## Лабораторная работа № 1

**Тема**: Решение нелинейных уравнений. Метод половинного деления. <u>Задание</u>: 1) Отделить корни уравнения графически и программно.

2) Уточнить корни (все!) уравнения методом половинного деления с точностью  $\varepsilon = 0,0001$ , указать число разбиений отрезка.

## Вопросы самоконтроля.

- 1) Как отделяются корни уравнения?
- 2) Какой должна быть величина шага при отделении корней?
- 3) Какие условия должны быть выполнены для применения метода половинного деления отрезка?
- 4) Какова идея метода половинного деления отрезка? Геометрическая иллюстрация.
- 5) Как вычисляется приближенный корень уравнения и какова его погрешность?
- 6) Как зависит погрешность результата от выбора приближенного решения?

| Вариант | Уравнение                              |
|---------|----------------------------------------|
| 1       | $x^4 - 18x^2 + 6 = 0$                  |
| 2       | $2e^x + 3x + 1 = 0$                    |
| 3       | $x^2 - 3 + 0,5^x = 0$                  |
| 4       | $5\sin(x) = x - 1$                     |
| 5       | $\cos(x+0,3) = x^2$                    |
| 6       | $x^4 - x - 1 = 0$                      |
| 7       | $x^2 - 20\sin(x) = 0$                  |
| 8       | $2 \cdot \lg(x) - \frac{x}{2} + 1 = 0$ |
| 9       | $2x^2 - 0.5^x - 3 = 0$                 |
| 10      | $2^x - 3x - 2 = 0$                     |
| 11      | $ctg(x) - \frac{x}{3} = 0$             |

| Вариант | Уравнение                                 |
|---------|-------------------------------------------|
| 31      | $2x - \lg(x) - 3 = 0$                     |
| 32      | $\lg(x) - \frac{4}{2x+1} = 0$             |
| 33      | $5x + \lg(x) = 3$                         |
| 34      | $x^3 - 3x^2 + x - 2 = 0$                  |
| 35      | $x^3 - 2x^2 + 2x - 3 = 0$                 |
| 36      | $2e^x + 5x + 1 = 0$                       |
| 37      | $3\sin(x) = x - 2$                        |
| 38      | $\cos(x-0,5) = x^2$                       |
| 39      | $x^4 + 2x^2 - x - 1 = 0$                  |
| 40      | $3x^2 - 2\sin(x) = 0$                     |
| 41      | $2 \cdot \lg(x) - \frac{x}{3} + 1, 5 = 0$ |

| 12 | $x^3 - 2x + 4 = 0$            |
|----|-------------------------------|
| 13 | $x^2 + 4\sin(x) = 0$          |
| 14 | $x^3 - 6x - 7 = 0$            |
| 15 | $4x - \cos(x) - 1 = 0$        |
| 16 | $x + \lg(x) = 0,45$           |
| 17 | $tg(0,3x+0,5) = x^2$          |
| 18 | $x^3 - 3x^2 + 2x - 1,5 = 0$   |
| 19 | $2x - \lg(x) - 5 = 0$         |
| 20 | $\lg(x) - \frac{5}{2x+3} = 0$ |
| 21 | $0.5x + \lg(x) = 1$           |
| 22 | $x^3 + x - 4 = 0$             |
| 23 | $x^3 - 0.5x^2 + x + 3 = 0$    |
| 24 | $x^3 - x^2 + 2x + 3 = 0$      |
| 25 | $x^2 - 4\cos(x) = 0$          |
| 26 | $x^3 - 3x - 4 = 0$            |
| 27 | $4x - \cos(x) - 2 = 0$        |
| 28 | $x + 2 \cdot \lg(x) = 1,45$   |
| 29 | $tg(0,5x-0,3) = x^2 - 1$      |
| 30 | $x^3 - 3x^2 + 4x - 5 = 0$     |

| 42 | $3x^2 - 0.5^x - 1 = 0$                |
|----|---------------------------------------|
| 43 | $2^x - x - 4 = 0$                     |
| 44 | $ctg(x+0,5) - \frac{x}{3} = 0$        |
| 45 | $x^3 + x^2 - 2x + 3 = 0$              |
| 46 | $x^2 - 1 + 2\sin(x) = 0$              |
| 47 | $x^3 - 2x - 7 = 0$                    |
| 48 | $4x - 2\cos(x) - 1 = 0$               |
| 49 | $x + 2 \cdot \lg(x) = 0,5$            |
| 50 | $tg(0,2x+0,3) = x^2 - 1$              |
| 51 | $x^3 - 1,3x^2 + x - 1 = 0$            |
| 52 | $2x - 3 \cdot \lg(x) - 3 = 0$         |
| 53 | $2 \cdot \lg(x) - \frac{5}{4x+3} = 0$ |
| 54 | $1,5x + \lg(x) = 2$                   |
| 55 | $x^3 + x^2 - 3 = 0$                   |
| 56 | $x^3 - 2x^2 + 3x - 4 = 0$             |
| 57 | $x^3 - 3x^2 + 2x + 3 = 0$             |
| 58 | $3x^2 - 2\cos(x) = 0$                 |
| 59 | $x^3 + 2x^2 - 3x - 1 = 0$             |
| 60 | $4x - 2\cos(x) - 1 = 0$               |
|    |                                       |

## Образец выполнения лабораторной работы $N\!\!_{2}$ 1

(Решение нелинейных уравнений. Метод половинного деления.) **Постановка задачи**. Найти корень нелинейного уравнения  $F(x) \equiv 3 \cdot \ln(x+2) - 2 \cdot x = 0 \ \text{методом итерации с точностью}$ 

 $\varepsilon = 0,0001$ .

