Continuous-time Markov Chains

6.2 Introduction

- continuous-time stochastic process $\{X(t), t \ge 0\}$
 - state: finite/countable values, {0,1,2,...}
 - \circ time: continuous, $t \ge 0$
 - transition prob (time stationary/homogeneous), $\Pr(X(t+s)=j|X(s)=i,X(u),0\leq u < s)=\Pr(X(t)=j|X(0)=i).$
 - \circ T_i denote the amount of time that the process stays in state i before making a transition into a different state
 - $Pr(T_i > s + t | T_i > s) = Pr(T_i > t)$
 - the process is in state i at time s
 - by the Markovian property, that the prob that it remains in that state during the interval [s,s+t] is just the (unconditional) prob that it stays in state i for at least t time.
 - \blacksquare T_i is memoryless
- memoryless continuous random variable X: Pr(X > t + s | X > s) = Pr(X > t) <==>

$$Pr(X > t + s) = Pr(X > t) Pr(X > s)$$

- survival function of X: G(t) = Pr(X > t) (right continuous)
- \circ G(t+s)=G(t)G(s)
 - easy to check $G(nt) = G(t)^n$, or $G(t) = G(nt)^{1/n}$.
 - so $G(1/p) = G(1)^{1/p}$, $G(q/p) = G(1/p)^q = G(1)^{q/p}$ for any integer p,q.
 - rational number can approximate any real number, so $G(t) = G(1)^t = \exp(-\log(1/G(1))t)$, an exponential dist with rate $\lambda = \log(1/G(1))$.
- geometric dist is the discrete analog: survival prob $(1-p)^k$.
- exponential dist with rate λ : $f(t) = \lambda e^{-\lambda t}$, $G(t) = e^{-\lambda t}$; mean $E[T] = 1/\lambda$, variance $Var[T] = 1/\lambda^2$.
- minimum of independent exp is still exp (rate is the sum of individual rates).

- $Pr(\min(X, Y) > t) = Pr(X > t) Pr(Y > t) = e^{-t\lambda_x t\lambda_y}$
 - $Pr(\min_i Y_i > t) = \prod_i Pr(Y_i > t) = e^{-t\sum_i \lambda_i^y}$
- Pr(an exp is the minimum among a set of independent exps) \propto its rate
 - $Pr(X < Y) = E[E[I(X < Y)|X]] = E[e^{-X\lambda_y}] = \lambda_x/(\lambda_x + \lambda_y)$
 - $Pr(X < Y_1, \dots, X < Y_m) = E[E[I(X < Y_i, \forall i)|X]]$
 - $\bullet = E[e^{-X\sum_{i}\lambda_{i}^{y}}] = \lambda_{x}/(\lambda_{x} + \sum_{i}\lambda_{i}^{y})$
- sum of iid exp is gamma (n,λ) .
- Failure/hazard rate
 - r(t)=f(t)/G(t)
 - $Pr(X \in (t, t + dt)|X > t) = r(t)dt.$
 - $G(t) = \exp(-\int_0^t r(t)dt).$
 - $r(t) = \lambda$ for exponential dist.

• alternative definition of continuous-time MC

- a stochastic process that moves from state to state in accordance with a (discrete-time) MC
 - $P_{ii} = 0, \sum_{i \neq i} P_{ij} = 1$
- \circ the amount of time it spends in state i, before proceeding to the next state, is exponentially distributed with rate v_i
- the amount of time the process spends in state i, and the next state visited, must be independent random variables

6.3 Birth and Death Processes

• Birth and death process

- a system whose state at any time is represented by the number of people in the system at that time
- whenever there are n people in the system
 - new arrivals enter the system at an exponential rate λ_n (birth/arrival rate)
 - people leave the system at an exponential rate μ_n (departure/death rate)
 - time until the next arrival is exponentially distributed with mean $1/\lambda_n$,
 - independent of the time until the next departure, which is itself exponentially distributed with mean $1/\mu_n$.

