12章 习题课(一)

一、函数列一致收敛的定义和判别

1. 定义在/上函数列 $\{f_n(x)\}$ 的一致收敛

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in N^*, s.t. \forall n > N, \quad \forall x \in I,$$
$$|f_n(x) - f(x)| < \varepsilon.$$

2. Cauchy收敛定理

$$\{f_n(x)\}$$
 在 I 上一致收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N(\varepsilon) \in N^*,$ $s.t. \forall n > N, \forall p \in N^*, \forall x \in I, |f_{n+p}(x) - f_n(x)| < \varepsilon.$

3. 上确界方法

 $\{f_n(x)\}$ 在区间I上一致收敛于 $f(x) \Leftrightarrow \lim_{n\to\infty} \beta_n = 0$.

二、函数项级数一致收敛定义和判别法的叙述

1. 函数项级数的一致收敛定义

设
$$S_n(x) = \sum_{k=1}^n u_k(x)$$
, 若 $\{S_n(x)\}$ 在 I 上一致收敛于 $S(x)$, 则称

级数
$$\sum_{n=1}^{\infty} u_n(x)$$
在 I 上一致收敛于 $S(x)$. $\sum_{n=1}^{\infty} u_n(x) = S(x), n \to \infty$

2. Cauchy收敛定理

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in N^*, s.t. \forall n > N, \forall p \in N^*, \forall x \in I, |\sum_{k=n+1}^{n+p} u_n(x)| < \varepsilon.$$

否定形式

$$\exists \varepsilon_0 > 0, s.t. \ \forall N \in N^*, \exists n_0 > N, \exists p_0 \in N^*, \ \exists x_0 \in I,$$
$$|\sum_{k=1}^{n_0+p_0} u_k(x_0)| \ge \varepsilon_0.$$

3. 转化为函数列(部分和)此时函数列一致收敛方法都适用,如

$$\lim_{n\to\infty}\beta_n = \sup_{x\in I} |S_n(x) - S(x)| = 0.$$

4. 必要条件

$$\sum_{n=1}^{\infty} u_n(x) 在 I 上 一 致收敛,则 $u_n(x) \to 0 (n \to \infty).$$$

逆否

5. Weierstrass判别法

若存在收敛的正项级数 $\sum_{n=1}^{\infty} a_n$, 使得对 $\forall x \in I$, \forall 正整数n 都有 $|u_n(x)| \leq a_n$, 则 $\sum_{n=1}^{\infty} u_n(x)$ 在I上一致收敛.

6、Dirichlet判别法

若区间I上定义的函数 $a_n(x),b_n(x)$ 满足:

- (1) 级数 $\sum_{n=1}^{\infty} a_n(x)$ 的部分和序列在区间I 上一致有界,
- (2) $\forall x \in I$, $\{b_n(x)\}$ 单调,且 $b_n(x) \rightarrow 0$;

则函数项级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 在区间I上一致收敛.

7、Abel判别法

- (1) 函数项级数 $\sum_{n=1}^{\infty} a_n(x)$ 在区间I上一致收敛,
- $(2) \forall x \in I, 数列\{b_n(x)\}$ 单调,且函数列 $\{b_n(x)\}$ 在区间I上一致有界;

则函数项级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 在区间I上一致收敛.

8. 端点级数发散法判别开区间上不一致收敛

设
$$u_n(x) \in C[a,b]$$
,且 $\sum_{n=1}^{\infty} u_n(x)$ 在 (a,b) 上一致收敛,则

$$(1)$$
 $\sum_{n=1}^{\infty} u_n(a)$, $\sum_{n=1}^{\infty} u_n(b)$ 收敛; (2) $\sum_{n=1}^{\infty} u_n(x)$ 在[a,b]上一致收敛.

$$u_n(x) \in C[a,b], \sum_{n=1}^{\infty} u_n(a)$$
或 $\sum_{n=1}^{\infty} u_n(b)$ 发散
$$\Rightarrow \sum_{n=1}^{\infty} u_n(x) \underbrace{a,b} \bot \overline{x} - \underline{x} \underline{w} \underline{w}.$$

