An Optimized Hardware Architecture for the Montgomery Multiplication Algorithm

Miaoqing Huang¹, <u>Kris Gaj²</u>, Soonhak Kwon³, Tarek El-Ghazawi¹

- ¹ The George Washington University, Washington, D.C., U.S.A.
- ² George Mason University, Fairfax, VA, U.S.A.
- ³ Sungkyunkwan University, Suwon, Korea

Outline

- Motivation
- Classical Hardware Architecture for Montgomery Multiplication by Tenca and Koc from CHES 1999
- Our Optimized Hardware Architecture
- Conceptual Comparison
- Implementation Results
- Possible Extensions
- Conclusions

Motivation

- Fast modular multiplication required in multiple cryptographic transformations
 - RSA, DSA, Diffie-Hellman
 - Elliptic Curve Cryptosystems
 - ECM, p-1, Pollard's rho methods of factoring, etc.
- Montgomery Multiplication invented by Peter L. Montgomery in 1985 is most frequently used to implement repetitive sequence of modular multiplications in both software and hardware
- Montgomery Multiplication in hardware replaces division by a sequence of simple logic operations, conditional additions and right shifts

Montgomery Modular Multiplication (1)

$$Z = X \cdot Y \mod M$$

 $Z = X \cdot Y \mod M$ X, Y, M – n-bit numbers

Integer domain

Montgomery domain

X
$$\longrightarrow$$
 X' = X · 2ⁿ mod M
Y \longrightarrow Y' = Y · 2ⁿ mod M
Z' = MP(X', Y', M) =
= X' · Y' · 2⁻ⁿ mod M =
= (X · 2ⁿ) · (Y · 2ⁿ) · 2⁻ⁿ mod M =
= X · Y · 2ⁿ mod M

$$Z = X \cdot Y \mod M$$
 \leftarrow $Z' = Z \cdot 2^n \mod M$

Montgomery Modular Multiplication (2)

$$X' = MP(X, 2^{2n} \mod M, M) =$$

= $X \cdot 2^{2n} \cdot 2^{-n} \mod M = X \cdot 2^{n} \mod M$

$$Z = MP(Z', 1, M) =$$

= $(Z \cdot 2^n) \cdot 1 \cdot 2^{-n} \mod M = Z \mod M = Z$

Montgomery Product

$$S[0] = 0$$

for i=0 to n-1

$$S[i+1] = \begin{cases} \frac{S[i]+x_i \cdot Y}{2} & \text{if} \quad q_i = S[i] + x_i \cdot Y \text{ mod } 2 = 0 \\ \frac{S[i]+x_i \cdot Y + M}{2} & \text{if} \quad q_i = S[i] + x_i \cdot Y \text{ mod } 2 = 1 \end{cases}$$

$$Z = S[n]$$

M assumed to be odd

Basic version of the Radix-2 Montgomery Multiplication Algorithm

Algorithm 1 Radix-2 Montgomery Multiplication

```
Require: odd M, n = \lfloor \log_2 M \rfloor + 1, X = \sum_{i=0}^{n-1} x_i \cdot 2^i, with 0 \le X, Y < M
```

Ensure: $Z = MP(X, Y, M) \equiv X \cdot Y \cdot 2^{-n} \pmod{M}, 0 \le Z < M$

1:
$$S[0] = 0$$

2: **for**
$$i = 0$$
 to $n - 1$ step 1 **do**

3:
$$q_i = S[i] + x_i \cdot Y \pmod{2}$$

4:
$$S[i+1] = (S[i] + x_i \cdot Y + q_i \cdot M) \text{ div } 2$$

5: end for

6: if
$$(S[n] > M)$$
 then

7:
$$S[n] = S[n] - M$$

8: end if

9: return
$$Z = S[n]$$

Classical Design by Tenca & Koc CHES 1999

Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM)

Main ideas:

Use of short precision words (w-bit each):

- Reduces broadcast problem in circuit implementation
- Word-oriented algorithm provides the support needed to develop scalable hardware units.

Operand Y(multiplicand) is scanned word-by-word, operand X(multiplier) is scanned bit-by-bit.

Classical Design by Tenca & Koc CHES 1999

Each word has w bits

Each operand has

n bits

e words

$$e = \left\lceil \frac{n+1}{w} \right\rceil$$

$$X = (x_{n-1}, ..., x_1, x_0)$$

$$Y = (Y^{(e-1)}, ..., Y^{(1)}, Y^{(0)})$$

$$M = (M^{(e-1)}, ..., M^{(1)}, M^{(0)})$$

The bits are marked with subscripts, and the words are marked with superscripts.

MWR2MM

Multiple Word Radix-2 Montgomery Multiplication algorithm by Tenca and Koc

Algorithm 2 The Multiple-Word Radix-2 Montgomery Multiplication Algorithm

Require: odd
$$M, n = \lfloor \log_2 M \rfloor + 1$$
, word size $w, e = \lceil \frac{n+1}{w} \rceil$, $X = \sum_{i=0}^{n-1} x_i \cdot 2^i$, $Y = \sum_{j=0}^{e-1} Y^{(j)} \cdot 2^{w \cdot j}$, $M = \sum_{j=0}^{e-1} M^{(j)} \cdot 2^{w \cdot j}$, with $0 \le X, Y < M$

Ensure: $Z = \sum_{j=0}^{e-1} S^{(j)} \cdot 2^{w \cdot j} = MP(X, Y, M) \equiv X \cdot Y \cdot 2^{-n} \pmod{M}, 0 \le Z < 2M$ 1: S = 0— initialize all words of S

2: **for** i = 0 to n - 1 step 1 **do**

3:
$$q_i = (x_i \cdot Y_0^{(0)}) \oplus S_0^{(0)}$$

4:
$$(C^{(1)}, S^{(0)}) = x_i \cdot Y^{(0)} + q_i \cdot M^{(0)} + S^{(0)}$$

5: **for** j = 1 to e - 1 step 1 **do**

6:
$$(C^{(j+1)}, S^{(j)}) = C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)} + S^{(j)}$$

7:
$$S^{(j-1)} = (S_0^{(j)}, S_{w-1..1}^{(j-1)})$$

8: end for

9:
$$S^{(e-1)} = (C_0^{(e)}, S_{w-1, 1}^{(e-1)})$$

9: $S^{(e-1)} = (C_0^{(e)}, S_{w-1..1}^{(e-1)})$

10: end for

11: return
$$Z = S$$

Task

e-1 times Task (B

Task (

Problem in Parallelizing Computations

Data Dependency Graph by Tenca & Koc

j=0

i=1

j=2

j=3

j=4

j=5

- One PE is in charge of the computation of one column that corresponds to the updating of S with respect to one single bit x_i.
- The delay between two adjacent PEs is 2 clock cycles.
- The minimum computation time is

2•n+e-1 clock cycles

given

(e+1)/2 PEs working in parallel.

Example of Operation of the Design by Tenca & Koc

Example of the computation executed for 5-bit operands with word-size w = 1 bit

$$n = 5$$

$$w = 1$$

$$e = 5$$

$$2n + e - 1 =$$

2.5 + 5 - 1 = 14 clock cycles

$$(e+1)/2 = (5+1)/2 = 3 PEs$$

sufficient to perform all computations

Main Idea of the New Architecture

- In the architecture of Tenca & Koc
 - w-1 least significant bits of partial results S^(j) are available one clock cycle before they are used
 - only one (most significant) bit is missing
- Let us compute a new partial result under two assumptions regarding the value of the most significant bit of S^(j) and choose the correct value one clock cycle later

Idea for a Speed-up

perform two computations in parallel using two possible values of the most-significant-bit

Primary Advantage of the New Approach

Reduction in the number of clock cycles from

to

$$n + e - 1$$

Minimum penalty in terms of the area and clock period

Pseudocode of the Main Processing Element

Algorithm 3 Pseudocode of the processing element PE#j of type E

```
Require: Inputs: q_i, x_i, C^{(j)}, Y^{(j)}, M^{(j)}, S_0^{(j+1)}

Ensure: Output: C^{(j+1)}, S_0^{(j)}

1: (CO^{(j+1)}, SO_{w-1}^{(j)}, S_{w-2..0}^{(j)}) = (1, S_{w-1..1}^{(j)}) + C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)}

2: (CE^{(j+1)}, SE_{w-1}^{(j)}, S_{w-2..0}^{(j)}) = (0, S_{w-1..1}^{(j)}) + C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)}

3: if (S_0^{(j+1)} = 1) then

4: C^{(j+1)} = CO^{(j+1)}

5: S^{(j)} = (SO_{w-1}^{(j)}, S_{w-2..0}^{(j)})

6: else

7: C^{(j+1)} = CE^{(j+1)}

8: S^{(j)} = (SE_{w-1}^{(j)}, S_{w-2..0}^{(j)})

9: end if
```

Main Processing Element Type E

The Proposed Optimized Hardware Architecture

The First and the Last Processing Elements

Type D

Type F

Data Dependency Graph of the Proposed New Architecture

The Overall Computation Pattern

One special PE type VS. simpler structure of each PE i=2 PE #0 (S⁽¹⁾ ►(S⁽¹⁾ PE #1 ►(S⁽²⁾ PE #2 (S(3) PE #3 (S(4) PE #4

Tenca & Koc, CHES 1999

Our new proposed architecture

Demonstration of Computations

Sequential

Tenca & Koç's proposal

Demonstration of Computations (cont.)

