

Grafikprogrammierung mit C++ und OpenGL

Seminar Introduction: Lectures, Hands-On, Collaborative Open Source Project

Stefan Buschmann, Daniel Limberger, Amir Semmo

Hasso-Plattner-Institut SoSe 2013 v10272016

Agenda

1) Seminar Concept

2) Skill Survey

3) Seminar Structure

4) Collaborative Project

5) Your Participation

6) Getting Started

- **get** advanced C/C++ (2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

- \blacksquare get advanced C/C++ (2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

- \blacksquare get advanced C/C++ (2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

- \blacksquare get advanced C/C++ (2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

- \blacksquare get advanced C/C++ (2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

The ONLY VALID MEASUREMENT OF CODE QUALITY: WTFS/minute

- get advanced C/C++(2/3) and OpenGL (1/3) input.
- work on a collaborative, open source CG project.
- develop cross plattform (GCC, MSVC, XCode, etc.).
- know how to handle Qt and CMake.
- assess, justify, discuss, and criticize source code.

This seminar is all **NEW** - new content, new slides, new project - and You will (if so) participate in its **first pass**.

Your interests, ideas, and feedback are valueable for seminar quality and success.

This seminar is all **NEW** - new content, new slides, new project - and You will (if so) participate in its **first pass**.

Your interests, ideas, and feedback are valueable for seminar quality and success.

WHO has worked on more than two C/C++ projects?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one **platform independent** C/C++ project?

WHO has worked on more than two C/C++ projects?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer. Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one platform independent C/C++ project?

WHO has worked on more than two C/C++ **projects**?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer; Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one **platform independent** C/C++ project?

WHO has worked on more than two C/C++ **projects**?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer; Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one **platform independent** C/C++ project?

WHO has worked on more than two C/C++ **projects**?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer; Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one **platform independent** C/C++ project?

WHO has worked on more than two C/C++ **projects**?

WHO knows the meaning of more than half of the following C/C++ **keywords**?

```
auto break class const constexpr const_cast continue delete default
dynamic_cast enum explicit friend inline mutable namespace nullptr
operator overwrite private protected reinterpret_cast signed sizeof
static static_cast template typedef typename union using virtual void
```

WHO is familiar with more than half of the following concepts?

Unnamed Namespaces; References; Operator Overloading; Function Pointer; Multiple Inheritance; Pure Virtual; Smart-Pointer; Memory Fragmentation; Run Time Type Information; Forward Declarations; Precompiled Headers; Macros; Include Guards; Containers and Iterators; Lazy Initialization;

WHO has worked on at least one **platform independent** C/C++ project?


```
int a = 13, b = 013;
a ^= b ^= a ^= b;

const QString t("Hello_World");
const char * c(t.toLocal8Bit().constData());

const float f(const float x) {
   return 3.f * x; }
const double f(const double x) {
```

```
void foo(int const * a, int * const b);
```



```
int a = 13, b = 013;
2 a ^= b ^= a ^= b;
```

```
const QString t("Hello_World");
const char * c(t.toLocal8Bit().constData());
```

```
const float f(const float x) {
   return 3.f * x; }
const double f(const double x) {
   return 2. * x; }

f(2); // ?
```

```
void foo(int const * a, int * const b);
```



```
int a = 13, b = 013;
a ^= b ^= a ^= b;
const QString t("Hello_World");
const char * c(t.toLocal8Bit().constData());
const float f(const float x) {
  return 3.f * x; }
const double f(const double x) {
  return 2. * x: }
f(2); // ?
```



```
int a = 13, b = 013;
a ^= b ^= a ^= b;
const QString t("Hello_World");
const char * c(t.toLocal8Bit().constData());
const float f(const float x) {
  return 3.f * x; }
const double f(const double x) {
  return 2. * x: }
f(2); // ?
void foo(int const * a, int * const b);
```


WHO has worked on more than two projects with graphics programming involved?

