Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1^{-}}^{\#2\alpha} + 2 i k \sigma_{1^{-}}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}{}_{\delta}) == 0$	
Total constraints/ga	16	

					(1)		el el	
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#2}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	
	$r_1^{#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	${r_1^{\#1}} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$	

_		o	#1 2 ⁺ αβ	$\tau_{2}^{\#1}\alpha_{1}$	β	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$		C	$\nu_{0}^{\#1}$	$f_0^{\#}$	‡1 +	$f_{0+}^{#2}$	$\omega_0^{\#1}$				
,T, ,,	-	$\alpha\beta$ ${(1+}$	$\frac{2}{2k^2)^2t_1}$ $\frac{i\sqrt{2}k}{2k^2)^2t_1}$	$-\frac{2i\sqrt{2}}{(1+2k^2)^2}$ $\frac{4k^2}{(1+2k^2)^2}$	$\frac{k}{2t_1}$	0	$\omega_{0^{+}}^{\#1}$	† † - <i>i</i> γ	$\frac{0}{-t_1}$ $\sqrt{2} kt_1$	i √2 -2 k	kt_1	0	0 0			$\sigma_{0}^{#1}$	
. T .	$\sigma_{2}^{+1} + \alpha_{2}^{-1}$		$(2k^2)^2 t_1$	$(1+2k^2)^{\frac{1}{2}}$		$\frac{2}{k^2 r_1 + t_1}$	$f_{0}^{#2}$ $\omega_{0}^{#1}$	†	0	C		0	0 -t ₁	$\sigma_{0^{+}}^{\#1}$		$\frac{1}{(-2k^2)^2} t$ $i \sqrt{2} k$ $(-2k^2)^2 t$	
			θ											$ au_{0^{+}}^{#2}$ $ au_{0^{+}}^{#1}$	t	0	1
/Ta w= : Ta		, , , , , , , , , , , , , , , , , , ,	$f_{f_{\mu}}^{\theta}$ -2 $\partial_{\alpha}f_{\mu}$	$a_{\alpha}\partial^{\theta}f^{\alpha\prime}+$		$^{eta}\omega^{lpha\prime}$	1×dlt							$f_{1^-}^{\#2}\alpha$	0	0	
1		1 ω θ Θ'F ^α	$-4\partial'f^{\alpha}{}_{\alpha}\partial_{\theta}$	$\partial^{\theta} f^{\alpha \prime} + \partial_{\theta} f^{\alpha \prime} + 2 \partial^{\theta} f^{\alpha \prime})$	$\partial_{1}\omega_{\alpha\beta\theta}$ -	$\partial_{\alpha}\omega^{\alpha\prime\theta}$ -26	z]dlzdlyd							$\omega_{1^-}^{\#2}{}_lphaf_{1^-}^{\#1}{}_lpha$	0 0	0 0	
		$\frac{\partial}{\partial x}$ + $\frac{\partial}{\partial x} - 4 \omega \frac{\partial}{\partial x} \partial_x f^{\alpha i} + 4 \omega \frac{\partial}{\partial x} \partial_x f^{\alpha i}$	$2\partial_i f^{\theta}_{} \partial^i f^{\alpha}_{} - 2\partial_i f^{\alpha i} \partial_{\theta} f_{}^{} + 4\partial^i f^{\alpha}_{} \partial_{\theta} f_{}^{} - 2\partial_{\alpha} f_{}^{}$	$\partial^{\theta} f^{\alpha\prime} - \partial_{\alpha} f_{\theta\prime} \partial^{\theta} f^{\alpha\prime} + \partial_{\iota} f_{\alpha\theta} \partial^{\theta} f^{\alpha\prime} + \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} \partial^{\theta} f^{\alpha\prime} + 2 \partial_{\theta} f_{\alpha\prime} \partial^{\theta} f^{\alpha\prime} \partial^{$	$\frac{2}{3}r_{1}\left(2\partial_{\beta}\omega_{\alpha\prime\theta}-\partial_{\beta}\omega_{\alpha\theta\prime}+4\partial_{\beta}\omega_{\beta\alpha}+\partial_{\prime}\omega_{\alpha\beta\theta}-\right.$	$\partial_{ heta}\omega_{lphaeta_{1}}$ - $\partial_{ heta}\omega_{lpha_{1}eta_{1}}$) $\partial^{ heta}\omega^{lphaeta_{1}}$ + r_{5} $(\partial_{i}\omega_{eta_{-K}}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(\partial_{\kappa}\omega_{_{l}}^{\kappa}{}_{\theta}^{}-\partial_{\kappa}\omega_{_{\theta}^{}}{}_{_{l}}^{})))[t,x,y,z]dzdydxdt$							$\omega_{1^{-}}^{\#1}{}_{lpha}$	0	0	c
		+ × ×	$f^{\theta} \partial' f^{\alpha}$	${}^{9}f^{\alpha l} - \partial_{\alpha}f$	$^{\alpha_{1}\theta}$ - eta	$^{lphaeta_{l}}$ $^{-\partial_{ heta}\omega}$	$\beta_{\kappa}\omega_{,\;\;\theta}^{\;\;\kappa}$ - \hat{c}							$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	C
	on Sec	$^{-}$ $\omega^{ap\chi}$ $\sigma_{lphaeta\chi}$ $^{\perp}$ $^{\perp}$ $^{\perp}$ (2 $\omega^{lpha\prime}$	20,	$\partial_{\theta} f$	r_1 (2 $\partial_{eta} a$	$\partial_{\theta}\omega$	<u>)</u>	$\omega_{2^{\bar{-}}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$			$\omega_1^{\#_2^2}$	$\left -\frac{t_1}{\sqrt{2}} \right $	0	_
	Quadratic (free) action	$S == \iiint (f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + \frac{1}{2} t_1 (2 \omega^{\alpha \gamma} \omega)$	7		3.12	, , , , , , , , , , , , , , , , , , ,		$\omega_2^{\#1}_{+lphaeta}f_2^{\#1}_{2+lphaeta}$		$\frac{ikt_1}{\sqrt{2}}$ k^2t_1	0 0			$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta \left(2 r_1 + r_5 \right) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\bar{l} kt_1$
_	Quadra	S== S						•	$\omega_2^{\#1} +^{\alpha\beta}$	$f_2^{\#1} + \alpha^{\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$				$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f^{#1} + \alpha \beta$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$

 $\frac{2k^2}{(1+2k^2)^2t_1}$

 $i k t_1$

0

0 0

0

0 0 0

 $\frac{t_1}{\sqrt{2}}$ 0 $-\tilde{l} k t_1$

0

0

0

0

 $\omega_{1}^{#1} + ^{lpha}$ $\omega_{1}^{#2} + ^{lpha}$ $f_{1}^{#1} + ^{lpha}$ $f_{1}^{#2} + ^{lpha}$

 $\frac{t_1}{\sqrt{2}}$ $\frac{ikt_1}{\sqrt{2}}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$