Cuáles pozos influyen en la predicción de una propiedad en una celdad de la malla 3D

Salvador Pintos

18 de noviembre de 2013

1. Complemento

1.1. Revisión de Kriging

Kriging en cualquiera de sus versiones: simple, ordinario o con tendencia la predicción de una propiedad, z, depende de:

- ullet las covarianzas entre los pozos incluidas en la matriz de covarianza, C
- \blacksquare la covarianza entre cada pozo y el punto a predecir incluidas en el vector, w
- \blacksquare los valores de la propiedad en los pozos incluidos en un vector Z
- la media, μ , conocida si es Kriging Simple o estimada, $\hat{\mu}$, en el caso de Kriging Ordinario

1.2. La respuesta en el caso de Kriging Simple

La predicción está dada por: $\widehat{z(x)} = w^T inv(C) \left(Z - \mu(x) L\right) + \mu(x)$ siendo L un vector de unos de igual dimensión que Z. Ver mi página Kriging Simple sección 2.7 ecuación 2.8.

Si todos los puntos están fuera del rango (w=0) , $\widehat{z(x)}=\mu$ y los valores en los pozos no tienen ninguna influencia.

Si como en el ejemplo (ver figura 1), B dista menos del rango de X y F está más allá del rango de los restantes puntos, la matriz C así como su inversa tienen la siguiente estructura:

Figura 1: Ejemplo

y como $w^T = [\begin{array}{ccccc} 0 & \neq 0 & 0 & 0 & 0 \end{array}]$ entonces w^TC tiene obligatoriamente un 0 en el sexto elemento (el peso de F).

1.3. Kriging Ordinario

La predicción está dada por: $\widehat{z(x)} = w^T inv(C) (Z - \hat{\mu} L) + \hat{\mu}$ ver mi página Kriging Ordinario ecuación 3.5.

Y aunque todos los puntos se encuentren más allá del rango, w=0, y $\widehat{z(x)}=\hat{\mu}$ resulta, que $\hat{\mu}$ es una combinacieon lineal de los puntos de la muestra, es decir de Z.

Luego, todos influyen en la predicción.