# Università degli Studi Di Perugia Dipartimento Di Matematica e Informatica

Anno Accademico 2017/2018



# PROGETTO DI RETI DI CALCOLATORI: PROTOCOLLI

Prof. Sergio Tasso

Sabbatini Jessica Taccucci Paniel

# INDICE:

- 1. Schema fisico
- 2. Schema logico
- 3. Componenti utilizzati
- 4. Configurazione interfaccia di rete
  - 5. <u>Configurazione routing</u>
    - 6. Configurazione DNS
  - 7. Configurazione sendmail
  - 8. Configurazione firewall
- 9. <u>Tecniche adottate per monitoraggio rete</u>
  - 10. Preventivo spesa

# 1. SCHEMA FISICO

L'Ospedale preso in esame è il "Life Hospital". Si richiede la progettazione e la configurazione di una rete aziendale.

L'Ospedale è dislocato in 5 edifici. Sono richiesti 1 server di posta elettronica, 1 server Web, almeno 2 server DNS, 1 server per applicazioni aziendali, 1 server Proxy e 1 server di Backup.

Tutte le postazioni devono essere collegate in rete, devono poter usufruire di tutti i servizi della rete, dell'accesso a internet e della possta elettronica; la rete deve essere protetta da firewall.

| ୯୭୮୮୮୯୮୦ | UFFICI &<br>REPARTI | NUM.<br>UTENTI | NUM.<br>SERVER | COPERTURA<br>WI-FI |
|----------|---------------------|----------------|----------------|--------------------|
| Α        | Sala operatoria     | 100            | 0              | No                 |
| В        | RM                  | 100            | 0              | No                 |
| С        | Reception           | 200            | 4              | Sì                 |
| D        | Ambulatorio         | 300            | 2              | No                 |
| E        | Garage<br>ambulanze | 50             | 1              | No                 |

#### Distanze tra gli edifici:

| EDIFICI | PISTANZA |  |
|---------|----------|--|
| A – B   | 100 m    |  |
| A – C   | 50 m     |  |
| B – C   | 50 m     |  |
| C – D   | 3 km     |  |
| D – E   | 100 m    |  |

# 2. SCHEMA LOGICO

#### Edificio A – Sala operatoria

Sottorete con indirizzo 192.168.1.0/25 appartenente alla classe C, si divide la rete nel seguente modo:

Interior router "Venere" con l'indirizzo 192.168.1.1

| Utente     | Nome           | Indirizzo IP  |
|------------|----------------|---------------|
| Utente 1   | Postazione 1   | 192.168.1.2   |
|            |                |               |
| Utente 100 | Postazione 100 | 192.168.1.101 |

#### Edificio B - RM

Sottorete con indirizzo 192.168.2.0/25 appartenente alla classe C, si divide la rete nel seguente modo:

Interior router "Saturno" con l'indirizzo 192.168.2.1

| Utente     | Nome           | Indirizzo IP  |
|------------|----------------|---------------|
| Utente 1   | Postazione 1   | 192.168.2.2   |
|            |                |               |
| Utente 100 | Postazione 100 | 192.168.2.101 |

#### **Edificio C – Reception**

Sottorete con indirizzo 192.168.3.0/25 appartenente alla classe C, si divide la rete nel seguente modo:

Interior router "Terra" con l'indirizzo 192.168.3.1

| Utente          | Nome            | Indirizzo IP |
|-----------------|-----------------|--------------|
| DMZ             | DMZ             | 192.168.7.0  |
| Server DNS      | server-dns1     | 192.168.7.1  |
| Server mail     | server-mail     | 192.168.7.2  |
| Server Web      | server-web      | 192.168.7.3  |
| Server Proxy    | server-proxy    | 192.168.7.4  |
| Exterior Router | exterior-router | 201.123.15.0 |
| Server DHCP     | server-dhcp     | 192.168.3.2  |

| Router Wi-Fi | router-wifi    | 192.168.3.3   |
|--------------|----------------|---------------|
| Utente 1     | Postazione 1   | 192.168.3.4   |
|              |                |               |
| Utente 200   | Postazione 200 | 192.168.3.203 |

#### **Edificio D – Ambulatorio**

Sottorete con indirizzo 192.168.4.0/25 appartenente alla classe C, si divide la rete nel seguente modo:

Interior router "Giove" con l'indirizzo 192.168.4.1

In questo edificio sono presenti 300 utenti, quindi una quantità superiore al numero di indirizzi assegnabili con 8 bit. Per risolvere questo problema, si utilizza uno switch da 52 porte per assegnare gli indirizzi rimasti.

| Utente                               | Nome           | Indirizzo IP  |
|--------------------------------------|----------------|---------------|
| Server per Applicazioni<br>Aziendali | server-appaz   | 192.168.4.2   |
| Server DNS                           | server-dns2    | 192.168.4.3   |
| Utente 1                             | Postazione 1   | 192.168.4.4   |
|                                      |                |               |
| Utente 251                           | Postazione 251 | 192.168.4.254 |
| Switch                               | switch1        | 192.168.4.255 |
| Utente 252                           | Postazione 252 | 192.168.5.0   |
|                                      |                |               |
| Utente 300                           | Postazione 300 | 192.168.5.47  |

### Edificio E – Garage Ambulanze

Sottorete con indirizzo 192.168.6.0/25 appartenente alla classe  ${\bf C}$ , si divide la rete nel seguente modo:

Interior router "Marte" con l'indirizzo 192.168.6.1

| Utente        | Nome          | Indirizzo IP |  |
|---------------|---------------|--------------|--|
| Server backup | server-backup | 192.168.6.2  |  |
| Utente 1      | Postazione 1  | 192.168.6.3  |  |
|               |               |              |  |
| Utente 50     | Postazione 50 | 192.168.6.52 |  |

### **RIEPILOGO**

Sottoreti con indirizzi di broadcast e subnet masks.

| Edificio | Indirizzo<br>di rete | Subnet mask     | Indirizzo di<br>Broadcast | Nome rete     |
|----------|----------------------|-----------------|---------------------------|---------------|
| Α        | 192.168.1.1          | 255.255.255.0   | 192.168.1.255             | Rete A        |
| В        | 192.168.2.1          | 255.255.255.0   | 192.168.2.255             | Rete B        |
| С        | 192.168.3.1          | 255.255.255.0   | 192.168.3.255             | Rete C        |
| D        | 192.168.4.1          | 255.255.255.0   | 192.168.4.255             | Rete D        |
| D        | 192.168.5.1          | 255.255.255.0   | 192.168.5.255             | Rete D Switch |
| E        | 192.168.6.1          | 255.255.255.0   | 192.168.6.255             | Rete E        |
| DMZ      | 192.168.7.0          | 255.255.255.248 | 192.168.7.255             | Rete DMZ      |

# Collegamenti punto-punto tra gli interior router.

| Sottorete                              | Indirizzo IP<br>sottorete |
|----------------------------------------|---------------------------|
| Sala operatoria – RM (A – B)           | 192.168.10.0/30           |
| Sala operatoria – Reception (A – C)    | 192.168.20.0/30           |
| RM – Reception (B – C)                 | 192.168.30.0/30           |
| Reception – Ambulatorio (C – D)        | 192.168.40.0/30           |
| Ambulatorio – Garage ambulanze (D - E) | 192.168.50.0/30           |

# 3. COMPONENTI UTILIZZATI

#### Cavi di rete

Necessari per le connessioni tra gli host dei singoli edifici ed utilizzate per collegare edifici distanti fino a 100 metri.

#### Fibra ottica di tipo monomodale

Utilizzata per collegare con alte velocità gli edifici con distanze superiori ai 100 metri (Edifici C – D).

#### Router/Firewall

Dispositivi presenti in ogni edificio necessari per instradare i pacchetti nella rete verso la corretta destinazione, svolgendo pure varie funzioni di sicurezza essendo comprensivi anche di firewall per garantire maggiore sicurezza sui dati sensibili in entrata o in uscita.

#### Access Point Wireless

Fornisce un punto di accesso alla rete a tutti i dispositivi mobili in qualsiasi punto dell'edifico.

#### Switch

Dispositivi situati in ogni sede, connettono tra di loro gli hosts indirizzando i pacchetti solo al corretto destinatario riducendo le collisioni.

# 4. CONFIGURAZIONE INTERFACCIA DI RETE

ifconfig.cf

#### #configurazione edificio A

#interior router "Venere"

ifconfig eth0 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255

#interfaccia verso sottorete locale

ifconfig eth1 192.168.10.0 netmask 255.255.255.0 broadcast 192.168.10.255

#interfaccia verso l'edificio B

ifconfig eth2 192.168.20.0 netmask 255.255.255.0 broadcast 192.168.20.255

#interfaccia verso l'edificio C

**#SOTTORETE** "Rete A"

ifconfig ethO 192.168.1.2 netmask 255.255.255.0 broadcast 192.168.1.255

**#Postazione 1** 

ifconfig eth0 192.168.1.101 netmask 255.255.255.0 broadcast 192.168.1.255

**#Postazione 100** 

#### #configurazione edificio B

#interior router "Saturno"

ifconfig ethO 192.168.2.1 netmask 255.255.255.0 broadcast 192.168.2.255

#interfaccia verso sottorete locale

ifconfig eht5 192.168.10.0 netmask 255.255.255.0 broadcast 192.168.10.255

#interfaccia verso l'edificio A

ifconfig eth6 192.168.30.0 netmask 255.255.255.0 broadcast 192.168.30.255

#interfaccia verso l'edificio C

**#SOTTORETE** "Rete B"

ifconfig ethO 192.168.2.2 netmask 255.255.255.0 broadcast 192.168.2.255

**#Postazione 1** 

...

ifconfig ethO 192.168.2.101 netmask 255.255.255.0 broadcast 192.168.2.255

**#Postazione 100** 

#### #configurazione edificio C

#### #configurazione DMZ

ifconfig ethO 192.168.7.1 netmask 255.255.255.0 broadcast 192.168.7.255

**#Server DNS1** 

ifconfig ethO 192.168.7.2 netmask 255.255.255.0 broadcast 192.168.7.255

**#Server MAIL** 

ifconfig eth0 192.168.7.3 netmask 255.255.255.0 broadcast 192.168.7.255

**#Server WEB** 

ifconfig ethO 192.168.7.4 netmask 255.255.255.0 broadcast 192.168.7.255

**#Server Proxy** 

ifconfig eht1 201.123.15.0 netmask 255.255.255.0 broadcast 201.123.15.255

**#Exterior Router** 

#### **#ROUTER WIFI**

ifconfig eth3 192.168.3.3 netmask 255.255.255.0 broadcast 192.168.3.255

#### #interior router "Terra"

ifconfig ethl 192.168.3.1 netmask 255.255.255.0 broadcast 192.168.3.255

#interfaccia verso sottorete locale

ifconfig ethl 192.168.20.0 netmask 255.255.255.0 broadcast 192.168.20.255

#interfaccia verso l'edificio A

ifconfig ethl 192.168.30.0 netmask 255.255.255.0 broadcast 192.168.30.255

#interfaccia verso l'edificio B

ifconfig ethl 192.168.40.0 netmask 255.255.255.0 broadcast 192.168.40.255

#interfaccia verso l'edificio D

#### **#SOTTORETE** "Rete C"

ifconfig ethO 192.168.3.4 netmask 255.255.255.0 broadcast 192.168.3.255

**#Postazione 1** 

...

ifconfig eth0 192.168.3.203 netmask 255.255.255.0 broadcast 192.168.3.255

**#Postazione 200** 

#### Configurazione DHCP

# dhcp.conf per la sottorete "Rete C" dell'edificio C

default-lease-time 3600;

max-lease-time 86000:

ddns-update-style none;

option subnet-mask 255.255.255.0;

# netmask fornita ai client dal server

option domain-name-servers 192.168.7.1, 192.168.4.3;

# dns da poter usare

option domain-name "lifehospital.it";

# Questa opzione specifica il dominio

# che verrà servito ai client come il dominio di default di ricerca

subnet 192.168.2.1 {

# pool di indirizzi ip da poter assegnare

range 192.168.8.0 192.168.8.255;

};

#### #configurazione edificio D

#### **#SERVER APPLICAZIONI AZIENDALI**

ifconfig eth0 192.168.4.2 netmask 255.255.255.0 broadcast 192.168.4.255

#### **#SERVER DNS2**

ifconfig ethl 192.168.4.3 netmask 255.255.255.0 broadcast 192.168.4.255

#### #interior router "Giove"

ifconfig ethO 192.168.4.1 netmask 255.255.255.0 broadcast 192.168.4.255

#interfaccia verso sottorete locale

ifconfig eth2 192.168.40.0 netmask 255.255.255.0 broadcast 192.168.40.255

#interfaccia verso l'edificio C

ifconfig eth3 192.168.50.0 netmask 255.255.255.0 broadcast 192.168.50.255

#interfaccia verso l'edificio E

#### **#SOTTORETE** "Rete D"

ifconfig ethO 192.168.4.4 netmask 255.255.255.0 broadcast 192.168.4.255

**#Postazione 1** 

ifconfig ethO 192.168.4.254 netmask 255.255.255.0 broadcast 192.168.4.255

**#Postazione 251** 

ifconfig ethO 192.168.5.0 netmask 255.255.255.0 broadcast 192.168.5.255

#### **#Postazione 252**

...

ifconfig ethO 192.168.5.47 netmask 255.255.255.0 broadcast 192.168.5.255

**#Postazione 300** 

#### #configurazione edificio E

#### **#SERVER BACKUP**

ifconfig ethO 192.168.6.2 netmask 255.255.255.0 broadcast 192.168.6.255

#### #interior router "Marte"

ifconfig eth0 192.168.6.1 netmask 255.255.255.0 broadcast 192.168.6.255

#interfaccia verso sottorete locale

ifconfig eth2 192.168.50.0 netmask 255.255.255.0 broadcast 192.168.50.255

#interfaccia verso l'edificio D

#### **#SOTTORETE** "Rete E"

ifconfig ethO 192.168.6.3 netmask 255.255.255.0 broadcast 192.168.6.255

**#Postazione 1** 

ifconfig ethO 192.168.6.52 netmask 255.255.255.0 broadcast 192.168.6.255

**#Postazione 50** 

# 5. CONFIGURAZIONE ROUTING

Per il routing all'interno della rete privata abbiamo deciso di usare un routing dinamico configurando il protocollo RIP (Routing Information Protocol). RIP è un protocollo di routing interno basato su una metrica vettore-distanza, molto leggero da eseguire ed ormai standard in ambito Unix. È gestito o dal demone routed o da quello gated, da noi utilizzato. Di seguito i file di configurazione gated.conf dei vari router.

