

10/532050

JC12 Rec'd PCT/PTC 11 MAR 2005
PCT/US03/28654 . 11032005

SEQLIST.TXT

SEQUENCE LISTING

<110> Behrens, Sven-Erik
Isken, Olaf
Grassmann, Claus W.
Sarisky, Robert T.

<120> A Set Of Ubiquitous Cellular Proteins
Involved in Viral Life Cycle

<130> P51375

<140> Unknown
<141> 2005-03-11

<150> PCT/US03/28654
<151> 2003-09-12

<150> 60/410,460
<151> 2002-09-13

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1270
<212> PRT
<213> Homo sapien

<400> 1
Met Gly Asp Val Lys Asn Phe Leu Tyr Ala Trp Cys Gly Lys Arg Lys
1 5 10 15
Met Thr Pro Ser Tyr Glu Ile Arg Ala Val Gly Asn Lys Asn Arg Gln
20 25 30
Lys Phe Met Cys Glu Val Gln Val Glu Gly Tyr Asn Tyr Thr Gly Met
35 40 45
Gly Asn Ser Thr Asn Lys Lys Asp Ala Gln Ser Asn Ala Ala Arg Asp
50 55 60
Phe Val Asn Tyr Leu Val Arg Ile Asn Glu Ile Lys Ser Glu Glu Val
65 70 75 80
Pro Ala Phe Gly Val Ala Ser Pro Pro Pro Leu Thr Asp Thr Pro Asp
85 90 95
Thr Thr Ala Asn Ala Glu Gly Asp Leu Pro Thr Thr Met Gly Gly Pro
100 105 110
Leu Pro Pro His Leu Ala Leu Lys Ala Glu Asn Asn Ser Glu Val Gly
115 120 125
Ala Ser Gly Tyr Gly Val Pro Gly Pro Thr Trp Asp Arg Gly Ala Asn
130 135 140
Leu Lys Asp Tyr Tyr Ser Arg Lys Glu Glu Gln Glu Val Gln Ala Thr
145 150 155 160
Leu Glu Ser Glu Glu Val Asp Leu Asn Ala Gly Leu His Gly Asn Trp
165 170 175
Thr Leu Glu Asn Ala Lys Ala Arg Leu Asn Gln Tyr Phe Gln Lys Glu
180 185 190
Lys Ile Gln Gly Glu Tyr Lys Tyr Thr Gln Val Gly Pro Asp His Asn
195 200 205
Arg Ser Phe Ile Ala Glu Met Thr Ile Tyr Ile Lys Gln Leu Gly Arg
210 215 220
Arg Ile Phe Ala Arg Glu His Gly Ser Asn Lys Lys Leu Ala Ala Gln
225 230 235 240
Ser Cys Ala Leu Ser Leu Val Arg Gln Leu Tyr His Leu Gly Val Val
245 250 255
Glu Ala Tyr Ser Gly Leu Thr Lys Lys Lys Glu Gly Glu Thr Val Glu
260 265 270
Pro Tyr Lys Val Asn Leu Ser Gln Asp Leu Glu His Gln Leu Gln Asn

SEQLIST.TXT

	275	280	285
Ile Ile Gln Glu Leu Asn Leu Glu Ile Leu Pro Pro Pro Glu Asp Pro	290	295	300
Ser Val Pro Val Ala Leu Asn Ile Gly Lys Leu Ala Gln Phe Glu Pro	305	310	315
Ser Gln Arg Gln Asn Gln Val Gly Val Val Pro Trp Ser Pro Pro Gln	320	325	330
Ser Asn Trp Asn Pro Trp Thr Ser Ser Asn Ile Asp Glu Gly Pro Leu	335	340	345
Ala Phe Ala Thr Pro Glu Gln Ile Ser Met Asp Leu Lys Asn Glu Leu	350	355	360
Met Tyr Gln Leu Glu Gln Asp His Asp Leu Gln Ala Ile Leu Gln Glu	365	370	375
Arg Glu Leu Leu Pro Val Lys Lys Phe Glu Ser Glu Ile Leu Glu Ala	380	385	390
Ile Ser Gln Asn Ser Val Val Ile Ile Arg Gly Ala Thr Gly Cys Gly	395	405	410
Lys Thr Thr Gln Val Pro Gln Phe Ile Leu Asp Asp Phe Ile Gln Asn	415	420	425
Asp Arg Ala Ala Glu Cys Asn Ile Val Val Thr Gln Pro Arg Arg Ile	430	435	440
Ser Ala Val Ser Val Ala Glu Arg Val Ala Phe Glu Arg Gly Glu Glu	445	450	455
Pro Gly Lys Ser Cys Gly Tyr Ser Val Arg Phe Glu Ser Ile Leu Pro	460	465	470
Arg Pro His Ala Ser Ile Met Phe Cys Thr Val Gly Val Leu Leu Arg	475	485	490
Lys Leu Glu Ala Gly Ile Arg Gly Ile Ser His Val Ile Val Asp Glu	495	500	505
Ile His Glu Arg Asp Ile Asn Thr Asp Phe Leu Leu Val Val Leu Arg	510	515	520
Asp Val Val Gln Ala Tyr Pro Glu Val Arg Ile Val Leu Met Ser Ala	525	530	535
Thr Ile Asp Thr Ser Met Phe Cys Glu Tyr Phe Phe Asn Cys Pro Ile	540	545	550
Ile Glu Val Tyr Gly Arg Thr Tyr Pro Val Gln Glu Tyr Phe Leu Glu	555	565	570
Asp Cys Ile Gln Met Thr His Phe Val Pro Pro Pro Lys Asp Lys Lys	560	580	585
Lys Lys Asp Lys Asp Asp Asp Gly Gly Glu Asp Asp Asp Ala Asn Cys	590	595	600
Asn Leu Ile Cys Gly Asp Glu Tyr Gly Pro Glu Thr Arg Leu Ser Met	605	610	615
Ser Gln Leu Asn Glu Lys Glu Thr Pro Phe Glu Leu Ile Glu Ala Leu	620	625	630
Leu Lys Tyr Ile Glu Thr Leu Asn Val Pro Gly Ala Val Leu Val Phe	640	645	650
Leu Pro Gly Trp Asn Leu Ile Tyr Thr Met Gln Lys His Leu Glu Met	655	660	665
Asn Pro His Phe Gly Ser His Arg Tyr Gln Ile Leu Pro Leu His Ser	670	675	680
Gln Ile Pro Arg Glu Glu Gln Arg Lys Val Phe Asp Pro Val Pro Val	685	690	695
Gly Val Thr Lys Val Ile Leu Ser Thr Asn Ile Ala Glu Thr Ser Ile	700	705	710
Thr Ile Asn Asp Val Val Tyr Val Ile Asp Ser Cys Lys Gln Lys Val	715	725	730
Lys Leu Phe Thr Ala His Asn Asn Met Thr Asn Tyr Ser Thr Val Trp	735	740	745
Ala Ser Lys Thr Asn Leu Glu Gln Arg Lys Gly Arg Ala Gly Arg Ser	750	755	760
Thr Ala Gly Phe Cys Phe His Leu Cys Ser Arg Ala Arg Phe Glu Arg	765	770	775
Leu Glu Thr His Met Thr Pro Glu Met Phe Arg Thr Pro Leu His Glu	780	785	790
Ile Ala Leu Ser Ile Lys Leu Leu Arg Leu Gly Gly Ile Gly Gln Phe	800	805	810
Leu Ala Lys Ala Ile Glu Pro Pro Pro Leu Asp Ala Val Ile Glu Ala	815		

