Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

δίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμ για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Αλέξιος Πυργιώτης Εθνικό Μετσόβιο Πολιστέχνο October 15, 2013

- 1. Καλημέρα σας, ονομάζομαι Αλέξιος Πυργιώτης Θα σας παρουσιάσω τη διπλωματική μου με τίτλο:...
- 2. Ακούγεται κάπως περίεργο στα ελληνικά... αυτό που πραγματεύται είναι την δημιουργία ενός caching μηχανισμού για το Archipelago, ένα distibuted, storage layer
- 3. Συγκεκριμένα, στην παρουσίαση αυτή θα μιλήσουμε για τον cached, δηλαδή τον caching μηχανισμό μας, αλλά και για το synapsed, ένα συμπληρωματικό εργαλείο που στόχος του είναι να δώσει στον cached δικτυακές δυνατότητες

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Αλέξιος Πυργιώτης

Εθνικό Μετσόβιο Πολυτεχνείο

October 15, 2013

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον 2013-10-Υπολογιστικού Νέφους -Contents

- 1. Ο κορμός της παρουσίασης είναι ο εξής:
 - Αρχικά, παρουσιάζουμε κάποια εισαγωγικά που αφορούν το background της εργασίας μας. Αναφέρουμε τι είναι το Synnefo, τι είναι η υπηρεσια okeanos και τι είναι το Αρχιπέλαγο
 - Έπειτα, δείχνουμε τον τρόπο με τον οποίο η υποδομή μας χειριζεται αιτήματα δεδομένων από ένα VM.

Contents

Introduction

Request handling

Caching

Cached design

Cached evaluation

Introduction

Table of Contents

Introduction

Request nandiir

Cachin

Cached desig

Cached evaluation

Symneto
Symneto
Open zource, production read
Designed aince 2015 by (16%)
Symneto, are not cloud software
Compate Service
- Nemero, Service
- Storage Service
- Identity Service
- Identity Service

Ας ξεκινήσουμε με την παρούσα κατάσταση. Το software που τα ξεκίνησε όλα είναι το Synnefo

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για

Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον

Υπολογιστικού Νέφους └─Introduction

-Synnefo

..by GRNET -> Και φυσικά τα παιδιά που βλεπετε εδώ

- Compute service, είναι η υπηρεσία η οποία προμηθεύει τους χρήστες με VMs και επιτρέπει το χειρισμό τους
- Network service, είναι η υπηρεσία η οποία δίνει τη δυνατότητα στους χρήστες να δημιουργήσουν ιδιωτικά δίκτυα και να συνδέσουν τα VMs τους σε αυτά.
- Storage service, που κοινώς αποθηκεύει τα αρχεία των χρηστών.
 Στην περίπτωση του Synnefo όμως, έχουμε ένα κοινό σημείο για τα πάντα: είτε είναι αρχεία, είτε δίσκοι των VMS, είτε images
- Image Service, υπεύθυνο για το deployment ενός VM από ένα image.
 Επίσης, κάνει και παραμετροποιήσεις (παράδειγμα ssh κλειδιά)

Synnefo

Introduction

synnefo

Open source, production-ready, cloud software. Designed since 2010 by GRNET.

Synnefo, as most cloud software, has the following services:

- Compute Service
- Network Service
- Storage Service
- Image Service
- Identity Service
- 4/32

2013-1

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους Introduction

-okeanos

okeanos

əkeanos

Targeted at the Greek Academic and Research Community

 laaS είναι πρακτικά η παροχή εικονικής υποδομής σε χρήστες (δηλαδή πάρε υπολογιστή (VM), δίκτυα, αρχεία κτλ)

• Δωρεάν για τους Ακαδημαϊκους σκοπούς, ήδη γίνονται εργαστήρια στο ΕΜΡ και απ' αυτό το εξάμηνο σε άλλες σχολές

Introduction

okeanos

⊸keanos

- laaS service
- Targeted at the Greek Academic and Research Community
- Designed by GRNET
- In production since 2011

2013-1

-okeanos

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους Introduction

laaS είναι πρακτικά η παροχή εικονικής υποδομής σε χρήστες

• Δωρεάν για τους Ακαδημαϊκους σκοπούς, ήδη γίνονται εργαστήρια

(δηλαδή πάρε υπολογιστή (VM), δίκτυα, αρχεία κτλ)

στο ΕΜΡ και απ' αυτό το εξάμηνο σε άλλες σχολές

okeanos

əkeanos

Targeted at the Greek Academic and Research Community

okeanos

Introduction

୬keanos

- laaS service
- Targeted at the Greek Academic and Research Community
- Designed by GRNET
- In production since 2011
- ...and of course powered by Synnefo.

