Théo D. Suites réelles : la théorie. 2023-2024

Chapitre 14

Suites réelles : la théorie.

Sommaire.

0	Propriété de la borne supérieure.	1
1	Limite d'une suite.	2
2	Limites et opérations : preuves des résultats.	4
3	Passer à la limite ?	5
4	Existence d'une limite : preuve des théorèmes.	6
5	Suites extraites.	7
6	Traduction séquentielle de certaines propriétés.	7
7	Suites complexes.	8
8	Exercices	8

Les propositions marquées de \star sont au programme de colles.

0 Propriété de la borne supérieure.

Définition 1

Soit A une partie de \mathbb{R} .

- On appelle **borne supérieure** de A et on note sup A, le plus petit des majorants de A, lorsqu'il existe.
- On appelle borne inférieure de A et on note inf A, le plus grand des minorants de A, lorsqu'il existe.

Implicite dans cette définition : l'unicité de la borne supérieure. On peut la montrer comme on avait prouvé celle du maximum. Pour ce qui concerne l'existence, commençons par examiner un cas simple.

Proposition 2

Si une partie de $\mathbb R$ possède un maximum M, alors elle a une borne supérieure, qui vaut M.

Preuve

Soit $A \subset \mathbb{R}$ admettant un maximum M. Soit M' un majorant de A, alors $M' \geq M$. Ainsi, M est le plus petit des majorants : $\sup A = M$.

Théorème 3: Axiome de la borne supérieure.

Toute partie de \mathbb{R} non-vide et majorée admet une borne supérieure dans \mathbb{R} . Toute partie de \mathbb{R} non-vide et minorée admet une borne inférieure dans \mathbb{R} .

Proposition 4: Caractérisation de la borne supérieure. 🛨

Soit A une partie de $\mathbb R$ non vide et majorée, et $\alpha \in \mathbb R.$ On a l'équivalence

$$\alpha = \sup A \iff \begin{cases} \alpha \text{ est un majorant de } A \\ \forall \varepsilon > 0, \ \exists x \in A \mid \alpha - \varepsilon < x \leq \alpha \end{cases}$$

Preuve

 \Longrightarrow Supposons $\alpha = \sup A$, c'est un majorant de A. Soit $\varepsilon > 0$. Supposons que $A \cap]\alpha - \varepsilon, \alpha] = \emptyset$.

 $\overline{\text{Alors}} \ A \subset]-\infty, \alpha-\varepsilon] \ \text{car} \ \alpha \ \text{est majorant de } A, \ \text{donc} \ \alpha-\varepsilon \ \text{majore} \ A.$

C'est absurde car α est le plus petit des majorants.

Supposons qu'il existe $\beta < \alpha$, majorant de A. Posons $\varepsilon = \alpha - \beta > 0$.

Alors $\beta = \alpha - \varepsilon$: $\exists x \in A \mid \beta < x \leq \alpha$, absurde car β majore $A : \alpha$ est le plus petit des majorants de A.

Exemple 5: ★

Soit A = [0, 1]. Justifier l'existence de sup A puis la calculer.

Soit $B = \{r \in \mathbb{Q} \mid r < \sqrt{2}\}$. Justifier l'existence de sup B puis la calculer.

Soit $C = \{\frac{1}{n} - \frac{1}{p} \mid (n, p) \in \mathbb{N}^*\}$. Calculer $\sup C$ et inf C, après avoir justifié qu'elles existent.

Solution:

- A est non vide et majorée par 1, $\sup A = 1$.
- B est non vide et majorée par $\sqrt{2}$. sup $B = \sqrt{2}$ par densité de $\mathbb Q$ dans $\mathbb R$.
- C est non vide et majorée par 1, sup C = 1, inf C = 0.

Méthode : Majorer une borne supérieure / passage au sup.

Soient M un réel et A une partie de $\mathbb R$ possédant une borne supérieure. Pour démontrer l'inégalité

$$\sup A \leq M$$
,

il suffira de montrer que M est un majorant de A.

Exemple 6: 🛨

Soient A et B deux parties non-vides et majorées de $\mathbb R$ telles que $A\subset B$. Justifier que $\sup A\leq \sup B$.

Solution:

Puisque $A \subset B$, on a sup B majorant de A, or sup A est le plus petit des majorants de A, donc sup $A \leq \sup B$.

Exemple 7: Homogénéité du sup. 🛨

Soit A une partie de \mathbb{R} non vide et majorée et $\lambda \in \mathbb{R}_+^*$. On définit la partie $\lambda A := \{\lambda x \mid x \in A\}$. Montrer l'égalité

$$\sup(\lambda A) = \lambda \sup(A).$$

Solution:

Soit $x \in A$.

 \subseteq On a $x \leq \sup(A)$ donc $\lambda x \leq \lambda \sup(A)$ donc $\lambda \sup(A)$ majore $\lambda A : \lambda \sup(A) \geq \sup(\lambda A)$.

 \geq On a $\lambda x \leq \sup(\lambda A)$ donc $x \leq \frac{1}{\lambda} \sup(\lambda A)$ donc $\sup(A) \leq \frac{1}{\lambda} \sup(\lambda A)$ donc $\lambda \sup(A) \leq \sup(\lambda A)$.

Par double inégalité, on a $\sup(\lambda A) = \lambda \sup(A)$.

1 Limite d'une suite.

Définition 8: Convergence vers $l \in \mathbb{R}$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $l\in\mathbb{R}$. On dit que (u_n) converge vers l et on note $u_n\to l$ si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ | \ \forall n \ge n_0 : \ |u_n - l| \le \varepsilon$$

Cette définition est écrite sous cette forme par Cauchy en 1821. Elle avait été donnée par d'Alembert dans l'Encyclopédie (1767) : « On dit qu'une grandeur est la limite d'une autre grandeur quand la seconde peut approcher la première plus près que d'une grandeur donnée si petite qu'on la puisse supposer... »

Proposition 9

Soit $(u_n)_{n\in\mathbb{N}}$ et $l\in\mathbb{R}$. On a

$$u_n \to l \iff |u_n - l| \to 0$$

Preuve:

Par équivalences :

$$u_n \to l \iff \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \mid \forall n \ge n_0 : \ |u_n - l| \le \varepsilon$$

 $\iff \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \mid \forall n \ge n_0 : \ ||u_n - l| - 0| \le \varepsilon$
 $\iff |u_n - l| \to 0$

Méthode

Prouver une convergence du type $u_n \to l$, c'est montrer que la **distance** $|u_n - l|$ peut être rendu « aussi petite que l'on veut ». On cherchera donc

- À majorer $|u_n l|$ par un réel ε quelconque à partir d'un certain rang n_0 qui dépend de ε . C'est ce que nous ferons dans les preuves de ce cours mais dans les exercices, on dégainera rarement ε !
- À majorer $|u_n l|$ par une suite convergeant notoirement vers 0. On peut alors conclure grâce au théorème d'encadrement.

