Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Enhanced Chemotaxis of T-Lymphocytes from 825T Allele Carriers

Fig. 8

Fig. 9

Time to AIDS

AIDS is defined as AIDS-defining disorders or CD4 count < 200

Fig. 10

Event: CD4 Cell Count Below 200 per µl

Fig. 11

Event: Lowest CD4 Cell Count

Fig. 12

Event: Time to maximum HIV Virus Load

Virus Copy Number determined by Quantitative PCR

.Fig. 13

CC CC CC TC TC

Fig. 14

Potential Structures of G β 3 and G β 3s / G β 3s-2

Fig. 15

ı Sf9 Cells varianten

Fig. 16

- FIG. 17 B3-original sequence of Levine. The exons are underlined alternately. The area which is omitted by cryptic splice as bold-faced.
- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT Start-ATG EXON 3 after Ansari-Lari Nucleotide 1-6 seem not to be affected
- 61 GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG

 /EXON 5 Beginning

 /EXON 5 Beginning

 =>> ENDE 1 KLON ANSARI
- 121 <u>GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT</u>
 EXON 5
- 181 $\frac{\text{TACGCCATGC ACTGGGCCAC TGATTCTAAG}}{\text{EXON 5}} / \frac{\text{CTGCTGGTAA GTGCCTCGCA AGATGGGAAG}}{\text{Paeginning EXON 6}}$
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC
 EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG EXON 7 /EXON 8
- 481 ACCAGCTCGG GGGACACCAC GTGTGCCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT
 EXON 8 /EXON 9

cryptic SPLICING

- 541 GTATITGTOG GACACAGGG TGACTGCATG AGCCTGGGTG TGTCTCCTGA CTTCAATCTC
 EXON 9
 cryptic SPLICING
- 601 TICATTICGG GGGCCTGTGA TGCCAGTGCC AAGCTCTGGG ATGTGCGAGA GGGGACCTGC
 EXON 9
 cryptic Splicing /
- 661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTTCTT CCCCAATGGA
 EXON 9 / Beginning EXON 10
- 721 GAGGCCATCT GCACGGGCTC GGATGACGCT TCCTGCCGCT TGTTTGACCT GCGGGCAGAC EXON 10
- 781 CAGGAGCTGA TCTGCTTCTC CCACGAGAGC ATCATCTGCG GCATCACGTC CGTGGCCTTC EXON 10 Polymorphism site acgtc tgt
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG
 EXON 10 /Beginning EXON 11
- 961 QGAGTCACAG CTGACGGGAT GGCTGTGGGC ACAGGTTCCT GGGACAGCTT CCTCAAAATC
 EXON 11
 1021 TGGAACTGAG gaggctggag aaagggaagt ggaaggcagt gaacacactc agcagccccc
- EXON 11 End of Open Reading Frame
- 1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag
- 1141 ctttctcctt tgagggcagt ggggagcatg ggactgtgcc tttgggaggc agcatcaggg

- 1201 <u>acacaggggc aaagaactgc cccatctcct cccatggcct tccctcccca cagtcctcac</u>
 EXON 11
- $\frac{\text{agcctetccc ttaatgagca aggacaacct gcccetcccc agccctttgc aggcccagca}}{\text{EXON 11}}$
- 1321 gacttgagte tgaggeeeca ggeeetagga tteeteecee agageeacta eetttgteea EXON 11

"Ban Polymorphismus" tetggcacta eta

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcacca ctagggtcct EXON 11
- 1441 ggccctcttc ttattcatgc tttctccttt ttctaccttt ttttctctcc taagacacct EXON 11
- 1501 gcaataaagt gtagcaccct ggt EXON 11 POLY A SITE

Fig. 18 Sequence with two polymorphisms (Numbering after the Levine sequence)

