5.3 Ecuaciones de equilibrio

En la sección 5.1 desarrollamos las dos ecuaciones que se requieren y bastan para obtener el equilibrio de un cuerpo rígido, esto es, $\Sigma \mathbf{F} = \mathbf{0}$ y $\Sigma \mathbf{M}_O = \mathbf{0}$. Cuando el cuerpo está sometido a un sistema de fuerzas, las cuales se encuentran en el plano x-y, las fuerzas se pueden descomponer en sus componentes x y y. En consecuencia, las condiciones de equilibrio en dos dimensiones son

Aquí, ΣF_x y ΣF_y representan, respectivamente, las sumas algebraicas de las componentes x y y de todas las fuerzas que actúan sobre el cuerpo, y ΣM_O representa la suma algebraica de los momentos de par y los momentos de todas las componentes de fuerza con respecto al eje z, el cual es perpendicular al plano x-y y que pasa por el punto arbitrario O.

(a)

 \mathbf{F}_1

Conjuntos alternativos de ecuaciones de equilibrio.

Aunque las ecuaciones 5-2 se usan con *mayor frecuencia* para resolver problemas de equilibrio coplanar, pueden usarse también dos conjuntos *alternativos* de tres ecuaciones de equilibrio independientes. Uno de estos conjuntos es

$$\Sigma F_x = 0$$

$$\Sigma M_A = 0$$

$$\Sigma M_B = 0$$
(5-3)

Al usar estas ecuaciones se requiere que una línea que pase por los puntos A y B no sea paralela al eje y. Para probar que las ecuaciones 5-3 proporcionan las condiciones de equilibrio, considere el diagrama de cuerpo libre de la placa que se muestra en la figura 5-11a. Con los métodos de la sección 4.8, todas las fuerzas sobre el diagrama de cuerpo libre pueden reemplazarse por una fuerza resultante equivalente $\mathbf{F}_R = \Sigma \mathbf{F}$, que actúan en el punto A, y un momento de par resultante $\mathbf{M}_{R_A} = \Sigma \mathbf{M}_A$, figura 5-11b. Si se satisface $\Sigma M_A = 0$, es necesario que $\mathbf{M}_{R_A} = \mathbf{0}$. Además, para que \mathbf{F}_R satisfaga a $\Sigma F_x = 0$, no debe tener componentes a lo largo del eje x, y por lo tanto, \mathbf{F}_R debe ser paralela al eje y, figura 5-11c. Finalmente, se requiere que $\Sigma M_B = 0$, donde B no se encuentra sobre la línea de acción de \mathbf{F}_R , entonces $\mathbf{F}_R = \mathbf{0}$. Como las ecuaciones 5-3 muestran que ambas resultantes son iguales a cero, ciertamente el cuerpo que aparece en la figura 5-11a debe estar en equilibrio.

(c) Fig. 5-11

Un segundo conjunto alternativo de ecuaciones de equilibrio es

$$\Sigma M_A = 0$$

$$\Sigma M_B = 0$$

$$\Sigma M_C = 0$$
(5-4)

Aquí es necesario que los puntos A, B y C no se encuentren en la misma línea. Para probar que al satisfacer esas ecuaciones se garantiza el equilibrio, considere de nuevo el diagrama de cuerpo libre de la figura 5-11b. Si $\Sigma M_A = 0$ debe ser satisfecha, entonces $\mathbf{M}_{R_A} = \mathbf{0}$. $\Sigma M_C = 0$ se satisface si la línea de acción de \mathbf{F}_R pasa por el punto C como se muestra en la figura 5-11c. Por último, si requerimos que $\Sigma M_B = 0$, es necesario que $\mathbf{F}_R = \mathbf{0}$, y entonces la placa de la figura 5-11a debe estar en equilibrio.

Procedimiento para el análisis

Los problemas de equilibrio de fuerzas coplanares para un cuerpo rígido pueden resolverse por el siguiente procedimiento.

Diagrama de cuerpo libre.