Exemple 10

- Soit (u_n) une suite constante égale à $a \in \mathbb{R}$. Démontrer que $u_n \to a$.
- Soit la suite (u_n) de terme général $u_n = \frac{n+1}{n}$. Démontrer que $u_n \to l$ où l est un réel à déterminer.

Solution:

1. Soient $\varepsilon > 0$, $\forall n \ge 0$, $|u_n - a| = |a - a| = 0 \le \varepsilon$ donc $u_n \to a$.

2. Soit $\varepsilon > 0$. On pose $n_0 = \lceil \frac{1}{\varepsilon} \rceil$. Alors $\forall n \ge n_0, \ |u_n - 1| = \frac{1}{n} \le \frac{1}{n_0} \le \varepsilon$ par décroissance de (u_n) .

 $\overline{\text{Donc}}\ u_n \to 1.$

Définition 11

Soit (u_n) une suite réelle. On dit qu'elle **tend vers** $+\infty$ et on note $u_n \to +\infty$ si

$$\forall M > 0, \ \exists n_0 \in \mathbb{N} \mid \ \forall n \ge n_0 : \ u_n \ge M.$$

Exemple 12

Pour $n \geq 2$, posons $u_n = \ln(\ln(n))$. Montrer que $u_n \to +\infty$.

Solution:

Soit M > 0. On pose $n_0 = \exp(\exp(M))$, alors $u_{n_0} = M$ et $\forall n \geq n_0, \ u_n \geq u_{n_0} = M$ car ln est croissante. Donc $u_n \to +\infty$.

Proposition 13: Tendre vers $-\infty$

Soit (u_n) une suite réelle. On dit qu'elle **tend** vers $-\infty$ et on note $u_n \to -\infty$ si

$$\forall M < 0, \ \exists n_0 \in \mathbb{N} \ | \ \forall n \ge n_0 : \ u_n \le M.$$

On a l'équivalence $u_n \to -\infty \iff -u_n \to +\infty$.

Preuve:

Par équivalences :

$$\begin{array}{lll} u_n \to -\infty & \Longleftrightarrow & \forall M < 0, \; \exists n_0 \in \mathbb{N} \; \mid \; \forall n \geq n_0 \; : \; u_n \leq M \\ & \Longleftrightarrow & \forall M < 0, \; \exists n_0 \in \mathbb{N} \; \mid \; \forall n \geq n_0 \; : \; -u_n \geq -M \\ & \Longleftrightarrow & \forall M > 0, \; \exists n_0 \in \mathbb{N} \; \mid \; \forall n \geq n_0 \; : \; -u_n \geq M \\ & \Longleftrightarrow & -u_n \to +\infty \end{array}$$

Proposition 14: Unicité de la limite.

Soit (u_n) une suite réelle et $L, L' \in R$. Si $u_n \to L$ et $u_n \to L'$, alors L = L'.

Le nombre L est alors appelé limite de la suite (u_n) et noté $\lim u_n$.

Preuve:

Dans le cas où les deux limites sont finies...

Soit $\varepsilon > 0$, $\exists n_1 \in \mathbb{N} \mid \forall n \ge n_1, \ |u_n - L| \le \varepsilon \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \ge n_2, \ |u_n - L'| \le \varepsilon.$

Posons $n_0 = \max(n_1, n_2)$, et $n \ge n_0$. Alors $|u_n - L| \le \varepsilon$ et $|u_n - L'| \le \varepsilon$.

$$|L - L'| = |L - u_n + u_n - L'| \le |L - u_n| + |u_n - L'| \le 2\varepsilon.$$

Donc $|L - L'| \le 2\varepsilon$ pour tout $\varepsilon > 0$, donc L = L'.

Définition 15

On dit d'une suite (u_n) qu'elle est **convergente** si elle converge vers une limite finie. Si une suite n'est pas convergente, elle est dite **divergente**.

Exemple 16

On démontre que la suite de terme général $(-1)^n$ est divergente.

Solution:

Supposons qu'il existe $l \in \mathbb{R}$ tel que $(-1)^n \to l$. Posons $\varepsilon = \frac{1}{2}$, $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, \ |u_n - l| \leq \frac{1}{2}$. Soit $n \geq n_0$.

D'une part, $|u_{n+1} - l + l - u_n| \le |u_{n+1} - l| + |u_n - l| = \frac{1}{2} + \frac{1}{2} = 1$.

D'autre part, $\forall n \in \mathbb{N}, |u_{n+1} - u_n| = 2$. Alors $2 \le 1$, absurde. Donc $(-1)^n$ est divergente.

Proposition 17

Toute suite convergente est bornée.

Preuve:

Soit (u_n) convergente de limite l. Soit $\varepsilon = 1$, $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, |u_n - l| \leq 1$.

Posons $T_{n_0} = \{u_k \mid k \in [0, n_0]\}$. C'est un ensemble fini, de cardinal inférieur à n_0 . Ainsi, il possède un maximum et un minimum, qu'on note M et m. Alors $\forall n \in \mathbb{N}, \ u_n \in [\min(m, l-1), \max(M, l+1)]$, elle est bornée.

La réciproque est fausse : la suite de terme général $(-1)^n$ est bornée et divergente.

2 Limites et opérations : preuves des résultats.

On démontre ici une partie seulement de tous les résultats ayant été donnés sous forme de tableaux dans le cours Suites réelles : la pratique.

Proposition 18: Somme de deux suites ayant une limite. 🛨

Soient (u_n) et (v_n) deux suites réelles, et l, l' deux nombres réels.

Si
$$u_n \to l$$
 et $v_n \to l'$, alors $u_n + v_n \to l + l'$.

Si
$$u_n \to l$$
 et $v_n \to +\infty$, alors $u_n + v_n \to +\infty$.

Preuve:

 \star Supposons que $u_n \to l$ et $v_n \to l'$. Soit $\varepsilon > 0$.

