Causal Confusion in Imitation Learning

Pim de Haan, Dinesh Jayaraman, and Sergey Levine (NeurIPS 2019)

Dongmin Lee

Biointelligence Laboratory Seoul National University dmlee@bi.snu.ac.kr

April, 2020

Outline

- Introduction
- Causality and Causal Inference
- Causality in Imitation Learning
- Experiments Setting
- Resolving Causal Misidentification
 - Causal Graph-Parameterized Policy Learning
 - Targeted Intervention
- Experiments

What is imitation learning?

- Learning a policy from examples of expert behavior
- The goal of imitation learning is to reproduce the expert's demonstrations with generalized intention

Methods of imitation learning

- Behavioral cloning
- Inverse reinforcement learning

Methods of imitation learning

- Behavioral cloning Selected!
- Inverse reinforcement learning

What is behavioral cloning?

Fundamental problem of behavioral cloning: distributional shift

 Training and testing state distributions are different, induced respectively by the expert and learned policies

What happens under distributional shift? causal misidentification

• Behavioral cloning to learn to drive a car in two scenarios (tasks):

policy attends to indicators

policy attends to pedestrian

What happens under distributional shift? causal misidentification

Behavioral cloning to learn to drive a car in two scenarios (tasks):

policy attends to indicators

policy attends to pedestrian

More information yields worse performance

What happens under distributional shift? causal misidentification

Behavioral cloning to learn to drive a car in two scenarios (tasks):

policy attends to indicators

policy attends to pedestrian

- More information yields worse performance
- Distinguishing correlates of expert actions in demonstration set from true causes is usually very difficult...

What is causality and causal inference?

Who am I?

Who am I?

Why do you think this picture is a cat?

What is causality?

- Causality (also referred to as causation, or cause and effect) is efficacy by which one event (a cause) contributes to the production of another event (an effect)
- The cause is partly responsible for the effect, and the effect is partly dependent on the cause

What is causality?

- Causality (also referred to as causation, or cause and effect) is efficacy by which one event (a cause) contributes to the production of another event (an effect)
- The cause is partly responsible for the effect, and the effect is partly dependent on the cause

What is causal inference?

- Causal inference is general problem of deducing cause-effect relationships among variables
- Causal discovery approaches allow causal inference from pre-recorded observations under constraints

Yoshua Bengio: presentations at NeurIPS, 2019 and AAAI, 2020

MISSING TO EXTEND DEEP LEARNING TO REACH HUMAN-LEVEL AI

- · Out-of-distribution generalization & transfer
- Higher-level cognition: system 1 → system 2
 - · High-level semantic representations
 - · Compositionality
 - · Causality
- · Agent perspective:
 - · Better world models
 - Causality
 - Knowledge-seeking
- Connections between all 3 above!

Yann LeCun: "Lots of people in ML/DL know that causal inference is an important way to improve generalization. The question is how to do it."

Yann LeCun: "Lots of people in ML/DL know that causal inference is an important way to improve generalization. The question is how to do it."

Recent papers:

- 25 papers at NeurIPS 2018 workshop on causal learning
- 18 papers at NeurIPS 2019 conference
- 13 papers at AAAI 2020 conference
- ⇒ Currently hot topic of research in machine learning!

Concepts of causality:

- Association vs Causation
- Intervention and do-calculus

Association: P(Y|X)

- Is there correlation between two variables?
- Is mutual information zero?
- Statistical inference for observations of two variables

Causation: P(Y|do(X))

- Is there causality between two variables?
- Does one variable respond to intervention?
- Randomized intervention for one variable

Confounder (also confounding variable, confounding factor) in causality:

 The cause of Y is X, and when there is confounder Z that affects X and Y at the same time, confounding effect occurs

Confounder (also confounding variable, confounding factor) in causality:

- The cause of Y is X, and when there is confounder Z that affects X and Y at the same time, **confounding effect** occurs
- We define that

$$P(Y|do(X)) \neq P(Y|X)$$

because observational quantity contains information about correlation between X and Z, while interventional quantity does not (since X is not correlated with Z in randomized intervention)

Causality in Imitation Learning

Imitation learning (i.e., behavioral cloning) setting:

- $X^t = [X_1^t, X_2^t, ..., X_n^t]$: expert's state observations at each time t
- A^t: expert's actions

 \Longrightarrow The goal is to learn a mapping π from X^t to A^t using all (X^t,A^t) from the expert's demonstrations

Causality in Imitation Learning

Causal structures:

- Expert actions A^t are influenced by some information in state observations X^t
- A confounder Z^t influences each state variable in X^t
- Some unknown subset of disentangled factors of X^t (causes) affect expert actions, and the rest (nuisance variables) do not
- Interventional query:

$$P(A^t|do(X^t))$$

Experiments Setting

Benchmarks:

 We add information about previous action, which tends to correlate with current action in the expert data

Mountain Car 2 state dims past action integer added

MuJoCo Hopper 11 state dims 3 past action dims added

Experiments Setting

Benchmarks:

 We add information about previous action, which tends to correlate with current action in the expert data

30 state variables (disentangled observations) setting to a disentangled representation by training β -VAE

Experiments Setting

Demonstrating causal misidentification

(a) MountainCar

(b) Hopper

(c) Pong

Resolving Causal Misidentification

Proposed solutions:

- Learn a policy that map from states to expert actions using randomized interventional queries
- Find the true causal intervention using the trained policy

Resolving Causal Misidentification

Causal graph-parametrized policy learning

- Targeted intervention: find true graph
 - Expert queries
 - Rewards

29/38

Causal Graph-Parameterized Policy Learning

Causal graphs as masks

- Each state variable X_i in X may either be a cause or not, so there are 2^n possible graphs
- We parameterize **causal graph** G as a vector of n binary variables

Causal Graph-Parameterized Policy Learning

Graph-parameterized policy

A single graph-parameterized policy

$$\pi_G(X) = f_{\phi}([X \odot G, G])$$

where \odot is element-wise multiplication, and $[\cdot,\cdot]$ denotes concatenation

ロト 4回 ト 4 重 ト 4 重 ト 9 9 (や)

Causal Graph-Parameterized Policy Learning

Parameters ϕ of policy network f_{ϕ} are trained through gradient descent to minimize:

$$\mathbb{E}_G[\ell(f_\phi([X_i\odot G,G]),A_i)]$$

- G is drawn uniformly as a bernoulli random vector over all 2^n graphs
- ℓ: mean squared error loss or cross-entropy loss
- X_i , A_i : observations and actions in batches

Targeted Intervention

Expert query mode and policy execution mode

Algorithm 1 Expert query intervention

Input: policy network f_{ϕ} s.t. $\pi_G(X) = f_{\phi}([X \odot G, G])$

Initialize $w = 0, \mathcal{D} = \emptyset$.

Collect states S by executing π_{mix} , the mixture of policies π_G for uniform samples G.

For each X in S, compute disagreement score:

$$D(X) = \mathbb{E}_G[D_{KL}(\pi_G(X), \pi_{mix}(X))]$$

Select $S' \subset S$ with maximal D(X).

Collect state-action pairs \mathcal{T} by querying expert on \mathcal{S}' .

for $i=1\dots N$ do

Sample $G \sim p(G) \propto \exp\langle w, G \rangle$. $\mathcal{L} \leftarrow \mathbb{E}_{s,a \sim \mathcal{T}}[\ell(\pi_G(s), a)]$

 $\mathcal{L} \leftarrow \mathbb{E}_{s,a \sim \mathcal{T}}[\ell(\pi_G(s), a)]$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(G, \mathcal{L})\}$

Fit w on \mathcal{D} with linear regression.

end for

Return: $\arg \max_G p(G)$

Algorithm 2 Policy execution intervention

Input: policy network f_{ϕ} s.t. $\pi_G(X) = f_{\phi}([X \odot G, G])$

Initialize $w = 0, \mathcal{D} = \emptyset$.

for $i=1\dots N$ do

Sample $G \sim p(G) \propto \exp\langle w, G \rangle$.

Collect episode return R_G by executing π_G . $\mathcal{D} \leftarrow \mathcal{D} \cup \{(G, R_G)\}$

Fit w on \mathcal{D} with linear regression.

end for

Return: $arg max_G p(G)$

Intervention by policy execution on Atari games

Intervention by policy execution on MountainCar and Hopper

Interpreting the learned causal graph

samples from (top row) learned causal graph and (bottom row) random causal graph on Pong

Necessity of disentanglement

Mode	Representation	Reward
Policy execution	Disentangled Entangled	- 137 -145
Expert queries	Disentangled Entangled	- 140 -165

intervention on (dis)entangled MountainCar

Thank You!

Any Questions?