E. Petya and Rectangle

time limit per test: 5 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Little Petya loves playing with rectangles. Mom bought Petya a rectangle divided into cells $n \times m$ in size (containing n rows, m columns). Petya marked two different cells of the rectangle and now he is solving the following task:

Let's define a <u>simple path</u> between those two cells as a sequence of distinct cells $a_1, a_2, ..., a_k$, where a_1 and a_k are the two marked cells. Besides, a_i and a_{i+1} are side-neighboring cells of the path $(1 \le i \le k)$. Let's denote the path length as number k (the sequence length).

Petya's task is to find the longest simple path's length and to print the path. Help him.

Input

The first line contains space-separated integers n and m ($4 \le n, m \le 1000$) — the number of rows and the number of columns in the rectangle, correspondingly. The second line contains space-separated integers x_1 and y_1 — the coordinates of the first marked cell. The third line contains space-separated integers x_2 y_2 — the coordinates of the second marked cell ($1 \le x_1, x_2 \le n, 1 \le y_1, y_2 \le m, x_1 \ne x_2, y_1 \ne y_2$).

The coordinates of a marked cell are a pair of integers x y, where x represents the row's number and y represents the column's number. The rows are numbered from top to bottom with consecutive integers from 1 to n. The columns are numbered from the left to the right by consecutive integers from 1 to m.

It is guaranteed that the marked cells are not positioned in one row or column.

Output

In the first line print the length of the found path — k. In the next lines print k pairs of integers, one per line — coordinates of the cells that constitute the found path in the order, in which they follow in the path (the path must go from cell (x_1, y_1) to cell (x_2, y_2)). If there are several solutions, print any of them.

Examples

input
1 4
2 2 3 3
; 3
output
15 2
. 2
. 2
1 1
2 1 3 1
1
1 2
1 3
1 4 3 4
2
1 3
2 3
3 3

Note

The statement test is described in the picture: