Machine learning I: ConvNets

En episodios anteriores...

- · Como dividir el dataset de entrenamiento
- · Repaso de varianza y sesgo
- · Regularización: L2, dropout, data augmentation
- Minibatch y stochastic gradient descent
- · Algoritmos de optimización: Momento, RMSProp y Adam
- Cómo tunear hiperparámetros

Visión Artificial

• Las redes convolucionales han revolucionado el campo de la visión artificial.

Clasificación

Detección de objetos

Transferencia de estilo

Densas vs Convolucionales

La principal diferencia entre una red neuronal *densa* y una red *convolucional*:

- · Las redes densas aprenden **patrones globales** del espacio de características de input. En el caso de las imágenes utiliza **todos los pixels de la imagen**.
- · Las redes convolucionales aprenden patrones locales. En el caso de las imágenes estos patrones los encuentra en pequeñas ventanas (filtros) en 2D.

Principales características de las ConvNets

· Los patrones que aprenden son invariante a translaciones

- · Si reconoce un cierto patrón en la esquina derecha de una imagen, la ConvNet lo encontrará en cualquier otro sitio
- · Una red densa tendría que aprender el patrón de nuevo si apareciera en otra posición

Por este motivo, las ConvNets:

- Muy eficientes para procesar imágenes
- Menos imágenes para entrenar ya que tienen mayor poder de generalización

· Pueden aprender la jerarquía espacial de las imágenes

- · La primera capa convolucional aprenderá a extraer esquinas y bordes
- · La segunda los combinará para crear conceptos más complejos

Jerarquia de características

Experimento de Hubel y Wiesel

© Knowing Neurons http://knowingneurons.com

- Dos cosas en común con las redes usadas en Computer Vision:
 - Neuronas (filtros) especializados en orientaciones (representaciones) determinadas
 - · Complejidad creciente para crear la representación final

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of a curve detector filter

ECSIC

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplicación y suma = (50*30) + (50*30) + (50*30) + (20*30) + (50*30) = 6600

receptive field

Visualization of the	filter on the	image

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

Pixel representation of receptive field

Pixel representation of filter

Multiplicación y suma = 0

Imagen en blanco y negro

input neurons

Filtro 5x5

Mapa de características

Padding

- Uno de los problemas de las capas convolucionales es que pueden hacer que la imagen mengüe demasiado.
- · Si tienes muchas capas la imagen va a acabar siendo muy pequeña.
- Otro problema es que la información de los píxeles de las esquinas y los bordes van a estar "infra-representados" en los mapas de características

Output: 4x4

Padding

Padding

• "Valid" convolution: Sin padding

$$n \times n$$
 * $f \times f$ $\rightarrow n-f+1 \times n-f+1$
 6×6 * 3×3 \rightarrow 4 \times 4

• "Same" convolution: Hacer padding hasta que el input y el output sean del mismo tamaño

$$n \times n$$
 * $f \times f$ $\rightarrow n+2p-f+1 \times n+2p-f+1$
 $n+2p-f+1=n$ $\rightarrow p=\frac{f-1}{2}$

El tamaño de los filtros (f) se suele elegir impar: 3x3, 5x5, etc... Además eso permite tener un pixel central

Strided convolution

• En lugar de ir moviendo el filtro en pasos de 1 píxel lo hacemos en pasos de s pixels

$$n \times n \text{ image}$$
 $f \times f \text{ filter}$
padding p stride s

Si no es un número entero se redondea al entero más cercano por abajo

¿Y si la imagen es en color?

Filtro 0 Filtro 1

Ejemplo

- El plano frontal del paralelepípedo depende de las variables de convolución (p,s,f...)
- · La profundidad es igual al tamaño del filtro en cada capa

Capa de Pooling

• La capa de pooling sirve para reducir la dimensionalidad de los mapas de características

Hiperparámetros:

- Tamaño del filtro (f)
- Stride (s)
- Average o Max
- Padding (p)

Típicamente: f=2, s=2

· El pooling no tiene ningún parámetros para aprender

Juntándolo todo...

Vamos a contar como **una cap**a el conjunto de **convolución + reducción** (hay autores que consideran que son dos capas) ya que solo la capa de convolución tiene parámetros para aprender

¿Por qué convolución?

¿Por qué convolución?

5x5x3+1=76 parámetros por filtro 76x6 filtros =456 parámetros

¿Por qué convolución?

5x5x3+1=76 parámetros por filtro 76x6 filtros =456 parámetros

Con una fully connected:

3072x4704 =14.5 millones de parámetros

¿Por qué tan pocos parámetros?

