Filtrado de imágenes

Convolución

 La operación de convolución requiere de 4 ciclos anidados, por lo que no es muy rápido, a menos de que se utilicen filtros pequeños. Usualmente se utilizan filtros de tamaño 3×3 o 5×5.

• El filtro debe ser de tamaño impar, para que tenga un centro, e.g. 3×3,5×5 ó 7×7

Convolución

 El píxel resultado puede ser negativo o mayor que 255, si eso sucede puedes truncarlo para que valores menores de cero sean 0 y valores mayores de 255 sean 255.

 En el dominio de Fourier o dominio de la frecuencia, las operaciones de convolución se vuelven una multiplicación, lo que la hace más rápida.

El primer filtro

 $egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \ \end{bmatrix}$

Brillo

Más Brillo

Menos Brillo

0 0 0 0 0 0 0 0

Filtros suavizantes

- Se emplean para hacer que la imagen aparezca algo borrosa y también para reducir el ruido.
- Es útil que la imagen aparezca algo borrosa en algunas etapas de preprocesado, como la eliminación de los pequeños detalles de una imagen antes de la extracción de un objeto.

Filtrado espacial pasa bajo

Filtrado espacial pasa bajo

Filtro mediana

- A diferencia del filtro pasa bajos este filtro se utiliza cuando el objetivo es más la reducción de ruido que el difuminado.
- La mediana m de un conjunto de valores es tal que la mitad de los valores del conjunto quedan por debajo de m y la otra mitad por encima.
- Para realizar este filtro se toma por ejemplo un entorno 3×3 es el quinto valor mayor, en 5×5 es el decimotercer valor mayor.

Filtro mediana mascara 3x3

Filtro mediana mascara 5x5

Filtro mediana mascara 7x7

Filtros Realzantes

- El objetivo principal de estos filtros es el de destacar los detalles finos de una imagen o intensificar los detalles que han sido difuminados.
- Filtro pasa altas

$$\frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Bias = 128

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Bias = 0

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Bias = 255

 Una imagen de pasa altas puede ser calculada como la diferencia entre la imagen original y una versión de esta imagen que haya sido pasada por un filtro pasa bajas, es decir:

Pasa altas = Original – Pasa bajas

 Multiplicando a la imagen original por un factor de amplificación A, se obtiene el filtro high-boost o de énfasis de las frecuencias altas

```
High-boost = (A)(Original) – Pasa bajas
= (A-1)(Original) + Original – Pasa bajas
= (A-1)(Original) + Pasa altas
```

- Un valor de A=1 da cómo resultado un filtro pasa altas normal.
- Cuando A>1, parte del propio original se añade al resultado del filtro pasa altas, lo que devuelve parcialmente las componentes de bajas frecuencias perdidas en el proceso de filtrado de pasa altas.

- El resultado es que la imagen high-boost se parece más a la imagen original, con un grado relativo de mejora de los bordes que depende del valor de A.
- Mascara para el filtro high-boost

$$\begin{bmatrix}
-1 & -1 & -1 \\
1 & -1 & w & -1 \\
-1 & -1 & -1
\end{bmatrix}$$

Donde w = 9A-1, con $A \ge 1$

Usando mascara 3×3 A=2

Usando mascara 3×3 A=3

Filtro Prewitt

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Filtro Prewitt

Modificación Filtro Prewitt

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Combinación de Filtros Prewitt

$$\begin{bmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Filtro Prewitt

$$\begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

$\lceil -1 \rceil$	-2	-1
0	0	0
1	2	1

 $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

$\lceil -1 \rceil$	-2	-1
0	1	0
_ 1	2	1

 $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

Combinación Sobel

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

Combinación Sobel

$$\begin{bmatrix} -2 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

Filtro que muestra los bordes excesivamente

$\lceil 1$	1	1
1	- 7	1
1	1	1

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

Motion Blur

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Otros Ejemplos

Pasa bajas

Hola

Hola

Embossing

Hola

```
\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
```

Embossing

Hola

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Pasa Altas

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Motion Blur

Hola

Histograma

