

1	OpATOM - An Open Source Toolbox for Atmospheric Tomography	1
	1.1 Description	1
	1.2 Module Requirements	1
	1.3 Usage	1
	1.4 Input files	2
	1.5 Tomographic grid files	2
	1.6 GNSS station coordinates file	2
	1.7 Tropospheric delay file	2
	1.8 VMF1 grid files	3
	1.9 Satellite orbit file	4
	1.10 Initial wet refractivity file	4
	1.11 Results	4
	1.12 Licenses	5
	1.13 References	5
	1.14 Author(s)	5
2	Hierarchical Index	7
	2.1 Class Hierarchy	7
3	Class Index	9
	3.1 Class List	9
4	File Index	11
	4.1 File List	11
5	Class Documentation	13
•	5.1 GPSTomographyToolbox.ellipsoid.Ellipsoid Class Reference	
	5.1.1 Detailed Description	
	5.1.2 Constructor & Destructor Documentation	14
	5.1.2.1 <u>init</u> ()	14
	5.1.3 Member Function Documentation	14
	5.1.3.1 e()	14
	5.1.3.2 ec()	15
	5.1.3.3 f()	15
	5.1.3.4 getPLH()	15
	5.1.3.5 getXYZ()	15
	5.2 GPSTomographyToolbox.epoch.Epoch Class Reference	16
	5.2.1 Detailed Description	18
	5.2.2 Constructor & Destructor Documentation	18
	5.2.2.1init()	18
	5.2.3 Member Function Documentation	18
	5.2.3.1 date()	18
	5.2.3.2 DOW()	18
	5.2.3.3 DOY()	19

5.2.3.4 getDateTime()	. 19
5.2.3.5 GPS()	. 19
5.2.3.6 GPSweek()	. 19
5.2.3.7 GPSweekTOW()	. 19
5.2.3.8 MJD()	. 20
5.2.3.9 time()	. 20
5.2.3.10 TOW()	. 20
5.2.3.11 UTC()	. 21
5.2.3.12 year()	. 21
5.3 GPSTomographyToolbox.satellite.GalileoSat Class Reference	. 21
5.3.1 Detailed Description	. 23
5.3.2 Member Function Documentation	. 23
5.3.2.1 getSatPosNav()	. 23
5.3.2.2 getValidEph()	. 23
5.3.2.3 T1()	. 24
5.3.2.4 T5()	. 24
5.3.2.5 T5a()	. 24
5.3.2.6 T5b()	. 24
5.3.2.7 T6()	. 25
5.4 GPSTomographyToolbox.getlocal.GetLocal Class Reference	. 25
5.4.1 Detailed Description	. 26
5.4.2 Constructor & Destructor Documentation	. 26
5.4.2.1init()	. 26
5.4.3 Member Function Documentation	. 27
5.4.3.1 getLocalCoords()	. 27
5.4.3.2 x()	. 27
5.4.3.3 y()	. 27
5.4.3.4 z()	. 28
5.5 GPSTomographyToolbox.satellite.GLONASSSat Class Reference	. 28
5.5.1 Detailed Description	. 30
5.5.2 Constructor & Destructor Documentation	. 30
5.5.2.1init()	. 30
5.5.3 Member Function Documentation	. 30
5.5.3.1 f1()	. 30
5.5.3.2 f2()	. 31
5.5.3.3 getSatPosNav()	. 31
5.5.3.4 getValidEph()	. 31
5.6 GPSTomographyToolbox.gnssct.GNSSCT Class Reference	. 32
5.6.1 Detailed Description	. 33
5.6.2 Constructor & Destructor Documentation	. 33
5.6.2.1init()	. 33
5.6.3 Member Function Documentation	. 34

5.6.3.1 run()	34
5.6.3.2 writeNw2npy()	34
5.7 GPSTomographyToolbox.satellite.GPSSat Class Reference	35
5.7.1 Detailed Description	36
5.7.2 Member Function Documentation	36
5.7.2.1 getSatPosNav()	36
5.7.2.2 getValidEph()	37
5.7.2.3 T1()	37
5.7.2.4 T2()	37
5.7.2.5 T5()	38
5.8 GPSTomographyToolbox.ellipsoid.IUGG67 Class Reference	38
5.8.1 Detailed Description	39
5.9 GPSTomographyToolbox.epoch.LeapSecs Class Reference	39
5.9.1 Detailed Description	40
5.9.2 Constructor & Destructor Documentation	41
5.9.2.1init()	41
5.10 GPSTomographyToolbox.line.Line Class Reference	41
5.10.1 Detailed Description	42
5.10.2 Constructor & Destructor Documentation	42
5.10.2.1init()	43
5.10.3 Member Function Documentation	44
5.10.3.1 getPointAtT()	44
5.10.3.2 getTwhereX()	44
5.10.3.3 getTwhereY()	45
5.10.3.4 getTwhereZ()	45
5.11 GPSTomographyToolbox.network.Network Class Reference	45
5.11.1 Detailed Description	47
5.11.2 Constructor & Destructor Documentation	47
5.11.2.1init()	47
5.11.3 Member Function Documentation	47
5.11.3.1 addSatellite()	47
5.11.3.2 addStation()	47
5.11.3.3 getSatellites()	48
5.11.3.4 getStationBy4digitId()	48
5.11.3.5 getStations()	48
5.11.3.6 getStationsMatrix()	49
5.12 GPSTomographyToolbox.orographyreader.OrographyReader Class Reference	49
5.12.1 Detailed Description	50
5.12.2 Constructor & Destructor Documentation	50
5.12.2.1init()	50
5.12.3 Member Function Documentation	50
5.12.3.1 getOro()	50

5.13 GPS formography foolbox.point. Point Class Reference	51
5.13.1 Detailed Description	52
5.13.2 Constructor & Destructor Documentation	52
5.13.2.1init()	52
5.13.3 Member Function Documentation	53
5.13.3.1 dist()	53
5.13.3.2 getPLH()	53
5.13.3.3 getXYZ()	53
5.14 GPSTomographyToolbox.readcrd.ReadCRD Class Reference	54
5.14.1 Detailed Description	55
5.14.2 Constructor & Destructor Documentation	55
5.14.2.1init()	55
5.15 GPSTomographyToolbox.readtrp.ReadTRP Class Reference	55
5.15.1 Detailed Description	56
5.15.2 Constructor & Destructor Documentation	57
5.15.2.1init()	57
5.15.3 Member Function Documentation	57
5.15.3.1 get_CORR_E()	57
5.15.3.2 get_CORR_N()	58
5.15.3.3 get_CORR_U()	58
5.15.3.4 get_MOD_U()	58
5.15.3.5 get_SIGMA_E()	59
5.15.3.6 get_SIGMA_N()	59
5.15.3.7 get_SIGMA_U()	60
5.15.3.8 get_TOTAL_U()	60
5.16 GPSTomographyToolbox.rotation.Rotation Class Reference	61
5.16.1 Detailed Description	62
5.16.2 Constructor & Destructor Documentation	62
5.16.2.1init()	62
5.16.3 Member Function Documentation	62
5.16.3.1 setRot()	62
5.17 GPSTomographyToolbox.satellite.Satellite Class Reference	62
5.17.1 Detailed Description	64
5.17.2 Constructor & Destructor Documentation	64
5.17.2.1init()	64
5.17.3 Member Function Documentation	64
5.17.3.1 addNavMess()	64
5.17.3.2 addSP3coords()	65
5.17.3.3 getElevAzimuth()	65
5.17.3.4 getEpochsInValidTimeFrame()	65
5.17.3.5 getSatPos()	65
5.17.3.6 getSatPosNav()	66

5.17.3.7 getSatPosSP3()	66
5.17.3.8 l1()	67
5.17.3.9 l2()	67
5.17.3.10 l5()	67
5.18 GPSTomographyToolbox.satellite.SatError Class Reference	68
5.19 GPSTomographyToolbox.sp3reader.SP3Reader Class Reference	68
5.19.1 Detailed Description	70
5.19.2 Constructor & Destructor Documentation	70
5.19.2.1init()	70
5.19.3 Member Function Documentation	71
5.19.3.1 getSatellite()	71
5.19.3.2 getSatellites()	71
5.20 GPSTomographyToolbox.station.Station Class Reference	71
5.20.1 Detailed Description	73
5.20.2 Constructor & Destructor Documentation	73
5.20.2.1init()	73
5.21 GPSTomographyToolbox.epoch.TimeError Class Reference	73
5.22 GPSTomographyToolbox.vmf1.VMF1 Class Reference	74
5.22.1 Detailed Description	76
5.22.2 Section	76
5.22.3 Constructor & Destructor Documentation	76
5.22.3.1init()	76
5.22.4 Member Function Documentation	76
5.22.4.1 c_h()	76
5.22.4.2 heightCorrection()	77
5.22.4.3 slantDelay_h()	77
5.22.4.4 slantDelay_w()	78
5.23 GPSTomographyToolbox.vmf1gridreader.VMF1GridReader Class Reference	78
5.23.1 Detailed Description	80
5.23.2 Constructor & Destructor Documentation	80
5.23.2.1init()	80
5.24 GPSTomographyToolbox.ellipsoid.WGS84 Class Reference	80
5.24.1 Detailed Description	81
File Documentation	83
6.1 mart.py File Reference	83
6.1.1 Detailed Description	83
6.1.2 Function Documentation	83
6.1.2.1 mart()	83
6.2 tomography.py File Reference	84
6.2.1 Detailed Description	84
6.2.2 Function Documentation	84

6

vi		
	6.2.2.1 tomography()	84
Index		87

Chapter 1

OpATOM - An Open Source Toolbox for Atmospheric Tomography

1.1 Description

OpAtom toolbox provides a tomographic algorithm that capable of estimate a 3D wet refractivity model in Eastern Europe. The sizes of the tomographic grid are specified in the input files listed below. This algorithm uses an approximate cartesian reference system in which the length of the rays can be easily calculated. This Cartesian reference system is defined in the getlocal.py file and must be modified in case it is used in another area.

1.2 Module Requirements

The toolbox has been tested on Ubuntu 20.04 using python 3.8. Module dependencies:

- NumPy
- SciPy
- Wget
- Matplotlib

1.3 Usage

```
gnssct.py [OPTION]
-s, --satellites
-S, --stations
                      location of the satellite orbits file in .SP3 format
                      location of the station coordinates file in {\tt Bernese} .CRD format
     --gridp
                     location of the grid file in North-South direction in .csv format (degrees) location of the grid file in East-West direction in .csv format (degrees)
     --gridl
     --gridh
                      location of the elevation grid file .csv format (metres)
-v, --vmflloc
                      location of the VMF1 parameters grid files directory
-i, --initial_w
                      location of the initial wet refractivity values in .csv format
-e, --epoch
                      epoch in format YYYY-MM-DD-hh-mm-ss
Example:
python3 gnssct.py --satellites=./sample_data/orbit/CDU23005_00.EPH -
stations=./sample_data/METEONET.CRD --tropofile=./sample_data/TRP/C024040C.TRP --
gridp-./sample_data/gridp.csv --gridl-./sample_data/gridl.csv --
gridh-./sample_data/gridh.csv --vmflloc-./sample_data/vmf1/ --epoch=2024-2-9-2-0-0 --
initial_w=./sample_data/raobs/files/12843_2024-2-8_11.csv
```

The VMF1 parameters grid files must be placed in this directory, and the name format must be: YYYY/VMFG_Y
YYYMMDD.Hhh

1.4 Input files

For the tomographic processing, the following input files are required:

- · The tomographic grid file (csv format)
 - Latitude
 - Longitude
 - Height
- · GNSS station coordinates file (Bernese CRD format)
- · Tropospheric delays file (Bernese TRP format)
- · VMF1 grid parameters file (VMF1 grid file)
- · Satellite orbit file (SP3 format)
- · Initial wet refractivity values (csv format)

