SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: SANCHIS, Vincent LERECLUS, Didier MENOU, Ghislaine

LECADET, Marguerite-Marie MARTOURET, Daniel

DEDONDER, Raymond

- (ii) TITLE OF INVENTION: NUCLEOTIDE SEQUENCES CODING FOR POLYPEPTIDES ENDOWED WITH A LARVICIDAL ACTIVITY TOWARDS LEPIDOPTERA
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Finnegan, Henderson, Farabow, Garrett & Dunner
 - (B) STREET: 1300 I Street, N.W.
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20005-3315
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/037,621
 - (B) FILING DATE: 10-MAR-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/461,551
 - (B) FILING DATE: 05-JUN-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/251,652
 - (B) FILING DATE: 31-MAY-1994
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/458,754
 - (B) FILING DATE: 11-DEC-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: EP 88 410 121.4
 - (B) FILING DATE: 06-MAY-1988
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: FR 87 08090
 - (B) FILING DATE: 10-JUN-1987
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: MEYERS, Kenneth J.
 - (B) REGISTRATION NUMBER: 25,146

- (C) REFERENCE/DOCKET NUMBER: 03495.0151-01000
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 202-408-4000
 - (B) TELEFAX: 202-408-4400
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2711 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE-TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

60	TGTCTACTTG	TTTTTAATAC	CTGCTTAGTC	ATCTCGATGA	AGAATCTCAA	AAGCTTCAAT
120	TATTTTATAA	CATATATTGA	AAATATGGGG	GGTCAATTTT	GAACATAATC	ACAGGGGTAG
180	ATCGTGGTAA	TATGTATTAA	AGATGTGTCA	TTTTTTCATA	GTTTTTTGTA	AATTTGTTAC
240	GAGGTATTTT	TAAAAAAACG	GGTAGTTTAA	TCAGAACTTT	TATCAAACTA	TGAAAAACAG
300	TCCTGAAGAA	GTTTAAGTAA	CCTTACAATT	TCAATGCATA	ATAATCAAAA	ATGGAGGAAA
360	TTCTCTGTCA	CAATTGATAT	GGTAATTACT	GATATCAACT	ATGGAGAACG	GTACTTTTGG
420	TGGATTAATA	CATTTTTAGT	CCAGGGGGAG	TAACTTTGTA	TTCTGGTATC	CTTGTTCAGT
480.	ACAAATTGAA	CATTTCTAGT	CAATGGGATG	TGGCCCTTCT	GGGGAATAGT	GATTTTGTAT
540	TAATTTAGAA	CTGCTATTGC	GCTAGGAATG	AGCTGAATTT	ATGAAAGAAT	CAATTAATTA
600	AGAAGATCCT	AAGAATGGGA	GAAGCATTTA	TATATATGTG	ACAATTTCAA	GGATTAGGAA
660	TGGGCTACTT	GTATACTTGA	GATCGCTTTC	CAGAGTAATT	CAACCAGGAC	AATAATCCAG
720	ATCCGTTTAT	TACCCCTTTT	GGATTTGAAG	TCGAATTTCT	TTCCTTCGTT	GAAAGGGACA
780	TGGAGAAAGA	CTGTAATTTT	TTAAGAGATT	TCTAGCTATA	CCAATCTGCA	GCTCAAGCGG
840	GCATATTGAT	GACTAATTAG	AACTATAATA	TGTCAATGAA	CAACGATAAA	TTGGGATTGA
900	ACCGAAATCT	TAAATAATTT	AATCGGGGAT	AAATACGTAT	ATCACTGTGC	GAATATGCTG
960	GACTGTATTA	ACTTAACATT	TTACGGAGAG	ATATAATCGA	ATTGGATAAC	ACGTATCAAG
1020	GCCAGTTGGT	ATCCAATTCA	AATAGGAGAT	AAACTATGAC	CTTTCTTTCC	GATATCGCCG
1080	GTTACAGTCT	TTAATCCACA	TTAATTAATT	TACGGACCCA	GGGAAGTTTA	CAACTAACAA

