VAR 모델을 이용한 포트폴리오의 수익률 예측과 Value at Risk 측정

송휘종(12), 이수정(12), 강준우(13), 김나현(13), 이형석(13)

24-1 겨울방학 시계열 프로젝트 4조

목차

Timeline

2. Introduction to Time Series

3. Analysis

5.

4. Value at Risk

Conclusion & Discussion

주제
VAR 모델을 이용한
포트폴리오의
수익률 예측과
Value at Risk 측정

공통 관심 도메인 금융

목표 금융 분석에 주로 사용되는 시계열 모델 경험

Timeline

수익률과 VaR

Introduction to TS

이 수 정

자기회귀(Auto-Regressive) 모델

Auto-Regressive

o **자기 자신**에 대한 변수의 회귀

Auto-Regressive Model

- 시계열 데이터에서 현재의 값이 이전의 값들에 의존하는 모델
- 변수 과거 값의 선형 조합을 이용하여 관심 있는 변수를 **예측**

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

벡터 자기회귀(Vector Auto-Regressive) 모델

Vector Auto-Regressive Model

- 다변량 시계열 예측에서 사용
- <u>2개 이상</u>의 같은 기간에 대한 데이터셋이 서로 다른 변수로 서로 영향을 주는 관계인 경우
- 각 시계열 변수가 서로 영향을 주며, 이를 고려해 각 변수의 미래값을 전체 시계열 변수의 과거값으로부터 예측

$$y_{1,t} = c_1 + \phi_{11}y_{1,t-1} + \phi_{12}y_{1,t-2} + \dots + \phi_{1p}y_{1,t-p} + \varepsilon_{1,t}$$

$$y_{2,t} = c_2 + \phi_{21}y_{2,t-1} + \phi_{22}y_{2,t-2} + \dots + \phi_{2p}y_{2,t-p} + \varepsilon_{2,t}$$

정상성

• 정의

- 1) $E(X_t) = \mu, \forall t$
- 2) $Var(X_t) = \gamma(0), \forall t$
- 3) $Cov(X_t, X_{t+k}) = \gamma(k), \forall t$

Augmented Dicky-Fuleer(ADF) Test
Phillips-Perron(PP) Test

 H_0 : 정상성을 만족하지 못한다.

 H_1 : 정상성을 만족한다.

그랜저-인과관계 검정

- 변수들의 상호 연관성을 검정
- 귀무가설을 기각한다면, 해당 변수를 VAR 예측에 인자로 사용

검정법

 H_0 : 인과관계가 존재하지 않는다

 H_1 : 인과관계가 존재한다.

Analysis

이 수 정

종목 선정

O CELLTRION

삼성증권

(016360)

셀트리온

(068270)

sk이노베이션

(096770)

kcc

(002380)

현대차

(005380)

분석 기간: 2013.01~2022.12 (월별)

변수 수집 및 선정 - (1) 삼성증권

[수집 변수]

재고순환지표

경제심리지수

기계류내수출하지수

건설수주액

코스피

수출입물가비율

장단기금리차

본원통화

소비자물가지수

변수수집 및 선정 - (2) 셀트리온

[수집 변수]

수정주가

경제심리지수

소비자물가지수

금리

장단기금리차

셀트리온 검색량

변수수집 및 선정 - (3) SK이노베이션

[수집 변수]

국제유가_종가

국제유가_시가

CRB_종가

CRB_시가

코스피

소비자물가지수

S&P_price

S&P_open

재고순환지표

경제심리지수

수출입물가비율

석유수입액

석유수출액

에너지산업자체소비

석유제품_산업소비

변수 수집 및 선정 - (4) KCC

[수집 변수]

두바이유

WTI

수출입물가비율

브렌트유

건설수주액

코스피

장단기금리차

경제심리지수

소비자물가지수

규소 가격

건설기성액_계절조정

건설수주액_계절조정

건설수주액_경상

건설기성액_경상

오만유

변수수집 및 선정 - (5) 현대차

[수집 변수]

코스피

경제심리지수

테슬라 주가

현대차 판매량

기대인플레이션율

본원통화

국제수지_상품수출

회사채

현대자동차 검색지수

전기차 검색지수

재고순환지표

중형승용차 수출물가지수

수출입물가비율

자동차 및 트레일러 제조업 생산 지수

현대차 검색지수

선정한 모델: VAR lag=11

선정한 모델: AR lag=12

선정한 모델: AR lag=9

선정한 모델: VAR lag=11

선정한 모델: VAR lag=5

VAR모델링을 이용한 수익률 예측

예측값

SAMSU	N G
	삼성증권

0.0344	0.0620

0.0572	0.0069
--------	--------

실젯값

0.0200	0.0526
--------	--------

0.0902	0.1516
--------	--------

-0.0477 0.1060

(기준 : 2023년 1월)

