

Instituto Politécnico Nacional Escuela Superior de Cómputo

Practica 3: Selección por Ruleta

Genethic Algorithms

Álvarez González Oscar

Prof. Morales Guitaron Sandra Luz

Grupo: 3CM5

Índex

Contenid	0
----------	---

Introducción:

Desarrollo:

Resultados:

Conclusiones:

Introducción:

Esta técnica fue propuesta por DeJong, y ha sido el método más comúnmente usado desde los orígenes de los algoritmos gen éticos. El algoritmo es simple, pero ineficiente (su complejidad es $O(n^2)$. Asimismo, presenta el problema de que el individuo menos apto puede ser seleccionado más de una vez. Sin embargo, buena parte de su popularidad se debe no solo a su simplicidad, sino al hecho de que su implementación se incluye en el libro clásico sobre AGs de David Goldberg.

El algoritmo de la Ruleta (de acuerdo a DeJong) es el siguiente:

- Calcular la suma de valores esperados T
- 2. Repetir N veces (N es el tamaño de la población):
 - Generar un número aleatorio r entre 0.0 y T
 - Ciclar a través de los individuos de la población sumando los valores esperados hasta que la suma sea mayor o igual a r.
 - El individuo que haga que esta suma exceda el límite es el seleccionado.

Veamos ahora un ejemplo:

aptitud Ve
(1) 25 0.35
(2) 81 1.13
(3) 36 0.51
(4)
$$\frac{144}{\sum} = 286$$
 $\frac{2.01}{\sum} = 4.00$

$$\bar{f} = \frac{286}{4} = 71.5 Ve_i = \frac{f_i}{f}$$
 $T = \text{Suma de Ve}$
 $r \in [0.0, T]$

Generar
$$r \in [0.0, 4.0]$$

 $\mathbf{r} = 1.3$
(ind1) suma = $0.35 < r$
(ind2) suma = $1.48 > r$
Seleccionar a ind2

En este ejemplo, Ve se refiere al valor esperado (o número esperado de copias que se esperan obtener) de un individuo.

Desarrollo:

Para el desarrollo de esta práctica se ocupe IDE Dec C++ el lenguaje usado en esta fue C y para la gráfica se utilizó IDE CodeBlocks ya que se utilizó la librería ALLEGRO para poder realizar la gráfica.

Para esta practica se crearon las siguientes funciones:

```
void binario(int gen);
void inicializacion(int gen, unsigned char arrg[32][5]);
void seleccionRuleta(int gen, unsigned char arrg[32][5],float *Prob,int *dec,int *apt);
void cruza(int gen, unsigned char sel[32][5]);
void mutacion(int gen, unsigned char cruza[32][5]);
void grafica(float *Max, float *Min);
```

Ahora paso a explicar cada una de las funciones con una sola generación.

En la función binario solo se crea los individuos iniciales para que se valla realizando el algoritmo, esta función fue la misma que cree de la practica anterior, se hacen 32 arreglos de 5 bits cada uno, cada arreglo se creo al azar por lo que el valor máximo binario puede ser 31 y el mínimo 0.

En la función Inicialización lo único que hago es sacar el numero decimal del arreglo binario y con eso saco la aptitud que en el caso de esta práctica fue $f(x)=x^2$, hago la sumatoria de la aptitud y saco la probabilidad que en el

```
C:\Users\oscar\OneDrive\Escuela\Geneticos\Practicas\P3\C\P3
  No || Pob. Ini || X || Aptitud X || Prob
                                      400
576
256
                          20
24
 11000
                                                  0.078
                                                  0.035
                          5
25
10
            00101
                                    25 ||
625
                                               0.003
                                                  0.085
            11001
           01010
                                      100
            00010
                                                  0.031
            01111
            10101
            00000
00100
                                      0
16
             01001
             10100
                           20
14
19
12
17
15
14
20
23
4
2
4
9
0
                                       400
196
             01110
                                       361
144
             01100
             10001
                                       289
                                       225
196
             01110
                                       400
             10100
                                       529
             00100
             00010
             00100
             01001
                            8
12
14
             01000
                                       144
             01100
             01110
             10110
                                       484
             01001
                                      81
                                                 0.011
 Sumatoria Aptitud: 7359
Sumatoria Probabilidad: 1.00
```

En la función de seleccionRuleta se hacen las selecciones de los individuos que se seleccionaran para ello se genera un numero al azar "r" y se va sumando los individuos hasta que la suma de esos supere al numero "r", en el ejeplo fue la selección 1 ya que fue corta y el individuo seleccionado fue el 2

```
1
r= 0.217
0 sum 0.000 +
0.107 = 0.107
1 sum 0.107 +
0.054 = 0.161
2 sum 0.161 +
0.078 = 0.239
2
11000
```

La función Cruza utiliza Cruza de un punto, selecciona al azar un punto del individuo y lo que sigue de ellos se intercambia con el siguiente individuo esta cruza se hace en pares de individuos.

