COMPILER DESIGN MODULE-3 BOTTOM UP PARSING Bottom Up Passing: - An attempt to reduce the input string 'w' to the start symbol of a grammas by tracing out right most desirations of 'w' in reverse. For eg: Consider the gramman, 5 -> alb and the input steing is aaabb A -> aA la B-> 68 6 aaabb aaAbb seduction. a Abb a ABb $s \longrightarrow a\underline{A}\underline{B}\underline{b} \longrightarrow a\underline{A}\underline{b}\underline{b} \longrightarrow a\underline{a}\underline{A}\underline{b}\underline{b} \longrightarrow a\underline{a}\underline{a}\underline{b}\underline{b}$ Eg: Shift Reduce Paaser, Operator Precedance, LR parser.

Handle

Handle of a string is a substring that matches a slight hand side of a production of it is reduced to nonterminal on the LHS of production

Handle Pruring

A sightmost desiration in severee is obtained by Handle Prunning.

For eg: Consider the granman,

Right Sentential form	Handle	Reducing Productions
id, +id2 * id3 E + id2 * id3 E + E * id3 E + E * E E + E	ids ids ids E*E E+E	$E \rightarrow id$ $E \rightarrow id$ $E \rightarrow id$ $E \rightarrow E * E$ $E \rightarrow E + E$

Eg:2 Perform Shift Reduce pareing of up string, w=cdcd using the grammar S->CC c -> cc/a Stack up buffer Action \$ cdcd4 Shift dcd4 Shift \$cd cds Reduce by C >d \$cc cd\$ Reduce by C>CC Shift cd \$ Shift \$Cc d\$ Redua by C->d \$ Ccd Reduce by C->CC \$CcC. Reduce by S -> CC \$ CC Accept \$5

using the grammas E -> E+T/T T -> T * F / F 33315:2022080912:55)/id· Action Imput Buffer Stack id*id\$ Shift \$E * \$ id *id\$ Reduce by F -> id *id\$ Reduce by T->F * id\$ 8suft id\$ shift Reduce by F -> id Reduce by T→T*F \$ Reduce by F ->T. Accept \$E

Conflicts in Shift Reduce Passing:

1) Shift | Reduce Conflicts

Every SR passer can reach a configuration knowing the Stack and the next input symbols, cannot decide whether to shift or reduce.

2) Reduce / Reduce Conflicts

entire stack and the next 'k' input symbols, it can't decide which of several reductions to make.

OPERATOR PRECEDENCE PARSING 33315:2022080913:29 * Bottom-up Pageer. * U.Ses Operator Grammars. Operator Grammars. In this gramman, no production rule can have - E at the right hand side - two adjacent non-terminals at the right side. FOR eg:) E -> AB 2) E→ EOE 8) F -> F+F $E \longrightarrow id$ $A \rightarrow a$ $B \rightarrow b$ E→E*E · 0 -> +/* E→ id Not operator Not Operator grammar Operator geammasi

Precedence relations between certain pair of terminals a < b > a yields precedence to b' a = b → a has same precedence as b' a > b → a takes precedence over b' Precedence relation is used to find the handle of a right sentential form with < marking the left end and > marking the right end ie we insert the precedence relation between the pair of terminals

a < b > a juilde precedence to b'

a = b > a has same precedence as b'

a > b > a takes precedence over b'

Precedence relation is used to find the handle of a night sentential form with < marking the left end and > marking the right end is the insert the precedence relation between the pair of terminals

Steps to perform Operator Precedence Parsing:

1) Check whether the given grammar is Operator grammar or mot

2) Construct Operator precedence relation table.

3) Parse the given input string using Operator precedence Parsing algorithms

4) Generate Parse tree.

I check whether the given grammar is Operator grammar or mot. If not consist it into Operator grammar. Operator grammar (adjacent mon terminals are present). So we can (Replace A with Rewrite that production as E -> E + E | E * E | id. its RHS) Now the gramman is Operator gramman Construct the precedence relation table i) id has more precedence than id all other terminals > id 2) & has lower precedence than > 4 1 4 all other terminals. > > 4. 3) If both operators are having equal Accept 4 precedence then use associativity rule. * > *

Stack	Imput	Action						ation
5					10	+	*	丰
	id+id*id\$			id	-	->-	>	
id	+ id * id \$	0		t	4	>	4	
	+id *id\$	Shift .	DATE	*	2	>	.>	->-
+	id * id\$	Shift		\$				Accept
+ jd	*id\$	Reduce by F-id						
+		Shift						
+*	id\$	Shift	14,	Ger	resat	e Pa	980	Tree
+ frid	\$	Reduce by E -> id		0	F			
+*	\$	Reduce by E→E*E				1	E	
	1 4 "	Reduce by F → F+F			1	1	1	
*	9				E	E	E	
		Accept						

*Most efficient method of Bottom-up Parsing *Used To parse large class of context-free gramman. In LR(&) parsing, L stands for left to right scanning of input symbols. R stands for right constructing rightmost derivation in reverse. R stands for number of input symbols of lookahead that are used in making parsing decision.

* Passing Table

Co333152022080815 pasts

Action

Action

This function takes a state i and a terminal a as arguments.

The higher of Action [i,a] can have any one of the four forms.

a) Shift j where j is a state

b) Reduce by a grammar production, A -> |3 |

c) Accept

d) Error.

Goto

This function takes a state and grammar symbol as argument and produces a state as output is Goto [Ii, A] = Ij where j is a state.

Rifferent types of LR passess) Sample LR (SLR) 2) Canonical LR (CLR) 3) Lookahead LR (LALR) All LR pareers use the same Parsing algorithm but the difference is only in teams of construction of P LR Pareing tables LALR (1) Pagger SLR Parsen LR(1) Pageseg/ Canonical LR Parsen 1) Works on small class i) works on intermediate of grammases 1) Works on complete Side of grammas set of LR (1) gramman 2) No of States are 2) Generales large table 2) Few mo. of states Same as in SLR(1) and large number hence very small of states. table 3) Slow construction 3) Intermediate in Power and cost between other 4) Most powerful and a parsers 4) Least powerful most expensive

38315:2022080915:20 structurg SLR passing Table * LR parsen using SLR parsing table is called an SLR parsen * A gramman for which am SLR parsen can be constructed is an SLR gramman * LR(0) Item An LR(0) item of a gramman G is a production of G with a det __ at the some position of the right side Eg for the productions A -> aBb. Possible LR(0) items are A-. aBb A-a.Bb A-> aB. b A - aBb. Am dem shows how much of a production we have seen till the current point in the passing procedure. * A production rule of the form $\Lambda \rightarrow E$ yields only one item $\Lambda \rightarrow \cdot$ * A collection of sets of LR(0) items (the canonical LR(0) collection) is the leaves for constructing SLR passers

To construct the canonical LR(0) collection for a grammar we define * Assignmented grammas * Two functions - closure and goto 2022080915:2 mented Gramman (G') A grammax G with a new production rule , s' -> 5 where S' is the new starting symbol. G' = GU (S'->5) This is done to signal to the parser when the parsing should 5'-75 Stop to announce acceptance of the input. Closuse I is the set of LR(0) items, then closure (I) is the set of items constaucted from I by the two rules 1) Smitially, every LR(0) item in I is added to closure (I). 9 9 A → of BB is in closure (I) and B → Y is a production rule of G then B -> . Y will be un closure (I). to Apply this rule untill no more new LR(0) items can be added to Mosure (I).

