16/5/2019 14.00 - 16.00pm CMPU 4010 Artificial Intelligence Basement 1, Kevin Street

Programme Code: DT211C, DT228, DT282, DT8900

Module Code: CMPU 4010

CRN: 25771, 22416, 31082, 27131

TECHNOLOGICAL UNIVERSITY DUBLIN

KEVIN STREET CAMPUS

BSc. (Honours) Degree in Computer Science (Infrastructure)
BSc. (Honours) Degree in Computer Science
BSc. (Honours) Degree in Computer Science (International)
Year 4

International Pre Masters for MSc in Computing
Year 1

SEMESTER 2 EXAMINATIONS 2018/19

Artificial Intelligence

Dr. Svetlana Hensman Dr. Deirdre Lillis Dr. David Malone – DT211C Mr. Martin Crane – DT228/282

Answer Question 1 (40 marks) and any TWO other questions (30 marks each)

1. (a) Explain what is the Turing test . Discuss what are the advantages of the Turing a measure of intelligence?	ig test as
(10 marks)
(b) For each of the following two pairs of first-order predicate logic sentences, det most general unifier, if one exists:	fine the
 Pair 1: ∀x Plays(Mary, x) and ∀y Plays(y, Piano) Pair 2: ∀x Parent(John, Father(x)) and ∀x Parent(x, Father(Bill)) 	
	(5 marks)
(c) Outline the criteria used for evaluating and comparing different search algorit	hms.
	(5 marks)
(d) Explain the role of mutation in genetic algorithms.	(5 marks)
(e) Convert the following sentence to conjunctive normal form:	
$(p \Rightarrow (q \Rightarrow r))$	(5 marks)
(f) Explain the difference between general and domain-specific knowledge and pan example of each.	provide
	(5 marks)

(g) Write a First-Order Predicate Logic formula of the following statement:

If a person owns a license they are allowed to drive.

(5 marks)

2. (a) Prove using Proof by Contradiction that the knowledge base

$$KB = \{P \lor Q, P \Rightarrow Q\}$$

does not entail the statement

$$\alpha = P \wedge Q$$

(Note: You will need to convert the knowledge base into conjunctive normal form. Table 1 at the end of the exam paper lists logical equivalence rules that you might find useful.)

(15 marks)

(Question 2 cont. on next page)

(b) Using truth tables show that $(p \Rightarrow q) \lor (q \Rightarrow p)$ is a tautology.	(5 marks)
(c) Using model enumeration check whether the knowledge base	
$KB = \{P \land Q, P \Leftrightarrow Q \}$	
does or does not entail the statement	
$\alpha = P \vee Q$	
	(10 marks)
 (a) Briefly compare and contrast the depth-first and the iterative deepening algorithms. 	
	(10 marks)
(b) A hill-climbing algorithm that never makes downhill moves towards states value (or higher cost) is guaranteed to be incomplete, because it can get str maximum.	s with lower uck on a local
Describe, in your own words, how simulated annealing algorithm addres	ses this issue.
	(5 marks)
(c) Discuss the role of heuristics in search algorithms. Can we guarantee that will always improve the search? Provide examples of two heuristics.	a heuristic (10 marks)
	(10 marks)
(d) Briefly discuss how inference works in semantic networks.	(5 marks)
4. (a) Discuss the advantages and disadvantages of rule-based systems.	(10 marks)
(b) Explain why choosing the variable that is most constrained, but the value constrained is a good heuristic for a constraint satisfaction problem?	that is least
	(10 marks)
(c) Illustrate how left-to-right alpha-beta pruning works for the tree in Figure page.	re 1 on next
	(10 marks)

commutativity of A $(\beta \wedge \alpha)$ $(\alpha \land \beta)$ commutativity of V $(\alpha \lor \beta)$ $(\beta \vee \alpha)$ associativity of A $((\alpha \land \beta) \land \gamma)$ $\equiv (\alpha \wedge (\beta \wedge \gamma))$ $((\alpha \lor \beta) \lor \gamma)$ $(\alpha \lor (\beta \lor \gamma))$ associativity of V ≡ double $\neg(\neg\alpha)$ \equiv α negation elimination $(\alpha \Longrightarrow \beta)$ $(\neg \beta \Rightarrow \neg \alpha)$ contraposition = $(\neg \alpha \lor \beta)$ implication elimination $(\alpha \Longrightarrow \beta)$ \equiv $\equiv \quad \left((\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \alpha) \right)$ biconditional elimination $(\alpha \Leftrightarrow \beta)$ $\equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \land \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ $\equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of ∧ over V $(\alpha \wedge (\beta \vee \gamma))$ $(\alpha \lor (\beta \land \gamma))$ $((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of V over A

Table 1: List of logical equivalences

Figure 1: Example game tree for Question 4(c)