Implementation Guide: SOUL Motivation Framework

Keyvan M. Sadeghi

April 22, 2025

1 Literature Review

We have identified six practical schools of agent motivation:

- Intrinsic Motivation in RL: Curiosity and surprise as auxiliary rewards to drive exploration in sparse environments (Schmidhuber, 2010; Pathak et al., 2017).
- Information-Theoretic Drives: Maximizing mutual information, novelty, and empowerment signals (Klyubin et al., 2005; Salge et al., 2014; Goertzel, 2024).
- Competence-Progress Models: Rewarding measurable learning progress toward self-generated subgoals to form a self-curriculum (Oudeyer & Kaplan, 2007).
- Homeostatic/Drive-Reduction: Minimizing internal variables (e.g., prediction error) via cybernetic drives (Hull, 1943; Friston, 2010).
- Cognitive Architectures: Embedding scalar drives into symbolic cycles (Soar's operator preferences; ACT-R's Expected Value of Control; Goertzel, 2024) for precise control updates.
- **Developmental-Robotics Hybrids**: Combining maturational constraints with competence progress to emulate developmental curricula (Lungarella et al., 2003).

2 Mathematical Foundations and Architectural Decisions

2.1 The Motivation Vector

At the heart of the SOUL Motivation Framework is the hidden internal state, the Motivation Vector:

$$\mathbf{s}_t = [s_c, s_u, s_h]$$

where s_c is competence, s_u is novelty/surprise, and s_h is homeostasis. This vector is updated after every interaction and drives all agent actions. In code, it is maintained as a Python dataclass and is never exposed to the LLM.

2.2 Motivation Vector Updates

• Competence Progress:

$$\Delta_c = p_g(t) - p_g(t-1), \quad s_c \leftarrow \text{clip}(s_c + \alpha \Delta_c, 0, 1)$$

where $p_q(t)$ is the agent's measured performance at time t.

• Novelty/Surprise:

$$\text{novel}(t) = 1 - \frac{\mathbf{e}(t) \cdot \mu_{t-1}}{\|\mathbf{e}(t)\| \|\mu_{t-1}\|}, \quad s_u \leftarrow \text{clip}(s_u + \alpha \text{ novel}(t), 0, 1)$$

where $\mathbf{e}(t)$ is the current context embedding and μ_{t-1} is the rolling mean.

• Homeostatic Decay:

$$s_h \leftarrow (1 - \delta)s_h + \delta$$

This ensures s_h gently returns to baseline.

2.3 Meta-Graph and Rule Engine

The agent maintains a symbolic meta-graph G (a directed graph of rewrite rules R and meta-rules M). Each node represents a pattern or rule, and edges encode transformations or relationships. In Python, this is implemented with networkx.DiGraph.

2.4 Thresholded Nudge and Confidence

At each step, the agent computes a confidence score C_t :

$$C_t = f_{\text{match}}(x_t, G, \mathbf{s}_t)$$

where f_{match} is a similarity or density function over meta-graph patterns and the current state. The agent compares C_t to a dynamic threshold τ_t :

If
$$C_t \geq \tau_t$$
 then nudge; else remain silent (null action)

Concrete Example: If C_t is computed as the softmax of pattern matches in G weighted by \mathbf{s}_t , and τ_t is set adaptively (e.g., as a running quantile), then the agent only acts when it is sufficiently confident.

2.5 Perception-Cognition-Action Loop

The agent's operation at each time t is:

Perceive: $y_t = \text{Perceive}(x_t)$

Update: $\mathbf{s}_{t+1} = \text{UpdateMotivation}(\mathbf{s}_t, y_t)$

Record: $G_{t+1} = \text{UpdateMetaGraph}(G_t, x_t, y_t)$

Confidence: $C_{t+1} = f_{\text{match}}(x_{t+1}, G_{t+1}, \mathbf{s}_{t+1})$

Action: $a_{t+1} = \begin{cases} \text{HarvestAxiom}(G_{t+1}, x_{t+1}) & \text{if } C_{t+1} \ge \tau_{t+1} \\ \emptyset & \text{otherwise} \end{cases}$

Explanation: a_{t+1} is either a harvested axiom/rule (to be injected as a nudge) or the null action \varnothing (agent remains silent).

2.6 Subgoal Discovery

If s_c stagnates or s_u spikes, the agent auto-discovers new subgoals by clustering novel contexts in G and generating new rules. This enables adaptive exploration.

2.7 Discrete Generative Core and Error Signals

Instincts and policies are encoded as rewrite rules in G. The agent predicts a distribution $p_t(m)$ over outcomes, observes $q_t(m)$, and computes error:

$$e_t = D_{\mathrm{KL}}(q_t || p_t)$$

This error drives reward and learning:

$$r_t^{\rm int} = -e_t, \qquad r_t^{\rm ep} \propto \sum_m q_t(m) \log \frac{1}{p_t(m)}$$

2.8 Meta-Rule Self-Modification

Meta-rules M rewrite the rule graph itself:

$$m_i \leftarrow \underset{m' \in \mathcal{N}(m_i)}{\operatorname{arg \, min}} e_t(R, M \setminus \{m_i\} \cup \{m'\})$$

2.9 Wasserstein Natural Gradient

Parameterize rule-distribution $p(\xi)$ and update via:

$$\xi_{k+1} = \xi_k - h G(\xi_k)^{-1} \nabla_{\xi} F(p(\xi_k))$$

where G is the Laplacian from the rule graph.

