Subgroups

Definition

To say that a set H is a *subgroup* of a group G, denoted $H \leq G$, means:

- 1). $H \subseteq G$
- 2). H is a group using the induced operation of G

When H = G, H is called the *improper* subgroup of G.

When $H \subset G$, H is called a *proper* subgroup of G, denoted H < G.

Example

$$Z_4 = \{0, 1, 2, 3\}$$

$$\{0\}$$

 $\{0,2\}$
 $\{0,1,2,3\}$

One proper, non-trivial subgroup

$$V = D_4 = \{e, a, b, c\}$$

$$\{e\}$$

 $\{e, a\}$
 $\{e, b\}$
 $\{e, c\}$
 $\{e, a, b, c\}$

Three proper, non-trivial subgroup

Theorem

Let G be a group:

$$\{e\} \le G$$

Proof

$$\{e\} \subseteq G$$

$$(ee)e = ee = e$$

$$e(ee) = ee = e$$

 $\therefore \{e\}$ is associative.

$$e \in \{e\}$$

 $\therefore \{e\}$ has identity.

$$ee = ee = e$$

 $\therefore \{e\}$ has inverses.

$$\therefore \{e\} \leq G$$

Definition

 $\{e\}\subseteq G$ is called the *trivial* subgroup of G. All other subgroups are referred to as *non-trivial*.

Theorem

Let G be a group and $H \subseteq G$. $H \leq G$ iff the following three properties hold:

- 1). H is closed under the induced operation of G
- 2). $e \in H$
- 3). $\forall a \in H, a^{-1} \in H$

Proof

 \implies Assume $H \leq G$.

H is a group, so it is closed under the induced operation and $\forall\,a\in H,a^{-1}\in H.$ Also, by closure, $aa^{-1}=e\in H.$

- \therefore the three properties hold.
- $\begin{tabular}{ll} \longleftarrow & Assume the three properties hold. \\ \end{tabular}$

 $\text{Assume } a,b,c \in H.$

By closure, $(ab)c \in H$ and $a(bc) \in H$.

$$a, b, c \in G$$

(ab)c = a(bc) in G, so this must also hold in H.

 $\therefore H$ is associative.

 $e \in H$, and since e is the identity for G, it must also be the identity for H.

$$\forall a \in H, a^{-1} \in H.$$

$$\therefore H \leq G.$$

Example

$$G = \mathbb{Z}_4 = \{0, 1, 2, 3\}$$

$$H = \{0, 2\}$$

$$\begin{array}{c|cccc} +_4 & 0 & 2 \\ \hline 0 & 0 & 2 \\ 2 & 2 & 0 \\ \end{array}$$

H is closed

$$0 = e \in H$$

$$0^{-1}=0\in H$$

$$2^{-1}=2\in H$$

$$\therefore H \leq G$$

Theorem: Subgroup Test

Let G be a group and $H \neq \emptyset, H \subseteq G$

$$H \le G \iff \forall a, b \in H, ab^{-1} \in H \ (b^{-1} \in G)$$

Proof

$$\implies$$
 Assume $H \leq G$

Assume $a, b \in H$

Since H is a group, $b^{-1} \in H$

But $H \subseteq G$, so $b^{-1} \in G$

By closure, $ab^{-1} \in H$

$$\Longleftrightarrow \ \operatorname{Assume} \ \forall \, a,b \in H, ab^{-1} \in H \ \ (b^{-1} \in G)$$

$$H \neq \emptyset$$

Assume $a, b \in H$

$$b = (b^{-1})^{-1} \in H$$

But
$$H \subseteq G$$
, so $b = (b^{-1})^{-1} \in G$

By assumption, $a(b^{-1})^{-1} \in H$

 $a\dot{b} \in H$

 $\therefore H$ is closed under the induced operation of G.

Since $H \subseteq G, a \in G$

But since G is a group, $a^{-1} \in G$

By assumption, $aa^{-1} \in H$

$$\therefore e \in H$$

$$e \in H$$
 and $a^{-1} \in G$
So by assumption, $ea^{-1} \in H$
 $\therefore a^{-1} \in H$

Example

Let
$$G = GL(n,\mathbb{R})$$
 and $H = \{A \in G \mid \det(A) = 1\}$
Prove: $H < G$
Assume $A, B \in H$
Clearly, $H \subset G$
So, $B \in G$
 $\det(B) = 1 \neq 0$, so B is invertible $B^{-1} \in G$
 $\det(AB^{-1}) = \frac{\det(A)}{\det(B)} = \frac{1}{1} = 1$
 $AB^{-1} \in H$
 $\therefore H < G$

Theorem

Let G and G' be groups and $\phi:G\to G'$ be an isomorphism:

$$H \le G \implies \phi[H] \le G'$$

Isomorphisms map subgroups to subgroups.

Proof

Assume
$$H \leq G$$

Assume $x,y \in \phi[H]$
 $\exists a,b \in H, \phi(a) = x \text{ and } \phi(b) = y$
 $\phi[H] \subseteq G'$
So, $y \in G'$
But G' is a group, so $y^{-1} \in G'$
 ϕ is a homomorphism $xy^{-1} = \phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1})$
 H is a group, so $b^{-1} \in H$
By closure, $ab^{-1} \in H$
 ϕ is well-defined, so $\phi(ab^{-1}) \in \phi[H]$
 $xy^{-1} \in \phi[H]$
 \therefore by the subgroup test, $\phi[H] \leq G'$

Corollary

Let
$$G \simeq G'$$
:

$$\forall H \leq G, \exists H' \leq G', H \simeq H'$$

Theorem

Let G be a group:

$$H,K \leq G \implies H \cap K \leq G$$

<u>Proof</u>

Assume $H, K \leq G$ Assume $a, b \in H \cap K$ $a, b \in H$ and $a, b \in K$ But H and K are groups, so $b^{-1} \in H$ and $b^{-1} \in K$ $H \cap K \subseteq H, K \subseteq G$ So $b^{-1} \in G$ $ab^{-1} \in H$ and $ab^{-1} \in K$ $ab^{-1} \in H \cap K$ \therefore by the subgroup test, $H \cap K \leq G$