Application Layer Contd

Internet Technologies COMP90007

Multimedia Systems

- What is different with Multimedia data?
- Why focus on it at the Application layer?
 - Higher bandwidth requirements
 - Higher QoS requirement
 - delay sensitivity

A Basic Model for Multimedia on the Web

Problems with the Basic Model

- The entire media file must be transmitted over the network before playback starts
 - Imagine waiting for the whole movie to come to your side for everything you wanted watch
 - That is just not tolerable

Problems with Basic Model Contd

- Basic model assumes mainly point-to-point data distribution rather than a point-to-multipoint (broadcast) distribution model
 - Recall special methods for efficient multicast

Lets Add Specialized Multimedia Software

- 4 main tasks of the multimedia playback software
 - First is to deal with the user interface side of the story
 - Functions such as volume control, playback, next, etc...
 - This is commonly what most people want/see/know today

Specialized Multimedia Software Contd

- Others are:
 - Handle transmission errors in conjunction with transport protocols
 - RTP can be used which is built over UDP, has timestamps, seq no, etc
 - Using RTP errors will likely occur and the app has to deal with it, playback software must manage/mask them gracefully
 - Eliminate jitter: Buffers need to be managed
 - Small buffer, quick playback but susceptible to high jitter/delay
 - Large buffer, delay at start of playback while buffer fills, but less susceptible to high delay/jitter
 - Sometimes compress and almost always decompress the multimedia files to deal with size and using bandwidth carefully

Specialized Model

Handling Errors

Forward Error Correction (FEC) can be used for the error-correcting encoding of data

For every X data packets Y <u>new packets are added</u> <u>similar to checksum etc methods we have seen</u>

These contains redundant bits that are used to deal with errors

Methods use <u>parity or exclusive-OR</u> sums of the bits in each of the data packets

Examples are **Reed-Solomon, Tornado codes**, etc: they are more complex than methods we saw so far...

Handling Errors: Other Directions

Error Resilience: Remarking for re-sync so that a packet loss does not create a total loss, mainly on sender side

Error Concealment: Done by the receiver e.g., interpolation between frames to reduce displeasing experiences

Retransmission: Less meaningful for streaming data but for watching a movie this can be deployed for larger loss of packets

Jitter Management is Crucial

Jitters happen because of variable bandwidth and loss/retransmissions. So <u>we use buffering...</u>

Large File leads to Compression

First: ADC (Analog-to-Digital Converter) produces digital data, say from a microphone, which leads to other ways to process data

Continuous audio (sine wave)

Digital audio (sampling theory in play)

Compression Process Contd

- We can use Nyquist and Shannon theorems: to convert analog data to digital
- Also apply techniques to eliminate some of the data as follows...

For example: **perceptual coding** is that some data can mask other data, e.g., in audio, which can be used to eliminate some of the data

- Frequency masking: Some sounds mask/hide others so there is no point encoding them
- <u>Temporal masking</u>: Human ears can miss soft sounds immediately after loud sounds, takes time for the ear to adjust, no need to store them either

An Example Format: MP3

- MP3 is MPEG Audio Layer 3
- MP3's compression is <u>based on perceptual</u>
 <u>coding</u>
- MP3 audio compression results in significant file size savings without a perceived loss of audio quality
- Typical MP3 audio compression rates for CD level quality audio reduce the need for bandwidth <u>from 1.4Mbps for stereo down to</u> <u>96-128Kbps</u>

For Digital Video

- Video is digitized as pixels
 - TV quality: 640x480 pixels, 24-bit color, 30 times/sec
 200Mbs uncompressed
- Video is sent compressed due to its large bandwidth requirements
 - Lossy compression exploits human perception
 - E.g., JPEG for still images, MPEG for video
 - Large compression ratios achieved (often x50 for video)

Compression with JPEG

- JPEG lossy compression
- JPEG often provides compression ratios around 20:1
- JPEG compression is <u>symmetric</u>, <u>decoding</u>
 <u>takes as long as encoding</u>
- This is not the case in all types of compression

MPEG

- MPEG Motion Picture Experts Group
- MPEG can compress both audio and video together
- The evolution of MPEG:
 - MPEG-1: VCR quality at 1.2 Mbps (40:1)
 - MPEG-2: Broadcast quality at 4-6Mbps (200:1)
 - MPEG-4: DVD quality at 10Mbps (1200:1)