

GeoAl Reimagined: Transformative and Diverse Earth Science Applications Using Foundation Models

FLOOD WATCH

Team: Bingus e Amigos NASA Space Apps Challenge – Caxias do Sul (Brazil)

Até agora, 46 pessoas morreram em decorrência do ciclone extratropical

Publicado em 11/09/2023 - 13:21 Por Pedro Peduzzi - Repórter da Agência Brasil - Brasília

Informação sobre Alertas de Defesa Civil

Casa Militar

← Voltar

Utiliza o CEP como referência de localização

Descrição

Informação prestada sobre Alertas de Defesa Civil. Embasada em diversos centros e institutos de meteorologia, a Defesa Civil do Rio Grande do Sul recebe e emite avisos e alertas em caso de previsão de eventos climatológicos ou desastres naturais.

FLOOD WATCH

Prototype of an Al model under development aiming to analyze satellite images associated with rainfall records in order to, given a rainfall forecast for the specified region, predict the geographical positions nearby water bodies will reach.

General Câmara (RS) September 24, 2023

Source: Planet SCCON

CURRENT SYSTEM DEVELOPMENT STATE

Convolutional neural network model for analysis and classification of territorial images with a focus on water bodies in the State of Rio Grande do Sul.

Landsat 9

TIFF: High-quality Raster file generated by satellites

Source: NASA Earth Explorer

CURRENT SYSTEM DEVELOPMENT STATE

The neural network receives TIF images of certain geographical locations (grid system) as input, which are provided by satellites traveling that specified location, and returns a classification of the image regarding the state of the water bodies as adequate, flooded or inconclusive.

CURRENT SYSTEM DEVELOPMENT STATE

Currently, due to low data volume, the model converges to class 0 at its actual state.

0 = adequate

1 = flooded

2 = no-data (inconclusive)

```
Actual Model -> label: [0, 0], predicted: [0, 0]
Loaded Model -> label: [0, 0], predicted: [0, 0]
tensor([[ 1.5797, 0.2974, -0.3713],
        [ 1.5635, 0.2940, -0.3707]], device='cuda:0')
Actual Model -> label: [0, 1], predicted: [0, 0]
Loaded Model -> label: [0, 1], predicted: [0, 0]
tensor([[ 1.4128, 0.2570, -0.3522],
        [ 1.4297, 0.2593, -0.3481]], device='cuda:0')
Actual Model -> label: [1, 1], predicted: [0, 0]
Loaded Model -> label: [1, 1], predicted: [0, 0]
tensor([[ 1.6152, 0.3073, -0.3780],
        [ 1.5425, 0.2884, -0.3615]], device='cuda:0')
Actual Model -> label: [1, 2], predicted: [0, 0]
Loaded Model -> label: [1, 2], predicted: [0, 0]
tensor([[ 1.0848, 0.1591, -0.2780]], device='cuda:0')
Actual Model -> label: [2], predicted: [0]
Loaded Model -> label: [2], predicted: [0]
Accuracy of the model: 68.42105263157895 %
```


NEXT STEPS

- Research and selection of the appropriate meteorological data source;
- Development of Generative AI to generate Raster images that seeks to predict the state of water bodies given a future weather forecast, trained based on the combination of historical image data from satellites in that region, with their respective weather forecasts;
- Support from institutions to obtain sufficient Raster data (TIFF images)
 for Al training.

