Large Margin Classifier

Name: Shashank Patel

Roll no.:220103027

Support vector machine

$$\min_{\theta} C \left[\sum_{i=1}^{m} y^{(i)} \operatorname{cost}_{1} (\theta^{\top} x^{(i)}) + (1 - y^{(i)}) \operatorname{cost}_{0} (\theta^{\top} x^{(i)}) \right] + \sum_{j=1}^{n} \theta_{j}^{2}$$

SVM decision boundary

$$\min_{\theta} C \left[\sum_{i=1}^{m} y^{(i)} \; \operatorname{cost}_{1} (\theta^{\mathsf{T}} x^{(i)}) + (1 - y^{(i)}) \operatorname{cost}_{0} (\theta^{\mathsf{T}} x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

- Let's say we have a very large C...
- Whenever $y^{(i)} = 1$: $\theta^{T} x^{(i)} \ge 1$
- Whenever $y^{(i)} = 0$: $\theta^{T} x^{(i)} < -1$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$
s. t. $\theta^{T} x^{(i)} \ge 1$ if $y^{(i)} = 1$ $\theta^{T} x^{(i)} \le -1$ if $y^{(i)} = 0$

SVM decision boundary: Linearly separable case

SVM decision boundary: Linearly separable case

Why large margin classifiers?

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

s.t.
$$\theta^{T} x^{(i)} \ge 1$$
 if $y^{(i)} = 1$
 $\theta^{T} x^{(i)} \le -1$ if $y^{(i)} = 0$

Vector inner product

SVM decision boundary

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \qquad \qquad \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} \left(\sqrt{\theta_{1}^{2} + \theta_{2}^{2}} \right)^{2} = \frac{1}{2} \|\theta\|^{2}$$

s.t.
$$\theta^{T} x^{(i)} \ge 1$$
 if $y^{(i)} = 1$
 $\theta^{T} x^{(i)} \le -1$ if $y^{(i)} = 0$

Simplication: $\theta_0 = 0$, n = 2

What's $\theta^T x^{(i)}$?

$$\theta^{\mathsf{T}} x^{(i)} = p^{(i)} \|\theta\|^2$$

SVM decision boundary

$$\min_{\theta} \frac{1}{2} \|\theta\|^{2}$$
s. t. $p^{(i)} \|\theta\|^{2} \ge 1$ if $y^{(i)} = 1$
 $p^{(i)} \|\theta\|^{2} \le -1$ if $y^{(i)} = 0$

Simplication: $\theta_0 = 0$, n = 2

 $p^{(1)}$, $p^{(2)}$ small ightarrow $\lVert heta
Vert^2$ large

 $p^{(1)}$, $p^{(2)}$ large ightarrow $\| heta\|^2$ can be small

