

## **Today's Tasks**



- Feedback control design based on frequency domain method:
  - Experiment #1: Acquire experimental Bode plots of the DC motor plant
  - Experiment #2: Lead controller (compensator) design
  - Experiment #3: Test the controller
- Deliverable:
  - Lab 7 report and prelab (one report per person)

# **Advantages of Frequency Design Method**



- Can infer performance and stability from the same plot
- Can use measured data rather than a transfer function (pole-zero) model
- The design process can be independent of the system order
- Time delays are handled correctly
- Graphical techniques (analysis and synthesis) are relatively simple

#### **Step Response**





# Sinusoidal (Harmonic) Response



Sinusoidal input is typically used to determine a system's frequency response



#### **Gain and Phase**



#### Input signal: frequency 0.02 Hz, amplitude 1 $V_{pp}$



*Phase* =  $360^{\circ} \cdot \Delta t \cdot f = 360^{\circ} \cdot (47.75 - 50.34) \cdot 0.02 = -18.65^{\circ}$ 

# Frequency Response (Bode Diagram)



The frequency response of a system is typically expressed as Bode diagram.



# Estimating Frequency Response Function (FRF)



- Determine the frequency range of interest
- Common excitation signals:
  - Impact; step; burst random signal
  - Stepped sine (sine wave with one discrete frequency at a time); slow sine sweep
  - Band-limited white noise (random signal with constant power spectral density)
  - Chirp signal (fast sine sweep): to be used in this lab
- Dynamic Signal Analyzer, Shaker, Impact Hammer, Sensor
- Collect input-output data
- Use FFT to compute FRF

#### **Practical Considerations**





# **Types of Chirp Signal**





Time (sec)

2.004 Fall 21'

#### **Frequency Responses**



#### Linear Chirp

# Closed Loop Transfer Functions From: Input Voltage To: Out(1) (BD) appring -10 -45 -90 -45 -135 -180 -225 Frequency (rad/s)

#### **Exponential Chirp**



# Open- and Closed-Loop Transfer Functions





Plant TF: 
$$G_{p}(s) = \frac{1}{s} \frac{K}{\tau s + 1} = \frac{K}{\tau s^{2} + s}$$

$$K = \frac{K_{dc}}{vc2pwm} \qquad vc2pwm = \frac{255 [PWM]}{5 [V]} = 51$$

Open-loop transfer function 
$$G_{ol}(s) = \frac{\Theta(s)}{E(s)}$$
  
Closed-loop transfer function  $G_{cl}(s) = \frac{\Theta(s)}{\Theta_r(s)}$ 

# **Open-Loop Exponential Chirp (Plant)**





## **Bode Plots (Plant)**





## Closed-Loop Response (Kp = 100)



#### Set chirp amplitude to PI/3 to avoid PWM saturation





# Relationship Between Damping Ratio and Percent Overshoot





# Relationship Between Damping Ratio and Phase Margin





## **Lead Controller Design**



Design a lead controller to achieve 7% overshoot and 0.4 sec settling time:

$$\rightarrow \omega_c$$
 = ? rad/sec

$$G_c(s) = K_cG(s)$$

$$G(s) = \frac{\tau s + 1}{\alpha \tau s + 1}, \quad 0 \le \alpha < 1$$

$$\phi_{max} = \sin^{-1} \frac{1 - \alpha}{1 + \alpha}$$

$$\omega_{max} = \frac{1}{\tau \sqrt{\alpha}}$$

$$\left| K_c G(j\omega_c) G_p(j\omega_c) \right| = 1$$



Typically we use an  $\alpha \ge 0.1$  to avoid large gains at high frequency, and to place  $\phi_{max}$  at  $\omega_c$ .

## **Lead Controller Design**



Design requirements: 
$$\begin{cases} \%OS \le 7\% \\ T_s \le 0.4s \end{cases}$$

$$\Rightarrow \begin{cases} \phi_m = ? \\ \omega_c = ? \end{cases}$$

$$G_c = K_c \frac{T_1 s + 1}{T_2 s + 1}$$







# **Open-Loop Chirp Response (Lead + Plant)**



#### Envelope the Chirp amplitude to avoid saturation



# **Open Loop Bode Plots (Lead + Plant)**



#### Verify phase margin at the crossover frequency





## **Closed-Loop Chirp Response (Lead)**



#### Envelope the Chirp amplitude to avoid saturation



## **Closed-Loop Bode Plots (Lead)**



#### Verify overshoot and check bandwidth







# DESIGN PARAMETERS & THEIR RELATIONS

#### Time Domain Specifications





Example:  

$$y_{SS} = 1$$
  $y(T_P) = 1.5$   
 $M_P = 0.5$   $\%OS = 50\%$   

$$\zeta = -\frac{\ln(0.5)}{\sqrt{\pi^2 + \ln^2(0.5)}} = 0.215$$

$$T_s \approx \frac{4}{\sigma} = \frac{4}{\zeta \omega_n}$$
 2% Settling Time

$$\Gamma_s \approx \frac{4.6}{\sigma} = \frac{4.6}{\zeta \omega_n}$$
 1% Settling Time

