

1.8°/step

Unipolar winding · Lead wire type Bipolar winding · Lead wire type ▶ P.40

Unipolar winding • Lead wire type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω/phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7121-0140	103H7121-0110	0.39 (55.2)	1	4.8	8	0.1 (0.55)	0.47 (1.04)
103H7121-0440	103H7121-0410	0.39 (55.2)	2	1.25	1.9	0.1 (0.55)	0.47 (1.04)
103H7121-0740	103H7121-0710	0.39 (55.2)	3	0.6	0.8	0.1 (0.55)	0.47 (1.04)
103H7123-0140	103H7123-0110	0.83 (117.5)	1	6.7	15	0.21 (1.15)	0.65 (1.43)
103H7123-0440	103H7123-0410	0.83 (117.5)	2	1.6	3.8	0.21 (1.15)	0.65 (1.43)
103H7123-0740	103H7123-0710	0.78 (110.5)	3	0.77	1.58	0.21 (1.15)	0.65 (1.43)
103H7124-0140	103H7124-0110	0.98 (138.8)	1	7	14.5	0.245 (1.34)	0.8 (1.76)
103H7124-0440	103H7124-0410	0.98 (138.8)	2	1.7	3.1	0.245 (1.34)	0.8 (1.76)
103H7124-0740	103H7124-0710	0.98 (138.8)	3	0.74	1.4	0.245 (1.34)	0.8 (1.76)
103H7126-0140	103H7126-0110	1.27 (179.8)	1	8.6	19	0.36 (1.97)	0.98 (2.16)
103H7126-0440	103H7126-0410	1.27 (179.8)	2	2	4.5	0.36 (1.97)	0.98 (2.16)
103H7126-0740	103H7126-0710	1.27 (179.8)	3	0.9	2.2	0.36 (1.97)	0.98 (2.16)

■ Characteristics diagram

103H7121-0140 103H7121-0110

Constant current circuit
Source voltage: DC24V · Operating current: 1A/phase,
2-phase energization (full-step)
Ji=[0.94 × 10-4kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7121-0440 103H7121-0410

 $\label{eq:constant current circuit} Constant current circuit Source voltage: DC24V \cdot Operating current: 2A/phase, 2-phase energization (full-step) <math display="block">J_{i} = [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^2 \, (5.14 \, \text{oz} \cdot \text{in}^2) \, \text{use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

103H7121-0740 103H7121-0710

Constant current circuit
Source voltage: DC24V · Operating current: 3A/phase,
2-phase energization (full-step)
Ji=[0.94 × 10-4kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7123-0140 103H7123-0110

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $J_{i} = [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^{2} (5.14 \text{ cg} \cdot \text{in}^{2}) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

Characteristics diagram

103H7123-0440 103H7123-0410

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $J \! \coloneqq \! [0.94 \times 10^{-4} kg \cdot m^{2} (5.14 oz \cdot n^{2}) \text{ use the rubber coupling]}$ fs: Maximum self-start frequency when not loaded

140 0.8 120 E .≘100-ΩF S +08 5 anb. 00-40-40-卢 0.2 20 n_ 0.1 100 Pulse rate (kpulse/s) 100 1000 2000 3000 5000 Number of rotations (min⁻¹)

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J_{L} = [0.94 \times 10^{+} \text{kg} \cdot \text{m}^{2} (5.14 \text{ cz} \cdot \text{n}^{2}) \text{ use the rubber coupling]}$ fs: Maximum self-start frequency when not loaded

103H7124-0140 103H7124-0110

 $\begin{array}{l} Constant current circuit \\ Source voltage: DC24V \cdot Operating current: 1A/phase, \\ 2\text{-phase energization (full-step)} \\ J_{L} = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 oz \cdot in^2) \text{ use the rubber coupling]} \\ fs: Maximum self-start frequency when not loaded \\ \end{array}$

103H7124-0440 103H7124-0410

103H7123-0740

103H7123-0710

$$\label{eq:constant current circuit} \begin{split} & \text{Constant current circuit} \\ & \text{Source voltage}: DC24V \cdot \text{Operating current}: 2A/phase, \\ & \text{2-phase energization (full-step)} \\ & \text{J_{L}} [2.6 \times 10^{-4} \text{kg} \cdot \text{m}^2 (14.22 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling]} \\ & \text{fs: Maximum self-start frequency when not loaded} \end{split}$$

103H7124-0740 103H7124-0710

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J_L = [2.6 \times 10^4 \text{kg} \cdot \text{m}^2 (14.22 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling]}$ fs: Maximum self-start frequency when not loaded

103H7126-0140 103H7126-0110

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $J_{i=}[2.6\times10^{-4}kg\cdot m^{2}(14.22\ oz\cdot in^{2})\ use the rubber coupling] fs: Maximum self-start frequency when not loaded$

103H7126-0440 103H7126-0410

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $J \! \coloneqq \! [2.6 \times 10^{-4} kg \cdot m^2 (14.22 \, oz \cdot in^2) \, use the rubber coupling]$ fs: Maximum self-start frequency when not loaded

103H7126-0740 103H7126-0710

Constant current circuit Source voltage : DC24V · Operating current : 3A/phase, 2-phase energization (full-step) $J_{i} = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 oz \cdot n^2) use the rubber coupling] \\ fs: Maximum self-start frequency when not loaded$

1.8°/step

Unipolar winding · Lead wire type ▶ P.38 Bipolar winding · Lead wire type

Bipolar winding • Lead wire type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7121-5640	103H7121-5610	0.55 (77.9)	1	4.3	14.5	0.1 (0.55)	0.47 (1.04)
103H7121-5740	103H7121-5710	0.55 (77.9)	2	1.1	3.7	0.1 (0.55)	0.47 (1.04)
103H7121-5840	103H7121-5810	0.55 (77.9)	3	0.54	1.74	0.1 (0.55)	0.47 (1.04)
103H7123-5640	103H7123-5610	1.0 (141.6)	1	5.7	29.4	0.21 (1.15)	0.65 (1.43)
103H7123-5740	103H7123-5710	1.0 (141.6)	2	1.5	7.5	0.21 (1.15)	0.65 (1.43)
103H7123-5840	103H7123-5810	1.0 (141.6)	3	0.7	3.5	0.21 (1.15)	0.65 (1.43)
103H7126-5640	103H7126-5610	1.6 (226.6)	1	7.7	34.6	0.36 (1.97)	0.98 (2.16)
103H7126-5740	103H7126-5710	1.6 (226.6)	2	2	9.1	0.36 (1.97)	0.98 (2.16)
103H7126-5840	103H7126-5810	1.6 (226.6)	3	0.94	4	0.36 (1.97)	0.98 (2.16)
103H7128-5640	103H7128-5610	2.0 (283.2)	1	8.9	40.1	0.49 (2.68)	1.3 (2.87)
103H7128-5740	103H7128-5710	2.0 (283.2)	2	2.3	10.4	0.49 (2.68)	1.3 (2.87)
103H7128-5840	103H7128-5810	2.0 (283.2)	3	1.03	4.3	0.49 (2.68)	1.3 (2.87)

Characteristics diagram

103H7121-5640 103H7121-5610

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $J := [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^2 (5.14 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

103H7121-5740 103H7121-5710

 $\label{eq:constant current circuit} Constant current circuit Source voltage: DC24V \cdot Operating current: 2A/phase, 2-phase energization (full-step) <math display="block">J_{i} = [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^2 \, (5.14 \, \text{oz} \cdot \text{in}^2) \, \text{use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