On a
$$\exists n_1 \in \mathbb{N} \mid \forall n \geq n_1, \ |u_n - l| \leq \frac{\varepsilon}{2} \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \geq n_2, \ |v_n - l'| \leq \frac{\varepsilon}{2}.$$

On pose $n_0 = \max(n_1, n_2)$. Pour $n \ge n_0$, on a :

$$|(u_n + v_n) - (l + l')| = |(u_n - l) + (v_n - l')| \le |u_n - l| + |v_n - l'| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

On a bien $u_n + v_n \to l + l'$.

• Supposons que $u_n \to l$ et $v_n \to +\infty$. Soit M > 0.

On a $\exists n_1 \in \mathbb{N} \mid \forall n \geq n_1, \ u_n \in [l-1,l+1] \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \geq n_2, \ v_n \geq M-(l-1).$

Pour $n \ge \max(n_1, n_2)$, on a $u_n + v_n \ge l - 1 + M - (l - 1) = M$, donc $u_n + v_n \to +\infty$.

Lemme 19

Le produit d'une suite bornée et d'une suite de limite nulle est une suite de limite nulle.

Preuve:

Soient u et v deux suites réelles que $u_n \to 0$ et v bornée. Soit $\varepsilon > 0$.

Puisque v est bornée, $(|v_n|)$ est majorée : $\exists M > 0 \mid \forall n \in \mathbb{N}, |v_n| \leq M$.

Puisque $u_n \to 0$, $\exists n_0 \in \mathbb{N} \mid \forall n \ge n_0, \ |u_n - 0| \le \frac{\varepsilon}{M}$.

Alors: $\forall n \ge n_0, |u_n v_n| = |u_n||v_n| \le \frac{\varepsilon}{M} M = \varepsilon$

Lemme 20

Si (u_n) converge vers l>0, alors $u_n>\frac{l}{2}$ à partir d'un certain rang, en particulier $u_n>0$ à.p.d.c.r.

Preuve:

Prenons $\varepsilon = \frac{l}{2}$. On a $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, \ u_n \in [l - \frac{l}{2}, l + \frac{l}{2}]$. En particulier, $\forall n \geq n_0, \ u_n \geq \frac{l}{2} > 0$.

Proposition 21: Produit de deux suites ayant une limite. *

Soient (u_n) et (v_n) deux suites réelles, et l, l' deux nombres réels.

Si
$$u_n \to l$$
 et $v_n \to l'$, alors $u_n v_n \to ll'$.

Supposons l > 0. Si $u_n \to l$ et $v_n \to +\infty$, alors $u_n v_n \to +\infty$.

Preuve:

 \star Supposons $u_n \to l$ et $v_n \to l'$.

Soit $\varepsilon > 0$: $\exists n_1 \in \mathbb{N} \mid \forall n \ge n_1, \ |u_n| |v_n - l'| \le \varepsilon \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \ge n_2, \ |l'| |u_n - l| \le \varepsilon.$

Pour $n \ge \max(n_1, n_2)$, on a:

$$|u_n v_n - ll'| = |u_n(v_n - l') + u_n l' - ll'| = |u_n(v_n - l') + l'(u_n - l)|$$

= $|u_n||v_n - l'| + |l'||u_n - l| \le 2\varepsilon$

Donc $u_n v_n \to ll'$.

• Supposons $u_n \to l > 0$ et $v_n \to +\infty$. Soit M > 0: $\exists n'_0 \in \mathbb{N} \mid \forall n \geq n'_0 \ v_n \geq \frac{2M}{l}$.

D'après le lemme, on a : $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, \ u_n \geq \frac{l}{2}$. Donc pour $n \geq \max(n_0, n_0') : u_n v_n \geq \frac{l}{2} \cdot \frac{2M}{l} \geq M$.

Proposition 22: Inverse, quotient de deux suites ayant une limite.

Soient (u_n) et (v_n) deux suites réelles, et l, l' deux nombres réels, avec $l \neq 0$.

Si
$$(u_n) \to 0_+$$
, alors $\frac{1}{u_n} \to +\infty$. Si $u_n \to l$ et $v_n \to l'$, alors $\frac{u_n}{v_n} \to \frac{l}{l'}$.

Preuve:

• Supposons $u_n \to 0_+$. Soit M > 0, on pose $\varepsilon = M^{-1}$.

Puisque $u_n \to 0_+$, on a $0 \le u_n \le M^{-1}$ àpder, donc $u_n^{-1} \ge M$ àpder.

Proposition 23: Lemme de Cesàro.

Soit $(u_n)_{n\geq 1}$ une suite réelle et $l\in\mathbb{R}$.

Pour $n \in \mathbb{N}^*$, on note c_n la moyenne arithmétique des n premiers termes de $u : c_n = \frac{1}{n} \sum_{k=1}^n u_k$.

Si $u_n \to l$, alors $c_n \to l$.

3 Passer à la limite?

Les propositions ci-dessous examinent la possibilité de passer à la limite dans une inégalité ou une égalité.

Proposition 24: Passage à la limite d'une inégalité large.

Soient u et v deux suites réelles et l, l' deux réels.

Si
$$\begin{cases} \forall n \in \mathbb{N}, \ u_n \leq v_n \\ u_n \to l \ \text{et} \ v_n \to l' \end{cases}$$
 alors $l \leq l'$.

En particulier,

- si u est majorée par $M \in \mathbb{R}$ et admet une limite, alors $\lim u_n \leq M$.
- si u est minorée par $m \in \mathbb{R}$ et admet une limite, alors $\lim u_n \geq m$.

Preuve:

Cas particulier. Supposons que $\forall n \in \mathbb{N}, \ u_n \leq M \ \text{et} \ u_n \to l$. Par l'absurde, supposons l M. On pose $\varepsilon = \frac{l-M}{2} > 0$. Puisque $u_n \to l$, $\exists n_0 \in \mathbb{N}$, $u_{n_0} \in [l-\varepsilon, l+\varepsilon]$, absurde car alors $u_{n_0} > M$. Donc $l \leq M$. Même preuve pour le cas minoré.

Cas général. Supposons que $\forall n \in \mathbb{N}, u_n \leq v_n$, que $u_n \to l$ et que $v_n \to l'$. On a $(v_n - u_n)$ minorée par 0 et $v_n - u_n \to l' - l$. D'après le cas particulier, $l' - l \ge 0$ donc $l \le l'$.

Les inégalités structes ne sont **pas** conservées : $\forall n \in \mathbb{N}^*, \frac{1}{n} > 0$ et $\lim \frac{1}{n} = 0$.

