EPFA Σ IA 1

1. Έστω σχέση S, η οποία ορίζεται στο σύνολο των πραγματικών ως εξής:

$$(a,b) \in S$$
 εάν και μόνον εάν $|a-b| \le 5$.

Είναι η S σχέση ισοδυναμίας;

2. Έστω σχέση S, η οποία ορίζεται σε ένα σύνολο A και η οποία είναι συμμετρική και μεταβατική. Υπάρχει κάποιο λάθος στα παρακάτω επιχειρήματα;

" Έστω τυχαίο στοιχείο x του συνόλου A. Επιλέγουμε $y \in A$ τέτοιο ώστε xSy. Όμως από τη συμμετρικότητα της S έχουμε ySx και από την μεταβατικότητα της S προκύπτει xSx. Άρα η S είναι αυτοπαθής."

3. Έστω σχέση S, η οποία ορίζεται στο \mathbb{Z} (σύνολο ακέραιων) ως εξής:

$$(x,y)\in S$$
 εάν και μόνον εάν $x^2\equiv y^2\pmod 4$.
$$(\Delta\eta \lambda \text{αδή }(x,y)\in S$$
 εάν και μόνον εάν υπάρχει ακέραιος m τέτοιος ώστε
$$x^2-y^2=4m)$$

- (α΄) Να αποδειχθεί ότι η S είναι σχέση ισοδυναμίας.
- (β΄) Να βρεθούν οι κλάσεις ισοδυναμίας των στοιχείων του $\mathbb Z$ ως προς την S.
- 4. Έστω σχέση S, η οποία ορίζεται σε ένα σύνολο A και η οποία είναι αυτοπαθής και μεταβατική. Έστω σχέση R η οποία επίσης ορίζεται στο A ως εξής:

$$(x,y) \in R$$
 εάν και μόνον εάν $(x,y) \in S$ και $(y,x) \in S$.

Να αποδειχθεί ότι η R είναι σχέση ισοδυναμίας.

- 5. Έστω P_1, P_2 σχέσεις μερικής διάταξης που ορίζονται σε ένα σύνολο A. Η $P_1 \cup P_2$ θα είναι επίσης σχέση μερικής διάταξης;
- 6. Έστω σχέση S, η οποία ορίζεται στο σύνολο των προτασιακών τύπων ως εξής:

$$(p,q) \in S$$
 εάν και μόνον εάν $p \wedge q$ είναι ταυτολογία.

Να εξετασθεί εάν η S είναι αυτοπαθής, συμμετρική, μεταβατική.

- 7. Είναι οι προτασιαχοί τύποι $\neg p \to (q \to r)$ και $q \to (p \lor r)$ ταυτολογικά ισοδύναμοι;
- 8. Ένας προτασιαχός τύπος είναι σε κανονική διαζευκτική μορφή αν είναι της μορφής $\psi_0 \lor \psi_1 \lor \cdots \lor \psi_n$ όπου χάθε $\psi_i, i=0,1,\cdots,n$ είναι σύζευξη προτασιαχών μεταβλητών ή αρνήσεων προτασιαχών μεταβλητών. Βρείτε προτασιαχό τύπο σε χανονιχή διαζευχτιχή μορφή που είναι ταυτολογιχά ισοδύναμος με τον $\neg(p_0 \to (p_1 \leftrightarrow p_2))$.