Projet n° 4

Parcours Ingénieur Machine Learning Segmentez des clients d'un site e-commerce

Présenté par Alfred Bazin

Mentor
Amine Hadj-Youcef

25/09/2022

DPENCLASSROOMS

Simulation

Sommaire

- Présentation du projet
- Cleanning & Feature engineering
- Modélisation
- > Simulation
- Conclusion

Présentation du projet

Nettoyage &

Feature Engineering

« **Segmentation** des clients utilisable au quotidien pour les campagnes de communication »

olist

Données sur Kaggle:

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

- 8 bases de données
- **99441** commandes
- 96096 utilisateurs

Nettoyage &

Agrégation des bases de données (exemple RFM) :

Nettoyage &

Agrégation des bases de données (exemple RFM) :

Groupés par :

customer_unique_id

customer_id *count* Frequency

recency min Recency

payment value sum Monetary Value

review_score (*mean*)

review_message (count)

Weight (*mean*)

Volume (*mean*)

Density (*mean*)

Preciousness (mean)

Autres features : delivery_time (mean)

delay (*mean*)

Distance (*mean*)

Value (*mean*)

Installments (*mean*)

payment_type (mode)

customer_state (mode)

main_category (*Encoding...*)

Valeurs manquantes et aberrantes

Valeurs aberrantes et atypiques

Simulation

Fréquence

delivery_time

Nettoyage & Feature Engineering

Analyse exploratoire

- La fréquence moyenne est équilibrée entre les états
- Les **états** plus **peuplés** représentent une large majorité des commandes

Fréquence **moyenne** par état

Fréquence **totale** par état

Nettoyage &

Analyse exploratoire

- F1 : Quantitée d'achats (value_total + frequency)
- F2 : La récence des achats (recency)
- F3 : Le prix des achats (frequency vs value total)

Métriques :

RFM - KMeans

(Sur un échantillon de ~10 000 individus)

Paramètres:

- n clusters
- init
- n_init

Inertie

Somme de distance des points au centroïde :

Coefficient de silhouette

- a: Distance moyenne entre un point et ses voisins du même cluster
- **b**: Distance moyenne entre un point et ses voisins du cluster le plus proche

- 1: Parfait
- **0**: Les clusters se recouvrent
- **-1**: Mauvais clustering

0.75

1.00

Modélisation

RFM (log) - KMeans

Présentation du projet

Inertie

Coude entre 3 et 5 clusters

Coef. de silhouette

- Max à 2 clusters
- Chute avec un max à 5 clusters

Profil de silhouette

n clusters = 4

Profil de silhouette

- Clusters plus **équilibrés**
- Toujours chevauchement

-0.25

Résultats similaires avec ACP

RFM (log) - KMeans Ajout de features

Présentation du projet

• Ajout de features à RFM :

Inertie / Silhouette \

- Exceptions:
 - review_score_mean
 - review_message_count
 - value mean
 - Cat. Features

> Explosion de l'inertie

Nettoyage &

Feature Engineering

Modélisation

RFM (log) - KMeans Ajout de features catégoriques

Ajout de features à RFM :

Inertie /

Silhouette 🔪

- Exceptions:
 - Payment type

Haut nombre de clusters avec recouvrement

Features

RFM+ (log) - KMeans

Présentation du projet

Features:

- recency
- frequency
- monetary value
- review_score_mean

Profil de silhouette

Profil de silhouette

• Toujours chevauchement

RFM+ (log) - DBSCAN

Présentation du projet

Paramètres:

- eps
- min_sample

n_clusters = 5

Obtention de clusters **déséquilibrés** et se **chevauchant** fortement

RFM+ (log) – Clustering hiérarchique

Profil de silhouette

• Résultats très proches du KMeans mais avec plus de chevauchement

RFM+ (log) – KMeans

Présentation du projet

Interprétation des clusters (n_clusters = 4)

Cluster 1:

Clients qui ne sont pas satisfaits de leur commande.

Cluster 2:

Clients qui ont commandé peu de fois il y a longtemps.

Cluster 3:

Clients qui ont commandés **plusieurs fois** sur la plateforme.

Cluster 4:

Clients **récents** qui n'ont pas commandé beaucoup et sont content.

Simulation

ARI

Index de rand (RI)

$$RI = \frac{\sum_{k=0}^{n} + \sum_{k=0}^{1} \frac{1}{n}$$

Index de rand ajusté (ARI)

$$ARI = \frac{RI - \mathbb{E}(RI)}{1 - \mathbb{E}(RI)}^{1}$$

Nettoyage &

Feature Engineering

Simulation

(début après un semestre de données)

- Sans maintenance
 - Diminution jusqu'à un score de ~0,2

ARI sans maintenance

Simulation

(début après un semestre de données)

Sans maintenance

Présentation du projet

- Diminution jusqu'à un score de ~0,2
- 6 mois
 - Diminution jusqu'à un score de ~0,4

Maintenance tous les 6 mois

(début après un semestre de données)

Sans maintenance

Présentation du projet

- Diminution jusqu'à un score de ~0,2
- 6 mois
 - Diminution jusqu'à un score de ~0,4
- 1 mois
 - Diminution jusqu'à un score de ~0,8

Maintenance tous les mois

Simulation

(début après un semestre de données)

Sans maintenance

Présentation du projet

- Diminution jusqu'à un score de ~0,2
- 6 mois
 - Diminution jusqu'à un score de ~0,4
- 1 mois
 - Diminution jusqu'à un score de ~0,8
- 15 jours
 - Diminution jusqu'à un score de ~0,85

Maintenance tous les mois

Conclusion

Clustering avec features RFM et score moyen :

Rency Frequency

Monetary value

Mean review score

- Parmi plusieurs modèles (DBSCAN, Clustering hiérarchique...), KMeans est le plus performant.
- 4 Clusters formés :
 - Clients récents
 - Clients qui ne reviennent pas
 - Clients fréquents
 - Clients mécontents
- Maintenance de 15 jours recommandée

