Nama : Deanissa Sherly Sabilla

Kelas / Absen : SIB 1B / 06

Mata Kuliah : Algoritma Struktur Data

Pertemuan : 16

B.

GRAPH

1. Ubah matrix berikut ke dalam bentuk graf!

		V1	V2	V3	V4	V5	V6
	V1	0	1	0	0	0	0
	V2	1	1	1	0	0	0
	V3	0	1	0	1	1	1
	V4	0	0	1	0	0	0
	V5	0	0	1	0	0	0
A.	V6	0	0	1	0	0	0

	N1	N2	N3	N4	N5	N6
N1	0	2	0	6	0	0
N2	0	0	3	0	0	0
N3	0	0	0	0	1	0
N4	0	0	0	0	4	2
N5	0	0	0	0	0	7
N6	5	0	0	0	0	0

2. Ubah matrix berikut ke dalam bentuk graf!

	e_1	e_2	e_3	e_4	e_5	e_6	e ₇	e ₈
V1	1	1	0	1	1	0	0	0
V2	1	0	1	0	0	0	0	0
V3	0	1	1	0	0	1	1	0
V4	0	0	0	1	0	1	0	1
V5	0	0	0	0	0	0	0	1

3.

A. Ubahlah graf tersebut ke dalam bentuk adjacency matrix!

	Α	В	С	D	E	F
Α	0	5	0	8	3	0
В	5	0	2	0	6	0
С	0	2	0	0	3	1
D	8	0	0	0	4	0
Е	3	6	3	0	0	7
F	0	0	1	0	7	0

B. Tentukan shortest path dari A ke F!

$$A \rightarrow B \rightarrow C \rightarrow F = 5 + 2 + 1 = 8$$

$$A \rightarrow E \rightarrow F = 3 + 7 = 10$$

$$\rightarrow$$
 A -> D -> E -> F = 8 + 4 + 7 = 19

$$A \rightarrow B \rightarrow E \rightarrow F = 5 + 6 + 7 = 18$$

$$\rightarrow$$
 A -> C -> E -> F = 5 + 2 + 3 + 7 = 17

Maka, untuk shortest path dari A ke F yaitu $A \rightarrow B \rightarrow C \rightarrow F$

C. Tentukan lintasan traversal untuk menghubungkan semua node dengan jarak terpendek!

Terhubung dan tepi yang dipilih adalah:

$$(A,E) = 3$$

$$(E,C) = 2$$

$$(C,F) = 1$$

$$(F,B) = 3$$

$$(E,D) = 4$$

Total bobot dari di atas adalah 3+2+1+3+4=13.

Jadi, Minimum Spanning Tree (MST) meliputi tepi-tepi (A,E),

(E,C), (C,F), (F,B), dan (E,D) dengan total bobot 13.