Math 231a Problem Set 4

Lev Kruglyak

November 29, 2022

Problem 1. The *cone* on a space X is the quotient space $CX = X \times I/X \times \{0\}$. The cone is a pointed space with basepoint * given by the "cone point", i.e. the image of $X \times \{0\}$. Regard X as the subspace of CX of all points of the form (x, 1).

Define the suspension of a space X to be SX = CX/X. Make SX a pointed space by declaring the image of $X \subset CX$ to be the basepoint in SX. The quotient map induces a map of pairs $f: (CX, X) \to (SX, *)$.

(a) Show that CX is contractible.

For any $a, b \in I$ with $a \leq b$, let $C_a^b X$ denote the image of $X \times [a, b]$ in CX. Thus $C_0^1 X = CX$, $C_0^0 X = *$, and $C_1^1 X = X$.

Let $p: CX \to CX$ send (x,t) to (x,3t) for $t \le 1/3$ and to (x,1) if $t \ge 1/3$.

- (b) Show that p defines a homotopy equivalence of pairs $(C_0^{2/3}X, C_{1/3}^{2/3}X) \to (CX, X)$.
- (c) Show that the evident $e:(C_0^{2/3}X,C_{1/3}^{2/3}X)\to (SX,C_{1/3}^1X/X)$ is an excision.
- (d) Show that p defines a homotopy equivalence of pairs $(SX, C_{1/3}^1X/X) \to (SX, *)$.
- (e) Conclude from the commutativty of

$$(C_0^{2/3}X,C_{1/3}^{2/3}X) \stackrel{e}{\longrightarrow} (SX,C_{1/3}^1X/X) \\ \downarrow \qquad \qquad \downarrow \\ (CX,X) \stackrel{f}{\longrightarrow} (SX,*)$$

that f induces an isomorphism in homology.

- (f) Show that there is a natural isomorphism between augmented and reduced homology groups, $H_{n-1}(X) \to \widetilde{H_n}(SX)$, for any n.
- (a) Let $H: (X \times I) \times I \to X \times I$ be the map sending $((x,s),t) \mapsto (x,st)$. Notice that H((x,0),t) = (x,0) so we can pass to the quotient (since I is compact Hausdorff) to get a map $\widetilde{H}: CX \times I \to CX$. Then $\widetilde{H}(X,1) = CX$ and $\widetilde{H}(X,0) = *$, where * is the cone point. So \widetilde{H} is a homotopy between c_* and id_X and hence CX is contractible.
- (b) Let $q:(CX,X)\to (C_0^{2/3}X,C_{1/3}^{2/3}X)$ be the map given by q(x,s)=(x,s/3). Observe that it is well-defined with respect to the quotient. Then $q\circ p:CX\to CX$ is given by

$$(q \circ p)(x,s) = \begin{cases} (x,s) & 0 \le s \le \frac{1}{3} \\ (x,1/3) & \frac{1}{3} < s \le 1 \end{cases}.$$

1

Consider the the homotopy $H_{qop}: C_0^{2/3}X \times I \to C_0^{2/3}X$ given by

$$H_{q \circ p}((x, s), t) = \begin{cases} (x, s) & 0 \le s \le \frac{1}{3}(1 - t) + t \\ (x, \frac{1}{3}(1 - t) + t) & \text{otherwise} \end{cases}$$

Clearly $H_{q \circ p}((x, s), 0) = (q \circ p)(x, s)$ and $H_{q \circ p}((x, s), 1) = (x, s)$. Conversely, note that $p \circ q : (C_0^{2/3}X, C_{1/3}^{2/3}X) \to (C_0^{2/3}X, C_{1/3}^{2/3}X)$ is just the identity, so we are done.

- (c) Let $U_a^b X$ be the image of $X \times (a,b]$ in SX. Then $U_{2/3}^1 X \subset C_{2/3}^1 X/X$ is closed in SX, and $U_{1/3}^1 X \subset C_{1/3}^1 X/X$ is open in SX. Then we have $\overline{U_{2/3}^1} \subset C_{2/3}^1 X/X \subset U_{1/3}^1 X \subset \operatorname{int}(C_{1/3}^1 X/X)$. Then the domain of e can be written as $(SX U_{2/3}^1, C_{1/3}^1 X/X U_{2/3}^1)$ so we are done.
- (d) Notice that the homotopy from (a) is well defined in the quotient by X9, and so passes to a homotopy equivalence $(SX, C_{1/3}^1X/X) \to (SX, *)$.
- (e) By the excision theorem and functorial properties of homology, we can see that the isomorphism

$$H_*(C_0^{2/3}X, C_{1/3}^{2/3}X) \cong H_*(SX, C_{1/3}^1X/X)$$

gives us an isomorphism $H_*(CX, X) \cong H_*(SX, *)$.

(f) Recall that $H_*(SX,*) \cong \widetilde{H}_*(SX)$. Similarly, we have an exact sequence $H_n(CX) \to H_n(CX,X) \to H_{n-1}(X) \to H_{n-1}(CX)$. Since CX is contractible, this gives us an isomorphism $H_n(CX,X) \to H_{n-1}(X)$. Putting these isomorphisms together, we get

$$H_{n-1}(X) \cong \widetilde{H_n}(SX).$$

Problem 2.

- (a) Verify the claim that the map $z \mapsto z^d$, sending the unit circle in the complex numbers to itself, has degree d.
- (b) Regard S^{n-1} as the unit sphere in \mathbb{R}^n . Let L be a line through the origin in \mathbb{R}^n , and L^{\perp} its orthogonal complement. Let ρ_L be the linear map given by -1 on L and +1 on L^{\perp} . What is $\deg(\rho_L|_{S^{n-1}})$?
- (c) What is the degree of the "antipodal map", $\alpha: S^{n-1} \to S^{n-1}$ sending x to -x?
- (d) The tangent space to a point x on the sphere S^{n-1} can be regarded as the subspace of \mathbb{R}^n of vectors perpendicular to x. A "vector field" on S^{n-1} is thus a continuous function $v: S^{n-1} \to \mathbb{R}^n$ such that $v(x) \perp x$ for all $x \in S^{n-1}$. Show that if n is odd then every vector field vanishes at some point on the sphere. On the other hand, construct a nowhere vanishing vector field on S^{n-1} for any even n.
- (a) A common result from the degree theory of the circle using the fundamental group shows that the degree of a map $f: I/\{0,1\} \to S^1$ is given by the complex integral

wind
$$(f) = \frac{1}{2\pi i} \int_0^1 \frac{f'(t)}{f(t)} dt = \frac{1}{2\pi i} \int_0^1 \frac{2\pi i p \cdot e^{2\pi i p t}}{e^{2\pi i p t}} dt = p.$$

So the degree of such a map is p.

(b) We claim that $\deg \rho_L = -1$. Let $L = \mathbb{R}v_1$ with v_1 a unit vector, and let v_2, \ldots, v_n be a basis for L^{\perp} so that v_1, v_2, \ldots, v_n be an orthonormal basis. Then the map ρ_L sends $\alpha_1 v_1 + \cdots + \alpha_n v_n$ to $(-\alpha_1)v_1 + \cdots + \alpha_n v_n$. Let's regard S^{n-1} as the unit sphere in \mathbb{R}^n . Let S^{n-1}_+ be the upper hemisphere along L and let S^{n-1}_- be the lower hemisphere along L. Let $U_+ \subset S^{n-1}$ be some ϵ -expansion of S^{n-1}_+ and U_- be the same but along the bottom hemisphere. Since ρ_L preserves $\mathcal{U} = \{U_+, U_-\}$, we get a commutative diagram

$$0 \longrightarrow C_*(U_+ \cap U_-) \longrightarrow C_*(U_+) \oplus C_*(U_-) \longrightarrow C_*^{\mathcal{U}}(S^{n-1}) \longrightarrow 0$$

$$\downarrow^{\rho_L} \qquad \qquad \downarrow^{\rho_L \oplus \rho_L} \qquad \qquad \downarrow^{\rho_L}$$

$$0 \longrightarrow C_*(U_+ \cap U_-) \longrightarrow C_*(U_+) \oplus C_*(U_-) \longrightarrow C_*^{\mathcal{U}}(S^{n-1}) \longrightarrow 0$$

By naturality of the connecting map ∂ , this gives us a commutative diagram

$$H_{n-1}(S^{n-1}) \xrightarrow{\partial} H_{n-2}(S^{n-2})$$

$$\downarrow^{\rho_{L*}} \qquad \qquad \downarrow^{\rho_{L*}}$$

$$H_{n-1}(S^{n-1}) \xrightarrow{\partial} H_{n-2}(S^{n-2})$$

where ∂ is an isomorphism. It then suffices to show that ρ_L has degree -1 for S^1 , the rest will follow inductively. Note that in S^1 , it follows that $\rho_L(\zeta) = 1/\zeta$ for a particular choice of L. (It doesn't really matter, since we can always rotate using a degree 1 rotation.) This has degree -1 by (a) so we are done.