1.5 Tomographic grid files

Tomographic grid files define the size of the cells in each direction (latitude, longitude, height borders) over the entire area. Each file is a list of coordinates. In the case of latitude and longitude, the script expects the coordinates in degrees (WGS84), and the heights to be in meters.

```
45.5
46.2
46.9
47.6
48.3
```

49.7

1.6 GNSS station coordinates file

The GNSS station coordinates file contains all the GNSS stations and their coordinates for the given epoch in Bernese CRD format.

```
Weekly solution for Week 2310
                                                                     04-FEB-24 05:50
                                   EPOCH: 2024-01-31 12:00:00
LOCAL GEODETIC DATUM: IGS14
NUM STATION NAME
                            X (M)
                                            Y (M)
                                                                       FLAG
                       3945839.43919 1720428.58296 4691082.90436
  1 BAIA
                                                                         Α
                        4183093.74170 1439191.16597 4579512.35582
4183094.39352 1439190.59467 4579511.94882
143 BAJ1
                                                                         Α
  2 BAJA
                        3805783.52640 1629895.39810 4835969.94890
140 BARA
                        3980358.47759 1382292.41144 4772772.14404
```

1.7 Tropospheric delay file

For calculating Slant Wet Delay (SWD) values, the Zenith Wet Delays (ZWD) and Tropospheric Gradient Values are required for each station. These files must be in Bernese TRP format, where ZWDs are in column CORR_U and Tropospheric gradients are in CORR_E and CORR_N.

```
O 9-FEB-24 02:42

A PRIORI MODEL: -17 MAPPING FUNCTION: 8 GRADIENT MODEL: 4 MIN. ELEVATION: 5 TABULAR INTERVAL: 3600 / 86400

STATION NAME FLG YYYY MM DD HH MM SS YYYY MM DD HH MM SS MOD_U CORR_U SIGMA_U TOTAL_U CORR_N SIGMA_N CORR_E SIGMA_E
```

1.8 VMF1 grid files 3

D3.T3		0004 00	0.0	1 0	0.0	0.0	0 0070	0 00010	0 00000	0 20005	0 00005
BAIA	A 0.00007 -0.00068	2024 02	08	13	00	00	2.2278	0.09318	0.00093	2.32095	-0.00005
BAIA	0.00007 -0.00088	2024 02	00	1 /	0.0	00	2 2270	0 10104	0 00050	2 32072	-0.00008
DAIA	0.00006 -0.00068		0.0	14	00	00	2.22/0	0.10194	0.00033	2.32912	-0.00008
BAIA	A	2024 02	0.8	15	0.0	00	2 2278	0 09959	0 00062	2 32738	-0.00010
DAIA	0.00005 -0.00067		00	10	00		2.2270	0.00000	0.00002	2.52/50	0.00010
BAIA	Α	2024 02	0.8	16	0.0	0.0	2.2278	0.10264	0.00064	2.33044	-0.00012
	0.00004 -0.00067										
BAIA	A	2024 02	0.8	17	0.0	0.0	2.2278	0.10729	0.00050	2.33509	-0.00015
	0.00004 -0.00066										
BAIA	A	2024 02	08	18	00	00	2.2278	0.10523	0.00063	2.33304	-0.00017
	0.00003 -0.00065										
BAIA	A	2024 02	08	19	00	00	2.2271	0.11471	0.00059	2.34182	-0.00019
	0.00004 -0.00065	0.00004									
BAIA	A	2024 02	08	20	00	00	2.2264	0.11173	0.00053	2.33814	-0.00022
	0.00004 -0.00064	0.00005									
BAIA	A	2024 02	08	21	00	00	2.2257	0.12048	0.00065	2.34619	-0.00024
	0.00005 -0.00063	0.00005									
BAIA	A	2024 02	8 0	22	00	00	2.2250	0.11663	0.00057	2.34164	-0.00026
	0.00005 -0.00063	0.00006									
BAIA	A	2024 02	8 0	23	00	00	2.2243	0.11885	0.00075	2.34317	-0.00029
	0.00006 -0.00062	0.00007									
BAIA	A	2024 02	09	00	00	00	2.2236	0.11231	0.00087	2.33593	-0.00031
	0.00007 -0.00061										
BAIA	A	2024 02	09	01	00	00	2.2236	0.11582	0.00167	2.33945	0.00096
	0.00017 -0.00177										
BAJ1	A	2024 02	08	13	00	00	2.2590	0.10221	0.00085	2.36121	-0.00009
	0.00006 -0.00084										
BAJ1	Α	2024 02	08	14	00	00	2.2587	0.10047	0.00055	2.35917	-0.00010
	0.00005 -0.00075										
BAJ1	Α	2024 02	08	15	00	00	2.2584	0.10198	0.00058	2.36038	-0.00012
D 3 T1	0.00005 -0.00066		0.0	1.0	0.0	0.0	0 0501	0 00061	0 00056	0 05670	0 00013
BAJ1	A 0.00004 -0.00057	2024 02	08	ТΘ	00	00	2.2381	0.09861	0.00056	2.35672	-0.00013
BAJ1	0.00004 -0.00057	2024 02	00	17	0.0	0.0	2 2570	0 00072	0 00045	2 25752	-0.00014
DAUI	0.00003 -0.00048		00	Ι/	00	00	2.2370	0.09972	0.00043	2.33/33	-0.00014
BAJ1	0.00003 -0.00046 A	2024 02	00	10	0.0	00	2 2575	0 09471	0 00050	2 35222	-0.00016
DAUI	0.00003 -0.00039		0.0	10	00		2.2373	0.09471	0.00038	2.55222	-0.00010
вал1	A	2024 02	0.8	1 9	0.0	00	2 2572	0 09693	0 00050	2 35/13	-0.00017
DAUI	0.00003 -0.00030		00	1)	00		2.2372	0.0000	0.00050	2.55415	0.00017
BAJ1	A	2024 02	0.8	2.0	0.0	0.0	2.2569	0.09271	0.00049	2.34961	-0.00018
	0.00003 -0.00021		20		0 0	00				0.01	
BAJ1	Α	2024 02	0.8	21	0.0	0.0	2.2566	0.09063	0.00060	2.34723	-0.00020
	0.00004 -0.00012										

1.8 VMF1 grid files

The calculation of the SWDs requires a mapping function. For this purpose, the script uses the VMF1, which needs the aw coefficients. These coefficients are available on the website of the Vienna University of Technology. These parameters are provided in grid files for every 6 hours. For the hourly interpolation in time, the script expects two files.

```
Version:
                     1.0
                     J. Boehm, TU Vienna (created: 2024-02-14)
 Data_types:
                     VMF1 (lat lon ah aw zhd zwd)
! Epoch:
                    2024 02 15 00 00 0.0
! Scale factor:
                    1.e+00
                    -90 90 0 360 2 2.5
! Range/resolution:
                    http://vmf.geo.tuwien.ac.at/trop_products/GRID/2.5x2/VMF1/VMF1_OP/
! Comment:
90.0 0.0 0.00117044 0.00060490 2.2998
90.0
      2.5 0.00117044 0.00060490
                                  2.2998
                                          0.0204
90.0
      5.0 0.00117044 0.00060490
                                  2.2998
                                          0.0204
       7.5 0.00117044 0.00060490
                                  2.2998
90.0
                                          0.0204
90.0 10.0 0.00117044 0.00060490
                                  2.2998
                                          0.0204
90.0 12.5 0.00117044 0.00060490
                                  2.2998
90.0 15.0 0.00117044 0.00060490
                                  2.2998
      17.5 0.00117044
                      0.00060490
                                  2.2998
90.0 20.0 0.00117044
                      0.00060490
                                  2.2998
                                          0.0204
90.0 22.5 0.00117044 0.00060490
                                  2.2998
                                          0.0204
90.0 25.0 0.00117044 0.00060490
                                  2.2998
                                          0.0204
90.0 27.5 0.00117044 0.00060490
                                  2.2998
```

1.9 Satellite orbit file

To calculate the azimuth and elevation angle from the station to the satellite, besides the station coordinates, the satellite orbits are also required in SP3 format. The ultra-rapid satellite orbits for GPS, GLONASS, and Galileo constellations are available from the Center for Orbit Determination in Europe at the University of Bern.

```
#cP2024 2 12 18 0 0.00000000
                                 577 d+D
## 2301 151200.00000000
                       300.00000000 60352 0.7500000000000
        G01G02G03G04G05G06G07G08G09G10G11G12G13G14G15G16G1
        G18G19G20G21G22G23G24G25G26G27G28G29G30G31G32R01R02
        R03R04R05R07R08R09R11R12R13R14R15R16R17R18R19R20R21
        R22R24E02E03E04E05E07E08E09E10E11E12E13E14E15E18E19
        E21E24E25E26E27E30E31E33E34E36
          5 7 6 6 7 6 7 6 6
                       6
                          6
                                6
++
          8 8 8 8 8 7
                          6
                                  6 6
                                        6 8
            8 6 6 6 6
            6 6 7 6 10 6 7
                               6 7
                                     0
                                       0
                                          0 0
1.2500000
             1.025000000 0.00000000000
                                       0.0000000000000000
용i
     0
         0
              0
                  0
                         0
                                0
                                      0
                                             0
                   0
                         Ω
                                      0
                                0
용i
/* Center for Orbit Determination in Europe (CODE)
/* Ultra-rapid GRE orbits starting year-day 24043 18 hour
/* Observed/predicted: 24/24 hours (data used up to 044R)
  PCV:IGS20 OL/AL:FES2014b NONE 2024 2 12 18 0 0.00000000
/* PCV:IGS20
                                      YN ORB: CON CLK: BRD
PG01 10017.227962 -21757.155189 -11451.757387
                                              169.286245
     14675.739771 -21822.976616 -2052.019267
PG02
                                             -486.484832
      8469.065183 -12995.901194 -21686.432325
      3600.602597 -22237.722088 -13945.053317
                                              290.029824
PG04
PG05 -20341.276134 7377.183933 15289.811367
PG06 -16369.020521 -2296.830107 -20745.620735
                                             -161.559994
                                             409.693247
    -1894.045106 -18515.401534 19259.776594
PG07
                                              -60.352554
PG08
     8973.397509 -15470.338889
                              19399.830924
                                             -166.689337
                                             89.933932
     -7116.144195 -25433.994890 -2585.513683
PG10 22629.595338 10998.556186
                                9210.119432
                                               0.062606
PG11 -21242.149685
                  8170.890518 -13627.298892
                                            -573.517674
PG12 -9883.448912 12694.506995 -21410.063052
                                            -477.323298
PG13 -13937.859196
                  5903.727931 21603.132559
                                              624.913034
PG14 -19730.979185 -13446.930472 11852.906315
                                              323.976361
     -7222.733526 16617.677119
                               18862.775701
                                              127.009782
PG16 24409.248046
                  -401.590168 10670.590254
```

1.10 Initial wet refractivity file

The initial values of the 3D Wet Refractivity model are necessary to solve the equation system with the MART algorithm. Radiosonde (RS) profiles are used to calculate these values, and these profiles are expanded to cover the entire area. After the calculation of the Wet refractivity values, they are stored in csv format (Fig7).

```
WMOID, HEIGHT, DATE, TIME, HEIGHT, N_DRY, N_WET, TEMPERATURE, PRESSURE, DEWPOINT, RHOWV 12843, 139, 2024-02-01, 11:00:00, 139, 279.0515, 31.90512, 278.56, 10080, 273.56, 0.004893853 12843, 209, 2024-02-01, 11:00:00, 209, 278.1079, 30.57998, 277.36, 10000, 272.86, 0.00467139 12843, 250, 2024-02-01, 11:00:00, 250, 276.9208, 30.4007, 277.16, 9950, 272.76, 0.00464082 12843, 440, 2024-02-01, 11:00:00, 440, 267.8434, 32.1, 279.76, 9720, 273.76, 0.004943895 12843, 601, 2024-02-01, 11:00:00, 601, 262.9998, 31.27059, 279.36, 9530, 273.36, 0.004809611 12843, 846, 2024-02-01, 11:00:00, 846, 257.0624, 31.71184, 277.36, 9250, 273.36, 0.004844292 12843, 1496, 2024-02-01, 11:00:00, 1496, 241.7266, 25.98888, 272.26, 8530, 270.16, 0.003900615
```

1.11 Results

The results of the Tomographic Reconstruction are stored in .npy (NumPy) format as a 3D matrix in the results directory (results/refractivity/refractivity_YYYY-MM-DD-hh.npy). The matrix values represent the wet refractivity values. The matrix indexes are in the following order: latitude, longitude, height. The indices represent the number of the voxel in the specified direction corresponding to the given tomographic grid files.

1.12 Licenses 5

1.12 Licenses

OpATOM project is under MIT license.

1.13 References

- Bender M, Dick G, Ge M, Deng Z, Wickert J, Kahle HG, Raabe A, Tetzlaff G (2011) Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv Space Res 47:1704–1720. https://doi.org/10.1016/j.asr.2010.05.034
- Boehm J, Kouba J, Schuh H (2009) Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geod 83:397–401. $\frac{1007}{\text{s}00190-008-0216-y}$
- Dach R, Lutz S, Walser P, Fridez P (2015) Bernese GNSS Software Version 5.2 User manual. https↔ ://doi.org/10.7892/boris.72297
- Hilla S (2016) The extended standard product 3 orbit format (SP3-d). https://files.igs.
 org/pub/data/format/sp3d.pdf
- Horváth T, Viengdavanh R, Rózsa S (2014) Négydimenziós vízgőzmodellek előállítása GNSS tomográfiával (Construction of 4D water vapour models by means of GNSS tomography). Geomat Közlem 17:69–78. https://geomatika.epss.hun-ren.hu/storage/volumes/gk_XVII_1.pdf
- Lutz S, Beutler G, Schaer S, Dach R, Jäggi A (2014) CODE's new ultra-rapid orbit and ERP products for the IGS. GPS Solut 20:239–250. https://doi.org/10.1007/s10291-014-0432-2
- Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res Solid Earth 101:3227–3246. https://doi.org/10.1029/95JB03048
- re3data.org: VMF Data Server; editing status 2020-12-14 (2020) re3data.org—Registry of Research Data Repositories. https://doi.org/10.17616/R3RD2H
- Rózsa S, Khaldi A, Ács Á, Turák B (2021) Multi-GNSS near real-time precipitable water vapour estimation for severe weather prediction. Bull Ştiinţ Univ Nord Baia Mare Ser D 35:777-786. https://www.←researchgate.net/publication/369649633_MULTI-GNSS_NEAR_REAL-TIME_PRECI←PITABLE_WATER_VAPOUR_ESTIMATION_FOR_SEVERE_WEATHER_PREDICTION
- Turák B, Khaldi A, Rózsa S (2024) Tomographic reconstruction of atmospheric water vapor profiles using multi-GNSS observations. Period Polytech Civ Eng 68:155–168. https://doi.org/10.3311/P←Pci.20559
- Weber J (2024) GSL Radiosonde Database. https://ruc.noaa.gov/raobs/General_← Information.html

1.14 Author(s)

- · Bence Turák Budapest University of Technology and Economics
- Abir Khaldi Budapest University of Technology and Economics
- · Szabolcs Rózsa Budapest University of Technology and Economics

6	OpATOM - An Open Source Toolbox for Atmospheric Tomography

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Exception	
GPSTomographyToolbox.epoch.TimeError	73
GPSTomographyToolbox.satellite.SatError	38
object	
GPSTomographyToolbox.ellipsoid.Ellipsoid1	13
GPSTomographyToolbox.ellipsoid.IUGG67	38
GPSTomographyToolbox.ellipsoid.WGS84	30
GPSTomographyToolbox.epoch.Epoch	16
GPSTomographyToolbox.epoch.LeapSecs	39
GPSTomographyToolbox.getlocal.GetLocal	25
GPSTomographyToolbox.gnssct.GNSSCT	32
GPSTomographyToolbox.line.Line	11
GPSTomographyToolbox.network.Network	15
GPSTomographyToolbox.orographyreader.OrographyReader	19
GPSTomographyToolbox.point.Point	51
GPSTomographyToolbox.station.Station	71
GPSTomographyToolbox.readcrd.ReadCRD	54
GPSTomographyToolbox.readtrp.ReadTRP	55
GPSTomographyToolbox.rotation.Rotation	31
GPSTomographyToolbox.satellite.Satellite	32
GPSTomographyToolbox.satellite.GalileoSat	21
GPSTomographyToolbox.satellite.GLONASSSat	28
GPSTomographyToolbox.satellite.GPSSat	35
GPSTomographyToolbox.sp3reader.SP3Reader	36
GPSTomographyToolbox.vmf1.VMF1	74
GPSTomographyToolbox.vmf1gridreader.VMF1GridReader	78

8 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

GPSTomographyToolbox.ellipsoid.Ellipsoid	
Ellipsoid class to define generic ellipsoidal coordinate system	13
GPSTomographyToolbox.epoch.Epoch	
Epoch class to contain datetime and perform operations	16
GPSTomographyToolbox.satellite.GalileoSat	
GLONASS Satellite class for contain and calculate position	21
GPSTomographyToolbox.getlocal.GetLocal	
Transformation class from ellipsoidal coordinate system to a pre-defined cylindrical projection .	25
GPSTomographyToolbox.satellite.GLONASSSat	
GLONASS Satellite class for contain and calculate position	28
GPSTomographyToolbox.gnssct.GNSSCT	
GNSSCT class to handle all input, output and parameter files together to star the tomographic	
procession	32
GPSTomographyToolbox.satellite.GPSSat	
GPS Satellite class for contain and calculate position	35
GPSTomographyToolbox.ellipsoid.IUGG67	
IUGG67 class to define IUGG67 ellipsoidal coordinate system	38
GPSTomographyToolbox.epoch.LeapSecs	
LeapSecs class to handle leap seconds	39
GPSTomographyToolbox.line.Line	
Line object to to define line in 3d cartesian coordinate system	41
GPSTomographyToolbox.network.Network	
Network class to collect stations and satellites	45
GPSTomographyToolbox.orographyreader.OrographyReader	
OrographyReader class to read Orography grid file	49
GPSTomographyToolbox.point.Point	
Point class to store and make calculations on points in cartesian and geographical coordinate	
system	51
GPSTomographyToolbox.readcrd.ReadCRD	
ReadCRD class to read Bernese CRD format file The content of the Bernese CRD file will be	
sored and can be used inv the newtork parameter of the class in a Network object	54
GPSTomographyToolbox.readtrp.ReadTRP	
ReadTRP class to read Bernese TRP (troposphere) format file	55
GPSTomographyToolbox.rotation.Rotation	
Botation class to transform points from a CRD to another	61

10 Class Index

GPSTomographyToolbox.satellite.Satellite	
Satellite class for contain and calc position	62
GPSTomographyToolbox.satellite.SatError	68
GPSTomographyToolbox.sp3reader.SP3Reader	
SP3Reader class to read and parse SP3 format satellite orbit file	68
GPSTomographyToolbox.station.Station	
Station class to store and make calculations on points in cartesian and geographical coordinate	
system	71
GPSTomographyToolbox.epoch.TimeError	73
GPSTomographyToolbox.vmf1.VMF1	
Vienna Mapping Function 1 class to calculate slant hydrostatic and wet delay at a GNSS station	
to any direction in a topocentric coordinate system	74
GPSTomographyToolbox.vmf1gridreader.VMF1GridReader	
VMF1GridReader class to read VMF1 (Vienna Mapping Function) grid file format file	78
GPSTomographyToolbox.ellipsoid.WGS84	
WGS84 class to define WGS84 ellipsoidal coordinate system	80

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

mart.py	
Wet refractivity reconstruction using Multiplicative Algebraic Reconstuction Technique	83
tomography.py	
Calculate each rays' length through the tomographic grid and Slant Wet Delay using Vienna	
Mapping Function 1 for setting up the design matrix a measurements vector of the equation	
system	84

12 File Index

Chapter 5

Class Documentation

5.1 GPSTomographyToolbox.ellipsoid.Ellipsoid Class Reference

Ellipsoid class to define generic ellipsoidal coordinate system.

Inheritance diagram for GPSTomographyToolbox.ellipsoid.Ellipsoid:

Collaboration diagram for GPSTomographyToolbox.ellipsoid.Ellipsoid:

Public Member Functions

```
    def __init__ (self)
    Ellipsoid initializer.
```

• def e (self)

First eccentricity getter.

• def ec (self)

Second eccentricity getter.

- def f (self)
- def getXYZ (self, plh)

Get cartesian (X,Y,Z) coordinates from geographical (longitude, latitude, altitude) coordinates.

• def getPLH (self, xyz)

Get geographical (longitude, latitude, altitude) coordinates from cartesian (X,Y,Z) coordinates.

5.1.1 Detailed Description

Ellipsoid class to define generic ellipsoidal coordinate system.

5.1.2 Constructor & Destructor Documentation

Ellipsoid initializer.

5.1.3 Member Function Documentation

```
5.1.3.1 e()
```

```
\label{lipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid.ellipsoid
```

First eccentricity getter.

Returns

eccentrictiy (float)

5.1.3.2 ec()

```
\label{lipsoid.ec} \mbox{def GPSTomographyToolbox.ellipsoid.Ellipsoid.ec (} \\ self \mbox{)}
```

Second eccentricity getter.

Returns

seconf eccentricity (float)

5.1.3.3 f()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.ellipsoid.Ellipsoid.f} ( & self ) \\ \\ & Flattening getter \\ & \operatorname{Creturn flattening (float)} \end{tabular}
```

5.1.3.4 getPLH()

```
def GPSTomographyToolbox.ellipsoid.Ellipsoid.getPLH ( self, \\ xyz \ )
```

Get geographical (longitude, latitude, altitude) coordinates from cartesian (X,Y,Z) coordinates.

Parameters

```
xyz (np.array (1,3)): cartesian coordinates [[x, y, z]]
```

Returns

plt_coords (np.array (1,3)): geographical coordinates [[phi, lambda, h]]

5.1.3.5 getXYZ()

```
def GPSTomographyToolbox.ellipsoid.Ellipsoid.getXYZ ( self, \\ plh \ )
```

Get cartesian (X,Y,Z) coordinates from geographical (longitude, latitude, altitude) coordinates.

Parameters

plh (np.array (1,3)): geographical coordinates [[phi, lambda, h]]

Returns

XYZ_coords (np.array (1,3)): cartesian coordinates (numpy array (1,3)) [[x, y, z]]

The documentation for this class was generated from the following file:

· ellipsoid.py

5.2 GPSTomographyToolbox.epoch.Epoch Class Reference

Epoch class to contain datetime and perform operations.

Inheritance diagram for GPSTomographyToolbox.epoch.Epoch:

Collaboration diagram for GPSTomographyToolbox.epoch.Epoch:

Public Member Functions

```
• def __init__ (self, dt=np.array([1, 0, 0, 0, 0, 0]), system=GPS, downloadLeapSec=False)
      Epoch initialiazer.

    def getDateTime (self, system=GPS)

     get DateTime time getter

    def GPSweekTOW (self, week, tow)

     set time by GPS week and tow
• def GPSweek (self)
     get GPS week getter
• def TOW (self)
     get seconds on the GPS week getter
• def DOW (self)
     get day of GPS week getter

    def DOY (self)

     get day of year getter
• def year (self)
     get year getter

    def UTC (self)

     get datetime in UTC time system, getter available leapseconds are required in the given epoch
• def GPS (self)
     get datetime in GPS time system, getter, available leapseconds are required in the given epoch
· def MJD (self)
     get Modified Julian Date, getter

    def date (self)

     get date in formatted string
· def time (self)
     get time in formatted string
· def floor (self, n)
• def ceil (self, n)

    def eq (self, other)

• def __neq__ (self, other)

    def <u>gt</u> (self, other)

• def __lt__ (self, other)

    def <u>ge</u> (self, other)

• def __le__ (self, other)
• def __add__ (self, other)
• def __sub__ (self, other)
def __repr__ (self)
• def __str__ (self)
```

Public Attributes

- dt
- · months

Static Public Attributes

• list **months** = [31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31]

5.2.1 Detailed Description

Epoch class to contain datetime and perform operations.

5.2.2 Constructor & Destructor Documentation

```
5.2.2.1 __init__()
```

Epoch initialiazer.

Parameters

dt	(np.array): datetime in vector [year, month, day, hour, minute, second]
system	time system GPS, UTC (int), default GPS

5.2.3 Member Function Documentation

```
5.2.3.1 date()
```

```
\begin{tabular}{ll} \tt def GPSTomographyToolbox.epoch.Epoch.date ( \\ self ) \end{tabular}
```

get date in formatted string

Returns

date (str)

5.2.3.2 DOW()

```
\label{eq:condition} \mbox{def GPSTomographyToolbox.epoch.Epoch.DOW (} \\ self \mbox{)}
```

get day of GPS week getter

Returns

DOW (int)

```
5.2.3.3 DOY()
```

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.epoch.Epoch.DOY} & $\operatorname{self}$ ) \\ $\operatorname{get day of year getter} \\ $\operatorname{Returns}$ & $\operatorname{DOY}$ (int) \\ \end{tabular}
```

5.2.3.4 getDateTime()

get DateTime time getter

Returns

datetime (np.array)

5.2.3.5 GPS()

```
\label{eq:constraints} \mbox{def GPSTomographyToolbox.epoch.Epoch.GPS (} \\ self \mbox{)}
```

get datetime in GPS time system, getter, available leapseconds are required in the given epoch

Returns

utc (np.array)

5.2.3.6 GPSweek()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.epoch.Epoch.GPSweek} & ( & self \ ) \\ \\ $\operatorname{get GPS week getter} & \\ \\ $\operatorname{Returns} & \\ & \operatorname{gps\_week} & ( \operatorname{int} ) \\ \end{tabular}
```

5.2.3.7 GPSweekTOW()

```
def GPSTomographyToolbox.epoch.Epoch.GPSweekTOW ( self, \\ week, \\ tow )
```

set time by GPS week and tow

Parameters

week	(int): GPSweek
tow	(float): time of week

5.2.3.8 MJD()

```
\label{eq:condition} \mbox{def GPSTomographyToolbox.epoch.Epoch.MJD (} \\ self \mbox{)}
```

get Modified Julian Date, getter

Returns

MJD (float)

5.2.3.9 time()

```
\label{eq:constraint} \mbox{def GPSTomographyToolbox.epoch.Epoch.time (} \\ self \mbox{)}
```

get time in formatted string

Returns

time (str)

5.2.3.10 TOW()

```
\label{eq:condition} \mbox{def GPSTomographyToolbox.epoch.Epoch.TOW (} \\ self \mbox{)}
```

get seconds on the GPS week getter

Returns

TOW (float)

5.2.3.11 UTC()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.epoch.Epoch.UTC} & \\ self \end{tabular} \label{eq:gpstowdef}
```

get datetime in UTC time system, getter available leapseconds are required in the given epoch

Returns

utc (np.array)

5.2.3.12 year()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.epoch.Epoch.year} & ( & self \end{tabular} ) \\ $\operatorname{get year getter} & \\ $\operatorname{Returns} & \end{tabular}
```

The documentation for this class was generated from the following file:

· epoch.py

year (int)

5.3 GPSTomographyToolbox.satellite.GalileoSat Class Reference

GLONASS Satellite class for contain and calculate position.

Inheritance diagram for GPSTomographyToolbox.satellite.GalileoSat:

Collaboration diagram for GPSTomographyToolbox.satellite.GalileoSat:

Public Member Functions

```
    def __new__ (self, prn=", nav={})
    def getValidEph (self, epoch)
        get valid navigation message for an epoch
    def getSatPosNav (self, epoch)
        get satellite position in case of GPS satellite
```

def T1 (self)
 get L1 period time

• def T5 (self)

get L5 period time

• def T5a (self)

get L5a period time

• def T5b (self)

get L5b period time

• def T6 (self)

get L6 period time

Static Public Attributes

- float f1 = 1575.42*10**6
- float $\mathbf{f5} = 1191.795 * 10 * * 6$
- float **f5a** = 1176.45*10**6
- float **f5b** = 1207.14*10**6
- float $\mathbf{f6} = 1278.750 * 10 * * 6$

Additional Inherited Members

5.3.1 Detailed Description

GLONASS Satellite class for contain and calculate position.

5.3.2 Member Function Documentation

5.3.2.1 getSatPosNav()

```
def GPSTomographyToolbox.satellite.GalileoSat.getSatPosNav ( self, \\ epoch \ )
```

get satellite position in case of GPS satellite

Parameters

```
epoch (Epoch): timestamp when we get the position of satellite
```

Returns

(Point): position of satellite at given epoch

Reimplemented from GPSTomographyToolbox.satellite.Satellite.

5.3.2.2 getValidEph()

```
def GPSTomographyToolbox.satellite.GalileoSat.getValidEph ( self, \\ epoch \ )
```

get valid navigation message for an epoch

Parameters

```
epoch (Epoch): reference epoch
```

Returns

(list): valid nevigation message

```
5.3.2.3 T1()
def GPSTomographyToolbox.satellite.GalileoSat.T1 (
              self )
get L1 period time
Returns
     (float): L1 period time in seconds
5.3.2.4 T5()
def GPSTomographyToolbox.satellite.GalileoSat.T5 (
              self )
get L5 period time
Returns
     (float): L5 period time in seconds
5.3.2.5 T5a()
def GPSTomographyToolbox.satellite.GalileoSat.T5a (
               self )
get L5a period time
Returns
     (float): L5a period time in seconds
5.3.2.6 T5b()
def GPSTomographyToolbox.satellite.GalileoSat.T5b (
```

self)

(float): L5b period time in seconds

get L5b period time

Returns

5.3.2.7 T6()

```
def GPSTomographyToolbox.satellite.GalileoSat.T6 ( self )
```

get L6 period time

Returns

(float): L6 period time in seconds

The documentation for this class was generated from the following file:

· satellite.py

5.4 GPSTomographyToolbox.getlocal.GetLocal Class Reference

Transformation class from ellipsoidal coordinate system to a pre-defined cylindrical projection.

Inheritance diagram for GPSTomographyToolbox.getlocal.GetLocal:

 $Collaboration\ diagram\ for\ GPSTomography Toolbox. get local. Get Local:$

Public Member Functions

• def getLocalCoords (self, p)

```
    def __init__ (self, min, max)
        GetLocal initializer to define the corners of the area to fit the best cylinder including heights.
    def x (self, lat)
        x coordinate in local coordinate system
    def y (self, lon)
        y coordinate in local coordinate system
    def z (self, h)
        z coordinate in local coordinate system
```

Transform ellipsoidal coordinates to local cylindrical coordinates.

Public Attributes

- min
- max
- a
- · b
- е
- ec

5.4.1 Detailed Description

Transformation class from ellipsoidal coordinate system to a pre-defined cylindrical projection.

5.4.2 Constructor & Destructor Documentation

GetLocal initializer to define the corners of the area to fit the best cylinder including heights.

Parameters

min	(np.array (3,): corner of the fitted CRS			
max	(np.array (3,): opposite corner of the fitted CRS			

5.4.3 Member Function Documentation

5.4.3.1 getLocalCoords()

```
def GPSTomographyToolbox.getlocal.GetLocal.getLocalCoords ( self, \\ p \ )
```

Transform ellipsoidal coordinates to local cylindrical coordinates.

Parameters

p (Point, Station): Point/Station object with available geographical coordinates

Returns

trnsformed_p (Point, Station): Point/Station object in cylindrical CRS.

5.4.3.2 x()

```
def GPSTomographyToolbox.getlocal.getLocal.x ( self, \\ lat \ )
```

x coordinate in local coordinate system

Parameters

```
lat (float): latitude (radians)
```

Returns

```
x (float): meters
```

5.4.3.3 y()

```
def GPSTomographyToolbox.getlocal.GetLocal.y ( self, \\ lon \ )
```

y coordinate in local coordinate system

ь.					
Pа	ra	m	eı	ıе	rs

lon (float): longitude (radians)

Returns

y (float): meters

5.4.3.4 z()

```
def GPSTomographyToolbox.getlocal.GetLocal.z ( self, \\ h \ )
```

z coordinate in local coordinate system

Parameters

h (float): height (meters)

Returns

z (float): meters

The documentation for this class was generated from the following file:

· getlocal.py

5.5 GPSTomographyToolbox.satellite.GLONASSSat Class Reference

GLONASS Satellite class for contain and calculate position.

Inheritance diagram for GPSTomographyToolbox.satellite.GLONASSSat:

Collaboration diagram for GPSTomographyToolbox.satellite.GLONASSSat:

Public Member Functions

- def __new__ (self, prn=", nav={})
- def __init__ (self, prn=", nav={})
 GLONASSSat initilaizer.

def f1 (self)

get L1 frequency of the satellite

• def f2 (self)

```
get L2 frequency of the satellite
```

```
    def getValidEph (self, epoch)
    get valid navigation message for epoch
```

• def getSatPosNav (self, epoch)

get satellite position in case of GLONASS satellite

Public Attributes

diffEqSolved

5.5.1 Detailed Description

GLONASS Satellite class for contain and calculate position.

5.5.2 Constructor & Destructor Documentation

```
5.5.2.1 __init__()
```

GLONASSSat initilaizer.

Parameters

prn	(str): PRN number	
nav	(dict): navigation messages	

5.5.3 Member Function Documentation

5.5.3.1 f1()

```
\label{like:condition} \mbox{def GPSTomographyToolbox.satellite.GLONASSSat.f1 (} \\ self \mbox{)}
```

get L1 frequency of the satellite

Returns

(float): L1 frequency in Hz

5.5.3.2 f2()

```
\label{eq:condition} \mbox{def GPSTomographyToolbox.satellite.GLONASSSat.f2 (} \\ self \mbox{)}
```

get L2 frequency of the satellite

Returns

(float): L2 frequency in Hz

5.5.3.3 getSatPosNav()

```
def GPSTomographyToolbox.satellite.GLONASSSat.getSatPosNav ( self, \\ epoch \ )
```

get satellite position in case of GLONASS satellite

Parameters

epoch (Epoch): timestamp when of the position of satellite

Returns

(Point): position of satellite at given epoch

Reimplemented from GPSTomographyToolbox.satellite.Satellite.

5.5.3.4 getValidEph()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.satellite.GLONASSSat.getValidEph (} \\ & self, \\ & epoch \end{tabular} \label{eq:gpstomographyToolbox.satellite.glonassSat.getValidEph (} \\ & self, \\ & epoch \end{tabular}
```

get valid navigation message for epoch

Parameters

epoch (Epoch): timestamp what of valid nav message for (Epoch)

Returns

(list): valid navigation message

The documentation for this class was generated from the following file:

· satellite.py

5.6 GPSTomographyToolbox.gnssct.GNSSCT Class Reference

GNSSCT class to handle all input, output and parameter files together to star the tomographic procession.

 $Inheritance\ diagram\ for\ GPSTomographyToolbox.gnssct.GNSSCT:$

Collaboration diagram for GPSTomographyToolbox.gnssct.GNSSCT:

Public Member Functions

• def <u>__init__</u> (self, gridp, gridl, gridh, x0_3D_w, network, troposphere, mapping_function, ep, constellation=('G', 'R', 'E'), max_iter=3000, tolerance=2.7, output_root="./")

GNSSCT class initializer.

def writeNw2npy (self, fname)

Write reconstructed wet refractivity model to file in .npy (numpy) format.

