Coloration valide des sommets d'un graphe et nombre chromatique

a) définitions

• On appelle coloration des sommets d'un graphe toute attribution d'une couleur à chaque sommet. Une coloration utilisant k couleurs est appelée une k-coloration.

 Une coloration est valide lorsque 2 sommets adjacents ont toujours des couleurs différentes.

a) définitions

 Etant donné un graphe G, on appelle nombre chromatique de G, le plus petit nombre de couleurs nécessaires à une coloration valide de ses sommets. On note χ(G) ce nombre.

• Une coloration valide qui utilise χ (G) couleurs est optimale.

Cette 4-coloration est-elle optimale?

b) Encadrements du nombre chromatique

- Si G est d'ordre n on a évidemment
 X(G)≤n
- Propriété : Soit G un graphe et ∆(G) le degré maximum d'un de ses sommets.

Alors
$$\chi(G) \leq \Delta(G) + 1$$
.

b) Encadrements du nombre chromatique

 Pour tout graphe G connexe qui n'est ni un graphe complet, ni un cycle impair, on a :

$$\chi(G) \leq \Delta(G)$$

b) Encadrements du nombre chromatique

• Propriété :

– si on note $\omega(G)$ l'ordre maximum d'un sousgraphe complet de G alors

$$\chi(G) \ge \omega(G)$$

c) Coloration gloutonne

Donnée : un graphe G et un ordre total sur ses sommets noté $(x_1, x_2, ..., x_i, ..., x_n)$, Un ensemble de couleurs $\{1, 2, 3, ...\}$

Résultat : une coloration valide de G.

Pour i allant de 1 à n faire

Affecter au sommet x_i la plus petite couleur non déjà affectée à ceux des sommets $x_1, x_2, ..., x_{i-1}$, qui lui sont adjacents.

Fin Pour

Retourner l'ensemble des sommets et les couleurs qui leur sont affectées.

c) Coloration gloutonne

Remarques:

- La coloration gloutonne est valide mais pas nécessairement optimale.
- Etant donné un graphe G il peut exister des colorations qui ne sont pas gloutonnes
- Aucune coloration gloutonne ne peut utiliser plus de $\Delta(G)+1$ couleurs.
- Il peut être pratique d'ordonner les sommets par ordre de degrés décroissants.

Exercice:

• Soit le graphe:

G=(X={a, b, c, d, e, f, g, h}, E={ab, ac, af, ag, bg, be, bc, ch, cd, dh, ef})

Déterminez le nombre chromatique de ce graphe.

c) Coloration gloutonne

<u>Proposition</u>: Etant donné un graphe G, il existe toujours au moins un ordre sur les sommets de G tel que la coloration gloutonne calculée à partir de cet ordre soit optimale.

<u>Problème</u>: n! ordres possibles. Pas de solutions globales satisfaisantes.

d) Coloration des arêtes

- On appelle coloration valide des arêtes d'un graphe toute attribution d'une couleur à chaque arête de ce graphe, de sorte que deux arêtes incidentes aient des couleurs différentes.
- Etant donné un graphe G, on appelle indice chromatique de G, le plus petit nombre de couleurs nécessaire à une coloration valide de ses arêtes. Ce nombre est noté χ'(G).

Théorème de Vizing

Pour tout graphe G on a :

$$\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$$

• (il n'y a que 2 valeurs possibles pour l'indice chromatique)

d) Coloration des arêtes

• (<u>théorème de Konig 1916</u> : Pour tout graphe biparti G, l'indice chromatique est égal au plus haut degré d'un sommet.)

e)Le problème des 4 couleurs.

Modélisation par un graphe:

