Tutorial

June 10, 2016

1 Modelio įvedimo failų paruošimas

Prieš paleidžiant modelį reikia paruošti 3 įvesties failus. 1. Disko sukimosi kreivė. 2. Dujų akrecijos galaktikos diske radialinis profilis. 3. Dujų akrecijos galaktikoje laiko evoliucija. 4. SSP evoliucijos failai.

1.0.1 1. Disko sukimosi kreivė

Failas prasideda neribotu komentarų kiekiu, kurie kiekvienoje naujoje eilutėje prasideda '#' simboliu.

Failas turi turėti 2 stulpelius: - pirmąjame nurodyti modelio žiedų radialiniai atstumai; - antrąjame nurodytas modelio žiedo sukimosi greitis km/s. Skaitoma į float kintamųjų masyvą.

Pastabos:

 Pirmojo sukimosi kreivės stulpelio, kuriame nurodyti atstumai modelis nepanaudoja, jis reikalingas tik modelio naudotojo patogumui. Modelio žiedų radialiniai atstumai užduodami modelio parametrų faile.

1.0.2 2. Dujų akrecijos galaktikoje laiko evoliucija

Failas prasideda neribotu komentarų kiekiu, kurie kiekvienoje naujoje eilutėje prasideda '#' simboliu.

Failas turi turėti 2 stulpelius: - pirmąjame nurodyti modelio amžiai; - antrąjame nurodyta į galaktiką įkritusi dujų masė Saulės masėmis. Skaitoma į float kintamųjų masyvą.

Pastabos:

- Pirmasis failo stulpelis su laiko žingsnių amžiais programoje nenaudojamas, jis reikalingas tik modelio naudotojo patogumui. Modelio laiko žingsniai užduodami modelio parametrų faile.
- Jeigu failo eilučių skaičius bus mažesnis nei modelio parametrų faile nurodytas laiko žingsnių kiekis, programa išluš
- Susumuota visa į galaktiką įkrentančių dujų masė išvedama į terminalą paleidžiant programą

1.0.3 3. Dujų akrecijos galaktikos diske radialinis profilis

Failas prasideda neribotu komentarų kiekiu, kurie kiekvienoje naujoje eilutėje prasideda '#' simboliu

Failas turi turėti 2 stulpelius: - pirmąjame nurodyti modelio žiedų radialiniai atstumai; - antrąjame nurodytas radialinis dujų akrecijos profilis. Skaitoma į float kintamųjų masyvą. Šis profilis nurodo, kokiomis proporcijomis dujos įkritusios į galaktiką bus paskirstytos diske. Pvz.: jei modelis būtų sudarytas iš 3 žiedų su proflio vertėmis 1, 0.5, 0.1, į centrinę ląstelę įkritusių dujų būtų 2 kart daugiau nei į 2-ąją ir 10 kart daugiau nei į 3-ąją.

Pastabos.

- Pirmasis failo stulpelis su radialiniais atstumais modelyje nenaudojamas. Jis skirtas tik programos naudotojo patogumui
- Radialinio profilio vienetai nėra svarbūs. Programai nuskaičius failą profilis yra pernormuojamas taip, kad visų modelio ląstelių suma būtų lygi 1. Pateiktame faile naudojami vienetai Msol/pc^2, nes tuomet labai patogu tokį profilį interpretuoti, kaip dujų ir žvaigždžių paviršinių tankių profilių sumą.

1.0.4 4. SSP (simple stellar population) evoliucijos failai

Modelio veikimui reikalingi: - [gas_matrix.pegase] SSP ląstelės dujoms grąžinama dujų masė ties kiekvienu laiko žingsniu ir metalingumu. Stulpeliuose nurodyti skirtingi metalingumai, o eilutėse skirtingi laiko žingsniai.

