Advanced Machine Learning: Data Science and ML Refresher

Shubhankar Agrawal

Abstract

This document serves as a quick refresher for Data Science and Machine Learning interviews. It covers mathematical and technical concepts across a range of algorithms. This requires the reader to have a foundational level knowledge with tertiary education in the field. This PDF contains material for revision over key concepts that are tested in interviews.

Contents

1	Deep Learning				
	1.1	Key Concepts	1		
	1.2	More Components	1		
	1.3	Convolutional Neural Networks	2		
	1.4	Recurrent Neural Networks	2		
	1.5	Transformers	3		
	1.6	Unsupervised Approaches	3		
2	Natural Language Processing				
	2.1	Terminology	3		
	2.2	Preprocessing	3		
	2.3	Embedding	3		
	2.4	Feature Retrieval	4		
	2.5	Other Models	4		
3	Time Series				
	3.1	Analyses	5		
	3.2	Forecasting Exponential Smoothing • ARIMA • GARCH	5		

1. Deep Learning

1.1. Key Concepts

Neural Networks - Architecture similar to neurons

Figure 1. Neural Networks [2]

1.1.1. Terminology

Commonly used terms

Model: Function y = f(x) parametrized by θ **Epoch**: One full pass of the training set **Batch**: Subset of the training set

Back-propagation: Weigh updates with gradients

Table 1. Gradient Descent

Name	Samples	Pros	Cons
Batch Mini-Batch Stochastic	All Subset	Stable Convergence Efficient, Parallel Escape local minima	Memory, Slow Tune Size Noisy

Layer sizes commonly used 2^n , optimized for GPU computations and memory allocations

1.1.2. Regularization

Common methods:

- L1 Lasso
- L2 Ridge
- Data Augmentation (Scale, Rotate, Flip, Noise)

Dropout

- Train: Randomly set neurons to 0 (probability *p*)
- Infer: Scale activations by 1 p

Early Stopping: Stop when validation loss plateaus **Batch Normalization**: Stabilize training, convergence

$$\hat{x}_i = \frac{x_i - \mu}{\sqrt{\sigma^2 + \epsilon}} \tag{1}$$

1.2. More Components

1.2.1. Activations

Introduce Non-Linearity, summarized in Figure 5.

Notes:

- ReLU / Leaky ReLU usually used in between layers
- ReLU can cause dead neurons (Solve with Leaky)
- Tanh used to centre outputs around 0
- Sigmoid for Binary output
- Softmax for multiclass output

Vanishing Gradient: Activation derivative tends to 0. Causes neurons to turn off. Switch to other activations (ReLU).

Exploding Gradient: Gradient becomes too large while propagating. De-stabilizies convergence. Use gradient clipping, Batch Normalization.

Gradient Checking: Check analytical (Back-propagated) vs Approximate gradient. The smaller the value the better

$$\nabla_{\theta} J(\theta) \approx \frac{J(\theta + \epsilon) - J(\theta - \epsilon)}{2\epsilon}$$

$$\text{Difference} = \frac{\|\nabla_{\theta} J_{\text{analytical}} - \nabla_{\theta} J_{\text{approximate}}\|}{\|\nabla_{\theta} J_{\text{analytical}}\| + \|\nabla_{\theta} J_{\text{approximate}}\|}$$
(2)

NOTE: Batch Normalization should be applied after ReLU otherwise the normalization is lost after the activation

1.2.2. Optimizers

Gradient Descent

$$\theta_t = \theta_{t-1} - \eta \nabla_{\theta} J(\theta_{t-1}) \tag{3}$$

Momentum

Exponential decay on moving average of gradients

$$v_t = \beta v_{t-1} + (1 - \beta) \nabla_{\theta} J(\theta_{t-1})$$

$$\theta_t = \theta_{t-1} - \eta v_t$$
(4)

AdaGrad

Scale by inverse square root of running average of squared gradients.

