

Introduction to Computer Vision

Daniil Osokin

Intel, IOTG/VMC/ICV

daniil.osokin@intel.com

Internet of Things Group

Color Spaces

- Grayscale, values [0;255]
- RGB, RGBA, BGR, values [0;255] x number_of_channels
- LUV, LAB, HSV
- YUV, YUV 420, YUV 422, YUYV
- CMYK
- etc.

OpenCV reads image in BGR by default.

Digital Camera as a Sensor

The Matrix

Raw Image

Bryce Bayer

Color Filter Array (Mosaic)

Images credit: https://www.cambridgeincolour.com/ru/tutorials-ru/camera-sensors.htm

Digital Camera as a Sensor

Demosaicing (Debayering)

Pixels, which they sell

Pixels, which we obtain

Images credit: https://www.cambridgeincolour.com/ru/tutorials-ru/camera-sensors.htm

Image Channels

Interleaved (packed) – element of image planes interleaved in memory (BGR, HSV, Luv etc.):

cv::imread default: CV 8UC3.

Non-Interleaved (Planar) – image planes stored in memory one by one (YUV_I420 etc.):

Used as input for Neural Nets (usually).

Computer Vision Topics

- Image Processing
- Keypoint Detection
- Segmentation
- Motion Analysis
- Structure from Motion
- Computational Photography
- Stereo, 3D Reconstruction
- Recognition

$$y(t) = x(t) ** h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t - \tau)d\tau$$
$$y[n] = x[n] ** h[n] = \sum_{k = -\infty}^{+\infty} x[k]h[n - k]$$

Images credit: http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Low-pass (Blur, Gaussian Blur, Box Blur...)

Low-pass (Blur, Gaussian Blur, Box Blur...)

Q: Which kernel doesn't change the image?
Q: Which kernel shifts image one pixel down?

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

 $\begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} * \frac{1}{25} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Image Processing: Convolution (Bonus: Zacepila by Artur Pirozhkov)

Low-pass (Blur, Gaussian Blur, Box Blur...)

Images credit: https://www.youtube.com/watch?v=O0EYAQhLzK0, https://www.youtube.com/watch?v=XQYNUwYHV1c

High-pass (Sharpening, Sobel)

Horizontal Sobel

direction of gradients

-1	-1	-1
-1	8	-1
-1	-1	-1

0	0	0	0	0
0	0	7	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

Image Processing: Threshold

- Threshold the simplest segmentation method
- Adaptive Threshold, Otsu

$$dst(x,y) = \begin{cases} maxVal & if src(x,y) > thresh \\ 0 & otherwise \end{cases}$$

Adaptive Thresholding with mean weighted average

$$dst(x,y) = \begin{cases} maxValue & if src(x,y) > T(x,y) \\ 0 & otherwise \end{cases}$$

Hist[i] =
$$\sum_{y,x} (Image[y,x] == i)$$

$$Hist[i] = \sum_{y,x} (Image[y,x] == i)$$

250 0 50 100 150 200 255 Gray Levels (a)

Histogram of a bright image

Histogram of a high-contrast image

$$Hist[i] = \sum_{y,x} (Image[y,x] == i)$$

Q: How looks histogram of this image?

Histogram of a bright image

(b)

v 1000 v 250 v

Histogram of a bright image

Histogram of a high-contrast image

Image after histogram equalization

Image Processing: Morphology

Morphology deals with shape processing.

Compares \forall pixels in the image against its neighbors, so as to add or remove, brighten or darken such pixels.

Neighborhood is determined by structuring element (or kernel):

Can be obtained with cv::getStructuringElement, or just pass desired kernel in cv::Mat.

Image Processing: Morphology

Basic operations:

 Erosion (cv::erode) – "eats away" shape, reachable from any background pixel

Dilation (cv::dilate) –
 expands shape

Images credit: http://www.imagemagick.org/Usage/morphology/

Image Processing: Morphology

Basic operations:

Opening (cv::morhologyEx) –
 erosion then dilation

Closing (cv::morhologyEx) –
 dilation then erosion

Images credit: http://www.imagemagick.org/Usage/morphology/

Image Processing: Morphology (Bonus: Chun-Li by Nicki Minaj)

Images credit: https://www.youtube.com/watch?v=Wpm07-BGJnE

Image Processing: Morphology (Bonus: Chun-Li by Nicki Minaj)

Original (colors negated)

Morphological gradient

Images credit: https://www.youtube.com/watch?v=Wpm07-BGJnE

Summary

Image:

- Non-Interleaved (Planar)
- Interleaved (Packed)
- Colorspaces (Grayscale, RGB, HSV, CMYK)

Convolution:

- Low-pass filter (blur)
- High-pass filter (sharpening, gradients)

Morphology:

- Erosion (shrink), Opening (remove noise)
- Dilation (expand), Closing (fill holes)

Keypoint detection:

- Corners
- Image pyramid

daniil.osokin@intel.com