

Artificial & Computational Intelligence
AIML CLZG557

M1: Introduction

&

M2: Problem Solving Agent using Search

Indumathi V

Guest Faculty,

BITS - WILP

BITS Pilani
Pilani Campus

Course Plan

M1	Introduction to AI	
M2	Problem Solving Agent using Search	
M3	Game Playing	
M4	Knowledge Representation using Logics	
M5	Probabilistic Representation and Reasoning	
M6	Reasoning over time	
M7	Ethics in Al	

Exploration > learning from unknown envi

Traveller's Problem

Traveller's Problem

Lyrebird's Project Re-Voice

Voice cloning technology

Spyce

Al in Transportation

Computer Vision
NLP
ML
Speech Recognition
Automation

Rational Agents

Rational Agent

Design Principles & Techniques

	Thought / Reasoning	Acting
Human Performance	"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning, " (Bellman, 1978)	"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)
Rational Performance	"The study of computations that make it possible to perceive, reason, and act" (Winston, 1992)	"Computational intelligence is the study of the design of intelligent agents" (Poole et al., 1998)

Acting Rationally

The Rational Agent Approach

•An agent is an entity that perceives and acts

This course is about designing rational agents

- •Abstractly, an agent is a function from percept histories to actions: [f: $P^* \rightarrow A$]
- •For any given class of environments and tasks, we seek the agent (or class of agents) = with the best performance
- Computational limitations make perfect rationality unachievable
- Design best program for given machine resources

Properties of Rational Agent

Omniscience: Expected Vs Actual Performance

Learning Capability: Apriori Knowledge

Autonomous in decision making: An agent is autonomous if its behaviour

is determined by its own experience (with ability to learn and adapt)

Intelligent Agent

Lock Staa

Percepts: location and contents, e.g., [A, Dirty]

• Actions: Left, Right, Suck NoOp

Performance measure: An objective criterion for success of an agent's behaviour

E.g., performance measure of a vacuum-cleaner agent amount of dirt cleaned up

amount of time taken

amount of electricity consumed amount of noise generated, etc. DPM1 +OPML+PM1+P4

PEAS Design

Intelligent Agent

So Sucky SI

innovate achieve lead

Vacuum World Problem

Vacuum World Problem

Path finding Robot - Lab Example

PEAS Environment

Dimensions of Task Environment

Sensor Based:

Observability : Full Vs Partial

Action Based:

Dependency : Episodic Vs Sequential

State Based:

No.ofState : Discrete Vs Continuous

Agent Based:

> Cardinality : Single Vs MultiAgent

Action & State Based:

- State Determinism : Deterministic Vs Stochastic | Strategic
- Change in Time : Static Vs Dynamic

Task Environment

A rational agent is built to solve a specific task. Each such task would then have a different environment which we refer to as Task Environment

Based on the applicability of each technique for agent implementation its task environment design is determined by multiple dimension

Sensor Based:

➤ Observability: Full Vs Partial

Required Reading: AIMA - Chapter #2

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials