CODE

22.6.6.3 For two-way members with shear reinforcement, effective depth shall be selected such that v_u calculated at critical sections does not exceed the values in Table 22.6.6.3.

Table 22.6.6.3—Maximum v_u for two-way members with shear reinforcement

Type of shear reinforcement	Maximum v_u at critical sections defined in 22.6.4.1	
Stirrups	$0.5\phi\sqrt{f_c'}$	(a)
Headed shear stud reinforcement	$0.66\phi\sqrt{f_c'}$	(b)

- 22.6.7 Two-way shear strength provided by single- or multiple-leg stirrups
- 22.6.7.1 Single- or multiple-leg stirrups fabricated from bars or wires shall be permitted to be used as shear reinforcement in slabs and footings satisfying (a) and (b):
 - (a) **d** is at least 150 mm
 - (b) d is at least $16d_b$, where d_b is the diameter of the stirrups
- **22.6.7.2** For two-way members with stirrups, v_s shall be calculated by:

$$v_s = \frac{A_v f_{yt}}{b_o s}$$
 (22.6.7.2)

where A_{ν} is the sum of the area of all legs of reinforcement on one peripheral line that is geometrically similar to the perimeter of the column section, and s is the spacing of the peripheral lines of shear reinforcement in the direction perpendicular to the column face.

- **22.6.8** Two-way shear strength provided by headed shear stud reinforcement
- 22.6.8.1 Headed shear stud reinforcement shall be permitted to be used as shear reinforcement in slabs and footings if the placement and geometry of the headed shear stud reinforcement satisfies 8.7.7.
- 22.6.8.2 For two-way members with headed shear stud reinforcement, v_s shall be calculated by:

$$v_s = \frac{A_v f_{yt}}{b_o s}$$
 (22.6.8.2)

COMMENTARY

R22.6.7 Two-way shear strength provided by single- or multiple-leg stirrups

R22.6.7.2 Because shear stresses are used for two-way shear in this chapter, shear strength provided by transverse reinforcement is averaged over the cross-sectional area of the critical section.

R22.6.8 Two-way shear strength provided by headed shear stud reinforcement

Tests (ACI 421.1R) show that headed shear stud reinforcement mechanically anchored as close as practicable to the top and bottom of slabs is effective in resisting punching shear. The critical section beyond the shear reinforcement is generally assumed to have a polygonal shape (refer to Fig. R22.6.4.2a, R22.6.4.2b, and R22.6.4.2c). Equations for calculating shear stresses on such sections are given in ACI 421.1R.

R22.6.8.2 Because shear stresses are used for two-way shear in this chapter, shear strength provided by transverse reinforcement is averaged over the cross-sectional area of the critical section.

