Algebra di Boole

Algebra di Boole

- Per poter affrontare in modo sistematico lo studio dei sistemi di calcolo, abbiamo inizialmente bisogno di un apparato teorico-formale mediante il quale lavorare sulle grandezze binarie
- Lo strumento formale si chiama "Algebra di Boole"
 - Introdotta nel 1874 da George Boole per fornire una rappresentazione algebrica della logica
 - per questo motivo i circuiti elettronici che lavoro su valori binari assumono il nome di circuti "logici" o porte "logiche"
 - Applicata nel 1936 da Claude Shannon allo studio delle reti di commutazione telefonica

Semplice applicazione

- Variabile di controllo: X
 - due stati:
 - X=0 -> non c'e' pressione sull'interruttore
 - X=1 -> pressione sull'interruttore
- Uscita Y
 - Due stati:
 - · Lampadina spenta (Y=0)
 - Lampadina accesa (Y=1)

$$Y = X$$

Operazioni elementari...

Dal relè...

un interruttore comandato da un segnale elettrico

Quando la corrente fluisce nel circuito, l'elettromagnete attira una lamella del contatto e l'interruttore rimane aperto

Se non circola corrente, l'interruttore rimane chiuso

Interruttore può avere <u>due stati</u>: <u>aperto o chiuso</u> La corrente nel circuito di controllo può circolare o non circolare (2 stati)

..agli interruttori CMOS

- La tecnologia MOS permette di utilizzare transistori unipolari come interruttori
- · Le funzionalità sono simili a quelle del relè:
 - Funzione di trasmissione controllata mendiante un ingresso di controllo (gate)

Modello per l'interruttore

Interruttore negativo

 La varibile di controllo X controlla la funzione di trasmissione, che – per convenzione – può valere 0 (interruttore aperto) oppure 1 (interruttore chiuso)

Porte logiche: modello

- Sono circuti digitali di base nei quali viene individuata una uscita (Y) ed uno o più ingressi (x1,..,xn)
- · L'uscita dipende dal valore degli ingressi
- Si possono realizzare mediante interruttori, propagando la funzione di trasmissione in uscita

Esempio invertitore

Postulati Algebra di Boole

Un insieme I e due operatori binari +, formano un'algebra di Boole se soddisfano i seguenti assiomi (x,y,z sono elementi di I):

```
• \forall x,y \in I x+y \in I; x\cdot y \in I
```

•
$$\exists 0 \in I \mid \forall x \in I, x+0=x$$

•
$$\exists 1 \in I \mid \forall x \in I, x \cdot 1 = x$$

•
$$\forall x,y,z \in I$$

 $x+(y+z)=(y+x)+z; x\cdot(y\cdot z)=(y\cdot x)\cdot z)$

(chiusura delle operazioni)

(elemento neutro per +)

(elemento neutro per ·)

(proprietà commutativa)

(proprietà associativa)

•
$$\forall x,y,z \in I$$

 $x \cdot (y+z) = (x \cdot y) + (x \cdot z); x + (y \cdot z) = (x+y) \cdot (x+z)$ (proprietà distributiva)

• $\forall x \in I \exists \neg x \in I \mid x + \neg x = 1; x \cdot \neg x = 0$ (esistenza dell'inverso)

Proprietà di un'algebra booleana

- · Gli elementi 0,1 sono unici
- Per ogni x∈I , l'elemento ¬x è unico

idempotenza

•
$$x+xy = x$$
, $x(x+y)=x$

assorbimento

•
$$x+(\neg x)y = x+y$$
, $x((\neg x)+y)=xy$

$$\cdot \neg (x+y) = (\neg x)(\neg y)$$

De Morgan

•
$$\neg(xy) = (\neg x) + (\neg y)$$

$$\cdot \neg (\neg x) = x$$

Algebra di commutazione

- Applicazione dell'algebra di Boole ad un insieme con due soli valori
 - Con B={0,1} sono completamente definiti i tre operatori di
 - somma logica (+),
 - prodotto logico (·),
 - negazione (-),
 NOT
- Applicata da C. Shannon nel 1936 per lo studio e la progettazione di sistemi a relè
- Detta anche algebra logica, da cui reti o circuiti logici

Alcuni teoremi fondamentali

Teorema di De Morgan

$$\frac{(x+y)}{(x\cdot y)} = \frac{x}{x} \cdot \frac{y}{y}$$

Teorema dell'involuzione

Legge di dualità (metateorema)

Ogni identità e ogni proprietà booleana resta valida se si scambianotra di loro gli operatori AND ed OR e gli elementi 0 ed 1