- a continuous-time MC with states {0,1,...} for which transitions from state n may go only to either state n-1 or state n+1
 - $\nu_0 = \lambda_0, \nu_i = \lambda_i + \mu_i, i > 0.$
 - $P_{01} = 1, P_{i,i+1} = \lambda_i / (\lambda_i + \mu_i), P_{i,i-1} = \mu_i / (\lambda_i + \mu_i), i > 0$
- Linear growth model with immigration (Ex 6.4, Page 375)
 - $\bullet \ \mu_n = n\mu, n \ge 1; \lambda_n = n\lambda + \theta, n \ge 0.$
 - Deriving M(t)=E[X(t)]
 - Considering M(t+h)=E[X(t+h)]=E[E[X(t+h)|X(t)]]
 - for small h, 3 values for X(t+h) conditional on X(t)
 - X(t)+1, prob= $[\theta + X(t)\lambda]h + o(h)$
 - \blacksquare X(t)-1, prob= $X(t)\mu h + o(h)$
 - X(t), prob = 1- the first two
 - so $E[X(t+h)|X(t)] = X(t) + [\theta + X(t)\lambda X(t)\mu]h + o(h)$
 - expectation: $M(t + h) = M(t) + (\lambda \mu)M(t)h + \theta h + o(h)$
 - $(M(t+h) M(t))/h = (\lambda \mu)M(t) + \theta + o(h)/h$
 - as $h \to 0, M'(t) = (\lambda \mu)M(t) + \theta := h(t)$
 - \bullet $h'(t) = (\lambda \mu)M'(t)$ and $h'(t) = (\lambda \mu)h(t)$
 - $h(t) = Ke^{(\lambda-\mu)t}$ and $\theta + (\lambda \mu)M(t) = Ke^{(\lambda-\mu)t}$
 - \blacksquare note M(0) = i
 - $\lambda \neq \mu: M(t) = \theta/(\lambda \mu)[e^{(\lambda \mu)t} 1] + ie^{(\lambda \mu)t}$
 - $\lambda = \mu$: $M(t) = \theta t + i$
- A birth-death process with birth rate λ_n and death rate μ_n with $\mu_0 = 0$
 - T_i denote the time, starting from state i, it takes for the process to enter state i+1, $i \ge 0$
 - Deriving $E[T_i]$
 - note $E[T_0] = 1/\lambda_0$ since $\nu_0 = \lambda_0$.
 - Define
 - $I_i = 1$ if the first transition from i is to i+1
 - $I_i = 0$ if the first transition from i is to i-1
 - $Pr(I_i = 1) = Pr(birth before death) = \lambda_i/(\lambda_i + \mu_i)$

- independent of whether the first transition is from a birth or death, the time until it occurs is exponential with rate $\lambda_i + \mu_i$
- $E[T_i|I_i = 1] = 1/(\lambda_i + \mu_i)$
 - if the first transition is a birth, then the population size is at i+1, so no additional time is needed
 - $\blacksquare \implies Var(T_i|I_i = 1) = 1/(\lambda_i + \mu_i)^2$
- $\blacksquare E[T_i|I_i = 0] = 1/(\lambda_i + \mu_i) + E[T_{i-1}] + E[T_i]$
 - if the first event is death, then the population size becomes i-1,
 - the additional time needed to reach i+1 is equal to the time it takes to return to state i (mean $E[T_{i-1}]$)
 - plus the additional time it then takes to reach i+1 (mean $E[T_i]$)
 - $\blacksquare \Rightarrow Var(T_i|I_i = 0) = 1/(\lambda_i + \mu_i)^2 + Var(T_{i-1}) + Var(T_i)$
- $= => E[T_i] = 1/(\lambda_i + \mu_i) + \mu_i/(\lambda_i + \mu_i)(E[T_{i-1}] + E[T_i])$
 - $\bullet E[T_i] = 1/\lambda_i + \mu_i/\lambda_i E[T_{i-1}]$
- expected time to go from state i to state j where i<j
 - $\blacksquare E[T_i] + E[T_{i+1}] + \cdots + E[T_{i-1}]$
- For $\lambda_n = \lambda$, $\mu_n = \mu$
 - $\blacksquare E[T_0] = 1/\lambda$
 - $E[T_i] = 1/\lambda + \mu/\lambda E[T_{i-1}] = (1 + \mu E[T_{i-1}])/\lambda$
 - $E[T_1] = (1 + \mu/\lambda)/\lambda, E[T_2] = (1 + \mu/\lambda + [\mu/\lambda]^2)/\lambda$
 - $\lambda \neq \mu$: $E[T_i] = (1 (\mu/\lambda)^{i+1})/(\lambda \mu), i \geq 0$.
 - E[time to go from k to j]= $\sum_{i=k}^{j-1} E[T_i]$, k<j.
 - $\lambda \neq \mu: (j-k)/(\lambda-\mu) (\mu/\lambda)^{k+1}/(\lambda-\mu)[1-(\mu/\lambda)^{j-k}]/(1-\mu/\lambda)$
- Deriving $Var[T_i]$
 - Note $E[T_i|I_i] = 1/(\lambda_i + \mu_i) + (1 I_i)(E[T_{i-1}] + E[T_i])$
 - $I_i \sim \text{Bernoulli}(\lambda_i/(\lambda_i + \mu_i))$
 - $= \operatorname{Var}(E[T_i|I_i]) = (E[T_{i-1}] + E[T_i])^2 \operatorname{Var}(I_i) = (E[T_{i-1}] + E[T_i])^2 \mu_i \lambda_i / (\mu_i + \lambda_i)^2$
 - $Var(T_i|I_i) = 1/(\lambda_i + \mu_i)^2 + (1 I_i)[Var(T_{i-1}) + Var(T_i)]$

