賽局論 HW3

許博翔

October 20, 2023

Problem 1 (7.11.24).

(a) $\min(7, 2, 1, 2, 7) = 1$, $\min(2, 6, 2, 6, 2) = 2$, $\min(5, 4, 3, 4, 5) = 3$, $\min(2, 6, 2, 6, 2) = 2$, $\min(7, 2, 1, 2, 7) = 1$, so $\underline{m} = \max(1, 2, 3, 2, 1) = 3$. $\max(7, 2, 5, 2, 7) = 7$, $\max(2, 6, 4, 6, 2) = 6$, $\max(1, 2, 3, 2, 1) = 3$, $\max(2, 6, 4, 6, 2) = 6$, $\max(7, 2, 5, 2, 7) = 7$, so $\overline{m} = \min(7, 6, 3, 6, 7) = 3$. Since from 4b, we get that $\underline{v} = \overline{v} = \underline{m} = 3$.

 \therefore the value of this game is 3, and the row player's strategy is p = (0, 0, 1, 0, 0); the column player's strategy is q = (0, 0, 1, 0, 0).

(b)
$$\begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & -1 & 6 & 7 \\ 3 & 4 & 2 & 3 \\ -7 & 2 & 2 & 1 \end{pmatrix} \xrightarrow{c_4 \ge c_1 \text{ and } r_4 \le r_1} \begin{pmatrix} 1 & 3 & 2 \\ 0 & -1 & 6 \\ 3 & 4 & 2 \end{pmatrix} \xrightarrow{r_1 \le r_3} \begin{pmatrix} 0 & -1 & 6 \\ 3 & 4 & 2 \end{pmatrix}.$$

Suppose the strategy of the row player is $(0, p_2, p_3, 0)$, and the strategy of the column player is $(q_1, q_2, q_3, 0)$.

$$\underline{v} = \max_{p_2, p_3} \min(3p_3, -p_2 + 4p_3, 6p_2 + 2p_3) = \max_{p_2} \min(3 - 3p_2, 4 - 5p_2, 2 + 4p_2).$$

The maximum occurs when $3 - 3p_2 = 4 - 5p_2$ or $3 - 3p_2 = 2 + 4p_2$ or $4 - 5p_2 = 2 + 4p_2$

 $2+4p_2$. We take these solutions $p_2=\frac{1}{2},\frac{1}{7},\frac{2}{9}$, calculate the correspond maximin

and we get that when $p_2 = \frac{1}{7}$, the maximin is maximized.

$$\therefore \underline{v} = \min(\frac{18}{7}, \frac{23}{7}, \frac{18}{7}) = \frac{18}{7}.$$

On the other hand, $\overline{v} = \min_{q_1,q_2,q_3} \max(-q_2 + 6q_3, 3q_1 + 4q_2 + 2q_3) = \max(-q_2 + 6q_3, 3 + q_2 - q_3).$

The minimum occurs when $-q_2 + 6q_3 = 3 + q_2 - q_3$.

$$\Rightarrow q_2 = \frac{7q_3 - 3}{2}.$$

Since $q_2 \in [0,1], q_3 \in [0,1], q_2 + q_3 \in [0,1]$, we get the bound of $q_3 = [\frac{3}{7}, \frac{5}{7}] \cap [0,1] \cap [\frac{1}{3}, \frac{5}{9}] = [\frac{3}{7}, \frac{5}{9}].$ $\Rightarrow -q_2 + 6q_3 = \frac{3}{2} + \frac{5}{2}q_3, \text{ which has minimum when } q_3 = \frac{3}{7}.$ $\therefore \overline{v} = \frac{3}{2} + \frac{5}{2} \times \frac{3}{7} = \frac{18}{7}.$

... the value of this game is $\frac{18}{7}$, and the row player's strategy is $p = (0, \frac{1}{7}, \frac{6}{7}, 0)$; the column player's strategy is $q = (\frac{4}{7}, 0, \frac{3}{7}, 0)$.

Problem 2. The following is the payoff Colonel Blotto gets for each strategy:

Colonel Blotto \ Count Baloney	(2,1)	(1, 2)
(3,1)	2 + 0	1 - 1
(2,2)	0 + 1	1+0
(1,3)	-1 + 1	0 + 2

Since Count Baloney gets exactly the opposite of the payoff that Clonel Blotto gets, the above value is what Colonel Blotto wants to maximize and Count Baloney wants to minimize.

 $\min(2,0) = 0, \min(1,1) = 1, \min(0,2) = 0$, so for Clonel Blotto, the security value is $\max(0,1,0) = 1$, and the strategy is (2,2).

 $\max(2,1,0) = 2$, $\max(0,1,2) = 2$, so for Count Baloney, the security is $\min(2,2) = 2$, and the strategy is (2,1) or (1,2).

Since 2 > 1, the saddle point does not exist by the theorem in the powerpoint of minimax and maximin.

