Rozmaitości różniczkowalne

elo

_

Spis treści

1	Definicja rozmaitości	3
	1.1 Rozmaitości topologiczne	3
	1.2 Mapy, lokalne współrzędne	4
	1.3 Własności rozmaitości topologicznych	5
2	Rozmaitości gładkie	6
	2.1 Atlas rozmaitości	6
	2.2 Zgodność map	7
	2.3 Atlas [maksymalny]	
	2.4 Funkcje gładkie	7
3	Rozkłady jedności	9
	3.1 Parazwartość i kumple	9
	3.2 Twierdzenie o rozkładzie jedności	10
	3.3 Zastosowania rozkładu jedności	10
4	Różniczkowalność odwzorowań pomiędzy rozmaitościami4.1 Podstawowe definicje	12 12
5	Dyskretne ilorazy rozmaitości gładkich przez grupy dyffeomorfizmów	14
_	Pomocnik idiotów:	15
	POHIOCHIK IQIOTOW:	13

1. Definicja rozmaitości

Definicję rozmaitości będziemy budowali warstwami: najpierw położymy fundamenty topologiczne, potem naniesiemy na to strukturę gładką, a na koniec rozszerzymy do pojęcia rozmaitości z brzegiem.

Zanim zajmiemy się konkretnymi definicjami, popatrzmy na kilka prostych przykładów rozmaitości:

- · powierzchnia, domknięta lub nie,
- przestrzenie opisane (lokalnie) skończoną liczbą parametrów,
- podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywane równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^2$ w \mathbb{C}^3).

1.1. Rozmaitości topologiczne

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową **rozmaitością topologiczną** [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa
- 2. ma przeliczalną bazę
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Warunkiem równoważnym do lokalnej euklidesowości jest istnienie otwartego otoczenia dla każdego punktu $p \in U \subseteq M$ takiego, że istnieje homeomorfizm $U \xrightarrow{\cong} B_r \subseteq \mathbb{R}^n$ [ćwiczenia].

Konsekwencie Hausdorffowości:

Mamy wykluczone pewne patologie, na przykład przestrzeń

nie jest rozmaitością topologiczną.

- Dla dowolnego punktu $p \in U \subseteq M$ i homeomorfizmu $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$, jeśli $\overline{K} \subseteq \overline{U}$ jest zwartym podzbiorem \mathbb{R}^n , to $K = \phi^{-1}[\overline{K}] \subseteq M$ jest domknięty i zawarty w M [ćwiczenia].
- Skończone podzbiory są zamknięte, a granice zbieżnych ciągów są jednoznacznie określone.

Konsekwencje przeliczalności bazy:

- Warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia].
- Każda rozmaitość jest wstępującą sumą otwartych podzbiorów

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które są po domknięciu zawarte w M.

- Parazwartość, czyli każde pokrycie M posiada lokalnie skończone rozdrobnienie.
 - Rodzina \mathscr{X} podzbiorów M jest *lokalnie skończona* [locally finite], jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończenie wieloma elementami \mathscr{X} .
 - Jeśli mamy pokrycie M zbiorami W i bierzemy drugie pokrycie V takie, że dla każdego V ∈ V znajdziemy U ∈ W takie, że V ⊆ U, to W jest pokryciem włożonym/rozdrobnieniem
- Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

 Twierdzenie Brouwer'a: niepusta n wymiarowa rozmaitość topologiczna nie może być homeomorficzna z żadną m wymiarową rozmaitością gdy m ≠ n. • Liczba n w definicji jest jednoznaczna, możemy więc określić wymiar rozmaitości jako dim M = n.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest jednak móc go czasem użyć, więc w definicji niepustość M nie jest przez nas wymagana.

Uwaga 1.2. Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością topologiczną [ćwiczenia].

1.2. Mapy, lokalne współrzędne

Definicja 1.3. Parę (U, ϕ) , gdzie U jest otwartym podzbiorem M, a ϕ to homeomorfizm

$$\phi: \mathsf{U} \to \overline{\mathsf{U}} \subseteq \mathbb{R}^{\mathsf{n}}$$
.

nazywamy **mapą** lub **lokalną parametryzacją** [coordinate chart] na rozmaitości M. Zbiór U taki jak wyżej nazywamy zbiorem mapowym [coordinate domain/neighborhood]. Z lokalnej euklidesowości wiemy, że **zbiory mapowe pokrywają całą rozmaitość**.

Jeżeli (U, ϕ) jest mapą i dla p \in M mamy ϕ (p) = 0, to mówimy, że mapa jest *wyśrodkowana na* p [centered at p].

