Верификация параллельных программных и аппаратных систем

Карпов Юрий Глебович профессор, д.т.н., зав.кафедрой "Распределенные вычисления и компьютерные сети" Санкт-Петербургского политехнического университета karpov@dcn.infos.ru

План курса

- Введение
- 2. Метод Флойда-Хоара доказательства корректности программ
- 3. Исчисление взаимодействующих систем (CCS) Р.Милнера
- 4. Темпоральные логики
- 5. Алгоритм model checking для проверки формул CTL
- 6. Автоматный подход к проверке выполнения формул LTL
- 7. Структура Крипке как модель реагирующих систем
- в. Темпоральные свойства систем
- 9. Система верификации Spin и язык Promela. Примеры верификации
- 10. Применения метода верификации model checking
- 11. BDD и их применение
- 12. Символьная проверка моделей
- 13. Количественный анализ дискретных систем
- 14. Верификация систем реального времени (I)
- 15. Верификация систем реального времени (II)
- 16. Консультации по курсовой работе

Лекция 13

Количественный анализ дискретных систем

Pacширения Model Checking: количественный анализ

Последнее время – огромное число расширений и различных приложений МС

Одна из групп ⁽¹⁾ – в Университете Бирмингема (а сейчас в Оксфордском Университете), исследует возможность комбинации **вероятностного анализа**, **реального времени** и **МС**

Ответы типа:

Протокол выбора лидера:

"С вероятностью 0.9 процесс выбора лидера завершится в течение 25 сек"

Для протокола передачи мультимедийной информации

"Вероятность доставки кадра в течение 10 временных шагов > 89%"

Подход позволяет подсчитать истинность или ложность того, что данная темпоральная формула будет выполнена с заданной вероятностью в течение t единиц времени

(в отличие от проверки ДОСТИЖИМОСТИ, выполняемой обычным процессом Model Checking)

B Uni. of Birmingham разработана система *PRISM*, "Probabilistic Symbolic Model Checker "

(1) Marta Kwiatkowska (Uni. of Birmingham) "Model checking for probability and time" Proc. Conf. Logic in Computer Science, 2003, www.cs.bham.ac.uk/~dxp/prism/

Model Checking и Вероятностный анализ

Модификация дискретной Марковской цепи (время считается неявно дискретными переходами из состояния в состояние, как и в структуре Крипке)

Помеченная дискретная Марковская цепь (S, s_0, P, L) – это:

S - конечное множество состояний,

 s_0 – начальное состояние;

L: S \rightarrow 2^{AP}

Pr: S×S→[0,1] – вероятностная матрица, такая, что (\forall s∈S) $\Sigma_{q∈S}$ Pr(s,q) = 1

Можно считать эту модель и расширением структуры Крипке - к структуре Крипке просто добавляются вероятности переходов Pr(s,q) из р в q

Путь σ = $s_0 s_1 s_2 ... s_n$ – конечная цепочка состояний, такая, что $Pr(s_i, s_{i+1}) > 0$

Вероятностная мера цепочки σ:

 $Pr(\sigma)=1$ если n=0 (т.е. σ состоит из одного состояния)

$$Pr(\sigma) = Pr(s_0, s_1) Pr(s_1, s_2) ... Pr(s_{n-1}, s_n)$$
 если n>0

Вероятностная CTL – PCTL (Hansson & Jonsson'94)

PCTL (Probabilistic CTL) заменяет кванторы E и A в CTL вероятностным оператором $Pr_{-p}(\alpha)$, где $p \in [0,1]$, $\sim \in \{\le, <, \ge, >\}$, например, $P_{>0.3}$ (Fq)

Формула состояния: $\phi := q | \phi_1 \vee \phi_2 | \neg \phi | P_{\sim p}(\alpha)$

где α -формула пути: $\alpha := X \phi | \phi_1 U \phi_2$

Операторы F и G выражаются через *Until*: $F\varphi = True\ U\ \varphi$, $G\varphi = \neg F \neg \varphi$

Семантика вероятностного оператора: (α - формула пути, s – произвольное состояние, Path_s – все пути из состояния s, σ – путь)

$$s = P_{p}(\alpha) \text{ iff } Pr\{\sigma \in Paths_s \mid \sigma = \alpha\} \sim p$$

