AREA UNDER THE CURVES

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (**Assertion**) and **Statement – 2** (**Reason**). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice:

Choices are:

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) Statement 1 is True, Statement 2 is False.
- (D) **Statement 1** is False, **Statement 2** is True.
- **209.** Let $|A_1|$ be the area bounded between the curves y = |x| and y = 1 |x|; $|A_2|$ be the area bounded between the curves y = -|x| and y = |x| 1.

Statement-1: $|A_1| = |A_2|$

Statement-2: Area of two similar parallelograms are equal.

- **210. Statement-1:** Area bounded between the curves $y = |x 3\pi|$ and $y = \cos^{-1}(\cos x)$ is $\pi^2/2$ **Statement-2:** $|x 3\pi| = 3\pi x$ for $5\pi/2 \le x \le 3\pi$ $\cos^{-1}(\cos x) = x 2\pi$, $2\pi \le x \le 3\pi$
- 211. Statement-1: Area of the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ in the first quadrant is equal to π Statement-2: Area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = a^2$ is πab .
- 212. Statement-1: Area enclosed by the curve |x| + |y| = 2 is 8 units Statement-2: |x| + |y| = 2 represents an square of side length $\sqrt{8}$ unit.
- **213.** Statement-1: The area bounded by $y = x(x-1)^2$, the y-axis and the line y = 2 is $\int_0^2 (x (x-2)^2 2) dx$ is equal to $\frac{10}{3}$.

Statement-2: The curve $y = x(x - 1)^2$ is intersected by y = 2 at x = 2 only and for 0 < x < 2, the curve $y = x(x - 1)^2$ lies below the line y = 2.

214. Let f be a non–zero odd function and a > 0.

Statement-1: $\int_{-a}^{a} f(x) = 0$. Because

Statement-2: Area bounded by y = f(x), x = a, x = -a and x-axis is zero.

- **215. Statement-1:** The area of the curve $y = \sin^2 x$ from 0 to π will be more than that of the curve $y = \sin x$ from 0 to π . **Statement-2:** $x^2 > x$ if x > 1.
- **216. Statement-1:** The area bounded by the curves $y = x^2 3$ and y = kx + 2 is least if k = 0. **Statement-2:** The area bounded by the curves $y = x^2 3$ and y = kx + 2 is $\sqrt{k^2 + 20}$.
- **217. Statement-1:** The area of the ellipse $2x^2 + 3y^2 = 6$ will be more than the area of the circle $x^2 + y^2 2x + 4y + 4 = 0$.

18

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 AREA UNDER CURVE PART 3 OF 3

Statement-2: The length of the semi-major axis of ellipse $2x^2 + 3y^2 = 6$ is more than the radius of the circle $x^2 + 3y^2 = 6$ $y^2 - 2x + 4y + 4 = 0.$

Statement-1: Area included between the parabolas $y = x^2/4a$ and the curve 218.

$$y = \frac{8ab}{x^2 + 4a^2}$$
 is $\frac{a^2}{3}(6\pi - 4)$ sq. units.

Statement-2: Both the curves are symmetrical about y-axis and required area is $\int_{0}^{2} (y_2 - y_1) dx$

Statement-1: The area of the region bounded by $y^2 = 4x$, y = 2x is 1/3 sq. units. 219.

Statement-2: The area of the region bounded by $y^2 = 4ax$, y = mx is $\frac{8a^2}{3m^3}$ sq. units.

220. **Statement-1:** Area under the curve $y = \sin x$, above 'x' axis between two ordinates x = 0 & $x = 2\pi$ is 4 units.

Statement-2: $\int \sin x \, dx = 4$

221. **Statement-1:** Area under the curve $y = [|\sin x| + |\cos x|]$, where [] denotes the greatest integer function. above 'x' axis and between the ordinates = $0 \& x = \pi$ is π units.

Statement-2: $f(x) = |\sin x| + |\cos x|$ is periodic with fundamental period $\pi/2$.

Statement-1: Area between $y = 2 - x^2$ & y = -x is equal to $\int_0^{\infty} (2 + x - x^2) dx$ 222.

> Statement-2: When a region is determined by curves that intersect, the intersection points give the units of integration.

Statement-1: Area of the region bounded by the lines 2y = -x + 8, x-axis and the lines x = 3 and x = 5 is 4 sq. 223.

Statement-2: Area of the region bounded by the lines x = a, x = b, x-axis and the curve y = f(x) is $\int_{0}^{\infty} f(x) dx$.

Statement-1: The area of the region included between the parabola $y = \frac{3x^2}{4}$ and the line 224. 3x - 2y + 12 = 0 is 27 sq. units.

Statement-2: The area bounded by the curve y = f(x) the x-axis and x = a, x = b is $\int_{0}^{a} f(x) dx$, where f is a continuous function defined on [a, b].

Statement-1: The area of the region $\begin{cases} (x,y): & 0 \le y \le x^2 + 1, \\ & 0 \le y \le x + 1, \quad 0 \le x \le 2 \end{cases} = \frac{23}{3} \text{ sq. units.}$ 225.