• def run (self)

Run tomograhpic procession and adjust observation get reconstructed wet refractivity model to the selected area.

Public Attributes

- gridp
- gridl
- · gridh
- · cellX
- cellY
- · cellZ
- x0_3D_w
- network
- troposphere
- ep
- mapping_function
- constellation
- max_iter
- tolerance
- Nw 3D
- Nh_3D
- output_root

5.6.1 Detailed Description

GNSSCT class to handle all input, output and parameter files together to star the tomographic procession.

5.6.2 Constructor & Destructor Documentation

```
5.6.2.1 __init__()
```

GNSSCT class initializer.

Parameters

gridp	(np.array): tomographic grid (longitude) in radians
gridl	(np.array): tomographic grid (latitude) in radians

Parameters

gridh	(np.array): tomographic grid (height) in meters
x0_3D_w	(np.array): intital 3D wet refractivity model
network	(Network): network object that contains all the reference stations and satellite orbits in the reference epoch
trpopsphere	(ReadTRP): parsed troposheric delays from Benese TRP file in the reference epoch
mapping_function	(VMF1): Vienna Mapping Funtion 1 with the recent VMF1 parameters
ер	(Epoch): refernce epoch
constellations	(tuple): list of applied GNSS constellations (G => GPS, R => GLONASS, E => Galileo), diffault: ('G', 'R', 'E')
max_iter	(int): number of maximum iteration for MART algorithm, default: 3000
tolerance	(float): value of tolerance for MART algorithm: 2.7
output_root	(str): location of output files, default: "./"

5.6.3 Member Function Documentation

5.6.3.1 run()

```
\label{lem:gpstomographyToolbox.gnssct.GNSSCT.run (} self \ )
```

Run tomograppic procession and adjust observation get reconstructed wet refractivity model to the selected area.

The method uses the given poarameters of the object and the results will be stored in Nw_3D parameter of the object.

5.6.3.2 writeNw2npy()

Write reconstructed wet refractivity model to file in .npy (numpy) format.

Parameters

```
fname (str): file name
```

The documentation for this class was generated from the following file:

gnssct.py

5.7 GPSTomographyToolbox.satellite.GPSSat Class Reference

GPS Satellite class for contain and calculate position.

Inheritance diagram for GPSTomographyToolbox.satellite.GPSSat:

Collaboration diagram for GPSTomographyToolbox.satellite.GPSSat:

Public Member Functions

- def __new__ (self, prn=", nav={})
- def getValidEph (self, epoch)

```
get valid navigation message for an epoch
```

• def getSatPosNav (self, epoch)

get satellite position in case of GPS satellite

• def T1 (self)

get L1 period time

• def T2 (self)

get L2 period time

• def T5 (self)

get L5 period time

Static Public Attributes

```
• float f1 = 1575.42*10**6
```

• float $\mathbf{f2} = 1227.60*10**6$

• float $\mathbf{f5} = 1176.45*10**6$

Additional Inherited Members

5.7.1 Detailed Description

GPS Satellite class for contain and calculate position.

5.7.2 Member Function Documentation

5.7.2.1 getSatPosNav()

```
def GPSTomographyToolbox.satellite.GPSSat.getSatPosNav ( self, \\ epoch \ )
```

get satellite position in case of GPS satellite

Parameters

```
epoch (Epoch): timestamp when we get the position of satellite
```

Returns

(Point): position of satellite at given epoch

Reimplemented from GPSTomographyToolbox.satellite.Satellite.

5.7.2.2 getValidEph()

```
def GPSTomographyToolbox.satellite.GPSSat.getValidEph ( self, \\ epoch \ )
```

get valid navigation message for an epoch

Parameters

```
epoch | (Epoch): reference epoch
```

Returns

(list): valid nevigation message

5.7.2.3 T1()

```
\label{like:constraint} $\operatorname{def GPSTomographyToolbox.satellite.GPSSat.T1}$ ( $\operatorname{\it self}$ )
```

get L1 period time

Returns

(float): L1 period time in seconds

5.7.2.4 T2()

```
\label{lem:constraint} \mbox{def GPSTomographyToolbox.satellite.GPSSat.T2 (} \\ self \mbox{)}
```

get L2 period time

Returns

(float): L2 period time in seconds

5.7.2.5 T5()

```
\label{likelihood} \mbox{def GPSTomographyToolbox.satellite.GPSSat.T5 (} \\ self \mbox{)}
```

get L5 period time

Returns

(float): L5 period time in seconds

The documentation for this class was generated from the following file:

· satellite.py

5.8 GPSTomographyToolbox.ellipsoid.IUGG67 Class Reference

IUGG67 class to define IUGG67 ellipsoidal coordinate system.

Inheritance diagram for GPSTomographyToolbox.ellipsoid.IUGG67:

Collaboration diagram for GPSTomographyToolbox.ellipsoid.IUGG67:

Static Public Attributes

- float **a** = 6378160.000
- float **b** = 6356774.516

Additional Inherited Members

5.8.1 Detailed Description

IUGG67 class to define IUGG67 ellipsoidal coordinate system.

The documentation for this class was generated from the following file:

· ellipsoid.py

5.9 GPSTomographyToolbox.epoch.LeapSecs Class Reference

LeapSecs class to handle leap seconds.

Inheritance diagram for GPSTomographyToolbox.epoch.LeapSecs:

Collaboration diagram for GPSTomographyToolbox.epoch.LeapSecs:

Public Member Functions

 def __init__ (self, fileName='Leap_Second.dat', url='https://hpiers.obspm.fr/iers/bul/bulc/Leap_Second.dat', download=False)

LeapSecs initializer.

• def getLeapSecsAt (self, epoch, fr=GPS)

Public Attributes

- fileName
- · leapSecs
- fid

5.9.1 Detailed Description

LeapSecs class to handle leap seconds.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 __init__()

LeapSecs initializer.

Parameters

fileName	(str): default Leap_second.dat
url	(str): url of leapsec file, default https://hpiers.obspm.fr/iers/bul/bulc/Leap_Second.dat (IERS bulletin C)
download	(boolean): download the leapsec file?, default False

The documentation for this class was generated from the following file:

· epoch.py

5.10 GPSTomographyToolbox.line.Line Class Reference

Line object to to define line in 3d cartesian coordinate system.

Inheritance diagram for GPSTomographyToolbox.line.Line:

Collaboration diagram for GPSTomographyToolbox.line.Line:

Public Member Functions

```
• def __init__ (self, p, alpha, e)
```

Line initializer.

• def getPointAtT (self, t)

Get contained Point of the Line where 't' parameter is.

def getTwhereX (self, x)

Get 't' paramater of the eqations where X coordinate is.

def getTwhereY (self, y)

Get 't' paramater of the eqations where Y coordinate is.

def getTwhereZ (self, z)

Get 't' paramater of the eqations where Z coordinate is.

Public Attributes

- x
- у
- . 7
- xr
- yr
- zr

5.10.1 Detailed Description

Line object to to define line in 3d cartesian coordinate system.

5.10.2 Constructor & Destructor Documentation

```
5.10.2.1 __init__()
```

Line initializer.

Parameters

p	(Point): point contained by the line	
alpha	(float): angle from the axis X (azimuth) in radians	
е	(float): elevation angle in radians	

5.10.3 Member Function Documentation

5.10.3.1 getPointAtT()

Get contained Point of the Line where 't' parameter is.

Parameters

```
t (tuple)(float): list t parameters
```

Returns

point (Point): coordinates of line

5.10.3.2 getTwhereX()

```
def GPSTomographyToolbox.line.Line.getTwhereX ( self, \\ x \ )
```

Get 't' paramater of the eqations where X coordinate is.

Parameters

```
x (float): X coordinate
```

Returns

t (float): t parameter

5.10.3.3 getTwhereY()

```
def GPSTomographyToolbox.line.Line.getTwhereY ( self, \\ y \ )
```

Get 't' paramater of the eqations where Y coordinate is.

Parameters

```
y (float): Y coordinate
```

Returns

```
t (float): t parameter
```

5.10.3.4 getTwhereZ()

```
def GPSTomographyToolbox.line.Line.getTwhereZ ( self, \\ z \ )
```

Get 't' paramater of the eqations where Z coordinate is.

Parameters

```
z (float): Z coordinate
```

Returns

```
t (float): t parameter
```

The documentation for this class was generated from the following file:

• line.py

5.11 GPSTomographyToolbox.network.Network Class Reference

Network class to collect stations and satellites.

Inheritance diagram for GPSTomographyToolbox.network.Network:

Collaboration diagram for GPSTomographyToolbox.network.Network:

Public Member Functions

- def __init__ (self)
 - Network initializer.
- def getStations (self)

get stations method generator function

- def getSatellites (self)
 - get satellites method generator function
- def getStationBy4digitId (self, id)

get an exact station, select by the 4 digit ID

- def addStation (self, st)
 - add station to the network
- def addSatellite (self, sat)

add satellite to the network

• def getStationsMatrix (self)

get stations' ids and coordinates in matrix

Public Attributes

- stations
- · satellites

5.11.1 Detailed Description

Network class to collect stations and satellites.

5.11.2 Constructor & Destructor Documentation

Network initializer.

5.11.3 Member Function Documentation

5.11.3.1 addSatellite()

```
def GPSTomographyToolbox.network.Network.addSatellite ( self, \\ sat \ )
```

add satellite to the network

Parameters

```
sat (Satellite): satellite
```

5.11.3.2 addStation()

```
def GPSTomographyToolbox.network.Network.addStation ( self, \\ st \ )
```

add station to the network

Parameters

```
st (Point,Station): station
```

5.11.3.3 getSatellites()

```
\label{lem:constraint} $\operatorname{def GPSTomographyToolbox.network.Network.getSatellites} \ \ (
```

get satellites method generator function

Returns

network_satellites (Satellite): list of satellites, generator

5.11.3.4 getStationBy4digitId()

```
\begin{tabular}{ll} $\operatorname{def GPSTomographyToolbox.network.Network.getStationBy4digitId} & \\ & self, \\ & id \end{tabular}
```

get an exact station, select by the 4 digit ID

Parameters

```
id (str): 4 digit ID
```

Returns

station (Station, Point): station

5.11.3.5 getStations()

```
\label{lem:constraints} \mbox{def GPSTomographyToolbox.network.Network.getStations (} \\ self \mbox{)}
```

get stations method generator function

Returns

network_stations (Station/Point): list of stations, generator

5.11.3.6 getStationsMatrix()

```
\label{lem:def:GPSTomographyToolbox.network.Network.getStationsMatrix ( \\ self )
```

get stations' ids and coordinates in matrix

Returns

(tuple {ids: (Str), coords: numpy array (n,3)}): ids and coordinates of stations

The documentation for this class was generated from the following file:

· network.py

5.12 GPSTomographyToolbox.orographyreader.OrographyReader Class Reference

OrographyReader class to read Orography grid file.

Inheritance diagram for GPSTomographyToolbox.orographyreader.OrographyReader:

 $Collaboration\ diagram\ for\ GPS Tomography Toolbox. or ography reader. Or ography Reader:$

Public Member Functions

```
    def __init__ (self, fileName)
    def getOro (self, st)
    get orography at the given station
```

Public Attributes

- fileName
- grid
- · epochs
- fid
- p_min
- p_max
- I_min
- I_max
- p_d
- I_d
- phi
- lam

5.12.1 Detailed Description

OrographyReader class to read Orography grid file.

5.12.2 Constructor & Destructor Documentation

5.12.3 Member Function Documentation

5.12.3.1 getOro()

```
def GPSTomographyToolbox.orographyreader.OrographyReader.getOro ( self, \\ st \ )
```

get orography at the given station

Parameters

st (Point, Station): station

The documentation for this class was generated from the following file:

orographyreader.py

5.13 GPSTomographyToolbox.point.Point Class Reference

Point class to store and make calculations on points in cartesian and geographical coordinate system.

Inheritance diagram for GPSTomographyToolbox.point.Point:

Collaboration diagram for GPSTomographyToolbox.point.Point:

Public Member Functions

```
• def __init__ (self, id=", code=", coord=np.array([[0.0],[0.0]]), type=XYZ, system=None, other=None)
     Point inizializer.
```

def getXYZ (self)

get coordinates in cartesian system.

- def getPLH (self)
- · def xyz (self)
- def xyz (self, c)
- def plh (self)
- def plh (self, c)
- def id (self)
- def other (self)
- def dist (self, other)

get distance from another Point

- def __add__ (self, other)
- def __sub__ (self, other)
- def __repr__ (self)
- def __str__ (self)

Public Attributes

- · code
- system

5.13.1 Detailed Description

Point class to store and make calculations on points in cartesian and geographical coordinate system.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 __init__()

```
def GPSTomographyToolbox.point.Point.__init__ (
              self,
              id = '',
              code = '',
              coord = np.array([[0.0],[0.0],[0.0]]),
              type = XYZ,
              system = None,
              other = None )
```

Point inizializer.

Parameters

id	(str): point ID, default: "
code	(str): point coode (Str), default: "
coord	(numpy array (3,1)): coordinates (cartesian or geographical), default: [[0, 0, 0]]
type	(int): type of coordinate system, variable: XYZ/PLH , default: XYZ
system	(Ellipsoid object): base ellipsoid, default: None

Generated by Doxygen

5.13.3 Member Function Documentation

5.13.3.1 dist()

get distance from another Point

Parameters

```
other point (Point object)
```

Returns

: distance between the two points (float)

5.13.3.2 getPLH()

```
\label{eq:condinates} $\operatorname{def GPSTomographyToolbox.point.Point.getPLH (} $\operatorname{self ()}$ $\operatorname{get coordinates in ellipsoidal system.} For the transformation to set up system is required $\operatorname{Qreturn (coord: ellipsoidal coordinates (numpy array (3,1))} $\operatorname{def GPSTomographyToolbox.point.Point.getPLH (} $\operatorname{def GPSTomographyToolbox.point.getPLH (} $\operatorname{def GPSTomograp
```

5.13.3.3 getXYZ()

```
def GPSTomographyToolbox.point.Point.getXYZ ( self )
```

get coordinates in cartesian system.

For the transformation to set up system is required

Returns

```
coord: cartesian coordinates (numpy array (3,1))
```

The documentation for this class was generated from the following file:

point.py

5.14 GPSTomographyToolbox.readcrd.ReadCRD Class Reference

ReadCRD class to read Bernese CRD format file The content of the Bernese CRD file will be sored and can be used inv the newtork parameter of the class in a Network object.

Inheritance diagram for GPSTomographyToolbox.readcrd.ReadCRD:

Collaboration diagram for GPSTomographyToolbox.readcrd.ReadCRD:

Public Member Functions

def __init__ (self, fileName)
 ReadCRD constructor.

Public Attributes

- fileName
- · network
- fid

5.14.1 Detailed Description

ReadCRD class to read Bernese CRD format file The content of the Bernese CRD file will be sored and can be used inv the newtork parameter of the class in a Network object.

5.14.2 Constructor & Destructor Documentation

ReadCRD constructor.

Parameters

fileName	(str): name of CRD file
----------	-------------------------

The documentation for this class was generated from the following file:

· readcrd.py

5.15 GPSTomographyToolbox.readtrp.ReadTRP Class Reference

ReadTRP class to read Bernese TRP (troposphere) format file.

Inheritance diagram for GPSTomographyToolbox.readtrp.ReadTRP:

Collaboration diagram for GPSTomographyToolbox.readtrp.ReadTRP:

Public Member Functions

```
    def __init__ (self, fileName=None, database=None, table=None, type=TXT)
    ReadTRP class initializer.
```

def get_MOD_U (self, digit4ld, ep)

get MOD_U (ZHD) value at the given station and epoch

• def get CORR U (self, digit4ld, ep)

get CORR_U (ZWD) value at the given station and epoch

def get_SIGMA_U (self, digit4ld, ep)

get SIGMA_U (standard deviation CORR_U) value at the given station and epoch

• def get_TOTAL_U (self, digit4ld, ep)

get TOTAL_U (ZTD) value at the given station and epoch

• def get_CORR_N (self, digit4ld, ep)

get CORR_N (tropospheric gradient north) value at the given station and epoch

def get_SIGMA_N (self, digit4ld, ep)

get SIGMA_N (tropospheric gradient STD north) value at the given station and epoch

• def get CORR E (self, digit4ld, ep)

get CORR_E (tropospheric gradient east) value at the given station and epoch

def get_SIGMA_E (self, digit4ld, ep)

get SIGMA_E (tropospheric gradient STD east) value at the given station and epoch

def getTropoByStationEpoch (self, digit4ld, ep)

Public Attributes

- fileName
- · troposphere
- fid
- database
- table
- · type

5.15.1 Detailed Description

ReadTRP class to read Bernese TRP (troposphere) format file.

5.15.2 Constructor & Destructor Documentation

5.15.2.1 __init__()

ReadTRP class initializer.

Parameters

fileName	(str): location of Brenese toposphere file (TRP), default: None	
database	(mysql.connector): connected mysql database, default: None	
table	(str): name of table in case of database, default: None	
type	(int): in case of text file: 1, in casa of database: 2, dafault: TXT	

5.15.3 Member Function Documentation

5.15.3.1 get_CORR_E()

get CORR_E (tropospheric gradient east) value at the given station and epoch

Parameters

digit4← Id	(str): station ID
ер	(epoch): epoch

Returns

(float): CORR_E (tropospheric gradient east) value at the given stgation and epoch

5.15.3.2 get_CORR_N()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_CORR_N ( self, \\ digit4Id, \\ ep )
```

get CORR N (tropospheric gradient north) value at the given station and epoch

Parameters

digit4⊷	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): CORR_N (tropospheric gradient north) value at the given stgation and epoch

5.15.3.3 get_CORR_U()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_CORR_U ( self, \\ digit4Id, \\ ep \ )
```

get CORR_U (ZWD) value at the given station and epoch

Parameters

digit4←	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): MOD_U (ZHD) value at the given stgation and epoch

5.15.3.4 get_MOD_U()

get MOD_U (ZHD) value at the given station and epoch

Parameters

digit4↔	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): MOD_U (ZHD) value at the given stgation and epoch

5.15.3.5 get_SIGMA_E()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_SIGMA_E ( self, \\ digit4Id, \\ ep \ )
```

get SIGMA_E (tropospheric gradient STD east) value at the given station and epoch

Parameters

digit4 <i>←</i>	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): SIGMA_E (tropospheric gradient STD east) value at the given stgation and epoch

5.15.3.6 get_SIGMA_N()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_SIGMA_N ( self, \\ digit4Id, \\ ep \ )
```

get SIGMA_N (tropospheric gradient STD north) value at the given station and epoch

Parameters

digit4↔	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): SIGMA_N (tropospheric gradient STD north) value at the given stgation and epoch

5.15.3.7 get_SIGMA_U()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_SIGMA_U ( self, \\ digit4Id, \\ ep \ )
```

get SIGMA_U (standard deviation CORR_U) value at the given station and epoch

Parameters

digit4← Id	(str): station ID
ер	(epoch): epoch

Returns

(float): SIGMA_U (standard deviation CORR_U) value at the given stgation and epoch

5.15.3.8 get_TOTAL_U()

```
def GPSTomographyToolbox.readtrp.ReadTRP.get_TOTAL_U ( self, \\ digit4Id, \\ ep \ )
```

get TOTAL_U (ZTD) value at the given station and epoch

Parameters

digit4↔	(str): station ID
ld	
ер	(epoch): epoch

Returns

(float): TOTAL_U (ZTD) value at the given stgation and epoch

The documentation for this class was generated from the following file:

readtrp.py

5.16 GPSTomographyToolbox.rotation.Rotation Class Reference

Rotation class to transform points from a CRD to another.

Inheritance diagram for GPSTomographyToolbox.rotation.Rotation:

Collaboration diagram for GPSTomographyToolbox.rotation. Rotation:

Public Member Functions

- def __init__ (self, x=0, y=0, z=0, order='xyz')
- def setRot (self, R)

set up rotation matrix directly

- def __mul__ (self, other)
- def __repr__ (self)
- def __str__ (self)

Public Attributes

matrix

5.16.1 Detailed Description

Rotation class to transform points from a CRD to another.

5.16.2 Constructor & Destructor Documentation

```
5.16.2.1 __init__()
```

5.16.3 Member Function Documentation

5.16.3.1 setRot()

```
def GPSTomographyToolbox.rotation.Rotation.setRot ( self, \\ R )
```

set up rotation matrix directly

Parameters

```
R (numpy array (3,3)): rotation matrix
```

The documentation for this class was generated from the following file:

· rotation.py

5.17 GPSTomographyToolbox.satellite.Satellite Class Reference

Satellite class for contain and calc position.

Inheritance diagram for GPSTomographyToolbox.satellite:

Collaboration diagram for GPSTomographyToolbox.satellite.Satellite:

Public Member Functions

- def __new__ (self, prn=", nav={})
- def __init__ (self, prn=", nav={}, coords=[])
- def I1 (self)

get wavelength of L1 frequency

• def I2 (self)

get wavelength of L2 frequency

• def I5 (self)

get wavelength of L5 frequency

- def getTimeFrameByElevAzimuthMask (self, elevation, azimuth, st)
- def addNavMess (self, nav)
- def addSP3coords (self, coords)
- def getElevAzimuth (self, st, epoch)
- def getEpochsInValidTimeFrame (self, timeDiff=Epoch(np.array([0, 0, 0, 0, 15, 0])))
- def getSatPosSP3 (self, epoch)

get position of the satellite at the given epoch

def getSatPosNav (self, epoch)

get position of the satellite at the given epoch

def getSatPos (self, epoch)

get position of the satellite at the given epoch

Public Attributes

- system
- prn
- · coords
- navigationDatas
- source

5.17.1 Detailed Description

Satellite class for contain and calc position.

5.17.2 Constructor & Destructor Documentation

```
5.17.2.1 __init__()
```

5.17.3 Member Function Documentation

5.17.3.1 addNavMess()

5.17.3.2 addSP3coords()

```
def GPSTomographyToolbox.satellite.Satellite.addSP3coords ( self, \\ coords \ ) add new coordinates to satellite  \\ \text{@param coords (numpy array): list of coordinates from SP3 file}
```

5.17.3.3 getElevAzimuth()

5.17.3.4 getEpochsInValidTimeFrame()

5.17.3.5 getSatPos()

get position of the satellite at the given epoch

Parameters

Returns

(Point): position of the satellite at the given apoch

5.17.3.6 getSatPosNav()

```
def GPSTomographyToolbox.satellite.Satellite.getSatPosNav ( self, \\ epoch \ )
```

get position of the satellite at the given epoch

Parameters

epoch (Epoch): reference	epoch
--------------------------	-------

Returns

(Point): position of the satellite at the given apoch

 $Reimplemented\ in\ GPSTomographyToolbox.satellite. GalileoSat,\ GPSTomographyToolbox.satellite. GLONASSSat,\ and\ GPSTomographyToolbox.satellite. GPSSat.$

5.17.3.7 getSatPosSP3()

```
def GPSTomographyToolbox.satellite.Satellite.getSatPosSP3 ( self, \\ epoch \ )
```

get position of the satellite at the given epoch

Parameters

