Lesson 3: Measurement of Association for Contingency Tables

Nicky Wakim 2024-04-08

Poll Everywhere Question 1

Make sure to remember your answer!! We'll use this on Wednesday!

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
- 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
- 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
- 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
- 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

Review of Test of Association (1/2)

• Last week: learned some tests of association for contingency tables

- For studies with two independent samples
 - General association
 - Chi-squared test
 - Fisher's Exact test
 - Test of trends
 - Cochran-Armitage test
 - Mantel-Haenszel test

Review of Test of Association (2/2)

Test of association does not measure association

- Test of association does not provide an effective measure of association. The p-value alone is not enough
 - ullet p-value < 0.05 suggests there is a statistically significant association between the group and outcome
 - p-value = 0.00001 vs. p-value = 0.01 does not mean the magnistude of association is different

But it does not tell how different the risks are between the two groups

• We want to find out one or more measurements for quantifying the risks across the groups.

Measures of Association

- When we have a 2x2 contingency table and independent samples, we have an option of three measures of association:
 - 1. Risk difference (RD)
 - 2. Relative risk (RR)
 - 3. Odds ratio (OR)

Each measures association by comparing the proportion of successes/failures from each categorical group of our explanatory variable.

Before we discuss each further...

Let's define the cells within a 2x2 contingency table:

Explanatory	Response	Total	
Variable	Success	Failure	
1	n ₁₁	n ₁₂	n_1
2	n ₂₁	n ₂₂	n_2
Total	n_+ (or n_S)	n ₋ (or n _F)	n

• Then we can define risk: the proportion of "successes"

$$lacksquare ext{With } ext{Risk}_1 = rac{n_{11}}{n_1}$$

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
- 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
- 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

Risk Difference (RD)

- Risk difference computes the absolute difference in risk for the two groups (from the explanatory variable)
- Point estimate:

$$\widehat{RD} = \widehat{p}_1 - \widehat{p}_1 = rac{n_{11}}{n_1} - rac{n_{21}}{n_2}$$

- With range of point estimate from [-1,1]
- Approximate standard error:

$$SE_{\widehat{RD}} = \sqrt{rac{\hat{p}_1 \cdot (1 - \hat{p}_1)}{n_1} + rac{\hat{p}_2 \cdot (1 - \hat{p}_2)}{n_2}}$$

• 95% Wald confidence interval for \widehat{RD} :

$$\widehat{RD} \pm 1.96 \cdot SE_{\widehat{RD}}$$

Recall the Strong Heart Study

The Strong Heart Study is an ongoing study of American Indians residing in 13 tribal communities in three geographic areas (AZ, OK, and SD/ND). We will look at data from this study examining the **incidence of diabetes** at a follow-up visit and **impaired glucose tolerance** (ITG) at baseline (4 years apart).

	Diabe	Diabetes		
Glucose tolerance	No	Yes	Total	
Impaired	334	198	532	
Normal	1004	128	1132	
Total	1338	326	1664	

SHS Example: Risk Difference

Risk difference

Compute the point estimate and 95% confidence interval for the diabetes risk difference between impaired and normal glucose tolerance.

	Diabetes		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

- 1. Compute the risk difference
- 2. Compute 95% confidence interval
- 3. Interpret the estimate

SHS Example: Risk Difference (1/4)

Risk difference

Compute the point estimate and 95% confidence interval for the diabetes risk difference between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1. Compute the risk difference

$$\widehat{RD} = \hat{p}_1 - \hat{p}_2 = \frac{n_{11}}{n_1} - \frac{n_{21}}{n_2} = \frac{198}{532} - \frac{128}{1132} = 0.3722 - 0.1131 = 0.2591$$

SHS Example: Risk Difference (2/4)

Risk difference

Compute the point estimate and 95% confidence interval for the diabetes risk difference between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

