Contents

3	Quotient Groups and Homomorphisms	1
	3.1 Definitions and Examples	1

3 Quotient Groups and Homomorphisms

3.1 Definitions and Examples

3.1.1

• $\phi^{-1}(E) \leq G$ We're given $E \leq H$ Let $g, h \in \phi^{-1}(E)$, so $\phi(g) = e, \phi(h) = f$, for $e, f \in E$. Note that

$$\phi(gh^{-1}) = \phi(g)\phi(h)^{-1}$$

$$= ef^{-1}$$

$$\in E$$

$$\implies gh^{-1} \in \phi^{-1}(E)$$

Hence, by the subgroup criterion, $\phi^{-1}(E)$ is a subgroup.

• $\phi^{-1}(E) \leq G$ We're given $E \leq H$ Let $g \in G$, $n \in \phi^{-1}(E)$ with $\phi(n) = e$

$$\begin{split} \phi(gng^{-1}) &= \phi(g)e\phi(g)^{-1} \\ &\in E & \text{(since } E \unlhd H) \\ \Longrightarrow gng^{-1} &\in \phi^{-1}(E) \end{split}$$

Since $n \in \phi^{-1}(E)$ was arbitrary, we have $g\phi^{-1}(E)g^{-1} \subset \phi^{-1}(E)$, making $\phi^{-1}(E)$ normal. Setting E = 1 makes $\ker \phi$ normal.

3.1.2

We're given $w \in Z$, i.e. $w \in XY$, sp w = rs for $r \in X, s \in Y$. So

$$\phi(u^{-1}w) = \phi(u)^{-1}\phi(r)\phi(s)$$
$$= a^{-1}ab$$
$$= b$$

So $u^{-1}w \in Y$, i.e. $u^{-1}w = v$ for some $v \in Y$, i.e. w = uv.

3.1.3

Let A be abelian, let $aB, bB \in A/B$, so

$$(aB)(bB) = (ab)B$$
$$= (ba)B$$
$$= (bB)(aB)$$

so A/B is abelian.

Following the example in the text, $G = D_8$ is not abelian, but $D_8/Z(D_8) = V_4$ is.

 $(gN)^0 = N$ (since N is the identity)

But $g^0 N = 1N = N$.

Hence, $(gN)^0 = g^0 N$

Now suppose that $(gN)^k = g^k N$ for k = 1, ..., n. Then

$$(gN)^{n+1} = (gN)^n (gN)$$

$$= g^n N g N$$

$$= (g^n g) N$$

$$= g^{n+1} N$$

We have proved the statement for all nonnegative integers by induction. We prove it for negative integers by showing that they are appropriate inverses. For $k \in \mathbb{Z}^+$,

$$(g^{-k}N)(gN)^k = g^{-k}Ng^kN$$
$$= (g^{-k}g^k)N$$
$$= 1N$$
$$= N$$

Hence,

$$g^{-k}N = ((gN)^k)^{-1}$$

= $(gN)^{-k}$

3.1.5

Suppose $(gN)^k = N$. Then $g^kN = N$, and since $1 \in N$, $g^k \cdot 1 \in N$, i.e. $g^k \in N$. The converse is also true, so the order of gN must be the smallest int k for which this holds.

Let $G = D_8$, $N = \{1, r^2\}$. Then |r| = 8, but $r^2 \in N$ so |rN| = 2

3.1.6

 $\phi^{-1}(1)$ are the positive reals, $\phi^{-1}(-1)$ are the negative reals. Let $a,b\in\mathbb{R}^{\times}.$ Then $\phi(ab)=\frac{ab}{|ab|}=\frac{a}{|a|}\frac{b}{|b|}=\phi(a)\phi(b)$

3.1.7

Let $(x,y), (a,b) \in \mathbb{R}^2$. then $\pi((x,y)+(a,b))=\pi(x+a,y+b)=x+a+y+b=x+y+a+b=\pi(x,y)+\pi(a,b)$, making π into a homomorphism. Also, given $a \in \mathbb{R}$, $\pi(a,0)=a+0=a$, so π is surjective.

Note, $(x,y) \in \ker \pi \iff x+y=0 \iff y=-x$. So the kernel is the line y=-x. The fibers are simply translations of the line: The fiber of b is the line y=-x+b.

3.1.8

Let $x, y \in \mathbb{R}^{\times}$.

Then $\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$, making it into a homomorphism. The image of ϕ is the positive reals. We have

$$x \in \ker \phi$$

$$\iff |x| = 1$$

$$\iff x = 1 \text{ or } x = -1$$

So $\ker \phi = \{-1, 1\}.$

The fibers take the form $x \ker \phi = x\{-1,1\} = \{-x,x\}$

This map just takes the square of the "modulus" or "norm" or "absolute value" of a complex number, so it is definitely a homorphism, and the image is the positive reals.

The kernel is the unit circle in the complex plainand the fiber of $x \in \mathbb{R}^{\times}$ is the circle of radius \sqrt{x}

3.1.10

Suppose $\overline{a} = \overline{b}$ in $\mathbb{Z}/8\mathbb{Z}$.

Then 8|(b-a). I.e. $\exists d \in \mathbb{Z}$ such that 8d = b - a.

But then 4(2d) = b - a, so 4|b - a, so in fact $\bar{a} = \bar{b}$ in \mathbb{Z}/\mathbb{Z} , making the map well-defined. The map is clearly a homomorphism and surjective.

We have $\overline{a} \in \ker \phi \iff \phi(\overline{a}) = 0 \iff \overline{a} = 0 \iff 4|a$, so $\ker \phi = {\overline{0}, \overline{4}}$. and the fibers take the form ${\overline{a}, \overline{a+4}}$

3.1.11

(a) We have $\phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\begin{pmatrix} e & f \\ 0 & g \end{pmatrix}) = \phi(\begin{pmatrix} ae & af + bg \\ 0 & cg \end{pmatrix}) = ae = \phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})\phi(\begin{pmatrix} e & f \\ 0 & g \end{pmatrix})$, so ϕ is a homomorphism. And it is clearly surjective because $\begin{pmatrix} a & 1 \\ 0 & 1 \end{pmatrix} \mapsto a$ for any $a \in F^{\times}$.

The kernel is

$$\ker \phi = \left\{ \begin{pmatrix} 1 & b \\ 0 & c \end{pmatrix} \in G | c \neq 0 \right\} \tag{1}$$

and fibers take the form

$$\begin{pmatrix} e & f \\ 0 & g \end{pmatrix} \ker \phi = \{ \begin{pmatrix} e & f + bg \\ 0 & cg \end{pmatrix} \in G | c, e, g \neq 0 \}$$
 (2)

(b) We have $\phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\begin{pmatrix} e & f \\ 0 & g \end{pmatrix}) = \phi(\begin{pmatrix} ae & af + bg \\ 0 & cg \end{pmatrix}) = (ae, cg) = (a, c)(e, g) = \phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})\phi(\begin{pmatrix} e & f \\ 0 & g \end{pmatrix})$ and it's obviously surjective.

The kernel is

$$\ker \phi = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in G | c \neq 0 \right\} \tag{3}$$

and fibers take the form

$$\begin{pmatrix} e & f \\ 0 & g \end{pmatrix} \ker \phi = \{ \begin{pmatrix} e & f + bg \\ 0 & g \end{pmatrix} \in G | e, g \neq 0 \}$$
 (4)

(c) Let the map be given by $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mapsto b$. Note that in H, $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b+c \\ 0 & 1 \end{pmatrix}$, so this map is clearly an isomorphism.

3.1.12

$$\ker \phi = \mathbb{Z}$$

$$\ker \phi^{-1}(i) = \{ \frac{1+4k}{4} | k \in \mathbb{Z} \}$$

$$\ker \phi^{-1}(-1) = \{ \frac{1+2k}{2} | k \in \mathbb{Z} \}$$

$$\ker \phi^{-1}(e^{4\pi i/3}) = \{ \frac{2+3k}{3} | k \in \mathbb{Z} \}$$

We obtained $\ker \phi^{-1}(i)$ by solving for r in $2\pi r = \pi/2 + 2\pi k$, etc.

