Quantum Theory - Worksheet 8

Problem 1

- (a) Consider two operators, \hat{A} and \hat{B} . Explain why it is generally *not* the case that $\exp(\hat{A}) \exp(\hat{B}) = \exp(\hat{A} + \hat{B})$ if \hat{A} and \hat{B} do *not* commute. (Note: $\exp(\hat{A}) \exp(\hat{B}) = \exp(\hat{A} + \hat{B})$ if \hat{A} commutes with \hat{B} ; however, you are not asked to prove this.)
- (b) Recall that the evolution operator $\hat{U}(t,t_0)$ for a time-independent Hamiltonian \hat{H} is given by the equation

$$\hat{U}(t, t_0) = \exp[-i\hat{H}(t - t_0)/\hbar].$$
 (1)

This equation can also be written as

$$\hat{U}(t, t_0) = \exp\left(-\frac{i}{\hbar} \int_{t_0}^t \hat{H} \, \mathrm{d}t\right). \tag{2}$$

One might think that Eq. (2) generalizes to

$$\hat{U}(t, t_0) = \exp\left(-\frac{i}{\hbar} \int_{t_0}^t \hat{H}(t) \,dt\right)$$
 (3)

in the case of a time-dependent Hamiltonian. Show, to the contrary, that Eq. (3) does not give the evolution operator for $\hat{H}(t)$ if there is a time t_1 for which the operators

$$\int_{t_0}^{t_1} \hat{H}(t) dt \quad \text{and} \quad \int_{t_1}^{t} \hat{H}(t) dt$$

do not commute. [Hints: (1) Remember that $\hat{U}(t,t_0) = \hat{U}(t,t_1)\hat{U}(t_1,t_0)$. (2) Don't be confused by the notation: In Eq. (1), $\hat{H}(t-t_0)$ means \hat{H} multiplied by $(t-t_0)$, while in Eq. (3) the (t) indicates that the Hamiltonian is a function of t.]

Problem 2

Consider a 1D system in a state $|\psi\rangle$ represented by a wave function $\psi(x)$ in the position representation and by a wave function $\phi(p)$ in the momentum representation. From general results,

$$\phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \psi(x) \exp(-ipx/\hbar) \, \mathrm{d}x,$$
$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \phi(p) \exp(ipx/\hbar) \, \mathrm{d}p.$$

(a) The position and momentum operators \hat{Q} and \hat{P} acting on ket vectors are represented by different operators in these two representations, i.e., by the operators $x_{\rm p}$ and $p_{\rm p}$ in the position representation and by the operators $x_{\rm m}$ and $p_{\rm m}$ in the momentum representation. Thus $x_{\rm p}$ is the operator which, when acting on a wave function $\psi(x)$, multiplies it by x, and $p_{\rm m}$ is the operator which, when acting on a wave function $\phi(p)$, multiplies it by p: $x_{\rm p}\psi(x)=x\psi(x)$ and $p_{\rm m}\phi(p)=p\phi(p)$. Likewise,

the ket vector $\hat{P}|\psi\rangle$ is represented by the function $p_{\rm p}\psi(x)$ in the position representation and by the function $p_{\rm m}\phi(p)$ in the momentum representation. Now, note that

$$\begin{split} p_{\mathrm{p}}\psi(x) &= \frac{1}{\sqrt{2\pi\hbar}} \, \int_{-\infty}^{\infty} [p_{\mathrm{m}}\phi(p)] \exp(ipx/\hbar) \, \mathrm{d}p \\ &= \frac{1}{\sqrt{2\pi\hbar}} \, \int_{-\infty}^{\infty} p \, \phi(p) \exp(ipx/\hbar) \, \mathrm{d}p \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \phi(p) \, \frac{\hbar}{i} \, \frac{\mathrm{d}}{\mathrm{d}x} \exp(ipx/\hbar) \, \mathrm{d}p \\ &= \frac{1}{\sqrt{2\pi\hbar}} \, \frac{\hbar}{i} \, \frac{\mathrm{d}}{\mathrm{d}x} \int_{-\infty}^{\infty} \phi(p) \exp(ipx/\hbar) \, \mathrm{d}p \\ &= -i\hbar \, \frac{\mathrm{d}}{\mathrm{d}x} \psi(x). \end{split}$$

Hence, the momentum operator in the position representation, $p_{\rm p}$, is $-i\hbar\,\mathrm{d}/\mathrm{d}x$. Show that the position operator in the momentum representation, $x_{\rm m}$, is $i\hbar\,\mathrm{d}/\mathrm{d}p$.

(b) Show that

$$\begin{split} \frac{1}{\sqrt{2\pi\hbar}} \, \int_{-\infty}^{\infty} \left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi(x) \right] \, \exp(-ipx/\hbar) \, \mathrm{d}x \\ &= -\frac{1}{\hbar^2} \, p^2 \phi(p). \end{split}$$

[Hint: Integrate by parts, assuming that $\psi(x)$ and its derivatives go to zero for $x \to \pm \infty$.]

Hence, show that if

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V(x)\psi(x) = E\psi(x),\tag{4}$$

then

$$\frac{p^2}{2m}\phi(p) + \int_{-\infty}^{\infty} \tilde{V}(p-p')\,\phi(p')\,\mathrm{d}p' = E\phi(p)$$

with

$$\tilde{V}(p-p') = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} V(x) \exp[-i(p-p')x/\hbar] \,\mathrm{d}x.$$

This result shows that a Schrödinger equation such as Eq. (4), which is a differential equation, becomes an integral equation in the momentum representation (i.e., an equation relating the dependent variable, $\phi(p)$ here, to an integral involving that function).

Problem 3

Let $\hat{A}' = \hat{U}\hat{A}\hat{U}^{\dagger}$, where \hat{U} is a unitary operator.

- (a) Show that the operator \hat{A}' is Hermitian if the operator \hat{A} is Hermitian.
- (b) Show that the operators \hat{A}' and \hat{A} have the same eigenvalues.