# 第2章 线性规划

2.5 对偶理论

# 对偶理论

- 对偶规划
- 对偶理论
- 对偶单纯形算法

#### 一般型的LP和它的标准型

min 
$$c^{T}x$$
 (P)  
s.t.  $a_{i}^{T}x = b_{i}$   $i = 1,2,...,p$   
 $a_{i}^{T}x \ge b_{i}$   $i = p+1,...,m$  min  $\hat{c}^{T}\hat{x}$  ( $\hat{P}$ )  
 $x_{i} \ge 0$   $j = 1,2,...,q$   
 $x_{j} \ge 0$   $j = q+1,...,n$  s.t.  $\hat{A}\hat{x} = b$   
 $\hat{x} \ge 0$ 

| $\hat{A}$ | $x_1$       | ••• | $x_q$       | $x^+q+1$      | $x^{q+1}$      | ••• | $x^+_n$     | $x^n$        | $x^{s_1}$ | ••• | $x^{s}_{m-p}$ |
|-----------|-------------|-----|-------------|---------------|----------------|-----|-------------|--------------|-----------|-----|---------------|
| 1         | <i>a</i> 11 |     | $a_{1q}$    | $a_{1,q+1}$   | $-a_{1,q+1}$   |     | $a_{1n}$    | $-a_{1n}$    | 0         | ••• | 0             |
| ÷         | :           | :   | ÷           | ÷             | :              | ÷   | :           | ÷            | ÷         | 0   | ÷             |
| p         | $a_{p1}$    |     | $a_{pq}$    | $a_{p,q+1}$   | $-a_{p,q+1}$   |     | $a_{pn}$    | $-a_{pn}$    | 0         | ••• | 0             |
| p+1       | $a_{p+1,1}$ |     | $a_{p+1,q}$ | $a_{p+1,q+1}$ | $-a_{p+1,q+1}$ | ••• | $a_{p+1,n}$ | $-a_{p+1,n}$ | -1        | ••• | 0             |
| ÷         | ÷           | ÷   | ÷           | ÷             | ÷              | ÷   | ÷           | ÷            | ÷         | -1  | ÷             |
| m         | $a_{m1}$    | ••• | $a_{mq}$    | $a_{m,q+1}$   | $-a_{m,q+1}$   | ••• | $a_{mn}$    | $-a_{mn}$    | 0         | ••• | -1            |

#### 导出对偶规划

设 $\hat{x}^*$ 是单纯形算法在 LP $(\hat{P})$ 上求到的最优 bfs, $\hat{B}$ 是 $\hat{x}^*$ 的基矩阵, $\zeta$  是  $\hat{x}^*$  的检验数向量。由单纯形算法,必有  $\zeta^{\mathrm{T}} = \hat{c}_{\hat{B}}^{\mathrm{T}} \hat{B}^{-1} \hat{A} - \hat{c}^{\mathrm{T}} \leq 0$ 。

$$�\widehat{y}^{\mathrm{T}} = \hat{c}_{\hat{B}}^{\mathrm{T}} \hat{B}^{-1}$$
,则有 $\widetilde{y}^{\mathrm{T}} \hat{A} \leq \hat{c}^{\mathrm{T}}$ ,即 $\hat{A}^{\mathrm{T}} \widetilde{y} \leq \hat{c}$ 。

目标函数
$$\hat{c}^T x = \hat{c}_{\hat{B}}^T \hat{B}^{-1} b - \zeta^T x = \hat{c}_{\hat{B}}^T \hat{B}^{-1} b = \tilde{y}^T b = b^T \tilde{y}$$

因此 $\tilde{y}$  是如下 LP 的一个可行解:

$$\begin{array}{ll}
\max & b^T y & (\widehat{D}) \\
s. t. & \widehat{A}^T y \le \widehat{c} \\
y \le 0
\end{array}$$

