Contents Lecture 5

- The divide and conquer algorithm design technique
- Analysing a divide and conquer algorithm: Mergesort
- Counting inversions
- Closest pair of points
- Convex hull

The divide and conquer algorithm design technique

- Suppose you have n items of input and the simplest technique to process it would be two nested for loops with a $\Theta(n^2)$ running time
- If *n* is small then this is fine
- With divide and conquer we instead aim at:
 - Divide in linear time the problem into two subproblems with n/2 items
 - Solve each subproblem
 - Combine the solutions to the subproblems in linear time into a solution for the n item problem
- The resulting running time becomes $\Theta(n \log n)$
- We will next study Mergesort

n	n	n log n	n^2	n^3	1.5 ⁿ	2 ⁿ	<i>n</i> !
10	2.5 ns	8.3 ns	25.0 ns	250.0 ns	14.4 ns	256.0 ns	907.2 μ s
11	2.8 ns	9.5 ns	30.2 ns	332.8 ns	21.6 ns	512.0 ns	10.0 ms
12	3.0 ns	10.8 ns	36.0 ns	432.0 ns	32.4 ns	$1.0~\mu$ s	119.8 ms
13	3.2 ns	12.0 ns	42.2 ns	549.2 ns	48.7 ns	2.0 μ s	1.6 s
14	3.5 ns	13.3 ns	49.0 ns	686.0 ns	73.0 ns	4.1 μ s	21.8 s
15	3.8 ns	14.7 ns	56.2 ns	843.8 ns	109.5 ns	8.2 μ s	5 min
16	4.0 ns	16.0 ns	64.0 ns	$1.0~\mu$ s	164.2 ns	16.4 μ s	1 hour
17	4.2 ns	17.4 ns	72.2 ns	$1.2~\mu$ s	246.3 ns	32.8 μ s	1.0 days
18	4.5 ns	18.8 ns	81.0 ns	$1.5~\mu$ s	369.5 ns	65.5 μ s	18.5 days
19	4.8 ns	20.2 ns	90.2 ns	$1.7~\mu$ s	554.2 ns	$131.1~\mu$ s	352.0 days
20	5.0 ns	21.6 ns	100.0 ns	2.0 μ s	831.3 ns	262.1 μ s	19 years
30	7.5 ns	36.8 ns	225.0 ns	6.8 μ s	47.9 μ s	268.4 ms	10 ¹⁵ years
40	10.0 ns	53.2 ns	400.0 ns	$16.0~\mu$ s	2.8 ms	5 min	10^{31} years
50	12.5 ns	70.5 ns	625.0 ns	$31.2~\mu$ s	159.4 ms	3.3 days	10 ⁴⁷ years
100	25.0 ns	166.1 ns	2.5 μ s	250.0 μ s	3 years	10^{13} years	10^{141} years
1000	250.0 ns	2.5 μ s	250.0 μ s	250.0 ms	10^{159} years	10^{284} years	huge
10^{4}	2.5 μ s	33.2 μ s	25.0 ms	4 min	huge	huge	huge
10 ⁵	25.0 μ s	415.2 μ s	2.5 s	2.9 days	huge	huge	huge
10^{6}	250.0 μ s	5.0 ms	4 min	8 years	huge	huge	huge
10 ⁷	2.5 ms	58.1 ms	7 hour	10 ⁴ years	huge	huge	huge
10 ⁸	25.0 ms	664.4 ms	28.9 days	10 ⁷ years	huge	huge	huge
10 ⁹	250.0 ms	7.5 s	8 years	10 ¹⁰ years	huge	huge	huge

Mergesort

- Mergesort is a stable sort algorithm
- Running time $\Theta(n \log n)$
- See mergesort.c e.g. in the book

Recurrence relation

- Swedish differensekvation or rekursionsekvation
- A recurrence relation or just recurrence is a set of equalities or inequalities such as

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- The value of T(n) is expressed using smaller instances of itself and a boundary value.
- To analyze the running time of a divide and conquer algorithm, recurrences are very natural
- But we want to have an expression for T(n) in **closed form**
- Closed form means an expression only involving functions and operations from a generally accepted set — i.e. "common knowledge".
- Closed form can also be called explicit form
- So our next goal is to rewrite T(n) into closed form

