Proof of APL

Haodan Zhang¹, Yixuan Ban¹, Xinggong Zhang^{1,*}, Zongming Guo¹
Zhimin Xu², Shengbin Meng², Junlin Li², Yue Wang²

¹Wangxuan Institute of Computer Technology, Peking University, Beijing, P.R. China

²Beijing Bytedance Technology Co., Ltd., Beijing, P.R. China

{pkuzhd, banyixuan, zhangxg, guozongming}@pku.edu.cn

I. PROOF

Our objective is to solve:

Problem 1.

$$\underset{\{a_{k,l}\}}{\operatorname{arg\,max}} \frac{\lambda I_k - \sum_{l=l_k}^{l_k+N} w_{l-l_k} \cdot Q_{k,l} \cdot a_{k,l} \cdot p}{T_k}. \tag{1}$$

The proof of Theorem 1 need Lemma 1:

Lemma 1. The one-slot Lyapunov drift is upper bounded:

$$\Delta Q_{k} \leq \frac{p^{2} + \Psi}{2} \sum_{n=0}^{N} w_{n}$$

$$- \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} Q_{k,l} (T_{k,l}^{play} - a_{k,l} \cdot p)$$
(2)

where Ψ is the upper bound of $\mathbb{E}\{T_k^2\}$ under any control algorithm.

Proof. We can derive the expression of ΔQ_k as follows:

$$\Delta \mathbf{Q}_{k} = \frac{1}{2} \sum_{l=l_{k}}^{l_{k}+N} (w_{l-l_{k+1}} Q_{k+1,l}^{2} - w_{l-l_{k}} Q_{k,l}^{2})$$

$$= \frac{1}{2} \sum_{l=l_{k}}^{l_{k}+N} [(w_{l-l_{k+1}} - w_{l-l_{k}}) Q_{k+1,l}^{2} + w_{l-l_{k}} (Q_{k+1,l}^{2} - Q_{k,l}^{2})]$$

$$\leq \frac{1}{2} \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} (Q_{k+1,l}^{2} - Q_{k,l}^{2})$$
(3)

For $Q_{k+1,l}^2-Q_{k,l}^2$, we consider two cases: $Q_{k,l}\geq T_{k,l}^{play}$ and $Q_{k,l}< T_{k,l}^{play}$. In the first case we have

$$\begin{split} Q_{k+1,l}^2 - Q_{k,l}^2 \\ &= (Q_{k,l} - T_{k,l}^{play} + a_{k,l} \cdot p)^2 - Q_{k,l}^2 \\ &= Q_{k,l}^2 - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) + (T_{k,l}^{play} - a_{k,l} \cdot p)^2 - Q_{k,l}^2 \\ &= (T_{k,l}^{play} - a_{k,l} \cdot p)^2 - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) \\ &= (T_{k,l}^{play})^2 - 2T_{k,l}^{play} \cdot a_{k,l} \cdot p + a_{k,l}^2 \cdot p^2 \\ &\quad - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) \\ &\leq (T_{k,l}^{play})^2 + a_{k,l}^2 \cdot p^2 - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) \\ &\leq \Psi + p^2 - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) \end{split}$$

In the second case we have

$$Q_{k+1,l}^{2} - Q_{k,l}^{2}$$

$$= a_{k,l}^{2} \cdot p^{2} - Q_{k,l}^{2}$$

$$(1) \qquad \leq a_{k,l}^{2} \cdot p^{2} - Q_{k,l}^{2} + (Q_{k,l} - T_{k,l}^{play})^{2}$$

$$\leq a_{k,l}^{2} \cdot p^{2} - 2Q_{k,l} \cdot T_{k,l}^{play} + (T_{k,l}^{play})^{2}$$

$$\leq (T_{k,l}^{play})^{2} + a_{k,l}^{2} \cdot p^{2} - 2Q_{k,l} \cdot T_{k,l}^{play} + 2Q_{k,l} \cdot a_{k,l} \cdot p$$

$$\leq \Psi + p^{2} - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p)$$

$$(5)$$

In both cases, $Q_{k+1,l}^2 - Q_{k,l}^2$ is bounded by

$$\begin{aligned} &Q_{k+1,l}^2 - Q_{k,l}^2 \\ &\leq \Psi + p^2 - 2Q_{k,l}(T_{k,l}^{play} - a_{k,l} \cdot p) \end{aligned} \tag{6}$$

where Ψ is the upper bound of $\mathbb{E}\{T_k^2\}$ under any control algorithm and is assumed to be finite. Sum on $l \in \{l_k, l_k + 1, ..., l_k + N\}$, we get

$$\Delta \mathbf{Q}_{k} \leq \frac{1}{2} \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} (Q_{k+1,l}^{2} - Q_{k,l}^{2})
\leq \frac{p^{2} + \Psi}{2} \sum_{n=0}^{N} w_{n}
- \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} Q_{k,l} (T_{k,l}^{play} - a_{k,l} \cdot p)$$
(7)

