Optimization and Numerical Analysis: Nonlinear programming without constraints

Robert Gower

October 6, 2020

Table of Contents

Unconstrained Nonlinear Programming

History

Multivariate Calculus

Local Descent Lemma and Local Optimality

Sufficient and Necessary conditions for local optimality

Convex functions

Gradient method

Newton's Method

Constrained Nonlinear Optimization

Existence Theory

Admissable and Feasible directions

- ▶ (1669) Invents simply version of Newton's method for finding roots of polynomials (no calculus!): De analysi per aequationes numero terminorum infinitas.
- ► (1740) Full Newton's method as we know it: Thomas Simpson

Figure: Augustin Louis Cauchy

Figure: Isaac Newton

- ► (1847) Invents gradient descent: Compte Rendu á
- Why? Solving algebraic equations of the orbit of heavenly bodies.
- École Polytechnique and he wrote almost 800 papers!

The Problem: Nonlinear programming

Minimize a nonlinear differentiable function $f: x \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$

$$x^* = \arg\min_{x \in \mathbb{R}^n} f(x). \tag{1}$$

Warning: This problem is often impossible. First check there exists a minimum. Even linear programming does not always have a maximum! Develop iterative methods x^1, \ldots, x^k, \ldots , such that

$$\lim_{k\to\infty} x^k = x^*.$$

Template method

$$x^{k+1} = x^k + s_k d^k,$$

where $s_k > 0$ is a step size and $d^k \in \mathbb{R}^n$ is search direction. Satisfy the descent condition

$$f(x^{k+1}) < f(x^k).$$

Local and Global Minima

Definition of Local Minima

The point $x^* \in \mathbb{R}^n$ is a *local minima* of f(x) if there exists r > 0 such that

$$f(x^*) \le f(x), \quad \forall ||x - x^*||_2 < r.$$
 (2)

Definition of Global Minima

The point $x^* \in \mathbb{R}^n$ is a global minima of f(x) if

$$f(x^*) \le f(x), \quad \forall x.$$
 (3)

In general finding global minima is impossible.

Multivariate Calculus

For a differentiable function $f: x \in \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$, we refer to $\nabla f(x)$ as the gradient evaluated at x defined by

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}.$$

Note that $\nabla f(x)$ is a column-vector. For any vector valued function $F: x \in \mathbb{R}^n \to F(x) = [f_1(x), \dots, f_n(x)]^\top \in \mathbb{R}^n$ define the *Jacobian matrix* by

$$\nabla F(x) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_3(x)}{\partial x_1} & \dots & \frac{\partial f_n(x)}{\partial x_1} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \frac{\partial f_3(x)}{\partial x_2} & \dots & \frac{\partial f_n(x)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1(x)}{\partial x_n} & \frac{\partial f_2(x)}{\partial x_n} & \frac{\partial f_3(x)}{\partial x_n} & \dots & \frac{\partial f_n(x)}{\partial x_n} \end{bmatrix}$$
$$= \left[\nabla f_1(x), \nabla f_2(x), \nabla f_3(x), \dots, \nabla f_2(x) \right]$$

Multivariate Calculus

The gradient is useful because of 1st order Taylor expansion

$$f(x^{0} + d) = f(x^{0}) + \nabla f(x^{0})^{\top} d + \epsilon(d) \|d\|_{2},$$
(4)

where $\epsilon(d)$ is a real valued such that

$$\lim_{d\to 0} \epsilon(d) = 0. \tag{5}$$

Multivariate Calculus

The gradient is useful because of 1st order Taylor expansion

$$f(x^{0} + d) = f(x^{0}) + \nabla f(x^{0})^{\top} d + \epsilon(d) ||d||_{2},$$
(4)

where $\epsilon(d)$ is a real valued such that

$$\lim_{d\to 0} \epsilon(d) = 0. \tag{5}$$

Definition of limit: given any constant c>0 there exists $\delta>0$ such that

$$||d|| < \delta \quad \Rightarrow \quad |\epsilon(d)| < c.$$
 (6)

Example (The $\epsilon(d)$ function)

If $f(x) = ||x||_2^2$ and $f(x) = x^{\top} A x$, where $A = A^{\top}$, what is $\epsilon(d)$? Name three functions ϵ such that $\lim_{d\to 0} \epsilon(d) = 0$.

Example (The $\epsilon(d)$ function)

If $f(x) = ||x||_2^2$ and $f(x) = x^{\top}Ax$, where $A = A^{\top}$, what is $\epsilon(d)$? Name three functions ϵ such that $\lim_{d\to 0} \epsilon(d) = 0$.

Solution:

$$f(x_0 + d) = (x_0 + d)^{\top} A(x_0 + d) = \underbrace{x_0^{\top} A x_0}_{=f(x_0)} + \underbrace{2x_0^{\top} A}_{=\nabla f(x_0)^{\top}} d + d^{\top} A d$$

Example (The $\epsilon(d)$ function)

If $f(x) = ||x||_2^2$ and $f(x) = x^{\top}Ax$, where $A = A^{\top}$, what is $\epsilon(d)$? Name three functions ϵ such that $\lim_{d\to 0} \epsilon(d) = 0$.

Solution:

Thus
$$\epsilon(d) \|d\|_2 = d^\top A d$$
 \Rightarrow $\epsilon(d) = 0$

$$\epsilon(d) \|d\|_2 = d^\top A d$$

Example (The $\epsilon(d)$ function)

If $f(x) = ||x||_2^2$ and $f(x) = x^{\top}Ax$, where $A = A^{\top}$, what is $\epsilon(d)$? Name three functions ϵ such that $\lim_{d\to 0} \epsilon(d) = 0$.

Solution:

$$f(x_0 + d) = (x_0 + d)^{\top} A(x_0 + d) = \underbrace{x_0^{\top} A x_0}_{=f(x_0)} + \underbrace{2x_0^{\top} A}_{=\nabla f(x_0)^{\top}} d + d^{\top} A d$$
Thus $\epsilon(d) \|d\|_2 = d^{\top} A d \Rightarrow \epsilon(d) = \frac{d^{\top} A d}{\|d\|_2}$ and
$$\lim_{d \to 0} \epsilon(d) = 0$$

Three examples:

$$\epsilon(d) = \log(d), \quad \epsilon(d) = ||d||, \quad \epsilon(d) = \frac{a||d||^3 + b||d||^2}{c||d|| + e}.$$

The Hessian Matrix

If $f \in C^2$, we refer to $\nabla^2 f(x)$ as the Hessian matrix:

$$\nabla^2 f(x) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \frac{\partial^2 f(x)}{\partial x_n \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_n} \end{bmatrix}$$

If $f \in C^2$ then

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_i} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}, \ \forall i, j \in \{1, \dots, n\}, \quad \Leftrightarrow \quad \nabla^2 f(x) = \nabla^2 f(x)^\top.$$

Hessian matrix useful for 2nd order Taylor expansion.

$$f(x^{0}+d) = f(x^{0}) + \nabla f(x^{0})^{\top} d + \frac{1}{2} d^{\top} \nabla^{2} f(x^{0}) d + \epsilon(d) \|d\|_{2}^{2}.$$
 (7)

Exe: If $f(x) = x^3$ or $f(x) = x^T Ax$ what is $\epsilon(d)$?

The Hessian Matrix

If $f \in C^2$, we refer to $\nabla^2 f(x)$ as the Hessian matrix:

$$\nabla^2 f(x) \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \frac{\partial^2 f(x)}{\partial x_n \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_n} \end{bmatrix}$$

If $f \in C^2$ then

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_i} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}, \ \forall i, j \in \{1, \dots, n\}, \quad \Leftrightarrow \quad \nabla^2 f(x) = \nabla^2 f(x)^\top.$$

Hessian matrix useful for 2nd order Taylor expansion.

$$f(x^0 + d) = f(x^0) + \nabla f(x^0)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x^0) d + \epsilon(d) \|d\|_2^2.$$
 (7)

Exe: If
$$f(x) = x^3$$
 or $f(x) = x^{\top} A x$ what is $\epsilon(d)$?
Sol: $(x+d)^3 = x^3 + 3x^2d + 3xd^2 + d^3$. Thus $\epsilon(d) = d$

The Product-rule

The vector valued version of the product rule

▶ For any function $F(x): \mathbb{R}^n \to \mathbb{R}^n$ and matrix $A \in \mathbb{R}^{n \times n}$ we have

$$\nabla(F(x)^{\top}A) = \nabla F(x)^{\top}A. \tag{8}$$

 \triangleright For any two vector valued functions F_1 and F_2 we have that

$$\nabla(F_1(x)^{\top}F_2(x)) = \nabla F_1(x)F_2(x) + \nabla F_2(x)F_1(x).$$
 (9)

Example

Let $f(x) = \frac{1}{2}x^{\top}Ax$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Calculate the gradient and the Hessian of f(x).

The Product-rule

The vector valued version of the product rule

▶ For any function $F(x): \mathbb{R}^n \to \mathbb{R}^n$ and matrix $A \in \mathbb{R}^{n \times n}$ we have

$$\nabla(F(x)^{\top}A) = \nabla F(x)^{\top}A. \tag{8}$$

11/48

 \blacktriangleright For any two vector valued functions F_1 and F_2 we have that

$$\nabla(F_1(x)^{\top}F_2(x)) = \nabla F_1(x)F_2(x) + \nabla F_2(x)F_1(x).$$
 (9)

Example

Let $f(x) = \frac{1}{2}x^{\top}Ax$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Calculate the gradient and the Hessian of f(x).

Let
$$F_1(x) = A^{\top}x$$
 and $F_2(x) = x$ then $\nabla f(x) = \frac{1}{2}\nabla(A^{\top}x)x + \frac{1}{2}\nabla(x)A^{\top}x = \frac{1}{2}(A+A^{\top})x = Ax$ since $\nabla(A^{\top}x) = A^{\top}\nabla(x) = A$. Differentiating again $\nabla(\nabla f(x)) = \nabla(Ax) = \nabla(A)x + \nabla(x)A = A$.

