Государственное образовательное учереждение высшего профессионального образования Уфимский государственный авиационный университет

кафедра математики

Линейная Алгебра и Геометрия

Конспект лекций Уфа, УГАТУ ОНФ, 11 июля 2019 г.

Содержание

1	Ma	грицы	2
	1.1	Основные определения	2
		1.1.1 Частные случаи матриц	2
	1.2	Операции над матрицами и их свойства	3

1 Матрицы

1.1 Основные определения

Определение 1. Матрицей размеров $m \times n$ над множеством действительных чисел \mathbb{R} называется прямоугольная таблица из $m \cdot n$ вещественных чисел, имеющая m строк и n столбцов:

$$a_{11}$$
 a_{12} ... a_{1n}
 a_{21} a_{22} ... a_{2n}
 \vdots \vdots ... \vdots
 a_{m1} a_{m2} ... a_{mn}

 $eta e \ a_{ij} \in \mathbb{R}, i = \overline{1,m}$ - номер строки, $j = \overline{1,n}$ - номер столбца, $a_{i,j}$ - элементы матрицы, $m \ u \ n$ - порядки матрицы. B этом случае говорят, что рассматриваемая матрица размера $m \times n$. Если m = n, то матрица называется квадратной, $a \ uu$ сло m = n - $e\ddot{e}$ порядком.

Для изображения матрицы применяются либо круглые скобки, либо сдвоенные прямые:

Для краткого обозначения матрицы используются либо заглавные латинские буквы (A, B, C, \dots) либо символы $(a_{ij}), ||a_{ij}||$, указывающие обозначение элементов матрицы; либо используется запись $A = (a_{i,j})(i = \overline{1, m}, j = \overline{1, n})$.

Множество всех матриц размера $m \times n$ бозначается $\mathbb{R}_{m \times n} \equiv \mathbb{R}_{m,n}$.

1.1.1 Частные случаи матриц

1. Если m=n, то матрица называется квадратной. Её диагональ $a_{1,1},a_{2,2},\ldots,a_{n,n}$ называется главной диагональю, а $a_{n1},a_{n-1,2},\ldots,a_{1n}$ – побочной диагональю.

2. Диагональная матрица – это матрица, у которой все ненулевые элементы на-

ходятся на главной диагонали, т.е.
$$A = \left(\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{array} \right).$$

- $\left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a \end{array}\right)$ называется скалярной.
- 4. Скалярная матрица с единичными элементами на главной диагонали называется единичной. Обозначается E или E_n , где n ее порядок.
- 5. Матрица размера $m \times n$, у которой все элементы равны нулю, называется нулевой и обозначается $O_{m,n}$.
- 6. Если m=1, то матрица называется строчной, или матрица-строка, или строка. Если $n=1 \to$ столбцовая, или матрица-столбец, или просто столбец.

Определение 2. Две матрицы называются равными, если эти матрицы имеют одинаковые порядки и их соответствующие элементы совпадают.

1.2 Операции над матрицами и их свойства

Определение 3. Суммой матрии, A и $B \in \mathbb{R}_{m,n}$ (т.е. имеющих одинаковые порядки) называется матрица $C \in \mathbb{R}_{m,n} : c_{ij} = a_{ij} + b_{ij}, i = \overline{1,m}, j = \overline{1,n}.$

Обозначение: C = A + B.

Пример 1.

$$\begin{pmatrix} 1 & 2 & 3 \\ -2 & -3 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & -1 \\ 3 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$

Свойства 1 (сложения матриц).