

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

A l'aide d'une série alternée, montrer que e est un irrationnel.

EXERCICE 2 [Indication] [Correction]

Nature de la série $\sum_{n\geq 1} u_n$, où $u_n = \frac{(-1)^n}{(n!)^{1/n}}$.

EXERCICE 3 [Indication] [Correction]

Soit $\sum u_n$ une série réelle, convergente mais non absolument convergente.

Pour tout n, on pose $u_n^+ = \sup(u_n, 0)$ et $u_n^- = \sup(-u_n, 0)$.

Montrer que les séries $\sum u_n^+$ et $\sum u_n^-$ sont divergentes.

EXERCICE 4 [Indication] [Correction]

Nature de la série $\sum_{n\geq 2} u_n$, avec $u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+\alpha}}\right)$.

Exercice 5 [Indication] [Correction]

Soit z un nombre complexe de module 1, mais tel que $z \neq 1$.

- 1. Pour tout entier n, on pose $T_n = \sum_{k=0}^n z^k$. Montrer que $|T_n| \le \frac{2}{|1-z|}$.
- 2. En déduire que pour $N \ge 1$ et $p \ge 1$, on a : $\left| \sum_{n=N+1}^{N+p} \frac{z^n}{n} \right| \le \frac{4}{(N+1)|1-z|}$.
- 3. Montrer que la série $\sum \frac{z^n}{n}$ est convergente.

EXERCICE 6 [Indication] [Correction]

Pour tout complexe z vérifiant |z| < 1, calculer $S = \sum_{n=1}^{\infty} u_n$, avec $u_n = nz^n$.

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Utiliser $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ avec $x = \frac{1}{e}$. Encadrer $\frac{1}{e}$ en supposant qu'il est rationnel.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

Vérifier que $\ln(n!^{1/n}) \sim \frac{n}{e}$, et que la suite $n \mapsto \ln|u_n|$ est décroissante.

En déduire qu'on peut appliquer le critère spécial des séries alternées.

INDICATION POUR L'EXERCICE 3 [Retour à l'énoncé]

Utiliser $\begin{cases} u_n^+ - u_n^- = u_n \\ u_n^+ + u_n^- = |u_n| \end{cases}$ et raisonner par l'absurde.

INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

Montrer que
$$u_n = \frac{(-1)^n}{\sqrt{n}} - \frac{\alpha+1}{2n} + O\left(\frac{1}{n\sqrt{n}}\right).$$

En déduire que la série $\sum u_n$ est convergente si $\alpha = -1$, et divergente sinon.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

- 1. Utiliser $T_n = \frac{1-z^{n+1}}{1-z}$ et $|1-z^{n+1}| \le 2$.
- 2. Pour $N \ge 1$ et $p \ge 1$, prouver que $\sum_{n=N+1}^{N+p} \frac{z^n}{n} = \sum_{n=N+1}^{N+p-1} \left(\frac{1}{n} \frac{1}{n+1}\right) T_n + \frac{T_{N+p}}{N+p} \frac{T_N}{N+1}$. En déduire $\left|\sum_{n=N+1}^{N+p} \frac{z^n}{n}\right| \le \frac{4}{(N+1)|1-z|}$.
- 3. Montrer que la suite des sommes partielles de la série $\sum \frac{z^n}{n}$ est de Cauchy.

INDICATION POUR L'EXERCICE 6 [Retour à l'énoncé]

Vérifier que la série $\sum u_n$ est absolument convergente.

Montrer que
$$S_N = \sum_{n=1}^{N} u_n = z S_{N-1} + z \frac{1-z^N}{1-z}$$
.

Faire tendre N vers $+\infty$, et en déduire $\sum_{n=1}^{\infty} nz^n = \frac{z}{(1-z)^2}$.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

Il suffit de prouver que $\frac{1}{e}$ est irrationnel. Supposons par l'absurde $\frac{1}{e} = \frac{p}{q}$, avec $p, q \in \mathbb{N}^*$.

Pour tout
$$x$$
 de \mathbb{R} , on a $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. En particulier $\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$.

Cette série étant alternée, $\frac{1}{e}$ est strictement compris entre deux sommes partielles consécutives.

Plus précisément avec notre hypothèse :
$$\forall N \in \mathbb{N}^*, S_{2N-1} < \frac{1}{e} = \frac{p}{q} < S_{2N} = S_{2N-1} + \frac{1}{(2N)!}$$

Il est clair que $A_N = (2N)!S_{2N-1}$ est entier.

L'encadrement s'écrit donc
$$A_N < (2N)! \frac{p}{q} < 1 + A_N$$
.

Mais il suffit de choisir N tel que $2N \ge q$ pour constater que $(2N)!\frac{p}{q}$ est un entier strictement compris entre deux entiers consécutifs, ce qui est absurde.

Conclusion : $\frac{1}{e}$ et donc e sont des irrationnels.

Corrigé de l'exercice 2 [Retour à l'énoncé]

On a:
$$\ln(n!^{1/n}) = \frac{1}{n} \ln(n!) \sim \frac{1}{n} \ln(n^n e^{-n} \sqrt{2\pi n}) = \frac{n}{e} + \frac{1}{2n} \ln(2\pi n) \sim \frac{n}{e}$$
. Ainsi $\lim_{n \to \infty} |u_n| = 0$.

Puisque $\sum u_n$ est alternée, il reste à prouver que la suite $n \to |u_n|$ est décroissante.

Pour cela on va montrer que la suite $n \mapsto \ln |u_n|$ est décroissante.

Pour tout entier $n \geq 1$:

$$\ln|u_{n+1}| - \ln|u_n| = \frac{1}{n}\ln(n!) - \frac{1}{n+1}\ln(n+1)! = \frac{(n+1)\ln n! - n\ln(n+1)!}{n(n+1)}$$
$$= \frac{\ln n! - n\ln(n+1)}{n(n+1)} = \frac{1}{n(n+1)} \sum_{k=1}^{n} \ln \frac{k}{n+1} < 0$$

Ce résultat prouve donc que la série $\sum_{n\geq 1} \frac{(-1)^n}{(n!)^{1/n}}$ est convergente.

Corrigé de l'exercice 3 [Retour à l'énoncé]

Pour tout entier n, on a : $u_n^+ - u_n^- = u_n$ et $u_n^+ + u_n^- = |u_n|$.

Si l'une des séries $\sum u_n^+$ ou $\sum u_n^-$ convergeait, l'autre convergerait aussi car $u_n^+ = u_n^- + u_n$ et $\sum u_n$ converge.

Mais dans ce cas la série de terme général $|u_n| = u_n^+ + u_n^-$ serait convergente, ce qui n'est pas.

Conclusion : les séries $\sum u_n^+$ et $\sum u_n^-$ sont divergentes.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SÉRIES À TERMES RÉELS OU COMPLEXES

Corrigé de l'exercice 4 [Retour à l'énoncé]

On effectue un développement asymptotique de u_n .

$$u_n = \ln(\sqrt{n} + (-1)^n) - \frac{1}{2}\ln(n+\alpha) = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) - \frac{1}{2}\ln(1 + \frac{\alpha}{n})$$
$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + O\left(\frac{1}{n\sqrt{n}}\right) - \frac{\alpha}{2n} + O\left(\frac{1}{n^2}\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{\alpha+1}{2n} + O\left(\frac{1}{n\sqrt{n}}\right)$$

La série $\sum \frac{(-1)^n}{\sqrt{n}}$ est convergente (critère spécial des séries alternées).

Toute série dont le terme général est un $O(\frac{n}{\sqrt{n}})$ est absolument convergente.

De ces remarques et du calcul précédent, il résulte que $\sum u_n$ est de même nature que $\sum \frac{\alpha+1}{2n}$. Conclusion : la série $\sum u_n$ est convergente si $\alpha=-1$, et divergente sinon.

Corrigé de l'exercice 5 [Retour à l'énoncé]

- 1. On sait que $T_n = \frac{1-z^{n+1}}{1-z}$. Or $|1-z^{n+1}| \le 1+|z|^{n+1}=2$. Le résultat en découle.
- 2. Pour tout entier $N \geq 1$ et tout entier $p \geq 1$:

$$\sum_{n=N+1}^{N+p} \frac{z^n}{n} = \sum_{n=N+1}^{N+p} \frac{1}{n} (T_n - T_{n-1}) = \sum_{n=N+1}^{N+p} \frac{1}{n} T_n - \sum_{n=N+1}^{N+p} \frac{1}{n} T_{n-1}$$

$$= \sum_{n=N+1}^{N+p} \frac{1}{n} T_n - \sum_{n=N}^{N+p-1} \frac{1}{n+1} T_n = \sum_{n=N+1}^{N+p-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) T_n + \frac{T_{N+p}}{N+p} - \frac{T_N}{N+1}.$$

On en déduit, en utilisant la question précédente :

$$\left| \sum_{n=N+1}^{N+p} \frac{z^n}{n} \right| \leq \sum_{n=N+1}^{N+p-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) |T_n| + \frac{|T_{N+p}|}{N+p} + \frac{|T_N|}{N+1}$$

$$\leq \frac{2}{|1-z|} \left(\sum_{n=N+1}^{N+p-1} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \frac{1}{N+p} + \frac{1}{N+1} \right)$$

Il reste $\left|\sum_{n=N+1}^{N+p} \frac{z^n}{n}\right| \leq \frac{4}{(N+1)|1-z|}$, qui tend vers 0 si $N \to \infty$, indépendamment de p.

3. Soit (S_N) la suite des sommes partielles de la série $\sum \frac{z^n}{n}$

La question précédente donne : $\forall N \geq 1, \forall p \geq 1, |S_{N+p} - S_N| \leq \frac{4}{(N+1)|1-z|}$.

On en déduit que : $\forall \varepsilon > 0$, $\exists N_0$ tel que : $(N \ge N_0 \text{ et } p \ge 1) \Rightarrow |S_{N+p} - S_N| \le \varepsilon$.

La suite des sommes partielles S_N est donc de Cauchy.

Conclusion : la série $\sum \frac{z^n}{n}$ est convergente.

Corrigé de l'exercice 6 [Retour à l'énoncé]

Puisque |z| < 1, on a $\lim_{n \to \infty} n^2 |u_n| = \lim_{n \to \infty} n^3 |z|^n = 0$. La série $\sum u_n$ est donc convergente.

Posons
$$S_N = \sum_{n=1}^N u_n$$
. Alors on a : $S_N = z \sum_{n=1}^N (n-1)z^{n-1} + \sum_{n=1}^N z^n = zS_{N-1} + z\frac{1-z^N}{1-z}$.

Quand on fait tendre N vers ∞ , on trouve $S = zS + \frac{z}{1-z}$. On en déduit $\sum_{n=1}^{\infty} nz^n = \frac{z}{(1-z)^2}$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.