103H7121-5840 103H7121-5810

Constant current circuit
Source voltage: DC24V · Operating current: 3A/phase,
2-phase energization (full-step)
Jt=[0.94 × 10-4kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7123-5640 103H7123-5610

Constant current circuit Source voltage : DC24V · Operating current : 1A/phase, 2-phase energization (full-step) $J_{i} = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 oz \cdot n^2) use the rubber coupling] \\ fs: Maximum self-start frequency when not loaded$

1.8°/step

Unipolar winding · CE Model

Unipolar winding • CE Model

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7121-6140	103H7121-6110	0.39 (55.2)	1	4.8	8	0.1 (0.55)	0.47 (1.04)
103H7121-6740	103H7121-6710	0.39 (55.2)	3	0.6	0.8	0.1 (0.55)	0.47 (1.04)
103H7123-6140	103H7123-6110	0.83 (117.5)	1	6.7	15	0.21 (1.15)	0.65 (1.43)
103H7123-6740	103H7123-6710	0.78 (110.5)	3	0.77	1.58	0.21 (1.15)	0.65 (1.43)
103H7126-6140	103H7126-6110	1.27 (179.8)	1	8.6	19	0.36 (1.97)	0.98 (2.16)
103H7126-6740	103H7126-6710	1.27 (179.8)	3	0.9	2.2	0.36 (1.97)	0.98 (2.16)

Characteristics diagram

103H7121-6140 103H7121-6110

Constant current circuit Source voltage : DC24V · Operating current : 1A/phase, 2-phase energization (full-step) $J_L = \begin{bmatrix} 0.94 \times 10^{-4} kg & m^2 (5.14 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling} \end{bmatrix}$ fs: Maximum self-start frequency when not loaded

103H7123-6140 103H7123-6110

Constant current circuit
Source voltage: DC24V · Operating current: 1A/phase,
2-phase energization (full-step)
Jt=[0.94 × 10-4kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7126-6140 103H7126-6110

Constant current circuit Source voltage : DC24V · Operating current : 1A/phase, 2-phase energization (full-step) $J_L = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 \text{ oz} \cdot in^2) \text{ use the rubber coupling}]$ fs: Maximum self-start frequency when not loaded

103H7121-6740 103H7121-6710

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J_L = [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^2 (5.14 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

103H7123-6740 103H7123-6710

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J_{L}{=}[0.94\times10^{-4}kg\cdot n^{2}\,(5.14\,oz\cdot in^{2})$ use the rubber coupling] fs: Maximum self-start frequency when not loaded

103H7126-6740 103H7126-6710

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) J.=[2.6 × 10 ⁴kg · m² (14.22 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

100

Characteristics diagram

103H7123-5740 103H7123-5710

Constant current circuit Source voltage: DC24V \cdot operating current: 2A/phase, 2-phase energization (full-step) J.=[2.6 \times 10-4kg \cdot m² (14.22 oz \cdot n²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

100 1000 2000 3000 5000 Number of rotations (min⁻¹) Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J \sqsubseteq [2.6 \times 10^{-4} \text{kg} \cdot \text{m}^2 (14.22 \text{ oz} \cdot \text{n}^2) \text{ use the rubber coupling}] \text{ fs: Maximum self-start frequency when not loaded}$

Pulse rate (kpulse/s)

Pull-out torque at Ju

103H7126-5640 103H7126-5610

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $J_{L}{=}[2.6\times10^{-4}kg\cdot m^2(14.22\ oz\cdot in^2)\ use\ the\ rubber\ coupling]$ fs: Maximum self-start frequency when not loaded

103H7126-5740 103H7126-5710

103H7123-5840

103H7123-5810

280

240

<u>2</u> 160 -

Torque (anb

40

 $n \perp$

E .<u>=</u> 200 -

ż

卢

12

0.8

η Δ

0.1

$$\label{eq:constant current circuit} \begin{split} & \text{Constant current circuit} \\ & \text{Source voltage}: DC24V \cdot \text{Operating current}: 2A/phase, \\ & \text{2-phase energization (full-step)} \\ & \text{J_{L}} [2.6 \times 10^{-4} \text{kg} \cdot \text{m}^2 (14.22 \text{ oz} \cdot \text{in}^2) \text{ use the rubber coupling]} \\ & \text{fs: Maximum self-start frequency when not loaded} \end{split}$$

103H7126-5840 103H7126-5810

Constant current circuit Constant current circuit

Source voltage: DC24V · Operating current: 3A/phase,
2-phase energization (full-step)

J.=[2.6 × 10-4kg · m² (14.22 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

103H7128-5640 103H7128-5610

Constant current circuit Source voltage : DC24V · Operating current : 1A/phase, 2-phase energization (full-step) [Ji=7.4 × 10-4kg · m² (40.46 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

103H7128-5740 103H7128-5710

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $[J_k=7.4\times 10^{-4}kg\cdot m^2 (40.46\ oz\cdot in^2)\ use the rubber coupling] \ fs: Maximum self-start frequency when not loaded$

103H7128-5840 103H7128-5810

Constant current circuit
Source voltage: DC24V · Operating current: 3A/phase,
2-phase energization (full-step)
[JL=7.4 × 10-4g · m2 (40.46 oz · in2) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

Stepping Motors

60 mm sq. (2.36 inch sq.)

0.9°/step

Unipolar winding · Lead wire type Bipolar winding · Lead wire type

Unipolar winding • Lead wire type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	$[N \cdot m (oz \cdot in) MIN.]$	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
SH1601-0440	SH1601-0410	0.57 (80.71)	2	1.35	2	0.24 (1.312)	0.55 (1.21)
SH1602-0440	SH1602-0410	1.1 (155.77)	2	1.8	3.5	0.4 (2.187)	0.8 (1.76)
SH1603-0440	SH1603-0410	1.7 (240.74)	2	2.3	4.5	0.75 (4.101)	1.2 (2.64)

Characteristics diagram

SH1601-0440 SH1601-0410

Constant current circuit Constant current circuit

Source voltage: DC24V · Operating current: 2A/phase,
2-phase energization (full-step)

J.=[0.94 × 10⁴kg · m² (5.14 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

SH1603-0440 SH1603-0410

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $[J_k=7.4\times 10^{-4}kg\cdot m^2 (40.46\ oz\cdot in^2)\ use the rubber coupling] fs: Maximum self-start frequency when not loaded$

SH1602-0440 SH1602-0410

Constant current circuit Source voltage : DC24V · Operating current : 2A/phase, 2-phase energization (full-step) $J_L = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 \ oz \cdot in^2) \ use the rubber coupling]$ fs: Maximum self-start frequency when not loaded

Bipolar winding • Lead wire type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	$[N \cdot m (oz \cdot in) MIN.]$	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
SH1601-5240	SH1601-5210	0.69 (97.7)	2	1.2	3.5	0.24 (1.31)	0.55 (1.21)
SH1602-5240	SH1602-5210	1.28 (181.2)	2	1.65	6.1	0.4 (2.19)	0.8 (1.76)
SH1603-5240	SH1603-5210	2.15 (304.4)	2	2.3	8.8	0.75 (4.10)	1.2 (2.65)

Characteristics diagram

SH1601-5240 SH1601-5210

Constant current circuit Source voltage : DC24V · Operating current : 2A/phase, 2-phase energization (full-step) $J_{L}{=}[0.94\times10^{-4} \text{kg} \cdot \text{m}^{2} (5.14 \, \text{oz} \cdot \text{in}^{2}) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

SH1603-5240 SH1603-5210

Constant current circuit
Source voltage: DC24V · Operating current: 2A/phase,
2-phase energization (full-step)
[JL=7.4 × 10-4kg · m² (40.46 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

