Folie 01 Introduction

Algorithmus

Allgemeine Characteristika

1. Berechenbar

Finitheit:

· Algorithmus hat endliche beschreibung

Terminierung:

Algorithmus stoppt in endlicher Zeit

Effektivität

Schritte sind auf Maschine ausführbar

2. Bestimmt

Determiniertheit

Algorithmus liefert gleicher Ausgabe bei gleicher Eingabe

Determinismus

Algorithmus durchläuft gleiche Zustände bei gleicher Eingabe

3. Anwednbar

Allgemeinheit

· Algorithmus für ganze Problemklasse anwendbar

Korrektheit

Falls Algorithmus terminiert, ist die Ausgabe richtig

Allgemeine Charakteristika Algorithmen (I)

Datenstruktuen

 Eine Datenstruktur ist eine Methode, um Daten für den Zugriff und die Modifikation zu organisieren

Sie beeinhalten:

- 1.Daten
- Strukturbestandteile -> z.B Arrayindex

Abstrakte Datentypen ("was")

z.b Stack mit Operationen wie isEmpty, pop, push

Datenstruktur ("Wie")

näher an der Maschine

Abstrakte Datentypen (ADTs) und Datenstrukturen

näher an der Anwendung

Beispiel:

Abstrakter Datentyp ("was")

Stack mit Operationen isEmpty,pop,push

Übergang fließend; ADTs werden daher oft auch als Datenstruktur bezeichnet

Datenstruktur ("wie")

Stack-Operationen als Array oder verkettete Liste

näher "an der Maschine"

Algorithmen und Datenstrukturen

- Algorithmen verwenden Datenstrukturen
- Datenstrukturen wirken sich auf die Effizienz aus

Algorithmen für Datenstrukturen

"Konstruiere eine Datenstruktur, mit der man schnell kleinste Werte finden kann"

> komplexere Datenstruktur (z.B. Heap)

Abschnitt 4 (auch 3 und 5)

einfache Datenstruktur (z.B. Array)

