Theorem 2 proof

Anonymous Author(s)

Affiliation Address email

Abstract

1

- 2 **H1.** For any t>0, the estimated parameter w_t stays within a ℓ_{∞} -ball. There exists a constant
- 3 W > 0 such that $||w_t||_{\infty} \leq W$ almost surely.
- 4 **H2.** The function f is L-smooth (has L-Lipschitz gradients) w.r.t. the parameter w. There exists
- 5 some constant L > 0 such that for $(w, \vartheta) \in \Theta^2$, $f(w) f(\vartheta) \nabla f(\vartheta)^{\top} (w \vartheta) \leq \frac{L}{2} \|w \vartheta\|^2$.
- We assume that the optimistic guess m_t at iteration t and the true gradient g_t are correlated:
- 7 **H3.** There exists a constant $a \in \mathbb{R}$ such that for any t > 0, $0 < \langle m_t | g_t \rangle \le a \|g_t\|^2$, where $\langle | \rangle$ is
- 8 the inner product notation.
- 9 We make a classical assumption in nonconvex optimization [?] on the magnitude of the gradient:
- 10 **H4.** There exists a constant M > 0 such that for any w and ξ , it holds $\|\nabla f(w, \xi)\| < M$.
- 11 **Lemma 1.** Assume H4, then the quantities defined in Algorithm ?? satisfy for any $w \in \Theta$ and t > 0,
- 12 $\|\nabla f(w_t)\| < \mathsf{M}, \quad \|\theta_t\| < \mathsf{M} \ and \ \|\hat{v}_t\| < \mathsf{M}^2.$
- 13 **Lemma 2.** Assume H4, a strictly positive and a sequence of constant stepsizes $\{\eta_t\}_{t>0}$, $(\beta_1, \beta_2) \in$
- [0,1], then the following holds:

$$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E}\left[\left\| \hat{v}_t^{-1/2} \theta_t \right\|_2^2 \right] \le \frac{\eta^2 dT_{\mathsf{M}} (1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)} \ . \tag{1}$$

Lemma 3. Assume a strictly positive and non increasing sequence of stepsizes $\{\eta_t\}_{t>0}$, $\beta_1 < \beta_2 \in [0,1)$, then the following holds:

$$\overline{w}_{t+1} - \overline{w}_t \le \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t ,$$

 $\text{17} \quad \textit{where $\tilde{\theta}_t = \theta_t + \beta_1 \theta_{t-1}$ and $\tilde{g}_t = g_t - \beta_1 m_t + \beta_1 g_{t-1} + m_{t+1}$.}$

18 1 Proof of Theorem ??

Proof Using H2 and the iterate \overline{w}_t we have:

$$f(\overline{w}_{t+1}) \leq f(\overline{w}_t) + \nabla f(\overline{w}_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t) + \frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \|^2$$

$$\leq f(\overline{w}_t) + \underbrace{\nabla f(w_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{A}$$

$$+ \underbrace{(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{B} + \frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \| .$$
(2)

Term A. Using Lemma 3, we have that:

$$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \leq \nabla f(w_t)^{\top} \left[\frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t \right]$$

$$\leq \frac{\beta_1}{1 - \beta_1} \|\nabla f(w_t)\| \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \|\|\tilde{\theta}_{t-1}\| - \nabla f(w_t)^{\top} \eta_t \hat{v}_t^{-1/2} \tilde{g}_t ,$$

where the inequality is due to trivial inequality for positive diagonal matrix. Using Lemma 1 and assumption H3 we obtain:

$$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1+\beta_1)}{1-\beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}\eta_t\hat{v}_t^{-1/2}\tilde{g}_t ,$$
(3)

where we have used the fact that $\eta_t \hat{v}_t^{-1/2}$ is a diagonal matrix such that $\eta_{t-1} \hat{v}_{t-1}^{-1/2} \succcurlyeq \eta_t \hat{v}_t^{-1/2} \succcurlyeq 0$ (decreasing stepsize and max operator). Also note that:

$$-\nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} = -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \bar{g}_{t} - \nabla f(w_{t})^{\top} \left[\eta_{t} \hat{v}_{t}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] \bar{g}_{t}$$

