Introdução à Arquitetura de Computadores

DS011

Excesso-N e Ponto Flutuante

Prof. Clausius Duque Reis clausius.reis@ufpr.br

O Sistema Binário... Relembrando

- Assim como na notação decimal,
 - cada digito de um número binário possui um valor dependendo de sua posição.
 - $-10_2 = (1 \times 2^1) + (0 \times 2^0) = 2_{10}$
 - $-11_2 = (1 \times 2^1) + (1 \times 2^0) = 3_{10}$
 - $-100_2 = (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4_{10}$
- Valores de frações são representadas com potências negativas da base
 - $1001,101 = (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-1}) + (1 \times 2^{-1}) + (1$

O Sistema Binário

- Para a representação binária do número
 - $Y = \{ b_2b_1b_0, b_{-1}b_{-2}b_{-3} \}$
- O valor de Y é
 - $Y = \sum_{i} (b_i \times 2^i)$

O Sistema Binário

Para a representação binária do número

$$- Y = \{ b_2b_1b_0, b_{-1}b_{-2}b_{-3} \}$$

O valor de Y é

$$- Y = \sum_{i} (b_i \times 2^i)$$

Convertendo entre Binário e Decimal

Binário para Decimal

- MUITO SIMPLES!!!
- Multiplique cada digito pela potência de 2 apropriada e some os resultados.
- Lembre dos exemplos anteriores!!!

Decimal para Binário

- SIMPLES!!!
- Inteiros e frações são manipulados separadamente.

Parte INTEIRA

- Em notação binária um inteiro é representado por
 - $b_{m-1}b_{m-2}...b_2b_1b_0$ $b_i = 0$ ou 1
- Possui o valor
 - $(b_{m-1} \times 2_{m-1}) + (b_{m-2} \times 2_{m-2}) + ... + (b_1 \times 2_1) + b_0$

E a parte fracionária?

Parte FRACIONÁRIA

- Em notação binária, um número com valor entre 0 e 1 é representado por
 - $0,b_{1}b_{2}b_{3}...$ $b_{i} = 0 \text{ ou } 1$
- E possui o valor
 - $(b_{-1} \times 2^{-1}) + (b_{-2} \times 2^{-2}) + (b_{-3} \times 2^{-3}) \dots$

- O algoritmo de conversão envolve repetidas multiplicações por 2.
 - A cada passo a parte fracionaria do número é multiplicada por 2.
 - O digito a esquerda da virgula (0 ou 1) contribui para a representação binária.
- O processo não é exato.
 - Uma fração decimal com um número finito de dígitos pode gerar uma representação binária com um número infinito de bits.
 - O processo é cessado após uma sequência predefinida de passos, dependendo da precisão desejada.

• Entenderam?

- Entenderam?
- Mais fácil né?

- Entenderam?
- Mais fácil né?
- Converta o número 0,25₁₀

- Entenderam?
- Mais fácil né?
- Converta o número 0,25₁₀

Converta o número 0,81₁₀

Converta o número 0,81₁₀

(a)
$$0.81_{10} = 0.110011_2$$
 (approximately)

Notação Octal

$$(2)_8$$
 $(7)_8$. $(5)_8$ $(010)_2$ $(111)_2$. $(101)_2$

Octal	7	2	3	0	
Valor de Posição	8³	8²	8 ¹	80	
Calculo	7 x 8³ = 3584	2 x 8 ² = 128	3 x 8¹ = 24	0 x 8 ⁰ = 0	
Valor Final	3584 + 128 + 24 + 0 = 3736 (Decimal)				

Notação Hexadecimal

Considere a string binária

110111100001

• 110111100001₂ = DE1₁₆

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
100	0110 0100	64
255	1111 1111	FF
256	0001 0000 0000	100

Notação Hexadecimal

- Hexadecimal Decimal
 - $= 2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0}) = (2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44_{10}$
- Decimal Hexadecimal
 - Divisões sucessivas por 16 (parte inteira).
 - Multiplicações sucessivas por 16 (parte fracionária)
- Hexadecimal Binário (Extremamente fácil)
 - Substituir cada digito hexadecimal pelo grupo de 4 bits correspondente
- Binário Hexadecimal (Extremamente fácil)
 - Dividir os bits em grupos de 4 (partindo do ponto decimal).
 - Substituir cada grupo pelo digito hexadecimal correspondente.