SH1602-5240 SH1602-5210

Constant current circuit Source voltage: DC24V Operating current: 2A/phase, 2-phase energization (full-step) $J_L = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 \ oz \cdot in^2) \ use the rubber coupling] fs: Maximum self-start frequency when not loaded$

1.8°/step

Unipolar winding · Connector type

Unipolar winding · Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Bipolar winding · Connector type ▶ P.46

 $\textbf{Bipolar winding \cdot Lead wire type \ Dimensions for attaching NEMA23 are interchangeable (47.14 \ mm-pitch)} \blacktriangleright P.46$

Unipolar winding • Connector type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7821-0140	103H7821-0110	0.78 (110.5)	1	5.7	8.3	0.275 (1.50)	0.6 (1.32)
103H7821-0440	103H7821-0410	0.78 (110.5)	2	1.5	2	0.275 (1.50)	0.6 (1.32)
103H7821-0740	103H7821-0710	0.78 (110.5)	3	0.68	0.8	0.275 (1.50)	0.6 (1.32)
103H7822-0140	103H7822-0110	1.17 (165.7)	1	6.9	14	0.4 (2.19)	0.77 (1.70)
103H7822-0440	103H7822-0410	1.17 (165.7)	2	1.8	3.6	0.4 (2.19)	0.77 (1.70)
103H7822-0740	103H7822-0710	1.17 (165.7)	3	0.8	1.38	0.4 (2.19)	0.77 (1.70)
103H7823-0140	103H7823-0110	2.1 (297.4)	1	10	21.7	0.84 (4.59)	1.34 (2.95)
103H7823-0440	103H7823-0410	2.1 (297.4)	2	2.7	5.6	0.84 (4.59)	1.34 (2.95)
103H7823-0740	103H7823-0710	2.1 (297.4)	3	1.25	2.4	0.84 (4.59)	1.34 (2.95)

Motor cable: Model No. 4837798-1

Unipolar winding • Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7821-0160	103H7821-0130	0.78 (110.5)	1	5.7	8.3	0.275 (1.50)	0.6 (1.32)
103H7821-0460	103H7821-0430	0.78 (110.5)	2	1.5	2	0.275 (1.50)	0.6 (1.32)
103H7821-0760	103H7821-0730	0.78 (110.5)	3	0.68	0.8	0.275 (1.50)	0.6 (1.32)
103H7822-0160	103H7822-0130	1.17 (165.7)	1	6.9	14	0.4 (2.19)	0.77 (1.70)
103H7822-0460	103H7822-0430	1.17 (165.7)	2	1.8	3.6	0.4 (2.19)	0.77 (1.70)
103H7822-0760	103H7822-0730	1.17 (165.7)	3	0.8	1.38	0.4 (2.19)	0.77 (1.70)
103H7823-0160	103H7823-0130	2.1 (297.4)	1	10	21.7	0.84 (4.59)	1.34 (2.95)
103H7823-0460	103H7823-0430	2.1 (297.4)	2	2.7	5.6	0.84 (4.59)	1.34 (2.95)
103H7823-0760	103H7823-0730	2.1 (297.4)	3	1.25	2.4	0.84 (4.59)	1.34 (2.95)

Characteristics diagram

103H7821-0140 103H7821-0110

103H7821-0160 103H7821-0130

Constant current circuit
Source voltage: DC24V · Operating current: 1A/phase,
2-phase energization (full-step)
Ji=[0.94 × 10-4kg · m² (5.14 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7821-0440 103H7821-0410

103H7821-0460 103H7821-0430

Constant current circuit Source voltage : DC24V · Operating current : 2A/phase, 2-phase energization (full-step) $J_{i} = [0.94 \times 10^{-4} \text{kg} \cdot \text{m}^2 (5.14 \text{ cz} \cdot \text{n}^2) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

Characteristics diagram

103H7821-0740 103H7821-0710

103H7821-0760 103H7821-0730

103H7822-0440

103H7822-0410

103H7822-0460

103H7822-0430

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $J_{i} = [0.94 \times 10^{-4} kg \cdot m^{2} (5.14 oz \cdot in^{2}) \text{ use the rubber coupling]}$ fs: Maximum self-start frequency when not loaded

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) [J $_{\rm L}$ =7.4 \times 10 · 4kg · m² (40.46 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $[J_{i}=7.4\times10^{-4}kg\cdot m^{2}(40.46\ oz\cdot in^{2})\ use the rubber coupling] \ fs: Maximum self-start frequency when not loaded$

103H7823-0740 103H7823-0710

103H7823-0760 103H7823-0730

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) $[J_L=7.4\times10^{-4} kg\cdot m^2\,(40.46\ oz\cdot n^2)\ use the rubber coupling] \ fs: Maximum self-start frequency when not loaded$

103H7822-0140 103H7822-0110

103H7822-0160 103H7822-0130

Constant current circuit Source voltage: DC24V · Operating current: 1A/phase, 2-phase energization (full-step) $[J_i=7.4\times 10^{-4}kg\cdot m^2 (40.46\ oz\cdot in^2)\ use the rubber coupling] \ fs: Maximum self-start frequency when not loaded$

103H7822-0740 103H7822-0710

103H7822-0760 103H7822-0730

Constant current circuit Source voltage: DC24V · Operating current: 3A/phase, 2-phase energization (full-step) [J $_{\rm L}$ =7.4 \times 10 ·4kg · m² (40.46 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

103H7823-0440 103H7823-0410

103H7823-0460 103H7823-0430

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $[J = 7.4 \times 10^{-4} kg \cdot m^2 (40.46 \text{ oz} \cdot in^2) \text{ use the rubber coupling]}$ fs: Maximum self-start frequency when not loaded

1.8°/step

Unipolar winding · Connector type ▶ P.44

Unipolar winding · Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch) > P.44

Bipolar winding · Connector type

Bipolar winding · Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Bipolar winding • Connector type

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω/phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7821-5740	103H7821-5710	0.88 (124.6)	2	1.27	3.3	0.275 (1.50)	0.6 (1.32)
103H7821-1740	103H7821-1710	0.88 (124.6)	4	0.35	0.8	0.275 (1.50)	0.6 (1.32)
103H7822-5740	103H7822-5710	1.37 (194.0)	2	1.55	5.5	0.4 (2.19)	0.77 (1.70)
103H7822-1740	103H7822-1710	1.37 (194.0)	4	0.43	1.38	0.4 (2.19)	0.77 (1.70)
103H7823-5740	103H7823-5710	2.7 (382.3)	2	2.4	9.5	0.84 (4.59)	1.34 (2.95)
103H7823-1740	103H7823-1710	2.7 (382.3)	4	0.65	2.4	0.84 (4.59)	1.34 (2.95)

Motor cable: Model No. 4837961-1

Bipolar winding • Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Model number		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass (Weight)
Single shaft	Dual shaft	[N·m (oz·in) MIN.]	A/phase	Ω /phase	mH/phase	$[\times 10^{-4} \text{kg} \cdot \text{m}^2 (\text{oz} \cdot \text{in}^2)]$	[kg (lbs)]
103H7821-5760	103H7821-5730	0.88 (124.6)	2	1.27	3.3	0.275 (1.50)	0.6 (1.32)
103H7821-1760	103H7821-1730	0.88 (124.6)	4	0.35	0.8	0.275 (1.50)	0.6 (1.32)
103H7822-5760	103H7822-5730	1.37 (194.0)	2	1.55	5.5	0.4 (2.19)	0.77 (1.70)
103H7822-1760	103H7822-1730	1.37 (194.0)	4	0.43	1.38	0.4 (2.19)	0.77 (1.70)
103H7823-5760	103H7823-5730	2.7 (382.3)	2	2.4	9.5	0.84 (4.59)	1.34 (2.95)
103H7823-1760	103H7823-1730	2.7 (382.3)	4	0.65	2.4	0.84 (4.59)	1.34 (2.95)

