CYCLING IN SIMPLEX

Does simplex always terminate?

Simplex Overview

Feasible Dictionaries

Termination of Simplex

Case -1

Infinitely many dictionaries?

$$D_1 \to D_2 \to D_3 \to D_4 \to \cdots \to D_j \to \cdots$$

Case -2
$$D_1 \to D_2 \to D_3 \to D_4 \to \cdots \to D_i$$

Cycling in Simplex

Only possible case for non-termination of Simplex. Is this possible?

Cycling and Degeneracy

$$D_1 \to D_2 \to D_3 \to D_4 \to \cdots \to D_i \to \cdots \to D_j$$

All repeating dictionaries D_i, \ldots, D_j are degenerate

Cycling in Simplex

Depends on heuristic for choosing entering/leaving variables.

- Lots of examples
- See on-line or consult Chvatal/Vanderbei book.

Anti-Cycling Rule

 Can the choice of entering or leaving variable avoid cycling and guarantee termination of Simplex?

- Good news ©
 - Bland's Rule is anti-cycling.

- Recall Bland's Rule:
 - If multiple choices for entering, choose least index.
 - If multiple choices for leaving, once again choose least index.

Practical Considerations

Stalling

Analysis of Bland's Rule vs. Other Heuristics

- Classic Paper by Avis + Chvatal (1974)
- On small randomly generated problems:
 - Bland's rule performs worse than other heuristics such as largest objective coefficient and greedy.
 - Stalling seems to be made worse by Bland's rule in many situations?
- Suggestion:
 - 1. Cycling never seems to happen in practice.
 - Use Bland's rule selectively.

Example of Mixed Heuristic

 Use largest objective coefficient rule for selecting entering variable.

- If last K dictionaries are all degenerate
 - apply Bland's rule continuously until final or non-degenerate dictionary.