Damped Spring Model

R. Andrei Romero Alvarez https://github.com/romxz

In physics, a particle (i.e. a point) is completely described via its position vector and its velocity vector. This is called the particle's "state".

Suppose that a particle named *Alice* with position vector $p = (p_x, p_y, p_z)$ is attracted to another particle named *Bob* (the "attractor") with its own position vector $q = (q_x, q_y, q_z)$.

For simplicity, write the velocity of the first particle *Alice* as:

$$v = (v_x, v_y, v_z) := dp/dt = (dp_x/dt, dp_y/dt, dp_z/dt)$$
,

and the velocity of the second attracting particle *Bob* as:

$$u = (u_x, u_y, u_z) := dq/dt = (dq_x/dt, dq_y/dt, dq_z/dt)$$

If you know the particle Alice's starting state, $\{p_0, v_0\}$, as well as the attracting particle Bob's starting state $\{q_0, u_0\}$, you can calculate Alice's next state $\{p_1, v_1\}$ after some small time step Δt if you know the nature of the interaction between the two.

In this case, you can estimate/model the interaction with the following parameters:

m: Alice's resistance to acceleration, ie. its inertia

k: The strength of the attraction, which makes Alice accelerate towards Bob

b: The damping factor, what prevents Alice from moving too fast towards Bob

These are just some numbers you can play around with. In that case, given that we know p_0 , v_0 , as well as q_1 and u_1 , then after a time step of Δt seconds, we have:

$$p_1 = c_0 p_0 + c_1 q_0 + c_2 v_0 + c_3 u_0$$

$$v_1 = c_4 p_0 + c_5 q_0 + c_6 v_0 + c_7 u_0$$

Where the above c_i "constants" (i.e. only dependent on the length of the time step as well as the above parameters) are given by:

$$c_0 = 1 - k(\Delta t)^2 / 2m$$
; $c_1 = k(\Delta t)^2 / 2m$;
 $c_2 = \Delta t - b(\Delta t)^2 / 2m$; $c_3 = b(\Delta t)^2 / 2m$;
 $c_4 = -(k\Delta t/m)$; $c_5 = (k\Delta t/m)$;

$$c_6 = 1 - (b\Delta t/m)$$
; $c_7 = (b\Delta t/m)$

These "constants" can be calculated once, if you set what the parameters m, b, k and Δt are. This way, if Bob is externally driven (i.e. its position and velocity are determined independently), Alice's position and velocity can be calculated this way

The above equations are vector equations: Just apply it individually to each vector component:

$$p_{1x} = c_0 p_{0x} + c_1 q_{0x} + c_2 v_{0x} + c_3 u_{0x}$$

$$p_{1y} = c_0 p_{0y} + c_1 q_{0y} + c_2 v_{0y} + c_3 u_0 y$$

$$p_{1z} = c_0 p_{0z} + c_1 q_{0z} + c_2 v_{0z} + c_3 u_{0z}$$

And likewise for v_1 :

$$\begin{aligned} v_{1x} &= c_4 p_{0x} + c_5 q_{0x} + c_6 v_{0x} + c_7 u_{0x} \\ v_{1y} &= c_4 p_{0y} + c_5 q_{0y} + c_6 v_{0y} + c_7 u_{0y} \\ v_{1z} &= c_4 p_{0z} + c_5 q_{0z} + c_6 v_{0z} + c_7 u_{0z} \end{aligned}$$

A suggestion to use for the c_i constants (just as a starting point, before you tweak it), given that you know ~ what Δt is to use:

 $m \approx 1000$ $k \approx 0.6$ $b \approx 35$

This should give you a damping ratio of ~0.7, which is underdamped. This should look ok assuming you update every $\Delta t \approx 2ms$ [Working on it, not 100% sure]

You should also however, set a maximum velocity for all particle's, otherwise you'll get funny stuff. Start with $v_0 = 0$;

How to "drive" Alice:

To move Alice, you need to specify the state of Bob as a pair of vectors $\{q, u\}$ in such a way that u remains the velocity of q. I.e. q and u are not independent.

So, if you prescribe q through some function, then you need to calculate u, while if you prescribe u with some function, you need to calculate q.

This is actually very easy to do, and you can do whichever way is more convenient. You need a starting state $\{q_0, u_0\}$, which can be anything you want at first. Then:

If you prescribe q_1 , then $u_1:=(q_1-q_0)/\Delta t$ If you prescribe u_1 , then $q_1:=q_0+u_1\Delta t$

-

One way to model this dynamically is by supposing that this attraction is dependent on the distance (vector) s := (p - q) between these two points, as well as the relative velocity (vector) ds/dt = (v - u) between them.

If this attraction is like a damped spring, then the interactive force will be negatively proportional to s as well as to ds/dt, i.e.:

$$F = -ks - b(ds/dt)$$

By Newton's second law, this force will produce an acceleration on the location of Alice via:

$$m(d^2p/dt^2) = F = -ks - b(ds/dt)$$

Writing the acceleration as $a := (d^2p/dt^2)$, for simplicity, rewriting the above have:

$$a = -(k/m)s - (b/m)(ds/dt)$$

$$a = -(k/m)(p-q) - (b/m)(v-u)$$

This is the acceleration of point p. With this, if we know what $\{p, v\}$ and $\{q, u\}$ are at time t=0, we can also approximate what $\{p, v\}$ will be after time step Δt through the Taylor expansion:

$$p_1 = p_0 + v_0 \Delta t + (1/2)a_0(\Delta t)^2$$

$$p_1 = p_0 + v_0 \Delta t - (1/2m)[k(p_0 - q_0) + b(v_0 - u_0)](\Delta t)^2$$

Which can be rewritten as:

$$p_1 = c_0 p_0 + c_1 q_0 + c_2 v_0 + c_3 u_0$$

Where:

$$c_0 = 1 - k(\Delta t)^2 / 2m$$
; $c_1 = k(\Delta t)^2 / 2m$;
 $c_2 = \Delta t - b(\Delta t)^2 / 2m$; $c_3 = b(\Delta t)^2 / 2m$

Likewise, we can approximate how v will change after the current time step Δt , also through the Taylor expansion:

$$v_1 = v_0 + a_0 \Delta t$$

$$v_1 = v_0 - (k/m)(p_0 - q_0) \Delta t - (b/m)(v_0 - u_0) \Delta t$$

Which can be rewritten as:

$$v_1 = c_4 p_0 + c_5 q_0 + c_6 v_0 + c_7 u_0$$

Where:

$$\begin{array}{ll} c_4 = -(k\Delta t/m)\,; & c_5 = (k\Delta t/m)\,; \\ c_6 = 1 - (b\Delta t/m)\,; & c_7 = (b\Delta t/m) \end{array}$$