Fakt 1.4. Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością ⇔ posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład:

Rozważmy $S^n = \{(x_1,...,x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1, ..., n + 1 określmy otwarte podzbiory w S^n

$$U_{i}^{+} = \{x \in S^{n} : x_{i} > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

Określmy odwzorowania $\phi_{\mathbf{i}}^{\pm}\,:\,\mathsf{U}_{\mathbf{i}}^{\pm}
ightarrow\mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(\mathbf{x}) = (\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \widehat{\mathbf{x}_i}, \mathbf{x}_{i+1}, ..., \mathbf{x}_n).$$

Obraz tego odwzorowania to

$$\overline{U}_i^{\pm} = \phi_i^{\pm}(U_i^{\pm}) = \{(x_1,...,x_n) \in \mathbb{R}^n \ : \ \sum x_i^2 < 1\}.$$

Odwzorowanie $\phi_{\bf i}^\pm: {\sf U}_{\bf i}^\pm o \overline{\sf U}_{\bf i}^\pm$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^{\pm})^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},\pm\sqrt{1-\sum x_j^2},x_{j+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

PRZYKŁADY Z LEE

1.3. Własności rozmaitości topologicznych

Przypomnijmy najpierw kilka definicji z topologii i je poszerzmy. Mówimy, że przestrzeń topologiczna X jest

- spójna, gdy nie można jej rozłożyć na sumę dwóch rozłącznych, otwartych i niepustych podzbiorów,
- · drogowo spójna, gdy każde dwa punkty można połączyć ciągłą ścieżką,
- lokalnie drogowo spójna , gdy ma bazę zbiorów spójnych drogowo.

Uwaga 1.5. Jeśli przestrzeń M jest rozmaitością topologiczną, to

- 1. M jest lokalnie spójna drogowo,
- 2. M jest spójna ←⇒ jest drogowo spójna,
- 3. spójne składowe M są takie same jak dorogowe spójne składowe,
- 4. M ma przeliczalnie wiele składowych, każda będąca otwartym podbiorem M (a więc i spójną rozmaitością)

Dowód. Punkt (1) jest prostą konsekwencją tego, że otwarte kule są spójne łukowo w \mathbb{R}^n [ćwiczenia]. Punkty (2) i (3) wynikają w prosty sposób z (1). Punkt (4) jest powodowany punktami poprzednimi i tym, że baza M jest przeliczalna.

Przestrzeń topologiczna X jest **lokalnie zwarta,** jeżeli każdy punkt ma bazę otoczeń których domknięcia są zwarte.

Uwaga 1.6. Każda rozmaitość topologiczna jest lokalnie zwarta.

Dowód. Zadanie na liście 1.

Przestrzeń zawierająca wszystkie homotopijne pętle zaczepione w $q \in X$ jest nazywana fundamentalną grupą X w q. Elementem neutralnym tej grupy jest funkcja stała $c_q(s) = q$. Dla rozmaitości topologicznych fundamentalne grupy są przeliczalne.

2. Rozmaitości gładkie

Na wykładzie nie będą nas zbytnio interesować rzeczy różniczkowalne tylko skończenie wiele razy. Z tego też powodu lekkie niuanse między słowami gładkie a różniczkowalne będą często pomijalne, a słowa te staną się izomorficzne. Teraz postaramy się określić, co to znaczy, że funkcja $f: M \to \mathbb{R}$ jest różniczkowalna?

2.1. Atlas rozmaitości

Pojęcie różniczkowalności funkcji $f: M \to \mathbb{R}$ będziemy określać za pomocą *map*:

- Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$. W ten sposób dostajemy funkcję wyrażoną w zmiennych rzeczywistych.
- W pierwszym instynkcie możemy chcieć powiedzieć, że $f: M \to \mathbb{R}$ jest gładka, jeśli dla każdej mapy taka jest. Niestety, map może być bardzo dużo i może się okazać, że żadna funkcja nie jest gładka.
- Odwzorowanie przejścia między dwoma mapami $(U_1, \phi_1), (U_2, \phi_2)$ to funkcje $\phi_1 \phi_2^{-1}$ i $\phi_2 \phi_1^{-1}$ określone na $U_1 \cap U_2$.

Definicja 2.1. Mapy (U, ϕ_1) oraz (U, ϕ_2) są **zgodne** (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

- U \cap V = \emptyset , albo
- $\phi\psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ i $\psi\phi^{-1}(U \cap V) \to \psi(U \cap V)$ sa gładkie.

Definicja 2.2. Mając dane dwie rozmaitości, M i N, mówimy, że funkcja $f: M \to N$ jest **dyfeomorfizmem**, jeżeli

- · jest różniczkowalna
- jest bijekcją
- funkcja odwrotna f⁻¹ też jest różniczkowalna

Definicja 2.3. Gładkim atlasem \mathscr{A} na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że:

- 1. 1. zbiory mapowe U_{α} pokrywają całe M
- 2. 2. każde dwie mapy z tego zbioru są zgodne.