Divide out the results of the previous exercise by 2 to account for the extra factor of 2, and we obtain

$$\ker \phi = \frac{1}{2}\mathbb{Z} = \{k/2 | k \in \mathbb{Z}\}$$
$$\ker \phi^{-1}(i) = \{\frac{1+4k}{8} | k \in \mathbb{Z}\}$$
$$\ker \phi^{-1}(-1) = \{\frac{1+2k}{4} | k \in \mathbb{Z}\}$$
$$\ker \phi^{-1}(e^{4\pi i/3}) = \{\frac{2+3k}{6} | k \in \mathbb{Z}\}$$

3.1.14

- (a) This is "obvious" but okay. Suppose $0 \le p, q < 1$ and suppose $p + \mathbb{Z} = q + \mathbb{Z}$. Then $p + 0 \in q + \mathbb{Z}$, so p = q + k for some $k \in \mathbb{Z}$. But $0 \le p, q < 1$, so we must have |k| < 1, forcing k = 0, so p = q.
- (b) Let $x + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$, with $x = \frac{p}{q}$. Note that $qx = \frac{pq}{q} = p \in \mathbb{Z}$, so by exercise 3.1.5, $|x| \leq q$. Hence all elements have finite order.

Euclid's theorem allows us to set the denominator to be an arbitrarily large prime number, so we have elements of arbitrarily large order.

- (c) Let T be the torsion subgroup. We've just shown that $\mathbb{Q}/\mathbb{Z} \leq T$. Suppose now that $x \in \mathbb{R}/\mathbb{Q}$ (so x is irrational). Then suppose $nx \in \mathbb{Z}$ for some int n. Then nx = m for some int m, yielding x = m/n, making x rational, a contradiction. Hence, $x + \mathbb{Z}$ has infinite order, and is note in T. Hence $\mathbb{Q}/\mathbb{Z} = T$.
- (d) Identify $e^{2\pi ik/n}$ with k/n.

3.1.15

Let G be abelian and divisible.

Let $H \leq G$ be a proper subgroup.

Suppose we are given $aH \in G/H$ and $k \in \mathbb{Z}^+$.

We know that $\exists x \in G$ such that $x^k = a$.

But then $(xH)^k = x^k H = aH$.

So \mathbb{Q}/\mathbb{Z} is certainly divisible.

WHY DO I NEED G TO BE ABELIAN AND WHY DOES H HAVE TO BE PROPER

3.1.16

Suppose $G = \langle S \rangle$. Let $xN \in \overline{G}$.

We know that $x = s_1 \cdots s_n$ for some $s_1, \ldots, s_n \in S$.

Then $s_1 N \cdots s_n N = s_1 \cdots s_n N = xN$,

so $xN \in \langle S \rangle$.

Since x was arbitrary, we have $\overline{G} = \langle \overline{S} \rangle$.

3.1.17

Note that $G = D_{16}$.

(a) Taking the left cosets of the (finitely many) elements of D_8 , we obtain exactly 8 distinct cosets:

$$\overline{1} = \{1, r^4\}
\overline{r} = \{r, r^5\}
\overline{r^2} = \{r^2, r^6\}
\overline{r^3} = \{r^3, r^7\}
\overline{s} = \{s, sr^4\}
\overline{sr} = \{sr, sr^5\}
\overline{sr^2} = \{sr^2, sr^6\}
\overline{sr^3} = \{sr^3, sr^7\}$$

NOTE THAT $\overline{G} \cong D_8$.

