

## What is COVID-19?

- A strain of a novel coronavirus that has not been previously detected in humans
- Easily transmissible
- Highly contagious
- Not all symptoms are present in those who become infected
- Significant percentage of those infected are asymptomatic



#### **Modes of Transmission:**

- Contact
- Droplet
- Airborne

#### **Severity and Symptoms:**

- Range from Asymptomatic Severe
- Very few telltale symptoms:
  - Immediate and significant loss of taste and / or smell
  - "Covid toes"
  - Dry cough and shortness of breath



#### **Our Social Defense**

- Social distancing
- Use of masks in the community
- Hand hygiene
- Surface cleaning and disinfection
- Ventilation
- Avoidance of crowded indoor spaces





#### **Some COVID Statistics**

100,000,000+

Confirmed cases worldwide

2,000,000+
Deaths worldwide

20,000+

Daily ICU Hospitalizations

In the United States since early

December 2020

100,000+

Daily Hospitalizations

In the United States since early December 2020

#### Types of Testing for COVID





#### Viral Testing:

- Used if suspected of having a current COVID infection
- Two subtypes:
  - Molecular
  - Antigen

#### **Antibody Testing:**

 Used to determine if a past COVID infection occurred

## How Else Can We Determine if Someone Currently Has COVID-19?





## X-Ray Image Classification

- Gathered dataset via Kaggle's API
- 2. Contained 3800+ high quality chest x-ray images
- 3. Multiple classes: Healthy, Viral Pneumonia, COVID
- 4. Used CLAHE as a preprocessing technique
- 5. Created a Sequential Convolutional Neural Network





Ex. of CNN architecture; not exactly what our model used



## X-ray Model Evaluation Results

|              | Classif   | ication R | eport    |         |
|--------------|-----------|-----------|----------|---------|
|              | precision | recall    | f1-score | support |
| e            | 0.95      | 0.99      | 0.97     | 240     |
| 1            | 0.97      | 0.94      | 0.95     | 269     |
| 2            | 0.97      | 0.95      | 0.96     | 270     |
| accuracy     |           |           | 0.96     | 779     |
| macro avg    | 0.96      | 0.96      | 0.96     | 779     |
| weighted avg | 0.96      | 0.96      | 0.96     | 779     |



- 99% recall on COVID class
- Accuracy of 96.15%

#### Classifying COVID via Audio Spectrograms

- 1. Gathered cough audio from University of Stanford's Virufy dataset via Github
- 2. Using Librosa's library, created mel-spectrogram images for each segmented mp3 audio
- 3. Saved images in their respective folders
- 4. Created train, test, split folders
- 5. Trained Sequential Neural Network model off the images

## Virufy Model Evaluation Results



## CoughVid Audio Dataset

- 1. Gathered CoughVid cough audio via Zenodo
- 2. Inspected, scrubbed, and preprocessed coughvid dataset
- 3. Combined with Virufy audio dataset

<u>/ı</u>



#### Further Research:

# Thanks for your time!

Are there any questions?



## References

1. <a href="https://www.vdh.virginia.gov/coronavirus/covid-19-testing/#:~:text=There%20are%20two%20main/%20tupes">https://www.vdh.virginia.gov/coronavirus/covid-19-testing/#:~:text=There%20are%20two%20main/%20tupes</a>,)%20and%20antibody%20tests.

2.

## Appendix

