Lecture 1

Let (X, \mathcal{A}, μ) be a measure space. Without any additional structure or information, we may define the Lebesgue integral $\int_X f d\mu$ for f an $\mathcal{A} - \mathcal{B}$ measurable function $f: X \to [-\infty, +\infty].$

We only have a few examples without any work.

- For any set X, we can define the counting measure on A = 2^X , which gives $\mu(A) = |A|$. If $X = \mathbb{N}$, then a measurable function is just a sequence (f_n) , and $\int_Y f d\mu = \sum f_n$
 - We can also define the Dirac mass δ_p for a fixed $p \in X$ by

$$\delta_p(E) = \begin{cases} 1 & p \in E \\ 0 & p \notin E \end{cases}$$

We have $\int_X f d\delta_p = f(p)$

To get another example of a measure we need to do some work.

Problem: We want a measure μ on \mathbb{R}^n such that, for a rectangle,

$$\mu([a_1, b_1] \times \cdots \times [a_n, b_n]) = |a_1 - b_1| \cdots |a_n - b_n|$$

Once it is defined on all rectangles, it is defined on the minimal σ -algebra containing them, which is the Borel σ -algebra. In other words, this condition will completely specify a measure on the Borel σ -algebra $\mathcal{B}_{\mathbb{R}^n}$

If $X = \mathbb{R}^n$, or a general metric space, or even a general topological space, then $\mathcal{B}(X)$ denotes the σ -algebra generated by the open subsets of X.

Problem:

Suppose we have a distribution function $F: \mathbb{R} \to \mathbb{R}$, meaning F is monotone, positive, and $\lim_{x\to-\infty} f(x) = 0$, $\lim_{x\to\infty} f(x) = 1$, and continuous from the right. We want a Borel measure μ such that $F(t) = \mu((-\infty, t])$. Such a measure, denoted by λ_F , is called a Lebesgues-Stieltjes measure.

The corresponding integral is called a Lebesgue-Stieltjes integral. If F is smooth, then $\int_{\mathbb{R}} \phi \, d\lambda_F = \int_{-\infty}^{\infty} \phi(x) dF(x)$.

The measure we want on \mathbb{R}^n is denoted by λ^n .

The Carathéodory Construction

Suppose we have an outer measure $\gamma: 2^X \to [0, \infty]$. This means $\gamma(\emptyset) = 0, A \subset B \implies \gamma(A) \leq \gamma(B)$ (monotone), and $\gamma(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \gamma(E_i)$ (subadditive). We can define a set S to be γ -measurable if for every testing set T, $\gamma(T) = \gamma(S \cap T) +$ $\gamma(S^c \cap T)$.

Theorem 0.1. (Carathéodory Extension Theorem)

- 1. $\gamma(N) = 0 \implies N$ is measurable.
- **2.** The set of measurable sets forms a σ -algebra Γ .
- **3.** γ restricted to Γ forms a measure.

"Nothing in the above theorem can guarantee you that Γ is not trivial, i.e. $\Gamma = \{\emptyset, X\}$. Nevertheless, this is a very useful guy" - Dennis.

Definition 0.1. (Lebesgue outer measure on \mathbb{R}^n) Let R be a rectangle in \mathbb{R}^n , that is $R = \prod_{i=1}^n [a_i, b_i]$. We have $\operatorname{Vol}(R) = |a_1 - b_1| \cdots |a_n - b_n|$. For any $E \subseteq \mathbb{R}^n$, we define

$$\mu^*(E) \stackrel{\text{def}}{=} \inf \{ \sum_{j=1}^{\infty} \operatorname{Vol}(R_j) \mid E \subseteq \bigcup_{j=1}^{\infty} R_j \}$$

Proposition 1. μ^* is an outer measure on \mathbb{R}^n such that $\mu^*(R) = \operatorname{Vol}(R)$ for all rectangles R.

