Section 3.4 – The Chain Rule

Part I - Find the indicated derivatives.

1. Find
$$\frac{d^2y}{dx^2}$$
 where $y = 2x - \frac{1}{\sqrt[3]{x}} + 3^x - e$. $\frac{1}{\sqrt[3]{x}} + \frac{1}{\sqrt[3]{x}} +$

3.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right]$$
 at $x = -2$ = $g(-2)f'(2) - f(2)g'(-2) = -7$
4. $\frac{d}{dx} [f(g(x))]$ at $x = 1$ = $f'(g(1)) \cdot g'(1) = f'(-2)(-1) = 5$
5. $\frac{d}{dx} [g(f(x))]$ at $x = -2$ = $g'(f(1)) \cdot f'(1) = g'(1) \cdot f'(1) = (-1)(3) = -3$
6. $\frac{d}{dx} [g(g(x))]$ at $x = -2$ = $g'(g(-2)) \cdot g'(-2) = g'(1) \cdot g'(-2) = (-1) \cdot 7 = -7$
7. $\frac{d}{dx} [f(g(4-6x))]$ at $x = 1$

6.
$$\frac{d}{dx}[g(g(x))]$$
 at $x = -2$ $= q'(q(-2)) \cdot q'(-2) = q'(1) q'(-2) = (-1) \cdot 7 = -7$

7.
$$\frac{d}{dx}[f(g(4-6x))]$$
 at $x = 1$

8. $\frac{d}{dx}[(g(x))^2]$ at $x = 1$

$$= \begin{cases} f'(g(4-6(1))) \cdot g'(4-6(1)) \\ f'(g(4-6(1))) \cdot g'(4-6($$

Section 3.4 – Differentiation Practice

USE THE VALUES IN THE FOLLOWING TABLE TO ANSWER THE QUESTIONS BELOW.

x	f(x)	g(x)	h(x)	f'(x)	g'(x)	h'(x)	f''(x)
0	0	1	2	-1	4	-5	0
1	3	2	1	3	-2	-4	-4
2	1	0	3	-2	3	2	1
3	2	3	0	4	2	-3	2

1. Determine if y = f(x)g(x) has a horizontal tangent at x = 1.

$$y'(1) = f'(1)g(1) + f(1)g'(1) = 3 \cdot 2 + 3 \cdot (-2) = 2$$
2. Determine if $y = h(g(x))$ is increasing or decreasing at $x = 3$.

$$y'(3) = h'(g(3)) \cdot g'(3) = h'(3) \cdot 2 = -b; \text{ decreasing}$$

3. Find the equation of the tangent line to
$$y = f(g(x))$$
 at $x = 2$.

 $y'(z) = f'(g(z))g'(z) = f'(0) \cdot 3 = -3$
 $y = 0 = -3(x - 2)$
 $y = -3x + 6$

4. Find u'(1) if $u(x) = \sqrt{h(x) + 3}$

$$N'(1) = \frac{1}{2}(h(1)+3)^{-1/2} \cdot h(1) = \frac{1}{2}(1+3)^{-1/2} \cdot (-4) = -1$$

5. Determine if $y(x) = (f(x))^2$ is concave up or down at x = 1.

$$y''(x) = 2f(x)f'(x)$$

 $y''(1) = 2f'(1)f(1) + 2f(1)f''(1) = 2.3.3 + 2.3.(-4) = -6$; concaup
and the slope of $y = \frac{g(x)}{2}$ at $x = 2$

6. Find the slope of
$$y = \frac{g(x)}{x^3}$$
 at $x = 2$.

$$y'(2) = 2^3 g'(2) - g(2) \cdot 3(2)^2 = 8 \cdot 3 - 0.12 = 44 = \frac{3}{64}$$
7. Find $\frac{dy}{dx}$ for $y = f(g(3))$.

7. Find $\frac{dy}{dx}$ for y = f(g(3)).

8. Find u'(4) if $u(x) = h(\sqrt{x})$.

$$u'(4) = h'(4) \cdot \frac{1}{2} + \frac{1}{2} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

9. Find the slope of the tangent line to $y = e^{g(x)}$ at x = 0.