SEQLIST.TXT

820	825	830
Glu His Thr Leu Arg Glu Leu Asp Ala	Leu Asp Ala Asn Asp Glu Leu	
835	840	845
Thr Pro Leu Gly Arg Ile Leu Ala Lys Leu Pro	Ile Glu Pro Arg Phe	
850	855	860
Gly Lys Met Met Ile Met Gly Cys Ile Phe Tyr	Val Gly Asp Ala Ile	
865	870	875
Cys Thr Ile Ala Ala Ala Thr Cys Phe Pro	Glu Pro Phe Ile Asn Glu	
885	890	895
Gly Lys Arg Leu Gly Tyr Ile His Arg Asn Phe	Ala Gly Asn Arg Phe	
900	905	910
Ser Asp His Val Ala Leu Leu Ser Val Phe Gln	Ala Trp Asp Asp Ala	
915	920	925
Arg Met Gly Gly Glu Glu Ala Glu Ile Arg Phe	Cys Glu His Lys Arg	
930	935	940
Leu Asn Met Ala Thr Leu Arg Met Thr Trp	Glu Ala Lys Val Gln Leu	
945	950	955
Lys Glu Ile Leu Ile Asn Ser Gly Phe Pro	Glu Asp Cys Leu Leu Thr	
965	970	975
Gln Val Phe Thr Asn Thr Gly Pro Asp Asn Asn	Leu Asp Val Val Ile	
980	985	990
Ser Leu Leu Ala Phe Gly Val Tyr Pro Asn Val	Cys Tyr His Lys Glu	
995	1000	1005
Lys Arg Lys Ile Leu Thr Thr Glu Gly Arg Asn	Ala Leu Ile His Lys	
1010	1015	1020
Ser Ser Val Asn Cys Pro Phe Ser Ser Gln	Asp Met Lys Tyr Pro Ser	
1025	1030	1035
Pro Phe Phe Val Phe Gly Glu Lys Ile Arg	Thr Arg Ala Ile Ser Ala	
1045	1050	1055
Lys Gly Met Thr Leu Val Pro Pro Leu Gln	Leu Leu Leu Phe Ala Ser	
1060	1065	1070
Lys Lys Val Gln Ser Asp Gly Gln Ile Val	Leu Val Asp Asp Trp Ile	
1075	1080	1085
Lys Leu Gln Ile Ser His Glu Ala Ala Ala	Cys Ile Thr Gly Leu Arg	
1090	1095	1100
Ala Ala Met Glu Ala Leu Val Val Glu Val	Thr Lys Gln Pro Ala Ile	
1105	1110	1115
Ile Ser Gln Leu Asp Pro Val Asn Glu Arg	Met Leu Asn Met Ile Arg	
1125	1130	1135
Gln Ile Ser Arg Pro Ser Ala Ala Gly Ile	Asn Leu Met Ile Gly Ser	
1140	1145	1150
Thr Arg Tyr Gly Asp Gly Pro Arg Pro Pro	Lys Met Ala Arg Tyr Asp	
1155	1160	1165
Asn Gly Ser Gly Tyr Arg Arg Gly	Gly Ser Ser Tyr Ser Gly Gly	
1170	1175	1180
Tyr Gly Gly Gly Tyr Ser Ser Gly Gly	Tyr Ser Gly Gly Tyr Gly	
1185	1190	1195
Gly Ser Ala Asn Ser Phe Arg Ala Gly	Tyr Gly Ala Gly Val Gly	
1205	1210	1215
Gly Tyr Arg Gly Val Ser Arg Gly Gly	Phe Arg Gly Asn Ser Gly	
1220	1225	1230
Asp Tyr Arg Gly Pro Ser Gly Gly	Tyr Arg Gly Ser Gly Gly Phe	
1235	1240	1245
Arg Gly Gly Arg Gly Ala Tyr Gly Thr	Gly Tyr Phe Gly Gln Gly	
1250	1255	1260
Arg Gly Gly Gly Tyr		
1265	1270	

<210> 2
<211> 3810
<212> DNA
<213> Homo sapien

<400> 2

atgggtgacg taaaaaattt tctgtatgcc tggtgtggca aaaggaagat gaccccatcc 60
tatgaaatta gacgactggg gaacaaaaac aggcagaaat tcatacgtgtga gtttcagggtg 120
gaaggttata attacactgg catggaaat tccaccaata aaaaagatgc acaaagcaat 180

