Algèbre linéaire et bilinéaire

Table des matières

	r r	2
	1.1. Espaces vectoriels · · · · · · · · · · · · · · · · · · ·	2
	, 0	2
	1.3. Applications linéaires · · · · · · · · · · · · · · · · · · ·	3
	1.4. Matrice d'une application linéaire · · · · · · · · · · · · · · · · · · ·	4
	1.5. Déterminant d'une matrice	4
2.	Diagonalisation	6
3.	Polynôme caractéristique	6
4.	Trigonalisation	6
5.	Polynôme d'endomorphisme	6
6.	Réduction d'endomorphisme	6
7.	Formes bilinéaires	7
	7.1. Ecriture dans une base · · · · · · · · · · · · · · · · · · ·	7
	7.2. Dualité · · · · · · · · · · · · · · · · · · ·	7
		7
		8
	7.5. Réduction d'une forme quadratique · · · · · · · · · · · · · · · · · · ·	8
	7.6. Invariants d'une forme quadratique	9
	Espaces euclidiens 1	0
	8.1. Norme d'un vecteur	0
	8.2. Orthogonalité, base orthogonale et base orthonormée · · · · · · · · · · · · · · · 10	0

1. Rappels d'algèbre linéaire

1.1. Espaces vectoriels

Définition 1.1. Soit \mathbb{K} un corps commutatif. On appelle *espace vectoriel sur* \mathbb{K} , ou \mathbb{K} -*espace vectoriel*, un ensemble E muni de deux lois

- une loi de composition interne $+: E \times E \to E$, telle que le couple (E,+) forme un groupe commutatif,
- et d'une loi de composition externe $\cdot : \mathbb{K} \times E \to E$, vérifiant les propriétés suivantes
 - 1. la loi · est distributive à droite, $\forall a, b \in \mathbb{K}, \forall x \in E, (a+b) \cdot x = a \cdot x + b \cdot x$,
 - 2. la loi · est distributive à gauche, $\forall a \in \mathbb{K}, \forall x, y \in E, a \cdot (x+y) = a \cdot x + a \cdot y$,
 - 3. la loi · est associative mixte, $\forall a, b \in \mathbb{K}, \forall x \in E, a \cdot (b \cdot x) = (ab) \cdot x$,
 - 4. le neutre de \mathbb{K} est neutre à gauche pour \cdot , $\forall x \in E, 1 \cdot x = x$.

Définition 1.2. Soit E un \mathbb{K} -espace vectoriel et F un sous-ensemble de E. On dit que F est un sous-espace vectoriel de E, s'il est non-vide et stable par combinaisons linéaires.

Proposition 1.3. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors $F \cap G$ est un sous-espace vectoriel.

Définition 1.4. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. On définit la somme de F et G par

$$F + G \coloneqq \{x + y \mid x \in F, y \in G\}.$$

Proposition 1.5. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors F+G est un sous-espace vectoriel.

Définition 1.6. Soit E un \mathbb{K} -espace vectoriel et $x_1, ..., x_n \in E$. On appelle sous-espace vectoriel engendré par $x_1, ..., x_n$, l'ensemble des combinaisons linéaires de $x_1, ..., x_n$, noté

$$\mathrm{Vect}(x_1,...,x_n) = \{a_1 \cdot x_1 + ... + a_n \cdot x_n \ | \ a_1,...,a_n \in \mathbb{K}\}.$$

Définition 1.7. Soit E un \mathbb{K} -espace vectoriel et $(E_k)_{1 \leq k \leq n}$ une famille de sous-espaces vectoriels de E. On dit qu'ils sont en *somme directe* si

$$\forall (x_1,...,x_n) \in E_1 \times ... \times E_n, \sum_{k=1}^n x_k = 0 \Rightarrow \forall 1 \leq k \leq n, x_k = 0$$

dans ce cas, on notera $E_1 \oplus ... \oplus E_n \coloneqq E_1 + ... + E_n$.

Remarque 1.8. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors F et G sont en somme directe si $F \cap G = \{0\}$.

1.2. Famille libre, famille génératrice et bases

Définition 1.9. Soit E un \mathbb{K} -espace vectoriel et $x_1,...,x_n \in E$. On dit que $(x_1,...,x_n)$ est une famille libre si les droites $(\mathbb{K}x_k)_{1 < k < n}$ sont en somme directe, c'est-à-dire

$$\forall a_1,...,a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_n \cdot x_n = 0 \Rightarrow \forall 1 \le k \le n, a_k = 0.$$

Définition 1.10. Soit E un \mathbb{K} -espace vectoriel et $x_1,...,x_n \in E$. On dit que $(x_1,...,x_n)$ est une famille génératrice si $\mathrm{Vect}(x_1,...,x_n) = E$, c'est-à-dire

$$\forall x \in E, \exists a_1, ..., a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_1 \cdot x_n = x.$$

Définition 1.11. Soit E un \mathbb{K} -espace vectoriel et $x_1,...,x_n \in E$. On dit que $(x_1,...,x_n)$ est une base si elle est libre et génératrice, c'est-à-dire

$$\forall x \in E, \exists ! a_1, ..., a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_1 \cdot x_n = x.$$

Théorème 1.12. Soit E un \mathbb{K} -espace vectoriel, et $(x_1,...,x_n)$ et $(x_1,...,x_m)$ deux bases de E. Alors elles ont le même nombre d'éléments n=m.

Définition 1.13. Soit E un \mathbb{K} -espace vectoriel. On appelle dimension de E, notée $\dim(E)$, le nombre d'éléments dans une base de E.

Théorème 1.14. (de la base incomplète) Soit E un \mathbb{K} -espace vectoriel de dimension finie et $(x_1,...,x_m)$ une famille libre de E. Alors il existe $x_{m+1},...,x_n\in E$, tels que $(x_1,...,x_n)$ soit une base de E.

Proposition 1.15. Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{E}=(e_1,...,e_n)$ une famille d'éléments de E. Alors les énoncés suivants sont équivalents

- 1. \mathcal{E} est une base de E,
- 2. \mathcal{E} est une famille libre de E,
- 3. \mathcal{E} est une famille génératrice de E.

Théorème 1.16. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors

$$\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G).$$

Notation 1.17. Soit E un \mathbb{K} -espace vectoriel, $x \in E$, et $\mathcal{E} = (e_1, ..., e_n)$ et $\mathcal{F} = (f_1, ..., f_n)$ deux bases de E.

- On note $[x]_{\mathcal{E}}$ les coordonnées de x dans la base \mathcal{E} .
- On note $\mathcal{P}_{\mathcal{E}}^{\mathcal{F}} \coloneqq \left([f_1]_{\mathcal{E}} \cdots [f_n]_{\mathcal{E}} \right)$ la matrice de passage de la base \mathcal{E} à la base F.

Alors les coordonnées de x dans les bases $\mathcal E$ et $\mathcal F$ sont liées par

$$[x]_{\mathcal{E}} = \mathcal{P}_{\mathcal{E}}^{\mathcal{F}}[x]_{\mathcal{F}}$$

ce qui entraîne

$$\mathcal{P}_{\mathcal{F}}^{\mathcal{E}} = \left(\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}\right)^{-1}.$$

1.3. Applications linéaires

Définition 1.18. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u:E\to F$ une application. On dit que u est linéaire, si elle vérifie

$$\forall a,b \in \mathbb{K}, \forall x,y \in E, u(a \cdot x + b \cdot y) = a \cdot u(x) + b \cdot u(y).$$

Si E = F, on dit que u est un endomorphisme.

Notation 1.19. Soit E et F deux \mathbb{K} -espaces vectoriels. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F. Si E=F, on note $\mathcal{L}(E):=\mathcal{L}(E,E)$.

Définition 1.20. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire.

- On appelle *image* de u l'ensemble $\operatorname{im}(u) := \{u(x) \mid x \in E\}.$
- On appelle *noyau* de u l'ensemble $ker(u) := \{x \in E | u(x) = 0\}.$

Proposition 1.21. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u:E\to F$ une application linéaire. Alors $\ker(u)$ et $\operatorname{im}(u)$ sont des espaces vectoriels.

Définition 1.22. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire. On appelle rang de u, noté rg(u), la dimension de rang im rang de r

Théorème 1.23. (du rang) Soit E et F deux \mathbb{K} -espaces vectoriels, et $u:E\to F$ une application linéaire. Alors

$$\dim(E) = \dim(\operatorname{im}(u)) + \dim(\ker(u)).$$

Corollaire 1.24. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u:E\to F$ une application linéaire. Alors les énoncés suivants sont équivalents

- 1. *u* est bijective,
- 2. *u* est injective,
- 3. u est surjective.

1.4. Matrice d'une application linéaire

Définition 1.25. Soit E et F deux \mathbb{K} -espaces vectoriels, $\mathcal{E}=(e_1,...,e_n)$ une base de E et \mathcal{F} une base de F, et $u:E\to F$ une application linéaire. On appelle matrice de u dans les bases \mathcal{E} et \mathcal{F} , la matrice

$$[u]_{\mathcal{E}}^{\mathcal{F}} := ([u(e_1)]_{\mathcal{F}} \cdots [u(e_n)]_{\mathcal{F}}).$$

Si E=F, on notera $[u]_{\mathcal{E}}\coloneqq [u]_{\mathcal{E}}^{\mathcal{F}}$, et on remarque $\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}=[\mathrm{id}]_{\mathcal{F}}^{\mathcal{E}}$.

Proposition 1.26. Soit E, F et G trois \mathbb{K} -espaces vectoriels, \mathcal{E}, \mathcal{F} et \mathcal{G} des bases respectives de E, F et G, et $u: E \to F$ et $v: F \to G$ deux applications linéaires. Alors

$$[v \circ u]_{\mathcal{E}}^{\mathcal{G}} = [v]_{\mathcal{F}}^{\mathcal{G}}[u]_{\mathcal{E}}^{\mathcal{F}}.$$

Corollaire 1.27. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $u:E\to E$ un endomorphisme sur E. Alors

$$[u]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{\mathcal{E}}[u]_{\mathcal{E}}\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}.$$

1.5. Déterminant d'une matrice

Définition 1.28. Soit M une matrice carrée de taille n. On appelle *déterminant* de M, le nombre

$$\det(M) \coloneqq \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) m_{1,\sigma(1)} ... m_{n,\sigma(n)}.$$

Proposition 1.29. Soit *A* et *B* deux matrices carrées de même taille. Alors

$$\det(AB) = \det(A)\det(B).$$

Corollaire 1.30. Soit *P* une matrice inversible. Alors

$$\det(P^{-1}) = \det(P)^{-1}$$

et si M est une matrice carrée de même taille, on a

$$\det\bigl(P^{-1}AP\bigr)=\det(A).$$

Corollaire 1.31. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $u:E\to E$ un endomorphisme sur E. Alors

$$\det([u]_{\mathcal{E}}) = \det([u]_{\mathcal{F}}).$$

Définition 1.32. Soit E un \mathbb{K} -espace vectoriel et $u:E\to E$ un endomorphisme sur E. On appelle *déterminant* de u, noté $\det(u)$, le déterminant de la matrice de u dans une base de E.

Proposition 1.33. Soit E un \mathbb{K} -espace vectoriel et $u:E\to E$ un endomorphisme sur E. Alors u est inversible si et seulement si son déterminant est non-nul.

Proposition 1.34. Soit M une matrice carrée de la forme

$$\left(\frac{A \mid C}{0 \mid B}\right)$$

où A et B sont des blocs carrés. Alors

$$\det(M) = \det(A)\det(B).$$

- 2. Diagonalisation
- 3. Polynôme caractéristique
- 4. Trigonalisation
- 5. Polynôme d'endomorphisme
- 6. Réduction d'endomorphisme

7. Formes bilinéaires

Définition 7.1. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to E$ une application. On dit que Φ est une *forme bilinéaire*, si pour tout $x \in E$, les applications $y \mapsto \Phi(x,y)$ et $y \mapsto \Phi(y,x)$ sont linéaires.

7.1. Ecriture dans une base

Définition 7.2. Soit E un \mathbb{K} -espace vectoriel, $\mathcal{E}=(e_1,...,e_n)$ une base de E et $\Phi:E\times E\to E$ une forme bilinéaire. On appelle *matrice* de Φ dans la base \mathcal{E} , la matrice

$$[\Phi]_{\mathcal{E}} \coloneqq \left(\Phi\big(e_i, e_j\big)\right)_{1 \le i, j \le n}.$$

Proposition 7.3. Soit E un \mathbb{K} -espace vectoriel, $\mathcal{E}=(e_1,...,e_n)$ une base de E et $\Phi:E\times E\to E$ une forme bilinéaire. Alors par bilinéarité

$$\forall x=(x_1,...,x_n), y=(y_1,...,y_n) \in E, \Phi(x,y) = \sum_{1 \leq i,j \leq n} x_i y_j \Phi \left(e_i,e_j\right) = [x]_{\mathcal{E}}^{\mathrm{T}}[\Phi]_{\mathcal{E}}[y]_{\mathcal{E}}.$$

Proposition 7.4. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $\Phi: E \times E \to E$ une forme bilinéaire. Alors

$$[\Phi]_{\mathcal{F}} = \mathcal{P}_{\mathcal{E}}^{\mathcal{F}^{\mathrm{T}}} [\Phi]_{\mathcal{E}} \mathcal{P}_{\mathcal{E}}^{\mathcal{F}}.$$

7.2. Dualité

Définition 7.5. Soit E un \mathbb{K} -espace vectoriel de dimension n. On appelle dual de E, noté E^* , l'ensemble des formes linéaires sur E. Si $\mathcal{E}=(e_1,...,e_n)$ est une base de E, on appelle base duale, la famille $\mathcal{E}^*=(e_1^*,...,e_n^*)$ telle que

$$\forall i,j \in \{1,...,n\}, e_i^* \left(e_j\right) \coloneqq \delta_{i,j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}.$$

Proposition 7.6. Soit E un \mathbb{K} -espace vectoriel de dimension n. Soit $u:E\to E$ une forme linéaire, alors

$$u = \sum_{i=0}^{n} u(e_i)e_i^*$$

Soit f un élément de E, alors

$$f = \sum_{i=0}^{n} e_i^*(f)e_i.$$

Définition 7.7. Soit E un \mathbb{K} -espace vectoriel et $\mathcal{F}=(f_1,...,f_n)$ une base de E^* . On appelle base antéduale, l'unique base $\mathcal{E}=(e_1,...,e_n)$ de E telle que $\mathcal{E}^*=\mathcal{F}$.

Définition 7.8. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. On appelle application linéaire associée à Φ , l'application

$$u_{\Phi}: E \to E^*, x \mapsto (y \mapsto \Phi(x,y)).$$

7.3. Forme bilinéaire symétrique et forme quadratique

Définition 7.9. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. On dit que Φ est *symétrique*, si

$$\forall (x, y) \in E \times E, \Phi(x, y) = \Phi(y, x).$$

Définition 7.10. Soit E un \mathbb{K} -espace vectoriel et $Q: E \to \mathbb{K}$ une application. On dit que Q est une *forme quadratique*, s'il existe une forme bilinéaire $\Phi: E \times E \to \mathbb{K}$ telle que

$$\forall x \in E, Q(x) = \Phi(x, x)$$

dans ce cas, on dit que Q est la forme quadratique associée à Φ .

Proposition 7.11. (Formule de polarisation) Soit E un \mathbb{K} -espace vectoriel, $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire et $Q: E \to \mathbb{K}$ la forme quadratique associée à Φ . Alors

$$\forall (x,y)\in E\times E, \Phi(x,y)=\frac{1}{2}(Q(x+y)-Q(x)-Q(y))=\frac{1}{4}(Q(x+y)+Q(x-y)).$$

Remarque 7.12. Soit E un \mathbb{K} -espace vectoriel et $Q: E \to \mathbb{K}$ une forme quadratique. Alors d'après la Proposition 7.11, Q détermine une forme bilinéaire symétrique, on l'appelle forme polaire associée à Q.

Remarque 7.13. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. Alors sa matrice dans la base canonique est symétrique.

7.4. Forme quadratique définie

Définition 7.14. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. On dit que Φ est non-dégénérée si

$$\forall x \in E, (\forall y \in E, \Phi(x, y) = 0) \Rightarrow x = 0.$$

Définition 7.15. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. On dit que Φ est *définie* si

$$\forall x \in E, \Phi(x, x) = 0 \Rightarrow x = 0.$$

Proposition 7.16. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. Alors si Φ est définie, elle est non-dégénérée.

Définition 7.17. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire définie.

