

Exemple de minimalisation

novembre 2018

	q	$\delta(q,a)$	$\delta(q,b)$	$\overset{?}{\in}\mathcal{F}$
\Rightarrow	0	1	3	
	1	2	1	
	2	1	2	✓
	3	4	3	√
	4	3	4	

Cet automate est accessible et complet sur l'alphabet $\{a, b\}$.

Étape 0 : Partition des états selon qu'ils sont acceptants, ou non :

$$A = \{2, 3\}, B = \{0, 1, 4\}$$

q	$\delta(q,a)$	$\delta(q,b)$
0	1	3
В	В	A
1	2	1
В	A	В
2	1	2
A	В	A
3	4	3
A	В	A
4	3	4
В	A	В

Étape 1:

Les états de la classe A ont le même profil et sont donc équivalents entre eux :

q	$\delta(q,a)$	$\delta(q,b)$	
Α	В	A	ŀ

Mais dans la classe
$$B$$
 on trouve 2 profils : état $0: \frac{q \mid \delta(q,a) \mid \delta(q,b) \mid}{B \mid B \mid A}$

états 1 et 4 :
$$\begin{array}{c|c} q & \delta(q,a) & \delta(q,b) \\ \hline B & A & B \end{array}$$

La classe B doit êtré scindée. On obtient :

$$A = \{2, 3\}, BA = \{0\}, BB = \{1, 4\}$$

q	$\delta(q,a)$	$\delta(q,b)$
0	1	3
BA	BB	A
1	2	1
BB	A	BB
2	1	2
A	BB	A
3	4	3
A	BB	A
4	3	4
ВВ	A	ВВ

Étape 2:

Les états de la classe A sont équivalents (un seul profil) : -

Idem pour la classe $BB : \begin{array}{c|c} q & \delta(q,a) & \delta(q,b) \\ \hline BB & A & BB \end{array}$

La classe BA est un singleton

Le partitionnement reste identique à celui de l'étape précédente : c'est donc la congruence de Nérode

L'automate minimal est celui défini sur les 3 classes A, BA et BB.

L'état initial est celui de la classe qui contient 0. Tous les états formés d'états acceptants sont acceptants : ici il n'y en a qu'un : $A = \{2, 3\}$.