Mergesort recurrence

- $T(n) = \max \text{ comparisons to mergesort } n \text{ items}$
- Mergesort recurrence:

$$T(n) \leq \left\{ egin{array}{ll} 0, & n=1 \ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n, & n>1 \end{array}
ight.$$

- This is a simplification as can be seen if compared with the source code, but it is sufficiently accurate.
- We ignore ceil and floor:

$$T(n) \le \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- We also assume n is a power of 2
- In the book it is shown that these simplifications do not affect our running time analysis

Rewriting a recurrence to closed form

- The easiest way to understand what the closed form is, may be to "expand" or "unroll" the recurrence and simply see what is happening
- Another way is to look at small inputs and try to guess the closed form
- When we have a guess which works for the small inputs, we then prove by induction that our guess is correct
- In both cases we prove our closed form by induction
- We will start with expanding T(n)

Expanding the recurrence and count

$$T(n) \le \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- Assume *n* is power of 2
- $\log_2 n$ levels
- n comparisons per level
- In total n log n comparisons
- $T(n) = n \log n$

jonasskeppstedt.net Lecture 5 2024 8 / 60

Proof by induction

Lemma

The recurrence

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

has the closed form $T(n) = n \log_2 n$.

Proof.

- Recall $\log ab = \log a + \log b$, so $\log_2 2n = \log_2 n + \log_2 2 = \log_2 n + 1$, and $\log_2 n = \log_2 2n 1$
- Induction on n.
- Base case: n = 1: $T(1) = 1 \log_2 1 = 0$
- Induction hypothesis: assume $T(n) = n \log_2 n$
- $T(2n) = 2T(n) + 2n = 2n \log_2 n + 2n = 2n(\log_2 n + 1) = 2n(\log_2 2n 1 + 1) = 2n \log 2n$

jonasskeppstedt.net Lecture 5 2024 9 / 6

Remark about previous proof

- Normally we assume S(i) is true and prove S(i+1)
- On previous slide we did not increment by one but rather doubled our variable
- We could have stated the lemma in terms of S(i) and let $n=2^i$
- Then we use induction on i and assume S(i) and prove S(i+1)

Looking at small inputs

$$T(n) \le \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

• Let us try out some small values:

• Can we identify a pattern?

$$n$$
 1 2 4 8 16 32 64 $T(n)$ 0 2 8 24 64 160 384 $T(n)/n$ 0 1 2 3 4 5 6 $= \log_2(n)$

• So $T(n) = n \log_2 n$ is tempting to try to prove by induction, which we already know is true

The master theorem (MSc thesis by Dorothea Haken)

• There is a nice formula for finding T(n) for many recursive algorithms:

$$T(1) = 1$$

 $T(n) = aT(n/b) + n^s$.

• There are three closed form solutions (for details, see the book):

$$T(n) = \left\{ egin{array}{ll} O(n^s) & ext{if} & s > \log_b a \ \\ O(n^s \log n) & ext{if} & s = \log_b a \ \\ O(n^{\log_b a}) & ext{if} & s < \log_b a. \end{array}
ight.$$

- T(n) = 2T(n/2) + n. With a = b = 2 and s = 1, we have $\log_b a = \log_2 2 = 1 = s$, so $T(n) = O(n \log n)$.
- $T(n) = 2T(n/2) + \sqrt{n}$. With a = b = 2 and s = 0.5, we have $\log_b a = \log_2 2 = 1 > s$, so T(n) = O(n).
- $T(n) = 4T(n/3) + n^2$. We have $\log_b a = \log_3 4 = \frac{\log_{10} 4}{\log_{10} 3} = 1.26 < s = 2$, so $T(n) = O(n^2)$.

Finding people with similar tastes

- Consider a category such as text editor, programming language, preferred tab width, or the 22 Mozart operas
- To compare how similar tastes within a category three people have, they can rank a list of say 5 operas A-E

Tintin: A D C E B

Captain Haddock: A C B D E

Bianca Castafiolen: A B D C E

- All agree opera A is best
- Who have most similar tastes?

