

# 第5章 人工神经网络

中科院信息工程研究所第二研究室

胡玥

huyue@iie.ac.cn

# 自然语言处理课程内容及安排

#### ◇ 课程内容:

#### 自然语言研究层面



# 引言

# Inspired from Human Brains



大脑可视作为1000多亿神经元组成的神经网络

**人脑特点**:巨量并行性;信息处理和存储单元结合在一起;自组织自学习功能

# 本章内容结构



# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

### 1.生物神经元





单个神经细胞只有两种状态:兴奋和抑制

### 2.人工神经元







输入: X 输出: Y 参数: W, b

### 输入、输出、参数运算关系:

$$Z = X_1W_1 + X_2W_2 + ... + X_nW_n + b$$

$$Y = \sigma(Z) = \sigma(W^TX + b)$$

### 3. 激活函数

为了增强网络的表达能力,需要引入连续的**非线性激活函数**,因为连续非线性激活函数可导的,所以可以用最优化的方法来求解。

### 常用的一些激活函数

Sigmoid  $y = \frac{1}{1 + e^{-x}}$ 



■ ReLU y = max(0, x)



■ Tanh  $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ 



■ Maxout  $y = \max(w1x + b1, w2x + b2)$ 



### 4. 人工神经网络

由多个神经元组成的具有并行分布结构的神经网络模型



# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

### 前馈神经网络DNN

前馈神经网络中,各神经元分别属于不同的层。整个网络中无反馈,信号从输入层向输出层单向传播,可用一个有向无环图表示。





### DNN模型结构



模型输入: X

模型输出: Y

模型参数:

#### 输出层:

#### 一般情况:

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

#### 用Softmax 做输出层:



### DNN模型结构





#### 参数表示说明

模型输入: X

模型输出: Y

各层偏置 b<sup>1</sup> , b<sup>2</sup> ... b<sup>L</sup>

 $\mathbf{W}^{I}$  : a weight matrix L-1层 到L层 权重

$$w_{ij}^l$$
 : a weight



#### DNN模型结构





#### 输入、输出参数之间运算关系(信息传播方式)

$$Y = f(x, \theta)$$
  $\theta = \{W^1, b^1, W^2, b^2, ..., W^L, b^L\}$ 

$$y = f(x) = \sigma(\mathbf{W}^{L} \dots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

$$\mathbf{Z}^{(L)} = \mathbf{W}^{(L)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L)}$$

$$\mathbf{a}^{(L)} = \sigma(\mathbf{Z}^{(L)})$$

$$\begin{cases} Z^{(L)} = W^{(L)} a^{(L-1)} + b^{(L)} \\ a^{(L)} = \sigma(Z^{(L)}) \end{cases}$$

$$X = a^{(0)} \rightarrow Z^{(1)} \rightarrow a^{(1)} \rightarrow Z^{(2)} \rightarrow \dots \rightarrow a^{(L-1)} \rightarrow Z^{(L)} \rightarrow a^{(L)} = Y$$

# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

### 问题引入:

#### 一层 DNN



### 网络训练(学习):求θ

有监督训练 给定实例 (x ˙; y ˙) 如何求 θ ?

方法1:通过列方程解决

但当参数达数百万时,或实例少于参数 时 方程法不可行

方法2:通过迭代调参方式解决

通过调整参数,让模型输出递归性地逼近标准输出。

神经网络中一般用 方法2 进行参数学习

问题: 怎么调?调到什么程度?

#### 迭代调参方式:

■ 定义目标函数(损失函数):一般将问题转化为求极值问题

■ 优化目标函数 : 用调参的方式通过求目标函数的极值 来确定参数

■ 定义目标函数(损失函数) 将问题转化为求极值问题

#### 有监督训练

$$Y = \sigma (W^1X + b^1) \quad \theta = \{W^1, b^1\}$$



标准输出: y i 逼近 模型输出: y i = f (x i ,θ)

用 y<sup>i</sup> 与 y<sup>i</sup> 的误差定义
 损失函数: L(θ) 或 C(θ)

问题:求 minC(θ)

### 常用的损失函数有:

- ◆ 0-1损失
- ◆ 平方损失函数
- ◆ 绝对值损失函数
- ◆ 对数损失函数
- ◆ 交叉熵(负对数似然函数)
- ◆ Hinge损失
- ◆ 指数损失

