The Hardware/Software Interface

CSE351 Spring 2013

Integers

Roadmap

C:

car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c);

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

OS:

Data & addressing **Integers & floats** Machine code & C x86 assembly programming **Procedures &** stacks **Arrays & structs** Memory & caches **Processes** Virtual memory **Memory allocation** Java vs. C

Machine code:

Computer system:

Today's Topics

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers....

- How about encoding a standard deck of playing cards?
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Two possible representations

52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

Two possible representations

52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value 17 bits with two set to 1
 - "Two-hot" (?) encoding
 - Easier to compare suits and values
 - Still an excessive number of bits

Two better representations

■ Binary encoding of all 52 cards – only 6 bits needed

low-order 6 bits of a byte

- Fits in one byte
- Smaller than one-hot or two-hot encoding, but how can we make value and suit comparisons easier?
- Binary encoding of suit (2 bits) and value (4 bits) separately

Also fits in one byte, and easy to do comparisons

Some basic operations

■ Checking if two cards have the same suit:

```
#define SUIT MASK 0x30
char array[5]; // represents a 5 card hand
char card1, card2; // two cards to compare
card1 = array[0];
card2 = array[1];
                                      SUIT_MASK = 0x30;
if sameSuitP(card1, card2) {
                                               value
                                          suit
bool sameSuitP(char card1, char card2) {
  return (! (card1 & SUIT MASK) ^ (card2 & SUIT MASK));
   //return (card1 & SUIT MASK) == (card2 & SUIT MASK);
```

Some basic operations

Comparing the values of two cards:

```
#define SUIT MASK 0x30
#define VALUE MASK 0x0F
char array[5]; // represents a 5 card hand
char card1, card2; // two cards to compare
card1 = array[0];
                                     VALUE\_MASK = 0x0F;
card2 = array[1];
if greaterValue(card1, card2) {
                                                value
                                          suit
bool greaterValue(char card1, char card2) {
  return ((unsigned int)(card1 & VALUE MASK) >
          (unsigned int) (card2 & VALUE MASK));
```

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- There are only 2^W distinct bit patterns of W bits, so...
 - Can't represent all the integers
 - Unsigned values are 0 ... 2^W-1
 - Signed values are -2^{W-1} ... 2^{W-1}-1
- Reminder: terminology for binary representations:

```
"Most-significant" or "Least-significant" or "low-order" bit(s) "low-order" bit(s) 0110010110101010
```

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+...+2^{N-1}=2^{N}-1$
- You add/subtract them using the normal "carry/borrow" rules, just in binary

■ How would you make *signed* integers?

Signed Integers

■ Let's do the natural thing for the positives

- They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

But, we need to let about half of them be negative

- Use the high order bit to indicate negative: call it the "sign bit"
 - Call this a "sign-and-magnitude" representation
- Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 011111111_2$ is non-negative
 - $0x85 = 10000101_2$ is negative
 - $0x80 = 10000000_2$ is negative...

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude (Unfortunate side effect: there are two representations of 0!)

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude (Unfortunate side effect: there are two representations of 0!)
 - Another problem: math is cumbersome
 - Example:4 3 != 4 + (-3)

How do we solve these problems?

Two's Complement Negatives

How should we represent -1 in binary?

Two's Complement Negatives

How should we represent -1 in binary?

- Rather than a sign bit, let MSB have same value, but negative weight
 - W-bit word: Bits 0, 1, ..., W-2 add 2⁰, 2¹, ..., 2^{W-2} to value of integer when set, but bit W-1 adds -2^{W-1} when set
 - e.g. unsigned 1010_2 : $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$ 2's comp. 1010_2 : $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$
- So -1 represented as 1111₂; all
 negative integers still have MSB = 1
- Advantages of two's complement: only one zero, simple arithmetic
- To get negative representation of any integer, take bitwise complement and then add one!

$$\sim x + 1 = -x$$

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one adder needed
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2^W

Examples:

4	0100	4	0100	- 4	1100
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
+??????? (we want whichever bit string gives the right result)
```

```
00000010 00000011
+???????? +????????
00000000 0000000
```

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?
 0000001

```
+1111111 (we want whichever bit string gives the right result)

10000000
```

Two's Complement

Why does it work?

- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation
- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
+1111111 (we want whichever bit string gives the right result)

10000000
```

Unsigned & Signed Numeric Values

Χ	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	- 4
1101	13	– 3
1110	14	-2
1111	15	-1

- Both signed and unsigned integers have limits
 - If you compute a number that is toobig, you wrap: 6 + 4 = ? 15U + 2U = ?
 - If you compute a number that is too small, you wrap: -7 - 3 = ? 0U - 2U = ?
 - Answers are only correct mod 2^b
- The CPU may be capable of "throwing an exception" for overflow on signed values
 - It won't for unsigned
- But C and Java just cruise along silently when overflow occurs...

Visualizations

■ Same W bits interpreted as signed vs. unsigned:

Two's complement (signed) addition: x and y are W bits wide

Values To Remember

Unsigned Values

- UMin = 0
 - **•** 000...0
- UMax = $2^w 1$
 - **•** 111...1

Two's Complement Values

- TMin = -2^{w-1}
 - **•** 100...0
- TMax = $2^{w-1} 1$
 - **•** 011...1
- Negative 1
 - 111...1 OxFFFFFFF (32 bits)

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.:
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values are platform specific
- See: /usr/include/limits.h on Linux

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Use "U" suffix to force unsigned:
 - 0U, 4294967259U

Signed vs. Unsigned in C

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
• tx = (int) ux;
• uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
• tx = ux;
• uy = ty;
```

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work what values are going to be produced?
 - Bits are unchanged, just interpreted differently!

Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, then signed values implicitly cast to <u>unsigned</u>
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648 TMAX = 2,147,483,647**

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483648	>	signed
2147483647U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Shift Operations

- Left shift: x << y</p>
 - Shift bit-vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
 - Equivalent to multiplying by 2^y (if no bits lost)
- Right shift: x >> y
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x
 - Equivalent to dividing by 2^y
 - Correct rounding (towards 0) requires some care with signed numbers

Argument x	01100010
<< 3	00010 <i>000</i>
Logical >> 2	00011000
Arithmetic >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Logical >> 2	00101000
Arithmetic >> 2	11101000

Undefined behavior when y < 0 or y ≥ word_size

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

х	01100001 01100010 01100011 01100100
x >> 16	0000000 00000000 01100001 01100010
(x >> 16) & 0xFF	00000000 00000000 00000000 11111111 00000000

- Extract the sign bit of a signed integer:
 - (x >> 31) & 1 need the "& 1" to clear out all other bits except LSB
- Conditionals as Boolean expressions (assuming x is 0 or 1)
 - if (x) a=y else a=z; which is the same as a = x ? y : z;
 - Can be re-written (assuming arithmetic right shift) as: a = ((x << 31) >> 31) & y + ((!x) << 31) >> 31) & z;

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	12345	30 39	00110000 01101101
ix	12345	00 00 30 39	00000000 00000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	1111111 1111111 11001111 11000111