МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет	
Кафедра	
Направление подготовки	
ВЫПУСКНАЯ КВАЛИФИКАП	ДИОННАЯ РАБОТА БАКАЛАВРА
(Фамилия, Им	я, Отчество автора)
Тема работы	
«К защите допущена»	Научный руководитель
Заведующий кафедрой,	ученая степень, звание
ученая степень, звание	должность, место работы
	/
(фамилия, И., О.) / (подпись)	(фамилия, И., О.) / (подпись)
«»20г.	«»20г.

Содержание

Cı	писок	с сокраі	щений	3
1	Вве	дение .		4
2	Обз	ор лите	ературы	5
	2.1	Сопря	женные донорно-акцепторные хромофоры	5
	2.2	Подхо	ды к синтезу 2-пиразолинов	6
		2.2.1	Синтез из халконов и гидразинов	6
		2.2.2	Синтез из аналогов халконов	9
		2.2.3	Синтез [3 + 2] циклоприсоединением	10
	2.3	Синте	з других изомеров пиразолина	12
		2.3.1	Синтез 1-пиразолинов	12
		2.3.2	Синтез 3-пиразолинов	13
	2.4	Реакці	ии пиразолинов	14
		2.4.1	Реакции окисления	14
		2.4.2	Реакции восстановления	15
3	Резу	ультать	и и обсуждение	17
	3.1	Взаим	одействие формилированного декафтортриарилпиразолина с	
		бинук	леофилами	17
	3.2	Введе	ние разделительного блока	19
4	Экс	периме	ентальная часть	24
5	Зак	лючени	ie	30
$\Pi_{]}$	рилох	кение А	А Спектры	31
Cı	писок	: литеп:	atynki	36

Список сокращений

НСМО Низшая Свободная Молекулярная Орбиталь

in situ В реакционной смеси

ТСХ Тонкослойная хроматография

ДМФА N,N-диметилформамид

DMAP 4-Диметиламинопиридин

DIAD Диизопропилазодикарбоксилат

DCC 1,3-Дициклогексилкарбодиимид

КССВ Константа спин-спинового взаимодействия

TAFS Toluic Acid Fluorinated Sulfide (бис[4-метил-3,5-бис({[2,3,5,6-тет-рафтор-4-(трифторметил)фенил]тио}метил)бензоил)

TATBS Toluic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-тио}метил)4-метилбензоил)

MATBS Mesitylenecarboxylic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]тио}метил)-2,4,6-триметилбензоил)

MALDI Matrix Assisted Laser Desorption/Ionization, Матричноактивированная лазерная десорбция/ионизация

TOF Time-of-flight, Времяпролетный масс-анализатор

1 Введение

Увеличивающиеся объемы передаваемой информации ставят задачу создания новых методов ее обработки, в том числе оптических. Большую перспективу имеют электрооптические (ЭО) модуляторы, основанные на композициях хромофор-полимер. Рабочей средой в таких устройствах является органический донорно-акцепторный хромофор, проявляющий нелинейность второго порядка.

Органические нелинейно-оптические (НЛО) материалы обладают важным преимуществом относительно неорганических — бо́льшими значениями НЛО восприимчивости второго порядка и, соответственно, меньшими величинами управляющих напряжений, и относительно полупроводниковых — высокой температурной стабильностью спектральных ЭО свойств.

Отличительным свойств органических НЛО материалов является возможность получения хромофоров, поглощающих в заданной области спектра. В настоящее время актуальны разработки материалов, работающих в двух спектральных областях: 1300–1550 нм (область нулевой дисперсии кварцевого оптического волокна) и 830–900 нм (окно прозрачности атмосферы).

Важными являются также пленкообразующие свойства органических хромофоров, так как эффективность работы ЭО модулятора зависит, в том числе, от эффективности ориентации молекул хромофора в полимерной матрице. С этой целью в структуру хромофоров вводятся разветвленные (дендроидные) заместители, препятствующие агрегации молекул хромофора в полимере при больших концентрациях.

Синтез хромофоров для ЭО модуляторов является одним из основных направлений научной тематики в Лаборатории органических светочувствительных материалов НИОХ СО РАН. В качестве таких хромофоров используются полиметиновые красители биполярной структуры с различной длиной полиметиновой цепи. Ранее в лаборатории был синтезирован ряд новых хромофоров для спектральной области 720–760 нм с использованием полифторированных триарилпиразолинов в качестве донорных блоков [1].

Целью данной работы является синтез новых нелинейных хромофоров на основе полифторированных триарилпиразолинов. Таким образом, были сформулированы следующие задачи:

- 1. Разработать подход к синтезу нелинейных хромофоров на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами для области 500—600нм и для ИК-области.
- 2. Оптимизировать методику введения в молекулу хромофора дендроидных заместителей. **Вклад автора.**

2 Обзор литературы

2.1 Сопряженные донорно-акцепторные хромофоры

Сопряжённые донорно-акцепторные хромофоры представляют большой интерес из-за их электрооптических свойств: система сопряженных двойных связей позволяет образовать низколежащую НСМО и реализовать внутримолекулярный перенос заряда. Они применяются в таких областях, как органическая электроника, электрооптика, фотовольтаика [2].

Общая структура донорно-акцепторного хромофора представлена на Рис. 2.1 и включает в себя донорный блок (**D**), π -сопряженный мостик (π) и акцепторный блок (**A**).

Рис. 2.1: Общая структура донорно-акцепторных хромофоров

Внутримолекулярный перенос заряда хорошо заметен при сравнении спектров поглощения анилина, нитробензола, *пара*- и *мета*-нитроанилина (Рис. 2.2). В спектре *пара*-нитроанилина присутствует интенсивная полоса переноса заряда из-за сопряжения, присутствующего в молекуле и возможности образования цвиттерионной резонансной структуры. В спектре *мета*-нитроанилина соответствующая полоса имеет гораздо меньшую интенсивность из-за отсутствия сопряжения между нитрогруппой и аминогруппой [2].

Рис. 2.2: Сравнение спектров поглощения анилина, нитробензола, *пара-* и *мета-*нитроанилина [2]

Донорно-акцепторные хромофоры могут иметь различные организации: линейную (диполярную) — $D-\pi-A$, квадрупольную — $D-\pi-A-\pi-D$ или $A-\pi-D-\pi-A$, октапольную —

 $(D-\pi)_3$ – А или $(A-\pi)_3$ – D. В литературе описаны хромофоры с более редкими структурами, такие как V-образная **1** [3], Y-образная [4], H-образная **2** [5] и X-образная **3** [6—8].

Рис. 2.3: Различные структуры нелинейных хромофоров

2.2 Подходы к синтезу 2-пиразолинов

2-Пиразолины (Рис. 2.4) были впервые синтезированы в 19 веке Фишером и Кнёвенагелем реакцией α,β-ненасыщенных альдегидов и кетонов с фенилгидразином при кипячении в уксусной кислоте.

Химия пиразолинов получила развитие в середине XX века в связи с применением арилпиразолинов в качестве оптических отбеливателей и органических сцинтиляторов. Благодаря их люминисцентным свойствам в настоящее они используются для создания органических светодиодов (OLED) [9—11].

Производные пиразолина проявляют биологическую активность, поэтому их синтез представляет большой интерес [12—14]. Пиразолины проявляют противомикробную [15], противодиабетическую [16], противоэпилептическую [17], антиоксидантную [18], противовоспалительную [19] активность.

2.2.1 Синтез из халконов и гидразинов

Основным способом синтеза 2-пиразолинов является реакция конденсации халконов с гидразинами. Этот подход является достаточно общим, как было показано в работе [20], где

Рис. 2.4: Структура и нумерация атомов 2-пиразолина

таким способом была получена библиотека из 7680 1,3,5-триарилпиразолинов с различными заместителями во всех трех ароматических ядрах.

Схема 2.1: Синтез триарилпиразолинов с использованием халконов

Халконы представляют собой соединения с двумя электрофильными центрами — карбонильной группой и сопряженной связью C=C. Однако в реакциях халконов с гидразинами наблюдается высокая региоселективность (в отличие от, например, 1,3-дикетонов), в реакцию с атомом азота первой вовлекается карбонильная группа. Такое поведение обычно объясняют повышенной нуклеофильностью первичного атома азота в замещенных гидразинах по сравнению с вторичным.

Механизм образования пиразолинов (Схема 2.2) включает в себя образование гидразона и атаку вторичного атома азота на сопряженную двойную связь, замыкающую цикл. Стадия замыкания цикла является лимитирующей и ее скорость значительно зависит от пространственного и электронного строения гидразона, а также от кислотности среды.

Схема 2.2

В случае фенилгидразина лимитирующей стадией является дегидратация, а стадия циклизации является быстрой и самопроизвольной. На ход реакции в наибольшей мере влияет заместитель при карбонильной группе (R_1) и его влияние мало зависит от кислотности среды. Было показано, что реакция фенилгидразина с диарилиденацетонами происходит по фрагменту, содержащему донорную группу [21].

Обычно сначала получают халкон конденсацией Кляйзена-Шмидта в основных условиях и вводят его в реакцию с арилгидразином в кислых условиях. Однако описаны как конденсация в кислых условиях [22; 23], так и циклизация в основных [24—28].

Существует *one-pot* модификация этого метода (Схема 2.3), в этом варианте халкон не выделяется в индивидуальном виде, а сразу же реагирует с фенилгидразином, присутствующим в реакционной смеси. При этом реакция проводится целиком в основной среде [29].

$$R_1 = H, 4-Me, 4-Cl, 4-OMe$$
 $R_2 = H, 4-Br, 4-Cl, 4-OMe, 4-NO_2$

Схема 2.3

В недавнее время были предприняты попытки проводить реакцию в более экологичных условиях, используя в качестве циклизующего агента вольфрамсерную кислоту [30] и целлюлозосульфоновую кислоту [31]. Также в качестве экологически чистых методов исследовались синтез в водных растворах [32], механохимический синтез [33], микроволновый синтез [34] и ультразвуковой синтез [35].

дописать?

Получение полифторированных триарилпиразолинов несет в себе больше сложностей: в случае разных заместителей халкона часто не удается подобрать условия реакции таким образом, чтобы получать селективно один региоизомер — образуется смесь продуктов с разными заместителями в положениях 3 и 5. Так, в работе [36] изучается взаимодействие фенилгидразина с халконами, с одним полифторированным кольцом (Схема 2.4).

Было обнаружено, что халконы с акцепторным заместителем при двойной связи при кипячении образуют один региоизомер пиразолина, а халконы с акцепторным заместителем при карбонильной группе — два региоизомера в сравнимых количествах. Это можно объяснить большим различием σ^* -констант заместителей при двойной связи (C_6F_5CO и Ph), из-за чего усиливается электрофильный характер β -атома углерода, что дает возможность нуклеофильной атаки фенилгидразина как по карбонильной группе, так и по двойной связи.

Ph PhNHNH₂

$$R = F, OPh, N(CH2)5$$
 $R = F, OPh, N(CH2)5$
 $R = F, OPh, N(CH2)5$

Схема 2.4: Образование двух региоизомеров 2-пиразолина

2.2.2 Синтез из аналогов халконов

Сопряженные енины можно считать аналогами халконов, поскольку при гидратации тройной связи образуется соответствующий кетон. В работе [37] была исследована реакция циклизации арилгидразинов с 1,3-енинами при катализе различными метал-содержащими реагентами (Схема 2.5). Было показано, что при микроволновом облучении смеси сопряженных енинов с арилгидразинами в присутствии $\text{Zn}(\text{OTf})_2$ наблюдается наилучший выход соответствующих пиразолинов. В ходе реакции происходит двойное гидроаминирование сначала тройной, а потом двойной связи.

$$\begin{bmatrix} PhMe & PhMe \\ R_1 & R_2 \\ R_2 & R_1 & R_2 \\ R_1 & R_2 \\ R_2 & R_1 & R_2 \\ R_1 & R_2 & R_2 \\ R_1 & R_2 & R_2 \\ R_2 & R_2 & R_2 & R_2 \\ R_1 & R_2 & R_2 & R_2 & R_2 \\ R_1 & R_2 & R_2 & R_2 & R_2 \\ R_2 & R_1 & R_2 & R_2 & R_2 \\ R_1 & R_2 & R_2 & R_2 & R_2 \\ R_2 & R_2 & R_2 & R_2 & R_2 \\ R_1 & R_2 & R_2 & R_2 & R_2 \\ R_2 & R_2 & R_2 & R_2 & R_2 \\ R_3 & R_4 & R_2 & R_2 & R_2 \\ R_4 & R_2 & R_3 & R_4 & R_2 \\ R_5 & R_5 & R_5 & R_5 & R_5 \\$$

Схема 2.5

Некоторые пропаргиловые спирты способны вступать в перегруппировку с образованием халконов. При исследовании реакции сочетания Соногаширы вторичных пропаргиловых спиртов с арилгалогенидами было обнаружено, что при наличии акцпторных заместителей в

арилгалогениде такая перегруппировка может происходить под действием триэтиламина, который присутствует в реакционной смеси (Схема 2.6) [38].

$$= \bigvee_{Ph} \xrightarrow{[(PPh_3)_2PdCl_2]} \begin{bmatrix} R & OH \\ Ph & -H^+ \end{bmatrix} \xrightarrow{Ph} \begin{bmatrix} OH \\ Ph \end{bmatrix}$$

$$= \bigvee_{Ph} \xrightarrow{[(PPh_3)_2PdCl_2]} \begin{bmatrix} R & OH \\ Ph \end{bmatrix}$$

$$= \bigvee_{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \begin{bmatrix} OH \\ Ph \end{bmatrix}$$

$$= \bigvee_{Ph} \begin{bmatrix} OH \\ Ph \end{bmatrix}$$

$$= \bigvee_{Ph$$

Схема 2.6

Пропаргиловые спирты, не содержащие акцепторных заместителей, также способны вступать в эту перегруппировку, однако в более жестких условиях. В работе [39] была разработана и оптимизирована методика синтеза пиразолинов из пропаргиловых спиртов и арилгидразинов в присутствии tBuOK (Схема 2.7).

OH
$$R_2$$
 R_3 R_3 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_6 R_6 R_7 R_8 R_8 R_9 R

Схема 2.7

2.2.3 *Синтез* [3 + 2] циклоприсоединением

Второй способ синтеза пиразолинов использует [3+2] циклоприсоединение илидов азометиновых иминов **4** к алкинам. Циклоприсоединение 1,3-диполей к диполярофилам является удобным способом получения пятичленных циклов. Наиболее известным примером таких реакций является присоединение азидов к алкинам. Считается, что [3+2] циклоприсоединение идет по согласованному механизму. Использование комплексов металлов с хиральными лиган-

Какой-то несогласованный абзац дами в качестве катализаторов позволяет селективно получать энантиомерно чистые пиразолины. Циклоприсоединение илидов азометиновых иминов к алкенам дает полностью насыщенные аналоги пиразолинов — пиразолидины [40].

Схема 2.8: Синтез триарилпиразолинов с использовнием [3 + 2] циклоприсоединения

Азометиновые имиды можно представить в виде четырех резонансных структур (Рис. 2.5) — двух иминных и двух диазониевых. Чаще всего их изображают с зарядами, локализованными на атомах азота, такое распределение зарядов соотносится с квантовомеханическими расчетами [40].

Рис. 2.5: Резонансные структуры илидов азометиновых иминов

Синтез пиразолинов, исходя из ациклических илидов азометиновых иминов, получаемых *in situ*, был подробно изучен в работе [41]. В этой работе было синтезировано более 18 пиразолинов и проведена оптимизация условий реакции: было изучено влияние различных солей Cu(I) и заместителей лигандов и субстратов.

Схема 2.9: Энантиоселективный синтез пиразолинов с использованием [3 + 2] циклоприсоединения [41]

2.3 Синтез других изомеров пиразолина

2.3.1 Синтез 1-пиразолинов

В работах [42—45] описан синтез 1-пиразолинов из соединений, содержащих двойную свзь. и производных диазометана. Обычно 1-пиразолины нестабильны и склонны к перегруппировке в соответствующие 2-пиразолины (Схема 2.10), что было показано в [43; 44].

$$R = H, Me, Ph$$
 $R' = Me, Et, tBu, Mентил$
 $R = H, Me, Et, tBu, Meнтил$
 $R = H, Me, Et, tBu, Meнтил$
 $R = H, Me, Et, tBu, Meh Tu$
 $R = H, Me, CO_2Et$
 $R' = H, Me$

Схема 2.10

Тетразамещенные 1-пиразолины полученные в работе [45] из защищенных аддуктов Бейлиса-Хиллмана и ацилдиазометанов имеют по два заместителя в положениях 3 и 5, и поэтому не могут перегруппироваться в соответствующие 2-пиразолины (Схема 2.11).

 $\mathbf{R} = 4-NO_2-Ph$, 4-CN-Ph, 4-F-Ph, 4-Cl-Ph, 4-Br-Ph, Ph, 4-Me-Ph, 3-CF₃-Ph, 3-Me-Ph, 2-Br-Ph, 2-нафтил... $\mathbf{R}' = Me$, Et

Схема 2.11

В [42] взаимодействием цефалоспорина содержащего экзоциклическую связь и диазометана был получен сравнительно стабильный 1-пиразолин. Полученное соединение не подвергается никакому изменение при кипячении в толуоле в течение восьми дней, но в диметилфор-

мамиде дает смесь двух продуктов: циклопропана, соответствующего присоединению карбена по исходной двойной связи, и винильного производного (Схема 2.12).

PhO

$$CH_2N_2$$
 $n = 0,1$
 $R = Me, O(4-NO_2-Ph)$
 $HN = Me$
 $R = Me$
 R

2.3.2 Синтез 3-пиразолинов

3-Пиразолины существуют только в 1,2-дизамещенном виде за исключением нескольких примеров. Для 3-пиразолинов незамещенных по обоим атомам азота существует лишь один пример описанный в [46], 3-пиразолины, замещенные только по одному атому азота несколько более известны [47—50]. Главным способом синтеза 1,2-замещенных 3-пиразолинов является реакция Манниха симметричных дизамещенных гидразинов с формальдегидом и кетоном. Получающееся основание Манниха вступает во внутримолекулярную циклизацию с образованием соответствующего 3-пиразолина (Схема 2.13). Позиция двойной связи была подтверждена с помощью ИК-спектроскопии, показавшей наличие сопряжения между двойной связью пиразолина и бензольным кольцом.

R = Me, Et,
$$nPr$$
 $R = Me, Et, nPr$
 $R = Me, Et, nPr$

Схема 2.13

Конденсация гидразида фталевой кислоты с коричным альдегидом дает региоизомерные 3-пиразолины (Схема 2.14), которые при гидролизе превращиются в соответсующие 2-пиразолины. Образование 3-пиразолина было подтверждено с помощью расщепления молекулы и элементого анализа [51].