 $LP(\hat{D})$ 称为  $LP(\hat{P})$  的对偶规划。

#### 导出对偶规划

| $\hat{A}^{\rm T}$ | $y_1$       | ••• | $\mathcal{Y}_{p}$ | $y_{p+1}$      | •••   | ${\mathcal Y}_m$ |
|-------------------|-------------|-----|-------------------|----------------|-------|------------------|
| 1                 | $a_{11}$    | ••• | $a_{p1}$          | $a_{p+1,1}$    | •••   | $a_{m1}$         |
| :                 | :           | :   | :                 | :              | :     | :                |
| q                 | $a_{1q}$    | ••• | $a_{pq}$          | $a_{p+1,q}$    |       | $a_{mq}$         |
| <i>q</i> +1       | $a_{1q+1}$  | ••• | $a_{p,q+1}$       | $a_{p+1,q+1}$  | •••   | $a_{m,q+1}$      |
| q+1               | $-a_{1q+1}$ |     | $-a_{p,q+1}$      | $-a_{p+1,q+1}$ | • • • | $-a_{m,q+1}$     |
| :                 | :           | :   | :                 | :              | :     | :                |
| n                 | $a_{1n}$    | ••• | $a_{pn}$          | $a_{p+1,n}$    | •••   | $a_{mn}$         |
| n                 | $-a_{1n}$   |     | $-a_{pn}$         | $-a_{p+1,n}$   | •••   | $-a_{mn}$        |
| $s_1$             | 0           | ••• | 0                 | -1             | • • • | 0                |
| :                 | ÷           | 0   | :                 | :              | -1    | :                |
| $S_{m-p}$         | 0           | ••• | 0                 | 0              | •••   | -1               |

$$A_{1}^{T}y \leq c_{1}$$

$$\vdots$$

$$A_{q}^{T}y \leq c_{q}$$

$$A_{q+1}^{T}y \leq c_{q+1}$$

$$-a_{m,q+1}$$

$$A_{q+1}^{T}y \leq c_{q+1}$$

$$-A_{q+1}^{T}y \leq -c_{q+1} \Rightarrow A_{q+1}^{T}y = c_{q+1}$$

$$\vdots$$

$$A_{n}^{T}y \leq c_{n}$$

$$-A_{n}^{T}y \leq -c_{n} \Rightarrow A_{n}^{T}y = c_{n}$$

$$A_n^{\mathrm{T}} y \le c_n$$

$$-A_n^{\mathrm{T}} y \le -c_n \Rightarrow A_n^{\mathrm{T}} y = c_n$$

$$-y_{p+1} \le 0 \Rightarrow y_{p+1} \ge 0$$

$$-y_m \le 0 \Rightarrow y_m \ge 0$$

$$-y_m \le 0 \Rightarrow y_m \ge 0$$

### LP和它的对偶

min 
$$c^{T}x$$
 (P) max  $b^{T}y$  (D)
s.t.  $a_{i}^{T}x = b_{i}$   $i = 1, 2, ..., p$  s.t.  $y_{i} \pm 0$ 
 $a_{i}^{T}x \geq b_{i}$   $i = p + 1, ..., m$   $y_{i} \geq 0$ 
 $x_{j} \geq 0$   $j = 1, 2, ..., q$   $A_{j}^{T}y \leq c_{j}$ 
 $x_{j} \pm 0$   $j = q + 1, ..., n$  对偶

min 
$$c^{T}x$$
 max  $b^{T}y$   
s.t.  $Ax \ge b$  s.t.  $A^{T}y \le c$   
 $x \ge 0$   $y \ge 0$ 

规范型 和它的 对偶

min 
$$c^{T}x$$
 max  $b^{T}y$  min  $c^{T}x$  max  $b^{T}y$   
s.t.  $Ax \ge b$  s.t.  $A^{T}y \le c$  s.t.  $Ax = b$  s.t.  $A^{T}y \le c$   
 $x \ge 0$   $y \ge 0$   $x \ge 0$   $y \ge 0$ 

标准型 和它的 对偶

### LP和它的对偶

- 1. 原问题目标是min,对偶问题是max
- 2. 原问题的变量对应于对偶问题的约束,约束对应于变量原问题变量"大于等于"→对偶问题约束条件"小于等于";约束"大于等于"→变量"大于等于";约束"等于"→变量"无约束"
- 3. 系数矩阵转置
- 4. 价值向量与右侧向量互换

#### 最小费用流问题



$$\min \ z = x_1 + 2x_2 + 2x_3 + 3x_4 + x_5$$

s.t. 
$$(v_1)$$
  $x_1 + x_2 = 1$ 

$$(v_2) - x_1 + x_3 + x_4 = 0$$

$$(v_3) -x_2 - x_3 + x_5 = 0$$

$$(v_4) - x_4 - x_5 = -1$$

$$x_i \ge 0$$
  $\forall i$ 

#### 最短路问题LP的对偶

| $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $\mathcal{X}_5$ |                   | _                                                       |
|-------|-------|-------|-----------------|-----------------|-------------------|---------------------------------------------------------|
| 1     | 2     | 2     | 3               |                 |                   |                                                         |
| 1     | 1     | 0     | 0               | 0               | 1<br>0<br>0<br>-1 | $y_1$                                                   |
| -1    | 0     | 1     | 1               | 0               | 0                 | $\begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array}$ |
| 0     | -1    | -1    | 0               | 1<br>-1         | 0                 | <i>y</i> <sub>3</sub>                                   |
| 0     | 0     | 0     | 0               | -1              | -1                | <i>y</i> <sub>4</sub>                                   |

max 
$$z = y_1 - y_4$$
  
s.t.  $(e_1)$   $y_1 - y_2$   $\leq 1$   
 $(e_2)$   $y_1 - y_3$   $\leq 2$   
 $(e_3)$   $y_2 - y_3$   $\leq 2$   
 $(e_4)$   $y_2 - y_4$   $\leq 3$   
 $(e_5)$   $y_3 - y_4$   $\leq 1$   
 $y_i$  无限制  $\forall j$ 

### 例,顶点覆盖问题

$$G = (V, E)$$

 $\bullet V$ 

V

$$\boldsymbol{E}$$

66

$$\min \sum_{v \in V} x_v$$
s.t.  $x_u + x_v \ge 1 \quad \forall (u, v) \in E$ 

$$x_v \ge 0 \quad \forall v \in V$$

$$\max \sum_{e \in E} y_e$$
s.t. 
$$\sum_{e \in \delta(v)} y_e \leq 1 \quad \forall v \in V$$

$$y_e \geq 0 \quad \forall e \in E$$

#### 顶点覆盖



min 
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$
  
s.t.  $x_1 + x_4 \ge 1$   
 $x_2 + x_5 \ge 1$   
 $x_3 + x_6 \ge 1$   
 $x_4 + x_7 \ge 1$   
 $x_5 + x_7 \ge 1$   
 $x_6 + x_7 \ge 1$   
 $x_i \ge 0 \quad \forall i$   
 $x^{*T} = (0, 0, 0, 1, 1, 1, 0)$ 

# 写出对偶规划

|       | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $\chi_5$ | $x_6$ | $x_7$ | _ | _                     |
|-------|-------|-------|-------|-----------------|----------|-------|-------|---|-----------------------|
| C     | 1     | 1     | 1     | 1               | 1        | 1     | 1     |   |                       |
| $e_1$ | 1     | 0     | 0     | 1               | 0        | 0     | 0     | 1 | $y_1$                 |
| $e_2$ | 0     | 1     | 0     | 0               | 1        | 0     | 0     | 1 | $y_2$                 |
| $e_3$ | 0     | 0     | 1     | 0               | 0        | 1     | 0     | 1 | <i>y</i> <sub>3</sub> |
| $e_4$ | 0     | 0     | 0     | 1               | 0        | 0     | 1     | 1 | <i>y</i> <sub>4</sub> |
| $e_5$ | 0     | 0     | 0     | 0               | 1        | 0     | 1     | 1 | <i>y</i> <sub>5</sub> |
| $e_6$ | 0     | 0     | 0     | 0               | 0        | 1     | 1     | 1 | <i>y</i> <sub>6</sub> |
|       | $v_1$ | $v_2$ | $v_3$ | $v_4$           | $v_5$    | $v_6$ | $v_7$ |   | _                     |

#### 顶点覆盖LP的对偶



$$\max y_1 + y_2 + y_3 + y_4 + y_5 + y_6$$
s.t.
$$y_1 \leq 1$$

$$y_2 \leq 1$$

$$y_3 \leq 1$$

$$y_1 + y_4 \leq 1$$

$$y_2 + y_5 \leq 1$$

$$y_3 + y_6 \leq 1$$

$$y_4 + y_5 + y_6 \leq 1$$

$$y_j \geq 0 \quad \forall j$$

$$y^{*T} = (1, 1, 1, 0, 0, 0)$$

#### 对偶理论(一)

#### 定理 2.5.1-1 (弱对偶定理)

设x和y分别是原规划和对偶规划的可行解,则 $c^{T}x \ge b^{T}y$ 。

定理 2.5.1-2 (强对偶定理)

设x和y分别是原规划和对偶规划的最优解,则 $c^Tx = b^Ty$ 。 定理 2.5.1-3

设x和y分别是原规划和对偶规划的可行解。则x和y分别是原规划和对偶规划的最优解当且仅当 $c^{T}x = b^{T}y$ 。

定理 2.5.2

LP 问题的对偶的对偶是原始的 LP 问题。

### 弱对偶定理

定理 2.5.1-1 设x和y分别为原始 LP 和对偶 LP 的可行解,则  $c^{T}x \ge b^{T}y$ 。

- ●证:不失一般性,设原始 LP 为标准型。
- ●由于 x 为原始 LP 的可行解,因此 Ax = b。即, $b^{T} = x^{T}A^{T}$ 。
- ●两边乘以 y,得到:  $b^{T}y = x^{T}A^{T}y$ 。
- ●由于 y 为对偶 LP 的可行解,因此  $A^{T}y \le c$ 。
- ●于是, $b^{\mathsf{T}}y \leq x^{\mathsf{T}}c = c^{\mathsf{T}}x$ 。

## 强对偶定理

定理 2.5.1-2 设 x\*和 y\*分别为原始 LP 和对偶 LP 的最优解,则  $c^{T}x*=b^{T}y*$ 。

- ●证:不妨设 x\*为单纯形算法求到的一个最优 bfs,B 为 x\*的基矩阵。
- ●令 $\widetilde{y} = (B^{-1})^T c_B$ 。由于  $x^*$ 的检验数向量有 $c_B^T B^{-1} A c^T \le 0$ ,因此 $\widetilde{y}$ 是对偶 LP的一个可行解。
- ●由于 $b^{\mathsf{T}}\widetilde{y} = b^{\mathsf{T}}(B^{-1})^{\mathsf{T}}c_B = (B^{-1}b)^{\mathsf{T}}c_B = (x_B^*)^{\mathsf{T}}c_B = c^{\mathsf{T}}x^*$ , 二者目标函数值相等。
- ●由弱对偶定理,可知对对偶 LP 的任意可行解 y,都有  $c^{T}x^{*} \ge b^{T}y$ 。因此 $\tilde{y}$ 是对偶 LP 的一个最优解。定理得证。

### 强对偶定理的逆也成立

定理 2.5.1-3 设 x 和 y 分别为原始 LP 和对偶 LP 的可行解。 若  $c^{T}x = b^{T}y$ ,则 x 和 y 分别为原始 LP 和对偶 LP 的最优解。

- ●证:对原始 LP 的任意可行解x',和对偶 LP 可行解y,由弱对偶定理,都有 $c^{T}x' \ge b^{T}y$ 。
- 现有原始 LP 的可行解 x 满足  $c^Tx = b^Ty$ ,因此 x 为原始 LP 的最优解。
- 对对偶 LP 的任意可行解 y' ,和原始 LP 可行解 x ,由弱对偶定理,都有  $b^{\mathrm{T}}y' \leq c^{\mathrm{T}}x$  。
- 现有对偶 LP 的可行解 y 满足  $b^Ty = c^Tx$ ,因此 y 为对偶 LP 的最优解。

## 原始LP的对偶的对偶, 还是原始LP



等价  
s.t. 
$$\begin{cases} -Ax \le -b \\ Ax \le b \\ x \ge 0 \end{cases}$$
 等价 min  $c^{T}x$   
s.t. 
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$
 (定理 2.5.2)

### 例2.5.1 - 对偶的对偶

$$\min 5x_1 + 21x_3$$

$$x_1 - x_2 + 6x_3 - x_4 = 2$$

$$x_1 + x_2 + 2x_3 - x_5 = 1$$

$$x_j \ge 0; j = 1, 2, ..., 5$$

$$\max 2\omega_1 + \omega_2$$
等价
$$-\omega_1 + \omega_2 \le 5$$

$$-\omega_1 + \omega_2 \le 0$$

$$6\omega_1 + 2\omega_2 \le 21$$

$$-\omega_1 \le 0$$

$$-\omega_2 \le 0$$

$$\omega_1, \omega_2$$
 无限制
$$\infty.t. \begin{cases} x_1 - x_2 + 6x_3 - x_4 = 2 \\ x_1 + x_2 + 2x_3 - x_5 = 1 \end{cases}$$

$$x_1 + \omega_2 \le 5$$

$$x_1 + \omega_2 \le 5$$

$$x_2 + \omega_1 + \omega_2 \le 0$$

$$x_1 - x_2 + 6x_3 \ge 2$$

$$x_1 - x_2 + 6x_3 \ge 2$$

$$x_1 + x_2 + 2x_3 \ge 1$$

$$x_j \ge 0; j = 1, 2, 3$$

#### 对偶理论(二)

#### 定理 2.5.3

给定一个原规划和对偶规划,则下面三种情况必有其一:

- 1.都有最优解;
- 2.都无可行解;
- 3.一个无界另一个不可行。

#### 定理 2.5.4 (互补松紧性)

若x和y分别是原规划和对偶规划的可行解,则x和y分别是原规划和对偶规划的最优解的充要条件是,

$$\forall 1 \leq i \leq m, y_i(a_i^T x - b_i) = 0, \quad \not \boxtimes$$
  
$$\forall 1 \leq j \leq n, (c_j - A_j^T y) x_j = 0.$$

#### 原始LP及其对偶LP的可解性的关系

定理 2.5.3 LP 和它的对偶的可解性的关系,如下表所示。

| 原始\对偶 | 有最优解 | 问题无界 | 无可行解 |
|-------|------|------|------|
| 有最优解  | 1    | ×    | ×    |
| 问题无界  | ×    | ×    | 3    |
| 无可行解  | ×    | 3    | 2    |

- 证: 当原始 LP 有最优解时,设单纯形算法求到的最优 bfs 为  $x^*$ ,基为 B。由定理 2.5.1-2 之证明,  $y^T = c_B^T B^{-1}$  是对偶 LP 的一个最优解。因此,(1,1)成立,(1,2)不能成立,(1,3)不能成立。
- ●由对称性可知,(2,1)和(3,1)也不能成立。

#### 定理2.5.3 证明

- 当原始 LP 无界时,对偶 LP 不可能也是无界。反证。假设原始 LP 无界,对偶 LP 也无界,从而它们都存在可行解。故可假设 x、y 分别是原始 LP 和对偶 LP 的可行解。由弱对偶定理可知, $c^Tx \ge b^Ty$ 。这立即表明原始 LP 和对偶 LP 都是有界的,矛盾。因此(2, 2)不能成立。
- ●已经证明, 当原始 LP 无界时, 对偶 LP 不能有最优解, 也不能无界。即, 对偶 LP 不能有可行解。因此, 对偶 LP 必无可行解, 即, (2, 3)能够成立。
- ●由对称性可知,(3,2)也能够成立。

### 定理2.5.3 证明

●可举例说明,(3,3)也能够成立。

min 
$$x_1$$
 max  $y_1 + y_2$  s.t.  $x_1 + x_2 \ge 1$  (LP) s.t.  $y_1 - y_2 = 1$  (DP)  $x_1 + x_2 \le -1$   $y_1 - y_2 = 0$   $y_1, y_2 \ge 0$ 

max 
$$y_1 + y_2$$
  
s.t.  $y_1 - y_2 = 1$  (DP)  
 $y_1 - y_2 = 0$   
 $y_1, y_2 \ge 0$ 

#### 互补松紧性

定理 2.5.4 设 x 和 y 分别是原始 LP 和对偶 LP 的可行解。则 x 和 y 分别是原始 LP 和对偶 LP 的最优解,当且仅当

$$\begin{cases} \forall 1 \le i \le m, \ y_i(a_i^{\mathsf{T}} x - b_i) = 0 \\ \forall 1 \le j \le n, \ (c_j - A_j^{\mathsf{T}} y) x_j = 0 \end{cases}$$
 (1)

- •证: 定义 $u = \sum_{i=1}^{m} y_i (a_i^{\mathrm{T}} x b_i)$ ,  $v = \sum_{j=1}^{n} (c_j A_j^{\mathrm{T}} y) x_j$ 。
- ●变量 $y_i$ 和约束 $a_i^T x \ge b_i$ 或 $a_i^T x = b_i$ 对应。
- ●由于x和y分别是原始 LP 和对偶 LP 的可行解,因此,若 $y_i \ge 0$ ,则有 $a_i^T x \ge b_i$ ;若 $y_i$  无限制,则有 $a_i^T x = b_i$ 。
- ●因此 $\forall i, y_i(a_i^T x b_i) \ge 0$ ,且有  $u \ge 0$ 。
- 同理  $\forall j, (c_j A_j^T y) x_j \ge 0$ ,且有  $v \ge 0$ 。

