Exercício 1: Correspondência OSI ↔ TCP/IP

OSI (7 camadas)	TCP/IP (4 camadas)	Correspondência	
Aplicação	Aplicação	Direta	
Apresentação	Aplicação	Integrada na camada de Aplicação	
Sessão	Aplicação	Integrada na camada de Aplicação	
Transporte	Transporte	Direta	
Rede	Internet	Direta	
Enlace de Dados	Acesso à Rede	Integrada	
Física	Acesso à Rede	Integrada	

Duas Limitações Práticas do Modelo OSI:

- 1. **Complexidade excessiva**: O modelo OSI possui 7 camadas, sendo que as camadas de Aplicação, Apresentação e Sessão raramente são implementadas separadamente na prática. Esta separação teórica não reflete a implementação real dos protocolos, tornando o modelo mais complexo do que necessário.
- 2. **Falta de flexibilidade**: O modelo OSI foi desenvolvido antes da ampla adoção da Internet e não se adaptou bem às necessidades práticas das redes modernas. O TCP/IP, sendo mais simples e pragmático, tornou-se o padrão de facto, enquanto o OSI permaneceu mais como modelo de referência teórico.

Exercício 2: Protocolos e suas Camadas

Protocolo	OSI	TCP/IP	Justificação
IP	Rede (3)	Internet	Protocolo responsável pelo endereçamento
			lógico e roteamento de pacotes
HTTP	Aplicação	Aplicação	Protocolo de transferência de hipertexto para
	(7)		comunicação web
TCP	Transporte	Transporte	Protocolo de transporte orientado à conexão,
	(4)		garante entrega confiável
ARP	Enlace (2)	Acesso à	Resolve endereços IP em endereços MAC
		Rede	(físicos)
DNS	Aplicação	Aplicação	Serviço de resolução de nomes de domínio em
	(7)	_	endereços IP

Por que alguns protocolos podem ser usados em múltiplas camadas?

Alguns protocolos como o **ARP** operam entre camadas porque precisam interagir com informações de diferentes níveis. O ARP, por exemplo, trabalha entre a camada de Rede (usando endereços IP) e a camada de Enlace (usando endereços MAC), fazendo a ponte entre o endereçamento lógico e físico.

Exercício 3: Acesso a www.ujc.ac.mz

a) Percurso da solicitação HTTP:

Modelo OSI (descendente):

- 1. Aplicação: Navegador cria requisição HTTP
- 2. Apresentação: Formatação e criptografia (HTTPS/TLS)
- 3. **Sessão**: Estabelecimento de sessão
- 4. **Transporte**: Segmentação TCP, controle de fluxo

5. **Rede**: Encapsulamento IP, roteamento

6. Enlace: Enquadramento Ethernet, endereçamento MAC

7. **Física**: Transmissão de bits pela rede

Modelo TCP/IP (descendente):

1. **Aplicação**: HTTP/DNS

2. Transporte: TCP3. Internet: IP

4. Acesso à Rede: Ethernet

b) Protocolos e PDUs por Camada:

Camada	Protocolo	PDU	Exemplo
OSI			
Aplicação	HTTP,	Dados/Mensagem	GET /index.html HTTP/1.1
	DNS		
Apresentação	SSL/TLS	Dados	Dados criptografados
Sessão	-	Dados	Controle de sessão
Transporte	TCP	Segmento	Segmento TCP com portas 443/80
Rede	IP	Pacote/Datagrama	Pacote IP com endereços
			origem/destino
Enlace	Ethernet	Quadro/Frame	Frame Ethernet com MACs
Física	-	Bits	Sinais elétricos/ópticos

c) Duas vantagens do TCP/IP sobre OSI:

- Simplicidade e praticidade: O TCP/IP agrupa funcionalidades relacionadas em menos camadas (4 vs 7), facilitando a implementação e manutenção. As camadas de Aplicação, Apresentação e Sessão do OSI são tratadas como uma única camada de Aplicação no TCP/IP.
- 2. **Adoção universal**: O TCP/IP é o protocolo base da Internet e tem implementações padronizadas e testadas em todos os sistemas operacionais e dispositivos. É um modelo pragmático que surgiu da prática, enquanto o OSI foi um modelo teórico que tentou ser imposto posteriormente.

