Candy example

- Favorite candy sold in two flavors: Cherry (yum), Lime (ugh)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime
- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Candy example

- Hypothesis H: probabilistic theory of the world
 - *h*₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d_1 : 1st candy is cherry
 - d_2 : 2nd candy is lime
 - d_3 : 3rd candy is lime
 - ...

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $d = \langle d_1, d_2, \dots, d_n \rangle$
- Computing the posterior using Bayes'Theorem:

$$Pr(H|d) = \alpha Pr(d|H) Pr(H)$$

Bayesian Prediction

 Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)

$$P(X|d) = \sum_{i} P(X|d, h_i)P(h_i|d) = \sum_{i} P(X|h_i)P(h_i|d)$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Hypothesis H:
 - *h*₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - h₅: 100% lime
- Assume prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Assume candies are i.i.d. (identically and independently distributed), i.e., $P(d|h) = \Pi_j P(d_j|h)$
- Suppose first 10 candies all taste lime:
 - $P(d|h_5) = 1^{10} = 1$,
 - $P(d|h_3) = 0.5^{10} = 0.00097$
 - $P(d|h_1) = 0^{10} = 0$

Figure 20.1 (a) Posterior probabilities $P(h_i \mid d_1, \dots, d_N)$ from Equation (20.1). The number of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian prediction $P(d_{N+1} = lime \mid d_1, \dots, d_N)$ from Equation (20.2).

Bayesian learning properties

- Optimal (*i.e.*, given prior, no other prediction is correct more often than the Bayesian one)
- No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large, Bayesian learning may be intractable
 - i.e., sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (极大后验,MAP)

- Idea: make prediction based on most probable hypothesis
 - $h_{MAP} = \operatorname{argmax}_{h_i} P(h_i|d)$
 - $P(X|d) \approx P(X|h_{\mathsf{MAP}})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - ...
- ullet After only 3 limes, it correctly selects h_5
- But what if correct hypothesis is h_4 ?
- After 3 limes, MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

MAP properties

- \bullet MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis $h_{\mbox{MAP}}$
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - $h_{MAP} = \operatorname{argmax}_h P(h|d)$
 - Optimization may be difficult

MAP computation

- Optimization:
 - $\begin{array}{l} \bullet \ \ h_{\mbox{MAP}} = \mathrm{argmax}_h P(h|d) = \mathrm{argmax}_h P(h) P(d|h) = \\ \mathrm{argmax}_h P(h) \Pi_i P(d_i|h) \end{array}$
- Product induces non-linear optimization
- Take the log to linearize optimization
 - $h_{\mathsf{MAP}} = \mathsf{argmax}_h \log P(h) + \sum_i \log P(d_i|h)$

Maximum Likelihood (极大似然,ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j)$ for all i, j)
 - $h_{MAP} = \operatorname{argmax}_h P(h)P(d|h)$
 - $\bullet \ \ h_{\text{ML}} = \mathrm{argmax}_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|d) \approx P(X|h_{\mbox{\scriptsize ML}})$

ML properties

- \bullet ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis $h_{\mbox{\scriptsize ML}}$
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- ullet Finding $h_{
 m ML}$ is often easier than $h_{
 m MAP}$
 - $h_{\mathsf{ML}} = \operatorname{argmax}_h \sum_i \log P(d_i|h)$

Statistical Learning

- Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_{θ}
 - $P(cherry) = \theta$ and $P(lime) = 1 \theta$
- Data d:
 - ullet c cherries and l limes
- $P(d|h_{\theta}) = \theta^{c}(1-\theta)^{l}$
- $\log P(d|h_{\theta}) = c \log \theta + l \log(1 \theta)$
- $d(logP(d|h_{\theta}))/d\theta = c/\theta l/(1-\theta)$
- $c/\theta l/(1-\theta) = 0 \Rightarrow \theta = c/(c+l)$

More complicated ML example

- Hypothesis $h_{\theta,\theta_1,\theta_2}$
- Data d:
 - ullet c cherries: g_c green and r_c red
 - ullet l limes: g_l green and r_l red

•
$$P(d|h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^l \theta_1^{r_c} (1-\theta_1)^{g_c} \theta_2^{r_l} (1-\theta_2)^{g_l}$$

•
$$c/\theta - l/(1-\theta) = 0 \Rightarrow \theta = c/(c+l)$$

•
$$r_c/\theta_1 - g_c/(1 - \theta_1) = 0 \Rightarrow \theta_1 = r_c/(r_c + g_c)$$

•
$$r_l/\theta_2 - g_l/(1 - \theta_2) = 0 \Rightarrow \theta_2 = r_l/(r_l + g_l)$$

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - e.g., no cherries eaten so far
 - $P(cherry) = \theta = c/(c+l) = 0$
 - Zero prob. are dangerous: they rule out outcomes
- Solution: Laplace (add-one) smoothing
 - Add 1 to all counts
 - $P(cherry) = \theta = (c+1)/(c+l+2) > 0$
 - Much better results in practice

Naive Bayes models

- ullet Want to predict a class C based on attributes A_1,\ldots,A_n
- Parameters:
 - $\theta = P(C = true)$
 - $\theta_{i1} = P(A_i = true | C = true)$
 - $\theta_{i2} = P(A_i = true | C = false)$
- ullet Assumption: A_i 's are independent given C

Naive Bayes learning

- Notation: $p = \#(c), n = \#(-c), p_i^+ = \#(c, a_i),$ $n_i^+ = \#(c, -a_i), p_i^- = \#(-c, a_i), n_i^- = \#(-c, -a_i)$
- $P(d|h) = \theta^p (1-\theta)^n \Pi_i \theta_{i1}^{p_i^+} \theta_{i2}^{p_i^-} (1-\theta_{i1})^{n_i^+} (1-\theta_{i2})^{n_i^-}$
- $\theta = p/(p+n)$, $\theta_{i1} = p_i^+/(p_i^+ + n_i^+)$, $\theta_{i2} = p_i^-/(p_i^- + n_i^-)$,
- $P(C|a_1,\ldots,a_n) = \alpha P(C) \Pi_i P(a_i|C)$
- Choose the most likely class

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data d:
 - d_1 : $\langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - d_2 : $\langle V_1 = v_{1,2}, V_2 = v_{2,2}, ..., V_n = v_{n,2} \rangle$
 - ..
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values \mathbf{v} of the parents of V $\theta_{V,pa(V)=v} = \#(V,pa(V)=v) / \#(pa(V)=v)$

Exercise: Candy example

- Prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Evidence $d = \langle lime, cherry, lime \rangle$
- Make predictions using Bayesian, MAP and ML learning

EM algorithm

- Used for soft clustering examples are probabilistically in classes.
- k-valued random variable C

Model

Data

X_1	X_2	X_3	X_4			
t	f	t	t			
f	t	t	f			
f	f	t	t			

⇒ Probabilities

$$P(C)$$

$$P(X_1|C)$$

$$P(X_2|C)$$

$$P(X_3|C)$$

$$P(X_4|C)$$

EM Algorithm Overview

- Repeat the following two steps:
 - E-step give the expected number of data points for the unobserved variables based on the given probability distribution.
 - M-step infer the (maximum likelihood or maximum aposteriori probability) probabilities from the data.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

EM algorithm

Augmented data – E step

Suppose
$$k=3$$
, and $dom(C)=\{1,2,3\}$. $P(C=1|X_1=t,X_2=f,X_3=t,X_4=t)=0.407$ $P(C=2|X_1=t,X_2=f,X_3=t,X_4=t)=0.121$ $P(C=3|X_1=t,X_2=f,X_3=t,X_4=t)=0.472$:

	_			_		
ĺ	X_1	X_2	X_3	X_4	С	Count
	:	:	:	:	:	:
	t	f	t	t	1	40.7
\longrightarrow	t	f	t	t	2	12.1
	t	f	t	t	3	47.2
	÷	:	:	:	:	:
	→	$\longrightarrow \begin{cases} X_1 \\ \vdots \\ t \\ t \\ \vdots \end{cases}$	$\longrightarrow \begin{array}{c c} \hline X_1 & X_2 \\ \vdots & \vdots \\ t & f \\ t & f \\ t & f \\ \vdots & \vdots \end{array}$	$\longrightarrow \begin{array}{ c c c c c } \vdots & \vdots & \vdots \\ t & f & t \\ t & f & t \end{array}$	$\longrightarrow \left \begin{array}{cccc} t & f & t & t \\ t & f & t & t \end{array} \right $	$\longrightarrow \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $A[X_1,\ldots,X_4,C]$

						\bigcirc
X_1	X_2	X_3	X_4	С	Count	
:	:	:	:	:	:	
t	f	t	t	1	40.7	$(x_1)(x_2)(x_3)($
t	f	t	t	2	12.1	\rightarrow \bigcirc \bigcirc \bigcirc
t	f	t	t	3	47.2	
:	:	:	:	:	:	

$$P(C=v_i) = \frac{\sum_{t \models C=v_i} Count(t)}{\sum_t Count(t)}$$

$$P(X_k = v_j | C=v_i) = \frac{\sum_{t \models C=v_i \land X_k=v_j} Count(t)}{\sum_{t \models C=v_i} Count(t)}$$

Learning with hidden variables

Many real-world problems have hidden (a.k.a latent) variables

A simple diagnostic network for heart disease

Hidden variables complicate the learning problem.

A simple example

• What if we had only observed values for A, B, C?

Α	В	С
t	f	t
f	t	t
t	t	f

EM algorithm

Augmented Data

Α	В	С	Н	Count
t	f	t	t	0.7
t	f	t	f	0.3
f	t	t	f	0.9
f	t	t	t	0.1
	•			

Probabilities

