DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120
APPLICATION OF ASYMPTOTIC NOTATIONS

AGENDA

- Pickup what we left for standard functions.
- Use the definition of the asymptotic notation to bound a given function.
- Take notes of today's practice work.

STANDARD FUNCTIONS PRACTICE

• Rewrite the following expression in the form of one number, or a single exponentiation/logarithm with a possible coefficient.

$$-8^3 \cdot (2^8)^{1/2}$$

• Hint: $(a^m)^n = a^{mn}$, $a^m a^n = a^{m+n}$

STANDARD FUNCTIONS PRACTICE

- Rewrite the following expression in the form of one number, or a single exponentiation/logarithm with a possible coefficient.
 - $-\log_4 27 \cdot \log_3 4$
 - Hint: $\log_a b = \frac{1}{\log_b a}$, $\log_b a = \frac{\log_c a}{\log_c b}$

STANDARD FUNCTIONS PRACTICE

- Rewrite the following expression in the form of one number, or a single exponentiation/logarithm with a possible coefficient.
 - $-n^{\frac{1}{\log_m n}}$
 - Hint: $log_b a = \frac{1}{log_a b}$, $n^{\log_n m} = m$

REVIEW OF ASYMPTOTIC

- For a given function g(n), we denote by $\Theta(g(n))$ the set of functions $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0\}$
- For a given function g(n), we denote by O(g(n)) the set of functions $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$
- For a given function g(n), we denote by $\Omega(g(n))$ the set of functions $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}.$

- A. Function $g(n) = \Theta(h(n))$ indicates that _____ is an asymptotic tight bound of _____.
- B. Function $f(n) = \Omega(h(n))$ indicates that _____ is lower-bounded by _____.
- C. Function _____ indicates that f(n) is an asymptotic upper-bound of g(n).

Warm up

Definitions of the asymptotic notations

- Is $\frac{1}{2}n^2 3n = \Theta(n^2)$? Justify.
 - Step I: Identify $f(n) = ____, g(n) = ____.$

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

- Is $\frac{1}{2}n^2 3n = \Theta(n^2)$? Justify.
 - Step 2: By the definition of ___-notation, there exist positive constants c_1, c_2 and n_0 such that for all .

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

- Is $\frac{1}{2}n^2 3n = \Theta(n^2)$? Justify.
 - Step 3: Solve the inequality for c_1 , c_2 and n_0 .

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

- Is $\frac{1}{2}n^2 3n = \Theta(n^2)$? Justify.
 - Step 4: Conclude with either of the following.
 - Option I: Let c_1 be ______, c_2 be ______, and n_0 be _____. Inequality ______ holds true for all $n \geq n_0$. Therefore, ______.
 - Option 2:There does not exist positive constants c_1, c_2 and n_0 such that ______ for all $n \ge n_0$. Therefore, _____.

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

• Show that $k \ln n = \Theta(n)$ implies $k = \Theta(\frac{n}{\ln n})$.

SOLVING ASYMPTOTIC QUESTIONS

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

Breakout session

- A. Is $n^2 = O\left(2^{\frac{n}{2}}\right)$? Justify.
- B. For the following functions: $f(n) = 7 \log n$ and $g(n) = \log n^3 + 56$, indicate whether it is one of the three cases: f(n) = O(g(n)), f(n) = O(g(n)), or f(n) = O(g(n)).
- Come back in 10 minutes.

SOLVING ASYMPTOTIC QUESTIONS

Key steps:

Plug the given function(s) in the definition.

Choose appropriate values of the constants (c_1, c_2, n_0) or (c, n_0) .

NEXT UP DESIGN TECHNIQUE

• Divide and Conquer

REFERENCE

- https://www.youtube.com/watch?v=SEbzTe0CzT8
- https://www.yourdictionary.com/asymptotic#:~:text=adjective,are%20asymptotic%20to%20eac h%20other.