$$s_{t} = s_{t-1} + (\nabla_{\theta} J(\theta_{t-1}))^{2}$$

$$\theta_{t} = \theta_{t-1} - \frac{\eta}{\sqrt{s_{t} + \epsilon}} \nabla_{\theta} J(\theta_{t-1})$$
(5)

RMSProp

Improves Adagrad with a Decay factor to prevent fast diminishing weights

$$\begin{aligned} s_t &= \beta s_{t-1} + (1 - \beta)(\nabla_{\theta} J(\theta_{t-1}))^2 \\ \theta_t &= \theta_{t-1} - \frac{\eta}{\sqrt{s_t + \epsilon}} \nabla_{\theta} J(\theta_{t-1}) \end{aligned} \tag{6}$$

Adam (Adaptive Moment Estimation)

Combines Momentum and RMSProp

$$\begin{split} m_{t} &= \beta_{1} m_{t-1} + (1 - \beta_{1}) \nabla_{\theta} J(\theta_{t-1}) \\ v_{t} &= \beta_{2} v_{t-1} + (1 - \beta_{2}) (\nabla_{\theta} J(\theta_{t-1}))^{2} \\ \hat{m}_{t} &= \frac{m_{t}}{1 - \beta_{1}^{t}}, \quad \hat{v_{t}} = \frac{v_{t}}{1 - \beta_{2}^{t}} \\ \theta_{t} &= \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v_{t}} + \epsilon}} \hat{m}_{t} \end{split} \tag{7}$$

1.2.3. Schedulers

Adapt learning rate over epochs for faster convergence and optimized search

Table 2. Learning Rate Schedulers

Method	Description		
StepLR	Reduce by constant factor <i>n</i> iterations		
ExponentialLR	Reduce exponentially		
CyclicLR	Cycle from base to minimum		
ReduceLROnPlateau	Reduce when the metric plateaus		

1.2.4. Code

Code 1. PyTorch Model

1.3. Convolutional Neural Networks

Modelling spatial features.

Input Dimensions: (BatchSizexHeightPixelsxWidthPixels)

$$(I * K)(x, y) = \sum_{m} \sum_{n} I(x + m, y + n) \cdot K(m, n)$$
 (8)

Table 3. CNN Layers

Layer	Description	Purpose
Convolutional	Kernel Multiplication	Spatial Features
Pooling	Aggregates (Max / Avg)	Down Sample
Fully Connected	Weight Multiplication	Learning

Output Size =
$$\frac{(W - K + 2P)}{S} + 1$$
 (9)

where:

- W is the input size (width or height),
- *K* is the kernel size,
- P is the padding applied,
- *S* is the stride of the convolution.

ResNet

CNN with skip connections (Concat identity + convolution features). Solves vanishing gradient.

1.4. Recurrent Neural Networks

Modelling sequential (or) temporal features.

Input Dimensions: (BatchSizexFeaturesxTimeSteps)

- Maintains a hidden state h_t to store temporal influence

$$h_{t} = f(W_{h} \cdot h_{t-1} + W_{x} \cdot x_{t} + b) \tag{10}$$

Batch Learning

- · Process encoding in parallel
- · Hidden state updates sequentially

Truncated Back Propagation Through Time (BPTT): Limit propagating gradients through full sequence. Prevent Vanishing Gradients.

Inference: No teacher forcing, i.e. use \hat{y}_t as inputs x_{t+1}

1.4.1. LSTM

Long Short Term Memory

- Two hidden states (Short Term, Long Term)
- Three gates (Input, Forget, Output)

Forget
$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Input $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$
Cell (Long) $C_t = f_t \cdot C_{t-1} + i_t \cdot \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ (11)
Output $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$
Hidden (Short) $h_t = o_t \cdot \tanh(C_t)$

1.4.2. GRU

Gated Recurrent Unit: Simplied version of LSTM with fewer parameters

- Single hidden state
- · Two gates (Update and Reset)

$$\begin{aligned} & \text{Update } z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \\ & \text{Reset } r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \\ & \text{Hidden } h_t = z_t \cdot h_{t-1} \\ & \qquad \qquad + (1 - z_t) \cdot \tanh(W_h \cdot [r_t \cdot h_{t-1}, x_t] + b_h) \end{aligned} \tag{12}$$

RNN architectures summarized in Figure 6

1.4.3. Seg 2 Seg

Sequence to sequence models: Input Sequence -> Output Sequence

1.5. Transformers

Seq 2 Seq models with an **Encoder** and **Decoder** architecture.

