	9/15
Qurying Continued	
Indexed Scans!	
primary indly: allows for mading in order order in the file	
Secondary index! index that's not primar	
A2. primary index wy equity on hex - just look for the 1 record	
A 3: primary index my egality on non-key - possibly multiple records (multiple because non-	
- prosibly multiple records (multiple	blocks)
because non-	key
- primay sides tells us I see	k
A Y's secondary index, egality	
A5! primary inclu comparson - A > 1 - use B tree to find	
- A' >V - use B tree to Find	

A5! Primary incluse compassion

- A > V - use B-tree to find

nocle and scan to end

- A = V - start at beginning and scar to V

AC: 2 ary index comparison
the interesting case useally

use index for small output

liker scan for large output

11	Algorithm Linear Search	$t_S + b_r * t_T$	One initial seek plus b_r block transfers,
			where b_r denotes the number of blocks in the file.
A1	Linear Search, Equality on Key	Average case $t_S + (b_r/2) * t_T$	Since at most one record satisfies condition, scan can be terminated as soon as the required record is found. In the worst case, b_r blocks transfers are still required.
A2	Primary B ⁺ -tree Index, Equality on Key	$(h_i + 1) * (t_T + t_S)$	(Where h_i denotes the height of the index.) Index lookup traverses the height of the tree plus one I/O to fetch the record; each of these I/O operations requires a seek and a block transfer.
A3	Primary B ⁺ -tree Index, Equality on Nonkey	$h_i * (t_T + t_S) + b * t_T$	One seek for each level of the tree, one seek for the first block. Here <i>b</i> is the number of blocks containing records with the specified search key, all of which are read. These blocks are leaf blocks assumed to be stored sequentially (since it is a primary index) and don't require additional seeks.
A4	Secondary B+-tree Index, Equality on Key	$(h_i + 1) * (t_T + t_S)$	This case is similar to primary index.
A4	Secondary B+-tree Index, Equality on Nonkey	$\frac{(h_i + n) *}{(t_T + t_S)}$	(Where <i>n</i> is the number of records fetched.) Here, cost of index traversal is the same as for A3, but each record may be on a different block, requiring a seek per record. Cost is potentially very high if <i>n</i> is large.
A5	Primary B ⁺ -tree Index, Comparison	$h_i * (t_T + t_S) + b * t_T$	Identical to the case of A3, equality on nonkey.
A6	Secondary B ⁺ -tree Index, Comparison	$(h_i + n) * (t_T + t_S)$	Identical to the case of A4, equality on nonkey.

Conjunctions
Disjunctions
On, up, U--up, (1)

Negation (r)