Compartición de parámetros:

Si encuentras un filtro óptimo para detectar, por ejemplo, bordes verticales, te va a ser útil en toda la imagen

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Con solo 9 parámetros sacamos 16 valores y "peinamos" toda la imagen

Escasez de conexiones (connections sparsity):

Para calcular cada uno de los valores en el mapa de características solo nos hacen falta unos pocos valores de la imagen

¿Por qué tan pocos parámetros?

Compartición de parámetros:

Si encuentras un filtro óptimo para detectar, por ejemplo, bordes verticales, te va a ser útil en toda la imagen

Con solo 9 parámetros sacamos 16 valores y "peinamos" toda la imagen

Escasez de conexiones (connections sparsity):

Para calcular cada uno de los valores en el mapa de características solo nos hacen falta unos pocos valores de la imagen

Ejercicio

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

¿Cuántos parámetros hay en cada capa?

Localización de Objetos

Clasificación

Clasificación con localización

Detección

Clasificación con localización

(0,0)

- 0 peatón
- 1 coche
- 2 moto
- 3 fondo

¿Como definimos la etiqueta target de nuestro problema (y)?

¿Hay objeto o no?

Clasificación con localización

 $\begin{bmatrix} 1 \\ b_x \\ b_y \\ b_w \\ b_h \\ 0 \\ 1 \\ 0 \end{bmatrix}$

? ? ? ? ?

Clasificación con localización

¿Cómo es la función de pérdida?

Si $y_0 = 1$:

$$L(y,\hat{y}) = (y_0 - \hat{y}_0)^2 + (y_1 - \hat{y}_1)^2 + \dots + (y_7 - \hat{y}_7)^2$$

 $Si y_0 = 0$:

$$L(y, \hat{y}) = (y_0 - \hat{y}_0)^2$$

Hemos usado el error cuadrático como función de pérdida, pero podrías usar cualquier otra

Detección de puntos de referencia

32 puntos de referencia

Detección de objetos: Ventana móvil

Training set:

X У 1 0 0

Con esto puedes entrenar una ConvNet que te diga si algo es o no un coche

ConvNet

1

Detección de objetos: Ventana móvil

Cómo convertir FC en convolucional

Implementación convolucional de la ventana móvil

https://arxiv.org/abs/1312.6229

YOLO

Uno de los problemas del método anterior: no estamos dando la posición del objeto con precisión

Dividimos la imagen en celdas: Aqui usamos 3x3 pero en un ejemplo real deberíamos tener mucha más granularidad

Cómo evaluar la localización

• Método IoU (Intersection over Union)

Cómo evaluar la localización

• Método IoU (Intersection over Union)

Cómo evaluar la localización

• Método IoU (Intersection over Union)

Cómo evaluar la localización

Método IoU (Intersection over Union)

Tipos de redes

·Clásicas:

LeNet-5

AlexNet

VGG

- •ResNet
- Inception

Ejemplo: AlexNet

Bloques residuales

Master Universitario Oficial Data Science

ResNet

¿Por qué funcionan las ResNet?

$$X \rightarrow Big NN \rightarrow a^{TL3}$$

$$X \rightarrow Big NN \rightarrow a^{TL3}$$

$$Relu. \quad a \geqslant 0$$

$$a^{TRr23} = g(2^{TLr23} + a^{TL73})$$

$$= g(W. a^{TRr23} + b^{TLr23}) + a^{TRr2}$$

ResNet

Master Universitario Oficial Data Science

Convolución 1x1

1	2	3	6	5	8
3	5	5	1	3	4
2	1	3	4	9	3
4	7	8	5	7	9
1	5	3	7	4	8
5	4	9	8	3	5

6 × 6

* 2 =

2	4		

Convolución 1x1

Coger los 32 valores de A, multiplicarlos elemento a elemento por los 32 valores de B, después aplicarle una función no lineal

Similar a aplicar una Fully Connected para cada bloque

También se conoce como Network in Network

Convolución 1x1

- · Si quieres reducir la dimensión de ancho y largo > pooling layer
- Si quieres reducir el número de canales (profundidad) > filtros 1x1

Capa "inception"

• En lugar de elegir el tamaño del filtro, si usar o no pooling... ¿por qué no hacerlo todo a la vez? ©

Capa "inception"

• En lugar de elegir el tamaño del filtro, si usar o no pooling... ¿por qué no hacerlo todo a la vez? ©

Inception

Número de multiplicaciones ~ 120 millones

Número de multiplicaciones ~ 12 millones

Inception

Transfer Learning

- Una de las ideas más interesantes de Deep Learning es que uno puede aprovechar una red ya entrenada para un problema diferente
- · Imaginemos que tenemos una red que se ocupa de clasificar imágenes
- Podemos eliminar la última capa y sus pesos y crear otra capa con pesos aleatorios

Transfer Learning

- · Reentrenamos la red usando el nuevo dataset de imágenes médica
- Si tienes pocas imágenes médicas: reentrenamos solo los pesos de la última capa (y dejar el resto fijo)
- Si tienes suficientes imágenes puedes reentrenar todos los pesos de la red neuronal \rightarrow *fine tuning*

¿Cuándo hacer transfer learning?

Transferencia A → B

- · Cuando A y B tienen el mismo tipo de input
- · Cuando tienes muchos más datos en A que en B
- Si sospechas que las características de bajo nivel de A pueden ser útiles para el problema B

C

Transferencia de estilo

G

C – Contenido

S-Estilo

G – Imágen Generada

- Definimos una función de coste
- Tendrá dos partes:

$$J(G) = \alpha J_{content}(C,G) + \beta J_{style}(S,G)$$

 $J_{content} \rightarrow como de similar son G y C$

 $J_{style} \rightarrow como de similares son S y G$

α y β son dos hiperparámetros que podemos tunear para decidir si queremos que la imagen se parezca más a la original C o que siga el estilo S

• Inicializa la imagen G aleatoriamente (i.e 100 x 100 x 3)

• Aplica gradient descent para minimizar J(G)

$$G = G - \frac{\partial J(G)}{\partial G}$$

- Función de coste del contenido: J_{content}
- · Cogemos una capa l en medio de la red (ni muy al principio ni muy al final)
- Usamos una red convolucional pre-entrenada
- · Sean a^{l[C]} y a^{l[G]} el valor de la activación en la capa l de pasar la imagen inicial C y la generada G respectivamente
- \cdot Queremos que $J_{content}$ mida como de parecidas son esas dos activaciones ya que si a^{l[C]} y a^{l[G]} son similares, las imágenes tendrán un contenido similar
- Así que definimos J_{content} como:

$$J_{\text{content}}(C,G) = \frac{1}{2} ||a^{[l](C)} - a^{[l](G)}||2$$

• ¿Qué es el estilo?

- Cogemos la capa l para medir el estilo
- · Definimos el estilo como la correlación entre diferentes canales

¿Cómo de correlacionadas están las activaciones entre los diferentes canales?

La correlación nos dice qué texturas ocurren juntas (correlación alta) y cuales no (correlación baja)

- Sea $a^{[l]}_{(i.i.k)}$ donde (i,j,k) \rightarrow (ancho, alto, canal) de la capa l
- $G_{kk}^{[l]} = \sum_{i} \sum_{j} a_{ijk}^{[l]} a_{ijk}^{[l]}$ \rightarrow Si estos pares de activaciones tienen un valor elevado G tendrá un valor elevado
- Hacemos esto para la imagen S y G

• J(S,G) =
$$\frac{1}{(2 n_h^{[l]} n_w^{[l]} n_c^{[l]})^2} | | G_{kk}^{[l](S)} - G_{kk}^{[l](G)} | |^2$$

En realidad esto da igual porque tenemos el término β

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_{k} \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})$$

Se obtienen mejores resultados si se define la $J_{\rm style}$ como la suma de todas las $J_{\rm style}$ en las distintas capas l

$$J_{\text{style}}(S,G) = \sum_{l} \lambda^{[l]} J_{style}^{[l]}$$

Resumiendo

• ¿Qué son las capas convolucionales?

¿Por qué funcionan bien con imágenes?

- Padding, striding...
- Capas de pooling -> reduciendo la dimensionalidad
- Tipos de redes: ResNet, Inception
- Transferencia de aprendizaje
- Neural Style Transfer

Art Generator

http://193.146.75.223:5000/

Introduce a picture

Seleccionar archivo Ningún archivo seleccionado 50

Introduce a picture with a style

Seleccionar archivo Ningún archivo seleccionado 50

Create art!

https://github.com/laramaktub/artgenerator

arXiv:1508.06576

Clasificando Conus

Training dataset

Colección de imágenes de expertos (68 especies | 1.5K imágenes) que cubren tres regiones diferentes:

- Región Panámica
- Región de África del Sur
- Atlántico Occidental y Mediterráneo

·Resultados

Los resultados usando sets de imágenes de Google son prometedores

http://conus.deep.ifca.es/

Clasificación de plantas

con el apoyo del

CSIC

Arquitectura

ResNet50

Framework

Python con Lasagne/Theano

Training dataset

PlantNet (6K especies | 250K imágenes)

Test datasets

- Google Search Image (3680 species | 36K imágenes)
- Portuguese Flora (1300 species | 15K imágenes)
- iNaturalist (3K especies | 300K imágenes)

Resultados

Resultados útiles (Top1: 59% | Top5: 74%) para más de la mitad del dataset de test.

Backup

Solución

https://github.com/laramaktub/MachineLearningl

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_2 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_3 (Conv2D)	(None,	3, 3, 64)	36928
Total params: 55,744 Trainable params: 55,744 Non-trainable params: 0			

