Logica

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Ripasso di matematica	2
	1.1 Relazioni	2
	1.2 Sottoinsieme delle parti	2
2	Introduzione	2
3	Sintassi della logica proposizionale	2
	3.1 Connettivi	2
	3.2 Ausiliari	3
	3.3 Simboli proposizionali	3
	3.4 Altri simboli	3
4	Principio di induzione	3
	4.1 Definizione induttiva formale dell'insieme <i>PROP</i>	4
5	Proprietà su un insieme	4
	5.1 Principio di induzione sui numeri naturali \mathbb{N}	5
6	Teorema del principio di induzione su $PROP$	5
7	Definizione ricorsiva di funzioni su PROP	6
	7.1 Definizione più precisa dell'esercizio 6.1	7
8	Dimostrazione ricorsiva di rango e sottoformula	8
	8.1 Applicazione della definizione di sottoformula	8

1 Ripasso di matematica

1.1 Relazioni

Prendendo in considerazione 2 insiemi A, B e una relazione $f \subseteq A \times B$ si definisce **dominio** l'insieme A e **codominio** l'insieme B. Il prodotto cartesiano è definito nel seguente modo:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Ciò significa che si prende in considerazione una coppia ordinata di elementi formata da un elemento di A e uno di B. La relazione f è una funzione sse (se e solo se) $\forall a \in A \exists$ unico $b \in B$ si dice che: $(a,b) \in f$, oppure f(a) = b.

1.2 Sottoinsieme delle parti

Dato un insieme A si definisce sottoinsieme delle parti (scritto $\mathcal{P}(A)$ o 2^A) l'insieme di tutti i sottoinsiemi di A, cioè $2^A = x | x \subseteq A$.

Un esempio è il seguente:

$$A = \{3,5\}$$

$$2^A = \{\emptyset, \{3\}, \{5\}, \{3,5\}\}$$

 \emptyset è l'insieme vuoto, cioè l'insieme che non contiene nessun elemento.

2 Introduzione

La logica ha lo scopo di formalizzare il ragionamento matematico che è caratterizzato dal concetto di dimostrazione senza ambiguità

3 Sintassi della logica proposizionale

La logica proposizionale è formata da simboli formali ben definiti e sono divisi in:

3.1 Connettivi

- ∨ Congiunzione, And logico
- \(\lambda\) Disgiunzione, Or logico
- $\bullet\,$ \neg Negazione, Not logico (non connette niente, è solo una costante logica che equivale a 0 nella logica booleana)
- \perp Falso, Bottom, Assurdo
- $\bullet \rightarrow$ Implicazione, If-then

3.2 Ausiliari

• () Le parentesi non fanno parte della proposizione, ma servono solo a costruire il linguaggio

3.3 Simboli proposizionali

• p_n, q_n, ψ_n, \dots Le lettere minuscole indicizzate vengono usate per indicare una proposizione (sono infiniti simboli numerabili)

3.4 Altri simboli

- | Tale che
- $\bullet \leftrightarrow Se e solo se$

Definizioni utili 3.1

- 1. Stringa: Una sequenza finita di simboli o caratteri
- 2. Infinito numerabile: Un insieme è infinito numerabile se è il più piccolo infinito possibile, cioè se è in corrispondenza biunivoca con l'insieme N

4 Principio di induzione

Il principio di induzione è un principio logico che permette di dimostrare che una proprietà è vera per tutti gli elementi di un insieme infinito numerabile.

Una prima definizione induttiva fatta in modo non formale, ma con frasi in italiano è la seguente:

L'insieme di proposizioni PROP è così definito induttivamente:

- 1. $\perp \rightarrow PROP$
- 2. se p è un simbolo proposizionale allora $p \in PROP$
- 3. (Caso induttivo) se $\alpha, \beta \in PROP$ allora $(\alpha \land \beta) \in PROP, (\alpha \lor \beta) \in PROP, (\alpha \to \beta) \in PROP, (\neg \alpha) \in PROP$
- 4. nient'altro appartiene a PROP

In questo modo è stato creato l'insieme PROP che contiene tutte le proposizioni che possono essere create usando gli unici simboli che abbiamo definito (\land,\lor,\to,\neg) .

