Partial Differential Equations with Applications to Finance

Writing time: 14:00 - 19:00.

Instructions: There are 5 problems giving a maximum of 40 points in total. The minimum score required in order to pass the course is 18 points. To obtain higher grades, 4 or 5, the score has to be at least 25 or 32 points, respectively. Bonus points do not apply. Other than writing utensils and paper, no help materials are allowed.

GOOD LUCK!

1. (8p)

i) (3p) Use the Feynman-Kac formula to solve the following initial value problem:

$$\begin{cases} u_t - u_{xx} &= 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R} \\ u(0, x) &= x^2 + 3x, \quad x \in \mathbb{R} \end{cases}$$

ii) (5p) Use the fundamental solution of the heat equation and combine it with the result in i) to compute the value of

$$\int_{\mathbb{R}} (x^2 + 3x)e^{-x^2} dx.$$

2. (8p) Suppose that r > 0, $a_j > 0$, $b_j \in \mathbb{R}$ for $j = 1, \ldots, n$. Consider the set

$$D = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{j=1}^n (a_j x_j^2 + b_j x_j) < r\}.$$

Let $X_t = kB_t, k \in \mathbb{R}$, where B_t is an n-dimensional Brownian motion starting at $(0, \ldots, 0) \in \mathbb{R}^n$. Determine the expected exit time of X_t from D by constructing a suitable Poisson problem.

3. (8p) Consider a geometric Brownian motion X_t

$$dX_t = \mu X_t dt + \sigma X_t dB_t$$

starting at $X_0 = x_0$ a.s..

- i) (2p) Write down the Kolmogorov forward (Fokker-Planck) equation satisfied by $\rho(t, x)$, the probability density function of X_t .
- ii) (5p) Denote the n-th moment of X_t by $M_n(t)$, show that

$$\frac{d}{dt}M_1(t) = \mu M_1(t),$$

and

$$\frac{d}{dt}M_n(t) = \left(\mu n + \frac{\sigma^2}{2}n(n-1)\right)M_n(t), \quad n \ge 2.$$

You may assume that the density function decays sufficiently fast at infinity.

- iii) (1p) Use ii) to calculate $\mathbb{E}[X_t^2]$.
- 4. (8p) Let X_t^{α} satisfy the SDE

$$dX_t^{\alpha} = \alpha_t dt + \sigma dB_t,$$

where B_t is a standard Brownian motion, $\alpha_t \in \mathbb{R}$ is the control process. Solve the following minimisation problem

$$V(x) = \inf_{\alpha \in \mathbb{R}} \mathbb{E}_x \left[\int_0^\infty e^{-\rho t} ((X_t^{\alpha})^2 + \theta \alpha_t^2) dt \right]$$

where ρ , θ are positive constants. You **do not** need to prove the verification theorem for your solution.

Hint: use the ansatz $V(x) = ax^2 + b$ for some constants a, b.

5. (8p) Consider the stock price process X_t with the following dynamics:

$$dX_t = (r - \delta)X_t dt + \sigma X_t dB_t,$$

where r > 0 and $\delta \ge 0$. Consider the price of an American call option:

$$V(x) = \sup_{\tau} \mathbb{E}_{0,x}[e^{-r\tau}(X_{\tau} - K)^{+}]$$

for some strike K > 0.

- i) When $\delta > 0$, solve the optimal stopping problem above. You **do not** need to prove the verification theorem for your solution.
- ii) When $\delta = 0$, argue that it is never optimal to exercise.