Computabilità e Algoritmi (Computabilità) 15 Luglio 2013

Esercizio 1

Considerare la sottoclasse dei programmi URM nei quali, se l'i-ma istruzione è una istruzione di salto J(m, n, t), allora t > i. Dimostrare che le funzioni calcolabili dai programmi in tale sottoclasse sono tutte totali.

Esercizio 2

Dimostrare che un insieme A è ricorsivo se e solo se esistono due funzioni totali calcolabili $f,g:\mathbb{N}\to\mathbb{N}$ tale che per ogni $x\in\mathbb{N}$

$$x \in A$$
 se e solo se $f(x) > g(x)$.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x : \forall y \text{ if } y + x \in W_x \text{ then } y \leq \varphi_x(y+x)\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Sia f una funzione calcolabile totale. Studiare la ricorsività dell'insieme $B_f = \{x \in \mathbb{N} : \varphi_x(y) = f(y) \text{ per infiniti } y\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $n \in \mathbb{N}$ tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\}.$