- [metals_matrix.pegase] SSP ląstelės dujoms grąžinama metalų (M_gas x Z_gas) masė. Stulpeliuose nurodyti skirtingi metalingumai, o eilutėse skirtingi laiko žingsniai.
- [ages] amžių failas, kur nurodomi SSP failo eilučių laiko žingsniai. Eilučių skaičius turi atitikti eilučių skaičių mgas_matrix.pegase ir metals_matrix.pegase failuose.
- [zlist] metalingumų failas, kur nurodamas SSP failo stulpelių metalingumai. Eilučių skaičius turi atitikti stulpelių skaičių mgas_matrix.pegase ir metals_matrix.pegase failuose.
- [phot_u.flux] fotometrijos failas. Jis nėra būtinas modelio veikimui, tačiau reikalingas norint išvesti fotometrijos rezultatus. Stulpeliuose nurodomas sunormuotas į 1 Msol fliuksas ties skirtingais metalingumais, o eilutėse ties skirtingais laiko žingsniais.

Šių failų pavyzdžiai pateikiami **description**/ direktorijoje. Šių failų [phot-u.flux, metals-matrix.pegase, gas-matrix.pegase] paruošimo skriptai pateikiami **tools**/ direktorijoje

2 Modelio parametrų failų paruošimas

2.0.5 1. Sintetinės fotometrijos parametrų failas

Programa skaitydama parametų failą eilutes prasidedančias simboliu # praleidžia kaip komentarus. Nesant šio simbolio eilutė interpretuojama pagal nurodytą parametro vardą.

- 1. ISO num of files:
 - num_of_files integer tipo kintamas, po šio parametro programa sekančioje eilutėje ieškos nurodyto kelio iki kiekvieno izochronos failo.
- 2. IMF sampling_method integration num_of_rows num_of_cols:
 - smapling_method : string tipo parametras leidžiantis pasirinkti skirtingus pradinių masių funkcijos generavimo metodus, dažniausiai naudojama opcija 'stochastic'

- integration: int tipo parametras, kuris buvo naudingas generuojant spiečių integruotą fotometriją, leisdavo pasirinkti, kurią dalį žvaigždžių šviesio sumuoti stochastiškai, o kurią analitiškai. Generuojant CMD reikia nustayti vertę '0'
- num_of_rows : int tipo kintamasis, nurodantis kiek intervalų turės pradinių masių funkcija.
- num_of_cols : int tipo kintamasis, nurodantis kiek stulpelių turės pradinės masių funkcijos aprašymas. Pirmąjame stulpelyje nurodomas masių intervalo apatinė masė, antrąjame viršutinė, trečiąjame laipsninis rodiklis, nurodomas $-\alpha$ forma.

3. SEED seed:

• seed : int tipo atsitiktinių skaičių generatoriaus seed'as. Ši eilutė užpildoma automatiškai leidžiant python script'ą

4. BINNARY_FRACTION binnary_fraction

• binnary_fraction : float tipo parametras nurodantis dvinarių sistemų dalį žvaigždžių populiacijoje

5. LIMIT filter_num magnitude_cut

- filter_num : int tipo parametras atitinkantis parametra, pagal kurį apriboti išvedamų žvaigždžių kiekį. filter_num atitinka stulpelį, iš užduoto izochronos failo.
- magnitude_cut : float tipo kintamasis pagal kurį apribojamas išvedimas.

6. THREADS num_of_threads

• num_of_threads : int tipo kitamasis, generuojant CMD žvaigždes veikia tik su opcija '1'

7. GALEMO_RESULTS

• nurodo nuskaitomo failo tipą, šis eilutė automatiškai užpildoma leidžiant python script'ą

8. OUT

• nurodo išvedimo failo vardą, šis eilutė automatiškai užpildoma leidžiant python script'ą

