DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2011**

MSc and EEE PART IV: MEng and ACGI

ESTIMATION AND FAULT DETECTION

Friday, 20 May 10:00 am

Corrected Copy

Time allowed: 3:00 hours

There are FIVE questions on this paper.

Answer FOUR questions.

11.15) Q3 P4.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

R.B. Vinter

Second Marker(s): D. Angeli

Information for candidates:

Some formulae relevant to the questions.

The normal $N(m, \sigma^2)$ density:

$$N(m,\sigma^2)(y) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(y-m)^2}{2\sigma^2}
ight)$$

System equations:

$$x_k = Fx_{k-1} + u^s + w_k$$

$$y_k = Hx_k + u^o + v_k.$$

Here, w_k and v_k are white noise sequences with covariances Q^s and Q^0 respectively.

The Kalman filter equations are

$$\begin{split} P_{k|k-1} &= F P_{k-1} F^T + Q^s \\ P_k &= P_{k|k-1} - P_{k|k-1} H^T (H P_{k|k-1} H^T + Q^o)^{-1} H P_{k|k-1} \,, \\ K_k &= P_{k|k-1} H^T (H P_{k|k-1} H^T + Q^o)^{-1} \,, \\ \hat{x}_k &= \hat{x}_{k|k-1} + K_k (y_k - \hat{y}_{k|k-1}) \,, \\ \text{in which } \hat{x}_{k|k-1} &= F \hat{x}_{k-1} + u^s \ \text{and} \ \hat{y}_{k|k-1} &= H \hat{x}_{k|k-1} + u^o \end{split}$$

1. (i) A stationary, scalar, zero-mean stochastic process y_k is described by the state space equations:

$$\begin{cases} \mathbf{x}_k = F\mathbf{x}_{k-1} + \mathbf{w}_k \\ y_k = \mathbf{c}^T \mathbf{x}_k \end{cases}, \tag{1}$$

in which c is a given n-vector, F is a given $n \times n$ matrix, and \mathbf{w}_k is a white noise process, with covariance Q. Derive equations for the covariance function of y_k ,

$$R_y(l) = E[y_k y_{k-l}]$$
 for $l = \dots, -1, 0, 1, \dots; , ,$

in terms of the Lyapunov equation for the state equation.

(ii) The populations of two species, $x^1(t)$ and $x^2(t)$, in a bioreactor have different death rates but the same random food supply. The total population is denoted by y(t). The processes $x^1(t)$, $x^2(t)$ and y(t) are assumed to satisfy the following continuous time model

$$\begin{cases} dx^{1}(t)/dt = -\alpha_{1}x^{1}(t) + w(t) \\ dx^{2}(t)/dt = -\alpha_{2}x^{2}(t) + w(t) \\ y(t) = x^{1}(t) + x^{2}(t) \end{cases}$$

in which α_1 and α_2 are given positive constants and w(t) is continuous time white noise with covariance function $r_w(\tau) = 1 \times \delta(\tau)$.

Measurements y_k are taken of y(t) at times t = kh, $k = \ldots, -1, 0, +1, \ldots$, thus:

$$y_k = y(kh).$$

Here, the sample period h is a given positive constant.

Show that y_k satisfies the state space equations (1), and determine the values taken by F, c and Q in this case. [8]

Determine the covariance function $R_y(k)$ of the measurement process y_k for k=0 and 1. [4]

Explain why $R_y(0)$ does not depend on the sampling period h. [2]

[6]

2. (i): A measurement y is made of a scalar random variable x. The measurement y is a vector random variable model as

$$y = xd + v,$$

in which d is a given vector, and x and v are independent random variables with probability densities $x \sim \mathcal{N}(m, p_0)$ and $\mathbf{v} \sim \mathcal{N}(0, Q)$.

