

ประชุมเชิงปฏิบัติการ โครงการ Digital Transcript

Technology PKI and e-Timestamp

การสร้างเอกสารอิเล็กทรอนิกส์ที่มีความน่าเชื่อถือ

Source: https://www.etda.or.th/th/Our-Service/Digital-Trusted-services-Infrastructure/TEDA/Speed-up-e-Licensing.aspx

การลงลายมือชื่ออิเล็กทรอนิกส์

ประเภทของลายมือชื่อ	ตัวอย่างของรูปแบบของ	องค์ประกอบของลายมือชื่ออิเล็กทรอนิกส์		
อิเล็กทรอนิกส์	ลายมือชื่ออิเล็กพรอนิกส์	การพิสูจน์และยืนยันตัวตน	เจตนาในการลงลายมือชื่อ	การรักษาความครบถ้วน ของข้อมูล
<u>ประเภทที่ 1</u> ลายมือชื่ออิเล็กทรอนิกส์ ทั่วไป	 การพิมพ์ชื่อไว้ท้ายเนื้อหาของอีเมล การสแกนภาพของลายมือชื่อที่เขียน ด้วยมือและแนบไปกับเอกสาร การใช้สไตลัส (stylus) เขียนลายมือชื่อ ด้วยมือลงบนหน้าจอและบันทึกไว้ การใช้ระบบงานอัตโนมัติที่มีการยืนยัน ตัวผู้ใช้งานมาประกอบกับรูปแบบ ของลายมือชื่ออิเล็กทรอนิกส์ประเภทที่ 1 	มีการพิสูจน์และยืนยันตัวตนที่น่าเชื่อถือ และเหมาะสมกับความเสี่ยงของธุรกรรม	มีกระบวนการหรือ หลักฐานที่แสดงได้ว่าบุคคล ได้ยอมรับการแสดงเจตนา ที่ตนได้ลงลายมือชื่ออย่าง ชัดเจน	มีหลักฐานหรือใช้บุคคลที่ สามที่เชื่อถือได้ เพื่อแสดง ว่าไม่มีการเปลี่ยนแปลง ความหมายของข้อความที่ ลงลายมือชื่อ และรับรอง ความครบถ้วนของข้อมูล
<u>ประเภทที่ 2</u> ลายมือชื่ออิเล็กทรอนิกส์ ที่เชื่อถือได้	 ลายมือชื่อดิจิทัลที่อาศัยโครงสร้าง พื้นฐานกุญแจสาธารณะ (PKI) 	 มีการพิสูจน์ตัวตนที่น่าเชื่อถือและ เหมาะสมกับความเสี่ยงของธุรกรรมหรือ มีการพิสูจน์ตัวตนที่ระดับ IAL2 ขึ้นไป มีการยืนยันตัวตนที่ระดับ AAL2 ขึ้นไป ซึ่งเป็นการยืนยันตัวตนแบบหลายปัจจัย และมีปัจจัยหนึ่งเป็นกุญแจเข้ารหัส 	ใช้ลายมือชื่อดิจิทัลในการ ลงลายมือชื่อต่อข้อความที่ ตนแสดงเจตนา	ใช้ลายมือชื่อดิจิทัลในการ ลงลายมือชื่อต่อข้อความ
ประเภทที่ 3 ลายมือชื่ออิเล็กทรอนิกส์ ที่เชื่อถือได้ ซึ่งใช้ใบรับรองที่ออกโดย ผู้ให้บริการออกใบรับรอง	 ลายมือชื่อดิจิทัลที่อาศัยโครงสร้าง พื้นฐานกุญแจสาธารณะ (PKI) และใช้ ใบรับรองที่ออกโดยผู้ให้บริการออก ใบรับรอง 	 มีการพิสูจน์ตัวตนที่น่าเชื่อถือและ เหมาะสมกับความเสี่ยงของธุรกรรมหรือ มีการพิสูจน์ตัวตนที่ระดับ IAL2 ขึ้นไป มีการยืนยันตัวตนที่ระดับ AAL2 ขึ้นไป ซึ่งเป็นการยืนยันตัวตนแบบหลายปัจจัย และมีปัจจัยหนึ่งเป็นกุญแจเข้ารหัส 	ใช้ลายมือชื่อดิจิทัลซึ่งใช้ ใบรับรองที่ออกโดย ผู้ให้บริการออกใบรับรอง ในการลงลายมือชื่อต่อ ข้อความที่ตนแสดงเจตนา	ใช้ลายมือชื่อดิจิทัลซึ่งใช้ ใบรับรองที่ออกโดย ผู้ให้บริการออกใบรับรอง ในการลงลายมือชื่อต่อ ข้อความ