#### gated.conf

#### **#Router Venere**

```
interfaces {
        interface 192.168.1.1 passive;
                                                      # Evita di chiudere l'accesso alla sottorete
                                                      # per timeout
        interface 192.168.10.0 active:
                                                      # Verso l'edificio B
        interface 192.168.20.0 active;
                                                      # Verso l'edificio C
};
#dalle interfacce ricevo le informazioni del router
rip yes {
        broadcast:
        interface 192.168.10.0 {
                  version 2;
                  multicast:
                  authentication simple "RIPauth";
        };
        interface 192.168.20.0 {
                  version 2:
                  multicast:
                  authentication simple "RIPauth";
        };
};
```

```
#esporto il tutto alle reti
export proto rip metric 0 {
         proto direct interface 192.168.1.1 {
                  network 192.168.1.0;
         };
};
         #Router Saturno
interfaces {
         interface 192.168.2.1 passive;
                                                      # Evita di chiudere l'accesso alla sottorete
                                                      # per timeout
         interface 192.168.10.0 active;
                                                      # Verso l'edificio A
         interface 192.168.30.0 active:
                                                      # Verso l'edificio C
};
#dalle interfacce ricevo le informazioni del router
rip yes {
         broadcast:
         interface 192.168.10.0 {
                  version 2;
                  multicast;
                  authentication simple "RIPauth";
        };
        interface 192.168.30.0 {
                  version 2:
                  multicast;
                  authentication simple "RIPauth";
        };
};
#esporto il tutto alle reti
export proto rip metric 0 {;
         proto direct interface 192.168.2.1 {
```

```
network 192.168.2.0:
        };
};
        #Router Terra
interfaces {
        interface 192.168.3.1 passive;
                                                    # Evita di chiudere l'accesso alla sottorete
                                                    # per timeout
        interface 192.168.7.0 active:
                                                    # Verso server DMZ
        interface 192.168.7.1 active:
                                                    # Verso server DNS1 nella DMZ
        interface 192.168.7.2 active:
                                                    # Verso server MAIL nella DMZ
        interface 192.168.7.3 active:
                                                    # Verso server WEB nella DMZ
        interface 192.168.7.4 active;
                                                    # Verso server proxy nella DMZ
        interface 201.123.15.0 active:
                                                    # Verso exterior router
        interface 192.168.3.2 active:
                                                    # Verso server DHCP
        interface 192.168.3.3 active;
                                                    # Verso router WIFI
        interface 192.168.20.0 active:
                                                    # Verso l'edificio A
        interface 192.168.30.0 active;
                                                    # Verso l'edificio B
        interface 192.168.40.0 active:
                                                    # Verso l'edificio D
};
#dalle interfacce ricevo le informazioni del router
rip yes {
        broadcast:
        interface 192.168.3.1 {
                 version 2;
                 multicast;
                 authentication simple "RIPauth";
        };
        interface 192.168.7.0 {
                 version 2:
                 multicast:
```

```
authentication simple "RIPauth";
};
interface 192.168.7.1 {
         version 2;
          multicast;
          authentication simple "RIPauth";
};
interface 192.168.7.2 {
         version 2;
         multicast;
         authentication simple "RIPauth";
};
interface 192.168.7.3 {
         version 2;
          multicast;
         authentication simple "RIPauth";
};
interface 192.168.7.4 {
          version 2;
          multicast;
         authentication simple "RIPauth";
};
interface 201.123.15.0 {
         version 2;
         multicast;
         authentication simple "RIPauth";
};
interface 192.168.3.2 {
         version 2;
         multicast;
```

```
authentication simple "RIPauth";
         };
         interface 192.168.3.3 {
                   version 2;
                   multicast;
                   authentication simple "RIPauth";
         };
         interface 192.168.20.0 {
                   version 2;
                   multicast;
                   authentication simple "RIPauth";
         };
         interface 192.168.30.0 {
                   version 2;
                   multicast;
                   authentication simple "RIPauth";
         };
         interface 192.168.40.0 {
                   version 2;
                   multicast;
                   authentication simple "RIPauth";
         };
};
#esporto il tutto alle reti
export proto rip metric 0 {;
         proto direct interface 192.168.3.1 {
                   network 192.168.3.0;
         };
};
```

#### **#Router Giove**

```
interfaces {
         interface 192.168.4.1 passive;
                                                      # Evita di chiudere l'accesso alla sottorete
                                                      # per timeout
        interface 192.168.4.2 active:
                                                      # Verso applicazione aziendale
        interface 192.168.4.3 active;
                                                      # Verso server DNS2
        interface 192.168.40.0 active;
                                                      # Verso l'edificio C
        interface 192.168.50.0 active;
                                                      # Verso l'edificio E
};
#dalle interfacce ricevo le informazioni del router
rip yes {
        broadcast:
        interface 192.168.4.2 {
                  version 2:
                  multicast;
                  authentication simple "RIPauth";
        };
        interface 192.168.4.3 {
                  version 2;
                  multicast;
                  authentication simple "RIPauth";
        };
        interface 192.168.40.0 {
                  version 2;
                  multicast;
                  authentication simple "RIPauth";
        };
        interface 192.168.50.0 {
                  version 2;
                  multicast:
                  authentication simple "RIPauth";
```

```
};
};
#esporto il tutto alle reti
export proto rip metric 0 {;
         proto direct interface 192.168.4.1 {
                  network 192.168.4.0;
        };
};
         #Router Marte
interfaces {
         interface 192.168.6.1 passive;
                                                      # Evita di chiudere l'accesso alla sottorete
                                                      # per timeout
         interface 192.168.6.2 active;
                                                      # Verso server BACKUP
        interface 192.168.50.0 active;
                                                      # Verso l'edificio D
};
#dalle interfacce ricevo le informazioni del router
rip yes {
         broadcast;
         interface 192.168.6.2 {
                  version 2;
                  multicast;
                 authentication simple "RIPauth";
        };
        interface 192.168.50.0 {
                  version 2;
                  multicast;
                  authentication simple "RIPauth";
        };
};
```

# #esporto il tutto alle reti

```
export proto rip metric 0 {;
      proto direct interface 192.168.6.1 {
            network 192.168.6.0;
      };
};
```

# 6. CONFIGURAZIONE DNS

Il DNS2 si occupa invece della rete interna.

I DNS forniscono la risoluzione dei nomi degli hosts per la rete. I due server DNS presenti nella nostra rete, DNS1 eDNS2, sono l'uno slave dell'altro. Il DNS1, situato nell'area DMZ della Reception, gestisce i nomi degli hosts presenti nella DMZ ed accessibili dall'esterno. Si occupa della risoluzione dei nomi nella rete locale.