例如:
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n}$$
 在 $(0,2\pi)$ 上不一致收敛 $x=0,\sum_{n=1}^{\infty} \frac{1}{n}$ 发散

一致收敛性的判别法小结

1. 一致收敛的判别法

函数列 $\{f_n(x)\}$

定义

Cauchy收敛定理

上确界方法:

$$\beta_n = \sup_{x \in I} |f_n(x) - f(x)| \to 0$$

Weierstrass判别法

Dirichlet判别法 Abel判别法

定义

Cauchy收敛定理

转换为部分和序列

$$\beta_n = \sup_{x \in I} |S_n(x) - S(x)| \to 0$$

2. 不一致收敛的判别法

函数列
$$\{f_n(x)\}$$

定义

Cauchy收敛定理 (否定形式)

上确界方法:

$$\beta_n = \sup_{x \in I} |f_n(x) - f(x)| \overrightarrow{\Lambda} \to 0$$

通项不一致收敛于0 $(\beta_n = \sup | u_n(x) - 0 | T \rightarrow 0)$

函数项级数 $\sum_{n}^{\infty} u_n(x)$

定义

Cauchy收敛定理 (否定形式)

转换为部分和序列

$$(\beta_n = \sup_{x \in I} |S_n(x) - S(x)| \overrightarrow{\Lambda} \to 0)$$

端点级数发散法

三、函数序列极限函数的分析性质

1. 连续性

设
$$S_n(x) \in C[a,b], n=1,2,...$$
,且 $\{S_n(x)\} \xrightarrow{uni} S(x)(n \to \infty)$,则 $S(x)$ 在 I 上连续.即 $\forall x_0 \in I$, $\lim_{x \to x_0} S(x) = S(x_0)$,也即是
$$\lim_{x \to x_0} (\lim_{n \to \infty} S_n(x)) = \lim_{n \to \infty} (\lim_{x \to x_0} S_n(x)).$$

2. 可积性

设
$$S_n(x) \in C[a,b], n=1,2,...$$
且 $\{S_n(x)\} \stackrel{uni}{\to} S(x) (n \to \infty),$ 则 $S(x) \in R[a,b],$ 且

$$\int_a^b S(x) dx = \int_a^b (\lim_{n \to \infty} S_n(x)) dx = \lim_{n \to \infty} \int_a^b S_n(x) dx$$

3. 可导性

设函数列 $\{S_n(x)\}, n = 1, 2, \cdots$ 在[a, b]上可导,且

- (1) $S'_n(x) \in C[a,b]$,
- (2) $\{S'_n(x)\}$ 在[a,b]上一致收敛于 g(x),
- (3) 至少存在某个 $x_0 \in [a,b]$,使得 $\{S_n(x_0)\}$ 收敛,

则 $\{S_n(x)\}$ 在[a,b]上一致收敛于某个函数 S(x),S(x)可导且

导数连续,满足S'(x) = g(x),即

$$[\lim_{n\to\infty} S_n(x)]' = \lim_{n\to\infty} S_n'(x)$$

四、函数项级数和函数的分析性质

1. 连续性

设
$$\sum_{n=1}^{\infty} u_n(x)$$
在 I 上一致收敛于 $S(x)$,且 $u_n(x)$ 在 I 上连续,

则
$$S(x)$$
在 I 上连续. 即 $\forall x_0 \in I$, $\lim_{x \to x_0} S(x) = S(x_0)$,

也即是

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x).$$

2. 可积性(逐项积分定理)

设 $\sum_{n=1}^{\infty} u_n(x)$ 在[a,b]上一致收敛于S(x),且 $u_n(x)$ 在[a,b]上连续,

则 $S(x) \in R[a,b]$,且

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} u_{n}(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) dx.$$

3. 可导性(逐项求导定理)

若
$$\sum_{n=1}^{\infty} u_n(x)$$
在 I 上满足下面条件:

- $(1) \quad u_n'(x) \in C_I,$
- (2) $\sum_{n=1}^{\infty} u'_n(x)$ 在I上一致收敛于g(x),
- (3) $\sum_{n=1}^{\infty} u_n(x)$ 至少在一点 x_0 处收敛,

则 $\sum_{n=1}^{\infty} u_n(x)$ 在I上一致收敛,其和函数S(x)可导且导数连续,

满足S'(x) = g(x), 即

$$(\sum_{n=1}^{\infty} u_n(x))' = \sum_{n=1}^{\infty} u_n'(x)$$

内闭一致收敛

若函数项级数在(a,b)上不一致收敛,但是在该开区内的任意闭子区间[c,d]上都是一致收敛,称函数项级数在开区间(a,b)上内闭一致收敛.

