Lecture 10: Clustering

Andreas Wichert

Department of Computer Science and Engineering

Técnico Lisboa

1

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

- We approach first using a nonprobabilistic technique called the K-means algorithm (Lloyd, 1982).
- Then we introduce the latent variable view of mixture distributions in which the discrete latent variables can be interpreted as defining assignments of data points to specific components of the mixture
- A general technique for finding maximum likelihood estimators in latent variable models is the expectation-maximization (EM) algorithm.

• Training set consists on N observations (sample)

$$X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{\eta}, \cdots, \mathbf{x}_N)$$

- Our goal is to partition the data set into some number *K* of clusters, where we shall suppose for the moment that the value of *K* is given.
- Clustering is a useful tool for data compression.
- Instead of reducing the dimensionality of a data set, clustering reduces the number of data points.

- Custer as comprising a group of data points whose inter-point distances are small compared with the distances to points outside of the cluster
- It groups the data points into clusters according to a distance function.
- The points are similar to one another within the same cluster and dissimilar to the objects in other clusters

- The cluster centers (also called centroids) represent the compressed data set
- The most popular clustering method is *K*-means clustering. We map *N* data points, represented by vectors of dimension *D*, into *K* centroids with

 $K \ll N$

K-means Clustering

$$d_2(\mathbf{x}, \mathbf{y}) = ||x - y|| = \sqrt{\sum_{i=1}^{D} (x_i - y_i)^2}.$$

In K-means clustering with K vectors called centroids w

$$\mathbf{c}_1, \mathbf{c}_2 \cdots, \mathbf{c}_K$$

and K sets called clusters

$$C_1, C_2 \cdots, C_K$$
.

each cluster set is defined as the set of points with where

$$k = 1, ..., K$$

$$C_k = \{\mathbf{x} | d_2(\mathbf{x}, \mathbf{c}_k) = \min_j d_2(\mathbf{x}, \mathbf{c}_j)\}.$$

K-means Clustering

$$k = 1, ..., K$$

$$C_k = \{\mathbf{x} | d_2(\mathbf{x}, \mathbf{c}_k) = \min_j d_2(\mathbf{x}, \mathbf{c}_j)\}.$$

Each cluster C_k contains the points that are closest to the centroid \mathbf{c}_k . centroid \mathbf{c}_k is represented by the mean value of all the points of C_k

$$\mathbf{c}_k = \frac{1}{|C_k|} \cdot \sum_{x \in C_k} \mathbf{x}.$$

q

K-means: an example

For each data point \mathbf{x}_{η} , we introduce a corresponding set of binary indicator variables

$$r_{\eta k} \in \{0, 1\}$$

with

$$k = 1, ..., K$$

describing which of the K clusters the data point \mathbf{x}_{η} , is assigned to, so that if data point \mathbf{x}_{η} , is assigned to cluster k then $r_{\eta k} = 1$, and $r_{\eta j} = 0$ for $j \neq k$

This is known as the 1-of-K coding scheme.

$$r_{\eta k} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{\eta} - \mathbf{c}_{j}\|^{2} \\ 0 & \text{otrwise} \end{cases}$$

19

We can then define an objective function, sometimes called a distortion measure, given by

$$J = E = \sum_{\eta=1}^{N} \sum_{k=1}^{K} r_{\eta k} \cdot \|\mathbf{x}_{\eta} - \mathbf{c}_{k}\|^{2} = \sum_{k=1}^{K} \sum_{x \in C_{k}} (d_{2}(\mathbf{x}, \mathbf{c}_{k}))^{2}$$

we want to minimize it

$$\frac{\partial J}{\partial \mathbf{c}_k} = -2 \cdot \sum_{n=1}^{N} r_{nk} \cdot (\mathbf{x} - \mathbf{c}_k)$$

$$\sum_{\eta=1}^{N} r_{\eta k} \cdot (\mathbf{x} - \mathbf{c}_k) = 0$$

$$\sum_{\eta=1}^{N} r_{\eta k} \cdot \mathbf{x} - \sum_{\eta=1}^{N} r_{\eta k} \cdot \mathbf{c}_{k} = 0$$

$$\mathbf{c}_k = \frac{\sum_{\eta=1}^N r_{\eta k} \cdot \mathbf{x}}{\sum_{\eta=1}^N r_{\eta k}} = \frac{1}{|C_k|} \cdot \sum_{x \in C_k} \mathbf{x}$$

