IBM Data Science Capstone Project

Restaurant Recommendation in Mumbai, India

By: Kaushik P. Metha

Table of contents:

1.	Introduction	-3
2.	Problem Definition	-3
3.	Data	-4
4.	Methodology	-5
5.	Results & Discussions	-8
6.	Conclusion	_9

1. Introduction:

This report is a part of the final course of IBM Data Science Specialization hosted by Coursera.

If you are looking for a culinary escapade, Mumbai is, by all means the gastronomic hub of India. The restaurant industry offers a wide variety of cuisines like 'Indian', 'Mexican', 'Italian' and many more. There's something for everyone. The restaurants in Mumbai are considerably heterogeneous to provide pocket-friendly casual meals or a lavish dining experience. Mumbai's Khau Gallis offer some of the most finger-licking and delicious street food.

The target audience for this project are the people of Mumbai, tourists etc. Now, let's dig right into the mouth-watering delights Mumbai has to offer.

2. Problem Definition:

Mumbai is a massive city with a very cosmopolitan feel and this is the reason it has a diverse range of cuisines. There are plenty of restaurants where you can have pocket-friendly meal or a lavish dining experience. One of the main problems is that people are unaware of famous restaurants and places available in a specific locality. This not only applies to the tourists but also to the local people. Today, there are a large number of restaurants established in Mumbai. With the increase in number of restaurants people often get confused about the best-suited restaurant according to their preferences. In addition to that, people often face a hard time to find out the best place near their locality. The main aim of this project is to recommend restaurants based on the location of the user.

3. Data:

The following data will be used to solve the problem

- 1) List of all the neighbourhoods in Mumbai.
- 2) Latitude and Longitude of those neighbourhoods.
- 3) Data related to the restaurants in those neighbourhoods.

The list of all the neighbourhoods in Mumbai and their location (Latitude and Longitude) is extracted from Wikipedia. Link to the Wikipedia page: https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Mumbai.

BeautifulSoup (a web scraping package in python) is used to extract the neighbourhood data.

The data related to the restaurants in a neighbourhood is obtained by using the Foursquare API. The name of the restaurant, category, the location of the restaurant etc can be extracted using the Foursquare API.

The list of all the restaurants in Mumbai is obtained by web scraping Zomato. Link: https://www.zomato.com/mumbai/restaurants. Name of the restaurant, rating, number of votes, cost for 2 is extracted from Zomato.

4. Methodology:

The first step of the project was to collect the list of neighbourhoods in the city of Mumbai. This list is available on Wikipedia (https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Mumbai). The neighbourhood, suburb and the coordinates of the neighbourhood were extracted using the BeautifulSoup library. The coordinates of few neighbourhoods were incorrect on the Wikipedia page. After correcting those coordinates and performing some data cleaning and preparation techniques, the following dataset of Mumbai neighbourhoods was obtained

	Area	Location	Latitude	Longitude
0	Amboli	Western Suburbs	19.129300	72.843400
1	Chakala, Andheri	Western Suburbs	19.111388	72.860833
2	D.N. Nagar	Western Suburbs	19.124085	72.831373
3	Four Bungalows	Western Suburbs	19.124714	72.827210
4	Lokhandwala	Western Suburbs	19.130815	72.829270

The next step was to obtain a list of all the restaurants in Mumbai. Restaurant related data like name of the restaurant, rating, number of votes, price etc was scraped from www.zomato/mumbai/restaurants. The data of around 20000 restaurants was scraped from the above website. After running some data cleaning and data preparation techniques the following dataset was obtained.

	Name	Cost for 2	Dining_rating	Dining_votes	Delivery_rating	Delivery_votes
0	Yasin's Food Inn	700.0	4.1	2182.0	3.8	99400.0
1	McDonald's	400.0	4.0	948.0	4.1	11400.0
2	Joey's Pizza	800.0	4.8	8922.0	4.2	4081.0
3	Guru Kripa	300.0	4.6	3671.0	4.2	21500.0
4	Cafe Safar	450.0	4.1	2174.0	3.9	89100.0

The coordinates of Mumbai were obtained and the neighbourhoods of Mumbai were plotted on a map with the help of 'folium' library

Mumbai neighbourhoods

Next, I used FourSquare API to explore the nearby restaurants of the first Neighbourhood of the dataset. The API requests returned the data of 100 nearby venues within a radius of 3000meters. Venue Name, Category, Address, Coordinates, Distance from current neighbourhood was stored in a data frame. Then the data of restaurants was extracted from the data frame (Categories that have the word 'Restaurant' in it). After some data cleaning, the following dataset was obtained (Only of first neighbourhood)

