Министерство образования Республики Беларусь Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Факультет информационных технолог	гий и управления
Кафедра интеллектуальных информаци	ионных технологий
Отчёт по лабораторной работе №2 по на тему «Реализация модели решения задач	
Выполнили студенты гр. 821702:	Макаревич Д. А. Кузин А.В.
Проверил:	Крачковский Д. Я.

Тема: реализация модели решения задачи на ОКМД архитектуре

Цель: реализовать и исследовать модель решения на ОКМД архитектуре задачи вычисления матрицы значений.

Вариант задания: 4

Дано: сгенерированные матрицы A, B, E, G заданных размерностей p x m, m x q, 1 x m, p x q соответственно со значениями в рекомендуемом диапазоне [-1;1].

4.
$$\tilde{\bigwedge}_{k} f_{ijk} = \prod_{k} f_{ijk}$$

$$\tilde{\bigvee}_{k} d_{ijk} = 1 - \prod_{k} (1 - d_{ijk})$$

$$\tilde{\bigwedge}_{k} f_{ijk} \tilde{\circ} \tilde{\bigvee}_{k} d_{ijk} = \min \left(\left\{ \tilde{\bigwedge}_{k} f_{ijk} \right\} \cup \left\{ \tilde{\bigvee}_{k} d_{ijk} \right\} \right)$$

$$a_{ik} \tilde{\to} b_{kj} = \sup \left(\left\{ \mathcal{S} \middle| (1 - a_{ik}) * \mathcal{S} \leq b_{kj} \right\} \wedge (\mathcal{S} \leq 1) \right\} \right)$$

$$b_{kj} \tilde{\to} a_{ik} = \sup \left(\left\{ \mathcal{S} \middle| (1 - b_{kj}) * \mathcal{S} \leq a_{ik} \right\} \wedge (\mathcal{S} \leq 1) \right\} \right)$$

$$a_{ik} \tilde{\wedge} b_{kj} = a_{ik} * b_{kj}$$

Получить: C – матрицу значений соответствующей размерности $p \times q$.

Исходные данные:

- 1. p, m, q размерность матриц;
- 2. п количество процессорных элементов в системе;
- 3. t_i время выполнение і операции над элементами матриц.
- 4. Матрицы A, B, E, G, заполненные случайными вещественными числами в диапазоне [-1;1]

Описание модели: В рамках данной лабораторной работы была реализована модель решения на ОКМД архитектуре задачи вычисления матрицы значений. Возможность самостоятельно устанавливать все параметры размерности матриц и количество процессорных элементов. Разработанная модель позволяет исследовать зависимости между вышеуказанными параметрами. Язык программирования, использованный для реализации модели C++.

Пример:

Исходные данные				
Время операции		Другие данные		
Сумма	2	m	2	
Разность	2	p	3	
Произведение	4	q	1	
Деление	6	количество процессорных элементов	3	

A (p x m)		B (m x q)
-0.454	0.497	0.327
-0.105	-0.379	0.295
-0.97	-0.366	
E (1 x m)		G (p x q)
0.316	0.875	-0.686
		0.844
		0.395

Полученные данные:				
time - время выполнения	268			
Ку - коэффициент ускорения	2.4925373134328357			
е - эффективность	0.8308457711442786			
D - коэффициент расхождения программы	12.846153846153847			
r - ранг программы	13			
C (p x q)				
1.627 -0.032 -3.664				

Графики:

Найдем асимптоты графиков:

Асимптотой графика $\mathrm{Ky}(n)$ будет прямая $y=\frac{1}{\alpha}$, где $\alpha-$ доля последовательных вычислений от числа общих. При достижении этого значения дальнейшее увеличение не приведет к увеличению Ку.

Асимптотой графика Ky(r) будет прямая y=n, так как невозможно выполнить параллельные вычисления быстрее последовательных более, чем в n раз. При этом точки, которые удовлетворяют условию $r \mod n = 0$, являются точками перегиба.

Асимптотой графика e(n) будет прямая y = 0, так как рост функции Ky(n) ограничен (значение Ky(n) = const, при n >= r), а количество процессорных элементов n продолжает расти.

Асимптотой графика e(r) будет прямая y=1, при этом точки, которые удовлетворяют условию $r \mod n=0$, являются точками перегиба.

Асимптотой графика D(n) будет прямая y = 1.

У графика D(r) отсутствуют асимптоты и точки и перегиба

Спрогнозировать как изменится вид графиков при изменении параметров модели

- $K_y(r)$: при увеличении количества пар элементов, возрастает значение коэффициента ускорения.
- $-K_{y}(n)$: при увеличении количества процессорных элементов, возрастет значение коэффициента ускорения.
 - $e_{\nu}(r)$: при увеличении ранга, возрастает значение эффективности.
- $e_y(n)$: при увеличении количества процессорных элементов, снижается значение эффективности.
- $D_y(n)$: при увеличении количества процессорных элементов, возрастает коэффициент расхождения программы.
- $D_y(r)$: при увеличении ранга задачи, снижается значение коэффициента расхождения программы.

Выводы

В результате выполнения лабораторной работы была реализована и исследована ОКМД модель для решения задач вычисления матрицы значений. Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата для числовых векторов, по сравнению с последовательной системой. Были исследованы характеристики конвейерной архитектуры: коэффициент ускорения, коэффициент расхождения программы и эффективность.