$$=> E[Var(T_i|I_i)] = 1/(\lambda_i + \mu_i)^2 + \mu_i \lambda_i / (\mu_i + \lambda_i)^2 [Var(T_{i-1}) + Var(T_i)]$$

$$=> Var(T_i) = 1/(\lambda_i (\lambda_i + \mu_i)) + \frac{\mu_i}{\lambda_i} Var(T_{i-1}) + \frac{\mu_i}{\mu_i + \lambda_i} (E[T_{i-1}] + E[T_i])^2$$

- note $Var(T_0) = 1/\lambda_0^2$
- Var[time to go from k to j]= $\sum_{i=k}^{j-1} Var[T_i]$, k<j.

6.4 The Transition Probability Function

- transition probabilities of a continuous-time MC
 - $P_{ii}(t) = \Pr[X(t+s) = j | X(s) = i]$
- Instantaneous transition rates: $q_{ij} = \nu_i P_{ij}$
 - $o q_{ij}$ is the rate, when in state i, at which the process makes a transition into state j
 - $\circ \nu_i = \sum_j q_{ij}, P_{ij} = q_{ij} / \sum_j q_{ij}$
 - Lemma 6.2 $\lim_{h\to 0} \frac{1-P_{ii}(h)}{h} = \nu_i, \lim_{h\to 0} \frac{P_{ij}(h)}{h} = q_{ij}, i \neq j$
 - ν_i is the hazard rate of exp dist
 - $1 P_{ii}(h)$: the probability that a process in state i at time 0 will not be in state i at time h, equals the probability that a transition occurs within time h plus something small compared to h
 - $1 P_{ii}(h) = \nu_i h + o(h)$
 - $P_{ij}(h)$: the probability that the process goes from state i to state j in a time h, equals the probability that a transition occurs in this time multiplied by the probability that the transition is into state j plus something small compared to h
 - $P_{ij}(h) = h\nu_i P_{ij} + o(h)$
- Chapman–Kolmogorov equations: $P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(s), \forall s \geq 0, t \geq 0$
 - Condition on X(t) = k
 - Kolmogorov's Backward Equations: $P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) v_i P_{ij}(t)$
 - $P_{ij}(h+t) P_{ij}(t) = \sum_{k \neq i} P_{ik}(h) P_{kj}(t) [1 P_{ii}(h)] P_{ij}(t)$
 - taking limit $h \rightarrow 0$ and interchange limit and summation
 - Kolmogorov's Forward Equations: $P'_{ij}(t) = \sum_{k \neq j} q_{kj} P_{ik}(t) v_j P_{ij}(t)$

$$P_{ij}(t+h) - P_{ij}(t) = \sum_{k \neq i} P_{ik}(t) P_{kj}(h) - [1 - P_{jj}(h)] P_{ij}(t)$$