2.0.6 2. Modelio parametrų failas

- 1. TIMESTEP timestep:
 - timestep [Myr]: int tipo kintamasis nurodantis modelio integravimo laiko žingsnį
- 2. GALAXY_AGE galaxy_age:
 - galaxy_age [Myr]: int tipo kintamasis nurodantis modelio integravimo laika
- 3. SN_TIMESCALE sn_timescale:
 - sn_timescale [Myr]: int tipo kitamasis nurodantis laiko intervalą, kurį ląstelėje bus palaikomas mažas dujų tankis, praturtintų metalais dujų praradimas iš galaktikos ir visiškai negalima žvaigždėdara
- 4. SEED seed:
 - seed : int tipo kitamasis nurodantis atsitiktinių skaičių generatoriaus pradinį 'seed'. Naudojamas norint atkartoti modeliavimo rezultatus
- 5. DISTANCE distance:
 - distance [Mpc]: float tipo kintamasis nurodantis modeliuojamos galaktikos atstumą. Naudojams mag/arcsec^2 paviršinio šviesio išvedimui ouput failuose
- 6. GRID_SIZE grid_size grid_buffer
 - grid_size: int tipo kintamasis nurodantis disko žiedų skaičių
 - grid_buffer: int tipo kintamasis nurodantis kiek žiedų pridėti prie 'grid_size' kraštiniams efektams modelyje panaikinti, priklausomai nuo grid_size galima pridėti nuo0 iki 20% grid size vertės
- 7. CELL_SIZE cell_size
 - cell_size [pc]: int tipo kintamasis nurodantis ląstelės fizinius matmenis
- 8. GAS_DIFFUSION gas_diff

• gas_diff [Myr]: float tipo kintamasis nurodantis dujų tankio netolygumų tarp ląstelių išslyginimo laiko skalę

9. STELLAR_DIFFUSION stell_diff mass_treshold

- stellar diff: float tipo kintamasis nurodantis kuri žvaigždžių masės dalis per laiko žingsnį prarandama/gaunama į/iš kaimyninių ląstelių
- mass_treshold [Msol]: float tipo kintamasis nurodantis minimalią apsikeitimo žvaigždėmis masę tarp *visų kaimyninių ląstelių*, jei suminė apsikeitimo masė yra mažesnė už šį parametrą, apsikeitimas žvaigždėmis tarp ląstelių nevyksta.
- 10. SFE sfe -sfe : float arba string tipo kintamas. Jei tai float kintamasis, jis nurodo žvaigždėdaros efektyvumą įvykus žybsniui ląstelėje (pvz.:0.05 atitinka 5% efektyvumą); jei tai string kintamasis, jis interpretuojamas kaip failo vardas, kuriame nurodytos sfe vertės kiekvienam modelio laiko žingsniui.

11. TRIGGERED trig trig_time

- trig: float arba string tipo kintamasis. Jei tai float kintamasis, jis nurodo indukuotos žvaigždėdaros tikimybę kaimyninėse ląstelėse (kiekvienai ląstelei atskirai, suminė tikimybė būtų kaimynių skaičius x trig). Jei tai string kintamasis, jis nurodo failą kur trig vertės nurodytos kiekvienam modelio laiko žingsniui
- trig_time [time steps] : int tipo kintamasis kuris nurodo kuriuo laiko žingsniu po žvaigždėdaros žybsnio vyksta kaimyninių ląstelių indukavimas (pvz.:1 sekančiu laiko žingsniu, 2 po dviejų laiko žingsnių)

12. SFE_POW sfe_pow

sfe_pow: float arba string kintamasis. Jei tai float kintamasis, jis nurodo žvaigždėdaros efektyvumo priklausomybės nuo dujų tankio laispninį rodiklį (pvz.: 0 – nepriklauso, 1 – tiesiškai, 2 – kvadratinė priklausomybė); jei tai string kintamasis, jis nurodo faila, kur šis parametras nurodytas kiekvienam modelio laiko žingsniui

13. NRM SFE nrm sfe

• nrm_sfe [Msol/pc^2] - float tipo kintamasis, kuris nurodo ties kokiu dujų tankiu normuojamas žvaigždėdaros efektyvumo dėsnis. Pvz.: jei nrm_sfe=10 Msol/pc^, tai reiškia, kad ląstelės dujų pavišiniui tankiui esant 20 Msol/pc^, įvykus žvaigždėdaros žybsniui SFE bus lygus SFE= $\epsilon \cdot \left(\frac{20~M_{\odot}\cdot \mathrm{pc}^{-2}}{10~M_{\odot}\cdot \mathrm{pc}^{-2}}\right)^{\alpha}$

14. MINIMUM_SFE minimum_sfe

 minimum_sfe: float tipo kintamsis nurodantis minimalų žvaigždėdaros efektyvumą žvaigždėdaros žybsnio metu, jei žvaigždėdaros efektyvumas dėl dujų tankio pagal užduotą dėsnį būtų mažesnis.

