Review

- Last Class:
 - Systolic array and DNN basics
- Today's class:
 - DNN accelerator design based on systolic array
 - GPUs
- Announcement and reminder

36

36

$$0 \leq n < N, 0 \leq m < M, 0 \leq y < E, 0 \leq x < F,$$

$$E = (H - R + U)/U, F = (W - S + U)/U.$$

Shape Parameter	Description
N	fmap batch size
M	# of filters / # of output fmap channels
C	# of input fmap/filter channels
H/W	input fmap height/width
R/S	filter height/width
E/F	output fmap height/width
U	convolution stride

For DNN/CNN basics: https://eyeriss.mit.edu/

38

Naïve implementation in loops

Naïve 7-layer for-loop implementation:

39

For DNN/CNN basics: https://eyeriss.mit.edu/

Convolution (CONV) Layer • Dimensions of matrices for matrix multiply in convolution layers with batch size N Filters Input fmaps Output fmaps (H-R+1)(W-S+1)N CRS N=2 in example

51

Maximize row convolutional reuse in RF
 Keep a filter row and fmap sliding window in RF

 Maximize row psum accumulation in RF

Reg File

PE

Reg File

PE

87

Other Optimizations?

- Data layout transformation
 - Transform how data is stored in the linear memory
 - Compiler job
- Processing in memory (PIM)
 - Leverage the structure of memory to perform the computation
- Approximate computing
 - Quantization
 - Pruning

104