SEMINARIO DE TOPOLOGÍA

Aplicaciones de Análisis Topológico de Datos

Resumen

El objetivo de este curso es que el estudiante aprenda los conceptos básicos del análisis topológico de datos con el fin de explorar aplicaciones en varias áreas y los paquetes disponibles tanto en Python como en R. Se pretende aplicar estas técnicas a un conjunto de datos reales. Es necesario llevar computadora para las sesiones prácticas.

Topología, Homología Persistente, Complejos Simpliciales, Códigos de Barras, Números de Betti

- 1. Complejos [5, 10].
 - a) Complejos simpliciales.
 - b) Complejos de Rips y Čech.
 - c) Complejos de Delaunay, Witness y otros.
 - d) Complejos cúbicos.
- 2. Homología [5, 10]
 - a) Cadenas, ciclos y fronteras.
 - b) Homología inducida.
 - c) Homología reducida.
 - d) Homología singular.
 - e) Característica de Euler.
- 3. Homolgía persistente [5, 10, 11].
 - a) Filtraciones.
 - b) Persistencia.
 - c) Homología persistente.
 - d) Códigos de barras.
 - e) Números de Betti.
- 4. Teoría de Morse y gráficas de Reebs [5, 10].
- 5. Aprendizaje de Variedades [12].
- 6. Aplicaciones: Se exploraran diversas aplicaciones a diferentes áreas y los siguientes softwares. [12, 3, 8, 4, 13, 16, 7]
 - a) GUDHI: Geometry Understanding in Higher Dimensions, [9, 1].
 - b) TDA: Statistical Tools for Topological Data Analysis, [6].
 - c) Giotto-TDA, [15, 14].
 - d) Ripser, [2].

Referencias

- [1] Gudhi: Geometry understanding in higher dimensions.
- [2] Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes. *J. Appl. Comput. Topol.*, 5(3):391–423, 2021.
- [3] Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent homology analysis of brain artery trees. *The annals of applied statistics*, 10(1):198, 2016.
- [4] Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar Carlsson. A topological paradigm for hippocampal spatial map formation using persistent homology. 2012.
- [5] Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge University Press, 2022.
- [6] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Introduction to the r package tda. arXiv preprint arXiv:1411.1830, 2014.
- [7] Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov. Clique topology reveals intrinsic geometric structure in neural correlations. Proceedings of the National Academy of Sciences, 112(44):13455–13460, 2015.
- [8] Pek Y Lum, John Carlsson, Gunnar Carlsson, et al. Extracting insights from the shape of complex data using topology. *Scientific reports*, 3(1):1–8, 2013.
- [9] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Simplicial complexes and persistent homology. In *Mathematical Software-ICMS 2014: 4th International Congress*, Seoul, South Korea, August 5-9, 2014. Proceedings 4, pages 167-174. Springer, 2014.
- [10] Vidit Nanda. Computational algebraic topology.
- [11] Nina Otter, Mason A Porter, et al. A roadmap for the computation of persistent homology. *EPJ Data Science*, 6:1–38, 2017.
- [12] Raúl Rabadán and Andrew J Blumberg. Topological data analysis for genomics and evolution: topology in biology. Cambridge University Press, 2019.
- [13] Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the analysis of high dimensional data sets and 3d object recognition. *PBG@ Eurographics*, 2:091–100, 2007.
- [14] G. Tauzin, U. Lupo, L. Tunstall, et al. giotto-tda: A topological data analysis toolkit for machine learning and data exploration.
- [15] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M. Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis toolkit for machine learning and data exploration. *Journal of Machine Learning Research*, 22(39):1–6, 2021.
- [16] Xin Xu, Jessi Cisewski-Kehe, Sheridan Beckwith Green, and Daisuke Nagai. Finding cosmic voids and filament loops using topological data analysis. *Astronomy and Computing*, 27:34–52, 2019.

Adriana Haydeé Contreras Peruyero haydeeperuyero@matmor.unam.mx

Shaday@matmor.unam.mx