0.1 Differential geometry of surfaces

Definition 0.1.1. A differentiable surface is an embedding $S \hookrightarrow \mathbb{R}^3$

Lemma 0.1.2. $\gamma(t)$ is a geodesic iff $\ddot{\gamma}$ is parallel to the normal \vec{n} , meaning no acceleration in S A geodesic γ on S has constant speed

The geodesic curvature of a curve γ is the curvature of the projection onto tangent plane, γ is a geodesic iff the geodesic curvature of γ is zero

Proof.
$$\frac{d}{dt}|\dot{\gamma}|^2 = 2\ddot{\gamma}\cdot\dot{\gamma} = 0$$

0.2 Curvature

Definition 0.2.1. A Riemannian manifold is (M,g) where M is a smooth manifold and Riemannian metric $g_p: S^2(T_pM) \to \mathbb{R}$ is a positive definite

Definition 0.2.2. The volume form is $\sqrt{|\det g|} dx_i \wedge dx_j$, which happen to be ± 1

Definition 0.2.3. Hodge star is defined to be $\eta \wedge \star \xi = \langle \eta, \xi \rangle \omega$, ω is the volume form. Consider $(\alpha, \beta) = \int_X \alpha \wedge \star \beta$, $d^* = (-1)^{kl+1} \star d \star$ is the codifferential that $(d\alpha, \beta) = (\alpha, d^*\beta)$, $\Delta = dd^* + d^*d$ is the Laplacian

Definition 0.2.4. An affine connection is

$$abla: \Gamma(TM) \otimes \Gamma(TM) \to \Gamma(TM)$$

$$(X,Y) \mapsto \nabla_X Y$$

satisfying

- $\nabla_{fX}Y = f\nabla_XY$, i.e. ∇ is $C^{\infty}(M,\mathbb{R})$ linear in the first variable
- $\nabla_X(fY) = XfY + f\nabla_XY$, i.e. ∇ satisfies Leibniz rule in the second variable

From this we can define covariant derivative ∇ , $\nabla_X f = X_f$, $\nabla_X(\alpha)(Y) = \nabla_X(\alpha(Y)) - \alpha(\nabla_X Y)$, here α is a covector, similarly for any tensor, Write contraction $(\nabla T)(\alpha_1, \dots, \alpha_m, X_1, \dots, X_n, X) = (\nabla_X T)(\alpha_1, \dots, \alpha_m, X_1, \dots, X_n)$, T is a tensor

Note.
$$\nabla_X(\alpha(Y)) = \nabla_X(\alpha)(Y) + \alpha(\nabla_X Y)$$

Definition 0.2.5. ∇ is an affine connection, the **torsion tensor** is

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

Definition 0.2.6. The Levi-Civita connection ∇ is the one satisfying

- $\nabla_Z g(X,Y) = g(\nabla_Z X,Y) + g(X,\nabla_Z Y)$, i.e. $\nabla g = 0$
- $\nabla_X Y \nabla_Y X = [X, Y]$, i.e. ∇ is torsion free

Definition 0.2.7. ∇ is the Levi-Civita connection, the Riemannian curvature tensor is $R_{XY} = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$

Remark 0.2.8. X, Y are commuting vector fields around x_0 , then $\frac{d}{ds} \frac{d}{dt} \tau_{sX}^{-1} \tau_{tY}^{-1} \tau_{sX} \tau_{tY} Z = R_{XY} Z, \tau$ is the parallel transport

$$\tau_{sY} \underbrace{\uparrow}_{\tau_{sY}^{-1}} \tau_{sY}^{-1}$$

Proposition 0.2.9.

1.
$$R_{YX} = -R_{XY}$$

2.
$$(R_{XY}Z, W) = -(R_{XY}W, Z)$$

3.
$$R_{XY}Z + R_{YZ}X + R_{ZX}Y = 0$$

4.

0.2. CURVATURE 3

The second Bianchi identity follows

$$\nabla_X R_{YZ} + \nabla_Y R_{ZX} + \nabla_Z R_{XY} = 0$$

Remark 0.2.10. If write $(R_{XY}Z, W) = R(X, Y, Z, W)$, then R is antisymmetric about the first two variables and the last two variables, R satisfies Jacobi identity, the first two and the last two variables can switch place

Proof.

