

Vektortér modell (egy klasszikus információvisszakereső modell)

3. ELŐADÁS

- 1. A vektortér modell.
- 2. Indexelési technikák, hasonlósági mértékek a vektortér modellben.
- 3. A rangsortartás.

1. Vektortér modellek

- 1.1. Vektortér modell helye az információ-visszakereső modellek közt
- 1.2. Vektortér modell formális leírása
- 1.3. Hatványtörvény-Zipf törvény

Vektorok normalizálása (Normalization)

- vektor iránya nem változik,
- viszont a hossza egy lesz.
- A normalizált vektort úgy kaphatjuk meg, hogy az eredeti vektort elosztjuk a hosszával.

Az információ-visszakeresés alapelemei:

- dokumentum (document),
- kérdés (query),
- relevancia (relevance),
- visszakeresés (retrieval).

Attól függően, hogy:

- a dokumentumokat,
- a kérdést, és
- a visszakeresést

hogyan modellezzük többféle információ-visszakereső modellt (information retrieval models) különböztetünk meg.

Klasszikus modellek tulajdonságai:

- Első (hagyományos) modellek,
- Matematikai módszereken alapulnak,
- Kérdés (Q)és a Dokumentum (D) távolságának matematikai mérésén alapul
- Mintaillesztési, illetve távolság-alapú modellek
- Könnyű implementálási lehetőség
- Kereskedelmi keresők ezek speciális változatain alapulnak

Klasszikus információ-visszakereső modellek:

- Boole modell (Boolean Model), matematikai logikán és halmazelméleten alapul
- Vektortér modell (Vector Space Model), a lineáris algebrán alapul
- Valószínűségi modell (Probablistic Model), a valószínűségszámításon és a Bayes-statisztikán alapul

1.2. Vektortér modell formális leírása -1.

A vektortér modell:

- egy fontos,
- jól érthető, és
- széles körben kutatott és használt klasszikus modell
- amelyet szöveges objektumok feldolgozására, és információ-visszakeresésre már régóta használnak (Salton, 1966).

1.2. Vektortér modell formális leírása -2.

Ezt vektortér modellnek nevezik,

- mert minden
 - dokumentum és a
 - kérdés is a tér egy pontjába van leképezve,
- amely tér alapját a dokumentumokban található kifejezések adják.

1.2. Vektortér modell formális leírása -3.

- A tér matematika modellje:
 - egy orthonormált euklideszi tér,
 - > amelyben a tengelyek páronként egymásra merőlegesek.
- A tér dimenzióit az indexkifejezések adják.
- A visszakeresés azon alapul, hogy a
 - kérdés-vektor és a
 - dokumentum-vektor

mennyire van "közel" egymáshoz.

1.2. Vektortér modell formális leírása -4.

Legyen

• *D* egy véges halmaz, melynek elemei a dokumentumok:

$$D = \{D_1, ..., D_j, ..., D_m\}$$

• *T* egy véges halmaz, melynek elemei az indexkifejezések:

$$T = \{t_1, ..., t_i, ..., t_n\}$$

• Minden D_j dokumentumhoz hozzárendelünk egy n hosszú \mathbf{v}_i súlyvektort. A vektor elemeit súlyoknak nevezzük:

$$\mathbf{v}_{j} = (w_{ij})_{i=1,...,n} = (w_{ij}, ..., w_{ij}, ..., w_{nj})$$

- ► általában o ≤ w_{ij} ≤ 1
- ightharpoonup a w_{ij} súllyal azt fejezzük ki, hogy a t_i kifejezés milyen mértékben tükrözi a D_j dokumentum tartalmát.

1.2. Vektortér modell formális leírása -4.

A v_j súlyvektorokból megadható a TxD (term-by-document) kifejezés-dokumentum mátrix:

- m (dokumentumok száma) oszlopa van
- n (indexkifejezések száma) sora van
- amelynek elemei a súlyok,
- TD= (w_{ij}) nxm , ahol i=1...n, j=1...m

1.2. Vektortér modell formális leírása -5.

TD Mátrix

```
\begin{pmatrix} w_{11} & \cdots & w_{1j} & \cdots & w_{1m} \\ \vdots & \vdots & & \vdots \\ w_{i1} & \cdots & w_{ij} & \cdots & w_{im} \\ \vdots & \vdots & & \vdots \\ w_{n1} & \cdots & w_{nj} & \cdots & w_{nm} \end{pmatrix}
```

1.2. Vektortér modell formális leírása -6.

A kifejezések kiválasztása és a súlyok meghatározása :

- nehéz elméleti (nyelvészeti, szemantikai) és
- gyakorlati probléma.

