Week-6

Mathematics for Data Science - 2 Introduction to Vector Space Graded Assignment

1 Multiple Select Questions (MSQ)

- 1. Which of the following sets with the given addition and scalar multiplication operations (scalars are real numbers in every case) do not form vector spaces?
 - \bigcirc Option 1:

$$V_1 = \{(x,y)|x,y \in \mathbb{R}\}\$$

Addition: $(x_1,y_1) + (x_2,y_2) = (x_1 + x_2, 1); (x_1,y_1), (x_2,y_2) \in V_1$
Scalar multiplication: $c(x,y) = (cx,1); (x,y) \in V_1, c \in \mathbb{R}$

 \bigcirc Option 2:

$$V_2 = \{(x,y)|x,y \in \mathbb{R}\}\$$

 $Addition: (x_1,y_1) + (x_2,y_2) = (x_1 + x_2, y_1 + y_2); (x_1,y_1), (x_2,y_2) \in V_2$
 $Scalar multiplication: c(x,y) = (cx,0); (x,y) \in V_2, c \in \mathbb{R}$

Option 3:

$$V_{3} = \{(x,y)|x,y \in \mathbb{R}\}$$

$$Addition: (x_{1},y_{1}) + (x_{2},y_{2}) = (x_{1} + x_{2} + y_{1} + y_{2}, x_{1} + x_{2} + y_{1} + y_{2});$$

$$(x_{1},y_{1}), (x_{2},y_{2}) \in V_{3}$$

$$Scalar \ multiplication: \ c(x,y) = (cx,cy); \ (x,y) \in V_{3}, \ c \in \mathbb{R}$$

Option 4:

$$V_{4} = \{(x, y, z) | x, y, z \in \mathbb{R}, x + y = z\}$$

$$Addition: (x_{1}, y_{1}, z_{1}) + (x_{2}, y_{2}, z_{2}) = (x_{1} + x_{2}, y_{1} + y_{2}, z_{1} + z_{2});$$

$$(x_{1}, y_{1}, z_{1}), (x_{2}, y_{2}, z_{2}) \in V_{4}$$

$$Scalar \ multiplication: \ c(x, y, z) = (cx, cy, cz); \ (x, y, z) \in V_{4}, \ c \in \mathbb{R}$$

Solv. Option 1:

Suppose
$$\Psi=(a,b) \in V_1$$
 works as a zero, then $(x,y)+(\alpha,b)=(x,y)$ for all $x,y \in \mathbb{R}$

$$(x+a,1)=(x,y)$$
 for all $x,y \in \mathbb{R}$

$$(2,3) + (a,b) = (2+a,1) \neq (2,3)$$

as, $1+3$

Hence, there does not exist any vector (a,b) (V, which works as a zero in V,

50, Vi is not a vector space.

Oblin 2: Let
$$C = 1$$
 and $(x,y) = (a,3) \in V_2$

$$1\cdot(2,3) = (2,0) \neq (2,3)$$

50, 12 is not a vector space.

Option 3: Suppose 4= (a,b) E 13 works as a zero,

then (2,3) + (a,b) must be equal to (2,3).

$$(2,3)+(a,b)=(2,3)$$

=)
$$a+b=-3$$
 and $a+b=-2$

Hence, there does not exist any such vectors

(a,b) in 13 which can work as the zero

vectors.

50, 13 is not a vector space.

Option 4: V4 = {(x, y, Z) | x, y, z ∈ R, x+j=Z}

The addition and scalar multiplication are the usual addition and scalar multiplication defined on R3.

More over if (x, 2 1, 2) and (x2, 42, 72) EV4

then, Z1 = x, + y1 and Z2 = x2+ y2.

Hence, (x, , y, , z,) + (x2, y2, Z2)

= (x,+x2, y,++2, , 7,+72) EV4

as, z, +z2 = (x,+y1)+ (x2+y2)

= ス、+ メ2+ カ、+ サ2

c(x1,34,, Z1)= (ex1, ey1, ez1) EV4

as, cz, = c (x, + t) = cx, + cy,

(0,0,0) also belongs to V4. Hence, V4 is a vector space.

