Forecasting the Hospitality Employees

```
In [1]: #Import Packages
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    import plotly.graph_objects as go
    from plotly.subplots import make_subplots
    %matplotlib inline
```

```
In [3]: #Load Data
data= pd.read_csv(r'C:\Users\DD\Desktop\ML PROJECTS\time Series\HospitalityEmployees.csv')
```


In [4]: data

Out[4]:

	Date	Employees
0	1/1/1990	1064.5
1	2/1/1990	1074.5
2	3/1/1990	1090.0
3	4/1/1990	1097.4
4	5/1/1990	1108.7
343	8/1/2018	2019.1
344	9/1/2018	1992.5
345	10/1/2018	1984.3
346	11/1/2018	1990.1
347	12/1/2018	2000.2

348 rows × 2 columns

#Data Preparation

In [5]: data.shape

Out[5]: (348, 2)

In [6]: data.dtypes

Out[6]: Date object Employees float64

dtype: object


```
In [7]: data.head()
```

Out[7]:

	Date	Employees
0	1/1/1990	1064.5
1	2/1/1990	1074.5
2	3/1/1990	1090.0
3	4/1/1990	1097.4
4	5/1/1990	1108.7

In [8]: data.tail()

Out[8]:

	Date	Employees
343	8/1/2018	2019.1
344	9/1/2018	1992.5
345	10/1/2018	1984.3
346	11/1/2018	1990.1
347	12/1/2018	2000.2

In [9]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 348 entries, 0 to 347
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 Date 348 non-null object
1 Employees 348 non-null float64
dtypes: float64(1), object(1)
memory usage: 5.6+ KB
```


In [10]: data.describe(include='all')

Out[10]:

	Date	Employees
count	348	348.000000
unique	348	NaN
top	1/1/1990	NaN
freq	1	NaN
mean	NaN	1452.506897
std	NaN	256.604914
min	NaN	1064.500000
25%	NaN	1238.050000
50%	NaN	1436.200000
75%	NaN	1586.300000
max	NaN	2022.100000

In [12]: data.nunique()

Out[12]: Date 348

Employees 338 dtype: int64

In [13]: data.index.freq = 'MS'
data

Out[13]:

	Date	Employees
0	1/1/1990	1064.5
1	2/1/1990	1074.5
2	3/1/1990	1090.0
3	4/1/1990	1097.4
4	5/1/1990	1108.7
343	8/1/2018	2019.1
344	9/1/2018	1992.5
345	10/1/2018	1984.3
346	11/1/2018	1990.1
347	12/1/2018	2000.2

348 rows × 2 columns

In [11]: data.isnull().sum()

Out[11]: Date 0

Employees 0 dtype: int64


```
In [50]: sns.heatmap(data.isnull(),yticklabels=False,cmap="viridis")
```

Out[50]: <Axes: >


```
In [14]: s=data.sample(8)
sns.barplot(x='Date',y='Employees',data=s)
```

Out[14]: <Axes: xlabel='Date', ylabel='Employees'>


```
In [23]: plt.figure(figsize=(12, 6))
    plt.bar(s['Date'],s['Employees'])
    plt.title('California Hospitality Industry Employees Over Time')
    plt.xlabel('Date')
    plt.ylabel('Thousands of Persons')
    plt.show()
```



```
In [25]: plt.figure(figsize=(12, 6))
    plt.scatter(data['Date'], data['Employees'], marker='o')
    plt.title('California Hospitality Industry Employees Over Time')
    plt.xlabel('Date')
    plt.ylabel('Thousands of Persons')
    plt.show()
```


Date


```
In [17]: plt.figure(figsize=(12, 6))
    plt.hist(data['Employees'], bins=20, edgecolor='black')
    plt.title('Distribution of California Hospitality Industry Employees')
    plt.xlabel('Thousands of Persons')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [26]: plt.figure(figsize=(12, 6))
    plt.boxplot(s['Employees'])
    plt.title('Box Plot of California Hospitality Industry Employees')
    plt.ylabel('Thousands of Persons')
    plt.show()
```

Box Plot of California Hospitality Industry Employees


```
In [19]: plt.figure(figsize=(12, 6))
    plt.stackplot(data['Date'], data['Employees'])
    plt.title('Stacked Area Plot of California Hospitality Industry Employees Over Time')
    plt.xlabel('Date')
    plt.ylabel('Thousands of Persons')
    plt.show()
```

Stacked Area Plot of California Hospitality Industry Employees Over Time


```
In [31]: sns.pairplot(data, x_vars=['Date'], y_vars=['Employees'], height=6, aspect=1.2, kind='scatter')
    plt.title('Pair Plot of California Hospitality Industry Employees')
    plt.show()

C:\Users\DD\AppData\Local\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layou
    t has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```



```
In [32]: plt.figure(figsize=(12, 6))
    plt.fill_between(data['Date'], data['Employees'].cumsum(), color='skyblue', alpha=0.4)
    plt.title('Cumulative Sum of California Hospitality Industry Employees Over Time')
    plt.xlabel('Date')
    plt.ylabel('Cumulative Employees (Thousands)')
    plt.show()
```


2004

Date

2008

Indexing with Date

1992

This is particularly helpful for calculating statistics or summarizing data over specific time periods

