(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年9 月25 日 (25.09.2003)

PCT

(10) 国際公開番号 WO 03/078541 A1

(51) 国際特許分類⁷: C09K 11/06, H05B 33/14, 33/22

(21) 国際出願番号: PCT/JP03/02995

(22) 国際出願日: 2003 年3 月13 日 (13.03.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-71398 2002 年3 月15 日 (15.03.2002) JF

(71) 出願人 *(*米国を除く全ての指定国について*)*: 出光興 産株式会社 (IDEMITSU KOSAN CO., LTD.) [JP/JP]; 〒100-8321 東京都 千代田区 丸の内三丁目 1 番 1 号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 岩隈 俊裕 (IWAKUMA,Toshihiro) [JP/JP]; 〒299-0205 千葉県 袖ケ浦市 上泉 1 2 8 0 番地 Chiba (JP). 細川 地潮 (HOSOKAWA,Chishio) [JP/JP]; 〒299-0205 千葉

県 袖ケ浦市 上泉 1 2 8 0 番地 Chiba (JP). 池田秀嗣 (IKEDA,Hidetsugu) [JP/JP]; 〒 299-0205 千葉県 袖ケ浦市 上泉 1 2 8 0 番地 Chiba (JP). 富田誠司 (TOMITA,Seiji) [JP/JP]; 〒 299-0205 千葉県 袖ケ浦市 上泉 1 2 8 0 番地 Chiba (JP). 荒金 崇士(ARAKANE,Takashi) [JP/JP]; 〒 299-0205 千葉県 袖ケ浦市 上泉 1 2 8 0 番地 Chiba (JP).

(74) 代理人: 大谷保, 外(OHTANI, Tamotsu et al.); 〒 105-0001 東京都港区虎ノ門3丁目25番2号 ブ リヂストン虎ノ門ビル6階 Tokyo (JP).

(81) 指定国 (国内): CN, IN, JP, KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICES AND ORGANIC ELECTROLUMINESCENT DEVICES MADE BY USING THE SAME

((54) 発明の名称: 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

(57) Abstract: A material for organic electroluminescent devices consisting of a compound having a structure wherein a nitrogenous heterocyclic group is bonded to a carbazoyl group; and an organic electroluminescent device comprising a cathode, an anode, and one or more organic thin films placed between the cathode and the anode in which at least one of the organic thin films contains the above material. The material can give organic electroluminescent devices exhibiting high color purity and emitting a blue color.

(57) 要約: 本発明は、カルバゾイル基に、窒素含有ヘテロ環基が結合した化合物からなる有機エレクトロルミネッセンス素子用材料、及び、陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子であり、色純度が高く、青色系に発光する有機エレクトロルミネッセンス素子を提供可能な有機エレクトロルミネッセンス素子を提供する。

明細書

有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

技術分野

本発明は、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子(有機EL素子)に関し、特に、色純度が高く、青色系に発光する有機EL素子に関するものである。

背景技術

有機物質を使用した有機EL素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に、有機EL素子は、発光層及び該層を挟んだ一対の対向電極から構成されている。

有機EL素子の発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入され、電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。

発光材料としてはトリス(8ーキノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られており、それらからは青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている(例えば、特開平8-239655号公報、特開平7-138561号公報、特開平3-200289号公報等)。

最近では、有機EL素子ディスプレイの実用化が開始されているものの、フルカラー表示素子は開発途中である。特に、色純度及び発光効率が高く、青色系に

発光する有機EL素子が求められている。

これらを解決しようとするものとして、例えば、特開平8-12600号公報には、青色発光材料としてフェニルアントラセン誘導体を用いた素子開示されている。フェニルアントラセン誘導体は、青色発光材料として用いられ、通常、トリス(8-+ノリノラート)アルミニウム(Alq)錯体層との前記青色材料層の積層体として用いられるが、発光効率、寿命、青色純度が実用に用いられるレベルとしては不十分であった。特開2001-160489号公報には、アザフルオランテン化合物を発光層に添加した素子が開示されているが、黄色から緑色の発光となり、十分に色純度の高い青色を発光するに至っていない。

発明の開示

本発明は、前記の課題を解決するためになされたもので、色純度が高く、青色系に発光する有機EL素子用材料及びそれを利用した有機EL素子を提供することである。

本発明者らは、前記課題を解決するために鋭意検討した結果、カルバゾイル基に、窒素含有ヘテロ環基が結合した化合物をホスト材料として用いることにより、青色純度が高い有機EL素子が得られることを見出し本発明を解決するに至った。

すなわち、本発明は、下記一般式(1)で表される化合物からなる有機EL素 子用材料を提供するものである。

$$(Cz-)_{n} M_{m}$$
 (1)

[式中、Czは、置換もしくは無置換のカルバゾイル基、Mは、置換もしくは無置換の炭素数 $2\sim4$ 0 の窒素含有ヘテロ芳香族環であり、n、mは、それぞれ $1\sim3$ の整数である。また、nが 2 以上のときはCzは互いに異なっていてもよく、mが 2 以上のときはMは互いに異なっていてもよい。〕

また、本発明は、陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持さ

れている有機EL素子において、該有機薄膜層の少なくとも1層が、前記有機E L素子用材料を含有する有機EL素子を提供するものである。前期有機薄膜層の うち、発光層、電子輸送層又は正孔輸送層が前記有機EL素子用材料を含有して いてもよい。

発明を実施するための最良の形態

本発明の有機EL素子用材料は、下記一般式(1)で表される化合物からなる

$$(Cz-)_{n} M_{m}$$
 (1)

Czは、置換もしくは無置換のカルバゾイル基、Mは、置換もしくは無置換の 炭素数 $2\sim4$ 0 の窒素含有ヘテロ芳香族環であり、n、mは、それぞれ $1\sim3$ の整数である。また、nが 2以上のときはCzは互いに異なっていてもよく、mが 2以上のときはMは互いに異なっていてもよい。

