关于电池剩余放电时间预测的探讨

摘 要

铅酸电池作为电源被广泛用于工业、军事、日常生活中。电池在当前负荷下还能供电多 长时间是使用中必须回答的问题。本文对此从电池以给定电流放电、任给电流放电、衰减状 态下恒定电流放电三个方面进行了较为深入的探讨。

对于第一问,首先根据实测数据绘制了不同放电电流下"放电时间T-电压v"曲线,发现采样点中电压v随放电时间T的变化曲线形似二次曲线,形如 $v(T)=a+b\sqrt{c-T}$ 或 $T(v)=\alpha v^2+\beta v+\gamma$,于是本文采用二次曲线作为放电时间随电压变化的预测曲线。应用matlab进行最小二乘拟合,结果见正文。在对预测精度进行探讨时,根据平均相对误差(MRE)的定义,得到平均相对误差MRE在 0.006107733(放电电流 100A)和 0.198690694(放电电流 20A)之间。MRE说明,本文所得预测曲线的预测精度比较高。据此预测放电电流分别为 30A、40A、50A、60A和 70A,电压都为 9.8 伏时电池的剩余放电时间分别为

放电电流	满电压到 9.8V 对应的时间	9.8V 到 Um 剩余时间
30	1852.218143	601.7818574
40	1286.841511	437.1584894
50	963.4006258	344.5993742
60	755.6828779	288.3171221
70	602.6895664	259.3104336

针对第二问,注意到预测曲线中的参数随着放电电流I的变化而变化,故首先绘制参数随I变化趋势线,然后拟合出函数关系,代入预测曲线中即得20A到100A之间任一恒定电流强度放电时放电曲线的数学模型,并根据实测数据计算了一般模型的预测精度MRE为0.197179898。据此模型计算了电流强度为55A时的放电曲线,并绘制了图形,输出了剩余放电时间,结果见正文。

针对第三问,通过绘制"放电时间*T*-电压v"曲线发现同一电池在不同衰减状态下以同一电流强度放电的"放电时间*T*-电压v"依然呈现二次曲线趋势,从而建立了参数受约束的二次曲线模型。应用matlab拟合出参数后,据所得模型预测出了电池衰减状态3下的剩余放电时间,结果见正文。

本文最后指出了建模及计算的优点和不足,并提出了改进思路。总体上本文思路清晰, 分析细致,逻辑严谨,有比较鲜明的特色。

关键词: 铅酸电池; 剩余放电时间; 预测曲线

一、问题重述

1、问题背景

铅酸电池又称为铅酸蓄电池,自被发明以来,因其价格低廉、原料易得、性能可靠、容易回收和适于大电流放电等特点,已成为世界上产量最大、用途最广泛的蓄电池品种。现已被广泛应用于汽车、通信、电力、铁路、电动车等各个领域。

在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本题中为9V)。从充满电开始放电,电压随时间变化的关系称为放电曲线。电池在当前负荷下还能供电多长时间(即以当前电流强度放电到Um的剩余放电时间)是使用中必须回答的问题。电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。

2、需要解决的问题

- (1)根据附件 1 中的数据用初等函数表示各放电曲线,并分别给出各放电曲线的平均相对误差 MRE;根据所得放电曲线计算放电电流分别为 30A、40A、50A、60A 和 70A,电压都为 9.8 伏时电池的剩余放电时间。
- (2)建立以 20A 到 100A 之间任一恒定电流强度放电时的放电曲线的数学模型,并用 MRE 评估模型的精度;用表格和图形给出电流强度为 55A 时的放电曲线。
 - (3)根据附件2中的数据预测电池在衰减状态3下的剩余放电时间。

二、问题分析

铅酸电池在当前负荷(电压)下还能供电多长时间是使用中必须回答的问题。**供电时长**是指以当前电流强度放电从当前电压V到最低保护电压Um的剩余放电时间。搜寻能用初等函数表示的且精度高的预测曲线是能较为准确回答供电时长的关键。

问题一有三个任务:(1)用初等函数表示放电曲线;(2)计算所得放电曲线的平均相对误差MRE;(3)应用放电曲线预测某些情形的剩余放电时间。第一个任务是首要的。本文首先绘制各放电电流下的"时间-电压"曲线,观察电压随时间的变化趋势,发现电压v随时间T变化曲线形似二次曲线 $v(T)=a+b\sqrt{c-T}$ 或 $T(v)=\alpha v^2+\beta v+\gamma$,应用matlab可拟合出其中的参数a,b和c,或 α,β,γ 。从而得到放电曲线的初等函数表达式。第二个任务一计算平均相对误差MRE,据定义以样本点为对照,计算出各采样点处的模型计算数据对样本点的相对误差,再平均即可;需注意的是,电压间隔要求不超过0.005V,对此必须对采样点进行检验。第三个任务一应用放电曲线预测某些情形的剩余放电时间,基于第一个任务即可完成。

问题二也有三个任务: (1)给出以任一恒定电流强度放电时的放电曲线的数学模型; (2)评估模型的预测精度(计算MRE); (3)给出以电流强度55A放电时的放电曲线(图和表形式)。第一个任务是对第一问第一个任务的一般化,是对剩余放电时间T的二维度测量,即要建立以电压v和放电电流强度I为自变量的剩余放电时间T的预测曲线: T = f(v,I)。第二个任务则是I = 55的情形: T = f(v,55)。当然,I = 55的情形还可以有其他途径解决。

问题三考虑的是同一放电电流下衰减程度对剩余放电时间的影响。首先绘制"放电时间*T*-电压v"曲线,发现同一电池在不同衰减状态下以同一电流强度放电的"放电时间*T*-电压v"依然呈现二次曲线趋势,从而可借鉴问题一的方法建立二次曲线模型。应用matlab拟合出参数后,据所得模型即可预测电池在衰减状态3下的剩余放电时间。

三、模型的建立及求解

0 符号系统

本赛题题设充分,没有再提出其他合理假设的必要。

为建模方便和模型简洁,本文准备了如下一些参数和变量,见表3-1:

表3-1 符号系统

序号	符号	含义	单位
1	v	电池当前电压	伏或V
2	T	样本点中的时间	分钟或min
3	t	电池剩余放电时间	分钟或min

1 问题一

本问有三个任务: (1)用初等函数表示放电曲线; (2)计算所得放电曲线的平均相对误差MRE; (3)应用放电曲线预测某些情形的剩余放电时间。

1.1 用初等函数表示放电曲线

1.1.1 绘制图形, 提炼模型

首先据采样数据应用matlab绘制各放电电流下的"放电时间T-电压v"曲线,如图1所示。

图1 电压v随采样时间T变化图

从图1发现两点:一是总体上当采样时间T < 200时(采样初期),电压v随采样时间T的变化显得比较紊乱,规律性弱;当 $T \ge 200$ 时,电压v随采样时间T的变化呈现较强的规律性,且从图形看来,放电曲线形似二次曲线,于是本文将采用二次曲线作为放电曲线。二是随着放电电流的增大,放电曲线呈自右至左的走向,且当 $T \ge 200$ 时各曲线无交叉,即各放电电流对应着惟一的放电曲线。

1.1.2 建模

据图,当 $T \ge 200$ 时,电压 ν 随采样时间T的放电曲线形似二次曲线,所以,对各放电电 流均可设模型为

$$v(T) = a + b\sqrt{c - T} \tag{3.1}$$

其中a,b,c为参数。由题意可推知,c实际上就是各放电电流下从最大电压(充满电时电池的 电压)到最低保护电压Um的放电时长,记为 T_{max} ;由此可得a为最低保护电压Um,本文为9。 所以模型由三个参数简化为一个参数,即

$$v(T) = Um + b\sqrt{T_{\max} - T}$$
 (3.2)
上述两个表达式均为放电曲线的初等表达式,即为本问所建立的模型。

1.1.3 求解

已知Um=9; 由附件1中数据,各放电电流下的 T_{max} 可取值如表3-2.

表3-2 Tmax 取值一览

放电电流I	最大放电时间 T_{max}
20	3764
30	2454
40	1724
50	1308
60	1044
70	862
80	730
90	620
100	538

于是,应用matlab对模型(3.2)式进行拟合,得参数b的值如下:

表3-3 参数b值及相应模型

放电电流I	参数b的值	放电曲线方程
20	0.02639	$v(T) = 9 + 0.02639\sqrt{3764 - T}$
30	0.032611	$v(T) = 9 + 0.032611\sqrt{2454 - T}$
40	0.038262	$v(T) = 9 + 0.038262\sqrt{1724 - T}$
50	0.043096	$v(T) = 9 + 0.043096\sqrt{1308 - T}$
60	0.047115	$v(T) = 9 + 0.047115\sqrt{1044 - T}$
70	0.04968	$v(T) = 9 + 0.04968\sqrt{862 - T}$
80	0.052412	$v(T) = 9 + 0.052412\sqrt{730 - T}$
90	0.055514	$v(T) = 9 + 0.055514\sqrt{620 - T}$
100	0.057905	$v(T) = 9 + 0.057905\sqrt{538 - T}$

据所得放电曲线图及原始数据的"放电时间T-电压v"曲线对比如图2所示。可以看出, 拟合效果是相当好的。

图2 模型数据与原始数据下的"放电时间T-电压v"曲线对比图

1.2 计算平均相对误差MRE

本问对平均相对误差有特别的定义,如下。

定义 在附件1采样点中电压所在列从Um开始按不超过0.005V的最大间隔提取231个电压样本点。这些电压值对应的模型已放电时间与采样已放电时间的平均相对误差即为MRE。

1.2.1 原始数据的检验

平均相对误差MRE对电压有特别的要求:从Um开始两相邻电压最大间隔不超过0.005V。 所以,在计算MRE前需首先对电压是否满足要求进行检验。

通过excel对电压求差分,对差分按绝对值 ">0.005" 进行筛选,并回数231个数据发现,各放电电流下的电压值都不满足MRE要求。对此,本文的处理方法是:对间隔不超过0.005V的电压个数不足231个的,按实际个数计算平均相对误差;超过231个的,从小到大提取231个电压样本值计算平均相对误差。

1.2.2 MRE计算

第一步, 计算电压样本值的差分序列, 并对各差分取绝对值。

第二步,从Um开始,按间隔不超过0.005 V提取样本点。设 v_i 和 v_{i+1} 间隔不超过0.005 V,则将 v_i 及对应的样本已放电时间 T_i 提取出来。持续下去,直到取得231组样本点((v_i,T_i) 为一组)或已没有样本点可取为止。

第三步,按模型计算 v_i 所对应的放电时间 τ_i (称为模型已放电时间)。

第四步, 计算各采样电压处的放电时间的相对误差:

设 v_i 为采样电压,对应的采样已放电时间为 T_i ,模型已放电时间 τ_i ,则 v_i 处放电时间的相对误差为

$$\rho_i = \frac{\left|\tau_i - T_i\right|}{T_i}, \ i = 1, 2, \cdots$$

第五步, 平均相对误差为

$$\rho = \sum_{i} \rho_{i} = \sum_{i} \frac{\left|\tau_{i} - T_{i}\right|}{T_{i}}$$

通过上述步骤, 计算结果见表3-4。

表3-4 平均相对误差一览

放电电流	平均相对误差 MRE
20	0.198690694
30	0.061274034
40	0.036404316
50	0.023548118
60	0.019180833
70	0.011771663
80	0.007518475
90	0.006801569
100	0.006107733

由表3-4可知,放电电流为20A时模型精度不高,这主要是采样数据畸形所致。

1.3 应用放电曲线预测某些情形的剩余放电时间

应用1.1.3节所得模型, 计算出放电电流分别为30A、40A、50A、60A和70A, 当前电压都为9.8伏时电池的剩余放电时间见表3-5.

