AULA 10: Exercício teórico Tabelas Hash

Aluno: Gian Franco Joel Condori Luna

November 6, 2024

Exercices

1 (0,2) Mostre a inserção das chaves 5, 28, 19, 15, 20, 33, 12, 17, 10 em uma tabela hash com colisões resolvidas por encadeamento. Seja a tabela com 9 posições, e seja a função hash $h(k) = k \mod 9$.

Solução:

- Posições: m=9.

- Função hash: $h(k) = k \mod 9$.

- Chaves: 5, 28, 19, 15, 20, 33, 12, 17, 10.

Índice	Chaves
0	
1	
2	
3	
4	
5	
6	
7	
8	

1. Inserindo 5:

• $5 \to h(5) = 5 \mod 9 = 5$

Índice	Chaves
0	
1	
2	
3	
4	
5	5
6	
7	
8	

2. Inserindo 28:

$$\bullet \ 28 \rightarrow h(28) = 28 \ \operatorname{mod} \ 9 = 1$$

Índice	Chaves
0	
1	28
2	
3	
4	
5	5
6	
7	
8	

3. Inserindo 19:

• 19
$$\rightarrow h(19) = 19 \mod 9 = 1$$
 (colisão com 28)

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	
3	
4	
5	5
6	
7	
8	

4. Inserindo 15:

$$\bullet \ 15 \rightarrow h(15) = 15 \ \operatorname{mod} \ 9 = 6$$

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	
3	
4	
5	5
6	15
7	
8	

5. Inserindo 20:

$$\bullet \ 20 \rightarrow h(20) = 20 \ \operatorname{mod} \ 9 = 2$$

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	20
3	
4	
5	5
6	15
7	
8	

6. Inserindo 33:

•
$$33 \rightarrow h(33) = 33 \mod 9 = 6$$
 (colisão com 15)

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	20
3	
4	
5	5
6	$15 \rightarrow 33$
7	
8	

7. Inserindo 12:

$$\bullet \ 12 \rightarrow h(12) = 12 \mod 9 = 3$$

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	20
3	12
4	
5	5
6	$15 \rightarrow 33$
7	
8	

8. Inserindo 17:

$$\bullet \ 17 \rightarrow h(17) = 17 \ \operatorname{mod} \ 9 = 8$$

Índice	Chaves
0	
1	$28 \rightarrow 19$
2	20
3	12
4	
5	5
6	$15 \rightarrow 33$
7	
8	17

9. Inserindo 10:

•
$$10 \rightarrow h(10) = 10 \mod 9 = 1$$
 (colisão com 28 e 19)

Índice	Chaves
0	
1	$28 \rightarrow 19 \rightarrow 10$
2	20
3	12
4	
5	5
6	$15 \rightarrow 33$
7	
8	17

2 (0,2) (0,2) Considere uma tabela hash de tamanho m = 1000 e a função hash correspondente h(k) igual a $h(k) = \lfloor m \cdot (k \cdot A \mod 1) \rfloor$ para $A = A = \frac{\sqrt{5}-1}{2}$. Calcule as localizações para as quais as chaves 61, 62, 63, 64 e 35 estão mapeadas.

Solução:

- **Tamanho:** m = 1000
- $-\mathbf{h}(\mathbf{k}) = \lfloor m \cdot (k \cdot A \mod 1) \rfloor$
- $-\mathbf{A} = \frac{\sqrt{5}-1}{2} \approx 0.6180339887$
 - Calculando para k = 61:

$$h(61) = |1000 \cdot (61 \cdot A \mod 1)| = |699.0733| = 699$$

• Calculando para k = 62:

$$h(62) = |1000 \cdot (62 \cdot A \mod 1)| = |317.1073| = 317$$

• Calculando para k = 63:

$$h(63) = |1000 \cdot (63 \cdot A \mod 1)| = |935.1413| = 935$$

• Calculando para k = 64:

$$h(64) = |1000 \cdot (64 \cdot A \mod 1)| = |553.1752| = 553$$

• Calculando para k = 35:

$$h(35) = |1000 \cdot (35 \cdot A \mod 1)| = |631.1896| = 631$$

- 3 (0,6) Considere a inserção das chaves 10, 22, 31, 4, 15, 28, 17, 88, 59 em uma tabela hash de comprimento m = 11 usando o endereçamento aberto com a função hash primário h(k) = k mod m. Ilustre o resultado da inserção dessas chaves com:
 - a) O uso da sondagem linear
 - b) O uso da sondagem quadrática com c1 = 1 e c2 = 3
 - c) O uso do hash duplo com $h2(k) = 1 + (k \mod (m-1))$

Solução:

a) Inserção com Sondagem Linear

Função de tentativa é dada por:

$$h_i(k) = (h(k) + i) \mod 11$$

onde i representa o número de colisões já ocorridas.

Na tabela está o processo de inserção das chaves com a sondagem linear:

Chave k	h(k)	Tentativas	Posição Final
10	$10 \mod 11 = 10$	0	10
22	$22 \mod 11 = 0$	0	0
31	$31 \mod 11 = 9$	0	9
4	$4 \mod 11 = 4$	0	4
15	$15 \mod 11 = 4$	1	5
28	$28 \mod 11 = 6$	0	6
17	$17 \mod 11 = 6$	1	7
88	88 mod $11 = 0$	1	1
59	$59 \mod 11 = 4$	2	8

b) Inserção com Sondagem Quadrática

Para a sondagem quadrática, usamos a função:

$$h_i(k) = (h(k) + c_1 \cdot i + c_2 \cdot i^2) \mod 11$$

com $c_1 = 1$ e $c_2 = 3$.

Chave k	h(k)	Tentativas	Posição Final
10	10	0	10
22	0	0	0
31	9	0	9
4	4	0	4
15	4	1	8
28	6	0	6
17	6	1	10
88	0	1	4 (colisão)
88	0	2	0 (colisão)
88	0	3	5
59	4	1	8 (colisão)
59	4	2	1

c) Inserção com Hash Duplo

Para o hash duplo, a função é:

$$h_i(k) = (h(k) + i \cdot h_2(k)) \mod 11$$

onde $h_2(k) = 1 + (k \mod (m-1))$.

Chave k	h(k)	$h_2(k)$	Tentativas	Posição Final
10	10	2	0	10
22	0	4	0	0
31	9	5	0	9
4	4	5	0	4
15	4	8	1	1
28	6	3	0	6
17	6	10	1	7
88	0	1	1	1 (colisão)
88	0	1	2	2
59	4	6	1	8