Wersja: **B**

Numer indeksu: 000000

Grupa ⁺ :						
	8-10 s. 104	8-10 s. 105	8–10 s.139			
	8-10 s. 140					
Ì	10–12 s.104	10-12 s. 139	10-12 s. 140			

Logika dla informatyków

Kolokwium nr 2, 11 grudnia 2015 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Niech funkcja $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ będzie dana wzorem $f(\langle x, y \rangle) = \frac{x^2 + y}{2}$. Łatwo zauważyć, że wtedy $f[(0,1) \times (0,1)] = (0,1)$. Jeśli istnieje inny niż $(0,1) \times (0,1)$ zbiór, którego obrazem przez funkcję f jest przedział otwarty (0,1), to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

$$[0,\tfrac12)\times(0,\tfrac74)$$

Zadanie 2 (2 punkty). Niech $R = \{\langle n, n+42 \rangle \mid n \in \mathbb{N} \}$ i $S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m \leq 7n \}$. Nie używając symboli \exists, \forall wpisz w prostokąt poniżej taką formułę φ , że $R; S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi \}$.

$$m + 42 \le 7n$$

Zadanie 3 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób nie bywających w żadnym barze podającym sok Malinowy.

$$x \in O \land \forall b \in B \ (Podaja(b, 'Malinowy') \Rightarrow \neg Bywa(x, b))$$

Zadanie 4 (2 punkty). Dla $n, m \in \mathbb{N}$ niech $A_{n,m}$ oznacza zbiór wszystkich takich funkcji $f : \mathbb{N} \to \mathbb{N}$, że f(n) = m. Jeśli zbiór $\bigcup_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} A_{n,m}$ jest pusty, to w prostokąt poniżej wpisz słowo "PUSTY". W przeciwnym przypadku wpisz dowolną funkcję, która należy do tego zbioru.

PUSTY

Zadanie 5 (2 punkty). W prostokąt poniżej wpisz wszystkie zwrotne i symetryczne relacje na dwuelementowym zbiorze $\{a,b\}$

$$R_1 = \{\langle a, a \rangle, \langle b, b \rangle\}, R_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle\}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja: **B**

Numer indeksu:
000000

Grupa¹:

| 8-10 s.104 | 8-10 s.105 | 8-10 s.139 |
| 8-10 s.140 |
| 10-12 s.104 | 10-12 s.139 | 10-12 s.140 |

Zadanie 6 (5 punktów). Niech funkcja $f: \mathcal{P}(\mathbb{N} \times \{0,1\}) \to \mathcal{P}(\mathbb{N})$ będzie zdefiniowana wzorem $f(X) = \{2x + y \mid \langle x, y \rangle \in X\}$. Udowodnij, że f jest bijekcją.

Zadanie 7 (5 punktów). Niech R i S będą zwrotnymi relacjami na zbiorze A. Udowodnij, że jeśli $R \cup S$ jest relacją równoważności to relacja R;S jest symetryczna.

Zadanie 8 (5 punktów). Dla funkcji $f:A\to A$ definiujemy $f^0(x)=x$ oraz $f^{n+1}(x)=f(f^n(x))$ dla wszystkich $n\in\mathbb{N}$ oraz wszystkich $x\in A$. Udowodnij, że dla wszystkich $i,j\in\mathbb{N}$ i wszystkich $x\in A$ zachodzi równość $f^{i+j}(x)=f^i(f^j(x))$.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja: C

Numer indeksu:				
000000				
000000				

Grupa ¹ :						
8–10 s.104	8 10 s. 105	8-10 s. 139				
8–10 s.140						
10–12 s.104	10-12 s. 139	10-12 s. 140				

Logika dla informatyków

Kolokwium nr 2, 11 grudnia 2015 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Dla $n, m \in \mathbb{N}$ niech $A_{n,m}$ oznacza zbiór wszystkich takich funkcji $f : \mathbb{N} \to \mathbb{N}$, że f(n) = m. Jeśli zbiór $\bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} A_{n,m}$ jest pusty, to w prostokąt poniżej wpisz słowo "PUSTY". W przeciwnym przypadku wpisz dowolną funkcję, która należy do tego zbioru.

$$f: \mathbb{N} \to \mathbb{N}, \ f(n) = 42$$

Zadanie 2 (2 punkty). Niech $R = \{\langle n, n+1 \rangle \mid n \in \mathbb{N} \}$ i $S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m+n=42 \}$. Nie używając symboli \exists, \forall wpisz w prostokąt poniżej taką formułę φ , że $R; S = \{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid \varphi \}$.

$$m + n = 41$$

Zadanie 3 (2 punkty). W prostokąt poniżej wpisz wszystkie zwrotne i słabo antysymetryczne relacje na dwuelementowym zbiorze $\{a,b\}$

$$R_1 = \{\langle a, a \rangle, \langle b, b \rangle\}, \ R_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle\}, \ R_3 = \{\langle a, a \rangle, \langle b, b \rangle, \langle b, a \rangle\}$$

Zadanie 4 (2 punkty). Niech funkcja $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ będzie dana wzorem $f(\langle x,y \rangle) = x \cdot y$. Łatwo zauważyć, że wtedy $f[(0,1) \times (0,1)] = (0,1)$. Jeśli istnieje inny niż $(0,1) \times (0,1)$ zbiór, którego obrazem przez funkcję f jest przedział otwarty (0,1), to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

$$\{2\} \times (0, \frac{1}{2})$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podają \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formulę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób, które nie lubią żadnego soku podawanego w barze Jagódka.

$$x \in O \land \forall s \in S \ (Podajq('Jagdka', s) \Rightarrow \neg Lubi(o, s))$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja: C

Numer indeksu:
000000

Grupa¹:				
8-10 s. 104	8-10 s. 105	8–10 s.139		
8-10 s. 140				
10–12 s.104	10–12 s.139	10–12 s.140		

Zadanie 6 (5 punktów). Dla funkcji $f:A\to A$ definiujemy funkcję $F:A\times\mathbb{N}\to A$ w następujący sposób: F(x,0)=x oraz F(x,n+1)=f(F(x,n)) dla wszystkich $n\in\mathbb{N}$ oraz wszystkich $x\in A$. Udowodnij, że dla wszystkich $n\in\mathbb{N}$ i wszystkich $x\in A$ zachodzi równość f(F(x,n))=F(f(x),n).

Zadanie 7 (5 punktów). Niech funkcja $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^{\{a,b\}}$ będzie zdefiniowana wzorem

$$F(m,n):\{a,b\}\to \mathbb{N}, \quad (F(m,n))(x)=\left\{\begin{array}{ll} m, & \mathrm{gdy}\ x=a\\ n, & \mathrm{w\ przeciwnym\ przypadku} \end{array}\right.$$

Udowodnij, że F jest bijekcją.

Zadanie 8 (5 punktów). Niech R i S będą symetrycznymi relacjami na zbiorze A. Udowodnij, że jeśli relacja R;S jest symetryczna to R;S=S;R.

¹Proszę zakreślić właściwą grupę ćwiczeniową.