:

Project Design Phase-II: Technology Stack (Architecture & Stack)

Date: 22 July 2025

Team ID: LTVIP2025TMID45340

Project Name: Traffic Volume Estimation

Maximum Marks: 4 Marks

Technical Architecture

* Architecture Overview:

The system is designed as a 3-tier architecture (Presentation Layer, Application Layer, Data Layer) deployed on cloud infrastructure (Kubernetes / Cloud Foundry).

- **Users** access the system via Web UI or Mobile App.
- Application layer handles requests, predictions, and API interactions.
- Data layer manages traffic data and model storage in a cloud database.
- Architecture Diagram:
 (I can generate an infographic for this let me know!)
- Table-1: Components & Technologies
- S. Component Description Technology

1	User Interface	Web UI, Mobile App for user interaction	ReactJS, HTML, CSS
2	Application Logic-1	Traffic volume prediction logic	Python (Flask)
3	Application Logic-2	Optional integration of voice assistant	IBM Watson Assistant (if used)
4	Application Logic-3	Alert generation logic	Python
5	Database	Stores user data, traffic data	MySQL / NoSQL (MongoDB)
6	Cloud Database	Managed database service	IBM Cloudant / AWS DynamoDB
7	File Storage	Store model files, logs	IBM Cloud Object Storage / AWS S3
8	External API-1	Weather data for model	IBM Weather API / OpenWeatherMap
9	External API-2	Optional location verification	Google Maps API
10	Machine Learning Model	Predict traffic volume	Random Forest / XGBoost regression model
11	Infrastructure	Cloud deployment	IBM Cloud Kubernetes / AWS Elastic Kubernetes / Cloud Foundry

Table-2: Application Characteristics

S.	Characteristic	Description	Technology
No	9		

1	Open-Source Frameworks	ReactJS, Flask, Scikit-Learn	ReactJS, Flask, Scikit-Learn
2	Security Implementation s	SHA-256 password hashing, HTTPS, IAM roles, OWASP guidelines	SHA-256, SSL/TLS, IAM
3	Scalable Architecture	Microservices, Kubernetes orchestration	Kubernetes, Docker
4	Availability	Load balancer, distributed servers	NGINX Load Balancer, Cloud Foundry
5	Performance	Caching, CDN for UI, model optimized for latency	Redis cache, CloudFront CDN