

THEME: SMART WATER FOUNTAINS PHASE III DEVELOPMENT PART 1

S.no	CONTENT	Pg.no
1.	INTRODUCTION	3
2.	DRAWBACKS OF WATER FOUNTAIN	4
3⋅	HARDWARE COMPONENTS	5
4.	SOFTWARE COMPONENTS	6
5.	STEPS TO CREATE THE SMART WATER FOUNTAIN	7
6.	CODING	8
7.	DESIGN	9
8.	DEVELOPMENT	10
9.	ACKNOWLEDGEMENT	11

Introduction

- Water is an essential part in our day to day life.
- smart water fountain is an automated system that provides a continuous flow of water in a controlled manner. It incorporates various technologies and features to enhance functionality, efficiency, and convenience.

Drawbacks of water fountains

- Waste of water resources
- Man power is need to operate
- ✓ Difficult to find errors
- ✓ Different style
- Purpose of fountain to flow

Hardware Components

- 1. Raspberry Pi 3 Model B or later
- 2. Water pump
- 3. Relay module
- 4. Water level sensor (optional)
- 5. Power supply for the pump
- 6. Tubing and fountain nozzle
- 7. Waterproof container for the water reservoir
- 8. Various cables, connectors, and a breadboard

Software Components

- 1. Raspbian OS (or a suitable Raspberry Pi OS)
- 2. Python for programming
- IoT platform (e.g., MQTT, AWS IoT, or Google Cloud IoT Core)
- 4. Libraries for GPIO control (e.g., RPi.GPIO)
- Optional: Web server and HTML/CSS/JavaScript for a webbased user interface

Steps to Create the Smart Water Fountain

- Set Up Raspberry Pi
- Hardware Setup
- Install Required Libraries
- Code the Fountain Control
- IoT Integration
- Web Interface
- Assemble and Test
 - Finalize and Deploy

coding

```
#import RPi.GPIO as GPIO
     import time
# Set the GPIO mode and pin numbers
     GPIO.setmode(GPIO.BCM)
     water_pump_pin = 17
     status_led_pin = 18
# Setup GPIO pins
      GPIO.setup(water_pump_pin, GPIO.OUT)
      GPIO.setup(status_led_pin, GPIO.OUT)
      def water_fountain_on():
      print("Water fountain turned on")
      GPIO.output(water_pump_pin, GPIO.HIGH)
      GPIO.output(status_led_pin, GPIO.HIGH)
def water_fountain_off():
      print("Water fountain turned off")
      GPIO.output(water_pump_pin, GPIO.LOW)
      GPIO.output(status_led_pin, GPIO.LOW)
# Main loop
 while True:
#Check if the water level is low
      if is_water_level_low():
      water_fountain_on()
      water_fountain_off()
# Delay for 1 second
      time.sleep(1)
      except KeyboardInterrupt:
#Clean up GPIO on keyboard interrupt
      GPIO.cleanup()
```

Design

Development

Thank you

 Our acknowledgement to our mentors, naan mudhalvan team, IBM team, and also our management.