IDGA: Threshold u(x, E) varying in space and time. Function & V(x, E) describing the spatio-temporal variation of the geophone network. $0 \leq V(x, t) \leq |a|$ & scaling factor (unknown parameter) V u(x,t) = QV(x,t)nitially three geophons. Assume V(x, E) = V(x)Assume x is one-dimensional distance so V(00) describes some propability of detection as you move away from geophones in 1-D space yes - but It could be use we the like this of we wanted above. V(x) No - or is positions in space of point. The function value of V(n,t) is to be linked to this avery ---- three nevert geophores. GEOPHONES Assume magnitudes don't affect V(x) and uniform position of earthquakes across space. yes V Will Then, V(x) simply varies with effect observation distance of the from geopholes. Magnitudes small y gives lower observed Magnitules - rest

NEXT:
Allow magnitude distribution to be
$M \sim GPD_{\mu}(\sigma, \xi)$ constant
Allow magnitude distribution to be M ~ CPDu(o, &) constant over space and time. I fix =0
Still @ 1-D space where X is
distance from geophone, magnitude
distance from geophone, magnifiede will now affect $V(\infty)$ such that $V(x) = V(x, m)$
V(x) = V(x, m)
2 Fit Split data sport
Allow X to be 2-D or V Some function of distance from multiple geophenes. [Lowertern Lowertern And Manage PD (760)] Plan.
Some function of distance from
multiple geophones. (, doctem
1. Let GPD Mx ~ GPD (760)
with our with our contract
do this in times independs — gues location. "Stephen's covarious."
2. For each of simulate GPD magnitude. Magner, Man.
3. Code M_{α_j} by $C_{\alpha_j} = \{0, 4, M_{\alpha_j} < \mathbf{v}(n_j)\}$
Ca, explains if points are sensored or not.
P(st. Mr. data Cri=1 over j. 7 look to sa differente. Mr. data Cri=1 over j. 7 look to sa differente. Mr. data Mr. data
Mrs. data

Data

1. Sample For space R $R = R_1 \cup R_2$ $R_1 \cap R_2 = \emptyset$ You will fit $M_{R_1} \land GPD(\overline{G}_1, \overline{\gamma}_1)$ \longrightarrow test if $\overline{G}_1 = \overline{G}_2, \overline{\gamma}_1 = \overline{\gamma}_2$ $M_{R_2} \land GPD(\overline{G}_2, \overline{\gamma}_2)$ $M_{R_3} \land GPD(\overline{G}_2, \overline{\gamma}_2)$ $M_{R_3} \land GPD(\overline{G}_2, \overline{\gamma}_2)$

1