Porta NOT

X	L Y _
0	1
1	0

Proprietà:

$$\overline{\overline{X}}=X$$

Porta AND

X ₁	X ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Proprietà:

$$ABC=(AB)C=A(BC)$$

$$AA=A$$

$$A1=A$$

$$A\overline{A}=0$$

Temporizzazioni porta AND

Porta OR

\mathbf{x}_1	X 2	У
0	0	0
0	1	1
1	0	1
1	1	1

Proprietà:

$$A+B+C=(A+B)+C=A+(B+C)$$

$$A+B=B+A$$

$$A+A=A$$

$$A+1=1$$

$$A+0=A$$

$$A+A=1$$

Temporizzazioni porta OR

Variabili di commutazione

- Grandezze che possono assumere i valori 0 oppure 1
- Proprietà degli operatori (siano x,y,z variabili di commutazione)

(commutatività)

•
$$x + (y + z) = (x + y) + z = x + y + z$$

(associatività)

•
$$x(yz) = (xy)z = xyz$$

•
$$x (y + z) = (x y) + (x z)$$

(distributività)

•
$$x + (y z) = (x + y)(x + z)$$

Funzioni di commutazione

- Sia x_i una variabile di commutazione ed X il vettore composto da n variabili
 - $x_i \in \{0,1\}, X \in \{0,1\}^n$
- Consideriamo le funzioni y = f(X)

$$f: \{0,1\} \stackrel{n}{\to} \{0,1\}$$

f è una funzione il cui dominio è costituito da tutte e sole le n-ple $(x_1,x_2,...,x_n)$ ed il cui codominio è l'insieme $\{0,1\}$

Il numero di n-plue diverse è 2ⁿ

f può essere assegnata mediante la sua <u>tabella di verità</u> (il termine verità deriva dai valori TRUE/FALSE, termini usati da Boole nella sua algebra)

Tabelle di verità

Una funzione di commutazione può essere rappresentata

utilizzando una tabella di verità.

Esempio di tabella di verità

X ₃	x_2	x_1	У
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Funzioni unarie

X	y 0	y ₁	y ₂	y ₃
0	0	1	0	1
1	0	0	1	1

 y_0 : funzione 0

 y_1 : negazione (NOT)

y₂: funzione identità

 y_3 : funzione 1

Funzioni binarie (due variabili)

Tutte le funzioni possono essere ricavate a partire dagli operatori {NOT,AND} oppure

{NOT,OR}

Esistono operatori universali, cioè un opeartori che da soli Possono generare qualunque funzione?

Teorema di Shannon

permette di passare dalla rappresentazione grafica ad una espressione algebrica

$$f(x_1,..., x_{i-1}, X_i, x_{i+1}..., x_n) =$$

$$x_i f(x_1,..., x_{i-1}, 1, x_{i+1}..., x_n) + \neg x_i f(x_1,..., x_{i-1}, 0, x_{i+1}..., x_n)$$

1≤ i≤n

Dimostrazione (per induzione perfetta):

- Se x_i = 0 allora il primo termine vale 0. Poiché $\neg 0=1$, si ha $f(x_1,...,x_n) = f(x_1,...,x_{i-1},0,x_{i+1}...,x_n)$, che è identicamente vera perché, per ipotesi, x_i = 0.
- Se x_i = 1 allora il secondo termine vale 0. Poiché $\neg 1$ =0, si ha $f(x_1,...,x_n)$ = $f(x_1,...,x_{i-1},1,x_{i+1}...,x_n)$, che è identicamente vera perché, per ipotesi, x_i = 1.

Forma canonica Somma di Prodotti (SP)

· Applichiamo il teorema più volte ...

$$f(x_{1},...,x_{n}) = x_{1} f(1, x_{2},...,x_{n}) + \neg x_{1} f(0,x_{2},...,x_{n}) = x_{1} (x_{2} f(1,1, x_{3},...,x_{n}) + \neg x_{2} f(1,0, x_{3},...,x_{n})) + \neg x_{1} f(0,x_{2},...,x_{n}) = x_{1} x_{2} f(1,1, x_{3},...,x_{n}) + x_{1} \neg x_{2} f(1,0, x_{3},...,x_{n}) + \neg x_{1} f(0,x_{2},...,x_{n}) =$$

$$x_{1} x_{2} ... x_{n} f(1,1, ...,1) + x_{1} \neg x_{2} ... x_{n} f(1,0,1, ...,1) + x_{1} x_{2} ... x_{n} f(1,1, ...,0) + ... + \neg x_{1} \neg x_{2} \neg x_{3} ... \neg x_{n} f(0,0,0, ...,0)$$