Ennek számos lehetséges megoldása van.

- A legnyilvánvalóbb az, hogy az index- kifejezéseket magukban a dokumentumokban keressük.
- Feltételezzük, hogy a szavak előfordulási gyakorisága a dokumentumokban jelentőséggel bír, és ezért azonosítóként használhatók.

1.2. Vektortér modell formális leírása -7.

Indexkifejezések meghatározása:

- automatikus (a dokumentumból)
- manuális (szakértők által).

- Fokszám: hálózat egy elemének fokszáma a hálózaton belüli kapcsolatainak a száma
- Fokszámeloszlás: a hálózat összes, adott fokszámú elemének számát tünteti fel a fokszám függvényében
 - Random-gráfok (olyan hálózat, amelynek elemeit véletlenszerűen kötjük össze): Poisson-eloszlás
 - Skálafüggetlen: hálózat fokszámeloszlása hatványfüggvényt követ

- Véletlen hálózat fokszáma Poisson-eloszlást követ, (haranggörbe).
 - A legtöbb csomópontnak azonos számú kapcsolata van,
 - nem létezik kiemelkedően sok kapcsolatú csomópont
- Skálafüggetlen hálózat hatványfüggvényű fokszámeloszlású
 - legtöbb csomópontnak csupán kevés kapcsolata van,
 - amelyeket néhány nagymértékben összekapcsolt középpont tart össze.(Barabási, 2003 után)

Ha egy esemény változása valamely jellemzőjének hatványával arányos, akkor azt mondjuk, hogy a hatványtörvény szerint viselkedik.

A hatványtörvénnyel leírt hálózatok esetében az elemek fokszámeloszlása szabályszerű:

- van kis számú elem, aminek nagyon sok kapcsolata van (pl. 2 db 100 kapcsolattal rendelkező), (kevés amire sok link mutat)
- majd a kapcsolatok számának csökkenésével növekszik az adott kapcsolattal rendelkező elemek száma (pl. 4 db 80 kapcsolattal, 10 db 50 kapcsolattal, 30 db 20 kapcsolattal 80 db 5 kapcsolattal, 130 db 4 kapcsolattal, stb.) (sok amire kevés link mutat).

Azon hálózatokat, amelyeknél az elemek fokszám-eloszlása a hatványtörvényt követi, skálafüggetlen hálózatoknak nevezzük (Barabási 2003, Newman 2005).

Pl. Barabási:

203 millió weboldal vizsgálata (bejövő linkek alapján):

- Oldalak 90 %-a 10 vagy kevesebb beérkező linkkel rendelkezik
- Néhányat (3) közel 1 millió másik oldalon hivatkoznak

ZIPF-törvény

 Angol nyelvű szövegekben (korpuszokban) a szavak f előfordulási gyakorisága a Hatványtörvényt követi:

$$f(r) = Cr^{-\alpha},$$

- ahol *C* korpusz függő konstans,
- r a szavak rangsora (az előfordulási szám szerinti csökkenő sorrendben elfoglalt hely).
- α a hatványfüggvény kitevője.
- Az $f(r) = Cr^{-1}$ hatványtörvényt Zipf törvénynek is nevezik.

ZIPF-törvény

Sok, eddig publikált kísérleti eredmény is igazolja, azt a feltételezést, hogy minden nyelvre érvényes.

A leggyakoribb szó

- közel kétszer gyakoribb, mint a második leggyakoribb szó, és
- háromszor gyakoribb, mint a harmadik helyen lévő, stb.

ZIPF-törvény példa

Szakirodalmi, hivatalos példa:

- az úgynevezett Brown-gyűjteményt (Brown University-ben kb. 500 angol szöveget vizsgáltak meg a nyelvészek), ahol:
 - a "the" a leggyakrabban előforduló szó (az összes előforduló szó 7%-a) .
 - "and" a második leggyakoribb szó, amelynek az előfordulási gyakorisága 3,5%.