Схема 2.14

2.4 Реакции пиразолинов

2.4.1 Реакции окисления

Пиразолины неустойчивы к окислению — они могут быть переведены в соответствующие пиразолы действием различных окислителей (Схема 2.15). При этом возможно как стехимометрическое окисление [52—57], так и каталитическое [58—60].

$$\frac{\text{hv}}{\text{CCI}_4}$$
 Ar_3
 Ar_2
 Ar_1
 Ar_1
 Ar_1
 Ar_1
 CTехиометрический
 окислитель

Схема 2.15: Окисление пиразолинов в пиразолы

Также описано окисление пиразолинов в хлорированных растворителях (1,2-дихлорэтан и CCl_4) под действием видимого света. В этом случае в качестве окислителя выступает растворитель. Для этой реакции в работах [61; 62] был предложен механизм (Схема 2.16), включающий фотовозбуждение молекулы приразолина, перенос электрона на молекулу растворителя и дальнейшие превращения получившегося катион-радикала.

Радкикальный характер этой реакции подтверждатеся тем, что добавление в реакционную смесь радикальных ингибиторов замедляют реакцию. Однако полного ингибирования не наблюдается, поскольку стадия образования пиразолиниевого радикала не является лимитирующей [62].

$$Ar^{3} \xrightarrow{N-N} Ar^{2} \xrightarrow{hv} Ar^{3} \xrightarrow{\oplus N=N} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{CCl_{4}} Ar^{3} \xrightarrow{CCl_{4}} Ar^{3} \xrightarrow{CCl_{4}} Ar^{2} \xrightarrow{CCl_{3}} Ar^{2} \xrightarrow{N-N} Ar^{2} \xrightarrow{N-N} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{N-N} Ar^{2}$$

Схема 2.16: Предполагаемый механизм окисления пиразолинов под воздействием света

Перкислоты

Надкислоты (надуксусная и надбензойная) окисляют 1-пиразолины в соответствующие N-оксиды (Схема 2.17).

Схема 2.17

2.4.2 Реакции восстановления

Двойная связь C=N в пиразолинах может быть восстановлена типичными реагентами комплексными гидридами. В работах [63; 64] авторы использовали триэтилборгидрид лития в тетрагидрофуране, а в [65] — цианоборгидрид натрия в уксусной кислоте (Схема 2.18). В каждом случае было испробовано несколько восстановителей и выбор конкретного — баланс между выходом целевого продукта и образованием побочных продуктов (например, деацилирования).

В других условиях пиразолины можно восстановить с расщеплением связи N-N. Восстановление пиразолинов натрием в этаноле можно использовать для получения 1,3диаминозамещенных пропанов [51]. Для получения 1,3-диаминокарбоновых кислот в работе [66] использовали восстановление водородом под давлением на никеле Ренея (Схема 2.19).

$$\begin{array}{c|c}
R & & & R \\
\hline
N-N & & & Li[Et_3BH] & & & N-NH \\
\hline
R' & & & & & & \\
\hline
R' & & & \\
\hline
R' & & & & \\
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
\hline
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' & & & \\
R' & & \\
\hline
R' & & & \\
\hline
R' & & & \\
\hline
R' & & & \\
R' & & & \\
\hline
R' &$$

R = Ph, 4-Me-Ph, 2-фурил, *t*Bu, 4-OMe-Ph **R**' = Me, Ph

$$\begin{array}{c|c} O & & \\ \hline & \\ R & \\ \hline \end{array}$$

 \mathbf{R} = Me, Ph, 4-OMe-Ph, C₆F₅, 2,4,6-Me-Ph, 1-нафтил

Схема 2.18

R
$$H_2$$
 H_1
 H_2
 H_2
 H_2
 H_3
 H_4
 H_4
 H_5
 H_5
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_9
 $H_$

Схема 2.19

3 Результаты и обсуждение

Ранее было показано [1; 67], что формильные производные триарилпиразолинов, содержащих полифторфенильные остатки в положениях 5 или 3 пиразолинового цикла, могут служить эффективными донорами в синтезе сопряженных донорно-акцепторных хромофоров с поглощением при 720–760 нм. В развитие этой тематики была поставлена задача синтеза Д-А хромофоров с использованием декафторзамещенных производных триарилпиразолина. Наличие двух пентафторфенильных групп дает дополнительные возможности для модификации донорного фрагмента.

Альдегид **5** был наработан по литературной методике [36; 68]. Его получение представляет собой многостадийный процесс (Схема 3.1). Альдольно-кротоновой конденсацией пентафторацетофенона **6** с пентафторбензальдегидом **7** получали декафторхалкон **8**, который переводили в пиразолин **9** конденсацией с фенилгидразином. Далее кольцо в положении 1 пиразолина **9** формилировали реакцией Вильсмайера, получая альдегид **5**.

$$F = \begin{cases} F \\ F \\ F \end{cases} = \begin{cases} F \\ F$$

Схема 3.1: Синтез декафторпиразолина

3.1 Взаимодействие формилированного декафтортриарилпиразолина с бинуклеофилами

Далее атом фтора в *пара*-положении обоих колец замещали на бифункциональный нулеофил: 4-гидроксипиперидин или пиперазин (Схема 3.2). При 60 °C реакция замещения фтора в обеих пентафторфенильных группах на остатки 4-гидроксипиперидина не идет до конца, в смеси присутствует примесь исходного соединения. Поэтому реакционную смесь выдержи-

PCA

вали при 100 °C. Из реакционной смеси были выделены два соединения — целевой альдегид с двумя гидроксипиперидиновыми остатками и альдегид, содержащий в одном из колец диметиламиногруппу. Положение диметиламиногруппы было установлено реакцией альдегида 5 с недостатком 4-гидроксипиперидина, при которой незамещенным и, следовательно, менее реакционноспособным оказалось перфторфенильное кольцо в положении 5.

Спектры ЯМР продукта **10а** явно отражают его структуру. В спектре ЯМР ¹Н наблюдаются сигнал альдегидного протона; сигналы системы *AA'BB' пара*-фениленового кольца; три дублета дублетов, соответствующие системе *ABX* пиразолинового кольца; в сильном поле — мультиплеты, соответствующие протонам пиперидиногруппы, в том числе сложный мультиплет, принадлежащий протону СН–ОН. Спектр ¹⁹F также имеет характерный вид и содержит уширенный синглет, который соответствует атомам фтора в *орто*-положении кольца в 5 положении пиразолина. Считается, что это уширение связано с взаимодействием этих атомов фтора с ароматическим кольцом в 1 положении пиразолина.

5 HO
$$\rightarrow$$
 NH \rightarrow F \rightarrow CHO \rightarrow NH \rightarrow

Схема 3.2

Первоначально пиперазин вводили в тех же условиях, что и 4-гидроксипиперидин при этом из реакционной смеси был выделен только продукт олигомеризации (сшивки) по пиперазиновым группам. При проведении реакции при температуре 80 °С и десятикратном избытке пиперазина в реакционной смеси удается выделить продукт замещения обоих атомов фтора на остатки пиперазина в смеси с, предположительно, продуктом замещения одного из атомов фтора на диметиламиногруппу, аналогично реакции с 4-гидроксипиперидином.

5 DMF,
$$\Delta$$

F
F
F
OHC

OHC

Схема 3.3

3.2 Введение разделительного блока

После этого гидроксигруппу альдегида **10a** ацилировали хлористым бензоилом (Схема 3.4). Были испытаны два подхода: бензоилирование большим избытком хлористого бензоила и бензоилирование с катализом DMAP и стехиометрическим количеством хлористого бензоила. В результате было обнаружено, что использование DMAP позволяет сократить время реакции с 6–8 часов до 2 в случае хлористого бензоила и требует гораздо меньшего избытка хлорангидрида (1.25 экв. против 3 экв. при проведении реакции без катализатора).

О полном ацилировании ОН-групп можно судить по смещению сигнала протонов СН-ОН в слабое поле.

Схема 3.4

Также мы исследовали альтернативную последовательность реакций: конденсацию альдегида **10a** с дицианоизофороном и последующее ацилирование полученного ОН-красителя **13a** (Схема 3.5).

При сопоставимых выходах на стадии ацилирования более выгодным является подход с конденсацией и последующим ацилированием, поскольку он позволяет использовать меньшее количество хлорангидрида, получение которого представляется собой значительную сложность. В итоге оптимизированная последовательность реакций и методика ацилирования позволила снизить требуемое количество ацилирующего реагента.

Мы обнаружили, что при длительной выдержке реакционной смеси вместо пиразолина **12a** образуется соответствующий пиразол. На образование пиразола указывает отсутствие в 1 Н ЯМР спектре сигналов ABX-системы пиразолина и отсутствие в спектре 19 Г уширенного синглета.

R = Ph (a); TAFS (b); TATBS (c); MATBS (d)

Схема 3.5

Также мы наблюдали окисление пиразолина в пиразол даже при кратковременной выдержке в темноте в хлорированных растворителях (CH_2Cl_2 и $CDCl_3$). При этом для предше-

ственника соединения **12a** — альдегида **10a** окисления не наблюдалось даже при длительной выдержке в хлороформе на свету. Это может быть связано с предполагаемым механизмом окисления (Схема 2.16 на стр. 15); введение в молекулу акцептора упрощает образование цвиттерионной структуры, играющей ключевую роль в процессе окисления. Таким образом, наилучшая стратегия при синтезе и очистке производных альдегида **10a** — избегать хлорсодержащих растворителей.

как-то кри-

В спектре ЯМР 1 Н соединения **13а** характеристическими являются сигналы AB-системы двойной связи с КССВ около 15 Γ ц, что указывает на E-конфигурацию двойной связи, синглет при 6.72 м.д., соответствующий протону при двойной связи дицианоизофорона, два синглета при 2.61 и 2.55 м.д., принадлежащих CH_2 группам дицианоизофорона и синглет при 1.04 м.д., принадлежащий двум метильными группам дицианоизофорона.

