Reducing Uncertainty in Measurement of Vertical Wind

Adjustment Based on the Schuler Relationships

Al Cooper

Research Aviation Facility, Earth Observing Laboratory National Center for Atmospheric Research

RSIG Presentation on 11/10/2014

Outline

- Measurement Uncertainty for WIC
 - Assessment of Uncertainty
 - Importance of 'pitch'
- 2 Developing a Correction Algorithm
 - Basis for the algorithm
 - Reference frames
 - Deducing pitch errors from ground-speed errors
- Summary and Status

CHARACTERIZING UNCERTAINTY IN MEASUREMENTS

Conventional Approach:

- Review measurement method
- 2 Characterize measurements involved:
 - (a) Sensors: uncertainty characteristics
 - (b) Calibrations, intercomparisons, etc.
 - (c) Other studies of measurement uncertainty
- 3 Tabulate elemental uncertainties and net uncertainty
- Discuss individual elements, esp. significant ones
- Consider limiting factors and ways to improve the measurement.

RESULTS TO DATE:

#	measure- ment	bias	random error	δw bias m s $^{-1}$	δw , random
1	radome ADIFR	0.07 hPa	0.002 hPa	-	-
2	AOA: fit	0.03°	0.001°	0.12	0.04
3	sideslip	0.07 hPa	0.002 hPa	-	-
4	dynamic pressure QCF	0.34 hPa	0.01 hPa	<0.02	0.001
5	pitch	0.05°	0.02°	0.19	0.08
6	GV vertical velocity	0.03 m/s	<0.03 m/s	0.03	<0.03
7	GV u, v motion	0.03 m/s	<0.03 m/s	-	-
8	pressure PSF	0.10 hPa	0.001 hPa	-	-

ANGLE OF ATTACK: GOOD REPRESENTATION

PITCH

- Uncertainty estimate (0.05°) comes from Honeywell specs.
- Comparison of redundant measurements:
 - differences of at least 0.02° for roll within range $\pm 5^{\circ}$
 - \bullet RMS difference 0.12° without that restriction.
- Any improvement in pitch will improve the wind measurements

PITCH

- Uncertainty estimate (0.05°) comes from Honeywell specs.
- Comparison of redundant measurements:
 - differences of at least 0.02° for roll within range $\pm 5^{\circ}$
 - RMS difference 0.12° without that restriction.
- Any improvement in pitch will improve the wind measurements

ROUTES TO IMPROVEMENT:

- APPLANIX:
 - (a) Specs are significantly better
 - (b) Achieves this primarily through a Kalman filter w/ GPS

PITCH

- Uncertainty estimate (0.05°) comes from Honeywell specs.
- Comparison of redundant measurements:
 - differences of at least 0.02° for roll within range $\pm 5^{\circ}$
 - RMS difference 0.12° without that restriction.
- Any improvement in pitch will improve the wind measurements

ROUTES TO IMPROVEMENT:

- APPLANIX:
 - (a) Specs are significantly better
 - (b) Achieves this primarily through a Kalman filter w/ GPS
- 2 Implement our own full Kalman filter for the Honeywell IRS:

PITCH

- Uncertainty estimate (0.05°) comes from Honeywell specs.
- Comparison of redundant measurements:
 - \bullet differences of at least 0.02° for roll within range $\pm 5^{\circ}$
 - RMS difference 0.12° without that restriction.
- Any improvement in pitch will improve the wind measurements

ROUTES TO IMPROVEMENT:

- APPLANIX:
 - (a) Specs are significantly better
 - (b) Achieves this primarily through a Kalman filter w/ GPS
- 2 Implement our own full Kalman filter for the Honeywell IRS:
- **3** Use the coupling between acceleration errors and pitch errors to deduce a correction for pitch.

SCHULER COUPLING OF ERRORS

Effect of a pitch error:

 False platform orientation produces a false horizontal component of sensed gravity

SCHULER COUPLING OF ERRORS

Effect of a pitch error:

- False platform orientation produces a false horizontal component of sensed gravity
- Result is a false acceleration, leading to growth of an error in the ground speed:

$$\frac{d(\delta v_n)}{dt} = -g\delta\theta$$

Position error offsets pitch error:

 False groundspeed south gives position developing too far south

Position error offsets pitch error:

- False groundspeed south gives position developing too far south
- Result is a false acceleration, compensating for the pitch error

Position error offsets pitch error:

- False groundspeed south gives position developing too far south
- Result is a false acceleration, compensating for the pitch error
- When net correction is zero, southward ground-speed error is still present, and the error correction overshoots.

Position error offsets pitch error:

- False groundspeed south gives position developing too far south
- Result is a false acceleration, compensating for the pitch error
- When net correction is zero, southward ground-speed error is still present, and the error correction overshoots.

Result: oscillation of bounded errors.

Roll: analogous to pitch.

MUST CONSIDER REFERENCE FRAMES

Four reference frames involved:

- body frame: oriented wrt aircraft axes [b-frame]
- Iocal-level frame: ENU (east-north-up) [I-frame]
- \odot earth-fixed frame: z from CG to N pole, x -> prime meridian
- inertial frame: like earth-fixed frame but x -> the vernal equinox and does not rotate

Key transformation:

- Pitch, roll, heading defined in body frame
- INS and GPS provide ground-speed components in the I-frame
- The attitude angle changes are best seen in the I-frame
- Key transformation is from errors in I-frame to errors in b-frame

MIXING OF ROLL AND PITCH ANGLES

Imagine a unit vector in the I-frame representing angle errors

- Use to represent what the INU thinks is the upward direction in the I-frame.
- Will have components $\delta\theta$ and $\delta\phi$ representing the respective errors in pitch and roll.
- The general aircraft orientation is in some other frame than along the I-frame axes:
 - a positive pitch error for northbound flight will be a negative pitch error for southbound flight.
 - other flight directions mix the components of the angle error, with e.g. the roll error for northbound flight becoming the pitch error for eastbound flight.
- The relevant transformation, I-frame to b-frame, is the inverse of the one we normally use for wind processing.

AN EXAMPLE OF GROUND-SPEED ERRORS

DEEPWAVE ferry flight ff02, Hawaii to Pago Pago, 1 June 2014, flying mostly near-southbound.

FINDING PITCH AND ROLL ERRORS IN THE I-FRAME

pitch, roll, ground-speed errors: $\delta\theta$, $\delta\phi$, $\delta v_{n,e}$:

$$\delta \theta = -\frac{1}{g} \frac{d(\delta v_n)}{dt}$$

$$\delta \phi = -\frac{1}{g} \frac{d(\delta v_e)}{dt}$$

Find the right-side derivatives in the l-frame:

- ullet Second-by-second, $\Delta \delta v_{n,e}/\Delta t$ are too noisy
- 2 $A\cos(\Omega_{Sch}t+\zeta)$? Need to allow A and ζ to vary
- Instead, chose 4th-order polynomial fit centered over 1/5 Schuler period or 1013 s.
- Technique: Savitzky-Golay polynomials

DEDUCED PITCH AND ROLL ERRORS

For DEEPWAVE ff01, pitch errors are max. 0.005° , or $0.1 \times$ specifications, exc. in final descent.

GROUND-SPEED ERRORS IN DEEPWAVE rf01, I-frame:

PITCH ERRORS IN DEEPWAVE rf01, b-frame:

Consider northward flight:

• A positive error in heading leads to the IRU "thinking" it is farther east than it is.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.
- That acceleration leads to an error in roll angle and the introduction of a Schuler oscillation in coupled eastward acceleration and roll error.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.
- That acceleration leads to an error in roll angle and the introduction of a Schuler oscillation in coupled eastward acceleration and roll error.
- When the aircraft turns, this can become a pitch error in the b-frame.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.
- That acceleration leads to an error in roll angle and the introduction of a Schuler oscillation in coupled eastward acceleration and roll error.
- When the aircraft turns, this can become a pitch error in the b-frame.
- 6 However, the magnitude of the error is still sensed and can be corrected.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.
- That acceleration leads to an error in roll angle and the introduction of a Schuler oscillation in coupled eastward acceleration and roll error.
- When the aircraft turns, this can become a pitch error in the b-frame.
- 6 However, the magnitude of the error is still sensed and can be corrected.
- This introduces another source of pitch error in addition to initial alignment error. The correction procedure is still valid.

- A positive error in heading leads to the IRU "thinking" it is farther east than it is.
- 2 Therefore it resolves sensed gravity as having a false eastward component, and therefore senses an eastward acceleration.
- That acceleration leads to an error in roll angle and the introduction of a Schuler oscillation in coupled eastward acceleration and roll error.
- When the aircraft turns, this can become a pitch error in the b-frame.
- **5** However, the magnitude of the error is still sensed and can be corrected.
- This introduces another source of pitch error in addition to initial alignment error. The correction procedure is still valid.
- Growing errors in lateral velocity may constrain the heading error. (Future investigation?)

SUMMARY

A correction can be applied to pitch and hence to vertical wind

- Deduce the error in pitch from the time derivative of the error in ground speed.
- 2 Transform to the b-frame using the inverse of the conventional 'gusto' transformation.
- Onsider a new pitch variable (PITCHC?) and new vertical-wind variable (WI_SCH or WIS or ?)
 - (a) To first order, just add TASX* $\delta\theta_b$ to the vertical wind.
 - (b) More complicated in turns; maybe for DEEPWAVE just provide the simpler variable with the qualification that this correction is not valid in turns.
- Second-pass processing after nimbus is preferable because it allows the calculation of the time derivative of the ground-speed error using centered intervals.

Reproducibility Information:

Project: SchulerPresentation

Archive package: SchulerPresentation.zip
Contains: attachment list below

Program: SchulerPresentation.Rnw

Original Data: /scr/raf data/DEEPWAVE

Git: git@github.com:WilliamCooper/SchulerStudy.git

Attachments: SchulerPresentation.Rnw

SchulerPresentation.pdf

chunks (code imported into SchulerPresentation.Rnw)

SessionInfo