Propositional Logic: Semantics (3/3) CS402, Spring 2016

Shin Yoo

• In Def. 2.30, is it okay towrite $\nu(A_1) \wedge \ldots \wedge \nu(A_n) = T$ instead of $\nu(A_1) = \ldots = \nu(A_n) = T$?

- In Def. 2.30, is it okay towrite $\nu(A_1) \wedge \ldots \wedge \nu(A_n) = T$ instead of $\nu(A_1) = \ldots = \nu(A_n) = T$?
 - The logic behind the question: if we assume that formulas are finite strings as well as that the set *U* in Def. 2.30 can be infinite, we end up in a contradiction where the conjunctive form of the satisfiability condition becomes an infinite formula (string), whereas the enumeration of individual satisfiability conditions results in an *infinite number* of *finite formulas*.

- In Def. 2.30, is it okay towrite $\nu(A_1) \wedge \ldots \wedge \nu(A_n) = T$ instead of $\nu(A_1) = \ldots = \nu(A_n) = T$?
 - The logic behind the question: if we assume that formulas are finite strings as well as that the set *U* in Def. 2.30 can be infinite, we end up in a contradiction where the conjunctive form of the satisfiability condition becomes an infinite formula (string), whereas the enumeration of individual satisfiability conditions results in an *infinite number* of *finite formulas*.

• Good point! We do not deal with infinity *directly* in this course, it is a whole different can of worms. Let us accept that formulas are finite, *U* can be infinite, and the enumerative form of satisfiability condition is sufficient:)

• Why is it that the necessary condition for $\mathcal{T}(U)$ to be a theory is $U \models U$?

- Why is it that the necessary condition for $\mathcal{T}(U)$ to be a theory is $U \models U$?
 - The nature of the initial, original confusion still somewhat escapes me :(

- Why is it that the necessary condition for $\mathcal{T}(U)$ to be a theory is $U \models U$?
 - The nature of the initial, original confusion still somewhat escapes me :(
 - The critical part was the meaning of entailment: there are no such things as direct entailment and secondary or thirdly entailment.

- Why is it that the necessary condition for $\mathcal{T}(U)$ to be a theory is $U \models U$?
 - The nature of the initial, original confusion still somewhat escapes me :(
 - The critical part was the meaning of entailment: there are no such things as direct entailment and secondary or thirdly entailment.
 - That is, if $U \models A$ and $A \models B$, then $U \models B$. The confusion was resolved when it became clear that it is not necessary to show that B in our example belongs to $\mathcal{T}(U)$, as it is obviously implied by the definition of $\mathcal{T}(U)$.

Overview

- Semantic Tableaux
- Soundness and completeness

Semantic tableaux: a relatively efficient algorithm for deciding satisfiability in the propositional calculus.

- Search systematically for a model.
- If one is found, the formula is satisfiable; otherwise, it is unsatisfiable.

This method is the main tool for proving general theorems about the calculus.

Definition 1 (2.43)

A *literal* is an atom or a negation of an atom. An atom is a positive literal and the negation of an atom is a negative literal. For any atom p, $\{p, \neg p\}$ is a *complementary* pair of literals. For any formula A, $\{A, \neg A\}$ is a *complementary* pair of formulas. A is the complement of $\neg A$ and $\neg A$ is the complement of A.

Definition 1 (2.43)

A *literal* is an atom or a negation of an atom. An atom is a positive literal and the negation of an atom is a negative literal. For any atom p, $\{p, \neg p\}$ is a *complementary* pair of literals. For any formula A, $\{A, \neg A\}$ is a *complementary* pair of formulas. A is the complement of $\neg A$ and $\neg A$ is the complement of A.

Important observation: a set of litrals is *satisfiable* if and only if it does **not** contain a *complementary* pair of literals.

Analyze the satisfiablity of $A = p \wedge (\neg q \vee \neg p)$.

$$\nu(A) = T$$
 iff both $\nu(p) = T$ and $\nu(\neg q \lor \neg p) = T$.

Hence, $\nu(A) = T$ if and only if either:

$$\therefore \{p, \neg p\} \text{ or } \{p, \neg q\}.$$

In other words, the process is to reduce the question from one about the satisfiability of a formula to one about the satisfiability of sets of *literals*.

Since any formula contains *finite* atoms, there are at most *finite* number of sets of literals. Then the decision on satisfiability becomes trivial.

Formula $B = (p \lor q) \land (\neg p \land \neg q)$.

$$\nu(B) = T \text{ iff } \nu(p \lor q) = T \text{ and } \nu(\neg p \land \neg q) = T.$$

Hence,
$$\nu(B) = T$$
 iff $\nu(p \lor q) = \nu(\neg p) = \nu(\neg q) = T$.