WHO knows which of the following functions are **not deprecated** in OpenGL 3.2?

Rotate Begin End GenLists Vertex MultiTexCoord LoadIdentity PushMatrix InterleavedArrays
MultTransposeMatrix Rotate Scale Translate TexGen Material Light ColorMaterial ShadeMode

WHO has used the GPU for computational stuff?

WHO is familiar with more than half of the following rendering **concepts**?

Fragment; Texel; Pixel; Image; Texture; Path Tracing; Immutable Texture; Vertex Buffer Object; Ray Casting; Transform

WHO has worked on more than two projects with graphics programming involved?

WHO has worked on more than two projects with graphics programming involved?

WHO knows which of the following functions are **not deprecated** in OpenGL 3.2?

Rotate Begin End GenLists Vertex MultiTexCoord LoadIdentity PushMatrix InterleavedArrays
MultTransposeMatrix Rotate Scale Translate TexGen Material Light ColorMaterial ShadeModel

WHO has used the GPU for computational stuff?

WHO is familiar with more than half of the following rendering **concepts**?

Fragment; Texel; Pixel; Image; Texture; Path Tracing; Immutable Texture; Vertex Buffer Object; Ray Casting; Transform Feedback; Instancing; Shader; Program; Pipeline; Atomic Counter; Texture Views; Bindless Texture;

WHO has worked on more than two **projects** with graphics programming involved?

WHO knows which of the following functions are **not deprecated** in OpenGL 3.2?

Rotate Begin End GenLists Vertex MultiTexCoord LoadIdentity PushMatrix InterleavedArrays
MultTransposeMatrix Rotate Scale Translate TexGen Material Light ColorMaterial ShadeModel

WHO has used the GPU for computational stuff?

WHO is familiar with more than half of the following rendering **concepts**?

Fragment; Texel; Pixel; Image; Texture; Path Tracing; Immutable Texture; Vertex Buffer Object; Ray Casting; Transform Feedback; Instancing; Shader; Program; Pipeline; Atomic Counter; Texture Views; Bindless Texture;

WHO has worked on more than two projects with graphics programming involved?

WHO knows which of the following functions are **not deprecated** in OpenGL 3.2?

Rotate Begin End GenLists Vertex MultiTexCoord LoadIdentity PushMatrix InterleavedArrays
MultTransposeMatrix Rotate Scale Translate TexGen Material Light ColorMaterial ShadeModel

WHO has used the GPU for computational stuff?

WHO is familiar with more than half of the following rendering concepts?

Fragment; Texel; Pixel; Image; Texture; Path Tracing; Immutable Texture; Vertex Buffer Object; Ray Casting; Transform

Feedback; Instancing; Shader; Program; Pipeline; Atomic Counter; Texture Views; Bindless Texture;

WHO has worked on more than two projects with graphics programming involved?

WHO knows which of the following functions are **not deprecated** in OpenGL 3.2?

Rotate Begin End GenLists Vertex MultiTexCoord LoadIdentity PushMatrix InterleavedArrays
MultTransposeMatrix Rotate Scale Translate TexGen Material Light ColorMaterial ShadeModel

WHO has used the GPU for computational stuff?

WHO is familiar with more than half of the following rendering **concepts**?

Fragment; Texel; Pixel; Image; Texture; Path Tracing; Immutable Texture; Vertex Buffer Object; Ray Casting; Transform

 $Feedback; \ Instancing; \ Shader; \ Program; \ Pipeline; \ Atomic \ Counter; \ Texture \ Views; \ Bindless \ Texture;$


```
in vec3 a;
varying vec3 b;
uniform vec3 c;
const vec3 d;
out vec3 e;
```

```
gl_FragColor = mix(a, d, 0.2);
```

```
out vec4 a;
layout(location = 0) out vec4 b;
```

```
vec2 n = noise2(fragID);
vec4 t;

if(n < 0.333)
    t = texelFetch(sampler, n.yx);
else
    t = texelFetch(sampler, n.xy);</pre>
```



```
in vec3 a;
varying vec3 b;
uniform vec3 c;
const vec3 d;
out vec3 e;
```

```
gl_FragColor = mix(a, d, 0.2);
```

```
out vec4 a;
layout(location = 0) out vec4 b;
```

```
vec2 n = noise2(fragID);
vec4 t;

if(n < 0.333)
    t = texelFetch(sampler, n.yx);
else
    t = texelFetch(sampler, n.xy);</pre>
```



```
in vec3 a;
varying vec3 b;
uniform vec3 c;
const vec3 d;
out vec3 e;
```

```
gl_FragColor = mix(a, d, 0.2);
```

```
out vec4 a;
layout(location = 0) out vec4 b;
```

```
vec2 n = noise2(fragID);
vec4 t;

if(n < 0.333)
    t = texelFetch(sampler, n.yx);
else
    t = texelFetch(sampler, n.xy);</pre>
```



```
in vec3 a;
varying vec3 b;
uniform vec3 c;
const vec3 d;
out vec3 e;
```

```
gl_FragColor = mix(a, d, 0.2);
```

```
out vec4 a;
layout(location = 0) out vec4 b;
```

```
vec2 n = noise2(fragID);

vec4 t;

if(n < 0.333)
    t = texelFetch(sampler, n.yx);

else
    t = texelFetch(sampler, n.xy);</pre>
```



```
in vec3 a;
varying vec3 b;
uniform vec3 c;
const vec3 d;
out vec3 e;

gl_FragColor = mix(a, d, 0.2);
```

```
out vec4 a;
layout(location = 0) out vec4 b;
```

```
vec2 n = noise2(fragID);
vec4 t;

if(n < 0.333)
    t = texelFetch(sampler, n.yx);
else
    t = texelFetch(sampler, n.xy);</pre>
```


Seminar Structure

April								May						
М	Τ	W	Τ	F	S	S		Μ	Τ	W	Τ	F	S	S
1	2	3	4	5	6	7				1	2	3	4	5
8	9	10	11	12	13	14		6	7	8	9	10	11	12
15	16	17	18	19	20	21		13	14	15	16	17	18	19
22	23	24	25	26	27	28		20	21	22	23	24	25	26
29	30							27	28	29	30	31		
June								July						
М	Τ	W	Τ	F	S	S		Μ	Τ	W	Τ	F	S	S
					1	2		1	2	3	4	5	6	7
3	4	5	6	7	8	9		8	9	10	11	12	13	14
10	11	12	13	14	15	16		15	16	17	18	19	20	21
17	18	19	20	21	22	23		22	23	24	25	26	27	28
24	25	26	27	28	29	30		29	30	31				
				Lecture					Н	Hands-On				

- 13 × Lecture C++, CMake, OpenGL/GLSL, Qt, code riddles and assessments
- Individual Tasks (2 3 × each) Contribution to a collaborative open source project: CGSee
- 7 × Hands-On Programming sessions with everyone: working on individual task, joint inspection of and feedback for ideas and results.
- Short Talks (3 + 2 min)
 Consecutive short presentations of CGSee contributions.

- 13 × Lecture C++, CMake, OpenGL/GLSL, Qt, code riddles and assessments
- Individual Tasks (2 3 × each) Contribution to a collaborative open source project: CGSee
- 7 × Hands-On
 Programming sessions with everyone:
 working on individual task, joint inspection of
 and feedback for ideas and results
- Short Talks (3 + 2 min)
 Consecutive short presentations of CGSee contributions.

- 13 × Lecture C++, CMake, OpenGL/GLSL, Qt, code riddles and assessments
- Individual Tasks (2 3 × each) Contribution to a collaborative open source project: CGSee
- 7 × Hands-On Programming sessions with everyone: working on individual task, joint inspection of and feedback for ideas and results.
- Short Talks (3 + 2 min)
 Consecutive short presentations of CGSee contributions.

- 13 × Lecture C++, CMake, OpenGL/GLSL, Qt, code riddles and assessments
- Individual Tasks (2 3 × each) Contribution to a collaborative open source project: *CGSee*
- 7 × Hands-On
 Programming sessions with everyone:
 working on individual task, joint inspection of and feedback for ideas and results
- Short Talks (3 + 2 min)
 Consecutive short presentations of CGSee contributions.

- 13 × Lecture C++, CMake, OpenGL/GLSL, Qt, code riddles and assessments
- Individual Tasks (2 3 × each) Contribution to a collaborative open source project: *CGSee*
- 7 × Hands-On

Programming sessions with everyone: working on individual task, joint inspection of and feedback for ideas and results.

Short Talks (3 + 2 min)
 Consecutive short presentations of CGSee contributions.

Seminar Content

	04/10	Introduction, project and process, issues	05/29	$Qt_{-}1$		
		for individual tasks Initial tasks assignment , source introduction, and project planning	05/31	Review & hands-On		
	04/17		06/05	OpenGL_2 CPP_3		
			06/12			
	04/19	Review & hands-on C++-1	06/14	Review & hands-On		
	0.4/0.4		06/19	OpenGL_3		
	'		06/26	/26 C++_4		
	05/01	nullptr	06/28	Review & hands-On		
05/03		Review & hands-on	<i>'</i>	C++_5		
	05/08	/08 OpenGL_1				
	05/15	C++_2 Review & hands-on	07/10	Buffer zone, discussion, feedback CGSee evaluation, status review, fu-		
	05/17		· .			
	05/22	Cross-Platform	07/12	ture work, feedback		

Content References (Books)

About the Teachers

Daniel Limberger

Amir Semmo

Collaborative Open Source Project

CGSee Working Title

Free open source viewer for computer graphics related data, intended to become a Deep Exploration replacement.

■ Rendering, navigation, and conversion of 3D geometry

- 3D Geometry is exchanged and used in various areas of CG.
 Movies, games, logos, CAD, evaluation of rendering techniques
- 3D file format hell
- 3D meshes vs. 3D scenes
- image based and procedural matarials
- animation and dynamics

- Rendering, navigation, and conversion of 3D geometry
- 3D Geometry is exchanged and used in various areas of CG.
 Movies, games, logos, CAD, evaluation of rendering techniques
- 3D file format hell
- 3D meshes vs. 3D scenes
- image based and procedural matarials
- animation and dynamics

- Rendering, navigation, and conversion of 3D geometry
- 3D Geometry is exchanged and used in various areas of CG.
 Movies, games, logos, CAD, evaluation of rendering techniques
- 3D file format hell
- 3D meshes vs. 3D scenes
- image based and procedural matarials
- animation and dynamics

File Format	Туре	Extension	File Format	Туре	Extension
Windows Cursor File	Image	CUR	OpenFlight Scene Description Database	Scene	FLT
Windows Icon File	Image	ICO	OpenGL CPP Code	Scene	CPP
Windows Run Length Encoding Bitmap	Image	RLE	Points File	Scene	PTS
Autodesk 3D Studio	Scene	3DS	Polygon Model Format	Scene	PLY
Autodesk 3D Studio ASCII	Scene	ASC	Portable Graymap Graphics File	Scene	PGM
Autodesk 3D Studio Max ASCII	Scene	ASE	POV-Ray RAW Triangle Format	Scene	RAW
Autodesk 3D Studio Project	Scene	PRJ	Power Render Object	Scene	PRO
AOFF File Format	Scene	GEO	Protein Data Bank	Scene	PDB
Caligari trueSpace Object	Scene	СОВ	Quake Character Model I	Scene	MDL
Caligari trueSpace Scene	Scene	SCN	Quake Character Model II	Scene	MD2
CINEMA 4D	Scene	C4D	Quake Character Model III	Scene	MD3
DirectX Model	Scene	X	Quake Map	Scene	MAP
HTML Document with 3D		HTML	Quicktime 3D Metafile	Scene	3DM,3DMF
magine Geometry	Scene	IOB	RAX Extended RAWTriangles	Scene	RAX
SO G Code	Scene	ISO, NC	Rhinoceros 3D Model	Scene	3DM
ightWave 3D and Binary Object	Scene	LWO, LW	Right Hemisphere Binary	Scene	RH
ightWave Scene	Scene	LWS	ShockwaveWeb Page	Scene	HTML
Max File	Scene	MAX	SketchUp Document	Scene	SKP
Maya ASCII Scene	Scene	MA	Universal 3D	Scene	U3D
Maya Binary Scene	Scene	MB	VRMLWorlds	Scene	WRL,VRML
Vendo	Scene	NDO	Wavefront Object	Scene	OBJ
Object File Format Vector Graphics	Scene	OFF	OpenFlight Scene Description Database	Scene	FLT
Open Inventor File	Scene	IV	OpenGL CPP Code	Scene	CPP

Deep Exploration - RIP

Right Hemisphere got aquired by SAP in 2011.

(Their products are now used for SAP Visual Enterprise)

Project Alternatives

Alternatives: 3D-Tool; Quick3D; Solid; Solid Works; Solid Edge Viewer; Rotor 3D Viewer; ...;

There are currently no similarly good alternatives: Either only CAD oriented, not free, few formats, bad export, bad navigation, old code base, bad UI, etc., ...

Collaborative Open Source Project

Requirements for CGSee:

- clean and minimal ui
- common formats for import and export
- basic manipulation capabilites (e.g., mirroring, geometry fixes, etc.)
- efficient and beautiful rendering
- exploration tools (e.g., filtering, navigation, scene structure)
- measurements
- · ...

Inspiration

Third Parties, Resources, and Process

Revisioning with git git-scm.com

Hosted on github (public) github.com/cgcostume/cgsee

Style Guide by google code.google.com/p/google-styleguide

Project Setup with CMake www.cmake.org

UI and Rendering with Qt5 and GLEW qt-project.org & glew.sourceforge.net

PARTICIPATION

Your Participation

Select/Propose at least two tasks. One in C++, the other in rendering with OpenGL.

For each task You

- **propose** a solution for discussion (during review in hands-on).
- **Implement** the (probably refined) solution (2 to 4 weeks).
- **I** present your implementation (3 + 2 min).
- pair programming if sufficient number of participants... (group making)

About Grading

$\frac{1}{4}$ task **presentations** and $\frac{3}{4}$ task **implementations**

Actually it's $\frac{2}{8} + \frac{5}{8}$... with an added $\frac{1}{8}$ for valuable participation.

More Inspiration

Data Import and Export

- Image and 3D Formats
- Scene Graph and Matrices Provisioning
- Materials: Diffuse, Bump, Ambient

2 Efficient Scene Rendering

- View Frustum Culling
- Scene Graph Traversal / State Sorting
- Vertex Cache Optimization

Image Based Rendering

- Render To Texture. Antialiasing
- Provisioning of Common G-Buffers
- Shadows, Grid, Environments, Ground Plane
- Lighting, SSAO, Spherical Harmonics
- NPR/Stylization: Blue Print, Pencil

4 Interaction and Analysis

- Navigations: Trackball, Flight, Walk
- Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
- Scene Graph and additional Information Display and Search
- Viewport Management and Transitions
- View Cube
- Measuring and Labeling: Angles, Distances, Ruler, Labels. Volumes

5 Manipulation and Creation

- Picking, Hovering, and Highlighting
- Selecting, Filtering, Editing (Gizmos)
- Geometry Fixes: Duplicate Vertices
- Camera Path Editor

