### Section 15.

#### **Infinite Sets**

Recap Equinumerousness

A and B have the same number of elements

· <u>Pefin</u> Let A and B be sets. To say that A is equinumenous to B (A & B)

means that there exists a bijection from A to B.

· ~ is an equivalence relation:

· The rigidity prop. of finite sets A finite set cannot be equinumerous to any of its proper subsets.

# **Equinumerousness and Infinite Sets**

### Infinite Sets Are Not Rigid

By the rigidity property, a finite set cannot be equinumerous to any of its proper subsets. But this is not the case with an infinite set.

# (N) (1,2,3,) 0

#### Example 1 (Natural Numbers and Whole Numbers)

 $\mathbb N$  is a proper subset of  $\omega$ , but  $\omega$  is equinumerous to  $\mathbb N$  because the function f defined by f(n)=n+1 for all  $n\in\omega$  is a bijection from  $\omega$  to  $\mathbb N$ .



**Question.** Is f above the only bijection from  $\omega$  to  $\mathbb{N}$ ? If not, construction another one of your own.

## Infinite Sets Are Not Rigid (cont')

$$A = Bu \{i\}$$

#### Example 2 (Intervals)

Let  $A = [1, \infty)$  and  $B = (1, \infty)$ . B is a proper subset of A, but A is equinumerous to B. Find an example of a bijection f from A to B.

For each NGA = [1,00), define  $f(x) = \int x + 1$  if x is a natural number otherwise. This is a bijection from A to B.



# Infinite Sets Are Not Rigid (cont')



#### Example 3 (Even and Odd Natural Numbers)

Let  $A=\{2,4,6,\ldots\}$  be the set of even natural numbers and let  $B=\{1,3,5,\ldots\}$  be the set of odd natural numbers. Verify the following by finding suitable bijections.

1 
$$A \approx B$$
. (Note A and B are disjoint.)  
2  $\mathbb{N} \approx A$ . (Note A is a proper subset of IN.)

① 
$$f: A \rightarrow B$$
 defined by  $f(n) = n-1$  is a bijection.

② 
$$g: IN \rightarrow A$$
 defined by  $g(n) = 2n$  would do.



Note him = 2n+1 will not do.

would do.

## Infinite Sets Are Not Rigid (cont')

#### Exercise

Show that  $\mathbb{Z} \approx \mathbb{N}$ .

$$g: \mathbb{Z} \longrightarrow |\mathbb{N}| \text{ defined by}$$

$$g(n) = \int_{-\infty}^{\infty} \text{even} \, \tilde{f} \quad n = 1, 2, 3, \dots$$

$$\int_{-\infty}^{\infty} \text{odd} \, \tilde{f} \quad n = 0, -1, -2, -3, \dots$$

# More Counter-Intuitive Examples

#### **Example 4 (Perfect Squares)**

Let  $S = \{n^2 : n \in \mathbb{N}\}$  be the set of all perfect squares. Then  $S \approx \mathbb{N}$ .

- · Surjection: clear from cornstruction.
- . Injection: Let N,  $m \in \mathbb{N}$ . If  $f(n) = n^2 = m^2 = f(m)$ , then n = m.

#### Example 5 (Cartesian Product of N)

 $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$  because the function g defined by

$$g(1,1)=1,$$
  
 $g(1,2)=2,$   $g(2,1)=3,$   
 $g(1,3)=4,$   $g(2,2)=5,$   $g(3,1)=6,$   
 $g(1,4)=7,$   $g(2,3)=8,$   $g(3,2)=9,$   $g(4,1)=10,$   
and so on,

is a bijection from  $\mathbb{N} \times \mathbb{N}$  to  $\mathbb{N}$ .



#### **Example 6 (Positive Rational Numbers)**

Let  $A=\{x\in\mathbb{Q}:x>0\}$ . Each element  $x\in A$  can be expressed uniquely as x=a/b where  $a,b\in\mathbb{N}$  and the fraction is in lowest terms. We can list all such fractions in lowest terms as follows:



Define f(n) to be the n-th term in this list. Then f is a bijection from  $\mathbb{N}$  to A.

± 1/2, ± 1/3

# Exercise

Show that  $\mathbb{Q} \approx \mathbb{N}$ .

#### Example 7

Let A=[0,12] and let B=[0,5]. Then  $A\approx B$  because of we let f(x)=5x/12 for all  $x\in A$ , then f is a bijection from A to B.

**Note**. In general, for any  $a, b, c, d \in \mathbb{R}$  with a < b and c < d,

$$[a,b]\approx [c,d], \quad (a,b)\approx (c,d), \quad (a,b]\approx (c,d], \quad \text{and} \quad [a,b)\approx [c,d).$$



#### Example 8

Let  $\varphi(x)=x/(1-|x|)$  for all  $x\in (-1,1)$ . In S11E23, we showed that  $\varphi$  is a bijection from (-1,1) to  $\mathbb R$ . Hence  $(-1,1)\approx \mathbb R$ .

**Note**. By this example and the note from the previous example, we deduce that  $(0,1) \approx \mathbb{R}$ . This fact will be useful later.