Przykład: Rodzina map $\{(U_i^{\pm}, \phi_i^{\pm}) : i = 1, 2, ..., n + 1\}$ jak wcześniej na sferze $S^n \subseteq R^{n+1}$ tworzy gładki atlas. Wystarczy zbadać gładką zgodność tych map. Rozpatrzmy jeden przypadek: $(U_i^{\dagger}, \phi_i^{\dagger}), (U_j^{\dagger}, \phi_j^{\dagger}), i < j$. Po pierwsze, jak wygląda przekrój tych zbiorów?

$${\sf U}_i \cap {\sf U}_j = \{x \in {\sf S}^n \ : \ x_i > 0, x_j > 0\}$$

Dalej, jak wyglądają obrazy tego przekroju przez poszczególne mapy?

$$\phi_{i}^{+}(U_{i}\cap U_{j}) = \{x \in \mathbb{R}^{n} \ : \ |x| < 1, x_{j-1} > 0\}$$

$$\phi_{\boldsymbol{j}}^{\scriptscriptstyle +}(\boldsymbol{U}_{\boldsymbol{j}}\cap\boldsymbol{U}_{\boldsymbol{j}}) = \{\boldsymbol{x}\in\mathbb{R}^n \ : \ |\boldsymbol{x}| < 1, \boldsymbol{x}_{\boldsymbol{j}} < 0\}$$

Odwzorowania przejścia to:

$$\begin{split} \phi_{j}^{+}(U_{i}^{+} \cap U_{j}^{+}) \ni (x_{1},...,x_{n}) & \xrightarrow{\qquad \phi_{j}^{+})^{-1}} \qquad (x_{1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...x_{n}) \\ & \downarrow \phi_{i}^{+} \\ & (x_{1},...,x_{j-1},x_{j+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n}) \end{split}$$

$$\phi_{i}^{+}(\phi_{i}^{+})^{-1}(x_{1},...,x_{n}) = (x_{1},...,x_{i-1},x_{i+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n})$$

jest przekształceniem gładkim. Analogicznie dla drugiego odwzorowania przejścia.

2.2. Zgodność map

Definicja 2.4. Rozmaitość gładka to para (M, \mathscr{A}) złożona z rozmaitości M i gładkiego atlasu \mathscr{A} opisanego na M.

Definicja 2.5. Niech \mathscr{A}_1 , \mathscr{A}_2 będą gładkimi atlasami na M. Mówimy, że mapa (U, ϕ) jest zgodna z atlasem \mathscr{A}_1 , jeżeli jest zgodna z każdą mapą z \mathscr{A}_1 . Dalej, mówimy, że atlas \mathscr{A}_2 jest zgodny z altasem \mathscr{A}_1 , jeżeli każda mapa z \mathscr{A}_1 jest zgodna z każdą mapą z atlasu \mathscr{A}_2 .

Twierdzenie 2.6. Relacja zgodnośc atlasów jest relacją równoważności.

Dowód. Ćwiczenia

2.3. Atlas [maksymalny]

Zgodne atlasy określają tę samą strukturę gładką na M. W takim razie, wygodnym będzie móc zawerzeć wszystkie zgodne atlasy w czymś większym. Z pomocą przychodzi nam pojęcie atlasu maksymalnego .

<u></u>

Definicja 2.7. Atlas $\mathscr A$ jest **atlasem maksymalnym**, jeżeli każda mapa (U,ϕ) z nim zgodna jest w nim zawarta.

Fakt 2.8. Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym na M, który jest zbiorem wszystkich map na M zgodnych z \mathscr{A} .

Dowód. Ćwiczenia. Korzystamy z lematu Zorna.

W takim razie, równoważnie do pary (M, \mathscr{A}), gdzie \mathscr{A} jest dowolnym zgodnym atlasem na M, możemy wymóc w definicji, aby \mathscr{A} był atlasem maksymalnym.

2.4. Funkcje gładkie

Definicja 2.9. Funkcja $f: M \to \mathbb{R}$ określona na rozmaitości gładkiej (M, \mathscr{A}) jest gładka, jeżeli po wyrażeniu w każdej mapie z tego atlasu jest gładka:

$$(\forall (U, \phi) \in \mathscr{A})$$
 for ϕ^{-1} jest gładka

Fakt 2.10. Niech (M, \mathscr{A}) będzie rozmaitością gładką, a f : M $\to \mathbb{R}$ będzie funkcją gładką na M.

- 1. Jeżeli (U, ϕ) jest mapą zgodną z \mathscr{A} , to f wyrażone w (U, ϕ), czyli f $\circ \phi^{-1}$ też jest funkcją gładką.
- 2. Niech \mathscr{A}' będzie atlasem zgodnym z \mathscr{A} . Wówczas funkcja f jest zgodna względem $\mathscr{A}' \iff$ jest zgodna względem atlasu maksymalnego zawierającego oba te atlasy.

Co więcej, możemy powiedzieć, że $f: M \to \mathbb{R}$ jest gładka \iff jest gładka względem każdego atlasu \mathscr{A} wyznaczającego na M gładką strukturę. [Ćwiczenia]

Definicja 2.11.

- Dwie mapy (U, ϕ) i (V, ψ) są C^k-zgodne, jeżeli $\phi\psi^{-1}$ oraz $\psi\phi^{-1}$ są funkcjami klasy C^k.
- C^k-atlas to atlas składający się z map, które są C^k-zgodne
 - Taki atlas określa strukturę C^k-rozmaitości na M
 - Jest to struktura słabsza niż struktura rozmaitości gdładkiej

 C^0 zwykle oznacza rozmaitość topologiczną, a C^∞ to rozmaitość gładka.

Fakt 2.12. Na C^k rozmaitości nie można sensownie określić funkcji klasy C^m dla m > k.

Rozmaitość można definiować na różne sposoby niewymagające użycia definicji i własności topologicznych, na przykład:

- Rozmaitość analityczna [C^{ω}] to rozmaitość, dla której atlas składa się z map analitycznie zgodnych (czyli wyrażają się za pomocą szeregów potęgowych).
- Rozmaitość zespolona ma mapy jako funkcje w \mathbb{C}^n zamiast w \mathbb{R}^n
- Rozmaitość konforemna zachowuje kąty
- · Rozmaitość kawałkami liniowa

Istnieją rozmaitości topologiczne, które nie dopuszczają żadnej struktury gładkiej (pierwszym takim przykładem była zwarta 10-rozmaitość odkryta przez M. Kervaire). Z drugiej strony, z każdego maksymalnego atlasu C^k rozmaitości można wybrać atlas złożony z map C[∞]-zgodnych, czyli na każdej C^k istnieje struktura C[∞] rozmaitości.

Lemat 2.13. Niech X będzie zbiorem (bez topologii). Niech $\{U_{\alpha}\}$ będzie kolekcją podzbiorów X takich, że istnieje $n \in \mathbb{N}$ takie, że dla każdego α istnieje $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ które jest różnowartościowe. Załóżmy, że takie M, $\{U_{\alpha}\}$, $\{\phi_{\alpha}\}$ spełniają:

- 1. Dla każdego $\alpha \phi_{\alpha}(U_{\alpha})$ jest otwartym podzbiorem \mathbb{R}^{n}
- 2. Dla każdych α , β $\phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n}
- 3. Gdy $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to

$$\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta}(\mathsf{U}_{\alpha} \cap \mathsf{U}_{\beta}) \to \phi_{\alpha}(\mathsf{U}_{\alpha} \cap \mathsf{U}_{\beta})$$

jest gładkim dyfeomorfizmem (gładkie i odwracalne)

- 4. Przeliczalnie wiele spośród U_{α} pokrywa X
- 5. Dla dowolnych p, $q \in X$, $p \neq q$ istniej $q \alpha$, β oraz otwarte podzbiory $V_p \subseteq \phi_{\alpha}(U_{\alpha})$, $V_q \subseteq \phi_{\beta}(U_{\beta})$ takie, że $p \in \phi_{\alpha}^{-1}(V_p)$, $q \in \phi_{\beta}^{-1}(V_q)$ oraz $\phi_{\alpha}^{-1}(V_p) \cap \phi_{\beta}^{-1}(V_q)\emptyset$, czyli możemy rozdzielić dwa dowolne różne punkty za pomocą zbiorów otwartych w \mathbb{R}^n .

Wówczas na X istnieje **struktura rozmaitości topologicznej na** X, dla której U_{α} są zbiorami otwartymi. Ponadtwo, $(U_{\alpha}, \phi_{\alpha})$ tworzy gładki atlas na X .

Dowód. Prezentujemy szkic dowodu:

- Topologia jest produkowana jako przeciwobrazy przez poszczeglne ϕ_{lpha}
- · Lokalna euklidesowość jest oczywista
- Mniejsza baza przeliczalna też śmignie [ćwiczenia]
- Hausdorffowość wynika z warunku 5.

PRZYKŁAD - linie na prostej, ale nie chce już dzisiaj

3. Rozkłady jedności

Motywacja: jak sklejać funkcje? W szczególności, jak uzasadnić, że na każdej rozmaitości z brzegiem M istnieje gładka funkcja $f: M \to \mathbb{R}^n$ taka, że:

$$f(p) = 0$$
 $p \in \partial M$
 $f(p) > 0$ $p \in Int(M)$?

3.1. Parazwartość i kumple

Definicja 3.1. Rodzina $\{A_i\}$ podzbiorów przestrzeni topologicznej X jest **lokalnie skończona**, jeżeli dla każdego $p \in X$ istnieje otwarte otoczenie $p \in U_p$ w X takie, że $U_p \cap A_\alpha \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 3.2. Pokrycie $\{V_{\beta}\}$ zbiorami otwartymi nazywamy **rozdrobnieniem** pokrycia $\{U_{\alpha}\}$ zbiorami otwartymi, jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Relacja bycia rozdrobnieniem jest relacją przechodnią.

