Mohan sai teja Dantam

Curriculum Vitae

☐ (+44)7384693360 ☑ mohan.dantam@ed.ac.uk ❸ Google Scholar

Research statement

- My research focuses on stochastic games, Markov decision processes, and automata, with an emphasis on strategy synthesis, simultaneous satisfaction of multiple objectives, some of which could be quantitative.
- I am interested in extending these techniques to related areas such as reinforcement learning and formal verification, as well as exploring their applications in fields like machine learning, finance and computational biology.

Education

Oct 2021- Ph.D, LFCS, University of Edinburgh

o Advisor: Prof. Richard Mayr

2018–2019 MPRI (Masters in CS), ENS Paris-Saclay, Cachan

o Advisor: Prof. Amaury Pouly, GPA: 14.2/20

2014–2018 B.Tech CS with honors, Indian Institute of Technology, Bombay

o Advisor: Prof. S.Akshay, GPA: 8.84/10

o Minor: Mathematics

Peer-reviewed Publications

- [1] <u>M. Dantam</u>, R. Mayr, Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs, **ICALP**, **2024**, [arXiv].
- [2] M. Dantam, R. Mayr, Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games, MFCS, 2023, [arXiv].
- [3] <u>M. Dantam</u>, A. Pouly, On the decidability of reachability in continuous time linear time-invariant systems, **HSCC**, **2021**, [arXiv].

Pre-Prints

[4] * L. Watson, E. Gan, M. Dantam, B. Mirzasoleiman, R. Sarkar, Inference and interference: The role of clipping, pruning and loss landscapes in differentially private stochastic gradient descent, 2023. arXiv: 2311.06839.

Research and Work Experience

09/24 - 02/25 Embedding R into Python, MLCOE TSRL, J.P.Morgan

- O Reviewed existing methods to embed R into Python
- o Developed API requirements and analysed drawbacks of current embeddings
- Ocoded required python extension modules in C++ with pybind11

01/20 - 08/20 Convex Invariants for Affine Programs, Prof. Joël Ouaknine, MPI

- \odot Investigated the automatic generation of polytope invariants for linear and affine dynamical systems
- Proved the decidability of the existence of separating convex invariants in two-dimensional systems with a single matrix, and extended the result to certain multi-matrix cases under spectral constraints

^{*} Indicates contribution ordering.

Teaching Assistant Experience

- o Algorithms and Data Structures (ADS) : Tutor, Marker $\rightarrow 2022$
- o Algorithmic Game Theory and Applications (AGTA): Tutor, Marker $\rightarrow 2022$
- o Discrete Math and Probability (DMP) : Marker $\rightarrow 2022, 2023$
- o Formal Verification (FV) : Demonstrator, Marker $\rightarrow 2023$
- o Machine Learning Theory (MLT): Tutor $\rightarrow 2023$, Marker $\rightarrow 2022$, 2023

Tutor Responsible for clearing doubts/ solving exercises with a group (5-30) of students

Demonstrator Helping with debugging/ doubts in a lab setting

Awards & Achievements

- Recipient of EDCS scholarship for Ph.D.
 Awarded the International Scholarship for Masters in MPRI
- All India Rank 193 in JEE Advanced among 150,000 students 2014
- o KVPY Fellowship, Government of India 2013

Skills & Tools

- o Proficient: C, C++
- o Familiar: Python (Pytorch), git, bash

Selected Academic Projects

- 02/2019 Heuristic Optimization for the Low Autocorrelation Binary Sequence (LABS) Problem, Prof. Carola Doerr, Prof. Christoph Dürr, MPRI
 - Benchmarked several local search heuristics—including steepest descent, tabu search, and Kernighan-Lin—for the LABS combinatorial optimization problem
 - Conducted a comparative analysis and systematically studied the influence of initial conditions on algorithmic performance
- 2017-2018 Treewidth-Based Methods for Data Automata, Prof. S.Akshay, IIT Bombay
 - Extended treewidth-based techniques to a class of register automata, enabling new decidability results for the emptiness problem
 - Introduced a novel graph semantics with bounded treewidth for register systems, and identified necessary restrictions for realizability
 - 2018 Verifying LCS has Non-recursive Complexity, Prof. S.Akshay, IIT Bombay
 - Presented the paper "Verifying Lossy Channel Systems has Non-Recursive Complexity" by Ph. Schnoebelen.
 - 2018 On Size-Ramsey Number of Paths, Prof. Nikhil Karamchandani, IIT Bombay
 - Investigated the size-Ramsey number of graphs and presented a proof of the linearity of size-Ramsey number of paths by Andrzej Dudek and Paweł Prałat
 - 2017 Properties of Tree Walking Automata, Prof. S.Akshay, IIT Bombay
 - Conducted an in-depth literature review on tree walking automata (TWA), and presented key results including the subsumption of TWA by bottom-up tree automata, closure properties under complementation, and the strict inclusion of deterministic TWA by their nondeterministic counterparts
 - 2017 Pseudorandom Generators and Complexity, Prof. Nutan Limaye, IIT Bombay
 - Studied foundational results in cryptographic pseudorandomness, including one-way functions and the Goldreich-Levin theorem, through the lens of computational complexity. Presented and discussed key sections from Arora and Barak's textbook