

Lecture 07: Changing the Sampling Rate

Changing the Sampling Rate

Sample-rate conversion is the process of changing the sampling rate of a discrete signal to obtain a new discrete representation of the underlying continuous signal.

$$x[n] = x_c(nT) \longrightarrow x_d[n] = x_c(nT_d)$$

- One approach
 - Reconstruct $x_c(t)$ from x[n]
 - Resampling x_c(t) to obtain x_d[n]
 Not desirable due to non-ideal analog reconstruction filter, and requiring additional D/A, A/D converters
- Other approach
 - involve only discrete-time operations

Outlines

Downsampling

2. Upsampling

3. General Rate Change

4. Some Practices

1. Downsampling by an Integer Factor

If
$$\frac{2\pi}{T_d} = \frac{2\pi}{MT} > 2\Omega_N$$

$$x_d[n] = x[nM] = x_c(nMT)$$

Uhat is DTFT of $x_d[n]$ in terms of x[n]?

DTFT of $x_d[n]$

□ Recall DTFT of $x[n] = x_c(nT)$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \frac{\omega}{T} - j \frac{2\pi k}{T} \right)$$

□ Then, DTFT of $x_d[n] = x_c(nT_d)$

□ Since $T_d = MT$

DTFT of $x_d[n]$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \frac{\omega}{T} - j \frac{2\pi k}{T} \right)$$

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left(j \frac{\omega}{MT} - j \frac{2\pi r}{MT} \right)$$

$$\rightarrow r = i + kM$$
, where $-\infty \le k \le \infty$, $0 \le i \le M - 1$

$$M = 3$$

$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j\frac{\omega - 2\pi i}{M}})$

- \square DTFT of $x_d[n]$ in terms of DTFT of x[n]
- infinite set of copies of $X_c(j\Omega)$, freq. scaled through $\omega = \Omega T_d$, shifted by integer multiple of $2\pi/T_d$

- \square DTFT of $x_d[n]$ in terms of DTFT of x[n]
- infinite set of copies of $X_c(j\Omega)$, freq. scaled through
 - $\omega = \Omega T_d$, shifted by integer multiple of $2\pi/T_d$

 $\stackrel{\text{or}}{\longrightarrow} M$ copies of $X(e^{j\omega})$, freq. scaled by M, shifted by

integer of $2\pi/M$

- Here, no aliasing since original sampled sequence is downsampled by M = 3
 - □ If $M > 3 \rightarrow$ aliasing occurs
 - To avoid aliasing in downsampling

$$\omega_N M \le \pi$$

$$\longleftrightarrow \omega_N \le \frac{\pi}{M}$$

In Case of Possible Aliasing, LPF

It's decimator! (downsampling by LPF followed by compression)

2. Increase the Sampling Rate using DSP

$$x[n] = x_c(nT)$$

$$x_i[n] = x_c(nT_i) = x_c(nT/L)$$
 $T_i = T/L$

It's (sampling rate) expander!

$$x[n] \longrightarrow L \uparrow \longrightarrow x_e[n]$$

$$x_e[n] = \begin{cases} x[n/L], & n/L : \text{an integer} \\ 0, & \text{otherwise} \end{cases}$$

In frequency domain, DTFT of $x_e[n]$ is

$$X_{e}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]\right) e^{-j\omega n}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega kL}$$

$$= X(e^{j\omega L})$$

freq. scaled version of DTFT of the input

$$x_i[n] = \sum_{k=-\infty}^{\infty} x_e[k] \frac{\sin \frac{\pi}{L}(n-k)}{\frac{\pi}{L}(n-k)} = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin \frac{\pi}{L}(n-kL)}{\frac{\pi}{L}(n-kL)}$$

Low-pass Filter

$$H(e^{j\omega}) = \begin{cases} L, & |\omega| \le \pi/L, \\ 0, & \text{otherwise} \end{cases}$$

$$h[n] = \frac{\sin\left(\frac{\pi}{L}n\right)}{\frac{\pi}{L}n}, \quad -\infty < n < \infty$$

Down sampling	Up sampling
1. sampling rate reduction	1. sampling rate increase
2. increase sample period	2. decrease sample period
3. decimation	3. interpolation

3. General Rate Change

- (a) System for changing the sampling rate by a non-integer factor
- (b) Simplified system in which the decimation and interpolation filters are combined

Illustration of changing the sampling rate by a non-integer factor

(f)

SOME PRACTICES

Original Sample Frequency = 1000Hz

- Decimate/downsample to 1000/8=125Hz
- Pay attention to the aliasing of high-frequency components when resampling!! (High-frequency components are aliased into the low frequency and mixed with other low-frequency components)

Difference:

- deci_signal = decimate(signal, 8);
- down_signal = downsample(signal, 8);
- decimate will pass the low-pass filter before downsampling

[MATLAB FUNCTION] RESAMPLE

- help resample
- \square Y = resample(X, P, Q)

resamples the sequence in vector X at P/Q times the original sample rate using a polyphase implementation. Y is P/Q times the length of X (or the ceiling of this if P/Q is not an integer). P and Q must be positive integers.

Resample applies an anti-aliasing (lowpass) FIR filter to X during the resampling process, and compensates for the filter's delay.

[MATLAB FUNCTION] RAT

- help rat
- $\square [P,Q] = rat(X, tol)$

returns two integer matrices so that P./Q is close to X in the sense that $abs(P./Q - X) \le tol$.

The rational approximations are generated by truncating continued fraction expansions.

tol = 1.e-6*norm(X(:),1) is the default.

- org_SR=2000; % in Hz
- new_SR3=300; % in Hz

```
[p,q]=rat(new_SR/org_SR);
new_signal3=resample(org_signal,p,q);
new_taxis3=[1:length(new_signal3)]'/new_SR3;
Don't forget to redefine the timeline after re-sampling!
```

Commonly used functions

- □ interp % Interpolate the signal to increase the sampling frequency
- decimate % Downsampling after low-pass filtering
- resample % Perform P times interp to increase the sampling frequency, and then perform Q times decimate to decrease the sampling frequency
- □ rat % Find the fraction form that is closest to the input value (P/Q)

Example

https://www.mathworks.com/help/signal/ug/changing-signal-sample-rate.html