Discrete

Logic

Symbol	Meaning	
~ <i>p</i>	Not p	
$p \wedge q$	p and q	conjunction of p and q
$p \lor q$	p or q	disconjunction of p and q
$p \oplus q$ or $p XOR q$	p or q but not both p and q	exclusive or of p and q
$P \equiv Q$	P is logically equivalent to Q	
$p \rightarrow q$	Implication p implies q	If p then q
$p \leftrightarrow q$	p iff q (iff: if and only if)	biconditional of p and q
$p \Leftrightarrow q$	Equivalence of p and q	
P(x)	Predicate in <i>x</i>	
$P(x) \Rightarrow Q(x)$	Every element in the truth set fo	P(x) is in the truth set for $Q(x)$
$P(x) \Leftrightarrow Q(x)$	P(x) and $Q(x)$ have identical	truth sets
A	For all	
3	There exists	
3!	Uniqueness quantification	
F	Contradiction	
T	Tautology	
••	therefore	
$p\{S\}q$	Partial correctness of S	

Number Theory

Symbol	Meaning
a b	a divides b
a/b	a does not divide b
a div b	Integer quotient of a divided by b
$\gcd(a,b)$	Greatest common divisor of a and b
lcm(a,b)	Least common multiply of a and b
	Absolute value of x
$x \cong y$	x is approximately equal to y
a mod b	Integer remainder of a divided by b
$a \equiv b \pmod{m}$	a is congruent to b modulo m.
$a \not\equiv b \pmod{m}$	a is not congruent to b modulo m.
$\left(a_n a_{n-1} \cdots a_1 a_0\right)_b$	Base b representation

Symbol	Meaning
$a \in A$	a is an element of A
a ∉ A	\boldsymbol{a} is not an element of \boldsymbol{A}
$\left\{a_1, a_2, \cdots, a_n\right\}$	The set with elements a_1, a_2, \dots, a_n
$\big\{x\in D\mid P(x)\big\}$	Sets of all x in D for which $P(x)$ is true
\mathbb{R}	All real numbers
\mathbb{R}^+ , \mathbb{R}^- , $\mathbb{R}^{nonnegative}$	Positive / Negative / nonnegative real numbers
\mathbb{Z}	Sets of all integers
Q	Rational numbers
<u>C</u>	Complex numbers
N	Natural numbers
$A \subset B$	A is a proper subset of B
$A \subseteq B$	A is a subset of B
$A \not\subseteq B$	A is not a subset of B
A = B	A equals B
$A \cup B$	A union B
$A \cap B$	A intersect B
B-A	Difference of <i>B</i> minus <i>A</i>
A^c, \bar{A}	Complement of A
(x, y)	Ordered pair
(x_1, x_2, \dots, x_n)	Ordered <i>n</i> -tuple
$A \times B$	Cartesian product of A and B
$A_1 \times A_2 \times \cdots \times A_n$	Cartesian product of A_1, A_2, \dots, A_n
Ø	Empty set or Null set
$\mathscr{P}(A)$	Power set of A
(a, b), [a, b]	Open, closed intervals
$\bigcup_{i=1}^{n} A_{i}$	Union of A_i , $i = 1, 2, \dots, n$
$\bigcap_{i=1}^{n} A_{i}$	Intersection of A_i , $i = 1, 2, \dots, n$
$A\ominus B$ $A\oplus B$ $A\Delta B$	Symmetric difference of <i>A</i> and <i>B</i>
× ₀	Cardinality of a countable set
S	Cardinality of \mathbb{R}

Sequences

Symbol	Meaning
•••	And so forth
$\sum_{k=m}^{n} a_{k}$	Summation from k equals m to n of a_k
$\prod_{k=m}^{n} a_k$	Product from k equals m to n of a_k
n!	n factorial

Counting and Probaility

Symbol	Meaning	
N(A)	Number of element in set A	
P(E)	Probability of a set E	
P(n, r)	Number of <i>r</i> -permutation of a set of <i>n</i> elements	
P(E F)	Conditional probability of E given F	
$C(n, r) \binom{n}{r}$	n choose r , the number of r -combination of a set of n elements	
$\binom{n}{r}$	Binomial coefficient n over r	
E(X)	Expected value of the random variable <i>X</i>	
$C(n; n_1, n_2, \dots, n_m)$	Multinomial coefficient	
$N(P_{i1}P_{i2}\dots P_{in})$	Number of elements having properties P_{ij} , $j = 1,,n$	
$N(P'_{i1} \dots P'_{in})$	Number of elements not having properties P_{ij} , $j = 1,,n$	
ϵ	Null string	