SEQLIST.TXT

gctgccagag	actttgttaa	ctatttggtt	cgaataaaatg	aaataaaagag	tgaagaagtt	240
ccagctttg	gggttagcatc	tccggccccca	cttactgata	ctccctgacac	tacagcaaat	300
gctgaaggag	atttaccaa	aaccatggga	ggaccttc	ctccacatct	ggctctcaaa	360
cgagaaaaat	attctgaggt	aggggcctct	ggctatggtg	ttcctgggccc	cacctggac	420
cgaggagcca	acttgaagga	ttactactca	agaaaaggaaag	aacaagaagt	gcaagcgact	480
ctagaatcag	aagaagtggaa	tttaaatgct	gggcttcatg	gaaactggac	cttggaaaat	540
gctaaagctc	gtctaaacca	atatttcag	aaagaaaaaga	tccaaggaga	atataagtac	600
acccaagtgg	gtcctgatca	caacaggagc	tttattgcag	aatgaccat	ttataatcaag	660
cagctgggca	gaaggatttt	tgcacgagaa	catggatcaa	ataagaaatt	ggcagcacag	720
tcctgtgccc	tgtcaattgt	cagacaactg	taccatcttgc	gagtgggtga	agcttaactcc	780
ggacttacaa	agaagaagga	aggagagaca	gtggagcctt	acaaaagtaaa	cctcttcaa	840
gatttagagc	atcagctgca	aaacatcatt	caagagctaa	atcttggat	tttgcucccg	900
cctgaagatc	cttctgtgcc	agttgcac	aacattggca	aattggctca	gttcgaacca	960
cctcagcgc	aaaaaccaatg	gggtgtgggt	ccttggtcac	ctccacaatc	caactggaaat	1020
ccttggacta	gttagcaacat	tgatgaggggg	cctctggctt	ttgctactcc	agagcaaata	1080
agcatggacc	tcaagaataga	attgtatgtac	cagttggAAC	aggatcatga	tttgcagca	1140
atcttgcagg	agagagaggt	actgcctgtg	aagaatttg	aaagtggat	tctggagca	1200
atcagccaaa	attcagttgt	cattattaga	ggggctactg	gatgtgggaa	aaccacacag	1260
gttccccagt	tcattctaga	tgactttatc	cagaatgacc	gagcagcaga	gtgtacatc	1320
gtagtaactc	agcccagaag	aatcagtgcg	gtttctgtgg	cagagcgagt	tgcatttga	1380
agaggagaag	agcctggaaa	aagctgtggc	tacagcgttc	gatttggatc	tatacttcc	1440
cgtcctcatg	ccagtataat	gttttgtact	gttagtgtgc	tcctgagaaa	attagaagca	1500
ggcattcgg	gaatcgtca	tgtaattgt	gatgaaatac	atgaaagaga	tattaatact	1560
gacttccttc	ttggtagtact	gcgtgatgtt	gttcaggctt	atcctgaaat	tcgcattgtt	1620
cttatgtctg	ctactattga	taccagcatg	ttttgtgaat	atttcttcaa	ttgccccatc	1680
attgaagttt	atgggaggac	ttaccaggat	caagaatatt	ttctggaaga	ctgcattcag	1740
atgaccact	ttgttccccc	acaaaagac	aaaaagaaga	aggataagga	tgatgatggt	1800
ggtgaggatg	atgatgcaaa	ttgcaacttg	atctgtggt	atgaaatatgg	tccagaaaca	1860
aggttgagca	tgtctcaatt	gaacaaaaag	gaaactcctt	ttgaactcat	cgaggctcta	1920
cttaagtaca	ttgaaacccct	taatgttcc	ggagctgtgt	tggtttttt	gcctggctgg	1980
aatctgattt	atactatgca	gaagcatttg	gaaatgaatc	cacattttgg	aagccatcg	2040
tatcagattc	taccctgtca	ttctcagatt	cctcggagg	aacagcgc	agtgtttgat	2100
ccagtaccag	ttggagtaac	caaggttt	ttgtccaaaa	atattgtga	aacaagcatt	2160
accataaaacg	atgttggat	tgtcattgac	tcctgcaagc	agaaaagtga	actctcact	2220
gctcacaaca	atatgaccaa	ctatttacc	gtatggcat	caaaaacaaa	ccttgcagca	2280
cgaaaaggc	gagctggccg	gagtagcggct	ggattctgct	ttcacctgtg	cagccgagct	2340
cgttttgaga	gacttgaac	ccacatgaca	ccagagatgt	tccgaacacc	attgcatgaa	2400
attgctctta	gcataaaaact	tctgcgtcta	ggaggaattt	gccaatttct	ggccaaagca	2460
attgaacctc	cccctttgta	tgctgtgatt	gaagcagaac	acactctttag	agagcttgat	2520
gcatttagatg	ccaatgtat	gttgaactct	ttgggacgaa	tcctggctaa	actccccatt	2580
gagcctcggt	ttggcaaaaat	gatgataatg	gggtgtattt	tctacgtgg	agatgtatc	2640
tgtaccattt	ctgctgtctac	ctgttttcca	gaggcttca	tcaatgtaa	aaagccgctg	2700
ggcttatatcc	atcgaattt	tgctggaaac	agattttctg	atcacgtac	ccttttatca	2760
gtatttcaag	cctgggatga	tgctagaatg	ggtggagaag	aagcagagat	acgtttttgt	2820
gagcacaat	gacttaat	ggctacacta	agaatgacat	gggaagccaa	agttcagctc	2880
aaagagattt	tgattaaatc	tgggtttcca	gaagattgtt	tgttgcacaca	agtgtttact	2940
aacactggac	cagataataa	tttggatgtt	gttatctccc	tcctggcctt	tggtgtgtac	3000
cccaatgtat	gttatcataa	ggaaaagagg	aagattctca	ccactgaagg	gcgtaatgca	3060
cttattccaca	aatcatctgt	taattgttcc	tttagtagcc	aagacatgaa	gtaccatct	3120
cccttttttgc	tattttggta	aaagattcga	actcgagcc	tctctgtctaa	aggcatgact	3180
tttagtacccc	ccctgcaggat	gtctttcttgc	gcctccaaaga	aagtccaaatc	tgtatggcag	3240
atttgcttgc	tagatgactg	gattttactg	caaataatctc	atgaagctgc	tgcctgtatc	3300
actggctcc	ggggcagccat	ggaggctttgc	gttggtaag	taaccaaaca	acctgtatc	3360
atcagccagt	tggacccctgt	aaatgaacgt	atgctgaaca	tgtccgtca	gatctctaga	3420
ccctcagctg	ctggtatcaa	ccttatgatt	ggcagtagcac	ggtatggaga	tggccacgt	3480
cctcccaaga	tggcccgata	cgacaatgg	agcggatata	gaaggggagg	ttctagttac	3540
agtgggtggag	gctatggccg	tggctatagc	agtggaggct	atggtagcgg	aggctatggt	3600
ggcagcgc	actccctttcg	ggcaggatat	ggtgcagggt	ttgggtggagg	ctataagagga	3660
gtttcccgag	gtggcttttag	aggcaactct	ggaggagact	acagaggc	tagggaggc	3720
tcagaggat	ctgggggatt	ccagcgagga	gttggtaggg	gggcctatgg	aactggctac	3780
tttggacagg	gaagaggagg	ttggcgctat				3810

