

Amorphous regular lattices

Yoav Kallus

Santa Fe Institute

Sphere packing in \mathbb{R}^3

Conjecture (Kepler, 1611)

Every nonoverlapping arrangement of congruent spheres in \mathbb{R}^3 fills at most $\pi/\sqrt{18} = 0.7404\ldots$ of space.

necessitate concurrente cum ra

Sphere packing in \mathbb{R}^3

necessitate concurrente cum ra

Theorem (Hales, 2005)

Every nonoverlapping arrangement of congruent spheres in \mathbb{R}^3 fills at most $\pi/\sqrt{18}=0.7404\ldots$ of space.

Sphere packing in \mathbb{R}^n

Applications in transmitting, storing, and digitizing signals.

Sphere packing in \mathbb{R}^n

Applications in transmitting, storing, and digitizing signals.

Optimal packing arrangements are often related to exceptional objects from algebra.

Good packings are often lattices

 $L = A\mathbb{Z}^n = \{\sum_{i=1}^n z_i \mathbf{a}_i : z_i \in \mathbb{Z}\}$ minimize $\det(L)$ subj. to $||\mathbf{x}|| \ge 1$ for all $\mathbf{I} \in L \setminus \{0\}$

Lattices as a special case of packing

Restricted to lattices, what is the densest packing? (Applications in the geometry of numbers)

n	L	
2	A_2	Lagrange (1773)
3	$D_3 = A_3$	Gauss (1840)
4	D_4	Korkin & Zolotarev (1877)
5	D_5	Korkin & Zolotarev (1877)
6	E_6	Blichfeldt (1935)
7	E_7	Blichfeldt (1935)
8	E_8	Blichfeldt (1935)
24	Λ_{24}	Cohn & Kumar (2004)

Thermodynamics of hard spheres

$$egin{aligned} U(\mathbf{r}_1,\mathbf{r}_2) = \ & 0 \quad ||\mathbf{r}_1-\mathbf{r}_2|| < 1 \ & \infty \quad & ext{otherwise} \end{aligned}$$

sample configurations of N spheres with $P \sim e^{-\beta(U+pV)}$

Torquato & Stillinger, Rev. Mod. Phys. 82, 2633 (2010)

Thermodynamics of hard-sphere lattices

Sample all lattices with $P \sim e^{-\beta(p\det(L)+U)}$ where $U = \{0,\infty\}.$

Kallus, Phys. Rev. E 87, 063307 (2013)

Thermodynamics of hard-sphere lattices

Densest known lattice recovered in some runs for $n \le 20$

Kallus, Phys. Rev. E 87, 063307 (2013)

Thermodynamics of hard spheres

Torquato & Stillinger, Rev. Mod. Phys. 82, 2633 (2010)

Lattice RCP

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Lattice isostaticity

	d	Runs	Isostatic
	13	10,000	365
Isostaticity:	14	10,000	1,625
#constraints $= #$ dof's	15	10,000	5,196
In PCD Isostaticity	16	10,000	6,761
In RCP, Isostaticity →	17	10,000	9,235
average $\#$ contacts = $2d$.	18	10,000	9,590
In Lattice RCP: #dof's	19	20,000	19,200
$=\frac{1}{2}d(d+1).$	20	20,000	19,085
Isostaticity \rightarrow	21	10,000	9,473
#contacts $= d(d+1)$.	22	10,000	9,406
	23	10,000	9,281
Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)	24	10,000	9,205

Pair correlations and quasicontacts

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Contact force distribution

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Quasicontacts in RCP

 $\gamma = 0.3$

Silbert, Liu, & Nagel, Phys. Rev. E 73, 041304 (2006)

Quasicontacts in RCP

Donev, Torquato & Stillinger, Phys. Rev. E 71, 011105 (2005) Charbonneau, Corwin, Parisi, Zamponi, Phys. Rev. Lett. 109, 205501 (2012)

Contact force distribution in RCP

Donev, Torquato & Stillinger, Phys. Rev. E 71, 011105 (2005) Charbonneau, Corwin, Parisi, Zamponi, Phys. Rev. Lett. 109, 205501 (2012)

Quasicontacts and weak contacts

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Power laws are signatures of approach to jamming

Extreme lattices can be exhaustively enumerated.

