WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 1 von 10

Name:	
Matrikelnummer:	

Aufgabe	Maximale Punktzahl	Erreichte Punktzahl
Dreiecksnetze und Licht	10	
Kurven	10	
Datenstrukturen	10	
Simulation/Tracking	10	
Gesamt	40	

Regeln:

- Erlaubtes Material: 1 Blatt handschriftliche Notizen (mit Vor- und Rückseite)
- Nicht erlaubt: Elektronische Geräte in irgendeiner Form, also kein Taschenrechner, Notebook, Handy, usw.
- Dauer: 90 Minuten
- Wenn Sie Pseudocode angeben sollen, dann dürfen Sie Hilfsmethoden einfach als vorhanden voraussetzen. Beschreiben Sie solche einfach mit einem Satz oder ein paar Stichworten.

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester $2017/2018$		Seite 2 von 10

1 Dreiecksnetze und Licht

In Abbildung 1 sind zwei mögliche Ergebnisvektoren v der Berechnung $v=a\times b$ eingezeichnet: v_1 und v_2 . Welcher ist der richtige? 1 Punkt(e)

Abbildung 1: Kreuzprodukt der Vektoren a und b: v_1 oder v_2 ?

Geben Sie einen Vertex v an, der im 2D senkrecht auf $w = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ steht. 1 Punkt(e)

Woran erkennt man in Abbildung 2 mathematisch, dass der diffuse Anteil bei p für die Punktlichtquelle bei L_0 0 ist? 1 Punkt(e)

Abbildung 2: Diffuses Licht an p_0 durch die Punktlichtquelle L_0 .

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 3 von 10

Geben Sie einen Algorithmus in Pseudocode an, der in einer Halbkanten-Datenstruktur für einen Vertex v die 2-Ring-Nachbarn bestimmt; das ist die Menge aller adjazenten Vertices von v zusammen mit deren adjazenten Vertices. In der Vorlesung haben wir bereits den Algorithmus zum Finden der adjazenten Vertices besprochen. Diesen dürfen Sie als gegeben voraussetzen. $2 Punkt(e)$
Geben Sie einen Algorithmus in Pseudocode an, um die Oberfläche eines Dreiecksnetzes zu berechnen. $2 \ Punkt(e)$

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 4 von 10

Gegeben ist der Roboterarm in Abbildung 3. Er besteht aus zwei Segmenten mit den Längen l_1 und l_2 . Die Segmente sind über die Gelenke G_1 und G_2 verbunden, die je einen Freiheitsgrad haben. Der Arm sitzt auf einem Plattenteller mit dem Mittelpunkt p und ist von diesem Mittelpunkt in einer Entfernung l_0 angebracht. Außerdem befindet sich senkrecht über dem Plattenteller ein Sensor (Entfernung s_0 und Höhe s_1).

Abbildung 3: Greifarm und Sensor auf einem drehbaren Plattenteller.

Zeichnen Sie einen Szenengraphen für den Roboterarm. 2 $Punkt(e)$
Wie viele Möglichkeiten (Bewegung aller Freiheitsgrade) gibt es maximal, um einen Punkt q mit der Spitze des Roboterarms zu erreichen? 1 $Punkt(e)$

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 5 von 10

2 Kurven

Wie viele Kontrollpunkte hat eine Kurve vom Grad 2? 1 Punkt(e)

Zeichnen Sie die konvexe Hülle der Punkte $c_0 \dots c_4$ direkt in Abbildung 4 mit ein. 1 Punkt(e)

 ${\bf Abbildung} \ {\bf 4:} \ {\bf Kontrollpolygon} \ {\bf mit} \ {\bf Kontrollpunkten}.$

Gegeben sind die Basisfunktionen $B_0 \dots B_2$ in Abbildung 5. Skizzieren Sie direkt in der Abbildung die Kurve für die Kontrollpunkte $c_0 \dots c_2$. 2 Punkt(e)

Abbildung 5: Basisfunktionen $B_0 \dots B_2$ (von links nach rechts) und Kontrollpunkte.

Skizzieren Sie Sie die Tangente an die Kurve aus der vorherigen Aufgabe bei t=0 und t=0.25 direkt in der Abbildung. 2 Punkt(e)

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 6 von 10

Gegeben sind Punkte $p_0 \dots p_{n-1}$, die bei einer Kamerafahrt besucht werden sollen (siehe Abbildung 6). Beschreiben Sie einen Algorithmus, der aus den Punkten $p_0 \dots p_{n-1}$ Kontrollpunkte c_i generiert, sodass damit ein geschlossener und glatter Bezier-Spline aus Bezier-Kurven vom Grad 3 entsteht. 3 Punkt(e)

Abbildung 6: Gesucht ist eine Spline aus Bezier-Kurven, der die Punkte $p_0 \dots p_{n-1}$ durchläuft.

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 7 von 10

3 Datenstrukturen

Der BSP-Baum in Abbildung 7 hat zwei Fehler. Welche? 1 Punkt(e)

Abbildung 7: BSP-Szene mit zugehörigem (fehlerhaften) BSP-Baum.

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 8 von 10

Zeigen Sie mit Backface-Culling, dass L_1 in Abbildung 8 nicht gezeichnet werden muss. 2 Punkt(e)

Abbildung 8: Backface- und View Frustum Culling.

Zeigen Sie mit View-Frustum-Culling, dass L_2 in Abbildung 8 nicht gezeichnet werden muss. 2 $Punkt(e)$		
Gegeben ist eine Octree-Struktur in der Punkte verwaltet werden. Beschreiben Sie einen Algorithmus in Pseudocode, der effizient alle Punkte aus der Struktur liefert, die weniger als ϵ von einem Punkt x entfernt sind. Sie können davon ausgehen, dass die Punkte nur in den Blattknoten sind. $3 \ Punkt(e)$		

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 9 von 10

4 Simulation/Tracking

Wie viele Featurepunkte auf einem Marker müssen Sie mindestens tracken, damit Sie dessen 3D-Pose (Position und Orientierung) bestimmen können? $1 Punkt(e)$
Geben Sie die homogene Matrix an, die im 2D die beiden Hauptachsen vertauscht und den Ursprung um $\binom{1}{2}$ verschiebt. 1 $Punkt(e)$
Sei $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ und $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Was liefert $A \cdot A^{-1} \cdot v$? 1 $Punkt(e)$
Gegeben ist ein Partikel p mit Masse 2, Startgeschwindigkeit $v_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und Startposition $p_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Führen Sie einen Integrationsschritt mit dem expliziten Euler-Verfahren mit der Schritt-
weite $\Delta t = 0.1$ für Position und Geschwindigkeit durch. Eine externe Kraft ergibt sich aus der Gravitationsbeschleunigung $g = 9.81 \frac{m}{s^2}$ induziert. 2 $Punkt(e)$

WP Computergrafik für AR	02.02.2018	Prof. Dr. Philipp Jenke
Wintersemester 2017/2018		Seite 10 von 10

Jetzt starten wir die Simulation neu und ignorieren die Gravitation. Zu welchem Zeitpunkt t trifft

der Partikel auf den Rand, der als Ebene mit Punkt $p_E = \begin{pmatrix} 10 \\ 0 \end{pmatrix}$ und Normale $n_E = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ repräsentiert ist. 2 Punkt(e)

Gegeben sind zwei Federn mit den Ruhelängen $l_1(0) = 1$ und $l_2(0) = 2$. An der einen Seite sind die beiden Federn miteinander verbunden (siehe Abbildung 9). Die Federkonstanten sind $k_1 = 1$ und $k_2 = 2$. An den Punken p_0 und p_1 werden die beiden Federn jetzt auf eine Gesamtlänge von l = 4 auseinandergezogen. Geben Sie die Längen l1(t) und $l_2(t)$ der beiden Federn nach der Streckung an. 3 Punkt(e)

Abbildung 9: Zwei hintereinander geschaltete Federn werden auf eine Länge l gestreckt.