В состоянии s вероятностная мера ~р выполняется для формулы пути α , iff с этой мерой может быть выбран путь из состояния s, на котором выполняется формула α

Примеры:

 $P_{>0.7}(q\ U\ \neg r)$ – вероятность того, что на путях из данного состояния выполнится формула пути (q U $\neg r$), больше 0.7

 $P_{<\,0.1}$ ($(P_{>0.2}$ Xq) U $_{-}$ r) вероятность того, что на путях из данного состояния выполнится формула пути ($P_{>0.2}$ Xq) U $_{-}$ r, меньше 0.1

Вероятностная СТL (2)

 $P_{>0}(\alpha)$ соответствует квантору существования пути E - потому что только с некоторой вероятностью может быть выбран путь, на котором формула пути α выполняется

 $P_{\geq 1}(\alpha)$ соответствует универсальному квантору пути A - потому что с единичной вероятностью будет выбран путь, на котором формула α выполняется

Каждому отрезку путей из состояния s соответствует некоторая вероятность его выбора. На некоторых путях из s формула α выполняется, на других – нет. Нас интересует совокупная вероятность выбора тех путей из s, на которых α выполняется

Алгоритм верификации работает так же, как для CTL, индукцией по подформулам φ , определяя множество Sat(φ) тех состояний, которые удовлетворяют формуле φ .

Вычисление истинности PCTL формулы $P_{\sim p}X\mu$

Вычислим $P_{\geq 0.6}$ $X\mu$, т.е. в каких состояниях вероятность формулы пути $X\mu$ будет ≥ 0.6

ИТАК, формула состояний $P_{\geq 0.6}$ Xµ удовлетворяется в состояниях s_0 и s_2

Вычисление истинности РСТL формулы Pr(µU√)

- S^{yes} множество состояний, в которых выполняется v (т.е. множество Sat(v))
- S^{no} множество состояний, в которых не выполняется ν , не выполняется μ , и тех, из которых не достижимы состояния из $Sat(\nu)$
- $S^{?}$ множество состояний, в которых не выполняется ν , но выполняется μ

Определим: x_s – вероятность выполнения формулы $\mu U \nu$ в состоянии s

$$egin{aligned} \mathbf{x}_{s} &= 1 - \text{если } s \in S^{yes} \\ &= 0 - \text{если } s \in S^{no} \\ &= \sum_{t \in S} P(s,t) * \mathbf{X}_{t} - \text{если } s \in S^{?} \end{aligned}$$

Вычисление истинности PCTL формулы $P_{\sim p}$ (μ U ν)

 μ и ν - формулы состояния

Матрица вероятностей переходов

Вычислим $P_{\geq 0.8}$ ($\mu U \nu$), т.е. в каких состояниях вероятность формулы $\Phi = \mu U \nu$ будет ≥ 0.8

Пусть x_s – это вероятность выполнения формулы Φ = $\mu U \nu$ в состоянии s Очевидно, что: x_2 = 1, x_4 = 0 (потому что в s_2 уже выполнено ν , а в s_4 – не вып и μ). Вероятности выполнения Φ в других состояниях нужно считать: x_s = Σ $Pr(s, s') \times x_{s'}$

Система уравнений:

 $X_4 = 0$

$$x_0 = 0.5x_1 + 0.2x_3 + 0.3x_4$$

 $x_1 = 0.4x_2 + 0.6x_4$
 $x_2 = 1$ \Longrightarrow
 $x_3 = 0.8x_2 + 0.2x_4$

Решаем:

$$x_0 = 0.36$$

 $x_1 = 0.4$

$$x_{2} = 1$$

$$x_3 = 0.8$$

$$x_4 = 0$$

Формула Ф выполняется в тех состояниях, в которых вероятность выбора "нужного" пути удовл вероятностной мере (≥0.8)

ИТАК, формула состояний $P_{\geq 0.8}$ $\mu U \nu$ удовлетворяется в состояниях s_2 и s_3 Ю.Г.Карпов Верификация. Model checking

