Understanding Interest Rates

Interest Rates

How to Compare Different Interest Rates

Types of Interest Rates

Effective Rates

- Compound rates with interest paid once per unit time
- Interest is paid at the end of the period
- Used for future value and present value calculations

Nominal Rates

- Compound rates with interest paid multiple times per unit time
- Example: Annual rate with monthly payments

Common Nominal Rate Notations

Notation	Meaning	Payment Frequency			
$i^{(12)}$ pa	Nominal annual rate	Monthly payments			
$i^{(4)}$ pa	Nominal annual rate	Quarterly payments			
$i^{(1)}$ pa	Nominal annual rate	Yearly payments			

Nominal Rate Example: 12% per annum

Assume you have \$1000 in the bank and the bank offers a **nominal interest rate of 12% per annum**.

Notation	Payment Frequency	Effective Rate per Payment
$i^{(12)}$ pa	12 times per year	1% (12% ÷ 12)
$i^{(4)}$ pa	4 times per year	3% (12% ÷ 4)
$i^{(1)}$ pa	Once per year	12% (12% ÷ 1)

Month	1	2	3	4	5	6	7	8	9	10	11	12
Monthly ($i^{(12)}$)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Quarterly $(i^{(4)})$	_	_	3%	_	_	3%	_	_	3%	_	_	3%
Yearly $(i^{(1)})$	_	_	_	_	_	_	_	_	_	_	_	12%

If your have \$1000 initially, how much will you have in 6 months?

Month	1	2	3	4	5	6
Monthly ($i^{(12)}$)	\$1010.00	\$1020.10	\$1030.30	\$1040.60	\$1051.01	\$1061.52
Quarterly $(i^{(4)})$	\$1000.00	\$1000.00	\$1030.00	\$1030.00	\$1030.00	\$1060.90
Yearly $(i^{(1)})$	\$1000.00	\$1000.00	\$1000.00	\$1000.00	\$1000.00	\$1000.00

Interest Accumulation on \$1,000

Time Period	Monthly ($i^{(12)}$)	Quarterly ($i^{(4)}$)	Yearly ($i^{(1)}$)
Initial	\$1,000.00	\$1,000.00	\$1,000.00
3 months	\$1,030.42	\$1,030.00	\$1,000.00
6 months	\$1,061.52	\$1,060.90	\$1,000.00
9 months	\$1,093.33	\$1,092.73	\$1,000.00
12 months	\$1,126.83	\$1,125.51	\$1,120.00

Converting Nominal to Effective Rates

With \$1 in the bank and the bank offers a nominal interest rate of 12% per annum.

- 1. Effective rate per payment = $(12\% \div 12) \rightarrow 1\%$
- 2. Compound 12 times per year:

$$(1+0.01)^{12} = 1.1268$$

3. Equivalent effective rate = 12.68% per annum

Conclusion: 12% pa nominal with monthly payments ($i^{(12)}$) is equivalent to an annual effective rate of 12.68%.

Practice Problems

Calculate the equivalent effective rate per annum for:

- 1. 6% per annum, monthly payments (once per month, $i^{(12)}$)
- 2. 8% per annum, quarterly payments (once per quarter, $i^{(4)}$)
- 3. 10% per annum, semiannual payments (once per 6 months, $i^{(2)}$)
- 4. 12% per annum, yearly payments (once per year, $i^{(1)}$)

Hint: Use the formula $(1 + \frac{r}{n})^n - 1$ where:

- r = nominal rate
- n = number of payments per year

8

Key Takeaways

1. Effective Rates

- Interest paid once per period
- Actual rate of return

2. Nominal Rates

- Interest paid multiple times per period
- Must be converted to effective rates
- Common in banking and finance

3. Conversion Formula

$$i_{eff} = (1 + rac{i^{(n)}}{n})^n - 1$$