Theory of Computer Science D7. Halting Problem and Reductions

Malte Helmert

University of Basel

May 9, 2016

Overview: Computability Theory

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability
- undecidable problems:
 - D6. Decidability and Semi-Decidability
 - D7. Halting Problem and Reductions
 - D8. Rice's Theorem and Other Undecidable Problems Post's Correspondence Problem Undecidable Grammar Problems Gödel's Theorem and Diophantine Equations

Further Reading (German)

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

• Chapters 4.2 and 5.1

Notes:

- Sipser does not cover all topics we do.
- His definitions differ from ours.

Introduction •0

Undecidable Problems

- We now know many characterizations of semi-decidability and decidability.
- What's missing is a concrete example for an undecidable (= not decidable) problem.
- Do undecidable problems even exist?

Undecidable Problems

- We now know many characterizations of semi-decidability and decidability.
- What's missing is a concrete example for an undecidable (= not decidable) problem.
- Do undecidable problems even exist?
- Yes! Counting argument: there are (for a fixed Σ) as many decision algorithms (e.g., Turing machines) as numbers in \mathbb{N}_0 but as many languages as numbers in \mathbb{R} . Since \mathbb{N}_0 cannot be surjectively mapped to \mathbb{R} , languages with no decision algorithm exist.
- But this argument does not give us a concrete undecidable problem.

 main goal of this chapter

Turing Machines as Words

Turing Machines as Inputs

- The first undecidable problems that we will get to know have Turing machines as their input.
 - → "programs that have programs as input":cf. compilers, interpreters, virtual machines, etc.
- We have to think about how we can encode arbitrary Turing machines as words over a fixed alphabet.
- We use the binary alphabet $\Sigma = \{0, 1\}$.
- As an intermediate step we first encode over the alphabet $\Sigma' = \{0, 1, \#\}.$

```
Step 1: encode a Turing machine as a word over \{0,1,\#\}
Reminder: Turing machine M=\langle Q,\Sigma,\Gamma,\delta,q_0,\Box,E\rangle
Idea:
```

- input alphabet Σ should always be $\{0,1\}$
- enumerate states in Q and symbols in Γ and consider them as numbers 0, 1, 2, . . .
- blank symbol always receives number 2
- start state always receives number 0

Step 1: encode a Turing machine as a word over $\{0, 1, \#\}$ Reminder: Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \square, E \rangle$ Idea:

- input alphabet Σ should always be {0, 1}
- enumerate states in Q and symbols in Γ and consider them as numbers $0, 1, 2, \ldots$
- blank symbol always receives number 2
- start state always receives number 0

Then it is sufficient to only encode δ explicitly:

- Q: all states mentioned in the encoding of δ
- E: all states that never occur on a left-hand side of a δ -rule
- $\Gamma = \{0, 1, \square, a_3, a_4, \dots, a_k\}$, where k is the largest symbol number mentioned in the δ -rules

encode the rules:

- Let $\delta(q_i, a_j) = \langle q_{i'}, a_{j'}, y \rangle$ be a rule in δ , where the indices i, i', j, j' correspond to the enumeration of states/symbols and $y \in \{L, R, N\}$.
- encode this rule as $w_{i,j,i',j',y} = \#\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#bin(m'), \text{ where}$ $m = \begin{cases} 0 & \text{if } y = L \\ 1 & \text{if } y = R \\ 2 & \text{if } y = N \end{cases}$
- For every rule in δ , we obtain one such word.
- All of these words in sequence (in arbitrary order) encode the Turing machine.

Step 2: transform into word over {0,1} with mapping

$$0 \mapsto 00$$

$$1 \mapsto 01$$

$$\text{\#} \mapsto \text{11}$$

Turing machine can be reconstructed from its encoding. How?

