# 2019 Saskatchewan Curriculum

Robotics and Automation 10, 20, 30



August 2019 – Due to the nature of curriculum development this document is regularly under revision. For the most up-to-date content, please go to www.curriculum.gov.sk.ca.

# **Acknowledgements**

The Ministry of Education wishes to acknowledge the professional contributions and advice of the provincial Secondary Practical and Applied Arts Curriculum Reference Committee members:

Bill Birns

Prairie Valley School Division Saskatchewan Teachers' Federation

Ken Dows

Sun West School Division

Saskatchewan Teachers' Federation

Moïse Gaudet

Conseil des écoles fransaskoises Saskatchewan Teachers' Federation

Rob Heppner

Saskatoon School Division

Saskatchewan Teachers' Federation

Tara Johns

South East Cornerstone School Division Saskatchewan Teachers' Federation

Josh LeBlanc

South East Cornerstone School Division Saskatchewan Teachers' Federation

Vanessa Lewis

Sun West School Division

Saskatchewan Teachers' Federation

Cindy Lowe

**Chinook School Division** 

Saskatchewan Teachers' Federation

Mel Menz

Northern Lights School Division Saskatchewan Teachers' Federation

Jeremy Murphy

**Northwest School Division** 

Saskatchewan Teachers' Federation

Arnold Neufeld

Saskatoon School Division

Saskatchewan Teachers' Federation

AnnaLee Parnetta

Christ the Teacher School Division Saskatchewan Teachers' Federation

Derek Barss, Senior Administrative Staff Saskatchewan Teachers' Federation

(former member – Kevin Schmidt, Executive)

Darren Gasper

Superintendent of Education

League of Educational Administrators, Directors

and Superintendents

Jay Wilson, Associate Professor

College of Education

University of Saskatchewan

Sara Wheelwright

Saskatchewan Chamber of Commerce

(former member - Tim Schroh)

Gordon Heidel, Executive Director

Regina and District Industry Education Council

Janet Uchacz-Hart, Executive Director Saskatoon Industry-Education Council

Dean Frey

Saskatchewan Apprenticeship and Trade

**Certification Commission** 

Fran Walley, Associate Dean (Academic)
College of Agriculture and Bioresources

University of Saskatchewan

Noreen Mahoney

Associate Dean, Students & Degree Programs

Edwards School of Business University of Saskatchewan

Barb Gustafson

Coordinator, Learner Pathways Saskatchewan Polytechnic Cyril Kesten, Professor of Education University of Regina

Faculty of Education

Jo-anne Goodpipe, Department Head Department of Indigenous Science, the Environment and Economic Development First Nations University of Canada Claire St. Cyr-Power

Enseignante en prêt de service Baccalauréat en éducation Université de Regina

In addition, the Ministry of Education wishes to acknowledge the guidance of the writing group members:

Kevin Chiasson Brian Clarke

Meadow Lake Tribal Council Prairie Spirit School Division

Patrick Kossmann Stephen Hadden

Prairie Valley School Division Sun West School Division

Dave Dalton Sheri Gunville

Ile a la Crosse School Division Saskatchewan Rivers School Division

Russell Munkler

Saskatoon School Division

The Ministry of Education also wishes to thank many others who contributed to the development of this curriculum.

#### Introduction

Practical and Applied Arts in an area of study in Saskatchewan's Core Curriculum which is intended to provide all Saskatchewan students with an education that will serve them well regardless of their choices after leaving school. Through its various components and initiatives, Core Curriculum supports the achievement of the Goals of Education for Saskatchewan. For current information regarding Core Curriculum, please refer to the *Registrar's Handbook for School Administrators* found on the Government of Saskatchewan website. For additional information related to the various components and initiatives of Core Curriculum, please refer to the Government of Saskatchewan website for policy and foundation documents.

This curriculum provides the intended learning outcomes organized in modules from which teachers/schools select a minimum of 100 hours for each course. The curriculum reflects current Practical and Applied Arts education research and updated technology and is responsive to changing demographics within the province.

All students will work toward the achievement of the provincial outcomes. Some students, however, will require additional supports. Effective instruction, including the use of the Adaptive Dimension, will support most students in achieving success. The Adaptive Dimension refers to the concept of making adjustments to any or all of the following variables: learning environment, instruction, assessment and resources. Adjustments to these variables are intended to make learning meaningful and appropriate and to support achievement. Within the context of the Adaptive Dimension, curricular outcomes are not changed; adaptive variables are adjusted so that they curricular outcomes can be achieved. Please refer to the Saskatchewan Curriculum website for more information on the Adaptive Dimension.

# **Course Synopses**

Robotics and Automation 10, 20, 30 focuses on the design, construction, operation and use of autonomous and/or radio-controlled robotic devices, as well as the computer systems necessary for their control, sensory feedback and information processing. Through project based learning, design thinking, and inquiry learning, students will explore the processes and skills needed to design and fabricate physical devices that they will control or automate. Students are able to explore wearable technologies, automation, mobile robotics and animatronics as well as traditional robotic devices. In addition, students will also develop the computational thinking and coding skills necessary to control their robotic or automated devices.

# **Unique Features of Practical and Applied Arts**

Curricula in the Practical and Applied Arts (PAA) have several features unique to this area of study. The reasons for inclusion of these features in PAA curricula are to encourage flexibility in school programming, to support community partnerships that facilitate learning beyond the classroom and to ensure the practical emphasis of the program.

PAA curricula contain all courses in a **single document** whether it is one course or a series of several. This feature allows schools and teachers the flexibility to choose modules supportive of their students' needs as well as utilize available facilities and equipment. The order and number of outcomes in a course can vary between schools as long as the integrity of the discipline and the required 100 hours per course are maintained.

All PAA curricula are designed using **modules**, each with a single outcome for students to achieve. To aid teachers and schools in course planning, each module is designated as Introductory, Intermediate, or Advanced. Modules may also have prerequisite modules. Core modules are compulsory modules that must be covered in pure courses of study for developmental or safety reasons. Some modules may serve as prerequisites for more advanced study. Each module provides a suggested time to aid teachers in planning their courses. Each module may take more or less than the suggested time depending on factors such as background knowledge of the students.

A third unique feature of PAA curricula is the inclusion of an optional **Extended Study** module in each course. The Extended Study module allows teachers to create their own outcome and indicators relevant to the purpose and areas of focus for the subject to meet their students' needs. Using Extended Study modules to accommodate advances in technology and changing practices is one way that teachers can ensure their programs stay current with industry standards.

**Work Study modules** encourage personalized learning and development of community relationships. Work Study is designed as a work-based learning portion of a course to provide off-campus educational opportunities for individuals or small groups in a work setting. Planning and assessment are managed by the teacher while the learning opportunity is provided by an expert in the community. Practical skills developed in school are directly transferred to a work environment.

**Transferable work skills** are a desirable aspect of lifelong learning. The practical nature of these skills enriches students' lives as they transition into life beyond Grade 12. In Canada, two taxonomies of transferable work skills have been produced. The Conference Board of Canada developed a list of Employability Skills and Human Resources and Service Development Canada identified a series of Essential Skills. Students will be familiar with both of these taxonomies from their learning in Grade 8 Career Education.

More details on the above curriculum features are provided in the *Practical and Applied Arts Handbook* available on the Ministry of Education website.

# Purpose and Areas of Focus for Robotics and Automation

Robotics and Automation deals with the design, construction, operation and use of robotic devices, as well as the computer systems necessary for their control, sensory feedback and information processing. Automation is the technology by which a process or procedure is performed with minimal human assistance.

As such, the purpose of this curriculum is to facilitate innovation, and exploration through the hands-on process of creating and making. Through project based learning, design thinking, and inquiry learning, students will explore the processes and skills needed to design and fabricate physical devices that they will control or automate.

The Areas of Focus for Robotics and Automation are:

- Introductory
- Design Thinking
- Electrical
- Autonomous
- Coding
- Sensors
- Radio Controlled (R/C)
- Machining
- Automation
- Project Management
- Career and Workplace
- Work Study
- Extended Study

# **Teaching Robotics and Automation**

The *Robotics and Automation 10, 20, 30* curriculum is designed to support different approaches to address students' interests. Two suggested course configurations each with Core and suggested Optional modules are provided for each grade; one reflects an autonomous focus and one reflects a radio-controlled focus. An autonomous focus is suitable when the focus is on programming the robotic or autonomous device to perform pre-determined tasks. A radio-controlled focus is suitable when the operation of the device is not pre-determined and needs to be controlled by an operator – such as in many robotics competitions. In either case, students may construct the device completely from scratch or may rely on some level of pre-fabricated parts. Teachers may also choose to adopt a mixed focus that incorporates aspects of autonomous and radio-controlled devices.

The teaching of intelligent automation can be achieved without traditional fabrication and tools; however, tool-based fabrication is essential to the construction of a radio controlled robot. It will depend greatly upon the choice of modules whether this course is taught in a shop environment, a computer lab or a classroom setting.

This curriculum allows students to explore wearable technologies, automation, mobile robotics and animatronics as well as traditional robotic devices. Ubiquitous computing and automation are occurring in tandem. Self-operating machines are permeating every dimension of society, so that humans find themselves interacting more frequently with robotic devices than ever before—often without even realizing it. The human-machine relationship is rapidly evolving as a result. Humanity, and what it means to be a human, will be defined in part by the machines people design.

**Computational Thinking** – Computational thinking is a broad set of problem-solving processes which represent an entry point for new ways of thinking that are applicable in computer science and non-computer science contexts. Teachers should highlight connections to these aspects of computational thinking while addressing the outcomes in this document. The following are the essential dimensions of computational thinking:

- Decomposition, where a problem is broken into a set of simpler independent sub-problems.
- Pattern recognition, where similarities in related problems are identified.
- Abstraction, where specific differences in problems are viewed more generally, to allow for a single common solution.
- Algorithm design, where a sequence of steps is developed which can be followed to solve a problem.

**Elegant Code** – Elegant code needs to be simple and easy to understand. Saint-Exupery said, "Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away." Developing an algorithm which simplifies code often will make it more efficient. Writing elegant code involves carefully analyzing the problem and creating an algorithm with a balance between a minimal amount of code and the code being readable. (from *Computer Science 20, 30*)

**Reusable Code** – Finding a reusable piece of code and copying and pasting it into a program is a common industry practice. Teaching students how to find the bit of code they want and to interpret how to adapt it is a valuable part of learning to code.

**Visual or Block Based Coding** – Although it is common to view visual coding environments as easier, students using them have shown greater learning gains and a higher level of interest in future computing courses. Students using purely text based editors viewed their programming experience as more similar to what professional programmers do. However, there is pedagogical value in using both.

**Design Thinking** – Design thinking is a process for creative problem solving that uses a human-centered approach to innovation. Designers engage in five stages – empathize, design, ideate, prototype and test – in order to focus on what is most important for users. Design thinking is inherent to the project based nature of designing and actualizing a robot or automated device. Students become empowered when they define themselves as makers and inventors and creators by turning questions and ideas into working physical devices that solve particular problems.

# **Grades 7-12 Practical and Applied Arts**

Opportunities available to students within Practical and Applied Arts are numerous. The choices assist students in developing personal skills, gaining entry level employment skills or pursuing apprenticeship opportunities in the trades. Students have the opportunity to explore and develop career pathways.

Each Practical and Applied Arts curriculum is composed of modules configured into courses, along with suggestions for modules that are suitable for middle or secondary level survey courses. PAA curricula are grouped in clusters according to common themes. Because various combinations of modules can be chosen, the courses will have variable occupational or career pathways to post-secondary education and training or workplace opportunities.

The modular design provides for flexibility and for community involvement. The design allows teachers and schools to develop unique PAA offerings that reflect student interest and school/community resources. Partnerships with community businesses and service providers enhance learning opportunities in a community context.

Practical and Applied Arts courses can be offered in two ways within a school—as pure or survey course offerings. A pure course at the secondary level is a course where core (compulsory) modules are taught, and optional modules are selected from the same PAA curriculum to total 100 hours. A survey course is a configuration of modules recommended from a minimum of three pure PAA curricula to create a middle level course of a minimum of 50 hours or a secondary level course to total 100 instructional hours (1 credit). The *Practical and Applied Arts Handbook* offers recommendations for configuring survey courses at the middle and secondary levels.

# **Broad Areas of Learning**

There are three Broad Areas of Learning that reflect Saskatchewan's Goals of Education. All areas of study contribute to student achievement of the Goals of Education through helping students achieve knowledge, skills and attitudes related to these Broad Areas of Learning. The K-12 goals and grade level outcomes for each area of study are designed for students to reach their full potential in each of the following Broad Areas of Learning.

#### Sense of Self, Community and Place\*

(Related to the following Goals of Education: Understanding and Relating to Others, Self Concept Development and Spiritual Development)

Students possess a positive sense of identity and understand how it is shaped through interactions within natural and constructed environments. They are able to nurture meaningful relationships and appreciate diverse beliefs, languages and practices from the diversity of cultures in our province, including First Nations and Métis. Through these relationships, students demonstrate empathy and a

deep understanding of self, others and the influence of place on identity. In striving to balance their intellectual, emotional, physical and spiritual dimensions, students' sense of self, community and place is strengthened.

To engage in the Practical and Applied Arts, students need to use knowledge and skills and to interact with each other. Through the Practical and Applied Arts, students learn about themselves, others, and the world around them. They use their new understanding and skills to explore who they are and who they might become. Practical and Applied Arts programming should vary by school to reflect the community at large. Community projects can play a key role in Practical and Applied Arts programming and connect the school more closely to the community.

#### **Lifelong Learners**

(Related to the following Goals of Education: Basic Skills, Lifelong Learning, Positive Lifestyle)

Students are curious, observant and reflective as they imagine, explore and construct knowledge. They demonstrate the understandings, abilities and dispositions necessary to learn from subject discipline studies, cultural experiences and other ways of knowing the world. Such ways of knowing support students' appreciation of Indigenous worldviews and learning about, with and from others. Students are able to engage in inquiry and collaborate in learning experiences that address the needs and interests of self and others. Through this engagement, students demonstrate a passion for lifelong learning.

Students in Practical and Applied Arts courses will gain a positive sense of identity and efficacy through development of practical skills and knowledge. Many Practical and Applied Arts curricula are closely related to careers found in Saskatchewan and, therefore, are directly connected to lifelong learning whether in a professional career or through hobbies and personal interests.

# **Engaged Citizens**

(Related to the following Goals of Education: Career and Consumer Decisions, Membership in Society and Growing with Change)

Students demonstrate confidence, courage and commitment in shaping positive change for the benefit of all. They contribute to the environmental, social and economic sustainability of local and global communities. Their informed life, career and consumer decisions support positive actions that recognize a broader relationship with, and responsibility for, natural and constructed environments. Along with this responsibility, students recognize and respect the mutual benefits of Charter, Treaty and other constitutional rights and relationships. Through this recognition, students advocate for self and others, and act for the common good as engaged citizens.

Engaged citizens have empathy for those around them and contribute to the well-being of the community as a whole. Practical and Applied Arts students learn how new skills and abilities enable them to make a difference in their personal lives as well as in their family and community. Skills and abilities gained in Practical and Applied Arts courses build a sense of confidence which encourages students to participate effectively in their world.

\*A sense of place is a geographical concept that attempts to define our human relationships with the environment and knowledge derived from this relationship.

# **Cross-curricular Competencies**

The Cross-curricular Competencies are four interrelated areas containing understanding, values, skills and processes which are considered important for learning in all areas of study. These competencies reflect the Common Essential Learnings and are intended to be addressed in each area of study at each grade.

#### **Developing Thinking**

(Related to CEL of Critical and Creative Thinking)

Constructing knowledge (i.e., factual, conceptual, procedural, and metacognitive) is how people come to know and understand the world around them. Deep understanding develops through thinking and learning contextually, creatively, and critically in a variety of situations, both independently and with others.

#### Think and learn contextually

- Apply prior knowledge, experiences, and the ideas of self and others in new contexts.
- Analyze connections or relationships within and/or among ideas, experiences, or natural and constructed objects.
- Recognize that a context is a complex whole made of parts.
- Analyze a particular context for ways that parts influence each other and create the whole.
- Explore norms\*, concepts, situations, and experiences from several perspectives, theoretical frameworks, and worldviews.

#### Think and learn creatively

- Show curiosity and interest in the world, new experiences, materials, and puzzling or surprising events.
- Experiment with ideas, hypotheses, educated guesses, and intuitive thoughts.
- Explore complex systems and issues using a variety of approaches such as models, simulations, movement, self-reflection, and inquiry.
- Create or re-design objects, designs, models, patterns, relationships, or ideas by adding, changing, removing, combining, and separating elements.
- Imagine and create central images or metaphors for subject area content or cross-disciplinary ideas.

#### Think and learn critically

- Analyze and critique objects, events, experiences, ideas, theories, expressions, situations, and other phenomena.
- Distinguish among facts, opinions, beliefs, and preferences.
- Apply various criteria to assess ideas, evidence, arguments, motives, and actions.
- Apply, evaluate, and respond to differing strategies for solving problems and making decisions.
- Analyze factors that influence self and others' assumptions and abilities to think deeply, clearly, and fairly.

#### **Developing Identity and Interdependence**

(Related to CELs of Personal and Social Development and Technological Literacy)

Identity develops as an individual interacts with others and the environment, and learns from various life experiences. The development of a positive self-concept, the ability to live in harmony with others, and the capacity and aptitude to make responsible decisions about the natural and constructed world supports the concept of interdependence. The focus within this competency is to foster personal reflection and growth, care for others, and the ability to contribute to a sustainable future.

#### Understand, value, and care for oneself (intellectually, emotionally, physically, spiritually)

- Recognize that cultural and linguistic backgrounds, norms, and experiences influence identity, beliefs, values, and behaviours.
- Develop skills, understandings, and confidence to make conscious choices that contribute to the development of a healthy, positive self-identity.
- Analyze family, community, and societal influences (such as recognized and unrecognized privileges) on the development of identity.
- Demonstrate self-reliance, self-regulation, and the ability to act with integrity.
- Develop personal commitment and the capacity to advocate for self.

<sup>\*</sup>Norms can include unexamined privilege (i.e., unearned rights/entitlements/immunity/exemptions associated with being "normal") which creates a power imbalance gained by birth, social position, or concession and provides a particular context.

#### Understand, value, and care for others

- Demonstrate openmindedness\* toward, and respect for all.
- Learn about various peoples and cultures.
- Recognize and respect that people have values and worldviews that may or may not align with one's own values and beliefs.
- Value the varied abilities and interests of individuals to make positive contributions to society.
- Advocate for the well-being of others.

# Understand and value social, economic, and environmental interdependence and sustainability\*\*

- Examine the influence of worldviews on one's understanding of interdependence in the natural and constructed world.
- Evaluate how sustainable development depends on the effective and complex interaction of social, environmental, and economic factors.
- Analyze how one's thinking, choices, and behaviours affect living and non-living things, now and
  in the future.
- Investigate the potential of individual and group actions and contributions to sustainable development.
- Demonstrate a commitment to behaviours that contribute to the well-being of the society, environment, and economy locally, nationally, and globally.

#### **Developing Literacies**

(Related to CELs of Communication, Numeracy, Technological Literacy, and Independent Learning)

Literacies provide many ways to interpret the world and express understanding of it. Being literate involves applying interrelated knowledge, skills, and strategies to learn and communicate with others. Communication in a globalized world is increasingly multimodal. Communication and meaning making, therefore, require the use and understanding of multiple modes of representation. Each area of study develops disciplinary literacies (e.g., scientific, economic, physical, health, linguistic, numeric, aesthetic, technological, cultural) and requires the understanding and application of multiple literacies (i.e., the ability to understand, critically evaluate, and communicate in multiple meaning making systems) in order for students to participate fully in a constantly changing world.

<sup>\*</sup>Openmindedness refers to a mind that is open to new ideas, and free from prejudice or bias in order to develop an "ethical space" between an existing idea and a new idea (Ermine).

<sup>\*\*</sup>Sustainability refers to making informed decisions for the benefit of ourselves and others, now and for the future, and to act upon those decisions for social, economic, and environmental well-being.

#### Construct knowledge related to various literacies

- Acknowledge the importance of multiple literacies in everyday life.
- Understand that literacies can involve words, images, numbers, sounds, movements, and other representations and that these can have different interpretations and meanings.
- Examine the interrelationships between literacies and knowledge, culture, and values.
- Evaluate the ideas and information found in a variety of sources (e.g., people, databases, natural and constructed environments).
- Access and use appropriate technologies to investigate ideas and deepen understanding in all areas of study.

#### Explore and interpret the world using various literacies

- Inquire and make sense of ideas and experiences using a variety of strategies, perspectives, resources, and technologies.
- Select and critically evaluate information sources and tools (including digital) based on the appropriateness to specific tasks.
- Use various literacies to challenge and question understandings and interpretations.
- Interpret qualitative and quantitative data (including personally collected data) found in textual, aural, and visual information gathered from various media sources.
- Use ideas and technologies in ways that contribute to creating new insight.

#### Express understanding and communicate meaning using various literacies

- Create, compute, and communicate using a variety of materials, strategies, and technologies to express understanding of ideas and experiences.
- Respond responsibly and ethically to others using various literacies.
- Determine and use the languages, concepts, and processes that are particular to a discipline when developing ideas and presentations.
- Communicate ideas, experiences, and information in ways that are inclusive, understandable, and useful to others.
- Select and use appropriate technologies in order to communicate effectively and ethically.

#### **Developing Social Responsibility**

(Related to CELs of Communication, Critical and Creative Thinking, Personal and Social Development, and Independent Learning)

Social responsibility is the ability of people to contribute positively to their physical, social, and cultural environments. It requires an awareness of unique gifts and challenges among individuals and

communities and the resulting opportunities that can arise. It also requires participation with others in creating an ethical space\* to engage in dialogue, address mutual concerns, and accomplish shared goals.

#### Use moral reasoning processes

- Evaluate the possible consequences of a course of action on self, others, and the environment in a particular situation.
- Consider the implications of a course of action when applied to other situations.
- Consistently apply fundamental moral values\*\* such as "respect for all".
- Demonstrate a principle-based approach to moral reasoning.
- Examine how values and principles have been and continue to be used by persons and cultures to guide conduct and behaviour.

#### Engage in communitarian thinking and dialogue

- Model a balance in speaking, listening, and reflecting.
- Ensure that each person has an opportunity to contribute.
- Demonstrate courage to express differing perspectives in a constructive manner.
- Use consensus-building strategies to work towards shared understanding.
- Be sensitive to, and respectful of, diversity and different ways of participating.

#### Take social action

- Demonstrate respect for and commitment to human rights, treaty rights, and environmental sustainability.
- Contribute to harmony and conflict resolution in own classroom, school, family, and community.
- Provide support in a manner that is respectful of the needs, identity, culture, dignity, and capabilities of all persons.
- Support individuals in making contributions toward achieving a goal.
- Take responsible action to change perceived inequities or injustice for self and others.

\*\*The most basic moral value underlying development of the CEL of Personal and Social Development is that of respect for persons. For further discussion related to fundamental moral values, refer to Understanding the Common Essential Learnings: A Handbook for Teachers (1988, pages 42-49). See also the Renewed Objectives for the CELs of Critical and Creative Thinking and Personal and Social Development (2008).

<sup>\*</sup>An ethical space exists between separate worldviews. In this space, "we can understand one another's knowledge systems" (Ermine, 2006). For further information, see Willie Ermine's work related to ethical space.

# **Aim and Goals**

The aim of 7-12 Practical and Applied Arts is to provide life skills to prepare students to participate as family members, community members, citizens, consumers and producers in Canadian society.



Goals are broad statements identifying what students are expected to know and be able to do upon completion of the learning in a particular area of study by the end of Grade 12. The goals of 7-12 Practical and Applied Arts are:

- **Theory and Practice** Students will be engaged in a balance of theory and practice for lifelong learning.
- **Career Development** Students will experience opportunities for career awareness, exploration and experience.
- **Industry Standard Learnings** Students will gain industry standard learnings to assist them in accessing post-secondary education, training and employment.
- **Skill Development** Students will develop the skills needed to enter, stay in and progress in the world of work.

# Inquiry

Inquiry learning provides students with opportunities to build knowledge, abilities and inquiring habits of mind that lead to deeper understanding of their world and human experience. Inquiry builds on students' inherent sense of curiosity and wonder, drawing on their diverse backgrounds, interests and experiences. The process provides opportunities for students to become active participants in a collaborative search for meaning and understanding.

"My teacher (Elder) liked it when I asked questions, this way it reassured him that I understood his teachings. He explained every detail, the meaning and purpose. Not only talked about it, but, showed me! Communication, critical and creative thinking were important." (Traditional Knowledge Keeper Albert Scott)

Students who are engaged in inquiry:

- construct deep knowledge and deep understanding, rather than passively receiving information;
- are directly involved and engaged in the discovery of new knowledge;
- encounter alternative perspectives and differing ideas that transform knowledge and experience into deep understandings;
- transfer new knowledge and skills to new circumstances; and,
- take ownership and responsibility for their ongoing learning and mastery of curriculum content and skills.

(Adapted from Kuhlthau, Maniotes, & Caspari, 2007)

#### Constructing Understanding Through Inquiry **Curriculum Outcomes** What are the things we wonder about and want to know more about? What questions do we have about the deeper mysteries or aspects of life? Interpret Collaborate Conclude Analyze Investigate Plan Reflect and Reflect and How do we reach a deeper understanding? Revise Revise Explore Create Synthesize Observe Resources Acknowledge Sources **Document Processes** What have we discovered and how will we show our deeper understanding? How are we going to use what we have discovered (e.g., apply, act, implement)?

In the Practical and Applied Arts, inquiry encompasses creating solutions to challenges through the practical application of understandings and skills. This includes processes to get from what is known to discover what is unknown. When teachers show students how to solve a challenge and then assign additional/similar challenges, the students are not constructing new knowledge through application but merely practising. Both are necessary elements of skill building in the Practical and Applied Arts, but one should not be confused with the other. If the path for getting to the end situation already has been determined, it is no longer problem solving. Students must understand this difference as well.

Inquiry learning is not a step-by-step process, but rather a cyclical process, with various phases of the process being revisited and rethought as a result of students' discoveries, insights and construction of new knowledge. Experienced inquirers will move back and forth among various phases as new questions arise and as students become more comfortable with the process. The following graphic shows various phases of the cyclical inquiry process.

An important part of any inquiry process is student reflection on their learning and the documentation needed to assess the learning and make it visible. Student documentation of the inquiry process may take the form of works-in-progress, reflective writing, journals, reports, notes, models, arts expressions, photographs, video footage, action plans and many more.

#### **Creating Questions for Inquiry**

It is important that teachers and students learn within meaningful contexts that relate to their lives, communities and world. Teachers and students need to identify big ideas and questions for deeper understanding central to the area of study.

Big ideas invoke inquiry questions. These questions are important in developing a deep understanding of the discipline or an area of study within the discipline. They do not have obvious answers and they foster high-order thinking. They invite genuine inquiry.

It is important to develop questions that are evoked by student interests and sense of wonder and have potential for rich and deep learning. These questions are used to initiate and guide inquiries that lead to deep understandings about topics, problems, ideas, challenges, issues, concepts and areas of study related to curriculum content and outcomes.

Well-formulated inquiry questions are broad in scope and rich in possibilities. Such questions encourage students to explore, observe, gather information, plan, analyze, interpret, synthesize, problem solve, take risks, create, conclude, document, reflect on learning and develop new questions for further inquiry.

The process of constructing questions for deep understanding can help student grasp the important disciplinary or interdisciplinary ideas that are situated at the core of a particular curricular focus or context. These broad questions lead to more specific questions that can provide a framework, purpose and direction for the learning activities in a lesson, or series of lessons, and help student connect what they are learning to their experiences and life beyond school.

Effective questions in Practical and Applied Arts are the key to initiating and guiding students' investigations, critical thinking, problem solving, and reflection on their own learning. Such questions include:

- What is the best solution to solving a particular robotics challenge?
- How can I refine my code to be clearer, less cumbersome and yet ensure my robotic device works as intended?
- How can design thinking help inform the process of designing a robotic device to solve a particular problem?

The above are only a few examples of questions to move students' inquiry towards deeper understanding. Effective questioning is essential for teaching and student learning, and should be an integral part of planning. Questioning should also be used to encourage students to reflect on the inquiry process and on the documentation and assessment of their own learning.

# **An Effective Practical and Applied Arts Program**

An effective Practical and Applied Arts program provides a variety of relevant, engaging and authentic learning opportunities that are driven by student interest and facilitated through school- and work-based learning with linkages that connect the two. The course offerings emphasize:

- relevance to real life;
- hands-on learning;
- career development opportunities;
- industry standard learnings;
- connections to community; and,
- alignment with labour market needs.

**Relevance to real life** – Whether students enroll in PAA courses to develop skills for personal use, gain entry level employment skills or pursue post-secondary education or training such as apprenticeship, learning must be contextualized to help them see the application and relevance to the real world.

**Hands-on learning** – Hands-on learning gives students the opportunity to practice what they have learned using equipment and materials commonly found in the home, community or workplace. A balance between theory and practice enhances students' learning experiences.

Career development opportunities – All three levels of the career development continuum—awareness, exploration and experiential—should be supported. Students grow in their awareness of personal traits, skills and preferences that influence career decisions and in their awareness of occupational and career pathways. They explore many opportunities and may begin to experience careers firsthand through specialized work placements or classroom learning that support the refinement of skills related to a particular job or occupation. Opportunities for students to acquire industry certifications will help to enhance their employment opportunities.

**Industry standard learnings** – Integral to PAA curricula are industry standard learnings that ensure student learning is up-to-date and relevant to current industry standards and practices. These learnings can assist students in accessing post-secondary education as well as training and employment opportunities.

**Connections to community** - Students recognize the importance of their efforts when they apply their knowledge, skills and abilities to support creative and innovative community projects; they become engaged citizens making a positive contribution. Likewise, work placements within the community help to connect school- with work-based learning. Community professionals serving as mentors can encourage students to expand their career interests and to work towards achieving their career goals.

**Alignment with labour market needs** – Students can quickly see the importance and relevance of their learning when learning in PAA courses aligns with community labour market trends and opportunities.

# **Using this Curriculum**

**Outcomes** define what students are expected to know, understand and be able to do by the end of a grade or secondary level course in a particular area of study. Outcomes provide direction for assessment and evaluation, and for program, unit and lesson planning. In PAA, outcomes that are required are those within core modules for pure courses, and those within optional modules selected at the local level.

#### Outcomes:

- focus on what students will learn rather than what teachers will teach;
- specify the skills, abilities, knowledge and/or attitudes students are expected to demonstrate;
- are observable, assessable and attainable; and,
- are supported by indicators which provide the breadth and depth of expectations.

**Indicators** are representative of what students need to know and/or be able to do in order to achieve an outcome. When planning for instruction, teachers must comprehend the set of indicators to understand fully the breadth and the depth of learning related to a particular outcome. Based on this understanding of the outcome, teachers may develop indicators that are responsive to students' needs, interests and prior learning. Teacher-developed indicators must maintain the intent of the outcome.

The set of indicators for an outcome:

- provides the intent (breadth and depth) of the outcome;
- tells the story, or creates a picture, of the outcome;
- defines the level and types of knowledge required; and,
- is not a checklist or prioritized list of instructional activities or assessment items.

#### **Other Terms**

Within curricula, the terms "including", "such as", "e.g." and "i.e." serve specific purposes:

- **Including** prescribes content, contexts or strategies that students must experience in their learning, without excluding other possibilities.
- **Such as** provides examples of possible broad categories of content, contexts or strategies that teachers or students may choose, without excluding other possibilities.
- E.g. offers specific examples of what a term, concept or strategy might look like.
- **I.e.** means 'that is' and clarifies the term, concept or strategy it follows.

# **Modules/Outcomes at a Glance**

**Legend:** A = autonomous

**RC** = radio controlled

 $\mathbf{B} = \mathbf{both}$ 

| Focus | Module # | Modules/Outcomes                                                                                                              | Level        | Suggested<br>Time (hrs) |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
|       |          | Introductory Modules                                                                                                          |              |                         |
| В     | ROBA1    | Module 1: General Safety (Core) Apply principles and techniques for injury prevention to ensure safe work area.               | Introductory | 2-4                     |
| В     | ROBA2    | Module 2: History of Robotics (Core) Investigate the historical development of robotics and autonomous technologies.          | Introductory | 1-2                     |
| В     | ROBA3    | Module 3: Ethics and Laws (Core) Explore ethical, moral and legal issues relevant to robotics and autonomous devices.         | Introductory | 2-3                     |
| В     | ROBA4    | Module 4: Societal Impact (Core)  Evaluate historical and contemporary impacts of robotics and autonomous devices on society. | Introductory | 2-3                     |
| В     | ROBA5    | Module 5: Introduction to Automation (Optional) Investigate the prevalence and societal impacts of automation.                | Introductory | 3-5                     |
| В     | ROBA6    | Module 6: Artificial Intelligence (Optional) Examine applications of artificial intelligence (AI) in robotics and automation. | Introductory | 2-3                     |
| В     | ROBA7A   | Module 7A: Troubleshooting A (Optional)  Develop and implement a plan to resolve an issue present in a device.                | Introductory | 3-5                     |
| В     | ROBA7B   | Module 7B: Troubleshooting B (Optional)  Develop and implement a plan to resolve multiple issues present in a device.         | Advanced     | 5-10                    |

|   | Design Thinking Modules |                                                                                                                                                                            |              |     |  |  |
|---|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|--|--|
| В | ROBA8A                  | Module 8A: Design Thinking A (Optional) Apply engineering design processes to improve simple tasks and projects.                                                           | Introductory | 2-4 |  |  |
| В | ROBA8B                  | Module 8B: Design Thinking B (Optional)  Evaluate a prototype using specific criteria.                                                                                     | Intermediate | 1-2 |  |  |
| В | ROBA8C                  | Module 8C: Design Thinking C (Optional) Incorporate empathy into engineering design processes.                                                                             | Intermediate | 4-5 |  |  |
|   |                         | Electrical Modules                                                                                                                                                         |              |     |  |  |
| В | ROBA9                   | Module 9: Electrical Safety (Optional)  Demonstrate safe practices when working with electricity and electrical devices.                                                   | Intermediate | 1-2 |  |  |
| В | ROBA10                  | Module 10: Debugging Circuits (Optional)  Explore different strategies and conventions for debugging circuits.                                                             | Introductory | 1-2 |  |  |
| В | ROBA11                  | Module 11: Electrical Theory (Optional) Analyze the relationships among voltage, current and resistance in electrical circuits.                                            | Intermediate | 2-3 |  |  |
| В | ROBA12A                 | Module 12A: Basic Electricity A (Core)  Design and construct a variety of complex circuits.                                                                                | Introductory | 3-5 |  |  |
| В | ROBA12B                 | Module 12B: Basic Electricity B (Optional) Analyze the differences between parallel and series circuits.                                                                   | Introductory | 3-5 |  |  |
| А | ROBA13A                 | Module 13A: Solderless Breadboards A (Optional)  Design and construct functional circuits on a breadboard.                                                                 | Introductory | 1-2 |  |  |
| А | ROBA13B                 | Module 13B: Solderless Breadboards B (Optional) Apply advanced breadboarding knowledge and schematic diagrams to design and construct functional circuits on a breadboard. | Advanced     | 3-7 |  |  |

| В | ROBA14A | Module 14A: Electronic Components A (Optional) Explore the use of resistors and light-emitting diodes (LEDs) in electric circuits.                                            | Introductory | 2-4 |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| В | ROBA14B | Module 14B: Electronic Components B (Optional) Explore the use of component parts in basic electronic circuits.                                                               | Intermediate | 2-4 |
| В | ROBA14C | Module 14C: Electronic Components C (Optional)  Design a variety of circuits to interface between a programmable control board and devices and a robotic or automated device. | Advanced     | 2-4 |
| В | ROBA15A | Module 15A: Drawing Circuits A (Optional) Utilize wiring diagrams to guide the design and construction of electronic circuits.                                                | Introductory | 2-3 |
| В | ROBA15B | Module 15B: Drawing Circuits B (Optional) Utilize schematic diagrams to guide the design and construction of electronic circuits.                                             | Intermediate | 2-3 |
| В | ROBA16  | Module 16: Measuring Instruments (Optional) Use a multimeter to measure voltage, current and resistance of a circuit or portion of a circuit.                                 | Intermediate | 2-3 |
| В | ROBA17  | Module 17: Conductors and Insulators (Optional) Explore how conductors and insulators are used in electric circuits.                                                          | Intermediate | 2-3 |
| В | ROBA18  | Module 18: Fuses (Optional) Explore types and uses of fuses to protect circuits.                                                                                              | Introductory | 1-2 |
| В | ROBA19  | Module 19: Soldering (Optional)  Demonstrate proficiency in soldering.                                                                                                        | Introductory | 4-8 |
| В | ROBA20  | Module 20: Datasheets (Optional)  Examine the importance of datasheets for understanding the technical characteristics of electronic components.                              | Advanced     | 2   |

|   | Autonomous Modules |                                                                                                                                                                          |              |     |  |
|---|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|--|
| А | ROBA21             | Module 21: Hardware / Software Interface (Optional) Investigate the role of software in providing instructions to a robotic or automated device.                         | Introductory | 2-5 |  |
| А | ROBA22             | Module 22: Microcontrollers (Optional) Investigate the role of a microcontroller in robotics and automation systems.                                                     | Introductory | 3-5 |  |
| А | ROBA23A            | Module 23A: Output A (Optional)  Design, construct and program a device to modify simple outputs.                                                                        | Introductory | 3-5 |  |
| А | ROBA23B            | Module 23B: Output B (Optional)  Design, construct and program a device to modify multiple outputs.                                                                      | Intermediate | 3-5 |  |
| А | ROBA24             | Module 24: Shields (Optional)  Explore the role of a shield in enhancing the functionality of microcontrollers.                                                          | Introductory | 3-5 |  |
|   |                    | Coding Modules                                                                                                                                                           |              |     |  |
| А | ROBA25             | Module 25: File Management (Optional)  Demonstrate effective file management and organization including the use of appropriate naming conventions and folder structures. | Introductory | 1-2 |  |
| А | ROBA26             | Module 26: Computational Thinking (Optional) Investigate computational thinking as a problem- solving process.                                                           | Introductory | 1-2 |  |
| А | ROBA27             | Module 27: Pseudocode (Optional)  Examine the role of pseudocode in planning computer programs.                                                                          | Intermediate | 1-2 |  |
| А | ROBA28A            | Module 28A: Block-Based Coding A (Optional) Explore programming concepts using a block-based language.                                                                   | Introductory | 3-5 |  |

| А | ROBA28B | Module 28B: Block-Based Coding B (Optional) Implement a program which utilizes control structures and repetition in a block-based coding environment. | Introductory | 3-5  |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| А | ROBA29  | Module 29: Syntax and Organization (Optional)  Demonstrate proper syntax and organization when developing a program.                                  | Introductory | 1-2  |
| А | ROBA30A | Module 30A: Coding – Variables A (Core) Differentiate between common data types (e.g., integer, Boolean, floating point and string).                  | Introductory | 5-10 |
| А | ROBA30B | Module 30B: Coding – Variables B (Core) Create programs that use control structures to affect program flow.                                           | Introductory | 5-10 |
| А | ROBA30C | Module 30C: Coding – Variables C (Optional)  Explore the use of integer data types in programs.                                                       | Intermediate | 8-10 |
| А | ROBA30D | Module 30D: Coding – Variables D (Optional) Incorporate Boolean and string data types in programs.                                                    | Intermediate | 3-15 |
| А | ROBA30E | Module 30E: Coding – Variables E (Optional) Investigate the use of floating point data types in programs.                                             | Intermediate | 2-5  |
| А | ROBA31A | Module 31A: Coding – Control Structures A (Optional) Create programs that use control structures to affect program flow.                              | Introductory | 5-10 |
| А | ROBA31B | Module 31B: Coding – Control Structures B (Optional) Create programs that use conditional statements to control program flow.                         | Intermediate | 5-10 |
| А | ROBA32A | Module 32A: Coding – Functions A (Optional) Create and incorporate functions in programs.                                                             | Intermediate | 3-5  |

|   | ī       | <u></u>                                                                                                                                          |              |     |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| А | ROBA32B | Module 32B: Coding – Functions B (Optional) Incorporate internal, external and user-defined libraries to extend the functionality of software.   | Intermediate | 3-5 |
| А | ROBA32C | Module 32C: Coding – Functions C (Optional) Investigate how and when to incorporate recursive functions into programs.                           | Advanced     | 3-5 |
| А | ROBA33  | Module 33: Debugging Code (Optional) Use common coding techniques to enhance code elegance and debug errors.                                     | Intermediate | 2-5 |
|   |         | Sensor Modules                                                                                                                                   |              |     |
| А | ROBA34A | Module 34A: Sensor Theory A (Optional) Explore the use of sensors in robotic and automated devices.                                              | Introductory | 2-4 |
| А | ROBA34B | Module 34B: Sensor Theory B (Optional) Investigate how sensors interact with hardware and software in a device.                                  | Advanced     | 2-3 |
| А | ROBA35A | Module 35A: Line Sensors A (Optional)  Construct and program a device capable of following a simple line.                                        | Introductory | 3-5 |
| А | ROBA35B | Module 35B: Line Sensors B (Optional)  Construct and program a device capable of following a line that includes 90-degree turns and T-junctions. | Intermediate | 3-5 |
| А | ROBA35C | Module 35C: Line Sensors C (Optional)  Construct and program a device capable of following a complex line, including dotted line sections.       | Advanced     | 3-5 |
| А | ROBA36A | Module 36A: Tactile Sensors A (Optional) Construct and program a device capable of using tactile sensors to make decisions.                      | Introductory | 3-5 |
| А | ROBA36B | Module 36B: Tactile Sensors B (Optional) Construct and program a device capable of using multiple tactile sensors to make decisions.             | Intermediate | 3-5 |

| А | ROBA37A | Module 37A: Ultrasonic Sensors A (Optional) Construct and program a device that uses an ultrasonic sensor to detect distance.                                                                  | Introductory | 3-5 |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| А | ROBA37B | Module 37B: Ultrasonic Sensors B (Optional) Construct and program a device that uses an ultrasonic sensor to navigate an area.                                                                 | Intermediate | 3-5 |
| А | ROBA37C | Module 37C: Ultrasonic Sensors C (Optional) Construct and program a device that uses multiple ultrasonic sensors to make decisions.                                                            | Advanced     | 3-5 |
| А | ROBA38A | Module 38A: Infrared Sensors A (Optional) Construct and program a device that uses infrared lights and sensors to detect objects.                                                              | Introductory | 3-5 |
| А | ROBA38B | Module 38B: Infrared Sensors B (Optional)  Construct and program a device capable of navigating around a room using infrared sensors.                                                          | Intermediate | 3-5 |
| А | ROBA38C | Module 38C: Infrared Sensors C (Optional) Construct and program a device that uses multiple infrared sensors to make decisions.                                                                | Advanced     | 3-5 |
| А | ROBA39A | Module 39A: Sound Sensors A (Optional) Construct and program a device that can detect sound using a sound sensor.                                                                              | Introductory | 3-5 |
| А | ROBA39B | Module 39B: Sound Sensors B (Optional)  Construct and program a device that can follow sound.                                                                                                  | Intermediate | 3-5 |
| А | ROBA40A | Module 40A: Other Sensors A (Optional) Construct and program a device to detect an input from a sensor.                                                                                        | Introductory | 3-5 |
| А | ROBA40B | Module 40B: Other Sensors B (Optional) Construct and program a device that uses a different sensor (not ultrasonic, infrared, sound, line following or tactile) to perform an associated task. | Intermediate | 3-5 |
| А | ROBA41A | Module 41A: Wearable Technologies A (Optional) Investigate the use of wearable technologies.                                                                                                   | Introductory | 2-4 |

| А  | ROBA41B | Module 41B: Wearable Technologies B (Optional) Construct and program a wearable device.                                                                             | Intermediate | 5-10 |
|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| А  | ROBA42  | Module 42: Radio-Frequency Identification (Optional) Construct and program a device that uses radio- frequency identification (RFID) to accomplish a specific task. | Intermediate | 3-5  |
|    |         | Radio Controlled (R/C) Modules                                                                                                                                      |              |      |
| RC | ROBA43A | Module 43A: Transmitting and Receiving A (Optional) Connect transmitting and receiving devices.                                                                     | Introductory | 2-4  |
| RC | ROBA43B | Module 43B: Transmitting and Receiving B (Optional) Control a robotic or automated device using transmitting and receiving devices.                                 | Intermediate | 3-5  |
| RC | ROBA43C | Module 43C: Transmitting and Receiving C (Optional) Customize a transmitter for control of a robotic or automated device.                                           | Advanced     | 3-5  |
| В  | ROBA44A | Module 44A: Power Sources A (Optional)  Examine a variety of power sources suitable for robotic and automation applications.                                        | Introductory | 2-4  |
| В  | ROBA44B | Module 44B: Power Sources B (Optional) Analyze different types of batteries for their suitability in robotics and automation applications.                          | Intermediate | 3-5  |
| В  | ROBA45  | Module 45: Drive Systems (Optional) Evaluate drive systems for suitability in robotics and automation applications.                                                 | Introductory | 3-8  |
| В  | ROBA46  | Module 46: Wheels (Optional)  Evaluate wheels for suitability in robotics and automation applications.                                                              | Introductory | 2-4  |

| В  | ROBA47  | Module 47: Gears (Optional)  Evaluate the suitability of gears, sprockets and chains and pulleys and belts for robotics and automation applications. | Intermediate | 3-5  |
|----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| В  | ROBA48  | Module 48: Motors (Optional)  Experiment with the properties and capabilities of direct current (DC) motors.                                         | Introductory | 3-5  |
| В  | ROBA49  | Module 49: Servos (Optional) Investigate applications of servos in robotics and automation applications.                                             | Introductory | 3-5  |
| В  | ROBA50  | Module 50: Stepper Motors (Optional)  Explore applications of stepper motors in robotics and automation applications.                                | Advanced     | 3-5  |
| В  | ROBA51A | Module 51A: Actuators A (Optional)  Experiment with the properties and capabilities of actuators.                                                    | Intermediate | 2-4  |
| В  | ROBA51B | Module 51B: Actuators B (Optional)  Design and construct a device that incorporates an actuator.                                                     | Intermediate | 5-10 |
| В  | ROBA52A | Module 52A: Motor Controllers A (Optional) Use motor controllers to power motors.                                                                    | Introductory | 2-4  |
| В  | ROBA52B | Module 52B: Motor Controllers B (Optional) Assess the use of different motor controllers with specific motor types.                                  | Intermediate | 2-4  |
| RC | ROBA53A | Module 53A: Drones A (Optional) Research and follow requirements for operating drones in Canada.                                                     | Intermediate | 4-5  |
| В  | ROBA53B | Module 53B: Drones B (Optional) Design, construct and control a flying drone.                                                                        | Intermediate | 4-5  |
| В  | ROBA53C | Module 53C: Drones C (Optional)  Design, construct and safely control a flying drone.                                                                | Advanced     | 5-10 |

| Machining Modules |         |                                                                                                                                                        |              |      |  |
|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--|
| В                 | ROBA54  | Module 54: Machine Safety (Optional)  Demonstrate safe practices when working with properly maintained mechanical equipment.                           | Intermediate | 1-2  |  |
| В                 | ROBA55  | Module 55: Properties of Materials (Optional)  Analyze the properties of materials and experiment with their uses in robotics and automation projects. | Introductory | 2-3  |  |
| В                 | ROBA56  | Module 56: Fasteners (Optional) Use fasteners and adhesives effectively in a robotics and automation project.                                          | Introductory | 1-2  |  |
| В                 | ROBA57  | Module 57: Mechanical Structure (Core) Investigate mechanical structure techniques for use in robotics and automation applications.                    | Introductory | 3-6  |  |
| В                 | ROBA58A | Module 58A: Fabricate A (Optional)  Modify existing parts for use in a device.                                                                         | Introductory | 2-3  |  |
| В                 | ROBA58B | Module 58B: Fabricate B (Optional)  Design and create a single part for use in a device.                                                               | Intermediate | 2-3  |  |
| В                 | ROBA58C | Module 58C: Fabricate C (Optional)  Design and build a multi-part device.                                                                              | Advanced     | 3-5  |  |
| В                 | ROBA59  | Module 59: 3D CAD Basics (Optional) Create representations of 3-dimensional (3D) objects using computer-aided design (CAD) software.                   | Introductory | 3-8  |  |
| В                 | ROBA60A | Module 60A: 3D Printing A (Optional)  Construct an object using a 3-dimensional (3D)  printing process.                                                | Intermediate | 5-10 |  |
| В                 | ROBA60B | Module 60B: 3D Printing B (Optional)  Design a 3D printed object to solve a problem encountered in robotics and automation applications.               | Intermediate | 5-10 |  |
| В                 | ROBA61A | Module 61A: CNC Manufacturing A (Optional) Construct two-dimensional (2D) objects using computer numerical control (CNC) manufacturing.                | Intermediate | 5-10 |  |

| В | ROBA61B | Module 61B: CNC Manufacturing B (Optional) Construct three-dimensional (3D) objects using computer numerical control (CNC) manufacturing.            | Advanced     | 5-10  |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| В | ROBA62A | Module 62A: Fluid Power A (Optional) Construct a mechanical device that incorporates principles of fluid power systems.                              | Introductory | 1-2   |
| В | ROBA62B | Module 62B: Fluid Power B (Optional)  Design and build hydraulic and/or pneumatic components or systems.                                             | Intermediate | 3-5   |
|   |         | Automation Modules                                                                                                                                   |              |       |
| А | ROBA63A | Module 63A: Automation A (Optional)  Construct a simple automated device.                                                                            | Intermediate | 10-15 |
| А | ROBA63B | Module 63B: Automation B (Optional)  Construct an intermediate automated device.                                                                     | Intermediate | 10-20 |
| А | ROBA63C | Module 63C: Automation C (Optional) Construct a complex automated device.                                                                            | Advanced     | 10-20 |
| А | ROBA64  | Module 64: Machine Vision (Optional) Investigate the use of machine vision in robotics and automation applications.                                  | Advanced     | 5-10  |
|   |         | Project Management Modules                                                                                                                           |              |       |
| В | ROBA65  | Module 65: Physical Space Management (Optional) Evaluate workspace organization for effectiveness and efficiency.                                    | Introductory | 1-2   |
| В | ROBA66A | Module 66A: Project Management A (Optional) Create, follow and manage a basic project plan.                                                          | Introductory | 1-2   |
| В | ROBA66B | Module 66B: Project Management B (Optional) Create, follow and manage a multi-step project plan.                                                     | Intermediate | 1-2   |
| В | ROBA66C | Module 66C: Project Management C (Optional)  Design, implement and manage a detailed project plan that utilizes team member strengths and interests. | Advanced     | 3-5   |

| В | ROBA67A | Module 67A: Introductory Project (Optional) Construct an introductory level assigned or approved robotics or automation project.            | Introductory | 10-20 |
|---|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| В | ROBA67B | Module 67B: Intermediate Project (Optional) Construct an intermediate level assigned or approved robotics or automation project.            | Intermediate | 20-30 |
| В | ROBA67C | Module 67C: Advanced Project (Optional)  Construct an advanced level assigned or approved robotics or automation project.                   | Advanced     | 30-50 |
|   |         | Career and Workplace Modules                                                                                                                |              |       |
| В | ROBA68A | Module 68A: Careers in Robotics/Automation A (Core) Explore robotics and automation career paths in Saskatchewan, Canada and the world.     | Introductory | 3-4   |
| В | ROBA68B | Module 68B: Careers in Robotics/Automation B (Core) Examine the skills necessary to pursue robotics and/or automation related career paths. | Intermediate | 3-4   |
| В | ROBA68C | Module 68C: Careers in Robotics/Automation C (Core) Research robotics related career paths in Saskatchewan, Canada and the world.           | Advanced     | 3-4   |
|   |         | Work Study Modules                                                                                                                          |              |       |
| В | ROBA69A | Module 69A: Work Study Preparation (Optional) Prepare for the work placement.                                                               | Intermediate | 3-5   |
| В | ROBA69B | Module 69B: Work Study Preparation (Optional) Prepare for the work placement.                                                               | Advanced     | 3-5   |
| В | ROBA70A | Module 70A: Work Study Placement (Optional) Participate in a work placement experience.                                                     | Intermediate | 25-50 |
| В | ROBA70B | Module 70B: Work Study Placement (Optional) Participate in a work placement experience.                                                     | Advanced     | 25-50 |

| В                      | ROBA71A | Module 71A: Work Study Follow-up (Optional) Relate one's work placement experience to personal and career goals. | Intermediate | 2-4   |  |  |  |
|------------------------|---------|------------------------------------------------------------------------------------------------------------------|--------------|-------|--|--|--|
| В                      | ROBA71B | Module 71B: Work Study Follow-up (Optional) Relate one's work placement experience to personal and career goals. | Advanced     | 2-4   |  |  |  |
| Extended Study Modules |         |                                                                                                                  |              |       |  |  |  |
| В                      | ROBA99A | Module 99A: Extended Study (Optional)                                                                            | Introductory | 10-25 |  |  |  |
| В                      | ROBA99B | Module 99B: Extended Study (Optional)                                                                            | Intermediate | 10-25 |  |  |  |
| В                      | ROBA99C | Module 99C: Extended Study (Optional)                                                                            | Advanced     | 10-25 |  |  |  |

# **Course Configurations – Core and Suggested Optional Modules**

| Module<br># | Robotics and Automation 10 Autonomous Focus                                                                                                    | Level        | Suggested<br>Time (hrs) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| ROBA1       | Module 1: General Safety (Core)  Apply principles and techniques for injury prevention to ensure safe work area.                               | Introductory | 2-4                     |
| ROBA2       | Module 2: History of Robotics (Core) Investigate the historical development of robotics and autonomous technologies.                           | Introductory | 1-2                     |
| ROBA7A      | Module 7A: Troubleshooting A (Optional)  Develop and implement a plan to resolve an issue present in a device.                                 | Introductory | 3-5                     |
| ROBA8A      | Module 8A: Design Thinking A (Optional)  Apply engineering design processes to improve simple tasks and projects.                              | Introductory | 2-4                     |
| ROBA9       | Module 9: Electrical Safety (Optional)  Demonstrate safe practices when working with electricity and electrical devices.                       | Intermediate | 1-2                     |
| ROBA10      | Module 10: Debugging Circuits (Optional)  Explore different strategies and conventions for debugging circuits.                                 | Introductory | 1-2                     |
| ROBA12A     | Module 12A: Basic Electricity A (Core)  Design and construct a variety of complex circuits.                                                    | Introductory | 3-5                     |
| ROBA13A     | Module 13A: Solderless Breadboards A (Optional)  Design and construct functional circuits on a breadboard.                                     | Introductory | 1-2                     |
| ROBA14A     | Module 14A: Electronic Components A (Optional)  Explore the use of resistors and light-emitting diodes  (LEDs) in electric circuits.           | Introductory | 2-4                     |
| ROBA15A     | Module 15A: Drawing Circuits A (Optional)  Utilize wiring diagrams to guide the design and construction of electronic circuits.                | Introductory | 2-3                     |
| ROBA16      | Module 16: Measuring Instruments (Optional)  Use a multimeter to measure voltage, current and resistance of a circuit or portion of a circuit. | Intermediate | 2-3                     |
| ROBA19      | Module 19: Soldering (Optional)  Demonstrate proficiency in soldering.                                                                         | Introductory | 4-8                     |

| ROBA21  | Module 21: Hardware / Software Interface (Optional) Investigate the role of software in providing instructions to a robotic or automated device.                         | Introductory | 2-5  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| ROBA22  | Module 22: Microcontrollers (Optional) Investigate the role of a microcontroller in robotics and automation systems.                                                     | Introductory | 3-5  |
| ROBA23A | Module 23A: Output A (Optional)  Design, construct and program a device to modify simple outputs.                                                                        | Introductory | 3-5  |
| ROBA25  | Module 25: File Management (Optional)  Demonstrate effective file management and organization including the use of appropriate naming conventions and folder structures. | Introductory | 1-2  |
| ROBA27  | Module 27: Pseudocode B (Optional)  Examine the role of pseudocode in planning computer programs.                                                                        | Introductory | 1-2  |
| ROBA30A | Module 30A: Coding – Variables A (Core) Differentiate between common data types (e.g., integer, Boolean, floating point and string).                                     | Introductory | 1-3  |
| ROBA30B | Module 30B: Coding – Variables B (Core) Create programs that use control structures to affect program flow.                                                              | Introductory | 1-3  |
| ROBA31A | Module 31A: Coding – Control Structures A (Optional) Create programs that use control structures to affect program flow.                                                 | Introductory | 5-10 |
| ROBA33  | Module 33: Debugging Code (Optional) Use common coding techniques to enhance code elegance and debug errors.                                                             | Intermediate | 2-5  |
| ROBA34A | Module 34A: Sensor Theory A (Optional)  Explore the use of sensors in robotic and automated devices.                                                                     | Introductory | 2-4  |
| ROBA35A | Module 35A: Line Sensors A (Optional)  Construct and program a device capable of following a simple line.                                                                | Introductory | 3-5  |
| ROBA36A | Module 36A: Tactile Sensors A (Optional)  Construct and program a device capable of using tactile sensors to make decisions.                                             | Introductory | 3-5  |
| ROBA37A | Module 37A: Ultrasonic Sensors A (Optional) Construct and program a device that uses an ultrasonic sensor to detect distance.                                            | Introductory | 3-5  |
|         | •                                                                                                                                                                        | •            |      |

| ROBA38A | Module 38A: Infrared Sensors A (Optional)  Construct and program a device that uses infrared lights and sensors to detect objects.  | Introductory | 3-5   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| ROBA39A | Module 39A: Sound Sensors A (Optional)  Construct and program a device that can detect sound using a sound sensor.                  | Introductory | 3-5   |
| ROBA40A | Module 40A: Other Sensors A (Optional)  Construct and program a device to detect an input from a sensor.                            | Introductory | 3-5   |
| ROBA41A | Module 41A: Wearable Technologies A (Optional) Investigate the use of wearable technologies.                                        | Introductory | 2-4   |
| ROBA41B | Module 41B: Wearable Technologies B (Optional)  Construct and program a wearable device.                                            | Intermediate | 5-10  |
| ROBA44A | Module 44A: Power Sources A (Optional)  Examine a variety of power sources suitable for robotic and automation applications.        | Introductory | 2-4   |
| ROBA48  | Module 48: Motors (Optional)  Experiment with the properties and capabilities of direct current (DC) motors.                        | Introductory | 3-5   |
| ROBA49  | Module 49: Servos (Optional) Investigate applications of servos in robotics and automation applications.                            | Introductory | 3-5   |
| ROBA52A | Module 52A: Motor Controllers A (Optional) Use motor controllers to power motors.                                                   | Introductory | 2-4   |
| ROBA57  | Module 57: Mechanical Structure (Core) Investigate mechanical structure techniques for use in robotics and automation applications. | Introductory | 3-6   |
| ROBA63A | Module 63A: Automation A (Optional)  Construct a simple automated device.                                                           | Introductory | 10-15 |
| ROBA65  | Module 65: Physical Space Management (Optional)  Evaluate workspace organization for effectiveness and efficiency.                  | Introductory | 1-2   |
| ROBA66A | Module 66A: Project Management A (Optional) Create, follow and manage a basic project plan.                                         | Introductory | 1-2   |
| ROBA67A | Module 67A: Introductory Project (Optional)  Construct an introductory level assigned or approved robotics or automation project.   | Introductory | 10-20 |
|         |                                                                                                                                     | •            |       |

|          |                                                                                  | 1            | T          |
|----------|----------------------------------------------------------------------------------|--------------|------------|
|          | Module 68A: Careers in Robotics/Automation A (Core)                              |              |            |
| ROBA68A  | Explore robotics and automation career paths in                                  | Introductory | 3-4        |
| ROBA99A  | Saskatchewan, Canada and the world.  Extended Study (Optional)                   | Introductory | 10-25      |
| KUDAJJA  | Minimum                                                                          | introductory | 10-23      |
|          |                                                                                  |              | 100        |
| Module   | Robotics and Automation 10                                                       | Level        | Suggested  |
| #        | Radio-Control Focus                                                              | Level        | Time (hrs) |
|          | Module 1: General Safety (Core)                                                  |              |            |
| ROBA1    | Apply principles and techniques for injury prevention to                         | Introductory | 2-4        |
|          | ensure safe work area.                                                           |              |            |
|          | Module 2: History of Robotics (Core)                                             |              |            |
| ROBA2    | Investigate the historical development of robotics and                           | Introductory | 1-2        |
|          | autonomous technologies.                                                         |              |            |
|          | Module 7A: Troubleshooting A (Optional)                                          |              |            |
| ROBA7A   | Develop and implement a plan to resolve an issue                                 | Introductory | 3-5        |
|          | present in a device.                                                             |              |            |
|          | Module 8A: Design Thinking A (Optional)                                          |              |            |
| ROBA8A   | Apply engineering design processes to improve simple                             | Introductory | 2-4        |
|          | tasks and projects.                                                              |              |            |
| 00040    | Module 9: Electrical Safety (Optional)                                           |              | 4.2        |
| ROBA9    | Demonstrate safe practices when working with electricity and electrical devices. | Intermediate | 1-2        |
|          | Module 10: Debugging Circuits (Optional)                                         |              |            |
| ROBA10   | Explore different strategies and conventions for                                 | Introductory | 1-2        |
| KODATO   | debugging circuits.                                                              | introductory | 1-2        |
|          | Module 11: Electrical Theory (Optional)                                          |              |            |
| ROBA11   | Analyze the relationships among voltage, current and                             | Intermediate | 2-3        |
| 1100/111 | resistance in electrical circuits.                                               | Intermediate | 23         |
|          | Module 12A: Basic Electricity A (Core)                                           |              |            |
| ROBA12A  | Design and construct a variety of complex circuits.                              | Introductory | 3-5        |
|          | Module 14A: Electronic Components A (Optional)                                   |              |            |
| ROBA14A  | Explore the use of resistors and light-emitting diodes                           | Introductory | 2-4        |
|          | (LEDs) in electric circuits.                                                     | ,            |            |
|          | Module 16: Measuring Instruments (Optional)                                      |              |            |
| ROBA16   | Use a multimeter to measure voltage, current and                                 | Intermediate | 2-3        |
|          | resistance of a circuit or portion of a circuit.                                 |              |            |
|          | Module 17: Conductors and Insulators (Optional)                                  |              |            |
| ROBA17   | Explore how conductors and insulators are used in                                | Intermediate | 2-3        |
|          | electric circuits.                                                               |              |            |
|          | 1                                                                                | l .          | L          |

| ROBA18            | Module 18: Fuses (Optional)  Explore types and uses of fuses to protect circuits.                                                                                                                                                                                                                                                              | Introductory | 1-2        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| ROBA19            | Module 19: Soldering (Optional)  Demonstrate proficiency in soldering.                                                                                                                                                                                                                                                                         | Introductory | 4-8        |
| ROBA22            | Module 22: Microcontrollers (Optional) Investigate the role of a microcontroller in robotics and automation systems.                                                                                                                                                                                                                           | Introductory | 3-5        |
| ROBA23A           | Module 23A: Output A (Optional)  Design, construct and program a device to modify simple outputs.                                                                                                                                                                                                                                              | Introductory | 3-5        |
| ROBA43A           | Module 43A: Transmitting and Receiving A (Optional) Connect transmitting and receiving devices.                                                                                                                                                                                                                                                | Introductory | 2-4        |
| ROBA44A           | Module 44A: Power Sources A (Optional)  Examine a variety of power sources suitable for robotic and automation applications.                                                                                                                                                                                                                   | Introductory | 2-4        |
| ROBA46            | Module 46: Wheels (Optional)  Evaluate wheels for suitability in robotics and automation applications.                                                                                                                                                                                                                                         | Introductory | 2-4        |
| ROBA48            | Module 48: Motors (Optional)  Experiment with the properties and capabilities of direct current (DC) motors.                                                                                                                                                                                                                                   | Introductory | 3-5        |
| ROBA49            | Module 49: Servos (Optional) Investigate applications of servos in robotics and automation applications.                                                                                                                                                                                                                                       | Introductory | 3-5        |
| ROBA51A           | Module 51A: Actuators A (Optional)  Experiment with the properties and capabilities of actuators.                                                                                                                                                                                                                                              | Intermediate | 2-4        |
| ROBA52A           | Module 52A: Motor Controllers A (Optional) Use motor controllers to power motors.                                                                                                                                                                                                                                                              | Introductory | 2-4        |
| ROBA56            | Module 56: Fasteners (Optional) Use fasteners and adhesives effectively in a robotics and automation project.                                                                                                                                                                                                                                  | Introductory | 1-2        |
| ROBA57            | Module 57: Mechanical Structure (Core) Investigate mechanical structure techniques for use in robotics and automation applications.                                                                                                                                                                                                            | Introductory | 3-6        |
| ROBA58A           | Module 58A: Fabricate A (Optional)  Modify existing parts for use in a device.                                                                                                                                                                                                                                                                 | Introductory | 2-3        |
| ROBA65            | Module 65: Physical Space Management (Optional) Evaluate workspace organization for effectiveness and efficiency.                                                                                                                                                                                                                              | Introductory | 1-2        |
| ROBA57<br>ROBA58A | automation project.  Module 57: Mechanical Structure (Core) Investigate mechanical structure techniques for use in robotics and automation applications.  Module 58A: Fabricate A (Optional) Modify existing parts for use in a device.  Module 65: Physical Space Management (Optional) Evaluate workspace organization for effectiveness and | Introductory | 3-6<br>2-3 |

| Module 66A: Project Management A (Optional)          | Introductory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Create, follow and manage a basic project plan.      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module 67A: Introductory Project (Optional)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Construct an introductory level assigned or approved | Introductory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| robotics or automation project.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module 68A: Careers in Robotics/Automation A (Core)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Explore robotics and automation career paths in      | Introductory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Saskatchewan, Canada and the world.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Extended Study (Optional)                            | Introductory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Optional Modules from the Carpentry Curricu          | ulum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module 6: Measuring and Layout                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Module 7: Hand Tools                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Module 8A: Portable Power Tools                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Module 9A: Stationary Power Tools                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Module 10: Fasteners and Adhesives                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                      | Create, follow and manage a basic project plan.  Module 67A: Introductory Project (Optional) Construct an introductory level assigned or approved robotics or automation project.  Module 68A: Careers in Robotics/Automation A (Core) Explore robotics and automation career paths in Saskatchewan, Canada and the world.  Extended Study (Optional)  Optional Modules from the Carpentry Currice Module 6: Measuring and Layout  Module 7: Hand Tools  Module 8A: Portable Power Tools  Module 9A: Stationary Power Tools  Module 10: Fasteners and Adhesives | Create, follow and manage a basic project plan.  Module 67A: Introductory Project (Optional) Construct an introductory level assigned or approved robotics or automation project.  Module 68A: Careers in Robotics/Automation A (Core) Explore robotics and automation career paths in Saskatchewan, Canada and the world.  Extended Study (Optional)  Optional Modules from the Carpentry Curriculum  Module 6: Measuring and Layout  Module 7: Hand Tools  Module 8A: Portable Power Tools  Module 9A: Stationary Power Tools  Module 10: Fasteners and Adhesives |

| Module<br>Code | Robotics and Automation 20 Autonomous Focus                                                                                                                                 | Level        | Suggested<br>Time (hrs) |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| ROBA1          | Module 1: General Safety (Core)  Apply principles and techniques for injury prevention to ensure safe work area.                                                            | Introductory | 2-4                     |
| ROBA3          | Module 3: Ethics and Laws (Core)  Explore ethical, moral and legal issues relevant to robotics and autonomous devices.                                                      | Introductory | 2-3                     |
| ROBA4          | Module 4: Societal Impact (Core)  Evaluate historical and contemporary impacts of robotics and autonomous devices on society.                                               | Introductory | 2-3                     |
| ROBA5          | Module 5: Introduction to Automation (Optional) Investigate the prevalence and societal impacts of automation.                                                              | Introductory | 3-5                     |
| ROBA6          | Module 6: Artificial Intelligence (Optional)  Examine applications of artificial intelligence (AI) in robotics and automation.                                              | Introductory | 2-3                     |
| ROBA8B         | Module 8B: Design Thinking B (Optional)  Evaluate a prototype using specific criteria.                                                                                      | Intermediate | 1-2                     |
| ROBA9          | Module 9: Electrical Safety (Optional)  Demonstrate safe practices when working with electricity and electrical devices.                                                    | Intermediate | 1-2                     |
| ROBA12B        | Module 12B: Basic Electricity B (Optional)  Analyze the differences between parallel and series circuits.                                                                   | Introductory | 3-5                     |
| ROBA13B        | Module 13B: Solderless Breadboards B (Optional)  Apply advanced breadboarding knowledge and schematic diagrams to design and construct functional circuits on a breadboard. | Advanced     | 3-7                     |
| ROBA14B        | Module 14B: Electronic Components B (Optional)  Explore the use of component parts in basic electronic circuits.                                                            | Intermediate | 2-4                     |
| ROBA15B        | Module 15B: Drawing Circuits B (Optional)  Utilize schematic diagrams to guide the design and construction of electronic circuits.                                          | Intermediate | 2-3                     |
| ROBA17         | Module 17: Conductors and Insulators (Optional)  Explore how conductors and insulators are used in electric circuits.                                                       | Intermediate | 2-3                     |

| ROBA23B | Module 23B: Output B (Optional)  Design, construct and program a device to modify multiple outputs.                                              | Intermediate | 3-5  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| ROBA24` | Module 24: Shields (Optional)  Explore the role of a shield in enhancing the functionality of microcontrollers.                                  | Introductory | 3-5  |
| ROBA26  | Module 26: Computational Thinking (Optional) Investigate computational thinking as a problem-solving process.                                    | Introductory | 1-2  |
| ROBA29  | Module 29: Syntax and Organization (Optional)  Demonstrate proper syntax and organization when developing a program.                             | Introductory | 1-2  |
| ROBA30C | Module 30C: Coding – Variables C (Optional)  Explore the use of integer data types in programs.                                                  | Intermediate | 1-3  |
| ROBA30D | Module 30D: Coding – Variables D (Optional) Incorporate Boolean and string data types in programs.                                               | Intermediate | 1-3  |
| ROBA30E | Module 30E: Coding – Variables E (Optional) Investigate the use of floating point data types in programs.                                        | Intermediate | 2-5  |
| ROBA31B | Module 31B: Coding – Control Structures B (Optional) Create programs that use conditional statements to control program flow.                    | Intermediate | 5-10 |
| ROBA32A | Module 32A: Coding – Functions A (Optional) Create and incorporate functions in programs.                                                        | Intermediate | 3-5  |
| ROBA34B | Module 34B: Sensor Theory B (Optional) Investigate how sensors interact with hardware and software in a device.                                  | Advanced     | 2-3  |
| ROBA35B | Module 35B: Line Sensors B (Optional)  Construct and program a device capable of following a line that includes 90-degree turns and T-junctions. | Intermediate | 3-5  |
| ROBA36B | Module 36B: Tactile Sensors B (Optional)  Construct and program a device capable of using multiple tactile sensors to make decisions.            | Intermediate | 3-5  |
| ROBA37B | Module 37B: Ultrasonic Sensors B (Optional) Construct and program a device that uses an ultrasonic sensor to navigate an area.                   | Intermediate | 3-5  |
| ROBA38B | Module 38B: Infrared Sensors B (Optional)  Construct and program a device capable of navigating around a room using infrared sensors.            | Intermediate | 3-5  |