- (b) Listed out in part a
- (c) We note that $\overline{G} \cong D_8$, and we've computed these orders before:

$$|\overline{1}| = 1$$

$$|\overline{r}| = 4$$

$$|\overline{r^2}| = 2$$

$$|\overline{r^3}| = 4$$

$$|\overline{s}| = 2$$

$$|\overline{sr}| = 2$$

$$|\overline{sr^2}| = 2$$

$$|\overline{sr^3}| = 2$$

(d) Again, using $\overline{G} \cong D_8$, these calculations are trivial.

$$\overline{rs} = \overline{sr^{-1}}$$

$$\overline{sr^{-2}s} = \overline{r^2}$$

$$\overline{s^{-1}r^{-1}sr} = \overline{r^2}$$

(e) Again we use $\overline{G} \cong D_8$, and note that in exercise 2.4 from chapter 2, we computed the following:

$$C(r^2) = D_8$$

 $C(s) = \{1, r^2, s, sr^2\}$

So we have to verify that r, sr, sr^3 are in the normalizer of $\langle s, r^2 \rangle$ (specifically, when conjugating over s, since we already know $C(r^2) = D_8$. But $rsr^{-1} = r^2s, (sr)s(sr)^{-1} = sr^2, (sr^3)s(sr^3)^{-1} = s(r^2)^3$. Hence, $N(\langle s, r^2 \rangle) = D_8$, sp $\langle s, r^2 \rangle$ is normal.

That $\overline{H} \cong V_4$ is obvious with the identification of s, r^2, sr^2 with a, b, c respectively.

Now consider the map $\pi: G \to \overline{G}$, which corresponds to the natural map $\pi: D_{16} \to D_8$. Specifically, it is given by $s \mapsto s$ and $r^a \mapsto r^a \mod 4$. Since a is even $\iff a \mod 4$ is even, we can write

$$\pi^{-1}(H) = \{s^a r^b | a \in \mathbb{Z}, b \in 2\mathbb{Z}\}$$

$$= \{1, s, r^2, r^4, r^6, sr^2, sr^4, sr^6\}$$

$$\cong D_6$$

5

(f) Noting again that $\overline{G} \cong D_8$, this was already computed in the examples of the text to be V_8 .

I will do all of the parts at once. We list out the elements again by taking left cosets

$$\overline{1} = \{1, \sigma^4\}
\overline{\sigma} = \{\sigma, \sigma^5\}
\overline{\sigma^2} = \{\sigma^2, \sigma^6\}
\overline{\sigma^3} = \{\sigma^3, \sigma^7\}
\overline{\tau} = \{\tau, \tau\sigma^4\}
\overline{\tau}\overline{\sigma} = \{\tau\sigma, \tau\sigma^5\}
\overline{\tau}\overline{\sigma^2} = \{\tau\sigma^2, \tau\sigma^6\}
\overline{\tau}\overline{\sigma^3} = \{\tau\sigma^3, \tau\sigma^7\}$$

Now note that $\overline{\sigma^3}\overline{\sigma} = \overline{\sigma^4} = \overline{1}$. Hence $\overline{\sigma^3} = \overline{\sigma}^{-1} = \overline{\sigma^{-1}}$, making the relation $\overline{\sigma}\overline{\tau} = \overline{\tau}\overline{\sigma^3}$ into $\overline{\sigma}\overline{\tau} = \overline{\tau}\overline{\sigma^{-1}}$. Hence, we are in the same situation as the last problem. We end up with $\overline{G} = D_8$ and the rest of the parts are straightforward.

3.1.19

- (a) Same stuff as before, leading to...
- (b) $\overline{1}, \overline{v}, \overline{v}^2, \overline{v}^3, \overline{u}, \overline{uv}, \overline{uv}^2, \overline{uv}^3$
- (c)

$$|\overline{1}| = 1$$

$$|\overline{v}| = 4$$

$$|\overline{v^2}| = 2$$

$$|\overline{v^3}| = 4$$

$$|\overline{u}| = 2$$

$$|\overline{uv}| = 4$$

$$|\overline{uv^2}| = 2$$

$$|\overline{uv^3}| = 4$$

(d) We note now that $\overline{vu} = \overline{uv^5} = \overline{uv}$, making G abelian and the other computations for this part very straightforward. We obtain

$$\overline{uv^{-2}u} = \overline{uv}$$
$$\overline{uv^{-2}u} = \overline{u^2v^2}$$
$$\overline{u^{-1}v^{-1}uv} = \overline{1}$$

(e) The map $\overline{G} \to \mathbb{Z}_2 \times \mathbb{Z}_4$ given by $u^a v^b \mapsto (a,b)$ is clearly an isomorphism.