Esempi di proposizioni corrette e scorrette:

•
$$(p_7 \rightarrow p_0) \in PROP$$

- $p_7 \rightarrow p_0 \notin PROP$ (mancano le parentesi)
- $((\bot \lor p_{32}) \land (\neg p_2)) \in PROP$
- $((\rightarrow \land \notin PROP)$
- $\bullet \ \neg\neg\bot \notin PROP$

4.1 Definizione induttiva formale dell'insieme PROP

Adesso l'insieme PROP viene definito in modo formale usando i simboli proposizionali.

Definizione 4.1

L'insieme PROP è il più piccolo insieme X di stringhe tale che:

- 1. $\perp \in X$
- 2. $p \in X$ (Perchè è un simbolo proposizionale)
- 3. se $\alpha, \beta \in X$ allora $(\alpha \to \beta) \in X, (\alpha \lor \beta) \in X, (\alpha \land \beta) \in X, (\neg \alpha) \in X$

 p, α, β, \dots sono elementi proposizionali generici

AT=simboli proposizionali $+\perp$ è l'insieme di tutte le proposizioni atomiche, cioè quelle che non contengono connettivi, sono quindi la più piccola parte non ulteriormente scomponibile

5 Proprietà su un insieme

Definito P un insieme di proprietà assunte da un insieme A si ha che:

- \bullet $P \subseteq A$
- $a \in A$ dove a è un elemento generico dell'insieme A

Si dice che a gode della proprietà P se $a \in P$.

Altri modi per dire che a gode della proprietà P sono:

- *P*(*a*)
- P[a] (per non creare confusione con le parentesi tonde che sono usate come simboli ausiliari per costruire il linguaggio)

$$P \subseteq PROP \quad \forall \alpha \in PROP . P(\alpha)$$

(il punto mette in evidenza ciè che viene dopo di esso e può anche essere omesso)

Esempio 5.1

Esempio di una proprietà sull'insieme \mathbb{N} :

 $P=\{n|n\in\mathbb{N}\ ed\ e\ pari\ \}\ essendo\ n\ un\ numero\ generico\ indica\ la\ proprietà\ di\ essere\ pari.$

$$\begin{array}{c} P[5] \times \\ P[4] \sqrt{\end{array}$$

5.1 Principio di induzione sui numeri naturali N

 $P\subseteq \mathbb{N}$

- 1. Caso base: se P[0] e
- 2. Passo induttivo: se $\forall n \in \mathbb{N}(P[n] \Rightarrow P[n+1])$ allora $\forall n \in \mathbb{N}$. P[n]

Se si dimostra la proprietà per n e per il successivo (n+1), allora si dimostra che la proprietà è vera per tutti i numeri naturali. Si sfrutta il fatto che esiste un minimo a cui prima o poi si arriva.

Esercizio 5.1

Dimostra per induzione che:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Teorema del principio di induzione su PROP6

Definizione 6.1

 $P \subseteq PROP$

- 1. Se $P[\alpha], \alpha \in AT$ e
- 2. Se $P[\alpha] \Rightarrow P[(\neg \alpha)] e$
- 3. se $P[\alpha]$ e $P[\beta] \Rightarrow P[(\alpha \land \beta)], P[(\alpha \lor \beta)P[(\alpha \to \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

Con questo teorema si possono dimostrare intere proposizioni complesse dimostrando i pezzi più piccoli (sottoformule) come mostrato nella figura 1.

Figura 1: Dimostrazione di una formula complessa

Esercizio 6.1

Dimostra che ogni $\psi \in PROP$ ha un numero pari di parentesi usando il principio di induzione per dimostrare proprietà sintattiche sulla struttura delle formule.