- 1.
- 2.
- 3.
- 4. Follow from above

Definition 0.2.11. $\{e_i\}$ is an orthonomal basis, the **Ricci curvature** is $Ric(X) = \sum R_{X,e_i}e_i$. The **scalar curvature** is $S = Tr Ric = \sum (Ric(e_j), e_j) = \sum (R_{e_j,e_i}e_i, e_j)$. The **Einstein curvature** is $G = R - \frac{1}{2}gS$

0.3 Hyperbolic geometry

Definition 0.3.1. \mathbb{R}^{n+1} with metric $ds^2 = dx_1^2 + \cdots + dx_n^2 - dx_0^2$ is the Minkowski space

The **hyperboloid model** is $\mathbb{H}=\{x_1^2+\cdots+x_n^2-x_0^2=-1,x_0>0\}$. The Riemannian metric is the pullback metric $ds^2=dx_1^2+\cdots+dx_n^2-dx_0^2$

The geodesics are intersections of \mathbb{H} and two dimensional subspaces of \mathbb{R}^{n+1} $(d \sinh s)^2 + (d \cosh s)^2 = \cosh^2 s ds^2 - \sinh^2 s ds^2 = ds^2$, thus \mathbb{H}^1 is isomorphic to \mathbb{E}^1

 $(x',x_n)\mapsto\left(\frac{2x'}{1+x_n},1\right), x'=(x_0,\cdots,x_{n-1})$ is the isometry from the hemisphere to the halfspace $(x',1)\mapsto\left(\frac{4x'}{4+|x'|^2},\frac{4-|x'|^2}{4+|x'|^2}\right), \ x'=(x_0,\cdots,x_{n-1})$ is the isometry from the halfspace to the hemisphere

$$x\mapsto\left(\frac{x'}{1+x_0}\right),\,x'=(x_1,\cdots,x_n)$$
 is the isometry from the hemisphere to Poincaré disc

$$x\mapsto\left(rac{2x}{1-|x|^2},rac{1+|x|^2}{1-|x|^2}
ight)$$
 is the isometry from Poincaré disc to the hyperboloid

 $x\mapsto (1,x'),\, x'=(x_1,\cdots,x_n)$ is the isometry from the hemisphere to Klein disc

$$x\mapsto\left(rac{x'}{x_0},rac{1}{x_0}
ight),\,x'=(x_1,\cdots,x_n)$$
 is the isometry from the hyperboloid to the hemisphere

$$x\mapsto\left(\frac{x'}{x_0},\frac{1}{x_0}\right),\ x'=(x_1,\cdots,x_n)$$
 is the isometry from the hemisphere to the hyperboloid

The **hemisphere model** is $\mathbb{H} = \{x_0 > 0\} \cap S^n$. The Riemannian metric is pullback metric

$$\begin{split} \sum_{i=0}^{n-1} \left[d \left(\frac{x_i}{x_n} \right) \right]^2 &= \sum_{i=0}^{n-1} \left(\frac{x_0 dx_i - x_i dx_0}{x_0^2} \right)^2 - \left(-\frac{dx_0}{x_0^2} \right)^2 \\ &= \sum_{i=0}^{n-1} \frac{x_0^2 dx_i^2 - 2x_i x_0 dx_i dx_0 + x_i^2 dx_0^2}{x_0^4} - \frac{dx_0^2}{x_0^4} \\ &= \frac{dx'^2}{x_0^2} - \frac{d(|x'|^2) d(x_0^2)}{2x_0^4} + \frac{|x'|^2 dx_0^2 - dx_0^2}{x_0^4} \\ &= \frac{dx'^2}{x_0^2} - \frac{d(1 - x_0^2) d(x_0^2)}{2x_0^4} - \frac{dx_0^2}{x_0^2} \\ &= \frac{dx'^2}{x_0^2} + \frac{2dx_0^2}{x_0^2} - \frac{dx_0^2}{x_0^2} \\ &= \frac{dx'^2 + dx_0^2}{x_0^2} \end{split}$$

The half space model is $\mathbb{H} = \{x_0 > 0\} \cap \{x_n = 1\}$. The Riemannian metric is pullback metric

$$\begin{split} \frac{\sum\limits_{i=0}^{n-1}d\left(\frac{4x_i}{4+|x'|^2}\right)^2+d\left(\frac{4-|x'|^2}{4+|x'|^2}\right)^2}{\left(\frac{4x_0}{4+|x'|^2}\right)^2} &\underbrace{\frac{\sum\limits_{i=0}^{n-1}d\left(\frac{4x_i}{X}\right)^2+d\left(\frac{8}{X}-1\right)^2}{\left(\frac{4x_0}{X}\right)^2}} \\ &=\frac{X^2}{x_0^2}\left(\sum\limits_{i=0}^{n-1}d\left(\frac{x_i}{X}\right)^2+4d\left(\frac{1}{X}\right)^2\right) \\ &=\frac{X^2}{x_0^2}\left(\sum\limits_{i=0}^{n-1}\left(\frac{Xdx_i-x_idX}{X^2}\right)^2+4\frac{dX^2}{X^4}\right) \\ &=\frac{1}{x_0^2}\left(\sum\limits_{i=0}^{n-1}\frac{X^2dx_i^2+x_i^2dX^2-2Xx_idXdx_i}{X^2}+4\frac{dX^2}{X^2}\right) \\ &=\frac{1}{x_0^2}\left(dx'^2+\frac{|x'|^2dX^2}{X^2}+\frac{4dX^2}{X^2}-\frac{dXd(|x'|^2)}{X}\right) \\ &=\frac{1}{x_0^2}\left(dx'^2+\frac{XdX^2}{X^2}-\frac{dXd(X-4)}{X}\right) \\ &=\frac{dx'^2}{x_0^2} \end{split}$$