- Establezca los ejes coordenados x, y en cualquier orientación adecuada.
- Trace un contorno del cuerpo.
- Muestre todas las fuerzas y los momentos de par que actúan sobre el cuerpo.
- Marque todas las cargas y especifique sus direcciones relativas a los ejes *x* o *y*. El sentido de una fuerza o momento de par que tiene una magnitud *desconocida*, pero línea de acción conocida, puede *suponerse*.
- Indique las dimensiones del cuerpo necesarias para calcular los momentos de las fuerzas.

Ecuaciones de equilibrio.

- Aplique la ecuación de equilibrio de momentos, $\Sigma M_O = 0$, con respecto a un punto (O) que se encuentre en la intersección de las líneas de acción de dos fuerzas desconocidas. De este modo, los momentos de esas incógnitas son cero con respecto a O, y se puede determinar una solución directa para la tercera incógnita.
- Al aplicar las ecuaciones de equilibrio mediante fuerzas, $\Sigma F_x = 0$ y $\Sigma F_y = 0$, oriente los ejes x y y a lo largo de líneas que proporcionen la descomposición más simple de las fuerzas en sus componentes x y y.
- Si la solución de las ecuaciones de equilibrio da como resultado un escalar negativo para una magnitud de fuerza o de momento de par, esto indica que el sentido es contrario al que se supuso en el diagrama de cuerpo libre.

Determine las componentes horizontal y vertical de la reacción en la viga, causada por el pasador en *B* y el soporte de mecedora en *A*, como se muestra en la figura 5-12*a*. No tome en cuenta el peso de la viga.

SOLUCIÓN

Diagrama de cuerpo libre. Identifique cada una de las fuerzas que se muestran en el diagrama de cuerpo libre de la viga, figura 5-12b. (Vea el ejemplo 5.1). Por sencillez, la fuerza de 600 N se representa mediante sus componentes x y y como se muestra en la figura 5-12b.

Ecuaciones de equilibrio. Al sumar las fuerzas en la dirección x se obtiene

Una solución directa para \mathbf{A}_y se puede obtener mediante la ecuación de momentos $\Sigma M_B = 0$ con respecto al punto B.

$$\zeta + \Sigma M_B = 0$$
; $100 \text{ N}(2 \text{ m}) + (600 \text{ sen } 45^\circ \text{ N})(5 \text{ m})$
 $- (600 \text{ cos } 45^\circ \text{ N})(0.2 \text{ m}) - A_y(7 \text{ m}) = 0$
 $A_y = 319 \text{ N}$ Resp.

Al sumar fuerzas en la dirección y, y usar este resultado, obtenemos

$$+\uparrow \Sigma F_y = 0;$$
 319 N - 600 sen 45° N - 100 N - 200 N + $B_y = 0$
 $B_y = 405$ N **Resp.**

NOTA: podemos verificar este resultado al sumar momentos con respecto al punto A.

$$\zeta + \Sigma M_A = 0;$$
 $-(600 \text{ sen } 45^\circ \text{ N})(2 \text{ m}) - (600 \text{ cos } 45^\circ \text{ N})(0.2 \text{ m})$
 $-(100 \text{ N})(5 \text{ m}) - (200 \text{ N})(7 \text{ m}) + B_y(7 \text{ m}) = 0$
 $B_y = 405 \text{ N}$ Resp.

La cuerda de la figura 5-13*a* soporta una fuerza de 100 lb y se enrolla sobre la polea sin fricción. Determine la tensión en la cuerda en *C* y las componentes horizontal y vertical de reacción en el pasador *A*.

Fig. 5-13

SOLUCIÓN

Diagramas de cuerpo libre. Los diagramas de cuerpo libre de la cuerda y la polea se muestran en la figura 5-13b. Tenga presente que el principio de acción igual pero reacción opuesta se debe observar con gran cuidado al trazar cada uno de esos diagramas: la cuerda ejerce una distribución de carga desconocida p sobre la polea en la superficie de contacto, mientras que la polea ejerce un efecto igual pero opuesto sobre la cuerda. Sin embargo, para encontrar la solución es más sencillo *combinar* los diagramas de cuerpo libre de la polea y esta porción de la cuerda, de manera que la carga distribuida se vuelva *interna* al "sistema" y, por lo tanto, pueda eliminarse del análisis, figura 5-13c.