Inversions

- Tintin: A D C E B
- Captain Haddock: A C B D E
 Bianca Castafiolen: A B D C E
- We have 5 positions in each list
- Start with Tintin's list and label each item $1, 2, \ldots, 5$:
 - Tintin: A D C E B
 - Tintin: 1 2 3 4 5
- Then we put these labels according to Captain Haddock's ranking:
 - Captain Haddock: 1 3 5 2 4
 - a_1 a_2 a_3 a_4 a_5
- i and j are **inverted** if i < j and $a_i > a_j$
- Inversions: (3,2), (5,2), and (5,4)
- The fewer inversions, the more similar tastes

Counting inversions

```
for (c = i = 0; i < n; i += 1)
    for (j = i+1; j < n; j += 1)
        if (a[i] > a[j])
        c += 1;
```

printf("%d inversions\n", c);

- Running time is $O(n^2)$
- How can we use divide and conquer to achieve $O(n \log n)$? 1 3 | 5 2 4
- Count inversions in left part
- Count inversions in right part
- Somehow combine these parts and add number of inversions...???

What can we do to simplify the problem?

- 1 3 | 5 2 4
- Assume you know there are no inversions in the left part and two in the right part
- It is OK to "destroy" the array, such as sorting it, if that helps...
- If modifying the array is forbidden, we can always make a copy and work with the copy instead
- Copying the array is fine since that is faster than $O(n \log n)$
- Copying the array is O(n) but memory allocation can be costly so don't do it too much
- For Mergesort, it is non-trivial to not use a second array

Sorting the array

- By subarray is meant the part our recursive subproblem is going to work with
- Sorting the subarray after counting the inversions may help
- 1 3 | 5 2 4
- After having counted in the subarrays we have: 1 3 2 4 5
- Combining two sorted parts can be done in linear time as in $3 \mid 2 \mid 4 \mid 5 \mid 1$

Mergesort 3 2 4 5 1 3 4 5 1 2

The 2 was inverted with each remaining in left part — only the 3 in this example so one inversion is counted when the parts are combined

 4
 5
 1
 2
 3

 5
 1
 2
 3
 4

 1
 2
 3
 4
 5

In total 3 inversions

Implementing the *n* log *n* algorithm

- As always: first make a simple reference implementation that can be used to verify the correctness of a faster implementation
- In this case the n^2 algorithm is ideal if used with small inputs

Closest points in a plane

- This field is called computational geometry
- Consider n points (x_i, y_i) in a plane
- We want to find which points are closest
- Comparing all points with each other in an n^2 algorithm is simple
- But comparing points "obviously" far from each other is a waste
- How can divide and conquer be used to find an $n \log n$ algorithm?
- We cut the plane in two halves and find closest points in each half
- We have then three categories of point pairs which can be closest:
 - Point pairs in the left half
 - Point pairs in the right half
 - Point pairs with one point in the left and the other in the right half
- Can we find close points from the last category in linear time????

An example

- We cut the plane in two halves with 10 points in each half
- We compute the nearest points in each half
- $\delta = \min(146, 113)$
- ullet We only have to consider points within δ from the vertical line
- ullet If there are none, then δ is the answer
- If there are, then they must be checked with points from the other side which also must be within δ from the vertical line, of course

Combining

- The point p on the vertical line x_p belongs to the left half but there could also be points in the right half with the same x-coordinate
- Let the set S consist of all points with a distance within δ from the line x_p , (5 points here)
- Clearly it is sufficient to compare only points q and r from S such that p comes from the left half and q from the right part

Combining

- Each dashed box has a side of $\delta/2$
- How many points can each such box contain at most?
- The diagonal of a dashed box is $\sqrt{2} \times \delta/2 < \delta$
- With two points in a dashed box, their distance would be less than δ so at most one point

Combining

- With at most one point per dashed box, we can do as follows.
- Let *S* be sorted on y-coordinates
- Each point $p \in S$ is inspected at a time.
- The distances from p to each of the next six points on the other side in S (according to y-coordinates) are checked to see if it less than the shortest distance found so far

Algorithm outline

- What do we need for this?
- Input is a set of *n* points *P*
- We produce two sorted arrays P_x and P_y before starting our recursion
- We divide P_x into two arrays L_x and R_x (left and right)
- We divide P_y into two arrays L_y and R_y
- We solve the two subproblems $(L_x, L_y, n/2)$ and $(R_x, R_y, n/2)$
- ullet Then we compute δ as the minimum from these subproblems
- Then we create the set S_y from P_y
- All dividing and combining can be done in linear time, so we solve this in $\Theta(n \log n)$ time

A set of points P and its convex hull CH(P)

- The convex hull should have a minimal number of points.
- For example a point at (2,1) would not be in the convex hull.

