Planing, Learning and Intelligent Decision Making - Homework 4

99326 - Sebastião Carvalho, 99331 - Tiago Antunes March 17, 2024

Contents

1	Question 1
	1 a)
	1 b)
	1 c)

1 Question 1

1 a)

To find the equilibrium points for the o.d.e (2), we need to solve the following equation:

$$\dot{J} = 0 \Leftrightarrow \mathbb{E}_{\pi}[c_t + (\gamma - 1)J] = 0 \Leftrightarrow \mathbb{E}_{\pi}[c_t] + (\gamma - 1)\mathbb{E}_{\pi}[J] = 0$$
Since $\mathbb{E}_{\pi}[c_t] = c_{\pi}$,
$$c_{\pi} = (1 - \gamma)\mathbb{E}_{\pi}[J] \Leftrightarrow \mathbb{E}_{\pi}[J] = \frac{c_{\pi}}{1 - \gamma}$$

Since $\mathbb{E}_{\pi}[J^{\pi}] = J^{\pi}$, and $J^{\pi} = \frac{c_{\pi}}{1-\gamma}$, we have that $\mathbb{E}_{\pi}[J] = \mathbb{E}_{\pi}[J^{\pi}] = J^{\pi}$, so the equilibrium point is J^{π} .

1 b)

$$\begin{split} \dot{E}_t &= \frac{d}{dt} \frac{1}{2} \left(J^{(t)} - \mathbf{J}^{\pi} \right)^2 \\ &= \frac{1}{2} \frac{d}{dt} \left(J^{(t)} - \mathbf{J}^{\pi} \right)^2 \\ &= \frac{1}{2} 2 \left(J^{(t)} - \mathbf{J}^{\pi} \right) \frac{d}{dt} \left(J^{(t)} - \mathbf{J}^{\pi} \right) \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \dot{J} \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \mathbb{E}_{\pi} [c_t + (\gamma - 1)J] \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \left(\mathbb{E}_{\pi} [c_t + (\gamma - 1)J] - \dot{\mathbf{J}}^{\pi} \right) \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \left(\mathbb{E}_{\pi} [c_t + (\gamma - 1)J] - (c_{\pi} + (\gamma - 1)\mathbf{J}^{\pi}) \right) \\ &= \left(J^{(t)} - \mathbf{J}^{\pi} \right) \left(\mathbb{E}_{\pi} [c_t] + (\gamma - 1) \mathbb{E}_{\pi} [J] - c_{\pi} - (\gamma - 1) \mathbf{J}^{\pi} \right) \end{split}$$

$$= (J^{(t)} - J^{\pi}) (c_{\pi} + (\gamma - 1) \mathbb{E}_{\pi}[J] - c_{\pi} - (\gamma - 1) J^{\pi})$$

= $(\gamma - 1) (J^{(t)} - J^{\pi}) (\mathbb{E}_{\pi}[J] - J^{\pi})$

1 c)

The result obtained in (b) suggests that the energy is always decreasing as we move foward in time, unless $J^{(t)} = J^{\pi}$, at which point the derivative is 0, meaning that the value will not change. Given its equation and that the energy is only 0 if $J^{(t)} = J^{\pi}$, we conclude that $J^{(t)}$ converges to J^{π} until they're equal, and then it will permanently stay equal. Knowing that in this case, the state $\mathcal{X} = \{x\}$, we can conclude that if the states are visited infinitely often, the TD(0) algorithm converges to J^{π} , for any $\gamma \in [0,1]$.