Template method

$$x^{k+1} = x^k + s_k d^k,$$

where $s_k > 0$ is a step size and $d^k \in \mathbb{R}^n$ is search direction. Satisfy the descent condition

$$f(x^{k+1}) < f(x^k).$$

How to choose *d*?

How to find $d \in \mathbb{R}^n$ such that

$$f(x_k + s_k d) \leq f(x_k).$$

Lemma (Steepest Descent)

For $d \in \mathbb{R}^n$ the local change of f(x) around x_0 is

$$\Delta(d) \stackrel{\text{def}}{=} \lim_{s \to 0^+} \frac{f(x^0 + sd) - f(x^0)}{s}.$$
 (10)

Let $v = -\nabla f(x^0) / \|\nabla f(x^0)\|_2$ be the normalized gradient. We have

$$v = rg \min_{d \in \mathbb{R}^n} \Delta(d)$$
 subject to $\|d\|_2 = 1$. (11)

The negative normalized gradient is the direction that minimizes the *local change* of f(x) around x^0 . The normalized gradient

Proof.

Using 1st order Taylor we have that

$$f(x^0 + sd) - f(x^0) = s\nabla f(x^0)^{\top} d + \epsilon(sd)s.$$

Dividing by s and taking the limit $s \to 0$ we have

$$\Delta(d) = \lim_{s \to 0^+} \frac{f(x^0 + sd) - f(x^0)}{s} = \nabla f(x^0)^\top d + \lim_{s \to 0^+} \epsilon(sd) = \nabla f(x^0)^\top d.$$

Now using that $||d||_2 = 1$ together with the Cauchy inequality

$$-\|\nabla f(x^0)\|_2 \le \Delta(d) = \nabla f(x^0)^{\top} d \le \|\nabla f(x^0)\|_2.$$
 (12)

The upper and lower bound is achieved when $d = \nabla f(x^0) / \|\nabla f(x^0)\|_2$ and $d = -\nabla f(x^0) / \|\nabla f(x^0)\|_2$, respectively.

Corollary (Descent Condition)

If
$$d^{\top}\nabla f(x_0) < 0$$
 then there exists $s > 0$ such that

$$f(x_0 + sd) < f(x_0).$$

Corollary (Descent Condition)

If $d^{\top}\nabla f(x_0) < 0$ then there exists s > 0 such that

$$f(x_0 + sd) < f(x_0).$$

Proof.

From (12) we have that $\Delta(d) = \nabla f(x^0)^{\top} d < 0$.

Let
$$c = -\nabla f(x^0)^{\top} d > 0$$
.

Corollary (Descent Condition)

If $d^{\top}\nabla f(x_0) < 0$ then there exists s > 0 such that

$$f(x_0 + sd) < f(x_0).$$

Proof.

From (12) we have that $\Delta(d) = \nabla f(x^0)^{\top} d < 0$.

Let $c = -\nabla f(x^0)^{\top} d > 0$.

Let s>0 be such that $\epsilon(sd)<\frac{c}{2}$. (Because $\lim_{s\to 0}\epsilon(sd)=0$)

Corollary (Descent Condition)

If $d^{\top}\nabla f(x_0) < 0$ then there exists s > 0 such that

$$f(x_0 + sd) < f(x_0).$$

Proof.

From (12) we have that $\Delta(d) = \nabla f(x^0)^{\top} d < 0$.

Let $c = -\nabla f(x^0)^{\top} d > 0$.

Let s>0 be such that $\epsilon(sd)<\frac{c}{2}$. (Because $\lim_{s\to 0}\epsilon(sd)=0$)

Consequently from 1st order Taylor:

$$\frac{f(x^0+sd)-f(x^0)}{s}=\nabla f(x^0)^\top d+\epsilon(sd)\leq -\frac{c}{2}<0.$$

Re-arranging
$$f(x^0 + sd) \le f(x^0) - s\frac{c}{2} < f(x^0)$$

Definition of Local Minima

The point $x^* \in \mathbb{R}^n$ is a *local minima* of f(x) if there exists r > 0 such that

$$f(x^*) \le f(x), \quad \forall ||x - x^*||_2 < r.$$
 (13)

Theorem (Necessary optimality conditions)

If x^* is a local minima of f(x) then

So it is necessary that $\nabla f(x^*) = 0$ and the d is positive curvature direction before we stop.

Proof.

That $\nabla f(x^*)=0$ follows from Descent Condition. Suppose there exists $d\in\mathbb{R}^n$ such that $d^\top\nabla^2 f(x^*)d<0$. Suppose w.l.o.g that $\|d\|_2=1$. Using the 2nd order Taylor we have that

$$f(x^* + sd) = f(x^*) + \frac{s^2}{2}d^{\top}\nabla^2 f(x^*)d + \epsilon(sd)s^2.$$

Proof.

