Prédiction de biomarqueur sur des lames histologiques de tissus cancéreux

Presenté par : Mohamed GHAMRI Encadré par : M. Camille KURTZ M. Nicolas LOMENIE

Plan de présentation

- 1. Introduction
- 2. Ensemble de jeu
- 3. Méthode
- 4. Résultats
- 5. Conclusion
- 6. Limite et Perspective
- 7. Références

Introduction

Cancer du sein

Le cancer du sein est l'une des affections les plus fréquemment diagnostiquées chez les femmes à l'échelle mondiale.

Les médecins utilisent généralement des lames histologiques pour détecter les tumeurs.

Ensemble de jeux

	WSI	Entraînement	Test 130 WSI 20% (34376 patches)	
Camelyon16	400 WSI	270 WSI		
Classification des patches	5 WSI (171883 patches 8,9% tumeurs)	70% , 10%		
Classification des slides	58 WSI (29 tumeurs, 29 normal)	70%	30% (17 WSI)	

Méthode

Architecture générale

Prétraitement

Générer les masques (Grand Truth)

Segmentation et supprimation de fond

Générer les paires de patches

Classification des Patches

l'entraînement de modèle (FCN)

Tester le modèle (FCN)

Générer les heatmaps

Classification des slides

Extraire les caractéristique pour le classificateur

l'entraînement de Random Forest

Teste le classificateur Random forest

Prétraitement (1)

ASAP Annotations

Slide & Truth Thumbnails (downsampled 256x)

Prétraitement (2)

Prétraitement (3)

Classification des patches

Layer (type)	Output Shape	Param #
lambda (Lambda)	(None, 256, 256, 3)	0
conv2d (Conv2D)	(None, 128, 128, 100)	7600
max_pooling2d (MaxPooling2 D)	(None, 64, 64, 100)	0
conv2d_1 (Conv2D)	(None, 32, 32, 200)	500200
max_pooling2d_1 (MaxPoolin g2D)	(None, 16, 16, 200)	0
conv2d_2 (Conv2D)	(None, 16, 16, 300)	540300
conv2d_3 (Conv2D)	(None, 16, 16, 300)	810300
dropout (Dropout)	(None, 16, 16, • 300)	0
conv2d_4 (Conv2D)	(None, 16, 16, 2)	602
conv2d_transpose (Conv2DTr anspose)	(None, 256, 256, 2)	3846

Hyperparamètres

Taille de batch: 32

Fonction d'activation: ELU > RELU (vanishing)

Technique de régularisation : Dropout

Fonction de Perte : categorical Cross-Entropy

Optimiseur : ADAM

Générer les Heatmaps

Classification des slides

Résultats (1)

Résultats (2)

	Accura cy	Recal	Précisio n	F1 -score	AUC
Classificati on des patches	0,97	0,80	0,84	0,82	1
classificati on des slides	0.83	0.85	0.85	0.85	0.87

Conclusion

La méthode démontre qu'elle est acceptable pour la détection du cancer du sein et qu'elle peut contribuer à la prise de décision.

Les résultats de cette méthode montrent qu'elle est comparable à d'autres méthodes différentes, voire même aux transformeurs.

Limites

La réalisation de cette méthode demande beaucoup de ressources matérielles et de temps.

Perspectives

Modifier le modèle de classification des lames en utilisant un modèle plus performant (deep learning), augmenter la taille de l'ensemble de données.

Merci pour votre attention

Références

- Deep Learning for Identifying Metastatic Breast Cancer (https://arxiv.org/pdf/1606.05718.pdf)
- Babak Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
- https://camelyon16.grand-challenge.org/

Comparaison des deux méthodes

Random forest - AUROC = 0.87

CLAM - AUROC = 0.69 (peut atteindre 0.9 en fonction des données)

Étape commune : extraction de features (avec ou sans apprentissage)

Étape différente : agrégation (DMIL ou random forest)

Les deux méthodes sont envisageables, le choix dépend du nombre de données et de labels disponibles :

- Si il y'a beaucoup de données mais peu de labels : CLAM est une bonne option.
- Si le nombre de données est moyen mais qu'il y'a assez de labels : il vaut mieux opter pour l'agrégation par random forest.