${\rm Ling~185A~HW~5}$

Zane Clark

November 2023

3 Relating FSAs to CFGs

D.

For any FSA $(Q, \Sigma, I, F, \Delta)$, one can convert it to a CNF CFG by creating a nonterminal symbol for the start of the FSA path S and one for the start of string character A, a nonterminal symbol, a nonterminal symbol X_i for each node Q_i , a nonterminal symbol T_i for each letter Σ_i . The terminal symbols in the CFG will be the same as the alphabet in the FSA, as well as the start-of-string and end-of-string symbols \bowtie and \bowtie , respectively. The starting nonterminal nodes will just be S.

The rules are split into two: for edges (including starting and ending) and for symbols.

The symbol rules are:

- $\bullet \ A \to \rtimes$
- $T_i \to \Sigma_i$

The edge rules are:

- $S \to X_i$ for all initial states Q_i .
- $X_i \to \mathbb{K}$ for all final states Q_i .
- $X_i \to T_j X_k$ for all edges $(Q_i, \Sigma_j Q_k)$

	×	c	v	c	⋉
×	S: 0				
	A: 1	A: 0	A: 0	A: 0	A: 0
	X1: 0	X1: 0	X1: 0	X1: 0	X1: 1
	X2: 0				
	X3: 0	X3: 0	X3: 0	X3: 0	X3: 1
	C: 0				
	V: 0				
c		S: 0	S: 0	S: 0	S: 0
		A: 0	A: 0	A: 0	A: 0
		X1: 0	X1: 0	X1: 0	X1: 1
		X2: 0	X2: 0	X2: 0	X2: 0
		X3: 0	X3: 0	X3: 0	X3: 1
		C: 1	C: 0	C: 0	C: 0
		V: 0	V: 0	V: 0	V: 0
v			S: 0	S: 0	S: 0
			A: 0	A: 0	A: 0
			X1: 0	X1: 0	X1: 1
			X2: 0	X2: 0	X2: 1
			X3: 0	X3: 0	X3: 0
			C: 0	C: 0	C: 0
			V: 1	V: 0	V: 0
c				S: 0	S: 0
				A: 0	A: 0
				X1: 0	X1: 0
				X2: 0	X2: 0
				X3: 0	X3: 1
				C: 1	C: 0
				V: 0	V: 0
⋉					S: 0
					A: 0
					X1: 1
					X2: 0
					X3: 0
					C: 0
					V: 0
Some trends in the table are that all of the inside values are					

Some trends in the table are that all of the inside values are 0 for substrings that do not end with \ltimes unless the substring is a single symbol, in which the inside value for the nonterminal node generating that symbol is 1. This makes sense, since all states must end with an end-of-string marker.

The more important pattern is in the last column. These are all the non-terminal nodes which can generate a substring ending with the end of string marker, which is the same as the backwards value.

F.

The rest of the grammar would look like:

$$S \rightarrow X1 Z$$

$$X1 \rightarrow \bowtie$$

$$C \to c$$

$$V \rightarrow v$$

$$Z \to \ltimes$$

$$X1 \rightarrow \ltimes$$

G.

The two CFGs generate the same string, but the one in E does so "forwards" and F does so "in reverse". They both treat states as nonterminal nodes, but E prepends the value caused by each edge and F appends it (and goes the other way for edges).

The top row of the inside table (the substrings starting with \rtimes) should look like the forward value table since nonterminal nodes end with the \rtimes symbol in X1, so any substring starting with \rtimes has a true inside value for a nonterminal symbol if one can get from the nonterminal signal to the start emitting the substring, which is equivalent to the forward value.