BİLGİSAYARIN TEMELLERİ

Bölüm-1

Resul DAŞ rdas@firat.edu.tr

- Bilgisayar Donanımının Temelleri
- Bilgisayar Yazılımının Temelleri
- Binary Sayı Sistemleri
- Network Teknolojilerinin Temelleri
- Dijital Bant Genişliği

Bilgisayar Donanımının Temelleri

- Bir PC nin ana bileşenleri
- Bilgisayar temel bilgileri
- NIC ve PC ilişkileri
- NIC'in bir PC'ye takılması
- PC bileşenlerinin LAPTOP bileşenleriyle kıyaslanması

Bir PC'nin Ana Bileşenleri

An Idealized Computer

All computers have:

- CPU: Processor
- Memory: RAM, ROM, FLASH, EPROM
- Storage: Floppy, Hard-Disk, CD-ROM, and other devices
- · Interfaces: Serial or Parallel peripheral connectors on back plane of computer

Bilgisayar Temel Bilgileri

NIC ve PC İlişkileri

NIC'in bir PC'ye Takılması

PC Bileşenlerinin LAPTOP Bileşenleriyle Kıyaslanması

Bilgisayar Yazılımının Temelleri

- Bir PC'yi networke bağlamak için gerekli network ayarlarının yapılması
- Web Browserin konfigüre edilmesi
- Son olarak; Tüm işlemlerin gözden geçirilmesi için genel bir akış diyağramının izlenmesi

Network Yazılım Ayarları

Donanım ve Yazılım Kontrolü

Binary Sayı Sistemleri

- Binary sayıların alfanümerik olarak gösterimi
- Bit ve Byte kavramları
- Decimal sayı sistemi
- Binary sayı sistemi
- Binary sayıyı Decimal sayıya çevirme
- Decimal sayıyı Binary sayıya çevirme

Binary Sayıların Alfanümerik Olarak Gösterimi

						-	0	1	0	1	1	0	0	1
							0	0	1	1	1	1	0	0
1	2	3	4	5	6	7	1	1	1	1	0	0	0	0
0	0	0	0				@	Р		р	0	sp	NUL	DLE
1	0	0	0				Α	Q	а	q	1	!	SOH	DC1
0	1	0	0				В	R	b	r	2	"	STX	DC2
1	1	0	0				С	S	С	s	3	#	ETX	DC3
0	0	1	0				D	Т	d	t	4	\$	EOT	DC4
1	0	1	0				E	U	е	u	5	%	ENQ	NAK
0	1	1	0				F	V	f	V	6	&	ACK	SYN
1	1	1	0				G	W	g	w	7	•	BEL	ETB
0	0	0	1				Н	X	h	×	8	(BS	CAN
1	0	0	1				- 1	Y	i	У	9)	HT	EM
0	1	0	1				J	Z	j	Z	:	*	LF	SUB
1	1	0	1				K	[k	{	;	+	VT	ESC
0	0	1	1				L	\	- 1		<	,	FF	FS
1	0	1	1				M]	m	}	=	-	CR	GS
0	1	1	1				Ν	^	n	~	>		SO	RS
1	1	1	1				0	_	0	?	?	/	SI	US

Bit ve Byte Kavramları

Unit	Definition	Bytes*	Bits*	Examples
Bit (b)	Binary digit, a 1 or 0	1 bit	1 bit	On/Off; Open/Closed +5 Volts or 0 Volts
Byte (B)	Usually 8 bits	1 byte	8 bits	Represent the letter "X" as ASCII code
Kilobyte (KB)	1 kilobyte = 1024 bytes	1000 bytes	8,000 bits	Typical Email = 2 KB 10-page report = 10 KB Early PCs = 64 KB of RAM
Megabyte (MB)	1 megabyte = 1024 kilobytes = 1,048,576 bytes	1 million bytes	8 million bits	Floppy disks = 1.44 MB Typical RAM = 32 MB CDROM = 650 MB
Gigabyte (GB)	1 gigabyte = 1024 megabytes = 1,073,741,824 bytes	1 billion bytes	8 billion bits	Typical Hard Drive = 4 GB
Terabyte (TB)	1 terabyte = 1024 gigabytes = 1,099,511,627,778 bytes	1 trillion bytes	8 trillion bits	Amount of data theoreti- cally transmittable in optical fiber in one second

^{*} Common or approximate bytes or bits.

Decimal Sayı Sistemi

Place Value	1000's 100's 10's 1's
Base Exponent	$10^3 = 1000$ $10^2 = 100$ $10^1 = 10$ $10^0 = 1$
Number of Symbols	10
Symbols	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Rationale	Typical number of fingers equals 10.

Binary Sayı Sistemi

Place Value	128's 64's 32's 16's 8's 4's 2's 1's					
Base Exponent	$2^{7} = 128$ $2^{3} = 8$ $2^{6} = 64$ $2^{2} = 4$ $2^{5} = 32$ $2^{1} = 2$ $2^{4} = 16$ $2^{0} = 1$					
Number of Symbols	2					
Symbols	0, 1					
Rationale	Two-state (discrete binary) voltage systems made from transistors can be diverse, powerful, inexpensive, tiny and relatively immune to noise.					

Decimal Sayıyı Binary Sayıya Çevirme

Örnek:

10 luk sayı sistemindeki 192 sayısını 2 lik sayı sistemine çevirelim.

```
192/2 = 96 bölümünden kalan 0
96/2 = 48 bölümünden kalan 0
48/2 = 24 bölümünden kalan 0
24/2 = 12 bölümünden kalan 0
12/2 = 6 bölümünden kalan 0
6/2 = 3 bölümünden kalan 0
3/2 = 1 bölümünden kalan 1
1/2 = 0 bölümünden kalan 1
```

Bu sayıları tersten başlayıp yanyana yazarsak 11000000 sayısı çıkar.

Binary Sayıyı Decimal Sayıya Çevirme

Örnek:

01110000 şeklindeki bir binary sayıyı decimale çevirelim. Sağdan sola doğru devam ederek 2 nin katları ile çarpacağız. (Not: $2^0 = 1$)

$$0 \times 2^0 = 0$$

$$0 \times 2^1 = 0$$

$$0 \times 2^2 = 0$$

$$0 \times 2^3 = 0$$

$$1 \times 2^4 = 16$$

$$1 \times 2^5 = 32$$

$$1 \times 2^6 = 64$$

$$0 \times 2^7 = 0$$

Network Teknolojilerinin Temelleri

- Networkler ve Network işlemleri
- Veri Networkleri
- Yerel Bölge Network Sistemleri Local Area Network (LAN)
- Geniş Bölge Network Sistemleri
 Wide Area Network (WAN)

Networkler ve Network İşlemleri

Network Nedir?

Dosyaları veya diğer kaynakları birkaç yada daha fazla kullanıcı arasında paylaştırabilen bir haberleşme kanalı üzerinden birbirine bağlanmış bilgisayarlar ve bağlı çevre birimleri gurubudur.

- Networkun Kullanım Alanları
- Network Türleri

Topolojiye göre Coğrafi yayılışına göre

Networkler ve Network İşlemleri

Veri Networkleri

Yerel Bölge Network Sistemleri

- Bina veya binalar gurubu ile sınırlıdır (hastane, fabrika, iş merkezleri, üniversite kampüsleri vs.)
- Kablolu yada kablosuz olabilirler.
- Erişimde çoklu port kullanırlar.
- Kontrol için Network Administrator gereklidir.
- Yerel servislere full-time hizmet verebilmelidir.
- UTP, STP, koaksiyel, Fiber optik vs. kablolar kullanılır.
- Hub, Switch, Bridge, Router gibi cihazlar kullanılabilinir.
- Birçok network toplojisi kullanılabilinir. (Star, Bus, Ring vs.)

Yerel Bölge Network Sistemleri

Router

Bridge

Ethernet Switch

ATM Switch

Hub

Geniş Bölge Network Sistemleri

- Şehirler, ülkeler ve en uzak mesafelerdeki LAN'lardan oluşur.
- Kablolu yada kablosuz olabilirler.
- Erişim için seri arabirimler kullanırlar.
- Kontrol için Network Administrator gereklidir.
- Yerel servislere full-time ve part-time hizmet verebilmelidir.
- Telefon hatları, Fiber optik kablolar kullanılır.
- Switch, Router, Firewall, Modem gibi cihazlar kullanılabilinir.
- Birçok değişik teknolojilere sahiptir(ATM, Frame Relay, ISDN vs).

Geniş Bölge Network Sistemleri

Router

Modem CSU/DSU TA/NT1

Comm. Server

WAN Bandwidth Switch

Dijital Bant Genişliği

- Dijital Bant Genişliği Ölçümleri
- Dijital bant Genişliği Kavramına Örnekler
- İletim Ortamlarındaki Bant Genişliği
- Bant Genişliğinin önemi

Dijital Bant Genişliği Ölçümleri

- Bant Genişliği: İletişimi sağlayan ortamın iletim hızını belirleyen bir parametre. Büyük olması iletiminde hızlı olmasını sağlar.
 Pratikte, bir ağın bir anda iletebileceği en yüksek bilgi kapasitesidir.
 Saniyede gönderilen bit miktarıdır.
- Kbps, Mbps, Gbps, Tbps şeklinde katları mevcuttur. Dijital Bant Genişliği Ölçümleri

Unit of Bandwidth	Abbrev.	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = $1,000$ bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = $1,000,000$ bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps

Dijital Bant Genişliği Kavramını Benzetme

Packets are like water.

Dijital Bant Genişliği Kavramını Benzetme

Bandwidth is like the number of lanes.

Network devices are like on-ramps, traffic signals, signs, and maps.

Packets are like vehicles.

Dijital Bant Genişliği Kavramını Benzetme

Bandwidth (digital) is like analog bandwidth.

Network devices are like phones, AM/FM radios, and CD ROM players.

Packets are like music.

İletim Ortamlarındaki Bant Genişliği

Some Typical Media	Bandwidth	Max. Physical Distance
50-Ohm Coaxial Cable (Ethernet 10BASE2, ThinNet)	10-100 Mbps	185m
50-Ohm Coaxial Cable (Ethernet 10BASE5, ThickNet)	10-100 Mbps	500m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 10BASE-T)	10 Mbps	100m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 100BASE-TX)(Fast Ethernet)	100 Mbps	100m
Multimode (62.5/125μm) Optical Fiber 100BASE-FX	100 Mbps	2000m
Singlemode (9/125μm core) Optical Fiber 1000BASE-LX	1000 Mbps (1.000 Gbps)	3000m
Wireless	11 Mbps	a few 100meters

Bant Genişliğinin Önemi

- Bant genişliği sınırlıdır.
- Maddi açıdan ekonomik bir sistem ve kazançlıdır.
- Bant genişliği network ölçümlerinde ve dizaynında bir kriterdir.
- Bant genişliği internetin bir anahtarıdır.
- Bant genişliğine sürekli olarak talep artmaktadır.