3.1.20

Obvious.

3.1.21

IDK

We'll do the general case. We've already shown in a previous chapter that $H = \bigcap_{i \in I} H_i$ is a subgroup of G. Now let $h \in H$, and let $g \in G$. For each $i \in I$ we know H_i is normal, and since $h \in H_i$,

$$\forall i \in I : ghg^{-1} \in H_i$$

$$\implies ghg^{-1} \in \bigcap_{i \in I} H_i$$

$$= H$$

Since $h \in H$ was arbitrary, $gHg^{-1} \subset H$, making H normal.

3.1.23

Let H, K be normal. Let $l \in \langle H, K \rangle, g \in G$. So we can write $l = h_1 k_1 \cdots h_n k_n$. For each $i = 1, \dots, n$,

$$gh_i = h'_i g$$
 $h'_i \in H$ $hk_i = k'_i h$ $k'_i \in K$

And thus

$$gl = gh_1k_1 \cdots h_nk_n$$
$$= h'_1k'_1 \cdots h'_nk'_ng$$
$$\in \langle H, K \rangle g$$

Since $l \in \langle H, K \rangle$ was arbitrary, $g\langle H, K \rangle \subset \langle H, K \rangle g$. An analogous proof for the reverse inclusion makes $\langle H, K \rangle$ normal.

3.1.24

Let $n \in N \cap H$, $h \in H$. Since N is normal, hn = n'h for some $n' \in N$. Since $n' = hnh^{-1}$, we have $n' \in H$. So in fact $n' \in N \cap H$. So $hN \cap H \subset N \cap Hh$. The reverse inclusion is analogous and thus $N \cap H$ is normal.

3.1.25

(a)

$$N$$
normal (5)

$$\iff \forall g \in G : gN = Ng \tag{6}$$

$$\implies \forall g \in G, n \in N \exists l \in N : gn = lg \tag{7}$$

$$\implies \forall g \in G, n \in N \exists l \in N : gng^{-1} = l \tag{8}$$

$$\implies \forall g \in G, n \in N : gng^{-1} \in N \tag{9}$$

$$\implies \forall g \in G : gNg^{-1} \subset N \tag{10}$$

Following the proof backwards proves the other direction ((6) turns into a onesided inclusion, but the reverse inclusion is analogous)

(b) We have
$$g=\begin{pmatrix}2&0\\0&1\end{pmatrix}, g^{-1}=\begin{pmatrix}\frac{1}{2}&0\\0&1\end{pmatrix}$$
. Let $n\in N$, so $n=\begin{pmatrix}1&a\\0&1\end{pmatrix}$. Then
$$gng^{-1}=\begin{pmatrix}2&0\\0&1\end{pmatrix}\begin{pmatrix}1&a\\0&1\end{pmatrix}\begin{pmatrix}\frac{1}{2}&0\\0&1\end{pmatrix}$$

$$=\begin{pmatrix}2&2a\\0&1\end{pmatrix}\begin{pmatrix}\frac{1}{2}&0\\0&1\end{pmatrix}$$

$$=\begin{pmatrix}1&2a\\0&1\end{pmatrix}$$
 $\in N$

Since $n \in N$ was arbitrary, $gNg^{-1} \subset N$, making N normal.

Note from (??) that the top-right position in an element of gNg^{-1} is in the form 2a. So, for example $\begin{pmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{pmatrix}$????????????

