Math 351 Assignment 3

Mario L. Gutierrez Abed

(1)

• Which of the following are metric functions on $(0, \infty)$? Write simply "metric" or "not metric".

a)
$$d(x, y) = \left| \frac{1}{x^4} - \frac{1}{y^4} \right|$$

Metric. \checkmark

b)
$$d(x, y) = |x - 3y|$$

Not metric. \checkmark

c)
$$d(x, y) = \sqrt{|x-y|} + \frac{|x-y|}{1+|x-y|}$$

Metric. \checkmark

d)
$$d(x, y) = \tan^{-1} |x - y|$$

Metric. \checkmark

e)
$$d(x, y) = \min\{|x - y|^{3/4}, 2\}$$

Metric. \checkmark

• Which of the following are metric functions on $(0, \infty) \times (0, \infty)$? Write simply "metric" or "not metric".

f)
$$d((x, y), (w, z)) = \sqrt{\left|\frac{1}{x^4} - \frac{1}{w^4}\right|^2 + \left|\frac{1}{y^4} - \frac{1}{z^4}\right|^2}$$

Metric. \checkmark

g)
$$d((x, y), (w, z)) = |x - 3w| + |y - z|$$

Not **m**etric. \checkmark

h)
$$d((x, y), (w, z)) = \sqrt{|x - w|} + \frac{|y - z|}{1 + |y - z|}$$

Metric. \checkmark

i)
$$d((x, y), (w, z)) = \tan^{-1} \left(\sqrt{|x - w|^2 + |y - z|^2} \right)$$

Metric. \checkmark

j)
$$d((x, y), (w, z)) = \min\{|x - w|^{3/4}, 2\} + \min\{|y - z|^{1/4}, 1\}$$

Metric. \checkmark

- (2) Let $M = (0, \infty)$ be supplied with the metric function $d(x, y) = \left| \frac{1}{x} \frac{1}{y} \right|$ and let $\{n\}_{n=1}^{\infty}$ be a sequence of positive integers.
- a) Is the sequence $\{n\}_{n=1}^{\infty}$ a Cauchy sequence in (M, d)? Justify your answer.

Solution:

The sequence $\{n\}_{n=1}^{\infty}$ is a Cauchy sequence in (M, d).

To see why, we pick any $\varepsilon > 0$. Then we let \mathcal{N} be a positive integer such that if $n \ge \mathcal{N}$, $\left| \frac{1}{n} - 0 \right| \le \frac{\varepsilon}{2}$. Then for $m, n \geq \mathcal{N}$,

$$d(m, n) = \left| \frac{1}{m} - \frac{1}{n} \right| \le \left| \frac{1}{m} - 0 \right| + \left| \frac{1}{n} - 0 \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence, we have shown that $\{n\}_{n=1}^{\infty}$ is a Cauchy sequence. \checkmark

b) Does the sequence $\{n\}_{n=1}^{\infty}$ converge in (M, d)? Justify your answer.

Solution:

The sequence $\{n\}_{n=1}^{\infty}$ does not converge in (M, d). The reason why the sequence is not convergent is due to to the metric space M. In other words, the sequence $\{n\}_{n=1}^{\infty}$ with the given metric d converges to 0:

Since $M \subset \mathbb{R}$ is an ordered field, $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon$ iff $n > \frac{1}{\varepsilon}$. It follows from the Archimidean property of \mathbb{R} (which M inherits) that $n > \frac{1}{\varepsilon}$ can be achieved for some sufficiently large integer \mathcal{N} . Thus, if $n \ge \mathcal{N}$, $\frac{1}{n} < \varepsilon$.

Thus, we have shown that $\{n\}_{n=1}^{\infty}$ with the given metric d converges to 0. However, $0 \notin M = (0, \infty)$, thus the sequence is not convergent in (M, d).

(3) True or false? $|\tan^{-1}|x| - \tan^{-1}|y| \le \tan^{-1}|x-y|$. Justify your answer. (Hint: Look at HW#3, problem 1)

Solution:

The statement is true.

We have previously shown in class that

$$\tan^{-1} |x - y| = \rho(x, y) = d(f(x), f(y))$$

is a metric with d(x, y) = |x - y| and $f(t) = \tan^{-1}(t)$.

Then by HW#3 exercise 1 we have that

$$|\rho(x, 0) - \rho(y, 0)| \le \rho(x, y)$$
,

which in this case means that

$$|\tan^{-1}|x-0|-\tan^{-1}|y-0||=|\tan^{-1}|x|-\tan^{-1}|y||\leq \tan^{-1}|x-y|. \checkmark \quad \textcircled{\#}$$

(4) Let (\mathbb{R}, d) be a metric space with the metric function $d(x, y) = \frac{|x-y|}{1+|x-y|}$. Calculate diam $(0, \infty)$.

Solution:

The diameter of the set $(0, \infty)$ is given by sup $\{d(a, b): a, b \in (0, \infty)\}$. Now to compute this supremum, we have

$$\lim_{\substack{a \to 0 \\ b \to \infty}} d(a, b) = \lim_{\substack{a \to 0 \\ b \to \infty}} \frac{|a-b|}{1+|a-b|} = \lim_{\substack{b \to \infty}} \frac{|0-b|}{1+|0-b|} = \lim_{\substack{b \to \infty}} \frac{b}{1+b} = 1$$

Hence, we conclude that $diam(0, \infty) = 1$.