The Wildfire Supplier

BY THE NAVIGATION SENSATION

(LINA BENGTSON, DANIEL BIONDI, JEREMY CERVANTES, HAYDEN CLARKE, GERARD DEBOLD)

Introduction

- Project Description
 - An Autonomous vehicle that can provide needed supplies to areas that would be inaccessible otherwise
 - Ability to avoid obstacles such as:
 - Path Blockages
 - Ledge detection
 - ▶ Fire
- Utilizes GPS and Magnetometer to find destination and calculate a desired heading angle

Market Requirements:

- Must travel 2km (1km each direction)
- Must travel with direction to and be accurate within 10 meters of GPS Point
- Must travel at 1.5km/h
- Must carry payload 15kg
- Must ascend 15% grade
- Must avoid blockages

BOM

Part #	Part Name	Description	Qty	Units	Unit Cost	Cost
AT91SAM3X8E	Arduino Due	Microcontroller	1	Each		
H4807-9993	Chassis + Motors	Powered Toy Car with Motors	1	Each	\$15	\$15
74777	Battery	12V, 9.5Ah battery for Power Wheel Vehicle	1	Each	\$60	\$60
42STH38-1684B / 36JX60K51	Nema 17 Motor	Bipolar Stepper Motor	1	Each	\$44	\$44
HC-SR04	Cytron Technologies Ultrasonic Sensor	A sensor that uses sonar to determine distance to an object	8	Each	\$3.95	\$31.60
28509	PAM-7Q Parallax GPS Module	GPS Receiver	1	Each	\$49.99	\$49.99
HMC5883L	Honeywell 3-Axis Digital Compass IC	Magnetometer - Measures the earth's magnetic field	1	Each	\$9.95	\$9.95
FQP30N06L-ND	Logic Level Power MOSFET	N-Channel MOSFETs for use in motor control	16	Each	\$1.12	\$15.97
IXTY32P05T	P-Channel Power MOSFET	P-Channel MOSFETs for use in motor control	8	Each	\$1.95	\$15.60
FQP27P06	P-Channel QFET MOSFET	P-Channel MOSFETs for use in motor control	10	10 Pack	\$15.99	\$15.99
BC2301-ND	NTC Thermistor	Sensor to measure Temperature	2	Each	\$0.69	\$1.38
	Wood		1	Each	\$7.49	\$7.49

BOM

Part #	Part Name	Description	Qty	Units	Unit Cost	Cost
TRM4420_0		Chain for the motor to drive the steering shaft - made for selected sprockets	1	Meter	\$5.95	\$5.95
TRM4136_0		Sprocket for steering - shaft and back-up	2	Each	\$2.80	\$5.60
TRM4135_0		Sprocket for the motor shaft	1	Each	\$1.85	\$1.85
L298N	Motor Drive Controller Board Module	Motor Control IC for Stepper Motor	1	Each	\$6.99	\$6.99
	Elegoo Multicolored Dupont Wire	Arduino Wires	120	120 Pack	\$8.86	\$8.86
Total						\$296.22

Our Prototype

Size:

Length: 115cm

Width: 82cm

Depth: 52cm

▶ Weight: 20.2kg

Number of US sensors: 5

Bipolar Stepper Motor

Rear DC Motors

Battery: 12V, 9.5Ah

Power control switch

Arduino Pin Out

Theoretical Pinout

Mounted Arduino

Motor Control

Half H-Bridge Sketch

Half H-Bridge Circuit

Stepper

- Motor had to be parallel to steering shaft
 - Calculated angle of shaft and cut board according to measurements
 - Placed board in vehicle at the complement of the shaft angle
- Calculated Torque Required: 3.6 N-m
- Stepper sizing: NEMA-17 Bipolar stepper
 - 12V Recommended Voltage, 1.7A Rated Current
 - Motor Torque: 2.94 N-m
 - 0.067° Step Angle
- Torque of motor was stepped up with gear ratio (10:18)

