Регулярные выражения с повторными переменными. Обзор формализмов и алгоритмы сопоставления.

Выполнила: Исмагилова Д.Н., МГТУ им. Баумана Научный руководитель: Непейвода А.Н., МГТУ им. Баумана, ИПС им. А.К. Айламазяна РАН

Совместное Совещание по языку Рефал МГТУ им. Баумана (кафедра ИУ9) и ИПС им. А.К. Айламазяна РАН

Проблематика

Расширенные регулярные выражения мало изучены, а потому не имеет достаточной научной базы для быстрого сопоставления с ними.

Кроме того не существует эффективных инструментов для работы с расширенными регулярными выражениями.

План доклада

- Обзор формализмов расширенных регулярных выражений и их свойства
- Эффективный разбор академических регулярных выражений на примере Re2
- Расширение существующего механизма на расширенные регулярные выражения
- Обращение классических регулярных выражений
- Ввод формализма, удобного для преобразований регулярных выражений
- Обращение расширенных регулярных выражений
- Результаты

Регулярные выражения с обратными ссылками

 $(a \mid b)^*c$ - классическое регулярное выражение $(a^*)b \setminus 1b \setminus 1$ - регулярное выражение с обратными ссылками, соответствующее языку $\{a^nba^nba^n\}$, не являющимся даже контекстно-свободным.

Алгебра Клини

Алгебра Клини — это полукольцо $\langle \mathcal{A}, +, \cdot, \emptyset, 1 \rangle$, содержащее дополнительную операцию *, идемпотентное по +, и удовлетворяющее следующим аксиомам:

- $\forall \alpha \in \mathcal{A}(1 + \alpha \cdot \alpha^* = \alpha^* \& 1 + \alpha^* \cdot \alpha = \alpha^*)$ (закон раскрытия итерации слева и справа);
- $\forall \alpha, x \in \mathcal{A}((\alpha \cdot x + x = x \Rightarrow \alpha^* \cdot x + x = x) \& (x \cdot \alpha + x = x \Rightarrow x \cdot \alpha^* + x = x))$ (левая и правая лемма Ардена).

$$a(ba)^* = (ab)^*a - \mathrm{sliding}$$

$$a^*(ba^*)^* = (a+b)^* - \mathrm{denesting}$$

Семантики

Если расширенное регулярное выражение находится в ε -семантике, то неинициализированные при разборе ссылки заменяются на ε .

При **Ø-семантике** слово, сопоставляещееся по пути разбора с неинициализированными ссылками, считается не соответствующим регулярному выражению.

 $a \mid b \setminus 1$ — синтаксически некорректно $(a \mid b \setminus 1)$ сопоставляется только с a.

PCRE2

Скобочные группы могут быть именованными или безымянными.

- в регулярном выражении не может быть ссылки на несуществующую скобочную группу;
- скобочная группа не может входить в регулярное выражение позже, чем ссылка на её номер, за исключением групп 1–7;
- Ø-семантика.

Выражение (ab)с\1 распознаёт язык {abcab}, тогда как выражение a(bc)\1 распознаёт язык {abcbc}.

Формализм Кампенау-Саломаа-Ю

Все скобочные группы нумеруются автоматически по первому вхождению открывающей скобки.

- Каждое появление обратной ссылки должно быть предварено соответствующей закрытой скобочной группой.
- ε-семантика.

Выражение $(a^* | b^*) \$ 1 распознаёт язык $\{a^{2n}\} \cup \{b^{2m}\}$, тогда как выражение $((a*) \) \$ 1 $| (b*) \)$ 1 некорректно в текущем формализме.

Формализм Шмидта

Reference word (ref-word) над алфавитом Σ — это выражение над алфавитом $\Sigma \cup \{[x_i,]_{x_i}, x_i | i \in \mathbb{N}\}$, где x_i — переменная, а $[x_i,]_{x_i}$ — скобки, выделяющие подвыражение для переменной x_i . При этом если выражение $[x_i, \omega]_{x_i}$ — ref-word, то ω не содержит x_i .

 $([x_1 a[x_2 b]_{x_1} c]_{x_2})$

Регулярные выражения над рекурсивными образцами

Регулярные выражения над алфавитом с переменными, каждая из который в свою очередь соответствует регулярному выражению над рекурсивными образцами.

$$cy^* cy^*, y = bx^*, x = a^* c(ba^n)^m c(ba^n)^m$$

$$(xax)^*, x \in b^*$$

$$(x_1ax_1)^* x_2ax_2...x_1ax_1..., x_i \in b^*$$

Re2 vs обратных ссылок

Подходы к сопоставлению строки с регулярным выражением

Переход от регулярного выражения к НКА и последующее использование механизма разбора по НКА с возвратами.

