Grundlagen der Künstlichen Intelligenz

2 Rationale Agenten

Rationale Agenten und ihre Umgebungen

Volker Steinhage

Inhalt

- Was ist ein Agent?
- Was ist ein rationaler Agent?
- Welche Struktur hat ein rationaler Agent?
- Welche Klassen von Agenten gibt es?
- Welche Klassen von Umgebungen gibt es?

Agenten

Aus der ersten Vorlesung: Agenten

- nehmen durch Sensoren ihre Umgebung (Umwelt) wahr (→ Perzepte)
- manipulieren ihre Umgebung mit Hilfe ihrer Effektoren (Aktuatoren) (→ Aktionen)

Was sind nun genauer:

- Umgebung,
- Sensoren und Perzepte,
- Aktuatoren und Aktionen?

Agenten: Beispiel 1

Der abstrakte Staubsauger-Agent

Umgebung: Räume A und B – ggf. jeweils mit Schmutz

Sensoren: Positionssensor und Schmutzsensor

• Perzepte: Positionsangabe (hier: binäre Raumangabe A oder B),

Schmutzangabe (hier: binäre Erkennung von Schmutz (j/n))

Aktuatoren: Fahrwerk, Sauger

Aktionen: nach links/rechts fahren, saugen

Agenten: Beispiel 1

Der Staubsauger-Agent könnte nun beliebig lange hin- und herfahren und dabei

... nichts tun!

Einem solch ziellosen Handeln haben wir in der ersten Vorlesung das Konzept des rationalen Agenten gegenüber gestellt ~ Zielerfüllung!

Rationale Agenten ...

- ... machen das "Richtige" zur Zielerfüllung!
- → die Beurteilung erfordert objektive Erfolgs- oder Leistungskriterien!

Für den abstrakten Staubsauger-Agenten:

beide Räume A und B sind ohne Schmutz

Für eine *technische Umsetzung* des Staubsauger-Agenten sind noch genauere bzw. zusätzliche Kriterien möglich wie:

- gesäuberte m² pro Stunde
- Reinheitsgrad
- Stromverbrauch
- Geräuschemission

Sicherheit

PEAS-Spezifikation

- Die Spezifikation von rationalen Agententypen erfolgt über vier Kriterien:
 - Umgebung, in welcher der Agent agiert
 - Sensoren des Agenten
 - Aktuatoren des Agenten
 - Leistungskriterien, die der Agent zu erfüllen hat
- Diese Spezifikation wird nach den engl. Entsprechungen der Kriterien -Performance, Environment, Actuators, Sensors - als PEAS-Spezifikation bezeichnet.

Beispiele für PEAS-Spezifikation

Einfacher Roboterarm-Agent

- Umgebung: Arbeitsplatte, Bauklötze
- Sensoren: Kamera, taktile Sensoren
- Aktuatoren: Roboterarm, Greifer
- Leistungskriterium: Bauklötze in best. Endposition bringen

Automatischer Taxifahrer-Agent

- Umgebung: Straßen, anderer Verkehr, Fußgänger, Fahrgäste
- Sensoren: Kamera, Sonar, Tachometer, GPS, Kilometerzähler, Motorsensoren, Tastatur/Mikrofon
- Aktuatoren: Steuerrad, Gas, Bremse, Hupe, Blinker, Anzeige
- Leistungskriterium: Sicher, schnell, StVO-gemäß,

Weitere Beispiele rationaler Agenten:

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical diagnosis system	healthy patient, minimize costs, lawsuits	patient, hospital, staff	display questions, tests, diagnoses, treatments, referrals	keyboard entry of symptoms, findings, patient's answers
Satellite image analysis system	correct image categorization	downlink from orbiting satellite	display categorization of scene	color pixel arrays
Part-picking robot	percentage of parts in correct bins	conveyor belt with parts, bins	jointed arm and hand	camera, joint angle sensors
Refinery controller	maximize purity, yield safety	refinery, operators	valves, pumps, heaters, displays	temperature, pressure, chemical sensors
Interactive English tutor	maximize student's score on test	set of students, testing agency	display exercises, suggestions, corrections	keyboard entry

Von allen Kriterien ist die gegebene **Umgebung** am wenigsten zu ändern.

→ Bewertung von Umgebungen bzgl. zu erwartender Schwierigkeiten ist wünschenswert.

Die Umgebung rationaler Agenten

- Vollständig vs. teilweise beobachtbar:
 Sind alle relevanten Aspekte der Welt von den Sensoren beobachtbar?
- Deterministisch vs. stochastisch vs. strategisch:
 Deterministisch: nächster Weltzustand hängt allein vom aktuellen Zustand und der ausgeführten Aktion ab. Strategische Umgebung: deterministisch ist bis auf Aktionen anderer Agenten. Sonst: stochastisch.
- Episodisch vs. sequentiell:
 Kann die Qualität einer Aktion einfach innerhalb einer Episode (Perzept + Aktion) bewertet werden oder muss die vorherige und/oder zukünftige Entwicklung für die Qualitätsbewertung auch berücksichtigt werden?
- Statisch vs. dynamisch vs. semidynamisch:
 Kann sich die Welt ändern, während der Agent reflektiert?
 Semidynamisch: Welt ist statisch, aber ihre Bewertung ist dynamisch.
- Diskret vs. kontinuierlich:
 Ist die Welt diskret (Schachspielen) oder nicht (beweglicher Roboter)?
- Einzel- vs. Multi-Agenten:
 Müssen andere Entitäten der Umgebung als Agenten betrachtet werden?
 Es kann kooperative und kompetitive Szenarien und Mischformen geben.

Beispiele für Umgebungen

Task	Observability	Next state	Evaluation of Actions	Environ- ment	State space	#Agents
Crossword puzzle	fully	deterministic	sequential	static	discrete	single
Chess with a clock	fully	strategic	sequential	semi	discrete	multi
poker	partially	stochastic	sequential	static	discrete	multi
backgammon	fully	stochastic	sequential	static	discrete	multi
taxi driving	partially	stochastic	sequential	dynamic	continuous	multi
medical diagnosis	partially	stochastic	sequential	dynamic	continuous	single
image analysis	fully	deterministic	episodic	semi	continuous	single
part-picking robot	partially	stochastic	episodic	dynamic	continuous	single
refinery controller	partially	stochastic	sequential	dynamic	continuous	single
Interactive English tutor	partially	stochastic	sequential	dynamic	discrete	multi

Idealer rationaler Agent

Bisherige Betrachtung der Agenten über ihr Verhalten, also die äußere Wechselwirkung in ihrer Umgebung, aufgrund ihrer Wahrnehmungsfolgen und Aktionen.

Demnach ist ein idealer rationaler Agent wie folgt beschreibbar als

- Agent, der <u>für alle möglichen Wahrnehmungssequenzen</u> und bei gegebenem Weltwissen die Aktion wählt, welche die <u>erwartete Leistung maximiert</u>.
- Beschrieben durch eine Agentenfunktion:

Rationaler_Agent: Wahrnehmungssequenz × Weltwissen → Aktion

Ab jetzt Betrachtung der inneren Struktur, d.h.

- des Aufbaus von Agenten bzw.
- der Implementierung einer Agentenfunktion

Die Struktur rationaler Agenten

Realisierung der Agentenfunktion durch ein

Agentenprogramm, das auf einer
 (im Folgenden durch Pseudocodes dargestellt)

 Architektur ausgeführt wird, die auch die Schnittstellen zur Umwelt realisiert (Sensoren/Perzepte, Effektoren/Aktionen)

→ Agentenstruktur = Agenten<u>architektur</u> + Agenten<u>programm</u>

Agentenprogramme

Agentenprogramme im Pseudocode zeigen i.A. dieselbe Signatur:

function AGENT(percept) **returns** action

Dies entspricht einer Rückkopplungsschleife des Agenten:

Das einfachste Design: Tabellengesteuerte Agenten (1)

Die einfachste Kodierung eines Agentenprogramms ist die explizite tabellarische Repräsentation der Agentenfunktion.