In order to construct the Canonical LR(0) Collection of Items and SIR passing table

for the given gramman. $E \to E + T$ $E \to T$ $T \to T \times F$ $F \to id$ The given gramman can be insitten as $E' \to E$ $E \to E + T$ $E \to T$ $F \to (E)$ $F \to id$ In order to construct the Canonical Collection of LR(0) Items for an augmented gramman, G' find closure $(E' \to E)$

State Action Goto b) Find Follow of all the monterminal in the given grammas a) Number the productions in the given grammar. a) Number the productions in the given grammar. b) Find Follow of all the monterminal in the follow of all the monterminal in the given grammar. Follow (G) = $\{4\}$ Follow (L) = $\{=, 4\}$ Follow (R) = $\{4, -2\}$ Action Goto Follow (R) = $\{4, -2\}$ Action Goto Follow (R) = $\{4, -2\}$ Action Goto Follow (R) = $\{4, -2\}$ Number the productions in the given grammar. c) $S \rightarrow L = R$ 2) $S \rightarrow R$ 3) $L \rightarrow *R$	-	1		Actie	ng Tal		oto		I was at sound of all the monterminal
a) Number the productions in the given grammax. 1 Shys 75 R Accept 75 FOLIOW(S) = $\{\$\}$ FOLIOW(L) = $\{=,\$\}$ FOLIOW(R) = $\{\$,=\}$ FOLIOW(R) = $\{\$,=\}$ FOLIOW(R) = $\{\$\}$ FOLIOW(R)	State	1 2	*	id					b) Find Follow of agammas
a) Number the productions in the given grammax. 1 Shys 75 R Accept 75 FOLIOW(S) = $\{\$\}$ FOLIOW(L) = $\{=,\$\}$ FOLIOW(R) = $\{\$,=\}$ FOLIOW(R) = $\{\$,=\}$ FOLIOW(R) = $\{\$\}$ FOLIOW(R)	0	1	54	85			2		mil and dem of
a) Number the productions in the given grammax. 3	1	2.7			Accept				
4 S4 S5 8 7 FOLLOW(R) = $\{\pm, \pm\}$ 5. γ_4 γ_4 γ_5 γ_5 γ_5 γ_5 γ_5 γ_1 γ_2 γ_1 γ_2 γ_3 γ_4 γ_4 γ_5	-	56/15			-			1000	
5. γ_4 γ_4 γ_4 γ_5 γ_6 γ_6 γ_7 γ_8 γ_8 γ_8 γ_9 γ_1 γ_1 γ_2 γ_3 γ_4 γ_5 γ_6 γ_7 γ_8 γ_9 γ_1 γ_1 γ_2 γ_3 γ_4 γ_5 γ_6 γ_7 γ_8 γ_8 γ_9 γ_1 γ_1 γ_2 γ_3 γ_4 γ_5 γ_6 γ_7 γ_8 γ	3	1			Y2		1000		FOLLOW(L) = 9 = \$3
a) Number the productions in the given grammax.) $S \rightarrow L = R$ 2 $S \rightarrow R$		1	54	55			8	7	
a) Number the productions in the given grammas.) $S \rightarrow L = R$ 2) $S \rightarrow R$	5.	74	1		74			No.	+OLLOW (R) = { \$, = }
a) Number the productions in the given grammas.) $S \rightarrow L = R$ 2) $S \rightarrow R$	6		S4	35			8	9	
a) Number the productions in the given grammasi.) $S \rightarrow L = R$ 2 $S \rightarrow R$	7	73			73		2		
a) Number the productions in the given grammos.) $S \rightarrow L = R$ 2 $S \rightarrow R$	8	45			75			7.0	
a) Number the productions in the given grammas.) S -> L = R 2 S -> R	9		15		71	25			
given grammag.) S → L = R 2) S → R	Sections				-	1			

33315 2022081010 47 SLR Paneer

1) Shift/Reduce Conflicts

If a state doesn't know whether it will make a shift operation or reduction for a terminal, we say that there is a shift seduce conflict

a) & Reduce / Reduce Conflicts

If a state doesn't know whether it will make a reduction operation using the production rule it or 'j' for a terminal, then we say that there is reduce /reduce conflict

of the SLR passing table of a grammax Gr has a conflict, then the grammax is not SLR grammax.