Hence, $\nu(B) = T$ iff either:

- **1** $\nu(p) = \nu(\neg p) = \nu(\neg q) = T$, or

Since both $\{p, \neg p, \neg q\}$ and $\{q, \neg p, \neg q\}$ contain complementary pairs, B is unsatisfiable.

- This systematic search becomes easier if we use a suitable data structure to keep track of the assignments that must be made to subformulas.
- In semantic tableaux, trees are used.
- A leaf containing a complementary set of literals will marked with a × symbol, while a leaf containing a satisfiable set of literals will be marked with a ⊙ symbol.

Is
$$p \wedge (\neg q \vee \neg p)$$
 satisfiable?

$$\begin{array}{c|c}
p, \neg q \lor \neg p \\
\hline
p, \neg q (\odot) & p, \neg p (\times)
\end{array}$$

 $p \wedge (\neg q \vee \neg p)$

Is
$$(p \lor q) \land (\neg p \land \neg q)$$
 satisfiable?

Is
$$(p \lor q) \land (\neg p \land \neg q)$$
 satisfiable?

$$(p \lor q) \land (\neg p \land \neg q)$$
 $|$
 $p \lor q, \neg p \land \neg q$
 $|$
 $p \lor q, \neg p, \neg q$
 $|$
 $p, \neg p, \neg q(\times)$
 $q, \neg p, \neg q(\times)$

• β -formulas are disjunctive and are satsified if at least one of the subformulas, β_1 or β_2 , is satisfiable.

α	α_1	α_2
$\neg \neg A_1$	A_1	
$A_1 \wedge A_2$	A_1	A_2
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$
$\neg (A_1 o A_2)$	A_1	$\neg A_2$
$\neg (A_1 \uparrow A_2)$	A_1	A ₂
$A_1 \downarrow A_2$	$\neg A_1$	$\neg A_2$
$A_1 \leftrightarrow A_2$	$A_1 \rightarrow A_2$	$A_2 o A_1$
$\neg (A_1 \oplus A_2)$	$A_1 \rightarrow A_2$	$A_2 o A_1$

β	β_1	β_2
$\neg (B_1 \wedge B_2)$	$\neg B_1$	$\neg B_2$
$B_1 \vee B_2$	B_1	B_2
$B_1 \rightarrow B_2$	$\neg B_1$	B_2
$B_1 \uparrow B_2$	$\neg B_1$	$\neg B_2$
$\neg (B_1 \downarrow B_2)$	B ₁	B ₂
$\neg (B_1 \leftrightarrow B_2)$	$\neg (B_1 o B_2)$	$\neg (B_2 o B_1)$
$B_1 \oplus B_2$	$\mid \neg (B_1 o B_2)$	$\neg (B_2 o B_1)$
		,

Let \mathcal{T} for a propositional formula A be a tree, whose nodes are all labeled with a set of formulas. Let U(I) be the set of formulas of leaf I.

```
CONSTRUCTION OF SEM. TAB. (Algorithm 2.46)
Input: A propositional formula A
Output: A semantic tableaux T for A with marked leaves
(1)
           \mathcal{T} \leftarrow a tree with a single node labeled A
(2)
           while there exists an unmarked leaf
(3)
                foreach unmarked leaf /
(4)
                     if U(I) is a set of lit.
(5)
                          if a compl. lit. pair \in U(I) then Mark I as \times
(6)
                                                            else Mark / as \oplus
(7)
                     else
(8)
                          Choose A \in U(I)
                          if A == \alpha then Add I' to I s.t. U(I') \leftarrow
(9)
                          (U(I) - \{\alpha\} \cup \{\alpha_1, \alpha_2\})
                          if A == \beta then Add I', I'' to I s.t. U(I') \leftarrow
(10)
                          (U(I) - \{\beta\}) \cup \{\beta_1\}, \ U(I'') \leftarrow (U(I) - \{\beta\}) \cup
                          \{\beta_2\}
```

Definition 2 (2.47)

- A tableau whose construction has terminated is called a completed tableau.
- A completed tableau is closed if all leaves are marked closed (i.e. ×); otherwise, it is open.

Theorem 1 (2.48)

The construction of a semantic tableau terminates.

Soundness and Completeness

A tool is <u>sound</u> if whenever the tool says that a formula ϕ is valid (validity, not satisfiability), ϕ is really valid. That is, $\vdash \phi$ implies $\models \phi$.

- A tool is complete if whenever ϕ is valid, the tool does say that ϕ is valid. That is, $\models \phi$ implies $\vdash \phi$.
 - Writing in a contra-positive way: a tool (or method) is complete if whenever the tool says that ϕ is not valid, then ϕ is really not valid.
- Therefore, if a tool is sound and complete, then the tool says that ϕ is valid iff ϕ is really valid.