By applying Bayes' Rule, or otherwise, show that the least squares estimate \hat{x} of x given y and the error variance p satisfy

$$p^{-1} \; = \; p_0^{-1} + \mathbf{d}^T Q^{-1} \mathbf{d} \qquad \text{and} \qquad \hat{x} \; = \; m + \frac{1}{\mathbf{d}^T Q^{-1} \mathbf{d} + p_0^{-1}} \mathbf{d}^T Q^{-1} \left[\mathbf{y} - m \mathbf{d} \right] \; .$$

(Hint: Show that [12]

$$p(x|y) = (\ldots) \exp \left\{ -\frac{1}{2} \left(p^{-1}x^2 - 2p^{-1}\hat{x}x + (\ldots) \right) \right\}$$

where (...) denotes terms depending only on y.)

(ii): A cheap sensor, whose accuracy deteriorates as time passes, provides measurements y_1, \ldots, y_N of a scalar random variable x at successive times. It is assumed that

$$y_k = x + v_k ,$$

 $k=1,\ldots,N$, in which the v_k 's are random variables. x and v_1,\ldots,v_N are independent with $x\sim \mathcal{N}(m,p_0)$ and $v_k\sim \mathcal{N}(0,q_k)$ for each k. Here $p_0>0$ and q_1,\ldots,q_N is an increasing sequence of numbers.

By using the results of Part (i), or otherwise, show that the least squares estimate \hat{x} of x given y_1, \ldots, y_N is

$$\hat{x} = m + \left(p_0^{-1} + \sum_{i=k}^{N} q_k^{-1}\right)^{-1} \sum_{k=1}^{N} q_k^{-1} (y_k - m)$$

What is the error variance q_N , based on N measurements?

[4] [2]

[2]

Now assume that $p_0 = 1$ and $\sqrt{q_k} = k$ for k = 1, 2, ... Show that the error variance cannot be less than 2.64^{-1} , however many measurements are taken.

(You can use the fact that $\sum_{k=0}^{\infty} 1/k^2 \approx 1.64$)

3. A sensor generates measurements $\mathbf{y}_1, \mathbf{y}_2, \ldots$ of a signal $\mathbf{x}(t)$ at times t = kh, $k = 1, 2, \ldots$, in which h is the sample period. The measurements \mathbf{y}_k are related to the sampled states $\mathbf{x}_k = \mathbf{x}(kh)$ by the equations

$$\begin{cases} \mathbf{x}_k = F\mathbf{x}_{k-1} + \mathbf{w}_k \\ \mathbf{y}_k = H\mathbf{x}_k + \mathbf{v}_k \end{cases}$$
(2)

in which F and H are given matrices, and $\{\mathbf{w}_k\}$ and $\{\mathbf{v}_k\}$ are Gaussian white noise processes, independent of each other and of \mathbf{x}_0 , and with covariances Q^s and Q^m respectively.

To reduce energy consumption of the sensor, the sampling rate is halved, i.e. only measurements at even times

$$y_k, \quad k = 2, 4, 6, \dots$$

are captured.

Show that if k is an even time then the conditional mean and covariance of x_k given measurements at even times up to and including k, namely

$$\hat{\mathbf{x}}_k := E[\mathbf{x}_k \,|\, \mathbf{y}_2, \mathbf{y}_4, \dots, \mathbf{y}_k] \quad \text{and} \quad P_k := \text{cov}\{\mathbf{x}_k \,|\, \mathbf{y}_2, \mathbf{y}_4, \dots, \mathbf{y}_k\} \;,$$
 are given by
$$\hat{\mathbf{x}}_{k+2} \,= \, F^2 \hat{\mathbf{x}}_k + K_{k+2}[\mathbf{y}_{k+2} - HF^2 \hat{\mathbf{y}}_k] \;.$$

Determine the gain matrix K_{k+2} . Determine also a formula for the conditional covariance P_{k+2} of x_{k+2} given the even measurements up to time k+2. You may quote the standard Kalman filter equations.

