Reciprocal Space (a Gentle Introduction)

Paul D. Boyle
Department of Chemistry
University of Western Ontario
London, ON

Introduction

- Notions of reciprocal space and the reciprocal lattice are indispensable for understanding X-ray Crystallography
- Diffraction by a lattice gives a lattice as a diffraction pattern
- There is a precise mathematical relationship between the original diffracting lattice and the resulting pattern
- However, this is a (mostly) non-mathematical introduction to help you qualitatively understand the concepts of reciprocal space and the reciprocal lattice

Direct Space & Reciprocal Space

- We live in direct space
- Distances and orientations between isolated objects
- Reciprocal space is a "spatial frequency" space (e.g. number of Tim Horton's per kilometre)
- In NMR time and frequency are related by a Fourier transform (units:time t and frequency t^{-1})
- In X-ray Crystallography direct space and reciprocal space are related by Fourier transform (units: distance Å and spatial frequency Å⁻¹)
- For every direct space lattice there is a corresponding reciprocal space lattice

Bragg's Law

- $n\lambda = 2dsin\theta$
- Rewrite as:
- $\sin\theta = 0.5n\lambda(1/d)$
- Reciprocal relationship between diffraction angle, θ, and the d spacing
- The smaller the d spacing, the higher the diffraction angle

Reciprocal Quantities

- 1/d = d*
- d* is a reciprocal quantity and typically has units of Å⁻¹
- The '*' in general means a reciprocal space quantity
- A direct space unit cell with parameters a, b, c, α , β , γ has a corresponding reciprocal unit cell: a^* , b^* , c^* , α^* , β^* , γ^*
- A reciprocal lattice vector:
 - Has the form $d^* = ha^* + kb^* + lc^*$
 - The values h k l are the components of a reciprocal lattice vector
 - The vector d* is perpendicular to the set of (hkl) lattice planes
- There are exact mathematical relationships which relate the direct space and reciprocal space unit cell parameters
- We can calculate the reciprocal metric tensor, G*
 - $G^* = G^{-1}$ and $G = G^{*-1}$
 - $d^{*2} = \overline{\mathbf{h}} \mathbf{G}^* \mathbf{h}$ where $\mathbf{h} = [h \ k \ I]$

Reciprocal Relationships

- The relationships between the direct axes and reciprocal axes is strictly reciprocal
- Any statement about the two lattices remains true if you simply replace all starred (*) quantities by unstarred quantities and vice-versa
- $a^* \perp bc(face)$ and $a \perp b^*c^*(face)$
- Any direct axis has as family of reciprocal lattice planes which are perpendicular to that axis
- Conversely, any reciprocal axis has a family of direct lattice planes which are perpendicular to that axis

X-ray Diffraction Patterns

- The X-ray diffraction pattern is the reciprocal lattice of a crystal's direct lattice
- Referred to as the intensity weighted reciprocal lattice
- Diffraction maxima are reciprocal lattice points
- Intensity distribution of diffraction pattern is related to the electron density distribution in the crystal

Reciprocal Lattice Points

- Are designated by their Miller index, hkl
- Assigning hkl values to the reciprocal lattice points is called indexing the crystal or indexing the diffraction pattern
- Reciprocal lattice points represent the diffraction from a set of planes designated by the hkl value and have a corresponding d* value
- Normal to the set of planes and therefore represent a direction in reciprocal space

Graphical Construction of Reciprocal Lattice from Direct Space Lattice

- For a set of planes in direct space, we draw a vector normal to these planes
- Terminate the vector at a distance 1/d
- For a given lattice row:
- d*(nh,nk,nl) = nd*(hkl)
- Graphic: http://www.xtal.iqfr.csic.es/Cr istalografia/parte_04-en.html

Indexing a Diffraction Pattern

- Synthesized reciprocal lattice layer (hk0) from an actual crystal
- Vertical axis has closer packed reciprocal lattice points
- Vertical axis has larger direct space unit cell parameter

Indexing a Diffraction Pattern

- First assign the lattice directions
- Notice there are systematic absences along the h00 and 0k0 reciprocal axes
- Indicative of two screw axes (translational symmetry elements)