|         |                                                                                                                                                                     | T            |       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| ROBA39B | Module 39B: Sound Sensors B (Optional)  Construct and program a device that can follow sound.                                                                       | Intermediate | 3-5   |
| ROBA40A | Module 40A: Other Sensors A (Optional)  Construct and program a device to detect an input from a sensor.                                                            | Introductory | 3-5   |
| ROBA42  | Module 42: Radio-Frequency Identification (Optional) Construct and program a device that uses radio- frequency identification (RFID) to accomplish a specific task. | Intermediate | 3-5   |
| ROBA53A | Module 53A: Drones A (Optional) Research and follow requirements for operating drones in Canada.                                                                    | Intermediate | 3-5   |
| ROBA54  | Module 54: Machine Safety (Optional)  Demonstrate safe practices when working with properly maintained mechanical equipment.                                        | Intermediate | 1-2   |
| ROBA58A | Module 58A: Fabricate A (Optional)  Modify existing parts for use in a device.                                                                                      | Introductory | 2-3   |
| ROBA59  | Module 59: 3D CAD Basics (Optional)  Create representations of 3-dimensional (3D) objects using computer-aided design (CAD) software.                               | Introductory | 3-8   |
| ROBA60A | Module 60A: 3D Printing A (Optional)  Construct an object using a 3-dimensional (3D) printing process.                                                              | Intermediate | 5-10  |
| ROBA63B | Module 63B: Automation B (Optional)  Construct an intermediate automated device.                                                                                    | Intermediate | 10-20 |
| ROBA66B | Module 66B: Project Management B (Optional) Create, follow and manage a multi-step project plan.                                                                    | Intermediate | 1-2   |
| ROBA67B | Module 67B: Intermediate Project (Optional)  Construct an intermediate level assigned or approved robotics or automation project.                                   | Intermediate | 10-20 |
| ROBA68B | Module 68B: Careers in Robotics/Automation B (Core) Examine the skills necessary to pursue robotics and/or automation related career paths.                         | Intermediate | 3-4   |
| ROBA69A | Module 69A: Work Study Preparation (Optional) Prepare for the work placement.                                                                                       | Intermediate | 3-5   |
| ROBA70A | Module 70A: Work Study Placement (Optional) Participate in a work placement experience.                                                                             | Intermediate | 25-50 |

|         | <u></u>                                                                                                                                          | T            | ,          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| ROBA71A | Module 71A: Work Study Follow-up (Optional) Relate one's work placement experience to personal and career goals.                                 | Intermediate | 2-4        |
| ROBA99B | Extended Study (Optional)                                                                                                                        | Intermediate | 10-25      |
|         | Minimum                                                                                                                                          |              | 100        |
| Module  | Robotics and Automation 20                                                                                                                       | Level        | Suggested  |
| Code    | Radio Control Focus                                                                                                                              |              | Time (hrs) |
| ROBA1   | Module 1: General Safety (Core)  Apply principles and techniques for injury prevention to ensure safe work area.                                 | Introductory | 2-4        |
| ROBA3   | Module 3: Ethics and Laws (Core)  Explore ethical, moral and legal issues relevant to robotics and autonomous devices.                           | Introductory | 2-3        |
| ROBA4   | Module 4: Societal Impact (Core)  Evaluate historical and contemporary impacts of robotics and autonomous devices on society.                    | Introductory | 2-3        |
| ROBA5   | Module 5: Introduction to Automation (Optional) Investigate the prevalence and societal impacts of automation.                                   | Introductory | 3-5        |
| ROBA6   | Module 6: Artificial Intelligence (Optional)  Examine applications of artificial intelligence (AI) in robotics and automation.                   | Introductory | 2-3        |
| ROBA8B  | Module 8B: Design Thinking B (Optional)  Evaluate a prototype using specific criteria.                                                           | Intermediate | 1-2        |
| ROBA9   | Module 9: Electrical Safety (Optional)  Demonstrate safe practices when working with electricity and electrical devices.                         | Intermediate | 1-2        |
| ROBA12B | Module 12B: Basic Electricity B (Optional) Analyze the differences between parallel and series circuits.                                         | Introductory | 3-5        |
| ROBA14B | Module 14B: Electronic Components B (Optional)  Explore the use of component parts in basic electronic circuits.                                 | Intermediate | 2-4        |
| ROBA20  | Module 20: Datasheets (Optional)  Examine the importance of datasheets for understanding the technical characteristics of electronic components. | Advanced     | 2          |
| ROBA23B | Module 23B: Output B (Optional)  Design, construct and program a device to modify multiple outputs.                                              | Intermediate | 3-5        |

| ROBA24  | Module 24: Shields (Optional)  Explore the role of a shield in enhancing the | Introductory | 3-5  |
|---------|------------------------------------------------------------------------------|--------------|------|
|         | functionality of microcontrollers.                                           |              |      |
|         | Module 43B: Transmitting and Receiving B (Optional)                          |              |      |
| ROBA43B | Control a robotic or automated device using                                  | Intermediate | 3-5  |
|         | transmitting and receiving devices.                                          |              |      |
|         | Module 44B: Power Sources B (Optional)                                       |              |      |
| ROBA44B | Analyze different types of batteries for their suitability in                | Intermediate | 3-5  |
|         | robotics and automation applications.                                        |              |      |
|         | Module 45: Drive Systems (Optional)                                          |              |      |
| ROBA45  | Evaluate drive systems for suitability in robotics and                       | Introductory | 3-8  |
|         | automation applications.                                                     |              |      |
|         | Module 47: Gears (Optional)                                                  |              |      |
| ROBA47  | Evaluate the suitability of gears, sprockets and chains                      | Intermediate | 3-5  |
| NODA47  | and pulleys and belts for robotics and automation                            | intermediate | 3-3  |
|         | applications.                                                                |              |      |
|         | Module 51B: Actuators B (Optional)                                           |              |      |
| ROBA51B | Design and construct a device that incorporates an                           | Intermediate | 5-10 |
|         | actuator.                                                                    |              |      |
|         | Module 52B: Motor Controllers B (Optional)                                   |              |      |
| ROBA52B | Assess the use of different motor controllers with                           | Intermediate | 2-4  |
|         | specific motor types.                                                        |              |      |
|         | Module 53A: Drones A (Optional)                                              |              |      |
| ROBA53A | Research and follow requirements for operating drones                        | Intermediate | 4-5  |
|         | in Canada.                                                                   |              |      |
|         | Module 54: Machine Safety (Optional)                                         |              |      |
| ROBA54  | Demonstrate safe practices when working with properly                        | Intermediate | 1-2  |
|         | maintained mechanical equipment.                                             |              |      |
|         | Module 55: Properties of Materials (Optional)                                |              |      |
| ROBA55  | Analyze the properties of materials and experiment with                      | Introductory | 2-3  |
|         | their uses in robotics and automation projects.                              | ,            |      |
|         | Module 58B: Fabricate B (Optional)                                           |              |      |
| ROBA58B | Design and create a single part for use in a device.                         | Intermediate | 2-3  |
|         | Module 59: 3D CAD Basics (Optional)                                          |              |      |
| ROBA59  | Create representations of 3-dimensional (3D) objects                         | Introductory | 3-8  |
|         | using computer-aided design (CAD) software.                                  | _            |      |
|         | Module 60A: 3D Printing A (Optional)                                         |              |      |
| ROBA60A | Construct an object using a 3-dimensional (3D) printing                      | Intermediate | 5-10 |
|         | process.                                                                     |              |      |
|         |                                                                              |              |      |

| ROBA66B | Module 66B: Project Management B (Optional)  Create, follow and manage a multi-step project plan. | Intermediate   | 1-2   |
|---------|---------------------------------------------------------------------------------------------------|----------------|-------|
|         |                                                                                                   |                |       |
|         | Module 67B: Intermediate Project (Optional)                                                       |                |       |
| ROBA67B | Construct an intermediate level assigned or approved                                              | Intermediate   | 10-20 |
|         | robotics or automation project.                                                                   |                |       |
|         | Module 68B: Careers in Robotics/Automation B (Core)                                               |                |       |
| ROBA68B | Examine the skills necessary to pursue robotics and/or                                            | Intermediate   | 3-4   |
|         | automation related career paths.                                                                  |                |       |
| DODACOA | Module 69A: Work Study Preparation (Optional)                                                     | Intornocadiata | 2.5   |
| ROBA69A | Prepare for the work placement.                                                                   | Intermediate   | 3-5   |
| 0004704 | Module 70A: Work Study Placement (Optional)                                                       |                |       |
| ROBA70A | Participate in a work placement experience.                                                       | Intermediate   | 25-50 |
|         | Module 71A: Work Study Follow-up (Optional)                                                       |                |       |
| ROBA71A | Relate one's work placement experience to personal and                                            | Intermediate   | 2-4   |
|         | career goals.                                                                                     |                |       |
| ROBA99B | Extended Study (Optional)                                                                         | Intermediate   | 10-25 |
|         | Optional Modules from the Welding Curricu                                                         | ılum           |       |
| WLDG03  | Module 3: Hand and Power Tools                                                                    |                | 3-15  |
| MIDCOL  | Module 5: Oxyacetylene Start-up, Shut-down, and                                                   |                | 2 [   |
| WLDG05  | Cutting                                                                                           |                | 3-5   |
| WLDG13  | Module 13: Plasma Arc Cutting                                                                     |                | 1-2   |
| WLDG27A | Module 27A: GMAW Procedures and Practice                                                          |                | 15-20 |
|         | Minimum                                                                                           |                | 100   |

| Module<br>Code | Robotics and Automation 30 Autonomous Focus                                                                                                                                   | Level        | Suggested<br>Time (hrs) |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| ROBA1          | Module 1: General Safety (Core)  Apply principles and techniques for injury prevention to ensure safe work area.                                                              | Introductory | 2-4                     |
| ROBA7B         | Module 7B: Troubleshooting B (Optional)  Develop and implement a plan to resolve multiple issues present in a device.                                                         | Advanced     | 5-10                    |
| ROBA8C         | Module 8C: Design Thinking C (Optional) Incorporate empathy into engineering design processes.                                                                                | Intermediate | 4-5                     |
| ROBA9          | Module 9: Electrical Safety (Optional)  Demonstrate safe practices when working with electricity and electrical devices.                                                      | Intermediate | 1-2                     |
| ROBA14C        | Module 14C: Electronic Components C (Optional)  Design a variety of circuits to interface between a programmable control board and devices and a robotic or automated device. | Advanced     | 2-4                     |
| ROBA18         | Module 18: Fuses (Optional)  Explore types and uses of fuses to protect circuits.                                                                                             | Introductory | 1-2                     |
| ROBA20         | Module 20: Datasheets (Optional)  Examine the importance of datasheets for understanding the technical characteristics of electronic components.                              | Advanced     | 2                       |
| ROBA32B        | Module 32B: Coding – Functions B (Optional) Incorporate internal, external and user-defined libraries to extend the functionality of software.                                | Intermediate | 3-5                     |
| ROBA32C        | Module 32C: Coding – Functions C (Optional) Investigate how and when to incorporate recursive functions into programs.                                                        | Advanced     | 3-5                     |
| ROBA35C        | Module 35C: Line Sensors C (Optional)  Construct and program a device capable of following a complex line, including dotted line sections.                                    | Advanced     | 3-5                     |
| ROBA37C        | Module 37C: Ultrasonic Sensors C (Optional) Construct and program a device that uses multiple ultrasonic sensors to make decisions.                                           | Advanced     | 3-5                     |
| ROBA38C        | Module 38C: Infrared Sensors C (Optional) Construct and program a device that uses multiple infrared sensors to make decisions.                                               | Advanced     | 3-5                     |

| ROBA53B | Module 53B: Drones B (Optional)  Design, construct and control a flying drone.                                                                       | Intermediate | 5-7   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| ROBA53C | Module 53C: Drones C (Optional)  Design, construct and safely control a flying drone.                                                                | Advanced     | 5-10  |
| ROBA58B | Module 58B: Fabricate B (Optional)  Design and create a single part for use in a device.                                                             | Intermediate | 2-3   |
| ROBA60B | Module 60B: 3D Printing B (Optional)  Design a 3D printed object to solve a problem encountered in robotics and automation applications.             | Intermediate | 5-10  |
| ROBA61A | Module 61A: CNC Manufacturing A (Optional) Construct two-dimensional (2D) objects using computer numerical control (CNC) manufacturing.              | Intermediate | 5-10  |
| ROBA61B | Module 61B: CNC Manufacturing B (Optional)  Construct three-dimensional (3D) objects using computer numerical control (CNC) manufacturing.           | Advanced     | 5-10  |
| ROBA62A | Module 62A: Fluid Power A (Optional)  Construct a mechanical device that incorporates principles of fluid power systems.                             | Introductory | 1-2   |
| ROBA62B | Module 62B: Fluid Power B (Optional)  Design and build hydraulic and/or pneumatic components or systems.                                             | Intermediate | 3-5   |
| ROBA63C | Module 63C: Automation C (Optional) Construct a complex automated device.                                                                            | Advanced     | 10-20 |
| ROBA64  | Module 64: Machine Vision (Optional) Investigate the use of machine vision in robotics and automation applications.                                  | Advanced     | 5-10  |
| ROBA66C | Module 66C: Project Management C (Optional)  Design, implement and manage a detailed project plan that utilizes team member strengths and interests. | Advanced     | 3-5   |
| ROBA67C | Module 67C: Advanced Project (Optional)  Construct an advanced level assigned or approved robotics or automation project.                            | Advanced     | 30-50 |
| ROBA68C | Module 68C: Careers in Robotics/Automation C (Core) Research robotics related career paths in Saskatchewan, Canada and the world.                    | Advanced     | 3-4   |
| ROBA69B | Module 69B: Work Study Preparation (Optional) Prepare for the work placement.                                                                        | Advanced     | 3-5   |
| ROBA70B | Module 70B: Work Study Placement (Optional) Participate in a work placement experience.                                                              | Advanced     | 25-50 |

| ROBA71B  | Module 71B: Work Study Follow-up (Optional) Relate one's work placement experience to personal and | Advanced            | 2-4        |
|----------|----------------------------------------------------------------------------------------------------|---------------------|------------|
| 5051000  | career goals.                                                                                      |                     | 40.0=      |
| ROBA99C  | Extended Study (Optional)                                                                          | Advanced            | 10-25      |
|          | Minimum                                                                                            |                     | 100        |
| Module   | Robotics and Automation 30                                                                         |                     | Suggested  |
| Code     | Radio Control Focus                                                                                | Level               | Time (hrs) |
|          | Module 1: General Safety (Core)                                                                    |                     |            |
| ROBA1    | Apply principles and techniques for injury prevention to ensure safe work area.                    | Introductory        | 2-4        |
|          | Module 7B: Troubleshooting B (Optional)                                                            |                     |            |
| ROBA7B   | Develop and implement a plan to resolve multiple issues present in a device.                       | Advanced            | 5-10       |
| ROBA8C   | Module 8C: Design Thinking C (Optional)                                                            | Intermediate        | 4-5        |
| 1102/100 | Incorporate empathy into engineering design processes.                                             | meermealace         | . 3        |
|          | Module 9: Electrical Safety (Optional)                                                             |                     |            |
| ROBA9    | Demonstrate safe practices when working with                                                       | Intermediate        | 1-2        |
|          | electricity and electrical devices.                                                                |                     |            |
|          | Module 14C: Electronic Components C (Optional)                                                     |                     |            |
| ROBA14C  | Design a variety of circuits to interface between a                                                | Advanced            | 2-4        |
| KUDA14C  | programmable control board and devices and a robotic                                               | Auvanceu            | 2-4        |
|          | or automated device.                                                                               |                     |            |
|          | Module 43C: Transmitting and Receiving C (Optional)                                                |                     |            |
| ROBA43C  | Customize a transmitter for control of a robotic or                                                | Advanced            | 3-5        |
|          | automated device.                                                                                  |                     |            |
|          | Module 50: Stepper Motors (Optional)                                                               |                     |            |
| ROBA50   | Explore applications of stepper motors in robotics and                                             | Advanced            | 3-5        |
|          | automation applications.                                                                           |                     |            |
|          | Module 53B: Drones B (Optional)                                                                    | _                   |            |
| ROBA53B  | Design, construct and control a flying drone.                                                      | Intermediate        | 5-7        |
| 0004500  | Module 53C: Drones C (Optional)                                                                    |                     | 5.40       |
| ROBA53C  | Design, construct and safely control a flying drone.                                               | Advanced            | 5-10       |
| DODATOC  | Module 58C: Fabricate C (Optional)                                                                 | ا د د د د د د د د د | 2.5        |
| ROBA58C  | Design and build a multi-part device.                                                              | Advanced            | 3-5        |
|          | Module 60B: 3D Printing B (Optional)                                                               |                     |            |
| ROBA60B  | Design a 3D printed object to solve a problem                                                      | Intermediate        | 5-10       |
|          | encountered in robotics and automation applications.                                               |                     |            |
|          |                                                                                                    |                     |            |

|           | T                                                       |              |       |
|-----------|---------------------------------------------------------|--------------|-------|
|           | Module 61A: CNC Manufacturing A (Optional)              |              |       |
| ROBA61A   | Construct two-dimensional (2D) objects using computer   | Intermediate | 5-10  |
|           | numerical control (CNC) manufacturing.                  |              |       |
|           | Module 61B: CNC Manufacturing B (Optional)              |              |       |
| ROBA61B   | Construct three-dimensional (3D) objects using          | Advanced     | 5-10  |
|           | computer numerical control (CNC) manufacturing.         |              |       |
|           | Module 62B: Fluid Power B (Optional)                    |              |       |
| ROBA62B   | Design and build hydraulic and/or pneumatic             | Intermediate | 3-5   |
|           | components or systems.                                  |              |       |
|           | Module 66C: Project Management C (Optional)             |              |       |
| ROBA66C   | Design, implement and manage a detailed project plan    | Advanced     | 3-5   |
|           | that utilizes team member strengths and interests.      |              |       |
|           | Module 67C: Advanced Project (Optional)                 |              |       |
| ROBA67C   | Construct an advanced level assigned or approved        | Advanced     | 30-50 |
|           | robotics or automation project.                         |              |       |
|           | Module 68C: Careers in Robotics/Automation C (Core)     |              |       |
| ROBA68C   | Research robotics related career paths in Saskatchewan, | Advanced     | 3-4   |
|           | Canada and the world.                                   |              |       |
| DODAGOD   | Module 69B: Work Study Preparation (Optional)           | A .ll        | 2.5   |
| ROBA69B   | Prepare for the work placement.                         | Advanced     | 3-5   |
| 0.004.700 | Module 70B: Work Study Placement (Optional)             |              | 25.50 |
| ROBA70B   | Participate in a work placement experience.             | Advanced     | 25-50 |
|           | Module 71B: Work Study Follow-up (Optional)             |              |       |
| ROBA71B   | Relate one's work placement experience to personal and  | Advanced     | 2-4   |
|           | career goals.                                           |              |       |
| ROBA99C   | Extended Study (Optional)                               | Advanced     | 10-25 |
|           | Minimum                                                 |              | 100   |

## **Suggested Modules for Middle-Level PAA Survey Courses**

Note: Survey courses at the Middle Level should incorporate primarily Introductory modules.

| Module # | Module Name                                     | Level          | Suggested<br>Time (hrs) | Prerequisite Module(s) |
|----------|-------------------------------------------------|----------------|-------------------------|------------------------|
|          | Module 1: General Safety                        |                |                         |                        |
| ROBA1    | Apply principles and techniques for injury      | Introductory   | 2-4                     | None                   |
|          | prevention to ensure safe work area.            |                |                         |                        |
|          | Module 2: History of Robotics                   |                |                         |                        |
| ROBA2    | Investigate the historical development of       | Introductory   | 1-2                     | None                   |
|          | robotics and autonomous technologies.           |                |                         |                        |
|          | Module 7A: Troubleshooting A                    |                |                         |                        |
| ROBA7A   | Develop and implement a plan to resolve an      | Introductory   | 3-5                     | None                   |
|          | issue present in a device.                      |                |                         |                        |
|          | Module 8A: Design Thinking A                    |                |                         |                        |
| ROBA8A   | Apply engineering design processes to           | Introductory   | 2-4                     | None                   |
|          | improve simple tasks and projects.              |                |                         |                        |
| ROBA8B   | Module 8B: Design Thinking B                    | Intermediate   | 1-2                     | 8A                     |
| NODAOD   | Evaluate a prototype using specific criteria.   | intermediate   |                         |                        |
|          | Module 10: Debugging Circuits                   |                |                         | None                   |
| ROBA10   | Explore different strategies and conventions    | Introductory   | 1-2                     |                        |
|          | for debugging circuits.                         |                |                         |                        |
|          | Module 12A: Basic Electricity A                 |                |                         | None                   |
| ROBA12A  | Design and construct a variety of complex       | Introductory   | 3-5                     |                        |
|          | circuits.                                       |                |                         |                        |
|          | Module 13A: Solderless Breadboards A            |                |                         |                        |
| ROBA13A  | Design and construct functional circuits on a   | Introductory   | 1-2                     | None                   |
|          | breadboard.                                     |                |                         |                        |
|          | Module 14A: Electronic Components A             |                |                         |                        |
| ROBA14A  | Explore the use of resistors and light-emitting | Introductory   | 2-4                     | None                   |
|          | diodes (LEDs) in electric circuits.             |                |                         |                        |
|          | Module 15A: Drawing Circuits A                  |                |                         |                        |
| ROBA15A  | Utilize wiring diagrams to guide the design     | Introductory   | 2-3                     | None                   |
|          | and construction of electronic circuits.        |                |                         |                        |
|          | Module 17: Conductors and Insulators            |                |                         |                        |
| ROBA17   | Explore how conductors and insulators are       | Intermediate 2 | 2-3                     | None                   |
|          | used in electric circuits.                      |                |                         |                        |
| ROBA19   | Module 19: Soldering                            | Introductory   | 4-8                     | 1                      |
| NODAIS   | Demonstrate proficiency in soldering.           | milioductory   | 4-8                     |                        |

| ROBA21  | Module 21: Hardware / Software Interface Investigate the role of software in providing instructions to a robotic or automated device.                                    | Introductory | 2-5 | None |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|------|
| ROBA22  | Module 22: Microcontrollers Investigate the role of a microcontroller in robotics and automation systems.                                                                | Introductory | 3-5 | None |
| ROBA23A | Module 23A: Output A  Design, construct and program a device to modify simple outputs.                                                                                   | Introductory | 3-5 | None |
| ROBA23B | Module 23B: Output B  Design, construct and program a device to modify multiple outputs.                                                                                 | Intermediate | 3-5 | 23A  |
| ROBA25  | Module 25: File Management (Optional)  Demonstrate effective file management and organization including the use of appropriate naming conventions and folder structures. | Introductory | 1-2 | None |
| ROBA26  | Module 26: Computational Thinking Investigate computational thinking as a problem-solving process.                                                                       | Introductory | 1-2 | None |
| ROBA27  | Module 27: Pseudocode  Examine the role of pseudocode in planning computer programs.                                                                                     | Intermediate | 1-2 | None |
| ROBA28A | Module 28A: Block-Based Coding A  Explore programming concepts using a block-based language.                                                                             | Introductory | 3-5 | None |
| ROBA28B | Module 28B: Block-Based Coding B Implement a program which utilizes control structures and repetition in a block-based coding environment.                               | Introductory | 3-5 | 28A  |
| ROBA30A | Module 30A: Coding – Variables A  Differentiate between common data types (e.g., integer, Boolean, floating point and string).                                           | Introductory | 1-3 | None |
| ROBA30B | Module 30B: Coding – Variables B  Create programs that use control structures to affect program flow.                                                                    | Introductory | 1-3 | 30A  |
| ROBA34A | Module 34A: Sensor Theory A  Explore the use of sensors in robotic and automated devices.                                                                                | Introductory | 2-4 | None |

|            | •                                                                     |                  |      |            |
|------------|-----------------------------------------------------------------------|------------------|------|------------|
| ROBA35A    | Module 35A: Line Sensors A  Construct and program a device capable of | Introductory     | 3-5  | 28A or 30A |
|            | following a simple line.                                              | ,                |      |            |
|            | Module 36A: Tactile Sensors A                                         |                  |      |            |
| ROBA36A    | Construct and program a device capable of                             | Introductory     | 3-5  | 28A or 30A |
|            | using tactile sensors to make decisions.                              | ,                |      |            |
|            | Module 37A: Ultrasonic Sensors A                                      |                  |      |            |
| ROBA37A    | Construct and program a device that uses an                           | Introductory     | 3-5  | 28A or 30A |
|            | ultrasonic sensor to detect distance.                                 |                  |      |            |
|            | Module 38A: Infrared Sensors A                                        |                  |      |            |
| ROBA38A    | Construct and program a device that uses                              | Introductory     | 3-5  | 28A or 30A |
|            | infrared lights and sensors to detect objects.                        |                  |      |            |
|            | Module 39A: Sound Sensors A                                           |                  |      |            |
| ROBA39A    | Construct and program a device that can                               | Introductory     | 3-5  | 28A or 30A |
|            | detect sound using a sound sensor.                                    |                  |      |            |
|            | Module 40A: Other Sensors A                                           |                  |      |            |
| ROBA40A    | Construct and program a device to detect an                           | Introductory     | 3-5  | 28A or 30A |
|            | input from a sensor.                                                  |                  |      |            |
| ROBA41A    | Module 41A: Wearable Technologies A                                   | Introductory     | 2-4  | None       |
| NODA41A    | Investigate the use of wearable technologies.                         | introductory     | 2-4  | None       |
| ROBA41B    | Module 41B: Wearable Technologies B                                   | Intermediate     | 5-10 | 41A        |
| NODA410    | Construct and program a wearable device.                              | Intermediate     | 3-10 | 417        |
| ROBA43A    | Module 43A: Transmitting and Receiving A                              | Introductory     | 2-4  | None       |
| 1100/143/1 | Connect transmitting and receiving devices.                           | meroductory      | 2 7  | TVOTIC     |
|            | Module 44A: Power Sources A                                           |                  |      |            |
| ROBA44A    | Examine a variety of power sources suitable                           | Introductory     | 2-4  | None       |
|            | for robotic and automation applications.                              |                  |      |            |
|            | Module 48: Motors                                                     |                  |      |            |
| ROBA48     | Experiment with the properties and                                    | Introductory     | 3-5  | None       |
|            | capabilities of direct current (DC) motors.                           |                  |      |            |
|            | Module 49: Servos                                                     |                  |      |            |
| ROBA49     | Investigate applications of servos in robotics                        | Introductory     | 3-5  | None       |
|            | and automation applications.                                          |                  |      |            |
|            | Module 55: Properties of Materials                                    |                  |      |            |
| ROBA55     | Analyze the properties of materials and                               | Introductory     | 2-3  | None       |
|            | experiment with their uses in robotics and                            | ,                |      |            |
|            | automation projects.                                                  |                  |      |            |
|            | Module 56: Fasteners                                                  |                  |      |            |
| ROBA56     | Use fasteners and adhesives effectively in a                          | Introductory 1-2 | 1-2  | None       |
|            | robotics and automation project.                                      |                  |      |            |

| ROBA57  | Module 57: Mechanical Structure Investigate mechanical structure techniques for use in robotics and automation applications. | Introductory | 3-6   | None |
|---------|------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------|
| ROBA58A | Module 58A: Fabricate A  Modify existing parts for use in a device.                                                          | Introductory | 2-3   | None |
| ROBA59  | Module 59: 3D CAD Basics Create representations of 3-dimensional (3D) objects using computer-aided design (CAD) software.    | Introductory | 3-8   | None |
| ROBA60A | Module 60A: 3D Printing A  Construct an object using a 3-dimensional (3D) printing process.                                  | Intermediate | 5-10  | 59   |
| ROBA63A | Module 63A: Automation A  Construct a simple automated device.                                                               | Intermediate | 10-15 | None |
| ROBA65  | Module 65: Physical Space Management Evaluate workspace organization for effectiveness and efficiency.                       | Introductory | 1-2   | None |
| ROBA66A | Module 66A: Project Management A Create, follow and manage a basic project plan.                                             | Introductory | 1-2   | None |

## **Suggested Modules for Secondary PAA Survey Courses**

| Module # | Module Name                                     | Level        | Suggested<br>Time (hrs) | Prerequisite<br>Module(s) |
|----------|-------------------------------------------------|--------------|-------------------------|---------------------------|
|          | Module 1: General Safety                        |              |                         |                           |
| ROBA1    | Apply principles and techniques for injury      | Introductory | 2-4                     | None                      |
|          | prevention to ensure safe work area.            |              |                         |                           |
|          | Module 2: History of Robotics                   |              |                         |                           |
| ROBA2    | Investigate the historical development of       | Introductory | 1-2                     | None                      |
|          | robotics and autonomous technologies.           |              |                         |                           |
| ROBA3    | Module 3: Ethics and Laws                       |              |                         |                           |
|          | Explore ethical, moral and legal issues         | Introductory | 2-3                     | None                      |
|          | relevant to robotics and autonomous devices.    |              |                         |                           |
|          | Module 5: Introduction to Automation            |              |                         |                           |
| ROBA5    | Investigate the prevalence and societal         | Introductory | 3-5                     | None                      |
|          | impacts of automation.                          |              |                         |                           |
|          | Module 6: Artificial Intelligence               |              |                         |                           |
| ROBA6    | Examine applications of artificial intelligence | Introductory | 2-3                     | None                      |
|          | (AI) in robotics and automation.                |              |                         |                           |
|          | Module 7A: Troubleshooting A                    |              |                         |                           |
| ROBA7A   | Develop and implement a plan to resolve an      | Introductory | 3-5                     | None                      |
|          | issue present in a device.                      | ,            |                         |                           |
|          | Module 8A: Design Thinking A                    |              |                         | None                      |
| ROBA8A   | Apply engineering design processes to           | Introductory | 2-4                     |                           |
|          | improve simple tasks and projects.              |              |                         |                           |
| 202402   | Module 8B: Design Thinking B                    |              | 4.2                     | 2.1                       |
| ROBA8B   | Evaluate a prototype using specific criteria.   | Intermediate | 1-2                     | 8A                        |
|          | Module 8C: Design Thinking C                    |              |                         |                           |
| ROBA8C   | Incorporate empathy into engineering design     | Intermediate | 4-5                     | 8A                        |
|          | processes.                                      |              |                         |                           |
|          | Module 9: Electrical Safety                     |              |                         |                           |
| ROBA9    | Demonstrate safe practices when working         | Intermediate | 1-2                     | 1                         |
|          | with electricity and electrical devices.        |              |                         |                           |
|          | Module 10: Debugging Circuits                   |              |                         |                           |
| ROBA10   | Explore different strategies and conventions    | Introductory | 1-2                     | None                      |
|          | for debugging circuits.                         |              |                         |                           |
|          | Module 12A: Basic Electricity A                 |              |                         |                           |
| ROBA12A  | Design and construct a variety of complex       | Introductory | 3-5                     | None                      |
|          | circuits.                                       |              |                         |                           |
|          | Module 13A: Solderless Breadboards A            |              |                         |                           |
| ROBA13A  | Design and construct functional circuits on a   | Introductory | 1-2                     | None                      |
|          | breadboard.                                     | ĺ            |                         |                           |

| DODATAA   | Module 14A: Electronic Components A                                                  | Interestinations | 2.4 | Nama    |
|-----------|--------------------------------------------------------------------------------------|------------------|-----|---------|
| ROBA14A   | Explore the use of resistors and light-emitting                                      | Introductory     | 2-4 | None    |
|           | diodes (LEDs) in electric circuits.                                                  |                  |     |         |
| DODA15A   | Module 15A: Drawing Circuits A                                                       | Intro diretori   | 2.2 | None    |
| ROBA15A   | Utilize wiring diagrams to guide the design and construction of electronic circuits. | Introductory     | 2-3 | None    |
|           |                                                                                      |                  |     |         |
|           | Module 16: Measuring Instruments                                                     |                  |     |         |
| ROBA16    | Use a multimeter to measure voltage, current                                         | Intermediate     | 2-3 | 11, 12A |
|           | and resistance of a circuit or portion of a                                          |                  |     |         |
|           | Module 17: Conductors and Insulators                                                 |                  |     |         |
| DODA17    |                                                                                      | Intormodiato     | 2-3 | None    |
| ROBA17    | Explore how conductors and insulators are                                            | Intermediate     | 2-3 | None    |
|           | used in electric circuits.                                                           |                  |     |         |
| ROBA19    | Module 19: Soldering                                                                 | Introductory     | 4-8 | 1       |
|           | Demonstrate proficiency in soldering.                                                |                  |     |         |
|           | Module 21: Hardware / Software Interface                                             |                  |     |         |
| ROBA21    | Investigate the role of software in providing                                        | Introductory     | 2-5 | None    |
|           | instructions to a robotic or automated                                               |                  |     |         |
|           | device.                                                                              |                  |     |         |
| DODAGO    | Module 22: Microcontrollers                                                          | Introductions    | 2.5 | None    |
| ROBA22    | Investigate the role of a microcontroller in                                         | Introductory     | 3-5 | None    |
|           | robotics and automation systems.                                                     |                  |     |         |
| DODAZZA   | Module 23A: Output A                                                                 | Introductory     | 2.5 | None    |
| ROBA23A   | Design, construct and program a device to                                            |                  | 3-5 | None    |
|           | modify simple outputs.                                                               |                  |     |         |
| DODAZZD   | Module 23B: Output B                                                                 | latora odioto    | 2.5 | 224     |
| ROBA23B   | Design, construct and program a device to                                            | Intermediate     | 3-5 | 23A     |
|           | modify multiple outputs.                                                             |                  |     |         |
|           | Module 25: File Management                                                           |                  |     |         |
| ROBA25    | Demonstrate effective file management and                                            | Introductory     | 1-2 | None    |
|           | organization including the use of appropriate                                        |                  |     |         |
|           | naming conventions and folder structures.                                            |                  |     |         |
| DODAGE    | Module 26: Computational Thinking                                                    |                  | 1.2 | Nama    |
| ROBA26    | Investigate computational thinking as a                                              | Introductory     | 1-2 | None    |
|           | problem-solving process.                                                             |                  |     |         |
| DOD 4.3.7 | Module 27: Pseudocode                                                                | tota Pri         | 4.3 | NI      |
| ROBA27    | Examine the role of pseudocode in planning                                           | Intermediate     | 1-2 | None    |
|           | computer programs.                                                                   |                  |     |         |
|           | Module 28A: Block-Based Coding A                                                     |                  |     |         |
| ROBA28A   | Explore programming concepts using a block-based language.                           | Introductory     | 3-5 | None    |
|           | 1                                                                                    | l                |     | l       |

|         | Madula 200: Black Based Coding B               |                  |      |            |
|---------|------------------------------------------------|------------------|------|------------|
|         | Module 28B: Block-Based Coding B               |                  |      |            |
| ROBA28B | Implement a program which utilizes control     | Introductory     | 3-5  | 28A        |
|         | structures and repetition in a block-based     |                  |      |            |
|         | coding environment.                            |                  |      |            |
| DOD 430 | Module 29: Syntax and Organization             | latas de et en e | 4.2  | Nana       |
| ROBA29  | Demonstrate proper syntax and organization     | Introductory     | 1-2  | None       |
|         | when developing a program.                     |                  |      |            |
|         | Module 30A: Coding – Variables A               |                  |      |            |
| ROBA30A | Differentiate between common data types        | Introductory     | 1-3  | None       |
|         | (e.g., integer, Boolean, floating point and    |                  |      |            |
|         | string).                                       |                  |      |            |
|         | Module 30B: Coding – Variables B               |                  |      |            |
| ROBA30B | Create programs that use control structures    | Introductory     | 1-3  | 30A        |
|         | to affect program flow.                        |                  |      |            |
|         | Module 31A: Coding – Control Structures A      |                  |      |            |
| ROBA31A | Create programs that use control structures    | Introductory     | 5-10 | 30A        |
|         | to affect program flow.                        |                  |      |            |
|         | Module 31B: Coding – Control Structures B      |                  |      |            |
| ROBA31B | Create programs that use conditional           | Intermediate     | 5-10 | 31A        |
|         | statements to control program flow.            |                  |      |            |
|         | Module 33: Debugging Code                      |                  |      |            |
| ROBA33  | Use common coding techniques to enhance        | Intermediate     | 2-5  | 30A        |
|         | code elegance and debug errors.                |                  |      |            |
|         | Module 34A: Sensor Theory A                    |                  |      |            |
| ROBA34A | Explore the use of sensors in robotic and      | Introductory     | 2-4  | None       |
|         | automated devices.                             |                  |      |            |
|         | Module 35A: Line Sensors A                     |                  |      |            |
| ROBA35A | Construct and program a device capable of      | Introductory     | 3-5  | 28A or 30A |
|         | following a simple line.                       |                  |      |            |
|         | Module 35B: Line Sensors B                     |                  |      |            |
|         | Construct and program a device capable of      |                  |      |            |
| ROBA35B | following a line that includes 90-degree turns | Intermediate     | 3-5  | 35A        |
|         | and T-junctions.                               |                  |      |            |
|         | Module 36A: Tactile Sensors A                  |                  |      |            |
| ROBA36A | Construct and program a device capable of      | Introductory     | 3-5  | 28A or 30A |
|         | using tactile sensors to make decisions.       |                  |      |            |
|         | Module 36B: Tactile Sensors B                  |                  |      |            |
|         | Construct and program a device capable of      |                  |      |            |
| ROBA36B | using multiple tactile sensors to make         | Intermediate     | 3-5  | 36A        |
|         | decisions.                                     |                  |      |            |
|         | uecisions.                                     |                  |      |            |