2.10 Neural-Symbolic Hybrid and Memory

Continuous predictive-coding nets (vision and motor) run beneath the discrete core, exchanging features/actions. Long-term memory is implemented via vector stores (e.g., faiss, chromadb) for retrieval and adaptation.

2.11 LLM Pre-Prompting and Naturalization

When the agent nudges, it injects symbolic axioms/rules into the LLM prompt. The LLM is pre-prompted to interpret these in MeTTa or similar syntax and translate their intent into natural language or actions.

2.12 Genetic Mixing and Policy Sharing

Hyperparameters $(\alpha, \delta, \tau_c, \tau_u)$ are encoded as arrays and can be evolved via genetic algorithms (e.g., DEAP, pygad), enabling agent societies to mix and share policies and metagraphs.

2.13 Concrete Python Mapping

- Motivation Vector: Python dataclass with fields for s_c , s_u , s_h .
- Rule Graph: networkx.DiGraph with nodes for rules/meta-rules.
- Neural Nets: torch.nn.Module or jax models for predictive coding.
- Memory: faiss or chromadb vector store.
- **Hyperparameters:** Numpy array or genetic algorithm chromosome.

3 Null Action and Silent Learning

If the confidence C_t does not exceed the threshold τ_t , the agent performs the null action \varnothing , i.e., it remains silent and continues to observe, record, and learn without intervening.

4 Implementation Guide

Below are concrete steps, with Python library suggestions.

• Competence-Progress Core: Track competence gains Δ_c on self-generated subgoals, updating $s_c \in [0, 1]$ via

$$s_c \leftarrow \text{clip}(s_c + \alpha \Delta_c, 0, 1)$$

• Novelty/Surprise Seeding: Compute novelty as cosine distance of new embedding $\mathbf{e}(t)$ to recent mean μ_{t-1} ,

$$novel(t) = 1 - \frac{\mathbf{e}(t) \cdot \mu_{t-1}}{\|\mathbf{e}(t)\| \|\mu_{t-1}\|}, \quad s_u \leftarrow \text{clip}(s_u + \alpha \text{ novel}(t), 0, 1)$$

• Homeostatic Decay: Maintain stability s_h toward 1 via

$$s_h \leftarrow (1 - \delta) s_h + \delta$$

• Thresholded Nudge Mechanism: At each step, the agent computes a confidence score C_t based on the match between the current context x_t , the meta-graph G, and the motivation vector \mathbf{s}_t :

$$C_t = f_{\text{match}}(x_t, G, \mathbf{s}_t)$$

The agent compares C_t to a dynamic threshold τ_t :

If $C_t \geq \tau_t$ then nudge; else remain silent (null action)

Explanation: f_{match} may be a similarity or density function over meta-graph patterns, and τ_t can be static or adaptively tuned.

• **Perception–Cognition–Action Loop**: The agent's operation at each time t can be mathematically expressed as:

Perceive: $y_t = \operatorname{Perceive}(x_t)$ Update: $\mathbf{s}_{t+1} = \operatorname{UpdateMotivation}(\mathbf{s}_t, y_t)$ Record: $G_{t+1} = \operatorname{UpdateMetaGraph}(G_t, x_t, y_t)$ Confidence: $C_{t+1} = f_{\operatorname{match}}(x_{t+1}, G_{t+1}, \mathbf{s}_{t+1})$ Action: $a_{t+1} = \begin{cases} \operatorname{HarvestAxiom}(G_{t+1}, x_{t+1}) & \text{if } C_{t+1} \geq \tau_{t+1} \\ \varnothing & \text{otherwise} \end{cases}$

Explanation: a_{t+1} is either a harvested axiom/rule (to be injected as a nudge) or the null action \varnothing (agent remains silent).

• Discrete Generative Core: Represent "instincts" as a metagraph of rewrite rules R, inducing a predicted distribution $p_t(m)$ over outcomes. Measure error [1]

$$e_t = D_{\mathrm{KL}}(q_t || p_t)$$

- Reward Signals: Combine instrumental $r_t^{\text{int}} = -e_t$ and epistemic $r_t^{\text{ep}} \propto \sum_m q_t(m) \log \frac{1}{p_t(m)}$ to guide local rule edits.[1]
- Meta-Rule Self-Modification: Define meta-rules M that pattern-match on R and refactor complex rules. Local meta-update:

$$m_i \leftarrow \underset{m' \in \mathcal{N}(m_i)}{\operatorname{arg\,min}} e_t(R, M \setminus \{m_i\} \cup \{m'\}) \quad [1]$$

Meta-rules undergo the same reward-driven selection as object-level rules.

