

COMP417 Introduction to Robotics and Intelligent Systems

Lecture 7: Linear Quadratic Regulator

Florian Shkurti Computer Science Ph.D. student florian@cim.mcgill.ca

What you can do with LQR controllers

What you can do with LQR controllers

Pieter Abbeel, Helicopter Aerobatics

Why not use PID?

Why not use PID?

- We could, but:
- The gains for PID are good for a small region of state-space.
 - System reaches a state outside this set → becomes unstable
 - PID has no formal guarantees on the size of the set
- We would need to tune PID gains for every control variable.
 - If the state vector has multiple dimensions it becomes harder to tune every control variable in isolation. Need to consider interactions and correlations.
- We would need to tune PID gains for different regions of the state-space and guarantee smooth gain transitions
 - This is called gain scheduling, and it takes a lot of effort and time

LQR addresses these problems Why not use PID?

- We could, but:
- The gains for PID are good for a small region of state-space.
 - System reaches a state outside this set → becomes unstable
 - PID has no formal guarantees on the size of the set
- We would need to tune PID gains for every control variable.
 - If the state vector has multiple dimensions it becomes harder to tune every control variable in isolation. Need to consider interactions and correlations.
- •We would need to tune PID gains for different regions of the state-space and guarantee smooth gain transitions
 - This is called gain scheduling, and it takes a lot of effort and time

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

State at the next time step

Control at the next time step

Q: Why is it useful to have a dynamics model of the system?

You know the dynamics model of the system

State at the next time step

Control at the next time step

Q: Why is it useful to have a dynamics model of the system?

A: Because you can predict the state at a future time step, given a sequence of control inputs

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

• There is an instantaneous cost associated with being at state

$$\mathbf{x}_t$$
 and taking the action \mathbf{u}_t : $g(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Quadratic state cost: Penalizes deviation from the zero vector

Quadratic control cost: Penalizes high control signals

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

• There is an instantaneous cost associated with being at state

$$\mathbf{x}_t$$
 and taking the action \mathbf{u}_t : $g(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Square matrices Q and R must be positive definite:

$$Q = Q^T$$
 and $\forall x, x^T Q x > 0$
 $R = R^T$ and $\forall u, u^T R u > 0$

i.e. positive cost for ANY nonzero state or control vector

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

• There is an instantaneous cost associated with being at state

$$\mathbf{x}_t$$
 and taking the action \mathbf{u}_t : $g(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Note: Recall that a positive definite matrix has positive eigenvalues

Square matrices Q and R must be positive definite:

$$Q = Q^T$$
 and $\forall x, x^T Q x > 0$
 $R = R^T$ and $\forall u, u^T R u > 0$

i.e. positive cost for ANY nonzero state or control vector

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

- There is an instantaneous cost associated with being at state \mathbf{x}_t and taking the action \mathbf{u}_t : $g(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$
- You either know the state \mathbf{x}_t directly or you can estimate it

LQR: goal

- Stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ with control $\mathbf{u}_t = \mathbf{0}$
- Then $\mathbf{x}_{t+1} = \mathbf{0}$ and the system will remain at zero.

Which systems are linear?

Omnidirectional robot

$$x_{t+1} = x_t + v_x(t)\delta t$$

$$y_{t+1} = y_t + v_y(t)\delta t$$

$$\theta_{t+1} = \theta_t + \omega_z(t)\delta t$$

$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \delta t I\mathbf{u}_t$$

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$$

• Simple car?

$$x_{t+1} = x_t + v_x(t)\cos(\theta_t)\delta t$$

$$y_{t+1} = y_t + v_x(t)\sin(\theta_t)\delta t$$

$$\theta_{t+1} = \theta_t + \omega_z \delta t$$

$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \begin{bmatrix} \delta t\cos(\theta_t) & 0 & 0 \\ 0 & \delta t\sin(\theta_t) & 0 \\ 0 & 0 & \delta t \end{bmatrix} \mathbf{u}_t$$

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B(\mathbf{x}_t)\mathbf{u}_t$$

Which systems are linear?

