Pierre SENECHAL

Questions isolées

_				
2	Oi	iesti	inn	1

Question à réponse ouverte et courte

Qu'obtient-on dans MATLAB si on calcule [1 2]. *[3 4]?

Réponse :

On obtient 38

Q Question 2

Question à réponse ouverte et courte

Si M = [1 2 3 4; 5 6 7 8; 9 10 11 12], que renvoie M([1 2], [3])?

Réponse:

On obtient 3 7

Q Question 3

Question à réponse ouverte et longue

Représenter sur un même graphe la courbe représentative de la fonction $x(t)=\mathrm{sinc}(2t)$ (avec la convention utilisée dans le cours) et celle d'une porte $y(t)=\Pi_\pi(t)$ de largeur π (en rouge) sur l'intervalle $[-\pi,\pi]$. Charger votre image ci-dessous.

Réponse:

Q Question 4

Question à réponse ouverte et courte

Utiliser MATLAB pour calculer le produit scalaire $\langle \, x \mid \, y \, \rangle = \int_0^1 \overline{x(t)} \, y(t) \, \mathrm{d}t$ où x(t) = 1 + t et $y(t) = t^3 - 2$ sur [0,1].

Réponse:

-2,55

Q Question 5

Question à réponse ouverte et longue

Le fichier de données disponible ici (https://isen.junia.ovh/transf/52616.mat) contient deux vecteurs-colonnes \mathbf{x} et \mathbf{y} pour lesquels on approximativement $\mathbf{y} \approx a \mathbf{x} + b e^{\mathbf{x}}$, où a et b sont deux constantes réelles.

Utilisez MATLAB pour trouver le meilleur couple (a,b) au sens des moindres carrés et représentez sur un même graphe : le nuage de points (en bleu) ainsi que la courbe $t\mapsto a\,t+b\,e^t$ (en rouge). Charger votre image ci-dessous.

Réponse :

Représentez sur une même figure le signal x(t) ci-dessous (en bleu) ainsi que la somme partielle de sa série de Fourier avec

7 termes :
$$S_3(t)=\sum_{n=-3}^3 c_n \, e_n(t)$$
 (en rouge).

Chargez votre image ci-dessous.

Réponse:

Q Question 7

Question à réponse ouverte et longue

Utiliser MATLAB pour évaluer le produit de convolution entre $x(t)=e^{-(t-3)^2}+2\,e^{-3(t+2)^2}$ sur [-7,7] avec une porte $y(t)=\frac{1}{\varepsilon}\Pi_\varepsilon(t)$ pour une petite valeur de $\varepsilon>0$. Que remarquez-vous ? Consignez vos observations ci-dessous.

Réponse :

On observe que, ici pour epsilon = 0.00001, la convolution tend vers des pics élevés quand epsilon est plus petit. On voit clairement que le pic à gauche est plus grand que celui de droite. On peut imaginer que lorsqu'epsilon est grand, on perd de la précision sur les pics de convolution.

Q Question 8

Question à réponse ouverte et longue

Représenter graphiquement la réponse à un échelon pour le système linéaire dont la fonction de transfert est

$$F(p) = rac{1+p}{p^2-3p+5}$$
?

Réponse :

Utiliser la fonction didacticfft du TP4 pour calculer la transformée de Fourier du signal $x(t) = \sin(\pi t) - 2\cos(2\pi t)$ et expliquer en quoi le résultat correspond à vos attentes.

Réponse:

Comme vous pouvez le constater sur l'image ci-dessous (si affichée correctement), la transformée de Fourier du signal x(t) est symétrique en 0 avec 2 pics de chaque côté dont le 2ème équivaut au double du premier. C'est bien ce qu'on s'attendait à retrouver.

Q Question 10

Question à réponse ouverte et courte

Quel numéro a été composé sur un clavier de téléphone encodé en DTMF pour donner le signal x(t) trouvé ici https://isen.junia.ovh/transf/74570.mat ?

Réponse :

0141148700