2. Compute 95% confidence interval

$$egin{aligned} \widehat{RD} \pm z^*_{(1-rac{lpha}{2})} imes SE_{\widehat{RD}} \ =& \widehat{RD} \pm z^*_{(1-rac{lpha}{2})} imes \sqrt{rac{\hat{p}_1 \left(1-\hat{p}_1
ight)}{n_1} + rac{\hat{p}_2 (1-\hat{p}_2)}{n_2}} \ =& 0.2591 \pm 1.96 imes \sqrt{rac{0.3722 (1-0.3722)}{532} + rac{0.1131 (1-0.1131)}{1132}} \ =& (0.2141, \ 0.3041) \end{aligned}$$

SHS Example: Risk Difference (3/4)

Risk difference

0.2140779 0.3041346

sample estimates:

[1] 0.2591062

Compute the point estimate and 95% confidence interval for the diabetes risk difference between impaired and normal glucose tolerance.

	Diabetes		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1/2. Compute risk difference and 95% confidence interval

```
fmsb::riskdifference(198, 128, 532, 1132)
                                            Risk
                Cases People at risk
                         532.0000000
          198.0000000
                                        0.3721805
Exposed
Unexposed 128.000000
                      1132.0000000
                                        0.1130742
Total
          326.000000 1664.000000
                                        0.1959135
   Risk difference and its significance probability (H0: The difference
   equals to zero)
data: 198 128 532 1132
p-value < 2.2e-16
95 percent confidence interval:
```

SHS Example: Risk Difference (4/4)

Risk difference

Compute the point estimate and 95% confidence interval for the diabetes risk difference between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

3. Interpret the estimate

The diabetes diagnosis risk difference between impaired and normal glucose tolerance is 0.2591 (95% CI: 0.2141, 0.3041). Since the 95% confidence interval contains 0, we do not have sufficient evidence that the risk of diabetes diagnosis between impaired and normal glucose tolerance is different.

When is the risk difference misleading?

• The same risk differences can have very different clinical meanings depending on the risk for each group

- Example: for two treatments A and B, we know the risk difference (RD) is 0.009. Is it a meaningful difference?
 - If the risk is 0.01 for Trt A and 0.001 for Trt B?
 - If the risk is 0.41 for Trt A and 0.401 for Trt B?

- Using the RD alone to summarize the difference in risks for comparing the two groups can be misleading
 - The ratio of risk can provide an informative descriptive measure of the "relative risk"

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
 - 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
- 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

Relative Risk (RR)

- Relative risk computes the ratio of each group's proportions of "success"
 - Also called risk ratio
- Point estimate:

$$\widehat{RR} = rac{\hat{p}_1}{\hat{p}_2} = rac{n_{11}/n_1}{n_{21}/n_2}$$

■ Range: $[0, \infty]$

Poll Everywhere Question 2

Log-transformation of RR

- Sampling distribution of the relative risk is highly skewed unless sample sizes are quite large
 - Log transformation results in approximately normal distribution
 - Thus, compute confidence interval using normally distributed, log-transformed RR
 - Then we convert back to the RR
- We take the log (natural log) of RR: $\ln(\widehat{RR})$ or $log(\widehat{RR})$
 - Whenever I say "log" I mean natural log (very common in statistics)
- ullet Then we need to find approximate standard error for $\ln(\widehat{RR})$

$$SE_{\widehat{\ln(RR)}} = \sqrt{rac{1}{n_{11}} \, - rac{1}{n_1} + rac{1}{n_{21}} - rac{1}{n_2}}$$

• 95% confidence interval for $\ln(\widehat{RR})$:

$$\ln(\widehat{RR}) \pm 1.96 imes SE_{\ln(\widehat{RR})}$$

Explanatory	Response	Total	
Variable	Success	Success Failure	
1	n ₁₁	n ₁₂	n_{1}
2	n ₂₁	n ₂₂	n_2
Total	n_+ (or n_S)	n ₋ (or n _F)	n

How do we get back to the RR scale?

ullet We computed confidence interval using normally distributed, log-transformed RR ($\ln(\widehat{RR})$):

$$\left(\ln(\widehat{RR})-1.96 imes SE_{\ln(\widehat{RR})},\ \ln(\widehat{RR})+1.96 imes SE_{\ln(\widehat{RR})}
ight)$$