Notação Hexadecimal

- Binário Hexadecimal (FRAÇÃO)
 - Caso seja necessário, acrescentar o dígito 0 (zero) nas extremidades!
 - 0.101₂ em hexadecimal?

0000.1010

$$0.101_2 = 0.A_{16}$$

- Converta os números binários para decimal
 - A) 001.10

B) 10.010

- C) 110.11

D) 1010.101

- Converta os números decimais para binário
 - A) 6.2

- B) 54.70
- B) 629.446C) 1.053

Relembrando os negativos...

Sinal-Magnitude

- A representação de sinal-magnitude é a mais familiar a nós que utilizamos o sistema numérico de base 10
- Bit à esquerda do número (mais significativo) para indicar se número é positivo ou negativo
- Os bits restantes do número representam a magnitude (ou o valor absoluto). Assim, em um byte com 8 bits, são utilizados 7 bits para representar o valor e um bit para representar o sinal
- Neste caso, o valor pode variar de 0000000 (0) a 1111111 (127),
 podendo representar números de −127₁₀ a +127₁₀
- Uma conseqüência desta representação é que existem duas maneiras de representar o zero, 00000000 (0) e 10000000 (-0)

Relembrando os negativos...

Complemento a dois

- Os problemas de múltiplas representações de 0 e a necessidade de tratamento com "vai-um" são contornadas pelo complemento a dois
- Em complemento a dois, há apenas um zero (0000000). Se nega um número (negativo ou positivo) invertendo-se todos os bits e, em seguida, adicionando 1 ao resultado
- A adição de de números em complemento para dois é o mesmo processo da adição de números sem-sinal
 - Mesmo hardware!!!
- Um método mais fácil de obter a negação de um número em complemento de dois é o que se segue:

	Exemplo 1	Exemplo 2
1. A partir da direita, encontre o primeiro '1'	010100 1	0101 1 00
2. Inverte todos os bits à esquerda deste um	101011 1	1010 100

Excesso-N

- A representação de Excesso-N usa um número préespecificado N como um valor de polarização
- Um valor é representado pelo número sem sinal que é N unidades maior do que o valor pretendido
- Assim, 0 (zero) é representado por N, e -N é representado pelo padrão de bits zeros (tudo zerado).
- Esta é uma representação que é agora utilizada principalmente em números de ponto flutuante

Excesso-N

Excesso-127 em 8 bits

Valor binário	Interpretação de Excesso- 127	Interpretação sem-sinal
00000000	-127	0
0000001	-126	1
01111111	0	127
10000000	1	128
11111111	+128	255

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois	Excesso-7	
+16	_	_	_	_	_	
+15	1111	_	_	_	_	
+14	1110	_	_	_	_	
+13	1101	_	_	_	_	
+12	1100	_	_	_	_	
+11	1011	_	_	_	_	
+10	1010	_	_	_	_	
+9	1001	_	_	_	_	
+8	1000	_	_	_	1111	
+7	0111	0111	0111	0111	1110	
+6	0110	0110	0110	0110	1101	
+5	0101	0101	0101	0101	1100	
+4	0100	0100	0100	0100	1011	
+3	0011	0011	0011	0011	1010	
+2	0010	0010	0010	0010	1001	
+1	0001	0001	0001	0001	1000	
+0	_	0000	0000	_	_	
0	0000	_	_	0000	0111	uque Reis
-0	_	1000	1111	_	_	-uque keis

	Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois	Excesso-7
	+9	1001	_	_	_	_
	+8	1000	_	_	_	1111
	+7	0111	0111	0111	0111	1110
	+6	0110	0110	0110	0110	1101
	+5	0101	0101	0101	0101	1100
	+4	0100	0100	0100	0100	1011
	+3	0011	0011	0011	0011	1010
	+2	0010	0010	0010	0010	1001
	+1	0001	0001	0001	0001	1000
	+0	_	0000	0000	_	_
	0	0000	_	_	0000	0111
	-0	_	1000	1111	_	_
	-1	_	1001	1110	1111	0110
	-2	_	1010	1101	1110	0101
	-3	_	1011	1100	1101	0100
	-4	_	1100	1011	1100	0011
	-5	_	1101	1010	1011	0010
	-6	_	1110	1001	1010	0001
	-7	_	1111	1000	1001	0000
	-8	_	_	_	1000	_
O	-9	_	_	_	_	_
	-10	_	_	_	_	_

