# Notas del teórico

Medida e Integración - Francisco Martinez Pería 2025

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

## Contenido

| 6  | C          | lase I - 06/03                                                                   |             |
|----|------------|----------------------------------------------------------------------------------|-------------|
|    | 1.1<br>1.2 | Integral de Riemann .1.1 Desventajas de la integral de Riemann Espacios Medibles | 6<br>6<br>7 |
| 11 | Parciales  |                                                                                  |             |
|    | 2.1        | Primer parcial - Primera fecha                                                   | 11          |
|    | 2.2        | Primer parcial - Segunda fecha                                                   |             |
|    | 2.3        | Segundo parcial - Primera fecha                                                  | 11          |
|    | 2.4        | Segundo parcial - Segunda fecha                                                  |             |
|    | 2.5        | Segundo parcial - Tercera fecha                                                  |             |



### Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Medida e Integración dictado por Francisco Martinez Pería en el primer cuatrimestre de 2025.

Estas notas se basan principalmente en la cursada del '99 brindada por Jorge Samur y material del libro *The elements of integration and Lebesgue Measure* de Robert G. Bartle.



## Clase I - 06/03

#### 1.1 Integral de Riemann

Sea  $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$  una función. Una partición P de [a, b] es un conjunto finito  $\{x_0, x_1, \cdots, x_n\}$ , con  $a = x_0 < x_1 < \cdots < x_n = b$ . A P le asignamos una norma  $\|P\| = \max\{l(J_k)\}$ .  $J_k = [x_{k-1}, x_k]$  y a cada P le podemos asignar una etiqueta, que es un vector  $\xi = (\xi_1, \cdots, \xi_n)$  tal que  $\xi_k \in J_k$ . Una partición etiquetada es un par  $(P, \xi)$ ; y le podemos asignar su suma de Riemann:  $S(P, \xi) = \sum_{k=1}^n f(\xi_k) l(J_k)$ .

```
Definición 1.1. Una función f:[a,b]\to\mathbb{R} es integrable Riemann si \exists I\in\mathbb{R}:\forall\epsilon>0,\exists\delta>0:|S(P,\xi)-I|<\epsilon si (P,\xi) es tal que \|P\|\leq\delta
```

Ejercicio: Probar que si f es integrable Riemann entonces es acotada.

Si f es acotada, dada una partición P del dominio de f, para cada  $i \in 1, \dots, n$ . Sean  $M_i = \sup\{f(x): x \in J_i\}$  y  $m_i = \inf\{f(x): x \in J_i\}$ . Luego definimos la suma superior y la suma inferior asociada a P como  $S(f,P) = \sum_{k=1}^n M_k l(J_k)$  y  $s(f,P) = \sum_{k=1}^n m_k l(J_k)$ . Entonces podemos definir suma superior e inferior de Riemann como  $\int_a^b f(x) \, dx = \sup\{S(f,P): P \text{ partición de } [a,b]\}$  y  $\bar{\int}_a^b f(x) \, dx = \inf\{s(f,P): P \text{ partición de } [a,b]\}$ .

**Proposición 1.2.** Dada una función  $f : [a, b] \to \mathbb{R}$ , f es integrable Riemann  $\iff$  es acotada y la suma superior es igual a la anterior.

Nota. f es integrable Riemann si:

- 1. f es continua.
- 2. f es continua salvo finitos puntos en los que existen los límites laterales.
- 3. f es monótona y acotada (en este caso pueden existir numerables discontinuidades).

#### 1.1.1. Desventajas de la integral de Riemann

- Exige que la función oscile poco en intervalos pequeños.
- Hay funciones simples que no son integrables Riemann.
- No se comporta bien con respecto a la convergencia puntual.

**Ejemplo.** Sea  $f:[0,1]\to\mathbb{R}:f(x)=\begin{cases} 1 & x\in\mathbb{Q}\\ 0 & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$  f no es integrable Riemann.

**Demostración.** Llamemos  $A=[0,1]\cap \mathbb{Q}$ . A es numerable entonces  $\exists \sigma: \mathbb{N} \to A$  biyección. Para cada  $n\in \mathbb{N}$ , sea  $A_n=\{\sigma(1),\cdots,\sigma(n)\},\ A_n\subset A_{n+1}\ y\cup_{n=1}^\infty A_n=A$ . Ahora para cada  $n\geq 1$  consideramos:  $f_n:[0,1]\to \mathbb{R}$  dada por

$$f_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \in [0, 1] \setminus A_n \end{cases}$$
 (1.1)

 $f_n$  es integrable Riemann (queda como ejercicio demostrarlo) ya que es continua salvo en los puntos de  $A_n$  y los límites laterales son siempre cero. Veamos ahora que  $f_n \to f$ . Sea  $x \in [0,1]$ 

