2016年青年教师课堂教学竞赛

姚媛媛

华东理工大学理学院

男子100米世界纪录

9.95 秒	海因斯(美国)	1968 年
9.93 秒	史密斯(美国)	1983 年
9.86 秒	刘易斯(美国)	1991 年
9.79 秒	格林(美国)	1999 年
9.74 秒	鲍威乐(牙买加)	2007 年
9.58 秒	博尔特(牙买加)	2009 年

男子100米世界纪录

9.95 秒	海因斯(美国)	1968 年
9.93 秒	史密斯(美国)	1983 年
9.86 秒	刘易斯(美国)	1991 年
9.79 秒	格林(美国)	1999 年
9.74 秒	鲍威乐(牙买加)	2007 年
9.58 秒	博尔特(牙买加)	2009 年

单调有界收敛定理: 单减有下界的数列收敛到下确界, 单增类似.

迭代数列

迭代数列 $\left\{ \begin{array}{c} ext{初始点 } a_1 \end{array} \right.$

```
迭代数列 \left\{ \begin{array}{l} \hbox{初始点 } a_1 \\ \hbox{迭代规则 } a_{n+1} = f(a_n) \end{array} \right.
```

迭代数列 $\left\{ \begin{array}{l} \hbox{ 初始点 } a_1 \\ \hbox{ 迭代规则 } a_{n+1} = f(a_n) \end{array} \right.$

例1《庄子·天下篇》一尺之棰, 日取其半, 万世不竭.

迭代数列
$$\left\{ \begin{array}{l} \hbox{初始点 } a_1 \\ \hbox{迭代规则 } a_{n+1} = f(a_n) \end{array} \right.$$

例1《庄子·天下篇》一尺之棰, 日取其半, 万世不竭.

沒
$$a_1 = 1$$
, $a_{n+1} = \frac{a_n}{2}$, 求 $\lim_{n \to \infty} a_n$.

迭代数列
$$\left\{ \begin{array}{l} \hbox{ 初始点 } a_1 \\ \hbox{ 迭代规则 } a_{n+1} = f(a_n) \end{array} \right.$$

例1《庄子·天下篇》一尺之棰, 日取其半, 万世不竭.

解 由题意, $a_n = \frac{1}{2^{n-1}} > 0$. (单调递减有下界)

例1《庄子·天下篇》一尺之棰, 日取其半, 万世不竭.

茂
$$a_1 = 1$$
, $a_{n+1} = \frac{a_n}{2}$, 求 $\lim_{n \to \infty} a_n$.

解 由题意, $a_n = \frac{1}{2^{n-1}} > 0$. (单调递减有下界)

故由单调有界收敛定理, $\{a_n\}$ 极限存在, 且 $\lim_{n\to\infty} a_n = 0$.

迭代数列
$$\left\{ egin{array}{ll} \hbox{ 初始点 } a_1 \ \hbox{ 迭代规则 } a_{n+1} = f(a_n) \end{array} \right.$$

 M_1 《庄子·天下篇》一尺之棰, 日取其半, 万世不竭.

解 由题意, $a_n = \frac{1}{2^{n-1}} > 0$. (单调递减有下界)

故由单调有界收敛定理, $\{a_n\}$ 极限存在, 且 $\lim_{n\to\infty} a_n = 0$.

曖迭代函数 $f(x) = \frac{x}{2}$ 单调递增,相应迭代数列单调.

例2 意大利Fibonacci 提出兔子繁殖问题.

一对刚出生的小兔(设兔子雌雄成对 出生);

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求兔群增长率的极限.

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求兔群增长率的极限.

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求免群增长率的极限.

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求免群增长率的极限.

设 a_n 是每月兔子总对数,则 $\{a_n\}$ 是Fibonacci 数列! 满足

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求免群增长率的极限.

设 a_n 是每月兔子总对数,则 $\{a_n\}$ 是Fibonacci 数列! 满足 $a_1 = a_2 = 1, a_{n+1} = a_n + a_{n-1} (n \ge 3).$

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求免群增长率的极限.

设 a_n 是每月兔子总对数, 则 $\{a_n\}$ 是Fibonacci 数列! 满足 $a_1 = a_2 = 1, a_{n+1} = a_n + a_{n-1} (n \ge 3).$

则兔群增长率为 $(a_{n+1}/a_n)-1$.

例2 意大利Fibonacci 提出兔子繁殖问题.

- 一对刚出生的小兔(设兔子雌雄成对 出生);
- 兔子从第三个月开始达到成熟期;
- 每月初, 每对成熟兔子生一对小兔;
- 不考虑兔子死亡.

求免群增长率的极限.

