Day 3 Lecture 2: Formulating Stochastic models

Short course on modelling infectious disease dynamics in R

Ankara, Türkiye, September 2025

Dr Juan F Vesga

Aims of the session

- Learn how to formulate stochastic models
- Learn how stochasticity is introduced in compartmental and individual base models
- Understand the methodological difference with deterministic models

Formulations of a stochastic model

- Individual based/agent based models
 - Simulate each individual and events which happen to each individual
 - Can include much realistic detail, but can be slow to simulate
- Population or compartmental based models
 - Only keep track of total number of individuals in each compartment
 - Simulate the number of events that will happen to that group of individuals
 - Faster to simulate

Hazard

- The hazard is the probability per unit time of an event happening.
- It is equivalent to the instantaneous per-capita rate used in a deterministic model.

E.g. If an infected person has a hazard or rate of recovery of σ :

Probability of recovering in time dt is σdt , for small dt.

Hazard

- If we have N individuals who are all identical (with respect to the process we're talking about), the **binomial distribution** describes the distribution of the number of events in a given time.
- N trials of something with probability p, number of successes is a binomially-distributed random number:

Number of recoveries in dt is from Binomial(σ dt, N)

Competing Hazards

- Consider a population of susceptible which can become infected (rate: λ) but can also die (rate: μ).
- But they can't do both at the same time!
- In a time period, dt, how many die and how many become infected?

Competing Hazards

- It turns out that we can add the rates of the different events to
- get the total number to which anything happened.
- Then we can decide which of the two things happened to each.

Total number of events:
$$H_1 + H_2 = \text{Binomial}((\mu + \lambda)dt, X)$$

Split into H_1 and H_2 : $H_1 = \text{Binomial}(\frac{\lambda}{\lambda + \mu}, H_1 + H_2)$

Simple infection process

A stochastic model is completely described by two things:

- The state of the population. E.g. the number of individuals in susceptible, infected, recovered states, etc.
- All possible events and their rates. E.g. infection rate, death rate, recovery rate, etc.

For the present case:

Population: S identical susceptible individuals, I identical infected individuals.

Name	What happens to population	Rate/individual
Infection	S →S – 1, I→I + 1	λ
recovery	I →I - 1	σ

Individual base models

- Treat every individual separately.
- For *synchronous* update case, choose small update time-step, dt.
- Only one event could happen to the individual get infected (rate λ)
- Every time-step, for each individual pick random number p (uniformly distributed between 0 and 1). If
 - $p < \lambda dt$ the individual has become infected, so $S \rightarrow S-1$, $I \rightarrow I+1$.
 - $\rho > \lambda dt$ nothing happens.

Multiple individuals-IBM

Each susceptible individual is 'identical'
Could generate a random number for each (22 random numbers) and discover if infection or death e.g. 5 new infections, 17 no change

Multiple individuals-Compartment

- 22 individuals, probability of infection per individual λDt
- Use Binomial to generate number of 'successes',
- Infections = Binomial(λDt,S) = 7 infections (for example)

Susceptibles
$$\frac{dX}{dt} = -R_0 v \frac{X}{N} Y$$
Exposed
$$\frac{dW}{dt} = R_0 v \frac{X}{N} Y - \sigma W$$
Infectious
$$\frac{dY}{dt} = \sigma W - v Y$$

Susceptibles
$$\frac{dX}{dt} = -R_0 v \frac{X}{N} Y$$
Exposed
$$\frac{dW}{dt} = R_0 v \frac{X}{N} Y - \sigma W$$
Infectious
$$\frac{dY}{dt} = \sigma W - v Y$$