That $\nabla f(x^*)=0$ follows from Descent Condition. Suppose there exists $d\in\mathbb{R}^n$ such that $d^\top\nabla^2 f(x^*)d<0$. Suppose w.l.o.g that $\|d\|_2=1$. Using the 2nd order Taylor we have that

$$f(x^* + sd) = f(x^*) + \frac{s^2}{2}d^{\top}\nabla^2 f(x^*)d + \epsilon(sd)s^2.$$

Let $\delta > 0$ be such that for $s \leq \delta$ we have that $\epsilon(sd) < |d^{\top}\nabla^2 f(x^*)d|/4$. Dividing the above by s^2 , for $s \leq \delta$ we have that

$$\frac{f(x^* + sd)}{s^2} = \frac{f(x^*)}{s^2} + \frac{1}{2}d^{\top}\nabla^2 f(x^*)d + \epsilon(sd)$$

$$< \frac{f(x^*)}{s^2} + \frac{1}{4}d^{\top}\nabla^2 f(x^*)d,$$

thus $f(x^* + sd) < f(x^*)$ for all $s \le \delta$ which contradicts the definition of local minima.

With a slight modification, same conditions they are also sufficient.

Theorem (Sufficient Local Optimality conditions)

If $x^* \in \mathbb{R}^n$ is such that

then x^* is a local minima.

We can use this theorem to find local minima!

Proof: Let $d \in \mathbb{R}^n$. Because $\nabla^2 f(x^*)$ is positive definite, the smallest non-zero eigenvalue must be strictly positive. Consequently

$$||d||^2 \lambda_{\min}(\nabla^2 f(x^*)) \leq d^\top \nabla^2 f(x^*) d.$$

Using the second-order Taylor expansion, we have that

$$f(x^* + d) = f(x^*) + \frac{1}{2}d^{\top}\nabla^2 f(x^*)d + \epsilon(d)\|d\|_2^2$$

$$\geq f(x^*) + \frac{\|d\|_2^2}{2}\lambda_{\min}(\nabla^2 f(x^*)) + \epsilon(d)\|d\|_2^2.$$

Let r > 0 be such that every d with $||d|| \le r$ we have that

$$|\epsilon(d)| < \lambda_{\min}(\nabla^2 f(x^*))/4 \quad \Rightarrow \quad \epsilon(d) > -\lambda_{\min}(\nabla^2 f(x^*))/4.$$

Thus for $||d|| \le r$ we have

$$f(x^* + d) \geq f(x^*) + \frac{\|d\|_2^2}{2} \lambda_{\min}(\nabla^2 f(x^*)) + \epsilon(d) \|d\|_2^2$$

$$\geq f(x^*) + \frac{\|d\|_2^2}{4} \lambda_{\min}(\nabla^2 f(x^*)) > f(x^*). \quad \Box$$

Exercise

Let $f(x) = \frac{1}{2}x^{T}Ax - x^{T}b + c$, with A symmetric positive definite. How many local/global minimas can f(x) have? Find a formula for the minima using only the data A and b.

Proof.

By the sufficient conditions x^* is a local minima if

$$\nabla f(x^*) = 0 \iff Ax^* = b,$$

and

$$\nabla^2 f(x^*) = A \succ 0.$$

Since Ax = b has only one solution there exists only one local minima which must be the global minima.

Convex Functions

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \quad \forall x, y \in \mathbb{R}^d, \ t \in [0, 1].$$

Theorem

If f is a convex function, then every local minima of f is also a global minima. We only need to check 1st order $\nabla f(x^*) = 0$!

Proof.

Let x^* be a local minima and suppose there exists $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) < f(x^*)$. Let $z_t = t\bar{x} + (1-t)x^*$ for $t \in [0, 1]$. By the definition of convexity we have that

$$f(z_t) = f((1-t)\bar{x} + tx^*) \le (1-t)f(\bar{x}) + tf(x^*) < (1-t)f(x^*) + tf(x^*) = f(x^*).$$
 (14)

Thus x^* cannot be a local minima. Indeed, for any r>0 with $r\leq \|\bar x-x^*\|_2$, we have that by choosing $t=1-r/\|\bar x-x^*\|_2$ we have that

$$||z_t - x^*||_2 = (1 - t)||\bar{x} - x^*||_2 < r.$$

Yet from (14) we have that $f(z_t) < f(x^*)$. A contraction. Thus there exists no \bar{x} with $f(\bar{x}) < f(x^*)$. \square

Theorem

If f is twice continuously differentiable, then the following three statements are equivalent

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y), \quad \forall x, y, t \in [0, 1]. \quad \text{(0th)}$$

$$f(y) \geq f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y. \quad \text{(1st)}$$

$$0 \leq d^{\top} \nabla^{2} f(x) d, \quad \forall x, d. \quad \text{(2nd)}$$

Proof.

We prove $(0th) \Rightarrow (1st) \Rightarrow (2nd)$.

The remaing $(2nd) \Rightarrow (0th)$ is left as an exercise.

