

DATA DISCOVERY E ANALYTICS

Rodrigo Moravia

Dados para direcionar negócios

Por que utilizar dados que são gerados nas organizações para direcionar os negócios?

45% dos gerentes não conseguem nomear pelo menos 1 dos 5 principais objetivos da empresa

Robert S. Kaplan & David P. Norton

não negligencie os dados do seu negócio

empresas gastam fortunas em profissionais de ponta e ainda criam KPIs incoerentes

OBJETIVOS + MÉTRICAS

 Porque os dados estão descentralizados, existem várias verdades, e análises e os KPIs criados não conversam com os objetivos definidos da empresa

KPI

Segundo Ferreira, Cassiolato e Gonzales (2009), por exemplo:

"O indicador é uma medida, de ordem quantitativa ou qualitativa, dotada de significado particular e utilizada para organizar e captar as informações relevantes dos elementos que compõem o objeto da observação. É um recurso metodológico que informa empiricamente sobre a evolução do aspecto observado."

KPI

Dessa forma os indicadores servem para:

- mensurar os resultados e gerir o desempenho;
- embasar a análise crítica dos resultados obtidos e do processo de tomada decisão;
- contribuir para a melhoria contínua dos processos organizacionais;
- facilitar o planejamento e o controle do desempenho;
- viabilizar a análise comparativa do desempenho da organização e do desempenho de diversas organizações atuantes em áreas ou ambientes semelhantes.

KPI - FINALIDADE

Indicadores permitem o conhecimento sobre a situação que se deseja modificar, estabelecer as prioridades, escolher os beneficiados, identificar os objetivos e traduzi-los em metas e, assim, acompanhar com mais efetividade o andamento dos trabalhos, avaliar os processos, adotar os redirecionamentos necessários e verificar os resultados e os impactos obtidos. Dessa forma, aumentam as chances de serem tomadas decisões corretas e de se potencializar o uso dos recursos.

IMPORTANTE: indicadores apontam mas não resolvem problemas!

KPI - FINALIDADE

Indicadores favorecem a participação e o empoderamento das partes interessadas, as quais, embasadas em informações, podem contribuir de fato com suas visões e prioridades. Ao mesmo tempo, exigem e promovem a melhoria da capacidade organizacional e da habilidade de articulação e argumentação, favorecendo a descentralização e potencializando as chances de ocorrer o desenvolvimento sustentável

KPI - BENEFÍCIOS

Controle da organização:

- coletar dados de uma variável previamente escolhida por meio de sensores posicionados adequadamente;
- analisar os dados e detectar desvios em relação a um valor ideal ou planejado;
- colocar uma ação corretiva que diminua o gap ou desvio em relação ao valor ideal.

Medir é o primeiro passo que leva ao controle e eventualmente à melhoria.

Se você não a entende, não a controla. Se não a controla, não pode melhorá-la.

KPI - ETAPAS

Quais objetivos minha organização tem que atingir?

Exemplos

Objetivo:

Usar os dados do NPS para aumentar o boca a boca do curso

Métricas:

- > Taxa de resposta do NPS
- Notas do NPS

KPIs:

- > 70% de respostas do NPS
- > 100% dos detratores abordados

Objetivo:

 Acompanhar as notas da avaliação dos professores, para garantir qualidade do curso

Métricas:

- Quantidade de respostas
- Notas dos professores

KPIs:

- ➤ 90% de respostas
- > Todas as notas acima de 4,5

PUC Minas Virtual

Para ter bons resultados é preciso ter objetivos estratégicos bem definidos...

...e ter dados organizados e disponíveis.

Sistemas de Suporte à Decisão (SSD)

O que é SSD?

"Um interativo, flexível e adaptável sistema de informação, especialmente desenvolvido para apoiar a solução de um problema gerencial não estruturado para aperfeiçoar a tomada de decisão. Utiliza dados, provê uma interface amigável e permite ao tomador de decisão ter sua própria percepção."

Barbieri (2001)

Um sistema de suporte à decisão é um sistema que proporciona aos seus usuários, não só um acesso rápido à "sua" informação, mas também capacidade para realizar a sua análise e formatação à medida das "suas" necessidades.

Evolução SSD

Histórico SSD

https://mundomaistech.com.br/ti/transformacao-digital/voce-sabe-o-que-e-um-sistema-de-suporte-a-decisao-dss/

Modelos SSD

Modelo estático:

Example Estabelecer relacionamentos

Ex.: vender determinado produto a partir de uma idade, renda ou outro dado do consumidor.

Modelos de otimização:

Ajuda a determinar quando alocar recursos para variáveis específicas

Ex.: definir quando um estoque deverá ser reposto para evitar indisponibilidade de um item.

Modelos de previsão:

Plataforma será alimentada com dados históricos

Ex.: prever vendas e até mesmo o que a concorrência pode fazer no futuro.

Modelos de análise de sensibilidade:

Vão responder perguntas do tipo "o que-se" para determinar as consequências ao alterar alguma decisão

Ex.: "o que pode acontecer se eu elevar o preço de produto X em 5%?".

DATA DISCOVERY E ANALYTICS

Projeto e construção de aplicações OLAP

OLAP

ONLINE ANALYTICAL PROCESSING

LOREM PSUM DOLOR SIT AMET, CONSECTETUR ADRISCING EUT, SEO DO BUISMOD TEMPO INCIDIOUNT UT LABORE ET DOLORE MAGNA AUQUA UT ENM AD MINIM VERUMI QUIS NOSTRUD EXPRITATION ULLAMOD LABORIS HIS UT AUQU

VECTOR

Visão geral

Praticamente todos os executivos sabem que as tecnologias da informação são vitais para seus negócios e já as adotam de forma extensiva. Aplicações computadorizadas passaram de atividades de processamento e monitoramento de transações para tarefas de análise e solução de problemas, e boa parte disso por meio de tecnologias na nuvem, em muitos casos acessadas via dispositivos móveis.

Ferramentas de análise de dados e BI como armazenamento de dados, OLAP, Dashboards e uso de sistemas baseados na nuvem para apoio a decisões são os pilares da gestão moderna.

Evolução

Fonte: Própria (2022)

PUC Minas Virtual

O que é OLAP?

O conceito de On-Line Analytical Processing ou simplesmente **OLAP**, refere-se a um conjunto de ferramentas voltadas para acesso e análise ad hoc de dados, com o objetivo final de transformar dados em informações capazes de dar suporte às decisões gerenciais de forma amigável e flexível ao usuário e em tempo hábil.

Arquitetura de um projeto

Cubo

Um cubo é criado tendo-se em mente o tipo de consulta que um gerente de projeto pode querer fazer. Ao projetar um cubo é importante levar em conta as prováveis consultas que poderão ser feitas no cubo, porém não se deve perder de vista que existem muitas consultas potenciais que podem surgir. Portanto, o projeto de um cubo deve priorizar a escolha e a organização das dimensões que podem influenciar nas medidas relacionadas à decisão que o usuário deve tomar. A escolha das dimensões é fundamental no projeto de um cubo.

OLAP Cubes

Fonte: Própria (2022) PUC Minas Virtual

Papel	Bolsa	Mês	Lucratividade
TEL PN	Rio de Janeiro	Jan	+5%
TEL PN	Rio de Janeiro	Fev	-2%
TEL PN	Rio de Janeiro	Mar	+7%
TEL PN	São Paulo	Jan	+4%
TEL PN	São Paulo	Fev	-1%
TEL PN	São Paulo	Mar	+4%
PET PN	São Paulo	Jan	+2,5%
BB PN	Rio de Janeiro	Jan	-1%

PUC Minas Virtual

Fonte: Própria (2022)

PUC Minas Virtual

Fonte: Própria (2022)

PUC Minas Virtual

Fonte: Própria (2022)

Arquiteturas OLAP

Fonte: Arguitetura OLAP

PUC Minas Virtual

Tipos de Operações OLAP

TIPOS DE DRILL

Down	UP	Across	Throught
Usuário aumenta o nível de detalhe da informação, diminuindo a granularidade Ela influencia diretamente na velocidade do acesso às informações e no volume de dados armazenados	Exatamente o contrário do Drill Down, ocorre quando o usuário aumenta a granularidade, diminuindo o nível de detalhamento da informação	Ocorre quando o usuário pula um nível intermediário dentro de uma mesma dimensão	Ocorre quando o usuário passa de uma informação contida em uma dimensão para uma outra.
Exemplo: Estado para Cidade	Exemplo: Cidade para Estado	Exemplo: Cidade direto para País	Exemplo: Inicia na dimensão do tempo e no próximo passo analisa a informação por Estado

Fonte: DWBRASIL OLAP, 2005

Exemplos - PIVOT

Fonte: Arquitetura OLAP

PUC Minas Virtual

Exemplos – ROLL-UP / DRILL-DOWN

Fonte: Arquitetura OLAP

PUC Minas Virtual

Exemplos – DICE / SLICE

Fonte: Arquitetura OLAP

PUC Minas Virtual

Ciclo de Vida Projeto Dados

PUC Minas Virtual

Fonte: Própria (2022)

Passos de construção OLAP

Entrevista com usuários chave

Objetivo: Entender, através de uma rápida entrevista, a área, seus principais processos e as necessidades de extração de informações.

Especificação técnica

Especificação técnica

Objetivo		Status	Tema	
Dashboard Comercial - Estratégico		Ø	Cores Principais	Cores de Fundo
Requisitos/Indicadores	Apresentação/Gráfico		#4A66AC	#E7E4E8
aturamento	Card	0	#69AAB6	#FFFFFF
Qtde. Vendas	Card	O		
icket Médio	Card	O	#ACCBFA	
Qtd. Clientes	Card	O	#01B8AA	
6 Lucro - 2019 e 2020	Card	②	#UIBOAA	
aturamento Mensal - 2019 e 2020	Gráfico de Linha	②	#242852	
Previsão Anual - 3 anos	Gráfico de Linha	②		
aturamento por Canal	Gráfico de Rosca	O	#69AAB6	
aturamento por Tipo Pagamento	Gráfico de Rosca	②		
aturamento por Loja	Gráfico de Barra	②	#14406B	
aturamento por Categoria	Gráfico de Barra	O	#405575	
aturamento por Estado	Gráfico de Mapa	O	#4C5E75	
aturamento por Marca	Gráfico de Rosca	O		

Fonte: Própria (2022)

Resultados OLAP

PUC Minas Virtual

Fonte: Própria (2022)

Ferramentas OLAP

Quadrante Mágico Gartner

COGNOS

SAP

ORACLE

PENTHO

MicroStrategy

ThoughtSpot

QLIK

TABLEAU

POWER BI

REFERÊNCIAS

ANDREATTO, R. Construindo um Data Warehouse e Analisando suas Informações com Data Mining e OLAP. Monografia Final de Curso. Faculdade de Ciências Administrativas, Faculdade de Valinhos. 1999.

BARBIERI, Carlos. BI - Business Inteligence: Modelagem e tecnologia. Rio de Janeiro, Axcel Books, 2001.

CARVALHO, B.F. Arquiteturas de Ferramentas OLAP. SQL Magazine, Rio de Janeiro, ano 1, ed. 9, p.12-16, 2004.

DWBrasil. OLAP. 2007. Disponível em Acesso em 24 outubro 2007.

FERREIRA, H.; CASSIOLATO, M.; GONZALEZ, R. Uma experiência de desenvolvimento metodológico para avaliação de programas: o modelo lógico do programa segundo tempo. Texto para discussão 1369. Brasília: Ipea, 2009.

INMON, W. H. Como Construir o Data Warehouse. Rio de Janeiro: Campus, 1997.