A convex and a non-convex region

Clockwise order of CH(P)

- Not necessary to select the rightmost point as p_0 in general
- In Lab 4 (2023) we did that however, since that is what the divide-and-conquer algorithm does.

Three algorithms for computing the convex hull

- Jarvis march, or gift wrapping
- Graham scan
- Preparata-Hong
- Always a good approach to implement a non-trivial algorithm: start with something simpler and use the simple (and hopefully correct) as a reference

Jarvis march

- Start at any point known to be in *CH* such as the leftmost: p_0 , $i \leftarrow 0$
- Select the next point p_j as the one through which we only make left turns when going from p_i through p_i to p_k for every other point p_k
- Right turn with p_0 , p_2 , p_1 so don't take p_2 next
- Always left turn with p_0 , p_1 , p_k so take p_1 as next
- Continue until back at p_0

Review of vector products

- Also called cross product (vektorprodukt or kryssprodukt)
- Given two vectors in \mathbb{R}^3 , \mathbf{u} and \mathbf{v} , the vector product, $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ is a vector with the following properties:
 - **1 w** is perpendicular to both **u** and **v**, i.e., the dot products $\mathbf{w} \cdot \mathbf{u}$ and $\mathbf{w} \cdot \mathbf{v}$ are both zero,
 - $|\mathbf{w}| = |\mathbf{u}||\mathbf{v}|\sin\theta$ where θ is the angle between \mathbf{u} and \mathbf{v} ,
 - **1 u**, **v** and **w** are positively oriented, i.e. according to the right-hand rule.
- $\mathbf{u} = u_1 \mathbf{e_1} + u_2 \mathbf{e_2} + u_3 \mathbf{e_3}$ and $\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + v_3 \mathbf{e_3}$
- $\mathbf{w} = (u_1\mathbf{e_1} + u_2\mathbf{e_2} + u_3\mathbf{e_3}) \times (v_1\mathbf{e_1} + v_2\mathbf{e_2} + v_3\mathbf{e_3}) = (u_2v_3 u_3v_2)\mathbf{e_1} + (u_3v_1 u_1v_3)\mathbf{e_2} + (u_1v_2 u_2v_1)\mathbf{e_3} = w_1\mathbf{e_1} + w_2\mathbf{e_2} + w_3\mathbf{e_3}.$
- Since our points are in \mathbb{R}^2 , their $\mathbf{e_3}$ coordinates are zero and so w_1 and w_2 also become zero
- $\mathbf{w} = w_3 \mathbf{e_3} = (u_1 v_2 u_2 v_1) \mathbf{e_3}$.

Left or right direction at p_s determined with $\mathbf{w} = \mathbf{u} \times \mathbf{v}$

- To find the direction from p_r through p_s to p_t we let
- $\mathbf{u} = \overrightarrow{p_r p_s}$,
- $\mathbf{v} = \overrightarrow{p_r p_t}$, and
- $\mathbf{w} = \mathbf{u} \times \mathbf{v}$. If $w_3 > 0$ it is a left turn, if $w_3 < 0$ it is a right turn, and otherwise the three points are on the same line.

```
function jarvis_march(p)
begin
         n \leftarrow |p|
         i \leftarrow \text{index of point in } p \text{ with minimum } x \text{ coordinate}
         swap p_0 and p_i
         r \leftarrow 0
         while (1) {
                  s \leftarrow (r+1) \mod n
                  for t \leftarrow 0; t < n; t \leftarrow t + 1 {
                           if s = t then
                                    continue
                           \mathbf{u} = \overrightarrow{p_r p_s}
                           \mathbf{v} = \overrightarrow{p_r p_t}
                           \mathbf{w} = \mathbf{u} \times \mathbf{v}
                           (w_1, w_2, w_3) \leftarrow \mathbf{w}
                           // right turn or p_s between p_r and p_t on a line?
                           if w_3 < 0 or w_3 = 0 and |\mathbf{v}|^2 > |\mathbf{u}|^2 then
                                    s \leftarrow t
                  r \leftarrow r + 1
                  if s = 0 then
                           break
                  swap p_s and p_r
         return r // number of points in CH(P)
end
```

Time complexity of Jarvis march

- Time complexity is $O(n \cdot h)$ with h points in the convex hull.
- We increment *r* once for every point in the convex hull.
- Since some convex regions consist of all their points, the worst case is $O(n^2)$
- For example a regular polygon ("circle" but not exactly round...)
- Regelbunden polygon
- We will next look at Graham scan which is $O(n \log n)$ due to all points must be sorted first

Graham scan

- First a point p_0 with minimal y-coordinate is made a new origo.
- One can make an angle between the x-axis, p_0 , and every other point
- The points are sorted by these angles θ_i , $1 \le i \le p_{n-1}$

Including points in the convex hull

- The points p_0, p_1, p_2 are pushed to a stack with p_2 at the top
- Call the point at the top of the stack p_s (initially p_2)
- Call the point just below the top of the stack p_r (initially p_1)
- Call the "next point" p_t (initially p_3)

Excluding points from the convex hull

- Consider going from p_r , through p_s and to p_t initially p_1, p_2, p_3
- If the direction through p_s is straight or right, then p_s is not in CH
- In that case it is popped from the stack

Excluding points from the convex hull

- Consider going from p_r , through p_s and to p_t
- After p_2 was popped, p_1 becomes new p_s and p_0 new p_r
- Any more non-left turns results in a pop
- Then p_t is pushed so $p_r = p_1$ and $p_s = p_3$

Excluding points from the convex hull

- $p_r = p_1$ and $p_s = p_3$
- $p_t = p_4$ with a left turn from p_r and p_s so p_4 is pushed
- After that p_5 will cause p_4 being popped
- In the end, all points remaining on the stack are the convex hull

Relative sizes of θ is sufficient

- Compare angles with $\mathbf{u} \times \mathbf{v}$
- If $\theta_u = \theta_v$ then how should they be ordered?
- We want the point nearest origo on the stack first so the other can pop it

Output for Lab 4 2023

- The check_solution.sh script expects output as in (2)
- The reason is that Preparata-Hong produces that output.


```
function graham_scan(p)
begin
       //p is an array with n points.
       n \leftarrow |p|
       i \leftarrow \text{index of point in } p \text{ with minimum } y \text{ coordinate}
       swap p_0 and p_i
       t = p_0
       subtract the coordinates of t from every point
       sort elements 1..n - 1 of p by \theta_i
       h \leftarrow \text{new stack}
       push(h, p_0)
       push(h, p_1)
       push(h, p_2)
       for (k \leftarrow 3; k < n; k = k + 1) {
              // p_s is the top of h
              // p_r is below p_s on h
              p_t \leftarrow p_k
              while direction (next_top(h), top(h), p_t) is not left
                      pop(h)
              push(h, p_t)
       add the coordinates of t to every point
       n \leftarrow number of points on the stack
       copy the points in h to p, and deallocate h
       return n
end
```

Preparata-Hong output

- The sequence that is the convex hull
- The number of points in the convex hull
- The index of the leftmost point

Preparata-Hong algorithm

- It relies on lines expressed as $y = k \cdot x + m$
- Sort all points n in order of increasing y-coordinates
- With $n \leq 3$ solve directly and return
- Divide in two approximately equal parts A and B
- All points in A must have a y-coordinate lower than any in B
- Find CH(A) and CH(B)
- Merge CH(A) and CH(B) which is simplified by knowing that they are in clockwise order

α and β

- \bullet n_a points in lower convex hull
- \bullet n_b points in upper convex hull
- The lower points are called $p_0..p_{n_a-1}$
- The upper points are called $q_0..q_{n_b-1}$
- The inner points from A and B are not needed for anything
- $y = k \cdot x + m$
- We need to compute the k-values from p_0 to p_1 , from p_1 to p_2 etc
- The k value of the line segment from p_i to $p_{i+1 \mod n_a}$ is called α_i
- The k value of the line segment from q_i to $q_{i+1 \mod n_b}$ is called β_i
- For merging CH(A) and CH(B) we start with computing α and β

Selecting points on right side: q_0, q_1 and p_1, p_2, p_3, p_4

• We want to find first $i_R^* = p_1$ and last $j_R^* = q_1$ and skip $q_2, ...$ and p_0

Exclude p_0

• First compare α_0 and $\gamma_{0,0}$. Since $\alpha_0 > \gamma_{0,0}$ we exclude p_0

Include q_1

• Compare α_1 and $\gamma_{1,0}$. Since $\alpha_1 \leq \gamma_{1,0}$ we check β_0 and include q_1 .

jonasskeppstedt.net Lecture 5 2024 47 / 60

We are done at right side

• Since both α_1 and β_1 are less than $\gamma_{1,1}$ we have found i_R^* and j_R^*

Next we do the same on the left side

- On the left side we want to find i_I^* and j_I^*
- Then we add lower points from i_R^* up to and including i_L^* to the output
- And add upper points from j_I^* up to and including j_R^* to the output
- Does it matter which of α_i and β_i we first compare with $\gamma_{i,j}$?

Wrong order on right side: comparing β_j before α_i

Wrong order on left side: comparing α_i before β_i

 $L_A \geq L_B$ and $R_A < R_B$

 $L_A < L_B$ and $R_A \ge R_B$

 $L_A \geq L_B$ and $R_A \geq R_B$

```
function k(p, q)
begin
        return (q.y - p.y)/(q.x - p.x)
end
function compute_k(p)
begin
        n \leftarrow |p|
        \alpha \leftarrow \text{new double } [n]
        for i = 0; i < n; i \leftarrow i + 1
                \alpha[i] \leftarrow k(p[i], p[i+1 \mod n])
        return \alpha
end
function add(k, from, to, q, p, n)
begin
       j \leftarrow \mathsf{from}
        do {
               q[k] \leftarrow p[j]
               k \leftarrow k + 1
               i \leftarrow j
              j \leftarrow (j+1) \mod n
        } while i \neq to
        return k
end
```