Hint: calculate the Kalman filter over two time periods, starting at an even sampling time k, for a time-varying output matrix H_k , which takes value 0 for time k+1 and value H for k+2.

Now consider the special case of system (2) when x_k and y_k are scalar processes governed by the equations:

$$x_k = w_k$$
 and $y_k = x_k + v_k$.

Obtain recursive formulae, in this case, for the estimates \hat{x}_k of the state x_k at even times, conditioned on measurements at even times up to time k. [4]

Explain why, in this case, the estimates of x_k given measurements at even times up to time k are the same as the estimates for x_k given measurements at all times. [2]

Estimation and Fault Detection

Page 4 of 6

[14]

4. The output y_k of a stochastic control system is modelled as a stationary scalar stochastic process satisfying the equation

$$y_k + ay_{k-1} = u_k + e_t + ce_{k-1},$$

in which a and c are constants (|a| < 1) and $\{e_k\}$ is a white noise process with unit variance, and $\{u_k\}$ is a sequence of control actions.

For $u_k = 0$, and for general values of the parameters a and c, derive formulae for the covariance function $R_y(k)$, $k = 1, 2, \ldots$ of the process y_k . [10]

Feedback control, with the strucure

$$u_k = Ky_{k-1}$$

is now applied, to reduce the variance of the output y_k . Notice the one-step delay in the feedback relation, which is required for measuring the state and implementing the control.

Using the results of earlier calculations, derive a formula for the output variance r(K).

$$r(K) = E[y_k^2].$$

[4]

Show that K^* , the value of the K which minizes the variance, is given by

$$K^* = a - c$$

[4]

[2]

Finally, suppose that the control feedback $u_k = K^* y_{k-1}$ is implemented with a small error δ , i.e. the control signal actually applied is

$$u_k = (K^* + \delta)y_{k-1}.$$

Show that the control feedback no longer minimizes the output variance, not even approximately.

Hint: consider cancellation of poles and zeros in the difference equation for y_k under closed loop control.

Estimation and Fault Detection

5. (i): Consider the vector signal process $\{\mathbf{x}_k\}$ and scalar measurement process $\{y_k\}$ described by the equations:

$$\mathbf{x}_k = F\mathbf{x}_{k-1} + w_k$$

$$y_k = h(\mathbf{x}_k) + v_k,$$

in which F is a given $n \times n$ matrix and $h(\mathbf{x})$ is a given nonlinear function of the n-vector \mathbf{x} . \mathbf{w}_k and v_k are white noise sequences with covariances Q^s and q^0 respectively, independent of each other and of x_0 .

Describe the extended Kalman filter algorithm for the recursive estimation of \mathbf{x}_k given $\{y_1, \ldots, y_k\}$, expressed in terms of the gradient $\nabla h(\mathbf{x})$ of the nonlinear function in the measurement equation. Explain the nature of the approximations involved.

Calculate $\nabla h(x)$ when the sensor is a nonlinear range sensor in 2D space, for which n=2 and h(x) is the function

$$h(x_1, x_2) = (x_1^2 + x_2^2)^{3/2}$$
.

[2]

[8]

(ii): An optical sensor takes a measurement θ (in radians) of the horizontal angular location of a target. It is possible, however, that the measurement originates, not from the target location, but from 'clutter' (i.e. some random atmospheric disturbance effect). Two hypothesis should be considered:

(H_0): The measurement originates from the target, in which case it is a sample of the probability density $p_0(\theta) = N(0, \sigma^2)(\theta)$.

(H₁): The measurement originates from clutter in which case it is a sample of $p_1(\theta)$.

$$p_1(\theta) = \begin{cases} (2\pi)^{-1} & \text{for } \theta \in [-\pi, \pi] \\ 0 & \text{otherwise} \end{cases}$$

(Here σ^2 is a known small positive constant.)

