

Matriz de confusión

Accuracy

Número de predicciones correctas dividido por el número total de predicciones. Ojo, cuando mi marca está desbalanceada, esta métrica puede ser engañosa!

Precisión

De todo lo que el modelo predijo como positivo ¿A cuánto le pegue? En otras palabras, es la habilidad que tiene el modelo de <u>no</u> clasificar como positivo un evento negativo

$$Precision = \frac{TP}{TP + FP}$$

$$Precision = \frac{.147}{147 + 18} = \frac{147}{165} = 0.89$$

Recall (Sensitivity)

De todos los elementos que son positivos ¿Cuántos predije bien?

$$Recall = \frac{TP}{TP + FN}$$

$$Recall = \frac{147}{147 + 30} = \frac{147}{177} = 0.83$$

relevant elements

How many selected items are relevant?

How many relevant items are selected?

F1 Score

Dependiendo de la aplicación, a veces es más importante tener un alto Precision que un Recall o viceversa. Cuando ambos son importantes, utilizamos la media armónica de ambas.

$$F1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

$$F1 \ score = 2 * \frac{0.89 * 0.83}{0.89 + 0.83} = \frac{1.48}{1.72} = 0.86$$

Trade-off entre Precision y Recall

Piensa en la historia del Pastorcito mentiroso.

- Cuando el Pueblo va a donde el Pastorcito y no hay ningún lobo (y = 0) cometen un falso positivo.
- Cuando el Pueblo no acude a la ayuda del Pastorcito cuando llega el lobo (y = 1) cometen un falso negativo.

Trade-off entre Precision y Recall

Piensa en la historia del Pastorcito mentiroso.

Si el pueblo quisiera maximizar su
Precision debe hacer 0 sus Falsos
Positivos. Es decir que no debe acudir nunca a la llamada del Pastorcito. Pero, si hace eso, van a aumentar sus Falsos

Negativos. Para subir la Precision tuvo

que bajar el Recall.

F Score

El F1 implica que el Recall es igual de Importante que el Precision. Pero esto se puede ajustar con el parámetro β . Entre más grande sea, más importante será el Recall en relación a Precision. Por ejemplo, con F2 Recall es dos veces más importante que Precision

$$F_{\beta} \ score = (1 + \beta^2) * \frac{Precision * Recall}{\beta^2 * Precision + Recall}$$

Specificity

De todos los elementos que son negativos ¿Cuántos predije bien?

$$Specificity = \frac{TN}{TN + FP}$$

$$Specificity = \frac{73}{73 + 18} = \frac{73}{91} = 0.80$$

Curva ROC

Realmente el output de los modelos de clasificación no son 0 o 1. Los modelos de clasificación devuelven una probabilidad y, por defecto, se asigna la clasificación de 1 si la probabilidad es mayor o igual a 0.5. Sin embargo, este umbral de decisión (s) se puede calibrar.

$$f_{modelo}(x) = \begin{cases} 1, & \mathbb{P}(Y=1|x) \ge s, \\ 0, & \mathbb{P}(Y=1|x) < s. \end{cases}$$

La curva ROC muestra el rendimiento del modelo para cada uno de los umbrales de clasificación.

Curva ROC

Curva ROC

$$TPR = \frac{TP}{TP + FN} = \frac{7}{7 + 4} = 0.63$$

$$FPR = \frac{FP}{FP + TN} = \frac{1}{1 + 19} = 0.05$$

$$TPR = \frac{TP}{TP + FN} = \frac{9}{9+2} = 0.81$$

$$FPR = \frac{FP}{FP + TN} = \frac{3}{3 + 16} = 0.15$$

Curva ROC

$$TPR = 0.63$$

$$FPR = 0.05$$

$$TPR = 0.81$$

$$FPR = 0.15$$

Muchas métricas ¿Con cuál me quedo? DEPENDE DE TU PROBLEMA.

Esto es una <u>sugerencia</u>:

