Geometric Series MCQs - Exercises 6.8 and 6.9 (Class 11 Mathematics)

Prepared for Entry Test Preparation

Multiple Choice Questions

- **1.** The sum of the first 10 terms of the geometric series $2, 6, 18, \ldots$ is:
 - (a) 59048
 - **(b)** 59049
 - (c) 59050
 - (d) 59051
- **2.** The sum of the first 6 terms of the series $0.3 + 0.33 + 0.333 + \dots$ is:
 - (a) $\frac{10}{3} \frac{1}{9} \cdot \frac{1 10^{-6}}{9}$
 - (b) $\frac{2}{3} \cdot \left(6 \frac{1 10^{-6}}{9}\right)$
 - (c) $\frac{1}{3} \cdot \left(6 \frac{1 10^{-6}}{9}\right)$
 - (d) $\frac{4}{3} \cdot \left(6 \frac{1-10^{-6}}{9}\right)$
- **3.** The sum to *n* terms of $1 + (a+b) + (a^2 + ab + b^2) + \dots$ is:
 - (a) $\frac{1}{a-b} \left(\frac{a(a^n-1)}{a-1} \frac{b(b^n-1)}{b-1} \right)$
 - (b) $\frac{1}{a+b} \left(\frac{a(a^n-1)}{a-1} + \frac{b(b^n-1)}{b-1} \right)$
 - (c) $\frac{a(a^n-1)}{a-1} \frac{b(b^n-1)}{b-1}$
 - (d) $\frac{a(a^n-1)}{a-1} + \frac{b(b^n-1)}{b-1}$
- **4.** The sum of the first 5 terms of the series $r + (1+k)r^2 + (1+k+k^2)r^3 + \dots$ is:
 - (a) $\frac{r(r^5-1)}{r-1} \frac{rk((rk)^5-1)}{rk-1}$
 - (b) $\frac{1}{1-k} \left(\frac{r(r^5-1)}{r-1} \frac{rk((rk)^5-1)}{rk-1} \right)$
 - (c) $\frac{r(r^5-1)}{r-1} + \frac{rk((rk)^5-1)}{rk-1}$
 - (d) $\frac{1}{1-k} \left(\frac{r(r^5-1)}{r-1} + \frac{rk((rk)^5-1)}{rk-1} \right)$
- **5.** The sum of the first 6 terms of the series $3 + (1 i) + \frac{1}{i} + \dots$ is:
 - (a) $\frac{9}{4}(1-i)$
 - (b) $\frac{9}{4}(1+i)$
 - (c) $\frac{3}{2}(1-i)$

- (d) $\frac{3}{2}(1+i)$
- **6.** The sum to infinity of the series $\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots$ is:
 - (a) $\frac{1}{3}$
 - (b) $\frac{1}{4}$
 - (c) $\frac{1}{5}$
 - (d) $\frac{1}{6}$
- **7.** The vulgar fraction equivalent to $2.\overline{45}$ is:
 - (a) $\frac{223}{99}$
 - (b) $\frac{245}{99}$
 - (c) $\frac{223}{90}$
 - (d) $\frac{245}{90}$
- **8.** The vulgar fraction equivalent to $0.\overline{123}$ is:
 - (a) $\frac{123}{999}$
 - (b) $\frac{123}{990}$
 - (c) $\frac{41}{333}$
 - (d) $\frac{41}{330}$
- **9.** A man deposits Rs. 5, 15, 45, ... in a bank. The total amount after 6 years is:
 - (a) Rs. 1820
 - **(b)** Rs. 1825
 - (c) Rs. 1830
 - (d) Rs. 1835
- **10.** A loan of Rs. 21845 is repaid in installments, each double the previous one, starting with Rs. 5. The last installment is:
 - (a) Rs. 5120
 - **(b)** Rs. 10240
 - (c) Rs. 20480
 - (d) Rs. 40960
- **11.** A population of 10000 increases at 5% annually. The population after 4 years is:
 - (a) 12155
 - **(b)** 12156
 - (c) 12157
 - (d) 12158