| 0004074   | Module 37A: Ultrasonic Sensors A                |                 | 2.5  | 204 204    |
|-----------|-------------------------------------------------|-----------------|------|------------|
| ROBA37A   | Construct and program a device that uses an     | Introductory    | 3-5  | 28A or 30A |
|           | ultrasonic sensor to detect distance.           |                 |      |            |
|           | Module 37B: Ultrasonic Sensors B                |                 |      |            |
| ROBA37B   | Construct and program a device that uses an     | Intermediate    | 3-5  | 37A        |
|           | ultrasonic sensor to navigate an area.          |                 |      |            |
|           | Module 38A: Infrared Sensors A                  |                 |      |            |
| ROBA38A   | Construct and program a device that uses        | Introductory    | 3-5  | 28A or 30A |
|           | infrared lights and sensors to detect objects.  |                 |      |            |
|           | Module 38B: Infrared Sensors B                  |                 |      |            |
| ROBA38B   | Construct and program a device capable of       | Intermediate    | 3-5  | 38A        |
| 1.OD/.SOD | navigating around a room using infrared         | intermediate    |      | 30/1       |
|           | sensors.                                        |                 |      |            |
|           | Module 39A: Sound Sensors A                     |                 |      |            |
| ROBA39A   | Construct and program a device that can         | Introductory    | 3-5  | 28A or 30A |
|           | detect sound using a sound sensor.              |                 |      |            |
|           | Module 40A: Other Sensors A                     |                 |      |            |
| ROBA40A   | Construct and program a device to detect an     | Introductory    | 3-5  | 28A or 30A |
|           | input from a sensor.                            |                 |      |            |
| DODA 41 A | Module 41A: Wearable Technologies A             | Introductory    | 2.4  | Nana       |
| ROBA41A   | Investigate the use of wearable technologies.   |                 | 2-4  | None       |
| ROBA41B   | Module 41B: Wearable Technologies B             | Intermediate    | 5-10 | 41A        |
| NODA41D   | Construct and program a wearable device.        | intermediate    | 3-10 | 41A        |
|           | Module 42: Radio-Frequency Identification       |                 |      |            |
| ROBA42    | Construct and program a device that uses        | Intermediate    | 3-5  | 28A or 30A |
| KUBA42    | radio-frequency identification (RFID) to        | intermediate    | 3-3  | 28A 01 30A |
|           | accomplish a specific task.                     |                 |      |            |
| DODA 43 A | Module 43A: Transmitting and Receiving A        | Intro di catami | 2.4  | Nana       |
| ROBA43A   | Connect transmitting and receiving devices.     | Introductory    | 2-4  | None       |
|           | Module 43B: Transmitting and Receiving B        |                 |      |            |
| ROBA43B   | Control a robotic or automated device using     | Intermediate    | 3-5  | 43A        |
|           | transmitting and receiving devices.             |                 |      |            |
|           | Module 44A: Power Sources A                     |                 |      |            |
| ROBA44A   | Examine a variety of power sources suitable     | Introductory    | 2-4  | None       |
|           | for robotic and automation applications.        | ,               |      |            |
|           | Module 45: Drive Systems                        |                 |      |            |
| ROBA45    | Evaluate drive systems for suitability in       | Introductory    | 3-8  | None       |
|           | robotics and automation applications.           | ,               |      |            |
|           | Module 46: Wheels                               |                 |      |            |
| ROBA46    | Evaluate wheels for suitability in robotics and | Introductory    | 2-4  | None       |
|           | automation applications.                        |                 |      |            |
|           | automation applications.                        |                 |      |            |

| ROBA48   | Module 48: Motors  Experiment with the properties and | Introductory  | 3-5  | None                                  |
|----------|-------------------------------------------------------|---------------|------|---------------------------------------|
| NODA-0   | capabilities of direct current (DC) motors.           | introductory  | 3 3  | None                                  |
|          | Module 49: Servos                                     |               |      |                                       |
| ROBA49   | Investigate applications of servos in robotics        | Introductory  | 3-5  | None                                  |
| 1100,113 | and automation applications.                          |               | 3 3  | , , , , , , , , , , , , , , , , , , , |
|          | Module 52A: Motor Controllers A                       |               |      |                                       |
| ROBA52A  | Use motor controllers to power motors.                | Introductory  | 2-4  | None                                  |
|          | Module 54: Machine Safety                             |               |      |                                       |
|          | Demonstrate safe practices when working               |               |      |                                       |
| ROBA54   | with properly maintained mechanical                   | Intermediate  | 4-5  | 1                                     |
|          | equipment.                                            |               |      |                                       |
|          | Module 55: Properties of Materials                    |               |      |                                       |
| DODATE   | Analyze the properties of materials and               | Introductions | 2.2  | None                                  |
| ROBA55   | experiment with their uses in robotics and            | Introductory  | 2-3  | None                                  |
|          | automation projects.                                  |               |      |                                       |
|          | Module 56: Fasteners                                  |               |      |                                       |
| ROBA56   | Use fasteners and adhesives effectively in a          | Introductory  | 1-2  | None                                  |
|          | robotics and automation project.                      |               |      |                                       |
|          | Module 57: Mechanical Structure                       |               |      |                                       |
| ROBA57   | Investigate mechanical structure techniques           | Introductory  | 3-6  | None                                  |
| NODA37   | for use in robotics and automation                    | Introductory  | 3-0  | None                                  |
|          | applications.                                         |               |      |                                       |
| ROBA58A  | Module 58A: Fabricate A                               | Introductory  | 2-3  | None                                  |
| NOBASOA  | Modify existing parts for use in a device.            | introductory  | 2 3  | None                                  |
|          | Module 58B: Fabricate B                               |               |      |                                       |
| ROBA58B  | Design and create a single part for use in a          | Intermediate  | 2-3  | 58A                                   |
|          | device.                                               |               |      |                                       |
| ROBA58C  | Module 58C: Fabricate C                               | Advanced      | 3-5  | 58B                                   |
|          | Design and build a multi-part device.                 | , la valleca  |      | 302                                   |
|          | Module 59: 3D CAD Basics                              |               |      |                                       |
| ROBA59   | Create representations of 3-dimensional (3D)          | Introductory  | 3-8  | None                                  |
|          | objects using computer-aided design (CAD)             | ,             |      |                                       |
|          | software.                                             |               |      |                                       |
|          | Module 60A: 3D Printing A                             | _             |      |                                       |
| ROBA60A  | Construct an object using a 3-dimensional             | Intermediate  | 5-10 | 59                                    |
|          | (3D) printing process.                                |               |      |                                       |
|          | Module 60B: 3D Printing B                             |               |      |                                       |
| ROBA60B  | Design a 3D printed object to solve a problem         | Intermediate  | 5-10 | 60A                                   |
|          | encountered in robotics and automation                |               |      |                                       |
|          | applications.                                         |               |      |                                       |

|               | T                                            | Г                |       |      |
|---------------|----------------------------------------------|------------------|-------|------|
|               | Module 62A: Fluid Power A                    |                  |       |      |
| ROBA62A       | Construct a mechanical device that           | Introductory     | 1-2   | None |
|               | incorporates principles of fluid power       | ,                |       |      |
|               | systems.                                     |                  |       |      |
| ROBA63A       | Module 63A: Automation A                     | Intermediate     | 10-15 | None |
| 1102/100/1    | Construct a simple automated device.         | meermeatate      | 10 13 |      |
|               | Module 65: Physical Space Management         |                  |       |      |
| ROBA65        | Evaluate workspace organization for          | Introductory     | 1-2   | None |
|               | effectiveness and efficiency.                |                  |       |      |
|               | Module 66A: Project Management A             |                  |       |      |
| ROBA66A       | Create, follow and manage a basic project    | Introductory     | 1-2   | None |
|               | plan.                                        |                  |       |      |
|               | Module 68A: Careers in                       |                  |       |      |
| ROBA68A       | Robotics/Automation A                        | Introductory 3-4 | 3-4   | None |
| NODAGGA       | Explore robotics and automation career paths |                  | 3 4   | None |
|               | in Saskatchewan, Canada and the world.       |                  |       |      |
| ROBA69A       | Module 69A: Work Study Preparation           | Intermediate     | 3-5   | None |
| NOD/105/1     | Prepare for the work placement.              |                  | 3 3   |      |
| ROBA69B       | Module 69B: Work Study Preparation           | Advanced         | 3-5   | None |
| KOBAOSB       | Prepare for the work placement.              |                  | 3 3   |      |
| ROBA70A       | Module 70A: Work Study Placement             | Intermediate     | 25-50 | 69A  |
| NO DI NI OI N | Participate in a work placement experience.  | intermediate     | 25 50 | 03/1 |
| ROBA70B       | Module 70B: Work Study Placement             | Advanced         | 25-50 | 69B  |
| KODA 700      | Participate in a work placement experience.  | Advanced         | 25    | 050  |
|               | Module 71A: Work Study Follow-up             |                  |       |      |
| ROBA71A       | Relate one's work placement experience to    | Intermediate     | 2-4   | 70A  |
|               | personal and career goals.                   |                  |       |      |
|               | Module 71B: Work Study Follow-up             |                  |       |      |
| ROBA71B       | Relate one's work placement experience to    | Advanced         | 2-4   | 70B  |
|               | personal and career goals.                   |                  |       |      |
| ROBA99A       | Module 99A: Extended Study                   | Introductory     | 10-25 | None |
| ROBA99B       | Module 99B: Extended Study                   | Intermediate     | 10-25 | None |
| ROBA99C       | Module 99C: Extended Study                   | Advanced         | 10-25 | None |
|               |                                              |                  |       |      |

## **Modules: Outcomes and Indicators**

| Module 1: General Safety (Core) |            |                                                                           |                                    |  |  |  |  |
|---------------------------------|------------|---------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Suggested Time:2-4              |            | Level: Introductory                                                       | Prerequisite: None                 |  |  |  |  |
| Outcome                         | Indicators |                                                                           |                                    |  |  |  |  |
| Apply principles and            | a. Ide     | ntify personal protective equipment                                       | (PPE) such as eyewear, clothing,   |  |  |  |  |
| techniques for injury           | foc        | twear and earwear that may be nee                                         | eded for the work site, school or  |  |  |  |  |
| prevention to ensure            | ho         | me.                                                                       |                                    |  |  |  |  |
| safety in the work              | b. Ap      | ply accident prevention principles ar                                     | nd techniques, and discuss         |  |  |  |  |
| area.                           | арі        | propriate actions in case of an injury                                    | or accident, such as whom to       |  |  |  |  |
|                                 | cor        | ntact, fire extinguisher locations, em                                    | ergency exit routes and first-aid  |  |  |  |  |
|                                 | pro        | procedures.                                                               |                                    |  |  |  |  |
|                                 | c. Exp     | c. Explain the purpose of ventilation in a confined environment.          |                                    |  |  |  |  |
|                                 | d. Pra     | Practice good housekeeping and avoid obvious hazards (e.g., touching live |                                    |  |  |  |  |
|                                 | wir        | wires, extending cords over walking spaces and leaving objects on the     |                                    |  |  |  |  |
|                                 | flo        | or).                                                                      |                                    |  |  |  |  |
|                                 | e. Co      | mplete an assessment of all safety a                                      | nd robotics equipment and, in      |  |  |  |  |
|                                 | cor        | nsultation with the instructor, perfor                                    | m maintenance to repair or replace |  |  |  |  |
|                                 | det        | defective or worn parts.                                                  |                                    |  |  |  |  |
|                                 | f. Re      | Recognize and apply safe and fair work practices including freedom from   |                                    |  |  |  |  |
|                                 | vio        | violence, harassment and bullying.                                        |                                    |  |  |  |  |
|                                 | No         | te: Safety must be the primary focus                                      | for students each day.             |  |  |  |  |

| Module 2: History of Robotics (Core) |     |                                                                       |                                           |  |  |
|--------------------------------------|-----|-----------------------------------------------------------------------|-------------------------------------------|--|--|
| Suggested Time: 1-2 ho               | urs | Level: Introductory                                                   | Prerequisite: None                        |  |  |
| Outcome                              | Ind | icators                                                               |                                           |  |  |
| Investigate the                      | a.  | Explore the history of robots and                                     | robotics.                                 |  |  |
| historical                           | b.  | Identify characteristics common t                                     | to all robots and robotic devices.        |  |  |
| development of                       | c.  | Research and create a representa                                      | ation (e.g., timeline, infographic) of    |  |  |
| robotics and                         |     | important dates in the history of robotics and autonomous devices.    |                                           |  |  |
| autonomous                           | d.  | Explain the criteria generally asso                                   | ciated with autonomous devices, including |  |  |
| technologies.                        |     | different levels of autonomy.                                         |                                           |  |  |
|                                      | e.  | Provide examples of contempora                                        | ry applications of robotic and autonomous |  |  |
|                                      |     | devices, used in industry, manufa                                     | cturing, agriculture, mining, healthcare, |  |  |
|                                      |     | military and for general purposes.                                    |                                           |  |  |
|                                      | f.  | Research a recent development in robotics or autonomous devices.      |                                           |  |  |
|                                      | g.  | Describe tasks that are suitable for robotics and autonomous devices. |                                           |  |  |
|                                      | h.  | Predict future trends in robotics a                                   | and autonomous devices.                   |  |  |

| Module 3: Ethics and Laws (Core) |     |                                                                                                                                      |                            |              |                                      |  |
|----------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------------------------------|--|
| Suggested Time: 2-3 hours        |     |                                                                                                                                      | Level: Introductory        |              | Prerequisite: None                   |  |
| Outcome                          | Ind | icators                                                                                                                              |                            |              |                                      |  |
| Explore ethical, moral           | a.  | Discuss                                                                                                                              | s how the ethics of robot  | ic and aut   | onomous devices have been            |  |
| and legal issues                 |     | portray                                                                                                                              | yed in the media, particu  | larly in sci | ence fiction (e.g., 2001: A Space    |  |
| relevant to robotics             |     | Odysse                                                                                                                               | ry).                       |              |                                      |  |
| and autonomous                   | b.  | Discuss                                                                                                                              | s legal and/or ethical per | spectives    | with regards to fault when a         |  |
| devices.                         |     | robotio                                                                                                                              | or autonomous device of    | causes har   | m to a person, property or nature.   |  |
|                                  | C.  | Discuss the theoretical relevance of Asimov's Laws of Robotics to contemporary applications of robotics and artificial intelligence. |                            |              |                                      |  |
|                                  |     |                                                                                                                                      |                            |              | <del>-</del>                         |  |
|                                  | d.  | Analyze case studies (e.g., <i>The Case of the Killer Robot</i> by Richard G.                                                        |                            |              |                                      |  |
|                                  |     | Epstein) or news reports of accidents involving death or injury caused by                                                            |                            |              |                                      |  |
|                                  |     | industrial robots and discuss who is considered at fault.                                                                            |                            |              |                                      |  |
|                                  | e.  | Research current and proposed legislation involving the personal and commercial use of drones.                                       |                            |              |                                      |  |
|                                  | f.  | Hypoth                                                                                                                               | nesize about the possibili | ty that rol  | bots or devices with artificial      |  |
|                                  |     | intelligence will be able to make their own decisions and the potential ramifications of this ability.                               |                            |              |                                      |  |
|                                  | g.  | Discuss                                                                                                                              | s moral implications (e.g. | , racial pro | ofiling, choosing who lives or dies, |  |
|                                  |     | unemployment and robot rights, the Trolley problem and unintended                                                                    |                            |              |                                      |  |
|                                  |     | consec                                                                                                                               | uences) related to artific | ially intell | ligent robotic and autonomous        |  |
|                                  |     | devices                                                                                                                              | 5.                         |              |                                      |  |

| Module 4: Societal Impact (Core) |     |                                                                           |                                            |  |  |  |
|----------------------------------|-----|---------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Suggested Time: 2-3 ho           | urs | Level: Introductory                                                       | Prerequisite: None                         |  |  |  |
| Outcome                          | Ind | cators                                                                    |                                            |  |  |  |
| Evaluate historical              | a.  | Explore the uses of robotics in the                                       | field of medicine for applications such as |  |  |  |
| and contemporary                 |     | surgery, rehabilitation and remote                                        | diagnosis.                                 |  |  |  |
| impacts of robotics              | b.  | Analyze how movies (e.g., "I, Robo                                        | t" and "Short Circuit") about robots       |  |  |  |
| and autonomous                   |     | portray the effects of robot interac                                      | tion on humanity and the role of work in   |  |  |  |
| devices on society.              |     | the future.                                                               |                                            |  |  |  |
|                                  | c.  | Explore societal implications of the                                      | increasing prevalence of robotic and       |  |  |  |
|                                  |     | autonomous devices in our daily lives and routines.                       |                                            |  |  |  |
|                                  | d.  | . Assess potential positive and negative impacts of robotics on various   |                                            |  |  |  |
|                                  |     | ndustries (e.g., automotive manuf                                         | acturing, agriculture and mining).         |  |  |  |
|                                  | e.  | Analyze how artificial intelligence o                                     | can impact robotics and autonomous         |  |  |  |
|                                  |     | devices.                                                                  |                                            |  |  |  |
|                                  | f.  | Evaluate the impact of a specific application of artificial intelligence. |                                            |  |  |  |
|                                  | g.  | Debate an issue related to autonomous devices such as the viability of    |                                            |  |  |  |
|                                  |     | driverless vehicles of varying levels of autonomy on public highways and  |                                            |  |  |  |
|                                  |     | orivate worksites.                                                        |                                            |  |  |  |

| Module 5: Introduction to Automation (Optional) |                                                                 |         |                                                                     |                 |                                |
|-------------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------------------------------------------|-----------------|--------------------------------|
| Suggested Time: 3-5 ho                          | urs                                                             |         | Level: Introductory                                                 |                 | Prerequisite: None             |
| Outcome                                         | Ind                                                             | licator | rs .                                                                |                 |                                |
| Investigate the                                 | a.                                                              | Diffe   | rentiate between robo                                               | tics and auto   | mation.                        |
| prevalence and                                  | b.                                                              | Rese    | arch the use of automa                                              | ition in a vari | ety of fields, such as retail, |
| societal impacts of                             |                                                                 | healt   | ealthcare, food services, mining, waste management, industry,       |                 |                                |
| automation.                                     |                                                                 | manı    | nanufacturing, logistics, automotive and in the home.               |                 |                                |
|                                                 | c.                                                              | Ident   | dentify the main advantages of automation.                          |                 |                                |
|                                                 | d.                                                              | Critic  | ritique the use of automation in our society, including current and |                 |                                |
|                                                 | potential effects of automation on society and the environment. |         |                                                                     |                 | ry and the environment.        |
|                                                 | e.                                                              | Explo   | ore issues (e.g., human                                             | input, mecha    | nical wear, technical          |
|                                                 |                                                                 | prog    | ramming) arising with a                                             | automation.     |                                |

| Module 6: Artificial Inte | Module 6: Artificial Intelligence (Optional) |                                                                                 |                                                                       |  |  |
|---------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Suggested Time: 2-3 ho    | urs                                          | Level: Introductory                                                             | Prerequisite: None                                                    |  |  |
| Outcome                   | Inc                                          | licators                                                                        |                                                                       |  |  |
| Examine applications      | a.                                           | Research the evolving understanding of t                                        | he concept of artificial intelligence.                                |  |  |
| of artificial             | b.                                           | Discuss how to identify whether a robotic                                       | c or automated device is                                              |  |  |
| intelligence (AI) in      |                                              | considered to have or display artificial int                                    | telligence.                                                           |  |  |
| robotics and              | c.                                           | Analyze how devices with artificial intellig                                    | gence work differently than                                           |  |  |
| automation.               |                                              | controlled or autonomous devices and ro                                         | bots.                                                                 |  |  |
|                           | d.                                           | Discuss the interrelationships between a                                        | utomation, machine learning and                                       |  |  |
|                           |                                              | artificial intelligence, within the context of robotics and autonomous          |                                                                       |  |  |
|                           |                                              | devices.                                                                        |                                                                       |  |  |
|                           | e.                                           | Examine the extent to which artificial intelligence can or cannot exceed or     |                                                                       |  |  |
|                           |                                              | replace human ability in regards to certain                                     | replace human ability in regards to certain tasks (e.g., game-playing |  |  |
|                           |                                              | computers, self-driving cars and personal                                       | l assistants).                                                        |  |  |
|                           | f.                                           | Examine current limitations of artificial in                                    | ntelligence (e.g., machine learning                                   |  |  |
|                           |                                              | is based on human instructions and data                                         | sets, data sets can perpetuate                                        |  |  |
|                           |                                              | bias, learning must be supervised).                                             |                                                                       |  |  |
|                           | g.                                           | Investigate the ways in which machine le                                        | arning applications make use of                                       |  |  |
|                           |                                              | different types of datasets (e.g., image data and facial recognition, text data |                                                                       |  |  |
|                           |                                              | and news article searches, physical data and astronomy).                        |                                                                       |  |  |
|                           | h.                                           | Explore potential applications for machin                                       | e learning and artificial intelligence                                |  |  |
|                           |                                              | in robotics and automation.                                                     |                                                                       |  |  |

| Module 7A: Troubleshooting A (Optional) |          |                                                                               |                    |  |
|-----------------------------------------|----------|-------------------------------------------------------------------------------|--------------------|--|
| Suggested Time: 3-5 hours               |          | Level: Introductory                                                           | Prerequisite: None |  |
| Outcome                                 | Indicato | ors                                                                           |                    |  |
| Develop and                             | a. Ider  | a. Identify and locate an underlying issue present in a device.               |                    |  |
| implement a plan to                     | b. Ana   | b. Analyze the cause of an issue present in a device.                         |                    |  |
| resolve an issue                        | c. Dev   | c. Develop a plan to resolve an issue present in a device.                    |                    |  |
| present in a device.                    | d. Imp   | d. Implement the plan to resolve an issue present in a device.                |                    |  |
|                                         | e. Eva   | e. Evaluate the effectiveness of the resolution and modify the plan as needed |                    |  |
|                                         | to r     | to resolve the issue.                                                         |                    |  |

| Module 7B: Troubleshooting B (Optional) |        |                                                                              |                                        |  |  |
|-----------------------------------------|--------|------------------------------------------------------------------------------|----------------------------------------|--|--|
| Suggested Time: 5-10 h                  | ours   | Level: Advanced                                                              | Prerequisite: Module 7A                |  |  |
| Outcome                                 | Indica | tors                                                                         |                                        |  |  |
| Develop and                             | a. Id  | entify and locate all issues prese                                           | ent in a device, including programming |  |  |
| implement a plan to                     | а      | d physical issues.                                                           |                                        |  |  |
| resolve multiple                        | b. Is  | plate all issues present in a devi                                           | ce.                                    |  |  |
| issues present in a                     | c. A   | nalyze the cause of all issues pre                                           | esent in a device.                     |  |  |
| device.                                 | d. D   | Develop and evaluate a plan to resolve all issues present in a device.       |                                        |  |  |
|                                         | e. Ir  | Implement a plan to resolve the issues present in a device.                  |                                        |  |  |
|                                         | f. E   | Evaluate the effectiveness of the resolutions and modify the plan as needed  |                                        |  |  |
|                                         | to     | to resolve the issues.                                                       |                                        |  |  |
|                                         | g. D   | Discuss the need for having troubleshooting skills in various careers in the |                                        |  |  |
|                                         | fi     | elds of robotics and automation                                              |                                        |  |  |

| Module 8A: Design Thinking A (Optional) |     |                                                                                                                              |                              |                                       |  |
|-----------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--|
| Suggested Time: 2-4 ho                  | urs |                                                                                                                              | Level: Introductory          | Prerequisite: None                    |  |
| Outcome                                 | Inc | licator                                                                                                                      | rs                           | ·                                     |  |
| Apply engineering                       | a.  | Ident                                                                                                                        | tify steps common to engine  | eering design processes.              |  |
| design processes to                     | b.  | Creat                                                                                                                        | te a representation of engin | eering design processes to be used in |  |
| improve simple tasks                    |     | simple tasks.                                                                                                                |                              |                                       |  |
| and projects.                           | c.  | c. Discuss the importance of iteration (e.g., ideate, design, prototype, test and redesign) in engineering design processes. |                              |                                       |  |
|                                         | d.  | Utilize engineering design processes (with a focus on iteration) to solve an engineering problem.                            |                              |                                       |  |
|                                         | e.  |                                                                                                                              |                              |                                       |  |

| Module 8B: Design Thinking B (Optional) |      |          |                                                                          |                          |  |
|-----------------------------------------|------|----------|--------------------------------------------------------------------------|--------------------------|--|
| Suggested Time: 1-2 ho                  | ours |          | Level: Intermediate                                                      | Prerequisite: Module 8A  |  |
| Outcome                                 | Inc  | licators |                                                                          | ·                        |  |
| Evaluate a prototype                    | a.   | Devel    | op measurable success criteria fo                                        | or evaluating a project. |  |
| using specific criteria.                | b.   | Identi   | ify the type of feedback (e.g., coaching, praise and evaluation) desired |                          |  |
|                                         |      | from     | others.                                                                  |                          |  |
|                                         | c.   | Devel    | velop procedures for seeking critical feedback from other designers and  |                          |  |
|                                         |      | end us   | sers.                                                                    |                          |  |
|                                         | d.   | Collec   | lect appropriate feedback from other designers and end users.            |                          |  |
|                                         | e.   | Test o   | one's prototype against end-user generated success criteria and          |                          |  |
|                                         |      | identi   | fy areas for improvement.                                                |                          |  |

| Module 8C: Design Thinking C (Optional) |      |                                                                               |                      |                      |                                    |
|-----------------------------------------|------|-------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------|
| Suggested Time: 4-5 ho                  | ours |                                                                               | Level: Intermedi     | ate                  | Prerequisite: Module 8A            |
| Outcome                                 | Ind  | licators                                                                      |                      |                      |                                    |
| Incorporate empathy                     | a.   | Const                                                                         | ruct a problem de    | finition empathizi   | ng with the needs and wants of the |
| into engineering                        |      | end us                                                                        | ser(s) for the proje | ect.                 |                                    |
| design processes.                       | b.   | Apply                                                                         | empathetic interv    | iew skills (e.g., as | k why 3 times, encourage stories,  |
|                                         |      | ask open ended questions, pay attention to non-verbal cues and look for       |                      |                      | to non-verbal cues and look for    |
|                                         |      | inconsistencies) to determine the needs and wants of the end user(s).         |                      |                      |                                    |
|                                         | c.   | Reflec                                                                        | t on whether prop    | osed solutions ac    | ddress actual versus perceived     |
|                                         |      | problems.                                                                     |                      |                      |                                    |
|                                         | d.   | d. Share project progress with the end user(s) at regular intervals to elicit |                      |                      | s) at regular intervals to elicit  |
|                                         |      | feedb                                                                         | ack and ensure the   | e project is meeti   | ng their needs.                    |

| Module 9: Electrical Safety (Optional) |        |                                                                               |                                        |  |  |
|----------------------------------------|--------|-------------------------------------------------------------------------------|----------------------------------------|--|--|
| Suggested Time: 1-2 ho                 | urs    | Level: Intermediate                                                           | Prerequisite: Module 1                 |  |  |
| Outcome                                | Indica | tors                                                                          | ·                                      |  |  |
| Demonstrate safe                       | c. E   | xplain the purpose of ventilation in                                          | a confined environment when            |  |  |
| practices when                         | ١      | orking with electrical devices such                                           | as a soldering iron.                   |  |  |
| working with                           | d. F   | eview safety procedures (e.g., inspe                                          | ect equipment for damaged or frayed    |  |  |
| electricity and                        | ١      | vires, ensure proper grounding and                                            | ensure work area is free from liquids) |  |  |
| electrical devices.                    | f      | for working with electrical equipment.                                        |                                        |  |  |
|                                        | e. l   | Understand the need for circuit protection in an electrical circuit.          |                                        |  |  |
|                                        | f. I   | Identify basic electrical hazards in the shop and/or work area.               |                                        |  |  |
|                                        | g. I   | g. Inspect all tools and electrical equipment, including extension cords, for |                                        |  |  |
|                                        | ŀ      | hazards before using them.                                                    |                                        |  |  |
|                                        | h. I   | Identify safe current and/or voltage values pertaining to equipment safety.   |                                        |  |  |
|                                        | i. I   | Identify safe current and/or voltage values pertaining to personal safety.    |                                        |  |  |
|                                        | N      | ote: Safety must be the primary foc                                           | us for students each day.              |  |  |

| Module 10: Debugging   | Module 10: Debugging Circuits (Optional) |                                                                                       |                                                |  |  |  |  |  |
|------------------------|------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Suggested Time: 1-2 ho | urs                                      | Level: Introductory                                                                   | Prerequisite: None                             |  |  |  |  |  |
| Outcome                | Indicators                               |                                                                                       |                                                |  |  |  |  |  |
| Incorporate            | a.                                       | Follow a standard colour convec                                                       | tion (e.g., white is signal, negative is black |  |  |  |  |  |
| appropriate strategies |                                          | and red is positive) when assigni                                                     | ng wires for different purposes.               |  |  |  |  |  |
| and conventions for    | b.                                       | Organize electrical and electroni                                                     | c components and make all connections in       |  |  |  |  |  |
| debugging circuits.    |                                          | a neat and tidy manner.                                                               |                                                |  |  |  |  |  |
|                        | c.                                       | c. Develop and follow a test strategy for debugging each sub circuit.                 |                                                |  |  |  |  |  |
|                        | d.                                       | d. Debug a non-working circuit, following a step-by-step process and                  |                                                |  |  |  |  |  |
|                        |                                          | considering questions such as:                                                        |                                                |  |  |  |  |  |
|                        |                                          | <ul> <li>Did you build the circuit as described in your circuit diagram or</li> </ul> |                                                |  |  |  |  |  |
|                        |                                          | schematic?                                                                            |                                                |  |  |  |  |  |
|                        |                                          | • Is there power to your circu                                                        | it?                                            |  |  |  |  |  |
|                        |                                          | Have you exceeded the limit                                                           | tations of any component?                      |  |  |  |  |  |
|                        |                                          | Are all terminals receiving the correct voltage and polarity?                         |                                                |  |  |  |  |  |
|                        |                                          | Are there any short circuits?                                                         |                                                |  |  |  |  |  |
|                        |                                          | Is the logic of the circuit corr                                                      | rect?                                          |  |  |  |  |  |

| Module 11: Electrical Theory (Optional) |     |                                                                                 |                              |           |                          |  |
|-----------------------------------------|-----|---------------------------------------------------------------------------------|------------------------------|-----------|--------------------------|--|
| Suggested Time: 2-3 ho                  | urs |                                                                                 | Level: Intermediate          |           | Prerequisite: None       |  |
| Outcome                                 | Inc | licators                                                                        | 5                            |           |                          |  |
| Analyze the                             | a.  | a. Explain the difference between alternating current [AC] and direct current   |                              |           |                          |  |
| relationships among                     |     | [DC] and when each is suitable for various applications.                        |                              |           |                          |  |
| voltage, current and                    | b.  | b. Calculate values of unknown quantities (e.g., current, voltage and           |                              |           | g., current, voltage and |  |
| resistance in electrical                |     | resistance) in electric circuits using Ohm's Law (Current [I] = Voltage         |                              |           |                          |  |
| circuits.                               |     | [V]/Resistance [R]).                                                            |                              |           |                          |  |
|                                         | c.  | c. Calculate values of unknown quantities in electric circuits using Watt's Law |                              |           |                          |  |
|                                         |     | (Powe                                                                           | er [W] = Voltage [V] x Curre | ent [I]). |                          |  |

| Module 12A: Basic Electricity A (Core) |          |        |                                                                      |             |                            |  |
|----------------------------------------|----------|--------|----------------------------------------------------------------------|-------------|----------------------------|--|
| Suggested Time: 3-5 ho                 | urs      |        | Level: Introductory                                                  |             | Prerequisite: None         |  |
| Outcome                                | Ind      | icator | rs                                                                   |             |                            |  |
| Design and construct                   | a.       | Ident  | tify the components of an                                            | electric ci | rcuit.                     |  |
| a variety of electrical                | b.       | Diffe  | erentiate between a closed, open, and short circuit.                 |             |                            |  |
| circuits.                              | c.       | Discu  | Discuss how to build circuits and how to avoid short circuits.       |             |                            |  |
|                                        | d.       | Cons   | Construct circuits that contains loads in parallel.                  |             |                            |  |
|                                        | e.       | Cons   | Construct circuits that contains loads in series.                    |             |                            |  |
|                                        | f.       | Com    | Compare how switches control loads in series and parallel circuits.  |             |                            |  |
|                                        | g. Const |        | onstruct parallel and/or series circuits that can be controlled by a |             | hat can be controlled by a |  |
|                                        |          | micro  | ocontroller.                                                         |             |                            |  |

| Module 12B: Basic Electricity B (Optional) |     |                                                                              |                     |                              |  |
|--------------------------------------------|-----|------------------------------------------------------------------------------|---------------------|------------------------------|--|
| Suggested Time: 3-5 hours                  |     |                                                                              | Level: Introductory | Prerequisite: Module 11, 12A |  |
| Outcome                                    | Inc |                                                                              |                     |                              |  |
| Analyze the                                | a.  | a. Compare a variety of electrical pathways by constructing simple circuits. |                     |                              |  |
| differences between                        | b.  | c. Construct and test various combinations of simple electric circuits to    |                     |                              |  |
| parallel and series                        |     | determine similarities and differences between series and parallel circuits. |                     |                              |  |
| circuits.                                  | c.  | Construct combination circuits that incorporate both series and parallel     |                     |                              |  |
|                                            |     | pathways.                                                                    |                     |                              |  |

| Module 13A: Solderless | Module 13A: Solderless Breadboards A (Optional) |                                                                            |                                         |  |  |  |
|------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Suggested Time: 1-2 ho | urs                                             | Level: Introductory                                                        | Prerequisite: None                      |  |  |  |
| Outcome                | Inc                                             | licators                                                                   |                                         |  |  |  |
| Design and construct   | a.                                              | Identify the anatomy of a breadboard                                       | d.                                      |  |  |  |
| functional circuits on | b.                                              | Discuss the advantages of using bread                                      | dboards to construct electronic         |  |  |  |
| a breadboard.          |                                                 | circuits.                                                                  |                                         |  |  |  |
|                        | c.                                              | c. Construct an electronic circuit based on a pictorial or wiring diagram. |                                         |  |  |  |
|                        | d.                                              | d. Draw a pictorial or wiring diagram to represent a physical breadboard   |                                         |  |  |  |
|                        |                                                 | assembly.                                                                  |                                         |  |  |  |
|                        | e.                                              | Demonstrate the proper way of installing a variety of components (e.g.,    |                                         |  |  |  |
|                        |                                                 | integrated circuits, button switches, v                                    | wires and resistors) onto a breadboard. |  |  |  |
|                        | f.                                              | Demonstrate effective layout of comp                                       | ponents and connections on a            |  |  |  |
|                        |                                                 | breadboard to facilitate debugging ar                                      | nd modification of circuits.            |  |  |  |
|                        | g.                                              | Establish and follow standard wiring colour conventions (e.g., red is      |                                         |  |  |  |
|                        |                                                 | positive, black is negative, white or ye                                   | ellow is signal and green is ground)    |  |  |  |
|                        |                                                 | when using breadboards.                                                    |                                         |  |  |  |

| Module 13B: Solderless Breadboards B (Optional) |                                                                    |                              |                                    |  |  |
|-------------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------------|--|--|
| Suggested Time: 3-7 ho                          | urs                                                                | Level: Advanced              | Prerequisite: Module 12B:          |  |  |
|                                                 |                                                                    |                              | Solderless Breadboards A           |  |  |
| Outcome                                         | Indicato                                                           | rs                           | ·                                  |  |  |
| Apply advanced                                  | a. Cons                                                            | truct a circuit based on sch | ematic diagrams that represent the |  |  |
| breadboarding                                   | elements on a breadboard.                                          |                              |                                    |  |  |
| knowledge and                                   | b. Draw a schematic diagram based on a breadboard assembly.        |                              |                                    |  |  |
| schematics diagrams                             | c. Design and construct a robotic and/or autonomous device using a |                              |                                    |  |  |
| to design and                                   | breadboard and a schematic diagram.                                |                              |                                    |  |  |
| construct functional                            |                                                                    |                              |                                    |  |  |
| circuits on a                                   |                                                                    |                              |                                    |  |  |
| breadboard.                                     |                                                                    |                              |                                    |  |  |

| Module 14A: Electronic Components A (Optional) |                                                                                |                                                                           |                                                                             |           |                                   |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|-----------------------------------|--|--|
| Suggested Time: 2-4 ho                         | Suggested Time: 2-4 hours                                                      |                                                                           |                                                                             |           | Prerequisite: None                |  |  |
| Outcome                                        | Inc                                                                            | licator                                                                   | S                                                                           |           |                                   |  |  |
| Explore the use of                             | a.                                                                             | Descr                                                                     | ribe the types (e.g., carbon                                                | and surfa | ace mount) of resistors commonly  |  |  |
| resistors and light-                           |                                                                                | used                                                                      | in electronic circuits.                                                     |           |                                   |  |  |
| emitting diodes (LEDs)                         | b.                                                                             | b. Identify the value of a resistor by its colour code.                   |                                                                             |           |                                   |  |  |
| in electronic circuits.                        | c. Calculate the resistance at various points in series and parallel circuits. |                                                                           |                                                                             |           |                                   |  |  |
|                                                | d.                                                                             | Ident                                                                     | Identify the different types (e.g., through-hole, surface mount, bi-colour, |           |                                   |  |  |
|                                                |                                                                                | RGB a                                                                     | and high power) of LEDs.                                                    |           |                                   |  |  |
|                                                | e.                                                                             | Descr                                                                     | ribe the characteristics and                                                | current a | and voltage requirements of LEDs. |  |  |
|                                                | f.                                                                             | f. Design and construct a simple circuit to power multiple LEDs.          |                                                                             |           |                                   |  |  |
|                                                | g.                                                                             | g. Design and construct a simple LED circuit that can be controlled via a |                                                                             |           | that can be controlled via a      |  |  |
|                                                |                                                                                | progr                                                                     | am.                                                                         |           |                                   |  |  |

| Module 14B: Electronic Components B (Optional) |                                                                         |                                                                       |                                                                        |                                    |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|--|--|--|
| Suggested Time: 2-4 ho                         | urs                                                                     | Level: Intermediate                                                   |                                                                        | Prerequisite: Module 14A           |  |  |  |
| Outcome                                        | Indi                                                                    | cators                                                                |                                                                        |                                    |  |  |  |
| Explore the use of                             | a.                                                                      | Draw and describe the part                                            | s of a diode.                                                          |                                    |  |  |  |
| diodes and other                               | b.                                                                      | Describe the basic function                                           | of a diode, inc                                                        | cluding polarity and the direction |  |  |  |
| components in                                  |                                                                         | of electron flow through the diode.                                   |                                                                        |                                    |  |  |  |
| electronic circuits.                           | c.                                                                      | Identify the anode and cathode of a diode.                            |                                                                        |                                    |  |  |  |
|                                                | d. Observe the effect of changing the direction of orientation of the c |                                                                       |                                                                        |                                    |  |  |  |
|                                                |                                                                         | low voltage DC circuit that includes an output device such as an LED. |                                                                        |                                    |  |  |  |
|                                                | e.                                                                      | xplore the similarities between diodes and LEDs.                      |                                                                        |                                    |  |  |  |
|                                                | f.                                                                      | Compare and contrast vario                                            | ompare and contrast various conductors and their properties for use in |                                    |  |  |  |
|                                                |                                                                         | circuits, including wire types, sizes, functions and limitations.     |                                                                        |                                    |  |  |  |
|                                                | g.                                                                      | Explore the usage of a potentiometer in a circuit.                    |                                                                        |                                    |  |  |  |
|                                                | h.                                                                      | Explore the usage of a trans                                          | sistor in a circu                                                      | uit.                               |  |  |  |

| Module 14C: Electronic   | Module 14C: Electronic Components C (Optional) |                                                                                     |          |                                        |  |  |  |
|--------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|----------|----------------------------------------|--|--|--|
| Suggested Time: 2-4 ho   | urs                                            | Level: Advanced                                                                     |          | Prerequisite: Module 14B               |  |  |  |
| Outcome                  | Inc                                            | dicators                                                                            |          |                                        |  |  |  |
| Design and construct     | a.                                             | List some advantages and disad                                                      | vantage  | es of using integrated circuits rather |  |  |  |
| a variety of circuits to |                                                | than conventional circuits in rol                                                   | otic an  | d automated devices.                   |  |  |  |
| interface between a      | b.                                             | Differentiate between NPN and                                                       | PNP tra  | ansistors.                             |  |  |  |
| programmable             | c.                                             | . Design and construct a circuit that uses a transistor circuit (e.g., 5-5-5 timer) |          |                                        |  |  |  |
| control board and a      |                                                | to control a higher current device.                                                 |          |                                        |  |  |  |
| robotic or automated     | d.                                             | Design and construct a motor control circuit (e.g., H-Bridge) using an              |          |                                        |  |  |  |
| device.                  |                                                | integrated circuit (IC) or transistor.                                              |          |                                        |  |  |  |
|                          | e.                                             | Design and construct a complex circuit that is composed of multiple simple          |          |                                        |  |  |  |
|                          |                                                | circuits and that contains inputs and outputs.                                      |          |                                        |  |  |  |
|                          | f.                                             | Design and construct a servo control circuit using an integrated circuit (IC).      |          |                                        |  |  |  |
|                          | g.                                             | Design and construct a circuit, s                                                   | uch as a | a 3D cube, that will allow for the     |  |  |  |
|                          |                                                | control of multiple light-emittin                                                   | g diode  | s (LEDs).                              |  |  |  |

| Module 15A: Drawing Circuits A (Optional) |                                                                          |                                                                                |                     |                                       |  |  |
|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|---------------------------------------|--|--|
| Suggested Time: 2-3 hours                 |                                                                          |                                                                                | Level: Introductory | Prerequisite: None                    |  |  |
| Outcome                                   | Inc                                                                      | licator                                                                        | S                   |                                       |  |  |
| Utilize wiring                            | a. Discuss the advantages of representing electric circuits using wiring |                                                                                |                     | enting electric circuits using wiring |  |  |
| diagrams to guide the                     | diagrams and pictorial diagrams.                                         |                                                                                |                     |                                       |  |  |
| design and                                | b.                                                                       | b. Construct an electronic circuit using a wiring diagram as a guide.          |                     |                                       |  |  |
| construction of                           | c.                                                                       | c. Create a wiring diagram for an electronic circuit using pencil and paper or |                     |                                       |  |  |
| electronic circuits.                      |                                                                          | appro                                                                          | opriate software.   |                                       |  |  |

| Module 15B: Drawing C  | Module 15B: Drawing Circuits B (Optional) |                                                                             |                                        |  |  |  |  |
|------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| Suggested Time:2-3 hou | ırs                                       | Level: Intermediate                                                         | Prerequisite: Module 15A               |  |  |  |  |
| Outcome                | Ind                                       | licators                                                                    |                                        |  |  |  |  |
| Utilize schematic      | a.                                        | Discuss the advantages and disadv                                           | vantages of representing electronic    |  |  |  |  |
| diagrams to guide the  |                                           | circuits using schematic diagrams rather than wiring diagrams.              |                                        |  |  |  |  |
| design and             | b.                                        | Identify common symbols used in schematic diagrams for electronic           |                                        |  |  |  |  |
| construction of        |                                           | circuits.                                                                   |                                        |  |  |  |  |
| electronic circuits.   | c.                                        | Construct a wired circuit using a schematic diagram as a guide.             |                                        |  |  |  |  |
|                        | d.                                        | Draw a schematic diagram for a circuit containing no more than five         |                                        |  |  |  |  |
|                        |                                           | components.                                                                 |                                        |  |  |  |  |
|                        | e.                                        | Draw a schematic diagram for a circuit containing multiple simple circuits. |                                        |  |  |  |  |
|                        | f.                                        | Model, using appropriate standard circuit diagram symbols, series and       |                                        |  |  |  |  |
|                        |                                           | parallel circuits that include an en                                        | ergy source, one or more switches, and |  |  |  |  |
|                        |                                           | various loads designed to accomp                                            | lish specific tasks.                   |  |  |  |  |

| Module 16: Measuring Instruments (Optional) |                           |                                                                                |                                |                                       |  |  |
|---------------------------------------------|---------------------------|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|--|--|
| Suggested Time: 2-3 ho                      | Suggested Time: 2-3 hours |                                                                                |                                | Prerequisite: Module 11, 12A          |  |  |
| Outcome                                     | Inc                       | licator                                                                        | 'S                             |                                       |  |  |
| Use a multimeter to                         | a.                        | Conn                                                                           | ect a multimeter correctly to  | measure voltage and current in direct |  |  |
| measure voltage,                            |                           | current (DC) circuits.                                                         |                                |                                       |  |  |
| current and resistance                      | b.                        | o. Measure the resistance of a load in a circuit using a multimeter.           |                                |                                       |  |  |
| of a circuit or portion                     | c.                        | c. Choose the correct scale to measure the current of a load, the voltage drop |                                |                                       |  |  |
| of a circuit.                               |                           | across a load and the resistance of a load in an electrical circuit.           |                                |                                       |  |  |
|                                             | d.                        | d. Identify potential sources of error in instrument readings.                 |                                |                                       |  |  |
|                                             | e.                        | Meas                                                                           | sure the current load and volt | age drop in a circuit.                |  |  |

| Module 17: Conductors and Insulators (Optional) |     |                                                                   |                     |                    |  |  |  |
|-------------------------------------------------|-----|-------------------------------------------------------------------|---------------------|--------------------|--|--|--|
| Suggested Time: 2-3 hours                       |     |                                                                   | Level: Intermediate | Prerequisite: None |  |  |  |
| Outcome                                         | Ind | Indicators                                                        |                     |                    |  |  |  |
| Explore how                                     | a.  | . Differentiate between conductors and insulators.                |                     |                    |  |  |  |
| conductors and                                  | b.  | List materials that can be used as conductors.                    |                     |                    |  |  |  |
| insulators are used in                          | c.  | List materials that can be used as insulators.                    |                     |                    |  |  |  |
| electric circuits.                              | d.  | Calculate the gauge of conductor needed for a given current load. |                     |                    |  |  |  |

| Module 18: Fuses (Optional) |                                                                                   |                                                          |                             |                |                                |  |
|-----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|----------------|--------------------------------|--|
| Suggested Time: 1-2 hours   |                                                                                   |                                                          | Level: Introductory         | P              | Prerequisite: Module 1         |  |
| Outcome                     | Indicators                                                                        |                                                          |                             |                |                                |  |
| Explore how fuses are       | a.                                                                                | a. Discuss what it means for a circuit to be overloaded. |                             |                |                                |  |
| used to protect             | b. Discuss what occurs in a circuit that is experiencing a short circuit situatio |                                                          |                             |                |                                |  |
| circuits.                   | c.                                                                                | Explai                                                   | in the use of different fus | se types (e.g. | , plug fuses, cartridge fuses, |  |
|                             | time-delay fuses and renewable fuses).                                            |                                                          |                             |                |                                |  |
|                             | d.                                                                                | Explo                                                    | re how fuses should be v    | vired in an el | ectrical circuit.              |  |
|                             | e. Troubleshoot a circuit with a fuse in it using a multimeter.                   |                                                          |                             |                |                                |  |
|                             | f. Calculate the fuse rating for a given circuit.                                 |                                                          |                             |                |                                |  |

| Module 19: Soldering (Optional) |         |                                                                          |                        |  |  |  |  |
|---------------------------------|---------|--------------------------------------------------------------------------|------------------------|--|--|--|--|
| Suggested Time: 4-8             | 8 hours | Level: Introductory                                                      | Prerequisite: Module 1 |  |  |  |  |
| Outcome                         | Ind     | Indicators                                                               |                        |  |  |  |  |
| Demonstrate                     | a.      | a. Compare the use of soldering irons and heat guns for effective use in |                        |  |  |  |  |
| proficiency in                  |         | different situations.                                                    |                        |  |  |  |  |
| soldering.                      | b.      | Describe the function of flux when soldering.                            |                        |  |  |  |  |
|                                 | c.      | Execute proper soldering and desoldering techniques.                     |                        |  |  |  |  |
|                                 | d.      | l. Assess the quality of soldered connections.                           |                        |  |  |  |  |

| Module 20: Datasheets (Optional) |                                                                            |         |                                   |                                         |  |  |
|----------------------------------|----------------------------------------------------------------------------|---------|-----------------------------------|-----------------------------------------|--|--|
| Suggested Time: 2 hours          |                                                                            |         | Level: Advanced                   | Prerequisite: Module 14B                |  |  |
| Outcome                          | Inc                                                                        | licator | s                                 |                                         |  |  |
| Examine the                      | a.                                                                         | Discu   | ıss what datasheets (or spec shee | ets) are and their purposes in robotics |  |  |
| importance of                    | construction.                                                              |         |                                   |                                         |  |  |
| datasheets for                   | b. Indicate where datasheets for electronic components can be found.       |         |                                   |                                         |  |  |
| providing information            | c. Extrapolate data from given datasheets.                                 |         |                                   |                                         |  |  |
| about the technical              | d. Using information from a datasheet, determine the proper parameters for |         |                                   | determine the proper parameters for a   |  |  |
| characteristics of               | given electronic component to be used in a project.                        |         |                                   | d in a project.                         |  |  |
| electronic                       |                                                                            |         |                                   |                                         |  |  |
| components.                      |                                                                            |         |                                   |                                         |  |  |

| Module 21: Hardware / Software Interface (Optional) |            |                                                                           |                                         |  |  |  |
|-----------------------------------------------------|------------|---------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Suggested Time: 2-5 ho                              | urs        | Level: Introductory                                                       | Prerequisite: None                      |  |  |  |
| Outcome                                             | Indicators |                                                                           |                                         |  |  |  |
| Investigate the role of                             | a.         | Recognize that computer instruction                                       | s (code) are written using software.    |  |  |  |
| software in providing                               | b.         | Recognize that an Integrated Develo                                       | pment Environment (IDE) is a software   |  |  |  |
| instructions to a                                   |            | application which allows a user to en                                     | nter code which is then compiled into a |  |  |  |
| robotic or automated                                |            | file.                                                                     |                                         |  |  |  |
| device.                                             | c.         | Download and run software (e.g., Arduino, BASICstamp or any integrated    |                                         |  |  |  |
|                                                     |            | development environment [IDE]) to program a device.                       |                                         |  |  |  |
|                                                     | d.         | d. Reuse (copy and paste) a program in an IDE and transfer it to a ph     |                                         |  |  |  |
|                                                     |            | device.                                                                   |                                         |  |  |  |
|                                                     | e.         | Create a file from code that can be transferred to hardware.              |                                         |  |  |  |
|                                                     | f.         | Connect hardware components and troubleshoot connection issues.           |                                         |  |  |  |
|                                                     | g.         | Alter values (e.g., colour and sound) in a program and identify resulting |                                         |  |  |  |
|                                                     |            | impacts on hardware after re-transfe                                      | erring the program to device.           |  |  |  |

| Module 22: Microcontrollers (Optional) |            |                                                                             |                                               |             |                      |  |  |
|----------------------------------------|------------|-----------------------------------------------------------------------------|-----------------------------------------------|-------------|----------------------|--|--|
| Suggested Time: 3-5 hours              |            |                                                                             | Level: Introductory                           | Pre         | erequisite: None     |  |  |
| Outcome                                | Indicators |                                                                             |                                               |             |                      |  |  |
| Investigate the role of                | a.         | Expla                                                                       | ain the operation of typical mi               | crocontroll | er components (e.g., |  |  |
| microcontrollers in                    |            | microprocessor, memory and input/output pins).                              |                                               |             |                      |  |  |
| robotics and                           | b.         | Provide examples of different types of analog and digital input/output pins |                                               |             |                      |  |  |
| automation systems.                    |            | that may be found on a microcontroller.                                     |                                               |             |                      |  |  |
|                                        | c.         | Critique different microcontrollers for functionality and usages.           |                                               |             |                      |  |  |
|                                        | d.         | d. Identify the limitations of a microcontroller, including maximum current |                                               |             |                      |  |  |
|                                        |            | and i                                                                       | and input and output voltage ranges.          |             |                      |  |  |
|                                        | e.         | Investigate how a microcontroller controls inputs and outputs.              |                                               |             |                      |  |  |
|                                        | f.         | Inves                                                                       | Investigate how to control a microcontroller. |             |                      |  |  |
|                                        | g.         | Research the use of microcontrollers in autonomous devices other than       |                                               |             |                      |  |  |
|                                        |            | robo                                                                        | ts.                                           |             |                      |  |  |

| Module 23A: Output A (Optional) |                                                                        |                                                                                 |                    |  |  |  |
|---------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|--|--|--|
| Suggested Time: 3-5 ho          | urs                                                                    | Level: Introductory                                                             | Prerequisite: None |  |  |  |
| Outcome                         | Inc                                                                    | Indicators                                                                      |                    |  |  |  |
| Design, construct and           | a.                                                                     | a. Recognize what constitutes an output (e.g., motor signal, servo signal, LED, |                    |  |  |  |
| program a device to             |                                                                        | speaker, text and movement) in the context of robotics and automated            |                    |  |  |  |
| deliver and/or modify           |                                                                        | devices.                                                                        |                    |  |  |  |
| simple outputs.                 | b.                                                                     | . Contrast the term output with the term input.                                 |                    |  |  |  |
|                                 | c.                                                                     | a. Attach and wire output devices (e.g., LED, speaker, LCD and relay) properly. |                    |  |  |  |
|                                 | d. Develop and implement a program that delivers and/or modifies an ou |                                                                                 |                    |  |  |  |
|                                 |                                                                        | (e.g., light an LED, beep a speaker or display a message on an LCD).            |                    |  |  |  |

| Module 23B: Output B (Optional) |                                                                              |                                                                          |                                                                      |                          |  |
|---------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|--|
| Suggested Time: 3-5 hours       |                                                                              |                                                                          | Level: Intermediate                                                  | Prerequisite: Module 23A |  |
| Outcome                         | Inc                                                                          | licator                                                                  | rs                                                                   |                          |  |
| Design, construct and           | a.                                                                           | a. Construct a device that makes use of multiple outputs simultaneously. |                                                                      |                          |  |
| program a device to             | b. Develop a program that delivers and/or modifies an output (e.g., light an |                                                                          |                                                                      |                          |  |
| deliver and/or modify           |                                                                              | LED, beep a speaker or display a message on an LCD) to multiple output   |                                                                      |                          |  |
| multiple outputs.               |                                                                              | devices simultaneously.                                                  |                                                                      |                          |  |
|                                 | c.                                                                           | Inqui                                                                    | quire into the limits of a program and device to deliver and control |                          |  |
|                                 |                                                                              | multi                                                                    | iple outputs at once.                                                |                          |  |

| Module 24: Shields (Optional) |                                                                              |                                    |                                      |                                      |  |  |
|-------------------------------|------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|--|
| Suggested Time: 3-5 hours     |                                                                              |                                    | Level: Introductory                  | Prerequisite: Module 22              |  |  |
| Outcome                       | Inc                                                                          | licator                            | s                                    |                                      |  |  |
| Explore the role of           | a. Define shield in the context of microcontrollers.                         |                                    |                                      | trollers.                            |  |  |
| shields in enhancing          | b. Describe the advantages and disadvantages of using shields to enhance the |                                    |                                      | ges of using shields to enhance the  |  |  |
| the functionality of          |                                                                              | functionality of microcontrollers. |                                      |                                      |  |  |
| microcontrollers.             | c.                                                                           | Ident                              | ify scenarios when shields, such as  | motor controllers, servo controllers |  |  |
|                               | and prototyping shields, can enhance the functionality of a microcontrolle   |                                    |                                      |                                      |  |  |
|                               | d.                                                                           | Inves                              | tigate how a shield interacts with a | microcontroller.                     |  |  |
|                               | e.                                                                           | Critic                             | ue the functionality and usages of   | various shields (e.g., motor shield, |  |  |
|                               |                                                                              | Bluet                              | ooth shield and prototype shield).   |                                      |  |  |

| Module 25: File Management (Optional) |     |                                                                              |          |            |  |  |
|---------------------------------------|-----|------------------------------------------------------------------------------|----------|------------|--|--|
| Suggested Time: 1-2 ho                | urs | Level: Intermediate                                                          | Prerequi | site: None |  |  |
| Outcome                               | Inc | icators                                                                      |          |            |  |  |
| Demonstrate effective                 | a.  | a. Create and maintain a folder structure to organize computer files.        |          |            |  |  |
| file management and                   | b.  | b. Create and use a naming convention that organizes files by project and    |          |            |  |  |
| organization,                         |     | version number.                                                              |          |            |  |  |
| including the use of                  | c.  | Access shared files and manage file sharing with a team when required.       |          |            |  |  |
| appropriate naming                    | d.  | Establish personal and team file editing protocols (e.g., storing files on a |          |            |  |  |
| conventions and                       |     | shared drive, file checkout/check in and using a local copy to experiment).  |          |            |  |  |
| folder structures.                    |     |                                                                              |          |            |  |  |

| Module 26: Computational Thinking (Optional) |     |                                                                             |                             |               |                            |  |
|----------------------------------------------|-----|-----------------------------------------------------------------------------|-----------------------------|---------------|----------------------------|--|
| Suggested Time: 1-2 ho                       | urs |                                                                             | Level: Introductory         | Prer          | requisite: None            |  |
| Outcome                                      | Inc | licator                                                                     | 'S                          | ·             |                            |  |
| Investigate                                  | a.  | a. Discuss how computational thinking concepts (e.g., logic, decomposition, |                             |               |                            |  |
| computational                                |     | pattern recognition, abstraction and algorithm design) can provide a        |                             |               |                            |  |
| thinking as a problem-                       |     | framework for solving problems.                                             |                             |               |                            |  |
| solving process.                             | b.  | b. Apply computational thinking concepts to solve coding and robotics and   |                             |               |                            |  |
|                                              |     | automation problems.                                                        |                             |               |                            |  |
|                                              | c.  | c. Assess the extent to which computational thinking concepts were used in  |                             |               | king concepts were used in |  |
|                                              |     | solvi                                                                       | ng a coding or robotics and | automation pr | oblem.                     |  |

| Module 27: Pseudocode (Optional) |                           |                                                                           |                             |               |                                       |  |
|----------------------------------|---------------------------|---------------------------------------------------------------------------|-----------------------------|---------------|---------------------------------------|--|
| Suggested Time: 1-2 ho           | Suggested Time: 1-2 hours |                                                                           |                             |               | Prerequisite: None                    |  |
| Outcome                          | Inc                       | dicator                                                                   | rs                          |               |                                       |  |
| Examine the role of              | a.                        | Diffe                                                                     | rentiate between pseudo     | code, natui   | ral language and a programming        |  |
| pseudocode in                    |                           | langu                                                                     | uage.                       |               |                                       |  |
| planning computer                | b.                        | Expla                                                                     | ain the syntax and guidelir | nes typically | y associated with pseudocode.         |  |
| programs.                        | c.                        | Discu                                                                     | uss the benefits of using p | seudocode     | when planning coding projects         |  |
|                                  |                           | and robotic functions.                                                    |                             |               |                                       |  |
|                                  | d.                        | Write                                                                     | e pseudocode that incorpo   | orates cour   | nted loops and subroutine             |  |
|                                  |                           | struc                                                                     | tures to control program    | flow.         |                                       |  |
|                                  | e.                        | Write                                                                     | e pseudocode that incorpo   | orates deci   | sion making structures (e.g., IF, IF- |  |
|                                  |                           | THEN                                                                      | N-ELSE) to control program  | n flow.       |                                       |  |
|                                  | f.                        | Write pseudocode that incorporates nested decision making structures.     |                             |               |                                       |  |
|                                  | g.                        | . Use a flowchart, analogy, or visual programming environment to model th |                             |               |                                       |  |
|                                  |                           | logica                                                                    | al flow of a device.        |               |                                       |  |

| Module 28A: Block-Based Coding A (Optional) |     |                                                                          |                             |            |                                   |  |  |  |
|---------------------------------------------|-----|--------------------------------------------------------------------------|-----------------------------|------------|-----------------------------------|--|--|--|
| Suggested Time: 3-5 ho                      | urs |                                                                          | Level: Introductory         |            | Prerequisite: None                |  |  |  |
| Outcome                                     | Ind | licator                                                                  | 'S                          |            |                                   |  |  |  |
| Explore programming                         | a.  | Diffe                                                                    | rentiate between the funct  | ionality o | f visual or block-based (e.g.,    |  |  |  |
| concepts using a                            |     | Block                                                                    | xyDuino, Scratch, Snap!, Oz | oblockly,  | EdBlocks and JavaScript Blocks)   |  |  |  |
| block-based language.                       |     | and t                                                                    | ext-based (e.g., Python, C+ | +, Java an | nd JavaScript) programming        |  |  |  |
|                                             |     | languages.                                                               |                             |            |                                   |  |  |  |
|                                             | b.  | Expla                                                                    | in some advantages and di   | isadvanta  | ges of block-based programming    |  |  |  |
|                                             |     | languages.                                                               |                             |            |                                   |  |  |  |
|                                             | c.  | Creat                                                                    | te a program that uses one  | linear sec | quence of events in a block-based |  |  |  |
|                                             |     | progi                                                                    | ramming environment.        |            |                                   |  |  |  |
|                                             | d.  | d. Utilize an event to trigger a sequence of actions in a block-based    |                             |            |                                   |  |  |  |
|                                             |     | programming environment.                                                 |                             |            |                                   |  |  |  |
|                                             | e.  | . Adapt or create an unplugged program (i.e., not using a computer) that |                             |            |                                   |  |  |  |
|                                             |     | uses                                                                     | one linear sequence of eve  | ents.      |                                   |  |  |  |

| Module 28B: Block-Based Coding B (Optional) |            |                                                                          |                     |                          |  |  |
|---------------------------------------------|------------|--------------------------------------------------------------------------|---------------------|--------------------------|--|--|
| Suggested Time: 3-5 hours                   |            |                                                                          | Level: Introductory | Prerequisite: Module 28A |  |  |
| Outcome                                     | Indicators |                                                                          |                     |                          |  |  |
| Implement a program                         | a.         | a. Investigate repetition using block-based programming or unplugged     |                     |                          |  |  |
| which utilizes control                      |            | activities.                                                              |                     |                          |  |  |
| structures and                              | b.         | . Investigate where a sequence repeats until an expected event occurs by |                     |                          |  |  |
| repetition in a block-                      |            | using either block-based programming or unplugged activities.            |                     |                          |  |  |
| based coding                                | c.         | c. Create or adapt a program that makes a decision based on an input.    |                     |                          |  |  |
| environment.                                |            | · · ·                                                                    |                     |                          |  |  |

| Module 29: Syntax and Organization (Optional) |     |                                                                              |                                    |                      |  |
|-----------------------------------------------|-----|------------------------------------------------------------------------------|------------------------------------|----------------------|--|
| Suggested Time: 1-2 hours                     |     | Level: Introductory                                                          | Prerequisite: None                 |                      |  |
| Outcome                                       | Ind | licator                                                                      | s                                  | •                    |  |
| Demonstrate proper                            | a.  | a. Explain the importance of following proper syntax practices for the       |                                    |                      |  |
| syntax and                                    |     | programming language.                                                        |                                    |                      |  |
| organization when                             | b.  | b. Follow proper internal spacing practices for the programming language.    |                                    |                      |  |
| developing a                                  | c.  | Create internal documentation for programs.                                  |                                    |                      |  |
| program.                                      | d.  | d. Ensure proper separation of different sections of the program (e.g., main |                                    |                      |  |
|                                               |     | progr                                                                        | ram, subroutines and variables) to | enhance readability. |  |

| Module 30A: Coding – Variables A (Core) |     |                                                                      |                                      |                                         |  |  |  |
|-----------------------------------------|-----|----------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--|--|--|
| Suggested Time: 1-3 ho                  | urs |                                                                      | Level: Introductory                  | Prerequisite: None                      |  |  |  |
| Outcome                                 | Ind | licator                                                              | s                                    |                                         |  |  |  |
| Explore the role of                     | a.  | Recog                                                                | gnize that variables are placeholde  | rs for data, or containers used to      |  |  |  |
| variables in programs.                  |     | hold                                                                 | information that can be later used   | in a program.                           |  |  |  |
|                                         | b.  | Discu                                                                | ss the importance of following est   | ablished conventions and rules for      |  |  |  |
|                                         |     | nami                                                                 | ng objects and variables within pro  | gramming languages.                     |  |  |  |
|                                         | c.  | Diffe                                                                | rentiate between variables and cor   | nstants in a program.                   |  |  |  |
|                                         | d.  | Expla                                                                | in the need to assign values to var  | ables.                                  |  |  |  |
|                                         | e.  | Discu                                                                | ss the concept of scope (e.g., local | and global) of variables within a       |  |  |  |
|                                         |     | progr                                                                | am.                                  |                                         |  |  |  |
|                                         | f.  | Explo                                                                | re the importance of binary thinki   | ng (e.g., on versus off) in controlling |  |  |  |
|                                         |     | devic                                                                | es.                                  |                                         |  |  |  |
|                                         | g.  | g. Provide examples of how to use arithmetic, comparison and Boolean |                                      |                                         |  |  |  |
|                                         |     | operators to perform actions on variables.                           |                                      |                                         |  |  |  |
|                                         | h.  | Demo                                                                 | onstrate how to move or turn a spr   | ite or robot by manipulating            |  |  |  |
|                                         |     | varial                                                               | oles such as speed or direction.     |                                         |  |  |  |

| Module 30B: Coding – Variables B (Core) |     |                                                                       |                                      |                                     |  |  |
|-----------------------------------------|-----|-----------------------------------------------------------------------|--------------------------------------|-------------------------------------|--|--|
| Suggested Time: 1-3 ho                  | urs |                                                                       | Level: Introductory                  | Prerequisite: Module 30A            |  |  |
| Outcome                                 | Ind | licator                                                               | s                                    |                                     |  |  |
| Differentiate between                   | a.  | Ident                                                                 | ify the need for different data type | s in programming robotic and        |  |  |
| common data types                       |     | autor                                                                 | mated devices.                       |                                     |  |  |
| (e.g., integer,                         | b.  | Comp                                                                  | pare the characteristics of integer, | Boolean, floating point, and string |  |  |
| Boolean, floating                       |     | data                                                                  | types.                               |                                     |  |  |
| point and string).                      | c.  | Demonstrate how to convert variables of one data type to another data |                                      |                                     |  |  |
|                                         |     | type and how that might impact the value of the variable.             |                                      |                                     |  |  |
|                                         | d.  | d. Discuss the importance of initializing variables in programs.      |                                      |                                     |  |  |
|                                         |     |                                                                       |                                      |                                     |  |  |

| Module 30C: Coding – Variables C (Optional) |     |                                                                                |                                                           |                          |  |  |  |
|---------------------------------------------|-----|--------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|--|--|--|
| Suggested Time: 1-3 hours                   |     |                                                                                | Level: Intermediate                                       | Prerequisite: Module 30A |  |  |  |
| Outcome                                     | Inc | licator                                                                        | S                                                         |                          |  |  |  |
| Explore the use of                          | a.  | a. Explain the advantages of using integer data types (e.g., int, short, long, |                                                           |                          |  |  |  |
| integer data types in                       |     | byte) in a program.                                                            |                                                           |                          |  |  |  |
| programs.                                   | b.  | Explore the constraints of integer data types.                                 |                                                           |                          |  |  |  |
|                                             | c.  | Investigate the benefits and the challenges of carrying out mathematical       |                                                           |                          |  |  |  |
|                                             |     | calculations with integer data types.                                          |                                                           |                          |  |  |  |
|                                             | d.  | Dem                                                                            | Demonstrate how to use an integer data type in a program. |                          |  |  |  |

| Module 30D: Coding - Variables D (Optional) |      |                                                                                                                                |                                |                                  |  |  |
|---------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|--|--|
| Suggested Time: 1-3 ho                      | urs  |                                                                                                                                | Level: Intermediate            | Prerequisite: Module 30A         |  |  |
| Outcome                                     | Indi | cators                                                                                                                         | 5                              |                                  |  |  |
| Incorporate Boolean                         | a.   | Expla                                                                                                                          | nin why Boolean data types are | used in programs.                |  |  |
| and string data types                       | b.   | Provi                                                                                                                          | ide examples of how Boolean o  | ata types can be used to control |  |  |
| in programs.                                |      | funct                                                                                                                          | ions in a robotic or automated | device.                          |  |  |
|                                             | c.   | Write a program to set or change the state of a Boolean variable based on an input.                                            |                                |                                  |  |  |
|                                             | d.   | Provide examples of how string data types (e.g., string, char and word) are used in programming robotic and automated devices. |                                |                                  |  |  |
|                                             | e.   | e. Explore the limitations of string data types.                                                                               |                                |                                  |  |  |
|                                             | f.   | Write                                                                                                                          | e programs that utilize and ma | nipulate string data types.      |  |  |

| Module 30E: Coding – Variables E (Optional) |     |                                                                                  |                               |          |                               |  |
|---------------------------------------------|-----|----------------------------------------------------------------------------------|-------------------------------|----------|-------------------------------|--|
| Suggested Time: 2-5 hours                   |     |                                                                                  | Level: Intermediate           |          | Prerequisite: Module 30A      |  |
| Outcome                                     | Inc | Indicators                                                                       |                               |          |                               |  |
| Investigate the use of                      | a.  | . Identify situations where it is beneficial to use floating point data types    |                               |          |                               |  |
| floating point data                         |     | (e.g., float, double) in a program.                                              |                               |          |                               |  |
| types in programs.                          | b.  | . Explore the constraints of floating point data types, including the challenges |                               |          |                               |  |
|                                             |     | of carrying out mathematical calculations with floating point data types.        |                               |          |                               |  |
|                                             | c.  | Write                                                                            | e programs that utilize and m | anipulat | te floating point data types. |  |

| Module 31A: Coding –   | Module 31A: Coding – Control Structures A (Optional) |                                                                      |                                         |  |  |  |  |
|------------------------|------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Suggested Time: 5-10 h | ours                                                 | Level: Introductory                                                  | Prerequisite: Module 30A                |  |  |  |  |
| Outcome                | Indic                                                | ators                                                                |                                         |  |  |  |  |
| Create programs that   | a. Id                                                | lentify common control structu                                       | res that affect program flow.           |  |  |  |  |
| use control structures | b. E                                                 | xplain the primary function of a                                     | a loop in a program and the role of     |  |  |  |  |
| to affect program      | С                                                    | conditions in controlling the number of iterations of the loop.      |                                         |  |  |  |  |
| flow.                  | c. C                                                 | ompare the characteristics of c                                      | common looping structures (e.g., WHILE, |  |  |  |  |
|                        | C                                                    | DO-WHILE and FOR).                                                   |                                         |  |  |  |  |
|                        | d. L                                                 | se looping structures to make                                        | a device repeat an action or series of  |  |  |  |  |
|                        | а                                                    | actions a specific number of times or until a condition is met.      |                                         |  |  |  |  |
|                        | e. D                                                 | e. Discuss the purpose of the BREAK, CONTINUE, GOTO, EXIT and SWITCH |                                         |  |  |  |  |
|                        | С                                                    | ontrol structures.                                                   |                                         |  |  |  |  |