Mにおける、窒素含有ヘテロ芳香族環としては、ピリジン、ピリミジン、ピラジン、トリアジン、アジリジン、アザインドリジン、インドリジン、イミダゾール、インドール、イソインドール、インダゾール、プリン、プテリジン、βーカルボリン、ナフチリジン、キノキサリン、キナゾリン、フェノチアジン、アクリジン、フェナントロリン、フェナジン等が挙げられる。

また、上記一般式(1)におけるCz、Mの置換基としては、塩素、臭素、フッ素等のハロゲン原子、カルバゾール基、ヒドロキシル基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、シリル基、トリフルオロメチル基、カルボニル基、カルボキシル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリールアルキル基、置換もしくは無置換の芳香族基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアカルキル基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアルキルオキシ基等が挙げられる。これらのうち、フッ素原子、フェニル基

、ナフチル基、ピリジル基、ピラジル基、ピリミジル基、シアノ基、置換もしく は無置換のアルキル基、置換もしくは無置換のアラルキル基が好ましい。

本発明の一般式(1)で表される化合物は、下記一般式(2)~(10)のいずれかで表される化合物であると好ましい。

本発明の一般式(1)で表される化合物の具体例を以下に示すが、これら例示 化合物に限定されるものではない。

6

本発明の一般式(1)の化合物は、1重項のエネルギーギャップが2.8~3 .8 e V であり、2.9~3.6 e V であると好ましい。

本発明の有機EL素子は、陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも1層が、前記一般式(1)の化合物からなる有機EL素子用材料を含有する。また、有機EL素子の発光層に、前記一般式(1)の化合物からなる有機EL素子用材料を含有すると好ましい。

本発明の有機EL素子は、青色系発光し、その純度が(0.12,0.11) $\sim (0.16,0.19)$ と高いものが含まれる。これは、本発明の一般式(1)の化合物からなる有機EL素子用材料が、広いエネルギーギャップを有しているからである。

本発明の有機EL素子は、3重項励起又はそれ以上の多重項励起により発光すると好ましい。

本発明の有機EL素子用材料は、有機EL素子のホスト材料であると好ましい

。このホスト材料とは、正孔と電子の注入が可能であって、正孔と電子が輸送され、再結合して蛍光を発する機能を有するものである。

また、本発明の一般式 (1) の化合物は、1 重項のエネルギーギャップが 2. $8 \sim 3$. $8 \in V$ と高く、3 重項のエネルギーギャップも 2. $5 \sim 3$. $3 \in V$ と高いため、燐光素子用の有機ホスト材料としても有用である。

ここで、燐光素子とは、3重項準位のエネルギー状態から基底1重項準位の状態への遷移に基づく発光の強度が他の物質に比べて高い物質、例えば、周期律表7~11族から選ばれる少なくとも1つの金属を含む有機金属錯体などの燐光物質を含む、いわゆる燐光を利用した有機電界発光素子のことである。

有機EL素子の発光層において、生成される分子励起子には、1重項励起子と3重項励起子とが混合していて、1重項励起子及び3重項励起子は、一般的には1:3の割合で、3重項励起子の方が多く生成されていると言われている。また、通常の蛍光を使った有機EL素子では、発光に寄与する励起子は1重項励起子であって、3重項励起子は非発光性である。このため、3重項励起子は最終的には熱として消費されてしまい、生成率の低い1重項励起子から発光が生じている。したがって、有機EL素子においては、正孔と電子との再結合によって発生するエネルギーのうち、3重項励起子の方へ移動したエネルギーは大きい損失となっている。

このため、本発明の化合物を燐光素子に利用することにより、3重項励起子のエネルギーを発光に使用できるので、蛍光を使った素子の3倍の発光効率の得られると考えられる。また、本発明の化合物は、燐光素子の発光層に用いると、該層に含まれる $7\sim1$ 1族から選ばれる金属を含有する燐光性有機金属錯体の励起3重項準位より高いエネルギー状態の励起3重項準位を有し、さらに安定な薄膜形状を与え、高いガラス転移温度($Tg:80\sim160$ °C)を有し、正孔及び/又は電子を効率よく輸送することができ、電気化学的かつ化学的に安定であり、トラップとなったり発光を消光したりする不純物が製造時や使用時に発生しにく

いと考えられる。

さらに、正孔注入層、電子注入層、正孔障壁層が本発明の化合物を含有していてもよい。また、燐光発光性化合物と本発明の化合物を混合して使用していてもよい。

本発明の有機EL素子は、前記したように陽極と陰極間に一層もしくは多層の有機薄膜層を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔、もしくは陰極から注入した電子を発光材料まで輸送させるために、正孔注入材料もしくは電子注入材料を含有してもよい。また、発光材料は、極めて高い蛍光量子効率、高い正孔輸送能力及び電子輸送能力を併せ持ち、均一な薄膜を形成することが好ましい。多層型の有機EL素子としては、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/発光層/陰極)、(陽極/正孔注入層/発光層/陰極)、(陽極/正孔注入層/発光層/陰極)等の多層構成で積層したものがある。

発光層には、必要に応じて、本発明の一般式(1)の化合物に加えてさらなる公知のホスト材料、発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用し、組み合わせて使用することもできる。有機EL素子は、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができ、他のドーピング材料により、発光輝度や発光効率を向上させたり、燐光発光に寄与する他のドーピング材料と組み合わせて用いることにより、従来の発光輝度や発光効率を向上させることができる。

また、本発明の有機EL素子における正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されてもよい。その際、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、

