Indonesian Scholar Scientific Summit (I3S) | 2021 **Rebuilding Post-Pandemic Societies**

Forecasting Covid-19 Vaccines

Last Updated at (M/D/YYYY) 18/06/2021, 10:22

177,363,051

Cases

3,840,426

2,485,778,224

Vaccine Doses Administered

Vaccines for Covid19

13 different vaccines (across 4 platforms) have been administered

Forecasting Covid19 Vaccines | 13S 2021 Depend on Type of Vaccine

QazCovid-in

Before Vaccine

Jan 28, 2020

Apr 30, 2020

After Vaccine

Our World in Data

Daily new confirmed COVID-19 cases per million people

Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

Aug 8, 2020

Daily new confirmed COVID-19 cases per million people

Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

Source: Johns Hopkins University CSSE COVID-19 Data

- India

Dec 31, 2020

Willingness to get vaccinated against COVID, Apr 30, 2021

Share who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them. Also shown is the share who have already received at least one dose of a COVID vaccine.

Willingness

Progress
Vaccinations
on Country
who have
been got
Dozen of
Vaccine

Source: Official data collated by Our World in Data – Last updated 11 May, 10:00 (London time)

OurWorldInData.org/coronavirus • CC BY
Note: Months containing fewer than 500 survey respondents are excluded. Estimates of willingness to get vaccinated are based on survey responses of people aged 18 years and above.

Vaccine's Prediction

Take **more than a year** to produce enough vaccines to inoculate the World's 50 million medical staff, and that could be **September 2023** before we have enough doses for the whole World.

Anthony McDonnell, Robert Van Exan, Steve Lloyd, et.al

De Figueiredo

United Kingdom is the government chose to distribute its vaccine variants, namely AstraZeneca and Pfizer-BioNTech [2]. The government has such confidence that the vaccine's findings are compatible with the physiology of its citizens

Trtica-Majnaric et al.

Describes future forecasting on influenza vaccines using two deep learning comparison methods, namely Linear Regression and Neural Network [3]. forecasting using the NN model is better than the LR model, with an average hit rate of 72%.

Main Contributions

Trends in the distribution of Covid19 Vaccines

Comparision of the original and predicted values generated in the Covid19 vaccine trend

Future forecasting results from Covid19 vaccines data

Evaluate the accuracy and precision of the tested data

Dataset COVID-19 World Vaccination Progress

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Dataset COVID-19

Dataset COVID-19 World Vaccination Progress [4]

No	Columns	Non-Null Count	Dtype
1	Country	15666 non-null	Object
2	Iso_code	15666 non-null	Object
3	Date	15666 non-null	Datetime64[ns]
4	Total_vaccinations	15666 non-null	Float64
5	People_vaccinated	15666 non-null	Float64
6	People_fully_vaccinated	15666 non-null	Float64
7	Daily_vaccinations_raw	15666 non-null	Float64
8	Daily_vaccinations	15666 non-null	Float64
9	Total_vaccinations_per_hundred	15666 non-null	Float64
10	People_vaccinated_per_hundred	15666 non-null	Float64
11	People_fully_vaccinated_per_hundred	15666 non-null	Float64
12	Daily_vaccinations_per_million	15666 non-null	Float64
13	Vaccines	15666 non-null	Object
14	Source_name	15666 non-null	Object
15	Source_website	15666 non-null	Object

Methods

Facebook Prophet

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t$$

Our approach uses the Prophet according to trend data based on daily, weekly, and yearly seasonality to present data based on the data obtained where g(t) is trend function, s(t) representative periodic changes data, h(t) represents the holiday condition of the data, and ϵ_t is function customarily distributed data [5].

ARIMA

Order of (p, d, q)

The regression value of the ARIMA model characteristics by choosing the order of p, d, and q where p is the order (number of time lags) of the autoregressive model, d is the degree of differencing, and q is the order of the model moving average [6].

Dataset COVID-19 World Vaccination Progress

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Exploratory Data Analysis

Most Popular Vaccines

Forecasting Covid19 Vaccines | 13S 2021

Depend on Type of Vaccine

Dataset COVID-19 World Vaccination Progress

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Total Vaccinations by Country

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Exploratory Data Analysis

People Vaccinated by Country

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Exploratory Data Analysis

People Fully Vaccinated by Country

Dataset COVID-19 World Vaccination Progress

https://www.kaggle.com/gpreda/covid-world-vaccination-progress

Exploratory Data Analysis

Experiment Step Works

Input Data

Group by Type
Vaccines

Select by People Vaccinated / hundred

Data Preprocessing

Stationary Check

Differencing

Correlation Check

Fitting Model

Prophet and ARIMA Model

Daily Seasonality

Output Data

Forecast vs. Actual

Future Prediction

Data Preprocessing

Before Differencing

After Differencing

Prophet Deep Learning Implementation

Forecast and Actual ARIMA

Future Forecast until June 1, 2021

Daily Seasonality

Sinopharm and Sinovac

Total Vaccinations per Hundred

Prophet Deep Learning Implementation

Trend

Weekly

Seasonality Forecast

Daily

ARIMA Deep Learning Implementation

Forecast and Actual ARIMA

Future Forecast until June 1, 2021

Train: Test = 80:20

Sinopharm and Sinovac

Total Vaccinations per Hundred

Future Forecasting

ds	yhat	yhat_lower	yhat_upper		
2021-07-01	6.712125e+08	6.141475e+08	7.220045e+08		
2021-07-02	6.801729e+08	6.216502e+08	7.318220e+08		
2021-07-03	6.860007e+08	6.258757e+08	7.395016e+08		
2021-07-04	6.903211e+08	6.280171e+08	7.446853e+08		
2021-07-05	6.970889e+08	6.332544e+08	7.535284e+08		

Future Forecasting

ds	pred		
2021-06-13	2.923380e+08		
2021-06-14	2.923380e+08		
2021-06-15	2.923380e+08		
2021-06-16	2.923380e+08		
2021-06-17	2.923380e+08		

Forecast vs Actuals

Evaluation Metrics

Model	Evaluation Metrics						
Model	MSE	MAPE	R2	MAE	MedAE	RMSE	MEAN
ARIMA	0.6139603	0.0473144	0.97560	0.58201	0.549417	0.61396	13.153095
Prophet	0.0309044	0.0103888	0.99876	0.15473	0.154735	0.17579	13.64026

Conclutions

Development Future Prediction

Results for COVID-19
vaccines development to
useful to encourage the
government to make
decision to provide
vaccines.

Prophet is Best Forecasting Model

Comparison with another model, Prophet getting higher result based evaluation metrics with minimum error.

Considering Another Field

For making a precision decision, another field such as social-economic and important cases will be influence the predictions

References

- [1] C. for S. S. E. (CSEE), "COVID-19 Map," 2021. https://coronavirus.jhu.edu/map.html (accessed May 24, 2021).
- [2] A. de Figueiredo, "Forecasting sub-national trends in COVID-19 vaccine uptake in the UK," medRxiv, pp. 1–17, 2020.
- [3] L. Trtica-Majnaric, M. Zekic-Susac, N. Sarlija, and B. Vitale, "Prediction of influenza vaccination outcome by neural networks and logistic regression," Journal of Biomedical Informatics, vol. 43, no. 5, pp. 774–781, 2010, DOI: 10.1016/j.jbi.2010.04.011.
- [4] G.Preda, "COVID-19 World Vaccination Progress," 2021. https://www.kaggle.com/gpreda/COVID-world-vaccination-progress (accessed May 19, 2021).
- [5] E. Žunić, K. Korjenić, K. Hodžić, and D. Đonko, "Application of Facebook'S Prophet Algorithm for Successful Sales Forecasting Based On Real-World Data," arXiv, vol. 12, no. 2, pp. 23–36, 2020, DOI: 10.5121/ijcsit.2020.12203.
- [6] S. L. Ho and M. Xie, "The Use of ARIMA Models for Reliability Forecasting and Analysis," in 23rd International Conference on Computers and Industrial Engineering, 1998, vol. 35, no. 98, pp. 213–216.

