Homework #1 Due 10:10, Oct. 13, 2021

1. Let v_1 , v_2 , v_3 , v_4 be a set of zero-mean independent random variables with variances equal to 1, 2, 3, 4. Let x_1 , x_2 , x_3 , x_4 be defined by

$$x_1 = v_1 + v_2 + v_3 + v_4$$

$$x_2 = -v_1 + v_2 + v_3 - v_4$$

$$x_3 = v_1 - v_2 + v_3 - v_4$$

$$x_4 = v_1 + v_2 - v_3 - v_4$$

Which pairs of (x_i, x_j) , i, j = 1, 2, 3, 4, are uncorrelated?

- 2. Let x(n) and y(n) be jointly stationary random sequences, where the cross-correlation between them is $r_{xy}(i) = E\{x(n)y(n+i)\}$. Show that $|r_{xy}(i)| \le \sqrt{r_{xx}(0) r_{yy}(0)}$, where $r_{xx}(0) = E\{x^2(n)\}$ and $r_{yy}(0) = E\{y^2(n)\}$.
- 3. Given that w(n) is a zero-mean iid sequence and x(n) = h(n) * w(n), find $r_{xx}(m)$ for each of the following cases:
 - (1) $h(n) = a^n$, n = 0, 1; h(n) = 0, elsewhere.
 - (2) $h(n) = a^{2n}$, $n \ge 0$; h(n) = 0, n < 0.
- 4. For the MA(1) process

$$x(n) = w(n) + b_1 w(n-1)$$

show that

$$\left| \frac{r(1)}{r(0)} \right| \le 0.5$$

and find the values of b_1 which produce equality.

5. Let x(n) and y(n) be both zero-mean and WSS random processes. Consider the random process z(n) defined by

$$z(n) = x(n) + y(n)$$

- (1) Determine the autocorrelation function and the power spectral density of z(n), (a) if x(n) and y(n) are jointly WSS; (b) if x(n) and y(n) are orthogonal.
- (2) Show that if x(n) and y(n) are orthogonal, then the mean square of z(n) is equal to the sum of the mean squares of x(n) and y(n).

6. Find $R_{yy}(e^{j\omega})$ for each of the following cases:

(1) $w(n) \longrightarrow b(n) \longrightarrow g(n) \longrightarrow b(n)$

where w(n) is a white signal with unit power, h(0) = 1 h(0) = 1, h(1) = 0.5, g(0) = 1, and g(1) = -0.5.