ESERCIZI DI PREPARAZIONE ALL'ESAME

1) Data
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 0 \\ 10 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$
 quanto vale $\det(A)$?

2) Dire per quali
$$h \in \mathbb{R}$$
 la matrice $A = \begin{pmatrix} 5 & 1 & -1 & 1 \\ 3 & -2 & 0 & 0 \\ 0 & 1 & -2 & h \\ -1 & 2 & -2 & 2 \end{pmatrix} \in M_4(\mathbb{R})$ e' invertibile.

- 3) Date due matrici invertibili $A,B\in M_n(\mathbb{R}),$ dire quali delle seguenti alternative sono corrette:
 - (1) $A \cdot B$ è invertibile.
 - (2) Le matrici trasposte A^T e B^T sono invertibili.
 - (3) A + B è invertibile.
 - (4) $(A \cdot B)^{-1} = A^{-1} \cdot B^{-1}$.

4) Calcolare il rango della matrice
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & -1 & 2 \\ 1 & 2 & -3 & -1 \end{pmatrix} \in M_{3,4}(\mathbb{R}).$$

- 5) Sia $A \in M_{3,4}(\mathbb{R})$ una matrice di rango 2, e si consideri il sistema lineare omogeneo AX = 0. Allora:
 - (1) il sistema ammette ∞^1 soluzioni.
 - (2) il sistema non ammette soluzioni.
 - (3) il sistema ammette un'unica soluzione.
 - (4) il sistema ammette ∞^2 soluzioni.
- $\boldsymbol{6})$ Discutere le soluzioni del seguente sistema lineare:

$$\begin{cases} 2x_1 + x_2 - x_3 + 2x_4 = 1 \\ x_1 + x_2 + 2x_3 = 1 \\ x_1 - 3x_3 + 2x_4 = 2 \end{cases}.$$

7) Determinare, se esistono, valori di $\alpha \in \mathbb{R}$ per i quali il seguente sistema lineare non ammette soluzioni:

$$\begin{cases} (a-1)x + y - z = 1 \\ x + ay + z = 1 + a \\ x + y + z = 2a \end{cases}.$$

- 8) Dati i vettori $v_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 3 \\ 0 \\ -3 \\ 2 \end{pmatrix} \in \mathbb{R}^4$, dire quali
- delle seguenti affermazioni sono esatte.
 - (1) ν, ν₁, ν₂, ν₃ sono linearmente dipendenti.
 (2) ν e' combinazione lineare di ν₁, ν₂, ν₃.
 - (3) ν, ν_1, ν_2, ν_3 sono linearmente indipendenti.

(4) ν_1, ν_2, ν_3 sono linearmente indipendenti.