From Data to Insights - Exercise sheet 12

discussed July 11 and 12

July 5, 2024

1 Gibbs sampling a Bayesian Hierarchical Model

The mean value μ of a Gaussian is drawn from a wide, uniform distribution. From the Gaussian defined by this μ and a standard deviation $\sigma = 1$, the true value t of a parameter is drawn. A measurement x is equal to t with a Gaussian random error with mean 0 and standard deviation of 1.

- 1. Draw a PGM that describes this process.
- 2. Write a Python code that enables Gibbs sampling of the joint posterior of μ and t given an observed x=2.
- 3. Plot the resulting samples as a 2d and a 1d histogram and give a verbal interpretation of what the posterior looks like.
- 4. Describe qualitatively how the algorithmic and computational difficulty of this sampling compares to what you would have to do if you wanted to sample the posterior of μ and t with the Metropolis-Hastings algorithm.

Hint: This can be done with 20 lines of Python code or less. If you would like a starting point, this how the core of your algorithm could look.

```
x = 2 # the data are fixed
nsamples=10000
# random starting point - let's pick mu=t=0
mu = np.zeros(nsamples)
t = np.zeros(nsamples)

for i in np.arange(1,nsamples):
    t[i] = sample_p_t_given_mu_x(mu[i-1],x)
    mu[i] = sample_p_mu_given_t_x(t[i],x)
    # need to implement these functions
```

2 Probabilistic Graphical Models

Draw a PGM for the following experiments:

- A) An object whose flux F_g is drawn from a Gamma distribution with fixed shape and rate parameters α, β is observed with a CCD to produce N analog-digital units of count. The conversion of flux to expected count is $\mu = \langle N \rangle = C \cdot F_g$ in the instrument setup you have used.
- B) An object whose flux is drawn from a Gamma distribution with fixed parameters α_g, β_g is observed with a photon counter, with an additive background signal that is drawn from a Gamma distribution with different fixed parameters α_b, β_b . The count is N_s . In addition, a flux measurement with equal setup is made in an empty region of sky, leading to a count of purely background signal of N_b .
- C) Any other experiment.

3 Variational inference

A parameter t has its value drawn from an Exponential distribution with $\lambda = 1$. x is a measurement of t with a Gaussian random error with mean 0 and standard deviation of 1.

Using variational inference to analytically derive an approximation to the posterior of t in this setting. For this, assume as the family of posteriors the Exponential distributions with free parameters λ .

Hint: You could use the lecture notes of lecture 11 or (probably even better) this Youtube channel by TUM graduate studente Felix Koehler https://www.youtube.com/@MachineLearningSimulation.