Definicja 3.3. Przestrzeń topologiczna jest **parazwarta**, jeśli każde pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$.

Lemat 3.4. Każda rozmaitość topologiczna jest parazwarta.

Dowód. Dowód pojawiamy, ale jest w Lee i ja popatrze kiedyś

Uwaga 3.5. W rozdrobnieniu o którym mowa w lemacie 3.4 można założyć, że składa się ze zbiorów mapowych i prezwartych [domknięcie jest zwarte].

Dowód. Niech $\{U_{\alpha}\}$ będzie wyjściowym pokryciem M. Łatwo znaleźć rozdrobnienie $\{U_{\gamma}'\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych mapowych [chyba lista 1]. Stosując lemat 3.4 do $\{U_{\gamma}'\}$ dostajemy lokalnie skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\gamma}'\}$, które jest też rozdrobnieniem $\{U_{\alpha}\}$. Ponadto, każdy V_{β} zawiera się w pewnym U_{γ}' , więc jest mapowy i prezwarty.

Uwaga 3.6. Niech $\{A_{\alpha}\}$ będzie dowolną lokalnie skończoną rodziną podzbiorów prezwartych. Wówczas dla każdego A_{α_0} podrodzina $\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$ jest skończona.

Dowód. Załóżmy nie wprost, że rodzina ta jest nieskończona. Czyli możemy wybrać ciąg A_{α_i} z tej rodziny oraz punkt $x_i \in A_{\alpha_i} \cap A_{\alpha_0}$. Ciąg x_i ma punkt skupienia w zwartym cl (A_{α_0}) i oznaczmy go p. Dowolne otoczenie otwarte U_p punktu p zawiera nieskończenie wiele x_i , więc przecina niepusto nieskończenie wiele A_{α_i} , co daje sprzeczność z lokalną skończonością $\{A_{\alpha}\}$.

Uwaga 3.7. Istnieją zwarte zbiory $D_{\beta} \subseteq M$ takie, że $\bigcup D_{\beta} = M$. To znaczy możemy pokryć M zbiorami zwartymi.

Dowód. Wiemy już, że każdą rozmaitość możemy pokryć zbiorami prezwartymi. Niech więc V_{β} będzie takim pokryciem. O każdy zbiorze V_{β} możemy myśleć jak o otwartym podzbiorze w \mathbb{R}^n poprzez utożsamienie go z $\phi_{\beta}(V_{\beta})$, gdzie (V_{β},ϕ_{β}) jest mapą.

Każde V_{β} jest wstępującą sumą mniejszych zbiorów V_{β_k} otwartych, których zwarte domknięcią zawierają się w $V_{\beta_0} \supseteq cl(V_{\beta_k})$. Niech CO TU SIĘ STAŁO Z INDEKSAMI OH BOOOOI

Podsumowując, dla dowolnego pokrycia otwartego U_{α} rozmaitości topologicznej M istnieje lokalnie skończone rozdrobnienie V_{β} składające się ze zbiorów mapowych i prezwartych, oraz

rodzina D_{β} zwartych podzbiorów $D_{\beta} \subseteq U_{\beta}$, która dalej jest pokryciem M.

To samo dotyczy się rozmaitości z brzegiem.

3.2. Twierdzenie o rozkładzie jedności

Definicja 3.8. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ jej **nośnik** to

$$supp(f) = cl(\{x \in X : f(x) \neq 0\})$$

Fakt 3.9. Dla dowolnego otwartego $\Omega \subseteq \mathbb{R}^n$ i dowolnego zwartego $D \subseteq \Omega$ istnieje gładka funkcja $f: \mathbb{R}^n \to \mathbb{R}$ taka, że

- $f \ge 0$
- supp(f) $\subseteq \Omega$
- f(x) > 0

Twierdzenie 3.10. [Twierdzenie o rozkładzie jedności] Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M istnieje rodzina $\{f_i\}_{i\in I}$ gładkich funkcji f_i : $M\to\mathbb{R}$ takich, że

- $f_i \ge 0$
- każdy nośnik supp (f_i) zawiera się w pewnym U_{α} z pokrycia
- nośniki $\{\sup(f_i)\}_{i\in I}$ tworzą lokalnie skończoną rodzinę podzbiorów w M.
- dla każdego $x \in M$ $\sum_{j \in J} f_j(x) = 1$

Jest to rozkład jedności wpisany w pokrycie $\{U_{\alpha}\}$

Dowód. Dla ułatwienia sprawy pokażemy prawdziwość tego twierdzenia dla rozmaitości gładkich bez brzegu. Ale to dopiero w przyszłości, bo aktualnie mi się nie chc

