

Enunciat de la pràctica de laboratori

Muntatge d'un microcontrolador sobre protoboard

Muntatge d'un microcontrolador sobre protoboard

L'objectiu d'aquesta pràctica és el muntatge complet d'un sistema microcontrolador senzill. El circuit resultant haurà d'encendre un indicador connectat a un pin d'un port de sortida (PORT**B**) en funció de l'estat del pin d'un port d'entrada (PORT**A**). A més, pel PORT**C** generarem un senyal digital periòdic.

L'esquema del circuit es mostra en la figura 1.

Figura 1

S'utilitzarà el micro PIC18F45K22 i el circuit s'implementarà sobre una placa protoboard com la que vau fer servir a la sessió de Fonaments d'Electrònica. Per recordar els detalls del funcionament del protoboard, podeu revisar de nou el document que us vam proporcionar a Atenea: "EL PROTOBOARD.PPS".

El *protoboard*, els components, els cables i les eines necessàries estaran disponibles al laboratori. També disposareu de font

d'alimentació i oscil·loscopi pel correcte desenvolupament de la pràctica. Figura 2

En acabar la pràctica l'alumne serà capaç de:

- Implementar un sistema microcontrolador a partir del xip i els components discretsnecessaris.
- Utilitzar correctament la font d'alimentació i els equips d'instrumentació.
- Utilitzar correctament les eines de desenvolupament per a la generació de *firmware*.
 Utilitzar correctament un programador de dispositius lògics programables per a gravar el *firmware* sobre la memòria de programa del micro.

El codi amb el que programarem el micro es mostra a continuació:

```
; RESET and INTERRUPT VECTORS
; Reset Vector
goto Start
;-----
; CODE SEGMENT
PGM
   code
Start
   MOVLB 0x0F ;Triem els bank 0F on hi ha els SFR CLRF ANSELA,1 ;Posem el PORTA en Digital
   CLRF ANSELB,1 ;Posem el PORTB en Digital
CLRF ANSELC,1 ;Posem el PORTC en Digital
   SETF TRISA,1 ; PORTA INPUT
   CLRF TRISB,1 ;PORTB OUTPUT
CLRF TRISC,1 ;PORTC OUTPUT
CLRF PORTC,1 ;PORTC INIT a
             ; PORTC INIT a 0
Loop
   INCF PORTC, 1
             ;Incrementar el registre associat a PORTC
   MOVF PORTA, 0, 1;W=PORTA
MOVWF PORTB, 1
             ; PORTB=W
goto Loop
```

END

Treball previ

(temps aproximat: 3 hores)

- Entendre el funcionament del circuit a partir de l'esquema electrònic, així com el codi lliurat.
- Implementar el circuit de la Figura 1 sobre Proteus.
- Ensamblar el programa usant Proteus.
- Simular el funcionament del circuit sobre Proteus. Usar el *debugger* i comprovar que el contingut dels registres involucrats al programa s'actualitza correctament.
- Introduir un oscil·loscopi virtual en el disseny Proteus i connectar-hi un canal al pin 0 del PORTC. Mesurar la freqüència del senyal generat, així com la duració dels 2 semiperíodes. Comprovar si el senyal és simètric o no i justificar-ho a partir del codi.

En un senyal digital periòdic, els semiperíodes son els espais de temps dins del període en què el senyal està a 0 o a 1, tal com es veu a la figura 3. Si el semiperíode de 0 té la mateixa duració que el semiperíode de 1, es diu que el senyal és simètric.

- Revisar el document explicatiu del protoboard: "EL PROTOBOARD.PPS"
- Estudiar el document explicatiu del procediment de programació dels PIC: "Programar 18F45K22 amb OLIMEX Proteus.pdf"
- Contesteu les preguntes del Full d'Entrega que trobareu al final d'aquest document.

<u>Entregueu el projecte Proteus (fitxer amb extensió .pdsprj) pel Racó, abans de la vostra sessió de pràctiques</u>. Per a garantir compatibilitats de versions, us suggerim que treballeu directament amb el Proteus instal·lat als ordinadors de la FIB, o bé assegureuvos que treballeu amb la mateixa versió que hi ha als laboratoris: v8.4 SPO.

Treball a realitzar al laboratori

• A l'inici de classe lliurar el Full d'Entrega al professor (el teniu al final d'aquest document).

- A l'inici de la classe demostrar al professor la pràctica funcionant sobre el simulador.
- Implementació física del circuit sobre *protoboard*. Cal afegir al circuit físic el cablejat necessari per a poder programar-lo 'in circuit' amb el dispositiu de programació OLIMEX. La figura 4 ens mostra l'esquema complet del circuit que heu de muntar. La tensió d'alimentació V_{CC} l'obtindrem d'una font d'alimentació. Haurem d'ajustar la font per a que ens doni una tensió de **5 Volts**.