Table of Contents

Request handling

Request handling

Table of Contents

Introduction

Request handling

Cachin

Cached design

Cached evaluation

Τι είναι η διαχείριση των αιτημάτων ενός VM? Είναι η εφαρμογή πολιτικών και επεξεργασία των αιτημάτων σε όλη την πορεία τους μέχρι το να φτάσουν στο storage.

Δηλαδή έχουμε ένα εικονικό μηχάνημα <κλικ> ... το storage μας <κλικ> και πρέπει με κάποιο τρόπο τα δεδομένα του μηχανήματος να φτάσουν σε εμάς <κλικ> Ένας απλός τρόπος θα ήταν να τα συνδέσουμε. Άλλωστε όταν τρέχει VM, ο hypervisor κοιτάει block device. Θα μπορούσε να ήταν κομμάτι του storage Είναι αυτό αρκετό; <κλικ> Όχι, χρειαζόμαστε επίσης **FIXME**:

Request handling

What is request handling?

Ц
7
C
$\overline{}$
ď
Ξ
2
٠,

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Request handling

What is request handling?

Τι είναι η διαχείριση των αιτημάτων ενός VM? Είναι η εφαρμογή πολιτικών και επεξεργασία των αιτημάτων σε όλη την πορεία τους μέχρι το να φτάσουν στο storage.

Δηλαδή έχουμε ένα εικονικό μηχάνημα <κλικ> ... το storage μας <κλικ> και πρέπει με κάποιο τρόπο τα δεδομένα του μηχανήματος να φτάσουν σε εμάς <κλικ> Ένας απλός τρόπος θα ήταν να τα συνδέσουμε. Άλλωστε όταν τρέχει VM, ο hypervisor κοιτάει block device. Θα μπορούσε να ήταν κομμάτι του storage Είναι αυτό αρκετό; <κλικ> Όχι, χρειαζόμαστε επίσης **FIXME**:

Request handling

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Request handling

What is request handling?

Τι είναι η διαχείριση των αιτημάτων ενός VM? Είναι η εφαρμογή πολιτικών και επεξεργασία των αιτημάτων σε όλη την πορεία τους μέχρι το να φτάσουν στο storage.

Δηλαδή έχουμε ένα εικονικό μηχάνημα <κλικ> ... το storage μας <κλικ> και πρέπει με κάποιο τρόπο τα δεδομένα του μηχανήματος να φτάσουν σε εμάς <κλικ> Ένας απλός τρόπος θα ήταν να τα συνδέσουμε. Άλλωστε όταν τρέχει VM, ο hypervisor κοιτάει block device. Θα μπορούσε να ήταν κομμάτι του storage Είναι αυτό αρκετό; <κλικ> Όχι, χρειαζόμαστε επίσης **FIXME**:

Request handling

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Request handling

What is request handling?

Τι είναι η διαχείριση των αιτημάτων ενός VM? Είναι η εφαρμογή πολιτικών και επεξεργασία των αιτημάτων σε όλη την πορεία τους μέχρι το να φτάσουν στο storage.

Δηλαδή έχουμε ένα εικονικό μηχάνημα <κλικ> ... το storage μας <κλικ> και πρέπει με κάποιο τρόπο τα δεδομένα του μηχανήματος να φτάσουν σε εμάς <κλικ> Ένας απλός τρόπος θα ήταν να τα συνδέσουμε. Άλλωστε όταν τρέχει VM, ο hypervisor κοιτάει block device. Θα μπορούσε να ήταν κομμάτι του storage Είναι αυτό αρκετό; <κλικ> Όχι, χρειαζόμαστε επίσης **FIXME**:

Request handling

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Request handling

What is request handling?

Policy enforcement
Strange agrossicity?

= ?

What is request handling?

Τι είναι η διαχείριση των αιτημάτων ενός VM? Είναι η εφαρμογή πολιτικών και επεξεργασία των αιτημάτων σε όλη την πορεία τους μέχρι το να φτάσουν στο storage.

Δηλαδή έχουμε ένα εικονικό μηχάνημα <κλικ> ... το storage μας <κλικ> και πρέπει με κάποιο τρόπο τα δεδομένα του μηχανήματος να φτάσουν σε εμάς <κλικ> Ένας απλός τρόπος θα ήταν να τα συνδέσουμε. Άλλωστε όταν τρέχει VM, ο hypervisor κοιτάει block device. Θα μπορούσε να ήταν κομμάτι του storage Είναι αυτό αρκετό; <κλικ> Όχι, χρειαζόμαστε επίσης **FIXME**:

Request handling

- Policy enforcement?
- Storage agnosticity?

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους —Request handling

Η λύση που χρησιμοποιήσαμε είναι το Archipelago

- Software-defined: αν και είναι ένα όρος μαρκετινγκ, εμείς κανονικά.
 Σημαίνει με το software OPIZEIΣ το storage (εφαρμογή policy, αλλαγή πορείας του request)
- τρέχει σε πολλούς κόμβους

Our solution

- αποτελείται από διακριτά κομμάτια
- κάνει CoW (εξήγησε ότι τα images είναι λίγα, τα VMs πολλά, όπως όταν ένα process κάνει fork)
- μπορούμε χρησιμοποιήσουμε ότι θέλουμε

Request handling

8/32

Our solution

Archipelago

Key features: 1) Software-defined 2) Distributed) Modular Copy-On-Write Storage agnostic

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους —Request handling

-Archipelago Architecture

 Το VM στέλνει αίτημα στο δίσκο του, ο δίσκος είναι εικονικός, θα το δει ο hypervisor (εξήγησε τι είναι ο hypervisor) και θα το στείλει στον δίσκο που το έχουμε πει. (xsegbd)

• 2) **FIXME**:

Request handling

Archipelago Architecture

2	Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους
2	Request handling
3	L_RADOS

RADOS
The object store component of Caph filesystem.
Key fixature:
Replication
Fault blerance
Self-management
Scalability

Request handling

RADOS

The object store component of Ceph filesystem.

Key features:

- Replication
- Fault tolerance
- Self-management
- Scalability

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους —Request handling

2013-10

RADOS
The object size component of Caph Resystem.
Key feature:

* Replication

* Fault Informance

* Scalability

* Scalability

* Scalability

* Scalability

* Scalability

* Will will page a cache > 50MBs, < Ins

* Will willow

* Will willow

* Replication

*

Request handling

RADOS

The object store component of Ceph filesystem.

Key features:

- Replication
- Fault tolerance
- Self-management
- Scalability

Speed issues:

VM with page-cache: > 90MB/s, < 1ms VM without page-cache: < 7MB/s, 10ms

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους 2013-10 Request handling -RADOS

Fault tolerand

RADOS

Key features: Replication

Request handling

RADOS

The object store component of Ceph filesystem.

Key features:

- Replication
- Fault tolerance
- Self-management
- Scalability

Speed issues:

VM with page-cache: > 90MB/s, < 1ms VM without page-cache: < 7MB/s, 10ms

Thesis goal: make this faster.

10/32

Caching

Table of Contents

Introduction

Request handlin

Caching

Cached desig

Cached evaluation

-	Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους
-	Caching
ı	L_Intro

We have a slow medium

Solution: Caching Caching is:

Sounds familiar's

Caching

Intro

Solution: Caching

Caching is:

- We have a slow medium
- Add a fast medium in a data path
- Transparently store the data that are intended for the slower medium.
- Profit: later accesses to the same data are faster.

Sounds familiar?

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

— Caching

2013-10-

Caching

Computer Memory Hierarchy

That's because every PC is built that way.

13/32

2013-10-Caching

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

There are solutions separated in two categories

Is there anything to help us?

We are not the first to have speed issues

Facebook, Twitter, Dropbox, every one has hit and surpassed their limits.

There are solutions separated in two categories:

- Block store
- Key-value store

Caching

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

— Caching

— Block-store caching solutions

Block-store caching solutions

Most rotable examples:

Beache
Flashcache
EnhanceIO

Caching

Block-store caching solutions

Most notable examples:

- Bcache
- Flashcache
- EnhancelO

Typically scale-up solutions.

Pros: Simple, scale-up

Cons: Unaware of CoW, kernel solutions

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Caching — Key-value caching solutions

Key-value caching solutions

Most notable examples

• Memcached

Memcached
 Couchbase

Typically scale-out solutions

Pros: Distributed with no SPOF, can utilize unneeded RAM Cons: Memcached has no persistence, Couchbase cannot use RADOS as its backend, more suitable for databases Caching

Key-value caching solutions

Most notable examples:

- Memcached
- Couchbase

Typically scale-out solutions

Pros: Distributed with no SPOF, can utilize unneeded RAM Cons: Memcached has no persistence, Couchbase cannot use RADOS as its backend, more suitable for databases

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον 2013-10-Υπολογιστικού Νέφους -Caching -Page-cache

Page-cache

What if we used the page-cache?

Caching

Page-cache

What if we used the page-cache?

Pros: Easy to activate, tested, very fast Cons: Unaware of CoW, no control over it, practically kernel solution

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Caching — Conclusions

Conclusions

fost solutions far from Archipelago's logic

Caching

Conclusions

- Most solutions far from Archipelago's logic
- Block store might be good for the storage backend
- Must implement our own solution

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Table of Contents Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον 2013-10-Υπολογιστικού Νέφους Cached design Table of Contents

Cached design

Table of Contents

Introduction

Request handlin

Cachin

19/32

Cached design

Cached evaluation

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους —Cached design

Requirements

Design goals for cached:

Create something close to the Archipelago logic

Create something close to the Archipelago logic
 Measure the best possible performance we can get

Nativity Pluggability

In-memory
 Low indexing overhead

Requirements

Cached design

Design goals for cached:

- Create something close to the Archipelago logic
- Measure the best possible performance we can get

Stricter requirements for cached:

- Nativity
- Pluggability
- In-memory
- Low indexing overhead

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους —Cached design

-Cached design

Cached design

Cached design

Cached design

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους Cached design

-Cached design

Cached design

Cached design

Cached design

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design

Cached design

Xcache design

Xcache is responsible for: 1) entry indexing, 2) entry eviction, 3) concurrency control, 4) notification via event hooks

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design — Xcache design

Cached design

Xcache design

Xcache is responsible for: 1) entry indexing, 2) entry eviction, 3) concurrency control, 4) notification via event hooks

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design — Xworkq design

Xworkq design

Cached design

Xworkq design

Xworkq is responsible for concurrency control

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design — Xwaitq design

Xwaitq design

Cached design

Xwaitq design

Xwaitq is responsible for deferred execution

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους Cached design Bucket pool

2013-10

Bucket pool

MB size of data because: RAM is limited

Cached design

Bucket pool

When an object is indexed, it does not have immediate access to 4MB size of data because:

- RAM is limited
- Leads to small number of entries.

Ideally, we want to:

- Decouple the objects from their data
- Cache unlimited objects but put a limit on their data

Solution:

- Preallocated data space
- Every object request a bucket (typically 4KB)
- When an object is evicted, its buckets are reclaimed

25/32

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για
Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον
Υπολογιστικού Νέφους
Cached design
Other important cached tasks

Other important cached tasks

Several other key-tasks are: • Book-keeping

Cache write policy

Data propagation

Cached design

Other important cached tasks

Several other key-tasks are:

- Book-keeping
- Cache write policy
- Asynchronous task execution
- Data propagation

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design — Cached flow

2013-10-

Cached design

Cached flow

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους — Cached design — Cached flow

2013-10-

Cached design

Cached flow

Cached evaluation

Table of Contents

Introduction

Request handlin

Cachin

Cached desig

Cached evaluation

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

— Cached evaluation

— Benchmark methodology

Benchmark methodology

We have conducted many benchmarks.

- Comparison between cached and sosd

- Peak behavior

- Sustained behavior

- Internal comparison of cached

- Lock contention

- Indexing mechanism eventead

Evaluation under a VM

Cached evaluation

Benchmark methodology

We have conducted many benchmarks. They are separated in three categories:

- Comparison between cached and sosd
 - Peak behavior
 - Sustained behavior
- Internal comparison of cached
 - Lock contention
 - Indexing mechanism overhead
- Evaluation under a VM

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Cached evaluation

Cached/sosd comparison - peak behavior

Cached evaluation

Cached/sosd comparison - peak behavior

Write bandwidth

Constants:

- cached has 4 threads
- workload size does not exceed cache size

Read bandwidth

Variables:

- block size [4kb, 64kb]
- parallel requests [4, 16]

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Cached evaluation

Cached/sosd comparison - peak behavior

Cached/sosd comparison - peak behavior

Write latercy

Read storcy

Variables:

- cached his 4 fineads

- workload size does not exceed

- parallel requests [4, 16

Cached evaluation

Cached/sosd comparison - peak behavior

Write latency

Constants:

- cached has 4 threads
- workload size does not exceed cache size

Read latency

Variables:

- block size [4kb, 64kb]
- parallel requests [4, 16]

Σχεδίαση και Υλοποίηση Μηχανισμού Κρυφής Μνήμης για Κατανεμημένο Σύστημα Αποθήκευσης σε Περιβάλλον Υπολογιστικού Νέφους

Cached evaluation

Cached/sosd comparison - sustained behavior

Cached evaluation

Cached/sosd comparison - sustained behavior

Write bandwidth

Constants:

- cached has 4 threads
- workload twice the cache size
- block size is 4KB
- Parallel requests are 16

32/32

Variables:

- block size [4kb, 64kb]
- parallel requests [4, 16]