Rafale F3R Fighter Jet - New Croatian Aircraft

Inicijalne karakteristike pilotskih kandidata

POTREBAN JE ODREĐENI NIVO ZNANJA, SPOSOBNOSTI I OSOBINA

Kod kandidata je najmanji moguć utjecaj na osobine, te je bitna visoka razina poželjnih osobina *na* samom početku procesa selekcije i obuke.

Što može znanost?

Znanost može proizvesti nove metode i alate :

- kojima se mogu pospješiti procesi selekcije i obuke
- za veću održivost borbenih sposobnosti i otpornost pojedinaca izloženih borbenim traumama i stresu
- "Ne preživljavaju najjači, niti najinteligentniji pojedinci u vrsti već oni koji su najsposobniji prilagoditi se promjenama." - Charles Darwin

Relevant Former EU Future Sky Safety Project Illustration "Project #6: Human Performance Envelope"

Human Performance Envelope project proposes a variety of physiological, speech/voice processing, oculometric and neurometric approaches in order to evaluate the factors/axes of the Human Performance Envelope

	WL	Stress	Fatigue	SA	Attention	Vigilance	Teamwork	Comm.	Trust
ECG	Х	Χ	Χ	Х	Х	Х			
EEG	X		Х	X	Х	Х			
EMG	X	Χ	Χ						
EOG	X	X	Χ	Χ	Χ	Χ			
fNIR	Χ			Χ	Χ				
GRS/EDA	X	X	Χ						
Respiratory activity	Х	X	X						
Eye-tracking	X	X	Χ	Χ	Χ				Χ
Subjective measures	Χ	X	X	X					
Primary / secondary task	Χ		Х	Х	Х				
Expert observation	Χ			Χ	х		X	X	X
Communication analysis		х		X			X	X	
Seat sensors	X	X							
Voice analysis	Χ	Χ							
Pressure / grip sensors		X							
Polygraph sensor		х							
Electrochemical sensors		Х							

Silvagni, S., Napoletano, L., Graziani, I., Le Blaye, P., & Rognin, L. (2017). Concept for human performance envelope. https://www.futuresky-safety.eu/wp-content/uploads/2015/12/FSS_P6_DBL_D6.1-Concept-for-Human-Performance-Envelope_v2.0.pdf

Relevant Former U.S. Project Illustration: Applied Neuroscience in Defense Setting Sense Technologies

Off Body

On Body

Biomarkers

Eye tracking/Oculometrics

Vigilance, Arousal, Trust, Cognitive Load, Fatigue

Cardiac Activity

Stress, Team Synchronicity, Cognitive load, Arousal

Voice Patterns

Stress/Anxiety,

Team Synchronicity

Facial Expressions

Emotional/Affective State

Thermal Imaging

Workload, Stress/Anxiety

Interface Pressure Sensors

Stress/Anxiety, Cognitive Load

Metrics of Mission Performance

Cognitive Load

Galvanic Skin Response

Stress

Cardiac Activity

Stress, Team Synchronicity,

Cognitive load, Arousal

Respiration

Cognitive Load, Arousal

Skin Temperature

Workload, Stress/Anxiety

EEG

Cognitive load

EMG

Stress/Anxiety

fNIRS

Cognitive Load

Accelerometers

Team Synchronicity, Arousal Brain Derived Neurotrophic

Factor

Memory/Learning

Neuropeptide Y

Memory/Learning,

Stress Resilience

Cortisol

Anxiety

Orexin A

Vigilance, Arousal

Oxytocin

Interpersonal Trust, Anxiety

Epinephrine

Anxiety, Arousal

Norepinephrine

Anxiety, Arousal

DHEA

Anxiety, Emotional State

Cytokines

Inflammation/stress

EPIIC

Enhanced Pilot Interfaces & Interactions for New Generation Fighter Cockpits

SELECTED PROJECTS EUROPEAN DEFENCE FUND (EDF) 2021

CALL TITLE:	Avionics and advanced air combat
TOPIC TITLE:	Enhanced pilot environment for air combat
DURATION OF THE PROJECT:	36 months
TYPE(S) OF ACTIVITIES:	Studies
ESTIMATED TOTAL COST:	€ 77,769,904.62
MAXIMUM EU CONTRIBUTION	: € 74,999,974.60
	777