NO ENGEGUEU LA FONT D'ALIMENTACIÓ FINS QUE EL PROFESSOR US DONI EL VIST-I-PLAU!

Figura 4

A part del circuit que veiem a la figura 4, hem de fer les connexions necessàries amb els pins d'alimentació del PIC. El Proteus no ens mostra els diferents pins d'alimentació del micro, però son els següents:

- Pins 11 i 32: tots dos s'han de connectar a V_{CC} (és la tensió positiva d'alimentació; també es pot anomenar V_{DD}). Normalment, fem les seves connexions amb cables de color vermell.
- Pins 12 i 31: tots dos s'han de connectar a GND (és la referència de 0 Volts d'alimentació, o GROUND; també es pot anomenar V_{ss}).

Normalment, farem les seves connexions amb cables de **color negre**.

- Ensamblar el programa usant Proteus.
- Gravació del firmware en la flash del micro 'in-circuit' usant el programa MPLAB
 IPE v3.55 (Integrated Programming Environment) i el dispositiu programador
 OLIMEX.
- Execució del programa i funcionament del circuit de forma autònoma sobre protoboard.
- Comprovació dels senyals d'E/S usant l'oscil·loscopi.

Nota important sobre el muntatge:

Cal ser extremadament cuidadós amb les connexions dels diferents pins d'alimentació.

Una tensió incorrecta, o connectar l'alimentació al revés pot causar la destrucció dels components !!!

Figura 5 – Disposició física dels pins al PIC18F45K22

Recordeu que la disposició dels pins físicament en el microcontrolador no te per què coincidir amb la disposició dels mateixos en l'esquemàtic de Proteus.

Full d'entrega

Muntatge d'un micro sobre protoboard. TREBALL PREVI.

Nom:	_ Grup:
1) A quina escala (i.e. volts/div) heu ajustat l'amplitud di visualitzeu el senyal (PORTC) en l'oscil·loscopi?	lel canal en què
5V	
2) A quina base de temps (i.e. temps/div) heu ajustat l'o una bona resolució per mesurar el període al pin C0?	oscil·loscopi per a tenir
5μs	
3) Quina és la freqüència del senyal generat al pin C0?	
$f = 1/T = 1/48 \ \mu s = 20 \ 833,33 \ Hz$	
4) Mesura la freqüència per la resta de pins del PORTC	· ·
C1 -> f = $1/T = 1 / 95 \mu s = 10 526,31$	
Hz C2 -> $f = 1/T = 1 / 190 \mu s = 5$	
$263,16 \text{ Hz C} 3 \rightarrow f = 1/T = 1/375 \mu s =$	
$2666,67HzC4 \rightarrow f = 1/T = 1/765\mu s$	
= $1307,19$ Hz C5 -> $f = 1/T = 1/1,52$	
ms = 657,89 Hz C6 -> f = 1/T = 1 /	
3.04 ms = 328.95 Hz C7 -> f = 1/T = 1	

5) Quina funció està fent el PORTC en aquest codi?

Fa de contador

/ 6,125 ms = 163,27 Hz

6) Com modificaríeu el projecte si volguéssiu invertir el funcionament del led (apagat amb el botó premut i encès quan el botó no ho estigui). Proposeu tres solucions, dues per hardware, modificant el connexionat dels components de la Figura 1 (dibuixeu l'esquema) i l'altre per software, tot mantenint l'esquema de l'enunciat (escriviu el codi).

Moficiació per hardware 1:

Modificació per hardware 2:

Modificació per software:


```
; DEFINITIONS
#include p18f44k22.inc
                    ; Include register definition file
   CONFIG FOSC = INTIO67; Use Internal Oscillator
; RESET and INTERRUPT VECTORS
<u>; -----</u>
   ; Reset Vector
RST code 0x0
   goto Start
PGM
   code
Start
   MOVLB 0x0F ; Triem els bank 0F on hi ha els SFR
   CLRF ANSELA,1 ; Posem el PORTA en Digital
   CLRF ANSELB,1 ; Posem el PORTB en Digital
   CLRF ANSELC,1 ;Posem el PORTC en Digital
   SETF TRISA,1 ; PORTA INPUT
   CLRF TRISB,1 ; PORTB OUTPUT
   CLRF TRISC,1 ; PORTC OUTPUT
   CLRF PORTC,1; PORTC INIT a 0
   CLRF PORTB, 1
Loop
   INCF PORTC, 1 ; Incrementar el registre associat a PORTC
   COMF PORTA, 0, 1
   MOVWF PORTB, 1 ; PORTB=W
   goto Loop
END
```