Standard K-means

```
Random initialisation of K centroids; do  \left\{ \begin{array}{l} \text{assign to each } \mathbf{x}_{\eta} \text{ in the dataset the nearest centroid } \mathbf{c}_{k} \text{ according to } d_{2}; \\ \text{compute all new centroids } \mathbf{c}_{k} = \frac{1}{|C_{k}|} \cdot \sum_{x \in C_{k}} \mathbf{x}; \\ \end{array} \right\} \\ \text{until } \left( \left| E_{new} - E_{old} \right| < \epsilon \text{ or number of iterations } max \text{ iterations } \right).
```

Sequential K-means

For large data sets, the adaptive K-means learning algorithm is given by with sequential update in which, for each data point

$$\mathbf{c}_k^{new} = \mathbf{c}_k^{old} + \eta_{\eta} \cdot (\mathbf{x}_{\eta} - \mathbf{c}_k^{old}) = \mathbf{c}_k^{old} + \frac{1}{|C_k^{old}| + 1} \cdot (\mathbf{x}_{\eta} - \mathbf{c}_k^{old})$$

where η_{η} is the learning rate parameter, which is typically made to decrease monotonically as more data points are considered and can be represented by $\frac{1}{|C_{v}^{lid}|+1}$.

23

Sequential K-means

- K-means represents an unsupervised learning; it is an unsupervised classification because no predefined classes are present.
- One notable feature of the K-means algorithm is that at each iteration, every data point is assigned uniquely to one, and only one, of the clusters.

Color reduction

- K-means can be used for color reduction for RGB images.
- K would indicate the number of the reduced colors, and the dimension would be there for R, G, B. $x_i = R_i$, G_i , B_i would correspond to the pixel at position i in a one dimensional array.
- Color segmentation represents a weak segmentation, in which the segmented parts (the same color) do not correspond necessarily to objects.

- How to chose *K*?
 - You have to know your data!
- Repeated runs of K-means clustering on the same data can lead to quite different partition results
 - Why? Because we use random initialization

Adaptive Initialization

- Choose a maximum *radius* within every data point should have a cluster seed after completion of the initialization phase
- In a single sweep go through the data and assigns the cluster seeds according to the chosen radius
 - A data point becomes a new cluster seed, if it is not covered by the spheres with the chosen *radius* of the other already assigned seeds
 - K-MAI clustering (Wichert et al. 2003)

Mixture of Gaussians

Gaussian distribution or normal is defined over D dimensional space

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu})\right)$$

where

- μ is the D dimensional mean vector
- Σ is a $D \times D$ covariance matrix
- $|\Sigma|$ is the determinant of Σ

31

Gaussian Mixture Distribution

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \cdot \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\Sigma_k|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

with

$$0 \le \pi_k \le 1$$

and

$$\sum_{k=1}^{K} \pi_k = 1$$

We will now use $c_k = 1$ to denote the cluster k and $p(c_k = 1|\mathbf{x})$

$$p(c_k = 1|\mathbf{x}) = \frac{p(\mathbf{x}|c_k = 1) \cdot p(c_k = 1)}{p(\mathbf{x})}$$

$$p(c_k = 1 | \mathbf{x}) = \frac{\mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \Sigma_k) \cdot p(c_k = 1)}{\sum_{k=1}^K \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \Sigma_k) \cdot p(c_k = 1)}$$

We define $\gamma(c_k)$ to be equivalent to $p(c_k = 1|\mathbf{x})$

$$\gamma(c_k) \equiv p(c_k = 1 | \mathbf{x}) = \frac{\pi_k \cdot \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \cdot \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