设 a_n 是每月兔子总对数, 则 $\{a_n\}$ 是Fibonacci 数列! 满足 $a_1 = a_2 = 1, a_{n+1} = a_n + a_{n-1} (n \ge 3).$

则兔群增长率为 $(a_{n+1}/a_n)-1$.

解 记
$$b_n = a_{n+1}/a_n$$
,则 $b_1 = 1, b_2 = 2, b_3 = 3/2, b_4 = 5/3, b_5 = 8/5, b_6 = 13/8, \cdots$ 且

$$b_n = 1 + \frac{1}{b_{n-1}} \ (n \ge 2).$$

解
$$i \ b_n = a_{n+1}/a_n$$
,则 $b_1 = 1, b_2 = 2, b_3 = 3/2, b_4 = 5/3, b_5 = 8/5, b_6 = 13/8, \cdots 且 $\frac{\sqrt{5}+1}{2}$ $b_n = 1 + \frac{1}{b_{n-1}}$ $(n \ge 2)$.$

 $0 < b_1 < b_3 < \cdots < b_4 < b_2 < 2$. (奇项数列与偶项数列分别具有单调有界

由(*) 式 $\lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} b_{2k-1} = \lim_{n \to \infty} b_n = \frac{\sqrt{5}+1}{2}$.

答案: 兔群增长率极限为 $(\sqrt{5}-1)/2 \approx 0.618$, 黄金分割数!

解 记 $b_n = a_{n+1}/a_n$, 则 $b_1 = 1, b_2 = 2, b_3 =$

$$3/2, b_4 = 5/3, b_5 = 8/5, b_6 = 13/8, \cdots$$
 且
$$b_n = 1 + \frac{1}{b_{n-1}} (n \ge 2).$$

$$\Rightarrow b_{n+2} = 2 - \frac{1}{1+b_n} (*) \Rightarrow b_{n+2} - b_n = \frac{b_n - b_{n-2}}{(1+b_n)(1+b_{n-2})}$$

$$0 < b_1 < b_3 < \cdots < b_4 < b_2 < 2.$$
 (奇项数列与偶项数列分别具有单调有界
$$b(*) \stackrel{\overset{}{\prec}}{\prec} \lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} b_{2k-1} = \lim_{n \to \infty} b_n = \frac{\sqrt{5}+1}{2}.$$

答案: 兔群增长率极限为($\sqrt{5}-1$)/2 \approx 0.618, 黄金分割数!

圖迭代函数 $f(x) = 1 + \frac{1}{x}$ 单调递减, 迭代数列奇偶项分别单调.

大自然中有很多Fibonacci数列与黄金分割的例子,最典型的便以斐波那契螺旋方式排列的向日葵种子和巴特农神庙.

大自然中有很多Fibonacci数列与黄金分割的例子,最典型的便以斐波那契螺旋方式排列的向日葵种子和巴特农神庙.

大自然中有很多Fibonacci数列与黄金分割的例子,最典型的便以斐波那契螺旋方式排列的向日葵种子和巴特农神庙.

迭代函数单调的迭代数列规律总结

迭代函数规律总结(重点)

设 $\{x_n\}$ 满足递推关系 $x_{n+1} = f(x_n)$,其中f 在区间I 上单调,同时 $\{x_n\} \subseteq I$. 则只有两种可能:

- (a) 若f 单调单增, 此时 $\{x_n\}$ 为单调数列;
- (b) 若f 单调递减, 此时 $\{x_{2k-1}\}$ 和 $\{x_{2k}\}$ 分别单调, 且单调性相反.

☞ 若f 不单调⇒ 可能混沌!

☞ 若f 不单调⇒ 可能混沌!

例3 logistic 迭代函数f(x) = rx(1-x), 其中 $0 < r \le 4$.

☞ 若f 不单调⇒ 可能混沌!

例3 logistic 迭代函数f(x) = rx(1-x), 其中 $0 < r \le 4$.

例3 logistic 迭代函数f(x) = rx(1-x), 其中 $0 < r \le 4$.

洛伦茨(蝴蝶效应): 一只蝴蝶在巴西扇动翅膀, 可导致得克萨斯引起龙卷风!

例3 logistic 迭代函数f(x) = rx(1-x), 其中 $0 < r \le 4$.

洛伦茨(蝴蝶效应): 一只蝴蝶在巴西扇动翅膀, 可导致得克萨斯引起龙卷风!

参考文献

► 王树和. 好玩的数学.

科学出版社, 北京, 2015. ► 丁玖. 智者的困惑——混沌分形漫谈.

高等教育出版社, 北京, 2013.

T.Y. Li, J.A. Yorke. *Period three implies Chaos*.

The American Mathematical Monthly, 82(1975), 985-992.

■ 果壳网、维基百科、微课与幕课、CTEX中文论坛

Thank you!