

CLAIMS

WHAT IS CLAIMED IS:

	WHAT IS CL	AIMED 15.
1	1.	A method for removing organic sulfur compounds from a vent gas stream
2	comprising the	e following steps:
3		contacting the vent gas stream with liquid hydrocarbon stream; and
4		absorbing a portion of the organic sulfur compounds from the vent gas
5	ſ	stream into the liquid hydrocarbon stream to form an exiting vent gas stream.
1	2.	The method as described in claim 1, wherein the liquid hydrocarbon stream
2	comprises one	e or more liquid hydrocarbons.
1	3, /	The method as described in claim 2, wherein the hydrocarbon stream
2	comprises two or more liquid hydrocarbons.	
1	4.5	The method as described in claim 1, wherein at least one of the liquid
2		s having a boiling point of between about 180°F and about 430 °F.
1	5.1/	The method as described in claim 4, wherein the at least one of the liquid
2	hydrocarbon	s comprises benzene, xylene, toluene, hexane, heptane, octane, nonane, or
3	mixtures the	reof.
1	6.)	The method as described in claim 4, wherein the at least one of the liquid
2	hydrocarbon	s comprises a hydrogenated naphtha.
1	7.	The method as described in claim 1, wherein the sulfur concentration of the
2	exiting vent	gas stream is less than one percent of the sulfur concentration of the vent gas
3	stream.	

1	8.	The method as described in claim 7, wherein the sulfur concentration is less
2	than 0.5% of th	ne sulfur concentration of the vent gas stream.
1	9.	The method of claim 1 further comprising after step (b):
2		hydrotreating the hydrocarbon stream.
1	10.	The method of claim 1 further comprising after step (b):
2		routing the exiting vent gas stream to an incinerator or a heater.
1	11:/	The method of claim 1, wherein the organic sulfur compound removed is a
2	sulfide.	
1	12:	The method of claim 11, wherein the organic sulfur compound removed is a
2	disulfide oil.	
1	18.	A method for removing organic sulfur compounds from a vent gas stream
2	having organi	c sulfur compounds, the vent gas stream further having an initial organic sulfur
3	compound co	ncentration, comprising the following steps:
4		(a) providing a scrubber, the scrubber having a shell, the shell having
5	an interior	cavity, a diameter, a vent gas entry port, a vent gas exit port, and a
6	hydrocarbon	entry port;
7		(b) introducing a hydrocarbon stream into the scrubber through the
8	hydrocarbon	entry port;
9		(c) introducing the vent gas stream into the scrubber through the vent
10	gas entry po	rt;
11		(d) absorbing a portion of the organic sulfur compounds from the vent
12	gas stream i	nto the hydrocarbon stream to form an exiting vent gas stream; and

13	(e) removing the exiting vent gas stream from the scrubber through the
14	vent gas exit port.
1	14. The method of claim 13, wherein the scrubber further comprises gas/liquid
2	contact material, the gas/liquid contact material within the interior cavity of the scrubber.
1	15. The method of claim 14, wherein the gas/liquid contact material comprises
2	packing, trays, or fiber film contactor.
1	16. The method of claim 15, wherein the gas/liquid contact material comprises
2	structured packing or ring-shaped packing.
1	17. The method of claim 16, wherein the gas/liquid contact material comprises
2	either raschig rings or nutter rings, the raschig rings or nutter rings having a diameter.
1	18. The method of claim 17, wherein the raschig rings or nutter rings are
2	comprised of carbon steel, stainless steel, carbon, or ceramic.
1	19: The method of claim 17, wherein the raschig rings or nutter rings have a
2	nominal diameter of between 1/2" and 2".
1	20. The method of claim 14, wherein the scrubber further comprises a packing
2	support, the packing support located within the interior cavity of the shell and able to
3	support the gas/liquid contact material.
1	21. The method of claim 13, wherein the diameter of the shell is between about
2	6" and 24".
1	The method of claim 13, wherein the shell comprises carbon steel, stainless
2	steel, ceramic, or an Inconel alloy.

1	23. The method of claim 13, wherein the scrubber further comprises a liquid
2	distributor, the liquid distributor located within the interior cavity of the shell and in the
3	same plane as the diameter of the shell, the liquid distributor further being within functional
4	proximity of the hydrocarbon entry port.
1	24. The method of claim 13, wherein the vent gas entry port of the scrubber is
2	mounted on a disulfide separator.
1	25. A method for removing disulfide oils from a vent gas stream having
2	disulfide oils, comprising the following steps:
3	(a) providing a scrubber, the scrubber having a shell, the shell having
	an interior cavity, a diameter, a vent gas entry port, a vent gas exit port, a hydrocarbon
5	entry port, and gas/liquid contact material, the gas/liquid contact material located within
6	the interior cavity of the scrubber;
7	(b) introducing a hydrocarbon stream into the scrubber through the
8	hydrocarbon entry port, the hydrocarbon stream comprising a least one hydrocarbon, the
9	to the staying a boiling point of between about 180°F and about 430 °F;
10	introducing the vent gas stream into the scrubber through the vent
11	gas entry port;
12	(d) absorbing a portion of the disulfide oils from the vent gas stream
13	into the hydrocarbon stream to form an exiting vent gas stream; and
1	() removing the exiting vent gas stream from the scrubber through the
1	5 vent gas exit port.