Indice

1	Lezione 1 - Napoli			
	1.1	Introduzione	2	
2	Lezi	ione $3 - 01/10/2025$	3	
	2.1	Matrice Trasposta	3	
		Prodotto Scalare		
	2.3	Matrice Conformabile	3	
	2.4	Prodotto Riga per Colonna	4	
	2.5	Sistema Lineare	4	

Capitolo 1

Lezione 1 - Napoli

1.1 Introduzione

Contenuto della prima lezione.

Capitolo 2

Lezione 3 - 01/10/2025

2.1 Matrice Trasposta

Definizione (Matrice Trasposta)

Sia $A \in M_{m,n}(K)$. La trasposta di A, denotata tA , è la matrice del tipo [n,m] che come righe ha le colonne di A.

$${}^{t}A = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} \in M_{n,m}(K), \text{ ottenuta scambiando righe e colonne di } A.$$

2.2 Prodotto Scalare

Definizione (Prodotto scalare)

Sia $K = \mathbb{R}$ e siano due vettori $\mathbf{a} = (a_1, a_2, \dots, a_n), \mathbf{b} = (b_1, b_2, \dots, b_n) \in K^n$.

Il **prodotto scalare** è la funzione

$$K^n \times K^n \longrightarrow K$$
, $(\mathbf{a}, \mathbf{b}) \longmapsto a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \langle \mathbf{a}, \mathbf{b} \rangle$,

che associa la coppia di vettori ad uno scalare, dato dalla somma delle componenti omonime dei due vettori.

2.3 Matrice Conformabile

Definizione (Matrice Conformabile)

Due matrici $A \in M_{m,n}(K)$ e $B \in M_{p,q}(K)$ si dicono **conformabili** per il prodotto se e solo se il numero di colonne di A è uguale al numero di righe di B, cioè n = p. In tal caso, il prodotto AB è definito ed è una matrice di dimensione $m \times q$.

Esempio: Siano

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \in M_{3,2}(K), \quad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \in M_{2,3}(K).$$

Allora A e B sono conformabili e

$$AB = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 10 & 1 \cdot 8 + 2 \cdot 11 & 1 \cdot 9 + 2 \cdot 12 \\ 3 \cdot 7 + 4 \cdot 10 & 3 \cdot 8 + 4 \cdot 11 & 3 \cdot 9 + 4 \cdot 12 \\ 5 \cdot 7 + 6 \cdot 10 & 5 \cdot 8 + 6 \cdot 11 & 5 \cdot 9 + 6 \cdot 12 \end{bmatrix} \in M_{3,3}(K).$$

2.4 Prodotto Riga per Colonna

Definizione (Prodotto Riga Per Colonna)

Siano $A \in M_{m,n}(K)$ e $B \in M_{n,p}(K)$. Il prodotto di una riga *i*-esima di A per una colonna *j*-esima di B è definito come la somma dei prodotti delle componenti corrispondenti:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

In altre parole, per ottenere l'elemento in posizione (i, j) del prodotto AB, si moltiplicano elemento per elemento la riga i di A con la colonna j di B e si sommano i risultati.

Esempio: Siano

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}.$$

Allora

$$(AB)_{11} = 1 \cdot 7 + 2 \cdot 9 + 3 \cdot 11 = 58, \quad (AB)_{12} = 1 \cdot 8 + 2 \cdot 10 + 3 \cdot 12 = 68,$$

e così via per gli altri elementi del prodotto.

2.5 Sistema Lineare

Definizione (Sistema Lineare)

Siano $m, n \in \mathbb{N}$, e sia K un campo. Un **sistema lineare** di m equazioni in n incognite x_1, x_2, \ldots, x_n su un campo K è un insieme di m equazioni del tipo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n - b_1 = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n - b_2 = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n - b_m = 0 \end{cases}$$

In forma compatta, un sistema lineare può essere scritto come:

$$A\mathbf{x} = \mathbf{b}$$

dove:

- $A \in M_{m,n}(K)$ è la matrice dei coefficienti;
- $\mathbf{x} \in K^n$ è il vettore incognite;
- $\mathbf{b} \in K^m$ è il vettore dei termini noti.

Osservazione: Soluzioni di un sistema lineare

L'insieme delle soluzioni di un sistema lineare è dato da

 S_1 soluzioni della prima equazione $E_1(x)$

 S_2 soluzioni della seconda equazione $E_2(x)$

. . .

 S_m soluzioni della m-esima equazione $E_m(x)$

Noi siamo interessati a

$$S = \bigcap_{i=1}^{m} S_i,$$

ovvero l'intersezione di tutte le soluzioni del sistema.

Definizione (Compatibilità di un sistema lineare)

Un sistema lineare \mathcal{E} si dice **compatibile** se ammette almeno una soluzione, ossia se l'insieme delle soluzioni è diverso dal vuoto.

Altrimenti se $S = \emptyset$, allora il sistema si dice **incompatibile**.

Definizione (Matrice completa e incompleta)

Dato un sistema lineare $\mathcal E$ si distinguono due matrici:

• La matrice incompleta (o matrice dei coefficienti) di un sistema lineare contiene solo i coefficienti delle incognite.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

• La matrice completa (o matrice dei coefficienti estesa) si ottiene aggiungendo a quella incompleta una colonna aggiuntiva con i termini noti del sistema.

$$C = (A \mid \mathbf{b}) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Esempi di matrici complete e incomplete

Consideriamo due sistemi lineari in due incognite x_1, x_2 .

• Sistema omogeneo \mathcal{E}_0 (con termini noti nulli):

$$\mathcal{E}_0: \begin{cases} 3x_2 - x_2 + 2x_4 = 0\\ x_1 + x_2 + 2x_3 = 0 \end{cases}$$

- Matrice incompleta:

$$A = \begin{bmatrix} 0 & 3 & -1 & 2 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$

• Sistema non omogeneo \mathcal{E} (con termini noti $\neq 0$):

$$\mathcal{E}: \begin{cases} 3x_2 - x_2 + 2x_4 - 3 = 0 \\ x_1 + x_2 + 2x_3 + 5 = 0 \end{cases}$$

- Matrice completa:

$$A = \begin{bmatrix} 0 & 3 & -1 & 2 & | & -3 \\ 1 & 1 & 2 & 0 & | & 5 \end{bmatrix}$$

5