

Incomplete dominance

- Neither allele completely dominant
- Heterozygotes have a phenotype between homozygotes

Incomplete dominance: Snapdragon

¹Image: Public Domain

Antirrhinum majus

- Native to the Mediterranean region
- Grows in crevices and walls
- ► Flower colour shows incomplete dominance
 - ► Homozygous red (C^RC^R) makes red flowers
 - Homozygous white (CWCW) makes white flowers
 - ► Heterozygous (*C*^R*C*^W) makes pink flowers
- ► Letter *C* with superscript indicates neither allele is dominant

Incomplete dominance in snapdragons

¹Image: Public Domain

Incomplete dominance in snapdragons

¹Image: Public Domain

Incomplete dominance

- Incomplete dominance is not blending inheritance
 - Variation maintained by discrete alleles
 - ► Alleles segregate independently
- ▶ Different degrees of incomplete dominance possible
- ▶ Degree of dominance¹ (h) matters in terms of visibility to selection (s)

¹Bourguet, D. (1999). The evolution of dominance. *Heredity*, 83:1-4. [PDF]

- ➤ Two alleles are expressed to yield a different phenotype
- Alleles are expressed to an equal degree

¹Image: Prof Leandro A. Freire (2023), CC BY-SA 4.0.

Human blood types are codominant

Phenotypes: A, B, AB, and O

¹Image: Public Domain

Three total alleles

- 2 dominant (A, B)
- ▶ 1 recessive (i)

Dominant alleles caused by production of A or B antigens

Other antigens (Rh) determine positive or negative status

¹Image: Public Domain

Different types of dominance

- ➤ Complete dominance: Phenotype of dominant homozygote and heterozygote are identical
- ► **Incomplete dominance**: Phenotype of F_1 hybrids is somewhere between the phenotype of the parents
- ➤ **Codominance**: Two dominant alleles affect the phenotype in separate distinguishable ways