# Hybrid Circuit/Packet Network Scheduling with Multiple Composite Paths

Shih-Hao Tseng<sup>1</sup>, (pronounced as "She-How Zen") joint work with Bo Bai<sup>2</sup> and John C. S. Lui<sup>3</sup>

April 18, 2018

<sup>&</sup>lt;sup>1</sup>School of Electrical and Computer Engineering, Cornell University

<sup>&</sup>lt;sup>2</sup>Future Network Theory Lab, 2012 Labs, Huawei Technologies, Co. Ltd.

 $<sup>^3</sup>$ Department of Computer Science and Engineering, The Chinese University of Hong Kong

## **Hybrid Switches**

• A hybrid switch (h-switch) combines an electronic packet switch (EPS) and an optical circuit switch (OCS).



## **Hybrid Switches**

- A hybrid switch (h-switch) combines an electronic packet switch (EPS) and an optical circuit switch (OCS).
- EPS can switch among many-to-many routing patterns swiftly; and OCS provides high-bandwidth one-to-one routing.



## **Drawbacks of Hybrid Switches**

EPS suffers low bandwidth;



## **Drawbacks of Hybrid Switches**

 EPS suffers low bandwidth; and OCS suffers slow time division multiplexing (TDM) when mapping many-to-one or one-to-many.



## **Drawbacks of Hybrid Switches**

- EPS suffers low bandwidth; and OCS suffers slow time division multiplexing (TDM) when mapping many-to-one or one-to-many.
- The drawbacks restrict the use of hybrid switches in data-parallel applications, such as MapReduce.



## **Composite Paths**

 Since EPS nowadays supports heterogeneous port bandwidth, with many low-bandwidth ports and few high bandwidth ports, one can connect an OCS outport to an EPS inport (and vice versa) to create a composite path (Vargaftik et al., 2016).



## **Advantages of Composite Paths**

• Composite paths allow EPS to send more data to the outports under many-to-one mapping.



## **Advantages of Composite Paths**

- Composite paths allow EPS to send more data to the outports under many-to-one mapping.
- Composite paths avoid OCS TDM but still provide higher input bandwidth for one-to-many scenarios.



## **Challenges of Composite-Path Scheduling**

 Without composite paths, EPS and OCS can be scheduled in parallel (h-switch).



# **Challenges of Composite-Path Scheduling**

- Without composite paths, EPS and OCS can be scheduled in parallel (h-switch).
- However, with composite paths, EPS and OCS are tangled together (cp-switch).



## **Demand Reduction**

• Vargaftik et al. (2016) suggested some heuristics to translate the demand matrix so that we can schedule cp-switches using h-switch scheduling algorithms.



## Unresolved Issues

 The translation based algorithm does not provide a theoretical performance guarantee.



## **Unresolved Issues**

- The translation based algorithm does not provide a theoretical performance guarantee.
- The algorithm only works for one pair of composite paths. In general, we can have more composite paths at the system level.



## **Composite-Path Switch Scheduling**

Goal: finding a shortest schedule to satisfy i/o demand.

- Systematic analysis of cp-switch schedules.
- Performance guarantee for cp-switch scheduling algorithms.
- Applicability to multiple composite paths.



- N ports. Each port  $n \in [1,N]_{\mathbb{Z}} = \{1,\ldots,N\}$  connects to both EPS and OCS.
- P composite paths (each composite path is a full-duplex line connecting EPS and OCS).



- Each port is assumed to have symmetric input/output capacity (bandwidth).
- Each EPS port has capacity  $c_E$ ; Each OCS port has capacity  $c_O$ ; And each composite path  $p \in P$  is assumed to have capacity  $c_O$  as well. In general,  $c_O \sim 10 c_E \gg c_E$ .



- Each OCS inport maps to at most one OCS outport, and each OCS outport can receive data from at most one OCS inport.
  Such mapping is called an OCS configuration.
- No data can be buffered at the inports or the outports of the composite paths.



- Each entry  $D_{ij}$  in the demand matrix  $D \in \mathbb{R}^{N \times N}$  refers to the amount of data that should be sent from port i to port j.
- By convention, we assume  $D_{nn}=0$  for each  $n\in[1,N]_{\mathbb{Z}}.$



• The reconfiguration time of OCS is  $\delta$ . During the reconfiguration, OCS stops carrying data. In contrast, EPS changes the sending rate seamlessly.



- ullet A M+1 step schedule is considered: In step 0, only EPS is used; The remaining M steps involve the whole cp-switch.
- Each step  $m \in [1, M]_{\mathbb{Z}}$  consists of a reconfiguration phase and a sending phase. The length of the step m is  $\tau^m$ .



## **Continuous-Time Control Formulation**

- Let  $\mathcal{E}(t), \mathcal{U}(t), \mathcal{V}(t), \mathcal{O}(t) \in \mathbb{R}^{N \times N}$  be the mapping matrices, which represent the port-to-port sending rates, at time t.
- We can formulate the scheduling problem as a continuous-time control problem.



- It turns out the continuous-time control problem can be equivalently transformed into an MILP.
- Instead of the continuous-time mapping matrices, we express the problem in terms of the total data sent during each phase.



 $\bullet$  For each  $\hat{M} \in [0,M]_{\mathbb{Z}}$  , solving the following subproblems:

$$I(\hat{M}) = \min$$
 length of  $\left(\hat{M} + 1\right)$ -step schedule s.t. parameter setup

demand constraints

capacity constraints operation constraints

 $\bullet$  For each  $\hat{M} \in [0,M]_{\mathbb{Z}}$  , solving the following subproblems:

$$I(\hat{M}) = \min \sum_{m=0}^{\hat{M}} \tau^m$$

s.t. parameter setup

demand constraints

capacity constraints operation constraints

 $\bullet$  For each  $\hat{M} \in [0,M]_{\mathbb{Z}}$  , solving the following subproblems:

$$I(\hat{M}) = \min \sum_{m=0}^{\hat{M}} \tau^m$$

s.t. parameter setup

$$E^{0} + \sum_{m=1}^{\hat{M}} E^{m} + U^{m} + V^{m} + O^{m} = D$$

capacity constraints

operation constraints

 $\bullet$  For each  $\hat{M} \in [0,M]_{\mathbb{Z}}$  , solving the following subproblems:

$$I(\hat{M}) = \min \sum_{m=0}^{\hat{M}} \tau^m$$

s.t. parameter setup

$$E^{0} + \sum_{m=1}^{\hat{M}} E^{m} + U^{m} + V^{m} + O^{m} = D$$

capacity constraints

OCS must map one-to-one

## **Composite-Path Switch Scheduling**

Goal: finding a shortest schedule to satisfy i/o demand.

- ✓ Systematic analysis of cp-switch schedules.
- Performance guarantee for cp-switch scheduling algorithms.
- Applicability to multiple composite paths.



## **NP-Hardness**

 $\bullet$  Unfortunately,  $I(\hat{M})$  is NP-hard.

$$I(\hat{M}) = \min \sum_{m=0}^{\hat{M}} \tau^m$$

s.t. parameter setup

$$E^{0} + \sum_{m=1}^{\hat{M}} E^{m} + U^{m} + V^{m} + O^{m} = D$$

capacity constraints

OCS must map one-to-one



## **Linear Relaxation**

 $\bullet$  We then linear-relax  $I(\hat{M})$  to be  $L(\hat{M})$ :

$$L(\hat{M}) = \min \sum_{m=0}^{\hat{M}} \tau^m$$

s.t. parameter setup

$$E^{0} + \sum_{m=1}^{\hat{M}} E^{m} + U^{m} + V^{m} + O^{m} = D$$

capacity constraints

OCS can map many-to-many

## **Linear Relaxation: Special Case**

• The schedule that uses EPS only :

$$L(0) = \min \ \tau^0$$

s.t. parameter setup

$$E^0 = D$$

capacity constraints

• Especially, L(0) = I(0).

## **Approximation Ratio**

#### Lemma 1

Any cp-switch scheduling algorithm adopting L(0) as an upper bound is a  $\frac{c_E+c_O}{c_E}$ -approximation algorithm.

- Lemma 1 implies that a scheduling algorithm that produces shorter schedule than EPS only schedule is an approximation algorithm with approximation ratio  $\frac{c_E + c_O}{c_E}$ .
  - $\Rightarrow$  Comparing with L(0) is a naive way to have performance guarantee.

## **Composite-Path Switch Scheduling**

Goal: finding a shortest schedule to satisfy i/o demand.

- √ Systematic analysis of cp-switch schedules.
- ✓ Performance guarantee for cp-switch scheduling algorithms.
- Applicability to multiple composite paths.



## **Upper and Lower Bounds**

#### Lemma 2

If  $L(0) \leq \delta$ ,  $\mathrm{OPT} = L(0)$  and the shortest time schedule uses EPS only. Otherwise,

$$L(0) \ge OPT \ge L(1)$$
.

- Lemma 2 inspires us to find the shortest time schedule "between" L(1) and L(0).
  - $\Rightarrow$  Since L(1) is not feasible to  $I(\hat{M})$ , can we round it to a feasible schedule shorter than L(0)?

# **Uprounding Procedure**

ullet Taking the demand D, we compute two schedules L(0) and L(1).



 ${\sf Demand\ matrix}\ D$ 

## **Uprounding Procedure**

ullet Taking the demand D, we compute two schedules L(0) and L(1).



1-step linear-relaxed schedule L(0)



2-step linear-relaxed schedule L(1)

- $\bullet$  Taking the demand D, we compute two schedules L(0) and L(1).
- If  $L(0) \leq \delta$ , we have found the shortest schedule.





1-step linear-relaxed schedule L(0)

- $\bullet$  Taking the demand D, we compute two schedules L(0) and L(1).
- If  $L(0) \leq \delta$ , we have found the shortest schedule.
- ullet Otherwise, we upround L(1) to a feasible schedule.





2-step linear-relaxed schedule L(1)

 Find OCS configuration that can send as much relaxed traffic as possible.



