Jean-Marie Dufour Janvier 2002

Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE EXERCICES 11

TESTS FONDÉS SUR LA VRAISEMBLANCE

- 1. Expliquez de façon intuitive les principes qui sous-tendent les tests de Wald, du score de Rao, du rapport de vraisemblance, $C(\alpha)$ de Neyman, et de Hausman.
- 2. Soit (Y_i, X_i) , $i = 1, \ldots, n$, des observations telles que la vraisemblance conditionnelle de $Y = (Y_1, \ldots, Y_n)$ étant donné $X = (X_1, \ldots, X_n)'$ a la forme

$$L_{n}\left(\theta\right) = \prod_{i=1}^{n} f\left(y_{i} \mid x_{i}, \, \theta\right)$$

où θ est un vecteur $p \times 1$ de paramètres. De plus, on suppose que les conditions de la propriété (7.58) [Gouriéroux and Monfort (1989, chap. VII)] sont satisfaites et on considère une hypothèse implicite $H_0: g(\theta) = 0$, où $g(\theta)$ est un vecteur $r \times 1$ tel que la matrice $\partial g/\partial \theta'$ est de rang $r(1 \le r \le p)$.

- (a) Dérivez la distribution asymptotique (sous H_0) de la statistique de Wald pour tester H_0 .
- (b) Démontrez que ce test est convergent.
- 3. Sous les mêmes conditions que dans la question 2,
 - (a) décrivez la statistique du score de Rao pour tester H_0 et montrez qu'elle est identique à la statistique du multiplicateur de Lagrange;
 - (b) dérivez la distribution asymptotique de la statistique du score ;
 - (c) montrez que la statistique du score est asymptotiquement équivalente à la statistique de Wald (sous H_0);
 - (d) donnez une condition suffisante sous laquelle le test du score est convergent.
- 4. Sous les mêmes conditions que dans la question 2, montrez que les statistiques de Wald, du score de Rao et du rapport de vraisemblance sont asymptotiquement équivalentes sous H_0 .
- 5. Pour une hypothèse du type $H_0: \theta_1 = \theta_1^0$, où $\theta = (\theta_1', \theta_2')'$ et θ_i est un vecteur $p_i \times 1$ (i = 1, 2), et sous les mêmes conditions que dans la question 2,

- (a) décrivez la statistique $C(\alpha)$ de Neyman pour tester H_0 ;
- (b) montrez que cette statistique est asymptotiquement équivalente (sous H_0) à la statistique de Wald et dérivez de ce fait la distribution asymptotique de la statistique $C(\alpha)$ sous H_0 ;
- (c) décrivez comment on pourrait mettre en oeuvre un test $C\left(\alpha\right)$ au moyen d'une régression artificielle.

Références

GOURIÉROUX, C., AND A. MONFORT (1989): Statistique et modèles économétriques, Volumes 1 et 2. Economica, Paris.