Diese ordnet jeder möglichen Wahrnehmungssequenz eine Aktion zu:

Das einfachste Design: Tabellengesteuerte Agenten (2)

Die Tabelle für das Agentenprogramm des Staubsauger-Agenten:

A	В
0000	<i></i> %%

A sauber	Nach rechts	
A schmutzig	Saugen	
B sauber	Nach links	
B schmutzig	Saugen	
A sauber , A sauber	Nach rechts	
A sauber, A schmutzig	Saugen	
A sauber, A sauber	Nach rechts	
A sauber, A sauber, A schmutzig	Saugen	

Annahme: der Staubsauger-Agent habe eine "Lebensdauer" von nur 10 Wahrnehmungssequenz-Aktions-Paaren, in der er

- beide Räume A und B überwachen und pflegen soll und
- beide Räume A und B auch wieder verschmutzen können

Das einfachste Design: Tabellengesteuerte Agenten (3)

Allg. ergibt sich die Tabellengröße bei einer Menge **P** von möglichen Perzepten und einer Lebensdauer von **T** Wahrnehmungssequenz-Aktions-Paaren zu:

$$\sum_{t=1}^{T} \left| P \right|^t$$
.

Erfolgen die Perzepte des automatisierten Taxis über Kamerabilder mit ca. 27 MB/sec (30 Bilder á 640 x 480 Pixel mit 24 Bit Farbtiefe pro Sekunde) so hat die Tabelle eine Größe von ca. 10^{250.000.000.000} Einträgen für eine Stunde Fahrt.

Selbst für Schach, einem winzigen und wohl definierten Fragment der realen Welt, hat die Tabelle eine Größe von mind. 10¹⁵⁰ Einträgen.

Solche Tabellen müssten also zunächst explizit aufgestellt oder durch Training gelernt werden, um dann nach jeder Wahrnehmung angefragt zu werden.

Fünf Basisklassen von Agentenprogrammen

Außerdem: es handelt sich auch *nicht* um eine *intelligent* kodierte Agentenfunktion, da jedes Paar von Wahrnehmungssequenz und Aktion explizit notiert und damit "*auswendig gelernt*" wird.

Es erfolgt so keine *Generalisierung*, die wir von intelligenten Systemen erwarten.

Wir erwarten eher Lösungen, in denen die Agentenfunktion durch ein kompakt und damit algorithmisch eleganter kodiertes Agentenprogramm umgesetzt wird.

- → Fünf Basisklassen von Agentenprogrammen für <u>intelligente</u> Systeme:
- einfache reflexive Agenten
- reflexive Agenten mit Weltmodell
- zielorientierte Agenten
- nutzorientierte Agenten
- lernende Agenten

Einfache reflexive Agenten

Die einfachste Umsetzung: Reflektion und Reaktion alleine aufgrund des aktuellen Perzeptes *unter Vernachlässigung der Perzepthistorie*.

Programm des einfachen reflexiven Agenten

```
function SIMPLE-REFLEX-AGENT(percept) returns action static: rules, a set of condition-action rules state \leftarrow \text{INTERPRET-INPUT}(percept) rule \leftarrow \text{RULE-MATCH}(state, rules) action \leftarrow \text{RULE-ACTION}[rule] return action
```

Hier *state* = direkte Interpretation nur aufgrund des aktuellen Perzeptes

- Geeigneter Ansatz f
 ür vollst
 ändig beobachtbare Umwelt: Das aktuelle Perzept umfasst die relevante Information f
 ür die Auswahl der Aktion.
- Probleme bei Verdeckungen, Verschattungen, Unschärfen, also allg. bei nicht wahrgenommener bzw. wahrnehmbarer Information.
- Sinnvoll: für Lösung einfacher Aufgaben und Auslösen von Reflexen
 Bspl.: Bremslichter des vorausfahrenden KFZ leuchten auf → Bremsen!