15. MAXIMUM SFE maximum sfe

 maximum_sfe: float tipo kintamasis nurodantis maksimalų žvaigždėdaros efektyvumą žvaigždėdaros žybsnio metu, jei pagal užduotą žvaigždėdaros efektyvumas dėl dujų tankio pagal užduotą dėsnį būtų didesnis

16. TRIGG_MASS minimum_mass trigg_mass

- minimum_mass [Msol] : float tipo kintamasis, nurodantis, kokios mažiausios susiformavusios žvaigždžių masės žvaigždėdaros žybsnis gali vykti ląstelėje. Jei žvaigždžių masė gimusi ląstelėje būtų mažesnė už šį dydi, žvaigždėdaros žybsnis nevyksta
- trigg_mass [Msol]: float tipo kintamasis, nurodantis kokios masės turi būti susiformavusi žvaigždžių populiacija po žvaigždėdaros žybsnio, kag galėtų indukuoti kaimynines ląsteles
- 17. GAS2_SPONT gas2_spont -gas2_spont : int tipo kintamsis nurodantis kiek spotaninės žvaigždėdaros žybsnių vidutiniškai vyks per vieną laiko žingsnį modelyje. Tikimybė vykti žvaigždėdarai ląstelėje yra proporcinga dujų paviršinio tankio kvadratui.
- 18. GAS_SFR_TRESHOLD gas_sfr_treshold -gas_sfr_treshold [Msol/pc^2] : float tipo kintamasis nurodantis ribinį dujų paviršinį tanki žvaigždėdarai vykti. Jei ląstelės paviršinis dujų tankis yra mžesnis už ribinį, žvaigždėdaros tikimybė lastelėje tiesiškai mažinama.
- 19. OUTFLOW eta critical_velocity
 - eta: float tipo parametras nurodantis kuri dalis metalais praturtintų gražinamų visų evoliucionuojančių žvaigždžių populiacijų pararandama.
 - critical_velocity : float tipo parametras nurodantis kokios energijos turi būti žvaigždėdaros žybsnis, kad išmestų dujas į tarp galaktinę erdvę. Parametro fizikinė prasmė besiplečinčio superburbulo greitis prieš 'greitėjimą'. 1 atitinka 20 km/s, pagal straipsnio autorius, pakankamas greitis išmesti dujas iš Paukščių Tako disko.

20. ACC_METALLICITY acc_metallicity

 acc_emtalicity: float tipo parametras nurodantis akrecijos dujų metalingumą diske užduodanti faila.

21. ACRETION acc_rad_file acc_time_file

- acc_rad_file : string tipo parametras nurodantis akrecijos radialinę priklausomybę diske užduodantį failą.
- acc_time_file: string tipo kintamasis nurodantis akrecijos laiko priklausomybės galaktikoje failą.

22. OUTPUT num_of_types types[] num_of_times times[]

- num_of_types : int tipo kintamasis kuris nurodo kiek bus išvedama failų tipų
- types[]: string tipo kintamųjų grupė, kuri nurodo išvedimo tipus, galimos opcijos: 0d, 1d. 2d
- num_of_times : int tipo kintamasis nurodantis kiek bus išvedimo laikų
- times[] [Myr]: int tipo kintamųjų grupė, nurodanti kuriais modelio amžiais išvesti nurodytus failus

23. NUM_OF_THREADS num_of_threads

• num_of_threads : int tipo kintamasis nurodantis modeliui skaičiuoti naudojamų gijų skaičių.

24. CMD_LIMIT mass_limit age_limit

- mass_limit [Msol] : float tipo kintamasis nurodantis mažiausią išvedamos SSP populiacijos masę
- age_limit [Myr] : float tipo kintamasis nurodantis išvedamos populiacijos maksimlų amžiu.