Note that:

- If a dumb tool always says that ϕ is not valid, then that tool is still sound.
- If a dumb tool always says that ϕ is valid, then that tool is still complete.

Soundness and Completeness

Theorem 2 (2.49)

Let $\mathcal T$ be a completed tableau for a formula A. A is unsatisfiable if and only if $\mathcal T$ is closed.

Corollary 1 (2.50)

A is satisfiable if and only if T is open.

Corollary 2 (2.51)

A is valid if and only if the tableau for $\neg A$ is closed.

Corollary 3 (2.52)

The method of semantic tableaux is a decision procedure for validity in the propositional calculus.

Soundness

Proof of soundness:

- If the tableau \mathcal{T} for a formula A closes, then A is unsatisfiable.
- If a subtree rooted at node n of \mathcal{T} closes, then the set of formulas U(n) labeling n is unsatisfiable. Let h be the height of the node n in \mathcal{T} .
 - If h = 0, n is a leaf. Since \mathcal{T} closes, U(n) contains a complementary set of literals. Hence U(n) is unsatisfiable.

Soundness

- If h > 0, either α or β rule was used in creating the child(ren) of n:
 - Case 1: α -rule. $U(n) = \{A_1 \land A_2\} \cup U_0$ and $U(n') = \{A_1, A_2\} \cup U_0$ for some set of formulas U_0 .
 - The height of n' is h-1; by induction, U(n') is unsatisfiable since the subtree rooted at n' closes.
 - Let ν be an arbitrary interpretation. Since U(n') is unsatisfiable, $\nu(A') = F$ for some $A' \in U(n')$. There are three possibilities:
 - For some $A_0 \in U_0$, $\nu(A_0) = F$. But $A_0 \in U_0 \subseteq U(n)$.
 - $\nu(A_1) = F, \nu(A_1 \wedge A_2) = F$. And $A_1 \wedge A_2 \in U(n)$.
 - $\nu(A_2) = F, \nu(A_1 \wedge A_2) = F$. And $A_1 \wedge A_2 \in U(n)$.

In all three cases, $\nu(A) = F$ for some $A \in U(n)$. Therefore, U(n) is unsatisfiable.

Soundness

- If h > 0, either α or β rule was used in creating the child(ren) of n:
 - Case 2: β -rule. $U(n) = \{B_1 \vee B_2\} \cup U_0$, $U(n) = \{B_1\} \cup U_0$ and $U(n'') = \{B_2\} \cup U_0$ for some set of formulas U_0 .
 - By induction, both U(n') and U(n'') are unsatisfiable, since the subtrees rooted at n' and n'' close.
 - Let ν be an arbitrary interpretation. There are three possibilities:
 - U(n') and U(n'') are unsatisfiable, because $\nu(B_0) = F$ for some $B_0 \in U_0$. But $B_0 \in U_0 \subseteq U(n)$.
 - Otherwise, $\nu(B_0) = T$ for all $B_0 \in U_0$. Since both U(n') and U(n'') are unsatisfiable, $\nu(B_1) = \nu(B_2) = F$. By definition of ν on \vee , $\nu(B_1 \vee B_2) = F$, and $B_1 \vee B_2 \in U(n)$.

Therefore $\nu(B) = F$ for some $B \in U(n)$; since ν was arbitrary, U(n) is unsatisfiable.

Completeness

Proof of completeness:

- If A is unsatisfiable, then every tableau for A closes.
- Contrapositive statement (Cor 2.50): if some tableau for *A* is open (i.e., if some tableau for *A* has an open branch), then the formula *A* is satisfiable.

Completeness

Definition 3 (2.57)

Let U be a set of formulas. U is a **Hintikka**^a set iff:

- For all atoms p appearing in a formula of U, either $p \notin U$ or $\neg p \notin U$.
- ② If $\alpha \in U$ is an α -formula, then $\alpha_1 \in U$ and $\alpha_2 \in U$.
- **1** If $\beta \in U$ is an β -formula, then either $\beta_1 \in U$ or $\beta_2 \in U$.

Theorem 3 (2.59)

Let I be an open leaf in a completed tableau \mathcal{T} . Let $U = \bigcup_i U(i)$, where i runs over the set of nodes on the branch from the root to I. Then U is a Hintikka set.

^aNamed after Finnish logician Jaakko Hintikka (1929-2015).

Completeness

Theorem 4 (2.60)

Hintikka's Lemma: Let U be a Hintikka set. Then U is satisfiable.

Proof.

Let \mathcal{T} be a completed *open* tableau for A. Then U, the union of the labels of the nodes on *an open branch*, is a Hintikka set by Theorem 2.59, and a model can be found for U by Theorem 2.60. Since A is the formula labeling the root, $A \in U$, so the interpretation is a model of A.