- 5.1 પ્રસ્તાવના
- 5.2 બળ અને જડત્વ
- 5.3 ન્યૂટનનો ગતિનો પહેલો નિયમ
- 5.4 વેગમાન
- 5.5 ન્યુટનનો ગતિનો બીજો નિયમ
- 5.6 બળનો આઘાત
- 5.7 ન્યૂટનનો ગતિનો ત્રીજો નિયમ
- 5.8 વેગમાન સંરક્ષણનો નિયમ
- 5.9 એકબિંદુગામી બળોનું સંતુલન
- 5.10 ઘર્ષણ
- 5.11 નિયમિત વર્તુળગતિનું ગતિશાસ્ત્ર
- 5.12 જડત્વીય અને અજડત્વીય નિર્દેશ-ક્રેમ
- 5.13 ગતિશાસ્ત્રમાં કોયડાઓ ઉકેલવા અંગે માર્ગદર્શન
 - સારાંશ
 - સ્વાધ્યાય

5.1 પ્રસ્તાવના (Introduction)

ગયા પ્રકરણમાં આપણે પદાર્થની ગતિમાં તેનાં સ્થાનાંતર, વેગ, પ્રવેગ અંગે ચર્ચા કરી. પરંતુ ગતિ શાથી ઉદ્ભવે છે અને તેમાં ફેરફાર શાને કારણે થાય છે તેનો વિચાર કર્યો નથી. પ્રસ્તુત પ્રકરણમાં આપણે આ બાબતો વિષે વિચારીશું. આ રીતે ગતિનાં કારણો અને ગતિ કરતી વસ્તુના ગુણધર્મો સહિત ગતિની ચર્ચા કરવામાં આવે તે વિષયાંગને ગતિશાસ્ત્ર (Dynamics) કહે છે, તે તમે જાણો છો.

5.2 બળ અને જડત્વ (Force and Inertia)

રોજિંદા જીવનમાં જોવા મળતી જુદા-જુદા પદાર્થોની ગતિ અંગેનાં આપણાં થોડાં અવલોકનોનો વિચાર કરીએ : (1) ટેબલ પર પડેલ પુસ્તક પર બહારથી આપણે કંઈ બળ ન લગાડીએ, તો તેમનું તેમ સ્થિર જ રહે છે. (2) દડાને ઊંચે ફેંકવા માટે આપણે તેને ઉપર તરફ ધકેલવો પડે છે. (3) સ્થિર ઊભેલી લારીને ગતિ કરાવવા કોઈ વ્યક્તિ તેને ધકેલે છે. (4) ઢાળ પરથી ગબડતા દડાને અટકાવવા માટે આપણે ગતિની વિરુદ્ધ દિશામાં હાથ વડે બાહ્ય બળ લગાડીએ છીએ. આ અવલોકનો અંગે વિચારતાં એમ લાગે છે કે પદાર્થને સ્થિર સ્થિતિમાંથી ગતિ કરાવવા માટે તેમજ તેની ગતિને ધીમી પાડવા અને અટકાવવા માટે પણ બળ પૂર્ં પાડતું કોઈ બાહ્ય પરિબળ (External agency) જરૂરી છે. આ બધા કિસ્સાઓમાં બાહ્ય પરિબળ પદાર્થ સાથે સંપર્કમાં છે. આ રીતે સંપર્કમાં રહીને લાગતા (કે લગાડેલા) બળને સંપર્કબળ (Contact force) કહે છે. જોકે ગતિનાં એવાં ઉદાહરણો પણ જોવા મળે છે કે જેમાં બાહ્ય પરિબળ (agency) પદાર્થ સાથે સંપર્કમાં ન હોય, તેમ છતાં પદાર્થ પર બળ લગાડતું હોય. દા.ત., મકાનની ટોચ પરથી મુક્ત કરેલો પદાર્થ પૃથ્વી તરફ પ્રવેગિત ગતિ કરે છે. પૃથ્વી તે પદાર્થના સંપર્કમાં નથી પણ પૃથ્વીના ગુરૂત્વક્ષેત્રને લીધે પદાર્થ પર લાગતું બળ તેની પ્રવેગિત ગતિ માટે જવાબદાર છે. એક ચુંબકથી થોડે દૂર લોખંડની ખીલીને મૂકતાં તે આકર્ષણ પામી ચુંબક તરફ ગતિ કરે છે. આમાં ચુંબકના ચુંબકીય ક્ષેત્રને લીધે ખીલી પર લાગતું બળ તેની ગતિ માટે જવાબદાર છે. આવાં બળોને (ગુરુત્વક્ષેત્ર, વિદ્યુતક્ષેત્ર, ચુંબકીય ક્ષેત્ર જેવાં ક્ષેત્રોને લીધે લાગતાં બળોને) **ક્ષેત્રબળો (Field forces)** કહે છે. આમ, બાહ્ય પરિબળો (agencies) પદાર્થ પર સંપર્કમાં આવ્યા સિવાય દૂરથી પણ બળ લગાડી શકે છે.

આ પરથી સમજી શકાય તેમ છે કે પદાર્થની ગતિને અસર કરતું બળ

જેના દ્વારા મળે છે તે બાહ્ય પરિબળ પદાર્થના સંપર્કમાં હોય પણ ખરું અને ન પણ હોય. ઉપર વિચારેલા કિસ્સાઓમાં પદાર્થ સ્થિર સ્થિતિમાંથી ગતિમાં આવે છે અથવા ગતિ દરમિયાન વેગમાં ફેરફાર થાય છે. પરંતુ "નિયમિત ગતિ (એટલે કે એક જ સુરેખામાં અચળ ઝડપવાળી ગતિ) કરતા પદાર્થને તેની નિયમિત ગતિ ચાલુ રાખવા માટે શું બાહ્ય બળની જરૂર પડે છે ?" એવો પ્રશ્ન થાય.

ત્રીક તત્વચિંતક ઍરિસ્ટોટલ (ઈ. સ. પૂ. 384થી 322)નો ખ્યાલ એવો હતો કે જો પદાર્થ ગતિમાં હોય - નિયમિત કે અનિયમિત - તો તેને ગતિમાં ચાલુ રાખવા માટે બહારથી 'કંઈક' - એટલે કે બાહ્ય બળની જરૂર પડે છે. આની સત્યતા વિશે જાણીએ તે પહેલાં એક ઉદાહરણ વિચારીએ: લીસી લાગતી સમક્ષિતિજ સડક પર એક જ સુરેખામાં નિયમિત ગતિ (અચળ ઝડપ) કરતી સાઇકલને પેડલ મારવાનું બંધ કરીએ, તો પછી સાઇકલ થોડી વારમાં અટકી પડે છે. સાઇકલને સતત નિયમિત ગતિમાં રાખવા માટે તેને પેડલ મારીને બાહ્ય બળ લગાડતાં રહેવું પડે છે. આ અવલોકન ઍરિસ્ટોટલના ખ્યાલને પુષ્ટિ આપતું હોય એવું પણ કદાચ લાગે. પણ ખરેખર એવું નથી.

હકીકતમાં આપણે સૌ જાણીએ છીએ કે સડક વડે લાગતું બાહ્ય થર્પણબળ સાઇકલની ગતિને અવરોધે છે તેથી તે અટકી પડે છે અને ગતિ ચાલુ રાખવા પેડલ મારવાની જરૂર પડે છે તો પછી ઍરિસ્ટોટલની ભૂલ કઈ હતી ? તેણે અનુભવેલા કોઈક વ્યવહારુ અનુભવને કુદરતનો મૂળભૂત નિયમ ગણી લીધો - તે ભૂલ હતી. બળો અને ગતિ માટેનો કુદરતનો નિયમ શું છે તે જાણવા માટે ગતિને અવરોધતા ઘર્ષણબળો હોય જ નહિ તેવી સ્થિતિની ક્લ્પના કરવી પડે. ગેલિલિયોએ આમ જ કર્યું હતું અને ગતિ અંગે ઊંડી સમજ મેળવી હતી. ગતિ અંગેના ઍરિસ્ટોટલના મોટા ભાગના ખ્યાલો આજે તો ખોટા જણાયા છે.

તમે ગેલિલિયોના પ્રયોગો અંગે ધોરણ-9માં ભણી ગયા છો. ગેલિલિયોએ એવું અવલોકન કર્યું કે,

- (i) ઢાળ પર નીચે તરફ ગતિ કરતા પદાર્થો પ્રવેગિત થાય છે - એટલે કે તેમનો વેગ વધે છે.
- (ii) ઢાળ પર ઉપર તરફ ગતિ કરતાં પદાર્થો પ્રતિ-પ્રવેગિત થાય છે. - એટલે કે તેમનો વેગ ઘટે છે.

પરંતુ સમક્ષિતિજ સમતલ પરની ગતિ એ તો ઉપરના બન્ને કિસ્સાઓની વચગાળાની સ્થિતિ છે. તેથી ગેલિલિયોએ એવો તર્ક રજૂ કર્યો કે ઘર્ષણ રહિત સમક્ષિતિજ સમતલ પર સુરેખામાં ગતિ કરતા પદાર્થને પ્રવેગ કે પ્રતિપ્રવેગ હોવો ન જોઈએ. એટલે કે તે અચળ વેગથી ગતિ કરતો હોવો જોઈએ અને આ માટે તેને કોઈ બાહ્ય બળની જરૂર પડતી નથી.

ઘર્ષણ એ પદાર્થ પર લાગતું એક બાહ્ય બળ છે, જે તેની ગતિનો વિરોધ કરે છે. આ ઘર્ષણનો વિરોધ કરતું એક બીજું પૂરતું બાહ્ય બળ લગાડીએ, તો પદાર્થ પરનું ચોખ્ખું (Net) બાહ્ય બળ શૂન્ય બને અને તેથી તે પદાર્થનો અચળ વેગ જળવાઈ રહેશે. વળી, પદાર્થ તેની સ્થિર અવસ્થામાં જેમનો તેમ રહેતો હતો ત્યારે પણ તેના પર કોઈ ચોખ્ખું (Net) બાહ્ય બળ લાગતું ન હતું. આમ, પદાર્થની સ્થિર અવસ્થા (state) અને નિયમિત ગતિ (અચળ વેગવાળી ગતિ)ની અવસ્થા એ બંને અવસ્થાઓ બળને લાગેવળગે છે, ત્યાં સુધી સમતુલ્ય છે. કારણ કે એ બંને અવસ્થાઓમાં પદાર્થ પરનું ચોખ્ખું (Net) બાહ્ય બળ શૂન્ય છે.

ચોખ્ખું બાહ્ય બળ લાગે તો જ પદાર્થની અવસ્થા બદલાય છે. પદાર્થ પોતાની સ્થિર અથવા નિયમિત ગતિની અવસ્થામાં આપમેળે ફેરફાર કરતો (અને કરી શકતો) નથી. પોતાની અવસ્થા જાતે ન બદલવાના પદાર્થના આ ગુણધર્મને પદાર્થનું 'જડત્વ' (inertia) કહે છે. જડત્વ એટલે ફેરફારનો વિરોધ. પદાર્થનું દળ તેના જડત્વનું માપ છે. આપેલા બે પદાર્થોમાંથી જેનું દળ વધુ હોય તેનું જડત્વ પણ વધુ હોય છે તેમ કહેવાય.

ગૅલિલિયો ગૅલિલી (1564-1642)

ઇટલીના પીસા શહેરમાં ઈ. સ. 1564માં જન્મેલ ગેલિલિયો ગેલિલી યુરોપમાં થયેલ વૈજ્ઞાનિક ક્રાંતિનો પ્રણેતા હતો. તેણે પ્રવેગનો ખ્યાલ રજૂ કર્યો. ઢાળ પર ગતિ કરતા પદાર્થો અને મુક્ત પતન પામતા પદાર્થોના અભ્યાસ પરથી તેણે તે સમયે પ્રવર્તતા ઍરિસ્ટોટલના એવા મતનું ખંડન કર્યું કે, ગતિ ચાલુ રાખવા માટે બળની જરૂર છે અને ગુરુત્વાકર્ષણની અસર હેઠળ ભારે પદાર્થો હલકા પદાર્થી કરતાં વધુ ઝડપથી પડે છે. તેણે રજૂ કરેલો જડત્વનો ખ્યાલ ન્યુટનના કાર્યનું આરંભબિંદુ હતો.

તેશે બનાવેલા ટેલિસ્કોપની મદદથી સૂર્ય પરનાં કાળાં ધાબાં, ચંદ્રની સપાટી પરના પર્વતો-ખીશો, ગુરુના ચંદ્રો, શુક્રની ક્લાઓ જેવાં ખગોળીય અવલોકનો કર્યાં. તેશે એમ પશ પ્રતિપાદિત કર્યું કે આકાશગંગાની પ્રકાશિતતા, નરી આંખે ન જોઈ શકાતા અસંખ્ય તારાઓમાંથી આવતા પ્રકાશને આભારી છે.

તેની ઉત્તમ રચના, 'Dialogue on the Two Chief World Systems'માં તેણે કૉપરનિક્સે સૂર્યમંડળ માટે રજૂ કરેલ 'સૂર્ય કેન્દ્રીવાદ'નું સમર્થન કર્યું. જે આજે પણ સાર્વત્રિક સ્વીકૃતિ પામેલ છે.

તેની મહાન શોધોને લીધે આજે પણ તે વિજ્ઞાનની દુનિયામાં સન્માન અને આદર પામેલ છે.

102

આઇઝેક ન્યૂટન

ન્યૂટનનો જન્મ 1642માં ઇંગ્લૅન્ડના વુલ્સથોર્પમાં થયો હતો. ગેલિલિયોનું અવસાન થયું તે જ વર્ષે ન્યૂટનનો જન્મ થયો. કેમ્બ્રિજ યુનિવર્સિટીમાંના અભ્યાસ દરમિયાન ત્યાં પ્લેગ ફાટી નીકળતાં તેની માતાના ફાર્મ પર પાછો ગયો. અહીં તેને ઊંડાં ચિંતન-મનન કરવાની પુષ્કળ અનુકૂળતા થઈ અને ગણિત અને ભૌતિક વિજ્ઞાનની ઘણી શોધો કરી. વિકલ ગણિત, ઋણાત્મક અને અપૂર્ણાંક ઘાતાંકો માટે દિપદી પ્રમેય, ગુરુત્વાકર્યણનો વ્યસ્ત વર્ગનો નિયમ, શ્વેત પ્રકાશનો વર્ણપટ જેવી શોધો ન્યૂટનને આભારી છે. ફરી કેમ્બ્રિજ પાછા ફર્યા પછી પરાવર્તક ટેલિસ્કોપની રચના કરી.

તેશે પોતે રચેલ ગ્રંથ 'The Principia Mathematica'ને વિજ્ઞાનના સર્વકાલીન મહાન ગ્રંથોમાંનો એક ગણવામાં આવે છે. તેમાં તેશે ગતિના ત્રણ નિયમો, ગુરુત્વાકર્ષણનો સાર્વત્રિક નિયમ, તરલનું યંત્રશાસ્ત્ર, તરંગગતિનું ગણિત, પૃથ્વીના તેમજ સૂર્યના દળ અને અન્ય ગ્રહોનાં દળોની ગણતરી, ભરતી-ઓટની સમજ જેવા અત્યંત મહત્ત્વના મુદ્દાઓનો સમાવેશ કર્યો.

પ્રકાશ અને રંગો અંગેનાં તેનાં સંશોધનો તેનાં બીજા ગ્રંથ (Opticks)માં જોવા મળે છે. કૉપરનિક્સ, કૅપ્લર અને ગેલિલિયોની વૈજ્ઞાનિક ક્રાંતિને તેશે આગળ ધપાવી અને પૂર્શ કરી. પૃથ્વી પરની અને આકાશી ઘટનાઓમાં સમાન નિયમો હોવાનું જણાવ્યું. દા.ત., પૃથ્વી પર સફરજન પડવામાં અને પૃથ્વીની આસપાસ ચંદ્રના ભ્રમણમાં સમાન પ્રકારના ગાણિતીય સમીકરણ જણાય છે તેમ પ્રતિપાદિત કર્યું. ઈ. સ. 1727માં ન્યૂટનનું અવસાન થયું.

5.3 ન્યૂટનનો ગતિનો પહેલો નિયમ (Newton's First Law of Motion)

ગેલિલિયોના તર્કબદ્ધ વિચારોથી શરૂ કરીને યંત્રશાસ્ત્રનો વિકાસ કરવાનું ભગીરથ કાર્ય, સર્વકાલીન મહાન વૈજ્ઞાનિકોમાંના એક એવા આઇઝેક ન્યૂટને લગભગ એકલે હાથે પાર પાડ્યું. ન્યૂટને આપેલા ગતિ અંગેના ત્રણ નિયમો આ યંત્રશાસ્ત્રના પાયા છે.

ન્યૂટનનો ગતિનો પહેલો નિયમ નીચે મુજબ લખાય છે :

"પદાર્થ પર કોઈ ચોખ્ખું (net) બાહ્ય બળ લાગુ ન પડે ત્યાં સુધી, સ્થિર પદાર્થ સ્થિર જ રહે છે અને ગતિમાન પદાર્થ પોતાનો વેગ અચળ જાળવી રાખે છે."

વસ્તુતઃ આ ગેલિલિયોનો જડત્વનો નિયમ જ છે. કેટલાક કિસ્સાઓમાં પદાર્થ પરનું ચોખ્ખું (પરિશામી) બાહ્ય બળ શૂન્ય છે તેમ આપણે જાણીએ છીએ અને તે પરથી પદાર્થનો પ્રવેગ શૂન્ય અને વેગ અચળ છે, તેવો નિર્ણય કરીએ છીએ. આથી ઊલટું કેટલીક વાર પદાર્થની સ્થિતિ પ્રવેગ-રહિત (સ્થિર સ્થિતિ અથવા અચળ વેગવાળી ગતિ) હોવાનું દેખાય છે અને તે પરથી પદાર્થ પરનું પરિશામી બાહ્ય બળ શૂન્ય હોવું જ જોઈએ, તેવો નિષ્કર્ષ તારવીએ છીએ.

પદાર્થ પર ચોખ્ખું બળ લગાડતાં તે સ્થિર હોય, તો ગતિમાં આવે છે અને ગતિમાં હોય, તો તેનો વેગ બદલાય છે. આમ, બન્ને કિસ્સાઓમાં તેનામાં પ્રવેગ ઉત્પન્ન થાય છે. આથી, બળ એ પ્રવેગ ઉત્પન્ન કરનાર કારણ તરીકે ઊપસી આવે છે.

ન્યૂટનના પહેલા નિયમ પરથી કહી શકાય કે બળ એક એવી ભૌતિક રાશિ છે કે જેના કારણે સ્થિર પદાર્થ ગતિમાં આવે છે અને ગતિમાન પદાર્થના વેગમાં ફેરફાર થાય છે. આમ, ન્યૂટનનો પહેલો નિયમ બળની વ્યાખ્યા આપે છે, પણ બળના મૂલ્ય અંગે તે માહિતી આપતો નથી.

5.4. વેગમાન (Momentum)

પદાર્થના દળ (m) અને વેગ $(\stackrel{\rightarrow}{v})$ ના ગુણાકારને તે પદાર્થનું વેગમાન $(\stackrel{\rightarrow}{p})$ કહે છે.

એટલે કે,
$$\overrightarrow{p} = \overrightarrow{m} \overrightarrow{v}$$
 (5.4.1)

વેગમાન એ સદિશ રાશિ છે અને તેની દિશા વેગની દિશામાં જ હોય છે. વેગમાનનો SI એકમ kg m s⁻¹ or N s છે. તેનું પારિમાણિક સ્ત્ર [$\mathbf{M}^{1}\mathbf{L}^{1}\mathbf{T}^{-1}$] છે.

ગતિમાન પદાર્થના વેગ કરતાં તેનું વેગમાન કંઈક વધુ માહિતી આપે છે. આપણે ઉદાહરણથી સમજીએ : એક્સમાન વેગથી આપણી તરફ આવતી એક સાઇકલ અને એક કાર એ બેમાંથી આપણને શું અથડાય, તો વધુ નુકસાન થશે ? સ્પષ્ટ જ છે કે કાર.

આમ. વેગમાન એક અગત્યની ભૌતિક રાશિ છે.

5.5 ન્યૂટનનો ગતિનો બીજો નિયમ (Newton's Second Law of Motion)

ન્યૂટનનો ગતિનો બીજો નિયમ પદાર્થ પર લાગતા બાહ્ય બળનું માન (મૂલ્ય) આપે છે.

પદાર્થ પર બળ લગાડતાં તેના વેગમાં ફેરફાર થાય છે, તેથી તેના વેગમાનમાં પણ ફેરફાર થાય છે. સ્થિર એવા એક હલકા અને બીજા ભારે બે પદાર્થી પર એક સરખું બળ \overrightarrow{F} સમાન સમયગાળા (Δt) માટે લગાડતાં જણાય છે કે હલકો પદાર્થ વધુ વેગ પ્રાપ્ત કરે છે, પરંતુ બંને પદાર્થી એકસરખું વેગમાન પ્રાપ્ત કરે છે.

ધારો કે તમે સાઇકલ પર નિયમિત (અચળ) વેગ \overrightarrow{v} થી ગિત કરી રહ્યા છો. હવે, અટકવા માટે બહુ ઉતાવળ ન હોય, તો જરા ધીમેથી બ્રેક લગાડશો (આ રીતે નાનું બળ લાગે છે.) આથી સાઇકલનો વેગ ધીમે ધીમે ઓછો થઈને પછી અમુક સમયે સાઇકલ અટકી જશે. પણ જો તમારે સાઇકલને તાત્કાલિક અટકાવવાની જરૂર પડે, તો તમે બહુ જોરથી બ્રેક લગાડશો (આ રીતે મોટું બળ લાગે છે.) અને તો જ સાઇકલ જલદી અટકી શકશે. આ બંને કિસ્સાઓમાં વેગમાનનો ફેરફાર તો સમાન છે. (\overrightarrow{mv}) માંથી શૂન્ય બને છે, જ્યાં $\mathbf{m} = \mathbf{n}$ માર્ડું + સાઇકલનું દળ). પરંતુ બીજા કિસ્સામાં તે ફેરફાર ઝડપથી કરવાનો હોવાથી મોટું બળ લગાડવું પડ્યું. (યાદ રાખો કે બ્રેક લગાડીએ ત્યારે પેડલ મારવાનું બંધ છે !)

આમ, બળને વેગમાનના ફેરફાર અને તે માટે લાગેલા સમય સાથે સંબંધ છે, અને તે સંબંધ નીચે જણાવેલા ન્યૂટનના ગતિના બીજા નિયમ પરથી મળે છે.

'પદાર્થના વેગમાનના ફેરફારનો સમયદર તેના પર લાગતા પરિણામી બાહ્ય બળ જેટલો હોય છે અને તે ફેરફાર પરિણામી બળની દિશામાં હોય છે.'

આથી જો બળ $\overset{
ightarrow}{F}$, m દળના, $\overset{
ightarrow}{v}$ વેગ ધરાવતા અને $\overset{
ightarrow}{p}$ (= $\overset{
ightarrow}{mv}$) વેગમાન ધરાવતા પદાર્થ પર લગાડવામાં આવે તો,

$$\vec{F} = \frac{d\vec{p}}{dt} \tag{5.5.1}$$

$$=\frac{d}{dt}(\overrightarrow{mv})\tag{5.5.2}$$

જો દળ m અચળ રહેતું હોય તો,

$$\vec{F} = m \frac{d\vec{v}}{dt}$$
 (5.5.3)

$$\therefore \vec{F} = m\vec{a} \qquad (\because \frac{d\vec{v}}{dt} = \vec{a})$$

આમ,

બળ
$$\overrightarrow{F} = \varepsilon \text{ળ m} \times \text{પ્રવેગ } \overrightarrow{a}$$
 (5.5.4)

બળનો SI એકમ newton (= N) છે.

1 kg દળના પદાર્થમાં 1 m s $^{-2}$ નો પ્રવેગ ઉત્પશ્ન કરતા બળને 1 N બળ કહે છે.

$$[1 N = 1 kg m s^{-2}]$$

(CGS પદ્ધતિમાં બળનો એકમ dyne છે અને $1 \text{ N} = 10^5 \text{ dyne}$).

બળનું પારિમાણિક સૂત્ર [$M^1L^1T^{-2}$] છે.

સમીકરણ 5.5.4 પરથી પદાર્થ પર લાગતાં પરિણામી બળનું મૂલ્ય મળે છે. m દળના અને $\overrightarrow{v_1}$ વેગ ધરાવતા પદાર્થ પર \overrightarrow{F} બળ Δt સમયગાળા માટે લગાડતાં તેનો વેગ $\overrightarrow{v_2}$ થાય તો $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ અને Δt નાં માપેલાં મૂલ્યો

પરથી
$$\overset{
ightarrow}{a} = \frac{\overset{
ightarrow}{v_2} - \overset{
ightarrow}{v_1}}{\Delta t}$$
 શોધીને m અને $\overset{
ightarrow}{a}$ પરથી

સમીકરણ (5.5.4) ની મદદથી $\overrightarrow{\mathbf{F}}$ નું મૂલ્ય ગણી શકાય છે. આ નિયમ અંગે કેટલાક મહત્ત્વના મુદ્દાઓ નોંધી લઈએ :

- (1) જો $\overrightarrow{\mathbf{F}}=0$ હોય (એટલે કે પરિજ્ઞામી બાહ્ય બળ શૂન્ય હોય), તો $\overrightarrow{a}=0$, $\therefore \overrightarrow{v}=$ અચળ આ હકીકત ન્યૂટનના પહેલા નિયમ સાથે સુસંગત છે.
- (2) આ નિયમ સિંદેશ નિયમ છે, તેથી બળના ત્રણ ઘટકો F_x , F_y , અને F_z માટે ત્રણ સમીકરણો નીચે મુજબ મળે છે :

$$F_{x} = \frac{d p_{x}}{dt} = m a_{x}$$

$$F_{y} = \frac{d p_{y}}{dt} = m a_{y}$$

$$F_{z} = \frac{d p_{z}}{dt} = m a_{z}$$

$$(5.5.5)$$

(3) આપેલા બિંદુએ આપેલી ક્ષણે પદાર્થનો પ્રવેગ \vec{a} તે બિંદુએ તે ક્ષણે તેના પર લાગતાં બાહ્ય બળ \vec{F} વડે નક્કી થાય છે અને પદાર્થ તે અગાઉની ક્ષણો આગળના પ્રવેગની સ્મૃતિ ધરાવતો નથી. પ્રવેગિત ટ્રેનમાંથી બહાર પડવા દીધેલા પથ્થરને તે પછીની ક્ષણે સમક્ષિતિજ દિશામાં કોઈ પ્રવેગ હોતો નથી (હવાનો અવરોધ અવગણતાં).

(4) સમીકરણ (5.5.1) માં $\stackrel{\rightarrow}{p}$ ના મૂલ્યનું નહિ પરંતુ $\stackrel{\rightarrow}{p}$ ના ફેરફારનું મહત્ત્વ છે. પ્રારંભમાં કણ સ્થિર હોય તો પ્રારંભમાં $\stackrel{\rightarrow}{v}=0$ અને $\stackrel{\rightarrow}{p}=0$ હોય પણ જો બળ $\stackrel{\rightarrow}{F}$ તેના પર લાગે તો $\stackrel{\rightarrow}{v}$ માં અને તેથી $\stackrel{\rightarrow}{p}$ માં ફેરફાર થાય છે અને એ ફેરફારનું આ સમીકરણમાં મહત્ત્વ છે.

ઉદાહરણ 1: 40 kg દળનો એક પદાર્થ લીસી સમક્ષિતિજ સપાટી પર સુરેખપથ પર અચળ બળની અસર હેઠળ ગતિ કરે છે. 6 સેકન્ડમાં તેનો વેગ $5.0~{\rm m~s^{-1}}$ માંથી ઘટીને $2.0~{\rm m~s^{-1}}$ થાય છે, તો આ પદાર્થ પર લાગતું બળ શોધો. આ સમયમાં પદાર્થ કેટલું અંતર કાપ્યું હશે ?

6કેલ : પદાર્થની ગતિની દિશાને X-અક્ષ તરીકે લેતાં બળના મૂલ્ય માટે $F_x=m\ a_x$ લખી શકાય,

અને
$$v_x = v_{0x} + a_x t$$
 પરથી
$$2 = 5 + a_x(6)$$

$$\therefore a_{\rm r} = -0.5 \text{ m s}^{-2}$$

:.
$$F_x = m \ a_x = (40) \ (-0.5) = -20 \ N$$

આમ, આટલું બળ ગતિની વિરુદ્ધ દિશામાં (એટલે ઋષ્ય X-દિશામાં) લાગે છે.

$$v_x^2 - v_{0x}^2 = 2a_x x$$
 પરથી,
 $4 - 25 = 2(-0.5)x$

$$\therefore x = 21 \text{ m}$$

ઉદાહરણ 2:m દળના પદાર્થ પર 45 N જેટલું બળ લગાડતાં તેમાં 4.5 m s⁻²નો પ્રવેગ ઉત્પન્ન થાય છે અને આટલું જ બળ m' દળના પદાર્થ પર લગાડતાં તેમાં 9.0 m s⁻²નો પ્રવેગ ઉત્પન્ન થાય છે. તો આ બે પદાર્થોને ભેગા બાંધીને આટલું જ બળ લગાડીએ, તો તેમાં ઉત્પન્ન થતો પ્રવેગ શોધો.

ઉકેલ :

F = ma : 45 = m (4.5) : m = 10 kg

F = m'a' \therefore 45 = m' (9.0) \therefore m' = 5 kgભેગા બાંધ્યા પછી આ બળ વડે મળતો પ્રવેગ a''હોય તો,

F =
$$(m + m') a''$$

45 = $(10 + 5) a'' \therefore a'' = 3 \text{ m s}^{-2}$

ઉદાહરણ 3: એક 'સમિક્ષિતિજ' સુરેખ રસ્તા પર 1000 kg દળની એક કાર 30 m s⁻¹ના વેગથી ગતિ કરે છે. દૂરથી traffic signalની red light જોઈને ડ્રાઇવરે બ્રેક મારતાં 4 kN નું અચળ Breaking Force લાગે છે. તો (i) કારનો પ્રતિ-પ્રવેગ (Deceleration or retardation) શોધો. (ii) કાર કેટલા સમયમાં થોભશે ? (iii) આ ગતિ દરમિયાન તે કેટલું અંતર કાપશે ?

634: (i) કારની ગતિની દિશામાં X-અક્ષ લેતાં, તેના પર લગાડેલું બળ ઋણ X-અક્ષ દિશામાં હશે. $4kN=4\times10^3\,\mathrm{N}$

$$F_x = m \ a_x$$
 પરથી, $-4 \times 10^3 = (1000)a_x$
 ∴ $a_x = -4 \text{ m s}^{-2}$

(ii) કાર થોભે ત્યારે ઝડપ શૂન્ય થાય.

$$v_x = v_{0x} + a_x t$$
 પરથી,
$$0 = 30 + (-4)t$$

$$\therefore$$
 t = 7.5 s

(iii)
$$v_x^2 - v_{0x}^2 = 2 a_x x$$
 પરથી $0 - 900 = 2 (-4)x$

$$\therefore x = 112.5 \text{ m}$$

5.6 બળનો આઘાત (Impulse of Force)

પદાર્થ પર લાગતું બળ F અને તે લાગતું હોય તે દરમિયાનના સમયગાળાના ગુણાકારને બળનો આઘાત કહે છે. ન્યૂટનના બીજા નિયમને રજૂ કરતાં સમીકરણ (5.5.1) પરથી,

બળનો આઘાત
$$\overset{\rightarrow}{\mathrm{F}}$$
 $dt=d\vec{p}=$ વેગમાનનો ફેરફાર (5.6.1)

જયારે મોટા મૂલ્યનું બળ બહુ જ અલ્પ સમય સુધી લાગતું હોય ત્યારે બળનું અને સમયગાળાનું મૂલ્ય જુદું-જુદું મેળવવાનું મુશ્કેલ હોય છે, પરંતુ વેગમાનનો ફેરફાર માપી શકાય છે. દા.ત., m દળનો એક દડો \overrightarrow{v} વેગથી ગતિ કરી દીવાલ સાથે અથડાઈ \overrightarrow{v} ' વેગથી પાછો ફેંકાય છે, ત્યારે દીવાલ વડે દડા પર અલ્પ સમય માટે જ બળ લાગે છે. આ દડાના વેગ \overrightarrow{v} અને \overrightarrow{v} ' માપીને વેગમાનનો ફેરફાર જાણી શકાય છે (જુઓ આકૃતિ 5.1).

અથડામણ પહેલાનું વેગમાન $\stackrel{
ightarrow}{p}=\stackrel{
ightarrow}{m}\stackrel{
ightarrow}{v}$

અથડામણ પછીનું વેગમાન $\overrightarrow{p'}=m\overrightarrow{v'}$

આકૃતિ 5.1

આવા અલ્પ સમય માટે લાગતા બળને આઘાતી બળ (Impulsive force) કહે છે.

ઉદાહરણ 4: પોતાના તરફ 12 m s^{-1} ના વેગથી આવતા 150 g દળના બૉલને બૅટ્સમેન 480 N જેટલા બળથી એવી રીતે ફટકારે છે કે જેથી બૉલ પોતાની ગતિની મૂળ દિશાની વિરુદ્ધ દિશામાં 20 m s^{-1} ના વેગથી ગતિ કરે છે, તો બેટ અને બોલનો સંપર્ક સમય શોધો.

ઉકેલ : અહીં બૉલની ગતિની મૂળ દિશાને ઋણ X-અક્ષ ગણતાં $\overrightarrow{v_1} = -12\,\hat{i}$ m s⁻¹, $\overrightarrow{v_2} = 20\,\hat{i}$ m s⁻¹ અને $\overrightarrow{F} = 480\,\hat{i}$ N થશે.

બૉલના વેગમાનમાં થતો ફેરફાર,

$$\vec{\Delta p} = \vec{p_2} - \vec{p_1}
= m\vec{v_2} - m\vec{v_1} = m(\vec{v_2} - \vec{v_1})
= (0.150) [20\hat{i} - (-12\hat{i})]
= 4.8\hat{i} \text{ kg m s}^{-1}$$

$$\mid \stackrel{
ightarrow}{F} \mid = rac{\left| \stackrel{
ightarrow}{\Delta p} \right|}{\Delta t}$$
 પરથી, 480 $= rac{4.80}{\Delta t}$

 $\Delta t = 0.01 \text{ s}$

5.7 ન્યૂટનનો ગતિનો ત્રીજો નિયમ (Newton's Third Law of Motion)

ન્યૂટનનો ગતિનો બીજો નિયમ આપેલા પદાર્થ પર લાગતા પરિણામી બાહ્ય બળનો તે પદાર્થના પ્રવેગ સાથેનો સંબંધ ($\overrightarrow{F} = m \stackrel{\rightarrow}{a}$) દર્શાવે છે. પણ આવું બળ પદાર્થ પર શાને લીધે લાગે છે ? હકીકતમાં પદાર્થ પર લાગતું બળ બીજા પદાર્થ (કે પદાર્થી) દ્વારા લાગતું હોય છે. અથી એવો પ્રશ્ન થાય છે કે જો તે બીજો પદાર્થ આપેલ પદાર્થ પર બળ લગાડે છે, તો આપેલ પદાર્થ પેલા બીજા પદાર્થ પર બળ લગાડે છે, તો આપેલ પદાર્થ પેલા બીજા પદાર્થ પર બળ લગાડે છે કે નહિ ? આ પ્રશ્નનો ઉત્તર ન્યૂટનનો ગતિનો ત્રીજો નિયમ, જે નીચે મુજબ લખી શકાય છે, તેના પરથી મળે છે.

"દરેક ક્રિયાબળ (action)ને હંમેશાં સમાન અને વિરુદ્ધ દિશામાંનું પ્રતિક્રિયાબળ (reaction) હોય છે."

એક સ્પ્રિંગને હાથ વડે દબાવી જુઓ. તમે અનુભવશો કે સ્પ્રિંગ પણ હાથ પર વિરુદ્ધ દિશામાં બળ લગાડે છે. અહીં સ્પ્રિંગ અને હાથ એકબીજાના સંપર્કમાં હતા, તેથી સ્પ્રિંગે હાથ પર લગાડેલ બળ આપણે અનુભવી શક્યા. પણ પૃથ્વી કોઈ પથ્થરને પોતાની તરફ આકર્ષે છે અને તે પથ્થર પૃથ્વી તરફ પ્રવેગથી પડવા લાગે છે, ત્યારે પથ્થર વડે પૃથ્વી પર બળ લાગે છે ? અને શું પૃથ્વી પણ પથ્થર તરફ ઊંચે ગતિ કરે છે ? આપણા મનમાં આવા પ્રશ્નો થાય. ન્યૂટનના મત મુજબ આનો જવાબ છે - હા, પથ્થર પણ પૃથ્વી પર એટલું જ બળ વિરુદ્ધ દિશામાં લગાડે છે, જેટલું પૃથ્વીએ પથ્થર પર લગાડ્યું હોય. પણ પૃથ્વીના ખૂબ મોટા દળને લીધે આ બળની તેની ગતિ પરની અસર અત્યંત - અત્યંત ઓછી હોવાથી આપણે તે નીરખી-પારખી-અનુભવી શકતા નથી, એટલે આવી અસર અવગણ્ય છે.

આમ, ન્યૂટનના ગતિના ત્રીજા નિયમ પરથી ફલિત થાય છે કે કુદરતમાં કોઈ બળ એકલુંઅટુલું હોતું નથી. બળો બે પદાર્થોની એકબીજા વચ્ચેની આંતરક્રિયાથી જ ઉદ્દ્ભવે છે. બળો હંમેશાં જોડ (pairs)માં જ ઉદ્દ્ભવે છે અને ''એક જોડમાંનાં બે બળો સમાન મૂલ્યના અને પરસ્પર વિરુદ્ધ દિશામાં" હોય છે. ગતિના ત્રીજા નિયમના ન્યૂટનના પોતાના શબ્દો – To every action there is always equal and opposite reaction – એવાં તો અલંકૃત અને સુંદર છે કે તે સામાન્ય વાતચીતનો ભાગ બની ગયાં છે. આ નિયમ વિશેની કેટલીક ગેરસમજ નિવારવા થોડી સ્પષ્ટતા કરીએ :

- (1) બે પદાર્થી વચ્ચેની આંતરક્રિયામાં ગમે તે એક બળને 'ક્રિયાબળ' (action) અને બીજાને 'પ્રતિક્રિયા બળ' (reaction) તરીકે ગણી શકાય.
- (2) પહેલું ક્રિયાબળ (action) લાગે અને પછી પરિશામ રૂપે પ્રતિક્રિયાબળ (reaction) લાગે એમ માનવું સાચું નથી. આ ત્રીજા નિયમમાં કાર્ય-કારણનો સંબંધ સમાયેલો સમજવાનો નથી.

A પર B વડે અને B પર A વડે એકસાથે જ બળ લાગે છે.

(3) ક્રિયાબળ અને પ્રતિક્રિયાબળ જુદા-જુદા પદાર્થી પર લાગે છે. A પર B વડે લાગતું બળ $\overrightarrow{F_{AB}}$ અને B પર A વડે લાગતું બળ $\overrightarrow{F_{BA}}$ તરીકે લખીએ તો, આ ત્રીજા નિયમ મુજબ,

$$\begin{bmatrix} \overrightarrow{F}_{AB} \\ \text{એટલે કે A પર} \\ B વડે બળ \end{bmatrix} = - \begin{bmatrix} \overrightarrow{F}_{BA} \\ \text{એટલે કે B પર} \\ A વડે બળ \end{bmatrix}$$

એટલે જો એક પદાર્થની દા.ત., (A ની) ગતિ અંગે ચર્ચા કરવાની હોય, તો તે પદાર્થ પરનું બળ $(\stackrel{
ightarrow}{F_{AB}})$ જ લેવાનું છે - બીજું બળ $\overset{
ightarrow}{F_{BA}}$ અપ્રસ્તુત (irrelevant) છે. અને તેને ધ્યાનમાં લેવાનું નથી. જો Aની અથવા Bની એટલે કે કોઈ એક જ પદાર્થની ગતિની ચર્ચા કરતી વખતે આપણે એમ કહીએ કે ''બંને બળોનો સરવાળો કરતાં ચોખ્ખું બળ શુન્ય મળે છે." તો તે ખોટું છે, કારણ કે તે બે બળો જુદા-જુદા પદાર્થો પર લાગે છે, પરંતુ જો આપણે આ બે A અને B પદાર્થોના સમગ્ર તંત્રની ગતિ વિચારતા હોઈએ તો આ બંને બળો ($\overset{
ightarrow}{F_{AB}}$ અને $\overset{
ightarrow}{F_{BA}}$) તંત્રની અંદરનાં બળો બનશે અને તેમનું કુલ બળ શૂન્ય બનશે. (કેવી રીતે આમ થાય તે આગળ ઉપર 'કશોના તંત્રનું ગતિશાસ્ત્ર' પ્રકરણમાં વિસ્તારથી જોઈશું.) અને આમ સમગ્ર તંત્રની ગતિ માટે તેમને ગણવાના છે જ નહિ. આ હકીકતને લીધે ન્યૂટનનો ગતિનો બીજો નિયમ ક્શોના તંત્ર પર પણ લગાડી શકાય છે.