(0th) \Rightarrow (1st): Dividing (0th) by t and re-arranging

$$\frac{f(y+t(x-y))-f(y)}{t}\leq f(x)-f(y).$$

Now taking the limit $t \to 0$ gives (1st).

Proof.

(1st) \Rightarrow (2nd): First we prove this holds for 1-dimensional functions $f: \mathbb{R} \to \mathbb{R}$. From (1st) we have that

$$f(y) \geq f(x) + f'(x)(y - x),$$

$$f(x) \geq f(y) + f'(y)(x - y).$$

Combining the above two we have that

$$f'(x)(y-x) \le f(y) - f(x) \le f'(y)(y-x).$$

Dividing by $(y - x)^2$ we have

$$\frac{f'(y)-f'(x)}{y-x}\geq 0, \quad \forall x,y,x\neq y.$$

It remains to take the limit. Extend to every n-dimensional function using

$$\left. \frac{d^2 f(x+tv)}{dv^2} \right|_{t=0} = v^\top \nabla^2 f(x) v \ge 0, \forall v \ne 0.$$

Move in negative gradient direction iteratively

 $\nabla f(x^{k+1}) = Ax^{k+1} - b$

$$x^{k+1} = x^k - s^k \nabla f(x^k),$$

where $s^k > 0$ is the step size. How to choose s^k the stepsize? Sometimes constant step size works

Theorem

Let $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite. $f(x) = \frac{1}{2}x^{\top}Ax - x^{\top}b + c$. If we choose a fixed stepsize of $s^k = 1/\sigma_{\text{max}}(A)$ then GD converges

$$\|\nabla f(x^{k+1})\|_{2} \le \left(1 - \frac{\sigma_{\min}(A)}{\sigma_{\max}(A)}\right)^{k} \|\nabla f(x^{0})\|_{2}. \tag{15}$$

25/48

Proof part I:

$$= A(x^k - s\nabla f(x^k)) - b$$

$$= A(x^k - s(Ax^k - b)) - b$$

$$= Ax^k - b - sA(Ax^k - b) = (I - sA)\nabla f(x^k).$$

Proof part II: From $\nabla f(x^{k+1}) = (I - sA)\nabla f(x^k)$ taking norms $\|\nabla f(x^{k+1})\|_2 < \|I - sA\|_2 \|\nabla f(x^k)\|_2.$

Choosing $s=1/\sigma_{\max}(A)$ we have that I-sA is symmetric positive definite and

$$||I - sA||_2 = 1 - s\sigma_{\min}(A) = 1 - \frac{\sigma_{\min}(A)}{\sigma_{\max}(A)} < 1.$$

Homework: Prove this last step! Thus finally

$$\|\nabla f(x^{k+1})\|_{2} \leq \left(1 - \frac{\sigma_{\min}(A)}{\sigma_{\max}(A)}\right) \|\nabla f(x^{k})\|_{2}$$

$$\leq \left(1 - \frac{\sigma_{\min}(A)}{\sigma_{\max}(A)}\right)^{k} \|\nabla f(x^{0})\|_{2}. \quad \Box$$

What to do for non-quadratic functions? Choose the best s^k ?

$$s^k = \arg\min_{s \ge 0} f(x^k + sd^k).$$

What to do for non-quadratic functions? Choose the best s^k ?

$$s^k = \arg\min_{s \ge 0} f(x^k + sd^k).$$

Seems good, but leads to zigzagging convergence because

$$\nabla f(x^{k+1})^{\top} \nabla f(x^k) = 0.$$

To prove this

$$\frac{d}{ds} f(x^k - s\nabla f(x^k))\big|_{s=s^k} = 0.$$

Using the chain-rule we have that

$$\frac{d}{ds} f(x^k - s\nabla f(x^k))\big|_{s=s^k} = -s^k \nabla f(x^k - s^k \nabla f(x^k))^\top \nabla f(x^k) = 0.$$

Backtracking Line search

Instead of *best* step size, find a good one.

Algorithm 1 Backtracking Line Search (α, ρ, c)

- 1: Choose $\alpha > 0, \rho, c \in (0, 1)$.
- 2: while $f(x^k + \alpha d^k) \leq f(x^k) + c \alpha \nabla f(x^k)^{\top} d^k$ do
- 3: Update $\alpha = \rho \alpha$.

Figure: Where $\phi(\alpha) = f(x^k + \alpha d^k)$ and $I(\alpha) = f(x^k) + c \alpha \nabla f(x^k)^{\top} d^k$

Putting everything together with a stopping criteria

Algorithm 2 Gradient Descent

- 1: Choose $x^0 \in \mathbb{R}^n$.
- 2: while $\|\nabla f(x^k)\|_2 > \epsilon$ or $f(x^{k+1}) f(x^k) \le \epsilon$ do
- 3: Calculate $d^k = -\nabla f(x^k)$
- 4: Calculate s^k using Backtracking Line Search.
- 5: Update $x^{k+1} = x^{\bar{k}} + s^k d^k$.

Gradient uses 1st order approximation. What about 2nd order?

