Introduction to Data Science

Lecture 8

Data Wrangling, preprocessing, and Visualization

Part I

Data Preprocessing (cleaning)

- 1. Reading the file in a structural format (excel type format)
- 2. Dealing with missing values
- 3. Finding outliers and dealing with them
- 4. normalization
- 5. possible visualization

Reading and Handling Data files using Pandas

	Function	Description						
¥	read_csv	Load delimited data from a file, URL, or file-like object; use comma as default delimiter						
read_table		Load delimited data from a file, URL, or file–like object; use tab ('\t') as default delimiter						
	read_fwf	Read data in fixed-width column format (i.e., no delimiters)						
	read_clipboard	Version of read_table that reads data from the clipboard; useful for converting tables from web						
		pages						
	read_excel	Read tabular data from an Excel XLS or XLSX file						
	read_hdf	Read HDF5 files written by pandas						
	read_html	Read all tables found in the given HTML document						
read_json read_msgpack read_pickle		Read data from a JSON (JavaScript Object Notation) string representation						
		Read pandas data encoded using the MessagePack binary format						
		Read an arbitrary object stored in Python pickle format						
	read_sas	Read a SAS dataset stored in one of the SAS system's custom storage formats						
	read_sql	Read the results of a SQL query (using SQLAIchemy) as a pandas DataFrame						
	read_stata	Read a dataset from Stata file format						
	read_feather	Read the Feather binary file format						
	read_stata	Read a dataset from Stata file format						

Working on AirPassengers data set:

- The classic Box & Jenkins airline data. Monthly totals of international airline passengers, 1949 to 1960
- source AARSHAY JAIN

```
In [2]:
    import pandas as pd
    import numpy as np
    import datetime as dtime
    import matplotlib.pylab as plt
    %matplotlib inline
    from matplotlib.pylab import rcParams
    rcParams['figure.figsize'] = 15, 6
```

Now, we can load the data set and look at some initial rows and data types of the columns:

```
In [16]:
             1 filepath = '/Users/martin/Documents/MyLecturesSBU/Fall2018/CSE391/data/
             2 data = pd read csv(filepath)
             3 data.head(10)
             4 #print('\n Data Types:')
             5 #print(data.dtypes)
Out[16]:
               Month #Passengers
              1949-01
                             112
              1949-02
                             118
              1949-03
                             132
              1949-04
                             129
              1949-05
                             121
              1949-06
                             135
              1949-07
                             148
              1949-08
                             148
           7
              1949-09
                             136
              1949-10
                             119
             1(?)pd.read_csv
In [17]:
```

Dealing with missing values

Two type of missing data

- · missing completly at random
- · mising not at random

Out[7]: Fare PassengerId Survived Pclass Age SibSp Parch **Ticket** Cabin Name Sex Braund, 0 1 0 3 Mr. Owen male 22.0 1 0 A/5 21171 7.2500 NaN Harris Cumings, Mrs. John Bradley 1 2 PC 17599 71.2833 1 female 38.0 C85 (Florence **Briggs** Th... Heikkinen, STON/O2. 2 3 3 7.9250 Miss. female 26.0 NaN 3101282 Laina Futrelle, Mrs. 3 113803 53.1000 4 1 Jacques female 35.0 1 0 C123 Heath (Lily May Peel) Allen, Mr. 4 5 0 3 William 0 373450 8.0500 male 35.0 0 NaN Henry

- This will drop any rows with missing values. Clearly this isn't a good idea
- What instead if we wanted to remove any columns with missing values? How?

ut[19]:	I	Passengerld	Survived	Pclass	Name	Sex	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	0	0	373450	8.0500

Name: Age, dtype: float64

1.2 imputation (a way to replace the missing values)

```
• Filling the missing values

• mean
• your suggestion? wedan

In [7]: 1 passengers["Age"].fillna(value=passengers["Age"][mean()).head()

Out[7]: 0 22.0

1 38.0
2 26.0
3 35.0
4 35.0
```

Summarizing and Computing Descriptive Statistics

Pandas objects are equipped with a set of common mathematical and statistical methods. Most of these fall into the category of reductions or summary statistics, methods that extract a single value (like the sum or mean) from a Series or a Series of values from the rows or columns of a DataFrame.