表3-5 平均相对误差一览

放电电流	满电压到 9.8V 对应的时间	9.8V 到 Um 剩余时间
30	1852.218143	601.7818574
40	1286.841511	437.1584894
50	963.4006258	344.5993742
60	755.6828779	288.3171221
70	602.6895664	259.3104336

2 问题二

2.1 给出以任一恒定电流强度放电时的放电曲线的数学模型

2.1.1 放电曲线模型参数与放电电流/关系探索

在问题一的求解过程中,我们已经发现各放电电流对应着唯一的放电曲线,各放电曲线由其参数唯一确定。故各放电曲线的参数是放电电流的函数。为了得到函数关系式,绘制"放电电流-参数"关系图,如图3左边两图所示。

图3 模型参数b,c随放电电流I变化图

据图,b随I大致呈对数曲线变化,c随I大致呈反比例曲线变化,于是设相应函数关系分 别为

$$b = p + q \ln(I - r), c = h + \frac{l}{I - k}$$
 (3.3)

0.162166048

其中p,q,r,h,l,k都是曲线参数。应用matlab拟合得各参数值见表3-5.

p

h -284.0417212

q-0.063889504 0.025740388 -13.13485176

表3-5 参数拟合值一览

80499.95531

于是相应的模型为

b

$$b = -0.063889504 + 0.025740388 \ln (I + 13.13485176)$$

$$c = -284.0417212 + \frac{80499.95531}{I - 0.162166048}$$
(3.4)

将模型(3.4)及a=9代人模型(3.1),得电池以任一恒定电流强度I放电时的放电曲线 的数学模型为

$$T = -284.04172 + \frac{80499.95531}{I - 0.16217} - \left(\frac{v - 9}{-0.06389 + 0.02574 \ln\left(I + 13.13485\right)}\right)^{2} \quad (3.5)$$

2.2 评估模型的预测精度(计算MRE)

因为利用放电曲线预测电池剩余容量/放电时间的精度取决于放电曲线在低电压段的质 量, 所以本文取样本已放电时间T>200对应的样本电压值计算模型已放电时间。以模型(3.5) 计算出各放电电流下提取出的v值对应的模型已放电时间,再按问题一计算MRE的过程计算 各放电电流下一般模型的MRE,最后以所有放电电流对应的MRE的平均值作为一般模型的

精度指标。结果见表3-6.

表3-6	一般模型在各放电电流	下的MRE及模型MRF	参数拟合值一览
1230			

放电电流I	MRE	MRE的平均值
20	0.210966481	
30	0.209698677	
40	0.209235244	
50	0.206645515	
60	0.201666872	0.197179898
70	0.193949184	
80	0.18684187	
90	0.181201977	
100	0.174413261	

由表3-6知,一般模型精度比第一问下模型精度要低,这是由误差的传递性及叠加性造成的。

2.3 给出以电流强度55A放电时的放电曲线

首先,在模型 (3.5) 中代人I=55,令t=0得到v的最大值 v_{max} ,计算得到 $v_{max}=10.5406$,将9至 $v_{max}=10.5406$ 按步长0.005计算电压值;

然后,将上述方法得到的电压值及I = 55代人模型(3.5),即得相应的对应的模型已放电时间T,部分结果见表3-7(完整结果见附件).

表3-7 I=55时"电压-放电时间"一览(部分结果)

电压v	已放电时间T
10.5406	-0.05251
10.5356	7.620169
10.5306	15.26791
	•••
9.0106	1183.866
9.0056	1183.906
9.0006	1183.922
8.9956	1183.912

绘制I=55A对应的"T-v"曲线,如图4所示。

图4 I=55A对应的"T-v"曲线

3 问题三

问题三是预测电池在衰减状态3下的剩余放电时间。附件2给出了同一电池,在四种不同状态(新电池状态、衰减状态1、衰减状态2、衰减状态3)下从充满电开始按同一放电电流放电的记录数据。其中电池状态3给出的放电数据不完整,记录数据给出了电压从10.500V降低到9.765V过程中电池的累计放电时间,需要预测电压从9.765V降低到Um=9.000V的剩余放电时间。

3.1 绘制图形, 提炼模型

根据附件2数据绘制"时间-电压"曲线,所得曲线如图5中第一行所在的图所示。

图5 四种衰减状态下的 "T-v" 曲线

据图发现同一电池在"新电池状态、衰减状态1、衰减状态2"三个不同衰减状态下以同一电流强度放电的"时间-电压"曲线依然呈二次曲线趋势,从而推断"衰减状态3"对应的"时间-电压"曲线也服从二次曲线,于是可借鉴问题一的方法建立模型。设模型为

$$v(T) = a + b\sqrt{c - T}$$

易知a=9,c是放电时间T的最大值。首先对前三个衰减状态拟合曲线参数。结果见表3-8.

表3-8 前三种衰减状态对应"电压-放电时间"模型参数值一览(部分结果)

	b	c
新电池状态	0.041591	1281.1
衰减状态 1	0.044507	1104.8
衰减状态 2	0.046756	979

"衰减状态3"对应的b大于"衰减状态2"对应的b, "衰减状态3"对应的c小于"衰减状态2"对应的c。应用matlab有约束最小二乘法拟合参数b,c,结果见表3-9.

表3-9 前三种衰减状态对应"电压-放电时间"模型参数值一览(部分结果)

	b	c
衰减状态 3	0.050558	828.7507

于是"衰减状态3"对应的模型为

$$v(T) = 9 + 0.050558\sqrt{828.7507 - T}$$
 (3.6)

或

$$T = 828.7507 - \left(\frac{v - 9}{0.050558}\right)^2 \tag{3.7}$$

由模型(3.7),算出放电时间T,部分结果见表3-10(完整结果见附件).