- taking limit $h \to 0$ and interchange limit and summation (under suitable regularity conditions)
- Pure birth process
 - Suppose that the process is presently in state i, and let j > i
 - X_k denote the time the process spends in state k before making a transition into state k+1
 - $\sum_{k=i}^{j-1} X_k$ is the time it takes until the process enters state j
 - $X(t) < j \leftrightarrow \sum_{k=i}^{j-1} X_k > t$
 - $\Pr[X(t) < j | X(0) = i] = \Pr[\sum_{k=i}^{j-1} X_k > t]$
 - X_k are independent exps with rate λ_k
 - sum of independent exps with distinct rates (hypoexponential dist)

$$\bullet = \sum_{k=i}^{j-1} e^{-\lambda_k t} \prod_{r \neq k, r=i}^{j-1} \frac{\lambda_r}{\lambda_r - \lambda_k} \text{ (assuming } \lambda_i \neq \lambda_j, \forall i \neq j)$$

■
$$\Pr[X(t) = j | X(0) = i] = \Pr[X(t) < j + 1 | X(0) = i] - \Pr[X(t) < j | X(0) = i]$$

$$P_{ii}(t) = \Pr(X_i > t) = e^{-\lambda_i t}$$

• Backward equation

$$P_{ij}'(t) = \lambda_i [P_{i+1,j}(t) - P_{ij}(t)]$$

- Forward equation
 - $P_{ii}'(t) = -\lambda_i P_{ii}(t)$

$$P_{ii}(t) = e^{-\lambda_i t}$$

$$P_{ii}'(t) = \lambda_{i-1} P_{i,i-1}(t) - \lambda_i P_{ii}(t)$$

$$P_{ij}(t) = \lambda_{j-1} e^{-\lambda_j t} \int_0^t e^{\lambda_j s} P_{i,j-1}(s) ds$$

- treating $e^{\lambda_j t} P_{ij}(t)$ as one function
- Birth and death process
 - Backward equation

$$P_{0j}'(t) = \lambda_0 [P_{1j}(t) - P_{0j}(t)]$$

$$P_{ij}'(t) = \lambda_i P_{i+1,j}(t) + \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t)$$

Forward equation

$$P_{i0}'(t) = \mu_1 P_{i1}(t) - \lambda_0 P_{i0}(t)$$

$$P_{ij}'(t) = \lambda_{j-1} P_{i,j-1}(t) + \mu_{j+1} P_{i,j+1}(t) - (\lambda_j + \mu_j) P_{ij}(t)$$

- Continuous-Time Markov Chain Consisting of Two States (Example 6.11, Page 386)
 - A machine works for an exponential amount of time having mean $1/\lambda$ before breaking down; and it takes an exponential amount of time having mean $1/\mu$ to repair the machine
 - A birth-death process: $\lambda_0 = \lambda$, $\mu_1 = \mu$, $\lambda_i = 0$, $i \neq 0$, $\mu_i = 0$, $i \neq 1$
 - $P_{00}(0) = 1, P_{10}(0) = 0$

 - $P_{00}(t) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$ $P_{10}(t) = -\frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$
 - some results
 - \blacksquare continuous-time MC: $\nu_0 = \lambda$, $\nu_1 = \mu$. $\lim_{t\to 0} P_{10}(t)/t = \mu$, $\lim_{t\to 0} P_{01}(t)/t = \lambda$
 - embeded discrete MC: transition prob $P_{10} = P_{01} = 1$; stationary dist $\pi_0 = \pi_1 = 0.5$
 - limiting prob of continuous-time MC: $\lim_{t\to\infty} P_{10}(t) = \mu/(\mu + \lambda)$

6.5 Limiting Probabilities

- $P_{ii}(t)$ often converges to a limiting value that is independent of the initial state i.
 - let $P_j = \lim_{t \to \infty} P_{ij}(t)$, $\sum_j P_j = 1$ (stationary probabilities)
 - $P_{ii}(t)$ will be constant if we start from the limiting prob.
 - Forward equation: $P'_{ij}(t) = \sum_{k \neq j} q_{kj} P_{ik}(t) \nu_j P_{ij}(t)$
 - - note $\lim_{t\to\infty} P_{ij}'(t) = 0$ (if not, $P_{ij}(t)$ will go to infinity)
 - So $\nu_j P_j = \sum_{k \neq i} q_{kj} P_k$ (balance equations)
 - Sufficient condition for P_i existing (ergodic chain)
 - all states of the MC communicate in the sense that starting in state i there is a positive probability of ever being in state j, for all i, j and
 - the MC is positive recurrent in the sense that, starting in any state, the mean time to return to that state is