#file di configurazione resolv.conf del resolver, che comprende la lista dei name server da interrogare

#### resolv.conf

```
domain lifehospital.it # nome del dominio di default
nameserver 127.0.0.1 # local-host
nameserver 192.168.7.1 # server DNS1
nameserver 192.168.4.3 # server DNS2
```

#file named.conf e relativi zone files per la rete locale, usati dal daemon named per rispondere alle query

#### named.conf

```
options {
                                              # definizione delle impostazioni globali di BIND
         directory "/etc/named/";
                                              # directory di lavoro
         pid-file "named.pid";
                                              # inserimento dei file pid nella directory di lavoro
         allow-query { any; };
                                              # accetta query da qualsiasi host
         recursion no:
                                              # no servizio ricorsivo
};
zone "." {
         type hint;
         file "named.ca":
};
zone "0.0.127.in-addr.arpa" {
         type master;
         file "named.local":
         notify no;
```

```
};
//Sala Operatoria
zone "salaOperatoria.lifehospital.it" \{
         type master;
         file "salaOperatoria.hosts";
         allow-transfer { };
};
zone "1.168.192.in-addr.arpa" {
         type master;
         file "salaOperatoria.rev";
         allow-transfer { };
};
//RM
zone "RM.lifehospital.it" {
         type master;
         file "RM.hosts";
         allow-transfer { };
};
zone "2.168.198.in-addr.arpa" {
         type master;
         file "RM.rev";
         allow-transfer { };
};
//Reception
zone "reception.lifehospital.it" \{
         type master;
         file "reception.hosts";
         allow-transfer { };
```

```
};
zone "3.168.192.in-addr.arpa" {
         type master;
         file "reception.rev";
         allow-transfer { };
};
//Ambulatorio
zone "ambulatorio.lifehospital.it" {
         type master;
         file "ambulatorio.hosts";
         allow-transfer { };
};
zone "4.168.192.in-addr.arpa" {
         type master;
         file "ambulatorio.rev";
         allow-transfer { };
};
zone "5.168.192.in-addr.arpa" {
         type master;
         file "ambulatorio.rev";
         allow-transfer { };
};
//Garage Ambulanze
zone "garageAmbulanze.lifehospital.it" {
         type master;
         file "garageAmbulanze.hosts";
         allow-transfer { };
};
zone "6.168.192.in-addr.arpa" {
```

```
type master;
         file "garageAmbulanze.rev";
         allow-transfer { };
};
         named.ca
         This file holds the information on root name servers needed to
         initialize cache of Internet domain name servers
         (e.g. reference this file in the "cache . <file>"
         configuration file of BIND domain name servers).
         This file is made available by InterNIC
         under anonymous FTP as
                                     /domain/named.cache
                  file
                                     FTP.INTERNIC.NET
                  on server
          -DR-
                                     RS.INTERNIC.NET
         last update: September 4, 2018
         related version of root zone: 2018090400
; formerly NS.INTERNIC.NET
                                     3600000 NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.
                            3600000 A 198.41.0.4
A.ROOT-SERVERS.NET.
                            3600000 AAAA 2001:503:ba3e::2:30
; FORMERLY NS1.ISI.EDU
;
                                     3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.
                            3600000 A 192.228.79.201
```

3600000 AAAA 2001:500:84::b

B.ROOT-SERVERS.NET.

; FORMERLY C.PSI.NET 3600000 NS C.ROOT-SERVERS.NET. C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12 3600000 AAAA 2001:500:2::c C.ROOT-SERVERS.NET. : FORMERLY TERP.UMD.EDU 3600000 NS D.ROOT-SERVERS.NET. D.ROOT-SERVERS.NET. 3600000 A 199.7.91.13 D.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2d::d ; FORMERLY NS.NASA.GOV 3600000 NS E.ROOT-SERVERS.NET. E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10 E.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:a8::e ; FORMERLY NS.ISC.ORG 3600000 NS F.ROOT-SERVERS.NET. F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241 3600000 AAAA 2001:500:2f::f F.ROOT-SERVERS.NET. : FORMERLY NS.NIC.DDN.MIL 3600000 NS G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4 G.ROOT-SERVERS.NET. ; FORMERLY AOS.ARL.ARMY.MIL

3600000 NS H.ROOT-SERVERS.NET.

24

H.ROOT-SERVERS.NET. 3600000 A 198.97.190.53 H.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:1::53 ; FORMERLY NIC.NORDU.NET 3600000 NS I.ROOT-SERVERS.NET. I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17 I.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fe::53 ; OPERATED BY VERISIGN, INC. 3600000 NS J.ROOT-SERVERS.NET. J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30 J.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:c27::2:30 ; OPERATED BY RIPE NCC 3600000 NS K.ROOT-SERVERS.NET. K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129 K.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fd::1 ; ; OPERATED BY ICANN 3600000 NS L.ROOT-SERVERS.NET. L.ROOT-SERVERS.NET. 3600000 A 199.7.83.42 L.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:9f::42 : OPERATED BY WIDE 3600000 NS M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33 M.ROOT-SERVERS.NET.

3600000 AAAA 2001:dc3::35

M.ROOT-SERVERS.NET.

; End of File

25

#### named.local

\$TTL 86400

a IN SOA localhost. admin.lifehospital.it { 2014051601 Serial; 28800 ;Refresh 14400 ;Retry 3600000 ;Expire 86400 ;Minimum } IN NS localhost. 1 IN PTR localhost.

#### • salaOperatoria.hosts

\$TTL 86400

 IN
 SDA
 dns2.reception.lifehospital.it
 admin.lifehospital.it {

 2014051701
 ;Serial

 86400
 ;Refresh

 3600
 ;Retry

 604800
 ;Expire

 86400
 ;Minimum

#### ; Definizione server DNS e mail

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

#### ; Definizione host

 Venere
 IN
 A
 192.168.1.1
 # Router

 host\_1
 IN
 A
 192.168.1.2
 # Host 1

host\_100 IN A 192.168.1.101 # Host 100

```
    salaOperatoria.rev
```

\$TTL 86400

IN SOA dns2.reception.lifehospital.it admin.lifehospital.it {
2014051701 :Serial

 86400
 :Refresh

 3600
 :Retry

 604800
 :Expire

 86400
 :Minimum

}

#### ; Definizione server DNS e mail

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

#### ; Definizione host

1 IN PTR venere.salaOperatoria.lifehospital.it #Router
2 IN PTR host\_l.salaOperatoria.lifehospital.it #Host 1

...

101 IN PTR host\_100.salaOperatoria.lifehospital.it #Host 100

#### · RM.hosts

\$TTL 86400

IN SOA dns2.reception.lifehospital.it admin.lifehospital.it {

 2014051701
 ;Serial

 86400
 ;Refresh

 3600
 ;Retry

 604800
 ;Expire

 86400
 ;Minimum

}

#### ; Definizione server DNS e mail

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

#### ; Definizione host

 Saturno
 IN
 A
 192.168.2.1
 # Router

 host\_I
 IN
 A
 192.168.2.2
 # Host 1

```
host_100 IN
                   A
                            192.168.2.101
                                                                            # Host 100
         • RM.rev
$TTL 86400
                   SOA
                                      dns2.reception.lifehospital.it
                                                                            admin.lifehospital.it {
         2014051701
                                      ;Serial
         86400
                                      :Refresh
         3600
                                      ;Retry
         604800
                                      ;Expire
         86400
                                      :Minimum
}
; Definizione server DNS e mail
IN NS dns2.ambulatorio.lifehospital.it
IN MX 10 server-mail.lifehospital.it
; Definizione host
                                      saturno.RM.lifehospital.it
                            PTR
                   IN
                                                                                     # Router
2
                   IN
                            PTR
                                      host_1.RM.lifehospital.it
                                                                                     # Host 1
101
                   IN
                            PTR
                                      host_100.RM.lifehospital.it
                                                                                     # Host 100
         • reception.hosts
$TTL 86400
         IN
                   SOA
                                      dns2.reception.lifehospital.it
                                                                            admin.lifehospital.it {
         2014051701
                                      :Serial
         86400
                                      ;Refresh
         3600
                                      ;Retry
         604800
                                      ;Expire
         86400
                                      :Minimum
}
; Definizione server DNS e mail
IN NS dns2.ambulatorio.lifehospital.it
IN MX 10 server-mail.lifehospital.it
```