Частные случаи

- Вероятностная достижимость
 - достижение целевого множества состояний с вероятностной мерой \sim p: $P_{\sim p}$ F goal = $P_{\sim p}$ True **U** goal
- Вероятностный инвариант
 - свойство оставаться в множестве состояний, помеченных inv, с вероятностной мерой \sim p: $P_{\sim p}$ **G** inv = $P_{\sim p}$ (\neg (True U \neg inv))

Казино: анализ игры в кости

Сорок различных ставок. Мы анализируем "The Pass Bet"

Игрок ставит свои фишки на Pass Line. Бросает крупье

I этап. Первый бросок

7,11 - выигрыш. 2,3,12 — проигрыш 4,5,6,8,9,10 = Point, и на II этап

Point запоминается – ставится фишка

II этап. *Набери Point*

Нужно выбросить Point раньше 7 (seven out)

Игра в кости. Ставка "The Pass Bet"

I этап. *Первый бросок*

7,11 - выигрыш.

2,3,12 – проигрыш

4,5,6,8,9,10 = Очко (пункт), и на II

этап

II этап. Набери очко (seven out)

Нужно выбросить Очко раньше 7

Число благоприятных исходов:

2 ⇔ 1,1 ⇒ 1/36

 $3 \Leftrightarrow 1,2; 2,1 \Rightarrow 2/36$

4 ⇔ 1,3; 2,2; 3,1 ⇒ 3/36

5 \Leftrightarrow 1,4; 2,3; 3,2; 1,4 \Rightarrow 4/36

6 \Leftrightarrow 1,5; 2,4; 3,3; 4,2; 5,1 \Rightarrow 5/36

7 \Leftrightarrow 1,6; 2,5; 3,4; 4,3; 5,2; 6,1 \Rightarrow 6/36

8⇔ 2,6; 3,5; 4,4; 5,3; 6,2 ⇒ 5/36

9 \Leftrightarrow 3,6; 4,5; 5,4; 6,3 \Rightarrow 4/36

10 \Leftrightarrow 4,6; 5,5; 6,4 \Rightarrow 3/36

 $11 \Leftrightarrow 5,6; 6,5 \qquad \Rightarrow 2/36$

12 ⇔ 6.6 ⇒ 1/36

Хотим подсчитать Pr(Fwon)

Вероятность выигрыша "The Pass Bet"

 $Pr(Fwon) = Pr(true \cup won)$

Решение: x_{start} = 0.4929 против 0.5070

Казино имеет ~3%

Казино: анализ игры в кости

I этап. Первый бросок

7,11 - *ПРОИГРЫШ* 3,12 — выигрыш 4,5,6,8,9,10 = Point, и на II этап

Если выпала 2, то ставка возвращается игроку (ничья)

Point (пункт) запоминается – ставится фишка

II этап. **НЕ** *Набери Point*

Нужно выбросить 7 раньше Point (seven out)

Ставка "The Don't Pass Bet"

Игрок ставит свои фишки на Pass Line. Бросает крупье

Пример: Моделирование одной монетой игральной кости

Ю.Г.Карпов

Пример: передача сообщений по ненадежному каналу

Архитектура упрощенного протокола:

$$x_0 = 1*x_1$$

 $x_1 = 1*x_2$
 $x_2 = 0.2*x_1 + 0.8*x_3$
 $x_3 = 1*x_4$

$$Pr(Fs_4) = 1$$

Ho $s_0 \neq AF s_4$

Для этого протокола A F $\alpha \neq P_{=1}$ F α

Кванторы пути A и E в PCTL

Оказывается, A $\phi \neq P_{=1} \phi$

Аналогично, E $\phi \neq P_{>0} \phi$

AFa HE выполняется на M $P_{=1}$ Fa выполняется на M

$$x_{s} = (1-p)^{*} x_{s} + 1^{*} p_{t}$$
 $x_{t} = 1$
 $x_{s} = 1$

EG¬а выполняется на М Р_{>0}G¬а НЕ выполняется на М

Заметим, что путь σ = ssss... несправедливый, его вероятность 0

Соотношения между формулами

•
$$s \mid = P_{\geq p}(\alpha) \equiv s \mid = \neg P_{<1-p}(\alpha)$$

•
$$s \mid = P_{>p}(\alpha) \equiv s \mid = \neg P_{\leq 1-p}(\alpha)$$

- $G\alpha = \neg F \neg \alpha$
- $F\alpha = \text{true } U \alpha$
- $F^{\leq n}\alpha \equiv \text{true } U^{\leq n}\alpha$
- $P_{\leq p}(G \alpha) \equiv P_{\geq 1-p}(F \neg \alpha)$
- $P_{p,q}(G \le n \alpha) \equiv P_{[1-p,1-q]}(F \le n \alpha)$

