Задача

Условие

Пусть отрезок PO — перпендикуляр к плоскости α , $O \in \alpha$. Пусть PA, PB, PC — разные наклонные к этой плоскости, образующие между собой равные углы. Как вычислить угол между этими наклонными, если известны длина перпендикуляра к плоскости и длины наклонных? Для этой же ситуации составьте задачи, обратные данной.

Решение

Заметим, что $\triangle APC = \triangle CPB = \triangle APB$. Как следствие $\triangle ABC$ равносторонний. Пусть OP = h, PC = PB = PA = a. Из теоремы пифагора следует, что $b = OA = OC = OB = \sqrt{a^2 - h^2}$. Также $c = AC = \sqrt{3} * b$. Так как $\triangle APC$ равнобедренный, $2sin(\alpha/2) = c/a \Rightarrow \alpha = 2asin(\frac{c}{2a})$.