- $1. \ \mathrm{Si} \ x \in A \rightarrow x \in A_{n_0}, n_0 \in \mathbb{N} \rightarrow (\forall n > n_0) x \in A_n \rightarrow (\forall n > n_0) f_n(x) = 1 \rightarrow f_n(x) \rightarrow f(x) = 1.$
- $2. \ \mathrm{Si} \ x \notin A \to (\forall n \in \mathbb{N}) x \notin A_n \to (\forall n \in \mathbb{N}) f_n(x) = 0 \to f_n(x) \to f(x) = 0.$

 $f_n \to f$ . Si conocieramos l(A) y  $l([0,1] \setminus A)$  podríamos definir  $\int f = 1 \times l(A) + 0 \times l([0,1] \setminus A)$ .

#### 1.2 Espacios Medibles

Dado X un conjunto arbitrario no vacío. Sea  $\mathcal{P}(X)$  el conjunto de partes de X.

**Definición 1.3** ( $\sigma$ -álgebra). Una familia  $\mathfrak{X}$  es una  $\sigma$ -álgebra si verifica:

- 1.  $\emptyset, X \in \mathfrak{X}$ .
- 2. Si  $A \in X \to A^c \in \mathfrak{X}$ .
- 3. Sea  $(A_n)_{n\geq 1}$  es una sucesión en  $\mathfrak{X} \to \bigcup_{n=1}^{\infty} A_n \in \mathfrak{X}$ .

Si  $\mathfrak{X}$  es una  $\sigma$ -álgebra de subconjuntos de  $\mathfrak{X}$  el par  $(X,\mathfrak{X})$  es un espacio medible. A cada  $A \in \mathfrak{X}$  lo llamaremos conjunto  $\mathfrak{X}$ -medible.

**Nota.** Si  $\mathfrak{X}$  es una  $\sigma$ -álgebra de X y  $A_1, \cdots A_n \in \mathfrak{X}$  entonces  $\cup_{k=1}^n A_k \in \mathfrak{X}$ . Idea de la demostración: Sea  $(B_m)_{m \geq 1}$  la sucesión en  $\mathfrak{X}$  definida por

$$B_{\mathfrak{m}} = \begin{cases} A_{\mathfrak{m}} & 1 \le \mathfrak{m} \le \mathfrak{n} \\ \emptyset & \mathfrak{m} > \mathfrak{n} \end{cases} \tag{1.2}$$

Nota. Si  $(A_n)_{n\geq 1}$  es una sucesión de una  $\sigma$ -álgebra  $\mathfrak X$  entonces  $\cap_{n=1}^\infty A_n\in \mathfrak X.$ 

**Demostración.** 
$$\cup_{n\geq 1}A_n^c\in\mathfrak{X}\to (\cap_{n\geq 1}A_n^c)^c\in\mathfrak{X}\to \cup_{n\geq 1}A_n\in\mathfrak{X}.$$

**Ejemplo** (σ-álgebras). Dado X cualquiera no vacío.

- 1.  $\mathfrak{X} = {\emptyset, X}$  es una  $\sigma$ -álgebra.
- 2.  $\mathfrak{X} = \mathcal{P}(X)$  es una  $\sigma$ -álgebra.
- 3. Sea  $A \neq \emptyset \subset X$ . Luego  $\mathfrak{X} = \{\emptyset, A, A^c, X\}$  es una  $\sigma$ -álgebra.
- 4. Supongamos que X no es numerable y sea

$$\mathfrak{X} = \{ A \subseteq X : A \text{ es numerable \'o } A^{c} \text{ es numerable} \}$$
 (1.3)

es una  $\sigma$ -álgebra. Demostración ejercicio y además  $\mathfrak{X} \neq \mathcal{P}(X)$ .

**Lema 1.4.** Dado un conjunto X, sean  $\mathfrak{X}_1$ ,  $\mathfrak{X}_2$  dos  $\sigma$ -álgebras de X. Entonces  $\mathfrak{X}_1 \cap \mathfrak{X}_2$  es una  $\sigma$ -álgebra de X. Más aún si  $(\mathfrak{X}_i)_{i \in I}$  es una familia de  $\sigma$ -álgebras de X entonces  $\cap_{i \in I} \mathfrak{X}_i$  es una  $\sigma$ -álgebra de X. Demostración, ejercicio.

**Proposición 1.5.** Dado un conjunto X, sea  $A \neq \emptyset \subseteq \mathcal{P}(X) \to \exists \sigma$ -álgebra  $\sigma(A)$  que verifica:

- 1.  $A \subseteq \sigma(A)$ .
- 2.  $\mathfrak{X}$  es  $\sigma$ -álgebra de X tal que  $A \subseteq X \to \sigma(A) \subseteq \mathfrak{X}$ .
- 3.  $\sigma(A)$  es la única que verifica ambas propiedades en simultáneo.

