A primer on Optimization

Prescriptive Analytics

2024

Optimization of Functions

1. Single Variable Optimization

For a function f(x), the goal of optimization is to find the point(s) where f(x) reaches a maximum or minimum. The critical points are found by solving:

$$f'(x) = 0$$

Steps:

- 1. **Differentiate** the function f(x).
- 2. Solve f'(x) = 0 for x.
- 3. Check the second derivative f''(x):
 - If f''(x) > 0, the critical point is a local minimum.
 - If f''(x) < 0, the critical point is a local maximum.

2. Optimization of Two-Variable Function with Constraints

For a function f(x,y) subject to an equality constraint g(x,y) = 0, we use **Lagrange multipliers** to find the extrema. The Lagrange function is:

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

Steps:

- 1. Form the **Lagrange function**.
- 2. Differentiate with respect to x, y, and λ :

$$\frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

3. Solve the system of equations to find the optimal $x, y, \text{ and } \lambda$.

3. Linear Programming

Linear programming (LP) is used to optimize a linear objective function subject to a set of linear equality and inequality constraints.

General Form:

Maximize:

$$Z = C_1 X_1 + C_2 X_2 + \dots + C_n X_n$$

Subject to:

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = b_2$$

$$a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n = b_m$$

Where:

- $\begin{array}{ll} \bullet & X_1,\, X_2,\, ...,\, X_n \geq 0 \\ \bullet & b_1,\, b_2,\, ...,\, b_m \geq 0 \end{array}$

Steps:

- 1. **Define** the objective function.
- 2. **Set up** the constraints.
- 3. Use algorithms like the Simplex Method or Interior Point Methods to find the optimal values of $X_1, X_2, ..., X_n$.

This summarizes the key techniques in single-variable, multi-variable constrained optimization, and linear programming. Most of our efforts will be geared towards translating business problems into linear programming formulation!

Why Not Use Lagrange Multipliers for Linear Programming?

While Lagrange multipliers are useful for constrained optimization, they aren't typically used for **linear programming (LP)**. Here's why:

1. Nature of Functions and Constraints

- Lagrange Multiplier: Designed for nonlinear problems with differentiable objective functions and equality constraints.
- Linear Programming: Involves linear objective functions and inequality constraints. LP solutions are found at the vertices of the feasible region, not where gradients align as in the Lagrange method.

2. Handling Inequality Constraints

- Lagrange: Primarily handles equality constraints. Extending to inequality constraints (via KKT conditions) is complex.
- LP: Methods like Simplex and Interior Point handle inequalities naturally and efficiently.

3. Efficiency

- Lagrange: Solving the system of equations derived from Lagrange multipliers can be computationally expensive for large-scale problems.
- LP: Simplex and Interior Point Methods are highly optimized for solving linear systems quickly, especially for large LP problems.

4. Vertex Solutions vs. Interior Solutions

- Lagrange: Finds interior solutions where gradients of the objective function and constraints align.
- LP: Optimal solutions often lie at the vertices of the feasible region, which are better handled by LP-specific methods like Simplex.

Conclusion

Lagrange multipliers are suited for nonlinear problems, whereas linear programming methods like **Simplex** are designed to efficiently solve LP problems, especially when inequality constraints and vertex solutions are involved.