

Обобщённая разреженная линейная алгебра и высокопроизводительный анализ графов: проблемы и перспективы Graph Analytics Club

Семён Григорьев

Санкт-Петербургский Государственный Университет

10 сентября 2025

Семён Григорьев

- Доцент кафедры системного программирования
 Санкт-Петербургского Государственного Университета
- Руководитель исследовательской группы
- Области интересов
 - Высокопроизводительная линейная алгебра для анализа графов
 - * Обобщённая: матрицы и вектора параметризованы типом элемента, операции над ними могут быть заданы пользователем
 - Разреженная: специализированные структуры для хранения матриц и векторов, специализированные алгоритмы для их обработки
 - ⋆ В том числе, с использованием графических ускорителей
 - Высокопроизводительный анализ графов

- Email: s.v.grigoriev@mail.spbu.ru
- GitHub: gsvgit
- Google Scholar: Semyon Grigorev
- DBLP: Semyon V. Grigorev

Как создать «достаточно универсальный» фреймворк для разработки высокопроизводительных (параллельных) алгоритмов анализа графов?

GraphBLAS⁵

- АРІ для создания алгоритмов анализа графов на основе линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.

https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf

²https://graphblas.org/GraphBLAS-Pointers/

³https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://github.com/GraphBLAS/LAGraph

⁵https://graphblas.org/

GraphBLAS⁵

- АРІ для создания алгоритмов анализа графов на основе линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.
- Позволяет выражать различные алгоритмы
 - ▶ Обход в ширину, поиск кратчайших путей, достижимость, . . .
 - ▶ Подсчёт треугольников, PageRank, остовные деревья, кластеризация, . . .
 - ▶ RPQ, CFPQ, ...

¹https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf

²https://graphblas.org/GraphBLAS-Pointers/

³https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://github.com/GraphBLAS/LAGraph

⁵https://graphblas.org/

GraphBLAS⁵

- АРІ для создания алгоритмов анализа графов на основе линейной алгебры
 - Различные операции над матрицами и векторами (разреженными)
 - Параметризация алгебраическими структурами: полукольцами, моноидами и т.д.
- Позволяет выражать различные алгоритмы
 - ▶ Обход в ширину, поиск кратчайших путей, достижимость, . . .
 - ▶ Подсчёт треугольников, PageRank, остовные деревья, кластеризация, . . .
 - ► RPQ, CFPQ, ...
- Подробнее
 - ► The GraphBLAS C API Specification¹
 - ► GraphBLAS Pointers²
 - ► Introduction to GraphBLAS³
 - ► LAGraph⁴

```
1https://graphblas.org/docs/GraphBLAS_API_C_v2.1.0.pdf
```

²https://graphblas.org/GraphBLAS-Pointers/

³https://zenodo.org/record/4318870/files/graphblas-introduction.pdf

⁴https://github.com/GraphBLAS/LAGraph

⁵https://graphblas.org/

Реализации GraphBLAS-подобных API

- ullet SuiteSparse:GraphBLAS $^6-$ <u>эталон</u> на чистом C^7 (Intel, Nvida)
- Huawei's GraphBLAS⁸ частичная реализация на C++
- CombBLAS⁹ распределённая, частичная реализация на C++
- ullet GraphBLAST 10 поддержка GPGPU, Cuda C, частичная реализация
- ullet Spla 11 поддержка GPGPU, OpenCL C, частичная реализация
- GraphLily¹² подмножество GraphBLAS на FPGA
- Обёртки для различных языков: Python, Rust, . . .

⁶https://github.com/DrTimothyAldenDavis/GraphBLAS

⁷Ведётся работа над использованием GPGPU через Cuda

⁸https://gitee.com/CSL-ALP/graphblas

⁹https://github.com/PASSIONLab/CombBLAS

¹⁰https://github.com/gunrock/graphblast

¹¹https://github.com/SparseLinearAlgebra/spla

¹²GraphLily: Accelerating Graph Linear Algebra on HBM-Equipped FPGAs

Использование

- FalkorDB (ex RedisGraph)¹³ графовая БД, основанная на SuiteSparse:GraphBLAS
- ullet OneSparse 14 расширение PostgreSQL, позволяющее использовать разреженную линейную алгебру (для обработки графов)

ullet Network X 15 — SuiteSparse: GraphBLAS для реализации некоторых алгоритмов анализа

графов

• $TenSQL^{16,17} - SQL + GraphBLAS$

¹³https://www.falkordb.com/

¹⁴https://onesparse.com/

¹⁵https://networkx.org/

¹⁶https://github.com/sandialabs/TenSQL

¹⁷TenSQL: An SQL Database Built on GraphBLAS

И всё было бы хорошо, но ...

Проблемы дизайна GraphBLAS¹⁹

- «Естественная» выразимость алгоритмов
 - ▶ BFS vs DFS¹⁸
- Необходимы специфичные оптимизации
 - Kernel Fusion для разреженных данных
 - ▶ В целом, нерегулярный параллелизм это тяжело
- Неявные нули
- «Громоздкость» из-за ручных оптимизаций и необходимости тонких настроек
- (Не)универсальность
- . . .

¹⁸Linear Algebraic Depth-First Search

¹⁹What did GraphBLAS Get Wrong?, John Gilbert, UC Santa Barbara, GraphBLAS BoF at HPEC, September 2022

Kernel Fusion

$$\underbrace{M_1+M_2}_{M_4}+M_3 \rightsquigarrow add(add(M_1,M_2),M_3)$$

- ✓ Stream Fusion для «одномерных» данных
- ✓ XLA для плотных данных
- MLIR **
 - ? Для разреженных вычислений в общем виде
 - 🙁 Для обобщённых вычислений
 - ② Для GPGPU и других специализированных ускорителей

Неявные нули 20,21

- Разреженный матрицы и вектора не храним «нули»
- C API сложно внятно описать на уровне типов, кто такие эти «нули»
 - ▶ Часто появляются выделенные значения («давайте считать, что 0:Int не храним»)
 - ▶ Пользовательские функции: не достаточно чёткие типы, сложно обрабатывать крайние случаи
 - ▶ Переход между доменами: в одном домене выделенное значение не храним, а в другом должны хранить, потому что это «значимый» элемент, а выделенное значение другое

```
add (x:Int, y:Int):Int = x + y
Можем получить 0. Должны сохранить?
```

²⁰ https://github.com/lessthanoptimal/ejml/pull/145#issuecomment-888293732

²¹https://github.com/GraphBLAS/LAGraph/issues/28

«Громоздкость»

- Ручное слияние ядер (kernel fusion) разрастается количество аргументов
 - ▶ Маска аргумент умножения^{22,23} и не только
 - Маска может быть инвертированной или нет
- Поэлементные операции
 - ewise_add, ewise_mult, mask, ... ²⁴
- Дескрипторы средство тонкой ручной настройки операций
- ...

²² $mask(M_1 * M_2, M_3) \rightsquigarrow mult(M_1, M_2, M_3)$

²³Да, как multiply_add

 $^{^{24}}$ Почему не map2 или что-то аналогичное? Отчасти, потому что проблема с нулями.

(Не)универсальность

Семён Григорьев (СП6ГУ)

• Графы из SuiteSparse Matrix Collection

● Gunrock — BSP-like подход на основе BFS

Выводы

- Обобщённая разреженная линейная алгебра вполне рабочий инструмент высокопроизводительного анализа графов
 - ► FalkorDB, NetworkX, LAGraph, OneSparse, . . .
- Пока хорошо работает только на одном узле, in memory, многоядерные CPU
 - SuiteSparse: GraphBLAS
- Не лишён недостатков
 - Если не пользуетесь готовыми прикладными алгоритмами, то думать о графах в терминах линейной алгебры — отдельный навык
 - Придумывать придумывать специальные полукольца и моноиды нетривиальное занятие

Направления развития

- Использование (специализированных) ускорителей
 - ▶ B SuiteSparse:GraphBLAS ведётся работа по реализации некоторых ядер на Cuda
 - ▶ Spla использует GPGPU через OpenCL
- Разработка специализированных ускорителей для разреженной линейной алгебры
 - ▶ Расширения для RISC-V
 - ► Более «экзотические» решения²⁵
- ullet Больше прикладных решений: анализ сетевого трафика 26 , анализ кода 27 , . . .
- Усовершенствование АРІ
 - ▶ Ведётся работа над C++ API²⁸
 - ▶ Попытки применить идеи из функционального программирования²⁹

²⁵Dedicated Hardware Accelerators for Processing of Sparse Matrices and Vectors: A Survey

²⁶Deployment of Real-Time Network Traffic Analysis Using GraphBLAS Hypersparse Matrices and D4M Associative Arrays

²⁷Universal High-Performance CFL-Reachability via Matrix Multiplication

²⁸GraphBLAS C++ API Specification v1.0

²⁹Алгебраические типы для работы «нулями»

Графы для экспериментов

Name	Vertices	Edges	Avg Deg	Sd Deg	Max Deg
coAuthorsCiteseer	227.3K	1.6M	7.2	10.6	1372.0
coPapersDBLP	540.5K	30.5M	56.4	66.2	3299.0
amazon-2008	735.3K	7.0M	9.6	7.6	1077.0
hollywood-2009	1.1M	112.8M	98.9	271.9	11467.0
belgium_osm	1.4M	3.1M	2.2	0.5	10.0
roadNet-CA	2.0M	5.5M	2.8	1.0	12.0
com-Orkut	3.1M	234.4M	76.3	154.8	33313.0
cit-Patents	3.8M	33.0M	8.8	10.5	793.0
rgg_n_2_22_s0	4.2M	60.7M	14.5	3.8	36.0
soc-LiveJournal	4.8M	85.7M	17.7	52.0	20333.0
indochina-2004	7.4M	302.0M	40.7	329.6	256425.0
rgg_n_2_23_s0	8.4M	127.0M	15.1	3.9	40.0
road_central	14.1M	33.9M	2.4	0.9	8.0