<210> 3
<211> 894
<212> PRT
<213> Homo sapien

<400> 3

SEQLIST.TXT

Met Arg Pro Met Arg Ile Phe Val Asn Asp Asp Arg His Val Met Ala
 1 5 10 15
 Lys His Ser Ser Val Tyr Pro Thr Gln Glu Glu Leu Glu Ala Val Gln
 20 25 30
 Asn Met Val Ser His Thr Glu Arg Ala Leu Lys Ala Val Ser Asp Trp
 35 40 45
 Ile Asp Glu Gln Glu Lys Gly Ser Ser Glu Gln Ala Glu Ser Asp Asn
 50 55 60
 Met Asp Val Pro Pro Glu Asp Asp Ser Lys Glu Gly Ala Gly Glu Gln
 65 70 75 80
 Lys Thr Glu His Met Thr Arg Thr Leu Arg Gly Val Met Arg Val Gly
 85 90 95
 Leu Val Ala Lys Cys Leu Leu Lys Gly Asp Leu Asp Leu Glu Leu
 100 105 110
 Val Leu Leu Cys Lys Glu Lys Pro Thr Thr Ala Leu Leu Asp Lys Val
 115 120 125
 Ala Asp Asn Leu Ala Ile Gln Leu Ala Ala Val Thr Glu Asp Lys Tyr
 130 135 140
 Glu Ile Leu Gln Ser Val Asp Asp Ala Ala Ile Val Ile Lys Asn Thr
 145 150 155 160
 Lys Glu Pro Pro Leu Ser Leu Thr Ile His Leu Thr Ser Pro Val Val
 165 170 175
 Arg Glu Glu Met Glu Lys Val Leu Ala Gly Glu Thr Leu Ser Val Asn
 180 185 190
 Asp Pro Pro Asp Val Leu Asp Arg Gln Lys Cys Leu Ala Ala Leu Ala
 195 200 205
 Ser Leu Arg His Ala Lys Trp Phe Gln Ala Arg Ala Asn Gly Leu Lys
 210 215 220
 Ser Cys Val Ile Val Ile Arg Val Leu Arg Asp Leu Cys Thr Arg Val
 225 230 235 240
 Pro Thr Trp Gly Pro Leu Arg Gly Trp Pro Leu Glu Leu Leu Cys Glu
 245 250 255
 Lys Ser Ile Gly Thr Ala Asn Arg Pro Met Gly Ala Gly Glu Ala Leu
 260 265 270
 Arg Arg Val Leu Glu Cys Leu Ala Ser Gly Ile Val Met Pro Asp Gly
 275 280 285
 Ser Gly Ile Tyr Asp Pro Cys Glu Lys Glu Ala Thr Asp Ala Ile Gly
 290 295 300
 His Leu Asp Arg Gln Gln Arg Glu Asp Ile Thr Gln Ser Ala Gln His
 305 310 315 320
 Ala Leu Arg Leu Ala Ala Phe Gly Gln Leu His Lys Val Leu Gly Met
 325 330 335
 Asp Pro Leu Pro Ser Lys Met Pro Lys Lys Pro Lys Asn Glu Asn Pro
 340 345 350
 Val Asp Tyr Thr Val Gln Ile Pro Pro Ser Thr Thr Tyr Ala Ile Thr
 355 360 365
 Pro Met Lys Arg Pro Met Glu Glu Asp Gly Glu Glu Lys Ser Pro Ser
 370 375 380
 Lys Lys Lys Lys Ile Gln Lys Lys Glu Glu Lys Ala Glu Pro Pro
 385 390 395 400
 Gln Ala Met Asn Ala Leu Met Arg Leu Asn Gln Leu Lys Pro Gly Leu
 405 410 415
 Gln Tyr Lys Leu Val Ser Gln Thr Gly Pro Val His Ala Pro Ile Phe
 420 425 430
 Thr Met Ser Val Glu Val Asp Gly Asn Ser Phe Glu Ala Ser Gly Pro
 435 440 445
 Ser Lys Lys Thr Ala Lys Leu His Val Ala Val Lys Val Leu Gln Asp
 450 455 460
 Met Gly Leu Pro Thr Gly Ala Glu Gly Arg Asp Ser Ser Lys Gly Glu
 465 470 475 480
 Asp Ser Ala Glu Glu Thr Glu Ala Lys Pro Ala Val Val Ala Pro Ala
 485 490 495
 Pro Val Val Glu Ala Val Ser Thr Pro Ser Ala Ala Phe Pro Ser Asp
 500 505 510
 Ala Thr Ala Glu Gln Gly Pro Ile Leu Thr Lys His Gly Lys Asn Pro
 515 520 525
 Val Met Glu Leu Asn Glu Lys Arg Arg Gly Leu Lys Tyr Glu Leu Ile
 530 535 540

SEQLIST.TXT

Ser Glu Thr Gly Gly Ser His Asp Lys Arg Phe Val Met Glu Val Glu
 545 550 555 560
 val Asp Gly Gln Lys Phe Gln Gly Ala Gly Ser Asn Lys Lys Val Ala
 565 570 575
 Lys Ala Tyr Ala Ala Leu Ala Ala Leu Glu Lys Leu Phe Pro Asp Thr
 580 585 590
 Pro Leu Ala Leu Asp Ala Asn Lys Lys Lys Arg Ala Pro Val Pro Val
 595 600 605
 Arg Gly Gly Pro Lys Phe Ala Ala Lys Pro His Asn Pro Gly Phe Gly
 610 615 620
 Met Gly Gly Pro Met His Asn Glu Val Pro Pro Pro Asn Leu Arg
 625 630 635 640
 Gly Arg Gly Arg Gly Gly Ser Ile Arg Gly Arg Gly Arg Gly
 645 650 655
 Phe Gly Gly Ala Asn His Gly Gly Tyr Met Asn Ala Gly Ala Gly Tyr
 660 665 670
 Gly Ser Tyr Gly Tyr Gly Gly Asn Ser Ala Thr Ala Gly Tyr Ser Gln
 675 680 685
 Phe Tyr Ser Asn Gly Gly His Ser Gly Asn Ala Ser Gly Gly Gly
 690 695 700
 Gly Gly Gly Gly Ser Ser Gly Tyr Gly Ser Tyr Tyr Gln Gly Asp
 705 710 715 720
 Asn Tyr Asn Ser Pro Val Pro Pro Lys His Ala Gly Lys Lys Gln Pro
 725 730 735
 His Gly Gly Gln Gln Lys Pro Ser Tyr Gly Ser Gly Tyr Gln Ser His
 740 745 750
 Gln Gly Gln Gln Ser Tyr Asn Gln Ser Pro Tyr Ser Asn Tyr Gly
 755 760 765
 Pro Pro Gln Gly Lys Gln Lys Gly Tyr Asn His Gly Gln Gly Ser Tyr
 770 775 780
 Ser Tyr Ser Asn Ser Tyr Asn Ser Pro Gly Gly Gly Ser Asp
 785 790 795 800
 Tyr Asn Tyr Glu Ser Lys Phe Asn Tyr Ser Gly Ser Gly Arg Ser
 805 810 815
 Gly Gly Asn Ser Tyr Gly Ser Gly Gly Ala Ser Tyr Asn Pro Gly Ser
 820 825 830
 His Gly Gly Tyr Gly Gly Ser Gly Gly Ser Ser Tyr Gln Gly
 835 840 845
 Lys Gln Gly Gly Tyr Ser Gln Ser Asn Tyr Asn Ser Pro Gly Ser Gly
 850 855 860
 Gln Asn Tyr Ser Gly Pro Pro Ser Ser Tyr Gln Ser Ser Gln Gly Gly
 865 870 875 880
 Tyr Gly Arg Asn Ala Asp His Ser Met Asn Tyr Gln Tyr Arg
 885 890

<210> 4

<211> 2685

<212> DNA

<213> Homo sapien

<400> 4

atgcgtccaa tgcgaatttt tgtgaatgat gaccgccatg ttagggcaaa gcattttcc 60
 gtttatccaa cacaagagga gctggaggca gtccagaaca tgggtgtccca cacggagcgg 120
 gcgctcaaag ctgtgtccga ctggatagac gagcaggaaaa aggtagcag cgagcaggca 180
 gagtccgata acatggatgt gccccagag gacgacagta aagaaggggc tggggaaacag 240
 aagacggagc acatgaccag aaccctgcgg ggagtgtatgc ggggtgggcct ggtggcaaa 300
 tgccttcata tcaaggggga cttggatctg gagctggatgc tgggtgttaa ggagaagccc 360
 acaaccgccc tcctggacaa ggtggccgac aacctggcca tccagcttgc tgctgttaaca 420
 gaagacaagt acgaaataact gcaatctgtc gacgatgtc cgattgtat aaaaaacaca 480
 aaagagcctc cattgtccct gaccatccac ctgacatccc ctgttgtcag agaagaaatg 540
 gagaagatcat tagctggaga aacgctatca gtcaacgacc ccccgacgt tctggacagg 600
 cagaaatgcc ttgctgcctt ggcgtccctc cgacacgcca agtggttcca ggccagagcc 660
 aacgggctga agtcttggt cattgtgatc cgggtcttga gggacctgtg cactcgcgtg 720
 cccacctggg gtccccctccg aggctggcct ctcgagctcc tgggtgagaa atccattggc 780
 acggccaaca gaccgatggg tgctggcgag gcccgtccgaa gagtgctggg gtgcctggcg 840
 tcgggcatcg tgatgcccaga tggttctggc atttatgacc cttgtgaaaa agaaggcact 900
 gatgctattg ggcattctaga cagacagcaa cgggaagata tcacacagag tgccgac 960

SEQLIST.TXT

gcactgcggc	tcgctgcctt	cggccagctc	cataaagtcc	taggcatgga	ccctctgcct	1020
tccaagatgc	ccaagaaaacc	aaagaatgaa	aacccagtgg	actacaccgt	tcagatccca	1080
ccaaggcacca	cctatgccat	tacgccccatg	aaacgcccua	tggaggagga	cggggaggag	1140
aagtgcggca	gcaaaaaagaa	gaagaagatt	cagaagaag	aggagaaggc	agagcccccc	1200
caggctatga	atgcccgtat	gcgggtgaac	cagctgaagc	cagggctgca	gtacaagctg	1260
tggtcccgaga	ctggggcccg	ccatgcccccc	atcttacca	tgtctgtgga	ggttcatggc	1320
aattcattcg	aggcctctgg	gccctccaaa	aagacggcca	agctgcacgt	ggccgttaag	1380
gtgttacagg	acatgggctt	gccgacgggt	gctgaaggca	gggactcgag	caagggggag	1440
gactcggctg	aggagaccga	ggcgaagcca	gcagtggtt	cccctgcccc	agtggtagaa	1500
gctgtctcca	cccctagtgc	ggcctttccc	tcagatgcca	ctgcccggca	ggggccgatc	1560
ctgacaaagc	acggcaagaa	cccagtcatg	gagctgaacg	agaagaggcg	tgggctcaag	1620
tacgagctca	tctccgagac	cggggcagc	cacgacaagc	gcttcgtcat	ggaggtcgaa	1680
gtggatggac	agaagttcca	agggtctgg	tccaacaaaa	aggtggcgaa	ggcctacgct	1740
gctttctgt	cccttagaaaa	gctttttccc	gacacccctc	tcgccccctg	tgccaacaaa	1800
aagaagagag	ccccctgtacc	cgtcagaggg	ggaccgaaat	ttgtctgctaa	gccacataac	1860
cctggcttcg	gcatgggagg	ccccatgcac	aacgaagtgc	ccccacccccc	caacccctcg	1920
gggcggggaa	gaggcggggag	catccgggga	cgagggcgcg	ggcgaggatt	tggtggcgcc	1980
aaccatggag	gctacatgaa	tgccgggtct	gggtatggaa	gctatgggta	cggaggcaac	2040
tctgcgacag	caggctacag	tcagttctac	agcaacggag	ggcattctgg	aatgcccagt	2100
ggcgggtggcg	gccccgggagg	tggggctcc	tccggctatg	gctcctacta	ccaagggtgac	2160
aactacaact	caccgggtgcc	ccccaaaacac	gctgggaaga	agcagccgc	cggggccag	2220
cagaaggccct	cctacggctc	gggcttaccag	tcccaccagg	gccagcagca	gtcctacaac	2280
cagagccccc	acagcaacta	tggccctcca	cagggcaagc	agaaaaggcta	taaccatgga	2340
caaggcagct	actctctactc	gaactcttac	aactctcccg	ggggcgggggg	cggatccgac	2400
tacaactacg	agagcaaatt	caactacagt	ggtagtggag	gccgaagcgg	cgggaacagc	2460
tacggcttag	gccccggcatc	ctacaacccca	gggtcacacg	ggggctacgg	cggaggttct	2520
ggggggcggct	cctcatacca	aggcaaacaa	ggaggctact	cacagtcgaa	ctacaactcc	2580
ccgggggtccg	gccagaacta	cagtggccct	cccagctcct	accagtcctc	acaaggcggc	2640
tatggcagaa	acgcagacca	cagcatgaac	taccagtaca	gataa		2685

<210> 5

<211> 702

<212> PRT

<213> Homo sapien

<400> 5

Met	Arg	Pro	Met	Arg	Ile	Phe	Val	Asn	Asp	Asp	Arg	His	Val	Met	Ala
1						5							10		15
Lys	His	Ser	Ser	Val	Tyr	Pro	Thr	Gln	Glu	Glu	Leu	Glu	Ala	Val	Gln
								20	25					30	
Asn	Met	Val	Ser	His	Thr	Glu	Arg	Ala	Leu	Lys	Ala	Val	Ser	Asp	Trp
								35	40				45		
Ile	Asp	Glu	Gln	Glu	Lys	Gly	Ser	Ser	Glu	Gln	Ala	Glu	Ser	Asp	Asn
								50	55			60			
Met	Asp	Val	Pro	Pro	Glu	Asp	Asp	Ser	Lys	Glu	Gly	Ala	Gly	Glu	Gln
								65	70		75			80	
Lys	Thr	Glu	His	Met	Thr	Arg	Thr	Leu	Arg	Gly	Val	Met	Arg	Val	Gly
								85	90			95			
Leu	Val	Ala	Lys	Cys	Leu	Leu	Lys	Gly	Asp	Leu	Asp	Leu	Glu	Leu	
								100	105			110			
val	Leu	Leu	Cys	Lys	Glu	Lys	Pro	Thr	Thr	Ala	Leu	Leu	Asp	Lys	Val
								115	120			125			
Ala	Asp	Asn	Leu	Ala	Ile	Gln	Leu	Ala	Ala	Val	Thr	Glu	Asp	Lys	Tyr
								130	135		140				
Glu	Ile	Leu	Gln	Ser	Val	Asp	Asp	Ala	Ala	Ile	Val	Ile	Lys	Asn	Thr
								145	150		155			160	
Lys	Glu	Pro	Pro	Leu	Ser	Leu	Thr	Ile	His	Leu	Thr	Ser	Pro	Val	Val
								165	170			175			
Arg	Glu	Glu	Met	Glu	Lys	Val	Leu	Ala	Gly	Glu	Thr	Leu	Ser	Val	Asn
								180	185			190			
Asp	Pro	Pro	Asp	Val	Leu	Asp	Arg	Gln	Lys	Cys	Leu	Ala	Ala	Leu	Ala
								195	200		205				
Ser	Leu	Arg	His	Ala	Lys	Trp	Phe	Gln	Ala	Arg	Ala	Asn	Gly	Leu	Lys
								210	215		220				
Ser	Cys	Val	Ile	Val	Ile	Arg	Val	Leu	Arg	Asp	Leu	Cys	Thr	Arg	Val
								225	230		235			240	
Pro	Thr	Trp	Gly	Pro	Leu	Arg	Gly	Trp	Pro	Leu	Glu	Leu	Leu	Cys	Glu
								245	250			255			