| Module 31B: Coding – Control Structures B (Optional) |                                                         |                                                                             |                                        |  |  |
|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|--|--|
| Suggested Time: 5-10 h                               | ours                                                    | Level: Intermediate                                                         | Prerequisite: Module 31A               |  |  |
| Outcome                                              | Indicat                                                 | ors                                                                         |                                        |  |  |
| Create programs that                                 | a. Red                                                  | ognize that conditional statements                                          | s represent decisions that are         |  |  |
| use conditional                                      | eva                                                     | luated based on whether the cond                                            | lition evaluates to TRUE or FALSE.     |  |  |
| statements to control                                | b. Pro                                                  | vide examples of situations where                                           | conditional statements and nested      |  |  |
| program flow.                                        | conditional statements might be used in a program.      |                                                                             |                                        |  |  |
|                                                      | c. Use                                                  | Use conditional statements (e.g., IF, IF-ELSE, IF-THEN-ELSE and ELSE-IF) to |                                        |  |  |
|                                                      | hav                                                     | nave a device perform an action or differentiate between options.           |                                        |  |  |
|                                                      | d. Use                                                  | e nested conditional statements to have a device make multiple              |                                        |  |  |
|                                                      | consecutive decisions or differentiate between options. |                                                                             |                                        |  |  |
|                                                      | e. Use                                                  | WAIT or DELAY to have a task WA                                             | AIT for a conditional expression to be |  |  |
|                                                      | tru                                                     | e or DELAY for a specified amount                                           | of time.                               |  |  |

| Module 32A: Coding - Functions A (Optional) |                                                 |                                                            |                                        |  |
|---------------------------------------------|-------------------------------------------------|------------------------------------------------------------|----------------------------------------|--|
| Suggested Time: 3-5 ho                      | urs                                             | Level: Intermediate                                        | Prerequisite: Module 30A               |  |
| Outcome                                     | Indicate                                        | ors                                                        |                                        |  |
| Create and                                  | a. Inv                                          | estigate the purposes of function                          | ons (i.e., subroutines) in programs.   |  |
| incorporate functions                       | b. Ide                                          | ntify examples of common fund                              | ctions used in programming robots and  |  |
| in programs.                                | automated devices.                              |                                                            |                                        |  |
|                                             | с. Ехр                                          | Explain how functions are called in programs.              |                                        |  |
|                                             | d. Rec                                          | ecognize that functions can use local or global variables. |                                        |  |
|                                             | e. Cre                                          | Create functions that call local variables.                |                                        |  |
|                                             | f. Create functions that call global variables. |                                                            |                                        |  |
|                                             | g. Cre                                          | ate a program that has more th                             | nan one function utilizing identically |  |
|                                             | nar                                             | ned local variables.                                       |                                        |  |

| Module 32B: Coding - Functions B (Optional) |      |                                                                                    |                                    |                                      |
|---------------------------------------------|------|------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Suggested Time: 3-5 ho                      | ours |                                                                                    | Level: Intermediate                | Prerequisite: Module 32B             |
| Outcome                                     | Inc  | licator                                                                            | S                                  |                                      |
| Incorporate internal,                       | a.   | Recog                                                                              | gnize that a library is a compilat | ion of functions that can extend the |
| external and user-                          |      | funct                                                                              | ionality of software.              |                                      |
| defined libraries to                        | b.   | b. Discuss why programming languages make use of libraries.                        |                                    |                                      |
| extend the                                  | c.   | c. Utilize internal libraries to reduce the required code necessary for a project. |                                    |                                      |
| functionality of                            | d.   | d. Import and incorporate an external library to solve a programming               |                                    |                                      |
| software.                                   |      | problem.                                                                           |                                    |                                      |
|                                             | e.   | Creat                                                                              | e a library to meet a specific ne  | ed.                                  |

| Module 32C: Coding - Functions C (Optional) |           |                                                                             |                                                                         |                                          |  |
|---------------------------------------------|-----------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|--|
| Suggested Time: 3-5 ho                      | ours      |                                                                             | Level: Advanced                                                         | Prerequisite: Module 31A, 32B            |  |
| Outcome                                     | Ind       | licator                                                                     | s                                                                       |                                          |  |
| Investigate how and                         | a.        | Diffe                                                                       | rentiate between the functionality                                      | y of a loop (i.e., iteration) and a      |  |
| when to incorporate                         |           | recur                                                                       | rsive function (i.e., recursion).                                       |                                          |  |
| recursive functions                         | b.        | Reco                                                                        | gnize that a recursive function is c                                    | one that calls itself to solve a smaller |  |
| into programs.                              |           | instance of the same problem.                                               |                                                                         |                                          |  |
|                                             | c. Explai |                                                                             | lain the importance of the terminating or base condition in a recursive |                                          |  |
|                                             | function. |                                                                             |                                                                         |                                          |  |
|                                             | d.        | d. Provide examples of situations where it is advantageous to use recursive |                                                                         |                                          |  |
|                                             |           | functions in programming robotic and automated devices.                     |                                                                         |                                          |  |
|                                             | e.        | Creat                                                                       | te a recursive function to solve a p                                    | rogramming problem.                      |  |

| Module 33: Debugging Code (Optional) |     |                                                                               |                                      |  |  |
|--------------------------------------|-----|-------------------------------------------------------------------------------|--------------------------------------|--|--|
| Suggested Time: 2-5 ho               | urs | Level: Intermediate                                                           | Prerequisite: Module 30A             |  |  |
| Outcome                              | Inc | licators                                                                      |                                      |  |  |
| Use common coding                    | a.  | Discuss the concept of elegance in coo                                        | ling.                                |  |  |
| techniques to                        | b.  | Improve the elegance of existing code                                         | by simplifying, improving efficiency |  |  |
| enhance code                         |     | and enhancing code readability.                                               |                                      |  |  |
| elegance and debug                   | c.  | Create internal documentation (e.g., i                                        | nline comments and header            |  |  |
| errors.                              |     | comments) for a program.                                                      |                                      |  |  |
|                                      | d.  | Discuss different types of errors (e.g.,                                      | syntax, semantic and runtime) and    |  |  |
|                                      |     | their impacts on program execution.                                           |                                      |  |  |
|                                      | e.  | Discuss common steps for debugging                                            | code.                                |  |  |
|                                      | f.  | f. Identify and correct errors in a program.                                  |                                      |  |  |
|                                      | g.  | g. Develop testing procedures, such as outputting values during execution, to |                                      |  |  |
|                                      |     | debug programs.                                                               |                                      |  |  |

| Module 34A: Sensor Theory A (Optional) |                                                            |                                                                                |                                    |                     |
|----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|---------------------|
| Suggested Time: 2-4 ho                 | urs                                                        |                                                                                | Level: Introductory                | Prerequisite: None  |
| Outcome                                | Inc                                                        | licator                                                                        | s                                  |                     |
| Explore the use of                     | a.                                                         | . Provide examples of everyday devices which use sensors.                      |                                    |                     |
| sensors in robotic and                 | b.                                                         | Explain the role of sensors in a robotic device.                               |                                    |                     |
| automated devices.                     | c.                                                         | c. Identify how different categories of sensors, including tactile sensors and |                                    |                     |
|                                        |                                                            | sensors for distance detection, motion detection, sound detection and heat     |                                    |                     |
|                                        | detection, relate to the function of human sensory organs. |                                                                                |                                    | man sensory organs. |
|                                        | d.                                                         | Ident                                                                          | ify and use devices with a variety | of sensors.         |

| Module 34B: Sensor Theory B (Optional) |     |                                                                          |                                |                                 |  |  |
|----------------------------------------|-----|--------------------------------------------------------------------------|--------------------------------|---------------------------------|--|--|
| Suggested Time: 2-3 ho                 | urs |                                                                          | Level: Advanced                | Prerequisite: Module 34A        |  |  |
| Outcome                                | Inc | licator                                                                  | 'S                             |                                 |  |  |
| Investigate how                        | a.  | Discu                                                                    | uss the characteristics of ser | nsors.                          |  |  |
| sensors interact with                  | b.  | Explain how the output from a sensor can serve as an input to a program. |                                |                                 |  |  |
| hardware and                           | c.  | c. Explain how sensors interact with the programming of a device.        |                                |                                 |  |  |
| software in a device.                  | d.  | , , , , , , , , , , , , , , , , , , , ,                                  |                                |                                 |  |  |
|                                        |     | measure the position, velocity and/or acceleration of the device or a    |                                |                                 |  |  |
|                                        |     | portion of the device.                                                   |                                |                                 |  |  |
|                                        | e.  | Reco                                                                     | gnize that sensors can gene    | rate analog or digital signals. |  |  |

| Module 35A: Line Sensors A (Optional) |                                                       |                                                                          |                                                                             |                                 |  |
|---------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|--|
| Suggested Time: 3-5 ho                | urs                                                   |                                                                          | Level: Introductory                                                         | Prerequisite: Module 28A or 30A |  |
| Outcome                               | Inc                                                   | licator                                                                  | rs                                                                          |                                 |  |
| Construct and                         | a.                                                    | Expla                                                                    | ain how a line follower senso                                               | or works.                       |  |
| program a device                      | b.                                                    | b. Attach and properly wire a line follower sensor to a device.          |                                                                             |                                 |  |
| capable of following a                | c. Develop a program to debug a line follower sensor. |                                                                          |                                                                             | ne follower sensor.             |  |
| simple line.                          | d.                                                    | Prog                                                                     | Program a device to follow a straight line using input from a line follower |                                 |  |
|                                       |                                                       | senso                                                                    | or.                                                                         |                                 |  |
|                                       | e.                                                    | e. Develop and implement a program to make a device follow a curved line |                                                                             |                                 |  |
|                                       |                                                       | using                                                                    | g input from a line follower s                                              | sensor.                         |  |
|                                       | f.                                                    | Desc                                                                     | ribe practical applications o                                               | f line follower robots.         |  |

| Module 35B: Line Sensors B (Optional) |     |                                                                                 |                            |              |                                   |
|---------------------------------------|-----|---------------------------------------------------------------------------------|----------------------------|--------------|-----------------------------------|
| Suggested Time: 3-5 ho                | urs | L                                                                               | evel: Intermediate         |              | Prerequisite: Module 35A          |
| Outcome                               | Inc | licators                                                                        |                            |              |                                   |
| Construct and                         | a.  | Progran                                                                         | n a device to follow a lin | e that inclu | udes left and right 90-degree     |
| program a device                      |     | turns using input from a line follower sensor.                                  |                            |              |                                   |
| capable of following a                | b.  | b. Program a device to follow a line that includes T-junctions using input from |                            |              | udes T-junctions using input from |
| line that includes 90-                |     | a line follower sensor.                                                         |                            |              |                                   |
| degree turns and T-                   | c.  | c. Program a device to make a decision (e.g., turn around, decide which way     |                            |              |                                   |
| junctions.                            |     | to turn or move in reverse) at a T-junction using input from a line follow      |                            |              | using input from a line follower  |
|                                       |     | sensor.                                                                         |                            |              |                                   |

| Module 35C: Line Sensors C (Optional) |     |                                                                                |                              |                |                                     |
|---------------------------------------|-----|--------------------------------------------------------------------------------|------------------------------|----------------|-------------------------------------|
| Suggested Time: 3-5 ho                | urs |                                                                                | Level: Advanced              |                | Prerequisite: Module 35B            |
| Outcome                               | Inc | licator                                                                        | 'S                           |                |                                     |
| Construct and                         | a.  | Progr                                                                          | ram a device to follow a co  | mplex solid    | l line, including curves, 90-degree |
| program a device                      |     | turns                                                                          | s, greater than 90 degree to | urns and T-j   | unctions using input from a line    |
| capable of following a                |     | follower sensor.                                                               |                              |                |                                     |
| complex line,                         | b.  | Program a device to make a decision at the end of a line using input from a    |                              |                |                                     |
| including dotted line                 |     | line follower sensor.                                                          |                              |                |                                     |
| sections.                             | c.  | c. Program a device to follow a dotted line, including curves, 90-degree turns |                              |                |                                     |
|                                       |     | and T                                                                          | Γ-junctions using input fror | n a line follo | ower sensor.                        |

| Module 36A: Tactile Sensors A (Optional) |       |                                                                            |                                 |  |  |
|------------------------------------------|-------|----------------------------------------------------------------------------|---------------------------------|--|--|
| Suggested Time: 3-5                      | hours | Level: Introductory                                                        | Prerequisite: Module 28A or 30A |  |  |
| Outcome                                  | Ind   | licators                                                                   |                                 |  |  |
| Construct and                            | a.    | Explain how a tactile sensor work                                          | ks.                             |  |  |
| program a device                         | b.    | b. Attach and wire a tactile sensor properly to a device.                  |                                 |  |  |
| capable of using                         | c.    | c. Develop a program to debug a tactile sensor.                            |                                 |  |  |
| tactile sensors to                       | d.    | d. Program a device to use input from a tactile sensor to make a decision  |                                 |  |  |
| make decisions.                          |       | which affects an output (e.g., light an LED, make a Beep or move a servo). |                                 |  |  |
|                                          | e.    | e. Provide examples of how tactile sensing is used in robotics for         |                                 |  |  |
|                                          |       | manipulation, exploration and re                                           | esponse.                        |  |  |

| Module 36B: Tactile Sensors B (Optional) |             |                                                                          |                                             |  |  |
|------------------------------------------|-------------|--------------------------------------------------------------------------|---------------------------------------------|--|--|
| Suggested Time: 3-5 ho                   | urs         | Level: Intermediate                                                      | Prerequisite: Module 36A                    |  |  |
| Outcome                                  | Indic       | ators                                                                    |                                             |  |  |
| Construct and                            | a. <i>A</i> | Attach and properly wire at least                                        | two tactile sensors to a device.            |  |  |
| program a device                         | b. F        | Program a device to use input fro                                        | m multiple tactile sensors to make a        |  |  |
| capable of using                         | C           | lecision which affects an output (                                       | (e.g., navigate around a room using tactile |  |  |
| multiple tactile                         | S           | sensors).                                                                |                                             |  |  |
| sensors to make                          | c. E        | Differentiate between different ty                                       | pes of tactile sensors, such as capacitive  |  |  |
| decisions.                               | S           | sensors, piezoresistive sensors, piezoelectric sensors, optical sensors, |                                             |  |  |
|                                          | n           | magnetics sensors and hydraulic sensors.                                 |                                             |  |  |
|                                          | d. E        | d. Describe practical applications of tactile sensors in manufacturing,  |                                             |  |  |
|                                          | С           | consumer devices, medical field and/or the automotive industry.          |                                             |  |  |
|                                          | e. D        | Discuss challenges associated with making tactile sensing mimic human    |                                             |  |  |
|                                          | t           | ouch.                                                                    |                                             |  |  |

| Module 37A: Ultrasonic Sensors A (Optional) |     |                                                                               |                                            |  |  |  |
|---------------------------------------------|-----|-------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Suggested Time: 3-5 ho                      | urs | Level: Introductory                                                           | Prerequisite: Module 28A or 30A            |  |  |  |
| Outcome                                     | Inc | licators                                                                      |                                            |  |  |  |
| Construct and                               | a.  | Explain how an ultrasonic sensor v                                            | vorks.                                     |  |  |  |
| program a device that                       | b.  | Attach and wire an ultrasonic sens                                            | or properly to a device.                   |  |  |  |
| uses an ultrasonic                          | c.  | Develop a program to debug an ultrasonic sensor.                              |                                            |  |  |  |
| sensor to detect                            | d.  | d. Program a device to detect the distance from an object using input from an |                                            |  |  |  |
| distance.                                   |     | ultrasonic sensor.                                                            |                                            |  |  |  |
|                                             | e.  | Program a device to alter outputs                                             | (e.g., illuminate different LED lights for |  |  |  |
|                                             |     | different distances or create a diffe                                         | erent beeping sequence or tone for         |  |  |  |
|                                             |     | different distances) based on dista                                           | nce from an object using input from an     |  |  |  |
|                                             |     | ultrasonic sensor.                                                            |                                            |  |  |  |
|                                             | f.  | Provide practical examples of devices that incorporate ultrasonic sensors to  |                                            |  |  |  |
|                                             |     | detect distance from or to the sen                                            | sor.                                       |  |  |  |

| Module 37B: Ultrasonic Sensors B (Optional) |                                                                           |                                                                          |                                |                                            |  |  |
|---------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--|--|
| Suggested Time: 3-5 ho                      | Suggested Time: 3-5 hours                                                 |                                                                          |                                | Prerequisite: Module 37A                   |  |  |
| Outcome                                     | Indi                                                                      | icator                                                                   | s                              |                                            |  |  |
| Construct and                               | a.                                                                        | Progr                                                                    | ram a device to navigate and a | avoid obstacles in an area using an        |  |  |
| program a device that                       |                                                                           | ultras                                                                   | sonic sensor.                  |                                            |  |  |
| uses an ultrasonic                          | b.                                                                        | Provi                                                                    | de practical examples of devi  | ces that incorporate ultrasonic sensors to |  |  |
| sensor to navigate an                       |                                                                           | support device navigation.                                               |                                |                                            |  |  |
| area.                                       | c.                                                                        | Program an ultrasonic sensor to measure the distance between the robotic |                                |                                            |  |  |
|                                             | device and an object and manipulate an output (e.g., change motor speed   |                                                                          |                                |                                            |  |  |
|                                             | change light colours or change speed of a beep).                          |                                                                          |                                |                                            |  |  |
|                                             | d. Design and develop a program capable of interpreting signals and makin |                                                                          |                                |                                            |  |  |
|                                             |                                                                           | decisions based on the input from ultrasonic sensors.                    |                                |                                            |  |  |
|                                             | e.                                                                        | . Manipulate the movement of a device based on proximity of an object to |                                |                                            |  |  |
|                                             |                                                                           | the d                                                                    | evice.                         |                                            |  |  |

| Module 37C: Ultrasonic Sensors C (Optional) |                                                                             |                                                                         |                                      |                                     |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--|--|
| Suggested Time: 3-5 ho                      | urs                                                                         |                                                                         | Level: Advanced                      | Prerequisite: Module 37B            |  |  |
| Outcome                                     | Ind                                                                         | icator                                                                  | s                                    |                                     |  |  |
| Construct and                               | a.                                                                          | Progr                                                                   | ram a device to make decisions (e.g  | ., navigate a maze and stop when in |  |  |
| program a device that                       |                                                                             | a dea                                                                   | nd end or follow a wall around a roo | m) using inputs from multiple       |  |  |
| uses multiple                               | ultrasonic sensors.                                                         |                                                                         |                                      |                                     |  |  |
| ultrasonic sensors to                       | b.                                                                          | b. Provide examples of how ultrasonic sensors are used in manufacturing |                                      |                                     |  |  |
| make decisions.                             |                                                                             | environments to automate process control and maximize efficiency.       |                                      |                                     |  |  |
|                                             | c. Design and construct a device using multiple ultrasonic sensors to perfo |                                                                         |                                      |                                     |  |  |
|                                             | a task involving manipulating outputs (e.g., change movement based on       |                                                                         |                                      |                                     |  |  |
|                                             | inputs or alter direction of movement or reach out to touch an object).     |                                                                         |                                      |                                     |  |  |
|                                             | d.                                                                          | Evalu                                                                   | ate the usefulness of an ultrasonic  | sensor in various situations.       |  |  |

| Module 38A: Infrared Sensors A (Optional) |                                                                       |         |                               |                                                 |  |
|-------------------------------------------|-----------------------------------------------------------------------|---------|-------------------------------|-------------------------------------------------|--|
| Suggested Time: 3-5 hours                 |                                                                       |         | Level: Introductory           | Prerequisite: Module 28A or 30A                 |  |
| Outcome                                   | Inc                                                                   | licator | rs                            | ·                                               |  |
| Construct and                             | a.                                                                    | Expla   | ain how an infrared light and | l sensor works.                                 |  |
| program a device that                     | b. Attach and properly wire an infrared light and sensor to a device. |         |                               | ared light and sensor to a device.              |  |
| uses infrared lights                      | c. Develop a program to debut an infrared light and sensor.           |         |                               | nfrared light and sensor.                       |  |
| and sensors to detect                     | d.                                                                    | Prog    | ram a device to detect an ob  | pject in the vicinity of the device using input |  |
| objects.                                  |                                                                       | from    | infrared lights and sensors.  |                                                 |  |
|                                           | e.                                                                    | Prog    | ram a device to modify an o   | utput (e.g., light an LED, make a beep          |  |
|                                           |                                                                       | soun    | nd or move a servo) based or  | the presence of an object detected by           |  |
|                                           |                                                                       | infra   | red light and sensors .       |                                                 |  |

| Module 38B: Infrared Sensors B (Optional) |                                                                          |         |                                 |                                        |  |
|-------------------------------------------|--------------------------------------------------------------------------|---------|---------------------------------|----------------------------------------|--|
| Suggested Time: 3-5 hours                 |                                                                          |         | Level: Intermediate             | Prerequisite: Module 38A               |  |
| Outcome                                   | Inc                                                                      | licator | 'S                              |                                        |  |
| Construct and                             | a.                                                                       | Progi   | ram a device to navigate and av | void obstacles in an area using input  |  |
| program a device                          | from infrared sensors.                                                   |         |                                 |                                        |  |
| capable of navigating                     | b. Provide examples of applications of infrared sensors.                 |         |                                 |                                        |  |
| around a room using                       | c. Design and develop a program capable of interpreting signals from and |         |                                 |                                        |  |
| infrared sensors.                         | making decisions based on the input from infrared sensors.               |         |                                 |                                        |  |
|                                           | d. Manipulate the movement of a device based on proximity of an obje     |         |                                 | ice based on proximity of an object to |  |
|                                           |                                                                          | the d   | levice.                         |                                        |  |

| Module 38C: Infrared Sensors C (Optional) |     |                                                                               |                                      |                                     |  |  |
|-------------------------------------------|-----|-------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--|--|
| Suggested Time: 3-5 ho                    | urs |                                                                               | Level: Advanced                      | Prerequisite: Module 38B            |  |  |
| Outcome                                   | Ind | licator                                                                       | s                                    |                                     |  |  |
| Construct and                             | a.  | Progi                                                                         | ram a device to make decisions (e.g. | ., navigate a maze and stop when in |  |  |
| program a device that                     |     | a dead end or follow a wall around a room) using inputs from multiple         |                                      |                                     |  |  |
| uses multiple infrared                    |     | infrared sensors.                                                             |                                      |                                     |  |  |
| sensors to make                           | b.  | b. Design and construct a device using multiple infrared sensors to perform a |                                      |                                     |  |  |
| decisions.                                |     | task involving manipulating outputs (e.g., change movement based on           |                                      |                                     |  |  |
|                                           |     | inputs, alter direction of movement or reach out to touch an object).         |                                      |                                     |  |  |
|                                           | c.  | Evalu                                                                         | ate the usefulness of an Infrared se | nsor in various situations.         |  |  |

| Module 39A: Sound Sensors A (Optional) |     |                                                                        |                                             |  |  |
|----------------------------------------|-----|------------------------------------------------------------------------|---------------------------------------------|--|--|
| Suggested Time: 3-5 ho                 | urs | Level: Introductory                                                    | Prerequisite: Module 28A or 30A             |  |  |
| Outcome                                | Inc | dicators                                                               |                                             |  |  |
| Construct and                          | a.  | a. Explain how a sound sensor works.                                   |                                             |  |  |
| program a device that                  | b.  | b. Attach and properly wire a sound sensor to a device.                |                                             |  |  |
| can detect sound                       | c.  | Develop a program to debug a sound sensor.                             |                                             |  |  |
| using a sound sensor.                  | d.  | Develop and implement a program to detect sound in the vicinity of the |                                             |  |  |
|                                        |     | device.                                                                |                                             |  |  |
|                                        | e.  | Develop and implement a progra                                         | am to modify an output (e.g., light an LED, |  |  |
|                                        |     | make a beep sound or move a se                                         | ervo) based on the detection of a sound.    |  |  |

| Module 39B: Sound Sensors B (Optional) |                                                                              |                                       |                                |                                         |  |
|----------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------------------------------------|--|
| Suggested Time: 3-5 hours              |                                                                              |                                       | Level: Intermediate            | Prerequisite: Module 39A                |  |
| Outcome                                | Inc                                                                          | licator                               | S                              |                                         |  |
| Construct and                          | a.                                                                           | a. Program a device to follow sounds. |                                |                                         |  |
| program a device that                  | b. Explain different ways in which a sound sensor could be used in a robotic |                                       |                                | sound sensor could be used in a robotic |  |
| can follow sound.                      |                                                                              | devic                                 | ce.                            |                                         |  |
|                                        | c.                                                                           | Resea                                 | s of sound sensors.            |                                         |  |
|                                        | d.                                                                           | Deve                                  | lop and construct a device to  | o react (e.g., move away from a sound,  |  |
|                                        |                                                                              | wake                                  | up from a sound or change      | the colour of a light based on sound    |  |
|                                        |                                                                              | levels                                | s) to multiple different sound | ds.                                     |  |

| Module 40A: Other Sensors A (Optional) |                                    |                                     |                                                                           |  |  |  |
|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Suggested Time: 3-5 ho                 | urs                                | Level: Introductory                 | Prerequisite: Module 28A or 30A                                           |  |  |  |
| Outcome                                | Inc                                | licators                            | ·                                                                         |  |  |  |
| Construct and                          | a.                                 | Design, construct and program a de  | vice to detect external temperature                                       |  |  |  |
| program a device to                    |                                    | using input from a temperature sen  | sor.                                                                      |  |  |  |
| detect an input from a                 | b.                                 | Design, construct and program a de  | vice to detect and identify colour using                                  |  |  |  |
| sensor.                                |                                    | input from a colour sensor.         |                                                                           |  |  |  |
|                                        | c.                                 | Design, construct and program a de  | Design, construct and program a device to detect light using input from a |  |  |  |
|                                        |                                    | light sensor (e.g., photoresistor). |                                                                           |  |  |  |
|                                        | d.                                 | Design, construct and program a de  | esign, construct and program a device to detect speed and/or acceleration |  |  |  |
|                                        | using input from an accelerometer. |                                     |                                                                           |  |  |  |
|                                        | e.                                 | Design, construct and program a de  | vice to detect differing angles using                                     |  |  |  |
|                                        |                                    | input from a gyroscope.             |                                                                           |  |  |  |

| Module 40B: Other Sensors B (Optional) |     |                                                                             |                                |                                        |  |  |
|----------------------------------------|-----|-----------------------------------------------------------------------------|--------------------------------|----------------------------------------|--|--|
| Suggested Time: 3-5 hours              |     |                                                                             | Level: Intermediate            | Prerequisite: Module 40A               |  |  |
| Outcome                                | Inc | licator                                                                     | 'S                             |                                        |  |  |
| Construct and                          | a.  | Desig                                                                       | gn, construct and program a c  | levice to modify an output based on a  |  |  |
| program a device that                  |     | temp                                                                        | temperature change.            |                                        |  |  |
| uses a different                       | b.  | Desig                                                                       | gn, construct and program a c  | levice to sort objects based on colour |  |  |
| sensor (not ultrasonic,                |     | using input from a colour sensor.                                           |                                |                                        |  |  |
| infrared, sound, line                  | c.  | Design, construct and program a device to navigate towards/away from        |                                |                                        |  |  |
| following or tactile) to               |     | light using input from a light sensor (e.g., photoresistor).                |                                |                                        |  |  |
| perform an associated                  | d.  | Design, construct and program a device to adjust a level using input from a |                                |                                        |  |  |
| task.                                  |     | gyroscope.                                                                  |                                |                                        |  |  |
|                                        | e.  | Manipulate an output to signal detection using multiple sensors, for        |                                |                                        |  |  |
|                                        |     | exam                                                                        | nple sort objects based on col | our.                                   |  |  |

| Module 41A: Wearable   | e 41A: Wearable Technologies A (Optional)                                 |                                                                            |                                     |  |  |  |  |
|------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| Suggested Time: 2-4 ho | urs                                                                       | Level: Introductory                                                        | Prerequisite: None                  |  |  |  |  |
| Outcome                | Indicato                                                                  | ors                                                                        |                                     |  |  |  |  |
| Investigate the use of | a. Rese                                                                   | earch the development of wearable                                          | technologies, including e-textiles, |  |  |  |  |
| wearable               | activity trackers, fashion electronics, smart devices and products develo |                                                                            |                                     |  |  |  |  |
| technologies.          | for e                                                                     | electrostatic discharge control.                                           |                                     |  |  |  |  |
|                        | b. Criti                                                                  | tique the functionality of wearable technologies, including issues related |                                     |  |  |  |  |
|                        | to d                                                                      | ata privacy.                                                               |                                     |  |  |  |  |
|                        | c. Exa                                                                    | camine the characteristics of conductive yarns that make them suitable for |                                     |  |  |  |  |
|                        | use                                                                       | in wearable technologies.                                                  |                                     |  |  |  |  |
|                        | d. Rese                                                                   | earch costs associated with wearable                                       | e technologies.                     |  |  |  |  |
|                        | e. Pred                                                                   | dict the role of wearable technologie                                      | s in the future.                    |  |  |  |  |

| Module 41B: Wearable Technologies B (Optional) |     |                                                                          |                     |                          |  |  |  |
|------------------------------------------------|-----|--------------------------------------------------------------------------|---------------------|--------------------------|--|--|--|
| Suggested Time: 5-10 hours                     |     |                                                                          | Level: Intermediate | Prerequisite: Module 41A |  |  |  |
| Outcome                                        | Inc | licator                                                                  | rs                  | ·                        |  |  |  |
| Construct and                                  | a.  | a. Design a device that uses wearable technologies.                      |                     |                          |  |  |  |
| program a wearable                             | b.  | b. Recognize potential issues present in constructing a wearable device. |                     |                          |  |  |  |
| device.                                        | c.  | c. Properly wire, attach, and program (if necessary) all components of a |                     |                          |  |  |  |
|                                                |     | wearable device.                                                         |                     |                          |  |  |  |
|                                                | d.  | d. Test the functionality of a wearable device.                          |                     |                          |  |  |  |

| Module 42: Radio-Frequ | Module 42: Radio-Frequency Identification (Optional) |                                                                          |                                      |  |  |  |
|------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|--|--|--|
| Suggested Time: 3-5 ho | urs                                                  | Level: Intermediate                                                      | Prerequisite: Module 28A or 30A      |  |  |  |
| Outcome                | Inc                                                  | licators                                                                 |                                      |  |  |  |
| Construct and          | a.                                                   | Explain how RFID works.                                                  |                                      |  |  |  |
| program a device that  | b.                                                   | Attach and properly wire an RFID tag to a                                | a device.                            |  |  |  |
| uses radio-frequency   | c.                                                   | Develop a computer program to test the                                   | operation of a RFID tag (i.e., debug |  |  |  |
| identification (RFID)  |                                                      | the sensor).                                                             |                                      |  |  |  |
| to accomplish a        | d.                                                   | Develop a program on a device that can modify an output based on input   |                                      |  |  |  |
| specific task.         |                                                      | from an RFID tag.                                                        |                                      |  |  |  |
|                        | e.                                                   | Research current applications of RFID such as asset management; tracking |                                      |  |  |  |
|                        |                                                      | of goods, people, or animals; timing sports events and passport control. |                                      |  |  |  |
|                        | f.                                                   | Discuss potential future applications of RFID.                           |                                      |  |  |  |
|                        | g.                                                   | Research concerns, controversies and eth                                 | hical considerations related to the  |  |  |  |
|                        |                                                      | use of RFID.                                                             |                                      |  |  |  |

| Module 43A: Transmitting and Receiving A (Optional) |                                                                              |                                                                             |                                     |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Suggested Time: 2-4 ho                              | urs                                                                          | Introductory                                                                | Prerequisite: None                  |  |  |  |
| Outcome                                             | Indicat                                                                      | ors                                                                         |                                     |  |  |  |
| Connect transmitting                                | a. Use terms (e.g., binding, pairing, tethered and wireless) associated with |                                                                             |                                     |  |  |  |
| and receiving devices.                              | ma                                                                           | making connections between transmitters and receivers co                    |                                     |  |  |  |
|                                                     | b. Ide                                                                       | Identify properties of transmitting and receiving devices such as distance, |                                     |  |  |  |
|                                                     | nu                                                                           | number of channels, current and antenna length.                             |                                     |  |  |  |
|                                                     | c. Pr                                                                        | actice binding and/or pairing transmit                                      | tting and receiving devices such as |  |  |  |
|                                                     | со                                                                           | nnecting a speaker to a smartphone ι                                        | using Bluetooth.                    |  |  |  |

| Module 43B: Transmitti    | Module 43B: Transmitting and Receiving B (Optional) |                                                                              |                                                                          |            |                                  |  |  |
|---------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|----------------------------------|--|--|
| Suggested Time: 3-5 hours |                                                     |                                                                              | Level: Intermediate                                                      |            | Prerequisite: Module 43A         |  |  |
| Outcome                   | Inc                                                 | dicator                                                                      | s                                                                        |            |                                  |  |  |
| Control a robotic or      | a.                                                  | Rese                                                                         | arch the use of remote cor                                               | ntrol devi | ces (e.g., bed in hospital, pump |  |  |
| automated device          |                                                     | truck                                                                        | and crane) in society.                                                   |            |                                  |  |  |
| using transmitting        | b.                                                  | Reco                                                                         | gnize that an additional an                                              | ntenna or  | antenna length can extend the    |  |  |
| and receiving devices.    |                                                     | distance of a radio signal.                                                  |                                                                          |            |                                  |  |  |
|                           | c.                                                  | c. Investigate a variety of ways in which devices can be "bound" or "paired" |                                                                          |            |                                  |  |  |
|                           |                                                     | (e.g.,                                                                       | e.g., laptop to microprocessor, gamepad controller to microprocessor and |            |                                  |  |  |
|                           |                                                     | cell p                                                                       | hone to robot through Blu                                                | uetooth).  |                                  |  |  |
|                           | d.                                                  | Plan                                                                         | and implement a challenge                                                | e which in | ncorporates a transmitting and   |  |  |
|                           |                                                     | recei                                                                        | receiving device.                                                        |            |                                  |  |  |
|                           | e.                                                  | Desig                                                                        | Design and construct a robotic or automated device which requires a      |            |                                  |  |  |
|                           |                                                     | trans                                                                        | mitter and receiver for co                                               | ntrol.     |                                  |  |  |

| Module 43C: Transmitting and Receiving C (Optional) |               |                                                                          |                          |  |  |
|-----------------------------------------------------|---------------|--------------------------------------------------------------------------|--------------------------|--|--|
| Suggested Time: 3-5 ho                              | urs           | Level: Advanced                                                          | Prerequisite: Module 43B |  |  |
| Outcome                                             | ne Indicators |                                                                          |                          |  |  |
| Customize a                                         | a.            | Develop an understanding of the mapping of a transmitter (i.e., channel  |                          |  |  |
| transmitter for                                     |               | controls and trims).                                                     |                          |  |  |
| control of a robotic or                             | b.            | Demonstrate control of multiple outputs (e.g., servos, motors, actuators |                          |  |  |
| automated device.                                   |               | and pneumatic devices) from a single transmitter.                        |                          |  |  |
|                                                     | c.            | Program a transmitter (e.g., reversing channels, speed controls, setting |                          |  |  |
|                                                     |               | limits and naming) to control a specific robotic or automated device.    |                          |  |  |