Regarding (H_0) as the null hypothesis, design a Neyman-Pearson test of the proposition 'the measurement originates from the target', at the 1% significance level, i.e. under the constraint that the probability that the decision rule accepts (H_1) when (H_0) is true, is 0.01.

[8]

Derive a formula for the power of the test

[2]

Data: if $x \sim N(0,1)$, then $P(x^2 \ge 6.635) = 0.01$.

[END]

Estimation and Fault Detection

Page 6 of 6

```
1.(i) We have E(xxx) = E(Exx+ wx)(Fxx-1-12) ?
                                             where R_{\chi}(0) = FR_{\chi}(0)FT + 0 + R, such the and Y_{k-1}MR then E(Y_{k}Y_{k-1}) = E(FX_{k-1}) + 0 = R_{\chi}(1) - FR_{\chi}(1-1) + R_{\chi}(1) = CTR(1) = CTR
From the variable of controls france, x(kh) = e \times ((k-i)h) + \int e \int_{10}^{10} e^{-kx} dx

But e^{-k}h = I + \int_{0}^{\infty} e^{-kx} \int_{0}^{10} e^{-kx} \int_{0}^{10} e^{-kx} dx

Also, cov \left\{ \int e^{-kx} \int_{0}^{10} e^{-kx} \int_{0}^{10} e^{-kx} dx \right\} = \int_{0}^{10} \left[ e^{-kx} \int_{0}^{10} e^{-kx} \int_{0}^{10} e^{-kx} dx \right] = \int_{0}^{10} e^{-kx} \int_{0}^{10} e^{-kx} dx
                                               = \int \left[ \frac{e^{-2x/s}}{e^{(x/+x_2)s}} \right] dt = \int \frac{1}{2x} \left( 1 - e^{-2x/h} \right) \frac{1}{x/+x_2} \left( 1 - e^{-2x/h} \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = (1-e(x+2)) 2x2 (1-e(x+0)) 2x2 (1-e(x+0))
                            We have shown

The = Fxh-, + When F= disg ( = Kin) as is cor ( while is.)

The shockestic untegral, )
                             the By part (), Ry (o) = cTPc Where P solves

\begin{bmatrix}
P_{11} & P_{12} \\
P_{12} & P_{22}
\end{bmatrix} = \begin{bmatrix}
e^{-\alpha_1 h} & 0 \\
0 & e^{-\alpha_1 h}
\end{bmatrix} \begin{bmatrix}
P_{12} & P_{22}
\end{bmatrix} \begin{bmatrix}
e^{-\alpha_1 h} & 0 \\
0 & e^{-\alpha_1 h}
\end{bmatrix} \begin{bmatrix}
P_{12} & P_{22}
\end{bmatrix} \begin{bmatrix}
e^{-\alpha_1 h} & 0 \\
0 & e^{-\alpha_1 h}
\end{bmatrix} \begin{bmatrix}
P_{12} & P_{22}
\end{bmatrix} \begin{bmatrix}
e^{-\alpha_1 h} & e^{-\alpha_1 h} & e^{-\alpha_1 h}
\end{bmatrix} + Q

= \begin{bmatrix}
e^{-\alpha_1 h} & e^{-\alpha_1 h} & e^{-\alpha_1 h} & e^{-\alpha_1 h}
\end{bmatrix} - \begin{bmatrix}
e^{-\alpha_1 h} & e^{-\alpha_1 h} & e^{-\alpha_1 h}
\end{bmatrix} + Q

= \begin{bmatrix}
e^{-\alpha_1 h} & e^{-\alpha_1 h} & e^{-\alpha_1 h}
\end{bmatrix} - \begin{bmatrix}
e^{-\alpha_1 h} &
                Whena P = [ 2d, (x,+ k2) ] ?

T. h. 105-11) /(d,+ d2) /2d2 ]
                      Then, by pare (8),
                                   Ry(1) = = = = + (x+++=) (=x++=x2h) + = ==
```

