

## **GBI Tutorium Nr. 41**

Foliensatz 01

Vincent Hahn - vincent.hahn@student.kit.edu | 25. Oktober 2012



# **Outline/Gliederung**



Vincent Hahn - vincent.hahn@student.kit.edu

Relationen und Abbildungen

Allgemeines

4 Allgemeines

Aussagenlogik

2 Aussagenlogik

Kartesisches Produkt

Relationen und Abbildungen

Totalität

Kartesisches Produkt

Eindeutigkeit

Totalität

Funktionen

Eindeutigkeit

Mengenlehre

Funktionen

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

## Allgemeines

Aussagenlogik

Allgemeines

Relationen und Abbildungen

Kartesisches Produkt

2 Aussagenlogik

Relationen und Abbildunger

Totalität

Eindeutigkeit

Funktionen

4 Mengenlehre

# Kontaktmöglichkeiten



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Mail: vincent.hahn@student.kit.edu
- Web: http://www.stud.uni-karlsruhe.de/~uddgw/

# Kontaktmöglichkeiten



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

- Mail: vincent.hahn@student.kit.edu
- Web: http://www.stud.uni-karlsruhe.de/~uddgw/

# **Termine**



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Übungsblattabgabe: spätestens Freitag, 12:30, Briefkasten im UG. Mit Deckblatt.
- Übung: Fr, 9:45, Audimax
- Vorlesung: Mi, 11:30 Uhr, Audimax
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

## **Termine**



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Übungsblattabgabe: spätestens Freitag, 12:30, Briefkasten im UG. Mit Deckblatt.
- Übung: Fr, 9:45, Audimax
- Vorlesung: Mi, 11:30 Uhr, Audimax
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

## **Termine**



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Übungsblattabgabe: spätestens Freitag, 12:30, Briefkasten im UG. Mit Deckblatt.
- Übung: Fr, 9:45, Audimax
- Vorlesung: Mi, 11:30 Uhr, Audimax
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

# Übungsblatter



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

Die Übungsbläter müssen...

- handbeschrieben sein,
- mit Deckblatt abgeben werden und
- selbst bearbeiten sein.

Für den Übungsschein reichen 50 % der Punkte der Blätter.

# Weitere Links



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

# Vorlesung

- Website: http://gbi.ira.uka.de
- Dozentin: tanja.schultz@kit.edu

# Weitere Links



Vincent Hahn - vincent.hahn@student.kit.edu

#### Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

# Vorlesung

- Website: http://gbi.ira.uka.de
- Dozentin: tanja.schultz@kit.edu

#### **Fachschaft**

- Website: http://www.fsmi.uni-karlsruhe.de/
- Forum: http://www.fsmi.uni-karlsruhe.de/forum/

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Allgemeines

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

Aussagenlogik

Mengenlehre

## **Junktoren**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Ein Junktor ist eine logische Verknüpfung zwischen Aussagen innerhalb der Aussagenlogik, also ein logischer Operator. (Aus Wikipedia)

## Beispiele

- Logisches "Oder" ∨
  - Logisches "Und" ∧
- . . . .

## **Junktoren**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Ein Junktor ist eine logische Verknüpfung zwischen Aussagen innerhalb der Aussagenlogik, also ein logischer Operator. (Aus Wikipedia)

# Beispiele

- Logisches "Oder" ∨
- Logisches "Und" ∧

# Logisches Und ("Konjunktion")



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

Tabelle: Wahrheitswerte für  $\wedge$ 

| Α | В | $A \wedge B$ |
|---|---|--------------|
| f | f | f            |
| f | W | f            |
| W | f | f            |
| W | W | W            |

# Logisches Oder "Disjunktion"



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Tabelle: Wahrheitswerte für ∨

| Α | В | $A \lor B$ |
|---|---|------------|
| f | f | f          |
| f | W | W          |
| W | f | W          |
| W | W | W          |

# **Negation**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

Tabelle: Wahrheitswerte für  $\neg$ 

| Α | $\neg A$ |
|---|----------|
| f | W        |
| W | f        |

# **Implikation**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Tabelle: Wahrheitswerte für ightarrow

| В | $A \rightarrow B$ |
|---|-------------------|
| f | W                 |
| W | W                 |
| f | f                 |
| W | W                 |
|   | f<br>w<br>f       |

## Alternative Schreibeweise

Finde eine Schreibweise, die nur aus ∨ und ¬ besteht!

