# UT.2 Inteligencia Artificial fuerte y débil

#### Bloques de la UT2:

- 1. Introducción.
- 2. Inteligencia Artificial débil.
- 3. Inteligencia Artificial fuerte.
- 4. Comparativa entre IA débil y fuerte.
- 5. Ejercicios: Varianza y desviación típica.
- 6. Práctica 1: Introducción Google Colab.
- 7. Práctica 2: Introducción y procesamiento de datos con Python.

#### 1. Introducción.

#### **Test de Turing**

- ¿ Lo conocéis ?
- ¿ Tiene sentido en nuestra época?



#### 1. Introducción.

Tener en cuenta que siempre hay un objetivo **elusivo**. Cuando la IA consigue sus objetivos, dejamos de percibir la herramienta de IA como tal ...

- Búsquedas en Google.
- Amazon, Netflix…
- Traducción automática.
- Google Maps.
- Alexa, Cortana, Siri...

#### 1. Introducción.

- Existe una clasificación de la IA que la divide entre débil y fuerte.
- En principio cualquier definición de IA tiene cabida en esta clasificación.
- Ya hemos visto que en otras asignaturas que hay varias definiciones de IA, a nivel de clasificaciones ocurre lo mismo.

#### 2. Inteligencia Artificial débil.

La IA débil es una inteligencia de máquina que se limita a un área específica o estrecha. La Inteligencia Artificial Débil (AI) simula la cognición humana y beneficia a la humanidad al automatizar las tareas que consumen mucho tiempo y al analizar los datos de maneras que los humanos a veces no pueden.

#### 2. Inteligencia Artificial débil.

Para que se entienda mejor, la IA débil simplemente actúa y está sujeta a las reglas que se le imponen y no puede ir más allá de esas reglas. Un buen ejemplo de IA débil son los personajes de un juego de computadora que actúan de manera creíble en el **contexto** de su personaje de juego, pero que no pueden hacer nada más que eso.

#### 2. Inteligencia Artificial débil.

Los sistemas de IA estrechos o débiles no tienen inteligencia general; tienen inteligencia específica. Una IA que es un experto en decirte cómo conducir desde el punto A al punto B generalmente es incapaz de desafiarte a un juego de ajedrez.

El objetivo último de la IA, lograr que una máquina tenga una inteligencia de tipo general similar a la humana, es uno de los objetivos más ambiciosos que se ha planteado la ciencia.

Es la inteligencia artificial que iguala o excede la inteligencia humana promedio, es decir, la inteligencia de una máquina que puede realizar con éxito cualquier tarea intelectual de cualquier ser humano.

- ¿ Se llegará a una IA fuerte ?
- Si se llega, ¿ Cómo pensáis que será el camino?





La fundación <u>Future of life</u> hace un encuesta a nivel mundial, la tenéis en el siguiente enlace: <a href="https://www.surveymonkey.com/r/QMT9XXG">https://www.surveymonkey.com/r/QMT9XXG</a>

En las siguientes transparencias vamos a analizar los datos de la encuesta.



CE Inteligencia

Do you want superintelligence?



IES Abastos Artificial y Big Data/Sistemas de Aprendizaje Automático.

If superintelligence arrives, who should be in control?



Después de lo que llevamos de asignatura podemos indicar, que la IA se basa en algoritmos más o menos complejos. Según su uso y posibilidades se pueden clasificar en débil y fuerte. A continuación vamos a realizar una comparativa entre ambas.



















IES Abastos Artificial y Big Data/Sistemas de Aprendizaje Automático. CE Inteligencia

La **varianza** es una medida de dispersión que representa la variabilidad de una serie de datos respecto a su media. Formalmente se calcula como la suma de los residuos al cuadrado divididos entre el total de observaciones.

La desviación típica es otra medida que ofrece información de la dispersión respecto a la media. Su cálculo es exactamente el mismo que la varianza, pero realizando la raíz cuadrada de su resultado. Es decir, la desviación típica es la raíz cuadrada de la varianza.

#### La fórmula de la varianza:

$$Var(X) = \frac{(x_1 - \bar{X})^2 + (x_2 - \bar{X})^2 + \dots + (x_n - \bar{X})^2}{n}$$

- X: variable sobre la que se pretenden calcular la varianza
- **x**<sub>i</sub>: observación número i de la variable X. i puede tomará valores entre 1 y n.
- n: número de observaciones.
- $\bar{x}$ : Es la media de la variable X

Ejemplo para que se vea mejor: Tenemos cinco personas, cada uno con un salario diferente: Juan: 1.500 euros, Pepe: 1.200 euros, José: 1.700 euros, Miguel: 1.300 euros y Mateo: 1.800 euros.

La media del salario, la cual necesitamos para nuestro cálculo, es de: ((1.500 + 1.200 + 1.700 + 1.300 + 1.800) /5) 1.500 euros.

$$Var(X) = \frac{(x_1 - \bar{X})^2 + (x_2 - \bar{X})^2 + \dots + (x_n - \bar{X})^2}{n}$$

$$Var\left(X\right) = \frac{(1.500 - 1.500)^2 + (1.200 - 1.500)^2 + (1.700 - 1.500)^2 + (1.300 - 1.500)^2 + (1.800 - 1.500)^2}{5}$$

$$Var(X) = \frac{(0)^2 + (-300)^2 + (200)^2 + (-200)^2 + (300)^2}{5}$$

$$Var(X) = \frac{0 + 90.000 + 40.000 + 40.000 + 90.000}{5} = 52.000 \ euros^2$$

Es importante recordar que siempre que calculamos la varianza tenemos las unidades de medida al cuadrado

Juan: 1.500,

Pepe: 1.200,

José:1.700,

Miguel:1.300

Mateo: 1.800

Media: 1.500 euros

Para pasarlo a euros, en este caso tendríamos que realizar la **desviación típica**. El resultado sería de 228,04 euros. Esto quiere decir que, en media, la diferencia entre los salarios de las distintas personas será de 228,94 euros.

**Ejercicio 1:** Escribir una función que reciba una muestra de números en una lista y devuelva un diccionario con su media, varianza y desviación típica sin utilizar funciones específicas de una librería. Utilizar como datos de entrada las 2 listas que se dan a continuación.

```
Lista 1: [1, 2, 3, 4, 5]
Lista 2: [2.3, 5.7, 6.8, 9.7, 12.1, 15.6]
```

**Ejercicio 2:** ¿ Por qué no hemos incluido la moda en el ejercicio anterior ? Razone la respuesta.

IES Abastos Artificial y Big Data/Sistemas de Aprendizaje Automático.