gggtcgatgg	gggagatgga	gcaactgcgt	caggaagcgg	agcagctcaa	gaagcagatt	60
gcagatgcca	ggaaagcctg	tgctgacgtt	actctggcag	agctggtgtc	tggcctagag	120
gtggtgggac	gagtccagat	gcggacgcgg	cggacgttaa	ggggacacct	ggccaagatt	180
tacgccatgc	actgggccac	tgattctaag	ctgctggtaa	gtgcctcgca	agatgggaag	240
ctgatcgtgt	gggacagcta	caccaccaac	aaggtgcacg	ccatcccact	gegetectec	300
tgggtcatga	cctgtgccta	tgccccatca	gggaactttg	tggcatgtgg	ggggctggac	360
aacatgtgtt	ccatctacaa	cctcaaatcc	cgtgagggca	atgtcaaggt	cagccgggag	420
ctttctgctc	acacaggtta	teteteetge	tgccgcttcc	tggatgacaa	caatattgtg	480
accagetegg	gggacaccac	gtgtgccttg	tgggacattg	agactgggca	gcagaagact	540
gtatttgtgg	gacacacggg	tgactgcatg	agcctggctg	tgtctcctga	cttcaatctc	600
ttcatttcgg	gggcctgtga	tgccagtgcc	aagctctggg	atgtgcgaga	ggggacctgc	660
cgtcagactt	tcactggcca	cgagtcggac	atcaacgcca	tctgtttctt	ccccaatgga	720
gaggccatct	gcacgggctc	ggatgacgct	teetgeeget	tgtttgacct	gcgggcagac	780
caggagctga	tctgattatc	ccacgagagc	atcatctgcg	gcatcacgtc	tgtggccttc	840
teceteagtg	gccgcctact	attegetgge	tacgacgact	tcaactgcaa	tgtctgggac	900
tccatgaagt	ctgagcgtgt	gggcatcctc	tetggecacg	ataacagggt	gagetgeetg	960
ggagtcacag	ctgacgggat	ggctgtggcc	acaggttcct	gggacagctt	cctcaaaatc	1020
tggaactgag	gaggctggag	aaagggaagt	ggaaggcagt	gaacacactc	ageageeeee	1080
tgcccgaccc	catctcattc	aggtgttctc	ttctatattc	cgggtgccat	tcccactaag	1140
ctttctcctt	tgagggcagt	ggggagcatg	ggactgtgcc	tttgggaggc	agcatcaggg	1200
		cecatetect				1260
agectetece	ttaatgagca	aggacaacct	gcccctcccc	agccctttgc	aggcccagca	1320
		ggccctagga				1380
tctggcac t a	ctaggcctgg	gtggtatagg	gcgtttggcc	ctgtgactat	ggctctggca	1440
ccactagggt	cctggccctc	ttcttattca	tgctttctcc	tttttctacc	tttttttctc	1500
tcctaagaca	cctgcaataa	agtgtagcac	cctggt .			1536

Fig. 19 Nucleic acid sequence of cDNA of GB3 and description of the deletion in GB3 and GB3s-2. Numbering referenced to the cDNA of Levine et al. (Levine, M.A., Smallwood, P.M., Moen, P.T.,Jr., Helman, L.J., and Ahn, T.G. Molecular cloning of B3 subunit, a third form of the G protein beta-subunit polypeptide.

Proc. Natl. Acad. Sci. USA 87(6):2329-2333, 1990) Here numbering does not begin with start codon ATG, but 6 nucleotides earlier in the 5' area.

- 1 gggtcgATGG GGGAGATGGA GCAACTGCGT CAGGAAGCGG AGCAGCTCAA GAAGCAGATT
 Start-ATG EXON 3
 Nucleotide 1-6 seem not to be affected
- 61 GCAGATGCCA GGAAAGCCTG TGCTGACGTT ACTCTGGCAG AGCTGGTGTC TGGCCTAGAG

 /Beginn EXON 4 /EXON 5 Beginning
- 121 GTGGTGGGAC GAGTCCAGAT GCGGACGCGG CGGACGTTAA GGGGACACCT GGCCAAGATT
 EXON 5
- 181 TACGCCATGC ACTGGGCCAC TGATTCTAAG CTGCTGGTAA GTGCCTCGCA AGATGGGAAG EXON 5 / Beginning EXON 6
- 241 CTGATCGTGT GGGACAGCTA CACCACCAAC AAGGTGCACG CCATCCCACT GCGCTCCTCC

 EXON 6 / EXON 7
- 301 TGGGTCATGA CCTGTGCCTA TGCCCCATCA GGGAACTTTG TGGCATGTGG GGGGCTGGAC
 EXON 7
- 361 AACATGTGTT CCATCTACAA CCTCAAATCC CGTGAGGGCA ATGTCAAGGT CAGCCGGGAG
 EXON 7
- 421 CTTTCTGCTC ACACAGGTTA TCTCTCCTGC TGCCGCTTCC TGGATGACAA CAATATTGTG
 EXON 7 /EXON 8

Deletion bei G#3s

481 ACCAGCTCGG GGGACACCAC GTGTGGCTTG TGGGACATTG AGACTGGGCA GCAGAAGACT
EXON 8 /EXON 9

541 GTATTIGIGG GACACACGGG IGACIGCATG AGCCIGGCIG IGICICCIGA CITCAATCIC
EXON 9

601 TTCATTTOGG GGGCCTGTGA TGCCAGTGCC AAGCTCTGGG ATGTGCGAGA GGGGACCTGC
EXON 9

Deletion in Gβ3s2

661 CGTCAGACTT TCACTGGCCA CGAGTCGGAC ATCAACGCCA TCTGTTT CACTGGCCAATGGA
EXON 9 / Beginn EXON 10
Intron dazwischen 1607 bp

Deletion in GB3s2

- 721 GAGGCCATCT GCACGGGTG GGATGAGGTT TCCTGCGGCT TCTTTGAGCTT GCGGGCAGAC
 EXON 10
- 781 CACGAGCTGR TETGETTCTC CCACGAGAGC ATCATCTOG CCATCAGCTC GGTCGCCTT