Proof. The first and second axioms are trivial, so we will just prove the subadditivity. Let E be some set. By definition, for any ε , there is some cover R_j by recrtangles such that

$$-\varepsilon + \sum_{j=1}^{\infty} \operatorname{Vol}(R_j) \le \mu^*(E) \le \sum_{j=1}^{\infty} \operatorname{Vol}(R_j)$$

meaning that $\sum_{j=1}^{\infty} \operatorname{Vol}(R_j) \leq \mu^*(E) + \varepsilon$. So for each E_k , there is a sequence R_j^k which covers E_k , such that $\sum_{j=1}^{\infty} \operatorname{Vol}(R_j^k) \leq \mu^*(E) + \frac{\varepsilon}{2^k}$. So $\{R_j^k\}_{j,k\in\mathbb{N}}$ forms a cover of $\bigcup_{j=1}^{\infty} E_j$. Thus

$$\mu^*(\bigcup_{k=1}^{\infty} E_k) \le \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \operatorname{Vol}(R_j^k)$$
$$\le \sum_{k=1}^{\infty} \left(\mu^*(E_k) + \frac{\varepsilon}{2^k}\right)$$
$$= \sum_{k=1}^{\infty} \mu^*(E_k) + \varepsilon$$

This is true for any positive ε . Taking the limit as $\varepsilon \to 0$ gives the result.

Now, fix a rectangle R. Note that R itself forms a cover of R, so by the definition, $\mu^*(R) \leq \operatorname{Vol}(R)$. For $\varepsilon > 0$, we can take an almost-optimal cover (R_j) such that $\sum_{j=1}^{\infty} \operatorname{Vol}(R_j) \leq \operatorname{Vol}(R) + \varepsilon$. We can rig it such that $|\operatorname{Vol}(R_j) - \operatorname{Vol}(R)| \leq \frac{\varepsilon}{2^j}$. Because $R \subset \bigcup_{j=1}^{\infty} R_j$, and R_j is an open cover, by compactness of R there is a finite subcover, and the volume of R is less than or equal to the sum of the volumes of these finitely many R_j . So the volume of R is less than or equal to $\mu^*(R) + 2\varepsilon$. So $\operatorname{Vol}(R) = \mu^*(R)$.

Proposition 2. Every rectangle R in \mathbb{R}^n is Carathéodory measurable).

Proof. I missed this lol. Apparently Dennis denotes \mathcal{M}_{λ^*} by \mathcal{L}^n .

Definition 0.2. A set is said to be $\underline{G_{\delta}}$ if it is the countable intersection of open sets. A set is said to be F_{σ} if it is the countable union of closed sets.

Theorem 0.2. 1. For all $E \in \mathcal{L}^n$, $\lambda^N(E) = \inf\{\lambda^n(O) \mid open \ O \supseteq E\}$.

- **2.** $E \in \mathcal{L}^n$ if and only if $E = H \setminus Z$, where H is G_{δ} , and $\lambda^*(Z) = 0$.
- **3.** $E \in \mathcal{L}^n$ if and only if $E = H \cup Z$, where H is F_{σ} and $\lambda^*(Z) = 0$.
- **4.** $\lambda^n(E) = \sup\{\lambda^n(C) \mid closed \ C \subseteq E\}$

Proof. It suffices to prove the first statement, as the others will follow by passing to a complement.

Definition 0.3. Suppose X is a metric space. A measure on X is a <u>Radon measure</u> if it is Borel (meaning defined on a σ -algebra containing Borel sets), and for any Borel $E, \mu(E) = \inf\{\mu(O) \mid \text{open } O \supseteq E\}$, and for any compact $C \subseteq X, \mu(C) < \infty$.

Theorem 0.3. (Riesz)

Let $X \subseteq \mathbb{R}^n$ be compact. Let C(X) denote the vector space of all continuous functions on X. This admits a norm $||f||_{C(X)} = \sup_X |f|$, making it a Banach space. Define $C^*(X) = \{\phi : C(X) \to \mathbb{R}, \phi \text{ is linear and continuous } \}$.

For all $\phi \in C^*(X)$, there exists a Radon measure $\mu = \mu_+$, and a function $M: X \to \{\pm 1\}$ which is Borel, such that

$$\phi(f) = \int_X f(x)M(x) \, d\mu(x)$$

for all $f \in C(X)$.

Proof.

Lecture 2, 1/17/23

Note: This is the first lecture with Davit. Davit will always use μ to refer to an <u>outer</u> measure, not a measure. The book will be "Measure theory and fine properties of functions." According to Davit, this is the correct book to be using.

Definition 0.4. Let X be a nonempty set. A mapping $\mu: 2^X \to [0, +\infty]$ is called a measure if it satisfies the following 2 properties.

- **1.** $\mu(\emptyset) = 0$.
- **2.** (Countable subadditivity and monotonicity) If $A, A_1, A_2, \dots \subseteq X$ and $A \subseteq \bigcup_{i=1}^{\infty} A_i$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$

Remark. From the second definition, we can automatically get monotonicity, i.e. if $A \subseteq B$, then $\mu(A) \leq \mu(B)$. This is because, as written, the second definition is a statement not just about $\bigcup_{i=1}^{\infty} A_i$, but about any subset of it. Indeed, let A = A, $A_1 = B$, and $A_k = \emptyset$ for $k \geq 2$. Then we have $\mu(A) \leq \mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A \cup B)$. We will write " μ is a measure on X" to mean that μ satisfies the above definition (that is, μ is an outer measure).

Definition 0.5. Let X be a nonempty set and let μ be a measure on X. For a fixed set $C \subseteq X$, define the <u>restriction measure</u> $\nu = \mu|_C$ by $\nu(A) = \mu|_A(A) = \mu(A \cap C)$.

Remark. It is easy to prove that $\mu|_C$ is a measure on X.

Definition 0.6. (Carathéodory's condition). Let X be a nonempty set and let μ be a measure on X. A subset $A \subseteq X$ is called $\underline{\mu}$ -measurable if, for all subset $B \subseteq X$, we have

$$\mu(B) = \mu(B \cap A) + \mu(B \setminus A)$$

Remark. X and \varnothing are easily seen to be μ -measurable.

Theorem 0.4. (Carathéodory extension theorem)

The collection of μ -measurable sets on a set X is a σ -algebra.

Theorem 0.5. Let X be a nonempty set and let μ be a measure on X. Then the following holds:

- **1.** \varnothing and X are μ -measurable.
- **2.** $A \subseteq X$ is μ -measurable if and only if $X \setminus A$ is μ -measurable.
- **3.** If $A \subseteq X$ is such that $\mu(A) = 0$, then A is μ -measurable.
- **4.** Let $C \subseteq X$. Then anything which is μ -measurable is $\mu|_C$ -measurable.

Remark. A measure is also finitely subadditive, which says that if $A \subseteq A_1 \cup \cdots \cup A_n$, then $\mu(A) \leq \sum_{i=1}^n \mu(A_i)$. So, to check that $\mu(B) = \mu(B \cap A) + \mu(B \setminus A)$, it will suffice to check

$$\mu(B) \ge \mu(B \cap A) + \mu(B \setminus A)$$

Proof. Part 1 is obvious.

Suppose that A is μ -measurable. Then $\mu(B \cap A) = \mu(B \setminus A^c)$ and $\mu(B \cap A^c) = \mu(B \setminus A)$ so $\mu(B \cap A) + \mu(B \setminus A) = \mu(B \cap A^c) + \mu(B \setminus A^c)$. So A is μ -measurable if and only if A^c is.

Suppose that $\mu(A) = 0$. Then $\mu(B \cap A) \leq \mu(A)$, $\mu(B)$, so $\mu(B \cap A) = 0$ for any $B \subseteq X$. Now, $B \setminus A \subseteq B$, so by monotonicity $\mu(B \setminus A) \leq \mu(B)$. So $\mu(B \cap A) + \mu(B \setminus A) \leq \mu(B)$ for all $B \subseteq X$, so we are done.

Let A be μ -measurable. Then for any $B \subseteq X$ we have

$$\nu(B) = \mu|_C(B) = \mu(B \cap C)$$

$$= \mu((B \cap C) \cap A) + \mu((B \cap C) \setminus A)$$

$$= \nu(B \cap A) + \mu((B \setminus A) \cap C)$$

$$= \nu(B \cap A) + \nu(B \setminus A)$$

Theorem 0.6. Let X be a nonempty set and let μ be a measure on X. Assume $A_1, A_2, \dots, A_n \subseteq X$ are μ -measurable. Then

- **1.** $\bigcup_{k=1}^n A_k$ and $\bigcap_{i=1}^n A_k$ are also μ -measurable.
- **2.** If the A_i are disjoint, then $\mu(\bigcup_{i=1}^n A_i = \sum_{i=1}^n \mu(A_i))$

Proof. We prove part 2 first. Because each A_i is measurable,

$$\mu(\cup_{k=1}^{n} A_k) = \mu((\cup_{k=1}^{n} A_k) \cap A_n) + (\mu(\cup_{k=1}^{n} A_k) \setminus A_n)$$
$$= \mu(\cup_{i=1}^{n-1} A_k) + \mu(A_n) = \dots = \sum_{k=1}^{n} \mu(A_k)$$