Programm des einfachen reflexiven Staubsauger-Agenten (1)

```
function SIMPLE-REFLEX-AGENT( percept) returns action
    static: rules, a set of condition-action rules

state ← Interpret-Input( percept)

rule ← Rule-Match(state, rules)

action ← Rule-Action[rule]

return action
```


function REFLEX-VACUUM-AGENT([location, status]) **returns** action

```
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```


status und location sind für den abstrakten Staubsauger-Agenten bereits interpretierte Perzepte und hier in ihren Kombinationen states*. Der rechte Teil der drei if- bzw. else-if-Regeln spezifiziert sofort die action.

^{*} Bei digitalen Bildern als Perzepten würde INTERPRET-INPUT erst durch Bildanalyse eine Interpretation wie etwa *location=A* und *status=Dirty* aus den Bildern ableiten müssen.

Programm des einfachen reflexiven Staubsauger-Agenten (2)

function REFLEX-VACUUM-AGENT([location, status]) returns action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Das reflexive Staubsauger-Agentenprogramm ist sehr viel kompakter als das tabellengesteuerte Staubsauger-Agentenprogramm.

Die kompaktere Darstellung basiert i. W. auf der Reduktion des Wahrnehmungsverlaufs:

Reduktion der zu betrachtenden Fälle von $\Sigma_{t=1,...,T}$ 4^t auf 4.

Programm des einfachen reflexiven Staubsauger-Agenten (3)

```
function REFLEX-VACUUM-AGENT([location, status]) returns action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

Aber:

- der einfache reflexive Staubsauger-Agent weiß nicht, wann er fertig ist, weil er sich nicht merkt, wenn Räume A und B sauber sind.
- ein einfacher reflexiver Taxifahrer-Agent kann sich nicht merken, dass die Durchfahrt durch Straße A eben wegen einer Baustelle scheiterte und versucht ggf. später nochmals vergeblich Straße A zu durchfahren.

Reflexiver Agent mit Weltmodell

Ein *internes Umweltmodell* bestimmt neben dem aktuellen Perzept die Auswahl von Aktionen.

Das Umweltmodell umfasst:

- (1) Zustandmodell
- (2) Änderungsmodell der Umwelt
- (3) Wechselwirkungsmodell von Agent mit Umwelt.

Programm des reflexiven Agenten mit Weltmodell (1)

function REFLEX-AGENT-WITH-STATE(percept) returns an action static: state, a description of the current world state rules, a set of condition-action rules action, the most recent action, initially none

state ← UPDATE-STATE(state, action, percept)
rule ← RULE-MATCH(state, rules)
action ← RULE-ACTION[rule]
return action

Hier neue Zustandsbeschreibung aufgrund von

- aktuellem Zustand +
- Perzept +
- ausgeführter Aktion

Das Weltmodell ist umfassender als eine Perzepthistorie, da im Modell auch nicht beobachtbare Zusammenhänge durch Änderungs- und Wechselwirkungsmodell einfließen.

Programm des reflexiven Agenten mit Weltmodell (2)

function REFLEX-AGENT-WITH-STATE(percept) **returns** an action **static:** state, a description of the current world state rules, a set of condition-action rules action, the most recent action, initially none state ← UPDATE-STATE(state, action, percept) rule ← RULE-MATCH(state, rules) $action \leftarrow RULE-ACTION[rule]$ return action

Bspl. 1: Staubsauger-Agent merkt sich Ergebnis des Saugens in einem Raum und weiß nach Saugen des anderen Raumes, dass aufgehört werden kann.