We define $\gamma(c_{\eta k})$ to be equivalent to $p(c_k = 1|\mathbf{x})_{\eta}$ for a certain pattern \mathbf{x}_{η} with the index η

$$\gamma(c_{\eta k}) \equiv p(c_k = 1 | \mathbf{x}_{\eta}) = \frac{\pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k)}$$

33

Example: Mixture of 3 Gaussians k

 $p(\mathbf{x})$

- (a) corresponding to the three components of the mixture, are depicted in red, green, and blue,
- (b) the corresponding samples from the marginal distribution p(x)
- (c) The same samples in which the colours represent the value of the responsibilities $p(c_k=1|\mathbf{x}) = \frac{p(\mathbf{x}|c_k=1) \cdot p(c_k=1)}{p(\mathbf{x})}$

Maximum likelihood

Training set consists on N observations (sample)

$$X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n, \cdots, \mathbf{x}_N)$$

We can represent the dataset as a design matrix X of the dimension $N\times D$ as before

The log of the likelihood function is given by

$$\log p(X|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{\eta=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k) \right)$$

Significant problem associated with the maximum likelihood framework applied to Gaussian mixture models

Significant problem

Consider a Gaussian mixture whose components have covariance matrices given by $\Sigma_k = \sigma_k^2 \cdot I$ with I being the identity matrix.

Suppose that one of the components of the mixture model, let us say the j^th component, has its mean $|\mu_k|$ exactly equal to one of the data points

$$\mu_k = \mathbf{x}_n$$

$$\mathcal{N}(\mathbf{x}_{\eta}|\mathbf{x}_{\eta},\sigma_{j}^{2}\cdot I) = rac{1}{(2\cdot\pi)^{1/2}}\cdotrac{1}{\sigma_{j}}$$

For $\sigma_i \to 0$ the term goes to infinity

37

Algorithm: EM for Gaussian mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients).

Training set consists on N observations (sample)

$$X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n, \cdots, \mathbf{x}_N)$$

05/09/2023

05/09/2023

05/09/2023

Algorithm: EM for Gaussian mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients).

Training set consists on N observations (sample)

$$X = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{\eta}, \cdots, \mathbf{x}_N)$$

45

EM for Gaussian mixtures

1. Initialisation:

Chose K, number of clusters. Then initialise

- \bullet the means $\boldsymbol{\mu}_k$ (centres of clusters, random data point or random value)
- Σ_k covariances (shape of clusters, usually we can start with identity matrix I)
- $\pi_k = p(c_k = 1)$ mixing coefficients (prior, importance of clusters, usually we can start with the value $\frac{1}{K}$, each cluster has the same importance

2. **E-Step** (Expectation):

Compute for each data point η and each cluster k

$$\gamma(c_{\eta k}) = p(c_k = 1 | \mathbf{x}_{\eta}) = \frac{\pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k)}$$

 π_k is the mixture, cluster k

$$p(c_k = 1 | \mathbf{x}_{\eta}) = \frac{p(c_k = 1) \cdot p(\mathbf{x}_{\eta} | c_k = 1)}{p(\mathbf{x}_{\eta})}$$

Usually we can compute the likelihood

$$p(c_k = 1, \mathbf{x}_\eta) = \pi_k \cdot \mathcal{N}(\mathbf{x}_\eta | \boldsymbol{\mu}_k, \Sigma_k)$$

with

$$p(\mathbf{x}_{\eta}|c_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\boldsymbol{\Sigma}_k|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k)\right)$$

47

EM for Gaussian mixtures

$$p(c_k = 1, \mathbf{x}_n) = \pi_k \cdot \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \Sigma_k)$$

with

$$p(\mathbf{x}_{\eta}|c_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\boldsymbol{\Sigma}_k|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k)\right)$$

and after it

$$p(\mathbf{x}_{\eta}) = \sum_{k=1}^{K} p(c_k = 1, \mathbf{x}_{\eta}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta} | \boldsymbol{\mu}_k, \Sigma_k)$$

and normalize

$$\gamma(c_{\eta k}) = p(c_k = 1 | \mathbf{x}_{\eta}) = \frac{p(c_k = 1, \mathbf{x}_{\eta})}{p(\mathbf{x}_{\eta})}$$

3. M-Step (Maximization):

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \cdot \sum_{\eta=1}^N \gamma(c_{\eta k}) \cdot \mathbf{x}_{\eta}$$

$$\Sigma_k = \frac{1}{N_k} \cdot \sum_{\eta=1}^N \gamma(c_{\eta k}) \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k) \cdot (\mathbf{x}_{\eta} - \boldsymbol{\mu}_k)^T$$

$$\pi_k = p(c_k = 1) = \frac{N_k}{N}$$

with

$$N_k = \sum_{\eta=1}^N \gamma(c_{\eta k})$$

49

EM for Gaussian mixtures

4. Evaluate the log likelihood

$$\log p(X|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{\eta=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_{\eta}|\boldsymbol{\mu}_k, \Sigma_k) \right)$$

and check for convergence of either the parameters or the log likelihood. the convergence criterion is not satisfied or below number of iterations \max iterations, return to step 2.

Given the data

$$X = \left(\mathbf{x}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right)$$

with K=2 and

$$oldsymbol{\mu}_1 = \left(egin{array}{c} 2 \\ 2 \end{array}
ight), oldsymbol{\mu}_2 = \left(egin{array}{c} 0 \\ 2 \end{array}
ight),$$

and

$$\Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$\pi_1 = p(c_1 = 1) = 0.6, \quad \pi_2 = p(c_2 = 1) = 0.4,$$

we will perform a step of the EM clustering algorithm.

E-Step (Expectation)

Compute for each data point n and each cluster k

$$p(\mathbf{x}_n|c_k=1) = \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2 \cdot \pi)^{D/2}} \cdot \frac{1}{|\boldsymbol{\Sigma}_k|^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} \cdot (\mathbf{x}_n - \boldsymbol{\mu}_k)\right).$$

$$p(\mathbf{x}_1|c_1=1) = \frac{1}{(2 \cdot \pi)^{2/2}} \cdot \frac{1}{1^{1/2}} \cdot \exp\left(-\frac{1}{2} \cdot (2-2, 2-2) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2-2 \\ 2-2 \end{pmatrix}\right),$$

$$p(\mathbf{x}_1|c_1=1) = 0.159155, \ p(\mathbf{x}_2|c_1=1) = 0.0215393, \ p(\mathbf{x}_3|c_1=1) = 0.00291502,$$

$$p(\mathbf{x}_1|c_2=1) = 0.00291502, \ p(\mathbf{x}_2|c_2=1) = 0.0215393, \ p(\mathbf{x}_3|c_2=1) = 0.159155,$$
Then
$$p(c_k=1,\mathbf{x}_n) = \pi_k \cdot \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $p(c_k = 1, \mathbf{x}_n) = \pi_k \cdot \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ $p(\mathbf{x}_1, c_1 = 1) = 0.095493, \ p(\mathbf{x}_2, c_1 = 1) = 0.0129236, \ p(\mathbf{x}_3, c_1 = 1) = 0.00174901,$ $p(\mathbf{x}_1, c_2 = 1) = 0.00116601, \ p(\mathbf{x}_2, c_2 = 1) = 0.00861571, \ p(\mathbf{x}_3, c_2 = 1) = 0.063662,$

53

$$p(\mathbf{x}_n) = \sum_{k=1}^{K} p(c_k = 1, \mathbf{x}_n) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \Sigma_k)$$

$$p(\mathbf{x}_1) = 0.096659, \quad p(\mathbf{x}_2) = 0.0215393, \quad p(\mathbf{x}_3) = 0.065411,$$
where $P_{\mathbf{x}_1} = P_{\mathbf{x}_2} = P_{\mathbf{x}_3} = P$

using Bayes (normalizing)

$$\gamma(c_{nk}) = p(c_k = 1 | \mathbf{x}_n) = \frac{p(c_k = 1, \mathbf{x}_n)}{p(\mathbf{x}_n)}.$$

$$\gamma(c_{11}) = p(c_1 = 1 | \mathbf{x}_1) = 0.987937, \quad \gamma(c_{21}) = 0.6, \quad \gamma(c_{31}) = 0.0267388,$$

$$\gamma(c_{12}) = p(c_2 = 1 | \mathbf{x}_1) = 0.0120631, \quad \gamma(c_{22}) = 0.4, \quad \gamma(c_{32}) = 0.973261.$$

M-Step (Maximization)

We evaluate

$$N_k = \sum_{n=1}^{N} \gamma(c_{nk})$$

$$N_1 = 1.61468, \quad N_2 = 1.38532.$$

we determine the mean values

$$\begin{split} \boldsymbol{\mu}_k &= \frac{1}{N_k} \cdot \sum_{n=1}^N \gamma(c_{nk}) \cdot \mathbf{x}_n \\ \boldsymbol{\mu}_1 &= \frac{1}{1.61468} \cdot \left(0.987937 \cdot \binom{2}{2} + 0.6 \cdot \binom{0}{2} + 0.0267388 \cdot \binom{0}{0}\right), \\ \boldsymbol{\mu}_1 &= \binom{1.2237}{1.96688}. \end{split}$$

and

$$\begin{split} \boldsymbol{\mu}_2 &= \frac{1}{1.38532} \cdot \left(0.0120631 \cdot \begin{pmatrix} 2 \\ 2 \end{pmatrix} + 0.4 \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} + 0.973261 \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right), \\ \boldsymbol{\mu}_2 &= \begin{pmatrix} 0.0174156 \\ 0.594898 \end{pmatrix}. \end{split}$$

55

$$\begin{split} \Sigma_k &= \frac{1}{N_k} \cdot \sum_{n=1}^N \gamma(c_{nk}) \cdot (\mathbf{x}_n - \boldsymbol{\mu}_k) \cdot (\mathbf{x}_n - \boldsymbol{\mu}_k)^T \\ \Sigma_1 &= \frac{1}{1.61468} \cdot \left(0.987937 \cdot \left(\frac{2-1.2237}{2-1.96688}\right) \cdot (2-1.2237, 2-1.96688) + \\ &0.6 \cdot \left(\frac{0-1.2237}{2-1.96688}\right) \cdot (0-1.2237, 2-1.96688) + \\ &0.0267388 \cdot \left(\frac{0-1.2237}{0-1.96688}\right) \cdot (0-1.2237, 0-1.96688) \right), \\ \Sigma_1 &= \left(\frac{0.94996 - 0.0405286}{0.0405286 - 0.0651426}\right), \end{split}$$
 and
$$\Sigma_2 = \left(\frac{0.0345279 - 0.0244707}{0.0244707 - 0.835892}\right). \end{split}$$

and the new mixing parameter is

$$\pi_k = p(c_k = 1) = \frac{N_k}{N}$$

$$\pi_1 = p(c_1 = 1) = \frac{1.61468}{3} = 0.538227, \ \pi_2 = p(c_2 = 1) = \frac{1.38532}{3} = 0.461775.$$

57

Cluster validation

- The procedure of evaluating the results of a clustering algorithm is known under the term cluster validity
- In general terms, there are **three approaches** to investigate cluster validity

- The first is based on external criteria
- This implies that we evaluate the results of a clustering algorithm based on a **pre-specified structure**, which is imposed on a data set and reflects our intuition about the clustering structure of the data set

External measures: purity

• $C = \{c_1, c_2, ..., c_K\}$ is the set of clusters $L = \{l_1, l_2, ..., l_G\}$ is the set of reference classes

$$purity(C, L) = \frac{1}{n} \sum_{k=1}^{K} \max_{j} (|c_k \cap l_j|)$$

- **Problem**: biased $\Rightarrow K = n$ clusters minimize error
- Alternative: entropy of classes in clusters (or mutual information between classes and clusters)

