CHAPTER 2: PANEL DATA

Joan Llull

Microeconometrics IDEA PhD Program

Introduction

Panel data

The term **panel data** refers to data sets with **repeated observations** over time for a given cross-section of individuals.

Individuals can be persons, households, firms, countries,...

It is different from repeated cross-sections.

Main advantages of panel data:

- Permanent unobserved heterogeneity
- Dynamic responses and error components

Micro and macro panel data

Micro panel data usually has large N, small T (e.g. household surveys).

Macro panel data usually have longer T, but smaller N (e.g. daily stock market returns for three composites).

Our interest here: fixed T, $N \to \infty$ (micro panels).

Approaches are closer to cross-section approaches than to time series.

STATIC MODELS

General notation

We consider the following **model**:

$$y_{it} = \boldsymbol{x}_{it}'\boldsymbol{\beta} + (\eta_i + v_{it})$$

where y_{it} and x_{it} are **observed**, and $\eta_i + v_{it}$ is **unobserved**.

Let $\{y_{it}, \boldsymbol{x}_{it}\}_{i=1,\dots,N}^{t=1,\dots,T}$ be our **sample**. We define:

$$egin{aligned} oldsymbol{y}_i \equiv egin{pmatrix} y_{i1} \ dots \ y_{iT} \end{pmatrix}, X_i = egin{pmatrix} oldsymbol{x}'_{i1} \ dots \ oldsymbol{x}'_{iT} \end{pmatrix}, oldsymbol{\eta}_i = \eta_i oldsymbol{\iota}_T, ext{ and } oldsymbol{v}_i = egin{pmatrix} v_{i1} \ dots \ v_{iT} \end{pmatrix}, \end{aligned}$$

$$m{y} \equiv egin{pmatrix} m{y}_1 \ dots \ m{y}_N \end{pmatrix}, X = egin{pmatrix} X_1 \ dots \ X_N \end{pmatrix}, m{\eta} = egin{pmatrix} m{\eta}_1 \ dots \ m{\eta}_N \end{pmatrix}, ext{ and } m{v} = egin{pmatrix} m{v}_1 \ dots \ m{v}_N \end{pmatrix},$$

where ι_T is a size T vector of ones.

Hence, we can use the following **compact notation**:

$$y_i = X_i \boldsymbol{\beta} + (\boldsymbol{\eta}_i + \boldsymbol{v}_i), \quad \text{and} \quad \boldsymbol{y} = X \boldsymbol{\beta} + (\boldsymbol{\eta} + \boldsymbol{v})$$

General assumptions for static models

For static models, we assume:

- Fixed effects: $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ or random effects: $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.
- Strict exogeneity: $\mathbb{E}[\boldsymbol{x}_{it}v_{is}] = 0 \ \forall s, t$. This assumption rules out effects of past v_{is} on current \boldsymbol{x}_{it} (e.g. \boldsymbol{x}_{it} cannot include lagged dependent variables).
- Error components: $\mathbb{E}[\eta_i] = \mathbb{E}[v_{it}] = \mathbb{E}[\eta_i v_{it}] = 0.$
- Serially uncorrelated shocks: $\mathbb{E}[v_{it}v_{is}] = 0 \ \forall s \neq t$.
- Homoskedasticity and i.i.d. errors: $\eta_i \sim iid(0, \sigma_{\eta}^2)$ and $v_{it} \sim iid(0, \sigma_v^2)$, which does not affect any crucial result, but simplifies some derivations.

Pooled OLS

A simple approach: define: $u \equiv \eta + v$ and estimate β by OLS:

$$\hat{\boldsymbol{\beta}}_{OLS} = (X'X)^{-1}X'\boldsymbol{y}.$$

The **properties** of $\hat{\boldsymbol{\beta}}_{OLS}$ depend on $\mathbb{E}[\boldsymbol{x}_{it}\eta_i]$, as $\mathbb{E}[\boldsymbol{x}_{it}v_{it}] = 0$:

- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0 \Rightarrow_{\mathbb{E}[\boldsymbol{x}_{it},\boldsymbol{y}_{it}]=0} \mathbb{E}[\boldsymbol{x}_ju_j] = 0$ (random effects):
 - $\hat{\boldsymbol{\beta}}_{OLS}$ is **consistent** as $N \to \infty$, or $T \to \infty$, or both.
 - it is **efficient** only if $\sigma_{\eta}^2 = 0$.
- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0 \Rightarrow \mathbb{E}[\boldsymbol{x}_ju_j] \neq 0$ (fixed effects):
 - $\hat{\boldsymbol{\beta}}_{OLS}$ is inconsistent as $N \to \infty$, or $T \to \infty$, or both.
 - cross-section results are also inconsistent (but panel helps in constructing a consistent alternative).

