

COLLEGE OF ENGINEERING AND MINES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COURSE CODE	EE F102 F01 (CRN: 34544)	
COURSE NAME	INTRODUCTION TO ELECTRICAL AND COMPUTER ENGINEERING	
SEMESTER	SPRING	
YEAR	2022	
TYPE AND NUMBER OF SUBMISSION	HOMEWORK 1	
METHOD OF SUBMISSION	ONLINE TO: maher.albadri@alaska.edu	
DATE OF ASSIGNMENT	THURSDAY 13 JAN 2022	
DUE DATE OF SUBMISSION FRIDAY 21 J	DUE TIME OF SUBMISSION 23:59	
FRTDAY 21.1	[AN 2022 23.59	

STUDENT NAME

MAKE THIS FORM A "COVER PAGE" FOR YOUR HOMEWORK SUBMISSION.

FOR	FOR THE TA USE ONLY REMARKS:	
REMARKS:		

FOR THE TA USE ONLY		
PROBLEM NUMBER	MAXIMUM POINTS POSSIBLE	POINTS EARNED
PROBLEM 1	75	
PROBLEM 2	75	
TOTAL	150	

	Points
Problem HW-1-1	Distribution
*********	********

(a) 500 N force is used to move an object over a distance of 1000 cm. Calculate the energy, in kJ, required to do this work.

(15)

(b) 5 kJ of energy is utilized to move an object and distance of 10 m. Calculate the applied force, in newtons (N).

(15)

(c) How many significant digits are in the following numbers:

(15)

- i. 69.00056 m
- ii. 0.01225600 ft
- iii. 123.800000 in
 - iv. $1.0 \times 10^2 \text{ J}$
- (d) Three methods were used to measure a 5 Ω resistor. Each measurement was repeated 4 times and tabulated in the following table.

(15)

Determine the method with highest accuracy. You can use spreadsheet tool to perform quick calculations.

Method I	Method II	Method III
(Ω)	(Ω)	(Ω)
5.0041	5.0022	5.1012
5.0151	5.0011	5.1112
5.0991	5.0101	5.1023
5.0261	5.0041	5.1022

(e) In the previous problem, determine which method has the highest precision. (15)

*** *** ***

Points Distribution ***********

(a) Determine the result to the correct number of significant digits for the following computations:

(25)

i.
$$0.0012584 \times 50.1 = ?$$

ii.
$$(5.0 \times 10^5) \div 40.1 = ?$$

iii.
$$55.685 + 3.2 - 7.01 = ?$$

(b) Fill out the right column with the correct value that match the unit shown in the column title

(25)

feet	in
5	

kilometer	mile
5	

Ω	mΩ
0.35	

Volt	kilovolt
120	MILLOVOLO
120	

(c) Determine the value of the DC offset "A", in volts, the amplitude "B", in volts, the period "T", in seconds, and the phase angle " ϕ ", in radians, of the voltage signal seen in the following figure.

(25)

$$v(t)=A+B\sin(\omega t+\phi)$$

*** *** ***