1. Given a robust LP with the constraint $\Pr(\bar{\mathbf{c}}_i^T \bar{\mathbf{x}} \leq d_i) \geq \eta$, where \mathbf{c}_i is a Gaussian random vector with mean $\bar{\boldsymbol{\mu}}_i$ and covariance matrix $\mathbf{R}_i = \tilde{\mathbf{R}}_i \tilde{\mathbf{R}}_i^T$. This constraint can be equivalently represented as

$$\left\|\widetilde{\mathbf{R}}_{i}^{T}\overline{\mathbf{x}}\right\| \leq \frac{(d_{i} - \overline{\mathbf{x}}_{i}^{T}\overline{\boldsymbol{\mu}}_{i})}{Q^{-1}(1 - \eta)}$$

Ans c

2. The epigraph form of the optimization problem is

$$\min t$$
s. t. $g_0(\bar{\mathbf{x}}) \le t$

$$g_i(\bar{\mathbf{x}}) \le 0, i = 1, 2, ..., l$$

$$\mathbf{a}_j^T \bar{\mathbf{x}} = b_j, j = 1, 2, ..., m$$

Ans b

3. The given optimization problem $\min \|\mathbf{A}\bar{\mathbf{x}} - \bar{\mathbf{b}}\|_{\infty}$ can be formulated as the LP below

$$\min t$$

$$-t\overline{1} \le A\overline{x} - \overline{b} \le t\overline{1}$$

Ans b

4. Given a MIMO communication system with channel matrix **H**. The optimal transmit and receive beamformers, respectively, for maximum SNR at the receiver, are principal eigenvectors of **H**^H**H** and **HH**^H

Ans b

5. Given the vectors $\overline{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $\overline{\mathbf{v}} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$. The set of orthormal vectors spanning the same subspace is $\frac{1}{\sqrt{3}}\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix} -1\\0\\1 \end{bmatrix}$. This can be seen as follows

$$\bar{\mathbf{v}} - \frac{\bar{\mathbf{u}}}{\|\bar{\mathbf{u}}\|} \frac{\bar{\mathbf{u}}^T}{\|\bar{\mathbf{u}}\|} \bar{\mathbf{v}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \frac{1}{\sqrt{3}} \times 6 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} 2\\2\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

Corresponding unit-norm vector is $\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$

Ans c

6. Given matrix $\mathbf{A} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} [1 \quad 1] + 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} [1 \quad -1]$. It can be seen that \mathbf{A} is PSD, since it is of the form $\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{a}_{i}^{T}$. Further, since $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are orthogonal, these are the eigenvectors. Corresponding eigenvalues are 4, 6. Hence, solution to the optimization problem is the maximum eigenvalue 6

Ans d

- 7. The minimum value of $\bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}}$ for $||\bar{\mathbf{x}}|| = 1$ is given my the minimum eigenvalue = 4. Ans c
- 8. Given the noise vector $\overline{\mathbf{n}} = [n_1 \quad n_2 \quad \dots \quad n_L]^T$, with its elements i.i.d. zero-mean Gaussian that have variance σ^2 . Let $\overline{\mathbf{w}}$ denote a weight vector. The quantity $\overline{\mathbf{w}}^T \overline{\mathbf{n}}$ has variance $\sigma^2 ||\overline{\mathbf{w}}||^2$

Ans b

9. Given the MIMO channel matrix

$$\mathbf{H} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

The largest eigenvalue is $\mathbf{H}^T\mathbf{H}$, $\mathbf{H}\mathbf{H}^T$ are 4. The corresponding principal eigenvectors

are
$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$, respectively, which are the optimal transmit and receive beamforming vectors

vectors

Ans d

10. For the compressive sensing problem shown, the possible values of k for the l_k norm are k = 0,1

Ans b