Omnidirectional robot

$$x_{t+1} = x_t + v_x(t)\delta t$$

$$y_{t+1} = y_t + v_y(t)\delta t$$

$$\theta_{t+1} = \theta_t + \omega_z(t)\delta t$$

$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \delta t I\mathbf{u}_t$$

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$$

• Simple car? NO

$$x_{t+1} = x_t + v_x(t)\cos(\theta_t)\delta t$$

$$y_{t+1} = y_t + v_x(t)\sin(\theta_t)\delta t$$

$$\theta_{t+1} = \theta_t + \omega_z \delta t$$

$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \begin{bmatrix} \delta t\cos(\theta_t) & 0 & 0 \\ 0 & \delta t\sin(\theta_t) & 0 \\ 0 & 0 & \delta t \end{bmatrix} \mathbf{u}_t$$

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B(\mathbf{x}_t)\mathbf{u}_t$$

Which systems are linear?

• Linearity means if you scale or add to the input the output will also reflect the scaling and addition

• Formally, the dynamics $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ are linear if

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$$

Finite-Horizon LQR

- Idea: finding controls is an optimization problem
- Compute the control variables that minimize the cumulative cost

$$\begin{array}{rcl}
\operatorname{argmin} & \sum_{u_0, \dots, u_N}^{t=N} g(\mathbf{x}_t, \mathbf{u}_t) \\
& \text{s.t.} \\
\mathbf{x}_1 & = A\mathbf{x}_0 + B\mathbf{u}_0 \\
& \mathbf{x}_2 & = A\mathbf{x}_1 + B\mathbf{u}_1 \\
& \dots \\
& \mathbf{x}_N & = A\mathbf{x}_{N-1} + B\mathbf{u}_{N-1}
\end{array}$$

Finite-Horizon LQR

- Idea: finding controls is an optimization problem
- Compute the control variables that minimize the cumulative cost

$$\underset{u_0, \dots, u_N}{\operatorname{argmin}} \quad \sum_{t=0}^{t=N} g(\mathbf{x}_t, \mathbf{u}_t) \\
\text{s.t.} \\
\mathbf{x}_1 = A\mathbf{x}_0 + B\mathbf{u}_0 \\
\mathbf{x}_2 = A\mathbf{x}_1 + B\mathbf{u}_1$$
...

We could solve this as a constrained nonlinear optimization problem. But, there is a better way: we can find a closed-form solution.

$$\mathbf{x}_N = A\mathbf{x}_{N-1} + B\mathbf{u}_{N-1}$$

- Let $J_n(\mathbf{x})$ denote the cumulative cost-to-go starting from state \mathbf{x} and moving for \mathbf{n} time steps.
- I.e. cumulative future cost from now till n more steps
- $J_0(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ is the terminal cost of ending up at state x, with no actions left to do. Let's denote it $J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$

Q: What is the optimal cumulative cost-to-go function with 1 time step left?

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

Bellman update (a.k.a. Dynamic Programming)

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

=
$$\min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

Q: How do we optimize a multivariable function with respect to some variables (in our case, the controls)?

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^T Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$J_{0}(\mathbf{x}) = \mathbf{x}^{T} P_{0} \mathbf{x}$$

$$J_{1}(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + J_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \mathbf{x}^{T} A^{T} P_{0} A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + 2 \mathbf{u}^{T} B^{T} P_{0} A \mathbf{x} + \mathbf{u}^{T} B^{T} P_{0} B \mathbf{u}]$$

Q: How do we optimize a multivariable function with respect to some variables (in our case, the controls)?

$$J_{0}(\mathbf{x}) = \mathbf{x}^{T} P_{0} \mathbf{x}$$

$$J_{1}(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + J_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \mathbf{x}^{T} A^{T} P_{0} A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + 2 \mathbf{u}^{T} B^{T} P_{0} A \mathbf{x} + \mathbf{u}^{T} B^{T} P_{0} B \mathbf{u}]$$

$$Quadratic$$

$$term in \mathbf{u}$$

$$Quadratic$$

$$term in \mathbf{u}$$

A: Take the partial derivative w.r.t. controls and set it to zero. That will give you a critical point.