• • • • •

#### 绝对值损失函数:

$$L(Y, f(X, \theta)) = |Y - f(X, \theta)|$$

#### 平方损失函数:

L(Y, 
$$f(X, \theta)$$
) =  $(Y - f(X, \theta))^2$ 

#### 交叉熵损失函数:

$$L(Y, f(X, \theta)) = -\sum_{i=1}^{C} y_i log f_i(X, \theta)$$

用one-hot向量y来表示目标类别c其中只有y<sub>c</sub>= 1, 其余的向量元素都为 0。



- 优化目标函数 迭代调参方式求函数极值
- ◆ 问题:有函数 y=h(x) ,求 min h(x)



#### 原理:

泰勒展开:如h(x)在x=x0附近无限可微

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$
  
=  $h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$ 

当x与x<sub>0</sub>足够接近时

$$h(x) \approx h(x_0) + h'(x_0)(x - x_0)$$



$$h(x) \approx h(x_0) + h'(x_0)(x - x_0)$$

$$h(x_1) = h(x_0) + h'(x_0)(x_1 - x_0)$$

#### 目标:求h(X)极小值

每次取X<sub>i+1</sub>应满足 h(X<sub>i+1</sub>) < h(X<sub>i</sub>)

$$h(x_1) - h(x_0) = h'(x_0)(x_1 - x_0) < 0$$

$$h'(x_0)(x_1-x_0) < 0$$

#### 每步参数调整

$$X_1 = X_0 - \eta h'(x_0)$$

$$X_{i+1} = X_i - \eta h'(x_i)$$





#### 验证

#### 从左向右调整:

$$X_1 = X_0 - \eta h'(x_0)$$

$$h'(x_0)(x_1-x_0) < 0$$

#### 从右向左调整:

$$X_1 = X_0 - \eta h'(x_0)$$

$$h'(x_0)(x_1-x_0) < 0$$

### 参数调整方法 - 梯度下降:

### 梯度下降过程:



### 梯度下降中问题:





#### (1)参数初值

参数初值设置将影响参数学习效果 避免各参数初值设为相同值,参数 初值设置尽量随机。

(2)学习率 η

学习率 η 设置时要注意不能过大或过小

#### ◆ 复合函数情况

函数: y=h(g(x)) ,求 min h(g(x))

$$X_{i+1} \leftarrow X_i - \eta(h'(g(x_i)))$$

$$y=h(g(x))$$

#### 链式法则:

$$y = h(z)$$
  $z = g(x)$ 

$$\Delta x \to \Delta z \to \Delta y$$

$$\frac{dy}{dz} = \frac{dy}{dz} \cdot \frac{dz}{dz}$$

### 函数:y=h(x), 求 min h(x)



$$h(x_1) = h(x_0) + h'(x_0)(x_1 - x_0)$$

$$X_{i+1} \leftarrow X_i - \eta h'(x_i)$$

#### ◆ 高维参数情况

函数:y=h(g(x,w)) , 求 min h(g(x,w))

$$X_{i+1} \leftarrow X_i - \eta \left( \frac{\partial y}{\partial x} \right)$$

$$W_{i+1} \leftarrow W_i - \eta \left( \frac{\partial y}{\partial w} \right)$$

$$y = h(g(x, w))$$
链式法则:

#### 链式法则:

$$y = h(z) \ z = g(x \cdot w)$$

$$\Delta x \to \Delta z \to \Delta y$$

$$\Delta w \to \Delta z \to \Delta y$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$

$$\frac{\partial z}{\partial w} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial w}$$

### 函数:y=h(x),求 min h(x)



$$h(x_1) = h(x_0) + h'(x_0)(x_1 - x_0)$$

$$X_{i+1} \leftarrow X_i - \eta h'(x_i)$$

#### ◆ 复合函数情况

函数:z=k(g(s),h(s)) ,求 min k(g(s),h(s))

$$s_{i+1} \leftarrow s_i - \eta(\frac{\delta z}{\partial s})$$

$$z=k(g(s),h(s))$$



### 函数:y=h(x), 求 min h(x)



$$h(x_1) = h(x_0) + h'(x_0)(x_1 - x_0)$$

$$X_{i+1} \leftarrow X_i - \eta h'(x_i)$$

#### 梯度下降法学习参数

给定训练数据  $\{(x^1, \hat{y}^1)...(x^r, \hat{y}^r)...(x^R, \hat{y}^R)\}$ 

■ 梯度下降法( Gradient Descent )

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f(x^r; \theta) - \hat{y}^r \right\| \qquad \theta^i = \theta^{i-1} - \eta \nabla C(\theta^{i-1}) \qquad \nabla C(\theta^{i-1}) = \frac{1}{R} \sum_{r} \nabla C^r (\theta^{i-1})$$

■ 随机梯度下降法( Stochastic Gradient Descent )

$$C(\theta) = \| f(x^r; \theta) - \hat{y}^r \|$$

$$\theta^i = \theta^{i-1} - \eta \nabla C^r (\theta^{i-1})$$

■ mini-batch 梯度下降法 ( mini batch Stochastic Gradient Descent )

$$C(\theta) = \frac{1}{B} \sum_{x_r \in b} \left\| f(x^r; \theta) - \hat{y}^r \right\| \qquad \theta^i = \theta^{i-1} - \eta \nabla C^r \left( \theta^{i-1} \right) \qquad \nabla C(\theta^{i-1}) = \frac{1}{B} \sum_{x_r \in b} \nabla C^r \left( \theta^{i-1} \right)$$

**Algorithm** Stochastic gradient descent (SGD) update at training iteration k

**Require:** Learning rate  $\epsilon_k$ .

**Require:** Initial parameter  $\theta$ 

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \ldots, x^{(m)}\}$  with corresponding targets  $y^{(i)}$ .

Compute gradient estimate:  $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ 

Apply update:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$ 

end while

# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

# 5.4 反向传播算法

### 反向传播算法 (Back Propagation)

1974年Webos在博士论文中首次提出BP算法,但未引发关注.目前广泛使用的BP算法诞生于1986年以全连接层为例:链式求导,梯度反向传导.

#### 核心思想:

将输出误差以某种形式**反传给各层**所有的单元,各层按本层误差修正各单元连接权值。

### 有监督学习



# 5.4 反向传播算法

### ■ 定义目标函数(损失函数)

#### 有监督训练

输入: x<sup>i</sup>

给定实例(x <sup>i</sup>, y <sup>i</sup>)



$$y = f(x) = \sigma(\mathbf{W}^{L} \dots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

$$\theta = \{ W^1, b^1, W^2, b^2, W^L, b^L \}$$

模型输出: y i

### 损失函数:

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f(x^r; \theta) - \hat{y}^r \right\|$$

#### 目标:

$$\theta^* = \arg\min_{\theta} C(\theta)$$

# 5.4 反向传播算法

# 给定训练数据 $\{(x^1, \hat{y}^1)...(x^r, \hat{y}^r)...(x^R, \hat{y}^R)\}$

#### 单层神经网



 $Y = \sigma (W^1X + b^1) \quad \theta = \{W^1, b^1\}$ 

#### 损失函数:

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f(x^r; \theta) - \hat{y}^r \right\|$$
$$= \frac{1}{R} \sum_{r} \left\| \sigma \left( W^1 X + b^1 \right) - \hat{y}^r \right\|$$

#### 梯度下降:

$$\theta^* = arg \min_{\theta} C(\theta)$$

$$W^1 \longleftarrow W^0 - \eta \frac{\partial C(\theta)}{\partial w^0}$$

$$b^1 \longleftarrow b^0 - \eta \frac{\partial C(\theta)}{\partial b^0}$$

给定训练数据  $\{(x^1, \hat{y}^1)...(x^r, \hat{y}^r)...(x^R, \hat{y}^R)\}$ 

### 多层神经网



$$y = f(x) = \sigma(W^{L} ... \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) ... + b^{L})$$

$$\theta = \{ W^1, b^1, W^2, b^2... W^L, b^L \}$$

### 梯度下降:

$$\theta^* = \arg\min_{\theta} C(\theta)$$

$$[W^I]^1 \leftarrow [W^I]^0 - \eta \frac{\partial C(\theta)}{\partial wI}$$

$$[b^{I}]^{1} \leftarrow [b^{I}]^{0} - \eta \frac{\partial C(\theta)}{\partial bl}$$