; Definizione host

| Terra       | IN | Α | 192.168.3.1   | # Router      |
|-------------|----|---|---------------|---------------|
| dns1        | IN | Α | 192.168.7.1   | # Server DNS  |
| server-mail | IN | Α | 192.168.7.2   | # Server Mail |
| server-dhcp | IN | Α | 192.168.3.2   | # Server DHCP |
| host_1      | IN | Α | 192.168.3.4   | # Host 1      |
|             |    |   |               |               |
| host_200    | IN | Α | 192.168.3.203 | # Host 200    |
|             |    |   |               |               |

# • reception.rev

# \$TTL 86400

| <b>a</b> | IN       | ADZ | dns2.reception.lifehospital.it | admin.lifehospital.it { |
|----------|----------|-----|--------------------------------|-------------------------|
|          | 20140517 | 701 | ;Serial                        |                         |
|          | 86400    |     | ;Refresh                       |                         |
|          | 3600     |     | ;Retry                         |                         |
|          | 604800   |     | ;Expire                        |                         |
|          | 86400    |     | ;Minimum                       |                         |
| }        |          |     |                                |                         |

# ; <u>Definizione server DNS e mail</u>

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

# ; Definizione host

| 1   | IN | PTR | terra.reception.lifehospital.it       | # Router      |
|-----|----|-----|---------------------------------------|---------------|
| 2   | IN | PTR | dns1.reception.lifehospital.it        | # Server DNS  |
| 3   | IN | PTR | server-mail.reception.lifehospital.it | # Server Mail |
| 4   | IN | PTR | server-dhcp.reception.lifehospital.it | # Server DHCP |
| 5   | IN | PTR | host_l.reception.lifehospital.it      | # Host 1      |
|     |    |     |                                       |               |
| 204 | IN | PTR | host_200.reception.lifehospital.it    | # Host 200    |
|     |    |     |                                       |               |

#### • ambulatorio.hosts

### \$TTL 86400

IN SOA dns2.reception.lifehospital.it admin.lifehospital.it {
2014051701 :Serial

```
86400
                                     ;Refresh
         3600
                                     ;Retry
         604800
                                     ;Expire
         86400
                                     :Minimum
}
; Definizione server DNS e mail
IN NS dns2.ambulatorio.lifehospital.it
IN MX 10 server-mail.lifehospital.it
; Definizione host
Giove
                  IN
                            A
                                     192.168.4.1
                                                                # Router
                                     192.168.4.2
server-appaz
                  IN
                            A
                                                                # Server Applicazione Aziendale
dns2
                  IN
                           A
                                     192.168.4.3
                                                                # Server DNS
host 1
                  IN
                            A
                                     192.168.4.4
                                                                # Host 1
host 251
                  IN
                            A
                                     192.168.4.254
                                                                # Host 251
                                     192.168.5.0
host 252
                  IN
                            Α
                                                                # Host 252
  ...
host_300
                  IN
                            A
                                     192.168.5.47
                                                                # Host 300
         · ambulatorio.rev
$TTL 86400
a
         IN
                  SOA
                                     dns2.reception.lifehospital.it
                                                                          admin.lifehospital.it {
         2014051701
                                     Serial;
         86400
                                     ;Refresh
         3600
                                     ;Retry
         604800
                                     ;Expire
         86400
                                     :Minimum
}
; Definizione server DNS e mail
IN NS dns2.ambulatorio.lifehospital.it
IN MX 10 server-mail.lifehospital.it
; Definizione host
```

giove.ambulatorio.lifehospital.it

# Router

1

IN

PTR

| 2   | IN | PTR | server-appaz.ambulatorio.lifehospital.it | # Server app. aziendale |
|-----|----|-----|------------------------------------------|-------------------------|
| 3   | IN | PTR | dns2.ambulatorio.lifehospital.it         | # Server DNS            |
| 4   | IN | PTR | host_l.ambulatorio.lifehospital.it       | # Host 1                |
|     |    |     |                                          |                         |
| 254 | IN | PTR | host_251.ambulatorio.lifehospital.it     | # Host 251              |
| 255 | IN | PTR | host_252.ambulatorio.lifehospital.it     | # Host 252              |
|     |    |     |                                          |                         |
| 303 | IN | PTR | host_300.ambulatorio.lifehospital.it     | # Host 300              |

#### • garageAmbulanze.hosts

### \$TTL 86400

| a | IN         | SOA | dns2.reception.lifehospital.it | admin.lifehospital.it { |
|---|------------|-----|--------------------------------|-------------------------|
|   | 2014051701 |     | ;Serial                        |                         |
|   | 86400      |     | ;Refresh                       |                         |
|   | 3600       |     | ;Retry                         |                         |
|   | 604800     |     | ;Expire                        |                         |
|   | 86400      |     | ;Minimum                       |                         |
| } |            |     |                                |                         |

# ; <u>Definizione server DNS e mail</u>

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

# ; Definizione host

| Marte         | IN | A      | 192.168.6.1 | # Router        |
|---------------|----|--------|-------------|-----------------|
| server-backup | IN | Α      | 192.168.6.2 | # Server Backup |
| host_1        | IN | Α      | 192.168.6.3 | # Host 1        |
|               |    |        |             |                 |
| host_50 IN    | A  | 192.16 | 8.6.52      | # Host 50       |

# • garageAmbulanze.rev

# \$TTL 86400

| <b>a</b> | IN    | ADZ   | dns2.reception.lifehospital.it | admin.lifehospital.it { |
|----------|-------|-------|--------------------------------|-------------------------|
|          | 20140 | 51701 | ;Serial                        |                         |
|          | 86400 | ]     | :Refresh                       |                         |

```
3600 ;Retry
604800 ;Expire
86400 ;Minimum
}
```

#### ; Definizione server DNS e mail

IN NS dns2.ambulatorio.lifehospital.it

IN MX 10 server-mail.lifehospital.it

# ; Definizione host

| 1  | IN | PTR | marte.garageAmbulanze.lifehospital.it         | # Router        |
|----|----|-----|-----------------------------------------------|-----------------|
| 2  | IN | PTR | server-backup.garageAmbulanze.lifehospital.it | # Server Backup |
| 3  | IN | PTR | host_l.garageAmbulanze.lifehospital.it        | # Host 1        |
|    |    |     |                                               |                 |
| 52 | IN | PTR | host_50.garageAmbulanze.lifehospital.it       | # Host 50       |

#### II "DNS1" è situato nella DMZ e risolve i nomi dei vari servizi presenti in essa.

#### • resolv.conf

```
        domain
        lifehospital.it

        nameserver
        127.0.0.1

        nameserver
        192.168.7.1
        #server-dns1

        nameserver
        192.168.4.3
        #server-dns2
```

