Career Costs of Children

Thomas H. Jørgensen

2023

Plan for today

Dynamic Labor supply w. HC and children
 Adda, Dustmann and Stevens (2017): "The Career Costs of Children"

Plan for today

Introduction

- Dynamic Labor supply w. HC and children Adda, Dustmann and Stevens (2017): "The Career Costs of Children"
- Reading guide:
 - What are the main research questions?
 - What is the (empirical) motivation?

3 What are the central mechanisms in the model?

What is the simplest model in which we could capture these?

Introduction

- Dynamic Labor supply w. HC and children
 Adda, Dustmann and Stevens (2017): "The Career Costs of Children"
- Reading guide:
 - What are the main research questions?
 - How **costly** are children for careers over the life cycle?
 - How does pro-fertility reforms affect labor supply?
 - What is the (empirical) motivation?

3 What are the central mechanisms in the model?

4 What is the simplest model in which we could capture these?

Simple Model

Empirical Motivation: I

"Child penalty" (Kleven, Landais and Søgaard, 2019)

Empirical Motivation: II

Introduction

0000

TABLE 1
DESCRIPTIVE STATISTICS, BY OCCUPATION

References

4 / 17

	Routine	Abstract	Manual	Whole Sample
Initial occupation	25.0%	44.8%	30.3%	100%
Occupation of work	25.4%	52.7%	21.9%	
A				
Annual occupational transition rates:				
If in routine last year	97.9%	1.5%	.5%	
If in abstract last year	.7%	99.0%	.2%	
If in manual last year	.9%	.8%	98.3%	
В				
Log wage at age 20	3.598	3.742	3.470	3.634
	(.297)	(.301)	(.386)	(.337)
Log wage growth, at potential				
experience = 5 years	.0485	.0551	.0450	.051
	(.187)	(.156)	(.196)	(.175)
Log wage growth, at potential	, ,		, ,	
experience = 10 years	.0181	.0240	.0152	.020
	(.187)	(.206)	(.223)	(.206)
Log wage growth, at potential	, ,	,	, , , ,	
experience = 15 years	.00995	.0147	.0127	.013
	(.206)	(.195)	(.211)	(.200)
C	, ,	(/	, ,	(
Total work experience after 15 years	11.55	12.81	12.14	12.34
	(3.273)	(2.624)	(2.880)	(2.909)
Full-time work experience after 15 years	10.32	11.92	10.86	11.29
	(3.907)	(3.348)	(3.570)	(3.617
Part-time work experience after 15 years	1.229	.889	1.274	1.056
· · · · · · · · · · · · · · · · · · ·	(2.187)	(1.828)	(2.125)	(1.997
D	(/	(((-)001
Total log wage loss, after interruption = 1 year	0968	147	105	121
	(.560)	(.636)	(.633)	(.613)
Total log wage loss, after interruption = 3 years	152	253	223	216
0 0	(.604)	(.639)	(.619)	(.625)
E	()	(.500)	(.310)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Age at first birth	27.27	28.39	25.94	27.56
	(4.138)	(3.783)	(3.517)	(3.943

Introduction

Empirical Motivation: III

- Selection into family friendly occupations
 - \rightarrow correlation \neq causation!
 - \rightarrow we need a model!

 Short run effects of pro-fertility reforms on labor supply are substantial Reduced form evidence Long run effects: "need" a model!

Outline

Model and Mechanisms

Simulation Results

Simple Mode

Model Overview

sdfsdf

Recursive Formulation

dsf

References

something

sdfsdf

Solution

Introduction

sdfsdf

Outline

Model and Mechanisms

Simulation Results

Simple Model

Simulation Resuts

• ..

Outline

Model and Mechanisms

Simulation Results

Simple Model

• We can extend the simple dynamic model of Keane (2016) Random arrival of a child, $n_t \in \{0,1\}$ Dis-utility from work depend on children

Extending our simple model

- We can extend the simple dynamic model of Keane (2016) Random arrival of a child, $n_t \in \{0, 1\}$ Dis-utility from work depend on children
- Bellman equation

$$V_t(n_t, a_t, k_t) = \max_{c_t, h_t} \frac{c_t^{1+\eta}}{1+\eta} - \beta(n_t) \frac{h_t^{1+\gamma}}{1+\gamma} + \rho \mathbb{E}_t [V_{t+1}(n_{t+1}, a_{t+1}, k_{t+1})]$$
 s.t.
$$n_{t+1} = \begin{cases} n_t + 1 & \text{with prob. } p(n_t) \\ n_t & \text{with prob. } 1 - p(n_t) \end{cases}$$
 $a_{t+1} = (1+r)(a_t + (1-\tau_t)w_t h_t - c_t)$ $k_{t+1} = k_t + h_t$

Simple Model

0000

• Endogenous wages (as before)

$$w_t = w\left(1 + \alpha k_t\right)$$

0000

Extending our simple model

Endogenous wages (as before)

$$w_t = w \left(1 + \alpha k_t \right)$$

Probability of a child arriving

$$p(n_t) = \begin{cases} p_n & \text{if } n_t = 0\\ 0 & \text{if } n_t = 1 \end{cases}$$

Simple Model 0000

Extending our simple model

Endogenous wages (as before)

$$w_t = w \left(1 + \alpha k_t \right)$$

Probability of a child arriving

$$p(n_t) = \begin{cases} p_n & \text{if } n_t = 0\\ 0 & \text{if } n_t = 1 \end{cases}$$

Dis-utility from working

$$\beta(n_t) = \beta_0 + \beta_1 n_t$$

such that *original model is nested* if $\beta_1 = 0$.

Extending our simple model

Endogenous wages (as before)

$$w_t = w \left(1 + \alpha k_t \right)$$

Probability of a child arriving

$$p(n_t) = \begin{cases} p_n & \text{if } n_t = 0\\ 0 & \text{if } n_t = 1 \end{cases}$$

Dis-utility from working

$$\beta(n_t) = \beta_0 + \beta_1 n_t$$

such that original model is nested if $\beta_1 = 0$.

Expected value is

$$\mathbb{E}_{t}[V_{t+1}(n_{t+1}, a_{t+1}, k_{t+1})] = p(n_{t})V_{t+1}(n_{t}+1, a_{t+1}, k_{t+1}) + (1 - p(n_{t}))V_{t+1}(n_{t}, a_{t+1}, k_{t+1})$$

See notebook...

Next time:

Labor supply and children.

Literature:

Keane (2011, sections 1-5): "The Career Costs of Children"

- Read before lecture
- Reading guide:
 - Section 1: Introduction. Key
 - Section 2: Data. Skim fast.
 - Section 3: Model. Key, but complex. Get the idea.
 - Section 4: Results. Simulations in sections E, F and G are key!

References I

- ADDA, J., C. DUSTMANN AND K. STEVENS (2017): "The Career Costs of Children," *Journal of Political Economy*, 125(2), 293–337.
- KEANE, M. P. (2011): "Labor Supply and Taxes: A Survey," *Journal of Economic Literature*, 49(4), 961–1075.
 - ——— (2016): "Life-cycle Labour Supply with Human Capital: Econometric and Behavioural Implications," *The Economic Journal*, 126(592), 546–577.
- KLEVEN, H. J., C. LANDAIS AND J. E. SØGAARD (2019): "Children and gender inequality: Evidence from Denmark," *American Economic Journal: Applied Economics*, 11, 181–209.