

NLP Training for Beginners

Session-2

05 October 2021

Previous session

Introduction to NLP

レイスメイメ

LYYLYY

YYXYYX

(YXXYX (YXXYX

- XXXXX2. Applications of NLP
- Tools and Python Libraries
- 17474. Text Preprocessing
 - Tokenization
 - Noise Removal (stop words)
 - Stemming/Lemmatization
 - POS tagging

Agenda

- Count Vectorizer - Frequency models
- **LYYXX** Unigram, Bigram, Trigram, N-grams
 - TF-IDF

エストエス レイスメイン YYXYYX

LYYXYY YYXYYXLYYLYY YYXYYX

YYXYYX

YYYYYY

LYYLYY

(YXYYX (YYXYY) YYYXYYLYYXYY

イイイイイ レイスイイ

LYYLYY

LYYXYY

YYXYYX

Sneak-peak into next session

Feature extraction

Count Vectorization – Sparse Matrix representation

レイスイイ

YYXYYX

レンスイン

レイスイイ

 $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$

Feature extraction

Consider a corpus of positive and negative tweets

Positive tweets

Negative tweets

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

Vocabulary	PosFreq (1)	NegFreq (0)
I	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

レイスイイ

YYLYY LYYLYYL

レイスイイ

レイスイイ

Creating a vector

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	_1_
NLP	<u>1</u>
sad	0
not	0

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} \frac{freqs}{w}(w, 1), \sum_{w} \frac{freqs}{w}(w, 0)]$$

Vocabulary	NegFreq (0)
I	3
am	<u>3</u>
happy	0
because	0
learning	<u> 1 </u>
NLP	<u>1</u>
sad	2
not	_1_

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

This gives us the feature vector [1, 8, 11]

Count vectorizer algorithm creates BOW model

Bag of Words (BOW)

- Review 1: This movie is very scary and long
- Review 2: This movie is not scary and is slow
- Review 3: This movie is spooky and good
- Vocabulary consists of these 11 words: 'This', 'movie', 'is', 'very', 'scary', 'and', 'long', 'not', 'slow', 'spooky', 'good'.

	1 This	2 movie	3 is	4 very	5 scary	6 and	7 Iong	8 not	9 slow	10 spooky	11 good	Length of the review(in words)
Review 1	1	1	1	1	1	1	1	0	0	0	0	7
Review 2	1	1	2	0	0	1	1	0	1	0	0	8
Review 3	1	1	1	0	0	0	1	0	0	1	1	6

Vector of Review 1: [1 1 1 1 1 1 1 0 0 0 0]

Vector of Review 2: [1 1 2 0 0 1 1 0 1 0 0]

Vector of Review 3: [1 1 1 0 0 0 1 0 0 1 1]

レイスイイ

YYXYYX

レイスイイ

Welcome to the Matrix

Term Frequency – Inverse Document Frequency (TF-IDF)

 TF-IDF tells us, how important a word is to a document in a corpus.

Term Frequency

- Consider Review 2: This movie is not scary and is slow
- Vocabulary: 'This', 'movie', 'is', 'very', 'scary', 'and', 'long', 'not', 'slow', 'spooky', 'good'
- Number of words in Review 2 = 8
- TF for the word 'this' = (number of times 'this' appears in review 2)/(number of terms in review 2) = 1/8

$$tf_{t,d} = \frac{n_{t,d}}{\textit{Number of terms in the document}}$$

Term	Review 1	Review 2	Review 3	TF (Review 1)	TF (Review 2)	TF (Review 3)
This	1	1	1	1/7	1/8	1/6
movie	1	1	1	1/7	1/8	1/6
İS	1	2	1	1/7	1/4	1/6
very	1	0	0	1/7	0	0
scary	1	1	0	1/7	1/8	0
and	1	1	1	1/7	1/8	1/6
long	1	0	0	1/7	0	0
not	0	1	0	0	1/8	0
slow	0	1	0	0	1/8	0
spooky	0	0	1	0	0	1/6
good	0	0	1	0	0	1/6

Term Frequency – Inverse Document Frequency (TF-IDF)

- IDF is a measure of how important a term is
- Inverse Document Frequency
 - Consider Review 2: This movie is not scary and is slow
 - IDF('this') = log(number of documents/number of documents containing the word 'this') = log(3/3) = log(1) = 0
 - Similarly,

YYXYYX

YYYXYY

- IDF('movie',) = log(3/3) = 0
- IDF('is') = log(3/3) = 0
- IDF('not') = log(3/1) = log(3) = 0.48
- IDF('scary') = log(3/2) = 0.18
- IDF('and') = log(3/3) = 0
- IDF('slow') = log(3/1) = 0.48

146 -	number of documents
u_{f_t} –	log number of documents with term 't'

Term	Review 1	Review 2	Review 3	IDF
This	1	1	1	0.00
movie	1	1	1	0.00
İS	1	2	1	0.00
very	1	0	0	0.48
scary	1	1	0	0.18
and	1	1	1	0.00
long	1	0	0	0.48
not	0	1	0	0.48
slow	0	1	0	0.48
spooky	0	0	1	0.48
good	0	0	1	0.48

Term Frequency — Inverse Document Frequency (TF-IDF)

- We can now calculate the TF-IDF score for every word in Review 2:
 - TF-IDF('this', Review 2) = TF('this', Review 2) * IDF('this') = 1/8 * 0 = 0
- Similarly,

LYYLYY

- TF-IDF('movie', Review 2) = 1/8 * 0 = 0
- TF-IDF('is', Review 2) = 1/4 * 0 = 0
- TF-IDF('not', Review 2) = 1/8 * 0.48 = 0.06
- TF-IDF('scary', Review 2) = 1/8 * 0.18 = 0.023
- TF-IDF('and', Review 2) = 1/8 * 0 = 0
- TF-IDF('slow', Review 2) = 1/8 * 0.48 = 0.06

$$(tf_{-}idf)_{t,d} = tf_{t,d} * idf_t$$

Term	Review 1	Review 2	Review 3	IDF	TF-IDF (Review 1)	TF-IDF (Review 2)	TF-IDF (Review 3)
This	1	1	1	0.00	0.000	0.000	0.000
movie	1	1	1	0.00	0.000	0.000	0.000
is	1	2	1	0.00	0.000	0.000	0.000
very	1	0	0	0.48	0.068	0.000	0.000
scary	1	1	0	0.18	0.025	0.022	0.000
and	1	1	1	0.00	0.000	0.000	0.000
long	1	0	0	0.48	0.068	0.000	0.000
not	0	1	0	0.48	0.000	0.060	0.000
slow	0	1	0	0.48	0.000	0.060	0.000
spooky	0	0	1	0.48	0.000	0.000	0.080
good	0	0	1	0.48	0.000	0.000	0.080

CBOW and Skip-gram

エコスエコス レイスイイ YYXYYX

レイスイイ

LYYXYY

イイスイイス LYYXYY

レイスイイ YYXYYXレイスイイ

LYYXYY

LYYXYY

YYXYYX

イイスイイス

LYYLYY イイエイイス

LYYLYY YYXYYXLYYXYY

イイスイイス レイスイイ イイイイイ レイスイイ イイスイイス

レイスイイ イイスイイス レイスイイ

LYYLYY

LYYLYY YYXYYXレイスイイ

Skip-gram

LYYXYY

YYXYYXLYYLYY

レイスイイ

レイスイイ

YYXYYX

イイイイイン

イイメイイン LYYLYY YYXYYXLYYXYY

イイスイイス レイスイイ

レイスイイ

イイメイイン レイスイイ

LYYLYY

YYXYYXレイスイイ

Training Example	Context Word	Target Word
#1	(i, natural)	like
#2	(like, language)	natural
#3	(natural, processing)	language
#4	(language)	processing

	i	like	natural	language	processing
į	1	0	0	0	0
like	0	1	0	0	0
natural	0	0	1	0	0
language	0	0	0	1	0
processing	0	0	0	0	1

Training	Encoded Context	Encoded Target
Example	Word	Word
#1	([1,0,0,0,0], [0,0,1,0,0])	[0,1,0,0,0]
#2	([0,1,0,0,0], [0,0,0,1,0])	[0,0,1,0,0]
#3	([0,0,1,0,0],[0,0,0,0,1])	[0,0,0,1,0]
#4	([0,0,0,1,0])	[0,0,0,0,1]

First training data point: The context words are "i" and "natural" and the target word is "like".

Skip-gram training

Source: https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling

レイスイイ

Unigram, Bigram, Trigram (N-grams)

Sentence: "Who let the dogs out" **/**/////

レイスイイ

LYYXYY

レイスイイ YYXYYX

YYXYYX

- **Unigram**: [who, let, the dogs, out]
- **Bigram**: [(who, let), (let, the), (the, dogs), (dogs, out)]
- $\mathsf{L}\mathsf{L}\mathsf{L}\mathsf{L}\mathsf{L}\mathsf{L}\mathsf{L}\mathsf{L}$ **Trigram**: [(who, let, the), (let, the, dogs), (the, dogs, out)]

Who let the dogs out

```
p(w1...ws) = p(w1) \cdot p(w2 \mid w1) \cdot p(w3 \mid w1 \mid w2) \cdot p(w4 \mid w1 \mid w2 \mid w3) \cdot .... \cdot p(wn \mid w1...wn-1)
```

- LYYLYY. N-grams model works on the principle of Chain rule of probability or conditional probability.
 - To simplify we will use the **Markov** assumption

$$p(wk | w1...wk-1) = p(wk | wk-1)$$

Unigram, Bigram, Trigram (N-grams)

- Machine Learning models are not just trained on unigrams, they are trained on bigrams and n-grams to get more accurate vector space representations.
- LYYLYYWords like:

レイスイイ

LYYLYY YYXYYXLYYLYY

レイスイイ イイスイイス レイスイイ

LYYLYY

イイスイイス LYYLYY

イイスイイス レイスイイブ

イイイイイ

イイスイイス LYYLYY

YYXYYXLYYXYY

YYXYYXLYYLYY YYXYYXレイスイイ

YYXYYXLYYLYY イイメイイン LYYLYY

LYYLYY

YYXYY YYXYYX

- 1. San Francisco
- New Delhi
- Air Conditioner
- Big Data Analytics

Need to be captured together, than as a unigram token.

Sneak-peak into next session

- Word Embeddings SPACY
- Topic Modelling

YYXYYX

- Text Matching Fuzzy
 - Coreference resolution

Let's write some code...!

