

Probabilities

• Frequentist tradition: probabilities derived from counts

Example: Tossing two dices

- X=number on first dice
- Y=number on second dice

- p(x = X) frequency of observing X
- p(x = X, y = Y) frequency of observing X and Y
- p(x = X | y = Y) frequency of observing X given y=Y

Probability density

•
$$p(x \in [a,b]) = \int_a^b p(x)dx$$

•
$$p(x) \ge 0$$
, $\int_{-\infty}^{+\infty} p(x) dx = 1$

Probabilities

Laws of probabilities

Sum rule (compute marginal probability)

$$p(X) = \sum_{Y} p(X,Y)$$
$$p(X) = \int p(X,Y)dY$$

Product rule

$$p(X,Y) = p(X|Y)p(Y)$$

Combination 1:

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$
$$p(X) = \int p(X|Y)p(Y)dY$$

Bayes theorem

Combination 2:

Bayes Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$
$$p(Y|X) \propto p(X|Y)p(Y)$$

$$p(Y|X) = \frac{p(X|Y)p(Y)}{\int p(X|Y)p(Y)dY}$$

Bayesian probabilities

- Probability reflects your knowledge (uncertainty) about a phenomenon -> subjective probabilities
 - Prior probability p(w), can be uninformative $p(w) \propto 1$
 - Formulate a model, compute likelihood p(D|w)
 - Posterior probability p(w|D), after observing data
 - $p(w|D) \propto p(D|w)p(w)$
- Model parameters are considered as random variables
 - In real life, do not need to be random, but we model as random

Basic ML ingridients

- Data *D*: observations
 - Features $X_1, ... X_p$
 - Targets Y_1, \dots, Y_r

Case	X_1	X_2	Y
1			
2			

- Model $P(x | w_1, ... w_k)$ or $P(y | x, w_1, ... w_k)$
 - Example: Linear regression $p(y|x, w) = N(w_0 + w_1 x, \sigma^2)$
- Learning procedure (data \rightarrow get parameters \widehat{w} or p(w|D))
 - Maximum likelihood, MAP, Bayes rule...
- Predict new data X^{new} by using the fitted model

Probabilistic models

- A distribution p(x|w) or p(y|x,w)
- Example:

$$-x \sim Bin(n, \theta)$$

$$p(x = k|n, \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

$$-y \sim N(\alpha_0 + \alpha_1 x, \sigma^2)$$

Learn basic distributions and their properties→PRML, chapter 2!

Source: Wikipedia

- Given dataset D and model p(x|w) or p(y|x,w)
 - Frequentist approach: which combination of parameter values fits my data best?
 - Bayesian approach: parameters are random variables, all feasible values are acceptable
 - Different parameter values have different probabilities

- Frequenist principle: Maximum likelihood principle
 - Compute likelihood $p(\mathbf{D}|w)$ $p(\mathbf{D}|w) = \prod_{i=1}^{n} p(X_i|w) \text{ or } p(\mathbf{D}|w) = \prod_{i=1}^{n} p(Y_i|X_i,w)$
 - Maximize the likelihood and find the optimal $w^* \rightarrow$ they are the fitted values

Remarks:

- Likelihood shows how much the chosen parameter value is proper for a specific model and the given data
- Normally log-likelihood is used in computations instead
- Other alternatives to ML exist...

Example: tossing a coin.

-19 20

Log-likelihood

- Bayesian principle
 - Compute p(w|D) and then decide yourself what to do with this (for ex. MAP, mean, median)
- Use bayes theorem

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)} \propto p(D|w)p(w)$$

- p(D) is marginal likelihood
 - $p(D) = \int p(D|w)p(w)dw$ or
 - $p(D) = \sum_{i} p(D|w_i)p(w_i)$

Example: tossing a coin. Find $p(\theta|D)$, estimate various θ^*

- How to chose the prior?
 - Expert knowledge about the phenomenon
 - Forcing a model to have a certain structure
 - Example: decision trees: prior prefers smaller trees
 - Conjugacy http://en.wikipedia.org/wiki/Conjugate_prior
 - Distribution of the posterior is the same type as the distribution of the likelihood or prior
- Prior is the most controversial about Bayesian methods, but
 - When $N \rightarrow \infty$, data overwhelms the prior

Prediction

- Plug-in estimation (Frequentist and Bayesian)
 - Substitute the estimated w^* into p(x|w) or $p(y|x^{new}, w)$
- Bayesian model averaging
 - Posterior predictive distribution:
 - $p(\mathbf{x}^{new}|D) = \int p(\mathbf{x}^{new}|w)p(w|D)dw$
 - $p(y|D) = \int p(y|w, x^{new}) p(w|D, x^{new}) dw$

Black swan paradox

- In the coin example, $p(x^{new} = 1) = \frac{k}{n}$ if MLE used
- If we made 3 attempts, no successes \rightarrow k=0
- Does this mean $p(x^{new} = 1) = 0$??