Data Import and Export

- Image and 3D Formats
- Scene Graph and Matrices Provisioning
- Materials: Diffuse, Bump, Ambient

2 Efficient Scene Rendering

- View Frustum Culling
- Scene Graph Traversal / State Sorting
- Vertex Cache Optimization

3 Image Based Rendering

- Render To Texture. Antialiasing
- Provisioning of Common G-Buffers
- Shadows, Grid, Environments, Ground Plane
- Lighting, SSAO, Spherical Harmonics
- NPR/Stylization: Blue Print, Pencil

4 Interaction and Analysis

- Navigations: Trackball, Flight, Walk
- Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
- Scene Graph and additional Information Display and Search
- Viewport Management and Transitions
- View Cube
- Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes

Manipulation and Creation

- Picking, Hovering, and Highlighting
- Selecting, Filtering, Editing (Gizmos)
- Geometry Fixes: Duplicate Vertices
- Camera Path Editor

- Data Import and Export
 - Image and 3D Formats
 - Scene Graph and Matrices Provisioning
 - Materials: Diffuse, Bump, Ambient
- Efficient Scene Rendering
 - View Frustum Culling
 - Scene Graph Traversal / State Sorting
 - Vertex Cache Optimization
- 3 Image Based Rendering
 - Render To Texture. Antialiasing
 - Provisioning of Common G-Buffers
 - Shadows, Grid, Environments, Ground Plane
 - Lighting, SSAO, Spherical Harmonics
 - NPR/Stylization: Blue Print, Pencil

- 4 Interaction and Analysis
 - Navigations: Trackball, Flight, Walk
 - Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
 - Scene Graph and additional Information Display and Search
 - Viewport Management and Transitions
 - View Cube
 - Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes
- Manipulation and Creation
 - Picking, Hovering, and Highlighting
 - Selecting, Filtering, Editing (Gizmos)
 - Geometry Fixes: Duplicate Vertices
 - Camera Path Editor

Data Import and Export

- Image and 3D Formats
- Scene Graph and Matrices Provisioning
- Materials: Diffuse, Bump, Ambient

Efficient Scene Rendering

- View Frustum Culling
- Scene Graph Traversal / State Sorting
- Vertex Cache Optimization

3 Image Based Rendering

- Render To Texture, Antialiasing
- Provisioning of Common G-Buffers
- Shadows, Grid, Environments, Ground Plane
- Lighting, SSAO, Spherical Harmonics
- NPR/Stylization: Blue Print, Pencil

4 Interaction and Analysis

- Navigations: Trackball, Flight, Walk
- Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
- Scene Graph and additional Information Display and Search
- Viewport Management and Transitions
- View Cube
- Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes

5 Manipulation and Creation

- Picking, Hovering, and Highlighting
- Selecting, Filtering, Editing (Gizmos)
- Geometry Fixes: Duplicate Vertices
- Camera Path Editor

- Data Import and Export
 - Image and 3D Formats
 - Scene Graph and Matrices Provisioning
 - Materials: Diffuse, Bump, Ambient
- Efficient Scene Rendering
 - View Frustum Culling
 - Scene Graph Traversal / State Sorting
 - Vertex Cache Optimization
- 3 Image Based Rendering
 - Render To Texture, Antialiasing
 - Provisioning of Common G-Buffers
 - Shadows, Grid, Environments, Ground Plane
 - Lighting, SSAO, Spherical Harmonics
 - NPR/Stylization: Blue Print, Pencil

- 4 Interaction and Analysis
 - Navigations: Trackball, Flight, Walk
 - Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
 - Scene Graph and additional Information Display and Search
 - Viewport Management and Transitions
 - View Cube
 - Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes
- Manipulation and Creation
 - Picking, Hovering, and Highlighting
 - Selecting, Filtering, Editing (Gizmos)
 - Geometry Fixes: Duplicate Vertices
 - Camera Path Editor

