实验一: 电子仪器使用与基本运算电路

专业班级: 通信2101班 姓名: 罗畅 学号: U202113940

实验名称

电子仪器使用与基本运算电路

实验目的:

- 掌握集成运算放大器的正确使用方法
- 掌握用集成运算放大器构成各种基本运算电路的基本原理
- 熟练安装、调试由运放构成的基本运算电路
- 进一步学习正确使用示波器DC, AC耦合方式观察不同波形的方法。重点掌握积分器输入、输出波形的测量和描绘方法。

实验元器件

直流稳压源,示波器,信号发生器,NE5532,uA741,电阻: 100Ω , $100k\Omega$, $10K\Omega$, $5.1k\Omega$, $1k\Omega$, 500Ω , 0.22uF电容器

实验原理

1.研究电压跟随器

由虚短虚断可得, V_0 始终等于 V_i ,从而不受外部信号源内阻的影响,比直接接入信号源好。

2.研究加法器实验

根据运算放大器的特性,课得到如下公式:

$$V_o = -(rac{R_4}{R_1}V_1 + rac{R_4}{R_2}V_2)$$

实现了对于信号的加法运算。

3.研究积分电路

在电路中加入电容,从而对电压 u_i 进行积分得到 u_o

公式如下:

$$v_o(t) = -rac{1}{RC}\int_0^t v_i(t)dt + v_o(0)$$

实现对输入信号的积分运算。

实验任务

一、电压跟随器作用研究以及电路负载特性影响观察

1. 按照图a连接电路,

- 断开开关K,输入f=1kHz, V_{ipp} =1V的正弦信号,用示波器观察输出波形。
- 闭合开关K,观察输出波形的变化情况。
- 分别记录K闭合前、后信号源输出信号的峰-峰值,计算信号源的内阻 R_s ,并解释100 Ω 负载电阻连接到信号源上产生的负载效应。 2.按图b连接电路。
- 仍然从信号源送出频率为1kHz、峰峰值为1V的正弦信号,用示波器观察输入、输出波形(幅值与相位关系)。分别记录接上 R_L 和去掉 R_L 两种情况下输出信号 v_o 的大小,并解释观察到的实验现象。
- 将数据记录在表a中

表a

	不接 R_L	不接 R_L	接 R_L	接 R_L	计算 R_s
	v_{ipp} /V	v_{opp} /V	v_{ipp} /V	v_{opp} /V	
无电压跟随器		-		-	Ω
有电压跟随器					-

二、反向比例加法电路

1.按照下图在面包板上组装电路。电阻值取 R_F =100k Ω , R_1 =10k Ω , R_2 =5.1k Ω , R_{s1} = R_{s2} =1k Ω , 安装电阻前先用万用表测试电阻值填入表b中; 2.检查无误后接通电源。从信号源送出频率为1kHz、峰-峰值为300mV 的正弦信号。用示波器测得 v_1 、 v_2 和 v_o 。填入表b中,并记录它们的波形; 3.关闭电源,将 R_{s2} 改为500 Ω ,检查无误后接通电源,再次用示波器测得 v_1 、 v_2 和 v_o 填入表b中.

反向比例加法运算电路

R=10k1 P2=1k1 R=10k1 P2=1k1

表b

-		实测值		理论值	相对误差
-	v_{1pp} /mV	v_{2pp} /mV	v_{opp} /V	v_{opp} /V	-
R_{s2} =1k Ω					%
R_{s2} =500 Ω					%
实测电阻值	R_1 =	R_2 =	R_F =	-	-

三、积分电路

• 按照下图在面包板上组装电路。取 R_1 =10k Ω , R_F =100k Ω ,C=0.22μF, R_P =10k Ω ,输入f=200Hz,峰峰值为1V的正方波。用示波器测试 v_i 和 v_0 ,并画出其波形(需含有坐标轴,波形上下对齐)。

图 3.6.10 比例积分电路

反向比例积分电路

实验记录

所有实验按照上述电路图连接实物电路,集成运算放大器的供电电源电压选用±12V。

- 一、电压跟随器
- 二、反向比例加法电路
- 三、积分电路