

Landcover Change Analysis and Hazard Level of Dams in the Blackstone River Watershed

Adeline Akansobe & Claudia Buszta

Study Area:

Blackstone River Watershed

- Spans Massachusetts & Rhode
 Island
- Runs to Narragansett Bay

Background

- Addressing connectivity concerns
 - -Blackstone Watershed Collaborative (BWC)
 - -NAACC
- Dams
 - -out of commission
 - -in need of repair
 - -could be improved for wildlife

Research Questions

- Has land cover around dams in the Blackstone Watershed changed over time?
 - Is development encroaching on dams, or is it the other way around?
- Is this related at all to hazard level?
 - Are dams of high or low risk more likely to be experiencing land cover change?

Our Data

Name	Туре	Year	Source	Description
Surveyed Dams and Culverts of the Blackstone Watershed	Point shapefile	2022	BWC, NAACC	Provided by Stefanie Covino, project manager at the Marsh Institute
Massachusetts and Rhode Island Land Cover	Polygon shapefile	2019, 2004	NLCD	Complete coverage of both states of polygon landcovers
Watershed Boundaries	Polygon shapefile	2019	MassGIS	Complete watershed boundaries

Methodology

Preprocess Data

Clean

Clip LC to Boundary

Select only dams for analysis Classification

Summarize
each LC year
based on
categorizations

Reclassify LC tables

Separate dams into 3 tables based on hazard level

Intersection

ST_INTERSECT

Classification ID for 2 years added to dams

Classes joined to LC tables

Analysis

Summarize dam statistics

COUNT

GROUP BY

Compare LC changes

Summary Stats

- 46 'High' Risk Dams
- 78 'Significant' (Moderate) Dams
- 33 'Low' Risk Dams
- 159 'Not Available' Risk Dams

Landco Reclassifi		Total km ²		
Туре	Value	2004	2019	
Developed Land	1	350,081.80	385,010.51	
Pasture/Crops	2	39,031.45	36,270.62	
Forest	3	658,332.54	622,921.68	
Open Water	4	36,398.68	36,913.20	
Other	5	144,404.64	147,009.43	

2004 to 2019 Landcover Change

Summary Stats for High-Risk Dams

2004 landcover types of high risk dam intersection				
Туре	Count			
Developed Land	17			
Pasture/Crops	2			
Forest	7			
Open Water	9			
Other	11			

Impacts and Next Steps

- Pull landcover codes based on where the dams are located
 - > ST_INTERSECTS()
- Compare landcover change from 2004 to 2019
 - COUNT() number of dams with change
- Summarize results, visualize
 - Where are dams that have gone from forested to developed?
 - Where are dams that have gone from developed to forested?

Thank you!

Questions?