Uniformly Most Powerful Test

Dr. Mutua Kilai

Department of Pure and Applied Sciences

Jan-April 2024

Uniformly Most Powerful Test

- Let X be a random variable with pdf $f(x, \theta)$ and we want to test the hypothesis $H_0: \theta = \theta_0$ against $H_a: \theta \in \Omega_1$ where Ω_1 is a subset of the parameter space Ω .
- If there exists a test of H_0 which maximizes the power for any value of θ in the set of alternatives then it is said to be Uniformly Most Powerful(UMP) test for H_0 against H_a
- To obtain a UMP test for H_0 against H_a we start by testing the simple hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 \in \Omega_1$.
- Clearly the MP test exists for this test by Neyman-Pearson Lemma.
- If this test does not depend on the choice of the alternative θ_1 it is the UMP test of H_0 against all alternatives.

Example 1

Let X be normally distributed with mean μ (unknown) and variance $\sigma^2=1$. Test the hypothesis $H_0: \mu=\mu_0$ against $H_a: \mu>\mu_0$

Solution

- The class of alternatives is $\Omega_1 = \{\mu : \mu > \mu_0\}$
- We test the hypothesis

$$H_0: \mu = \mu_0 \;\; ext{against} \;\; \mu = \mu_1(\mu_1 > \mu_0)$$

The likelihood function is

$$L(X,\mu) = \prod_{i=1}^{n} = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2}$$

• Under H₀

$$L(x, \mu_0) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu_0)^2}$$

• Under H_1

$$L(x, \mu_1) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu_1)^2}$$

Then

$$\frac{L(X,\mu_1)}{L(X,\mu_0)} > k$$

is given as follows

$$\frac{L(X, \mu_{1})}{L(X, \mu_{0})} = \frac{e^{-\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{1})^{2}}}{e^{-\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{0})^{2}}} > k$$

$$= \frac{e^{-\frac{1}{2} \{\sum_{i=1}^{n} x_{i}^{2} - 2\mu_{1} \sum_{i=1}^{n} x_{i} + n\mu_{1}^{2}\}}}{e^{-\frac{1}{2} \{\sum_{i=1}^{n} x_{i}^{2} - 2\mu_{1} \sum_{i=1}^{n} x_{i} + n\mu_{0}^{2}\}}} > k$$

$$= \frac{e^{\mu_{1} \sum_{i=1}^{n} -\frac{n}{2} \mu_{1}^{2}}}{e^{\mu_{0} \sum_{i=1}^{n} -\frac{n}{2} \mu_{0}^{2}}} > k$$

$$= e^{\mu_{1} - \mu_{0} \sum_{i=1}^{n} x_{i} - \frac{n}{2} (\mu_{1}^{2} - \mu_{0}^{2})} > k$$

$$= e^{\mu_{1} - \mu_{0} \sum_{i=1}^{n} x_{i} - \frac{n}{2} (\mu_{1}^{2} - \mu_{0}^{2})} > k$$

Taking natural logarithm we have:

$$(\mu_1 - \mu_0) \sum_{i=1}^n X_i - \frac{n}{2} (\mu_1^2 - \mu_0^2) > \ln k$$

$$\sum_{i=1}^n > \frac{\ln k + \frac{n}{2} (\mu_1^2 - \mu_0^2)}{(\mu_1 - \mu_0)}$$

$$\bar{x} > \frac{\ln k + \frac{n}{2} (\mu_1^2 - \mu_0^2)}{n(\mu_1 - \mu_0)}$$

• That is $\bar{x} > c$ So the MP test is to reject H_0 when $\bar{x} > c$ where c is such that $P(\bar{x} > c | H_0) = \alpha$

- But under H_0 $\bar{x} \sim N(\mu_0, \frac{1}{n})$
- Hence

$$P\left(\frac{\bar{x} - \mu_0}{\frac{1}{\sqrt{n}}} > \frac{c - \mu_0}{\frac{1}{\sqrt{n}}}\right) = \alpha$$

•

$$P(Z > \frac{c - \mu_0}{\frac{1}{\sqrt{n}}}) = \alpha$$
 where $Z \sim N(0, 1)$

This gives

$$\frac{c-\mu_0}{\frac{1}{\sqrt{n}}}=Z_{1-\alpha}$$

•

$$c = \frac{Z_{1-\alpha}}{\sqrt{n}} + \mu_0$$

Therefore the critical region is

$$w = \{\bar{x} > \frac{Z_{1-\alpha}}{\sqrt{n}} + \mu_0\}$$

• We note that the MP test is independent of choice of the alternative μ_1 . It is hence UMP size α test for H_0 against H_1 .

