Codage des nombres entiers positifs

Codage des nombres entiers positifs

M. Combacau combacau@laas.fr

Université Paul Sabatier LAAS-CNRS

November 12, 2024

Objectif

Exercices sur les techniques de codage des nombres entiers et fractionnaires

Codage de 96₁₀ sur 8 bits

Rq : le principe des divisions successives peut être utilisé quelles que soient la base de départ b_d et la base d'arrivée b_a pourvu que $b_d > b_a$, le calcul s'effectuant dans la base de départ.

Décodage de [11000101]

Il s'agit ici de passer de la base 2 à la base 10. Il n'est pas possible d'utiliser l'algorithme vu juste avant car le calcul en base 2 ne permet pas de traiter les nombres écrits en base 10.

$$A = \begin{pmatrix} 2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Il suffit d'utiliser la formule donnant la valeur d'un nombre en binaire naturel

$$A = \sum_{i=0}^{n-1} a_i \cdot 2^i$$

D'où valeur (A)=
$$2^7 + 2^6 + 2^2 + 2^0 = 128 + 64 + 4 + 1 = 197_{(10)}$$

Codage de -18 suivant les trois formats (sur 8 bits)

On notera "code binaire naturel": cbn

signe+valeur absolue

- 1. Signe: $-18 < 0 \Rightarrow b_7 = 1$
- 2. Codage de |-18|Notons que 18=16+2codé en cbn $[0001\ 0010]$ d'où le code de -18 : $[1001\ 0010]$

avec biais (128)

On doit coder la valeur -18+128 en cbn

remarque : 128-18=127-17

127 :[0111 1111] et 17 : [0001 0001]

d'où le code de -18 : [0110 1110]

Ca2

-18 < 0 on va donc coder la valeur 256-18

or 256-18=255-17

255 :[1111 1111] 17 : [0001 0001] d'où le code de -18 : [1110 1110]

Décodage de [11000101] suivant les trois formats

signe+valeur absolue

1.Signe:

$$b_7 = 1 \Rightarrow A < 0$$

2.
 $|A| = 2^6 + 2^2 + 2^0$
 $= 64 + 4 + 1$
 $= 69$

d'où A= -69

avec biais (128)

Il faut soustraire le biais du codage

Cela peut être fait en binaire (sur 8 bits) 11000101 - 10000000 = 01000101 d'où A=69

où en décimal [11000101 = 128 + 64 + 4 + 1 = 197 et finalement A = 197 - 128 = 69

Ca2

1.Signe:
$$b_7 = 1 \Rightarrow A < 0$$

2. pour calculer |A|, il faut "prendre" le complément à 2 du code

```
1100010|1
0011101|1
d'où
|A| = 32+16+8+2+1
= 59
et finalement : A =-59
```


Codage de 14.25 en virgule fixe (6,2)

$$\begin{bmatrix} b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \end{bmatrix}$$
 le code $\begin{bmatrix} 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 & 2^{-1} & 2^{-2} \end{bmatrix}$ son interprétation en virgule fixe (m,f)=(6,2)

Pour le codage, deux démarches

- calculs de la partie entière (divisions successives par 2) et de la partie fractionnaire (multiplications successives par 2) $14 = 8 + 4 + 2 \rightarrow 001110$ $0.25 = 2^{-2} \rightarrow 01$ d'où le code : [00111001]
- on code la partie entière de $A \times 2^f$ ici f=2, on code donc $14,25 \times 2^2 = 57 = 32 + 16 + 8 + 1$ d'où le code [00111001]

Remarque : si la valeur $A \times 2^f$ n'est pas entière, on code l'entier le plus proche de $A \times 2^f$ et une erreur de codage existe.

Décodage de [11010101] en virgule fixe (6,2)

```
lci b_7 = 1 donc la valeur codée est négative (A < 0)
```

on recherche la valeur de |A| en "prenant" le complément à 2 du code.

```
1101010|1
0010101|1
```

Comme lors du codage, deux démarches existent

- Calcul partie entière et partie fractionnaire

 Le code de la partie entière = 001010 et $\lfloor A \rfloor = 8 + 2 = 10$ Le code de la partie fractionnaire = 11 qui code la valeur $2^{-1} + 2^{-2} = 0.75$ d'où |A| = 10.75 et finalement A = -10.75
- Décodage de [00101011] en $32+8+2+1=43=|A|\times 2^f$ puis multiplication par 2^{-f} pour obtenir |A| $|A|=43/2^2=10.75$ et finalement A=-10.75

Codage de 14.25 en simple précision (IEEE p754)

```
Rappel: simple précision = 32 bits dont
```

- *b*₃₁ : signe
- $b_{30} \dots b_{23}$: exposant sur 8 bits biaisé de 127 (2⁷ 1)
- $b_{22} \dots b_0$: partie fractionnaire appelée mantisse (1, mantisse)

Application: 14,25

- 14.25 > 0 \rightarrow $b_{31} = 0$
- 14,25 : 1110.01 = 1.11001(×2³)! formellement incorrect! (base 2 et base 10) D'où la matisse m=11001 et $b_{22} \dots b_0 = 1100100 \dots 0$
- exposant = 3+127 = 128+2 codé en BN par $b_{30} \dots b_{23} = 10000010$

Décodage de [110000100100000000000000000000] en simple précision (IEEE p754)

- $b_{31} = 1 \text{ donc } a < 0$
- $b_{30} \dots b_{23} = 10000100$ codant la valeur 128+4=127+5 donc exposant = 5
- $b_{22} \dots b_0 = 1000 \dots 0$ codant la valeur 0.5 d'où la mantisse m=0.5

Et finalement le nombre codé $A = -1.5 \times 2^5 = -48$

Précision en virgule fixe

- Codons la valeur : 14.25 On a vu que 14.25 était codable sans erreur. $E_a = 0$ et $E_r = 0$ (parfait !)
- Codons la valeur : 14,26 $14.26 \times 2^2 = 47,04$ n'est pas une valeur entière, erreur de codage ! La valeur entière la plus proche est 47 qui correspond à 14,25 L'erreur absolue commise vaut 14,26-14,25=0.01 L'erreur relative commise vaut $0.01/14,25\approx0.07\%$ (acceptable)
- Codons la valeur 0.12 $0.12 \times 2^2 = 0.48 \rightarrow \text{valeur non entière}$ On va coder l'entier le plus proche : 0 l'erreur absolue commise vaut $E_a = |0 - 0.12| = 0.12$ et l'erreur relative commise vaut $E_r = 0.12/0.12 = 100\%$ (inacceptable)

L'erreur relative commise sur les valeurs "proches de 0" est importante. Seules les valeurs multiples de 2^{-f} sont codables sans erreur.