finite

- \blacksquare P_i being the long-run proportion of time that the process is in state j
- $\nu_j P_j$ = rate at which the process leaves state j
 - when the process is in state j, it leaves at rate ν_i
 - \blacksquare P_i is the proportion of time it is in state j
- $\sum_{k \neq i} q_{ki} P_k$ = rate at which the process enters state j
 - $q_{kj}P_j$ = rate at which transitions from k to j occur
- hence equality of the rates at which the process enters and leaves state j
- Birth and death process
 - birth rate λ_n , death rate μ_n
 - state 0: leaving rate $\lambda_0 P_0$; entering rate $\mu_1 P_1$
 - state $n \ge 1$: leaving rate $(\lambda_n + \mu_n)P_n$; entering rate $\mu_{n+1}P_{n+1} + \lambda_{n-1}P_{n-1}$
 - $\blacksquare \Rightarrow \lambda_n P_n = \mu_{n+1} P_{n+1}, n \ge 0$
 - hence $P_n = \frac{\prod_{i=1}^n \lambda_{i-1}}{\prod_{i=1}^n \mu_i} P_0$, and $P_0 = \frac{1}{1 + \sum_{n=1}^\infty \frac{\prod_{i=1}^n \lambda_{i-1}}{\prod_{i=1}^n \mu_i}}$
 - limiting prob exists iff $\sum_{n=1}^{\infty} \frac{\prod_{i=1}^{n} \lambda_{i-1}}{\prod_{i=1}^{n} \mu_{i}} < \infty$
 - linear growth model with immigration
 - $\lambda_n = n\lambda + \theta, \mu_n = n\mu$
 - previous condition reduces to $\sum_{n=1}^{\infty} \frac{\prod_{i=1}^{n} (\theta + (i-1)\lambda)}{n!\mu^n} < \infty$
 - consider the limit of ratio of two adjacent terms: $\lim_{n} \frac{\theta + n\lambda}{(n+1)\mu} = \frac{\lambda}{\mu}$
 - therefore when $\lambda < \mu$, the limiting prob exists!
 - a birth-death process with $\mu_n = \mu, n \ge 1, \lambda_n = (M n)\lambda, n \le M, \lambda_n = 0, n > M$
 - Continuous-Time Markov Chain Consisting of Finite States (Ex 6.13, Page 393)

$$P_n = \frac{(\lambda/\mu)^n M!/(M-n)!}{1 + \sum_{n=1}^M (\lambda/\mu)^n M!/(M-n)!}, n = 0, \dots, M$$

6.6 Time Reversibility

- For a continuous-time ergodic MC with limiting P_i
 - \circ consider its discrete-time transition matrix P_{ii}
 - its limiting prob π_i : $\pi_i = \sum_j \pi_j P_{ji}$
 - Claim: $P_i = \pi_i / \nu_i / (\sum_j \pi_j / \nu_j)$

 - note $P_{ii} = 0$
 - \circ Going backward in time, the amount of time the process spends in state i is also exp with the same rate
 - assume the chain is already in limiting dist
 - Pr(process is in state i throughout [t s, t]|X(t) = i)

= =

Pr(process is in state i throughout [t-s,t])/ $Pr(X(t)=i) = Pr(X(t-s)=i)e^{-\nu_i s}$ / $Pr(X(t)=i) = e^{-\nu_i s}$

- sequence of states visited by the reversed process constitutes a discrete-time MC with transition probabilities $Q_{ij} = \pi_j P_{ji}/\pi_i$
- reversed process is a continuous-time MC with the same transition rates as the forward-time process and with one-stage transition probabilities Q_{ij}
- Continuous-time MC is time reversible if $\pi_i P_{ii} = \pi_i P_{ii}$
 - time reversible, in the sense that the process reversed in time has the same probabilistic structure as the original process, when the embedded chain is time reversible
 - $\blacksquare \iff P_i q_{ij} = P_j q_{ji}$
 - P_i is the proportion of time in state i and q_{ij} is the rate when in state i that the process goes to j
 - the rate at which the process goes directly from state i to state j is equal to the rate at which it goes directly from j to i
- Proposition 6.5 An ergodic birth and death process is time reversible
 - the rate at which a birth and death process goes from state i to state i+1 is equal to the rate at which it goes from i+1 to i
 - In any length of time t the number of transitions from i to i+1 must equal to within 1 the number from i+1 to i
 - since between each transition from i to i+1 the process must return to i, and this can only occur through i+1, and

vice versa.