### 损失函数:

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f(x^r; \theta) - \hat{y}^r \right\|$$

$$= \frac{1}{R} \sum_{r} \left\| \sigma(\mathbf{W}^L \dots \sigma(\mathbf{W}^2 \sigma(\mathbf{W}^1 x + b^1) + b^2) \dots + b^L) - \hat{y}^r \right\|$$

$$y=h(g(x))$$
 min  $h(g(x))$ 

$$X_{i+1} \leftarrow X_i - \eta h'(g(x_i))$$

#### 链式法则:

$$y = h(z) \ z = g(x)$$

$$\Delta x \to \Delta z \to \Delta y$$

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

### DNN参数层级关系:





$$y = f(x) = \sigma(W^{L} ... \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2})... + b^{L})$$

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f\left(x^{r}; \theta\right) - \hat{y}^{r} \right\|$$
$$= \frac{1}{R} \sum_{r} \left\| \sigma\left(\mathbf{W}^{L} \dots \sigma\left(\mathbf{W}^{2} \sigma\left(\mathbf{W}^{1} x + b^{1}\right) + b^{2}\right) \dots + b^{L}\right) - \hat{y}^{r} \right\|$$

$$Z^{(L)} = W^{(L)} a^{(L-1)} + b^{(L)} a^{(L)} = \sigma(Z^{(L)})$$

$$W^1 \rightarrow Z^{(1)} \rightarrow a^{(1)} \rightarrow Z^{(2)} \rightarrow \dots \rightarrow a^{(L-1)} \rightarrow Z^{(L)} \rightarrow a^{(L)} = Y$$

$$\Delta W^2 \!\!\!\!\! \to \Delta \ Z^{(2)} \!\!\!\! \to \Delta \ a^{(2)} \!\!\! \to \Delta \ Z^{(3)} \!\!\! \to \dots \dots \Delta \ Z^{(L)} \!\!\!\! \to \Delta \ a^{(L)} \!\!\! \to \Delta \ Y \to \Delta \ C \ (\theta \ )$$

. . . . . . . .

$$\Delta W^L\!\!\to\Delta\;Z^{(L)}\!\to\Delta\;a^{\;(L)}\!\to\Delta\;Y\to\Delta\;C\;(\;\theta\;)$$

### 参数调整:



### 梯度下降法调各层参数

$$[W^{I}]^{1} \leftarrow [W^{I}]^{0} - \eta \frac{\partial C(\theta)}{\partial W^{I}}$$

$$\frac{\partial C(\theta)}{\partial W^{I}} = \begin{bmatrix} \frac{\partial Z^{I}}{\partial W^{I}} & \frac{\partial C(\theta)}{\partial Z^{I}} & = & \mathbf{a}^{I-1} & \frac{\partial C(\theta)}{\partial Z^{I}} \end{bmatrix}$$

?

求:  $\frac{\partial C(\theta)}{\partial z^l}$ 



$$\frac{\partial C(\theta)}{\partial z^{l}} = \delta^{l}$$

先求最后一层误差 δ<sup>L</sup>

### 最后层一个误差 δ<sup>L</sup>



$$\Delta W^{1} \rightarrow \Delta Z^{(1)} \rightarrow \Delta a^{(1)} \rightarrow \Delta Z^{(2)} \rightarrow \dots \qquad \Delta Z^{(L)} \rightarrow \Delta a^{(L)} \rightarrow \Delta Y \rightarrow \Delta C (\theta)$$

$$\Delta W^{2} \rightarrow \Delta Z^{(2)} \rightarrow \Delta a^{(2)} \rightarrow \Delta Z^{(3)} \rightarrow \dots \qquad \Delta Z^{(L)} \rightarrow \Delta a^{(L)} \rightarrow \Delta Y \rightarrow \Delta C (\theta)$$

$$\dots \qquad \qquad \Delta W^{L} \rightarrow \Delta Z^{(L)} \rightarrow \Delta a^{(L)} \rightarrow \Delta Y \rightarrow \Delta C (\theta)$$

$$\delta^{L} = \frac{\partial C(\theta)}{\partial Z^{L}} = \frac{\partial C(\theta)}{\partial Y^{L}} \frac{\partial Y^{L}}{\partial Z^{L}}$$

$$\delta^{L} = \sigma'(z^{l}) \bullet \nabla C^{r}(y^{r})$$

$$C(\theta) = \frac{1}{R} \sum_{k} ||y^{r} - \hat{y}^{r}|| \qquad \sigma'(Z^{L})$$

