### Implementing Clustering and Dimensionality Reduction in scikit-learn



Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Clustering is an unsupervised learning technique which helps find patterns in data

Common clustering algorithms are k-means, mean-shift clustering

Dimensionality reduction represents inputs in terms of their most significant features

PCA is a very commonly used technique for latent factor analysis

#### Types of ML Algorithms



**Supervised** 

Labels associated with the training data is used to correct the algorithm



Unsupervised

The model has to be set up right to learn structure in the data

#### Types of ML Algorithms



#### Supervised

Labels associated with the training data is used to correct the algorithm



#### Unsupervised

The model has to be set up right to learn structure in the data

#### Clustering

#### Clustering







Anything can be represented by a set of numbers

Age, Height, Weight







Age, Height, Weight





Age, Height, Weight



## A set of N numbers represents a point in an N-dimensional Hypercube

Clustering



A set of points, each representing a Facebook user





Same group = similar

Different group = different



## Same group = similar Different group = different





### The distance between users in a cluster indicates how similar they are





### Maximize intra-cluster similarity



### Minimize inter-cluster similarity

#### Clustering Objective



Maximize intra-cluster similarity

Minimize inter-cluster similarity

## The **K-Means Clustering** algorithm is a famous Machine Learning algorithm to achieve this

Initialize K centroids i.e. means











# Recalculate the mean for each cluster



Re-assign the points to clusters



# Iterate until points are in their final clusters















Each cluster has a representative point called a reference vector









Because of how they are calculated, these reference vectors are often called centroids

Start with a set of points in space



Define a neighborhood for each point





Define a neighborhood for each point



For each point, calculate a function based on all points in the neighborhood

That function is called the kernel



#### Flat Kernel

Flat kernel: sum of all points in neighborhood

Each point gets the same weight



### Gaussian (RBF) Kernel

Probability-weighted sum of points



What probability distribution?

### Gaussian (RBF) Kernel

# Gaussian probability distribution Defined by

- mean  $\mu$
- standard deviation  $\sigma$

### Gaussian Distribution





### Gaussian (RBF) Kernel

Mean  $\mu$  = center point

Standard deviation  $\sigma$  ~ bandwidth

(Bandwidth is a hyperparameter)

Kernel is applied to each point



Kernel is applied to each point





Kernel is applied to each point



Assume points are color-coded by magnitude of RBF







Now, all points start to "shift" towards the nearest peak



Now, all points start to "shift" towards the nearest peak



Now, all points start to "shift" towards the nearest peak



This is the "mean shift"



This is the "mean shift"



Algorithm converges when points stop moving



### Role of Bandwidth

Standard deviation  $\sigma$  ~ bandwidth Bandwidth is the only hyperparameter Small bandwidth ~ tall skinny kernel Large bandwidth ~ flat kernel

### Role of Bandwidth



Tall skinny kernel
Ignore points far from the mean

Flatter kernel
Considers points far from the mean

### Similar, yet Different

#### K-Means Clustering

Need to specify number of clusters as hyperparameter

Can't handle some complex non-linear data

Less hyperparameter tuning needed

### **Mean Shift Clustering**

No need to specify number of clusters upfront as hyperparameter

Uses density function to handle even complex non-linear data (e.g. pixels)

Hyperparameter tuning very important

### Similar, yet Different

#### K-Means Clustering

Computationally less intensive

O(N) in number of data points

Struggles with outliers

#### **Mean Shift Clustering**

Computationally very intensive

O(N²) in number of data points

Copes better with outliers

### Demo

Implement mean-shift clustering in scikit-learn

## Principal Components Analysis

# Principal Components Analysis

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data



Objective: Find the "best" directions to represent this data



Start by "projecting" the data onto a line in some direction



Start by "projecting" the data onto a line in some direction



The greater the distances between these projections, the "better" the direction

## Bad Projection



A projection where the distances are minimised is a bad one - information is lost

### Good Projection



A projection where the distances are maximised is a good one - information is preserved



The direction along which this variance is maximised is the first principal component of the original data



Find the next best direction, the second principal component, which must be at right angles to the first



Find the next best direction, the second principal component, which must be at right angles to the first

### Principal Components at Right Angles



Directions at right angles help express the most variation with the smallest number of directions



The variances are clearly smaller along this second principal component than along the first



In general, there are as many principal components as there are dimensions in the original data

#### Intuition Behind PCA



Re-orient the data along these new axes



If the variance along the second principal component is small enough, we can just ignore it and use just 1 dimension to represent the data



Variation along 2 dimensions: 2 principal components required



Variation along 1 dimension: 1 principal component is sufficient

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data Data of high dimensionality, each point represented as  $(x_1, x_2 ... x_N)$ 

# Principal Components Analysis

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data

These define a smaller number of new dimensions, e.g. just two  $(F_1, F_2)$ 

Express each original point  $(x_1, x_2 ... x_N)$  as just  $(f_1, f_2)$ 

# Principal Components Analysis

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that

most efficiently capture the variation in that data

Very little information from the original data is lost

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data

Principal Components are a very efficient representation of the original data



**Original Data** 

Same number of columns

Principal Components



Principal Components

### Reconstruct Original Data



Principal Components

**Weight Vectors** 

**Original Data** 

#### Demo

Implement principal components analysis in scikit-learn

## Summary

Clustering is an unsupervised learning technique which helps find patterns in data

Common clustering algorithms are k-means, mean-shift clustering

Dimensionality reduction represents inputs in terms of their most significant features

PCA is a very commonly used technique for latent factor analysis

#### Books



Hands-On Machine Learning with Scikit-Learn and TensorFlow

by Aurélien Géron

#### Related Courses

How to Think About Machine Learning Algorithms

Understanding Machine Learning with Python

Understanding the Foundations of TensorFlow