耐熱性、有機薄膜層もしくは金属電極との密着性等の各要因により選択されて使 用される。

本発明の有機EL素子は、電子輸送層や正孔輸送層が、一般式(1)の化合物からなる有機EL素子用材料を含有してもよい。

本発明の一般式(1)の化合物と共に有機薄膜層に使用できる発光材料又はホスト材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン、スチルベン系誘導体及び蛍光色素等が挙げられるが、これらに限定されるものではない。

発光材料としては、素子の外部量子効率をより向上させることができる点で燐光性の有機金属錯体が好ましく、有機金属錯体の金属原子として、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金を含有するものが挙げられる。これらの有機金属錯体は下記一般式(A)で表される有機金属錯体であるのが好ましい。

$$\begin{bmatrix} A^1 \\ O \\ O \\ A^2 \end{bmatrix}_n \qquad (A)$$

(式中、A¹は、置換もしくは無置換の芳香族炭化水素環基又は芳香族複素環基

を表し、好ましくは、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、ピリジル基、キノリル基、イソキノリル基であり、前記置換基としては、フッ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~30のアルキル基;ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数1~30のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1~30のアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基、アセチル基等のアシル基、トリフルオロメチル基等のハロアルキル基、シアノ基を表す。

 A^2 は、窒素を複素環を形成する原子として含有する置換もしくは無置換の芳香族複素環基を表し、好ましくは、ピリジル基、ピリミジル基、ピラジン基、トリアジン基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリン基、フェナントリジン基であり、前記置換基としては、 A^1 と同様で挙げられる。

A'を含む環とA'を含む環は一つの縮合環を形成してもよく、このようなものとしては、例えば、7,8-ベンゾキノリン基等が挙げられる。

Qは、周期表7~11族から選ばれる金属であり、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金を表す。

Lは、2座型の配子を表し、好ましくは、アセチルアセトナート等のβージケト型の配位子又はピロメリット酸から選ばれる。

m及びnは整数を表し、Qが二価金属の場合は、n=2、m=0であり、Qが三価金属の場合は、n=3かつm=0、 ∇ はn=2かつm=1である。)

前記一般式(3)で示される有機金属錯体の具体例を以下に示すが、何ら下記 の化合物に限定されるものではない。

(K-17)

$$(K-18)$$
 N
 2
 CH_3
 $(K-19)$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$(K-22)$$

正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層又は電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾール、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。

これらの正孔注入材料の中で、さらに効果的な正孔注入材料は、芳香族三級アミン誘導体又はフタロシアニン誘導体である。芳香族三級アミン誘導体の具体例としては、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N'ージフェニルーN,N'ー(3-メチルフェニル)ー1,1'ービフェニルー4,4'ージアミン、N,N',N',N'ー(4-メチルフェニル)ー1,1'ーフェニルー4,4'ージアミン、N,N,N',N',N'ー(4-メチルフェニル)ー1,1'ービフェニルー4,4'ージアミン、N,N'ージフェニルーN,N'ージナフチルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ービフェニルー1,1'ージアミン、N,N'ージアミン、N,N'ージナフチルー1,1'ービフェニルー1,1'ービフェニルー1,1'ージアミン、N,Nービス(1-ジアミン、N,Nービス(1-ジアミン、N,Nービス(1-ジアミン・アニル)ー1-フェニルーシクロへキサン等、又はこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーであるが、これらに限定されるものではない。フタロシアニン(1-ア・アロア・アロト、アロア・アロト、CIAIPC、CIGaP

c、ClInPc、ClSnPc、Cl2 SiPc、(HO) AlPc、(HO) GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体であるが、これらに限定されるものではない。

電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、キノキサリン、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体が挙げられるが、これらに限定されるものではない。

これらの電子注入材料の中で、さらに効果的な電子注入材料は、金属錯体化合物又は含窒素五員環誘導体である。金属錯体化合物の具体例は、8ーヒドロキシキノリナートリチウム、ビス(8ーヒドロキシキノリナート)亜鉛、ビス(8ーヒドロキシキノリナート)銅、ビス(8ーヒドロキシキノリナート)マンガン、トリス(8ーヒドロキシキノリナート)アルミニウム、トリス(2ーメチルー8ーヒドロキシキノリナート)アルミニウム、トリス(2ーメチルー8ーヒドロキシキノリナート)アルミニウム、トリス(8ーヒドロキシキノリナート)がリウム、ビス(10ーヒドロキシベンゾ [h] キノリナート)でリリウム、ビス(10ーヒドロキシベンゾ [h] キノリナート)亜鉛、ビス(2ーメチルー8ーキノリナート)クロロガリウム、ビス(2ーメチルー8ーキノリナート)(1ーナフトラート)ガリウム、ビス(2ーメチルー8ーキノリナート)(1ーナフトラート)ガリウム等が挙げられるが、これらに限定されるものではない。

また、含窒素五員誘導体は、オキサゾール、チアゾール、オキサジアゾール、 チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-

ビス (1-7x=n) -1, 3, 4-x+y/ール、ジメチルPOPOP、2, 5- ビス (1-7x=n) -1, 3, 4- チアゾール、2, 5- ビス (1- フェニル)-1, 3, 4- オキサジアゾール、2 - (4' - t e r t - T - t -

また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより電荷注入性を向上させることもできる。

本発明の有機EL素子の陽極に使用される導電性材料としては、4 e Vより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4 e Vより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム等及びそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げら

れるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及び陰極は、必要があれば二層以上の層構成により形成されていてもよい。

本発明の有機EL素子は、少なくとも一方の電極と前記有機薄膜層との間に無機化合物層を有していてもよい。無機化合物層に使用される好ましい無機化合物としては、アルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiOx、AlOx、SiNx、SiON、AlON、GeOx、LiOx、LiON、TiOx、TiON、TaON、TaNx、Cなど各種酸化物、窒化物、酸化窒化物である。特に陽極に接する層の成分としては、SiOx、AlOx、SiNx、SiON、AlON、GeOx、Cが安定な注入界面層を形成して好ましい。また、特に陰極に接する層の成分としては、LiF、MgF2、CaF2、MgF2、NaFが好ましい。