Forma SP

- · 2ⁿ termini
- · Termine generico della somma:

$$\begin{aligned} &x_1^{\alpha_1}\,x_2^{\alpha_2}....\,x_n^{\alpha_n}\,f(\alpha_1,\!\alpha_2,\,...,\!\alpha_n)\\ &\text{Dove, }\alpha_i\in\{0,\!1\}\;e\;x^1\!=x\;e\;x^0\!=\!\neg x \end{aligned}$$

• $x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$ si chiama <u>mintermine</u> ed è il prodotto di *n* variabili dirette o negate

Forma SP

•f(x₁,..., x_n)=
$$\sum_{k=0}^{2^{n-1}} m_k f(k) \Rightarrow f(x_1,..., x_n) = \sum_{k|f(k)=1} m_k$$
dove:
•m_k = $\prod_{i=1}^{n} x_i^{\alpha^i}$ (x⁰= $\neg x$, x¹=x) mintermine

•
$$m_k = \prod_{i=1}^n x_i^{\alpha^i}$$
 ($x^0 = -x, x^1 = x$) mintermine

•f(k) il valore $f(\alpha_1,...,\alpha_n)$, con $\alpha_1,...,\alpha_n$

tali che
$$\sum_{k=0}^{2^{n-1}} \alpha_i \ 2^{i-1} = k$$

Esempio

• $y=f(x_1,x_2,x_3)$ è 1 se e solo se il numero di variabili con valore 1 è pari

	X ₃	x_2	x_1	У	
0	0	0	0	1	m _o
1	0	0	1	0	
2	0	1	0	0	$y = m_0 + m_3 + m_5 + m_6 = \Sigma(0, 3, 5, 6)$
3	0	1	1	1	m_3
4	1	0	0	0	
5	1	0	1	1	m ₅
6	1	1	0	1	m ₆
7	1	1	1	0	

$$f(x_1,x_2,x_3) = \overline{x_3} \ \overline{x_2} \ \overline{x_1} + \overline{x_3} x_2 x_1 + x_3 \overline{x_2} \ x_1 + x_3 x_2 \overline{x_1}$$

Forma canonica prodotto di somme (PS) (non nel programma)

•Sia
$$f(x_1,...,x_n) = \sum_{k|f(k)=1} m_k$$

$$\cdot g(x_1,...,x_n) = \sum_{k|f(k)=0} m_k$$

• g= not f.

Infatti, g vale 0 quando f vale 1 (poiché mancano i mintermini) e viceversa

Forma canonica prodotto di somme (non nel programma)

$$\cdot \overline{f}(x_1,...,x_n) = \overline{\sum_{k|f(k)=0}} m_k$$

•
$$f(x_1,...,x_n) = \prod_{k|f(k)=0} \overline{m}_k => f(x_1,...,x_n) = \prod_{k|f(k)=0} M_k$$

$$M_{k} = \sum_{i=1}^{n} x_{i}^{\alpha^{i}-1}$$

Maxtermine

Esempio (non nel programma)

• $y=f(x_1,x_2,x_3)$ è 1 se e solo se il numero di variabili con valore 1 è pari

	x_3	x_2	x_1	У	
0	0	0	0	1	
1	0	0	1	0	M_1
2	0	1	0	0	$M_2 y = M_1 + M_2 + M_4 + M_7$
3	0	1	1	1	$=\Pi(1,2,4,7)$
4	1	0	0	0	M_4
5	1	0	1	1	
6	1	1	0	1	
7	1	1	1	0	M_7

$$f(x_1,x_2,x_3) = (x_3+x_2+\overline{x_1})\cdot(x_3+\overline{x_2}+x_1)\cdot(\overline{x_3}+x_2+x_1)\cdot(\overline{x_3}+\overline{x_2}+\overline{x_1})$$

Esempio, n=3 variabili

Α	В	С	min	term		max	ter	m		
0	0	0	m _o =	A B C	M _o =	Α	+	В	+	С
0	0	1	m₁=	B C	M_1 =	Α	+	В	+	C
0	1	0	m ₂ =	A B C	M ₂ =	Α	+	В	+	С
0	1	1	m ₃ =	A B C	M ₃ =	Α	+	В	+	<u></u>
1	0	0	m ₄ =	ABC	M ₄ =	A	+	В	+	С
1	0	1	m ₅ =	A B C	M ₅ =	A	+	В	+	<u>C</u>
1	1	0	m ₆ =	A B C	M ₆ =	A	+	В	+	С
1	1	1	m ₇ =	A B C	M ₇ =	A	+	В	+	<u>C</u>

