CPSC 420 Lecture 13: Today's announcements:

- ▶ HW2 is on Gradescope, due Feb 9, 23:59
- ► Examlet 2 on Feb 17 in class. Closed book & no notes
- Reading: Ch.H Linear Programming, Ch.3 Dynamic Programming [all by Erickson]

Today's Plan

- Linear programming duality
- Dynamic programming
 - Longest Increasing Subsequence
 - Edit Distance

Longest Increasing Subsequence

What is a longest increasing subsequence of:

A sequence S[1..k] is **increasing** if $S[i] < S[i+1] \ \forall i = 1..k-1$.

Given: A sequence of numbers R[1..n]. Find: LIS of R

Use LCS to solve LIS

$$\frac{LIS(R)}{1. S} = SONT(R)$$
Running time?
$$O(n^2)$$

Recursive Longest Increasing Subsequence

Idea: Either take R[n] or don't.

LimitedLIS(R, x)# Find LIS with last number less than x. 1. if |R| = 0 return [] 2. T = []3. if R[n] < x then $T = \text{LimitedLIS}(R[1..n-1], R[n]) \circ R[n]$ 5. return $\max\{T, \text{LimitedLIS}(R[1..n-1], x)\}$ T(n) = 2T(n-1) Running time? calls to LLIS (RILI) B(n2) aven with Dyn Prog.

To find LIS(R[1..k]), what information about R[1..k-1] is enough?

A. LIS of R[1..k - 1]

5 3 4 9 6 2 1 8 3 4 9 k-1 or 3 4 6?

To find LIS(R[1..k]), what information about R[1..k-1] is enough?

A. LIS of
$$R[1..k-1]$$

B. Best LIS of
$$R[1..k-1]$$

To find LIS(R[1..k]), what information about R[1..k-1] is enough?

A. LIS of
$$R[1..k-1]$$

B. Best LIS of R[1..k-1]

$$1\ 2\ 5\ 3\ 4$$
 want shorter IS as well

C. Best ISs of length 1, 2, ..., j, where j = |LIS(R[1..k-1])|

To find LIS(R[1..k]), what information about R[1..k-1] is enough?

A. LIS of R[1..k - 1]

B. Best LIS of R[1..k-1]

C. Best ISs of length 1, 2, ..., j, where j = |LIS(R[1..k-1])|Now we need to find best ISs for R[1..k] using this info. How?

Claim: BIS[1].last < BIS[2].last $< \cdots$

Proof: If BIS[i]. $last \ge BIS[i+1]$. last then the first i numbers in BIS[i+1] would be a better $BIS[i] \Rightarrow \Leftarrow$.

Recursive Best Increasing Subsequences

```
 8 \quad 3 \quad 4 \quad 9 \quad 6 \quad 2 \quad 1 \quad 5 \quad 7 \quad 2   R[k] \text{ extends } \mathsf{BIS}[j] \text{ iff } \mathsf{BIS}[j].\mathit{last} < R[k] \text{ and }   (j = |\mathsf{BIS}| \text{ or } \mathsf{BIS}[j+1].\mathit{last} > R[k])   \mathsf{BIS}_9[1] = 1   \mathsf{BIS}_9[2] = 3 \quad 4   \mathsf{BIS}_9[3] = 3 \quad 4 \quad 5   \mathsf{BIS}_9[4] = 3 \quad 4 \quad 5 \quad 7
```


Best Increasing Subsequences Dynamic Programming

$$R[k]$$
 extends $BIS[j]$ iff $BIS[j]$.last $< R[k]$ and $(j = |BIS| \text{ or } BIS[j+1]$.last $> R[k])$

Best Increasing Subsequences Dynamic Programming

$$L[0] = 0$$
 $L[1] = 8 0$
 $L[2] = 0$
 $L[3] = 9 0$
 $L[4] = 7$

As a result list $L_k[i]$ ends with $BIS_k[j]$. last at step k.

Best Increasing Subsequences Dynamic Programming

$$R[k]$$
 extends $BIS[j]$ iff $BIS[j]$. $last < R[k]$ and $(j = |BIS| \text{ or } BIS[j+1]$. $last > R[k])$

Maintain lists L[0], L[1], ... where $L_0[0] = [0]$. After we scan R[1..k]

$$L_{k}[j] = \begin{cases} L_{k-1}[j] \circ R[k] & \text{if } R[k] \text{ extends BIS}_{k-1}[j] \\ L_{k-1}[j] & \text{otherwise} \end{cases}$$

$$L[0] = 0$$
 $L[1] = 8 3 2 1$

means b extended BIS ending with a
 $L[2] = 4$
 $L[3] = 9 6 5$
 $L[4] = 7 6$

Running time?

As a result list $L_k[i]$ ends with $BIS_k[j]$. last at step k.

Use LIS to solve LCS [Hunt & Szymanski 1977]

	Α	В	C	В	Α	C	C	В
В		Х		×				X
C			Х			Х	Х	
D								
Α	Х				Х			
В		Х		Х				Х
C			Х			Х	Х	
C			Х			Х	Х	

Use LIS to solve LCS [Hunt & Szymanski 1977]

	Α	В	C	В	Α	C	C	В	
В		\times		Х				Х	1 2
C			X			Х	Х		1,2
D									5,4
Α	Х				Х				6,6
В		Х		X				Х	7.7
C			Х			\times	Х		' , '
C			Х			Х	X		

Longest Common Subsequence = BCBCC

What properties do the circled entries have?

Use LIS to solve LCS [Hunt & Szymanski 1977]

	Α	В	C	В	Α	C	C	В	
В		X		X				X	1,2
C			X			X	Х		1,2
D									5,4
Α	Х				Х				6,6
В		Х		X				Х	7.7
C			Х			X	Х		' , '
C			Х			Х	X		

Longest Common Subsequence = BCBCC

What properties do the circled entries have?

They form a sequence of index pairs of matches that increases in both dimensions.