1. Valós Euklideszi terek

1. Jelölje V a legfeljebb harmadfokú valós együtthatós polinomok vektorterét. Ezen a vektortéren definiáljuk azt a függvényt, amely minden polinomhoz a fokszámát rendeli. Norma-e ez a leképezés?

M.o.:

- 1. Az igaz, hogy minden polinomhoz pozitív vagy nulla értéket rendel a leképezés, de az nem igaz, hogy csak a vektortér nulleleméhez, tehát a nullpolinomhoz rendeli a nulla értéket, mert bármely nem nulla konstans polinom fokszáma is nulla! → Nem Norma!
 - 2. Legyen V = Rⁿ a valós n dimenziós vektorok tere, és értelmezzük a következő leképezést:

$$d(\underline{x},\underline{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

Ez a leképezés metrika vagy sem?

M.o.:

1. $d(\underline{x}, y) \ge 0$ Teljesül, hiszen pozitív számok összegeként értelmezzük.

Ha
$$\underline{x} = \underline{y}$$
 akkor minden i-re $x_i = y_i$, vagyis $|x_i - y_i| = 0$ és így $d(\underline{x}, \underline{y}) = \sum_{i=1}^{n} |x_i - y_i| = 0$.

Ha $d(\underline{x},\underline{y}) = 0$ akkor minden i-re teljesül, hogy $|x_i - y_i| = 0$, vagyis $x_i = y_i$ és így $\underline{x} = \underline{y}$

2. Szimmetrikus, mert

$$d(\underline{x},\underline{y}) = \sum_{i=1}^{n} |x_i - y_i| = \sum_{i=1}^{n} |y_i - x_i| = d(\underline{y},\underline{x})$$

3. Teljesül a háromszög egyenlőtlenség:

$$d(\underline{x},\underline{y}) + d(\underline{y},\underline{z}) = \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i| \ge \sum_{i=1}^{n} |x_i - z_i| = d(\underline{x},\underline{z})$$

mert valós számokra teljesül, hogy $\left|x_i-y_i\right|+\left|y_i-z_i\right|\geq\left|x_i-z_i\right|$ \rightarrow Tehát Metrika!

3. Legyen $V = R^n$ a valós n dimenziós vektorok tere, és értelmezzük a következő leképezést:

$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=1}^{n} (kx_k) \cdot (ky_k)$$

Skalárszorzatot határoz-e meg ez a leképezés?

M.o.:

1. Pozitív definit:
$$\langle \underline{x}, \underline{x} \rangle = \sum_{k=1}^{n} (kx_k) \cdot (kx_k) = \sum_{k=1}^{n} k^2 x_k^2 \ge 0$$

Ha
$$\underline{x} = \underline{0}$$
 akkor teljesül, hogy $\langle \underline{x}, \underline{x} \rangle = \sum_{k=1}^{n} (kx_k) \cdot (kx_k) = \sum_{k=1}^{n} k^2 x_k^2 = 0$

Ha pedig
$$\langle \underline{x}, \underline{x} \rangle = \sum_{k=1}^{n} (kx_k) \cdot (kx_k) = \sum_{k=1}^{n} k^2 x_k^2 = 0$$
, abból következik, hogy minden $x_k = 0 \rightarrow \underline{x} = \underline{0}$

2. Szimmetrikus:
$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=1}^{n} (kx_k) \cdot (ky_k) = \sum_{k=1}^{n} (ky_k) \cdot (kx_k) = \langle \underline{y}, \underline{x} \rangle$$

3. Homogén:
$$\langle \lambda \underline{x}, \underline{y} \rangle = \sum_{k=1}^{n} (k \lambda x_k) \cdot (k y_k) = \lambda \cdot \sum_{k=1}^{n} (k y_k) \cdot (k x_k) = \lambda \langle \underline{x}, \underline{y} \rangle$$

Tehát Skalárszorzat!

4. Ha az R⁴ euklideszi téren <u>a skalárszorzatot a 2.3. feladatban meghatározott módon adjuk meg</u>, akkor mekkora az alábbi két vektor által bezárt szög?

$$\underline{x} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix}, y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

M.o.:

Szükség van a vektorok skalárszozatára:

$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=1}^{4} (kx_k) \cdot (ky_k) = (1 \cdot 2)(1 \cdot (-1)) + (2 \cdot 0)(2 \cdot 1) + (3 \cdot 1)(3 \cdot 1) + (4 \cdot (-1))(4 \cdot 0) = 7$$