Написать?

По оптимизированной методике (Схема 3.5) мы синтезировали производные соединений **13a** и **14a** с разделительными блоками (Рис. 3.1) — эфиры **12a**—с и **15a**—d. В целом, реакция ацилирования идет достаточно быстро и с хорошим выходом (Таблица 3.1, Таблица 3.2), однако в случае соединения **15d** выход продукта составляет всего 7.5%.

Рис. 3.1: Структуры использованных разделительных блоков

Это может быть связано с тем, что хлорангидрид является стерически затрудненным, а следовательно, затруднен подход ОН-группы к карбонильной группе. Для получения соединения **15d** мы использовали несколько вариаций общей методики: увеличение времени реакции, замена растворителя с бензола на ацетонитрил, проведение реакции при повышенной температуре с нагревом микроволновым излучением, однако это не привело к повышению выхода.

В качестве альтернативных способов получения целевых эфиров мы также исследовали реакцию Мицунобу и реакцию Штеглиха (взаимодействие спирта с кислотой в присутсвтвие DCC и DMAP).

написать

Таблица 3.1

№	Реагент	Субстрат	Экв. реагента	Продукт	Условия	Время реакции, ч	Выход, %
1	PhCOCl	10a	6	11	PhH, NEt ₃	24	74
2	PhCOCl	10a	2.5	11	PhH, NEt ₃ , DMAP	6	74
3	PhCOCl	13a	3	12a	PhH, NEt ₃ , DMAP	2	25
4	TAFS-Cl	13a	3	12b	PhH, NEt ₃ , DMAP	2	30
5	TATBS-Cl	13a	3	12c	PhH, NEt ₃ , DMAP	6	55

Таблица 3.2: Результаты ацилирования соединения 14а

Nº	Реагент	Экв. реагента	Продукт	Условия	Время реакции, ч	Выход, %
1	PhCOCl	1.5	15a	PhH, NEt ₃ , DMAP	4	92
2	TAFS-Cl	1.5	15b	PhH, NEt ₃ , DMAP	2.5	97
3	TATBS-Cl	1.5	15c	PhH, NEt ₃ , DMAP	3	59
4	TATBS-OH	1	15c	ТГФ, DIAD, PPh_3	2.5	70
5	TATBS-OH	1	15c	PhH, DCC, DMAP	12	22
6	MATBS-Cl	1.5	15d	PhH, NEt ₃ , DMAP	12	7.5
7	MATBS-Cl	1.5	15d	MeCN, NEt ₃ , DMAP	36	7.5
81	MATBS-Cl	1.5	15d	PhMe, NEt ₃ , DMAP	0.5	2.5

¹ Реакцию проводили в микроволновом реакторе при температуре 150 °C

Соединения имеют максимум поглощения на длине волны 490–500 нм в ацетоне, который не зависит от структуры введеного разделительного блока, поскольку тот не включен в цепь сопряжения (Рис. 3.2).

Рис. 3.2: Нормированные электронные спектры поглощения полученных красителей

Рис. 3.3: Спектры флуоресценции (сплошная линия) и возбуждения флуоресценции (пунктирная линия) соединения **12b**

4 Экспериментальная часть

Спектральные данные получены в Исследовательском химическом центре коллективного пользования СО РАН. Спектры ЯМР регистрировали на спектрометрах Bruker AV-300 (1 H, 300.13 МГц; 19 F, 282.37 МГц) и Bruker AV-400 (1 H, 400.13 МГц) в дейтерохлороформе, ДМСО- 4 d, и ацетоне- 4 d. Значения химических сдвигов протонов приведены относительно сигналов остаточных протонов растворителей. При регистрации спектров ЯМР 19 F в качестве внутреннего стандарта использовали $C_{6}F_{6}$ ($\delta_{F}=0$ м.д.). Спектры ЯМР 13 С регистрировали в режиме широкополосной развязки (broadband decoupling, BB). Электронные спектры поглощения регистрировали на спектрофотометре Hewlett Packard 8453. Масс-спектры высокого разрешения получены на приборе DFS (Thermo Fisher Scientific) в режиме прямого ввода, энергия ионизации 70 эВ. Масс-спектры методом MALDI-TOF получены на приборе Autoflex Speed MALDI-TOF «Вгикег Daltonic» (Германия) в режиме положительного отраженного иона, частота лазера — 1000 Гц, ускоряющее напряжение — 19 кВ 1 .

уточнить

R19

Таблица 4.1

Название	Производитель	Чистота	Примечание
dec	Alfa Aesar	99%	
4-Гидроксипиперидин	Alfa Aesar	97%	
dmap			
diad			
Морфолин	Реахим	Ч	
Пентафторацетофенон	P&M Invest	99%	
Пентафторбензальдегид	ОХП НИОХ СО РАН	99%	
Пиперазин	Aldrich	99%	
Трифенилфосфин	Lancaster	99%	
Триэтиламин	AppliChem	99.5%	
Фенилгидразин	Acros Organics	97%	
Хлористый бензоил	Реахим	Ч	Перегнан

Альдегид 5 синтезировали по [36; 68].

4-3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигидро-1*H*-

пиразол-1-илбензальдегид (10а). Раствор 3.00 г (5.9 ммоль) альдегида **5** и 1.80 г (17.8 ммоль) 4-гидроксипиперидина в 50 мл сухого ДМФА нагревали до 100 °C, выдерживали при этой температуре 6 часов и оставляли на ночь. Реакционную смесь выливали в 400 мл воды со льдом, перемешивали до таяния льда и отфильтровывали осадок. Осадок на фильтре

¹Исследование выполнено в центре масс-спектрометрического анализа ИХБФМ СО РАН

R20

промывали водой до нейтральной реакции, затем гексаном и сушили на воздухе. Желтооранжевый порошок, выход 3.70 г (93 %). Продукт очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 : ацетонитрил, градиент 5:1-2:3. Собирали желтые фракции, анализировали TCX (CH_2Cl_2 : ацетонитрил, 2:1, $R_f\approx 0.25-0.3$). T_{nn} 155–159 °C. MC (DFS) Найдено [M $^+$]: 668.2023. $C_{32}H_{28}O_3N_4F_8$. Рассчитано: М 668.2028. ЯМР 1 Н (ацетон- 4 d) 6 5, м.д.: 9.77 (с, 1 H, CHO), 7.76 (д, 2 H, 2 H $_{Ar}$, J=8.8 Гц), 7.17 (д, 2 H, 2 H $_{Ar}$, J=8.8 Гц), 5.98, 4.16, 3.90 (все дд, все по 1 H, система ABX пиразолина, J=18.2, 13.1, 5.3 Гц), 3.86–3.69 (м, 3 H), 3.63–3.47 (м, 2 H), 3.47–3.31 (м, 2 H), 3.28–3.17 (м, 2 H), 3.17–3.03 (м, 2 H), 2.00–1.82 (м, 4 H), 1.77–1.50 (м, 4 H). ЯМР 19 F (ацетон- 4 d) 6 6, м.д.: 22.27 (дд, 2 F, 4 7 =18.4, 6.9 Гц), 18.05 (уш. с., 2 F), 12.62 (дд, 2 F, 4 7 =20.8, 6.5 Гц), 11.67 (дд, 2 F, 4 7 =17.6, 6.0 Гц). ЯМР 13 C (CDCl $_3$) 6 8, м.д.: 190.41, 147.40, 146.52, 146.02, 144.49, 144.05, 142.98, 141.03, 140.61, 131.67, 131.03, 130.93, 128.59, 112.66, 110.35, 110.22, 110.10, 104.00, 77.15, 76.90, 76.64, 67.18, 67.15, 51.57, 48.54, 48.51, 48.48, 48.44, 43.57, 34.85, 34.83.

[1-(4-Формилфенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)бис(пиперидин-1,4-диил)дибензоат (16а). Способ 1 Суспензию 0.50 г (0.75 ммоль) альдегида 10а в 10 мл сухого бензола доводили до кипения и прибавляли к ней 0.62 мл (4.5 ммоль) триэтиламина и 0.35 мл (3.0 ммоль) хлористого бензоила. После двух часов кипячения прибавляли еще столько же триэтиламина и хлористого бензоила и кипятили еще сутки. Реакционную смесь выливали в 100 мл воды и добавляли бензол до разделения фаз. Органическую фазу отделяли, сушили над Na₂SO₄ и удаляли растворитель в вакууме. Твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол : CHCl₃, градиент 1:0-0:1. Собирали желтые фракции, элюент удаляли в вакууме и повторно очищали колоночной хроматографией на SiO₂, элюент — смесь бензол : CH₂Cl₂ 1:1. Собирали желтые фракции, растворитель удаляли в вакууме. Желтое масло, выход 0.49 г (74 %).