- · Replace RNNs with self-attention
- · Process sequences in parallel

1.5.1. Attention

Identifies relevant parts of sequence for each token

Scaled Dot-Product Attention:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (13)

where Q: Query, K: Key, V: Value, d_k : Dimensions

Multi-Head Attention:

$$\operatorname{MultiHead}(Q, K, V) = \operatorname{Concat}(\operatorname{head}_1, \dots, \operatorname{head}_h)W^O \qquad (14)$$

- · Computes attention over multiple independent heads
- · Each head learns unique representations

Types of Attention

- Self-Attention: Within the same sequence
- · Cross-Attention: Between encoder and decoder sequences
- Masked Self-Attention: Used in autoregressive tasks (e.g., GPT) to prevent looking at future tokens

Input Representations

- Token Embeddings: Maps tokens (words, subwords) to vectors
- Positional Encodings: Adds order information to tokens

$$\begin{split} PE_{\text{pos},2i} &= \sin\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right), \\ PE_{\text{pos},2i+1} &= \cos\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) \end{split} \tag{15}$$

Layers

- Encoder:
 - Layer Norm, Multi-Head Attention, Feedforward Network.
 - Produces sequence representations for input.

· Decoder:

- Masked Self-Attention, Cross-Attention, Feedforward Network
- Generates output sequence step by step.

The architecture is demonstrated in Figure 7.

1.6. Unsupervised Approaches

1.6.1. Variational Auto Encoder

Generative model to identify underlying distributions

Learns distribution parameters with sampled errors through an encoder decoder framework

Figure 2. Variational Auto Encoder [6]

- · Generate lower dimensional embeddings
- · Remove biases from data
- · Identify outliers by checking encodings

Loss = Reconstruction Loss + KL Divergence

2. Natural Language Processing

2.1. Terminology

Common NLP terminology

N-grams: Phrases of n tokens
Dictionary: Set of all words
Document: Single sample of text
Corpus: Set of all documents

Stop Words: commonly used filler words (removed)

2.2. Preprocessing

Common steps to prepare text

Tokenization: Split into words, sub words **Stemming**: Short form (improving -> improv) **Lemmatization**: Root word (improving -> improve)

2.3. Embedding

2.3.1. Vectorization

Capture occurrences and frequency of appearances

Bag of Words: Frequency counts of words **One Hot Encoding**: Binary Vectors for Tokens

TF-IDF: Term Frequency · Inverse Document Frequency

TF-IDF

$$\text{TF}(t,d) = \frac{\text{Number of times term } t \text{ appears in document } d }{\text{Total number of terms in document } d }$$

$$\text{IDF}(t) = \log \left(\frac{N}{|\{d \in D : t \in d\}|} \right)$$

$$\text{TF-IDF}(t,d) = \text{TF}(t,d) \cdot \text{IDF}(t)$$

$$(16)$$

2.3.2. Word Level

Capture semantic representations

Word2Vec: ML Model for Embeddings

Figure 3. Word2Vec Models
[7]

Table 4. Word2Vec

	CBOW	Skip Gram
Input	Context	Token
Output	Token	Context
Embeddings	Input Layer	Output Later
Pros	Faster	Smaller Datasets
Cons	Rare words	Slower

Negative Sampling: Add a few unrelated target words to reduce overall updates. Model better to distinguish.

GLoVe: Global Vectors for Word Representation.