તંત્રની સમગ્રપણે ગતિ માટે તંત્રમાનું (આંતરિક) બળ જવાબદાર નથી. આપણે કારની અંદર બેસીને કારને ધક્કો મારીને કારને ચલાવી શકીએ નહિ. કારની ગતિ માટે તેની પર બાહ્ય બળ લાગવું જરૂરી છે. હવે તમને કદાચ એમ પણ થાય કે કારનું એન્જિન તો કારનો એક આંતરિક ભાગ છે, તો એન્જિન ચાલુ કરીને કારને કેવી રીતે ચલાવી શકીએ છીએ ? હકીકતમાં કારને ચલાવવા માટે જરૂરી બાહ્ય બળ રસ્તાના ઘર્ષણબળ રૂપે મળે છે. આ કદાચ તમને આશ્ચર્યજનક લાગે, પરંતુ તે સત્ય છે.

5.8 વેગમાન સંરક્ષણનો નિયમ (Law of Conservation of Momentum)

ન્યૂટનનો ગતિનો બીજો અને ત્રીજો નિયમ 'વેગમાન સંરક્ષણના નિયમ' તરીકે ઓળખાતા એક અગત્યના પરિણામ તરફ દોરી જાય છે. રાઇફલમાંથી છૂટતી બૂલેટનું ઉદાહરણ વિચારીએ. રાઇફલમાંથી છોડેલી (fired) બુલેટ આગળ જાય ત્યારે રાઇફલ પાછળની દિશામાં ધકેલાય છે. (તેને recoil of rifle કહે છે.) જો રાઈફલ વડે બુલેટ

પર લાગતું બળ F હોય, તો બુલેટ વડે રાઈફલ પર

લાગતું બળ $-\overrightarrow{\mathbf{F}}$ થાય. આ બંને બળો સમાન સમયગાળા Δt માટે લાગે છે. બુલેટ છોડતાં પહેલાં બુલેટ અને રાઇફલ બન્ને સ્થિર હોવાથી તેમનાં વેગમાન અનુક્રમે \overrightarrow{p}_b અને \overrightarrow{p}_r બન્ને શૂન્ય છે, તેથી તેમનું કુલ પ્રારંભિક વેગમાન.

$$\overrightarrow{p_h} + \overrightarrow{p_r} = 0 \tag{5.8.1}$$

હવે ગતિના બીજા નિયમ પરથી મળેલ સમીકરણ (5.6.1) મુજબ,

બુલેટના વેગમાનમાં ફેરફાર $=\stackrel{\rightarrow}{F}\Delta t$ (5.8.2)

રાઇફલના વેગમાનમાં ફેરફાર $= - \overset{
ightarrow}{\mathrm{F}} \Delta t$ (5.8.3) આ દરેકનું પ્રારંભિક વેગમાન શૂન્ય હોવાથી તે

દરેકનું અંતિમ વેગમાન $(\overrightarrow{p'_b}$ અને $\overrightarrow{p'_r})$, તેમના દરેકના વેગમાનના ફેરફાર જેટલું થશે.

આમ,
$$\overrightarrow{p'}_b = \overrightarrow{F} \Delta t$$
 અને $\overrightarrow{p'}_r = -\overrightarrow{F} \Delta t$ (5.8.4.)
સમીકરણ (5.8.4) અને (5.8.1), પરથી,

$$\overrightarrow{p'_b} + \overrightarrow{p'_r} = 0 = \overrightarrow{p_b} + \overrightarrow{p_r}$$
 (5.8.5)
એટલે કે,

અહીં (રાઇફલ + બુલેટ)ના તંત્ર પર કોઈ બાહ્ય બળ લાગતું નથી, તેથી આ તંત્રને અલગ કરેલું તંત્ર કહેવાય છે. જે બળો લાગે છે તે માત્ર આંતરિક બળો જ છે અને તેમનું પરિણામી કાયમ શૂન્ય બને છે. આ હકીકતોને વેગમાન-સંરક્ષણના નિયમમાં સાંકળી લેવામાં આવી છે. વેગમાન-સંરક્ષણનો નિયમ નીચે મુજબ લખાય છે.

"અલગ કરેલા તંત્રનું કુલ વેગમાન અચળ રહે છે."

આ નિયમ ઊર્જા-સંરક્ષણના નિયમ અને વિદ્યુતભાર સંરક્ષણના નિયમ જેવો જ એક મૂળભૂત અને સાર્વત્રિક નિયમ છે. વળી, તે ગ્રહો અને તારાઓ જેવા મોટા પદાર્થોની આંતરક્રિયાઓ તેમજ ઇલેક્ટ્રૉન-પ્રોટોન જેવા સૂક્ષ્મ ક્શોની આંતરક્રિયાઓ માટે સમાનપણે સાચો છે. આ નિયમનું ઉલ્લંઘન થાય તેવી કોઈ ઘટના (પ્રક્રિયા) થઈ શકતી નથી.

ઉદાહરણ 5: એક સૈનિક પોતાની ઑટોમેટીક રાઇફલમાંથી $50 \, \mathrm{g}$ દળની ગોળીઓ દરેક $1000 \, \mathrm{m \ s^{-1}}$ ના વેગથી છોડે છે, જો તે પોતાના ખભા પર વધુમાં વધુ $200 \, \mathrm{N}$ નું બળ ખમી શકતો હોય, તો તે એક સેકન્ડમાં વધુમાં વધુ કેટલી ગોળીઓ છોડી શકે ?

6કેલ: ધારો કે દરેક ગોળીનું દળ = m અને 1s માં વધુમાં વધુ n ગોળીઓ છૂટે છે.

ગોળીઓ છોડ્યા પહેલાં ગોળીઓ અને રાઇફલનું કુલ વેગમાન = 0

છૂટ્યા પછી દરેક ગોળીનું વેગમાન p=mv \therefore ગોળીઓને દર સેકંડે મળતું વેગમાન

= (nmv - 0) = nmv

ગોળીઓ છોડવાની આ પ્રક્રિયામાં કોઈ બાહ્યબળ લાગતું ન હોવાથી (ગોળીઓ + રાઇફલ)ના તંત્રને અલગ કરેલું તંત્ર ગણી શકાય અને તેથી તેનું કુલ વેગમાન અચળ રહેવું જોઈએ.

∴ રાઇફલને 1 સેકન્ડમાં વિરુદ્ધ દિશામાં મળતું વેગમાન = nmv

હવે, દર સેકન્ડે વેગમાનનો ફેરફાર બરાબર બળ. આમ આપણે કહી શકીએ કે રાઇફલ પરનું બળ અને તેથી સૈનિકના ખભા પરનું બળ = nmv

 $\therefore nmv = 200N$

 $\therefore n(50 \times 10^{-3} \text{ kg}) (1000 \text{ m/s}) = 200\text{N}$

 $\therefore n = 4 \text{ s}^{-1}$

ઉદાહરણ 6: એક સરોવરમાં 40 kg દળના તરાપા પર 60 kg દળની એક વ્યક્તિ ઊભી છે. કાંઠાથી તે વ્યક્તિનું અંતર 30 m છે. જો તે વ્યક્તિ કાંઠા તરફ (તરાપા પર) 10 m/s ના વેગથી દોડવા લાગે, તો એક સેકન્ડ પછી તે વ્યક્તિ કાંઠાથી કેટલી દૂર હશે ?

ઉંકેલ : વ્યક્તિ અને તરાપાનું પ્રારંભિક વેગમાન શૂન્ય છે. જ્યારે વ્યક્તિ કાંઠા તરફ દોડવા લાગે છે ત્યારે (વ્યક્તિ + તરાપા)નું તંત્ર પાછળ તરફ ગતિ કરે છે.

ધારો કે, વ્યક્તિ (person) નું દળ $=m_{
m p}$ તરાપા (raft)નું દળ $=m_{
m p}$

અને વ્યક્તિનો તરાપાની સાપેક્ષે વેગ = $\overrightarrow{v_{PR}}$ તરાપાનો કાંઠાની સાપેક્ષે વેગ = $\overrightarrow{v_{RB}}$ વ્યક્તિનો કાંઠાની સાપેક્ષે વેગ = $\overrightarrow{v_{PB}}$ વ્યક્તિની દોડવાની દિશાને ધન X—અક્ષ તરીકે લેતાં,

$$\vec{v}_{PR} = 10 \hat{i} \text{ m/s}$$

વળી એ સ્પષ્ટ છે કે $\overrightarrow{v_{PB}} = \overrightarrow{v_{PR}} + \overrightarrow{v_{RB}}$ (1)

(વ્યક્તિ + તરાપા)ના આ તંત્ર પર કોઈ બાહ્ય બળ લાગતું ન હોવાથી, વેગમાન સંરક્ષણના નિયમ મુજબ

$$\therefore 0 = m_{P} \overrightarrow{v_{PB}} + m_{R} \overrightarrow{v_{RB}}$$

$$= m_{P} (\overrightarrow{v_{PR}} + \overrightarrow{v_{RB}}) + m_{R} \overrightarrow{v_{RB}}$$

$$= m_{P} \overrightarrow{v_{PR}} + (m_{P} + m_{R}) \overrightarrow{v_{RB}}$$

$$0 = 60 (10\hat{i}) + (60 + 40) \stackrel{\rightarrow}{v_{RB}}$$

$$\vec{v}_{RB} = -6\hat{i}$$
 m/s

∴ સમીકરણ (1) પરથી

$$\overrightarrow{v_{\text{PB}}} = 10\,\hat{i} - 6\,\hat{i} = 4\,\hat{i} \text{ m/s}$$

આમ, વ્યક્તિ 1 સેકન્ડમાં કાંઠા તરફ 4 mનું અસરકારક અંતર કાપે (પોતે 10 m આગળ જાય પણ તરાપો 6 m પાછળ જાય તેથી).

 \therefore 1 સેકન્ડ પછી તેનું કાંઠાથી અંતર 30 - 4 = 26 m હોય.

ઉદાહરણ 7 : સ્થિર સ્થિતિમાં રહેલો એક બોમ્બ ફૂટતાં તેના ત્રણ ટૂકડા થાય છે. બે સમાન દળના ટૂકડા એકબીજાને લંબદિશામાં 30 m/s ના સમાન વેગથી ગતિ કરે છે. ત્રીજા ટૂકડાનું દળ આ બે માંના દરેક કરતાં ત્રણ ગણું છે. તો આ ત્રીજા ટુકડાના વેગનાં માન અને દિશા શોધો.

આકૃતિ 5.2

ઉકેલ : બૉમ્બ ફૂટ્યા પહેલાં સ્થિર હોવાથી તેનું∴ પ્રારંભિક વેગમાન = 0. બૉમ્બની ફૂટવાની ક્રિયામાં

બાહ્ય બળ લાગતું નથી. તેથી વેગમાન સંરક્ષણના નિયમ મુજબ, બૉમ્બ ફૂટ્યા પછીના બધા ટુકડાઓનાં વેગમાનોનો સદિશ સરવાળો શૂન્ય થવો જોઈએ. અહીં પહેલા અને બીજા ટુકડાનાં દળ = m સમાન છે.

 \therefore ત્રીજા ટુકડાનું દળ $=3\,$ m બૉમ્બ ફૂટ્યા પછી ટૂકડાઓનાં વેગમાનો અનુક્રમે $\overrightarrow{p_1}$, $\overrightarrow{p_2}$ અને $\overrightarrow{p_3}$ હોય તો,

$$\overrightarrow{p_1} + \overrightarrow{p_2} + \overrightarrow{p_3} = 0$$

આકૃતિ મુજબ X અને Y અક્ષો લેતાં,

$$\vec{p}_1 = m(30)\,\hat{i} \ , \ \vec{p}_2 = m(30)\,\hat{j}$$

$$\therefore m(30)\hat{i} + m(30)\hat{j} + (3m)\vec{v_3} = 0$$

$$\therefore 3m \stackrel{\rightarrow}{(v_3)} = -30m \stackrel{\frown}{(i} + \stackrel{\frown}{j})$$

$$\therefore \vec{v_3} = -10\hat{i} -10\hat{j}$$

$$\therefore | \overrightarrow{v_3} | = \sqrt{(-10)^2 + (-10)^2}$$
$$= 10\sqrt{2} \text{ m/s.}$$

અને,
$$tan \ \theta = \frac{v_{3y}}{v_{3x}} = \frac{-10}{-10} = 1$$

$$\therefore \theta = 45^{\circ}$$

આમ ત્રીજો ટુકડો ઋણ X-અક્ષ તેમજ ઋણ Y-અક્ષ સાથે 45° ના કોણે ગતિ કરશે.

5.9 એકબિંદુગામી બળોનું સંતુલન (Equilibrium of Concurrent Forces)

જે બળોની કાર્યરેખાઓ એક જ બિંદુમાંથી પસાર થતી હોય તેવાં બળોને એકબિંદુગામી (Concurrent) બળો કહે છે.

કણ પર લાગતાં બધા બાહ્ય બળોનું પરિણામી (ચોખ્ખું-net) બળ શૂન્ય બને તે પરિસ્થિતિને સંતુલન કહે છે. આ દષ્ટિકોણથી વિચારતાં પદાર્થની સ્થિર અવસ્થા અને નિયમિત વેગવાળી ગતિની અવસ્થા એ બંને સંતુલન અવસ્થાઓ જ છે.

આમ સંતુલન માટે $\sum \overrightarrow{F} = 0$ બને છે.

જો કણ પર એક જ બાહ્ય બળ $\overset{
ightharpoonup}{F}$ લાગતું હોય, તો તેનામાં $\overset{
ightharpoonup}{F}=m\overset{
ightharpoonup}{a}$ મુજબ પ્રવેગ ઉત્પન્ન થશે જ, આથી તે કણ સંતુલનમાં રહી શકશે નહિ. જો કણ પર બે બાહ્ય બળો $\overset{
ightharpoonup}{F_1}$ અને $\overset{
ightharpoonup}{F_2}$ લાગતાં હોય, તો સંતુલન માટે એટલે કે

 $\Sigma \overset{
ightarrow}{F}=0$ થવા માટે $\overset{
ightarrow}{F_1}=-\overset{
ightarrow}{F_2}$ થવું જ જોઈએ. આકૃતિ 5.3 (a), (b).

જો બે કરતાં વધુ બાહ્ય બળો લાગતાં હોય, તો સંતુલન માટે તેમનો સિંદશ સરવાળો શૂન્ય થવો જોઈએ. એટલે કે $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 + \dots = 0$ થવું જોઈએ. વળી, બળ સિંદશ રાશિ હોવાથી બધાં બળોના અનુરૂપ ઘટકોનો સરવાળો પણ શૂન્ય થવો જોઈએ. એટલે કે,

$$\Sigma \mathbf{F}_{x}=0$$
, $\Sigma \mathbf{F}_{y}=0$, $\Sigma \mathbf{F}_{z}=0$ થવું જોઈએ.

ત્રણ બળો $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ અને $\overrightarrow{F_3}$ ની અસર નીચે સંતુલનમાં રહેતા કણ માટે $\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ + $\overrightarrow{F_3}$ = 0 થાય, તે માટે આકૃતિ 5.4.(a) માં દર્શાવ્યા મુજબ બે બળોનો સદિશ સરવાળો ($\overrightarrow{F_1}$ + $\overrightarrow{F_2}$) ત્રીજા બળના મૂલ્ય જેટલો અને તેની વિરુદ્ધ દિશામાં હોવો જોઈએ. એટલે કે,

$$\vec{F}_1 + \vec{F}_2 = -\vec{F}_3$$

બીજી રીતે કહીએ તો ત્રણેય બળસદિશોને tail to head ગોઠવતાં આકૃતિ 5.4 (b) મુજબ બંધ આકૃતિ રચતા હોવા જોઈએ. આથી પરિણામી બળ શૂન્ય બને.

ઉદાહરણ 8: આકૃતિ 5.5માં દર્શાવ્યા અનુસાર બે દોરીઓ AO અને BOને એક દેઢ આધાર સાથે બાંધીને તેની સાથે ત્રીજી એક દોરી OC વડે 20 kg દળના પદાર્થને લટકાવેલ છે. આ સમગ્ર રચનાની સંતુલન સ્થિતિમાં AO અને BO દોરીઓ સમક્ષિતિજ સાથે અનુક્રમે 60° અને 30° ના ખૂશાઓ બનાવે છે. આ બધી દોરીઓ દળ રહિત છે. તેમ ધારીને દોરીઓમાં ઉદ્ભવતા તણાવ (tensions) શોધો. [$g = 10 \text{ m s}^{-2}$ લો.]

ઉકેલ: અહીં દોરીઓ દળ રહિત છે. તેથી દોરીના એક છેડે લગાડેલું બળ એટલું ને એટલું જ (undiminished) બીજા છેડે લાગે છે. (આમ, દળ રહિત દોરી પોસ્ટમેન જેવું કામ કરે છે.)

સંતુલન સ્થિતિમાં પદાર્થ અને O બિંદુ સ્થિર છે. સંતુલન સ્થિતિમાં દોરીમાં તણાવ આકૃતિ 5.5 મુજબ T_1 , T_2 , T_3 લાગે છે, તેમ ધારો.

C બિંદુ સંતુલનમાં હોવાથી $T_3 - mg = 0$

$$T_3 = mg = (20)(10)$$
= 200 N (1)

X—અક્ષને સમક્ષિતિજ દિશામાં અને Y—અક્ષ તેને લંબ લો.

આકૃતિ પરથી
$$T_1$$
 નો x ઘટક $= T_1 \cos 30^\circ$ T_1 નો y ઘટક $= T_1 \sin 30^\circ$ T_2 નો x ઘટક $= T_2 \cos 60^\circ$ T_2 નો y ઘટક $= T_2 \sin 60^\circ$

O બિંદુ સંતુલનમાં હોવાથી,

 $\Sigma F_x = 0$ પરથી, $T_1 cos \ 30^{\circ} - T_2 cos \ 60^{\circ} = 0$

$$\therefore \ \frac{\sqrt{3}}{2} \ T_1 - \frac{1}{2} T_2 = 0$$

$$\therefore \sqrt{3} T_1 - T_2 = 0$$
 (2)

 Σ F $_{y}$ = 0 પરથી, $\mathrm{T}_{1} sin~30^{\mathrm{o}} + \mathrm{T}_{2} ~sin~60^{\mathrm{o}} - \mathrm{T}_{3} = 0$

$$\therefore \ \frac{1}{2} T_1 + \frac{\sqrt{3}}{2} T_2 - 200 = 0$$

[સમીકરણ (1) પરથી]

$$T_1 + \sqrt{3} T_2 = 400$$
 (3)

સમીકરણ (2) ને $\sqrt{3}$ વડે ગુણી સમીકરણ (3)માં ઉમેરતાં,

$$(3T_1 - \sqrt{3} T_2) + T_1 + \sqrt{3} T_2 = 400$$

$$\therefore$$
 T₁ = 100 N

આ મૂલ્ય સમીકર(1)માં મૂકતાં $T_2 = 173$ N

5.10 ঘর্মন্ত (Friction)

જ્યારે પદાર્થો સંપર્કમાં હોય ત્યારે પદાર્થોની સંપર્કસપાટી આગળ ક્શોની દરેક જોડ (pair) માં પરસ્પર સંપર્કબળો લાગે છે જે, ન્યૂટનના ગતિના ત્રીજા નિયમનું પાલન કરે છે. આ સંપર્ક બળના બે ઘટક વિચારો : (i) સંપર્કસપાટીઓને લંબ દિશામાંના ઘટકને **લંબ પ્રતિક્રિયાબળ N** (ઘણી વાર ટૂંકમાં લંબ બળ અથવા લંબપ્રતિક્રિયા) કહે છે. (ii) સંપર્કસપાટીઓને સમાંતર ઘટકને **થર્મશબળ f** અથવા ટૂંકમાં ઘર્ષણ કહે છે.

