

知识总览 宝算器 主存储器 控制器 全我康康 全我康康 主机

2

王道考研/CSKAOYAN.COM

运算器的基本组成

运算器

运算器: 用于实现算术运算(如:加减乘除)、逻辑运算(如:与或非)

ACC: 累加器,用于存放操作数,或运算结果。

乘商寄存器,在乘、除运算时,用于存放操作数或运算结果。 通用的操作数寄存器,用于存放操作数 MQ:

X:

算术逻辑单元,通过内部复杂的电路实现算数运算、逻辑运算 ALU:

Accumulator
Multiple-Quotient Register
Arithmetic and Logic Unit

	加	减	乘	除
ACC	被加数、和	被减数、差	乘积高位	被除数、余数
MQ			乘数、乘积低位	商
X	加数	减数	被乘数	除数

王道考研/CSKAOYAN.COM

控制器的基本组成

控制器

CU: 控制单元,分析指令,给出控制信号

IR: 指令寄存器,存放当前执行的指令

PC: 程序计数器,存放下一条指令地址,有自动加1功能

Control Unit Instruction Register **Program Counter**

> 取指令 PC 完成 取指 一条 指令 分析指令 IR 执行指令 执行

> > 王道考研/CSKAOYAN.COM

计算机的工作过程

高级语言

int a=2,b=3,c=1,y=0; void main(){ y=a*b+c;

存储字长=16bit

机器语言

主存	1 8 20 20 20 20 20 20 20 20 20 20 20 20 20	指令	外接又
地址	操作码	地址码	注释
0	000001	0000000101	取数a至ACC
1	000100	0000000110	乘b得ab,存于ACC中
2	000011	0000000111	加c得ab+c,存于ACC中
3	000010	0000001000	将 $ab+c$,存于主存单元
4	000110	000000000	停机
5		原始数据a=2	
6	0000000000000011		原始数据b=3
7	000000	0000000001	原始数据 $c=1$
8	000000	0000000000	原始数据y=0

王道考研/CSKAOYAN.COM

计算机的工作过程

初: (PC)=0, 指向第一条指令的存储地址

#1: (PC)→MAR, 导致(MAR)=0

#3: M(MAR)→MDR, 导致(MDR)=**000001** 0000000101

#4: (MDR)→IR, 导致(IR)=000001 0000000101

#5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"取数"指令

#6: Ad(IR)→MAR, 指令的地址码送到MAR, 导致(MAR)=5

#8: M(MAR)→MDR, 导致(MDR)=0000000000000010=2

#9: (MDR)→ACC, 导致(ACC)=0000000000000010=2

	主存	指令		外枢
		操作码	地址码	注释
•	0	000001	0000000101	取数a至ACC
	1	000100	0000000110	乘b得ab,存于ACC中
	2	000011	0000000111	加c得ab+c,存于ACC中
	3	000010	0000001000	将ab+c,存于主存单元
	4	000110	0000000000	停机
	5	000000	0000000010	原始数据a=2
	6	00000000000000011		原始数据b=3
	7	00000000000000001		原始数据 $c=1$
	8	000000	0000000000	原始数据 $y=0$

取指令(#1~#4) 分析指令(#5)

执行取数指令(#6~#9)

王道考研/CSKAOYAN.COM

计算机的工作过程

主存 指令 注释 地址 操作码 地址码 取数a至ACC 000001 0000000101 0 乘b得ab,存于ACC中 0000000110 000100 加c得ab+c,存于ACC中 000011 0000000111 2 将ab+c,存于主存单元 0000001000 3 000010 停机 0000000000 000110 4 原始数据a=2 00000000000000010 5 原始数据b=3 00000000000000011 6 原始数据c=17 000000000000000001 000000000000000000 原始数据y=0 8

上一条指令取指后PC自动+1, (PC)=1; 执行后, (ACC)=2

#1: (PC)→MAR, 导致(MAR)=1

#3: M(MAR)→MDR, 导致(MDR)=000100 0000000110

#4: (MDR)→IR, 导致(IR)= 000100 0000000110

#5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"乘法"指令

#6: Ad(IR)→MAR,指令的地址码送到MAR,导致(MAR)=6 #8: M(MAR)→MDR,导致(MDR)=000000000000011=3

#9: (MDR)→MQ, 导致(MQ)=0000000000000011=3

#10: (ACC)→X, 导致(X)=2

#11: (MQ)*(X)→ACC,由ALU实现乘法运算,导致(ACC)=6,如果乘积太大,则需要MQ辅助存储

取指令(#1~#4) 分析指令(#5)

执行乘法指令(#6~#11)

王道考研/CSKAOYAN.COM

9

计算机的工作过程

指令 主存 注释 地址 操作码 地址码 取数a至ACC 000001 0000000101 0 乘b得ab,存于ACC中 0000000110 000100 加c得ab+c,存于ACC中 2 000011 0000000111 将ab+c,存于主存单元 3 000010 0000001000 0000000000 停机 000110 4 原始数据a=2 00000000000000010 5 原始数据b=3 00000000000000011 6 原始数据c=100000000000000001 原始数据y=0 8 000000000000000000

上一条指令取指后(PC)=2, 执行后, (ACC)=6

#1: (PC)→MAR, 导致(MAR)=2

#3: M(MAR)→MDR, 导致(MDR)= 000011 0000000111

#4: (MDR)→IR, 导致(IR)= 000011 0000000111

#5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"加法"指令

#6: Ad(IR)→MAR, 指令的地址码送到MAR, 导致(MAR)=7

#8: M(MAR)→MDR, 导致(MDR)=0000000000000001=1

#9: (MDR)→X, 导致(X)=0000000000000001=1

#10: (ACC)+(X)→ACC, 导致(ACC)=7, 由ALU实现加法运算

取指令(#1~#4) 分析指令(#5)

执行加法指令(#6~#10)

王道考研/CSKAOYAN.COM

计算机的工作过程

上一条指令取指后 (PC)=3,执行后,(ACC)=7 #1: (PC)→MAR,导致(MAR)=3

#3: M(MAR)→MDR, 导致(MDR)=000010 0000001000

#4: (MDR)→IR, 导致(IR)= 000010 0000001000

#5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"存数"指令

#6: Ad(IR)→MAR, 指令的地址码送到MAR, 导致(MAR)=8

#7: (ACC)→MDR, 导致(MDR)=7

#9: (MDR)→地址为8的存储单元,导致y=7

主存	指令		<u>></u> }- ₩V	
地址	操作码	地址码	注释	
0	000001	0000000101	取数a至ACC	
1	000100	0000000110	乘b得ab,存于ACC中	
2	000011	0000000111	加c得ab+c,存于ACC中	
3	000010	0000001000	将 $ab+c$,存于主存单元	
4	000110	0000000000	停机	
5	00000000000000010		原始数据a=2	
6	00000000000000011		原始数据b=3	
7	00000000000000001		原始数据 $c=1$	
8	0000000000000111		最终结果v=7	

取指令(#1~#4) 分析指令(#5)

执行存数指令(#6~#9)

王道考研/CSKAOYAN.COM

11

计算机的工作过程

PC

- 上一条指令取指后(PC)=4
- #1: (PC)→MAR, 导致(MAR)=3
- #3: M(MAR)→MDR, 导致(MDR)=000110 0000000000
- #4: (MDR)→IR, 导致(IR)= 000110 0000000000
- #5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"停机"指令

(利用中断机制通知操作系统终止该进程)

主存	指令		注释
地址	操作码	地址码	往神
0	000001	0000000101	取数a至ACC
1	000100	0000000110	乘b得ab,存于ACC中
2	000011	0000000111	加c得ab+c,存于ACC中
3	000010	0000001000	将ab+c,存于主存单元
4	000110	0000000000	停机
5	5 0000000000000010 6 0000000000000011 7 00000000000000001		原始数据 $a=2$
6			原始数据b=3
7			原始数据 $c=1$
8	0000000000000111		最终结果y=7

取指令(#1~#4) 分析指令(#5) 执行<mark>停机</mark>指令

王道考研/CSKAOYAN.COM

回顾: 冯诺依曼机的特点

冯·诺依曼计算机的特点:

- 1. 计算机由五大部件组成
- 2. 指令和数据以同等地位存于存储器,可按地址寻访
- 3. 指令和数据用二进制表示
- 4. 指令由操作码和地址码组成
- 5. 存储程序
- 6. 以运算器为中心(现在一般以存储器为中心)

王道考研/CSKAOYAN.COM

15

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

- 微博: @王道计算机考研教育
- B站: @王道计算机教育
- 小红书: @王道计算机考研
- 知 知乎: @王道计算机考研
- 抖音: @王道计算机考研
- 淘宝: @王道论坛书店