25. ROTATION rotation_curve_file

 rotation_curve_file: string tipo kintamasis nurodantis disko suskimosi kreivę užduodančio failą vardą

26. PEGASE mgas_file zgas_file

- mgas_file: string tipo kintamasis su failo vardu, kuriame yra SSP prarandamų dujų kiekiai kiekvienam SSP metalingumui ir amžiui
- zgas_file: string tipo kintamsis su failo vardu, kuriame yra SSP prarandamų metalų (Z_gas x M_gas) kiekiai kiekvienam SSP amžiui ir metalingumui.

27. SSP ages zlist

- ages : string tipo kintamasis nurodantis failo vardą su modelio laiko žingsnių amžiais
- zlist : string tipo kintamasis nurodantis failą su SSP metalingumo žingsniais

28. PHOTOMETRY num_of_filters

- num_of_filters : int tipo kintamsis nurodantis kiek SSP išvedimo tipų bus išvedama.
- sekančioj eilutėj nurodomi failų vardai su SSP matricomis amžius x metalingumas

3 Modelio paleidimas

3.1 paleidimas naudojant python pagalbinį skriptą

Pasitikirnam, ar visi reikalingi failai yra direktorijoje, t.y.: - akreijos radialinio profilio failas - akrecijos laiko evoliucijos failas - sukimosi kreivė - modelio parametrų failas - žvaigždžių sintetinės fotometrijos parametrų failas, pavadintas "template"

RUN direktorijoje paleidžiam python script'ą su modelio parametrų failu kaip argumentu: > ./galemo.py modelio_parametrų_failas iteracijų_skaičius

4 Modelio išvesties failai

Modelio išvedimo failai yra sugrupuoti į 4 kategorijas: - 0d failuose išvedamos globalūs visos glaktikos fizikiniai parametrai; - 1d failuose išvedami suvidurkinti azimutiškai vienos ląstelės pločio žieduose galaktikos parametrai; - 2d failuose išvedami visų disko ląstelių fizikiniai parametrai; - cmd failuose išvedami sintetiniai žvaigždžių fotometrijos katalogai.

4.0.1 0d išvedimai failo stulpelių paaiškinimai:

- t [Myr]: laiko žingsnis
- SP_E: spontaninės žvaigždėdaros žybsniai galaktikoje per laiko žingsnį
- TR_E: indukuotos žvaigždėdaros žybsniai galaktikoje per laiko žingsnį
- ACC [Msol/yr]: dujų akrecijos sparta galaktikoje
- ST_GAS_ACC [Msol/yr]: evoliucionuojančių SSP gražinamų dujų sparta
- OTFL [Msol/yr]: prarandamų praturtintų sunkiaisiais metalais dujų sparta
- STARS [Msol]: žvaigždžių masė modelio diske
- GAS [Msol]: dujų masė modelio diske
- ZGAS: dujų metalingumas modelio diske
- TSFR [Msol/yr]: žvaigždėdaros sparta galaktikoje

- ModelAge [Myr]: modelio galautinis amžius
- iteration: modelio iteracijos indeksas

4.0.2 1d išvedimo failo stulpelių paaiškinimai

- r [kpc] : žiedo vidurio radialinis atstumas iki disko centro
- mgas [Msol/pc^2]: disko žiedo dujų vidutinis paviršinis tankis
- zgas : disko žiedo dujų medianinis metalingumas
- mstr [Msol/pc^2]: disko žiedo žvaigždžių vidutinis paviršinis tankis
- SF_events: suminis žvaigždėdaros žybsnių skaičius disko žiede per visą modeliavimo laiką
- SP_events: suminis spontaninės žvaigždėdaros žybsnių skaičius žiede per visą modeliavimo laika
- SFR [Msol/pc^2/Myr]: žvaigždėdaros spartos paviršinis tankis diske žiede
- SFR100 [Msol/pc^2/ (10 x timesteps) Myr]: žvaigždėdaros spartos per paskutinius 10 laiko žingnsių paviršinis tankis
- ACTIVE : jeigu aktyvuota, skaičiuoja suminį ląstelių galinčių formuoti žvaigždes skaičių
- Tgas [Msol/pc^2]: iki išvedimo laiko į disko ląsteles įkritusių dujų pavišinis tankis įkritusių (jei nevykst ažvaigždėdara, turi būti lygus mgas stulpeliui, arba apytiksliai lygus mgas+mstr)
- Ogas-tot [Msol]: vidutinė iš 1-os ląstelės prarasta (outflow) praturtinų metalais dujų masė per modeliavimo laiką
- Ogas_cur [Msol/pc^2/ (10 x timesteps) Myr] : vidutinė iš 1-os ląstelės prarandama praturtintų dujų masė per 10 laiko žingsnių
- Ometals-tot [Msol] : vidutinė iš 1-os ląstelės prarasta metalų masė (Mgas*Zgas) per modeliavimo laika
- Ometals-cur [Msol/pc^2/(10 x timesteps) Myr]: vidutinė iš vienos ląstelės prarandama metalų masė per 10 laiko žingnsių
- ModelAge [Myr]: išvedimo amžius
- iteration : modelio iteracijos indeksas

