Yelp Review Analysis

BIG DATA (CS GY 6513)

Srividhya Ravichandran (sr5962) Viswanath Nagarajan (vn2065) Priyanka Shelar (ps4497) Anand Pitale (avp5522)

Problem Statement and Motivation:

Motivation:

A research indicates that a one-star increase led to 59% increase in revenue of independent restaurants. Therefore, we see great potential of Yelp dataset as a valuable insights repository.

Problem Statement:

- Determine if customers like the food by performing an analysis on different cuisines of restaurants and the reviews they have received on Yelp.
- Recommend restaurants to customers based on their liking.

Architecture / System Design

Why Kafka:

Fast writes:

While Kafka persists all data to disk, essentially all writes go to the **page cache** of OS, i.e. RAM.

Fast **reads**:

Very efficient to transfer data from page cache to a network **socket**

How kafka helps

The who is who

- -Producers write data to brokers.
- -Consumers read data from brokers.
- -All this is distributed.

The data

- -Data is stored in **topics**.
- -Topics are split into partitions, which are replicated.

ELT Process

Data Processing Steps

Collection - Data is fetched using Yelp Fusion API.

The Yelp dataset is a subset of businesses, reviews, and user data for use in personal, educational, and academic purposes available as JSON data.

address	1	attributes	business_id	cate	gories	city		hours	is_open	latitude	longitude	name
935 Race St	{null, nu	l, u'no	MTSW4McQd7CbVtyjq	Restaurants, Fo	ood	Philadelphia	{7:0-21:0,	7:0-20	1	39.9555052	-75.1555641	St Honore Pastries
8025 Mackenzie Rd	{null, nu	.l, u'fu	k0hlBqXX-Bt0vf1op	Pubs, Restaura	nts	Affton		null	0	38.5651648	-90.3210868	Tsevi's Pub And G
2312 Dickerson Pike			bBDDEgkFA10tx9Lfe				{6:0-16:0,			36.2081024	-86.7681696	Sonic Drive-In
			eEOYSgkmpB90uNA71							27.9552692	-82.4563199	Vietnamese Food T
8901 US 31 S	{null, nu	1, 'non	il_Ro8jwPlHresjw9	American (Trad:	iti	Indianapolis	{6:0-22:0,	6:0-22	1	39.6371332838		
2575 E Bay Dr	{null, nu	l, u'no	0bPLkL0QhhP05kt1	Food, Delis, I	tal	Largo	{10:0-20:0,	10:0	0	27.9161159	-82.7604608	Zio's Italian Market
205 Race St	{null, nu	l, 'ful	MUTTqe8uqyMdBl186	Sushi Bars, Res	sta	Philadelphia	{13:30-23:6	, null	1	39.953949	-75.1432262	Tuna Bar
1224 South St	{null, nu	.l, u'no	ROeacJQwBeh05Rqg7	Korean, Restau	urants	Philadelphia	{11:30-20:3	30, 11:	1	39.943223	-75.162568	BAP
6625 E 82nd St	{null, nu	l, null	kfNv-JZpuN6TVNSO6	Steakhouses, As	sia	Indianapolis	{11:0-21:0,	11:0	1	39.9043203184	-86.0530799	Hibachi Express
5505 S Virginia St	{null, nu	l, 'ful	90G5YkX1g2GReZM0A	Restaurants, It	talian	Reno	{11:0-21:0,	11:0	1	39.4761165	-119.7893392	Romano's Macaroni
215 1st Ave S	{null, nu	1, u'fu	tMkwHmWFUEXrC9Zdu	Restaurants, Ja	apa	Nashville	{16:0-23:0,	null,	0	36.1598858	-86.7731974	The Green Pheasant
767 S 9th St	{null, nu	l, u'fu	QdN72BWoyFypdGJhh	Cocktail Bars,	Ва	Philadelphia	{12:0-2:0,	16:0-0	0	39.9398245705	-75.1574465632	Bar One
4105 Main St	{null, nu	1, u'no	Mjboz24M9NlBeiOJK	Pizza, Restaura	ant	Philadelphia	{17:0-0:30,	null,	0	40.0224662	-75.218314	DeSandro on Main
10 Rittenhouse Pl	{null, nu	1, u'no	kV Q1oqis8Qli8dUo	Pizza, Restau	urants	Ardmore	{11:0-1:0,	11:0-0	1	40.0067071	-75.289671	Ardmore Pizza
901 N Delaware Ave	{null, nu	l, null	aPNXGTDkf-4bjhyMB	Eatertainment,	Ar	Philadelphia	{16:0-19:0,	0:0-0	1	39.9625821	-75.1356571	Craft Hall
16 N Pottstown Pike	{null, nu	l, u'fu	2xVsWBNFwZOxIOdd9	Restaurants, Bu	urgers	Exton		null	0	40.029962	-75.630607	Cheeseburger In P
312 Piasa St	{null, nu	1, u'fu	ljxNT9p0y7YMPx0fc	Restaurants, Sp	pec	Alton	{16:0-22:0,	0:0-0	1	38.896563	-90.1862032987	Tony's Restaurant
625 W Valencia R	{null, nu	1, 'bee	wghnIlMb_i5U46HMB	Restaurants, C	hinese	Tucson	{11:0-21:0,	11:0	0	32.1323047	-110.9999851	China Dragon Rest
2031 Broadway	{null, nu	1, u'be	lk9IwjZXqUMqqOhM7	Coffee & Tea, I	Res	Nashville	{7:0-17:0,	7:0-17	0	36.1483712		
			uI9XODGY 2 ieTE6x				{11:30-22:6), 11:3	0	28.0462028173	-82.5050526736	Roman Forum

only showing top 20 rows

Data Processing Steps

Cleansing

Raw data is checked for any errors. The purpose of this step is to eliminate bad data(redundant,incomplete or incorrect data)

Organization & Processing

Data require indexing, sorting and then processing. Handling variable categorical / numerical and correlated features.