Porta NAND

$$x/y = \overline{xy} = \overline{x} + \overline{y}$$

Proprietà:

$$A/B = B/A$$

 $A/1 = \neg A$
 $A/0 = 1$
 $A/\neg A = 1$

Non è associativo

X ₁	X_2	У
0	0	1
0	1	1
1	0	1
1	1	0

Operatore NAND (NOT-AND)

· Operatore universale (può generare l'algebra di Boole)

$$(x/y)/(x/y) = \overline{xy} = xy$$
 Prodotto logico
 $(x/x)/(y/y) = \overline{x}/\overline{y} = x + y$ Somma logica
 $x/x = \overline{x}$ Negazione
 $x/\overline{x} = 1$ Generazione della costante 1
 $1/1 = 0$ Generazione della costante 0

Porta NOR

$$x \downarrow y = \overline{x + y} = \overline{x} \overline{y}$$

Proprietà:

$$A \downarrow B = B \downarrow A$$

 $A \downarrow 1 = 0$
 $A \downarrow 0 = \neg A$
 $A \downarrow \neg A = 0$

Non è associativo Operatore universale

X ₁	X ₂	У
0	0	1
0	1	0
1	0	0
1	1	0

Operatore NOR (NOT-OR)

· Operatore universale (può generare l'algebra di boole)

$$(x \downarrow y) \downarrow (x \downarrow y) = x + y$$
 Somma logica

$$(x \downarrow x) \downarrow (y \downarrow y) = xy$$
 Prodotto logico

$$x \downarrow x = x^{-}$$
 Negazione

$$x \downarrow \overline{x} = 0$$
 Generazione della costante 0

$$0 \downarrow 0 = 1$$
 Generazione della costante 1

Operatore XOR

 or esclusivo, detto anche "somma modulo 2" o "anticoincidenza", indicato col simbolo ⊕

$$x \oplus y = x\overline{y} + \overline{x}y = (x + y)(\overline{x} + \overline{y})$$

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

- x⊕y=y⊕x
- (x⊕y)⊕z=x⊕(y⊕z)
- x⊕1=¬x
- x⊕0=x
- x⊕x=0
- x⊕¬x =1

(proprietà commutativa)

(associativa)

Non è un operatore universale

Temporizzazioni porta XOR

Funzione di disparità

 L'operatore ⊕ applicato a n variabili definisce la funzione di disparità o somma modulo 2:

$$P=x_1 \oplus x_2 \dots \oplus x_n$$

- La funzione P è chiamata di disparità perché vale 1 se e solo se un numero dispari di variabili vale 1.
- Val la pena di notare che il bit di parità che si aggiunge nei codici a rivelazione di errore è ottenuto proprio con la funzione di disparità P; infatti aggiungendo al vettore X il bit P corrispondente alla funzione di disparità si ottiene una stringa di bit che avrà sempre un numero pari di 1.

Operatore	,
NOT	y=
AND	y=x ₁
OR	y=x ₁ ·
NAND	y=x ₁
NOR	y= x
XOR	y = ×
XNOR	y= ×

Operatore	Simbolo	Proprietà
NOT	y=¬x	y=1 se e solo se x=0
AND	y=x ₁ x ₂	y=1 se e solo se $x_1=x_2=1$
OR	y=x ₁ +x ₂	y=0 se e solo se $x_1=x_2=0$
NAND	y=x ₁ /x ₂	y=0 se e solo se $x_1=x_2=1$
NOR	y= x↓x ₂	y=1 se e solo se $x_1=x_2=0$
XOR	$y = x_1 \oplus x_2$	y=1 se e solo se $x_1 \neq x_2$
XNOR	y= x ₁ ≡x ₂	y=1 se e solo se $x_1=x_2$

Interverter Three-state (non è una porta logica)

 L'uscita può assumere uno stato di alta impedenza elettrica (non e' uno stato logico), utile per disconnettere l'uscita dagli altri circuiti ad essa collegati.

Buffer three-state

- Serve per collegare vari le uscite di vari dispositivi ad uno stesso mezzo trasmissivo (<u>bus</u>)
- Un solo segnale di abilitazione deve essere abilitante, gli altri devono mettere le uscite dei buffer three-state in alta impedenza.

Buffer three-state (cont.)

• Schema "elettrico"

