### 1. given: edge normal velocity

 $u_e$ 

basis: edge normal in **R**<sup>3</sup>

 $\mathbf{u}_e = 0$  at boundary

### 2. Compute tangential velocity at edge

 $\mathbf{u}_e = u_e \mathbf{n}_e + v_e \tilde{\mathbf{n}}_e$ 

basis: edge normal & tangent in  $\mathbb{R}^3$   $\mathbf{u}_{s} = 0$  at boundary

3. Strain rate, R3, from edge to cell (Tensor operation subroutine)

$$\varepsilon_i = \left[ \nabla_s u \right]_i = \left[ \begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ & \bullet & \bullet \end{array} \right]$$

basis: **R**<sup>3</sup>

#### 4. Rotate to 2D if desired

$$\varepsilon_i = \left[ \nabla_s u \right]_i = \left[ \begin{array}{cc} \bullet & \bullet \\ & \bullet \end{array} \right]$$

basis:  $(\mathbf{e}_1, \mathbf{e}_2)$ 

# 5. Turbulence closure: Stress Tensor (MPAS-Ocean subroutine)

$$\sigma_i = \begin{bmatrix} \bullet & \bullet \\ & \bullet \end{bmatrix}$$

basis:  $(\mathbf{e}_1, \mathbf{e}_2)$ 

### 6. Rotate to R3, interpolate to edge

$$\sigma_e = \left[ \begin{array}{ccc} \bullet & \bullet & \bullet \\ & \bullet & \bullet \\ & & \bullet \end{array} \right]$$

## 7. Divergence of Stress Tensor in R3 (Tensor operation subroutine)



basis: **R**<sup>3</sup>

basis: R3

### 8. Interpolate to edge, dot into $\mathbf{n}_e$



basis: edge normal in  ${\bf R}^3$ 