| Module 44A: Power Sou  | Module 44A: Power Sources A (Optional)                                    |                                                                               |                                                                    |         |  |  |
|------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|--|--|
| Suggested Time: 2-4 ho | urs                                                                       | Level: Introductory                                                           | Prerequisite: None                                                 |         |  |  |
| Outcome                | Indi                                                                      | cators                                                                        |                                                                    |         |  |  |
| Examine a variety of   | a.                                                                        | List and describe the advantag                                                | ges and disadvantages of different type                            | es of   |  |  |
| power sources          |                                                                           | power sources (e.g., wall outle                                               | et, lab power supply, battery, solar and                           | t       |  |  |
| suitable for robotic   |                                                                           | alternative) and their suitabili                                              | ty for robotics and automation applica                             | tions.  |  |  |
| and automation         | b.                                                                        | Compare different power sou                                                   | rces in terms of power supply, current                             | supply, |  |  |
| applications.          |                                                                           | power reliability and functionality.                                          |                                                                    |         |  |  |
|                        | c. Examine the difference between alternating current (AC) and direct cur |                                                                               |                                                                    | current |  |  |
|                        |                                                                           | (DC) power sources and their                                                  | C) power sources and their suitability for robotics and automation |         |  |  |
|                        | applications.                                                             |                                                                               |                                                                    |         |  |  |
|                        | d.                                                                        | . Determine the suitability of various power sources for use in a robotics or |                                                                    |         |  |  |
|                        |                                                                           | automation application.                                                       |                                                                    |         |  |  |
|                        | e.                                                                        | Select a power source for use                                                 | in a robotics or automation applicatio                             | n.      |  |  |

| Module 44B: Power Sources B (Optional) |     |                                                                            |                                    |  |  |  |
|----------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------|--|--|--|
| Suggested Time: 3-5 ho                 | urs | Level: Intermediate                                                        | Prerequisite: Module 44A           |  |  |  |
| Outcome                                | Inc | Indicators                                                                 |                                    |  |  |  |
| Analyze different                      | a.  | Determine the output voltage of batterie                                   | es connected in parallel and in    |  |  |  |
| types of batteries for                 |     | series.                                                                    |                                    |  |  |  |
| their suitability in                   | b.  | Describe the differences between types                                     | (e.g., lithium, nickel cadmium,    |  |  |  |
| robotics and                           |     | alkaline and acid) of batteries.                                           |                                    |  |  |  |
| automation                             | c.  | Identify the advantages and disadvantag                                    | es of various types of batteries,  |  |  |  |
| applications.                          |     | considering factors such as power, weigh                                   | nt, current discharge/charge rate, |  |  |  |
|                                        |     | size, longevity of charge and cost.                                        |                                    |  |  |  |
|                                        | d.  | Practise safe work procedures when assembling batteries in parallel or     |                                    |  |  |  |
|                                        |     | series.                                                                    |                                    |  |  |  |
|                                        | e.  | Practise safe work procedures, such as using appropriate testers and tools |                                    |  |  |  |
|                                        |     | and observing proper electrical safety pr                                  | actices, when testing batteries.   |  |  |  |
|                                        | f.  | Practise proper battery charging techniq                                   | ues, including using proper        |  |  |  |
|                                        |     | chargers, appropriate amperage and volt                                    | tage, proper spacing and proper    |  |  |  |
|                                        |     | connections to charging source.                                            |                                    |  |  |  |
|                                        | g.  | Select an appropriate battery type and configuration for a robotics or     |                                    |  |  |  |
|                                        |     | automation project.                                                        |                                    |  |  |  |
|                                        | h.  | Dispose of batteries appropriately and w                                   | rith consideration for             |  |  |  |
|                                        |     | environmental concerns.                                                    |                                    |  |  |  |

| Module 45: Drive Systems (Optional) |                                                                             |                                     |                                       |  |  |
|-------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|---------------------------------------|--|--|
| Suggested Time: 3-8 ho              | urs                                                                         | Level: Introductory                 | Prerequisite: None                    |  |  |
| Outcome                             | Inc                                                                         | licators                            |                                       |  |  |
| Evaluate drive                      | a.                                                                          | Identify different drive systems (  | e.g., direct drive chain/sprocket,    |  |  |
| systems for suitability             | belt/pulley, biped, 2-wheel drive, 4-wheel drive, front wheel drive, rear   |                                     |                                       |  |  |
| in robotics and                     |                                                                             | wheel drive, all-wheel drive, track | k drive and walking) for robotics and |  |  |
| automation                          | automation applications.                                                    |                                     |                                       |  |  |
| applications.                       | b. Compare the attributes of different drive systems to achieve various nee |                                     |                                       |  |  |
|                                     | c. Identify the appropriate drive system to meet a specific need.           |                                     |                                       |  |  |
|                                     | d.                                                                          | Evaluate a chosen drive system for  | or suitability in a specific device.  |  |  |

| Module 46: Wheels (Op     | Module 46: Wheels (Optional) |                                                                       |                                                                                  |             |                                      |  |  |
|---------------------------|------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|--------------------------------------|--|--|
| Suggested Time: 2-4 hours |                              |                                                                       | Level: Introductory                                                              |             | Prerequisite: None                   |  |  |
| Outcome                   | Ind                          | licator                                                               | s                                                                                |             |                                      |  |  |
| Evaluate wheels for       | a.                           | Ident                                                                 | ify possible materials (e.g.,                                                    | , foam, rul | bber, plastic and polyurethane)      |  |  |
| suitability in robotics   |                              | that o                                                                | can be used to construct w                                                       | heels for i | robotic and automation               |  |  |
| and automation            |                              | applications.                                                         |                                                                                  |             |                                      |  |  |
| applications.             | b.                           | Evalu                                                                 | ate the use of different ma                                                      | aterials fo | r a specific application of a wheel. |  |  |
|                           | c.                           | Ident                                                                 | Identify the characteristics of different types of wheels (e.g., fixed, treaded, |             |                                      |  |  |
|                           |                              | smoo                                                                  | smooth, air tube, ball, Omni, Mecanum and solid) for robotic and                 |             |                                      |  |  |
|                           |                              | autor                                                                 | mation applications.                                                             |             |                                      |  |  |
|                           | d.                           | Critiq                                                                | ue the use of different typ                                                      | es of whe   | els for the functionality and        |  |  |
|                           |                              | purpose of a specific robotic or automation application.              |                                                                                  |             |                                      |  |  |
|                           | e.                           | . Evaluate a chosen wheel for use in a specific robotic or automation |                                                                                  |             | cific robotic or automation          |  |  |
|                           |                              | appli                                                                 | cation.                                                                          |             |                                      |  |  |

| Module 47: Gears (Opti    | Module 47: Gears (Optional) |          |                                                                                           |                                     |  |  |
|---------------------------|-----------------------------|----------|-------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| Suggested Time: 3-5 hours |                             |          | Level: Intermediate                                                                       | Prerequisite: None                  |  |  |
| Outcome                   | Ind                         | licators | 5                                                                                         |                                     |  |  |
| Evaluate the              | a.                          | Explai   | in the purpose of gears, sprockets a                                                      | and chains and pulleys and belts in |  |  |
| suitability of gears,     |                             | robot    | ics and automation applications.                                                          |                                     |  |  |
| sprockets and chains      | b.                          | Exam     | ine how gears can be used to chang                                                        | ge the direction of rotation of a   |  |  |
| and pulleys and belts     |                             | drive    | shaft.                                                                                    |                                     |  |  |
| for robotics and          | c.                          | Comp     | are the suitability of different type                                                     | s (e.g., flat, round, Vee, and      |  |  |
| automation                |                             | tooth    | ed) of belts for various robotics and                                                     | d automation applications.          |  |  |
| applications.             | d.                          | Calcu    | late gear ratios using the following                                                      | formulas:                           |  |  |
|                           |                             | •        | <ul> <li>gear ratio = # of driven gear teeth/# driving gear teeth</li> </ul>              |                                     |  |  |
|                           |                             | •        | <ul> <li>gear ratio = diameter of driven pulley/diameter of the driving pulley</li> </ul> |                                     |  |  |
|                           | e.                          | Calcu    | Calculate torque and speed changes using the following formulas:                          |                                     |  |  |
|                           |                             | •        | <ul> <li>output torque = input torque x gear ratio</li> </ul>                             |                                     |  |  |
|                           |                             | •        | output speed = input speed/gea                                                            | r ratio                             |  |  |
|                           | f.                          | Conve    | ert angular speed of a drive shaft (e                                                     | e.g., rpm) to linear speed (e.g.,   |  |  |
|                           |                             | cm/s)    | using the formulas:                                                                       |                                     |  |  |
|                           |                             | •        | revolutions per second (rps) = re                                                         | volutions per minute (rpm) x 60     |  |  |
|                           |                             | •        | <ul> <li>Angular speed (radians per second) = 2 x pi x rps</li> </ul>                     |                                     |  |  |
|                           |                             | •        | Linear speed = radius of wheel x                                                          | angular speed                       |  |  |
|                           | g.                          | Descr    | ibe some of the challenges associa                                                        | ted with using pulleys and belts,   |  |  |
|                           |                             | gears    | , or chains in robotic and automatio                                                      | on applications.                    |  |  |

| Module 48: Motors (Op  | Module 48: Motors (Optional) |                                                                                        |                                       |  |  |  |
|------------------------|------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| Suggested Time: 3-5 ho | urs                          | Level: Introductory                                                                    | Prerequisite: None                    |  |  |  |
| Outcome                | Indicate                     | ors                                                                                    |                                       |  |  |  |
| Experiment with the    | a. Idei                      | ntify the components (e.g., shaft, co                                                  | ommutator, brushes, case, leads, core |  |  |  |
| properties and         | and                          | coils) of a brushed motor.                                                             |                                       |  |  |  |
| capabilities of direct | b. Buil                      | d a DC motor using materials such                                                      | as a battery, magnet, paper clips and |  |  |  |
| current (DC) motors.   | ena                          | enameled wire.                                                                         |                                       |  |  |  |
|                        | c. Eva                       | c. Evaluate the operation of a self-made direct-current (DC) motor.                    |                                       |  |  |  |
|                        |                              | d. Explain the role of magnetism and electromagnetism in the operation of D motors.    |                                       |  |  |  |
|                        |                              | e. Provide examples of how DC motors are used in robotics and automation applications. |                                       |  |  |  |
|                        |                              |                                                                                        |                                       |  |  |  |

| Module 49: Servos (Optional) |     |                                                                                 |                                    |  |  |  |
|------------------------------|-----|---------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Suggested Time: 3-5 ho       | urs | Level: Introductory                                                             | Prerequisite: None                 |  |  |  |
| Outcome                      | Inc | icators                                                                         |                                    |  |  |  |
| Investigate                  | a.  | Differentiate between servos and motor                                          | rs.                                |  |  |  |
| applications of servos       | b.  | Recognize what type of signal controls a                                        | servo.                             |  |  |  |
| in robotics and              | c.  | Attach and properly wire a servo to a de                                        | evice.                             |  |  |  |
| automation                   | d.  | Compare the operation and function of                                           | continuous and positional rotation |  |  |  |
| applications.                |     | servos.                                                                         |                                    |  |  |  |
|                              | e.  | e. Determine the suitability of a servo for a specific application, considering |                                    |  |  |  |
|                              |     | factors such as type, physical size and speed.                                  |                                    |  |  |  |
|                              | f.  | Calibrate positional rotation servos.                                           |                                    |  |  |  |
|                              | g.  | Build a testbed to test whether motors a                                        | and servos work properly prior to  |  |  |  |
|                              |     | device assembly.                                                                |                                    |  |  |  |
|                              | h.  | Construct a device that incorporates a standard servo.                          |                                    |  |  |  |
|                              | i.  | Construct a device that incorporates a c                                        | ontinuous rotation servo.          |  |  |  |

| Module 50: Stepper Motors (Optional) |                                                                              |                                              |                          |                                                                        |  |  |
|--------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|--------------------------|------------------------------------------------------------------------|--|--|
| Suggested Time:3-5                   |                                                                              |                                              | Level: Advanced          | Prerequisite: None                                                     |  |  |
| Outcome Indicators                   |                                                                              |                                              | S                        | ·                                                                      |  |  |
| Explore applications                 | a.                                                                           | a. Explain the operation of a stepper motor. |                          |                                                                        |  |  |
| of stepper motors in                 | b. Explain when it is appropriate to use a stepper motor rather than a serve |                                              |                          | o use a stepper motor rather than a servo.                             |  |  |
| robotics and                         | robotics and c. Descri                                                       |                                              |                          | Describe the relationship between voltage level, speed and torque in a |  |  |
| automation                           |                                                                              | stepper motor.                               |                          |                                                                        |  |  |
| applications.                        | d. Explain how stepper motors are rated.                                     |                                              |                          | e rated.                                                               |  |  |
|                                      | e.                                                                           | Explo                                        | re common applications o | of stepper motors.                                                     |  |  |

| Module 51A: Actuators A (Optional) |     |                                                                             |                                     |                                    |  |  |
|------------------------------------|-----|-----------------------------------------------------------------------------|-------------------------------------|------------------------------------|--|--|
| Suggested Time: 2-4 hours          |     |                                                                             | Level: Intermediate                 | Prerequisite: Module 44, 49        |  |  |
| Outcome                            | Inc | licator                                                                     | s                                   |                                    |  |  |
| Experiment with the                | a.  | Desci                                                                       | ribe the purpose and function of ar | n actuator.                        |  |  |
| properties and                     | b.  | Diffe                                                                       | rentiate between the characteristic | cs of different types of actuators |  |  |
| capabilities of                    |     | (e.g., DC brushed and brushless motors, linear actuators, solenoids,        |                                     |                                    |  |  |
| actuators.                         |     | electromagnets and servos).                                                 |                                     |                                    |  |  |
|                                    | c.  | . Match types of actuators with specific tasks (e.g., DC motor to drive and |                                     |                                    |  |  |
|                                    |     | linear actuator to move arm).                                               |                                     |                                    |  |  |
|                                    | d.  | . Investigate how limit switches and diodes are used to restrict actuator   |                                     |                                    |  |  |
|                                    |     | motio                                                                       | on.                                 |                                    |  |  |

| Module 51B: Actuators B (Optional) |      |                                                                                |                                    |  |  |  |
|------------------------------------|------|--------------------------------------------------------------------------------|------------------------------------|--|--|--|
| Suggested Time: 5-10 h             | ours | Level: Intermediate                                                            | Prerequisite: Module 51A           |  |  |  |
| Outcome                            | Ind  | Indicators                                                                     |                                    |  |  |  |
| Design and construct               | a.   | . Examine actuators and their ratings (e.g., voltage, current, torque, length, |                                    |  |  |  |
| a device that                      |      | size, bolt patterns and mass) for use in specific situations.                  |                                    |  |  |  |
| incorporates an                    | b.   | . Choose an appropriate actuator to meet a specific requirement.               |                                    |  |  |  |
| actuator.                          | c.   | Mount actuators to a device appropriately to maximize efficiency.              |                                    |  |  |  |
|                                    | d.   | Evaluate the efficiency of an actu                                             | ator selected for a specific task. |  |  |  |

| Module 52A: Motor Controllers A (Optional) |                          |                               |                                                                           |                           |  |  |
|--------------------------------------------|--------------------------|-------------------------------|---------------------------------------------------------------------------|---------------------------|--|--|
| Suggested Time: 2-4 ho                     | urs                      |                               | Level: Introductory                                                       | Prerequisite: None        |  |  |
| Outcome                                    | Ind                      | icator                        | S                                                                         |                           |  |  |
| Use motor controllers                      | a.                       | Desc                          | ribe the role of a motor controller                                       | n robotics and automation |  |  |
| to power motors.                           |                          | applications.                 |                                                                           |                           |  |  |
|                                            | b.                       | Choo                          | ose the correct motor controller for a stated motor size and type,        |                           |  |  |
|                                            |                          | consi                         | onsidering factors such as current, voltage, number of motors and brushed |                           |  |  |
|                                            | versus brushless design. |                               |                                                                           |                           |  |  |
|                                            | c.                       | Arrar                         | inge the correct DIP switch or jumper wire orientation on a motor         |                           |  |  |
|                                            |                          | controller for desired usage. |                                                                           |                           |  |  |
|                                            | d.                       | Wire                          | a motor controller to a receiver ar                                       | nd to one or more motors. |  |  |

| Module 52B: Motor Controllers B (Optional) |                                                                               |                                                                               |                                         |                                    |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|--|--|
| Suggested Time: 2-4 ho                     | urs                                                                           |                                                                               | Level: Intermediate                     | Prerequisite: Module 52A           |  |  |
| Outcome                                    | Ind                                                                           | icator                                                                        | s                                       |                                    |  |  |
| Assess the use of                          | a.                                                                            | Diffe                                                                         | rentiate between an electronic spe      | ed control (ESC) and a motor       |  |  |
| different motor                            |                                                                               | controller.                                                                   |                                         |                                    |  |  |
| controllers with                           | b.                                                                            | Resea                                                                         | arch and evaluate motor controller      | types for appropriate usage based  |  |  |
| specific motor types.                      |                                                                               | on functionality and features.                                                |                                         |                                    |  |  |
|                                            | c. Summarize the functionality (e.g., radio controlled, analog and pulse widt |                                                                               |                                         | controlled, analog and pulse width |  |  |
|                                            |                                                                               | modulation) of a specific motor controller.                                   |                                         |                                    |  |  |
|                                            | d.                                                                            | d. Discuss the function of the battery eliminator circuit (BEC) on some motor |                                         |                                    |  |  |
|                                            |                                                                               | controllers.                                                                  |                                         |                                    |  |  |
|                                            | e.                                                                            | Const                                                                         | truct a circuit that utilizes a motor o | ontroller and appropriate motor.   |  |  |

| Module 53A: Drones A (Optional) |       |                                                                                |                            |  |  |  |
|---------------------------------|-------|--------------------------------------------------------------------------------|----------------------------|--|--|--|
| Suggested Time: 4-5 ho          | urs   | Level: Intermediate                                                            | Prerequisite: None         |  |  |  |
| Outcome                         | Indi  | cators                                                                         |                            |  |  |  |
| Research and follow             | a.    | Research legislation related to c                                              | perating drones in Canada. |  |  |  |
| requirements for                | b.    | . Understand the difference between basic and advanced drone operations        |                            |  |  |  |
| operating drones in             |       | in Canada.                                                                     |                            |  |  |  |
| Canada.                         | c.    | Display a knowledge of safe drone flying practices.                            |                            |  |  |  |
|                                 | d.    | Obtain appropriate pilot certification before operating a drone.               |                            |  |  |  |
|                                 | e.    | Ensure drones are properly registered with Transport Canada.                   |                            |  |  |  |
| Note                            | All s | All safety regulations and pilot certification must be done in accordance with |                            |  |  |  |
|                                 | Tran  | sport Canada regulations.                                                      |                            |  |  |  |

| Module 53B: Drones B (Optional) |     |                                                                               |                     |                          |  |  |
|---------------------------------|-----|-------------------------------------------------------------------------------|---------------------|--------------------------|--|--|
| Suggested Time: 5-7 hours       |     |                                                                               | Level: Intermediate | Prerequisite: Module 53A |  |  |
| Outcome                         | Inc | licator                                                                       | S                   |                          |  |  |
| Experiment with the             | a.  | a. Explain the advantages and disadvantages of drone technology.              |                     |                          |  |  |
| movement and                    | b.  | b. Review ethics and local laws pertaining to drone usage.                    |                     |                          |  |  |
| workings of a drone.            | c.  | c. Provide examples of civil, commercial and military applications of drones. |                     |                          |  |  |
|                                 | d.  | d. Use a simulator program to practice drone control and flight.              |                     |                          |  |  |
|                                 | e.  | e. Perform basic maneuvers with a drone, such as guiding it through a simpl   |                     |                          |  |  |
|                                 |     | course.                                                                       |                     |                          |  |  |

| Module 53C: Drones C (Optional) |                            |                                                                                 |                                |                                     |  |
|---------------------------------|----------------------------|---------------------------------------------------------------------------------|--------------------------------|-------------------------------------|--|
| Suggested Time: 5-10 ho         | Suggested Time: 5-10 hours |                                                                                 | Level: Advanced                | Prerequisite: Module 43B, 51B, 52A, |  |
|                                 |                            |                                                                                 |                                | 53A                                 |  |
| Outcome                         | Indi                       | icator                                                                          | S                              |                                     |  |
| Design, construct and           | a.                         | Creat                                                                           | e a scale drawing of a drone p | project using appropriate symbols.  |  |
| safely control a drone.         | b.                         | b. Calculate the cost of materials to construct a drone.                        |                                |                                     |  |
|                                 | c.                         | c. Develop and carry out a project plan to construct a drone, including major   |                                |                                     |  |
|                                 |                            | stages of development and a timeline needed for completion.                     |                                |                                     |  |
|                                 | d.                         | d. Demonstrate advanced electrical wiring and building skills through           |                                |                                     |  |
|                                 |                            | improved wire management, proper component usage and improved                   |                                |                                     |  |
|                                 |                            | building and material efficiency, when constructing a drone.                    |                                |                                     |  |
|                                 | e.                         | e. Demonstrate drone control and flight with appropriate use of throttle, roll, |                                |                                     |  |
|                                 |                            | pitch                                                                           | and yaw controls.              |                                     |  |

| Module 54: Machine Safety (Optional) |     |                                                                       |                                          |  |  |
|--------------------------------------|-----|-----------------------------------------------------------------------|------------------------------------------|--|--|
| Suggested Time: 1-2 ho               | urs | Level: Intermediate                                                   | Prerequisite: Module 1                   |  |  |
| Outcome                              | Ind | icators                                                               |                                          |  |  |
| Demonstrate safe                     | a.  | Explain the purpose of ventilation                                    | in a confined environment when           |  |  |
| practices when                       |     | working with mechanical equipme                                       | nt (e.g., grinders, solder pencils, saws |  |  |
| working with properly                |     | and welding equipment).                                               |                                          |  |  |
| maintained                           | b.  | Compile information on the safe u                                     | se, care and maintenance of mechanical   |  |  |
| mechanical                           |     | equipment (e.g., drills, grinders, saws, solder pencils and welding   |                                          |  |  |
| equipment.                           |     | equipment).                                                           |                                          |  |  |
|                                      | c.  | c. Analyze shop and workplace situations to identify hazards and seek |                                          |  |  |
|                                      |     | solutions.                                                            |                                          |  |  |
|                                      | d.  | Describe safety precautions includ                                    | ing the use of personal protective       |  |  |
|                                      |     | equipment (PPE) required for each tool used.                          |                                          |  |  |
|                                      | e.  | Use mechanical equipment safely.                                      |                                          |  |  |
|                                      |     | Note: Safety must be the primary focus for students each day.         |                                          |  |  |

| Module 55: Properties of Materials (Optional) |                           |                                                                                |                              |                                                    |  |  |
|-----------------------------------------------|---------------------------|--------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|--|--|
| Suggested Time: 2-3 ho                        | Suggested Time: 2-3 hours |                                                                                |                              | Prerequisite: None                                 |  |  |
| Outcome                                       | Inc                       | licator                                                                        | 'S                           |                                                    |  |  |
| Analyze the                                   | a.                        | Com                                                                            | pare the properties (e.g., m | nass, pliability, strength, elasticity, durability |  |  |
| properties of                                 |                           | and memory of the material) of various materials (e.g., plastic, wood and      |                              |                                                    |  |  |
| materials and                                 |                           | metal) that might be used in robotics and automation applications.             |                              |                                                    |  |  |
| experiment with their                         | b.                        | b. Choose appropriate materials (e.g., plastic, wood and metal) for robotics   |                              |                                                    |  |  |
| uses in robotics and                          |                           | and a                                                                          | automation applications.     |                                                    |  |  |
| automation                                    | c.                        | c. Demonstrate the use of various materials (e.g., plastic, wood and metal) in |                              |                                                    |  |  |
| applications.                                 |                           | a spe                                                                          | ecific application.          |                                                    |  |  |

| Module 56: Fasteners (Optional) |     |                                                                            |                    |  |  |  |
|---------------------------------|-----|----------------------------------------------------------------------------|--------------------|--|--|--|
| Suggested Time: 1-2 hours       |     | Level: Introductory                                                        | Prerequisite: None |  |  |  |
| Outcome                         | Inc | Indicators                                                                 |                    |  |  |  |
| Use fasteners and               | a.  | Determine the characteristics of various types of nails, screws and bolts. |                    |  |  |  |
| adhesives effectively           | b.  | Select the best fasteners for a given task based on their characteristics. |                    |  |  |  |
| in robotics and                 | c.  | Identify common glues and mastics to determine the appropriate product     |                    |  |  |  |
| automation                      |     | for a specific application.                                                |                    |  |  |  |
| applications.                   | d.  | nvestigate the use of spot welding and riveting to determine which would   |                    |  |  |  |
|                                 |     | be best for a given task.                                                  |                    |  |  |  |

| Module 57: Mechanical Structure (Core)                                                       |                                              |                                                                       |                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Suggested Time: 3-6 ho                                                                       | ours                                         | Level: Introductory                                                   | Prerequisite: None                                                                                                              |  |  |
| Outcome                                                                                      | Indicators                                   | 3                                                                     |                                                                                                                                 |  |  |
| Investigate techniques used to build mechanical structure for use in robotics and automation | b. Exploremobil c. Critique support d. Const | e structures.<br>ue the suitability of differer<br>ort and stability. | supports for overhanging structures and for nt structures for their ability to provide s, including bases for moving parts, for |  |  |
| applications.                                                                                | e. Ensur                                     | e proper fit and alignment                                            | of constructed components.                                                                                                      |  |  |

| Module 58A: Fabricate A (Optional)                               |     |                                                                               |  |  |  |
|------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|--|--|--|
| Suggested Time: 2-3 hours Level: Introductory Prerequisite: None |     |                                                                               |  |  |  |
| Outcome                                                          | Ind | Indicators                                                                    |  |  |  |
| Modify existing parts                                            | a.  | a. Develop a plan to modify a pre-existing part for suitable use on a device. |  |  |  |
| for use in a device.                                             | b.  | Modify a pre-existing part appropriately for suitable use on a device (e.g.,  |  |  |  |
|                                                                  |     | take an arm off of a mannequin and attach a motor to it to use in a project). |  |  |  |
|                                                                  | c.  | Install and use a modified part on a device.                                  |  |  |  |

| Module 58B: Fabricate B (Optional) |     |                                                                            |                               |                          |  |
|------------------------------------|-----|----------------------------------------------------------------------------|-------------------------------|--------------------------|--|
| Suggested Time: 2-3 hours          |     | Level: Intermediate                                                        | F                             | Prerequisite: Module 58A |  |
| Outcome                            | Ind | Indicators                                                                 |                               |                          |  |
| Design and create a                | a.  | a. Design a single part to be used with a device.                          |                               |                          |  |
| single part for use in a           | b.  | b. Create a single part for a device using 3D printing, computer numerical |                               |                          |  |
| device.                            |     | control manufacturing or construction out of wood or other materials.      |                               |                          |  |
|                                    | c.  | Incor                                                                      | porate a single part in a dev | ice.                     |  |

| Module 58C: Fabricate C (Optional) |                           |                                                                           |                                     |                          |  |  |
|------------------------------------|---------------------------|---------------------------------------------------------------------------|-------------------------------------|--------------------------|--|--|
| Suggested Time: 3-5 ho             | Suggested Time: 3-5 hours |                                                                           | Level: Advanced                     | Prerequisite: Module 58B |  |  |
| Outcome                            | Indicators                |                                                                           |                                     |                          |  |  |
| Design and build a                 | a.                        | . Design a multi-part device to accomplish a specific task.               |                                     |                          |  |  |
| multi-part device.                 | b.                        | b. Create the parts for a personally-designed multi-part device using 3D  |                                     |                          |  |  |
|                                    |                           | printing, computer numerical control manufacturing or construction out of |                                     |                          |  |  |
|                                    |                           | wood or other materials.                                                  |                                     |                          |  |  |
|                                    | c.                        | Const                                                                     | ruct a personally-designed multi-pa | art device.              |  |  |

| Module 59: 3D CAD Basics (Optional) |     |                                                                         |                                        |  |  |  |  |
|-------------------------------------|-----|-------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| Suggested Time: 3-8 ho              | urs | Level: Introductory                                                     | Prerequisite: None                     |  |  |  |  |
| Outcome                             | Ind | icators                                                                 | ·                                      |  |  |  |  |
| Create                              | a.  | Draw basic elements (e.g. sphere                                        | e, box, pyramid and prism) to specific |  |  |  |  |
| representations of 3-               |     | dimensions using CAD software.                                          |                                        |  |  |  |  |
| dimensional (3D)                    | b.  | Use basic commands (e.g., extru                                         | sion, circles and revolutions) in CAD  |  |  |  |  |
| objects using                       |     | software.                                                               |                                        |  |  |  |  |
| computer-aided                      | c.  | Create a composite 3D object to specific dimensions through the merging |                                        |  |  |  |  |
| design (CAD)                        |     | and subtraction of component objects.                                   |                                        |  |  |  |  |
| software.                           | d.  | Design a 3D model of an item, using CAD or modeling software, for the   |                                        |  |  |  |  |
|                                     |     | purpose of modelling a usable component for a robotics or automation    |                                        |  |  |  |  |
|                                     |     | application.                                                            |                                        |  |  |  |  |

| Module 60A: 3D Printing A (Optional) |      |                                                                             |                                    |                                        |  |  |  |
|--------------------------------------|------|-----------------------------------------------------------------------------|------------------------------------|----------------------------------------|--|--|--|
| Suggested Time: 5-10 h               | ours |                                                                             | Level: Intermediate                | Prerequisite: Module 59                |  |  |  |
| Outcome                              | Inc  | licato                                                                      | rs                                 |                                        |  |  |  |
| Construct an object                  | a.   | Disti                                                                       | nguish between positive and neg    | ative space in plans for 3D objects.   |  |  |  |
| using a 3-dimensional                | b.   | Und                                                                         | erstand the concept of melted ma   | nterial or liquid/laser material being |  |  |  |
| (3D) printing process.               |      | place                                                                       | ed according to computer instruct  | tions or code.                         |  |  |  |
|                                      | c.   | Understand basic design restrictions and limitations (e.g., raft, overhang, |                                    |                                        |  |  |  |
|                                      |      | support material, infill and density) associated with 3D printing.          |                                    |                                        |  |  |  |
|                                      | d.   | Follow a plan to create a simple 3D object, using 3D CAD or modeling        |                                    |                                        |  |  |  |
|                                      |      | softv                                                                       | vare, that includes:               |                                        |  |  |  |
|                                      |      | 0                                                                           | a simple slab or a block;          |                                        |  |  |  |
|                                      |      | o holes in the slab or block; and,                                          |                                    |                                        |  |  |  |
|                                      |      | o protrusions or cuts on the slab or block.                                 |                                    |                                        |  |  |  |
|                                      | e.   | Prep                                                                        | are the 3D design for printing usi | ng a 3D printer.                       |  |  |  |

| Module 60B: 3D Printing B (Optional) |                            |                                                                                 |                     |                          |  |  |
|--------------------------------------|----------------------------|---------------------------------------------------------------------------------|---------------------|--------------------------|--|--|
| Suggested Time: 5-10 h               | Suggested Time: 5-10 hours |                                                                                 | Level: Intermediate | Prerequisite: Module 60A |  |  |
| Outcome                              | Indi                       | cator                                                                           | S                   | ·                        |  |  |
| Design a 3D printed                  | a.                         | a. Develop a prototype of a solution to a problem using a variety of materials  |                     |                          |  |  |
| object to solve a                    |                            | (e.g., plasticine, cardboard, tape and wire).                                   |                     |                          |  |  |
| problem encountered                  | b.                         | b. Utilize 3D design or modeling software to create a digital representation of |                     |                          |  |  |
| in robotics and                      |                            | a prototyped solution.                                                          |                     |                          |  |  |
| automation                           | c.                         | c. Create an object using a 3D printer and test it as a solution to a problem.  |                     |                          |  |  |
| applications.                        |                            |                                                                                 |                     |                          |  |  |

| Module 61A: CNC Manufacturing A (Optional) |                                                |                                                                             |                         |  |  |
|--------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|--|--|
| Suggested Time: 5-10 h                     | Suggested Time: 5-10 hours                     |                                                                             | Prerequisite: Module 59 |  |  |
| Outcome                                    | Indica                                         | tors                                                                        |                         |  |  |
| Construct two-                             | a. D                                           | a. Design 2D objects using computer-aided design (CAD) software to be       |                         |  |  |
| dimensional (2D)                           | m                                              | manufactured using a CNC machine.                                           |                         |  |  |
| objects using                              | b. Re                                          | b. Recognize the strength and limitations of manufacturing 2D objects using |                         |  |  |
| computer numerical                         | CI                                             | CNC.                                                                        |                         |  |  |
| control (CNC)                              | c. Manufacture 2D objects using a CNC machine. |                                                                             |                         |  |  |
| manufacturing.                             |                                                |                                                                             |                         |  |  |

| Module 61B: CNC Manufacturing B (Optional) |      |                                                                             |                 |         |                          |
|--------------------------------------------|------|-----------------------------------------------------------------------------|-----------------|---------|--------------------------|
| Suggested Time: 5-10 h                     | ours |                                                                             | Level: Advanced | Prerequ | uisite: Module 61A       |
| Outcome                                    | Inc  | Indicators                                                                  |                 |         |                          |
| Construct three-                           | a.   | a. Design 3D objects using computer-aided design (CAD) or modeling software |                 |         | AD) or modeling software |
| dimensional (3D)                           |      | to be manufactured using a CNC machine.                                     |                 |         |                          |
| objects using                              | b.   | b. Recognize the strength and limitations of manufacturing 3D objects using |                 |         |                          |
| computer numerical                         |      | CNC.                                                                        |                 |         |                          |
| control (CNC)                              | c.   | c. Manufacture 3D objects using a CNC machine.                              |                 |         |                          |
| manufacturing.                             |      |                                                                             |                 |         |                          |

| Module 62A: Fluid Power A (Optional) |                           |                                                     |                            |              |                                       |  |
|--------------------------------------|---------------------------|-----------------------------------------------------|----------------------------|--------------|---------------------------------------|--|
| Suggested Time: 1-2 ho               | Suggested Time: 1-2 hours |                                                     |                            |              | Prerequisite: None                    |  |
| Outcome                              | Ind                       | icator                                              | S                          |              |                                       |  |
| Construct a                          | a.                        | Descr                                               | ribe how hydraulic or pn   | eumatic pre  | essure can be used to create a        |  |
| mechanical device                    |                           | mech                                                | nanical advantage in a sir | nple mecha   | nical device such as a hydraulic lift |  |
| that incorporates                    |                           | or pn                                               | eumatic arm.               |              |                                       |  |
| principles of fluid                  | b.                        | Desig                                               | n, construct, and evalua   | te a prototy | pe of a device that models the        |  |
| power systems.                       |                           | operation of a fluid power system.                  |                            |              |                                       |  |
|                                      | c.                        | Ident                                               | ify the advantages and o   | lisadvantag  | es (e.g., strength, speed, fluid      |  |
|                                      |                           | supply and leaks) of a fluid power system.          |                            |              |                                       |  |
|                                      | d.                        | d. Identify common applications (e.g. braking syste |                            |              | ng systems, lifting systems and       |  |
|                                      |                           | launc                                               | ching systems) of fluid po | wer system   | ns.                                   |  |

| Module 62B: Fluid Power B (Optional) |                                                                                |                                                                                                                                                                                                                         |                                         |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Suggested Time: 3-5 ho               | urs                                                                            | Level: Intermediate                                                                                                                                                                                                     | Prerequisite: Module 62A                |  |  |  |
| Outcome                              | Indica                                                                         | tors                                                                                                                                                                                                                    | ·                                       |  |  |  |
| Design and build                     | a. D                                                                           | raw schematic diagrams of hydra                                                                                                                                                                                         | nulic and/or pneumatic circuits.        |  |  |  |
| hydraulic and/or                     | b. D                                                                           | escribe how a positive displacem                                                                                                                                                                                        | ent compressor works.                   |  |  |  |
| pneumatic                            | c. III                                                                         | ustrate how pressure can be con                                                                                                                                                                                         | trolled in a device using hydraulics or |  |  |  |
| components or                        | р                                                                              | neumatics.                                                                                                                                                                                                              |                                         |  |  |  |
| systems.                             | d. Describe the different types of control valves on pneumatic compon          |                                                                                                                                                                                                                         |                                         |  |  |  |
|                                      | e. Explain the importance of the safety relief valve on a pneumatic component. |                                                                                                                                                                                                                         |                                         |  |  |  |
|                                      | w<br>cy<br>a <sub>l</sub><br>g. C                                              | Identify common types (e.g., flanged, tie rod, threaded end, one-piece welded, single-acting, double-acting and telescoping) of pneumatic cylinders and how they might be used in robotics and automation applications. |                                         |  |  |  |

