Physique moderne - semaine 9

28 octobre 2024

Chimie Shanghai - 国际卓越工程师学院- 华东理工大学

Pascal Wang - email: pascal.wang.tao@ecust.edu.cn

Questions pour réviser

Dans la démonstration de la loi de Dulong et Petit (杜龙和佩蒂特定律), quelle est la contribution d'une molécule d'un solide à l'énergie moyenne (平均能量) $\langle E \rangle$ du solide?

Une molécule se comporte comme un oscillateur harmonique (谐振子) 3D (三维). L'énergie classique d'un tel oscillateur est

$$E = E_c + E_p = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}m\omega^2(x^2 + y^2 + z^2)$$

On compte 6 degrés de liberté quadratiques.

D'après le théorème d'équipartition de l'énergie,

$$\langle E \rangle = 6 \cdot \frac{1}{2} k_B T = 3k_B T$$

Questions pour réviser

Quel est le domaine de validité (有效域) de la loi de Dulong et Petit?

La loi de Dulong et Petit $C_{V,m}(solide) = 3R$ n'est valable qu'à haute température (高温)

$$k_BT \gg \hbar\omega$$

Pour vous tester

Savez-vous?

- Identifier l'ensemble statistique correspondant à des paramètres fixés
- Tracer l'allure de la distribution des vitesses de Maxwell
 - Expliquer l'effet de la température sur la vitesse moyenne et la dispersion des vitesses
 - Calculer la distribution des vitesses de Maxwell (en vecteur et en norme)
- Ecrire la fonction de partition pour un système donné
- Enoncer le théorème d'équipartition de l'énergie, avec ses hypothèses (démonstration non requise)
 - Donner des exemples de degré de liberté quadratiques
- Donner et justifier la capacité thermique d'un gaz monoatomique
- Expliquer la dépendance en température de la capacité thermique d'un gaz diatomique
- Enoncer la loi de Dulong et Petit
 - Justifier la loi de Dulong et Petit avec le théorème d'équipartition
 - Discuter des limites de validité de la loi de Dulong et Petit
- Enoncer les hypothèses du modèle de Einstein
 - Expliquer ce qu'apporte le modèle de Einstein par rapport à la loi de Dulong et Petit
 - Tracer l'allure de la capacité thermique en fonction de la température dans le modèle de Einstein

Pour vous tester (semaine 8)

Savez-vous?

- Identifier l'ensemble statistique correspondant à des paramètres fixés
- Tracer l'allure de la distribution des vitesses de Maxwell
 - Expliquer l'effet de la température sur la vitesse moyenne et la dispersion des vitesses
 - Calculer la distribution des vitesses de Maxwell (en vecteur et en norme)
- Ecrire la fonction de partition pour un système donné
- Enoncer le théorème d'équipartition de l'énergie, avec ses hypothèses (démonstration non requise)
 - Donner des exemples de degré de liberté quadratiques
- Donner et justifier la capacité thermique d'un gaz monoatomique
- Expliquer la dépendance en température de la capacité thermique d'un gaz diatomique
- Enoncer la loi de Dulong et Petit
 - Justifier la loi de Dulong et Petit avec le théorème d'équipartition
- On vient de le réviser!

- Discuter des limites de validité de la loi de Dulong et Petit
- Enoncer les hypothèses du modèle de Einstein
 - Expliquer ce qu'apporte le modèle de Einstein par rapport à la loi de Dulong et Petit
 - Tracer l'allure de la capacité thermique en fonction de la température dans le modèle de Einstein

Les ensembles statistiques

Programme d'aujourd'hui

Ensemble statistique	Ensemble microcanonique	Ensemble canonique	Ensemble grand canonique
Paramètres fixes	(E, N, V)	(T, N, V)	(T, μ, V)
Grandeurs échangées	(\varnothing)	(E)	(E,N)
Probabilité d'un micro- état	$p_i = \frac{1}{W}$	$p_i = \frac{e^{-E_i/k_B T}}{Z}$	$p_i = \frac{e^{-(E_i - \mu N_i)/k_B T}}{Z_G}$
Fonction de partition (cas discret)	W	$Z = \sum_{\{i\}} e^{-\frac{E_i}{k_B T}}$	$Z_G = \sum_{\{i\}} e^{-\frac{E_i - N_i \mu}{k_B T}}$
Fonction de partition (Cas continu)	$W = \int_{-\infty}^{+\infty} \rho(E) dE$	$Z = \int_{-\infty}^{+\infty} \rho(E)e^{-\frac{E}{k_B T}} dE$	$Z_G = \sum_{N=0}^{\infty} \int_{-\infty}^{+\infty} \rho(E, N) e^{-\frac{E - N\mu}{k_B T}} dE$
Potentiel thermodynamique	$-S = -k_B T \ln W$	$F = -k_B T \ln Z$	$J = -k_B T \ln Z_G$

L'ensemble grand canonique : définition

Réservoir d'énergie et de particules R

$$E_R \gg E_{\Sigma}$$
 $N_R \gg N_{\Sigma}$

Un système étudié Σ peut être représenté dans l'ensemble grand canonique (巨正则系综) lorsqu'il peut échanger (交换) de l'énergie E et des particules N avec un réservoir (储存器).

Alors, sa température T et son potentiel chimique μ (化学势) sont fixés par le réservoir.

L'ensemble grand canonique : exemple

On considère une surface S comportant un nombre de sites d'adsorption N_S (吸附点) et qui est en équilibre (平衡) avec un gaz. Un atome adsorbé sur la surface a une énergie $-\Delta$ et pas d'énergie cinétique.

La surface S peut échanger des particules et de l'énergie avec le gaz. Le potentiel chimique μ (化学势) et la température T sont imposés par le gaz, qui agit comme un thermostat et un réservoir de particules.

Donc on travaille dans l'ensemble grand canonique (巨正则系综).

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

La démonstration est similaire à celle dans l'ensemble canonique.

Réservoir d'énergie et de particules R

$$E_R \gg E_{\Sigma} \qquad N_R \gg N_{\Sigma}$$

On applique le formalisme de l'ensemble microcanonique (微正则系综) au système $\{\Sigma + R\}$ qui est isolé (孤立系统).

L'énergie totale est conservée

$$E_{tot} = E_R + E_{\Sigma}$$

Le nombre de particules total est conservé $N_{tot} = N_R + N_{\Sigma}$

L'entropie (熵) totale est extensive (广延量) et est aussi conservée

$$S_{tot}(E_{tot}, N_{tot}) = S_{\Sigma} (E_{\Sigma}, N_{\Sigma}) + S_{R} (E_{R}, N_{R})$$

$$S_{tot} = S_{\Sigma} (E_{\Sigma}, N_{\Sigma}) + S_{R} (E_{tot} - E_{\Sigma}, N_{tot} - N_{\Sigma})$$

$$S_{tot} = S_{\Sigma} (E_{\Sigma}, N_{\Sigma}) + S_{R} (E_{tot} - E_{\Sigma}, N_{tot} - N_{\Sigma})$$

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

La démonstration est similaire à celle dans l'ensemble canonique.

Réservoir d'énergie et de particules R

$$E_R \gg E_{\Sigma} \qquad N_R \gg N_{\Sigma}$$

On considère un micro-état i (微观状态) du système Σ , qui a pour énergie E_i et nombre de particules N_i .