Calling DataFrame's sum method returns a Series containing column sums

skipna=False)

1 df.mean (axis='columns',

In []:

m

Method	Description
count	Number of non-NA values
describe	Compute set of summary statistics for Series or each DataFrame column
min, max	Compute minimum and maximum values
argmin, argmax	Compute index locations (integers) at which minimum or maximum value obtained, respectively
idxmin, idxmax	Compute index labels at which minimum or maximum value obtained, respectively
quantile	Compute sample quantile ranging from 0 to 1
sum	Sum of values
mean	Mean of values
median	Arithmetic median (50% quantile) of values
mad	Mean absolute deviation from mean value
prod	Product of all values
var	Sample variance of values
std	Sample standard deviation of values
skew	Sample skewness (third moment) of values
kurt	Sample kurtosis (fourth moment) of values
CUMSUM	Cumulative sum of values
cummin, cummax	Cumulative minimum or maximum of values, respectively
cumprod	Cumulative product of values
diff	Compute first arithmetic difference (useful for time series)
pct_change	Compute percent changes

Note on mean, median, mode and their differences:

```
Find the mean, median, mode, and range for the following list of values:

13, 18, 13, 14, 13, 16, 14, 21, 13

The mean is the usual average, so I'll add and then divide

(13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) ÷ 9 = 15

Note that the mean, in this case, isn't a value from the original list. This is a common result. You should not assume that your mean will be one of your original numbers.

The median is the middle value, so first I'll have to rewrite the list in numerical order:

11

12

13, 13, 13, 13, 14, 14, 16, 18, 21

There are nine numbers in the list, so the middle one will be the (9 + 1) ÷ 2 = 10 ÷ 2 = 5th number:
```

```
16 13, 13, 13, 13, 14, 14, 16, 18, 21
17
18 So the median is 14.
19
20 The mode is the number that is repeated more often than any other, so
   13 is the mode.
21
22 The largest value in the list is 21, and the smallest is 13, so the
   range is 21 - 13 = 8.
23
24 mean: 15
25 median: 14
26 mode: 13
27 range: 8
28
29 Note: The formula for the place to find the median is "([the number of
   data points | + 1) ÷ 2", but you don't have to use this formula. You
   can just count in from both ends of the list until you meet in the
   middle, if you prefer, especially if your list is short. Either way
   will work.
```

Reading Text Files in Pieces

• When processing very large files or figuring out the right set of arguments to correctly process a large file, you may only want to read in a small piece of a file or iterate through smaller chunks of the file.

Pivot tables in Pandas

Panada pivot table example

Adapted from Chris Moffitt (http://pbpython.com/pandas-pivot-table-explained.html)

```
In [2]: 1 import pandas as pd
```

In [5]:	1 2	<pre># Read in the data; sale pipleline data df = pd.read excel("/Users/martin/Documents/MyLecturesSBU/past/</pre>									
3 Spring2018/CSE391/data/sales-funne								_	- •		
	4 df										
			Fritsch, Russel and	Craig	Debra						
	3	737550	Anderson	Booker	Henley	CPU	1	35000	declined		
	4	146832	Kiehn-Spinka	Daniel Hilton	Debra Henley	CPU	2	65000	won		
	5	218895	Kulas Inc	Daniel Hilton	Debra Henley	CPU	2	40000	pending		
	6	218895	Kulas Inc	Daniel Hilton	Debra Henley	Software	1	10000	presented		
	7	412290	Jerde-Hilpert	John Smith	Debra Henley	Maintenance	2	5000	pending		
	8	740150	Barton LLC	John Smith	Debra Henley	CPU	1	35000	declined		
	9	141962	Herman LLC	Cedric Moss	Fred Anderson	CPU	2	65000	won		
	10	163416	Purdy-Kunde	Cedric Moss	Fred Anderson	CPU	1	30000	presented		
	11	239344	Stokes LLC	Cedric	Fred	Maintenance	1	5000	pendina		
In [7]:	1	# This	isn't strictly	required	d but hel	ps us keep	the ord	ler we	want as		
[.]•	2		rk through analy	-			23.0 010				
	3		· · · · · · · · · · · · · · · · · · ·	9							
	4	df["Sta	atus"] = df["Sta	tus"].as	stype("ca	tegory")					
	5		atus"].cat.set_c				,"presen	ted",	declined"		
	6	-		-		e= True)	-	•			
	7				_	•					

In [8]:

- 1 #The simplest pivot table must have a dataframe and an index .
- 2 #In this case, let's use the Name as our index.
- 3 pd.pivot_table(df,index=["Name"])

Barton LLC	740150.0	35000.0	1.000000
Fritsch, Russel and Anderson	737550.0	35000.0	1.000000
Herman LLC	141962.0	65000.0	2.000000
Jerde-Hilpert	412290.0	5000.0	2.000000
Kassulke, Ondricka and Metz	307599.0	7000.0	3.000000
Keeling LLC	688981.0	100000.0	5.000000
Kiehn-Spinka	146832.0	65000.0	2.000000
Koepp Ltd	729833.0	35000.0	2.000000
Kulas Inc	218895.0	25000.0	1.500000
Purdy-Kunde	163416.0	30000.0	1.000000
Stokes LLC	239344.0	7500.0	1.000000
Trantow-Barrows	714466.0	15000.0	1.333333

In [9]:

- 1 # You can have multiple indexes as well
- 2 pd.pivot_table(df,index=["Name","Rep","Manager"])

Out[9]:

			Account	Price	Quantity
Name	Rep	Manager			
Barton LLC	John Smith	Debra Henley	740150.0	35000.0	1.000000
Fritsch, Russel and Anderson	Craig Booker	Debra Henley	737550.0	35000.0	1.000000
Herman LLC	Cedric Moss	Fred Anderson	141962.0	65000.0	2.000000
Jerde-Hilpert	John Smith	Debra Henley	412290.0	5000.0	2.000000
Kassulke, Ondricka and Metz	Wendy Yule	Fred Anderson	307599.0	7000.0	3.000000
Keeling LLC	Wendy Yule	Fred Anderson	688981.0	100000.0	5.000000
Kiehn-Spinka	Daniel Hilton	Debra Henley	146832.0	65000.0	2.000000
Koepp Ltd	Wendy Yule	Fred Anderson	729833.0	35000.0	2.000000
Kulas Inc	Daniel Hilton	Debra Henley	218895.0	25000.0	1.500000
Purdy-Kunde	Cedric Moss	Fred Anderson	163416.0	30000.0	1.000000
Stokes LLC	Cedric Moss	Fred Anderson	239344.0	7500.0	1.000000
Trantow-Barrows	Craig Booker	Debra Henley	714466.0	15000.0	1.333333

```
In [10]:
             1 pd.pivot table(df,index=["Manager","Rep"])
Out[10]:
                                     Account
                                                    Price
                                                          Quantity
                Manager
                                Rep
                                     720237.0 20000.000000
                         Craig Booker
                                                          1.250000
            Debra Henley
                         Daniel Hilton
                                    194874.0 38333.333333
                                                          1.666667
                          John Smith 576220.0 20000.000000
                                                          1.500000
                         Cedric Moss
                                    196016.5 27500.000000
                                                          1.250000
            Fred Anderson
                          Wendy Yule
                                     614061.5 44250.000000
                                                          3.000000
In [11]:
                # the Account and Quantity columns aren't really useful.
             2 #Let's remove it by explicitly defining the columns
               #we care about using the values field.
             3
             5 pd.pivot_table(df,index=["Manager","Rep"],values=["Price"])
Out[11]:
                                           Price
                Manager
                                Rep
                                     20000.000000
                         Craig Booker
            Debra Henley
                         Daniel Hilton
                                     38333.333333
                          John Smith
                                    20000.000000
                                     27500.000000
                         Cedric Moss
            Fred Anderson
                          Wendy Yule 44250.000000
In [13]:
             1 import numpy as np
             2 # The price column automatically averages the data
             3 # but we can do a count or a sum. Adding them is simple
             4 #using aggfunc and np.sum .
             5 pd.pivot_table(df,index=["Manager","Rep"],
                                 values=["Price"],aggfunc=np.sum)
Out[13]:
                                      Price
                Manager
                                Rep
                         Craig Booker
                                      80000
                                    115000
            Debra Henley
                         Daniel Hilton
                          John Smith
                                      40000
                         Cedric Moss
                                    110000
            Fred Anderson
```

if we want to see sales broken down by the products, the columns variable allows us to define
one or more columns.

Wendy Yule 177000

Out[14]:

sum

	Product	CPU	Maintenance	Monitor	Software
Manager	Rep				
	Craig Booker	65000.0	5000.0	NaN	10000.0
Debra Henley	Daniel Hilton	105000.0	NaN	NaN	10000.0
	John Smith	35000.0	5000.0	NaN	NaN
Fued Anderson	Cedric Moss	95000.0	5000.0	NaN	10000.0
Fred Anderson	Wendy Yule	165000.0	7000.0	5000.0	NaN

• Remember, columns are optional - they provide an additional way to segment the actual values you care about. The aggregation functions are applied to the values you list.

Join and Merge Pandas Dataframe

adapted from <u>Chris Albon</u>
 (https://chrisalbon.com/python/data wrangling/pandas join merge dataframe/)

Join the two dataframes along rows

Join the two dataframes along columns

```
In [ ]: 1 pd.concat([df_a, df_b], axis=1)
```

Reading big files using Pandas

- Before we can actually work with the data, we need to do something with it so we can begin to filter it to work with subsets of the data. This is usually what I would use pandas' dataframe for but with large data files, we need to store the data somewhere else. In this case, we'll set up a local sqllite database, read the csv file in chunks and then write those chunks to sqllite.
- To do this, we'll first need to create the sqllite database using the following command.

```
1 csv_database = create_engine('sqlite:///csv_database.db')
In [ ]:
In [ ]:
          1 #Next, we need to iterate through the CSV file in chunks and store the
          2
          3 chunksize = 1000
          4 | i = 0
          5 | j = 1
          6 for df in pd.read csv(file, chunksize=chunksize, iterator=True):
          7
                   df = df.rename(columns={c: c.replace(' ', '') for c in df.columns]
          8
                   df.index += j
          9
                   df.to_sql('table', csv_database, if_exists='append')
          10
          11
                   j = df.index[-1] + 1
```