Домашняя работа 5 (на 24.03).

ALG 1. Докажите, что подкольцо $\mathbb{Z}[\sqrt[4]{2}] = \{a + b\sqrt[4]{2} + c\sqrt[4]{4} + d\sqrt[4]{8}|a,b,c,d \in \mathbb{Z}\}$ поля \mathbb{C} изоморфно $\mathbb{Z}[x]/(x^4-2)$. Задачу необходимо написать очень аккуратно. **ALG 2.**

- (a) Пусть a, b взаимно простые целые числа. Докажите, что существует целое n такое, что $n \equiv 0 \pmod{a}$ и $n \equiv 1 \pmod{b}$.
- (б) Пусть a, b взаимно простые целые числа. Докажите, что для любых целых q и r существует целое n такое, что $n \equiv q \pmod{a}$ и $n \equiv r \pmod{b}$.
- (в) Пусть a_1, \ldots, a_k попарно взаимно простые числа. Докажите, что для любых целых r_1, \ldots, r_k существует целое n такое, что $n \equiv r_1 \pmod{a_1}, \ldots, n \equiv r_k \pmod{a_k}$.

ALG 3. Пусть a0 — целое число, а b — простое целое число. Введем следующее обозначение: $\binom{a}{b}$ следующим образом: Если существует c такое, что $c^2 \equiv a \pmod{b}$, то $\binom{a}{b} = 1$, иначе -1 $\binom{a}{b}$ называется символом Лежандра чисел a и b).

Докажите, что если $b \neq 2$, то $a^{\frac{b-1}{2}} \equiv \left(\frac{a}{b}\right) \pmod{b}$.