Artificial vision and pattern recognition 3D Vision

Introduction

Main problem: estimate 3D properties from 2D images (the human eye-brain system itself may not be reliable)

Introduction

• Estimate:

Geometry (shape, position, orientation, ...)

- Dynamics (speed, path)
- and sometimes try to recognize objects

 But the human eye-brain system gets informations from other sources...

Recognition clues

Binocular vision (link: Lenticulations)

 HUGE knowledge base (context, components, ...)

Recognition clues

Major problems

- Why is it difficult to recognize an object?
 - Shape changes due to different viewpoints
 - Color changes due to different illumination
 - Occlusions / Noise
 - Scale / Non-linear deformations
 - Background complexity
 - Intra-class variation
- Goal: find an invariant description of objects (using constraints to limit complexity)

Practical considerations

- Sometimes life is made easier by calibration:
 - Rely on informations obtained from the camera which took the picture (EXIF)
 - A reliable calibration object (eg a cube, a gnomon...) is placed somewhere in the scene

 Calibration helps to recover parameters of the camera (relative distance, orientation, Field Of View, ...)

A 2D image from a 3D scene

 Useful informations (which ones?) are lost because of perspective projection

- A simple projection model :
 - C=(0,0,0) is the center of projection and F is the focal length (ie distance from C to the image plane)
 - A point (X, Y,Z) appears at position (x1,y1) on the screen, with: x1=fX/Z, y1=fY/Z

Shape from X

- From a single image, try to automatically infer the shape of an object from different aspects
- Actually the shape can be described from different parameters:
 - Depth
 - Surface normal
 - A set of contours

– ...

- The color of a pixel
 depends on the
 reflectance of the
 corresponding point
 on a surface
- Phong shading model (R: reflection vector):

- Useful assumptions:
 - One light only
 - Constant parameters can be set to default values
- Goal: estimate surface orientation (ie vector n)

 Non-specular surfaces Specular surfaces

 Non-specular surfaces

Specular surfaces

M1 – Introduction au traitement numérique d'images – Benoit.Crespin@unilim.fr

Shape from texture

- Various sizes, orientations, degrees of uniformity, ...
- Different approaches (FFT, autocorrelation, ...)

Can also help to find surface orientation

Shape from stereo

 Try to determine the relative depth corresponding to each pixel by matching two neighbouring images (no moving objects)

Shape from structured lighting

 Use a lighting pattern to determine the shape by estimating deformations of this pattern

Shape from silhouette

- Two steps:
 - Silhouette extraction
 - Posture interpretation

Video (accv2007)

Optical flow

- Try to determine the motion of each pixel in an image sequence (fixed camera)
- Assume very small displacements and lighting variations between successive images
- Videos

Optical flow interpretation

Bag-of-Words model

 Analogy with document statistics: a given text can be classified by considering words occurrences only

Combining words and structures

 Components may have structural (spatial) relationships, represented by graphs

Applications

Position estimation w webcam

Augmented Reality with ocean waves