ZIPF-törvény

 A törvény érdekes következménye, ha egy korpuszból csak a leggyakoribb szavakat tartjuk meg, a többit töröljük, a korpusz nagy része akkor is megmarad.

Pl. 30 000 különböző szavunk van, és α=1.1, és

- a 15 000 leggyakrabban előforduló szót tartjuk meg (szótár a felére csökken), akkor a korpuszban levő szavak több,mint 96%-át megtartottuk.
- 1 000 leggyakoribb szót tartjuk meg (szótár a 30-adára csökken) akkor ugyanez az arány majdnem 80%.

2. Indexelési technikák, hasonlósági mértékek a vektortér modellben

- 2.1. Automatikus Indexkifejezés- kinyerés lépései
- 2.2. Indexelési technikák
- 2.3. A visszakeresés lépései
- 2.4. Hasonlósági mértékek

2.1. Automatikus Indexkifejezéskinyerés lépései -1.

A kifejezések, és azok jelentőségének meghatározására a következő egyszerű automatikus módszer használható:

- Lexikai egységek azonosítása. Egy számítógépes program kell szavak felismerésére (szó = karaktersorozat, amelyet szóköz, írásjel előz meg és követ).
- 2. Stoplista alkalmazása (azokat a szavakat tartalmazza, amelyek általában nem hordoznak jelentést egy dokumentumban, pl.: a, az, egy, ez, ...). Azokat a szavakat, amelyeket a stoplista tartalmaz, kihagyjuk a további vizsgálatkor. A stoplista általában terület- és applikáció-függő.

2.1. Automatikus Indexkifejezéskinyerés lépései -2.

- Szótővesítő (stemming) algoritmus alkalmazása. Ez az algoritmus minden szót redukál vagy áttranszformál a nyelvi szótőre.
- 4. Kiszámítjuk minden Dj dokumentumra a ti kifejezés előfordulásainak számát: fij
- 5. Kiszámítjuk a ti kifejezés összes előfordulását: t_{fi}

$$t_{fi} = \sum_{j=1}^{m} f_{ij}$$

- 6. t_{fi} szerint sorba rendezzük a kifejezéseket,
- 7. a nagyon magas értékűeket (ami nagyon gyakran előfordul, már nem mond semmit), és a nagyon alacsony előfordulásúakat (mert azok nem meghatározó jelentőségűek) kirekesztjük.

2.1. Automatikus Indexkifejezés-kinyerés lépései -3.

- 8. Az így megmaradó kifejezések az azonosítók vagy index kifejezések.
- 9. Az indexkifejezések felhasználásával kiszámítjuk minden D_j dokumentumra a w_{ij} súlyokat. Súlyszámok segítségével fejezzük ki, hogy egy kifejezés milyen mértékben tükrözi egy dokumentum tartalmát. A súlyszámok meghatározására számos módszer használható.

2.2. Indexelési technikák -1.

A súlyszámok meghatározásának technikái:

• Bináris:

$$w_{ij} = \left\{ \begin{matrix} 1, ha~a~t_i kifejez\'es~szerepel~a~D_j dokumentumban \\ 0, egy\'ebk\'ent \end{matrix} \right\}$$

• Gyakoriság szerinti súlyozás (*TF*: Term-frequency):

A súlyfüggvény megegyezik a kifejezések előfordulási gyakoriságával.

$$w_{ij} = f_{ij}$$

 f_{ij} : t_i kifejezés előfordulásainak száma a D_j dokumentumban

2.2. Indexelési technikák -2.

- Normalizált gyakoriság szerinti súlyozások:
- ➤ Maxnormált (*MaxNorm*):

$$w_{ij} = \frac{f_{ij}}{\max_{1 \le k \le n} f_{kj}}$$

➤ Hossznormált (*tfn*: term-frequency normalised):

$$w_{ij} = \frac{f_{ij}}{\sqrt{\sum_{k=1}^{n} f_{kj}^2}}$$

 f_{ij} : t_i kifejezés előfordulásainak száma a D_j dokumentumban

2.2. Indexelési technikák -3.

• *TF-IDF* (Term-frequency-inverse document frequency):

$$w_{ij} = f_{ij} \times log\left(\frac{m}{F_i}\right)$$
, ahol:

- > m: dokumentumok száma
- $\succ F_i$: azon dokumentumok száma, amelyekben előfordul a t_i indexkifejezés

Indexelési technikák példa

Bináris:

$$v_1(1,1); \quad v_2(1,1); \quad v_3(0,1)$$

Gyakoriság:

$$v_1(2,4); v_2(1,4); v_3(0,1)$$

• Maxnormált:
$$w_{ij} = \frac{f_{ij}}{\max\limits_{1 \le k \le n} f_{kj}}$$

vı(0.5,1); v2(0.25,1); v3(0,1)

Indexelési technikák példa

• Hossz-normált:
$$w_{ij} = \frac{f_{ij}}{\sqrt{\sum_{k=1}^{n} f_{kj}^2}}$$

 $v_1(^2/\sqrt{20}, ^4/\sqrt{20}); v_2(^1/\sqrt{17}; ^4/\sqrt{17}); v_3(0,1)$

• TF-IDF:
$$w_{ij} = f_{ij} \times log\left(\frac{m}{F_i}\right)$$

v1(0.34,0); v2(0.17,0); v3 (0,0)

2.3. A visszakeresés lépései-1.

- A visszakeresés azon alapul, hogy a kérdés-vektor és a dokumentum-vektor mennyire van "közel" egymáshoz.
- A felhasználó által feltett Q_k keresőkérdéshez is megadható egy \mathbf{v}_k vektor, amelynek elemeit ugyanolyan súlyszámítási séma alapján adjuk meg, mint a dokumentumokét:

$$\mathbf{v}_k = (w_{ik})_{i=1,...,n} = (w_{1k}, ..., w_{ik}, ..., w_{nk}), \text{ ahol:}$$

 w_{ik} : a t_i indexkifejezés Q_k keresőkérdésre vonatkozó súlyszáma

2.3. A visszakeresés lépései-2.

- A visszakeresés egy hasonlóság meghatározásán alapul.
 - A dokumentumoknak megfelelő \mathbf{v}_i vektorokat összevetjük a kérdés vektorral \mathbf{v}_k (hasonlóság-mérés). Ennek eredménye s_{ik} .
 - Ha ez a mérési eredmény egy küszöbértéknél nagyobb, akkor \mathbf{v}_i vektorral azonosított dokumentum válasz a kérdésre.

$$S_{ik} = s(\mathbf{v}_i, \mathbf{v}_k) > K$$

2.3. A visszakeresés lépései -3.

Tehát a visszakeresés lépései a következők:

- A Q_k keresőkérdés megadása.
- 2. A t_i indexkifejezések w_{ik} súlyának meghatározása a Q_k kérdésben (hasonlóan, mint a dokumentumokban).
- 3. Minden D_j dokumentumra a hasonlósági mérték értékeinek kiszámítása.
- 4. A találati lista (visszakapott dokumentumok) megadása hasonlósági érték szerint csökkenő sorrendben.

2.4. Hasonlósági mértékek -1.

Pont, vagy skalár szorzat (Dot product):

$$S_{jk} = (\mathbf{v}_j, \mathbf{v}_k) = \sum_{i=1}^n w_{ij} w_{ik}$$

2.4. Hasonlósági mértékek -2.

Koszinusz mérték (Cosine measure): c_{jk}

$$s_{jk} = c_{jk} = (\mathbf{v}_j, \mathbf{v}_k)/(||\mathbf{v}_j|| \cdot ||\mathbf{v}_k||) =$$

$$= \frac{\sum_{i=1}^{n} w_{ij} w_{ik}}{\sqrt{\sum_{i=1}^{n} w_{ij}^{2} \sum_{i=1}^{n} w_{ik}^{2}}}$$

2.4. Hasonlósági mértékek -3.

• Dice együttható (Dice's coefficient): d_{jk}

$$s_{jk} = d_{jk} = 2 \cdot (\mathbf{v}_j, \mathbf{v}_k) / \sum_{i=1}^{n} (w_{ij} + w_{ik})$$

$$= \frac{2\sum_{i=1}^{n} w_{ij} w_{ik}}{\sum_{i=1}^{n} (w_{ij} + w_{ik})}$$

2.4. Hasonlósági mértékek -4.

• Jaccard együttható (Jaccard's coefficient): J_{jk}

$$S_{jk} = J_{jk} = (\mathbf{v}_j, \mathbf{v}_k) / (\sum_{i=1}^{n} (w_{ij} + w_{ik})/2^{\mathbf{w}_{ij}\mathbf{w}_{ik}}) =$$

$$= \frac{\sum_{i=1}^{n} w_{ij} w_{ik}}{\sum_{i=1}^{n} \frac{w_{ij} + w_{ik}}{2 w_{ij} w_{ik}}}$$

3. Rangsortartás

- 3.1. A rangsortartás definíciója
- 3.2. A rangsortartás jelentősége

3.1 A rangsortartás definíciója

Adott:

- két tetszőleges dokumentum (objektum): D_1 and D_2 ,
- és két hasonlósági mérték: σ₁ and σ₂.

