

Pandas -Series

Hands on!

```
In [1]: import pandas as pd
import numpy as np
```

Pandas Series

We'll start analyzing "The Group of Seven". Which is a political formed by Canada, France, Germany, Italy, Japan, the United Kingdom and the United States. We'll start by analyzing population, and for that, we'll use a pandas. Series object.

```
In [2]: # In millions
        g7 pop = pd.Series([35.467, 63.951, 80.940, 60.665, 127.061, 64.511, 318.523])
In [3]:
        g7 pop
Out[3]:
                 0
        0
            35.467
        1
            63.951
            80.940
        2
            60.665
        4 127.061
            64.511
        6 318.523
```

dtype: float64

Someone might not know we're representing population in millions of inhabitants. Series can have a name, to better document the purpose of the Series:

4

5

6

Series are pretty similar to numpy arrays:

127.061

64.511

318.523

In [8]: type(g7_pop.values)

Out[8]: numpy.ndarray

And they *look* like simple Python lists or Numpy Arrays. But they're actually more similar to Python dict s.

A Series has an index , that's similar to the automatic index assigned to Python's lists:

In [9]: g7_pop

```
G7 Population in millions
Out[9]:
          0
                               35.467
          1
                               63.951
          2
                               80.940
          3
                               60.665
          4
                              127.061
          5
                               64.511
          6
                              318.523
         dtype: float64
In [10]: g7_pop[0]
Out[10]: np.float64(35.467)
         g7_pop[1]
In [11]:
Out[11]: np.float64(63.951)
In [12]: g7 pop.index
Out[12]: RangeIndex(start=0, stop=7, step=1)
In [13]: l = ['a', 'b', 'c']
         But, in contrast to lists, we can explicitly define the index:
In [14]:
         g7_pop.index = [
              'Canada',
              'France',
              'Germany',
              'Italy',
              'Japan',
              'United Kingdom',
              'United States',
```

In [15]: g7_pop

G7 Population in millions

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

Compare it with the following table:

G7 Population		
(Expressed in millions)		
Canada	35.467	
France	63.951	
Germany	80.94	
Italy	60.665	
Japan	127.061	
United Kingdom	64.511	
United States	318.523	

We can say that Series look like "ordered dictionaries". We can actually create Series out of dictionaries:

\sim			-	· ·	1
()	111			h	
\cup	ич	L.	_	υ.	

G7 Population in millions

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

Out[17]:

G7 Population in millions

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

You can also create Series out of other series, specifying indexes:

```
In [18]: pd.Series(g7_pop, index=['France', 'Germany', 'Italy', 'Spain'])
```

Out[18]:	G7 Population in millio	
	France	63.951
	Germany	80.940
	Italy	60.665
	Spain	NaN

Indexing

Indexing works similarly to lists and dictionaries, you use the **index** of the element you're looking for:

In [19]:	g7_pop	
Out[19]:		G7 Population in millions
	Canada	35.467
	France	63.951
	Germany	80.940
	Italy	60.665
	Japan	127.061
	United Kingdom	64.511
	United States	318.523

dtype: float64

```
In [20]: g7_pop['Canada']
Out[20]: np.float64(35.467)
In [21]: g7_pop['Japan']
Out[21]: np.float64(127.061)
```

Numeric positions can also be used, with the iloc attribute:

In [22]: g7_pop.iloc[0]

```
Out[22]: np.float64(35.467)
```

Out[23]: np.float64(318.523)

Selecting multiple elements at once:

Out [24]: **G7 Population in millions**

Italy	60.665
France	63.951

dtype: float64

(The result is another Series)

Out [25]: **G7 Population in millions**

Canada	35.467
France	63.951

dtype: float64

Slicing also works, but **important**, in Pandas, the upper limit is also included:

In [26]: g7_pop['Canada': 'Italy']

Out [26]: **G7 Population in millions**

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665

dtype: float64

Conditional selection (boolean arrays)

The same boolean array techniques we saw applied to numpy arrays can be used for Pandas Series:

In [27]: g7_pop

Out[27]:

G7	Popul	ation	in	millions	
				35.467	

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

In [28]: g7_pop > 70

Out[28]:

G7 Pop	ılation	in I	millions
--------	---------	------	----------

Canada	False
France	False
Germany	True
Italy	False
Japan	True
United Kingdom	False
United States	True

dtype: bool

In [29]: g7_pop[g7_pop > 70]

Out[29]:		G7 Population in	millions					
	Germany		80.940					
	Japan		127.061					
	United States		318.523					
	dtype: float64							
In [30]:	g7_pop.mean()							
Out[30]:	np.float64(107	.30257142857144)						
In [31]:	g7_pop[g7_pop >	<pre>> g7_pop.mean()]</pre>						
Out[31]:		G7 Population in	millions					
	Japan		127.061					
	United States		318.523					
	dtype: float64							
In [32]:	g7_pop.std()							
Out[32]:	97.249969871215	581						
In [33]:	# ~ not # or							
	# & and							
In [34]:	g7_pop[(g7_pop	< g7_pop.mean()	- g7_pop	.std()/2)	(g7_pop	> g7_pop.r	nean()	+ 0
Out[34]:		G7 Population in	millions					
	Canada		35.467					
	United States		318.523					
	dtype: float64							

Operations and methods

Series also support vectorized operations and aggregation functions as Numpy:

In [35]: g7_pop

Out[35]: **G7 Population in millions**

Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

In [36]: g7_pop * 1_000_000

Out[36]: **G7 Population in millions**

Canada	35467000.0
France	63951000.0
Germany	80940000.0
Italy	60665000.0
Japan	127061000.0
United Kingdom	64511000.0
United States	318523000.0

dtype: float64

In [37]: g7_pop.mean()

Out[37]: np.float64(107.30257142857144)

In [38]: np.log(g7_pop)

Out[38]:	G7 Population in million	
	Canada	3.568603
	France	4.158117
	Germany	4.393708
	Italy	4.105367
	Japan	4.844667
	United Kingdom	4.166836
	United States	5.763695

In [39]: g7_pop['France': 'Italy'].mean()

Out[39]: np.float64(68.5186666666666)

Boolean arrays

(Work in the same way as numpy)

In [40]: g7_pop

Out[40]:

	G7 Population in millions
Canada	35.467
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

In [41]: g7_pop > 80

Out[41]:

G7 Population in millions

Canada	False
France	False
Germany	True
Italy	False
Japan	True
United Kingdom	False
United States	True

dtype: bool

In [42]: g7_pop[g7_pop > 80]

Out[42]:

G7 Population in millions

Germany	80.940
Japan	127.061
United States	318.523

dtype: float64

In [43]: $g7_pop[(g7_pop > 80) | (g7_pop < 40)]$

Out[43]:

G7 Population in millions

Canada	35.467
Germany	80.940
Japan	127.061
United States	318.523

dtype: float64

In [44]: g7_pop[(g7_pop > 80) & (g7_pop < 200)]

Out [44]: G7 Population in millions Germany 80.940 Japan 127.061

dtype: float64

Modifying series

In [45]: g7_pop['Canada'] = 40.5

In [46]: g7_pop

Out[46]: **G7 Population in millions**

-	
Canada	40.500
France	63.951
Germany	80.940
Italy	60.665
Japan	127.061
United Kingdom	64.511
United States	318.523

dtype: float64

In [47]: $g7_pop.iloc[-1] = 500$

In [48]: g7_pop

Out[48]:		G7 Population in millions
	Canada	40.500
	France	63.951
	Germany	80.940
	Italy	60.665
	Japan	127.061
	United Kingdom	64.511
	United States	500.000

In [49]: g7_pop[g7_pop < 70]</pre>

Out[49]: **G7 Population in millions**

Canada	40.500
France	63.951
Italy	60.665
United Kingdom	64.511

dtype: float64

In [50]: $g7_pop[g7_pop < 70] = 99.99$

In [51]: g7_pop

Out [51]: G7 Population in millions

Canada	99.990
France	99.990
Germany	80.940
Italy	99.990
Japan	127.061
United Kingdom	99.990
United States	500.000

dtype: float64

_			