Characteristics diagram

103H7821-5740 103H7821-5710

103H7821-5760 103H7821-5730

Constant current circuit Source voltage: DC24V · Operating current: 2A/phase, 2-phase energization (full-step) $J := [2.6 \times 10^{-4} kg \cdot m^2 (14.22 \, oz \cdot in^2) \, use the rubber coupling] \\ fs: Maximum self-start frequency when not loaded$

103H7821-1740 103H7821-1710

103H7821-1760 103H7821-1730

Constant current circuit Source voltage: AC100V operating current: 4A/phase, 2-phase energization (full-step) $J_L = [2.6 \times 10^{-4} kg \cdot m^2 (14.22 oz \cdot in^2) \text{ use the rubber coupling]} \\ \text{fs: Maximum self-start frequency when not loaded}$

103H7822-5740 103H7822-5710

103H7822-5760 103H7822-5730

 $\begin{array}{l} Constant current circuit\\ Source voltage: DC24V \cdot Operating current: 2A/phase,\\ 2-phase energization (full-step)\\ J.=[2.6\times10^{-4}kg\cdot m^2 (14.22\ oz\cdot n^2)\ use the rubber coupling]\\ fs: Maximum self-start frequency when not loaded \end{array}$

103H7822-1740 103H7822-1710

103H7822-1760 103H7822-1730

Constant current circuit Source voltage: AC100V · operating current: 4A/phase, 2-phase energization (full-step) J.=[2.6 × 10-4kg · m² (14.22 oz · in²) use the rubber coupling] fs: Maximum self-start frequency when not loaded

■ Characteristics diagram

103H7823-5740 103H7823-5710

103H7823-5760 103H7823-5730

Constant current circuit
Source voltage: DC24V · Operating current: 2A/phase,
2-phase energization (full-step)
[Ji=7.4 × 10-4kg · m² (40.46 oz · in²) use the rubber coupling]
fs: Maximum self-start frequency when not loaded

103H7823-1740 103H7823-1710

103H7823-1760 103H7823-1730

Constant current circuit Source voltage: AC100V · operating current: 4A/phase, 2-phase energization (full-step) $[J_i=7.4\times 10^{-4} kg \cdot m^2 (40.46 \ oz \cdot n^2) \ use the rubber coupling] \ fs: Maximum self-start frequency when not loaded$

Allowable Radial / Thrust Load

	NA 1.1	Distance f	rom end of	shaft : mm	(in)	Thurst land	
Flange size	Model number	0	5	10	15	Thrust load - N (lbs)	
	number	Radial load	d:N(lbs)			- N (BS)	
14 mm sq. (0.55 in sq.)	SH2141	10 (2.25)	11 (2.47)	13 (2.92)	-	0.7 (0.16)	
28 mm sq.(1.10 in sq.)	SH228 🗌	42 (9)	48 (10)	56 (12)	66 (14)	3 (0.67)	
35 mm sq.(1.38 in sq.)	SH353 🗌	40 (8)	50 (11)	67 (15)	98 (22)	10 (2.25)	
42 mm sq.(1.65 in sq.)	103H52 □□	22 (4)	26 (5)	33 (7)	46 (10)	10 (2.25)	
42 mm sq.(1.65 m sq.)	SH142 🗌	22 (4)	. (.,	33 (7)	40 (10)	10 (2.25)	
50 mm sq.(1.97 in sq.)	103H670 🗌	71 (15)	87 (19)	115 (25)	167 (37)	15 (3.37)	
56 mm sq.(2.20 in sq.)	103H712 🗌	52 (11)	65 (14)	85 (19)	123 (27)	15 (3.37)	
50 IIIII 5q.(2.20 III 5q.)	103H7128	85 (19)	105 (23)	138 (31)	200 (44)	15 (3.37)	
60 mm sq.(2.36 in sq.)	103H782 🗌	70 (15)	87 (19)	114 (25)	165 (37)	20 (4.50)	
60 IIIII sq.(2.30 III sq.)	SH160 □	70 (15)	67 (13)	114 (23)	105 (37)	15 (3.37)	
86 mm sq.(3.39 in sq.)	SM286 □	167 (37)	193 (43)	229 (51)	280 (62)	60 (13.488)	
oo iiiiii sq.(3.33 iii sq.)	SH286 🗆	107 (37)	100 (40)	220 (31)	200 (02)	00 (13.400)	
86 mm sq.(3.39 in sq.)	103H822 🗌	191 (43)	234 (53)	301 (68)	421 (95)	60 (13.488)	
¢ 106 mm (¢ 4.17 in)	103H8922 🗌	321 (72)	356 (79)	401 (90)	457 (101)	100 (22.48)	

Internal Wiring and Rotation Direction

Unipolar winding

103H52 □□ Connector type

Internal wire connection

() connector pin number

Direction of motor rotation

The output shaft shall rotate clockwise as seen from the shaft side, when excited by DC in the following order.

		Connector	Connector pin number							
		(1.6)	(5)	(3)	(4)	(2)				
	1	+	-	-						
Exciting order	2	+		-	-					
	3	+			-	-				
	4	+	_			_				

103H782 □□ Connector type

Internal wire connection

() connector pin number

Direction of motor rotation

The output shaft shall rotate clockwise as seen from the shaft side, when excited by DC in the following order.

		Connector pin number							
		(1.6)	(4)	(3)	(5)	(2)			
	1	+	-	_					
Exciting order	2	+		-	-				
	3	+			-	-			
	4	+	-			-			

Lead wire type

Internal wire connection

Direction of motor rotation

The output shaft shall rotate clockwise as seen from the shaft side, when excited by DC in the following order.

		Lead wire color					
		White & black Red B		Blue	Yellow	Orange	
	1	+	-	-			
Exciting	2	+		-	-		
order	3	+			-	-	
	4	+	_			_	

Bipolar winding

Connector type

Internal wire connection

() connector pin number, terminal block number

Direction of motor rotation

The output shaft shall rotate clockwise as seen from the shaft side, when excited by DC in the following order.

		Connector pin number, terminal block number			
		(3)	(2)	(4)	(1)
	1	_	-	+	+
Exciting order	2	+	-	_	+
order	3	+	+	-	-
	4	_	+	+	_

Lead wire type

Internal wire connection

Direction of motor rotation

The output shaft shall rotate clockwise as seen from the shaft side, when excited by DC in the following order.