 $P[\psi] \equiv \psi$ ha un numero pari di parentesi

- 1. Caso base $\psi \in AT$ quindi ψ ha 0 parentesi e quindi è pari: $P[\psi] \sqrt{}$
- 2. **Ipotesi induttiva** $\alpha, \beta \in PROP, P[\alpha], P[\beta]$? $P[(\alpha \rightarrow \beta)]$ (per α vale e per β vale, si sono aggiunte due parentesi, quindi la formula è ancora pari)
- 3. Passo induttivo $P[\alpha], P[\beta] \Rightarrow P[(\alpha \rightarrow \beta)], P[(\alpha \lor \beta)], P[(\alpha \land \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

7 Definizione ricorsiva di funzioni su PROP

Definizione 7.1

Riprendendo l'esercizio 6.1 si definisce la funzione π che associa ad ogni formula proposizionale (equivalente di un input nell'informatica) un numero naturale (equivalente di un output nell'informatica). La funzione π quindi dopo aver dato in input un argomento (qualsiasi formula proposizionale atomica o complessa) restituisce in output il numero di parentesi che contiene la formula in input.

$$\pi: PROP \to \mathbb{N}$$

- 1. Caso base $\pi[\alpha] = 0$ se $\alpha \in AT$
- 2. **Ipotesi induttiva** $\pi[(\neg \alpha)] = \pi[\alpha] + 2$ In questo passaggio viene chiamata la funzione π dentro la funzione π stessa, quindi è una defini-

zione ricorsiva. In questo caso si aggiungono 2 parentesi al numero di parentesi di α $\pi[\alpha]$

3. Passo induttivo $\pi[(\alpha \to \beta)] = \pi[(\alpha \lor \beta)] = \pi[(\alpha \land \beta)] = \pi[\alpha] + \pi[\beta] + 2$ dove $\pi[\alpha]$ e $\pi[\beta]$ sono il numero di parentesi di α e β e si aggiungono 2 parentesi per il connettivo.

Di seguito ci sono 2 esempi in cui viene messa in pratica la funzione π definita sopra in modo da capire meglio come funziona.

Esempio 7.1

$$\pi[(p_2 \to p_1)] \stackrel{caso 3}{=} \pi[p_2] + \pi[p_1] + 2 \stackrel{caso 1}{=} 0 + 0 + 2 = 2$$

Esempio 7.2

$$\pi[(p_1 \lor (p_2 \lor p_1))] = (\pi[p_2] + \pi[p_1] + 2) + \pi[p_1] + 2 = (0 + 0 + 2) + 0 + 2 = 4$$

Tutte le funzioni definite ricorsivamente sono funzioni, e non tutte le funzioni possono essere definite ricorsivamente.

7.1 Definizione più precisa dell'esercizio 6.1

Ogni $\alpha \in PROP$ ha un numero pari di parentesi: $\forall \alpha \in PROP \ P[\alpha] \stackrel{sse}{\Leftrightarrow} \pi[\alpha]$ è pari

- 1. $P[\alpha] \ \alpha \in AT$ se $\alpha \in AT \ \pi[\alpha] \stackrel{def}{=} 0$ quindi $\sqrt{}$
- 2. Suppongo che valga $P[\alpha]$, $P[(\neg \alpha)]$?

 $P[\alpha] \Leftrightarrow \pi[\alpha]pari$ è pari perchè lo abbiamo supposto prima (consideriamo 0 come pari)

$$\pi[(\neg \alpha)] = \pi[\alpha] + 2$$
 è pari quindi $P[(\neg \alpha)] \sqrt{}$

Si può definire un simbolo nuovo che non vuole dire niente nel linguaggio proposizionale e gli si assegnano i connettivi possibili per non doverli più scrivere ogni volta. Per questo esercizio prendiamo in considerazione

$$\circ \in \{\rightarrow, \lor, \land\}$$

3.
$$(\alpha \circ \beta)$$

suppongo $P[\alpha], P[\beta]$
allora $\pi[\alpha]$ e $\pi[\beta]$ sono pari
quindi $\pi[(\alpha \circ \beta)] = \pi[\alpha] + \pi[\beta] + 2$ (è pari)

Ho dimostrato per induzione che $\forall \psi \in PROP \ P[\psi] \ \Box$ (\Box è un simbolo che indica la fine della dimostrazione.)

