

Bionic Arm

Sommaire

- Introduction
- Data collection
- Preprocessing
- Data Augmentation
- Features extraction
- Classification (MLP)

Introduction

- An innovative and functional bionic arm
- Natural movements of the human arm through the use of electromyography (EMG) signals

Data collection:

Data collection

Data collection

Pronation

Like

Handshake

Supination

Data collection

Pronation Supination Pronation Supination Pronation Supination Pronation Supination Pronation Supination

Cycle 3:

Supination Handshake Supination Handshake Supination Handshake Supination Handshake Supination Handshake

Preprocessing

Fast Fourier Transform (FFT)

to determine cutoff frequencies for filtering.

A bandpass Butterworth filter

is designed and applied to filter the EMG signal.

Data Augmentation

two data augmentation techniques - the Gaussian noise method and the time shifting technique.

Data Augmentation

Feature extraction:

No.	Name of the feature	Equation
1	Mean absolute value (MAV)	$MAV = \frac{1}{N} \sum_{i=1}^{N} x_i $
2	Root mean square (RMS)	$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2}$
3	Standard Deviation (STD)	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$
4	Variance (VAR)	$VAR = \frac{1}{N-1} \sum_{i=1}^{N} x_i^2$
5	Waveform length (WL)	$WL = \sum_{i=1}^{N-1} x_{i+1} - x_i $

Classification:

Classification:

