1.4.1 Proof by simple induction

- a) Use simple induction to show that for every positive integer $n, 5^n 1$ is divisible by 4
- b) Use simple induction to show that for every positive integer n, $n^3 n$ is divisible by 3. (Hint: In the induction step, you will need to make use of the arithmetic fact that $(k+1)^3 = k^3 + 3k^2 + 3k + 1$)
- c) Show by simple induction that for every natural number n, $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$

1.4.2: Definition by simple recursion

- a) Let $f: N \to N$ be the function defined by putting f(0) = 0 and f(n+1) = n for all $n \in N$.
 - i) Evaluate this function bottom-up for all arguments 0-5.
 - ii) Explain what f does by expressing it in explicit terms (i.e. without a recursion).
- b) Let $f: N^+ \to N$ be the function that takes each positive integer n to the greatest natural number p with $2^p \le n$. Define this function by a simple recursion. (Hint: You will need to divide the recursion step into two cases.)
- c) Let $g: NXN \to N$ be defined by putting g(m,0) = m for all $m \in N$ and g(m,n+1) = f(g(m,n)) where f is the function defined in part (a) of this exercise.
 - i) Evaluate g(3,4) top-down.
 - ii) Explain what g does by expressing it in explicit terms (i.e. without a recursion).

1.4.3: Proof by cumulative induction

- a) Use cumulative induction to show that any postage cost of four or more pence can be covered by two-pence and five-pence stamps.
- b) Use cumulative induction to show that for every natural number $n, F(n) \leq 2^n 1$, where F is the Fibonacci function.
- c) Calculate F(5) top-down, and then again bottom-up, where again F is the Fibonacci function
- d) Express each of the numbers 14, 15 and 16 as a sum of 3s and/or 8s. Using this fact in your basis, show by cumulative induction that every positive integer $n \le 14$ may be expressed as a sum of 3s and/or 8s.
- e) Show by induction that for every natural number n, A(1,n) = n + 2, where A is the Ackermann function.