CD Moodle Assignment 4 🗒

Jovial Joe Jayarson

20 June 2020

IES17CS016

1. Explain about S-attributed definition and L-attributed definitions.

Ans 1:

- Attributes are properties associated with grammar symbols. Attributes can be numbers, strings, memory locations, data types, etc.
- SDD (Syntax Directed Definitions) are a generalization of context-free grammars in which here grammar symbols have an associated set of attributes.
- There are two types of SDD representation
 - S attributed: These SDDs use only synthesized attributes.
 - In the following example s, x and p are synthesised attributes (value = s | x | p respectively).

Grammar	S - attributed SDD		
A → BCD	[{A.value = B.s, C.x, D.p}]		

- L attributed: These SDDs use both inherited & synthesised attributes.
 - In the following example i is an inherited attribute.

Grammar	L - attributed SDD
A → BCD	[{C.i = A.i, B.i, D.i}]

2. Write SDD for desk calculator.

Ans 2:

An SDD for a desk calculator will be:

Production	Semantic Rules
$\mathrm{L} ightarrow \mathrm{E} \mathrm{n}$	[L.val = E.val]
$\mathrm{E} ightarrow \mathrm{E} + \mathrm{T}$	E.val = E.val + T.val
$\mathrm{E} ightarrow \mathrm{T}$	E.val = T.val
$T \rightarrow T * F$	T.val = T.val * F.val
$\mathrm{F} ightarrow (\; \mathrm{E} \;)$	F.val = E.val
$\mathrm{F} ightarrow \mathrm{digit}$	F.val = digit.lexval

So the corresponding annotated parse tree will be:

3. Write SDD for infix to post fix translation and convert 2 + 3 * 4 to postfix notation.

Ans 3:

Given: input string: 2 + 3 * 4

The required grammar can be written as:

$$\mathrm{E}
ightarrow \mathrm{E} + \mathrm{T}$$

$$\mathrm{E} \to \mathrm{T}$$

$$T \to T * F$$

$$F \to num$$

Therefore using infix to postfix conversion

Production	SDT	Number
$\mathrm{E} ightarrow \mathrm{E} + \mathrm{T}$	{print('+')}	1
$\mathrm{E} ightarrow \mathrm{T}$	{ }	2
$T \rightarrow T * F$	{print('*')}	3
$\mathrm{T} ightarrow \mathrm{F}$	{ }	4
$\mathrm{F} ightarrow \mathrm{num}$	<pre>{print(num.lexval)}</pre>	5

The parse three will be:

Therefore the post-fix expression will be: $(2 \ 3 + 4 \ *)$.