송 휘 종

: 주어진 신뢰 수준 하에서 일정 기간에 발생 가능한 최대 손실 금액(Jorion, 2007)

측정 방법

RiskMetrics

TimeSeries Approach

Block Maxima

Peaks Over Threshold

RiskMetrics

: J.P. Morgan에서 개발한 VaR 측정 방법으로 1989년 개발되어 1992년에 공개되었다.

 x_t 를 시점 t에서 1원에 대한 손실이라고 했을 때,

$$x_t = \varepsilon_t$$
 where $\varepsilon_t = \sigma_t z_t, z_t \stackrel{iid}{\sim} N(0, 1)$

$$\sigma_t^2 = a\varepsilon_{t-1}^2 + (1 - a)\sigma_{t-1}^2$$

RiskMetrics

x_t 를 시점 t에서 1원에 대한 손실이라고 했을 때,

$$x_t = \varepsilon_t$$
 where $\varepsilon_t = \sigma_t z_t, z_t \stackrel{iid}{\sim} N(0, 1)$

$$\sigma_t^2 = a\varepsilon_{t-1}^2 + (1-a)\sigma_{t-1}^2$$

I_t 를 시점 t까지의 모든 정보의 집합이라고 할 때,

$$x_{t+1}|I_t \sim N(0, \sigma_t^2[1])$$

〈유의수준 0.99일 [때 1워에 다	내하 종목별 Va	aR>
---------------	---------	-----------	-----

삼성증권	셀트리온	SK이노베이션	KCC	현대차
0.1832	0.3533	0.3360	0.2966	0.2115
				(단위 : 원)

포트폴리오의 Value at Risk

$$VaR_{1-p} = \sqrt{\sum_{i=1}^{N} (w_i VaR_{i,1-p})^2 + 2\sum_{i< j}^{N} \rho_{ij}(w_i VaR_{i,1-p})(w_j VaR_{j,1-p})}$$

$$= \sqrt{V^T \Sigma V}$$

상관계수? 가중치?

상관계수 행렬

	삼성증권	셀트리온	SK이노베이션	KCC	현대차	
삼성증권	1	0.2197	0.2609	0.3698	0.3583	
셀트리온	0.2197	1	0.1825	0.0959	0.0729	
SK이노베이션	0.2609	0.1825	1	0.2112	0.2749	
KCC	0.3698	0.0959	0.2112	1	0.3017	
현대차	0.3583	0.0729	0.2749	0.3017	1	

종목별 가중치

조건

- ① 모든 가중치의 합은 1
- ② 각 가중치의 최솟값은 0.05, 최댓값은 0.4

③
$$VaR_{1-p} = \sqrt{\sum_{i=1}^{N} (w_i VaR_{i,1-p})^2 + 2\sum_{i< j}^{N} \rho_{ij}(w_i VaR_{i,1-p})(w_j VaR_{j,1-p})}$$
를 최소로 만들 것

삼성증권	셀트리온	SK이노베이션	KCC	현대차
0.4000	0.1161	0.0607	0.0824	0.3408

포트폴리오의 수익률과 VaR

수익률

예측

0.0128 0.0774

(기준 : 2023년 1월)

실제

VaR

삼성증권	셀트리온	SK이노베이션	KCC	현대차	포트폴리오
0.1832	0.3533	0.3360	0.2966	0.2115	0.1532499
					(단위 : 원)

결론 및 한계점

결론

- 종목의 수익률 예측을 위한 획일적인 모델은 존재하지 않음.
- 인과관계가 있는 변수가 많은 것과 모델의 설명력은 비례하지 않음.
- 정확한 수익률 예측보다는 추세 예측에 의의.
- 분산 투자를 통해 위험을 낮춘다는 포트폴리오 이론을 확인.

결론 및 한계점

한계점

- VAR은 매우 단순한 모델로 실제 금융 시장과 많은 차이가 존재할 수 있음.
- 적절한 예측 모델을 선택하기 위한 객관적인 지표가 필요.
- RiskMetrics는 다른 방법에 비해 VaR은 과소측정하는 경향이 존재.

