

Started on	Friday, 10 October 2025, 1:37 PM
State	Finished
Completed on	Friday, 10 October 2025, 2:34 PM
Time taken	56 mins 38 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct Mark 1.00 out of 1.00

Problem Statement

Given an array of 1s and 0s this has all 1s first followed by all 0s. Aim is to find the number of 0s. Write a program using Divide and Conquer to Count the number of zeroes in the given array.

Input Format

First Line Contains Integer m – Size of array

Next m lines Contains m numbers - Elements of an array

Output Format

First Line Contains Integer – Number of zeroes present in the given array.

```
#include<stdio.h>
 2
 3 v int a(int arr[], int 1, int r){
 4 •
        if(1==r){
 5
            return arr[1] == 1 ? 0:1;
 6
 7
 8
        int mid = (1+r)/2;
 9
10
        int left = a(arr, 1, mid);
        int right = a(arr, mid+1, r);
11
12
        return left+right;
13
    }
14
15
16 v int main(){
17
        int n;
18
        scanf("%d", &n);
        int arr[n];
19
        for(int i=0;i<n;i++){</pre>
20
            scanf("%d",&arr[i]);
21
22
23
24
        int res = a(arr, 0, n-1);
25
        printf("%d", res);
26 }
```

	Input	Expected	Got	
~	5	2	2	~
	1			
	1			
	1			
	0			
	0			

	Input	Expected	Got	
~	10	0	0	~
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
~	8	8	8	~
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
~	17	2	2	~
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	0			
	0			

Correct

Marks for this submission: 1.00/1.00.

Started on	Friday, 10 October 2025, 2:34 PM
State	Finished
Completed on	Sunday, 19 October 2025, 11:03 PM
Time taken	9 days 8 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1 | Correct | Mark 1.00 out of 1.00
```

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than $\lfloor n / 2 \rfloor$ times. You may assume that the majority element always exists in the array.

Example 1:

```
Input: nums = [3,2,3]
Output: 3
```

Example 2:

```
Input: nums = [2,2,1,1,1,2,2]
Output: 2
```

Constraints:

```
    n == nums.length
    1 <= n <= 5 * 10<sup>4</sup>
    -2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1
```

For example:

Input	Result
3	3
3 2 3	
7	2
2 2 1 1 1 2 2	

```
#include <stdio.h>
 2
    int countInRange(int nums[], int 1, int r, int num) {
 3 ₹
        int count = 0;
 4
 5
        for (int i = 1; i <= r; i++)
 6
            if (nums[i] == num)
 7
                count++;
 8
        return count;
 9
10
    int majorityElementRec(int nums[], int 1, int r) {
11
        if (1 == r)
12
13
            return nums[1];
14
        int mid = (1 + r) / 2;
15
16
        int leftMajor = majorityElementRec(nums, 1, mid);
17
18
        int rightMajor = majorityElementRec(nums, mid + 1, r);
19
20
        if (leftMajor == rightMajor)
            return leftMajor;
21
22
        int leftCount = countInRange(nums, 1, r, leftMajor);
23
24
        int rightCount = countInRange(nums, l, r, rightMajor);
25
26
        return (leftCount > rightCount) ? leftMajor : rightMajor;
```

```
28
29 v int main() {
30
        int n;
        scanf("%d", &n);
31
32
33
        int nums[n];
        for (int i = 0; i < n; i++)
34
            scanf("%d", &nums[i]);
35
36
        int result = majorityElementRec(nums, 0, n - 1);
37
        printf("%d\n", result);
38
39
40
        return 0;
   }
41
42
```

	Input	Expected	Got	
~	3	3	3	~
	3 2 3			

Correct

Marks for this submission: 1.00/1.00.

Started on	Sunday, 19 October 2025, 11:04 PM
State	Finished
Completed on	Sunday, 19 October 2025, 11:15 PM
Time taken	10 mins 58 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct | Mark 1.00 out of 1.00

Problem Statement:

Given a sorted array and a value x, the floor of x is the largest element in array smaller than or equal to x. Write divide and conquer algorithm to find floor of x.

Input Format

First Line Contains Integer n - Size of array

Next n lines Contains n numbers - Elements of an array

Last Line Contains Integer x – Value for x

Output Format

First Line Contains Integer - Floor value for x

```
#include <stdio.h>
 2 v int findFloor(int arr[], int low, int high, int x) {
 3
        if (x < arr[0])
 4
             return -1;
 5
 6
        while (low <= high) {</pre>
 7
             int mid = (low + high) / 2;
 8
 9
             if (arr[mid] == x)
10
                 return arr[mid];
11
             if (arr[mid] > x)
12
                 high = mid - 1;
13
14
15
             else
16
                 low = mid + 1;
17
18
        return arr[high];
19
20
21 v int main() {
22
        int n, x;
23
        scanf("%d", &n);
24
25
        int arr[n];
26
        for (int i = 0; i < n; i++)</pre>
27
             scanf("%d", &arr[i]);
28
29
        scanf("%d", &x);
30
        int floorValue = findFloor(arr, 0, n - 1, x);
31
32
        if (floorValue == -1)
33
34
             printf("No floor value exists\n");
35
        else
36
            printf("%d\n", floorValue);
37
38
        return 0;
39 }
```

	Input	Expected	Got	
~	6	2	2	~
	1			
	2			
	8			
	10			
	12			
	1 9			
	5			
~	5	85	85	~
	10			
	22			
	85			
	108			
	129			
	100			
~	7	9	9	~
	3			
	5			
	7			
	9			
	11			
	13			
	15			
	10			

Correct

Marks for this submission: 1.00/1.00.

Started on	Sunday, 19 October 2025, 11:15 PM
State	Finished
Completed on	Sunday, 19 October 2025, 11:17 PM
Time taken	1 min 43 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct | Mark 1.00 out of 1.00

Problem Statement:

Given a sorted array of integers say arr[] and a number x. Write a recursive program using divide and conquer strategy to check if there exist two elements in the array whose sum = x. If there exist such two elements then return the numbers, otherwise print as "No".

Note: Write a Divide and Conquer Solution

Input Format

First Line Contains Integer n – Size of array

Next n lines Contains n numbers – Elements of an array

Last Line Contains Integer x – Sum Value

Output Format

First Line Contains Integer - Element1

Second Line Contains Integer - Element2 (Element 1 and Elements 2 together sums to value "x")

```
#include <stdio.h>
    int findPair(int arr[], int left, int right, int x) {
 3 ₹
        if (left >= right)
 4
 5
            return 0;
 6
 7
        int sum = arr[left] + arr[right];
 8
 9
        if (sum == x) {
            printf("%d\n%d\n", arr[left], arr[right]);
10
            return 1;
11
12
        }
        else if (sum > x)
13
14
            return findPair(arr, left, right - 1, x);
15
            return findPair(arr, left + 1, right, x);
16
17
18
19
    int main() {
20
        int n, x;
        scanf("%d", &n);
21
22
23
        int arr[n];
24
        for (int i = 0; i < n; i++)
25
            scanf("%d", &arr[i]);
26
        scanf("%d", &x);
27
28
        if (!findPair(arr, 0, n - 1, x))
29
            printf("No\n");
30
31
        return 0;
32
33
```

Input	Expected	Got	
4	4	4	~
2	10	10	
4			
8			
10			
14			
	4 2 4 8 10	4 4 2 10 4 8 10 10	2 10 10 4 8 10

	Input	Expected	Got	
~	5	No	No	~
	2			
	4			
	6			
	8			
	10			
	100			

Correct

Marks for this submission: 1.00/1.00.

Started on	Sunday, 19 October 2025, 11:17 PM
State	Finished
Completed on	Sunday, 19 October 2025, 11:20 PM
Time taken	2 mins 24 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct | Mark 1.00 out of 1.00

Write a Program to Implement the Quick Sort Algorithm

Input Format:

The first line contains the no of elements in the list-n

The next n lines contain the elements.

Output:

Sorted list of elements

For example:

Input	Result		
5	12 34 67 78 98		
67 34 12 98 78			

Answer:

```
1
    #include <stdio.h>
 2
 3 ▼
    void swap(int *a, int *b) {
 4
        int temp = *a;
 5
         *a = *b;
         *b = temp;
 6
 7
    }
 8
 9 •
    int partition(int arr[], int low, int high) {
10
         int pivot = arr[high];
         int i = low - 1;
11
12
13 🔻
         for (int j = low; j < high; j++) {
14
             if (arr[j] <= pivot) {</pre>
15
                 i++;
16
                 swap(&arr[i], &arr[j]);
17
             }
        }
18
19
         swap(&arr[i + 1], &arr[high]);
20
21
         return (i + 1);
22
23
    void quickSort(int arr[], int low, int high) {
24 •
25 .
         if (low < high) {</pre>
26
             int pi = partition(arr, low, high);
             quickSort(arr, low, pi - 1);
27
28
             quickSort(arr, pi + 1, high);
        }
29
30
    }
31
32 ▼
    int main() {
33
         scanf("%d", &n);
34
35
         int arr[n];
36
37
         for (int i = 0; i < n; i++)
38
             scanf("%d", &arr[i]);
39
         quickSort(arr, 0, n - 1);
40
         for (int i = 0; i < n; i++)
41
             printf("%d ", arr[i]);
42
43
44
         return 0;
45
46
```

	Input	Expected	Got	
~	5	12 34 67 78 98	12 34 67 78 98	~
	67 34 12 98 78			
~	10	1 10 11 32 56 56 78 90 90 114	1 10 11 32 56 56 78 90 90 114	~
	1 56 78 90 32 56 11 10 90 114			
~	12	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	~
	9 8 7 6 5 4 3 2 1 10 11 90			

Correct

Marks for this submission: 1.00/1.00.

Back to Course

1.