Genetic Matching

Multivariate Matching

Genetic Matching

Genetic Matching

October 28, 2012

Genetic Matching

- Two tasks for matching inference (again):
 - Create the matched strata to eliminate bias (imbalance)
 - 2. Do these matches look comparable?

• Match on Multivariate X in k dimensions, X_k

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property
- Limitations of Mahalanobis Matching

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property
- Limitations of Mahalanobis Matching
 - Non-Ellipsoidal X (dichotomous, log, etc)

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property
- Limitations of Mahalanobis Matching
 - Non-Ellipsoidal X (dichotomous, log, etc)
 - Ellipsoidal finite data

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property
- Limitations of Mahalanobis Matching
 - Non-Ellipsoidal X (dichotomous, log, etc)
 - Ellipsoidal finite data
 - Nonlinear Reductions in Bias

- Match on Multivariate X in k dimensions, X_k
- Use Mahalanobis Distances
 - Equal Percent Bias Reduction (EPBR) property
- Limitations of Mahalanobis Matching
 - Non-Ellipsoidal X (dichotomous, log, etc)
 - Ellipsoidal finite data
 - Nonlinear Reductions in Bias
 - "Prioritized" Reduction in Bias

Do Matches Look Comparable

- Balance tautology
 - Propensity score is a balancing score on X
 - Obtaining balance on X is the goal of matching

Do Matches Look Comparable

- Balance tautology
 - Propensity score is a balancing score on X
 - Obtaining balance on X is the goal of matching
- Genetic Matching incorporates balancing directly in the algorithm
 - Generalizing Mahalanobis matching
 - Prioritizes differences on certain covariates
 - Optimizes matching for some target: balance on X_p

Mahalanobis Matching

Define a multivariate distance on X between i and i:

$$md(X_i, X_j) = \left\{ (X_i - X_j)^T S^{-1} (X_i - X_j) \right\}^{\frac{1}{2}}$$

Mahalanobis Matching

• Define a multivariate distance on X between i and j:

$$md(X_i, X_j) = \left\{ (X_i - X_j)^T S^{-1} (X_i - X_j) \right\}^{\frac{1}{2}}$$

- Note that S is the sample covariance matrix of X
 - Normalize the distances
 - Gives equal (normalized) weight to each covariate in X

Multivariate Matching

Weighted Mahalanobis Matching

• Some covariates may be more important than others

- Some covariates may be more important than others
- Intuitively, we already weight covariates either at 0 or 1 in measuring $md(X_i, X_j)$

- Some covariates may be more important than others
- Intuitively, we already weight covariates either at 0 or 1 in measuring $md(X_i, X_i)$
- Define X_p as a full matrix of covariates and X_k as the k-dimensional matrix we match on, where k < p

- Some covariates may be more important than others
- Intuitively, we already weight covariates either at 0 or 1 in measuring $md(X_i, X_i)$
- Define X_p as a full matrix of covariates and X_k as the k-dimensional matrix we match on, where k < p
- Let \tilde{w} be a vector of weights so that:

$$\tilde{w} = \{w_1 = 1, w_2 = 1, ..., w_k = 1, w_{k+1} = 0, ..., w_p = 0\}$$

Multivariate Matching

Genetic Matching • Generalize this weighting in a flexible way

$$\tilde{\mathbf{w}} \in \{\underline{\mathbf{w}}, \bar{\mathbf{w}}\}$$

Generalize this weighting in a flexible way

$$\tilde{w} \in \{\underline{w}, \bar{w}\}$$

Incorporate these weights in W to rescale unit distances

$$wmd(X_i, X_j) = \left\{ (X_i - X_j)^T (S^{-\frac{1}{2}})^T W(S^{-\frac{1}{2}})(X_i - X_j) \right\}^{\frac{1}{2}}$$

Generalize this weighting in a flexible way

$$\tilde{w} \in \{\underline{w}, \bar{w}\}$$

Incorporate these weights in W to rescale unit distances

$$wmd(X_i, X_j) = \left\{ (X_i - X_j)^T (S^{-\frac{1}{2}})^T W(S^{-\frac{1}{2}})(X_i - X_j) \right\}^{\frac{1}{2}}$$

• W is a $k \times k$ positive definite weight matrix, with \tilde{w} the diagonal elements (usually 0 in the off-diagonals)

Generalize this weighting in a flexible way

$$\tilde{w} \in \{\underline{w}, \bar{w}\}$$

Incorporate these weights in W to rescale unit distances

$$wmd(X_i, X_j) = \left\{ (X_i - X_j)^T (S^{-\frac{1}{2}})^T W(S^{-\frac{1}{2}})(X_i - X_j) \right\}^{\frac{1}{2}}$$

- W is a $k \times k$ positive definite weight matrix, with \tilde{w} the diagonal elements (usually 0 in the off-diagonals)
- $S^{-\frac{1}{2}}$ is the cholesky decomposition of S sample covariance matrix

$$(S^{-\frac{1}{2}})^T(S^{-\frac{1}{2}}) = S$$

Genetic Matching • Suppose we have $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Genetic

• Suppose we have $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Then:

$$wmd(X_i, X_j) = \{(X_i - X_j)^T W(X_i - X_j)\}^{\frac{1}{2}}$$
$$= \{w_1(x_{1i} - x_{1j})^2 + w_2(x_{2i} - x_{2j})^2\}^{\frac{1}{2}}$$

Genetic

• Suppose we have $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Then:

$$wmd(X_i, X_j) = \{(X_i - X_j)^T W(X_i - X_j)\}^{\frac{1}{2}}$$
$$= \{w_1(x_{1i} - x_{1j})^2 + w_2(x_{2i} - x_{2j})^2\}^{\frac{1}{2}}$$

