Data Analysis and Algorithm

Practical 6

Write a program to implement Huffman's code algorithm.

Date.: 11-10-21

Name – Yash Vasudeo Prajapati Rollno - 022 MSc. Computer Science

- 1	Vana9	ran. fo	milita	1141
While	or indica	1, 4,40		
Hyllman)	10019			
ant Total		· Coding is	a tech	rigge of
11.0084:	- Huffma	n Coding 17		11.
INIO	00	ing data	to nedu	0 115
	10.061	ALL LAKE		강선물 1일 보인 시에 작용하는 점점 확인 보다.
	11 0 /01	la placed l	of the	dellairs.
412 P 4	Li Hout 10	ring any	35	11 11 40
0	Lock	doveloped 1	by laxid	Truff Zid
It wo	45 1-1751	developed l		
		M. A. B.	9. (3	
C. 11.				
Example			2 1 1 1 1	
Example		N V	16 7	example 7
Example	in a 11	laing "this	is un	example?
Example	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ging "this	15 an	example?
(onside	en a si	Code	5:3:P 2+03	example?
(015)	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19/19 "this	5:3:6 2:13:5 2 * 3	example?
(015)	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	5:3:6 2:13:3 2 * 3 2 * 3	example 1
(015)	1 1 neg	000	5:3:6 2:13:3 2 * 3 2 * 3 2 * 3	example 1
(015)	1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	000	5:3:6 2:13 2:13 2:43 2:43 2:43 2:43	example 1
(015)	99 0 51 1909 2 2 2 1	000	5/3/P 2/1/3 2/3 2/3 2/3 2/3 2/3 1/9	6 6 4 -
(015)	99 0 51 1909 2 2 2 2	000	5:3:6 2:13 2:13 2:13 2:13 2:13 2:13 2:13 1:19 1:19 1:19	6 6 4 -
(015)	99 0 51 1909 2 2 2 2	000	5:3:6 2:13 2:13 2:13 2:13 2:13 2:13 2:13 1:19 1:19 1:19 1:19	6 6 4 -
(015)	99 0 51 1909 2 2 2 2 1	000	5:3:6 2:13 2:13 2:13 2:13 2:13 2:13 2:13 2:13	6 6 4 -
(015)	99 0 51 1909 2 2 2 2 1	000 000 010 010 1000 1001 1010	5:3:6 2:13 2:13 2:13 2:13 2:13 2:13 2:13 2:13	6 6 7 4 4
(015)	99 0 51 1909 2 2 2 2 1	000 000 010 010 1000 1001 1010	5:3:6 2:133 2*3 2*3 2*3 2*3 2*3 1*4 1*4 1*4	6 6 7 4 4

we notice that the stoping without encoding would take 216 bils And after encoding 96 + 18 + 61 = 175 Lits which is not much but with langer, string's or string's with mone frequency of same characters a clean difference

Tot see another transle afsdfastasdatasda intertate the Aneny vency in fost in inchessing onder of backgrouncy 3) make each character a least node, gamere the first to nodes & seplace with an empty node whors value is the sum of the iner of left to night this &

We get our roof 7 100 Algorithm (real a list with all unique illumactors Calculate the frequency of each unique nepeat for all Chanalton. assign the smallest broom to the night of the of the smallest broom to the night of the night e) issent never node in tope. neturn code left & I to night nodes mecusciely Conflexity Analysis 12 report of a raphage there it lakes 1000 (view node we bollow two stops wince we one vaing heaf broom \$ feed to 2 frey 7 log(n) + log (n) menge = = log(n) Gineale a new node & monge 3 Place the new node thus giving us log (n) tlog(n) + log(n) 7 3 log (n) x log(n) The we cheate there for all nodes which is one less the total node. there we can gay the total time taken will be (n log (n))

Contract

We implement hulfman code of

And the encoded form of strings of

brolly, o its time complexity.

Program

```
class NodeTree(object):
    def __init__(self, left=None, right=None):
        self.left = left
        self.right = right
    def nodes(self):
        return (self.left, self.right)
# Main function implementing huffman coding
def huffman_code_tree(node, left=True, binString=''):
    if type(node) is str:
        return {node: binString}
    (1, r) = node.nodes()
    d = dict()
    d.update(huffman_code_tree(l, True, binString + '0'))
d.update(huffman_code_tree(r, False, binString + '1'))
    return d
# Calculating frequency
string = 'ACDSVDASCASDAW'
freq = \{\}
for c in string:
    if c in freq:
        freq[c] += 1
    else:
        freq[c] = 1
freq = sorted(freq.items(), key=lambda x: x[1], reverse=True)
nodes = freq
while len(nodes) > 1:
    (key1, c1) = nodes[-1]
    (key2, c2) = nodes[-2]
    nodes = nodes[:-2]
    node = NodeTree(key1, key2)
    nodes.append((node, c1 + c2))
```

```
nodes = sorted(nodes, key=lambda x: x[1], reverse=True)
huffmanCode = huffman_code_tree(nodes[0][0])
print(huffmanCode)
```

```
Coding.py {'s': '00', 'D': '01', 'W': '1000', 'V': '1001', 'C': '101', 'A': '11'}
```