Учет временных ограничений

Вычисление истинности PCTL формулы $Pr_{\sim p}$ ($\mu \cup p \leq n \nu$)

Утверждение: Формула $\mu \, U \, \nu$ выполнится не более, чем за п временных шагов, удовлетворяется с вероятностной мерой ~р

P::
$$s_0 s_1 s_2 s_3 s_4$$
 s_0 -- 0.5 - 0.2 0.3

 s_1 0.4 -- 0.4 -- 0.2

 s_2 -- 0.3 -- 0.7 --

 s_3 0.2 -- - 0.8 --

Развертка помеченной Марковской цепи

S₄

 S_4

Развертка вероятностной структуры по шагам времени

0

Ю.Г.Карпов

 μ $U^{\leq n} \nu$: формула $\mu U \nu$ выполнится не более, чем за n временных шагов

За время t≤0 - в s₂ с вер 1

За время t≤1 - в s₂ и s3 с вер 1, в s₁ с вер 0.4

За время t≤2 - в s2 и s3 с вер 1, в s₀и s₁ с вер 0.4

Алгоритм вычисления $Pr(s, \mu U v, t)$

Вероятность того, что в состоянии s формула ν выполнится не более, чем через t, а до этого все время

будет выполняться μ

```
begin
for all s∈S do
 if v ∈ L(s) then P(s, µUv, 0) := 1 // v выполняется в s
      else Pr(s, \mu U v, 0) = 0; // v не выполняется в s
od:
for i=1 to t do
 for all s \in S do
  if v ∈ L(s) then Pr(s, \mu Uv, i) := 1; // v выполняется в s
    else begin
      Pr(s, \muU\nu, i) = 0;
                                        // v не выполняется в s
      if \mu \in L(s) then
                                      // если µ выполняется в s
       for all s'∈S do
        Pr(s, \mu U \nu, i) = Pr(s, \mu U \nu, i) + Pr(s, s') \times Pr(s', \mu U \nu, i-1)
       od
    end
 od
od
```


end

Пример: упрощенная модель протокола

Проверим выполнение утверждения:

"С вероятностью, не меньшей 0.95, сообщение будет успешно доставлено в течение 6 единиц времени"

Формально: init |= $P_{≥0.95}$ ($F^{≤6}$ succ)

Вычислим вероятность выполнения формулы: *init* |= F[≤] 6 *succ* "вероятность того, что сообщение будет успешно доставлено в течение не более, чем 6 единиц времени", т.е. найдем Pr (init, true U succ, 6)

Подсчитаем Pr (s, true U succ, t) для всех состояний структуры и всех t от t=0 до t=6

Эта вероятность оказалась 0.971. Следовательно, init \mid = P $_{\geq 0.95}$ ($F^{\leq 6}$ succ)

Пример оценки "мягкого дедлайна"

Упрощенный протокол "альтернирующего бита"

Проверим свойство:

$$\Phi = \mathbf{AG}(\operatorname{at_s_0} \Rightarrow \mathbf{P}_{\geq 0.9} \mathbf{F}^{\leq 5} \operatorname{at_s_4}) = \\ \neg \mathbf{EF} \neg (\operatorname{at_s_0} \Rightarrow \mathbf{P}_{\geq 0.9} \mathbf{F}^{\leq 5} \operatorname{at_s_4})$$

Синтаксический анализ:

$$f_1 = at_s_0$$

 $f_2 = at_s_4$
 $f_3 = P_{\ge 0.9} F^{\le 5} f_2$
 $f_4 = f_1 \Rightarrow f_3$
 $f_5 = \neg f_4$
 $f_6 = EF f_5$
 $f_7 = \neg f_6$

t=5	t=4	t=3	t=2	t=1	t=0	
0.8	0	0	0	0	0	s_0
0.96	0.8	8.0	0	0	0	S ₁
0.96	0.96	8.0	8.0	0	0	s_2
1	1	1	1	1	0	s_3
1	1	1	1	1	1	S ₄

