Quantum Computing Cheat Sheet

Valentin Taillandier

June 2, 2020

State vectors

$$\begin{split} |\psi\rangle &= \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\varphi}\sin\frac{\theta}{2} \end{pmatrix} \\ |0\rangle &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ |+\rangle &= \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ |+'\rangle &= \frac{|0\rangle + i|1\rangle}{\sqrt{2}} \\ |+''\rangle &= \frac{|0\rangle + i|1\rangle}{\sqrt{2}} \\ |-'\rangle &= \frac{|0\rangle - i|1\rangle}{\sqrt{2}} \end{split}$$

Bloch sphere

$$\begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\varphi \\ \sin\theta\sin\varphi \\ \cos\theta \end{pmatrix}$$

Pauli matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

	ightharpoons $ imes$	X	Y	Z	T
	X	I	iΖ	-iY	$X = \ket{+} \bra{+} - \ket{-} \bra{-}$
Ī	Υ	-iZ	I	iΧ	$Y = \left +' \right\rangle \left\langle +' \right - \left -' \right\rangle \left\langle -' \right $
	Z	iY	-iX	I	$Z = 0\rangle \langle 0 - 1\rangle \langle 1 $

Rotations

$$R_x(\theta) = e^{-i\theta X/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X$$

$$R_y(\theta) = e^{-i\theta Y/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y$$

$$R_z(\theta) = e^{-i\theta Z/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z$$

Density matrix

$$\rho = |\psi\rangle \langle \psi|$$

$$\rho = \frac{1}{2}(I + \sin\theta\cos\varphi X + \sin\theta\sin\varphi Y + \cos\theta Z)$$

$$\rho = \frac{1}{2}(I + r_x X + r_y Y + r_z Z)$$

 ψ is a pure-state $\Leftrightarrow \mathit{Tr}(\rho^2) = 1 \Leftrightarrow r_x^2 + r_y^2 + r_z^2 = 1$

Tomography

$$r_{x} = Tr(X\rho) = \langle +|\rho|+\rangle - \langle -|\rho|-\rangle = \mathbb{P}|+\rangle - \mathbb{P}|-\rangle$$

$$r_{y} = Tr(Y\rho) = \langle +'|\rho|+'\rangle - \langle -'|\rho|-'\rangle = \mathbb{P}|+'\rangle - \mathbb{P}|-'\rangle$$

$$r_{z} = Tr(Z\rho) = \langle 0|\rho|0\rangle - \langle 1|\rho|1\rangle = \mathbb{P}|0\rangle - \mathbb{P}|1\rangle$$

Gates

Hadamard Gate

The Hadamard Gate can be decomposed in two rotations:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \left| + \right\rangle \left\langle 0 \right| + \left| - \right\rangle \left\langle 1 \right| = R_x(\pi) R_y(\frac{\pi}{2}) = -i X \cdot R_y(\frac{\pi}{2})$$

Phase Gate

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = |0\rangle \langle 0| + i |1\rangle \langle 1|$$

Controlled Not (CNOT, CX)

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix}$$

EPR pairs

The EPR pairs are the Bell states denoted by $|\Phi^+\rangle$, $|\Phi^-\rangle$, $|\Psi^+\rangle$ and $|\Psi^-\rangle$. The circuit is $(H \otimes I_2) \cdot CX$ and can output every Bell states:

$$|\Phi^{+}\rangle = [(H \otimes I_{2}) \cdot CX] |00\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$|\Psi^{+}\rangle = [(H \otimes I_{2}) \cdot CX] |01\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$$

$$|\Phi^{-}\rangle = [(H \otimes I_{2}) \cdot CX] |10\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$$

$$|\Psi^{-}\rangle = [(H \otimes I_{2}) \cdot CX] |11\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

Which sums up to:

$$[(H \otimes I_2) \cdot CX] |xy\rangle = \frac{1}{\sqrt{2}} (|0y\rangle + (-1)^x |1\bar{y}\rangle)$$