GTAGCTCAAT	TACCTACTTT	TAACGTTATG	GAGAGCAGCG	CAATTAGAAA	TCCTCATTTA	1140
TTTGATATAT	TGAATAATCT	TACAATCTTT	ACGGATTGGT	TTAGTGTTGG	ACGCAATTTT	1200
TATTGGGGAG	GACATCGAGT	AATATCTAGC	CTTATAGGAG	GTGGTAACAT	AACATCTCCT	1260
ATATATGGAA	GAGAGGCGAA	CCAGGAGCCT	CCAAGATCCT	TTACTTTTAA	TGGACCGGTA	1320
TTTAGGACTT	TATCAATTCC	TACTTTACGA	TTATTACAGC	AACCTTGCCA	GCGCCACCAT	1380
TTTAATTTAC	GTGGTGGTGA	AGGAGTAGAA	TTTTCTACAC	CTACAAATAG	CTTTACGTAT	1440
GCAGGAAGAG	GTACGGTTGA	TTCTTTAACT	GAATTACCGC	CTGAGGATAA	TAGTGTGCCA	1500
CCTCGCGAAG	GATATAGTCA	TCGTTTATGT	CATGCAACTT	TTGTTCAAAG	ATCTGGAACA	1560
CCTTTTTTAA	CAACTGGTGT	AGTATTTTCT	TGGACGCATC	GTAGTGCAAC	TCTTACAAAT	1620
ACAATTGATC	CAGAGAGAAT	-TAATCAAATA	CCTTTAGTGA	AAGGATTTAG	AGTTTGGGGG	1680
GGCACCTCTG	TCATTACAGG	ACCAGGATTT	ACAGGAGGG	ATATCCTTCG	AAGAAATACC	1740
TTTGGTGATT	TTGTATCTCT	ACAAGTCAAT	ATTAATTCAC	CAATTACCCA	AAGATACCGT	1800
TTAAGATTTC	GTTACGCTTC	CAGTAGGGAT	GCAGCAGTTA	TAGTATTAAC	AGGAGCGGCA	1860
TCCACAGGAG	TGGGAGGCCA	AGTTAGTGTA	GATATGCCTC	TTCAGAAAAC	TATGGAAATA	1920
GGGGAGAACT	TAACATCTAG	AACATTTAGA	TATACCGATT	TTAGTAATCC	TTTTTCATTT	1980
AGAGCTAATC	CAGATATAAT	TGGGATAAGT	GAACAACCTC	TATTTGGTGC	AGGTTCTATT	2040
AGTAGCGTTG	AACTTTATAT	AGATAAAATT	GAAATTATTC	TAGCAGATGC	AACATTTGAA	2100
GCAGAATCTG	ATTTAGAAAG	AGCACAAAAG	GCGGTGAATG	CCCTGTTTAC	TTCTTCCAAT	2160
CAAATCGGGT	TAAAAACCGA	TGTGACGGAT	TATCATATTG	ATCAAGTATC	CAATTTAGTG	2220
GATTGTTTAT	CAGATGAATT	TTGTCTGGAT	GAAAAGCGAG	AATTGTCCGA	GAAAGTCAAA	2280
CATGCGAAGC	GACTCAGTGA	TGAGCGGAAT	TTACTTCAAG	ATCCAAACTT	CAGAGGGATC	2340
AATAGACAAC	CAGACCGTGG	CTGGAGAGGA	AGTACAGATA	TTACCATCCA	AGGAGGAGAT	2400
GACGTATTCA	AAGAGAATTA	CGTCACACTA	CCGGGTACCG	TTGATGAGTG	CTATCCAACG	2460
TATTTATATC	AGAAAATAGA	TGAGTCGAAA	TTAAAAGCTT	ATACCCGTTA	TGAATTAAGA	2520
GGGTATATCG	AAGATAGTCA	AGACTTAGAA	ATCTATTTGA	TCGCGTACAA	TGCAAAACAC	2580
GAAATAGTAA	ATGTGCCAGG	CACGGGTTCC	TTATGGCCGC	TTTCAGCCCA	AAGTCCAATC	2640
GGAAAGTGTG	GAGAACCGAA	TCGATGCGCG	CCACACCTTG	AATGGAATCC	TGATCTAGAT	2700
TGTTCCTGCA	. G					2711

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 823 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Glu Asn Asn Gln Asn Gln Cys Ile Pro Tyr Asn Cys Leu Ser 1 - 5 10 15

Asn Pro Glu Glu Val Leu Leu Asp Gly Glu Arg Ile Ser Thr Gly Asn 20 - 25 30

Ser Ser Ile Asp Ile Ser Leu Ser Leu Val Gln Phe Leu Val Ser Asn 35 40 45

Phe Val Pro Gly Gly Gly Phe Leu Val Gly Leu Ile Asp Phe Val Trp 50 55 60

Gly Ile Val Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile Glu 65 70 75 80

Gln Leu Ile Asn Glu Arg Ile Ala Glu Phe Ala Arg Asn Ala Ala Ile 85 90 95

Ala Asn Leu Glu Gly Leu Gly Asn Asn Phe Asn Ile Tyr Val Glu Ala 100 105 110

Phe Lys Glu Trp Glu Glu Asp Pro Asn Asn Pro Ala Thr Arg Thr Arg 115 120 125

Val Ile Asp Arg Phe Arg Ile Leu Asp Gly Leu Leu Glu Arg Asp Ile 130 135 140

Pro Ser Phe Arg Ile Ser Gly Phe Glu Val Pro Leu Leu Ser Val Tyr 145 150 155 160

Ala Gln Ala Ala Asn Leu His Leu Ala Ile Leu Arg Asp Ser Val Ile 165 170 175

Phe Gly Glu Arg Trp Gly Leu Thr Thr Ile Asn Val Asn Glu Asn Tyr 180 185 190

Asn Arg Leu Ile Arg His Ile Asp Glu Tyr Ala Asp His Cys Ala Asn 195 200 205

Thr Tyr Asn Arg Gly Leu Asn Asn Leu Pro Lys Ser Thr Tyr Gln Asp 210 215 220

Trp Ile Thr Tyr Asn Arg Leu Arg Arg Asp Leu Thr Leu Thr Val Leu 235 Asp Ile Ala Ala Phe Phe Pro Asn Tyr Asp Asn Arg Arg Tyr Pro Ile 245 Gln Pro Val Gly Gln Leu Thr Arg Glu Val Tyr Thr Asp Pro Leu Ile 260 265 Asn Phe Asn Pro Gln Leu Gln Ser Val Ala Gln Leu Pro Thr Phe Asn 285 Val Met Glu Ser Ser Ala Ile Arg Asn Pro His Leu Phe Asp Ile Leu Asn Asn Leu Thr Ile Phe Thr Asp Trp Phe Ser Val Gly Arg Asn Phe 305 315 Tyr Trp Gly Gly His Arg Val Ile Ser Ser Leu Ile Gly Gly Asn Ile Thr Ser Pro Ile Tyr Gly Arg Glu Ala Asn Gln Glu Pro Pro Arg Ser Phe Thr Phe Asn Gly Pro Val Phe Arg Thr Leu Ser Ile Pro Thr 355 360 Leu Arg Leu Leu Gln Gln Pro Cys Gln Arg His His Phe Asn Leu Arg Gly Gly Glu Gly Val Glu Phe Ser Thr Pro Thr Asn Ser Phe Thr Tyr 390 395 Arg Gly Arg Gly Thr Val Asp Ser Leu Thr Glu Leu Pro Pro Glu Asp 405 410 Asn Ser Val Pro Pro Arg Glu Gly Tyr Ser His Arg Leu Cys His Ala 420 Thr Phe Val Gln Arg Ser Gly Thr Pro Phe Leu Thr Thr Gly Val Val 435 440 Phe Ser Trp Thr His Arg Ser Ala Thr Leu Thr Asn Thr Ile Asp Pro 450 455 Glu Arg Ile Asn Gln Ile Pro Leu Val Lys Gly Phe Arg Val Trp Gly 470 475 Gly Thr Ser Val Ile Thr Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu .485 490 Arg Arg Asn Thr Phe Gly Asp Phe Val Ser Leu Gln Val Asn Ile Asn 500 510 Ser Pro Ile Thr Gln Arg Tyr Arg Leu Arg Phe Arg Tyr Ala Ser Ser 515 520 525

Arg Asp Ala Arg Val Ile Val Leu Thr Gly Ala Ala Ser Thr Gly Val 535 Gly Gly Gln Val Ser Val Asn Met Pro Leu Gln Lys Thr Met Glu Ile 550 Gly Glu Asn Leu Thr Ser Arg Thr Phe Arg Tyr Thr Asp Phe Ser Asn 565 570 Pro Phe Ser Phe Arg Ala Asn Pro Asp Ile Ile Gly Ile Ser Glu Gln Pro Leu Phe Gly Ala Gly Ser Ile Ser Ser Gly Glu Leu Tyr Ile Asp 600 Lys Ile Glu Ile Ile Leu Ala Asp Ala Thr Phe Glu Ala Glu Ser Asp 610 615 620 Leu Glu Arg Ala Gln Lys Ala Val Asn Ala Leu Phe Thr Ser Ser Asn 630 Gln Ile Gly Leu Lys Thr Asp Val Thr Asp Tyr His Ile Asp Gln Val Ser Asn Leu Val Asp Cys Leu Ser Asp Glu Phe Cys Leu Asp Glu Lys 660 Arg Glu Leu Ser Glu Lys Val Lys His Ala Lys Arg Leu Ser Asp Glu 680 Arg Asn Leu Leu Gln Asp Pro Asn Phe Arg Gly Ile Asn Arg Gln Pro 690 695 Asp Arg Gly Trp Arg Gly Ser Thr Asp Ile Thr Ile Gln Gly Gly Asp 710 Asp Val Phe Lys Glu Asn Tyr Val Thr Leu Pro Gly Thr Val Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu Ser Lys Leu Lys 740 745 750 Ala Tyr Thr Arg Tyr Glu Leu Arg Gly Tyr Ile Glu Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Ala Tyr Asn Ala Lys His Glu Ile Val Asn Val Pro Gly Thr Gly Ser Leu Trp Pro Leu Ser Ala Gln Ser Pro Ile 785 790 795 Gly Lys Cys Gly Glu Pro Asn Arg Cys Ala Pro His Leu Glu Trp Asn 805 810 Pro Asp Leu Asp Cys Ser Cys 820