# **Implikation**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Tabelle: Wahrheitswerte für ightarrow

|   | $A \rightarrow B$ |
|---|-------------------|
| f | W                 |
| W | W                 |
| f | f                 |
| W | W                 |
|   | w<br>f            |

## Alternative Schreibeweise

Finde eine Schreibweise, die nur aus  $\vee$  und  $\neg$  besteht!

# **Implikation**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Tabelle: Wahrheitswerte für ightarrow

| В | $A \rightarrow B$ |
|---|-------------------|
| f | w                 |
| W | W                 |
| f | f                 |
| W | W                 |
|   | f<br>w<br>f       |

## Alternative Schreibeweise

Finde eine Schreibweise, die nur aus ∨ und ¬ besteht!

$$\textit{A} \rightarrow \textit{B} \Leftrightarrow \neg \textit{A} \vee \textit{B}$$

# Klausuraufgabe



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

#### Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

# Sommer 2010, Aufgabe 2 2 von 46 Punkten

Zeigen Sie (etwa mit Wahrheitstabellen), dass die Formeln äquivalent sind:

$$(((B \Rightarrow A) \lor B) \Rightarrow (\neg A)) \land B$$

$$\neg A \wedge B$$

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

1 Allgemeines

Aussagenlogik

2 Aussagenlogik

#### Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- 3 Relationen und Abbildungen
  - Kartesisches Produkt
  - Totalität
  - Eindeutigkeit
  - Funktionen
- 4 Mengenlehre

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

1 Allgemeines

Aussagenlogik

2 Aussagenlogik

Kartesisches Produkt

Relationen und Abbildungen

Relationen und Abbildungen

Totalität

Kartesisches Produkt

Eindeutigkeit

Totalität

Funktionen

Eindeutigkeit

Funktionen

Mengenlehre

# **Kartesisches Produkt**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

#### Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition Kartesisches Produkt

Das Kartesisches Produkt  $A \times B$  enthällt alle Kombinationen (a,b) mit  $a \in A$  und  $b \in B$ .

# Beispiel: Kleiner-Gleich-Menge

Die Menge M sei  $M = \{1, 2, 3\}$ .

Welche Elemente sind in in der Teilmenge  $R \subseteq M \times M$ ?

Schreibweise:  $R_{\leq} = \{(a, b) | a \leq b\}$ 

# **Kartesisches Produkt**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## **Definition Kartesisches Produkt**

Das Kartesisches Produkt  $A \times B$  enthällt alle Kombinationen (a,b) mit  $a \in A$  und  $b \in B$ .

# Beispiel: Kleiner-Gleich-Menge

Die Menge M sei  $M = \{1, 2, 3\}$ .

Welche Elemente sind in in der Teilmenge  $R \subseteq M \times M$ ?

Schreibweise:  $R \le \{(a, b) | a \le b\}$ 

# **Kartesisches Produkt**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition Kartesisches Produkt

Das Kartesisches Produkt  $A \times B$  enthällt alle Kombinationen (a,b) mit  $a \in A$  und  $b \in B$ .

# Beispiel: Kleiner-Gleich-Menge

Die Menge M sei  $M = \{1, 2, 3\}$ .

Welche Elemente sind in in der Teilmenge  $R \subseteq M \times M$ ?