- **Proposition 6.7** If for some $\{P_i \ge 0\}$, $\sum_i P_i = 1$, and $P_i q_{ij} = P_j q_{ji}$, $\forall i \ne j$, then the continuous-time MC is time reversible and P_i is the limiting probability of being in state i.
 - $\circ \sum_{j \neq i} P_i q_{ij} = \sum_{j \neq i} P_j q_{ji}$
 - note $\nu_i = \sum_{j \neq i} q_{ij}$
 - so $v_i P_i = \sum_{i \neq i} P_j q_{ii}$ (balance equation)
- **Proposition 6.8** A time reversible chain with limiting prob $P_i, j \in S$ that is truncated to the set $A \in S$ and remains irreducible is also time reversible and has limiting probabilities P_j^A given by $P_j^A = \frac{P_j}{\sum_{i \in P_j} P_i}$, $j \in A$.

6.7 Uniformization

- Consider a continuous-time Markov chain with $\nu_i = \nu, \forall i$
 - N(t) denote the number of state transitions by time t, then $\{N(t), t \ge 0\}$ will be a Poisson process with rate ν .
 - $N(t) \sim Poisson(\nu t)$
 - $P_{ij}(t) = \Pr(X(t) = j | X(0) = i) = \sum_{n=0}^{\infty} \Pr(N(t) = n | X(0) = i) \Pr(X(t) = j | X(0) = i, N(t) = n)$
 - $Pr(N(t) = n|X(0) = i) = e^{-\nu t} (\nu t)^n/n!$ (Poisson rv)
 - $Pr(X(t) = j|X(0) = i, N(t) = n) = P_{ii}^n$
 - knowing that N(t) = n gives us no information about which states were visited, since the distribution of time spent in each state is the same for all states
 - P_{ij}^n is the n-stage transition probability associated with the discrete-time MC with transition prob P_{ij} So $P_{ij}(t) = \sum_{n=0}^{\infty} P_{ij}^n e^{-\nu t} (\nu t)^n / n!$
 - - approximate $P_{ij}(t)$ by taking a partial sum and then computing the n stage probabilities P_{ii}^n .
- uniformizing the rate in which a transition occurs from each state by introducing transitions from a state to itself
 - assume $\nu_i \leq \nu, \forall i$
 - Define P_{ij}^* : $1 \nu_i/\nu$ for j = i and $\nu_i/\nu P_{ij}$ for $j \neq i$.
 - $P_{ii}(t) = \sum_{n=0}^{\infty} P_{ii}^{*n} e^{-\nu t} (\nu t)^n / n!$

6.8 Computing the Transition Probabilities

- Define r_{ij} : q_{ij} if $i \neq j$, and $-\nu_i$ if i = j.
 - Kolmogorov backward equations: $P'_{ij}(t) = \sum_{k} r_{ik} P_{kj}(t)$
 - Kolmogorov forward equations: $P'_{ij}(t) = \sum_{k} r_{kj} P_{ik}(t)$
- Define corresponding matrix \mathbf{R} , $\mathbf{P}(t)$, $\mathbf{P'}(t)$

•
$$\mathbf{P}'(t) = \mathbf{R}\mathbf{P}(t) = \mathbf{P}(t)\mathbf{R}$$

• so $\mathbf{P}(t) = \mathbf{P}(0)e^{\mathbf{R}t} = e^{\mathbf{R}t}$, since $\mathbf{P}(0) = \mathbf{I}$.
• $e^{\mathbf{R}t} = \sum_{n=0}^{\infty} \mathbf{R}^n t^n / n!$

- Approximation of $\mathbf{P}(t)$
 - $e^{\mathbf{R}t} = \lim_{n \to \infty} (\mathbf{I} + \mathbf{R}t/n)^n$
 - taking $n = 2^k$: approximating by matrix square (multiplication)
 - for large n, $\mathbf{I} + \mathbf{R}t/n$ all nonnegative elements
 - $\bullet \ e^{-\mathbf{R}t} = \lim_{n \to \infty} (\mathbf{I} \mathbf{R}t/n)^n$
 - $(\mathbf{I} \mathbf{R}t/n)^{-1}$ nonnegative elements