La probabilité de réaliser ce micro-état i pour le système Σ est la probabilité microcanonique (微规范概率) suivante sur le système $\{\Sigma+R\}$ qui est isolé (孤立系统)

 $p_i = \frac{\text{nombre d'états accessibles (可达) à } \{\Sigma + R\} \text{ avec } \Sigma \text{ dans l'état i}}{\text{nombre total d'états accessibles (可达) à } \{\Sigma + R\}$

$$p_{i} = \frac{1 \times W_{R} \left(E_{tot} - E_{i}, N_{tot} - N_{i}\right)}{W_{tot} \left(E_{tot}, N_{tot}\right)}$$

avec $W_R(E,N)$ le nombre de microétats de R ayant pour énergie E et nombre de particules N

idem pour $W_{tot}(E, N)$ et $\{\Sigma + R\}$

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

La démonstration est similaire à celle dans l'ensemble canonique.

Réservoir d'énergie et de particules R

$$E_R \gg E_{\Sigma}$$
 $N_R \gg N_{\Sigma}$

On considère un micro-état i (微观状态) du système Σ , qui a pour énergie E_i et nombre de particules N_i .

$$p_{i} = \frac{W_{R} \left(E_{tot} - E_{i}, N_{tot} - N_{i}\right)}{W_{tot} \left(E_{tot}, N_{tot}\right)}$$

avec $W_R(E,N)$ le nombre de microétats de R ayant pour énergie E et nombre de particules N

idem pour $W_{tot}(E, N)$ et $\{\Sigma + R\}$

avec l'entropie microcanonique

$$S = k_B \ln W$$

$$p_i = \frac{e^{S_R(E_{tot} - E_i, N_{tot} - N_i)/k_B}}{e^{S_{tot}(E_{tot}, N_{tot})/k_B}} \longrightarrow \text{Calculer } S_R(E_{tot} - E_i, N_{tot} - N_i)?$$

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

On a montré que pour un micro-état
$$i$$
,
$$p_i = \frac{e^{S_R(E_{tot} - E_i, N_{tot} - N_i)/k_B}}{e^{S_{tot}(E_{tot}, N_{tot})/k_B}} \quad \text{Calculer } S_R\left(E_{tot} - E_i, N_{tot} - N_i\right)$$
?

$$S_{R}\left(E_{tot} - E_{i}, N_{tot} - N_{i}\right) = S_{R}\left(E_{tot}, N_{tot}\right) - \left(\frac{\partial S_{R}}{\partial E_{R}}\right)_{N_{R}, V}\left(E_{tot}, N_{tot}\right) E_{i} - \left(\frac{\partial S_{R}}{\partial N_{R}}\right)_{E_{R}, V}\left(E_{tot}, N_{tot}\right) N_{i}$$

$$E_{R} \gg E_{i}$$

$$N_{R} \gg N_{i}$$

développement limité

(级数展开)

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

On a montré que pour un micro-état
$$i$$
,
$$p_i = \frac{e^{S_R(E_{tot} - E_i, N_{tot} - N_i)/k_B}}{e^{S_{tot}(E_{tot}, N_{tot})/k_B}} \quad \text{Calculer } S_R\left(E_{tot} - E_i, N_{tot} - N_i\right)$$
?

$$S_{R}\left(E_{tot}-E_{i},N_{tot}-N_{i}\right)=S_{R}\left(E_{tot},N_{tot}\right)-\underbrace{\left(\frac{\partial S_{R}}{\partial E_{R}}\right)_{N_{R},V}\left(E_{tot},N_{tot}\right)E_{i}-\left(\frac{\partial S_{R}}{\partial N_{R}}\right)_{E_{R},V}\left(E_{tot},N_{tot}\right)N_{i}}_{C_{R}\gg N_{i}}$$

(级数展开)
$$\frac{\partial S}{\partial E} \bigg)_{NN} = ?$$

$$\left(\frac{\partial S}{\partial N}\right)_{E,V} = ?$$

Objectif: Montrer que la probabilité (概率) d'un micro-état est de la forme $p_i \propto e^{-(E_i - \mu N_i)/k_B T}$.

On a montré que pour un micro-état
$$i$$
,
$$p_i = \frac{e^{S_R(E_{tot} - E_i, N_{tot} - N_i)/k_B}}{e^{S_{tot}(E_{tot}, N_{tot})/k_B}}$$
 Calculer $S_R(E_{tot} - E_i, N_{tot} - N_i)$?

$$S_{R}\left(E_{tot}-E_{i},N_{tot}-N_{i}\right)=S_{R}\left(E_{tot},N_{tot}\right)-\underbrace{\left(\frac{\partial S_{R}}{\partial E_{R}}\right)_{N_{R},V}\left(E_{tot},N_{tot}\right)E_{i}-\left(\frac{\partial S_{R}}{\partial N_{R}}\right)_{E_{R},V}\left(E_{tot},N_{tot}\right)N_{i}}_{E_{R},V}$$

$$C_{R}\gg N_{i}$$
développement limité
$$\frac{1}{T_{R}}$$

$$\frac{1}{T_{R}}$$

(级数展开)
$$S_R \left(E_{tot} - E_i, N_{tot} - N_i \right) = S_R \left(E_{tot}, N_{tot} \right) - \frac{E_i}{T_R} + \frac{N_i \cdot \mu_R}{T_R}$$

D'où

$$p_{i} = \frac{e^{S_{R}(E_{tot}, N_{tot})/k_{B}}}{e^{S_{tot}(E_{tot}, N_{tot})/k_{B}}} e^{-\frac{E_{i} - N_{i} \cdot \mu_{R}}{k_{B}T_{R}}} = \frac{e^{-\frac{E_{i} - N_{i} \cdot \mu_{R}}{k_{B}T_{R}}}}{Z_{G}}$$

avec Z_G indépendante du micro-état i, appelée fonction de partition grand canonique (大典范分割函数) 14

Fonction de partition grand canonique: niveaux d'énergie discrets

Dans l'ensemble grand canonique, à l'équilibre, la température $T=T_R=T_\Sigma$ et le potentiel chimique $\mu = \mu_R = \mu_{\Sigma}$ sont fixés.

La probabilité d'un micro-état i est

$$p_i = \frac{e^{-\frac{E_i - N_i \mu}{k_B T}}}{Z_G}$$

avec Z_G la fonction de partition grand canonique (大典范分割函数) qui s'obtient en sommant sur les micro-états $\{i\}$

en regroupant par énergie E et par nombre de particules N,

$$Z_{G} = \sum_{E_{i}, N_{j}} W(E_{i}, N_{j}) e^{-\frac{E_{i} - N_{j} \mu}{k_{B}T}}$$

en regroupant par nombre de particules,
$$Z_G = \sum_{N_j} e^{\frac{N_j \, \mu}{k_B T}} Z_{N_j}$$
 avec $Z_{N_j} = \sum_{E_i} W(E_i, N_j) e^{-\frac{E_i}{k_B T}}$

où Z_{N_i} est la fonction de partition canonique (正则

分配函数) avec le nombre de particules N_i fixé $_{15}$

Exemple: adsorption sur une surface

On considère une surface S comportant un nombre de sites d'adsorption N_S (吸附点) et qui est en équilibre (平衡) avec un gaz. Un atome adsorbé sur la surface a une énergie $-\Delta$ et pas d'énergie cinétique.

Quelle est la fonction de partition grand canonique?

Fonction de partition grand canonique : niveaux d'énergie continus

Pour des niveaux d'énergie continus (连续能级), la fonction de partition grand canonique (大典范分割函数) s'écrit

$$Z_G = \sum_{N=0}^{\infty} \int_{-\infty}^{+\infty} \rho(E, N) e^{-\frac{E - N\mu}{k_B T}} dE = \sum_{N=0}^{\infty} e^{\frac{N\mu}{k_B T}} \int_{-\infty}^{+\infty} \rho(E, N) e^{-\frac{E}{k_B T}} dE$$

densité d'états

(状态密度)

 Z_N , la fonction de partition canonique (正则分配函数) avec le nombre de particules N fixé

