Biblioteke

Veljko Petrović Decembar, 2022

Izbor iz oblasti primene

- Linearna algebra
- Parcijalne diferencijalne jednačine
- Grafovi
- Paralelizovani I/O
- Dekompozicija meš struktura
- Vizuelizacija

Zašto?

- Zašto koristimo biblioteke inače? Neko ko se samo bavi metodama za, npr. linearnu algebru može da ih implementira mnogo bolje od nas kojima je ta linearna algebra (potencijalno) samo jedna od deset stvari koje nam trebaju.
- Ovo je, u stvari, naročito dobar primer za upotrebu biblioteka zato što vrlo često mi imamo jasnu podelu između našeg algoritma i raznih matematičkih operacija i algoritama koji nam trebaju da ga implementiramo. Integracija, uz tako jasnu podelu, je mnogo lakša.
- Često ovo ide do tačke da se koristi poseban jezika (Python, često) ali mi nećemo nužno ići tako daleko.

Struktura predavanja

- Prelazimo prvo najizraženiji deo HPC-a: linearnu algebru.
- U okviru HPC-a BLAS i Lapack se analiziraju u malo više detalja kao demonstracija kako izgledaju biblioteke tog tipa.
- Za ostale oblasti primene, samo se informativno prelaze koje biblioteke postoje i, konsekventno, odakle treba početi.

Linearna algebra

- BLAS
- Basic Linear Algebra Subprograms
- BLAS je jedna od najdrevnijih biblioteka koje se još koriste.
- Nastala je kao deo rada u JPL ogranku NASA.
- BLAS je serijski i sastoji se od implementacija bazičnih formi vektorsko/matričnih operacija na način koji je jako optimizovan za različite platforme.

Implementacija

- BLAS je napisan u programskom jeziku Fortran 77.
- Postoji varijanta prilagođena za upotrebu u programskom jeziku C koja se zove CBLAS
- Nju koristimo (danas, nju skoro svi koriste, kad koriste BLAS) te ako negde piše 'BLAS' gotovo se sigurno misli na CBLAS biblioteku.

Nivoi

- Sve BLAS operacije se mogu podeliti na 3 nivoa po svojoj prirodi:
- Vektor-vektor
- Matrica-vektor
- Matrica-matrica
- Ranije verzije su podržavale samo niže nivoe zbog ograničenja računara iz tog doba.

Struktura naziva rutina

- Funkcije u BLAS-u imaju imena standardizovanog oblika koje, preko afiksa, određuju:
 - Preciznost
 - Tip matrice koji se koristi, ako ga ima.
 - Tip operacije.
- U skladu sa c konvencijom, postoji i prefiks biblioteke, cblas_

Preciznost u BLAS-u

S	Float
d	Double
С	Complex
Z	D.Complex

Prefiks	Opis
tre	Trougaona matrica

Tip matrice u BLAS-u

ge	Opšta matrica; nema ograničenja
sy	Simetrična matrica za koju važi $A=A^T$
he	Hermitijanska matrica; matica u kojoj važi da su parovi u transponovanju jedni drugima kompleksni konjugati

Tip čuvanja matrice u BLAS-u

- Matrice se podrazumevano čuvaju u 'dense' formatu, odnosno, jednostavno se pamte sve vrednosti matrice. Redom.
- Ali, može se drugo slovo tipa matrice zameniti sa ili b ili p da odredi da je matrica drugog tipa.

Tip čuvanja matrice u BLAS-u

b	Trakasta (banded) matrica. Matrica u kojoj je većina vrednosti 0, ali one koje nisu su u dijagonalama (trakama).
p	Nabijena (packed) matrica. Ako je matrica takva da se od jednog trougla može rekonstruisati cela matrica (simetrična,

BLAS, nivo 1, operacije bez skalarnog proizvoda

swap	Menja mesta vektorima	s,d,c,z
scal	Skalira vektor za konstantu	s,d,c,z,cs,zd
сору	Kopira vektor	s,d,c,z
ахру	Izvršava	s,d,c,z

Prefiks

Opis

Hermitijanska, ili trouglasta) može se čuvati samo taj jedan trougao pročitan po kolonama u jednom velikom nizu.

BLAS, nivo 1, operacije sa skalarnim proizvodom

dot	Skalarni proizvod	s,d,ds
dotc	Skalarni proizvod konjugovane vrednosti kompleksne vrednosti i neke druge kompleksne vrednosti	C,Z
dotu	Kompleksni skalarni proizvod	C,Z

sdsdot	Skalarni proizvod plus skalar	sds

BLAS, nivo 1, operacije rotacije

rotg	Uz date skalare a i b, sračunaće c i s takve da: Ovo se zovu paramteri Givensove rotacije	s,d
rot	Primenjuje Givens rotaciju, drugim rečima, ako joj se daju dva vektora kao ulaz, svaki element vektora	s,d

BLAS, nivo 1, operacije norme

nrm2	Proračun 2- norme	s,d,sc,dz
asum	Proračun 1- norme	s,d,sc,dz
i_amax	Proračun ∞- norme	s,d,c,z

lme Opis Nivoi preciznosti

se transformiše na sledeći način:

BLAS, nivo 1, operacije rotacije

rotmg	Proračuna modifikovanu Givensovu rotacionu matricu. Ako su dati skalirajući faktori d1 i d2 i koordinate (x1, y1) ulaznog vektora sračunati 2x2 matricu H takvu da:	s,d

BLAS, nivo 2 i 3, operacije

mν	Prozivod matrice i vektora.
SV	Rešava matricu (trouglastu), tj. sistem linearnih jednačina koji ona predstavlja.
mm	Proizvod dve matrice uz učešće skalara.
rk	Računa opštu jednačinu:
r2k	Računa opštu jednačinu:

rotm	Za vektore x i y proračuna:	s,d

Primer, prost

- Setite se, jako davno, kada smo radili benchmarking HPC sistema.
- Pominjao sam da postoji jako često korišćen DGEMM korak benchmark-a.
- D-double preciznost
- GE-opšta matrica
- MM-množenje
- Funkcija bi bila cblas_dgemm

cblas_dgemm

cblas_dgemm

Upotreba

Upotreba

Upotreba

Lapack

- Linear Algebra PACKage.
- Naslanja se na BLAS i zamenjuje stari Linpack.
- Lapack je implementiran u Fortran-u.
- Verzija za C (koja je deo Lapack projekta) je Lapacke.
- Sve rutine počinju sa LAPACKE_ prefiksom koji prati kod koji se sastoji od:
 - Tipa podataka (kao u BLAS)
 - Tipa matrice (kao u BLAS uz par dodatnih)
 - Operacije

BLAS primena

- BLAS se intenzivno koristi u pozadini velikog broja paketa baziranih na linearnoj algebri.
- Direktno se i ne koristi puno, ne više.
- Korisno je savladati kako radi zato što se koncepti iz BLAS sveta pojavljuju na dosta mesta.

LAPACK operacije

SV	Rešava sisteme linearnih jednačina.
LS, LSY, LSS, LSD	Rešava problem najmanjih kvadrata, minimizuje x u formuli ravnoj drugoj normi razlike između vektora b i matrice A puta vektor x.
LSE	Kao gore, ali sa ograničenjem da Bx jednako d.
GLM	Rešenje problema opšteg linearnog modela, tj. minimiziranje x bazirano na drugoj normi vektora y sa ograničenjem

EV, Računanje sopstvene vrednosti i EVD,EVR sopstvenih vektora simetrične matrice A

Primer LAPACK funkcije

LAPACK operacije

ES	Traši sopstvene vrednosti i vektore za nesimetrične matrice A
SVD, SDD	Dekompozicija matrice.

Primer LAPACK funkcije

Upotreba

Upotreba

Skalabilnost BLAS/LAPACK

- Podrazumevano, sve rutine u BLAS/LAPACK su serijske.
- Rešenje? Postoje HPC-optimizivovane verzije koje rade iste stvari, ali imaju MPI sposobnosti:
 - ScaLapack
 - PBLAS

Alternative

- GNU Scientific Library (GSL)
 - Izuzetno široka biblioteka.
 - Ima ponešto za svaku temu.
 - Za nas je najzanimljivije što ima BLAS interfejs koji čini bazične operacije sa matricama nešto manje mučnim.
- SuperLU
 - Supernodal LU
 - Fokusira se na rešavanje ogromih sistema jednačina.
 - Ima izuzetnu podršku za ubrzanje kroz OpenMP, MPI, i čak GPU ubrzanje

Alternative

- PETSc
 - Portable extensible toolkit for scientific computation
 - Uglavnom namenjen za rešavanje diferencijalnih jednačina, ali kao deo posla rešavanja sistema parcijalnih diferencijalnih jednačina ima odlične sisteme za rešavanje običnih linearnih jednačina.
 - Poseduje HPC podršku direktno u samoj biblioteci.
 - Koristi MPI
 - Intenzivno se koristi u HPC krugovima
- SLEPc
 - Scalable Library for Eigenvalue Problem Computations

Alternative

- ELPA
 - Eigenvalue Solvers for Petaflop-Applications
 - Još jedan način da se na HPC-optimizovan način računaju sopstvene vrednosti i vektori.
 - Ova varijanta je naročito popularna u kvantnoj hemiji i nauci materijala zbog svoje sposobnosti da brzo računa sopstvene vektore Hermitijanskih matrica.
- HYPRE
 - Kombinuje se sa PETSc i proširuje njene sposobnosti da rešava sisteme linearnih jednačina.
 - Koristi MPI # Ostale primene

 Proširenje PETSc koje računa i probleme sopstvenih vrednosti i vektora

Parcijalne diferencijalne jednačine

- PETSc
 - Već je pomenut.
 - Specijalizovan je za baš diferencijalne jednačine.
 - Podržava i rešavanje nelinearnih jednačina.
- Trilinos projekat
 - Veliki sistem za brze naučne proračune napravljen da radi na velikom broju HPC arhitektura.

Grafovi

- PBGL
 - Parallel Boost Graph Library
 - Bazira se na Boost-ovoj biblioteci za grafove ali je proširuje da radi u HPC okruženju.
 - Radi dobro sa arhitekturama distribuirane memorije.
- Combinatorial BLAS
 - Oslanja se na i formiran je po ugledu na BLAS
 - Takođe cilja na arhitekture sa distribuiranom memorijom
- Giraph

Dekompozicija meš struktura

- METIS
 - Tretira meš kao graf odn. hipergraf i dekomponuje na osnovu toga.
 - Serijalna je, ali ima HPC-optimizovanu verziju: ParMETIS koja koristi MPI
- Trilinos
 - Trilinos podržava i ovu funkcionlnost.

1/0

- NetCDF
 - Format razvijen za geologiju, geografiju, i geofiziku.
 - Karakteriše ga odlična podrška za arhiviranje.
- HDF5
 - Sa ovim, kako čujem, imate dosta iskustva.
- Silo
 - Biblioteka višeg nivoa koja se oslanja na HDF5 da olakša unos iz ispisivanje podataka u distribuiranim aplikacijama.

Vizuelizacija

• O ovome, celo predavanje, ali najbitnija biblioteka u ovoj oblasti jeste VTK: Visualization Toolkit.