Ecuaciones de equilibrio. Al sumar momentos con respecto al punto A para eliminar \mathbf{A}_x y \mathbf{A}_y , figura 5-13c, tenemos

$$\zeta + \Sigma M_A = 0;$$
 100 lb (0.5 pie) $-T(0.5 \text{ pie}) = 0$
 $T = 100 \text{ lb}$ Resp.

Con el resultado

$$+\uparrow \Sigma F_y=0;$$
 $A_y-100~{\rm lb}-100~{\rm cos}~30^\circ~{\rm lb}=0$
$$A_y=187~{\rm lb}$$
 Resp.

NOTA: se observa que la tensión permanece *constante* al pasar la cuerda sobre la polea. (Por supuesto, esto es cierto para *cualquier ángulo* θ en el que esté dirigida la cuerda y para *cualquier radio* r de la polea).

El elemento que se muestra en la figura 5-14*a* está articulado en *A* y descansa contra un soporte liso ubicado en *B*. Determine las componentes horizontal y vertical de reacción en el pasador *A*.

Fig. 5-14

SOLUCIÓN

Diagrama de cuerpo libre. Como se muestra en la figura 5-14b, la reacción \mathbf{N}_B es perpendicular al eslabón en B. También, las componentes horizontal y vertical de reacción están representadas en A.

Ecuaciones de equilibrio. Al sumar momentos con respecto a A, obtenemos una solución directa para N_B ,

$$\zeta + \Sigma M_A = 0;$$
 -90 N·m - 60 N(1 m) + N_B (0.75 m) = 0
 $N_B = 200$ N

Con este resultado,

$$\Rightarrow \Sigma F_x = 0;$$
 $A_x - 200 \text{ sen } 30^\circ \text{ N} = 0$ $A_x = 100 \text{ N}$ $Resp.$ $+ \uparrow \Sigma F_y = 0;$ $A_y - 200 \text{ cos } 30^\circ \text{ N} - 60 \text{ N} = 0$ $A_y = 233 \text{ N}$ $Resp.$

La llave de cubo que se muestra en la figura 5-15a se usa para apretar el perno en A. Si la llave no gira cuando se aplica la carga al maneral, determine el par de torsión o el momento aplicado al perno y la fuerza de la llave sobre el perno.

SOLUCIÓN

Diagrama de cuerpo libre. El diagrama de cuerpo libre para la llave se muestra en la figura 5-15b. Dado que el perno actúa como un "soporte fijo", ejerce las componentes de fuerza \mathbf{A}_x y \mathbf{A}_y y un momento \mathbf{M}_A sobre la llave en A.

Ecuaciones de equilibrio.

$$+\uparrow \Sigma F_y = 0;$$
 $A_y - 52\left(\frac{12}{13}\right) N - 30 \text{ sen } 60^{\circ} N = 0$ $A_y = 74.0 \text{ N}$ **Resp.**

$$\zeta + \Sigma M_A = 0; M_A - \left[52\left(\frac{12}{13}\right)\text{N}\right](0.3\text{ m}) - (30\text{ sen }60^\circ\text{ N})(0.7\text{ m}) = 0$$

$$M_A = 32.6\text{ N} \cdot \text{m}$$
Resp.

Observe que en esta sumatoria de momentos debe *incluirse* \mathbf{M}_A . Este momento de par es un vector libre y representa la resistencia del perno a girar sobre la llave. Por la tercera ley de Newton, la llave ejerce un momento o par de torsión igual pero opuesto sobre el perno. Además, la fuerza resultante sobre la llave es

$$F_A = \sqrt{(5.00)^2 + (74.0)^2} = 74.1 \,\text{N}$$
 Resp.

NOTA: aunque sólo pueden escribirse *tres* ecuaciones independientes de equilibrio para un cuerpo rígido, es un buen hábito *revisar* los cálculos mediante una cuarta ecuación de equilibrio. Por ejemplo, los cálculos anteriores se pueden verificar en parte al sumar momentos con respecto al punto *C*:

$$\zeta + \Sigma M_C = 0$$
; $\left[52 \left(\frac{12}{13} \right) \text{N} \right] (0.4 \text{ m}) + 32.6 \text{ N} \cdot \text{m} - 74.0 \text{ N} (0.7 \text{ m}) = 0$
 $19.2 \text{ N} \cdot \text{m} + 32.6 \text{ N} \cdot \text{m} - 51.8 \text{ N} \cdot \text{m} = 0$

Fig. 5-15

Determine las componentes horizontal y vertical de reacción sobre el elemento en el pasador A, y la reacción normal en el rodillo B de la figura 5-16a.

SOLUCIÓN

Diagrama de cuerpo libre. En la figura 5.16b se muestra el diagrama de cuerpo libre. El pasador en A ejerce dos componentes de reacción sobre el elemento, \mathbf{A}_x y \mathbf{A}_y .

Fig. 5-16

Ecuaciones de equilibrio. La reacción N_B puede obtenerse *directamente* al sumar momentos con respecto al punto A puesto que \mathbf{A}_x y \mathbf{A}_v no producen momentos con respecto a A.

$$\zeta + \Sigma M_A = 0;$$

 $[N_B \cos 30^\circ](6 \text{ pies}) - [N_B \sin 30^\circ](2 \text{ pies}) - 750 \text{ lb}(3 \text{ pies}) = 0$
 $N_B = 536.2 \text{ lb} = 536 \text{ lb}$
 Resp.

Con este resultado

$$\Rightarrow \Sigma F_x = 0;$$
 $A_x - (536.2 \text{ lb}) \text{ sen } 30^\circ = 0$ $A_x = 268 \text{ lb}$ $Resp.$ $+ \uparrow \Sigma F_y = 0;$ $A_y + (536.2 \text{ lb}) \cos 30^\circ - 750 \text{ lb} = 0$ $A_y = 286 \text{ lb}$ $Resp.$

La barra uniforme lisa que se muestra en la figura 5-17a está sometida a una fuerza y a un momento de par. Si la barra está soportada en A por una pared lisa, y en B y C por rodillos colocados en la parte superior o inferior, determine las reacciones en esos soportes. No tome en cuenta el peso de la barra.

SOLUCIÓN

Diagrama de cuerpo libre. Como se ve en la figura 5-17b, todas las reacciones de soporte actúan en forma normal a las superficies de contacto ya que dichas superficies son lisas. Se muestra que las reacciones en B y C actúan en la dirección y' positiva. Esto hace suponer que los rodillos ubicados al fondo de la barra sólo se usan para soporte.

Ecuaciones de equilibrio. Si utilizamos el sistema coordenado x, y que se muestra en la figura 5-17b, tenemos

$$\stackrel{+}{\Rightarrow} \Sigma F_x = 0; \quad C_{y'} \operatorname{sen} 30^\circ + B_{y'} \operatorname{sen} 30^\circ - A_x = 0 \tag{1}$$

$$+\uparrow \Sigma F_y = 0;$$
 $-300 \text{ N} + C_{y'} \cos 30^\circ + B_{y'} \cos 30^\circ = 0$ (2)

$$\zeta + \Sigma M_A = 0; \quad -B_{y'}(2 \text{ m}) + 4000 \text{ N} \cdot \text{m} - C_{y'}(6 \text{ m})$$

 $+ (300 \cos 30^\circ \text{ N})(8 \text{ m}) = 0$ (3)

Al escribir la ecuación de momentos, debe observarse que la línea de acción de la componente de fuerza 300 sen 30° N pasa por el punto A y, por lo tanto, esta fuerza no está incluida en la ecuación de momentos.

Al resolver simultáneamente las ecuaciones 2 y 3 obtenemos

$$B_{y'} = -1000.0 \text{ N} = -1 \text{ kN}$$
 Resp.
 $C_{y'} = 1346.4 \text{ N} = 1.35 \text{ kN}$ Resp.

Como $B_{y'}$ es un escalar negativo, el sentido de $\mathbf{B}_{y'}$ es opuesto al del diagrama de cuerpo libre de la figura 5-17b. Por consiguiente, el rodillo superior ubicado en B sirve como soporte en vez del inferior. Se retiene el signo negativo para $B_{y'}$ (¿por qué?) y al sustituir los resultados en la ecuación 1, obtenemos

Fig. 5-17

La rampa uniforme del camión que se muestra en la figura 5-18*a* pesa 400 lb y está articulada al bastidor del camión en cada lado; asimismo, se mantiene en la posición mostrada mediante los dos cables laterales. Determine la tensión en los cables.

SOLUCIÓN

En la figura 5-18b se muestra el modelo idealizado de la rampa, que indica todas las dimensiones y soportes necesarios. Aquí el centro de gravedad está localizado en el punto medio ya que la rampa es aproximadamente uniforme.

Diagrama de cuerpo libre. A partir del modelo idealizado, el diagrama de cuerpo libre de la rampa se muestra en la figura 5-18c.

Ecuaciones de equilibrio. Al sumar momentos con respecto al punto A se tendrá una solución directa para la tensión en el cable. Si se usa el principio de momentos, hay varias maneras de determinar el momento de \mathbf{T} con respecto a A. Si usamos las componentes x y y, con \mathbf{T} aplicada en B, tenemos

$$\zeta + \Sigma M_A = 0$$
; $-T \cos 20^\circ (7 \sin 30^\circ \text{ pie}) + T \sin 20^\circ (7 \cos 30^\circ \text{ pie})$
 $+ 400 \text{ lb } (5 \cos 30^\circ \text{ pie}) = 0$
 $T = 1425 \text{ lb}$

La manera más simple de calcular el momento de ${\bf T}$ con respecto a A es descomponerla en componentes a lo largo y de manera perpendicular a la rampa en B. Entonces, el momento de la componente a lo largo de la rampa es cero con respecto a A, por lo que

$$\zeta + \Sigma M_A = 0;$$
 $-T \operatorname{sen} 10^{\circ} (7 \operatorname{pies}) + 400 \operatorname{lb} (5 \cos 30^{\circ} \operatorname{pie}) = 0$
$$T = 1425 \operatorname{lb}$$

Dado que dos cables soportan la rampa,

$$T' = \frac{T}{2} = 712 \text{ lb}$$
 Resp.

Fig. 5-18

NOTA: como ejercicio, demuestre que $A_x = 1339$ lb y $A_y = 887.4$ lb.

Determine las reacciones del soporte sobre el elemento que se muestra en la figura 5-19a. El collar en A está fijo al elemento y puede deslizarse verticalmente a lo largo del eje vertical.

Fig. 5-19

SOLUCIÓN

Diagrama de cuerpo libre. En la figura 5-19b se muestra el diagrama de cuerpo libre del elemento. El collar ejerce una fuerza horizontal \mathbf{A}_x y un momento \mathbf{M}_A sobre el elemento. La reacción \mathbf{N}_B del rodillo sobre el elemento es vertical.

Ecuaciones de equilibrio. Las fuerzas A_x y N_B pueden calcularse directamente a partir de las ecuaciones de equilibrio de fuerza.

$$\Rightarrow \Sigma F_x = 0;$$
 $A_x = 0$ Resp.
 $+\uparrow \Sigma F_y = 0;$ $N_B - 900 \text{ N} = 0$ Resp.
 $N_B - 900 \text{ N}$ Resp.

El momento M_A puede determinarse al sumar los momentos con respecto al punto A o bien con respecto al punto B.

$$\zeta + \Sigma M_A = 0;$$

$$M_A - 900 \text{ N}(1.5 \text{ m}) - 500 \text{ N} \cdot \text{m} + 900 \text{ N} [3 \text{ m} + (1 \text{ m}) \cos 45^\circ] = 0$$

$$M_A = -1486 \,\mathrm{N} \cdot \mathrm{m} = 1.49 \,\mathrm{kN} \cdot \mathrm{m} \,\mathrm{M}$$
 Resp.

o bien

$$\zeta + \Sigma M_B = 0$$
; $M_A + 900 \text{ N} [1.5 \text{ m} + (1 \text{ m}) \cos 45^\circ] - 500 \text{ N} \cdot \text{m} = 0$

$$M_A = -1486 \,\mathrm{N} \cdot \mathrm{m} = 1.49 \,\mathrm{kN} \cdot \mathrm{m}$$
 Resp.

El signo negativo indica que \mathbf{M}_A tiene el sentido de rotación opuesto al del diagrama de cuerpo libre.