		Lead wire o	color		
		Red	Blue	Yellow	Orange
	1	_	_	+	+
Exciting order	2	+	_	-	+
order	3	+	+	-	-
	4	_	+	+	_

General Specifications

Motor model number	SH2141	SH228 🗌	SH353 🗆	SS242	SH	l142 🗌	103H52 □□	SS250 🗌	103H67 🗆 🗆	103H712 🗌
Type	_									
Operating ambient temperature	- 10°C to -	+ 50℃								
Conversation temperature	- 20°C to -	+ 65℃								
Operating ambient humidity	20 to 90% F	RH (no conde	nsation)							
Conversation humidity	5 to 95% RI	H (no conden	sation)							
Operation altitude	1000m (328	80 feet) MAX	above sea l	evel						
Vibration resistance							to 70 Hz), vibi	ration acceler	ration 147m/s	² (70 to 500
Impact registeres		z), sweep time 15 min/cycle, 12 sweeps in each X, Y and Z direction. 90m/s² of acceleration for 11 ms with half-sine wave applying three times for X, Y, and Z axes each, 18 times in total.					a in total			
Impact resistance Insulation class			or i i iiis witi	i iiaii-siiie w	ave app	Jiying tili	ee times for A,	T, and Z axes	each, to time	S III total.
Withstand voltage		·				500 V AC	: @50/60 Hz ap	oplied for	@50/60 Hz applie	erature and ure with 1000 V AC ed for one minute vinding and frame.
Insulation resistance	At normal t	temperature	and humidi	ty, not less	then 10	00MΩ be	tween windin	g and frame	by DC500V m	egger.
Protection grade	IP40									
Winding temperature rise	80K MAX. (Based on Sa	nyo Denki s	tandard)						
Static angle error	± 0.09°				土	0.054°	± 0.09°			
	0.075 mm	0.075 mm	0.075 mm			75 mm	0.075 mm	0.075 mm	0.075 mm	0.075 mm
Axial play*1	(0.003 in) MAX. (load: 0.35N (0.08 lbs))	(0.003 in) MAX. (load: 1.5N (0.34 lbs))	(0.003 in) MAX. (load: 5N (1.12 lbs))	(0.003 in) MAX. (load: 4N (0.9 lbs))	MA I (lo	003 in) AX. ad: 5N 12 lbs))	(0.073 ini) (0.003 in) (load: 5N (1.12 lbs))	(0.003 in) MAX. (load: 4N (0.9 lbs))	(0.073 ini) (0.003 in) (load: 10N (2.25 lbs))	(0.003 in) (load: 10N (2.25 lbs))
Radial play *2		(0.001 in) MA	X. (load: 5N	(1.12 lbs))						
Shaft runout	0.025 mm ((0.001 in)								
Concentricity of mounting pilot relative to shaft	φ 0.05 mm (φ 0.002 in)	φ 0.05 mm) (φ 0.002 in)	φ 0.075 mi			0.05 mm 0.002 in)	φ 0.05 mm (φ 0.002 in)	φ 0.075 mm (φ 0.003 in)	φ 0.075 mm (φ 0.003 in)	φ 0.075 mm (φ 0.003 in)
Squareness of mounting surface relative to shaft		0.1 mm (0.004 in)	0.1 mm (0.004 in)	0.1 mm (0.004 in	0.1	mm 004 in)	0.1 mm (0.004 in)	0.1 mm (0.004 in)	0.075 mm (0.003 in)	0.075 mm (0.003 in)
Surface relative to small	(0.004 111)	(0.004 111)	(0.004 111)	(0.004 111	1) (0.	004 111)	(0.004 111)	(0.004 111)	(0.003 111)	(0.003 111)
Motor model number	SH160 🗆	103H78 □□ S	SH286 🗆 1	103H8922 🗆	SM286	CE CE	Model	0 103H822 CE Model		18922 □ -63 □ 1 1odel
Туре	_						operation)			
Operating ambient temperature						to + 40°				
Conversation temperature	– 20°C to −	+ 65°C			_ 20°C	to + 60°	C			
Operating ambient humidity	20 to 90% F	RH (no conde	nsation)				MAX., 57%N		AX.,	
Conversation humidity	5 to 95% RI	H (no conder	isation)		35%M	AX. : 60℃	C MAX. (no co	ndensation)		
Operation altitude	1000m (328	30 feet) MAX	5 to 95% RH (no condensation) 35%MAX. : 60°C MAX. (no condensation) 1000m (3280 feet) MAX above sea level							
Vibration resistance	Vibration frequency 10 to 500 Hz, total amplitude 1.52 mm (10 to 70 Hz), vibration acceleration 147m/s² (70 to 500 Hz), sweep time 15 min/cycle, 12 sweeps in each X, Y and Z direction.									
	Vibration fr 500 Hz), sw	requency 10 t	to 500 Hz, to	tal amplitu	de 1.52 n each	! mm (10 X, Y and	to 70 Hz), vib Z direction.	ration acceler	ration 147m/s	² (70 to
Impact resistance	500 Hz), sw	requency 10 t veep time 15	to 500 Hz, to min/cycle, 1	tal amplitu 2 sweeps ir	n each i	X, Y and	to 70 Hz), vibi Z direction. three times foi			
Impact resistance Insulation class	500 Hz), sw	requency 10 to veep time 15 acceleration f	to 500 Hz, to min/cycle, 1	tal amplitu 2 sweeps ir	n each i	X, Y and applying	Z direction.	r X, Y and Z a		
•	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied fo motor windi	requency 10 type time 15 acceleration for 30°C) emperature and ith 1000 V AC for one minute ing and frame.	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between	otal amplitu 2 sweeps ir th half-sine At normal to applied for o	n each wave a Class I (+155°C) empera	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal t	requency 10 type time 15 acceleration for 30°C) emperature and ith 1000 V AC for one minute ing and frame.	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between	otal amplitu 2 sweeps ir th half-sine At normal to applied for o	wave a Class I (+155°C) cone min	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal te IP40	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC or one minute ing and frame.	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between	otal amplitu 2 sweeps ir th half-sine At normal to applied for o	n each wave a Class I (+155°C) empera	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied fr motor windi At normal t IP40 80K MAX.	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC or one minute ing and frame.	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between	otal amplitu 2 sweeps ir th half-sine At normal to applied for o	wave a Class I (+155°C) cone min	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise Static angle error	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal te IP40	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC or one minute ing and frame.	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between	otal amplitu 2 sweeps ir th half-sine At normal to applied for o	wave a Class I (+155°C) cone min	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal to IP40 80K MAX. (± 0.054°	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC or one minute ing and frame. temperature (Based on Sa	to 500 Hz, to min/cycle, 1 for 11 ms wi d humidity, @50/60 between a and humidit	otal amplitu 2 sweeps ir th half-sine At normal to applied for o ty, not less standard)	n each wave a Class I (+155°C) empera one mil	X, Y and applying CI C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	xes each, 18 to 500 V AC @5 ame.	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise Static angle error	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal to IP40 80K MAX. (± 0.054°	requency 10 to reep time 15 acceleration for 30°C) emperature and ith 1000 V AC or one minute ing and frame. Itemperature (Based on Sa ± 0.09° (0.003 in) MA (0.001 in) (1.004: 5N (1.00	co 500 Hz, to min/cycle, 1 for 11 ms will display the minimum of t	otal amplitu 2 sweeps ir th half-sine At normal to applied for o ty, not less standard)	n each wave a Class I (+155°C) empera one mil	X, Y and applying (C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w	r X, Y and Z a) failure with 1 inding and fr	500 V AC @5 ame. by DC500V m 0.02 (0.0 (loa	times in total.
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise Static angle error Axial play *1	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied formotor windi At normal te motor windi At normal te 1P40 80K MAX. ± 0.054° 0.075 mm (0.025 mm (0.001 in) (load: 5N	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC for one minute ing and frame. temperature for 0.09° (0.003 in) MA 0.025 mm (0.001 in) (10ad: 5N (1.12 lbs)) (1.12 lbs))	co 500 Hz, to min/cycle, 1 for 11 ms will display the minimum of t	At normal te applied for of ty, not less standard) N (2.25 lbs) 0.025 mm 0.001 in) load: 10N	m each wave a Class I (+155°C empera one min then 10 IP43	X, Y and applying (C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w tween windin 025 mm .001 in) pad: 5N	failure with 1 inding and frame 0.025 mm (0.001 in) (load: 5N	500 V AC @5 ame. by DC500V m 0.02 (0.0 (loa	times in total. 60/60 Hz egger. 5 mm 01 in) d: 10N
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise Static angle error Axial play *1 Radial play *2	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied for motor windi At normal to IP40 80K MAX. (± 0.054° 0.075 mm (0.001 in) (load: 5N (1.12 lbs)) 0.025 mm (requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC for one minute ing and frame. temperature for 0.09° (0.003 in) MA 0.025 mm (0.001 in) (10ad: 5N (1.12 lbs)) (1.12 lbs))	to 500 Hz, to min/cycle, 1 for 11 ms will humidity, @50/60 between and humidit nyo Denki s X. (load: 10	At normal te applied for of ty, not less standard) N (2.25 lbs) 0.025 mm 0.001 in) load: 10N	m each wave a Class I (+155°C empera one min then 10 IP43	X, Y and applying (C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w tween windin 025 mm .001 in) pad: 5N	failure with 1 inding and frame 0.025 mm (0.001 in) (load: 5N	500 V AC @5 ame. by DC500V m 0.02 (0.0 (loa	times in total. 60/60 Hz egger. 5 mm 01 in) d: 10N
Insulation class Withstand voltage Insulation resistance Protection grade Winding temperature rise Static angle error Axial play *1 Radial play *2 Shaft runout Concentricity of mounting	500 Hz), sw 490m/s² of a Class B (+1 At normal te no failure wi Hz applied formotor windi At normal to IP40 80K MAX. (± 0.054° 0.075 mm (0.025 mm (0.001 in) (load: 5N (1.12 lbs)) 0.025 mm (Φ 0.075 mr 0.01 mm (0.004 in)	requency 10 treep time 15 acceleration for 30°C) emperature and ith 1000 V AC for one minute ing and frame. Itemperature $\pm 0.09^{\circ}$ (0.003 in) MA 0.025 mm (0.001 in) (1.12 lbs)) (1.12 lbs) (1.12 lbs) (1.12 lbs)) (1.12 lbs) (1.12 lbs) (1.12 lbs) (1.12 lbs) (1.12 lbs)) (1.12 lbs) (1.12	d humidity, © 50/60 between and humiditmyo Denki s X. (load: 10 0.025 mm (0.001 in) (1.12 lbs)) (1.15 mm (0.015 mm)	At normal te applied for of ty, not less standard) N (2.25 lbs) 0.025 mm 0.001 in) load: 10N	m each wave a Class I (+155°C empera one min then 10 IP43	X, Y and applying (C) CI	Z direction. three times for ass B (+130°C humidity, no veen motor w tween windin 025 mm .001 in) pad: 5N	failure with 1 inding and frame 0.025 mm (0.001 in) (load: 5N	xes each, 18 1 500 V AC @5 ame. by DC500V m 0.02 (0.0 (loa) (2.2	times in total. 50/60 Hz egger. 5 mm 01 in) d: 10N 5 lbs))

■ Safety standards

Model Number: SM286 \square CE • UL marked models

CE	Standard category		Standard part	
(TÜV)	Low-voltage directives		EN60034-1, EN60034-5	
	Acquired standards	Standard part	File No.	
UL	UL	LII 1004 1	E179832	
	UL for Canada	- UL1004-1		

Model Number: 103H712 ☐ -6 ☐ 0,	103H822	103H8922 ☐ -63 ☐ 1	CE marked model

CE	Standard category	Standard part
(TÜV)	Low-voltage directives	EN60034-1, EN60034-5

^{*1} Axial play: Shaft displacement under axial load.
*2 Radial play: Shaft displacement under radial load applied 1/3rd of the length from the end of the shaft.

14 mm sq. (0.55 inch sq.)

Bipolar

Set model number		Motor model num	Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	_	SH2141-5541	SH2141-5511	30 (1 18)

35 mm sq. (1.65 inch sq.)

Unipolar

Set model number		Motor model numb	Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	-	SH3533-12U40	SH3533-12U10	33 (1.25)
-	-	SH3537-12U40	SH3537-12U10	37 (1.54)
_	-	SH3552-12U40	SH3552-12U10	52 (1.89)

42 mm sq. (1.65 inch sq.)

Bipolar

Set model number		Motor model numb	Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	_	SS2421-5041	SS2421-5011	11.6 (.457)
-	_	SS2422-5041	SS2422-5011	18.6 (.732)

28 mm sq. (1.10 inch sq.)

Note: A unipolar motor is illustrated; bipolar motors have four lead wires.

Unipolar

Set model numb	Set model number		Motor model number		
Single shaft Dual shaft		Single shaft	Dual shaft	(L)	
-	-	SH2281-5171	SH2281-5131	32 (1.26)	
DU14S281S	DU14S281D	SH2281-5271	SH2281-5231	32 (1.26)	
-	-	SH2285-5171	SH2285-5131	51.5 (2.03)	
DU14S285S	DU14S285D	SH2285-5271	SH2285-5231	51.5 (2.03)	

Bipolar

Set model number		Motor model numb	Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	-	SH2281-5671	SH2281-5631	32 (1.26)
DB14S281S	DB14S281D	SH2281-5771	SH2281-5731	32 (1.26)
_	-	SH2285-5671	SH2285-5631	51.5 (2.03)
DB14S285S	DB14S285D	SH2285-5771	SH2285-5731	51.5 (2.03)

42 mm sq. (1.65 inch sq.)

Unipolar

Set model number		Motor model numb	Motor length	
Single shaft Dual shaft		Single shaft	Dual shaft	(L)
DU15H521S	DU15H521D	103H5205-0440	103H5205-0410	33 (1.25)
DU15H522S	DU15H522D	103H5208-0440	103H5208-0410	39 (1.54)
-	_	103H5209-0440	103H5209-0410	41 (1.61)
DU15H524S	DU15H524D	103H5210-0440	103H5210-0410	48 (1.89)

Motor cable Model number: 4835710-1

This driver-motor cable is for motor model numbers 103H52 - 04 - 0.

42 mm sq. (1.65 inch sq.)

Bipolar

Set model numb	er	Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	_	103H5205-5040	103H5205-5010	33 (1.25)
_	-	103H5205-5140	103H5205-5110	33 (1.25)
DB14H521S	DB14H521D	103H5205-5240	103H5205-5210	33 (1.25)
-	-	103H5208-5040	103H5208-5010	39 (1.54)
_	-	103H5208-5140	103H5208-5110	39 (1.54)
DB14H522S	DB14H522D	103H5208-5240	103H5208-5210	39 (1.54)
-	-	103H5209-5040	103H5209-5010	41 (1.61)
-	-	103H5209-5140	103H5209-5110	41 (1.61)
_	_	103H5209-5240	103H5209-5210	41 (1.61)
-	-	103H5210-5040	103H5210-5010	48 (1.89)
_	-	103H5210-5140	103H5210-5110	48 (1.89)
DB14H524S	DB14H524D	103H5210-5240	103H5210-5210	48 (1.89)

50 mm sq. (1.97 inch sq.)

Bipolar

Set model number		Motor model numb	Motor length	
Single shaft Dual shaft		Single shaft	Dual shaft	(L)
		SS2501-8040	SS2501-8010	11.4 (.43)
-	-	SS2502-8040	SS2502-8010	16.4 (.63)

42 mm sq. (1.65 inch sq.)

Note: A bipolar motor is illustrated; unipolar motors have six lead wires.