The fixed effects model. Within groups estimation.

Within groups estimator

Write the model in **deviations from individual means**, $\tilde{y}_{it} \equiv y_{it} - \bar{y}_i$, where $\bar{y}_i \equiv T^{-1} \sum_{t=1}^T y_{it}$:

$$\tilde{y}_{it} = (\boldsymbol{x}_{it} - \bar{\boldsymbol{x}}_i)'\boldsymbol{\beta} + (\eta_i - \bar{\eta}_i) + (v_{it} - \bar{v}_i) \equiv \tilde{\boldsymbol{x}}'_{it}\boldsymbol{\beta} + \tilde{v}_{it}.$$

Given the previous assumptions:

$$\mathbb{E}[\tilde{\boldsymbol{x}}_{it}\tilde{v}_{it}] = 0.$$

Therefore, **OLS** on the transformed model:

$$\hat{\pmb{\beta}}_{WG} = \left(\tilde{X}'\tilde{X}\right)^{-1}\tilde{X}'\tilde{y},$$

is a **consistent** estimator either if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ or $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.

Strict exogeneity is a crucial assumption.

Pros and cons of within groups estimator

Advantage: consistent either if $\mathbb{E}[\mathbf{x}_{it}\eta_i] \neq 0$ or $\mathbb{E}[\mathbf{x}_{it}\eta_i] = 0$.

Limitations:

• Not efficient:

- When $N \to \infty$ but T is fixed, less efficient that e.g. $\hat{\boldsymbol{\beta}}_{GLS}$ if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.
- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$, still not efficient: OLS on the transformed model not taking into account autocorrelation from \bar{v}_i being in all observations for individual i.
- Does not allow identification of coefficients for **time-invariant regressors**, and identification of other coefficients is provided by **switchers**.

Least Squares Dummy Variables

The Within Groups estimator can also be obtained by including a set of N individual **dummy variables**:

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \eta_1 D_{1i} + ... + \eta_N D_{Ni} + v_{it},$$

where $D_{hi} = \mathbb{1}\{h = i\}$ (e.g. D_{1i} takes the value of 1 for the observations on individual 1 and 0 for all other observations).

OLS estimation of this model gives numerically equivalent estimates to WG (that's why $\hat{\beta}_{WG}$ is a.k.a. $\hat{\beta}_{LSDV}$).

First-Differenced Least Squares

Another transformation we can consider is **first differences**:

$$\Delta y_{it} = \Delta x'_{it} \beta + \Delta v_{it}$$
, for $i = 1, ..., N; t = 2, ..., T$

where $\Delta y_{it} = y_{it} - y_{it-1}$.

Takes out time-invariant individual effects ($\Delta \eta_i = \eta_i - \eta_i = 0$), so OLS on the differenced model is **consistent**.

Consistency requires $\mathbb{E}[\Delta x_{it} \Delta v_{it}] = 0$ which is implied by but weaker than strict exogeneity.

WG more efficient than FDLS under classical assumptions.

FDLS more efficient if v_{it} random walk $(\Delta v_{it} = \varepsilon_{it} \sim iid(0, \sigma_{\varepsilon}^2))$.

The random effects model. Error components.

$Uncorrelated\ effects$

Now we assume uncorrelated or random effects: $\mathbb{E}[x_{it}\eta_i] = 0$.

In this case, OLS is consistent, but not efficient.

The inefficiency is provided by the **serial correlation** induced by the presence of η_i in the error term:

$$\mathbb{E}[u_{it}u_{is}] = \mathbb{E}[(\eta_i + v_{it})(\eta_i + v_{is})] = \mathbb{E}[\eta_i^2] = \sigma_\eta^2, \quad \text{for } s \neq t.$$

The variance of the unobservables (under classical assumptions) is:

$$\mathbb{E}[u_{it}^2] = \mathbb{E}[\eta_i^2] + \mathbb{E}[v_{it}^2] = \sigma_\eta^2 + \sigma_v^2$$

Error structure

Therefore, the variance-covariance matrix of the unobservables is:

$$\mathbb{E}[oldsymbol{u}_ioldsymbol{u}_i'] = egin{pmatrix} \sigma_\eta^2 + \sigma_v^2 & \sigma_\eta^2 & \dots & \sigma_\eta^2 \ \sigma_\eta^2 & \sigma_\eta^2 + \sigma_v^2 & \dots & \sigma_\eta^2 \ dots & dots & \ddots & dots \ \sigma_\eta^2 & \sigma_\eta^2 & \dots & \sigma_\eta^2 + \sigma_v^2 \end{pmatrix} = \Omega_i,$$

whose dimensions are $T \times T$, and $\mathbb{E}[\boldsymbol{u}_i \boldsymbol{u}_h'] = 0 \ \forall \ i \neq h$, or:

$$\mathbb{E}[oldsymbol{u}oldsymbol{u}'] = egin{pmatrix} \Omega_1 & 0 & \dots & 0 \ 0 & \Omega_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \Omega_N \end{pmatrix} = \Omega,$$

which is block-diagonal with dimension $NT \times NT$.

Generalized Least Squares

Under the classical assumptions, GLS (Balestra-Nerlove) estimator is **consistent and efficient** if $\mathbb{E}[x_{it}\eta_i] = 0$:

$$\hat{\boldsymbol{\beta}}_{GLS} = \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} \boldsymbol{y}.$$

If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ GLS is **inconsistent** as $N \to \infty$ and T is fixed.

This estimator is **unfeasible** because we do not know σ_{η}^2 and σ_{v}^2 .

Theta-differencing

 $\hat{\boldsymbol{\beta}}_{GLS}$ is **equivalent** to OLS on the theta-differenced model:

$$y_{it}^* = \boldsymbol{x_{it}^*}'\boldsymbol{\beta} + u_{it}^*,$$

where:

$$y_{it}^* = y_{it} - (1 - \theta)\bar{y}_i,$$

and:

$$\theta^2 = \frac{\sigma_v^2}{\sigma_v^2 + T\sigma_n^2}.$$

Consistency relies on $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$ (as η_i not eliminated).

Two special cases:

- If $\sigma_{\eta}^2 = 0$ (i.e. no individual effect), OLS is efficient.
- If $T \to \infty$, then $\theta \to 0$, and $y_{it}^* \to \tilde{y}_{it} = y_{it} \bar{y}_i$: WG is efficient.

Feasible GLS

 $\hat{\boldsymbol{\beta}}_{GLS}$ is **unfeasible** because we do not know σ_{η}^2 and σ_{v}^2 .

A consistent estimator of σ_v^2 is provided by the **WG residuals**:

$$\hat{\tilde{v}}_{it} \equiv \tilde{y}_{it} - \tilde{\boldsymbol{x}}_{it}' \hat{\boldsymbol{\beta}}_{WG}$$

$$\hat{\sigma}_v^2 = \frac{\hat{\boldsymbol{v}}'\hat{\boldsymbol{v}}}{N(T-1) - K}$$

Then, a consistent estimator of σ_{η}^2 is given by the **BG residuals**:

$$\bar{y}_i = \bar{x}_i' \beta + \bar{\eta}_i + \bar{v}_i, \quad i = 1, ..., N \Rightarrow \hat{\beta}_{BG}$$

$$\hat{\bar{u}}_i \equiv \bar{y}_i - \bar{\boldsymbol{x}}_i' \hat{\boldsymbol{\beta}}_{BG}$$

$$\hat{\sigma}_{\bar{u}}^2 = (\sigma_{\eta}^2 + \frac{1}{T}\sigma_v^2) = \frac{\hat{\boldsymbol{u}}'\hat{\boldsymbol{u}}}{N - K} \quad \Rightarrow \quad \hat{\sigma}_{\eta}^2 = \hat{\sigma}_{\bar{u}}^2 - \frac{1}{T}\hat{\sigma}_v^2.$$

Testing for correlated individual effects

Testing for correlated effects (Hausman test)

 $\hat{\boldsymbol{\beta}}_{WG}$ is **consistent regardless** of $\mathbb{E}[\boldsymbol{x}_{it}\eta_i]$ being equal to zero or not.