આણ્વિક સ્તરે સંપર્કસપાટીઓનું ખરબચડાપણું આવાં સંપર્ક બળો અને ઘર્ષણબળો નક્કી કરે છે. પદાર્થોની સપાટીઓ ગમે તેટલી લીસી દેખાય પણ માઇક્રોસ્કોપમાંથી જોતાં સૂક્ષ્મ ખાડા-ટેકરા જણાઈ આવે છે. એક સપાટીના ઉપસેલા ભાગ બીજા સપાટીના ખાડા જેવા ભાગોમાં ભરાઈ જવાથી 'cold welding' થઈ જાય છે. એટલે એક સપાટી બીજી પર ખસવાનો પ્રયત્ન કરે, ત્યારે તેનો વિરોધ કરતું બળ ઉદ્દભવે છે જેને **ઘર્ષણબળ** f કહે છે.

એક ઉદાહરણ જોઈએ. ધારો કે એક બ્લોક Q ઢોળાવવાળી સપાટી પર સ્થિર છે. આ બ્લોક તેના વજન બળ \overrightarrow{W} જેટલું બળ ઢાળની સપાટી પર અધોદિશામાં લાગે છે. આ સપાટી બ્લોક પર તેટલા જ મૂલ્યનું પણ વિરુદ્ધ દિશામાં બળ \overrightarrow{R} લગાડે છે. \overrightarrow{R} એ સંપર્ક બળ છે.

હવે સરળતા ખાતર અક્ષોની પસંદગી આપણે એવી રીતે કરીએ કે જેથી X-અક્ષ ઢાળને સમાંતર રહે. (જુઓ આકૃતિ 5.6(a) આ બળ \overrightarrow{R} ના બે લંબ ઘટકો નીચે મુજબ છે.

- (1) સપાટીને લંબ ઘટકને લંબબળ (normal force) \overrightarrow{N} કહે છે.
- (2) સપાટીને સમાંતર ઘટકને ઘર્ષણબળ (frictional force) \overrightarrow{f} કહે છે.

જો આવું ઘર્ષણબળ f ને લાગતું હોત તો બળ $W \sin \theta$ ને કારણે બ્લોક ઢાળ પર (ન્યૂટનના નિયમ મુજબ) નીચે તરફ સરકવા લાગત અને આવી ગતિ (કે જે ઘર્ષણના કારણે વાસ્તવમાં થતી નથી.) ને અપેક્ષિત ગતિ (impending motion) કહે છે.

આકૃતિ 5.6 (a)

હવે
$$|\overrightarrow{R}|^2 = |\overrightarrow{N}|^2 + |\overrightarrow{f}|^2$$

બ્લોક સંતુલનમાં હોવાથી, $\Sigma F_x=0$ અને Σ $F_y=0$, $\Sigma F_x=0$ પરથી | f | - w \sin $\theta=0$ (1)

અને $\sum F_y = 0$ પરથી $|f| - w\cos\theta = 0$ (2) સમીકરણ (1) અને (2) પરથી,

$$\frac{f}{N} = \tan \theta \tag{3}$$

(a) સ્થિત **ઘર્ષણ (Static friction) :** ટેબલની સમક્ષિતિજ સપાટી પર સ્થિર રહેલા m દળના પદાર્થનો વિચાર કરો. તે પોતાના વજન W (= mg) જેટલું બળ ટેબલની સપાટી પર લગાડે છે અને સપાટી પદાર્થ પર લંબબળ N લગાડે છે. પદાર્થની સંતુલન-અવસ્થા પરથી કહી શકાય કે,

હવે +x—દિશામાં એક નાનું બળ \overrightarrow{F} , પદાર્થ પર લગાડવા છતાં ધારો કે પદાર્થ ગતિમાં આવતો નથી પણ સ્થિર જ રહે છે. (જુઓ આકૃતિ 5.6 (c)) આ નાનું બળ \overrightarrow{F} જો એકમાત્ર બળ હોત, તો પદાર્થ નાના પ્રવેગ (= F/m)થી પણ ગતિમાં આવત. પણ પદાર્થ હજી સ્થિર રહે છે, તેથી કોઈ બીજું બળ ઋણ -x દિશામાં લાગતું હોવું જોઈએ કે જે આ બળ \overrightarrow{F} ને સમતોલે છે, એટલે કે કુલ બાહ્ય બળ શૂન્ય બનાવી પદાર્થને સ્થિર રાખે છે.

આ બીજું બળ એ સંપર્કબળનો સપાટીને સમાંતર ઘટક છે, જેને ઘર્ષણબળ f_s કહે છે. તેને ઘર્ષણ અથવા સ્થિત ઘર્ષણ પણ કહે છે. આ સ્થિત ઘર્ષણબળ પોતાની મેળે અસ્તિત્વ ધરાવતું નથી, પણ જ્યારે બાહ્ય બળ F લાગે તે જ ક્ષણે તે લાગવા માંડે છે.

હવે બાહ્ય બળ \overrightarrow{F} થોડું અને ધીમે-ધીમે વધારીએ તેમ છતાં પદાર્થ ખસતો નથી, તેથી સ્પષ્ટ છે કે ઘર્ષણબળ f_s પણ તે જ પ્રમાણે વધતું હશે. આમ, આ સ્થિત ઘર્ષણબળ (self adjusting) સ્વનિયમન કરતું બળ છે. આવું અમુક હદ સુધી જ થાય છે. આ સ્થિત ઘર્ષણબળ અપેક્ષિત (impending) ગતિનો વિરોધ કરે છે. અપેક્ષિત ગતિ એટલે જો ઘર્ષણબળ ગેરહાજર હોત, તો લગાડેલા બળની અસર હેઠળ જે ગતિ થાત (પણ ખરેખર થતી નથી) તે.

હવે લગાડેલું બાહ્ય બળ \overrightarrow{F} હજી વધારતાં ઘર્ષણબળનું મૂલ્ય અમુક સીમા સુધી જ વધી શકે છે. જો બાહ્ય બળ આ મહત્તમ ઘર્ષણબળ કરતાં સ્હેજ વધે કે તરત પદાર્થ ગતિ શરૂ કરે છે. પદાર્થ ગતિ શરૂ કરવાની અણી પર હોય ત્યારે લાગતા ઘર્ષણબળને મહત્તમ સ્થિત ઘર્ષણબળ $f_{s(max)}$

અથવા સીમાંત ઘર્ષણબળ (limiting force of friction) કહે છે. પ્રયોગો દર્શાવે છે કે, (1) મહત્તમ સ્થિત ઘર્ષણબળ સપાટીઓના સંપર્ક ક્ષેત્રફળ પર આધારિત નથી. (2) મહત્તમ સ્થિત ઘર્ષણબળ $f_{\mathrm{s(max)}}$, લંબબળ Nના સમપ્રમાણમાં હોય છે. એટલે કે, $f_{\mathrm{s(max)}}$ α N.

ઉપર્યુક્ત બાબતો [(1) અને (2)માં દર્શાવેલી] ને સ્થિત ઘર્ષણના નિયમો કહે છે.

અહીં સ્પષ્ટ જ છે કે $f_{s(max)} = \mu_s N$ (5.10.2)

જયાં, μ_s એ સપ્રમાણતાનો અચળાંક છે અને તેને સ્થિત-ઘર્ષણાંક (co-efficient of static friction) કહે છે. તેનું મૂલ્ય સપાટીઓના પ્રકાર, સપાટીઓના દ્રવ્યની જાત અને તાપમાન પર આધારિત છે. ખરબચડી કરતાં લીસી સપાટી માટે μ_s નું મૂલ્ય નાનું હોય છે. μ_s નું મૂલ્ય લગભગ 0.01થી 1.5ના ગાળામાં હોય છે. જ્યાં સુધી સ્થિર પદાર્થ ખસતો ન હોય ત્યાં સુધી કહી શકાય કે $f_{\rm x} \leq \mu_{\rm x}$ N.

સમીકરણ (5.10.2) એ $f_{\mathrm{s}(max)}$ અને N નાં મૂલ્યો વચ્ચેનો જ સંબંધ છે, બાકી તેમની દિશાઓ તો પરસ્પર લંબ છે.

ઉદાહરણ 9: 4 kg દળનો એક બ્લૉક સમક્ષિતિજ સપાટી પર પડ્યો છે. ધીમે ધીમે આ સપાટીનો સમક્ષિતિજ સાથેનો ખૂશો વધારવામાં આવે છે. જયારે આ ખૂશો 15° નો થાય ત્યારે બ્લૉક સરકી પડવાની અણી પર આવે છે, તો આ બ્લૉકની સપાટી અને ઢાળની સપાટી વચ્ચેનો સ્થિત-ઘર્ષણાંક શોધો.

ઉકેલ : આ બ્લૉક પર લાગતાં બળો નીચે મુજબ છે :

- (i) અધોદિશામાં લાગતું વજનબળ (ગુરુત્વાકર્ષી બળ)= mg
- (ii) ઢાળની સપાટી વડે બ્લૉક પર લાગતું લંબબળ = N અને
 - (iii) સ્થિત-ઘર્ષણબળ $=f_{\mathrm{s}}$ (ઢાળની સપાટીને સમાંતર)

બ્લૉક સંતુલનમાં હોઈને આ બધાં બળોનું પરિશામી બળ શૂન્ય થશે. વજનબળ mgના આકૃતિમાં દર્શાવ્યા મુજબ બે ઘટકો લેતાં,

$$\operatorname{mg} \sin\theta = f_{s}$$
 અને (1)

$$mg \cos\theta = N \tag{2}$$

આ બંને સમીકરણોનો ગુણોત્તર લેતાં

$$tan\theta = \frac{f_s}{N} \tag{3}$$

સમીકરણ (3) પરથી, જેમજેમ θ નું મૂલ્ય વધતું જાય તેમ તેમ $tan\theta$ નું મૂલ્ય પણ વધતું જશે અને તેથી ઘર્ષણબળ f_s નું મૂલ્ય પણ અમુક હદ સુધી વધતું જશે. ધારો કે $\theta=\theta_{max}$ માટે ઘર્ષણબળનું મૂલ્ય મહત્તમ $f_{s\ (max)}$ થાય છે. સમીકરણ (3) પરથી

$$tan\theta_{max} = \frac{f_{s(max)}}{N} = \mu_{s}$$

$$\therefore \ \theta_{max} = tan^{-1} \ \mu_s$$

આ કોણને વિરામકોણ કહે છે.

જ્યારે θ નુંમૂલ્ય θ_{max} ના મૂલ્ય કરતાં સહેજ વધશે કે તરત જ આ બ્લૉક પર અસંતુલિત પરિણામી બળ લાગવાના લીધે બ્લૉક નીચે તરફ સરકવાનું શરૂ કરશે. દાખલામાં આપેલ છે કે $\theta_{max}=15^{\circ}.$

$$\therefore \ \mu_{\rm s} = tan15^{\rm o} = 0.27$$

અહીં એ નોંધો θ_{max} એ ફક્ત μ_s પર જ આધારિત છે, બ્લૉકના દળ પર નહિ.

(b) ગતિક ઘર્ષણ (Kinetic Friction) :

આકૃતિ 5.8

આકૃતિ 5.9

ઉપર ચર્ચેલ પરિચ્છેદ (a) ના ટેબલ પરના પદાર્થના $\stackrel{
ightarrow}{}_{\text{GEI&SQNH}}$ જો લગાડેલું બાહ્ય બળ $\stackrel{
ightarrow}{}{}_{\text{F},f_{\text{S}(max)}}$ કરતાં (એટલે

મહત્તમ સ્થિત ઘર્ષણબળ કરતાં) સહેજ પણ વધે કે તરત પદાર્થ ગિત કરવા લાગે છે. પ્રયોગો એમ દર્શાવે છે કે જેવી આ સાપેક્ષ ગિત શરૂ થાય કે તરત જ ઘર્ષણબળનું મૂલ્ય મહત્તમ સ્થિત ઘર્ષણબળ $f_{s(max)}$ કરતાં ઘટી જાય છે (જુઓ આકૃતિ 5.8).

સંપર્કસપાટીઓની સાપેક્ષ ગતિનો વિરોધ કરતા ઘર્ષણબળને ગતિક ઘર્ષણબળ (f_k) કહે છે. (જુઓ આકૃતિ 5.9). સ્થિત ઘષણબળની માફક ગતિક ઘર્ષણબળ પણ સંપર્ક-ક્ષેત્રફળ પર આધારિત નથી અને લંબ બળ (N)ના સમપ્રમાણમાં હોય છે, ઉપરાંત તે વેગથી પણ લગભગ સ્વતંત્ર હોય છે.

અત્રે સ્પષ્ટ છે કે
$$f_k = \mu_k \text{ N}$$
 (5.10.3)

જયાં, μ_k અચળાંક છે અને તેને **ગતિક ઘર્ષણાંક** (coefficient of kinetic friction) કહે છે. તેનું મૂલ્ય સંપર્ક સપાટીઓના પ્રકાર પર આધારિત છે. પ્રયોગો દર્શાવે છે કે $\mu_k < \mu_s$.

આપણે બરાબર યાદ રાખવાનું છે કે પદાર્થને સ્થિર સ્થિતિમાંથી ગતિમાં લાવવા, બાહ્ય બળને મહત્તમ સ્થિત ઘર્ષણબળનો સામનો કરવો પડે છે. પણ એક વાર પદાર્થ ગતિમાં આવી જાય પછી ગતિક ઘર્ષણનો સામનો કરવો પડે છે, અને ગતિક ઘર્ષણ મહત્તમ સ્થિત ઘર્ષણ $f_{\mathrm{s}(\max)}$ કરતાં ઓછું હોય છે.

ઉદાહરણ 10: 15 kg દળના એક બ્લૉકને 20° ઢોળાવવાળા સમતલ પર 25 cm/s² ના પ્રવેગથી ઉપર તરફ સરકાવવા માટે 200 Nનું બળ સમક્ષિતિજ દિશામાં લગાડવું પડે છે, તો (i) બ્લૉક પર લાગતું ઘર્ષણબળ અને (ii) ગતિક ઘર્ષણાંક શોધો.

આકૃતિ 5.10

6કેલ: દાખલામાં વર્શવેલ પરિસ્થિતિ આકૃતિ 5.10માં દર્શાવી છે. આપણે X—અક્ષ ઢાળની સપાટીને સમાંતર અને Y—અક્ષ ઢાળને લંબ લઈશું. અહીં બ્લૉક X—દિશામાં પ્રવેગી ગતિ કરે છે, તેથી X—દિશામાં સંતુલન નથી.

$$\Sigma F_x = ma_x$$
 પરથી
$$Fcos20^\circ - f - mg \ sin20^\circ = (15)(0.25)$$

$$\therefore (200)(0.9397) - f - (15)(9.8)(0.3420) = 3.75$$

$$\sum F_{\nu} = 0$$

 $\therefore N - mg \cos 20^{\circ} - F \sin 20^{\circ} = 0$

 $\therefore N-(15)(9.8)(0.9397) - (200)(0.3420) = 0$

 \therefore N = 207 N

3a

$$\mu_k = \frac{f}{N} = \frac{134}{207} = 0.65$$

અહીં એક વાત નોંધો કે બળ F ને કારણે (અસરકારક) લંબબળમાં વધારો થાય છે.

(c) રોલિંગ ઘર્ષણ (Rolling Friction): જયારે કોઈ તકતી, રિંગ કે ગોળો સરક્યા વિના કોઈ સપાટી પર ગબડે ત્યારે જે રેખા (કે બિંદુ) સપાટીને અડકે છે, તે તત્ક્ષણ સ્થિર હોય છે. આવા પદાર્થ પર સ્થિત કે ગતિક ઘર્ષણબળ લાગતું નથી. તો પછી તે થોડું ગબડ્યા પછી અટકી કેમ જાય છે? અચળ વેગથી ગતિ કેમ ચાલુ રાખતા નથી? આવી ગતિમાં રોલિંગ ઘર્ષણ લાગે છે અને તેથી ગતિ ચાલુ રાખવા માટે કંઈક બાહ્ય બળ લગાડવું પડે છે. આપેલ દળના પદાર્થ અને આપેલ સપાટી માટે સ્થિત અને ગતિક ઘર્ષણ કરતાં રોલિંગ ઘર્ષણ ઘણું ઓછું (કોઈક વાર 1000મા ભાગનું લાગતું) હોય છે. તે પદાર્થની ત્રિજયા ઝડપ અને દ્રવ્યના પ્રકાર પર આધારીત છે.

આવી ગબડવાની ક્રિયામાં સંપર્કમાં રહેલી સપાટીઓ ક્ષિણિક વિકૃત થાય છે, તેથી સપાટી સાથેના સંપર્કમાં બિંદુ કે રેખા નહિ, પણ થોડુંક ક્ષેત્રફળ આવે છે અને તેથી સંપર્ક-બળનો સપાટીને સમાંતર ઘટક (જેને આપણે રોલિંગ ઘર્ષણ કહીએ છીએ તે) આ સાપેક્ષ ગતિનો વિરોધ કરે તેમ લાગે છે.

(d) ધર્ષણના લાભ અને ગેરલાભ (Advantages and Disadvantages of Friction): ધર્ષણ કેટલીક સ્થિતિમાં અનિચ્છનીય છે. યંત્રોમાં જુદા-જુદા ભાગો વચ્ચેની સાપેક્ષ ગતિનો વિરોધ કરતા ધર્ષણને લીધે પાવરનો વ્યય ઉખ્યા રૂપે થાય છે. તેમાં ગતિક ધર્ષણ ઘટાડવા માટે ઊંજણ (Lubricants) (દા.ત., ગ્રીઝ, ઑઇલ, સાબુ, હવા વગેરે)નો ઉપયોગ થાય છે. બીજો રસ્તો બૉલ-બેરિંગ્સ વાપરવાનો પણ છે. તેમાં તો રોલિંગ ધર્ષણ લાગે છે, જે સ્થિત અને ગતિક ધર્ષણ કરતાં ઘણું ઓછું હોય છે. તેથી પાવરવ્યય ઘટી જાય છે.

કેટલીક સ્થિતિમાં ઘર્ષણ જરૂરી પણ છે. ગતિક ઘર્ષણ પાવરનો વ્યય કરે છે, પણ વાહનોને અટકાવવા માટે તે જરૂરી છે. તેનો ઉપયોગ યંત્રોમાં અને automobilesમાં

બ્રેક્સમાં થાય છે. (બ્રેક વગરનું વાહન ચલાવીએ, તો શું થાય ?) આપણે ચાલી શકીએ છીએ તે પણ ઘર્ષણને લીધે છે. કાર માટે ખૂબ લપસણી સડક (slippery road) પર ગિત કરવાનું શક્ય નથી. સામાન્ય રીતે વાહનનાં ટાયર અને સડક વચ્ચેનું ઘર્ષણ વાહનને પ્રવેગિત કરવા માટેનું જરૂરી બાહ્ય બળ હોય છે. ઘર્ષણના નિયમો એ ગુરુત્વબળના નિયમ અને વિદ્યુતબળના નિયમ જેવા સરળ અને ચોકસાઈભર્યા નથી પણ આનુભવિક છે અને માત્ર આશરા પડતા સત્ય છે. પરંતુ યંત્રશાસ્ત્રમાં કોયડાઓના ઉકેલમાં ઉપયોગી છે.

સૂક્ષ્મ સ્તરે ઘર્ષણની ક્રિયા ઘણી સંકીર્ણ (complex) છે.

5.11 નિયમિત વર્તુળગતિનું ગતિશાસ્ત્ર : (Dynamics of Uniform Circular Motion)

(a) કેન્દ્રગામી બળ : આપણે પ્રકરણ 4 માં જોઈ ગયા છીએ કે, r ત્રિજ્યાના વર્તુળમાર્ગ પર v જેટલી નિયમિત (અચળ) ઝડપથી ગતિ કરતી m દળની વસ્તુનો પ્રવેગ $\frac{v^2}{r}$ કેન્દ્ર તરફની દિશામાં હોય છે. તેને કેન્દ્રગામી પ્રવેગ a_c કહે છે. આથી ન્યૂટનના ગતિના બીજા નિયમ મુજબ આ ગતિ mv^2

માટે
$$F_c = \frac{mv^2}{r}$$
 (5.11.1)

બળ કેન્દ્ર તરફની દિશામાં લાગતું હોવું જરૂરી છે. આ બળને કેન્દ્રગામી બળ કહે છે. (જુઓ આકૃતિ 5.11.)

સૂર્યની આસપાસ ગ્રહની વર્તુળગતિ માટે જરૂરી કેન્દ્રગામી બળ, સૂર્ય વડે ગ્રહ પર લાગતા ગુરુત્વાકર્ષી બળ દ્વારા પૂરું પડાય છે.

ન્યુક્લિયસની આસપાસ ઈલેક્ટ્રોનની વર્તુળગતિ માટેનું જરૂરી કેન્દ્રગામી બળ, ન્યુક્લિયસ વડે ઈલેક્ટ્રોન પર લાગતા કુલંબ આકર્ષણ બળ દ્વારા પૂરું પડાય છે.

નિયમિત વર્તુળ ગતિ એ, આ પ્રકરણમાં અગાઉ જેનો ઘણીવાર ઉલ્લેખ થયો છે તે, નિયમિત ગતિ કરતાં અલગ છે. નિયમિત ગતિમાં પદાર્થનો વેગ સદિશ $(\stackrel{}{v})$ અચળ છે

અને પ્રવેગ શૂન્ય છે. પરંતુ નિયમિત વર્તુળગતિમાં પદાર્થના વર્તુળ માર્ગ પરની ઝડપ અચળ છે. તેનો વેગ સદિશ ($\stackrel{
ightarrow}{v}$) તો બદલાય છે અને તેને કેન્દ્ર તરફ $\frac{v^2}{r}$ જેટલો પ્રવેગ હોય છે, જેને કેન્દ્રગામી પ્રવેગ કહે છે.

(b) સમતલીય વર્તુળાકાર માર્ગ પર વાહનની ગતિ (Motion of a Vehicle on a Level Circular Path): આકૃતિ 5.12 (a, b)માં એક સમક્ષિતિજ સમતલીય વળાંકવાળા (તેને વર્તુળનો એક ભાગ ગણી શકાય) રસ્તા પર જતું m દળનું એક વાહન દર્શાવ્યું છે. આ વાહન પર જો પૂરતું કેન્દ્રગામી બળ લાગતું હોય, તો જ આ માર્ગ પર તે સલામત ગતિ કરી શકે. (નહીં તો બહારની તરફ ફેંકાઈ જાય!) અહીં વાહન પર લાગતાં બળો નીચે મુજબ છે.

આકૃતિ 5.12

(1) વાહનનું વજન (mg) — અધોદિશામાં (2) રસ્તા વડે લાગતું લંબ પ્રતિક્રિયા બળ (N) — ઊર્ધ્વ દિશામાં (3) રસ્તા વડે લાગતું ઘર્ષણબળ (f_s) — રસ્તાની સપાટીને સમાંતર દિશામાં. આ વાહનને શિરોલંબ દિશામાં કોઈ પ્રવેગ ન હોવાથી,

$$N - mg = 0$$

$$\therefore N = mg \tag{5.11.1}$$

વાહનને આ રસ્તા પર વર્તુળગતિ માટેનું જરૂરી કેન્દ્રગામી બળ \mathbf{F}_{c} , ઘર્ષણબળ f_{g} દ્વારા પૂરું પડાતું હોવું જોઈએ.

$$\therefore F_c = f_s = \frac{mv^2}{r} \tag{5.11.2}$$

આ ઘર્ષણબળ એ સ્થિત ઘર્ષણબળ $f_{\rm s}$ જ છે, જે વર્તુળના કેન્દ્રથી દૂરની તરફ થનારી વાહનની અપેક્ષિત ગતિ નો વિરોધ કરે છે. જો રસ્તા વડે લાગતું મહત્તમ ઘર્ષણબળ $f_{{
m s}(max)}$ હોય તો,

$$f_{s(max)} = \mu_s N$$
 (સમી. 5.10.1 મુજબ)
$$= \mu_s mg \text{ (સમી. 5.11.1 પરથી)}$$
(5.11.3)

જ્યાં $\mu_{_{\mathrm{S}}}=$ વાહનનાં ટાયર અને રસ્તા વચ્ચેનો સ્થિત ઘર્ષણાંક

આ પરથી કહી શકાય કે જો વાહનની ઝડપ ν એવી હોય કે, જેમાં

તો જ વાહન આ રસ્તા પર સલામત રીતે ગતિ કરશે.

$$v_{max} = \sqrt{\mu_s rg} \tag{5.11.6}$$

વાહનની ઝડપ આ v_{max} કરતાં વધારે હોય, તો તે રસ્તાથી દૂર ફેંકાઈ જશે. આ મહત્તમ ઝડપ v_{max} હલકાં કે ભારે સૌ વાહનો માટે સમાન છે. જુઓ કે સમીકરણ (5.11.6)માં દળ આવતું નથી.

આ ચર્ચા પરથી આપણે રસ્તા પર વળાંક લેતી વખતે વાહનને ધીમું શા માટે કરીએ છીએ, તે તમે સમજી શક્યા હશો.

(c) ઢોળાવવાળા વકાકાર રસ્તા પર વાહનની ગતિ (Motion of Vehicle on Banked Curved Road): સમતલ વર્તુળાકાર માર્ગ પર વાહનની સલામત ગતિ માટે જરૂરી કેન્દ્રગામી બળ રસ્તાના માત્ર ઘર્ષણ દ્વારા જ મળે છે તે આપણે જોયું. પરંતુ રસ્તાના વળાંક આગળ, જો રસ્તો ઢોળાવવાળો (એટલે વર્તુળાકાર રસ્તાની અંદર તરફની ક્નારી નીચી અને બહાર તરફની ક્નારી ઊંચી હોય તેવો) બનાવવામાં આવે, તો વર્તુળગતિમાં જરૂરી કેન્દ્રગામી બળ માટે થોડોક ફાળો રસ્તાના લંબબળ (N)માંથી પણ મળી રહે છે અને તેટલા પ્રમાણમાં ઘર્ષણનો ફાળો ઘટાડી શકાય છે. આકૃતિ (5.13)માં રસ્તાનો પુસ્તકના પાન સાથેનો આડછેદ દર્શાવ્યો છે. આ રસ્તો સમક્ષિતિજ સાથે θ કોણે ઢળતો છે. વાહન પર લાગતાં બળો પણ આકૃતિ 5.13(b)માં દર્શાવ્યાં છે.

આકૃતિ **5.13**

વાહન પર લાગતાં બળો નીચે મુજબ છે :

- (1) વજનબળ (mg) અધોદિશામાં
- (2) લંબબળ (N) રસ્તાને લંબ રૂપે ઉપરની તરફ
- (3) ઘર્ષણબળ (f) રસ્તાની સપાટીને સમાંતર શિરોલંબ દિશામાં વાહનનો પ્રવેગ શૂન્ય હોવાથી,

$$N\cos\theta = mg + f\sin\theta \tag{5.11.7}$$

તેને કેન્દ્રગામી બળ $F_C = \frac{mv^2}{r}$ ની જરૂર છે, જે N અને

*f*ના સમક્ષિતિજ ઘટકો વડે પૂરું પડાય છે.

$$\therefore \frac{mv^2}{r} = N\sin\theta + f\cos\theta \tag{5.11.9}$$

સમીકરશ (5.11.9) ને સમીકરશ (5.11.8) વડે ભાગતાં,

$$\frac{v^2}{rg} = \frac{N \sin\theta + f \cos\theta}{N \cos\theta - f \sin\theta}$$
 (5.11.10)

મહત્તમ ઘર્ષણબળ $f=f_{s(max)}=\mu_s$ N પરથી આ રસ્તા પર વાહનની મહત્તમ સલામત ઝડપ v_{max} મેળવવા માટે આ સમીકરણમાં $f=f_{s(max)}=\mu_s$ N મૂકતાં,

$$\frac{v_{max}^2}{rg} = \frac{N \sin\theta + \mu_s N \cos\theta}{N \cos\theta - \mu_s N \sin\theta}$$
 (5.11.11)

$$\therefore v^2_{max} = rg \left[\frac{sin\theta + \mu_s cos\theta}{\cos\theta - \mu_s sin\theta} \right]$$
 (5.11.12)

અંશ અને છેદને $\cos\theta$ વડે ભાગતાં.

$$v_{max}^2 = rg \left[\frac{tan\theta + \mu_s}{1 - \mu_s \ tan\theta} \right]$$
 (5.11.13)

$$\therefore v_{max} = \sqrt{rg \left[\frac{\mu_s + tan\theta}{1 - \mu_s \ tan\theta} \right]}$$
 (5.11.14)

સમીકરણ (5.11.6) અને (5.11.14)ને સરખાવતાં માલૂમ પડે છે કે સમક્ષિતિજ વક્રાકાર રસ્તા કરતાં ઢોળાવવાળા વક્રાકાર રસ્તા પર વાહનની મહત્તમ સલામત ઝડપ વધુ છે કારણ કે અહીં $\tan\theta$ ધન છે.

આપેલ વકાકાર રસ્તાની વક્રતાત્રિજ્યા r જાણીને, તથા તેના પર વાહનની મહત્તમ સલામત ઝડપ (દા.ત., 100 km/h) નક્કી કરીને, તેમજ ટાયર અને રસ્તા વચ્ચેનો સ્થિત-ઘર્ષણાંક $\mu_{\rm s}$ જાણીને પછી સમીકરણ (5.11.14) પરથી રસ્તાના ઢોળાવનો જરૂરી કોણ θ શોધવા જોઇએ છે અને તે મુજબના રસ્તા બનાવવા જોઇએ તથા તેના પર મહત્તમ સલામત ઝડપ (v_{max}) દર્શાવતું બોર્ડ યોગ્ય સ્થાને મૂકવૂં જોઇએ.

આ ચર્ચામાં નીચેના બીજા બે ખાસ કિસ્સાઓનો વિચાર કરીએ :

(i) સમીકરણ (5.11.14)માં $\mu_s=0$ માટે (એટલે કે ઘર્ષણ લાગતું જ ન હોય તો),

$$v_0 = \sqrt{rg \ tan\theta} \tag{5.11.15}$$

ઢોળાવવાળા વક્રાકાર રસ્તા પર આ ઝડપે વાહનને હંકારીએ તો જરૂરી કેન્દ્રગામી બળમાં ઘર્ષણનો ફાળો લઘુતમ થવાથી ટાયરને લાગતો ઘસારો ન્યૂનતમ કરી શકાય. આ ઝડપ v_{o} ને optimum (ઇષ્ટ, યથેષ્ટ) ઝડપ કહે છે.

(ii) જો $v < v_0$ હોય, તો ઘર્ષણબળ ઢોળાવની ઊંચી કિનારી તર $\mathfrak s$ લાગે. [ઉપરની આકૃતિમાં તો f ઢોળાવના નીચા ભાગ તર $\mathfrak s$ છે તે જુઓ]. જો $tan\theta \le \mu_{\mathfrak s}$ હોય તો

જ વાહનને ઢોળાવવાળા રસ્તા પર સ્થિર ઊભું રાખી શકાય. એટલે કે પાર્ક કરી શકાય.

ઉદાહરણ 11 : ટેબલની એક લીસી સમક્ષિતિજ પર m દળના એક પદાર્થને સપાટી પરના કાણામાંથી પસાર થતી એક હલકી દોરી મારફતે M દળના બીજા લટકતા પદાર્થ સાથે જોડે છે. (જુઓ આકૃતિ 5.14.)

આકૃતિ 5.14

- (a) M દળનો પદાર્થ સ્થિર રહે તે માટે m દળના પદાર્થની વર્તુળગતિની શરત v અને r ના પદમાં મેળવો.
- (b) ઉપરના કિસ્સામાં 10 kg દળનો પદાર્થ 5 m/sની ઝડપથી 2m ત્રિજ્યાની નિયમિત વર્તુળગતિ જાળવી શકે તે માટે દોરીના બીજે છેડે કેટલું દળ લટકાવવું પડે ?

$$(g = 10 \text{ m/s}^2 \text{ ell.})$$

ઉકેલ :

(a) જો આ વર્તુળગતિમાં દોરીમાં ઉદ્ભવતું તણાવ T હોય તો,

જરૂરી કેન્દ્રગામી બળ
$$\frac{mv^2}{r} = T$$
 (1)

જ્યાં, v= ઝડપ, r= વર્તુળમાર્ગની ત્રિજ્યા અને \mathbf{M} દળનો પદાર્થ સ્થિર રહે તે માટે

$$Mg = T (2)$$

$$\therefore \frac{mv^2}{r} = Mg \tag{3}$$

$$\therefore \frac{v^2}{r} = \frac{M}{m} g \quad એ જરૂરી શરત છે.$$

(b) ઉપરના સમીકરણ (3) મુજબ,

$$(10)\frac{(5)^2}{2} = M(10)$$

 \therefore M = 12.5 kg

ઉદાહરણ 12: એક તકતી $\frac{100}{3}$ rotation/minuteના દરથી સમક્ષિતિજ સમતલમાં તેના કેન્દ્રથી આસપાસ ભ્રમણ કરે છે. તેના કેન્દ્રથી 5 cm અને 25 cmના અંતરે એક-એક સિક્કો મૂકેલ છે. સિક્કા અને તકતી વચ્ચેનો સ્થિત-ઘર્ષણાંક 0.2 છે. કયો સિક્કો તકતી પરથી ફેંકાઈ જશે ? અને કયો સિક્કો તકતી સાથે જ ભ્રમણ ચાલુ રાખી શકશે.

$$(g = 10 \text{ m/s}^2, \pi^2 = 10 \text{ ell.})$$

Gदेख :

ધારો કે દરેક સિક્કાનું દળ = m છે. અત્રે સિક્કાની વર્તુળગતિમાં,

જરૂરી કેન્દ્રગામી બળ મહત્તમ સ્થિત ઘર્ષણબળ
$$\frac{mv^2}{r} \leq f_{\mathrm{S}(max)}$$

હોય તો જ સિક્કો તકતી સાથે ભ્રમણ ચાલુ રાખી શકશે. $\text{વળી, } f_{\text{s}(max)} = \mu_{\text{s}} \text{N} = \mu_{\text{s}} mg \\ (\because \text{N} = \text{લંબબળ} = mg)$

અહીં $\frac{100}{3}$ ભ્રમણ માટે 60 s લાગે.

∴ આવર્તકાળ
$$T = \frac{60 \times 3}{100} = 1.8 \text{ s}$$

અને $v=rac{2\pi r}{\mathrm{T}}$ પરથી, ઉપરની શરત મુજબ,

$$\frac{m}{r} \left(\frac{4\pi^2 r^2}{T^2} \right) \le \mu_s mg$$

$$\therefore r \leq \frac{\mu_{\rm s} \ g {\rm T}^2}{4\pi^2}$$

$$\therefore r \le \frac{(0.2)(10)(1.8)^2}{(4)(10)}$$

 $\therefore r \le 0.162 \text{ m}$

 $\therefore r \le 16.2 \text{ cm}$

∴ કેન્દ્ર નજીકનો સિક્કો તકતી સાથે વર્તુળગતિ ચાલુ રાખશે, દૂરનો સિક્કો ફેંકાઈ જશે.

ઉદાહરણ 13: 18 km/h ની ઝડપે ગતિ કરતો એક સાઇકલસવાર જ્યારે 3 m જેટલી વક્કતાત્રિજ્યાના સમિક્ષિતિજ વળાંક પાસેથી (નમ્યા સિવાય) sharp turn લે ત્યારે તેનું શું થશે તે ગણતરી કરીને બતાવો. સાઈકલના ટાયર અને રોડ વચ્ચેનો સ્થિત-ઘર્ષણાંક 0.1 છે.

ઉકેલ :

અહીં
$$v = \frac{18000}{3600} = 5$$
 m/s,

$$r = 3 \text{ m}$$
 અને $\mu_{\rm s} = 0.1$

સમક્ષિતિજ વળાંકવાળા રોડ પર મહત્તમ ઝડપનું સૂત્ર

$$v_{max} = \sqrt{\mu_s rg} \ \dot{\vartheta}.$$

$$v_{max} = \sqrt{(0.1)(3)(9.8)}$$
$$= 1.714 \text{ m s}^{-1}$$

અને સાઇકલસવારનો વેગ તો આના કરતાં પણ વધુ (5 m s^{-1}) હોઈને સ્પષ્ટ છે કે તે બહારની બાજુ slip થઈ જશે.

ઉદાહરણ 14 : ઉદાહરણ 13માં જો આ સાઇકલસવારને આ જ વળાંક પરથી slip થયા સિવાય પસાર થવું હોય, તો તેણે શું કરવું જોઈએ, તે ગણતરી સહિત દર્શાવો.

ઉકેલ: અત્રે, ઘર્ષણબળ જરૂરી કેન્દ્રગામી પૂરું પાડતું નથી. એટલે જો સાઇકલસવાર ઊર્ધ્વ દિશા સાથે θ કોશે નમન કરે તો સંપર્કબળ (contanct force)ના વર્તુળાકાર માર્ગના કેન્દ્ર તરફના ઘટક વડે કેન્દ્રગામી બળ મેળવી શકાય છે. આથી, સાઇકલસવારે ઊર્ધ્વ દિશા સાથે θ કોશે નમન કરવું પડે. આ હકીકત આકૃતિમાં દર્શાવેલ છે.

આકૃતિ 5.15

અહીં R એ સાઇકલ પર રસ્તા વડે લાગતું સંપર્કબળ છે. આ બળના બે ઘટકો $R\cos\theta$ અને $R\sin\theta$ પૈકી $R\sin\theta$ ઘટક જરૂરી કેન્દ્રગામી બળ પૂરું પાડે છે.

$$\therefore Rsin\theta = \frac{mv^2}{r}$$
 (1)

વળી આકૃતિ પરથી,
$$Rcos\theta = mg$$
 (2) સમીકરણ (1) ને (2) વડે ભાગતાં,

$$tan\theta = \frac{v^2}{rg} \Rightarrow \theta = tan^{-1} \left(\frac{v^2}{rg}\right) = 40^{\circ}23^{\circ}$$

(આ નમન વધુ પડતું નથી લાગતું ? વિચારો.)

નોંધ: આ પ્રૉબ્લેમ બળની ચાકમાત્રાઓની મદદથી પણ ઉકેલી શકાય.

ઉદાહરણ 15: Motor race માટેના એક વર્તુળાકાર ટ્રેકની વક્કતાત્રિજ્યા 300 m અને ઢોળાવ 15° છે. જો Race carના ટાયરની સપાટી અને ટ્રેક વચ્ચેનો ઘર્ષણાંક 0.2 હોય, તો (i) ટાયરનો ઘસારો નિવારવા માટે કારને કેટલી optimum ઝડપથી ચલાવવી જોઈએ અને (ii) આ ટ્રેક પરની મહત્તમ સલામત ઝડપ કેટલી હશે ?

ઉકેલ :

(i) સામાન્ય રીતે ઢોળાવવાળા માર્ગ પર ઘર્ષણબળ અને લંબબળનો સમિક્ષિતિજ ઘટક જરૂરી કેન્દ્રગામી બળ પૂરું પાડે છે. પરંતુ વાહનની optimum ઝડપે લંબબળનો સમિક્ષિતિજ ઘટક જ કેન્દ્રગામી બળ પૂરું પાડવા માટે પૂરતો છે. (ઘર્ષણબળની જરૂર નથી.)

optimum ઝડપના સૂત્ર $v_0 = \sqrt{rg \ tan \theta}$ પરથી,

$$v_0 = \sqrt{(300) (9.8) (\tan 15^{\circ})}$$

= 28.1 m/s.

(ii) મહત્તમ સલામત ઝડપ માટેનાં સૂત્ર

$$v_{max} = \sqrt{rg \; \left[rac{\mu_{
m s} \; + \; tan \theta}{1 \; - \; \mu_{
m s} \; \; tan \theta}
ight]} \;$$
પરથી

$$v_{max} = \sqrt{(300)(9.8) \left[\frac{0.2 + \tan 15^{\circ}}{1 - 0.2 \tan 15^{\circ}} \right]}$$

= 38.1 m/s

5.12 જડત્વીય અને અજડત્વીય નિર્દેશફ્રેમ (Inertial and Non-inertial Frames of Reference

અવલોકનકાર જે સ્થળેથી અને જે પરિસ્થિતિમાં અવલોકન કરે છે, તેને (સ્થળ + પરિસ્થિતિને) નિર્દેશફ્રેમ કહે છે, તેમ આપણે પ્રકરણ-3માં જોઈ ગયા છીએ. આવી નિર્દેશફ્રેમ સ્થિર પણ હોઈ શકે છે, અચળ વેગથી ગતિ કરતી પણ હોઈ શકે છે.

ધારો કે તમે એક સ્થિર બસમાં બેઠા છો. જ્યારે બસ

ઝટકાથી ઊપડે છે, ત્યારે તમે પાછળની બાજુ ધકેલાઈ જાઓ છો. હવે તે જ બસ અચળ વેગથી ગતિ કરે છે, ત્યારે આવો કોઈ ધક્કો જણાતો નથી, અને બસ સ્થિર હતી ત્યારે પણ આવો કોઈ ધક્કો જણાતો ન હતો. હવે ડ્રાઇવર એકાએક બ્રેક મારે ત્યારે તમને આગળની તરફ ધક્કો લાગતો હોય તેમ લાગે છે. આમ, બસની પ્રવેગી (કે પ્રતિપ્રવેગી) સ્થિતિમાં તમારા પર કોઈ દેખીતું બળ લગાડાતું ન હોવા છતાં આવો ધક્કો અનુભવો છો. તો પછી ન્યૂટનનો ગતિનો પહેલો નિયમ ખોટો પડતો હોય તેમ લાગે છે, કારણ કે આ નિયમ મુજબ તો જ્યાં સુધી વસ્તુ પર બાહ્ય બળ ન લાગે ત્યાં સુધી તેની ગતિની અવસ્થામાં ફેરફાર થવો ન જોઈએ.

આ ચર્ચા પરથી સ્પષ્ટ છે કે સ્થિર નિર્દેશફ્રેમમાં અને અચળ વેગથી ગતિ કરતી નિર્દેશફ્રેમમાં ન્યૂટનનો ગતિનો પહેલો નિયમ પળાય છે. પણ પ્રવેગી નિર્દેશફ્રેમમાં આ નિયમ પળાતો નથી. જે નિર્દેશફ્રેમમાં ન્યૂટનનો ગતિનો પહેલો નિયમ પળાય છે, તેને જડત્વીય નિર્દેશફ્રેમ કહે છે અને જે નિર્દેશફ્રેમમાં તે પળાતો નથી, તેને અજડત્વીય નિર્દેશફ્રેમ કહે છે. ચાકગતિ કરતી નિર્દેશફ્રેમ એ પણ અજડત્વીય નિર્દેશફ્રેમનું ઉદાહરણ છે. ઉપરના, બસની ગતિના ઉદાહરણમાં જ્યારે બસ સ્થિરની સ્થિર હોય, અથવા અચળ વેગથી ગતિ કરતી હોય ત્યારે તે જડત્વીય નિર્દેશફ્રેમ છે પણ પ્રવેગી ગતિ વખતે તે જ બસ અજડત્વીય નિર્દેશફ્રેમ છે.

અજડત્વીય નિર્દેશફ્રેમમાં પદાર્થોની ગતિની ચર્ચામાં આપશે એક વધારાનું બળ લાગે છે તેમ ગણવાનું છે. આવા બળને આભાસી (pseudo / fictitious) બળ F_p કહે છે. બળ તો બે પદાર્થો વચ્ચેની આંતરિક્રિયા દરમિયાન ઉદ્દ્ભવે છે, પણ આ જે આભાસી બળ F_p નો ઉલ્લેખ કર્યો છે તે માટે આપેલ પદાર્થ પર બીજો કોઈ પદાર્થ આંતરિક્રિયા કરતો જણાતો નથી પણ આ F_p બળ તો નિર્દેશફ્રેમની પ્રવેગી ગતિના કારણે જ લાગતું હોવાનું જણાય છે. આથી તેને આભાસી બળ કહે છે. આ બળ F_p ની દિશા નિર્દેશ ફ્રેમના પ્રવેગની વિરુદ્ધ દિશામાં હોય છે.

પ્રવેગી નિર્દેશફ્રેમમાં રહેલા m દળના પદાર્થને, નિર્દેશ ફ્રેમના પ્રવેગ જેટલો જ વધારાનો પ્રવેગ વિરુદ્ધ દિશામાં આપવામાં આવે છે, તેને આભાસી પ્રવેગ a_p કહે છે. આ પરથી $\overrightarrow{F_p} = m \stackrel{\rightarrow}{a_p}$ જેટલું બળ, નિર્દેશફ્રેમના પ્રવેગની વિરુદ્ધ દિશામાં આપીને, તથા બીજાં જે બળો પદાર્થ પર

118

ખરેખર લાગતાં હોય તેમનો પણ વિચાર કરીને પદાર્થની ગિતની ચર્ચા કરવામાં આવે છે. યાદ રાખો કે આવા કોયડાઓને પ્રવેગી નિર્દેશફ્રેમ (અજડત્વીય)ના સંદર્ભમાં ન્યૂટનના ગિતના બીજા નિયમની મદદથી ઉકેલવા જ આવા વધારાના આભાસી બળ F_p ની કલ્પના કરીએ છીએ. જડત્વીય નિર્દેશફ્રેમમાં આવા કોઈ આભાસી બળ F_p નો વિચાર કરવાનો નથી.

ચકડોળ (merry-go-round) એ પણ પ્રવેગી (અજડત્વીય) નિર્દેશ ફ્રેમ છે. તેમાં બેસીને ચકડોળ સાથે ધૂમતા માણસ પર વર્તુળગતિ માટે કેન્દ્રગામી બળની જરૂર છે અને તે બેઠક અને માણસ વચ્ચે લાગતા ઘર્ષણબળ (અથવા પાછળના ટેકાના લંબબળ) દ્વારા પૂરું પડાય છે. આ વાસ્તવિક બળ છે.

પરંતુ માણસને વર્તુળમાર્ગના કેન્દ્રથી દૂર તરફ બળ લાગતું હોવાની (દૂર ફેંકાઈ જતા હોવાની) લાગણી થાય છે. આ આભાસી બળ F_p છે અને તેનું કારણ એ છે કે તે પ્રવેગી (અજડત્વીય) નિર્દેશફ્રેમમાં બેઠેલો છે.

પૃથ્વી પણ અજડત્વીય નિર્દેશફ્રેમ છે પણ તેના પ્રવેગને કારણે માપનમાં જે ત્રુટિ આવે છે, તે અત્યંત સૂક્ષ્મ હોય છે. તેથી વ્યાવહારિક હેતુઓ પૂરતું પૃથ્વીને જડત્વીય નિર્દેશફ્રેમ માની લઈએ છીએ. આ બધી ચર્ચાનો નિચોડ એ છે કે : જો કોઈ એક અજડત્વીય (પ્રવેગી) નિર્દેશફ્રેમનો

અધોદિશામાં નો પ્રવેગ (\overrightarrow{a}) હોય, તો તેમાંના નિરીક્ષકને m દળના પદાર્થની ગતિ સમજવા માટે પદાર્થ પર બીજાં બધાં બળો લાગતાં હોય તે પણ ગણવાનાં અને $\overrightarrow{\mathbf{F}}_p = m(\overrightarrow{a})$ બળ ઊર્ધ્વ દિશામાં વધારાનું ગણવાનું અને પછી ન્યૂટનના ગતિના બીજા નિયમનો ઉપયોગ કરવાનો.

ઉદાહરણ 16: 60 kg દળ ધરાવતો રમેશ એક લિફ્ટમાં સ્પ્રિંગ-બૅલેન્સ પર ઊભેલો છે. (a) જો લિફ્ટ 2 m/s^2 ના પ્રવેગથી (i) ઉપર તરફ (ii) નીચે તરફ ગતિ કરે, તો રમેશનું વજન કેટલું નોંધાશે ? (b) જો લિફ્ટનો કેબલ તૂટી જાય, તો રમેશનું વજન કેટલું નોંધાશે ? ($g=10 \text{ m/s}^2$ લો.)

3લે: પદાર્થ પર લાગતા પૃથ્વીના ગુરુત્વબળને વજન w કહે છે. વળી, w=mg. બૅલેન્સ વડે નોંધાતું વજનબળ એટલે તેની સપાટી વડે પદાર્થ પર લાગતું લંબબળ અથવા

લંબ પ્રતિક્રિયાબળ. લિક્ટ સ્થિર હોય કે અચળ વેગથી જતી હોય ત્યારે તે જડત્વીય નિર્દેશફ્રેમ છે. અને ત્યારે નોંધાતું રમેશનું વજન $w_1=mg=(60)\ (10)=600\ \mathrm{N}.$

પ્રવેગિત ગતિ કરતી લિફ્ટમાં માણસ અને તેની બાજુમાં તેના પરના બળો નીચેની આકૃતિ (5.16 a, b, c)માં દર્શાવેલ છે.

(a) (i) લિફ્ટનો ઊર્ધ્વ દિશામાંનો પ્રવેગ = a

∴ તેમાં રહેલો રમેશ પ્રવેગી નિર્દેશ ક્રેમમાં છે. તેથી રમેશને અધોદિશામાં આભાસી પ્રવેગ a આપવો પડે. વળી, અધોદિશામાં તેનું વજનબળ mg પણ લાગે છે. ∴ અધોદિશામાં નું તેના પરનું પરિણામી બળ $W_1 = mg + ma = m (g + a)$, તેના વડે આ બળ બૅલેન્સ પર લાગે. આકૃતિ 5.16 (a) અને બૅલેન્સની સપાટી આટલું જ લંબબળ પ્રતિક્રિયા રૂપે લગાડે.

$$∴$$
 નોંધાતું વજન = W_1
= $m(g + a)$
= $60(10 + 2) = 720$ N.

(ii) લિફ્ટનો અધોદિશામાં પ્રવેગ = a.

.. તેમાં રહેલો રમેશ પ્રવેગી નિર્દેશ ક્રેમમાં છે, તેથી રમેશને ઊર્ધ્વ દિશામાં આભાસી પ્રવેગ \mathbf{a} આપવો પડે. વળી, અધોદિશામાં તેનું વજનબળ mg પણ લાગે છે. .. અધોદિશામાં નું તેના પરનું પરિણામી બળ $\mathbf{W}_2 = mg - ma = m \ (g - a)$. તેના વડે આ બળ \mathbf{W}_2 બેલેન્સ પર લાગે. આકૃતિ 5.16 (b). બૅલેન્સની સપાટી આટલું જ લંબબળ પ્રતિક્રિયા રૂપે લગાડે.

∴ નોંધાતું વજન =
$$W_2 = m (g - a)$$

= 60 (10 – 2)
= 480 N.

(b) જો લિક્ટનો કેબલ તૂટી જાય તો, લિક્ટ a = g જેટલા પ્રવેગથી મુક્ત પતન કરશે.

∴ નોંધાતું વજન $W_3=m\;(g-g)=0\;\mathrm{N}.$ આને ભારવિહીનતા (Weightlessness)ની અવસ્થા કહે છે.

5.13 ગતિશાસ્ત્રમાં કોયડાઓ ઉકેલવા અંગે માર્ગદર્શન (Guidance for Solving Problems in Dynamics) (માત્ર જાણકારી પૂરતું)

- (A) ભૌતિકવિજ્ઞાનમાં જુદી-જુદી અનેક પ્રકારની ઘટનાઓ, પ્રક્રિયાઓની ચર્ચામાં 'ઘર્ષણ', 'લંબ પ્રતિક્રિયા', 'લંબબળ', 'પ્રતિક્રિયા', 'હવાનો અવરોધ', 'ધક્કો', 'ઉત્પ્લાવક બળ', 'ખેંચાણ', 'કેન્દ્રગામી બળ', 'વજન' 'તણાવ' ક્રિયાબળ' જેવા જુદા-જુદા શબ્દો વપરાય છે. તે-તે ઘટનાઓ અને પ્રક્રિયાઓના સંદર્ભમાં આ બધા શબ્દોનો અર્થ છે બળ.
- (B) દોરીમાં તણાવ (Tension in a string): એક દઢ આધાર પરની એક દોરીને છેડે એક પદાર્થ (દળ = m) લટકાવતાં દોરી કડક (tight) થઈ જાય છે અને આ સ્થિતિમાં દોરીનો દરેક વિભાગ તણાવમાં છે, તેમ કહેવાય છે. દોરીના નીચેના છેડા પાસેના પરમાણુઓના પ્રોટોન ઇલેક્ટ્રૉન અને સંપર્ક બિંદુ આગળના પદાર્થના પ્રોટોન-ઇલેક્ટ્રોન વચ્ચે પરસ્પર વિદ્યુતચુંબકીય બળ લાગે છે, જેને સંપર્કબળ કહીએ છીએ અને આ સંપર્કબળને કારણે પદાર્થ પડી જતો નથી પણ લટકી રહે છે.

આ જ રીતે દોરીના દરેક બિંદુ આગળ એક વિભાગ અને બીજા (સામેના) બીજા વિભાગ વચ્ચે પણ સંપર્ક બળો લાગે છે, જે ન્યૂટનના ગતિના ત્રીજા નિયમ મુજબ સમાન મૂલ્યના અને પરસ્પર વિરુદ્ધ દિશામાં હોય છે. આ બંને વિભાગો વચ્ચે લાગતાં સંપર્કબળોના સામાન્ય મૂલ્ય (common magnitude)ને તે બિંદુ આગળ દોરીમાં ઉદ્ભવતું તણાવ T કહે છે.

જો દોરી હલકી (એટલે કે દળ રહિત,) હોય તો દોરીમાં દરેક બિંદુ આગળ તણાવ T સમાન હોય છે. (અત્યારે આ બાબત આપણે સાબિતી આપ્યા વિના સ્વીકારી લઈશું.)

આકૃતિમાં P આગળ, PO તરફ તણાવ T અને PQ તરફ તણાવ T, Q બિંદુએ QP તરફ તણાવ T અને O બિંદુએ OP તરફ તણાવ T લાગે છે.

વળી એ સ્પષ્ટ છે કે પદાર્થ સ્થિર હોવાથી mg = T.

(C) Free Body Diagram (FBD): આપણે શીખેલા ન્યૂટનના ગતિના ત્રણ નિયમોની મદદથી ગતિશાસ્ત્ર અંગેના જુદા-જુદા કોયડાઓને ઉકેલી શકીએ છીએ. કોઈ વાર કોયડામાં એક કરતાં વધુ પદાર્થો સંકળાયેલા હોય છે. આવા પદાર્થો એકબીજા પર બળ લગાડતાં હોય છે. ઉપરાંત દરેક પદાર્થ ગુરુત્વબળ પણ અનુભવતો હોય છે. આવા કોયડાઓના ઉકેલમાં, પદાર્થોના (કે તંત્રના) સમૂહ (assembly) માંથી જે ભાગની ગતિની ચર્ચા કરવાની હોય તેને આપણે 'તંત્ર' તરીકે લેવાનું છે. અને સમૂહના બાકીના ભાગોને તેમજ આપણે પસંદ કરેલા તંત્ર પર બળ લગાડતાં અન્ય પરિબળોને 'પરિસર' તરીકે લેવાનું છે.

કોયડાનો ઉકેલ મેળવવા નીચે જણાવેલાં સોપાનો મુજબ આગળ વધવું :

- (1) જુદા-જુદા પદાર્થી, તેમની સાથે જોડાયેલા પદાર્થી, તેમને ટેકો આપતા પદાર્થી વગેરેના સમૂહની એક સંજ્ઞાત્મક આકૃતિ દોરો.
- (2) જે પદાર્થ (કે પદાર્થો)ની ગતિની ચર્ચા કરવી છે, તેને 'તંત્ર' તરીકે પસંદ કરો.

જો એક કરતાં વધુ પદાર્થોનું તંત્ર વિચારતા હોવ તો ધ્યાન રાખવું કે તે બધા પદાર્થીનો પ્રવેગસદિશ (મૂલ્ય + દિશા) સમાન હોવો જોઈએ.

(3) તંત્ર પર સમૂહના બાકીના ભાગો વડે લાગતાં બળો અને અન્ય પરિબળો વડે લાગતાં બધાં બળોની યાદી બનાવો. આ યાદીમાં તંત્રની અંદર ઉદ્દભવતા (આંતરિક) બળોનો સમાવેશ કરવાનો નથી.

ઉદાહરણ તરીકે આકૃતિમાં માથે વજન ઊંચકીને ઊભેલા એક કુલીને દર્શાવ્યો છે. આ કિસ્સામાં ઉદ્દ્ભવતાં બળો જોઈએ, તો તે આ મુજબ છે : (આકૃતિ 5.18 (a) (b) (c)). (i) બોજનું વજનબળ mg (કુલી પર અને બોજ પર અધોદિશામાં લાગે છે.), (ii) કુલી વડે બોજ પર લાગતું લંબ પ્રત્યાઘાતી બળ (N_1) (ઊર્ધ્વ દિશામાં) (ખાસ નોંધો કે આ બળ કુલી પર નહિ પણ બોજ પર લાગે છે.),

120

(iii) કુલીનું વજનબળ Mg (આ બળ અધોદિશામાં કુલી તેમજ જમીન પર લાગે છે. (iv) કુલી પર જમીન વડે લાગતું લંબ પ્રત્યાઘાતી બળ (N_2) (ઊર્ધ્વ દિશામાં) (v) જમીન પર લાગતું બળ (m+M) g

આ બધાં બળોમાંથી કયાં બળો ગણતરીમાં લેવાં પડશે તે ત્યાં સુધી ન કહી શકાય, જ્યાં સુધી તમે તમારું તંત્ર કયું છે, તે સ્પષ્ટ ન કર્યું હોય.

જો આપણને બોજની જ ગતિમાં રસ હોય, તો આપણે માત્ર બોજ પર જ લાગતાં બળો (i) અને (ii) ધ્યાનમાં લેવાં જોઈએ.

હવે જો આપણને ફક્ત કુલીની ગતિમાં જ રસ હોય, તો કુલીને તંત્ર તરીકે લેવું પડે અને ઉપરનાં બળોમાંથી જે બળો ફક્ત કુલી પર જ લાગતાં હોય એટલે કે, (i), (iii) અને (iv) ને ધ્યાનમાં લેવાં પડે.

જો આપણને (બોજ + કુલીના), સમગ્ર તંત્રની ગતિમાં રસ હોય, તો આ તંત્ર પર લાગતાં બધા બાહ્ય બળો (a) (m+M) g અને (b) N_2 ધ્યાનમાં લેવાં પડે.

(4) તંત્રને એક બિંદુ તરીકે દર્શાવી, તેના પર લાગતાં બધાં બળોને સદિશ રૂપે તે બિંદુએથી દર્શાવો. આ આકૃતિને free body diagram (FBD) કહે છે. (આનો એવો અર્થ કરવાનો નથી કે આપણે વિચારેલું તંત્ર બળોથી મુક્ત છે. - હકીકતમાં તેના પર લાગતાં બળો જ આ આકૃતિમાં દર્શાવ્યાં છે.)

આ આકૃતિ (FBD) માં તંત્ર વડે પરિસર પર લગાડેલ બળો દર્શાવવાનાં નથી. (5) હવે તંત્ર જે દિશામાં ગતિ કરતું હોય કે કરવાની શક્યતા હોય તે દિશાને X—અક્ષ તરીકે પસંદ કરો અને તેને લંબ દિશા Y—અક્ષ થશે.

હવે તંત્ર પર લાગતાં બળોના X–ઘટકોનું પરિશામી શોધો. તેનું મૂલ્ય તંત્રના દળ અને તેના X–દિશામાંના પ્રવેગ (a_x) ના ગુશાકાર જેટલું થાય છે તેમ દર્શાવતું સમીકરશ લખો. તે જ પ્રમાશે Y–ઘટકો પરથી બીજું સમીકરશ મળશે. આવાં સમીકરશોને ગતિનાં સમીકરશો કહે છે. આ સમીકરશોને ઉકેલવાથી તેમાં રહેલી અજ્ઞાત રાશિ (કે રાશિઓ) મળી શકે છે.

(6) જો મળતાં સમીકરશો કરતાં અજ્ઞાત રાશિઓની સંખ્યા વધુ હોય, તો આપશે પસંદ કરેલા તંત્ર સિવાયના બીજા કોઈ ભાગને તંત્ર તરીકે લઈ તેના FBD પરથી અન્ય સમીકરશો મેળવી, ઉકેલ શોધો.

ઉદાહરણ 17: આકૃતિ 5.19માં દર્શાવ્યા અનુસાર બ્લૉક 3ની સાથે સમાન દળના બે બ્લૉક 1 અને 2 સંપર્કમાં છે. 3 અને 1ની સપાટી તથા 3 અને 2ની સપાટી વચ્ચેનો ઘર્ષણાંક µ છે. આ બે બ્લૉક 1 અને 2ને એકબીજા સાથે હલકી દોરી વડે બાંધીને દોરીને હલકી અને ઘર્ષણ રહિત ગરગડી પરથી પસાર કરેલ છે, તો બ્લૉક 3 કેટલા લઘુત્તમ પ્રવેગથી સમક્ષિતિજ દિશામાં ગતિ કરે કે જેથી બ્લૉક 3 ની સાપેક્ષે 1 અને 2 ગતિ ન કરે ? (આ ઉદાહરણ માત્ર જાણકારી પૂરતું છે.)

આકૃતિ 5.19

6કેલ: ધારો કે બ્લૉક 3નો સમક્ષિતિજ દિશામાં (જમણી બાજુ તરફ) જરૂરી લઘુતમ પ્રવેગ a છે.

બ્લૉક 1 પર લાગતાં બળો નીચે મુજબ થશે :

- (i) પૃથ્વીનું ગુરૂત્વાકર્ષી બળ = mg (અધોદિશામાં)
- (ii) બ્લૉક 3ની સપાટી વડે લાગતું લંબબળ = N_1 (ઊર્ધ્વ દિશામાં)
 - (iii) દોરી વડે લાગતું તણાવબળ = T (જમણી બાજુ)
 - (iv) ઘર્ષણબળ = μN_1 (ડાબી બાજુ)
 - (v) આભાસી બળ = ma (ડાબી બાજુ) બ્લૉક 1ને તંત્ર તરીકે ગણીને તેનો FBD આકૃતિ

5.20 માં દર્શાવેલ છે. ઊર્ધ્વ દિશામાં કોઈ જ પરિણામી પ્રવેગ ન હોઈને $\mathbf{N}_1=mg$.

અને સમક્ષિતિજ દિશામાં ma + μN₁ = T

$$\therefore$$
 ma + μ mg = T (1)

બ્લૉક 2 પર લાગતાં બળો નીચે મુજબ થશે :

- (i) પૃથ્વીનું ગુરુત્વાકર્ષી બળ = mg (અધોદિશામાં),
- (ii) બ્લૉક 3ની સપાટી વડે લાગતું લંબબળ = N_2 (જમણી તર*),
 - (iii) દોરી વડે લાગતું તણાવબળ = T (ઊર્ધ્વ દિશામાં),
 - (iv) ઘર્ષણબળ = μN₂(ઊર્ધ્વ દિશામાં)
 - (v) આભાસી બળ = ma (ડાબી બાજુ)

બ્લૉક 2ને તંત્ર તરીકે ગણીને તેનો FBD આકૃતિ 5.21માં દર્શાવેલ છે. સમક્ષિતિજ દિશામાં કોઈ જ પરિણામી પ્રવેગ ન હોઈને $N_2=ma$.

અને ઊર્ધ્વ દિશામાં $\mu N_2 + T = mg$

 $\therefore \mu ma + T = mg$

સમીકરણ (1)માંથી Tની કિંમત મૂકતાં,

$$\mu ma + ma + \mu mg = mg$$

:.
$$a (\mu + 1) = g (1 - \mu)$$

$$\therefore a = g\left(\frac{1-\mu}{1+\mu}\right)$$

ઉદાહરણ 18: એક પ્રવેગિત માલગાડીમાં સમાન દળના 25 વેગન લગાડેલાં છે. ચોથા અને પાંચમા વેગન વચ્ચેના couplingમાં ઉદ્ભવતો તજ્ઞાવ તથા 21મા અને 22મા વેગન વચ્ચેના couplingમાં ઉદ્ભવતો તજ્ઞાવ સમાન હશે કે નહિ તે ગણીને બતાવો.

6કેલ : ધારો કે એન્જિનનું પ્રથમ વેગન પરનું ખેંચાણબળ = P

અને દરેક વેગન પર લાગતું ઘર્ષણબળ = f દરેક વેગનનું દળ = m સમગ્ર માલગાડીનો પ્રવેગ = a

પહેલા ચાર વેગનનો FBD વિચારતાં, (આકૃતિ 5.22 મુજબ)

$$P-4f-T_4=$$
 પરિણામી બળ = $(4m)a$

$$\therefore T_4=P-4 \ (f+ma)$$
 (1

આ T_4 એ ચોથા અને પાંચમા વેગન વચ્ચેનો તજ્ઞાવ છે. આ જ રીતે પહેલા 21 વેગનનો FBD વિચારતાં,

$$T_{21} = P - 21 (f + ma)$$
 (2)

જ્યાં T_{21} એ 21મા અને 22મા વેગન વચ્ચેનો તણાવ છે.

સમીકરણો (1) અને (2) પરથી સ્પષ્ટ છે કે $\mathbf{T}_4 \neq \mathbf{T}_{21}$ અને $\mathbf{T}_4 > \mathbf{T}_{21}$.

ઉદાહરણ 19: 20 kg દળનો એક બ્લૉક (A) ઘર્ષણ રહિત સપાટી પર મૂકી તેના પર 2 kg દળનો એક પદાર્થ (B) મૂક્યો છે. A અને Bની સપાટી વચ્ચેનો ઘર્ષણાંક 0.25 છે. જ્યારે B પર 2 N નું બળ સમક્ષિતિજ દિશામાં લગાડવામાં આવે ત્યારે (i) બ્લૉક A અને પદાર્થ Bનો પ્રવેગ અને (ii) A અને B ની વચ્ચે લાગતું ઘર્ષણબળ ગણો. (iii) જો આ બળ 20 N નું હોય, તો આ બધી રાશિઓ ગણો. g=10 m s $^{-2}$ લો.

આકૃતિ 5.23

6કેલ: એ સુવિદિત છે કે જ્યાં સુધી લગાડેલ બળ એ મહત્તમ સ્થિત ઘર્ષણબળ કરતાં ઓછું હશે, ત્યાં સુધી A અને B વચ્ચે કોઈ સાપેક્ષ ગતિ થશે નહિ. એટલે કે તે બંને જાણે કે એક જ પદાર્થ હોય તેમ ગતિ કરશે.

122

પ્રસ્તુત કિસ્સામાં મહત્તમ સ્થિત ઘર્ષણબળ = μ*mg* = (0.25) (2) (10) = 5 N

(i) જ્યારે B પર 2 N નું બળ લગાડવામાં આવે ત્યારે A અને B વચ્ચે સાપેક્ષ ગતિ થતી ન હોઈને બંનેના પ્રવેગ સમાન (ધારો કે a) હશે. દળ × પ્રવેગ = બળ

$$\therefore (2 + 20)a = 2 \therefore a = \frac{1}{11} = 0.09 \text{ m s}^{-2}$$

(ii) A અને B વચ્ચે લાગતું ઘર્ષણબળ f = F - ma = 2-(2) (0.09) = 1.82 N

(iii) જો 20 N નું બળ લગાડવામાં આવે, તો આ બળ એ મહત્તમ સ્થિત ઘર્ષણબળ (5 N) કરતાં વધુ હોઈને હવે A અને B વચ્ચે સાપેક્ષ ગતિ સંભવશે અને બંનેના પ્રવેગનાં મૂલ્યો જુદાં-જુદાં હશે. આ પરિસ્થિતિમાં A અને B ના FBD આકૃતિ 5.24માં દર્શાવ્યા મુજબના હશે.

આના પરથી
$$20-5=2$$
 $a_{\rm B}$ \therefore $a_{\rm B}=7.5~{\rm m~s^{-2}}$ અને $5=20$ $a_{\rm A}$ \therefore $a_{\rm A}=0.25~{\rm m~s^{-2}}.$

ઉદાહરણ 20 : આકૃતિ 5.25માં દર્શાવ્યા અનુસાર $m_1=1~\mathrm{kg}$ અને $m_2=2~\mathrm{kg}$ અને $m_3=3\mathrm{kg}$ દળના ત્રણ બ્લૉક્સને દળ રહિત દોરી વડે બાંધીને તેમને સમિક્ષિતિજ, લીસી સપાટી પર મૂકેલા છે. દળ m_1 પર $F=12~\mathrm{N}$ નું બળ લગાડેલ છે, તો (i) આ તંત્રનો પ્રવેગ, (ii) m_1 અને m_2 વચ્ચેની દોરીમાં ઉદ્ભવતું તાણ T_2 અને (iii) m_2 અને m_3 વચ્ચેની દોરીમાં ઉદ્ભવતું તાણ T_3 શોધો.

આકૃતિ 5.25

ઉકેલ : (i) આ તંત્રનો પ્રવેગ

$$a = \frac{\text{set own}}{\text{set for}} = \frac{12}{1+2+3} = 2 \text{ m s}^{-2}$$

(ii)
$$T_2 = (m_2 + m_3)a = (2 + 3)$$
 (2)
= 10 N

(iii)
$$T_3 = m_3 a = 3 \times 2 = 6 \text{ N}$$

આ જ તંત્ર પર આટલું જ બળ (12 N) m_3 પર ડાબી બાજુ લાગે છે, તેમ માનીને આ દાખલો ફરીથી ગણો અને તેના પરથી તમારું અર્થઘટન જણાવો.

સારાંશ

- 1. ગતિ માટેનાં અને તેમાં ફેરફાર માટેનાં કારણો અંગે વિચારીશું.
- 2. પદાર્થને નિયમિત ગતિમાં ચાલુ રાખવા માટે બળની જરૂર છે, એવો ઍરિસ્ટોટલનો ખ્યાલ સાચો નથી. વ્યવહારમાં અચળ વેગથી થતી ગતિને ચાલુ રાખવા માટે જે બાહ્ય બળ લગાડવાની જરૂર પડે છે, તે ઘર્ષણ (તે પણ એક બાહ્ય બળ જ છે.)ને પહોંચી વળવા માટે જ છે.
- 3. ગેલિલિયોએ આપેલા જડત્વના નિયમને ન્યૂટને ગતિના પહેલા નિયમના રૂપમાં નવા સ્વરૂપે આ રીતે રજૂ કર્યો – "પદાર્થ પર કોઈ ચોખ્ખું બાહ્ય બળ લાગુ ન પડે ત્યાં સુધી સ્થિર પદાર્થ સ્થિર જ રહે છે, ગતિમાન પદાર્થ પોતાનો વેગ અચળ જાળવી રાખે છે." આ નિયમ બળની વ્યાખ્યા આપે છે.
- 4. પદાર્થનું વેગમાન $\overset{
 ightarrow}{p}=m\overset{
 ightarrow}{v}$ એ સદિશ રાશિ છે. વેગમાન વેગ કરતાં કંઈક વધુ માહિતી આપે છે.
- ન્યૂટનનો ગતિનો બીજો નિયમ : 'પદાર્થના વેગમાનના ફેરફારનો સમયદર લાગુ પાડેલા પરિશામી બાહ્ય બળના જેટલો અને બાહ્યબળની દિશામાં હોય છે.'

$$\overrightarrow{F} = \overrightarrow{dP} / dt = \overrightarrow{ma}$$
 એ સિદિશ સંબંધ છે.

બળનો SI એકમ newton (= N) છે. $1 \text{ N} = 1 \text{ kg. m s}^{-2}$. આ નિયમ બળનું મૂલ્ય આપે છે. તે પહેલા નિયમ સાથે સુસંગત છે. $(\vec{F} = 0 \text{ સૂચવે છે } \vec{a} = 0)$. આ સમીકરણમાં જે ક્ષણે બળ \vec{F} લાગે તે જ ક્ષણે જે પ્રવેગ \vec{a} હોય તે ગણવાનો છે. (ભૂતકાળનો - એટલે અગાઉના સમયનો - નહિ!) આ \vec{F} માત્ર પરિણામી બાહ્ય બળ જ છે.

- 6. બળનો આઘાત એ બળ અને તે લાગવાના સમયનો ગુણાકાર છે અને મોટું બળ અલ્પ સમય સુધી લાગે ત્યારે $\overset{
 ightharpoonup}{F}$ અને Δt માપવાનું અઘરું હોય છે, પણ વેગમાનનો ફેરફાર માપી શકાય છે, જે બળના આઘાત $(\overset{
 ightharpoonup}{F} \Delta t)$ જેટલો જ હોય છે.
- 7. ન્યૂટનનો ગતિનો ત્રીજો નિયમ : ''દરેક ક્રિયાબળને હંમેશાં સમાન મૂલ્યનું અને વિરુદ્ધ દિશામાંનું પ્રતિક્રિયા બળ હોય છે.''
 - બળો હંમેશાં જોડમાં જ લાગે છે અને $\overrightarrow{F}_{AB} = -\overrightarrow{F}_{BA}$. ક્રિયાબળ અને પ્રતિક્રિયા બળ બંને એક સાથે જ લાગે છે. તેઓ જુદા-જુદા પદાર્થો પર લાગે છે, તેથી તેમનો સરવાળો કરીને નાબૂદ કરી શકાય નહિ. પણ એક જ પદાર્થના અંદરનાં જુદા-જુદા ભાગો વચ્ચેનું પરિણામી શૂન્ય થાય. (આ કેવી રીતે થાય, તેની સમજૂતી ભવિષ્યમાં હવે પછીના સિમેસ્ટરમાં તમે 'ક્યોના તંત્રનું ગતિવિજ્ઞાન' એ પ્રકરણ ભણશો ત્યારે મળશે.)
- 8. વેગમાન સંરક્ષણનો નિયમ ન્યૂટનના ગતિના બીજા નિયમ અને ત્રીજા નિયમ પરથી મળે છે. તેને આમ લખાય છે : ''અલગ કરેલા તંત્રનું કુલ વેગમાન અચળ રહે છે.''
- 9. એક બિંદુગામી બળો એટલે જે બળોની કાર્યરેખા એક જ બિંદુમાંથી પસાર થતી હોય તેવાં બળો. આવાં બળોની અસર નીચે પદાર્થના સંતુલન માટે $\sum \overrightarrow{F} = 0$ થવું જોઈએ. વળી, અનુરૂપ ઘટકોનો સરવાળો પણ શૂન્ય થવો જોઈએ. ($\sum F_x = 0$, $\sum F_y = 0$, $\sum F_z = 0$)
- 10. ઘર્ષણ, સંપર્કમાં રહેલી સપાટીઓ વચ્ચેના સંપર્ક બળને લીધે ઉદ્દ્ભવે છે. તે અપેક્ષિત કે વાસ્તવિક સાપેક્ષ ગતિનો વિરોધ કરે છે.

સ્થિત ઘર્ષણબળ $f_s \leq f_{\mathrm{s}(\max)} = \mu_{\mathrm{s}} \; \mathrm{N}$ અને

ગતિક ઘર્ષણબળ $f_k = \mu_k$ N

 $\mu_{\rm s}=$ સ્થિત-ઘર્ષણાંક

 μ_k = ગતિક ઘર્ષણાંક અને $\mu_k < \mu_s$.

11. નિયમિત વર્તુળગતિ કરતા પદાર્થ પર mv^2 / r જેટલું બળ વર્તુળમાર્ગના કેન્દ્ર તર લાગે છે, તેને કેન્દ્રગામી બળ કહે છે.

સમતલીય વક્રાકાર માર્ગ પરની મહત્તમ સલામત ઝડપ $v_{max} = \sqrt{\mu_{
m s} \ rg}$

ઢોળાવવાળા વક્રાકાર માર્ગ પરની મહત્તમ સલામત ઝડપ $v_{max} = \sqrt{rg \left(rac{\mu_{
m s} + tan heta}{1 - \mu_{
m s} tan heta}
ight)}$

12. જે નિર્દેશફ્રેમમાં ન્યૂટનના ગતિના પહેલા નિયમનું પાલન થાય, તેને જડત્વીય નિર્દેશફ્રેમ કહે છે અને જેમાં તેનું પાલન ન થાય તેને અજડત્વીય નિર્દેશફ્રેમ કહે છે. અચળ વેગવાળી નિર્દેશફ્રેમ

જડત્વીય નિર્દેશફ્રેમ છે અને પ્રવેગ ધરાવતી નિર્દેશફ્રેમ અજડત્વીય નિર્દેશ ફ્રેમ છે. અજડત્વીય નિર્દેશફ્રેમના પ્રવેગ જેટલો જ વધારાનો પ્રવેગ (આભાસી પ્રવેગ) વિરુદ્ધ દિશામાં પદાર્થ પર ગણીને ગતિ અંગેના કોયડાઓ ઉકેલી શકાય છે.

स्वाध्याय

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી સાચો વિકલ્પ પસંદ કરો :						
1.	100 g દળના પદાર્થ પર છે, તો આ બળનું મૂલ્ય	_	ામાં પ્રતિ સેકન્ડે 2	0 cm s ⁻¹ નો ફે	રફાર થાય	
	(A) 0.2	(B) 0.02	(C) 0.002	(D) 2.	0	
2.	ν જેટલા સમક્ષિતિજ વેગથી ગતિ કરતી m દળની એક ગોળી, સમક્ષિતિજ અને ઘર્ષણરહિત સપાટી પર સ્થિર પડેલા એક M દળના લાકડાના બ્લૉકમાં ઘૂસીને સ્થિર થઈ જતી હોય, તો આ સંયુક્ત તંત્ર કેટલા વેગથી ગતિ કરશે ?					
	(A) $\frac{mv}{M-m}$		(B) $\frac{Mv}{M-m}$			
	(C) $\frac{Mv}{M+m}$		(D) $\frac{mv}{M + m}$			
3.	સમક્ષિતિજ રસ્તા પર થત	ી વાહનની પ્રવેગી ગતિ	તે શાને આભારી ધ	છે ?		
	(A) વાહનના એન્જિન		(B) ડ્રાઇવર			
	(C) પૃથ્વીનું ગુરુત્વબળ		(D) રસ્તા અને	વાહન વચ્ચે ઘ	ર્મણ	
4.	આકૃતિમાં દર્શાવ્યા મુજબ એક 8 kg દળના પદાર્થને બે હલકી સ્પ્રિંગ-બૅલેન્સના છેડે લટકાવેલ					
	છે, તો			ı	<u>namm</u>	
	(A) બંને સ્પ્રિંગ-બૅલેન્સ વડે નોંધાતાં દળ 8 kg છે.					
	(B) બંને સ્પ્રિંગ-બૅલેન્સ વડે નોંધાતાં દળ 4 kg છે.					
	 (A) બંને સ્પ્રિંગ-બૅલેન્સ વડે નોંધાતાં દળ 8 kg છે. (B) બંને સ્પ્રિંગ-બૅલેન્સ વડે નોંધાતાં દળ 4 kg છે. (C) ઉપરનું બૅલેન્સ 8 kg અને નીચેનું બૅલેન્સ 0 kg નોંધશે. 					
	(D) બંને બૅલેન્સ વડે ને	ાંધાતાં દળ ગમે તે હશે	. પણ તેનો		}	
	સરવાળો 8 kg થશે	i.			■ 8 kg	
				આ	કૃતિ 5.26	
5.	θ કોણના એક ઘર્ષણ રહિ બ્લૉક પર લાગતું લંબબ		એક બ્લૉક મૂકેલ	છે, તો ઢાળની	સપાટી વડે	

- (A) mg (B) $\frac{mg}{\cos\theta}$ (C) $mg \cos\theta$ (D) $mg \sin\theta$
- 6. θ કોશના એક ઘર્ષણ રહિત ઢાળ પર m દળનો એક બ્લૉક મૂકેલ છે. હવે આ તંત્ર (ઢાળ + બ્લૉક)ને સમક્ષિતિજ દિશામાં એવી રીતે a પ્રવેગથી ગતિ કરાવવામાં આવે કે બ્લૉક ઢાળ પર સરકે નહિ, તો a=.....
 - (A) $g \ tan\theta$ (B) $g \ sin\theta$ (C) $g \ cos\theta$ (D) $g \ / \ sin\theta$

