Chapter 3, Section 9

April 17, 2025

- **1.** A flat morphism $f: X \to Y$ of finite type of Noetherian schemes is open, i.e., for every open subset $U \subseteq X$, f(U) is open in Y.
- 2. Do the calculation of (9.8.4) for the curves of (I, Ex. 3.14). Show that you get an embedded point at the cusp of the plane cubic curve.
- **3.** Some examples of flatness and nonflatness.
 - (a) If $f: X \to Y$ is a finite surjective morphism of nonsingular varieties over an algebraically closed field k, then f is flat.
 - (b) Let X be a union of two planes meeting at a point, each of which maps isomorphically to a plane Y. Show that f is not flat. For example, let $Y = \operatorname{Spec} k[x, y]$ and $X = \operatorname{Spec} k[x, y, z, w]/(z, w) \cap (x + z, y + w)$.
 - (c) Again let $Y = \operatorname{Spec} k[x, y]$, but take $X = \operatorname{Spec} k[x, y, z, w]/(z^2, zw, w^2, xz yz)$. Show that $X_{\text{red}} \cong Y$, X has no embedded points, but that f is not flat.
- **4.** Open Nature of Flatness. Let $f: X \to Y$ be a morphism of finite type of Noetherian schemes. Then $\{x \in X \mid f \text{ is flat at } x\}$ is an open subset of X (possible empty).
- **5.** Very Flat Families. For any closed subscheme $X \subseteq \mathbb{P}^n$, we denote by $C(X) \subseteq \mathbb{P}^{n+1}$ the projective cone over X (I, Ex. 2.10). If $I = \subseteq k[x_0, \ldots, x_n]$ is the (largest) homogenous ideal of X, then C(X) is defined by the ideal generated by I in $k[x_0, \ldots, x_{n+1}]$.
 - (a) Give an example to show that if $\{X_t\}$ is a flat family of closed subschemes of \mathbb{P}^n , then $\{C(X_t)\}$ need not be a flat family in \mathbb{P}^{n+1} .
 - (b) To remedy this situation, we make the following definition. Let $X \subseteq \mathbb{P}_T^n$ be a closed subscheme, where T is a Noetherian integral scheme. For each $t \in T$, let $I_t \subseteq S_t = k(t)[x_0, \dots, x_n]$ be the homogenous ideal of X_t in $\mathbb{P}_{k(t)}^n$. We say that the family $\{X_t\}$ is very flat if for all $d \geq 0$,

$$\dim_{k(t)}(S_t/I_t)_d$$

is independent of t.

- (c) If $\{X_t\}$ is a very flat family in \mathbb{P}^n , show that it is flat. Show also that $\{C(X_t)\}$ is a very flat family in \mathbb{P}^{n+1} , and hence flat.
- (d) If $\{X_{(t)}\}$ is an algebraic family of projectively normal varieties in \mathbb{P}^n_k , parametrized by a nonsingular curve T over an algebraically closed field k, then $\{X_{(t)}\}$ is a very flat family of schemes.
- **6.** Let $Y \subseteq \mathbb{P}^n$ be a nonsingular variety of dimension ≥ 2 over an algebraically closed field k. Suppose \mathbb{P}^{n-1} is a hyperplane in \mathbb{P}^n which does not contain Y, and such that the scheme $Y' = Y \cap \mathbb{P}^{n-1}$ is also nonsingular. Prove that Y is a complete intersection in \mathbb{P}^n if and only if Y' is a complete intersection in \mathbb{P}^{n-1} .
- 7. Let $Y \subseteq X$ be a closed subscheme, where X is a scheme of finite type over a field k. Let $D = k[t]/(t^2)$ be the ring of dual numbers, and define an *infinitesimal deformation* of Y as a closed subscheme of X, to be a closed subscheme $Y' \subseteq X \times_k D$, which is flat over D, and whose closed fiber is Y. Show that these Y' are classified by $H^0(Y, \mathcal{N}_{Y/X})$, where

$$\mathscr{N}_{Y/X} = \mathcal{H}\!\mathit{om}_{\mathscr{O}_Y}(\mathscr{J}_y/\mathscr{J}_Y^2,\mathscr{O}_Y).$$

8. Let A be a finitely generated k-algebra. Write A as a quotient of a polynomial ring P over k, and let J be the kernel:

$$0 \to J \to P \to A \to 0.$$

Consider the exact sequence of (II, 8.4A)

$$J/J^2 \to \Omega_{P/k} \otimes_P A \to \Omega_{A/k} \to 0.$$

Apply the functor $\operatorname{Hom}_A(\cdot, A)$ and let $T^1(A)$ be the cokernel:

$$\operatorname{Hom}_A(\Omega_{P/k} \otimes A, A) \to \operatorname{Hom}_A(J/J^2, A) \to T^1(A) \to 0.$$

Now use the construction of (II, Ex. 8.6) to show that $T^1(A)$ classifies infinitesimal deformations of A, i.e., algebras A' flat over $D = k[t]/(t^2)$, with $A' \otimes_D k \cong A$. It follows that $T^1(A)$ is independent of the given representation of A as quotient of a polynomial ring P.

- **9.** A k-algebra A is said to be rigid if it has no infinitesimal deformations, or equivalently, by (Ex. 9.8) if $T^1(A) = 0$. Let $A = k[x, y, z, w]/(x, y) \cap (z, w)$, and show that A is rigid. This corresponds to two planes in \mathbb{A}^4 which meet at a point.
- 10. A scheme X_0 over a field k is rigid if it has no infinitesimal deformations.
 - (a) Show that \mathbb{P}^1_k is rigid, using (9.13.2).
 - (b) one might think that if X_0 is rigid over k, then every global deformation of X_0 is locally trivial. Show that this is not so, by constructing a proper, flat morphism $f: X \to \mathbb{A}^2$ over k algebraically closed, such that $X_0 \cong \mathbb{P}^1_k$, but there is no open neighborhood U of 0 in \mathbb{A}^2 for which $f^{-1}(U) \cong U \times \mathbb{P}^1$.
 - (c) Show, however, that one can trivialize a global deformation of \mathbb{P}^1 after a flat base extension, in the following sense: let $f: X \to T$ be a flat projective morphism, where T is a nonsingular curve over k algebraically closed. Assume there is a closed point $t \in T$ such that $X_t \cong \mathbb{P}^1_k$. Then there exists a nonsingular curve T', and a flat morphism $g: T' \to T$, whose image contains t, such that if $X' = X \times_T T'$ is the base extension, then the new family $f': X' \to T'$ is isomorphic to $\mathbb{P}^1_T \to T'$.
- 11. Let Y be a nonsingular curve of degree d in \mathbb{P}_k^n , over an algebraically closed field k. Show that

$$0 \le p_a(Y) \le \frac{1}{2}(d-1)(d-2).$$