Sayı Cisimlerinde Asal İdeal Teoremi

Hikmet Burak Özcan

İzmir Yüksek Teknoloji Enstitüsü hikmetozcan@iyte.edu.tr

Ulusal Matematik Sempozyumu 2019, Ondokuz Mayıs Üniversitesi, Samsun

2 Eylül 2019

Genel Bakış

Tanımlar ve Ön Hazırlık

Motivasyon

Asal İdeal Teoremi

Tanımlar ve Ön Hazırlık

Tanım

Rasyonel sayılar cisminin bir sonlu cisim genişlemesine **sayı cismi** denir. Her sayı cismi sonlu boyutlu bir \mathbb{Q} -vektör uzayıdır. Bu vektör uzayının boyutuna, sayı cisminin **derecesi** denir.

Örnek

$$\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}\$$

ikinci dereceden bir sayı cismidir.

Tanım

Sıfırdan farklı tam sayı katsayılı bir polinomu sağlayan karmaşık sayılara **cebirsel sayı** denir.

Tanım

Tam sayı katsayılı tekil bir polinomu sağlayan karmaşık sayılara ise **cebirsel tam sayı** denir.

Örnek

 $i\in\mathbb{Q}(i)$, bir cebirsel tam sayıdır çünkü, $X^2+1\in\mathbb{Z}[X]$ polinomunu sağlar. Bunun yanı sıra, $\frac{1}{2}\in\mathbb{Q}(i)$, 2X-1 polinomunun kökü olduğu için bir cebirsel sayıdır. Fakat, bir cebirsel tam sayı değildir.

Tanım

 α cebirsel sayısını sağlayan en küçük dereceli, tekil $f(X) \in \mathbb{Q}[X]$ polinomuna, α 'nın **minimal polinomu** denir.

Tanım

K sayı cisminin cebirsel tam sayılar kümesine K'nın **tam sayılar halkası** denir ve \mathcal{O}_K ile gösterilir.

Örnek

 \mathbb{Q} 'nun tam sayılar halkası \mathbb{Z} 'dir, yani, $\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$.

\mathcal{O}_K 'nın Özellikleri

Derecesi n olan K sayı cismi için K'nın tam sayılar halkası \mathcal{O}_K aşağıdaki özellikleri sağlar:

- O_K bir halkadır.
- \mathcal{O}_K , rankı *n* olan serbest bir abel gruptur.
- \mathcal{O}_K bir Dedekind bölgesidir, yani, sıfırdan farklı her ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ asal ideallerin çarpımı olarak tek bir biçimde yazılır.

Tanım

K bir sayı cismi ve $\mathfrak{a} \subseteq \mathcal{O}_K$ sıfırdan farklı bir ideal olsun. \mathfrak{a} idealinin \mathcal{O}_K halkasındaki indeksine \mathfrak{a} idealinin **normu** denir ve $N(\mathfrak{a})$ ile gösterilir.

- Sıfırdan farklı her idealin normu sonludur.
- Norm, çarpımsal bir fonksiyondur. Yani, sıfırdan farklı herhangi iki $\mathfrak{a}_1,\mathfrak{a}_2$ ideali için

$$N(\mathfrak{a}_1\mathfrak{a}_2)=N(\mathfrak{a}_1)N(\mathfrak{a}_2)$$

eşitliği doğrudur.

Motivasyon

 $\mathbb{P}\subset\mathbb{N}$ asal sayılar kümesi ve

$$\pi(x) = |\{p \in \mathbb{P} \mid p \le x\}|$$

asal sayaç fonksiyonu olsun.

Örneğin, $\pi(10)=5$, $\pi(100)=25$, $\pi(1000)=168$. Asal sayıların sonsuzluğunun ispatı ilk kez **Öklid** tarafından "Öklid'in Elemanları" adlı kitabında M.Ö. 300'de sunuldu. Asal sayılar sonsuz olduğu için

$$\lim_{x\to\infty} \pi(x) = \infty.$$

1896'da Jacques Hadamard ve Charles Jean de la Vallée Poussin birbirlerinden bağımsız olarak Asal Sayı Teoremi'ni kanıtladılar. Bu teorem, asal sayaç fonksiyonu için asimptotik bir formül verir:

$$\pi(x) \sim \frac{x}{\log x}$$
.

