Total Pages: 4

Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE(R/S) EXAMINATIONS, DECEMBER **2022** (2019 Scheme)

Course Code: CST 301

Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY				
Max. Marks: 100 PART A Duration: 3 Hours				
1	E-closure definition − 1 ½ marks	2		
	Example – 1 ½ marks	3		
2	Correct DFA – 3 marks	3		
	Transition diagram or table or functions may be accepted	3		
3	Regular expression – 3 marks			
	Sample answer: $(b*ab*ab*a)*b*$	3		
	Any correct expression may be given with full marks			
4	Any 3 closure properties of regular languages – 1 mark each	3		
5	Ambiguous grammar: Explanation - 1 ½ marks	3		
	Example – 1 ½ marks			
6	Myhill - Nerode Theorem – Statement 3 marks			
	A language is regular if and only if \equiv_L partitions \sum^* into finitely many			
	equivalence classes. If \equiv_L partitions Σ^* into \mathbf{n} equivalence classes, then a	3		
	minimal DFA recognizing L has exactly n states.			
	Note: Full marks may be awarded for Myhill – Nerode Relation statements also			
7	DPDA and NPDA are not equivalent – 1 mark	3		
	Explanation with example – 2 marks			
	(May state a sample problem like 'ww' for which no DPDA exist , but NPDA			
	exist)			
8	CNF production format – 1 mark	3		
	Conversion steps to Chomsky Normal Form – 2 marks			
9	Formal definition of Turing Machine – 3 marks	3		

10		Explanation on Recursive languages – 1 ½ marks	3				
		Recursively Enumerable languages - 1 ½ marks	3				
		PART B					
	(Answer one complete question from each module) Module -1						
11	a)	Prove that, if L is accepted by an ordinary NFA, there exist an equivalent ϵ -NFA					
		that also accepts L					
		Proof using mathematical induction	7				
		Base case – 1 ½ marks	,				
		Induction hypothesis – 1 $\frac{1}{2}$ marks					
		Induction step – 4 marks					
	b)	Correct NFA – 3 marks					
		Conversion steps to DFA – 3 marks	7				
		Final DFA – 1 mark					
12	a)	Correct E-NFA – 3 marks					
		Conversion steps to ordinary $NFA - 3$ marks	7				
		Final NFA – 1 mark					
	b)	Correct NFA – 3 marks					
		Conversion steps to DFA – 3 marks	7				
		Final DFA – 1 mark					
		Module -2					
13	a)	Using pumping lemma, show that $L = \{ a^n b^n / n > 0 \}$ is not regular					
		Stating pumping lemma conditions – 2 marks	7				
		Selecting suitable string – 2 marks	,				
		Proving – 3 marks					
	b)	Steps – 4 marks					
		Final diagram – 3 marks	7				
		Note: Any method like Kleene's theorem may be used. Steps are mandatory					
14	a)	Prove that for every Regular Expression 'R', there is an ϵ -NFA 'M'					
		Proof using mathematical induction	7				
		Base case – 1 ½ marks					

		Induction hypothesis – 1 ½ marks	
		Induction step – 4 marks	
	b)	Rules for writing regular expressions – 2 marks	
		(Eg Rule; Union of 2 RE is R1+R2)	
		Solutions using any method like Kleene's construction or Arden's theorem etc.	7
		may be positively considered	/
		Steps - 3 marks	
		Final answer – 2 marks	
		Module -3	
15	a)	Greibach Normal Form (GNF)	
		GNF format – 2 marks	
		Renaming variables – 1 mark	7
		Eliminating left recursion – 2 marks	
		Proper substitutions – 2 marks	
	b)	a) Any correct answer may be awarded with full marks. Sample productions as	
		follows:	
		(i) $S \rightarrow aSa/bSb/a/b/\xi$ - 2 marks	7
		(ii) $S \rightarrow A0A0A0$, $A \rightarrow 0A/1A/\mathcal{E}$ - 2 marks	
		(iii) $S \rightarrow ABA$, $A \rightarrow 0A/IA/\xi$, $B \rightarrow 01B/\xi$ - 3 marks	
16	a)	DFA minimization using Myhill – Nerode theorem	
		Initial table – 1 mark	
		Steps for filling the table -3 marks	
		Final table – 1 mark	7
		Final DFA – 2 marks	
		Note: Fractional marks may be given for minimization using other methods like	
		quotient construction method	
	b)	Chomsky Normal Form (CNF)	
		CNF format – 2 marks	7
		Eliminating <i>E-productions</i> and unit productions – 2 marks	,
		Proper substitutions – 3 marks	
		Module -4	1

17	a)	Prove that for every PDA accepted by final state, there exists an equivalent PDA	
		accepted by empty stack.	7
		Explanation/diagram – 4 marks	7
		Rules , $\delta-3$ marks	
	b)	PDA rules δ or diagram – 4 marks	7
		Instantaneous Description (ID) with an eg – 3 marks	,
18	a)	PDA rules δ or diagram – 7 marks	7
	b)	Stating pumping lemma conditions – 2 marks	
		Selecting suitable string – 2 marks	7
		Proving – 3 marks	
		Module -5	
19	a)	TM diagram or rules $\delta - 4$ marks	7
		Instantaneous Description (ID) – 3 marks	,
	b)	Chomsky hierarchy for formal languages	
		Type 0, 1, 2 & 3	
		Each type – 1 ½ marks	
		(Name of language $-\frac{1}{2}$ marks	7
		Format of production - ½ marks	
		Corresponding Machine - ½ marks)	
		Final comparison/evaluation – 1 mark	
20	a)	TM diagram or rules $\delta - 7$ marks	7
	b)	Statement/diagram – 2 marks	7
		Proof/explanation – 5 marks	,

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.