Using **Lemma 1**, we can minimize ΔQ_k by minimizing $\sum_{l=l_k}^{l_k+N} w_{l-l_k} \cdot Q_{k,l} \cdot a_{k,l}$.

Theorem 1. The playback smoothness in our algorithm satisfies:

$$S^{\dagger} \ge S^* - \frac{p^2 + \Psi}{2\lambda} \sum_{n=0}^{N} w_n \tag{8}$$

where S^{\dagger} is the playback smoothness of our algorithm, S^* is the optimal playback smoothness in theory.

Proof. Subtract $\lambda \times I_k^{\dagger}$ from both sides of (2) to get

$$\Delta \mathbf{Q}_{k} - \lambda I_{k}^{\dagger}$$

$$\leq \frac{p^{2} + \Psi}{2} \sum_{n=0}^{N} w_{n} - \lambda I_{k}^{\dagger}$$

$$- \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} Q_{k,l} (T_{k,l}^{play} - a_{k,l}^{\dagger} \cdot p)$$
(9)

We greedily maximize (1), the solution of which we denote by I_k^{\dagger} , $a_{k,l}^{\dagger}$ and T_k^{\dagger} . For any other solution I_k , $a_{k,l}$ and T_k , we get

$$\frac{\lambda I_k - \sum_{l=l_k}^{l_k+N} w_{l-l_k} \cdot Q_{k,l} \cdot a_{k,l} \cdot p}{T_k} \\
\leq \frac{\lambda I_k^{\dagger} - \sum_{l=l_k}^{l_k+N} w_{l-l_k} \cdot Q_{k,l} \cdot a_{k,l}^{\dagger} \cdot p}{T_k^{\dagger}} \tag{10}$$

Using (10), we can rewrite (9) as

$$\Delta \mathbf{Q}_{k} - \lambda I_{k}^{\dagger}$$

$$\leq \frac{p^{2} + \Psi}{2} \sum_{n=0}^{N} w_{n} - \lambda T_{k}^{\dagger} \frac{I_{k}}{T_{k}}$$

$$- \sum_{l=l_{k}}^{l_{k}+N} w_{l-l_{k}} \cdot Q_{k,l} T_{k}^{\dagger} \left(\frac{T_{k,l}^{play}}{T_{k}^{\dagger}} - \frac{a_{k,l} \cdot p}{T_{k}} \right)$$
(11)

where $\frac{a_{k,l}\cdot p}{T_k}$ denotes the expected arrival rate and can't exceed $\frac{T_{k,l}^{play}}{T_k^{\dagger}}$ which is the video service rate because the buffer is stable. Thus we have

$$\Delta \boldsymbol{Q}_k - \lambda I_k^{\dagger} \le \frac{p^2 + \Psi}{2} \sum_{n=0}^{N} w_n - \lambda T_k^{\dagger} \frac{I_k}{T_k}$$
 (12)

According to Theorem 4.5 in [1], for any $\delta > 0$, there is a policy that satisfies

$$\mathbb{E}\{\frac{I_k}{T_k}\} \ge S^* - \delta \tag{13}$$

Using (13), we can rewrite (12) as

$$\Delta \mathbf{Q}_k - \lambda I_k^{\dagger} \le \frac{p^2 + \Psi}{2} \sum_{n=0}^{N} w_n - \lambda T_k^{\dagger} S^*$$
 (14)

Summing over all $k \in \{1, 2, ..., K\}$, we get

$$Q_{K+1} - Q_1 - \lambda \sum_{k=1}^{K} I_k^{\dagger} \le \frac{p^2 + \Psi}{2} \sum_{n=0}^{N} w_n K - \lambda S^* \sum_{k=1}^{K} T_k^{\dagger}$$
(15)

Dividing both sides by $\lambda \sum_{k=1}^{K} T_k^{\dagger}$ and taking the limit as $K \to \infty$ yields the bound in (8).

REFERENCES

 M. J. Neely, "Stochastic network optimization with application to communication and queueing systems," Synthesis Lectures on Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.