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

```
##10#11#0#10#10##1#1#11#0#0
111101001101011110011010011110111101110111001100
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10#10
\delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
1111010011010111001101001101001111011101110111001100
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10#10 \delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
111101001101011110011010011110111101110111001100
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10#10
\delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
1111010011010111001101001101001111011101110111001100
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10
\delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
1111010011010111001101001101001111011101110111001100
```

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

```
##10#11#0#10#10##1#1#11#0#0
1111010011010111001101001101001111011101110111001100
```

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

```
##10#11#0#10#10##1#1#11#0#0
1111010011010111001101001101001111011101110111001100
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10#10 \delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10##1#1#1#11#0#0
111101001101011110011010011110111101110111001100
```

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10
\delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
```

Example (step 1)

```
\delta(q_2, a_3) = \langle q_0, a_2, N \rangle becomes ##10#11#0#10
\delta(q_1, a_1) = \langle q_3, a_0, L \rangle becomes ##1#1#11#0#0
```

```
##10#11#0#10#10##1#1#11#0#0
```

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

```
##10#11#0#10#10##1#1#11#0#0
111101001101011110011010011110111101110111001100
```

Example (step 1)

$$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$$
 becomes ##10#11#0#10#10

$$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$$
 becomes ##1#1#11#0#0

Example (step 2)

