<u>Chapitre 3 – Endomorphismes autoadjoints</u>

Dans tout le chapitre E est un espace euclidien (donc préhilbertien <u>réel</u> de dimension <u>finie</u>) de dimension $n \in \mathbb{N}^*$

1) Matrices orthogonales

Par caractérisation équivalente de l'inverse d'une matrice dans $M_n(\mathbb{R})$, on a

<u>Propriété</u>: Soit $A \in M_n(\mathbb{R})$. On a équivalence entre

- (i) A est inversible et $A^{-1} = {}^t A$
- (ii) ${}^tAA = I_n$
- (iii) $A^t A = I_n$

<u>Définition</u>: On dit qu'une matrice $A \in M_n(\mathbb{R})$ est orthogonale si ${}^tAA = I_n$

Exemple : I_n et $-I_n$ sont orthogonales.

<u>Théorème</u>: L'ensemble $O_n(\mathbb{R})$ des matrices orthogonales de $M_n(\mathbb{R})$ est un sous-groupe de $(GL_n(\mathbb{R}), \times)$, cad

- (i) $O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$
- (ii) $I_n \in O_n(\mathbb{R})$
- (iii) $\forall A, B \in O_n(\mathbb{R}), A \times B \in O_n(\mathbb{R}) \text{ et } A^{-1} \in O_n(\mathbb{R})$

<u>Propriété</u>: Soit $A \in M_n(\mathbb{R})$ de colonnes C_1, \dots, C_n et de lignes L_1, \dots, L_n . On a équivalence entre

- (i) A est une famille orthogonale
- (ii) La famille $(C_1, ... C_n)$ est une famille orthonormée de $M_{n,1}(\mathbb{R})$
- (iii) La famille $(L_1, ... L_n)$ est une famille orthonormée de $M_{1,n}(\mathbb{R})$

Exemple:

La matrice $A = \frac{1}{3}\begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ 2 & -2 & 1 \end{pmatrix}$ est orthogonale car si on note C_1, C_2, C_3 ses colonnes, on a $\langle C_1, C_2 \rangle = 0$, $\langle C_2, C_3 \rangle = 0$, $\langle C_3, C_1 \rangle = 0$, et $\langle C_1, C_1 \rangle = 1$, $\langle C_2, C_2 \rangle = 1$, $\langle C_3, C_3 \rangle = 1$

Remarque:

Comme $\operatorname{Card}(C_1,\ldots,C_n)=n=\dim\left(M_{n,1}(\mathbb{R})\right)$ et qu'une famille orthonormée est libre, on a aussi :

- (ii) \Leftrightarrow $(C_1, ..., C_n)$ est une base orthonormée de $M_{n,1}(\mathbb{R})$
- (iii) \Leftrightarrow $(L_1, ..., L_n)$ est une base orthonormée de $M_{1,n}(\mathbb{R})$

<u>Théorème</u>: Soit $B=(e_1,\ldots,e_n)$ une base orthonormée de E et $\mathcal{F}=(e'_1,\ldots,e'_n)$ une famille d'éléments de E. On a équivalence entre :

- (i) \mathcal{F} est une base orthonormée de E
- (ii) $P = Mat_R(\mathcal{F})$ est une matrice orthogonale

Dans ce cas, P représente la matrice de passage de la base orthonormée B à \mathcal{F} et $\mathrm{Mat}_{\mathcal{F}}(B)={}^tP$

Remarque:

Soient $u \in \mathcal{L}(E)$ et B, B' deux bases orthonormées de E, notons $A = \operatorname{Mat}_{B}(u)$, $A' = \operatorname{Mat}_{B'}(u)$, alors

$$A' = P^{-1}AP = {}^{t}PAP$$
, où $P = Pass_{R \to R'} \in O_n(\mathbb{R})$

<u>Définition</u>: Soient $A, B \in M_n(\mathbb{R})$. On dit que A et B sont orthogonalement semblables si $\exists P \in O_n(\mathbb{R})$, $B = {}^t PAP$

Propriété : Soient $A, B \in M_n(\mathbb{R})$. On a équivalence entre :

- (i) A et B sont orthogonalement semblables
- (ii) A et B représentent le même endomorphisme u de l'espace euclidien dans 2 bases orthonormées

2) Adjoint d'un endomorphisme

Puisque $\dim E = n$, l'espace vectoriel $\mathcal{L}(E,\mathbb{R})$ des formes linéaires sur E est de dimension $\dim E \times \dim \mathbb{R} = n$

Donc il existe un isomorphisme entre E et $\mathcal{L}(E, \mathbb{R})$.