 $\hat{\boldsymbol{\beta}}_{FGLS}$ is consistent only if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i]=0$.

⇒ we can test whether both estimates are similar!

The **Hausman test** does exactly this comparison:

$$h = \hat{\boldsymbol{q}}'[avar(\hat{\boldsymbol{q}})]^{-1}\hat{\boldsymbol{q}} \overset{a}{\sim} \chi^2(K)$$

under the **null hypothesis** $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$, where:

$$\hat{m{q}} = \hat{m{eta}}_{WG} - \hat{m{eta}}_{FGLS},$$

and:

$$avar(\hat{\boldsymbol{q}}) = avar\left(\hat{\boldsymbol{\beta}}_{WG}\right) - avar\left(\hat{\boldsymbol{\beta}}_{FGLS}\right).$$

Requires classical assumptions (FGLS to be more efficient than WG).

DYNAMIC MODELS

Autoregressive models with individual effects

Autorregressive panel data model

We consider the following model:

$$y_{it} = \alpha y_{it-1} + \eta_i + v_{it} \quad |\alpha| < 1.$$

Other regressors can be included, but main results unaffected.

We assume:

- Error components: $\mathbb{E}[\eta_i] = \mathbb{E}[v_{it}] = \mathbb{E}[\eta_i v_{it}] = 0$.
- Serially uncorrelated shocks: $\mathbb{E}[v_{it}v_{is}] = 0 \ \forall \ s \neq t$.
- Predetermined initial cond.: $\mathbb{E}[y_{i0}v_{it}] = 0 \ \forall \ t = 1,...,T$.

Properties of pooled OLS and WG estimators

Even assuming $\mathbb{E}[y_{it-1}v_{it}] = 0$, still **OLS** delivers:

$$\underset{N \to \infty}{\text{plim}} \, \hat{\alpha}_{OLS} > \alpha,$$

because
$$\mathbb{E}[y_{it-1}\eta_i] = \sigma_{\eta}^2\left(\frac{1-\alpha^{t-1}}{1-\alpha}\right) > 0.$$

Doing the within groups transformation we see that:

$$\underset{N \to \infty}{\text{plim}} \, \hat{\alpha}_{WG} < \alpha$$

because $\mathbb{E}[\tilde{y}_{it-1}\tilde{v}_{it}] = -A_T(\alpha)\sigma_v^2 < 0$ since $A_T(\alpha) > 0$ for $\alpha < 1$ and $T < \infty$.

 $A_{\infty}(\alpha) = 0 \Rightarrow$ WG bias vanishes as $T \to \infty$ (but bias is still large even with reasonably large T, like T = 15).

Supposedly consistent estimators that give $\hat{\alpha} >> \alpha_{OLS}$ or $\hat{\alpha} << \hat{\alpha}_{WG}$ should be seen with suspicion.

Anderson and Hsiao

Consider the model in **first differences**:

$$\Delta y_{it} = \alpha \Delta y_{it-1} + \Delta v_{it}.$$

OLS in first differences is **inconsistent**: $\mathbb{E}[\Delta y_{it-1} \Delta v_{it}] = -\sigma_v^2 < 0$.

However, y_{it-2} or Δy_{it-2} are valid **instruments** for Δy_{it-1} :

- Relevance: $\mathbb{E}[\Delta y_{it-2} \Delta y_{it-1}] \neq 0$ and $\mathbb{E}[y_{it-2} \Delta y_{it-1}] \neq 0$.
- Orthogonality: $\mathbb{E}[\Delta y_{it-2} \Delta v_{it}] = \mathbb{E}[y_{it-2} \Delta v_{it}] = 0.$

Anderson and Hsiao (1981) proposed this **2SLS estimators**:

$$\hat{\alpha}_{AH} = \left(\widehat{\Delta y'_{-1}} \widehat{\Delta y_{-1}}\right)^{-1} \widehat{\Delta y'_{-1}} \Delta y,$$

where:

$$\widehat{\Delta \boldsymbol{y}_{-1}} = Z \left(Z'Z \right)^{-1} Z' \Delta \boldsymbol{y}_{-1},$$

where Z can be y_{-2} or Δy_{-2} .

