MATH10101, for supervision in week 10. Congruences

- **Q18**. (warm-up) Let a, b be integers, $d = \gcd(a, b)$, $d \neq 0$.
- (i) Prove that the integers a/d and b/d are coprime.
- (\star) (ii) Write down an example of a and b where a/d is not coprime to b and a is not coprime to b/d.
 - **Q19**. Let a, b, q, m be integers, q, m > 0. Prove: $qa \equiv qb \mod qm \implies a \equiv b \mod m$.
 - **Q20**. Jean was asked to solve the congruence $12x \equiv 7 \mod 17$. Jean wrote:

```
12x \equiv 7 \mod 17
Add 17
12x \equiv 24 \mod 17
Divide by 12
x \equiv 2 \mod 17
```

Is this is a well-written argument? Is the answer correct? Is the method valid? Write down a better solution.

- **Q21**. Solve the following congruences for x. Your answer should be expressed as a congruence in the original modulus, 777, and given as remainder(s) mod 777.
- $(\star)i) 199x \equiv -6 \mod 777;$
- (\star) ii) $6x \equiv 3 \mod 777$;
- (\star) iii) $77x \equiv 2 \mod 777$;
 - iv) $6x \equiv 0 \mod 777$;
 - v) $10101x \equiv 0 \mod 777$.
 - **Q22**. i) Find a multiplicative inverse of 5 modulo 47.
 - ii) Solve the congruences: a) $5x \equiv 2 \mod 47$, b) $25x \equiv 3 \mod 47$, c) $19x \equiv 20 \mod 47$.
 - **Q23**. Find the least non-negative integer x satisfying $x \equiv 4 \mod 11$ and $x \equiv 3 \mod 13$.
- (*)Q24. Find the remainders of 20^{19} and 19^{19} when divided by 13. Show that $20^{19} + 19^{19}$ is divisible by 13.