- Now we need to exponentiate the CI to get back to interpretable values
 - Take exponential of lower and upper bounds
- 95% confidence interval for RR: two ways to display equation

$$\left(e^{\ln(\widehat{RR})-1.96 imes SE_{\ln(\widehat{RR})}},\;e^{\ln(\widehat{RR})+1.96 imes SE_{\ln(\widehat{RR})}}
ight)$$

$$igg(\expig(\ln(\widehat{RR})-1.96 imes SE_{\ln(\widehat{RR})}ig),\ \expig(\ln(\widehat{RR})+1.96 imes SE_{\ln(\widehat{RR})}ig)igg)$$

Relative Risk (RR)

- Can you compute the estimated RRs for the previous example?
 - lacksquare If the risk for Trt A is 0.01 and Trt B is 0.001? $\widehat{RR}=10$
 - lacksquare If the risk for Trt A is 0.41 and Trt B is 0.401? $\widehat{RR}=1.02$
- ullet When $\widehat{RR}=1$...
 - Risk is the same for the two groups
 - In other words, the group and the outcome are independent
- When computing \widehat{RR} it is important to identify which variable is the response variable and which is explanatory variable
 - We may say "risk for Trt A" but this translates to the risk (or probability) of outcome success for those receiving Trt A

SHS Example: Relative Risk (1/6)

Relative risk

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

- 1. Compute the relative risk
- 2. Find confidence interval of log RR
- 3. Convert back to RR
- 4. Interpret the estimate

SHS Example: Relative Risk (2/6)

Relative risk

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1. Compute the relative risk

$$\widehat{RR} = \frac{\hat{p}_1}{\hat{p}_2} = \frac{n_{11}/n_1}{n_{21}/n_2} = \frac{198/532}{128/1132} = \frac{0.3722}{0.1131} = 3.2915$$

SHS Example: Relative Risk (3/6)

Relative risk

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

2. Find confidence interval of log RR

$$egin{align} &\ln(\widehat{RR})\pm 1.96 imes SE_{\ln(\widehat{RR})} \ =&\ln(\widehat{RR})\pm z^*_{(1-rac{lpha}{2})} imes \sqrt{rac{1}{n_{11}}} -rac{1}{n_{1}} +rac{1}{n_{21}} -rac{1}{n_{2}} \ =&1.1913\pm 1.96 imes \sqrt{rac{1}{198}-rac{1}{532}+rac{1}{128}-rac{1}{1132}} \ =&(0.9944,\ 1.3883) \ \end{aligned}$$

SHS Example: Relative Risk (4/6)

Relative risk

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

3. Convert back to RR

$$(\exp(0.9944), \exp(1.3883))$$

=(2.703, 4.0081)

SHS Example: Relative Risk (5/6)

Relative risk

Normal

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

NA

	Diabetes		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1/2/3. Compute risk ratio and 95% confidence interval

1.000000

Impaired 3.291471 2.702998 4.008061

Pause: other option in pubh package

```
1 SHS = SHS %>% mutate(glucimp = as.factor(glucimp) %>% relevel(ref = "Normal"))
 2 contingency(case ~ glucimp, data = SHS)
          Outcome
             1 0
Predictor
  Impaired 198 334
  Normal
           128 1004
             Outcome +
                          Outcome -
                                         Total
                                                               Inc risk *
Exposed +
                   198
                                334
                                           532
                                                   37.22 (33.10 to 41.48)
                                     1132 11.31 (9.52 to 13.30)
1664 19.59 (17.71 to 21.58)
Exposed -
                128
                               1004
                  326
Total
                              1338
Point estimates and 95% CIs:
Inc risk ratio
                                               3.29 (2.70, 4.01)
                                              4.65 (3.61, 6.00)
Inc odds ratio
Attrib risk in the exposed * 25.91 (21.41, 30.41)
Attrib fraction in the exposed (%) 69.62 (63.00, 75.05)
Attrib risk in the population * 8.28 (5.63, 10.94)
Attrib fraction in the population (%) 42.28 (34.71, 48.98)
Uncorrected chi2 test that OR = 1: chi2(1) = 154.239 Pr>chi2 = <0.001
Fisher exact test that OR = 1: Pr>chi2 = <0.001
 Wald confidence limits
 CI: confidence interval
 * Outcomes per 100 population units
    Pearson's Chi-squared test with Yates' continuity correction
data: dat
X-squared = 152.6, df = 1, p-value < 2.2e-16
```