Requires min. three periods $(T = 2 \text{ and } y_{i0})$. Only efficient if T = 2.

Differenced GMM estimation

Moment conditions

Given previous assumptions, several moment conditions:

Equation	Instruments	Orthogonality cond.
$\Delta y_{i2} = \alpha \Delta y_{i1} + \Delta v_{i2}$	y_{i0}	$\mathbb{E}[\Delta v_{i2}y_{i0}] = 0$
$\Delta y_{i3} = \alpha \Delta y_{i2} + \Delta v_{i3}$	y_{i0}, y_{i1}	$\mathbb{E}\left[\Delta v_{i3}egin{pmatrix} y_{i0} \ y_{i1} \end{pmatrix} ight] = 0$
$\Delta y_{i4} = \alpha \Delta y_{i3} + \Delta v_{i4}$	y_{i0},y_{i1},y_{i2}	$\mathbb{E}\left[\Delta v_{i4}egin{pmatrix} y_{i0} \ y_{i1} \ y_{i2} \end{pmatrix} ight] = 0$
;	:	<u>:</u>
$\Delta y_{iT} = \alpha \Delta y_{iT-1} + \Delta v_{iT}$	$y_{i0}, y_{i1}, y_{i2},, y_{iT-2}$	$\mathbb{E}\left[\Delta v_{iT} \begin{pmatrix} y_{i0} \\ y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT-2} \end{pmatrix}\right] = 0$

We end up with (T-1)T/2 moment conditions.

Moment conditions in matrix form

We can write these **moment conditions** as $\mathbb{E}[Z_i'\Delta v_i] = 0$, where:

$$Z_i = \begin{pmatrix} y_{i0} & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & y_{i0} & y_{i1} & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & 0 & \dots & y_{i0} & y_{i1} & \dots & y_{iT-2} \end{pmatrix} \text{ and } \Delta \boldsymbol{v}_i = \begin{pmatrix} \Delta v_{i2} \\ \Delta v_{i3} \\ \vdots \\ \Delta v_{iT} \end{pmatrix},$$

and the sample analogue is:

$$\boldsymbol{b}_N(\alpha) = \frac{1}{N} \sum_{i=1}^{N} Z_i' \Delta \boldsymbol{v}_i(\alpha)$$

Hence, the **GMM estimator** (proposed by Arellano and Bond, 1991) is:

$$\hat{\alpha}_{GMM} = \arg\min_{\alpha} \left(\frac{1}{N} \sum_{i=1}^{N} \Delta \boldsymbol{v}_{i}'(\alpha) Z_{i} \right) W_{N} \left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}' \Delta \boldsymbol{v}_{i}(\alpha) \right) =$$

$$= (\Delta \boldsymbol{y}_{-1}' Z W_{N} Z' \Delta \boldsymbol{y}_{-1})^{-1} \Delta \boldsymbol{y}_{-1}' Z W_{N} Z' \Delta \boldsymbol{y}$$

Optimal weighting matrix

The optimal weighting matrix (efficient GMM) is:

$$W_N = \left(rac{1}{N}\sum_{i=1}^{\mathrm{N}}\mathbb{E}[Z_i'\Deltaoldsymbol{v}_i\Deltaoldsymbol{v}_i'Z_i]
ight)^{-1}$$

The sample analogue is obtained in a two-step procedure:

$$W_N = \left(\frac{1}{N} \sum_{i=1}^{N} [Z_i' \widehat{\Delta v_i(\hat{\alpha})} \widehat{\Delta v_i'(\hat{\alpha})} Z_i]\right)^{-1}$$

Windmeijer (2005) proposes a finite sample correction of the variance that accounts for α being estimated.

The most common **one-step** (and first-step) matrix uses the structure of $\mathbb{E}[\Delta v_i \Delta v_i']$:

$$\mathbb{E}[\Delta m{v}_i \Delta m{v}_i'] = \sigma_v^2 egin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \ -1 & 2 & -1 & 0 & \dots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & 2 \end{pmatrix}$$

Potential limitations of Arellano-Bond

Weak instruments:

- When $\alpha \to 1$, relevance of the instrument decreases.
- Instruments are still valid, but have poor small sample properties.
- Monte Carlo evidence shows that with $\alpha > 0.8$, estimator behaves poorly unless huge samples available.
- There are alternatives in the literature.

