Multiple Regression

(adapted in part from Dr. Andy Field)

Goals

- When To Use Multiple Regression.
- The multiple regression equation and what the betas represent.
- Different Methods of Regression Model Building
- How to Interpret multiple regression.
- Assumptions of Multiple Regression and how to test them.

What is Multiple Regression?

- Linear Regression is a model to predict the value of one variable from another.
- Multiple Regression is a natural extension of this model:
 - We use it to predict values of an outcome from several predictors.
 - It is a hypothetical model of the relationship between several variables.

Regression: An Example

- A record company boss was interested in predicting record sales from advertising.
- Data
 - 200 different album releases
- Outcome variable:
 - Sales (CDs and Downloads) in the week after release
- Predictor variables
 - The amount (in £s) spent promoting the record before release
 - Number of plays on the radio
 - Attractiveness of band

The Model with One Predictor

Multiple Regression as an Equation

 With multiple regression the relationship is described using a variation of the equation of a straight line.

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + \varepsilon_i$$

b_0

- b_0 is the intercept.
- The intercept is the value of the Y variable when all Xs = 0.
- This is the point at which the regression plane crosses the Yaxis (vertical).

Beta Values

- b_1 is the regression coefficient for variable 1.
- b_2 is the regression coefficient for variable 2.
- b_n is the regression coefficient for n^{th} variable.

The Model with Two Predictors

Methods of Regression

Stepwise:

 Predictors are selected using their semipartial correlation with the outcome.

Forced Entry:

All predictors are entered simultaneously.

Hierarchical:

 Experimenter decides the order in which variables are entered into the model.

Stepwise Regression

- Variables are entered into the model based on mathematical criteria.
- Computer selects variables in steps.

Problems with Stepwise Methods

- Rely on a mathematical algorithm.
- Should be used only for exploration

Forced Entry Regression

- All variables are entered into the model simultaneously.
- The results obtained depend on the variables entered into the model.
 - It is important, therefore, to have good theoretical reasons for including a particular variable.

Hierarchical Regression

- Known predictors (based on past research) are entered into the regression model first.
- New predictors are then entered in a separate step/block.
- Experimenter makes the decisions.

Hierarchical Regression

Based on theory testing:

-You can see the unique predictive influence of a new variable on the outcome because known predictors are held constant in the model.

Bad Point:

— Relies on the experimenter knowing what they're doing!

Output: Model Summary

Model Summary

				Std. Error	Change Statistics					
Mode	I R	R Square	Adjusted R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin-Watson
1	.578ª	.335	.331	65.9914	.335	99.587	1	198	.000	
2	.815	.665	.660	47.0873	.330	98.447	2	196	.000	1.950

- a. Predictors: (Constant), Advertising Budget (thousands of pounds)
- b. Predictors: (Constant), Advertising Budget (thousands of pounds), Attractiveness of Band, No. of plays on Radio 1 per week
- c. Dependent Variable: Record Sales (thousands)

R and R^2

- R
 - The correlation between the observed values of the outcome, and the values predicted by the model.
- \bullet R^2
 - Yhe proportion of variance accounted for by the model.
- Adj. *R*²
 - An estimate of R^2 in the population (*shrinkage*).

Output: ANOVA

ANOVA^c

Model		Sum of Squares	df	Mean Square	F	Sig.
1		433687.833 362264.167	1 198	433687.833 4354.870	99.587	.000 ^a
	Total	1295952.0	199			
2	Regression	861377.418	3	287125.806	129.498	.000 ^b
	Residual	134574.582	196	2217.217		
	Total	1295952.0	199			

- a. Predictors: (Constant), Advertising Budget (thousands of pounds)
- b. Predictors: (Constant), Advertising Budget (thousands of pounds), Attractiveness of Band, No. of Plays on Radio 1 per Week
- c. Dependent Variable: Record Sales (thousands)

Analysis of Variance: ANOVA

The F-test

- -looks at whether the variance explained by the model (SS_M) is significantly greater than the error within the model (SS_R) .
- —It tells us whether using the regression model is significantly better at predicting values of the outcome than using the mean.

Output: betas

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence	e Interval for B
Model		В	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	134.140	7.537		17.799	.000	119.278	149.002
	Advertsing Budget (thousands of pounds)	.096	.010	.578	9.979	.000	.077	.115
2	(Constant)	-26.613	17.350		-1.534	.127	-60.830	7.604
	Advertsing Budget (thousands of pounds)	.085	.007	.511	12.261	.000	.071	.099
	No. of plays on Radio 1 per week	3.367	.278	.512	12.123	.000	2.820	3.915
	Attractiveness of Band	11.086	2.438	.192	4.548	.000	6.279	15.894

a. Dependent Variable: Record Sales (thousands)

How to Interpret Beta Values

Beta values:

 the change in the outcome associated with a unit change in the predictor.

Standardised beta values:

tell us the same but expressed as standard deviations.

Beta Values

- $b_1 = 0.085$.
 - So, as advertising increases by £1,000, record sales increase by 0.085 units (thousands of records).
- b_2 = 3.367.
 - So, each time (per week) a song is played on radio 1 its sales increase by 3.367 units (thousands of records).

Beta Values

- $b_3 = 11.086$.
 - So, as attractiveness of band increases by 1 point on the scale, record sales increase by 11.086 units (thousands of records).

Predicting Outcomes

$$y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

2	(Constant)	-26.613		
	Advertsing Budget (thousands of pounds)	.085		
	No. of plays on Radio 1 per week	3.367		
	Attractiveness of Band	11.086		
a. Dependent Variable: Record Sales (thousands)				

- What is the predicted outcome if:
 - £11 million advertising budget
 - 15 plays on Radio One per week
 - Band attractiveness is a "2"

Standardised Beta Values

- $\beta_1 = 0.511$
- $\beta_2 = 0.512$
- $\beta_3 = 0.192$

Which X is the best predictor of Y?

Reporting the Model

TABLE 7.2 How to report multiple regression

	В	SE B	β
Step 1			
Constant	134.14	7.54	
Advertising Budget	0.10	0.01	.58*
Step 2			
Constant	-26.61	17.35	
Advertising Budget	0.09	0.01	.51*
Plays on BBC Radio 1	3.37	0.28	.51*
Attractiveness	11.09	2.44	.19*

Predictors as "Controls"

 Very often, but not always, you are looking at the relationship between a key independent variable and a dependent variable.

Predictors as "Controls"

- You may need to include other independent variables to 'control for' other known correlates with the outcome
- Thus, some independent variables are called 'controls'

Generalization

- When we run regression, we hope to be able to generalize the sample model to the entire population.
- To do this, several assumptions must be met.
- Violating these assumptions stops us generalizing conclusions to our target population.

Straightforward Assumptions

- Variable Type / Measurement:
 - Outcome must be continuous
 - Predictors can be continuous or dichotomous.
- Non-Zero Variance:
 - Predictors must not have zero variance.
- Linearity:
 - The relationship we model is, in reality, linear.
- Independence:
 - All values of the outcome should come from a different person.

Sample Size

 N should be greater than: 10 * k (k= the number of independent variables

The More Tricky Assumptions

Models should be parsimonious:

- or, as 'lean' as possible.
- Don't add variables that have no theoretical basis.

No Multicollinearity:

Predictors must not be highly correlated (Pearson's R of 0.7 or higher).

No circularity:

 Or, no variables that predict Y because they are in some way a representation of Y (Pearson's R of 0.8 or higher).

The gravest Regression error

- Omitted variable bias
 - Theory is most important here
- Remedies
 - More data collection
 - Careful survey design
 - A proxy for the omitted variable

What will be on the final exam?

- Bivariate Hypothesis Tests
 - Two-Sample t-tests
 - ANOVA
 - Chi-Square
 - Simple Regression
- Multivariate Hypothesis Test
 - Multiple Regression
- Measures of Association/Correlation
- Key concepts of statistics

Format of the final exam

- Minimal calculations/formulas
- Interpretation of R output
- Cases: research 'situations' presented, and the answer will be an essay on the approach to take, which variables to use, which hypothesis test, and what the results would tell you
- Definition of key concepts of statistics