Ha a két dokumentum sorrendje megegyezik mindkét hasonlósági mértékkel számolva bármely tetszőleges *Q* keresőkérdésre, azaz:

 $\sigma_1(\mathbf{w}_1, \mathbf{q}) \leq \sigma_1(\mathbf{w}_2, \mathbf{q}) \Leftrightarrow \sigma_2(\mathbf{w}_1, \mathbf{q}) \leq \sigma_2(\mathbf{w}_2, \mathbf{q}), \forall D_{1,} D_{2,} Q$. Akkor azt mondjuk, hogy a σ_1 és σ_2 hasonlósági mérték rangsortartó.

3.1. A rangsortartás jelentősége

Rangsortartás:

- a két hasonlósági mérték egymással ekvivalens, azaz:
- a két hasonlósági mérték egymással helyettesíthető, mivel:
- ugyanazokat a találatokat (dokumentumokat) adja vissza,
- ugyanabban a sorrendben.

A vektortér modellben általában a hasonlósági mértékek egymással nem helyettesíthetők, tehát nem rangsortartók.

Példa vektortér modellre -1.

• Adott könyvcímek egy kis gyűjteménye (7 dokumentum D_i)

Terms			Documents				
T ₁	Baby	D ₁	Infant and Toddler First Aid				
T ₂	Child	D ₂	Babies and Children's Room (For your Home)	Child			
T 3	Guide	D_3	<u>Child Safety</u> at <u>Home</u>				
T 4	Health	D ₄	Your <u>Baby</u> 's <u>Health</u> and <u>Safety</u> : From <u>Infant</u> to				
			<u>Toddler</u>				
T 5	Home	D5	Baby Proofing Basics	Home			
T6	Infant	D6	Your <u>Guide</u> to Easy Rust <u>Proofing</u>	Infant			
T 7	Proofing	D ₇	Babies Collectors Guide	Proofing			
T8	Safety			Safety			
T9	Toddler						

Table 3.1. Collection of book titles with the index terms

Példa vektortér modellre -2.

- m=7 dokumentum (mátrixnak 7 oszlopa van), azaz
 D={D1;D2;D3;D4;D5;D6;D7}
- n=9 indexkifejezés (a mátrixnak 9 sora van), azaz T
 ={t1; t2; t3; t4; t5; t6; t7; t8; t9},
- a dokumentumok:
 - $D_1 = \{t6; t9\}$
 - $D2 = \{t1; t2; t5\}$
 - $D_3 = \{t2; t5; t8\}$
 - $D4 = \{t1; t4; t6; t8; t9\}$
 - $D_5 = \{t_1; t_7\}$
 - $D6 = \{t_3; t_7\}$
 - $D7 = \{t_1; t_2\}$

Példa vektortér modellre -2.

• tfn súlyszámítási sémával a TD mátrix:

	0	0.5774	0	0.4472	0.7071	0	0.7071
	0	0.5774	0.5774	0	0	0	0
	0	0	0	0	0	0.7071	0.7071
	0	0	0	0.4472	0	0	0
D :=	0	0.5774	0.5774	0	0	0	0
	0.7071	0	0	0.4472	0	0	0
	0	0	0	0	0.7071	0.7071	0
	0	0	0.5774	0.4472	0	0	0
	0.7071	0	0	0.4472	0	0	0)

Példa vektortér modellre -3.

• *tfn* sémával a *term-by-query* :

$$Q := \begin{pmatrix} 0 \\ 0.4472 \\ 0 \\ 0 \\ 0.4472 \\ 0.4472 \\ 0.4472 \\ 0.4472 \\ 0 \end{pmatrix}$$

Példa vektortér modellre 4.