La llamaremos  $\sigma$ -álgebra generada por A.

**Demostración.** Sea  $\Delta = \{\mathcal{C} \subseteq \mathcal{P}(X) : \mathcal{C} \text{ es } \sigma\text{-\'algebra de } X \text{ y } A \subseteq \mathcal{C}\} \neq \emptyset \text{ pues } \mathcal{P}(X) \in \Delta.$  Llamemos  $\mathfrak{X} = \cap_{\mathcal{C} \in \Delta} \mathcal{C} = \{B \in \mathcal{P}(X) : B \in \mathcal{C}(\forall \mathcal{C} \in \Delta)\}$ . Veamos que  $\mathfrak{X}$  es una  $\sigma$ -\'algebra de X.

- 1.  $\emptyset, X \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \to \emptyset, X \in \mathfrak{X}$ .
- 2. Sea  $A \in \mathfrak{X} \to (\forall \mathfrak{C} \in \Delta) A \in \mathfrak{C} \to A^c \in \mathfrak{C}(\forall \mathfrak{C} \in \Delta) \to A^c \in \mathfrak{X}$ .
- 3. Sea  $(A_n)_{n\geq 1}$  una sucesión en  $\mathfrak X$  el argumento es análogo a los dos anteriores.
- $:: \mathfrak{X}$  es una  $\sigma$ -álgebra que verifica ambas condiciones. Supongamos que existe otra  $\overline{\mathfrak{X}}$   $\sigma$ -álgebra que verifica las dos condiciones por la propiedad uno y dos podemos deducir que  $\mathfrak{X} \subseteq \overline{\mathfrak{X}}$  y  $\overline{\mathfrak{X}} \subseteq \mathfrak{X}$ .

**Ejemplo.** Consideremos  $X = \mathbb{R}$  y sea  $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$ . La  $\sigma$ -álgebra generada por A es la  $\sigma$ -álgebra de Borel  $\mathcal{B}$ . A los conjuntos de  $\mathcal{B}$  los llamaremos conjuntos Borelianos. Veamos que si  $\overline{A} = \{(a, +\infty) : a \in \mathbb{R}\} \to \sigma(\overline{A}) = \mathcal{B}$ .

**Demostración.** • Dado  $a \in \mathbb{R}$ ,  $(a, +\infty) = \bigcup_{n \geq 1} (a, a + n) \in \mathcal{B} \to \overline{A} \subseteq \mathcal{B}$ . Luego  $\sigma(\overline{A}) \subseteq \mathcal{B}$ . Por ser  $\sigma(\overline{A})$  la mínima  $\sigma$ -álgebra que contiene a  $\overline{A}$ .

■ Dado  $a, b \in \mathbb{R}$ , a < b. Sabemos que  $(a, b] = (a, +\infty) \cap (b, +\infty)^c \in \sigma(\overline{A})$ . Luego  $(a, b) = \bigcup_{n \ge 1} (a, b - \frac{1}{n}] \in \sigma(\overline{A})$ . Por lo que  $A \subset \sigma(\overline{A})$ .  $\mathcal{B} = \sigma(A) \subset \sigma(\overline{A})$ . Por ser  $\sigma(A)$  la mínima  $\sigma$ -álgebra que contiene a A.

Ejercicio demostrar que la  $\sigma$ -álgebra de Borel está generada también por las siguientes familias:

- 1.  $\{(a, b] : a, b \in \mathbb{R}, a < b\}$ .
- $2. \ \{[a,b): a,b \in \mathbb{R}, a < b\}.$
- 3.  $\{[a,b]: a,b \in \mathbb{R}, a < b\}$ .
- 4.  $\{[\alpha, +\infty) : \alpha \in \mathbb{R}\}.$
- 5.  $\{(-\infty, \alpha) : \alpha \in \mathbb{R}\}.$
- 6.  $\{(-\infty, \alpha] : \alpha \in \mathbb{R}\}.$

Luego, se puede ver que  $\{a\} = \bigcap_{n \ge 1} [a, a - \frac{1}{n}) \in \mathcal{B}$ .



### **Parciales**

- 2.1 Primer parcial Primera fecha
- 2.2 Primer parcial Segunda fecha
- 2.3 Segundo parcial Primera fecha
- 2.4 Segundo parcial Segunda fecha
- 2.5 Segundo parcial Tercera fecha



# Bibliografía

[1] Robert G. Bartle. The elements of integration and Lebesgue. John Wiley and Sons, 1995.