Summary

Introduction

Justifications

Foundations

Application

Conclusion & References

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

BIOLOGICAL ADAPTATION IN SPACE WITH ORIENTT AR

- Space travel requires a certain period of physical adjustment to microgravity environments.
- Once in orbit or beyond, astronauts experience disorientation due to their weightlessness and a lack of gravitational reference ^[1]
- With periods of disorientation lasting upwards of two weeks^[2], this and related ailments affect performance in space
- NASA pays \$172,600 / day per astronaut^[3], so the costs of unproductivity adds up quickly
- Current solutions are either mechanically obtrusive or physiologically unfavorable
- Combining lightweight devices with a large data storage capacity can provide a compact alternative for eliminating disorientation and related symptoms in space

OrienttAR is a mobile solution using biofeedback and augmented reality

- LiDAR: infrared technology that provides a 3D mapping of space inside the a space vehicle like the ISS, which lines or grids can be visually projected onto
- EEG and EMG Biofeedback
 - Use an individual's brain waves as a baseline for comparison between gravity vs non-gravity environments
 - EEG and EMG real-time readings while in space can be used to compare signal periods at baseline on earth
 - The neural signal baseline will include variable orientations on earth
- Integrate EEG biofeedback with an Augmented Reality (AR) app that serves as a visual aid for orientation
- Perform visual tasks using the AR app that track progress

Connect with me on Ro:

Summary

Introduction

Justifications

Foundations

Application

Conclusion & References

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

THE PROBLEM

Astronauts experience disorientation due to their weightlessness and a lack of gravitational reference [4]

- Induces "space motion sickness" in a similar manner to car sickness
 - Currently, astronauts use antihistamines, anticholinergics, and antimuscarinics to counterbalance these symptoms, which can have physiological side effects [5] [6]
- May interfere with spatial perceptions during critical tasks
- Impedes productivity, up to 2 weeks^[7]

THE SOLUTION

A biofeedback device that uses LiDAR and EEG to improve localization and orientation in microgravity environments.

- Use an individual's brain waves as a baseline for comparison between gravity vs non-gravity environments
- Integrate EEG biofeedback with an Augmented Reality (AR) app that serves as a visual aid for orientation
- Perform visual tasks using the AR app that track progress

Connect with me on Ro:

Summary

Introduction

Justifications

Foundations

Application

Conclusion & References

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

PHYSIOLOGICAL BENEFITS

- Measurable improvements in orientation
- A lower incidence of space sickness, its symptoms and its consequences
- A reduction in physiological and psychological stressors

PROJECT JUSTIFICATIONS

- Studies and applications already combine EEG and AR [8]
- EEG devices are best used for measuring focus/concentration, and earth pilots already use focus techniques to re-orient themselves^[9]
- EEG devices are already used in space^[10]
 - However, existing EEG technology is heavy and bulky a disadvantage when space and cargo on the ISS is at a premium

TECHNICAL JUSTIFICATIONS

- Bluetooth's frequency was built to minimize interference in the 2.4GHz band
- Bluetooth it's near field communication and the ISS has little environmental noise^[11]
- Collecting individual EEG signals can provide a baseline for comparison
- EEG data can be successfully collected from consumer-grade devices^[12]
 - Similar quality to the gold-standards in medicine
 - More cost-effective and efficient
 - Much lighter and portable
 - ideal for space travel

Connect with me on Ro:

Summary

Introduction

Justifications

Foundations

Application

Conclusion & References

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

An individual's brain waves can be used as a baseline for comparison between gravity vs non-gravity environments

Sitting VS laying down (90 degree difference):

Sitting:

Laying down:

Source: MuseLab, raw EEG

- Signal differences between degrees of orientation can be comparatively measured
- Multiple trials are required to reach a reliable baseline

Connect with me on Ro:

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

Summary

Introduction

Foundations

Justifications

Application

Conclusion & References

Connect with me on Ro:

USING AR AND EEG TO TRAIN THE BRAIN

- With a superimposed grid, you can focus on an object (i.e., a box) in your line of sight
- When brainwaves match that of previous states of stable orientation and localization, the box moves
- See real-time brainwaves to help with awareness of feedback

Summary

Introduction

Foundations

Justifications

Application

Conclusion & References

OrienttAR:

Neurotech and AR for the Space Age

Using LiDAR and EEG to improve localization and orientation in microgravity environments

Alex Higuera

CONCLUSION

Biofeedback and AR applications like OrienttAR can help alleviate adverse physiological conditions encountered while traveling in space. It provides a low cost and lightweight solution to space motion sickness. More research is needed to determine its efficacy.

REFERENCES

- [1] Oman, Charles M. "Space Motion Sickness and Vestibular Experiments in Spacelab." SAE Transactions, vol. 91, 1982, pp. 2839–2859. JSTOR, www.jstor.org/stable/44644291.
- [2] Dr. Sheyna Gifford, former Chief Medical Officer at NASA
- [3] Jones, Erick. Quality Management for Organizations Using Lean Six Sigma Techniques. 2014
- [4] Oman, Charles M. "Space Motion Sickness and Vestibular Experiments in Spacelab." SAE Transactions, vol. 91, 1982, pp. 2839–2859. JSTOR, www.jstor.org/stable/44644291.
- [5] Dr. Sheyna Gifford, former Chief Medical Officer at NASA
- [6] Gray SL, Anderson ML, Dublin S, et al. Cumulative Use of Strong Anticholinergics and Incident Dementia: A Prospective Cohort Study. JAMA Intern Med. 2015;175(3):401–407. doi:10.1001/jamainternmed.2014.7663
- [7] Dr. Sheyna Gifford, former Chief Medical Officer at NASA
- [8] J. Mercier-Ganady, F. Lotte, E. Loup-Escande, M. Marchal, A. Lécuyer, "The mind-mirror: See your brain in action in your head using eeg and augmented reality", Virtual Reality (VR) 2014 iEEE, pp. 33-38, 2014.
- [9] Ingrid Centurion, Pilot and Chief Marketing Officer at Lunar Station Corp
- [10] Effect of Gravitational Context on EEG Dynamics: A Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration (Neurospat) 09.26.18
- [11] Miller, Robert. NASA Bluetooth Wireless Communications. 2007.
- [12] Ratti E, Waninger S, Berka C, Ruffini G, Verma A. Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials. Front Hum Neurosci. 2017;11:398. Published 2017 Aug 3. doi:10.3389/fnhum.2017.00398

Connect with me on Ro:

