

Métodos Matriciais e Análise de Clusters

Redução de dimensionalidade

Laura de Oliveira F. Moraes

	Quem vai ficar com Mary?
Comédia	4
Drama	0

	Comédia	Drama
João	5	1

Você recomendaria o filme **Quem vai ficar com Mary?** para **João** sabendo os dados acima?

	Comédia	Drama		Quem vai ficar com Mary?
João	5	1	Comédia	5 x 4 + 1 x 0 = 20

	Quem vai ficar com Mary?
Comédia	4
Drama	0

Você recomendaria o filme **Quem vai ficar com Mary?** para **João** sabendo os dados acima?

 $nota\ para\ filme = \sum_{todo\ genero} peso\ do\ genero\ no\ filme\ *\ gosto\ do\ usuario\ pelo\ genero$

	Comédia	Drama		Quem vai ficar com Mary?	Pequena Miss Sunshine
João	5	1	João	20	13

	Quem vai ficar com Mary?	Pequena Miss Sunshine
Comédia	4	2
Drama	0	3

Qual dos dois filmes você recomendaria para o João?

	Comédia	Drama		Quem vai ficar com Mary?	Pequena Miss Sunshine
João	5	1	João	20	13

	Quem vai ficar com Mary?	Pequena Miss Sunshine
Comédia	4	2
Drama	0	3

Qual dos dois filmes você recomendaria para o João?

 $nota\ para\ filme = \sum_{todo\ genero} peso\ do\ genero\ no\ filme\ *\ gosto\ do\ usuario\ pelo\ genero$

	Quem vai ficar com Mary?	Pequena Miss Sunshine	
Comédia	4	2	
Drama	0	3	

Característica intrínseca do dado! Nem sempre é fácil de quantificar!

	Comédia	Drama
João	5	1

Tem que pedir para o usuário. Será que ele vai responder?

	Quem vai ficar com Mary?	Pequena Miss Sunshine
João	20	13
Maria	13	18
Camila	5	12

Pode ser montado **automaticamente** baseado nas transações do usuário com o sistema. Quantas vezes viu, por quanto tempo, etc.

Como obter o modelo de gostos por gênero do usuário?

 $NOTAS = filmes\ por\ genero\ *\ genero\ por\ usuario$

 $NOTAS \approx filmes \ por \ genero * genero por usuario$

 $NOTAS \approx filmes\ por\ genero\ *\ genero\ por\ usuario$ $V \approx WH$

$$NOTAS \approx filmes\ por\ genero\ *\ genero\ por\ usuario$$
 $V \approx WH$

NMF (Non-negative Matrix Factorization): requer que os números em W e
 H sejam sempre positivos

$$NOTAS \approx filmes\ por\ genero * genero\ por\ usuario$$
 $V \approx WH$

- NMF (Non-negative Matrix Factorization): requer que os números em W e
 H sejam sempre positivos
- Outras fatorações:
 - SVD (Singular Value Decomposition) / PCA (Principal Component Analysis): buscam a direção de maior variância dos dados = mais próximos dos dados originais
 - MDS (Multidimensional Scaling): utiliza a distância entre os dados e não sua posição no espaço

Redução de dimensionalidade

- Encontrar as características intrínsecas ou latentes (escondidas) dos dados (como o gosto por gênero dos usuários e dos filmes ou assuntos em um conjunto de notícias)
- Eliminar um pouco do ruído, encontrando as dimensões que mais dão informação
- Compressão de dados
- Visualização de dados de alta dimensão

Objetivo: Ao diminuirmos dimensões, estamos comprimindo informação. Então é preciso encontrar no espaço reduzido, a posição dos pontos mais se **parece** com a original.

Objetivo: Ao diminuirmos dimensões, estamos comprimindo informação. Então é preciso encontrar no espaço reduzido, a posição dos pontos mais se **parece** com a original.

- Como definir o que mais se parece?
 - Possui o menor erro (distância euclidiana do ponto até o hiperplano)

Objetivo: Ao diminuirmos dimensões, estamos comprimindo informação. Então é preciso encontrar no espaço reduzido, a posição dos pontos mais se **parece** com a original.

- Como definir o que mais se parece?
 - Possui o menor erro (distância euclidiana do ponto até o hiperplano)

=

Combinação das dimensões que produz a maior variância

Espaço original em R³. Marcado o plano em que as distâncias euclidianas dos pontos ao plano somadas são as menores.

Espaço reduzido para R². Vista somente do plano.

- Algoritmo iterativo
- Descobre as dimensões (componentes principais) e as posições em cada dimensão progressivamente:
 - 1º descobre a combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos sobre ela

- Algoritmo iterativo
- Descobre as dimensões (componentes principais) e as posições em cada dimensão progressivamente:
 - 1º descobre a combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos sobre ela
 - Descobre a 2ª combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos

- Algoritmo iterativo
- Descobre as dimensões (componentes principais) e as posições em cada dimensão progressivamente:
 - 1º descobre a combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos sobre ela
 - Descobre a 2ª combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos
 - E assim sucessivamente até o número de dimensões que eu queira

- Algoritmo iterativo
- Descobre as dimensões (componentes principais) e as posições em cada dimensão progressivamente:
 - 1º descobre a combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos sobre ela
 - Descobre a 2ª combinação linear das dimensões originais de menor erro (maior variância) e calcula os pontos
 - E assim sucessivamente até o número de dimensões que eu queira
- SVD e PCA possuem diversos nomes na literatura: EOF (meteorologia), transformada de Karhunen-Loève (processamento de sinais), transformada de Hotelling (processamento de imagens)

Como se define um bom número de dimensões?

- Visualização requer que sejam 2 ou 3 dimensões
- Outras aplicações:

Não se esqueça de normalizar os dados!

Nos dados originais, Assault tem a maior variância. No gráfico da esquerda, vemos o resultado do PCA feito sobre os dados normalizados para média zero e variância unitária. No da direita o PCA é feito sobre os dados originais. A componente de maior variância acaba dominando a dimensão principal.

Comparação PCA e NMF

Netflix Prize

$$R = egin{pmatrix} 1 & ? & 2 & ? & ? \ ? & ? & ? & 4 \ 2 & ? & 4 & 5 & ? \ ? & ? & 3 & ? & ? \ ? & 1 & ? & 3 & ? \ 5 & ? & ? & ? & 2 \end{pmatrix} egin{array}{ll} ext{Alice} \ ext{Bob} \ ext{Charlie} \ ext{Daniel} \ ext{Eric} \ ext{Frank} \end{array}$$

- SVD não fatora matriz com dados faltantes.
- Pode ser resolvido com:
 - Imputação dos dados e depois usar o SVD
 - SVD modificado: otimização com derivada e gradiente descendente

Documents

We study the complexity of influencing elections through bribery: How computationally complex is it for an external actor to determine whether by a certain amount of bribing voters a specified

candidate can be made

the election's winner? We

study this problem for

election systems as varied

as scoring ...

Vector-space representation

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

Tópicos

Tópicos

Adicionais

- Matriz de escalonamento e rotação
- Fatoramento PCA e SVD
- Teorema espectral
- Autovetores e autovalores