EE2211 Tutorial 4

(Systems of Linear Equations)

Question 1:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 2:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 3:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 0.1 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 4:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 5:

Given $\mathbf{w}^T \mathbf{X} = \mathbf{y}^T$ where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 6:

Given $\mathbf{w}^T \mathbf{X} = \mathbf{y}^T$ where

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is X invertible? Why?
- (c) Solve for w if it is solvable.

(Systems of Linear Equations)

Question 7:

This question is related to determination of types of system where an appropriate solution can be found subsequently. The following matrix has a left inverse.

$$\mathbf{X} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- a) True
- b) False

(Systems of Linear Equations)

Question 8:

MCQ: Which of the following is/are true about matrix A below? There could be more than one answer.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ & & \\ 4 & 5 & 6 \end{bmatrix}$$

- a) A is invertible
- b) A is left invertible
- c) A is right invertible
- d) A has no determinant
- e) None of the above

EE2211: Spring 2023 Tutorial 4 (Additional Questions)

9. Consider the over-determined system $\mathbf{X}\mathbf{w} = \mathbf{y}$ where

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 5 & 10 \\ 3 & 7 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 5 \\ c \end{bmatrix}. \tag{1}$$

Find the set of values of c such that there is a unique solution to Xw = y.

10. Consider the under-determined system $\mathbf{X}\mathbf{w} = \mathbf{y}$ where

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -2 & d \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}.$$
 (2)

Find the set of values of d such that there is no solution to Xw = y.

11. Consider the matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 5 & 10 \\ 3 & e \end{bmatrix} . \tag{3}$$

Find the set of values of e such that the left-inverse of \mathbf{X} exists.