# M2-L2 Problem 3 (5 points)

When flow is directed across a pin fin heat sink, increasing fluid velocity can improve the heat transfer, making the heat sink more effective.

You have been given a dataset containing measurements for such a scenario, which contains the following:

- Input: Reynolds Number of air flowing past the heat sink
- Output: Heat transfer coefficient of the heat sink, in W/(m<sup>2</sup>) K

Your job is to train a model on this data to predict the heat transfer coefficient, given Reynolds number as input. You will use a high-order polynomial

Start by loading the data in the following cell:

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        def plot data with regression(x data, y data, x reg, y reg, title=""):
            plt.figure()
            plt.scatter(x_data.flatten(), y_data.flatten(), label="Data", c="black")
            plt.plot(x_reg.flatten(), y_reg.flatten(), label="Fit")
            plt.legend(loc="upper left")
            plt.xlabel(r"$Re / 1000$")
            plt.ylabel(r"h, $W/m^2 K$")
            plt.xlim(0,6)
            plt.ylim(50,200)
            plt.title(title)
            plt.show()
        deg = 5
        x = np.array([1.010, 2.000, 2.990, 4.100, 5.020])
        y = np.array([75.1, 104.0, 100.6, 138.8, 150.8])
        X = np.vander(x, deg)
        xreg = np.linspace(0,6)
        Xreg = np.vander(xreg,deg)
```

#### **Least Squares Regression**

As we have done for previous problems, we can do least squares regression by computing the pseudo-inverse of the design matrix. Notice how the model performs beyond the training data.

```
In [2]: w = np.linalg.inv(X.T @ X) @ X.T @ y.reshape(-1,1)
    yreg = Xreg @ w
    plot_data_with_regression(x, y, xreg, yreg, "5th order polynomial regression")
```



#### L2 Regularization

Notice that the plot above reveals that our fifth-order model is overfitting to the data. Let's try applying L2 regularization to fix this. In the lecture, the closed-form solution to least squares with L2 regularization was:

$$w = (X'X + \lambda I_m)^{-1}X'y$$

where  $I_m$  is the identity matrix, but with zero in the bias row/column instead of 1;  $\lambda$  is regularization strength; X' is the design matrix and y column vector output.

Complete the function below to compute this w for a given lambda:

```
In [5]: def get_regularized_w(L):
    I_m = np.eye(deg)
    I_m[-1,-1] = 0

# YOUR CODE GOES HERE
# return regularized w
```

```
w = np.linalg.inv(X.T@X +L*I_m)@X.T@y
return w
```

## Testing different lambda values

With the above function written, we can compute w for some different values of lambda and decide which is qualitatively best.









### **Model Selection**

Which value of lambda appears to yield the "best" model?

0.1 seems to be the best as it does not over fit and provide good accuracy.