IN5270 MANDATORY EERCISE 3

ERIK JOHANNES B. L. G. HUSOM

OCTOBER 16, 2019

Contents

1

1. Description of the problem

1. Description of the problem

The goal is to compute deflection of a cable with sine functions. We have a hanging cable with tension, and the cable has a deflection $\omega(x)$ which is governed by:

$$(1) T\omega''(x) = l(x),$$

where the variables are:

- L: Length of cable - T: Tension on cable - $\omega(x)$: Deflection of cable - l(x): Vertical load per unit length

Cable is fixed at x = 0 and x = L, and the boundary conditions are $\omega(0) = w(L) = 0$. Deflection is positive upwards and l is positive when it acts downwards.

Assuming l(x) = const, the solution is symmetric around x = L/2. For a function $\omega(x)$ that is symmetric around a point x_0 , we have that

(2)
$$\omega(x_0 - h) = \omega(x_0 + h),$$

which means that

(3)
$$(3) \lim_{h\to 0} (w(x_0+h) - w(x_0-h))/(2h) = 0.$$

We can therefore halve the domain, since it is symmetric. That limits the problem to find $\omega(x)$ in [0, L/2], with boundary conditions $\omega(0) = 0$ and $\omega'(L/2) = 0$.

Scaling of variables:

(4)
$$x_{-} = x/(L/2)$$
 (setting $x = x_{-}$ in code for easier notation)

(5)
$$u = \omega/\omega_c$$
 (where ω_c is a characteristic size of ω)

By putting this into the original equation we get

(6)
$$(4T\omega_c)/L^2 * u''(x) = l = \text{const.}$$

We set |u''(x)| = 1, and we get $\omega_c = 0.25lL^2/T$, and the scaled problem is

2 HUSOM

(7)
$$u'' = 1, x_{\in}(0,1), u(0) = 0, u'(1) = 0.$$