Page 309 - Bases

115 Capacité 6, p. 301

Soit l'équation différentielle (E) y' = -2y + 3.

- 1. Déterminer la solution particulière constante de (E).
- 2. En déduire toutes les solutions de (E).

116 FORMEL Le logiciel Xcas fournit la solution générale

d'une équation différentielle avec la commande desolve. Justifier le résultat ci-contre.

117 Déterminer la fonction f, solution sur \mathbb{R} de l'équation différentielle 2y' + 6y = 1, dont la courbe représentative passe par le point A(2 ; 0).

Page 309 - Problèmes

MATHS & PHYSIQUE

118 On chauffe dans une grande cuve un liquide et on appelle g(t) sa température en degrés Celsius à l'instant t exprimé en secondes, g étant une fonction numérique définie sur $[0; +\infty[$.

La température à l'instant initial est de 20 °C.

On admet que la fonction g vérifie l'équation différentielle (E): y' + 0,0002y = 0,02.

- Exprimer g (t) en fonction de t.
- 2. Quelle sera la température du liquide au bout d'une heure ?
- Au bout de combien de secondes la température dépasset-elle 85 °C ? Donner la réponse en heures, minutes et secondes.

112 On a constaté qu'après une injection intraveineuse de glucose, la glycémie décroît à partir d'un certain instant choisi comme origine des temps selon la loi g'(t) + Kg(t) = 0, où g

désigne la fonction glycémique dépendant du temps t et K une constante strictement positive appelée coefficient d'assimilation glycémique.

1. On suppose que g(0) = 2. Exprimer g(t) en fonction de K et t.

- **2.** Déterminer la formule donnant le coefficient K en fonction du taux de glycémie G_1 à l'instant donné t_1 .
- **3.** La valeur moyenne de *K* chez un sujet normal varie de 0,0106 à 0,0242.

Préciser si les résultats du sujet X qui a un taux de glycémie égal à 1,2 à l'instant $t_1 = 30$ sont normaux.

Page 310 - Maîtriser

119 VRAI/FAUX

Soit (E) l'équation différentielle y' - 3y = 2.

Indiquer si les affirmations sont vraies ou fausses, puis justifier.

- **1.** L'équation (**E**) admet pour solutions les fonctions f définies sur \mathbb{R} par $f(x) = Ce^{3x} + 2$, avec C réel quelconque.
- **2.** La solution particulière f de (E) telle que f(0) = 1 est définie sur \mathbb{R} par $f(x) = \frac{1}{3}$ (5e^{3x} 2).
- **3.** La solution particulière g de (E) dont la courbe représentative admet une tangente de coefficient directeur 3 au point d'abscisse 0 est définie sur \mathbb{R} par $g(x) = -\frac{2}{3} + e^{3x}$.

120 Les courbes ci-dessous représentent quatre solutions de l'équation différentielle 2y' = y - 1.

Résoudre cette équation différentielle, puis donner des équations des courbes \mathscr{C}_1 , \mathscr{C}_2 , \mathscr{C}_3 et \mathscr{C}_4 .

Page 311 - Problèmes

MATHS & PHYSIQUE

131 PYTHON 🥏 Compléter et exécuter un programme

Un circuit électrique est constitué d'un condensateur de capacité $C = 75 \times 10^{-6}$ farads, d'une résistance $R = 2 \times 10^4$ ohms, d'un générateur G et d'un interrupteur. On ferme l'interrupteur à l'instant t = 0 et le générateur délivre alors une tension V.

La tension U au bornes du condensateur est alors solution, sur l'intervalle $[0; +\infty[$, de l'équation différentielle (1):

On suppose que $V(t)=6 e^{-\frac{2}{3}t}$, où t est exprimé en secondes. De plus, la charge initiale du condensateur impose la condition (2): $U(0)=\frac{1}{2}V(0)$.

- **1.** Montrer que la fonction U_1 définie sur $[0; +\infty[$ par $U_1(t) = 4t e^{-\frac{2}{3}t}$ est une solution de l'équation (1).
- 2. En déduire la solution générale de (1).
- 3. Déterminer la solution U de l'équation différentielle (1) vérifiant la condition (2).
- Étudier le sens de variation de U et calculer sa limite en +∞.
- 5. L'appareil mesurant U(t) ne détecte pas les tensions inférieures à 10^{-3} volts. On veut que le programme Python cicontre renvoie la valeur de t, arrondie au dixième

```
from math import exp
def temps():
    t=0
    while (...):
    t=t+...
    return(t)
```

de seconde, pour la quelle l'appareil ne détecte plus la tension U(t).

- a. Compléter ce programme.
- b. Déterminer cette valeur de t.

132 👩 RAISONNER 😑 CALCULER

Soit n un entier strictement positif et l'équation différentielle $(E_n): y' + y = \frac{x^n}{n!} e^{-x}$.

- **1.** Soit g et h deux fonctions dérivables sur \mathbb{R} telles que, pour tout réel x, $g(x) = h(x) e^{-x}$.
- a. Montrer que g est solution de (E_n) si et seulement si

$$h'(x) = \frac{x^n}{n!}$$
.

- b. En déduire une solution particulière de l'équation (E,,).
- 2. a. Déterminer la solution générale de l'équation (E,).
- **b.** Déterminer la solution f de (**E**_n) vérifiant f(0) = 0.
- 3. On pose, pour tout réel $x: f_0(x) = e^{-x}$.

Pour tout entier strictement positif n, on définit la fonction f_n comme la solution de l'équation différentielle $y' + y = f_{n-1}$ vérifiant $f_n(0) = 0$.

Montrer par récurrence que, pour tout réel x et tout entier strictement positif n, $f_n(x) = \frac{x^n}{n!} e^{-x}$.

Page 316 - Problème

(MATHS & PHYSIQUE)

156 Loi de refroidissement de Newton

A l'instant t = 0 (exprimé en heures), un corps dont la température est de 100 °C est placé dans une salle à 20 °C.

On désigne par $\theta(t)$ la température du corps à l'instant t. D'après la loi de refroidissement de Newton, la vitesse de refroidissement $\theta'(t)$ est proportionnelle à la différence entre la température du corps et celle de la salle.

Le coefficient de refroidissement est égal ici à -2,08.

- **1.** Expliquer pourquoi $\theta'(t) = -2,08 (\theta(t) 20)$.
- **2.** En déduire l'expression de $\theta(t)$.
- 3. a. Étudier le sens de variation de la fonction θ sur $[0; +\infty[$.
- **b.** Déterminer la limite en $+\infty$ de θ et l'interpréter.
- Tracer la courbe représentative de θ.
- 4. Déterminer la température du corps, arrondie au degré, au bout de 20 minutes, puis au bout de 30 minutes.
- 5. Déterminer une valeur approchée du temps au bout duquel la température tombera à 30°.