El cuerpo ordenado de los números Reales

Elementos de Álgebra Segundo Cuatrimestre 2022

Mg. María del Carmen Vannicola

Facultad de Informática Departamento de Matemática

Números Reales

Definición

- $\langle \mathbb{R}; +, \cdot \rangle$ es el cuerpo de los números reales y satisface:
- (Op) Operación binaria: $\forall x, y \in \mathbb{R} : x + y \in \mathbb{R} \land x \cdot y \in \mathbb{R}$
- (S1) Ley asociativa de la suma: $\forall x, y, z \in \mathbb{R}$: x + (y + z) = (x + y) + z
- (S2) Ley conmutativa de la suma: $\forall x, y \in \mathbb{R}$: x + y = y + x
- (S3) Existencia de elemento neutro para la suma: $\exists \ 0 \in \mathbb{R} / \ \forall x \in \mathbb{R} : \ x + 0 = 0 + x = x$
- (54) Existencia de opuesto o simétrico:
 - $\forall x \in \mathbb{R}: \exists -x \in \mathbb{R}/x + (-x) = (-x) + x = 0$
- (M1) Ley asociativa del producto: $\forall x, y, z \in \mathbb{R} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- (M2) Ley conmutativa del producto: $\forall x, y \in \mathbb{R}$: $x \cdot y = y \cdot x$
- (M3) Existencia de elemento neutro para el producto: $\exists \ 1 \in \mathbb{R} / \ \forall x \in \mathbb{R} : \ x \cdot 1 = 1 \cdot x = x$
- (M4) Existencia de inverso multiplicativo: $\forall x \in \mathbb{R}, \ x \neq 0 \ \exists \ x^{-1} \in \mathbb{R} / \ x \cdot (x^{-1}) = (x^{-1}) \cdot x = 1$
 - (D) Ley distributiva del producto repecto a la suma:
 - $\forall x, v, z \in \mathbb{R}: x \cdot (v+z) = (x \cdot v) + (x \cdot z)$ Números Reales

2/26

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

•
$$a \cdot b = 0 \iff a = 0 \lor b = 0$$
.

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

$$\bullet \ a \cdot b = 0 \iff a = 0 \lor b = 0.$$

$$\bullet \ \frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$$

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

•
$$a \cdot b = 0 \iff a = 0 \lor b = 0$$
.

$$\bullet \ \frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$$

•
$$\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \quad b \neq 0, \ d \neq 0.$$

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

- $a \cdot b = 0 \iff a = 0 \lor b = 0$
- $\frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$
- $\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \ b \neq 0, \ d \neq 0.$

Ejemplo

Hallar los valores $x \in \mathbb{R}$ que satisfacen -2(3x+1)(x-5)=0.

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

- $a \cdot b = 0 \iff a = 0 \lor b = 0$
- $\frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$
- $\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \ b \neq 0, \ d \neq 0.$

Ejemplo

Hallar los valores $x \in \mathbb{R}$ que satisfacen -2(3x+1)(x-5)=0.

$$-2(3x+1)(x-5) = 0 \iff (3x+1)(x-5) = 0$$

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

- $a \cdot b = 0 \iff a = 0 \lor b = 0$
- $\frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$
- $\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \ b \neq 0, \ d \neq 0.$

Ejemplo

Hallar los valores $x \in \mathbb{R}$ que satisfacen -2(3x+1)(x-5)=0.

$$-2(3x+1)(x-5) = 0 \iff (3x+1)(x-5) = 0 \iff 3x+1 = 0 \lor x-5 = 0 \iff$$

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

- $\bullet \ a \cdot b = 0 \iff a = 0 \lor b = 0.$
- $\bullet \ \frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$
- $\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \ b \neq 0, \ d \neq 0.$

Ejemplo'

Hallar los valores $x \in \mathbb{R}$ que satisfacen -2(3x+1)(x-5)=0.

$$-2(3x+1)(x-5) = 0 \iff (3x+1)(x-5) = 0 \iff 3x+1 = 0 \lor x-5 = 0 \iff$$

$$\iff 3x = -1 \lor x = 5 \iff x = -\frac{1}{3} \lor x = 5$$

Recordemos algunas propiedades que se desprenden de la definición del cuerpo de los reales.

Sean $a, b, c, d \in \mathbb{R}$:

•
$$a \cdot b = 0 \iff a = 0 \lor b = 0$$
.

$$\bullet \ \frac{a}{b} = 0 \iff a = 0 \land b \neq 0.$$

•
$$\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c, \ b \neq 0, \ d \neq 0.$$

Ejemplo

Hallar los valores $x \in \mathbb{R}$ que satisfacen -2(3x+1)(x-5)=0.

$$-2(3x+1)(x-5) = 0 \iff (3x+1)(x-5) = 0 \iff 3x+1 = 0 \lor x-5 = 0 \iff$$

$$\iff 3x = -1 \lor x = 5 \iff x = -\frac{1}{3} \lor x = 5$$

$$S = \{x \in \mathbb{R} : -2(3x+1)(x-5) = 0\} = \{-\frac{1}{3}, 5\}$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2-4}{2(x-2)}=\frac{x+2}{2}$$

$$\frac{x^2-4}{2(x-2)}=\frac{x+2}{2}\iff 2(x^2-4)=2(x-2)(x+2)$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$$

$$\frac{x^2-4}{2(x-2)} = \frac{x+2}{2} \iff 2(x^2-4) = 2(x-2)(x+2) = 2(x^2+2x-2x-4) = 2(x^2-4)$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4)$$
$$\iff 2(x^2 - 4) = 2(x^2 - 4)$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2-4}{2(x-2)}=\frac{x+2}{2}$$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4)$$
$$\iff 2(x^2 - 4) = 2(x^2 - 4)$$

Como toda expresión real es igual a si misma, entonces todos los números reales verifican que $2(x^2 - 4) = 2(x^2 - 4)$. Luego

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2-4}{2(x-2)}=\frac{x+2}{2}$$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4)$$
$$\iff 2(x^2 - 4) = 2(x^2 - 4)$$

Como toda expresión real es igual a si misma, entonces todos los números reales verifican que $2(x^2 - 4) = 2(x^2 - 4)$. Luego

$$S = \{x \in \mathbb{R} : \frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}\} = \mathbb{R}$$

Ejemplo

Indicar el conjunto solución de todos los números reales que verifican la ecuación

$$\frac{x^2-4}{2(x-2)}=\frac{x+2}{2}$$

Esta resolución TIENE UN ERROR, dónde está el problema?

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4)$$
$$\iff 2(x^2 - 4) = 2(x^2 - 4)$$

Como toda expresión real es igual a si misma, entonces todos los números reales verifican que $2(x^2 - 4) = 2(x^2 - 4)$. Luego

$$S = \{x \in \mathbb{R} : \frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}\} = \mathbb{R}$$

Resolución correcta de la ecuación
$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$$

Resolución correcta de la ecuación
$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$$

$$\frac{x^2-4}{2(x-2)} = \frac{x+2}{2} \iff 2(x^2-4) = 2(x-2)(x+2) \land x-2 \neq 0 \iff$$

Resolución correcta de la ecuación $\frac{x^2-4}{2(x-2)} = \frac{x+2}{2}$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) \land x - 2 \neq 0 \iff$$
$$\iff 2(x^2 - 4) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4) \land x \neq 2, \text{ entonces}$$

Resolución correcta de la ecuación $\frac{x^2-4}{2(x-2)} = \frac{x+2}{2}$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) \land x - 2 \neq 0 \iff$$

$$\iff 2(x^2 - 4) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4) \land x \neq 2, \text{ entonces}$$

$$S = \{x \in \mathbb{R} : \frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}\} = \mathbb{R} - \{2\}$$

Resolución correcta de la ecuación $\frac{x^2-4}{2(x-2)} = \frac{x+2}{2}$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) \land x - 2 \neq 0 \iff$$

$$\iff 2(x^2 - 4) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4) \land x \neq 2, \text{ entonces}$$

$$S = \{x \in \mathbb{R} : \frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}\} = \mathbb{R} - \{2\}$$

Ejemplo

Resolver la ecuación $\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$ e indicar su conjunto solución.

Resolución correcta de la ecuación $\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}$

$$\frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2} \iff 2(x^2 - 4) = 2(x - 2)(x + 2) \land x - 2 \neq 0 \iff$$

$$\iff 2(x^2 - 4) = 2(x^2 + 2x - 2x - 4) = 2(x^2 - 4) \land x \neq 2, \text{ entonces}$$

$$S = \{x \in \mathbb{R} : \frac{x^2 - 4}{2(x - 2)} = \frac{x + 2}{2}\} = \mathbb{R} - \{2\}$$

Ejemplo

Resolver la ecuación $\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$ e indicar su conjunto solución.

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0$$
 (1)

Cálculo auxiliar:

$$2x^2 + 6x + 4 = 0 \iff$$

Cálculo auxiliar:

$$2x^2 + 6x + 4 = 0 \iff 2(x^2 + 3x + 2) = 0 \iff x^2 + 3x + 2 = 0 \iff$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) (2)$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) (2)$$

Ahora calculemos para que valores de $x \in \mathbb{R}$ se verifica $x^4 - 7x^2 + 12 = 0$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) \quad (2)$$

Ahora calculemos para que valores de $x \in \mathbb{R}$ se verifica $x^4 - 7x^2 + 12 = 0$

Hacemos un cambio de variable para resolver la ecuación bicuadrática

$$x^2 = t \implies x^4 = t^2,$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) \quad (2)$$

Ahora calculemos para que valores de $x \in \mathbb{R}$ se verifica $x^4 - 7x^2 + 12 = 0$

Hacemos un cambio de variable para resolver la ecuación bicuadrática

$$x^2 = t \implies x^4 = t^2,$$

obteniendo
$$x^4 - 7x^2 + 12 = 0 \iff t^2 - 7t + 12 = 0$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) \quad (2)$$

Ahora calculemos para que valores de $x \in \mathbb{R}$ se verifica $x^4 - 7x^2 + 12 = 0$

Hacemos un cambio de variable para resolver la ecuación bicuadrática

$$x^2 = t \implies x^4 = t^2,$$

obteniendo
$$x^4 - 7x^2 + 12 = 0 \iff t^2 - 7t + 12 = 0$$

$$t^2 - 7t + 12 = 0 \iff t = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 12}}{2} = \frac{7 \pm \sqrt{49 - 48}}{2} = \frac{7 \pm 1}{2} \iff$$

Cálculo auxiliar:

$$2x^{2} + 6x + 4 = 0 \iff 2(x^{2} + 3x + 2) = 0 \iff x^{2} + 3x + 2 = 0 \iff$$

$$\iff x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \iff x = -1 \lor x = -2$$

$$2x^{2} + 6x + 4 \neq 0 \iff \sim (2x^{2} + 6x + 4 = 0) \iff \sim (x = -1 \lor x = -2) \iff$$

$$\iff (x \neq -1 \land x \neq -2) (2)$$

Ahora calculemos para que valores de $x \in \mathbb{R}$ se verifica $x^4 - 7x^2 + 12 = 0$

Hacemos un cambio de variable para resolver la ecuación bicuadrática

$$x^2 = t \implies x^4 = t^2,$$

obteniendo $x^4 - 7x^2 + 12 = 0 \iff t^2 - 7t + 12 = 0$

$$t^2 - 7t + 12 = 0 \iff t = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 12}}{2} = \frac{7 \pm \sqrt{49 - 48}}{2} = \frac{7 \pm 1}{2} \iff$$

$$t = 4 \ \lor \ t = 3$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \ \lor \ x = -2 \ \lor \ x = \sqrt{3} \ \lor \ x = -\sqrt{3}$$
 (3)

Retomando (1)

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

Retomando (1)

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0 \iff$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

Retomando (1)

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0 \iff$$

$$\iff x^4 - 7x^2 + 12 = 0 \land (x \neq -1 \land x \neq -2) \stackrel{(3)}{\iff}$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

Retomando (1)

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0 \iff$$

$$\iff x^4 - 7x^2 + 12 = 0 \land (x \neq -1 \land x \neq -2) \stackrel{(3)}{\iff}$$

$$\iff x=2, \ -2, \ \sqrt{3}, \ -\sqrt{3} \ \land \ (x \neq -1 \ \land \ x \neq -2) \iff x=2, \ \sqrt{3}, \ -\sqrt{3}$$

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

Retomando (1)

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0 \iff$$

$$\iff x^4 - 7x^2 + 12 = 0 \land (x \neq -1 \land x \neq -2) \stackrel{\text{(3)}}{\iff}$$

$$\iff x=2, -2, \sqrt{3}, -\sqrt{3} \land (x \neq -1 \land x \neq -2) \iff x=2, \sqrt{3}, -\sqrt{3}$$

Luego,
$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x = 2, \sqrt{3}, -\sqrt{3}$$
 (4)

$$x^2 = t \iff x = \pm \sqrt{t}$$

$$t = 4 \iff x = \pm \sqrt{4} = \pm 2, \qquad t = 3 \iff x = \pm \sqrt{3}$$

Luego
$$x^4 - 7x^2 + 12 = 0 \iff x = 2 \lor x = -2 \lor x = \sqrt{3} \lor x = -\sqrt{3}$$
 (3)

Retomando (1)

$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x^4 - 7x^2 + 12 = 0 \land 2x^2 + 6x + 4 \neq 0 \iff$$

$$\iff x^4 - 7x^2 + 12 = 0 \land (x \neq -1 \land x \neq -2) \stackrel{\text{(3)}}{\iff}$$

$$\iff x=2, -2, \sqrt{3}, -\sqrt{3} \wedge (x \neq -1 \wedge x \neq -2) \iff x=2, \sqrt{3}, -\sqrt{3}$$

Luego,
$$\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0 \iff x = 2, \sqrt{3}, -\sqrt{3}$$
 (4)

$$S = \{x \in \mathbb{R}: \ \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0\} = \{2, \ \sqrt{3}, \ -\sqrt{3}\}\$$

Ejemplo

Sea
$$S = \{x \in \mathbb{R} : \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0\}$$
. Analizar si las siguientes proposiciones son

verdaderas o falsas y justificar las respuestas.

- S es un conjunto unitario.

 $\exists x \in \mathbb{Q}/x \in S$

5 $\forall x \in \mathbb{N}: \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} \neq 0$

 $\exists x \in S/x^2 + 9 = 0$

6 $\forall x \in S : x \ge 5 \Longrightarrow \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$

Ejemplo

Sea
$$S = \{x \in \mathbb{R} : \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0\}$$
. Analizar si las siguientes proposiciones son

verdaderas o falsas y justificar las respuestas.

- S es un conjunto unitario.
- \bigcirc $\forall x \in \mathbb{R}: x < -2 \implies x \notin S$

 $\exists x \in \mathbb{Q}/x \in S$

5 $\forall x \in \mathbb{N}: \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} \neq 0$

 $\exists x \in S/x^2 + 9 = 0$

6 $\forall x \in S : x \ge 5 \Longrightarrow \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$

Por el ejemplo anterior sabemos que $S = \{2, \sqrt{3}, -\sqrt{3}\}$

Ejemplo

Sea
$$S = \{x \in \mathbb{R} : \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0\}$$
. Analizar si las siguientes proposiciones son

verdaderas o falsas y justificar las respuestas.

- S es un conjunto unitario.
- \bigcirc $\forall x \in \mathbb{R}: x < -2 \implies x \notin S$

 \bigcirc $\exists x \in \mathbb{O}/x \in S$

5 $\forall x \in \mathbb{N}: \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} \neq 0$

 $\exists x \in S/x^2 + 9 = 0$

6 $\forall x \in S : x \ge 5 \Longrightarrow \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$

Por el ejemplo anterior sabemos que $S = \{2, \sqrt{3}, -\sqrt{3}\}$

El conjunto S es un conjunto unitario.

Ejemplo

Sea
$$S = \{x \in \mathbb{R} : \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0\}$$
. Analizar si las siguientes proposiciones son

verdaderas o falsas y justificar las respuestas.

- 1 S es un conjunto unitario.

 $\exists x \in \mathbb{Q}/\ x \in S$

 $\forall x \in \mathbb{N}: \ \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} \neq 0$

 $\exists x \in S/ \ x^2 + 9 = 0$

Por el ejemplo anterior sabemos que $S = \{2, \sqrt{3}, -\sqrt{3}\}$

1 El conjunto S es un conjunto unitario.

Esta proposición es falsa, pues el conjunto S tiene tres elementos y un conjunto unitario tiene un sólo elemento.

 $\exists x \in \mathbb{Q}/x \in S$

$$\exists x \in \mathbb{Q}/\ x \in S$$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

 $\exists x \in \mathbb{Q}/x \in S$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

3 $\exists x \in S/x^2 + 9 = 0$

$$\exists x \in \mathbb{Q}/\ x \in S$$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

3
$$\exists x \in S/x^2 + 9 = 0$$

Esta proposición es falsa, pues si $x^2 + 9 = 0$ entonces $x^2 = -9$ y no existen números reales que al elevarse al cuadrado den como resultado un número negativo.

$$\exists x \in \mathbb{Q}/\ x \in S$$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

3
$$\exists x \in S/x^2 + 9 = 0$$

Esta proposición es falsa, pues si $x^2 + 9 = 0$ entonces $x^2 = -9$ y no existen números reales que al elevarse al cuadrado den como resultado un número negativo.

$$\exists x \in \mathbb{Q}/\ x \in S$$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

3
$$\exists x \in S/x^2 + 9 = 0$$

Esta proposición es falsa, pues si $x^2 + 9 = 0$ entonces $x^2 = -9$ y no existen números reales que al elevarse al cuadrado den como resultado un número negativo.

Esta proposición es verdadera, ya que los elementos que pertenecen a S no son menores a - 2

 $\exists x \in \mathbb{Q} / x \in S$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/x \in S$

3 $\exists x \in S/x^2 + 9 = 0$

Esta proposición es falsa, pues si $x^2 + 9 = 0$ entonces $x^2 = -9$ y no existen números reales que al elevarse al cuadrado den como resultado un número negativo.

 \bigcirc $\forall x \in \mathbb{R}: x < -2 \implies x \notin S$

Esta proposición es verdadera, ya que los elementos que pertenecen a S no son menores a - 2

$$\exists x \in \mathbb{Q}/\ x \in S$$

Esta proposición es verdadera, ya que $\exists x \in \mathbb{Q}, \ x = 2/\ x \in S$

3
$$\exists x \in S/x^2 + 9 = 0$$

Esta proposición es falsa, pues si $x^2 + 9 = 0$ entonces $x^2 = -9$ y no existen números reales que al elevarse al cuadrado den como resultado un número negativo.

Esta proposición es verdadera, ya que los elementos que pertenecen a ${\it S}$ no son menores a ${\it -2}$

Esta proposición es falsa, porque $\exists x \in \mathbb{N}, \ x = 2/\frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$. Por (4)

6
$$\forall x \in S: x \ge 5 \Longrightarrow \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$$

6
$$\forall x \in S : x \ge 5 \Longrightarrow \frac{x^4 - 7x^2 + 12}{2x^2 + 6x + 4} = 0$$

Esta proposición es verdadera pues el antecedente es falso (2 $\not\geq$ 5, $\sqrt{3}$ $\not\geq$ 5, $-\sqrt{3}$ $\not\geq$ 5)

Esta proposición es verdadera pues el antecedente es falso (2 $\not\geq$ 5, $\sqrt{3} \not\geq$ 5, $-\sqrt{3} \not\geq$ 5)

Definición

Sea $\langle \mathbb{R}; +, \cdot \rangle$ el cuerpo de los números reales. La relación " \leq " es una relación de orden pues verifica

- (O1) Reflexiva: $\forall a \in \mathbb{R} : a \leq a$
- (O2) Antisimétrica: $\forall a, b \in \mathbb{R}$: $a \leq b \land b \leq a \implies a = b$
- (O3) Transitiva: $\forall a, b, c \in \mathbb{R}$: $a \leq b \land b \leq c \implies a \leq c$

Esta proposición es verdadera pues el antecedente es falso (2 \geq 5, $\sqrt{3}$ \geq 5, $-\sqrt{3}$ \geq 5)

Definición

Sea $\langle \mathbb{R}; +, \cdot \rangle$ el cuerpo de los números reales. La relación "<" es una relación de orden pues verifica

- (O1) Reflexiva: $\forall a \in \mathbb{R}$: a < a
- (O2) Antisimétrica: $\forall a, b \in \mathbb{R} : a \leq b \land b \leq a \implies a = b$
- (O3) Transitiva: $\forall a, b, c \in \mathbb{R}$: $a \le b \land b \le c \implies a \le c$

Notación:

- $a < b \iff b > a$
- $a < b \iff (a \le b \land a \ne b)$ $a > b \iff (a > b \land a \ne b)$

Esta proposición es verdadera pues el antecedente es falso (2 \geq 5, $\sqrt{3} \geq$ 5, $-\sqrt{3} \geq$ 5)

Definición

Sea $\langle \mathbb{R}; +, \cdot \rangle$ el cuerpo de los números reales. La relación "<" es una relación de orden pues verifica

- (O1) Reflexiva: $\forall a \in \mathbb{R}$: a < a
- (O2) Antisimétrica: $\forall a, b \in \mathbb{R} : a \leq b \land b \leq a \implies a = b$
- (O3) Transitiva: $\forall a, b, c \in \mathbb{R}$: $a \le b \land b \le c \implies a \le c$

Notación:

- $a < b \iff b > a$
- $a < b \iff (a \le b \land a \ne b)$ $a > b \iff (a > b \land a \ne b)$
- $a < b < c \iff (a < b \land b < c)$ $a > b > c \iff (a > b \land b > c)$

Sean $a, b \in \mathbb{R}$ tales que $a \leq b$.

Sean $a, b \in \mathbb{R}$ tales que $a \leq b$.

Intervalo abierto de extremos "a" y "b" $(a,b) = \{x \in \mathbb{R} : a < x < b\}$

Sean $a, b \in \mathbb{R}$ tales que $a \leq b$.

