

FIRST SEMESTER 2023-2024 Course Handout (Part II)

Date:

11.08.2023

Course No: CHEM F212

Course Title: **ORGANIC CHEMISTRY -I** Instructor-in-charge: Anupam Bhattacharya

Instructor: Manab Chakravarty

1. Scope and objective of the course: To familiarize the students with basic mechanistic aspects of organic reactions, including mechanistic types, thermodynamics and kinetics, the important intermediates involved in organic reactions, and functional group chemistry.

2. Text Book: R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th edition. (T1)

Reference Books: J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. (R1)

Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 4th ed., 1992. (R2)

G Marc Loudon, Organic Chemistry, Oxford, 4th Edition, 2002.

Francis A Carey, Organic Chemistry, Tata McGraw-Hill, 7th edition, 2008.

3. Course Plan:

<i>J</i> . •	o. Course run.				
Lec.	Learning	Topics to be Covered	Learning Outcomes	Chap(s). No(s).	
No.	objectives			_	
1-2	Basic	Homolytic, heterolytic fission	Understanding of basic organic reactions	T1: Ch. 4, pg. 55-59	
	terminology	of bonds, the concept of	and drawing reactions realistically towards creative organic	R1: Ch. 5, pg. 116-	
	and	electrophiles and	chemistry; Representing the movement of electrons in	131.	
	representation	nucleophiles; how to write	reactions by curly arrows	Lecture notes	
	of organic	organic reaction mechanisms;			

	reactions	movement of arrows; curved and fish-hook arrows; examples		
3-4	Reactive intermediates: carbocations	Carbocations: Structure & stability, generation and reactions	Detailed analysis on the generation, character, type and role of the useful intermediate carbocation in organic reactions, application in organic synthesis with stereochemical outcome	T1: Ch. 4, pg. 64-69. Lecture notes
5	Reactive intermediates: carbanions	Carbanions: Structure & stability, generation and reactions	Idea about another intermediate and difference between cation and anion intermediates in terms of the synthesis, behavior etc. Use of such intermediate in organic reactions	T1: Ch. 4, pg. 69-72. Lecture notes
6-7	Reactive intermediates: free radicals	Free radicals: Structure & stability, generation and reactions	Intermediate with a free electron and their reactions follow different rules than ionic intermediates, Idea of polymerization.	T1: Ch. 4, pg. 81-86. Lecture notes
8-10	Reactive intermediates: others	Carbenes; nitrenes: generation, stability, and fate	Substrate Conditions to generate carbenes, Carbenes are neutral species with only six electrons, electrophilic nature, insertion reaction and application in organic synthesis and modern development; How different these are from the ionic intermediates? The same information related to nitrene is expected to be gained as nitrenes are the nitrogen analogue of carbenes.	T1: Ch. 4, pg. 72-78. Lecture notes
11-13	Aromatic chemistry	Aromatic nucleophilic substitutions; Aromatic electrophilic substitutions; S_N Ar mechanism; benzyne mechanism;	Concept of aromaticity, Understanding the ways to functionalize the aromatic ring and its usefulness in generating medicines and functional materials	T1: Ch. 5C, pg. 262-283; Ch. 9, pg. 488-502. R1: Ch. 23, pg. 589-604. Lecture notes
14-17	Thermodynam ics and kinetics of reactions	Thermodynamic and kinetic control; Hammond postulate; methods to determine mechanisms (Hammett equation, kinetic isotopic effect); examples	Importance in proposing mechanism, how the thermodynamic and kinetic parameters help to determine the feasibility of reactions (the speed and energy), and how a reaction rate can vary with different substitutions.	T1: Ch. 4, pg. 97-102. R1: Ch. 13, pg.319- 330. Ch. 22, pg. 554-556. Ch. 41, pg.1090-1101. R2: Ch. 6, pg. 208- 215, 217-219, 226.

· ·				Lecture notes
18-21	Alkyl and aryl halides	Synthesis and reactions of alkyl and aryl halides	How are these halides related to our daily needs and the chemistry behind the fact.	T1: Ch. 8, pg. 426- 462. Ch. 9, pg. 482-485. Lecture notes
22-25	Alcohols, phenol and ethers	Synthesis, reactivity; applications of Grignard reagents for synthesis; diols, acid/base catalysed ring opening	The chemistry involved in the naturally occurring functional groups that contain polar C-O bond, the distinct reactivity of these functional groups will be understood.	T1: Ch. 10, pg. 507-537. Ch. 11, pg. 545-562. Lecture notes (epoxides)
26-28	Amines and nitro compounds	Synthesis, basicity and reactions	Many interesting natural products and widely used drugs are amines; hence such functional group chemistry will be learnt.	T1: Ch. 15, pg. 696-736. Lecture Notes (Nitro compounds)
29-37	Carbonyl compounds	Synthesis, reactivity, enolates, malonate and ethyl acetoacetate synthesis Aldol, Crossed Aldol and Claisen condensation; Conjugate addition reactions of α , β -unsaturated carbonyl compounds with special reference to Michael addition, Mannich reaction, Wittig reaction	Concept about the most important functional group because its electon-deficient carbons and easily broken π -bond . The important name reactions and their applications in organic synthesis to synthesize medicinally useful molecules.	T1: Ch. 12, pg. 571-611. R1: Ch. 21, pg. 524-541. Lecture notes (malonate & ethyl acetoacetate)
38-40	Carboxylic acid & derivatives	Synthesis, reactions, conversion for acid to other derivatives	Enrich with these interesting functional groups in terms of preparation, features important products such as aspirin.	T1: Ch. 13, pg. 624-648; Ch. 14, Pg. 657-685. Lecture notes
41-42	Carbohydrates	Introduction and their reactions	Concept on the largest group of organic molecules in nature, the basic structures and reactions of carbohydrates	T1: Ch. 26, pg. 1228- 1236, 1244-1253. Lecture notes

4. Evaluation:

Component	Duration	Weightage (%)	Date and Time	Nature of
				Component
Mid Sem test	90 min.	25	09/10 - 9.30 - 11.00AM	Closed Book
Class tests*	Continuous	30		Open Book
Comprehensive Examination	180 min	45	06/12 FN	Closed Book

^{*}Equal numbers of class tests will be conducted before and after the mid-semester examination.

All the class tests will be considered for the final total

- 5. Make-up(s) will be granted only for genuine reasons.
- **6. Consultation Hour**: To be announced.
- **7. Notices** related to the course will be displayed on **CMS only**.
- **8. Academic Integrity Policy:** It is expected that academic integrity should be adhered to in all the evaluation components. Students are responsible for their work and actions related to all academic endeavours. Students should work alone on all the evaluation components unless otherwise directed by the instructor and follow the rules provided for all quizzes and examinations.

Malpractice in any form will have serious implications.

Instructor-in-

charge