Φροντιστήριο 11 ΦΥΣ112

27/11/2024

31.34) Μια γεννήτρια εναλλασσόμενου ρεύματος με $\text{HE}\Delta \, \mathcal{E} = \mathcal{E}_m \, \sin \omega_d t$, όπου $\mathcal{E}_m = 25.0 \, V$ και $\omega_d = 377 \, \text{rad}/s$ είναι συνδεδεμένη σε πυκνωτή χωρητικότητας $4.15 \, \mu F$. $(a) \, \text{Πόση}$ είναι η μέγιστη τιμή του ρεύματος; $(b) \, \text{Όταν}$ το ρεύμα είναι στην μέγιστη τιμή, πόση είναι η $\text{HE}\Delta \, \text{στην}$ γεννήτρια; $(c) \, \, \text{Όταν}$ η $\text{HE}\Delta \, \text{της}$ γεννήτριας είναι $-12.5 \, V$ και αυξανόμενη σε μέτρο, πόσο είναι το ρεύμα;

31.48) Το χάτωθι σχήμα δείχνει ένα χύχλωμα RLC εναλασσόμενου ρεύματος με δύο πανομοιότυπους πυχνωτές και δύο διαχόπτες. Το πλάτος της $HE\Delta$ τίθεται στα $12.0\,V$ και η συχνότητα ταλάντωσης του ρεύματος είναι $60.0\,Hz$. Με τους δύο διαχόπτες ανοιχτούς, το ρεύμα προηγείται της $HE\Delta$ κατά φάση 30.9 μοιρών. Με τον διαχόπτη S_1 χλειστό και τον S_2 αχόμα ανοιχτό, η $HE\Delta$ προηγείται του ρεύματος κατά 15.0 μοίρες. Και με τους δύο διαχόπτες χλειστούς, το πλάτος του ρεύματος είναι $447\,mA$. Πόση είναι (a) η αντίσταση R, (b) η χωρητιχότητα C και (c) η επαγωγή L;

31.49) Στο σχήμα που ακολουθεί, η γεννήτρια έχει μεταβλητή συχνότητα ταλάντωσης και συνδέεται με αντιστάτη $R=100\,\Omega$, επαγωγές $L_1=1.70\,mH$ και $L_2=2.30\,mH$, και πυκνωτές $C_1=4.00\,\mu F$, $C_2=2.50\,\mu F$ και $C_3=3.50\,\mu F$. (a) Ποια είναι η συχνότητα συντονισμού του κυκλώματος; Τι συμβαίνει στην συχνότητα συντονισμού αν (b) αυξηθεί το R, (c) αυξηθεί το L_1 και (d) αν αφαιρεθεί ο C_3 από το κύκλωμα;

31.58) Για το πιο κάτω σχήμα, δείξτε ότι ο μέσος όρος ρυθμού απώλειας ενέργειας στον αντιστάτη R είναι μέγιστος όταν το R είναι ίσο με την εσωτερική αντίσταση r της γεννήτριας εναλλασσόμενου ρεύματος (χωρίς να υποθέσετε ότι r=0).

31.59) Για το ακόλουθο σχήμα έχουμε $R=15.0\,\Omega,\,C=4.70\,\mu F$ και $L=25.0\,m H.$ Η γεννήτρια παρέχει ${\rm HE}\Delta$ με τάση rms (root mean square) $75.0\,V$ και συχνότητα $550\,Hz.$ (a) Πόσο είναι το ρεύμα rms; Πόση είναι η τάση rms (b) στον αντιστάτη R, (c) στον πυκνωτή C, (d) στην επαγωγή L, (e) στα C και L μαζί, και (f) στα R, L και C μαζί; Κατά μέσο όρο, ποιος είναι ο ρυθμός απώλειας ενέργειας (g) στον R, (h) στον C και (i) στην L:

31.65) Μια γεννήτρια εναλλασσόμενου ρεύματος παρέχει $\text{HE}\Delta$ σε φορτίο αντίστασης σε ένα απομαχρυσμένο εργοστάσιο μέσω μιας γραμμής μετάδοσης αποτελούμενη από δύο καλώδια. Στο εργοστάσιο ένας μετασχηματιστής κατάβασης μειώνει την τάση από την (rms) τιμή μετάδοσης V_t σε μια πολύ χαμηλότερη τιμή που είναι ασφαλής και εύχρηστη για το εργοστάσιο. Η αντίσταση της γραμμής μετάδοσης είναι $0.30\,\Omega/$ καλώδιο και η ισχύς της γεννήτριας είναι $250\,kW$. Αν $V_t=80\,kV$, πόση είναι (a) η μείωση τάσης ΔV κατά μήκος της γραμμής μετάδοσης και (b) ο ρυθμός P_d που η γραμμή χάνει ενέργεια σαν θερμότητα; Αν $V_t=8.0\,kV$, πόση είναι (c) η ΔV και (d) η P_d ; Αν $V_t=0.8\,kV$, πόση είναι (e) η ΔV και (f) η P_d ;

Problem 31.34) $\mathcal{E} = \mathcal{E}_{m} \sin(\omega_{y}t)$ $\mathcal{E}_{m} = 250V$ $=> \mathcal{E}_{max} = \mathcal{E}_{m}$ $\omega_{y} = 377 \text{ rad/s}$ C = 4.15 pF(a) Ve = E (nova Sinà o Poysia uvujú paras) $V_{c} = \mathcal{E} \qquad (mov_{aven}),$ $=> V_{c}^{max} = \mathcal{E}_{m} => \qquad I_{max} = \frac{\mathcal{E}_{m}}{X_{c}}$ $X_{c} = (w_{c})^{-1} \qquad => I_{max} = \mathcal{E}_{m} w_{c} C$ $= 3 \cdot 91 \cdot 10$ (b) Olar I = Imax olor overalis, la poplia olors objectoris Eiva Ejáxurlo: 9 = 9 min G = C ε 7=> gnin = 0 εnin = 0 } => Ar I(to)= Imax => / E(to) = 0/ => cos(w,t,)<0 $Cos\left(\frac{2\pi}{6}\right) = -\frac{\sqrt{3}}{2} \qquad Cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2} \qquad = s \quad t_1 = \frac{2\pi}{6\omega_0}$ Imax <=> Emin => Supposed phons = => I(t) = Imax (os(w,t) => I(t) = Imax (- \frac{13}{2}) = -3,38.10^{-2} A

 $V_{t}' = 8,0 \text{ kV} = \frac{V_{t}}{10} = 10 \text{ Ims} = 10 \text{ Ims}$ (c) DV = Irms R = 10 DV = [19V] (J) P'_3 = (I'ms)2 - R = 100 P'_3 = 590 W) $V_{\tau}'' = 0.8 \text{ kV} = \frac{V_{\tau}}{100} = 2 \text{ Irms} = 100 \text{ Irms}$ (e) DV" = Ims R = 100 DV = 190 V) (f) P" = (I"s). R = 10000. P, = [59,0kW]