1

Linear Forms

G V V Sharma*

1

CONTENTS

1 Linear Forms

Abstract—This manual provides solved problems in linear algebra from CBSE Class 10 and 12 board exam papers.

1 Linear Forms

1.1. Draw the graphs of the following equations:

$$(3 -4)\mathbf{x} = -6 \tag{1.1.1}$$

$$\begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = 9 \tag{1.1.2}$$

Also determine the co-ordinates of the vertices of the triangle formed by these lines and the x-axis.

Solution:

a) The intersection of the lines is given by

$$\begin{pmatrix} 3 & -4 \\ 3 & 9 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -6 \\ 9 \end{pmatrix} \tag{1.1.3}$$

for which, the augmented matrix is

$$\begin{pmatrix} 3 & -4 & -6 \\ 3 & 1 & 9 \end{pmatrix} \tag{1.1.4}$$

which can be reduced as

$$\begin{pmatrix} 3 & -4 & -6 \\ 3 & 1 & 9 \end{pmatrix} \xrightarrow[R_1 \leftarrow R_2]{R_2 \leftarrow R_1} \begin{pmatrix} 3 & 1 & 9 \\ 3 & -4 & -6 \end{pmatrix} (1.1.5)$$

$$\stackrel{R_1 \leftarrow \frac{R_1}{3}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{3} & 3\\ 3 & -4 & -6 \end{pmatrix} \quad (1.1.6)$$

$$\stackrel{R_2 \leftarrow R_2 - 3R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{3} & 3\\ 0 & -5 & -15 \end{pmatrix} \quad (1.1.7)$$

$$\stackrel{R_2 \leftarrow \frac{1}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1}{3} & 3\\ 0 & 1 & 3 \end{pmatrix} \quad (1.1.8)$$

$$\stackrel{R_1 \leftarrow R_1 - \frac{1}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \quad (1.1.9)$$

$$\therefore \mathbf{P} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \tag{1.1.10}$$

is the point of intersection of the lines and the vertex of the triangle formed by the two lines with x-axis as base.

b) The equation of the x axis is

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.11}$$

Thus, the intersection of (1.1.1) with the x axis is given by the set

$$(3 -4)\mathbf{x} = -6 \tag{1.1.12}$$

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.13}$$

The augmented matrix for above is

$$\begin{pmatrix} 3 & -4 & -6 \\ 0 & 1 & 0 \end{pmatrix} \tag{1.1.14}$$

which can be reduced as

$$\begin{pmatrix} 3 & -4 & -6 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{3}R_1} \begin{pmatrix} 1 & \frac{1}{3} & 3 \\ 0 & 1 & 0 \end{pmatrix} \quad (1.1.15)$$

$$\stackrel{R_1 \leftarrow R_1 + \frac{4}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} \quad (1.1.16)$$

$$\therefore \mathbf{Q} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{1.1.18}$$

is the point of intersection of the line (1.1.1) with the x axis.

c) Similarly, the intersection of (1.1.2) with the x axis is given by the set

$$(3 1) \mathbf{x} = 9 (1.1.19)$$

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.20}$$

with augmented matrix

$$\begin{pmatrix} 3 & 1 & 9 \\ 0 & 1 & 0 \end{pmatrix} \tag{1.1.21}$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Twhich can be reduced as

$$\begin{pmatrix} 3 & 1 & 9 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{1}{3}R_1} \begin{pmatrix} 1 & \frac{1}{3} & 3 \\ 0 & 1 & 0 \end{pmatrix} \qquad (1.1.22)$$

$$\xrightarrow{R_1 \leftarrow R_1 - \frac{1}{3}R_2} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \end{pmatrix} \qquad (1.1.23)$$

$$(1.1.24)$$

resulting in

$$\mathbf{R} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \tag{1.1.25}$$

as the point of intersection of the line (1.1.2) with the x axis.

These points are then plotted in Fig. 1.1.1 for verification.

Fig. 1.1.1: Two lines representing given equations meet at point $\begin{pmatrix} 2 & 3 \end{pmatrix}$