PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : H04L 12/56	А3	(11) International Publication Number: WO 98/56140 (43) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: PCT	T/GB98/016	51 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE
(22) International Filing Date: 5 June 19	98 (05.06.9	(8) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW
(30) Priority Data: 97/5022 6 June 1997 (06.06.97)	:	MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL TI, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARPC ZA patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European

(71) Applicant (for all designated States except US): SALBU RE-SEARCH AND DEVELOPMENT (PROPRIETARY) LIM-ITED [ZA/ZA]; Portion 86-87 of Farm Doomkloof, Pretoria 0002 (ZA).

(71) Applicant (for IS only): TOMLINSON, Kerry, John [GB/GB]: 79 Hove Park Road, Hove, East Sussex BN3 6LL (GB).

(72) Inventors: and (75) Inventors/Applicants (for US only): LARSEN, Mark, Sievert [ZA/ZA]; 22 Darlington Road, Lynnwood Manor, Pretoria 0081 (ZA). LARSEN, James, David [ZA/ZA]; Portion 86-87 of Farm Doomkloof, Pretoria 0002 (ZA),

(74) Agent: TOMLINSON, Kerry, John; Frank B. Dehn & Co., 179 Oueen Victoria Street, London EC4V 4EL (GB).

patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, MIL, MR, NE, SN, TD, TG).

Published

With international search report

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 4 March 1999 (04.03.99)

(54) Title: METHOD OF OPERATION OF A MULTI-STATION NETWORK

(57) Abstract

The invention provides a method of operating a communication network. The network comprises numerous stations, each of which can transmit and receive data in order to transmit messages from originating stations to destination stations opportunistically via intermediate stations. Each station selects one of a number of possible calling channels to transmit probe signals to other stations. The probe signals contain data identifying the station in question and include details of its connectivity to other stations. Other stations receiving the probe signals respond directly or indirectly, thereby indicating both to the probing station and other stations their availability as destination or intermediate stations. The probing station evaluates the direct or indirect responses to identify other stations with which it can communicate optimally. For example, the stations may monitor the cumulative power required to reach another station, thereby defining a power gradient to the other stations, with stations selecting a route through the network which optimises the power gradient. Thus, data throughput through the network is maximised with minimum interference and contention between stations.