```
##10#11#0#10#10##1#1#11#0#0
11110100110101110011010011010011110111011101110011100
```

Note: We can also consider the encoded word (uniquely; why?) as a number that enumerates this TM.

This is not important for the halting problem but in other contexts where we operate on numbers instead of words.

Turing Machine Encoded by a Word

goal: function that maps any word in $\{0,1\}^*$ to a Turing machine problem: not all words in $\{0,1\}^*$ are encodings of a Turing machine

solution: Let \widehat{M} be an arbitrary fixed deterministic Turing machine (for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all $w \in \{0, 1\}^*$:

Questions

Questions?

Special Halting Problem

Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem)

The special halting problem or self-application problem is the language

$$K = \{w \in \{0,1\}^* \mid M_w \text{ started on } w \text{ terminates}\}.$$

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word w plays two roles as encoding of the TM and as input for encoded machine

Semi-Decidability of the Special Halting Problem

Theorem (Semi-Decidability of the Special Halting Problem)

The special halting problem is semi-decidable.

Proof.

We construct an "interpreter" for DTMs that receives the encoding of a DTM as input w and simulates its computation on input w.

If the simulated DTM stops, the interpreter returns 1.

Otherwise it does not return.

This interpreter computes χ'_{κ} .

Note: TMs simulating arbitrary TMs are called universal TMs.

German: universelle Turingmaschine

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

So assume K is decidable. Then χ_K is computable (why?).

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

So assume K is decidable. Then χ_K is computable (why?).

Let M be a Turing machine that computes χ_K , i.e., given a word w writes 1 or 0 onto the tape (depending on whether $w \in K$) and then stops.

Proof (continued).

Construct a new machine M' as follows:

- Execute *M* on the input *w*.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Proof (continued).

Construct a new machine M' as follows:

- **1** Execute M on the input w.
- If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

Proof (continued).

Construct a new machine M' as follows:

- Execute *M* on the input *w*.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

M' run on w' stops iff M run on w' outputs 0

Proof (continued).

Construct a new machine M' as follows:

- **1** Execute M on the input w.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

M' run on w' stops iff M run on w' outputs 0 iff $\chi_K(w')=0$

Proof (continued).

Construct a new machine M' as follows:

- **1** Execute M on the input w.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

M' run on w' stops iff M run on w' outputs 0 iff $\chi_K(w')=0$ iff $w'\notin K$

Proof (continued).

Construct a new machine M' as follows:

- Execute M on the input w.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

M' run on w' stops iff M run on w' outputs 0 iff $\chi_K(w')=0$ iff $w'\notin K$

iff $M_{w'}$ run on w' does not stop

Proof (continued).

Construct a new machine M' as follows:

- Execute *M* on the input *w*.
- ② If the tape content is 0: stop.
- Otherwise: enter an endless loop.

Let w' be the encoding of M'. How will M' behave on input w'?

M' run on w' stops

iff M run on w' outputs 0

iff $\chi_K(w') = 0$

iff $w' \notin K$

iff $M_{w'}$ run on w' does not stop

iff M' run on w' does not stop

Contradiction! This proves the theorem.

Questions

Questions?

Reprise: Type-0 Languages

Back to Chapter C7: Closure Properties

		Intersection	Union	Complement	Product	Star
	Type 3	Yes	Yes	Yes	Yes	Yes
	Type 2	No	Yes	No	Yes	Yes
	Type 1	Yes ⁽¹⁾	Yes	Yes ⁽¹⁾	Yes	Yes
	Type 0	Yes ⁽¹⁾	Yes	No ⁽²⁾	Yes	Yes

Proofs?

- (1) without proof
- (2) proofs in later chapters (part D)

Back to Chapter C7: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Type 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes	No ⁽¹⁾	No	No
Type 0	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾	No ⁽²⁾

- (1) without proof
- (2) proof in later chapters (part D)

Answers to Old Questions

Closure properties:

- K is semi-decidable (and thus type 0) but not decidable.
- \rightarrow \bar{K} is not semi-decidable, thus not type 0.
- → Type-0 languages are not closed under complement.

Decidability:

- *K* is type 0 but not decidable.
- → word problem for type-0 languages not decidable
- emptiness, equivalence, intersection problem: later in exercises (We are still missing some important results for this.)

Questions

Questions?

Reductions
•0000000

Reductions

What We Achieved So Far: Discussion

- We now know a concrete undecidable problem.
- But the problem is rather artificial: how often do we want to apply a program to itself?
- We will see that we can derive further (more useful) undecidability results from the undecidability of the special halting problem.
- The central notion for this is reducing a new problem to an already known problem.

Reductions

Reductions: Definition

Definition (Reduction)

Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages, and let $f: \Sigma^* \to \Gamma^*$ be a total and computable function such that for all $x \in \Sigma^*$:

$$x \in A$$
 if and only if $f(x) \in B$.

Then we say that A can be reduced to B (in symbols: $A \leq B$), and f is called reduction from A to B.

German: A ist auf B reduzierbar. Reduktion von A auf B

Reduction Property

Theorem (Reductions vs. Semi-Decidability/Decidability)

Let A and B be languages with $A \leq B$. Then:

- 1 If B is decidable, then A is decidable.
- ② If B is semi-decidable, then A is semi-decidable.
- **3** If A is not decidable, then B is not decidable.
- 4 If A is not semi-decidable, then B is not semi-decidable.
- → In the following, we use 3. to show undecidability
 for further problems.

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x:

$$y := f(x)$$

result := $\chi_B(y)$

RETURN result

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x:

$$y := f(x)$$

result := $\chi_B(y)$

RETURN result

for 2.: identical to (1), but use χ'_B (instead of χ_B) to compute χ'_A (instead of χ_A)

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x:

$$y := f(x)$$

result := $\chi_B(y)$

RETURN result

for 2.: identical to (1), but use χ'_B (instead of χ_B) to compute χ'_A (instead of χ_A)

for 3./4.: contrapositions of $1./2. \rightsquigarrow$ logically equivalent

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation " \leq " is a preorder:

- For all languages A: $A \le A$ (reflexivity)
- **2** For all languages A, B, C: If $A \le B$ and $B \le C$, then $A \le C$ (transitivity)

German: schwache Halbordnung/Quasiordnung, Reflexivität, Transitivität

Reductions are Preorders: Proof

Proof.

for 1.: The function f(x) = x is a reduction from A to A because it is total and computable and $x \in A$ iff $f(x) \in A$.

for 2.: → exercises

Questions

Questions?

Summary

Summary

- The special halting problem (self-application problem) is undecidable.
- However, it is semi-decidable.
- important concept in this chapter:
 Turing machines represented as words
 - → Turing machines taking Turing machines as their input
- reductions: "embedding" a problem as a special case of another problem
- important method for proving undecidability:
 reduce from a known undecidable problem to a new problem