

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு ஆநாம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

6th Term Examination - 2024

இரசாயனவியல்	-	II
Chemistry	_	II

Gr -13 (2024)

02

T

B

பகுதி B – கட்டுரை

❖ இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு விடையளிக்குக. (ஒவ்வொரு வினாவிற்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)

05)

a) மூடிய விறைத்த பாத்திரமொன்றில் $N_{2(g)}$ உம் $H_{2(g)}$ உம் முறையே 1:4 எனும் மூல் விகிதத்தில் காணப்படுகின்றன. தொகுதியின் வெப்பநிலையை T_1 ஆக உயர்த்தும் போது கீழ்வரும் சமநிலை அடையப்பட்டது.

$$2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$$

இச்சமநிலைத் தொகுதியில் $NH_{3(g)}$ இன் மூல் சதவீதம் 25% ஆகக் காணப்பட்டது. சமநிலைத் தொகுதியின் அமுக்கம் $1.6\times 10^5 Pa$ ஆகும். மேற்குறித்த சமநிலை தொடர்பான பின்வரும் வினாக்களுக்கு விடையளிக்குக.

- I) T_1 வெப்பநிலையில் மேற்படி சமநிலை மாறிலிக்கான (K_p) கோவையை எழுதுக.
- II) T_1 வெப்பநிலையில் K_p இன் பெறுமானத்தைக் கணிக்க.

 T_1 வெப்பநிலையில் உள்ள மேற்குறிப்பிட்ட சமநிலைத் தொகுதியின் வெப்பநிலையை T_2 ஆக மாற்றிய போது சிறிது நேரத்தின் பின் மீண்டும் ஒரு புதிய சமநிலை உருவாகிக் காணப்பட்டது. இப்புதிய சமநிலையில் $N_{2(g)}$ இன் மூல் சதவீதம் 10% ஆகக் காணப்பட்டது. மேலும் கீழேயுள்ள பிணைப்புச் சக்தி தொடர்பான சில தரவுகளும் உமக்குத் தரப்பட்டுள்ளன.

பിഞ്ഞെப்பு	நியம பிணைப்புப் பிரிகை	
	வெப்பவுள்ளுறை $\Delta H_D^ heta$ / $KJmol^{-1}$	
$N \equiv N$	946	
N-H	389	
H - H	432	

- ${
 m III})$ மேல்தரப்பட்ட சமநிலைத் தாக்கத்தின் முன்முகத் தாக்கத்துக்கான தாக்கவெப்பவுள்யுறையை $\Delta H_{rexn}^{ heta}$ கணிக்க.
- IV) T_1, T_2 ஆகியவற்றில் எது உயர்வானது?
- V) T_1,T_2 வெப்பநிலைகளில் தொகுதி சமநிலையடைவதற்கான காலங்களை ஒப்பிடுக.

b)

I) 1.6g எதனோல் (C_2H_5OH) பூரணமாக தகனமடையச் செய்யும் போது வெளிவிடப்படும் வெப்பமானது 250g நீரின் வெப்பநிலையை $27^{\circ}\mathrm{C}$ இலிருந்து $72^{\circ}\mathrm{C}$ இற்கு உயர்த்துவதற்குப் போதுமானதாக இருப்பின் எதனோலின் தகன வெப்பவுள்ளுறைப் பெறுமானத்தைக் காண்க. (நீரின் தன்வெப்பக் கொள்ளளவு = $4200Jkg^{-1}K^{-1}$)

- II) ஒரு மனிதன் ஒரு நிமிடத்தில் 20 தடவைகள் சுவாசிக்கின்றான். ஒவ்வொரு தடவை சுவாசிக்கும் போதும் $340cm^3$ வளியை உட்சுவாசித்து வெளிவிடுகின்றான். உட்சுவாச வளியில் கனவளவுப்படி 21% O_2 உம் வெளிச்சுவாச வளியில் 16.1% O_2 உம் காணப்படுகின்றது. இவ்விரு சுவாசங்களும் 298K இலும் 1atm இலும் நிகழ்வதாகக் கொள்க. மேலும் உட்சுவாசத்தின் போது உள்ளெடுக்கப்பட்ட O_2 முழுவதும் சுக்குரோசின் $(C_{12}H_{22}O_{11})$ தகனத்துக்குப் பயன்படுகின்றதெனக் கருதுக.
 - (i) ஒரு நாளில் சுவாசச் செயன்முறையின் போது மனித உடலில் எரிக்கப்படும் சுக்குரோசின் திணிவைக் கணிக்க.
 - (ii) இவ்வாறு எரிக்கப்படும் போது ஒரு நாளில் வெளியேறும் சக்தியின் அளவு யாது? (சுக்குரோசின் நியமதகன வெப்பவுள்ளுறை, $\Delta H_{c\,(sucrose)}^{\theta} = -5600 KJ mol^{-1}$)

