Package 'dynamicalSystemsNotes'

June 29, 2023
Title Dynamical Systems Notes
Version 0.9.1
Description HDFS 538 Dynamical Systems Methods and Applications personal study notes.
<pre>URL https://github.com/ijapesigan/dynamicalSystemsNotes,</pre>
https://ijapesigan.github.io/dynamicalSystemsNotes/
BugReports https://github.com/ijapesigan/dynamicalSystemsNotes/issues
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Depends R (>= $3.0.0$)
Suggests knitr, rmarkdown, testthat
RoxygenNote 7.2.3
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <ijapesigan@gmail.com></ijapesigan@gmail.com>
R topics documented:
Cobweb FixedPoint LinearConstructor LogisticConstructor UnivSeries
Index

2 FixedPoint

Cobweb

Cobweb Plot

Description

Cobweb Plot

Usage

```
Cobweb(y0, func, tol = sqrt(.Machine$double.eps), max_iter = 1000L)
```

Arguments

y0 Numeric. Initial condition.

func Function. The input is $y_{i(t-1)}$ and the output is y_{it} .

tol Small numeric value. Convergence criteria.

max_iter Large positive integer. Maximum number of iterations.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
# linear
func <- LinearConstructor(alpha = 8.0, beta = 0.8)
Cobweb(y0 = 0.01, func = func)

# logistic
func <- LogisticConstructor(r = 1.5, K = 10)
Cobweb(y0 = 0.01, func = func)</pre>
```

FixedPoint

Fixed Point

Description

Fixed Point

Usage

```
FixedPoint(y0, func, tol = sqrt(.Machine$double.eps), max_iter = 1000L)
```

LinearConstructor 3

Arguments

y0 Numeric. Initial condition.

func Function. The input is $y_{i(t-1)}$ and the output is y_{it} .

tol Small numeric value. Convergence criteria.

max_iter Large positive integer. Maximum number of iterations.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
# linear
func <- LinearConstructor(alpha = 8.0, beta = 0.8)
FixedPoint(y0 = 0.01, func = func)
# logistic
func <- LogisticConstructor(r = 1.5, K = 10)
FixedPoint(y0 = 0.01, func = func)</pre>
```

LinearConstructor

Simple Linear System Function Constructor

Description

Simple Linear System Function Constructor

Usage

LinearConstructor(alpha, beta, sigmasq = NULL)

Arguments

alpha Numeric. Intercept α . beta Numeric. Slope β .

sigmasq Positive numeric value. Variance of the random error term with expected value

of zero. If sigmasq = NULL, the system is deterministic.

Details

The simple linear system is given by

$$y_{it} = \alpha + \beta y_{i(t-1)}$$

where α is the intercept and β is the slope.

4 LogisticConstructor

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
func <- LinearConstructor(alpha = 8.0, beta = 0.8)
func(0.1)</pre>
```

LogisticConstructor

Simple Logistic System Function Constructor

Description

Simple Logistic System Function Constructor

Usage

```
LogisticConstructor(r, K, sigmasq = NULL)
```

Arguments

r Numeric. Growth rate.

K Numeric Carrying capacity.

sigmasq Positive numeric value. Variance of the random error term with expected value

of zero. If sigmasq = NULL, the system is deterministic.

Details

The logistic system is given by

$$y_{it} = ry_{i(t-1)} \left(1 - \frac{y_{i(t-1)}}{K} \right)$$

where r is the growth rate and K is the carrying capacity.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
func <- LogisticConstructor(r = 1.5, K = 10)
func(0.1)</pre>
```

UnivSeries 5

UnivSeries

Univariate Time Series

Description

Univariate Time Series

Usage

```
UnivSeries(y0, func, nt)
```

Arguments

y0 Numeric. Initial condition.

func Function. The input is $y_{i(t-1)}$ and the output is y_{it} . nt Positive integer. Maximum discrete time points.

Details

The univariate time series is generated using the following equation

$$y_{it} = f\left(y_{i(t-1)}\right).$$

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
# linear
func <- LinearConstructor(alpha = 8.0, beta = 0.8)
y <- UnivSeries(y0 = 0.01, func = func, nt = 100)
plot(y)
# logistic
func <- LogisticConstructor(r = 1.5, K = 10)
y <- UnivSeries(y0 = 0.01, func = func, nt = 100)
plot(y)</pre>
```

Index

```
Cobweb, 2

FixedPoint, 2

LinearConstructor, 3

LogisticConstructor, 4

UnivSeries, 5
```