$$r2 = r0 + r1$$
$$r4 = r2 + r2$$

For next two questions: Consider the following CFG

Q150. [MSQ]

Which of the following is/are correct gen and kill sets of basic blocks for Available expression analysis?

- (A) For basic block B1, Gen = $\{a*b, c+d\}$, Kill = $\{\}$
- (B) For basic block B2, Gen = $\{c + d\}$, Kill = $\{a*b\}$
- (C) For basic block B3, Gen = $\{a*b\}$, Kill = $\{\}$
- (D) For basic block B4,Gen = $\{a*b\}$, Kill = $\{c+d\}$

Answer: a, b, c, d Solution:

BB	GEN	KILL
B1	{a*b, c+d}	{}
B2	{c+d}	{a*b}
В3	{a*b}	{}
B4	{a*b}	{c+d}

Q151. [MSQ]

Which of the following is/are correct IN and OUT sets of basic blocks for Available expression analysis?

- (A) For basic block B1, $IN = \{\}$, $OUT = \{a*b, c+d\}$
- (B) For basic block B2, IN = $\{a*b\}$, OUT = $\{a*b, c+d\}$
- (C) For basic block B3, IN = $\{c + d\}$, OUT = $\{a*b, c + d\}$
- (D) For basic block B4, IN = $\{c + d\}$, OUT = $\{a*b, c + d\}$

Answer: a, b, c Solution:

Pass#	Pt	B1	B2	B3	B4
Init	IN			-	1 -
	OUT	И	и	и	u
1	IN	Ø	a*b, c+d	c+d	c+d
	OUT	a*b, c+d	c+d	a*b, c+d	a*b
2	IN	0	a*b	c+d	C+d
	OUT	a*b, c+d	c+d	a*b, c+d	a*b
3	IN	Ø	a*b	c+d	c+d
	OUT	a*b, c+d	c+d	a*b, c+d	a*b

For next two questions: Consider the following CFG

Q152. [MSQ]

If Gen (B) and Kill (B) represent the Gen set and Kill set of basic block B, respectively. Which of the following options is/ are correct about gen and kill sets of basics blocks for reaching definition analysis?

- (A) Gen (B2) = Kill (B2) \cup Kill (B3) \cup Kill (B4)
- (B) Gen (B1) (Kill (B2) \cup Kill (B3) \cup Kill (B4)) = \emptyset
- (C) Kill (B2) \cap Kill (B1) = Gen (B4) Kill (B4)
- (D) Kill (B1) = Gen (B2) \cup Gen (B3) \cup Gen (B4)

Answer: b, c, d Solution

BB	GEN	KILL
B1	{d1, d2, d3}	{d4, d5, d6, d7}
B2	{d4, d5}	{d1, d2, d7}
B3	{d6}	{d3}
B4	{d7}	{d1, d4}

Q153. [MSQ]

If IN (B) and OUT (B) represent the IN set and OUT set of basic block B, respectively. Which of the following options is/ are correct about IN and OUT sets of basics blocks for reaching definition analysis after 3rd Pass?

- (A) $|OUT (B2) \cap OUT (B3)| = |OUT (B4) OUT (B1)|$
- (B) IN (B3) = IN (B4)
- (C) OUT (B3) = IN (B4)
- (D) IN (B2) \cup IN (B1) = {d1, d2, d3, d5, d6, d7}

Answer: A, B, D Solution:

ass#	Pt	B1	B2	B3	B4
Init	IN	25	300		rites:
	OUT	0	0	0	Ø
1	IN	Ø	d1, d2, d3	d3, d4, d5	d3, d4, d5, d6
	OUT	d1, d2, d3	d3, d4, d5	d4, d5, d6	d3, d5, d6, d7
2	IN	Ø	d1, d2, d3, d5, d6, d7	d3, d4, d5, d6	d3, d4, d5, d6
	OUT	d1, d2, d3	d3, d4, d5, d6	d4, d5, d6	d3, d5, d6, d7
3	IN	0	d1, d2, d3, d5, d6, d7	d3, d4, d5, d6	d3, d4, d5, d6
2	OUT	d1, d2, d3	d3, d4, d5, d6	d4, d5, d6	d3, d5, d6, d7

For next Eight questions: Consider the following CFG

Which of the following is correct use and define sets of basics block B1 for live variable analysis?

(A) Use =
$$\{ m, n \}$$
, Def = $\{ i, j, a \}$ (B) Use = $\{ m, n, u1 \}$, Def = $\{ i, j \}$

(B) Use =
$$\{ m, n, u1 \}$$
, Def = $\{ i, j \}$

(C) Use =
$$\{m, n\}$$
, Def = $\{i, j\}$

(C) Use =
$$\{m, n\}$$
, Def = $\{i, j\}$ (D) Use = $\{m, n, u1\}$, Def = $\{i, j, a\}$

Answer:-D

Q155.	Which of the following is correct us	se and define sets of basics block B2 for live
	variable analysis?	
	(A) Use = $\{i,j\}$, Def = $\{i,j\}$	(B) Use = $\{i,j\}$, Def = $\{i\}$
	(C) Use = $\{i,j\}$, Def = $\{\}$	(D) Use = $\{i,j\}$, Def = $\{j\}$
	Answer :-C	
Q156.	Which of the following is correct us	se and define sets of basics block B3 for live
	variable analysis?	
	(A) Use = $\{u2\}$, Def = $\{a\}$	(B) Use = $\{u2\}$, Def = $\{u2,a\}$
	(C) Use = $\{a,u2\}$, Def = $\{a\}$	(D) Use = $\{a\}$, Def = $\{u2\}$
	Answer :-A	
Q157.	Which of the following is correct us	se and define sets of basics block B4 for live
	variable analysis?	
	(A) Use = $\{a, j, i\}$, Def = $\{i\}$	(B) Use = $\{a, j\}$, Def = $\{i\}$
	(C) Use = {a, j, i }, Def = {a, j, i }	(D) Use = $\{a, j, i\}$, Def = $\{i, j\}$
	Answer :-B	
Q158.	Which of the following is correct in a	nd out sets of basics block B1 for live variable
	analysis?	
	(A) In = $\{m,n,u1\}$, Out = $\{i,j,u2,a\}$	(B) In = $\{m,n\}$, Out = $\{i,j,u2,a\}$
	(C) In = $\{m,n,u1\}$, Out = $\{i,j,u2\}$	(D) In = $\{m,n\}$, Out = $\{i,j,u2\}$
	Answer :-A	
Q159.	Which of the following is correct in a	nd out sets of basics block B2 for live variable

Q159. Which of the following is correct in and out sets of basics block B2 for live variable analysis?

(A) In =
$$\{i,j,a\}$$
, Out = $\{a,j,u2\}$

(B) In =
$$\{i,j,a,u2\}$$
, Out = $\{a,j,u2\}$

(C) In =
$$\{i,j,a\}$$
, Out = $\{a,j,u1\}$

(D) In =
$$\{i,j,a,u1\}$$
, Out = $\{a,j,u2\}$

Answer :-B

Q160. Which of the following is correct in and out sets of basics block B3 for live variable analysis?

- (A) In = $\{j,u2\}$, Out = $\{a,j,u2\}$
- (B) In = $\{i,u2\}$, Out = $\{a,j,u2\}$
- (C) In = $\{i,j,u2\}$, Out = $\{a,j,u2\}$
- (D) In = $\{i,j\}$, Out = $\{a,j,u2\}$

Answer:-A

Q161. Which of the following is correct in and out sets of basics block B4 for live variable analysis?

- (A) In = $\{a,j,u2\}$, Out = $\{a,j,u2\}$
- (B) In = $\{a,j,u2\}$, Out = $\{a,i,j,u2\}$
- (C) In = $\{a,j,u2\}$, Out = $\{a,i,u2\}$
- (D) In = $\{a,i,u2\}$, Out = $\{a,i,j,u2\}$

Answer :-b Solution

For next two questions: Consider the following basic block for live variables:

Assume you are given IN/OUT for B1, B2, B4, B5, and GEN/KILL for B3.

Q164. What is the forward data-flow problem for available expression for basic block B3?

(A)
$$IN(B3) = OUT(B1) \land OUT(B2)$$
, $OUT(B3) = GEN(B3) \cap (IN(B3) - KILL(B3))$

(B)
$$IN(B3) = OUT(B1) \lor OUT(B2)$$
, $OUT(B3) = GEN(B3) U (IN(B3) - KILL(B3))$

(C)
$$IN(B3) = OUT(B1) \land OUT(B2)$$
, $OUT(B3) = GEN(B3) \cup (IN(B3) - KILL(B3))$

(D)
$$IN(B3) = OUT(B1) \lor OUT(B2)$$
, $OUT(B3) = GEN(B3) \cap (IN(B3) - KILL(B3))$

(cy) Answer (

ODD in conditable expression

out(B) = gen(B) v & in(B) - kill(B)

in(B) - pout(Pi) perececessor

in(B) = cont(B) A (out(B2)

out(B) - gen(B) v & in(B) - kill(B)

Q165. What is the forward data-flow problems for reaching definition for basic block B3?

(A)
$$IN(B3) = OUT(B1) \land OUT(B2)$$
, $OUT(B3) = GEN(B3) \cap (IN(B3) - KILL(B3))$

$$(B)IN(B3) = OUT(B1) \lor OUT(B2), OUT(B3) = GEN(B3) U (IN(B3) - KILL(B3))$$

(C)
$$IN(B3) = OUT(B1) \land OUT(B2)$$
, $OUT(B3) = GEN(B3) \cup (IN(B3) - KILL(B3))$

(D)
$$IN(B3) = OUT(B1) \lor OUT(B2)$$
, $OUT(B3) = GEN(B3) \cap (IN(B3) - KILL(B3))$

Q166. What is the backwards data-flow problems for B3?

