Next generation sequencing

Calling SNPs and structural variants

Stig Uggerhøj Andersen, PhD

Department of Molecular Biology University of Aarhus

Lecture overview

- Structural variants
- SNPs

Structural variation

- Why are structural variants interesting?
 - Copy number variation (gene amplification)
 - Gene fusions by translocation
 - Natural variation underlying traits of interest
 - Major confounding effect in SNP calling

NGS discovery of SVs with short reads

SVs are very difficult to reliably detect using short reads

Structural variants PMID: 21358748

Structural variation software

SVDetect: PMID: 20639544

ParMap: PMID: 20507604

Slope: PMID: 20876606

SOAPindel PMID: 22972939

BayesTyper PMID: 29915429

PBHoney: PMID: 24915764

NanoSV: PMID: 29109544

Picky: PMID: 29713081

NGMLR+Sniffles: PMID: 29713083

Impact of PacBio Hifi reads!

Recent review: 10.1186/s13059-019-1828-7

Comparison of long read-based SV callers PMID: 32211024

Structural variation software

Conclusions

- Including de novo assembly is beneficial, especially with ever-improving assembly quality
- Use long, rather than short, reads
- Alignment of fully assembled genomes will be increasingly used to determine haplotype patterns
- K-mer based approaches can be used for validation, e.g.
 BayesTyper

- Why are SNPs interesting?
 - Common type of genetic variation
 - Disease associated SNPs
 - SNPs are easily scorable genetic markers

Reference: TTAGCCTTGGCC

Query: TTAGCTTTGGCC

SNP!

- SNP calling is conceptually simple
- ... but in practice quite complicated

- Confounding effects
 - INDELs
 - Mis-mapped reads

- Different complexity levels in SNP calling
 - Identify only homozygous SNPs between inbred lines
 - Call genotypes in heterozygous diploid individuals
 - Call genotypes in heterozygous polyploid individuals
 - Identify rare variants in pooled samples

GATK indel realign

Base Alignment Quality (BAQ)

Base Alignment Quality (BAQ) is a new concept deployed in samtools-0.1.9+. It aims to provide an efficient and effective way to rule out false SNPs caused by nearby INDELs. The following shows the alignments of 6 reads by a typical read mapper in the presence of a 4bp homozygous INDEL:

coor	12345678901234	5678901234567890123456
ref	aggttttataaaac	aattaagtctacagagcaacta
sample	aggttttataaaacAAA	Maattaagtctacagagcaacta
read1	aggttttataaaac***	** <u>aaAt</u> aa
read2	ggttttataaaac***	** <u>aaAt</u> aaTt
read3	ttataaaacAAA	<u>\T</u> aattaagtctaca
read4	CaaaT***	**aattaagtctacagagcaac
read5	aaT***	**aattaagtctacagagcaact
read6	T***	*aattaagtctacagagcaacta

where capital bases represent differences from the reference and underlined bases are the inserted bases. The alignments except for read3 are wrong because the 4bp insertion is misplaced. The mapper produces such alignments because when doing a pairwise alignment, the mapper prefers one or two mismatches over a 4bp insertion. What is hurting more is that the wrong alignments lead to recurrent mismatches, which are likely to deceive most site-independent SNP callers into calling false SNPs.

http://www.htslib.org/

http://samtools.sourceforge.net/mpileup.shtml

Reference-free k-mer based approaches

SAMtools for SNP calling

- SAM alignment format is read-based
- For SNP calling, we need a format that is position based
- SAMtools mpileup can produce variant call format (VCF) files based on SAM/BAM alignment files, where all read information is summarized by genomic posistion

VCF format


```
(a) VCF example
     ##fileformat=VCFv4.1
      ##fileDate=20110413
      ##source=VCFtools
     ##reference=file:///refs/human NCBI36.fasta
     ##contig=<ID=1,length=249250621,md5=1b22b98cdeb4a9304cb5d48026a85128,species="Homo Sapiens">
     ##contig=<ID=X,length=155270560,md5=7e0e2e580297b7764e31dbc80c2540dd,species="Homo Sapiens">
     ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
     ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
     ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
     ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
     ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
     ##ALT=<ID=DEL,Description="Deletion">
     ##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
     ##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
     #CHROM POS ID
                         REF ALT
                                     OUAL FILTER INFO
                                                                         FORMAT
                                                                                     SAMPLE1 SAMPLE2
                        ACG A,AT
                                      40 PASS
                                                                         GT:DP
                                                                                              2/2:29
                                                                                     1/1:13
Body
                        C T,CT
                                                   H2; AA=T
                                          PASS
                                                                         GT
                                                                                     0|1
                                                                                               2/2
   \begin{bmatrix} 1 \\ X \end{bmatrix}
               5 rs12 A
                                      67 PASS
                                                                         GT:DP
                                                                                     1 | 0:16
                                                                                              2/2:20
                              <DEL>
                                          PASS
                                                   SVTYPE=DEL; END=299
                                                                         GT:GO:DP
                                                                                     1:12:.
                                                                                              0/0:20:36
```

VCF format

(b) SNP	VCE representation	(c) Insertion	1	(d) Deletion		(e) Replacement
Alignment 1234 ACGT ATGT	VCF representation POS REF ALT 2 C T		POS REF AL [*] 2 C CT	T 1234 P09 ACGT 1 AT	S REF ALT ACG A	1234 POS REF ALT ACGT 1 ACG AT A-TT
(f) Large struc	tural variant					
Alignment 100	110 120	290	300	<i>VCF represent</i> POS REF AI		
	TACGTACGTACGTACG			100 T <	DEL> SVTYPE	E=DEL;END=299
() =						
(g) Resolving a	ambiguity					
Alignment	Possible represe	ntation	Possible re	epresentation	Recommend	led VCF representation
1234567890	POS REF	ALT	POS REF	ALT	POS REF	ALT
TTTCCCTCTA	1 TTTCCCT	CT CTTACCTA	1 T	C	1 T	C
CTTACCT A			4 C	Α	4 C	Α
^ ^ ^^			7 TCT	Т	5 CCT	С

The PHRED scale

Definition [edit]

Phred quality scores Q are defined as a property which is logarithmically related to the base-calling error probabilities P.^[2]

$$Q = -10 \, \log_{10} P$$

or

$$P=10^{rac{-Q}{10}}$$

For example, if Phred assigns a quality score of 30 to a base, the chances that this base is called incorrectly are 1 in 1000.

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy	
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1000	99.9%	
40	1 in 10,000	99.99%	
50	1 in 100,000	99.999%	
60	1 in 1,000,000	99.9999%	

VCF format

Genotype calls for each sample

Format: GT:PL:GQ

```
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="List of Phred-scaled"
genotype likelihoods">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
```

Examples:

Three possible genotypes: 0/0, 0/1, and 1/1. We set the most likely 0/0:0.33,255:36

genotype PL to 0 for easy reading purpose. The other values are scaled relative to this most likely genotype. Keep in mind that when we say PL is the "Phred-scaled likelihood of the genotype", we mean it is "How much

less likely that genotype is compared to the best one"

0/1:6,0,255:4

1/1:255,117,0:99

See also: https://www.broadinstitute.org/gatk/guide/article?id=1268