Способ 2 К суспензии $0.20\,\Gamma$ ($0.3\,$ ммоль) альдегида 10a в 5 мл сухого бензола, прибавляли $0.11\,$ мл ($0.75\,$ ммоль) хлористого бензоила, $0.13\,$ мл ($0.75\,$ ммоль) триэтиламина и 2 мг DMAP. Реакционную смесь кипятили 6 часов, оставляли на ночь и удаляли растворитель в вакууме. Полученное масло очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : CH_2CI_2 , градиент 1:1-8:1, собирали желтую фракцию, элюент удаляли в вакууме, полученное масло промывали смесью гексана с диэтиловым эфиром 1:1. Светло-желтый порошок, выход $0.19\,\Gamma$ ($74\,\%$). $T_{\rm пл.}\,180-183\,^{\circ}$ С. МС (DFS) Найдено [M^+]: $876.2548.\,\,C_{46}H_{36}O_5N_4F_8.\,\,P$ ассчитано: М $876.2553.\,\,$ ЯМР 1 H (CDC I_3) δ , м.д.: $9.77\,\,$ (с, $1\,$ H, CHO), $8.00-8.14\,\,$ (м, $4\,$ H $_{Ar}$), $7.73\,\,$ (д, $2\,$ H $_{Ar}$, $J=8.4\,\,$ Гц), $7.61-7.52\,\,$ (м, $2\,$ H $_{Ar}$), $7.50-7.39\,\,$ (м, $4\,$ H $_{Ar}$), $7.13\,\,$ (д, $2\,$ H $_{Ar}$, $J=8.4\,\,$ Гц), $5.75,\,3.95\,\,$ (оба дд, оба по $1\,$ H, пиразолин, $J=17.8,\,13.0,\,5.9\,\,$ Гц), $5.35-5.11\,\,$ (м, $3\,$ H, $2\,$ CH-OH, пиразолин), $3.65-3.41\,\,$ (м, $4\,$ H), $3.41-3.13\,\,$ (м, $4\,$ H), $2.26-2.03\,\,$ (м, $4\,$ H), $2.03-1.87\,\,$ (м, $4\,$ H). ЯМР 19 F (CDCI3) δ , м.д.: $21.14\,\,$ (д, $2\,$ F, $J=12.2\,\,$ Гц), $16.72\,\,$ (уш. c, $2\,$ F), $11.74\,\,$ (c, $2\,$ F), $11.14-9.71\,\,$ (м, $2\,$ F).

R22

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил)дибензоат (12а). Способ 1. К суспензии $0.48\,\mathrm{r}$ ($0.55\,\mathrm{ммоль}$) альдегида 16а в $15\,\mathrm{мл}$ бутанола прибавляли $0.10\,\mathrm{r}$ дицианоизофорона и $5\,\mathrm{капель}$ морфолина. Смесь кипятили в атмосфере аргона $7\,\mathrm{часов}$, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — $\mathrm{CH}_2\mathrm{Cl}_2$: гексан, градиент 1:1-0:1, затем ацетонитрил. Собирали красные фракции.

с двумя бензоилами Способ 2. К суспензии $0.10\,\mathrm{r}$ ($0.12\,\mathrm{ммоль}$) соединения 13a в 5 мл сухого бензола прибавляли $0.35\,\mathrm{mn}$ ($0.30\,\mathrm{ммоль}$) хлористого бензоила, $0.42\,\mathrm{mn}$ ($0.30\,\mathrm{ммоль}$) триэтиламина и 7 мг DMAP. Реакционную смесь кипятили в атмосфере аргона $10\,\mathrm{часов}$, добавив еще столько же хлористого бензоила. Растворитель удаляли в вакууме. Очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : $\mathrm{CH}_2\mathrm{Cl}_2$, градиент 1:10-1:1. Собирали оранжевые фракции, растворитель удаляли в вакууме. Темно-оранжевый порошок, выход $\mathrm{T}_{\mathrm{пл}}$ $145-147\,\mathrm{^{\circ}C}$. ЭСП (ацетон) λ_{max} ($\mathrm{lg}\,\varepsilon$): 490 нм (4.73). МС (MALDI-TOF) Найдено [M+H]⁺: 1045.3609. $\mathrm{C}_{56}\mathrm{H}_{48}\mathrm{O}_4\mathrm{N}_6\mathrm{F}_8$. Рассчитано: [M+H] 1045.3682.

(E)-2-[3-(4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигидро-1H-пиразол-1-ил}стирил)-5,5-диметилциклогекс-2-ен-1-илиден]малононит-

рил (13а). К раствору 0.25 г (0.37 ммоль) альдегида **17а** и 0.070 г (0.37 ммоль) дицианоизофорона в 5 мл бутанола прибавляли 5 капель морфолина, кипятили в атмосфере аргона 7 часов и оставляли на ночь. Выпавший осадок отфильтровывали, промывали этанолом и диэтиловым эфиром. Темно-красный порошок, выход 0.13 г (42%). ЯМР 1 Н (CDCl $_{3}$) δ , м.д.: 7.37 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, J=8.7 Гц), 7.05 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, J=8.7 Гц), 6.96 (д, $1\,\mathrm{H}$, $\mathrm{CH}=$, J=15.9 Гц), 6.80 (д, $1\,\mathrm{H}$, $=\mathrm{CH}$, J=15.9 Гц), 6.73 (с, $1\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{isoph}}$), 5.71 (дд, $1\,\mathrm{H}_{\mathrm{pyr}}$, J=13.0, 5.6 Гц), 3.99-3.76 (м, $3\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{pip}}$, $1\,\mathrm{H}_{\mathrm{pyr}}$), 3.75-3.60 (м, $2\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{pip}}$), 3.55-3.44 (м, $2\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2pip}}$), 3.44-3.31 (м, $3\,\mathrm{H}$, $\mathrm{CH}_{\mathrm{2pip}}$), 1.78-1.63 (м, $4\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{2pip}}$), 1.04 (с, $6\,\mathrm{H}$, $2\,\mathrm{CH}_{\mathrm{3isoph}}$). ЯМР 19 F (CDCl $_{3}$) δ , м.д.: 20.65 (дд, $2\,\mathrm{F}$, J=19.6, $7.9\,\mathrm{F}$ ц), 16.69 (уш. с, $2\,\mathrm{F}$), 11.44 (с, $2\,\mathrm{F}$), 10.11 (д, $2\,\mathrm{F}$, J=19.6, $8.3\,\mathrm{F}$ ц).

Диэфиры 12b,d (общая методика) К раствору соединения 13a в 6 мл сухого бензола добавляли соответствующий хлорангидрида триэтиламин и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO₂. Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил) бис[4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]тио}метил)бен-зоат] (12b). По общей методике из 0.10г (0.12 ммоль) соединения 13a, 0.24г (0.36 ммоль)

R23

ЯМР

пиперидин с двумя TAFS R30 ТАFS—СІ, 0.10 мл (0.72 ммоль, 6 экв.) триэтиламина и 0.001 г DMAP. Время реакции 2 часа. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO₂, элюент — $\rm CH_2Cl_2$. Темно-красный порошок, выход 0.075 г (30 %). $\rm T_{nл}$ 93—95 °C. ЭСП (ацетон) $\rm \lambda_{max}$ ($\rm lg\,\varepsilon$): 491 нм (4.73). МС (MALDI-TOF) Найдено [M – H] $^-$: 2119.2502. $\rm C_{92}H_{56}O_4N_6F_{36}S_4$. Рассчитано: [M – H] 2119.2598. ЯМР 1 Н ($\rm CD_3CN$) $\rm \delta$, м.д.: 7.68—7.61 (м, 4 $\rm H_{TAFS}$), 7.57 (д, 2 $\rm H_{Ar}$, $\it J$ = 8.6 $\rm \Gamma u$), 7.22 (д, 1 $\rm H$, $\rm CH=$, $\it J$ = 16.2 $\rm \Gamma u$), 7.15 (д, 2 $\rm H_{Ar}$, $\it J$ = 8.6 $\rm \Gamma u$), 7.09 (д, 1 $\rm H$, = CH, $\it J$ = 16.2 $\rm \Gamma u$), 6.87 (с, 1 $\rm H$, $\rm CH_{isoph}$), 5.95 (дд, 1 $\rm H_p$ yr, $\it J$ = 11.3, 3.4 $\rm \Gamma u$), 5.28—5.09 (м, 2 $\rm H$, 2 $\rm CH_{pip}$), 4.49—4.37 (м, 8 $\rm H$, 4 $\rm CH_{2TAFS}$), 4.24—3.99 (м, 1 $\rm H_{pyr}$), 3.73—3.23 (м, 9 $\rm H$, 1 $\rm H_{pyr}$, 4 $\rm CH_{2pip}$), 2.60 (c, 2 $\rm H$, $\rm CH_{2isoph}$), 2.21 (c, 6 $\rm H$, 2 $\rm CH_{3TAFS}$), 2.18—2.11 (м, 4 $\rm H$, 2 $\rm CH_{2pip}$), 2.00—1.80 (м, 4 $\rm H$, 2 $\rm CH_{2pip}$), 1.45—1.34 (м, 2 $\rm H$, CH_{2isoph}), 1.14 (с, 6 $\rm H$, 2 $\rm CH_{3isoph}$). ЯМР ¹⁹F (CD₃CN) $\rm \delta$, м.д.: 109.21—105.32 (м, 12 $\rm F$, 4 $\rm CF_3$), 32.41—31.58 (м, 8 $\rm F$), 22.10—21.54 (м, 10 $\rm F$), 17.84 (уш. c, 2 $\rm F$), 12.98—12.06 (м, 2 $\rm F$), 11.83—10.84 (м, 2 $\rm F$).

