Eric Edward Bryant, PhD

EricBryantPhD@gmail.com • EricBryantPhD.com • (408) 204-1201 • NYC • LA • Bay Area

Education & Experience

2020-Pres. Amgen, Postdoctoral Research Fellow

Role: Developed and executed a research plan studying the genetics of mammalian

recombinant protein expression using CRISPR methods and transcriptomics.

Groups: Mammalian Expression & Cell Engineering / Integrated Protein Design

Managers: Irwin Chen & Rene Hubert

Keywords: High-throughput mammalian expression / NGS / RNAseq / Arrayed & pooled CRISPR

screening / Protein Engineering / Multispecifics / Biologics Discovery

2020 Spring Roche/Genentech (Contract), Clinical Genomics Data Science Consultant

Role: Evaluated variant calling from RNAseq while on short-term contract.

Department: Pharma Research & Early Development Informatics (pREDi)

Managers: Venus So & Vitalay Fomin

Keywords: Genome Analysis Toolkit (GATK) / RNAseq / Real World Data / High-performance

computing cluster (HPC) / Bioinformatics / CWL, Nextflow, Seven Bridges Genomics

2011-'18 PhD, Columbia University

Department: GSAS Biological Sciences

Thesis: Systems genetics of DNA damage tolerance —

cisplatin, RAD5 & CRISPR-mediated nonsense

Mentor: Rodney Rothstein
Co-Mentor: Alberto Ciccia

Committee: Songtao Jia, Elizabeth Miller & Matthew Weitzman

Keywords: Systems genetics / Genetic interaction networks / Landscape enrichment

analysis / Synthetic lethality / DNA replication, recombination & repair /

Chromosome mobility / CRISPR iSTOP / Bioinformatics / R statistical programming,

package and shiny app development

2009-'11 Gene Oracle, Research Assistant

Role: De-novo gene synthesis & degenerate codon library construction.

2006–'09 BS, University of California Los Angeles

Department: UCLA Microbiology, Immunology & Molecular Genetics

Software examples

screenmill R package: capture, annotate, quantify, review and analyze time-series

colony growth. This package was used for colony quantification and interaction analysis in Bryant et al. *NAR* 2019. A nice example analysis using screenmill can be found in Figure 1D. A

shiny app is included to enable manual review of processed images.

2017 iSTOP R package: design guides to introduce stop codons with CRISPR-mediated

base editors. This package was written to facilitate guide design for Billon et al. *Mol. Cell* 2017. iSTOP can be configured to generate any desired missense mutation using any hypothetical base editor. This package was used to design a base editing library for Cuella-Martin et al. *Cell* 2021.

Awards

2018	Departmental distinction for PhD dissertation defense
2017—'18	TL1 NIH training grant, clinical and translational research
2016—'17	T32 NIH training grant, cancer biology
2013—'15	T32 NIH training grant, biological sciences
2013	James Howard McGregor award (student with unusual promise as a teacher of zoology)

Publications

Lead contribution

Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin 2019-09-26 sensitivity and genome instability.

Bryant EE, Šunjevarić I, Berchowitz L, Rothstein R, Reid RJD.

Nucleic Acids Research. 2019 Sep 26;47(17):9144—9159

PMID: 31350889 - PMCID: PMC6753471 - DOI: 10.1093/nar/gkz631

Systems genetics of DNA damage tolerance - Cisplatin, RAD5 & CRISPR-mediated nonsense. 2019-01-09

Bryant EE.

Columbia University.

DOI: 10.7916/d8-k1d0-kb09

CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through 2017-09-21 induction of STOP codons.

Billon P*, Bryant EE*, Joseph SA, Nambiar TS, Hayward SB, Rothstein R, Ciccia A.

Molecular Cell. 2017 Sep 21:67(6):1068—1079.e4

PMID: 28890334 - PMCID: PMC5610906 - DOI: 10.1016/j.molcel.2017.08.008

*co-first authors

Supporting contribution

Temporal coordination between chromosome mobility and homologous recombination. 2022-03-24 Joseph F, Lee SJ, **Bryant EE**, Reid RJD, Šunjevarić I, Rothstein R. BioRxiv: 10.1101/2022.03.24.485580v1 - DOI: 10.1101/2022.03.24.485580

Functional interrogation of DNA damage response variants with base editing screens. 2021-02-18 Cuella-Martin R, Hayward SB, Fan X, Chen Xiao, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A.

Cell. 2021 Feb 18;184(4):1081-1097.e19.

PMID: 33606978 - PMCID: PMC8018281 - DOI: 10.1016/j.cell.2021.01.041

* Acknowledged for bioinformatics support. I designed the CRISPR base editing guide library.

Measuring chromosome pairing during homologous recombination in yeast. 2020-08-26

Joseph F, Lee SJ, Bryant EE, Rothstein R.

Methods in Molecular Biology. 2021;2153:253—265.

PMID: 32840785 - DOI: 10.1007/978-1-0716-0644-5_18

DNA damage triggers increased mobility of chromosomes in G1 phase cells. 2019-10-01

Smith MJ, **Bryant EE**, Joseph FJ, Rothstein R.

Molecular Biology of the Cell. 2019 Oct 1;30(21):2620—2625

PMID: 31483739 - PMCID: PMC6761769 - DOI: 10.1091/mbc.E19-08-0469

Increased chromosomal mobility after DNA damage is controlled by interactions between the 2018-09-01

recombination machinery and the checkpoint.

Smith MJ, Bryant EE, Rothstein R.

Genes & Development. 2018 Sep 1;32(17-18):1242-1251

PMID: 30181361 - PMCID: PMC6120718 - DOI: 10.1101/gad.317966.118

A synthetic dosage lethal genetic interaction between CKS1B and PLK1 is conserved in yeast and 2016-10-01 human cancer cells.

Reid RJD, Du X, Šunjevarić I, Rayannavar V, Dittmar J, Bryant EE, Maurer M, Rothstein R.

Genetics. 2016 Oct 1;204(2):807-819

PMID: 27558135 - PMCID: PMC5068864 - DOI: 10.1534/genetics.116.190231