DETECTING DIABETIC RETINOPATHY STAGES USING TRANSFER LEARNING APPROACHES

A Specialization Project submitted in partial fulfillment of the requirements for the award of degree of

MASTER OF SCIENCE IN DATA SCIENCE

Submitted by

JOVITA V (20-PDS-012)

Under the guidance of

Dr. P.MANIKANDAN
ASSISTANT PROFESSOR

DEPARTMENT OF DATA SCIENCE LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 34

MAY - 2022

BONAFIDE CERTIFICATE

This is to certify that the project work titled 'DETECTING DIABETIC RETINOPATHY
STAGES USING TRANSFER LEARNING APPROACHES' is being submitted to the
Department of Data Science, Loyola College (Autonomous), Chennai-34 by JOVITA V(20-
PDS-012) for the partial fulfillment for the award of degree of MASTER OF SCIENCE IN
DATA SCIENCE is a bonafide record of work carried out by her, under my guidance and
supervision.

Submitted for the Viva-Voce Examination held on _____

Project Guide

Dr.P.Manikandan

External Examiner

Head of the Department

Dr. C. Muthu

Internal Examiner

DECLARATION

I, JOVITA V	/, hereby	declare th	at the	project	entitled	'DETE	CTING	DIABETIC
RETINOPATI	HY STAG	ES USING	TRAN	SFER L	EARNIN	G APPF	ROACH	submitted to
the Loyola Col	lege, Cher	nai in partia	ıl fulfil	lment of	the requi	rements	for the a	ward for the
Degree of M.So	e. DATA S	SCIENCE is	a reco	rd of orig	ginal and i	independ	lent proje	ct work done
by me during	2021 - 20	022 under t	ne Sup	ervision	and Guid	lance of	f Dr.P.N	Aanikandan,
Assistant Profe	ssor, Depa	artment of I	ata Sc	eience, L	oyola Col	llege, Cl	nennai ar	nd it has not
formed the basi	s for the a	ward of any	Degree	e / Diploi	ma / Asso	ciateship	/ Fellow	ship or other
similar title to a	ny candida	ite in any Un	iversity	.				

Date:

Signature of the Candidate

JOVITA V

Acknowledgement

ACKNOWLEDGEMENT

First and foremost, I thank the Almighty for his gracious blessings, which has helped me complete this project successfully.

I thank **Rev. Dr.A.Thomas S.J**, Principal, Loyola College and the Loyola College Management and Department of Data Science for providing me the opportunity to purse in this prestigious institution.

I wish to express my sincere gratitude to **Dr.C.Muthu**, Head of the Department, Loyola College, for his words of wisdom and motivation.

I sincerely thank **Dr.P.Manikandan**, my project guide for his guidance and encouragement throughout in completion of the project.

I extend my gratitude and thanks to all the faculty members of the Department of Data Science for their direct and indirect assistance for the successful completion of the project.

I am thankful to Dr. Arunkumar Annamalai, Founder and CEO of Deep medicine labs who was kind enough to guide and help throughout to complete the project.

Also, I extend my gratitude and thanks to my parents and friends for their goodwill and support in successful completion of the project.

JOVITA V

Abstract

Abstract

Diabetic Retinopathy (DR) is an ophthalmic disease in which the retinal blood vessels are

damaged. If not detected early on, DR causes vision impairment and may even result in

blindness. The presence of microaneurysms, exudates, neovascularization, and haemorrhages

determines the severity of diabetic retinopathy disease. Diabetic retinopathy was divided into

five stages: normal, mild, moderate, severe, nonproliferative (NPDR), and proliferative diabetic

retinopathy (PDR).

This Project aims to classify the diabetic prediction stages using APTOS Datasets of fundus

images. To encode the rich characteristics and improve classification for different stages of DR

using an ensemble of four deep Convolution Neural Network (CNN) models (Resnet50,

Xception, Dense121, Vgg16). Image processing with Gaussian Blur and contrast limited

adaptive histogram equalization techniques are used in this study's solution method (CLAHE).

Transfer learning on pretrained Vgg16, ResNet50 and DenseNet121 models from ImageNet

approach performs with kappa score for Diabetic Retinopathy classifications problems. The best

result of the experiment was achieved by DenseNet121 with 87.24 % kappa score.

Keywords: Diabetic Retinopathy, Fundus Images, Convolution Neural Network(CNN),

Contrast Limited Adaptive Histogram Equalization(CLAHE), Vgg16, Densenet121, ResNet50.