La probabilité dp(E,N) que le système Σ ait une énergie E_Σ entre E et E+dE et un nombre de particules N est $E-N\mu$

$$\mathbb{P}(E_{\Sigma} \in [E, E + dE], N_{\Sigma} = N) \equiv dp(E, N) = \rho(E, N) \frac{e^{-\kappa_{B} I}}{Z_{G}} dE$$

Propriétés de Za

Les fonctions de partition grand canonique \mathbb{Z}_G se multiplient pour des sous-systèmes ou des degrés de liberté <u>indépendants</u> (独立).

$$Z_{G,tot} = Z_{G,1} \times Z_{G,2}$$

 $Z_{G,tot} = Z_{G,1} \times Z_{G,2}$ si les systèmes 1 et 2 sont indépendants (独立)

(démonstration identique à celle dans l'ensemble canonique)

En connaissant la fonction de partition grand canonique Z_G , on déduit toutes les grandeurs statistiques et thermodynamiques, comme

$$\langle E \rangle, \langle E^2 \rangle, \langle N \rangle, \langle N^2 \rangle, p, S, C_V \dots$$

Moyenne de l'énergie E et du nombre de particules N

Similairement à l'ensemble canonique (就像在典型集合中一样), l'énergie moyenne $\langle E \rangle$ et le nombre de particules moyen $\langle N \rangle$ dans l'ensemble grand canonique se déduit des dérivées logarithmiques

(对数导数) par de Z_G par rapport à $\beta=1/k_BT$ ou μ .

$$\begin{split} \langle N \rangle &= \sum_{\{i\}} N_i E_i \\ &= \sum_{\{i\}} \frac{N_i e^{-\beta(E_i - \mu N_i)}}{Z_G} \\ &= \frac{\frac{1}{\beta} \frac{\partial}{\partial \mu} \left(\sum_{\{i\}} e^{-\beta(E_i - \mu N_i)} \right)}{Z_G} \\ \langle N \rangle &= \frac{\frac{1}{\beta} \frac{\partial}{\partial \mu} \left(Z_G \right)}{Z_G} = \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu} \end{split}$$

$$-\frac{\partial \ln Z_G}{\partial \beta} = \frac{-\frac{\partial}{\partial \beta} \left(Z_G \right)}{Z_G}$$

$$= \frac{-\frac{\partial}{\partial \beta} \left(\sum_{\{i\}} e^{-\beta(E_i - \mu N_i)} \right)}{Z_G}$$

$$= \sum_{\{i\}} \frac{(E_i - \mu N_i) e^{-\beta(E_i - \mu N_i)}}{Z_G}$$

$$= \sum_{\{i\}} (E_i - \mu N_i) p_i$$

$$-\frac{\partial \ln Z_G}{\partial \beta} = \langle E \rangle - \mu \langle N \rangle$$

Exemple: adsorption sur une surface

On considère une surface S comportant un nombre de sites d'adsorption N_S (吸附点) et qui est en équilibre (平衡) avec un gaz. Un atome adsorbé sur la surface a une énergie $-\Delta$ et pas d'énergie cinétique.

La fonction de partition grand canonique est

$$Z_G = \left(1 + e^{\mu/k_B T} e^{\Delta/k_B T}\right)^{N_S}$$

S vide rempli, vide d'adsorption énergie - D

Quel est le nombre moyen de particules adsorbées sur la surface S ?

Méthode dans l'ensemble grand canonique

Etape 1 : Déterminer l'ensemble statistique pertinent. Si la température T et le potentiel chimique μ sont fixés, on se place dans l'ensemble grand canonique (巨正则系综).