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

From calculus/algebra:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = (M + M^T)\mathbf{u}$$
$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{b}) = M\mathbf{b}$$

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{b}) = M \mathbf{b}$$

If M is symmetric:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = 2M \mathbf{u}$$

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

The minimum is attained at:

$$2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$$

$$(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$$

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

From calculus/algebra:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = (M + M^T)\mathbf{u}$$

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{b}) = M \mathbf{b}$$

If M is symmetric:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = 2M \mathbf{u}$$

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

The minimum is attained at:

$$2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$$
$$(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$$

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

 $R + B^T P_0 B$ is positive definite, so it is invertible

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

The minimum is attained at:

$$2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$$
$$(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$$

So, the optimal control for the last time step is:

$$\mathbf{u} = -(R + B^T P_0 B)^{-1} B^T P_0 A \mathbf{x}$$

$$\mathbf{u} = K_1 \mathbf{x}$$

Linear controller in terms of the state

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

The minimum is attained at:

$$2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$$
$$(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$$

So, the optimal control for the last time step is:

$$\mathbf{u} = -(R + B^T P_0 B)^{-1} B^T P_0 A \mathbf{x}$$

$$\mathbf{u} = K_1 \mathbf{x}$$

We computed the location of the minimum.

Now, plug it back in and compute the

minimum value

Linear controller in terms of the state

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_{1}(\mathbf{x}) = \mathbf{x}^{T}Q\mathbf{x} + \mathbf{x}^{T}A^{T}P_{0}A\mathbf{x} + \min_{\mathbf{u}}[\mathbf{u}^{T}R\mathbf{u} + 2\mathbf{u}^{T}B^{T}P_{0}A\mathbf{x} + \mathbf{u}^{T}B^{T}P_{0}B\mathbf{u}]$$

$$= \mathbf{x}^{T}Q\mathbf{x} + \mathbf{x}^{T}A^{T}P_{0}A\mathbf{x} + [\mathbf{x}^{T}K_{1}^{T}RK_{1}\mathbf{x} + 2\mathbf{x}^{T}K_{1}^{T}B^{T}P_{0}A\mathbf{x} + \mathbf{x}^{T}K_{1}^{T}B^{T}P_{0}BK_{1}\mathbf{x}]$$

$$= \mathbf{x}^{T}(Q + K_{1}^{T}RK_{1} + (A + BK_{1})^{T}P_{0}(A + BK_{1}))\mathbf{x}$$

Q: Why is this a big deal?

A: The cost-to-go function remains quadratic after the first recursive step.

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$\mathbf{u} = -(R + B^T P_0 B)^{-1} B^T P_0 A \mathbf{x}$$
$$\mathbf{u} = K_1 \mathbf{x}$$

$$J_1(\mathbf{x}) = \mathbf{x}^T (Q + K_1^T R K_1 + (A + B K_1)^T P_0 (A + B K_1)) \mathbf{x}$$
$$= \mathbf{x}^T P_1 \mathbf{x}$$

In fact the recursive steps generalize

$$\mathbf{u} = -(R + B^T P_{n-1} B)^{-1} B^T P_{n-1} A \mathbf{x}$$

$$\mathbf{u} = K_n \mathbf{x}$$

$$J_n(\mathbf{x}) = \mathbf{x}^T (Q + K_n^T R K_n + (A + B K_n)^T P_{n-1} (A + B K_n)) \mathbf{x}$$
$$= \mathbf{x}^T P_n \mathbf{x}$$

Finite-Horizon LQR: algorithm summary

$$P_0 = Q$$
// n is the # of steps left

for n = 1...N
$$K_n = -(R + B^T P_{n-1} B)^{-1} B^T P_{n-1} A$$

$$P_n = Q + K_n^T R K_n + (A + B K_n)^T P_{n-1} (A + B K_n)$$

Optimal controller for i-step horizon is $\mathbf{u}(\mathbf{x}) = K_i \mathbf{x}$ with cost-to-go $J_i(\mathbf{x}) = \mathbf{x}^T P_i \mathbf{x}$

Finite-Horizon LQR: algorithm summary

$$P_0 = Q$$

// n is the # of steps left

for n = 1...N

$$K_n = -(R + B^T P_{n-1} B)^{-1} B^T P_{n-1} A$$

$$P_n = Q + K_n^T R K_n + (A + B K_n)^T P_{n-1} (A + B K_n)$$

Matrix gains are precomputed based on the dynamics model and the instantaneous cost

Then you execute the policy, issuing commands based on state feedback

Optimal controller for i-step horizon is $\mathbf{u}(\mathbf{x}) = K_i \mathbf{x}$ with cost-to-go $J_i(\mathbf{x}) = \mathbf{x}^T P_i \mathbf{x}$

A state-dependent controller is called a policy

Finite-Horizon LQR: algorithm summary

Potential problem for states of dimension >> 100: $P_0 = Q$ Matrix inversion is expensive: O(n^2.3) for the best known algorithm and O(n^3) for Gaussian Elimination.

