Chapter 1

Open and Closed Sets

We will describe some concepts that generalize open/closed intervals. This chapter also serves as a very light introduction to topology—specifically, the topology of the real number line.

1.1 Open Sets

Definition 1.1.1 ▶ Open Set

Intuitively, set is *open* if it does not contain any of its "boundary points", such as minimum or maximum.

More formally, $A \subseteq \mathbb{R}$. We say A is *open* if, for all $x \in A$, there exists r > 0 such that $(x - r, x + r) \subseteq A$.

$$\forall (x \in A) \exists (r > 0) ((x - r, x + r) \subseteq A)$$

Example 1.1.2 \triangleright [0, 1) is not open

The interval [0, 1) is not open.

Proof.
$$0 \in [0, 1)$$
, but $(0 - r, 0 + r) \nsubseteq [0, 1)$ for any $r > 0$.

Definition 1.1.3 ▶ Open Ball

We call the interval (x-r, x+r) the *open ball* of radius r centered at x, notated as B(x,r) or $B_r(x)$.

 \bigcirc

$$B(x,r) = B_r(x) = (x - r, x + r)$$

This new notation lets us write ideas more succinctly. For example, \mathbb{R} is open. Given any $x \in \mathbb{R}$, then any r > 0 will give us $B(x, r) \in \mathbb{R}$. Also, \emptyset is vacuously open.

Lemma 1.1.4 ▶ Open Intervals are Open Sets

Let $a, b \in \mathbb{R}$ where a < b. Then (a, b) is an open set.

Proof. Let $c := \frac{a+b}{2}$, and let $R := \frac{b-a}{2}$. Then (a,b) = B(c,R). Let $x \in B(c,R)$. Then |x-c| < R. Let r := R - |x-c| > 0. We now prove $B(x,r) \subseteq B(c,R)$. Let $y \in B(x,r)$. Then |x-y| < r, so:

$$|y - c| = |y - x + x - c| \le |y - x| + |x - c| < r + |x - c| = R - |x - c| + |x - c| = R$$

 ${\sf O}$

Hence, $y \in B(c, R) = (a, b)$. Therefore, (a, b) is an open set.

As we prove below, an arbitrary union of open sets is itself an open set.

Theorem 1.1.5 ▶ Union of Open Sets is Open

Suppose Λ is a set, and for each $\lambda \in \Lambda$, O_{λ} is an open subset of \mathbb{R} . Then $\bigcup_{\lambda \in \Lambda} O_{\lambda}$ is an open set.

Proof. Let $x \in \bigcup_{\lambda \in \Lambda} O_{\lambda}$. Then there exists some $\lambda_0 \in \Lambda$ such that $x \in O_{\lambda_0}$. Since O_{λ_0} is open, there exists r > 0 such that:

$$(x-r,x+r)\subseteq O_{\lambda_0}\subseteq\bigcup_{\lambda\in\Lambda}O_\lambda$$

The intersection of open sets is more troublesome. Countable intersections of open sets may not be open. For example, let $A_n := \left(-\frac{1}{n}, \frac{1}{n}\right)$ for each $n \in \mathbb{N}$. Then $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ is not open!

Theorem 1.1.6 ▶ Finite Intersection of Open Sets is Open

Let $n \in \mathbb{N}$, and let O_1, O_2, \dots, O_n be open subsets of \mathbb{R} . Then $\bigcap_{k=1}^n O_k$ is open.

Proof. Let $x \in \bigcap_{k=1}^n O_k$. Then $x \in O_k$ for k = 1, 2, ..., n. Then, for each $k \in \{1, 2, ..., n\}$, there must be some radius $r_k > 0$ such that $B(x, r_k) \subseteq O_k$. Since there are only finitely many open sets, we can take the minimum radius. Let $r := \min\{r_1, r_2, ..., r_n\}$. Then, $r \le r_k$ for each $k \in \{1, 2, ..., n\}$. Hence:

$$B(x,r) \subseteq B(x,r_k) \subseteq O_k$$
 for all $k \in \{1, 2, ..., n\}$

 \bigcirc

Therefore, $B(x,r) \subseteq \bigcap_{k=1}^{n} O_k$, so it is open.

Note how the above theorem only works by taking the minimum radius of all the open sets. We can only take this minimum radius because there are only a finite number of open sets.

1.2 Closed Sets

Definition 1.2.1 ► Closed Set

Intuitively, a set is *closed* if it contains all of its "boundary points".

More formally, a set $E \subseteq \mathbb{R}$ is *closed* if every convergent sequence (s_n) where $s_n \in E$ for all $n \in \mathbb{N}$ satisfies $\lim_{n \to \infty} s_n \in E$.

Example 1.2.2 \triangleright (0, 1] is not closed

The interval [0, 1) is not closed.

Proof. Consider the sequence $(s_n) := 1/n$. Then (s_n) converges to 0, but $0 \notin (0, 1]$.

Note that this interval (0, 1] is neither open nor closed! It is wrong to think of open/closed as strictly one or the other (i.e. openness and closedness are not mutually exclusive). Moreover, a set can be both open and closed, going against the intuition of open and closed sets.