SHS Example: Relative Risk (6/6)

Relative risk

Compute the point estimate and 95% confidence interval for the diabetes Relative risk between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

3. Interpret the estimate

The estimated risk of diabetes is 3.29 times greater for American Indians who had impaired glucose tolerance at baseline compared to those who had normal glucose tolerance (95% CI: 2.70, 4.01).

Additional interpretation of 95% CI (not needed): We are 95% confident that the (population) relative risk is between 2.70 and 4.01.

Since the 95% confidence interval does not include 1, there is sufficient evidence that the risk of diabetes differs significantly between impaired and normal glucose tolerance at baseline.

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
- 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
 - 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

Odds (building up to Odds Ratio)

• For a probability of success p (or sometimes referred to as π), the odds of success is:

$$odds = \frac{p}{1-p} = \frac{\pi}{1-\pi}$$

- Example: if $\pi = 0.75$, then odds of success $= \frac{0.75}{0.25} = 3$
- If odds > 1, it implies a success is more likely than a failure
 - lacktriangle Example: for odds=3, we expect to observe three times as many successes as failures
- If odds is known, the probability of success can be computed

$$\pi = rac{ ext{odds}}{ ext{odds} + 1}$$

Odds Ratio (OR)

Odds ratio is the ratio of two odds:

$$\widehat{OR} = rac{odds_1}{odds_2} = rac{\hat{p}_1/(1-\hat{p}_1)}{\hat{p}_2/(1-\hat{p}_2)}$$

- Range: $[0, \infty]$
- Interpretation: The odds of success for "group 1" is " \widehat{OR} " times the odds of success for "group 2"

• What do values of odds ratios mean?

Odds Ratio	Clinical Meaning
$\widehat{OR} < 1$	Odds of success is smaller in group 1 than in group 2
$\widehat{OR} = 1$	Explanatory and response variables are independent
$\widehat{OR} > 1$	Odds of success is greater in group 1 than in group 2

Poll Everywhere Question 3

Odds Ratio (OR)

- Values of OR farther from 1.0 in a given direction represent stronger association
 - An OR = 4 is farther from independence than an OR = 2
 - An OR = 0.25 is farther from independence than an OR = 0.5
 - For OR = 4 and OR = 0.25, they are equally away from independence (because $\frac{1}{4} = 0.25$)

- We take the inverse of the OR for success of group 1 compared to group 2 to get...
 - OR for failure of group 1 compared to group 2
 - OR for success of group 2 compared to group 1

Log-transformation of *OR*

- Like RR, sampling distribution of the odds ratio is highly skewed
 - Log transformation results in approximately normal distribution
 - Thus, compute confidence interval using normally distributed, log-transformed OR
- Approximate standard error for $\ln(\widehat{OR})$:

$$SE_{\widehat{\ln(OR)}} = \sqrt{rac{1}{n_{11}} \, + rac{1}{n_{12}} + rac{1}{n_{21}} + rac{1}{n_{22}}}$$

• 95% confidence interval for $\ln(\widehat{OR})$:

$$\ln(\widehat{OR}) \pm 1.96 imes SE_{\ln(\widehat{OR})}$$

Explanatory	Response	Total	
Variable	Success	Failure	
1	n ₁₁	n ₁₂	n_{1}
2	n ₂₁	n ₂₂	n ₂
Total	n_+ (or n_S)	n ₋ (or n _F)	n

How do we get back to the OR scale?