Example 2

 $X\sim N(0,\sigma^2)$ where σ^2 is unknown. Test the hypothesis $H_0:\sigma=\sigma_0$ against $H_1:\sigma<\sigma_0$

Solution

- Modify H_1 i.e H_1 : $\sigma = \sigma_1$ and then we use Neyman-Pearson lemma.
- If $X_1, X_2, ..., X_n$ are n independent observations on X then

$$L(X,\sigma) = \left(\frac{1}{2\pi}\right)^{n/2} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} e^{-\frac{1}{2}\sum_{i=1}^n X_i^2}$$

• Under H_0

$$L(X, \sigma_0) = \left(\frac{1}{2\pi}\right)^{n/2} \left(\frac{1}{\sigma_0^2}\right)^{\frac{n}{2}} e^{-\frac{1}{2\sigma_0} \sum_{i=1}^n X_i^2}$$

• Under H_1

$$L(X, \sigma_1) = \left(\frac{1}{2\pi}\right)^{n/2} \left(\frac{1}{\sigma_1^2}\right)^{\frac{n}{2}} e^{-\frac{1}{2\sigma_1} \sum_{i=1}^n X_i^2}$$

• The BCR for testing H_0 against H_1 is given by:

$$\frac{L(X,\sigma_1)}{L(X,\sigma_0)} > k$$

$$\frac{L(X,\sigma_1)}{L(X,\sigma_0)} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \frac{e^{-\frac{1}{2\sigma_1^2} \sum_{i=1}^n x_i^2}}{e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n x_i^2}} > k$$

Dr. Mutua Kilai | Uniformly Most Powerful Test

(2)

• Taking natural logarithm we have:

$$n\ln(\frac{\sigma_0}{\sigma_1}) - \frac{1}{2\sigma_1^2} \sum_{i=1}^n x_i^2 + \frac{1}{2\sigma_0^2} \sum_{i=1}^n x_i^2 > \ln k$$

Then

$$\sum_{i=1}^{n} X_i^2 \left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2} \right) > \ln k - n \ln \left(\frac{\sigma_0}{\sigma_1} \right)$$

$$\sum_{i=1}^n x_i^2 \leq \frac{\ln k - n \ln \left(\frac{\sigma_0}{\sigma_1}\right)}{\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)} \text{ since } \sigma_1 < \sigma_0$$

The BCR is given as:

$$\sum_{i=1}^n X_i^2 \leq \frac{\ln k - n \ln \left(\frac{\sigma_0}{\sigma_1}\right)}{\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)} = C_{\alpha}$$

•

$$\sum_{i=1}^n X_i^2 \le C_\alpha$$

• Where C_{α} satisfies

$$= P\left[\sum_{i=1}^{n} X_{i}^{2} \leq C_{\alpha} | H_{0}\right] = \alpha$$

$$= P\left[\sum_{i=1}^{n} X_{i}^{2} \leq C_{\alpha} | \sigma^{2} = \sigma_{0}^{2}\right] = \alpha$$

$$= P\left[\frac{\sum_{i=1}^{2} X_{i}^{2}}{\sigma_{0}^{2}} \leq \frac{C_{\alpha}}{\sigma_{0}^{2}}\right] = \alpha$$
(3)

Where

$$\frac{C_{\alpha}}{\sigma_0^2} = \sigma_0^2 \chi_{\alpha}^2$$

Then

$$\sum_{i}^{n} X_i^2 \le \sigma_0^2 \chi_\alpha^2$$

• Since the BCR does not depend on the particular value of σ_1 it follows that the UMP size $\alpha-$ test reject the H_0 whenever

$$\sum_{i}^{n} X_i^2 \le \sigma_0^2 \chi_\alpha^2$$

Thank You!