第3章 预训练语言模型发展史

从词向量到千亿参数大模型,AI语言理解的进化之路

3.1 发展时间线

3.2 词向量时代 (2013-2017)

3.2.1 Word2Vec (2013)

核心思想: "You shall know a word by the company it keeps" (根据上下文理解词义)

两种架构:

简化实现:

Skip-gram前向传播

0.00

中心词的embedding

hidden = self.W1[center_word_idx] # (embedding_dim,)

预测上下文词的得分

scores = np.dot(hidden, self.W2) # (vocab size,)

Softmax

probs = np.exp(scores) / np.sum(np.exp(scores))

return hidden, probs

创新点:

- ✓ 从one-hot到稠密向量
- ✓ 捕捉语义相似性
- ☑ 训练高效 (负采样优化)

局限性:

- □ 一词一向量,无法处理多义词
- □ 没有考虑词序
- □ 无法处理OOV (Out of Vocabulary)

3.2.2 GloVe (2014)

Global Vectors for Word Representation

结合全局统计信息 (共现矩阵) 和局部上下文。

目标函数:

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w}_j + b_i + ilde{b}_j - \log X_{ij})^2$$

其中:

• X_{ij} : 词i和词j的共现次数

f(X_{ij}): 加权函数

3.2.3 词向量的经典应用

类比推理:

```
king - man + woman ≈ queen
Paris - France + Germany ≈ Berlin
```

```
def word_analogy(word_vectors, a, b, c):
    """

解决类比问题: a - b + c ≈ ?
    """

# 计算目标向量
    target = word_vectors[a] - word_vectors[b] + word_vectors[c]

# 找最相似的词
    similarities = {}
    for word, vec in word_vectors.items():
        if word not in [a, b, c]:
            sim = cosine_similarity(target, vec)
            similarities[word] = sim

return max(similarities, key=similarities.get)

def cosine_similarity(v1, v2):
    return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
```

3.3 预训练时代的开端 (2018)

3.3.1 ELMo (2018.2)

Embeddings from Language Models

关键创新: 上下文相关的词向量 (Contextualized Word Embeddings)

特点:

- ☑ 动态词向量 (同一个词在不同语境有不同表示)
- ✓ 双向建模
- □ 基于LSTM,不能并行训练
- □ 需要针对下游任务微调权重

3.3.2 GPT-1 (2018.6)

Improving Language Understanding by Generative Pre-Training

架构: Transformer Decoder-only

两阶段范式:

模型规格:

参数量: 117M层数: 12层隐藏维度: 768注意力头数: 12

创新点:

- ☑ 证明了Transformer的生成能力
- ✓ "预训练+微调"范式
- ☑ 单向语言模型

3.3.3 BERT (2018.10)

Bidirectional Encoder Representations from Transformers

架构: Transformer Encoder-only

两大预训练任务:

1. Masked Language Model (MLM):

```
输入: "我 [MASK] 吃 [MASK]"
目标: 预测 "爱" 和 "饭"

def create_masked_lm_data(tokens, mask_prob=0.15):
    """
    创建MLM训练数据
    """
    masked_tokens = tokens.copy()
    labels = [-100] * len(tokens) # -100表示不计算损失
    for i, token in enumerate(tokens):
        if random.random() < mask_prob:
```

```
prob = random.random()
if prob < 0.8:
    masked_tokens[i] = "[MASK]" # 80%替换为[MASK]
elif prob < 0.9:
    masked_tokens[i] = random_token() # 10%替换为随机token
# 10%保持不变
labels[i] = token # 记录原始token用于计算损失
return masked_tokens, labels</pre>
```

recurr maskea_cokens, rabers

2. Next Sentence Prediction (NSP):

输入: [CLS] 句子A [SEP] 句子B [SEP]

目标: 判断B是否是A的下一句

BERT的影响:

- ✓ 双向上下文建模
- ✓ 在NLU任务上SOTA
- ✓ 引发预训练模型热潮
- □ 不适合生成任务

3.3.4 三者对比

模型	架构	预训练任务	优势领域	局限性
ELMo	BiLSTM	语言建模	双向理解	不能并行,速度慢
GPT-1	Decoder	语言建模 (单向)	生成任务	单向,理解能力有限
BERT	Encoder	MLM + NSP	理解任务	不适合生成

3.4 模型规模化时代 (2019-2020)

3.4.1 GPT-2 (2019.2)

Language Models are Unsupervised Multitask Learners

关键突破: 零样本学习 (Zero-shot Learning)

模型规格对比:

版本	参数量	层数	隐藏维度	头数
GPT-2 Small	117M	12	768	12
GPT-2 Medium	345M	24	1024	16

版本	参数量	层数	隐藏维度	头数
GPT-2 Large	762M	36	1280	20
GPT-2 XL	1.5B	48	1600	25

创新点:

- ☑ 规模扩大10倍
- ✓ 更大更多样的训练数据 (WebText)
- ☑ 展示零样本能力
- ✓ 生成质量大幅提升

争议: 最初因"安全考虑"未完全开源,引发讨论。

3.4.2 RoBERTa (2019.7)

Robustly Optimized BERT Approach

对BERT的优化版本:

改进点:

- □ 移除NSP任务(发现无用)
- ✓ 动态masking (每次epoch不同mask)
- ✓ 更大的batch size
- ✓ 更多训练数据
- ✓ 更长训练时间

结果: 性能全面超越BERT

3.4.3 其他重要模型

XLNet (2019.6)

- 结合自回归和自编码
- Permutation Language Modeling

ALBERT (2019.9)

- 参数共享,减少参数量
- SOP (Sentence Order Prediction) 任务

T5 (2019.10)

- Text-to-Text Transfer Transformer
- 所有任务统一为seq2seq

3.5 大模型涌现时代 (2020-2023)

3.5.1 GPT-3 (2020.5)

Language Models are Few-Shot Learners

规模跃升:

模型规格:

版本	参数量	层数	隐藏维度	头数	上下文长度
GPT-3 Small	125M	12	768	12	2048
GPT-3 Medium	350M	24	1024	16	2048
GPT-3 Large	760M	24	1536	16	2048
GPT-3 XL	1.3B	24	2048	24	2048
GPT-3 2.7B	2.7B	32	2560	32	2048
GPT-3 6.7B	6.7B	32	4096	32	2048
GPT-3 13B	13B	40	5140	40	2048
GPT-3 175B	175B	96	12288	96	2048

涌现能力(Emergent Abilities):

In-Context Learning示例:

任务: 情感分类

Few-shot示例

输入: 这个电影太棒了!

输出:正面

输入: 服务态度很差。

输出: 负面

输入: 价格有点贵。

输出: 负面

实际查询

输入: 今天天气真好!

输出: <模型预测>

关键发现:

- ✓ Few-shot性能随规模显著提升
- ✓ 无需微调即可完成多种任务
- ✓ 展示通用人工智能 (AGI) 的曙光

3.5.2 Codex (2021.8)

基于GPT-3,针对代码训练

训练数据:

- GitHub公开代码
- 多种编程语言

应用:

- GitHub Copilot
- OpenAl API code-davinci模型

能力示例:

```
# 提示:编写一个函数,计算列表中所有偶数的和

def sum_even_numbers(numbers):
    """
    计算列表中所有偶数的和

Args:
    numbers:整数列表

Returns:
    所有偶数的和
"""
    return sum(num for num in numbers if num % 2 == 0)

3.5.3 ChatGPT (2022.11)

基于GPT-3.5 (InstructGPT) + RLHF
```


RLHF三阶段:

阶段1: Supervised Fine-Tuning (SFT)

输入: 用户指令

输出: 高质量人工回复

数据量:约13,000条对话

阶段2: Reward Model (RM) Training

给定一个指令和多个回复,人工排序: 回复A > 回复B > 回复C > 回复D

训练RM预测人类偏好分数

阶段3: Proximal Policy Optimization (PPO)

使用RM作为奖励信号,通过强化学习优化模型目标:最大化奖励,同时不偏离SFT模型太远

影响:

- 发布2个月用户破1亿
- 💧 引爆AI应用热潮
- 💧 证明对话是最佳交互方式

3.5.4 GPT-4 (2023.3)

多模态大模型

能力提升:

维度	GPT-3.5	GPT-4	提升
编程能力	通过70%简单题	通过85%困难题	1
多语言	中等	接近母语者	
推理能力	基础	复杂多步推理	
幻觉率	较高	显著降低	
上下文	8K	32K/128K	
视觉理解	×	$\overline{\mathbf{v}}$	新能力

基准测试表现:

考试/测试	GPT-3.5	GPT-4
SAT阅读	69%	93%

SAT数学	70%	89%
律师资格考试	40%	90%
GRE写作	54%	99%
医学知识测试	53%	86%
编程竞赛	约11%	约89%

3.6 开源大模型崛起 (2023-至今)

3.6.1 LLaMA系列(Meta)

LLaMA-1 (2023.2)

模型规格:

模型	参数量	层数	隐藏维度	头数	学习率
LLaMA-7B	7B	32	4096	32	3e-4
LLaMA-13B	13B	40	5120	40	3e-4
LLaMA-33B	33B	60	6656	52	1.5e-4
LLaMA-65B	65B	80	8192	64	1.5e-4

技术特点:

- ✓ 完全开源(权重)
- ✓ 使用RoPE位置编码
- ✓ Pre-normalization (提升稳定性)
- ✓ SwiGLU激活函数
- ✓ 训练更长时间 (1.4T tokens)

架构改进:

```
class LLaMABlock(nn.Module):
    """
    LLaMA的Transformer Block
    """
    def forward(self, x):
        # Pre-Norm + RMSNorm
        h = x + self.attention(self.attention_norm(x))
        out = h + self.ffn(self.ffn_norm(h))
        return out

class SwiGLU(nn.Module):
    """
    SwiGLU激活函数: Swish-Gated Linear Unit
    """
    def forward(self, x):
```

```
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
```

LLaMA-2 (2023.7)

改进:

- ☑ 商用许可
- ✓ 上下文长度4096
- ✓ 更多训练数据 (2T tokens)
- ✓ Chat版本 (经过RLHF)

LLaMA-3 (2024)

进一步提升性能,成为开源SOTA。

3.6.2 其他重要开源模型

GLM系列 (智谱AI)

特点:

- ✓ 中英双语
- ✓ 轻量化 (6B可在消费级GPU运行)
- ☑ 国内应用广泛

Bloom (2022)

- 176B参数
- 多语言 (46种语言)
- BigScience开源项目

Falcon (2023)

- 180B参数
- RefinedWeb数据集
- 开放商用

Mistral 7B (2023.9)

- 仅7B参数
- 性能超越LLaMA-13B
- Sliding Window Attention

3.7 模型规模对比

3.7.1 参数量演进

3.7.2 主流模型参数量对比表

模型	参数量	发布时间	开源状态	特点
BERT-Large	340M	2018.10	✓	经典Encoder
GPT-2	1.5B	2019.02	√	首个GPT扩展
T5-11B	11B	2019.10	✓	Text-to-Text
GPT-3	175B	2020.05	X API	涌现能力
GLM-130B	130B	2022.08	✓	中英双语
BLOOM	176B	2022.07	√	多语言
LLaMA-65B	65B	2023.02	√	开源标杆
GPT-4	~1.7T?	2023.03	X	多模态
PaLM 2	?	2023.05	Х	Google最强
Claude 3	?	2024.03	X	Anthropic

3.8 Scaling Law (规模法则)

3.8.1 核心发现

Kaplan et al. (2020) - OpenAl的Scaling Laws

模型性能主要由三个因素决定:

- 1. N: 模型参数量
- 2. **D**: 训练数据量
- 3. C: 计算量 (FLOPs)

关键公式:

$$L(N) \propto N^{-lpha}$$

其中 $\alpha \approx 0.076$,即性能随参数量幂律提升。

最优分配:

给定计算预算C,最优策略:

- 模型参数 $N \propto C^{0.73}$
- 训练数据 $D \propto C^{0.27}$

3.8.2 Chinchilla Scaling Law

DeepMind (2022) 重新审视规模法则

关键发现: 大多数大模型训练不足 (undertrained)!

