$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + u_n + \dots$$

$$S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n})$$

Все слагаемые в скобках будут больше нуля, тогда частичные суммы будут возрастать

$$S_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n} < u_1$$

Здесь же тоже все слагаемые больше нуля - их мы вычитаем из u_1 и получаем число гарантированно меньшее u_1

По **Th.** о монотонности и ограниченности последовательность $\exists \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$

$$S_{2n+1} = S_{2n} + u_{2n+1};$$
 $\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} u_{2n+1} = S \in \mathbb{R}$

$$Ex. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 $u_n = \frac{1}{n} \xrightarrow[n \to \infty]{} 0, \qquad \frac{1}{n} > \frac{1}{n+1} \Longrightarrow$ ряд сходится

Nota. Оценка остатка ряда

Запишем ряд:
$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - \dots \pm u_n \mp u_{n+1} = S + \sum_{k=n+1}^{\infty} (-1)^k u_k = S_n + P_n - \text{ остаток ряда}$$

В доказательстве было установлено, что сумма ряда не превышает своего первого члена

$$R_{n+1} < |(-1)^{k+1}u_k| = u_k = u_{n+1}$$

Ex.
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} \underbrace{-\frac{1}{32} + \dots}_{R_4} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

$$|R_4| < \frac{1}{32}$$

Проверка:
$$-(\frac{1}{32} - \frac{1}{64}) - (\frac{1}{128} - \frac{1}{256}) - \dots = -\sum_{k=3}^{\infty} \frac{1}{2^{2k}} - \underline{\text{Lab.}}$$
 досчитать и сравнить с $\frac{1}{32}$

Nota. Оценка не работает в знакоположительных рядах

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$R_3 = \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = \frac{1}{16} (1 + \frac{1}{2} + \dots) = \frac{2}{16} = \frac{1}{8} > \frac{1}{16}$$

Def. Знакопеременный ряд

 $\sum_{n=1}^{\infty} u_n$, где u_n - любого знака и не все u_n одного знака

Ex.
$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots$$

Nota. Исследование таких рядов (в том числе знакочередующихся) на сходимость можно проводить при помощи ряда из модулей

$$\mathbf{Th.}$$
 Абсолютная сходимость $\sum_{n=1}^{\infty} |u_n|$ сходится $\Longrightarrow \sum_{n=1}^{\infty} u_n$ сходится

Мет. См. абсолютную сходимость в несобственных интегралах

По критерию Коши:
$$\sum_{n=1}^{\infty} |u_n| \operatorname{сходится}$$
 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall m > n > n_0 \quad ||u_n| + |u_{n+1}| + \cdots + |u_m|| < \varepsilon$ По неравенству треугольника:
$$|u_n| + |u_{n+1}| + \cdots + |u_m| < |u_n| + |u_{n+1}| + \cdots + |u_m| < \varepsilon$$

Nota. Обратное неверно!

$$Ex. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \dots$$
 сходится
Но $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ сходится, он называется **абсолютно сходя**щимся

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ расходится, он называется условно сходящимся

Nota. Для абсолютно сходящихся рядов перестановка членов безболезнена и сохраняет сумму

Nota. На абсолютно сходящиеся ряды распространяются признаки сходимости знакоположительных рядов

- 1) Признак сравнения: $|u_n|<|v_n|$: $\sum |v_n|$ сходится $\Longrightarrow \sum |u_n|$ сходится 2) Предельный признак: $\lim |\frac{u_n}{v_n}|=q\in\mathbb{R}\setminus\{0\}$
- 3) $D = \lim \left| \frac{u_{n+1}}{u_n} \right| < 1$
- 4) $K = \lim \sqrt[n]{|u_n|} < 1$
- 5) $\int_{-\infty}^{\infty} f(x) dx$ сравнивается с $\sum |u_n|$

§2. Функциональные ряды

1. Определения

 $\mathbf{Def.}\ \sum_{n=1}^{\infty}u_n(x),$ где $u_n(x):E\subset\mathbb{R} o\mathbb{R}$ называется функциональным

Nota. При фиксации переменной x ряд становится числовым Ex. $\sum_{n=0}^{\infty} x^n$

$$Ex. \sum_{n=0}^{\infty} x^{n}$$

$$x = 2$$
 $\sum_{n=0}^{\infty} 2^n$ расходится

$$x = \frac{1}{2} - \sum_{n=0}^{\infty} (\frac{1}{2})^n$$
 сходится

n=0 Таким образом для |x|<1 ряд будет сходящимся, для |x|>1 расходящимся

Def. Множество значений x, при которых $\sum_{n=1}^{\infty} u_n(x)$ сходится, называется областью сходимости

Def. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится при всех x из некоторого множества E, то сумма ряда функция S(x)

Nota. To есть $\exists \lim_{n\to\infty} S_n(x) = S(x)$

Запишем остаток: $R_n(x) = S(x) - S_n(x)$. Часто удобно исследовать $R_n(x) \to 0$. Также работает критерий Коши

Тһ. Критерий Коши

$$\sum_{n=1}^{\infty}u_n(x)$$
 сходится в области $D\Longleftrightarrow \forall \varepsilon>0$ \exists $n_0\in\mathbb{N}$ $\mid \forall m>n>n_0 \mid u_n(x)+u_{n+1}(x)+\cdots+u_m(x)\mid <\varepsilon$

Nota. Очень неприятно, что n_0 зависит от ε и всякого x

Def. Равномерная сходимость ряда

$$\sum_{n=1}^{\infty} u_n(x)$$
 равномерно сходится в области $D \stackrel{def}{\Longleftrightarrow} \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |R_n(x)| < \varepsilon$

Nota. Доказательства равномерной сходимости по определению сложно, пользуются другими способами

$${f Th.}$$
 Признак Вейерштрасса
$$\exists \sum_{n=1}^\infty \alpha_n \ - \ \mbox{числовой ряд такой, что } \alpha_n > 0, \ \sum \alpha_n \ \mbox{сходится, } |u_n(x)| \le \alpha_n \ \mbox{ } \forall n$$
 Тогда $\sum_{n=1}^\infty u_n(x)$ равномерно сходящийся

Nota. Ряд $\sum_{i=1}^{\infty} \alpha_n$ называется мажорирующим

$$\sum_{n=1}^{\infty} \alpha_n \operatorname{сходится} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | R_n^{\alpha} | < \varepsilon$$
 Заменим на условие $|\alpha_n + \dots + \alpha_m| < \varepsilon$ (кр. Коши)
$$|u_n(x) + \dots + u_m(x)| \leq |u_n(x)| + \dots + |u_m(x)| \leq \alpha_n + \dots + \alpha_m \leq \varepsilon$$
 При этом номер n_0 зависит только от ε

Nota. Таким образом всякий мажорирующий ряд равномерно сходится, но не всякий равномерно сходящийся ряд мажорируем

Nota. Установим свойство суммы равномерно сходящегося ряда

$$Ex.$$
 Рассмотрим ряд $\sum_{n=1}^{\infty} (x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}) = (x^{\frac{1}{3}} - x^1) + (x^{\frac{1}{5}} - x^{\frac{1}{3}}) + (x^{\frac{1}{7}} - x^{\frac{1}{5}}) + \dots;$ $S_n = x^{\frac{1}{2n+1}} - x$ При $x > 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (x^{\frac{1}{2n+1}} - x) = 1 - x$ При $x < 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (-2^{n+1}\sqrt{|x|} - x) = -1 - x$ При $x = 0$ $S_n = 0$

При
$$x < 0$$
 $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (-\frac{2n+1}{\sqrt{|x|}}|x| - x) = -1 - 3$