Financial Database BAF 507E

Inmoo Lee

KAIST

Fall (1st half) 2025

1 Introduction

- 2 How to install Python?
- 3 Python
- 4 Introduction to SQL

Introduction

- Course Overview
- Introduction to Python

Inmoo Lee KAIST 3 / 22

Financial Database

- Required Materials
 - Various materials available on the course web page
- Grades

- Exam (50%), Bloomberg Certificate (20%), Final Group Project and Presentation (20%) and Participation and Attendance (10%)
- Exam
 - In-class exam

Financial Databases to be Covered

LSEG Workspace

Table of Contents

- LSEG Workspace is accessible from the terminals at the Reuters Trading Center and the KOSCOM Data Center on the 3rd floor
- In addition, you can access to it anywhere with available ID and PASSWORD (web-based).
- You can access to LSEG Workspace through internet by signing in here (web access) or by downloading and installing the program and signing in (https://www.lseg.com/en/data-analytics/products/ workspace/download-workspace).

Bloomberg

- Similar to LSEG Workspace, it provides a global real-time and historical financial & economic data as well news
- Bloomberg terminals are available at the KOSCOM Data Center on the 3rd floor.

Introduction to SQL

Bloomberg Market Concepts

- As explained in the syllabus, you are required to finish all BMC (Bloomberg Market Concepts) courses (Economic Indicators, Currencies, Fixed Income and Equities) and submit the certificate by **September 30**. Terminal Basics is not required for the certificate, but I strongly encourage all of you to finish it for better use of Bloomberg.
- You should sign up Bloomberg for Education with your own name and email address so that the certificate will be under your name
 - https://portal.bloombergforeducation.com/sign_up.
- When you login after your sign up, please use the class code, "QBJLZWNRDX", so that I can monitor your progresses.
- Please start it as soon as possible!!!
- This is an individual work.

6 / 22 Inmoo Lee KAIST

4 D > 4 A > 4 B > 4 B > -

Python

- Python is an open-source programming language (https://www.python.org/about/).
- You can install and use Python through Anaconda(https://www.anaconda.com/download).
- All Python codes for the classes are in the Jupyter Notebook format (ipynb). You can run these in Jupyter/JupyterLab/MS Visual Studio Code.

JupyterLab Basics

- Code and Markdown
 - Each cell can contain codes or texts.
 - The default is code but you can change it to Markdown to include comments in a separate cell. ([ESC + M], click here for more information on Markdown)
- How to run?
 - Typically, you can select a cell or cells and run selected cells ([Control + Enter])
 - You can also run line by line ([F9]). However, in this case, you
 are going to use a separate console (click here for more
 information on console)
- Add or split cells
 - \circ You can add a new cell below ([ESC + B]) or above ([ESC + A]) the current cell.
 - You can split cell at a location where the cursor is ([CTRL + Shift + -]).

Microsoft Visual Studio Code

- You can download it from https://code.visualstudio.com/ after installing Python through Anaconda or from Python.org
- Before using VS Code, you need to install Python extension within VS Code. Check this site for more details.
- You can use Jupyter Notebook. Check this site for more information. There are VS Code Jupyter extension for Jupyter notebook support.
- During the class, I will use VS Code for demonstration but you can use others that you are more familiar with for your own exercise.

Introduction to SQL

MS Visual Studio Code Basics

Code and Markdown

- Each cell can contain codes or texts.
- +Code or +Markdown tabs can be used to make a new one.

How to run?

Table of Contents

- You can use be tab to run each cell or use the Run all tab to run all cells
- You can also use ([Control + Enter]) to run a cell.
- You can also run line by line ([F10] or tab).

Add or split cells

- In addition to using tabs to add or split cells, you can also use keys to add a new cell below ([ESC + B]) or above ([ESC + B]) A]) the current cell.
- Likewise, you can split cell at a location where the cursor is using keys ([CTRL + Shift + -]) or using menu bars to split or join cells.

- To create a new variable, vector, matrix or data, use " = "
- To add comments, use "#" inside a Code cell
- You need to install "packages" before using those packages (click here to find how you can install packages). You can install within JupyterLab by running '!pip install PACKAGE NAME'.
- Once you install a package, use "import ***", where *** is the name of the package.
- Many resources are available online: (https://wiki.python.org/moin/BeginnersGuide/ Programmers)
- Check the following for the basics on Python, Numpy, Scipy and Matplotlib
 - (https://cs231n.github.io/python-numpy-tutorial/)

KAIST 11 / 22 Inmoo Lee

Introduction to SQL

Getting Data into Python

- Ways to get the data into Python
 - Input within a program
 - Import from an external data source
- Check FDNote1W2025.ipynb

Working directory

- You can check the current working directory by using import os os.getcwd()
- To change the working directory, you can use os.chdir(' ')
- To permanently save the data, you can use NAME1.to_feather('NAME2.ft') where NAME1 is the name of a dataframe created in Python and NAME2 is the name of the file to be stored in the current working directory.

Alternative file formats

• The following compares different file formats to be used to store dataframes in Python.

Feature	CSV	Excel	JSON	HDF5	Feather	Parquet	Pickle
Human-Readable	/	/	√	Х	Х	Х	Х
Interoperability	√ (high)	√ (med)	√ (high)	√ (low)	√ (high)	√ (high)	X
Speed (I/O)	slowest	slow	slow	fast	fastest	fast	fast
File Size	largest	large	large	small	small	smallest	medium
Data Types Preserved	X (infer)	X (infer)	X (infer)	/	/	/	/
Columnar Storage	X	X	X	Х	/	/	×
Big Data Friendly	X	X	X	1	/	1	×
Security Risk	X	Х	Х	Х	Х	X	√ (high)

Table: Generated by Gemini: Comparison of Different Data Storage Formats

- Stands for Structured Query Language
- GUI (Graphical User Interface) interfaces are often available.
- Interfaces to many programming languages: R, python, perl, PHP, etc.
- There are a few alternatives (e.g., sqlite3 and pandasql packages) to run SQL in Python. In this course, we will focus on 'sqldf' in the pandasql package that directly uses Pandas dataframes¹

¹salite3 works with sql tables and therefore, it requires one to convert a pandas dataframe to a sql table within a database before using it, whereas sqldf directly works with dataframes. 4 D > 4 A > 4 B > 4 B > -

Databases vs. Tables

- A database server can contain many databases
- Databases are collections of data tables
- Tables are two-dimensional with rows (observations) and columns (variables)
- Limited mathematical and summary operations available
- SQL is very convenient to use in combining information from multiple tables

In many cases, all you need to do with databases is to select some subsets of variables and/or observations from a table (or

across tables), and use some other programs (such as SAS or

- Python) to manipulate them. In SQL, the **SELECT** statement is the workhorse for these operations.

 SELECT columns or computations

 FROM table
 - FROM table
 WHERE condition
 GROUP BY columns
 ORDER BY column

Summaries and Computations

- SQL supports basic arithmetic operations to create new columns, as well as some summarization functions that include
 - COUNT()
 - AVG() (mean)
 - SUM()

- MIN()
- MAX()
- STD()
- STDERR()
- In sqldf, STD and STDERR do not work

pandasql

Table of Contents

• If you use sqldf in pandasql, you can directly work with pandas dataframes even though it is powered by SQLite3

```
from pandasql import sqldf
query="'select a.**, a.***, ...
              from logret as a
df=sqldf(query,locals())
```

 You can use either locals() or globals() depending on the scope of names (variables) defined (whether they are visible throughout the module or only inside a function). You can use the pysqldf() function defined in the note for a simpler use of sqldf.)

Python

Use of a function

Table of Contents

- Oftentimes, it is convenient to define and use a customized function.
- For example, rather than using sqldf(query, locals()) to run sqldf, you can define a new function that has only one argument as below

```
def pysqldf(q):
  return sqldf(q, globals())^2
pysqldf(query)
```

Inmoo Lee KAIST 20 / 22

²If vou use locals() instead of globals(), you will get error message when you run this function. This is because the table (dataframe) used inside a query statement will not be recognized since it is defined outside the function. Therefore, you have to use globals() when you define a function.

Python

SQL: How to summarize values of columns?

 Find out the average of stock returns for each stock using SQL.

Exercise: To be covered next week

- Import "note2data.xlsx" into Python
 - The data include monthly stock returns of three companies, Microsoft, IBM and Walmart as well as S&P 500 index returns and others
- Try to do the following using Python
 - Calculate mean, minimum, maximum and standard deviation of returns of three stocks.
 - Define a category variable, isign, to indicate positive and negative returns.
 - Check the frequency of positive and negative returns for each stock.
 - Create another categorical variable to indicate each calendar year.
 - Generate frequency tables of stock returns for both categories.