Семинар 7

Пример 1 (сложный, но необходимый). Исследовать на сходимость $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\alpha}}$.

1. Построим расходящийся минорантный ряд. Сделаем оценку снизу:

 $\frac{\ln n}{n^{\alpha}} > \frac{1}{n^{\alpha}} > 0$ при $n \ge 3 \Rightarrow$ при $\alpha \le 1$ ряд $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\alpha}}$ расходится, т. к. расходится минорантный ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ (см. пример 6 семинара 6).

2. Докажем, что ряд сходится при $\alpha > 1$. Для этого построим сходящийся мажорантный ряд.

Пусть $\alpha = 1 + 2\beta, \beta > 0$. Тогда

$$\frac{\ln n}{n^{\alpha}} = \frac{\ln n}{n^{1+2\beta}} = \frac{\ln n}{n^{\beta}} \cdot \frac{1}{n^{1+\beta}}.$$

С первого курса известно, что $\lim_{n\to\infty}\frac{\ln n}{n^{\beta}}=0$ при $\beta>0$, поэтому $\forall \varepsilon>0$ $\exists N=N(\varepsilon)>0$: $\forall n>N\left|\frac{\ln n}{n^{\beta}}\right|<\varepsilon$,

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) > 0 : \forall n > N \left| \frac{\ln n}{n^{\beta}} \right| < \varepsilon$$

т. е. последовательность $\frac{\ln n}{n\beta}$ является ограниченной. Для простоты выберем $\varepsilon=1$.

 $\exists N \colon 0 < \frac{\ln n}{n^{\beta}} < 1 \ \forall n > N.$

Значит, $0<\frac{\ln n}{n^{\alpha}}<\frac{1}{n^{1+\beta}}$ при n>N, поэтому ряд $\sum_{n=1}^{\infty}\frac{\ln n}{n^{\alpha}}$ сходится, т. к. сходится мажорантный ряд $\sum_{n=1}^{\infty} \frac{1}{n^{1+\beta}}$.

Знакопеременные ряды

Рассмотрим ряды:

 $\sum_{n=1}^{\infty} a_n$ (I) — знакопеременный и

 $\sum_{n=1}^{\infty} |a_n|$ (II) — знакопостоянный.

Если ряд (II) сходится, то ряд (I) тоже сходится. В этом случае говорят, что ряд (I) сходится абсолютно.

Если ряд (I) сходится, а ряд (II) — расходится, то говорят, что ряд (I) сходится условно.

Сумма абсолютно сходящегося ряда не меняется при перестановке членов, условно сходящегося — меняется (что весьма необычно: с конечными суммами такого не бывает).

Для исследования абсолютной сходимости применяются признаки сходимости знакопостоянных рядов. Для исследования обычной сходимости ряда (I) используют специальные признаки сходимости для знакопеременных рядов.

Пример 2. Исследовать на абсолютную и условную сходимость $\sum_{n=1}^{\infty} \cos n$. НУС $\lim_{n\to\infty} \cos n = 0$ не выполнено. Докажем это от противного. Пусть $\lim_{n\to\infty} \cos n = 0$. Тогда

и
$$\lim_{n\to\infty}\cos(n+1)=0$$
. Далее,

$$\cos(n+1) = \underbrace{\cos n}_{\to 0} \cos 1 - \sin n \underbrace{\sin 1}_{\neq 0} \to 0,$$

 $\cos(n+1) = \underbrace{\cos n}_{\to 0} \cos 1 - \sin n \underbrace{\sin 1}_{\neq 0} \to 0,$ откуда $\lim_{n\to\infty} \sin n = 0$, но тогда $\lim_{n\to\infty} (\sin^2 n + \cos^2 n) = 0$, что противоречит основному тригонометрическому тождеству $\sin^2 n + \cos^2 n = 1$.

Ответ: ряд расходится.

Пример 3. Исследовать на абсолютную и условную сходимость $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$.

НУС выполнено: $\lim_{n\to\infty} \frac{\cos n}{n^2} = 0$.

Покажем, что ряд сходится абсолютно. Рассмотрим $\sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$ — знакопостоянный ряд.

Оценка сверху: $0 \le \left| \frac{\cos n}{n^2} \right| \le \frac{1}{n^2}$, мажорантный ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, поэтому ряд

 $\sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$ тоже сходится (по признаку сравнения). Следовательно, исходный ряд $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ сходится абсолютно (а из абсолютной сходимости следует просто сходимость).

Ответ: ряд сходится абсолютно.

Признак Лейбница. Рассмотрим ряд $\sum_{n=1}^{\infty} (-1)^n b_n$. Если $\{b_n\}$ — монотонная последовательность и $\lim_{n\to\infty} b_n = 0$, то ряд сходится.

Пример 4 (Демидович № 2661). Исследовать на абсолютную и условную сходимость

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

- 1) Проверим НУС: $\lim_{n\to\infty} \frac{(-1)^{n+1}}{n} = 0$ выполнено.
- 2) Исследуем абсолютную сходимость. Если $a_n = \frac{(-1)^{n+1}}{n}$, то $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится. Абсолютной сходимости нет.
- 3) Исследуем сходимость. Запишем ряд в виде

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \sum_{n=1}^{\infty} (-1)^n \cdot \left(-\frac{1}{n}\right) = \sum_{n=1}^{\infty} (-1)^n b_n$$
, где $b_n = -\frac{1}{n}$.

