Exercise 3.1

 $A,B\subseteq\{1,...,10\}$ |B|=3, so we choose arbitrarily $B=\{1,2,3\}$. $|\mathcal{P}(A)|=16\iff |A|=\log_2(16)=4$ $|A\cup B|=5$ so to reach sum of 5, A has to share 2 Elements with B while having 4 in total. $A=\{2,3,4,5\}$ satisfies these conditions.

Exercise 3.2

- (a) $\{e1, e4, e6, e7\} = 01001011$
- (b) $01110110 = \{e1, e2, e3, e5, e6\}$
- (c) $A \cup B \iff$ A bitwise OR B $A \cap B \iff$ A bitwise AND B $\neg A \iff$ bitwise NOT A

Exercise 3.3

We will refute the statement for all sets A, B it holds that $|A| < |A \cup B|$. Let A = B, then we have $A = A \cup B$. In this case it holds that $|A| = |A \cup B|$, which contradicts the statement.

Exercise 3.4

Let $g \colon \{n \in \mathbb{N} \mid n \bmod 2 = 0\} \to \mathbb{Z} \colon g(n) = -\frac{n}{2}$. The function g(x) is a bijective function because it maps every even natural number to every negated natural number (which is injective and surjective). Let $s \colon \{n \in \mathbb{N} \mid n \bmod 2 \neq 0\} \to \mathbb{Z} \colon g(n) = \frac{n+1}{2}$. The function s(x) is a bijective function because it maps every odd natural number to a natural number (it is a subset of the natural numbers). The union of two bijective functions is bijective, therefore

$$f(n) = \begin{cases} -\frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{n+1}{2}, & \text{otherwise,} \end{cases} \text{ for } n \in \mathbb{N},$$

is a bijective function from \mathbb{N} to \mathbb{Z} and thus \mathbb{Z} is countable.

Exercise 3.5

Proof. We want to show that \mathbb{Q} is countable. We already know that \mathbb{Q}_+ is countable. We want to form a bijection from \mathbb{Q}_+ to \mathbb{Q}_- to show that $|\mathbb{Q}_+| = |\mathbb{Q}_-|$ and hence \mathbb{Q}_- is countable too. We define $f: \mathbb{Q}_+ \to \mathbb{Q}_-$ as f(x) = -x.

We can define $\mathbb{Q} = \mathbb{Q}_+ \cup \mathbb{Q}_-$, and we know that the union of two countable sets is countable.

Exercise 3.6