CENTRE NATIONAL D'ETUDES SPATIALES

MSLIB Fortran 90

CS SI

Nomenclature: M-MU-0-111-CIS

Edition: 01 Date: 23/06/1998 Révision: 01 Date: 26/01/2000

Volume C

Constantes

Rédigé par :	le:	
Sylvain VRESK	CS SI	
Validé par :	le:	
Guylaine PRAT	CS SI	
Pour application :	le:	
Eric LE DÉ	Cnes (DTS/MPI/MS/MN)	

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-111-CIS** Edition : 01 Date: 23/06/1998 Révision : 01 Date: 26/01/2000

Page: i.1

DIFFUSION INTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

DIFFUSION EXTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-111-CIS** Edition : 01 Date: 23/06/1998 Révision : 01 Date: 26/01/2000

Page: i.2

BORDEREAU D'INDEXATION

CONFIDENTIALITE	E:NC		MOTS-CLES:							
TITRE: Volume C -	Constantas									
TITRE: Volume C	Constantes									
AUTEUR : Sylvain V	VRESK									
RESUME: Ce document rasser	mble les notices	d'utilisation des rout	tines du thème "Con	stantes".						
SITUATION DU DOC	SITUATION DU DOCUMENT : Création									
VOLUME:	PAGES: 18	PLANCHES:	FIGURES:	LANGUES: F						
CONTRAT : Marché 870/96/Cnes/0720 BC 150 L23										
SYSTEME HOTE: Frame5/MSLIB										

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-111-CIS**Edition : 01 Date: 23/06/1998
Révision : 01 Date: 26/01/2000

Page: i.3

MODIFICATION

		ETAT	DOCUMENT		PAGES REVISEES
ED.	REV.	DATE	REFERENCE ORIGINE (pour chaque édition)	ETAT PAGE *	NUMERO DES PAGES
01	00	23/06/98	M-MU-0-111-CIS Rédacteur : V. Lépine avec la participation de G. Prat		Création
01	01	26/01/00	participation de G. Prat M-MU-0-111-CIS Rédacteur : S. Vresk avec la participation de G. Prat	M	7, 8, 9, 10, 11, 12

Sommaire

Présentation	du th	ème	e C :	 	 	 	 • •	 	 • •	 	 	 	 	 	•	page .	Ì
Notations				 	 	 	 	 	 	 	 	 	 	 		page 2	2
Index				 	 	 	 	 	 	 	 	 	 	 		page.	1

Liste des routines du thème C : voir pages suivantes du sommaire.

Liste des routines du thème C:

mc_	GRS1980:	page 4
mc_	_math :	page 6
mc_	phys:	page 8
mc_	test:	page 10

Présentation du thème C

Le thème "*Constantes*" regroupe un ensemble de routines qui définissent des constantes mathématiques, physiques, géodésiques, ou de tests.

L'utilisation des constantes, ainsi définies, doit permettre d'atteindre les objectifs suivants:

- homogénéité des constantes (au sein d'un même programme utilisateur, et vis à vis de celles utilisées dans la librairie MSLIB),
- utilisation de constantes validées, et définies avec une précision maximale.

Notations

Index

Routine mc_GRS1980

Identification

"Définition des constantes géodésiques du GRS 1980".

Rôle

Définition des constantes relatives au système géodésique de référence (1980 = SGR 80), à savoir:

- rayon équatorial terrestre du GRS1980,
- inverse de l'aplatissement terrestre du GRS1980,
- aplatissement terrestre du GRS 1980.

Séquence d'appel

(voir explications dans le volume 3)

call mc_GRS1980 (code_retour [, r_equa, inv_apla, apla])

Description des arguments

(voir explications dans le volume 3)

• Sorties obligatoires

tm_code_retour code_retour

• Sorties facultatives

pm_reel [\mathbf{r} _equa] a_e , rayon équatorial terrestre du GRS1980 (m).

pm_reel [inv_apla] 1/f, inverse de l'aplatissement terrestre du GRS1980.

pm_reel [apla] f, aplatissement terrestre du GRS1980.

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Références documentaires

• Algorithmes des routines du thème "Constantes" de la MSLIB; G. Prat (CS SI); référence MSLIB: M-NT-0-91-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK

(0): Retour normal.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program CONSTANTES

end program CONSTANTES

Résultats attendus:

```
R_EQUA = .638 \ 10^{+7}

INV_APLA = .298 \ 10^{+3}

APLA = .336 \ 10^{-4}
```

Routine mc_math

Identification

"Définition de constantes mathématiques".

Rôle

Affectation de constantes mathématiques courantes.

Séquence d'appel (voir explications dans le volume 3)

call mc_math (code_retour [, pi, deux_pi, pi_sur2, deg_rad, rad_deg])

Description des arguments

(voir explications dans le volume 3)

• Sorties obligatoires

tm_code_retour code_retour

• Sorties facultatives

pm_reel	[pi]	π
pm_reel	[deux_pi]	2π
pm_reel	[pi_sur2]	$\pi/2$
pm_reel	[deg_rad]	$\pi/180$
pm_reel	[rad_deg]	$180/\pi$

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Constantes" de la MSLIB; G. Prat (CS SI); référence MSLIB: M-NT-0-91-CIS.

```
Code retour (voir explications dans le volume 3)
```

pm_OK (0): Retour normal.

```
Exemple en Fortran 90 portable (voir explications dans le volume 3)
```

program CONSTANTES

use mslib

```
type(tm_code_retour) :: CODE_RETOUR
real(pm_reel)
                     :: PI
real(pm_reel)
                     :: DEUX PI
                      :: PI_SUR2
real(pm_reel)
real(pm_reel)
                      :: DEG_RAD
real(pm_reel)
                       :: RAD DEG
call mc_math ( CODE_RETOUR,
                                                                &
               pi = PI, deux_pi = DEUX_PI,
                                                                &
               pi_sur2 = PI_SUR2, deg_rad = DEG_RAD,
                                                                &
               rad_deg = RAD_DEG )
! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS ( PI, DEUX_PI, PI_SUR2,
                                                                &
                        DEG_RAD, RAD_DEG, CODE_RETOUR )
```

end program CONSTANTES

Résultats attendus:

```
PI = .314 	ext{ } 10^{+1}

DEUX_PI = .628 	ext{ } 10^{+1}

PI_SUR2 = .157 	ext{ } 10^{+1}

DEG_RAD = .174 	ext{ } 10^{-1}

RAD_DEG = .573 	ext{ } 10^{+2}
```

Routine mc_phys

Identification

"Définition de constantes physiques".

Rôle

Affectation de constantes physiques courantes.

Séquence d'appel (voir explications dans le volume 3)

call mc_phys (code_retour [, ua, vit_lum, i_critique_non_retro, i_critique_retro])

Description des arguments

(voir explications dans le volume 3)

• Sorties obligatoires

tm_code_retour code_retour

• Sorties facultatives

pm_reel	[ua]	une unite astronomique ua (km)
pm_reel	[vit_lum]	vitesse de la lumière dans le vide c (m.s ⁻¹)
pm_reel	[i_critique_non_retro]	inclinaison critique non rétrograde, $i_{c_non_retro}$, solution de $1-5 \times (\cos i)^2 = 0$ (rad)
pm_reel	[i_critique_retro]	inclinaison critique rétrograde, i_{c_retro} , solution de $1 - 5 \times (\cos i)^2 = 0$ (rad)

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Références documentaires

• Algorithmes des routines du thème "Constantes" de la MSLIB; G. Prat (CS SI); référence MSLIB: M-NT-0-91-CIS.

Code retour (voir explications dans le volume 3)

pm_OK (0): Retour normal.

Exemple en Fortran 90 portable

type(tm_code_retour)

(voir explications dans le volume 3)

:: CODE_RETOUR

program CONSTANTES

use mslib

```
real(pm_reel)
                                  :: UA
real(pm_reel)
                                  :: VIT_LUM
real(pm_reel)
                                  :: I_CRITIQUE_NON_RETRO
real(pm_reel)
                                  :: I_CRITIQUE_RETRO
call mc_phys ( CODE_RETOUR, ua = UA, vit_lum = VIT_LUM,
                                                                &
              i_critique_non_retro = I_CRITIQUE_NON_RETRO,
                                                                &
              i_critique_retro = I_CRITIQUE_RETRO )
! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS ( UA, VIT_LUM, I_CRITIQUE_NON_RETRO,
                                                                &
                       I_CRITIQUE_RETRO, CODE_RETOUR )
```

end program CONSTANTES

Résultats attendus:

```
\begin{array}{lll} \text{UA} & = .1496 \ 10^{+9} \\ \text{VIT\_LUM} & = .2998 \ 10^{+9} \\ \text{I\_CRITIQUE\_NON\_RETRO} & = .1107 \ 10^{+1} \\ \text{I\_CRITIQUE\_RETRO} & = .2034 \ 10^{+1} \end{array}
```

Routine mc_test

Identification

"Définition de constantes de <u>test</u>s utilisées par les routines de la MSLIB".

