Parallel PySAL

Autoregression and Complex System Framework Integration

Jason Laura, Robert Pahle, Sergio Rey, Luc Anselin

GeoDa Center for Geospatial Analysis and Computation Arizona State University

August 13, 2014

PySAL

Substantive Application: Spatial Econometrics

Implementation

PySAL

- ► Spatial analysis library
- ► Big data world
- ▶ v 1.8 July 2014

pPySAL

- contiguity builder
- ► max-p region
- ▶ p-lisa
- ▶ fisher jenks
- spatial regimes

Lessons Learned

- Hardware dependence
- ▶ No holy grail of automatic parallelization
- ▶ Need a roadmap = Taxonomy
 - Guidance on "best practice"
 - Identify dead ends

Specification Strategies

Spatial Econometrics

Specification Strategies

${\sf GeoDaSpace}$

- ► GUI ontop of spreg
- Subset of spreg functionality
- ► Cross-platform

Specification Searches

- Specific to General
 - $y = X\beta + \epsilon$
 - OLS + Lagrange Multiplier Tests
- General to Specific
 - $y = \rho Wy + X\beta + (I \lambda W)^{-1}\nu$
 - ► ML + Restrictions

Specification Strategies

LM Based Specification

Parallel PySAL

Substantive Application: Spatial Econometrics

ArcGIS Toolbox

ArcGIS Toolbox

ArcGIS Toolbox

ArcGIS Toolbox

Hardware

Parallel Strategy

Complex Systems Framework

Components for Autoreg