INDEX

CHAPTER	TABLE OF CONTENTS	PAGE NO
1	INTRODUCTION	1
	1.1 Overview of Diabetic Retinopathy	1
	1.2 Diabetic Retinopathy	1
	1.3 Stages of Diabetic Retinopathy	2
	1.3.1 Category of DR	3
	1.3.2 Clinical signs of DR	3
	1.4 Symptoms of DR	4
	1.5 Risk Factor of DR	5
	1.6 Objectives of the Research	5
	1.7 Organization of Chapters	6
	1.8 Summary and Discussion	6
2	REVIEW OF LITERATURE	
	2.1 Reviews on DR detection using Image Processing	7
	Techniques	
	2.2 Reviews on CNN based DR detection	8
	2.3 Review on Transfer Learning based DR detection	9
	2.4 Summary and Discussion	10
3	ORGANIZATION PROFILE	11
	3.1 Organization Name	11
	3.2 About the Company	11
	3.3 Services	11
	3.4 Organization Chart	11
4	METHODOLOGY	12
	4.1 System Architecture	12
	4.2 image Pre-processing Methods	12
	4.2.1 Crop Image	13
	4.2.2 Resizing	13
	4.2.3 Drawing a circle	13
	4.2.4 Image Augmentation	13

	4.3 Image Enhancement	13
	4.3.1 Green Channel Extraction	13
	4.3.2 CLAHE	14
	4.3.4 Gaussian Blur	14
	4.4 Transfer Learning Approaches	14
	4.4.1 VGG16	15
	4.4.2 DenseNete121	16
	4.4.3 ResNet50	17
	4.5 Summary and Discussion	18
5	RESULT & DISCUSSION	19
	5.1 Datasets used for Experimental study	19
	5.2 Pre-processing used in this study	20
	5.2.1 Crop Images	20
	5.2.2 Resizing	20
	5.2.3 CLAHE	21
	5.2.4 Data Augmentation	22
	5.3 Performance measures used in this study	23
	5.3.1 Kappa Score	23
	5.3.2 Confusion Matrix	23
	5.3.3 Accuracy	24
	5.3.4 Precision	24
	5.3.5 Recall	24
	5.4 Transfer Learning Models	25
	5.5 Comparing the Models	26
	5.6 Summary and Discussion	26
6	CONCLUSION	27
7	FUTURE ENHANCEMENT	28
8	REFERENCES	29
	APPENDIX	31

LIST OF ABBREVIATIONS

S.NO	ABBREVIATION	EXPANSIONS/MEANING			
1.	DR	Diabetic Retinopathy			
2.	DL	Deep Learning			
3.	CNN	Convolutional Neural Network			
4.	VGG	Visual Geometry Group			
5.	RESNET	Residual Neural Network			
6.	CLAHE	Contrast Limited Adaptive Histogram Equivalent			

LIST OF FIGURES

S.NO	FIGURE LABEL	DEDDECENIE ACIONI	
1	Figure 1.1	Comparison of human retina of a healthy personand a person suffering from diabetic retinopathy	2
2	Figure 1.2	Comparison of human vision of a person suffering from diabetic retinopathy and healthy person vision	4
3	Figure 4.1	Flow Chart of System Architecture	12
4	Figure 4.2	VGG16 Architecture	15
5	Figure 4.3	DenseNet121 Architecture	16
6	Figure 4.4	ResNet Mapping	17
7	Figure 4.5	Pseudocode for proposed approach for DR detection	18
8	Figure 5.1	Pie-chart Analysis of size of train and test dataset	19
9	Figure 5.2	Pie-chart Analysis of Number of images on each target label	20
10	Figure 5.3	Original image (left) and cropping the extra darkpixels(right)	20
11	Figure 5.4	Second image:resizing, third image: locate a retina in acircle and finally applied gaussian blur	21
12	Figure 5.5	Four retina images histogram(before CLAHE)	21
13	Figure 5.6	CLAHE used	21
14	Figure 5.7	Four pre-processed retina images histogram(after CLAHE)	22
15	Figure 5.8	Data Augmentation applied in a image	22
16	Figure 5.9	Classification report of VGG16	25
17	Figure 5.10	Classification report of DenseNet121	25
18	Figure 5.11	Classification report of ResNet50	25
19	Figure 5.12	Comparison of performance metrics for various transfer learning	26

LIST OF TABLES

S.NO	TABLE LABEL	REPRESENTATION	PAGE.NO
1	Table 1.1	Annotation of Diabetic Retinopathy	2
2	Table 5.1	Comparison of performance metrics for various transfer learning	26

Introduction

Review of Literature

Organization Profile

Methodology

Conclusion

Future Enhancement

References

Appendix