HENRI F. DRAKE

32 Mercer St, Princeton, NJ 08540 (+1) 415 244 8829 \diamond henrifdrake@gmail.com

EDUCATION

MIT/WHOI Joint Program in Oceanography PhD in Physical Oceanography Haverford College B.S. in Mathematics (Honors); Magna Cum Laude AWARDS NOAA Climate and Global Change Postdoctoral Fellowship National Science Foundation Graduate Research Fellowship 2021 - present NIT Rosenblith Presidential Fellowship 2017 - 2020 MIT Rosenblith Presidential Fellowship 2016 - 2017

Postdoctoral Fellow, NOAA Climate & Global Change Program

2021 - present

Hosted by Sonya Legg (Princeton University and NOAA GFDL)

- Developing parameterizations of abyssal mixing layer turbulence for use in next-generation general circulation ocean and climate models.
- Assessing the impact of deep ocean mixing and abyssal mixing layer parameterizations on the large-scale abyssal overturning circulation and global climate.

Graduate Research Assistant, MIT/WHOI Joint Program in Oceanography 2016 - 2021 Advised by Raffaele Ferrari (MIT)

- Interpreted enigmatic twenty-year old observations and informed the practical planning of an upcoming observational field campaign by developing a quasi-realistic high-resolution simulation of the Brazil Basin Tracer Release Experiment and proposing improved physics-based diagnostics.
- United several independent decades-long research tracks into a unified conceptual model of the abyssal circulation, using novel theoretical and numerical ocean circulation models.
- Developed a simple and user-friendly climate-economic model for use in climate education / out-reach and for research on the role of scientific uncertainty in climate policy analysis.
- Evaluated the skill of climate projections by analyzing output from hundreds of simulations submitted to the Coupled Model Intercomparison Projects (CMIPs).

Research Specialist in Physical Oceanography, Princeton University 2015 - 2016 Advised by Jorge Sarmiento (Princeton University) and Stephen Griffies (GFDL)

- Simulated millions of Lagrangian particle trajectories in a high-resolution model of the Southern Ocean and analyzed the spatial and temporal pathways of deep ocean upwelling.

Summer Research Assistant in Topology, Haverford College	2014
Summer Research Assistant in Quantum Computing, University of Southern California	2013
Summer Research Assistant in Environmental Engineering, Clarkson University	2012

RESEARCH PUBLICATIONS

In preparation

- Drake, H. F. Legg, S. Parameterization of Bottom Mixing Layer Instabilities
- Drake, H. F. Pratt, L. Hydraulic control of rotating and stratified channel flow with non-zero potential vorticity

Submitted / Under Review

- Drake, H. F., Ruan, X., Ferrari, R. Diapycnal motion, diffusion, and stretching of tracers in the ocean. *Journal of Physical Oceanography*. [Preprint]
- Drake, H. F., Ruan, X., Callies, J., Ogden, K., Thurnherr, A., Ferrari, R. **Dynamics of eddying abyssal mixing layers over rough topography**. *Journal of Physical Oceanography*. [Preprint]
- Drake, H. F., Henderson, G. A defense of usable climate mitigation science: how science can contribute to social movements. *Climate Change*.

2021

- 7. Brady, R. X., Maltrud, M. E., Wolfram, P. J., Drake, H. F., Lovenduski, N. C. The influence of ocean topography on the upwelling of carbon in the Southern Ocean. *Geophysical Research Letters*. [doi] [Preprint]
- 6. Drake, H. F., Rivest, R. L., Deutch, J., Edelman, A. A simple model for assessing climate control trade-offs and responding to unanticipated climate outcomes. *Environmental Research Letters*. [doi]

2020

- 5. Drake, H. F., Ferrari, R., Callies, J. Abyssal circulation driven by near-boundary mixing: water mass transformations and interior stratification. *Journal of Physical Oceanography*. [doi].
- 4. Hausfather, Z., Drake, H. F., Abbott, T., Schmidt, G. A. Evaluating the performance of past climate model projections. *Geophysical Research Letters*, 46. [doi]

2018

- 3. Drake, H. F., Morrison, A. K., Griffies, S. M., Sarmiento, J. L., Weijer, W., Gray, A. R. (2018). Lagrangian timescales of Southern Ocean upwelling in a hierarchy of model resolutions. *Geophysical Research Letters*, 45. [doi] [Read online]
- 2. van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Yu Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Adame, C. G. M., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., Zika, J. D. (2018). Lagrangian ocean analysis: fundamentals and practices. *Ocean modeling*, 121, 49-75. [doi] [Download PDF]

2017

1. Tamsitt, V., Drake, H. F., Morrison, A. K., Talley, L. D., Dufour, C. A., Gray, A. R., Griffies, S. M., Mazloff, M. R., Sarmiento, J. L., Wang, J., Weijer, W. (2017). **Spiraling up: pathways of global deep water to the surface of the Southern Ocean.** Nature Communications, 8, 172. [doi] [Download PDF]

OTHER PUBLICATIONS

Freilich, M., Wilka, C., Shivamoggi, R., Freese, L., Heiderich, J., Drake, H. F., Cantine, M. (2019). Young Climate Scientists Speak Out. Special Climate Crisis Issue of DigBoston [url]

Drake, H. F. (2019). Eight ways to support women in science. EOS [doi] [Download PDF]

TEACHING EXPERIENCE

Co-Instructor (2020) for *Introduction to Computational Thinking* (six lectures) [MIT 18.S191 course website]. Developed a flipped-classroom curriculum for introducing undergraduate Computer Science and Math majors to climate modeling through *reactive* notebooks in the Julia programming language.

Organizer and Instructor (2020) for Practical Computing Tutorials for Earth Scientists (PraCTES) [course website], a student-led January-term workshop for MIT EAPS and MIT/WHOI students. Responsibilities included curriculum design, development of live code tutorials (via binder), assisting other instructors during live hands-one exercises, and presenting two 2 hour lectures.

Teaching Assistant (2019) for Climate Change [MIT 6.S898 course website], a project-based climate change seminar course cross-listed in the Computer Science and Earth, Atmospheric, and Planetary Sciences departments. Responsibilities included curriculum design, helping students with final projects, leading discussions of assigned readings, and presenting 3 hours of lectures on climate models and data analysis.

Guest lecturer (2019) (1.5 hour session) for graduate-level physical oceanography course at University of Rhode Island Graduate School of Oceanography. Mixed blackboard-powerpoint lecture on abyssal ocean circulation.

Guest Lecturer (2020) (1 hour session) for *Dimensions of Geoengineering* [MIT course 12.884[J]]. Interactive ClimateMARGO.jl demo exploring trade-offs between emissions mitigation, carbon dioxide removal, solar geoengineering, and adaptation.

Lecturer (2017-2019) (four 1.5 hour sessions) for *MIT/WHOI Summer Math Review* for incoming graduate students. Blackboard refresher of linear Algebra, ODEs, and PDEs.

MENTORING AND ADVISING

Research Advising

Undergraduate researchers (3): Kaila Uyeda (Haverford College) and two upcoming in Summer 2022.

Career and Peer Mentoring

Peer mentor for MIT/WHOI Joint Program PhD students (4) (2018-2020)

Mentor for WHOI Summer Student Fellow (2020)

Graduate Residential Advisor for MIT undergraduates in Maseeh Hall (2020-2021)

LEADERSHIP AND SERVICE

Seminar series, conferences, and workshops

Virtual Session Convener (2022), Ocean Sciences Meeting.

Co-Organizer (2020-2021), MIT EAPS Student Seminar.

Co-Organizer (2020-2021), MIT PAOC Sack Lunch Seminar (SLS).

Executive Committee Co-Chair (2019), Graduate Climate Conference.

Executive Committee Member (2017, 2020), Graduate Climate Conference [url].

Accessibility, Justice, Equity, Diversity, Inclusion (AJEDI)

Committee member (2022), NOAA GFDL Diversity, Equity, and Inclusion Committee
Participant (2022), MIT Seminar on Racism, Colonialism, and Extraction in the Geosciences
Pod co-leader [url] (spring 2021), MIT EAPS' Unlearning Racism in Geoscience (URGE) pod
Web developer [url] (2020-2021), Towards Inclusion and Diversity in EAPS (TIDE).

DEI Scorecard [url] maintainer (2020-2021), Towards Inclusion and Diversity in EAPS (TIDE).

Executive Committee Member (2018), Society for Women in Marine Sciences Annual Symposium.

Departmental Leadership and Administrative roles

MIT/WHOI Joint Program Representative (2020-2021), MIT Graduate Student Council. Student Representative for Physical Oceanography (2019-2020), MIT/WHOI Joint Program.

Community Building

Co-Organizer of the *ClimateGrad* Slack workspace for 500+ early-career researchers in climate to support each other and network throughout the SARS-Cov-2 pandemic (2020-2022).

Peer review

Nature (1), Geophysical Research Letters (1), Journal of Physical Oceanography (1), Journal of Geophysical Research: Oceans (4), Ocean Sciences (1), Geoscientific Model Development (1), Climatic Change (1).

OUTREACH

K-12 Outreach

- Active participant of Skype-a-Scientist program with over 15 virtual classroom visits (2016–2020).
- Ocean Currents virtual lecture and discussion with several classrooms of 5th-8th grade students via Exploring By The Seat Of Your Pants [Youtube Recording] (2018)
- Rotating-tank fluid demonstrations at MIT Museum Girls Day event (2017, 2018, 2019).
- Rotating tank "Nor'Easter" demonstration for Science Club at Boston International School (2017).

General Audience Lectures

- Climate modeling: Whence, What, and Why lecture for MIT EAPS administrative staff (2019)
- Warming Oceans and Sea Level Rise lecture at Science in the News DayCon symposium, open to local residents of Cambridge & Sommerville, MA (2017, twice).

Online Science Communication

- Interactive web application (margo.plutojl.org) introducing the concept of climate change using my simple climate-economic model, hosted using Pluto.jl's novel reactive notebook framework.
- Active climate science communicator on Twitter (@henrifdrake), 3500+ followers (deactivated 2021).
- Founder of Climate Gamers, an educational program that used computer games to communicate climate science to the public (see article in The Verge).

