TEK5010 Multiagent systems

Lecture 8: Non-cooperative game theory

Exercise: Symmetric games 2

Question 1

The following payoff matrix (A) is for the "Prisoner's dilemma".

	\dot{J}		
		Defect	Coop
i	Defect	2,2	4,1
	Coop	1,4	3,3

The following payoff matrix (B) is for the "Matching pennies".

	$\underline{\hspace{1cm}}$			
		Heads	Tail	
i	Heads	1,-1	-1,1	
	Tails	-1,1	1,-1	

The following payoff matrix (C) is for the "Battle of the sexes".

	$\underline{}$				
		Opera	Football		
i	Opera	3,2	0,0		
	Football	0,0	2,3		

- a) For each of these payoff matrices:
 - i. Identify all (pure strategy) Nash equilibriums
 - ii. Identify all Pareto optimal outcomes
 - iii. Identify all outcomes that maximize social welfare
- b) What is Nash's theorem?
- c) What is the mixed strategy Nash equilibrium in each of these games? Comment on your findings in relation to the pure strategy Nash equilibrium of a).