IN THE CLAIMS:

- 1-5. (Canceled)
- 6. (Currently Amended): The evaporator and condenser unit of claim 5-15 wherein the section
- of the tube extends substantially along the axis of rotation and the means for discharging liquid is
- configured such that liquid enters the evaporating chambers which are open at their inner edges.
- 7. (Canceled)
- 8. (Currently Amended): The evaporator and condenser unit of claim 11 further comprising a
- catch basin disposed in spaced-apart relation about the sealed outer edge of at least one
- evaporating chamber, the catch basin extending radially inward relative to the axis of rotation
- a selected distance, and being open in the direction of the axis of rotation.
- 9. (Original): The evaporator and condenser unit of claim 8 wherein a catch basin is
- 2 disposed about the sealed outer edge of each evaporating chamber.
- 10. (Currently Amended): An evaporator and condenser unit for use in distilling a liquid, the
- evaporator and condenser unit The evaporator and condenser unit of claim 4 further
- 3 comprising:
- a housing having an inlet, an outlet, and a lower portion defining a sump for
- s containing the liquid to be distilled;
- a heat exchanger plate disposed within the housing and configured for rotation about
- an axis, the heat exchanger plate having a plurality of folds and two opposing edges that are
- 8 joined together so as to give the folded plate a generally circular shape, the folds defining a
- 9 plurality of spaced-apart panels having corresponding surfaces that define alternating
- 10 evaporating and condensing chambers between opposing panel surfaces:
- an upper end plate and a lower end plate disposed within the housing substantially
- 12 perpendicular to the axis of rotation;

13	a liquid-pick-up mechanism configured to draw liquid from the sump and deliver it to
14	the inner edges of the evaporating chambers;
15	a sleeve enclosing the folded heat exchanger plate at least at its outer edges, the sleeve
16	defining a condensate collection space proximate to the folded, heat exchanger plate
17	opposite the sump, and
18	at least one stationary scoop tube extending through the housing and into the
19	condensate collection space, the at least one stationary scoop tube having an opening in the
20	condensate collection space, wherein:
21	the folded heat exchanger plate is mounted between the upper and lower end plates
22	so as to seal the evaporating chambers from the condensing chambers,
23	the evaporating and condensing chambers include inner and outer edges relative to the
24	axis of rotation.
25	the evaporating chambers are closed at their outer edges by corresponding folds in the
26	heat exchanger plate, are open at their inner edges, and are in fluid communication with the
27	outlet so as to provide vapor thereto.
28	the condensing chambers are open at their outer edges, are closed at their inner
29	edges by corresponding folds in the heat exchanger plate, and are in fluid communication with
30	the inlet so as to receive vapor therefrom:
31	the upper end plate has one or more ports disposed proximate to an outer diameter edge
32	of the upper end plate, the one or more ports providing fluid communication between the
33	condensing chambers and the condensate collection space, and
34	the at least one stationary scoop tube is configured to remove condensate that
35	collects in the condensate collection space.
1	11. (Currently Amended): An evaporator and condenser unit for use in distilling a liquid, the
2	evaporator and condenser unit The evaporator and condenser unit of claim 4 further
3	comprising:
4	a housing having an inlet, an outlet, and a lower portion defining a sump for
5	containing the liquid to be distilled;

6	a heat exchanger plate disposed within the housing and configured for rotation about
7	an axis, the heat exchanger plate having a plurality of folds and two opposing edges that are
8	joined together so as to give the folded plate a generally circular shape, the folds defining a
9	plurality of spaced-apart panels having corresponding surfaces that define alternating
10	evaporating and condensing chambers between opposing panel surfaces;
11	an upper end plate and a lower end plate disposed within the housing substantially
12	perpendicular to the axis of rotation:
13	a liquid pick-up mechanism configured to draw liquid from the sump and deliver it to
14	the inner edges of the evaporating chambers;
15	a sleeve enclosing the folded heat exchanger plate at least at its outer edges, the
16	sleeve defining a side wall facing the axis of rotation, the sleeve configured such that the side
17	wall traps condensate generated within the condensing chambers; and
18	a seal ring extending around the outer end of the folded, heat exchanger plate between
19	the lower end plate and the sleeve, the seal ring configured to permit fluid communication
20	between the evaporating chambers and the sump, but blocking fluid communication between
21	the condensing chambers and the sump, wherein:
22	the folded heat exchanger plate is mounted between the upper and lower end plates
23	so as to seal the evaporating chambers from the condensing chambers,
24	the evaporating and condensing chambers include inner and outer edges relative to the
25	axis of rotation.
26	the evaporating chambers are closed at their outer edges by corresponding folds in the
27	heat exchanger plate, are open at their inner edges, and are in fluid communication with the
28	outlet so as to provide vapor thereto, and
29	the condensing chambers are open at their outer edges, are closed at their inner
30	edges by corresponding folds in the heat exchanger plate, and are in fluid communication with
31	the inlet so as to receive vapor therefrom.
l	12. (Currently Amended): The evaporator and condenser unit of claim 10 wherein the
	Saldy afthe heat anchorous plate are substantially complete with the exist of rotation

1	13. (Canceled):
1	14. (Currently Amended): An evaporator and condenser unit for use in distilling a liquid, the
2	evaporator and condenser unit comprising:
3	a housing having an inlet, an outlet, and The evaporator and condenser unit of
4	claim 13 wherein the housing includes a lower portion defining a sump for containing the liquid
5	to be distilled,:
6	a heat exchanger plate disposed within the housing and configured for rotation
7	about an axis, the heat exchanger plate having a plurality of folds and two opposing edges
8	that are joined together so as to give the folded plate a generally circular shape, the folds
9	defining a plurality of spaced-apart panels having corresponding surfaces that define
10	alternating evaporating and condensing chambers between opposing panel surfaces.
11	an upper end plate and a lower end plate disposed within the housing
12	substantially perpendicular to the axis of rotation; and
13	the unit further comprising a liquid pick-up mechanism configured to draw liquid
14	from the sump and deliver it to the inner edges of the evaporating chambers, wherein:
15	the folded heat exchanger plate is mounted between the upper and lower end plates
16	so as to seal the evaporating chambers from the condensing chambers,
17	the evaporating and condensing chambers include inner and outer edges relative to the
18	axis of rotation.
19	the evaporating chambers are closed at their outer edges by corresponding folds in the
20	heat exchanger plate, are open at their inner edges, and are in fluid communication with the
żι	outlet so as to provide vapor thereto, and
22	the condensing chambers are open at their outer edges, are closed at their inner
23	edges by corresponding folds in the heat exchanger plate, and are in fluid communication with
24	the inlet so as to receive vapor therefrom.

- 1 16-20. (Canceled).
- 1 21. (New) The evaporator and condenser unit of claim 11 wherein the folds of the heat
- 2 exchanger plate are substantially co-planar with the axis of rotation.
- 1 22. (New) The evaporator and condenser unit of claim 14 wherein the folds of the heat
- 2 exchanger plate are substantially co-planar with the axis of rotation.
- 23. (New) The evaporator and condenser unit of claim 15 wherein the folds of the heat
- exchanger plate are substantially co-planar with the axis of rotation.