CANONICAL LR (CLR) PARSING TABLES

While constructing SLR passing table for the grammar, $S \rightarrow L=R$ $L \rightarrow R$ $L \rightarrow R$ $L \rightarrow R$ $L \rightarrow R$ $L \rightarrow R$

Action [2,=] = 56/915 which leads to essert of conflict. ie The reduction by 5th production is invalid for the input Symbol is '='. Imported to avoid these invalid reductions, it is required to carry more information in the state. Extra information is incorporated into State by redefining items to include teaminal symbol as the second component is [A \rightarrow \alpha \cdot \beta \text{3 where A \rightarrow \alpha \beta a production and 'a' is a terminal of \$. Such an object is called an LR(1) item.

1' refers to length of second component called as lookahead of the item.

1' refers to length of second component called as lookahead of the item.

Here in CLR passes, an item of the form [A \rightarrow \alpha \cdot, a] calls for a reduction by A \rightarrow \alpha \rightarrow \alpha \text{ passes, an item of the form [A \rightarrow \alpha \cdot, a] calls for a reduction by A \rightarrow \alpha \

LR(1) item = LR(0) item + lookahead.

Carrionical collection of Sets of LR(1) items

The construction of the carronical collection of the sets of LR(1) items are limited to the construction of carnonical collection of the sels of LR(6) item except some difference in the goto and closuse function.

Loto If I is a set of LR(1) items and x is a grammar symbol then goto (I,X) is -98 A → d. × Bain I then every item in closure ({A → d x.B.a3}) will be defined as in goto (I,x)

- Every LR(1) item in I is in closure (I).

- If $A \rightarrow \infty$. BB, a in closure (I) and $B \rightarrow Y$ is a production rule of G then B -> . Y, b will be in closure (I) for each terminal 'b' in FIRST (Ba)

> A -> a.8,b FIRST (b) B -> . a, b

8-ya

Features of CLR(1) Pareing Table.

-) No: of States in Canonical LR(1) is increased compared to SLR due to lookaheads.
- a) No: of reduce actions in CLR(1) is reduced so conflicts also get reduced.
- 3) Blank space in the table is increased of hence error detecting capability of CLR parser is also increased.

To reduce the size of CLR(1) passing table, we can marge the states in the LR(1) sets which differs only in look aheads. Thus we go for constructing LALR passing Table.

functions are same	Step	1:	C	LR 1	parce	mg!	g Ta	ble :	for the	300							
with same			ACT	ion		Gio	To		9-	→ R							
	State	=	×	id	4	S	FL	R	The state of the s	-> ×							
t different	0		S#	55		1	2	3	L-	-> 1	id					4 - 33	
in CL(1)	1				Accept					→ 1	100						
	2	56			915				Step	1 (on	elei	ict	The	sel	A	
of for CLR(1) parser,	3				912				LR(1) ite	m	8 0	und	林	mo		
III are same	4		54	\$5		10	8	7	Cons	l'ich	10. O	ais	se,	me	91ge		
d component og ifferent so merge	5	914							Set	Set with common coles step 2: Draw the table with							
	6		SI	S12		The last	10	q	Step 2								
	7	913		The state of					combined states 7								
LALR.	18	915							State	-	ctio	The same of	4		oto	0	
-11	9				911				0	-	Suit	Sen		5	2	3	
	10				915				1			Project 1	Accept			TIE	
12 = I512	11		SII	S12			10	13	2	56		COLUMN S	915				
	12	a			914.				3				912				
13 = I + 13	13		100	-	913		No.		411		property.	S612			810	3.18	
I10 = I810		7						Tay S	512	914		C.	914		810	q	
									713	012	5411	S512	93		810	-	
educe the size of LA	ALRI	sag	sir	ng t	tabl	28.			810				95				
				0					. 9		1	1	811				