Intervalo abierto de extremos "a" y "b" $(a,b) = \{x \in \mathbb{R} : a < x < b\}$

Intervalo cerrado de extremos "a" y "b" $[a,b]=\{x\in\mathbb{R}:\ a\leq x\leq b\}$

Sean $a, b \in \mathbb{R}$ tales que $a \leq b$.

Intervalo abierto de extremos "a" y "b" $(a, b) = \{x \in \mathbb{R} : a < x < b\}$

Intervalo cerrado de extremos "a" y "b" $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$

Intervalo semiabierto de extremos "a" y "b" $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Sean $a, b \in \mathbb{R}$ tales que a < b.

Intervalo abierto de extremos "a" y "b" $(a, b) = \{x \in \mathbb{R} : a < x < b\}$

Intervalo cerrado de extremos "a" y "b" $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$

Intervalo semiabierto de extremos "a" y "b" $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Intervalo semiabierto de extremos "a" y "b" $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$

Intervalos de extremos infinitos

Intervalos de extremos infinitos

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

Intervalos de extremos infinitos

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$[a, +\infty) = \{x \in \mathbb{R} : a \le x\}$$

Intervalos de extremos infinitos

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$[a, +\infty) = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

Intervalos de extremos infinitos

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$[a, +\infty) = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$$

Casos particulares

Casos particulares

$$(-\infty, +\infty) = \mathbb{R}$$

Intervalos de números reales

Casos particulares

$$(-\infty, +\infty) = \mathbb{R}$$

$$(a,a)=\emptyset$$

Intervalos de números reales

Casos particulares

$$(-\infty, +\infty) = \mathbb{R}$$

$$(a,a)=\emptyset$$

$$[a, a] = \{a\}$$

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

 \bullet $a < b \implies a \pm c < b \pm c$.

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

• $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a, b, c, d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

• $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$.

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

Ley de tricotomía: ∀a, b ∈ ℝ: a < b ⊻ a = b ⊻ a > b.
 El símbolo "⊻" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

• $a \le b \implies a \pm c \le b \pm c$, $a \ge b \implies a \pm c \ge b \pm c$ • $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a, b, c, d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- \bullet a < b \land c < d \Longrightarrow a + c < b + d.

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a, b, c, d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $a < b \land c < d \implies a + c < b + d$. $a > b \land c > d \implies a + c > b + d$

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

Ley de tricotomía: ∀a, b ∈ ℝ: a < b ⊻ a = b ⊻ a > b.
 El símbolo "⊻" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a \le b \implies a \pm c \le b \pm c$, $a \ge b \implies a \pm c \ge b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $a \le b \land c \le d \Longrightarrow a+c \le b+d$, $a \ge b \land c \ge d \Longrightarrow a+c \ge b+d$ $a < b \land c < d \Longrightarrow a+c < b+d$,

La relación "<" cumple con las siguientes propiedades, cualesquiera sean a, b, c, $d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \lor a = b \lor a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $a < b \land c < d \Longrightarrow a + c < b + d$. $a > b \land c > d \Longrightarrow a + c > b + d$ $a < b \land c < d \Longrightarrow a + c < b + d$, $a > b \land c > d \Longrightarrow a + c > b + d$

La relación "<" cumple con las siguientes propiedades, cualesquiera sean a, b, c, $d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \lor a = b \lor a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $a < b \land c < d \implies a + c < b + d$, $a > b \land c > d \implies a + c > b + d$ $a < b \land c < d \Longrightarrow a + c < b + d$. $a > b \land c > d \Longrightarrow a + c > b + d$
- \bullet a < b \Longrightarrow -a > -b.

La relación " \leq " cumple con las siguientes propiedades, cualesquiera sean $a,b,c,d\in\mathbb{R}$

Ley de tricotomía: ∀a, b ∈ ℝ: a < b ⊻ a = b ⊻ a > b.
 El símbolo "⊻" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a \le b \implies a \pm c \le b \pm c$, $a \ge b \implies a \pm c \ge b \pm c$ • $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $\bullet \ a \le b \ \land \ c \le d \Longrightarrow \ a+c \le b+d, \quad \ a \ge b \ \land \ c \ge d \Longrightarrow \ a+c \ge b+d$ $a < b \ \land \ c < d \Longrightarrow \ a+c < b+d, \quad \ a > b \ \land \ c > d \Longrightarrow \ a+c > b+d$
- \bullet $a \le b \implies -a \ge -b$, $a \ge b \implies -a \le -b$

La relación "<" cumple con las siguientes propiedades, cualesquiera sean a, b, c, $d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \lor a = b \lor a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$
- $a < b \land c < d \implies a + c < b + d$, $a > b \land c > d \implies a + c > b + d$ $a < b \land c < d \Longrightarrow a + c < b + d$. $a > b \land c > d \Longrightarrow a + c > b + d$
- \bullet a < b \Longrightarrow -a > -b, a > b \Longrightarrow -a < -b $a < b \implies -a > -b$.

La relación "<" cumple con las siguientes propiedades, cualesquiera sean a, b, c, $d \in \mathbb{R}$

• Ley de tricotomía: $\forall a, b \in \mathbb{R}$: $a < b \leq a = b \leq a > b$. El símbolo "\(\sum \)" representa la disyución excluyente, es decir, una y sólo una de las proposiciones

$$a < b$$
, $a = b$, $a > b$

es verdadera

- $a < b \implies a \pm c < b \pm c$, $a > b \implies a \pm c > b \pm c$ $a < b \implies a \pm c < b \pm c, \quad a > b \implies a \pm c > b \pm c$
- $a < b \land c < d \implies a + c < b + d$, $a > b \land c > d \implies a + c > b + d$ $a < b \land c < d \Longrightarrow a + c < b + d$. $a > b \land c > d \Longrightarrow a + c > b + d$
- \bullet a < b \Longrightarrow -a > -b, a > b \Longrightarrow -a < -b $a < b \implies -a > -b$, $a > b \implies -a < -b$

•
$$a \le b \land c > 0 \implies a \cdot c \le b \cdot c$$
,

•
$$a < b \land c > 0 \implies a \cdot c < b \cdot c$$
, $a > b \land c > 0 \implies a \cdot c > b \cdot c$

• $a \le b \land c > 0 \implies a \cdot c \le b \cdot c$, $a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c$.

$$\bullet \ a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$$

$$a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$$

•
$$a \le b \land c > 0 \implies a \cdot c \le b \cdot c$$
, $a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$

$$a < b \ \land \ c > 0 \implies a \cdot c < b \cdot c, \quad a > b \ \land \ c > 0 \implies a \cdot c > b \cdot c$$

$$\bullet \ a \leq b \ \land \ c > 0 \implies \frac{a}{c} \leq \frac{b}{c},$$

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}$

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a < b \land c < 0 \implies a \cdot c > b \cdot c$.