Свойство Ф НЕ выполняется для этого протокола

Система верификации PRISM

- Позволяет выполнить анализ систем, включающих вероятность и время
- Разработана в Uni Birmingham в конце 2001
- Распространяется свободно для исследований и обучения
- В 2005 уже около 3000 скачало
- Сотни статей, исследующих проблемы с помощью системы Prism
- Основана на символьных алгоритмах, BDD, алгоритмах анализа Марковских цепей
- Сайт www.cs.bham.ac.uk/~dxp/prism/ методические материалы, алгоритмы, ...

Система верификации PRISM (2)

- Функциональность
 - Реализован model checking для стохастических систем,
 Probabilistic temporal logic
 - Используются модели:
 - дискретные и непрерывные цепи Маркова,
 - Марковские решающие процессы
 - Высокоуровневый язык представления моделей
 - Спецификации свойств вида:
 - P<0.01 [true U ≤100 error] "вероятность того, что система достигнет состояния error в течение не более 100 временных единиц, меньше, чем 0.01"
 - P = ? [true U ≤50 terminate] "какова вероятность того, что система достигнет состояния terminate в течение не более 50 временных единиц?"

Спасибо за внимание

4

Пример: игра в кости. Крепс

Ставка
"The Pass Bet"
(Проходит)

I этап. Первый бросок

7,11 - *выигрыш*. 2,3,12 – проигрыш 4,5,6,8,9,10 = очко, и на II этап

II этап. *Набери очко*

Нужно выбросить очко раньше 7

Сорок различных ставок. Мы анализируем "The Pass Bet"

Игра в кости. Ставка "The Pass Bet"

4/36

27/36

3/36

10

3/36

4/36

1/6

loose

1/6

4/36

5/36

25/36 26/36

Хотим подсчитать P(F won)

start

5/36

5/36

25/36

Правила: Бросаются две кости

I этап. *Первый бросок*

7,11 - выигрыш.

2,3,12 – проигрыш

4,5,6,8,9,10 = Очко, и на II этап

II этап. *Набери очко*

Нужно выбросить Очко раньше 7

Число благоприятных исходов:

2 ⇔ 1,1

 \Rightarrow 1/36

3 ⇔ 1,2; 2,1

 \Rightarrow 2/36

27/36

3/36

4 ⇔ 1,3; 2,2; 3,1

 \Rightarrow 3/36

5 \Leftrightarrow 1,4; 2,3; 3,2; 1,4 \Rightarrow 4/36

6 \Leftrightarrow 1,5; 2,4; 3,3; 4,2; 5,1 \Rightarrow 5/36

7 \Leftrightarrow 1,6; 2,5; 3,4; 4,3; 5,2; 6,1 \Rightarrow 6/36

8 ⇔ 2,6; 3,5; 4,4; 5,3; 6,2

 \Rightarrow 5/36

 $9 \Leftrightarrow 3.6; 4.5; 5.4; 6.3$

 \Rightarrow 4/36

10 \Leftrightarrow 4,6; 5,5; 6,4

 \Rightarrow 3/36

11 ⇔ 5,6; 6,5

 \Rightarrow 2/36

12 ⇔ 6,6

 \Rightarrow 1/36

Ю.Г.Карпов

Верификация. Model checking

8/36

26/36

4/36

5/36

won

3/36

Игра в кости. Вероятность выигрыша

x_i — вероятность того, что из состояния і можно достигнуть won

Казино имеет ~3%

 $x_{\text{won}} = 1$

 $x_{loose} = 0 - //$ из x_{loose} недостижимо x_{won}

$$x_4 = 1/3$$

 $x_5 = 2/5$
 $x_6 = 5/11$
 $x_8 = 5/11$
 $x_9 = 2/5$
 $x_{10} = 1/3$

Решение: х_{start} = 0.4929292

Ю.Г.Карпов

Верификация. Model checking