3.1.26

- (a) $gabg^{-1} = gag^{-1}gbg^{-1}$. Let |a| = n. Then $(gag^{-1})^n = ga^ng^{-1} = gg^{-1} = 1$, so $|gag^{-1}| \le |a|$. Now let $|gag^{-1}| = m$. Then $(gag^{-1})^m = 1 \implies ga^mg^{-1} = 1 \implies a^m = 1$, so $|a| \le |gag^{-1}|$.
- (b) $(ga^{-1}g^{-1})(gag^{-1}) = ga^{-1}g^{-1}gag^{-1} = ga^{-1}ag^{-1} = gg^{-1} = 1.$
- (c) Let $n \in N$ be normal. Then $n = s_1 \cdots s_m$ for $s_i \in S$. Given $g \in G$, we're given $gSg^{-1} \subset N$, so we have for $i = 1, \ldots, m$, we have $gs_ig^{-1} = n_i$ for some $n_i \in N$. Then,

$$gng^{-1} = gs_1 \cdots s_m g^{-1}$$

$$= gs_1 g^{-1} \cdots gs_m g^{-1}$$

$$= gn_1 g^{-1} \cdots gn_m g^{-1}$$

$$= gn_1 \cdots n_m g^{-1}$$

$$\in N$$

- (d) Follows immediately from (c) by setting $S = \{x\}$
- (e) Follows directly from (c)

3.1.27

One side is trivial, so suppose $gNg^{-1} \subset N$. Conjugation is injective $(gag^{-1} = gbg^{-1} \implies a = b$ by left and right multiplication), and an injective map from a finite set to itself is surjective, so $gNg^{-1} = n$. Then it's clear that $N_G(N) = \{g \in G | gNg^{-1} \subset N\}$

3.1.28

From the proof of exercise 3.1.26, part (b), we have $gSg^{-1} \subset N \iff gNg^{-1} \subset N$, then applying 3.1.27 completes the proof.

3.1.29

One direction is easy: g normalizes $N \Longrightarrow gNg^{-1} = N \Longrightarrow gSg^{-1} \subset N$. Now for the converse. Suppose $tSt^{-1} \subset N$ for all $t \in T$. By the previous exercise 3.1.28, $tNt^{-1} = N$ for any $t \in T$ Now $g \in G$ be arbitrary. Since $G = \langle T \rangle, g = t_1 \cdots t_n, t_i \in T$. Then

$$gNg^{-1} = (t_1 \cdots t_n)N(t_1 \cdots t_n)^{-1}$$

$$= t_1 \cdots t_nNt_n^{-1} \cdots t_1^{-1}$$

$$= t_1 \cdots t_{n-1}(t_nNt_n^{-1})t_{n-1}^{-1} \cdots t_1^{-1}$$

$$= t_1 \cdots t_{n-1}Nt_{n-1}^{-1} \cdots t_1^{-1}$$
etc...
$$= N$$

3.1.30

$$g \in N_G(N)$$

$$\iff gNG^{-1} = N$$

$$\implies \forall n \in N \exists m \in N : gng^{-1} = m$$

$$\implies \forall n \in N \exists m \in N : gn = mg$$

$$\implies qN \subset Nq$$

Switch m and n in the quantifiers to obtain $gN \supset Ng$, so gN = Ng. For the converse,

$$gN = Ng$$

$$\implies \forall n \in N \exists m \in N : gng^{-1} = m$$

$$\implies \forall n \in N \exists m \in N : gn = mg$$

$$\implies gNg^{-1} \subset N$$

Again, switch m and n to obtain the reverse inclusion.

3.1.31

Since $N \triangleleft H$, we have hN = Nh, and the previous exercise 3.1.30 says that $h \in N_G(N)$. Since $h \in H$ was arbitrary, $H \leq N_G(N)$. The deduction is trivial.

3.1.32

1 and Q_8 are obviously normal, and $\langle -1 \rangle = \{-1,1\}$ is obviously normal since the elements commute with all of Q_8 ($\langle -1 \rangle \subset Z(Q_8)$). Let $N = \langle i \rangle$. From the lattice, we know that $\langle i,j \rangle = Q_8$, so to show N is normal, we use problem 3.1.29 with $T = \{i,j\}, S = \{i\}$. We have $iii^{-1} = i \in S \subset N$, and $jig^{-1} = i \in S \subset N$. Hence, $N = \langle S \rangle$ is normal. The proof for $\langle j \rangle$ and $\langle k \rangle$ is analogous.

3.1.33

NO THANKS

3.1.34