

<u>Sample Question Format</u> (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Autumn Semester-2021)

<u>Subject Name & Code:</u>
Natural Language Processing (NLP)-IT-3035

<u>Applicable to Courses: B.Tech</u>

Full Marks=50
Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

Question No	Question Type (MCQ/SAT)	<u>Question</u>	<u>CO</u> <u>Mapping</u>	Answer Key (For MCQ
0.37	T 1' ' . '		90	Questions only)
Q.No:1	In linguistic	Question -1 on concept 1	CO1	b
	morphology			
	ig the process			
	_ is the process			
	for reducing inflected words to			
	their root form.			
	a) Rooting			
	_			
	b) Stemming			
	c) Text-Proofing			
	d) Both Rooting			
	& Stemming Which of the	Overtion 2 on concept 1	CO ₁	d
		Question -2 on concept 1	COI	a
	following is(are)			
	application(s) of NLP?			
	NLP?			
	a. Email Filter			
	b. Alexa			
	c. Google Translate			
	d. All of the			
	Above			
	Which of the	Ougstion a on concept t	CO1	0
		Question -3 on concept 1	CO1	a
	following is an			

	application of			
	NLP?			
	a. Text analytics			
	b. Google			
	Assistant			
	c. Cortana			
	d. Speech			
	Recognition	O	001	_
		Question -4 on concept 1	CO1	c
	resolve the			
	meaning of words			
	having more than			
	one meaning.			
	0110 11100111119			
	a. POS Tagging			
	b. HMM Model			
	c. Word Sense			
	Disambiguation			
	d. None of these			
Q.No:2	In the spam	Question -1 on concept 2	CO ₂	d
	detection case,			
	false positives are documents			
	documents			
	a. that are indeed			
	spam but our			
	system			
	incorrectly			
	labeled as			
	non-spam			
	b. that are indeed			
	non-spam that			
	our system			
	correctly labeled			
	as non-spam			
	c. that are indeed			
	spam that our			
	system correctly			
	said were spam d. that are indeed			
	non-spam that			
	our system			
	correctly said			
	were spam			
	In the spam	Question -2 on concept 2	CO2	a
	detection case,	_		
	false negatives			
	are documents			

	T		
a. that are indeed spam but our system incorrectly labeled as non-spam b. that are indeed non-spam that our system correctly labeled as non-spam c. that are indeed spam that our system correctly said were spam d. that are indeed non-spam that our system correctly said were spam d. that are indeed non-spam that our system correctly said were spam correctly said were spam	Question -3 on concept 2	CO2	b
that the	Question -5 on concept 2		
probability of a			
tag is dependent			
only on the previous tag,			
rather than			
the entire tag			
sequence is			
known as			
a. Unigram			
assumption			
b. Bigram assumption			
c. Trigram			
assumption			
d. N-gram			
assumption The assumption	Question -4 on concept 2	CO ₂	c
that the	Question -4 on concept 2		
probability of a			
tag is dependent			
only on the previous 2 tags,			
rather than			
the entire tag			
sequence is			

	known as			
	Kilowii as			
	a. Unigram			
	assumption			
	b. Bigram			
	assumption			
	c. Trigram			
	assumption			
	d. N-gram			
O Nove	assumption	Organian dan samaanta	COs	
<u>Q.No:3</u>	To keep a	Question -1 on concept 3	CO ₃	c
	language model from assigning			
	zero probability			
	to the unseen			
	events is a			
	concept known as			
	concept known as			
	a. Stemming			
	b. Normalizing			
	c. Smoothing			
	d. Perplexity			
	A language model	Ougstion a on concent a	CO ₃	b
	can achieve low	Question -2 on concept 3	CO3	D
	perplexity by			
	choosing a			
	ono osmo u			
	vocabulary and			
	assigning the			
	unknown word a			
	probability.			
	o Longo Love			
	a. Large, Low			
	b. Small, High c. Large, High			
	d. Small, Low			
	The parameters	Question -3 on concept 3	CO ₃	c
	of an N-gram	4 200 mon on concept o		
	model are			
	estimated by			
	getting counts			
	and then the			
	counts are			
	normalized			