### I 层误差 δ | 与 | +1 层误差 δ | +1 的关系 (关键步骤)



### 损失函数:

$$C(\theta) = \frac{1}{R} \sum_{r} \left\| f(x^r; \theta) - \hat{y}^r \right\|$$

$$\delta_{i}^{l} = \frac{\partial C^{r}}{\partial z_{i}^{l}} \qquad \Delta z_{i}^{l} \rightarrow \Delta a_{i}^{l} \qquad \vdots \qquad \Delta C^{r}$$

$$\delta_i^l = \frac{\partial C^r}{\partial z_i^l} = \frac{\partial a_i^l}{\partial z_i^l} \sum_k \frac{\partial z_k^{l+1}}{\partial a_i^l} \frac{\partial C^r}{\partial z_k^{l+1}}$$

### 链式法则:

$$x = g(s)$$
  $y = h(s)$   $z = k(x, y)$ 

$$\Delta s = \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

### I 层误差 δ | 与 | +1 层误差 δ |+1 的关系



# 根据 $\delta^{l+1}$ 求 $\delta^{l}$ (误差反传)



$$\delta_i^l = \sigma'(z_i^l) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$



# 根据 $\delta^{l+1}$ 求 $\delta^{l}$ (误差反传)



$$\delta_i^l = \sigma'(z_i^l) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$



# 误差反传公式

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

$$\sigma'(z^{l}) = \begin{bmatrix} \sigma'(z_{1}^{l}) \\ \sigma'(z_{2}^{l}) \\ \vdots \\ \sigma'(z_{i}^{l}) \\ \vdots \end{bmatrix}$$

### 误差反传过程:

首先计算最后层误差δ<sup>L</sup>,然后根据误差反传公式求得 倒数第二层误差δ<sup>L-1</sup>.... 直至第一层。



### 参数调整:

### 损失函数:



$$C(\theta) = \frac{1}{R} \sum_{r} \left\| \hat{y}^{r} - \hat{y}^{r} \right\|$$

### 梯度下降法调各层参数

$$[W^{I}]^{1} \longleftarrow [W^{I}]^{0} - \eta \frac{\partial C(\theta)}{\partial W^{I}} \qquad \frac{\partial C(\theta)}{\partial W^{I}} = \frac{\partial Z^{I}}{\partial W^{I}} \frac{\partial C(\theta)}{\partial Z^{I}} = a^{I-1} \delta^{I}$$

### 前馈神经网络的训练过程可以分为以下三步:

- (1)先前馈计算每一层的状态和激活值,直到最后一层;
- (2)反向传播计算每一层的误差;
- (3) 计算每一层参数的偏导数,并更新参数

#### 反向传播算法

```
输入: 训练集: (\mathbf{x}^{(i)}, y^{(i)}), i = 1, \dots, N,最大迭代次数: T
      输出: W, b
 1 初始化 W, b;
 2 for t = 1 \cdots T do
            for i = 1 \cdots N do
                   (1) 前馈计算每一层的状态和激活值,直到最后一层;
  4
                   (2) 用公式(3)反向传播计算每一层的误差\delta^{(l)};
  5
                   (3) 用公式(1)和(2)每一层参数的导数;
 6
                                         \frac{\partial \pmb{\mathcal{C}}(W, \mathbf{b}; \mathbf{x}, y \ )}{\partial W^{(l)}} = \delta^{(l)} (\mathbf{a}^{(l-1)})^T
  7
                                            \frac{\partial C(W, \mathbf{b}; \mathbf{x}, y)}{\partial \mathbf{b}^{(l)}} = \delta^{(l)}
 8
                   (4) 更新参数:
 9
                                          W^{(l)} = W^{(l)} - \alpha \sum_{i=1}^{N} \left( \frac{\partial \mathcal{C}(W, \mathbf{b}; \mathbf{x}^{(i)}, y^{(i)})}{\partial W^{(l)}} \right)
10
                                          \mathbf{b}^{(l)} = \mathbf{b}^{(l)} - \alpha \sum_{i=1}^{N} \left( \frac{\partial \mathcal{C}(W, \mathbf{b}; \mathbf{x}^{(i)}, y^{(i)})}{\partial \mathbf{b}_{i}(l)} \right);
11
            end
12
13 end
```

