Sustainable Science and Technology

Extended Abstract

May 20-22, 2022

Track: EG

Paper Based Pencil Drawn Multilayer Graphene-Polyaniline Nanofiber Electrodes for All Solid-State Symmetric Supercapacitors with Enhanced Cyclic Stabilities

Sabina Yeasmin¹, Simi Talukdar¹ and Debajyoti Mahanta¹*

¹Department of Chemistry, Gauhati University, Guwahati, Assam, India.

Email of all authors in sequence: sabina074@gauhati.ac.in, talukdarsimi25@gmail.com

*Corresponding author, Email: debam@gauhati.ac.in, debam@

The advancement of portable devices possessing various applications has turned the attention of researchers towards the urgent development of flexible energy storage devices such as flexible supercapacitors and batteries [1-3]. Among these devices flexible supercapacitor has primary importance as it acts as a bridge in the gap between traditional capacitors and batteries [4]. In this work graphitic layer of carbon has been deposited on the surface of cellulose paper by simple pencil drawing approach. The edges of exfoliated multilayer graphene sheets formed during pencil drawing on the rough paper surface causes the enhancement of electrochemical capacitance. One step chemical polymerization technique has been adopted to fabricate polyaniline nanofibers on hydrophobic pencil drawn graphitic layer on the cellulose paper. These polyaniline coated pencil drawn paper electrodes were used to fabricate all-solid-state symmetric supercpapcitors with superior performance in comparison to similar pencil drawn paper electrodes without polyaniline. All-solid-state symmetric supercapacitor with paper based multilayer graphene-polyaniline nanofiber electrodes exhibits specific capacitance of 28.37 F g⁻¹, areal capacitance of 93.64 mF cm $^{-2}$, energy density of 8.32 μ W h cm $^{-2}$, and power density of 39.97 μ W cm ⁻². It also shows excellent cyclic stability with initial increment to a maximum value and then decrease to 91.5 % of the maximum value after 5000 cycles. It is interesting to note that it retains 134.28 % of initial areal capacitance after 5000 cycles [5].

References

- [1] V.L. Pushparaj , M.M. Shaijumon , A. Kumar , S. Murgesan , L. Ci. R. Vajtai , R.J. Lin- hardt , O. Nalamasu , P.M. Ajayan , Proc. Natl. Acad. Sci. 104 (2007) 13574 .
- [2] X. Wang , X. Lu , B. Liu , D. Chen , Y. Tong , G. Shen , Adv. Mater. 26 (2014) 4763 .
- [3] B. Yao , J. Zhang , T. Kou , Y. Song , T. Liu , Y. Li , Adv. Sci. 4 (2017) 1700107 .
- [4] L. Dong, C. Xu, Y. Li, Z-H. Huang, F. Kang, Q-H. Yang, X. Zhao, J. Mater. Chem. A 4 (2016) 4659.
- [5] S. Yeasmin, S. Talukdar, . Mahanta, Electrochim. Acta 389 (2021) 138660.

North-East Research Conclave

Sustainable Science and Technology

Extended Abstract

May 20-22, 2022

Figure 1 Graphical abstract

Table 1 Comparison with previously reported flexible solid-state-supercapacitors based on PANI

Material	Method	Electrolyte	Capacitance,	Stability	Ref.
			CA		
Graphene/polyaniline	Electrochemical	PVA/ H ₃ PO ₄	23 mF cm ⁻²	100 % after	Nanoscale 7 (2015)
woven fabric				2000 cycles	7318
Graphene/polyaniline	Chemical	PVA/ H ₂ SO ₄	3.31 mF cm ⁻²	85.4 % after	Nano Energy 16
composite				10,000	(2015) 470
				cycles	
Pencil-drawing	Electrochemical	PVA/ H ₂ SO ₄	355.6	83% after	Nano Energy 2
graphite/polyaniline			mF cm ⁻²	1000 cycles	(2013) 1071
networks					
Graphene/polyaniline	Electrochemical	PVA/ H ₂ SO ₄	123 mF cm ⁻²	74.8 % after	Energy Chem. 32
paper				500 bending	(2018) 166
Graphene-Polyaniline	Chemical	PVA/ H ₂ SO ₄	93.64 mF cm ⁻²	134.28 %	Present work
Nanofiber			and 28.37 F g ⁻¹	after 5000	
				cycles	