#### named.conf

```
type master;
         file "localhost.zone";
         notify no;
};
zone "0.0.127.in-addr.arpa" {
         type master;
         file "named.local";
         notify no;
};
         #DMZ
zone "lifehospital.it" {
         type master;
         file "DMZ.hosts";
         allow-transfer {};
};
zone "7.168.192.in-addr.arpa" {
         type master;
         file "DMZ.rev";
         allow-transfer {};
};
         • named.ca
         This file holds the information on root name servers needed to
         initialize cache of Internet domain name servers
         (e.g. reference this file in the "cache . <file>"
         configuration file of BIND domain name servers).
         This file is made available by InterNIC
         under anonymous FTP as
                   file
                                       /domain/named.cache
                                       FTP.INTERNIC.NET
                   on server
          -DR-
                                       RS.INTERNIC.NET
```

last update: September 4, 2018 related version of root zone: 2018090400 ; formerly NS.INTERNIC.NET 3600000 NS A.ROOT-SERVERS.NET. A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 A.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:ba3e::2:30 ; FORMERLY NS1.ISI.EDU 3600000 NS B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201 B.ROOT-SERVERS.NET. B.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:84::b ; FORMERLY C.PSI.NET 3600000 NS C.ROOT-SERVERS.NET. C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12 C.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2::c ; FORMERLY TERP.UMD.EDU 3600000 NS D.ROOT-SERVERS.NET. D.ROOT-SERVERS.NET. 3600000 A 199.7.91.13 3600000 AAAA 2001:500:2d::d D.ROOT-SERVERS.NET. ; ; FORMERLY NS.NASA.GOV ; 3600000 NS E.ROOT-SERVERS.NET.

3600000 A 192.203.230.10

E.ROOT-SERVERS.NET.

E.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:a8::e ; FORMERLY NS.ISC.ORG 3600000 NS F.ROOT-SERVERS.NET. F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241 F.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:2f::f ; : FORMERLY NS.NIC.DDN.MIL 3600000 NS G.ROOT-SERVERS.NET. G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4 ; FORMERLY AOS.ARL.ARMY.MIL 3600000 NS H.ROOT-SERVERS.NET. H.ROOT-SERVERS.NET. 3600000 A 198.97.190.53 H.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:1::53 ; FORMERLY NIC.NORDU.NET ; 3600000 NS I.ROOT-SERVERS.NET. I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17 I.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fe::53 : OPERATED BY VERISIGN, INC. 3600000 NS J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30 J.ROOT-SERVERS.NET. J.ROOT-SERVERS.NET. 3600000 AAAA 2001:503:c27::2:30 : OPERATED BY RIPE NCC

35

3600000 NS K.ROOT-SERVERS.NET. K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129 K.ROOT-SERVERS.NET. 3600000 AAAA 2001:7fd::1 ; ; OPERATED BY ICANN 3600000 NS L.ROOT-SERVERS.NET. L.ROOT-SERVERS.NET. 3600000 A 199.7.83.42 L.ROOT-SERVERS.NET. 3600000 AAAA 2001:500:9f::42 ; OPERATED BY WIDE 3600000 NS M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33 M.ROOT-SERVERS.NET. M.ROOT-SERVERS.NET. 3600000 AAAA 2001:dc3::35 ; End of file • named.local named.local \$TTL 86400 a admin.lifehospital.it { AOZ localhost. IN 2014051601 :Serial 28800 ;Refresh 14400 :Retry 3600000 ;Expire 86400 :Minimum }

localhost.

localhost.

IN

IN

1

NS

PTR

## • localhost.zone

## \$TTL 86400

```
a
        1D
                 IN
                          ADZ
                                  a
                                           admin (
        2014052002
                          :Serial
        36000
                          ;Refresh
        3600
                          ;Retry
        3600000
                          Expire;
        36000
                          :Minimum
)
        10
                 IN
                          2N
                                  a
        1D
                          A
                                  127.0.0.
                 IN
```

## dmz.hosts

## \$TTL 86400

| a | IN         | AOS      | dns1.lifehospital.it | admin.lifehospital.it ( |
|---|------------|----------|----------------------|-------------------------|
|   | 2014052002 | ;Serial  |                      |                         |
|   | 36000      | ;Refresh |                      |                         |
|   | 3600       | ;Retry   |                      |                         |
|   | 3600000    | ;Expire  |                      |                         |
|   | 36000      | ;Minimum |                      |                         |
| ) |            |          |                      |                         |

## ; <u>Definizione dei server DNS e mail</u>

IN NS dns1.reception.lifehospital.it

IN MX 10 server-mail.lifehospital.it

# ; Definizione hosts

| dmz          | IN    | A | 192.168.7.0 | # Router                |
|--------------|-------|---|-------------|-------------------------|
| server-dns1  | IN    | A | 192.168.7.1 | # Server DNS1           |
| dns 1        | CNAME | A | server-dns1 | # Alias del Server DNS1 |
| server-mail  | IN    | A | 192.168.7.2 | # Server Mail           |
| mail         | CNAME | A | server-mail | # Alias Server Mail     |
| server-web   | IN    | A | 192.168.7.3 | # Server Web            |
| www          | CNAME | A | server-web  | # Alias Server Web      |
| server-proxy | IN    | A | 192.168.7.4 | # Server Proxy          |

| praxy           | CNAME | A | server-proxy    | # Alias Server Proxy    |
|-----------------|-------|---|-----------------|-------------------------|
| exterior-router | IN    | A | 123.123.15.0    | # Exterior Router       |
| ext-router      | CNAME | A | exterior-router | # Alias Exterior Router |

## • dmz.rev

## \$TTL 86400

| 1 | IN         | SDA      | dns1.lifehospital.it | admin.lifehospital.it ( |
|---|------------|----------|----------------------|-------------------------|
|   | 2014052002 | ;Serial  |                      |                         |
|   | 36000      | ;Refresh |                      |                         |
|   | 3600       | ;Retry   |                      |                         |
|   | 3600000    | ;Expire  |                      |                         |
|   | 36000      | ;Minimum |                      |                         |
| ) |            |          |                      |                         |

# ; <u>Definizione dei server DNS e mail</u>

 ${\sf IN~NS~dns1}. reception. life hospital. it$ 

IN MX 10 server-mail.lifehospital.it

# ; <u>Definizione hosts</u>

| 1 | IN | PTR | dmz.lifehospital.it             | # Router          |
|---|----|-----|---------------------------------|-------------------|
| 2 | IN | PTR | dns1.lifehospital.it            | # Server DNS1     |
| 3 | IN | PTR | server-mail.lifehospital.it     | # Server Mail     |
| 4 | IN | PTR | server-web.lifehospital.it      | # Server Web      |
| 5 | IN | PTR | server-proxy.lifehospital.it    | # Proxy           |
| 6 | IN | PTR | exterior-router.lifehospital.it | # Exterior Router |

# 7. CONFIGURAZIONE SENDMAIL

Nella DMZ è presente un Server Mail per la gestione degli indirizzi di posta utilizzati nell'azienda. Utilizzeremo il programma sendmail, altamente personalizzabile.

Il programma usa due file (sendmail.cf e sendmail.mc) per la propria configurazione, più un file alias per la definizione degli indirizzi.

Cominciamo con la configurazione di "sendmail" utilizzato esclusivamente dai dipendenti dell'azienda.