The **Poincaré disc model** is $\mathbb{H} = \mathcal{D}^n$. The Riemannian metric is pullback metric

$$\begin{split} \sum_{i=1}^n d \left(\frac{2x_i}{1-|x|^2} \right)^2 - d \left(\frac{1+|x|^2}{1-|x|^2} \right)^2 & \xrightarrow{X=1-|x'|^2} \sum_{i=1}^n d \left(\frac{2x_i}{X} \right)^2 - d \left(\frac{2}{X} - 1 \right)^2 \\ &= 4 \sum_{i=1}^n \left(\frac{X dx_i + x_i dX}{X^2} \right)^2 - 4 \left(-\frac{dX}{X^2} \right)^2 \\ &= 4 \sum_{i=1}^n \frac{X^2 dx_i^2 + x_i^2 dX^2 - X x_i dX dx_i}{X^4} - 4 \frac{dX^2}{X^4} \\ &= 4 \left(\frac{dx^2}{X^2} + \frac{|x|^2 dX^2}{X^4} - \frac{dX^2}{X^4} - \frac{d(|x|^2) dX}{X^3} \right) \\ &= 4 \left(\frac{dx^2}{X^2} - \frac{X dX^2}{X^4} - \frac{d(1-X) dX}{X^3} \right) \\ &= \frac{4 dx^2}{X^2} = \frac{4 dx^2}{(1-|x|^2)^2} \end{split}$$

The **Klein disc model** is $\mathbb{H} = D^n$. The distance between P, Q is $\frac{1}{2} \ln \left(\frac{|XQ||PY|}{|XY||PQ|} \right) = \frac{1}{2} \ln (X, P; Q, Y)$, (X, P; Q, Y) is the cross ratio

Theorem 0.3.2. $Isom(\mathbb{H}^2) = PSL(2, \mathbb{R})$

Proof. An isometry sends half circles and orthogonal lines to half circles or orthogonal lines, by Schwarz reflection principle ??, it is can be regard as an isometry on $\mathbb{C}P^1$ sending $\mathbb{R}P^1$ to $\mathbb{R}P^1$, then it necessarily has to be in $PSL(2,\mathbb{R})$

Theorem 0.3.3. Isom(
$$\mathbb{H}^3$$
) = $PSL(2,\mathbb{C}) \ltimes \mathbb{Z}/2\mathbb{Z} \cong SL(2,\mathbb{C})$

Proof. Since $\partial \mathbb{H}^3$ is the Riemann sphere, every isometry on \mathbb{H}^3 restricts to a conformal map on $\partial \mathbb{H}^3$ because it sends hemispheres and orthogonal planes to hemispheres or orthogonal planes, hence it is a Möbius transformation. On the other hand, Möbius transformations which can all be extended to an isometry on \mathbb{H}^3 , translations $z\mapsto z+\lambda$ can be extended to $(z,x_3)\mapsto (z+\lambda,x_3)$, dilations $z\mapsto \lambda z$ can be extended to $(z,x_3)\mapsto (\lambda z,|\lambda|x_3)$, inversions $z\mapsto -\frac{1}{z}$ can be extended to $(z,x_3)\mapsto \left(\frac{-\bar{z}}{|z|^2+x_3^2},\frac{x_3}{|z|^2+x_3^2}\right)$. Therefore the isometry group for \mathbb{H}^3 is $PSL(2,\mathbb{C})\ltimes \mathbb{Z}/2\mathbb{Z}\cong SL(2,\mathbb{C})$

0.4 Complex manifold

Identity principle

Theorem 0.4.1 (Identity principle). X is connected, $X \xrightarrow{f} Y$ is holomorphic and $f \equiv c$ on some nonempty open subset of X, then $f \equiv c$ on X

Definition 0.4.2. M is a smooth manifold, an almost complex structure is $J: TM \to TM$ such that $J^2 = -1_{TM}$

Example 0.4.3. S^4 cannot be given an almost complex structure. S^6 can be given an almost complex structure but not a complex structure

A complex manifold always give an almost complex structure by $J\frac{\partial}{\partial z_i} = i\frac{\partial}{\partial z_i}$, $J\frac{\partial}{\partial \bar{z}_i} = -i\frac{\partial}{\partial \bar{z}_i}$

