# Clinical Data Wrangling

**An Introduction** 

# Acknowledgements

- Slides
  - Adapted from the Clinical Data Wrangling Workshop
  - Nicole Weiskopf, PhD
  - Ted Laderas, PhD
- Data
  - Adapted from the synthetic patient cohort used in BMI 569: Data Analytics

# Introduction Aaron S. Coyner, PhD

- Senior Computational Biologist
  - Casey Eye Institute
  - Data Scientist
  - Machine Learning Engineer
- Computer Vision + Clinical Data
- Bioinformatics + Clinical Informatics



Understand basic issues with using clinical data and how it is collected

- Understand basic issues with using clinical data and how it is collected
- Learn and apply basic principles of Exploratory Data Analysis to assess whether data is fit for reuse

- Understand basic issues with using clinical data and how it is collected
- Learn and apply basic principles of Exploratory Data Analysis to assess whether data is fit for reuse
- Identify when missing values in data may affect using clinical data for reuse

- Understand basic issues with using clinical data and how it is collected
- Learn and apply basic principles of Exploratory Data Analysis to assess whether data is fit for reuse
- Identify when missing values in data may affect using clinical data for reuse
- Identify possible predictors of an outcome using exploratory data analysis

Reduce unnecessary hospital readmissions from poor in/outpatient care

- Reduce unnecessary hospital readmissions from poor in/outpatient care
  - Improve overall outcomes of our patient population

- Reduce unnecessary hospital readmissions from poor in/outpatient care
  - Improve overall outcomes of our patient population
  - Reduce overall costs

- Reduce unnecessary hospital readmissions from poor in/outpatient care
  - Improve overall outcomes of our patient population
  - Reduce overall costs
- Metric: whether a patient has be readmitted to the hospital within 30 days

Can we predict which patients in our cohort had 30 day hospital readmissions?

- Can we predict which patients in our cohort had 30 day hospital readmissions?
  - Is our data fit for predicting this?

- Can we predict which patients in our cohort had 30 day hospital readmissions?
  - Is our data fit for predicting this?
  - Can we understand which predictors are helpful?

- Can we predict which patients in our cohort had 30 day hospital readmissions?
  - Is our data fit for predicting this?
  - Can we understand which predictors are helpful?
    - Comorbidities (e.g., diabetes complications, myocardial complications, etc.)

- Can we predict which patients in our cohort had 30 day hospital readmissions?
  - Is our data fit for predicting this?
  - Can we understand which predictors are helpful?
    - Comorbidities (e.g., diabetes complications, myocardial complications, etc.)
    - Length of Stay in Hospital

- Can we predict which patients in our cohort had 30 day hospital readmissions?
  - Is our data fit for predicting this?
  - Can we understand which predictors are helpful?
    - Comorbidities (e.g., diabetes complications, myocardial complications, etc.)
    - Length of Stay in Hospital
    - Age

# Construct a Hypothesis

- How would one of these potential predictors impact whether a patient is likely to be readmitted to the hospital within 30 days?
  - History of diabetes
  - History of myocardial infarctions
  - Age
  - Length of stay

#### **Processing**

A systematic, but flexible, approach to "wrangling" your clinical data, combined with basic competencies in exploratory data analysis, will get you where you want to go.

ETL: Extract, Transform, Load



# Clinical Data What is it?

#### What is it?

- Clinical documentation
  - Unstructured (e.g., progress notes, medical history, etc.)
  - Structured (e.g., labs, medications, orders, diagnoses, etc.)

#### What is it?

- Clinical documentation
  - Unstructured (e.g., progress notes, medical history, etc.)
  - Structured (e.g., labs, medications, orders, diagnoses, etc.)
- Administrative data
  - Billing
  - CMS, Insurance

#### What is it?

- Clinical documentation
  - Unstructured (e.g., progress notes, medical history, etc.)
  - Structured (e.g., labs, medications, orders, diagnoses, etc.)
- Administrative data
  - Billing
  - CMS, Insurance
- Primary purpose is not research

#### What are its benefits?

Decrease costs (time and money)

- Decrease costs (time and money)
- Enable recruitment and retention
  - Rare diseases
  - Underrepresented populations

- Decrease costs (time and money)
- Enable recruitment and retention
  - Rare diseases
  - Underrepresented populations
- Volume, variety, and velocity of data
  - https://www.gartner.com/it-glossary/big-data

- Decrease costs (time and money)
- Enable recruitment and retention
  - Rare diseases
  - Underrepresented populations
- Volume, variety, and velocity of data
  - https://www.gartner.com/it-glossary/big-data
- Increased representativeness (i.e., generalizability and external validity)

### Research

#### Good Research Should Provide Broadly-applicable Truths



# Clinical Data Electronic Health Record Data Quality

- Correctness: 44–100%
- Completeness: 1.1–100%
- Examples
  - Completeness of smoking status: 10–38%
  - Completeness of blood pressure: 0.1–51%

#### **Electronic Health Record Data Quality**

- Quality of data is defined with respect to its intended use case
  - Clinical data are collected for patient care and billing purposes
- The processes involved in taking a clinical truth about a patient all the way to a dataset being used for research is fraught with pitfalls

Not all clinical concepts are observed. Not all observations are recorded.