• Wasserstein Natural Gradient: Parameterize rule-distribution $p(\xi)$ and update via the optimal-transport natural gradient:[1]

$$\xi_{k+1} = \xi_k - h G(\xi_k)^{-1} \nabla_{\xi} F(p(\xi_k))$$

with metric tensor G from the measure-dependent Laplacian on the rule graph.

• Neural—Symbolic Hybrid: Two continuous predictive-coding nets (vision and motor) run beneath the discrete core (a *metagraph* of self-transforming codelets), passing symbolic features and actions in a closed-loop.[1]

Null Action and Silence: If the confidence C_t does not exceed the threshold τ_t , the agent performs the null action \varnothing , i.e., it remains silent and continues to observe, record, and learn without intervening.

5 Implementation Guide

Below are concrete steps, with Python library suggestions.

5.1 Core Data Structures

- Use numpy for vector operations and embeddings.
- Use networkx to represent the metagraph of rewrite rules and compute Laplacians.
- Store agent state in a simple dataclass:

```
from dataclasses import dataclass
@dataclass
class State:
    competence: float = 0.0
    curiosity: float = 0.0
    stability: float = 1.0
```

5.2 Novelty Detector

• Implement rolling mean with collections.deque and cosine distance via scipy.spatial.distance.cos

5.3 Rewrite-Rule Engine

- Model rules as Python objects mapping pattern graphs to outputs.
- Use networkx pattern-matching or custom graph algorithms for rule application.
- Derive $p_t(m)$ by sampling or counting rule firings over stochastic selections (e.g., softmax weights in torch).

5.4 Information-Theoretic Error

• Compute KL divergence with scipy.stats.entropy(q, p).

5.5 Reward & State Update Loop

- 1. Collect feedback score r(t) via environment simulation or user rating.
- 2. Update State (Motivation Vector) using the mathematical formulas above, with learning rate alpha.
- 3. Compute confidence C_t and compare to threshold τ_t ; if $C_t \geq \tau_t$, harvest and inject a nudge (axiom/rule) from the meta-graph.
- 4. If nudging, prepend the harvested axiom/rule to the user query and invoke the LLM (e.g., via openai or transformers), relying on a pre-prompt for interpretation.

5. If not nudging, remain silent and continue to observe, record, and update internal state.

Example: In Python, this loop is implemented as a function that updates the Motivation Vector, computes confidence, and either calls a nudge-injection routine or skips to the next observation.

5.6 Meta-Rule Implementation

- Represent meta-rules as rules over the rule-graph using networkx.
- Define neighborhood $\mathcal{N}(m_i)$ of small metagraph edits.
- Apply the meta-rule update formula in your training loop alongside rule edits.

5.7 Natural Gradient Optimization

- Install pot (Python Optimal Transport) for Wasserstein solvers.
- Build ground metric matrix (ω_{ij}) from rule-graph distances.
- Construct measure-dependent Laplacian via NetworkX weights.
- Compute parameter Jacobians with autograd or manual derivatives.
- Perform updates using numpy.linalg.pinv for pseudoinverse.

5.8 Continuous Predictive-Coding Nets

• Use PyTorch or JAX to implement NGC-style layers:

$$z \leftarrow z + \beta (-\gamma z + (E \cdot e) \odot \phi'(z) - e)$$

- Leverage torch.nn.Module for vision and arm nets.
- Optimize with local Hebbian-like or standard optimizers (SGD) per PC update.

5.9 Genetic Tuning (Optional)

- Represent hyperparameters $(\alpha, \delta, \tau_c, \tau_u)$ as a NumPy array.
- Use DEAP or pygad for crossover and mutation over logged performance metrics.

5.10 Vector Stores and Long-Term Memory

• Integrate faiss or chromadb for storing past contexts/embeddings.

6 Conclusion

This guide unifies seminal research, architectural principles, and practical Python tools to implement SOUL's Motivation Framework. By following it, you'll build agents that self-modify, learn from surprise and progress, and nudge LLMs with precise, adaptive prompts.

References

- [1] B. Goertzel. Discrete Active Predictive Coding for Goal-Guided Algorithmic Chemistry as a Potential Cognitive Kernel, 2024. arXiv:2412.16547 [cs.AI].
- [2] D. Pathak et al., Curiosity-Driven Exploration by Self-Supervised Prediction, 2017.
- [3] C. Salge et al., Curiosity-Driven RL Using Information-Gain, 2014.
- [4] K. Friston. The Free-Energy Principle: A Unified Brain Theory?, 2010.
- [5] J. Schmidhuber. Formal Theory of Creativity, Fun, and Intrinsic Motivation, 2010.
- [6] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic Motivation Systems for Autonomous Mental Development, 2007.
- [7] A. S. Klyubin et al., Empowerment: A Universal Agent-Centric Measure, 2005.
- [8] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental robotics: A survey, Connection Science, 15(4), 151-190, 2003.