Now we prove part 1. Let $A, B \subseteq X$ be μ -measurable and disjoint. Then for any $C \subseteq X$, $\mu(C) = \mu(C \cap A) + \mu(C \setminus A)$, and similarly for B. This is equal to

$$\mu(C) = \mu(C \cap A) + \mu((C \setminus A) \cap B) + \mu(C \setminus A \setminus B)$$

$$= \mu(C \cap A) + \mu(C \cap B) + \mu(C \setminus (A \cup B)) + \mu(C \cap (A \cup B))(?)$$

$$= \mu(C \cap (A \cup B) \cap A) + \mu(C \cap (A \cup B) \setminus A)$$

$$= \mu(C \cap A) + \mu(C \cap B)$$

$$= \mu(C \cap (A \cup B)) + \mu(C \setminus (A \cup B))$$

So $A \cup B$ is μ -measurable. (I got a bit lost in the arithmetic, sorry) Next, we show if $A, B \subseteq X$ are μ -measurable, then $A \cap B$ is μ -measurable. This is straightforward. We will continue next time.

Lecture 3, 1/19/23

We will continue our proof of the theorem. Assume $A, B \subseteq X$ are μ -measurable. We aim to show that $A \cap B$ is also μ -measurable. We need to show that, for any $C \subseteq X$, we have $\mu(C) = \mu(C \cap (A \cap B)) + \mu(C \setminus (A \cap B))$. Because A, B are μ -measurable, we have

$$\mu(C) = \mu(C \cap A) + \mu(C \setminus A)$$

$$= \mu((C \cap A) \cap B) + \mu((C \cap A) \setminus B) + \mu(C \setminus A)$$

$$= \mu(C \cap (A \cap B)) + \mu((C \cap A) \setminus B) + \mu(C \setminus A)$$

$$\geq \mu(C \cap (A \cap B)) + \mu(C \setminus (A \cap B))$$

The opposite inequality follows by subadditivity, so we have equality. By induction, we get that also $\bigcap_{k=1}^{n} A_k$ is μ -measurable. For the union, we can get it using the fact that $\bigcup_{k=1}^{n} A_k = X \setminus \bigcap_{k=1}^{n} A_k$.

Remark. If A, B are μ -measurable, then $A \setminus B$ is μ -measurable. This follows from $A \setminus B = A \cap (X \setminus B)$

Theorem 0.7. Let X be a nonempty set, and μ a measure on X. Assume $\{A_k\}_{k=1}^{\infty} \subseteq X$ are μ -measurable. Then

1. If the A_k are disjoint, then we have countable additivity:

$$\mu\left(\cup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$$

If $A_1 \subseteq A_2 \subseteq \cdots$, then

$$\lim_{k \to \infty} \mu(A_k) = \mu \left(\bigcup_{k=1}^{\infty} A_k \right)$$

If $A_1 \supseteq A_2 \supseteq \cdots$, and $\mu(A_1) < \infty$, then

$$\lim_{k \to \infty} \mu(A_k) = \mu \left(\bigcap_{k=1}^{\infty} A_k \right)$$

Proof. We have from before that if the A_k are pairwise disjoint, then $\mu(\cup_{k=1}^n A_k) = \sum_{k=1}^n \mu(A_k)$ for any $n \in \mathbb{N}$. Because $\bigcup_{k=1}^n A_k \subseteq \bigcup_{k=1}^\infty A_k$, we must have that $\mu(\bigcup_{k=1}^n A_k) \leq \mu(\bigcup_{k=1}^\infty A_k)$. Using the previous fact, and passing to a limit, we have

$$\sum_{k=1}^{\infty} \mu(A_k) \le \mu(\bigcup_{k=1}^{\infty} A_k)$$

The opposite equality is automatically true by the countable subadditivity of μ , so we get equality. This completes the proof of 1. Now for part 2.