Indexing a Diffraction Pattern

- Assign hkl values to each reciprocal lattice point
- Use Bragg's Law to calculate the interplanar spacing associated with each reciprocal lattice point
- Measure angle between a* and b* to obtain γ*
- Repeat process with other zero layers (0kl and h0l)

How to think about this

- Each reciprocal lattice point represents both a direction and d spacing
- With each reciprocal lattice point measured, we are "sampling" the electron density with certain spatial frequency in a given direction

The Swiss Cheese Analogy

- We want to map where all the holes are in a block of Swiss cheese
- We (virtually) slice the block using various thicknesses and at various orientations
- We then take these slices and use them to map the size and shapes of the all the holes in the block

Resolution of Our Mapping

- Slicing our cheese every 10 mm will cause us to miss some of the smaller holes in the cheese
- We make finer and finer slices to map even the smaller holes within the cheese
- Why not just use all fine slices rather than both low and high resolution slices?
- Analogy breaks down at this point
- In X-ray, we model the electron density as a Fourier series and we need both the low resolution data and high resolution data

Resolution in Reciprocal Space

- The higher the diffraction angle, the finer the slice we are using to sample our crystal's electron density
- Diffraction condition only allows us to sample the electron density distribution at certain spatial frequencies (Bragg's Law)
- We need to collect both high and low resolution data

Ewald Construction

- Graphical depiction of Bragg's Law
- Circle has radius of 1/λ, centre at C such that origin of reciprocal lattice, O, lies on circumference
- XO is the X-ray beam, P is the reciprocal lattice point (in this case the 202 reflection)
- OP is the reciprocal lattice vector (d*) and is normal to the (202) set of planes [aka the Scattering Vector]
- Angle OBP is θ , the Bragg angle
- Angle OCP is 2θ
- CP is the direction of the diffracted beam
- BP is parallel to the set of (202) planes
- Any time a reciprocal lattice point falls on the circumference, Bragg's Law is fulfilled

Ewald Sphere

- 2D Ewald construction can be generalized to 3D to generate the "Ewald Sphere" (also called the "Sphere of Reflection")
- Anytime a reciprocal lattice point is on the surface of the sphere Bragg's Law is fulfilled
- Experimentally, we rotate the crystal (lattice) to bring a greater number of reciprocal lattice points pass through the surface of the sphere
- Image shows the detector slicing through part of the Ewald sphere and all the lattice points which were laying on the surface of the sphere

Ewald Spheres and Limiting Spheres

- Ewald sphere has a <u>diameter</u> of 2/λ
- Every reciprocal lattice point within that distance can be brought into diffracting position
- Limiting sphere has a <u>radius</u> of 2/λ
- The total number of reciprocal lattice points within the limiting sphere is approximated by
- $N \approx 33.5(V_{cell}/\lambda^3)$

Limiting Spheres of Common Radiations

- $N_{MOK\alpha} \approx 33.5 V_{cell} / 0.71073^3 = 93.3 V_{cell}$
- $N_{CuK\alpha} \approx 33.5 V_{cell} / 1.54178^3 = 9.14 V_{cell}$
- Normally, we don't collect all reflections within the limiting sphere. In practice, we pick some maximum value of θ
- $N_{\theta(max)} \approx (33.5 / \lambda^3) V_{cell} \sin^3 \theta_{max}$
- You will always get more data with a shorter wavelength

Wavelength Imposed Limits

- Maximum value of sine function = 1.0
- Imposes certain limits on the X-ray experiment
- Shorter wavelengths allow collection of more data points out to higher resolution

Quantity	CuΚα	ΜοΚα
λ	1.54178 Å	0.71073 Å
$(\sin\theta/\lambda)_{\max}$	0.648 Å ⁻¹	1.407 Å ⁻¹
d _{min}	0.771 Å	0.355 Å
Resolution Limit (0.92d _{min})	0.71 Å	0.33 Å