因为连续性和可导性都是逐点定义的,函数项级数和函数的连续性和逐项求导定理中的一致收敛条件,都可以改为内闭一致收敛,结论依然成立.

四、典型例子

例1 求级数 $\sum_{n=1}^{\infty} (3n-1)x^{2n-1}$ 收敛域.

解 因为

$$\lim_{n \to +\infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = \lim_{n \to +\infty} \frac{|(3n+2)x^{2n+1}|}{|(3n-1)x^{2n-1}|} = x^2$$

当 x^2 < 1, 即x ∈ (-1, 1)时级数收敛;

当 $x^2 > 1$,级数发散;

当 $x^2 = 1$ 时,级数通项不收敛于 0,从而发散.

所以级数收敛域为 $x \in (-1,1)$.

例2 求
$$\sum_{n=1}^{\infty} \frac{1}{n+1} \left(\frac{x}{3x+1}\right)^n$$
收敛域.

$$\lim_{n\to\infty} \sqrt[n]{|u_n(x)|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n+1}} \left| \frac{x}{3x+1} \right| = \left| \frac{x}{3x+1} \right|$$

$$\left| \frac{x}{3x+1} \right| < 1$$
时收敛, $x < -\frac{1}{2}$, $x > -\frac{1}{4}$
$$\left| \frac{x}{3x+1} \right| > 1$$
时发散, $-\frac{1}{2} < x < -\frac{1}{4}$

$$x = -\frac{1}{2}, \sum_{n=1}^{\infty} \frac{1}{n+1}$$
 发散; $x = -\frac{1}{4}, \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$ 收敛,

收敛域为
$$(-\infty, -\frac{1}{2})$$
 $\cup [-\frac{1}{4}, +\infty)$

例3 给定函数序列: $f_n(x) = \frac{x(\ln n)^{\alpha}}{n^x}, n = 2,3,\cdots$ 问 α 取何值时, $\{f_n(x)\}$ 在 $[0,+\infty)$ 上一致收敛

解
$$f(x) = \lim_{n \to \infty} f_n(x) = 0$$

$$f'_n(x) = \frac{(\ln n)^{\alpha+1}}{n^x} (\frac{1}{\ln n} - x) \Rightarrow x = \frac{1}{\ln n}$$
 为最大值点
$$\sup_{x \in [0, +\infty)} |f_n(x) - f(x)| = \max_{x \in (0, +\infty)} |f_n(x)| = f_n(\frac{1}{\ln n}) = \frac{1}{e} (\ln n)^{\alpha-1}$$

$$\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \frac{1}{e} (\ln n)^{\alpha-1} \begin{cases} \neq 0, \alpha \geq 1 \\ = 0, \alpha < 1 \end{cases}$$

当且仅当 α < 1时,{ $f_n(x)$ }在[0,+∞)上一致收敛

例4 判断下列函数列在[0,1]上的一致收敛性.

(1)
$$f_n(x) = \frac{nx}{1+n+x}$$
; (2) $f_n(x) = nx(1-x)^n$

解(1) 计算极限函数得

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{1 + n + x} = x, x \in [0,1]$$

因此 $x \in [0,1]$ 时,

$$|f_n(x)-f(x)| = |\frac{nx}{1+n+x}-x| = \frac{x+x^2}{1+n+x} \le \frac{2}{n},$$

于是 $\lim_{n\to\infty}\beta_n = 0.$

从而 $\{f_n(x)\}$ 在[0,1]上一致收敛.

(2) 计算极限函数得

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx(1-x)^n = 0, x \in [0,1]$$

$$\beta_n = \sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |nx(1-x)^n|$$

$$\geq n \cdot \frac{1}{n} (1 - \frac{1}{n})^n \to \frac{1}{e} (n \to \infty)$$

$$\text{Lighthing density densi$$

所以 $\lim \beta_n \neq 0$,从而 $\{f_n(x)\}$ 在[0,1]上不一致收敛.

