

CHANDIGARH UNIVERSITY

Discover. Learn. Empower.

University Institute Of Computing

SUBJECT-R PROGRAMING

PROJECT- Weather Data Analysis

SUBMITTED BY:-

STUDENT NAME:- SACHIN SINGH

BRANCH:- BCA(DATA SCIENCE)

SUB CODE:- 24CAP-161

UID:- 24BCD10161

SECTION:-24BCD3(B)

SEMESTER:- SECOND

SUBMITTED To:-

TEACHER NAME:- MS. SHIVANI

Mini Project Report: Weather Data Analysis in R

1. Introduction

Weather plays a significant role in our daily lives and has a broad impact on agriculture, transportation, and human comfort. This mini-project is focused on analyzing weather data from multiple cities using R, a powerful language for statistical computing and data visualization. The analysis includes exploring temperature, humidity, rainfall, and wind speed, along with generating insightful visualizations to better understand weather trends.

2. Aim

To develop an R program that performs exploratory data analysis on weather data, utilizing statistical measures and various graphical techniques to uncover patterns and insights.

3. Objectives

- Perform basic statistical analysis such as mean, median, and standard deviation on weather parameters.
- Visualize the data using bar plots, box plots, histograms, and scatter plots.
- Identify cities with extreme weather conditions (highest and lowest values).
- Interpret the results and derive meaningful conclusions from the data.

4. Tools and Technologies Used

- R Programming Language
- RStudio IDE (Optional)
- ggplot2 package for advanced visualizations
- Base R functions for statistical analysis and plotting

5. Input and Output

Input:

A data frame containing weather statistics for a list of cities with the following columns:

- City
- Temperature (°C)
- Humidity (%)
- Rainfall (mm)

- Wind Speed (km/h)

Output:

- Tabular display of the dataset
- Summary statistics for each weather parameter
- Graphical representations: bar plot, box plot, histogram, scatter plot
- Identification of cities with extreme weather conditions
- Observations and conclusions based on the analysis

6. Procedure

- Step 1: Load the required libraries such as ggplot2 for plotting.
- Step 2: Create a sample weather dataset with fictional or real data.
- Step 3: Display the dataset in tabular form.
- Step 4: Calculate statistical measures (mean, median, standard deviation) for each parameter.
- Step 5: Generate visualizations to understand data distribution and relationships.
- Step 6: Identify the cities with the highest and lowest values for each weather metric.
- Step 7: Interpret and document insights gained from the analysis.

7. R Code Implementation

The following R code was written to perform the entire analysis and visualization:

```
# Load required libraries
library(ggplot2)
# Sample weather data
data <- data.frame(
City = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix"),
Temperature = c(22, 28, 16, 30, 35),
Humidity = c(60, 50, 65, 70, 45),
Rainfall = c(120, 50, 150, 75, 20),
Wind_Speed = c(15, 10, 20, 12, 18)
)
print("Weather Data:")
print(data)
# Basic Statistics
weather_columns <- names(data)[-1]</pre>
for (column in weather_columns) {
cat("\n", column, "\n")
```

```
cat("Mean:", mean(data[[column]]), "\n")
cat("Median:", median(data[[column]]), "\n")
cat("Standard Deviation:", sd(data[[column]]), "\n")
}
# Visualizations
barplot(data$Temperature, names.arg = data$City, main="Avg Temperature",
col="steelblue")
boxplot(data$Humidity, data$Rainfall, data$Wind_Speed,
   names=c("Humidity", "Rainfall", "Wind Speed"),
    main="Distribution of Parameters", col=c("lightblue", "lightgreen", "lightcoral"))
hist(data$Temperature, main="Temperature Histogram", col="lightblue", breaks=5,
xlab="Temp (°C)")
plot(data$Temperature, data$Humidity, main="Temp vs Humidity",
  xlab="Temperature", ylab="Humidity", col="darkred", pch=19)
abline(lm(Humidity ~ Temperature, data = data), col="blue")
# Extreme Conditions
for (column in weather_columns) {
max_index <- which.max(data[[column]])</pre>
min_index <- which.min(data[[column]])</pre>
cat("\n", column, "\n")
cat("Max:", data$City[max_index], data[[column]][max_index], "\n")
cat("Min:", data$City[min_index], data[[column]][min_index], "\n")
}
```

8. Observations and Insights

- Cities like Phoenix and Houston show higher temperatures compared to others.
- Rainfall is highest in Chicago, while Phoenix is the driest.
- The scatter plot and regression line suggest a possible inverse relationship between temperature and humidity.
- Box plots reveal variability in rainfall and wind speed across different cities.

9. Learning Outcomes

- Understood how to perform data manipulation and statistical analysis in R.
- Gained practical experience in using data visualization to explore datasets.
- Learned how to interpret data trends and summarize insights.
- Applied knowledge of R programming to a real-world scenario involving weather statistics.

10. Conclusion

This mini project successfully demonstrated how R can be used for exploratory data analysis and visualization of weather data. It provided valuable insights into weather patterns, variability, and inter-parameter relationships across different cities. Such projects help develop analytical thinking and programming skills, useful for data science and environmental analytics.

11. Output Visualizations

The following visualizations are generated from the analysis in R:

Bar Plot: Average Temperature by City

Box Plot: Distribution of Weather Parameters

Histogram: Temperature Distribution

Scatter Plot: Temperature vs. Humidity