```
epoch (Epoch): reference epoch
```

Returns

(Point): position of the satellite at the given apoch

5.17.3.8 I1()

```
def GPSTomographyToolbox.satellite.Satellite.l1 ( self \ )
```

get wavelength of L1 frequency

Returns

(float): wavelength of L1 frquency

5.17.3.9 I2()

```
def GPSTomographyToolbox.satellite.Satellite.12 ( self \ )
```

get wavelength of L2 frequency

Returns

(float): wavelength of L2 frquency

5.17.3.10 I5()

```
\label{eq:constraint} \mbox{def GPSTomographyToolbox.satellite.Satellite.} \mbox{15} \mbox{ (} \\ self \mbox{ )}
```

get wavelength of L5 frequency

Returns

(float): wavelength of L5 frquency

The documentation for this class was generated from the following file:

satellite.py

5.18 GPSTomographyToolbox.satellite.SatError Class Reference

 $Inheritance\ diagram\ for\ GPSTomography Toolbox. satellite. SatError:$

Collaboration diagram for GPSTomographyToolbox.satellite.SatError:

The documentation for this class was generated from the following file:

· satellite.py

5.19 GPSTomographyToolbox.sp3reader.SP3Reader Class Reference

SP3Reader class to read and parse SP3 format satellite orbit file.

Inheritance diagram for GPSTomographyToolbox.sp3reader.SP3Reader:

Collaboration diagram for GPSTomographyToolbox.sp3reader.SP3Reader:

Public Member Functions

- def __init__ (self, fileName)
- def getSatellite (self, prn)

get satellite by PRN number

• def getSatellites (self)

get list of satellites with the orbit (generator method)

- def headerRow1 (self, line)
- def headerRow2 (self, line)
- def headerRow3 (self, line)
- def headerRow4 (self, line)
- def headerRow5 (self, line)
- def headerRow6 (self, line)
- def headerRow7 (self, line)
- def headerRow8 (self, line)
- def headerRow9 (self, line)
- def headerRow10 (self, line)
- def headerRow11 (self, line)
- def headerRow12 (self, line)

- def headerRow13 (self, line)
- def headerRow14 (self, line)
- def headerRow15 (self, line)
- def headerRow16 (self, line)
- def headerRow17 (self, line)
- def headerRow18 (self, line)
- def headerRow19 (self, line)
- def headerRow20 (self, line)
- def headerRow21 (self, line)
- def headerRow22 (self, line)

Public Attributes

- fileName
- · comments
- numOfSats
- · positions
- accuracy
- · fid
- version
- posVerFlag
- startDate
- numOfEpochs
- dataUsed
- · coordinateSystem
- orbitType
- agency
- GPSweek
- secondsOfWeek
- · epochInterval
- MDF
- fractionalDay

5.19.1 Detailed Description

SP3Reader class to read and parse SP3 format satellite orbit file.

5.19.2 Constructor & Destructor Documentation

```
5.19.2.1 __init__()
```

5.19.3 Member Function Documentation

5.19.3.1 getSatellite()

get satellite by PRN number

Parameters

```
prn (str): PRN number of the satellite
```

Returns

(Satellite): Satellite object with the orbit of the given PRN number

5.19.3.2 getSatellites()

```
def GPSTomographyToolbox.sp3reader.SP3Reader.getSatellites ( self \ )
```

get list of satellites with the orbit (generator method)

Returns

(Satellite): Satellite object with the orbit of the given PRN number

The documentation for this class was generated from the following file:

· sp3reader.py

5.20 GPSTomographyToolbox.station.Station Class Reference

Station class to store and make calculations on points in cartesian and geographical coordinate system.

Inheritance diagram for GPSTomographyToolbox.station.Station:

Collaboration diagram for GPSTomographyToolbox.station:

Public Member Functions

def __init__ (self, id=", code=", coord=np.array([[0.0],[0.0],[0.0]]), type=point.XYZ, system=None)
 Station initializer.

Public Attributes

troposphere

5.20.1 Detailed Description

Station class to store and make calculations on points in cartesian and geographical coordinate system.

5.20.2 Constructor & Destructor Documentation

5.20.2.1 __init__()

Station initializer.

Parameters

id	(str): point ID, default: "
code	(str): point coode (Str), default: "
coord	(numpy array (3,1)): coordinates (cartesian or geographical), default: [[0, 0, 0]]
type	(int): type of coordinate system, variable: XYZ/PLH, default: XYZ
system	(Ellipsoid object): base ellipsoid, default: None

The documentation for this class was generated from the following file:

· station.py

5.21 GPSTomographyToolbox.epoch.TimeError Class Reference

Inheritance diagram for GPSTomographyToolbox.epoch.TimeError:

Collaboration diagram for GPSTomographyToolbox.epoch.TimeError:

The documentation for this class was generated from the following file:

· epoch.py

5.22 GPSTomographyToolbox.vmf1.VMF1 Class Reference

Vienna Mapping Function 1 class to calculate slant hydrostatic and wet delay at a GNSS station to any direction in a topocentric coordinate system.

Inheritance diagram for GPSTomographyToolbox.vmf1.VMF1:

Collaboration diagram for GPSTomographyToolbox.vmf1.VMF1:

Public Member Functions

- def init (self, vmf1grid)
 - VMF1 class initializer.
- def heightCorrection (self, e)
 - get height correction
- def c_h (self, st, ep)

Calculate the hydrostatic "c" parameter at the given station and epoch.

- def fun_h (self, st, e, ep)
- def fun_h_der (self, st, e, ep)
- def fun_w (self, st, e, ep)
- def fun_w_der (self, st, e, ep)
- def slantDelay_h (self, zd, st, alpha, e, ep, grad_n=0, grad_e=0)

Calculate the slant hydrostatic delay concerning the troposheric gradients.

• def slantDelay_w (self, zd, st, alpha, e, ep, grad_n=0, grad_e=0)

Calculate the slant wet delay concerning the troposheric gradients.

Public Attributes

vmf1grid

Static Public Attributes

- float $\mathbf{a}_{\mathbf{h}t} = 2.53*10**-5$
- float **b ht** = 5.49*10**-3
- float **c_ht** = 1.14*10**-3
- float **b_h** = 0.0029
- float **b_w** = 0.00146
- float **c0** = 0.062
- **c10** = np.array([0.002, 0.001])
- c11 = np.array([0.007, 0.005])
- float **c_w** = 0.04391
- **PSZI** = np.array([np.pi, 0])

5.22.1 Detailed Description

Vienna Mapping Function 1 class to calculate slant hydrostatic and wet delay at a GNSS station to any direction in a topocentric coordinate system.

5.22.2 Section

hydrostatic "a" parameter of VMF1

5.22.3 Constructor & Destructor Documentation

```
5.22.3.1 __init__()
```

VMF1 class initializer.

Parameters

```
vmf1grid (VMF1GridReader): parsed VMF1 grid
```

5.22.4 Member Function Documentation

5.22.4.1 c_h()

Calculate the hydrostatic "c" parameter at the given station and epoch.

Parameters

st	(Station): station
ер	(Epoch): epoch

Returns

```
(float): hydrostatic "c" paramater of VMF1
```

5.22.4.2 heightCorrection()

```
def GPSTomographyToolbox.vmf1.VMF1.heightCorrection ( self, \\ e )
```

get height correction

Parameters

```
e (float): elevation angle
```

Returns

(float): height correction in meter

5.22.4.3 slantDelay_h()

Calculate the slant hydrostatic delay concerning the troposheric gradients.

Parameters

zd	(float): zenith hydrostatic delay
st	(Station): station
alpha	(float): azimuth angle in radians
е	(float): elevation angle in radians
ер	(Epoch): epoch
grad⊷	(float): tropospheric gradient to the direction North
_n	
grad←	(float): tropospheric gradient to the direction East
_e	

Returns

(float): slant hydrostatic delay

5.22.4.4 slantDelay_w()

Calculate the slant wet delay concerning the troposheric gradients.

Parameters

zd	(float): zenith wet delay
st	(Station): station
alpha	(float): azimuth angle in radians
е	(float): elevation angle in radians
ер	(Epoch): epoch
grad←	(float): tropospheric gradient to the direction North
_n	
grad←	(float): tropospheric gradient to the direction East
_ <i>e</i>	

Returns

(float): slant wet delay

The documentation for this class was generated from the following file:

vmf1.py

5.23 GPSTomographyToolbox.vmf1gridreader.VMF1GridReader Class Reference

VMF1GridReader class to read VMF1 (Vienna Mapping Function) grid file format file.

Inheritance diagram for GPSTomographyToolbox.vmf1gridreader.VMF1GridReader:

Collaboration diagram for GPSTomographyToolbox.vmf1gridreader.VMF1GridReader:

Public Member Functions

- def __init__ (self, fileNames, oro)
- def getA_h (self, st, ep)
- def getA w (self, st, ep)
- def getZhd (self, st, ep)
- def getZwd (self, st, ep)

Public Attributes

- fileNames
- oro
- grid
- phi
- lam
- · epochs
- fid
- a_h
- a w
- zdh
- zdw

5.23.1 Detailed Description

VMF1GridReader class to read VMF1 (Vienna Mapping Function) grid file format file.

5.23.2 Constructor & Destructor Documentation

The documentation for this class was generated from the following file:

· vmf1gridreader.py

5.24 GPSTomographyToolbox.ellipsoid.WGS84 Class Reference

WGS84 class to define WGS84 ellipsoidal coordinate system.

Inheritance diagram for GPSTomographyToolbox.ellipsoid.WGS84:

 $Collaboration\ diagram\ for\ GPSTomography Toolbox. ellipsoid. WGS 84:$

Static Public Attributes

- float **a** = 6378137.000
- float **b** = 6356752.314

Additional Inherited Members

5.24.1 Detailed Description

WGS84 class to define WGS84 ellipsoidal coordinate system.

The documentation for this class was generated from the following file:

• ellipsoid.py

Chapter 6

File Documentation

6.1 mart.py File Reference

Wet refractivity reconstruction using Multiplicative Algebraic Reconstuction Technique.

Functions

def GPSTomographyToolbox.mart.mart (A, b, maxIter, x0, tol)
 Wet refractivity reconstruction using Multiplicative Algebraic Reconstruction Technique.

6.1.1 Detailed Description

Wet refractivity reconstruction using Multiplicative Algebraic Reconstuction Technique.

6.1.2 Function Documentation

6.1.2.1 mart()

```
\begin{array}{c} \text{def GPSTomographyToolbox.mart.mart (} \\ A, \\ b, \\ \max I ter, \\ x0, \\ tol \end{array})
```

Wet refractivity reconstruction using Multiplicative Algebraic Reconstuction Technique.

Parameters

Α	(np.array): design matrix
b	(np.array): vector of observations
maxIter	(int): max iteration of MART algorithm
х0	(np.array): inital wet refractivity model
tol	(float): tolerance for MART algorithm

84 File Documentation

Returns

