Math 4000/6000 - Homework #5

posted October 5, 2016; due at the start of class on October 10, 2016

The essence of mathematics lies in its freedom. – Georg Cantor

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. (de Moivre's theorem)
 - (a) In class, we noted that our rule for multiplying complex numbers implies that if we write z in polar form, say $z = r(\cos \theta + i \sin \theta)$, then

$$z^{n} = r^{n}(\cos(n\theta) + i\sin(n\theta))$$

for every positive integer n. Show that the same formula holds when n = 0 and when n is a negative integer.

- (b) Find formulas for $\cos(4\theta)$ and $\sin(4\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$. The binomial theorem may be helpful.
- 2. (more on *n*th roots of complex numbers) Let $n \in \mathbb{Z}^+$, and let $\omega = \cos(2\pi/n) + i\sin(2\pi/n)$. Let A be a nonzero complex number. Show that if $\sqrt[n]{A}$ is any fixed nth root of A, then the set of all nth roots of A consists precisely of the n numbers

$$\sqrt[n]{A}$$
, $\omega \sqrt[n]{A}$, ..., $\omega^{n-1} \sqrt[n]{A}$.

(This generalizes a result from class for the case n = 3.)

- 3. Exercise 2.3.13.
- 4. Given a polynomial $f(z) = z^3 + pz + q$ (with p, q complex numbers), we set $\Delta = \frac{q^2}{4} + \frac{p^3}{27}$. As shown in class, as long as $p \neq 0$, the complex roots of f are the numbers

$$v - \frac{p}{3v}$$
, where v runs over the cube roots of $A := -\frac{q}{2} + \sqrt{\Delta}$.

Here $\sqrt{\Delta}$ denotes any fixed square root of Δ .

- (a) Show that $A \neq 0$. (Remember we are assuming $p \neq 0$.)
- (b) It follows from (a) that A has three distinct (and nonzero) cube roots v. Show that for each of these roots v, the number $-\frac{p}{3v}$ is a cube root of $-\frac{q}{2} \sqrt{\Delta}$. (This explains why our derivation for the roots of a cubic equation yields three roots and not six!)
- 5. (A lemma for problem 6) Let p be a nonzero complex number. Show that if v and v' are nonzero complex numbers, then

$$v - \frac{p}{3v} = v' - \frac{p}{3v'} \iff \text{either } v = v' \text{ or } v = -\frac{p}{3v'}.$$

6. Let $f(z) = z^3 + pz + q$. In this exercise, you will show that

f has fewer than 3 distinct complex roots $\Longrightarrow \Delta = 0$.

(The reverse implication is also true but we will not show that here.)

We adopt the notation
$$A := -\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$
 and $B := -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$.

- (a) Prove that if p=0 and f has fewer than 3 distinct roots, then q=0 and $\Delta=0$.
- (b) Now assume $p \neq 0$. Using the formula for the roots of f and the result of problem 5, show that if f has fewer than 3 distinct roots, then there are two cube roots v and v' of A for which $v = -\frac{p}{3v'}$.
- (c) (continuation) With v, v' as in part (b), use problem 4(b) to show that v is a cube root of both A and B. Conclude that $\Delta = 0$.
- 7. Exercise 2.4.6(a,b).
- 8. Let R be a ring. A subset $R' \subseteq R$ is called a *subring* of R if (A) R' is a ring for the same operations + and \cdot as in R, and (B) R' contains the multiplicative identity 1_R of R.

(For example, making the identifications discussed in class, $\mathbb Z$ is a subring of $\mathbb Q$ and $\mathbb Q$ is a subring of $\mathbb R$.)

- (a) Let R be a ring. Suppose that R' is a subset of R closed under + and \cdot , that R' contains the additive inverse of each of its elements, and that R' contains 1_R . Show that R' is a subring of R.
 - *Hint*: (B) holds by assumption. Check that all the ring axioms hold for R' in order to verify (A). To get started, show that the additive identity of R call this 0_R must belong to R'.
- (b) Find a two-element subset R' of $R = \mathbb{Z}_6$ that satisfies condition (A) in the definition of a subring but not (B). (You do **not** have to give a detailed proof that (A) holds.)
- 9. (*) Exercise 2.2.16.
- 10. (*) Suppose distinct complex numbers z_1, z_2, z_3 satisfy $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_1 z_3$. Show that z_1, z_2, z_3 are the vertices of an equilateral triangle.

Hint: The constraint equation can also be written in the form $(z_1 - z_2)^2 + (z_1 - z_3)^2 + (z_2 - z_3)^2 = 0$.