

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA. SEGUNDO CUATRIMESTRE DE 2015 CÁLCULO VARIACIONES PRÁCTICA 3: ESPACIOS DE SOBOLEV.

Ejercicio 1 Sea I=(-1,1) y sea $u(x)=\frac{1}{2}(|x|+x)$. Verificar que $u\in W^{1,p}(I)$ para todo $1\leq p\leq \infty$ con u'=H siendo

$$H(x) = \left\{ \begin{array}{ll} 1 & si & 0 < x < 1 \\ 0 & si & -1 < x < 0 \end{array} \right.$$

Justificar que $H \notin W^{1,p}$ para $1 \le p \le \infty$.

Ejercicio 2 Considerar la función $u: \mathbb{R} \to \mathbb{R}$ dada por

$$u(x) = \frac{1}{(1+x^2)^{\alpha/2}\ln(2+x^2)}.$$

Demostrar que $u \in W^{1,p}(\mathbb{R})$ si $p \geq 1/\alpha$ y que $u \notin L^p(\mathbb{R})$ si $1 \leq p < 1/\alpha$.

Ejercicio 3 (Espacios de Lebesgue y Sobolev de funciones con valores vectoriales) Sea I un intervalo abierto de \mathbb{R} .

a. Denotamos los espacios de Lebegue de funciones con valores en \mathbb{R}^n por

$$L^p(I,\mathbb{R}^n) := \left\{ u : I \to \mathbb{R}^n \middle| |u(t)| \in L^p(I) \right\},\,$$

donde $L^p(I)$ denota el espacio de Lebesgue escalar usual y $|\cdot|:\mathbb{R}^n\to\mathbb{R}_+$ la norma euclidea sobre \mathbb{R}^n . Demostrar que $L^p(I,\mathbb{R}^n)$ es un espacio de Banach con norma

$$||u||_{L^p(I,\mathbb{R}^n)} = ||u||_{L^p(I)}.$$

- b. Si $u:I\to\mathbb{R}^n$ pongamos $u=(u_1,\ldots,u_n)$ con $u_i:I\to\mathbb{R},\,i=1,\ldots,n$. Demostrar que $u\in L^p(I,\mathbb{R}^n)\Leftrightarrow u_i\in L^p(I),\,i=1,\ldots,n$.
- c. $L^p(I, \mathbb{R}^n) \cong L^p(I) \times \cdots \times L^p(I)$, donde \cong siginifica que existe un isomorfismo homeomorfo entre los espacios.
- d. $L^p(I, \mathbb{R}^n)$ es reflexivo cuando 1 .
- e. Denotamos por $C_c^1(I,\mathbb{R}^n)$ al conjunto (espacio vectorial) de todas las funciones test φ continuamente diferenciables y de soporte compacto en I. Para $1 \le p \le \infty$, vamos a definir el espacio de Sobolev de funciones con valores en \mathbb{R}^n , denotado por $W^{1,p}(I,\mathbb{R}^n)$ por analogía con el caso escalar, es decir

$$W^{1,p}(I,\mathbb{R}^n) := \left\{ u \in L^p(I,\mathbb{R}^n) \middle| \exists v \in L^p(I,\mathbb{R}^n) \forall \varphi \in C_c^1(I,\mathbb{R}^n) : \int_I u \cdot \varphi' dt = -\int_I v \cdot \varphi dt \right\},$$

donde $a \cdot b$ denota el producto escalar entre vectores $a, b \in \mathbb{R}^n$. El espacio $W^{1,p}(I,\mathbb{R}^n)$ es Banach. Justificar esta afirmación.

Ejercicio 4 (Espacios de Sobolev de Funciones Periódicas) Sea T>0 y C_T^1 el espacio de las funciones continuas y con derivada continua sobre [0,T] que además son T-periódicas, esto es $\varphi(0)=\varphi(T)=0$. Definimos el espacio de Sobolev de funciones T periódicas como

$$W_T^{1,p}(I) := \left\{ u \in L^p(I) \middle| \exists v \in L^p(I) \forall \varphi \in C_T^1(I) : \int_I u \cdot \varphi' dt = -\int_I v \cdot \varphi dt \right\},$$

Demostrar que

$$W^{1,p}_T(I) = \bigg\{ u \in L^p(I) \bigg| u \text{ es absolutamente continua, } u' \in L^p(I), u(0) = u(T) \bigg\}.$$

Generalizar a funciones con valores vectoriales.

Ejercicio 5 (Desigualdad de Poincaré-Wiertinger) Sea I el intervalo acotado (a,b). Para $u:I\to\mathbb{R}$ definimos el promedio

$$\overline{u} := \frac{1}{b-a} \int_{a}^{b} u(t)dt.$$

Demostrar la desigualdad de Wirtinger, esto es que existe una contante C>0 tal que para toda $u\in W^{1,p}(I), 1\leq p\leq \infty$ se satisface que

$$||u - \overline{u}||_{L^{\infty}} \le C||u'||_{L^{p}}.$$

Generalizar a funciones con valores vetoriales. Ayuda: Notar que por el teorema del valor medio para integrales debe existir $x_0 \in I$ tal que $\overline{u} = u(x_0)$.

Ejercicio 6 Sea $\{u_n\}_{n \in \mathbb{N}}$ una sucesión acotada de $W^{1,p}(I)$ con 1 .

- a. Utilizar el Teorema de Arzela-Ascoli para demostrar que existe una subsucesión $\{u_{n_k}\}_{k\in\mathbb{N}}$ y $u\in W^{1,p}(I)$ tal que $\|u_{n_k}-u\|_{L^\infty}\to 0$.
- b. Si $1 podemos asumir además que <math>u'_{n_k} \rightharpoonup u'$ debilmente en $L^p(I)$
- c. Si, en cambio, $p=\infty$ podemos asumir que $u'_{n_k}\stackrel{*}{\rightharpoonup} u'$ en $\sigma(L^\infty,L^1)$.

Ejercicio 7 Demostrar que si $u_n \rightharpoonup u$ debilmente en $W^{1,p}(I)$, entonces $u_n \to u$ uniformemente.

Ejercicio 8 Sea $\varphi \in C_c^{\infty}(\mathbb{R})$ con $\varphi \not\equiv 0$. Definimos $u_n(x) = \varphi(x+n)$. Supongamos $1 \leq p \leq \infty$. Demostrar que

- a. $\{u_n\}_{n\in\mathbb{N}}$ es acotada en $W^{1,p}(\mathbb{R})$.
- b. No exixte subsucesión que converge en la topología fuerte en $L^q(\mathbb{R})$ para ningun $1 \leq q \leq \infty$.
- c. $u'_n \rightharpoonup 0$ debilmente en $W^{1,p}(\mathbb{R})$.

Ejercicio 9 Sea $1 \le p < \infty$ y $u \in W^{1,p}(\mathbb{R})$. Escribamos

$$D_h u(x) = \frac{u(x+h) - u(x)}{h}, \quad \text{para } h \neq 0, x \in \mathbb{R}.$$

Usar el hecho que $C^1_c(\mathbb{R})$ es denso en $W^{1,p}(\mathbb{R})$ para demostrar que $D_h u \to u'$ en $L^p(\mathbb{R})$ cuando $h \to 0$.