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois	Excesso-7
+9	1001	_	_	_	_
+8	1000	_	_	_	1111
+7	0111	0111	0111	0111	1110
+6	0110	0110	0110	0110	1101
+5	0101	0101	0101	0101	1100
+4	0100	0100	0100	0100	1011
+3	0011	0011	0011	0011	1010
+2	0010	0010	0010	0010	1001
+1	0001	0001	0001	0001	1000
+0	_	0000	0000	_	_
0	0000	_	_	0000	0111
-0	_	1000	1111	_	_
-1	_	1001	1110	1111	0110
-2	_	1010	1101	1110	0101
-3	_	1011	1100	1101	0100
-4	_	1100	1011	1100	0011
-5	_	1101	1010	1011	0010
-6	_	1110	1001	1010	0001
-7	_	1111	1000	1001	0000
-8	_	_	_	1000	_
-9	_	_	_	_	_
-10	_	_	_	_	_

DSC

	Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois	Excesso-7
	+9	1001	_	_	_	_
	+8	1000	_	_	_	1111
	+7	0111	0111	0111	0111	1110
	+6	0110	0110	0110	0110	1101
	+5	0101	0101	0101	0101	1100
	+4	0100	0100	0100	0100	1011
	+3	0011	0011	0011	0011	1010
	+2	0010	0010	0010	0010	1001
	+1	0001	0001	0001	0001	1000
	+0	_	0000	0000	_	_
	0	0000	_	_	0000	0111
	-0	_	1000	1111	_	_
	-1	_	1001	1110	1111	0110
	-2	_	1010	1101	1110	0101
	-3	_	1011	1100	1101	0100
	-4	_	1100	1011	1100	0011
	-5	_	1101	1010	1011	0010
	-6	_	1110	1001	1010	0001
	-7	_	1111	1000	1001	0000
	-8	_	_	_	1000	_
60	-9	_	_	_	_	_
	-10	_	_	_	_	_

DS

Decimal	Sem sinal	Sinal-e- magnitude	Complemento para um	Complemento de dois	Excesso-7
+9	1001	_	_	_	_
+8	1000	_	_	_	1111
+7	0111	0111	0111	0111	1110
+6	0110	0110	0110	0110	1101
+5	0101	0101	0101	0101	1100
+4	0100	0100	0100	0100	1011
+3	0011	0011	0011	0011	1010
+2	0010	0010	0010	0010	1001
+1	0001	0001	0001	0001	1000
+0	_	0000	0000	_	_
0	0000	_	_	0000	0111
-0	_	1000	1111	_	_
-1	_	1001	1110	1111	0110
-2	_	1010	1101	1110	0101
-3	_	1011	1100	1101	0100
-4	_	1100	1011	1100	0011
-5	_	1101	1010	1011	0010
-6	_	1110	1001	1010	0001
-7	_	1111	1000	1001	0000
-8	_	_	_	1000	_
-9	_	_	_	_	_
-10	_	_	_	_	_

DS

IEEE-754

- O padrão IEEE de ponto flutuante (IEEE-754), define o campo de expoente de um número de 32 bits de precisão simples como um campo de 8 bits na representação de Excesso-127
- O expoente de um número de 64 bits de precisão dupla é um de campo de 11 bits com representação de Excesso-1023.

IEEE 754 Floating Point Standard

IEEE-745

IEEE 754 Converter, 2024-02

SIGN BIT 1= NEGATIVE 0=POSITIVE

EXAMPLE: -248.75

HEXADECIMAL: C3 78 C0 00

IEEE-745

IEEE 754 Converter, 2024-02

	Sign	Exponent	Mantissa
Value:	-1	2 ⁷	1 + 0.943359375
Encoded as:	1	134	7913472
Binary:	✓		
Decimal Rep	oresentati	on -248.75	
Value actual	ly stored	in float: -248.75	
Error due to	conversion	on: 0	
Binary Repr	esentation	1100001101111000	11000000000000
Hexadecima	I Represe	entation c378c000	

Calculadora IEEE-745 online

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Dado que um computador trabalha em excesso-127, os números abaixo representam quais valores em decimal?

- 11001100
- 10101010
- 01100110
- 00110011

Dado que um computador trabalha em excesso-127, os números abaixo representam quais valores em decimal?