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $\bullet \ a \le b \ \land \ c < 0 \implies a \cdot c \ge b \cdot c, \qquad a \ge b \ \land \ c < 0 \implies a \cdot c \le b \cdot c$

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a \le b \land c < 0 \implies a \cdot c \ge b \cdot c$, $a \ge b \land c < 0 \implies a \cdot c \le b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c$,

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a < b \land c < 0 \implies a \cdot c > b \cdot c$, $a > b \land c < 0 \implies a \cdot c < b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c, \quad a > b \land c < 0 \implies a \cdot c < b \cdot c$

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $\bullet \ a \le b \ \land \ c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \qquad a \ge b \ \land \ c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \ \land \ c > 0 \implies \frac{a}{c} < \frac{b}{c}, \qquad a > b \ \land \ c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a \le b \land c < 0 \implies a \cdot c \ge b \cdot c, \qquad a \ge b \land c < 0 \implies a \cdot c \le b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c, \qquad a > b \land c < 0 \implies a \cdot c < b \cdot c$
- $\bullet \ a \leq b \ \land \ c < 0 \implies \frac{a}{c} \geq \frac{b}{c},$

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $\bullet \ a \le b \land c < 0 \implies a \cdot c \ge b \cdot c, \qquad a \ge b \land c < 0 \implies a \cdot c \le b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c, \qquad a > b \land c < 0 \implies a \cdot c < b \cdot c$
- $\bullet \ a \leq b \ \land \ c < 0 \implies \frac{a}{c} \geq \frac{b}{c}, \qquad a \geq b \ \land \ c < 0 \implies \frac{a}{c} \leq \frac{b}{c}$

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a < b \land c < 0 \implies a \cdot c > b \cdot c$, $a > b \land c < 0 \implies a \cdot c < b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c, \quad a > b \land c < 0 \implies a \cdot c < b \cdot c$
- $a \le b \land c < 0 \implies \frac{a}{c} \ge \frac{b}{c}, \quad a \ge b \land c < 0 \implies \frac{a}{c} \le \frac{b}{c}$ $a < b \wedge c < 0 \implies \frac{a}{c} > \frac{b}{c}$

- $a < b \land c > 0 \implies a \cdot c < b \cdot c$, $a > b \land c > 0 \implies a \cdot c > b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \quad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a < b \land c < 0 \implies a \cdot c \ge b \cdot c$, $a \ge b \land c < 0 \implies a \cdot c \le b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c, \quad a > b \land c < 0 \implies a \cdot c < b \cdot c$
- $a \le b \land c < 0 \implies \frac{a}{c} \ge \frac{b}{c}, \quad a \ge b \land c < 0 \implies \frac{a}{c} \le \frac{b}{c}$ $a < b \land c < 0 \implies \frac{a}{c} > \frac{b}{c}, \quad a > b \land c < 0 \implies \frac{a}{c} < \frac{b}{c}$

- $a \le b \land c > 0 \implies a \cdot c \le b \cdot c, \qquad a \ge b \land c > 0 \implies a \cdot c \ge b \cdot c$ $a < b \land c > 0 \implies a \cdot c < b \cdot c, \qquad a > b \land c > 0 \implies a \cdot c > b \cdot c$
- $a \le b \land c > 0 \implies \frac{a}{c} \le \frac{b}{c}, \quad a \ge b \land c > 0 \implies \frac{a}{c} \ge \frac{b}{c}$ $a < b \land c > 0 \implies \frac{a}{c} < \frac{b}{c}, \quad a > b \land c > 0 \implies \frac{a}{c} > \frac{b}{c}$
- $a \le b \land c < 0 \implies a \cdot c \ge b \cdot c$, $a \ge b \land c < 0 \implies a \cdot c \le b \cdot c$ $a < b \land c < 0 \implies a \cdot c > b \cdot c$, $a > b \land c < 0 \implies a \cdot c < b \cdot c$
- $a \le b \land c < 0 \implies \frac{a}{c} \ge \frac{b}{c}, \quad a \ge b \land c < 0 \implies \frac{a}{c} \le \frac{b}{c}$ $a < b \land c < 0 \implies \frac{a}{c} > \frac{b}{c}, \quad a > b \land c < 0 \implies \frac{a}{c} < \frac{b}{c}$
- ¿Qué sucede si c = 0?

Ejemplos de inecuaciones

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

$$4x - 3 \le 2x - 1$$

$$2 4x - 3 \le 2x - 1 < 3x + 5$$

Ejemplos de inecuaciones

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

$$4x - 3 \le 2x - 1$$

$$2 4x - 3 \le 2x - 1 < 3x + 5$$

1
$$4x - 3 \le 2x - 1$$

Ejemplos de inecuaciones

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

$$4x - 3 \le 2x - 1$$

$$2 4x - 3 \le 2x - 1 < 3x + 5$$

$$4x - 3 \le 2x - 1 \iff 4x - 3 + 3 \le 2x - 1 + 3$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1
$$4x - 3 \le 2x - 1$$

$$2 4x - 3 \le 2x - 1 < 3x + 5$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1 $4x - 3 \le 2x - 1$

- $2 4x 3 \le 2x 1 < 3x + 5$

$$\iff$$
 $4x - 2x \le 2x + 2 - 2x$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} \ 4x - 3 < 2x - 1$

- 2 $4x-3 \le 2x-1 \le 3x+5$

$$\iff$$
 $4x - 2x \le 2x + 2 - 2x \iff 2x \le 2$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $4x - 3 \le 2x - 1$

- $2 4x 3 \le 2x 1 < 3x + 5$

$$\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{\ge 0}{\iff} \frac{2x}{2} \le \frac{2}{2}$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0}$ 4x - 3 < 2x - 1

- 2 $4x-3 \le 2x-1 \le 3x+5$
- $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1 4x - 3 < 2x - 1

- $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$

$$\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \iff \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1 $4x - 3 \le 2x - 1$

- $2 4x 3 \le 2x 1 < 3x + 5$
- $4x 3 \le 2x 1 \iff 4x 3 + 3 \le 2x 1 + 3 \iff 4x \le 2x + 2 \iff 4x 2x \le 2x + 2 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} 4x - 3 < 2x - 1$

- $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} =$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} 4x - 3 < 2x - 1$

- $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = \{x \in \mathbb{R} : x \in \mathbb{R} : x \le 1\} = \{x \in \mathbb{R} : x \in \mathbb{R} : x \in \mathbb{R} : x \le 1\} = \{x \in \mathbb{R} : x \in \mathbb{R} : x$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1 $4x - 3 \le 2x - 1$

- $2 4x 3 \le 2x 1 < 3x + 5$
- $4x 3 \le 2x 1 \iff 4x 3 + 3 \le 2x 1 + 3 \iff 4x \le 2x + 2 \iff 4x 2x \le 2x + 2 2x \iff 2x \le 2 \stackrel{\geq >0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} 4x - 3 < 2x - 1$

- $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

2 $4x - 3 < 2x - 1 < 3x + 5 \iff$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $4x - 3 \le 2x - 1$

- $2 4x 3 \le 2x 1 < 3x + 5$
- $4x 3 \le 2x 1 \iff 4x 3 + 3 \le 2x 1 + 3 \iff 4x \le 2x + 2 \iff$ $4x 2x \le 2x + 2 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

1 4x - 3 < 2x - 1

- 2 $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

- - \iff 4x 2x < -1 + 3 \land

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} \ 4x - 3 < 2x - 1$

- $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

- - \iff $4x 2x < -1 + 3 \land 2x 3x < 5 + 1 \iff$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} \ 4x - 3 < 2x - 1$

- 2 $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

- 2 $4x-3 \le 2x-1 < 3x+5 \iff 4x-3 \le 2x-1 \land 2x-1 < 3x+5 \iff$
 - \iff $4x 2x < -1 + 3 \land 2x 3x < 5 + 1 \iff 2x < 2 \land$

Ejemplo

Hallar todos los $x \in \mathbb{R}$ que verifica la siguiente inecuación:

 $\mathbf{0} \ 4x - 3 < 2x - 1$

- 2 $4x-3 \le 2x-1 \le 3x+5$
- 1 $4x-3 \le 2x-1 \iff 4x-3+3 \le 2x-1+3 \iff 4x \le 2x+2 \iff$ $\iff 4x - 2x \le 2x + 2 - 2x \iff 2x \le 2 \stackrel{2>0}{\iff} \frac{2x}{2} \le \frac{2}{2} \iff x \le 1$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1\} = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$$

$$\iff 2x \le 2 \land -x < 6$$

$$\iff 2x \le 2 \ \land \ -x < 6 \ \stackrel{-1 < 0}{\Longleftrightarrow} \ x \le 1 \ \land \ x > -6$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$\iff 2x \leq 2 \ \land \ -x < 6 \ \stackrel{-1 < 0}{\Longleftrightarrow} \ x \leq 1 \ \land \ x > -6$$

$$\iff 2x \le 2 \ \land \ -x < 6 \ \stackrel{-1 < 0}{\Longleftrightarrow} \ x \le 1 \ \land \ x > -6$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} =$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = \{x \in \mathbb{R} : x \in \mathbb{$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\}$ como intervalo.

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \leq -2 \Longleftrightarrow (-\frac{1}{2})(\frac{x-6}{x}) \geq (-\frac{1}{2})(-2) \iff$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \leq -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \geq (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \geq 1 \iff$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 \le 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff \left(-\frac{1}{2}\right)\left(\frac{x-6}{x}\right) \ge \left(-\frac{1}{2}\right)(-2) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 < -2x \iff$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x \iff x+2x \le 6 \iff$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 \le 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 < -2x \iff x+2x < 6 \iff 3x < 6 \iff x < 2$$

Mg. María del Carmen Vannicola profvannicola@gmail.com

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff \left(-\frac{1}{2}\right)\left(\frac{x-6}{x}\right) \ge \left(-\frac{1}{2}\right)\left(-2\right) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff x \le 2$$
$$S = \left\{x \in \mathbb{R} : \frac{x-6}{x} \le -2\right\} =$$

$$\iff 2x \le 2 \land -x < 6 \stackrel{-1 < 0}{\iff} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff$$

$$\iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff x \le 2$$

$$S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\} = \{x \in \mathbb{R} : x \le -2\} =$$

$$\iff 2x \le 2 \land -x < 6 \iff^{-1 \le 0} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\}$ como intervalo.

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff$$

$$\iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff x \le 2$$

$$S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\} = \{x \in \mathbb{R} : x \le -2\} = (-\infty, 2]$$

$$\iff$$
 $2x \le 2 \land -x < 6 \stackrel{-1 \le 0}{\iff} x \le 1 \land x > -6$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R} : \frac{x-6}{y} \le -2\}$ como intervalo.

¿Qué sucede si x = 0?

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff$$

$$\iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff x \le 2$$

$$S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\} = \{x \in \mathbb{R} : x \le -2\} = (-\infty, 2]$$

$$\iff 2x \le 2 \land -x < 6 \iff^{-1 \le 0} x \le 1 \land x > -6$$

$$S = \{x \in \mathbb{R} : 4x - 3 \le 2x - 1 < 3x + 5\} = \{x \in \mathbb{R} : x \le 1 \land x > -6\} = (-6, 1]$$

Ejemplo

Expresar al conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{x} \le -2\}$ como intervalo.

¿Qué sucede si x=0? La resolución NO ES CORRECTA. ¿Cuál es el paso que no podemos asegurar?

$$\frac{x-6}{x} \le -2 \iff (-\frac{1}{2})(\frac{x-6}{x}) \ge (-\frac{1}{2})(-2) \iff \frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x \iff x+2x \le 6 \iff 3x \le 6 \iff x \le 2$$

$$S = \{x \in \mathbb{R}: \frac{x-6}{x} \le -2\} = \{x \in \mathbb{R}: x \le -2\} = (-\infty, 2]$$

El paso que colorred NO podemos asegurar en el razonamiento anterior es

$$\frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x$$

El paso que colorred NO podemos asegurar en el razonamiento anterior es

$$\frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x$$

porque: $x < 0 \iff -2x > 0$ y no cambiaría la desigualdad en este caso.

El paso que colorred NO podemos asegurar en el razonamiento anterior es

$$\frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x$$

porque: $x < 0 \iff -2x > 0$ y no cambiaría la desigualdad en este caso.

Además, si x=0 entonces la expresión $\frac{x-6}{-2x}$ no está definida en el conjunto de los números reales.

Luego $0 \notin S$. Debemos aclarar en la resolución que $x \neq 0$.

El paso que colorred NO podemos asegurar en el razonamiento anterior es

$$\frac{x-6}{-2x} \ge 1 \iff x-6 \le -2x$$

porque: $x < 0 \iff -2x > 0$ y no cambiaría la desigualdad en este caso.

Además, si x = 0 entonces la expresión $\frac{x-6}{2x}$ no está definida en el conjunto de los números reales.

Luego $0 \notin S$. Debemos aclarar en la resolución que $x \neq 0$.

Veamos algunas propiedades de las desigualdades en $\mathbb R$ que nos permitirán hacer una resolución correcta de la inecuación.

Sean $a,b\in\mathbb{R}$

•
$$a \cdot b \le 0 \iff [(a \le 0 \land b \ge 0) \lor (a \ge 0 \land b \le 0)]$$

 $a \cdot b < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$

Sean $a, b \in \mathbb{R}$

•
$$a \cdot b \le 0 \iff [(a \le 0 \land b \ge 0) \lor (a \ge 0 \land b \le 0)]$$

 $a \cdot b < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$

•
$$a \cdot b \ge 0 \iff [(a \ge 0 \land b \ge 0) \lor (a \le 0 \land b \le 0)]$$

 $a \cdot b > 0 \iff [(a > 0 \land b > 0) \lor (a < 0 \land b < 0)]$

Sean $a,b\in\mathbb{R}$

•
$$a \cdot b \le 0 \iff [(a \le 0 \land b \ge 0) \lor (a \ge 0 \land b \le 0)]$$

 $a \cdot b < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$

•
$$a \cdot b \ge 0 \iff [(a \ge 0 \land b \ge 0) \lor (a \le 0 \land b \le 0)]$$

 $a \cdot b > 0 \iff [(a > 0 \land b > 0) \lor (a < 0 \land b < 0)]$

•
$$\frac{a}{b} \le 0 \iff [(a \le 0 \land b > 0) \lor (a \ge 0 \land b < 0)]$$

 $\frac{a}{b} < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$

Sean $a, b \in \mathbb{R}$

•
$$a \cdot b \le 0 \iff [(a \le 0 \land b \ge 0) \lor (a \ge 0 \land b \le 0)]$$

 $a \cdot b < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$

•
$$a \cdot b \ge 0 \iff [(a \ge 0 \land b \ge 0) \lor (a \le 0 \land b \le 0)]$$

