Tema 3: Diferenciabilitat

1. Definició Sigui $f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}, p \in A, v \in \mathbb{R}^n \setminus \{0\}$. La derivada de f en la direcció de v en el punt p (o derivada direccional de f en el punt p en la direcció de v), si existeix, és:

$$f'_v(p) = D_v f(p) = \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$

2. **Definició** Quan $v = e_j$, vector de la base canònica, llavors la derivada direccional s'anomena derivada parcial i s'escriu:

$$\frac{\partial f}{\partial x_j}(p) = D_{e_j} f(p)$$

- 3. **Propietat** Derivar parcialment f respecte x_j en $p=(p_1,\cdots,p_n)$ és el mateix que derivar $g_j(t)=f(p_1,\cdots,p_{j-1},t,p_{j+1},\cdots,p_n)$ a $t=p_j$.
- 4. **Definició** Considerem $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, A un obert i $p \in A$, on $f = (f_1, \dots, f_m)$. La **matriu jacobiana** de f en p és la matriu de les derivades parcials:

$$Jf(p) = (Jf)_p = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \dots & \frac{\partial f_1}{\partial x_n}(p) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(p) & \dots & \frac{\partial f_m}{\partial x_n}(p) \end{pmatrix}$$

5. **Definició** Sigui $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, A un obert i $p \in A$. Direm que F és diferenciable en p si existeix una aplicació lineal $L_p: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ tal que:

$$\lim_{x \to p} \frac{\|F(x) - F(p) - L_p(x - p)\|}{\|x - p\|} = 0$$

6. **Proposició** Si F és diferenciable en p aleshores l'aplicació lineal L_p és única i els elements de la matriu associada a L_p en bases canòniques són:

$$(L_p)_{i,j} = \frac{\partial F_i}{\partial x_j}(p)$$

- 7. **Definició** Si f és diferenciable en $p \in A$, l'aplicació lineal (en bases canòniques) associada a la matriu jacobiana s'anomena **aplicació diferencial** i la notem com $(DF)_p$ o bé DF(p).
- 8. **Proposició** Sigui $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, A un obert i $p \in A$. Aleshores F és diferenciable en p si i només si F_1, \dots, F_m són diferenciables en p.
- 9. **Proposició** Si $f:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ és diferenciable en $p\in A$, on A obert, aleshores existeix l'hiperplà tangent a f en p i té equació

$$x_{n+1} - f(p) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p)(x_i - p_i)$$

10. **Proposició** Sigui $f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, A obert. Si f és diferenciable en $p \in A$, aleshores existeix $D_v f(p)$ per a tot $v \in \mathbb{R}^n \setminus \{0\}$, i es té:

$$D_v f(p) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(p) v_j$$

- 11. **Definició** Sigui $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, on A obert. Si f és diferenciable en $p \in A$, el **gradient de** f en $p, \nabla f(p)$, és el vector $\left(\frac{\partial f}{\partial x_1}(p), \cdots, \frac{\partial f}{\partial x_m}(p)\right)$.
- 12. Corol·lari Si f és diferenciable en $p \in A$, aleshores $\nabla f(p)$ és l'únic vector que satisfà

$$D_v f(p) = \langle v, \nabla f(p) \rangle \quad \forall v \in \mathbb{R}^n, \ v \neq 0$$

1

- 13. **Proposició** Si $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ és diferenciable en l'obert A i $C_h = \{x \in A \mid f(x) = h\}$ és el conjunt de nivell $h \in \mathbb{R}$ de f, llavors $\nabla f(p) \perp C_h$ en $p \in C_h$.
- 14. **Proposició** Sigui $f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, A obert, $p \in A$ i f diferenciable en p, aleshores:
 - (i) $\max_{v \in \mathbb{R}^n \setminus \{0\}, ||v|| = 1} \{D_v f(p)\} = ||\nabla f(p)||$ i s'assoleix quan $v = \frac{\nabla f(p)}{||\nabla f(p)||}$.
 - $\text{(ii)} \ \min_{v \in \mathbb{R}^n \backslash \{0\}, \, ||v|| = 1} \{ \left(D_v f\right)(p) \} = -\|\nabla f(p)\| \ \text{i s'assoleix quan } v = -\frac{\nabla f(p)}{\|\nabla f(p)\|}.$
- 15. **Teorema** Si f és diferenciable en p aleshores f és contínua en p.
- 16. **Lema** Si $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ és lineal, aleshores existeix M > 0 tal que $||L(x)|| \leq M||x||, \forall x \in \mathbb{R}^n$.
- 17. **Proposició** Si $A \subseteq \mathbb{R}^n$ és un obert i $F: A \longrightarrow \mathbb{R}^m$ és diferenciable en $p \in A$, aleshores existeix $\delta > 0$ tal que si $||x p|| < \delta$ i $x \in A$, llavors $||F(x) F(p)|| \le M||x p||$, per a cert M > 0. En altre paraules, F és **localment Lipschitz** en p.
- 18. **Proposició** Si F és localment Lipschitz en p aleshores F és contínua en p.
- 19. **Proposició** Siguin $F, G : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ diferenciables en $p \in A$, amb A obert, aleshores:
 - (i) F + G és diferenciable en p, i D(F + G)(p) = DF(p) + DG(p).
 - (ii) $\forall \lambda \in \mathbb{R}, \lambda F$ és diferenciable en p, i $D(\lambda F)(p) = \lambda DF(p)$.
 - (iii) $\langle F, G \rangle$ és diferenciable en p, i per a tot $v \in \mathbb{R}^n$, $D\langle F, G \rangle(p)(v) = \langle G(p), DF(p)(v) \rangle + \langle F(p), DG(p)(v) \rangle$.
- 20. **Proposició** (Regla de la cadena) Sigui $F:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ diferenciable en $p\in A$, amb A obert i $G:B\subset\mathbb{R}^m\longrightarrow\mathbb{R}^k$ diferenciable en $F(p)\in B$, amb B obert i tal que $F(A)\subseteq B$. Aleshores, $(G\circ F):A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^k$ és diferenciable en p i

$$D(G \circ F)(p) = DG(F(p)) \circ DF(p)$$

- 21. **Definició** Diem que una funció $f:A\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ és **diferenciable amb continuïtat** en A, o de **classe** C^1 en A, si les derivades parciales de cadascuna de les funcions components de f, $\frac{\partial f_j}{\partial x_i}$ $(1\leq i\leq n,\,1\leq j\leq m)$, existeixen i són contínues en A.
- 22. **Teorema** (Condició suficient de diferenciabilitat) Donada $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$, on A obert i $p \in A$, si f és de classe C^1 en un entorn de p, aleshores f es diferenciable en p.
- 23. Teorema del valor mitjà (1ª versió) Siguin $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una funció diferenciable en l'obert A i $p_1, p_2 \in A$ tals que $\overline{p_1p_2} \subset A$, aleshores existeixen $q_1, \dots, q_m \in \overline{p_1p_2}$ tals que $F_j(p_2) - F_j(p_1) = DF_j(q_j)(p_2 - p_1)$.
- 24. Teorema del valor mitjà (2ª versió) Siguin $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una funció diferenciable en l'obert A obert, i $p_1, p_2 \in A$ tals que $\overline{p_1p_2} \subset A$, aleshores existeix $q \in \overline{p_1p_2}$ tal que $||F(p_2) - F(p_1)|| \le ||DF(q)(p_2 - p_1)||$.