KAPITA SELEKTA

Prediksi Penyebaran Penyakit Demam Berdarah pada Data *DengAI* dengan *Machine Learning* pada Mata Kuliah Kapita Selekta

Ditulis untuk memenuhi sebagian persyaratan akademik guna menyelesaikan mata kuliah Kapita Selekta

Oleh:

Osvaldo Figo	01112180010
Terry Hilario Santoso	01112180028
Yudiestira Dwi Sentosa	01112180030

PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS PELITA HARAPAN TANGERANG

2021

i. Executive Summary

Dalam eksperimen kali ini, telah dilakukan uji atau percobaan untuk membuat model yang digunakan dalam memprediksi jumlah total kasus demam berdarah di kota San Juan dan Iquitos di Negara Peru. Demam berdarah adalah salah satu penyakit yang menular melalui perantara nyamuk. Penyakit ini memiliki tingkat risiko kematian yang cukup besar dan menyebar cukup cepat. Dikarenakan penyakit demam berdarah diperantarai oleh nyamuk, maka terdapat korelasi terhadap faktor geografis dan cuaca terhadap laju perkembangan penyakit ini. Lokasi geografis yang berada di sekitar khatulistiwa dimana di lokasi tersebut curah hujan cukup tinggi, membuat nyamuk sangat mudah untuk berkembang biak. Dari data yang sudah dikumpulkan, hampir 500 juta kasus demam berdarah setiap tahunnya timbul di daerah Amerika Latin. Angka tersebut cukup besar dan dengan banyaknya kelompok masyarakat yang tertular dengan penyakit demam berdarah membuat fasilitas kesehatan tidak dapat menampung semua pasien karena kapasitas kamar yang telah terisi penuh. Dengan alasan yang sudah dipaparkan sebelumnya, menjadi dasar dari eksperimen ini. Diharapkan dengan adanya model prediksi, pemerintah dan seluruh lapisan masyarakat dapat bersia[untuk menghadapi penyakit ini.

Model prediksi menggunakan metode *random forest* atau lebih tepatnya menggunakan fungsi *RandomForestRegressor*. Data yang diambil dari *drivendata.org* sehingga data dianggap valid. Dalam proses *data preprocessing* dilakukan pengisian data yang kosong, pemilihan kolom data yang diperlukan, dan perubahan jenis data teks ke data numerik. Model data didapatkan dari data *train* dengan rasio 80% data *test* dan 20% data *train*. Kemudian dari model data yang sudah didapatkan, dimasukkan data *test* yang sesungguhnya dan didapatkanlah hasil akhir. Hasil yang sudah didapatkan kemudian diverifikasi dan mendapatkan MAE 26,09.

DAFTAR ISI

i.	Ex	xecutive Summary	1
I.	Pe	endahuluan	3
II.		Metodologi Penelitian	4
2	.1.	Pengumpulan dan Pembagian Data	5
2.	.2.	Random Forest	<i>6</i>
2	.3.	Pengujian dan Evaluasi Model	8
2.	.4.	Pengujian ke Data Penguji Aktual	8
III.		Analisis dan Pembahasan	9
3.	.1.	Data	9
3	.2.	Features dalam dataset	9
3	.3.	Data Preprocessing	11
3	.4.	Aplikasi Model Random Forest	18
IV.		Penutup	20
4	.1.	Kesimpulan	20
4	.2	Saran	20
DA	FT.	AR PUSTAKA	22
Lar	npi	ran 1 – Kode	23
Lar	npi	ran 2 – Hasil Data Prediksi	29
Lar	nni	ran 3 - Nilai kesamaan nenulisan dari Turnitin	35

I. Pendahuluan

Penyakit demam berdarah adalah penyakit yang berasal dari nyamuk dimana penyakit ini terjadi pada negara beriklim tropis dan sub tropis. Dalam kasus yang biasa terjadi, gejala demam berdarah mirip dengan gejala flu diantara lain seperti panas, ruam, dan nyeri sendi dan otot. Pada kasus yang parah, penyakit demam berdarah dapat menyebabkan pendarahan akut, tekanan darah rendah dan kematian. Dikarenakan penyakit ini dibawa oleh nyamuk, kecepatan transmisi penyebaran penyakit demam berdarah tergantung dengan variabel cuaca seperti temperatur dan curah hujan. Meskipun hubungan dari cuaca sangat kompleks, tetapi semakin banyak peneliti yang berargumen jika perubahan cuaca dapat mempengaruhi laju penyebaran dari penyakit demam berdarah. Dengan pengetahuan akan cuaca dan distribusi penyebaran penyakit diharapkan memberikan dampak yang signifikan dari fasilitas kesehatan.

Dalam beberapa tahun terakhir, penyakit demam berdarah sudah menyebar ke banyak negara. Secara historis, penyakit tersebut umumnya menyerang wilayah Asia Tenggara dan Kepulauan di Samudera Pasifik. Pada saat ini, hampir setengah miliar kasus per tahun terjadi di Amerika Latin. Dengan menggunakan data yang diambil dari berbagai lembaga Amerika U.S. Federal Government agencies—from the Centers for Disease Control and Prevention to the National Oceanic and Atmospheric Administration yang merupakan bagian dari U.S. Department of Commerce, akan dilakukan prediksi jumlah kasus demam berdarah yang terjadi setiap minggunya di kota San Juan dan kota Iquitos di Peru.

Diharapkan juga nantinya dengan pemahaman hubungan dari cuaca dan penyakit demam berdarah dapat meningkatkan inisiatif untuk melakukan penelitian pada variabel yang berpengaruh dan membantu perencanaan alokasi biaya untuk menanggulangi pandemi ini.

II. Metodologi Penelitian

Pada bagian ini akan dijelaskan mengenai langkah-langkah yang akan dilakukan guna memprediksi penyebaran demam berdarah dengan menggunakan metode *random forest*. Diagram 2.1 merupakan diagram yang menjelaskan proses dalam melakukan prediksi.

Diagram 2.1: flowchart pengolahan data

2.1. Pengumpulan dan Pembagian Data

Penelitian ini menggunakan dataset yang berasal dari situs drivendata.org lebih tepatnya diambil kompetisi DengAI: Predicting Disease Spread. Data yang diberikan terdapat empat buah data yaitu features train, features label, feature test, dan contoh format untuk pengumpulan. Langkah pertama yang dilakukan adalah menyatukan data features train dan features label, kemudian akan dilakukan analisis data yang masuk ke dalam langkah preprocesing. Akan dilakukan beberapa hal penting yang dilakukan dalam langkah ini antara lain:

- handling missing values, langkah ini bertujuan untuk menentukan apa aksi yang harus dilakukan untuk mengatasi data-data yang kosong. Penelitian ini mengisi data-data yang kosong tersebut menggunakan mean atau median dari kelas (kolom) yang sama dengan melihat distribusi dari features tersebut,
- *smoothing noisy data*, langkah ini menganalisis data-data yang merupakan pencilan dan menentukan apakah data-data tersebut harus dibuang atau tetap dipakai karena pertimbangannya adalah bisa aja memang data yang abnormal,
- *data conversion*, di mana dalam langkah ini akan dilakukan pengubahan bentuk data ke bentuk numerik, karena model *machine learning* hanya dapat mengolah data yang numerik. Dalam kasus penelitian ini, akan diubah datadata dalam kolom "*city*" yaitu "sj" dan "iq" menjadi 0 dan 1.

Selanjutnya, data *train* yang sudah dibersihkan akan dibagi menjadi dua yaitu data pelatihan (*data train*) dan data penguji (*data test*) dengan proporsi 80% sebagai data pelatihan dan 20% data penguji. Data-data ini akan dipilih secara acak dan seluruh proses akan dilakukan dengan program Python.

2.2. Random Forest

Algoritma pembelajaran yang dipilih dalam memodelkan prediksi data adalah model *random forest*. Dalam program Python akan digunakan *package sklearn.ensemble* dan menggunakan kernel *RandomForestRegressor*. Penelitian ini menggunakan model *random forest* yang *default* tanpa mengubah parameter.

Bentuk default dari *random forest* di Python adalah jumlah pohon yang akan dibuat dalam penelitian ini ada total 100 pohon atau yang biasa dilambangkan dengan notasi *B*, kemudian jumlah kedalaman pohon yang akan dibuat pada setiap pohon akan bervariasi karena pengaturan *default* dibuat *none* yang berarti akan dibuat kedalaman maksimum hingga semua *leaves* sudah lebih kecil dari *minimum samples split* di mana dalam kasus ini karena bentuk data adalah *integer* maka nilai *minimum samples split* akan dipakai angka yang paling kecil. Karena model *random forest* merupakan sebuah gabungan dari pohon-pohon, maka *base estimator* dari model *random forest* adalah tidak lain *decision tree*.

Algoritma dari random forest kumpulan data berbasis pohon yang dimana setiap pohonnya tergantung oleh variabel acak. Untuk lebih jelas buat setiap n-dimensi random vektor $X = (X_1, ..., X_n)^T$ mewakili variabel input atau prediktor bernilai riil dan variabel acak Y yang mewakili respons yang dihargai nyata, dengan mengasumsikan *joint distribution* yang tidak diketahui $P_{xy}(X,Y)$. Tujuannya adalah untuk menemukan fungsi prediksi (X) untuk memprediksi Y. Fungsi prediksi ditentukan oleh *loss function* L(Y, f(X)) dan didefinisikan untuk meminimalkan nilai kerugian yang diharapkan

$$E_{XY}(L(Y, f(X))) \tag{2.1}$$

L adalah loss squared error $L(Y, f(X)) = (Y - f(X))^2$ untuk regresi dan kerugian nol-satu untuk klasifikasi

$$L(Y, f(X)) = I(Y \neq f(X)) = \begin{cases} 0 & \text{if } Y = f(X) \\ 1 & \text{otherwise} \end{cases}$$
 (2.2)

Ternyata pada meminimalkan E_{XY} (L(Y, f(X)))untuk *squared error loss* memberikan ekspektasi bersyarat

$$f(x) = E(Y|X = x) \tag{2.3}$$

atau dikenal sebagai fungsi regresi. Dalam situasi klasifikasi, jika kumpulan nilai Y yang mungkin ditandai dengan Y_, meminimalkan $E_{XY}(L(Y, f(X)))$ untuk nol-satu kerugian memberikan

$$f(x) = \arg \max_{y \in Y_{-}} P(Y = y | X = x)$$
 (2.4)

dikenal sebagai Bayes rule

untuk membangun f dalam hal koleksi yang disebut "Base Learner" h1(x),...,hn(x) dan Base learner ini digabungkan untuk memberikan "ensemble pre-dictor" f(x). Dalam regresi, base learner rata-rata

$$f(x) = \frac{1}{J} \sum_{j=1}^{J} h_j(x)$$
 (2.5)

2.3. Pengujian dan Evaluasi Model

Model yang sudah berhasil didapatkan dari hasil *training data* kemudian akan diuji dengan data penguji. Hasil prediksi dari model akan dicatat dan nantinya akan dibandingkan keakurtannya dengan hasil yang sebenarnya, kemudian akan dihitung nilai R-squared

$$R^2 = 1 - \frac{RSS}{TSS'} \tag{2.6}$$

dan MAE (mean absolute error)

$$MAE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n},$$
(2.7)

dari kedua data (data pelatihan dan data penguji).

2.4. Pengujian ke Data Penguji Aktual

Model yang sudah didapatkan kemudian dipakai untuk menguji data test dari dengue_features_test.csv untuk kemudian dikumpulkan ke situs drivendata.org. Data yang sudah berhasil diprediksi kemudian akan diubah ke bentuk yang sesuai dengan contoh submission yang sudah diberikan berisi kolom "city", "year", "week of year", dan hasil prediksi di kolom "total_cases". Data akhir yang dikumpulkan akan kembali diuji menggunakan MAE sebagai perhitungan skor dan penempatan peringkat pada kompetisi DengAI: Predicting Disease Spread.

III. Analisis dan Pembahasan

Pada bab ini dijelaskan hasil dari implementasi data terhadap metode *Random Forest* serta analisisnya. Dimulai dengan penjelasan data-data yang akan digunakan pada penelitian ini , dilanjutkan dengan hasil evaluasi dari metode *Random Forest*.

3.1. Data

Pada penelitian ini digunakan empat ratus tujuh belas data yang diambil dari situs *drivendata.org* untuk mengikuti kompetisi ini. Data yang digunakan adalah data yang diambil di dua kota yaitu kota San Juan dan Iquitos yang dapat digunakan untuk memprediksi tingkat penyebaran penyakit demam berdarah. Tampilan data yang akan digunakan ada pada Gambar 3.1.