пиперидин с двумя ТАТВЅ R33

ЭСП

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил|бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4диил) бис[3,5-бис({[4-(трет-бутил)фенил]тио}метил)-4-метилбензоат] (12с). По общей методике из 0.06 г (0.07 ммоль) соединения **13а**, 0.12 г (0.22 ммоль) TATBS-Cl, 0.14 мл (1.1 ммоль) триэтиламина и 0.001 г DMAP. Время реакции 6 часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO₂, элюент — бензол. красный порошок, выход 0.070 г (55%). МС (MALDI-TOF) Найдено [M + H]⁺: 1785.7141. $C_{104}H_{108}O_4N_6F_8S_4$. Рассчитано: [M+H] 1785.7260. ЯМР 1H (ацетон-d₆) δ , м.д.: 7.78 (c, 2 H_{MATBS}), 7.75 (с, 2 ${
m H_{MATBS}}$), 7.60 (д, 2 ${
m H_{AR}}$, J = 8.7 ${
m \Gamma II}$), 7.37 – 7.25 (м, 16 ${
m H_{MATBS}}$), 7.20 (д, 2 ${
m H_{Ar}}$, J = 7.3 ${
m \Gamma II}$), 7.13 – 7.05 (м, 2 H, CH=CH), 6.78 (с, 1 H, CH $_{\rm isoph}$), 5.98 (дд, 1 H $_{\rm pyr}$, J = 13.0, 5.6 Гц), 5.21 – 5.04 (м, 2 H, 2 CH_{pip}), 4.27 (с, 4 H, 2 CH_{2MATBS}), 4.25 (с, 4 H, 2 CH_{2MATBS}), 4.14 (дд, 1 H_{pyr}, J = 18.0, 13.0 Γ II), 3.65 – 3.21 (M, 9 H, 4 CH_{2pip} , 1 H_{pvr}), 2.62 (c, 2 H, CH_{2isoph}), 2.59 – 2.56 (M, 2 H, CH_{2isoph}), 2.50 (c, 3 H, CH_{3MATBS}), 2.48 (c, 3 H, CH_{3MATBS}), 2.14-2.07 (M, 4 H, 2 CH_{2pip}), 1.99-1.75 (M, 4 H, $2 \text{ CH}_{2\text{pip}}$), 1.27 (c, 18 H, tBu_{MATBS}), 1.25 (c, 18 H, tBu_{MATBS}), 1.07 (c, 6 H, 2 CH_{3 isoph}). $9 \text{ MMP}^{-19} \text{ F}$ (ацетон- d_6) δ , м.д.: 22.59 – 21.86 (м, 2 F), 18.47 (уш. c, 2 F), 13.01 – 12.49 (м, 2 F), 12.23 – 11.43 (M, 2F).

Моноэфиры 15а-d (общая методика) К раствору 0.10 г (0.15 ммоль) соединения **14а** в 6 мл сухого бензола добавляли 0.2-0.3 ммоль соответствующего хлорангидрида , 0.2-0.3 ммоль триэтиламина и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол. Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексанэфир.

(E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидинпиперидин с одним бензоилом

написать

4-ил бензоат (15а). По общей методике из 0.10 г (0.15 ммоль) соединения **14а**, 0.03 мл (0.23 ммоль) хлористого бензоила, 0.04 мл (0.23 ммоль) триэтиламина и 0.001 г) DMAP. Время реакции 4 часа. Темно-красный порошок, выход 0.11 г (92%). $T_{пл.}$ 145–147 °C. ЭСП (ацетон) λ_{max} ($\lg \varepsilon$): 499 нм (4.68). МС (DFS) Найдено [M⁺]: . $C_{46}H_{39}O_2N_5F_4$. Рассчитано: М. ЯМР ¹H (ацетон- d_6) δ , м.д.: 8.03 (д, $2H_{Ar}$, J = 7.6 Гц), 7.82 (д, $2H_{Ar}$, J = 7.6 Гц), 7.67 – 7.54 (м, $3H_{Ph}$), 7.54 – 7.36 (м, $5H_{Ph}$), 7.22 (д, 1H, CH=, J = 15.3 Гц), 7.18 – 7.04 (м, 3H, = CH, $2H_{Ph}$), 6.76 (с, 1H, CH_{isoph}), 5.94 (дд, $1H_{pyr}$, J = 13.0, 5.6 Гц), 5.28 – 5.06 (м, 1H, CH_{pip}), 4.08 (дд, $1H_{pyr}$, J = 18.0, 13.0 Гц), 3.65 – 3.40 (м, 3H, $1H_{pyr}$, CH_{2pip}), 3.28 (с, 2H, CH_{2pip}), 2.61 (с, 2H, CH_{2isoph}), 2.56 (с, 2H, CH_{2isoph}), 1.94 – 1.75 (м, 4H, $2CH_{2pip}$), 1.06 (с, 6H, $2CH_{3isoph}$). ЯМР ¹⁹F (ацетон- d_6) δ , м.д.: 18.23 (уш. с, 2F), 12.70 (д, 2F, J = 21.2 Гц).

пиперидин с одним TAFS R36 (*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]тио}метил)бензо-ат (15b). По общей методике из $0.10\,\mathrm{r}$ ($0.15\,\mathrm{mmonb}$) соединения 14a, $0.15\,\mathrm{r}$ ($0.23\,\mathrm{mmonb}$) ТАГЅ-С1, $0.04\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) триэтиламина и $0.001\,\mathrm{r}$ DMAP. Время реакции $2.5\,\mathrm{часa}$. Темно-красный порошок, выход $0.19\,\mathrm{r}$ ($97\,\%$). $T_{\mathrm{пл.}}$ $108-111\,^{\circ}\mathrm{C}$. ЭСП (ацетон) λ_{max} ($102\,\mathrm{s}$): 499 нм (4.61). МС (МАLDI-ТОГ) Найдено [М + H] $^+$: 1308.2568. $110\,\mathrm{c}$, $1100\,\mathrm$

пиперидин с одним ТАТВЅ R31 (*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 3,5-бис({[4-(трет-бутил)фенил]тио}метил)4-метилбензоат (15с). Способ 1. По общей методике из 0.10 г (0.15 ммоль) соединения 14а, 0.12 г (0.23 ммоль) ТАТВЅ-СІ, 0.06 мл (0.4 ммоль) триэтиламина и 0.001 г DMАР. Время реакции 3 часа. Темно-красный порошок, выход 0.10 г (59%).

Способ 2. К раствору $0.05\,\Gamma$ ($0.75\,\text{ммоль}$) соединения 14a, $0.04\,\Gamma$ ($0.75\,\text{ммоль}$) ТАТВS-ОН и $0.03\,\Gamma$ ($0.11\,\text{ммоль}$) трифенилфосфина в $6\,\text{мл}$ сухого ТГФ при перемешивании в атмосфере аргона по каплям прибавляли раствор $0.02\,\text{мл}$ DIAD в $4\,\text{мл}$ сухого ТГФ. Реакционную смесь выдерживали при комнатной температуре $2.5\,\text{часа}$, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.06\,\Gamma$ ($70\,\%$).

 $0.02\, \Gamma$ ($0.83\, \mathrm{MMOЛЬ}$) DCC и $0.001\, \Gamma$ DMAP в 6 мл сухого бензола выдерживали 5 часов, после кипятили 7 часов. Растворитель удаляли в вакууме, Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.02\, \Gamma$ ($22\,\%$). $T_{\mathrm{пл.}}$ $108-110\,^{\circ}\mathrm{C}$. ЭСП (ацетон) λ_{max} ($108\,\varepsilon$): 499 нм (4.67). МС (MALDI-TOF) Найдено [M + H] $^+$: 1140.4823. $\mathrm{C}_{69}\mathrm{H}_{69}\mathrm{O}_2\mathrm{N}_5\mathrm{F}_4\mathrm{S}_2$. Рассчитано: [M + H] 1140.4902. ЯМР $^1\mathrm{H}$ (ацетон- $^4\mathrm{G}$) δ , м.д.: $7.82\, (\mathrm{д}, 2\,\mathrm{H}_{\mathrm{Ar}}, J=8.5\, \Gamma\mathrm{u})$, $7.72\, (\mathrm{c}, 2\,\mathrm{H}_{\mathrm{MATBS}})$, $7.57\, (\mathrm{g}, 2\,\mathrm{H}_{\mathrm{Ar}}, J=8.5\, \Gamma\mathrm{u})$, $7.48-7.37\, (\mathrm{m}, 3\,\mathrm{H}_{\mathrm{ph}})$, $7.32\, (\mathrm{c}, 2\,\mathrm{H}_{\mathrm{ph}})$, $7.30-7.21\, (\mathrm{m}, 8\,\mathrm{H}_{\mathrm{MATBS}})$, $7.20-7.00\, (\mathrm{m}, 2\,\mathrm{H}, \mathrm{CH}=\mathrm{CH})$, $6.75\, (\mathrm{c}, 1\,\mathrm{H}, \mathrm{CH}_{\mathrm{isoph}})$, $5.94\, (\mathrm{gg}, 1\,\mathrm{H}_{\mathrm{pyr}}, J=12.9, 5.6\, \Gamma\mathrm{u})$, $5.06\, (\mathrm{m}, 1\,\mathrm{H}, \mathrm{CH}_{\mathrm{pip}})$, $4.23\, (\mathrm{c}, 4\,\mathrm{H}, 2\,\mathrm{CH}_{\mathrm{2MATBS}})$, $4.07\, (\mathrm{gg}, 1\,\mathrm{H}_{\mathrm{pyr}}, J=17.8, 12.9\, \Gamma\mathrm{u})$, $3.62-3.38\, (\mathrm{m}, 3\,\mathrm{H}, 1\,\mathrm{H}_{\mathrm{pyr}}, \mathrm{CH}_{\mathrm{2pip}})$, $3.34-3.16\, (\mathrm{m}, 2\,\mathrm{H}, \mathrm{CH}_{\mathrm{2pip}})$, $2.60\, (\mathrm{c}, 2\,\mathrm{H}, \mathrm{CH}_{\mathrm{2isoph}})$, $2.55\, (\mathrm{c}, 2\,\mathrm{H}, \mathrm{CH}_{\mathrm{2isoph}})$, $2.47\, (\mathrm{c}, 3\,\mathrm{H}, \mathrm{CH}_{\mathrm{3MATBS}})$, $1.90-1.73\, (\mathrm{m}, 2\,\mathrm{H}, \mathrm{CH}_{\mathrm{2pip}})$, $1.38-1.18\, (\mathrm{m}, 20\,\mathrm{H}, 2\,\mathrm{tBu}_{\mathrm{MATBS}}, \mathrm{CH}_{\mathrm{2pip}})$, $1.05\, (\mathrm{c}, 6\,\mathrm{H}, 2\,\mathrm{CH}_{\mathrm{3isoph}})$. ЯМР $^{19}\mathrm{F}$ (ацетон- $^{4}\mathrm{G}$) δ , м.д.: $18.29\, (\mathrm{ym}.\,\mathrm{c}, 2\,\mathrm{F})$, $12.74\, (\mathrm{g}, 2\,\mathrm{F}, J=20.1\, \Gamma\mathrm{u})$.