因此
$$\beta_n = \sup_{x \in [0,1]} \varphi(x) = \frac{n}{n+1} (1 - \frac{1}{n+1})^n \to \frac{1}{e}.$$

例5 讨论以下函数序列在相应区间上的一致收敛性.

(1)
$$S_n(x) = (1-x)x^n, x \in [0,1];$$

解 函数序列的极限函数

$$S(x) = \lim_{n \to \infty} S_n(x) = 0, \quad x \in [0,1]$$

$$\beta_n = \sup_{x \in [0,1]} \left| S_n(x) - S(x) \right| = \sup_{x \in [0,1]} (1 - x) x^n$$

$$= (1 - \frac{n}{n+1}) (\frac{n}{n+1})^n = \frac{1}{n+1} (1 + \frac{1}{n})^{-n}$$

从而 $\lim_{n\to\infty}\beta_n=0$

所以函数序列 $S_n(x) = (1-x)x^n$ 在 [0,1] 上一致收敛.

(2)
$$S_n(x) = nx(1-x^2)^n, x \in [0,1].$$

解 函数序列的极限函数

$$S(x) = \lim_{n \to \infty} S_n(x) = 0, \quad x \in [0,1]$$

則
$$\beta_n = \sup_{x \in [0,1]} |S_n(x) - S(x)| = \sup_{x \in [0,1]} nx(1 - x^2)^n$$

 $\geq n \cdot \frac{1}{n} \cdot (1 - \frac{1}{n^2})^n = (1 - \frac{1}{n^2})^n$

从而 $\lim_{n\to\infty}\beta_n\neq 0$

所以函数序列在[0,1]上不一致收敛.

例6 判别 $\sum_{n=1}^{\infty} \frac{x^2}{1+n^2x} \sin \frac{n}{x}$ 在(0,1)上的一致收敛性.

解 注意到函数 $\frac{x^2}{1+n^2x}$ 在(0,1)上递增,可得

$$|u_n(x)| \le \frac{x^2}{1+n^2x} \le \frac{1}{1+n^2}, x \in (0,1).$$

又 $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ 收敛,所以由Weierstrass判别法知,

因此
$$\sum_{n=1}^{\infty} \frac{x^2}{1+n^2x} \sin \frac{n}{x}$$
在(0,1)上一致收敛.

例7 讨论 $\sum_{n=0}^{\infty} \frac{\cos nx}{\Delta}$ 在 $(0,2\pi)$ 和 $[\delta,2\pi-\delta]$ 上的一致收敛性.

端点级数发散法

所以 $\sum_{n=2}^{\infty} \frac{\cos nx}{n \ln n}$ 在 $(0,2\pi)$ 上不一致收敛;

(2)
$$\Re a_n(x) = \cos nx$$
, $b_n(x) = \frac{1}{n \ln n}$, \Im

$$\forall x \in [\delta, 2\pi - \delta], \forall n, \ \left| \sum_{k=1}^{n} a_k(x) \right| = \left| \sum_{k=1}^{n} \cos kx \right| \le \frac{1}{\sin \frac{x}{2}} \le \frac{1}{\sin \frac{\delta}{2}}$$

即 $\sum a_n(x)$ 的部分和一致有界,又 $\{b_n(x)\}$ 单调,一致收敛于0.

由Dirichlet判别法知 $\sum_{n=0}^{\infty} \frac{\cos nx}{n}$ 在[δ ,2 π - δ]上一致收敛

例8 证明: $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ 在 $(0,2\pi)$ 上不一致收敛.

在任意[δ , $2\pi - \delta$]上一致收敛 $0 < \delta < \pi - D$ irichlet

证 设
$$u_n(x) = \frac{\sin nx}{n}$$
,

取
$$\varepsilon_0 = \frac{\sqrt{2}}{4}, \forall n,$$
取 $p = n,$ $x = \frac{\pi}{4n},$ 则

$$\left|\sum_{k=n+1}^{2n} u_k(\frac{\pi}{4n})\right| = \sum_{k=n+1}^{2n} \frac{\sin(k \cdot \frac{\pi}{4n})}{k} \ge \sin\frac{\pi}{4} \sum_{k=n+1}^{2n} \frac{1}{k}$$

$$\geq \frac{\sqrt{2}}{2} \frac{n}{2n} = \frac{\sqrt{2}}{4} = \varepsilon_0$$

由Cauchy收敛定理知, $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ 在 $(0,2\pi)$ 上不一致收敛.