Visualization

Gives us a clear idea of what the information means by giving it visual context through graphs. Easier to identify trends, patterns, and outliers within large data sets

Cuisine Categories

Count of Restaurants by State & City

Popular Restaurants

• Shows Popularity of restaurants

More reviews indicates popularity

Distribution of Ratings

Distribution of total number of restaurants based on ratings by users

Class distribution

Labels	Count
Positive	91680
Negative	27644

Model specifications

- Ratings > = 4 (Positive)
- Ratings < 4 (Negative)

Percent of +ve Reviews/Category

Percentage of -ve Reviews/Category

Higher percentage of negative reviews for cuisines like Chinese and mexican compared to Vietnamese, French

Percentage of negative reviews per restaurant

 Restaurant with Best and Worst respective review %.

 Minimum review count of 100 or more for restaurants.

Analyzing +ive and -ive reviews

Average length of reviews per class.

Positive reviews have a lower word count compared to negative reviews.

Natural Language Processing

Approach:

- Converting text to lowercase
- Removing non Ascii characters, punctuations, stopwords
- Fixing abbreviations

+	+			+	+	++
text	labels	Target	lower_text	text_non_asci	fixed_abbrev	removed_features
as a local new or this has been my the atmosphere is cant wait to get i am a vegetarian	positive negative positive	1 0 1	this has been my the atmosphere is cant wait to get	this has been my the atmosphere is can not wait to g	this has been my the atmosphere is can not wait to g	as a local new or this has been my the atmosphere is can not wait to g i am a vegetarian
only showing top 5 row	1 IS		+	+	t	++

- Stemming
 - finding the root of words
- Lemmatization
 - finding the form of the related word in the dictionary
- Vectorizer (Count and TF-id)
 - Assigning values to words as per count (CV) and their importance (TF-id)

label	features		words	labels	text
0.0	(65536,[338,1578,		[zorbas, is, the,	positive	zorbas is the bes
0.0	(65536,[239,513,1	(65536,[239,513,1	[zona, zona, zona	positive	zona zona zona ha
0.0	(65536, [1689, 2692]	(65536, [1689, 2692	[zona, 78, is, my	positive	zona 78 is my fav
0.0	(65536, [1587, 1981]	(65536, [1587, 1981	[zoes, is, keepin	positive	zoes is keeping i
0.0	(65536, [1608, 1743]	(65536, [1608, 1743]	[zinc, is, the, b	positive	zinc is the best

NLP Modeling - Logistic Regression

- Logistic Regression is used to classify elements of a set into two groups (binary classification) by calculating the probability of each element of the set.
- It uses the sigmoid function to calculate the probabilities of each class between
 O and 1. If the probability of a class is greater than .5, it will be assigned class 1
 (positive) else 0 (negative).

Logistic Regression Results

[[8446 686] [414 2382]] 0.90778001341					
	precision	recall	f1-score	support	
0.0	0.95	0.92	0.94	9132	
1.0	0.78	0.85	0.81	2796	
accuracy			0.91	11928	
macro avg	0.86	0.89	0.88	11928	
weighted avg	0.91	0.91	0.91	11928	

Restaurant Recommendations

- Content Based Filtering using K-Nearest Neighbours
- Collaborative Filtering using SVD

Content Based Filtering

KNN:

- It takes similarities between two restaurant based on their features into consideration for recommendation.
- Euclidean dist was taken as selection criteria.

Preprocessing:

- Following features have been used:
 ['index', 'business_id', 'name', 'address', 'categories', 'attributes', 'stars', 'BusinessParking', 'Ambience', 'GoodForMeal', 'Dietary', 'Music']
- For categorical data such as 'GoodForMeal', 'attributes' etc. we created one hot encoding.

Results for Content Based Filtering using KNN

Restaurant indices for restaurants that are similar to 'Adelita Taqueria & Restaurant'

	distance	index	name	stars
0	4.000000	2329	Los Taquitos de Puebla	4
1	4.123106	2312	Yummy Sushi	4
2	4.242641	888	The Flavor Spot	4
3	4.358899	2573	Maker artisan pizza	4
4	4.358899	1488	Mood Indian Restaurant	4

Collaborative Filtering

Singular Value Decomposition:

- We used SVD to generate recommendations based on user's taste and likings.
- Pearson correlation coefficient was used as the selection criteria.

Preprocessing:

- We created a user rating matrices where rows are user_ids and columns are the ratings given to a particular restaurants. We apply SVD to this matrix due to its sparsity.
- We created the correlation matrix from the above matrix. For any restaurant, we create a list of restaurants from the correlation matrix which have high correlation value with the given restaurant.

Results for Collaborative Filtering

	taurants s ading Term	imilar to ninal Market are:
	corr_val	restaurant_name
0	0.999662	3J's Food Market
1	0.999722	@Ramen
2	0.921199	AmeriThai
3	0.999876	Bistro La Baia
4	0.963554	Café Soho

Future Scope

- Integrate our model with google maps to get location and recommend restaurants taking distance from current location into consideration.
- Fake reviews identification.
- Using Deep Learning techniques to enhance our models (LSTM for Review Analysis).