Exemple 25

Soit (u_n) la suite définie par : $\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n - u_n^2 \end{cases}$

- 1. Que dire de la monotonie de u
- 2. Supposons $u_0 \in [0,1]$. Montrer que (u_n) est convergente et que $\lim u_n = 0$.
- 3. Supposons que $u_0 < 0$. Montrer que $(u_n) \to -\infty$. Que dire si $u_0 > 1$?

Solution:

- 1. Soit $n \in \mathbb{N}$. $u_{n+1} u_n = -u_n^2 \le 0$ donc (u_n) est décroissante.
- 2. | Supposons $u_0 \in [0,1]$, Par récurrence, on montre que $u_n \geq 0$. Vrai pour u_0 .

Soit $n \in \mathbb{N}$ tel que $u_n \ge 0$, alors $u_{n+1} = u_n(1 - u_n) \ge 0$ donc u est minorée par 0 par récurrence.

La suite est décroissante et minorée donc elle converge par TLM, on note l sa limite.

On a $l = l - l^2$ par passage à la limite donc l = 0.

3. Supposons $u_0 < 0$ et u minorée. Par TLM, u converge, on note l sa limite, alors l = 0.

Par décroissance de $u, \forall n \in \mathbb{N}, u_n \leq u_0 \text{ donc } l \leq u_0 \text{ donc } 0 \leq u_0 < 0, \text{ absurde.}$

Donc u n'est pas minorée : elle diverge vers $-\infty$. Quand $u_0 > 1$, $u_1 < 0$.

Voici un résultat utilisé pour obtenir une équation sur la limite d'une suite convergente définie par une relation du type « $u_{n+1} = f(u_n)$ ».

Proposition 26: La limite comme point fixe.

Soit $X \in \mathcal{P}(\mathbb{R})$, $f: X \to X$ et u une suite satisfait $u_0 \in X$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Si (u_n) converge vers une limite l, que $l \in I$ et que f est continue en l, alors f(l) = l.

Preuve:

On a $u_{n+1} = f(l)$ et $u_{n+1} \to l$ donc $u_n \to l$ donc $f(u_n) \to f(l)$ car f est continue en l. Alors f(l) = l.

Exemple 27

Soit (u_n) une suite réelle telle que $\forall n \in \mathbb{N}, u_{n+1} = \operatorname{ch}(u_n)$. Démontrer que (u_n) diverge.

Solution:

Supposons u convergente vers $l \in \mathbb{R}$, alors $l = \operatorname{ch}(l)$, or ch n'a pas de point fixe dans \mathbb{R} , absurde donc u diverge.

4 Existence d'une limite : preuve des théorèmes.

On se concentre ici sur les preuves de résultats qui ont été abondamment utilisés dans le cours **Suites réelles : la pratique**. On y renvoie le lecteur pour les illustrations, les exemples, les corollaires...

On rappelle qu'établir un encadrement ou exploiter une monotonie sont les deux stratégies principales face à un problème de convergence de suites.

Encadrement.

Théorème 28: d'encadrement, ou des gendarmes. ★

Soient trois suites réelles $(g_n), (u_n), (d_n)$ telles que $\forall n \in \mathbb{N}, g_n \leq u_n \leq d_n$. Si de surcroît, (g_n) et (d_n) convergent vers la limite $l \in \mathbb{R}$, alors (u_n) est convergente et $\lim u_n = l$.

Preuve:

Soit $\varepsilon > 0$, $\exists n_1 \in \mathbb{N} \mid \forall n \ge n_1, \ |g_n - l| \le \varepsilon \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \ge n_2, \ |d_n - l| \le \varepsilon.$ Alors $\forall n \ge \max(n_1, n_2), \ l - \varepsilon \le g_n \le u_n \le d_n \le l + \varepsilon \text{ donc } u_n \to l.$

Proposition 29: de minoration, de majoration. *

Soient (u_n) et (v_n) deux suites réelles.

- Si $\forall n \in \mathbb{N}, u_n \leq v_n \text{ et } v_n \to +\infty, \text{ alors } v_n \to +\infty.$
- Si $\forall n \in \mathbb{N}, u_n \leq v_n \text{ et } v_n \to -\infty, \text{ alors } u_n \to -\infty.$

Preuve:

Supposons $\forall n \in \mathbb{N}, \ u_n \leq v_n \text{ et } u_n \to +\infty.$ Soit $M > 0, \ \exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, \ u_n \geq M.$ Alors $\forall n \geq n_0, \ v_n \geq u_n \geq M$

Je suis pas raciste... mais

Monotonie.

Théorème 30: de la limite monotone. 🖈

Toute suite croissante et majorée converge vers une limite finie.

Toute suite croissante et non majorée diverge vers $+\infty$

Preuve:

Soit (u_n) une suite croissante.

• Supposons u majorée : $\exists M \in \mathbb{R} \ \forall n \in \mathbb{N}, \ u_n \leq M$.

Posons $T = \{u_n, n \in \mathbb{N}\}$, non vide et majoré : on note $l = \sup(T)$. Soit $\varepsilon > 0$.

Par caractérisation : $\exists n_0 \in \mathbb{N} \ s - \varepsilon \leq u_{n_0} \leq l$ et par croissance de $u : \forall n \geq n_0, \ u_{n_0} \leq u_n$.

Ainsi, $\forall n \geq n_0, \ l - \varepsilon \leq u_{n_0} \leq u_n \leq l$. On a bien $u_n \to l$.

• Supposons que u n'est pas majorée. Soit M > 0, $\exists n_0 \in \mathbb{N} \ u_{n_0} > M$.

Par croissance de u, $\forall n \geq n_0$, $u_n \geq u_{n_0} > M$ donc $u_n \to +\infty$.

On rappelle que deux suites (u_n) et (v_n) sont **adjacentes** lorsqu'elles sont monotones, de monotonie contraire, et que leur différence tend vers 0.

Théorème 31: Convergence des suites adjacentes. \star

Deux suites adjacentes convergent vers une même limite finie.

Plus précisément, si (u_n) et (v_n) sont deux suites adjacentes (u croissante et v décroissante), alors elles convergent vers une même limite finie $l \in \mathbb{R}$ telle que $\forall n \in \mathbb{N}, \ u_n \leq l \leq v_n$.

Preuve:

Soient (u_n) et (v_n) deux suites adjacentes. On suppose u croissante, v décroissante et $u_n - v_n \to 0$.