本発明の有機EL素子は、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。

透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹脂フィルムが挙げられる。透明性樹脂フィルムとしては、ポリエチレン、エチレン一酢酸ビニル共重合体、エチレンービニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレンーエチ

レン共重合体、テトラフルオロエチレンーへキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。

本発明の有機EL素子は、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。

本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり発光効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は $5\,\mathrm{nm}\sim10\,\mu\mathrm{m}$ の範囲が適しているが、 $10\,\mathrm{nm}\sim0$. $2\,\mu\mathrm{m}$ の範囲がさらに好ましい。

湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであってもよい。また、いずれの層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリーNービニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂が挙げられる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。

以上のように、有機EL素子の有機薄膜層に本発明の一般式(1)の化合物を

用いることにより、色純度が高く、青色系に発光する有機EL素子を得ることができ、この有機EL素子は、例えば電子写真感光体、壁掛けテレビ用フラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯、アクセサリー等に好適に用いられる。

次に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれらの実 施例に限定されるものではない。

なお、化合物の3重項エネルギーギャップ及び1重項エネルギーギャップは、 以下のようにして測定した。

(1) 3 重項エネルギーギャップの測定

(2) 1 重項エネルギーギャップの測定

励起1重項エネルギーギャップの値を測定した。すなわち、試料のトルエン溶液(10^{-5} モル/リットル)を用い日立社製紫外可視吸光計を用い吸収スペクトルを測定した。スペクトルの長波長側の立ち上りに対し接線を引き横軸との交点である波長(吸収端)を求めた。この波長をエネルギー値に換算した。

合成例 1 (化合物 (A 2) : 9-(2,6-) ピリジルピリジンー 4- イル) カルバゾールの合成)

化合物(A2)の合成経路を以下に示す。

Ar雰囲気下、2,6ージピリジルー4ーブロモピリジン(9.4g,30mmol)、3,6ージフェニルカルバゾール(9.6g,30mmol)、よう化銅(0.06g,0.32mmol,1%Cu)、trans-1,2ーシクロヘキサンジアミン(0.4ml,3.3mmol,10eqtoCu)、リン酸カリウム(14g,66mmol,2.2eq)を無水ジオキサン(30ml)に懸濁し、10時間還流した。反応混合物をろ別してトルエンで洗浄し、ろ液を濃縮した後、カラムクロマトグラフィーで精製して白色固体(13.2g,収率80%)を得た。「HーNMR及びFD-MS(フィールドディソープションマス分析)により目的物(A2)であることを確認した。また、FD-MSの測定結果を以下に示す。FD-MS,calcd for $C_{33}H_{26}N_4=550$, found, m/z=550(M^+ ,100).

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

合成例 2 (化合物 (A 1 4): 2 - (2, 6 - ジピリジルピリジン - 4 - イル) - 5 - (9 - カルバゾリル) ピリミジンの合成)

化合物(A14)の合成経路を以下に示す。

Ar 雰囲気下、2-(2,6-)ピリジルピリジンー4-イル)-5-プロモピリミジン(12g, 30mmol)、カルバゾール(5g, 30mmol)、よう化銅(0.06g, 0.32

nmol, 1%Cu)、trans-1, 2-シクロヘキサンジアミン(0.4ml, 3.3mmol, 10eq to Cu)、リン酸カリウム(14g, 66mmol, 2.2eq)を無水ジオキサン(30ml) に懸濁し、10時間還流した。反応混合物をろ別してトルエンで洗浄し、ろ液を濃縮した後、カラムクロマトグラフィで精製して白色固体(<math>10.9g, 収率76%) を得た。 $^1H-NMR及びFD-MSにより目的物(<math>A14$)であることを確認した。 また、FD-MSの測定結果を以下に示す。

FD-MS, calcd for $C_{31}H_{20}N_6=476$, found, $m/z=476(M^+, 100)$.

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

合成例 3 (化合物 (A 3 3): 2, 6 - ジ (9 - カルバゾリル) ピリジンの合成)

化合物(A33)の合成経路を以下に示す。

A r 雰囲気下、2,6 ージブロモピリジン(2.4g,10mmol)、3,6 ージフェニルカルバゾール(9.6g,30mmol)、よう化銅(0.06g,0.32mmol,1%Cu)、trans-1,2ーシクロヘキサンジアミン(0.4ml,3.3mmol,10eq to Cu)、リン酸カリウム(14g,66mmol,2.2eq)を無水ジオキサン(30ml)に懸濁し、10時間還流した。反応混合物をろ別してトルエンで洗浄し、ろ液を濃縮した後、カラムクロマトグラフィで精製して白色固体(4.8g,収率67%)を得た。「H-NMR及びFD-MSにより目的物(A33)であることを確認した。また、FD-MSの測定結果を以下に示す。

FD-MS, calcd for $C_{53}H_{35}N_{3}=713$, found, $m/z=713(M^{+}, 100)$.

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

合成例 4 (化合物 (A 4 5) の合成)

化合物(A45)の合成経路を以下に示す。

2-(2,4-i)フェニルピリミジンー6-iイル)-6-iブロモピリジン3.2g (8mmol)、カルバゾール1.4g (9mmol)、よう化銅0.08g (0.4mmol)、リン酸カリウム3.7g (17mmol)を1,4-iジオキサン16ミリリットルに懸濁し、トランス-1,2-i0.5ミリリットル(10mmol)を加え、アルゴン雰囲気下、15時間加熱環流した。反応溶液を室温まで冷却し、水を加え、塩化メチレン抽出した後、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を減圧留去後、酢酸エチル10mmol25ミリリットルを加え、析出した結晶を濾過し、酢酸エチルで洗浄し、結晶10mmol3.3g (収率10mmol39%)を得た。得られた結晶は、10mmol4000 を得た。得られた結晶は、10mmol500 を得た。また、1mmol600 の別定結果を以下に示す。

FD-MS, calcd for $C_{33}H_{22}N_{4}=474$, found, $m/z=474(M^{+}, 100)$

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

合成例 5 (化合物 (A 4 6) の合成)

化合物(A46)の合成経路を以下に示す。

2,4ージカルバゾイルー6ークロロピリミジン2.5g(6mmol)、4ーカルバゾイルフェニルボロン酸1.6g(6mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.13g(0.1mmol)を1,2ージメトキシエタン25ミリリットルに懸濁し、炭酸ナトリウム1.8g(17mmol)を水8ミリリットルに溶解した溶液を加え、9時間20分間加熱環流した。反応溶液を室温まで冷却後、析出した結晶を濾過し、水、メタノール、酢酸エチルで順次洗浄し、粗結晶3.7gを得た。得られた結晶を減圧下昇華精製して、精製結晶3.1g(収率85%)を得た。得られた結晶は、90MHz「HーNMR及びFDーMSにより目的物(A46)であることを確認した。また、FD-MSの測定結果を以下に示す。

FD-MS, calcd for $C_{46}H_{29}N_{5}=651$, found, $m/z=651(M^{+}, 100)$

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

合成例6(化合物(A47)の合成)

化合物(A47)の合成経路を以下に示す。

2-カルバゾイル- 5-プロモピリジン1.9g(6mmol) 、4-カルバゾイルフェニルボロン酸1.7g(6mmol) 、テトラキス(トリフェニルホスフィン)パラジウム

0.14g(0.1 mmol) を 1 , 2 -ジメトキシエタン18ミリリットルに懸濁し、炭酸ナトリウム1.9g(18 mmol) を x 9 ミリリットルに溶解した溶液を加え、 9 時間15分間加熱環流した。反応溶液を室温まで冷却後、析出した結晶を濾過し、水、メタノール、酢酸エチルで順次洗浄し、粗結晶2.9gを得た。得られた結晶を減圧下昇華精製して、精製結晶2.4g(収率84%)を得た。得られた結晶は、90 MHz $^1H-NMR及びFD-MS$ により目的物(A47)であることを確認した。また、 ^1H-MS の測定結果を以下に示す。

FD-MS, calcd for $C_{35}H_{23}N_{3}=485$, found, m/z=485 (M⁺, 100)

さらに、得られた化合物の1重項のエネルギーギャップ及び3重項のエネルギーギャップの値を表1に示した。

	化合物	1重項のエネルギー ギャップ(eV)	3重項のエネルギー ギャップ(eV)
合成例 1	A 2	3. 2	2.7
合成例 2	A 1 4	3. 2	2.8
合成例 3	A 3 3	3.3	2.7
合成例 4	A 4 5	3. 2	2.8
合成例 5	A 4 6	3.3	2.8
合成例 6	A 4 7	3.4	2.8

表 1

実施例1

25mm×75mm×1.1mm厚のITO透明電極付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmのN,N'ービス(N,N'ージフェニルー4ーアミノフェニル)ーN,Nージフェニルー4,4'ージアミノー1,1'ービフェニル膜(TPD232膜)を成膜した。このTPD232膜は、正孔注入層として機能する。次に、このTPD232膜上に膜厚20n

この素子は、直流電圧 5.0 V で発光輝度 150 c d/m^2 、発光効率 6.7 c d/A の高効率な青色発光が得られた。また、色度座標は (0.15,0.16) であり、色純度が高かった。

実施例 2~3

実施例1において、化合物(A2)の代わりに、表2に記載の化合物を用いた

以外は同様にして有機EL素子を作製し、同様に直流電圧、発光輝度、発光効率 、発光色、色純度を測定し表 2 に示した。

比較例 1

実施例1において、化合物(A2)の代わりに、従来公知の化合物である下記 化合物BCzを用いた以外は同様にして有機EL素子を作製し、同様に直流電圧 、発光輝度、発光効率、発光色、色純度を測定し表2に示した。

BCz

表 2

	発光層の有機 ホスト材料	電圧(V)	発光輝度 (cd/m²)	発光効率 (cd/A)	発光色	色度座標
実施例 1	A 2	5. 0	1 5 0	6.7	青	(0. 15, 0. 16)
実施例 2	A 1 4	6.0	1 3 0	5.5	青	(0. 14, 0. 16)
実施例3	A 3 3	7. 0	161	6.9	青	(0. 15, 0. 16)
比較例1	BCz	8.5	1 2 0	3.4	青	(0. 14, 0. 16)

表2に示したように、比較例1の従来公知の化合物BCzに対して、本発明の化合物を用いた有機EL素子は、低電圧駆動であり、かつ高効率の青色発光が得られる。また、本発明の化合物は、エネルギーギャップが広いので、エネルギーギャップの広い発光性分子を発光層に混合し発光させることができる。