PKI คืออะไร

Public Key Infrastructure (PKI)

เป็นเทคโนโลยีที่ใช้ในการรักษาความปลอดภัยของข้อมูลในปัจจุบัน ซึ่ง เทคโนโลยีดังกล่าวประกอบด้วยกุญแจ 2 ดอก คือ กุญแจส่วนตัว (Private Key) และกุญแจสาธารณะ (Public Key) โดยที่บุคคลหรือเอ็นทิตี้หนึ่งๆ จะ มีกุญแจทั้ง 2 ดอกดังกล่าว แต่เนื่องด้วยตัวของเทคโนโลยีเพียงอย่างเดียวนั้นไม่ สามารถระบุได้ว่าบุคคลนั้นเป็นเจ้าของกุญแจซึ่งอ้างถึงจริงหรือไม่ ดังนั้น โครงสร้างพื้นฐานกุญแจสาธารณะ (Public Key Infrastructure : PKI) จึงเป็น โครงสร้างที่ก่อให้เกิดความน่าเชื่อถือในการระบุถึงความเป็นเจ้าของกุญแจ สาธารณะว่าเป็นของบุคคลนั้นจริง

โดยการสร้างความน่าเชื่อถือของกุญแจสาธารณะจึงจำเป็นที่จะต้องมีหน่วยงาน ที่มีความน่าเชื่อถือ เพื่อทำหน้าที่ในการรับรองกุญแจสาธารณะว่าเป็นของ บุคคลซึ่งอ้างถึงจริง ซึ่งหน่วยงานดังกล่าวก็คือ ผู้ให้บริการออกใบรับรอง อิเล็กทรอนิกส์ (Certification Authority: CA)

องค์ประกอบของ Public Key Infrastructure

CA รับรองความน่าเชื่อถือผ่านใบรับรองอิเล็กทรอนิกส์ (Certificate)

- 1. ผู้ขอใช้บริการแจ้งความจำนงในการขอใช้ใบรับรองอิเล็กทรอนิกส์ ไปยังเจ้าหน้าที่รับลงทะเบียน
- 2. เจ้าหน้าที่รับลงทะเบียนตรวจสอบและยืนยันความถูกต้องของ ข้อมูลที่ผู้ขอใช้บริการได้ให้ไว้ตามแบบคำขอใบรับรอง อิเล็กทรอนิกส์
- 3. เจ้าหน้าที่รับลงทะเบียนส่งคำขอใช้ใบรับรองอิเล็กทรอนิกส์ของผู้ขอ ใช้บริการไปยังผู้ให้บริการออกใบรับรองอิเล็กทรอนิกส์
- 4. ผู้ขอใช้บริการทำการสร้างคู่กุญแจส่วนตัวและกุญแจสาธารณะ โดย กุญแจสาธารณะที่สร้างขึ้นนั้นจะถูกส่งไปยังผู้ให้บริการออก ใบรับรองอิเล็กทรอนิกส์
- 5. ผู้ให้บริการออกใบรับรองอิเล็กทรอนิกส์ทำการรับรองข้อมูลและ กุญแจสาธารณะของผู้ขอใช้บริการ และส่งผลที่ได้จากการรับรอง กลับไปยังผู้ขอใช้บริการในรูปแบบของใบรับรองอิเล็กทรอนิกส์
- 6. ผู้ให้บริการออกใบรับรองอิเล็กทรอนิกส์นำใบรับรองอิเล็กทรอนิกส์ ที่ออกใหม่เผยแพร่ในที่บันทึกข้อมูล เพื่อให้บุคคลอื่นสามารถสืบค้น ใบรับรองอิเล็กทรอนิกส์ของผู้ขอใช้บริการได้

