Основни понятия при термична обработка

Разработили: гл. ас. д-р Антонио Николов, доц. Валентин Камбуров, доц. Рангел Рангелов, гл. ас. д-р. Райна Димитрова

Съдържание

- Термична обработка
- Време температурна графика
- Закаляване
- Отвръщане
- Отгряване
- Термична обработка на стомани
- Превръщания на Аустенита в зависимост от скороста на охлаждане
- Температури при закаляване
- > Закаляване на инструментални стомани

Термична обработка

- **Термичната обработка** е технологичен процес, състоящ се от нагряване и охлаждане на метални изделия при точно опеделени времетемпературни интервали, с цел изменение на тяхната структура, а от там и на техните свойства.
- На стадий изготовяне на детайли е необходимо, метала да е пластичен, с ниска твърдост, еднородна структура, както да има и добра обработваемост чрез рязане.
- В готовите изделия винаги е желателно да имаме материал максимално траен, здрав, с по-висока твърдост, износоустойчивост и якост на опън.
- Такива изменения в свойствата на материалите могат да се постигнат с термична обработка. Този процес може да бъде описан с помоща на времтемпературна графика и да включва нагряване, задържане и охлаждане (фиг. 1).

Време температурна графика

Закаляване

- Закаляването е технологичен процес в термичната обработка, при който загрятата до определена температура метална сплав се подлага на рязко охлаждане, вследствие на което в изстиналия материал се получава неравновесна кристална структура.
- Охлаждането се извършва с надкритична скорост, поради което в материала не успяват да протекат всички дифузионни процеси, характерни за бавното изстиване.
- Закаляването може да протече с полиморфно превръщане (при стоманите) или без полиморфно превръщане (при цветните сплави). Температурата на нагряване и скоростта на охлаждане зависят строго от химическия състав на сплавта и винаги се изхожда от фазовата диаграма на съответния материал.
- Чисти или почти чисти метали не се подлагат на закаляване.
- Могат да се закаляват някои полимери и стъкло.

Отвръщане

- Процес, при който задължително се подлагат детайлите след закаляване, с което се цели намаляване на вътрешните напрежения и на крехкостта, въпреки че твърдостта малко спада.
- Неправилен режим на закаляване може да доведе до вътрешни пукнатини или изкривяване на детайла, особено когато има тънки и масивни части.

Отгряване

Отгряване е нагряване до температури, по-високи от тези на фазовите превръщания, задържане до пълно прогряване и завършване на фазовите превръщания, и бавно охлаждане, обикновено с пеща, с цел получаване на по-равновесни структури с по-ниска твърдост, по-висока пластичност и обработавемост, и премахване на остатъчните вътрешни напрежения.

- Отгряването бива:
 - Пълно отгряване;
 - Непълно отгряване;
 - ▶ Изотермично отгряване;
 - Сфероидизиращо отгряване;
 - Нормализация.

Термична обработка на стомани

- Стоманата е желязо-въглеродна сплав със съдържание на въглерод от 0,1 до 2,14%, като може да съдържа и други легиращи елементи.
- Съдържанието на въглерод е определящо, затова при избор на режима на закаляване се изхожда от диаграмата на състояние на системата Fe-C (фиг.2.).
- Също така трябва да се отчита влиянието на легиращите елементи, които в повечето случаи разширяват аустенитната област, т.е. охлаждането може да започне от по-ниска температура в сравнение с нелегираната стомана, но със същото съдържание на въглерод.
- Стоманите с по-малко от 0,3% въглерод не се подлагат на закаляване, както и чугуните (с въглерод повече от 2,14%). В практиката се закаляват стомани с 0,3 - 1,4% въглерод.

Термична обработка на стомани

Превръщания на Аустенита в зависимост от скороста на охлаждане

- ▶ Бавно охлаждане аустенитът се пръвръща в перлит, HRC=20
- Бързо охлаждане до 650°С, после бавно аустенитът се превръща в сорбит (по-дребнозърнест перлит), НRС=30
- ▶ Бързо охлаждане до 550°С после бавно аустенитът се превръща в троостит (най-дребнозърнестия перлит), НКС=40
- Бързо охлаждане до 450°С и задържане при тази температура аустенитът се превръща в бейнит (иглеста структура), НRС=50. (Процесът е известен като изотермично закаляване).
- Бързо охлаждане под 400°С аустенитът се превръща в мартензит (иглеста неравновесна структура), НRС=58 – 62, където НRС е твърдостта по Роквел.

Превръщания на Аустенита в зависимост от скороста на охлаждане

Време температурна графика при закаляване на стомана 45

Температура при закаляване

закаляване	отвръщане	
1200° C	390° C	
	380° C	
1100° C	370° C	
	360° C	
1050° C	350° C	
	340° C	
980° C	330° C	
	320° C	
930° C	310° C	
	300° C	
870° C	290° C	
	280° C	
810° C	270° C	
	260° C	
760° C	250° C	
	240° C	
700° C	230° C	
	220° C	
650° C	210° C	
	2000 0	

Закаляване на танк

Закаляване на инструментални стомани

Марка стомана	Приложение	Температура на закаляване, °C	Температура отвръщане, °C	Охлаждаща среда за закаляване	Охлаждаща среда при отвръщане
У7	Чукове, дърводелски инструменти	800	170	Вода	Вода, масло
У7А	Инструменти , отвертки, длета, секачи, брадви	800	170	Вода	Вода, масло
У8, У8А	Пуансони, матрици, длета, пробой, листове за ножовки	800	170	Вода	Вода, масло
У10, У10A	Дървообработващи инструменти,стругарски ножове	790	180	Вода	Вода, масло
У11	Метчици	780	180	Вода	Вода, масло
У12	Метчици, флашки	780	180	Вода	Вода, масло
P9	Метчици, стругарски ножове , свредла за метал, фрези	1250	580	Масло	Въздух в пеща
P18	Машинни ножове, свредла за метал, фрези	1300	580	Масло	Въздух в пеща
ШХ6	Пили	810	200	Масло	Въздух
ШХ15	Машинни ножовки	845	400	Масло	Въздух
9XC	Флашки, свредла за дърво	860	170	Масло	

Задачи:

- 1. Какво е това Мартензит?
- 2. Каква кристална решетка има мартензита в стоманата след закаляване?
- 3. Как влиае скороста при охлаждане върху структоро образуването при ниско въглеродните стомани?
- 4. Как се определя температурата необходима за постигане на закаляване?
- 5. Какво е цялосна и повърхностна закалка?

Онлайн закалявания

https://www.youtube.com/watch?v=foB1qq8EuVc

https://www.youtube.com/watch?v=V0RDxk0Wu4c

Благодаря за вниманието!