 Cosine, Dice and Jaccard mértékekkel számított értékek:

Document	Similarity measure							
Document	Cosine	Jaccard	Dice					
D ₁	0.316	0.092	0.174					
D ₂	0.516	0.142	0.264					
D ₃	0.775	0.224	0.39					
D ₄	0.4	0.094	0.178					
D ₅	0.316	0.092	0.174					
D6	0.316	0.092	0.174					
D ₇	О	О	О					

Péda vektortér modellre 5.

- 1. Adja meg a hasonlósági mértékek által visszaadott találati listákat!
- 2. Vizsgálja meg a hasonlósági mértékek rangsortartását!

MORFÉMÁK - SZUFFIXEK

A **morféma** (**morpheme**) a nyelv legkisebb olyan egysége, amely önálló jelentést vagy strukturális szerepet hordoz; a szó legkisebb értelmezhető része.

A **toldalék** (affixum) jelentésváltoztató, -módosító vagy viszonyjelentést hordozó szórész, morféma. Közvetlen környezete a szótő. A toldalékok részben helyzetük, részben szerepük szerint csoportosíthatók. A szótőhöz viszonyított helyük szerint lehetnek:

- <u>szuffixumok</u>, ha a szótő mögé kerülnek (pl. *erdő.ben*);
- **prefixumok**, ha a szótő elé kerülnek (pl. *meg.eszik*);
- <u>infixumok</u>, ha beékelődnek a szótőbe (ez a magyartól teljesen idegen);
- <u>cirkumfixumok</u>, ha körülveszik a szótövet (pl. *leg.jo.bb*)

Ex.: connect + ion=connection

MORFÉMÁK - SZUFFIXEK

- A magyar nyelv szuffixumai változatos feladatokat láthatnak el, így funkciójuk szerint három alcsoportba sorolhatók:
- a <u>képző</u> megváltoztathatja szótári szó jelentését, rendszerint új szavakat hoz létre, és szófajváltást is eredményezhet: ég.i, Egy szótőhöz több is járulhat.
- a jel valamilyen viszonyjelentéssel (többek közt mód, idő, hasonlítás, többség, birtoklás) módosítja a fogalmi jelentést, gyakran további jelek vagy ragok felvételét kívánja: fiú.é (birtokjel), áll.t.unk (múlt idő jele+ igei személyrag);
- a rag a szavak mondatban betöltött szerepét, a mondat más szavaihoz való viszonyát jelöli. A szavakban csak egyetlen rag található, amely lezárja a szóalakot. Utána már semmilyen más toldalék nem állhat. kert.ben (határozórag),
- A <u>szótő</u> és a <u>képző</u> a szótári szavak létrehozásában játszik szerepet(lexikológiai természetű), a <u>jel</u> és a <u>rag</u> ellenben a mondatok felépítésben nélkülözhetetlen (grammatikai szerepű).

The Porter Stemming Algorithm

- The Porter stemming algorithm (or 'Porter stemmer') is a process for removing the suffixes from words in English.
 - Ex.: connection → connect
- Complex suffixes are removed step by step. Thus:
 - GENERALIZATIONS is stripped to GENERALIZATION (Step 1),
 - then to GENERALIZE (Step 2),
 - then to GENERAL (Step 3), and
 - then to GENER (Step 4).

The *rules* for removing a suffix are given in the form:

This means that if a word ends with the suffix S1, and the stem before S1 satisfies the given condition, S1 is replaced by S2.

Ex #1.: (*S or *T) ION -> .

Here S₁ is 'ION' and S₂ is null. This would map ADOPTION to ADOPT because the word ends with letter S or T.

Rules:

ATIONAL->ATE relational -> relate
TIONAL ->TION conditional -> condition
IZER ->IZE digitizer -> digitize
ATION ->ATE predication -> predicate

Stemming Hungarian

Néhány szabály a magyar nyelvű szőtövesítésből:

Rule: Example:

 $Z \rightarrow Z$ ráz -> rázz

Z -> ZÁL ráz -> rázzál

 $[OUU] \rightarrow VAL$ manó -> manóval, hamu -> hamuval, bú -> búval

. -> KÉNT kutya -> kutyaként,

okos -> okosként

A -> -A,ÁNAK macska -> macskának

A HelyesLem lemmatizáló, azaz szótővesítő program egy adott nyelv egy tetszőleges toldalékolt szóalakjára a szó tövének (vagy töveinek) szótári alapalakját (vagy alakjait) adja vissza. Használata főként szövegekben történő keresésnél, illetve a keresési index elkészítésénél fontos, mivel a magyar nyelvben a toldalékolás során a szótő gyakran megváltozik, és ezekben az esetekben az egyszerű, betű szerinti keresés nem találja meg az összes keresett alakot.

