Electrical Circuit Project

– Fundamentals of Electrical Engineering –

Adina-Maria Amzărescu

311CA, Faculty of Automatic Control and Computer Science University POLITEHNICA of Bucharest

adina.amz are scu@stud.acs.upb.ro

May 2021

Table of contents

1	The circuit	3
2	Efficient Systematic Methods	4
3	Equivalent Voltage/Current Generator 3.1 Equivalent Generator's Characteristic	
4	Dependent sources. Spice simulation of dependent sources circuits 4.1 SUCU	11 11
5	Solving alternating current circuits using numerical software tools	13

1 The circuit

The circuit:

Electric current intensity graph:

Voltage graph:

2 Efficient Systematic Methods

Method	Number of equations
Kirchhoff classic	2L = 14
Kirchhoff's current law	L - N + 1 = 4
Kirchhoff's voltage law	N-1=3
String current	$L - N + 1 - n_{SIC} = 3$
Tensions in branches	$N - 1 - n_{SIT} = 2$

In the above circuit, there are 4 nodes, marked with numbers from 1 to 4 and 7 sides. At the same time, in the circuit there are an ideal current source (SIC) and an ideal voltage source (SIT).

The tree has N-1 = 3 branches, colored above with red, and N-1- n_{SIT} = 2 sections.

The sections:

- 1. The first section is composed of: $(1)\rightarrow(4)$ and $(4)\rightarrow(3)$; branch: $(4)\rightarrow(1)$.
- 2. The second section is composed of: $(3) \rightarrow (4)$ and $(3) \rightarrow (2)$; branch: $(3) \rightarrow (2)$.

Using the branch tension method. (the most efficient) It is efficient because it's necessarily to write only 2 Kirchhoff equations. If the string current method is use, there will be 3 equations. For the 2 chosen sections, the Kirchhoff's current law (1st law) is used, and more precisely in the (3) and (4) nodes.

$$\begin{cases} 1: \frac{U_{41}+15}{8} + \frac{U_{41}+15}{8} = 10\\ 2: \frac{U_{32}}{6} + 10 = 4 \end{cases}$$
 (1)

By calculating: $U_{41} = 25V$ and $U_{32} = 26V$ as can be seen in the voltage graph, written at the beginning.

3 Equivalent Voltage/Current Generator

The initial circuit:

3.1 Equivalent Generator's Characteristic

The idea is to find out the dependence of intensity, voltage and power in the R5 resistor. To do this, we make $E_{equivalent}$ on the left loop, and $R_{equivalent}$. On the top loop, there is a SIT in parallel with a resistor, which results in the initial SIT, and on the right loop there is a SRC, which is turned into SRT. In the figure there is the data (after performing these operations).

Now it's time to calculate $E_{equivalent}$ in this loop, and $R_{equivalent}$, without R_5 . The final results are shown in the figure below.

The graph of the maximum power and intensity dependence by R_5 is:

The OCTAVE function:

```
1 = function graph()
2
3
      E final = 9;
      R final - 10;
4
5
      power = zeros(1, 100);
      rez = linspace(0, 20, 100);
6
7
      voltage = zeros(1, 100);
8
      intensity - zeros(1, 100);
9
10 片
      for (i = 1 : 100)
        intensity(i) - E final / (rez(i) + R final);
11
        voltage(i) = intensity(i) * rez(i);
12
        power(i) = voltage(i) * intensity(i);
13
      endfor
14
15
      plot(rez, intensity, "g");
16
17
      hold on:
      plot(rez, voltage, "r");
18
      hold on:
19
20
      max power - max(power);
21
      finder - find (max_power -- power);
22
23
      plot(rez, power);
24
25
      hold on:
      plot(rez(finder), power(finder), "y"");
26
27
      hold on:
      plot(0, intensity(1), "r*");
28
29
      hold on;
30
      legend( 'I', 'U', 'P', "Maximum transfer", "Initial point");
31
32
      hold on:
33
    endfunction
34
35
```

3.2 Semiconductor diode

The resistor is replaced with a diode, highlighting the static points:

Resistor:

Diode:

4 Dependent sources. Spice simulation of dependent sources circuits

4.1 SUCU

The equivalent circuit with a voltage controlled source:

${\bf Diagram}$ 4.2

The diagram, corresponding to the circuit in the figure above is:
--- Operating Point ---

V(2):	5	voltage
V(1):	-25	voltage
V(nod1):	15	voltage
V(in):	30	voltage
V(nod3):	15	voltage
V(3):	-31	voltage
V(nod2):	120	voltage
I(I2):	10	device_current
I(I1):	4	device_current
I(R5):	10	device_current
I(R4):	6	device_current
I(R3):	-5	device_current
I(R2):	-5	device_current
I(R1):	3	device_current
I(E1):	13	device_current
I(V3):	-5	device_current
I(V2):	0	device_current
I(V1):	-5	device_current

5 Solving alternating current circuits using numerical software tools

The sinusoidal circuit:

The algebraic form of the circuit:

For the 2 chosen sections, the Kirchhoff's current law (1st law) is used, and more precisely in the {3} and {4} nodes.

$$\begin{cases}
 = > 1 : 2 * \frac{U_{41} + \frac{15\sqrt{2}}{2}(1+j)}{8} = 10 \\
 = > 2 : \frac{U32}{6} + 10 = \frac{4\sqrt{2}}{2}(1+j)
\end{cases} (2)$$

The results:

$$U_{41} = 29, 4 - 10, 6jV$$

and

$$U_{32} = -43,03 + 17jV$$

as can be seen in the voltage graph, written at the beginning.

$$U_{41} = \frac{40 - 15 * \sqrt{2} * (1+j)}{2}$$

The script for finding out
$$U_{41}+U_{32}:$$

$$U_{41}=\frac{40-15*\sqrt{2}*(1+j)}{2}$$

$$U_{32}=(\frac{4*\sqrt{(2)*(1+j)}}{2}-10)*6$$