- (c) Letting L_1, L_2, \ldots, L_n be orthogonal in \mathbb{R}^n , then $\alpha = \rho_{L_1} \circ \cdots \circ \rho_{L_n}$. By elementary properties of degrees, we get $\deg \alpha = \deg \rho_{L_1} \cdots \deg \rho_{L_n} = (-1)^n$.
- (d) Let n be odd, and suppose for the sake of contradiction that $v: S^{n-1} \to \mathbb{R}^n$ is some nonvanishing vector field on S^{n-1} . Since v is nonvanishing, consider the map $\tilde{v}: S^{n-1} \to S^{n-1}$ given by $\tilde{v}(\zeta) = v(\zeta)/\|v(\zeta)\|_1$. Note that this map still preserves the orthogonality condition $\tilde{v}(x) \perp x$ for all $x \in S^{n-1}$. Now consider the homotopy $H: S^{n-1} \times I \to S^{n-1}$ given by $H(\zeta,t) = (\cos \pi t)\zeta + (\sin \pi t)\tilde{v}(\zeta)$. This is well defined since ζ and $\tilde{v}(\zeta)$ are orthogonal and both have norm 1. Then H gives a homotopy between the identity map and α since $H(\zeta,0) = \zeta$ and $H(\zeta,1) = -\zeta$. This is a contradiction, since by (c) the degree of α should be -1, while the degree of the identity is 1.

In the even case, we can explicitly construct a nonvanishing vector field. Consider the field

$$v(x_1,\ldots,x_{2k})=(x_2,-x_1,x_4,-x_3,\ldots,x_{2k},-x_{2k-1}).$$

Then we can check

$$v(x_1,\ldots,x_{2k})\cdot(x_1,\ldots,x_{2k})=x_2x_1-x_1x_2+\cdots+x_{2k}x_{2k-1}-x_{2k-1}x_{2k}=0.$$

Problem 3. Let A denote an $n \times n$ matrix with positive entries. Prove that A admits an eigenvalue with positive entries and positive eigenvalue by following the steps below. Given $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let $||x||_1 = |x_1| + \cdots + |x_n|$ denote the L^1 norm.

- (a) Prove that there is a continuous map $\varphi: \Delta^{n-1} \to \Delta^{n-1}$ given by $\varphi(x) = \frac{Ax}{\|Ax\|_1}$.
- (b) Apply the Brouwer fixed point theorem to φ to prove that A admits an eigenvalue with positive entries and positive eigenvalue.
- (a) Observe that every element $v \in \Delta^{n-1} \subset \mathbb{R}^n$ is nonzero, with each coordinate positive. Since every entry in A is positive, Av is nonzero with each coordinate positive. Thus $\varphi(x)$ is continuous since it is the quotient of a continuous function by a nonzero continuous function. We still need to establish that $\text{Im}(\Delta^{n-1}) \subset \Delta^{n-1}$.

For any $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$ with $\sum_{i=1}^n \alpha_i = 1$, we have

$$\frac{Ax}{\|Ax\|_1} = \frac{\sum_{k=1}^n \alpha_k \sum_{i=1}^n a_{ki} e_i}{\|\sum_{k=1}^n \alpha_k \sum_{i=1}^n a_{ki} e_i\|} = \frac{\sum_{i=1}^n e_i \sum_{k=1}^n \alpha_k a_{ki}}{\|\sum_{i=1}^n e_i \sum_{k=1}^n \alpha_k a_{ki}\|} = \sum_{i=1}^n e_i \frac{\sum_{k=1}^n \alpha_k a_{ki}}{\sum_{i=1}^n |\sum_{k=1}^n \alpha_k a_{ki}|} \in \Delta^{n-1}.$$

(b) Since $\Delta^{n-1} \cong D^{n-1}$, by the Brouwer fixed point theorem, there exists a $v \in \Delta^{n-1}$ such that $\varphi(v) = v$. This means that $Av = ||Av||_1 v$. Note that $||Av||_1$ is a positive eigenvalue and $v \in \Delta^{n-1}$ has all positive entries.

Problem 4. Let \mathcal{A} be a cover of a space X. For any simplex in X, let $k(\sigma)$ be the smallest integer such that $\$^k\sigma$ is \mathcal{A} -small. Define a map $T: S_*(X) \to S_*^{\mathcal{A}}(X)$ by sending each simplex σ to $\$^{k(\sigma)}\sigma$. Show that this defines a homotopy inverse of the inclusion map.

This map isn't actually a chain map, because $k(d\sigma)$ need not equal $k(\sigma)$, thus we do not have the equality $dT(\sigma) = T(d\sigma)$. Consider for instance \mathcal{A} consisting of two sets, one of which fully fits into $\text{Im}(\sigma)$. Then $k(d\sigma) = 0$, since the boundary must be fully contained inside in the other set in \mathcal{A} . On the other hand, $k(\sigma)$ must be greater than zero since it intersects both sets in \mathcal{A} .