• We computed confidence interval using normally distributed, log-transformed RR ($\ln(\widehat{OR})$):

$$\left(\ln(\widehat{OR}) - 1.96 imes SE_{\ln(\widehat{OR})}, \ \ln(\widehat{OR}) + 1.96 imes SE_{\ln(\widehat{OR})}
ight)$$

- Now we need to exponentiate the CI to get back to interpretable values
 - Take exponential of lower and upper bounds
- 95% confidence interval for RR: two ways to display equation

$$\left(e^{\ln(\widehat{OR})-1.96 imes SE_{\ln(\widehat{OR})}},\;e^{\ln(\widehat{OR})+1.96 imes SE_{\ln(\widehat{OR})}}
ight)$$

$$\bigg(\exp\big(\ln(\widehat{OR})-1.96\times SE_{\ln(\widehat{OR})}\big),\ \exp\big(\ln(\widehat{OR})+1.96\times SE_{\ln(\widehat{OR})}\big)\bigg)$$

SHS Example: Odds Ratio (1/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

- 1. Compute the odds ratio
- 2. Find confidence interval of log OR
- 3. Convert back to OR
- 4. Interpret the estimate

SHS Example: Odds Ratio (2/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes Odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1. Compute the odds ratio

$$\widehat{p}_1 = 198/532 = 0.3722, \widehat{p}_2 = 128/1132 = 0.1131$$

$$\widehat{OR} = \frac{\widehat{p_1}/(1-\widehat{p_1})}{\widehat{p_2}/(1-\widehat{p_2})} = \frac{0.3722/(1-0.3722)}{0.1131/(1-0.1131)} = 4.6499$$

SHS Example: Odds Ratio (3/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes Odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

2. Find confidence interval of log OR

$$egin{align} &\ln(\widehat{OR})\pm 1.96 imes SE_{\ln(\widehat{OR})} \ =&\ln(\widehat{OR})\pm z^*_{(1-rac{lpha}{2})} imes \sqrt{rac{1}{n_{11}}\,+rac{1}{n_{12}}+rac{1}{n_{21}}+rac{1}{n_{22}}} \ =&1.5368\pm 1.96 imes \sqrt{rac{1}{198}\,+rac{1}{334}+rac{1}{128}+rac{1}{1004}} \ =&(1.2824,\,1.7913) \ \end{array}$$

SHS Example: Odds Ratio (4/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes Odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

3. Convert back to OR

$$(\exp(1.2824), \exp(1.7913))$$

=(3.6053, 5.9971)

SHS Example: Odds Ratio (5/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes Odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

1/2/3. Compute OR and 95% confidence interval

```
1 library(epitools)
2 SHS_ct = table(SHS$glucimp, SHS$case)
3 # no `rev` needed below bc we set the reference level in slide 32
4 oddsratio(x = SHS_ct, method = "wald")$measure
```

```
odds ratio with 95% C.I.
estimate lower upper
Normal 1.000000 NA NA
Impaired 4.649888 3.605289 5.997148
```

Pause: other option in pubh package

```
1 contingency(case ~ glucimp, data = SHS, digits = 3)
          Outcome
Predictor
             1 0
  Impaired 198 334
  Normal
           128 1004
             Outcome +
                          Outcome -
                                      Total
                                                                Inc risk *
                               334 532 37.218 (33.097 to 41.482)
1004 1132 11.307 (9.521 to 13.298)
1338 1664 19.591 (17.709 to 21.581)
Exposed +
                   198
Exposed -
                128
Total
                  326
Point estimates and 95% CIs:
Inc risk ratio
                                               3.291 (2.703, 4.008)
Inc odds ratio 4.650 (3.605, 5.997)
Attrib risk in the exposed * 25.911 (21.408, 30.413)
Attrib fraction in the exposed (%) 69.618 (63.004, 75.050)
Attrib risk in the population * 8.284 (5.631, 10.937)
Attrib fraction in the population (%) 42.284 (34.713, 48.976)
_____
Uncorrected chi2 test that OR = 1: chi2(1) = 154.239 Pr>chi2 = <0.001
Fisher exact test that OR = 1: Pr>chi2 = <0.001
 Wald confidence limits
 CI: confidence interval
 * Outcomes per 100 population units
    Pearson's Chi-squared test with Yates' continuity correction
data: dat
X-squared = 152.6, df = 1, p-value < 2.2e-16
```

SHS Example: Odds Ratio (6/6)

Odds ratio

Compute the point estimate and 95% confidence interval for the diabetes Odds ratio between impaired and normal glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

3. Interpret the estimate

The estimated odds of diabetes for American Indians with impaired glucose tolerance at baseline is 4.65 times the odds for American Indians with normal glucose tolerance at baseline.

Additional interpretation of 95% CI (not needed): We are 95% confident that the odds ratio is between 3.61 and 6.00.

Since the 95% confidence interval does not include 1, there is sufficient evidence that the odds of diabetes differs significantly between impaired and normal glucose tolerance at baseline.

Inversing an Odds Ratio

- Some clinicians may prefer interpretations of OR > 1 instead of an OR < 1
- The transformation can easily be done by inverse
 - Remember we discussed that OR = 4 is an equivalent a strong association as OR = 0.25 (1/4)
- OR comparing group 1 to group 2 = inverse of OR comparing group 2 to group 1

$$OR_{1v2} = rac{\hat{p}_1/(1-\hat{p}_1)}{\hat{p}_2/(1-\hat{p}_2)} = rac{1}{rac{\hat{p}_2/(1-\hat{p}_2)}{\hat{p}_1/(1-\hat{p}_1)}} = rac{1}{OR_{2v1}}$$

Poll Everywhere Question 4

SHS Example: Inversing Odds Ratio

Inversing odds ratio

Compute the point estimate and 95% confidence interval for the diabetes odds ratio between **normal** and **impaired** glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

1. Inverse point estimate and confidence interval

$$\widehat{OR} = \frac{1}{4.6499} = 0.2151$$

The 95% Confidence interval is then

$$\left(\frac{1}{5.9971}, \frac{1}{3.6053}\right) = (0.1667, 0.2774)$$

SHS Example: Inversing Odds Ratio

Inversing odds ratio

Compute the point estimate and 95% confidence interval for the diabetes odds ratio between **normal** and **impaired** glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

1. Inverse point estimate and confidence interval

SHS Example: Inversing Odds Ratio

Inversing odds ratio

Compute the point estimate and 95% confidence interval for the diabetes odds ratio between **normal** and **impaired** glucose tolerance.

	Diabe		
Glucose tolerance	No	Yes	Total
Impaired	334	198	532
Normal	1004	128	1132
Total	1338	326	1664

Needed steps:

2. Interpret the estimate

The estimated odds of diabetes for American Indians with normal glucose tolerance at baseline is 0.22 times the odds for American Indians with impaired glucose tolerance at baseline.

Additional interpretation of 95% CI (not needed): We are 95% confident that the odds ratio is between 0.17 and 0.28.

Since the 95% confidence interval does not include 1, there is sufficient evidence that the odds of diabetes differs significantly between impaired and normal glucose tolerance at baseline.

Learning Objectives

- 1. Understand the difference between testing for association and measuring association
- 2. Estimate the risk difference (and its confidence interval) from a contingency table and interpret the estimate.
- 3. Estimate the risk ratio (and its confidence interval) from a contingency table and interpret the estimate.
- 4. Estimate the odds ratio (and its confidence interval) from a contingency table and interpret the estimate.

pubh vs. epitools

- In pubh with contingency()
 - Get all the info at once
 - Really nice to double check how the code is interpreting your input
- In epitools with riskratio() or oddsratio()
 - Much easier to grab the numbers!
 - In Quarto you can take R code and directly put it in your text

```
1 g = oddsratio(x = SHS_ct, method = "wald", rev = "rows")
2 g$measure[2,1]
[1] 0.215059
```

I can write {r eval="false" echo="true"} round(g\$measure[2,1], 3) to print the number
 0.215