External measures: purity

$$purity = \frac{1}{17}(max(1,0,5) + max(4,1,1) + max(0,3,2)) = \frac{12}{17}$$

$$purity(c_1) = \frac{5}{6}, \quad purity(c_2) = \frac{4}{6}, \quad purity(c_3) = \frac{3}{5}$$

61

- The second approach is based on internal criteria
- We may evaluate the results of a clustering algorithm in terms of quantities that involve the vectors of the data set themselves

Internal measures: silhouette

- Silhouette combines both cohesion and separation
- Calculated for a specific object \mathbf{x}_i
 - \boldsymbol{a} = average distance of \mathbf{x}_i to the points in its cluster
 - b = min (average distance of x_i to points in another cluster)
 - the silhouette coefficient for a point is then given by

s = 1 - a/b if a < b, (or s = b/a - 1 if $a \ge b$, not the usual case)

between -1 and 1 (the closer to 1 the better)

- Silhouette of **cluster**: average of observation silhouettes
- Silhouette of clustering solution: average of cluster silhouettes

63

Validity: Relative Criteria

- Here the basic idea is the evaluation of a clustering structure by comparing it to other clustering schemes, resulting by the *same* algorithm but with *different parameter values*
- There are two criteria proposed for clustering evaluation and selection of an optimal clustering scheme (Berry and Linoff, 1996)
 - Compactness, the members of each cluster should be as close to each other as possible. A common measure of compactness is the variance, which should be minimized
 - Separation, the clusters themselves should be widely spaced

Validity index

- Dunn index, a cluster validity index for *K*-means clustering proposed in Dunn (1974)
- Attempts to identify "compact and well separated clusters"
 - Notation: k the number of clusters

65

Dunn index

$$d(C_i, C_j) = \min_{\vec{x} \in C_i, \vec{y} \in C_j} d(\vec{x}, \vec{y})$$

$$diam(C_i) = \max_{\vec{x}, \vec{y} \in C_i} d(\vec{x}, \vec{y})$$

$$D_{k} = \min_{1 \leq i \leq k} \left\{ \min_{1 \leq j \leq k} \left\{ \frac{d(C_{i}, C_{j})}{\max_{1 \leq l \leq k} \left\{ diam(C_{l}) \right\}} \right\} \right\}$$

- If the dataset contains compact and well-separated clusters, the distance between the clusters is expected to be large and the diameter of the clusters is expected to be small
- Large values of the index indicate the presence of compact and well-separated clusters

- The implications of the Dunn index are:
- Considerable amount of time required for its computation
- Sensitive to the presence of noise in datasets, since these are likely to increase the values of diam(c)

• The Davies-Bouldin (DB) index (1979)

$$d(C_i, C_j) = \min_{\vec{x} \in C_i, \vec{y} \in C_j} d(\vec{x}, \vec{y})$$

$$diam(C_i) = \max_{\vec{x}, \vec{y} \in C_i} d(\vec{x}, \vec{y})$$

$$DB_k = \frac{1}{k} \sum_{i=1}^k \max_{i \neq j} \left\{ \frac{diam(C_i) + diam(C_j)}{d(C_i, C_j)} \right\}$$

- Small indexes correspond to good clusters, clusters are compact and their centers are far away
- The DB_k index exhibits no trends with respect to the number of clusters and thus we seek the minimum value of DB_k its plot versus the number of clusters

Distance between two clusters

- There are three common approaches measuring the distance between two different clusters
- Single linkage: It measures the distance between the closest members of the clusters
- Complete linkage: It measures the distance between the most distant members
- Comparison of centroids: It measures the distance between the centers of the clusters

71

Literature

- Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer 2006
 - Chapter 9

- Simon O. Haykin, Neural Networks and Learning Machine, (3rd Edition), Pearson 2008
 - Chapter 9

Literature

- Machine Learning A Journey to Deep Learning, A. Wichert, Luis Sa-Couto, World Scientific, 2021
 - Chapter 9