044406								
01110Cruza No Cruza P.Cruza Descendencia X Aptitud X								
NO Cruza	P.Cruza	Descend	dencia X Aptitud X					
0 01100	2	01000	8 64					
1 11000		11100	28 784					
2 10110	3	10110	20 704					
3 10110	3	10110	22 484					
4 11000		11100	22 404					
5 11100	2	11000	24 576					
6 11000	1 1	11100	24 370					
7 01100		01000						
8 11100	4	11100	28 784					
9 01100	4	01100	12 144					
10 11000	'	11001	25 625					
11 00101	3	00100	4 16					
12 11001	ii ā	11001	25 625					
13 10101	ii a	10101	21 441					
14 01001	ii s	01000	8 64					
15 01100	ii s	01101	13 169					
16 11000	ii a	11001	25 625					
17 11001	ii з	11000	24 576					
18 10000	ii з	10011	19 361					
19 10111	ii з	10100	20 400					
20 01110	j	01110	14 196					
21 10110	j j 2	10110	22 484					
22 01111	j j 2	01001	9 81					
23 01001	2	01111	15 225					
24 10100	jj 3	10100	20 400					
25 10100	jj 3	10100	20 400					
26 10110	1	11001	25 625					
27 11001	1	10110	22 484					
28 11000	2	11011	27 729					
29 10011	2	10000	16 256					
30 01001	3	01010	10 100					
31 01110	3	01101	13 169					
Sumatoria Aptitud: 13003								

La función mutación usa una mutación del 10% por lo que se pone al azar 3 unos de toda la descendencia.

Mutacion							
No Desc Mutacion X Aptitud X Prob							
0	01000	01000	8	64	0.005		
1		11100	28	784	0.057		
2	10110	10110	22	484	0.035		
3 j	10110	10110	22	484	0.035		
4	11100	11100	28	784	0.057		
5 j	11000	11000	24	576	0.042		
6	11100	11100	28	784	0.057		
7	01000	01000	8	64	0.005		
8	11100	11100	28	784	0.057		
9	01100	01100	12	144	0.010		
10	11001	11001	25	625	0.046		
11	00100	00100	4	16	0.001		
12	11001	11001	25	625	0.046		
13	10101	10101	21	441	0.032		
14	01000	01000	8	64	0.005		
15	01101	01101	13	169	0.012		
16	11001	11001	25	625	0.046		
17	11000	11010	26	676	0.049		
18	10011	10011	19	361	0.026		
19	10100	10100	20	400	0.029		
20	01110	01110	14	196	0.014		
21	10110	10110	22	484	0.035		
22	01001	01001	9	81	0.006		
23	01111	01111	15	225	0.016		
24	10100	10101	21	441	0.032		
25	10100	10100	20	400	0.029		
26	11001	11001	25	625	0.046		
27	10110	10110	22	484	0.035		
28	11011	11011	27	729	0.053		
29	10000	10000	16	256	0.019		
30	01010	11010	26	676	0.049		
31	01101	01101	13	169	0.012		
13720							

Por último tenemos la función de grafica ahí se envían el max y el min con base en la probabilidad <u>de</u> cada generación para poder graficar.

```
maximo 0.057
minimo 0.001
Max
1=0.057
Min
1=0.001
```

Resultados:

En esta práctica se pide generación de 5, 10 Y 15 generaciones, les mostrare los máximos y mínimos de cada prueba y la gráfica.

Para 5 generaciones:

Para 10 generaciones:

Para 15 generaciones:

Conclusiones:

Como sabemos en el pasado este era uno de los algoritmos de selección mas utilizados, pero ahora es muy poco utilizado y analizando la gráfica creo que me puedo dar una idea, e 15 generaciones en una cuantas mas el algoritmo estaba a nada de convergir ya que al haber mas numero individuos que se acercan al máximo el máximo va disminuyendo,

Bueno en las tres graficas se nota un simple patrón que el máximo disminuye y el mínimo aumenta ya por lo que la convergencia ya no tardaba.