Exercício 4: Diagnóstico de Rede

Configuração Original:

Dispositivo	Endereço IP	Máscara	Gateway
PC1	192.168.1.10	255.255.255.0	192.168.1.1
PC2	192.168.2.20	255.255.255.0	192.168.1.1
Router Fa0/0	192.168.1.1	-	-
Router Fa0/1	192.168.2.1	-	-

a) Problemas Identificados:

Problema Principal: O gateway do PC2 está incorreto. PC2 está na rede 192.168.2.0/24 mas tem como gateway 192.168.1.1, que pertence à rede 192.168.1.0/24. O gateway deve estar na mesma sub-rede do host.

b) Configuração Corrigida:

PC2 deve ter:

Endereço IP: 192.168.2.20Máscara: 255.255.255.0

• Gateway: **192.168.2.1** (interface Fa0/1 do router)

Justificação: O gateway (default gateway) é o endereço do router na mesma sub-rede local do host. PC2 está conectado à rede 192.168.2.0/24, portanto seu gateway deve ser 192.168.2.1.

c) Comandos de Diagnóstico:

- 1. ping 192.168.2.1 Testa conectividade com o gateway local
- 2. ping 192.168.1.10 Testa conectividade entre PC2 e PC1
- 3. **tracert 192.168.1.10** (Windows) ou **traceroute 192.168.1.10** (Linux) Mostra o caminho até PC1
- 4. **ipconfig** (Windows) ou **ifconfig** (Linux) Verifica a configuração de rede

Exercício 5: Análise do IP 192.168.100.25/26

a) Máscara Decimal e Binária:

Decimal: 255.255.255.192

Binária: 11111111.11111111.111111111.11000000

Cálculo: /26 significa 26 bits em 1

- Primeiro octeto: 11111111 = 255
- Segundo octeto: 11111111 = 255
- Terceiro octeto: 11111111 = 255
- Quarto octeto: 11000000 = 128 + 64 = 192

b) Endereco da Sub-rede:

Decimal: 192.168.100.0

Binário:

IP: 11000000.10101000.01100100.00011001 (192.168.100.25)

Máscara: 11111111.11111111.11111111.11000000 (255.255.255.192)

AND: 11000000.10101000.01100100.00000000 (192.168.100.0)

Cálculo: Aplicando AND bit a bit entre IP e máscara, os últimos 6 bits do IP são zerados, resultando em 192.168.100.0

c) Endereço de Broadcast:

192.168.100.63

Cálculo:

- Sub-rede: 192.168.100.0
- Com /26, temos $2^6 = 64$ endereços (0-63)
- Broadcast = último endereço = 192.168.100.0 + 63 = 192.168.100.63

d) Intervalo de IPs Válidos:

192.168.100.1 a 192.168.100.62

- Primeiro IP utilizável: endereço de rede + 1 = 192.168.100.1
- Último IP utilizável: broadcast 1 = 192.168.100.62

e) Quantidade de Hosts Suportados:

62 hosts

Cálculo:

- Bits de host: 32 26 = 6 bits
- Total de endereços: $2^6 = 64$
- Hosts utilizáveis: 64 2 = 62 (excluindo rede e broadcast)

f) Por que confundir /26 com /25?

É comum confundir /26 com /25 porque:

- 1. Proximidade numérica: Os valores são consecutivos e próximos
- 2. **Máscara de /25**: 255.255.255.128 (128 endereços, 126 hosts)
- 3. **Máscara de /26**: 255.255.255.192 (64 endereços, 62 hosts)

- 4. **Padrão binário**: /25 tem 1 bit de host a mais (7 bits vs 6 bits), o que dobra a capacidade
- 5. **Potências de 2**: 128 e 64 são potências consecutivas de 2, facilitando erros de cálculo mental

Exercício 6: Divisão de 192.168.10.0/24 em 4 Sub-redes

a) Nova Máscara de Sub-rede:

255.255.255.192 ou /26

Cálculo:

• Para 4 sub-redes: $2^n \ge 4 \rightarrow n = 2$ bits necessários

• Máscara original: /24

Nova máscara: /24 + 2 = /26
Decimal: 255.255.255.192

b) Intervalos de Endereços:

Sub-	Endereço de	Primeiro IP	Último IP	Broadcast
rede	Rede	Utilizável	Utilizável	
1	192.168.10.0	192.168.10.1	192.168.10.62	192.168.10.63
2	192.168.10.64	192.168.10.65	192.168.10.126	192.168.10.127
3	192.168.10.128	192.168.10.129	192.168.10.190	192.168.10.191
4	192.168.10.192	192.168.10.193	192.168.10.254	192.168.10.255

Cálculo: Cada sub-rede tem $2^6 = 64$ endereços (incrementos de 64)

c) Endereços de Broadcast:

• Sub-rede 1: **192.168.10.63**

• Sub-rede 2: **192.168.10.127**

• Sub-rede 3: **192.168.10.191**

• Sub-rede 4: 192.168.10.255

Exercício 7: Divisão de 10.0.0.0/24 em 8 Sub-redes

a) Nova Máscara:

255.255.255.224 ou /27

Cálculo:

• Para 8 sub-redes: $2^n \ge 8 \rightarrow n = 3$ bits necessários

• Máscara original: /24

• Nova máscara: $\sqrt{24 + 3} = \sqrt{27}$

b) IPs por Sub-rede:

32 endereços por sub-rede (30 hosts utilizáveis)

Cálculo:

Bits de host: 32 - 27 = 5 bits
 Total: 2⁵ = 32 endereços

• Hosts: 32 - 2 = 30

c) Endereços da 1.ª e 8.ª Sub-rede:

1.ª Sub-rede:

• Endereço de rede: **10.0.0.0**

• Broadcast: 10.0.0.31

• Range: 10.0.0.1 a 10.0.0.30

8.^a Sub-rede:

• Endereco de rede: 10.0.0.224

• Broadcast: 10.0.0.255

• Range: 10.0.0.225 a 10.0.0.254

Cálculo: Incrementos de 32 (0, 32, 64, 96, 128, 160, 192, 224)

d) Sub-redes como Prática de Segurança:

O uso de sub-redes é considerado prática de segurança por:

- 1. **Segmentação de rede**: Isola diferentes departamentos/funções, limitando o escopo de ataques
- 2. **Controle de broadcast**: Reduz domínios de broadcast, melhorando performance e limitando propagação de tráfego malicioso
- 3. Aplicação de políticas: Permite ACLs (Access Control Lists) específicas entre subredes
- 4. Contenção de ameaças: Limita a propagação de malware e ataques laterais
- 5. **Princípio do menor privilégio**: Cada sub-rede pode ter acesso apenas aos recursos necessários

Exercício 8: Análise e Correção da Divisão de 172.16.0.0/24

a) Verificação da Validade:

A divisão proposta é INVÁLIDA

b) Identificação dos Erros:

Erro Principal: A proposta apresenta 6 sub-redes com máscara /26, mas:

- Cada sub-rede /26 tem 64 endereços (2^6)
- Com 6 sub-redes \times 64 = 384 endereços necessários
- Mas o bloco /24 tem apenas 256 endereços disponíveis (2^8)

Erro Específico: A sub-rede 172.16.0.224/26 extrapola o bloco original:

- 172.16.0.224/26 vai de 172.16.0.224 a 172.16.0.255 (dentro do bloco)
- Mas 172.16.0.160/26 sobrepõe incorretamente o espaço

Análise das propostas:

- $172.16.0.0/26 \rightarrow 0 \text{ a } 63 \checkmark$
- $172.16.0.64/26 \rightarrow 64 \text{ a } 127 \checkmark$
- $172.16.0.128/26 \rightarrow 128 \text{ a } 191 \checkmark$
- 172.16.0.160/26 → 160 a 223 X (sobrepõe com anterior)
- 172.16.0.192/26 → 192 a 255 X (sobrepõe)
- $172.16.0.224/26 \rightarrow 224 \text{ a } 287 \text{ X (excede o bloco } /24)$

c) Divisão Correta para 6 Sub-redes:

Para dividir 172.16.0.0/24 em 6 sub-redes, precisamos usar **VLSM** (Variable Length Subnet Mask):

Opção 1: Máscara /27 (permite 8 sub-redes, usar 6)

Cada sub-rede /27 tem 32 endereços (30 hosts):

Sub-rede	Endereço de Rede	Máscara	Range Utilizável	Broadcast
1	172.16.0.0	/27	172.16.0.1 - 172.16.0.30	172.16.0.31
2	172.16.0.32	/27	172.16.0.33 - 172.16.0.62	172.16.0.63
3	172.16.0.64	/27	172.16.0.65 - 172.16.0.94	172.16.0.95
4	172.16.0.96	/27	172.16.0.97 - 172.16.0.126	172.16.0.127
5	172.16.0.128	/27	172.16.0.129 - 172.16.0.158	172.16.0.159
6	172.16.0.160	/27	172.16.0.161 - 172.16.0.190	172.16.0.191

Cálculo:

• Para 6 sub-redes: $2^n \ge 6 \rightarrow n = 3$ bits (permite até 8 sub-redes)

- Nova máscara: /24 + 3 = /27
- Máscara decimal: 255.255.255.224
- Cada sub-rede: $2^5 = 32$ endereços
- Total usado: $6 \times 32 = 192$ endereços (restam 64 endereços disponíveis)

Por que /26 não funciona para 6 sub-redes?

- /26 fornece apenas 4 sub-redes $(2^2 = 4)$
- Seria necessário $\frac{27}{27}$ ($\frac{2^3}{8}$ sub-redes) para acomodar 6 sub-redes

Resumo de Fórmulas Importantes

Cálculo de Sub-redes:

- Número de sub-redes: 2ⁿ (n = bits emprestados)
- Hosts por sub-rede: $2^h 2$ (h = bits de host)
- Incremento: 256 último octeto da máscara

Máscara em binário:

- /24 = 255.255.255.0 = 11111111.11111111.11111111.000000000
- /27 = 255.255.255.224 = 11111111.11111111.11111111.11100000