Безопасные реализация без возвратов, с отсутствием поддержки расширенного синтаксиса. Примеры: модули в *Go* и *Rust*, *Re2*.

Разбор с возвратами и без

1-однозначность

Под 1-однозначностью понимается свойство регулярных выражений, когда существует не более, чем один вариант успешного сопоставления для любого входного слова.

Bxодную строку aaa по не 1-однозначному регулярному выражению $(aa)^*a^*$ можно разобрать двумя разными способами:

- aa coombemcmbyem (aa)*, a coombemcmbyem a*;
- ааа соответствует a^* , а шаблон $(aa)^*$ сопоставляется с пустым словом.

Автомат Глушкова

$$(a \mid b)^*c$$

Автомат Томпсона

Автомат Глушкова

MFA

Формально автомат с памятью, или MFA, определяется как пятерка элементов $< Q, \Sigma, \delta, q_0, F >$, где Q — конечное множество состояний, Σ — это алфавит, $q_0 \cup Q$ — начальное состояние, $F \subseteq Q$ — множество конечных состояний и $\delta: Q \times (\Sigma \cup \{\epsilon\} \cup \{1,2,...,k\}) \to \mathcal{P}(Q \times \{o,c,\diamond\}^k)$ это функция переходов. Элементы o,c,\diamond называются инструкциями над памятью (o — открытие памяти, c — закрытие памяти, \diamond — сохранение памяти в состоянии, в котором она была).

*автомат с памятью считается детерминированным, если он детерминирован в классическом смысле над алфавитом и списком переменных

MFA

Обращение классических регулярных выражений

•
$$\beta = \varepsilon \Rightarrow reverse(\beta) = \varepsilon$$
;

•
$$\beta = a \Rightarrow reverse(\beta) = a;$$

•
$$\beta = A|B \Rightarrow reverse(\beta) = (reverse(A)|reverse(B));$$

•
$$\beta = AB \Rightarrow reverse(\beta) = reverse(B)reverse(A);$$

•
$$\beta = A^* \Rightarrow reverse(\beta) = (reverse(A))^*$$
.

Регулярное выражение $(a|b)^*a(a|b)$ недетерминировано. Однако при обращении получается детерминированное выражение $(a|b)a(a|b)^*$.

Ациклические регулярные выражения с обратными ссылками

- ε , \emptyset , а также все буквы алфавита Σ принадлежат $\mathcal{P}_{\mathbf{ACREG}}$;
- если $\tau_1, \tau_2 \in \mathcal{P}_{ACREG}$, тогда $\tau_1 \tau_2, \tau_1 \mid \tau_2$, а также τ_1^* принадлежат \mathcal{P}_{ACREG} ;
- если $i \in \mathbb{N}$, $\tau \in \mathcal{P}_{ACREG}$, и τ не содержит $[i\tau']_i$ ни для какого τ' , тогда &i и $[i\tau]_i$ принадлежат \mathcal{P}_{ACREG} .
- $\mathbf{j} \propto_r \mathbf{i} \text{если в } \mathbf{r}$ встречается хотя бы одно подвыражение $[\mathbf{i} \tau]_{\mathbf{i}}$ такое, что & \mathbf{j} входит в $\mathbf{\tau}$; транзитивное замыкание отношения \propto_r антирефлексивно.
- Для всякого &i, входящего в r найдётся такое r', что $[ir']_i$ входит в r.

ACREG!= Алгебра Клини

$$\forall x, y, z \in \mathcal{A}(xy = yz \Rightarrow x^*y = yz^*)$$

- В ε -семантике положим $\mathbf{x} = [_1\mathbf{a}]_1$, $\mathbf{y} = \&1$, $\mathbf{z} = \mathbf{a}\mathbf{a}$. Тогда $\mathbf{x}\mathbf{y}$ и $\mathbf{y}\mathbf{z}$ оба задают язык $\{\mathbf{a}\mathbf{a}\}$, но $\mathscr{L}(\mathbf{x}^*\mathbf{y}) = \{\varepsilon, \mathbf{a}^{n+2}\}$, $\mathscr{L}(\mathbf{y}\mathbf{z}^*) = \{\mathbf{a}^{2\cdot n}\}$ $(\mathbf{n} \ge 0)$.
- $B \emptyset$ -семантике положим $\mathbf{x} = [_1 ba]_1$, $\mathbf{y} = \&1 \mid \mathbf{b}$, $z = ab \mid aba$. Тогда ху u уz оба задают язык $\{bab, baba\}$, но $\mathcal{L}(\mathbf{x}^*\mathbf{y}) = \{b, ba^{n+1}b, ba^{n+2}\}$, $\mathcal{L}(\mathbf{y}z^*) = \{b(ab \mid aba)^n\}$ $(n \geqslant 0)$.

