Appendix: Contract Design for Adaptive Federated Learning

Ni YANG, Yue CUI, Man Hon Cheung April 4, 2024

1 Proof to Lemma 2

Proof. 1. The non-negative weighted sum of convex (concave) functions is convex (concave). [?] $g_1(\mathbf{r}) = \sum_{i=1}^{I} \sum_{j=1}^{J} N_{i,j} r_{i,j} \gamma_j$ and $g_2(\mathbf{r}) = \sum_{i=1}^{I} \sum_{j=1}^{J} N_{i,j} \theta_i r_{i,j}$ are weighted sum of variables $r_{i,j}$, where $N_{i,j}$, γ_j and θ_i are weights. Thus, $g_1(\mathbf{r})$ and $g_2(\mathbf{r})$ are both convex and concave.

- 2. The scalar composition f(x) = h(g(x)) is convex if $g(\cdot)$ is concave, $h(\cdot)$ is convex and \hat{h} is non-increasing, where \hat{h} is the extended-value extension of function h, which assigns the value ∞ to points not in **dom** h. Suppose $h(x) = \frac{1}{\sqrt{x}}$, which is a convex and \hat{h} is non-increasing. Thus, $f(r) = h(g_1(r))$ is convex.
- 3. $C_{com}(\mathbf{r})$ is non-negative weighted sum of convex functions $f(\mathbf{r})$ and $g_2(\mathbf{r})$. Thus, $C_{com}(\mathbf{r})$ is convex.