例9 证明: $\sum_{n=1}^{\infty} (x^n + x^{2n} - 2x^{3n})$ 在[0,1]上不一致收敛.

证 令 $u_n(x) = x^n + x^{2n} - 2x^{3n}$,则 $\lim_{n \to \infty} u_n(x) = 0, x \in [0,1]$ 且 $u_n'(x) = nx^{n-1} + 2nx^{2n-1} - 6nx^{3n-1}$,可得

$$x_0 = \sqrt[n]{\frac{\sqrt{7+1}}{6}} 是 u_n(x)$$
的最大值点,所以 $\beta_n = \sup_{x \in [0,1]} |u_n(x) - 0| = u_n(x_0)$

$$u_n(x_0) = x_0^n + x_0^{2n} - 2x_0^{3n} = x_0^n (1 - x_0^n)(1 + 2x_0^n)$$

$$= \frac{\sqrt{7+1}}{6} \cdot \frac{5 - \sqrt{7}}{6} \cdot \frac{4 + \sqrt{7}}{3}$$

因此 $\{u_n(x)\}$ 在[0,1]上不一致收敛于0,

从而 $\sum_{n=1}^{\infty} (x^n + x^{2n} - 2x^{3n})$ 在[0,1]上不一致收敛.

例10用Cauchy收敛定理判别 $\sum_{n=1}^{\infty} \frac{x}{x^2 - nx + n^2}$ 在(1,+ ∞)上

不一致收敛.

解 设
$$u_n(x) = \frac{x}{x^2 - nx + n^2}$$

取 $\varepsilon_0 = \frac{1}{5}, \forall n,$ 取p = n, x = n,则

$$\left|\sum_{k=n+1}^{2n} u_k(n)\right| = \sum_{k=n+1}^{2n} \frac{n}{n^2 - kn + k^2} \ge \sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2}$$

$$\geq \sum_{k=n+1}^{2n} \frac{n}{n^2 + (2n)^2} = \frac{1}{5} \sum_{k=n+1}^{2n} \frac{1}{n} = \frac{1}{5} = \varepsilon_0,$$

因此由Cauchy收敛定理知,

$$\sum_{n=1}^{\infty} \frac{x}{x^2 - nx + n^2} \pm (1, +\infty) \bot \overline{X} - 致收敛.$$

例11 讨论下列函数项级数在给定区间上的一致收敛性

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^2}{(1+x^2)^n}$$
, $x \in (-\infty, +\infty)$
解 设 $u_n(x) = (-1)^{n-1}$ $v_n(x) = \frac{x^2}{(1+x^2)^n}$
显然 $\left| \sum_{k=1}^{n} u_k(x) \right| \le 1, \forall x \in (-\infty, +\infty), \forall n$
 $\forall x \in (-\infty, +\infty), v_n(x) = \frac{x^2}{(1+x^2)^n}$ 单调递减,
由于 $0 \le \frac{x^2}{(1+x^2)^n} \le \frac{x^2}{1+nx^2} \le \frac{x^2}{nx^2} = \frac{1}{n}$

由狄利克雷判别法 $\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^2}{(1+x^2)^n}$ 在(-∞,+∞)上一致收敛

$$(2)\sum_{n=1}^{\infty}\frac{(-1)^n(x+n)^n}{n^{n+1}}, x \in [0,1]$$

解 记
$$u_n(x) = \frac{(-1)^n}{n}, v_n(x) = (1 + \frac{x}{n})^n$$

则 $\sum u_n(x)$ 在[0,1]上一致收敛,

 $\forall x \in [0,1], \{v_n(x)\}$ 单调且在[0,1]上一致有界 $(1 \le v_n(x) \le e)$

由阿贝尔判别法

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+n)^n}{n^{n+1}}$$
在[0,1]上一致收敛.