(E)-1- $\{4-[1-(4-\{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]ви-$

Способ 3. Раствор 0.05 г (0.75 ммоль) соединения **14a**, 0.04 г (0.75 ммоль) TATBS-OH,

пиперидин с одним МАТВS R32 нил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил 3,5-бис({[4-(трет-бутил)фенил]тио}метил)-2,4,6-триметилбензоат (15d). По общей методике из 0.09 г (0.14 ммоль) соединения 14а, 0.11 г (0.21 ммоль) МАТВЅ-СІ, 0.06 мл (0.4 ммоль) триэтиламина и 0.001 г (0.05 экв.) DМАР. Время реакции 12 часов. Темно-красный порошок, выход 0.012 г (7.5%). $T_{\rm пл.}$ 147–150 °C. ЭСП (ацетон) $\lambda_{\rm max}$ ($\lg \varepsilon$): 497 нм (4.64). МС (МАLDІ-ТОҒ) Найдено [М + H] $^+$: 1168.5130. $C_{71}H_{73}O_2N_5F_4S_2$. Рассчитано: [М + H] 1168.5215. ЯМР 1 H (CDCl $_3$) δ , м.д.: 7.74 (д, 2 $H_{\rm Ar}$, J = 7.3 Γ II), 7.47 – 7.34 (м, 5 $H_{\rm ph}$), 7.33 – 7.24 (м, 8 $H_{\rm MATBS}$), 7.08 (д, 2 $H_{\rm Ar}$, J = 7.3 Γ II), 6.97 (д, 1 H, CH=, J = 16.1 Γ II), 6.81 (д, 1 H, = CH, J = 16.1 Γ II), 6.74 (с, 1 H, CH $_{\rm isoph}$), 5.74 (дд, 1 $H_{\rm pyr}$, J = 13.0, 6.0 Γ II), 5.28 (с, 6 H, 2 $CH_{\rm 3MATBS}$), 5.17 – 5.03 (м, 1 H, CH $_{\rm pip}$), 4.10 (с, 4 H, 2 $CH_{\rm 2MATBS}$), 3.87 (дд, 1 $H_{\rm pyr}$, J = 17.4, 13.0 Γ II), 3.47 – 3.33 (м, 3 H, 1 $H_{\rm pyr}$, CH $_{\rm 2pip}$), 3.25 – 3.13 (м, 2 H, CH $_{\rm 2pip}$), 2.56 (с, 2 H, CH $_{\rm 2pip}$), 2.47 – 2.36 (м, 5 H, CH $_{\rm 3MATBS}$), CH $_{\rm 2isoph}$), 2.10 – 1.96 (м, 2 H, CH $_{\rm 2pip}$), 1.94 – 1.79 (м, 2 H, CH $_{\rm 2pip}$), 1.27 (с, 18 H, 2 HBu $_{\rm MATBS}$), 1.04 (с, 6 H, 2 HBu $_{\rm 3isoph}$). ЯМР 19 F (CDCl $_3$) δ , м.д.: 16.86 (уш. с, 2 HF), 11.57 (д, 2 HF, H

5 Заключение

В ходе работы были достигнуты следующие результаты:

- 1. Начата работа по синтезу донорных блоков, исходя из декафторзамещенного трифенилпиразолина.
- 2. Синтезированы красители конденсацией бифункционально замещенных октафтортрифенилпиразолинов с трицианоизофороном.
- 3. Исследованы альтернативные пути бензоилирования хромофоров как модельной реакции для введения дендроидных фрагментов.
- 4. Осуществлен синтез аналога известного хромофора с новым дендроидным заместителем TAFS, поглощающего в ИК области спектра (λmax 936 нм).

Приложение А Спектры

Рис. А.1: Спектр ЯМР ¹Н соединения 10а

Рис. А.2: Спектр ЯМР ¹⁹ F соединения **10а**

Рис. А.3: Спектр ЯМР ¹³С соединения **10а**

Рис. А.4: Спектр ЯМР ¹Н соединения **16а**

Рис. А.5: Спектр ЯМР ¹⁹ F соединения **16а**

Список литературы

- Формильные производные аминозамещенных полифторфенил-4,5-дигидро-1Н-пиразолов: синтез и использование в качестве донорных блоков в структурах нелинейно-оптических хромофоров / В. Шелковников [и др.] // Журнал органической химии. 2019. Т. 55, № 10. С. 1551—1566.
- 2. *Bureš F.* Fundamental aspects of property tuning in push–pull molecules // RSC Adv. 2014. T. 4, № 102. C. 58826—58851.
- 3. Donor- $(\pi$ -bridge)-azinium as D- π -A + one-dimensional and D- π -A +- π -D multidimensional V-shaped chromophores / M. A. Ramírez [μ π p.] // Organic and Biomolecular Chemistry. 2012. T. 10, N0 8. C. 1659—1669.
- 4. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: A route to triphenylamine-based chromophores with enhanced two-photon absorption / P. Hrobárik [и др.] // Journal of Organic Chemistry. 2011. Т. 76, № 21. С. 8726—8736.
- 5. Changing the shape of chromophores from "h-type" to "star-type": Increasing the macroscopic NLO effects by a large degree / W. Wu [и др.] // Polymer Chemistry. 2013. Т. 4, № 2. С. 378—386.
- 6. Chase D. T., Young B. S., Haley M. M. Incorporating BODIPY fluorophores into tetrakis(arylethynyl)benzenes // Journal of Organic Chemistry. 2011. T. 76, № 10. C. 4043—4051.
- 7. Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor / F. Bureš [и др.] // Chemistry A European Journal. 2007. Т. 13, № 19. С. 5378—5387.
- 8. Dicyanopyrazine-derived push-pull chromophores for highly efficient photoredox catalysis / Y. Zhao [и др.] // RSC Advances. 2014. Т. 4, № 57. С. 30062—30067.
- 9. Blue organic light-emitting diodes based on pyrazoline phenyl derivative / P. Stakhira [и др.] // Synthetic Metals. 2012. Т. 162, № 3/4. С. 352—355.
- 10. *Ramkumar V.*, *Kannan P.* Highly fluorescent semiconducting pyrazoline materials for optoelectronics // Optical Materials. 2015. T. 46. C. 605—613.
- 11. *Vandana T., Ramkumar V., Kannan P.* Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics // Optical Materials. 2016. T. 58. C. 514—523.

- 12. A Comprehensive Review on Recent Developments in the Field of Biological Applications of Potent Pyrazolines Derived from Chalcone Precursors / V. V. Salian [и др.] // Letters in Drug Design & Discovery. 2018. Т. 15, № 5. С. 516—574.
- 13. 2-Pyrazolines as Biologically Active and Fluorescent Agents, An Overview / P. Singh [и др.] // Anti-Cancer Agents in Medicinal Chemistry. 2018. Т. 18, № 10. С. 1366—1385.
- 14. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review) / D. D. Korablina [и др.] // Pharmaceutical Chemistry Journal. 2016. Т. 50, № 5. С. 281—295.
- 15. *Hassan S*. Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives // Molecules. 2013. T. 18, № 3. C. 2683—2711.
- 16. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents / J. H. Ahn [и др.] // Bioorganic & Medicinal Chemistry Letters. — 2004. — Т. 14, № 17. — C. 4461—4465.
- 17. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines / Ş. Güniz Küçükgüzel [и др.] // European Journal of Medicinal Chemistry. 2000. Т. 35, № 7/8. С. 761—771.
- 18. *Jagadish P. C.*, *Soni N.*, *Verma A.* Design, Synthesis, and In Vitro Antioxidant Activity of 1,3,5-Trisubstituted-2-pyrazolines Derivatives // Journal of Chemistry. 2013. T. 2013. C. 1—6.
- Barsoum F. F., Hosni H. M., Girgis A. S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties // Bioorganic & Medicinal Chemistry. 2006. T. 14, № 11. C. 3929—3937.
- 20. Automated parallel synthesis of chalcone-based screening libraries / D. G. Powers [и др.] // Tetrahedron. 1998. Т. 54, № 16. С. 4085—4096.
- 21. *Chebanov V. A.*, *Desenko S. M.*, *Gurley T. W.* Azaheterocycles Based on α,β-Unsaturated Carbonyls. Springer-Verlag Berlin Heidelberg, 2008.
- 22. *Wang Z.* Claisen-Schmidt Condensation // Comprehensive Organic Name Reactions and Reagents. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. C. 660—664.
- 23. *Nielsen A. T., Houlihan W. J.* The Aldol Condensation // Organic Reactions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. C. 1—438.
- 24. Synthesis and antimicrobial activity of quinoline-based 2-pyrazolines / M. Munawar [и др.] // Chemical Papers. 2008. Т. 62, № 3. С. 288—293.

