Generalised linear models in R

John Joseph Valletta

University of Exeter, Penryn Campus, UK

November 2018

Researcher Development

John Joseph Valletta

GLMs in R

November 2018

1/1

Recap: Linear regression

Assumptions:

- 1 A linear mean function is relevant.
- 2 Variances are equal across all predicted values of the response (homoscedatic).
- 3 Errors are normally distributed.
- 4 Samples collected at random.
- **5** Errors are **independent**.

John Joseph Valletta

GI Ms in I

November 2018

2/1

Generalised linear models (GLMs)

- ① A linear mean (including any explanatory variables you want to) i.e $\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$
- ② A link function (like an "internal" transformation).
- 3 An error structure. So far we assumed normality $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Link functions

Links your mean function to the scale of the observed data e.g.

$$E(Y) = g^{-1} (\beta_0 + \beta_1 X)$$

- $\mathbb{E}(Y)$ is the **expected value** (i.e. mean of Y).
- The function $g(\cdot)$ is known as the **link function**, and $g^{-1}(\cdot)$ denotes the **inverse** of $g(\cdot)$.

John Joseph Valletta GLMs in R November 2018 3/1

eph Valletta GLMs i

lovember 2018

Simple linear regression is a special case of a GLM

- **1** A linear mean: $\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$
- **2** An error structure: $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- **3** Link function: identity $\mu = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n$

$$a = \beta_0 + \beta_1 \alpha_1 + \ldots + \beta_p \alpha_p$$

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu = \beta_0 + \beta_1 X$$

John Joseph Valletta

GLMs in R

November 2018

5/1

GLMs in R

lm(height ~ weight, data=df)

Is equivalent to:

glm(height ~ weight, data=df, family=gaussian(link=identity))

family specifies the error structure and link function

John Joseph Vallett

GLMs in F

November 2018

6/1

Default link functions

Family	Link
gaussian	identity
binomial	logit, probit or cloglog
poisson	log, identity or sqrt
Gamma	inverse, identity or log
inverse.gaussian	1/mu^2
quasi	user-defined
quasibinomial	logit
quasipoisson	log

Poisson regression

Count data is discrete and non-negative

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
 $Y \sim \mathcal{P}ois(\mu)$
 $\mu = \beta_0 + \beta_1 X$ $\log \mu = \beta_0 + \beta_1 X$

Joseph Valletta GLMs in R November 2018 7 / 1 John Jo

Novemb

Poisson distribution

- **Discrete** variable, defined on the range $0, 1, \ldots, \infty$.
- A single **rate** parameter λ , where $\lambda > 0$.
- Mean = λ
- Variance = λ

John Joseph Valletta

GLMs in R

November 2018

Poisson regression

$$Y \sim \mathcal{P}ois(\lambda)$$
$$\log \lambda = \beta_0 + \beta_1 X$$

Using the rules of logarithm (i.e $\log \lambda = k$, then $\lambda = e^k$):

$$\log \lambda = \beta_0 + \beta_1 X$$
$$\lambda = e^{\beta_0 + \beta_1 X}$$

Thus we are effectively modelling the observed counts using an exponential distribution

glm(outcome ~ explanatory, data=df, family=poisson(link=log))

osenh Valletta

31 Ms in R

November 2018

10 / 1

Cuckoo data

Logistic regression

Consider a **categorical** response variable with two levels (e.g pass/fail). These type of **binary** data are assumed to be **Bernoulli** distributed:

$$Y \sim \mathcal{B}ern(p)$$

- A **probability** parameter p, where 0 .
- Mean = p
- Variance = p(1-p)

John Joseph Valletta

GLMs in R

November 2018

12 /

Logistic regression

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
 $Y \sim \mathcal{P}ois(\lambda)$ $Y \sim \mathcal{B}ern(p)$
 $\mu = \beta_0 + \beta_1 X$ $\log \lambda = \beta_0 + \beta_1 X$ $?? = \beta_0 + \beta_1 X$

$$Y \sim \mathcal{B}ern(p)$$
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$
$$\log \operatorname{logit}(p) = \beta_0 + \beta_1 X$$

John Joseph Valletta

November 2018

Logistic regression

John Joseph Valletta

November 2018

1992 US election survey

1992 US election survey

```
fit <- glm(Vote ~ Income, data=USA, family=binomial(link=logit))</pre>
summary(fit)
## glm(formula = Vote ~ Income, family = binomial(link = logit),
     data = USA)
## Deviance Residuals:
   Min 1Q Median
                              3Q
## -1.2699 -1.0162 -0.8998 1.2152 1.6199
## Coefficients:
            Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3017 0.1828 -7.122 1.06e-12 ***
            0.3033 0.0551 5.505 3.69e-08 ***
## Income
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 1655.0 on 1221 degrees of freedom
## Residual deviance: 1623.5 on 1220 degrees of freedom
## Number of Fisher Scoring iterations: 4
```

November 2018

1992 US election survey

$$Y \sim \mathcal{B}ern(p)$$
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$

- '(Intercept)' $= \beta_0 = -1.3$
- 'Income' = $\beta_1 = 0.303$

It is common to interpret variables according to some **central tendency** e.g at the central income category (i.e X=3)

$$\begin{split} P(\text{Republican vote at }X=3) &= \mathsf{logit}^{-1}\left(-1.3+0.3\times3\right) \\ &= \frac{e^{-1.3+0.3\times3}}{1+e^{-1.3+0.3\times3}} \\ &= 0.48. \end{split}$$

John Joseph Valletta GLMs in R November 2018 17/1