Important Concepts Permutation and Combination

Permutation and Combination Formulas

• Number of all **permutations** of n things, taken r at a time, is given by

$${}^{n}P_{r} = \frac{n!}{(n-r)!} \mathsf{nPr} = (\mathsf{n-r})!\mathsf{n}!$$

• Number of all **combinations** of n things, taken r at a time, is given by

$${}^{n}C_{r} = \frac{n!}{(r)!(n-r)!}$$
nCr = (r)!(n-r)!n!

Points to remember

- Factorial of any negative quantity is not valid.
- If a particular thing can be done in m ways and another thing can be done in n ways, then
 - Either one of the two can be done in **m** + **n** ways and
 - Both of them can be done in m x n ways
- 0! = 1
- If from the total set of n objects and 'p1' are of one kind and 'p2' and 'p3' and so on till pr are others respectively then

$${}^{n}P_{r} = \frac{n!}{p_{1}! \times q_{2}! \times \dots \dots p_{r}!} \mathsf{nPr} = \mathsf{p1}! \mathsf{xq2}! \mathsf{x} \dots \mathsf{pr}! \mathsf{n!}$$

- ⁿc_n = 1
- nc0 = 1
- ${}^{n}c_{r} = {}^{n}c_{(n-r)}$ ${}^{n}c_{0} + {}^{n}c_{1} + {}^{n}c_{2} + {}^{n}c_{3} + ... {}^{n}c_{n} = 2^{n}$

Distribution of		How many balls				
		boxes can contain				
k Balls	into n Boxes	No Restrictions	≤ 1 (At most one)	≥ 1 (At least one)	= 1 (Exactly one)	
Distinct	Distinct	n ^k (formula 1)	ⁿ P _k (formula 2)	S(k,n) × n! (formula 3) (Not Imp)	$^{n}P_{n} = n! \text{ if } k = n$ $0 \text{ if } k \neq n$ (formula 4)	
dentical	Distinct	(k+n-1) _C (n-1) (formula 5)	ⁿ C _k (formula 6)	(k-1) _{C(n-1)} (formula 7)	1 if k = n0 if k ≠ n(formula 8)	