Presenter: Shih-Hao Tseng

- Find OCS configuration that can send as much relaxed traffic as possible.
  - $\Rightarrow$  Use maximum weight matching algorithm.



The OCS Configuration that supports the most relaxed traffic.



The OCS Configuration that supports the most relaxed traffic.



Presenter: Shih-Hao Tseng

• Once the OCS configuration is decided, the shortest 2-step schedule can be obtained by a linear program.



• Once the OCS configuration is decided, the shortest 2-step schedule can be obtained by a linear program.



• Once the OCS configuration is decided, the shortest 2-step schedule can be obtained by a linear program.



• Once the OCS configuration is decided, the shortest 2-step schedule can be obtained by a linear program.



Presenter: Shih-Hao Tseng

- Once the OCS configuration is decided, the shortest 2-step schedule can be obtained by a linear program.
  - $\Rightarrow$  The algorithm can work online by repeating the same procedure on the resulting step 0.





### **Bound Shrinking**

- Let  $\tau_R$  be the current length of the schedule without step 0.
- Upper bound:  $L(0) + \tau_R$ .
- Lower bound:  $L(1) + \tau_R$ .



### **Composite-Path Switch Scheduling**

Goal: finding a shortest schedule to satisfy i/o demand.

- √ Systematic analysis of cp-switch schedules.
- ✓ Performance guarantee for cp-switch scheduling algorithms.
- ✓ Applicability to multiple composite paths.



### Issues to be Evaluated

- Do more composite paths lead to shorter schedule?
- How well do the algorithms schedule one-to-many traffic?
- How does OCS reconfiguration time  $\delta$  influence the length of the schedule?

### **Benefits of Multiple Composite Paths**

- Meshed multicast traffic: Pick each inport-outport pair with probability 0.5.
- Skewed multicast traffic: Pick each source with probability 0.5 to install multicast traffic.



Meshed multicast traffic.



Skewed multicast traffic.

# **Benefits of Multiple Composite Paths**



(a) Meshed multicast traffic. (b) Skewed multicast traffic.

Figure 1: The  $30^{\rm th}$ ,  $40^{\rm th}$ ,  $50^{\rm th}$ ,  $60^{\rm th}$ , and  $70^{\rm th}$  percentiles of the schedule length given by the proposed algorithm.

 We compare our algorithm with the state-of-the-art scheduling algorithm CPSwitchSched (Vargaftik et al., 2016).



Demand matrix D

 We compare our algorithm with the state-of-the-art scheduling algorithm CPSwitchSched (Vargaftik et al., 2016).



Traffic through EPS and OCS



Traffic through the composite path

- We compare our algorithm with the state-of-the-art scheduling algorithm CPSwitchSched (Vargaftik et al., 2016).
  - Solstice (Liu et al., 2015).
  - Eclipse (Venkatakrishnan et al., 2016).





(a) Meshed traffic,  $\delta=20~(\mu s)$ . (b) Skewed traffic,  $\delta=20~(\mu s)$ .

**Figure 4:** The  $1^{st}$ - $5^{th}$ - $50^{th}$ - $95^{th}$ - $95^{th}$  percentiles of the schedule lengths.

# **Effects of OCS Reconfiguration Overhead**



Figure 5: Lighter Loading Condition.

# **Effects of OCS Reconfiguration Overhead**



Figure 6: Heavier Loading Condition.

# **Effects of OCS Reconfiguration Overhead**

| Loading, $\delta$      | Solstice | Eclipse |
|------------------------|----------|---------|
| Lighter, $20 (\mu s)$  | 70.2%    | 27.2%   |
| Lighter, $200 (\mu s)$ | 75.0%    | 54.4%   |
| Heavier, 2 (ms)        | 71.4%    | 27.8%   |
| Heavier, 20 (ms)       | 75.8%    | 54.4%   |

**Table 1:** Performance improvement of the given algorithm on the  $50^{\rm th}$  percentile over CPSwitchSched with different schedulers.

### Conclusion

- We establish a framework to study cp-switch scheduling problems systematically. It supports multiple composite paths.
- Although each cp-switch scheduling subproblem is NP-hard, a fixed approximation ratio is still possible for the overall schedule.
- Our proposed algorithm not only works online but also outperforms existing methods significantly (by 30% to 70%).

# Questions & Answers

### References



S. Vargaftik, K. Barabash, Y. Ben-Itzhak, O. Biran, I. Keslassy, D. Lorenz, and A. Orda, "Composite-path switching," in *Proc. CoNEXT*. ACM, 2016, pp. 329–343.



H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M. Voelker, D. G. Anderson, M. Kaminsky, G. Porter, and A. C. Snoeren, "Scheduling techniques for hybrid circuit/packet networks," in *Proc. CoNEXT.* ACM, 2015, pp. 41:1–41:13.

### References



S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath, "Costly circuits, submodular schedules and approximate carathéodory theorems," in ACM SIGMETRICS, vol. 44, no. 1. ACM, 2016, pp. 75-88.