Avoid middle point when three points are on a line

```
function case_1 (a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
         i \leftarrow 0
         j \leftarrow 0
         while (1) {
                   \gamma_{i,j} \leftarrow k(a_i,b_j)
                   if (\alpha_i > \gamma_{i,j}) or \alpha_i == -\infty and i < i_L then
                   else if (\beta_j > \gamma_{i,j} \ \ \text{or} \ \beta_j == -\infty) \ \ \text{and} \ j < j_L \ \text{then}
                            j \leftarrow j + 1
                   else
                             break
         j \leftarrow j_{\mathsf{L}}
         while (1) {
                   \gamma_{i,j} \leftarrow k(a_i,b_j)
                   if \beta_j > \gamma_{i,j} and j \neq 0 then
                            j \leftarrow (j+1) \mod n_b
                   else if \alpha_i > \gamma_{i,j} and i \neq 0 then
                             i \leftarrow (i+1) \mod n_a
                   else
                             break
         return (i_R^*, i_L^*, j_L^*, j_R^*)
```

```
function case_2(a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
         i \leftarrow 0
         i \leftarrow 0
          while (1) {
                   \gamma_{i,j} \leftarrow k(a_i,b_j)
                    if (\alpha_i > \gamma_{i,j}) or \alpha_i == -\infty) and i < i_L then
                    else if (\beta_j > \gamma_{i,j} \text{ or } \beta_j == -\infty) and j < j_L then
                             i \leftarrow i + 1
                    else
                             break
         j \leftarrow j_{\mathsf{L}}
          while (1) {
                    \gamma_{i,i} \leftarrow k(a_i,b_i)
                    a_k \leftarrow (n_a + i - 1) \mod n_a
                    b_k \leftarrow (n_b + j - 1) \mod n_b
                    if isfinite(\alpha_{a_k}) and \alpha_{a_k} < \gamma_{i,j} and i \neq 0 then
                             i \leftarrow a_k
                   else if \beta_{b_k} \stackrel{\cdot \cdot \cdot}{<} \gamma_{i,j} and j \neq 0 then
                             j \leftarrow b_k
                    else
                             break
          return (i_R^*, i_L^*, j_L^*, j_R^*)
```

```
function case_3(a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
         i \leftarrow 0
        i \leftarrow 0
         while (1) {
                  \gamma_{i,j} \leftarrow k(a_i,b_i)
                  a_k \leftarrow (n_a + i - 1) \mod n_a
                  b_k \leftarrow (n_b + j - 1) \mod n_b
                  if \beta_{b_k} < \gamma_{i,j} and j < j_L then
                          j \leftarrow b_k
                  else if \alpha_{a_k} < \gamma_{i,j} and i \neq i_L then
                           i \leftarrow a_k
                  else
                           break
         j \leftarrow j_{\mathsf{L}}
         while (1) {
                  \gamma_{i,j} \leftarrow k(a_i,b_j)
                  if \beta_j > \gamma_{i,j} and j \neq 0 then
                           j \leftarrow (j+1) \mod n_b
                  else if \alpha_i > \gamma_{i,j} and i \neq 0 then
                           i \leftarrow (i+1) \mod n_a
                  else
                           break
         return (i_R^*, i_L^*, j_L^*, j_R^*)
```

```
function case_4(a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
         i \leftarrow 0
         i \leftarrow 0
         while (1) {
                   \gamma_{i,i} \leftarrow k(a_i, b_i)
                   a_k \leftarrow (n_a + i - 1) \mod n_a
                   b_k \leftarrow (n_b + j - 1) \mod n_b
                   if \beta_{b_k} < \gamma_{i,j} and j \neq j_L then
                           i \leftarrow b_k
                   else if \alpha_{\mathbf{a}_k} < \gamma_{i,j} and i \neq i_{\mathbf{L}} then
                            i \leftarrow a_k
                   else
                            break
         j \leftarrow j_L
         while (1) {
                   \gamma_{i,j} \leftarrow k(a_i, b_i)
                   a_k \leftarrow (n_a + i - 1) \mod n_a
                   b_k \leftarrow (n_b + j - 1) \mod n_b
                   if isfinite(\alpha_{a_k}) and \alpha_{a_k} < \gamma_{i,j} and i \neq 0 then
                            i \leftarrow a_k
                   else if isfinite(\beta_{b_k}) and \beta_{b_k}<\gamma_{i,j} and j\neq 0 then
                            j \leftarrow b_k
                   else
                            break
```

More hints

- You don't need to split the code into four cases if you don't want to (simpler though, in my opinion, and likely faster)
- If you fail a test case it is a good idea to print the points in Matlab or to a pdf-file
- Implementing the Preparata-Hong algorithm is harder than Graham scan so why would you want to do it?
- An advantage of divide-and-conquer algorithms is that they are easier to parallelize
- Compute CH(A) and CH(B) by different threads at the same time
- If you have e.g. 80 hardware threads, you can easily let 64 work in parallel
- The machine power.cs.lth.se has just 80 hardware threads

Is p on a line segment between q and r in a plane?

- We want to know if p is between two points on a line in which case p should not be in the convex hull
- $\mathbf{u} = \overline{qp}$
- $\mathbf{v} = \overline{qr}$
- \bullet w = u \times v.
- $\mathbf{w} = w_3 \mathbf{e_3} = (u_1 v_2 u_2 v_1) \mathbf{e_3}$ due to a plane.
- If $w_3 \neq 0$ then p is not on the line through q and r.
- Assume instead $w_3 = 0$ so the points are colinear.
- Is p between q and r?
- Compute the dot products $\mathbf{v} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{v}$
- If $\mathbf{u} \cdot \mathbf{v} < 0$ then \mathbf{u} and \mathbf{v} have opposite directions so p is not between
- Otherwise if $\mathbf{u} \cdot \mathbf{v} > \mathbf{v} \cdot \mathbf{v}$ then p is also not between them