# Missingness A Brief Introduction

### **A Brief Introduction**

- MCAR Missing Completely at Random
  - Pattern of missingness is not related to any other data

#### **A Brief Introduction**

- MCAR Missing Completely at Random
  - Pattern of missingness is not related to any other data
- MAR Missing at Random
  - Pattern of missingness is related to data that are present
  - In essence, it is not "random"

#### **A Brief Introduction**

- MCAR Missing Completely at Random
  - Pattern of missingness is not related to any other data
- MAR Missing at Random
  - Pattern of missingness is related to data that are present
  - In essence, it is not "random"
- MNAR Missing Not at Random
  - Pattern of missingness is related to the values of the data that are missing

### Simplified Example: Height Measurements

|         | Population Mean | Sample Mean (No Missingness) | Sample Mean<br>(MCAR) | Sample Mean<br>(MAR) | Sample Mean<br>(MNAR) |
|---------|-----------------|------------------------------|-----------------------|----------------------|-----------------------|
| Men     | 70.4            | 70.2                         | 70.3                  | 70.5                 | 71.3                  |
| Women   | 64.0            | 64.2                         | 64.1                  | 64.2                 | 65.4                  |
| Overall | 67.0            | 67.2                         | 67.1                  | 66.3                 | 68.4                  |

### Simplified Example: Height Measurements

### Sample of 200 men and 200 women

|         | Population Mean | Sample Mean<br>(No Missingness) | Sample Mean<br>(MCAR) | Sample Mean<br>(MAR) | Sample Mean<br>(MNAR) |
|---------|-----------------|---------------------------------|-----------------------|----------------------|-----------------------|
| Men     | 70.4            | 70.2                            | 70.3                  | 70.5                 | 71.3                  |
| Women   | 64.0            | 64.2                            | 64.1                  | 64.2                 | 65.4                  |
| Overall | 67.0            | 67.2                            | 67.1                  | 66.3                 | 68.4                  |

### Simplified Example: Height Measurements

# 25% of men and women did not want to share their height

|         | Population Mean | Sample Mean (No Missingness) | Sample Mean<br>(MCAR) | Sample Mean<br>(MAR) | Sample Mean<br>(MNAR) |
|---------|-----------------|------------------------------|-----------------------|----------------------|-----------------------|
| Men     | 70.4            | 70.2                         | 70.3                  | 70.5                 | 71.3                  |
| Women   | 64.0            | 64.2                         | 64.1                  | 64.2                 | 65.4                  |
| Overall | 67.0            | 67.2                         | 67.1                  | 66.3                 | 68.4                  |

### Simplified Example: Height Measurements

50% of men did not want to share their height

|         | Population Mean | Sample Mean (No Missingness) | Sample Mean<br>(MCAR) | Sample Mean<br>(MAR) | Sample Mean<br>(MNAR) |
|---------|-----------------|------------------------------|-----------------------|----------------------|-----------------------|
| Men     | 70.4            | 70.2                         | 70.3                  | 70.5                 | 71.3                  |
| Women   | 64.0            | 64.2                         | 64.1                  | 64.2                 | 65.4                  |
| Overall | 67.0            | 67.2                         | 67.1                  | 66.3                 | 68.4                  |

### Simplified Example: Height Measurements

# Half of the shortest 25% of men and women did not want to share their height

|         | Population Mean | Sample Mean (No Missingness) | Sample Mean<br>(MCAR) | Sample Mean<br>(MAR) | Sample Mean<br>(MNAR) |
|---------|-----------------|------------------------------|-----------------------|----------------------|-----------------------|
| Men     | 70.4            | 70.2                         | 70.3                  | 70.5                 | 71.3                  |
| Women   | 64.0            | 64.2                         | 64.1                  | 64.2                 | 65.4                  |
| Overall | 67.0            | 67.2                         | 67.1                  | 66.3                 | 68.4                  |

- Understand the provenance of your data
  - System complexities and potential failure points

- Understand the provenance of your data
  - System complexities and potential failure points
- Fitness for Use
  - Do not think of data quality as an issue of right versus wrong values

- Understand the provenance of your data
  - System complexities and potential failure points
- Fitness for Use
  - Do not think of data quality as an issue of right versus wrong values
- Systematic data quality problems can drastically alter results
  - Data that are "bad" at random are not always an issue in research

- Understand the provenance of your data
  - System complexities and potential failure points
- Fitness for Use
  - Do not think of data quality as an issue of right versus wrong values
- Systematic data quality problems can drastically alter results
  - Data that are "bad" at random are not always an issue in research
- When you uncover potential data quality problems, be thoughtful in your attempts to compensate