**Решение задачи**. Отделим корень уравнения на отрезке [-1; 4] графическим методом. Для этого табулируем функцию  $y(x) = 3 \cdot \ln(x+2) - 2x$  на данном отрезке.

Имеем  $\varepsilon = 0.0001$ , a = -1, b = 4, n = 20, h = 0.25



Выделим отрезок [1;3], содержащий изолированный корень, для уточнения которого применим метод половинного деления по схеме  $\tilde{\xi}=\frac{a_n+b_n}{2}$ ,  $\Delta_{\tilde{\xi}}=\frac{b_n-a_n}{2}, \quad n=0,1,2,\ldots,$  где  $b_n-a_n=\frac{b_{n-1}-a_{n-1}}{2}=\frac{b-a}{2^n}, \quad F(a_n)\cdot F(b_n)<0$ . Полагая  $a_0=1, \quad b_0=3, \quad \text{а так же условие остановки деления отрезка пополам } \Delta_{\tilde{\xi}}=\frac{b_n-a_n}{2}\leq \varepsilon$ , составим таблицу

| $a_i$      | $b_i$      | $\frac{b_i + a_i}{2}$ | $F(a_i)$   | $F(b_i)$    | $F\bigg(\frac{b_i+a_i}{2}\bigg)$ | корень | погреш-<br>ность | Усл.ост. |
|------------|------------|-----------------------|------------|-------------|----------------------------------|--------|------------------|----------|
| 1,00000000 | 3,00000000 | 2,00000000            | 1,29583687 | -1,17168626 | 0,15888308                       |        | 1,00000000       | нет      |
| 2,00000000 | 3,00000000 | 2,50000000            | 0,15888308 | -1,17168626 | -0,48776781                      |        | 0,50000000       | нет      |
| 2,00000000 | 2,50000000 | 2,25000000            | 0,15888308 | -0,48776781 | -0,15924305                      |        | 0,25000000       | нет      |
| 2,00000000 | 2,25000000 | 2,12500000            | 0,15888308 | -0,15924305 | 0,00119806                       |        | 0,12500000       | нет      |
| 2,12500000 | 2,25000000 | 2,18750000            | 0,00119806 | -0,15924305 | -0,07868831                      |        | 0,06250000       | нет      |
| 2,12500000 | 2,18750000 | 2,15625000            | 0,00119806 | -0,07868831 | -0,03866032                      |        | 0,03125000       | нет      |
| 2,12500000 | 2,15625000 | 2,14062500            | 0,00119806 | -0,03866032 | -0,01870977                      |        | 0,01562500       | нет      |
| 2,12500000 | 2,14062500 | 2,13281250            | 0,00119806 | -0,01870977 | -0,00875050                      |        | 0,00781250       | нет      |
| 2,12500000 | 2,13281250 | 2,12890625            | 0,00119806 | -0,00875050 | -0,00377488                      |        | 0,00390625       | нет      |
| 2,12500000 | 2,12890625 | 2,12695313            | 0,00119806 | -0,00377488 | -0,00128807                      |        | 0,00195313       | нет      |
| 2,12500000 | 2,12695313 | 2,12597656            | 0,00119806 | -0,00128807 | -0,00004492                      |        | 0,00097656       | нет      |
| 2,12500000 | 2,12597656 | 2,12548828            | 0,00119806 | -0,00004492 | 0,00057659                       |        | 0,00048828       | нет      |
| 2,12548828 | 2,12597656 | 2,12573242            | 0,00057659 | -0,00004492 | 0,00026584                       |        | 0,00024414       | нет      |
| 2,12573242 | 2,12597656 | 2,12585449            | 0,00026584 | -0,00004492 | 0,00011046                       |        | 0,00012207       | нет      |

| 2,125854492 | 2,12597656 | 2,12591553 | 0,00011046 | -0,00004492 | 0,00003277  | 2,12591553 | 0,00006104 | да |
|-------------|------------|------------|------------|-------------|-------------|------------|------------|----|
| 2,125915532 | 2,12597656 | 2,12594604 | 0,00003277 | -0,00004492 | -0,00000608 | 2,12594604 | 0,00003052 | да |
| 2,125915532 | 2,12594604 | 2,12593079 | 0,00003277 | -0,00000608 | 0,00001335  | 2,12593079 | 0,00001526 | да |

Приближенное решение  $\tilde{\xi}=x_{14}=2,12591553$ , погрешность  $\Delta_{\tilde{\xi}}=0,00006104$ , число итераций k=14.

Следовательно, приближенное значение корня равно  $\tilde{\xi} = 2,12591553 \pm 0,00006104$  .

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем  $\Delta_{\tilde{\xi}}=0,00006104\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n+1}$ , m=0, n=4. Округлим  $\tilde{\xi}=2,12591553$  до n=4. Получим  $\tilde{\xi}_1=2,126$ ,  $\Delta_{o\kappa p}=\left|\tilde{\xi}-\tilde{\xi}_1\right|\leq 0,000085$ ,  $\Delta_{\tilde{\xi}_1}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_1}\leq 0,000147$ .

Найдем число верных знаков для  $\tilde{\xi}_1=2,126$ . Имеем  $\Delta_{\tilde{\xi}_1}=0,000147\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n_1+1},\ m=0\ ,\ n_1=4$ . Так как  $n_1=n\ ,$  то получим приближенное значение корня с числом верных знаков  $n_1=4$  .

Otbet:  $\tilde{\xi} = 2,126 \pm 0,000147; k = 14.$