Etape 2: Déterminer les micro-états (微观状态) et éventuellement leur dégénérescence W(E,N) (简并度) ou la densité d'états $\rho(E,N)$ (状态密度)

Etape 3: Calculer la fonction de partition grand canonique (配分函数) Z_G en sommant sur les micro-états (éventuellement en factorisant (因式分解) Z_G en composantes indépendantes (独立))

Etape 4: Déduire toutes les grandeurs thermodynamiques (热力学量) avec Z_G et ses dérivées (导数).

$$\langle E \rangle, \langle E^2 \rangle, \langle N \rangle, \langle N^2 \rangle, p, S, C_V \dots$$

Exemples: grandeurs moyennes

$$\langle N \rangle = \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu}$$

$$\langle N \rangle = \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu} \qquad \langle E \rangle = -\frac{\partial \ln Z_G}{\partial \beta} + \mu \langle N \rangle$$
$$= -\frac{\partial \ln Z_G}{\partial \beta} + \mu \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu}$$

Moyenne de l'énergie E et du nombre de particules N

Comme dans l'ensemble canonique (就像在典型集合中一样), l'énergie moyenne dans l'ensemble grand canonique se déduit de Z_G par une dérivée logarithmique (对数导数) par rapport à $\beta=1/k_BT$.

$$\begin{split} \langle N \rangle &= \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu} \qquad \langle E \rangle = -\frac{\partial \ln Z_G}{\partial \beta} + \mu \langle N \rangle \\ &= -\frac{\partial \ln Z_G}{\partial \beta} + \mu \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu} = \left(-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right) \ln Z_G \end{split}$$

On déduit de même les moments quadratiques $\langle N^2 \rangle$ et $\langle E^2 \rangle$

$$\langle N^2 \rangle = \frac{1}{\beta^2} \frac{1}{Z_G} \frac{\partial^2 Z_G}{\partial \mu^2}$$

$$\langle N^2 \rangle = \frac{1}{\beta^2} \frac{1}{Z_G} \frac{\partial^2 Z_G}{\partial \mu^2} \qquad \langle E^2 \rangle = \frac{1}{Z_G} \left[-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]^2 Z_G$$

Fluctuations et limite thermodynamique

On définit les fluctuations $\Delta X^2 = \langle X^2 \rangle - \langle X \rangle^2$. On les déduit de Z_G par (exercice pour vous)

$$\Delta N^2 = \frac{1}{\beta^2} \frac{\partial^2 \ln Z_G}{\partial \mu^2} = \frac{1}{\beta} \frac{\partial N}{\partial \mu}$$

$$\Delta N^{2} = \frac{1}{\beta^{2}} \frac{\partial^{2} \ln Z_{G}}{\partial \mu^{2}} = \frac{1}{\beta} \frac{\partial N}{\partial \mu} \qquad \Delta E^{2} = \left[-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]^{2} \ln Z_{G} = \left[-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right] \langle E \rangle$$

23

À la limite thermodynamique (热力学极限), qui est la limite $N \to \infty$,

$$\frac{\Delta N}{N} \equiv \frac{\sqrt{\Delta N^2}}{N} \sim \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}} \to 0 \qquad \qquad \frac{\Delta E}{E} \equiv \frac{\sqrt{\Delta E^2}}{E} \sim \frac{\sqrt{E}}{E} = \frac{1}{\sqrt{E}} \sim \frac{1}{\sqrt{E}} \to 0$$

À la limite thermodynamique $(N \to \infty)$, il n'y a plus de fluctuations, c'est comme si $N_{\Sigma} = \langle N \rangle$ et $E_{\Sigma} = \langle E \rangle$ étaient fixés.

Les différents ensembles (microcanoniques, canoniques, grand canoniques) coïncident (是一致的) à la limite thermodynamique (热力学极限).