Statement-2: The area bounded by the curves y = f(x), x-axis ordinates x = a, x = b is $\int f(x)dx$

Statement-1: Area bounded by $y^2 = 4x$ and its latus rectum = 8/3226. **Statement-2:** Area of the region bounded by $y^2 = 4ax$ and it is latus rectum $8a^2/3$

209. A 210. A 211. D 217. B 218. A 219. A 220. C

 213. A
 214. C
 215. D
 216. C

 221. B
 222. B
 223. A

224. A 225. D 226. A

Details Solution

209. Clearly $|A_1| = |A_2|$

210.
$$\Delta = 2 \int_{5\pi/2}^{3\pi} \left[\left(x - 2\pi \right) - \left(3\pi - x \right) \right] dx = 2 \int_{5\pi/2}^{3\pi} (2x - 5\pi) dx = \pi^2/2.$$

- **211.** (d) Area of ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ in the first quadrant $= \frac{1}{4} \times \pi \times 2 \times 1 = \frac{\pi}{2}$.
- **212.** (A) Clearly |x| + |y| = 2 represents a square of $\sqrt{8}$ units and area of square is equal to square of the side length.
- Solving $y = x(x 1)^2$ and y = 2, we get x = 2. Hence $y = x(x 1)^2$ intersects the line y = 2 at x = 2 only.

Statement – II is true because of above and the graphs of y = 2 and $y = x(x - 1)^2$.

Statement – I is obviously true and it is because of statement – II.

Hence (a) is the correct answer.

214. Statement – I is true, as this is a property of definite integral.

As f is non-zero function, area bounded by given boundaries can not be zero.

Hence statement – II is false.

Hence (c) is the correct answer.

215. $: \sin^2 x \le \sin x : \forall x \in (0, \pi)$

Therefore area of $y = \sin^2 x$ will be lesser from area of $y = \sin x$.

Statement – II is obviously true.

Hence (d) is the correct answer.

216. Let the line y = kx + 2 cuts $y = x^2 - 3$ at $x = \alpha$ and $\alpha = \beta$, area bounded by the curves =

$$\int_{\alpha}^{\beta} (y_1 - y_2) = \int_{\alpha}^{\beta} \{ (kx + 2) - (x^2 - 3) \} dx$$

$$\Rightarrow f(k) = \frac{\left(k^2 + 20\right)^{3/2}}{6}$$

which clearly shows that statement –II is false but f(k) is least when k = 0.

Hence (c) is the correct answer.

217. Option (b) is correct.

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 AREA UNDER CURVE PART 3 OF 3

The ellipse
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$
 & the circles is $(x - 1)^2 + (y + 2)^2 = 1$.

$$\Rightarrow$$
 Area of ellipse = $\pi \ \sqrt{3} \ \sqrt{2} = \sqrt{6} \pi$ and area of circle = $\pi \ . \ (1)^2 = \pi$

⇒ The Statement-2 is true in this particular example. In general, this may not be true.

218. Required area =
$$2\left[\int_{0}^{2a} \frac{8a^{3}}{x^{2} + 4a^{2}} dx - \int_{0}^{2a} \frac{x^{2}}{4a} dx\right]$$

= $\frac{a^{2}}{3}$ (6 π - 4)

219. Req. area =
$$\int_{0}^{4a/m^2} (\sqrt{4ax} - mx) dx$$

= $\frac{8a^2}{3m^3}$ sq. units

220.
$$\int_{0}^{2\pi} \sin x \, dx = \left[-\cos x \right]_{0}^{2\pi} = \left[-\cos 2\pi - (-\cos(0)) \right]$$
$$= \left[-1 - (-1) \right] = 0$$

So, c is correct.
221.
$$1 \le |\sin x| + |\cos x| \le \sqrt{2}$$

So $[|\sin x| + |\cos x|] = 1$
So $\int_{0}^{\pi} 1.dx = \pi$

223. Area =
$$\int_{3}^{5} \frac{8-x}{2} dx = \frac{1}{2} \left[8x - \frac{x^{2}}{2} \right]_{3}^{5} = 4 \text{ sq. units.}$$

224. (A)
Required area
$$\int_{-2}^{4} \left(\frac{3x+12}{2} - \frac{3}{4}x^{2} \right) dx = 27 \text{ sq. units.}$$

225. (D)
Required area is
$$\int_{0}^{1} (x^{2} + 1) dx + \int_{1}^{2} (x + 1) dx = \frac{23}{6} \text{ sq. units.}$$

226. area = ar (OAS)

$$= \int_{0}^{1} 2\sqrt{x} dx$$

$$= 2\left[\frac{2}{3} \cdot x^{3/2}\right]_{0}^{1} = \frac{4}{3} \times = \frac{4}{3}$$

Whose area = $2 \times \frac{4}{3} = \frac{8}{3}$ that is latus rectum by reason have latus rectum = $\frac{8a^2}{3}$ Ans. (A)