Introducción a datos espaciales con R

David Montero Loaiza - Frank David Montenegro Hurtado

DATOS ESPACIALES

¿Qué son los datos espaciales?

Todo puede ubicarse en un punto o en un conjunto de estos sobre el espacio...

¿Cómo situarnos en el espacio? Latitud y longitud

Datos e
información
asociada explícita
o implícitamente a
una localización
en la tierra

Líneas del MIO Red vial Red fluvial Perímetros

Ciudades Comunas Barrios Predios Áreas de interés

La información espacial es una representación del mundo real

TIPOS DE DATOS ESPACIALES

Vector | Ráster

Vector

Puntos

Líneas

Polígonos

Ráster

Ráster Stack (Multibanda)

List of cell values

[1111122431122243612225466222543662252446625525443544525444444254]

Geometría

Información asociada

Sistema de referencia de coordenadas

X2,Y2

Objetos espaciales

HERRAMIENTAS SIG

Software de gestión SIG

Geoprocesamiento de datos vectoriales

Union

Interseccion

Buffer

Disolver

Diferencia

Cortar

Margen

Geoprocesamiento de datos ráster

Resample

Reclasificación

Value = NoData

Máscara

GEOPROCESAMIENTO EN R

¿Por qué usar R?

- R es gratis, potente y fácil de manejar, incluso para los nuevos useRs
- Procesamiento y visualización de datos espaciales
- Incremento de paquetes para datos espaciales
- Análisis de información espacial
- Fácil intercambio de objetos con formatos GIS
- Automatización de geoprocesos
- Integración con otros software de manipulación de datos espaciales como QGIS, ArcGIS, SAGA, GRASS, PostGIS, ect.

Objetos vectoriales en R

Sin atributos:

- SpatialPoints
- SpatialLines
- SpatialPolygons

Con atributos:

- SpatialPointsDataFrame
- SpatialLinesDataFrame
- SpatialPolygonsDataFrame

> require(raster)

> shpValle = shapefile("...dir/valle.shp") # LEER ARCHIVO SHAPEFILE

> shpValle

class : SpatialPolygonsDataFrame

features : 98

extent : 948953.4, 1152268, 833922.6, 1048486 (xmin, xmax, ymin, ymax)

coord. ref.: +proj=tmerc +lat_0=4.599047222222222 +lon_0=-77.08091666666667 +k=1 +x_0=1000000 +y_0=1000000

+ellps=intl +units=m +no defs

variables: 8

names : AREA, PERIMETER, GEODIV_, GEODIV_ID, SIMBOLO, SYMBOL, COD_DANE, NOM_MUNI

min values : 0.00001, 0.01243, 1000, 11538321, CABECE, 0, 76, ALCALÃ max values : 0.50352, 11.43106, 997, 11555635, NO/APL, 25, 76, ZARZAL

> plot(shpValle)

- > require(sp)
- > spplot(shpValle, zcol = "AREA")


```
> require(sp)
> shpPoi = shapefile("...dir/CBD URB PUNTO.shp")
> compareCRS(shpValle,shpPoi) # COMPARAR SISTEMA DE REFERENCIA ENTRE 2 SHP
[1] FALSE
> crs(shpValle)
CRS arguments:
+proj=tmerc +lat 0=4.599047222222222 +lon 0=-77.08091666666667 +k=1 +x 0=1000000 +y 0=1000000 +ellps=intl
+units=m +no defs
> crs(shpPoi)
CRS arguments:
+proj=longlat +datum=WGS84 +no defs +ellps=WGS84 +towgs84=0,0,0
> shpValle = spTransform(shpValle,crs(shpPoi)) # REPROYECTAR
> compareCRS(shpValle,shpPoi)
[1] TRUE
> plot(shpValle)
```

> plot(shpPoi,add = T,col = "red",pch = ".")

- > require(rgeos)
- > shpPoi2 = shpPoi[runif(10,1,length(shpPoi)),] # SELECCIONAR 10 OBJETOS ALEATORIOS
- > shpPoi2 = spTransform(shpPoi2,CRS("+init=epsg:3115")) # REPROYECTAR A COORDENADAS PLANAS
- > shpValle = spTransform(shpValle,CRS("+init=epsg:3115"))
- > shpBuf = gBuffer(shpPoi2,width = 10000) # BUFFER A 10,000 m (10 km)
- > plot(shpValle)
- > plot(shpBuf,add = T,col = "red")
- > plot(shpPoi2,add = T,col = "blue")

UNION

> shpUn = gUnion(shpValle,shpBuf,byid = T)

> plot(shpUn)

INTERSECCIÓN

> shpIn = gIntersection(shpValle,shpBuf)

> plot(shpln)

DIFERENCIA

> shpDif = gDifference(shpValle,shpBuf)

> plot(shpDif)

CORTE

> shpCor = crop(shpValle,shpBuf)

> plot(shpCor)

DISOLVER

> require(rmapshaper)

> shpDis = ms_dissolve(shpValle)

> plot(shpDis)

Objetos ráster en R

- SpatialGrid
- SpatialPixels
- SpatialPixelsDataFrame
- RasterLayer
- RasterStack
- RasterBrick

> require(raster)

> img = raster("...dir/2011_1_Filled.LST_Day_1km.tif")

> img

class : RasterLayer

dimensions: 361, 194, 70034 (nrow, ncol, ncell) resolution: 0.009023898, 0.009023898 (x, y)

extent : -77.00192, -75.25128, 2.496628, 5.754255 (xmin, xmax, ymin, ymax) coord. ref. : +proj=longlat +datum=WGS84 +no defs +ellps=WGS84 +towgs84=0,0,0

data source : ...dir\2011_1_Filled.LST_Day_1km.tif

names : X2011_1_Filled.LST_Day_1km

values : 0.75, 37.37 (min, max)

> plot(img)


```
> projection(img)
```

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

> newproj <- CRS("+init=epsg:3115")</pre>

> newproj

CRS arguments:

+init=epsg:3115 +proj=tmerc

+lat 0=4.596200416666666

+lon 0=-77.07750791666666 +k=1

+x_0=1000000 +y_0=1000000 +ellps=GRS80

+towgs84=0,0,0,0,0,0,0 +units=m +no_defs

> img.reproject <- projectRaster(img, crs=newproj)</pre>

> plot(img.reproject)

> img.reproject

class : RasterLayer

dimensions: 371, 205, 76055 (nrow, ncol, ncell)

resolution: 1000, 998 (x, y)

extent : 1003372, 1208372, 763116.9, 1133375 (xmin, xmax, ymin, ymax)

coord. ref. : +init=epsg:3115 +proj=tmerc +lat_0=4.596200416666666 +lon_0=-77.07750791666666 +k=1 +x_0=1000000

+y_0=1000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

data source : in memory

names : X2013_12_Filled.LST_Mean_1km values : 0.755739, 31.33416 (min, max)

> cali

class : SpatialPolygonsDataFrame

features : 1

extent : 1041119, 1068745,

853763.6, 884067.4 (xmin, xmax, ymin, ymax)

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

variables: 12

names : OBJECTID, DPTO_DPTO_, MPIO_CCDGO, MPIO_CNMBR,

min values: 1006, 76, 001, CALI, max values: 1006, 76, 001, CALI, > img1.mask cali=mask(crop(img.reproject,cali),cali)

> img1.mask cali

class : RasterLayer

dimensions: 30, 27, 810 (nrow, ncol, ncell)

resolution: 1000, 998 (x, y) extent: 1041372, 1068372,

853934.9, 883874.9 (xmin, xmax, ymin, ymax)

coord. ref.: +init=epsg:3115 +proj=tmerc +lat_0=4.596200416666666

+lon_0=-77.07750791666666 +k=1 +x_0=1000000 +y_0=1000000

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

data source : in memory names : valor_clase

values : 7.458905, 31.33416 (min, max)

- > new.raster=raster(extent(img1.mask_cali))
- > res(new.raster)=1800
- > projection(new.raster)=newproj
- > new.raster

class : RasterLayer

dimensions: 17, 15, 255 (nrow, ncol, ncell)

resolution: 1800, 1800 (x, y) extent: 1041372, 1068372.

853274.9, 883874.9 (xmin, xmax, ymin, ymax)

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

> img1.resample=resample(img1.mask_cali,new.raster,method='bilinear')

> img1.resample

class : RasterLayer

dimensions: 17, 15, 255 (nrow, ncol, ncell)

resolution: 1800, 1800 (x, y) extent: 1041372, 1068372,

853274.9, 883874.9 (xmin, xmax, ymin, ymax)

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

data source : in memory names : valor_clase

values : 7.872405, 30.88012 (min, max)

> summary(img1.resample) valor clase

Min.	7.872405
1st Qu.	15.495912
Vledian	20.571836
3rd Qu.	24.654200
Max.	30.880123
VA's	70.000000

- > img1.resample[img1.resample>=7.8 & img1.resample<15.49]=1
- > img1.resample[img1.resample>=15.49 & img1.resample<20.57]=2
- > img1.resample[img1.resample>=20.57 & img1.resample<24.65]=3
- > img1.resample[img1.resample>=24.65 & img1.resample<=30.9]=4
- > plot(img1.resample)
- > summary(img1.resample)

valor clase

Min.	1
1st Qu.	2
Median	3
3rd Qu.	4
Max.	4
NA's	70

> img1.vector=rasterToPolygons(img1.resample,dissolve = T)

> img1.vector

class : SpatialPolygonsDataFrame

features: 4

extent : 1041372, 1068372,

853274.9, 883874.9 (xmin, xmax, ymin, ymax)

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

variables : 1

names : valor_clase min values : 1 max values : 4

> spplot(img1.vector,zcol="valor clase")

VISUALIZACIÓN

Visualización

- > require(rasterVis)
- > require(ggplot2)
- > gplot(img) + geom_tile(aes(fill = value)) + coord_equal()

- > require(leaflet)
- > require(raster)
- > img = raster("...dir/2011_1_Filled.LST_Day_1km.tif")
- > pal <- colorNumeric(c("#0C2C84", "#41B6C4", "#FFFFCC"), values(img),na.color = "transparent")
- > leaflet() %>% addTiles() %>% addRasterImage(img, colors = pal, opacity = 0.8) %>% addLegend(pal = pal, values = values(img),title = "Temperatura Superficial (°C)") # MAPA INTERACTIVO LEAFLET

- > require(mapview)
- > mapview(img)

Leaflet | Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community, #BEBEBE80

- > require(mapview)
- > mapview(shpValle)

WEB

laboratorios