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} \cdot \frac{\partial \mathbf{C}_{x}}{\partial z^{l}}$$

$$\begin{bmatrix} a_{j}^{l-1} & l > 1 \\ x_{j} & l = 1 \end{bmatrix}$$
Forward Pass
$$z^{1} = W^{1}x + b^{1}$$

$$a^{1} = \sigma(z^{1})$$

$$\vdots$$

$$z^{l-1} = W^{l-1}a^{l-2} + b^{l-1}$$

$$a^{l-1} = \sigma(z^{l-1})$$

$$a^{l-1} = \sigma(z^{l-1})$$
Error signal
$$\delta^{l}$$

$$\delta^{l} = \sigma'(z^{l}) \bullet \nabla \mathbf{C}_{x}(y)$$

$$\delta^{l} = \sigma'(z^{l-1}) \bullet (W^{l})^{T} \delta^{l}$$

$$\vdots$$

$$\delta^{l} = \sigma'(z^{l-1}) \bullet (W^{l})^{T} \delta^{l+1}$$

$$\vdots$$

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

$$\vdots$$

$$\frac{\partial \mathbf{C}(W, \mathbf{b}; \mathbf{x}', y)}{\partial W^{(l)}} = \delta^{(l)} (\mathbf{a}^{(l-1)})^{T} \qquad \frac{\partial \mathbf{C}(W, \mathbf{b}; \mathbf{x}', y)}{\partial \mathbf{b}^{(l)}} = \delta^{(l)} \qquad \delta^{l} = \sigma' (z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$
(1)
(2)

# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

# 5.5 梯度消失问题

在神经网络中误差反向传播的迭代公式为  $\delta^l = \sigma'(z^l) \bullet (W^{l+1})^T \delta^{l+1}$ 

其中需要用到激活函数σ(Z<sup>L</sup>)的导数误差从输出层反向传播时每层都要乘激活函数导数。当用 sigmoid 或 thanh 函数时:



$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) \in [0, 0.25]$$
  
 $tanh'(x)=1-(tanh(x))^2 \in [0, 1]$ 

这样误差经过每一层传递都会不断衰减,当网络很深时甚至消失

# 内容提要

- 5.1 神经元模型
- 5.2 前馈神经网络
- 5.3 梯度下降法
- 5.4 反向传播算法
- 5.5 梯度消失问题
- 5.6 示例

# 前馈神经网分类问题示例

任务:用前馈神经网实现花的分类

输入:花的 萼片长度、萼片宽度、花瓣长度、花瓣宽度

输出:花的种类

已知:数据集共包含150个实例,3个品种的花各有50个格式如下:

| 序号  | 萼片长度 | 萼片宽度 | 花瓣长度 | 花瓣宽度 | 类别 |
|-----|------|------|------|------|----|
| 1   | 5.1  | 3.5  | 1.4  | 0.2  | 1  |
| 50  | 5    | 3.3  | 1.4  | 0.2  | 1  |
| 51  | 7    | 3.2  | 4.7  | 1.4  | 2  |
| 100 | 5.7  | 2.8  | 4.1  | 1.3  | 2  |
| 101 | 6.3  | 3.3  | 6    | 2.5  | 3  |
| 150 | 5.9  | 3    | 5.1  | 1.8  | 3  |

将每个类别的前40个,共120个实例组成训练集,其余30个实例组成测试集。

# 模型结构

### · 构建包含一个隐含层的神经网络DNN模型

- 输入层神经元数量:4,对应特征向量维度。
- 隐含层神经元数量:6,根据经验公式 $(\sqrt{n+m}+a)$ 取值。

- 输出层神经元数量:3,对应目标类别的数量。

### · 输入、输出、参数

- x表示模型输入
- H表示隐含状态
- y表示模型输出
- $-W^{1}$ 表示输入-隐含层权值矩阵
- b<sup>1</sup>表示隐含层偏置
- W<sup>2</sup>表示隐含-输出层权值矩阵
- b<sup>2</sup>表示输出层偏置