ขั้นตอนการขอใช้ใบรับรองอิเล็กทรอนิกส์

วงจรชีวิตของใบรับรองอิเล็กทรอนิกส์

- 1. ผู้ขอใช้บริการสร้างกุญแจคู่ ซึ่งประกอบไปด้วยกุญแจส่วนตัวและกุญแจสาธารณะ
- 2. ผู้ให้บริการออกใบรับรองอิเล็กทรอนิกส์จะทำการรับรองกุญแจสาธารณะและ ข้อมูลของเจ้าของกุญแจสาธารณะ โดยออกใบรับรองอิเล็กทรอนิกส์ตาม มาตรฐาน X.509
- 3. การใช้งานใบรับรองอิเล็กทรอนิกส์และกุญแจส่วนตัว ในกรณีที่ไม่ต้องการใช้ ใบรับรองอิเล็กทรอนิกส์ เช่นการรั่วของ Private key หรือมีการเปลี่ยนแปลง ตำแหน่งหรือรายละเอียดในใบรับรองอิเล็กทรอนิกส์ ผู้ที่เป็นเจ้าของใบรับรอง อิเล็กทรอนิกส์จะต้องแจ้ง CA เพื่อทำการขอเพิกถอนใบรับรองอิเล็กทรอนิกส์ โดยใบรับรองอิเล็กทรอนิกส์ที่ถูกเพิกถอนนั้นจะปรากฏอยู่ในรายการเพิกถอน ใบรับรอง (Certificate Revocation List: CRL) หลังจากนั้นผู้ที่เป็นเจ้าของ ใบรับรองอิเล็กทรอนิกส์จะต้องทำการขอใบรับรองอิเล็กทรอนิกส์ใหม่
- 4. เมื่อใบรับรองอิเล็กทรอนิกส์หมดอายุ ผู้ที่เป็นเจ้าของใบรับรองอิเล็กทรอนิกส์ ดังกล่าวจะต้องทำการขอใบรับรองอิเล็กทรอนิกส์ใหม่

วงจรชีวิตของใบรับรองอิเล็กทรอนิกส์

รูปแบบของ PKI Trust Model

- รูปแบบการสร้างความเชื่อในการใช้งานผ่าน PKI ที่เป็นที่นิยมคือการสร้าง สายความเชื่อ (Chain of trust) ในรูปแบบลำดับชั้น (Hierarchy trust model)
- โดยจะมี CA รายหนึ่งทำหน้าที่รับรองใบรับรองอิเล็กทรอนิกส์ของ CA ราย อื่นๆ และจะอยู่ในลำดับชั้นสูงสุดที่นิยมเรียกกันว่า Root CA
- คณะกรรมการธุรกรรมทางอิเล็กทรอนิกส์ ผู้ซึ่งดูแลด้านการวางนโยบาย เกี่ยวกับธุรกรรมอิเล็กทรอนิกส์ของประเทศ ได้เห็นชอบให้มีการใช้ระบบ Trust Model ในรูปแบบ Root CA ขึ้นในประเทศไทย
- National Root CA (NRCA) จะทำหน้าที่เป็นศูนย์กลางในการสร้างความ เชื่อมั่นของการใช้งานระบบ PKI เพื่อให้เกิดการทำงานร่วมกัน (Interoperability) ระหว่าง CA ในประเทศ รวมไปถึงเป็นศูนย์กลางในการ ติดต่อกับ CA ต่างประเทศ

รูปแบบความเชื่อแบบลำดับชั้น

ตัวอย่างใบรับรองอิเล็กทรอนิกส์

การใช้ใบรับรองอิเล็กทรอนิกส์ในการลงลายมือชื่อ

e-Timestamp ทำให้เอกสารอิเล็กทรอนิกส์มีความน่าเชื่อถือได้อย่างไร

- การให้บริการประทับรับรองเวลา (e-Timestamp) เป็นการเพิ่มความเชื่อมั่น และรับรองการมีอยู่ของเอกสารอิเล็กทรอนิกส์ ณ เวลานั้น โดยการอ้างเวลา ของ Trust service ผ่านกลไกตามมาตรฐานสากล RFC 3161
- เนื่องจากเวลามาจากเวลาของสาผู้รับรอง (Time Stamp Authority หรือ TSA) การประทับเวลาจะสร้างความมั่นใจให้กับผู้ใช้เอกสารว่าเป็นเอกสาร จริงที่มีตัวตน ณ เวลาประทับ และมารถตรวจสอบความครบถ้วนของ เอกสาร (Integrity)
- การประทับเวลาเป็นองค์ประกอบที่สำคัญของการตรวจสอบความถูกต้อง ในระยะยาว (long-term validation หรือ LTV) โดยเฉพาะกรณีที่ต้องการ ตรวจสอบความถูกต้องของเอกสารในกรณีที่ใบรับรองอิเล็กทรอนิกส์ของผู้ลง นามหมดอายุแล้ว
- e-Timestamp เป็นรูปแบบการใช้เทคโนโลยี PKI โดยเป็นการใช้ใบรับรอง อิเล็กทรอนิกส์ของ TSA ในการรับรองเอกสาร

กระบวนการทำงานของ e-Timestamp

THANK YOU