Stepper (Continued)

- Motor controlled through Dual h-bridge motor control board
 - Board Logic Voltage: 5V
 - Drive Voltage: 5V 35V
 - Max Current 2A Continuous
 - Max Power: 25W

Pathfinding

- GPS
 - Obtains current coordinates
 - Obtain the distance between current fix & destination
- Magnetometer
 - Obtains vehicles direction (in comparison to magnetic north)
- Together these combine to determine if we are on course to reach destination

Pathfinding Test

Current Position:

Lat:

40.88817

Long:

-73.90271

Destination Position:

DestLat:

40.88816

DestLong:

-73.90274

Calculated GPS Angle

Bearing Angle: 1.81604

Calculated
Magnetometer Angle

Heading (degrees): 127.22800

Final needed adjustment

Final Heading (degrees): -122.96511 End of 10 iteration program You are within 10m of your destination The distance is : 2.73617

Object avoidance

- Motor Control
 - Move forward, reverse or brake using a DC motor with an H-bridge configuration
- Steering
 - Turns steering shaft with a stepper motor
- Ultrasonic Sensor
 - Detect objects in vehicles path
- Work together to detect and avoid objects in vehicles path

Ultrasonic Sensor

- ➤ Can measure the distance to an object by using sound waves at a specific frequency and listens for that sound wave to bounce back.
- Very accurate, stable and can be used over large ranges.
- Distance = $\frac{speed\ of\ sound\ x\ time\ taken}{2}$, Speed of sound = $341 344\ m/s$
- Comprised of:
 - 1. Transmits ultrasonic waves like a speaker
 - 2. Receives waves like a microphone

Thermistor

- Set in series with a 5% tolerance 10kOhm resistor
- 5V across the Thermistor and Resistor
 - Ambient Temperature is found from Analog voltage read into the Arduino
 - This value changes from the resistance change in the Thermistor
- Change in temperature will effect the accuracy of the US sensors
- Large heat increase will slow the sound wave reverberation

Market Requirements

Speed test: Distance – 20m

Test	No Load	Load 15.9 kg(35lbs)
1	13.59s	14.25s
2	12.89s	13.33s
3	13.21s	14.10s
4	12.90s	13.26s
5	13.32s	14.15s
6	12.94s	13.28s
Average	13.14s	13.73s
Speed	0.66 m/s $\rightarrow 2.37$ km/h	0.69 m/s $\rightarrow 2.47$ km/h

Market Requirements

Incline Test

Load Test: 15kg

Design issues - Hardware

- H bridge configuration
 - Originally we had 4 N-channel FETs for each bridge
 - ► This required a lot of extra voltage to turn the top FETs
 - Not a viable solution to have an extra battery just to switch FETs on
 - Then changed to 2 P-channel and 2 N-channel FETs
 - This did not need the extra battery to drive the top FETs
 - Also allowed us to use only two pins from the arduinos
 - Smokeshow
 - ▶ 2 P-channel and 2 N-channel FETs \rightarrow 4 PWM pins + EN switch
 - Isolated each FET and allowed safer operation

Design issues - Software

- Integrating the GPS and Magnetometer Modules
 - Needed to averaged values read in from each module
 - Amended the GPS code to regularly read in the current position
- Receiving False positives when Controlling Motors with Ultrasonic Sensors
 - Tested in Indoor & Outdoor Environments
 - We've constrained the range of operation of the sensors to better suit our needs

Future Improvements

- Wheels are poorly mounted
 - Need to be improved for off-road conditions
 - Plastic Slips on most surfaces
- Turning
 - Stepper Motor cannot handle the load
 - Axle needs to be mounted properly
- US sensors return false positives
 - Lack accuracy in the multi-sensor triggering algorithm
 - Thermistor would be integrated
- Axle limits need to be hardware reactive
 - Limit switches
 - Provide closed loop feedback to the current stepper position

Thank-you