Chinchilla结论:

对于相同计算预算,应该:

- 减小模型规模
- 增加训练数据

GPT-3风格: 175B参数 × 300B tokens

Chinchilla风格: 70B参数 × 1.4T tokens

结果: Chinchilla性能更好!

新的最优配比:

$$N \propto C^{0.50}, \quad D \propto C^{0.50}$$

即参数量和数据量应该等比例增长。

3.8.3 实际影响

LLaMA的成功:

- LLaMA-13B (13B × 1T tokens) > GPT-3 (175B × 300B tokens)
- 验证了Chinchilla的理论

3.9 面试高频问题

Q1: BERT和GPT的核心区别?

维度	BERT	GPT
架构	Encoder-only	Decoder-only
注意力	双向(看到全部上下文)	单向 (只看左侧)
预训练任务	MLM + NSP	语言建模 (预测下一个词)
适用场景	理解任务(分类、NER、问答)	生成任务 (对话、写作)
训练目标	填空 (完形填空)	续写 (自回归)
现代趋势	较少使用	主流

Q2: 为什么现代大模型都用Decoder-only架构?

答案要点:

1. 统一范式:

- 。 所有任务都能表示为文本生成
- 。 不需要为不同任务设计不同架构

2. 扩展性:

- 。 架构简单, 易于扩展到千亿参数
- 。 训练和推理流程统一

3. **少样本学习**:

- 预训练和推理形式一致
- In-context learning能力强

4. 实验验证:

- 。 GPT-3证明了强大的零样本能力
- 。 规模扩大带来涌现能力

Q3: 什么是涌现能力 (Emergent Abilities) ?

定义: 当模型规模超过某个阈值时,突然出现的在小模型上没有的能力。

典型涌现能力:

示例:

任务	GPT-2 (1.5B)	GPT-3 (175B)	涌现?
简单QA	40%	75%	渐进
多步推理	随机	65%	√ 涌现
代码生成	几乎不能	能用	√ 涌现

Q4: In-Context Learning是如何工作的?

现象: 无需微调,只需在prompt中提供示例,模型就能学习新任务。

示例:

Zero-shot

输入: "Translate to French: Hello"

输出: "Bonjour"

One-shot

输入: "Translate to French:

Good morning -> Bonjour

Hello"

输出: "Bonjour"

Few-shot

输入: "Translate to French:

Good morning -> Bonjour

Thank you -> Merci

Goodbye -> Au revoir

Hello"

输出: "Bonjour"

机制 (假说):

1. 模式匹配:识别输入输出的对应关系

2. 任务推断: 从示例推断任务类型

3. 知识激活:激活预训练时学到的相关知识

Q5: 为什么ChatGPT需要RLHF?

问题: Base模型虽然强大,但:

- □ 不遵循指令
- □ 可能输出有害内容
- □ 啰嗦或不够helpful

RLHF的作用:

效果对比:

特性 	Base Model	After RLHF
指令遵循	差	[x] 好
有害内容	可能产生	[x] 拒绝
回复质量	不稳定	[x] 稳定
用户满意度	低	[x] 高

3.10 本章小结

本章回顾了从Word2Vec到GPT-4的语言模型发展历史:

[x] **词向量时代**: Word2Vec、GloVe奠定基础 [x] **预训练时代**: ELMo、GPT、BERT开启新范式 [x] **规模化时代**: GPT-3展示涌现能力 [x] **对齐时代**: ChatGPT证明RLHF的重要性 [x] **开源崛起**: LLaMA等推动技术民主

关键趋势:

- 1. Decoder-only成为主流架构
- 2. 模型规模持续增大
- 3. 数据质量比数量更重要 (Chinchilla Scaling Law)
- 4. 对齐(Alignment)是产品化的关键

下一章预告: 第4章将深入讲解预训练技术的细节,包括数据处理、训练策略等。