A vektorok hosszára/normájára

$$\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\sum_{k=1}^{4} (kx_k) \cdot (kx_k)} = \sqrt{(1 \cdot 2)(1 \cdot 2) + (2 \cdot 0)(2 \cdot 0) + (3 \cdot 1)(3 \cdot 1) + (4 \cdot (-1))(4 \cdot (-1))} = \sqrt{29}$$

$$\|\underline{y}\| = \sqrt{\langle \underline{y}, \underline{y} \rangle} = \sqrt{\sum_{k=1}^{4} (ky_k) \cdot (ky_k)} = \sqrt{(1 \cdot (-1))(1 \cdot (-1)) + (2 \cdot 1)(2 \cdot 1) + (3 \cdot 1)(3 \cdot 1) + (4 \cdot 0)(4 \cdot 0)} = \sqrt{14}$$

A vektorok által bezárt szög:

$$\cos \alpha = \frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \cdot \|\underline{y}\|} = \frac{7}{\sqrt{29} \cdot \sqrt{14}} \Rightarrow \alpha = 69,7^{\circ}$$

5. A szokásos 3 dimenziós Euklideszi térben, ahol $\underline{v} = (v_1, v_2, v_3)$ a vektor koordinátái, normát alkot-e a következő képlettel definiált leképezés?

$$n(\underline{v}) = \min_{i=1}^{3} |v_i|$$

(Megoldás: Nem norma mert nem igaz a pozitív definit tulajdonság.)

6. A háromdimenziós valós vektorok terében bevezetjük az alábbi függvényt:

$$s_a: (\underline{u},\underline{v}) \mapsto \sum_{i=1}^3 u_i v_i a_i$$
, ahol \underline{a} egy pozitív komponensű konstans vektor.

- a) Bizonyítsuk be, hogy s_a skalárszorzatot definiál!
- b) Adja meg az s_a skalárszorzat által meghatározott normát és metrikát!

c) Számítsa ki a
$$\underline{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 és $\underline{u} = \begin{bmatrix} -5 \\ 1 \\ -3 \end{bmatrix}$ vektorok skalárszorzatát, a vektorok hosszát és a két vektor távolságát, ha
$$\underline{a} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}!$$

7. Legyen P₂ a legfeljebb másodfokú polinomok vektortere. Lássuk be, hogy az alábbi függvények skalárszorzatot definiálnak:

a,
$$\int_{-1}^{1} f(x)g(x)dx$$
 b, $f(1)g(1) + f(1)'g(1)' + f(1)''g(1)''$

8. Az alábbi függvények közül melyik határoz meg egy normát az Rⁿ vektortéren?

a,
$$\max_{j=1}^{n} x_{j}$$
 b, $\max_{j=1}^{n} \left| x_{j} \right|$ c, $\sum_{j=1}^{n} \left| x_{j} \right|$ d, $\left| x_{1} \right|$ e, $n(\underline{x}) = \begin{cases} 1 & \underline{x} = \underline{0} \\ 0 & k \ddot{u} \ddot{l} \ddot{o} n b e n \end{cases}$

(Megoldás: Norma lesz b, és c,)

9. Az alábbi függvények közül melyik határoz meg egy metrikát az Rⁿ vektortéren?

a,
$$|x_1 - y_1|$$
 b, $\max_{j=1}^{n} |x_j - y_j|$ c, $\sum_{j=1}^{n} |x_j - y_j|$

d, m($\underline{x},\underline{y}$) = azon koordináták száma, amelyekben az \underline{x} és \underline{y} vektorok különböznek

e,
$$m(\underline{x}, \underline{y}) = \begin{cases} 1 & \underline{x} = \underline{y} \\ 0 & k \ddot{u} \ddot{l} \ddot{o} n b e n \end{cases}$$

(Megoldás: Metrika lesz b, c, és d, e,)

10. Adja meg az alábbi vektorok által bezárt szöget az R⁴szokásoseuklideszi téren!

(Skalárszorzat a szokásos:
$$\langle \underline{x}, \underline{y} \rangle = \sum_{k=1}^{n} x_k \cdot y_k$$
, norma a szokásos: $\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\sum x_i^2}$)

a,
$$\underline{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\underline{y} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$
b, $\underline{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\underline{y} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$
c, $\underline{x} = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \\ 0 \end{pmatrix}$, $\underline{y} = \begin{pmatrix} 0 \\ 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$

(Megoldás: a,
$$\cos \alpha = \frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \cdot \|\underline{y}\|} = \frac{3}{2 \cdot \sqrt{3}} \Rightarrow \alpha = 60^{\circ}$$
 b, $\cos \alpha = \frac{-2}{2 \cdot 2}$ c, $\cos \alpha = \frac{2\sqrt{2}}{2 \cdot 2}$)