$$- \nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1})$$

$$\leq -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \bar{g}_{t} + (1 - a_{t} \beta_{1}) \mathsf{M}^{2} [\| \eta_{t-1} \hat{v}_{t-1}^{-1/2} \| - \| \eta_{t} \hat{v}_{t}^{-1/2} \|]$$

$$- \nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1}) ,$$

$$(4)$$

where we have used Lemma 1 on $\|g_t\|$ and where that $\tilde{g}_t = \bar{g}_t + \beta_1 g_{t-1} + m_{t+1} = g_t - \beta_1 m_t + g_t - g_t$ $\beta_1 g_{t-1} + m_{t+1}$. Plugging (4) into (3) yields:

$$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t)$$

$$\leq -\nabla f(w_t)^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \overline{g}_t + \frac{1}{1 - \beta_1} (a_t \beta_1^2 - 2a_t \beta_1 + \beta_1) \mathsf{M}^2[\|\eta_{t-1} \hat{v}_{t-1}^{-1/2}\| - \|\eta_t \hat{v}_t^{-1/2}\|] \quad (5)$$

$$-\nabla f(w_t)^{\top} \eta_t \hat{v}_t^{-1/2} (\beta_1 g_{t-1} + m_{t+1}) .$$

Term B. By Cauchy-Schwarz (CS) inequality we have:

$$\left(\nabla f(\overline{w}_t) - \nabla f(w_t)\right)^{\top} \left(\overline{w}_{t+1} - \overline{w}_t\right) \le \|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \|\overline{w}_{t+1} - \overline{w}_t\|. \tag{6}$$

Using smoothness assumption H2:

$$\|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \le L \|\overline{w}_t - w_t\|$$

$$\le L \frac{\beta_1}{1 - \beta_1} \|w_t - \tilde{w}_{t-1}\|.$$

$$(7)$$

By Lemma 3 we also have:

$$\overline{w}_{t+1} - \overline{w}_{t} = \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}
= \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \left[I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}
= \frac{\beta_{1}}{1 - \beta_{1}} \left[I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] (\tilde{w}_{t-1} - w_{t}) - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} ,$$
(8)

where the last equality is due to $\tilde{\theta}_{t-1}\eta_{t-1}\hat{v}_{t-1}^{-1/2}=\tilde{w}_{t-1}-w_t$ by construction of $\tilde{\theta}_t$. Taking the norms on both sides, observing $\|I-(\eta_t\hat{v}_t^{-1/2})(\eta_{t-1}\hat{v}_{t-1}^{-1/2})^{-1}\|\leq 1$ due to the decreasing stepsize and the construction of \hat{v}_t and using CS inequality yield:

$$\|\overline{w}_{t+1} - \overline{w}_t\| \le \frac{\beta_1}{1 - \beta_1} \|\tilde{w}_{t-1} - w_t\| + \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|. \tag{9}$$

We recall Young's inequality with a constant $\delta \in (0,1)$ as follows:

$$\langle X | Y \rangle \le \frac{1}{\delta} ||X||^2 + \delta ||Y||^2 .$$

Plugging (7) and (9) into (6) returns:

$$(\nabla f(\overline{w}_{t}) - \nabla f(w_{t}))^{\top} (\overline{w}_{t+1} - \overline{w}_{t}) \leq L \frac{\beta_{1}}{1 - \beta_{1}} \|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} \| \|w_{t} - \tilde{w}_{t-1} \| + L \left(\frac{\beta_{1}}{1 - \beta_{1}}\right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2}.$$

Applying Young's inequality with $\delta \to rac{eta_1}{1-eta_1}$ on the product $\|\eta_t\hat{v}_t^{-1/2}\tilde{g}_t\|\|w_t-\tilde{w}_{t-1}\|$ yields:

$$(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t) \le L \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|^2 + 2L \left(\frac{\beta_1}{1 - \beta_1}\right)^2 \|\tilde{w}_{t-1} - w_t\|^2. \quad (10)$$

The last term $\frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_t\|$ can be upper bounded using (9):

$$\frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_{t}\|^{2} \leq \frac{L}{2} \left[\frac{\beta_{1}}{1 - \beta_{1}} \|\tilde{w}_{t-1} - w_{t}\| + \|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\| \right]
\leq L \|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\|^{2} + 2L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2}.$$
(11)

Plugging (5), (10) and (11) into (2) and taking the expectations on both sides give:

$$\mathbb{E}\left[f(\overline{w}_{t+1}) + \frac{1}{1-\beta_{1}}\widetilde{\mathsf{M}}^{2} \|\eta_{t}\hat{v}_{t}^{-1/2}\| - \left(f(\overline{w}_{t}) + \frac{1}{1-\beta_{1}}\widetilde{\mathsf{M}}^{2} \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\|\right)\right] \\
\leq \mathbb{E}\left[-\nabla f(w_{t})^{\top} \eta_{t-1}\hat{v}_{t-1}^{-1/2}\bar{g}_{t} - \nabla f(w_{t})^{\top} \eta_{t}\hat{v}_{t}^{-1/2}(\beta_{1}g_{t-1} + m_{t+1})\right] \\
+ \mathbb{E}\left[2L\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2} + 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\|\tilde{w}_{t-1} - w_{t}\|^{2}\right],$$

where $\tilde{\mathsf{M}}_t^2 = (a_t \beta_1^2 + \beta_1) \mathsf{M}^2$. Note that the expectation of \tilde{g}_t conditioned on the filtration \mathcal{F}_t reads as follows

$$\mathbb{E}\left[\nabla f(w_t)^{\top} \bar{g}_t\right] = \mathbb{E}\left[\nabla f(w_t)^{\top} (g_t - \beta_1 m_t)\right] = (1 - a_t \beta_1) \|\nabla f(w_t)\|^2. \tag{12}$$

39 Summing from t=1 to t=T leads to

$$\frac{1}{\mathsf{M}} \sum_{t=1}^{T_{\mathsf{M}}} \left((1 - a_{t}\beta_{1})\eta_{t-1} + (\beta_{1} + a_{t})\eta_{t} \right) \|\nabla f(w_{t})\|^{2} \leq \\
\mathbb{E} \left[f(\overline{w}_{1}) + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{0} \hat{v}_{0}^{-1/2}\| - \left(f(\overline{w}_{T_{\mathsf{M}}+1}) + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{T_{\mathsf{M}}} \hat{v}_{T_{\mathsf{M}}}^{-1/2}\| \right) \right] \\
+ 2L \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\|^{2} \right] + 4L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\tilde{w}_{t-1} - w_{t}\|^{2} \right] \\
\leq \mathbb{E} \left[\Delta f + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{0} \hat{v}_{0}^{-1/2}\| \right] + 2L \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\|^{2} \right] \\
+ 4L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\tilde{w}_{t-1} - w_{t}\|^{2} \right] , \tag{13}$$

where we denote $\Delta f := f(\overline{w}_1) - f(\overline{w}_{T_{\mathsf{M}}+1})$. We note that by definition of \hat{v}_t , and a constant learning rate η_t , we have

$$\begin{split} \|\tilde{w}_{t-1} - w_t\|^2 &= \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}(\theta_{t-1} + h_t)\|^2 \\ &= \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}(\theta_{t-1} + \beta_1\theta_{t-2} + (1 - \beta_1)m_t)\|^2 \\ &\leq \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\theta_{t-1}\|^2 + \|\eta_{t-2}\hat{v}_{t-2}^{-1/2}\beta_1\theta_{t-2}\|^2 + (1 - \beta_1)^2\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}m_t\|^2 \,. \end{split}$$

Using Lemma 2 we have

$$\begin{split} & \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}\left[\| \tilde{w}_{t-1} - w_t \|^2 \right] \\ & \leq (1 + \beta_1^2) \frac{\eta^2 dT_{\mathsf{M}} (1 - \beta_1)}{(1 - \beta_2) (1 - \gamma)} + (1 - \beta_1)^2 \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\| \eta_{t-1} \hat{v}_{t-1}^{-1/2} m_t \|] \; . \end{split}$$

And thus, setting the learning rate to a constant value η , noting that $\frac{1}{(1-a_t\beta_1)+(\beta_1+a_t)}$ is a decreasing function for all t>0 and is upper bounded by 1, injecting in (13) yields:

$$\begin{split} & \mathbb{E}[\|\nabla f(w_T)\|^2] = \frac{1}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} \sum_{t=1}^{T_{\mathsf{M}}} \eta_t \|\nabla f(w_t)\|^2 \\ & \leq \sum_{t=1}^{T_{\mathsf{M}}} \frac{\mathsf{M}}{(1-a_t\beta_1) + (\beta_1 + a_t)} \frac{1}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} \mathbb{E}\left[\Delta f + \frac{1}{1-\beta_1} \tilde{\mathsf{M}}_t^2 \|\eta_0 \hat{v}_0^{-1/2}\|\right] \\ & + \frac{4L \left(\frac{\beta_1}{1-\beta_1}\right)^2 \mathsf{M}}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} (1+\beta_1^2) \frac{\eta^2 dT_{\mathsf{M}} (1-\beta_1)}{(1-\beta_2)(1-\gamma)} \sum_{t=1}^{T_{\mathsf{M}}} \frac{1}{(1-a_t\beta_1) + (\beta_1 + a_t)} \\ & + \frac{\mathsf{M}}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} (1-\beta_1)^2 \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\eta_{t-1} \hat{v}_{t-1}^{-1/2} m_t\|] \sum_{t=1}^{T_{\mathsf{M}}} \frac{1}{(1-a_t\beta_1) + (\beta_1 + a_t)} \\ & + \frac{2L \mathsf{M}}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|^2] \sum_{t=1}^{T_{\mathsf{M}}} \frac{1}{(1-a_t\beta_1) + (\beta_1 + a_t)} \,, \end{split}$$

where T is a random termination number distributed according (??). Setting the stepsize to $\eta = \frac{1}{\sqrt{dT_{\rm M}}}$ yields:

$$\mathbb{E}[\|\nabla f(w_T)\|^2] \leq \sum_{t=1}^{T_{\mathsf{M}}} C_{1,t} \sqrt{\frac{d}{T_{\mathsf{M}}}} + \sum_{t=1}^{T_{\mathsf{M}}} C_{2,t} \frac{1}{T_{\mathsf{M}}} + \frac{\eta}{T_{\mathsf{M}}} \sum_{t=1}^{T_{\mathsf{M}}} D_{1,t} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} m_t\|] + \frac{\eta}{T_{\mathsf{M}}} \sum_{t=1}^{T_{\mathsf{M}}} D_{2,t} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} \tilde{g}_t\|],$$

47 where

$$C_{1,t} = \frac{\mathsf{M}}{(1 - a_t \beta_1) + (\beta_1 + a_t)} \Delta f + \frac{4L \left(\frac{\beta_1}{1 - \beta_1}\right)^2 \mathsf{M}}{(1 - a_t \beta_1) + (\beta_1 + a_t)} \frac{(1 + \beta_1^2)(1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)},$$

$$C_{2,t} = \frac{\mathsf{M}}{(1 - \beta_1) \left((1 - a_t \beta_1) + (\beta_1 + a_t)\right)} (a_t \beta_1^2 + \beta_1) \mathsf{M}^2 \mathbb{E}[\|\hat{v}_0^{-1/2}\|].$$

Simple case as in [?]: if $\beta_1 = 0$ then $\tilde{g}_t = g_t + m_{t+1}$ and $g_t = \theta_t$. Also using Lemma 2 we have

$$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E}\left[\left\|\hat{v}_t^{-1/2} g_t\right\|_2^2\right] \leq \frac{\eta^2 dT_{\mathsf{M}}}{(1-\beta_2)} \; ;$$

which leads to the final bound:

$$\mathbb{E}[\|\nabla f(w_T)\|^2] \leq \sqrt{\frac{d}{T_{\mathsf{M}}}} \sum_{t=1}^{T_{\mathsf{M}}} \tilde{C}_{1,t} + \frac{1}{T_{\mathsf{M}}} \sum_{t=1}^{T_{\mathsf{M}}} \tilde{C}_{2,t} ,$$

where 51

$$\tilde{C}_{1,t} = C_{1,t} + \frac{\mathsf{M}}{(1 - a_t \beta_1) + (\beta_1 + a_t)} \left[\frac{a(1 - \beta_1)^2}{1 - \beta_2} + 2L \frac{1}{1 - \beta_2} \right] ,$$

$$\tilde{C}_{2,t} = C_{2,t} = \frac{\mathsf{M}}{(1 - \beta_1) \left((1 - a_t \beta_1) + (\beta_1 + a_t) \right)} \tilde{\mathsf{M}}^2 \mathbb{E}[\|\hat{v}_0^{-1/2}\|] .$$

52