Figure: Comparing 1st order and 2nd Taylor of $f(x) = e^x$.

Local quadratic approximation using 2nd Taylor

$$q_k(x) = f(x^k) + \nabla f(x^k)^{\top} (x - x^k) + \frac{1}{2} (x - x^k)^{\top} \nabla^2 f(x^k) (x - x^k).$$

Newton's Method

Newton's method minimizes the local quadratic approximation.

$$q_k(x) = f(x^k) + \nabla f(x^k)^{\top} (x - x^k) + \frac{1}{2} (x - x^k)^{\top} \nabla^2 f(x^k) (x - x^k).$$

Assume that $\nabla^2 f(x^k)$ is invertible. Let x^{k+1} be the point that solves

$$\nabla_x q_k(x) = \nabla f(x^k) + \nabla^2 f(x^k)(x^{k+1} - x^k) = 0.$$

Isolating x^{k+1} we have

$$x^{k+1} = x^k - \nabla^2 f(x^k)^{-1} \nabla f(x^k).$$

Newton's method can converge at a quadratic speed. Much faster than Gradient Descent.

Theorem

Let f(x) be a μ -strongly convex function:

$$v^{\top} \nabla^2 f(x) v \ge \mu \|v\|^2, \quad \forall x, v \in \mathbb{R}^n.$$
 (16)

If the Hessian is also Lipschitz

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2 \tag{17}$$

then Newton's method converges according to

$$||x^{k+1} - x^*||_2 \le \frac{L}{2\mu} ||x^k - x^*||_2^2.$$
 (18)

In particular if $||x^0 - x^*||_2 \le \frac{\mu}{L}$, then for $k \ge 1$ we have that

$$||x^k - x^*||_2 \le \frac{1}{2^{2^k}} \frac{\mu}{L}.$$
 (19)

Proof:

$$x^{k+1} - x^* = x^k - x^* - \nabla^2 f(x^k)^{-1} \left(\nabla f(x^k) - \nabla f(x^*) \right)$$

$$= x^k - x^* - \nabla^2 f(x^k)^{-1} \int_{s=0}^1 \nabla^2 f(x^k + s(x^* - x^k))(x^k - x^*) ds$$

$$= \nabla^2 f(x^k)^{-1} \int_{s=0}^1 \left(\nabla^2 f(x^k) - \nabla^2 f(x^k + s(x^* - x^k)) \right) (x^k - x^*) ds$$

Let $\delta^k := x^k - x^*$. Taking norms we have that

$$\begin{split} \|\delta^{k+1}\| &\leq \|\nabla^2 f(x^k)^{-1}\| \int_{s=0}^1 \|\nabla^2 f(x^k) - \nabla^2 f(x^k + s(x^k - x^k))\| \|\delta^k\| ds \\ &\leq \frac{L}{\mu} \int_{s=0}^1 s \|\delta^k\|^2 ds \\ &= \frac{L}{2\mu} \|\delta^k\|^2. \end{split}$$

Proof Part II: So now we have shown

$$||x^{k+1} - x^*|| \le ; \frac{L}{2u} ||x^k - x^*||^2.$$

If $||x^0 - x^*|| \le \frac{\mu}{L}$, then by induction that

$$\|x^k - x^*\| \le \frac{1}{2^{2^k}} \frac{\mu}{L},$$
 (20)

then we have that

$$\|x^{k+1} - x^*\| \leq \frac{L}{2\mu} \|x^k - x^*\|^2 \leq \frac{L}{2\mu} \frac{1}{2^{2^k}} \frac{1}{2^{2^k}} \left(\frac{\mu}{L}\right)^2 < \frac{1}{2^{2^{k+1}}} \frac{\mu}{L},$$

which concludes the induction proof.

Constrained Nonlinear Optimization

Let f, g_i and h_j be C^1 continuous functions, for i = 1, ..., m and j = 1, ..., p. Consider the *constrained* optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $g_i(x) \leq 0$, for $i \in I$.
 $h_j(x) = 0$, for $j \in J$, (21)

where $I = \{1, \dots, m\}$ and $J = \{1, \dots, p\}$. Some notation:

- ▶ Inequality constraints: $g_i(x) \le 0$, for $i \in I$
- ▶ Equality constraints: $h_j(x) = 0$, for $j \in J$
- Feasible point x: Satisfies all inequality and equality constraints.
- Feasible set X: All the feasible points

$$X \stackrel{\mathsf{def}}{=} \{x \in \mathbb{R}^n : g_i(x) \le 0, \ h_j(x) = 0, \quad \text{for } i \in I, \ \text{and } j \in J\}.$$

▶ Abbreviated form: $\min_{x \in X} f(x)$.