Théorème de représentation de Riesz :

Pour tout $a \in E$, notons $f_a = \langle \cdot, a \rangle : E \to \mathbb{R}$

$$x \mapsto \langle x, a \rangle$$

Alors l'application $F: E \to \mathcal{L}(E, \mathbb{R})$

$$a \mapsto f_a$$

est un isomorphisme d'espace vectoriel. En particulier,

$$\forall f \in \mathcal{L}(E, \mathbb{R}), \exists ! a \in E \text{ tel que } f = F(a) = f_a, \text{ ie tel que } \forall x \in E, f(x) = \langle x, a \rangle$$

Définition de l'adjoint

<u>Définition</u>: Soit $u \in \mathcal{L}(E)$. Il existe un unique endomorphisme $u^* \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Remarque : par symétrique de $\langle \cdot, \cdot \rangle$, on peut inverser les places de u et u^* . Exemple :

- 1) L'adjoint de Id_E est Id_E $\operatorname{Car} \, \forall x,y \in E, \langle Id_E(x),y \rangle = \langle x,y \rangle = \langle x,Id_E(y) \rangle$
- 2) De même, $(0_{\mathcal{L}(E)})^* = 0_{\mathcal{L}(E)}$
- 3) On munit \mathbb{R}^2 de son p.s. usuel. Déterminons l'adjoint de $u \in \mathcal{L}(\mathbb{R}^2)$ défini par :

$$\forall X = (x, y) \in \mathbb{R}^2, u(X) = (x + y, 0)$$

Soient X=(x,y) et $Y=(a,b)\in\mathbb{R}^2$ Alors $\langle u(X),Y\rangle=xa+ya=\langle (x,y),(a,a)\rangle=\langle X,v(Y)\rangle$ où $v:Y=(a,b)\mapsto (a,a)$ Comme $\forall Y=(a,b),Y'=(a',b')\in\mathbb{R}^2, \forall \lambda\in\mathbb{R}, v(\lambda x+y)=\lambda v(x)+v(y)$ Donc $v\in\mathcal{L}(\mathbb{R}^2)$

Donc par définition/unicité de l'adjoint, $u^* = v$

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$ et $B = (e_1, ..., e_n)$ une base <u>orthonormée</u> de E. Notons $A = \operatorname{Mat}_B(u)$ Alors $\operatorname{Mat}_B(u^*) = {}^tA$

<u>Démonstration</u>: **★**

Notons
$$B = (b_{ij})_{1 \le i,j \le n} = \operatorname{Mat}_B(u^*)$$

Soit $j \in [\![1,n]\!]$, la colonne j de B, $\begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}$, correspond aux vecteur colonne des coordonnées de $u^*(e_{ij})$

dans la base B.

Or puisque B est une base orthonormée de E, $\forall x \in E$, $x = \sum_{k=1}^{n} \langle e_k, x \rangle e_k$ Ainsi pour $i \in [1, n]$, b_{ij} correspond à la cordonnée du vecteur $u^*(e_i)$ selon le vecteur e_i , càd

$$b_{ij} = \langle e_i, u^*(e_j) \rangle = \langle u(e_i), e_j \rangle = \langle e_j, u(e_i) \rangle$$

Donc b_{ij} est la coordonnée du vecteur $u(e_{ij})$ selon le vecteur e_{j}

Donc
$$b_{ij} = a_{ji}$$
, où $A = \operatorname{Mat}_B(u) = (a_{ij})_{1 \le i, i \le n}$

Donc $B = {}^tA$.

Attention: Si B n'est pas orthonormée, le résultat est FAUX.

<u>Remarque</u>: Comme dans une base <u>orthonormée</u>, $Mat_{R}(u^{*}) = {}^{t}Mat_{R}(u)$, on a :

- $rg(u^*) = rg(u)$
- $\det(u^*) = \det(u)$

Propriétés de l'adjoint

<u>Propriété</u>: Soient $u, v \in \mathcal{L}(E)$ et $\lambda \in \mathbb{R}$. On a :

- (i) $(\lambda u + v)^* = \lambda u^* + v^*$
- (ii) $(u \circ v)^* = v^* \circ u^*$
- (iii) $(u^*)^* = u$
- (iv) Si u est bijectif, u^* l'est aussi et $(u^*)^{-1} = (u^{-1})^*$

La démonstration se fait en utilisant les propriétés des matrices dans une certaine base B.