Practical Considerations for Data Collection

- Long axes give densely packed reciprocal lattice rows
- Integration is better if peaks aren't overlapping
- Choose minimum crystal to detector distance as:
 - $DX(mm) = 2 * longest primitive axis (Å) [MoK\alpha]$
 - $DX(mm) = 1 * longest primitive axis (Å) [CuK\alpha]$
- For non-merohedrally twinned samples, move the detector back even farther

Determining the Laue Symmetry from a Diffraction Pattern

- The symmetry of a diffraction pattern follows its Laue symmetryWhat does this mean?
- The intensities of (point) symmetry equivalent diffraction maxima are about the same.
- Bruker software: calculates a quantity, "R_{sym}" to give a qualitative indication of Laue symmetry
- An R_{sym} value close to zero (< 0.07) is a good indicator of symmetry equivalence
- Use point group symmetry operators to see which sets of hkl values should be equilvalent

Equivalent hkl Examples

- Monoclinic (2/m)
- $I_{hkl} = I_{h\overline{k}l} = I_{\overline{h}k\overline{l}} = I_{\overline{h}k\overline{l}}$
- $I_{\overline{h}kl} = I_{\overline{h}\overline{k}l} = I_{hk\overline{l}} = I_{h\overline{k}\overline{l}}$
- However: I_{hkl} ≠ I_{hkl}

- Tetragonal (4/m)
- Can be used to distinguish 4/m from 4/mmm
- $I_{hkl} = I_{\overline{k}hl} = I_{\overline{h}\overline{k}l} = I_{k\overline{h}l} = I_{hk\overline{l}}$ = $I_{\overline{k}h\overline{l}} = I_{\overline{h}\overline{k}l} = I_{k\overline{h}\overline{l}}$

Caveat: Point Symmetry in Reciprocal Space!!

- You might assume that the point symmetry operators for reciprocal space are identical to those of direct space
- Nope!
- If S is a point group symmetry operator matrix in direct space, the corresponding operator in reciprocal space, V, is:
- $V = \overline{S}^{-1}$
- V is the inverse transpose of S
- This becomes important in trigonal and hexagonal groups

Example 3-fold axis along [001]

Direct Space

$$egin{pmatrix} 0 & \overline{1} & 0 \ 1 & \overline{1} & 0 \ 0 & 0 & 1 \ \end{pmatrix}$$

Reciprocal Space

$$egin{pmatrix} ar{1} & ar{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Experimental Determination of Space Group

- Space groups are determined primarily through the examination of systematic absences in the diffraction pattern
- Systematic absences arise from the presence of translational symmetry elements
 - Non-primitive lattice centrings
 - Screw axes (rotation with translation)
 - Glide planes (reflection with translation)

Systematic Absences due to Non-Primitive Lattices

 Non-primitive lattices exhibit systematic absences in the general hkl class of reflections

Centring	Absence Condition for hkl reflections
Α	k+l = odd
В	h+I = odd
С	h+k = odd
F	k+l = odd, h+l = odd, h+k = odd
1	h+k+l = odd

Screw Axis Absences

- Screw axes affect the classes of axial reflections: h00, 0k0, and 00l
- The type of screw axis is determined by examining the pattern of the absence
- Example: In this figure there is a 2₁ axis parallel to b*
- 0k0: k = odd

Orientation of Glide Planes

- When a glide plane is present one can determine the orientation and type of glide plane present from the affected class(es) of reflections
- The 0 index of the affected layer indicates the orientation of the glide's reflection
 - Okl: glide reflects across (100)
 - h0l: glide reflects across (010)
 - hk0: glide reflects across (001)

Identification of Glide Planes

- The translational component identifies the type of glide plane
- The translational component causes absences in along the affected axes
- 0kl:

```
k = odd \rightarrow b glide; l = odd \rightarrow c glide; k+l = odd \rightarrow n glide
```

• h0l:

```
h = odd \rightarrow a glide; I = odd \rightarrow c glide; h+I = odd \rightarrow n glide
```

hk0:

```
h = odd \rightarrow a glide; k = odd \rightarrow b glide; h+k = odd \rightarrow n glide
```

Example of c glide (h0l: l = odd)


```
00000000000000
00000000000000
```