- 2. Choose the set of correct options
 - Option 1: If V is a real vector space, then $(\alpha + \beta)(x+y) = \alpha x + \beta y + \alpha y + \beta x$, for all $\alpha, \beta \in \mathbb{R}$ and $x, y \in V$.
 - Option 2: A vector space can have more than one zero vector.
 - \bigcirc **Option 3:** (-1, 0, 0), (-1, 1, -1) and (0, 2, 3) are linearly independent vectors in \mathbb{R}^3 .
 - \bigcirc Option 4: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ are linearly dependent vectors in $M_{2\times 2}(\mathbb{R})$.

Soli Option 1: (x+B)(x+4) = (x+B)x+(x+B) } = xx+Bx+xy+Bx. = xx+Bx+xy+Bx.

Oftion 2: Zerco rector is unique in a rector space.

Suppose there are two zero rectors in a rector space, may 9, and 42.

Hence, 4+41=9 for all 4 EV — (i)
and 4+42=4 for all 4 EV — (ii)

Hence, $4_{2}+4_{1}=4_{2}$ from (i) $4_{1}+4_{2}=4_{1}$ from (ii)

Hence, $4_{1}=4_{2}$.

option 3:

Hence, the given vectors are linearly independent.

Option 4:

$$a[-1 \ 0] + b[0 - 2] + c[-1 \ 1] = [0 \ 0]$$

$$= \begin{bmatrix} -\alpha - c & -2b + c \\ b + c & a - c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$a+c=0$$
 $a-c=0$
 $a=0$
 $b=0$
 $a=0$
 $b=0$

Hence, the given rectors of Maxa (R) are linearly independent.

3. A healthy juice consists of 30 units of protein, 11 units of carbohydrate, 53 units of fat, and 213 units of calcium. A juice maker makes two types of juice, Type A and Type B. Type A consists of banana, milk, and almond, whereas Type B consists of apple, milk, and almond. Table M2W6G1 shows the amount of protein, carbohydrate, fat, and calcium present in each banana, apple, and almond, and in 100 ml of milk.

Items	Protein	Carbohydrate	Fat	Calcium
Banana (1 piece)	2	3	1	5
Apple (1 piece)	1	2	1	6
Almond (1 piece)	6	1	15	1
Milk (100 ml)	4	1	3	100

Table: M2W6G1

Use the above information to choose the correct options.

- Option 1: A healthy juice can be prepared with the right quantities of ingredients of Type A, and those quantities are unique.
- Option 2: A healthy juice can be prepared with the right quantities of ingredients of Type B, and those quantities are unique.
- Option 3: A healthy juice can not be prepared with the right quantities of ingredients of Type A.
- Option 4: A healthy juice can not be prepared with the right quantities of ingredients of Type B.

Type A: X, X2 X3 O

Type B: 0 Y, 72 83

	Protein Carbohydrate Fat Calcium	
	Type A: 22, + 4x2+6x3 32, + x2+x3 x,+3x2+15x3 5x,+100x2+x	3_
	Type 8: 4/1+6/2+ /3 /31+6/2+ 2/3 /3/1+15/2+/3/100/31+ /2+6/	} 3
Tyl	eA: TypeB:	
.0	2x1+4x2+6x3 = 30 44,+672+73 = 30	
	$3x_1 + x_2 + x_3 = 11$ $y_1 + y_2 + 2y_3 = 11$	
	$x_1 + 3x_2 + 15x_3 = 53$ $3y_1 + 15y_2 + y_3 = 53$	
	5x, +100x2 + 23 = 213 1067 + 82 +683 = 213	
) K ₁ + 100 k ₂ 1 = 3 = 21	
	2 4 6 30 \ R./ /1 2 3 /15 \	
	3 1 1 1 1	
	1 3 15 53	
	1 3 15 53 5 100 1 213	
	$R_2-3R_1, R_3-R_1,$	
	$oldsymbol{ au}$	_
	(-2.115) $-\frac{R_2}{12}$ (-2.3) $(-5R_1)$	_
	/ (2) 15 \ /5	_
	0 18/5 31/5 ~ 0 -5 -8 -34	
	0 1 12 38	
	0 90 -14 (38)	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0 1 % 3 % 0 1 8/5 3 % 5	
R	$_{3}-R_{2}$, $R_{4}-90R_{2}$ 0 0 $_{5}^{2}/_{5}$ $_{156}/_{5}$ $_{158$	
	(0 0 -158 1-474)	
	l ·	

$$\begin{pmatrix}
1 & 2 & 0 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 1 & | 15 \\
0 & 0 & 1 & | 3 \\
0 & 0 & 0 & | 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 1 & | 15 \\
0 & 0 & 1 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 5 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 0 & | 0 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 3 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 3 \\
0 & 0 & 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & | 15 \\
0 & 0 & | 0 & | 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & | 15 & | 15$$

Hence, Option 1 in true.

Solve the system of equations conversionding to Type B. Observe that, there is no solution of the system of linear equations.

Hence, option 4 is true.

- Consider the set of vectors $S = \{(-1, 1, 5), (2, 1, 3), (2, 1, 2), (1, -1, 7), (-1, 3, -5)\}$ from \mathbb{R}^3 and choose the set of correct options.
 - Option 1: The singleton set $\{(-1,1,5)\}$ is linearly dependent.
 - Option 2: If $\alpha, \beta \in S$ and α, β are distinct then $\{\alpha, \beta\}$ is a linearly independent set of vectors.
 - \bigcirc **Option 3:** The set $\{(-1, 1, 5), (2, 1, 3), (-2, 2, 10)\}$ is a linearly dependent set of vectors.
 - \bigcirc Option 4: The set S is a linearly independent set of vectors.
 - Option 5: The set $\{\alpha, \beta, \gamma\}$ is a linearly dependent set of vectors for any $\alpha, \beta, \gamma \in S$, where all the three are distinct vectors.
 - Option 6: The set $\{\alpha, \beta, \gamma, \delta\}$ is a linearly independent set of vectors for any $\alpha, \beta, \gamma, \delta \in S$, where all the four are distinct vectors.
 - Option 7: The system AX = b, where $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & -1 & 7 \\ -1 & 1 & 5 \\ 2 & 1 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ has unique solution.
 - \bigcirc **Option 8:** The system AX = b, where $A = \begin{bmatrix} -1 & 3 & -5 \\ 2 & 1 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has infinitely many solutions.
 - Option 9: The system AX = b where $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 3 & -5 \\ -1 & 1 & 5 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ has infinitely many solutions.

Sohn Oftion 1: Any singleton set with non-zero sector is linearly independent.

Option 2: $\alpha, \beta \in S$. $\{\alpha, \beta\}$ is linearly defendent if and only if β in scalar multiple of α .

But in 5, no two sectors are scalar multiple of each other. Hence, $\{\alpha,\beta\}$ is linearly independent set of sectors. Option 3: 2(-1,1,5)+0(2,1,3)-1(-2,2,10)=0

Hence { (-1,1,5), (2,1,3), (-2,2,10) } in linearly defendent.

Option's: All the vectors are from IR3.

If a net $S \subseteq \mathbb{R}^3$ for cardinality structly greater that 3, then S must be linearly dependent.

7) to $\alpha = (-1, 1, 5), \beta = (2, 1, 3), \beta = (2, 1, 2)$

$$\begin{vmatrix} -1 & 1 & 5 \\ 2 & 1 & 3 \end{vmatrix} = -1(2-3)-1(4-6)+5(2-2)$$

$$2 & 1 & 2 \end{vmatrix} = 1+2=3\neq 0$$

Hence, {d, B, Y} is linearly independent.

Option 6: The net $\{\alpha, \beta, \gamma, S\}$ has the cardinality 4 which is strictly greaters than 3, where $\alpha, \beta, \gamma, S \in \mathbb{R}^3$.