表3-10 衰减状态3放电时间预测值一览(部分结果)

当前电压ν	放电时间T
9.760	602.7845
9.755	605.748
9.020	828.5943
9.015	828.6627
9.010	828.7116
9.005	828.741
9.000	828.7507

四、模型评价

本文针对铅酸电池剩余放电时间中的三个问题做了较为全面的回答。本文在建模和求解 中有如下方面的优点。

- (1) 关于问题一的回答细致,模型较为精确,"放电时间T-电压 ν "示意图为第二问一般模型做好了铺垫。
- (2)问题二在一般模型的建立过程中,对问题一中模型参数对放电电流*I*的拟合模型精度较高,完整地给出了*I*=55时的图表结论。

由于MRE的含义有多种理解,本文所采用的计算MRE的方法未必最优,这是本文不足之处。

五、参考文献

[1]李克民. 蓄电池是通信电源技术维护工作中的重中之重[J]. 电信技术, 2003, (5).

[2]吴贤章, 胡信国. 循环用阀控电池失效模式的研究[J]. 电池, 2003, 10,33(5).

[3]王秀菊. 电力电源中蓄电池失效模式及在线监测[J]. 电源技术, 2004, (28): 790-793.

[4]潘文章. 铅酸密封蓄电池早期失效原因分析与改善方法探讨[J]. 蓄电池, 1994, (3).

[5]崔虹,徐剑虹. 阀控式铅酸电池VRLA-失效数学模型的研究[J]. 电信技术,2007, (5).

[6]白其峥. 数学建模案例分析[M]. 北京:海洋出版社,2000.

[7]蔡锁章. 数学建模原理与方法[M]. 北京:海洋出版社,2000.

[8]陈理荣. 数学建模导论[M]. 北京: 北京邮电学院出版社, 1999.

六、附件

1、I=55 时"电压 v-放电时间 T"

及电时间 I	55	问题三放电	时间的预测
v	T	v	T
10.5406	-0.05251	9.760	602.7845
10.5356	7.620169	9.755	605.748
10.5306	15.26791	9.750	608.6919
10.5256	22.89071	9.745	611.6162
10.5206	30.48856	9.740	614.521
10.5156	38.06147	9.735	617.4062
10.5106	45.60944	9.730	620.2719
10.5056	53.13247	9.725	623.118
10.5006	60.63056	9.720	625.9445
10.4956	68.10371	9.715	628.7515
10.4936	75.55191	9.713	631.5389
		9.705	
10.4856	82.97517		634.3067
10.4806 10.4756	90.37349	9.700	637.055
	97.74686	9.695 9.690	639.7838
10.4706	105.0953		642.4929
10.4656	112.4188	9.685	645.1825
	119.7173	9.680	647.8526
10.4556	126.9909	9.675	650.5031
10.4506	134.2396	9.670	653.134
10.4456	141.4633	9.665	655.7454
10.4406	148.6621	9.660	658.3372
10.4356	155.836	9.655	660.9094
10.4306	162.9849	9.650	663.4621
10.4256	170.1088	9.645	665.9952
10.4206	177.2078	9.640	668.5088
10.4156	184.2819	9.635	671.0028
10.4106	191.331	9.630	673.4772
10.4056	198.3552	9.625	675.9321
10.4006	205.3545	9.620	678.3674
10.3956	212.3288	9.615	680.7832
10.3906	219.2781	9.610	683.1794
10.3856	226.2025	9.605	685.556
10.3806	233.102	9.600	687.9131
10.3756	239.9766	9.595	690.2506
10.3706	246.8262	9.590	692.5685
10.3656	253.6508	9.585	694.8669
10.3606	260.4505	9.580	697.1458
10.3556	267.2253	9.575	699.405
10.3506	273.9751	9.570	701.6448
10.3456	280.7	9.565	703.8649
10.3406	287.3999	9.560	706.0655
10.3356	294.0749	9.555	708.2465
10.3306	300.725	9.550	710.408
10.3256	307.3501	9.545	712.5499

10.3206	313.9503	9.540	714.6722
10.3156	320.5255	9.535	716.775
10.3106	327.0758	9.530	718.8582
10.3056	333.6011	9.525	720.9219
10.3006	340.1015	9.520	722.966
10.2956	346.577	9.515	724.9906
10.2906	353.0275	9.510	726.9955
10.2856	359.4531	9.505	728.981
10.2806	365.8537	9.500	730.9468
10.2756	372.2294	9.495	732.8931
10.2706	378.5802	9.490	734.8198
10.2656	384.906	9.485	736.727
10.2606	391.2069	9.480	738.6146
10.2556	397.4828	9.475	740.4827
10.2506	403.7338	9.470	742.3312
10.2456	409.9598	9.465	744.1601
10.2406	416.1609	9.460	745.9695
10.2356	422.3371	9.455	747.7593
10.2306	428.4883	9.450	749.5296
10.2256	434.6145	9.445	751.2802
10.2206	440.7159	9.440	753.0114
10.2156	446.7923	9.435	754.7229
10.2106	452.8437	9.430	756.415
10.2056	458.8702	9.425	758.0874
10.2006		9.420	759.7403
10.1956	464.8718 470.8484	9.420	761.3736
10.1906	476.8001	9.410	762.9874
10.1856	482.7268	9.405	764.5816
10.1806	488.6286	9.400	766.1562
10.1756	494.5055	9.395	767.7113
10.1706	500.3574	9.390	
10.1766	506.1843	9.385	769.2468 770.7628
10.1606	511.9864	9.380	
			772.2592
10.1556	517.7634 523.5156	9.375	773.736
10.1506		9.370	775.1933
10.1456	529.2428	9.365	776.631
10.1406	534.945	9.360	778.0492
10.1356	546.6224	9.355	779.4478
10.1306	546.2747	9.350	780.8268
10.1256	551.9022	9.345	782.1863
10.1206	557.5047	9.340	783.5262
10.1156	563.0822	9.335	784.8466
10.1106	568.6348	9.330	786.1474
10.1056	574.1625	9.325	787.4286
10.1006	579.6652	9.320	788.6903
10.0956	585.143	9.315	789.9324
10.0906	590.5958	9.310	791.1549
10.0856	596.0237	9.305	792.3579

