Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

Факультет информационных технологий и программирования Направление "Прикладная математика и информатика"

Отчет к лабораторной работе №2

Методы многомерной оптимизации

Выполнили студенты группы М3237

Ярошевский Илья Аникина Вероника Крюков Александр

1 Цели работы

- 1. Реализовать алгоритмы
 - Метод градиентного спуска
 - Метод наискорейшего спуска
 - Метод сопряженных градиентов
- 2. Проанализировать траектории методов для некоторых квадратичных функций
- 3. Исследовать количество итераций в зависимости от размерности пространства и числа обусловленности

2 Ход работы

Во всех тестах начальное приближение — вектор размерности пространства из единиц, точность ε = 0.001, ограничение на количество итераций — 10000 Исходный код: https://github.com/iliayar/MethOpt

2.1 Количество итераций

На графиках:

- Горизонтиаль число обусловленности
- Вертикаль количество итераций

Для исследования количества итераций использовались случайно сгенерированные функции вида $f(x) = \frac{1}{2}Ax^2 + bx + c$ с парамаметрами:

- А диагональная матрица с заданным числом обусловленности.
- b вектор размерности пространства из единиц.
- c = 0

Для каждого числа обусловленности производились тесты на двух функциях. На графиках представленны средние значения количества итераций из этих двух тестов.

2.1.1 Метод градиентного спуска

Видно, что количество итераций не зависит от размерности пространства n, но линейно зависит от числа обусловленности k

2.1.2 Метод наискорейшего спуска

Так же как и в методе градиентного спуска можно видеть линейную зависимость количества итераций от числа обусловленности. Количество итераций так же не зависит от размерности пространства.

2.1.3 Метод сопряженный градиентов

Видно что количество итераций нелинейно зависит от числа обусловленности. Так же можно отметить, что количество итераций всегда будет не больше размерности пространства.

2.2 Траектории

$$f_1(x) = \frac{1}{2} \begin{pmatrix} 100 & -1 \\ -1 & 1 \end{pmatrix} x^2 + \begin{pmatrix} -10 & 0 \end{pmatrix} x$$

Все методы находят минимум функции $f_1^* = -0.50505$ в точке $x^* = (0.101011\ 0.1011)$

$$f_2(x) = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} x^2 + \begin{pmatrix} -5 & 2 \end{pmatrix} x$$

Все методы находят минимум функции $f_2^* = -4.2$ в точке $x^* = (1.6 \ -0.2)$

$$f_3(x) = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} x^2 + \begin{pmatrix} -10 & 2 \end{pmatrix} x$$

Все методы находят минимум функции $f_3^* = -82$ в точке $x^* = (18\ 8)$

2.2.1 Метод градиентного спуска

Рис. 1: Траектория метода на функции f_1

Рис. 2: Траектория метода на функции f_2

При запуске на f_1 методу потребовалось гораздо больше шагов (≈ 800) дла нахождения минимума в отличии от функций f_2 (≈ 10 шагов) и f_1 (≈ 40 шагов), так как число обусловленности матрицы A функции f_1 достаточно велико $\mu = 100$.

2.2.2 Метод наискорейшего спуска

Рис. 4: Траектория метода на функции f_1

Рис. 5: Траектория метода на функции f_3

Не смотря на высокое число обусловленности функции f_1 , метод потребовалось 5 шагов для нахождения минимума. Но в то же время на функции f_3 потребовалось всего 2 шага.

2.2.3 Метод сопряженных градиентов

Рис. 6: Траектория метода на функции f_1

Рис. 7: Траектория метода на функции f_2

В данном методе крайне редко удается добиться того, чтобы количество итераций оказалось не равным размерности пространства