- u est croissante, par TLM, elle est convergente ou divergente vers $+\infty$.
- Supposons que $u \to +\infty$. Pour $n \in \mathbb{N}$, $v_n u_n \le v_0 u_n$ par décroissance de v_n

Ainsi, puisque $u_n \to +\infty$, $v_0 - u_n \to -\infty$ donc $v_n - v_n \to -\infty$, absurde donc u converge.

- v est décroissante, par TLM, elle est convergente ou divergente vers $-\infty$.
- Pour les mêmes raisons, v_n converge.

Notons $l = \lim u_n$ et $l' = \lim v_n$. On a $v_n - u_n \to 0$ et $v_n - u_n \to l - l'$ donc par unicité de la limite, l = l'.

On a l plus petit majorant de u et plus grand minorant de v d'où $\forall n \in \mathbb{N}, u_n \leq l \leq v_n$.

5 Suites extraites.

Définition 32

Soit (u_n) une suite. Une suite extraite de (u_n) est une suite (v_n) dont le terme général est de la forme

$$v_n = u_{\varphi(n)}$$

où $\varphi: \mathbb{N} \to \mathbb{N}$ est une application strictement croissante.

Exemple. Soit (u_n) une suite réelle.

- Les suites (u_{2n}) et (u_{2n+1}) sont des suites extraites de (u_n) .
- D'autres exemples : $(u_{n+1}), (u_{n^2}), (u_{2^n})...$

Lemme 33

Si φ est une application strictement croissante de \mathbb{N} dans \mathbb{N} alors, $\forall n \in \mathbb{N}, \ \varphi(n) > n$.

Preuve:

Soit $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante. Pour $n \in \mathbb{N}$, on note $\mathcal{P}_n : \langle \varphi(n) \geq \mathbb{N} \rangle$.

Initialisation. $\varphi(0) \in \mathbb{N}$ donc $\varphi(0) \geq 0$. $\mathcal{P}(0)$ est vraie.

Hérédité. Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ soit vraie. On a $\varphi(n+1) > \varphi(n) \ge n$ par stricte croissante de φ .

Ainsi, $\varphi(n+1) > n$ donc $\varphi(n+1) \ge n+1$ car $\varphi(n+1) \in \mathbb{N}$.

Par récurrence, $\forall n \in \mathbb{N}, \ \varphi(n) \geq n$.

Proposition 34

Soit (u_n) une suite convergente.

Toute suite extraite de (u_n) converge vers la limite de (u_n) .

Preuve:

Soit $(u_{\varphi(n)})$ une suite extraite de (u_n) avec $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante.

Soit $\varepsilon > 0$, $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, |u_n - l| \leq \varepsilon$.

Pour $n \ge n_0$, $\varphi(n) \ge \varphi(n_0) \ge n_0$ donc $|u_{\varphi(n)} - l| \le \varepsilon$.

Méthode: Prouver la divergence d'une suite avec deux suites extraites.

Si une suite a deux suites extraites ne convergeant pas vers la même limite, alors elle diverge.

Exemple 35

Montrer (à nouveau) que la suite de terme général $(-1)^n$ diverge.

Solution:

On a $(-1)^{2n} \to 1$ et $(-1)^{2n+1} \to -1$, donc deux suites extraites de $((-1)^n)$ n'ont pas la même limite.

Proposition 36

Soit $(u_n)_{n\geq 0}$ une suite réelle et $l\in\mathbb{R}$.

Si
$$u_{2n} \to l$$
 et $u_{2n+1} \to l$, alors $u_n \to l$.

Preuve:

Soit $\varepsilon > 0$, $\exists n_1 \in \mathbb{N} \mid \forall n \ge n_0, \ |u_{2n} - l| \le \varepsilon \text{ et } \exists n_2 \in \mathbb{N} \mid \forall n \ge n_2, \ |u_{2n+1} - l| \le \varepsilon.$

Soit $n_0 = \max(n_1, n_2)$. $\forall k \geq 2n_0, |u_k - l| \leq \varepsilon \operatorname{don} u_n \to l$.

Théorème 37: de Bolzano-Weierstrass.

Toute suite bornée possède une suite extraite convergente.

6 Traduction séquentielle de certaines propriétés.

Définition 38

Soit X une partie de \mathbb{R} . On dit que X est **dense** dans \mathbb{R} si elle rencontre tout intervalle ouvert de \mathbb{R} . Plus précisément, si

 $\forall a < b \in \mathbb{R}, \quad X \cap \]a, b[\neq \varnothing.$

Exemple. Dans le cours Propriétés de \mathbb{R} , on a démontré que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Proposition 39: Caractérisation séquentielle de la densité.

Soit X une partie de \mathbb{R} . Il y a équivalence entre les assetions

- 1. X est dense dans \mathbb{R} .
- 2. Pour tout réel α , il existe une suite d'éléments de X qui tend vers α .

Preuve:

Soit $\alpha \in \mathbb{R}$.

 \Longrightarrow Supposons X dense dans \mathbb{R} . Soit $n \in \mathbb{N}^*$.

Par densité de X dans \mathbb{R} , $X \cap]\alpha - \frac{1}{n}$, $\alpha + \frac{1}{n} [\neq \varnothing]$. Soit $x_n \in X]\alpha - \frac{1}{n}$, $\alpha + \frac{1}{n} [$. Par construction, $(x_n) \in X^{\mathbb{N}}$ et $\forall n \in \mathbb{N}$, $\alpha - \frac{1}{n} \leq x_n \leq \alpha + \frac{1}{n}$ et par encadrement, $x_n \to \alpha$.

Supposons que $\forall \alpha \in \mathbb{R}, \ \exists (x_n) \in X^{\mathbb{N}} \mid x_n \to \alpha.$ Soient $a, b \in \mathbb{R}$ tels que a < b. On pose $\alpha = \frac{a+b}{2} \in \mathbb{R}$. Alors $\exists (x_n) \in X^{\mathbb{N}} \mid x_n \to \alpha.$

Soit $\varepsilon > 0$ tel que $\varepsilon < \frac{b-a}{2} : \exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, |x_n - \alpha| \leq \varepsilon \text{ alors } x_{n_0} \in]a, b[\cap X.$

On a bien $a, b \cap X \neq \emptyset$ donc X est dense dans \mathbb{R} .

Corollaire. Tout réel est la limite d'une suite de rationnels.

Proposition 40

Si X est une partie de \mathbb{R} non-vide majorée (resp. non majorée), alors il existe une suite d'éléments de X de limite $\sup X \text{ (resp. } +\infty)$

Suites complexes.

