TOTES LES RESPOSTES HAN DE SER RAONADES.

- 1. (4 punts) Sigui $(a_n)_{n\geq 1}$ la successió definida per $a_1=e^2$ i $a_{n+1}=e^{\sqrt{\ln(a_n)}}$, $\forall n\geq 1$.
 - (a) Demostreu que $2 < a_n < e^4, \forall n \ge 1$.
 - (b) Demostreu que $(a_n)_{n\geq 1}$ és decreixent.
 - (c) Demostreu que $(a_n)_{n\geq 1}$ és convergent i calculeu el seu límit.
 - (d) Si canviem el valor de a_1 per $a_1 = e^{0.5}$, la successió $(a_n)_{n \ge 1}$ continua sent acotada, decreixent i convergent? Justifiqueu la resposta.
- 2. (3 punts (1+2)) Sigui $f:[0,1] \to [0,1]$ una funció contínua i derivable tal que $f'(x) \neq 2x$ per a tot $x \in [0,1]$.
 - (a) Enuncieu el Teorema de Bolzano i el Teorema de Rolle.
 - (b) Demostreu que existeix un únic $c \in [0,1]$ tal que $f(c) = c^2$.
- 3. (3 punts) Considereu la funció $f(x) = e^{x/10}$.
 - (a) Escriviu el polinomi de Taylor d'ordre n centrat a l'origen de la funció f(x) i l'expressió del residu corresponent en la forma de Lagrange.
 - (b) Determineu el grau del polinomi de Taylor de la funció f(x) per obtenir el valor aproximat de $e^{-0.1}$ amb error més petit que $0.5 \cdot 10^{-3}$.
 - (c) Utilitzeu el polinomi de Taylor de l'apartat (c) per trobar el valor aproximat de $e^{-0.1}$ amb la precisió demanada.

Durada de l'examen: 1h 30m.

Cal lliurar els exercicis per separat.

S'ha de respondre amb tinta blava o negra.

No es poden utilitzar ni llibres, ni apunts, ni mòbils, ni dispositius electrònics que puguin emmagatzemar, emetre o rebre informació.

TODAS LES RESPUESTAS DEBEN SER RAZONADAS.

- 1. (4 puntos) Sea $(a_n)_{n\geq 1}$ la sucesión definida por $a_1=e^2$ y $a_{n+1}=e^{\sqrt{\ln(a_n)}}$, $\forall n\geq 1$.
 - (a) Demuestra que $2 < a_n < e^4, \forall n \ge 1$.
 - (b) Demuestra que $(a_n)_{n\geq 1}$ es decreciente.
 - (c) Demuestra que $(a_n)_{n\geq 1}$ es convergente y calcula su límite.
 - (d) Si se cambia el valor de a_1 por $a_1 = e^{0.5}$, ¿la sucesión $(a_n)_{n\geq 1}$ sigue siendo acotada, decreciente i convergente? Justifica la respuesta.
- 2. (3 puntos (1+2)) Sea $f:[0,1] \to [0,1]$ una función continua y derivable tal que $f'(x) \neq 2x$ para todo $x \in [0,1]$.
 - (a) Enuncia el Teorema de Bolzano y el Teorema de Rolle.
 - (b) Demuestra que existe un único $c \in [0, 1]$ tal que $f(c) = c^2$.
- 3. (3 puntos) Considera la función $f(x) = e^{x/10}$.
 - (a) Escribe el polinomio de Taylor de orden n centrado en el origen de la función f(x) y la expresión del resto correspondiente en la forma de Lagrange.
 - (b) Determina el grado del polinomio de Taylor de la función f(x) para obtener el valor aproximado de $e^{-0.1}$ con error menor que $0.5 \cdot 10^{-3}$.
 - (c) Utiliza el polinomio de Taylor del apartado (c) para calcular el valor aproximado de $e^{-0.1}$ con la precisión pedida.

Duración del examen: 1h 30m.

Es necesario entregar los ejercicios por separado.

Se debe responder con tinta azul o negra.

No pueden utilizarse ni libros, ni apuntes, ni móviles, ni dispositivos electrónicos que puedan almacenar, emitir o recibir información.