// n is the # of steps left

for n = 1...N $K_n = -(R + B^T P_{n-1} B)^{-1} B^T P_{n-1} A$ $P_n = Q + K_n^T R K_n + (A + B K_n)^T P_{n-1} (A + B K_n)$

Optimal controller for i-step horizon is $\mathbf{u}(\mathbf{x}) = K_i \mathbf{x}$ with cost-to-go $J_i(\mathbf{x}) = \mathbf{x}^T P_i \mathbf{x}$

LQR extensions: nonlinear dynamics

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$?

We want to stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ But with nonlinear dynamics we do not know if $\mathbf{u}_t = \mathbf{0}$ will keep the system at the zero state.

LQR extensions: nonlinear dynamics

```
What can we do when \mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)?
```

We want to stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ But with nonlinear dynamics we do not know if $\mathbf{u}_t = \mathbf{0}$ will keep the system at the zero state. \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

LQR extensions: nonlinear dynamics

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$?

We want to stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ But with nonlinear dynamics we do not know if $\mathbf{u}_t = \mathbf{0}$ will keep the system at the zero state. \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

Taylor expansion: linearize the nonlinear dynamics around the point $(\mathbf{0}, \mathbf{u}^*)$

$$\mathbf{x}_{t+1} \simeq f(\mathbf{0}, \mathbf{u}^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{x}_t - \mathbf{0}) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{u}_t - \mathbf{u}^*)$$

$$\mathbf{x}_{t+1} \simeq A\mathbf{x}_t + B(\mathbf{u}_t - \mathbf{u}^*)$$

LQR extensions: nonlinear dynamics

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$?

We want to stabilize the system around state $\mathbf{x}^* = \mathbf{0}$ But with nonlinear dynamics we do not know if $\mathbf{u}^* = \mathbf{0}$ will keep the system at the zero state. \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

Taylor expansion: linearize the nonlinear dynamics around the point $(\mathbf{0}, \mathbf{u}^*)$

$$\mathbf{x}_{t+1} \simeq f(\mathbf{0}, \mathbf{u}^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{x}_t - \mathbf{0}) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{u}_t - \mathbf{u}^*)$$

$$\mathbf{x}_{t+1} \simeq A\mathbf{x}_t + B(\mathbf{u}_t - \mathbf{u}^*)$$

Create new variable $\bar{\mathbf{u}}_t = \mathbf{u}_t - \mathbf{u}^*$ and apply LQR iterations to the linear system $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\bar{\mathbf{u}}_t$

LQR extensions: nonlinear dynamics

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$?

We want to stabilize the system around state $\mathbf{x}^* = \mathbf{0}$ But with nonlinear dynamics we do not know if $\mathbf{u}^* = \mathbf{0}$ will keep the system at the zero state. \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

Taylor expansion: linearize the nonlinear dynamics around the point $(\mathbf{0}, \mathbf{u}^*)$

$$\mathbf{x}_{t+1} \simeq f(\mathbf{0}, \mathbf{u}^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{x}_t - \mathbf{0}) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{u}_t - \mathbf{u}^*)$$

$$\mathbf{x}_{t+1} \simeq A\mathbf{x}_t + B(\mathbf{u}_t - \mathbf{u}^*)$$

Create new variable $\bar{\mathbf{u}}_t = \mathbf{u}_t - \mathbf{u}^*$ and apply LQR iterations to the

Unfortunately with the linearization you pay a price: You have to provide an initial state close to the zero state, otherwise you might not get good results

LQR extensions: non-quadratic cost

What can we do when $g(\mathbf{x}_t, \mathbf{u}_t)$ is not quadratic?

Same trick as before: use Taylor expansion to get the quadratic terms, but matrices involved are not guaranteed to be positive-definite, so this doesn't always work.