• On dit que Φ est définie positive si

$$\forall x \in E \setminus \{0\}, \Phi(x, x) > 0.$$

• On dit que Φ est définie négative si

$$\forall x \in E \setminus \{0\}, \Phi(x, x) < 0.$$

Proposition 7.18. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire définie. Alors Q est soit définie positive, soit définie négative.

Remarque 7.19. On étend toutes les énoncés précédents aux formes quadratiques avec leur forme polaire associée.

7.5. Réduction d'une forme quadratique

Théorème 7.20. Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q:E\to\mathbb{K}$ une forme quadratique. Alors il existe des formes linéaires indépendantes $f_1,...,f_m$ sur E et des éléments non-nuls $a_1,...,a_m\in\mathbb{K}$ tels que

$$\forall x \in E, Q(x) = a_1 f_1(x)^2 + \ldots + a_m f_m(x)^2.$$

Démonstration. On applique l'algorithme de réduction de Gauss.

Remarque 7.21. La famille de formes linéaires indépendantes qui intervient dans le Théorème 7.20 n'est pas nécessairement unique.

7.6. Invariants d'une forme quadratique

Théorème 7.22. (d'inertie de Sylvester) Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q:E\to\mathbb{K}$ une forme quadratique. Alors le nombre m de formes linéaires indépendantes qui interviennent dans une décomposition de Q est égal au rang de Q.

Théorème 7.23. (d'inertie de Sylvester dans \mathbb{R}) Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q: E \to \mathbb{K}$ une forme quadratique. Soit

$$Q = a_1 f_1^2 + \ldots + a_s f_s^2 - a_{s+1} f_{s+1}^2 - \ldots - a_{s+t} f_{s+t}^2$$

une décomposition de Q en sommes de carrés telle que $\forall i \in \{1,...,s+t\}, a_i > 0$. Alors les nombres s et t ne dépendent que de Q.

Définition 7.24. Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q:E\to\mathbb{K}$ une forme quadratique. On appelle *signature* de Q, le couple (s,t) du Théorème 7.23.

8. Espaces euclidiens

Définition 8.1. Soit E un \mathbb{R} -espace vectoriel. On appelle *produit scalaire* sur E, noté $\langle \cdot, \cdot \rangle$, une forme bilinéaire symétrique définie positive. On appelle *espace euclidien* le couple $(E, \langle \cdot, \cdot \rangle)$.

Définition 8.2. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On appelle *norme associée au produit scalaire,* l'application $\| \cdot \| : E \to \mathbb{R}_+, x \mapsto \sqrt{\langle x, x \rangle}$.

8.1. Norme d'un vecteur

Théorème 8.3. (Inégalité de Cauchy-Schwarz) Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Alors

$$\forall x, y \in E, |\langle x, y \rangle| \le ||x|| ||y||$$

avec égalité si et seulement si les deux éléments sont liés.

Proposition 8.4. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Alors l'application $\| \cdot \|$ est une norme.

8.2. Orthogonalité, base orthogonale et base orthonormée

Définition 8.5. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $x, y \in E$. On dit que x et y sont *orthogonaux*, noté $x \perp y$, si $\langle x, y \rangle = 0$.

Définition 8.6. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et F un sous-ensemble de E. On appelle *orthogonal* de F, noté F^{\perp} , l'ensemble

$$F^{\perp} := \{ x \in E \mid \forall y \in F, \langle x, y \rangle = 0 \}.$$

Notation 8.7. Soit $(E,\langle\cdot,\cdot\rangle)$ un espace euclidien et $x\in E.$ On note $x^\perp:=\{x\}^\perp.$

Proposition 8.8. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et F un sous-ensemble de E. Alors F^{\perp} est un sous-espace vectoriel de E.

Proposition 8.9. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $x, y \in E$. Alors

$$x\perp y\Leftrightarrow \|x+y\|^2=\|x\|^2+\|y\|^2\Leftrightarrow \|x-y\|^2=\|x\|^2+\|y\|^2.$$

Proposition 8.10. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $x \in E \setminus \{0\}$. Alors $\mathrm{Vect}(x)^{\perp} = x^{\perp}$ et

$$E = \operatorname{Vect}(x) \oplus \operatorname{Vect}(x)^{\perp}$$
.