Définition 41

Soit $(u_n)_{n\geq 0}\in\mathbb{C}^{\mathbb{N}}$ et $l\in\mathbb{C}$. On dit que (u_n) converge vers l et on note $u_n\to l$ si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \mid \forall n \ge n_0, \ |u_n - l| \le \varepsilon.$$

Proposition 42

Soit $(u_n)_{n\geq 0}\in\mathbb{C}^{\mathbb{N}}$ et $l\in\mathbb{C}$. On a

$$u_n \to l \iff \begin{cases} \operatorname{Re}(u_n) \to \operatorname{Re}(l) \\ \operatorname{Im}(u_n) \to \operatorname{Im}(l) \end{cases}$$

Restent vraies avec des suites à valeurs complexes :

- Les résultats sur la limite d'une somme, d'un produit.
- Une limite usuelle : si $z \in \mathbb{C}$ est tel que |z| < 1, alors $z^n \to 0$.
- L'idée que pour prouver qu'une suite de nombres complexes tend vers 0, on peut écraser son module par une suite qui tend vers 0.
- Toute suite de nombres complexes qui converge vers une limite finie est bornée (c'est-à-dire que la suite des modules est majorée).
- Bolzano-Weierstrass: de toute suite de nombres complexes bornée (majorée en valeur absolue), on peut extraire une suite convergente.

À oublier en revanche : tous les arguments à base d'encadrement ou de monotonie : on rappelle que dans $\mathbb C$, on ne dispose pas d'une relation d'ordre.

Exercices

Borne supérieure d'une partie de \mathbb{R} .

Exercice 1: $\Diamond \Diamond \Diamond$

Calculer les bornes supérieures et inférieures des parties, après en avoir prouvé l'existence.

$$A = \left\{ \frac{1}{n} + (-1)^n \mid n \in \mathbb{N}^* \right\}, \quad B = \left\{ \frac{m}{nm+1} \mid m \in \mathbb{N}^*, \ n \in \mathbb{N}^* \right\}, \quad C = \{x^2 + y^2 \mid (x,y) \in \mathbb{R}^2 \text{ et } xy = 1\}.$$

Solution:

A est non-vide, minoré par -1 et majoré 2. On note u la suite de terme général $\frac{1}{n} + (-1)^n$.

On a (u_{2n}) et (u_{2n+1}) décroissantes. De plus, $u_2 > u_1$ donc sup $A = u_2$ et inf $A = \min(\lim u_{2n}, \lim u_{2n+1}) = -1$.

|B|B est non-vide, minoré par 0 et majoré par 1.

Posons $f: x \mapsto x^2 + \frac{1}{x^2}$ dérivable sur \mathbb{R}^* avec $f'(x) = 2x - \frac{2}{x^3}$. On a:

x	$-\infty$	-1	()	1	$+\infty$
f'(x)	_		+	_		+
f	+∞		\rightarrow $+\infty$	+∞	→ 2 —	\rightarrow $+\infty$

Donc inf C = 2 et sup $C = +\infty$.

On a posé cette fonction f car pour tout $x, y \in \mathbb{R}^*$, $xy = 1 \iff y = x^{-1}$.

Exercice 2: $\Diamond \Diamond$

Soient A et B deux aprties non vides et majorées de \mathbb{R} . On note $A + B := \{x + y \mid (x, y) \in A \times B\}$. Démontrer

$$\sup(A+B) = \sup(A) + \sup(B)$$

Solution:

 \leq | Soit $x \in A + B$, $\exists a, b \in A \times B \mid x = a + b$. On a $a \leq \sup(A)$ et $b \leq \sup(B)$ donc $x \leq \sup(A) + \sup(B)$.

 $\overline{\text{On}} \text{ a donc } \sup(A+B) \le \sup(A) + \sup(B).$

 $|\geq|$ Soient $a,b\in A\times B$ on a $a+b\leq \sup(A+B)$ donc $a\leq \sup(A+B)-b$ donc $\sup(A)\leq \sup(A+B)-b$.

 $\overline{\text{Ainsi}}, b \leq \sup(A+B) - \sup(A), \text{ d'où } \sup(A) + \sup(B) \leq \sup(A+B).$

Suites convergentes : quelques exercices de plus.

Exercice 3: $\Diamond \Diamond \Diamond$

Soit (u_n) une suite de réels non nuls telle que $\frac{u_{n+1}}{u_n} \to 0$.

Montrer que (u_n) converge et préciser sa limite.

Solution:

Soit $\varepsilon \in]0,1[:\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, \mid \frac{u_{n+1}}{u_n} \mid \leq \varepsilon.$ Soit $n \geq n_0$. On a $|u_{n+1}| \leq \varepsilon |u_n|$ donc $|u_{n+1}| \leq \varepsilon^2 |u_{n-1}|$ et par récurrence, $|u_{n+1}| \leq \varepsilon^{n-n_0} |u_{n_0}|$.

Or $\varepsilon^{n-n_0} \to 0$ donc $\varepsilon^{n-n_0}|u_{n_0}| \to 0$ donc $u_{n+1} \to 0$ $|u_{n+1}| \to 0$ car $(|u_n|)$ est strictement positive.

Ainsi, (u_n) converge vers 0.

Exercice 4: $\Diamond \Diamond \Diamond$

Soit u une suite bornée et v définie par $\forall n \in \mathbb{N}, \ v_n = \sup\{u_k \mid k \in [n, +\infty]\}$.

Justifier que v est bien définie et qu'elle est convergente.

Solution:

On note $A_n = \{u_k \mid k \in [n, +\infty]\}$ pour $n \in \mathbb{N}$.

Soit $n \in \mathbb{N}$, on a A_n non vide car $u_n \in A_n$ et majoré car u est bornée. Ainsi, v est bien définie.

Pour tout $n \in \mathbb{N}$, on a $A_{n+1} \subset A_n$ donc $\sup(A_{n+1}) \leq \sup(A_n)$ donc $v_{n+1} \leq v_n : v$ est décroissante.

Enfin, u est bornée, notons m sa borne inférieure, alors $\forall n \in \mathbb{N}, v_n \geq \inf A_n \geq \inf A_0 = m$.

Donc v est minorée et décroissante donc elle converge par TLM.

Exercice 5: $\Diamond \Diamond \Diamond$

Soient (u_n) et (v_n) deux suites définies par $u_0 > v_0 > 0$ et

$$u_{n+1} = \frac{u_n + v_n}{2}; \quad v_{n+1} = \frac{2u_n v_n}{u_n + v_n}.$$

Montrer que ces deux suites convergent vers une limite commune. En examinant la suite $(u_n v_n)$, exprimer cette limite en fonction de u_0 et v_0 .