- 11001100
- 10101010
- 01100110
- 00110011

Solução: Converta de binário para decimal e subtraia o excesso, no caso 127.

Dado que um computador trabalha em excesso-127, os números abaixo representam quais valores em decimal?

• 11001100
$$\rightarrow$$
 (1x2⁷)+(1x2⁶)+(1x2³)+(1x2²) = 128 + 64 + 8 + 4 = 204
204 - 127 = 77

- 10101010
- 01100110
- 00110011

Solução: Converta de binário para decimal e subtraia o excesso, no caso 127.

Agora faça o inverso, converta os númderos decimais abaixo para excesso-127.

- 33
- 87
- 15
- 65

Exercício

Agora faça o inverso, converta os númderos decimais abaixo para excesso-127.

- 33
- 87
- 15
- 65

Solução: Some o excesso, no caso 127, e depois converta de decimal para binário.

Exercício

Agora faça o inverso, converta os númderos decimais abaixo para excesso-127.

• 33
$$\rightarrow$$
 33 + 127 = 160
160₁₀ = 10100000₂ (127 + 33)

- 87
- 15
- 65

Solução: Some o excesso, no caso 127, e depois converta de decimal para binário.

Introdução à Arquitetura de Computadores

DS011

Binário BCD e Codificação de Caracteres

Prof. Clausius Duque Reis clausius.reis@ufpr.br

Códigos Binários

Sistema numérico decimal

Conveniente para os seres humanos.

Sistema numérico binário

- Conveniente para computadores.
- (BEM) menos conveniente para os seres humanos.

Códigos Binários

Exemplo:

- 1010011₂ em decimal ???
- Processo de conversão simples, porém tedioso → consome muito tempo.

Códigos Binários

- Exemplo:
 - 1010011₂ em decimal ????
 - Processo de conversão simples, porém tedioso → consome muito tempo.
- BCD Forma especial de código binário MAIS compatível com o sistema decimal.

- BCD Binary Coded Decimal
- Binário Codificado em Decimal.
 - Não é um sistema de numeração!

- BCD Binary Coded Decimal
- Binário Codificado em Decimal.
 - Não é um sistema de numeração!
- Representa os dígitos decimais de 0 a 9 com um código binário de 4 dígitos.

- BCD Binary Coded Decimal
- Binário Codificado em Decimal.
 - Não é um sistema de numeração!
- Representa os dígitos decimais de 0 a 9 com um código binário de 4 dígitos.
- Usa o sistema de pesos posicionais 8421 do código binário puro
 - $dB \times 2^3 + dB \times 2^2 + dB \times 2^1 + dB \times 2^0$
 - dB x 8 + dB x 4 + dB x 2 + dB x 1

- Exemplo: Decimal → BCD
 - 834₁₀ em BCD =

- Exemplo: Decimal → BCD
 - -834_{10} em BCD = 1000 0011 0100

- Exemplo: Decimal → BCD
 - -834_{10} em BCD = 1000 0011 0100
 - 0,764₁₀ em BCD =

- Exemplo: Decimal → BCD
 - 834₁₀ em BCD = 1000 0011 0100
 - 0,764₁₀ em BCD = 0,0111 0110 0100
- Exemplos: BCD → Decimal
 - 0110 0010 1000,1001 0101 0100 =

- Exemplo: Decimal → BCD
 - -834_{10} em BCD = 1000 0011 0100
 - 0,764₁₀ em BCD = 0,0111 0110 0100
- Exemplos: BCD → Decimal
 - 0110 0010 1000,1001 0101 0100 = 628,954

Vantagens BCD

- Simples manipulação e conversão

Desvantagens

- Menos eficiente que o código binário puro. Utiliza maior número de bits.
- Maior complexidade dos circuitos, maior consumo de energia, ...
- As operações aritméticas consomem mais tempo.

Tabela de conversão

- Decimal
- BCD 8421
- Binário puro

DECIMAL 0	BCD 8421 0000	BINÁRIO 0000		
1	0001	0001		
2	0010	0010		
3	0011	0011		
4	0100	0100		
5	0101	0101		
6	0110	0110		
7	0111	0111		
8	1000	1000		
9	1001	1001		
10	0001 0000	1010		
11	0001 0001	1011		
12	0001 0010	1100		
13	0001 0011	1101		
14	0001 0100	1110		
15	0001 0101	1111		

BCD – Binary Coded Decimal

 A BIOS em muitos computadores armazena a data e a hora utilizando BCD devido a utilização do chip MC6818. Essa forma é facilmente convertida em ASCII para os displays.