Tam sayılar kümesi \mathbb{Z} 'yi, \mathbb{Q} sayı cisminin bir tamsayılar halkası ve asal sayılar kümesi \mathbb{P} 'yi, \mathbb{Z} 'nin asal idealler kümesi olarak görebiliriz. Bu yüzden, asal sayaç fonksiyonu $\pi(x)$, normu x'den küçük asal ideallerin sayısını veren bir fonksiyon olarak ele alınabilir.

Soru

K bir sayı cismi, \mathcal{O}_K , K'nın tam sayılar halkası ve \mathbb{P}_K , \mathcal{O}_K 'nın asal idealler kümesi olsun. O zaman aşağıdaki fonksiyon için asimptotik bir formül verebilir miyiz?

$$\pi_{\mathcal{K}}(x) = |\{\mathfrak{p} \in \mathbb{P}_{\mathcal{K}} \mid \mathcal{N}(\mathfrak{p}) \leq x\}|$$

Landau'nun Asal İdeal Teoremi

Teorem

K bir cismi, \mathcal{O}_K onun tam sayılar halkası ve \mathbb{P}_K , \mathcal{O}_K 'nın asal idealleri kümesi olsun.

$$\pi_{K}(x) = |\{\mathfrak{p} \in \mathbb{P}_{K} \mid N(\mathfrak{p}) \leq x\}|$$

asal ideal sayaç fonksiyonu olarak tanımlayalım. O zaman, $\pi_K(x)$ için asimptotik bir formül vardır:

$$\pi_K(x) \sim x/\log(x)$$
.

Dedekind Zeta Fonksiyonu ve Analitik Özellikleri

Tanım

K sayı cisminin **Dedekind zeta fonksiyonu**, reel kısmı 1'den büyük karmaşık sayılar için aşağıdaki Dirichlet serisi olarak tanımlanır:

$$\zeta_{\mathcal{K}}(s) = \sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}} \frac{1}{\mathsf{N}(\mathfrak{a})^{s}}.$$

- Eğer $\Re(s) > 1$ ise, Dedekind Zeta Fonksiyonu $\zeta_K(s)$ mutlak yakınsaktır.
- Dedekind zeta fonksiyonunun asal idealler üzerinden bir Euler çarpımı vardır:

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p} \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{1 - \mathcal{N}(\mathfrak{p})^{-s}}.$$

• Dedekind zeta fonksiyonunun $\Re(s) \ge 1$ için, s = 1'de basit tekilliliğiyle beraber, bir analitik genişlemesi vardır.

Gauss'un Tam Sayıları için Asal İdeal Teoremi

 $x \in \mathbb{R}$, p = 4k + 3 formunda bir asal sayı ve $p \le \sqrt{x}$ olsun. O zaman, $\mathfrak{p} = (p)$, $\mathbb{Z}[i]$ 'nin bir asal idealidir ve $N(\mathfrak{p}) = p^2$. p = 4k + 1 formunda bir asal sayı ve $p \le x$ olsun. Biliyoruz ki, 4k + 1

$$p=a^2+b^2$$

şeklinde yazılır. O zaman, $\mathfrak{p}_1=(a+bi)$ ve $\mathfrak{p}_2=(a-bi)$ normu p olan iki asal idealdir. Bu yüzden, Asal Sayı Teoremini kullararak aşağıdaki sonucu elde ederiz:

$$\pi_{\mathbb{Q}(i)}(x) \sim \frac{\pi(\sqrt{x})}{2} + \frac{2\pi(x)}{2} \sim \frac{x}{\log(x)}.$$

formunda bir asal sayı

Kaynakça

F. Oggier, Lecture Notes on Introduction to Algebraic Number Theory

F. Jarvis, Algebraic Number Theory, Springer, 2014

R. Murty, Problems in Analytic Number Theory, Springer, 2008

Teşekkürler.