3.3. Zastosowania rozkładu jedności

Ogólnie, dzięki rozkładowi jedności możemy konstruować funkcje gładkie określone na całym M, które spełniają pewne wymagania, z lokalnie określonych (w mapach) fragmentów takich funkcji. Jest to narzędzie pozwalające nam sklejać funkcje i zachowywać ich gładkość/ciągłość. Za pomocą rozkładów jedności będziemy też mogli definiować inne obiekty na rozmaitościach, na przykład:

- pola wektorowe,
- · metryki Riemanna,
- formy różniczkowe

Przykład: Niech F_1 , F_2 to będą domknięte i rozłączne podzbiory rozmaitości gładkiej M. Wówczas możemy skonstruować funkcję gładką $f: M \to [0,1]$ taką, że $f \upharpoonright F_1 \equiv 1$ i $f \upharpoonright F_2 \equiv 0$. Niech U_1, U_2 będą pokryciem M takie, że $U_i = M \setminus F_i$. Niech $\{f_1, f_2\}$ będą rozkładem jedności wpisanym w $\{U_1, U_2\}$. Określmy funkcję $f: M \to \mathbb{R}$

$$f(x) = \sum_{\text{supp}(f_i) \subseteq U_2} f_i(x)$$

Dla $x \in F_1$ wszystkie nośniki supp (f_i) zawierające x znajdują się w U_2 , czyli dla takich x $f(x) = \sum f_i(x) = 1$. Dla $x \in F_2$ z kolei, nośniki supp (f_i) zawierające x nie zawierają się w U_2 , czyli nic w tej sumie nie ma, więc f(x) = 0.

Przykład:Czy istnieje f : $M \to \mathbb{R}$ takie, że f $\upharpoonright \partial M \equiv 0$ oraz f $\upharpoonright Int(M) > 0$?

Niech $\{U_{\alpha}\}$ będzie dowolnym pokryciem rozmaitości M zbiorami mapowymi. Wtedy $f_{\alpha}:U_{\alpha}\to\mathbb{R}$ jest funkcją gładką, jeżeli

- $U_{\alpha} \cap \partial M \neq \emptyset \implies f_{\alpha} = \widehat{f}_{\alpha} \phi_{\alpha}$, gdzie $\widehat{f}_{\alpha} : \overline{U}_{\alpha} \to \mathbb{R}$ i $\widehat{f}_{\alpha}(x_1, ..., x_n) = x_n$.
- $U_{\alpha} \cap \partial M = \emptyset \implies f_{\alpha} = 1$

Niech $\{h_j\}$ będzie rozkładem jedności wpisanym w $\{U_\alpha\}$. Dla każdego $j \in J$ wybieramy $\alpha(j)$ takie, że supp $(h_j) \subseteq U_{\alpha(j)}$. Definiujemy wtedy $h_j' = h_j \circ f_{\alpha(j)} : M \to \mathbb{R}$ takie, że Mamy, że supp $(h_j') \subseteq \text{supp}(h_j) \subseteq U_{\alpha(j)}$. Definiujemy $f(x) = \sum h_j'(x)$. Z loklanej skończoności nośników h_j' jest dobrze określone i gładkie.

Dla $p \in \partial M$ mamy, że dla każdego j $h'_j(p) = p$, więc i f(p) = 0, natomiast dla $p \in Int(M)$ dla pewnego j jest $h'_j(p) > 0$, a dla $k \ne j$ mamy $h'_k(p) \ge 0$, czyli f(p) > 0.

Przykład: Funkcja $f: M \to \mathbb{R}$ jest nazywana *bump function* dla domkniętego zbioru $A \subseteq M$ z nośnikiem otwartym w $U \subseteq M$, jeżeli $0 \le f \le 1$ na M, $f \equiv 1$ w A oraz supp $(f) \subseteq U$.

Rozważmy pokrycie M zbiorami otwartymi {U, M \ D}. Niech

4. Różniczkowalność odwzorowań pomiędzy rozmaitościami

4.1. Podstawowe definicje

Definicja 4.1. Niech M, N będą gładkimi rozmaitościami i niech $f : M \to N$ będzie ciągłe. Niech $p \in M$ i q = f(p).

1. Takie f jest C^r -różniczkowalne ($r \in \mathbb{N} \cup \{\infty\}$) w punkcie p, jeśli mapa (U, ϕ) wokół p i (V, ψ) wokół q złożenie

$$\psi \circ f \circ \phi^{-1} : \phi(U \cap f^{-1}(V)) \to \psi(V)$$

jest C^r -różniczkowalne w punkcie $\phi(p)$. Złożenie jak wyżej oznaczamy $\widehat{f} = \psi \circ f \circ \phi^{-1}$ nazywamy wyrażeniem f w mapach (U, ϕ) , (V, ψ) TUTAJ OBRAZEK

2. f jest C^r na otoczeniu p jeśli dla dowolnych (U, ϕ) , (V, ψ) jak wyżej \widehat{f} posiada ciągłe pochodne cząstkowe rzędu \leq r na pewnym otwartym otoczeniu $\phi(p)$.