	.,			
1	so that they lie			
	between o and 1			
	in the following			
	methodology:			
	a. Hidden			
	Markov Model			
	b. Multinomial			
	Bayes estimate			
	c. Maximum			
	Likelihood			
	estimate			
	d. Chain Rule of			
	Probability			
1		Question -4 on concept 3	CO ₃	c
	models are the			
1	class of			
	probabilistic			
	models that			
	assume we can			
	predict the			
1	probability of			
	some future unit			
	without looking			
	too far into the			
	past.			
1	past.			
1	o Porrog Looming			
	a. Bayes Learning			
	b. Maximum			
	Likelihood			
	c. Markov			
	d. Named Entity			
	Recognition			
Q.No:4		Question -1 on concept 4	CO ₄	c
¥.1.10.4	is a	2 contain 1 on concept 4		
	probabilistic			
	sequence model			
	that given a			
	sequence of units			
	computes a			
	probability			
	distribution over			
	possible			
	sequences of			
	labels and choose			
	the best label			
	sequence.			
	a. POS-tagging			
	b. Classification			
	S. Classification			

	c. Hidden			
	Markov Model			
	d. Sentiment			
	Analyser			
	Spam Detection	Question -2 on concept 4	CO4	b
	is an important	•	-	
	commercial			
	application of			
	application of			
	· · · · · · · · · · · · · · · · · · ·			
	a Torrt			
	a. Text			
	Standardization			
	b. Text			
	Categorization			
	c. Text			
	Summarization			
	d. Text			
	Generation			
	Examples of	Question -3 on concept 4	CO4	d
	sentiment		·	
	analysis are :			
	a. Review of a			
	movie			
	b. Extracting			
	_			
	consumer			
	preference			
	c. Editorial Text			
	toward a political			
	candidate			
	d. All of these			
	Naive Bayes	Question -4 on concept 4	CO ₄	a
	classifier is an	_ `		
	example of			
	a. Generative			
	classifier			
	b. Discriminative			
	classifier			
	c. Multinomial			
	classifier			
	d. None of these			,
<u>Q.No:5</u>	The probability of	Question -1 on concept 5	CO ₅	b
	seeing the			
	observations			
1	from time t +1 to			
	the end, given			
	that we are in			
-				

	state i at time t (and			
	at time t (and		i .	
1	at time t (una			
	given the			
	automaton λ):			
	automatom ny.			
	a. Forward			
	probability			
	b. Backward			
	probability			
	с.			
	Forward-backwar			
	d probability			
	d. Viterbi-path			
	probability	_		
	The task of	Question -2 on concept 5	CO ₅	c
	determining			
	which sequence			
	of variables is the			
	underlying			
	source of some			
	sequence of			
	observations is			
	called the			
	—·			
	o Encodina			
	a. Encoding			
	b. Likelihood			
	c. Decoding			
	d. Learning			
	In	Question -3 on concept 5	CO ₅	c
	each			
	probability			
	expresses			
	likelihood of an			
	observation being			
	generated			
	from a state.			
	a. Transition			
	_			
	c. Emission			
	probability	0	CO	1
	Observation	Question -4 on concept 5	CO ₅	d
	likelihoods in an			
	Hidden Markov			
	probability b. Forward probability			

	Model are also			
	known as			
1	_·			
	a. Transition			
	probabilities			
	b. Forward			
	probabilities			
	c. Backward			
	probabilities			
	d. Emission			
	probabilities			
Q.No:6	A	Question -1 on concept 6	CO6	c
	grammar			
	expresses the			
	ways that			
	symbols of the			
	language can be			
	grouped			
	and ordered			
	together.			
	a. Generative			
	grammar			
	b.			
	Non-generative			
	grammar			
	c. Context-free			
	grammar			
	d. None of these			
	A context-free	Question -2 on concept 6	CO6	b
	grammar is in	•		
	form if each			
	production is			
	either of the form			
	A -> B C or A ->			
	a.			
	"			
	a. Baker Naus			
	Form			
	b. Chomsky			
	Normal Form			
	c. 2-Naus Form			
	d. 3-Naus Form A sentence has	Question a on concent 6	CO6	b
	A Schlence has	Question -3 on concept 6		U
	ambiguity if a			
	ambiguity ii a			

				<u> </u>
	articular			
	stituent can			
be at	tached to the			
p	arse tree			
	ore than one			
	place.			
	place.			
	1:			
	oordination			
	Attachment			
	. Lexical			
	d. Scope			
	In	Question -4 on concept 6	CO6	c
		_		
	, instead of			
	sing the best			
	to generate			
	ch timestep,			
	ve keep k			
	ble tokens at			
e	ach step.			
	a.			
Forw	ard-backwar			
	d			
h. C	KY parsing			
	eam search			
	Semantic			
	Analysis			
		Oraștian den concent	000	a
	ule-based	Question -1 on concept 7	CO6	d
	Machine			
	ranslation			
	mprises of			
foll	lowing two			
	types:			
	a.			
Stati	stical-based			
	and			
Trai	nsfer-based			
	b.			
Inter	lingua-based			
	Phrase-based			
Or '-	C.			
	stical-based			
and I	Phrase-based			
	d.			
Inter	lingua-based			
	and			
Trai	nsfer-based			
S	tatistical	Question -2 on concept 7	CO6	d