	Name	Category	Address	Street	Distance	Latitude	Longitude	Id
0	Shawarma Factory	Falafel Restaurant	Dadabhai Road	Off JP Road, Near Navrang Cinema	611	19.124591	72.840398	5174e2be498e39cf0d1c20cb
1	Garden Court	Indian Restaurant	Opp. Andheri Sports Complex, Andheri	JP Rd.	665	19.127188	72.837478	4b46128bf964a520751526e3
2	Shetty's Corner	Chinese Restaurant	Bhavan's College	NaN	765	19.124845	72.837858	4df24b2cd1649c8a28de604e
3	Persia Darbar	Indian Restaurant	Jogeshwari West	S.V. Road	924	19.136952	72.846822	5247116c11d2982261defb5d
4	Jaffer Bhai's Delhi Darbar	Mughlai Restaurant	Jogeshwari West	NaN	973	19.137714	72.845909	55fc3615498e141bd45da525

A generalised code was written which returned the dataset of nearby restaurants of the selected neighbourhood. A dropdown menu widget is used to select the neighbourhood. The dataset of nearby restaurants was merged with the Zomato dataset. This newly merged dataset contains Name of the Restaurant, Category, Address, Distance, Coordinates, Ratings, Votes etc

	Name	Category	Address1	Address2	Distance(m)	Latitude	Longitude	ld	Cost for 2	Dining_rating	Dining_votes	Del
	Sharda Shavan	Indian Restaurant	Lakhamsi Nappu Rd., Matunga	NaN	1170	19.026783	72.850841	4b87b1f8f964a52084c731e3	200.000000	4.1	441.0	
1 Te	erttulia	Italian Restaurant	Ground Floor, Hotel Parkway	Near Natural Ice Cream, Ranade Road Extension	1301	19.025638	72.835416	50d801d6e4b09e2e64f6f437	388.557387	4.4	2191.0	
2	ai Hind Lunch Home	Seafood Restaurant	Tulsipipe Road	Dadar West	2380	19.002183	72.829512	4bfe4e1855539c7488d2bcf3	850.000000	4.4	1180.0	
3	Guru Kripa	Indian Restaurant	Guru Kripa Building, Near SIES College	Rd No 24	3307	19.042955	72.861796	4b0587d8f964a52008a422e3	300.000000	4.6	3671.0	
4	Ming Yang	Chinese Restaurant	Taj Lands End	Bandra Lands End	3919	19.043582	72.819199	4b5dc6e6f964a520166b29e3	800.000000	4.3	1087.0	

Merged Dataset

KMeans clustering was used to cluster the restaurants of few neighbourhoods. The restaurants will be grouped into 4 clusters. The result will allow us to identify the differences between the clusters.

Lastly, a dataset of top 5 nearest restaurants within a radius of 3000m of each neighbourhood was created.

R5	R4	R3	R2	R1	Area	
Jaffer Bhai's Delhi Darbai	Persia Darbar	Shetty's Corner	Garden Court	Shawarma Factory	Amboli	0
Spirit Kitchen and Ba	King chilly	Maharaja Restaurant	Hit & Run	Faaso's	Chakala, Andheri	1
Tewari Bros Sweets	Shawarma Factory	Banana Leaf	Garden Court	Shetty's Corner	D.N. Nagar	2
015's Café	Levo	Gajalee 7 Bungalows	Urban Tadka	Banana Leaf	Four Bungalows	3
Indigo Delicatesser	Indigo Deli	Shabri Veg Restaurant	KFC	015's Café	Lokhandwala	4
Burger King	Eva's Pizza	Gurukripa	Uttam Da Dhaba	Benzys	Marol	5
the indian Kebab gril	Stax	Pan Asian	Dum Pukth	Peshawari	Sahar	6

Top 5 nearest restaurants

5. Results and Discussions:

The restaurants of the selected neighbourhood were grouped into 4 clusters. The description of each cluster is as follows:

- a. Cluster 0: High cost, Excellent Score (Red)
- b. Cluster 1: Low cost, Average Score (Purple)
- c. Cluster 2: Moderate cost, Good Score (Cyan)
- d. Cluster 3: Moderate cost, Excellent Score (Yellow)

Example

- 1. The restaurants of cluster 0 are recommended if the person wants to have a lavish dining experience in a highly rated restaurant.
- 2. The restaurants of cluster 1 are recommended if the person wants to have a low cost pocket friendly meal in an average rated restaurant
- 3. The restaurants of cluster 2 and 3 are recommended if the person wants to have a good dining experience.

6. Conclusion:

The concepts of Data science like problem definition, data collection, data cleaning and preparation, exploratory analysis, visualizations, machine learning were used in the project.

In this project, various neighbourhoods of Mumbai were explored. The data obtained from FourSquareApi, Wikipedia and Zomato was used to cluster the restaurants of each neighbourhood. The clustering of restaurants of few neighbourhoods led to the conclusion of grouping the restaurants into 4 different clusters (description mentioned in results and discussion).

The findings of this project will help the user to have a good dining experience in the city of Mumbai.