

MT131 Discrete Mathematics

Midterm Examination (MTA) Fall Semester 2023/2024

Date: 07 /Nov./2023

Number of Exam Pages: ... (including this cover sheet)

Time Allowed: 90 Minutes

Instructions:

- Total Marks: 30
- This exam consists of four questions.
- ALL questions must be answered in the External Answer booklet.
- Be sure you write your name and ID on the External Answer booklet.
- Calculators are allowed.

Q-1: $[5\times3 \text{ marks}]$ Choose the correct answer:

- **1.1:** Which of the following option is true?
 - a) If the Sun is a planet, elephants will fly
 - **b)** 3+2=8 if 5-2=7
 - c) 1 > 3 and 3 is a positive integer
 - **d)** -2 > 3 or 3 is a negative integer
 - e) None of the above
- **1.2:** Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ be Boolean matrices. Find $A \vee B$;
 - a) $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 - b) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
 - $\mathbf{c)} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
 - $\mathbf{d)} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
 - e) None of the above
- **1.3:** If set $C = \{1, 2, 3, 4\}$ and $C D = \phi$ then set D can be
 - **a)** {1, 2, 4, 5}
 - **b)** {1, 2, 3}
 - **c)** {1, 2, 3, 4, 5}
 - **d)** φ
 - e) None of the above
- **1.4:** The inverse of function $f(x) = x^3 + 2$ is
 - a) $f^{-1}(y) = (y-2)^{\frac{1}{2}}$
 - **b)** $f^{-1}(y) = (y-2)^{\frac{1}{3}}$
 - c) $f^{-1}(y) = (y)^{\frac{1}{3}}$
 - d) $f^{-1}(y) = (y-2)$
 - e) None of the above
- **1.5:** For the sequence 1, 7, 25, 79, 241, 727, ... simple formula for $\{a_n\}$ is
 - **a)** $3^{n+1} 2$
 - **b)** $3^n 2$
 - c) $(-3)^n + 4$
 - **d)** $n^2 2$
 - e) None of the above

Each question in below worth 15 marks. Answer all the following:

Q-2:

p	q	r	$\neg p$	$q \rightarrow r$	$\neg p \rightarrow (q \rightarrow r)$	$p \lor r$	$q \rightarrow (p \lor r)$
F	F	F	T	T	T	F	T
F	F	T	T	T	T	T	T
F	Т	F	T	F	F	F	F
F	T	T	T	Т	T	Т	T
Т	F	F	F	Т	T	Т	T
T	F	T	F	T	T	Т	T
T	T	F	F	F	T	T	T
Т	Т	T	F	Т	T	Т	T

b) [3 marks] Determine the truth values of the statement where the domain of discourse is the set of <u>positive integers</u>, justify your answers: $\forall x ((x \neq 4) \rightarrow (x - 5 > 1))$

False [1 mark], take example
$$x = 1$$
 [2 marks]

c) [3 marks] Translate the following statement into logical expressions using predicates, quantifiers, and logical connectives.

"Everything is in the correct place and in excellent condition."

$$\forall x (C(x) \land E(x))$$

Q-3:

a) [3×2 marks] Suppose that the universal set $U = \{1,2,3,4,5,6,7,8,9,10\}$, and the sets A, B and C be represented as a bit string as following:

A:0011100000 *B*:1010010001 *C*:0111001110

Find

i. The elements of the sets *A*, *B*, *C*

$$A = \{3, 4, 5\}, B = \{1, 3, 6, 10\}, C = \{2, 3, 4, 7, 8, 9\}$$

ii. $A \cap (B \oplus C)$

$$(B \oplus C) = \{1,2,4,7,8,6,9,10\}$$

 $A \cap (B \oplus C) = \{4\}$

- b) [3×2 marks] Consider the functions f(x) = 2x 3 and $g(x) = x^2$, where x a real number. Find the following:
 - i. $g \circ f = (2x 3)^2$
 - ii. Determine whether the function f(x) is one-to-one (injective) and onto (surjective). Provide an explanation for each.

$$f(x)$$
 is one-to-one: Let $f(a) = f(b) \Rightarrow 2a - 3 = 2b - 3 \Rightarrow a = b$

$$f(x)$$
 is Onto: Let $y \in \mathbb{R}$, and take $x = \frac{y+3}{2}$, then $f(x) = f\left(\frac{y+3}{2}\right) = 2\left(\frac{y+3}{2}\right) - 3 = y$

c) [3 marks] Given the terms $a_1 = 18$ and $a_2 = 54$, what is a_3 in a geometric sequence? Find the sum of the first three terms.

To find the common ratio of the geometric sequence, we can divide the second term by the first term:

$$r = a_2 / a_1$$

$$r = 54 / 18$$

$$r = 3$$

Now that we know the common ratio (r = 3), we can use it to find the third term (a_3) by multiplying the second term by the common ratio:

$$a_3 = a_2 * r$$

$$a_3 = 54 * 3$$

$$a_3 = 162$$

Therefore, the third term of the geometric sequence is $a_3 = 162$.

To find the sum of the first three terms of the geometric sequence

$$S^3 = 18 + 54 + 162 = 234$$

Q-4:

- a) [5 marks] Consider the integers a = 675 and b = 891. Find:
 - i. The prime factorization of a.

$$675 = 3^3 \times 5^2$$

ii. The prime factorization of b.

$$891 = 3^4 \times 11$$

iii. The greatest common divisor (GCD) of a and b.

$$GCD(675,891) = 3^3 = 27$$

iv. The least common multiple (LCM) of a and b.

$$LCM(675,891) = 3^4 \times 5^2 \times 11 = 22275.$$

- v. Based on this information, determine if 675 and 891 are relatively prime? They are not relatively prime because $GCD(675,891) \neq 1$
- **b)** [10 marks] Using the encrypting function $f(x) = (x + 5) \mod 26$,

 $0 \le x \le 25$, encrypt the message "HELLO". Provide details of the solution.

										•		_													
Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	Χ	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

"MJQQT"

Message	Н	E	L	L	0
x	7	4	11	11	14
$(x + 5) \mod 26$	12	9	16	16	19
Encrypted message	M	J	Q	Q	T

End of questions