

Image Morphing and Warping

CS635 Spring 2010

Daniel G. Aliaga
Department of Computer Science
Purdue University

Motivation – Rendering from Images

- Given
 - left image
 - right image
- Create intermediate images
 - simulates camera movement

Related Work

- Panoramas ([Chen95/QuicktimeVR], etc)
 - user can look in any direction at few given locations but camera translations are *not* allowed...

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

Identify correspondences between input/output image

 Produce a sequence of images that allow a smooth transition from the input image to the output image

- 1. Correspondences
- 2. Linear interpolation

$$P_k = (1 - \frac{k}{n})P_0 + \frac{k}{n}P_n$$

Image morphing is not shape preserving

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

View Morphing

PUR

View Morphing

- Shape preserving morph
- Three step algorithm
 - Prewarp first and last images to parallel views
 - Image morph between prewarped images
 - Postwarp to interpolated view

Step 1: prewarp to parallel views

Parallel views

- same image plane
- image plane parallel to segment connecting the two centers of projection

Prewarp

- compute parallel views I_{0p} , I_{np}
- rotate I₀ and I_n to parallel views
- prewarp correspondence is $(P_0, P_n) \rightarrow (P_{op}, P_{np})$

Step 2: morph parallel images

- Shape preserving
- Use prewarped correspondences
- Interpolate C_k from C₀ C_n

Step 3: postwarp image

- Postwarp morphed image
 - create intermediate view
 - C_k is known
 - interpolate view direction and tilt
 - rotate morphed image to intermediate view

 View morphing is shape preserving

View Morphing Examples

Using computer vision/stereo reconstruction techniques

Image Transformations

• Intuitively, how do you compute the matrix M by which to transform P_0 to P_{0p} ?

Image Transformations

 A geometric relationship between input (u,v) and output pixels (x,y)

– Forward mapping:

$$(x,y) = (X(u,v), Y(u,v))$$

– Inverse mapping:

$$(u,v) = (U(x,y), V(x,y))$$

Image Transformations

General matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ u \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and operates in the "homogeneous coordinate system".

Affine Transformations

Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and accommodates translations, rotations, scale, and shear.

How many unknowns? How to create matrix?

Affine Transformations

 Transformation can be inferred from correspondences; e.g.,

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

Given ≥3 correspondences can solve for T

Perspective/Projective Transformation

Matrix form is

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

and it accommodates foreshortening of distant line and convergence of lines to a vanishing point;

also, straight lines are maintained but not their mutual angular relationships, and

only parallel lines parallel to the projection plane remain parallel

Perspective/Projective Transformations

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- How many unknowns?
- How many correspondences are needed?

Perspective/Projective Transformations

Solve

$$A = b$$

where A is the vector of unknown coefficients a_{ij}

Topics

- Image morphing (2D)
- View morphing (2D+)
- Image warping (3D)

3D Image Warping

- Goal: "warp" the pixels of the image so that they appear in the correct place for a new viewpoint
- Advantage:
 - Don't need a geometric model of the object/environment
 - Can be done in time proportional to screen size and (mostly) independent of object/environment complexity
- Disadvantage:
 - Limited resolution
 - Excessive warping reveals several visual artifacts (see examples)

3D Image Warping Equations

$$P = \begin{bmatrix} \mathbf{u}_{x} \ \mathbf{v}_{x} \ \mathbf{o}_{x} \\ \mathbf{u}_{y} \ \mathbf{v}_{y} \ \mathbf{o}_{y} \\ \mathbf{u}_{z} \ \mathbf{v}_{z} \ \mathbf{o}_{z} \end{bmatrix}$$

$$\dot{X} = \dot{C} + t P \vec{x}$$

Some pictures courtesy of SIGGRAPH '99 course notes (Leonard McMillan)

$$\begin{split} \dot{C}_2 + t_2 P_2 \vec{x}_2 &= \dot{C}_1 + t_1 P_1 \vec{x}_1 \\ t_2 P_2 \vec{x}_2 &= \dot{C}_1 - \dot{C}_2 + t_1 P_1 \vec{x}_1 \\ t_2 \vec{x}_2 &= P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + t_1 P_2^{-1} P_1 \vec{x}_1 \\ t_2 \vec{x}_2 &= \frac{1}{t_1} P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + P_2^{-1} P_1 \vec{x}_1 \\ \vec{x}_2 &= \frac{1}{t_1} P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + P_2^{-1} P_1 \vec{x}_1 \\ \vec{x}_2 &= \frac{1}{t_1} P_2^{-1} \left(\dot{C}_1 - \dot{C}_2 \right) + P_2^{-1} P_1 \vec{x}_1 \end{split}$$

3D Image Warping Equations

McMillan & Bishop Warping Equation:

$$x_2 = \delta(x_1) P_2^{-1} (c_1 - c_2) + P_2^{-1} P_1 x_1$$

Move pixels based on distance to eye

~Texture mapping

 Per-pixel distance values are used to warp pixels to their correct location for the current eye position

 Images enhanced with per-pixel depth [McMillan95]

3D Image Warping Equations

$$\overset{\bullet}{P} = \overset{\bullet}{C}_1 + (\overset{-}{c}_1 + u_1\overset{-}{a}_1 + v_1\overset{-}{b}_1)w_1$$

$$w_1 = \frac{C_1 P}{C_1 P_1}$$

- 1/w₁ also called generalized disparity
- another notation $\delta(u_1, v_1)$

3D Image Warping Equations

3D Image Warping Equations

$$u_{2} = \frac{w_{11} + w_{12} \cdot u_{1} + w_{13} \cdot v_{1} + w_{14} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$

$$v_{2} = \frac{w_{21} + w_{22} \cdot u_{1} + w_{23} \cdot v_{1} + w_{24} \cdot \delta(u_{1}, v_{1})}{w_{31} + w_{32} \cdot u_{1} + w_{33} \cdot v_{1} + w_{34} \cdot \delta(u_{1}, v_{1})}$$

- DeltaSphere
 - Lars Nyland et al.

Disocclusions

 Disocclusions (or exposure events) occur when unsampled surfaces become visible...

What can we do?

Disocclusions

• Bilinear patches: fill in the areas

What else?

Rendering Order

√ The warping equation determines where points go...

... but that is not sufficient

Occlusion Compatible Rendering Order

- Remember epipolar geometry?
- Project the new viewpoint onto the original image and divide the image into 1, 2 or 4 "sheets"

Occlusion Compatible Rendering Order

 A raster scan of each sheet produces a back-to-front ordering of warped pixels

FUR

Splatting

- One pixel in the source image does not necessarily project to one pixel in the destination image
 - e.g., if you are walking towards something, the sample might get larger...
- A solution: estimate shape and size of footprint of warped samples
 - expensive to do accurately
 - square/rectangular approximations can be done quickly (3x3 or 5x5 splats)
 - occlusion-compatible rendering will take care of oversized splats
 - BUT large splats can make the image seem blocky/low-res

• QSplat Demo...

More Examples Using the DeltaSphere

• Lars Nyland et al.

courtesy 3rd Tech Inc.

- 300° x 300° panorama
- this is the reflected light

- 300° x 300° panorama
- this is the range light

planar re-projection

Courtesy 3rd Tech Inc.

Courtesy 3rd Tech Inc

Complete Jeep model

Courtesy 3rd Tech Inc.

