BANK-MARKETING PREDICTION


```
13 duration 45211 non-null int64
14 campaign 45211 non-null int64
15 pdays 45211 non-null int64
16 previous 45211 non-null int64
17 poutcome 45211 non-null object
18 response 45211 non-null object
```

dtypes: int64(8), object(11)

memory usage: 6.6+ MB

bk_df.head()

Out[4]:

	a g e	job	sa la ry	m ar ita l	edu cati on	tar get ed	de fa ul t	ba la nc e	ho usi ng	l o a n	co nta ct	d a y	m o nt h	du rat ion	ca mp aig n	p d a ys	pr evi ou s	po utc om e	res po nse
0	5 8	man age men t	10 00 00	m arr ie d	tert iary	yes	no	21 43	ye s	n o	un kn ow n	5	m ay	26 1	1	-1	0	unk no wn	no
1	4 4	tech nici an	60 00 0	sin gl e	sec ond ary	yes	no	29	ye s	n o	un kn ow n	5	m ay	15 1	1	-1	0	unk no wn	no
2	3 3	entr epre neur	12 00 00	m arr ie d	sec ond ary	yes	no	2	ye s	y e s	un kn ow n	5	m ay	76	1	-1	0	unk no wn	no
3	4 7	blue - coll ar	20 00 0	m arr ie d	unk no wn	no	no	15 06	ye s	n o	un kn ow n	5	m ay	92	1	-1	0	unk no wn	no
4	3 3	unk now n	0	sin gl e	unk no wn	no	no	1	no	n o	un kn ow n	5	m ay	19 8	1	-1	0	unk no wn	no

Basic data observation

In [5]:

#shape of the data

bk_df.shape

(45211, 19)

Out[5]:

bk_df.describe()

Out[6]:

	age	salary	balance	day	duration	campaign	pdays	previous
cou nt	45211.000 000	45211.0000 00	45211.0000 00	45211.000 000	45211.000 000	45211.000 000	45211.000 000	45211.000 000
mea n	40.936210	57006.1710 65	1362.27205 8	15.806419	258.16308 0	2.763841	40.197828	0.580323
std	10.618762	32085.7184 15	3044.76582 9	8.322476	257.52781 2	3.098021	100.12874 6	2.303441
min	18.000000	0.000000	8019.00000 0	1.000000	0.000000	1.000000	-1.000000	0.000000
25 %	33.000000	20000.0000	72.000000	8.000000	103.00000	1.000000	-1.000000	0.000000
50 %	39.000000	60000.0000	448.000000	16.000000	180.00000	2.000000	-1.000000	0.000000
75 %	48.000000	70000.0000	1428.00000 0	21.000000	319.00000	3.000000	-1.000000	0.000000
max	95.000000	120000.000	102127.000 000	31.000000	4918.0000 00	63.000000	871.00000 0	275.00000 0

In [8]:

sns.heatmap(bk_df.isnull(),yticklabels=False,cbar=True,cmap='viridis',color="green")

Out[8]:

<AxesSubplot:>

Describe the pdays column, make note of the mean, median and minimum values. Anything fishy in the values?

bk_df['pdays'].describe()

Out[9]:

 count
 45211.000000

 mean
 40.197828

 std
 100.128746

 min
 -1.000000

 25%
 -1.000000

 50%
 -1.000000

 75%
 -1.000000

 max
 871.000000

Name: pdays, dtype: float64

In [10]:

```
4
print("Mean:",bk_df['pdays'].mean())
print("Median:",bk_df['pdays'].median())
print("mode:",bk_df['pdays'].mode()[0])
Mean: 40.19782796222158
Median: -1.0
mode: -1
Describe the pdays column again, this time limiting yourself to the relevant values of pdays. How
different are the mean and the median values?
                                                                                       In [12]:
print("Mean of pdays column after eliminating -1 values is", bk_df[bk_df['pdays'] != -1]['pdays'].mean())
print("Median of pdays column after eliminating -1 values is", bk_df[bk_df['pdays'] != -1]['pdays'].median())
Mean of pdays column after eliminating -1 values is 224.57769165556496
Median of pdays column after eliminating -1 values is 194.0
First, perform bi-variate analysis to identify the features that are directly associated with the
target variable.
.Convert the response variable to a convenient form .Make suitable plots for associations with
numerical features and categorical features'
                                                                                       In [13]:
def impute_response(x):
  if x=='yes':
    return 1
  if x=='no':
    return 0
bk_df['response']=bk_df['response'].apply(impute_response)
bk_df['response'].value_counts()
                                                                                       Out[13]:
      39922
0
1
       5289
```

