$$V(x) = \chi_1^2 - \chi_1^4 + \chi_2^2$$

Assume
$$\chi_e = 0$$
: For LPD - $V(\chi_e) = 0$ (Neccessory)
$$\chi_e = \begin{pmatrix} \chi_{1e} \\ \chi_{2e} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\frac{2V}{2\chi} \chi_e = 0$$
 (Neccessory)
$$\frac{2^3V}{2\chi^2} \chi_e = 0$$
 (Sufficient)

$$\frac{\partial V}{\partial V} |U| = (0 0)$$

$$\frac{\partial V}{\partial X} = (2\chi_1 - 4\chi_1^3)$$

$$2\chi_2$$

$$\frac{3x_{5}}{3} = \begin{pmatrix} 0 & 3 \\ 5 - 15x_{5} & 0 \end{pmatrix}$$

$$\frac{3x}{3}(0) = \begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\frac{3x^2}{3y}(0) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$V(0)=0$$
, $\frac{\partial V}{\partial x}(0)=0$, & $\frac{\partial^2 V}{\partial x^2}(0) > 0$, therefore $V(x)$ is L.P.D about the origin.

$$V(x) = x_1 + x_2^2$$
, $x_2 = (2)$

$$\frac{3x}{5h}$$
 (e) = (1 of \neq 0 \times

DV (0) +0: Neccessary condition not met. VCX) is not L.P.D. about origin

HW
$$V(x) = 2x_1^2 - x_1^3 + x_1x_2 + x_2^2$$

$$\frac{2V}{2x} = \begin{bmatrix} 4x_1 - 3x_1^2 + x_2 & x_1 + 2x_2 \end{bmatrix}$$

$$\frac{3V}{2V} = \begin{bmatrix} 4-6x \\ 1 \end{bmatrix}$$

$$\frac{\partial^2 V}{\partial x^2}(b) = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

$$\frac{\partial \mathcal{V}}{\partial x^2}(0) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} \qquad det(4) 70$$

$$det(\frac{\partial^2 \mathcal{V}}{\partial x^2}(0)) = 7 70$$

: 2°V (6) 70 Vie sylvester criterie

$$V(6)=0$$
, $\frac{\partial V}{\partial x}(6)=0$, $\delta = \frac{\partial^2 V}{\partial x^2}(6) > 0$: $V(x)$ is L.P.D

about the origin.

#2)
$$\dot{\chi}_1 = \chi_2$$
 $\chi_{c} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$ $\dot{\chi}_1 = -\chi_1^3$

Treat
$$x_n$$
 as conservative force so $U=-\int_{-\infty}^{\infty} f(n) dn$

$$V=-\int_{0}^{\infty} -n^2 dn = -\left[-\frac{n^4}{4}\right]_{0}^{\infty} = \frac{\chi_1^4}{4}$$

Treat X_2 as velocity with m=1: $T=\frac{1}{2}m||v||^2=\frac{1}{2}X_1^2$ "Total Energy" Lyaponar function: V=T+U

$$V = \frac{1}{2}\chi_2^2 + \frac{\chi_1^4}{21}$$
 $V(0) = 0$, $V(0) > 0$, $V(0) = 0$

For stability: V is 2.P.D about x_e 4 $\frac{2V}{2X}$ $\stackrel{?}{\times} \stackrel{?}{\times} \stackrel{?}{\times}$

$$\frac{3x}{3N} = [x_3, x_2]$$

$$\frac{2V}{2V}\dot{\chi} = \left[\chi_1^3 \quad \chi_2\right] \left[\chi_2\right] = \chi_2\chi_1^3 - \chi_2\chi_1^3 = 0$$

The canidate Lyaponar function $V(x) = \frac{1}{2}x_1^2 + \frac{x_1^4}{4}$ is L.P.D about x = 0 x

$$\begin{array}{ccc}
+3) & \dot{\chi}_1 = \chi_2 & \chi_e = 6 \\
\dot{\chi}_2 = -\chi_1 + \chi_1^3
\end{array}$$

Treat
$$\chi_2$$
 as velocity so $T = \frac{1}{2}MIVI^2$. $M = 1$ of $T = \frac{1}{2}\chi_2^2$

Treat χ_2 as conserved one force so $U = -\int_{-\infty}^{\infty} F(n) dn$
 $U = -\int_{-\infty}^{\infty} -n + n^3 dn = -L - \frac{n^2}{2} + \frac{n^4}{4} \int_{-\infty}^{\infty} = \frac{\chi_1^2}{2} - \frac{\chi_1^4}{4}$

Cotal Energy Canidate Lyaponar Forming:
$$V = T + U = \frac{1}{2} X_2^2 + \frac{\chi_1^2}{2} - \frac{\chi_1^4}{4}$$

$$V(\chi) = \frac{1}{2} \chi_2^2 + \frac{\chi_1^2}{2} - \frac{\chi_1^4}{4}$$

$$\frac{3x}{3N} = [x' - x', x^{r}]$$

$$\frac{\partial^2 V}{\partial x^2} = \begin{bmatrix} 1-3x \\ 0 \end{bmatrix} \qquad \frac{\partial^2 V}{\partial x^2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{\text{in}} \quad 70$$

$$\dot{V} = \frac{2V}{2x} \dot{x} = [x_1 - x_1^3 \quad x_2] \begin{bmatrix} x_2 \\ -x_1 + x_1^3 \end{bmatrix} = x_1 x_1 - x_2 x_1^3 + x_2 x_1 = 0$$