Schreibweise:  $R_{\leq} = \{(a, b) | a \leq b\}$ 

 $R_{\leq} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ 

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

1 Allgemeines

Aussagenlogik

2 Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

3 Relationen und Abbildungen

Totalität

Totalität

Eindeutigkeit

Eindeutigkeit

Kartesisches Produkt

Funktionen

Funktionen

Mengenlehre

# Totalität



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Definition

Eine Relation  $R \subseteq A \times B$  heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

$$f(x) = x^2$$

## Totalität



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Definition

Eine Relation  $R \subseteq A \times B$  heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

# Beispiel

Welche Eigenschaft hat diese Funktion, wenn  $x \in \mathbb{R}$  und  $f(x) \in \mathbb{R}$ ?

$$f(x) = x^2$$

## Totalität



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Definition

Eine Relation  $R \subseteq A \times B$  heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

# Beispiel

Welche Eigenschaft hat diese Funktion, wenn  $x \in \mathbb{R}$  und  $f(x) \in \mathbb{R}$ ?

$$f(x)=x^2$$

Linkstotal.

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

1 Allgemeines

Aussagenlogik

2 Aussagenlogik

Relationen und Abbildungen
Kartesisches Produkt

Relationen und Abbildungen

Totalität

Kartesisches Produkt

Eindeutigkeit

Totalität

Funktionen

Eindeutigkeit

Funktionen

Mengenlehre

# **Eindeutigkeit**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Eine Relation  $R \subseteq A \times B$  heißt linkseindeutig, wenn einem Element der Bildmenge *B* höchstens ein Element der Urbildmenge *A* zugeordnet ist. Eine Relation  $R \subseteq A \times B$  heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

# **Eindeutigkeit**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Eine Relation  $R \subseteq A \times B$  heißt linkseindeutig, wenn einem Element der Bildmenge *B* höchstens ein Element der Urbildmenge *A* zugeordnet ist. Eine Relation  $R \subseteq A \times B$  heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

## Beispiel

Welche Eigenschaft hat die Funktion  $f(x) = x^2$  (Wertebereiche wie oben)?

# Eindeutigkeit



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Eine Relation  $R\subseteq A\times B$  heißt linkseindeutig, wenn einem Element der Bildmenge B höchstens ein Element der Urbildmenge A zugeordnet ist. Eine Relation  $R\subseteq A\times B$  heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

## Beispiel

Welche Eigenschaft hat die Funktion  $f(x) = x^2$  (Wertebereiche wie oben)? Rechtseindeutig.

# Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

1 Allgemeines

Aussagenlogik

2 Aussagenlogik

Kartesisches Produkt

Relationen und Abbildungen

Relationen und Abbildungen

Totalität

Kartesisches Produkt

Eindeutigkeit

Totalität

Funktionen

Eindeutigkeit

Manganlah

Funktionen

Mengenlehre

# **Funktionen**



 $Vincent\ Hahn-vincent.hahn@student.kit.edu$ 

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

## Definition

Eine Relation  $R \subseteq A \times B$  heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

# Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei  $x \in \mathbb{R}$  und  $f(x) \in \mathbb{R}$  (also keine komplexen Zahlen).

| rechtstotal | linkseindeutig | Bezeichnung | Beispiel                    |
|-------------|----------------|-------------|-----------------------------|
|             |                |             | $f(x) = x^2$ $f(x) = e^x$   |
|             |                |             | $f(x) = x^3 - x$ $f(x) = x$ |

### **Funktionen**



 $Vincent\ Hahn-vincent.hahn@student.kit.edu$ 

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Definition

Eine Relation  $R \subseteq A \times B$  heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

### Eigenschaften einer Funktion

| rechtstotal | linkseindeutig | Bezeichnung | Beispiel                                                    |
|-------------|----------------|-------------|-------------------------------------------------------------|
| 0           | 0              | -           | $f(x) = x^{2}$ $f(x) = e^{x}$ $f(x) = x^{3} - x$ $f(x) = x$ |

### **Funktionen**



 $Vincent\ Hahn-vincent.hahn@student.kit.edu$ 

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Definition

Eine Relation  $R \subseteq A \times B$  heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

### Eigenschaften einer Funktion

| rechtstotal | linkseindeutig | Bezeichnung | Beispiel     |
|-------------|----------------|-------------|--------------|
| 0           | 0              | -           | $f(x)=x^2$   |
| 0           | 1              | injektiv    | $f(x) = e^x$ |
|             |                |             | $f(x)=x^3-x$ |
|             |                |             | f(x) = x     |