In [14]:

Name: response, dtype: int64

```
# here we are seperating categorical and numerical data types
cat\_col = []
num_col = []
for col in bk_df.columns:
  if bk_df[col].dtype=='O':
    cat_col.append(col)
  else:
   num_col.append(col)
print("Categorical features : ",cat_col)
print("Numerical features : ",num col)
Categorical features : ['job', 'marital', 'education', 'targeted', 'defaul
t', 'housing', 'loan', 'contact', 'month', 'poutcome']
Numerical features : ['age', 'salary', 'balance', 'day', 'duration', 'camp
aign', 'pdays', 'previous', 'response']
Categorical features
                                                                             In [15]:
for col in cat_col[1:]:
  print(bk_df[col].value_counts())
married
             27214
single
             12790
divorced
              5207
Name: marital, dtype: int64
secondary
              23202
tertiary
              13301
primary
               6851
                1857
unknown
Name: education, dtype: int64
       37091
yes
         8120
no
Name: targeted, dtype: int64
        44396
no
          815
yes
Name: default, dtype: int64
yes
        25130
        20081
Name: housing, dtype: int64
        37967
yes
        7244
```

```
Name: loan, dtype: int64
cellular
              29285
unknown
              13020
telephone
               2906
Name: contact, dtype: int64
        13766
may
         6895
jul
         6247
aug
jun
         5341
         3970
nov
         2932
apr
         2649
feb
        1403
jan
oct
          738
          579
sep
          477
mar
          214
dec
Name: month, dtype: int64
unknown
            36959
failure
              4901
other
              1840
              1511
success
Name: poutcome, dtype: int64
                                                                               In [32]:
 4
for col in cat_col[1:]:
  plt.figure(figsize=(5,5))
  sns.countplot(y=bk_df[col],hue=bk_df["response"],color="yellow")
  plt.title("Response vs "+col,fontsize=18,color="Red")
  plt.xlabel(col,fontsize=14,color="orange")
  plt.ylabel("Response",fontsize=14,color="green")
  plt.show()
```

Response vs marital

Response vs education

Response vs targeted

Response vs default

Response vs housing

Response vs loan

Response vs contact

Response vs month

'poutcome' column is not assosciated with target column because it has more missing values.

poutcome

10000 15000 20000 25000 30000 35000

bk_df.drop('poutcome',axis=1,inplace=**True**)

0

5000

• Plot a horizontal bar graph with the median values of balance for each education level value. Which group has the highest median?

Numerical Features

for col in num_col[1:]:

print(col,bk_df[col].nunique())

salary 11

balance 7168

day 31

 ${\tt duration}\ 1573$

campaign 48

pdays 559

previous 41

response 2

Make a box plot for pdays. Do you see any outliers?

sns.boxplot(bk_df['pdays'],color="blue")

Out[36]: <AxesSubplot:xlabel='pdays'>

No.of outliers are observed in pdays coloumn

Out[37]:

	age	salary	balance	day	duratio n	campaig n	pdays	previou s	respons e
age	1.00000	0.02435 7	0.09778	0.00912	0.00464	0.004760	0.02375 8	0.00128 8	0.02515
salary	0.02435 7	1.00000	0.05546 9	0.02786 4	0.00993 7	0.015005	0.01496 8	0.01456 4	0.02001
balance	0.09778	0.05546	1.00000		0.02156	0.014578		0.01667 4	0.05283 8
day	0.00912 0	0.02786 4	0.00450	1.00000	0.03020	0.162490	0.09304	0.05171	0.02834
duration	0.00464 8	0.00993 7	0.02156 0	0.03020 6	1.00000	0.084570	0.00156 5	0.00120	0.39452

	age	salary	balance	day	duratio n	campaig n	pdays	previou s	respons e	
campaig n	0.00476 0	0.01500 5	0.01457 8	0.16249 0	0.08457 0	1.000000	0.08862	0.03285	0.07317	
pdays	0.02375	0.01496 8	0.00343	0.09304	0.00156 5	0.088628	1.00000	0.45482	0.10362 1	
previous	0.00128 8	0.01456 4	0.01667 4	0.05171 0	0.00120	0.032855	0.45482	1.00000	0.09323	
response	0.02515 5	0.02001	0.05283 8	0.02834	0.39452	0.073172	0.10362 1	U	1.00000	
								I	n [40]:	

plt.figure(figsize=(10,10))

 $sns.heatmap(bk_df.corr(),annot=\pmb{True})$

Out[40]:

<AxesSubplot:>

sns.pairplot(bk_df,hue='response')

Out[41]:

<seaborn.axisgrid.PairGrid at 0x26b4ec78640>

bk_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45211 entries, 0 to 45210
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	age	45211 non-null	int64
1	job	45211 non-null	object
2	salary	45211 non-null	int64
3	marital	45211 non-null	object
4	education	45211 non-null	object
5	targeted	45211 non-null	object

```
6
               45211 non-null object
     default
 7
               45211 non-null int64
     balance
     housing
               45211 non-null object
 9
               45211 non-null object
     loan
 10 contact 45211 non-null object
               45211 non-null int64
 11
    day
               45211 non-null object
 12 month
 13 duration 45211 non-null int64
 14 campaign 45211 non-null int64
               45211 non-null int64
 15 pdays
 16 previous 45211 non-null int64
 17 response
               45211 non-null int64
dtypes: int64(9), object(9)
memory usage: 6.2+ MB
                                                                       In [45]:
for col in num_col[:-1]:
 plt.figure(figsize=(1,2))
 sns.jointplot(x = bk_df[col],y = bk_df["response"],kind='reg',color="lime")
 plt.xlabel(col,fontsize = 15,color="orange")
 plt.ylabel("Response",fontsize = 15,color="purple")
 plt.grid()
 plt.show()
<Figure size 72x144 with 0 Axes>
```


<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

<Figure size 72x144 with 0 Axes>

-Are the features about the previous campaign data useful?

In [46]:

 $bk_df[['previous', 'response']].groupby("response").mean()$

Out[46]:

previous

response

0 0.502154

1 1.170354

-how do you handle the pdays column with a value of -1 where the previous campaign data is missing?

In [49]:

response marital married 0.101235 single 0.149492 In [55]: $bk_df[['education', 'response']].group by ("education").mean()$ Out[55]: response education primary 0.086265 secondary 0.105594 tertiary 0.150064unknown 0.135703 In [56]: $bk_df[['job','response']].groupby("job").mean()\\$ Out[56]:

response

job

admin. 0.122027

blue-collar 0.072750

```
response
```

```
job
```

0.082717 entrepreneur housemaid 0.087903 management 0.137556 retired 0.227915self-employed 0.118429 0.088830services student 0.286780 technician 0.110570 unemployed 0.155027

unknown 0.118056

bk_df['month'].unique()

dict={'jan':1,'feb':2,'mar':3,'apr':4,'may':5,'jun':6,'jul':7,'aug':8,'sep':9,'oct':10,'nov':11,'dec':12} bk_df['month']=bk_df['month'].map(dict)

In [59]:

bk_df['month'].unique()

Out[59]:

array([5, 6, 7, 8, 10, 11, 12, 1, 2, 3, 4, 9], dtype=int64)

In [60]:

bk_df.head()

Out[60]:

	a g e	job	sa la ry	m ar ita l	ed uc ati on	ta rg ete d	de fa ul t	ba la nc e	ho us in g	l o a n	co nt act	d a y	m o nt h	du rat io n	ca mp aig n	p d a ys	pr evi ou s	res po ns e	pdays _no_c ontact
0	5 8	man age men t	10 00 00	m arr ie d	tert iar y	ye s	no	21 43	ye s	n o	un kn ow n	5	5	26 1	1	-1	0	0	1
1	4 4	tech nici an	60 00 0	si ng le	sec on dar y	ye s	no	29	ye s	n o	un kn ow n	5	5	15 1	1	-1	0	0	1
2	3	entr epre neur	12 00 00	m arr ie d	sec on dar y	ye s	no	2	ye s	y e s	un kn ow n	5	5	76	1	-1	0	0	1
3	4 7	blue - coll ar	20 00 0	m arr ie d	un kn ow n	no	no	15 06	ye s	n o	un kn ow n	5	5	92	1	-1	0	0	1
4	3 3	unk now n	0	si ng le	un kn ow n	no	no	1	no	n o	un kn ow n	5	5	19 8	1	-1	0	0	1
					<u> </u>													In	[61]:

```
cat_col
                                                                                            Out[61]:
['job',
 'marital',
 'education',
 'targeted',
 'default',
 'housing',
 'loan',
 'contact',
 'month',
 'poutcome']
Data Preprocessing
                                                                                             In [62]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import MinMaxScaler
cat_features = ['job', 'marital', 'education', 'targeted', 'default', 'housing', 'loan', 'contact', 'month']
X = pd.get_dummies( bk_df, columns=cat_features, drop_first=True)
                                                                                             In [64]:
sc= MinMaxScaler()
a = sc.fit_transform(bk_df[['salary']])
b = sc.fit_transform(bk_df[['balance']])
c = sc.fit\_transform(bk\_df[['day']])
d = sc.fit_transform(bk_df[['duration']])
e = sc.fit_transform(bk_df[['campaign']])
f = sc.fit_transform(bk_df[['pdays']])
g = sc.fit_transform(bk_df[['previous']])
h = sc.fit_transform(bk_df[['pdays_no_contact']])
                                                                                             In [65]:
X['salary'] = a
X['balance'] = b
```

```
X['day']=c
X['duration']=d
X['campaign']=e
X['pdays'] = f
X['previous'] = g
X['pdays_no_contact']=h
```


X.shape

(45211, 43)

Resampling

 $sns.countplot('response', data=bk_df, color="lime").set_title('Class\ Distribution\ Before\ Resampling', color="orange")\\$

Text(0.5, 1.0, 'Class Distribution Before Resampling')

In [79]:

Out[66]:

ML model

Train Test and split

Now it's time to do a train test split, and train our model!

Logistic Regression


```
72131
        1
4244
         0
14755
         0
61867
         1
5849
         0
Name: response, dtype: int64
                                                                         In [94]:
lr_pred[:20]
                                                                         Out[94]:
array([1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0],
      dtype=int64)
                                                                         In [95]:
confusion\_matrix(Y\_test, lr\_pred)
                                                                         Out[95]:
array([[8258, 1686],
       [1822, 8195]], dtype=int64)
                                                                         In [96]:
accuracy_score(Y_test,lr_pred)*100
                                                                         Out[96]:
82.42573017383899
                                                                         In [97]:
print(classification_report(Y_test,lr_pred))
               precision
                            recall f1-score
                                                  support
            0
                    0.82
                                0.83
                                           0.82
                                                     9944
                     0.83
            1
                                0.82
                                           0.82
                                                    10017
                                           0.82
                                                    19961
    accuracy
                    0.82
                               0.82
                                           0.82
                                                    19961
   macro avg
weighted avg
                    0.82
                               0.82
                                           0.82
                                                    19961
```

Accuracy of model with logistic regression is 82%.

Random Forest

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=100)

rfc.fit(X_train, Y_train)

 $rf_pred = rfc.predict(X_test)$

```
In [99]:
```

Y_test[:20]
Out[99]:

```
51853
         1
27901
         0
40500
         1
38611
         0
24872
         0
19672
         0
17011
         0
77503
30667
         0
64021
        1
51223
         1
61692
        1
10909
         0
65933
        1
67435
         1
72131
         1
4244
         0
14755
         0
61867
         1
5849
```

Name: response, dtype: int64

In [100]:

Accuracy of model with Random forest is 97%

By comparing the models we get the highest accurcay percentage of 97% rather than Logistic regression algorithm model.