Анализ свойств процедуры выравнивания временных рядов в задачах метрической классификации

Александра Харь

Московский физико-технический институт Факультет управлени и прикладной математики Кафедра интеллектуальных систем

Консультанты: Г. Моргачев, А. Гончаров Научный руководитель д.ф.-м.н. В. В. Стрижов

Цели исследования

Цель работы

Обосновать применение DTW для метрических методов классификации временных рядов.

Метод анализа

Сравнение качества классификации временных рядов (при помощи SVM) с использованием динамического выравнивания (DTW) и без него. В процессе эксперимента в качестве ядра в SVM используются следующие матрицы: матрица попарных расстояний между временными рядами, полученная при помощи DTW, некоторые ее модификации, а также матрица попарных Евклидовых расстояний между временными рядами.

Список литературы

- Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB, 1(2):1542–1552, 2008.
- Chan P. Fastdtw Salvador S. Toward accurate dynamic time warping in linear time and space. In Workshop on Mining Temporal and Sequential Data, page 11, 2004.
- Kristin P. Bennett and Colin Campbell. Support vector machines: Hype or hallelujah? SIGKDD Explorations, 2(2):1–13, 2000.

Постановка задачи

```
Объекты \pmb{x} \in \mathbb{R}^n — временные ряды, принадлежащие двум непересекающимся классам Y = \{+1, -1\} Линейный классификатор: \pmb{a}(\pmb{x}) = sign(\langle \pmb{w}, \pmb{x} \rangle - w_0), где \pmb{x} = [x_1, \dots, x_n]^T — признаковое описание объекта x, \pmb{w} = [w_1, \dots, w_n]^T \in \mathbb{R}^n и w_0 \in \mathbb{R} — веса признаков \langle \pmb{w}, \pmb{x} \rangle = w_0 — гиперплоскость, разделяющая классы задача оптимизации: \begin{cases} \frac{1}{2} \langle \pmb{w}, \pmb{w} \rangle \to min \\ (\langle \pmb{w}, \pmb{x}_j \rangle - w_0) y_j \geq 1; \quad i = 1, \dots, \ell. \end{cases}
```

Теоретическая часть: динамическое выравнивание

Метод динамического выравнивая — DTW используется для определения сходства между двумя временными рядами и введения расстояния между ними. Он находит наилучшее соответствие между двумя временными рядами, если они нелинейно деформированы друг относительно друга — растянуты, сжаты или смещены вдоль оси времени.

Примеры работы DTW (построение выравнивающего пути):

Теоретическая часть: DTW расстояние

Рассмотрим два временных ряда Q и C разной длины:

$$Q = q_1, q_2, \dots, q_i, \dots, q_n; \ C = c_1, c_2, \dots, c_j, \dots, c_m$$

- ullet строим матрицу d размера n imes m, в которой элемент $d_{ij} = (q_i c_j)^2$ расстояние между двумя точками q_i и c_j
- ② строим матрицу трансформации D, каждый элемент которой вычисляется следующим образом: $D_{ij} = d_{ij} + min(D_{i-1}, D_{i-1}, D_{i-1}, D_{i-1})$
- **③** строим путь трансформации W минимизирует общее расстояние между Q и C $W = w_1, w_2, \ldots, w_k, \ldots, w_K$, где $w_k = (i, j)_k, \ d(w_k) = (q_i c_i)^2$

Теоретическая часть: ядровой SVM

Если выборка не является линейно разделимой, то для классификации при помощи SVM необходимо перейти в пространство большей размерности, где она уже будет линейно разделима. Скалярной произведение $\langle x, x' \rangle$, таким образом, везде заменяется на значение функции ядра в соответствующих двух точках K(x,x').

Теорема Мерсера:

Функция $K(\pmb{x},\pmb{x'})$ является ядром тогда и только тогда, когда:

- $\bullet \ K(\mathbf{x},\mathbf{x'}) = K(\mathbf{x'},\mathbf{x})$
- ullet матрица $K = [K(\pmb{x_i}, \pmb{x_j})]_{i,j}$ неотрицательно определена:
- $\mathbf{v}^T K \mathbf{v} \geq 0, \quad \forall \mathbf{v} \in \mathbb{R}^n.$

Эксперимент

При помощи алгоритма DTW вычисляется попарное расстояние между временными рядами, эти расстояния записываются в матрицу D. В таком случае она будет симметричной, с нулями на диагонали. При помощи теоремы Мерсера выявляется, что D не является ядром (не является неотрицательно определенной). Так как для перехода в пространство большей размерности в алгоритме SVM для более качественной классификации обычно используют ядро, то мы попробуем модифицировать D, чтобы она стала таковым, затем сравним точности классификации при использовании первоначальной Dи модифицированных матриц.

$\mathsf{Moди}$ фикация матрицы D

Модифицируем D двумя способами:

- Ищем ближайшую к матрице D неотрицательно определенную матрицу A следующим образом: так как D симметрична, то $D = QMQ^T$, где M диагональная с собственными числами D на диагонали $M_+ = [max(M_{ij}, 0)]_{ij}$ $A = QM_+Q^T$ неотрицательно определенная
- Создаем RBF-ядро $K(x,x') = exp(-\gamma \cdot \rho_{dtw}(x,x'))$, где $\rho_{dtw}(x,x')$ расстояние между рядами x и x'. Получаем матрицу Z, она уже является ядром, что было проверено на эксперименте при помощи теоремы Мерсера.

Вид матриц

На небольшом объеме данных матрицы выглядят следующим образом:

Эксперимент

Используем эти матрицы, а также обыкновенную норму l_2 в качестве ядра в алгоритме SVM для классификации данных и оцениваем точность классицикации.

Оценка точности классификации

метрика I₂: 0.182

• матрица *D* : 0.327

матрица A: 0.523

матрица Z : 0.864

Метрика I_2 дает худший результат, следующая по качеству — матрица D попарных расстояний между рядами, а затем уже две ее модификации — матрицы A и Z, причем при помощи RBF-ядра Z получена лучшая классификация.

Заключение

- Произведена классификация временных рядов при помощи ядрового SVM с различными ядрами: метрика l_2 , матрица расстояния между временными рядами D, ее аппроксимация до ядра A, и RBF ядро Z.
- Проведено сравнение данных классификаций.
- Использование матрицы D попарных расстояний улучшает точность классификации по сравнению с I_2 на 15%.
- Модифицированные версии A и Z матрицы D улучшают точность классификации еще на 20 и 55 % соответственно.