1 Гомоморфизмы, гомоморфные образы, конгруэнтности, фактор-алгебры

Определение 1.1 (Гомоморфизм). Отображение $f: G_1 \to G_2$ называется гомоморфизмом групп $(G_1, *), (G_2, \times)$, если оно одну групповую операцию переводит в другую: $f(a*b) = f(a) \times f(b), a,b \in G_1$.

Определение 1.2 (Мономорфизм). Инъективный (разнозначный) гомоморфизм

Пример 1.3 (Пример на мономорфизм).

Определение 1.4 (Эпиморфизм). сюръективный гомоморфизм

Пример 1.5 (Пример на Эпиморфизм).

Определение 1.6 (Изоморфизм). взаимно однозначный (биективный) гомоморфизм

Пример 1.7 (Пример на Изоморфизм).

Определение 1.8 (Эндоморфизм). гомоморфизм в само множество

Пример 1.9 (Пример на Эндоморфизм).

Определение 1.10 (Автоморфизм). взаимно однозначный гомоморфизм в само множество

Пример 1.11 (Пример на Автоморфизм).

Определение 1.12 (Гомоморфный образ). Образ гомоморфизма

Пример 1.13 (Пример на гомоморфный образ).

Определение 1.14 (Конгруэнтность). Отношение эквивалентности (рефликсивность, симметричность, транзитивность), сохраняющееся при основных операциях, то есть

$$a_1 \equiv a_2, b_1 \equiv b_2 \Rightarrow a_1 \cdot b_1 \equiv a_2 \cdot b_2$$

Определение **1.15** (Фактор-алгебра). Множество классов эквивалентности по отношению к конгруэнтности

Определение 1.16 (Ядро гомоморфизма). Ядро гомоморфизма $h:A\to B$ - это множество $\operatorname{Ker} h=\{a\in A:h(a)=0\}$