3. Gaia: Segidal (IR mulhean)

3.1 Segiolal. Segiolen einiteals.

1) Depinition

IR multiple segreta but IN-til IR-ra dean application but da, non $n \in \mathbb{N}$ $p(n)=a_n \in \mathbb{R}$ esletten zaxo.

$$g: \mathbb{N} \longrightarrow \mathbb{R}$$

$$n \longrightarrow g(n) = a_n$$

 $p(M) = \{a_n\}$ muetrea da segoa bat bereitten duena, berat, pentra devolvegu segiola bat $\{a_n\} \in \mathbb{R}$ muetro bat duella. Segiolaren elementuei gai deritte eta segiolaren an elementuan gai aduar cleritto. Segiolar bi etalgari ditutte:

- · Inpinitu gai auturte
- · Bai guttidu ordena batean agertzen dura

2) Adibidea

- a) $\{a_n\} = \{s_n \} = \{s_n \} \{s_n \} = \{s_n \} \{s_n \} \}$
- b) $\{b_n\} = \{-1^n\} = \{-1, 1, -1, ...\} \neq \{-1, 1\} \text{ multipal}$
- c) $\{c_n\}=\{1\}=\{1,1,1,1,\dots\}\longrightarrow segica unistantea$

3) Depinizioa

 $\{b_n\}$ segida $\{a_n\}$ segidaren azzisegida da balatin $\{b_n\}C\{a_n\}$ bada.

4) Adibided $\{dn\} = \{\sin n / \sin n > \frac{1}{2}\} = \{\sin 1, \sin 2, \sin 1, ...\} \subset \{\sin n\} = \{an\}$

5) Depinition

[an] CIR sagida honbergentea IR multipon le IR existiten boda, non l-ren eartein inquinne ineuton [an] segidaren gai batetik amirera sagidaren gai guttak bodade. War nometan l-ri [an] regidaren limite derito eta $\lim_{n\to\infty} a_n = l$ idateko dugu (batekean [an] $\rightarrow l$ idateko dugu).

$$A \in > 0$$
 $\exists V^{\circ}(E) \in M \mid AV > V^{\circ}(E)$ $U^{\circ}(E)$ $U^{\circ}(E)$

6) Adibidea

$$\lim_{n\to\infty}\frac{2n+1}{n}=2\qquad\forall E>0\quad\exists n_o(E)\in\mathbb{N}/\forall n\geq n_o(E)\quad\frac{2n+1}{n}\in\mathbb{E}(2,E)$$

$$\frac{2n+1}{n} \in \mathbb{E}(2,E) \iff d(2,\frac{2n+1}{n}) \in E \iff \left| \frac{2n+1}{n} - 2 \right| \in E$$
etherisac atala sinplipitiative, $\left| \frac{2n+1}{n} - 2 \right| = \left| \frac{1}{n} \right| = \frac{1}{n}$, beint, $\frac{1}{n} \in E$
beterisa notificacy. Hometaralio natilioa da $\frac{1}{E} \in n$ itatea horiat, $n = \inf \left\{ n \in \mathbb{N} / \frac{1}{E} < n \right\}$

Ondonor, backaligh $\forall \varepsilon > 0$ $\exists n_0(\varepsilon) \in \mathbb{N}/\forall n \ge n_0(\varepsilon)$ $\frac{2n+1}{n} \in \mathcal{E}(2,\varepsilon)$ How da, $\lim_{n \to \infty} \frac{2n+1}{n} = 2$

7) Depinizioa

[an] \in IR solida diborgentea da IR muetran 0 (jatoria)-ren ecutien inquine irecultatic varpo [an] segialaren gai batetik aurrera segialaren gai guttak batauda hasi honetan {an} segialaren eimitea θ da eta $\lim_{n\to\infty} a_n = \pm \infty$ idatuko dugu (Baturetan [an] $\to \infty$ idatuko dugu)

 $\frac{-\kappa}{4\kappa > 0} = \frac{-\kappa}{4\kappa > 0$

8) DebiuiAoco

 $\{a_n\}\in \mathbb{R}$ segicla assiluationilea da et boda un bergentea etta chibergentea ere.