Entropie et grand potentiel

On calcule l'entropie de Gibbs (吉布斯熵)

 $S = k_B \ln Z_G - \frac{1}{T} \frac{\partial}{\partial \beta} \left(\ln Z_G \right)$

$$S = -k_B \sum_{\{i\}} p_i \ln p_i$$

$$= -k_B \sum_{\{i\}} \frac{e^{-\beta(E_i - \mu N_i)}}{Z_G} \ln \left(\frac{e^{-\beta(E_i - \mu N_i)}}{Z_G} \right)$$

$$= -k_B \sum_{\{i\}} \frac{e^{-\beta(E_i - \mu N_i)}}{Z_G} \left[\ln \left(e^{-\beta(E_i - \mu N_i)} \right) - \ln Z_G \right]$$

$$= -k_B \sum_{\{i\}} \left[-\frac{\beta E_i e^{-\beta(E_i - \mu N_i)}}{Z_G} + \frac{\beta \mu N_i e^{-\beta(E_i - \mu N_i)}}{Z_G} - \frac{e^{-\beta(E_i - \mu N_i)}}{Z_G} \ln Z_G \right] \qquad J = -k_B T \ln Z_G$$

On définit le grand potentiel J (巨势) par

$$J = \langle E \rangle - TS - \mu \langle N \rangle$$

On déduit alors du calcul précédent

$$J = -k_B T \ln Z_G$$

Lien entre le grand potentiel et les propriétés thermodynamiques

Le grand potentiel
$$J$$
 (巨势) s'exprime
$$J = -k_B T \ln Z_G$$

$$J = \langle E \rangle - TS - \mu \langle N \rangle$$

Le grand potentiel $J(T,V,\mu)$ est une (double) transformée de Legendre (Legendre 变换) de l'énergie E(S,V,N)

$$dE = TdS - pdV + \mu dN$$

$$dJ = -SdT - pdV - Nd\mu$$

On se place à la limite thermodynamique $N \to \infty$ où $E = \langle E \rangle$ et $N = \langle N \rangle$

Donc $J(T, V, \mu)$ est relié aux grandeurs thermodynamiques par

$$p = -\left(\frac{\partial J}{\partial V}\right)_{T,\mu} \qquad \langle N \rangle = -\left(\frac{\partial J}{\partial \mu}\right)_{T,V} \qquad S = -\left(\frac{\partial J}{\partial T}\right)_{\mu,V}$$

Lien entre le grand potentiel et les propriétés thermodynamiques

Le grand potentiel
$$J(T,V,\mu)$$
 s'exprime aussi $J(T,V,\mu)=-pV=-p(T,\mu)V$

Preuve

1. Le grand potentiel est extensif (广延量)

$$\forall \lambda \in \mathbb{R}^+, \quad J(T, \lambda V, \mu) = ? = \lambda J(T, V, \mu)$$

- 2. Dériver par rapport à λ
- 3. Évaluer en $\lambda = 1$
- 4. Conclure

$$V \frac{\partial J(T, \lambda V, \mu)}{\partial V} = J(T, V, \mu)$$

$$V \frac{\partial J(T, V, \mu)}{\partial V} = J(T, V, \mu)$$

$$p = -\left(\frac{\partial J}{\partial V}\right)_{T,\mu} \quad \text{donc} \quad J(T,V,\mu) = -pV$$

On retrouve l'équation d'Euler (en thermodynamique)

$$G = E - TS + pV = \mu N$$

Récapitulatif des résultats

Ensemble statistique	Ensemble canonique	Ensemble grand canonique
Paramètres fixes	(T, N, V)	(T, μ, V)
Grandeurs échangées	(E)	(E,N)
Probabilité d'un micro-état	$p_i = \frac{e^{-E_i/k_B T}}{Z}$	$p_i = \frac{e^{-(E_i - \mu N_i)/k_B T}}{Z_G}$
Fonction de partition (cas discret)	$Z = \sum_{\{i\}} e^{-\frac{E_i}{k_B T}}$	$Z_{G} = \sum_{\{i\}} e^{-\frac{E_{i} - N_{i} \mu}{k_{B}T}} = \sum_{N_{j}} e^{\frac{N_{i} \mu}{k_{B}T}} Z_{N_{j}}$
Fonction de partition (Cas continu)	$Z = \int_{-\infty}^{+\infty} \rho(E)e^{-\frac{E}{k_B T}}dE$	$Z_{G} = \sum_{N=0}^{\infty} \int_{-\infty}^{+\infty} \rho(E, N) e^{-\frac{E - N\mu}{k_{B}T}} dE = \sum_{N_{j}} e^{\frac{N_{i} \mu}{k_{B}T}} Z_{N_{j}}$
Potentiel thermodynamique	$F = -k_B T \ln Z$	$J = -k_B T \ln Z_G$
Transformée de Legendre	$F = \langle E \rangle - TS$	$J = \langle E \rangle - TS - \mu \langle N \rangle \qquad \qquad J = -pV$
Valeurs moyennes	$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta}$	$\langle N \rangle = \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu}$ $\langle E \rangle = \left(-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right) \ln Z_G$
Moments quadratiques	$\langle E^2 \rangle = \frac{1}{Z} \frac{\partial^2 Z}{\partial \beta^2}$	$\langle N^2 \rangle = \frac{1}{\beta^2} \frac{1}{Z_G} \frac{\partial^2 Z_G}{\partial \mu^2} \langle E^2 \rangle = \frac{1}{Z_G} \left[-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]^2 Z_G$