実施例 4

25 mm×75 mm×0.7 mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに

装着し、まず透明電極が形成されている側の面上に前記透明電極を覆うようにし て膜厚10nmの銅フタロシアニン膜(下記CuPc膜)を成膜した。このCu Pc膜は、正孔注入層として機能する。次に、このCuPc膜上に膜厚30nm の4,4'ービス[N-(1-ナフチル)ーN-フェニルアミノ] ビフェニル膜 (下記 $\alpha-NPD$ 膜)を成膜した。この $\alpha-NPD$ 膜は正孔輸送層として機能す る。さらに、この $\alpha-{\rm NPD}$ 膜上に膜厚 $30~{\rm nm}$ の上記化合物(A 4~6)をホス ト材料として蒸着し発光層を成膜した。同時に燐光発光性のIr金属錯体ドーパ ントとしてトリス (2-フェニルピリジン) Ir (下記 Ir (ppy) & と略記 する。)を添加した。発光層中における I r (ppy)。の濃度は5重量%とし た。この膜は、発光層として機能する。この膜上に膜厚10nmの(1,1'-ビスフェニル) -4-オラート) ビス(2-メチル-8-キノリノラート) アル ミニウム(BAl q 膜)を成膜した。このBAl q 膜は正孔障壁層として機能す る。さらにこの膜上に膜厚40mmの8-ヒドロキシキノリンのアルミニウム錯 体(下記Alq膜)を成膜した。このAlq膜は電子注入層として機能する。こ の後ハロゲン化アルカリ金属であるLiFを0.2nmの厚さに蒸着し、次いで アルミニウムを150nmの厚さに蒸着した。このAl/LiFは陰極として働 く。このようにして有機EL素子を作製した。

この素子について、通電試験を行なったところ、電圧 5.5 V,電流密度 0.2 2 m A / c m² にて、発光輝度 100 c d / m²、発光効率 44.5 c d / A の緑色発光が得られ、色度座標は (0.32,0.61) であった。

CuPc
$$\alpha$$
 —NPD α —NPD α —NPD α —NPD α —NPD

実施例5

実施例4において、発光層のホスト材料の化合物(A46)の代わりに、化合物 (A45)を用いた以外は同様にして有機EL素子を作製し、同様に電圧、電流密度、発光輝度、発光効率、色度を測定し表3に示した。

比較例 2

実施例4において、発光層のホスト材料の化合物(A46)の代わりに、従来 公知の化合物である上記化合物BCzを用いた以外は同様にして有機EL素子を 作製し、同様に電圧、電流密度、発光輝度、発光効率、色度を測定し表3に示し た。

比較例3

実施例4において、発光層のホスト材料の化合物(A46)の代わりに、米国特許公開公報2002-0028329A1に記載の下記化合物(A-10)を用いた以外は同様にして有機EL素子を作製し、同様に直流電圧、電流密度、発光輝度、発光効率、色度を測定し表3に示した。

表3

	発光層の 有機ホス ト材料	3 重項 エネルキ゛ー キ゛ャッフ゜ (eV)	1重項 エネルキ゛ー キ゛ャップ゜ (eV)	電圧 (V)	電流密度 (mA/cm²)	発光 輝度 (cd/m²)	発 光 効 率 (cd/A)	色度座標 (x, y)
実施例4	A 4 6	2.8	3. 3	5.5	0. 22	100	44. 5	(0.32, 0.61)
実施例5	A 4 5	2.8	3. 2	5.7	0. 23	97	41.8	(0.32, 0.61)
比較例2	ВСг	2.8	3.6	5. 4	0.31	101	32. 6	(0. 32, 0. 61)
比較例3	A-10	3. 1	3.7	5.9	0.32	100	31.8	(0.32, 0.61)

表3に示したように、比較例2,3の従来公知の化合物(BCz,A-10)に対して、本発明の化合物を用いた有機EL素子は、高効率の緑色発光が得られる。またも本発明の化合物は、エネルギーギャップが広いので、エネルギーギャップの広い発光性分子を発光層に混合し発光させることができる。

実施例6

 $25\,\mathrm{mm}\times75\,\mathrm{mm}\times0$. $7\,\mathrm{mm}$ 厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に前記透明電極を覆うようにして膜厚 $10\,\mathrm{nm}$ の銅フタロシアニン膜($C\,\mathrm{uPc}$ 膜)を成膜した。この $C\,\mathrm{uPc}$ 度は、正孔注入層として機能する。次に、この $C\,\mathrm{uPc}$ 膜の上に膜厚 $30\,\mathrm{nm}$ の1, 1, -ビス $[4-\mathrm{N}$, N -ジ (パラトリル) アミノフェニル] シクロヘキサン膜(下記 TPAC 膜)を成膜した。この TPAC 膜は正孔輸送層として機能する。さらに、 TPAC 膜上に膜厚 $30\,\mathrm{nm}$ の上記化合物($\mathrm{A46}$)を蒸着し発光層を成膜した。同時に燐光性の Ir 金属錯体として Ir ビス [($\mathrm{4}$, $\mathrm{6}$ - ジフル

オロフェニル)-ピリジナート-N, C^2]ピコリナート(下記FIrpic)を添加した。発光層中におけるFIrpicの濃度は7重量%とした。この膜は、発光層として機能する。この膜上に膜厚30nmの8-ヒドロキシキノリンのアルミニウム錯体(Alq膜)を成膜した。このAlq膜は電子注入層として機能する。この後ハロゲン化アルカリ金属であるLiFを0.2nmの厚さに蒸着し、次いでアルミニウムを150nmの厚さに蒸着した。このAl/LiFは陰極として働く。このようにして有機EL素子を作製した。

この素子について、通電試験を行なったところ、電圧 6.4V, 電流密度 $0.44mA/cm^2$ にて、発光輝度 $99cd/m^2$ 、発光効率は 22.4cd/A の青色発光が得られ、色度座標は (0.17,0.39) であった。

実施例7

実施例 6 において、発光層のホスト材料の化合物(A 4 6)の代わりに、化合物 (A 4 5)を用いた以外は同様にして有機 E L 素子を作製し、同様に電圧、電流密度、発光輝度、発光効率、色度を測定し表 4 に示した。

比較例 4

実施例 6 において、発光層のホスト材料の化合物(A 4 6)の代わりに、従来公知の化合物である上記化合物 B C z を用いた以外は同様にして有機 E L 素子を作製し、同様に電圧、電流密度、発光輝度、発光効率、色度を測定し表 4 に示した。

