QUANTUMDB

Relational Databases

Samrut Gadde

02

BASIC QUERIES

SEARCH, INSERT, DELETE ADVANCED

03

NATURAL JOIN, CROSS JOIN

QUERIES

INSPIRATION & OVERVIEW

 Derived from Gueddena et al. 2010 and 2014

 Based on classical relational databases

 Goal: Attempt to replicate in quantum environment

Creating the Quantum Table

DonNum	K^1	Dan Nama	D^1
DepNum	K -	DepName	D_1
27	0	Sales	7
10	1	Engineering	6
14	2	Clerical	2
6	3	Marketing	1
19	4	Finance	5
42	5	Management	4
37	6	Service	3
2	7	NULL	0

 DepNum and DepName are stored classically

• K^1 and D_1^1 are the quantum mappings

Creating the Quantum Table

DepNum	K^1	DepName	D_1^1
27	0	Sales	7
10	1	Engineering	6
14	2	Clerical	2
6	3	Marketing	1
19	4	Finance	5
42	5	Management	4
37	6	Service	3
2	7	NULL	0

SQL → **QQL**: Creating Queries

Biggest component of most queries: **Grover's Algorithm**

Current Available Query Tools in QQL

- SELECT
- INSERT
- DELETE
- NATURAL JOIN
- CROSS JOIN

SELECT

Stage 1: Preparation

- Superpose states
- Prepare auxiliary

Stage 2: The Oracle

- Use table to encode
- Retrieve value
- Reset state

Stage 3: Diffusion

- Apply the Woperator
- Repeat $M=\lfloor \frac{\pi}{4}\sqrt{N} \rfloor$ times

INSERT

Find optimal states to insert:

$$S = \min(N_+, 2^n - N);$$

where

$$N_{+} = \left(\frac{4}{\pi} \left(\left\lfloor \frac{\pi}{4} \sqrt{N} \right\rfloor + 1 \right) \right)^{2} - N$$

- Control [0, 1,...,S] states to auxiliary
- Apply controlled Hadamard
- Apply mapping and reset

DELETE

Essentially same as SELECT operation

- Oracle represents states to keep
- Apply $\pi/3$ phase for optimal deletion (Y. Liu and G.L.Long, 2007)

ADVANCED QUERIES / JOINS

CROSS/CARTESIAN JOIN

Cartesian product of two tables

NATURAL JOIN

Most optimal join based on columns

NATURAL JOIN

Semantics in QQL:

SELECT
$$|K^2\rangle$$

FROM $|T_1\rangle$
NATURAL JOIN $|T_2\rangle$
WHERE $|D_1^1\rangle = |7\rangle$

Oracle:

- Links table 1 and 2
- Apply checker C-not
- Diffuse and Repeat $M = \lfloor \frac{\pi}{4} \sqrt{N} \rfloor$ times

				Sec 200			
EmpNum	K^2	EmpName	D_1^2	DepNum	F^2	DepName	D_1^1
315	0	Albert	3	37	6	Service	3
90	1	Brian	0	2	7	Entertainment	0
123	2	Craig	1	27	0	Sales	7
204	3	Oliver	2	37	6	Service	3

Only 50 shots!

CROSS JOIN

Semantics in QQL:

SELECT $|K^2\rangle$ FROM $|T_1\rangle$ CROSS JOIN $|T_2\rangle$ WHERE $(|D_1^1\rangle = |7\rangle)$ AND $(|K^1\rangle = |F^2\rangle)$

Oracle:

- AND operator links table 1 and 2
- Apply checker C-not
- Diffuse and Repeat $M = \lfloor \frac{\pi}{4} \sqrt{N} \rfloor$ times

Thank you!

Any Questions?