Méthode dans l'ensemble grand canonique

Etape 1: Déterminer l'ensemble statistique pertinent. Si la température T et le potentiel chimique μ sont fixés, on se place dans l'ensemble grand canonique (巨正则系综).

Etape 2: Déterminer les micro-états (微观状态) et éventuellement leur dégénérescence W(E,N) (简并度) ou la densité d'états $\rho(E,N)$ (状态密度)

Etape 3: Calculer la fonction de partition grand canonique (配分函数) Z_G en sommant sur les micro-états (éventuellement en factorisant (因式分解) Z_G en composantes indépendantes (独立))

Etape 4: Déduire toutes les grandeurs thermodynamiques (热力学量) avec Z_G et ses dérivées (导数).

$$J = -k_B T \ln Z_G$$

$$S = \frac{\langle E \rangle}{T} - \frac{\mu \langle N \rangle}{T} - \frac{J}{T}$$

$$\langle N \rangle = \frac{1}{\beta} \frac{\partial \ln Z_G}{\partial \mu}$$

$$\langle E \rangle = \left(-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right) \ln Z_G$$

$$\langle E \rangle = \left(-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right) \ln Z_G$$

$$\langle E \rangle = \frac{1}{\beta^2} \frac{1}{Z_G} \frac{\partial^2 Z_G}{\partial \mu^2}$$

$$\langle E^2 \rangle = \frac{1}{Z_G} \left[-\frac{\partial}{\partial \beta} + \frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]^2 Z_G \quad \text{etc.}$$

$$P = -\frac{J}{M}$$

Pour vous tester (semaine 9)

Savez-vous?

- Définir l'ensemble grand canonique, en donnant les quantités échangées et les paramètres fixés
- Dans l'ensemble grand-canonique
 - Donner la probabilité d'un micro-état
 - Ecrire l'expression de la fonction de partition Z_G , dans le cas de niveaux d'énergie discrets et continus
 - Déduire la fonction de partition totale Z_{tot} à partir des fonctions de partitions de sous-systèmes (ou degrés de liberté) indépendants Z_1, Z_2 .
 - Calculer le grand potentiel J, à partir de Z_G
 - Calculer l'énergie moyenne $\langle E \rangle$ et le nombre moyen de particules $\langle N \rangle$, à partir de Z_G
 - Calculer les grandeurs quadratiques $\langle E^2 \rangle$, $\langle N^2 \rangle$, $\langle \Delta E^2 \rangle$, $\langle \Delta N^2 \rangle$ à partir de Z_G
 - Donner le comportement des fluctuations relatives $\Delta E/E$, $\Delta N/N$ à la limite thermodynamique
 - Calculer l'entropie S
 - ullet Relier le grand potentiel J à la pression p et au volume V
 - Exprimer la différentielle du grand potentiel dJ et identifier ses dérivées partielles
- Définir une grandeur extensive en termes de facteur d'échelle λ