3.2 Segicla Vonbergenteall

9) Propietatea

 $\{a_n\}$ regide unbergentea boda, einste baharrel veingo du (Abarrara eramanez)

Demogra [an] segicial li + le be einiteau aituela

 $l_1 \neq l_2 \rightarrow d(l_1, l_2) > 0$ bergx, har devaluely $E_0 = \frac{|l_2 - l_1|}{3} > 0$

(interpolation)
$$(1, E_0)$$
 $(1, E_0)$ $(1, E_0)$

 $E(l_1, E_0) \cap E(l_2, E_0) = \emptyset \implies \text{Ingurure disjuntually}$

Bestalde,

Probable [an] segrection einstea $\varepsilon_0>0$ horrestates $\exists n_{\lambda}(\varepsilon_0)\in |N|$ $\forall n\geqslant n_{\lambda}$ an $\in \mathcal{E}(P_{11}\varepsilon_0)$ $\exists n\geqslant 0$ $\exists n$

 $a_1, a_2, \ldots, a_{n_1}, a_{n_2}, a_{n_2}, \ldots, a_{n_2}, a_{n_2}, \ldots$ $a_n \in \mathcal{E}(\ell_1, \mathcal{E}_0)$

Horton, $n_0 = \max\{n_1(E_0), n_2(E_0)\}$ harter gero, $\forall n \geqslant n_0$ transact an $\in E(e_1,E_0)$ $\cap E(e_2,E_0)$ believe do. Baina hort exincetica da bi inquirineal disjuntada directo. Ondoriot, [an] segular exin aitu bi limite itan.

10) Propietatea

(an) segida un borgentea bodo, bere atpisegida gutticu von borgenteau dura eta limite bera dute.

11) Propretatea

[an] segoa consergentea bada, [an] bornatia da.

12) Propretatea

 $\{a_n\}$ regionaren eimitea et bona 0, segiolaren gai batetik aurrera gai guttek eimitearen teinua dute.

13) Progretatec

[an] eta $\{b_n\}$ seguen limitea l boda eta $\forall n \gg n_0$ an $\leq C_n \leq b_n$ boda, $\{C_n\}$ seguenen limitea existituto da eta l izango da.

14) Adibidea

1) (sin n) astratailea da

U. carbidello $[dn] = \{\sin n \mid \sin n > \frac{1}{2}\}$ appregida hartuz, [dn] azzisepidaren e elimitea existitulo balitz, $\frac{1}{2} \le e$, $\le l$ beter behorus lue.

U. carbidello $[en] = \{\sin n \mid \sin n < -\frac{1}{2}\}$ azzisegida hartuz, [en] azzisegidaren e elimitea existitulo balitz, $-1 \le e$ e beter behorus lue. Bercz, e e e especialelle.

Hortan, etin da "10) Propietatea" bete, Ordoriot [sin n] et au limiteriu 17

eta simiteria ez bodu, ez da honbergenzea. Bestalde, $\forall n \in \mathbb{N}$ lan $n \in \mathcal{E}(0,2)$

Ondorioz, (sin n) eun da dibergentea izan eta, beraz, ostilatzailea da.

2) [(-1)n] segiou astilatzailea da

 $\{(-1)^{2m}\}=\{-1,-1,-1,...\}$ are presented and limited da. $\}$ "no) Propietated on" $\{(-1)^{2m}\}=\{1,1,1,...\}$ are presented a limited da. $\}$ and consenses da unsure per tea

Bestalde, $\forall n \in \mathbb{N} \mid (-1)^n \mid = 1$ da, betat $-2 \cdot (-1)^n \cdot 2$ betetien da, $(-1)^n \in \Xi(0,2)$. $\{(-1)^n\}$ begida et da dibergentea.

3.2.1 segida monotonadu

12) Debivisac

[ant CIR segon emanily

- a) [and monotono goralloria da 41 z no an Eanta boda.
- b) fant wertsius " " da 4n > no an canty bada.
- c) lant monotono schemuoma da 4n7no an 2 anti boda
- d) (an { hertsicu !! da Vn?no an > and bada
- 16) Adubicted $\{1, 1, 1, 1, ...\} \Rightarrow \text{Nertsilli} \text{monotono gorchoric} / \text{benerolionic}$

17) Propretatea

Segicla monotono bornatu gaztial honbergentean dira (limitea dute)
18) haibidea

[(1+ A)" | segidaren einitea e=2+131...

3.3 Segicien cirtele erogilietali eta limiteali. Indeterminatioali

19) Debivifico

(an) eta (bnt segidali emanili, honera dephnitten dira bien artello eragilietali:

Batuleta/Lenlieta (ant t (bn) = {ant bn}

Biologueta $\{an\}\cdot\{bn\}=\{an\cdot bn\}$

tativeta $\{a_n\}/\{b_n\}=\{a_n|b_n\}, b_n\neq 0$

cogaritmoa logulant = [loguant, 4>0, an>0

Exponentziola (u>0

Berreveta $[a_n]^{(b_n)} = \{a_n b_n\}, a_n > 0$

10

· Probletatea (oro har)

"sogiaen arteus erogiueren simitea = segiaen simiteen arteus eragiueta"

· Indeterminação taulal (Foldução)

3.4 Indeterminatioal elastello metadall

3.4.1 Balliohiderasuna

50) Debluifico

(an) ela [bn] seguch baldiidean aira $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ bada hase honera idattibo dugu: $\{a_n\} \cdot v\{b_n\}$

21) Propietatea

(an) eta (bn) segraciu balidudech bachia, limite bera dute.