### • sendmail.cf

/etc/sendmail.cf

### # Macro utente

(definizione obbligatoria, specifica le informazioni proprie della rete)

server-mail # Hostname

lifehospital.it # Impostazione dominio

Dj\$w.\$D # Nome del dominio

De\$j Sendmail \$v ready at \$ # Messaggio iniziale SMTP

DIFrom \$g \$d # Formato della UNIX
DnMAILER-DAEMON # Messaggio d'errore

Dn.:%\@!^=/ # Operatori validi indirizzi

Dq\$g\$?x (\$x)\$. # Indirizzo del mittente

### #Trusted users

(utenti fidati che possono cambiare l'indirizzo del mittente usando il FLAG-f)

Troot

Tdaemon

Tuucp

## # Priorità messaggi nelle code

Pfirst-class=0

Pspecial-delivery=100

Pbulk=-60

Pjunk=-100

## # Formato delle intestazioni

H?P?Return-Path: <\$g> # Path del mailer

HReceived: \$?sfrom \$s \$.by \$j (\$v/\$Z) #Ricevuta da

H?D?Resent-Date: \$a # Data di partenza

H?D?Date: \$ A

H?F?Resent-From: \$?x\$x <\$g>\$|\$g\$. # Forward

H?F?From: \$7x\$x \$|\$g\$. # Nome mittente

H?x?Full-Name: \$x # Impostazione fullname

HPosted-Date: \$a # Data di partenza

H?I?Received-Date: \$b # Data

**HSubject:** 

H?M?Resent-Message-Id: <\$t.\$i@\$j> # Ora attuale

H?M?Message-ld: <\$t.\$i@\$j> # Ora in formato-id della coda

### # Definizione delle options

(sezione che definisce le opzioni di sendmail)

 DA/etc/alias
 # Definizione del file degli alias

OErrorHeader=/etc/sendmail.oE # Messaggi di errore di header/file

UFD600 # Permesso per i temporary file

OHman=/usr/lib/sendmail.hf # Help nel file di sendmail

OQueueDirectory=/var/spool/mqueue # Directory queue

OTimeout.queuereturn=5d # Tempo di coda

OTimeout.queuewarn=4h

OStatusFile=/var/tmp/sendmail.st # File di stato

OHostsFile=/etc/hosts # Hosts file

OPrivacyOptions=authwarnings,noexpn,novrfy # Impediamo agli spammer di usare i

# comandi di sendmail "EXPN" e # "VRFY" spesso sfruttati da questi

### # Configurazione del mailer

(definisce le istruzioni usate da sendmail per invocare i programmi di spedizione di posta)

Mlocal, P=/bin/mail, F=rlsDFMmn, S=10, R=20, A=mail -d \$u

Mprog, P=/bin/sh, F=IsDFMe, S=10, R=20, A=sh -c \$u

Mtcpld, P=[ICP], F=mDFMueXLC, S=17, R=27, A=IPC \$h,  $E=\r\n$ 

```
Mtcp, P=(ICP), F=mDFMueXLC, S=14, R=24, A=IPC $h, E=\r\n
Muucp, P=/usr/bin/uux, F=DFMhuU, S=13, R=23, M=100000,
A=uux - -r -z -a$f -gC $h!rmail ($u)
```

#### • sendmail.mc

### divert(-1)

This is the sendmail macro config file. If you make changes to this file, you need the sendmail-cf rpm installed and then have to generate a new /etc/sendmail.cf by running the following command:

m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

divert(0)

include(\'/usr/share/sendmail-cf/m4/cf.m4')

VERSIONID(`linux')dnl

OSTYPE(`linux')

define(`confDEF\_USER\_ID',``8:12")dnl

undefine(`UUCP\_RELAY')dnl

undefine(`BITNET RELAY')dnl

define(`confAUTO\_REBUILD')dnl

define(`confTO\_CONNECT', `1m')dnl

define(`confTRY NULL MX LIST',true)dnl

define(`confDONT PROBE INTERFACES',true)dnl

define(`PROCMAIL\_MAILER\_PATH', `/usr/bin/procmail')dnl

define( `ALIAS\_FILE', `/etc/aliases')dnl

dnl define(`STATUS\_FILE', `/etc/mail/statistics')dnl

define(`UUCP\_MAILER\_MAX', `2000000')dnl

dnl define(`confUSERDB\_SPEC', `/etc/mail/userdb.db')dnl

define(`confPRIVACY FLAGS', `authwarnings,novrfy,noexpn,restrictgrun')dnl

define(`confAUTH\_OPTIONS', `A')dnl

TRUST\_AUTH\_MECH( `DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl

define(`confauth\_mechanisms', `digest-mds cram-mds login plain')dal

dnl define( `confTO\_QUEUEWARN', `4h')dnl

dnl define(`confTO\_QUEUERETURN', `5d')dnl

dnl define(`confQUEUE LA', `12')dnl

dnl define( `confREFUSE\_LA', `18')dnl

dnl FEATURE(delay\_checks)dnl

MASQUERADE\_AS('AziendaInformatica.it')dnl

FEATURE( `masquerade\_enteir\_domain')dnl

FEATURE(realy\_based\_on\_MX)dnl

FEATURE('noverify')dnl

FEATURE('noexpn')dnl

FEATURE(`no default msa', `dnl')dnl

FEATURE(`smrsh', `/usr/sbin/smrsh')dnl

FEATURE(`mailertable', `hash -o /etc/mail/mailertable.db')dnl

FEATURE(`virtusertable', `hash -o /etc/mail/virtusertable.db')dnl

FEATURE(redirect)dnl

FEATURE(always add domain)dnl

FEATURE(use\_cw\_file)dnl

FEATURE(use ct file)dnl

FEATURE(local\_procmail, `', `procmail -t -Y -a \$h -d \$u')dnl

FEATURE(`access\_db', `hash -o /etc/mail/access.db')dnl

FEATURE( `dnsbl')dnl

EXPOSED\_USER( `root')dnl

MAILER(SMTP)

dnl This changes sendmail to only listen on the loopback device 127.0.0.1

dnl and not on any other network devices. Comment this out if you want

dnl to accept email over the network.

dnl DAEMON\_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')

dnl NOTE: binding both IPv4 and IPv6 daemon to the same port requires

## • alias

## # Alias amministratori

amministratore azienda: admin@lifehospital.it

amministratore\_salaOperatoria: jessica.sabbatini@lifehospital.it
amministratore\_RM: daniel.taccucci@lifehospital.it
amministratore\_reception: giada.morosi@lifehospital.it
amministratore\_ambulatorio: giorgia.falo@lifehospital.it

amministratore\_garageAmbuanze: cristian.crispini@lifehospital.it

## # Mailing list

admins: admin@lifehospital.it, daniel.taccucci@lifehospital.it,

jessica.sabbatini@lifehospital.it, giada.morosi@lifehospital.it, c

giorgia.falo@lifehospital.it, cristian.crispini@lifehospital.it

# 8. CONFIGURAZIONE FIREWALL

Abbiamo configurato i firewall sui due router che sono collegati alla DMZ, uno al suo ingresso e uno all'uscita. Come firewall abbiamo scelto iptables, un software Unix che consente una grande configurabilità.