58

- Az MHAB (Magyar Hiedelemszövegek Adatbázisa) 2704 magyar hiedelem-szöveget tartalmaz (Darányi, 2001).
 Vannak köztük rövid szövegek, amelyek tömören egy hiedelmet tartalmaznak, és vannak olyanok is, amelyek az adott hiedelmet kis történeten keresztül mutatják be.
 Néhány példa a hiedelmekből:
- Aki máskor vet, az ne szóljon senkinek.
- Aki aratáskor a tarlót vizzel leönti s a vizes helyre lép, akkor seb lesz a lábán.
- Ha azt akarod, hogy a bajszod hama nyôjön, akkor rëgge amind kinyitod a szëmed, minnyá a két újjadda éjnyalló bekenyéd a bajszod helit.

Magyar hiedelemszöveg-bázis

 Alig lëhettem 10 éves de úgy emlikszëm mintha most történt volna. A tehenünk véres tejet adott azt monták, hogy a boszorkányok mëgfejik. Hát jóvan gondotam magamban majd én mëglesem, hogy ki feji mëg a tehenünket. Szótam a szogánok a bátyámnok és igy hárman kifeküttünk az istallóba. Ëgyszër aztán mëgcsapott engém ëgy hideg levegô és abban a pillanatban erôs nyomást érëztem a mellemën és jól hallottam hogy a tehén zúg vagyis a teje. Fölakartam keni de nem tudtam még mëgmozduni së, szóni akartam de azt se tudtam hát vártam. Egyszërcsak hallom, hogy fölugrik a bátyám és kapja a vasvillát és belevágja az istálló ajtóba és ekezd kiabányi, hogy megvan a boszorkány. Kigyüttek a szüleim a lármáró kerestük, de sëhol sëm találtunk sënkit az egész istállóban, és a tehén tôgye üres vót és nedves. Másnap aztán együtt hozzánk az öreg Tolam néni ëgy kis sóér mëg hagymáér, mer a boszorkánynak ha valahol megszúrják el köll mënni oda másnap sóért és foghagymáér mer csak akkor gyógyul mëg a sebe. De bizony az öreg Tolam néni mëgjártó mert amint e panaszkotta hogy a hatábó esett a vasvilla mingyá tudtuk hogy ô fejte mëg a tehenünket, és a só mëg a foghagyma mellé bátyám jó everte, de többet nem is gyütt még felénk se.

- Számítógépes nyelvtechnológiai szempontból az MHAB sajátosságai közül ki kell emelni a következőket. :
- A szövegek ASCII (szöveg) formátumban szerepelnek, ezért az MHAB viszonylag könnyen adaptálható (lehetővé teszi a kívánt számítógépes adatszerkezetek kialakítását és szükséges algoritmusok alkalmazását):
- Mind mai írásmód, pl.
- Ha kis gyermeknek komoly baja van, akkor szenes vízzel mossák meg. A meleg vízbe 9 db. szenet tesznek, megkenik a vízzel a gyermek homlokát, és ezt mondják: Ha férfi, kalap alá; ha leány, párta alá; ha asszony, fejkötő alá, az atya, fiú, szentlélek nevében. Ámen.
- mind régebbi vagy tájszólás jellegű írásmód és szóhasználat, pl.
- Ha a tehenet merrontya a boszorkány, vësznek egy új fëlliteres cserepbëgrét; abba belëtësznek ecs csomaócskát a tehen gannajjábó. Azután szöget vernek a kény belsejébe s erre felakasztyák a bëgrét. Etteô aszt meggyön a tehen haszna."
- jellemző az MHAB állományára.

