

ACPI in Linux

Len Brown len.brown@intel.com
July 20, 2005

Agenda

- ACPI Tutorial/Decoder-Ring
- What changed in the last year?
- ACPI 3.0
- What's next?

ACPI Tables

- RSDP Root System Description Pointer
- RSDT Root System Description Table
- FADT Fixed ACPI Description Table
- DSDT Differentiated System Description Table
- SSDT Secondcary System Description Table
- SRAT System Resource Affinity Table
- SLIT System Locality Distance Inf. Table

ACPI Configuration

- Replaces Legacy configuration standards and proprietary methods
- Enumerates Motherboard devices:
 - Processor
 - Memory
 - I/O devices
 - Interrupts
 - Hot Plug
- ACPI comes with the BIOS it does not know anything about add-in devices.
- ACPI augments, but does not replace PCI config.

ACPI States

System Sleep S-States

- S0 = Executing
- **S1 = Standby**

- S3 = Suspend to RAM
- S4 = Suspend to Disk
- S5 = Soft Power-off

C-States – CPU Idle Power States

- Only C0 executes instructions
- C1 Cn do no execute instructions
- Deeper C-states save more power cost more latency
- /proc/acpi/processor/*/power

Processor Performance P-States

- P0 = full MHz (and voltage)
- P1 ... Pn = progressively lower MHZ and Volts

•

- Different platforms offer different states
- /sys/devices/system/cpu/cpu0/cpufreq
- speedstep-centrino, acpi-cpufreq, cpufreq-stats

Throttling T-states

- ~Lineary power savings w/ Mhz
- Older system had only throttling to manage processor performance.
- P-states used for modern hardware, with Tstates used only for thermal emergencies.

- cpufreq sub-system can use only 1 method at a time. eg. p4-clockmod vs cpufreq-acpi
- ACPI in addition to hardware guards TM1/TM2

Processor Power Saving Example

C-State	P-State	Mhz	Volt	Watt
C0	P0	1600	1.5	24.5
	P1	1300	1.4	22.0
	P2	1100	1.2	12.0
	P3	600	1.0	6.0
C1,C2	from P0	0	1.5	7.3
	from P3	0	1.0	1.8
C3	from P0	0	1.5	5.0
	from P3	0	1.0	1.0
C4	(any)	0	8.0	0.5

Device D-States

- D0 full on
- D3 full off
- vs. PCI Power Management
- Semanntics are device-class specific

Linux just starting to use ACPI D-states

ACPI Events

System Control Interrupt (SCI)

- Fixed Feature Events (FF)
- General Purpose Events (GPE)
- /proc/acpi/event

Linux/ACPI Deployment

 This year the major Linux distributors are all shipping with ACPI built-in and enabled-bydefault on all ACPI capable architectures (i386, x86_64, ia64)

acpid User Kernel /proc/acpi Linux/ACPI **Button** Battery OSL AC Processor **ACPICA Core Thermal** Fan **ACPI Specification ACPI Registers ACPI Tables ACPI BIOS Platform Defined** Platform BIOS, Firmware Platform Hardware Open \$ource Technology

Center

Linux/ACPI changes in past year

- Linux PNP = PNPACPI, PNPBIOS, PNPISA
- Hot Plug CPU, Memory
- SMP Deep C-states
- SMP S3/S4 progress
- video control progress
- hot-key progress
- ACPICA Interpreter progress

ACPI Specification history

- 1996 ACPI 1.0
- 2000 ACPI 2.0
- 2004 ACPI 3.0

Device Drivers vs. Power Management

- Devices need to recognize when idle and take power saving action.
- Device drivers should not have to care if power management is handled by PCI-PM or ACPI.
- Today, no connection between (conventional) motherboard device drivers and ACPI for resources or power management.

Linux need Power Policy Mgr

- User specifies policy
- manager communicates it to devices and subsystems

Configuration Todo

- Fix device tree
- Abstract Device Enumeration:
 - PCI/ACPI/Legacy resources
- Docking Station support -

Power Management Todo

- Suspend/Resume reliability++
- Abstract Device power states
 - PCI/ACPI D-states
- System Power policy manager
- C-states: tick timer stop in idle
- Hot Keys ++

References

- http://www.acpi.info
- http://acpi.sourceforge.net