Exercise: Solve the following constrained nonlinear optimization problem graphically.

$$\min_{x \in \mathbb{R}^n} \qquad (x_1 - 3)^2 + (x_2 - 2)^2$$
 subject to $\qquad x_1^2 - x_2 - 3 \le 0, \qquad \qquad x_2 - 1 \le 0, \qquad \qquad -x_1 \le 0.$

Exercise: Solve the following constrained nonlinear optimization problem graphically.

$$\begin{aligned} \min_{x \in \mathbb{R}^n} & & (x_1 - 3)^2 + (x_2 - 2)^2 \\ \text{subject to} & & x_1^2 - x_2 - 3 \leq 0, \\ & & x_2 - 1 \leq 0, \\ & & -x_1 \leq 0. \end{aligned}$$

Adding constraints can make the problem easy.

Easy example: If $X = \{x_0\}$ is a single point, we are done. If $X = \{x_0 + td_0, \forall t \in \mathbb{R}\}$ it is easier.

But constraints can also make the problem harder (specially conceptually). Also even if g_i and h_j are smooth, the feasible set can be non-smooth. Hard example:

Theorem (Existence)

If the feasible set X is bounded and non-empty, then there exists a solution to $\min_{x \in X} f(x)$.

Proof.

Given that the sets $\mathbb{R}_- = [-\infty, 0]$ and $\{0\}$ are closed, by the continuity of g_i and h_i we have that X is closed. Indeed,

$$X = \left(\bigcap_{i=1}^m g_i^{-1}([-\infty, 0])\right) \cap \left(\bigcap_{j=1}^p h_j^{-1}(\{0\})\right),$$

and thus is a finite intersection of closed sets. By assumption X is bounded, thus it is compact. By the continuity of f we have that f(X) is also compact (The Extreme value theorem). Consequently there exists a minimum in f(X).

Definition

We say that $f: \mathbb{R}^n \to \mathbb{R}$ is coercive if $\lim_{\|x\| \to \infty} f(x) = \infty$.

Theorem

If X is non-empty and f is coercive, then there exists a solution to $\min_{x \in X} f(x)$.

Proof.

Let $x_0 \in X$. Define $B_r := \{x : \|x\| \le r\}$. Since f is coercive, there exists r such that for each x with $\|x\| \ge r$ we have that $f(x_k) \ge f(x_0)$. Otherwise we would be able to construct a sequence x_k with $\|x_k\| \to \infty$ such that $f(x) \le f(x_0)$, which contracts the coercivity of f. Thus clearly the minimum of f is in B_r . Since B_r is bounded and closed, we have that $x_0 \in B_r \cap X$ thus it is bounded, closed and nonempty. Again by the extreme value theorem, f(x) attains its minimum in $B_r \cap X$, which is also the minimum in X.

Given $x_0 \in X$ how can me move and still stay inside X? If X was a polyhedra then d is a *feasible* or an *admissible* direction at $x_0 \in X$ if there exists $\epsilon > 0$ such that $x_0 + td \in X$ for all $0 \le t \le \epsilon$.

Figure: Difficult feasible set with objective function

For the case that the frontier of the feasible set is nonlinear, we need to consider a more general notion of feasible directions.

Definition

We say that d is an admissible direction at $x_0 \in X$ if there exists a C^1 differentiable curve $\phi: \mathbb{R}_+ \to \mathbb{R}^n$ such that

- $\phi(0) = x_0$
- **2** $\phi'(0) = d$
- **3** There exists $\epsilon > 0$ such that $t \leq \epsilon$ we have $\phi(t) \in X$

We denote by $A(x_0)$ the set of admissable directions at x_0 .

Some examples of admissable sets

- As a straight forward example, given $d \in \mathbb{R}^n$ let $X = \{x \mid \forall \alpha \in \mathbb{R}, \ x = \alpha d\}$. For any $x_0 \in X$ we have that $A(x_0) = X$.
- ▶ Consider the circle $X = \{(\cos(\theta), \sin(\theta)) \mid 0 \le \theta \le 2\pi\} \subset \mathbb{R}^2$. Then for every $x_0 = ((\cos(\theta_0), \sin(\theta_0)))$ we have that

$$A(x_0) = \{(-\alpha \sin(\theta), \alpha \cos(\theta)), \forall \alpha \in \mathbb{R}\}.$$

Taylor for Composition with Curve

Lemma

Let $\phi: \mathbb{R}_+ \to \mathbb{R}^n$ be a C^1 curve as defined in Definition 15. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then the first order Taylor expansion of the composition $f(\phi(t))$ around x_0 can be written as

$$f(\phi(t)) = f(x_0) + td^{\top} \nabla f(x_0) + t\hat{\epsilon}(t), \tag{22}$$

where $\lim_{t\to 0} \hat{\epsilon}(t) = 0$.

Proof: Since both f and ϕ are C^1 , their composition is also C^1 . Thus $f(\phi(t))$ first order Taylor expansion around t=0 gives

$$f(\phi(t)) = f(\phi(0)) + t \frac{df(\phi(t))}{dt}|_{t=0} + t\epsilon(t).$$

Now plugging in $\phi(0) = x_0$ and using the chain-rule

$$\frac{df(\phi(t))}{dt}|_{t=0} = (\phi'(t)^{\top}\nabla f(\phi(t)))|_{t=0} = (d^{\top}\nabla f(x_0)). \quad \Box$$

Theorem (Necessary Condition for Admissable Direction)

Let $I_0(x_0) = \{i : g_i(x_0) = 0, i \in I\}$ be the indexes of saturated inequalities. If $d \in A(x_0)$ is an admissable direction then

- **①** For every $i \in I(x_0)$ we have that $d^{\top} \nabla g_i(x^0) \leq 0$.
- ② For every $j \in J$ we have that $d^{\top} \nabla h_j(x^0) = 0$.