		П	
10.0806	601.4267	9.300	793.5413
10.0756	606.8047	9.295	794.7052
10.0706	612.1577	9.290	795.8495
10.0656	617.4859	9.285	796.9742
10.0606	622.789	9.280	798.0794
10.0556	628.0673	9.275	799.1651
10.0506	633.3206	9.270	800.2311
10.0456	638.5489	9.265	801.2776
10.0406	643.7524	9.260	802.3046
10.0356	648.9308	9.255	803.3119
10.0306	654.0844	9.250	804.2998
10.0256	659.213	9.245	805.268
10.0206	664.3166	9.240	806.2167
10.0156	669.3953	9.235	807.1459
10.0106	674.4491	9.230	808.0554
10.0056	679.4779	9.225	808.9454
10.0006	684.4818	9.220	809.8159
9.9956	689.4607	9.215	810.6668
9.9906	694.4147	9.210	811.4981
9.9856	699.3438	9.205	812.3099
9.9806	704.2479	9.200	813.1021
9.9756	709.127	9.195	813.8748
9.9706	713.9813	9.190	814.6279
9.9656	718.8105	9.185	815.3614
9.9606	723.6149	9.180	816.0754
9.9556	728.3943	9.175	816.7698
9.9506	733.1487	9.170	817.4446
9.9456	737.8783	9.165	818.0999
9.9406	742.5828	9.160	818.7356
9.9356	747.2625	9.155	819.3518
9.9306	751.9172	9.150	819.9484
9.9256	756.5469	9.145	820.5254
9.9206	761.1517	9.140	821.0829
9.9156	765.7316	9.135	821.6208
9.9106	770.2865	9.130	822.1392
9.9056	774.8165	9.125	822.638
9.9006	779.3215	9.120	823.1172
9.8956	783.8016	9.115	823.5769
9.8906	788.2568	9.110	824.017
9.8856	792.687	9.105	824.4376
9.8806	797.0923	9.100	824.8386
9.8756	801.4726	9.095	825.22
9.8706	805.828	9.090	825.5819
9.8656	810.1584	9.090	825.9242
9.8606	814.4639	9.080	826.247
9.8556	818.7445	9.075	826.5502 826.8338
9.8506	823.0001 827.2308	9.070	826.8338
9.8456	827.2308	9.065	827.0979

	1	11	
9.8406	831.4365	9.060	827.3424
9.8356	835.6173	9.055	827.5673
9.8306	839.7731	9.050	827.7727
9.8256	843.904	9.045	827.9585
9.8206	848.01	9.040	828.1248
9.8156	852.091	9.035	828.2715
9.8106	856.1471	9.030	828.3987
9.8056	860.1782	9.025	828.5062
9.8006	864.1844	9.020	828.5943
9.7956	868.1657	9.015	828.6627
9.7906	872.122	9.010	828.7116
9.7856	876.0534	9.005	828.741
9.7806	879.9598	9.000	828.7507
9.7756	883.8413		
9.7706	887.6978		
9.7656	891.5294		
9.7606	895.3361		
9.7556	899.1178		
9.7506	902.8746		
9.7456	906.6064		
9.7406	910.3133		
9.7356	913.9953		
9.7306	917.6523		
9.7256	921.2843		
9.7206	924.8915		
9.7156	928.4736		
9.7106	932.0309		
9.7056	935.5632		
9.7006	939.0705		
9.6956	942.5529		
9.6906	946.0104		
9.6856	949.4429		
9.6806	952.8505		
9.6756	956.2332		
9.6706	959.5909		
9.6656	962.9236		
9.6606	966.2315		
9.6556	969.5143		
9.6506	972.7723		
9.6456	976.0053		
9.6406	979.2133		
9.6356	982.3964		
9.6306	985.5546		
9.6256	988.6878		
9.6206	991.7961		
9.6156	994.8794		
9.6106			
9.6056	997.9378		
9.0030	1000.9/1	Ш	

	r	•
9.6006	1003.98	
9.5956	1006.963	
9.5906	1009.922	
9.5856	1012.856	
9.5806	1015.764	
9.5756	1018.648	
9.5706	1021.507	
9.5656	1024.341	
9.5606	1027.15	
9.5556	1029.934	
9.5506	1032.693	
9.5456	1035.427	
9.5406	1038.136	
9.5356	1040.821	
9.5306	1043.48	
9.5256	1046.114	
9.5206	1048.724	
9.5156	1051.308	
9.5106	1053.868	
9.5056	1056.403	
9.5006	1058.912	
9.4956	1061.397	
9.4906	1063.857	
9.4856	1066.292	
9.4806	1068.701	
9.4756	1071.086	
9.4706	1073.446	
9.4656	1075.782	
9.4606	1078.092	
9.4556	1080.377	
9.4506	1082.637	
9.4456	1084.872	
9.4406	1087.083	
9.4356	1089.268	
9.4306	1091.429	
9.4256	1093.564	
9.4206	1095.675	
9.4156	1097.76	
9.4106	1099.821	
9.4056	1101.857	
9.4006	1103.868	
9.3956	1105.854	
9.3906	1107.815	
9.3856	1109.751	
9.3806	1111.662	
9.3756	1113.548	
9.3706	1115.409	
9.3656	1117.245	

_			
9.3606	1119.057		
9.3556	1120.843		
9.3506	1122.604		
9.3456	1124.341		
9.3406	1126.052		
9.3356	1127.739		
9.3306	1129.401		
9.3256	1131.037		
9.3206	1132.649		
9.3156	1134.236		
9.3106	1135.798		
9.3056	1137.335		
9.3006	1138.847		
9.2956	1140.334		
9.2906	1141.796		
9.2856	1143.233		
9.2806	1144.645		
9.2756	1146.032		
9.2706	1147.395		
9.2656	1148.732		
9.2606	1150.045		
9.2556	1151.332		
9.2506	1152.595		
9.2456	1153.832		
9.2406	1155.045		
9.2356	1156.233		
9.2306	1157.396		
9.2256	1158.533		
9.2206	1159.646		
9.2156	1160.734		
9.2106	1161.797		
9.2056	1162.835		
9.2006	1163.849		
9.1956	1164.837		
9.1906	1165.8		
9.1856	1166.738		
9.1806	1167.652		
9.1756	1168.54		
9.1706	1169.404		
9.1656	1170.242		
9.1606	1171.056		
9.1556	1171.844		
9.1506	1172.608		
9.1456	1173.347		
9.1406	1174.061		
9.1356	1174.75		
9.1306	1174.73		
9.1256	1176.053		
7.1230	1170.055	1	<u> </u>

9.1206	1176.667	
9.1156	1177.256	
9.1106	1177.82	
9.1056	1178.359	
9.1006	1178.874	
9.0956	1179.363	
9.0906	1179.827	
9.0856	1180.267	
9.0806	1180.681	
9.0756	1181.071	
9.0706	1181.436	
9.0656	1181.775	
9.0606	1182.09	
9.0556	1182.38	
9.0506	1182.645	
9.0456	1182.885	
9.0406	1183.1	
9.0356	1183.29	
9.0306	1183.455	
9.0256	1183.595	
9.0206	1183.71	
9.0156	1183.801	
9.0106	1183.866	
9.0056	1183.906	
9.0006	1183.922	
8.9956	1183.912	