以下题目只需要关注相关函数项级数的一致收敛性

例1 证明:
$$f(x) = \sum_{n=1}^{\infty} (x + \frac{1}{n})^n$$
 在 $(-1,1)$ 上连续.

证 $\forall q \in (0,1)$, 考察 $\sum_{n=1}^{\infty} (x + \frac{1}{n})^n$ 在 [-q,q] 上的一致收敛性. 由于 \mathbb{R}

$$\left| (x + \frac{1}{n})^n \right| \le (q + \frac{1}{n})^n, \quad x \in [-q, q],$$

由于
$$\sum (q + \frac{1}{n})^n$$
 收敛(根植判别法),故 $\sum_{n=1}^{\infty} (x + \frac{1}{n})^n$ 在 $[-q,q]$ 上一致收敛,

因而 $f(x) \in C[-q,q]$,由q的任意性, $f(x) \in C(-1,1)$.

Weierstrass判别法判别函数项级数的 (内闭)一致收敛性

一致收敛是和函数连续的充分但非必要条件

例2 证明函数项级数 $\sum_{n=1}^{\infty} [nxe^{-nx} - (n-1)xe^{-(n-1)x}]$ 在 [0,1]

上不一致收敛,但其和函数在[0,1]上连续.

$$S_n(x) = \sum_{k=1}^n u_k(x)$$

$$= \sum_{k=1}^n [kxe^{-kx} - (k-1)xe^{-(k-1)x}] = nxe^{-nx}$$

当 $x \in (0,1]$ 时,

$$\lim_{n\to\infty} S_n(x) = \lim_{n\to\infty} nxe^{-nx} = \lim_{n\to\infty} \frac{nx}{e^{nx}} = \lim_{t\to+\infty} \frac{tx}{e^{tx}} = 0$$

当
$$x = 0$$
时, $S(0) = 0$,故 $\lim_{n \to \infty} S_n(x) = 0$, $x \in [0,1]$ 记 $\lim_{n \to \infty} S_n(x) = S(x)$, $x \in [0,1]$ 显然 $S(x) \equiv 0$ 在 $[0,1]$ 上连续.

考虑此函数项级数的部分和序列 $S_n(x) = nxe^{-nx}$, 对任意自然数n, 取 $x_n = \frac{1}{n}$,

$$S_n(x_n) = n \frac{1}{n} e^{-n \frac{1}{n}} = e^{-1},$$

从而
$$\beta_n = \sup_{x \in [0,1]} |S_n(x) - S(x)| \ge |S_n(x_n)| = \frac{1}{e}$$

于是 $\lim_{n\to\infty}\beta_n\neq 0$, 所以原级数在 [0,1]上不一致收敛.

例3 设
$$S(x) = \sum_{n=0}^{\infty} r^n \cos nx$$
,($|r| < 1$)计算 $\int_0^{2\pi} S(x) dx$.

解 因为 $|r^n \cos nx| \le |r|^n$,|r| < 1,由Weierstrass判别法知

 $\sum r^n \cos nx$ 在[0,2 π]上一致收敛,因而

$$\int_0^{2\pi} S(x) dx = \sum_{n=0}^{\infty} \int_0^{2\pi} r^n \cos nx dx ,$$

又因为 $\int_0^{2\pi} \cos nx dx = 0$, $n = 1, 2, \dots$,故 $\int_0^{2\pi} S(x) dx = 2\pi$.

例4 证明函数项级数 $f(x) = \sum_{n=1}^{\infty} \frac{1}{n} e^{-x^2 n^2}$ 在 $(0, +\infty)$ 不一致收敛,但是和函数 f(x) 在 $(0, +\infty)$ 连续.

解 利用以下结论:

设
$$u_n(x) \in C[a,b], n=1,2,3,.....\sum_{n=1}^{\infty} u_n(x)$$
在 (a,b) 上一致收敛,则:

1)
$$\sum_{n=1}^{\infty} u_n(a)$$
, $\sum_{n=1}^{\infty} u_n(b)$ 收敛,2) $\sum_{n=1}^{\infty} u_n(x)$ 在 $[a,b]$ 一致收敛.

