1. Interpolación polinamial de Newton en diferencias divididas

$$76 \quad f(x_0) \quad \chi_0 : 13 \quad f(x_0) = 28$$

$$7 \quad 14 \quad \chi_1 : 16 \quad f(x_0) = 30$$

$$10 \quad 21 \quad \chi : 14 \quad f(x_0) = 7$$

$$13 \quad 28$$

$$16 \quad 30 \quad f(x_0) : f(x_0) + \frac{f(x_0) - f(x_0)}{x_0 - x_0} (x_0 - x_0)$$

$$19 \quad 28$$

$$f(10) = 28 + 30 - 28 (14 - 13)$$

2.
$$\chi_0 = 1$$
. $f(x_0) = 0$
 $\chi_1 = 4$ $f(x_0) = 1.386294$
 $\chi_1 = 2$ $f(x_0) = 7$

$$f(n_0) = \frac{1.386294 - 0}{4 - 1} (2 - 1) = 0.96209800$$

$$\xi = \frac{0.462098 - \ln(2)}{\ln(2)} \cdot 100 = 33.33\%$$

OBSERVACIONES

¿QUÉ OCURRE SI SE ESTRECHA EL INTERVALO?

Estrechar el intervalo significa seleccionar puntos de interpolación más cercanos entre sí.

Ventajas:

- El polinomio de interpolación suele ajustarse con mayor precisión a los datos locales.
- El error de interpolación tiende a disminuir debido a una menor oscilación del polinomio.
- Disminuye el riesgo del efecto de Runge, que se caracteriza por grandes oscilaciones en los extremos del intervalo.

¿QUÉ OCURRE SI SE AMPLÍA EL INTERVALO?

Ampliar el intervalo implica utilizar un conjunto más extenso de puntos o puntos más distantes entre sí.

Riesgos:

- Los polinomios de orden alto pueden presentar oscilaciones significativas, lo que reduce la precisión.
- El error de interpolación puede aumentar, especialmente en los extremos o fuera del centro del intervalo.
- Si la función subyacente varía mucho en el intervalo considerado, las desviaciones entre el polinomio y la función real pueden ser notables.