2、求解程序

```
问题一:
```

```
function\ [xishu,NewXS,NewMRE,MRE,T\_Remainder,bc\_value,GenMRE,TotalMRE,Data55,MyMRE] = C1stprob\\ data = xlsread('F:\CAppendix.xlsx','data1');
```

```
[~,col] = size(data);
t = data(:,1);
v_t2v = cell(col-1,1);
v_t2v_cut = v_t2v;
inT_inV = v_t2v;
remark = ['20A']
'30A '
'40A '
'50A '
'60A '
'70A '
'80A '
'90A '
             '100A'];
\quad \text{for } p = 2\text{:col}
vtemp = data(:,p);
             = vtemp(~isnan(vtemp));
    = length(v);
```

```
t2v = t(1:lv); %与 v 对应的 t.
    v_t2v\{p-1\} = [t2v \ v];
    %%%%% 为求 MRE 做插值准备:截取 t>200 分钟后的数据作分析.
shold = 200;
    t_cut = t2v(t2v>shold);
    v_cut = v(t2v>shold);
    v\_t2v\_cut\{p\text{-}1\} = [t\_cut\ v\_cut];
    %%%%% 剔除 v_cut 中的重复数据.
    [v\_cut\_nocopy, ind\_v\_cut, ind\_v\_cut\_nocopy] = unique(v\_cut);
    t\_cut\_nocopy = t\_cut(ind\_v\_cut);
    DeltaV = diff(v_cut_nocopy); % v_cut_nocopy 的差分序列.
    Interp_v_cut_nocopy = v_cut_nocopy(1); % 存储有插值的 v 序列.
for q = 1:length(DeltaV)
if Delta V(q)>0.005
            n = ceil(DeltaV(q)/0.005);
for r = 1 \cdot n - 1
                 Interp\_v\_cut\_nocopy = [Interp\_v\_cut\_nocopy; \ v\_cut\_nocopy(q) + r*0.005];
end
             Interp\_v\_cut\_nocopy = [Interp\_v\_cut\_nocopy; \ v\_cut\_nocopy(q+1)];
else
             Interp\_v\_cut\_nocopy = [Interp\_v\_cut\_nocopy; \ v\_cut\_nocopy(q+1)];
end
end
    % 上述循环完成对 v_cut_nocopy 的插值,得到插值序列 Interp_v_cut_nocopy.
    [x\_v, i\_v\_cut\_nocopy] = sort(v\_cut\_nocopy);
     y_t
                          = t\_cut\_nocopy(i\_v\_cut\_nocopy);
    [SiV\_cut\_nocopy, indSiV\_nocopy] = sort(Interp\_v\_cut\_nocopy);
    inT\_temp = interp1(x\_v,y\_t,SiV\_cut\_nocopy,'spline');
    inT_value = inT_temp(indSiV_nocopy);
                                                 % 完成 t 对 v 的对应插值.
    inT_inV{p-1} = [inT_value Interp_v_cut_nocopy];% 保存 InterpV_cut 的插值备用.
    %%% 绘图看插值效果 %%%
figure(1)
    [\Gamma_{temp}, ind\Gamma] = sort(inT_{temp});
    V_{temp} = SiV_{cut} - nocopy(indT);
subplot(3,3,p-1)
plot( t2v,v,'k-', T_temp, V_temp, 'r-.', 'linewidth',2 )
title(remark(p-1,:))
    xlabel('放电时间(min)')
    ylabel('剩余电压(v)')
%%%%% 描绘各放电电流下放电时间与电压的关系图. %%%%%%
figure(2)
title('剩余电压与放电时间关系图')
xlabel('放电时间(min)')
ylabel('剩余电压(v)')
hold on
plot(v_t2v{1}(:,1),v_t2v{1}(:,2),...
     v_t2v{2}(:,1),v_t2v{2}(:,2),...
```

```
v_t2v\{3\}(:,1),v_t2v\{3\}(:,2),...
     v_t2v{4}(:,1),v_t2v{4}(:,2),...
     v\_t2v\{5\}(:,1), v\_t2v\{5\}(:,2),...
     v\_t2v\{6\}(:,1), v\_t2v\{6\}(:,2),...
     v_t2v\{7\}(:,1), v_t2v\{7\}(:,2),...
     v_t2v\{8\}(:,1),v_t2v\{8\}(:,2),...
     v_t2v\{9\}(:,1), v_t2v\{9\}(:,2), linewidth',2)
legend(remark)
hold off
%%%%%%%%%%%%%% 曲线拟合和 MRE %%%%%%%%%%%%%%%%%%
%%% 拟合曲线函数: v = a+b*sqrt(c-t) %%%
xishu = zeros(col-1,2);
MyMRE = zeros(col-1,1); % 全部原始数据的 MRE
MRE = MyMRE;
                          % 插值后,最后面的 231 个数据的 MRE.
NewMRE = MRE;
T_Remainder = MRE; % 保存电压为 v=9.8 时放电剩余时间的计算结果
figure(3)
hold on
NewXS = zeros(col-1,2);
for p=2:col
vtemp = data(:,p);
           = vtemp(~isnan(vtemp));
    = length(v);
    t2v = t(1:lv); % 与 v 对应的 t.
    %%%%% (1)根据附件 1 用初等函数表示各放电曲线 - 对全体原始数据进行拟合 %%%%%
tmax = t(lv);
ufun = @(par,tdata)9+par.*sqrt(tmax-tdata);
    x ishu(p\text{-}1,1) = lsqcurve fit (@ (par,tdata)u fun(par,tdata), 1, t(1:lv), v); \\
ugun = @(tdata)9 + xishu(p-1).*sqrt(tmax-tdata);
xishu(p-1,2) = tmax;
xfun = @(alpha,vdata)alpha(1)*vdata.^2+alpha(2)*vdata+tmax;
    alpha\_val = lsqcurvefit(@(alpha,vdata)x\,fun(alpha,vdata),[1\ 1],v,t(1:lv));\\
NewXS(p-1,:) = alpha\_val;
kfun = @(vdata)alpha\_val(1)*vdata.^2 + alpha\_val(2)*vdata + tmax;
    %%%%% 输出项 xishu 就是各电流下的放电曲线 %%%%%
fitv = ugun(t2v);
MyMRE(p-1) = mean(abs(fitv-v)./v);
inTtemp = inT_inV\{p-1\}(:,1);
inVtemp = inT_inV\{p-1\}(:,2);
    t_part = inTtemp(end-230:end);
    v_part = inVtemp(end-230:end);
    %%%%% (2)给出各放电曲线的平均相对误差 MRE %%%%%
    fitv_part = ugun(t_part);
MRE(p\text{-}1) = mean(abs(fitv\_part\text{-}v\_part)./v\_part);
    t_fit = kfun(v_part);
    % 原始 v 在插值 V 中的位置: 如何得知?
NewMRE(p\text{-}1) = mean(abs(t\_fit\text{-}t\_part)./t\_part);
subplot(3,3,p-1)
```

```
plot(\,t(1:lv),v,'r\text{--'},\,t(1:lv),fitv,'b\text{---'},\,'linewidth',2\,)
title(remark (p-1,:))
    xlabel('放电时间(min)')
    ylabel('剩余电压(v)')
    %%%% (3)在新电池使用中,分别以30A、40A、50A、60A和70A电流强度放电,%%%%
    %%%% 测得电压都为 9.8 伏时,根据模型计算电池的剩余放电时间分别是多少?
    tvalue = @(vdata)xishu(p-1,2)-(vdata-9).^2/xishu(p-1,1)/xishu(p-1,1);\\
vdata = 9.8;
    T_Remainder(p-1) = tvalue(vdata);
end
I = [20\ 30\ 40\ 50\ 60\ 70\ 80\ 90\ 100]';
%%%%% 对拟合曲线中两个参数与 I 的函数关系进行拟合 %%%%%%
%%% v-t 曲线: v = 9 + alpha*sqrt(beta-t).
alpha = @(h,I)h(1)+h(2)*log(I-h(3));
beta = @(w,I)w(1)+w(2)./(I-w(3));
bpar = 1 sqcurvefit(@(h,Idata)alpha(h,Idata),[ 1 1],I,xishu(:,1));