The proposed optimized architecture

Related Work

- Tenca, A. and Koç, Ç.K.: A scalable architecture for Montgomery multiplication, CHES 1999, LNCS, vol.1717, pp.94--108, Springer, Heidelberg, 1999
 - The original paper proposing the MWR2MM algorithm
- Tenca, A., Todorov, G., and Koç. Ç.K.: High-radix design of a scalable modular multiplier, CHES 2001, LNCS, vol.2162, pp.185--201, Springer, Heidelberg, 2001
 - Scan several bits of X one time instead of one bit
- Harris, D., Krishnamurthy, R., Anders, M., Mathew, S. and Hsu, S.: An Improved Unified Scalable Radix-2 Montgomery Multiplier, ARITH 17, pp.172-178, 2005
 - Left shift Y and M instead of right shift S⁽ⁱ⁾
- Michalski, E. A. and Buell, D. A.: A scalable architecture for RSA cryptography on large FPGAs, FPL 2006, pp.145--152, 2006
 - FPGA-specific, assumes the use of of built-in multipliers
- McIvor, C., McLoone, M. and McCanny, J.V.: Modified Montgomery Modular Multiplication and RSA Exponentiation Techniques, IEE Proceedings – Computers & Digital Techniques, vol.151, no.6, pp.402-408, 2004
 - Use carry-save addition on full-size n-bit operands

Implementation, Verification, and Experimental Testing

New architecture and two previous architectures:

- Modeled in Verilog HDL and/or VHDL
- Functionally verified by comparison with a reference software implementation of the Montgomery Multiplication
- Implemented using Xilinx Virtex-II 6000-4 FPGA
- Experimentally tested using SRC 6
 reconfigurable computer based on
 microprocessors and FPGAs with the 100 MHz
 maximum clock frequency for the FPGA part

Implementation Results

Test platform: Xilinx Virtex-II 6000 FF1517-4

		1024-bit	2048-bit	3072-bit	4096-bit	
Architecture of	Max Freq.(MHz)	110.1				
Tenca & Koç 4	Min Latency (clks)	2113	4225	6337	8449	
(radix-2)	Min Latency (μs)	19.186	38.363	57.540	76.717	
(with the $\#$ of	Area (Slices)	3,937	7,756	11,576	15,393	
PEs optimized for minimum latency)	$\begin{array}{l} \text{MinLatency} \times \text{Area} \\ (\mu \text{s} \times \text{slices}) \end{array}$	75,535	297,543	666,083	1,180,905	
	Max Freq.(MHz)	123.6	110.6	116.7	92.81	
Architecture of McIvor et al. [11] (radix-2)	Min Latency (clks)	1025	2049	3073	4097	
	Min Latency (μs)	8.294	18.525	26.323	44.141	
	Area (Slices)	6,241	12,490	18,728	25,474	
	$MinLatency \times Area$ $(\mu s \times slices)$	51,763	231,377	492,977	1,124,448	
	Latency×Area Gain vs. Tenca & Koç (%)	31.47	22.24	25.99	4.78	
	Max Freq.(MHz)	100.0				
	Min Latency (clks)	1088	2176	3264	4352	
Our Proposed	Min Latency (μs)	10.880	21.760	32.640	43.520	
Architecture	Area (Slices)	4,178	8,337	12,495	16,648	
(radix-2)	$\begin{array}{l} \text{MinLatency} \times \text{Area} \\ (\mu \text{s} \times \text{slices}) \end{array}$	45,457	181,413	407,837	724,521	
	Latency×Area Gain vs. Tenca & Koç (%)	39.82	39.03	38.77	38.65	

Normalized Latency New Architecture vs. Previous Architectures

Normalized Product Latency Times Area New Architecture vs. Previous Architectures

Radix-4 Architecture

- The same optimization concept can be applied to a radix-4 implementation
- Two bits of X processed in each iteration
- Latency in clock cycles reduced by a factor of almost 2
- However, the clock period and the area increase
- Radix higher than 4 not viable because of the large area and the requirement of multiplication of words by digits in the range from 0 to radix-1

Comparison between radix-2 and radix-4 versions of the proposed architecture (n=1024, w=16)

Xilinx Virtex-II 6000 FF1517-4 FPGA

	Max Freq. (MHz)	Min Latency (clocks)	Min Latency (μs)	Slices
radix-2	100	1088	10.880	4,178(12%)
radix-4	94	576	6.128	9,471(28%)

Conclusions

 New optimized architecture for the word-based Montgomery Multiplier

Compared to the classical design by Tenca & Koc:

- Minimum latency smaller by a factor of about 1.8, in terms of both clock cycles and absolute time units
- Comparable circuit area for minimum latency
- Improvement in terms of the product of latency times area by a factor of about 1.6
- Reduced scalability (fixed vs. variable number of processing elements required for the given operand size)
 [to be fixed in the new architecture under development]

Compared to the newer design by McIvor et al.:

- Area smaller by about 50%
- Improvement in terms of the product of latency times area by a factor between 1.14 and 1.55
- Similar scalability

Thank you!

Questions???