Hence, the set is linearly dependent.

$$\begin{bmatrix}
2 & 1 & 2 & 0 & 7 & 0 & 7 & 0 \\
1 & -1 & 7 & 0 & 1 & 2 & 1 & 2 & 0 \\
-1 & 1 & 5 & 0 & -1 & 1 & 5 & 0 \\
2 & 1 & 3 & 0 & 2 & 1 & 3 & 0
\end{bmatrix}$$

$$\begin{cases}
R_2 - 2R_1 \\
R_3 + R_1
\end{cases}$$

$$\begin{cases}
R_4 - 2R_1
\end{cases}$$

$$\begin{bmatrix}
1 & -1 & 7 & 0 \\
0 & 1 & -4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 12 & 0 \\
0 & 0 & 12 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 12 & 0 \\
0 & 3 & -11 & 0
\end{bmatrix}$$

$$R_{y}-3R_{z}$$

$$\begin{bmatrix}
1 & -1 & 7 & 0 \\
0 & 1 & -4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 7 \\
0 & 1 & -4 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}$$

$$\chi_1 = \chi_2 = \chi_3 = 0$$

Option 8:
$$\begin{bmatrix} -1 & 3 & -5 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 3 & -5 & 0 \\ 2 & 1 & 3 & 0 \end{bmatrix} \xrightarrow{-R_1} \begin{bmatrix} 1 & -3 & 5 & 0 \\ -2 & -1 & -3 & 0 \end{bmatrix}$$

$$\begin{cases} R_2 + 2R \end{cases}$$

$$\begin{bmatrix} 1 - 3 & 5 & 0 \\ 0 & 1 - 1 & 0 \end{bmatrix} & \begin{bmatrix} R_{2}/-7 & 1 & -3 & 5 & 0 \\ 0 & -7 & 7 & 0 \end{bmatrix}$$

$$\chi_1 + 2\chi_3 = 0$$
 $\chi_1 = -2\chi_3$ $\chi_2 - \chi_3 = 0$ $\chi_2 = \chi_3$

Solutions of system of linear equations:
$$\begin{bmatrix}
-2x_3 \\
x_3
\end{bmatrix}, x_3 \in \mathbb{R}$$

Hence, there are infinite numbers of solutions

Numerical Answer Type (NAT): 2

6) Consider the set of three vectors $S = \{(c, -1, -2), (1, 0, -1), (-1, -3, c)\}$ in \mathbb{R}^3 with usual addition and scalar multiplication. For which value of c will the above set S be linearly dependent? [Answer: 2.5]

$$\begin{vmatrix} c & 1 & -1 \\ -1 & 0 & -3 \\ -2 & -1 & c \end{vmatrix} = c(-3) - 1(-c-6) - 1(1)$$

$$= -3c + c + 6 - 1$$

$$= -2c + 5$$

The vectors are linearly defendent if and only if:
$$-2c+5=0$$

$$=) c=2.5$$

Consider the set of three vectors $S = \{(7,7,2), (8,7,4), (5,7,c)\}$ in \mathbb{R}^3 with usual addition and scalar multiplication. If S is a linearly independent set, then the value of c can not be equal to

[Answer: -2]

Solv. If S is a linearly defendent set, then
$$\begin{vmatrix}
7 & 8 & 5 \\
7 & 7 & 7 \\
2 & 4
\end{vmatrix} = 0$$

$$\Rightarrow 7(70-28)-7(80-20)+2(56-35)=0$$

Hence, if 5 is linearly independent set, then the value of a commot be -2.

3 Comprehension Type Question:

In genetics, a classic example of dominance is the inheritance of shape of seeds in peas. Peas may be round (associated with genotype R) or wrinkled (associated with genotype r). In this case, three combinations of genotypes are possible: RR, rr, and Rr. The RR individuals have round peas and the rr individuals have wrinkled peas. In Rr individuals the R genotype masks the presence of the r genotype, so these individuals also have round peas.