Solution:

Par récurrence, on montre que pour tout $n \in \mathbb{N}$, $u_n > v_n > 0$.

Initialisation. Immédiate.

Hérédité. Soit $n \in \mathbb{N} \mid u_n \geq v_n > 0$. On a :

$$u_{n+1} - v_{n+1} = \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n} = \frac{u_n^2 + 2u_n v_n + v_n^2 - 4u_n v_n}{2(u_n + v_n)} = \frac{(u_n - v_n)^2}{2(u_n + v_n)} > 0.$$

Conclusion. Par récurrence, on a $u_n > v_n > 0$ pour tout $n \in \mathbb{N}$.

Ainsi:

$$u_{n+1} - u_n = \frac{v_n - u_n}{2} < 0$$
 et $v_{n+1} - v_n = \frac{u_n v_n - v_n^2}{u_n + v_n} > \frac{v_n^2 - v_n^2}{u_n + v_n} = 0$

Donc (u_n) est décroissante et (v_n) est croissante.

On en déduit que (u_n) est minorée par v_0 et (v_n) est majorée par u_0 , donc par TLM elles convergent. Notons l, l' leurs limites. On a:

$$l = \frac{l+l'}{2}$$
 donc $2l = l+l'$ donc $l = l'$.

Par calcul, on trouve que $(u_n v_n)$ est constante égale à $u_0 v_0$ car pour $n \in \mathbb{N}^*$, $u_{n+1} v_{n+1} = u_n v_n$. Ainsi:

$$l = \frac{2u_0v_0}{2l}$$
 donc $l^2 = u_0v_0$ donc $l = \sqrt{u_0v_0}$.

9

On a exclu la solution négative car on a montré que $u_n > v_n > 0$ pour tout $n \in \mathbb{N}$.

Exercice 6: $\Diamond \Diamond \Diamond$ Lemme de Riemann-Lebesgue.

Soit [a, b] un segment avec $a \leq b$ et $f : [a, b] \to \mathbb{C}$ une fonction de classe \mathcal{C}^1 sur [a, b]. Montrer que

$$\int_{a}^{b} e^{int} f(t) dt \xrightarrow[n \to +\infty]{} 0.$$

Solution:

Soit $n \in \mathbb{N}$. On a:

$$\left| \int_{a}^{b} e^{int} f(t) dt \right| \leq \left| \left[\frac{1}{in} e^{int} f(t) \right]_{a}^{b} \right| + \left| \int_{a}^{b} \frac{1}{in} e^{int} f'(t) dt \right|$$

$$\leq \frac{1}{n} |f(b)| + \frac{1}{n} |f(a)| + \frac{1}{n} \int_{a}^{b} |f'(t)| dt$$

$$\to 0$$

Par théorème des gendarmes, on obtient le résultat.

Exercices avec epsilon.

Exercice 7: $\Diamond \Diamond \Diamond$

Montrer qu'une suite d'entiers qui converge est stationnaire.

Soit $(u_n) \in \mathbb{N}^{\mathbb{N}}$ convergente vers $l \in \mathbb{N} : \exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, |u_n - l| < 1$.

Alors $\forall n \geq n_0, \ u_n = l, \ \text{donc} \ (u_n) \ \text{est stationnaire}.$

Exercice 8: ♦♦◊

Soit (u_n) une suite réelle. Prouver l'équivalence

$$u_n \to 0 \iff \frac{u_n}{1+|u_n|} \to 0.$$

 \implies Supposons $u_n \to 0$. Alors $1 + |u_n| \to 1$ donc par inverse : $\frac{1}{1 + |u_n|} \to 1$ donc par produit : $\frac{u_n}{1 + |u_n|} \to 0$.

$$\left| \frac{u_n}{1 + |u_n|} \right| = \frac{|u_n|}{|1 + |u_n||} \le \varepsilon \quad \text{donc} \quad |u_n| \le \varepsilon (1 + |u_n|) \quad \text{donc} \quad |u_n| (1 - \varepsilon) \le \varepsilon$$

Donc $|u_n|(1-\varepsilon) \to 0$ donc $|u_n| \to 0$ donc $u_n \to 0$.

Exercice 9: ♦♦♦ Cesàro généralisé.

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de réels et $l\in\mathbb{R}$.

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs telle que $\sum_{k=1}^n a_k \xrightarrow[n \to +\infty]{} +\infty$. Montrer que Si $u_n \xrightarrow[n \to +\infty]{} l$, alors $\sum_{k=1}^n a_k u_k \xrightarrow[n \to +\infty]{} l$

Si
$$u_n \xrightarrow[n \to +\infty]{} l$$
, alors $\frac{\sum\limits_{k=1}^{n} a_k u_k}{\sum\limits_{k=1}^{n} a_k} \xrightarrow[n \to +\infty]{} l$

Solution:

Soit $\varepsilon > 0$. On a:

$$\left| \frac{\sum_{k=1}^{n} a_k u_k}{\sum_{k=1}^{n} a_k} - l \right| = \left| \frac{1}{\sum_{k=1}^{n} a_k} \left(\sum_{k=1}^{n} a_k u_k - l \sum_{k=1}^{n} a_k \right) \right| = \frac{1}{\sum_{k=1}^{n} a_k} \left| \sum_{k=1}^{n} a_k (u_k - l) \right|$$

$$\leq \frac{1}{\sum_{k=1}^{n} a_k} \sum_{k=1}^{n} a_k |u_k - l|$$

Alors $\exists n_0 \in \mathbb{N} \mid \forall n \ge n_0, \sum_{k=1}^n a_k |u_k - l| \le \varepsilon \sum_{k=1}^n a_k$. On a:

$$\left|\frac{\sum_{k=1}^n a_k u_k}{\sum_{k=1}^n a_k} - l\right| \le \frac{1}{\sum_{k=1}^n a_k} \sum_{k=1}^n a_k |u_k - l| \le \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n a_k} \varepsilon = \varepsilon.$$

Donc $\frac{\sum_{k=1}^{n} a_k u_k}{\sum_{k=1}^{n} a_k} \xrightarrow[n \to +\infty]{} l.$

Suites extraites.

Exercice 10: ♦♦♦

Démontrer qu'une suite extraite d'une suite extraite d'une suite (u_n) est une suite extraite de (u_n) .

Solution:

Soient $\varphi : \mathbb{N} \to \mathbb{N}$ et $\psi : \mathbb{N} \to \mathbb{N}$ strictement croissantes. Pour $n \in \mathbb{N}$, on note $v_n = u_{\varphi(n)}$ et $w_n = v_{\psi(n)}$.

Soit $n \in \mathbb{N}$, on a $w_n = u_{\varphi \circ \psi(n)}$ et $\varphi \circ \psi : \mathbb{N} \to \mathbb{N}$ est strictement croissante sur \mathbb{N} par composition.

Ainsi, (w_n) est extraite de (u_n) . De plus, (w_n) est extraite de (v_n) qui est extraite de (u_n) .

On a bien le résultat.

Exercice 11: ♦♦◊

Soit $u \in \mathbb{R}^{\mathbb{N}}$. Montrer que $(|u_n|)$ ne tend pas vers $+\infty$ ssi u admet une suite extraite convergente.

Solution:

Supposons que $(|u_n|)$ ne tend pas vers $+\infty$. Alors $\exists M > 0 \ \forall n \in \mathbb{N}, \ |u_n| \leq M$.

 $\overline{\text{Ainsi}}$, $(|u_n|)$ est bornée donc admet une suite extraite convergente d'après Bolzano-Weierstrass.

Supposons que u admette une suite extraite convergente $(u_{\varphi(n)})$ où $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante.

Par l'absurde, on suppose que $|u_n| \to +\infty$, donc pour M > 0, $\exists n_0 \in \mathbb{N} \mid \forall n \geq n_0, |u_n| > M$.

Rappelons que pour tout $n \in \mathbb{N}$, $\varphi(n) \ge n$ donc pour $n \ge n_0$, $|u_{\varphi(n)}| \ge |u_n| > M$.

Ainsi, $|u_{\varphi(n)}|$ diverge, donc $u_{\varphi(n)}$ aussi, ce qui est absurde. Donc $|u_n|$ ne tend pas vers $+\infty$.

Exercice 12: ♦♦◊

Soit (u_n) une suite telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes.

Montrer que (u_n) est convergente.

Solution:

Soit $l_1 = \lim u_{2n}$, $l_2 = \lim u_{2n+1}$ et $l_3 = \lim u_{3n}$.

On a u_{6n} extraite de u_{3n} et u_{2n} donc u_{6n} converge vers l_1 et l_3 . Par unicité de la limite, $l_1 = l_3$.

On a u_{6n+3} extraite de u_{3n} et u_{2n+1} donc u_{6n+3} converge vers l_2 et l_3 . Par unicité de la limite, $l_2 = l_3$.

Donc $l_1 = l_2 = l_3$ et d'après 36, (u_n) converge vers leur limite commune.

Exercice 13: ♦♦♦

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites d'entiers telles que

$$\forall n \in \mathbb{N}, \ b_n > 0, \ \frac{a_n}{b_n} \to l \ \text{ et } \ l \notin \mathbb{Q}.$$

Montrer que $b_n \to +\infty$.

Solution:

Par l'absurde, on suppose que (b_n) ne diverge pas vers $+\infty : \exists M > 0 \mid \forall n \in \mathbb{N}, \ 0 < b_n < M$.

D'après Bolzano-Weierstrass, il existe $(b_{\varphi(n)})$ convergente vers $\beta \in \mathbb{N}$ où $\varphi : \mathbb{N} \to \mathbb{N}$ est strictement croissante.

On en déduit que $a_{\varphi(n)} \to \beta l \in \mathbb{N}$, alors $l = \frac{\beta l}{\beta} \in \mathbb{Q}$, absurde donc $b_n \to +\infty$.

Exercice 14: ♦♦♦

On veut montrer que la suite de terme général sin(n) diverge.

On note $u_n = \sin(n)$. On raisonne par l'absurde en supposant que (u_n) est convergente, de limite l.

- 1. En considérant $\sin(n+1) \sin(n-1)$, montrer que $(\cos n)_{n \in \mathbb{N}}$ tend vers 0.
- 2. En déduire une contradition.

Solution:

1. Soit $n \in \mathbb{N}$. On a $\sin(n+1) - \sin(n-1) = 2\sin(1)\cos(n)$.

Par passage à la limite, on a $0 = 2\sin(1)\lim_{n \to +\infty} \cos(n)$ donc $\lim_{n \to +\infty} \cos(n) = 0$

2. On a $\sin(2n) = 2\sin(n)\cos(n) \to 0$ donc l = 0 par unicité, donc $\cos^2(n) + \sin^2(n) \to 0$.

 $\overrightarrow{Or} \forall n \in \mathbb{N}, \ \cos^2(n) + \sin^2(n) = 1, \ \text{donc } 0 = 1 \ \text{par unicité de la limite, absurde.}$

Exercice 15: ♦♦♦

Démontrer la divergence de la suite (u_n) de terme général $\sin(\ln(n))$.

Solution:

Par l'absurde, on suppose que $u_n \to l \in [-1, 1]$. Soit $n \in \mathbb{N}^*$.

Soit $\varphi: n \mapsto n^2$. On a $u_{\varphi(n)} \to l$ donc $2\cos(\ln(n))\sin(\ln(n)) \to l$.

De plus, $|\cos(\ln(n))| = \sqrt{1 - \sin^2(\ln(n))} \to \sqrt{1 - l^2} := \gamma$.

Donc par passage à la limite, $|l| = 2|l|\gamma$ donc $|l|(1-\gamma) = 0$.

D'une part, on a $\sin(\ln(2^{n+1})) = \dots = \sin(n\ln(2))\cos(\ln(2)) + \cos(n\ln(2))\sin(\ln(2))$.

D'autre part, on a $\sin(\ln(2^{n-1})) = \dots = \sin(n \ln(2)) \cos(\ln(2)) - \cos(n \ln(2)) \sin(\ln(2))$.

Ainsi, $\sin(\ln(2^{n+1})) - \sin(\ln(2^{n-1})) = 2\cos(n\ln(2))\sin(\ln(2))$.

Le membre de gauche tend vers 0, celui de droite vers $2\gamma \sin(\ln(2))$ donc par unicité de la limite, $\gamma = 0$.

Or, $|l|(1-\gamma) = 0$ et $\gamma \neq 1$ donc |l| = l = 0.

Enfin, $\cos^2(\ln(n)) + \sin^2(\ln(n)) = 1$ et $\cos^2(\ln(n)) + \sin^2(\ln(n)) \to 0$, absurde.