Viszonylag sok a szóalak (pl. a számítógépes nyelvtechnológiában elterjedten vizsgált angol nyelvvel összehasonlítva):

 asszony, asszonnak, asszony, zasszony, háziasszony, asszonyról, fehírníp, asszonyhoz, gazdasszony, kisasszony, gazdasszonyok, fehérnép, asszonyt, asszonnyal, asszonyok, fehérnépek, asszon, háziasszonyok, vászoncselédeknek, asszonyokhoz, gazdaasszony, asszonyokról, gazdasszonynak, gazdasszonya, ételvivôasszony, asszonya, asszonynak, asszonyoknak, háziasszonynak, asszonyai, asszonyra

- Az automatikus szövegfeldolgozás első lépéseként a stop-lista meghatározására került sor.
- 1,551 stop-szó azonosítása történt meg, manuálisan, azaz olyan szóé (névmás, határozó, jelző, ige, múlt idejű alak, ritkán használt szó, ragozott alak), amely nem vagy alig hordoznak jelentést a hiedelemre nézve. A stop-lista néhány részlete a következő:
- abba, abban, abbó, abból, abbú, abbüó, addig, ahány, ahanyadik, ahányadik, ahányan, ahányat, ahányszor, ahányszori, ahhoz, ahogy, ahol, ahon, ahonneét, ahonnét, ahova, ahová, ahun, ahuon, ajánlatos, ajánlják, akár, akárhogy, akármelyik, akármilyen, akármit, aképen, ..., aki, akié, akiébe, akiért, akihez, akijé, akik, akiknek, akin, akinek, akinél, akinél, akire, akiról, akitól, akivel, akki, akkinek, akkire, ..., zén, zett, zije, zik, zis, zisnagyon, zni, zsémb, ztem, zzen, zönt, örvend, örvendetes, örvendetesebbet, összefügg, összefüggő, övéket

- Az eltávolítás után 14.421 szóalak maradt az eredetileg szereplő összes 15.972 szóalakból.
- Az automatikus nyelvtechnológia következő lépésekét az azonos jelentéssel felruházható, de különböző alakú szavaknak azonos tőre való redukálása (lemmatizálás, stemming) képezi.
- Jóllehet léteznek a magyar nyelvre kifejlesztett stemmerek (Morphologic, Szószablya), a hiedelemszövegek változatos, különleges (fentebb érzékeltetett) szóhasználata, régi homonimák miatt azokat az MHAB-ra nem vagy csupán igen alacsony hatékonysággal lehet alkalmazni. Ezért a szótőre való visszavezetés manuálisan valósult meg.

- A szótő-lista néhány részlete a következő: #agyon
- #ajak
- #ajtó
- #ajándék
- #akadály
- #akar
- #alsónemű
- #csal
- #család
- #csütörtök
- #úrfelmutatás
- #úrnapja
- #úrvacsora
- #üszô
- #üt

- A stop-listán szereplő szavaknak automatikus, C++ programozási nyelven írt számítógépes programok segítségével való törlése után maradt szavak tövesítése 2.602 szótőt eredményezett.
- Ezek a szótövek képezik az index-kifejezéseket, amelyek segítségével minden hiedelemszöveget a benne előforduló index-kifejezések előfordulási számainak számtömbjeként, 'vektoraként' ábrázoltunk.
- A valamennyi hiedelem-vektort oszlopokba és egymás mellé rendezve kapjuk a *kifejezés-dokumentum* (term-by-document) *matrix*ot, TD-t. A TD mátrixnak az *i*-ik sorában és *j*-ik oszlopában szereplő eleme az *i*-ik index-kifejezésnek a *j*-ik hiedelemszövegben való előfordulási száma.

• A TD mátrixot automatikusan, C++ programozási nyelven írt számítógépes program segítségével állítottuk elő, 2.602 sora és 2.704 oszlopa van (Sorszám=index-kifejezés sorszáma, oszlopszám=hiedelemszöveg sorszáma)

		21	22	23	24	25	26	27	28	29	30
	1	0	1	0	0	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0
TD=	4	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0	0
	9	1	0	0	0	0	0	0	0	0	0

Hiedelemszövegek száma				
Index-kifejezések száma				
Index-kifejezések maximális száma/szöveg	263			
Index-kifejezések minimális száma/szöveg	1			
Index-kifejezések átlagos száma/szöveg	12			
Index-kifejezések átlagos számának szórása	11			
Index-kifejezés maximális előfordulási száma/szöveg	16			
Szövegek maximális száma ugyanazon index-kifejezéssel	386			
Szövegek minimális száma ugyanazon index-kifejezéssel	0			