Define $B_k = A_k \setminus A_{k-1}$, where $A_0 \stackrel{\text{def}}{=} \emptyset$. We have $A_k = \bigcup_{i=1}^k B_i$. Note that the B_i are disjoint. So we have

$$\mu(A_k) = \sum_{i=1}^k \mu(B_i)$$

So, in the limit,

$$\lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \sum_{i=1}^k \mu(B_i) = \sum_{i=1}^\infty \mu(B_i)$$

So

$$\mu(\bigcup_{i=1}^{\infty} B_i) = \mu(\bigcup_{k=1}^{\infty} A_k)$$

Finally, let $A_1 \supseteq A_2 \supseteq \cdots, \mu(A_1) < \infty$. Define $B_k = A_1 \setminus A_k$. This is decreasing sequence of μ -measurable sets, so by the previous part,

$$\lim_{k \to \infty} \mu(B_k) = \mu(\cup_{k=1}^{\infty} B_k)$$

So

$$\mu(B_k) = \mu(A_1 \setminus A_k) = \mu(A_1) - \mu(A_k) \Longrightarrow$$

$$\lim_{k \to \infty} \mu(B_k) = \lim_{k \to \infty} (\mu(A_1) - \mu(A_k)) = \mu(A_1) - \lim_{k \to \infty} \mu(A_k)$$

$$= \mu(\bigcup_{k=1}^{\infty} B_k) = \mu(\bigcup_{k=1}^{\infty} (A_1 \setminus A_k)) = \mu(A_1 \setminus \bigcap_{k=1}^{\infty} A_k)$$

$$\geq \mu(A_1) - \mu(\bigcap_{k=1}^{\infty} A_k)$$

So $\lim_{k\to\infty} \mu(A_k) \leq \mu(\bigcap_{k=1}^{\infty} A_k)$. The opposite inequality follows easily by monotonicity.

We are ready to prove the Carathéodory extension theorem.

Proof. Let $A_1, A_2, \dots \subseteq X$ be μ -measurable. It will suffice to prove that $\bigcup_{k=1}^{\infty} A_k$ is μ -measurable. So we need to check that, for any B,

$$\mu(B) = \mu(B \cap (\cup_{k=1}^{\infty} A_k)) + \mu(B \setminus \cup_{k=1}^{\infty} A_k)$$

Fix $B \subseteq X$, and consider $\nu = \mu|_B$. Recall this is defined as $\nu(C) = \mu(B \cap C)$. We would like

$$\nu(B) = \nu(\cup_{k=1}^{\infty}) + \nu(B \setminus \cup_{k=1}^{\infty} A_k)$$

To this end,

$$\nu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \nu(\bigcup_{i=1}^k A_i)$$

Without loss of generality, $\nu(B) < \infty$. If $\nu(B) = \infty$, then we are done trivially. As before, define $B_k = B \setminus \bigcup_{i=1}^k A_i$. Then

$$\nu(B \setminus \bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \nu(B \setminus \bigcup_{i=1}^k A_i)$$

So,

$$\nu(\cup_{k=1}^{\infty} A_k) + \nu(B \setminus \cup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \left(\nu(\cup_{i=1}^k A_i) + \nu(B \setminus \cup_{i=1}^k A_i) \right)$$
$$= \lim_{k \to \infty} \nu(B) = \nu(B)$$

so we are done.

Definition 0.7. Let X be a nonempty set, and let μ be a measure on X. Then μ is said to be

- **1.** A regular measure if, for any $A \subset X$, there exists a μ -measurable $B \subseteq X$ such that $A \subseteq B$, and $\mu(A) = \mu(B)$.
- 2. A <u>Borel measure</u> if all Borel sets (i.e. the elements of the Borel σ -algebra) are measurable. This only applies if X is also a topological space, of course.
- **3.** A Borel-regular measure if μ is Borel, and for any $A \subseteq X$, there exists a Borel set $B \subseteq X$ such that $A \subseteq B$ and $\mu(A) = \mu(B)$.
- **4.** A Radon measure if it is Borel-regular and $\mu(K) < \infty$ if K is compact.

Remark. Note that being Borel and regular is weaker than being Borel-regular.

Theorem 0.8. (Increasing sets for regular measures) Let X be a nonempty set, and let μ be a regular measure on X. Assume $A_1 \subseteq A_2 \subseteq \cdots \subseteq X$. Then

$$\lim_{k \to \infty} \mu(A_k) = \mu \left(\bigcup_{k=1}^{\infty} A_k \right)$$

Remark. The sets A_k need not be μ -measurable.

Proof. For all A_k , there is a $C_k \subseteq X$ which is μ -measurable, $A_k \subseteq C_k$, and $\mu(A_k) = \mu(C_k)$. Let $D_k = \cap_{i \geq k} C_i$. For $i \geq k$, we can see $A_k \subseteq A_i \subseteq C_i$. $A_k \subseteq \cup_{i \geq k} C_i = D_k$, then $\mu(A_k) \leq \mu(D_k)$. On the other hand, $D_k \subseteq C_k$, so $\mu(D_k) \leq \mu(C_k) = \mu(A_k)$. So

- $\bullet \ \mu(A_k) = \mu(D_k)$
- $A_k \subseteq D_k$
- D_k is μ -measurable and $D_1 \subseteq D_2 \subseteq \cdots$

So

$$\lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(D_k)$$

$$= \mu \left(\bigcup_{k=1}^{\infty} D_k \right)$$

$$\geq \mu \left(\bigcup_{k=1}^{\infty} A_k \right)$$

Because $\bigcup_{k=1}^{\infty} A_k \subseteq \bigcup_{k=1}^{\infty} D_k$,

$$\lim_{k \to \infty} \mu(A_k) \ge \mu \left(\bigcup_{k=1}^{\infty} A_k \right)$$

But $A_k \subseteq \bigcup_{k=1}^{\infty} A_k$, so the opposite inequality is also true, so we have equality.

Lecture 4, 1/24/23

Theorem 0.9. (Restriction and Radon measures)

Let X be a topological space and let μ be a Borel-regular measure on X. Let $A \subseteq X$ be μ -measurable with $\mu(A) < \infty$. Then the restriction measure $\nu = \mu|_A$ is Radon.

Proof. First, ν is a finite measure, as $\nu(X) = \mu(A \cap X) = \mu(A) < \infty$ for any $C \subseteq X$. It is clear that ν is Borel, as μ is Borel. Next, we show ν is Borel-Regular. Without loss of generality, we may assume that A is Borel, because μ is Borel-regular. Explicitly, we know there is a Borel set $B \subseteq X$ such that $A \subseteq B$ and $\mu(B) = \mu(A)$. We will show $\mu|_A = \mu|_B$.

We have $\mu(B) = \mu(B \cap A) + \mu(B \setminus A) = \mu(A) + \mu(B \setminus A)$. So $\mu(B \setminus A) = 0$. So, for all $C \subseteq X$,

$$\mu|_{B}(C) = \mu(B \cap C)$$

$$= \mu((B \cap C) \cap A) + \mu((B \cap C) \setminus A)$$

$$= \mu(C \cap A) + \mu((B \cap C) \setminus A)$$

$$\leq \mu|_{A}(C) + \mu(B \setminus A)$$

$$= \mu|_{A}(C)$$

But $(A \cap C) \subseteq (B \cap C)$, so $\mu|_A(C) \le \mu|_B(C)$, so we may conclude that $\mu|_A = \mu|_B$. So assume A is Borel. Fix $C \subseteq X$. We need to prove that there exists a Borel $D \subseteq X$ such that $C \subseteq D$ and $\nu(C) = \nu(D)$. There exists a Borel $E \subseteq X$ such that $C \cap A \subseteq E$, and $\mu(C \cap A) = \mu(E)$. So $D = E \cup (X \setminus A)$ is Borel and $C \subseteq D$. So

$$\nu(D) = \mu((E \cup (X \setminus A)) \cap A)$$

$$= \mu(E \cap A)$$

$$\leq \mu(E)$$

$$= \mu(C \cap A)$$

$$= \nu(C)$$

 $C \subseteq D$ so $\nu(C) \leq \nu(D)$, so $\nu(C) = \nu(D)$.

Theorem 0.10. (Carathéodory Criterion for being Borel) Let X be a metric space and let μ be a measure on X. Then μ is Borel if and only if, for all $A, B \subseteq X$ with d(A, B) > 0 (meaning $\inf\{d(a, b) \mid a \in A, b \in B\} > 0$),

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

Proof. =>

Suppose μ is Borel. We will use \overline{B} to denote the closure of B. Then $d(A, \overline{B}) = d(A, B) > 0$. By measurability of \overline{B} ,

$$\mu(A \cup B) = \mu((A \cup B) \cap \overline{B}) + \mu((A \cup B) \setminus \overline{B}) = \mu(B) = \mu(A)$$

 $\leq =$

Suppose that, for A, B with d(A, B) > 0, $\mu(A \cup B) = \mu(A) + \mu(B)$. We will show that this implies μ is Borel. Let us show that every closed subset $C \subseteq X$ is μ -measurable.

