Superman

Batman

Bus jump

Superman

Batman

Bus jump

A fall of 100 m 44 m/s

Superman

Batman

Bus jump

A fall of 100 m 44 m/s Stops over 5 m

Superman

Batman

Bus jump

44 m/s

Stops over 5 m

193.6 m/s²

Superman

Batman

Bus jump

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

Superman

Batman

Bus jump

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Superman

Batman

Bus jump

44 m/s

Superman

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Batman

Bus jump

50 foot gap

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Superman

Batman

Bus jump

50 foot gap

70 mph

44 m/s

Superman

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Batman

Bus jump

Space Odyssey

50 foot gap

70 mph

2º incline (generous)

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Superman

Batman

Bus jump

Space Odyssey

50 foot gap

70 mph

2º incline (generous)

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Superman

Batman

25 m/s

Bus jump

Space Odyssey

50 foot gap

70 mph

2º incline (generous)

44 m/s

Stops over 5 m

193.6 m/s² (20 g's)

13,000 N

Superman

Batman

25 m/s

 $0.1 \, s$

Bus jump

Space Odyssey

50 foot gap

70 mph

2º incline (generous)

44 m/s

Stops over 5 m

 $193.6 \text{ m/s}^2 (20 \text{ g's})$

13,000 N

Superman

Batman

Bus jump

25 m/s

0.1 s

140 kg

Space Odyssey

50 foot gap

70 mph

2º incline (generous)

44 m/s

Stops over 5 m

 $193.6 \text{ m/s}^2 (20 \text{ g's})$

13,000 N

Superman

Batman

Bus jump

25 m/s

0.1 s

35,000 N

140 kg

50 foot gap

70 mph

2º incline (generous)

22 feet

Question #11

Can you determine how far up the incline the box will travel?

$$\mathbf{A} \frac{1}{2}mv^2 = mgl\cos\theta + \mu_k mg\sin\theta l$$

$$\mathbf{B} \ \frac{1}{2}mv^2 = mgl\sin\theta + \mu_k mg\sin\theta l$$

$$\mathbf{C} \quad \frac{1}{2}mv^2 = mgl\sin\theta + \mu_k mg\cos\theta$$

$$\mathbf{D} \ \frac{1}{2}mv^2 = mgl\sin\theta + \mu_k mg\cos\theta l$$

$$U_i + K_i + W_{\text{ext}} = U_f + K_f + \Delta E_{\text{th}}$$

Spring potential energy Question #12

By how much does the spring compress?

$$U_i + K_i + W_{\text{ext}} = U_f + K_f + \Delta E_{\text{th}}$$

Energy bar charts

$$U_i + K_i + W_{\text{ext}} = U_f + K_f + \Delta E_{\text{th}}$$

Graphical representation of conservation of energy

How far does the box slide before coming to rest?

A speeding car skids to a halt.

A speeding car skids to a halt.

A rope lifts a box at constant speed

A rope lifts a box at constant speed

The box falls at steady speed as the rope spins a generator and causes a lightbulb to glow.

The box falls at steady speed as the rope spins a generator and causes a lightbulb to glow.

Energy diagram for ball thrown unwestion #12

Where is the turning point of the motion?

Energy diagram for ball thrown upwaten #13

Where does the object have the most potential energy?

Energy diagram for ball thrown upwaten #14

Where does the object have the most kinetic energy?

Energy diagram for mass on a spring

Question #15

Where is(are) the turning points of the motion?

- C. All three are turning points.
- D. A and E are both turning points

Energy diagram for mass on a spring

Where does the object have the most potential energy?

Energy diagram for mass on a spring

Question #17

Where does the object have the most kinetic energy?

Question #18

Where is the force of the spring on the object negative (left pointing)?

- C) anywhere to the **right** of point X.
- D) anywhere to the **left** of point X

Question #18

Where is the force of the spring on the object negative (left pointing)?

- C) anywhere to the **right** of point X.
- D) anywhere to the **left** of point X

$$F = -\frac{ac}{ds}$$

Finding Force from Potential Energy

$$W(s \rightarrow s + \Delta s) = F_s \Delta s$$

$$\Delta U = -W = -F_s \Delta s$$

$$F_s = -\frac{\Delta U}{\Delta s}$$

$$F_s = \lim_{\Delta s \to 0} \left(-\frac{\Delta U}{\Delta s} \right) = -\frac{dU}{ds}$$

$$U = -\int_{s_1}^{s_2} F_s ds$$

Finding Force from Potential Energy

(b) Force is to the right and decreasing.

Energy Diagrams

Equilibrium positions: Stable vs. Unstable

Stable Equilibrium

Consider particle with energy E2

Unstable Equilibrium

Consider particle with energy E₃

Molecular Bonds

Potential Energy curve for Hydrogen Chloride

When the total energy is E_1 , the molecule oscillates and is stable

When the total energy is E_2 , the 0.5-bond is broken and the atoms come apart.