1 city	year	weekofye wee		ndvi_ne																				
2 sj	1990	18	4/30/1990	0.1226	0.103725	0.198483	0.177617	12.42	297.5729	297.7429	292.4143	299.8	295.9	32	73.36571	12.42	14.01286	2.628571	25.44286	6.9	29.4	20	16	4
3 5	1990	19	5/7/1990	0.1699	0.142175	0.162357	0.155486	22.82	298.2114	298.4429	293.9514	300.9	296.4	17.94	77,36857	22.82	15.37286	2.371429	26.71429	6.371429	31.7	22.2	8.6	5
4 sj 5 sj	1990	20	5/14/1990	0.03225	0.172967	0.1572	0.170843	34.54	298.7814	298,8786	295.4343	300.5	297.3		82.05286	34.54	16.84857	2.3	26.71429	6.485714	32.2	22.8	41.4	4
5 sj	1990	21	5/21/1990	0.128633	0.245067	0.227557	0.235886	15.36	298.9871	299.2286	295.31	301.4	297	13.9	80.33714	15.36	16.67286	2.428571	27.47143	6.771429	33.3	23.3	4	3
6 sj	1990	22	5/28/1990	0.1962	0.2622	0.2512	0.24734	7.52	299.5186	299.6643	295.8214	301.9	297.5	12.2	80.46	7.52	17.21	3.014286	28.94286	9.371429	35	23.9	5.8	6
7 sj	1990	23	6/4/1990		0.17485	0.254314	0.181743	9.58	299.63	299.7643	295.8514	302.4	298.1	26.49	79.89143	9.58	17.21286	2.1	28.11429	6.942857	34.4	23.9	39.1	2
B sj	1990	24	6/11/1990	0.1129	0.0928	0.205071	0.210271	3.48	299.2071	299.2214	295.8657	301.3	297.7	38.6	82	3.48	17.23429	2.042857	27.41429	6.771429	32.2	23.3	29.7	4
••																								
449 iq	2010	17	4/30/2010	0.239743		0.307786	0.307943		299.0486	300.0286	296.4686	308.4	294.6	23.6	87.65714	26	18.06857	8.257143	28.85	12.125	36.2	21.4	35.4	- 4
449 iq 450 iq	2010 2010	17 18	4/30/2010 5/7/2010	0.239743	0.259271 0.255786	0.307786	0.307943 0.340286	73.97	297.6171	300.0286 298.5857	296.4686 296.9757	308.4 304.7	294.6 294.6	23.6 85.46	87.65714 96.71286	26 73.97	18.06857 18.60286	8.257143 5.714286	28.85 27.6	12.125 9.6	36.2 33.2	21.4 21.4	35.4 8.1	4 2
449 iq 450 iq 451 iq	2010 2010 2010	17 18 19	4/30/2010 5/7/2010 5/14/2010	0.239743 0.260814 0.168686	0.259271 0.255786 0.1585	0.307786 0.257771 0.133071	0.307943 0.340286 0.1456	73.97 59.4	297.6171 297.2786	300.0286 298.5857 297.9357	296.4686 296.9757 296.7386	308.4 304.7 306	294.6 294.6 294	23.6 85.46 87.3	87.65714 96.71286 97.44571	26 73.97 59.4	18.06857 18.60286 18.39143	8.257143 5.714286 6.185714	28.85 27.6 27.4	12.125	36.2 33.2 33.7	21.4 21.4 21.2	35.4 8.1 32	- 4 2 7
449 iq 450 iq 451 iq 452 iq	2010 2010 2010 2010	17 18 19 20	4/30/2010 5/7/2010 5/14/2010 5/21/2010	0.239743 0.260814 0.168686 0.263071	0.259271 0.255786 0.1585 0.2725	0.307786 0.257771 0.133071 0.258271	0.307943 0.340286 0.1456 0.2445	73.97 59.4 1.15	297.6171 297.2786 297.6486	300.0286 298.5857 297.9357 298.7071	296.4686 296.9757 296.7386 293.2271	308.4 304.7 306 308.7	294.6 294.6 294 290.1	23.6 85.46 87.3 8.8	87.65714 96.71286 97.44571 78.99857	26 73.97 59.4 1.15	18.06857 18.60286 18.39143 14.90857	8.257143 5.714286 6.185714 11.24286	28.85 27.6 27.4 25.63333	12.125 9.6 10.4 9.2	36.2 33.2 33.7 34	21.4 21.4 21.2 20	35.4 8.1 32 2.5	4 2 7 6
449 iq 450 iq 451 iq 452 iq 453 iq	2010 2010 2010 2010 2010	17 18 19 20 21	4/30/2010 5/7/2010 5/14/2010 5/21/2010 5/28/2010	0.239743 0.260814 0.168686 0.263071 0.34275	0.259271 0.255786 0.1585 0.2725 0.3189	0.307786 0.257771 0.133071 0.258271 0.256343	0.307943 0.340286 0.1456 0.2445 0.292514	73.97 59.4 1.15 55.3	297.6171 297.2786 297.6486 299.3343	300.0286 298.5857 297.9357 298.7071 300.7714	296.4686 296.9757 296.7386 293.2271 296.8257	308.4 304.7 306 308.7 309.7	294.6 294.6 294 290.1 294.5	23.6 85.46 87.3 8.8 45	87.65714 96.71286 97.44571 78.99857 88.76571	26 73.97 59.4 1.15 55.3	18.06857 18.60286 18.39143 14.90857 18.48571	8.257143 5.714286 6.185714 11.24286 9.8	28.85 27.6 27.4 25.63333 28.63333	12.125 9.6 10.4 9.2 11.93333	36.2 33.2 33.7 34 35.4	21.4 21.4 21.2 20 22.4	35.4 8.1 32 2.5 27	4 2 7 6 5
449 iq 450 iq 451 iq 452 iq 453 iq 454 iq	2010 2010 2010 2010 2010 2010	17 18 19 20 21 22	4/30/2010 5/7/2010 5/14/2010 5/21/2010 5/28/2010 6/4/2010	0.239743 0.260814 0.168686 0.263071 0.34275 0.160157	0.259271 0.255786 0.1585 0.2725 0.3189 0.160371	0.307786 0.257771 0.133071 0.258271 0.256343 0.136043	0.307943 0.340286 0.1456 0.2445 0.292514 0.225657	73.97 59.4 1.15 55.3 86.47	297.6171 297.2786 297.6486 299.3343 298.33	300.0286 298.5857 297.9357 298.7071 300.7714 299.3929	296.4686 296.9757 296.7386 293.2271 296.8257 296.4529	308.4 304.7 306 308.7 309.7 308.5	294.6 294.6 294 290.1 294.5 291.9	23.6 85.46 87.3 8.8 45 207.1	87.65714 96.71286 97.44571 78.99857 88.76571 91.6	26 73.97 59.4 1.15 55.3 86.47	18.06857 18.60286 18.39143 14.90857 18.48571 18.07	8.257143 5.714286 6.185714 11.24286 9.8 7.471429	28.85 27.6 27.4 25.63333 28.63333 27.43333	12.125 9.6 10.4 9.2 11.93333 10.5	36.2 33.2 33.7 34 35.4 34.7	21.4 21.4 21.2 20 22.4 21.7	35.4 8.1 32 2.5 27 36.6	- 4 2 7 6 5
449 iq 450 iq 451 iq 452 iq 453 iq 454 iq 455 iq	2010 2010 2010 2010 2010 2010 2010	17 18 19 20 21 22 23	4/30/2010 5/7/2010 5/14/2010 5/21/2010 5/28/2010 6/4/2010 6/11/2010	0.239743 0.260814 0.168686 0.263071 0.34275 0.160157 0.247057	0.259271 0.255786 0.1585 0.2725 0.3189 0.160371 0.146057	0.307786 0.257771 0.133071 0.258271 0.256343 0.136043	0.307943 0.340286 0.1456 0.2445 0.292514 0.225657 0.233714	73.97 59.4 1.15 55.3 86.47 58.94	297.6171 297.2786 297.6486 299.3343 298.33 296.5986	300.0286 298.5857 297.9357 298.7071 300.7714 299.3929 297.5929	296.4686 296.9757 296.7386 293.2271 296.8257 296.4529 295.5014	308.4 304.7 306 308.7 309.7 308.5 305.5	294.6 294.6 294 290.1 294.5	23.6 85.46 87.3 8.8 45 207.1 50.6	87.65714 96.71286 97.44571 78.99857 88.76571 91.6 94.28	26 73.97 59.4 1.15 55.3 86.47 58.94	18.06857 18.60286 18.39143 14.90857 18.48571 18.07 17.00857	8.257143 5.714286 6.185714 11.24286 9.8 7.471429 7.5	28.85 27.6 27.4 25.63333 28.63333 27.43333 24.4	12.125 9.6 10.4 9.2 11.93333 10.5 6.9	36.2 33.2 33.7 34 35.4 34.7 32.2	21.4 21.4 21.2 20 22.4	35.4 8.1 32 2.5 27 36.6 7.4	4 2 7 6 5 8
449 iq 450 iq 451 iq 452 iq 453 iq 454 iq	2010 2010 2010 2010 2010 2010	17 18 19 20 21 22 23	4/30/2010 5/7/2010 5/14/2010 5/21/2010 5/28/2010 6/4/2010	0.239743 0.260814 0.168686 0.263071 0.34275 0.160157 0.247057	0.259271 0.255786 0.1585 0.2725 0.3189 0.160371 0.146057	0.307786 0.257771 0.133071 0.258271 0.256343 0.136043	0.307943 0.340286 0.1456 0.2445 0.292514 0.225657 0.233714	73.97 59.4 1.15 55.3 86.47 58.94	297.6171 297.2786 297.6486 299.3343 298.33 296.5986	300.0286 298.5857 297.9357 298.7071 300.7714 299.3929 297.5929	296.4686 296.9757 296.7386 293.2271 296.8257 296.4529	308.4 304.7 306 308.7 309.7 308.5	294.6 294.6 294 290.1 294.5 291.9	23.6 85.46 87.3 8.8 45 207.1	87.65714 96.71286 97.44571 78.99857 88.76571 91.6	26 73.97 59.4 1.15 55.3 86.47 58.94	18.06857 18.60286 18.39143 14.90857 18.48571 18.07 17.00857	8.257143 5.714286 6.185714 11.24286 9.8 7.471429 7.5	28.85 27.6 27.4 25.63333 28.63333 27.43333	12.125 9.6 10.4 9.2 11.93333 10.5 6.9	36.2 33.2 33.7 34 35.4 34.7	21.4 21.4 21.2 20 22.4 21.7	35.4 8.1 32 2.5 27 36.6	4 2 7 6 5 8

