Dataset Shift in Machine Learning

Peter Prettenhofer, OSDC London 2016

Motivation

About me

- Data Scientist / Software Engineer @ DataRobot
- Former contributor to scikit-learn

Agenda

- 1. Introduction
- 2. Characterizing Dataset Shift
- 3. Identifying Dataset Shift
- 4. Correcting Dataset Shift

https://github.com/pprett/dataset-shift-osdc16

Introduction

Problem Definition

• Given:

- $\circ \quad \text{Training set S} = \{(\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)\}$
- Loss function: L: $(Y, Y) \rightarrow R$

- Find function h: $X \to Y$ with minimal error on new set $\overline{T} = \{(\mathbf{x}_j, y_j) \sim P(\mathbf{x}, y)\}$
- Example:
 - Spam detection
 - Credit risk

Empirical Risk Minimization

- Question: How do we pick *h*?
- Answer: Pick the one that minimizes the loss on the training data.
- Assumptions: Train and test set are drawn *i.i.d.* from P(x, y).

Characterizing Dataset Shift

Classical vs. Dataset Shift

Characterizing distributional change

Covariate Shift

- Let: $P_{S}(y|\mathbf{x}) = \overline{P_{T}(y|\mathbf{x})}$ $P_{S}(x) \neq P_{T}(\mathbf{x})$
- Example:
 - Medical testing
- Lots of research
 - J. Heckman in Econometrics

Illustrating Covariate Shift

Sample selection bias

• Distributions differ due to an (unknown) sample rejection process.

Sample selection bias , From [Storkey, A, 2009].

Imbalanced Datasets

- Intentional dataset shift to better deal with class imbalance or large volumes
 - o e.g. ad-targeting [He, X. et al, 2014]
- Correction is often trivial
 - Recalibrate probabilities!

Domain Adaptation

- Intentional Dataset Shift in Natural Language Processing
- Resource rich source domain, resource poor target domain
 - Sentiment classification, train on product reviews, predict financial news
- Closely linked to *Transfer Learning* .

Identifying Dataset Shift

Identifying Dataset Shift

Statistical distance

- Change detection with histograms
 - o Mostly uni-variate, sometimes bi-variate
- Advantages:
 - Widely applicable (features and predictions)
 - o Simple
 - Easy to spot what changed
- Disadvantages:
 - Not great for high-dimensional or sparse features

Statistical distance cont'

- Population Stability Index (PSI)
- Kolmogorov-Smirnov statistic

- Kullback-Leibler divergence
- Histogram intersection

Where is it used?

- Risk Management
 - Population Stability Index of score
 - PSI values greater than 0.25 are deemed major shift
- Tech Debt in ML-Systems [Sculley, D et al, 2014]
 - Prediction Bias
 - "In a system that is working as intended, it should usually be the case that the distribution of predicted labels is equal to the distribution of observed labels." [Sculley, D et al, 2014]
 - Upstream Changes
 - Tight coupling with upstream components; monitor if invariants hold

Change monitoring architecture

Novelty Detection

- Model $P_s(\mathbf{x})$ & test new \mathbf{x}
 - Via Density Estimation techniques
- Example:
 - One-class SVM
- Advantages:
 - Handles many features & complex interactions
 (eg. vision, audio, remote sensing)
- Disadvantages:
 - Can't tell you what changed

Discriminative Distance

- Intuition: Train a classifier to detect whether an example is from P_S or P_T
 - Use training error as a proxy for distance the higher the error the closer

Advantages:

- Widely applicable (high dimensional, sparse data)
- Feature importance shows what changed

Disadvantages:

- Offline as it requires a batch of data and time to build the model
- Complicated

Comparison

Method	Data Characteristics			Latency			Insights
	Heterogeneous	Homogenous Dense	Homogenous Sparse	Low	Medium	High	What changed?
Statistical Distance	3	1	1	X			3
Novelty Detection	0	3	2	X			0
Discriminative Distance	3	3	3			Х	1

Correcting Dataset Shift

Correcting Dataset Shift

You don't - you retrain!

Importance Reweighting

- Upweight training instances that are similar to test instances
 - Weight each training sample by $P_T(\mathbf{x}) / P_S(\mathbf{x})$
- Requires unlabeled data from $P_{T}(\mathbf{x})$
- How to obtain weights?
 - Density Estimation / Kernel Methods (Kernel Mean Matching)
 - Discriminative Reweighting

Illustrating Importance Reweighting

Discriminative Reweighting

• Estimate $P_T(\mathbf{x}) / P_S(\mathbf{x})$ using a Logistic Regression **

```
X_s, y_s, X_u, X_t = ...
X_u = np.r_[X_s, X_u]
y_u = np.r_[-1 * ones_like(y_s), ones(X_u.shape[0])]
st_est = LogisticRegression().fit(X_u, y_u)
weights = np.exp(st_est.decision_function(X_s))
est = LogisticRegression().fit(X_s, y_s, sample_weight=weights)
est.predict(X_t)
```

Changing Representations

- Find a mapping $\mathbf{z} = \phi(\mathbf{x})$ s.t.
 - $P_{S}(\mathbf{z}, \mathbf{y}) = P_{T}(\mathbf{z}, \mathbf{y})$ distributions are similar
 - Bayes error rate on $P_s(\mathbf{z}, y)$ still acceptable
- How to find the mapping φ?
 - Feature selection [Satpal, Sarawagi, 2008]
 - Structural Correspondence Learning [Blitzer et al, 2006]

Summary

- Supervised ML techniques can be negatively affected by Dataset Shift
- Identifying Dataset Shift
 - Simple histogram-based techniques are widely applicable (esp. model scores)
 - Novelty detection & discriminative distance relevant in certain scenarios
- Correcting Dataset Shift
 - Discriminative Reweighting is simple & effective
 - Changing representation necessary in certain situation (eg. no support)

Thanks

References

- Storkey, A., When Training and Test Sets Are Different: Characterizing Learning Transfer, 2009.
- He, X. et al, Practical Lessons from Prediction Clicks on Ads at Facebook, ADKDD'14, 2014.
- Sculley, D et al, Machine Learning: The high-interest card of technical debt, SE4ML'14, 2014.
- Jiang, J., A Literature Survey on Domain Adaptation of Statistical Classifiers, 2008.