- A BIOS em muitos computadores armazena a data e a hora utilizando BCD devido a utilização do chip MC6818. Essa forma é facilmente convertida em ASCII para os displays.
- O Atari (família 8-bit) utilizava BCD para implementar os algoritmos de ponto flutuante.

- A BIOS em muitos computadores armazena a data e a hora utilizando BCD devido a utilização do chip MC6818. Essa forma é facilmente convertida em ASCII para os displays.
- O Atari (família 8-bit) utilizava BCD para implementar os algoritmos de ponto flutuante.
- Alguns modelos do Playstation 3 também armazenam a data e a hora utilizando BCD.

Pausa para Demonstração

Conversão:

- Decimal → BCD
 - Simples e direta.

Conversão:

- Decimal → BCD
 - Simples e direta.
- Binário (puro) → BCD
 - Converte primeiro para DECIMAL.
 - Na sequência de Decimal para BCD.

Conversão:

- Decimal → BCD
 - Simples e direta.
- Binário (puro) → BCD
 - Converte primeiro para DECIMAL.
 - Na sequência de Decimal para BCD.
- EXEMPLO:
 - $-1011,01_2 =$

- 11,25₁₀ =

Conversão:

- Decimal → BCD
 - Simples e direta.
- Binário (puro) → BCD
 - Converte primeiro para DECIMAL.
 - Na sequência de Decimal para BCD.
- EXEMPLO:
 - $1011,01_2 = (1x2^3)+(0x2^2)+(1x2^1)+(1x2^0)+(0x2^{-1})+(1x2^{-2}) =$

- 11,25₁₀ =

Conversão:

- Decimal → BCD
 - Simples e direta.
- Binário (puro) → BCD
 - Converte primeiro para DECIMAL.
 - Na sequência de Decimal para BCD.
- EXEMPLO:

-
$$1011,01_2 = (1x2^3)+(0x2^2)+(1x2^1)+(1x2^0)+(0x2^{-1})+(1x2^{-2}) = 8+0+2+1+0+0,25 = 11,25_{10}$$

$$-$$
 11,25₁₀ =

Conversão:

- Decimal → BCD
 - Simples e direta.
- Binário (puro) → BCD
 - Converte primeiro para DECIMAL.
 - Na sequência de Decimal para BCD.
- EXEMPLO:

-
$$1011,01_2 = (1x2^3)+(0x2^2)+(1x2^1)+(1x2^0)+(0x2^{-1})+(1x2^{-2}) = 8+0+2+1+0+0,25 = 11,25_{10}$$

 $-11,25_{10} = 0001 \ 0001.0010 \ 0101_2$

Conversão:

- Converte de BCD para Binário puro
 - 1) Converte BCD para decimal
 - 2) Decimal é convertido para binário
- Exemplo:
 - 1001 0110,0110 0010 0101

Conversão:

- Converte de BCD para Binário puro
 - 1) Converte BCD para decimal
 - 2) Decimal é convertido para binário

Exemplo:

- 1001 0110,0110 0010 0101 = 96,625

Inteiro	Resto	Posição	Fração	Inteiro	Posição	
96 ÷ 2 = 48	0	-> LSB	$0,625 \times 2 = 1,25 = 0,25$	1	<- MSB	
48 ÷ 2 = 24	0		$0,250 \times 2 = 0,50 = 0,50$	0		
24 ÷ 2 = 12	0		$0,500 \times 2 = 1,00 = 0$	0	<- LSB	
$12 \div 2 = 06$	0					
$06 \div 2 = 03$	0					
$03 \div 2 = 01$	1					
$01 \div 2 = 00$	1	<- MSB				
$96_{10} = 1100000_2$			$0,625_{10} = 0.101_2$			

 $96,625_{10} = 96_{10} + 0,625_{10} = 1100000_2 + 0.101_2 = 1100000.101_2$

Código ASCII

- "American Standart Code for Information Interchange"
 - Forma especial de código binário.
 - Largamente utilizado.
 - 7 bits: pode-se representar um total de
 2⁷ = 128 caracteres diferentes
 - Números decimais de 0 até 9
 - Letras maiúsculas e minúsculas do alfabeto
 - Outros caracteres especiais usados para pontuação e controle de dados.