 $a\epsilon[1,10]$ 

# 模型结构

参数包括  $W^1$ ,  $b^1$ ,  $W^2$ ,  $b^2$ 。

$$W^{1} = \begin{bmatrix} W_{(1,1)}^{1}, W_{(1,2)}^{1}, W_{(1,3)}^{1}, W_{(1,4)}^{1}, W_{(1,5)}^{1}, W_{(1,6)}^{1} \\ W_{(2,1)}^{1}, W_{(2,2)}^{1}, W_{(2,3)}^{1}, W_{(2,4)}^{1}, W_{(2,5)}^{1}, W_{(2,6)}^{1} \\ W_{(3,1)}^{1}, W_{(3,2)}^{1}, W_{(3,3)}^{1}, W_{(3,4)}^{1}, W_{(3,5)}^{1}, W_{(3,6)}^{1} \\ W_{(4,1)}^{1}, W_{(4,2)}^{1}, W_{(4,3)}^{1}, W_{(4,4)}^{1}, W_{(4,5)}^{1}, W_{(4,6)}^{1} \end{bmatrix}$$

$$b^1 = [b_1^1, b_2^1, b_3^1, b_4^1, b_5^1, b_6^1]^T$$

$$W^{2} = \begin{bmatrix} W_{(1,1)}^{2}, W_{(1,2)}^{2}, W_{(1,3)}^{2} \\ W_{(2,1)}^{2}, W_{(2,2)}^{2}, W_{(2,3)}^{2} \\ W_{(3,1)}^{2}, W_{(3,2)}^{2}, W_{(3,3)}^{2} \\ W_{(4,1)}^{2}, W_{(4,2)}^{2}, W_{(4,3)}^{2} \\ W_{(5,1)}^{2}, W_{(5,2)}^{2}, W_{(5,3)}^{2} \end{bmatrix} \qquad b^{2} = \begin{bmatrix} b_{1}^{2} \\ b_{2}^{2} \\ b_{3}^{2} \end{bmatrix}$$

$$b^2 = \begin{bmatrix} b_1^2 \\ b_2^2 \\ b_3^2 \end{bmatrix}$$



# 模型结构

### 运算关系:

-- 隐含层

$$h_1 = sigmoid((\sum_{i=1}^{4} x_i W_{(i,1)}^1) + b_1^1)$$

同理可计算出隐含层其他神经元的激活值,向量化表示为:

$$H = sigmoid(xW^1 + b^1)$$

--输出层

$$(y_{pred} \sim Z)_1 = \sum_{i=1}^6 h_i W_{(i,1)}^2 + b_1^2$$
 向量化表示为:
$$y_{pred} = softmax(HW^2 + b^2)$$
  $h_1$   $h_2$   $h_3$   $h_4$   $h_5$   $h_6$ 

# 模型学习

### 梯度下降法训练模型参数

### 定义损失函数

交叉熵损失: 
$$J(\theta; x, y) = -\sum_{j=1}^{3} y_j \log((y_{pred})_j)$$
  $\theta = [W^1, b^1, W^2, b^2]$ 

整体损失: 
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} J(\theta; x^{(i)}, y^{(i)})$$

初始化参数:  $W^1$ ,  $b^1$ ,  $W^2$ ,  $b^2$ 。

用BP算法训练参数  $W^1$ ,  $b^1$ ,  $W^2$ ,  $b^2$ 。

# 模型学习

### 训练结果(神经网络权值和阈值):



# 问题预测

### 测试数据

| 序号 | 萼片长度 | 萼片宽度 | 花瓣长度 | 花瓣宽度 | 类别    |
|----|------|------|------|------|-------|
| 1  | 5    | 3.5  | 1.3  | 0.3  | 1,0,0 |
| 2  | 4.5  | 2.3  | 1.3  | 0.3  | 1,0,0 |
| 3  | 5.5  | 2.6  | 4.4  | 1.2  | 0,1,0 |
| 4  | 6.1  | 3    | 4.6  | 1.4  | 0,1,0 |
| 5  | 6.7  | 3.1  | 5.6  | 2.4  | 0,0,1 |
| 6  | 6.9  | 3.1  | 5.1  | 2.3  | 0,0,1 |

 $\chi$ 

### • 预测结果





| 系统           | 开发者      | 核心语言   | 支持语言              | 设备         | 分布式      | 命令式语言 | 声明式语言 |
|--------------|----------|--------|-------------------|------------|----------|-------|-------|
| Cuda-ConvNet | 多伦多大学    | C++    | -                 | GPU        | x        | x     | ٧     |
| Caffe        | 加州伯克利    | C++    | Python/Matlab     | GPU        | х        | x     | ٧     |
| Torch7       | 纽约大学     | Lua    | -                 | GPU/FPGA   | x        | √     | x     |
| Theano       | 蒙特利尔     | Python | -                 | GPU        | x        | ×     | √     |
| TensorFlow   | 谷歌       | C++    | Python            | GPU/Mobile | <b>v</b> | x     | ٧     |
| MXNet        | CNTK     | C++    | Python/R/Julia/Go | GPU/Mobile | √        | √     | ▼     |
| CNTK         | 微软       | C++    | -                 | GPU        |          |       |       |
| DSSTNE       | 亚马逊      | C++    | -                 | GPU        | √        | x     | √     |
| PaddlePaddle | 百度       | C++    | -                 | GPU        | ٧        | ×     | ٧     |
| Mariana      | 腾讯       | Python | -                 | GPU        | <b>v</b> | ×     | x     |
| TorchNet     | FaceBook | Lua    | -                 | GPU/FPGA   | x        | ٧     | x     |
| Veles        | 三星       | C++    | Python            | GPU/ARM    | √        | x     | ▼     |

TensorFlow

谷歌



www.tensorflow.org/

https://github.com/tensorflow

### **TensorFlow**

- 由Google开发,是Google的第二代机器 学习平台
- 2 015年11月9日发布
- TensorFlow是一个用于人工智能的开源神器---TensorFlow中文社区
- 一个采用数据流图(dataflowgraphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)

### TensorFlow:特征

- 高度的灵活性: 不是一个严格的"神经网络"库。只要你可以将你的计算表示为一个数据流图, 你就可以使用Tensorflow;
- <u>真正的可移植性</u>(Portability): Tensorflow在CPU和GPU上运行,比如说可以运行在台式机、服务器、手机移动设备等等;
- **连接科研和产品**:使用Tensorflow可以让应用型研究者将想法迅速运用到产品中,也可以让学术性研究者更直接地彼此分享代码,从而提高科研产出率;
- **自动求微分**:基于梯度的机器学习算法会受益于Tensorflow自动求微分的能力。只需要定义预测模型的结构,将这个结构和目标函数(objectivefunction)结合在一起,并添加数据,Tensorflow将自动为你计算相关的微分导数;
- •多语言支持: Tensorflow有一个合理的c++使用界面,也有一个易用的python使用界面来构建和执行你的graphs;
- •性能最优化: Tensorflow给予了线程、队列、异步操作等以最佳的支持, Tensorflow让你可以将你手边硬件的计算潜能全部发挥出来。你可以自由地将Tensorflow图中的计算元素分配到不同设备上, Tensorflow可以帮你管理好这些不同副本

# TensorFlow: 使用公司

#### Companies Using TensorFlow

























# TensorFlow: 安装

- 参考
  - <a href="http://www.leiphone.com/news/201606/ORIQ7uK3TIW8xVGF.html">http://www.leiphone.com/news/201606/ORIQ7uK3TIW8xVGF.html</a>
  - <a href="http://www.tensorfly.cn/tfdoc/get\_started/os\_setup.html">http://www.tensorfly.cn/tfdoc/get\_started/os\_setup.html</a>

# 参考文献:

### 李宏毅课程

http://speech.ee.ntu.edu.tw/~tlkagk/courses\_ML16.html

邱锡鹏,《神经网络与深度学习》讲义

车万翔, Deep Learning Lecture 02: Neural Network

# 在此表示感谢!



# 調調各位!