- (A) $OUT(B3) = IN(B4) \lor IN(B5)$, IN(B3) = USE(B3) U (OUT(B3) DEF(B3))
- (B) $OUT(B3) = IN(B4) \land IN(B5)$, $IN(B3) = USE(B3) \cap (OUT(B3) DEF(B3))$
- (C) $OUT(B3) = IN(B4) \lor IN(B5)$, $IN(B3) = USE(B3) \cap (OUT(B3) DEF(B3))$
- (D) $OUT(B3) = IN(B4) \land IN(B5)$, IN(B3) = USE(B3) U(OUT(B3) DEF(B3))

Consider the following control flow graph for available expressions

Calculate GEN/KILL for each basic block. Which of the following option is true? Q167.

(C)

(A) GEN KILL B1 a+c,a+b a+b B2 a+c φ B3 a+b a+b **B**4

a+c

(B) KILL GEN B1 a+c,a+b a+b B₂ a+c B3 a+b a+c B4 a+c

GEN KILL B1 a+c,a+b a+c B2 **B**3 a+b a+c **B**4 a+c

GEN KILL B₁ a+c.a+b a+b B₂ **B**3 a+c B4 a+c a+c

(D)

Answer: B

Solution

 $IN[B] = \bigcap P$ a predecessor of B OUT[P];

 $OUT[B] = gen[B] \cup [(IN[B] - kill[B]);$

For next two questions consider the control-flow graph with numbers for each statement:

What are the sets of live variables at the beginning of each statement? Q168.

[Note: Write Ø for the empty set, if necessary]

(A)
$$1 - \emptyset$$
, $2 - \{x\}$, $3 - \{x\}$, $4 - \{x\}$, $5 - \{x, y\}$, $6 - \{x, y\}$, $7 - \{x, y\}$

(B)
$$1 - \emptyset$$
, $2 - \{x\}$, $3 - \emptyset$, $4 - \{x\}$, $5 - \{x, y\}$, $6 - \{x, y\}$, $7 - \{x, y\}$

(C)
$$1 - \emptyset$$
, $2 - \emptyset$, $3 - \emptyset$, $4 - \{x\}$, $5 - \{x, y\}$, $6 - \{x, y\}$, $7 - \{x, y\}$

(D) 1 –
$$\varnothing$$
 , 2 – {x}, 3 – \varnothing , 4 – {x}, 5 – {y}, 6 – {x, y}, 7 – {x, y}

Answer: B

Solution:

Stmt	Live variables at beginning of stmt
1	Ø
2	х
3	Ø
4	x
5	x,y
6	х,у
7	x,y

Q169. What are the sets of reaching definitions at the end of each statement? [Note: Write Ø for the empty set, if necessary]

WA.

AW

(a) Reaching statement Definition 1 1 2 2 3 3 2, 3 4 4, 5, 6 5 5, 6 6 4, 5, 6, 7 7

(f	o)
statement	Reaching
	Definition
1	1
2	2
3	3
4	2, 3, 4
5	4, 5, 6
6	4, 5, 6
7	4, 5, 6, 7

 (c)

 statement
 Reaching Definition

 1
 1

 2
 2

 3
 3

 4
 2, 3, 4

 5
 4, 5, 6

 6
 5, 6

 7
 4, 5, 6, 7

(d)),
statement	Reaching
	Definition
1	1
2	2
3	3
4	2, 3, 4
5	5, 6
6	5, 6
7	4, 5, 6, 7

Block	gen(B)	स्था (छ)	inla)	out(B)
1	1	2,3,5	ф	4
2	2	1,3,5	4	2
3	3	1,2,5	7	3
4	4	6	2,3	2,3,4
5	5	fa 2,3	4,6	4,5,6
6	6	4	5	5,6
7	7	Ф	5,4,6	4,5,6,7

Q170. What is the live range for each variable (x, y, z, w & v) in the following program?

$$1: x = y + 1$$

$$2: z = x + y$$

$$3: w = load(x)$$

4:
$$v = f(z, w) // v$$
 is used later

- (A) x: 0-3, y: 0-2, z: 0-4, w: 0-4, v: 0-4
- (B) x: 1-3, y: 1-2, z: 2-4, w: 3-4, v: 4-4
- (C) x: 1-3, y: 0-2, z: 2-4, w: 3-4, v: 4-5
- (D) None of the above

Q171. [MSQ]

For the following code, find the loop invariant instruction(s) which can be moved to the pre-header by a loop-invariant code motion pass?

- (A) S2 : y = 5
- (B) S3: q = 7
- (C) S6: x = 1
- (D) None of these

171)	discuss B a) 52° y=5, we can't put onis certaine loop, as y is changing in iterations.
	a) Sz= 9=5 paraina en iterations
	as ig as one g
	b) 53 8 9=7 loop invariant, as it actionsest
	b) 53 8 9= 7 loop invariant,
	get updated in loop.
	c) séex=1 this con! to loop invocéant
	because there exist a path in which
	because there existed to a and
	this value of not assigned to x and
	gets pointed s)-352-353-357-358-> print.
1,000	The second second that the second sec
	I I was a series of the state of the series
25/32	d) Falk.
	· · · · · · · · · · · · · · · · · · ·