am. Chem. Soc., 123,

5518, 2001.

2001ROY/UNK Roy, K., Unkhoff, M.B., Frank, P., and Just, T., Int. J. Chem. Kinet., 33, 821, 2001.

2001SAN/MUR dos Santos, R.M.B., Muralha, V.S.F., Correie, C.F., and Simoes, J.A.M., J. Am.

Chem. Soc., 123, 12670, 2001.

2001SEN/HAN Senosiain, J.P., Han, J.H., Musgrave, C.B., and Golden, D.M., Faraday Discuss.,

119, 173, 2001.

2001SIL/MAT Silva, M.A.V.R., Matos, M.A.R., Miranda, M.S., Sousa, M.H.F.A., dos Santos,

R.M.B., Bizarror, M.M., and Simoes, J.A.M., Struc. Chem., 12, 171, 2001.

2001SUN/BOZ Sun, H. and Bozzelli, J.W., J. Phys. Chem., A 105, 4504, 2001.

2001SUN/BOZ(b) Sun, H. and Bozzelli, J.W., J. Phys. Chem., A 105, 9543, 2001.

20013C1V, BOZ(b) Suit, 11. and Bozzeni, J. VV., J. 1 hys. Chem., A 103, 7545, 2001.

2001TUM/DEN Tumanov, V.E. and Denisov, E.T., Neftekhimiya, 41, 109, 2001.

2001VER/HEI Verevkin, S.P. and Heintz, A., *J. Chem. Eng. Data*, 46, 984, 2001.

Galsovac, Z., Maksic, M.E., Dacres, J.E., and Kass, S.R., J. Chem. Soc. Perkin 2002GAL/MAK Trans. 2, 410, 2002. Karty, J.M., Janaway, G.A., and Brauman, J.I., J. Am. Chem. Soc., 124, 5213, 2002. 2002KAR/JAN 2002KIR/TSC Kiracofe, J.C.R., Tschumper, G.S., and Schaefer III, H.F., Chem. Rev., 102, 231, 2002. 2002KOS/MIR Kostikova, L.M., Miroshnichenko, E.A., Matyushin, Y.N., Vorobev, A.B., and Inozemtcev, Int. Ann. Conf. of ICT, 33rd, 86/1, 2002, Karlsruhe, Germany. 2002KRO/TUM Kromkin, E.A., Tumanov, V.E., and Denisov, E.T., Neftekhimiya, 42, 3, 2002. 2002LAG/DIO Lagoa, A.L.C., Diogo, H.P., Piedade, M.E.M., Amaral, L.M.P.E., Guedes, R.C., Cabral, B.J.C., Kulikov, D.V., Verevkin, S.P., Siedler, M., and Epple, M., J. Phys. Chem., A 106, in press. Lalevee, J., Allonas, X., and Fouassier, J.P., J. Am. Chem. Soc., 124, 9613, 2002. 2002LAL/ALL 2002LI/BAE Li, Y. and Baer, T., J. Phys. Chem. A, 106, 272, 2002. 2002LUC/MUG Lucarini, M., Mugnaini, V., and Pedulli, G.F., J. Org. Chem., 67, 928, 2002. Matyushin, Y.N., Lebedev, V.P., Miroshnichenko, E.A., Vorobeva, V.P., 2002MAT/LEB Chironov, V.V., Kostikova, L.M., and Inozemtcev, J.O., Int. Ann. Conf. of ICT, 33rd, 84/1, 2002, Karlsruhe, Germany. Minisci, F., Punta, C., Recupero, F., Fontana, F., and Pedulli, G.F., Chem 2002MIN/PUN Commun., 7, 688, 2002. 2002NIST Computational Chemistry Comparison and Benchmark Database, May 2002, http://srdata.nist.gov/cccbdb. 2002PAR/CHA Park, J., Chakraborty, D., Jamindar, S., Xia, W.S., Lin, M.C., and Bedford, C., Thermochimica Acta, 394, 101, 2002. 2002POU/UPS Poutsma, J.C., Upshaw, S.D., Squires, R.R., and Wenthold, P.G., J. Phys. Chem. A, 106, 1067, 2002. Pratt, D.K., DiLabio, G.A., Valgimigli, L., Pedulli, G.F., and Ingold, K.U., 2002PRA/DIL J. Am. Chem. Soc., 124, 11085, 2002. Ramond, T.M., Blanksby, S.J., Kato, S., Bierbaum., V.M., Davico, G.E., 2002RAM/BLA Schwartz, R.L., Lineberger, W.C., and Ellison, G.B., J. Phys. Chem., A 106, in 2002REE/KAS Reed, D.R., Kass, S.R., Mondanaro, K.R., and Daily, W.P., J. Am. Chem. Soc., 124, 2790, 2002. 2002RUS/WAG Ruscic, B., Wagner, A.F., Harding, L.B., Asher, R.L., Feller, D., Dixon, D.A., Peterson, K.A., Song, Y., Qiam. X.X., Ng, C.Y., Liu, J., Chen, W., and Schwenke, D.W., J. Phys. Chem. A, 106, 2727, 2002. dos Santos, R.M.B., Muralha, V.S.F., Correia, C.F., Guedes, R.C., Cabral, B.J.C., 2002SAN/MUR and Simoes, J.A.M., J. Phys. Chem., A 106, in press, 2002. Sebbar, N., Bockhorn, H., and Bozzelli, J.W., Phys. Chem. Phys., 4, 3691, 2002. 2002SEB/BOC

Arunan, E., Vijayalashmi, S.P., Valera, R., and Setser, D.W., Phys. Chem., 4, 51,

Becerra, R., Boganov, S.E., Egorov, M.P., Faustov, V.I., Krylova, I.V., Nefedov, O.M.,

Brigati, G., Lucarini, M., Mugnaini, V., and Pedulli, G.F., J. Org. Chem.,

CRC Handbook of Chemistry and Physics, 82d ed., D.E. Lide, Ed., Boca Raton,

and Walsh, R., J. Am. Chem. Soc., 124, 7555, 2002.

Drozdova, T.I. and Denisov, E.T., Kinet. Catal., 43, 14, 2002.

Ervin, K.M. and DeTuri, V.F., J. Phys. Chem., A 106, in press.

FL, http://www.hbcpnetbase.com/hbcp/.

2002ARU/VII

2002BEC/BOG

2002BRI/LUC

2002DRO/DEN

2002EVR/DET

2002CRC

2002.

67, 2002, 4828.

2002SEE Seetula, J.A., Phys. Chem. Chem. Phys., 4, 455, 2002.

2002SUN/BOZ Sun, H. and Bozzelli, J.W., J. Phys. Chem., A 106, 3947, 2002.

2002SON/GOL Song, S., Golden, D.M., Hanson, R.K., and Bowman, C.T., J. Phys. Chem. A,

106, 6094, 2002.

2002VER/HEI Verevkin, S.P. and Heintz, A., J. Chem. Soc. Perkin Trans., 2, 728, 2002.

2002VER/KRA Verevkin, S.P., Krasnykh, E.L., and Wright, J.S., J. Phys. Chem., A 106, in press.

2002ZHU/BOZ Zhu, L. and Bozzelli, J.W., J. Phys. Chem., A 106, 345, 2002.