		- EUSON
	Math 20B Lecture 10 7/20	
	$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{if } p \leq 1 \qquad \int_{1}^{\infty} \frac{1}{J_{x}} dx = dnV$	
	J. X. Conv.	
	P-1	
	Comparisin Test	
	If $0 \le g(x) \le f(x)$ for xza	
	$\int_{\alpha}^{\infty} g(x) \leq \int_{\alpha}^{\infty} f(x) dx$	
	If $\int_{\alpha}^{\infty} g(x) dx = div$, then $\int_{\alpha}^{\infty} f(x) dx = div$	
	If $\int_{\alpha}^{\infty} f(x) dx$ (onv, then $\int_{\alpha}^{\infty} g(x) dx = (0)^{\nu}$.	
	Ex. Pos 2+e-x ronv. or div.?	
	7× 7× 2(x)	
	+ 0 - X - X - X - X - X - X - X - X - X -	
	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	
3	Jx	
	$\int_{1}^{\infty} \frac{2}{\sqrt{x}} dx, p = \frac{1}{2} < 1, diverges$	· · · · · · · · · · · · · · · · · · ·
	By comparison test, Si 2+e-x dx = diverges.	
	JX	
	10,1 Sequences	
		1
	Det al, az, as, an A sequence is a list of humbers withten in some species	cl urder.
	Ex. Find a formula for an of	
	1	- an
	- 元 la(音), 年 la(音), 一 la la(言), 信 la (言), 1 (元)	
	$a_n = (-1)^n l_n / \frac{5}{5} - (-1)^n l_n / \frac{5}{5}$	
	1 2n = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	

* 11 ==	tibonacci Sequence
	111,213,5,8,13,21,34
	$a_n + a_{n+1} = a_{n+2}, n \ge 1$
	$Q_1 = 1$ $Q = \lim_{n \to \infty} Q_n + 1$
	$Q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.618034$ (colder)
	$a_n = \frac{\varphi_n - (1 - \varphi)^n}{Ratio}$
	JE
	Def: A seq { and converges to L a number (i.e Im an=L
	I age n. U can be made orbitronly for any sufficiently
	$a_n = \frac{1}{n} \lim_{n \to \infty} a_n - \lim_{n \to \infty} \frac{1}{n} = 0$
	$\frac{a_n = \frac{1}{n}}{n + \infty} \frac{\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0}{n + \infty}$
	5h3 converges no o
	至前3 11
	$- \{ n^{2} \} \rightarrow \infty$
	If no limit exists we say {an} diverges
	2 an 3=-1,1,-1,1-> diverges
	{ an = n23 div. to 00
	1,4,7,16 -> 00.
•	Actually a seguaro is a function from positive integers to real #
	See M
	$\frac{(2n-1)^{2n}}{(2n-1)^{2n}}$
	$\lim_{n\to\infty} Gn = \lim_{n\to\infty} f(n).$
_	7>0

