Nutrient dynamics in nested catchments at nested time scales:

Trends from 1st and 2nd order watersheds in the seasonally dry Southern Amazon

Mark S Johnson (Cornell University) msj8@cornell.edu

Eduardo Guimarães Couto (UFMT)
Johannes Lehmann (Cornell University)
Susan J Riha (Cornell University)

10th LBA-ECO Science Team Meeting, Brasilia October 4, 2006

Thematic research area

Terrestrial-aquatic interface

Watershed Hydrology

Biogeochemistry

Site Description

IKONOS Panchromatic Image (Courtesy EOS-Webster)

Decreasing DOC with soil depth

Increasing DOC with stream distance

DOC

Throughfall: $13.8 \pm 1.5 \text{ mg L}^{-1}$ (N=187

Groundwater: **1.4** ±0.2 mg L⁻¹ (N=64 (piezometers)

Springs: **0.5** ±0.03 mg L⁻¹ (N=172) (grab samples)

2.3 ±0.1 mg L⁻¹ (N=311) (grab samples, 50m from spring)

 $3.7 \pm 0.3 \text{ mg L}^{-1} \text{ (N=75)}$ (grab samples, 2500m from spring)

Johnson et al., Hydrological Processes, Biogeochemistry

Soil CO₂ profile

Atmospheric CO₂ (~400 ppm = 0.04%)

CO₂ Fluxo do sistema terrestre à aquática

Soil CO₂ responds at seasonal scale

Data is mean of two profiles

CO₂ dyamics in deep soil profile

Cations in streamwater inversely related to discharge (and to soil CO₂)

Aggregating and disaggregating the data

- surface water at nested spatial scales
- water quality parameters at various temporal scales

What are the interactions and trends?

In-stream processes at baseflow: C cycle

	Groundwater springs	1 st order streams	2 nd order stream
pH	4.65 ± 0.02 (142)	6.05 ± 0.03 (296)	6.41 ± 0.06 (61)
CO ₂ -C(aq) (mg L ⁻¹)	20.65 ± 0.61 (52)	2.58 ± 0.16 (85)	2.50 ± 0.20 (21)
HCO ₃ ⁻ -C (mg L ⁻¹)	1.47 ± 0.06 (144)	4.13 ± 0.29 (237)	6.00 ± 0.31 (57)
DOC (mg L ⁻¹)	0.48 ± 0.03 (172)	2.25 ± 0.14 (311)	3.72 ± 0.28 (75)

mean ± 1 SE
(N=number of samples)

In-stream processes at baseflow

	Groundwater springs	1 st order streams	2 nd order stream
EC (μS cm ⁻¹)	18.74 ± 1.04 (164)	48.83 ± 1.65 (298)	72.28 ± 3.54 (67)
Na (mg L ⁻¹)	0.93 ± 0.04 (136)	2.21 ± 0.08 (236)	4.53 ± 0.47 (57)
K (mg L ⁻¹)	1.51 ± 0.03 (133)	2.51 ± 0.09 (236)	4.87 ± 0.65 (57)
Mg (mg L ⁻¹)	0.59 ± 0.02 (134)	1.30 ± 0.04 (236)	2.97 ± 0.29 (57)
Ca (mg L ⁻¹)	0.46 ± 0.03 (134)	2.01 ± 0.08 (236)	4.40 ± 0.35 (57)
SiO ₂ (mg L ⁻¹)	6.01 ± 0.34 (127)	16.82 ± 0.66 (213)	26.79 ± 1.59 (51)

mean ± 1 SE (N=number of samples)

Data exploration in CHAID

(Chi-squared Automatic Interaction Detection)

 Useful for swimming through data at multiple and/or nested spatial and temporal scales

CHAID analysis:

Biogeochemical cycles with significant biogenic component

- More strongly seasondependent than location-dependent
- Similar seasonal patterns exhibited
- only DOC and K
 positively related to
 discharge in storm flow

mean ± 1SE of n=5 streams (1st and 2nd order pooled)

CHAID analysis:

Biogeochemical cycles with predominantly geogenic component

- More strongly differs between locations rather than between seasons
- Higher concentrations for Ultisol than Oxisol in 1st order streams
- Concentrations increase longitudinally
 - 2nd order > 1st order
 streams > groundwater
 springs (not shown)

Summary

- Soil and vegetative processes linked to watershed fluxes
 - DOC mineralization + root respiration = CO₂ production and export
 - associated with seasonal trends in cation exports
- Transformations within streams occur at different spatial and temporal scales
 - CHAID useful for "investigating" data
 - Nutrient cycles with biogenic component varied by season
 - Other nutrients showed differences by soil type and stream order

Agradecimentos

EXPOSITION OF ESCALA DA BIOSFERA ANOGREGA HA MANGO

- MCT pela liderança do LBA
 - equipe de LBA (no Brasil e nos EUA)
- Rohden Lígnea Ltda.
 - Apolinário Stuhler e todos os funcionários colaboradores
- Equipe do campo
 - Benedito Silveira de A.
 - Elielton A. da Souza
- O povo Juruenense

Thank you!

Questions?

Extra slides

Stream Flow Response to Storms

