Dept. of CSE, Dhaka University CSE-2101 Data Structure Incourse-1 Time: 1 Hour

Answer the following questions:

1.	•	For each of these statements about sorting algorithms, state whether it is true or false.	3
	а	Insertion sort has optimal best-case running time.	
	b	Selection sort compares each pair of keys at most once.	
	c.	the state of the s	
2.		Consider the numbers in an array: 5, 6, 8, 3, 9, 4, 7. Suppose you have decided to use quicksort to sort them (considering the 1 st element as pivot). Show the result of the first call to partition() by giving content of the array after each exchange (swap). Please show each step in a new line and write only the two elements that were exchanged.	3
3.		Construct a BST using the values 20, 10, 26, 33, 8, 14, 11, 12 and 9. Start with an empty tree and insert the elements one by one according to the given order. Show each insertion step. Show the tree after you delete 10.	4+2
4.	-	Consider the following three algorithms:	
		_ Algorithm 1 solves problems of size N by recursively dividing them into 2 sub-problems of size N/2 and combining the results in time c (where c is some constant) Algorithm 2 solves problems of size N by solving one sub-problem of size N/2 and performing some processing takin; some constant time c Algorithm 3 solves problems of size N by solving two sub-problems of size N/2 and performing a linear amount (i.e., cN where c is some constant) of extra work.	
7.	a.	For each algorithm, write down a recurrence relation showing how $T(N)$, the running time on an instance of size N , depends on the running time of a smaller instance.	3
	b.	For each of the algorithm, state whether T(N) is approximately equal to i. c ii. c $logN$ iii. cN iv. $cNlogN$ or v. cN^2	3
	C.	For each of the following algorithms, pick which of the above classes of algorithms (1, 2, or 3) applies to that algorithm: i. Mergesort ii. Binary search in a sorted array iii. Quicksort (if partitioning always divides the array in half)	
			-
		Show how to implement a queue using two stacks.	5

6.	The column on the leftmost is an array of strings to be sorted. The column on the rightmost is in sorted order. The other columns (numbered 1, 2, 3 and 4) are the contents of the array at some intermediate step during one of the sorting algorithms: selection sort, insertion sort, quick sort and merge sort. Write the name of each algorithm with the corresponding column number. Use each
	number exactly once.

mars	dart	barn	barn	bark	bark
part	lard	care	care	barn	barn
care	care	fare	dart	card	card
gary	gary	gary	fare	care	care
barn	barn	harp	gary	dart	dart
park	card	jars	harp	earn	earn
rare	farm	mars	jars	fare	fare
fare	fare	park	mars	farm	farm
warm	harm	part	park	gary	gary
tarp	earn	rare	part	harm	harm
jars	jars	tarp	rare	harp	harp
harp	harp	warm	tarp	jars	jars
vary	bark	bark	vary	vary	lard
dart	mars	dart	warm	part	mars
bark	vary	earn	bark	mars	nary
yard	yard	harm	yard	yard	oars
earn	tarp	vary	earn	park	park
harm	Warm	yard	harm	tarp	part
farm	rare	card	farm	rare	rare
tart	tart	farm	tart	tart	tarp
card	park	lard	card	warm	tart
lard	part	nary	lard	lard	vary
oars	oars	cars	oars	oars	warm
nary	nary	tart	nary	nary	yard
original	1	2	3	4	sorted

3

In-order: AQVNBRMSP Pre-order: BQAVNRSMP

- b. If you know that a tree is a BST, which of the following is or is not always sufficient to reconstruct it? For each one, write Yes if it is enough to reconstruct the tree, or No if it is not.
 - i. Pre-order traversal
 - ii. In-order traversal
 - iii. Post-order traversal

<u>CSE-2101</u> <u>Data Structure</u> <u>Incourse-2 Time: 1 Hour</u>

Answer any 3 (three) questions

1.	Insert the following numbers in an empty AVL tree in the given order 3, 2, 1, 4, 5, 6, 7, 16, 15, 14.	10
	Show each insertion step and the required rotations separately.	
2.	Construct a 5-ary B tree with the following numbers. Insert them into an empty B-tree in the given sequence 2, 3, 44, 45, 6, 7, 55, 56, 17, 21, 68, 70, 9, 85, 18, 60, 32.	10
1	Show the steps clearly.	
3.	Generate Huffman code for each character in the string "business before pleasure". For characters with same frequency, insert them into the queue in lexicographical order (for the first time). Write down the Huffman codes for each character (you must generate the Huffman tree first). Show each step of the tree construction.	10
4.	Write psudocodes for quick-find and quick-union algorithms. Discuss on the limitations of each of them. Modify your psudocode for quick-union to overcome the problem of tall trees.	7+3