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = \frac{2\pi}{T}$$
 Damped Natural Frequency

$$T_p = \frac{\pi}{\omega_d}$$
 Peak Time

$$M_P \triangleq y(T_p) - y_{ss}$$
 Overshoot (Magnitude)

$$\%OS \triangleq \frac{y(T_p) - y_{ss}}{y_{ss}} \times 100$$
 Overshoot (Percent)

$$\frac{M_P}{y_{ss}} = \frac{\%OS}{100} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$
 ,  $0 \le \zeta < 1$ 

$$\zeta = -\frac{\ln(0.5)}{\sqrt{\pi^2 + \ln^2(0.5)}} = 0.215$$

$$\ln\left(\frac{M_P}{y_{ss}}\right) = -\frac{\zeta\pi}{\sqrt{1 - \zeta^2}} \Rightarrow \qquad \zeta = -\frac{\ln\left(\frac{M_P}{y_{ss}}\right) \text{ Damping}}{\sqrt{\pi^2 + \ln^2\left(\frac{M_P}{y_{ss}}\right)}} \text{ Ratio}$$

2.004 Fall 21'

#### **Frequency Domain Specifications**





 $M_r \triangleq \text{resonant peak value}$ 

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} \qquad 0 \le \zeta \le 0.707$$

$$M_r = 1$$
  $\zeta > 0.707$ 

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \qquad 0 \le \zeta \le 0.707$$



$$\phi_M = \tan^{-1} \left[ \frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}} \right]$$

If 
$$0 \le \phi_M \le 70^o$$
, approximate  $\zeta \approx \frac{\phi_M}{100}$ 

# Relationship between Frequency Response and pole-zero locations



#### Closed-Loop Frequency Response



#### Closed-Loop Bandwidth:

$$\omega_{BW} = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{4\zeta^4} - 4\zeta^2 + 2}$$

$$\omega_c \leq \omega_{BW} \leq 2\omega_c$$

$$\phi_M \approx 90^o \to \omega_{BW} \approx \omega_c$$

$$\phi_M \approx 45^o \to \omega_{BW} \approx 2\omega_c$$





# **LEAD & LAG COMPENSATORS**

#### **Lead Compensator**



$$G_c(s) = K_c \frac{(\tau s + 1)}{(\alpha \tau s + 1)} = K_c \frac{\left(\frac{s}{z} + 1\right)}{\left(\frac{s}{p} + 1\right)}, \qquad |z| < |p|$$

- Improves stability by adding phase lead.
- Dose not change the relative degree of  $G_p(s)G_c(s)$ .





#### Lag Compensator



$$G_c(s) = K_c \frac{(\tau s + 1)}{(\alpha \tau s + 1)} = K_c \frac{\left(\frac{s}{z} + 1\right)}{\left(\frac{s}{p} + 1\right)}, \qquad |z| > |p|$$

- Improves steady state error by increasing gain at low frequency.
- Deteriorates stability by adding phase lag over limited frequency range.
- Typically introduce a slow dominant pole.







## **Lead Compensator Design Equations**



#### Max phase lead

$$\phi_{max} = \tan^{-1}\left(\frac{1-\alpha}{2\sqrt{\alpha}}\right) = \sin^{-1}\left(\frac{1-\alpha}{1+\alpha}\right)$$
 at  $\omega_{max} = \frac{1}{\tau\sqrt{\alpha}}$ 

#### Magnitude at max phase lead

$$|G(j\omega_{max})| = \frac{1}{\sqrt{\alpha}}$$

#### Lead vs. Lag Compensator



#### **Lead Compensator**



Improves stability by adding phase lead. Improves speed of

response.
Use to meet PM, OS%, damping ratio, T<sub>s</sub>, T<sub>p</sub>, T<sub>r,</sub> dominant pole location, etc.

#### Lag Compensator



Improves steady state error by increasing gain at low frequency.

Deteriorates stability by

Use to meet steady state error to reference R(s) and disturbance D(s

dominant pole.

11/8/21

## **Lag-Lead Compensator**



