1's Complement

Bitwise inverse of the number as its negative number

NO.	Binary	Unsigned	Signed Magnitude	1's
7	111	+7	-3	-0
6	110	+6	-2	-1
5	101	+5	-1	-2
4	100	+4	-0	-3
3	011	₩3	+3	+3
2	010	₩3 +2	+2	+2
1	001	+1	+1	+1
0	000	+0	+0	+0

1's Complement

Bitwise inverse of the number as its negative number

点替给/包含花数

			/	
NO.	Binary	Unsigned	Signed Magnitude	1's
7	111	+7	-3	-0
6	110	+6	-2	-1
5	101	+5	-1	-2
4	100	+4	-0	-3
3	011	%3	+3	+3
2	010	+2	+2	+2
1	001	+1	+1	+1
0	000	+0	+0	+0

100-70/

Signed Number

- Both signed magnitude and 1's complement are not quite suitable for representing the numbers, since...
- 2 zeros (positive zero, negative zero)
- A special adder is required to perform addition
- Ex: 1 + (-1) = 0
 - Signed Magnitude: 001 + 101 = 110 (-2)
 - 1's Complement: 001 + 110 = 111 (-0)
- We need a GOOD representation for signed number

Odometer (2/2)

Use the odometer to represent negative mileage

- Where is the new zero?
 - 49? 50? 51? Definitely a bad Idea! We want to use 00
- Since 99+1 = 00, let's rotate the numbers!

note-有符号数-无符号数.md 2/24/2022

Binary Odometer

2 possible representations...

4	011	+3
All positive	0 0	+2
numbers begin in 0	001	+1
begin in o	000	0
4	- /\\11	-1
All negative	10	-2
numbers	101	-3
begin in 1	100	-4
	V	

100	+4
011	+3
010	+2
001	+1
000	0
111	-1
110	-2
101	-3

Which one is better?

Insight of 2's Complement

2's Complement

MSB represents the negative number

$$B = \begin{bmatrix} b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \end{bmatrix}$$

$$B = (-b_7 \times 2^7) + b_6 \times 2^6 + b_5 \times 2^5 + b_4 \times 2^4 + b_3 \times 2^3 + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$$

$$(10000000)_2 \le B \le (011111111)_2$$

$$-2^{7} \le B \le (2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0}) = 2^{7} - 1$$

For n-bit number

$$-2^{n-1} \le B \le 2^{n-1}-1$$

2's Complement

2's complement = 1's complement + 1

NO.	Binary	Unsigned	Signed Magnitude	1's	2's
7	111	+7	-3	-0	-1
6	110	+6	-2	-1	-2
5	101	+5	-1	-2	-3
4	100	+4	-0	-3	-4
3	011	+3	+3	+3	+3
2	010	+2	+2	+2	+2
1	001	+1	+1	+1	+1
0	000	+0	+0	+0	0

2's Complement Sign Extension

Assume there is a 3-bit integer

$$A = \begin{bmatrix} a_2 & a_1 & a_0 \end{bmatrix}$$

$$A = -a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$$

How to store A in a 4-bit slot?

A' =
$$a_3 a_2 a_1 a_0$$

A' = $a_3 \times 2^3 + a_2 \times 2^3 + a_1 \times 2^1 + a_0 \times 2^0$
A' = A \Rightarrow A' - A = 0
 $-a_3 \times 2^3 + a_2 \times 2^2 + a_2 \times 2^2 = -a_3 \times 2^3 + a_2 \times 2^3 = 0 \Rightarrow a_3 = a_2$