Examen de Ecuaciones Diferenciales I 8 de julio 2022

Parte Teórica:

- (1) Sea $A \in M_n(\mathbb{R})$. Dados $t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^n$.
 - (a) Calcular las iteraciones de Picard para este problema.
 - (b) Usar lo anterior para probar que la solución del problema $x' = Ax, x(t_0) = x_0$, es única y está dada por

$$x(t) = \lim_{j \to \infty} \left(\sum_{k=0}^{j} \frac{(t - t_0)^k}{k!} A^k \right) x_0, \quad t \in \mathbb{R},$$

donde convergencia es uniforme sobre cada intervalo $[a,b] \subset \mathbb{R}$.

(2) Sea $F: \mathbb{R} \to M_n(\mathbb{R})$ una función de clase C^1 , que cumple

$$F(0) = I_n$$
, y $F(t+s) = F(t)F(s)$, $\forall s, t \in \mathbb{R}$.

Probar que existe una única matriz $A \in M_n(\mathbb{R})$, tal que $F(t) = e^{tA}$. Ayuda: proponer A = F'(0).

- (3) Decir si las siguientes afirmaciones son verdaderas o falsas, justificando correctamente.
 - (a) Existe una matriz real A, 2×2 , tal que el sistema $\dot{\mathbf{x}} = A\mathbf{x}$, tiene por solución a $(x(t), y(t)) = (e^{2t} e^{-t}, e^{2t} + 2e^{-t})$.
 - (b) La ecuación $y'' + 2y' + 2y = \cos(t)$ posee una única solución periódica.
 - (c) El punto (0,0) es un centro estable del sistema $\dot{x}=-y-x^3,\,\dot{y}=x.$

Parte Práctica:

- (1) Para cada $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}$ hallar una solución de la ecuación diferencial $2x' = \sqrt{|x|}$, que cumpla $x(t_0) = x_0$, y que esté definida para todo $t \in \mathbb{R}$. ¿Para cuáles puntos (t_0, x_0) dicha solución es única?
- (2) Considerar el sistema de ecuaciones lineales siguiente:

$$\dot{x} = y$$
, $\ddot{y} = x - y + \dot{y}$.

Definir nuevas variables y pasar a un sistema lineal equivalente $\dot{x} = Ax$, con A matrix real 3×3 , y hallar todos los pares de funciones (x(t), y(t)) que sean soluciones del sistema dado.

(3) (a) Sea $F(s)=\mathcal{L}\{f\}(s).$ Dado $c\geq 0,$ probar que

$$\mathcal{L}\{H_c(t)f(t-c)\}(s) = e^{-cs}F(s).$$

 $\left(b\right)$ Resolver mediante transformada de Laplace el siguiente problema:

$$y'' + 9y = H_1(t), \quad y(0) = 1, \quad y'(0) = 0.$$

Describir el comportamiento de la solución hallada para $t\to +\infty$. ¿Qué ocurre en t=1? es la derivada de la solución continua?