This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently Amended) A nematic liquid-crystal medium, which comprises
 - a) a dielectrically negative, liquid-crystalline component A which
 comprises one or more dielectrically negative compounds of one of the formulae I-1,
 I-3 and I-4:

$$R^{11}$$
 H Z^{12} O R^{12} $I-1$

$$R^{11}$$
 H Z^{12} H O R^{12} $I-3$

$$R^{11}$$
 H Z^{12} O R^{12} $I-4$

in which

- R¹¹ is alkyl having from 1 to 7 carbon atoms, alkoxy having from 1 to 7 carbon atoms or alkenyloxy having from 2 to 7 carbon atoms,
- R¹² is alkyl or alkoxy having from 1 to 7 carbon atoms or alkenyl, alkenyloxy or alkoxyalkyl having from 2 to 7 carbon atoms, <u>and</u>
- Z^{12} is OCF₂ or CF₂O, and

n is 0 or 1, and

- b) a dielectrically negative, liquid-crystalline component, B, different from component A, and
- c) optionally, a dielectrically neutral, liquid-crystalline component C, and
- d) optionally, a dielectrically positive, liquid-crystalline component D.
- 2. (Previously presented) A liquid-crystal medium of claim 1, wherein component
 B comprises one or more compounds selected from the group consisting of the
 compounds of the formulae II and III

$$R^{21} - \left(A^{21}\right) - Z^{\frac{21}{2}} - Z^{\frac{22}{3}} - Z^{\frac{22}{3}}$$

$$R^{31} - A^{31} - A^{32} - A$$

in which

- R²¹ is alkyl or alkoxy having from 1 to 7 carbon atoms or alkoxyalkyl, alkenyl or alkenyloxy having from 2 to 7 carbon atoms,
- R²² is alkyl or alkoxy having from 1 to 7 carbon atoms or alkoxyalkyl, alkenyl or alkenyloxy having from 2 to 7 carbon atoms,
- Z^{21} and Z^{22} are each, independently of one another, -CH₂-CH₂-, -CH=CH-, -C=C-, -COO- or a single bond,

$$A^{21}$$
 and A^{22} and and

$$A^{31}$$
 $-$ and

are each, independently of one another,

$$\bigcirc$$
, \bigcirc , \bigcirc , \bigcirc N

$$\bigcirc$$
 \bigcirc \bigcirc , \bigcirc \bigcirc \bigcirc \bigcirc or \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 L^{21} and L^{22} are both C-F or one of the two is N and the other is C-F,

m is 0 or 1,

 Z^3 is -CH₂-CH₂-, -CH=CH-, -C \equiv C-, -COO- or a single bond,

R³¹ and R³² are each, independently of one another, alkyl or alkoxy having from 1 to 7 carbon atoms or alkoxyalkyl, alkenyl or alkenyloxy having from 2 to 7 carbon atoms, and

- 1 is 1 or 2.
- 3. (Previously presented) A liquid-crystal medium of Claim 2, which comprises one or more compounds of the formula II.
- 4. (Previously presented) A liquid-crystal medium of Claim 2 which comprises one or more compounds of the formula III.

- 5. (Previously presented) A liquid-crystal medium of Claim 1, which comprises a component C.
- 6. (Previously presented) A liquid-crystal medium of Claim 1, which comprises a component D.
- 7. (Previously presented) An electro-optical display comprising a liquid-crystal medium according to Claim 1.
- 8. (Previously presented) A display according to Claim 7, which is an active matrix display.
- **9.** (Previously presented) A display according to Claim 7 which is an ECB or IPS display.
- 10. (Previously presented) The liquid-crystal medium of claim 1, wherein R^{11} is alkyl, alkoxy, or alkenyloxy of 2 to 4 carbon atoms and Z^{12} is OCF₂.
- 11. (Previously presented) The liquid-crystal medium of claim 5, wherein component C comprises at least one compound of the formula IV:

in which

- R⁴¹ and R⁴² are each, independently of one another, alkyl or alkoxy having from 1 to 7 carbon atoms or alkoxyalkyl, alkenyl or alkenyloxy having from 2 to 7 carbon atoms,
- Z^{41} , Z^{42} and Z^{43} are each, independently of one another, -CH₂CH₂-, -CH=CH-, -COO- or a single bond,

o and p, independently of one another, are 0 or 1,

12. (Canceled)

- 13. (Previously presented) The liquid-crystal medium of claim 1, which comprises 5% to 85% by weight of component A, 5% to 85% by weight of component B, 0 to 50% by weight of component C and 0 to 40% by weight of component D.
- 14. (Previously presented) A display according to claim 8, which further comprises a thin film transistor or varistor.
- 15. (Previously presented) A display according to claim 7, which further comprises a three-pole switching element.
- 16. (Previously presented) A liquid-crystal medium of claim 6, wherein component D comprises at least one compound of the formula V:

$$R^{5} \left[\begin{array}{c} A^{51} \end{array} - Z^{\frac{51}{3}} \left[\begin{array}{c} A^{52} \end{array} - Z^{\frac{52}{3}} \left[\begin{array}{c} A^{53} \end{array} - Z^{\frac{53}{3}} \begin{array}{c} O \end{array} \right] \right]$$

wherein

- R⁵ is alkyl or alkoxy having from 1 to 7 carbon atoms, or alkoxyalkyl, alkenyl or alkenyloxy having from 2 to 7 carbon atoms,
- Z^{51} , Z^{52} and Z^{53} are each, independently of one another, -CH₂-CH₂-, -CH=CH-, -C=C-, -COO- or a single bond,

$$A^{51}$$
, A^{52} and A^{53}

are each, independently of one another,

$$\begin{pmatrix} 0 \\ - \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ - \end{pmatrix}$, $\begin{pmatrix} 0 \\ - \end{pmatrix}$ or $\begin{pmatrix} F \\ 0 \\ - \end{pmatrix}$

X⁵ is F, OCF₂H or OCF₃, and

Y⁵ is H or F, and

q and r are each, independently of one another, 0 or 1.

- 17. (Previously presented) A liquid-crystal medium of claim 16, wherein Y^5 is F and X^5 is F or OCF₂H.
- 18. (Previously presented) A liquid-crystal medium of claim 11, wherein at least two of the rings A^{41} , A^{42} , A^{43} and A^{44} are:

19. (Previously presented) A liquid-crystal medium of claim 11, wherein at least two of the rings A^{41} , A^{42} , A^{43} and A^{44} are linked directly to one another.

20. (Previously presented) A liquid-crystal medium of claim 11, wherein at least two of the rings A^{41} , A^{42} , A^{43} and A^{44} are linked directly to one another as:

21. (Previously presented) A liquid-crystal medium of claim 1, which further comprises one or more dielectrically negative compounds of the formula VI:

in which

- R^{61} and R^{62} are each independently alkyl having from 1 to 7 carbon atoms, alkoxy having from 1 to 7 carbon atoms, or alkenyloxy having from 2 to 7 carbon atoms,
- Z^6 is -CH₂-CH₂-, -CH=CH-, -C=C-, -COO- or a single bond,
- L^{61} and L^{62} are both C-F or one of the two is N and the other is C-F, and
- L^{63} and L^{64} are both C-F or one of the two is N and the other is C-F.
- 22. (Previously presented) A liquid-crystal medium of claim 1, wherein, in formulae I-1, I-3 and I-4, Z^{12} is OCF₂.