Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 154.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E

657.15
657.14
657.10
657.09
0 20 40 60 80 100 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 6.46, tilsynelatende blå størrelseklass $m_B = 9.10$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 12.86, tilsynelatende blå størrelseklass $m_B = 15.50$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=6.46,$ tilsynelatende

blå størrelseklass m_B = 8.10

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 12.86, tilsynelatende blå størrelseklass $m_B = 14.50$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.03 og store halvakse a=0.65 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.03 og store halvakse a=9.32 AU.

Filen 1F.txt

Ved bølgelengden 658.48 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 12.40 Tilsynelatende størrelsklasse m_V 12.20 12.00 11.80 11.60 20 40 60 120 Ó 80 100 140 160 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 37.00 solmasser, temperatur på 15.50 Kelvin og tetthet 1.56e-20 kg per kubikkmeter

Gass-sky B har masse på 14.00 solmasser, temperatur på 21.40 Kelvin og tetthet 9.05e-21 kg per kubikkmeter

Gass-sky C har masse på 4.60 solmasser, temperatur på 24.90 Kelvin og

tetthet 1.16e-21 kg per kubikkmeter

Gass-sky D har masse på 11.20 solmasser, temperatur på 31.90 Kelvin og tetthet 2.94e-21 kg per kubikkmeter

Gass-sky E har masse på 14.40 solmasser, temperatur på 51.50 Kelvin og tetthet 9.27e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE B) stjernas energi kommer fra Planck-stråling alene

STJERNE C) kjernen består av karbon og oksygen og er degenerert

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse B9 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 8.52

Stjerne B har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 8.30

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 6.46

Stjerne D har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 1.00

Stjerne E har spektralklasse G9 og visuell tilsynelatende størrelseklasse m_V = 9.43

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.811999999999994404476 AU.

Tangensiell hastighet er 44769.983566798735409975 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.658 AU.

Kometens avstand fra jorda i punkt 2 er r2=7.890 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=21.532.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9504 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00084 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=570.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9968 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 510.30 nm.

Filen 4A.txt

Stjernas masse er 5.78 solmasser.

Stjernas radius er 0.82 solradier.

Filen 4C.png

Figur 4C 1.8000 1.6500 1.5000 Sannsynlighetstetthet i 10⁻⁴ % 1.3500 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 500 -1000 -250 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 13.74 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.49 solmasser.

r-koordinaten til det innerste romskipet er
r $=13.75~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=20.28~\mathrm{km}.$