Rôle

Cette fonction permet d'accéder aux epsilons de test sur l'excentricité et l'inclinaison.

Test sur l'excentricité:

Soit e l'excentricité, à calculer éventuellement avec $e = \sqrt{e_x^2 + e_y^2}$.

Soit ε_{cir} l'epsilon de test pour l'orbite circulaire.

- si $e < \varepsilon_{cir}$: l'orbite est circulaire
- si $e \ge \varepsilon_{cir}$: l'orbite est non circulaire

Soit ε_{parab} l'epsilon de test pour les orbites elliptique, parabolique, ou hyperbolique.

- si $e \le 1$ ε_{parab} : l'orbite est elliptique
- si $e \ge 1 + \hat{\varepsilon}_{parab}$: l'orbite est hyperbolique
- si 1 ε_{parab} < e < 1 + ε_{parab} : l'orbite est parabolique

Test sur l'inclinaison:

Soit i l'inclinaison.

Soit ε_{equa} l'epsilon de test pour l'orbite équatoriale.

• si sinus(i) $< \varepsilon_{eaua}$: l'orbite est équatoriale.

Soit $\varepsilon_{critique}$ l'epsilon de test pour une inclinaison proche d'une des inclinaisons critiques ($i_{c\ non\ retro}$ ou $i_{c\ retro}$: pour plus de détails se reporter à la routine mc_phys).

- si $i_{c_non_retro}$ $\epsilon_{critique} < i < i_{c_non_retro} + \epsilon_{critique}$: l'inclinaison est proche de l'inclinaison critique non rétrograde $i_{c_non_retro}$
- si i_{c_retro} $\varepsilon_{critique} < i < i_{c_retro} + \varepsilon_{critique}$: l'inclinaison est proche de l'inclinaison critique rétrograde i_{c_retro} .

Séquence d'appel

(voir explications dans le volume 3)

call mc_test (code_retour [, eps_cir, eps_parab, eps_equa, eps_i_critique])

Description des arguments

(voir explications dans le volume 3)

• Sorties obligatoires

tm_code_retour code_retour

• Sorties facultatives

pm_reel	[eps_cir]	epsilon de test pour l'orbite circulaire ε_{cir}
pm_reel	[eps_parab]	epsilon de test pour l'orbite parabolique ε_{parab}
pm_reel	[eps_equa]	epsilon de test pour l'orbite équatoriale ε_{equa}
pm_reel	[eps_i_critique]	epsilon de test pour l'inclinaison critique $\varepsilon_{critique}$ (rad)

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Constantes" de la MSLIB; G. Prat (CS SI); référence MSLIB: M-NT-0-91-CIS.

Code retour (voir explications dans le volume 3)

pm_OK (0): Retour normal.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program CONSTANTES

use mslib

```
type(tm_code_retour)
                                  :: CODE RETOUR
real(pm_reel)
                                  :: EPS_CIR
real(pm_reel)
                                  :: EPS PARAB
real(pm_reel)
                                  :: EPS EQUA
real(pm_reel)
                                  :: EPS_I_CRITIQUE
call mc_test ( CODE_RETOUR,
                                                                 &
               eps_cir = EPS_CIR, eps_parab = EPS_PARAB
                                                                 &
               eps_equa = EPS_EQUA,
                                                                 &
               eps_i_critique = EPS_I_CRITIQUE )
! appel a la routine utilisateur d'ecriture des resultats
call WRITE RESULTATS ( EPS CIR, EPS PARAB, EPS EQUA ,
                                                                 &
                       EPS_I_CRITIQUE, CODE_RETOUR)
```

end program CONSTANTES

Résultats attendus:

EPS_CIR = $.100 ext{ } 10^{-9}$ EPS_EQUA = $.100 ext{ } 10^{-9}$ EPS_I_CRITIQUE = $.100 ext{ } 10^{-9}$