CSCI-4961 - RPI, 05/20 - 08/16/2024

Lecture $|6\rangle$: The Matrix (2/3)

June 4, Tue. 6:30pm -8:35pm

Contributor: _____ Lecturer: Yanglet Liu

Topics: Dirac Notation

Quantum gates are linear maps that keep the total probability equal to 1.

 $U |\psi\rangle = \alpha U |0\rangle + \beta U |1\rangle$, where U is a unitary matrix.

Pop Quizzes and Exercises

1). (Inner product, Exercise 3.4, pp. 118) Consider

$$|a\rangle = \frac{3+i\sqrt{3}}{4}|0\rangle + \frac{1}{2}|1\rangle, \quad |b\rangle = \frac{1}{4}|0\rangle + \frac{\sqrt{15}}{4}|1\rangle$$
 (32)

1). Find $\langle a|b\rangle$; 2). Find $\langle b|a\rangle$; 3). What is the relationship between $\langle a|b\rangle$ and $\langle b|a\rangle$?

2). (Orthonormality, Exercise 3.7, pp. 120) Consider

$$|a\rangle = \frac{3 + i\sqrt{3}}{4}|0\rangle + \frac{1}{2}|1\rangle, \quad |b\rangle = \frac{1}{4}|0\rangle + x|1\rangle$$
 (33)

- 1). Find x s.t. $|a\rangle$ and $|b\rangle$ are orthogonal; 2). Find x s.t. $|b\rangle$ is normalized;
- 3). For what values of x (if any) are $|a\rangle$ and $|b\rangle$ orthonormal?

2		(0 1 11	г .	2.0		100
3). (Orthonormality,	Exercise	3.8	on pp.	120)

- 4). (Exercise 3.16 on pp. 131) Prove that XY = iZ using two different ways:
 - 1). Show $XY |0\rangle = iZ |0\rangle$ and $XY |1\rangle = iZ |1\rangle$.
 - 2). Using matrix representation, show that XY = iZ.

5). Exercise 3.17 and 3.18 on pp. 132

6). Exercise 3.20 on pp. 135

News

IBM Quantum Challenge 2024 (Jun 05, 2024 at 9:00AM - Jun 14, 2024 at 4:00 PM):

https://challenges.quantum.ibm.com/2024

Outline

- (Complex) Linear algebra
- Vectors for Qubit
- Matrices for Quantum Gates

Videos

Video ²⁸ (5 min): Smith visiting The Oracle | The Matrix Revolutions

Video ²⁹ (8 min): Best Fight Scenes from the Matrix Trilogy

Video ³⁰ (10 min): Vectors | Ch 1, Essence of linear algebra

Video ³¹ (5 min): Matrix formulation of quantum mechanics

15 Vectors for Qubits

15.1 Dirac Notation

Paul Dirac, A NEW NOTATION FOR QUANTUM MECHANICS, 1939.

Bra-ket:

Ket: a column vector,

Bra: the conjugate transpose of the column vector.

$$\begin{cases} |0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, & \langle 0| = [1\ 0] \\ |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}, & \langle 1| = [0\ 1] \end{cases}$$
(34)

²⁸https://www.youtube.com/watch?v=zBR2LlutVRM

²⁹https://www.youtube.com/watch?v=bBdxqt_AFOg

³⁰https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

³¹https://www.youtube.com/watch?v=wIwnb1ldYTI&t=144s

$$\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, & \langle +| = \frac{1}{\sqrt{2}} [1 \ 0] \\ |-1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}, & \langle -| = \frac{1}{\sqrt{2}} [1 \ -1] \end{cases}$$
(35)

$$\begin{cases} |i\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i \end{bmatrix}, & \langle i| = \frac{1}{\sqrt{2}} [1 - i] \\ |-i\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}, & \langle -i| = \frac{1}{\sqrt{2}} [1 i] \end{cases}$$
(36)

A qubit in superposition state

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{|0\rangle} + \beta \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{|1\rangle}$$
(37)

Linearity of function: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

Measuring $|\psi\rangle$, we get

$$\begin{cases} |0\rangle & \text{w.p. } |\alpha|^2, \\ |1\rangle & \text{w.p. } |\beta|^2, \end{cases}$$
 (38)

such that that $|\alpha|^2 + |\beta|^2 = 1$.

Examples: "plus", "minus", "i", and "minus i", ket and bra representations.

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad 1]$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad -1]$$

$$|i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\i \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad -i]$$

$$|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle), \qquad \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i \end{bmatrix}, \qquad \frac{1}{\sqrt{2}}[1 \quad i]$$

$$(39)$$

16 One-Qubit Gates

A quantum gate is *linear*, recall the linearity of function such that

Linearity of function:
$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
.

We can distribute U across a superposition state (qubit) $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ as follows (pp. 99):

$$U |\psi\rangle = \alpha U |0\rangle + \beta U |1\rangle \tag{40}$$

Probability-preserving linear maps.

Quantum gates are linear maps that keep the total probability equal to 1.

Section 3.3.2 and Lab1: I, X, Y, Z, S, T, H

Gate	Action on Computational Basis	Matrix Representation	
Identity	$egin{aligned} I 0 angle = 0 angle \ I 1 angle = 1 angle \end{aligned}$	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
Pauli X	$X 0 angle = 1 angle \ X 1 angle = 0 angle$	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
Pauli Y	$egin{aligned} Y 0 angle &=i 1 angle \ Y 1 angle &=-i 0 angle \end{aligned}$	$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	
Pauli Z	$Z 0 angle = 0 angle \ Z 1 angle = - 1 angle$	$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
Phase S	$S 0 angle = 0 angle \ S 1 angle = i 1 angle$	$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	
T	$T 0 angle = 0 angle \ T 1 angle = e^{i\pi/4} 1 angle$	$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$	
Hadamard H	$H 0 angle = rac{1}{\sqrt{2}}(0 angle + 1 angle) \ H 1 angle = rac{1}{\sqrt{2}}(0 angle - 1 angle)$	$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	

Figure 10: Common one-qubit gates as matrices

16.1 The Identity Matrix

$$\boldsymbol{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{41}$$

$$\boldsymbol{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{42}$$

16.2 X Matrix

$$\boldsymbol{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{43}$$