Example of set that is open and closed (clopen)

Lemma 1.2.3 ▶ Closed Intervals are Closed Sets

Let $a, b \in \mathbb{R}$ with a < b. Then [a, b] is a closed set.

Proof. Let (s_n) be an arbitrary convergent sequence of real numbers where $a \le s_n \le b$ for all $n \in \mathbb{N}$. Since (s_n) is convergent, then $\lim_{n\to\infty} s_n$ exists. By the properties of limits, we have:

$$\lim_{n\to\infty} a \le \lim_{n\to\infty} s_n \le \lim_{n\to\infty} b$$

 \bigcirc

Hence, $\lim_{n\to\infty} s_n \in [a,b]$. Therefore, [a,b] is a closed set.

Theorem 1.2.4 ▶ Intersection of Closed Sets is Closed

Let Λ be a set, and let $E_{\lambda} \subseteq \mathbb{R}$ be closed for all $\lambda \in \Lambda$. Then $\bigcap_{\lambda \in \Lambda} E_{\lambda}$ is a closed set.

Proof. Let (s_n) be an arbitrary convergent sequence of real numbers entirely contained within $\bigcap_{\lambda \in \Lambda} E_{\lambda}$. Since (s_n) is convergent, then $\lim_{n \to \infty} s_n$ exists. Let l denote that limit. Let l denote that limit. Let l denote that limit. Then l denote that limit. Let l denote that limit. Let

Similar to the intersection of open sets, the union of closed sets is guaranteed to be closed if it is a finite union. For example, the union $\left(\bigcup_{n\in\mathbb{N}}[1/n,1]\right)=(0,1]$ is not closed!

Theorem 1.2.5 ▶ Finite Union of Closed Sets is Closed

Let $n \in \mathbb{N}$, and let E_1, E_2, \dots, E_n be closed subsets of \mathbb{R} . Then $\bigcup_{k=1}^n E_k$ is a closed set.

A direct proof of this theorem can be found in the textbook.

The direct proof here is rather wordy and awkward. We will first establish a concrete relationship between open and closed sets, then leverage that to prove this theorem "indirectly".

Theorem 1.2.6 ▶ Complement of an Open Set is Closed

Let $O \subseteq \mathbb{R}$ be open. Then $\mathbb{R} \setminus O$ is closed.

Proof. Let (x_n) be an arbitrary convergent sequence entirely contained within $R \setminus O$. Let $l_x := \lim_{n \to \infty} x_n$. Suppose for contradiction that $l_x \notin \mathbb{R} \setminus O$. Then $l_x \in O$. Since O is open, there exists some radius r > 0 such that $B(l_x, r) \in O$. Since (x_n) converges to l_x , then there exists $N \in \mathbb{N}$ such that $|x_n - l_x| < r$ for all n > N. That is, $x_n \in B(l_x, r) \subseteq O$ for all n > N. This contradicts $x_n \in \mathbb{R} \setminus O$. Thus, $l_x \in \mathbb{R} \setminus O$, so $\mathbb{R} \setminus O$ is closed.

Theorem 1.2.7 ▶ Complement of a Closed Set is Open

Let $E \subseteq \mathbb{R}$ be closed. Then $\mathbb{R} \setminus E$ is open.

Proof. Let $x \in \mathbb{R} \setminus E$. We must prove the following statement:

$$\exists (n \in \mathbb{N}) (B(x, 1/n) \subseteq \mathbb{R} \setminus E)$$

Suppose for contradiction the negation of the previous statement holds. That is:

$$\forall (n \in \mathbb{N}) (B(x, 1/n) \nsubseteq \mathbb{R} \setminus E)$$

Then, for all $n \in \mathbb{N}$, there exists $x_n \in B(x, 1/n)$ such that $x_n \in E$. Hence, the sequence (x_n) satisfies $x_n \in E$ for all $n \in \mathbb{N}$ and $|x_n - x| < 1/n$.

Finish Proof

Combining the two above theorems, we can infer a pretty useful relationship between open and closed sets.

 \bigcirc

redo proof that union of closed sets is closed

1.3 Closure

Definition 1.3.1 ► Closure of a Set

For $A \subseteq \mathbb{R}$, the *closure* of A is the set:

For example, the closure of the interval (0, 1) is

Theorem 1.3.2 \triangleright Properties of Closures of Sets Let $A \subseteq \mathbb{R}$. Then: (i) $A \subseteq \overline{A}$, (ii) \overline{A} is closed, (iii) $A = \overline{A}$ if and only if A is closed, (iv) $\overline{A} = \overline{A}$, (v) if $F \subseteq \mathbb{R}$ is closed and $A \subseteq F$, then $\overline{A} \subseteq F$, and (vi) $\overline{A} = \bigcap \{F \subseteq \mathbb{R} : F \text{ is closed, and } A \subseteq F\}$

These properties can make it easier to prove statements about closures.

Example 1.3.3 ▶ Using Properties of Closure	
If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.	
Proof.	0

The corresponding idea for open sets is the *interior* of a set.