						•		
d	2	3	4	5	6	7	8	9
perfect lattices	1	1	2	3	7	33	10916	>50000
extreme lattices	1	1	2	3	6	30	2408	

Power laws are signatures of approach to jamming

Extreme lattices can be exhaustively enumerated.

						-		
d	2	3	4	5	6	7	8	9
perfect lattices	1	1	2	3	7	33	10916	>50000
extreme lattices	1	1	2	3	6	30	2408	

 $f/\langle f \rangle$

Kallus & Torquato, Phys. Rev. E 90, 0221

Marginal stability

Isostaticity is a manifestation of marginal mechanical stability.

Quasicontacts play no role in mechanical stability.

Instead, they are manifestation of marginal "dynamic" stability.

Due to isostaticity, any contact can be continuously opened by a gap *s* without disrupting other contacts.

Due to isostaticity, any contact can be continuously opened by a gap *s* without disrupting other contacts.

Due to isostaticity, any contact can be continuously opened by a gap s without disrupting other contacts.

Due to isostaticity, any contact can be continuously opened by a gap s without disrupting other contacts.

Due to isostaticity, any contact can be continuously opened by a gap s without disrupting other contacts.

Dynamic stability

$$\rho\delta V(s) = f_{ij}s - C_{ij}s^2 + o(s^2)$$

$$s_{ ext{min}}^* \sim rac{f_{ ext{min}}}{C} \sim d^{-1/(1+ heta)-2} extstyle{N}^{-1/(1+ heta)-1}$$

 $s^\dagger \sim d^{u/(1-\gamma)} N^{-1/(1-\gamma)}$, where $Z(r) \sim d^
u (r-1)^{1-\gamma}$

Dynamic stability

Stability if $s^\dagger \ll s_{\min}^*$

From *N*-dependence: $\gamma \geq 1/(2+\theta)$

From *d*-dependence: $\nu \geq (1 - \gamma)(3 + 2\theta)/(1 + \theta)$

Marginal dynamic stability

From *N*-dependence: $\gamma = 1/(2 + \theta)$

From *d*-dependence:

$$\nu = (1 - \gamma)(3 + 2\theta)/(1 + \theta) = 2 - \gamma$$

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Quasicontact abundance

Mean number of contacts in RCP: 2d

Mean number of quasicontacts:

$$\sim d^{2-\gamma} \approx d^{1.58}$$

Marginal dynamic stability in Lattice RCP

In high-enough dimensions the quasicontact network determines the structure more than the contact network.

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Density estimate from local structure

Using pair correlation:

$$g(r) = 1 + \frac{(1-\gamma)A_d(r-1)^{-\gamma}}{\rho S_{d-1}r^{d-1}} + \frac{z\delta(r-1)}{\rho S_{d-1}}$$
 $g(r) = 0$ for $r < 1$

$$\begin{array}{c|cccc} & \text{w/o QC} & \text{w/QC} \\ \hline \text{RCP} & 2^d\varphi \sim d & 2^d\varphi \sim d \\ \text{LRCP} & 2^d\varphi \sim d^2 & 2^d\varphi \sim d^{2.61} \\ \end{array}$$

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Lattice RCP

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Conclusions

Lattices in high dimensions have enough dof's to exhibit disorder.

Lattices are numerically accessible in much higher dimensions than hard-sphere fluids: crystallization for $n \leq 20$, jamming for even larger n.

Random close packed lattices are much denser than RCP hard spheres in n dimensions.

Quasicontacts/weak contact suppression are signatures of approach to jamming, inherently non-equilibrium, and affect structure.