LQR extensions: time-varying systems

- What can we do when $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t$ and $g(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?
- Turns out, the proof and the algorithm are almost the same

$$P_0 = Q_N$$
// n is the # of steps left
for n = 1...N
$$K_n = -(R_{N-n} + B_{N-n}^T P_{n-1} B_{N-n})^{-1} B_{N-n}^T P_{n-1} A_{N-n}$$

$$P_n = Q_{N-n} + K_n^T R_{N-n} K_n + (A_{N-n} + B_{N-n} K_n)^T P_{n-1} (A_{N-n} + B_{N-n} K_n)$$

Optimal controller for i-step horizon is $\mathbf{u}(\mathbf{x}) = K_i \mathbf{x}$ with cost-to-go $J_i(\mathbf{x}) = \mathbf{x}^T P_i \mathbf{x}$

LQR extensions: trajectory following

• You are given a reference trajectory (not just path, but states and times, or states and controls) that needs to be approximated

$$\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, ..., \mathbf{x}_{N}^{*}$$
 $\mathbf{u}_{0}^{*}, \mathbf{u}_{1}^{*}, ..., \mathbf{u}_{N}^{*}$

Linearize the nonlinear dynamics $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ around the reference point $(\mathbf{x}_t^*, \mathbf{u}_t^*)$

$$\mathbf{x}_{t+1} \simeq f(\mathbf{x}_t^*, \mathbf{u}_t^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}_t^*, \mathbf{u}_t^*)(\mathbf{x}_t - \mathbf{x}_t^*) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{x}_t^*, \mathbf{u}_t^*)(\mathbf{u}_t - \mathbf{u}_t^*)$$

$$\bar{\mathbf{x}}_{t+1} \simeq A_t \bar{\mathbf{x}}_t + B_t \bar{\mathbf{u}}_t$$

$$g(\mathbf{x}_t, \mathbf{u}_t) = \bar{\mathbf{x}}_t^T Q \bar{\mathbf{x}}_t + \bar{\mathbf{u}}_t^T R \bar{\mathbf{u}}_t$$
where
$$\bar{\mathbf{u}}_t = \mathbf{x}_t - \mathbf{x}_t^*$$

$$\bar{\mathbf{u}}_t = \mathbf{u}_t - \mathbf{u}_t^*$$

Trajectory following can be implemented as a time-varying LQR approximation. Not always clear if this is the best way though.

• Similar to double integrator dynamical system, but with friction:

• Similar to double integrator dynamical system, but with friction:

$$m\ddot{\mathbf{p}} = \mathbf{u} - \alpha\dot{\mathbf{p}}$$

• Set $\dot{\mathbf{p}} = \mathbf{v}$ and then you get:

$$m\dot{\mathbf{v}} = \mathbf{u} - \alpha\mathbf{v}$$

• Similar to double integrator dynamical system, but with friction:

$$m\ddot{\mathbf{p}} = \mathbf{u} - \alpha\dot{\mathbf{p}}$$

• Set $\dot{\mathbf{p}} = \mathbf{v}$ and then you get:

$$m\dot{\mathbf{v}} = \mathbf{u} - \alpha\mathbf{v}$$

We discretize by setting

$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

$$rac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t$$

$$m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

• Define the state vector
$$\mathbf{x}_t = \begin{bmatrix} \mathbf{p}_t \\ \mathbf{v}_t \end{bmatrix}$$

Q: How can we express this as a linear system?

$$rac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t$$

$$m\frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

 $oldsymbol{\cdot}$ Define the state vector $\left.oldsymbol{\mathbf{x}}_{t}=\left|egin{matrix} \mathbf{p}_{t}\ \mathbf{v}_{t} \end{array}
ight|$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{t} + \delta t \mathbf{v}_{t} \\ \mathbf{v}_{t} + \frac{\delta t}{m} \mathbf{u}_{t} - \frac{\alpha \delta t}{m} \mathbf{v}_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{t} + \delta t \mathbf{v}_{t} \\ \mathbf{v}_{t} - \frac{\alpha \delta t}{m} \mathbf{v}_{t} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_{t}$$

$$rac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t$$

$$m\frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

 $oldsymbol{\cdot}$ Define the state vector $\left.oldsymbol{\mathbf{x}}_{t}=\left|egin{matrix}\mathbf{p}_{t}\\mathbf{v}_{t}\end{aligned}
ight|$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

$$rac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t$$

$$m\frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

 $oldsymbol{\cdot}$ Define the state vector $oldsymbol{\mathbf{x}}_t = egin{bmatrix} \mathbf{p}_t \ \mathbf{v}_t \end{bmatrix}$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