 Problem does not appear in Bayesian setting (posterior mean)

Types of supervised models

- Generative models: model p(X|Y, w) and p(Y|w)
 - Example: k-NN classification

$$p(X = x | Y = C_i, K) = \frac{K_i}{N_i V}, p(C_i | K) = \frac{N_i}{N}$$

From Bayes Theorem,

$$p(Y = C_i | x, K) = \frac{K_i}{K}$$

- Discriminative models: model p(Y|X, w), X constant
 - Example: logistic regression

$$-p(Y=1|w,x)=\frac{1}{1+e^{-w^Tx}}$$

Generative vs Discriminative

- Generative can be used to generate new data
- Generative normally easier to fit (check Logistic vs K-NN)
- Generative: each class estimated separately → do not need to retrain when a new class added
- Discriminative models: can replace X with $\phi(X)$ (preprocessing), method will still work
 - Not generative, distribution will change
- Generative: often make too strong assumptions about $p(X|Y,w) \rightarrow$ bad performance

Bayesian decision theory

- Machine learning models estimate p(y|x) or $p(y|x, \widehat{w})$
- Transform probability into action → which value to predict? → decision step
 - $-p(Y = Spam|x) = 0.83 \rightarrow do$ we move the mail to Junk?
 - What is more dangerous: deleting 1 non-spam mail or letting 1 spam mail enter Inbox?
- → Loss function or Loss matrix

Loss matrix

- Costs of classifying $Y = C_k$ to C_i :
 - Rows: true, columns: predicted

$$L = ||L_{ij}||, i = 1, ..., n, j = 1, ..., n$$

• Example 1: 0/1-loss

$$L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Example 2: Spam

$$L = \begin{pmatrix} 0 & 100 \\ 1 & 0 \end{pmatrix}$$

Loss and decision

- Expected loss minimization
 - $-R_j$: classify to C_j

$$EL = \sum_{k} \sum_{j} \int_{R_{j}} L_{kj} p(\mathbf{x}, C_{k}) d\mathbf{x}$$

- Choose such R_j that EL is minimized
- Two classes

$$EL = \int_{R_1} L_{21} p(x, C_2) dx + \int_{R_2} L_{12} p(x, C_1) dx$$

Loss and decision

- How to minimize *EL*?
 - We are free to assign x to either R_1 or R_2
 - Assigning x to region with smallest $L_{ij}p(x,C_i)$ will make EL smaller
- \rightarrow Rule:
 - $-L_{21}p(x,C_1) > L_{12}p(x,C_2) \rightarrow \text{predict } y \text{ as } C_1$

$$\frac{p(C_1|x)}{p(C_2|x)} > \frac{L_{12}}{L_{21}} \rightarrow predict \ y \ as \ C_1$$

• 0/1 Loss: classify to the class which is more probable!

Loss and decision

- Continuous targets: squared loss
 - Given a model p(x, y), minimize

$$EL = \int L(y, \hat{Y}(x)) p(x, y) dx dy$$

$$\widehat{Y}(x) = \int y p(y|x) dy$$

ROC curves

- Binary classification
- The choice of the thershold $\hat{x} = \frac{L_{12}}{L_{21}}$ affects prediction \rightarrow what if we don't know the loss? Which classifier is better?

Confusion matrix

	PREDICTED			
T R U E		1	0	Total
	1	ТР	FN	N_{+}
	0	FP	TN	<i>N</i> _

ROC curves

- True Positive Rates (TPR) = sensitivity = recall
 - Probability of detection of positives: TPR=1 positives are correctly detected

$$TPR = TP/N_{+}$$

- False Positive Rates (FPR)
 - Probability of false alarm: system alarms (1) when nothing happens (true=0)

$$FPR = FP/N_{-}$$

Specificity

$$Specificity = 1 - FPR$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

ROC curves

- ROC=Receiver operating characteristics
- Use various thresholds, measure TPR and FPR
- Same FPR, higher TPR→ better classifier
- Best classifier = greatest Area Under Curve (AUC)

732A95/TDDE01

25