Susceptibles
$$X(t+\delta t) = X(t) - \iota(t)$$

Exposed $W(t+\delta t) = W(t) + \iota(t) - \kappa(t)$
Infectious $Y(t+\delta t) = Y(t) + \kappa(t) - \rho(t)$
incidence $\iota(t) = \text{Binomial}\left(R_0 \nu \frac{1}{N} Y(t) \delta t, X(t)\right)$
infectious $\kappa(t) = \text{Binomial}\left(\sigma \delta t, W(t)\right)$

recovery
$$\rho(t) = \text{Binomial}(v\delta t, Y(t))$$

recovery $\rho(t) = \text{Binomial}(\nu \delta t, Y(t))$

Susceptibles
$$\frac{dX}{dt} = -R_0 v \frac{X}{N} Y$$
Exposed
$$\frac{dW}{dt} = R_0 v \frac{X}{N} Y - \sigma W$$
Infectious
$$\frac{dY}{dt} = \sigma W - v Y$$
Susceptible to exposed
$$X(t + \delta t) = X(t) - t(t)$$
Exposed
$$W(t + \delta t) = W(t) + t(t) - \kappa(t)$$
Infectious
$$Y(t + \delta t) = Y(t) + \kappa(t) - \rho(t)$$
incidence
$$t(t) = \text{Binomial}\left(R_0 v \frac{1}{N} Y(t) \delta t, X(t)\right)$$
infectious
$$\kappa(t) = \text{Binomial}\left(\sigma \delta t, W(t)\right)$$

recovery
$$\rho(t) = \text{Binomial}(\nu \delta t, Y(t))$$

Summary

- Stochastic effects important when considering
 - persistence
 - dealing with small populations (start and tail of epidemics)
 - or spatial spread.
- By chance can have outbreaks, even when R_0 <1
- By chance can have no outbreak when $R_0>1$
- Stochastic models can be relatively simple to program, difficult to analyse

Extra materials

Further reading and something on distribution of stochastic events

Further reading

Books:

Renshaw, E., Modelling biological populations in space and time, Cambridge Univ. press, 1991

Bailey, N.T.J., The mathematical theory of infectious diseases and its applications, 2nd edition, Griffin, 1975

Papers:

Bartlett, M. S. (1957). "Measles periodicity and community size." <u>J. Roy. Stat. Soc. A</u> **120**: 48-70.

Bolker, B. M. and B. T. Grenfell (1995). "Space, persistence and dynamics of measles epidemics." <u>Proc. Roy. Soc. Lond. B</u> **348**: 308-320.

Jansen, V. A. A., N. Stollenwerk, et al. (2003). "Measles outbreaks in a population with declining vaccine uptake." Science 301(5634): 804-804.

Farrington, C. P., M. N. Kanaan, et al. (2003). "Branching process models for surveillance of infectious diseases controlled by mass vaccination." <u>Biostatistics</u> **4**(2): 279-295.

Advanced: Binomial versus Poisson

- Poisson distribution simulates the number of events that will happen in a small timestep = Poisson($\omega\Delta tN(t)$)
- Binomial formulation Binomial($\omega\Delta t$,N(t)) says there are N(t) tries, each with probability of success approximated by $\omega\Delta t$, how many are successful?
 - Can't have more events than there are people
 - For small timesteps won't matter, since there won't be many events
 - Have to calculate multinomials when there are multiple competing hazards

Population simulations

Individual based models can be very slow, and computing time increases as N.

If events are independent, the number of events of type *i* in a fixed time, D*t*, can be simulated by sampling from a binomial distribution (it can also be simulated by sampling from a Poisson distribution). Hence in a population of size S, the number of events of type *i*, is given by

$$k \sim Binomial(\lambda \Delta t, S)$$

When there are multiple events competing with each other, binomial or multinomial approximations perform better than using sampling from several Poisson distributions, and allow more consistent model formulation.

Advanced: Synchronous versus asynchronous

- Synchronous: at each timestep simulate all the events that could have occurred.
- Asynchronous: simulate when the next event is, and move forward to that time point,
- If there are many possible events each with a low probability of occurring, particularly in individual based simulations, its may be more efficient to have an asynchronous model