LIST OF ORGANISATIONS

reser		GARRABOS Celine 5
any way, in whole o 2015 All rights reser	Countries	th EPE project - present
in any wales 2015	***	University of Zagreb FER
franslated, in es - © Thales		Terma, Aalborg University
published, ti sent of Thale		Thales, Dassault Aviation
modified, adapted, published, tro the prior written consent of Thales		ADS GmbH, Diehl Aero, ESG, Rockwell Collins, HAT.tec
modified, the prior w		University of Patras
		Leonardo
ot be reproduced, third party without	-	INSTA
o =		

Countries	
	NLR
•	Gmv PT
	Incas
(Indra, ADS SAU, <u>Tecnobit</u>
	SAAB Aerospace,
	EASN, Phasya

Proračun FER-a u okviru EDF EPIIC projekta: 432 025 eura, raspoloživ od 1.1.2023.

21	•••		
22	Sveuciliste U Zagrebu Fakultet Elektrotehnike I Racunarstva	HR	432025.00
23	Insta IIs Oy	FI	
24	Almadesign Conceito E Desenvolvimento De Design Lda	PT	
25	Next2u Srl	IT	
26	Totalforsvarets Forskningsinstitut	SE	
27	Empordef Tecnologias De Informacao Sa	PT	
	Total	74999974.60	

Human Factors in Military Aviation

Human factors refer to environmental, organisational and job factors, and human and individual characteristics, which influence behaviour at work in a way which can affect health and safety (Health and Safety Executive).

- Human factors research goals (Wickens et al., 2004):
 - Reducing error,
 - Increasing productivity,
 - Enhancing safety,
 - Enhancing comfort.
- Croatian Air Force Accidents:
 - Mi-8 helicopter crash (Jul. 2007)
 - Clash of two MiG-21 fighters (Sep. 2010)
 - MiG-21 fighter crash (Aug. 2014)
 - Kiowa Warrior helicopter crash (Jan. 2020)
 - School plane crash (May. 2020)
- → Objectivized assessment of stress and cognitive resilience in the early phases of pilot selection

→ 60-80% plane crashes are caused by human factors

Rankin, W. (2007). MEdA investigation process. *Boeing Commercial Aero*. Wickens, C. D., Gordon, S. E., Liu, Y., & Lee, J. (2004). *An introduction to human factors engineering* (Vol. 2). Upper Saddle River, NJ: Pearson Prentice Hall. Health and Safety Executive: Introduction to human factors, available at: https://www.hse.gov.uk/humanfactors/introduction.htm.

Human Factors in Military Aviation

Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A., & Wiegmann, D. A. (2007). Human Error and Commercial Aviation Accidents: An Analysis Using the Human Factors Analysis and Classification System. *Human Factors*, 49(2), 227-242. <u>Link</u>. Cited by 515.

Multimodal Estimation of Pilot's Mental States

VR scene (dome, Throat CAVE,...) Microphone

Wireless FEG

Skin Conductance & Skin Temperature Sensors

Camera

Respiration Band

ECG Sensors

EDF EPIIC Project

WP7&8 – Crew monitoring system

WP7 – Crew monitoring sensors and physiological states

Goal: have "sensors and physiological models" for efficient crew monitoring in combat aircraft.

Tasks:

- Task 71 Identification and definition of the raw physiological states and parameters in cockpit fighter environment
- Task 72 Study of relevant sensing technologies (external, wearable and head-located)
- Task 73 Raw physiological state computing and database
- Task 74 Crew Monitoring Sensors demonstrations

WP8 – Crew states identification algorithms

Goal: identify the crew ability to perform its mission via the detection of degraded crew states.

Tasks:

- Task 81 Crew states identification principles
- Task 82 Identification and definition of relevant crew states
- Task 83 Identification and definition of relevant parameters to be measured
- Task 84 Development of models
- Task 85 Assessments and demonstrations
- Task 86 Definition of a standardised crew physiological and interactions database

EDF EPIIC Project

WP7&8 – Crew monitoring system

Figure 11 - Overall architecture of the CMS

EDF EPIIC Project

WP7&8 – Crew monitoring system

Stress resilience as a research interest of University of Zagreb

Figure 11 - Overall architecture of the CMS