 $a \cdot b > 0 \iff [(a > 0 \land b > 0) \lor (a < 0 \land b < 0)]$

•
$$\frac{a}{b} \le 0 \iff [(a \le 0 \land b > 0) \lor (a \ge 0 \land b < 0)]$$

$$\frac{a}{b} < 0 \iff [(a < 0 \land b > 0) \lor (a > 0 \land b < 0)]$$

•
$$\frac{a}{b} \ge 0 \iff [(a \ge 0 \land b > 0) \lor (a \le 0 \land b < 0)]$$

$$\frac{a}{b} > 0 \iff [(a > 0 \land b > 0) \lor (a < 0 \land b < 0)]$$

Sean $a, b \in \mathbb{R}$

Sean $a, b \in \mathbb{R}$

•
$$0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

Sean $a, b \in \mathbb{R}$

$$\bullet \ 0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

•
$$a \le b < 0 \iff \frac{1}{a} \ge \frac{1}{b} < 0, \qquad a < b < 0 \iff \frac{1}{a} > \frac{1}{b} < 0$$

Sean $a, b \in \mathbb{R}$

•
$$0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

$$0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

$$\bullet \ a \le b < 0 \iff \frac{1}{a} \ge \frac{1}{b} < 0,$$

$$a < b < 0 \iff \frac{1}{a} > \frac{1}{b} < 0$$

$$\bullet \ 0 \le a \le b \iff 0 \le a^2 \le b^2, \qquad 0 < a < b \iff 0 < a^2 < b^2$$

$$0 < a < b \iff 0 < a^2 < b^2$$

Sean $a, b \in \mathbb{R}$

•
$$0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

$$0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

$$\bullet \ a \le b < 0 \iff \frac{1}{a} \ge \frac{1}{b} < 0,$$

$$a < b < 0 \iff \frac{1}{a} > \frac{1}{b} < 0$$

$$\bullet \ 0 \le a \le b \iff 0 \le a^2 \le b^2,$$

$$0 < a < b \iff 0 < a^2 < b^2$$

$$\bullet \ a \le b \le 0 \iff 0 \le a^2 \ge b^2, \qquad a < b < 0 \iff 0 < a^2 > b^2$$

$$a < b < 0 \iff 0 < a^2 > b^2$$

Sean $a, b \in \mathbb{R}$

$$\bullet \ 0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

•
$$a \le b < 0 \iff \frac{1}{a} \ge \frac{1}{b} < 0, \qquad a < b < 0 \iff \frac{1}{a} > \frac{1}{b} < 0$$

$$\bullet \ 0 \le a \le b \iff 0 \le a^2 \le b^2, \qquad 0 < a < b \iff 0 < a^2 < b^2$$

•
$$a \le b \le 0 \iff 0 \le a^2 \ge b^2$$
, $a < b < 0 \iff 0 < a^2 > b^2$

• Sea $n \in \mathbb{N}$; n par. $\sqrt[n]{a} \in \mathbb{R} \iff a > 0$

Sean $a, b \in \mathbb{R}$

$$\bullet \ 0 < a \le b \iff 0 < \frac{1}{a} \ge \frac{1}{b}, \qquad 0 < a < b \iff 0 < \frac{1}{a} > \frac{1}{b}$$

•
$$a \le b < 0 \iff \frac{1}{a} \ge \frac{1}{b} < 0, \qquad a < b < 0 \iff \frac{1}{a} > \frac{1}{b} < 0$$

$$\bullet \ 0 \le a \le b \iff 0 \le a^2 \le b^2, \qquad 0 < a < b \iff 0 < a^2 < b^2$$

•
$$a \le b \le 0 \iff 0 \le a^2 \ge b^2$$
, $a < b < 0 \iff 0 < a^2 > b^2$

- Sea $n \in \mathbb{N}$; n par. $\sqrt[n]{a} \in \mathbb{R} \iff a > 0$
- Si $n \in \mathbb{N}$ y n es impar entonces $\sqrt[n]{a} \in \mathbb{R}$, para todo $a \in \mathbb{R}$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{x} \leq -2\}$

$$\frac{x-6}{x} \leq -2 \iff \frac{x-6}{x} + 2 \leq 0 \iff \frac{(x-6)+2x}{x} \leq 0 \iff \frac{3x-6}{x} \leq 0 \iff$$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{x} \le -2\}$

$$\frac{x-6}{x} \le -2 \iff \frac{x-6}{x} + 2 \le 0 \iff \frac{(x-6)+2x}{x} \le 0 \iff \frac{3x-6}{x} \le 0 \iff$$

 \iff $[(3x-6 \ge 0 \land x < 0) \lor (3x-6 \le 0 \land x > 0)] \iff$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{y} \le -2\}$

$$\frac{x-6}{x} \le -2 \iff \frac{x-6}{x} + 2 \le 0 \iff \frac{(x-6)+2x}{x} \le 0 \iff \frac{3x-6}{x} \le 0 \iff$$
$$\iff [(3x-6>0 \land x<0) \quad \lor \quad (3x-6<0 \land x>0)] \iff$$

$$\iff$$
 $[(3x \ge 6 \land x < 0) \lor (3x \le 6 \land x > 0)] \iff$

$$\vee$$

$$(3x \le 6 \land x > 0)] \iff$$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{y} \le -2\}$

$$\frac{x-6}{x} \le -2 \iff \frac{x-6}{x} + 2 \le 0 \iff \frac{(x-6)+2x}{x} \le 0 \iff \frac{3x-6}{x} \le 0 \iff$$

$$\iff$$
 $[(3x-6 \ge 0 \land x < 0) \lor (3x-6 \le 0 \land x > 0)] \iff$

$$\iff$$
 $[(3x \ge 6 \land x < 0) \lor (3x \le 6 \land x > 0)] \iff$

$$\iff$$
 $[(x \ge 2 \land x < 0) \lor (x \le 2 \land x > 0)]$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{y} \leq -2\}$

$$\frac{x-6}{x} \le -2 \iff \frac{x-6}{x} + 2 \le 0 \iff \frac{(x-6)+2x}{x} \le 0 \iff \frac{3x-6}{x} \le 0 \iff$$

$$\iff$$
 $[(3x-6 \ge 0 \land x < 0) \lor (3x-6 \le 0 \land x > 0)] \iff$

$$\iff$$
 $[(3x \ge 6 \land x < 0) \lor (3x \le 6 \land x > 0)] \iff$

$$\iff [(x \ge 2 \land x < 0) \lor (x \le 2 \land x > 0)]$$

Resolución correcta del conjunto $S = \{x \in \mathbb{R}: \frac{x-6}{y} \leq -2\}$

$$\frac{x-6}{x} \le -2 \iff \frac{x-6}{x} + 2 \le 0 \iff \frac{(x-6)+2x}{x} \le 0 \iff \frac{3x-6}{x} \le 0 \iff$$
$$\iff [(3x-6 \ge 0 \land x < 0) \qquad \lor \qquad (3x-6 \le 0 \land x > 0)] \iff$$

$$\iff$$
 $[(3x \ge 6 \land x < 0) \lor (3x \le 6 \land x > 0)] \iff$

$$\iff$$
 $[(x \ge 2 \land x < 0) \lor (x \le 2 \land x > 0)]$

$$S = \{x \in \mathbb{R} : \frac{x-6}{x} \le -2\} = \emptyset \cup (0,2] = (0,2]$$

Ejemplo

Hallar los siguientes conjuntos:

2
$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

3
$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

Ejemplo

Hallar los siguientes conjuntos:

2
$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

3
$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

• Cálculo auxiliar para factorizar $2x^2 + 12x - 14$:

Ejemplo

Hallar los siguientes conjuntos:

2
$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

3
$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

Cálculo auxiliar para factorizar $2x^2 + 12x - 14$:

$$2x^2 + 12x - 14 = 0 \iff x = \frac{-12 \pm \sqrt{(12)^2 - 4 \cdot 2 \cdot (-14)}}{2 \cdot 2} \iff$$