 EXON 10 polymorphism site acgtc tgt
- 841 TCCCTCAGTG GCCGCCTACT ATTCGCTGGC TACGACGACT TCAACTGCAA TGTCTGGGAC
 EXON 10
- 901 TCCATGAAGT CTGAGCGTGT GGGCATCCTC TCTGGCCACG ATAACAGGGT GAGCTGCCTG

 EXON 10 /Beqinning EXON 11 (Intron dazw. 989 bp)
- 961 GGAGTCACAG CTGACGGGAT GGCTGTGGCC ACAGGTTCCT GGGACAGCTT CCTCAAAATC
 EXON 11
- 1021 TGGAACTGAg gaggctggag aaagggaagt ggaaggcagt gaacacactc agcagccccc
 EXON 11

End of Open Reading Frame B3-3

1081 tgcccgaccc catctcattc aggtgttctc ttctatattc cgggtgccat tcccactaag

EXON 11

- 1141 ctttccttt tgagggcagt ggggagcatg ggactgtgcc ttttgggaggc agcatcaggg
 EXON 11
- 1201 <u>acacagggc aaagaactgc cccatctcct cccatggcct tccctcccca cagtcctcac</u>

 EXON 11
- 1261 <u>agcetetece ttaatgagea aggacaacet geeeeteeee agceetttge aggeeeagea</u>
 EXON 11
- 1321 gacttgagtc tgaggcccca ggccctagga ttcctccccc agagccacta cctttgtcca
 EXON 11

C1423T

tetggcac**a**a eta

- 1381 ggcctgggtg gtatagggcg tttggccctg tgactatggc tctggcacta ctagggtcct
 EXON 11
- 1441 ggeoctottc ttattcatge tttctccttt ttctaccttt ttttctctcc taagacacct
 BXON 11
- 1501 gcaataaagt gtagcaccct ggt
 EXON 11 POLY A SITE

FIG. 20 Amino acid sequence of GB3s-2 (Combined production)

	Gly															48
	att Ile															96
	gtg Val															144
	acg Thr 50															192
	gat Asp															240
	tgg Trp															288
	tcc Ser															336
			95			-2-	10		7120		501	10		1110	vui	
	tgt Cys		ggg	ctg	gac	aac Asn	10 atg	0 tgt	tcc	atc	tac Tyr	10	5 ctc	aaa	tcc	384
Ala		Gly 110 ggc	ggg Gly aat	ctg Leu gtc	gac Asp 11 aag Lys	aac Asn 5	atg Met agc	tgt Cys cgg	tcc Ser gag	atc Ile 12 ctt Leu	tac Tyr 0	aac Asn gct	ctc Leu cac	aaa Lys aca	tcc Ser	384 432
Ala cgt Arg	Cys gag Glu	Gly 110 ggc Gly tcc	ggg Gly aat Asn	ctg Leu gtc Val	gac Asp 11 aag Lys	aac Asn 5 gtc Val 130	atg Met agc Ser	tgt Cys cgg Arg	tcc Ser gag Glu gac	atc Ile 12 ctt Leu aac	tac Tyr 0 tct Ser 135	aac Asn gct Ala	ctc Leu cac His	aaa Lys aca Thr	tcc Ser ggt Gly	
cgt Arg tat Tyr 140	gag Glu 125	Gly 110 ggc Gly tcc Ser	ggg Gly aat Asn tgc Cys	ctg Leu gtc Val tgc Cys 145 acg	gac Asp 11 aag Lys cgc Arg	aac Asn 5 gtc Val 130 ttc Phe	atg Met agc Ser ctg Leu	tgt Cys cgg Arg gat Asp	tcc ser gag Glu gac Asp 150 gac	atc Ile 12 ctt Leu aac Asn	tac Tyr 0 tct Ser 135 aat Asn	aac Asn gct Ala att Ile act	ctc Leu cac His gtg Val	aaa Lys aca Thr acc Thr 155 cag	tcc ser ggt Gly agc ser	432
Ala cgt Arg tat Tyr 140 tcg Ser 160 aag	gag Glu 125 ctc Leu	Gly 110 ggc Gly tcc Ser gac Asp	ggg Gly aat Asn tgc Cys acc Thr	ctg Leu gtc Val tgc Cys 145 acg Thr	gac Asp 11 aag Lys cgc Arg tgt Cys 165	aac Asn 5 gtc Val 130 ttc Phe gcc Ala	atg Met agc Ser ctg Leu ttg Leu	tgt Cys cgg Arg gat Asp tgg Trp	tcc ser gag Glu gac Asp 150 gac Asp	atc Ile 12 ctt Leu aac Asn att Ile 170	tac Tyr 0 tct Ser 135 aat Asn gag Glu	aac Asn gct Ala att Ile act Thr	ctc Leu cac His gtg Val ggg Gly	aca Lys aca Thr acc Thr 155 cag Gln	ggt Gly agc ser cag Gln 175	432 480

ctc Leu								672
gag Glu 225								720
cta Leu							tcc Ser	768
aag Lys								816
tgc Cys								864
gac Asp 290								894