Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$,
Esercizio 2	
Dsercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora d² è simmetrica → M simmetrica se M = M^T → M^T = (M · M)^T → M = M^T, sostituisci M con A² Sia A ∈ M3,2(R) di rango 2, allora il sistema lineare AX = B ammetre soluzioni per Rouché-Capelli (∞²-3) A³ - A = I₂ → A(A² - I) = I → (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = (1/2) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile se A² = I altrimenti se A = 0 non è invertibile A³ - A = (1/2) → A(A² - I) = (1/2) → A = (1/2) →
Bsercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v,w: (det(R₂R₃) / det(R₁R₃)), R_t sono le righe dei vettori Dipendenza lineare: αv₁ + βv₂ = 0 → α = β = 0 oppure la matrice composta dai vettori non ha rango N Indipendenza lineare: αv₁ + βv₂ = 0 → α = β = 0 oppure la matrice composta dai vettori ha rango N v₃ = (v₃/2)/2β = (v₁/2) se (v₁/2)/2β = (v₁/2) se (v₁/2)/2β = (v₁/2)/2β = (v₂/2)/2β = (v₂/
	 Gauss: R_i = R_i + (

$\sqrt{25} = 5$	$\sqrt{100} = 10$	$\sqrt{225} = 15$	$\sqrt{400} = 20$	$\sqrt{625} = 25$	$\sqrt{900} = 30$
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4} = 2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	$\sqrt{441} = 21$	$\sqrt{676} = 26$
					_

 $\bullet \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = x_1 x_2 + y_1 y_2 + z_1 z_2$