8 Dimostrazione ricorsiva di rango e sottoformula

Il rango di una formula è il numero di connettivi che contiene.

Definizione 8.1 Considerato r il rango di una proposizione $r: PROP \to \mathbb{N}$ 1. $r[\psi] = 0$ se $\psi \in AT$ 2. $r[(\neg \psi)] = 1 + r[\psi]$ 3. $r[(\psi \circ \gamma)] = 1 + max(r[\psi], r[\gamma])$ $\circ \in \{\lor, \land, \to\}$

La sottoformula è una formula che è contenuta in un'altra formula più grande.

Definizione 8.2 Considerata sub la sottoformula di una proposizione sub: $PROP \rightarrow 2^{PROP}$ 1. $sub[\alpha] \ \alpha = ((p_2 \lor p_1) \lor p_0)$ 2. $sub[\alpha] = \{\alpha, p_2, p_0, (p_2 \lor p_1)\}$

8.1 Applicazione della definizione di sottoformula

- 1. $sub[\psi] = {\psi}$ se $\psi \in AT$
- 2. $sub[(\neg \psi)] = \{(\neg \psi)\} \cup sub[\psi]$
- 3. $sub[(\psi \to \gamma)] = \{(\psi \circ \gamma)\} \cup sub[\psi] \cup sub[\gamma]$

Teorema 1 Vogliamo dimostrare per induzione su β :

Se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ (dove α è una sottoformula propria, cioè vengono considerate tutte le sottoformule di β tranne β stessa) allora $r[\alpha] < r[\beta]$

- 1. Caso base $\beta \in AT$ β non ha sottoformule proprie, quindi α non può essere una sottoformula propria di β . Essendo falsa la premessa la tesi è vera.
- 2. Se $\beta = (\neg \beta_1)$: se $\alpha \in sub[\beta]$ e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ e si dimostra $r[\alpha] \leq r[\beta_1]$ (ipotesi induttiva)

(a)
$$\alpha \in sub[\beta_1]$$
 e $\alpha \neq \beta_1$ per ipotesi induttiva $r[\alpha] < r[\beta_1]$

(b)
$$\alpha = \beta_1 \ r[\alpha] = r[\beta_1]$$

 $r[\alpha] \le r[\beta_1]$

Quindi

$$r[(\neg \overset{\beta}{\beta_1})] \overset{def}{=} {}^r \ 1 + r[\beta_1] \geq 1 + r[\alpha] > r[\alpha]$$

Quindi

$$r[\alpha] < r[\beta]$$

3. Caso induttivo

 $\beta = (\beta_1 \rightarrow \beta_2)$ se α è sottoformula di β e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ o $\alpha \in sub[\beta_2]$

(a) se $\alpha \in sub[\beta_1]$ (ipotesi induttiva)

i. Se
$$\alpha \neq \beta_1 \Rightarrow r[\alpha] \leq r[\beta_1]$$

ii. Se
$$\alpha = \beta_1 \Rightarrow r[\alpha] = r[\beta_1]$$

Da 3(a)i e 3(a)ii si ricava $r[\alpha] \leq r[\beta_1]$

(b) se $\alpha \in sub[\beta_2]$

i. Se
$$\alpha \neq \beta_2 \Rightarrow r[\alpha] \leq r[\beta_2]$$

ii. Se $\alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$

ii. Se
$$\alpha = \beta_2 \Rightarrow r[\alpha] = r[\beta_2]$$

Da 3(b)i e 3(b)ii si ricava $r[\alpha] \leq r[\beta_2]$

$$r[(\beta_1 \xrightarrow{\beta} \beta_2)] = 1 + \max\{r[\beta_1], r[\beta_2]\} \geq 1 + \max\{r[\alpha], r[\alpha]\} \geq 1 + r[\alpha] > r[\alpha]$$