V is L.P.D about orisin & V=0 <0 .. origin is a stable equilibrium state.

$$\left[\begin{array}{cc} \frac{2v}{2x} & \frac{2v}{2x_1} \end{array}\right] \left[\begin{array}{c} x_1^3 \\ -x_1^3 x_1 \end{array}\right] \leq 0$$

$$\frac{\partial V}{\partial x_1} x_1^3 - \frac{\partial V}{\partial x_1} x_1^3 x_1 \leq 0$$

$$\frac{\partial x_1}{\partial x_1} = \frac{\partial x_2}{\partial x_1} = \frac{\partial x_2}{\partial x_2} = -\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_1} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_2}{\partial x_2} = -\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_$$

$$\int X_{2} dX_{2} = - \int X_{1} dX_{1} = \frac{x_{1}^{2}}{2} = \frac{-x_{1}^{2}}{2}$$

Choose
$$V(x) = \frac{x_1}{2} + \frac{x_2}{2}$$
 as canidate examov function

$$V(X_{e}=\delta) = 0^{2} + 0^{2} = 0$$

 $V(0) = 0$

$$\frac{\partial^2 V}{\partial x^2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 = I \ge 0 (Identity matrix is positive definite)

$$V(0) = 0$$
, $\frac{2V(0)}{2x} = 0$, $\frac{2^2V(0)}{2x^2} > 0$... $\frac{V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2}{15}$

$$\dot{\Lambda} = \frac{3x}{3\Lambda} \dot{X} = \begin{bmatrix} x & x^2 \end{bmatrix} = \begin{bmatrix} x^2 & x^3 \end{bmatrix} = X_2 & x^2 & x^2 = 0$$

Using $V(x) = \frac{x^2}{2} + \frac{x^2}{2}$, it can be shown that V(x) is Life of about the Origin of $V(x) = 0 \le 0$. V(x) is a Lyapunov function that proves the system is stable about the zero state.

#S) $\chi = -(2 + \cos(x))\chi$ $\chi = 0$

For Global Asymptotic Stability: V must be positive definite & V < 0 when x ≠ 0.

Scalar system, use VCXI= x2 as constate Lynpunou function.

For Positive Definite Val: Val=0, Val>0, & lim Val=00

V(d = 0 = 0

Val=x2 70 V CAlwars positive when x = 0)

114170 11011200 N

V(0)=0, V(x)>0 for V(x)=0, $V(x)=2^2$ 12 a positive definite function.

3x = 3x

 $\hat{\Lambda} = \frac{3x}{3\Lambda} t(x) = \frac{3x}{3\Lambda} \dot{x} = (3x) [-3(5+co)(x)]$

V = -2x2 (2 + cos(x))

-2 χ^2 is always negative, for $\chi \neq 0$. For $\dot{V} \geq 0$, $(2 + cos(\chi))$ must always be positive. The smallest value of $cos(\chi)$ is -1. He minimum value of $(2 + cos(\chi))$ is 1. Then $\dot{V} \geq 0$ for all χ , $\chi \neq 0$.

V=-3x2 (2+605x) 20 V

V(x) = x2 is positive Definite at V LO, in the system is globally asymptotically Stable about the origin.

#6) $\dot{\chi} = -(2 + \cos(x))(x-1)$ $\chi_{c=1}$

Cannot use $V(x) = x^2$ as Canidak Lyapuner function due to $V(x_0) = 1 \pm 0$

Try: $V(x) = (x-1)^2$ as Canidate Lyapunov function

 $V(Xe) = V(R) = (1-1)^2 = 0 V$ $V(X) > 0 \quad \text{for} \quad \chi \neq \chi_e = 1 V$ $\lim_{N \to \infty} V(X) = (\infty - 1)^2 = \infty V$

VCX) = (x-1)2 is 0 at x=xe, VCX) > 0 for x = 1, 6lim VC) = a. Therefor VCX) = (x-1)2 is positive Definite.

 $\frac{3x}{5/} = 5(x-1)$

For G.A.S., Sx for LO for xxx

3x f(x) = -3(x-1)(3+cos(x))(x-1)

3x t(x) = -3(x-1), (5 + co)(x)

From Problem 5, it was shown (2 + coscx) is always > 0 as it has a minimum value of 1. For $\frac{2V}{2x}$ f(x) to be G.A.S., then $-2(x-1)^2$ must always be nesative when $x \ne 1$. $(x-1)^2$ is > 0 for $x \ne 1$. $\therefore -2(x-1)^2$ is <0 for $x \ne 1$. $\therefore V = \frac{2V}{2x}$ f(x) < 0 for $x \ne 1$.

Using $V(x) = (x-1)^2$ as a canidate Lyapunov function, it was shown that V(x) is positive definite a v(x) for $x \neq x = 1$. Therefore this system is G.A.S. about 1.