2: Fahrbahnwechsel erfordert Bspl. Berücksichtigung der *Zusammenhänge* zwischen Fahrzeugen auf mehreren Fahrbahnen in Vorfeld und Rückfeld!

Zielorientierte Agenten (2)

Weltmodell und Perzepte sind für die Aktionsauswahl dann nicht ausreichend, wenn die richtige Aktion von explizit vorgegebenen Zielen abhängt.

Bspl.: Zustand erlaubt an Kreuzung das Fahren nach links, rechts und geradeaus

- → Alleine das Ziel kann hier entscheiden!
- → Explizite Repräsentation von Zielen und deren Berücksichtigung bei Aktionswahl.

27

Nutzenorientierte Agenten (1)

Meist gibt es mehrere Aktionsfolgen, die zu einem Ziel führen. Dann kann der Nutzen (*Utility*) des erreichten Zustands herangezogen werden, um eine Auswahl zu treffen.

Nutzenorientierte Agenten (3)

Explizite Nutzenfunktionen sind umfassender als Zielrepräsentation, da komplexere Zusammenhänge einfließen können:

In Konflikt stehende Teilziele sind verrechenbar!

Bspl.: Teilziel 1: Möglichst schnell zum Bahnhof.

Teilziel 2: Sicher fahren.

- 2) *Unsichere Teilziele* sind verrechenbar, indem sowohl ihre Wichtigkeit als auch ihre Erzielbarkeit verrechenbar sind.
 - Bspl.: Ziel 1: Den Mantel aus der Reinigung zu holen, ist zwar wichtiger, aber wegen des nahen Ladenschlusses unwahrscheinlicher erfolgreich durchführbar.
 - Ziel 2: An der Tankstelle Brötchen zu kaufen, ist zwar weniger wichtig, aber zeitlich unkritischer durchführbar.

Lernende Agenten (1)

Der lernende Agent evaluiert sich quasi selbst, um bessere Performanz zu erzielen. Dazu werden vier Komponenten eingesetzt:

- Performanzkomponente (Performance element): eines der bisher beschriebenen Agentenkonzepte.
- 2. Bewertung (Critic) der bisherigen Performanzergebnisse mit vorgegebenen Performanzstandards.
- 3. Lernkomponente (Learning element) zur Generierung von Anderungsvorschlägen für die Performanzkomponente aufgrund der Bewertung der bisherigen Performanzergebnisse
- 4. Problemgenerator zur Auswahl von Aktionen, die der Exploration dienen. (I.A. lernen wir z.B. von grenzwertigen und/oder unerprobten Aktionen mehr als von sicheren Aktionen. Solche Aktionen sind aber im allg. Ausführungsmodus zu vermeiden, wenn hohe Sicherheit und hohe Performanz gefragt sind.)

Lernende Agenten (2)

Zusammenfassung

- Ein Agent besteht aus einer Agentenarchitektur und einem Agentenprogramm.
- Ein Agent nimmt seine Umgebung wahr und agiert.
- Ein idealer rationaler Agent führt die Aktionen aus, die für gegebene Wahrnehmung und gegebenes Weltwissen die *erwartete Leistung maximieren*.
- Ein Agentenprogramm bildet Perzepte auf Aktionen ab.
- Es existieren fünf Basisklassen von Agentenprogrammen:
 - einfache reflexive Agenten entscheiden allein gemäß ihrer Perzepte,
 - modellbasierte Agenten entscheiden gemäß ihres Weltmodells,
 - zielorientierte Agenten versuchen, gegebene Ziele zu erreichen,
 - nutzenorientierte Agenten maximieren ihre Bewertung,
 - lernende Agenten verbessern sich durch Vergleich mit Standards selbst.
- Unterschiedliche *Umgebungen* erfordern verschiedene Agentenkonzepte. Unzugängliche, nicht-episodische, dynamische und kontinuierliche Umgebungen sind die schwierigsten.

Ausblick