• Suppose we have $\mathit{x}_1 \sim \mathit{N}(\mu_1,1)$ and $\mathit{x}_2 \sim \mathit{N}(\mu_2,1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Then:

$$wmd(X_i, X_j) = \{(X_i - X_j)^T W(X_i - X_j)\}^{\frac{1}{2}}$$
$$= \{w_1(x_{1i} - x_{1j})^2 + w_2(x_{2i} - x_{2j})^2\}^{\frac{1}{2}}$$

• If $2w_1 = w_2$

• Suppose we have $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Then:

$$wmd(X_i, X_j) = \{(X_i - X_j)^T W(X_i - X_j)\}^{\frac{1}{2}}$$
$$= \{w_1(x_{1i} - x_{1j})^2 + w_2(x_{2i} - x_{2j})^2\}^{\frac{1}{2}}$$

• If $2w_1 = w_2$

$$= \left\{ w_1(x_{1i} - x_{1j})^2 + 2w_1(x_{2i} - x_{2j})^2 \right\}^{\frac{1}{2}}$$

• Suppose we have $x_1 \sim N(\mu_1, 1)$ and $x_2 \sim N(\mu_2, 1)$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Then:

$$wmd(X_i, X_j) = \{(X_i - X_j)^T W(X_i - X_j)\}^{\frac{1}{2}}$$
$$= \{w_1(x_{1i} - x_{1j})^2 + w_2(x_{2i} - x_{2j})^2\}^{\frac{1}{2}}$$

• If
$$2w_1 = w_2$$

$$= \left\{ w_1(x_{1i} - x_{1j})^2 + 2w_1(x_{2i} - x_{2j})^2 \right\}^{\frac{1}{2}}$$

$$\approx \left\{ (x_{1i} - x_{1j})^2 + \frac{2}{2}(x_{2i} - x_{2j})^2 \right\}^{\frac{1}{2}}$$

Example: Big Points

 Weighting rescales (upweights) relative differences on some covariates over other differences

Example: Big Points

- Weighting rescales (upweights) relative differences on some covariates over other differences
- Affine Invariant Matching
 - Divide all weights by w_1 , affine transformation of wmd
 - Matching on (1) and (2) results in the same matches

Example: Big Points

- Weighting rescales (upweights) relative differences on some covariates over other differences
- Affine Invariant Matching
 - Divide all weights by w_1 , affine transformation of wmd
 - Matching on (1) and (2) results in the same matches
- How do we choose the weights \tilde{w} ?

Genetic Matching

Evolutionary Algorithm to Select Weights

• The relevent task is to identify the *k* weights

Evolutionary Algorithm to Select Weights

- The relevent task is to identify the *k* weights
- Pick weights to minimizes differences on X_p across treated and control units after matching

Evolutionary Algorithm to Select Weights

- The relevent task is to identify the *k* weights
- Pick weights to minimizes differences on X_p across treated and control units after matching
- Genetic Matching
 - Evolutionary algorithm to optimize weights over multiple 'generations'
 - Optimize means reduces imbalance on included X covariates

Genetic Matching

- T is treatment vector
- X_k is covariates for matching ("Match Matrix")
- X_p is covariates for balancing ("Balance Matrix")
- Note: X_p can include any, all or none of X_k

- At starting generation g_0 :
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$

Genetic Matching

- At starting generation g_0 :
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances

- At starting generation g_0 :
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs
 - 4. Select the m^{th} weights (\tilde{w}_0^m) that maximizes $\mathbb{B}_0(s)$

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs
 - 4. Select the m^{th} weights (\tilde{w}_0^m) that maximizes $\mathbb{B}_0(s)$
- At next generation g_1 to g_n :

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs
 - 4. Select the m^{th} weights (\tilde{w}_0^m) that maximizes $\mathbb{B}_0(s)$
- At next generation g_1 to g_n :
 - 5. Retain \tilde{w}_{t-1}^m as the best starting value from g_{t-1}

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs
 - 4. Select the m^{th} weights (\tilde{w}_0^m) that maximizes $\mathbb{B}_0(s)$
- At next generation g_1 to g_n :
 - 5. Retain \tilde{w}_{t-1}^m as the best starting value from g_{t-1}
 - 6. Repeat steps 2 to 4 from above, maximizing $\mathbb{B}_t(s)$ at each step

- At starting generation g₀:
 - 1. Select starting \tilde{w}_0
 - 2. Devise *m* weight vectors using evolutionary 'string' operators (called 'populations')
 - 3. For each weight vector:
 - a. Compute $wmd(X_k, \tilde{w}_0)$
 - b. Match *i* treated to *j* control units using $wmd(X_{ki}, X_{kj}\tilde{w}_0)$ distances
 - c. Compute a balance metric $\mathbb{B}_0(s)$, a function of all s matched pairs
 - 4. Select the m^{th} weights (\tilde{w}_0^m) that maximizes $\mathbb{B}_0(s)$
- At next generation g_1 to g_n :
 - 5. Retain \tilde{w}_{t-1}^m as the best starting value from g_{t-1}
 - 6. Repeat steps 2 to 4 from above, maximizing $\mathbb{B}_t(s)$ at each step
 - 7. Stop by user control or once no more 'fitness' gains over last few generations

Why Genetic Matching

- ullet Can incorporate a propensity score, orthogonalizing X
 - GenMatch approaches the propensity score if correct, but with lower mean square error
- Loss function minimizes the maximum discrepancy
 - User can pass any desired loss function of X_p after matching
- When EPBR fails GenMatch reliably reduces imbalances on included covariates
- But...design trumps analysis
 - Why trust the ignorability assumption?
 - Balance checks?
 - Placebo tests?

