

PRACTICE - 1

3rd Sem, MCA

- Intro to Machine Learning
- Probability distribution
- Linear Regression
- Logistic Regression

Build the Linear Regression model for the data given here.

- Calculate regression coefficients, MAE, MSE, RMSE, R²
- Predict the y for x = 38.
- Use Ordinary Least Square (OLS) estimation to calculate the regression coefficients.
- Use the Loss function to calculate the loss in prediction for each data points (x).
- Calculate the revised regression coefficients (after 1st iteration), using Gradient descent method.

$$y = b_0 + b_1 x$$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}$$

$$b = (X'X)^{-1}X'Y$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$y = b_0 + b_1 x$$
 $MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$

$$MSE = rac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

$$\mathcal{L}(y,t) = \frac{1}{2}(y-t)^2$$

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} \qquad m = m - L \times D_{m} \\ c = c - L \times D_{c} \qquad D_{m} = \frac{-2}{n} \sum_{i=0}^{n} x_{i} (y_{i} - \bar{y}_{i}) \\ D_{c} = \frac{-2}{n} \sum_{i=0}^{n} (y_{i} - \bar{y}_{i})$$

$$b = (X^{'}X)^{-1}X^{'}Y$$

$$X^{'}Y = egin{bmatrix} \sum_{i=1}^{n} y_i \ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

$$m = m - L imes D_m$$
 $c = c - L imes D_c$

$$m=m-L imes D_m$$
 $c=c-L imes D_c$

$$D_m = rac{-2}{n} \sum_{i=0}^n x_i (y_i - y_i)$$

BP (Y)

354

190

405

263

451

Age (x)

46

20

52

30

57

$$D_c = rac{-2}{n} \sum_{i=0}^n (y_i - ar{y}_i)$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$\mathcal{L}(y, t) = \frac{1}{2}(y - t)^2$$

$$X'Y = \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{bmatrix}$$

$$X'X = \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{bmatrix}$$

Integrate the following for limit [0,1]:

- 8x³ dx
- $(x^e + e^x + e^e) dx$
- $[(x^3+3x+4)/\sqrt{x}] dx$
- $(2x^2+e^x) dx$
- [(1-x)√x] dx
- 4^x e^{2x} dx

$$rac{\iint 42y^2-12x}{\iint 10x^2y^3-6}$$

$$\int 1 \ dx = x + C$$

$$\int a \ dx = ax + C$$

$$\int x^n \ dx = \frac{x^{n+1}}{n+1} + C; \ n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C; \ a > 0, a \neq 1$$

Differentiate the following:

- $20x^{-4} + 9$
- x^3+3x+4
- In(10)
- 8/x³
- In(2x)
- (x+1)/x

d/dx(k) = 0, where k is any constant

$$d/dx(x) = 1$$

$$d/dx(x^n) = nx^{n-1}$$

d/dx (kx) = k, where k is any constant

$$d/dx (\sqrt{x}) = 1/2\sqrt{x}$$

$$d/dx (1/x) = -1/x^2$$

$$d/dx (log x) = 1/x, x > 0$$

$$d/dx (e^x) = e^x$$

$$d/dx (a^x) = a^x \log a$$

Use the two confusion matrix given here to answer the following;.

- Calculate the TP, TN, FP, FN, TPR, FPR.
- Calculate model accuracy, recall, precision.

Another model predicts 15 to be wrongly as pass.

Which of the two models is a better one.

	g urgent	old labels normal	spam	
urgent	8	10	1	$\mathbf{precision_u} = \frac{8}{8+10+1}$
system output normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precision s= $\frac{200}{3+30+200}$
	recallu =			
	8	60	200	
	8+5+3	10+60+30	1+50+200	

		gold labels						
		urgent	normal	spam				
	urgent	8	10	1				
system output	normal	5	60	50				
	spam	3	30	200				

	Predicted Pass	Predicted Fail
Actual Pass	70	20
Actual Fail	10	20

		Positive	Negative	
Astrol Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Actual Class	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

Predicted Class

A coin is tossed 'n' number of times.

- If the coin is 'Fair', probability of the occurrence of a head 6 times is the same as the probability that a head comes 8 times, then find the value of n.
- Uncertain about coin's 'fairness', use the maximum likelihood estimation to find the probability of head on a single toss, if there were 10 heads for this computed 'n'.
- Also apply Log-likelihood to find the answer. Are the both answer same?
- For this 'n' & 'p' find the probability of getting minimum 9 heads.
- If the probability of the occurrence of a head maximum 3 times is the same as the probability that a head comes 4 times, then find the value of n.

$$P(x:n,p) = {}^{n}C_{x} p^{x} (1-p)^{n-x}$$

$$_{n}C_{r}=rac{n!}{r!(n-r)!}$$

Age of candidates appearing in an exam are represented as N(27,3). Find the percentage of candidates with

age (a) Less than 25, (b) at least 29, (c) between 24-31.

7	_	$X - \mu$	
L	_	σ	

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	111 101 100				
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	11 10				
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753					
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103		T				
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	Z	0	0.01	0.02	0.03	0.04
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	-0	.50000	.49601	.49202	.48803	.48405
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	-0.1	.46017	.45620	.45224	.44828	.44433
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	-0.2	.42074	.41683	.41294	.40905	.40517
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	-0.3	.38209	.37828	.37448	.37070	.36693
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	-0.4	.34458	.34090	.33724	.33360	.32997
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	-0.5	.30854	.30503	.30153	.29806	.29460
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	-0.6	.27425	.27093	.26763	.26435	.26109
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	-0.7	.24196	.23885	.23576	.23270	.22965
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	-0.8	.21186	.20897	.20611	.20327	.20045
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	-0.9	.18406	.18141	.17879	.17619	.17361
										-1	.15866	.15625	.15386	.15151	.14917
										4.4					

	-									
-0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414
-0.1	.46017	.45620	.45224	.44828	.44433	.44034	.43640	.43251	.42858	.42465
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-1	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08692	.08534	.08379	.08226
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-2	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
Διισ'22						٨	/lachine	Learnir	ng. DSC/	A. MIT

Let the probability density function of X be given by:

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1 \\ 0 & otherwise \end{cases}$$

Find the probability density of $Y = X^{5/3}$

$$G(y) = P(Y \le y)$$

$$g(y) = \frac{dG(y)}{dy}$$

Let X and Y be jointly continuous random variables with joint PDF

$$f(x,y) = 10x^2y^3 - 6$$
 for $0 < x, y < 1$

zero otherwise.

- Find P(X>Y)
- Find the marginal PDFs fX(x) and fY(y)
- Are X and Y independent? Find Cov(x,y).

$$P(X_1 \in [a_1, b_1], \dots, X_K \in [a_K, b_K]) = \int_{a_1}^{b_1} \dots \int_{a_K}^{b_K} f_X(x_1, \dots, x_K) dx_K \dots dx_1$$

X and Y are independent, if

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

$$(x) = E(XY) - E(X) \times E(Y)$$

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

$$Cov(X,Y) = E(XY) - E(X) \times E(Y)$$
 $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y)dy$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$$

