CSC 225: Assignment 1 Discrete Mathematics

Due date:

The	submission	deadline is	11:59pm	on Friday,	September	12 th , 2025.

How to hand it in:

Submit an **image** or **.pdf** of each question to the Assignment 1 Crowdmark page.

Exercises:

1	Given the	word	INTR	ODU	CTION
т.	OIV CII LIIC	WOIG	11 / 1 1/	-	$\mathbf{C}_{\mathbf{I}}$

a.	How	many	arrangements	of the	letters	are	there?
----	-----	------	--------------	--------	---------	-----	--------

b. How many arrangements are there with all T's adjacent to one another?

c. How many arrangements are there with none of the T's adjacent to one another?

d. How many arrangements are there with all of the vowels adjacent to one another?

2.	Sı	uppose you draw 5 cards from a standard deck of 52.
a	ι.	How many ways can you draw exactly 3 diamonds?
b).	How many ways can you draw at least 2 diamonds?
c	·	How many ways can you draw 3 spades and 2 diamonds?

3. Determine the coefficient of x^8y^6 in the following expansions:

a.
$$(x + y)^{14}$$

b.
$$(-4x + 2y)^{14}$$

c.
$$(9x - 5y)^{14}$$

4. Determine the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 21$, where

a.
$$x_i \ge 0$$
, $1 \le i \le 5$

b.
$$x_1, x_2, x_3 \ge 1$$
, $x_4, x_5 \ge 4$

c.
$$x_i \ge -1$$
, $1 \le i \le 5$

d.
$$x_i \ge 1$$
, $1 \le i \le 4$, $5 \le x_5 \le 7$

5.	5. Use the pigeonhole principle to solve the following problems. To get full marks, you must state what the pigeons are, and what the pigeonholes are.					
	a.	Prove that among any 13 people, two share a birth month.				
	b.	To begin the Fall term, Ali decides to go for a run around the UVic Alumni Chip Trail at least one lap a day for the first 12 weeks of term (before it gets too cold out). To not overdo it, Ali makes sure to not run more than 100 laps during this 12-week time period. Show there must be a period of consecutive days for which Ali runs exactly 50 laps.				