Exemple

« Montrons que la suite (u_n) définie pour tout entier naturel n par $u(n)=4^n$ est une suite géométrique. »

1.
$$u(n+1) = 4^{n+1}$$

2.
$$\frac{u(n+1)}{u(n)} = \frac{4^{n+1}}{4^n} = 4^{n+1-n} = 4^1 = 4.$$

3. Comme le résultat de $\frac{u(n+1)}{u(n)}$ est une constante (4), la suite est géométrique de raison 4. On peut donc réécrire u sous la forme :

$$u(n+1) = 4u(n)$$

Reconnaître une suite géométrique graphiquement

Graphiquement, une suite géométrique sera représentée par un nuage de points exponentiel.

Exemple

La suite u représentée graphiquement ci-dessous est une suite géométrique.

EXERCICE EXERCICE

Suites: généralités

01

On étudie la suite de nombres suivante :

7 14 22 29 35 41 48 55 61

- 1. En considérant que 7 est le premier terme de cette suite, quel est le 3ème terme? le 8ème terme?
- 2. Complétez la phrase suivante : 55 est le ... terme de cette suite.

02

On considère la suite de nombres :

12 15 19 23 31 6 18 21 53 55 9 40 21

- 1. Si 12 est le premier terme de cette suite, quel est le 5ème terme? le 7ème terme?
- 2. Compléter la phrase suivante : 18 est le ... de cette suite.
- 3. A-t-on des termes égaux dans cette suite? Si oui, quel est leurs rangs?

03

Soit la suite u des nombres pairs. Donner u_4 et u_7 en supposant que la suite débute à u_0 .

04

Soit la suite v des nombres impairs. Donner v_3 et v_4 en supposant que la suite débute à v_1 .

05

Soit la suite w des nombres contenant le chiffre 3. Donner w_2 et w_5 en supposant que la suite débute à w_0 .

06

Trouvez le nombre manquant pour compléter chaque série logique :

- 1. 7; 9; 11; 13; ?
- 2. 1; 2; 4; 8; 16; ?
- 3. 2; 6; 18; 54; ?