. . .

Soham

July 2016

1 Tensor products of characters

Theorem. The product of any two characters of the same finite group G is again a character of G

Proof. The representation is $\rho = \rho_1 \otimes \rho_2$. Taking its trace, we get a block-diagonal matrix whose character is

$$\chi = \chi_1 \chi_2$$
.

Let's compute the character table of S_4 . The conjugacy classes are:

There is a natural character that sends a conjugacy class to the number of axes in \mathbb{C}^4 which it preserves:

How about squaring χ_3 ? We get a character that contains a copy of χ_1

and subtracting that off, and then doing the same with a copy of χ_3 gives

$$5, -1, -1, 1, 1$$

But $\langle \chi, \chi \rangle = \frac{1}{24}(25, 6, 8, 6, 3) = 2$, so it's not irreducible. So it must be equal to $\chi_4 + \chi_5$. Note that, wlog, $\chi_4 = \chi_2 \chi_3$. We finally get

 χ_1 χ_1 χ_2 χ_1 χ_2 χ_3 χ_3 χ_3 χ_4 χ_5 χ_5 χ_5 χ_6 χ_7 χ_7

2 Induced representations

For any subgroup H of a group G, and any rep $\rho: H \to GL(V)$, we can define a representation of G, called the induced representation.

1. Find a set of representations for the left cosets of H in G, i.e., decompose G as

$$G = eH \cup a_2H \cup \cdots a_qH, q = |G|/|H|$$

2. The space for our new rep has dimension dq. Our new representation σ sends g to a $q \times q$ block matrix, where each block is $d \times d$. We put $\rho(a_i^{-1}ga_j)$ in the i,j block if $a_i^{-1}ga_j \in H$ and 0 otherwise. Note that this is actually a "block permutation" matrix.

2.1 Example: $S_4 \subset S_5$

Let's look at S_4 as a subset of S_5 , and see what the natural representation induces. Decompose S_5 as I originally thought of a 5-cycle in class, but Mark's better sense prevailed and we used (15).

$$S_5 = S_4 \cup (15)S_4 \cup (25)S_4 \cup (35)S_4 \cup (45)S_4.$$