Gambar 3.1 Data features dengue San Juan dan Iquitos

3.2. Features dalam dataset

Dalam dataset terdapat beberapa *features* yang sudah disediakan. Setiap *features* atau kolom, akan dijelaskan sebagai berikut.

- city terdapat singkatan dalam data: sj untuk San Juan dan iq untuk Iquitos.
- week_start_date tanggal yang diberikan dalam format *yyyy-mm-dd*.

Berikut beberapa *features* yang datanya diambil dari satelit NOAA's GHCN yang berfungsi untuk mengukur data cuaca secara harian pada kota terkait.

- station_max_temp_c temperatur maksimum dalam derajat celcius.
- station_min_temp_c temperatur minimum dalam derajat celcius.
- station_avg_temp_c rata-rata temperatur dalam derajat celsius.
- station_precip_mm total curah hujan dalam milimeter.
- station_diur_temp_rng_c rentang temperatur haruan dalam derajat celcius.

Berikut *features* yang datanya diambil dari satelit PERSIANN yang berfungsi untuk mengukur curah hujan secara harian (0.25x0.25 skala derajat).

• precipitation_amt_mm – total curah hujan dalam milimeter

Berikut *features* yang datanya diambil dari satelit NOAA's NCEP *Climate Forecast System Reanalysis measurements* (0.5x0.5 skala derajat).

- reanalysis_sat_precip_amt_mm Curah hujan total dalam milimeter
- reanalysis_dew_point_temp_k Rata-rata suhu titik embun dalam kelvin
- reanalysis_air_temp_k Rata-rata suhu udara dalam kelvin
- reanalysis_relative_humidity_percent Persentase rata-rata kelembaban relatif
- reanalysis_specific_humidity_g_per_kg Rata-rata kelembaban
 spesifik
- reanalysis_precip_amt_kg_per_m2 Curah hujan total
- reanalysis_max_air_temp_k Suhu udara maksimum
- reanalysis_min_air_temp_k Suhu udara minimum

- reanalysis_avg_temp_k Suhu udara rata-rata
- reanalysis_tdtr_k Kisaran suhu harian

Berikut *features* yang datanya diambil dari satelit Normalized difference vegetation index (NDVI) yang berfungsi untuk mengukur Indeks Vegetasi Perbedaan Normal CDR NOAA's (skala 0,5x0,5 derajat).

- ndvi_se Piksel tenggara centroid kota
- ndvi_sw Piksel barat daya centroid kota
- ndvi_ne Piksel timur laut centroid kota
- ndvi_nw Piksel barat laut kota sentroid

3.3. Data Preprocessing

Melakukan *data preprocessing* memiliki peran penting dalam pengolahan data. Perlu adanya pengecekan terhadap kualitas data sehingga proses dari pengolahan data tidak terganggu dan dapat menghasilkan hasil yang optimal. Terdapat beberapa teknik *data preprocessing*, diantaranya *Data Cleaning*, *Data Integration*, *Data Reduction*, *Data Transformation* dan *Data Discretization*. Dalam data yang dimiliki, teknik *data processing* yang digunakan adalah *Data Cleaning* dan *Data Transformation*.

Proses *data cleaning* dimulai dengan mengecek kolom yang memliki data kosong atau kurang lengkap. Dalam kasus ini data dianggap valid sehingga tidak ada pengurangan data yang perlu dilakukan. Dari hasil pengecekan pada Gambar 3.2, terdapat dua puluh *features* (*x*) yang kosong, oleh karena itu akan dilakukan *handling missing values* dengan melihat bentuk distribusi tiap *features* pada Gambar 3.3. Kemudian setiap baris yang kosong akan diisi dengan perintah df.fillna.(filler). Namun, sebelum mengisi data yang kosong akan dilakukan pemilihan features terlebih dahulu dengan uji korelasi.

city	0	station_diur_temp_
year	0	station_max_temp_c
weekofyear	0	station_min_temp_c
week_start_date	0	station_precip_mm
ndvi_ne	194	dtvne: int64
ndvi_nw	52	
ndvi_se	22	
ndvi_sw	22	
precipitation_amt_mm	13	
reanalysis_air_temp_k	10	
reanalysis_avg_temp_k	10	
reanalysis_dew_point_temp_k	10	
reanalysis_max_air_temp_k	10	
reanalysis_min_air_temp_k	10	
reanalysis_precip_amt_kg_per_m2	10	
reanalysis_relative_humidity_percent	10	
reanalysis_sat_precip_amt_mm	13	
reanalysis_specific_humidity_g_per_kg	10	
reanalysis_tdtr_k	10	
station_avg_temp_c	43	

