Fairness

Machine Learning for Behavioral Data May 6, 2025

Today's Topic

Week	Lecture/Lab	
9	Unsupervised Learning	
10	Spring Break	
11	Unsupervised Learning	
12	Fairness	
13	Explainability	
14	Reserve	
15	Poster Presentations	

- What is fairness? Fairness metrics Interpreting neural networks

Getting ready for today's lecture...

• If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace

• SpeakUp room for today's lecture:

https://go.epfl.ch/speakup-mlbd2025

Agenda

- 1) Introduction to ethics in ML
- 2) Fairness in machine learning:
 - Sources of unfairness
 - Fairness metrics evaluating model predictions
- 3) Example on real world data

Fairness in ML game

EPFL has developed a game-based approach to introduce students to the topic of fairness in ML

https://companion.epfl.ch/game/7d7zs7/

Agenda

- 1) Introduction to ethics in machine learning
- 2) Fairness in machine learning:
 - Sources of unfairness
 - Fairness metrics evaluating model predictions
- 3) Example on real world data

Learning Objectives

You should be able to:

- Name and explain the sources of unfairness in a machine learning pipeline
- Explain and implement the most popular metrics for fairness
- Perform a fairness evaluation of a machine learning model using an appropriate fairness metric

Sources of Unfairness - Data Generation

Sources of Unfairness - Model Building

Fairness Through Blindness

 Idea: we ignore all protected attributes in our model (e.g., we do not use protected attributes such as gender, race, etc. as features)

Will this idea lead to a fair model?

a) Yes

b) No

Fairness Through Awareness

- There is not one mathematically agreed definition of fairness
- Popular fairness metrics are
 - model-agnostic
 - defined for classification problems

Problem Formalization

Notation:

- *X* is the input to the model
- \widehat{Y} is the prediction of the model
- T is the true label
- *A* is the protected attribute

Confusion Matrix

		True Label	
		T=1	T = 0
Predicted Label	Y = 1	True Positive (TP)	False Positive (FP)
	Y = 0	False Negative (FN)	True Negative (TN)

Demographic Parity

Requires equal proportion of positive predictions in each group

$$p(\hat{Y} = 1|A = 1) = p(\hat{Y} = 1|A = 0)$$

Demographic Parity - Example

- Admittance to Fruits University
- Students from two schools apply: Apple and Peach
- School Peach has a better program, resulting in more qualified students

Peach	Qualified	Unqualified
Admitted	45	2
Rejected	45	8

Apple	Qualified	Unqualified
Admitted	5	18
Rejected	5	72

Is demographic parity fulfilled?

a) Yes

b) No

Equalized Odds

 For any label and attribute, a classifier predicts the label equally well for all values of that attribute

$$p(\hat{Y} = 1 | A = 1, T = 1) = p(\hat{Y} = 1 | A = 0, T = 1)$$
$$p(\hat{Y} = 1 | A = 1, T = 0) = p(\hat{Y} = 1 | A = 0, T = 0)$$

Equalized Odds - Example

- Admittance to Fruits University
- Students from two schools apply: Apple and Peach
- School Peach has a better program, resulting in more qualified students

Peach	Qualified	Unqualified
Admitted	45	2
Rejected	45	8

Apple	Qualified	Unqualified
Admitted	5	18
Rejected	5	72

Are equalized odds fulfilled?

a) Yes

b) No

Predictive Value Parity

Probability of a sample with positive (negative)
predictive value to truly belong to the positive
(negative) class should be the same across attributes

$$p(T = 1|A = 1, \hat{Y} = 1) = p(T = 1|A = 0, \hat{Y} = 1)$$
$$p(T = 0|A = 1, \hat{Y} = 0) = p(T = 0|A = 0, \hat{Y} = 0)$$

Predictive Value Parity - Example

- Admittance to Fruits University
- Students from two schools apply: Apple and Peach
- School Peach has a better program, resulting in more qualified students

Peach	Qualified	Unqualified
Admitted	45	2
Rejected	45	8

Apple	Qualified	Unqualified
Admitted	5	18
Rejected	5	72

Is predictive value parity fulfilled?

a) Yes

b) No

Impossibility Result

- Any two of the three criteria are mutually exclusive
 - 1. If A and T are not independent, then demographic parity and predictive value parity cannot simultaneously hold
 - 2. If A and \widehat{Y} are not independent of T, then demographic parity and equalized odds cannot simultaneously hold
 - 3. If A and T are not independent, then equalized odds and predictive value parity cannot simultaneously hold

Impossibility Result

Note that these requirements hold for *most* classifiers in real contexts:

- Base-rates of outcomes rarely are equal across groups
- A and T are usually associated when issues of fairness are relevant for the group in question
- \hat{Y} and T are usually associated, if your classifier is any good

Agenda

- 1) Introduction to ethics in machine learning
- 2) Fairness in machine learning:
 - Sources of unfairness
 - Fairness metrics evaluating model predictions
- 3) Example on real world data

Flipped Classroom – Your Turn

- Participants: 214 EPFL students of a course taught in *flipped* classroom mode with a duration of 10 weeks
- We have trained a classifier to predict whether a student will pass or fail the course based on their clickstream data
- Your task:
 - 1. Choose one of the fairness metrics introduced in class and compute the metric for the flipped classroom classifier
 - 2. Tell us: is the classifier fair according to the selected metric? Why did you choose this metric?

Summary

- There are multiple sources of unfairness in a machine learning pipeline
- There is no consensus on the mathematical definition of fairness metrics
- Different metrics assess different aspects of the classifier
- Often, fairness metrics are mutually exclusive
- Fairness evaluation of a classifier includes exploration of relevant characteristics of our data