Let $B(x_0)$ be the set of directions that satisfy the above two conditions. Thus $A(x_0) \subset B(x_0)$.

Proof 1. Let $i \in I(x_0)$. Let $\phi(t)$ be the curve associated to d. The 1st order Taylor expansion of g_i around x_0 in the d direction which is

$$g_i(\phi(t)) \stackrel{(22)}{=} g_i(x_0) + td^{\top} \nabla g_i(x_0) + t\epsilon(t)$$

= $td^{\top} \nabla g_i(x_0) + t\epsilon(t) \leq 0,$

where we used $g_i(\phi(t)) \leq 0$ for t sufficiently small. Dividing by t gives

$$d^{\top}\nabla g_i(x^0) + \epsilon(t) < 0.$$

Letting $t \to 0$ we have that $d^{\top} \nabla g_i(x^0) < 0$.

Theorem (Necessary Condition for Admissable Direction)

Let $I_0(x_0) = \{i : g_i(x_0) = 0, i \in I\}$ be the indexes of saturated inequalities. If $d \in A(x_0)$ is an admissable direction then

- **1** For every $i \in I(x_0)$ we have that $d^{\top} \nabla g_i(x^0) \leq 0$.
- ② For every $j \in J$ we have that $d^{\top} \nabla h_j(x^0) = 0$.

Let $B(x_0)$ be the set of directions that satisfy the above two conditions. Thus $A(x_0) \subset B(x_0)$.

Proof 2. Using the first order Taylor expansion of h_j around x_0 we have that

$$h_j(\phi(t)) \stackrel{(22)}{=} h_j(x_0) + td^\top \nabla h_j(x_0) + t\epsilon(t) = td^\top \nabla h_j(x_0) + t\epsilon(t) = 0.$$

Dividing by t and then taking the limit as $t \to 0$ gives $d^\top \nabla h_i(x^0) = 0$.

Cone of Feasible Directions

We refer to $B(x_0)$ as the cone of feasible directions.

Cones are easy to work with. We would like to use $B(x_0)$ instead $A(x_0)$. But sometimes $B(x_0)$ and to $A(x_0)$ are not the same.

Example (Degeneracy)

Consider the constraint given by

$$h_1(x) = (x_1^2 + x_2^2 - 2)^2 = 0.$$

Thus

$$\nabla h_1(x) = 2(x_1^2 + x_2^2 - 2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
.

Every feasible point satisfies $\nabla h_1(x) = 0$. Consequently $B(x) = \mathbb{R}^2$ for every feasible point. Yet $h_1(x) = 0$ describes a circle, and clearly A(x) is the tangent line at x. Thus we cannot use $\nabla h_1(x)$ to describe feasible directions. We would not have this problem if instead we used instead $h_1(x) = (x_1^2 + x_2^2 - 2) = 0$.

To exclude these degeneracies, we impose the Constraint qualifications.

Definition

We say that the constraint qualifications hold at x_0 if for every $d \in B(x_0)$ there exists a sequence $(d_t)_{t=1}^{\infty} \in A(x_0)$ such that $d_t \to d$.

Constraint qualifications makes things easier.

Theorem (Necessary conditions)

Let x^* be a local minimum. If the constraint qualification holds at x^* then for every $d \in B(x^*)$ we have that $\nabla f(x^*)^{\top} d \geq 0$. Every direction in the feasible cone is not descent directions.

So we can check if x^* is a local minima by testing the directions in the feasible cone!

Theorem (Necessary conditions)

Let x^* be a local minimum. If the constraint qualification holds at x^* then for every $d \in B(x^*)$ we have that $\nabla f(x^*)^{\top} d \geq 0$. Every direction in the feasible cone is not descent directions.

Proof: Let $d_k \in A(x_*)$ be a sequence such that $d_k \to d$. Let ϕ_k be the curve associated to d_k . Using the first order Taylor expansion we have

$$f(\phi_k(t)) = f(x_*) + t\nabla f(x_*)^{\top} d_k + t\epsilon_k(t).$$

Since x_* is a local minima, there exists T for which $t \leq T$ we have that $f(x_*) \leq f(\phi_k(t))$. Consequently

$$t \nabla f(x_*)^{\top} d_k + t \epsilon_k(t) = f(\phi_k(t)) - f(x_*) \ge 0$$
, for $t \le T$.

Dividing by t and taking the limit we have

$$\lim_{t\to 0} \nabla f(x_*)^\top d_k + \epsilon_k(t) = \nabla f(x_*)^\top d_k \geq 0.$$

Taking the limit in k concludes the proof.