UNIVERSIDAD TECNOLOGICA NACIONAL

FACULTAD REGIONAL TUCUMAN

ELECTRONICA DE POTENCIA

Resolución de problemas

- Indicar los dispositivos electrónicos usados en la Electrónica de Potencia, tanto pasivos como activos.
- 2) De acuerdo con el uso. ¿qué tipos de diodos están disponibles?
- 3) ¿Qué es la característica *v-i* de los diodos?
- 4) Determinar lo siguiente de los diodos:
 - Corriente de fuga.
 - Tiempo de recuperación inversa.
 - Corriente de recuperación inversa.
 - Factor de suavidad.
 - Tipos de recuperación.
 - Condiciones para que se inicie un proceso de recuperación inversa.
 - ¿En qué tiempo en el proceso de recuperación el voltaje inverso alcanza su valor de pico?
 - Causa del tiempo de recuperación inversa y su efecto en el diodo.
 - Tiempo de recuperación directa
- 5) ¿Qué es la característica *v-i* de tiristores?
- 6) Según los requisitos de aplicación, ¿qué tipos de tiristores están disponibles?
- 7) Determinar lo siguiente de los tiristores:
 - Condición de estado de apagado.
 - Condición de estado de encendido.
 - Corriente de mantenimiento.
 - Corriente de enganche.
 - Modelo de dos transistores.
- 8) Métodos de encendido de los tiristores.
- 9) Definir tiempo de encendido.
- 10) Protecciones:
 - Contra dv/dt.
 - Método común de protección contra *dv/dt*.

UNIVERSIDAD TECNOLOGICA NACIONAL

FACULTAD REGIONAL TUCUMAN

- 11) Si se conectan en serie n tiristores, ¿cómo se procede?
- 12) Un diodo de potencia está sometido a un proceso de bloqueo forzado tal que la derivada de intensidad (negativa) de ánodo di/dt es de 100 A/ μ s. La carga de recuperación inversa q_r en las condiciones de trabajo es de 50 μ C, se pide:
 - Calcular el tiempo de recuperación t_r.
 - Calcular la intensidad de recuperación I_r.
 - Calcular aproximadamente el tiempo de almacenamiento t_a.
 - Calcular aproximadamente el tiempo de caída t_c.