

04 – Diagramas de bloques y simulación

Biomecatrónica – 2023/II

Diagrama de bloques

- Representación gráfica de sistemas interconectados
- Cada sistema dinámico que tiene una relación de E/S es un bloque, que suele ser una sola función de transferencia
- Los bloques están conectados por trayectorias que representan el flujo de señal y los cálculos de entrada y salida
- El flujo de señal en un bloque representa una operación matemática, generalmente una multiplicación

Diagrama general de un SAC

Elementos básicos

En general, un diagrama de bloques consta de una configuración específica de cuatro tipos de elementos:

- bloques
- puntos de suma
- puntos de despegue
- flechas

Operaciones

	Transformation	Equation	Block Diagram	Equivalent Block Diagram
1	Combining Blocks in Cascade	$Y = (P_1 P_2) X$	$X \longrightarrow P_1 \longrightarrow P_2 \longrightarrow Y$	$X \longrightarrow P_1P_2 \longrightarrow Y$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	$Y = P_1 X \pm P_2 X$	$X \longrightarrow P_1 \longrightarrow Y \longrightarrow \pm$	$X \longrightarrow P_1 \pm P_2 \longrightarrow Y$
3	Removing a Block from a Forward Path	$Y = P_1 X \pm P_2 X$	P_2	X P_2 P_1 P_2 P_2 P_2
4	Eliminating a Feedback Loop	$Y = P_1(X \mp P_2 Y)$	$X \xrightarrow{+} P_1$	$ \begin{array}{c c} X & P_1 \\ \hline 1 \pm P_1 P_2 \end{array} $
5	Removing a Block from a Feedback Loop	$Y = P_1(X \mp P_2 Y)$	P_2	X 1 P_1 P_2 Y

Operaciones

	Transformation	Equation	Block Diagram	Equivalent Block Diagram
6a	Rearranging Summing Points	$Z = W \pm X \pm Y$	X \pm Y \pm X \pm X \pm X \pm X \pm Y	<u>W</u> +
6b	Rearranging Summing Points	$Z = W \pm X \pm Y$	$ \begin{array}{c} W + & + \\ X & \pm \\ Y \end{array} $	$\begin{array}{c c} W & + & Z \\ \hline X & \pm & + \\ \hline Y & & \pm \end{array}$
7	Moving a Summing Point Ahead of a Block	$Z = PX \pm Y$	<u>X</u>	$\begin{array}{c c} X & + & & \\ & & \\ & & \\ & & \\ \hline & & \\ \hline & & \\ \hline P & & \\ \hline & & \\ \hline P & & \\ \hline Y & & \\ \end{array}$
8	Moving a Summing Point Beyond a Block	$Z = P[X \pm Y]$	X + P $X + P$ Y	$X \rightarrow P \rightarrow Z \rightarrow Z$

Operaciones

	Transformation	Equation	Block Diagram	Equivalent Block Diagram
9	Moving a Takeoff Point Ahead of a Block	Y = PX	$X \longrightarrow P$ $Y \longrightarrow Y$	$X \longrightarrow P \longrightarrow Y$
10	Moving a Takeoff Point Beyond a Block	Y = PX	X P Y	$X \longrightarrow P \longrightarrow Y$ $X \longrightarrow \frac{1}{P}$
11	Moving a Takeoff Point Ahead of a Summing Point	$Z = X \pm Y$	<u>X</u> + <u>Z</u> <u>Z</u>	X + Z + Z + Z + Z + Z + Z + Z + Z + Z +
12	Moving a Takeoff Point Beyond a Summing Point	$Z = X \pm Y$	<u>X</u> + <u>Z</u> ± <u>Y</u>	<u>X</u> + <u>Z</u> + <u>X</u> + +

Ejemplos

Diagramas de simulación

- Representación gráfica de la SSR
- Solo se conforma por tres bloques básicos
 - Integrador
 - Ganancia
 - Suma

Ejemplo

Hallar **dos diagramas de simulación diferentes** para el sistema modelado por la función de transferencia

$$H(s) = \frac{s+3}{s^3 + 9s^2 + 24s + 20}$$