- Data Import and Export
 - Image and 3D Formats
 - Scene Graph and Matrices Provisioning
 - Materials: Diffuse, Bump, Ambient
- Efficient Scene Rendering
 - View Frustum Culling
 - Scene Graph Traversal / State Sorting
 - Vertex Cache Optimization
- 3 Image Based Rendering
 - Render To Texture, Antialiasing
 - Provisioning of Common G-Buffers
 - Shadows, Grid, Environments, Ground Plane
 - Lighting, SSAO, Spherical Harmonics
 - NPR/Stylization: Blue Print, Pencil

4 Interaction and Analysis

- Navigations: Trackball, Flight, Walk
- Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
- Scene Graph and additional Information Display and Search
- Viewport Management and Transitions
- View Cube
- Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes

5 Manipulation and Creation

- Picking, Hovering, and Highlighting
- Selecting, Filtering, Editing (Gizmos)
- Geometry Fixes: Duplicate Vertices
- Camera Path Editor

- Data Import and Export
 - Image and 3D Formats
 - Scene Graph and Matrices Provisioning
 - Materials: Diffuse, Bump, Ambient
- Efficient Scene Rendering
 - View Frustum Culling
 - Scene Graph Traversal / State Sorting
 - Vertex Cache Optimization
- 3 Image Based Rendering
 - Render To Texture, Antialiasing
 - Provisioning of Common G-Buffers
 - Shadows, Grid, Environments, Ground Plane
 - Lighting, SSAO, Spherical Harmonics
 - NPR/Stylization: Blue Print, Pencil

- 4 Interaction and Analysis
 - Navigations: Trackball, Flight, Walk
 - Bounding Boxes, Dimensions, Cross Sections, Explosion, Coloring
 - Scene Graph and additional Information Display and Search
 - Viewport Management and Transitions
 - View Cube
 - Measuring and Labeling: Angles, Distances, Ruler, Labels, Volumes
- 5 Manipulation and Creation
 - Picking, Hovering, and Highlighting
 - Selecting, Filtering, Editing (Gizmos)
 - Geometry Fixes: Duplicate Vertices
 - Camera Path Editor

Getting Started on File Formats

3D Geometry File Formats:

- 3DS MAX (.3ds and .max)
- Autodesk (.fbx)
- Auto CAD (.dwg, .dxf)
- Alias WavefrontTM (.obj)
- Blender (.blend)
- Cinema 4D (.c4d)
- Collada (.dae)
- DirectX (.x)
- Lightwave (.lwo and .lws)
- OpenCTM (.ctm)
- QuakeTM (.mdl .md2 and .md3)
- SketchUp (.skp)
- Stanford Polygon PLY (.ply)
- Extensible 3D (.x3d)

2D Image File Formats:

- Windows Bitmap (.bmp)
- JPEG (.jpg)
- Portable RGB (.ppm)
- RAW (.raw)
- TARGA (.tga)
- PNG (.png)
- TIFF (.tiff)
- DXTC (.dds)

Coming Next

- CGSee version control with Git.
- Building CGSee with CMake on gcc/msvc.
- CGSee source code introduction.
- Feature planning and issue assignment.
- Issue tracking in github.

Image Rights

- Teaser 'House' by iStockphoto.com/Martin Fischer
- Teaser 'Tepaot' by Hay Kranen / CC-BY
- Teaser 'Firefly' by Alex Kung http://www.seansgallery.com/gallery/3dgraphics/serwip24.jpg
- OpenGL Guys from OpenGL Quick Reference Card http://www.khronos.org/files/opengl43-quick-reference-card.pdf
- Cake from Valve's game Portal
- Stanford Bunny in Mock by Jean-Christophe Naour (flickr)
- Solidworks Bounding Box from http://cadcamstuff.com/
- Boat by Toby Lewin at http://www.tobylewin.com
- WTFs/Minute by Tom Holwerda at http://www.osnews.com/comics
- Others by Timothy J. Reynolds