Gambar 3.2 hasil pengecekan kolom kosong data train

Gambar 3.3 ditribusi data tiap features

Gambar 3.4 boxplot tiap features

13

Gambar 3.5 heat map korelasi antar features

Hasil dari *boxplot* pada Gambar 3.4 menunjukkan bahwa terdapat pencilan dalam *features*, namun hasil ini akan dibaikan dengan asumsi masih dalam batas wajar. Kemudian, akan dicari korelasi antara variabel respon dengan seluruh variabel predictor dan akan ditampilkan *heatmap* pada Gambar 3.5 yang akan langsung menjelaskan korelasi antar variabel. Setelah menampilkan *heatmap* akan dipilih beberapa variabel prediktor yang mempunyai korelasi tinggi dengan variabel respon. Kemudian, variabel dengan korelasi yang tinggi dipilih dan dimasukkan ke dalam *array*. Terdapat tujuh *features* yang terpilih untuk terpakai dalam membuat model yang akan digunakan untuk prediksi hasil dari *dengue_features_test*. Tujuh *feature* yang terpilih di antara lain:

- 1. *city*,
- 2. station_precip_mm,
- 3. station_diur_temp_rng_c,
- 4. *station_avg_temp_c*,
- 5. reanalysis_min_air_temp_k,
- 6. *year*, dan
- 7. Weekofyear.

Kemudian akan ditinjau bentuk distribusi dari tiap *features* yang terpilih untuk mengisi data yang kosong. Hasil yang diperoleh yakni distribusi normal untuk *features station_precip_mm* dan *reanalysis_min_air_temp_k* serta distribusi lainnya untuk *features station_diur_temp_rng_c* dan *station_avg_temp_c*. *Features* dengan persebaran data distribusi normal, pada data yang kosong akan diisi menggunakan nilai rata-rata *features* dan distribusi lainnya akan menggunakan nilai median *features*.

Gambar 3.6: Distribusi variabel station_precip_mm

Gambar 3.7: Distribusi variabel station_diur_temp_rng_c

Gambar 3.8: Distribusi variabel *station_avg_temp_c*

Gambar 3.9: Distribusi variabel *reanalysis_min_air_temp_k*

Setelah data sudah bersih dan tidak terdapat lagi kolom yang kosong, sebenarnya data sudah dapat diproses, namum terdapat data yang merupakan tipe string, yang dimana data ini tidak dapat digunakan dalam fungsi *RandomForestRegressor* yang hanya menerima tipe data angka. Maka dilakukan *data transformation*, yang akan mengkonversi data pada kolom "*city*" menjadi data numerik pada Gambar 3.10 sehingga data dapat digunakan dalam fungsi *RandomForestRegressor*.

	city		city
0	0	0	S
1	0	1	S
2	0	2	S
3	0	3	sj
4	0	4	S
1451	1 .	1451	iq
1452	1 .	1452	iq
1453	1 .	1453	iq
1454	1 .	1454	iq
1455	1 .	1455	iq

3.4. Aplikasi Model Random Forest

Data yang sudah selesai dibersihkan kemudian akan dipisah menjadi dua yaitu data pelatihan dan data pengujian dengan proporsi 8:2. Kemudian data *train* ini akan dipakai untuk membuat model *random forest regressor*. Model dari *random forest* akan berbentuk pohon *decision tree* dan akan dibuat sejumlah seratus pohon, dengan kedalaman pohon semaksimal mungkin sampai data sudah tidak dapat displit. Salah satu model pohon yang dihasilkan dapat dilihat pada Gambar 3.11, model ini hanya sebagai perwakilan model pohon lain.

Gambar 3.11: Bentuk model decision tree yang dihasilkan

Model random forest ini mendapatkan hasil R^2 yang dapat dilihat pada Gambar 3.12. Meskipun model dinyatakan *overfitting* oleh peneliti karena margin train dan test melebihi 0.03, namun model mendapatkan hasil MAE = 26.0986.

Nilai r2 Score Random Forest : train : 0.9516122137011113 test : 0.621159565793644

Overfitting

Gambar 3.12: Hasil perhitungan R^2

IV. Penutup

4.1. Kesimpulan

Penelitian ini telah melakukan pemodelan dengan metode *random forest* untuk memprediksi penyebaran penyakit demam berdarah, namun model yang dihasilkan masih dinilai sebagai model yang *overfit* dengan perbangingan hasil R^2 kurang lebih 95% untuk *data train* split dan 60% untuk *data test* split sehingga menghasilkan margin kurang lebih 35% serta perhittungan nilai R^2 yang relatif rendah untuk hasil *data test split*. Hasil *MAE* yang didapat dari model *random forest* cenderung berada di angka 26 setelah dilakukan tiga kali percobaan.

Gambar 4.1: Hasil MAE pada situs drivendata.org

4.2 Saran

Metode yang digunakan untuk membersihkan data dan memodelkan algoritama dalam penelitian ini seharusnya masih dapat dikembangkan agar dapat memberikan hasil prediksi yang lebih akurat serta menghilangkan kemungkinan-kemungkinan terjadinya *overfitting* dan *underfitting*. Beberapa hal yang dapat dilakukan untuk mengembangkan penelitian ini adalah sebagai berikut:

- menggunakan metode PCA untuk memanipulasi *features* sehingga dapat mereduksi jumlah kolom tanpa menghilangkan atau dengan tetap mempertahankan infomarsi yang ada,
- menganalisis data-data pencilan secara mendalam agar mendapatkan model yang lebih baik,

3. menggunakan metode lain seperti *probit regression*, *support vector machine* (SVM), naïve bayes, k-*nearest-neighbors*, dan sebagainya.

DAFTAR PUSTAKA

- Prasetyo, Hendro. Juni 2019. Artikel: *Apa Itu Preprocessing*. Diakses pada tanggal 18 Juni 2021. https://hendroprasetyo.com/apa-itu-preprocessing/#.YMyyiWgzY2w
- Zhang, C. and Ma, Y., 2011. *Random Forests*. ResearchGate. Diakses pada tanggal 18 Juni 2021. https://www.researchgate.net/publication/236952762_Random_Forests

Lampiran 1 - Kode

Data Cleaning

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import scipy.stats as ss
%matplotlib inline
df = pd.read excel("dengue features train.xlsx")
pd.options.display.max columns = 50
df.head()
df.isna().sum()
fig = plt.figure(figsize=(35,25))
kolom = df.columns[4:]
for i in range(len(kolom)):
    plt.subplot(4,5,1+i)
    sns.distplot(df[kolom[i]])
plt.show()
  labels = pd.read csv("dengue labels train.csv")
  Df = pd.merge(df, labels , on =
["city", "year", "weekofyear"])
  plt.figure(figsize=(20,10))
  sns.heatmap(df.corr(),annot=True)
  plt.show()
plt.figure(figsize=(15,8))
fig = sns.distplot(df["city"])
plt.show(fig)
plt.figure(figsize=(15,8))
fig = sns.distplot(df["station precip mm"])
plt.show(fig)
plt.figure(figsize=(15,8))
```

```
fig = sns.distplot(df["station diur temp rng c"])
plt.show(fig)
plt.figure(figsize=(15,8))
fig = sns.distplot(df["station avg temp c"])
plt.show(fig)
plt.figure(figsize=(15,8))
fig = sns.distplot(df["reanalysis min air temp k"])
plt.show(fig)
plt.figure(figsize=(15,8))
fig = sns.distplot(df["year"])
plt.show(fig)
plt.figure(figsize=(15,8))
fig = sns.distplot(df["weekofyear"])
plt.show(fig)
filler ={
    "ndvi ne" : df["ndvi ne"].mean(),
    "ndvi nw" : df["ndvi nw"].mean(),
    "ndvi se" : df["ndvi se"].mean(),
    "ndvi sw" : df["ndvi sw"].mean(),
    "precipitation amt mm" :
df["precipitation amt mm"].median(),
    "reanalysis air temp k" :
df["reanalysis air temp k"].mean(),
    "reanalysis avg temp k" :
df["reanalysis avg temp k"].mean(),
    "reanalysis dew point temp k" :
df["reanalysis dew point temp k"].median(),
    "reanalysis max air temp k" :
df["reanalysis max air temp k"].median(),
    "reanalysis min air temp k" :
df["reanalysis min air temp k"].median(),
    "reanalysis precip amt kg per m2" :
df["reanalysis precip amt kg per m2"].median(),
```

```
"reanalysis relative humidity percent" :
df["reanalysis relative humidity percent"].mean(),
    "reanalysis sat precip amt mm" :
df["reanalysis sat precip amt mm"].median(),
    "reanalysis specific humidity g per kg" :
df["reanalysis specific humidity g per kg"].median()
    "reanalysis tdtr k" :
df["reanalysis tdtr k"].median(),
    "station avg temp c" :
df["station avg temp c"].mean(),
    "station diur temp rng c" :
df["station diur temp rng c"].median(),
    "station max temp c" :
df["station max temp c"].mean(),
    "station min temp c" :
df["station min temp c"].mean(),
    "station precip mm"
                                                 df["
plt.figure(figsize=(15,15))
fig = df.boxplot()
fig.set xticklabels(fig.get xticklabels(),rotation=9
0)
plt.show()
station precip mm"].median()
}
df = df.fillna(filler)
df =
df[["city","station_precip_mm","station_diur_temp_rn
g c", "station avg temp c", "reanalysis min air temp k
", "year", "weekofyear", "total cases"]]
def recat cat(x):
    if x == "sj":
```

```
return 0
elif x== "iq":
    return 1
kategorik = ["city"]
for i in kategorik:
    df[i] = df[i].apply(recat_cat)
df.head()
```

Machine Learning

```
from sklearn.model selection import
train test split, GridSearchCV
from sklearn.preprocessing import
StandardScaler, MinMaxScaler, RobustScaler
from sklearn.metrics import
classification report, confusion matrix, accuracy scor
e,f1 score,r2 score
from sklearn.linear model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
x = df.drop(columns="total cases")
y = df["total cases"]
x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=.2,random_state=42)
x_train.shape,x_test.shape,y_train.shape,y_test.shap
RF = RandomForestRegressor()
RF.fit(x train, y train)
```

```
y RF train = RF.predict(x train)
y RF test = RF.predict(x test)
r2 RF train = r2 score(y train, y RF train)
r2 RF test = r2 score(y test, y RF test)
status RF = []
print(f"Nilai r2 Score Random Forest : \n train :
{r2 RF train} \n test : {r2 RF test} ")
if (r2 RF train-r2 RF test) > 0.03:
    print("Overfitting")
    status_RF.append("Overfitting")
elif (r2 RF train-r2 RF test) < -0.03:
    print("UnderFitting")
    status RF.append("Underfitting")
else :
    print("Just Right")
    status RF.append("Just Right")
test = pd.read csv("dengue features test.csv")
test = test .fillna(filler)
test .isna().sum()
test [["city", "station precip mm", "station diur temp
rng c", "station avg temp c", "reanalysis min air tem
p_k", "year", "weekofyear"] ]
for i in kategorik:
    test [i] = test [i].apply(recat cat)
ytest = RF.predict(test)
test = test .drop(columns="week start date")
```

```
test ["total cases"] = ytest
RFModel =
test_[["city","year","weekofyear","total_cases"]]
RFModel
def recat cat2(x):
    if x == 0:
        return "sj"
    elif x == 1:
        return "iq"
kategorik = ["city"]
for i in kategorik:
    RFModel[i] = RFModel[i].apply(recat cat2)
RFModel.head()
RFModel["total cases"] = [round(i) for i in
RFModel["total_cases"]]
RFModel.to csv("RFModelFS.csv",index=False)
```

Lampiran 2 – Hasil Data Prediksi

	city	year	weekofyear	total_cases	37	sj	2009	2	24
1	sj	2008	18	6	38	sj	2009	3	20
2	sj	2008	19	8	39	sj	2009	4	19
3	sj	2008	20	4	40	sj	2009	5	17
4	sj	2008	21	6	41	sj	2009	6	16
5	sj	2008	22	9	42	sj	2009	7	17
6	sj	2008	23	13	43	sj	2009	8	16
7	sj	2008	24	14	44	sj	2009	9	13
8	sj	2008	25	12	45	sj	2009	10	9
9	sj	2008	26	18	46	sj	2009	11	10
10	sj	2008	27	26	47	sj	2009	12	9
11	sj	2008	28	37	48	sj	2009	13	8
12	sj	2008	29	34	49	sj	2009	14	9
13	sj	2008	30	38	50	sj	2009	15	7
14	sj	2008	31	47	51	sj	2009	16	6
15	sj	2008	32	58	52	sj	2009	17	5
16	sj	2008	33	61	53	sj	2009	18	7
17	sj	2008	34	25	54	sj	2009	19	7
18	sj	2008	35	57	55	sj	2009	20	7
19	sj	2008	36	56	56	sj	2009	21	6
20	sj	2008	37	55	57	sj	2009	22	13
21	sj	2008	38	60	58	sj	2009	23	10
22	sj	2008	39	30	59	sj	2009	24	16
23	sj	2008	40	23	60	sj	2009	25	22
24	sj	2008	41	56	61	sj	2009	26	17
25	sj	2008	42	36	62	sj	2009	27	14
26	sj	2008	43	31	63	sj	2009	28	36
27	sj	2008	44	33	64	sj	2009	29	35
28	sj	2008	45	30	65	sj	2009	30	39
29	sj	2008	46	37	66	sj	2009	31	54
30	sj	2008	47	33	67	sj	2009	32	62
31	sj	2008	48	28	68	sj	2009	33	56
32	sj	2008	49	32	69	sj	2009	34	107
33	sj	2008	50	23	70	sj	2009	35	24
34	sj	2008	51	27	71	sj	2009	36	74
35	sj	2008	52	23	72	sj	2009	37	25
36	sj	2009	1	7	73	sj	2009	38	30

74	sj	2009	39	64
75	sj	2009	40	74
76	sj	2009	41	75
77	sj	2009	42	76
78	sj	2009	43	69
79	sj	2009	44	35
80	sj	2009	45	27
81	sj	2009	46	30
82	sj	2009	47	27
83	sj	2009	48	31
84	sj	2009	49	29
85	sj	2009	50	27
86	sj	2009	51	25
87	sj	2009	52	38
88	sj	2010	53	7
89	sj	2010	1	16
90	sj	2010	2	13
91	sj	2010	3	23
92	sj	2010	4	18
93	sj	2010	5	14
94	sj	2010	6	12
95	sj	2010	7	12
96	sj	2010	8	14
97	sj	2010	9	13
98	sj	2010	10	13
99	sj	2010	11	10
100	sj	2010	12	9
101	sj	2010	13	14
102	sj	2010	14	8
103	sj	2010	15	6
104	sj	2010	16	7
105	sj	2010	17	16
106	sj	2010	18	16
107	sj	2010	19	15
108	sj	2010	20	21
109	sj	2010	21	20
110	sj	2010	22	19
111	sj	2010	23	29
112	sj	2010	24	30

	113	sj	2010	25	22
	114	sj	2010	26	33
	115	sj	2010	27	36
	116	sj	2010	28	33
	117	sj	2010	29	74
	118	sj	2010	30	26
	119	sj	2010	31	45
	120	sj	2010	32	62
	121	sj	2010	33	63
	122	sj	2010	34	23
	123	sj	2010	35	110
	124	sj	2010	36	65
	125	sj	2010	37	79
	126	sj	2010	38	76
	127	sj	2010	39	68
	128	sj	2010	40	72
	129	sj	2010	41	104
	130	sj	2010	42	29
	131	sj	2010	43	25
	132	sj	2010	44	27
	133	sj	2010	45	34
	134	sj	2010	46	25
	135	sj	2010	47	29
	136	sj	2010	48	30
	137	sj	2010	49	28
	138	sj	2010	50	20
	139	sj	2010	51	18
	140	sj	2011	52	28
	141	sj	2011	1	18
	142	sj	2011	2	13
	143	sj	2011	3	19
	144	sj	2011	4	14
	145	sj	2011	5	14
	146	sj	2011	6	14
	147	sj	2011	7	17
	148	sj	2011	8	18
	149	sj	2011	9	13
	150	sj	2011	10	9
1	151	sj	2011	11	9

152	sj	2011	12	9	191	sj	2011	
153	sj	2011	13	9	192	sj	2012	
154	sj	2011	14	8	193	sj	2012	
155	sj	2011	15	6	194	sj	2012	
156	sj	2011	16	8	195	sj	2012	
157	sj	2011	17	7	196	sj	2012	
158	sj	2011	18	7	197	sj	2012	
159	sj	2011	19	8	198	sj	2012	
160	sj	2011	20	7	199	sj	2012	
161	sj	2011	21	7	200	sj	2012	
162	sj	2011	22	20	201	sj	2012	
163	sj	2011	23	16	202	sj	2012	
164	sj	2011	24	17	203	sj	2012	
165	sj	2011	25	44	204	sj	2012	
166	sj	2011	26	32	205	sj	2012	
167	sj	2011	27	19	206	sj	2012	
168	sj	2011	28	34	207	sj	2012	
169	sj	2011	29	88	208	sj	2012	
170	sj	2011	30	42	209	sj	2012	
171	sj	2011	31	74	210	sj	2012	
172	sj	2011	32	28	211	sj	2012	
173	sj	2011	33	66	212	sj	2012	
174	sj	2011	34	28	213	sj	2012	
175	sj	2011	35	91	214	sj	2012	
176	sj	2011	36	65	215	sj	2012	
177	sj	2011	37	69	216	sj	2012	
178	sj	2011	38	24	217	sj	2012	
179	sj	2011	39	78	218	sj	2012	
180	sj	2011	40	78	219	sj	2012	
181	sj	2011	41	78	220	sj	2012	
182	sj	2011	42	67	221	sj	2012	
183	sj	2011	43	28	222	sj	2012	
184	sj	2011	44	55	223	sj	2012	
185	sj	2011	45	25	224	sj	2012	
186	sj	2011	46	27	225	sj	2012	
187	sj	2011	47	29	226	sj	2012	
188	sj	2011	48	31	227	sj	2012	
189	sj	2011	49	31	228	sj	2012	
190	sj	2011	50	29	229	sj	2012	

		ı		
191	sj	2011	51	20
192	sj	2012	52	20
193	sj	2012	1	19
194	sj	2012	2	20
195	sj	2012	3	20
196	sj	2012	4	19
197	sj	2012	5	18
198	sj	2012	6	16
199	sj	2012	7	13
200	sj	2012	8	16
201	sj	2012	9	13
202	sj	2012	10	10
203	sj	2012	11	10
204	sj	2012	12	8
205	sj	2012	13	9
206	sj	2012	14	8
207	sj	2012	15	7
208	sj	2012	16	6
209	sj	2012	17	6
210	sj	2012	18	9
211	sj	2012	19	7
212	sj	2012	20	13
213	sj	2012	21	9
214	sj	2012	22	13
215	sj	2012	23	17
216	sj	2012	24	16
217	sj	2012	25	32
218	sj	2012	26	34
219	sj	2012	27	31
220	sj	2012	28	36
221	sj	2012	29	36
222	sj	2012	30	39
223	sj	2012	31	43
224	sj	2012	32	60
225	sj	2012	33	74
226	sj	2012	34	67
227	sj	2012	35	28
228	sj	2012	36	66
229	sj	2012	37	64
	-			

230	sj	2012	38	66	269	iq	2010	
231	sj	2012	39	76	270	iq	2010	
232	sj	2012	40	78	271	iq	2010	
233	sj	2012	41	72	272	iq	2010	
234	sj	2012	42	76	273	iq	2010	
235	sj	2012	43	74	274	iq	2010	
236	sj	2012	44	77	275	iq	2010	
237	sj	2012	45	77	276	iq	2010	
238	sj	2012	46	37	277	iq	2010	
239	sj	2012	47	69	278	iq	2010	
240	sj	2012	48	30	279	iq	2010	
241	sj	2012	49	29	280	iq	2010	
242	sj	2012	50	32	281	iq	2010	
243	sj	2012	51	21	282	iq	2010	
244	sj	2013	1	16	283	iq	2010	
245	sj	2013	2	18	284	iq	2010	
246	sj	2013	3	18	285	iq	2010	
247	sj	2013	4	18	286	iq	2010	
248	sj	2013	5	20	287	iq	2011	
249	sj	2013	6	18	288	iq	2011	
250	sj	2013	7	15	289	iq	2011	
251	sj	2013	8	12	290	iq	2011	
252	sj	2013	9	12	291	iq	2011	
253	sj	2013	10	8	292	iq	2011	
254	sj	2013	11	10	293	iq	2011	
255	sj	2013	12	8	294	iq	2011	
256	sj	2013	13	7	295	iq	2011	
257	sj	2013	14	8	296	iq	2011	
258	sj	2013	15	11	297	iq	2011	
259	sj	2013	16	9	298	iq	2011	
260	sj	2013	17	5	299	iq	2011	
261	iq	2010	26	4	300	iq	2011	
262	iq	2010	27	2	301	iq	2011	
263	iq	2010	28	3	302	iq	2011	
264	iq	2010	29	3	303	iq	2011	
265	iq	2010	30	4	304	iq	2011	
266	iq	2010	31	3	305	iq	2011	
267	iq	2010	32	4	306	iq	2011	
268	iq	2010	33	4	307	iq	2011	

270 271 272 273	iq iq iq	2010 2010	35	5
272		2010	26	
	iq		36	5
273		2010	37	5
	iq	2010	38	5
274	iq	2010	39	7
275	iq	2010	40	5
276	iq	2010	41	7
277	iq	2010	42	7
278	iq	2010	43	5
279	iq	2010	44	6
280	iq	2010	45	10
281	iq	2010	46	11
282	iq	2010	47	9
283	iq	2010	48	8
284	iq	2010	49	10
285	iq	2010	50	14
286	iq	2010	51	9
287	iq	2011	52	11
288	iq	2011	1	15
289	iq	2011	2	13
290	iq	2011	3	14
291	iq	2011	4	15
292	iq	2011	5	13
293	iq	2011	6	15
294	iq	2011	7	15
295	iq	2011	8	18
296	iq	2011	9	13
297	iq	2011	10	9
298	iq	2011	11	11
299	iq	2011	12	10
300	iq	2011	13	8
301	iq	2011	14	7
302	iq	2011	15	4
303	iq	2011	16	5
304	iq	2011	17	5
305	iq	2011	18	6
306	iq	2011	19	4
307	iq	2011	20	4

308	iq	2011	21	3	347	iq	2012	8	15
309	iq	2011	22	3	348	iq	2012	9	12
310	iq	2011	23	3	349	iq	2012	10	8
311	iq	2011	24	2	350	iq	2012	11	9
312	iq	2011	25	3	351	iq	2012	12	10
313	iq	2011	26	1	352	iq	2012	13	7
314	iq	2011	27	1	353	iq	2012	14	8
315	iq	2011	28	3	354	iq	2012	15	6
316	iq	2011	29	3	355	iq	2012	16	5
317	iq	2011	30	3	356	iq	2012	17	5
318	iq	2011	31	4	357	iq	2012	18	5
319	iq	2011	32	4	358	iq	2012	19	4
320	iq	2011	33	5	359	iq	2012	20	4
321	iq	2011	34	4	360	iq	2012	21	4
322	iq	2011	35	4	361	iq	2012	22	2
323	iq	2011	36	6	362	iq	2012	23	3
324	iq	2011	37	6	363	iq	2012	24	3
325	iq	2011	38	10	364	iq	2012	25	3
326	iq	2011	39	10	365	iq	2012	26	3
327	iq	2011	40	9	366	iq	2012	27	3
328	iq	2011	41	10	367	iq	2012	28	3
329	iq	2011	42	5	368	iq	2012	29	4
330	iq	2011	43	15	369	iq	2012	30	3
331	iq	2011	44	12	370	iq	2012	31	5
332	iq	2011	45	16	371	iq	2012	32	3
333	iq	2011	46	8	372	iq	2012	33	4
334	iq	2011	47	11	373	iq	2012	34	4
335	iq	2011	48	6	374	iq	2012	35	5
336	iq	2011	49	15	375	iq	2012	36	4
337	iq	2011	50	18	376	iq	2012	37	5
338	iq	2011	51	17	377	iq	2012	38	7
339	iq	2012	52	8	378	iq	2012	39	6
340	iq	2012	1	13	379	iq	2012	40	9
341	iq	2012	2	16	380	iq	2012	41	5
342	iq	2012	3	13	381	iq	2012	42	8
343	iq	2012	4	10	382	iq	2012	43	15
344	iq	2012	5	13	383	iq	2012	44	8
345	iq	2012	6	13	384	iq	2012	45	8
346	iq	2012	7	14	385	iq	2012	46	16

347	iq	2012	8	15
348	iq	2012	9	12
349	iq	2012	10	8
350	iq	2012	11	9
351	iq	2012	12	10
352	iq	2012	13	7
353	iq	2012	14	8
354	iq	2012	15	6
355	iq	2012	16	5
356	iq	2012	17	5
357	iq	2012	18	5
358	iq	2012	19	4
359	iq	2012	20	4
360	iq	2012	21	4
361	iq	2012	22	2
362	iq	2012	23	3
363	iq	2012	24	3
364	iq	2012	25	3
365	iq	2012	26	3
366	iq	2012	27	3
367	iq	2012	28	3
368	iq	2012	29	4
369	iq	2012	30	3
370	iq	2012	31	5
371	iq	2012	32	3
372	iq	2012	33	4
373	iq	2012	34	4
374	iq	2012	35	5
375	iq	2012	36	4
376	iq	2012	37	5
377	iq	2012	38	7
378	iq	2012	39	6
379	iq	2012	40	9
380	iq	2012	41	5
381	iq	2012	42	8
382	iq	2012	43	15
383	iq	2012	44	8
384	iq	2012	45	8
385	iq	2012	46	16

386	iq	2012	47	10
387	iq	2012	48	7
388	iq	2012	49	5
389	iq	2012	50	13
390	iq	2012	51	12
391	iq	2013	1	17
392	iq	2013	2	13
393	iq	2013	3	13
394	iq	2013	4	14
395	iq	2013	5	25
396	iq	2013	6	15
397	iq	2013	7	15
398	iq	2013	8	15
399	iq	2013	9	17
400	iq	2013	10	10
401	iq	2013	11	11

402	iq	2013	12	8
403	iq	2013	13	9
404	iq	2013	14	9
405	iq	2013	15	5
406	iq	2013	16	6
407	iq	2013	17	4
408	iq	2013	18	5
409	iq	2013	19	4
410	iq	2013	20	5
411	iq	2013	21	3
412	iq	2013	22	3
413	iq	2013	23	3
414	iq	2013	24	3
415	iq	2013	25	3
416	iq	2013	26	3

Lampiran 3 - Nilai kesamaan penulisan dari Turnitin.