2000

1996

2020

2012

2016

Sampling

```
In [35]: y = data['Employees'].resample('MS').mean()
```



```
In [36]: from statsmodels.tsa.seasonal import seasonal_decompose
         decomposition = seasonal_decompose(y)
         plt.plot(y, label = 'Original')
         plt.legend(loc = 'best')
         trend = decomposition.trend
         plt.show()
         plt.plot(trend, label = 'Trend')
         plt.legend(loc = 'best')
         seasonal = decomposition.seasonal
         plt.show()
         plt.plot(seasonal, label = 'Seasonal')
         plt.legend(loc = 'best')
         residual = decomposition.resid
         plt.show()
         plt.plot(residual, label = 'Residual')
         plt.legend(loc='best')
```


Out[36]: <matplotlib.legend.Legend at 0x2038763b3d0>

Checking Stationarity

In [37]: from statsmodels.tsa.stattools import adfuller


```
In [38]: from pandas import Series
    from statsmodels.tsa.stattools import adfuller
    result = adfuller(y)
    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])
    print('Critical Values:')
    for key, value in result[4].items():
        print('\tms: %.3f' % (key, value))

ADF Statistic: 0.901284
    p-value: 0.993107
    Critical Values:
        1%: -3.450
        5%: -2.870
        10%: -2.571
```

Decomposing

Decomposing the time series into three distinct components: trend, seasonality, and noise


```
In [39]: from statsmodels.tsa.seasonal import seasonal_decompose
         decomposition = seasonal_decompose(y)
         plt.plot(y, label = 'Original')
         plt.legend(loc = 'best')
         trend = decomposition.trend
         plt.show()
         plt.plot(trend, label = 'Trend')
         plt.legend(loc = 'best')
         seasonal = decomposition.seasonal
         plt.show()
         plt.plot(seasonal, label = 'Seasonal')
         plt.legend(loc = 'best')
         residual = decomposition.resid
         plt.show()
         plt.plot(residual, label = 'Residual')
         plt.legend(loc='best')
```


Out[39]: <matplotlib.legend.Legend at 0x203887f5cd0>

Time Series Forcasting using ARIMA

#We will use ARIMA for forecasting our time series. ARIMA is also denoted as ARIMA(p,d,q) where p,d,q accounts for seasonality, trend and noise in the time series data


```
In [40]: import itertools
    p = d = q = range(0, 2)
    pdq = list(itertools.product(p, d, q))
    seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]
    print('Examples of parameter combinations for Seasonal ARIMA...')
    print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1]))
    print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2]))
    print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3]))
    print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4]))

Examples of parameter combinations for Seasonal ARIMA...
    SARIMAX: (0, 0, 1) x (0, 0, 1, 12)
    SARIMAX: (0, 0, 1) x (0, 1, 0, 12)
    SARIMAX: (0, 1, 0) x (0, 1, 1, 12)
    SARIMAX: (0, 1, 0) x (1, 0, 0, 12)
```

Parameter Selection

We use "grid search" to find the optimal set of parameters that yields the best performance for our model

Fitting the ARIMA model

We might use the ARIMA Order (1, 1, 2) combined with the Seasonal Order (1, 0, [1], 12) as we have the lowest AIC value considering those orders

========		========	.=======	========		
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.5069	0.449	-1.129	0.259	-1.387	0.373
ma.L1	3.1335	10.333	0.303	0.762	-17.118	23.385
ma.L2	0.5887	3.993	0.147	0.883	-7.237	8.415
ar.S.L12	0.9996	0.005	206.218	0.000	0.990	1.009
ma.S.L12	-0.7189	0.042	-17.013	0.000	-0.802	-0.636
sigma2	3.6716	24.122	0.152	0.879	-43.607	50.950

C:\Users\DD\AppData\Local\anaconda3\Lib\site-packages\statsmodels\base\model.py:607: ConvergenceWarning: Max imum Likelihood optimization failed to converge. Check mle_retvals warnings.warn("Maximum Likelihood optimization failed to "

In [52]: results.plot_diagnostics(figsize=(16, 8))
plt.show()

Validating Forecasts

We compare predicted sales to real sales of the time series to understand the accuracy of our forecasts

Calculating MSE and RMSE

```
In [54]: y_data = pred.predicted_mean
    y_truth = y['2017-01-01':]
    mse = ((y_data - y_truth) ** 2).mean()
    print('The Mean Squared Error of our forecasts is {}'.format(round(mse, 2)))

print('The Root Mean Squared Error of our forecasts is {}'.format(round(np.sqrt(mse), 2)))
```

The Mean Squared Error of our forecasts is 40.14 The Root Mean Squared Error of our forecasts is 6.34

Visualizing the Forecast

	lower Employees	upper Employees
2019-01-01	1953.968474	1975.996741
2019-02-01	1972.220508	2003.920391
2019-03-01	1987.319019	2027.027686
2019-04-01	2008.480242	2054.544035
2019-05-01	2025.373608	2077.146884
2019-06-01	2039.424153	2096.276643
2019-07-01	2044.708184	2106.250152
2019-08-01	2043.526600	2109.411798
2019-09-01	2020.918310	2090.884002
2019-10-01	2013.989476	2087.807386
2019-11-01	2008.298797	2085.779112
2019-12-01	2012.329460	2093.305989
2020-01-01	1973.819716	2060.078685

Conclusion

We observe that the Average of employees produce seasonal pattern and the Average of employees increases linearly over time.