由于
$$\sum_{n=1}^{\infty} u_n(0) = \sum_{n=1}^{\infty} \frac{1}{n}$$
, 且 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,

所以
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} e^{-n^2 x^2}$$
 在 $(0, +\infty)$ 上不一致收敛.

端点级数发散法判别开区间内不一致收敛 Weierstrass判别法判别内闭一致收敛 下面讨论和函数 f(x) 在 $(0,+\infty)$ 的连续性.

$$\forall x_0 \in (0, +\infty), \exists \delta > 0, 0 < \delta < x_0,$$

由于 $x_0 \in [\delta, +\infty)$,故当n 充分大时,有

$$\frac{1}{n}e^{-n^2x^2} \le \frac{1}{n}e^{-n^2\delta^2} \quad x \in [\delta, +\infty)$$

而 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}e^{-n^2\delta^2}} = 0 < 1$,由 Cauchy 收敛原理可知 $\sum_{k=1}^n \frac{1}{n}e^{-n^2\delta^2}$ 收敛,

因此
$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n} e^{-n^2 x^2}$$
 在 $[\delta, +\infty)$ 上一致收敛.

所以f(x)在 $[\delta, +\infty)$ 上连续,f(x)在 x_0 处连续,又由 x_0 的任意性,

故和函数 f(x) 在 $(0,+\infty)$ 连续.

例5 设 $u_n(x) = \frac{1}{n^3} \ln(1 + n^2 x^2)$. $n = 1, 2, \cdots$ 证明函数项级数 $\sum u_n(x)$ 在 [0,1] 上一致收敛,并讨论和函数在 [0,1] 上的连续性、可积性和可微性.

证 对每一个 n, 易见 $u_n(x)$ 为 [0,1] 上的增函数,

故有
$$u_n(x) \le u_n(1) = \frac{1}{n^3} \ln(1+n^2), \quad n=1,2,\cdots.$$

又当 $t \ge 0$ 时,有不等式 $\ln(1+t^2) < t$,所以

$$u_n(x) \le \frac{1}{n^3} \ln(1+n^2) < \frac{1}{n^3} \cdot n = \frac{1}{n^2}, \quad n = 1, 2, \cdots$$

而 $\sum_{n=1}^{\infty}$ 收敛,由Weierstrass判别法,

级数 $\sum u_n(x)$ 在[0,1]上一致收敛.

由于每个 $u_n(x)$ 在[0,1]上连续,

所以 $\sum u_n(x)$ 的和函数S(x)在[0,1]上连续且可积.

即 $\sum \frac{1}{n^2}$ 也是 $\sum u'_n(x)$ 的优级数,

所以 $\sum u'_n(x)$ 在[0,1]上一致收敛,

从而S(x)在[0,1]上可微.

例6 设
$$f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n^2 + 1}$$
,

求证: (1) f(x)在[0,+ ∞) 连续; (2) f(x)在(0,+ ∞) 可导.

证明(1)记 $u_n(x) = \frac{e^{-nx}}{n^2+1}$,则 $u_n(x)$ 在区间[0,+∞)上连续,且

$$|u_n(x)| = \left|\frac{e^{-nx}}{n^2 + 1}\right| < \frac{1}{n^2}$$

由 M – 判别法可知
$$\sum_{n=1}^{+\infty} \frac{e^{-nx}}{n^2+1}$$
 在区间[0,+∞)上一致收敛,

因此和函数f(x)在区间 $[0,+\infty)$ 上连续.

(2)
$$u'_n(x) = \frac{-ne^{-nx}}{n^2 + 1}$$
.

任给 $\delta > 0$, 在区间[δ , + ∞)上有

$$|u'_n(x)| = \left|\frac{ne^{-nx}}{n^2 + 1}\right| < \frac{ne^{-on}}{n^2 + 1}$$

由根值判别法知级数 $\sum_{n=1}^{\infty} \frac{ne^{-\delta n}}{n^2+1}$ 收敛,

因此 $\sum_{n=1}^{+\infty} u'_n(x)$ 在区间[δ , + ∞)上一致收敛.

从而f(x)在区间[δ , +∞)上可导,

由δ的任意性, f(x)在 $(0,+\infty)$ 可导.