Factorization of co-occurence matrix

- · Preserves global corpus
- · Computationally efficient

2.3.3. Sentence Level

BERT: Bidrectional Encoder Representations from Transformers Relies on Bidirectional Attention

Masked Language Modelling (MLM)
 Randomly mask tokens and predict probability

$$\mathcal{L}_{\text{MLM}} = -\sum_{i \in M} \log P(x_i | \hat{x})$$
 (17)

Next Sentence Prediction (NSP)
 Predict if a sentence follows another

$$\mathcal{L}_{NSP} = -\sum_{i} y_{i} \log P(y_{i}) + (1 - y_{i}) \log(1 - P(y_{i}))$$
 (18)

[CLS] token at the beginning of the sentence is a pooled representation.

Sentence BERT

- Generates Fixed Size Sentence embeddings
- Relies on Siamese Networks

Siamese Networks

- Two Sentences passed through the same BERT model
- Similarity over pooled sentence embeddings

Contrastive Loss

- · Pairs of Sentences
- Calculate distance (d) between embeddings
- Classify labels (y) [1 Similar, -1 dissimilar]

$$\mathcal{L}_{\text{contrastive}} = \frac{1}{2} \left(y \cdot d^2 + (1 - y) \cdot \max(0, \text{margin} - d)^2 \right)$$
 (19)

Triplet Loss

- Anchor (u), with positive (v^+) and negative (v^-) sentences
- · Similarity scores (Cosine distance)

$$\mathcal{L}_{\text{triplet}} = \max(0, \sin(u, v^{-}) - \sin(u, v^{+}) + \text{margin})$$
 (20)

Margin: Hyper-parameter for separation

Figure 4. SBERT Siamese Network [4]

2.4. Feature Retrieval

2.4.1. Named Entity Recognition

Labelling entities to predefined categories

Input: Barack Obama was born in Hawaii. Output: B-PER I-PER O O O B-LOC

- Calculate word embeddings (Hashed Bloom embeddings)
- Apply context (LSTM or iterative CNN)
- Pass through Attention based classifier (Context words and entities as features)

Bloom Embeddings: Multiple hashes

Custom Entities: Calculate embeddings and check for similarity scores across all entities

2.4.2. POS Tagging

Identifying the grammatical role of words. Trained similar to NER

Input: The quick brown fox jumps over the lazy dog. Output: DT JJ JN NN VBZ IN DT JJ NN

2.5. Other Models

2.5.1. Natural Language Inference

Also called Recognizing Textual Entailment (RTE)

Determine relationship between Premise and Hypothesis. Predict whether hypothesis is Entailed, Contradicted or Neutral.

2.5.2. Topic Modelling

Unsupervised approach to identify topics in text

Latent Dirichlet Analysis (LDA)

Generative probabilistic model

- · Specify number of topics
- Randomly assign topic to each word in each document
- · Assign topic to document based on word assignments
- Update document topic probabilities sampling from topic contributions
- Iterate until convergence

$$p(z_{d,n} = t | w_{d,n}, d) \propto \frac{N_{t,d} \cdot N_{w,t}}{N_t}$$
 (21)

where:

- $N_{t,d}$ is the number of words assigned to topic t in document d,
- $N_{w,t}$ is the number of times word $w_{d,n}$ is assigned to topic t,
- N_t is the total number of words assigned to topic t.

Latent Semantic Index (LSI)

Identify hidden topic relations with Singular Value Decomposition

- Select number of topics (k)
- · Build Document Term Frequency matrix
- · Perform Singular Value Decomposition
- · Extract topic and document vectors for comparison

$$A \approx U \Sigma V^T \tag{22}$$

where:

- $U \in \mathbb{R}^{m \times k}$ is the term-topic matrix,
- $\Sigma \in \mathbb{R}^{k \times k}$ is the diagonal matrix of singular values,
- $V^T \in \mathbb{R}^{k \times n}$ is the document-topic matrix.

BERTopic

Transformer-based approach

- · Document embeddings (BERT)
- Dimensionality Reduction (UMAP)
- · Clustering (HDBScan)
- Topic Representations (Words with highest TF-IDF scores in each cluster)
- · Aggregate cluster for each word in document for topics

Supervised Approach

- · Add labels as documents to embed
- · Cluster with labels as centroids

3. Time Series

3.1. Analyses

3.1.1. Decomposition

Time Series Decomposition of Components

Additive:
$$Y_t = T_t + C_t + S_t + R_t$$

Multiplicative: $Y_t = T_t \cdot C_t \cdot S_t \cdot R_t$ (23)

Multiplicative: $\log Y_t = \log T_t + \log C_t + \log S_t + \log R_t$

T_t : Trend

Long-term movement of data. Calculated by smoothing series

- · Moving Averages
- Locally Estimated Scatterplot Smoothing (LOESS) Regression

S_t : Seasonality

Regular fixed-term patterns

- De-Trend the series
- Group by Time Period (January, Monday)
- · Calculate average of group
- Center around 0 (Subtract overall mean)

C_t: Cyclic

Long-term oscillations not fixed in period

- · Remove trend and seasonality
- Smooth the residual data
- Fourier Transform to identify dominant peaks
- Reconstruct Cyclic with dominant peaks

R_t : Residuals

Noise. Remainder component.

3.1.2. Stationarity

Statistics (mean, variance, covariance) don't change over time

- · Strict: Probability Distribution constant
- Weak: Statisitic measures remain constant (Common)

Augmented Dickey-Fuller Test (ADF)

 H_0 : $\gamma = 0$ [Unit Root] H_1 : $\gamma < 0$

$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{i=1}^p \delta_i \Delta Y_{t-i} + \varepsilon_t$$
 (24)

Differencing

Differencing a time series to stationarize

$$\Delta Y_t = Y_t - Y_{t-1} \text{ (or)}$$

$$\Delta Y_t = \frac{Y_t - Y_{t-1}}{Y_{t-1}} \text{ (Log difference)}$$
(25)

3.1.3. Autocorrelation

Understand correlation structure

Auto-correlation Plot (ACF)

Correlation of value Y_t with all values Y_{t-1} ... Y_{t-k}

$$\rho_{k} = \frac{\sum_{t=1}^{n-k} (Y_{t} - \bar{Y})(Y_{t+k} - \bar{Y})}{\sum_{t=1}^{n} (Y_{t} - \bar{Y})^{2}}$$

$$CI = \pm \frac{t_{\alpha/2}}{\sqrt{n}}$$
(26)

ACF confidence interval increases over lags since fewer observations are available as we look further back.

Partial Auto-correlation Plot (PACF)

Correlation of value Y_t with value Y_{t-k} without intermediary lags Fits an OLS model

$$Y_{t} = \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \dots + \beta_{k-1}Y_{t-(k-1)} + \epsilon_{t}$$

$$\phi_{k} = \hat{\beta}_{k}$$

$$CI = \pm \frac{t_{\alpha/2}}{\sqrt{n}}$$

$$(27)$$

3.2. Forecasting

Fitting time series models and forecasting future values

3.2.1. Exponential Smoothing

Time series with Trend and Seasonality

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t \tag{28}$$

Double Exponential (Trend)

$$\hat{y}_{t+1} = L_t + T_t$$

$$L_t = \alpha y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$
(29)

Triple Exponential Holt Winters (Seasonality)

$$\hat{y}_{t+1} = (L_t + T_t) \cdot S_{t+m}$$

$$L_t = \alpha \frac{y_t}{S_{t-p}} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma \frac{y_t}{L_t} + (1 - \gamma)S_{t-p}$$
(30)

Optimization occurs by Gradient Descent

3.2.2. ARIMA

Auto-Regressive Integrated Moving Average Fits with MLE estimation or Regression

- Use PACF to get Auto-regressive term (p)
- Apply differencing (d) to get stationary data
- Use ACF to get Moving Average term (q)

$$\begin{split} \Phi(B)(1-B)^{d}Y_{t} &= \Theta(B)\varepsilon_{t} \\ \text{ARIMA (1,1,1): } Y_{t} &= \phi_{1}Y_{t-1} + (Y_{t} - Y_{t-1}) + \theta_{1}\varepsilon_{t-1} + \varepsilon_{t} \\ \text{AR: } Y_{t} &= \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t} \\ \text{MA: } Y_{t} &= \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{a}\varepsilon_{t-q} \end{split} \tag{31}$$

Residuals should resemble white noise

Assess performance across different ARIMA variants (p, d, q) comparing metrics

Akaike Information Criteria (AIC)

$$AIC = -2\ln(L) + 2k \tag{32}$$

Bayesian Information Criteria (BIC)

$$BIC = -2\ln(L) + k\ln(n) \tag{33}$$

- L: Maximum likelihood of the model.
- *k*: Number of estimated parameters in the model.
- n: Total number of observations in the dataset.

Choose model with a lower AIC / BIC score

SARIMAX:

Seasonal ARIMA with Exogenous Variables

$$\Phi_n(B)\Phi_p(B^m)(1-B)^d(1-B^m)^DY_t = \Theta_n(B)\Theta_0(B^m)\varepsilon_t + \beta X_t \quad (34)$$

- Seasonality (m): Decompose / Domain knowledge
- Get seasonal p, q from periodic spikes in PACF, ACF
- Seasonal difference subtracts from t m observation

Exogenous Variables: Dependent Variables (predictors). Required for future time steps for forecast.

Table 5. SARIMAX Components

	-	
Component	Variable	Identification
Auto-Regressive	p	Partial Autocorrelation (PACF)
Differencing	d	Augmented Dickey Fuller (ADF)
Moving Average	q	Autocorrelation (ACF)
Seasonality	S	Seasonal Decomposition

3.2.3. GARCH

Generalized Auto-Regressive for Conditional Heteroskedasticity Models Variance of Time Series

- Fit an ARMA model to the time series
- · Fit variance of time series on residuals from ARMA

$$Y_{t} = \mu + \epsilon_{t}$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{q} \alpha_{i} \epsilon_{t-i}^{2} + \sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2}$$
(35)

Forecasts: Expectation of Errors Variance

$$\sigma_{T+h}^2 = \omega + \sum_{i=1}^q \alpha_i \mathbb{E}[\epsilon_{T+h-i}^2] + \sum_{j=1}^p \beta_j \sigma_{T+h-j}^2$$

$$\mathbb{E}[\epsilon_{T+h-i}^2] = \sigma_{T+h-i}^2$$
(36)

Selection of (p, q)

- Fit an initial GARCH (1,1)
- · Use ACF, PACF of squared residuals

Evaluation

Squared returns act as a good proxy when variance is not available. Can be compared visually / with correlation.

 ${\bf NOTE:}$ Conventional ML / RNNs can also be used to forecast stepwise, but lack the inbuilt capabilities to capture more temporal components

References

- [1] Activation Functions. [Online]. Available: https://medium.com/the-modern-scientist/an-overview-of-activation-functions-in-deep-learning-97a85ac00460.
- [2] *Neural Networks*. [Online]. Available: https://www.cs.toronto.edu/~lczhang/360/lec/w02/terms.html.
- [3] Recurrent Neural Networks. [Online]. Available: https://www.linkedin.com/pulse/rnn-lstm-gru-why-do-we-need-them-suvankar-maity-joegc/.
- [4] Siamese. [Online]. Available: https://www.researchgate.net/figure/SBERT-Siamese-model-architecture_fig3_378440592.
- [5] Transformer Architecture. [Online]. Available: https://quantdare.com/transformers-is-attention-all-we-need-in-finance-part-i/.
- [6] VAE. [Online]. Available: https://towardsdatascience.com/uncovering-anomalies-with-variational-autoencoders-vae-adeep-dive-into-the-world-of-1b2bce47e2e9.
- [7] Word2Vec. [Online]. Available: https://towardsdatascience.com/ nlp-101-word2vec-skip-gram-and-cbow-93512ee24314.

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Figure 5. Activation Functions [1]

Figure 6. Recurrent Neural Networks [3]

Figure 7. Attention Based Transformer [5]