So we have to prove that for every $A \subseteq X$,

$$\mu(A) = \mu(A \cap C) + \mu(A \setminus C)$$

We have \leq trivially. Assume $\mu(A) < \infty$; otherwise, this equality holds trivially. Define for every $n \in \mathbb{N}$ the set $C_n = \{x \in X \mid d(x,C) \leq \frac{1}{n}\}$. We can see $d(A \setminus C_n, C) \geq \frac{1}{n} > 0$. So

$$\mu((A \setminus C_n) \cup (A \cap C)_{\subseteq A}) = \mu(A \setminus C_n) + \mu(A \cap C)$$

$$\leq \mu(A)$$

SO $\mu(A \setminus C_n) + \mu(A \cap C) \leq \mu(A)$ for all $n \in \mathbb{N}$. We will prove that $\lim_{n \to \infty} \mu(A \setminus C_n) = \mu(A \setminus C)$.

Consider the annuli $R_n = \{x \in A \mid \frac{1}{n+1} < d(x,C) \le \frac{1}{n}$. We have

$$(A \setminus C_1) \bigcup_{n=1}^{\infty} R_n \subseteq A \setminus C$$

C is closed, so in fact we have equality above. Why? If a point belongs to $A \setminus C$, then it does not belong to C, so d(x,C) > 0. So there is an $n \in \mathbb{N}$ such that $x \in R_n$ or $x \in A \setminus C_1$. We have

$$\mu\left(\bigcup_{k=0}^{n} R_{2k+1}\right) = \sum_{k=0}^{n} \mu(R_{2k+1}) \le \mu(A)$$
$$\mu\left(\bigcup_{k=1}^{n} R_{2k}\right) = \sum_{k=1}^{n} \mu(R_{2k}) \le \mu(A)$$

So $\sum_{n=1}^{\infty} \mu(R_n) \le 2\mu(A) < \infty$, so $\lim_{n\to\infty} (\sum_{k=n}^{\infty} \mu(R_k)) = 0$. So $(A \setminus C_n) \bigcup_{k=n}^{\infty} R_k = A \setminus C$

So by subadditivity,

$$\mu(A \setminus C) \le \mu(A \setminus C_n) + \sum_{k=n}^{\infty} \mu(R_k)$$

So as $n \to \infty$,

$$\mu(A \setminus C) \le \liminf_{n \to \infty} \mu(A \setminus C_n) \le \mu(A \setminus C)$$

This completes the proof.

It is time for our third section.

Approximation by open, closed, and compact sets

Theorem 0.11. Let μ be a Borel measure on \mathbb{R}^n , and let $B \subseteq \mathbb{R}^n$ be a Borel set.

- **1.** If $\mu(B) < \infty$, then for any $\varepsilon > 0$, there exists a closed $C \subseteq B$ such that $\mu(B \setminus C) < \varepsilon$.
- **2.** If μ is a Radon measure, then for all $\varepsilon > 0$, there exists an open $U \supseteq B$ such that $\mu(U \setminus B) < \varepsilon$.

Proof. 1. Let $\nu = \mu|_B$, a finite measure on \mathbb{R}^n .

Define the collection $\mathscr{F} = \{A \subseteq \mathbb{R}^n \mid A \text{ is } \mu\text{-measurable and for all } \varepsilon > 0, \text{ there exists a closed } C \subseteq A \text{ such that } \mu(A \setminus C) < \varepsilon\}$

Our goal is to show that $\mathscr{B}_{\mathbb{R}^n} \subseteq \mathscr{F}$. Davit uses " σ_B " to indicate the Borel σ -algebra.

By previous discussion, \mathcal{F} contains all closed sets.

Now, if $A_1, A_2, \dots \in \mathscr{F}$, then $\bigcap_{k=1}^{\infty} A_k \in \mathscr{F}$. For all A_k , there exists a closed $C_k \subseteq A_k$, such that $\nu(A_k \setminus C_k) < \frac{\varepsilon}{2^k}$. Then by subadditivity,

$$\nu(\bigcap_{k=1}^{\infty} A_k \setminus \bigcap_{k=1}^{\infty} C_k) \le \nu(\bigcup_{k=1}^{\infty} (A_k \setminus C_k)) \le \sum_{k=1}^{\infty} \nu(A_k \setminus C_k) < \varepsilon$$

and $C = \bigcap_{k=1}^{\infty} C_k$ is closed.