22) Adibidea

$$\left[\frac{\Lambda}{n}\right] \longrightarrow 0$$
; $\left[\frac{\Lambda}{n^2}\right] \longrightarrow 0$ Baince, sopriduiated curci?

 $\lim_{n\to\infty}\frac{1/n}{1/n^2}=\lim_{n\to\infty}n=0$ #1 Et aira balidudeal!

23) Depinition

a) (an) segrous injunitesimalia da lim an =0 denean.

b) {an} segida inpinitace da lim an = a denean.

SA) chaegroben - buntsibiec

Segida baten gai ardvarioren adverateanean ogertien den braistuega) eab zatittailea bere baldvide batet ordettua daiteue segidaren eimitea aldatu opbe.

25) Adubidea

$$\left[\frac{\sqrt{10-1}}{\sqrt{100-1}}\right]$$
 segicioren elmiteci valunlatu: $\frac{1}{100}$ $\frac{\sqrt{100-1}}{\sqrt{100-1}} = \frac{0}{0}$ indetermination

 $[V_{10} - 1]$ injunitesimals de $\Rightarrow [N_{10} - 1] \sim [e_1 \sim 10]$

(VAD -1) opinitesimala ca → (VAD -1) ~ (VAD)

Bacidudetea \Rightarrow [bn-1] \cap [en bn] balain $\stackrel{\text{lim}}{\text{n}}$ bn=1 bacida

lim $\frac{1}{100-1}$ = $\frac{1}{100}$ = $\frac{1}{$

3.4.2 Inpinituen ordenaci

$$\{(e_n \ a_n)^{\alpha}\}$$
 < < $\{(a_n)^{\alpha}\}$ < < < $\{(a_n)^{(a_n)}\}$ < < < $\{(a_n)^{(a_n)}\}$ < deformation between the series of the s

Inpinition ordena erabilitello, segidoren adieratpena tatilieta moduan idatello dugu.

26) Achibidea

Pim No hadenbatho dugo (To = nin)

 $\lim_{n\to\infty} \sqrt{n} = \ell \quad \text{boda}, \quad \ln \lim_{n\to\infty} \sqrt{n} = \lim_{n\to\infty} \ln n^{4n} = \lim_{n\to\infty} \ln \frac{\ln n}{n} = 0$

* Inpinituen ordenaren arabara $n > \ln n \Rightarrow \lim_{n \to \infty} \frac{0}{n0} = 0$

Hortaz, $\ln l = 0$ boda, $l = e^0 = 1$ izango da eta $\lim_{n \to \infty} \sqrt{n} = 1$ da.

3.4.3 Stollte-on interidea

27) Teorema

[an] eta (bn) seguciu emaniu, baldintza navelu betetzen bactira:

- 1) {bn} hertalli monotonec da,
- 2) lim anti-an existitzen da eta
- 3) howelake both betetten boda:

3.1)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$$
 3.2) $\lim_{n\to\infty} b_n = +\infty$

Stollt-en iritaided dio berdinta van betelio dela:

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

28) Achibiclea

ucelwheat deregun $\left\{\frac{1+1/2+...+1/n}{n}\right\}$ segiciaren limitea

 $\{b_n\} = \{ln \ n\}$ nertaili monotono goralional da esta $\frac{lim}{n=00}$ $ln \ n=00$ da [an] = [1+1/2+...+1/n] back, ann - an = (1+1/2+...+1/n+1/n+1)-

(1+1/2+--+ 1/n) = 1/n+1 izango da ela bn+1 - bn = ln (n+1)-ln n = = $2n \left(\frac{n+1}{n}\right)$ berch,

$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = \lim_{n\to\infty} \frac{\frac{1}{n+1}}{\ln(\frac{n+1}{n})} = \lim_{n\to\infty} \frac{\frac{1}{n+1}}{1/n} = 1$$

[en(2#)]~[1/2]

Beran
$$\lim_{n \to \infty} \frac{1+112+\cdots+11n}{2n n} = 1$$
 izango da.

3.4.4. e zenbolija

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n}$$

$$e^{k} = \lim_{n \to \infty} \left(1 + \frac{k}{n+1} \right)^{n+p}$$

$$\lim_{n \to \infty} a_{n} = 0 \text{ backs, } e = \lim_{n \to \infty} \left(1 + a_{n} \right)^{n} a_{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$

$$\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n}$$