### **Funktionen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### **Definition**

Eine Relation  $R \subseteq A \times B$  heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

### Eigenschaften einer Funktion

| rechtstotal | linkseindeutig | Bezeichnung | Beispiel         |
|-------------|----------------|-------------|------------------|
| 0           | 0              | -           | $f(x) = x^2$     |
| 0           | 1              | injektiv    | $f(x) = e^x$     |
| 1           | 0              | surjektiv   | $f(x) = x^3 - x$ |
|             |                |             | f(x)=x           |

### **Funktionen**



 $Vincent\ Hahn-vincent.hahn@student.kit.edu$ 

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### **Definition**

Eine Relation  $R \subseteq A \times B$  heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

### Eigenschaften einer Funktion

| rechtstotal | linkseindeutig | Bezeichnung | Beispiel         |
|-------------|----------------|-------------|------------------|
| 0           | 0              | -           | $f(x) = x^2$     |
| 0           | 1              | injektiv    | $f(x) = e^x$     |
| 1           | 0              | surjektiv   | $f(x) = x^3 - x$ |
| 1           | 1              | bijektiv    | f(x) = x         |

# Graphen



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen





### **Funktionen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Vorsicht

Unbedingt den Definitionsbereich einer Funktion beachten. Die Normalparabel ist im Bereich der komplexen Zahlen surjektiv!

25/33

# Übungsaufgabe



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Winter 2010/2011, Aufgabe 1.2

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu:  $f:A\to B$ 

- Was bedeutet es im Kino, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist?
- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Besitzer?
- In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?

### Überblick



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

1 Allgemeines

Relationen und Abbildungen

Kartesisches Produkt

2 Aussagenlogik

Totalität

Relationen und Abbildunger

Eindeutigkeit

4 Mengenlehre

Funktionen

## Mengenlehre



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

### **Definition Menge**

Eine Menge ist eine beliebig große Ansammlung an Elementen ⇒ es existieren Mengen ohne, endlich vielen und unendlich vielen Elementen.

### Schreibweiße von Mengen

Sei M eine Menge bestehend aus den Elementen 0, 1, 2, dann schreiben wir:

$$M = \{0, 1, 2\}$$

Außerdem gilt:  $0, 1, 2 \in M$ 

28/33

### Besonderheiten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

Die Reihenfolge der Elemente in einer Menge ist egal.

Da 
$$x, y \in \{x, y\}$$
 aber auch  $x, y \in \{y, x\}$   
 $\Rightarrow \{x, y\} = \{y, x\}$ 

$$\Rightarrow \{a,b,b,3\} = \{a,b,3\}$$

### Besonderheiten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

■ Die Reihenfolge der Elemente in einer Menge ist egal.

Da 
$$x, y \in \{x, y\}$$
 aber auch  $x, y \in \{y, x\}$   
 $\Rightarrow \{x, y\} = \{y, x\}$ 

Mehrfaches Vorkommen von Elementen ist auch egal.

$$\Rightarrow \{a,b,b,3\} = \{a,b,3\}$$

## **Besondere Mengen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Die Leere Menge:  $\emptyset = \{\}$
- Die Naturlichen Zahlen ohne 0:  $\mathbb{N}_+ = \{1, 2, 3, ...$
- Die Natürlichen Zahlen mit 0:  $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1:  $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

## **Besondere Mengen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Die Leere Menge:  $\emptyset = \{\}$
- $\blacksquare$  Die Natürlichen Zahlen ohne 0:  $\mathbb{N}_+ = \{1,2,3,...\}$
- Die Natürlichen Zahlen mit 0:  $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1:  $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

# **Besondere Mengen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Die Leere Menge:  $\emptyset = \{\}$
- Die Natürlichen Zahlen ohne 0:  $\mathbb{N}_+ = \{1, 2, 3, ...\}$
- Die Natürlichen Zahlen mit 0:  $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- Ganze Zahlen von 0 bis n-1:  $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

## **Besondere Mengen**



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

- Die Leere Menge:  $\emptyset = \{\}$
- $\blacksquare$  Die Natürlichen Zahlen ohne 0:  $\mathbb{N}_+ = \{1,2,3,...\}$
- $\blacksquare$  Die Natürlichen Zahlen mit 0:  $\mathbb{N}_0 = \{0,1,2,3,...\}$
- Ganze Zahlen von 0 bis n-1:  $\mathbb{G}_n = \{0, 1, 2, ..., n-1\}$

# Mengenoperationen



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

#### Vereinigung von Mengen ∪

Sei  $A = \{0, 1, 2\}$  und  $B = \{a, b, c\}$ 

Dann ist die Vereinigung der Mengen A und B:

 $A \cup B = \{0,1,2\} \cup \{a,b,c\} = \{0,1,2,a,b,c\}$ 

Alle Elemente aus A und B liegen somit in  $A \cup B$ 

### Durchschnitt von Mengen ∩

Sei  $A = \{0, 1, 2\}$  und  $B = \{1, 2, 3, 4, a\}$ 

Dann ist der Durchschnitt der Mengen A und B

 $A \cap B = \{0, 1, 2\} \cap \{1, 2, 3, 4, a\} = \{1, 2, 3, 4, a\}$ 

Im Durchschnitt liegen somit nur Elemente, die sowohl in A und in B liegen.

## Mengenoperationen



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

### Vereinigung von Mengen ∪

Sei  $A = \{0, 1, 2\}$  und  $B = \{a, b, c\}$ 

Dann ist die Vereinigung der Mengen A und B:

 $A \cup B = \{0, 1, 2\} \cup \{a, b, c\} = \{0, 1, 2, a, b, c\}$ 

Alle Elemente aus A und B liegen somit in  $A \cup B$ 

### Durchschnitt von Mengen ∩

Sei  $A = \{0, 1, 2\}$  und  $B = \{1, 2, 3, 4, a\}$ 

Dann ist der Durchschnitt der Mengen A und B:

 $A \cap B = \{0, 1, 2\} \cap \{1, 2, 3, 4, a\} = \{1, 2\}$ 

Im Durchschnitt liegen somit nur Elemente, die sowohl in A und in B liegen.

## Aufgabenteil 1



Vincent Hahn - vincent.hahn@student.kit.edu

Gegeben seien die Mengen A, B, C und D, mit:

Aussagenlogik

Allgemeines

 $A = \{1, 3, 5, 9\}$  $B = \{1, 2, 4, 8\}$ 

Relationen und Abbildungen

 $C = \{x, d, 1, 2, 3, 4, 9\}$ 

Kartesisches Produkt

 $D = \{a, c, d, x\}$ 

Totalität

Eindeutigkeit

Die Menge *M* sei definiert durch:

Funktionen

 $M = ((D \cap C) \cup ((C \cap B) \cup (A \cap C))) \setminus (A \cap B)$ Mengenlehre

Welche Elemente enthält die Menge M?

Antwort:

## Aufgabenteil 1



Vincent Hahn - vincent.hahn@student.kit.edu

Gegeben seien die Mengen A, B, C und D, mit:

Aussagenlogik

Allgemeines

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

Mengenlehre

 $A = \{1,3,5,9\}$   $B = \{1,2,4,8\}$   $C = \{x,d,1,2,3,4,9\}$   $D = \{a,c,d,x\}$ 

Die Menge *M* sei definiert durch:

$$M = ((D \cap C) \cup ((C \cap B) \cup (A \cap C))) \setminus (A \cap B)$$

Welche Elemente enthält die Menge M?

Antwort:  $M = \{d, x, 2, 3, 4, 9\}$ 

# Mengenraten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen



# Mengenraten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen



## Mengenraten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen



## Mengenraten



Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Relationen und Abbildungen

Kartesisches Produkt

Totalität

Eindeutigkeit

Funktionen