Unipolar

Set model number		Motor model numb	Motor length			
	Single shaft Dual shaft DU15S141S DU15S141D DU15S142S DU15S142D		Single shaft	Dual shaft	(L)	
			SH1421-0441	SH1421-0411	33 (1.25)	
			SH1422-0441	SH1422-0411	39 (1.54)	
	DU15S144S	DU15S144D	SH1424-0441	SH1424-0411	48 (1.89)	

Bipolar

Set model number		Motor model num	Motor length	
Single shaft	Single shaft Dual shaft		Dual shaft	(L)
_	-	SH1421-5041	SH1421-5011	33 (1.25)
DB16S141S	DB16S141D	SH1421-5241	SH1421-5211	33 (1.25)
_	-	SH1422-5041	SH1422-5011	39 (1.54)
DB16S142S	DB16S142D	SH1422-5241	SH1422-5211	39 (1.54)
-	-	SH1424-5041	SH1424-5011	48 (1.89)
DB16S144S	DB16S144D	SH1424-5241	SH1424-5211	48 (1.89)

50 mm sq. (1.97 inch sq.)

Note: A unipolar motor is illustrated; bipolar motors have four lead wires.

Unipolar

opoidi						
	Set model numb	er	Motor model numb	er	Motor length	
	Single shaft	Dual shaft	Single shaft	Dual shaft	(L)	
	-	-	103H6701-0140	103H6701-0110	39.8 (1.57)	
	-	-	103H6701-0440	103H6701-0410	39.8 (1.57)	
	-	-	103H6701-0740	103H6701-0710	39.8 (1.57)	
	-	-	103H6703-0140	103H6703-0110	51.3 (2.02)	
	-	-	103H6703-0440	103H6703-0410	51.3 (2.02)	
	-	-	103H6703-0740	103H6703-0710	51.3 (2.02)	
	-	-	103H6704-0140	103H6704-0110	55.8 (2.20)	
	-	-	103H6704-0440	103H6704-0410	55.8 (2.20)	
	_	_	103H6704-0740	103H6704-0710	55.8 (2.20)	

Bipolar

Set model number		Motor model numb	Motor length		
Single shaft Dual shaft		Single shaft	Dual shaft	(L)	
	DB16H671S DB16H671D		103H6701-5040	103H6701-5010	39.8 (1.57)
	DB16H673S	DB16H673D	103H6703-5040	103H6703-5010	51.3 (2.02)
	_	_	103H6704-5040	103H6704-5010	55.8 (2.20)

Unipolar

Set model number		Motor model numb	Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	-	103H7121-0140	103H7121-0110	41.8 (1.65)
DU16H711S	DU16H711D	103H7121-0440	103H7121-0410	41.8 (1.65)
-	-	103H7121-0740	103H7121-0710	41.8 (1.65)
-	-	103H7123-0140	103H7123-0110	53.8 (2.12)
DU16H713S	DU16H713D	103H7123-0440	103H7123-0410	53.8 (2.12)
-	-	103H7123-0740	103H7123-0710	53.8 (2.12)
-	-	103H7124-0140	103H7124-0110	63.8 (2.51)
-	-	103H7124-0440	103H7124-0410	63.8 (2.51)
-	-	103H7124-0740	103H7124-0710	63.8 (2.51)
-	-	103H7126-0140	103H7126-0110	75.8 (2.98)
DU16H716S	DU16H716D	103H7126-0440	103H7126-0410	75.8 (2.98)
-	-	103H7126-0740	103H7126-0710	75.8 (2.98)

60 mm sq. (2.36 inch sq.)

Note: A unipolar motor is illustrated; bipolar motors have four lead wires.

Unipolar

Set model number		Motor model number		Motor	Shaft diameter	
Single shaft	Dual shaft	Single shaft	Dual shaft	length (L)	(D)	
-	-	SH1601-0440	SH1601-0410	42 (1.65)	φ 6.35 -0.013 (φ .250005)	
-	-	SH1602-0440	SH1602-0410	54 (2.13)	φ 6.35 -0.013 (φ .250005)	
-	-	SH1603-0440	SH1603-0410	76 (2.99)	φ 8 -0.015 (φ .310006)	

Bipolar

Set model number		Motor model number		Motor	Shaft diameter	
Single shaft	Dual shaft	Single shaft	Dual shaft	length (L)	(D)	
DB16S161S	DB16S161D	SH1601-5240	SH1601-5210	42 (1.65)	ϕ 6.35 -0.013 ϕ .250005	
DB16S162S DB16S162D		SH1602-5240	SH1602-5210	54 (2.13)	φ 6.35 -0.013 (φ .250005)	
-	-	SH1603-5240	SH1603-5210	76 (2.99)	φ 8 -0.015 (φ .310006)	

56 mm sq. (2.20 inch sq.)

Bipolar

•						
Set model nu	ımber	Motor model nu	Motor model number		Shaft	Dcut
Single shaft	Dual shaft	Single shaft	Dual shaft	length (L)	diameter (D)	thickness (T)
-	-	103H7121-5640	103H7121-5610	41.8 (1.65)	φ 6.35 (φ 0.25)	5.8 (0.23)
DB16H711S	DB16H711D	103H7121-5740	103H7121-5710	41.8 (1.65)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7121-5840	103H7121-5810	41.8 (1.65)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7123-5640	103H7123-5610	53.8 (2.12)	φ 6.35 (φ 0.25)	5.8 (0.23)
DB16H713S	DB16H713D	103H7123-5740	103H7123-5710	53.8 (2.12)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7123-5840	103H7123-5810	53.8 (2.12)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7126-5640	103H7126-5610	75.8 (2.98)	φ 6.35 (φ 0.25)	5.8 (0.23)
DB16H716S	DB16H716D	103H7126-5740	103H7126-5710	75.8 (2.98)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7126-5840	103H7126-5810	75.8 (2.98)	φ 6.35 (φ 0.25)	5.8 (0.23)
-	-	103H7128-5640	103H7128-5610	94.8 (3.73)	φ8 (φ0.31)	7.5 (0.30)
_	-	103H7128-5740	103H7128-5710	94.8 (3.73)	φ8 (φ0.31)	7.5 (0.30)
-	-	103H7128-5840	103H7128-5810	94.8 (3.73)	φ8 (φ0.31)	7.5 (0.30)

60 mm sq. (2.36 inch sq.)

CONNECTOR Unipolar: B6P-VH Bipolar: B4P-VH 15.5±1 (.61±.04) L±0.8 (L±.031) 20.6±0.5 (.81±.02) □60±0.5 (□2.36±.019) 7±0.75 (.27±.029) 15 0 (.59 .00) 4-50±0 13 4-1.96±.005 11 MAX 33 MAX. (1.29 MAX.) 000 φ.31φ8 -0.015 φ.31· R4 MIN. (R.16MIN.) 7.5±0.1 7.5±0.1 (.29±.003) φ8 (.29±.003) R4 MIN. (R.16MIN.) 4-φ4.5 .0 (4-\$\phi.18\frac{+.02}{.00})

Note: A bipolar motor is illustrated.

60 mm sq. (2.36 inch sq.)

(Dimensions for attaching NEMA23 are interchangeable)

Note: A unipolar motor is illustrated; bipolar motors have four lead wires.

Unipolar

Set model number		Motor model numb	Motor length		
	Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
	-	-	103H7821-0140	103H7821-0110	44.8 (1.76)
	-	-	103H7821-0440	103H7821-0410	44.8 (1.76)
	-	-	103H7821-0740	103H7821-0710	44.8 (1.76)
	-	-	103H7822-0140	103H7822-0110	53.8 (2.12)
	-	- 103H7822-0440 103H7822-041		103H7822-0410	53.8 (2.12)
	-	-	103H7822-0740	103H7822-0710	53.8 (2.12)
	-	-	103H7823-0140	103H7823-0110	85.8 (3.38)
	-	-	103H7823-0440	103H7823-0410	85.8 (3.38)
		103H7823-0740	103H7823-0710	85.8 (3.38)	

Bipolar

Set model number		Motor model number		Motor length
Single shaft	Single shaft Dual shaft		Dual shaft	(L)
DB16H781S	DB16H781D	103H7821-5740	103H7821-5710	44.8 (1.76)
DB16H782S	DB16H782D	103H7822-5740	103H7822-5710	53.8 (2.12)
DB16H783S	DB16H783D	103H7823-5740	103H7823-5710	85.8 (3.38)
_	-	103H7821-1740	103H7821-1710	44.8 (1.76)
_	-	103H7822-1740	103H7822-1710	53.8 (2.12)
_	_	103H7823-1740	103H7823-1710	85.8 (3.38)

Unipolar

Set model number		Motor model number		Motor length	
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)	
_	_	103H7821-0160	103H7821-0130	43.5 (1.71)	
-	-	103H7821-0460	103H7821-0430	43.5 (1.71)	
-	_	103H7821-0760	103H7821-0730	43.5 (1.71)	
_	_	103H7822-0160	103H7822-0130	52.5 (2.07)	
_	-	103H7822-0460	103H7822-0430	52.5 (2.07)	
-	_	103H7822-0760	103H7822-0730	52.5 (2.07)	
_	_	103H7823-0160	103H7823-0130	84.5 (3.33)	
_	-	103H7823-0460	103H7823-0430	84.5 (3.33)	
_	_	103H7823-0760	103H7823-0730	84 5 (3 33)	

Bipolar

Set model number		Motor model number		Motor length
Single shaft	Single shaft Dual shaft		Dual shaft	(L)
_	-	103H7821-5760	103H7821-5730	43.5 (1.71)
_	-	103H7821-1760	103H7821-1730	43.5 (1.71)
_	_	103H7822-5760	103H7822-5730	52.5 (2.07)
_	_	103H7822-1760	103H7822-1730	52.5 (2.07)
_	_	103H7823-5760	103H7823-5730	84.5 (3.33)
_	_	103H7823-1760	103H7823-1730	84.5 (3.33)

Motor cable Unipolar Model number: 4837798-1

Motor cable Bipolar Model number: 4837961-1

86 mm sq. (3.39 inch sq.)

Note: A bipolar motor is illustrated; unipolar motors have six lead wires.

Unipolar

Set model number		Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	_	SH2861-0441	SH2861-0411	66 (2.6)
-	-	SH2861-0941	SH2861-0911	66 (2.6)
-	-	SH2862-0441	SH2862-0411	96.5 (3.8)
-	_	SH2862-0941	SH2862-0911	96.5 (3.8)
-	-	SH2863-0441	SH2863-0411	127 (5)
_	_	SH2863-0941	SH2863-0911	127 (5)

Bipolar

Set model number		Motor model numb	er	Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	-	SH2861-5041	SH2861-5011	66 (2.6)
_	-	SH2861-5141	SH2861-5111	66 (2.6)
_	-	SH2861-5241	SH2861-5211	66 (2.6)
_	-	SH2862-5041	SH2862-5011	96.5 (3.8)
_	-	SH2862-5141	SH2862-5111	96.5 (3.8)
_	-	SH2862-5241	SH2862-5211	96.5 (3.8)
_	-	SH2863-5041	SH2863-5011	127 (5)
_	-	SH2863-5141	SH2863-5111	127 (5)
_	-	SH2863-5241	SH2863-5211	127 (5)

86 mm sq. (3.39 inch sq.) CE · UL Model

Bipolar terminal block type CE · UL Model

•	, ,			
Set model number		Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	_	SM2861-5066	-	97.9 (3.9)
-	-	SM2861-5166	-	97.9 (3.9)
_	_	SM2861-5266	-	97.9 (3.9)
_	_	SM2862-5066	_	128.4 (5.1)
_	-	SM2862-5166	_	128.4 (5.1)
_	-	SM2862-5266	_	128.4 (5.1)
_	_	SM2863-5066	_	158.8 (6.3)
_	-	SM2863-5166	_	158.8 (6.3)
_	-	SM2863-5266	-	158.8 (6.3)

86 mm sq. (3.39 inch sq.) CE · UL Model

Unipolar CE · UL Model

Set model number		Motor model number		Motor length
Single shaft	Single shaft Dual shaft		Dual shaft	(L)
-	-	SM2861-0451	SM2861-0421	66 (2.6)
-	-	SM2861-0951	SM2861-0921	66 (2.6)
-	-	SM2862-0451	SM2862-0421	96.5 (3.8)
-	_	SM2862-0951	SM2862-0921	96.5 (3.8)
-	-	SM2863-0451	SM2863-0421	127 (5)
_	_	SM2863-0951	SM2863-0921	127 (5)

Bipolar CE · UL Model

Set model number		Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	-	SM2861-5051	SM2861-5021	66 (2.6)
-	-	SM2861-5151	SM2861-5121	66 (2.6)
-	-	SM2861-5251	SM2861-5221	66 (2.6)
_	_	SM2862-5051	SM2862-5021	96.5 (3.8)
-	-	SM2862-5151	SM2862-5121	96.5 (3.8)
-	-	SM2862-5251	SM2862-5221	96.5 (3.8)
_	_	SM2863-5051	SM2863-5021	127 (5)
-	-	SM2863-5151	SM2863-5121	127 (5)
-	-	SM2863-5251	SM2863-5221	127 (5)

56 mm sq. (2.20 inch sq.) CE Model

Unipolar CE Model

Set model number		Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
-	-	103H7121-6140	103H7121-6110	41.8 (1.65)
_	-	103H7121-6740	103H7121-6710	41.8 (1.65)
-	-	103H7123-6140	103H7123-6110	53.8 (2.12)
-	-	103H7123-6740	103H7123-6710	53.8 (2.12)
_	-	103H7126-6140	103H7126-6110	75.8 (2.98)
_	-	103H7126-6740	103H7126-6710	75.8 (2.98)

$^{\phi}$ 86 mm ($^{\phi}$ 3.39 inch) CE Model

Bipolar CE Model

Set model number Single shaft Dual shaft		Motor model number		Motor length	
		Single shaft	Dual shaft	(L)	
_		-	103H8221-6240	103H8221-6210	62 (3.31)
_		-	103H8222-6340	103H8222-6310	92.2 (5.51)
_		-	103H8223-6340	103H8223-6310	125.9 (7.72)

^φ 106 mm (^φ 4.17 inch)

Unipolar

Set model number		Motor model number		Motor length
Single shaft Dual shaft		Single shaft	Dual shaft	(L)
-	-	103H89222-0941	103H89222-0911	163.3 (6.4)
_	-	103H89223-0941	103H89223-0911	221.3 (8.7)

Bipolar

	Set model number Single shaft Dual shaft		Motor model number		Motor length
			Single shaft	Dual shaft	(L)
	-	-	103H89222-5241	103H89222-5211	163.3 (6.4)
	_	_	103H89223-5241	103H89223-5211	221.3 (8.7)

Bipolar CE Model

Set model number		Motor model number		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
_	-	103H89222-6341	103H89222-6311	163.3 (6.4)
-	-	103H89223-6341	103H89223-6311	221.3 (8.7)

Stepping Drivers [Unit: mm (inch)]

Stepping Motors with Integrated Drivers [Unit: mm (inch)]

42 mm sq. (1.65 inch sq.)

60 mm sq. (2.36 inch sq.)