		1	1
Machine Translation (SMT) learns ——·			
a. from data and patterns b. patterns c. translational			
patterns d. mappings of strings of words and their probabilities			
Which type of Machine Translation produces a representation that any language can work with ?	Question -3 on concept 7	CO6	c
a. SMT - Statistical Machine Translation b. EBMT - Example Based Machine Translation c. RBMT - Rule-based			
Machine Translation d. KBMT - Knowledge-based Machine Translation			
Example-based Machine Translation (EBMT) learns ————.	Question -4 on concept 7	CO6	С
a. from probabilities b. rules c. translational patterns			

	·	
d. mappings of		
strings of words		
and their		
probabilities		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

<u>Time: 1 Hour and 30 Minutes</u> (3×12=36 Marks)

Question	<u>Question</u>	CO
<u>No</u>		Mapping
		<u>(Each</u>
		<u>question</u>
		<u>should</u>
		<u>be from</u>
		the same
		<u>CO(s))</u>
Q.No:8	Q.No:8-1st question	CO1 and
	A. Discuss forward and backward probabilities used in	CO2
	Hidden Markov Model with the help of equations and	
	examples. [8]	
	•	
	B) What is meant by Lexicon? How is it useful in NLP?	
	[4]	
	Q. No:8-2nd question	
	A. Derive Forward-backward algorithm in Hidden	
	Markov Model. [8]	
	B. Differentiate between open class and closed class of	
	words. [4]	
	R. No:8-3rd question	
	A. Explain Viterbi algorithm with an example. [8]	
	B. Define NLP. List any two applications of NLP. [4]	
Q.No:9	Q.No:9-1st question	CO2 and
	- · · ·	CO ₃
	A. Explain POS tagging with an example. [8]	_
	B. Identify and describe the ambiguities in the	
	following sentences:	
	i. The man kept the dog in the house.	

	ii. Book that flight						
	iii. Time flies like an arrow						
	iv. He crushed the key to my heart						
	[4]						
	Q.No:9-2nd question						
	A. Explain why CFG is used to represent natural language in parsing. [8] B. Identify the morphological type (Noun phrase, Verb Phrase, Adjective Phrase) of following sentence segments 1. important to Bill 2. looked up the tree [4]						
	Q. No:9-3rd question						
	A. Explain the different levels of language analysis. [6] B. Identify the head and morphological type (Noun Phrase, Verb Phrase, Adjective Phrase, Adverbial Phrase) of the following sentence segments. i. The president of the company ii. Looked up the chimney iii. Angry as a hippo iv. Rapidly like a bat [6]						
Q.No:10	Q.No:10-1st question	CO3 and					
<u>Q.140.10</u>	Can statistical techniques be used to perform the task of machine translation? If so, explain in brief. [12]	CO ₄					
	Q. No:10-2nd question						
	Explain the Mathematics of Phrase-Based SMT with the help of an example. [12]						
	Q.No:10-3rd question						
	Explain different approaches to Machine translation. [12]						
Q.No:11	Q.No:11-1st question	CO5 and					
<u>V.110.11</u>	Given the following figure on parsing of the sentence "Book the dinner flight", state which parse would be selected with proper analysis.	CO5 and CO6					
L	1 * * *						

	R	ules	P		Rı	ules	P
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40	Noun	\rightarrow	flight	.40
		8				8	

[12]

Q. No:11-2nd question

Explain Simple Top-down parsing. Show the search tree for "The Old Man cried"

Some of the syntactic categories of a natural language you can use are as follows:

Sentence(S)

Noun Phrase(NP)

Determiner(Det)

Verb Phrase(VP)

Prepositional Phrase(PP)

Verb(V)

Noun(N)

Adjective (JJ)

[12]

Q.No:11-3rd question

Perform parsing using simple top down parsing for the sentence "The dogs cried" using the grammar given below:

S->NP VP

NP->ART N

NP->ART ADJ N

VP->V

VP->V NP

[12]