Propriété : Soit $u \in \mathcal{L}(E)$,

$$\ker(u^*) = \left(Im(u)\right)^{\perp} \operatorname{et} Im(u^*) = (\ker(u))^*$$

<u>Démonstration</u>: **★**

Soit $x \in E$.

$$x \in Im(u)^{\perp} \iff \forall z \in Im(u), \langle x, z \rangle = 0$$

$$\iff \forall y \in E, \langle x, u(y) \rangle = 0$$

$$\iff \forall y \in E, \langle u^*(x), y \rangle = 0$$

$$\iff u^*(x) \in E^{\perp}$$

$$\iff u^*(x) = 0_E$$

$$\iff x \in \ker(u^*)$$

Donc $\ker(u^*) = (Im(u))^{\perp}$

En appliquant ceci à $v=u^*\in\mathcal{L}(E)$, on a $\ker(v^*)=\big(Im(u)\big)^\perp$

ie
$$\ker(u) = (Im(u^*))^{\perp}$$

Donc
$$(\ker u)^{\perp} = ((Im(u^*))^{\perp})^{\perp} = Im(u^*) \operatorname{car} \operatorname{dim} E < +\infty$$

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$, soit F un sev de E stable par u, alors F^{\perp} est stable par u.

<u>Démonstration</u>: ★

Soit $x \in F^{\perp}$, montrons que $u^*(x) \in F^{\perp}$

Soit
$$y \in F$$
, $\langle u^*(x), y \rangle = \left(\underbrace{x}_{\in F^{\perp}}, \underbrace{u(y)}_{\in F}\right) = 0$

Ainsi
$$u^*(x) \in F^{\perp}$$
, d'où $u^*(F^{\perp}) \subset F^{\perp}$

Endomorphismes autoadjoints

Définition:

On dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est autoadjoint (ou symétrique) si $u^* = u$

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$ et $B = (e_1, ..., e_n)$ une base orthonormée de E. On a équivalence entre

- (i) u est autoadjoint
- (ii) La matrice de u dans la base B est symétrique

Corollaire: L'ensemble S(E) des endomorphismes autoadjoints de E est un sev de $\mathcal{L}(E)$ de dimension $\frac{n(n+1)}{2}$

Propriété :

Soit $p \in \mathcal{L}(E)$ un projecteur. On a équivalence entre :

- (i) p est un projecteur orthogonal
- (ii) p est autoadjoint

Démo en TD

Théorème spectral

<u>Lemme</u>: Soit $A \in S_n(\mathbb{R})$ une matrice symétrique réelle. Alors le polynôme caractéristique de A est scindé sur \mathbb{R} . Autrement dit, les valeurs propres de A (a priori complexes) sont toutes réelles.

<u>Corollaire</u>: Tout endomorphisme autoadjoint d'un espace euclidien non nul admet au moins une valeur propre réelle.

<u>Lemme</u>: Soit $u \in \mathcal{L}(E)$ autoadjoint, les sous-espaces propres de u sont 2 à 2 orthogonaux.

<u>Démonstration</u>: **★**

Soient
$$\lambda, \mu \in Sp(u)$$
 avec $\lambda \neq \mu$.

Montrons que $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont orthogonaux.

Soient
$$x \in E_{\lambda}(u)$$
 et $y \in E_{\mu}(u)$

Alors
$$u(x) = \lambda x$$
 et $u(y) = \mu y$

Ainsi
$$\langle u(x), y \rangle = \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

Mais comme $u = u^*$,

$$\langle u(x), y \rangle = \langle x, u(y) \rangle = \mu \langle x, y \rangle$$

D'où
$$(\lambda - \mu) \langle x, y \rangle = 0$$

Donc $\langle x, y \rangle = 0$

Ainsi $E_{\lambda}(u) \perp E_{\mu}(u)$

<u>Lemme</u>: Soient $u \in \mathcal{L}(E)$ autoadjoint et F un sev de E stable par u. Alors F^{\perp} est stable par u et l'endomorphisme u_F (resp. $u_{F^{\perp}}$) est un endomorphisme autoadjoint de F (resp. F^{\perp}).

Théorème spectral:

Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) u est autoadjoint
- (ii) E est la somme directe orthogonale des sous-espaces propres de u

$$E = \bigoplus_{\lambda \in Sp(u)}^{\perp} E_{\lambda}(u)$$

(iii) u est diagonalisable dans une base orthonormée de E, ie $\exists B$ une b.o.n de E telle que

$$Mat_B(u) = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix}$$

Version matricielle:

Soit $A \in M_n(\mathbb{R})$. On a équivalence entre :

- (i) $A \in S_n(\mathbb{R})$ (ie A est symétrique réelle)
- (ii) A est orthogonalement semblable à une matrice diagonale réelle, ie

$$\exists P \in O_n(\mathbb{R}), \exists D \in M_n(\mathbb{R})$$
 diagonale tq $D = P^{-1}AP = {}^tPAP$