SEQLIST.TXT

Lys Ser Ile Gly Thr Ala Asn Arg Pro Met Gly Ala Gly Glu Ala Leu
 260 265 270
 Arg Arg Val Leu Glu Cys Leu Ala Ser Gly Ile Val Met Pro Asp Gly
 275 280 285
 Ser Gly Ile Tyr Asp Pro Cys Glu Lys Glu Ala Thr Asp Ala Ile Gly
 290 295 300
 His Leu Asp Arg Gln Gln Arg Glu Asp Ile Thr Gln Ser Ala Gln His
 305 310 315 320
 Ala Leu Arg Leu Ala Ala Phe Gly Gln Leu His Lys Val Leu Gly Met
 325 330 335
 Asp Pro Leu Pro Ser Lys Met Pro Lys Lys Pro Lys Asn Glu Asn Pro
 340 345 350
 Val Asp Tyr Thr Val Gln Ile Pro Pro Ser Thr Thr Tyr Ala Ile Thr
 355 360 365
 Pro Met Lys Arg Pro Met Glu Glu Asp Gly Glu Glu Lys Ser Pro Ser
 370 375 380
 Lys Lys Lys Lys Ile Gln Lys Lys Glu Glu Lys Ala Glu Pro Pro
 385 390 395 400
 Gln Ala Met Asn Ala Leu Met Arg Leu Asn Gln Leu Lys Pro Gly Leu
 405 410 415
 Gln Tyr Lys Leu Val Ser Gln Thr Gly Pro Val His Ala Pro Ile Phe
 420 425 430
 Thr Met Ser Val Glu Val Asp Gly Asn Ser Phe Glu Ala Ser Gly Pro
 435 440 445
 Ser Lys Lys Thr Ala Lys Leu His Val Ala Val Lys Val Leu Gln Asp
 450 455 460
 Met Gly Leu Pro Thr Gly Ala Glu Gly Arg Asp Ser Ser Lys Gly Glu
 465 470 475 480
 Asp Ser Ala Glu Glu Thr Glu Ala Lys Pro Ala Val Val Ala Pro Ala
 485 490 495
 Pro Val Val Glu Ala Val Ser Thr Pro Ser Ala Ala Phe Pro Ser Asp
 500 505 510
 Ala Thr Ala Glu Gln Gly Pro Ile Leu Thr Lys His Gly Lys Asn Pro
 515 520 525
 Val Met Glu Leu Asn Glu Lys Arg Arg Gly Leu Lys Tyr Glu Leu Ile
 530 535 540
 Ser Glu Thr Gly Gly Ser His Asp Lys Arg Phe Val Met Glu Val Glu
 545 550 555 560
 Val Asp Gly Gln Lys Phe Gln Gly Ala Gly Ser Asn Lys Lys Val Ala
 565 570 575
 Lys Ala Tyr Ala Ala Leu Ala Ala Leu Glu Lys Leu Phe Pro Asp Thr
 580 585 590
 Pro Leu Ala Leu Asp Ala Asn Lys Lys Arg Ala Pro Val Pro Val
 595 600 605
 Arg Gly Gly Pro Lys Phe Ala Ala Lys Pro His Asn Pro Gly Phe Gly
 610 615 620
 Met Gly Gly Pro Met His Asn Glu Val Pro Pro Pro Asn Leu Arg
 625 630 635 640
 Gly Arg Gly Arg Gly Gly Ser Ile Arg Gly Arg Gly Arg Gly Arg Gly
 645 650 655
 Phe Gly Gly Ala Asn His Gly Gly Tyr Met Asn Ala Gly Ala Gly Tyr
 660 665 670
 Gly Ser Tyr Gly Tyr Gly Asn Ser Ala Thr Ala Gly Tyr Ser Asp
 675 680 685
 Phe Phe Thr Asp Cys Tyr Gly Tyr His Asp Phe Gly Ser Ser
 690 695 700

<210> 6
 <211> 2107
 <212> DNA
 <213> Homo sapien

<400> 6
 atgcgtccaa tgcgaatttt tgtgaatgat gaccgcattg tcatggcaaa gcattcttcc 60
 gtttatccaa cacaagagga gctggaggca gtccagaaca tgggtcccc cacggagcgg 120
 gcgctcaaag ctgtgtccga ctggatagac gagcagaaaa aggttagcag cgagcaggca 180
 gagtcggata acatggatgt gcccccaagag gacgacagta aagaaggggc tggggAACAG 240

SEOLIST.TXT

aagacggcgc	acatgaccag	aacctgcgg	ggatgtatgc	gggtgggcctt	ggttggcaag	300
tgcctctac	tcaaggggga	cttggatctg	gagctgggtc	tgttgtgtaa	ggagaagccc	360
acaaccgccc	tcctggacaa	ggtggccgac	aacctggca	tccagcttgc	tgctgttaaca	420
gaagacaagt	acgaaatact	gcaatctgtc	gacgatgtcg	cgattgtgat	aaaaaacaca	480
aaagagcctc	cattgtccct	gaccatccac	ctgacatccc	ctgttgtcag	agaagaaaatg	540
gagaaagtat	tagctggaga	aacgttatca	gtcaacgacc	ccccggacgt	tctggacagg	600
cagaaatgcc	ttgctgcctt	ggcgtccctc	cgacacgcca	agtggttcca	ggccagagcc	660
aacgggctga	agtcttgcgt	cattgtgatc	cgggtcttga	gggacctgtg	cactcgcgtg	720
cccacccctgg	gtccccctccg	aggctggcc	ctcgagctcc	tgtgtgagaa	atccattggc	780
acggccaaca	gaccgatggg	tgctggcag	ggccctgcgg	gagtgctgga	gtgcctggcg	840
tcggggcatcg	tgtatgccaga	tggttctggc	atttatgacc	cttgtgaaaaa	agaagccact	900
gatgttattg	ggcatctaga	cagacagcaa	cgggaagata	tcacacagag	tgcgcagcac	960
gcactgcggc	tcgctgcctt	cgccagctc	cataaaagtcc	taggatgga	ccctctgcct	1020
tccaagatgc	ccaagaaaacc	aaagaatgaa	aacccagttg	actacaccgt	tcagatccca	1080
ccaagcacca	cctatgccc	tacgcccatt	aaacgccaa	tggaggagga	cggggaggag	1140
aagtgcggca	gcaaaaaagaa	gaagaagatt	cagaagaaag	aggagaaggc	agagcccccc	1200
caggctatga	atgcccgtat	gcccgttgaac	cagctgaagc	cagggtctgca	gtacaagctg	1260
gtgtcccgaga	ctggggccctgt	ccatgcccc	atctttatcca	tgtctgtgga	gtttgtatggc	1320
aatttcattcg	aggcctctgg	gcccctccaa	aagacggcca	agctgcacgt	ggccgtttaag	1380
gtgttacagg	acatgggctt	ggccgacgggt	gctgaaggca	gggactctgag	caagggggag	1440
gactcggctg	aggagaccga	ggcgaagcca	cgagtgggtgg	ccccctgcccc	agtggtagaa	1500
gctgtctcca	ccccctagtgc	ggcccttccc	tcagatgcca	ctggccgagca	ggggccgatc	1560
ctgacaaagc	acggcaagaa	cccagtcatg	gagctgaacg	agaagaggcg	tgggctcaag	1620
tacgagctca	tctccgagac	cgggggcagc	cacgacaagc	gcttcgtcat	ggaggtcgaa	1680
gtggatggac	agaagttcca	aggtgtctgg	tccaacaaaa	aggtggcgaa	ggcctacgct	1740
gctcttgctg	ccctagaaaa	gctttccct	gacacccctc	gcccttgtatg	ccaacaaaaa	1800
gaagagagcc	ccagtagcccc	tcagaggggg	accgaaattt	gctgttaagc	cacataaccc	1860
tggcttcggc	atggggaggcc	ccatgcacaa	cgaagtggccc	ccacccccc	accttcgagg	1920
gcggggaaaga	ggcggggagca	tccggggacg	aggggcgggg	cgaggatttg	gtggcggccaa	1980
ccatggaggc	tacatgaatg	ccgggtctgg	gtatggaaagc	tatgggtacg	gaggcaactc	2040
tgcgcacgca	ggctacagtg	acttttcac	agactgtac	ggctatcatg	attttgggtc	2100
ttccctaa						2107

<210> 7
<211> 406
<212> PRT
<213> *Homo sapien*

<400> 7
 Met Arg Gly Asp Arg Gly Arg Gly Arg Gly Gly Arg Phe Gly Ser Arg
 1 5 10 15
 Gly Gly Pro Gly Gly Phe Arg Pro Phe Val Pro His Ile Pro Phe
 20 25 30
 Asp Phe Tyr Leu Cys Glu Met Ala Phe Pro Arg Val Lys Pro Ala Pro
 35 40 45
 Asp Glu Thr Ser Phe Ser Glu Ala Leu Leu Lys Arg Asn Gln Asp Leu
 50 55 60
 Ala Pro Asn Ser Ala Glu Gln Ala Ser Ile Leu Ser Leu Val Thr Lys
 65 70 75 80
 Ile Asn Asn Val Ile Asp Asn Leu Ile Val Ala Pro Gly Thr Phe Glu
 85 90 95
 Val Gln Ile Glu Glu Val Arg Gln Val Gly Ser Tyr Lys Lys Gly Thr
 100 105 110
 Met Thr Thr Gly His Asn Val Ala Asp Leu Val Val Ile Leu Lys Ile
 115 120 125
 Leu Pro Thr Leu Glu Ala Val Ala Ala Leu Gly Asn Lys Val Val Glu
 130 135 140
 Ser Leu Arg Ala Gln Asp Pro Ser Glu Val Leu Thr Met Leu Thr Asn
 145 150 155 160
 Glu Thr Gly Phe Glu Ile Ser Ser Ser Asp Ala Thr Val Lys Ile Leu
 165 170 175
 Ile Thr Thr Val Pro Pro Asn Leu Arg Lys Leu Asp Pro Glu Leu His
 180 185 190
 Leu Asp Ile Lys Val Leu Gln Ser Ala Leu Ala Ala Ile Arg His Ala
 195 200 205
 Arg Trp Phe Glu Glu Asn Ala Ser Gln Ser Thr Val Lys Val Leu Ile
 210 215 220
 Arg Leu Leu Lys Asp Leu Arg Ile Arg Phe Pro Gly Phe Glu Pro Leu

SEQLIST.TXT

225	230	235	240
Thr Pro Trp Ile Leu Asp Leu Leu Gly His Tyr Ala Val Met Asn Asn			
245	250	255	
Pro Thr Arg Gln Pro Leu Ala Leu Asn Val Ala Tyr Arg Arg Cys Leu			
260	265	270	
Gln Ile Leu Ala Ala Gly Leu Phe Leu Pro Gly Ser Val Gly Ile Thr			
275	280	285	
Asp Pro Cys Glu Ser Gly Asn Phe Arg Val His Thr Val Met Thr Leu			
290	295	300	
Glu Gln Gln Asp Met Val Cys Tyr Thr Ala Gln Thr Leu Val Arg Ile			
305	310	315	320
Leu Ser His Gly Gly Phe Arg Lys Ile Leu Gly Gln Glu Gly Asp Ala			
325	330	335	
Ser Tyr Leu Ala Ser Glu Ile Ser Thr Trp Asp Gly Val Ile Val Thr			
340	345	350	
Pro Ser Glu Lys Ala Tyr Glu Lys Pro Pro Glu Lys Lys Glu Gly Glu			
355	360	365	
Glu Glu Glu Asn Thr Glu Arg Thr Thr Ser Arg Arg Gly Arg Arg			
370	375	380	
Lys His Gly Asn Ser Gly Val Thr Phe Pro Ser Leu Leu Phe Leu Pro			
385	390	395	400
Lys Gly Lys Thr Gly Ala			
405			

<210> 8
<211> 1221
<212> DNA
<213> Homo sapien

<400> 8

atgagggggt acagaggccg tggtcgtgg gggcgctttg gttccagagg aggcccagga 60		
ggagggttca ggccctttgt accacatata ccatttgact ttcttttgt tgaaatggcc 120		
tttccccggg tcaagccagc acctgatgag acttccttca gtgaggcctt gctgaagagg 180		
aaccaggacc tggctcccaa ttctgctgaa caggcatcta tcctttctct agtgacaaaa 240		
ataaacaaatg tgattgataa tctgattgtg gctccagggg catttgaagt gcaaattgaa 300		
gaagttcgac aggtgggatc ctataaaaag gggacaatga ctacaggaca caatgtggct 360		
gacctggtag tgatactcaa gattctgcca acgttggaaag ctgttgcgtc cctggggAAC 420		
aaagtctgtgg aaagcctaag agcacaggat ctttctgtaa tttaaccat gctgaccaac 480		
gaaacaggct ttgaaatcag ttcttctgtat gctacagtga agattctcat tacaacagt 540		
ccacccaatc ttcgaaaact ggatccagaa ctccatttgg atatcaaagt attgcagagt 600		
gccttagcag ccatccgaca tgcccgctgg ttcgaggaaa atgcttctca gtccacagt 660		
aaagttctca tcagactact gaaggacttg aggattcggt ttcccggtt tgagcccc 720		
acacccttggaa tccttgaccc actaggccat tatgctgtga tgaacaaccc caccagacag 780		
cctttggccc taaacgttgc atacaggcgc tgcttgcaga ttctggctgc aggactgttc 840		
ctgccaggtt cagtgggtat cactgacccc tgtgagagtg gcaacttttag agtacacaca 900		
gtcatgaccc tagaacacgca ggacatggtc tgctatacag ctcagactct cgtccgaatc 960		
ctctcacatg gtggcttttag gaagatcctt ggccaggagg gtgatgccag ctatcttgct 1020		
tctgaaatat ctacctggaa tggagtgata gtaacacctt cagaaaaggc ttatgagaag 1080		
ccaccagaga agaaggaagg agaggaagaa gaggagaata cagaaaagaac cacctcaagg 1140		
agaggaagaa gaaagcatgg aaactcagga gtgacattcc cttcactcct tttcctaccc 1200		
aaggaaaga ctggagccata a		1221