Suppose that Count Baloney's mixed strategy is $q = (q_1, q_2)$, if Colonel Blotto plays:

$$(3,1), \pi = 2q_1$$

$$(2,2), \pi = q_1 + q_2$$

$$(1,3), \pi = 2q_2.$$

$$\max(2q_1, q_1 + q_2, 2q_2) \stackrel{q_1 + q_2 = \frac{2q_1 + 2q_2}{2}}{=} \max(2q_1, 2q_2) = \max(2q_1, 2 - 2q_1) \ge \frac{2q_1 + 2 - 2q_1}{2} = \frac{2$$

1, the equation holds $\iff q_1 = \frac{1}{2}$.

$$\therefore q = (\frac{1}{2}, \frac{1}{2})$$
 is Count Baloney's strategy.

Suppose that Colonel Blotto's mixed strategy is $p = (p_1, p_2, p_3)$, if Count Baloney's

plays:

$$(2,1), \pi = 2p_1 + p_2$$

$$(1,2), \pi = p_2 + 2p_3.$$

The maximum of min $(2p_1 + p_2, p_2 + 2p_3)$ occurs when $2p_1 + p_2 = p_2 + 2p_3$, that is, $p_1 = p_3$.

$$\Rightarrow p_2 = 1 - p_1 - p_3 = 1 - 2p_1.$$

$$\Rightarrow \max \min(2p_1 + p_2, p_2 + 2p_3) = \max \min(1, 1) = 1.$$

$$\therefore p = (p_1, 1 - 2p_1, p_1) \text{ for all } 0 \le p_1 \le \frac{1}{2} \text{ is Colonel Blotto strategy.}$$

 $\therefore p = (p_1, 1 - 2p_1, p_1)$ for $0 \le p_1 \le \frac{1}{2}$, $q = (\frac{1}{2}, \frac{1}{2})$ is a mixed-strategy Nash equilibrium.

Problem 3 (7.11.32).

1 represents that the starship is survived, and 0 represents that the starship is destroyed.

 \Rightarrow Captain Kirk's aim is to maximize the value, while Mr. Spock's aim is to minimize the value.

One can see that the intersection of the first row and the 8-th column is a saddle point since $0 \le 0, 0 \le 1, 0 \ge 0$, and therefore the starship will be destroyed if both players play optimally.

Problem 4. Suppose that M is an $n \times k$ matrix, and let M_{ij} denote the value of the intersection of the i-row and the j-column of M.

(a)
$$\underline{m} = \max_{i=1,2,\dots,n} \min_{j=1,2,\dots,k} M_{ij}$$
.
Let $S = \{(a_1, a_2, \dots, a_n) \in [0, 1]^n : a_1 + a_2 + \dots + a_n\}$.
Let $p = (p_1, p_2, \dots, p_n)$ be the mixed strategy of the row player.
 $\underline{v} = \max_{(p_1, p_2, \dots, p_n) \in S} \min_{j=1,2,\dots,k} (M_{1j}p_1 + M_{2j}p_2 + \dots + M_{nj}p_n)$.
Let $e_i := (e_{i1}, e_{i2}, \dots, e_{in})$, where $e_{ij} = \mathbb{I}\{i = j\}$.

Clearly, $e_1, e_2, \ldots, e_n \in S$.

$$\Rightarrow \underline{v} = \max_{(p_1, p_2, \dots, p_n) \in S} \min_{j=1, 2, \dots, k} (M_{1j} p_1 + M_{2j} p_2 + \dots + M_{nj} p_n) \ge \max_{(p_1, p_2, \dots, p_n) \in \{e_1, e_2, \dots, e_n\}} \min_{j=1, 2, \dots, k} (M_{1j} p_1 + M_{2j} p_2 + \dots + M_{nj} p_n) = \max_{i=1, 2, \dots, n} \min_{j=1, 2, \dots, k} (M_{1j} e_{i1} + M_{2j} e_{i2} + \dots + M_{nj} e_{in}) = \max_{i=1, 2, \dots, n} \min_{j=1, 2, \dots, k} (M_{ij}) = \underline{m}.$$

- (b) Since the row player and the column player are symmetric.
 - ... from the above, similarly, $\overline{v} \leq \overline{m}$.

$$\Rightarrow \underline{m} = \overline{m} \ge \overline{v} \ge \underline{v} \ge \underline{m}.$$

$$\Rightarrow \overline{v} = m = v.$$

Problem 5.

Decision variables: p_1, p_2, \ldots, p_m .

The objective function: maximize \underline{v} .

Constrained:

$$\forall j, \ \underline{v} \le p_1 \pi_{1,j} + p_2 \pi_{2,j} + \dots + p_m \pi_{m,j}, \ (\because \underline{v} = \min_j (p_1 \pi_{1,j} + p_2 \pi_{2,j} + \dots + p_m \pi_{m,j}))$$

$$p_1, p_2, \dots, p_m \in [0, 1],$$

$$p_1 + p_2 + \dots + p_m = 1.$$