A. Browary

Dostępna pamięć: 24 MB

Dookoła okrągłej wyspy biegnie jedyna na tej wyspie dwukierunkowa szosa. Przy drodze ustawione jest n domów. Od domu a do domu b można zatem przejść na dwa sposoby: zgodnie z ruchem wskazówek zegara lub przeciwnie do tego ruchu. Odległość między dwoma domami to długość krótszej z tych dwóch dróg. Pewna firma chce zbudować dwa browary przy dwóch różnych domach, tak żeby odległość między browarami była jak największa.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba całkowita $n \in [2, 10^6]$. W każdym z kolejnych n wierszy znajduje się liczba całkowita dodatnia nie większa od 10^9 , oznaczająca długość odcinka szosy między dwoma sąsiednimi domami. Dokładniej mówiąc ponumerujmy domy od 1 do n zgodnie z ruchem wskazówek zegara. Wtedy dla $i \in \{1, \ldots, n-1\}$ w wierszu i+1 danych wejściowych znajduje się długość odcinka szosy od domu i do domu i+1, zaś w wierszu i+1 danych wejściowych znajduje się długość odcinka szosy od domu i0 domu i1.

Specyfikacja danych wyjściowych

W pierwszym i jedynym wierszu wyjścia Twój program powinien wypisać liczbę całkowitą dodatnią będącą największą możliwą odległością między dwoma browarami.

Przykład A

Wejście:	Wyjście:
4	2
1	
1	
1	
1	

Przykład B

Wejście:	Wyjście:
5	7
1	
2	
3	
4	
5	

Przykład C

Wejście:	Wyjście:
3	8
10	
3	
5	