

Спектры предложений первого порядка с ограниченным количеством переменных

Ярмошик Демьян

Московский физико-технический институт (НИУ)

25 июня, 2019

Случайный граф
$$G(N,p)\in\Omega_N,\; |\Omega_N|=2^{C_N^2}$$
 $\mathsf{P}:2^{\Omega_N} o[0,1]$

$$P_{N,p}(G) = p^{|E|} (1-p)^{C_N^2 - |E|}$$

Обычно
$$p=p(N)=N^{-lpha}$$

Теорема (А. Ручински, А. Винс, 1985)

Функция $N^{-1/\rho^{\max}(H)}$ является пороговой для случайного графа G(N,p) и свойства содержать копию графа H в качестве подграфа.

Теорема (Б. Боллобаш, 1981)

Пусть H- строго сбалансированный граф, а - количество автоморфизмов графа H, $p=N^{-1/\rho^{max}(H)}$. Тогда

$$N_H \xrightarrow[N \to \infty]{d} Poiss(1/a).$$

Здесь N_H — количество копий графа H в G(N,p), Poiss(1/a) — пуассоновская случайная величина со средним 1/a.

Языки первого порядка на графах


```
Язык первого порядка \mathcal{L}:
```

переменные: $x, y, z, x_1, x_2 ...$; логические связки: \land , \neg , \lor ;

кванторы по переменным: $\exists x, \ \forall z;$

предикатные символы: \sim , =.

 $\forall x \; \exists y \exists z \; (x \sim y \land x \sim z \land y \sim z)$

Для произвольного языка \mathcal{F} , случайный граф G(N,p) подчиняется закону нуля или единицы для языка \mathcal{F} , если для любой формулы φ из языка \mathcal{F} выполнено

$$\lim_{N\to\infty}\mathsf{P}(\mathit{G}(N,p)\vDash\varphi)\in\{0,1\}.$$

Теорема (Дж. Спенсер, С. Шелах, 1988)

Случайный граф $G(N,N^{-lpha})$ подчиняется закону нуля или единицы для языка $\mathcal L$ при всех lpha, кроме

$$((0,1]\cap\mathbb{Q})\cup\{(k+1)/k\mid k\in\mathbb{N}\}.$$

Язык \mathcal{L}^k — подмножество \mathcal{L} , содержащее предложения, в которые входят не более k переменных.

В \mathcal{L}^3 можно выразить свойство "иметь диаметр не более d":

$$\psi_d = \forall x \forall y \ x = y \lor x \sim y \lor (\exists z \ x \sim z \land z \sim y) \lor (\exists z \ x \sim z \land (\exists x \ z \sim x \land x \sim y)) \lor \dots$$

Определение

Язык $\mathcal{L}^k_{\infty,\omega}$ включает в себя предложения конечной или счётной длины, в которые входят не более k переменных.

Спектром формулы φ называется множество α таких, что вероятность $\mathsf{P}\left(\mathit{G}\left(\mathit{N},\mathit{N}^{-\alpha}\right) \vDash \varphi\right)$ не стремится ни к 0, ни к 1 при $\mathit{N} \to \infty$.

- ▶ Нарушется ли закон нуля или единицы для $\mathcal{L}^3,~\mathcal{L}^3_{\infty,\omega}$ в окрестности 1?
- Отличается ли структура спектров формул этих языков от спектров формул языка $\mathcal L$ и языков с ограниченной кванторной глубиной?

- ▶ Теоремы о вхождении подграфа
- ► Игра Эренфойхта и модификации: k-Pebble и др.

В $\mathcal L$ в правой полуокрестности единицы закон нуля нарушается в точках $\frac{k+1}{k}$.

Доказано: в $\mathcal{L}^3_{\infty,\omega}$ есть формула φ , у которой в точках $\alpha=\frac{k+1}{k}$ вероятность $\mathsf{P}(G(N,N^{-\alpha})\vDash\varphi)$ имеет предел, отличный от 0 и 1.

Теорема

Объединение спектров всех формул из \mathcal{L}^3 имеет предельные точки в любой левой окрестности единицы.

$$\mathcal{L}^{\omega}_{\infty,\omega} = igcup_{k=1}^{\infty} \mathcal{L}^k_{\infty,\omega}$$

Теорема (С. Шелах, 2017)

 $G\left(N,N^{-lpha}
ight)$ не подчиняется закону нуля или единицы для языка $\mathcal{L}_{\infty,\omega}^{\omega}$ при $lpha\in(0,1].$

$$\mathcal{L}^{\omega}_{\infty,\omega} = igcup_{k=1}^{\infty} \mathcal{L}^k_{\infty,\omega}$$

Теорема (С. Шелах, 2017)

 $G\left(N,N^{-lpha}
ight)$ не подчиняется закону нуля или единицы для языка $\mathcal{L}_{\infty,\omega}^{\omega}$ при $lpha\in\left(0,1
ight].$

- ▶ Большие k.
- ▶ До сих пор нет публикации.
- Сложное решение.

Открытые вопросы

• Нарушается ли закон нуля или единицы для языка $\mathcal{L}^3_{\infty,\omega}$ при иррациональных lpha?

Теорема (Моника МакАртур, 1997)

Для любого $\alpha<\frac{1}{k-1}$ случайный граф $G(N,N^{-\alpha})$ подчиняется закону нуля или единицы для языка $\mathcal{L}_{\infty,\omega}^k$. В точке $\alpha=\frac{1}{k-1}$ з.н.е. выполнен при $k\in\{2,3\}$ и не выполнен при $k\geq 4$.

Теорема (М. Жуковский, А. Раджафимахатратра, 2018)

 $orall k\geq 2$ случайный граф $G\left(N,N^{-lpha}
ight)$ подчиняется з.н.е. для языка \mathcal{L}^k при $lpha=rac{1}{k-1}$. Для $k\geq 3$ з.н.е. нарушается в любой правой полуокрестности $rac{1}{k-1}$.