Linear Algebra I Summary of Lectures: Eigenvalues and Eigenvectors

Dr Nicholas Sedlmayr

- 1. Definition 6.1: Let **A** be an $n \times n$ matrix over a field F. Then a column vector $\mathbf{x} \in F^n$ is called an eigenvector of **A**, with eigenvalue $\lambda \in F$, if $\mathbf{x} \neq 0$ and $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.
- 2. Theorem 6.2: A scalar λ is an eigenvalue of an $n \times n$ matrix \mathbf{A} iff the matrix $\mathbf{A} \lambda \mathbb{I}_n$ has nullity $n(\mathbf{A} \lambda \mathbb{I}_n) > 0$.
- 3. Theorem 6.3: Suppose λ is an eigenvalue of an $n \times n$ matrix \mathbf{A} . Then the eigenvectors of \mathbf{A} having eigenvalue λ are the non-zero vectors in $\ker(\mathbf{A} \lambda \mathbb{I}_n) = \{\mathbf{x} : (\mathbf{A} \lambda \mathbb{I}_n)\mathbf{x} = 0\}.$
- 4. Theorem 6.4: Every $n \times n$ matrix **A** over $F = \mathbb{R}$ or $F = \mathbb{C}$ has an eigenvalue λ in \mathbb{C} and an eigenvector $\mathbf{x} \in \mathbb{C}^n$ with eigenvalue λ .
- 5. Definition 6.5: If $f: V \to V$ is a linear map, where V is a vector space over a field F, and $0 \neq v \in V$ with $f(v) = \lambda v$ for some $\lambda \in F$, then v is an eigenvector of f, with eigenvalue λ .
- 6. Proposition 6.6: If **A**, **B** and **P** are $n \times n$ matrices related by $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ then **B** and **A** have the same eigenvalues.
- 7. Lemma 6.7: Suppose that $f: V \to V$ is a linear transformation of an n-dimensional vector space V over a field F. If f has nullity of at least one then there is a basis $v_1, v_2, \ldots v_n$ such that

$$f(v_j) \in \operatorname{span}(v_1, v_2, \dots v_{n-1}) \quad \forall j = 1, \dots n.$$

- 8. Proposition 6.8: Let $V = \mathbb{C}^n$ be the *n*-dimensional vector space over \mathbb{C} , and suppose f is a linear transformation from V to V. Then there is a basis of V such that, with respect to this basis, the matrix of f is upper triangular.
- 9. Proposition 6.9: If **A** is an upper triangular matrix then the diagonal entries in **A** are precisely the eigenvalues of **A**.
- 10. Theorem 6.10: If **A** is any upper triangular $n \times n$ matrix with entries from \mathbb{R} or \mathbb{C} and $\lambda_1, \lambda_2, \ldots \lambda_n$ are the diagonal entries of **A**, including repetitions, then the matrix

$$(\mathbf{A} - \lambda_1 \mathbb{I})(\mathbf{A} - \lambda_2 \mathbb{I}) \dots (\mathbf{A} - \lambda_n \mathbb{I}),$$

is the zero matrix.

- 11. Lemma 6.11: If **A** is an upper triangular matrix with eigenvalue λ then $\det[\mathbf{A} \lambda \mathbb{I}] = 0$.
- 12. Proposition 6.12: If **A** is an $n \times n$ matrix over \mathbb{R} or \mathbb{C} with eigenvalue $\lambda \in \mathbb{C}$ then $\det[\mathbf{A} \lambda \mathbb{I}] = 0$.
- 13. Let $\mathbf{Y}(x) = (y_1(x), y_2(x), \dots y_n(x)^T)$ and $\mathbf{Y}'(x) = \mathbf{AY}(x)$ be a system of first order linear differential equations with constant coefficients given by $\mathbf{A} = (a_{ij})$ with $a_{ij} \in \mathbb{C}$. A general solution is given by

$$\mathbf{Y}(x) = \sum_{i=1}^{r} b_i \,\mathrm{e}^{\lambda_i x} \,\mathbf{Y}_i$$

where $b_i \in \mathbb{C}$ and λ_i are the r eigenvalues of \mathbf{A} with corresponding eigenvectors \mathbf{Y}_i . Higher order equations (with constant coefficients) can also be solved in this way by introducing new functions. For example consider $\mathbf{Y}''(x) = \mathbf{A}_1 \mathbf{Y}(x) + \mathbf{A}_2 \mathbf{Y}'(x)$. Let $\mathbf{Y}_2(x) = \mathbf{Y}'(x)$ and $\mathbf{Y}_1(x) = \mathbf{Y}(x)$ then we have

$$\begin{pmatrix} \mathbf{Y}_1'(x) \\ \mathbf{Y}_2'(x) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbb{I}_n \\ \mathbf{A}_1 & \mathbf{A}_2 \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1(x) \\ \mathbf{Y}_2(x) \end{pmatrix} \,,$$

which can be solved in the same way as before. This generalizes in the obvious way to higher order differential equations.

- 14. Theorem 6.13: If $\lambda_1, \lambda_2, \dots \lambda_r$ are distinct eigenvalues of an $n \times n$ matrix \mathbf{A} , with $r \leq n$, with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_r$ then $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_r$ are linearly independent.
- 15. Definition 6.14: An $n \times n$ matrix **A** with entries from \mathbb{R} or \mathbb{C} is said to be diagonalizable if there exists an invertible matrix **P** such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ with **B** being diagonal. **P** is said to diagonalize **A**.
- 16. Theorem 6.15: An $n \times n$ matrix **A** with entries from \mathbb{R} or \mathbb{C} is diagonalizable iff **A** has n linearly independent eigenvectors.
- 17. In relation to theorem 6.15 we note the following:
 - (a) The diagonal entries of **B** are the eigenvalues of **B** and **A**.
 - (b) The column vectors of a diagonalizing matrix \mathbf{P} are the eigenvectors of \mathbf{A} .
 - (c) **P**, and therefore **B** is not unique given **A**. Any reordering of the eigenvectors in **P** would work.
 - (d) If **A** is diagonalizable then $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ and $\mathbf{A}^k = \mathbf{P}\mathbf{B}^k\mathbf{P}^{-1}$ with **B** diagonal, giving a simple expression for the powers of the matrix **A**.
- 18. Definition 6.16: Let V be a finite dimensional inner product space, and suppose that f is a linear transformation $f: V \to V$. f is called orthogonal (if V is an inner product space over \mathbb{R}) or unitary (if V is an inner product space over \mathbb{C}) if

$$\langle u|v\rangle = \langle f(u)|f(v)\rangle, \quad \forall u, v \in V.$$

19. Proposition 6.17: Let V be a finite dimensional inner product space, and suppose $f:V\to V$ is a linear transformation. Let $e_1,e_2,\ldots e_n$ be an orthonormal basis of V. Then f preserves the inner product $\langle u|v\rangle$ on V, i.e. is orthogonal or unitary, iff $f(e_1),f(e_2),\ldots f(e_n)$ is orthonormal.