Estruturas de Dados

Árvores Binárias de Busca

Departamento de Informática e de Estatística Prof. Jean Everson Martina Prof. Aldo von Wangenheim

2016.2

Árvores

são estruturas de dados que se caracterizam por uma organização hierárquica – relação hierárquica – entre seus elementos. Essa organização permite a definição de algoritmos relativamente simples, recursivos e de eficiência bastante razoável.

- No cotidiano, diversas informações são organizadas de forma hierárquica;
- Como exemplo, podem ser citados:
 - O organograma de uma empresa;
 - A divisão de um livro em capítulos, seções, tópicos;
 - A árvore genealógica de uma pessoa.

- De um modo mais formal, podemos dizer que uma árvore é um conjunto finito de um ou mais nodos, nós ou vértices, tais que:
 - Existe um nodo denominado raiz da árvore:
 - os demais nodos formam n >= 0 conjuntos disjuntos $c_1, c_2, ..., c_n$, sendo que cada um desses conjuntos também é uma árvore (denominada subárvore).

• Representação hierárquica

Representação por conjuntos (diagrama de inclusão)

- Representação por expressão parentetizada (parênteses aninhados)
 - Cada conjunto de parênteses correspondentes contém um nodo e seus filhos. Se um nodo não tem filhos, ele é seguido por um par de parênteses sem conteúdo.

```
(A(B(D()E()))(C(F())))
```

- Representação por expressão não parentetizada
 - Cada nodo é seguido por um número que indica sua quantidade de filhos, e em seguida por cada um de seus filhos, representados do mesmo modo.

A 2 B 2 D 0 E 0 C 1 F 0

- As duas primeiras representações permitem uma melhor visualização das árvores;
- As duas últimas, por sua vez, facilitam a persistência dos nodos das árvores (em arquivos, por exemplo), possibilitando assim a sua reconstituição.

 Como, por definição, os subconjuntos c₁, c₂, ..., c_n são disjuntos, cada nodo pode ter apenas um pai. A representação a seguir, por exemplo, não corresponde a uma árvore.

Definições

- A linha que liga dois nodos da árvore denomina-se aresta;
- Existe um caminho entre dois nodos A e B da árvore, se a partir do nodo A é possível chegar ao nodo B percorrendo as arestas que ligam os nodos entre A e B;
- Existe sempre um caminho entre a raiz e qualquer nodo da árvore.

Definições

- Se houver um caminho entre A e B, começando em A diz-se que A é um nodo ancestral de B e B é um nodo descendente de A
- Se este caminho contiver uma única aresta, diz-se que A é o nodo pai de B e que B é um nodo filho de A;
- Dois nodos que são filhos do mesmo pai são denominados nodos irmãos;
- Qualquer nodo, exceto a raiz, tem um único nodo pai.

Definições

- Se um nodo n\u00e3o possui nodos descendentes, ele \u00e9 chamado de folha ou nodo terminal da \u00e1rvore;
- Grau de um nodo: é o número de nodos filhos do mesmo. Um nodo folha tem grau zero;
- Nível de um nodo: a raiz tem nível 0. Seus descendentes diretos têm nível 1, e assim por diante;
- Grau da árvore: é igual ao grau do nodo de maior grau da árvore;
- Nível da árvore: é igual ao nível do nodo de maior nível da árvore.

Exercício

Exercício

- Qual é a raiz da árvore?
- Quais são os nodos terminais?
- Qual o grau da árvore?
- Qual o nível da árvore?
- Quais são os nodos descendentes do nodo D?
- Quais são os nodos ancestrais do nodo #?
- Os nodos 4 e 5 são nodos irmãos?
- Há caminho entre os nodos C e S?
- Qual o nível do nodo 5?
- Qual o grau do nodo A?

Árvores Binárias

- A inclusão de limitações estruturais define tipos específicos de árvores;
- Até agora, as árvores vistas não possuíam nenhuma limitação quanto ao grau máximo de cada nodo;
- Uma árvore binária é uma árvore cujo grau máximo de cada nodo é 2. Essa limitação define uma nomenclatura específica:
 - As filhos de um nodo s\(\tilde{a}\) classificados de acordo com sua posi\(\tilde{c}\) or relativa \(\tilde{a}\) raiz;
 - Assim, distinguem-se o filho da esquerda e o filho da direita e, consequentemente, a subárvore da esquerda e a subárvore da direita.

Árvores Binárias

• Exemplo de árvore binária;

Transformações

- É possível transformar uma árvore n-ária em uma árvore binária através dos seguintes passos:
 - A raiz da árvore (subárvore) será a raiz da árvore (subárvore) binária;
 - O nodo filho mais à esquerda da raiz da árvore (subárvore) será o nodo filho à esquerda da raiz da árvore (subárvore) binária;
 - Cada nodo irmão de B, da esquerda para a direita, será o nodo filho à direita do nodo irmão da esquerda, até que todos os nodos filhos da raiz da árvore (subárvore) já tenham sido incluídos na árvore binária em construção.

Árvores Binárias

Árvores Binárias

Modelagem: Nodo de uma árvore binária

- Necessitamos:
 - Um ponteiro para o filho localizado à esquerda;
 - Um ponteiro para o filho localizado à direita;
 - Um ponteiro para a informação que vamos armazenar.

Pseudo-código:

```
classe tNodo {
  tNodo *filhoEsquerda;
  tNodo *filhoDireita;
  TipoInfo *info;
};
^^T^^T
```

Construção de uma árvore binária

- Árvores como estruturas para organizar informações:
 - Dados a serem inseridos em uma árvore são dados ordenáveis de alguma forma. Exemplo mais simples: números inteiros;
- A árvore deverá possuir altura mínima:
 - Caminhos médios de busca mínimos para uma mesma quantidade de dados.
- Como fazer isso?
 - garantir profundidades médias mínimas, preencher ao máximo cada nível antes de partir para o próximo e distribuir homogeneamente os nodos para a esquerda e direita.

Construção de uma árvore binária

Algoritmo:

- Use um nodo para a raiz;
- Gere a subárvore esquerda com nodosÀEsquerda = númeroDeNodos / 2 nodos, usando este mesmo procedimento;
- Gere a subárvore direita com nodosÀDireita = númeroDeNodos – nodosÀEsquerda - 1 nodos, usando este mesmo procedimento.

Árvore Binária Balanceada

```
tNodo* constróiÁrvore(inteiro númeroDeNodos)
 inteiro nodosÀEsquerda, nodosÀDireita;
 TipoInfo *info;
 tNodo *novoNodo;
 início
  se númeroDeNodos = 0 então
   retorna NULO;
  nodosÀEsquerda <- númeroDeNodos / 2;
  nodosÀDireita <- númeroDeNodos - nodosÀEsquerda - 1;
  aloque(info);
  ler(info):
  aloque(novoNodo);
  novoNodo->info <- info;
  novoNodo->filhoEsquerda <- constróiÁrvore(nodosÀEsquerda);
  novoNodo->filhoDireita <- constróiÁrvore(nodosÀDireita):
  retorna novoNodo:
fim
^^I^^I
```

- O percurso em árvores binárias corresponde ao caminhamento executado em listas:
 - Partimos de um nodo inicial (raiz) e visitamos todos os demais nodos em uma ordem previamente especificada;
- Como exemplo, considere uma árvore binária utilizada para representar uma expressão (com as seguintes restrições):
 - Cada operador representa uma bifurcação;
 - Seus dois operandos correspondentes são representados por suas subárvores.

Expressão: (A + (B / X)) * (E - (C * P))

- Existem três ordens para se percorrer uma árvore binária que são consequência natural da estrutura da árvore:
 - Preordem(r,e,d) Preorder;
 - Emordem(e,r,d) Inorder;
 - Pósordem(e,d,r) Postorder.

- Essas ordens são definidas recursivamente (definição natural para uma árvore) e em função da raiz(r), da subárvore esquerda(e) e da subárvore direita(d):
 - Preordem(r,e,d): visite a raiz ANTES das subárvores;
 - Emordem(e,r,d): visite primeiro a subárvore ESQUERDA, depois a RAIZ e depois a subárvore DIREITA;
 - Pósordem(e,d,r): visite a raiz DEPOIS das subárvores;
- As subárvores são SEMPRE visitadas da esquerda para a direita.

- Se percorrermos a árvore anterior usando as ordens definidas, teremos as seguintes sequências:
 - Preordem (notação prefixada) : * + A / B X E * C P
 - Emordem (notação infixada) : A + B / X * E C * P
 - Pósordem (notação posfixada) : A B X / + * E C P *

Percurso em Preordem

Percurso em Emordem

```
vector Emordem(tNodo *raiz)
início
V[];
se raiz != NULO então
   Emordem(raiz->filhoEsquerda);
   V.add(raiz->info);
   Emordem(raiz->filhoDireita);
   fim se
fim
^^I^^I
```

Percurso em Posordem

```
vector Emordem(tNodo *raiz)
início
V[];
se raiz != NULO então
  Posordem(raiz->filhoEsquerda);
  Posordem(raiz->filhoDireita);
  V.add(raiz->info);
  fim se
fim
^^I^^I
```

Árvores Binárias de Busca

- Árvores (binárias) são muito utilizadas para se representar um grande conjunto de dados onde se deseja encontrar um elemento de acordo com a sua chave.
- Definição Árvore Binária de Busca (Niklaus Wirth):
 - "Uma árvore que se encontra organizada de tal forma que, para cada nodo t_i, todas as chaves (info) da subárvore à esquerda de t_i são menores que (ou iguais a) t_i e à direita são maiores que t_i";
- Termo em Inglês: Search Tree.

Características de Árvores Binárias de Busca

- Em uma árvore binária de busca é possível encontrar-se qualquer chave existente descendo-se pela árvore:
 - Sempre à esquerda toda vez que a chave procurada for menor do que a chave do nodo visitado;
 - Sempre à direita toda vez que for maior;
- A escolha da direção de busca só depende da chave que se procura e da chave que o nodo atual possui.

Características de Árvores Binárias de Busca

- A busca de um elemento em uma árvore balanceada com n elementos toma tempo médio < log(n), sendo a busca então O(log n);
- Graças à estrutura de árvore a busca poderá ser feita com apenas log(n) comparações de elementos.

Exemplo de árvore binária de busca

Algoritmo de Busca

```
tNodo* busca (chave: tInfo, ptr: *tNodo)
 início
  enquanto (ptr ~= NULO
            E ptr->info ~= chave) faça
   // Esquerda ou direita.
   se (ptr->info < chave) então
   ptr <- ptr->filhoÀDireita
   senão
   ptr <- ptr->filhoÀEsquerda;
   fim se
  fim enquanto
  retorne ptr;
 fim
^^T^^T
```


Algoritmo de Inserção

```
tNodo* inserção (info: tInfo)
*tNodo oNovo:;
início
  se (info < self->info) então
  // Inserção à esquerda.
   se (self->filhoÀEsquerda = NULO) então
    oNovo <- aloque(tNodo); oNovo->info <- info;
    oNovo->filhoÀEsquerda <- NULO; oNovo->filhoÀDireita <- NULO;
   raiz->filhoÀEsquerda <- oNovo;
   senão
   self <- inserção(self->filhoÀEsquerda, info);
  fim se
   senão
   // Inserção à direita.
   se (self->filhoÀDireita = NULO) então
    oNovo <- aloque(tNodo); oNovo->info <- info;
    oNovo->filhoÀEsquerda <- NULO; oNovo->filhoÀDireita <- NULO;
   raiz->filhoÀDireita <- oNovo;
   senão
    self <- inserção(self->filhoÀDireita, info);
  fim se
 fim se
fim
```

Algoritmo de Deleção

- A deleção é mais complexa do que a inserção;
- A razão básica é que a característica organizacional da árvore não deve ser quebrada:
 - A subárvore da direita de um nodo não deve possuir chaves menores do que o pai do nodo eliminado;
 - A subárvore da esquerda de um nodo não deve possuir chaves maiores do que o pai do nodo eliminado.
- Para garantir isso, o algoritmo de deleção deve remanejar os nodos.

Deleção em uma Arvore de Busca Binária

- Se o nodo possuir somente uma subárvore filha:
 - Podemos simplesmente mover esta subárvore toda para cima;
 - O único sucessor do nodo a ser excluído será um dos sucessores diretos do pai do nodo a ser eliminado;
 - Se o nodo a ser excluído é filho esquerdo de seu pai, o seu filho será o novo filho esquerdo deste e vice-versa.

Deleção em uma Arvore de Busca Binária

- Se o nodo possuir duas subárvores filhas:
 - Se o filho à direita n\u00e3o possui sub\u00e1rvore esquerda, \u00e9 ele quem ocupa o seu lugar;
 - Se possuir uma subárvore esquerda, a raiz desta será movida para cima e assim por diante;
 - A estratégia geral (Mark Allen Weiss) é sempre substituir a chave retirada pela menor chave da subárvore direita.

Algoritmo de Deleção

```
tNodo* delete(info: tInfo, arv: *tNodo)
tmp, filho: *tNodo;
início
  se (arv = NULO) então retorne arv
  senão
   se (info < arv->info) // Vá à esquerda.
    arv->filhoAEsquerda <- delete(info, arv->filhoAEsquerda);
   retorne arv:
   senão
    se (info > arv->info) // Vá à direita.
     arv->filhoADireita <- delete(info, arv->filhoADireita);
     retorne arv:
    senão // Encontrei elemento que quero deletar.
     se (arv->filhoÀDireita~=NULO E arv->filhoÀEsquerda~=NULO)//
         2 filhos.
      tmp <- minimo(arv->filhoADireita); arv->info <- tmp->info;
      arv->filhoADireita <-delete(arv->info,arv->filhoADireita);
     retorne arv;
     //(CONTINUA NO PROX SLIDE)
~~I~~I
```

Algoritmo de Deleção

```
senão // 1 filho.
      tmp <- arv;
      se (arv->filhoÀDireita ~= NULO) então // Filho à direita.
      filho <- arv->filhoÀDireita; retorne filho;
     senão
      se (arv->filhoÀEsquerda ~= NULO) então // Filho à esquerda
      filho <- arv->filhoÀEsquerda; retorne filho;
     senão // Folha.
     libere arv;
     retorne NULO:
     fim se
    fim se
    fim se
   fim se
  fim se
 fim se
fim
^^ T ^ ^ T
```

Problemas com Arvores de Busca Binária

Deterioração:

- Quando inserimos utilizando a inserção simples, dependendo da distribuição de dados, pode haver deterioração;
- Árvores deterioradas perdem a característica de eficiência de busca.

Problemas com Arvores de Busca Binária

Trabalho

- Implemente uma classe NoBinario para representar a sua árvore;
- Implemente a arvore usando Templates;
- Use as melhores práticas de orientação a objetos;
- Documente todas as classes, métodos e atributos;
- Aplique os testes unitários disponíveis no moodle da disciplina para validar sua estrutura de dados;
- Entregue até a data definida no moodle.

Perguntas????

ccreative commons

Este trabalho está licenciado sob uma Licença Creative Commons Atribuição 4.0 Internacional. Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/.