### • Exterior router

### # Svuoto le catene

iptables -F FORWARD

iptables -F INPUT

iptables -F OUTPUT

iptables -F PREROUTING

iptables -F POSTROUTING

## # Regola base scarta i pacchetti

iptables -P FORWARD DROP

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -t nat -P PREROUTING DROP

iptables -t nat -P POSTROUTING DROP

### # Accetto le connessioni provenienti dalla DMZ

iptables -A FORWARD -i ethO -o eth1 -p tcp -s 201.123.7.1 -dport domain -j ACCEPT

# Connessione al DNS con TCP

iptables -A FORWARD -i ethO -o ethI -p udp -s 201.123.7.1 -dport domain -j ACCEPT

# Connessione al DNS con UDP

iptables -A FORWARD -i eth0 -o eth1 -p tcp -s 201.123.7.2 -dport smtp -j ACCEPT

# Connessione a Server Mail

iptables -A FORWARD -i eth0 -o eth1 -p tcp -s 201.123.7.3 -dport www -j ACCEPT

# Connessioni a Server Web

iptables -A FORWARD -i eth0 -o eth1 -p tcp -s 201.123.7.4 -dport www -j ACCEPT

# Connessioni a Server Proxy

## # Accetta pacchetti di connessioni stabilite o correlate

iptables -A FORWARD -i ethO -o ethI -m state -state ESTABLISHED, RELATED -j ACCEPT

## # Evita di rimanere bloccato su porte chiuse

iptables -A FORWARD -i ethO -o ethI -p tcp -j REJECT -reject-with tcp-reset

## # Redirige le connessioni provenienti da Internet al giusto server

iptables -t nat -A PREROUTING -i eth1 -o eth0 -p tcp -d 201.123.7.0 -dport domain -j dnat -to-destination 192.168.7.1

# Connessione al DNS con TCP

iptables -t nat -A PREROUTING -i eth1 -o eth0 -p udp -d 201.123.7.0 -dport domain -j dnat -to-destination 192.168.7.1

# Connessione al DNS con UDP

iptables -t nat -A PREROUTING -i eth1 -o eth0 -p tcp -d 201.123.7.0 -dport smtp -j dnat -to-destination 192.168.7.2

# Connessione a Server Mail

iptables -t nat -A PREROUTING -i eth1 -o eth0 -p tcp -d 201.123.7.0 -dport www -j dnat -to-destination 192.168.7.3

#Connessioni a Server Web

## # Fa da NAT, cioè fa uscire ogni messaggio dalla DMZ col proprio indirizzo

iptables -t nat -A POSTROUTING -o ethO -j MASQUERADE

### • Interior Router

## # Svuoto le catene

iptables -F FORWARD

iptables -F INPUT

iptables -F OUTPUT

iptables -F PREROUTING

iptables -F POSTROUTING

### # Regola base scarta i pacchetti

iptables -P FORWARD DROP

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -t nat -P PREROUTING DROP

iptables -A FORWARD -i !ethl -o ethl -d 192.168.7.2 -p tcp -dport smtp -j ACCEPT

# Connessioni al Server Mail in SMTP

iptables -A FORWARD -i !ethl -o ethl -d 192.168.7.2 -p tcp -dport pop3 -j ACCEPT

# Connessioni al Server Mail in POP

iptables -A FORWARD -i !ethl -o ethl -d 192.168.7.2 -p tcp -dport imap -j ACCEPT

# Connessioni al Server Mail in IMAP

iptables -A FORWARD -i !ethl -o ethl -d 192.168.7.1 -p tcp --dport domain -j ACCEPT

# Connessioni al Server DNS con TCP

iptables -A FORWARD -i !eth1 -o eth1 -d 192.168.7.1 -p udp -dport domain -j ACCEPT

# Connessioni al Server DNS con UDP

iptables -A FORWARD -i !eth1 -o eth1 -d 192.168.7.3 -p tcp -dport www -j ACCEPT

# Connessioni al Server Web

iptables -A FORWARD -i !ethl -o ethl -d 192.168.7.4 -p tcp -dport webcache -j ACCEPT

# Connessioni al Server Proxy

## # Accetta pacchetti di connessioni stabilite o correlate

iptables -A FORWARD -m state -state ESTABLISHED, RELATED -j ACCEPT

## # Evita di rimanere bloccato su porte chiuse

iptables - A FORWARD -p tcp -j REJECT -reject-with tcp-reset

## # Se mi vengono richiesti accessi ad Internet li faccio passare per il Proxy

iptables -t nat -A PREROUTING -i !eth3 -p tcp --dport www -j DNAT --to 192.168.6.4:8080

# 9. TECNICHE ADOTTATE PER MONITORAGGIO RETE

Per proteggere il server per applicazioni aziendali inseriremo sul server stesso 3 file di hardening (il processo di messa in sicurezza di un sistema attraverso la riduzione della sua superficie di attacco). Più un sistema ha una superficie di attacco grande tante più funzionalità offre; come principio un sistema con una singola funzione è più sicuro di un sistema con molte funzioni. La riduzione dei veicoli di attacco disponibili tipicamente include la rimozione di software non necessario, di username non necessari e la disabilitazione o rimozione di servizi non necessari, così solo gli host autorizzati possono utilizzare il server. Inoltre viene bloccato l'utilizzo del servizio TelNet a tutti gli host della rete, perché:

- nei daemon Telnet comunemente usati sono state trovate nel corso degli anni molte vulnerabilità.
- Telnet non cripta i dati inviati tramite la connessione (nemmeno le password), risulta quindi semplice catturare i dati scambiati.
- a Telnet manca uno schema di autenticazione che renda sicura e non intercettabile la comunicazione tra due host.

#### **#HOSTS.ALLOW**

# Blocco del servizio telnet a tutti gli host della rete e abilitazione di tutti gli altri servizi

ALL: .lifehospital.it

EXCEPT in.telnetd

### **# HOSTS.DENY**

# Si preferisce indicare "ALL: ALL" per una gestione più facile degli accessi.

# In questo modo vengono bloccati tutti gli accessi non consentiti esplicitamente nel file /etc/hosts.allow.

# Ogni tentativo di accesso non autorizzato viene registrato in: "access\_deny.log" # Ciò che stiamo facendo è negare tutti i servizi a tutti i client e loggare i tentati accessi in un file.

# %c indica di riportare quante più informazioni possibili sul client che ha tentato l'accesso

ALL: ALL: spawn /bin/date %c >> /var/log/access deny.log

#### # /etc/xinetd.conf

# File principale di configurazione del demone xinetd che definisce le regole di validità generale.

defaults {

instances = 60 # numero massimo di istanze per ogni servizio
log\_type = SYSLOG authpriv # tipo di logging
log\_on\_success = HOST # informazioni da inserire nei log
log\_on\_failure = HOST # informazioni da inserire nei log

# max connessioni per sec e tempo di attesa

}
include dir /etc/xinetd.d # directory per leggere i file di configurazione dei
# singoli servizi

# 10. PREVENTIVO DI SPESA

| Componente       | MODELLO                                               | QUANTITA' | prezzo                       |
|------------------|-------------------------------------------------------|-----------|------------------------------|
| Cavo di rete UTP | Cat. 6                                                | 2 x 50 m  | 33,50 € al pz. = 67 €        |
|                  |                                                       | 2 x 100 m | 29,34 € al pz. = 58,68 €     |
| Fibra ottica     | Cavo Zip Cord 2 Fibre<br>Monomodale                   | 3 Km      | 1,05 € al m = 3.150 €        |
| Switch 52 porte  | Cisco Small Business SG300-<br>52                     | 15        | 1.196,50 € al pz. = 18.000 € |
| Router Cisco     | Cisco 881 Ethernet Security                           | 5         | 352 € al pz. = 1.760 €       |
| Firewall         | Cisco ASA 5505 Firewall<br>Edition Bundle             | 1         | 423,47 €                     |
| Router wi-fi     | Small Business RV325 -<br>switch a 16 porte integrato | 1         | 371,48 €                     |

TOTALE SPESA 23.830,95 €