11 Tietze Extension Theorem

The Urysohn Lemma, which we proved in the last chapter, shows that every normal space X is equipped with an ample supply of continuous functions $X \to [0,1]$: any two closed, disjoint sets in X give one such function. However, an inconvenient constraint is that these functions are of very special type: they map one closed set to 0, and the other one to 1.

It is easy to modify the Urysohn Lemma to expand this collection of functions a bit:

11.1 Generalized Urysohn Lemma. Let X be a normal space and let $A, B \subseteq X$ be closed sets such that $A \cap B = \emptyset$. For any $a, b \in \mathbb{R}$, a < b there exists a continuous function $f: X \to [a, b]$ such that $A \subseteq f^{-1}(\{a\})$ and $B \subseteq f^{-1}(\{b\})$.

Proof. By the Urysohn Lemma 10.1 we can find a function $g: X \to [0,1]$ such that $g(A) = \{0\}$ and $g(B) = \{1\}$. Take $f = h \circ f$, where $h: [0,1] \to [a,b]$ is any continuous function such that h(0) = a and h(1) = b.

The collection of functions described by Lemma 11.1 is still very narrow: these functions are constant when restricted to either set A or B. The main result of this chapter is to show that such restriction is not necessary; any function defined on a closed subset of a normal space gives a function defined on the whole space:

11.2 Tietze Extension Theorem (v.1). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \to [a,b]$ be a continuous function for some $[a,b] \subseteq \mathbb{R}$. There exits a continuous function $\bar{f}: X \to [a,b]$ such that $\bar{f}|_A = f$.

The main idea of the proof is to use the Urysohn Lemma 10.1 to construct functions $\bar{t}_n \colon X \to [a,b]$ for $n=1,2,\ldots$ such that as n increases $\bar{t}_n|_A$ gives ever closer approximations of f. Then we take \bar{f} to be

the limit of the sequence $\{\bar{f}_n\}$. We start by looking at sequences of functions and their convergence.

- **11.3 Definition.** Let X, Y be a topological spaces and let $\{f_n \colon X \to Y\}$ be a sequence of functions. We say that the sequence $\{f_n\}$ converges pointwise to a function $f \colon X \to Y$ if for each $x \in X$ the sequence $\{f_n(x)\}\subseteq Y$ converges to the point f(x).
- **11.4 Note.** If $\{f_n \colon X \to Y\}$ is a sequence of continuous functions that converges pointwise to $f \colon X \to Y$ then f need not be continuous. For example, let $f_n \colon [0,1] \to \mathbb{R}$ be the function given by $f_n(x) = x^n$. Notice that $f_n(x) \to 0$ for all $x \in [0,1)$ and that $f_n(1) \to 1$. Thus the sequence $\{f_n\}$ converges pointwise to the function $f \colon [0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{for } x \neq 1\\ 1 & \text{for } x = 1 \end{cases}$$

The functions f_n are continuous but f is not.

11.5 Definition. Let X be a topological space, let (Y, ϱ) be a metric space, and let $\{f_n \colon X \to Y\}$ be a sequence of functions. We say that the sequence $\{f_n\}$ converges uniformly to a function $f \colon X \to Y$ if for every $\varepsilon > 0$ there exists N > 0 such that

$$\varrho(f(x), f_n(x)) < \varepsilon$$

for all $x \in X$ and for all n > N.

- **11.6** Note. If a sequence $\{f_n\}$ converges uniformly to f then it also converges pointwise to f, but the converse is not true in general.
- **11.7 Proposition.** Let X be a topological space and let (Y, ϱ) be a metric space. Assume that $\{f_n \colon X \to Y\}$ is a sequence of functions that converges uniformly to $f \colon X \to Y$. If all functions f_n are continuous then f is also a continuous function.

Proof. Let $U\subseteq Y$ be an open set. We need to show that the set $f^{-1}(U)\subseteq X$ is open. If suffices to check that each point $x_0\in f^{-1}(U)$ has an open neighborhood V such that $V\subseteq f^{-1}(U)$. Since U is an open set there exists $\varepsilon>0$ such $B(f(x_0),\varepsilon)\subseteq U$. Choose N>0 such that $\varrho(f(x),f_N(x))<\frac{\varepsilon}{3}$ for all $x\in X$, and take $V=f_N^{-1}(B(f_N(x_0),\frac{\varepsilon}{3}))$. Since f_N is a continuous function the set V is an open neighborhood of x_0 in X. It remains to show that $V\subseteq f^{-1}(U)$. For $x\in V$ we have:

$$\varrho(f(x), f(x_0)) \leq \varrho(f(x), f_N(x)) + \varrho(f_N(x), f_N(x_0)) + \varrho(f_N(x_0), f(x_0)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

This means that $f(x) \in B(f(x_0), \varepsilon) \subseteq U$, and so $x \in f^{-1}(U)$.

11.8 Lemma. Let X be a normal space, $A \subseteq X$ be a closed set, and let $f: A \to \mathbb{R}$ be a continuous function such that for some C > 0 we have $|f(x)| \le C$ for all $x \in A$. There exists a continuous function $g: X \to \mathbb{R}$ such that $|g(x)| \le \frac{1}{3}C$ for all $x \in X$ and $|f(x) - g(x)| \le \frac{2}{3}C$ for all $x \in A$.

Proof. Define $Y:=f^{-1}([-C,-\frac{1}{3}C])$, $Z:=f^{-1}([\frac{1}{3}C,C])$. Since $f:A\to\mathbb{R}$ is a continuous function these sets are closed in A, but since A is closed in X the sets Y and Z are also closed in X. Since $Y\cap Z=\varnothing$ by the Generalized Urysohn Lemma 11.1 there exists a continuous function $g:X\to[-\frac{C}{3},\frac{C}{3}]$ such that $h(x)=-\frac{C}{3}$ for all $x\in Y$ and $h(x)=\frac{C}{3}$ for all $x\in Z$. It is straightforward to check that $|f(x)-g(x)|\le \frac{2}{3}C$ for all $x\in A$.

Proof of Theorem 11.2. Without loss of generality we can assume that [a,b]=[0,1]. For $n=1,2,\ldots$ we will construct continuous functions $g_n\colon X\to\mathbb{R}$ such that

- (i) $|g_n(x)| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{n-1}$ for all $x \in X$;
- (ii) $|f(x) \sum_{i=1}^{n} g_i(x)| \le \left(\frac{2}{3}\right)^n$ for all $x \in A$.

We argue by induction. Existence of g_1 follows directly from Lemma 11.8. Assume that for some $n \ge 1$ we already have functions g_1, \ldots, g_n satisfying (i) and (ii). In Lemma 11.8 take f to be the function $f - \sum_{k=1}^n g_k$ and take $C = \left(\frac{2}{3}\right)^n$. Then we can take $g_{n+1} := g$ where g is the function given by the lemma.

Let $\bar{f}_n := \sum_{k=1}^n g_k$ and let $\bar{f}_\infty := \sum_{k=1}^\infty g_k$. Using condition (i) we obtain that the sequence $\{\bar{f}_n\}$ converges uniformly to \bar{f} (exercise). Since each of the functions \bar{f}_n is continuous, thus by Proposition 11.7 we obtain that \bar{f}_∞ is a continuous function. Also, using (ii) be obtain that $\bar{f}_\infty(x) = f(x)$ for all $x \in A$ (exercise).

The only remaining issue is that the function \bar{f}_{∞} takes its values in \mathbb{R} , and not in the interval [0,1]. However, it is not difficult to modify it to obtain a continuous function $\bar{f}: X \to [0,1]$ such that $\bar{f}(x) = \bar{f}_{\infty}(x)$ for all $x \in A$ (exercise).

Here is another useful reformulation of Tietze Extension Theorem:

11.9 Tietze Extension Theorem (v.2). Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \to \mathbb{R}$ be a continuous function. There exits a continuous function $\bar{f}: X \to \mathbb{R}$ such that $\bar{f}|_A = f$.

Proof. It is enough to show that for any continuous function $g: A \to (-1,1)$ we can find a continuous function $\bar{g}: X \to (-1,1)$ such that $\bar{g}|_A = g$. Indeed, if this holds then given a function $f: A \to \mathbb{R}$ let g = hf where $h: \mathbb{R} \to (-1,1)$ is an arbitrary homeomorphism. Then we can take $\bar{f} = h^{-1}\bar{q}$.

Assume then that $g: A \to (-1,1)$ is a continuous function. By Theorem 11.2 there is a function $g_1: X \to [-1,1]$ such that $g_1|_A = g$. Let $B:=g_1^{-1}(\{-1,1\})$. The set B is closed in X and $A \cap B = \emptyset$ since $g_1(A) = g(A) \subseteq (-1,1)$. By Urysohn Lemma 10.1 there is a continuous function $k: X \to [0,1]$ such that $B \subseteq k^{-1}(\{0\})$ and $A \subseteq k^{-1}(\{1\})$. Let $\bar{g}(x) := k(x) \cdot g_1(x)$. We have:

- 1) if $q_1(x) \in (-1, 1)$ then $\bar{q}(x) \in (-1, 1)$
- 2) if $q_1(x) \in \{-1, 1\}$ then $x \in B$ so $\bar{q}(x) = 0 \cdot q_1(x) = 0$

It follows that $\bar{g}: X \to (-1, 1)$. Also, \bar{g} is a continuous function since k and g_1 are continuous. Finally, if $x \in A$ then $\bar{g}(x) = 1 \cdot g_1(x) = g(x)$, so $\bar{g}|_A = g$.

Tietze Extension Theorem holds for functions defined on normal spaces. It turns out the function extension property is actually equivalent to the notion of normality of a space:

- **11.10 Theorem.** Let X be a space satisfying T_1 . The following conditions are equivalent:
 - 1) X is a normal space.
 - 2) For any closed sets $A, B \subseteq X$ such that $A \cap B = \emptyset$ there is a continuous function $f: X \to [0, 1]$ such that such that $A \subseteq f^{-1}(\{0\})$ and $B \subseteq f^{-1}(\{1\})$.
 - 3) If $A \subseteq X$ is a closed set then any continuous function $f: A \to \mathbb{R}$ can be extended to a continuous function $\bar{f}: X \to \mathbb{R}$.

Proof. The implication 1) \Rightarrow 2) is the Urysohn Lemma 10.1 and 2) \Rightarrow 1) is Proposition 9.15. The implication 1) \Rightarrow 3) is the Tietze Extension Theorem 11.9. The proof of implication 3) \Rightarrow 1) is an exercise.

Exercises to Chapter 11

E11.1 Exercise. The goal of this exercise is to fill a gap in the proof of Theorem 11.2. For a topological space X and $A \subseteq X$ let $f: A \to [a,b]$ and $\bar{f}: X \to \mathbb{R}$ be continuous functions satisfying $\bar{f}(x) = f(x)$ for all $x \in A$. Show that there exists a continuous function $\bar{f}': X \to [a,b]$ such that $\bar{f}'(x) = f(x)$ for all $x \in A$.

- **E11.2 Exercise.** Prove implication 3) \Rightarrow 1) of Theorem 11.10.
- **E11.3 Exercise.** Let X be a normal space, let $A \subseteq X$ be a closed subspace, and let $f: A \to \mathbb{R}$ be a continuous function.
- a) Assume that $g \colon X \to \mathbb{R}$ is a continuous function such that $f(x) \le g(x)$ for all $x \in A$. Show that there exists a continuous function $F \colon X \to \mathbb{R}$ satisfying $F|_A = f$ and $F(x) \le g(x)$ for all $x \in X$.
- b) Assume that $g, h: X \to \mathbb{R}$ are a continuous function such that $h(x) \le f(x) \le g(x)$ for all $x \in A$ and $h(x) \le g(x)$ for all $x \in X$. Show that there exists a continuous function $F': X \to \mathbb{R}$ satisfying $F'|_A = f$ and $h(x) \le F'(x) \le g(x)$ for all $x \in X$.
- **E11.4 Exercise.** Recall that if X is a topological space then a subspace $Y \subseteq X$ is a called a retract of X if there exists a continuous function $r: X \to Y$ such that r(x) = x for all $x \in Y$. Let X be a normal space and let $Y \subseteq X$ be a closed subspace of X such that $Y \cong \mathbb{R}$. Show that Y is a retract of X.
- **E11.5 Exercise.** Let X be topological space. Recall from Exercise 10.3 that a set $A \subseteq X$ is a G_{δ} -set if there exists a countable family of open sets U_1, U_2, \ldots such that $A = \bigcap_{n=1}^{\infty} U_n$.
- a) Show that if X is a normal space and $A \subseteq X$ is a closed G_{δ} -set then there exists a continuous function $f: X \to [0, 1]$ such that $A = f^{-1}(\{0\})$.
- b) Show that if X is a normal space and $A, B \subseteq X$ are closed G_{δ} -sets such that $A \cap B = \emptyset$ then there exists a continuous function $f: X \to [0, 1]$ such that $A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$.