Lecture #4, Jan 12th, 2022

- Review Chapter 1 and 2 of Razavi book as needed. Course will start with Chapter 3. Read and Review Chapter 3.1 – 3.5
- CAD 1 out, CAD 2 coming very soon.
- Homework 1 coming.
- Discuss Single-Transistor Amplifier Configurations
 - Common-Source Amplifier
 - Common-Source w/ Active Load
 - Common-Source w/ Degeneration
 - Common-Gate Amplifier
 - Common-Drain Amplifier

4

CMOS Intrinsic Gain

MOSFET Gain Limitations

Common-Source Input/Impedance Ri Root OUTPUT **VDO UNKODEN** N INPUT RIA Ria SOURCE (CURRENT) Rin -· SHORT ALL INDE ALL SNOEP, I CUPREUL - OPEN Zin = 1 V^{M}

Common-Source Output Impedance R_o

Chapter 3: Single Transistor Amps

Three Basic Amplifier Configurations

Assume devices are properly biased in saturation (CMOS) or Forward Active (BJT)

Common Emitter

Common Source

Common Base

Common Gate

Common Collector or "Emitter Follower"

Common Drain or "Source Follower"

Common-Source w/ Resistive Degeneration

Common-Source w/ Resistive Degeneration

$$V_{gs} = V_{in} - V_5$$

$$V_{gs} = O - V_5$$

$$\therefore i_{d} = g_{m}v_{in} - g_{m}\frac{i_{d}}{g_{s}} - g_{m}l_{s}\frac{i_{d}}{g_{s}} - g_{o}\frac{i_{d}}{g_{s}}$$

Common-Source w/ Resistive Degeneration

(Intuitive Approach)

$$V_{DO} = -G_{m} \cdot R_{o}$$

$$V_{DO} = -\left(\frac{1}{R_{S}}\right) \cdot \left[\frac{R_{o}}{R_{o}}\right] \cdot \left[\frac{R_{o}}{R_{c}}\right] \cdot \left[\frac{R_{o}}$$

$$R_{0} = \frac{1}{4} + \frac{1}{4$$

Cascode Gain