Since 9k coincides with y(t) at t=kh, and both are stationary processes ky(0) is simply E(glt)? (for any t). But E(glt)? door not depend in the chose simply period h.

```
2.(i) We have p(y1sc) = corst. exp{-1/2 [y-dx] [y-dx]}
                 and p(x) = exist. exp (- = (x-m)2/pb }
        Bayes Tale tell is
        p(x/5) = (...) p(5/x)p(x) = (...) exp \-\frac{1}{2}(5-dx)\overline{Q}(5-dx) + (x-m)
= (...) exp \-\frac{1}{2}(x^2d^2Q^2d + x^2p_0^2 - 2x^2(d^2Q^2g + p_0^2m) + (...)
       The exponent is
      - = (x2 (Po+ dTQd) - 2 × (Po+ dQd) dQ + fom + (...)

But Po (Po+ dTQd) = 1 - Po+ dTQd
           \frac{d^{T}Q'y + P_{0}'m}{P_{0}'' + d^{T}Q''d} = \frac{d^{T}Q''(y - dm) + m}{P_{0}'' + d^{T}Q''d}
        Writing & = (Po'+l'a'd)'d'a-1/3-dml+m, p'= Po+d'a
     P(x|5) = (...) exp \left(-\frac{1}{2} \left(x^2 p^{-1} - 2x p^{-1} x + (e...)\right)\right)
Since x, y are jointly Ganssian, it follows
               P(x,y) = (2T) = 2 (x-x)2 }
      So, & and p or the conditional mean and variable of x lesp
(ii) Write y = Es,,.., 5~ IT. Then
     where 1^{+} = [1, ..., 1], and cov\{v\} = diaj\{q_{1}, ..., q_{N}\}.
       \hat{x} = M + \frac{1}{p_0^{-1} + \sum_{k=1}^{N} q_k^{-1}} \left( y_k - w \right), \hat{p} = \frac{1}{p_0^{-1} + \sum_{k=1}^{N} q_k^{-1}} 
\sum_{k=1}^{N} \frac{1}{p_k^{-1} + \sum_{k=1}^{N} q_k^{-1}} \left( y_k - w \right), \hat{p} = \frac{1}{p_0^{-1} + \sum_{k=1}^{N} q_k^{-1}} 
     We see that
P_{N}^{-1} = P_{0}^{-1} + \sum_{k=1}^{N} \frac{1}{2^{k}} \rightarrow P_{0}^{-1} + \sum_{k=1}^{N} \frac{1}{2^{k}} e^{is} = 1
    Since for decreases with N
P_{N} = 1 + \sum_{k=1}^{\infty} \frac{1}{k^{2}} = 1
                                     \frac{1}{1+ \sum_{k=1}^{\infty} y_{k^{2}}} = \frac{1}{1+1.64} = \frac{1}{2.64}
```