#### 定理2.5.4 证明

●由 u 和 v 的定义,

$$u + v = \sum_{i=1}^{m} y_{i} (a_{i}^{T} x - b_{i}) + \sum_{j=1}^{n} (c_{j} - A_{j}^{T} y) x_{j}$$

$$= \sum_{i=1}^{m} y_{i} \sum_{j=1}^{n} a_{ij} x_{j} - b^{T} y + c^{T} x - \sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{ij} y_{i}$$

$$= c^{T} x - b^{T} y_{o}$$

- ●因此,(1)式成立 u=0, v=0 u+v=0  $c^{T}x=b^{T}y$  x 和 y 分别是原始 LP 和对偶 LP 的最优解。
- 反过来也成立: x 和 y 分别是原始 LP 和对偶 LP 的最优解。  $c^{T}x = b^{T}v$  u + v = 0 u = 0, v = 0 (1)式成立。

### 互补松紧性(推论)

定理: 设x和y分别为原始 LP 和对偶 LP 的最优解。则:

- (1) 若一个变量严格大于 0,则其对应的约束取等式。
- (2) 若一个约束以严格不等式成立,则其对应的变量等于0。
- ●证明:由于x和y分别为原始 LP 和对偶 LP 的最优解,由

$$\begin{cases} \forall 1 \le i \le m, \ y_i(a_i^{\mathsf{T}} x - b_i) = 0 \\ \forall 1 \le j \le n, \ (c_j - A_j^{\mathsf{T}} y) x_j = 0 \end{cases}$$

• 这立即表明  $y_i > 0 \Rightarrow a_i^{\mathsf{T}} x = b_i$ ,  $a_i^{\mathsf{T}} x > b_i \Rightarrow y_i = 0$ ;

$$x_j > 0 \Rightarrow A_j^{\mathrm{T}} y = c_j$$
,  $A_j^{\mathrm{T}} y < c_j \Rightarrow x_j = 0$ 

### 最小费用流问题



min 
$$z = x_1 + 2x_2 + 2x_3 + 3x_4 + x_5$$
  
s.t.  $(v_1)$   $x_1 + x_2 = 1$   
 $(v_2)$   $-x_1 + x_3 + x_4 = 0$   
 $(v_3)$   $-x_2 - x_3 + x_5 = 0$   
 $(v_4)$   $-x_4 - x_5 = -1$   
 $x_i \ge 0$   $\forall i$ 

#### 一个最优解为 $x^{*T} = (0, 1, 0, 0, 1)$ ,

基矩阵 
$$B = \begin{pmatrix} A_2 & A_4 & A_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

#### 最小费用流问题的对偶

max 
$$z = y_1 - y_4$$
  
s.t.  $(e_1)$   $y_1 - y_2$   $\leq 1$   
 $(e_2)$   $y_1 - y_3$   $\leq 2$   
 $(e_3)$   $y_2 - y_3$   $\leq 2$   
 $(e_4)$   $y_2 - y_4$   $\leq 3$   
 $(e_5)$   $y_3 - y_4$   $\leq 1$   
 $y_j$ 无限制  $\forall j$   
最优解  $y^{\mathrm{T}} = c_B^{\mathrm{T}} B^{-1} = \begin{pmatrix} 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 1 \end{pmatrix}$ 

由于 $x_5 = 1 > 0$ ,由互补松弛性可知约束(5)取等式,从而

### 对偶单纯形算法的基本思想

- 回忆单纯形算法。从一个bfs出发,不断变换基矩阵,直到当前bfs x的检验数向量  $\zeta^T = c_B^T B^{-1} A c^T \le 0$ 时,则求到了原始LP的最优解。
- 由于  $c_B^T B^{-1} A c^T \le 0$ ,  $y^T = c_B^T B^{-1}$ 是对偶LP的一个可行解。
- 因此,单纯形算法可解释为,从原始LP的可行解出发,保持原始LP的可行性,向着对偶LP可行解的方向迭代。这样的单纯形算法称为原始单纯形算法。
- 同样的想法,可从对偶LP的可行解出发,保持对偶LP的可行性,向原始LP可行解的方向迭代。这样的单纯形算法称为对偶单纯形算法。

### 对偶单纯形算法

- 1 找一个原始 LP 的基本解(但是不可行)和对偶 LP 的一个可行解( $\zeta \le 0$ ),组成初始单纯形表。
  - 2  $r \leftarrow \arg\min \{\overline{b}_i \mid i = 1, 2, ..., m\}$
  - 3 若 $b_r \ge 0$ ,则当前解就是原始 LP 的最优解,停止。
  - 4 若  $\forall 1 \leq j \leq n, \overline{a}_{rj} \geq 0$ ,则原始问题无可行解,停止。

5 
$$k \leftarrow \arg\min\left\{\frac{\zeta_j}{\overline{a}_{rj}} \mid \overline{a}_{rj} < 0, j = 1, 2, ..., n\right\}$$

