- 5 Naturaleza de las soluciones
- 1. Por naturaleza de las soluciones, se entiende a qué conjunto numérico pertenecen, su estudio se basa en el análisis del discriminante (y en particular de su signo) dado por $\Delta = b^2 - 4ac$,
 - Si $\Delta = 0$, existen 2 soluciones, iguales y reales $(\in \mathbb{R}).$
 - soluciones, distintas y otra.

1. Si x_1 y x_2 son las soluciones de la ecuación $ax^2 + bx + c = 0$, entonces se verifican:

$$x_1 + x_2 = \frac{-b}{a}$$
$$x_1 \cdot x_2 = \frac{c}{a}$$

2. Note la concordancia entre estas propiedades y el caso en que a=1 en el trinomio factorizable, puesto que $x_1 + x_2 = -b$ y $x_1 \cdot x_2 = c$.

- Si $\Delta > 0$, existen 2 soluciones, distintas y reales $(\in \mathbb{R})$.
 - Si $\Delta < 0$, existen 2 complejas ($\in \mathbb{C}$), en donde una es el conjugado de la

fórmula general

4 Ecuación cuadrática,

> Ecuaciones de segundo grado (cuadráticas)

1 Ecuación cuadrática incompleta $ax^2 + c = 0$ 6 Propieda-

des de las

soluciones

- 1. En estas ecuaciones el coeficiente lineal b=0. Es importante observar que el orden de los términos no siempre será igual, por ello, el último término no es necesariamente el independiente.
- 2. Lo anterior justifica el mecanismo de "despeje de x". Su solución, por tanto es siempre

$$x = \pm \sqrt{\frac{-c}{a}}$$

- 3. Al despejar x, siempre se obtendrán dos soluciones iguales, pero de signos contrarios, es decir, $x_1 = -x_2$.
- 4. Si el coeficiente cuadrático a es negativo, entonces, es conveniente partir despejando dicho término.

1. Esta es una ecuación completa en la cual, mayoritariamente a=1; la **estrategia** consiste en "buscar dos números que multiplicados den c y sumados den b". Dichos "candidatos" no son las soluciones.

1. La fórmula general para resol-

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

y asume **conocidos** a, b y c. Su

nados. Se debe tener particular cuidado con el argumento en el radical, puesto que si $b^2 - 4ac$ (el discriminante) es negativo, las soluciones son raíces imaginarias.

utilización es válida en cualquiera de los métodos antes mencio-

ver ecuaciones cuadráticas, viene

dada por:

2. Las soluciones, emanan de la factorización en la forma $ax^2 +$ $bx + c = (x + x_1)(x + x_2) = 0$, en donde x_1 y x_2 son los candidatos encontrados. De esta forma, las soluciones se hallan al despejar xen $x + x_1 = 0$ v $x + x_2 = 0$.

Matemática 3M-TP

Mapa Mental Unidad 2 Ecuación de segundo grado

Diseñado por Prof. Hans Sigrist, 2017.

3 Ecuación cuadrática completa, trinomio

factorizable

2 Ecuación cuadrática incompleta $ax^2 + bx = 0$

- 1. Aquí, el coeficiente indepen**diente** c=0, en consecuencia, es posible factorizar por x, y en ocasiones es posible encontrar también un factor común entre a y *b*.
- 2. La factorización siempre incluirá como uno de sus factores a la potencia **mínima**, es decir a x.
- 3. La forma de dicha factorización es $ax^2 + bx = x(ax + b) = 0$, por tanto, $x_1 = 0$ siempre será una solución. La otra solución, se obtiene de igualar a cero el segundo factor ax + b, luego $x_2 = \frac{-b}{a}.$

$$x_2 = -\frac{1}{2}$$