Overfitting:

- ullet "Too many" instruments if T relative to N is relatively large.
- We might want to **restrict** the number of instruments used.
- It is always good practice to check robustness to different combinations of instruments.

System GMM estimation

$Additional\ orthogonality\ conditions$

Recall our (T-1)T/2 moment conditions:

$$\mathbb{E}[y_{it-s}\Delta v_{it}] = 0 \quad t = 2, ..., T; s \ge 2$$

System GMM (Arellano and Bover, 1995) uses the assumption $\mathbb{E}[y_{i0}|\eta_i] = \frac{\eta_i}{1-\alpha}$, which implies:

$$\mathbb{E}[\Delta y_{is}\eta_i] = 0,$$

or, alternatively:

$$\mathbb{E}[\Delta y_{iT-s}u_{iT}] = 0, \quad u_{iT} \equiv \eta_i + v_{iT}, \quad s = 1, ..., T - 1.$$

The System GMM estimator

Analogously to the first-differenced GMM, the estimator is given by $\mathbb{E}[(Z^*)'u_i^*] = 0$:

$$\hat{\alpha}_{Sys-GMM} = ((X^*)'Z^*W_N(Z^*)'X^*)^{-1}X^*Z^*W_N(Z^*)'\boldsymbol{y}^*,$$

where:

$$Z_i^* \equiv \begin{pmatrix} Z_i & \mathbf{0} & \dots & \mathbf{0} \\ 0 & \Delta y_{i1} & \dots & \Delta y_{iT-1} \end{pmatrix}, \boldsymbol{u}_i^* \equiv \begin{pmatrix} \Delta \boldsymbol{v}_i \\ \eta_i + v_{iT} \end{pmatrix}, X_i^* \equiv \begin{pmatrix} \Delta \boldsymbol{y}_{-1i} \\ y_{iT-1} \end{pmatrix} \text{ and } \boldsymbol{y}_i^* \equiv \begin{pmatrix} \Delta \boldsymbol{y}_i \\ y_{iT} \end{pmatrix}$$

This estimator is **more efficient**, as it uses additional moment conditions.

It reduces small sample bias, especially when $\alpha \to 1$

Specification Tests

$Overidentifying\ restrictions$

The null hypothesis is whether the **orthogonality** conditions are **satisfied** (i.e. moments are equal to zero).

The test can only be implemented if the problem is **overidentified** (otherwise the sample moments are exactly zero by construction).

The test is:

$$S = NJ_N(\beta) = N\left(\frac{1}{N}\sum_{i=1}^N \hat{\boldsymbol{u}}_i'Z_i\left(\frac{1}{N}\sum_{i=1}^N Z_i'\hat{\boldsymbol{u}}_i\hat{\boldsymbol{u}}_i'Z_i\right)^{-1}\frac{1}{N}\sum_{i=1}^N Z_i'\hat{\boldsymbol{u}}_i\right),$$

where \hat{u} are predicted residuals from the first step and $\hat{\hat{u}}$ are those predicted from the second stage. Under the null,

$$S \stackrel{a}{\sim} \chi^2(L-K).$$

If some assumptions are stronger than others: **include or exclude** the orthogonality conditions generated by them.

If they are true, increase efficiency, but if not, inconsistent! \Rightarrow Difference in Sargan or Hausman test.

Direct test for serial correlation

The test was proposed by Arellano-Bond (1991).

Tests for the presence of **second order autocorrelation** in the first-differenced residuals.

If differences in residuals are second-order correlated, some instruments would not be valid!

The **test** is:

$$m_2 = \frac{\widehat{\Delta v}_{-2}' \widehat{\Delta v}_*}{se} \stackrel{a}{\sim} \mathcal{N}(0,1),$$

where Δv_{-2} is the second lagged residual in differences, and Δv_* is the part of the vector of contemporaneous first differences for the periods that overlap with the second lagged vector.

Values close to zero do not reject the hypothesis of **no serial** correlation.