Consider the crossing of RR with RR. This always gives the genotype RR, therefore the probabilities of an offspring to be RR, Rr, and rr respectively are equal to 1, 0, and 0. Next, consider the crossing of Rr with RR. The offspring will have equal chances to be of genotype RR and genotype Rr, therefore the probabilities of RR, Rr, and rr repectively are 1/2, 1/2, and 0. Finally, consider the crossing of rr with RR. This always results in genotype Rr. Therefore, the probabilities of genotypes RR, Rr, and rr are 0, 1, and 0, respectively.

The following table summarizes these facts:

Parents' genotypes	Genotypes of offspring		
	RR	Rr	rr
RR-RR	1	0	0
RR-Rr	$\frac{1}{2}$	$\frac{1}{2}$	0
RR-rr	Õ	$\overline{1}$	0

Table: M2W6G3

The matrix representing this observation is given by $P = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \end{bmatrix}$, and the initial dis-

tribution vector (1 × 3 matrix) is denoted by $X_0 = (X_0^1, X_0^2, X_0^3)$, where X_0^1 denotes the distribution of RR, X_0^2 denotes the distribution of Rr, and X_0^3 denotes the distribution of rr. For any positive integer n, the distribution vector after n generations (i.e., at t = n) is denoted by X_n and is given by the equation $X_{n-1}P = X_n$.

Using the above information, answer the following questions.

correct options from the following.

Option 1: There will be at least 200 offspring with wrinkled peas.

(MSQ)

Option 2: There will be no offspring with wrinkled peas.

- \bigcirc Option 3: There will be no offspring with round peas.
- Option 4: All the offspring will have round peas.
- Option 5: All the offspring will have wrinkled peas.
- Option 6: There will be at least 100 offspring with combination of genotypes RR.
- Option 7: There will be at least 200 offspring with combination of genotypes Rr.

Sound only those offsprings with 1000 genotypes are wrinkled pear. But the probability of an offspring to be lot is 0 in any of the given combination. So no offsprings will have wrinkled pears. Whereas, all the offsprings will have round pear.

So options 2 and 4 are connect.

When the farents' genotype combination is RR-RR then the probability of garotypes of an offspring to be RR in 1. i.e in those cover, the offspring much have the genotype RR. In our experiment we have 100 pairs of genotype RR-RR. So, there will be at least 100 offsprings with genotype RR there may be some more coming forom the genetype combination RR-Rh.

	Similarly an offstring of Rh geneotype is
	Similarly an offspring of Rp geneotype is guranteed if the combination of parents' genetype is RR-Pp and we have 200 such pairs.
	genotype in RR-MP and we have 200 such
	pains.
	So, there will be atteast 200 offsprings with genotype Rp.
	withgenotype Rr.
	Q 0''
_	

e): Which of the following options are correct?

option 1: The rows of the motrin P form a linearly independent option 2: 2(1/2,10,0), (0,1/2,10)? is a linearly independent cet.

option 3: The columns of the motrin P form a linearly dependent set.

option 4: bt(P) is a non-zero number.

option 1: Rows of motrin P are (1,0,10), (1/2,10), (0,1/2,0).

a,b,c & P ?

a(1,0,0) + b(1/2,1/2,10) + (10,1/2,0) = (0,0,0)

>(a+b) the trian 1.

 $\Rightarrow (a + \frac{b}{2}, \frac{b}{2} + c, 0) = (0, 0, 0)$ $\Rightarrow a + \frac{b}{1} = 0, \frac{b}{2} + c = 0$

let

Observe that the above system of linear equations has infinitely many solution.

Another way , $(\frac{1}{2},\frac{1}{2},0) = \frac{1}{2}(1,0,0) + \frac{1}{2}(0,1,0)$ democe (1,0,0), $(\frac{1}{2},\frac{1}{2},0)$, (0,1,0) are linearly dependent vectors.

obtin2! bt $a, b \in \mathbb{R}$ \Rightarrow $q(\frac{1}{2}, 0, 0) + b(0, \frac{1}{2}, 0) = (0, 0, 0)$ $\Rightarrow (\frac{q}{2}, \frac{b}{2}, 0) = (0, 0, 0)$ $\Rightarrow a = 0, b = 0$

Obtion 3: (olumn) of matrix P are $(1, \frac{1}{2}, 0)$ are linearly in dependent-vactor is avoilable. Hence vactors are dependent. Observe $\det(P) = 0$.

