PROBLÉME ENSAIT 1999

On note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n, et $\mathscr{B} = \{1, X, X^2, ..., X^n\}$ sa base canonique.

Étant donné une famille de (n+1) réels distincts $a_0 < a_1 < a_2 < ... < a_n$, on lui associe les polynômes $L_0, L_1, L_2, ..., L_n$ de $\mathbb{R}_n[X]$ tels que :

$$\forall j \in [0; n] - \{i\}, L_i(a_j) = 0 \text{ et } L_i(a_i) = 1.$$

On note enfin A la matrice carrée dont les vecteurs colonnes sont les composantes dans la base \mathscr{B} des vecteurs $L_0, L_1, L_2, \ldots, L_n$.

Partie I : On prend ici n = 2, $a_0 = 0$, $a_1 = 1$, $a_2 = 2$.

1. Donner L_0, L_1, L_2 .

Montrer que $\{L_0, L_1, L_2\}$ est une base de $\mathbb{R}_2[X]$.

Quelles sont les les composantes d'un polynôme P de $\mathbb{R}_2[X]$ dans cette base $\{L_0, L_1, L_2\}$?

- **2.** Former la matrice A de changement de base de $\mathscr{B} = \{1, X, X^2\}$ à $\mathscr{B}' = \{L_0, L_1, L_2\}$, et déterminer les vecteurs $V \in \mathcal{M}_{3,1}(\mathbb{R})$ tels que AV = V.
- 3. En déduire les polynômes P de $\mathbb{R}_2[X]$ tels que

$$P(X) = P(0) + P(1)X + P(2)X^{2}.$$

Partie II: Retour au cas général.

- **1.** Montrer que $\mathscr{B}' = \{L_0, L_1, L_2, \dots, L_n\}$ est une base de $\mathbb{R}_n[X]$. Indiquer les composantes sur la base \mathscr{B}' d'un polynôme P quelconque de $\mathbb{R}_n[X]$.
- **2.** Montrer que A est inversible, calculer son inverse
- 3. Montrer que $\sum_{i=0}^{n} L_i = 1$.

En déduire que la somme des éléments de la première ligne de A est égale à 1, et que la somme des éléments de toute autre ligne de A est nulle.

Partie III : Étude du cas $a_0 = 0$.

- 1. Montrer que la matrice $A I_{n+1}$ n'est pas inversible.
- 2. Montrer qu'il existe des polynômes P de $\mathbb{R}_n[X]$, différents du polynôme nul, tels que : $P(X) = \sum_{i=0}^n P(a_i)X^i \ .$

Partie IV : Étude du cas $a_0 = 1$.

Montrer que la somme des éléments de la première colonne de A est égale à 1, et que la somme des éléments de toute autre colonne de A est nulle.

Partie V : Étude du cas $a_0=0, a_1=1, a_2=2,\ldots,a_n=n$.

On note dorénavant $L_{i,p}$ le polynôme de $\mathbb{R}_p[X]$ tel que

$$\forall j \in [0; p] - \{i\}$$
 $L_{i,p}(j) = 0$ et $L_{i,p}(i) = 1$

et on convient que $L_{0,0} = 1$.

1. Montrer que $\mathscr{B}'' = \{L_{0,0}, L_{1,1}, L_{2,2}, \dots, L_{n,n}\}$ est une base de $\mathbb{R}_n[X]$. Soit le polynôme $P = \sum_{k=0}^n (-1)^k L_{k,k}$, déterminer ses racines.

- 2. a) Écrire la matrice de changement de base de $\mathscr{B}'=\{L_{0,n}\;,\;L_{1,n}\;,\;L_{2,n},\ldots,\;L_{n,n}\}$ à \mathscr{B}''
 - b) Montrer que l'on peut écrire la matrice A comme le produit d'une matrice triangulaire supérieure et d'une matrice triangulaire inférieure.
 - c) Effectuer tous les calculs du V 2) b) pour $n=2,\ a_0=0,\ a_1=1,\ a_2=2$.