Fakt 4.2. Jeżeli f wyrażona w mapach (U, ϕ) , (V, ψ) jest C^r -różniczkowalna w punkcie $\phi(p)$, to wyrażona w dowolnych mapach (U', ϕ') , (V', ψ') gładko zgodnych z mapami poprzednimi jest C^r -różniczkowalna.

Dowód. Niech $\hat{f} = \psi f \phi^{-1}$, $\bar{f} = \psi' f (\phi')^{-1}$. Niech $\phi(\phi')^{-1} = \alpha$, $\psi' \psi^{-1} = \beta$ będą odwzorowaniami przejścia.

Zauważmy, że $\overline{f} = \beta \widehat{f} \alpha$, bo każdy umie rozpisać to sobie. Ponieważ wszystkie te funkcje są C^r lub gładkie, to i całość jest C^r . Oczywiście pomijamy dowodzenie, że wszystkie te złożenia są dobrze określone na odpowiednich wzorach.

Definicja 4.3. Odwzorowanie $f: M\mathbb{N}$ to jest [wszędzie] C^r -różniczkowalne, jeżeli jest C^r różniczkowalne na otoczeniu każdego punktu $p \in M$.

Fakt 4.4. f jest globalnie C^r -różniczkowalna \iff dla dowolnych (U, ϕ) na M i (V, ψ) na N ψ f ϕ^{-1} jest różniczkowalne na całej swojej dziedzinie określoności.

Dowód. Trywialne i pozostawiamy jako ćwiczenie.

Uwaga 4.5. C^r-różniczkowalność f wystarczy weryfikować tylko dla map z ustalonych atlasów na M i N, co wynika z faktu 4.4

Fakt 4.6. Złożenie gładkich odwzorowań pomiędzy gładkimi rozmaitościami jest gładkie.

Dowód. Ustalmy, z czym tu mamy doczynienia. Niech $f: M \to N$ i $g: N \to P$ będą gładkimi odwzorowaniami między rozmaitościami. Niech $p \in M$, $q = f(p) \in N$, $s = g(q) = g(f(p)) \in P$. Niech (U, ϕ) , (V, ψ) , (W, ξ) będą mapami wokół p, q, s. Wiemy, że $\psi f \phi^{-1}$ i $\xi g \psi^{-1}$ sa gładkie.

Zauważmy, ze na odpowiednio mniejszym otwartym otoczeniu punktu $\phi(p)$ zachodzi następująca równość odwzorowań. Mianowicie, jeśli wyrazimy to złożone odwzorowanie g \circ f w mapach (U, ϕ), (W, ξ), to zachodzi równość:

$$\xi(f \circ g)\phi^{-1} = (\xi g\psi^{-1})(\psi f\phi^{-1})$$

i to jest w jakimś podzbiorze \mathbb{R}^n , więc jest gładkie i rzeczywiste. Stąd złożenie dwóch takich funkcji jest gładkie na pewnym otoczeniu otwartym p. Ale to zachodzi dla dowolnego punktu $p \in M$, skąd wynika globalna gładkość.

Im dalej w las będziemy coraz bardziej leniwi i zamiast pisać dowody pokroju tego co wyżej, będziemy widzieć że to z definicji i nie pisać dowodów $\star \star \star$.

Fakt 4.7. Dla gładkiego odwzorowania $f: M \rightarrow N$, rząd macierzy pierwszych pochodnych cząstkowych

$$\left(rac{\partial (\psi \mathsf{f} \phi^{-1})_{\mathsf{i}}}{\partial \mathsf{x}_{\mathsf{j}}}(\phi(\mathsf{p}))
ight)_{\mathsf{i},\mathsf{j}}$$

nie zależy od wyboru map $(U, \phi), (V, \psi)$ wokół p i f(p).

Dowód. Ćwiczenia

Definicja 4.8. Rzędem f w punkcie $p \in M$ nazywamy rząd macierzy pierwszych pochodnych cząstkowych w punkcie $\phi(p)$.

Rząd w p równy zero określamy też terminem, że pochodna f w p jest zerowa.

Definicja 4.9. Gładkie odwzorowanie f: M → N jest **dyffeomorfizmem**, jeśli jest bijekcją i odwzorowanie odwrotne jest także gładkie. Rozmaitości między którymi istnieje dyfeomorfizm nazywamy dyfeomorficznymi i traktujemy je jako jednakowe.

Fakt 4.10. Dyfeomorficzne rozmaitości mają ten sam wymiar.

Dowód. Ćwiczenia

Uwaga 4.11.

