## Instituto Federal de Educação, Ciência e Tecnologia da Bahia

ANDREY GOMES DA SILVA NASCIMENTO
GABRIEL NASCIMENTO MIRANDA DOS SANTOS

### RELATÓRIO DO SISTEMA DE TRANSPORTE PÚBLICO RODOVIÁRIO EM SALVADOR

# ANDREY GOMES DA SILVA NASCIMENTO GABRIEL NASCIMENTO MIRANDA DOS SANTOS

### RELATÓRIO DO SISTEMA DE TRANSPORTE PÚBLICO RODOVIÁRIO EM SALVADOR

Relatório sobre o sistema de banco de dados para o transporte público rodoviário em Salvador, apresentado para a disciplina INF010, Banco de Dados II, do curso Análise e Desenvolvimento de Sistemas, como parte da nota avaliativa do semestre.

Salvador, 1 de Outubro de 2025.

## 1. Introdução

Este relatório técnico tem como objetivo apresentar o Modelo Lógico Relacional de um sistema de banco de dados para o gerenciamento do transporte público rodoviário urbano na cidade de Salvador, Bahia.

A complexidade da gestão de frotas, itinerários, pessoal e, principalmente, da bilhetagem eletrônica, exige uma arquitetura de dados eficiente. O modelo proposto visa atender a estas demandas, assegurando a integridade e a otimização de consultas para apoio à decisão gerencial.

O desenvolvimento do sistema de banco de dados seguiu a metodologia de modelagem tradicional utilizando um Modelo Lógico Relacional criado com o auxílio da plataforma *DbDiagram*. O processo utilizou a notação padrão para a representação do Modelo Lógico Relacional (MLR). A etapa de otimização de desempenho gerencial introduziu um objeto de sumarização de dados, a Materialized View (MV).

## 2. Modelo Lógico Relacional

### 2.1 Representação do Esquema

A representação do esquema relacional (tabelas, atributos e suas conexões) é visualizada na imagem a seguir, a qual detalha a arquitetura do banco de dados proposta.



Figura 1 – Esquema Lógico Relacional do Sistema de Transporte Urbano

Fonte: Próprio autor

#### 2.2 Descrição das Entidades

O modelo lógico é dividido em quatro módulos interconectados. O Módulo Frota gerencia os ativos, onde a tabela *VEICULO* é a principal (*PK: PLACA*), e se associa ao *MODELO* e à *EMPRESA\_ONIBUS* por meio de chaves estrangeiras. O *STATUS\_VEICULO* é consultado para o monitoramento da frota.

O Módulo Operação e Roteirização define o serviço e sua execução. A *LINHA* e seus *ITINERARIOs* são planejados. A *VIAGEM* é a tabela central de execução, ligando o *VEICULO* e a *LINHA*. A rota é definida pela tabela *ITINERARIO\_PONTO*, que usa uma Chave Composta e o atributo *ORDEM* para sequenciar as paradas.

O Módulo Pessoal e Turnos controla a jornada de trabalho. A tabela *FUNCIONARIO* (PK: *MATRICULA*) é ligada à *VIAGEM* por meio da tabela *TURNO\_VIAGEM*. Essa conexão é vital para registrar quem (Funcionário) e quando (*DATA\_HORA\_ENTRADA/SAÍDA*) trabalhou em cada viagem específica.

O Módulo Bilhetagem rastreia as transações. O *PASSAGEIRO* é o registro base, associado ao *CARTAO*, que armazena o *SALDO* e o *TIPO\_CARTAO*. A principal tabela de fatos, *USO\_PASSAGEM*, registra cada transação, conectando o *CARTAO* à *VIAGEM* que estava em andamento no momento do uso.

#### 2.3 Uso das Tabelas em uma Viagem

As tabelas do gerenciamento de viagens de ônibus atuam em conjunto, onde as tabelas de domínio fornecem o contexto estático e as tabelas de centrais registram a execução dinâmica. A progressão de uma viagem, desde o planejamento até a arrecadação, utiliza as tabelas da seguinte forma:

#### I. Planejamento e Contexto (Tabelas de Domínio)

Antes de uma viagem ser iniciada, o sistema consulta as tabelas de domínio para obter o contexto operacional:

Roteirização: As tabelas BAIRRO, RUA e PONTO fornecem a infraestrutura geográfica. Essa infraestrutura é sequenciada na tabela *ITINERARIO\_PONTO*, definindo o percurso completo de IDA ou VOLTA de uma LINHA específica.

Frota: As especificações técnicas do veículo são retiradas da tabela MODELO , que detalha atributos como *FABRICANTE*, *CAPACIDADE\_PASSAGEIROS* e *AR\_CONDICIONADO*. Este modelo, por sua vez, está associado ao veículo real (*VEICULO*) e à *EMPRESA ONIBUS* responsável.

Bilhetagem: O sistema consulta as regras de PREÇO e limite de uso definidas na tabela *TIPO\_PASSAGEM*, que é referenciada por cada *TIPO\_CARTAO* (Ex: Meia, Inteira, Gratuidade).

#### II. Execução e Integração (Tabelas Centrais)

O sistema registra a execução do serviço e o uso dos recursos nas tabelas centrais:

Início da Viagem: A tabela *VIAGEM* é o ponto de integração. Um novo registro é criado, conectando o *VEICULO* à *LINHA* a ser percorrida e aos respectivos *ITINERARIO*s de ida e volta. A execução é delimitada por *DATA\_HORA\_INICIO* e *DATA\_HORA\_FIM*.

Alocação de Pessoal: A tabela de relacionamento *TURNO\_VIAGEM* é utilizada para vincular os *FUNCIONARIOs* (motorista, cobrador, definidos pela *FUNCAO*) à VIAGEM em andamento, registrando os tempos exatos de início e fim do turno.

#### III. Arrecadação e Análise (Tabela de Bilhetagem)

O *USO\_PASSAGEM* é a tabela final que registra a transação financeira e de demanda:

Registro de Uso: Quando um passageiro utiliza seu *CARTAO*, o evento é registrado na tabela *USO\_PASSAGEM*. Esta tabela conecta diretamente o cartão (*ID\_CARTAO* - FK) à viagem em que o evento ocorreu (*ID\_VIAGEM* - FK).

Validação: O sistema utiliza o *ID\_CARTAO* para obter o *ID\_TIPO\_CARTAO* e, consequentemente, o PREÇO aplicado àquela transação, permitindo o cálculo do *TOTAL\_ARRECADADO* na viagem, conforme será demonstrado no Tópico 3 (Materialized View).

Dessa forma, o gerenciamento de uma viagem é um ciclo completo, começando com as especificações estáticas e resultando nos registros de execução e de arrecadação.

## 3. Materialized View

A Materialized View (MV) MV\_RESUMO\_PASSAGENS\_DIARIAS foi projetada para calcular o total de passageiros e o valor total arrecadado por linha, com base nos dados do dia anterior (dados fechados), garantindo a integridade da informação. Esse recurso foi criado com o propósito de dar suporte e fornecer dados à features de uma aplicação de gestão, realizando uma pré-agregação de dados para garantir uma performance nas consultas diárias.

A tabela *USO\_PASSAGEM* é de alto volume, o que exige a criação de uma *MV* para consolidar métricas diárias, desacoplando a análise do ambiente transacional. O código a seguir demonstra a criação, atualização e consulta da *MV*.

```
CREATE MATERIALIZED VIEW MV RESUMO PASSAGENS DIARIAS
AS
WITH DadosPassagem AS (
    SELECT
        UP.ID,
        UP.ID VIAGEM,
        DATE (UP. DATA HORA) AS DATA TRANSACAO,
        TP.PRECO
    FROM USO PASSAGEM UP
    JOIN CARTAO C ON UP.ID CARTAO = C.ID
    JOIN TIPO CARTAO TC ON C.ID TIPO CARTAO = TC.ID
    JOIN TIPO PASSAGEM TP ON TC.ID TIPO PASSAGEM = TP.ID
)
SELECT
    DP.DATA TRANSACAO AS DATA FECHAMENTO,
    V.COD LINHA AS CODIGO LINHA,
    L.NOME AS NOME LINHA,
    COUNT(DP.ID) AS TOTAL PASSAGEIROS,
    SUM(DP.PRECO) AS ARRECADACAO TOTAL
FROM DadosPassagem DP
JOIN VIAGEM V ON DP.ID VIAGEM = V.ID
JOIN LINHA L ON V.COD LINHA = L.CODIGO
WHERE
    DP.DATA_TRANSACAO = (CURRENT_DATE - INTERVAL '1 day')
GROUP BY
    DP.DATA TRANSACAO,
    V.COD_LINHA,
    L.NOME;
-- 1. Executar o refresh para popular a MV com os dados de "ontem"
REFRESH MATERIALIZED VIEW MV_RESUMO_PASSAGENS_DIARIAS;
-- 2. Consultar o resultado
SELECT * FROM MV RESUMO PASSAGENS DIARIAS;
```

A *MV* atende diretamente à necessidade da aplicação de fornecer um resumo gerencial rápido, apresentando um rankeamento eficiente, sem processar milhões de linhas diariamente e fornecendo uma maior consistência nos dados ao utilizar o filtro (CURRENT\_DATE - INTERVAL '1 day'), garantindo que os dados refletem o dia completo anterior.

# ANEXO A – Esquema Lógico Relacional Detalhado