- 25. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer's disease / C. Neudorfer [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 18. С. 4490—4495.
- 26. Solution-Phase Parallel Synthesis of a Library of \triangle 2 -Pyrazolines / S. Manyem [и др.] // Journal of Combinatorial Chemistry. 2007. Т. 9, № 1. С. 20—28.
- 27. *Patel V. M.*, *Desai K. R.* Eco-friendly synthesis of pyrazoline derivatives over potassium carbonate // Arkivoc. 2004. T. 2004, № 1. C. 123.
- 28. Structure-guided discovery of 1,3,5-triazine–pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate / B. Singh [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 15. С. 3321—3325.
- 29. *Farooq S.*, *Ngaini Z.* One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines // Tetrahedron Letters. 2020. T. 61, № 4. C. 151416.
- 30. Rahmatzadeh S. S., Karami B., Khodabakhshi S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid // Journal of the Chinese Chemical Society. 2015. T. 62, № 1. C. 17—20.
- 31. *Daneshfar Z.*, *Rostami A.* Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis // RSC Advances. 2015. T. 5, № 127. C. 104695—104707.
- 32. *Marković V., Joksović M. D.* "On water" synthesis of N-unsubstituted pyrazoles: semicarbazide hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-carboxylate derivatives and 3,5-disubstituted pyrazoles // Green Chemistry. 2015. T. 17, № 2. C. 842—847.
- 33. An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique / S. B. Zangade [и др.] // Green Chemistry Letters and Reviews. 2013. Т. 6, № 2. С. 123—127.
- 34. Synthesis, characterization and pharmacological study of 4,5-dihydropyrazolines carrying pyrimidine moiety / A. Adhikari [и др.] // European Journal of Medicinal Chemistry. 2012. Т. 55. С. 467—474.
- 35. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives / S. N. Shelke [и др.] // Bioorganic & Medicinal Chemistry Letters. 2012. Т. 22, № 17. С. 5727—5730.

- 36. Взаимодействие полифторхалконов с гидразингидратом и фенилгидразином / К. Шмуйлович [и др.] // Известия Академии наук. Серия химическая. 2010. Т. 5, № 7. С. 1378—1382.
- 37. *Patil N. T.*, *Singh V.* Synthesis of 1,3,5-trisubstituted pyrazolines via Zn(ii)-catalyzed double hydroamination of enynes with aryl hydrazines // Chemical Communications. 2011. T. 47, № 39. C. 11116.
- 38. *Müller T. J. J., Ansorge M., Aktah D.* An Unexpected Coupling Isomerization Sequence as an Entry to Novel Three-Component-Pyrazoline Syntheses // Angewandte Chemie International Edition. 2000. T. 39, № 7. C. 1253—1256.
- 39. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents / X. Wang [и др.] // Org. Biomol. Chem. 2014. Т. 12, № 13. С. 2028—2032.
- 40. Metal-catalyzed [3+2] cycloadditions of azomethine imines / U. Grošelj [и др.] // Chemistry of Heterocyclic Compounds. 2018. Т. 54, № 3. С. 214—240.
- 41. *Hashimoto T., Takiguchi Y., Maruoka K.* Catalytic Asymmetric Three-Component 1,3-Dipolar Cycloaddition of Aldehydes, Hydrazides, and Alkynes // Journal of the American Chemical Society. 2013. T. 135, № 31. C. 11473—11476.
- 42. *Baldwin J. E.*, *Pitlik J.* 1,3-Dipolar cycloadditions of 3-methylenecephams with diazoalkanes // Tetrahedron Letters. 1990. T. 31, № 17. C. 2483—2486.
- 43. *Mish M. R.*, *Guerra F. M.*, *Carreira E. M.* Asymmetric dipolar cycloadditions of Me3SiCHN2. Synthesis of a novel class of amino acids: Azaprolines // Journal of the American Chemical Society. 1997. T. 119, № 35. C. 8379—8380.
- 44. 1,3-Dipolar cycloadditions of trimethylsilyldiazomethane revisited: Steric demand of the dipolarophile and the influence on product distribution / D. Simovic [и др.] // Journal of Organic Chemistry. 2007. Т. 72, № 2. С. 650—653.
- 45. Facile synthesis of novel tetrasubstituted 1-pyrazolines from Baylis–Hillman adducts and acyl diazomethanes / H. Sun [и др.] // Tetrahedron Letters. 2013. Т. 54, № 29. С. 3846—3850.
- 46. *Misani F., Speers L., Lyon A. M.* Synthetic Studies in the Field of Fluorinated Cyclopropanes //
 Journal of the American Chemical Society. 1956. T. 78, № 12. C. 2801—2804.
- 47. *Takamizawa A.*, *Hayashi S.* Syntheses of Pyrazole Derivatives // YAKUGAKU ZASSHI. 1963. T. 83, № 4. C. 373—377.
- 48. *Takamizawa A.*, *Hayashi S.*, *Sato H.* Syntheses of Pyrazole Derivatives. VIII // YAKUGAKU ZASSHI. 1965. T. 85, № 2. C. 158—165.

- 49. *Armstrong S. E.*, *Tipping A. E.* Novel 1:1 adducts from the reaction of hexafluoroacetone azine with various olefins and 1,3-dienes; Diels-Alder adducts as intermediates in the formation of criss-cross 2:1 adducts // Journal of Fluorine Chemistry. 1973. T. 3, № 1. C. 119—121.
- 50. Synthesis of 1H-3-pyrazolines / K. Burger [и др.] // Tetrahedron. 1979. Т. 35, № 3. С. 389—395.
- 51. Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings / R. H. Wiley [и др.] // Chemistry of Heterocyclic Compounds. T. 22. Hoboken: John Wiley & Sons, Inc., 1967.
- 52. Zolfigol M. A., Azarifar D., Maleki B. Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions // Tetrahedron Letters. 2004. T. 45, № 10. C. 2181—2183.
- 53. Dodwadmath R. P., Wheeler T. S. Studies in the chemistry of chalcones and Chalcone-Oxides //
 Proceedings of the Indian Academy of Sciences Section A. 1935. T. 2, № 5. C. 438—
 451.
- 54. *Gladstone W. A.*, *Norman R. O.* Reactions of lead tetra-acetate. Part VII. Some reactions leading to pyrazoles // Journal of the Chemical Society C: Organic. 1966. № 1536. C. 1536—1540.
- 55. Auwers K. V., Heimke P. Über Pyrazoline // Justus Liebig's Annalen der Chemie. 1927. T. 458, № 1. C. 186—220.
- 56. Hypervalent Iodine Oxidation of 1, 3, 5-Trisubstituted Pyrazolines: A Facile Synthesis of 1,3,5-Trisubstituted Pyrazoles / S. P. Singh [и др.] // Synthetic Communications. 1997. Т. 27, № 15. С. 2683—2689.
- 57. *Walker D.*, *Hiebert J. D.* 2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions // Chemical Reviews. 1967. T. 67, № 2. C. 153—195.
- 58. *Nakamichi N.*, *Kawashita Y.*, *Hayashi M.* Oxidative Aromatization of 1,3,5-Trisubstituted Pyrazolines and Hantzsch 1,4-Dihydropyridines by Pd/C in Acetic Acid // Organic Letters. 2002. T. 4, № 22. C. 3955—3957.
- 59. *Kojima M.*, *Kanai M.* Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles // Angewandte Chemie International Edition. 2016. T. 55, № 40. C. 12224—12227.
- 60. *Shah J. N.*, *Shah C. K.* Oxidative dehydrogenation of pyrazolines with cobalt(II) and oxygen // The Journal of Organic Chemistry. 1978. T. 43, № 6. C. 1266—1267.
- 61. Visible light mediated metal-free oxidative aromatization of 1,3,5-trisubstituted pyrazolines / S. B. Annes [и др.] // Tetrahedron Letters. 2019. Т. 60, № 34. С. 150932.

- 62. *Traven V. F.*, *Dolotov S. M.*, *Ivanov I. V.* Activation of fluorescence of lactone forms of rhodamine dyes by photodehydrogenation of aryl(hetaryl)pyrazolines // Russian Chemical Bulletin. 2016. T. 65, № 3. C. 735—740.
- 63. *Jakob F.*, *Herdtweck E.*, *Bach T.* Synthesis and Properties of Chiral Pyrazolidines Derived from (+)-Pulegone // Chemistry A European Journal. 2010. T. 16, № 25. C. 7537—7546.
- 64. A convenient synthesis of substituted pyrazolidines and azaproline derivatives through highly regio- and diastereoselective reduction of 2-pyrazolines / J. M. De Los Santos [и др.] // Journal of Organic Chemistry. 2008. Т. 73, № 2. С. 550—557.
- 65. Mish M. R., Guerra F. M., Carreira E. M. Asymmetric Dipolar Cycloadditions of Me 3 SiCHN 2 . Synthesis of a Novel Class of Amino Acids: Azaprolines // Journal of the American Chemical Society. — 1997. — T. 119, № 35. — C. 8379—8380.
- 66. Carter H. E., Abeele F. R. V., Rothrock J. W. A GENERAL METHOD FOR THE SYNTHESIS OF α, γ -DIAMINO ACIDS // Journal of Biological Chemistry. 1949. T. 178. C. 325—334.
- 67. Synthesis and nonlinear optical properties of donor-acceptor dyes based on triphenylpyrazolines as a donor block and dicyanoisophorone as acceptor / V. V. Shelkovnikov [и др.] // Russian Chemical Bulletin. 2019. Т. 68, № 1. С. 92—98.
- 68. Синтез несимметричных тиофлавилиевых красителей на основе производный юлолидина и полифторированных трифенилпиразолинов / И. Каргаполова [и др.] // Журнал органической химии. 2016. Т. 52. С. 10—14.