Неоднозначные чтения

В регулярном выражении ($[{}_{1}a^{*}]_{1}|[{}_{1}b^{*}]_{1}|c$)&1 ссылка &1 может относиться как к либо первому либо второму вариантам альтернативы, и соответственно соответствовать a^{*} либо b^{*} , так и к третьему варианту и соответствовать пустому слову.

lastinit-неоднозначность

Множество $last_{i:init}(r)$ — это множество возможных выражений, инициализирующих ячейку памяти i после чтения выражения r.

Степень неоднозначности регулярного выражения r с обратными ссылками по переменной $i-N_{\rm ambi}r$, равна n, если для k-го оператора чтения &i в r и предшествующего ему выражения r' $|{\rm last}_{i:init}r'|=n_k$, и $\sum_k n_k=n$.

Степень last:init-неоднозначности регулярного выражения r с обратными ссылками — $N_{amb}r$, равна n, если $n=\prod_i N_{ambi}r$, где &i входит в r.

 $\Pi y cmb \; \mathbf{r} = [_1 \mathbf{ba}^*]_1 [_2 \mathbf{ca}^*]_2 ([_1 \& 2\mathbf{ab}]_1 \; | \; [_2 \mathbf{bb}^*]_2)^*. \; \mathit{Torda} \; \mathrm{last}_{2:\mathrm{init}} \mathbf{r} = \{ \mathbf{ca}^*, \mathbf{bb}^* \}.$

СНФ

Ациклическое регулярное выражение r — в слабой ссылочной нормальной форме, если для каждого оператора чтения по ссылке &i и предшествующего ему выражения r' множество $last_{i:init}r'$ содержит единственный элемент.

Скажем, что \mathbf{r} — в ссылочной нормальной форме (СНФ), если дополнительно к этому каждый каждый оператор записи в память $[i_{\mathbf{r}_0}]_i$ инициализирует выражение \mathbf{r}_0 , которое входит в $\mathrm{last}_{i:\mathrm{init}}\mathbf{r}'$, где \mathbf{r}' предшествует оператору чтения &i.

$$\begin{aligned} &([_1a^*]_1 \mid [_1b^*]_1 \mid c)\&1 \to ([_1a^*]_1\&1 \mid [_1b^*]_1\&1 \mid c) \\ &(c(\&1|[_1a^*]_1\&1)b)* \to (cb)*(c[_1a^*]_1\&1b(c\&1b)*)* \end{aligned}$$

Преобразование в СНФ

- $\bullet \ (r_1 \mid r_2)r_3 \to (r_1r_3 \mid r_2r_3), \, r_1(r_2 \mid r_3) \to (r_1r_2 \mid r_1r_3)$
- $r_0r_1^*r_2 \rightarrow (r_0r_2 | r_0r_1^*r_1r_2)$
- $(r_1 | r_2)^* r_3 \rightarrow (r_1^* r_2)^* r_1^* r_3$
- $\bullet \ [_{\mathbf{i}}(\mathbf{a} \mid \mathbf{b})]_{\mathbf{i}} \rightarrow ([_{\mathbf{i}}\mathbf{a}]_{\mathbf{i}} \mid [_{\mathbf{i}}\mathbf{b}]_{\mathbf{i}})$
- $(r_1r_2)^*r_1 \to r_1(r_2r_1)^*$

Обращение ACREG в СНФ

- $\beta = [iA]_i$ и переменная уже была инициализована при обращении \Rightarrow reverse(β) = &i,
- $\beta = [_iA]_i$ и переменная не была инициализована при обращении \Rightarrow $reverse(\beta) = [_ireverse(A)]_i$ и переменная добавляется в список инициализированных,
- $\beta = \&i$ и переменная уже была инициализована при обращении \Rightarrow reverse(β) = &i,
- $\beta = \&i$ и переменная не была инициализована при обращении \Rightarrow $reverse(\beta) = [ireverse(A)]_i$ и переменная добавляется в список инициализированных.