9) Suppose $X_0 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Find out the correct set of correct options. (MSQ)

- \bigcirc Option 1: X_0 and X_1 are linearly dependent.
- \bigcirc **Option 2:** X_0 and X_1 are linearly independent.
- \bigcirc Option 3: The set $\{X_0, X_1, X_2\}$ is a linearly dependent set.
- \bigcirc **Option 4:** The set $\{X_0, X_1, X_2\}$ is a linearly independent set.

$$P = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\times_{0} = (\frac{1}{3} & \frac{1}{3} & \frac{1}{3})$$

$$\times_{0} P = \times_{1}$$

$$= (\frac{1}{3} & \frac{1}{3} & \frac{1}{3}) (\frac{1}{3} & \frac{0}{3}) = (\frac{1}{3} + \frac{1}{4} & \frac{1}{4} + \frac{1}{3} & 0)$$

$$= (\frac{1}{3} & \frac{1}{3} & \frac{1}{3}) (\frac{1}{3} & \frac{0}{3}) = (\frac{1}{3} + \frac{1}{4} & \frac{1}{4} + \frac{1}{3} & 0)$$

$$= (\frac{1}{3} & \frac{1}{3} & \frac{1}{3}) (\frac{1}{3} & \frac{0}{3}) = (\frac{1}{3} + \frac{1}{4} & \frac{1}{4} + \frac{1}{3} & 0)$$

$$= (\frac{1}{3} & \frac{1}{3} & \frac{1}{3}) (\frac{1}{3} & \frac{0}{3}) = (\frac{1}{3} + \frac{1}{4} & \frac{1}{4} + \frac{1}{3} & 0)$$

X, in not a oscalare multiple of Xo. So $\{x_0, x_1\}$ in linearly independent.

Hence, {xo, x1, x2} in linearly independent.

Suppose $X_0 = (a, b, 1 - a - b)$, where $0 \le a, b, a + b \le 1$. If the set $\{X_0, X_2\}$ is linearly dependent, then what is the value of b? [Answer: 0]

$$=) (a b 1-a-b) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1/2 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} a+b/2 & b/2+1-a-b & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} a+b/2 & 1-a-b/2 & 0 \end{pmatrix}$$

$$\Rightarrow (a + \frac{1}{2}) (-a - \frac{1}{2}) (\frac{100}{200})$$

$$= \left(\alpha + \frac{b}{2} + \frac{1}{2} - \frac{a}{2} - \frac{b}{4} \right)$$

$$= \left(\frac{1}{2} + \frac{9}{2} + \frac{19}{4} + \frac{1}{2} - \frac{9}{2} - \frac{19}{4} + \frac{9}{2} - \frac{1}{2} \right) = \times 2$$

If Xo and X2 are linearly defendents then

X2 is scalar multiple of Xo.

i.e. $\chi_2 = c \times_0$ for some $c \in \mathbb{R}$ $(\frac{1}{2} + \frac{a}{3} + \frac{b}{4}) \times (\frac{1}{2} - \frac{a}{2} - \frac{b}{4}) = c(a + b + a - b)$

c-ca-cb=0

C (1-a-b) =0

either C=0 on atb=1

If C=0 then, 1/2+ 1/2 + bh = 0

1/2-42-6/4=0

=) /4 = 0 (which in absurd)

SO, ceannot be 0.

50, a+b=1

ط-۱-6

We also have

=)
$$C(1-b) = \frac{1}{2} + \frac{1-b}{2} + \frac{b}{4}$$
 =) $Cb = \frac{1}{2} - \frac{1-b}{2} - \frac{b}{4}$
=) $C(1-b) = \frac{2+2-2b+b}{4}$ =) $Cb = \frac{2-2+2b-b}{4}$