6 以 $\overline{a}_{rk}$ 为转轴元做一次旋转变换(以 $A_k$ 替代  $B_r$ (即  $A_{B(r)}$ )得到一个新的基 B),转第 2 步。

# 出基变量 $x_{B(r)}$ 的选取

- ●要减少原始解的不可行性,选择这样一个行 r 做为旋转行,它对应的  $\overline{b}_r < 0$  (因为原始 LP 要求  $x \ge 0$ )。因此有  $r \leftarrow \arg\min\{\overline{b}_i \mid i = 1, 2, ..., m\}$ 。
- ●通过旋转变换,希望增加目标函数值,且保持对偶解的可行性。当到达了第一个原始基本可行解时,就求到了原始 LP 的最优解。
- ●假设 ārk 为转轴元。则旋转变换后,目标函数值为

$$\hat{z} = z - \frac{\overline{b}_r}{\overline{a}_{rk}} \zeta_k$$
,新的检验数为 $\hat{\zeta}_j = \zeta_j - \frac{\overline{a}_{rj}}{\overline{a}_{rk}} \zeta_k$ 。

#### 换基

|            | $x_1$     | ••• | $x_{B(r)}$ | •••    | $x_m$     | $x_{m+1}$     | ••• | $x_k$               |     | $x_n$     |                  |
|------------|-----------|-----|------------|--------|-----------|---------------|-----|---------------------|-----|-----------|------------------|
|            | $\zeta_1$ | ••• | 0          | •••    | $\zeta_m$ | $\zeta_{m+1}$ | ••• | $\zeta_k$           |     | $\zeta_n$ | Z                |
| $x_{B(1)}$ |           | ••• | 0          | •••    |           | •••           | ••• |                     |     |           | $\overline{b}_1$ |
| ÷          | ÷         | :   | ÷          | •<br>• | :         | :             | :   | ÷                   | :   | ÷         | ÷                |
| $x_{B(r)}$ |           |     | 1          |        |           |               |     | $\overline{a}_{rk}$ |     |           | $\overline{b}_r$ |
| :          | :         | •   | ÷          | •      | •         | •             | :   | ÷                   | :   | :         | :                |
| $x_{B(m)}$ |           | ••• | 0          | •••    |           | •••           | ••• |                     | ••• | •••       | $\overline{b}_m$ |

# 进基变量 $x_k$ 的选取

- ●因为 $\zeta_k \leq 0$ ,  $b_r < 0$ , 要增加 z. 值,则要求转轴元  $\overline{a}_{rk} < 0$ 。
- ●要保持对偶解的可行性,则要求  $\forall 1 \leq j \leq n, \zeta_j \frac{\zeta_k}{\overline{a}_{xx}} \overline{a}_{rj} \leq 0$ 。
- ●若 $\overline{a}_{rj} \ge 0$ ,因为 $\zeta_k \le 0$ , $\overline{a}_{rk} < 0$ ,则已有 $\zeta_j \frac{\zeta_k}{\overline{a}_{rk}} \overline{a}_{rj} \le 0$ 。
- 现假设  $\overline{a}_{rj} < 0$  。 要保证  $\zeta_j \frac{\zeta_k}{\overline{a}_{xk}} \overline{a}_{rj} \le 0$  , 即  $\zeta_j \le \frac{\zeta_k}{\overline{a}_{xk}} \overline{a}_{rj}$  , 即

$$\frac{\zeta_j}{\overline{a}_{ri}} \ge \frac{\zeta_k}{\overline{a}_{rk}}$$
。 因此,

$$\frac{\zeta_j}{\overline{a}_{rj}} \ge \frac{\zeta_k}{\overline{a}_{rk}}$$
。 因此,  $k \leftarrow \operatorname{arg\,min} \left\{ \frac{\zeta_j}{\overline{a}_{rj}} \mid \overline{a}_{rj} < 0, j = 1, 2, ..., n \right\}$ 。

#### 获得初始单纯形表 (与单纯形算法相同)

- (1)将 LP 转为标准型。
- (2) 构造表格:



(3) 选取 *A* 中的若干列为基,用初等行变换将这些列变为单位阵,检验数行一同参与变换。得到初始单纯形表:



#### 例2.5.4

#### 例:解下列规划

$$\min x_1 + x_2 + x_3$$

$$s.t. \begin{cases} 3x_1 + x_2 + x_3 \ge 1 \\ -x_1 + 4x_2 + x_3 \ge 2 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

