MAC 1140 Section 13.2 Arithmetic Sequences

Xin Li

July 25, 2018

1 / 12

Objectives

1 Determine Whether a Sequence Is Arithmetic

2 Find the *n*th term of an Arithmetic Sequence

Xin Li Arithmetic Sequences July 25, 2018 2 / 12

Can you guess the missing term of the sequence?

Example 1:

1

$$\{2,4,6,8,10,12,14,___,18,\dots\}$$

2

$$\{37, 27, 17, 7, -3, \dots, -23\dots\}$$

8

$$\{2,11,20,29,38,47,56,__,74,\dots\}$$

Definition

An arithmetic sequence may be defined recursively as

$$a_1 = a, a_n - a_{n-1} = d$$

or as

$$a_1 = a, a_n = a_{n-1} + d$$

where a and d are real numbers.

The number *a* is the first term.

The number d is called the **common difference**.

Find a_1 and d of arithmetic sequence

Example 2

1

$$\{2,4,6,8,10,12,14,16,18,\dots\}$$

2

$$\{37,27,17,7,-3,-13,-23\dots\}$$

8

$$\{2,11,20,29,38,47,56,65,74,\dots\}$$

Determine Whether a Sequence Is Arithmetic

Example 3

Determine whether the sequence $\{s_n\} = \{3n+5\}$ is arithmetic. Solution steps:

- Set n=1 to find the first term s_1 .
- ② Use $d = s_n s_{n-1}$ to find the common difference d
- **1** If s_1 and d are constant real numbers, then $\{s_n\}$ is arithmetic sequence.

Xin Li Arithmetic Sequences July 25, 2018 6 / 12

Theorem: nth Term of an Arithmetic Sequence

For an arithmetic sequence $\{a_n\}$ whose first term is a_1 and whose common difference is d, the nth term is determined by the formula

$$a_n = a_1 + (n-1)d$$

 Xin Li
 Arithmetic Sequences
 July 25, 2018
 7 / 12

the nth term formula of an arithmetic sequence

$$a_n = a_1 + (n-1)d$$

Example 4, Given the first term of arithmetic sequence $a_1 = 5$ and common difference d = 2

- Find a₁₀₁
- Find a₂₁

Xin Li Arithmetic Sequences July 25, 2018 8 / 12

the *n*th term formula of an arithmetic sequence

$$a_n = a_1 + (n-1)d$$

Example 5, Suppose $\{a_n\}$ is an arithmetic sequence with $a_4=5$ and common difference $a_{10}=17$. Find the term a_{24}

Solution steps:

- Write a_4 and a_{10} in terms of a_1 and d using the formula.
- ② Solve the linear system with two variables a_1 and d.
- **3** Use the results of a_1 and d with the formula to compute a_{20}

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

the *n*th term formula of an arithmetic sequence

$$a_n = a_1 + (n-1)d$$

Example 5, Suppose $\{a_n\}$ is an arithmetic sequence with $a_4=5$ and common difference $a_{10}=17.$ Find the term a_{24}

Step1: Write a_4 and a_{10} in terms of a_1 and d using the formula.

$$\begin{cases} a_4 = a_1 + (4-1)d = 5 \\ a_{10} = a_1 + (10-1)d = 17 \end{cases}$$

the *n*th term formula of an arithmetic sequence

$$a_n = a_1 + (n-1)d$$

Example 5, Suppose $\{a_n\}$ is an arithmetic sequence with $a_4=5$ and common difference $a_{10}=17$. Find the term a_{24}

Step1: Write a_4 and a_{10} in terms of a_1 and d using the formula.

$$\begin{cases} a_4 = a_1 + (4-1)d = 5 \\ a_{10} = a_1 + (10-1)d = 17 \end{cases}$$

Step2: Solve the linear system with two variables a_1 and d.

$$d = 2, a_1 = -1$$

July 25, 2018

Xin Li Arithmetic Sequences

Example 5, Suppose $\{a_n\}$ is an arithmetic sequence with $a_4=5$ and common difference $a_{10}=17$. Find the term a_{24} Solution:

Step1: Write a_4 and a_{10} in terms of a_1 and d using the formula.

$$\begin{cases} a_4 = a_1 + (4-1)d = 5 \\ a_{10} = a_1 + (10-1)d = 17 \end{cases}$$

Step2: Solve the linear system with two variables a_1 and d.

$$d = 2, a_1 = -1$$

Step3: Use the results of a_1 and d with the formula to compute a_{24}

$$a_{24} = a_1 + (24 - 1)d = -1 + 23 \times 2 = 45$$

Xin Li Arithmetic Sequences July 25, 2018 12 / 12