Cálculos Circuitos

Javier Estevez, Edgar Gallegos, Pablo Gualotuña 13 de julio de 2020

Determinación de la corriente y el voltaje en el resistor R5, sobre el circuito original

En la malla 1:

$$12 - 0.56I_1 - 4.7(I_1 - I_2) = 0$$

$$0.56I_1 + 4.7(I_1 - I_2) = 12$$

$$5.26I_1 - 4.7I_2 = 12$$
(1)

En la malla 2:

$$2 - 0.33(I_2 - I_3) - 4.7(I_2 - I_1) = 0$$

-4.7I₁ + 5.03I₂ - 0.33I₃ = 2 (2)

En la malla 3:

$$-0.1I_3 - I_3 - 0.33(I_3 - I_2) = 0$$

$$0.33I_2 - 1.43I_3 = 0$$
 (3)

$$\begin{cases} 5,26I_1 & -4,7I_2 & 0 & = 12 \\ -4,7I_1 & 5,03I_2 & -0,33I_3 & = 2 \\ 0 & 0,33I_2 & -1,43I_3 & = 0 \end{cases}$$

Se soluciona el sistema con determinantes:

$$\triangle = \begin{vmatrix} 5,26 & -4,7 & 0 \\ -4,7 & 5,03 & -0,33 \\ 0 & 0,33 & -1,43 \end{vmatrix} = \begin{vmatrix} 5,26 & -4,7 & 0 & 5,26 & -4,7 \\ -4,7 & 5,03 & -0,33 & -4,7 & 5,03 \\ 0 & 0,33 & -1,43 & 0 & 0,33 \end{vmatrix}$$

$$\triangle = [(5,26)(5,03)(-1,43) + (-4,7)(-0,33)(0) + (0)(-4,7)(0,33)]$$

$$-[(0)(5,03)(0) + (5,26)(-0,33)(0,33) + (-4,7)(-4,7)(-1,43)]$$

$$\triangle = -5,673$$

$$\triangle_1 = \begin{vmatrix} 12 & -4.7 & 0 \\ 2 & 5.03 & -0.33 \\ 0 & 0.33 & -1.43 \end{vmatrix} = -98.45$$

$$\Delta_2 = \begin{vmatrix} 5,26 & 12 & 0 \\ -4,7 & 2 & -0,33 \\ 0 & 0 & -1,43 \end{vmatrix} = -95,70$$

$$\triangle_3 = \begin{vmatrix} 5,26 & -4,7 & 12 \\ -4,7 & 5,03 & 2 \\ 0 & 0,33 & 0 \end{vmatrix} = -22,08$$

$$I_1 = \frac{\triangle_1}{\triangle}$$
 $I_2 = \frac{\triangle_2}{\triangle}$ $I_3 = \frac{\triangle_3}{\triangle}$

$$I_1 = 17,35 mA$$

 $I_2 = 16,87 mA$
 $I_3 = 3,89 mA$

Luego el valor de V_{R5} se lo halla:

$$V_{R5} = I_3 * 1$$

$$V_{R5} = 3,89 V$$

Y el valor de I_{R5} es:

$$I_{R5} = \frac{3,89}{1}$$

$$I_{R5} = 3.89 \, mA$$

Determinación de la resistencia de Thévenin

Para hallar el valor de la resistencia de Thévenin se apaga las fuentes de voltaje, y quitando la resistencia R5 quedándonos solo un circuito abierto resistivo, en donde la resistencia equivalente será la resistencia de Thévenin. La resistencia de 560Ω esta en paralelo con la resistencia de $4.7k\Omega$

$$R_{eq1} = \frac{(0.56)(4.7)}{0.56 + 4.7}$$
$$R_{eq1} = 0.5 k\Omega$$

Y a su vez esta R_{eq1} esta en paralelo con la resistencia de 330Ω

$$R_{eq2} = \frac{(0.5)(0.33)}{0.5 + 0.33}$$
$$R_{eq2} = 0.198 k\Omega$$

Y obtenemos la resistencia de Thévenin al sumar R_{eq2} con la resistencia de 100Ω

$$R_{TH} = 0.198 + 0.1$$
$$R_{TH} = 0.298 k\Omega$$
$$R_{TH} = 298 \Omega$$

Determinación del voltaje de Thévenin

En la malla 1:

$$12 - 0.56I_1 - 4.7(I_1 - I_2) = 0$$

$$0.56I_1 + 4.7(I_1 - I_2) = 12$$

$$5.26I_1 - 4.7I_2 = 12$$
(4)

En la malla 2:

$$2 - 0.33I_2 - 4.7(I_2 - I_1) = 0$$

$$-4.7I_1 + 5.03I_2 = 2$$

$$\begin{cases} 5.26I_1 & -4.7I_2 = 12 \\ -4.7I_1 & 5.03I_2 = 2 \end{cases}$$
(5)

Se soluciona el sistema con determinantes:

$$\triangle = \begin{vmatrix} 5,26 & -4,7 \\ -4,7 & 5,03 \end{vmatrix}$$

$$\triangle = [(5,26)(5,03)] - [(-4,7)(-4,7)]$$

$$\triangle = 4,368$$

$$\triangle_1 = \begin{vmatrix} 12 & -4,7 \\ 2 & 5,03 \end{vmatrix} = 69,76$$

$$\triangle_2 = \begin{vmatrix} 5,26 & 12 \\ -4,7 & 2 \end{vmatrix} = 66,92$$

$$I_1 = \frac{\triangle_1}{\triangle}$$

$$I_2 = \frac{\triangle_2}{\triangle}$$

$$I_1 = 15,97 mA$$

 $I_2 = 15,32 mA$

Se puede observar que el voltaje de la resistencia de 330Ω esta en paralelo con el voltaje en donde esta nuestro circuito abierto, que seria el voltaje de Thévenin.

$$V_{TH} = I_2 * 0.33$$

 $V_{TH} = 5.055 V$

Nuestro circuito equivalente de Thévenin seria:

Hallamos el valor de la corriente en el circuito de Thévenin, que a su vez el valor de corriente de la resistencia de $1k\Omega$

$$I = \frac{5,055}{0,298 + 1}$$
$$I = 3,89 \text{ } mA$$

Y para el valor del voltaje de la resistencia de $1k\Omega$ es igual:

$$V = I * 1$$
$$V = 3,89 V$$