3. The m'even time & Assume we know
$\frac{\hat{x}_{1} = E[+ \frac{y_{1}}{y_{1}}, \frac{y_{2}}{y_{1}}, \frac{y_{2}}{y_{1}}, \frac{y_{2}}{y_{2}}] = cov \left\{ x_{1} \mid y_{1} \right\}$
Because there is no measurement at time &
$\frac{\hat{x}_{k+1} = \hat{x}_{k+1} + k}{P_{k+1}} = \frac{\hat{x}_{k}}{P_{k+1}} = \frac{\hat{x}_{k}}{P_{k}} = \hat{x$
- P = P = FP = FP + QS
$\frac{\hat{x}_{k+2}}{\hat{x}_{k+2}} = F(F\hat{x}_{k}) = F\hat{x}_{k} + \hat{y}_{k+2} = \hat{y}_{k+2} = \hat{y}_{k+2}$
and should be sh
- FR+21k+, = F (FP, FT + QS) FT + QS
From the standard Kalman Filter equations against over H
- mind of (R+1) h (R+2) h we have (Lother that a more shown to
- saften at time (k+2) h
- P = S - SHT[H*SHT+Qm]"HS (S given by 12)
and
$\frac{\hat{x}_{k+2} = F^2 \hat{x}_k + K_{k+2} \left(y_{k+2} - H F^2 \hat{x}_k \right)}{S H T \left[H^* S H^T + Q^m \right]^{-1}}$
When K SHT [H*SHT + Qm]-
and $S = P_{k+2+k+1} = F(FP_F^7 + Q^5)F^7 + Q^5$
In the special sess to be considered F=0 and H=1
here $S = P_{k+2+k+1} = Q^5 - P_{k+2} = Q^5 - (Q^5)^2$
$(Q^{s} + Q^{m})$
and xx = a for all over & So for ever k
- XX:2 = Q Sktz and The Q S GM
Q5+Qm
- Dut the standard Kalinan to UT (based or massiminate at all ks)
13 XR-2 - TX + P + 1+ (HP + HT + Qh) (yk+ - HFX)
in in which fire FP FT - 25
- Pe hove 1/2/ = (a and 1 = 0 + Q5 /5/2 - 0)
25 L Q ~
which is the same as before.
The tensor is that x b+2 is undefendent of yik-1, so the LS ostinists
- 1 x x x 5 va S
N-17 R

Squaring both sides and taking expectations gives (R, 60) = 0 = R (0) - 2acr (0) + 1 + c2 E(x e, 2 = R, 60) = 0 + 1 + 0. Hence Rye (0) = Then (1-a) Rylo) = c+1-2ac. So Rlo).

E(+), = Rylo = -aRylo) + cRlo 5 -a(c+1-20c) +6 $\frac{E(x_{3t-2}^{2})}{S_{0}} = -aR(1) \cdot S_{1} + c \cdot S_{$ Since the process is a scalar process, Rg(1) = Rg(-1) for all. = e + c e + ut 5+(a-k) 5+- = e + ce+ (t) gives the variance of 15,2 as $V(k) = c^{2} + 1 - 2(a - k)c$ To find mumizing k = k .: dje vih) | k=h= = +2c [1-(a-k)] - 2(a-k) [2+1-2/a-k)c When a-k=c LHS = $\left(2c(1-c^2)-2c(1-c^2)\right)$ [...) =0 Hence v(k) is mainized at $k=k^*=a-c$ The diged loop system (for k=k*) is (1+ \(\varepsilon\) \(\varepsilon\) = (1+ \(\varepsilon\) \(\varepsilon\) \(\varepsilon\) \(\varepsilon\) = (1+ \(\varepsilon\) \(\varepsilon\) \(\varepsilon\) \(\varepsilon\) = (1+ \(\varepsilon\) \(\varepsilo which is stable and achieves the minimum variance If in, = (k+) you however and 16170, the & system is (1+(c-8) 2") by = (1+c=") ex For 5 small, this is an unstable system, and so the asymptotic output

50 The EXF is bosed on the + Wk , 5k = luect eguidas Th = Phile - Phile - HT (HT + 9°) H, are prior

= FPk-, FT + Qhe

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- (x2+x2)3/2 then by the chain ride, for is

- IF h(x) -10g-likelihood function, to \$ \$60 L 7/2 La (25)-1 c + = 1(0) where $\alpha \equiv (10) \geq \overline{\alpha}$ The "significance level constraint regions's $P(1(\theta) \ge \overline{\lambda}) = 0.01 \text{ for } \theta \sim P_0(\theta)$ $\frac{1}{2} \left(\frac{\theta}{\theta}\right)^2 1\theta = 0.01$ Set (0/5) ~ N(0,1) so 2 = 6.635 So test is: Accept Ho (H1) if (0/5) The point of the test is 2 > 6.635 (< 6.635) P[10)2 > x / H1] = P[101 = 8 2/2 $= (2\pi)^{-1} \times 2(\pi - \delta \sqrt{2})^{-1}$