Definition 0.4.4. A is a (1, 1) form, the Nijenhuis tensor is

$$N_A(X,Y) = -A^2[X,Y] + A([AX,Y] + [X,AY]) - [AX,AY]$$

Theorem 0.4.5 (Newslander-Nirenberg theorem). J is *integrable* iff $N_J = 0$. Meaning there is a unique complex structure which will give J

Proposition 0.4.6. Given an almost complex structure, we can find coordinate charts $(z_1, \dots, z_n, \bar{z}_1, \dots, \bar{z}_n)$ such that $\operatorname{Span}\left\{\frac{\partial}{\partial z_i}\right\}$, $\operatorname{Span}\left\{\frac{\partial}{\partial \bar{z}_i}\right\}$ to be the i and -i eigenspaces of J

Definition 0.4.7. A Hermitian manifold M is a complex manifold with a Hermitian metric $h = \sum h_{\alpha\bar{\beta}} dz_{\alpha} \otimes d\bar{z}_{\beta}$ on $TM \otimes \mathbb{C}$, where $h_{\alpha\bar{\beta}}$ is a positive definite Hermitian matrix. The real part gives a Riemannian metric

$$egin{aligned} g &= rac{1}{2}(h + ar{h}) \ &= rac{1}{2}\left(\sum h_{lphaar{eta}}dz_lpha \otimes dar{z}_eta + \sum h_{etaar{lpha}}dar{z}_lpha \otimes dz_eta
ight) \ &= rac{1}{2}\sum h_{lphaar{eta}}(dz_lpha \otimes dar{z}_eta + dar{z}_eta \otimes dz_lpha) \ &= \sum h_{lphaar{eta}}dz_lpha dar{z}_eta \end{aligned}$$

Also gives associate (1, 1) form

$$\omega = -rac{h-ar{h}}{2i} = rac{i}{2}(h-ar{h}) = rac{i}{2}\sum h_{lphaar{eta}}(dz_lpha\otimes dar{z}_eta - dar{z}_eta\otimes dz_lpha) = rac{i}{2}\sum h_{lphaar{eta}}dz_lpha\wedge dar{z}_eta$$

Note that the volume form is $\operatorname{vol}_M = \frac{\omega^{\wedge n}}{n!}$

Remark 0.4.8. $\omega(u,v) = g(Ju,v), \ h = g - i\omega, \ g(u,v) = \omega(u,Jv).$ Any one determines the other two. ω corresponds to $K\ddot{a}hler\ class$ in $H^2(M,\mathbb{R})$

Definition 0.4.9. M is a Kähler manifold if it satisfies Kähler compatibility condition is $d\omega=0$, ω is then called a Kähler form. We have $\partial_{\gamma}h_{\alpha\bar{\beta}}=\partial_{\alpha}h_{\gamma\bar{\beta}},\ \partial_{\bar{\gamma}}h_{\alpha\bar{\beta}}=\partial_{\bar{\beta}}h_{\alpha\bar{\gamma}}$, this implies at least locally $h_{\alpha\bar{\beta}}=\partial_{\alpha}f_{\bar{\beta}}$, and then $\partial_{\alpha}\partial_{\bar{\gamma}}f_{\bar{\beta}}=\partial_{\bar{\gamma}}\partial_{\alpha}f_{\bar{\beta}}=\partial_{\bar{\beta}}\partial_{\alpha}f_{\bar{\gamma}}=\partial_{\alpha}\partial_{\bar{\beta}}f_{\bar{\gamma}}$, hence $h_{\alpha\bar{\beta}}=\partial_{\alpha}\partial_{\bar{\beta}}\rho$, ρ is called the local Kähler potential, ρ is a Kähler potential if $\omega=\frac{i}{2}\partial\bar{\partial}\rho$

Definition 0.4.10. Consider $L = \omega \wedge -: H^k(M) \to H^{k+2}(M)$, the primitive cohomology is

$$P^{n-k}(M) = \ker \left(H^{n-k}(M) \xrightarrow{L^{k+1}} H^{n+k+2}(M)
ight)$$

The hard Lefschetz theorem says

$$H^n(M) = \bigoplus L^k P^{n-2k}(M)$$

Serre duality

Theorem 0.4.11 (Serre duality). X is complex manifold of complex dimension $n, E \to X$ is a holomorphic vector bundle, then we have

$$H^i(X, E) \cong H^{n-i}(X, K \otimes E^*)^*$$

Where $K := \bigwedge^n T^*X$ is the canonical bundle For example, if X is a Riemann surface, $E = \mathcal{O}$, then $H^1(X, \mathcal{O}) \cong H^0(X, K \otimes \mathcal{O})^* \cong H^0(X, \Omega)^* = \Omega(X)^*$

0.5 Symplectic manifold

Definition 0.5.1. M is a smooth manifold, a *symplectic structure* on M is a 2 form ω that is nondegenerate and anti-symmetric on T_pM