Class Test No. 1	3 Thursday 10 th Oct 2019	Duration: 10 Minutes	Closed notes
Name:		Roll No	
Choose	only one option which is the	most appropriate for questio	ons 1 - 5.
	of the standard 2 nd order close	ed loop transfer function, the	largest frequency
among these is,			
* *	nt frequency		
(b) bandwi			
	ossover frequency		
(d) phase (crossover frequency		
2. Bandwidth of a	a closed loop system for $\zeta = 1/2$	√2 is	
(a) 0			
<u>(b) ω_n</u>			
(c) $(1/\sqrt{2})$	ω_{h}		
$(d) (\sqrt{2}) \omega$	h		
3. Resonant peak	for a standard 2 nd order close	d loop transfer function is uni	ty for
(a) $\zeta = 1$		1 0 0	
$(b) \ddot{\zeta} = 1/\gamma$	/2		
$(c) \sqrt{2}$			
(d) no valu	ie of ζ		
4. Phase angle of	the closed loop response for <u>b</u>	$r = 1/\sqrt{2}$ is	
(a) -90°	the closed toop response you	, 1, ,2 ,5	
(b) $\pm 180^{\circ}$			
$(c) 0^{o}$			
$(d) +90^{\circ}$			
5. The expression	for resonant peak in terms of	f damping ratio, '\$\mathcal{C}\$ is	
(a) $2\zeta/\sqrt{1-\zeta}$		1 3 / 3	
(b) $1/\{2\zeta\sqrt{1}\}$			
(c) $\pi \zeta / \sqrt{(1 - \zeta)^2}$	-(²)		
(d) $\sqrt{(1-\zeta^2)}$			
. , , , ,			
Give short (1 - 2	lines) answer to the questions	s 6-10	
6. Give the definit	tion of cut-off frequency.		
		and which output amplitude is	less than 70% of
the input a	impiliade.		2 (PTO)

7. Give the expression for resonant frequency, for a standard 2^{nd} order closed loop frequency response function as given alongside.

$$G(j\omega) = \frac{\omega_n^2}{-\omega^2 + j2\zeta\omega_n\omega + \omega_n^2}$$

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

8. What is the physical connotation of closed loop bandwidth?

Closed loop bandwidth indicates al those frequencies which will be tracked by the system if these are present in the input.

9. In what way is the resonant peak a physical feature of the closed loop system?

Resonant peak denotes the response amplitude to a sinusoidal input at the resonant frequency and has a strong influence on the peak overshoot in time domain.

10. A 2nd order type 1 plant shows a GCO of 1.84 rad/s. Predict the approximate bandwidth of the corresponding unity feedback closed loop system.

$$\omega_b = \omega_{GCO} + \frac{3}{|Slope|} \times 10 = 1.84 + \frac{3}{40} \times 10 = 2.59$$