1. C^1 vs C^∞ : pojęcia dyfeomorfizmu można zmodyfikować do C^r -dyfeomorfizmu.

Wcześniej pokazaliśmy, że C^1 -rozmaitość posiada C^1 -zgodną C^∞ strukturę. Jeśli dwie C^∞ -rozmaitości są C^1 -dyfeomorficzne, to są również C^∞ -dyfeomorficzne. Stąd klasyfikacja C^1 -rozmaitości (z dokładnością do C^1 -dyfeomorfizmu) pokrywa się z klasyfikacją C^∞ -dyfeomorfizmów.

2. C^0 vs C^∞ : C^0 dyfeomorfizm to po prostu homeomorfizm.

Wiemy już, że istnieją C^0 -rozmaitości nieposiadające żadnej C^∞ -struktury. Istnieją C^0 -rozmaitości posiadające wiele (parami niedyfeomorficznych) C^∞ struktur.

Milnov pokazał, że istnieją S^n dla $n \geq 7$ takie, że istnieją takie parami niedyfeomorficzne strutktury. Otóż można sobie z tym zjechać do jeszcze niższych wymiarów, mianowicie Freedman i niezaleznie Donadson, że na \mathbb{R}^4 mamy nieprzeliczalnie wiele parami niedyfeomorficznych gładkich struktur. Dla wymiaróww ≤ 3 pokazano, że tak nie można egzotykować.

5. Dyskretne ilorazy rozmaitości gładkich przez grupy dyffeomorfizmów

Definicja 5.1. Grupa G dyfeomorfizmów rozmaitości M to dowolny niepusty zbiór dyfeomorfizmów $g: M \to M$, który jest zamknięty na operację składania i brania odwrotności. Elementem identycznym jest id_M , a odwrotne to dyfeomorfizmy odwrotne. Grupa G działa przez dyfeomorfizmy na rozmaitość M.

Definicja 5.2. Orbita punktu $x \in M$ względem działania G na M nazywamy zbiór

$$G(x) = \{g(x) : g \in G\}$$

Rodzina wszystkich orbit tworzy rozbicie rozmaitości M na podzbiory.

Dwie orbity są albo całkiem rozłączne, albo pokrywają się.

Definicja 5.3. Zbiór orbit to M/G. M/G tak naprawdę oznacze przestrzeń ilorazową działania G na M, czyli przestrzeń topologiczną której elementami są orbity działania G na M, zaś topologia jest ilorazowa . To znaczy, że zbiór orbit jest otwarty w tym ilorazie \iff suma tych orbit tworzy otwarty zbiór w M.

Na przykład, jeśli $U \subseteq M$ jest otwarty, to $G(U)/G := \{G(x) : x \in U\}$, to ten zbiór jest zbiorem otwarty w M/G. Co więcej, każdy otwarty zbiór w M/G ma postać G(U)/G jak wyżej. Czyli jeśli \mathscr{B} jest bazą na M, to wtedy

 $\{G(U)/G: U \in \mathscr{B}\}$

jest bazą w M/G [ćwiczenia].

Wniosek 5.4. Iloraz M/G zawsze posiada przeliczalną bazę na topologii.

6. Pomocnik idiotów:

Skorowidz definicji

1.1 Definicja: rozmaitość topolog-

2.2 Definicja: dyfeomorfizm2.3 Definicja: atlas gładki2.4 Definicja: rozmaitość gładka . .

- 2.5 Definicja: zgodność map, atlasów 2.7 Definicja: atlas maksymalny . .

- 3.2 Definicja: rozdrobnienie3.3 Definicja: parazwartość
- 3.8 Definicja: nośnik funkcji
- 4.1 Definicja: odwzorowanie różniczkowalne w punkcie....
- 4.3 Definicja: globalna C^r-
- 4.9 Definicja: dyfeomorfizm
- 5.1 Definicja: grupa dyfeomorfizmów

Twierdzonkowa zabawa

3

4

6

6

6

7

7

7

9

9

9

10

12

12

13

13

14

14

14

1.4	maitości	
	IIIuitosci	
1.4	Fakt: n-rozmaitość ⇔ rodz-	
	ina map pokrywających	

5

5

8

9

- 1.6 Uwaga: rozmaitości są lokalnie zwarte

- 2.13 Lemat: rozmaitość gładka bez

- zadawać nam prezwarty atlas . 9 3.6 Uwaga: pokrywanie zbiorami prezwartymi 9
- 3.7 Uwaga: sumowanie zwartymi . . 9 3.9 Fakt: nośnikowanie dla \mathbb{R}^n . . . 10
- 3.10 Twierdzenie: o rozkładzie jedności 10
 4.2 Fakt: różniczkowalność dla dowolnej ←⇒ dla jednej 12
- dowolnej ⇔ dla jednej 12 4.4 Fakt: równoważna def globalnej C^r-różniczkowalności 12
- 4.5 Uwaga: weryfikowalnie C^r 12
 4.6 Fakt: złożenie gładkich jest aładkie 12
- 4.10 Fakt: wymiar dyfeomorficznych . 13 4.11 Uwaga: dygresja o dyfeomorfiz-