比較例 5

比較例 4 において、正孔輸送層の化合物(TPAC)に代えて、 $\alpha-N$ P D ϵ

使用し、さらに電子注入層の化合物Alqに代えて、BAlqを使用する以外は同様にして有機EL素子を作製し、同様に電圧、電流密度、発光輝度、発光効率、色度を測定し表4に示した。

表 4

	発光層の 有機ホス ト材料	3重項 エネルキ゛ー キ゛ャッフ゜ (eV)	1 重項 エネルキ゛ー キ゛ャップ゜ (eV)	電圧 (V)	電流密度 (mA/cm²)	発光 輝度 (cd/m²)	発 光 効 率 (cd/A)	色度座標 (x, y)
実施例6	A46	2.8	3. 3	6.4	0. 44	99	22. 4	(0. 17, 0. 39)
実施例7	A 4 5	2.8	3. 2	6.8	0. 55	99	18. 2	(0. 17, 0. 39)
比較例4	BCz	2.8	3. 6	7.8	1. 70	98	5.80	(0. 16, 0. 37)
比較例5	BCz	2.8	3. 6	7.6	1. 09	99	9. 15	(0. 17, 0. 37)

表4に示したように、比較例の従来公知の化合物BCzに対して、本発明の化合物を用いた有機EL素子は、低電圧駆動であり、かつ高発光効率の青色発光が得られる。また、本発明の化合物は、エネルギーギャップが広いので、エネルギーギャップの広い発光性分子を発光層に混合し発光させることができる。

産業上の利用可能性

以上詳細に説明したように、本発明の一般式(1)で表される化合物からなる 有機エレクトロルミネッセンス素子用材料を利用すると、発光効率及び色純度が 高く、青色系に発光する有機エレクトロルミネッセンス素子が得られる。このた め、本発明の有機エレクトロルミネッセンス素子は、各種電子機器の光源等とし て極めて有用である。

請求の範囲

1. 下記一般式(1)で表される化合物からなる有機エレクトロルミネッセンス素子用材料。

$$(Cz-)_{n} M_{m}$$
 (1)

[式中、Czは、置換もしくは無置換のカルバゾイル基、Mは、置換もしくは無置換の炭素数 $2\sim4$ 0 の窒素含有ヘテロ芳香族環であり、n、mは、それぞれ $1\sim3$ の整数である。また、nが 2 以上のときはCzは互いに異なっていてもよく、mが 2 以上のときはMは互いに異なっていてもよい。ただし、n=3, m=1 のとき、Mはトリアジンではない。〕

2. 前記一般式(1)で表される化合物が、下記一般式(2)~(10)のいずれかで表される化合物である請求項1に記載の有機エレクトロルミネッセンス素子用材料。

- 3. 前記一般式(1)の化合物の1重項のエネルギーギャップが2.8~3.8 e Vである請求項1に記載の有機エレクトロルミネッセンス素子用材料。
- 4. 前記一般式(1)の化合物の3重項のエネルギーギャップが2.5~3.3 e Vである請求項1に記載の有機エレクトロルミネッセンス素子用材料。
- 5. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
- 6. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、発光層が請求項1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
- 7. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、発光層が請求項3に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
- 8. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、発光層が請求項4に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
- 9. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、電子輸送層が請求項1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子
- 10. 陰極と陽極間に一層又は複数層からなる有機薄膜層が挟持されている有機

3 5

エレクトロルミネッセンス素子において、正孔輸送層が請求項1に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。

- 11. 前記有機エレクトロルミネッセンス素子用材料が、有機ホスト材料である請求項5に記載の有機エレクトロルミネッセンス素子。
- 12. 少なくとも一方の電極と前記有機薄膜層との間に無機化合物層を有する請求項5に記載の有機エレクトロルミネッセンス素子。
- 13.3重項励起又はそれ以上の多重項励起により発光する請求項5に記載の有機エレクトロルミネッセンス素子。
- 14. 青色系発光する請求項5に記載の有機エレクトロルミネッセンス素子。

International application No.
PCT/JP03/02995

A. CLASS Int.	IFICATION OF SUBJECT MATTER Cl ⁷ C09K11/06, H05B33/14, H05B	33/22					
According to	According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	SEARCHED						
	ocumentation searched (classification system followed l						
	Cl ⁷ C09K11/06, H05B33/14, H05B						
	ion searched other than minimum documentation to the						
Electronic d	ata base consulted during the international search (nam	e of data base and, where practicable, sea	rch terms used)				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
Х	JP 2000-264880 A (Sharp Corp 26 September, 2000 (26.09.00) Claims; Par. No. [0037]; exam (Family: none)	<i>r</i> .	1-14				
Х	JP 2000-268961 A (Futaba Cor 29 September, 2000 (29.09.00) Claims; Par. No. [0073] (Family: none)		1-14				
Х	JP 2000-290644 A (Fuji Photo 17 October, 2000 (17.10.00), Claims; page 8 & US 6440586 B1	Film Co., Ltd.),	1-14				
	-						
× Furthe	er documents are listed in the continuation of Box C.	See patent family annex.					
	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the interpriority date and not in conflict with the					
conside	red to be of particular relevance document but published on or after the international filing	understand the principle or theory und "X" document of particular relevance; the	erlying the invention				
date considered novel or cannot be considered to involve an inventive							
cited to	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	"Y" document of particular relevance; the	claimed invention cannot be				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other special documents, such							
	"P" document published prior to the international filing date but later "&" document member of the same patent family						
Date of the actual completion of the international search 30 May, 2003 (30.05.03) Date of mailing of the international search 17 June, 2003 (17.06.03)							
	nailing address of the ISA/ nese Patent Office	Authorized officer					
Facsimile N		Telephone No.					
 racsume N 	U.	,p					