Ejemplo

Hallar los siguientes conjuntos:

2
$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

3
$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

Cálculo auxiliar para factorizar $2x^2 + 12x - 14$:

$$2x^2 + 12x - 14 = 0 \iff x = \frac{-12 \pm \sqrt{(12)^2 - 4 \cdot 2 \cdot (-14)}}{2 \cdot 2} \iff$$

$$\iff x = \frac{-12 \pm \sqrt{144 + 112}}{4} \iff x = \frac{-12 \pm \sqrt{256}}{4} \iff$$

Ejemplo

Hallar los siguientes conjuntos:

$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

$$3 S_3 = \{x \in \mathbb{R}: \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

Cálculo auxiliar para factorizar $2x^2 + 12x - 14$:

$$2x^{2} + 12x - 14 = 0 \iff x = \frac{-12 \pm \sqrt{(12)^{2} - 4 \cdot 2 \cdot (-14)}}{2 \cdot 2} \iff$$
$$\iff x = \frac{-12 \pm \sqrt{144 + 112}}{4} \iff x = \frac{-12 \pm \sqrt{256}}{4} \iff$$
$$x = \frac{-12 \pm 16}{4} \iff x = 1 \lor x = -7$$

Luego

$$2x^2 + 12x - 14 = 2(x-1)(x+7)$$

Luego

$$2x^2 + 12x - 14 = 2(x - 1)(x + 7)$$

Hallemos el conjunto S_1

Luego

$$2x^2 + 12x - 14 = 2(x - 1)(x + 7)$$

Hallemos el conjunto S_1

$$\sqrt[4]{2x^2+12x-14} \in \mathbb{R} \iff \sqrt[4]{2(x-1)(x+7)} \in \mathbb{R} \iff 2(x-1)(x+7) \geq 0 \iff$$

Luego

$$2x^2 + 12x - 14 = 2(x-1)(x+7)$$

Hallemos el conjunto S_1

$$\sqrt[4]{2x^2+12x-14} \in \mathbb{R} \iff \sqrt[4]{2(x-1)(x+7)} \in \mathbb{R} \iff 2(x-1)(x+7) \geq 0 \iff$$

$$\iff (x-1)(x+7) \geq 0 \iff [(x-1 \geq 0 \land x+7 \geq 0) \lor (x-1 \leq 0 \land x+7 \leq 0)] \iff$$

Luego

$$2x^2 + 12x - 14 = 2(x-1)(x+7)$$

Hallemos el conjunto S_1

$$\sqrt[4]{2x^2 + 12x - 14} \in \mathbb{R} \iff \sqrt[4]{2(x - 1)(x + 7)} \in \mathbb{R} \iff 2(x - 1)(x + 7) \ge 0 \iff$$

$$\iff (x - 1)(x + 7) \ge 0 \iff [(x - 1 \ge 0 \land x + 7 \ge 0) \lor (x - 1 \le 0 \land x + 7 \le 0)] \iff$$

$$\iff [(x \ge 1 \land x \ge -7) \quad \lor \quad (x \le 1 \land x \le -7)]$$

Luego

$$2x^2 + 12x - 14 = 2(x - 1)(x + 7)$$

Hallemos el conjunto S_1

Luego

$$2x^2 + 12x - 14 = 2(x-1)(x+7)$$

Hallemos el conjunto S_1

$$\sqrt[4]{2x^2 + 12x - 14} \in \mathbb{R} \iff \sqrt[4]{2(x - 1)(x + 7)} \in \mathbb{R} \iff 2(x - 1)(x + 7) \ge 0 \iff$$

$$\iff (x - 1)(x + 7) \ge 0 \iff [(x - 1 \ge 0 \land x + 7 \ge 0) \lor (x - 1 \le 0 \land x + 7 \le 0)] \iff$$

$$\iff [(x \ge 1 \land x \ge -7) \quad \lor \quad (x \le 1 \land x \le -7)]$$

Luego

$$2x^2 + 12x - 14 = 2(x-1)(x+7)$$

Hallemos el conjunto S_1

$$\sqrt[4]{2x^2+12x-14} \in \mathbb{R} \iff \sqrt[4]{2(x-1)(x+7)} \in \mathbb{R} \iff 2(x-1)(x+7) \geq 0 \iff$$

$$\iff (x-1)(x+7) \ge 0 \iff [(x-1 \ge 0 \land x+7 \ge 0) \lor (x-1 \le 0 \land x+7 \le 0)] \iff$$

$$\iff$$
 $[(x \ge 1 \land x \ge -7) \lor (x \le 1 \land x \le -7)]$

$$S_1 = \{x \in \mathbb{R}: \ \sqrt[4]{2x^2 + 12x - 14} \in \mathbb{R}\} = [1, \ +\infty) \cup (-\infty, -7] = (-\infty, -7] \cup [1, \ +\infty)$$

$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\}$$

$$\sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \iff \frac{1}{(x+1)(x+7)} \in \mathbb{R} \iff (x+1)(x+7) \neq 0$$

$$\sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \iff \frac{1}{(x+1)(x+7)} \in \mathbb{R} \iff (x+1)(x+7) \neq 0$$

Como

$$(x+1)(x+7) = 0 \iff x+1 = 0 \lor x+7 = 0 \iff x = -1 \lor x = -7$$

$$\sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \iff \frac{1}{(x+1)(x+7)} \in \mathbb{R} \iff (x+1)(x+7) \neq 0$$

Como

$$(x+1)(x+7) = 0 \iff x+1 = 0 \lor x+7 = 0 \iff x = -1 \lor x = -7$$

Entonces
$$(x+1)(x+7) \neq 0 \iff x \neq -1 \land x \neq -7$$
, luego

$$\sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \iff \frac{1}{(x+1)(x+7)} \in \mathbb{R} \iff (x+1)(x+7) \neq 0$$

Como

$$(x+1)(x+7) = 0 \iff x+1 = 0 \lor x+7 = 0 \iff x = -1 \lor x = -7$$

Entonces $(x+1)(x+7) \neq 0 \iff x \neq -1 \land x \neq -7$, luego

$$S_2 = \left\{ x \in \mathbb{R} : \sqrt[3]{\frac{1}{(x+1)(x+7)}} \in \mathbb{R} \right\} = \mathbb{R} - \{-7, -1\}$$

$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

$$\frac{1}{\sqrt{x+1}} \in \mathbb{R} \iff$$

$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

$$\frac{1}{\sqrt{x+1}} \in \mathbb{R} \iff x+1 > 0 \iff x > -1$$

$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\}$$

$$\frac{1}{\sqrt{x+1}} \in \mathbb{R} \iff x+1 > 0 \iff x > -1$$

Luego

$$S_3 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}} \in \mathbb{R}\} = (-1, +\infty)$$

Ejercicio

Ejercicio

Sean
$$S_4 = \{x \in \mathbb{R} : \frac{1}{\sqrt{x+1}-1} \in \mathbb{R} \land -(x-7) > 0\}$$
 y

$$S_5 = \left\{x \in \mathbb{R}: \ \frac{\sqrt[4]{2x^2+12x-14}}{\sqrt[3]{(x+1)(x+7)}} \in \mathbb{R}\right\}. \ \textit{Considerar los conjuntos S_1, S_2 y S_3 del}$$

ejemplo anterior, para hallar el valor de verdad de las siguientes proposiciones. Justificar los razonamientos.

$$S_5 = (S_1 \cap S_2) \cup \{-7, -1\}$$