06)

- a) 25° C இல் 1atm அமுக்கத்தில் $0.3moldm^{-3}$ HCl இல் H_2S ஐக் கரைப்பதன் மூலம் H_2S இன் நிரம்பற் கரைசலொன்று தயாரிக்கப்பட்டது. 25° C இல் $H_2S_{(aq)}$ இன் முதலாம், இரண்டாம் அயனாக்க மாறிலிகள் முறையே $K_1 = 1 \times 10^{-7} moldm^{-3}$,
 - $K_2=1 imes 10^{-13} moldm^{-3}$ எனத் தரப்பட்டுள்ளது. மேற்படி வெப்பநிலை, அமுக்க நிபந்தனைகளில் H_2S இன் நிரம்பற் கரைசலின் செறிவு H_2S தொடர்பாக $0.1 moldm^{-3}$ ஆகக் காணப்பட்டது.
- I) $0.3 moldm^{-3}\ HCl$ இல் உள்ள H_2S இன் நிரம்பற் கரைசலில் S^{2-} அயன் செறிவைக் கணிக்க.
- II) $0.3moldm^{-3}$ HCl கரைலொன்று Cu^{2+} , Ni^{2+} அயன்கள் ஒவ்வொன்றையும் தனித்தனி $0.1moldm^{-3}$ செறிவில் கொண்டிருந்தது. இக்கரைசலினூடாக H_2S வாயு செலுத்தப்பட்டு நிரம்பலாக்கப்பட்டது. இந்நிலைமையில் வீழ்படிவாகும் கற்றயன் எது? என்பதை பொருத்தமான கணிப்பின் மூலம் உய்த்தறிக. $(25^{\circ}\text{C} \quad \text{இல்} \quad K_{sp(CuS)} = 6.3 \times 10^{-36} mol^2 dm^{-6}, K_{sp(NiS)} = 2.5 \times 10^{-19} mol^2 dm^{-6}$ எனத் தரப்பட்டுள்ளது)
- III) பகுதி II இல் குறிப்பிட்ட கரைசலின் pH ஐ மாற்றுவதன் மூலம் மற்றைய கற்றயனை வீழ்படிவாக்குவதற்குத் திட்டமிடப்பட்டது. இவ் இரண்டாவது கற்றயன் வீழ்படிவாக ஆரம்பிக்கும் கணத்தில் கரைசலின் pH பெறுமானத்தைத் துணிக. ($log_{10}2=0.3010$) (இதன் போது H_2S தொடர்பான செறிவு $1\times 10^{-5} moldm^{-3}$ எனக் கொள்க.)
- b) $0.208moldm^{-3}$ செறிவில் NH_3 ஐக் கொண்டுள்ள $CHCl_3$ கரைசலின் $50cm^3$ உடன் $50cm^3$ நீர் சேர்த்துக் குலுக்கி அறைவெப்பநிலையில் சமநிலையடைய விடப்பட்டது. படைகள் வேறாக்கப்பட்ட பின்பு நீர்ப்படையிலிருந்து $10cm^3$ எடுக்கப்பட்டு $0.25moldm^{-3}$ செறிவுள்ள HCl உடன் நியமிக்கப்பட்ட போது தேவையான HCl இன் கனவளவு $8cm^3$ ஆகக் காணப்பட்டது.

I)

- (i) நீர்ப்படையில் NH_3 இன் செறிவைக் கணிக்க.
- (ii) $CHCl_3$ படையிலுள்ள NH_3 இன் செறிவைக் கணிக்க.
- (iii) நீருக்கும் $CHCl_3$ இற்குமிடையே NH_3 இன் பங்கீட்டுக்குணகம் K_D ஐக் கணிக்க.
- (iv) மேலுள்ள கணிப்பில் நீர் பயன்படுத்திய எடுகோள் யாது?

- மிகை $NH_{3}{}_{(aa)}$ இல் சிக்கலயனை தரக்கூடிய இரு வலுவளவுள்ள கற்றயன் X^{2+} II) $0.2 moldm^{-3}$ நீர்க்கரைசலின் $25 cm^3$ ஆனது $1 moldm^{-3}$ மிகை $NH_{3(aq)}$ இன் $35.2 cm^3$ உடன் கலக்கப்பட்ட போது அமைன் சிக்கலயன் தோற்றுவிக்கப்பட்டது. (இத்தாக்கத்தில் கற்றயன் முற்றாகத் தாக்கமுற்றிருந்தது) பின்னர் விளைவுக்கலவை ஆனது சமகனவளவு குலுக்கப்பட்டு வெப்பநிலையிலே சமநிலையடைய $CHCl_3$ உடன் நன்கு அறை விடப்பட்டது. (இதன்போது நீர்க்கரைசலிலுள்ள சிக்கலயனின் நிறச்செறிவு மாறவில்லை) பின் CHCl_3 படை பொருத்தமான முறையில் நியம HCl ஒன்றுடன் நியமிக்கப்பட்ட போது அதில் காணப்பட்ட NH_3 இன் மூல் அளவு $2 imes 10^{-4} mol$ ஆகக் காணப்பட்டது.
 - (i) சிக்கலயனைத் தோற்றுவித்த பின் நீர்ப்படையில் சுயாதீனமாக காணப்பட்ட NH_3 இன் மூல் அளவு யாது?
 - (ii) சிக்கலயனைத் தோற்றுவிக்கப் பயன்பட்ட NH_3 இன் மூல் அளவு யாது?
 - (iii) சிக்கலயனின் சூத்திரத்தை பொருத்தமான கணிப்பொன்றின் மூலம் உய்த்தறிக. அதன் கேத்திர கணித வடிவம் யாது?

07)

a) குறிப்பிட்ட இரண்டு மின்வாய்களைப் பயன்படுத்தி அமைக்கப்பட்ட மின்னிரசாயனக் கலமொன்றை கீழே தரப்பட்ட வரிப்படம் காட்டுகிறது.

மேலுள்ள மின்வாய்களுடன் தொடர்புள்ள இரண்டு சமநிலைத் தாக்கங்களும் அவற்றின் நியமத் தாழ்த்தல் அழுத்தங்களும் வருமாறு,

$$AgCl_{(s)} + e \rightleftharpoons Ag_{(s)} + Cl_{(aq)}^{-}; \in \theta = +0.22V$$

 $Cl_{2(g)} + 2e \rightleftharpoons 2Cl_{(aq)}^{-}; \in \theta = +1.36V$

முனைகள் X,Y என்பன கடத்தியொன்றால் வோல்ற்மானிக்குத் தொடுக்கப்பட்டன.

- (i) மேலுள்ள கலத்தின் ஒட்சியேற்ற அரைத்தாக்கத்தை எழுதுக.
- (ii) கலத்தின் தாழ்த்தல் அரைத்தாக்கத்தை எழுதுக.
- (iii) கலத்தின் ஒட்டுமொத்தக் கலத்தாக்கத்தைத் தருக.
- (iv) கலத்தின் நியம மின்னியக்க விசை (\in_{cell}^{θ}) ஐக் கணிக்க.
- (v) கலத்துக்கான *IUPAC* குறியீடு யாது?
- m (vi) கலம் தொழிற்படுகையில் 0.15A மின்னோட்டமானது 25° C இல் 80 நிமிடங்களுக்குப் பெறப்பட்டது எனின் இந்நேர ஆயிடையில் $AgCl_{(s)}$ இல் ஏற்படும் மாற்றத்தை பொருத்தமான கணிப்பின் மூலம் உய்த்தறிக.
- b) X என்பது ஆவர்த்தன அட்டவணையில் நான்காம் ஆவர்த்தனத்திற்குரிய d தொகுப்பு மூலகமொன்றாகும். ஐதான HCl உடன் X தாக்கம் புரியச் செய்த போது நிறமுடைய கரைசல் X_1 உம் வாயு X_2 உம் கிடைத்தன. கரைசல் X_1 ஆனது NH_4OH/NH_4Cl உடன் பரிகரிக்கப்பட்டு பின் H_2S வாயு செலுத்தப்பட்ட போது பெறப்பட்ட கரிய நிற வீழ்படிவு X_3 ஆனது ஐதான HCl இல் கரையவில்லை எனினும் செறிந்த HNO_3 இல் கரைந்தது. கரைசல் X_1 இற்கு ஐதான NaOH சேர்த்த போது பச்சை நிற வீழ்படிவு X_4 பெறப்பட்டது.

இவ்வீழ்படிவு மிகையான NaOH இல் கரையாவிடினும் மிகை $NH_{3(aq)}$ இல் கரைந்து X_5 எனும் கரைசல் பெறப்பட்டது. கரைசல் X_1 இற்கு செறிந்த HCl மிகையாக சேர்த்த போது நிறமுடைய கரைசல் X_6 பெறப்பட்டது.

- (i) மூலகம் X இற்கும் X_1 தொடக்கம் X_6 வரையான இனங்களுக்குமான இரசாயனச் சூத்திரங்களைத் தருக.
- $(ext{ii})$ கரைசல் X_1 இல் உள்ள X இன் அயன் நிலைக்கான இலத்திரன் நிலையமைப்பை எழுதுக.
- $(iii)\,X_5,X_6$ கரைசல்களின் நிறங்களைத் தனித்தனியே குறிப்பிடுவதுடன் அவற்றுக்குக் காரணமான இரசாயன கூறுகளின் IUPAC பெயர்களையும் கேத்திர கணித வடிவங்களையும் குறிப்பிடுக.

பகுதி - C – கட்டுரை

இப்பகுதியிலிருந்து எவையேனும் இரண்டு வினாக்களுக்கு விடையளிக்குக. (ஒவ்வொரு வினாவிற்கும் 150 புள்ளிகள் வீதம் வழங்கப்படும்.)

08)

a) கீழே தரப்பட்ட தாக்கத்திட்டத்தினைப் பயன்படுத்தி சேர்வை P ஆனது சேர்வை W ஆக மாற்றப்பட்டது.

Q,R,S,T,U,V ஆகிய சேர்வைகளின் கட்டமைப்புக்களை வரைவதன் மூலமும் 1-7 வரையான படிமுறைகளுக்கான சோதனைப் பொருள்களை தரப்பட்ட பட்டியலிலிருந்து மாத்திரம் தெரிவு செய்து எழுதுவதன் மூலமும் மேற்தரப்பட்ட தாக்கத் திட்டத்தினைப் பூரணப்படுத்துக.

சோதனைப் பொருள்களின் பட்டியல் : Mg/ உலர் ஈதர், ஐதான NaOH, செறி NH_3 , PCC, PCl_5 , $H^+/K_2Cr_2O_7$

b)
$$CH_3 - CH - CH_3$$

மேலுள்ள சேர்வையை தொடக்கச் சேர்வையாகப் பயன்படுத்தி 7 இற்கு மேற்படாத படிகளில் பயன்படுத்தி கீழே தரப்பட்ட உருமாற்றத்தை எவ்விதம் மேற்கொள்வீர்?

$$CH_3 - CH - CH_3$$

$$Br OH$$

$$CH_3 - C - CH_2 - CH - CH_3$$

$$CH_3$$

$$CH_3$$

c) பின்வரும் மாற்றீட்டை 4 இற்கு மேற்படாத படிகளில் எவ்விதம் நிறைவேற்றுவீர் எனச் காட்டுக.

 $(CH_3)_3COH$ ஐத் தொடக்கச் சேர்வையாகப் பயன்படுத்தி 5 இற்கு மேற்படாத படிமுறைகளில் கீழே தரப்பட்ட உருமாற்றத்தை எங்ஙனம் நிறைவேற்றுவீர்? எனக் காட்டுக.

$$CH_3 - CH_3 -$$

d) பின்வரும் இரு சேர்வைகளையும் கருதுக.

$$CH_{3} - CH - CH_{3}$$

$$CH_{2} = CH - Cl$$

$$B$$

- I) மேற்படி சேர்வைகளில் கூட்டற்பல்பகுதியமொன்றை உருவாக்கக் கூடியது எது? அப்பல்பகுதியத்தின் பெயர் யாது?
- II) A, B என்பவற்றில் ஒன்று மட்டும் கருநாட்டப் பிரதியீட்டுத் தாக்கத்துக்கு உட்படும். அது எது? இதனை காபோ கற்றயன்களின் உறுதி மற்றும் பரிவு என்பவற்றின் அடிப்படையில் சுருக்கமாக விளக்குக.
- III) மேலே பகுதி II இல் குறிப்பிட்ட சேர்வை C_2H_5OH/KOH உடன் அடையும் தாக்கத்தின் விளைவை எழுதி அதற்கான பொறிமுறையையும் தருக. இப்பொறிமுறை எவ்வகைக்குரியது?

09)

a) A, B, C என்பன S தொகுப்பு மூலகங்களின் மூன்று சேர்வைகளாகும். இவற்றிலுள்ள கற்றயன்கள் முறையே X, Y, Z என்பனவாகும். சேர்வைகள் A, B என்பவற்றின் நீர்க்கரைசல்களை ஒன்று கலந்த போது D எனும் நீரில் அரிதாகக் கரையும் விளைபொருளும் மஞ்சள் நிறமுடைய கரைசல் E உம் பெறப்பட்டன. D இற்கு ஐதான வனன்மிலம் சிறிது சேர்க்கும் போது நிறமற்ற மணமுடைய வாயுவொன்று வெளியேறியது. அவ்வாயு H+/KMnO₄ இற்குள் செலுத்தப்பட்ட போது நிறமற்ற தெளிவான கரைசல் செலுத்தப்பட்டது. B, C என்பவற்றின் நீர்க்கரைசல்களைக் கலந்த போது வெண்ணிற வீழ்படிவு F உம் நிறமற்ற கரைசல் G உம் பெறப்பட்டன. மிகையான கரைசல் G இனுள் இலுள்ள அன்னயனிற்குரிய மூலகம் அமைந்துள்ள அதே கூட்டத்து மூலகமொன்றை(P) செலுத்திய போது கபில நிறமான கரைசலொன்று தோற்றுவிக்கப்பட்டது. இக்கபில

நிறத்துக்குக் காரணமான கூறுடன் தொடர்புடைய மூலகம் Q அறைவெப்பநிலையில் அதன் சுயாதீன நிலையில் கரு ஊதா நிறத்திண்மமாக காணப்படக் கூடியது.

கரைசல் E இனுள் சிறிதளவு ஐதான அமிலத்தை இட்ட போது செம்மஞ்கள் நிறமுடைய R எனும் கரைசல் உருவானது.

- X, Z எனும் கற்றயன்களுக்குரிய மூலகங்கள் ஒரே கூட்டத்துக்குரியது. X இன் உப்புக்கள் சுவாலைச் சோதனைக்கு சிறப்பான நிறத்தைக் கொடுக்கவில்லை. Z இன் ஐதரொட்சைட்டின் கரைதிறனானது அக்கூட்டத்து ஏனைய ஐதரொட்சைட்டுகளின் கரைதிறனைக் காட்டிலும் உயர்வானது. Y இற்குரிய மூலகமானது நீரில் எரிதலுடன் தாக்கமடையும். அதன் அணுவெண் 20 இற்கு உட்பட்டது.
 - I) A, B, C, X, Y, Z, D, E, F, G, Q, R என்பவற்றை இனம் காண்க.
- II) மூலகம் *P* யாது?
- III) வினாவில் குறிப்பிடப்பட்ட பின்வரும் தாக்கங்களுக்கு ஈடுசெய்த அயன் தாக்கங்களை எழுதுக.
 - (i) G இலிருந்து Q உருவாதல்.
 - (ii) E இலிருந்து R உருவாதல்.
- b) FeC_2O_4 , $FeSO_4$, $NaHCO_3$ ஆகியவற்றைக் கொண்ட திண்மக்கலவை நீரில் ஒரு $250cm^{3}$ $25cm^{3}$ பகுதிகள் கரைக்கப்பட்டு கரைசலாக்கப்பட்ட<u>து</u>. இக்கரைசலின் கீழுள்ள ஒவ்வொன்றையும் தனித்தனியே பயன்படுத்தி பரிசோதனைகள் மேற்கொள்ளப்பட்டன.

<u>பரிசோகனை – I</u>

கரைசலின் $_25cm^3$ பகுதிக்கு இரண்டு துளி மெதயிற் செம்மஞ்சள் காட்டி சேர்க்கப்பட்டு அளவியிலுள்ள $2moldm^{-3}~H_2SO_4$ கரைசலுடன் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் பயன்படுத்தப்பட்ட கனவளவு $25cm^3$ ஆக காணப்பட்டது.

<u>பரிசோதனை — II</u>

கரைசலின் பிறிதொரு $25cm^3$ பகுதி ஐதான HNO_3 ஆல் அமிலப்படுத்தப்பட்டு பின்பு $1moldm^{-3}$ மிகையான $BaCl_2$ கரைசல் சேர்க்கப்பட்டது. உருவான வீழ்படிவின் உலர் திணிவு 2.33g ஆகும்.

<u>பரிசோதனை — III</u>

ஆரம்பக் கரைசலின் மற்றொரு $25cm^3$ பகுதி $1moldm^{-3}$ H_2SO_4 இனால் அமிலப்படுத்தப்பட்டு அளவியிலுள்ள $1moldm^{-3}$ $K_2Cr_2O_7$ இனால் நியமிக்கப்பட்டது. முடிவுப்புள்ளியில் பயன்படுத்தப்பட்ட $K_2Cr_2O_7$ இன் கனவளவு $11.7cm^3$ ஆகும்.

- I) மேற்குறிப்பிட்ட பரிசோதனையில் நடைபெறும் தாக்கங்களுக்கான சமப்படுத்திய இரசாயனச் சமன்பாடுகளைத் தருக.
- II) கரைசலில் உள்ள $FeC_2O_4, FeSO_4, NaHCO_3$ ஆகியவற்றின் செறிவுகளைத் தனித்தனியே துணிக.

10)

a) பின்வரும் வினா ஊதுலை முறை இரும்பு உற்பத்தி மற்றும் Na_2CO_3 தயாரிப்புக்கான சோல்வே முறை என்பன தொடர்பானது.

I)

- (i) ஊதுலை முறை இரும்பு உற்பத்திக்கு பயன்படுத்தப்படும் மூலப்பொருள்களைத் தருக.
- (ii) இம்முறையில் இரும்பின் கனிமம் தாழ்த்தப்படுகின்றது. இத்தாழ்த்தலுக்குப் பயன்படும் தாழ்த்திகள் எவை? இவற்றில் பிரதான தாழ்த்தி உருவாதலுடன் சம்பந்தப்படும் தாக்கங்களை எழுதுக.
- (iii) இத்தயாரிப்பில் இரும்பின் சேர்வை தாழ்த்தப்படுகையில் நடைபெறும் தாக்கங்களை படிமுறையாக எழுதுக.

- (iv) இறுதியாக உருவாகும் இரும்பு வளியுடன் தாக்கமுறாது தடுக்கும் பதார்த்தத்தின் பெயர் யாது?
 - இதில் அடங்கியுள்ள சேர்வைகள் தோன்றுவதற்கான இரண்டு தாக்கங்களை எழுதுக.
- (v) ஊதுலையில் நிகழும் தாழ்த்தலை விரைவுபடுத்துவதற்கு எவ்விகிதம் உயர்வாகப் பேணப்பட வேண்டும்?
- II) சோல்வே முறையுடன் தொடர்புடைய சில தாக்கங்கள் கீழே தரப்பட்டுள்ளன.

$$NH_4OH_{(g)} + CO_{2(g)} \rightleftharpoons NH_4HCO_3$$

- (i) மேலுள்ள தாக்கங்கள் (1), (2) நிகழ்வதற்கு வெப்பநிலை உயர்வாக இருத்தல் வேண்டுமா? தாழ்வாக இருத்தல் வேண்டுமா? என பௌதிக - இரசாயனக் கோட்பாட்டின் அடிப்படையில் விளக்குக.
- (ii) சோல்வே முறையில் brine கரைசலானது CO_2 ஆல் நிரம்பலாக்கப்படுவதற்கு முன்னர் $NH_{3}_{(g)}$ இனால் நிரம்பல் செய்யப்படுவது ஏன்?
- (iii) இம்முறையில் நேரடியாக Na_2CO_3 தயாரிக்கப்படுவதில்லை. பதிலாக $NaHCO_3$ ஐ தயாரித்து அதன் வெப்பப்பிரிகையின் மூலம் Na_2CO_3 தயாரிக்கப்படுகின்றது. சுருக்கமாக விளக்குக.
- $\mathrm{(iv)}\,\mathit{NaHCO}_3$ தயாரிப்புக்கான பூரண தாக்கத்தின் சமன்பாட்டை எழுதுக.
- (v) மேற்படி செயன்முறையின் இறுதிப்பக்க விளைவு யாது?
- b) மோட்டார் வாகனங்களில் பெற்றோலின் தகனத்தினால் அகத்தகன எஞ்சின்கள் மூலம் சக்தியைப் பிறப்பிக்கும் போது வளி மாசாக்கி வாயுக்களாக நைதரசன், காபன் என்பவற்றில் ஒட்சைட்டுக்கள் உருவாக்கப்படுகின்றன.
 - (i) மோட்டார் வாகனங்களில் உருவாக்கப்படும் வளிமாசாக்கிகள் இரண்டு தருக.
 - (ii) மேலே குறிப்பிட்ட இரு வளி மாசாக்கிகளாலும் சூழல் மாசடையும் பிரதான சந்தர்ப்பங்கள் 3 ஐக் குறிப்பிடுக.
 - (iii) வளிமாசாக்கிகள் வெளிவிடப்படுவதை தடுப்பதற்கு மோட்டார் வாகனங்களின் புகை போக்கிக் குழாய்களில் எப்பதார்த்தங்கள் பயன்படுத்தப்படுகின்றன? இவற்றில் பயன்படும் இரண்டு உலோகங்களைக் குறிப்பிடுக.
 - (iv) மேலே பகுதி (iii) இல் குறிப்பிட்ட பதார்த்தத்தினால் நைதரசன், காபன் என்பவற்றின் ஒட்சைட்டுக்கள் எவ்வாறு மாசற்ற கூறுகளாக மாற்றப்பட்டு வளிமண்டலத்துக்கு விடுவிக்கப்படுகின்றன என விளக்குக.
- c) இயற்கை இறப்பரானது மனிதனுக்குப் பயன்படும் பல பிரயோசனமான பொருட்களை தயாரிப்பதற்குப் பயன்படுத்தப்படுகின்ற ஒரு பல்பகுதியச் சேர்வையாகும். இறப்பர் தொடர்பான பின்வரும் வினாக்களுக்கு விடையளிக்க.
 - I) இயற்கை இறப்பரின் மீள் அலகின் கட்டமைப்பை வரைக.
 - II) இயற்கை இறப்பரின் மீள்தன்மையைக் கட்டுப்படுத்த தயாரிப்புச் செயன்முறையின் போது விசேட செயன்முறை பின்பற்றப்படுகிறது.
 - (i) இச்செயற்பாட்டின் பெயர் யாது?
 - (ii) இச் செயற்பாட்டில் பயன்படுத்தப்படும் இறப்பர் தவிர்ந்த மற்றைய பிரதான இரசாயனப் பொருளின் பெயரை எழுதுக.
 - (iii) இச் செயற்பாட்டினால் இயற்கை இறப்பரின் கட்டமைப்பில் ஏற்படும் மாற்றம் யாது?
 - (iv) மேற்படி செயற்பாட்டின் மூலம் இறப்பரின் இயல்பில் ஏற்படும் இரு மாற்றங்களைத் தருக.
 - III) மேலே பகுதி (II)(i) இல் நீர் குறிப்பிட்ட செயற்பாட்டை polyethylene இற்கு ஏன் மேற்கொள்ள முடியாது?