Тогда $b_n = -\frac{1}{n} \uparrow 0 \Rightarrow$ ряд сходится (по признаку Лейбница).

Ответ: ряд сходится условно.

Запомним этот важный результат.

Признак Дирихле. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n b_n$. Пусть

- 1) $\exists C: |\sum_{n=1}^{\bar{N}} a_n| \leq C \ \forall N,$
- 2) $\{b_n\}$ монотонная последовательность и $\lim_{n\to\infty} b_n = 0$.

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Замечание 1. Число C не должно зависеть от N. Оно общее для всех N.

Замечание 2. Признак Лейбница непосредственно следует из признака Дирихле, если положить $a_n = (-1)^n$.

Замечание 3. Признак Дирихле не стоит использовать для знакопостоянных рядов. Для них есть более простые признаки.

Сложение и вычитание рядов. Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся, то

$$\sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n \pm b_n),$$

т. е. ряд, стоящий в правой части, тоже сходится, и его сумма выражается через суммы исходных рядов.

Стандартные оценки для исследования рядов вида $\sum_{n=1}^{\infty}b_n\sin nx$, $\sum_{n=1}^{\infty}b_n\cos nx$, где

$$\left|\sum_{n=1}^{N}\sin nx\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|}, \quad x \neq 2\pi k; \qquad \left|\sum_{n=1}^{N}\cos nx\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|}, \quad x \neq 2\pi k;$$

$$\left|\sin nx\right| \geq \frac{1-\cos 2nx}{2}; \qquad \left|\cos nx\right| \geq \frac{1+\cos 2nx}{2}.$$
 Докажем оценку для $\left|\sin nx\right|$. Поскольку $0 \leq \left|\sin nx\right| \leq 1$, то

 $|\sin nx| \ge |\sin nx| \cdot |\sin nx| = \sin^2 nx = \frac{1 - \cos 2nx}{2}$

Оценка для $|\cos nx|$ доказывается аналогично.

Докажем остальные оценки (в конце семинара, если останется время). Рассмотрим

$$S_N = \sum_{n=1}^N e^{inx}.$$

Обозначим $q=e^{ix}=\cos x+i\sin x$, тогда $q\neq 1$ при $x\neq 2\pi k$. Получается

$$S_N = \sum_{n=1}^N q^n = q \frac{1 - q^N}{1 - q}, \qquad q \neq 1.$$

Далее,

$$S_{N} = e^{ix} \frac{1 - e^{iNx}}{1 - e^{ix}} = e^{ix} \frac{e^{i\frac{Nx}{2}} \left(e^{-i\frac{Nx}{2}} - e^{i\frac{Nx}{2}}\right)}{e^{i\frac{x}{2}} \left(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}\right)} = e^{i\frac{N+1}{2}x} \frac{\sin\frac{Nx}{2}}{\sin\frac{x}{2}} = \left(\cos\frac{N+1}{2}x + i\sin\frac{N+1}{2}x\right) \frac{\sin\frac{Nx}{2}}{\sin\frac{x}{2}}, \quad x \neq 2\pi k.$$

Заметим, что

$$\sum_{n=1}^{N} \sin nx = \text{Im} \sum_{n=1}^{N} e^{inx} = \text{Im} S_{N} = \sin \frac{N+1}{2} x \frac{\sin \frac{Nx}{2}}{\sin \frac{x}{2}},$$

$$\sum_{n=1}^{N} \cos nx = \text{Re} \sum_{n=1}^{N} e^{inx} = \text{Re} S_{N} = \cos \frac{N+1}{2} x \frac{\sin \frac{Nx}{2}}{\sin \frac{x}{2}}.$$

Отсюда

$$\left| \sum_{n=1}^{N} \sin nx \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}, \qquad \left| \sum_{n=1}^{N} \cos nx \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}, \qquad x \ne 2\pi k.$$

Пример 5. Исследовать на абсолютную и условную сходимость $\sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$.

HУC:
$$\lim_{n\to\infty} \frac{\cos n}{\sqrt{n}} = 0$$
.

1. Используем признак Дирихле. Пусть $a_n = \cos n$, $b_n = \frac{1}{\sqrt{n}}$. Тогда а) $|\sum_{n=1}^N a_n| = |\sum_{n=1}^N \cos n| \le \frac{1}{|\sin \frac{1}{2}|} \ \forall N$ (использована стандартная оценка);

б)
$$b_n = \frac{1}{\sqrt{n}} \downarrow 0$$
.

Значит, по признаку Дирихле ряд $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{\cos n}{\sqrt{n}}$ сходится.

2. Будет ли сходимость абсолютной? Рассмотрим ряд из модулей: $\sum_{n=1}^{\infty} \left| \frac{\cos n}{\sqrt{n}} \right|$.

Справедлива оценка снизу: $\left|\frac{\cos n}{\sqrt{n}}\right| \ge \frac{1+\cos 2n}{2\sqrt{n}} \ge 0$

(использована стандартная оценка: $|\cos nx| \ge \frac{1+\cos 2nx}{2}$).

Рассмотрим минорантный ряд $\sum_{n=1}^{\infty} \frac{1+\cos 2n}{2\sqrt{n}}$. Он является суммой двух рядов:

$$\sum_{n=1}^{\infty} \frac{1 + \cos 2n}{2\sqrt{n}} = \sum_{\substack{n=1 \ \text{расходится}}}^{\infty} \frac{1}{2\sqrt{n}} + \sum_{\substack{n=1 \ \text{сходится}}}^{\infty} \frac{\cos 2n}{2\sqrt{n}}.$$
 То, что сходится ряд $\sum_{n=1}^{\infty} \frac{\cos 2n}{2\sqrt{n}}$, доказывается аналогично п. 1.

Докажем, что **сумма сходящегося и расходящегося ряда всегда расходится.** Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} b_n$ — расходится. Докажем, что ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ тоже расходится. От противного. Если ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится, то разность двух сходящихся ря-

$$\sum_{n=1}^{\infty} (a_n + b_n) - \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + b_n - a_n) = \sum_{n=1}^{\infty} b_n$$

есть сходящийся ряд (по свойству разности рядов), а это противоречит условию, что

ряд $\sum_{n=1}^{\infty} b_n$ — расходится. Следовательно, ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ расходится. Таким образом, минорантный ряд $\sum_{n=1}^{\infty} \frac{1+\cos 2n}{2\sqrt{n}}$ расходится как сумма сходящегося и расходящегося ряда, поэтому и ряд $\sum_{n=1}^{\infty} \left| \frac{\cos n}{\sqrt{n}} \right|$ расходится (по признаку сравнения). Значит, абсолютной сходимости нет.

Ответ: ряд сходится условно.

Пример 6 (дополнительный). Исследовать на абсолютную и условную сходимость $\sum_{n=1}^{\infty} \frac{(-1)^{n(n-1)/2}}{n}.$

Пусть $a_n = (-1)^{n(n-1)/2}$, $b_n = \frac{1}{n}$. Тогда выражение

$$\sum_{n=1}^{N} a_n = 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + \dots + (-1)^{N(N-1)/2}$$

может принимать значения 2, 1, 0. Таким образом,

$$\left| \sum_{n=1}^{N} a_n \right| \le 2 \ \forall N.$$

Кроме того, $b_n = \frac{1}{n} \downarrow 0$. Значит, ряд сходится по признаку Дирихле.

Абсолютной сходимости нет, т. к. ряд $\sum_{n=1}^{\infty} \left| \frac{(-1)^{\frac{n(n-1)}{2}}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Ответ. Ряд сходится условно.

Пример 7 (Демидович № 2671, дополнительный). Исследовать на абсолютную и условную сходимость $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + 1})$.

Заметим, что при больших n аргумент синуса близок к πn , поэтому представим его в виде суммы πn и малой добавки:

$$a_{n} = \sin\left(\pi\sqrt{n^{2} + 1}\right) =$$

$$= \sin\left(\pi n + \underbrace{\pi\sqrt{n^{2} + 1} - \pi n}\right) = \sin\pi n \cos\left(\pi\sqrt{n^{2} + 1} - \pi n\right) +$$

$$+ \cos\pi n \sin\left(\pi\sqrt{n^{2} + 1} - \pi n\right) = (-1)^{n} \sin\left(\pi\sqrt{n^{2} + 1} - \pi n\right) = (-1)^{n} b_{n}.$$
Torse

Тогда

$$\begin{split} b_n &= \sin \left(\pi \sqrt{n^2 + 1} - \pi n \right) = \sin \left[\pi \left(\sqrt{n^2 + 1} - n \right) \right] = \\ &= \sin \left(\pi \frac{\left(\sqrt{n^2 + 1} - n \right) \left(\sqrt{n^2 + 1} + n \right)}{\sqrt{n^2 + 1} + n} \right) = \sin \left(\pi \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n} \right) = \sin \frac{\pi}{\sqrt{n^2 + 1} + n}. \end{split}$$

Теперь видно, что при всех натуральных $n: b_n \downarrow 0 \Rightarrow$ ряд сходится (по признаку Лейбница).

Проверим, будет ли сходимость абсолютной:

 $|a_n| = b_n = \sin \frac{\pi}{\sqrt{n^2 + 1} + n} > 0$ при всех натуральных n.

При $n \to \infty$:

$$\frac{\pi}{\sqrt{n^2+1}+n} = O^*\left(\frac{1}{n}\right)$$
, $\sin\frac{\pi}{\sqrt{n^2+1}+n} = O^*\left(\frac{1}{n}\right)$, поэтому ряд $\sum_{n=1}^{\infty} |a_n|$ расходится (по специальному признаку сравнения). Абсолютной сходимости нет.

Ответ: ряд сходится условно.

Д**3 7.** Демидович 1997 г. (2003 г.) № 2632, 2666.1 (2666), 2675, 2684, 2686, 2697 (2696), 2701.

В следующий раз — к/р.