ALGEBRA Y ALGEBRA LINEAL 520142.

PRACTICA 7. FUNCIONES.

Problema 1. Analice la existencia de la suma, el producto, el cuociente y las compuestas $g \circ f$ y $f \circ g$, entre las funciones f y g, si existe defínala. En cada caso, considere como dominio el mayor subconjunto de \mathbb{R} para el cual f y g son funciones. [**Práctica 1.5**).]

1.1)
$$f(x) = 1 + x^2$$
, $g(x) = \sqrt{x-1}$

1.2)
$$f(x) = \frac{x+1}{x}$$
; $g(x) = \frac{1}{x}$.

1.3.
$$f(x) = \frac{1}{x^3}$$
; $g(x) = \frac{x-1}{x+1}$.

1.4)
$$f(x) = x^3 - 3x^2 + 2x$$
; $g(x) = x^2 - 1 + \frac{1}{x^2 - 1}$.

1.5)
$$f(x) = \begin{cases} \frac{x}{2} + 1; & x \le 0 \\ \frac{1}{x}; & x > 0 \end{cases}$$
 $g(x) = \begin{cases} 2x - 2; & x \le 1 \\ \frac{1}{x - 1}; & x > 1 \end{cases}$

Problema 2. Sean $f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función y A,B dos subconjuntos no vacíos de Dom(f). [**Práctica**]

- 2.1) Demuestre que si A y B son disjuntos y $A \cup B = Dom(f)$ (A, B) partición de Dom(f), entonces $Rec(f) = Rec(f|_A) \cup Rec(f|_B)$.
- 2.2) Observe la situación planteada en 2.1) para el caso de los conjuntos $A = \{x \in \mathbb{R} : x < 0\}, \quad B = \{x \in \mathbb{R} : x \geq 0\}$ y las funciones f y g definidas por:

$$f(x) = \begin{cases} 4 - x^2 & \text{si } x < 0 \\ x + 2 & \text{si } x \ge 0 \end{cases} \qquad g(x) = \begin{cases} 4 - x^2 & \text{si } x < 0 \\ x + 5 & \text{si } x \ge 0 \end{cases}$$

2.3) Demuestre que si

i)
$$A \cap B = \emptyset \land A \cup B = Dom(f)$$
,

- ii) $f|_A$ y $f|_B$ son inyectivas,
- iii) $Rec(f|_A) \cap Rec(f|_B) = \emptyset.$

Entonces f es inyectiva.

Recíprocamente, si f es inyectiva y $\{A, B\}$ es una partición del Dom(f) entonces se satisfacen las condiciones ii) y iii).

(2.4) Observe la situación planteada en (2.3) para las funciones (f, g) definidas en (2.2).

Problema 3. Generalización a una partición.

- 3.1) En general se tiene: Si $f: Dom(f) \to \mathbb{R}$ es una función y $\{A_1, A_2, ..., A_N\}$ es una partición del Dom(f). Entonces f es **inyectiva sí y sólo si:**
 - i) $f|_{A_i}$ es inyectiva $\forall i \in \{1, 2, ..., N\}$ y
 - ii) $\forall i \neq j : Rec(f|_{A_i}) \cap Rec(f|_{A_j}) = \emptyset$

Muestre que g dada en 2.2) es inyectiva. Además, determine Rec(g) y defina $g^{-1}: Rec(g) \to Dom(g)$. Visualice las gráficas de g y g^{-1} , sobre un mismo sistema de ejes coordenados.

3.2) Use el resultado anterior para determinar cuando una función definida por tramos **no es inyectiva**.

Aplíquelo en el caso de la función f definida en 2.2).

[Práctica]

Problema 4. Considere la función $f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, definida por

$$f(x) = \begin{cases} \frac{1}{x-2} & \text{si } x > 3\\ x-4 & \text{si } x \le 3 \end{cases}$$

- 4.1) Encuentre dominio A y recorrido de f.
- 4.2) Pruebe que f es invectiva y analice si es o no sobrevectiva.
- 4.3) Determine $f([0,5]), f^{-1}(]-1,0[)$ y f([-1,3]).
- 4.4) Defina la rectricción g, de f a $[4, +\infty[$, muestre que es inyectiva y encuentre la inversa de $g: [4, +\infty[\longrightarrow g([4, +\infty[)$.

Problema 5. Para la función definida de A en $\mathbb R$ por

[Práctica.]

$$f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = \sqrt{(\ln(x))^2 - 1}.$$

- 5.1) Utilice la equivalencia $ln(x) \leq -1 \Longleftrightarrow x \in]0, \frac{1}{e}]$ para encontrar el dominio de f.
- 5.2) Sea $g: \mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto g(x) = e^x$, la función exponencial. Determine el dominio y defina la función compuesta $f \circ g$.
- 5.3) Sea h la restricción de $f \circ g$ al intervalo $[1, +\infty[$, es decir, $h = (f \circ g)|_{[1, +\infty[}$. Pruebe que h es inyectiva y defina su inversa h^{-1} ..

Problema 6. Considere la función

$$f: A \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = \log(x^2 - 4).$$

- 6.1) Encuentre el dominio de la función f.
- 6.2) Encuentre el recorrido de la función f.
- 6.3) Diga si f es una función biyectiva y si no lo es restrinja su dominio de tal manera que la nueva función g lo sea.
- 6.4) Defina la inversa de la función g definida en 6.3.

Problema 7. Resolver las siguientes ecuaciones e inecuaciones: [Práctica 2, 6 y 7]

7.1)
$$\log_3(7-x) - \log_3(1-x) = 1$$
, 7.2) $3^x = 4^{2x-1}$.

7.3)
$$\left(\frac{1}{2}\right)^{x^2} = 8^{3-2x},$$
 7.4) $(\ln(x))^2 - 3\ln(x) = 2.$

7.5)
$$4^x - 4^{-x} = 2$$
, 7.6) $e^{x^2 + 4x - 2} \le 1$.

7.7)
$$2\log_2 x + 3\log_2 2 = 3\log_2 x - \log_2 \frac{1}{32}$$
, 7.8) $e^x - e^{-x} = -2$.

7.9)
$$\log(\sqrt{x}) = \log_{10}(x-1),$$
 7.10) $(\frac{1}{2})^{x^2+x-2} \le 1.$

Problema 8. La población de una colonia de bacterias se incrementa con el modelo matemático $P(t) = N_0 3^{\frac{t}{20}}$, t en minutos. ¿Cuánto tiempo tarda en crecer de 100 a 200 bacterias?, ¿ de 100 a 300 bacterias?. [**Práctica**]

Problema 9. El número de bacterias presentes en un cultivo después de t horas es dado por $P(t) = N_0 e^{kt}$.

- 9.1) Encuentre k si después de dos horas la colonia ha aumentado 1,5 veces su población inicial.
- 9.2) Encuentre el tiempo que tarda en cuadruplicar su población.

Problema 10. El valor de reventa de una maquinaria industrial cuando tenga t años será dada por $V(t) = 4800e^{-\frac{t}{5}} + 400$ dólares.

- 10.1) ¿Cuál es el valor de la maquinaria cuando era nueva?.
- 10.2) ¿Cuál será el valor de la maquinaria dentro de 10 años?.
- 10.3) ¿Cuál será el valor de la maquinaria si t crece sin límite?. Esboce un gráfico de V.

Problema: 11. El sismólogo F. Richter (1900-1985) ideó en 1935 la **Escala de Richter** que compara la fuerza de los diferentes terremotos. En ella la magnitud R de un terremoto se define por

$$R = log\left(\frac{A}{A_0}\right),\,$$

donde A es la amplitud de la onda sísmica mayor y A_0 es una amplitud de referencia que corresponde a una magnitud R = 0.

La intensidad del terremoto de Chillán del año 1939 fué de 7,8 en la escala de Richter. El terremoto de San Francisco de 1979 fué de 5,95 y el terremoto de Turquía del 2 de mayo último fué de 6,4. ¿Cuántas veces más intenso (mayor amplitud) fue el terremoto de Chillán comparado con los terremotos de San Francisco y de Turquía?. [Práctica]

Problema: 12. La **vida media** de un elemento radiactivo es el tiempo que se tarda una cierta cantidad del elemento en reducirse a la mitad al transformarse en un nuevo elemento. Por ejemplo, la vida media del carbono 14, C-14, es 5730 años y la del Polonio, Po-213, es de 0.000001 de segundo.

Si hay A_0 gramos de radio inicialmente, entonces el número de gramos que quedan t años después es de

$$A(t) = A_0 e^{-0,000418t}.$$

Determine la vida media del radio.

[Práctica]

Problema: 13. Sea f(t) la cantidad de carbono 14, C-14 ¹, presente en un organismo t años después de muerto. Determine la constante K en la ecuación $f(t) = f(0)e^{Kt}$ y el porcentaje de C-14 que debería quedar 1000 años después del deceso del organismo.

Problema: 14. Suponga que sólo $\frac{1}{10}$ de la cantidad original de C-14 queda hoy en un hueso humano descubierto en Kenya. ¿Cuántos años hace que ocurrió la muerte?

05.05.2003.

ACQ/acq.

¹Método ideado por W. Libby en 1950, basado en la absorción por los organismos vivos de C-14