Guass Filter Specification

1. Function Description

Design a module of Guass Filter function for image processing. Input image format is YUV 4:2:2 with 8bit resolution. Image will be inputted pixel by pixel forms an image line, and then line by line forms an image frame. Each cycle will input data of a pixel, that's either $\{y[7:0], u[7:0]\}$ or $\{y[7:0], v[7:0]\}$. Output is in the same format, just with delay of several image lines. Sample waveform:

Let's take image of 1920x1080 (width x height) for example:

- 1) each line has 1920 pixels, taking 1920 cycles;
- 2) 200 idle cycles after each lines;
- 3) there is 3 idle image lines after all the valid lines of a frame, and before next high pulse of pvsync;

Define of Guass 5x5 filtering kernel:

- 2 4 5 4 2
- 4 9 12 9 4
- 5 12 15 12 5
- 4 9 12 9 4
- 2 4 5 4 2

And just filtering Y component, bypass UV components. While when outputting filtered frame, you need to align Y and UV component to make a pixel. At the boundary of each frame, that's x-coordinate equal to 0/1/frm_width-1/frm_width or y-coordinate equal to 0/1/frm_height-1/frm_height, just output the value of original input. These pixels are shown as orange color in following figure:

Block diagram of the design:

2. IO Define

Name	Direction	Bits	Description
pclk	I	1	clock input;
rstn	1	1	low active asynchronous reset;
frm_width	1	11	frame width of input image, count from 0. If 1919, the width of input image is 1920 pixels.
frm_width	1	11	frame height of input image, count from 0. If 1079, the height of input image is 1080 lines.
pvde	1	1	1'bl: there's valid pixel for this cycle; 1'b0: no valid cycle for this cycle;
pdata	1	16	{y[7:0],u[7:0]} or {y[7:0],v[7:0]};
pvsyc	1	1	1T high pulse indicate the beginning of a frame;
flt_vsync	0	1	1T high pulse indicate the beginning of a frame;
flt_vde	0	1	1'b1: there's valid pixel for this cycle; 1'b0: no valid cycle for this cycle;
flt_data	0	16	image value after filtering, $\{y_flt[7:0], u[7:0]\}$ or $\{y_flt[7:0], v[7:0]\}$;

3. Design Considerations:

- 1) Boundary processing method defined in the algorithm;
- 2) Can you write a C/Matlab/Python/... model for the algorithm first?
- 3) How many lines we need buffer? 5 or 4? (consider area of SRAM)
- 4) Using two-port or single port SRAM? (consider area of SRAM)
- 5) The filtering coefficients are symmetric. Can we using this character to save number of add/multiplier operation, then save area;
- 6) How to pipeline the 5x5 filtering kernel to maximal the clock frequency?