RW блоки

- $[_1b^*]_1(\&1[_1a^*]_1)^* \rightarrow (b^*|[_1b^*]_1\&1([_1a^*]_1\&1)*a^*)$
- $([_2b^*]_2\&1[_1a^*]_1\&2)^*$
- $[_1a^*]_1(\&1[_1a^*]_1)^* \rightarrow (a^*|[_1a^*]_1(\&1[_1a^*]_1)*\&1a^*)$
- $[_2a^*d]_2([_1a^*]_1b\&1[_2\&1c*c]_2)^*$

Примеры

```
({a*}:1|b)&1
BNF: ({a*}:1&1|b&1)
Reverse: ({a*}:1&1|&1b)
({a*}:1|{b*}:1|c)&1
BNF: ({a*}:1&1|{b*}:1&1|c&1)
Reverse: ({a*}:1&1|{b*}:1&1|&1c)
{a*}:1(&1{a*}:1)*
BNF: (a*|{a*}:1(&1{a*}:1)*&1a*)
Reverse: (a*|a*{a*}:1(&1{a*}:1)*&1)
({b*}:2&1{a*}:1&2)*
BNF: ($\{b*\}:2(a*&2\(\{a*\}:1&2\{b*\}:2&1)*\{a*\}:1&2\{b*\}:2&1a*&2))
Reverse: (\(\xi\)\:2a*\(\far{a}\):2a*\(\far{a}\):2\(\far{a}\):1\(\xi\)\(\far{a}\):2\(\xi\)\(\far{a}\):2\(\xi\)\(\far{a}\):2\(\xi\)\(\far{a}\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\(\xi\)\
(c(&1|{a}:1&1)b)*
BNF: (cb)*(c{a}:1&1b(c&1b)*)*
Reverse: ((b{a}:1c)*b&1&1c)*(bc)*
((\{a*\}:1|b)(\&1|b))*
BNF: (b|bb)*({a*}:1&1(bb)*|a*b(bb)*|{a*}:1&1(bb)*b&1(bb)*(b&1(bb)*)*|{a*}:1b(bb)*b&1(bb)*(b&1(bb)*)*|
Reverse: ((bb)*{a*}:1&1|(bb)*ba*|((bb)*{a*}:1b)*(bb)*&1b(bb)*&1b(bb)*&1&1|((bb)*{a*}:1b)*(bb)*&1b(bb)*b&1)*(b|bb)*
```

Результаты

Результаты

Список литературы

- 1. Kozen, Dexter. 1994. "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events." Information and Computation 110 (2): 366–90. https://doi.org/10.1006/inco.1994.1037.
- 2. Campeanu, Cezar & Salomaa, Kai & Yu, Sheng. (2003). A Formal Study Of Practical Regular Expressions.. Int. J. Found. Comput. Sci.. 14. 1007-1018. 10.1142/S012905410300214X.
- 3. Schmid, Markus. 2016. "Characterising REGEX Languages by Regular Languages Equipped with Factor-Referencing." Information and Computation (February). https://doi.org/10.1016/j.ic.2016.02.003.
- 4. Schmid, Markus. (2012). Inside the class of REGEX languages. International Journal of Foundations of Computer Science. 24. 73-84. 10.1007/978-3-642-31653-1 8.
- 5. Brüggemann-Klein, Anne, and Derick Wood. 1998. "One-Unambiguous Regular Languages." Information and Computation 140 (2): 229–53. https://doi.org/https://doi.org/10.1006/inco.1997.2688.
- 6. Gruber, Hermann, and Stefan Gulan. 2010. "Simplifying Regular Expressions." In Language and Automata Theory and Applications, edited by Adrian-Horia Dediu, Henning Fernau, and Carlos Martín-Vide, 285–96. Berlin, Heidelberg: Springer Berlin Heidelberg.
- 7. Glushkov, V M. 1961. "THE ABSTRACT THEORY OF AUTOMATA." Russian Mathematical Surveys 16 (5): 1. https://doi.org/10.1070/RM1961v016n05ABEH004112.
- 8. Freydenberger, Dominik D., and Markus L. Schmid. 2018. "Deterministic Regular Expressions with Back-References." CoRR abs/1802.01508. http://arxiv.org/abs/1802.01508.
- 9. Hazel, Philip. n.d. "Официальное Руководство По PCRE2 (электронный ресурс)." https://www.pcre.org/current/doc/html/index.html.
- 10. Google "Репозиторий библиотеки Re2 (электронный ресурс)." https://github.com/google/re2.