International application No. PCT/JP03/02995

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Х	WO 01/019939 A1 (Ciba Specialty Chemicals Holding Inc.), 22 March, 2001 (22.03.01), & JP 2003-509441 A & US 6258954 A & EP 1216285 A1	1-14
Х	US 2001/15614 A1 (Fuji Photo Film Co., Ltd.), 23 August, 2001 (23.08.01), page 16 & JP 2001-284051 A	1-14
х	JP 2001-247858 A (Fuji Photo Film Co., Ltd.), 14 September, 2001 (14.09.01), Claims (Family: none)	1-14
Х	WO 01/72927 A1 (Idemitsu Kosan Co., Ltd.), 04 October, 2001 (04.10.01), Claims; page 17 to 18 & EP 1205527 A1 & US 2002/45061 A1	1-14
х	JP 2000-260565 A (Futaba Corp.), 22 September, 2000 (22.09.00), Claims; Par. No. [0062] (Family: none)	1-14
A	JP 11-144876 A (Toray Industries, Inc.), 28 May, 1999 (28.05.99), (Family: none)	1-14
1		

International application No. PCT/JP03/02995

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: The claim of this application includes three groups of inventions having the following matters as the "technical feature": (I) a material for organic electroluminescent devices consisting of a compound of the general formula (1) wherein m is 1, (II) a material for organic electroluminescent devices consisting of a compound of the general formula (1) wherein m is 2, and (III) a material for organic electroluminescent devices consisting of a compound of the general formula (1) wherein m is 3. The technical feature common to any two of the groups (I), (II), and (III) (continued to extra sheet) 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/JP03/02995

Continuation of Box No.II of continuation of first sheet(1)

is a material for organic electroluminescent devices consisting of a compound having a structure wherein a substituted or unsubstituted nitrogenous hetero-aromatic ring having 2 to 40 carbon atoms is bonded directly to a substituted or unsubstituted carbazoyl group, but such materials for organic electroluminescent devices are known (see Japanese Patent Laid-Open Nos. 2001-284051 and 2000-323281). Thus, the technical feature is not considered as "a special technical feature" within the meaning of PCT Rule 13.2.

Therefore, the groups (I), (II), and (III) do not have any "special technical feature" in common.

Α.	発明の属する分野の分類	(国際姓許公箱	(IPC)	١
д.	光切りのありる万里の万鬼	(国际付计为规	LLF C)	,

Int. Cl7 C09K11/06, H05B33/14, H05B33/22

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ C09K11/06, H05B33/14, H05B33/22

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

O: 1000		
引用文献の カテゴリー*	11円十歩々 及び 如の姓記が開するとしての間するとなるまこ	関連する
カプロリーネ	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	JP 2000-264880 A(シャープ株式会社)2000.09.26、特許請求の範囲、【0037】、実施例 1 (ファミリーなし)	$1 - 1 \ 4$
X	JP 2000-268961 A(双葉電子工業株式会社)2000.09.29、特許請求の 範囲,【0073】(ファミリーなし)	1-14
X	JP 2000-290644 A(富士写真フィルム株式会社)2000.10.17、特許請求の範囲,第8頁 &US 6440586 B1	1-14

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

30.05.03

国際調査報告の発送日 乳 7.06.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 渡辺 陽子

電話番号 03-3581-1101 内線 3483

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 01/019939 A1(Ciba Specialty Chemicals Holding Inc.)2001.0 3.22&JP 2003-509441 A &US 6258954 A&EP 1216285 A1	1-14
X	US 2001/15614 A1 (Fuji Photo Filem Co., Ltd.) 2001.08.23, P. 16 & JP 2001-284051 A	1-14
X	JP 2001-247858 A(富士写真フィルム株式会社)2001.09.14、特許請求の範囲(ファミリーなし)	1-14
X	WO 01/72927 A1(出光興産株式会社)2001.10.04、請求の範囲、第17 −18ページ & EP 1205527 A1 &US 2002/45061 A1	1-14
X	JP 2000-260565 A(双葉電子工業株式会社)2000.09.22、特許請求の 範囲,【0062】(ファミリーなし)	1-14
A	 JP 11-144876 A(東レ株式会社)1999.05.28(ファミリーなし)	1-14

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなが	^{いっ} た。
1.	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
NA TT JIM	20月の中 日かりのはりていることの思知(別は、こののの別と)
次に述	さべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
①本	頭請求の範囲には次の事項を「技術的特徴」とする3つの発明群が包含されている。 - 願式(1)で表される化合物のうち、m=1の化合物からなる有機エレクトロルミネッ ・ス素子材料。
②本	スポースである。 ぶ願式(1)で表される化合物のうち、m=2の化合物からなる有機エレクトロルミネッ ベス素子材料。
②本	源式(1)で表される化合物のうち、m=3の化合物からなる有機エレクトロルミネッ ベス素子材料。
①、	②、③のうちいずれか2つの発明群に共通する「技術的特徴」は、置換もしくは非置換 特別ページに続く
1. X	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調查	を手数料の異議の申立てに関する注意
<u>_</u>	」追加調査手数料の納付と共に出願人から異議申立てがあった。
X	[] 追加調査手数料の納付と共に出願人から異議申立てがなかった。

第Ⅱ欄の続き

のカルバゾイル基と置換もしくは無置換の炭素数 $2\sim40$ の窒素含有へテロ芳香族環が直接結合している有機エレクトロルミネッセンス素子材料であるが、そのような有機エレクトロルミネッセンス素子材料は知られている(例えば特開 2001-284051 号公報、特開 2000-323281 号公報)ので、当該「技術的特徴」はPCT規則 13.2 における「特別な技術的特徴」に該当するとは認められない。

したがって、①,②、③は互いに共通する「特別の技術的特徴」を持たない。