2. Međuispit iz Numeričke matematike

11.05.2009.

1. (5 bodova) Podaci zadani tablicom

x	1	4	9	16
y	1	2	3	4

predstavljaju vrijednosti neke fizikalne veličine koja je opisana funkcijom $f(x) = \sqrt{x}$.

- (a) (2 boda) Odredite Lagrangeov interpolacijski polinom p(x).
- (b) (1 bod) Izračunajte apsolutnu grešku |p(x) f(x)| Lagrangeovog interpolacijskog polinoma u točki x = 3.
- (c) (2 boda) Bez računanja Lagrangeovog interpolacijskog polinoma ocijenite grešku interpolacije u točki x=3.

(*Uputa:* Neka je $f \in C^{n+1}(a,b)$ zadana funkcija i neka su $x_0, x_1, \ldots, x_n \in [a,b]$ međusobno različite točke. Neka je $p_n \in \mathcal{P}_n$ polinom koji interpolira funkciju f u čvorovima x_0, x_1, \ldots, x_n . Tada za svako $x \in [a,b]$ postoji točka $\xi_x \in \langle a,b \rangle$ takva da je

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} w_{n+1}(x),$$

gdje je
$$w_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$
.)

2. (5 bodova) Neka je zadana mreža $\Delta = \{-1, 0, 1, 2\}$, te funkcija

$$s(x) = \begin{cases} -x^3 + 3x^2 - 3x + 1, & -1 \le x < 0, \\ p(x), & 0 \le x < 1, \\ x^3 - 3x^2 + 3x - 1, & 1 \le x \le 2. \end{cases}$$

Postoji li polinom p(x) takav da je funkcija s(x) kubični splajn? Ako postoji, odredite ga!

3. (8 bodova)

- (a) (2 boda) Za zadanu 2π -periodičku funkciju f na segmentu $[0, 2\pi]$ postavite trigonometrijsku interpolacijsku zadaću na ekvidistantnoj mreži koja se sastoji od 4 točke.
- (b) (1 bod) Napišite Fourierovu matricu F_4 .
- (c) (3 boda) Pokažite da je matrica $\frac{1}{\sqrt{4}}F_4$ unitarna.
- (d) (2 boda) Napišite formulu za rješavanje sustava $F_4c = y$, gdje je y vektor čije komponente su vrijednosti zadane funkcije f u točkama mreže.

4. (3 boda) Podatke

aproksimirajte linearnom funkcijom $\tilde{f}(x) = c_0 + c_1 x$ u smislu metode najmanjih kvadrata.

5. (4 boda)

- (a) (2 boda) U sljedećim rečenicama nadopunite prazna mjesta. Svaki točan odgovor nosi 1 bod, a netočan ili neodgovoren 0 bodova.
 - 1. Kada na mreži $\{x_0 < x_1 < \ldots < x_n\}$ zadane podatke y_0, y_1, \ldots, y_n interpoliramo linearnim splajnom, trebamo zadovoljiti točno uvjeta neprekidnosti.
 - 2. Hornerov algoritam služi za računanje
- (b) (2 boda) U sljedećem zadatku zaokruži Točno odnosno Netočno. Svaki točan odgovor nosi 1 bod, netočan -1, a neodgovoren 0 bodova. Ipak, ukupan broj bodova postignut na ovom zadatku je ≥ 0 .
 - 1. Strogo dijagonalno dominantne matrice su regularne. Točno. Netočno.
 - 2. Za svaku proizvoljno glatku funkciju f vrijedi:

$$||f - p_n||_{\infty} \to 0 \text{ kad } n \to \infty,$$

gdje je $p_n \in \mathcal{P}_n$ pripadni interpolirajući polinom na mreži $\{x_0 < x_1 < \ldots < x_n\}$. Točno. Netočno.

Dodatni zadatak. (5 bodova)

- 1. (2 boda) Na koji način se Taylorov polinom stupnja n glatke funkcije f može interpretirati kao interpolacijski polinom?
- 2. (2 boda) Objasni zašto je Vandermondeova matrica $V \in \mathbb{R}^{n \times n}$ loše uvjetovana za relativno velike n.
- 3. (1 bod) Neka je $A \in \mathbb{C}^n$ hermitska matrica. Kakvi moraju biti njeni dijagonalni elementi? Dokažite svoju tvrdnju.

Napomena: Vrijeme pisanja je 90 minuta. Dozvoljena je upotreba džepnog kalkulatora. Dodatni zadatak nije obavezan za rješavanje!