- Composto por 2 grupos:
 - Um de 4 bits e outro de 3 bits.
- O grupo de 4 bits está a direita e o bit 1 é o LSB.
 - LSB: Bit Menos Significativo.
 - MSB: Bit Mais Significativo.

NULL Null SOH Start of Heading DC1 Device Control 1 STX Start of Text DC2 Device Control 2 ETX End of Text DC3 Device Control 3 EOT End of Transmission DC4 Device Control 4 ENQ Enquiry NAK Negative Acknowledge ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Block BS Backspace CAN Cancel					
STX Start of Text DC2 Device Control 2 ETX End of Text DC3 Device Control 3 EOT End of Transmission DC4 Device Control 4 ENQ Enquiry NAK Negative Acknowledge ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Block ETS Device Control 2 DC3 Device Control 3 DC4 Device Control 3 Synchronous Idle ETB End Transmission Block					
ETX End of Text DC3 Device Control 3 EOT End of Transmission DC4 Device Control 4 ENQ Enquiry NAK Negative Acknowledge ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Block					
EOT End of Transmission DC4 Device Control 4 ENQ Enquiry NAK Negative Acknowledge ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Bloc					
ENQ Enquiry NAK Negative Acknowledge ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Block					
ACK Acknowledge SYN Synchronous Idle BEL Bell (audible signal) ETB End Transmission Bloc					
BEL Bell (audible signal) ETB End Transmission Bloc					
, , ,					
BS Backspace CAN Cancel					
Horizontal Tabulação EM End of Medium					
(punched card skip) SUB Substitute					
LF Line Feed ESC Escape					
VT Vertical Tabulation FS File Separator					
FF Form Feed GS Group Separato					
CR Carriage Return RS Record Separator					
SO Shift Out US Unit Separator					
SI Shift In DEL Delete					
Space (blank)					

	coluna								
	bits	0	1	2	3	4	5	6	7
linha	7654321	000	001	010	011	100	101	110	111
0	0000	NUL	DLE	SP	0	@	P	•	p
1	0001	SOH	DC1	!	1	Α	Q	a	q
2	0010	STX	DC2	"	2	В	R	b	r
3	0011	ETX	DC3	#	3	C	S	C	s
4	0100	EOT	DC4	\$	4	D	T	d	t
5	0101	ENQ	NAK	%	5	E	U	e	u
6	0110	ACK	SYN	&	6	F	V	f	v
7	0111	BEL	ETB	•	7	G	W	g	w
8	1000	BS	CAN	(8	Н	X	h	x
9	1001	HT	EM)	9	I	Y	i	y
10	1010	LF	SUB	*	:	J	Z	j	Z
11	1011	VT	ESC	+	;	K	[k	{
12	1100	FF	FS	,	<	L	\	I	
13	1101	CR	GS	-	=	М]	m	}
14	1110	SO	RS		>	N	^	n	~
15	1111	SI	US	/	?	O	_	o	DEL

- Exemplo: Código ASCII para a letra L é 1001100
- Localizado na coluna 4, linha 12
- O grupo de 3 bits é 100 e o grupo de 4 bits é 1100.
 - Código ASCII: 100 1100.

- No código ASCII de 7 bits, o oitavo bit é geralmente usado como um <u>bit de paridade</u>
 - Para determinar se o dado (caractere) foi transmitido corretamente.

- Determinado pelo tipo de paridade desejado.
 - Paridade par → a soma de todos os 1's, incluindo o bit de paridade, é um número par.
- EXEMPLO:
 - Caractere G código ASCII é 1000111
 - 4 bits UM O bit de paridade é 0 → 01000111

Exercícios

- 1) Converta de Decimal para BCD
 - a) 1234
 - b) 235,876
- 2) Converta de BCD para Decimal
 - a) 0010 0011 0101 1000 0000
 - b) 0001 0010 1001. 0011 0110 0000 0010
- 3) Converta de Binário para BCD
 - a) 01110110110
 - b) 011000111.011101

Exercícios

- 1) Converta de BCD para Binário
 - a) 1001 0100 0011 0101 0110
 - b) 0111 1000 1001 0001.0000 0101 1000
- 2) Converta a string para ASCII (7 bits)
 - a) Hello Computer!
 - b) Linux is better
 - c) Lord Darth Vader
- 3) Inclua o bit de paridade na resposta do exercício anterior, utilizando 8 bits