• Define the state vector
$$\mathbf{x}_t = \begin{bmatrix} \mathbf{p}_t \\ \mathbf{v}_t \end{bmatrix}$$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

• Define the instantaneous cost function $g(\mathbf{x}, \mathbf{u}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u}$ $= \mathbf{x}^T \mathbf{x} + \rho \mathbf{u}^T \mathbf{u}$ $= ||\mathbf{x}||^2 + \rho ||\mathbf{u}||^2$

With initial state

$$\mathbf{x}_0 = \begin{vmatrix} 10\\30\\10\\-5 \end{vmatrix}$$

$$g(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$$

With initial state

$$\mathbf{x}_0 = \begin{bmatrix} 10\\30\\10\\-5 \end{bmatrix}$$

$$g(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$$

With initial state

$$\mathbf{x}_0 = \begin{bmatrix} 10\\30\\10\\-5 \end{bmatrix}$$

$$g(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$$

With initial state

$$\mathbf{x}_0 = \begin{bmatrix} 10\\30\\10\\-5 \end{bmatrix}$$

$$g(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$$

With initial state

$$\mathbf{x}_0 = \begin{bmatrix} 10\\30\\10\\-5 \end{bmatrix}$$

$$g(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t / m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t / m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

We are given a desired trajectory $\mathbf{p}_0^*, \mathbf{p}_1^*, ..., \mathbf{p}_T^*$

Instantaneous cost $g(\mathbf{x}_t, \mathbf{u}_t) = (\mathbf{p}_t - \mathbf{p}_t^*)^T Q(\mathbf{p}_t - \mathbf{p}_t^*) + \mathbf{u}_t^T R \mathbf{u}_t$

1

 ${f B}$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t / m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t / m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$

$$= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$$

$$= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$$

(We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$)

A P

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t / m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t / m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$
 (We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$)
$$= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$$

$$= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$$
Need to get rid of this additive term

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t / m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t / m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$
 (We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$)
$$= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$$

$$= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$$
Need to get rid of this additive term

Redefine state:
$$\mathbf{z}_{t+1} = \begin{bmatrix} \bar{\mathbf{x}}_{t+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_t \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_t = \bar{A}\mathbf{z}_t + \bar{B}\mathbf{u}_t$$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t / m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t / m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$
 (We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$)
$$= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$$

$$= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$$
Need to get rid of this additive term

Redefine state:
$$\mathbf{z}_{t+1} = \begin{bmatrix} \bar{\mathbf{x}}_{t+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_t \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_t = \bar{A}\mathbf{z}_t + \bar{B}\mathbf{u}_t$$

Redefine cost function: $g(\mathbf{z}_t, \mathbf{u}_t) = \mathbf{z}_t^T \bar{Q} \mathbf{z}_t + \mathbf{u}_t^T R \mathbf{u}_t$

With initial state

$$\mathbf{z}_0 = \begin{bmatrix} 10\\30\\0\\0\\1 \end{bmatrix}$$

$$g(\mathbf{z}, \mathbf{u}) = ||\mathbf{z}||^2 + ||\mathbf{u}||^2$$

With initial state

$$\mathbf{z}_0 = \begin{bmatrix} 10\\30\\0\\0\\1 \end{bmatrix}$$

$$g(\mathbf{z}, \mathbf{u}) = ||\mathbf{z}||^2 + ||\mathbf{u}||^2$$

LQR examples: code to replicate these results

• https://github.com/florianshkurti/comp417.git

Look under comp417/lqr_examples/python

LQR summary

Advantages:

• If system is linear LQR gives the optimal controller that takes the system from state A to state B

• Drawbacks:

- Need to specify final time at which goal should be reached
- What if you don't allow enough time to reach the goal?
- How can you include obstacles or constraints in the specification?