- **12.** A school's enrollment triples every 10 years. If it was 9000 in 2000, the enrollment in 1970 was:
 - (a) 1000
 - **(b)** 1111
 - (c) 3333
 - (d) 3000
- **13.** A bacteria colony doubles every half-hour. Starting with 1 bacterium, the number after 3 hours is:
 - (a) 64
 - **(b)** 128
 - (c) 256
 - (d) 4096
- **14.** The total perimeter of nested equilateral triangles with the first perimeter 6 and each subsequent triangle half the previous is:
 - (a) 9
 - **(b)** 10
 - (c) 12
 - (d) 15
- **15.** For the series $y = \frac{x}{3} + \frac{x^2}{9} + \frac{x^3}{27} + \dots$, the value of x is:
 - (a) $\frac{3y}{1+y}$
 - (b) $\frac{3y}{2(1+y)}$
 - (c) $\frac{2y}{1+y}$
 - (d) $\frac{y}{1+y}$
- **16.** The convergence interval for the series $y = 1 + 3x + 9x^2 + 27x^3 + \dots$ is:
 - (a) $|x| < \frac{1}{3}$
 - (b) $|x| < \frac{1}{2}$
 - (c) |x| < 1
 - (d) |x| < 2
- **17.** A ball dropped from 40 meters rebounds $\frac{3}{5}$ of the distance each time. The total distance traveled is:
 - (a) 100 m
 - (b) 112 m
 - (c) 120 m

- (d) 128 m
- **18.** An infinite geometric series has sum 6 and the sum of the squares of its terms is $\frac{72}{5}$. The first term is:
 - (a) 2
 - **(b)** 3
 - (c) 4
 - (d) 5
- **19.** The sum to infinity of $r + (1+k)r^2 + (1+k+k^2)r^3 + \dots$ is:
 - (a) $\frac{r}{(1-r)(1-rk)}$
 - (b) $\frac{r}{1-r}$
 - (c) $\frac{r}{1-rk}$
 - (d) $\frac{r(1-k)}{(1-r)(1-rk)}$
- **20.** The sum of the first 8 terms of the series $4+2+1+\ldots$ is:
 - (a) $\frac{255}{32}$
 - (b) $\frac{255}{64}$
 - (c) $\frac{511}{64}$
 - (d) $\frac{511}{32}$

Solutions and Explanations

- **1. Answer: a** 59048 *Explanation*: $a_1=2$, r=3, n=10. $S_{10}=\frac{2(3^{10}-1)}{3-1}=2\cdot \frac{59049-1}{2}=59048$. (Ex. 6.8, Q1).
- **2. Answer:** b $\frac{2}{3} \cdot \left(6 \frac{1 10^{-6}}{9}\right)$ Explanation: $S_n = \frac{2}{9} \left(n \frac{1}{9}(1 10^{-n})\right)$. For n = 6, $S_6 = \frac{2}{9} \left(6 \frac{1 10^{-6}}{9}\right)$. (Ex. 6.8, Q2(i)).
- **3. Answer:** a $\frac{1}{a-b} \left(\frac{a(a^n-1)}{a-1} \frac{b(b^n-1)}{b-1} \right)$ Explanation: $(a-b)S_n = \frac{a(a^n-1)}{a-1} \frac{b(b^n-1)}{b-1}$. Divide by a-b. (Ex. 6.8, Q3(i)).
- **4. Answer: b** $\frac{1}{1-k}\left(\frac{r(r^5-1)}{r-1}-\frac{rk((rk)^5-1)}{rk-1}\right)$ *Explanation*: $(1-k)S_n=\frac{r(r^n-1)}{r-1}-\frac{rk((rk)^n-1)}{rk-1}$. For n=5, divide by 1-k. (Ex. 6.8, Q3(ii)).
- **5. Answer:** $\mathbf{c} \ \frac{3}{2}(1-i)$ *Explanation*: $a_1 = 3$, $r = \frac{1-i}{3}$, n = 6. $S_6 = \frac{3\left(1-\left(\frac{1-i}{3}\right)^6\right)}{1-\frac{1-i}{3}} = \frac{3}{2}(1-i)$. (Ex. 6.8, Q4).
- **6.** Answer: a $\frac{1}{3}$ Explanation: $a_1 = \frac{1}{4}$, $r = \frac{1}{4}$. $S_{\infty} = \frac{\frac{1}{4}}{1 \frac{1}{4}} = \frac{1}{3}$. (Ex. 6.8, Q5(i)).
- **7. Answer:** a $\frac{223}{99}$ Explanation: $2.\overline{45} = 2 + \frac{0.45}{1-0.01} = 2 + \frac{45}{99} = \frac{223}{99}$. (Ex. 6.8, Q6(i)).

- **8.** Answer: a $\frac{123}{999}$ Explanation: $0.\overline{123} = \frac{0.123}{1-0.001} = \frac{123}{999}$. (Ex. 6.8, Q6(iii)).
- **9. Answer: c** Rs. 1830 *Explanation*: $a_1 = 5$, r = 3, n = 6. $S_6 = \frac{5(3^6 1)}{3 1} = \frac{5(729 1)}{2} = 1820$. (Ex. 6.9, Q1).
- **10. Answer: b** Rs. 10240 *Explanation*: $a_1 = 5$, r = 2, $S_n = 21845$. $8(2^n 1) = 21845 \implies 2^n = 4097 \implies n = 12$. $a_{12} = 5 \cdot 2^{11} = 10240$. (Ex. 6.9, Q2).
- **11. Answer: a** 12155 *Explanation*: $P_0 = 10000$, r = 1.05, n = 4. $P_4 = 10000 \cdot (1.05)^4 \approx 12155$. (Ex. 6.9, Q3).
- **12. Answer: b** 1111 *Explanation*: $a_4 = 9000$, r = 3, $a_1 = \frac{9000}{3^3} = \frac{9000}{27} = 1111$. (Ex. 6.9, Q4).
- **13. Answer:** d 4096 *Explanation*: $a_1 = 1$, r = 4, n = 3. $a_4 = 1 \cdot 4^3 = 4096$. (Ex. 6.9, Q5).
- **14.** Answer: c 12 Explanation: $a_1 = 6$, $r = \frac{1}{2}$. $S_{\infty} = \frac{6}{1 \frac{1}{2}} = 12$. (Ex. 6.9, Q6).
- **15. Answer: a** $\frac{3y}{1+y}$ *Explanation*: $a_1 = \frac{x}{3}$, $r = \frac{x}{3}$. $y = \frac{x}{1-\frac{x}{3}} = \frac{x}{3-x}$. Solve: $x = \frac{3y}{1+y}$. (Ex. 6.9, Q9).
- **16. Answer: a** $|x|<\frac{1}{3}$ *Explanation*: r=3x. Converges if $|3x|<1 \implies |x|<\frac{1}{3}$. (Ex. 6.9, Q12).
- **17. Answer: a** 100 m *Explanation*: Initial fall = 40, $a_1 = 40 \cdot \frac{3}{5} = 24$, $r = \frac{3}{5}$. Total = $40 + 2 \cdot \frac{24}{1 \frac{3}{5}} = 100$. (Ex. 6.9, Q11).
- **18. Answer: c** 4 Explanation: $\frac{a}{1-r} = 6$, $\frac{a^2}{1-r^2} = \frac{72}{5}$. Solve: $r = \frac{2}{3}$, a = 4. (Ex. 6.9, Q14).
- **19. Answer: a** $\frac{r}{(1-r)(1-rk)}$ *Explanation*: $(1-k)S = \frac{r}{1-r} \frac{rk}{1-rk}$. Solve: $S = \frac{r}{(1-r)(1-rk)}$. (Ex. 6.9, Q7).
- **20.** Answer: c $\frac{511}{64}$ Explanation: $a_1=4$, $r=\frac{1}{2}$, n=8. $S_8=\frac{4(1-\left(\frac{1}{2}\right)^8)}{1-\frac{1}{2}}=\frac{4\cdot\frac{255}{256}}{\frac{1}{2}}=\frac{511}{64}$. (Ex. 6.8, Q5(iv)).