4.0.3 2d išvedimo failo stulpelių paaiškinimai:

- r [kpc] : ląstelės vidurio radialinis atstumas iki disko centro
- x [kpc] : ląstelės centro koordinatė xy plokštumoje
- y [kpc] : ląstelės centro koordintaė xy plokštumoje
- ref_t [timesteps] : laiko žingsniai praėjo po paskutinio žvaigždėdaros žybsnio ląstelėje
- sfr_t [ratio] : dujų masės santykis ląstelėje lyginant su kritiniu tankiu žvaigždėdarai
- sp_buff: spotaninės žvaigždėdaros parametras naudotas 'debuggininimui'
- mgas [Msol/pc^2]: paviršinis dijų tankis ląstelėjė
- zgas : dujų metalingumas ląstelėje

- mstr [Msol/pc^2]: žvaigždžių paviršinis tankis ląstelėje
- sfe [] : pakutinio žvaigždėdaros žybsnio efektyvumas (M_str/(M_gas+M_str))
- last_mstr [Msol]: paskutinio žvaigždėdaros žybsnio metu susiformavusios žvaigždžių populiacijos masė
- TVEL : dujų praradimo parametras, rodantis besiplečiančio burbulo greičio santyki su kritiniu
- rho : dujų dalelių tankis į cm³ disko plokštumoje, darant prielaidą, jog dujos diske Z kryptimi pasiskirsčiusios eksponentiškai
- N0: outflow paramertas iš Baumgartner V., Breitschwerdt, D. 2013, AA, 557, A140
- ModelAge [Myr]: išvedimo amžius
- iteration : modelio iteracijos indeksas

4.0.4 cmd išvedimo failo stulpelių paaiškinimai:

- r [kpc]: lastelės centro, kurioje yra žvaigždė, radialinis atstumas nuo galaktikos centro
- a [rad]: ląstelės centro, kurioje yra žvaigždės, azimutinė koordiantė išreikštos radianais
- x [kpc] : koordinatė xy plokštumoje, su triukšmu paskirstančiu žvaigždes tolygiai ląstelės ribose
- y [kpc]: koordinatė xy plokštumoje, su triukšmu paskirstančiu žvaigždes tolygiai ląstelės ribose
- age [log_10(t/yr)] : žvaigždei priskirtas artimiausios izochronos amžius
- a_age [log_10(t/yr)] : tikrasis žvaigždės amžius
- z : žvaigždei priskirtas artimiausisas izochronos metalingumas
- a_z : tikrasis žvaigždės metalingumas
- mass_i_p [log_10(m/Msol)]: žvaigždės / pirminės dvianrės žvaigždės masė
- mass_i_s [log_10(m/Msol)] : / antrinės dvinarės žvaigždės masė
- p_X [mag] : žvaigždės / pirminės dvianrės sistemos žvaigždės fotometrinis ryškis
- s_X [mag] : / antrinės dvianrės sistemos žvaigždės fotometrinis ryškis
- o_X [mag]: žvaigždės / suminis dvianrės sistemos fotometrinis ryškis
- ssp_index : SSP indeksas, kad būtų galima identifikuoti žvaigždes iš tos pačios SSP
- ModelAge [Myr] : modelio amžius išvedimo metu
- iteration: modelio iteracijos indeksas