| Module 63A: Automation A (Optional) |                                                               |                                                                                 |                               |  |  |
|-------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------|--|--|
| Suggested Time: 10-15               | hours                                                         | Level: Intermediate                                                             | Prerequisite: None            |  |  |
| Outcome                             | Indicators                                                    |                                                                                 |                               |  |  |
| Construct a simple                  | a. Desi                                                       | a. Design a device to automatically perform a task using a single sensor (e.g., |                               |  |  |
| automated device.                   | tactile, infrared and ultrasonic).                            |                                                                                 |                               |  |  |
|                                     | b. Con:                                                       | b. Construct a simple automated device using available materials.               |                               |  |  |
|                                     | c. Troubleshoot the functioning of a simple automated device. |                                                                                 |                               |  |  |
|                                     | d. Ana                                                        | yze the functionality and ease of use                                           | of a simple automated device. |  |  |

| Module 63B: Automation B (Optional) |            |                                                                               |                                |                                             |  |  |
|-------------------------------------|------------|-------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|--|--|
| Suggested Time: 10-20 hours         |            |                                                                               | Level: Intermediate            | Prerequisite: Module 63A                    |  |  |
| Outcome                             | Indicators |                                                                               |                                |                                             |  |  |
| Construct an                        | a.         | Desig                                                                         | gn a device to automatically p | erform a task using multiple sensors (e.g., |  |  |
| intermediate                        |            | tactile, infrared and ultrasonic) or perform a multi-step task using a single |                                |                                             |  |  |
| automated device.                   |            | sensor.                                                                       |                                |                                             |  |  |
|                                     | b.         | Construct an intermediate automated device using available materials.         |                                |                                             |  |  |
|                                     | c.         | Troubleshoot the functioning of an intermediate automated device.             |                                |                                             |  |  |
|                                     | d.         | l. Analyze the functionality and ease of use of an intermediate automated     |                                |                                             |  |  |
|                                     |            | devic                                                                         | ce.                            |                                             |  |  |

| Module 63C: Automation C (Optional) |       |                                                                              |                                  |                                    |  |  |
|-------------------------------------|-------|------------------------------------------------------------------------------|----------------------------------|------------------------------------|--|--|
| Suggested Time: 10-20 hours         |       |                                                                              | Level: Advanced                  | Prerequisite: Module 63B           |  |  |
| Outcome                             | Indic | Indicators                                                                   |                                  |                                    |  |  |
| Construct a complex                 | a. [  | a. Design a device to automatically perform a multi-step task using multiple |                                  |                                    |  |  |
| automated device.                   | S     | sensors (e.g., tactile, infrared sensor and ultrasonic).                     |                                  |                                    |  |  |
|                                     | b. (  | b. Construct a complex automated device using available materials.           |                                  |                                    |  |  |
|                                     | c. 1  | c. Troubleshoot the functioning of a complex automated device.               |                                  |                                    |  |  |
|                                     | d. A  | analyz                                                                       | ze the functionality and ease of | use of a complex automated device. |  |  |

| Module 64: Machine Vision (Optional) |      |                                                                            |                              |           |                               |
|--------------------------------------|------|----------------------------------------------------------------------------|------------------------------|-----------|-------------------------------|
| Suggested Time: 5-10 h               | ours |                                                                            | Level: Advanced              |           | Prerequisite: None            |
| Outcome                              | Ind  | licator                                                                    | s                            |           |                               |
| Investigate the use of               | a.   | a. Explain the processes and technologies associated with machine vision.  |                              |           |                               |
| machine vision in                    | b.   | b. Differentiate between machine vision, computer vision, machine learning |                              |           |                               |
| robotics and                         |      | and artificial intelligence.                                               |                              |           |                               |
| automation                           | c.   | c. Research how machine vision can be used in robotics and automation      |                              |           |                               |
| applications.                        |      | applications.                                                              |                              |           |                               |
|                                      | d.   | d. Develop a machine vision solution to a problem such as a coin counter,  |                              |           | oblem such as a coin counter, |
|                                      |      | prod                                                                       | uct label inspector, auto-pa | an camera | a and robot guidance.         |

| Module 65: Physical Space Management (Optional) |      |                                                                            |                     |                    |  |  |
|-------------------------------------------------|------|----------------------------------------------------------------------------|---------------------|--------------------|--|--|
| Suggested Time: 1-2 hours                       |      |                                                                            | Level: Introductory | Prerequisite: None |  |  |
| Outcome                                         | Indi | Indicators                                                                 |                     |                    |  |  |
| Evaluate workspace                              | a.   | Choose an appropriate workspace for a given task.                          |                     |                    |  |  |
| organization for                                | b.   | b. Maintain organization of tools and materials to prevent loss or damage. |                     |                    |  |  |
| effectiveness and                               | c.   | Maintain a safe workspace environment.                                     |                     |                    |  |  |
| efficiency.                                     | d.   | Demonstrate consideration for other users of a shared space.               |                     |                    |  |  |

| Module 66A: Project Management A (Optional) |                                                                                   |                                            |                                            |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|
| Suggested Time: 1-2 hours                   |                                                                                   | Level: Introductory                        | Prerequisite: None                         |  |  |  |
| Outcome                                     | Indicato                                                                          | rs                                         |                                            |  |  |  |
| Create, follow and                          | a. Appl                                                                           | a. Apply a basic project design including: |                                            |  |  |  |
| manage a basic                              | <ul> <li>identifying the tasks necessary to complete a simple project;</li> </ul> |                                            |                                            |  |  |  |
| project plan.                               | • as                                                                              | ssigning an approximate leng               | th of time to each task in a project; and, |  |  |  |
|                                             | <ul> <li>generating a timeline for task completion.</li> </ul>                    |                                            |                                            |  |  |  |
|                                             | b. Mon                                                                            | itor and adjust project timel              | ine as needed.                             |  |  |  |
|                                             | c. Reflect on project plan at completion.                                         |                                            |                                            |  |  |  |

| Module 66B: Project Management B (Optional)          |                              |                                                                                              |                                                                                                                                                                                 |  |  |
|------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Suggested Time: 1-2 ho                               | urs                          | Level: Intermediate                                                                          | Prerequisite: Module 66A                                                                                                                                                        |  |  |
| Outcome                                              | Indicato                     | rs                                                                                           |                                                                                                                                                                                 |  |  |
| Create, follow and manage a multi-step project plan. | • id • a • g b. Mon c. Refle | issigning an approximate le<br>generating a timeline for tas<br>itor and adjust project time | ary to complete a multi-step project; ngth of time to each task in a project; and, k completion. line in response to changing circumstances. plan and summarize suggestions for |  |  |

| Module 66C: Project Management C (Optional) |                                                                                    |                                                                         |                                   |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|--|--|
| Suggested Time: 3-5 ho                      | urs                                                                                | Level: Advanced                                                         | Prerequisite: Module 66B          |  |  |
| Outcome                                     | Indicato                                                                           | rs                                                                      |                                   |  |  |
| Design, implement                           | a. Discu                                                                           | uss group processes that affect tea                                     | m effectiveness.                  |  |  |
| and manage a                                | b. Evalu                                                                           | uate skills and interests of team me                                    | embers, including self.           |  |  |
| detailed project plan                       | c. Appl                                                                            | y a detailed project design includir                                    | ng:                               |  |  |
| that utilizes team                          | <ul> <li>identifying the tasks necessary in completing a large project;</li> </ul> |                                                                         |                                   |  |  |
| member strengths                            | • as                                                                               | ssigning tasks to team members that takes advantage of their skills and |                                   |  |  |
| and interests.                              | interests; and,                                                                    |                                                                         |                                   |  |  |
|                                             | ● ge                                                                               | enerating a timeline for task comp                                      | letion.                           |  |  |
|                                             | d. Mon                                                                             | itor and adjust project timeline an                                     | d task assignments in response to |  |  |
|                                             | changing circumstances.                                                            |                                                                         |                                   |  |  |
|                                             | e. Self-a                                                                          | assess one's contribution to group                                      | projects.                         |  |  |

| Module 67A: Introducto | Module 67A: Introductory Project (Optional)                                         |                                                       |                                 |  |  |  |
|------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|--|--|--|
| Suggested Time: 10-20  | hours                                                                               | Level: Introductory                                   | Prerequisite: None              |  |  |  |
| Outcome                | Indicator                                                                           | s                                                     |                                 |  |  |  |
| Construct an           | a. Const                                                                            | truct an introductory level project for               | ollowing guidelines such as:    |  |  |  |
| introductory level     | • g                                                                                 | enerate different project ideas;                      |                                 |  |  |  |
| assigned or approved   | • p                                                                                 | lan and manage the project includir                   | ng assessment criteria in       |  |  |  |
| robotics or            | C                                                                                   | onsultation with the instructor;                      |                                 |  |  |  |
| automation project.    | • p                                                                                 | lan and use diagrams to guide cons                    | truction;                       |  |  |  |
|                        | • S                                                                                 | set a procedural sequence;                            |                                 |  |  |  |
|                        | • c                                                                                 | create a timeline;                                    |                                 |  |  |  |
|                        | • d                                                                                 | <ul> <li>determine fabrication techniques;</li> </ul> |                                 |  |  |  |
|                        | <ul> <li>identify, acquire, and use the appropriate materials and parts;</li> </ul> |                                                       |                                 |  |  |  |
|                        | • ir                                                                                | <ul> <li>interpret and follow directions;</li> </ul>  |                                 |  |  |  |
|                        | • a                                                                                 | dhere to timelines;                                   |                                 |  |  |  |
|                        | • w                                                                                 | vork cooperatively;                                   |                                 |  |  |  |
|                        | • fo                                                                                | ollow all safety requirements;                        |                                 |  |  |  |
|                        | • fo                                                                                | ollow all handling and storing proce                  | dures;                          |  |  |  |
|                        | • fı                                                                                | ulfill cleanup and tool maintenance                   | responsibilities; and,          |  |  |  |
|                        | • p                                                                                 | resent the completed project and c                    | omplete a self-assessment based |  |  |  |
|                        | О                                                                                   | n the criteria for the project.                       |                                 |  |  |  |

| Module 67B: Intermediate Project (Optional) |                                                                                 |                                                                               |                          |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|--|--|--|
| Suggested Time: 10-20 hours                 |                                                                                 | Level: Intermediate                                                           | Prerequisite: Module 67A |  |  |  |
| Outcome                                     | Indicat                                                                         | Indicators                                                                    |                          |  |  |  |
| Construct an                                | a. As                                                                           | a. Assemble and present a project utilizing skills in planning and management |                          |  |  |  |
| intermediate level                          | as outlined in Module 67A: Introductory Project.                                |                                                                               |                          |  |  |  |
| assigned or approved                        | b. Demonstrate increasingly proficient fabrication techniques, work skills, and |                                                                               |                          |  |  |  |
| robotics or                                 | presentation skills.                                                            |                                                                               |                          |  |  |  |
| automation project.                         |                                                                                 |                                                                               |                          |  |  |  |

| Module 67C: Advanced Project (Optional)                          |     |                                                                                 |                            |                          |                                |  |  |
|------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------------|--|--|
| Suggested Time: 30-50 hours Level: Advanced Prerequisite: Module |     |                                                                                 |                            | Prerequisite: Module 67B |                                |  |  |
| Outcome                                                          | Inc | Indicators                                                                      |                            |                          |                                |  |  |
| Construct an                                                     | a.  | Asser                                                                           | mble and present a project | utilizing skil           | lls in planning and management |  |  |
| advanced level                                                   |     | as outlined in Module 67A: Introductory Project.                                |                            |                          |                                |  |  |
| assigned or approved                                             | b.  | b. Demonstrate increasingly proficient fabrication techniques, work skills, and |                            |                          |                                |  |  |
| robotics or                                                      |     | presentation skills.                                                            |                            |                          |                                |  |  |
| automation project.                                              |     |                                                                                 |                            |                          |                                |  |  |

| Module 68A: Careers in Robotics and Automation A (Core) |     |                                                                                 |                             |                                   |  |  |
|---------------------------------------------------------|-----|---------------------------------------------------------------------------------|-----------------------------|-----------------------------------|--|--|
| Suggested Time: 3-4 ho                                  | urs |                                                                                 | Level: Introductory         | Prerequisite: None                |  |  |
| Outcome                                                 | Ind | icator                                                                          | r's                         |                                   |  |  |
| Explore robotics and                                    | a.  | Resea                                                                           | arch career options and tre | nds in robotics and automation in |  |  |
| automation career                                       |     | Saskatchewan, Canada and the world.                                             |                             |                                   |  |  |
| paths in                                                | b.  | b. Develop a list of career opportunities related to the fields of robotics and |                             |                                   |  |  |
| Saskatchewan,                                           |     | automation.                                                                     |                             |                                   |  |  |
| Canada and the                                          | c.  | c. Communicate research findings related to occupations in robotics and         |                             |                                   |  |  |
| world.                                                  |     | automation through a display, brochure, video, presentation software,           |                             |                                   |  |  |
|                                                         |     | webs                                                                            | site or oral presentation.  |                                   |  |  |

| Module 68B: Careers in Robotics and Automation B (Core) |            |                                                                                                                                           |                                       |  |  |  |
|---------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| Suggested Time: 3-4 ho                                  | urs        | Level: Intermediate                                                                                                                       | Prerequisite: Module 68A              |  |  |  |
| Outcome                                                 | Indica     | tors                                                                                                                                      | ·                                     |  |  |  |
| Examine the skills                                      | a. F       | esearch the education requirements                                                                                                        | of various career paths and identify  |  |  |  |
| necessary to pursue                                     | t          | nose that align with personal lifestyle                                                                                                   | goals.                                |  |  |  |
| robotics and/or                                         | b. I       | lentify and report on opportunities for                                                                                                   | or experiential learning (e.g., co-op |  |  |  |
| automation related                                      | þ          | rograms, job shadowing and career f                                                                                                       | airs) in the field of robotics and    |  |  |  |
| career paths.                                           | a          | utomation.                                                                                                                                |                                       |  |  |  |
|                                                         | c. F       | . Research and report on post-secondary educational programs leading to                                                                   |                                       |  |  |  |
|                                                         | c          | careers in robotics and automation, considering factors such                                                                              |                                       |  |  |  |
|                                                         | c          | ffering relevant programs, industry c                                                                                                     | ertifications, courses of study,      |  |  |  |
|                                                         | $\epsilon$ | ntrance requirements, length of prog                                                                                                      | grams and costs.                      |  |  |  |
|                                                         | d. I       | quire into issues of gender equity an                                                                                                     | nd diversity in the robotics and      |  |  |  |
|                                                         | a          | automation workplace, considering questions such as "Who is typically underrepresented in the robotics and automation field and why?" and |                                       |  |  |  |
|                                                         | ι          |                                                                                                                                           |                                       |  |  |  |
|                                                         | "          | "What steps could be taken to encourage people from under-represented                                                                     |                                       |  |  |  |
|                                                         | ٤          | roups to pursue robotics and automa                                                                                                       | ation related careers?"               |  |  |  |

| Module 68C: Careers in Robotics and Automation C (Core) |       |                                                                                                                                                                                                                   |                                           |  |  |  |
|---------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Suggested Time: 3-4 hours                               |       | Level: Advanced                                                                                                                                                                                                   | Prerequisite: Module 68B                  |  |  |  |
| Outcome                                                 | Indic | ators                                                                                                                                                                                                             | •                                         |  |  |  |
| Research robotics                                       | a.    | Visit local businesses and organiza                                                                                                                                                                               | ations that use or make robotics, such as |  |  |  |
| related career paths                                    |       | health care robots, agriculture rob                                                                                                                                                                               | bots or robot chefs.                      |  |  |  |
| in Saskatchewan,                                        | b.    | Visit post-secondary institutions (                                                                                                                                                                               | e.g., University of Saskatchewan,         |  |  |  |
| Canada, and the                                         |       | University of Regina and Saskatch                                                                                                                                                                                 | ewan Polytechnic) that offer courses      |  |  |  |
| world.                                                  |       | related to robotics and automation.                                                                                                                                                                               |                                           |  |  |  |
|                                                         | c.    | c. Develop a profile of a specific individual involved in a robotics-related                                                                                                                                      |                                           |  |  |  |
|                                                         |       | career, addressing factors such as their educational and personal                                                                                                                                                 |                                           |  |  |  |
|                                                         |       | background, what drew them to their career, the focus of their work and                                                                                                                                           |                                           |  |  |  |
|                                                         |       | their advice for others who wish t                                                                                                                                                                                | o pursue a similar career.                |  |  |  |
|                                                         | d.    | <ul><li>d. Participate in a career fair and analyze robotics related career choices based on information gathered.</li><li>e. Participate in a workplace-based career development opportunity (e.g., jo</li></ul> |                                           |  |  |  |
|                                                         |       |                                                                                                                                                                                                                   |                                           |  |  |  |
|                                                         | e.    |                                                                                                                                                                                                                   |                                           |  |  |  |
|                                                         |       | shadow and career spotlight) rela                                                                                                                                                                                 | ted to robotics and automation.           |  |  |  |

## Module 69A & B: Work Study Preparation (Optional) **Suggested Time: 3-5 hours** Level: Intermediate/Advanced **Prerequisite: None** Note: Work Study is used to prepare students for employment through specific skill development within a workplace. The number of work study opportunities is equal to the number of courses available in the curriculum area at the 20 and 30 level. **Indicators** Outcome a. Explain the roles and responsibilities of each partner (e.g., student, parent, Prepare for the work placement. teacher or other school staff, employer) involved in the work placement. b. Research the business/organization to become familiar with its operations. c. In collaboration with all partners, develop personal and learning goals for the work placement. d. Develop a procedural guide for the work placement that includes items transportation to and from the work placement; hours of work; guidelines for absence and tardiness; dress code; • job description; and, conflict resolution e. Compile an employer information package that includes documents needed for the work placement (e.g., personal career documentation such as a resume or portfolio, permission forms, logs, self- and employer evaluation forms). f. Brainstorm a list of questions to ask the employer before beginning the work placement; these may include: What is my schedule of work hours? Who is my supervisor? What should I wear? When will I be provided with safety training? What potential hazards might I encounter in the work placement? Where do I find fire extinguishers, first aid kits and emergency assistance?

- Who is the first aid person? Where are safety notices posted?
- What should I do in case of a fire or emergency?
- g. Develop a list of questions that could potentially be asked by the employer/work placement in an interview situation as well as answers to

Are there any health and safety procedures I should follow?

What type of safety gear am I expected to wear? Is it provided?

What should I do if I get injured or have an accident in the workplace? How can I contact my health and safety committee or representative?

- h. Participate in an interview with the employer prior to beginning the work placement.
- i. Reflect upon one's performance during the interview.

Note: For more information about implementing work study in schools, see the Work Study Guidelines for the Practical and Applied Arts included in the *Practical and Applied Arts Handbook*.

| Module 70A & B: Work Study Placement (Optional) |                                                                           |                                                                  |                                       |  |  |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Suggested Time: 25-50                           | hours                                                                     | Level: Intermediate/Advanced                                     | Prerequisite: Module 69A & B          |  |  |  |  |
| Outcome                                         | Indica                                                                    | itors                                                            |                                       |  |  |  |  |
| Participate in a work                           | a. A                                                                      | pply relevant skills and abilities during t                      | the work placement experience.        |  |  |  |  |
| placement                                       | b. D                                                                      | ocument one's experience using electro                           | onic and other tools (e.g., vlogs,    |  |  |  |  |
| experience.                                     | b                                                                         | ogs, log sheets, reflective journals) to s                       | summarize and reflect upon items      |  |  |  |  |
|                                                 | SI                                                                        | ıch as:                                                          |                                       |  |  |  |  |
|                                                 | •                                                                         | hours of work including breaks;                                  | hours of work including breaks;       |  |  |  |  |
|                                                 | •                                                                         | responsibilities and tasks performed                             | responsibilities and tasks performed; |  |  |  |  |
|                                                 | •                                                                         | interactions with the employer, staf                             | f, customers and others;              |  |  |  |  |
|                                                 | •                                                                         | company or organization's 'raison d'                             | 'être;' and,                          |  |  |  |  |
|                                                 | •                                                                         | skills developed and demonstrated of                             | during the work placement that        |  |  |  |  |
|                                                 |                                                                           | enhance one's employability.                                     |                                       |  |  |  |  |
|                                                 | c. D                                                                      | c. Document knowledge and awareness of labour standards, safety, |                                       |  |  |  |  |
|                                                 | workplace ethics, rights and responsibilities, occupational health and sa |                                                                  |                                       |  |  |  |  |
|                                                 | a                                                                         | nd networking observed during the wor                            | rk placement.                         |  |  |  |  |

Note: For more information about implementing work study in schools, see the Work Study Guidelines for the Practical and Applied Arts included in the *Practical and Applied Arts Handbook*.

| Module 71A & B: Work Study Follow-up (Optional) |                                                              |                                                                                                                                                                                                      |                                  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Suggested Time: 2-4 ho                          | urs                                                          | Level: Intermediate/Advanced                                                                                                                                                                         | Prerequisite: Module 70A         |  |  |  |
| Outcome                                         | Ind                                                          | licators                                                                                                                                                                                             |                                  |  |  |  |
| Relate one's work                               | a.                                                           | Showcase one's skills and abilities demonstrated during the work                                                                                                                                     |                                  |  |  |  |
| placement experience                            |                                                              | placement using artifacts, evidence of skill development and personal                                                                                                                                |                                  |  |  |  |
| to personal and                                 |                                                              | reflections on aspects of the work experience such as:                                                                                                                                               |                                  |  |  |  |
| career goals.                                   |                                                              | hours worked;                                                                                                                                                                                        |                                  |  |  |  |
|                                                 |                                                              | <ul> <li>responsibilities and tasks performed;</li> </ul>                                                                                                                                            |                                  |  |  |  |
|                                                 |                                                              | the importance of attitude towards work and taking responsibility for                                                                                                                                |                                  |  |  |  |
|                                                 |                                                              | what needs to be done;                                                                                                                                                                               |                                  |  |  |  |
|                                                 |                                                              | • details about the entry level wage, salary scales and earning potential;                                                                                                                           |                                  |  |  |  |
|                                                 |                                                              | <ul> <li>worker rights and responsibilities and the role of the union, if applicable;</li> <li>ownership structure (e.g., corporation, franchise, sole proprietorship, partnership); and,</li> </ul> |                                  |  |  |  |
|                                                 |                                                              |                                                                                                                                                                                                      |                                  |  |  |  |
|                                                 |                                                              | • opportunities for advancement at th industry.                                                                                                                                                      | e workplace and elsewhere in the |  |  |  |
|                                                 | b. Reflect on the attainment of personal and learning goals. |                                                                                                                                                                                                      |                                  |  |  |  |
|                                                 | c.                                                           | Update personal career documentation (e.g., resume, portfolio) following the work placement.                                                                                                         |                                  |  |  |  |
|                                                 |                                                              |                                                                                                                                                                                                      |                                  |  |  |  |
|                                                 | d.                                                           | d. In appreciation prepare a letter, note, card or other communication for                                                                                                                           |                                  |  |  |  |
|                                                 |                                                              | work placement employer.                                                                                                                                                                             |                                  |  |  |  |
|                                                 |                                                              | • Develop and/or revise personal and                                                                                                                                                                 | career goals based on the work   |  |  |  |
|                                                 |                                                              | placement experience.                                                                                                                                                                                |                                  |  |  |  |

| Module 99A, B & C: Extended Study |                                               |                    |  |  |  |
|-----------------------------------|-----------------------------------------------|--------------------|--|--|--|
| Suggested Time: 10-25 hours       | Level: Introductory/<br>Intermediate/Advanced | Prerequisite: None |  |  |  |

**Note**: The extended study module may be used only once in each 100-hour course.

**Module Overview**: Evolving societal and personal needs, advances in technology, and demands to solve current problems require a flexible curriculum that can accommodate new ways and means to support learning in the future. The extended study module is designed to provide schools and teachers with an opportunity to meet current and future demands not provided for in current modules of the PAA curriculum. This flexibility allows a school or teacher to design one new module per credit to complement or extend the study of the core and optional modules to meet the specific needs of students or the community. The extended study module is designed to extend the content of the pure courses and to offer survey course modules beyond the scope of the available selection of PAA modules, either in depth or breadth. The list of possibilities for topics of study or projects for the extended study module approach is as varied as the imagination of those involved in using the module. The extended study module guidelines should be used to strengthen the knowledge, skills, and processes advocated in the PAA curriculum. For more information on the guidelines for the Extended Study module, see the *Practical and Applied Arts Handbook*.

## **Assessment and Evaluation of Student Learning**

Assessment and evaluation are continuous activities that are planned for and derived from curriculum outcomes and consistent with the instructional learning strategies. The depth and breadth of each outcome, as defined by the indicators, informs teachers of the skills, processes and understandings that should be assessed.

Assessment is the act of gathering information on an ongoing basis in order to understand individual students' learning and needs.

Evaluation is the culminating act of interpreting the information gathered through relevant and appropriate assessments for the purpose of making decisions or judgements, often at reporting times.

Effective and authentic assessment and evaluation involves:

- designing performance tasks that align with curricular outcomes;
- involving students in determining how their learning will be demonstrated; and,
- planning for the three phases of assessment and evaluation indicated below.

| Formative A                                                                                                                                                                                                                                                                           | Summative Assessment and                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                       | Evaluation                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |
| Assessment for Learning involves the use of information about student progress to support and improve student learning, inform instructional practices, and:  • is teacher-driven for student, teacher and parent use; • occurs throughout the teaching and learning process, using a | Assessment as Learning involves student reflection on learning, monitoring of own progress, and:  • supports students in critically analyzing learning related to curricular outcomes;  • is student-driven with teacher guidance; and,  • occurs throughout the learning | Assessment of Learning involves teachers' use of evidence of student learning to make judgements about student achievement and: • provides opportunity to report evidence of achievement related to curricular outcomes; • occurs at the end of a learning cycle, using a variety of tools; |
| <ul> <li>variety of tools; and,</li> <li>engages teachers in providing differentiated instruction, feedback to students to enhance their learning and information to parents in support of learning.</li> </ul>                                                                       | process.                                                                                                                                                                                                                                                                  | <ul> <li>and,</li> <li>provides the foundation for discussions on placement or promotion.</li> </ul>                                                                                                                                                                                        |

There is a close relationship among outcomes, instructional approaches, learning activities, assessment and evaluation. Assessments need to be reflective of the cognitive processes and level(s) of knowledge indicated by the outcome. An authentic assessment will only collect data at the level for which it is designed.

## Glossary

**Abstraction** is the process of identifying general principles in order that one solution can solve multiple problems.

An **AC motor** is an electric motor that is driven by alternating current (AC).

An **actuator** is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve.

An **algorithm** is a series of systematic instructions to solve a problem.

**Alternating current (AC)** is electric current which periodically reverses direction of current flow.

An **analog signal** is any continuous signal that can vary in value and can have an infinite number of values. (e.g., anywhere from 0 volts to 5 volts).

An **analog device** is any device such as a sensor that will produce an output with an infinite number of values over a given range.

**Arithmetic operators** such as addition (+), subtraction (-), division (/) and multiplication (\*) are used to manipulate numerical values.

**Automation** is using computer software or technology to carry out a task with minimal human assistance.

**An autonomous device** is a device that is able to gather data from its environment through sensors and respond based on that data.

A battery eliminator circuit (BEC) is an electronic circuit designed to deliver electrical power to other circuitry without the need for multiple batteries.

**Binding** is the act of wirelessly connecting an RC transmitter and receiver together.

**Block-based coding** is coding within a programming language where instructions are mainly represented as blocks.

**Boolean** is a data type referring to two possible values called "true" and "false."

Bound (paired) - see Binding.

A **breadboard** is a solderless device for prototyping electronics and testing circuit designs.

A **channel** is a controllable function of a radio controlled device.

A **compiler** is a program that converts computer code written in one programming language into another programming language that a computer can read and execute.

**Computer numerical control (CNC)** is the automated control of machining tools by a computer. There are 2D (fixed depth control) and 3D (varying depth controls) versions of this.

**Computational thinking** is the thought process involved in describing a problem and its solutions so that an information-processing agent can carry out the solution. The defining characteristics of computational thinking are decomposition, pattern recognition, data representation, abstraction and algorithms.

A conditional statement is a feature of a programming language that will complete some calculation or action and return a value of true or false.

Current is the rate at which charged particles flow past a point and is measured in Amperes (A).

A **DC motor** is an electric motor that is driven by direct current (DC).

**Debugging** is the process of finding and resolving defects or problems within a computer program.

**Decomposition** is breaking a complex problem into simpler parts.

A digital device is any device such as sensor that will produce an output with one of two values.

A **diode** is a two-terminal electronic component that conducts current primarily in one direction.

A **DIP switch** is a manual electric switch that is packaged with others in a dual-in-line package.

**Direct current (DC)** is electric current which only flows in one direction.

A **drone**, or unmanned aerial vehicle, is an aircraft without a human pilot aboard.

An **electronic speed controller (ESC)** is an electronic circuit that controls and regulates the speed of an electric motor.

A **floating point** data type, also called float or real, represents a limited precision rational number that may have a fractional part.

A **function**, or subroutine, is a sequence of program instruction that perform a specific task, packaged as a unit that can be called from a program.

**Hydraulic** refers to the mechanical properties and uses of liquids.

**Input** is information supplied to a computer program or device.

An **infrared sensor** is an electronic sensor that detects infrared radiation.

**Integer** is a data type refers to numeric data consisting of whole numbers.

An **integrated development environment (IDE)** is software that combines the tools required to write and test programs. An IDE can also be an app or web based software that facilitates the transfer of code to a device.

A light emitting diode (LED) is a semiconductor light source that emits light when current flows through it.

A **line follower** robot uses infrared sensors to detect where the robot is located relative to a line on a surface.

A **liquid crystal display (LCD)** is a flat-panel display that uses the light-modulating properties of liquid crystals.

A **load** is an electrical component that requires electric power to function.

**Machine vision** refers to technologies and processes used to extract information from an image on an automated basis.

**Mechanical advantage** is a measure of the advantage provided by using a too, mechanical device or machine system.

A **microcontroller** is a small computer on a single integrated circuit, containing a microprocessor, memory and programmable input and output peripherals.

A **motor controller** is a standard H-bridge motor driver that can turn wheels in both directions and can control two motors at the same time.

A multimeter is a testing device that can measure voltage, current and resistance in circuits.

**Ohm's Law** states that the current through a conductor is directly proportional to the voltage across the conductor and inversely proportional to the resistance of the conductor (I = V/R).

**Output** is information provided by a computer program or device.

**Pairing** is a process used to set up a linkage between computing devices, such as a radio transmitter and receiver.

A parallel circuit is an electric circuit that provides more than one pathway for electrical energy.

**Pattern recognition** is learning to identify and use similarities to simplify, shorten and apply similar solutions.

A pictorial diagram represents the elements of an electric circuit using simple images.

**Pneumatic** refers to the mechanical properties and uses of gases.

A **programming language** is a formal language which comprises a set of instructions used to produce various kinds of output.

A prototype is a model, or a test of a concept while working through the design process.

**Pseudocode** is an informal, high-level description of an algorithm or computer program, using natural language rather than the details of a formal programming language.

**Radio-frequency identification (RFID)** uses electromagnetic fields to identify and/or track tags attached to objects.

A radio transmitter is an electronic device that produces radio waves with an antenna.

A **radio receiver** is an electronic device that receives radio waves with an antenna and converts them to a usable form.

**Relational operators**, such as numerical equality (=) and inequalities (>,  $\ge$ ,  $\le$ , <), test or define a relationship between two entities.

A **relay** is an electrically operated switch.

**Resistance** is a measure of the opposition to the flow of electric current and is measure in ohms  $(\Omega)$ .

A **resistor** is a passive two-terminal electronic component that provides resistant to current flow in an electronic circuit.

**Revolutions per minute (RPM)** is a measure of rotational speed or frequency of rotation around a fixed axis.

**Robotics** is a branch of technology that deals with the design, construction, operation, and application of robots.

A **schematic diagram** represents the function of an electric circuit using lines to represent the wires and standard symbols to represent components.

A **semiconductor** is a material that has an electrical conductivity value between that of a conductor and that of an insulator.

A **sensor** is a device used to measure a physical property and respond with feedback.

A series circuit is an electric circuit that provides a single pathway for electrical energy.

A **servo** is a small electric motor that drives a train of reduction gears.

A **shield** is an add-on module for a microcontroller that performs a specified task.

A **sound sensor** is an electronic sensor that can detect the presence, frequency and/or intensity of sound.

A **stepper motor** is a brushless DC motor that divides a full rotation into a number of equal steps.

**String** refers to a data type made of any finite sequence of characters such as letters, words, numerals, symbols and punctuation marks.

**Subroutine** and routine are sometimes used interchangeably to describe a sequence of code written for a larger program. Subroutines are called and used by the larger program to complete a task.

The **syntax** of a computer language is the set of rules that defines the combination of words, phrases and context that comprise a correctly structured program.

A **tactile sensor** is an electronic sensor that measures information arising from physical interaction with its environment.

**Tethering** is the connection of a mobile device with other devices using a physical or wireless connection.

**Torque** is a measure of the force of rotational motion.

An **ultrasonic sensor** is an electronic sensor that converts ultrasound into electrical signals.

A **variable** is a storage location for data in a computer program.

A **visual programming environment** is a programming language that manipulates program elements graphically rather than textually.

**Voltage** is a measure of how much electrical energy each charged particle carries and is measured in Volts (V).

**Voltage drop** is a measure of how much the energy supplied by a voltage source as electrical current moves through passive elements of an electrical circuit.

Watt's Law states that the power is equal to the voltage times the current flow (W = VI).

**Wearables**, or wearable technology, are smart electronic devices that can be incorporated into clothing or worn on the body as implants or accessories.

**Wireless** is the transfer of information or power between two or more points that are not connected by a conductor.

A **wiring diagram** is a simplified visual representation of the physical connections and physical layout of an electric circuit or electrical system.

## References

- Brophy, J. & Alleman, J. (1991). A caveat: Curriculum integration isn't always a good idea. *Educational Leadership*, 49, 66.
- Ermine, W. (2006). The space between two knowledge systems. In an article by Dawn Ford retrieved January 20, 2010 from <a href="https://sites.ualberta.ca/~publicas/folio/43/14/11.html">https://sites.ualberta.ca/~publicas/folio/43/14/11.html</a>.
- Kuhlthau, C. C., Maniotes, L.K., & Caspari, A.K. (2007). *Guided inquiry: A framework for learning through school libraries in 21st century schools.* Westport, CN: Libraries Unlimited.
- Mills, H. & Donnelly, A. (2001). *From the ground up: Creating a culture of inquiry.* Portsmouth, NH: Heinemann Educational Books, Ltd.
- Saskatchewan Ministry of Education. (2008). Renewed objectives for the common essential learnings of critical and creative thinking (CCT) and personal and social development (PSD). Regina SK:

  Saskatchewan Ministry of Education.
- Saskatchewan Ministry of Education. (2008). *Understanding the Common Essential Learnings: A Handbook for Teachers (1988, pages 42-49)*. Regina SK: Saskatchewan Ministry of Education.
- Saskatchewan Ministry of Education. (2011). *Core curriculum: Principles, time allocations, and credit policy*. Regina, SK: Government of Saskatchewan.
- Saskatchewan Ministry of Education. (2018). *Inspiring Success: First Nations and Métis PreK-12 Education Policy Framework*. Regina, Saskatchewan.
- Smith, M. (2001). Relevant curricula and school knowledge: New horizons. In K.P. Binda & S. Calliou (Eds.), Aboriginal education in Canada: A study in decolonization (pp. 77-88). Mississauga, ON: Canadian Educators' Press.
- Wiggins, G. & McTighe, J. (2005). *Understanding by design* (2nd ed.). Alexandria, VA: Association for Supervision and Curriculum Development.