7.	એક લિફ્ટના તળિયે રહેલા θ કોણના એક ઘર્ષણ રહિત ઢાળ પર એક બ્લૉક મૂકેલ છે. જ્યારે						
	લિક્ટ પ્રતિપ્રવેગ α સાથે નીચે ઊતરે ત્યારે આ બ્લૉકનો ઢાળની સપાટીને સાપેક્ષ પ્રવેગ કેટલો						
	હશે ?						
	(A) $g sin\theta$		(B) $asin\theta$				
	(C) $(g - a)sin\theta$		(D) $(g + a)sin\theta$				
8.	8. નીચેનામાંથી સત્ય વિધાન (કે વિધાનો) જણાવો :						
	(A) એક પદાર્થનો વેગ અચળ છે, પણ ઝડપ બદલાય છે.						
	(B) એક પદાર્થની ઝડપ અચળ છે, પણ પ્રવેગનું મૂલ્ય બદલાય છે.						
	(C) એક પદાર્થની ઝડપ અચળ છે અને અશૂન્ય એવી અચળ છે.						
	(D) એક પદાર્થની ઝડપ અચળ છે અને વેગ બદલાય છે.9. પૃથ્વીની આસપાસ ભ્રમણ કરતા ભૂસ્થિર ઉપગ્રહ સાથે જોડેલ નિર્દેશફ્રેમને આપણે કેવી નિ ફ્રેમ ગણી શકીએ ?						
9.							
	(A) અજડત્વીય		(B) જડત્વીય				
	(C) જડત્વીય કે અજડત્વ	ીય ગમે તે	(D) ઉપરમાંથી એકેય	નહિ.			
10.	એક લિફ્ટમાં ઊભેલ વ્ય	ક્તિના હાથમાંથી સિક્કો	પડી જાય છે. જો લિફ્ટ	સ્થિર હોય, તો આ			
	સિક્કાને લિફ્ટમાં તળિયે પહોંચતાં t_1 સમય લાગે છે. જ્યારે લિફ્ટ ઉપર તરફ પ્રવેગી ગતિ						
	કરતી હોય, ત્યારે આ જ સિક્કાને તળિયે પહોંચતાં t_2 સમય લાગે છે, તો						
	(A) $t_1 = t_2$		(B) $t_1 < t_2$				
	(C) $t_1 > t_2$		(D) કંઈ કહી શકાય •	નહિ.			
11.	એક લિફ્ટમાં ઊભેલ વ્ય	ક્તિના હાથમાંથી સિક્કો	પડી જાય છે. જો લિફ્ટ	સ્થિર હોય, તો આ			
	સિક્કાને લિફ્ટમાં તળિયે પહોંચતાં t_1 સમય લાગે છે. જ્યારે લિફ્ટ ઉપર તરફ અચળ વેગથી						
	ગતિ કરતી હોય ત્યારે વ	જ સિક્કાને તીળયે પહોર	-	તો			
	$(A) \ t_1 = t_2$		(B) t ₁ < t ₂ (D) કંઈ કહી શકાય પ	7 <i>D</i>			
12	(C) $t_1 > t_2$ $t_1 > t_2$	l M ગોળીઓ મ જેટલા					
	. દરેકનું દળ m હોય તેવી N ગોળીઓ ν જેટલા વેગથી એક દીવાલ તરફ દીવાલને લંબ રૂપે એક સેકંડમાં n ગોળીઓના અચળ દરથી છોડવામાં આવે છે, જે દીવાલને અથડાઈને દીવાલ પર						
	સ્થિર થાય છે, તો દીવાલ વડે ગોળીઓ પર લાગતો પ્રત્યાધાત હશે.						
		Nmv	nNm	nNv			
	(A) nmv	(B) $\frac{Nmv}{n}$		(D) $\frac{nNv}{m}$			
13.	. 1.5 kg દળના સ્થિર પદાર્થ પર 0.5 s માટે બળ લાગે છે. બળ લાગતું બંધ થયા પછી અ						
	પદાર્થ 2 s માં 5 mનું ર		J =1				
14.	(A) 5 N		(C) 10 N શામાં અને 3 Nનં બળ '				
	ે 2 kg દળના એક પદાર્થ પર 4 N નું બળ X–દિશામાં અને 3 Nનું બળ Y–દિશામાં લાગે છે, તો તે પદાર્થના પ્રવેગનું મૂલ્ય કેટલું હશે ?						
	_	(B) 2.0 m s ⁻²	(C) 25 m s^{-2}	(D) 3.5 m s^{-2}			
15.	5. 400 N નું તજ્ઞાવ ખમી શકે તેવું એક દોરડું એક ઝાડ સાથે બાંધીને લટકાવેલ છે. 30 kg દળ						
	એક વાંદરો આ દોરડું પકડીને ઉપર ચઢે છે, તો નીચે દર્શાવેલા કયા કિસ્સામાં દોરડું તૂટી						
	જશે ? ($g = 10 \text{ m s}^{-2}$ લો અને દોરડાનું દળ અવગણો.)						
	(A) વાંદરો 5 m s $^{-1}$ ની અચળ ઝડપથી ઉપર ચઢે, તો						
	(B) વાંદરો 2 m s $^{-2}$ ના અચળ પ્રવેગથી ઉપર ચઢે, તો						
	(C) વાંદરો 5 m s^{-2} ના અચળ પ્રવેગથી ઉપર ચઢે, તો						
	(D) વાંદરો 12 m s^{-1} ના અચળ વેગથી ઉપર ચઢે, તો						

16. $0.5 \, kg \, \mathrm{m \ s^{-1}}$ ના વેગમાનથી આવી રહેલા એક દડાને બૅટ્સમેન દ્વારા ફટકારતાં તે $0.3 \, kg \, \mathrm{m \ s^{-1}}$ ના વેગમાનથી તે જ માર્ગ પર વિરુદ્ધ દિશામાં પાછો ફેંકાય છે. જો દડાનો બૅટ સાથેનો સંપર્કસમય $0.02 \, \mathrm{s}$ હોય, તો બૅટ વડે તેના પર લાગેલું બળ શોધો.

(A) 10 N

(B) 40 N

(C) 75 N

(D) 30 N

17. 1000 kg દળના એક બ્લૉકને ટેબલની સમક્ષિતિજ સપાટી પર સ્થિર સ્થિતિમાંથી ગતિમાં લાવવા માટે 200 N સમક્ષિતિજ બળની જરૂર પડે છે, તો બ્લૉક અને ટેબલની સપાટી વચ્ચેનો સ્થિત ઘર્ષણાંક કેટલો હશે ? $[g=10~{\rm m~s^{-2}~di.}]$

(A) 0.2

(B) 0.02

(C) 0.5

(D) 0.05.

18. આકૃતિમાં દર્શાવ્યા મુજબ સમક્ષિતિજ ઘર્ષણરહિત સપાટી પર મૂકેલા 4 kg, 2 kg અને 1 kg દળના બ્લૉકના તંત્ર પર 70 Nનું સમક્ષિતિજ બળ લગાડવામાં આવે છે. જો એક દોરીમાં તણાવ $T_1 = 60 \text{ N}$ હોય, તો બીજી દોરીમાં તણાવ T_2 કેટલો હશે ?

(A) 40 N

(B) 60 N

(C) 20 N

(D) 10 N

19. ઘર્ષણરહિત ગરગડી પરથી પસાર કરેલી દોરીના એક છેડે 30 kg અને બીજા છેડે 50 kg દળના પદાર્થ લટકાવેલ છે, તો આ તંત્રનો પ્રવેગ કેટલો થશે ?

$$[g = 10 \text{ m s}^{-2} \text{ ell.}]$$

- (A) 8 m s^{-2}
- (B) 6 m s^{-2}
- (C) 2.5 m s^{-2}
- (D) 2 m s^{-2}
- 20. આકૃતિમાં દર્શાવ્યા મુજબ 2 kg, 5 kg અને 3 kg દળના બ્લૉકને ઘર્ષણ રહિત સમક્ષિતિજ સપાટી પર બે છેડે જોડેલી ઘર્ષણરહિત ગરગડી પરથી પસાર થતી હલકી દોરીઓ સાથે જોડેલા છે. આ તંત્રનો પ્રવેગ કેટલો હશે ?

$$[g = 10 \text{ m s}^{-2} \text{ ell.}]$$

- (A) 1 m s^{-2}
- (B) 2 m s^{-2}
- (C) 5 m s^{-2}
- (D) 8 m s^{-2}
- 21. આકૃતિમાં દર્શાવ્યા મુજબ દીવાલ સાથે સંપર્કમાં રહેલા 5 kg બ્લૉકને નીચે પડતો અટકાવવા માટે સમક્ષિતિજ દિશામાં લગાડવા પડતા જરૂરી બળ \overrightarrow{F} નું મૂલ્ય કેટલું હશે ? ($g = 10 \text{ m s}^{-2}$ લો.) બ્લૉક અને દીવાલ વચ્ચેનો ઘર્ષણાંક 0.4 છે.
 - (A) 200 N
- (B) 20 N
- (C) 12.5 N
- (D) 125 N

આકૃતિ 5.29

આકૃતિ 5.30

- **22.** એક સ્થિર બૉમ્બનો વિસ્ફોટ થતાં ત્રણ ટુકડા થાય છે. જો બે ટુકડાઓનાં વેગમાન અનુક્રમે $2\hat{i}$ એકમ અને $3\hat{j}$ એકમ હોય, તો ત્રીજા ટુકડાના વેગમાનનું મૃલ્ય કેટલું હશે ?
 - (A) $\sqrt{13}$ એકમ
- (B) 5 એકમ
- (C) 6 એકમ
- (D) 13 એકમ
- 23. આકૃતિમાં દર્શાવ્યા મુજબ 2.0 kg અને 3.0 kg દળના બે બ્લૉકને ઘર્ષણ રહિત ગરગડી પરથી પસાર કરેલી હલકી દોરીના બે છેડે જોડેલ છે. જો આ તંત્ર સ્થિર રહેતું હોય, તો ઘર્ષણબળનું મૃલ્ય અને દિશા શોધો. ($g=10~{\rm m~s^{-2}}$ લો.)
 - (A) 20 N, ઢાળ પર નીચે તરફ
 - (B) 20 N, ढाળ पर ઉપર તરફ
 - (C) 10 N, ઢાળ પર નીચે તરફ
 - (D) 10 N, ઢાળ પર ઉપર તરફ

આકૃતિ 5.31

- 24. નિયમિત (અચળ) ઝડપથી ગિત કરતી ટ્રેનમાં બેઠેલ એક મુસાફર તેના હાથમાં રહેલા સિક્કાને ઊર્ધ્વ દિશામાં ઉછાળે છે અને થોડી વારે સિક્કો તેના હાથમાં પાછો આવે છે. આ દરમિયાનની સિક્કાની ગિત ટ્રેનની બહાર જમીન પર સ્થિર ઊભેલા નિરીક્ષકને કેવી દેખાશે ?
 - (A) પરવલયાકાર

- (B) સમક્ષિતિજ
- (C) ઊર્ધ્વ દિશામાં સુરેખ અને પછી અધોદિશામાં સુરેખ (D) વર્તુળમય
- 25. એક ઓરડાની છતમાંથી લટકાવેલ અને ઊર્ધ્વતલમાં દોલનો કરતા લોલક માટે (i) ગોળો ગતિપથના અંત્યબિંદુએ હોય, (ii) ગોળો ગતિપથના મધ્યમાન સ્થાને હોય તેવા કિસ્સાઓમાં અચાનક દોરી તૂટી જાય, ત્યારે જમીનને અડકે ત્યાં સુધીમાં ગોળાના ગતિપથ અનુક્રમે કેવા હશે ?
 - (A) અધોદિશામાં વક્ર, અધોદિશામાં સુરેખ
- (B) અધોદિશામાં સુરેખ, પરવલયાકાર
- (C) ઊર્ધ્વદિશામાં સુરેખ, પરવલયાકાર
- (D) ઊર્ધ્વદિશામાં સુરેખ, અધોદિશામાં વક્ર
- 26. આકૃતિ 5.32માં દર્શાવ્યા મુજબ દરેકનું દળ 1.0 kg હોય તેવા સાત એક સમાન બ્લોકને એક પર એક ગોઠવીને મૂકેલા છે. આ સ્થિર તંત્રમાં ત્રીજા બ્લોક પર ચોથા બ્લોક વડે અને બીજા બ્લોક વડે લાગતાં સંપર્કબળના મૂલ્યો અનુક્રમે કેટલાં કેટલાં હશે ?
 (g = 10 m s⁻² લો)

- (A) 40 N, 50 N
- (B) 50 N, 40 N
- (C) 40 N, 20 N
- (D) 50 N, 30 N
- આકૃતિ 5.32

128

જવાબો (D) (B) (D) 1. **4.** (A) 5. (C) 6. (A) 7. (D) (D) (A) **10.** (C) 11. (A) 12. (A) 8. 9. **13.** (B) **14.** (C) **15.** (C) 16. (B) 17.(B) 18. (A) 19. (C) 20. (A) **21.** (D) 22. (A) 23.(A) 24. (A) 25. (B) 26. (A)

નીચેના પ્રશ્નોના ટૂંકમાં જવાબ આપો :

1. 0.2 kg દળના એક દડાને 2 m s⁻¹ના વેગથી ઊર્ધ્વ દિશામાં ફેંકવામાં આવે છે. તેના ગતિપથના ટોચના બિંદુએ (i) તેના વેગનું મૂલ્ય કેટલું હશે ? (ii) તેના પ્રવેગનું મૂલ્ય કેટલું હશે ? (iii) તેના પર લાગતા બળનું મૂલ્ય કેટલું હશે ? [$g=10 \text{ m/s}^2$ લો.]

[જવાબો : 0, 10 m/s², 2N]

- 2. જડત્વની વ્યાખ્યા આપો.
- અજડત્વીય નિર્દેશફ્રેમ એટલે શું ?
- 4. સમક્ષિતિજ ટેબલ પર સ્થિર રહેલું પુસ્તક અને અચળ ઝડપથી અધોદિશામાં ગતિ કરતું વરસાદનું ટીપું, એ બેમાં ગતિશાસ્ત્રની દૃષ્ટિએ શું સામ્ય છે ?
- 5. એક પદાર્થ માટે F o t નો આલેખ આકૃતિમાં દર્શાવ્યો છે. આરંભથી $0.03~{
 m s}$ ના ગાળામાં વેગમાનના ફેરફારનું મૂલ્ય (Δp) કેટલું થશે ?

[**જવાબ**: 0.3 kg m s⁻¹]

- અપેક્ષિત ગતિ એટલે શું ?
- 7. બળના આઘાતનું પારિમાણિક સૂત્ર આપો.

આકૃતિ 5.34

આકૃતિમાં દર્શાવેલા પાણી ભરેલાં બે બીકરોમાંથી કયું સ્થિર છે અને કયું પ્રવેગથી ઢાળ પર ઊતરી રહ્યું છે તે તમે કહી શકશો ? (સૂચન : સ્થિર પ્રવાહીની સપાટી સમક્ષિતિજ રહે છે. પ્રવેગિત બીકરમાંના પ્રવાહી પર બીકરના પ્રવેગની વિરુદ્ધ દિશામાં આભાસી બળ લાગતું ગણવાનું છે.)

9. નિયમિત વર્તુળાકાર ગતિમાં (i) વેગનું માત્ર મૂલ્ય અચળ હોય છે. (ii) વેગસદિશ અચળ હોય છે. (iii) વેગની દિશા અચળ હોય છે - સત્ય હોય તે પસંદ કરો. [જવાબ : (i)] [આ જ પ્રમાણે પ્રવેગ, વેગમાન અને બળ અંગે પ્રશ્નો તમે જાતે બનાવો અને તેના જવાબ પણ જાતે જ આપો.]

 નિયમિત વર્તુળાકાર ગતિ દરમિયાન પદાર્થના (i) વેગનું મૂલ્ય, (ii) પ્રવેગનું મૂલ્ય, (iii) બળનું મૂલ્ય, (iv) વેગમાનનો સદિશ એ બધામાંથી કયું અચળ નથી હોતું ? [જવાબ : (iv)]

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. વેગમાનની વ્યાખ્યા આપો. ન્યૂટનનો ગતિનો બીજો નિયમ લખો. તે પરથી $\overset{
 ightarrow}{F}=\overset{
 ightarrow}{a}$ મેળવો.
- વેગમાન સંરક્ષણનો નિયમ લખો અને એક ઉદાહરણ વડે સમજાવો.
- ન્યૂટનનો ગતિનો પહેલો નિયમ અને બીજો નિયમ આપો. બંને નિયમો બળ વિશે કઈ-કઈ માહિતી આપે છે તે જણાવો.
- સ્થિતઘર્ષણ વિશે ટૂંકમાં સમજાવો અને તે અંગેના નિયમો આપો.
- 5. સમતલ વક્રાકાર માર્ગ પર વાહનની મહત્તમ સલામત ઝડપ (v_{max}) માટેનું સૂત્ર મેળવો.
- 6. ઢોળાવવાળા વક્રાકાર માર્ગ પર ગતિ કરતા વાહન માટે (FBD)ની મદદથી મહત્તમ સલામત ઝડપ (v_{max}) નું સૂત્ર મેળવો.
- ઘર્ષણના લાભ અને ગેરલાભ જણાવો.

નીચેના દાખલા ગણો :

- એકબીજા તરફ 5 m s⁻¹ ના વેગથી ગિત કરતા બે 80 g દળના સમાન ગોળાઓ એકબીજા સાથે અથડાઈને પોતપોતાની ગિતની દિશા ઉલટાવીને પાછા તેટલી જ ઝડપે ગિત કરતા હોય, તો કોઈ એક ગોળાએ બીજા ગોળા પર લગાડેલ બળનો આઘાત કેટલો હશે ? દરેક ગોળાના વેગમાનના ફેરફારનું મૂલ્ય કેટલું હશે ? [જવાબ: 0.8 N s, 0.8 kg m s⁻¹]
- 2. 6 kg અને 2 kg દળના બે બ્લૉક્સને સમક્ષિતિજ લીસી સપાટી પર એકબીજાને સ્પર્શ તે રીતે મૂકેલા છે. જો 6 kg દળના બ્લૉક પર 2 N નું બળ સમક્ષિતિજ દિશામાં બંને બ્લૉક્સને એક સાથે ગિત થાય તેમ લગાડવામાં આવે, તો 2 kg દળના પદાર્થનો પ્રવેગ કેટલો હશે ? આ બ્લૉક પર લાગતું બળ કેટલું હશે ? [જવાબ: 0.25 m s⁻², 0.5 N]
- 3. 1 kg, 2 kg અને 3 kg દળના ત્રણ બ્લૉક્સને સમક્ષિતિજ લીસી સપાટી પર એકબીજાને સ્પર્શ તે રીતે મૂકીને 1 kg દળના બ્લૉક પર 12 Nનું બળ આકૃતિમાં દર્શાવ્યા મુજબ લગાડવામાં આવે તો,

(i) ત્રણ બ્લૉકના બનેલા આ તંત્રનો પ્રવેગ (ii) 2 kg દળના બ્લૉક પર પ્રથમ બ્લૉક વડે લાગતું સંપર્ક બળ અને (iii) 3 kg ના બ્લૉક પર લાગતું સંપર્કબળ શોધો.

4. આકૃતિ 5.35માં દર્શાવ્યા મુજબ સમક્ષિતિજ સાથે 60° ના લીસા ઢાળ પર એક 50 kg દળનો બ્લૉક અને 30° ના લીસા ઢાળ પર એક 30 kg દળનો બ્લૉક મૂકી તેમને એક દળરહિત દોરી વડે જોડીને દોરીને એક હલકી ઘર્ષણરહિત ગરગડી પરથી પસાર કરીને

ઢાળની બે બાજુઓ પર ગોઠવેલા છે, તો આ બ્લૉક્સથી બનેલા તંત્રનો પ્રવેગ અને દોરીમાં

ઉદ્ભવતો તણાવ શોધો. [g = 10 m s^{-2} , $\sqrt{3}$ = 1.7 લો.]

[8ale : 3.437 m s⁻², 253.11 N]