Blatt 05

 ${\it Maximilian Sackel } \\ {\it Maximilian.sackel@gmx.de}$

Philip Schäfers phil.schaefers@gmail.com

6. Dezember 2016

Aufgabe 1

Mittelwerte

Die Mittelwerte der drei Populationen

$$\mu_{\text{P1}} = \begin{pmatrix} 6.01 \\ 3.01 \end{pmatrix}, \ \mu_{P-0-10000} = \begin{pmatrix} 0.03 \\ 3.03 \end{pmatrix} \text{ und } \mu_{P-0-1000} = \begin{pmatrix} 0.01 \\ 3.01 \end{pmatrix}$$
(1)

Kovarianzmatrizen

Die Summierten Kovarianzmatrizen sind

$$S^{P0} = \begin{pmatrix} 121388.56 & 81082.17 \\ 81082.17 & 66628.71 \end{pmatrix} \text{ und } S^{P1} = \begin{pmatrix} 123917.64 & 8719.56 \\ 8719.56 & 43976.48 \end{pmatrix}$$
 (2)

Die Summierte Kovarianzmatrix hat die From

$$S^{P01,P00} = \begin{pmatrix} 245306.20 & 898011.72 \\ 89801.72 & 110605.19 \end{pmatrix}$$
 (3)

Fisher-Diskriiminante

Die Fisherdiskrimante λ beträgt

$$\lambda = \begin{pmatrix} -0.77\\ 0.63 \end{pmatrix} \tag{4}$$

Die Gradengleichung ergibt sich somit zu

$$f(x) = -0.82 \cdot x \text{ bzw } x_i = \lambda^T \vec{x}_i \tag{5}$$

Population

 ${\bf Abbildung}$ 1: Abbildung der Populstionen auf die Grade

Reinheit

 ${\bf Abbildung}$ 2: Reinheit in Abhängigkeit des Schnittes

Signal zu Untergrundverhältnis

Abbildung 3: Signal zu Untergrundverhältnis sowie Signifikanz

Für die andere Population

Abbildung 4: Abbildung der Populstionen auf die Grade

 ${\bf Abbildung}$ 5: Reinheit in Abhängigkeit des Schnittes

Abbildung 6: Signal zu Untergrundverhältnis sowie Signifikanz

m= = (3,75, 1.75)	m2 = (7,2,4)T	m3 = (1,5)T	.33
(3,2) ^T (3,3) ^T	(6,3) ^T (8,4) ^T	(1,5) ^T (1,6) ^T	
(3 3) ^T (4 ,1) ^T (5 ,1) ^T (6, 2) ^T	(8,5) ^T (8,6) ^T	7(3,3) (E,E) 7(4,5) (G,L)	
		(24) (42)	
$m_4^3 = \frac{1}{3} \left(\frac{3}{2} + \frac{3}{3} + \frac{4}{4} \right)$		$\binom{21}{3} = \binom{4.2}{1.8}$	8
$m_2^3 = \frac{1}{4} \left(\frac{6+8+4}{3+4+4} \right)$	8+8) = 1/4	30) = (7,5) 18)	
$m_3^3 = \frac{1}{3} \left(\frac{1+1+1}{4+5+1} \right)$	$\begin{pmatrix} 1 \\ 6 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	3) = (1)	3) (3)
Punkt (6,3)	testen	192 - 19 - 0 - Co	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$= \sqrt{1.8^2 + 1.2^2} = 3$		5¢ +
(7,5 - 6) (4,5 - 3)	$= \sqrt{\lambda_1 5^2 + \lambda_1 5^2} = 3$	2,12	
m3 = (4.2)	1.8) m2 = (7.5)	(4.5) m3 = (1.5)	τ
(3, 2) ^T	(6,3) ^T (8,4) ^T (8,5) ^T (8,6) ^T	(1,4)T (1,5)T (1,6)T	1 m
(4,1) ^T (5,1) ^T (6,2) ^T	(8,6)	3) 1(5)	8)
m4 = 15 (3+3+4+5+6\ 2+3+1+1+2)	$= \frac{1}{5} \binom{21}{3} = \binom{4.2}{1.8}$;) = m ₁
m2 = -	1 (6+8+8+8)=	$=\frac{1}{4}\begin{pmatrix}30\\18\end{pmatrix}=\begin{pmatrix}7.5\\4.5\end{pmatrix}$	$= m_z^3$
$m_3^4 = \frac{1}{3}$	$(1+1+1) = \frac{1}{3}(\frac{3}{1})$	35) = (1/5)	= m3

Da zwei ausein ander solgende Iterationsschritte die gleichen Weste ließern ist der "Geste"-wart erreicht.

3

Aufgabe 3

Einlesen und aussortieren der Daten

Feature Selection

0.1 Stabilität

