Tópicos de Matemática Discreta

______ 1.º teste — 28 de outubro de 2015 — _____ duração: 2 horas ______

- 1. Considere as fórmulas $\varphi: (\neg p_0 \lor p_1) \leftrightarrow (p_0 \to (p_1 \land \neg p_1))$ e $\psi: (p_1 \to p_0) \to \neg p_0$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) A fórmula φ é uma tautologia ou uma contradição.
 - (b) A fórmula φ tem valor lógico 0 sempre que a fórmula ψ tem valor lógico 0.
- 2. Considerando que p representa a proposição $\forall_{a \in A} (a \ge 0 \to \exists_{b \in B} (a = 2b \lor a^2 = a)),$
 - (a) Verifique se p é verdadeira para $A = \{-2, 0, 1, 4\}$ e $B = \{0, 2, 4\}$. Justifique.
 - (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. (a) Sejam p e q proposições. Diga, justificando, se a sequinte afirmação é ou não verdadeira: Para provar que $p \leftrightarrow q$ é verdadeira, basta provar que se p é verdadeira, então q é verdadeira.
 - (b) Seja A um conjunto de números inteiros com, pelo menos, 3 elementos. Mostre que é possível encontrar elementos distintos m e n de A tais que m-n é par.
- 4. Considere os conjuntos

$$A = \{1, \{4\}\}, \quad B = \{n^2 \mid n \in \mathbb{N} \land 2n < 5\}, \quad C = \{1, 2, 4\} \text{ e } D = \{x \in \mathbb{N} \mid \sqrt{x} \in C\}.$$

- (a) Determine $B \in D$.
- (b) Verifique se $(1,4,1) \in C \times (A \cap C) \times A$. Justifique.
- (c) Determine $\mathcal{P}(A)$.
- 5. Diga, justificando, se, para quaisquer conjuntos $A, B \in C$, cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) $\{\emptyset\} \subseteq A$.
 - (b) Se $A \in B$ e $B \subseteq C$, então $A \in C$.
 - (c) $\mathcal{P}(A) \cap A = \emptyset$.
 - (d) Se $A \times B = A \times C$, então B = C.
- 6. Sejam A, B e C conjuntos. Mostre que se $A \cap B = A \cap C$ então $(A \cap B) \setminus C = \emptyset$.

Cotações	1.	2.	3.	4.	5.	6.
	1.75 + 1.75	1.75 + 1.75	1,25+1,75	1+1+1	1,25+1,25+1,25+1,25	2