수치 미분

김기택 국민대학교 소프트웨어학부

개요

- 수치 미분은 주어진 함수 y = f(x) 에 대해서 어떤 점 $x = x_k$ 에서 미분값을 얻고자 하는 문제를 다룬다.
 - '주어진' 이란 용어는 미분값 계산을 위한 함수 계산용 알고리즘을 가지고 있거나, 이산 데이터 포 인트 세트를 가지고 있는 것을 의미한다.
 - 어느 경우이든 미분값을 계산하기 위해 유한한 수의 (x, y) 데이터 쌍을 사용한다.
- 수치적 미분은 보간과 관련이 있다. 수치적으로 미분값을 찾는다는 것은 지역적으로 다항 근사함수를 만들고 그 함수를 미분하는 것이다.
- 이와 유사하게 효과적인 도구는 특정 점에서 함수를 Taylor 시리즈로 확장하는 것으로서 근 사값에 관련된 오차에 대한 정보를 제공하고 있기 때문이다.
- 수치 미분은 특별히 정확한 과정은 아니다. 컴퓨터의 정밀도에 의해 반올림 오차가 발생하며 이런 이유로 함수 자체와 동일한 정밀도로 계산할 수 없다.

유한 차분 (finite difference) (1)

• 함수f(x) 의 미분값에 대한 유한 차분 근사값은 전향 또는 후향 Taylor 시리즈 전개로 나타낼수 있다.

전향
$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$
 (a)

후향 $f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \cdots$ (b)

전향 $f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) + \cdots$ (c)

후향 $f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{2!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) - \cdots$ (d)

유한 차분 (finite difference) (2)

• 계산된 시리즈를 더하거나 빼면 다음과 같다.

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{h^4}{12} f^{(4)}(x) + \cdots$$
 (e)

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3} f'''(x) + \cdots$$
 (f)

$$f(x+2h) + f(x-2h) = 2f(x) + 4h^2 f''(x) + \frac{4h^4}{3} f^{(4)}(x) + \cdots$$
 (g)

$$f(x+2h) - f(x-2h) = 4hf'(x) + \frac{8h^3}{3} f'''(x) + \frac{(2h)^4}{4!} f^{(4)}(x) - \cdots$$
 (h)

더해진 식은 짝수의 미분항만을 가지게 되고 뺀 식은 홀수의 미분항만을 가진다.
 이를 이용하여 다양한 차수의 미분값에 대해 풀 수 있다.

1차 중앙 차분 근사 (1)

• 4(f) = f'(x) 로 정리하면,

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(x) - \dots$$

또는

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

- 이 식은 f'(x) 에 대한 1차 중앙 차분 근사식이다. $O(h^2)$ 항은 절차 오차 h^2 에 비례한다는 것을 말해 준다.
- 유사하게 위식을 이용하여 f''(x) 에 대한 1차 중앙 차분 근사식을 구하면

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \frac{h^2}{12}f^{(4)}(x) + \cdots$$

• 또는

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

1차 중앙 차분 근사 (2)

• 3차 미분에 대한 중앙 차분 근사도 같은 방법으로 유한 차분식을 이용하여 얻을 수 있다. 예를 들어 식 (f), 식 (h) 에서 f'(x) 를 소거하고 f''(x) 에 대해 풀게 되면

$$f'''(x) = \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3} + O(h^2)$$

• 4차 미분에 대한 근사식도

$$f^{(4)}(x) = \frac{f(x+2h) - 4f(x+h) + 6f(x) - 4f(x-h) + f(x-2h)}{h^4} + O(h^2)$$

• 다음 표는 중앙 차분 근사를 통해 미분 근사할 수 있는 방법을 정리한 것이다.

	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)
2hf'(x)		-1	0	1	
$h^2f''(x)$		1	-2	1	
$2h^3f^{\prime\prime\prime}(x)$	-1	2	0	-2	1
$h^4 f^{(4)}(x)$	1	-4	6	-4	1

1차 비중앙 차분 근사 (1)

• 중앙 차분 근사는 항상 안정적이지는 않다. 예를 들어 $x_0, x_1, ..., x_n$ 의 n 개의 점으로 함수가 주어진 경우를 살펴 보자. 중앙 차분은 x 의 양끝 값을 사용하기 때문에 x_0 와 x_n 에서 미분값을 계산하는데 불안정할 수 있다. 따라서 구간의 끝에서 값을 정의하는 유한 차분 표현이 필요하며 이런 표현은 전향 또는 후향 차분 근사라고 부른다.

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(x) - \frac{h^2}{6}f'''(x) - \frac{h^3}{4!}f^{(4)}(x) - \cdots$$

• 식 (a) – (h) 에서 비중앙 유한 차분 근사를 얻을 수 있다. 식 (a) 에 대해 풀어 우변의 첫번째 항만 남 기면 다음과 같이 1차 전향 차분 근사식을 얻는다.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \frac{O(h)}{h}$$

• 이와 같이 식 (b) 를 이용하여 1차 후향 차분 근사를 얻으면

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{O(h)}{h}$$

• 이 때 반올림 오차는 O(h) 로서 $O(h^2)$ 보다 나쁘다. 고차 미분에 대해서도 비슷하게 얻을 수 있다.

$$f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h)$$

1차 비중앙 차분 근사 (2)

- 3,4 차 미분도 유사하게 얻을 수 있고 결과를 다음 표에 정리한다.
 - 전향 유한 차분 근사

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
hf'(x)	-1	1			
$h^2f''(x)$	1	-2	1		
$h^3f^{\prime\prime\prime}(x)$	-1	3	-3	-1	
$h^4 f^{(4)}(x)$	1	-4	6	-4	1

• 후향 유한 차분 근사

	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)
hf'(x)				-1	1
$h^2f''(x)$			1	-2	1
$h^3f^{\prime\prime\prime}(x)$		-1	3	-3	1
$h^4f^{(4)}(x)$	1	-4	6	-4	1

2차 비중앙 차분 근사 (1)

- 통상 $O(h^2)$ 의 오차를 가지는 근사를 사용하며 O(h) 의 오차를 가지는 근사는 별로 많이 사용하지 않는다. 2차 비중앙 차분 근사를 위해서는 Taylor 전개에서 더 많은 식을 이용한다.
 - f'(x) 에 대해서 식을 유도하여 보자. 식 (a)와 (c) 에서

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \cdots$$
$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4h^3}{3}f'''(x) + \frac{2h^4}{3}f^{(4)}(x) + \cdots$$

• 첫번째 식에 4를 곱하여 두번째 식에서 빼면 f''(x) 항을 소거할 수 있고 결과는 다음과 같다.

$$f(x+2h) - 4f(x+h) = -3f(x) - 2hf'(x) + \frac{2h^3}{3}f'''(x) + \cdots$$

• 따라서

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + \frac{h^2}{3}f'''(x) + \cdots$$
$$= \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + O(h^2)$$
 (5.8)

• 식 (5.8)은 2차 전방차분 근사라고 한다.

2차 비중앙 차분 근사 (2)

- 2차 비중앙 차분 근사에 대한 결과를 다음 표에 정리한다.
 - 전향 유한 차분 근사 $O(h^2)$

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)
2hf'(x)	-3	4	-1			
$h^2f''(x)$	2	-5	4	-1		
$2h^3f'''(x)$	-5	18	-24	14	-3	
$h^4 f^{(4)}(x)$	3	-14	26	-24	11	-2

• 후향 유한 차분 근사 $O(h^2)$

	f(x-5h)	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)
2hf'(x)				1	-4	3
$h^2f''(x)$			-1	4	-5	2
$2h^3f'''(x)$		3	-14	24	-18	5
$h^4f^{(4)}(x)$	-2	11	-24	26	-14	3

유한 차분 근사의 오차

- 모든 유한 차분 표현에서 계수들을 더한 값은 0 이 되는 것을 확인하자.
- 반올림 오차는 상당히 클 수 있는데, h 가 매우 작은 경우 f(x), $f(x \pm h)$, $f(x \pm 2h)$ 의 값은 거의 같을 것이다. 이 값들을 계수를 곱하여 더할 경우 중요한 값들을 고려하지 못 할수 있다. 그렇다고 h를 크게 하면 반올림 오차를 증가하게 된다. 이런 상황에서 특별한 해결책은 없으나 다음의 예방법을 사용할 수 있다.
 - 배정밀도의 유효숫자 사용
 - 최소 $O(h^2)$ 의 정밀도를 가지는 유한 차분식의 적용
- 오차를 확인하기 위해 중앙 차분식을 이용하여 x=1 에서 $f(x) = e^{-x}$ 의 2차 미분을 계산해 보자. 몇 가지 다른 h 에 대해 6자리와 8자리의 유효 자리를 가지고 계산을 수행하며 정해인 $f''(1) = e^{-1} = 0.36787944$ 와 비교하여 옆의 표를 작성하였다.

잘림(truncation) 오차가 지배적

표 5.4 (e^{-x})"@x=1 중앙유한차분 근사

h	6자리 정밀도	8자리 정밀도
0.64	0.380 610	0.380 609 11
0.32	0.371 035	0.371 029 39
0.16	0.368 711	0.368 664 84
0.08	0.368 281	0.368 076 56
0.04	0.368 75	0.367 831 25
0.02	0.37	0.3679
0.01	0.38	0.3679
0.005	0.40	0.3676
0.0025	0.48	0.3680
0.00125	1.28	0.3712

반올림(roundoff) 오차가 지배적

Richardson 외삽법

- Richardson 외삽법(extrapolation)은 유한 차분 근사를 포함하여 특정 수치 계산의 정확도를 높이는 간단한 방법이며 다른 응용도 가능하다.
- 어떤 수량 G(x) 를 계산하는 근사적인 방법이 있다고 가정하자. 그리고 그 결과는 어떤 파라 메터 h 의 함수이다. g(h) 를 근사하는 표현으로, E(h) 를 에러에 대한 표현으로 G 를 표현하면, G(x) = g(h) + E(h) 로 쓸 수 있다.
- Richardson 외삽법은 상수 c, p 를 정의하고 $E(h) = ch^p$ 형태로 표현하여 에러를 제거한다.
 - 먼저 $h = h_1$ 인 경우에 대해 다음과 같이 쓸 수 있다.

$$G = g(h_1) + ch_1^p$$

• 다음으로 $h = h_2$ 인 경우에는 다음과 같다.

$$G = g(h_2) + ch_2^p$$

• 위의 두 식에서 c 를 제거하고 정리하면 Richardson 외삽법 식을 얻는다.

$$G = \frac{\left(\frac{h_1}{h_2}\right)^p g(h_2) - g(h_1)}{\left(\frac{h_1}{h_2}\right)^p - 1}$$

Richardson 외삽법 오차

• 보통 $h_2 = h_1/2$ 를 사용하는데 이를 적용하면

$$G = \frac{2^p g\left(\frac{h_1}{2}\right) - g(h_1)}{2^p - 1} \tag{5.9}$$

• Richardson 외삽법을 x = 1 에서 (e^{-x}) "의 유한 차분값을 구하는데 사용해 보자. 6자리 유효 숫자를 적용하고 표 5.4의 결과를 이용한다. 외삽법은 절단 오차에만 작용하므로 무시할 만한 반올림 오차를 발생하는 h로 제한한다.

$$g(0.64) = 0.380 610$$
 $g(0.32) = 0.371 035$

• 중앙 차분 근사에서 절단 오차는 $E(h) = O(h^2) = c_1 h^2 + c_2 h^4 + c_3 h^6 + \cdots$ 이 된다. 따라서 $p = 2, h_1 = 0.64$ 값을 적용하면 첫번째 오차항을 제거할 수 있다. 결과는

$$G = \frac{2^2 g(0.32) - g(0.64)}{2^2 - 1} = 0.367 \, 843$$

• 여기서 $(e^{-x})''$ 는 $O(h^4)$ 의 오차로 근사된다. 결과를 보면 표 5.4의 8자리 계산에서 얻어진 최고 수준의 값과 동일하게 정밀한 값을 얻는 것을 알 수 있다.

예제 5.1

등간격으로 주어진 다음 데이터에서 x = 0, 0.2 에서 f'(x), f''(x) 를 $O(h^2)$ 의 오차를 갖도록 유한 차분 근사를 이용하여 계산하라.

x	0	0.1	0.2	0.3	0.4
f(x)	0.0000	0.0819	0.1341	0.1646	0.1797

[풀이] x = 0 에서는 중앙차분근사를 하지 못하므로 $O(h^2)$ 의 오차를 가지는 유한차분 근사를 하도록 표 5.3a 의 전향차분표에서 다음 식을 구한다.

$$f'(0) = \frac{-3f(0) + 4f(0.1) - f(0.2)}{2(0.1)} = 0.967$$
$$f''(0) = \frac{2f(0) - 5f(0.1) + 4f(0.2) - f(0.3)}{(0.1)^2} = -3.77$$

x = 0.2 에서는 중앙차분근사가 $O(h^2)$ 의 오차를 가지므로 이를 적용 한다.

$$f'(0.2) = \frac{-f(0.1) + f(0.3)}{2(0.1)} = 0.4135$$
$$f''(0.2) = \frac{f(0.1) - 2f(0.2) + f(0.3)}{(0.1)^2} = -21.7$$

예제 5.2

예제 5.1의 데이터를 이용하여 f'(0) 의 가능한 정밀도를 높여 계산하라.

[풀이] Richardson 외삽법을 적용하여 보자. $O(h^2)$ 의 오차를 가지는 2개의 전향차분 근사를 시작한다. h = 0.2 와 h = 0.1 값을 사용한다. 표 5.3a 의 공식을 적용하면

$$g(0.2) = \frac{-3f(0) + 4f(0.2) - f(0.4)}{2(0.2)} = 0.8918$$
$$g(0.1) = \frac{-3f(0) + 4f(0.2) - f(0.4)}{2(0.1)} = 0.9675$$

두 개의 근사에서 오차는 $E(h)=c_1h^2+c_2h^4+c_3h^6+\cdots$ 의 형태가 되는 것을 기억하자. 이 중 가장 큰 오차항을 제거하도록 p=2 를 선택하면

$$f'(0) \approx G = \frac{2^2 g(0.1) - g(0.2)}{2^2 - 1} = 0.9927$$

이 식은 $O(h^4)$ 의 오차를 가지는 유한차분 근사이다.

예제 5.3

다음의 결합기구에서 치수는 a=100 mm, b=120 mm, c=150 mm, d=180 mm 이다. 각도 α 에 대해 변화하는 각 β 의 관계는 아래와 같다. 링크 AB 가 25 rad/s 의 속도로 회전할 때 $O(h^2)$ 의 유한 차분식을 사용하여 링크 BC의 α 에 대한 회전 각속도 $d\beta/dt$ 의 값을 구하라.

α(deg)	0	5	10	15	20	25	30
β (rad)	1.6595	1.5434	1.4186	1.2925	1.1712	1.0585	0.9561

[풀이]BC의 각속도는 다음과 같다.

$$\frac{d\beta}{dt} = \frac{d\beta}{d\alpha} \frac{d\alpha}{dt} = 25 \frac{d\beta}{d\alpha} \text{ rad/s}$$

여기서 $d\beta/d\alpha$ 는 표의 데이터를 이용하여 유한 차분 근사로 계산된다.

끝점에서는 $O(h^2)$ 의 전향 및 후향 차분 근사를 사용하고, 그 외의 점에서는 중앙 차분 근사를 사용한다. α 의 증분이 5 도 이므로

$$h = (5 \text{ deg}) \left(\frac{\pi}{180} \text{ rad/deg}\right) = 0.087266 \text{ rad}$$

예제 5.3 (continued)

계산 결과는

$$\left. \frac{d\beta}{dt} \right|_{\alpha=0^{\circ}} = \dot{\beta}(0^{\circ}) = 25 \frac{-3\beta(0^{\circ}) + 4\beta(5^{\circ}) - \beta(10^{\circ})}{2h} = -32.01 \text{ rad/s}$$

$$\dot{\beta}(5^{\circ}) = 25 \frac{\beta(10^{\circ}) - \beta(0^{\circ})}{2h} = -34.51 \text{ rad/s}$$

최종 결과는

$\alpha(\deg)$	0	5	10	15	20	25	30
$\dot{\beta}$ (rad/s)	-32.01	-34.51	-35.94	-35.44	-33.52	-30.81	-27.86