Functions

Symbol	Meaning	
$f: X \to Y$	f is a function from X to Y	
f(x)	Value of f at x	
$x \xrightarrow{f} y$	f sends x to y	
f(A)	Image of A	
$f^{-1}(x)$	Inverse of f	
I_{X}	Identity function of X	
b^{x}	b raised to the power x	
$\log_b(x)$	Logarithm with base b of x	
$f\circ g$	Composition of g and f	
$f_1 + f_2$	Sum of the functions f_1 and f_2	
$f_1 f_2$	Product of the functions f_1 and f_2	
$\underline{f(S)}$	Image of the set S under f	
	Floor function of x	
$\lceil x \rceil$	ceiling function of x	
a_n	Term of $\{a_i\}$ with subscript n	
$\sum_{a \in S} a_{\alpha}$	Sum of a_{α} over $\alpha \in S$	
$\min(x, y)$	Minimum of x and y	
$\max(x, y)$	Maximum of x and y	
~	Approximately equal to	

Relations

Symbol	Meaning	
x R y	x is related to y by R	
R^{-1}	Inverse relation of <i>R</i>	
R^n	n^{th} power of the relation R	
R^*	connectivity relation R	
$m \equiv n \pmod{d}$	m is congruent to n modulo d	
[a]	Equivalence class of a	
$\begin{bmatrix} a \end{bmatrix}_R$	Equivalence class of a with respect to R	
$\begin{bmatrix} a \end{bmatrix}_m$	congruence class modulo m	
Z_{n}	Set of equivalence classes of integers modulo <i>n</i>	
$S \circ R$	Composite of the relation R and S	
$J_{P}(R,S)$	Join	
Δ	Diagonal relation	
<i>x</i> < <i>y</i>	x is less than y	
$x \le y$	x is less than or equal to y	
x > y	x is greater than y	
$x \ge y$	x is greater than or equal to y	

Graphs and Trees

Symbol	Meaning	
V(G)	Set of vertices of a graph G	
E(G)	Set of edges of a graph G	
G = (V, E)	Graph with vertex set V and edge set E	
(v, w)	Directed edge	
$\{v, w\}$	(undirected) Edge joining v and w in a simple graph	
K_{n}	Complete graph on <i>n</i> vertices	
$K_{m,n}$	Complete bipartite graph on (m, n) vertices	
deg(v)	Degree of vertex v	
$v_0 e_1 v_1 e_2 \dots e_n v_n$	Walk from v_0 to v_n	
$G_1 \cup G_2$	Union of G_1 and G_2	

Matrices

Symbol	Meaning
$ [a_{ij}]$	Matrix with entries a_{ij}
A + B	Matrix sum of A and B
AB	Matrix product of A and B
I_{n}	Identity matrix of order <i>n</i>
$A \vee B$	Join of A and B
$A \wedge B$	The meet of \boldsymbol{A} and \boldsymbol{B}
$A \odot B$	Boolean product of \boldsymbol{A} and \boldsymbol{B}
$A^{[n]}$	n^{th} Boolean power of A

Boolean Algebra

Symbol	Meaning
В	{0, 1}
\overline{x}	Complement of the Boolean variable x
$x \cdot y \ (or \ xy)$	Boolean product of x and y
x + y	Boolean sum of x and y
F^d	Dual of F
x y	x NAND y
$x \downarrow y$	x NOR y
$x \longrightarrow \overline{x}$	inverter
$x \rightarrow x + y$	OR gate
x y x	AND gate
⇒ ~	NOR $\overline{x+y}$
⊐⊃⊷	NAND $\overline{x \cdot y}$
	$XOR x \oplus y$
⇒>-	$\overline{XNOR} \ \overline{x \oplus y} \ or \ x \odot y$

Languages and Finite-State Machines

Symbol	Meaning	
xy	Concatenation of x and y	
λ	Empty string	
l(x)	Length of the string x	
(V,T,S,P)	Phrase – structure grammar	
$w \rightarrow w_1$	production	
$w_1 \Rightarrow w_2$	w_2 is directly derivable from w_1	