cpar = lsqcurvefit(@(w,Idata)beta(w,Idata), [2000 1000 10],I,xishu(:,2));
bc_value = [bpar; cpar];
al fun = @(I)bpar(1)+bpar(2)*log(I-bpar(3));
b_al = alfun(I);
befun = @(I)cpar(1)+cpar(2)./(I-cpar(3));
c\_be = befun(I);
figure(4)
%%%%% 作图观察拟合曲线参数与 I 的关系 %%%%%%
subplot(2,2,1)
plot( I,xishu(:,1),'r-', 'linewidth',2)
xlabel('放电电流 I')
ylabel('参数 b')
subplot(2,2,2)
plot( I,xishu(:,1),'r-', I,b_al,'b--', 'linewidth',2)
xlabel('放电电流 I')
ylabel('拟合曲线参数 b')
subplot(2,2,3)
plot( I,xishu(:,2),'r-', 'linewidth',2)
xlabel('放电电流 I')
ylabel('参数 c')
subplot(2,2,4)
plot( I,xishu(:,2),'r-', I,c_be,'b--', 'linewidth',2)
xlabel('放电电流 I')
ylabel('拟合曲线参数 c')
%%%%%% 一般模型精度的计算 MRE %%%%%%
genV = @(T,I) 9 - (bpar(1) + bpar(2)*log(I-bpar(3))).*...
              sqrt((cpar(1) + cpar(2)./(I-cpar(3))) - T);
GenMRE = zeros(col-1,1);
for k=1:col-1
    t = v_t2v\{k\}(:,1);
    v = v_t2v\{k\}(:,2);
    V_{gen} = genV(t, I(k));
```

```
GenMRE(k) = mean(abs(V\_gen-v)./v);
end
TotalMRE = mean(GenMRE);
b = interp1(I,xishu(:,1),55);
c = interp1(I,xishu(:,2),55);
xishu = [xishu; b c];
t_val = (0:c)';
MyFun = @(tdata)9+b*sqrt(c-tdata);
v_val = MyFun(t_val);
Data55 = [t\_val \ v\_val];
figure(2)
hold on
plot(t_val, v_val, 'g--', 'linewidth', 3)
hold off
tvalue = 30;
x = t(t < tvalue);
1x = length(x);
vdata = zeros(lx,col-1);
\quad \text{for } p=2\text{:col}
vtemp = data(:,p);
    v1 = vtemp(~isnan(vtemp));
vdata(:,p-1) = v1(1:lx);
end
figure
plot(x,vdata(:,1),x,vdata(:,2),x,vdata(:,3),x,vdata(:,4),x,vdata(:,5),\dots
     x,vdata(:,6),x,vdata(:,7),x,vdata(:,8),x,vdata(:,9))\\
legend(remark)
xlabel('放电时间(min)')
ylabel('剩余电压(v)')
for q=1:col-1
text(tvalue-2.5,vdata(lx,q),num2str(q))
end
%}
问题二:
function [NewXS,MRE] = C1stprob2
data = xlsread('F:\CAppendix.xlsx','data1');
[~,col] = size(data);
t = data(:,1);
NewXS = zeros(col-1,2);
MRE = zeros(col-1,1);
for p=2:col
vtemp = data(:,p);
          = vtemp(~isnan(vtemp));
    = length(v);
    t2v = t(1:lv); % 与 v 对应的 t.
    t2v = t2v(t2v > 200);
```

```
v = v(t2v>200);
lv = length(v);
tmax = t2v(lv);
    [sv, indsv] = sort(v);
    st2v = t2v(indsv);
    %%% 拟合曲线函数: t = a*(v-9)^2+b*(v-9)+tmax %%%
x fun = @(alpha, vdata)alpha(1)*(vdata-9).^2 + alpha(2)*(vdata-9) + tmax;
    alpha\_val = lsqcurvefit(@(alpha,vdata)x\,fun(alpha,vdata),[1\ 1],sv,st2v);
NewXS(p-1,:) = alpha_val;
dv = abs(diff(v));
    v_new = v(dv<=0.005); % 挑选间隔不超过 0.005 的采样点.
    t2v_new = t2v(dv \le 0.005);
    [v_sorted, IA] = unique(v_new);
    t2v\_sorted = t2v\_new(IA);
    n = length(v\_sorted);
    %%%%% (1)根据附件1用初等函数表示各放电曲线-对全体原始数据进行拟合 %%%%%
\label{eq:kfun} kfun = @(vdata)alpha\_val(1)*(vdata-9).^2 + alpha\_val(2)*(vdata-9) + tmax;
if n > 231
         t_part = t2v_sorted(n-230:n);
         v_part = v_sorted(n-230:n);
else
         t_part = t2v_sorted;
         v_part = v_sorted;
end
    t_fit = kfun(v_part);
MRE(p\text{-}1) = mean(abs(t\_fit\text{-}t\_part)./t\_part);
End
问题三:
function [alpha, gamma, t] = C3rdprob
data = xlsread('F:\CAppendix.xlsx','data2');
v = data(:,1);
lv = length(v);
t1 = data(:,2);
t2 = data(:,3);
t3 = data(:,4);
t4\_temp = data(:,5);
t4_half = t4_temp(~isnan(t4_temp)); % 剔除 t4_temp 中的 NaN.
v_t4_half = v(1:length(t4_half)); % 与 t4_half 对应的 v 值.
%%%%%% 绘图观察不同衰减状态下放电时间随电压变化的情况 %%%%%%
figure(1)
hold on
subplot(3,1,1)
plot(t1,v,'b-',...
     t2,v,'g-',...
     t3,v,'r-',...
     t4_half,v_t4_half,'c-',...
     'linewidth',2)
legend('新电池状态', '衰减状态 1', '衰减状态 2', '衰减状态 3')
title('不同衰减状态下"采样已放电时间-电压"关系图')
```

```
xlabel('采样已放电时间(min)')
ylabel('电压(v)')
%%%%%% 拟合前三个状态的曲线: v = alpha + beta*sqrt(gamma-t) %%%%%%
tmax = [t1(end) t2(end) t3(end)];
alpha= zeros(3,1);
for k=1:3
ufun = @(beta,tdata)9 + beta.*sqrt(tmax(k)-tdata);
    alpha(k) = lsqcurvefit(@\ (beta,tdata)u\ fun(beta,tdata),1,data(:,k+1),v);
end
alpha(:,2) = tmax';
t = zeros(lv,4);
for k = 1:3
    t(:,k) = tmax(k) - (v-9).^2/alpha(k,1)/alpha(k,1);
end
ifun = @(gamma,tdata)9 + gamma(1).*sqrt(gamma(2)-tdata);\\
x0 = [1 \ 1]';
lb = [alpha(3,1) 600]';
ub = [10 1000]';
gamma = lsqcurve fit (@ (gamma,tdata)i fun(gamma,tdata),x0,t4\_half,v\_t4\_half,lb,ub);
t(:,4) = gamma(2) - (v-9).^2/gamma(1)/gamma(1); % 预测结果.
subplot(3,1,2)
plot( t(:,1),v,'m--', ...
t(:,2),v,'c--', ...
t(:,3),v,'y--',...
t(:,4),v,'k--',...
       'linewidth',2)
title('不同衰减状态下"模型已放电时间-电压"关系图')
xlabel('模型已放电时间(min)')
ylabel('电压(v)')
subplot(3,1,3)
plot( t1, v, 'b-',
                           t(:,1),v,'m--', ...
                              t(:,2),v,'c--', ...
       t2,v,'g-',
       t3,v,'r-',
                              t(:,3),v,'y--', ...
       t4_half,v_t4_half,'c-', t(:,4),v,'k--', ...
       'linewidth',2)
title('原始数据与拟合曲线对比图')
xlabel('放电时间(min)')
ylabel('电压(v)')
hold off
```