#### 首先化为标准形式

$$\min x_1 + x_2 + x_3$$

$$s.t.\begin{cases} 3x_1 + x_2 + x_3 - x_4 = 1 \\ -x_1 + 4x_2 + x_3 - x_5 = 2 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

# 初始单纯形表,及迭代1

|                  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |          |
|------------------|-------|-------|-------|-------|-------|----------|
| $\boldsymbol{z}$ | -1    | -1    | -1    | 0     | 0     | 0        |
| $\chi_4$         | -3    | -1    | -1    | 1     | 0     | -1<br>-2 |
| $x_5$            | 1     | -4    | -1    | 0     | 1     | -2       |

此时原始 LP 有一个基本解,对偶 LP 有一个可行解(因为检验数向量( $\zeta \leq 0$ ),因此用对偶单纯形法求解。

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |          |
|-------|-------|-------|-------|-------|-------|----------|
| Z     | -1    | -1    | -1    | 0     | 0     |          |
| $x_4$ | -3    | -1    | -1    | 1     | 0     | -1<br>-2 |
| $x_5$ | 1     | -4    | -1    | 0     | 1     | -2       |

# 迭代2

|                  | $x_1$ | $x_2$ | $x_3$       | $x_4$ | $x_5$ |      |
|------------------|-------|-------|-------------|-------|-------|------|
| $\boldsymbol{z}$ | -5/4  | 0     | -3/4        | 0     | -1/4  | 1/2  |
| $x_4$            | -13/4 | 0     | -3/4        | 1     | -1/4  | -1/2 |
| $x_2$            | -1/4  | 1     | -3/4<br>1/4 | 0     | -1/4  | 1/2  |

| -     | $x_1$ | $x_2$ | $x_3$        | $x_4$ | $x_5$ |      |
|-------|-------|-------|--------------|-------|-------|------|
| Z     | 0     | 0     | -6/13        | -5/13 | -2/13 | 9/13 |
| $x_1$ | 1     | 0     | 3/13<br>4/13 | -4/13 | 1/13  | 2/13 |
| $x_2$ | 0     | 1     | 4/13         | -1/13 | -3/13 | 7/13 |

此时右端项 $\overline{b} > 0$ , 求到原始 LP 的最优解。

## 例2.4.1 (2)

#### 用对偶单纯形算法重解例 2.4.1:

min 
$$5x_1 + 21x_3$$
  
s.t.  $x_1 - x_2 + 6x_3 - x_4 = 2$   
 $x_1 + x_2 + 2x_3 - x_5 = 1$   
 $x_i \ge 0 \quad \forall i$ 

#### 列出预备单纯形表:

|   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |   |
|---|-------|-------|-------|-------|-------|---|
| Z | -5    | 0     | -21   | 0     | 0     | 0 |
|   | 1     | -1    | 6     | -1    | 0     | 2 |
|   | 1     | 1     | 2     | 0     | -1    | 1 |

## 第1次旋转

以  $B = (A_4, A_5)$  为基,得到 初始单纯形表 (典式):

| _ | $x_1$ | $x_2$ | $x_3$         | $x_4$ | $x_5$ |    |
|---|-------|-------|---------------|-------|-------|----|
| Z | -5    | 0     |               | 0     | 0     | 0  |
|   | -1    | 1     | <del>-6</del> | 1     | 0     | -2 |
|   | -1    | -1    | -2            | 0     | 1     | -1 |

此时  $\mathbf{0}$ ,对偶  $\mathbf{LP}$  可行;  $\overline{b} < 0$ ,原始  $\mathbf{LP}$  不可行。使用对偶单纯形算法求解。第一次旋转后:

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |      |
|-------|-------|-------|-------|-------|-------|------|
| z     | -3/2  | -7/2  | 0     | -7/2  | 0     | 7    |
| $x_3$ | 1/6   | -1/6  | 1     | -1/6  | 0     | 1/3  |
|       | -2/3  | -4/3  | 0     | -1/3  | 1     | 1 /2 |

# 第2次旋转

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |      |
|-------|-------|-------|-------|-------|-------|------|
| Z     | 0     | -1/2  | 0     | -11/4 | -9/4  | 31/4 |
| $x_3$ | 0     | -1/2  | 1     | -1/4  | 1/4   | 1/4  |
| $x_1$ | 1     | 2     | 0     | 1/2   | -3/2  | 1/2  |

此时 $\overline{b} \ge 0$ ,原始 LP 可行,得到最优解。

