浙江大学工程师学院

《高阶工程认知与实践》

工程测试(抗震测试)

实验报告

课程名称	高阶工程认知与实践	实验时间	2023.3.12
实验名称	工程测试 (抗震测试)		
专业	能源动力	姓 名	钟启迪
学 号	22260281	班 级	6班

实验二结果汇总

一、实验数据

工况	实测固有频率	实测阻尼比 ξ	Ss软件读取的固有 频率
M=O	2.28Hz	0.00204	2.3125Hz
M=0.5Kg	2.04Hz	0.00186	2. 1250Hz
M=1Kg	1.85Hz	0.00211	1.8438Hz
M=1.5Kg	1.69Hz	0.00197	1.6875Hz
M=2Kg	1.57Hz	0.00216	1.5625Hz

$$\xi_{1} = \frac{1}{2k\pi} \ln\left(\frac{a_{n}}{a_{n+k}}\right) = \frac{1}{2 \times 10\pi} \ln\left(\frac{0.122 + 0.121}{0.105 + 0.109}\right) = 0.00204$$

$$\xi_{2} = \frac{1}{2k\pi} \ln\left(\frac{a_{n}}{a_{n+k}}\right) = \frac{1}{2 \times 10\pi} \ln\left(\frac{0.167 + 0.168}{0.149 + 0.149}\right) = 0.00186$$

$$\xi_{3} = \frac{1}{2k\pi} \ln\left(\frac{a_{n}}{a_{n+k}}\right) = \frac{1}{2 \times 10\pi} \ln\left(\frac{0.210 + 0.209}{0.182 + 0.182}\right) = 0.00211$$

$$\xi_4 = \frac{1}{2k\pi} \ln \left(\frac{a_n}{a_{n+k}} \right) = \frac{1}{2 \times 10\pi} \ln \left(\frac{0.143 + 0.140}{0.130 + 0.129} \right) = 0.00197$$

$$\xi_5 = \frac{1}{2k\pi} \ln \left(\frac{a_n}{a_{n+k}} \right) = \frac{1}{2 \times 10\pi} \ln \left(\frac{0.208 + 0.206}{0.181 + 0.181} \right) = 0.00216$$

二、实验小结

结论:质点质量越大,共振频率越小。

FFT和软件结果:

1.5KG情况下的工况记录曲线

2KG情况下的工况记录曲线

实验三

一、实验数据

工况	实测一阶频率	阻尼比 ξ
M=O	2.28Hz	0.0029
M=0.5Kg	2Hz	0.0032
M=1Kg	1.8125Hz	0.0035
M=1.5Kg	1.6875Hz	0.0041
M=2Kg	1.5625Hz	0.0042

二、求解过程

工况记录曲线:

实验四

组别	阻尼器位置	顶层最大位移	减震率
第一组	最上层	1.82	0. 4052
第二组	取上伝	1.02	0.4002
第三组	中间层	2.23	0. 3736
第四组	中 间层	4. 43	0.3730
第五组	不安装	3.05	0

最上层减震率= $1 - \frac{1.82}{3.06} = 0.4052$

中间层减震率= $\frac{2.23}{3.56}$ = 0.3736

不安装减震率=0

工况记录曲线:

将自制阻尼器安装在天花板上下,胶底座固定在三楼的天花板上,水箱安装于天花板上。 水箱装一定量的水固定天花板上,水箱安装位置和方向与振动来源方向一致。橡皮筋一端笃定 在橡胶底座上,另一端连接砝码,并将砝码悬挂于三楼天花板下。

当大楼遭到水平地震力晃动时,皮筋带动砝码进行摇摆晃动,同时水箱中水也被振动裹挟 着运动,通过弹簧和水的共同作用,以达到减震的目的。

我们的设计方案

Overview

PS: 本人使用juypter notebook完成编写,详细请见fft_data.ipynb文件。