RAPPEL: f est une fonction définie sur un intervalle I, a et a+h appartiennent à $I(h \neq 0)$.

f est dite **dérivable en** a lorsque $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ tend vers un réel ℓ .

On note alors $\ell = f'(a)$. f'(a) s'appelle **nombre dérivé de** f **en** a.

Introduction

- **1)** Considérons la fonction f définie sur \mathbb{R} par $f(x) = x^2 5$. Etudier la dérivabilité de la fonction f en a = 3.
- **2)** Considérons la fonction g définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. Etudier la dérivabilité de la fonction g en a = 0. En déduire l'ensemble de dérivabilité de la fonction g.

Exercices d'entraînement

Exercice 1 Soit la fonction f définie sur \mathbb{R} par $f(x) = (4 - x)^2$. Calculer le nombre dérivé de f en a = 1. En déduire la dérivabilité de f en 1.

Exercice 2 Soit la fonction t définie sur \mathbb{R} par $t(x) = 3x^2 - 5x + 1$. Calculer le nombre dérivé de t en a = -2. En déduire la dérivabilité de f en -2.

Exercice 3 Soit la fonction g définie sur \mathbb{R}^* par $g(x) = \frac{3}{x}$. Montrer que la fonction g est dérivable en 1 et déterminer g'(1).

Exercice 4 Soit la fonction k définie sur $\mathbb{R}\setminus\{3\}$ par $k(x)=\frac{-7}{3-x}$. Montrer que la fonction k est dérivable en 2 et déterminer g'(2).

Fonctions dérivées et tangentes

Exercice 5

Sur le graphique ci-contre, on a tracé les courbes représentatives des fonctions f et gdéfinies sur \mathbb{R} par :

 $f(x) = e^{x-1} + 2x$; $g(x) = -x^2 + 5x - 1$, ainsi que leurs tangentes respectives T et T' au point d'abscisse 1.

Que peut-on conjecturer? Démontrer cette conjecture.

Exercice 6

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - 3x + 1$.

On note C_f la courbe représentative de la fonction f dans le repère (O; I; J).

- 1) Etablir que f'(1)=1.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse 1.

Exercice 7

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = x^3 - 5x^2 + 7x - 2$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

- 1) Déterminer l'expression de la fonction f'dérivée de la fonction f.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse 2.

Exercice 8

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = -x^3 - 3x^2 - 2x + 4$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

- 1) Déterminer l'expression de la fonction f'dérivée de la fonction f.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse -1.

Exercice 9

Déterminer l'expression des dérivées suivantes:

(a)
$$f(x) = -3x^2$$

(b) $h(x) = 4\sqrt{x}$

(d)
$$g(x) = \frac{1}{12}x^6$$

(e) $j(x) = \frac{1}{2x}$

(b)
$$h(x) = 4\sqrt{x}$$

(e)
$$i(x) = \frac{1}{1}$$

(c)
$$k(x) = x - \frac{1}{x}$$

(e)
$$j(x) = \frac{1}{2x}$$

(f)
$$m(x) = 2x^3 + \frac{2}{x}$$

Exercice 10

Déterminer l'expression des dérivées suivantes:

(a)
$$f(x) = x^3(2x - 5)$$

(b)
$$h(x) = (3-x)^{\frac{1}{x}}$$

(b)
$$h(x) = (3 - x)\frac{1}{x}$$

(c) $g(x) = (2x^2 - 5x + 1)(1 - x^2)$

(d)
$$j(x) = (x^2 - 3)\sqrt{x}$$

(e)
$$k(x) = (4-3x)e^{2x-1}$$

Exercice 11

On considère la fonction f définie sur \mathbb{R}^+ par $f(x) = (2x + 2)\sqrt{x}$.

- **1)** Etablir que $f'(4) = \frac{13}{2}$
- 2) On note C_f la courbe représentative de la fonction f dans un repère.

En déduire l'équation réduite de la tangente à la courbe C_f au point d'abscisse 4.

Fonctions dérivées et variation de fonctions

Exercice 12

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = \frac{3}{2-x}$$

(b)
$$h(x) = \frac{x+1}{2x-5}$$

(c)
$$g(x) = \frac{x+1}{\sqrt{x}}$$

(d)
$$j(x) = \frac{2x^4 - 5x^3}{x^2 + 1}$$

Exercice 13

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = \sqrt{x^2 + x}$$

(b)
$$h(x) = (2x^2 - x + 1)^6$$

(c)
$$q(x) = e^{2x^2+1}$$

(d)
$$j(x) = 2x + 1 - e^{4x^2 - 1}$$

Exercice 14

Vrai ou Faux.

Le tableau de variation d'une fonction f est donné ci-dessous.

X	-5	2	5
		3	
f	"		
	/		1
	1		-1

1) $f'(x) \ge 0$ pour tout x de [-5; 2].

2)
$$f'(2) = 3$$

3) On donne f'(5) = 2. La tangente à la courbe de f en 5 a pour équation y = 2x - 11.

4) On donne f(3) = 4 et f'(3) = 5. Le coefficient directeur de la tangente à la courbe de f en 3 est égal à 5.

Exercice 15

Dresser le tableau de variation des fonctions suivantes sur [-20; 20].

(a)
$$f(x) = -2x^2 + 3x - 11$$

(b)
$$g(x) = (3 - 4x)e^{-0.5x}$$

(c)
$$h(x) = \frac{2x-1}{x+4}$$

Exercice 16

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = x^3 - 5x^2 + 7x - 2$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

Déterminer les variations de la fonction f sur \mathbb{R} .

Exercice 17

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = -x^3 - 3x^2 - 2x + 4$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

Déterminer les variations de la fonction f sur \mathbb{R} .

Exercice 18

Dans le repère orthogonal donné ci-dessus, C_f est la représentation graphique d'une fonction f définie et dérivable sur [0; 30].

On donne A(0; -11), B(5; 0), C(11; y_c).

La tangente à la courbe C_f au point d'abscisse A passe par le point B.

La tangente à la courbe C_f au point d'abscisse C est parallèle à l'axe de abscisses.

PARTIE A

- 1) Lire graphiquement les valeurs de f(0), f'(0) et f'(11).
- 2) L'affirmation "La fonction f' est positive sur [3; 30]" est-elle vraie?

PARTIE B

La fonction f est définie sur [0; 30] par $f(x) = (x^2 - 11)e^{-0.2x}$.

- 1) Déterminer f'(x).
- 2) Etudier le signe de f' sur [0; 30] puis dresser le tableau de variations de f sur [0; 30].

PARTIE C

Dans cette partie les résultats seront arrondis à 10^{-2} si nécessaire.

La fonction de demande d'un produit est modélisée sur l'intervalle [5; 30] par la fonction f étudiée dans la **partie B**.

Le nombre f(x) représente la quantité demandée, exprimée en centaine de milliers d'objets, lorsque le prix unitaire est égal à x euros.

- 1) Calculer le nombre d'objets demandés, au millier près, lorsque le prix unitaire est fixé à 15 euros.
- 2) L'élasticité E(x) de la demande par rapport au prix est le pourcentage de variation de la demande pour une augmentation de 1 % du prix.

On admet qu'une bonne approximation de E(x) est donnée par :

$$E(x) = \frac{f'(x)}{f(x)} \times x \text{ lorsque } x \in [5; 30]$$

Calculer E(15) et interpréter le résultat.

Chapitre 3 : Compléments sur la dérivation

Exercice 19

Un supermarché souhaite acheter des fruits à un fournisseur.

Ce fournisseur propose des prix au kilogramme, dégressifs en fonction du poids de fruits commandé.

Pour une commande de x kilogrammes de fruit, le prix P(x) en euros du kilogramme de fruits est donné par la formule : $P(x) = \frac{x + 300}{x + 100}$ pour $x \in [100; +\infty[$. Par exemple, si le supermarché achète 300 kg de fruits, il devra payé $300 \times P(300) = 450$ euros

au fournisseur pour cette commande.

- PARTIE A: Etude du prix P proposé par le fournisseur.

 1) Montrer que $P'(x) = \frac{-200}{(x+100)^2}$ sur $[100; +\infty[$.

 2) Donner le sens de variation de la fonction P sur $[100; +\infty[$.

PARTIE B : Etude de la somme S à dépenser par le supermarché.

On appelle S(x) la somme en euros à dépenser par le supermarché pour une commande de x kilogrammes de fruits (Ces fruits vendus par le fournisseur au prix de P(x) euros par kilogramme). Cette somme est égale à : S(x) = xP(x) pour $x \in [100; +\infty[$.

- 1) Montrer que pour tout x appartenant à $[100; +\infty[: S'(x) = \frac{x^2 + 200x + 30000}{(x+100)^2}]$ 2) Montrer que pour tout x appartenant à $[100; +\infty[: S(x) = x + 200 20000 \times \frac{1}{x+1}]$

Exercice 20

L'entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur x exprimée en kilomètre, x étant compris entre 0 et 10.

Le coût total de production en euros de l'entreprise CoTon est donné en fonction de la longueur x par la formule : $C(x) = 15x^3 - 120x^2 + 500x + 750$.

Le graphique ci-contre donne la représentation graphique de la fonction C.

Les deux parties A et B de cet exercice sont indépendantes.

PARTIE A : Etude du bénéfice

Si le marché offre un prix p en euros pour un kilomètre de ce tissu, alors la recette de l'entreprise CoTon pour la vente d'une quantité x est égal à R(x) = px.

- 1) Tracer sur le graphique la droite D_1 d'équation : y=400x. Expliquer pourquoi, au vu de ce tracé, l'entreprise CoTon ne peut pas réaliser un bénéfice si le prix p du marché est égal à 400 euros.
 - 2) Dans cette question, on suppose que le prix du marché est égal à 680 euros.
- (a) Tracer sur le graphique la droite D_2 d'équation : y = 680x.
- **(b)** Déterminer graphiquement, avec la précision permise par le graphique pour quelles quantités produites et vendues, l'entreprise Co Ton réalise un bénéfice si le prix du marché p est de 680 euros.
- (c) On considère la fonction B définie sur l'intervalle [0; 10] par : B(x) = 680x C(x). Démontrer que pour tout x appartenant à l'intervalle [0; 10], on a : $B'(x) = -45x^2 + 240x + 180$
- (d) Etudier les variations de la fonction B sur [0; 10]. En déduire pour quelle quantité produite et vendue le bénéfice réalisé par l'entreprise CoTon est maximum. Donner la valeur de ce bénéfice.

PARTIE B : Etude du coût moyen

On rapelle que le coût moyen de production C_M mesure le coût par unité produite. On considère la fonction C_M définie sur l'intervalle]0;10] par : $C_M=\frac{C(x)}{x}$.

- 1) Démontrer que pour tout x appartenant à l'intervalle]0;10], $C'_{M}=\frac{30(x-5)(x^2+x+5)}{x^2}.$
- 2) (a) Démontrer que pour tout x appartenant à l'intervalle]0;10], C_M' est du signe de (x-5). En déduire les variations de la fonction C_M sur l'intervalle [0;10].
- **(b)** Pour quelle quantité de tissu produite le coût moyen de production est-il minimum? Que valent dans ce cas le coût moyen de production et le coût total?