```
x (np.array): reconstructed wet rafractivity iter (int): number of iteration during the procession
```

6.2 tomography.py File Reference

Calculate each rays' length through the tomographic grid and Slant Wet Delay using Vienna Mapping Function 1 for setting up the design matrix a measurements vector of the equation system.

Functions

def GPSTomographyToolbox.tomography.tomography (proj, gridp, gridl, gridh, network, tropo, mapping_

 function, ep, constellation=('G', 'R', 'E'), ignore_stations=[])

Calculate each rays' length through the tomographic grid and Slant Wet Delay using Vienna Mapping Function 1 for setting up the design matrix a measurements vector of the equation system.

6.2.1 Detailed Description

Calculate each rays' length through the tomographic grid and Slant Wet Delay using Vienna Mapping Function 1 for setting up the design matrix a measurements vector of the equation system.

6.2.2 Function Documentation

6.2.2.1 tomography()

Calculate each rays' length through the tomographic grid and Slant Wet Delay using Vienna Mapping Function 1 for setting up the design matrix a measurements vector of the equation system.

Parameters

proj	(GetLocal): projections class to get local coordinates from ECEF coordinates
gridp	(np.array): tomographic grid (longitude) in radians
gridl	(np.array): tomographic grid (latitude) in radians

Parameters

gridh	(np.array): tomographic grid (height) in meters
network	(Network): network object that contains all the reference stations and satellite orbits in the reference epoch
tropo	(ReadTRP): parsed troposheric delays from Benese TRP file in the reference epoch
mapping_function	(VMF1): Vienna Mapping Funtion 1 with the recent VMF1 parameters
ер	(Epoch): refernce epoch
constellations	(tuple): list of applied GNSS constellations (G => GPS, R => GLONASS, E => Galileo), diffault: ('G', 'R', 'E')
ignore_stations	(list of station IDs): list of station IDs to be ignored, default: []

Returns

A (numpy array (n,m)): design matrix (length of rays in each cell)

b (numpy array (n))): measuremnts vector (10 6*SWD values from each station to each satellite)

stations (list (n)): list of stations to the correponding rays @retrun satellites (list (n)): list of satellites to the correponding rays

elevation_azimuth (numpy array (n,2)): elevation and azimuth angles to the correponding rays

86 File Documentation

Index

init	GPS Iomography Ioolbox.ellipsoid.Ellipsoid, 15
GPSTomographyToolbox.ellipsoid.Ellipsoid, 14	f1
GPSTomographyToolbox.epoch.Epoch, 18	GPSTomographyToolbox.satellite.GLONASSSat,
GPSTomographyToolbox.epoch.LeapSecs, 41	30
GPSTomographyToolbox.getlocal.GetLocal, 26	f2
GPSTomographyToolbox.gnssct.GNSSCT, 33	GPSTomographyToolbox.satellite.GLONASSSat,
- · · · -	
GPSTomographyToolbox.line.Line, 42	30
GPSTomographyToolbox.network.Network, 47	
GPS Tomography Toolbox. or ography reader. Or ograp	hy@eader/RK_E
50	GPSTomographyToolbox.readtrp.ReadTRP, 57
GPSTomographyToolbox.point.Point, 52	get_CORR_N
GPSTomographyToolbox.readcrd.ReadCRD, 55	GPSTomographyToolbox.readtrp.ReadTRP, 57
GPSTomographyToolbox.readtrp.ReadTRP, 57	get_CORR_U
GPSTomographyToolbox.rotation.Rotation, 62	GPSTomographyToolbox.readtrp.ReadTRP, 58
GPSTomographyToolbox.satellite.GLONASSSat,	get_MOD_U
30	GPSTomographyToolbox.readtrp.ReadTRP, 58
	get_SIGMA_E
GPSTomographyToolbox.satellite.Satellite, 64	GPSTomographyToolbox.readtrp.ReadTRP, 59
GPSTomographyToolbox.sp3reader.SP3Reader,	
70	get_SIGMA_N
GPSTomographyToolbox.station.Station, 73	GPSTomographyToolbox.readtrp.ReadTRP, 59
GPSTomographyToolbox.vmf1.VMF1, 76	get_SIGMA_U
GPSTomographyToolbox.vmf1gridreader.VMF1Grid	dReaderGPSTomographyToolbox.readtrp.ReadTRP, 60
80	get_TOTAL_U
	GPSTomographyToolbox.readtrp.ReadTRP, 60
addNavMess	getDateTime
GPSTomographyToolbox.satellite.Satellite, 64	GPSTomographyToolbox.epoch.Epoch, 19
addSatellite	getElevAzimuth
GPSTomographyToolbox.network.Network, 47	GPSTomographyToolbox.satellite.Satellite, 65
addSP3coords	
	getEpochsInValidTimeFrame
GPSTomographyToolbox.satellite.Satellite, 64	GPSTomographyToolbox.satellite.Satellite, 65
addStation	getLocalCoords
GPSTomographyToolbox.network.Network, 47	GPSTomographyToolbox.getlocal.GetLocal, 27
	getOro
c_h	GPSTomographyToolbox.orographyreader.OrographyReader
GPSTomographyToolbox.vmf1.VMF1, 76	50
	getPLH
date	GPSTomographyToolbox.ellipsoid.Ellipsoid, 15
GPSTomographyToolbox.epoch.Epoch, 18	GPSTomographyToolbox.point.Point, 53
dist	÷
GPSTomographyToolbox.point.Point, 53	getPointAtT
DOW	GPSTomographyToolbox.line.Line, 44
GPSTomographyToolbox.epoch.Epoch, 18	getSatellite
DOY	GPSTomographyToolbox.sp3reader.SP3Reader,
GPSTomographyToolbox.epoch.Epoch, 18	71
ar 3 fornography footbox.epoch.epoch, fo	getSatellites
e	GPSTomographyToolbox.network.Network, 48
GPSTomographyToolbox.ellipsoid.Ellipsoid, 14	GPSTomographyToolbox.sp3reader.SP3Reader,
	71
ec	getSatPos
GPSTomographyToolbox.ellipsoid.Ellipsoid, 14	•
,	GPSTomographyToolbox.satellite.Satellite, 65
Ī	getSatPosNav

88 INDEX

GPSTomographyToolbox.satellite.GalileoSat, 23	x, 27
GPSTomographyToolbox.satellite.GLONASSSat,	y, 27
31	z, 28
GPSTomographyToolbox.satellite.GPSSat, 36	GPSTomographyToolbox.gnssct.GNSSCT, 32
GPSTomographyToolbox.satellite.Satellite, 66	init, 33
getSatPosSP3	run, 34
GPSTomographyToolbox.satellite.Satellite, 66	writeNw2npy, 34
getStationBy4digitId	GPSTomographyToolbox.line.Line, 41
GPSTomographyToolbox.network.Network, 48	init, 42
getStations	getPointAtT, 44
GPSTomographyToolbox.network.Network, 48	getTwhereX, 44
getStationsMatrix	getTwhereY, 44
GPSTomographyToolbox.network.Network, 48	getTwhere Z, 45
getTwhereX	GPSTomographyToolbox.network.Network, 45
GPSTomographyToolbox.line.Line, 44	init, 47
	addSatellite, 47
getTwhereY GPSTomographyToolbox.line.Line, 44	
	addStation, 47
getTwhereZ	getSatellites, 48
GPSTomographyToolbox.line.Line, 45	getStationBy4digitId, 48
getValidEph	getStations, 48
GPSTomographyToolbox.satellite.GalileoSat, 23	getStationsMatrix, 48
GPSTomographyToolbox.satellite.GLONASSSat,	GPSTomographyToolbox.orographyreader.OrographyReade
31	49
GPSTomographyToolbox.satellite.GPSSat, 36	init, 50
getXYZ	getOro, 50
GPSTomographyToolbox.ellipsoid.Ellipsoid, 15	GPSTomographyToolbox.point.Point, 51
GPSTomographyToolbox.point.Point, 53	init, 52
GPS	dist, 53
GPSTomographyToolbox.epoch.Epoch, 19	getPLH, 53
GPSTomographyToolbox.ellipsoid.Ellipsoid, 13	getXYZ, 53
init, 14	GPSTomographyToolbox.readcrd.ReadCRD, 54
e, 14	init, 55
ec, 14	GPSTomographyToolbox.readtrp.ReadTRP, 55
f, 15	init, 57
getPLH, 15	get_CORR_E, 57
getXYZ, 15	get_CORR_N, 57
GPSTomographyToolbox.ellipsoid.IUGG67, 38	get_CORR_U, 58
GPSTomographyToolbox.ellipsoid.WGS84, 80	get MOD U, 58
GPSTomographyToolbox.epoch.Epoch, 16	get_SIGMA_E, 59
init, 18	get_SIGMA_N, 59
date, 18	get_SIGMA_U, 60
DOW, 18	get_TOTAL_U, 60
DOY, 18	GPSTomographyToolbox.rotation.Rotation, 61
getDateTime, 19	init , 62
GPS, 19	setRot, 62
GPSweek, 19	GPSTomographyToolbox.satellite.GalileoSat, 21
GPSweekTOW, 19	getSatPosNav, 23
MJD, 20	getValidEph, 23
	-
time, 20	T1, 23
TOW, 20	T5, 24
UTC, 20	T5a, 24
year, 21	T5b, 24
GPSTomographyToolbox.epoch.LeapSecs, 39	T6, 24
init, 41	GPSTomographyToolbox.satellite.GLONASSSat, 28
GPSTomographyToolbox.epoch.TimeError, 73	init, 30
GPSTomographyToolbox.getlocal.GetLocal, 25	f1, 30
init, 26	f2, 30
getLocalCoords, 27	getSatPosNav, 31

INDEX 89

getValidEph, 31	setRot
GPSTomographyToolbox.satellite.GPSSat, 35	GPSTomographyToolbox.rotation.Rotation, 62
getSatPosNav, 36	slantDelay_h
getValidEph, 36	GPSTomographyToolbox.vmf1.VMF1, 77
T1, 37	slantDelay_w
T2, 37	GPSTomographyToolbox.vmf1.VMF1, 78
T5, 37	
GPSTomographyToolbox.satellite.Satellite, 62	T1
init, 64	GPSTomographyToolbox.satellite.GalileoSat, 23
addNavMess, 64	GPSTomographyToolbox.satellite.GPSSat, 37
addSP3coords, 64	T2
getElevAzimuth, 65	GPSTomographyToolbox.satellite.GPSSat, 37
getEpochsInValidTimeFrame, 65	T5
- ·	GPSTomographyToolbox.satellite.GalileoSat, 24
getSatPos, 65	GPSTomographyToolbox.satellite.GPSSat, 37
getSatPosNav, 66	T5a
getSatPosSP3, 66	GPSTomographyToolbox.satellite.GalileoSat, 24
11, 66	T5b
12, 67	GPSTomographyToolbox.satellite.GalileoSat, 24
15, 67	
GPSTomographyToolbox.satellite.SatError, 68	T6
GPSTomographyToolbox.sp3reader.SP3Reader, 68	GPSTomographyToolbox.satellite.GalileoSat, 24
init, 70	time
getSatellite, 71	GPSTomographyToolbox.epoch.Epoch, 20
getSatellites, 71	tomography
GPSTomographyToolbox.station.Station, 71	tomography.py, 84
init, 73	tomography.py, 84
GPSTomographyToolbox.vmf1.VMF1, 74	tomography, 84
init, 76	TOW
c_h, 76	GPSTomographyToolbox.epoch.Epoch, 20
heightCorrection, 77	
slantDelay_h, 77	UTC
slantDelay_w, 78	GPSTomographyToolbox.epoch.Epoch, 20
GPSTomographyToolbox.vmf1gridreader.VMF1GridReade	er
78	
init, 80	GPSTomographyToolbox.gnssct.GNSSCT, 34
GPSweek	
GPSTomographyToolbox.epoch.Epoch, 19	X
GPSweekTOW	GPSTomographyToolbox.getlocal.GetLocal, 27
GPSTomographyToolbox.epoch.Epoch, 19	y ODOT-was wards Taalbass walls and Oakland O7.
heightCorrection	GPSTomographyToolbox.getlocal.GetLocal, 27
-	year
GPSTomographyToolbox.vmf1.VMF1, 77	GPSTomographyToolbox.epoch.Epoch, 21
14	
CDSTamographyToolhov actallita Satellita 66	
GPSTomographyToolbox.satellite.Satellite, 66	GPSTomographyToolbox.getlocal.GetLocal, 28
12	
GPSTomographyToolbox.satellite.Satellite, 67	
15	
GPSTomographyToolbox.satellite.Satellite, 67	
mart	
mart.py, 83	
mart.py, 83	
mart, 83	
MJD	
GPSTomographyToolbox.epoch.Epoch, 20	
run GPSTomographyToolbox.gnssct.GNSSCT, 34	