FIELD WORK

October 2021 Bottom Layer Turbulence and Abyssal Recipes (Leg #2)

(39 day cruise on RRS Discovery, DY138)

The project goal is to quantify the deep bottom boundary layer flows along the continental slope of the Rockall Trough (off the west coast of Ireland), using a combination of ship-based casts, anchored mooring arrays, free-falling profilers, and inert tracer & dye injections to infer turbulent fluxes. I contributed estimates of turbulence from ship-board CTD and LADCP data using various fine-structure parameterizations. The diapycnal transport inferred from the released dyes and tracer will be used to test theoretical predictions from my PhD.

June 2018 MIT-WHOI Joint Program Orientation

(10 days on R/V Corwith Cramer)

Conducted hydrographic and biological surveys of the shelf break jet south of Cape Cod and a warm core eddy on the northern flank of the Gulf Stream.

INVITED TALKS

University of Rhole Island, Graduate School of Oceanography Upcoming Bottom boundary layer control on the abyssal overturning circulation Oregon State University, Physics of Oceans and Atmospheres Upcoming Bottom boundary layer control on the abyssal overturning circulation Princeton University, Atmospheric and Oceanic Sciences' Climate Seminar 03/14/2022 Climate Mitigation Modelling: Whence, Whither, Why? University of California, Irvine, Department of Earth System Science 03/07/2022 The little eddies that could: control of global climate by deep ocean turbulence. Dartmouth College, Ice+Climate Seminar 02/04/2022 Mixing-Driven Upwelling of Antarctic Bottom Water: Bottom Boundary Laver and Basin-Scale Dynamics University of Liege, GeoHydrodynamics and Environment Research 12/05/2021 Bottom boundary layer control on the abyssal overturning circulation Johns Hopkins University, Atmospheres and Oceans 03/31/2021 Bottom boundary layer control on the abyssal overturning circulation: basin and

submeso-scale dynamics
University of Washington, School of Oceanography

02/24/2021

Bottom boundary layer control on the abyssal overturning circulation: basin and submeso-scale dynamics

Princeton University and the Geophysical Fluid Dynamics Laboratory (GFDL) 02/01/2021 Bottom boundary layer control on the abyssal overturning circulation: global and regional-scale dynamics

SELECTED PRESENTATIONS

Drake, H. F., Ruan, X., Ferrari, R. (2022). Diapycnal motion, diffusion, and shear dispersion of tracers in the ocean. Ocean Sciences Meeting, Virtual. [TALK]

Drake, H. F., Deutch, J. M., Edelman, A., Rivest, R. (2020). A simple policy process for responding to climate control shortfalls and climate surprises *American Geophysical Union Fall Meeting* [POSTER]

Drake, H. F., Hausfather, Z., Abbott, T., Schmidt, G. (2019). How accurate have climate models been so far? *Graduate Climate Conference*, Woods Hole, MA. [POSTER]

Drake, H. F., Callies, J., Ferrari, R. (2019). Circulation and stratification of an abyssal ocean controlled by bottom boundary mixing. Atmospheric and Oceanic Fluid Dynamics (AOFD) Conference, Portland, ME. [POSTER]

Drake, H. F., Callies, J., Ferrari, R. (2018). Impact of Mixing Layer Flows on the Abyssal Circulation and Stratification. Workshop on Bottom Boundary Layer Turbulence and the Ocean Overturning Circulation, Massachusetts Institute of Technology, MA. [TALK]

Drake, H. F., Callies, J., Ferrari, R. (2018). **Boundary Mixing Forcing Abyssal Overturning**. Gordon Research Conference on Ocean Mixing, Hannover, NH. [POSTER]

Drake, H. F., Callies, J., Ferrari, R. (2018). **Testing a New Paradigm for the Abyssal Ocean** Circulation. *Ocean Sciences Meeting*, Portland, OR. [TALK]

Drake, H. F., Tamsitt, V., Morrison, A. K., Sarmiento, J. L., Griffies, S. M., Weijer, W., Gray, A. R., Talley, L., Wang, J., Mazzlof, M., Dufour, C. (2016). **Three-Dimensional Pathways of Deep Water Upwelling in the Southern Ocean**. Southern Ocean Carbon and Climate Observations and modeling (SOCCOM) Annual Meeting, Scripps Institution of Oceanography, CA. [TALK]

Drake, H. F., Morrison, A. K., Sarmiento, J. L., Griffies, S. M., Weijer, W., Gray, A. R., Dufour, C. (2016). Lagrangian Upwelling Pathways of Deep Waters in the Southern Ocean. *Ocean Sciences Meeting*, New Orleans, LA. [POSTER]

REFERENCES

Raffaele Ferrari Massachusetts Institute of Technology raffaele@mit.edu

Sonya Legg Princeton University slegg@princeton.edu

Kurt Polzin Woods Hole Oceanographic Institution kpolzin@whoi.edu

Andrew Thompson Caltech andrewt@caltech.edu