18.102 Assignment 5

Octavio Vega

March 7, 2023

We denote by \mathcal{M} the set of all Lebesgue-measurable subsets of \mathbb{R} .

Problem 1

TODO TODO TODO

Problem 2

TODO TODO TODO

Problem 3

(a)

Proof. (\Rightarrow) Suppose f is measurable.

Let $\alpha \in \mathbb{R}$. We may express the preimage of the set $(\alpha, \infty]$ under the inverse of the restriction of f to E as follows:

$$f^{-1}\big|_{E}\left((\alpha,\infty]\right)\right) = f^{-1}\left((\alpha,\infty]\right)\cap E,\tag{1}$$

and similarly for F:

$$f^{-1}\big|_{F}\left((\alpha,\infty]\right)\right) = f^{-1}\left((\alpha,\infty]\right)\cap F. \tag{2}$$

Since f is measurable, then $f^{-1}((\alpha,\infty])) \in \mathcal{M}$. By assumption, E and F are also measurable. Hence, the intersections in (1) and (2) are also measurable.

Therefore, $f|_E$ and $f|_F$ are measurable.

 (\Leftarrow) Suppose $f\big|_E$ and $f\big|_F$ are measurable.

Then for ever $\alpha \in \mathbb{R}$, $f^{-1}|_{E}((\alpha, \infty])) \in \mathcal{M}$ and $f^{-1}|_{F}((\alpha, \infty])) \in \mathcal{M}$. Since \mathcal{M} is closed under taking finite unions, then the union of each of these sets is also measurable, i.e.

$$f^{-1}\big|_{E}\left((\alpha,\infty]\right)\right)\cup f^{-1}\big|_{F}\left((\alpha,\infty]\right)\right)\in\mathcal{M}.$$
 (3)

We also have that $E, F \in \mathcal{M}$, so $E \cup F \in \mathcal{M}$. Then we have

$$f^{-1}\big|_{E}\left((\alpha,\infty]\right)\right) \cup f^{-1}\big|_{F}\left((\alpha,\infty]\right)\right)$$

$$= \left(f^{-1}\left((\alpha,\infty]\right)\right) \cap E\right) \cup \left(f^{-1}\left((\alpha,\infty]\right)\right) \cap F\right)$$

$$(4)$$

$$= f^{-1}((\alpha, \infty]) \cap (E \cup F)$$
 (5)

$$= f^{-1}\left((\alpha, \infty]\right) \in \mathcal{M},\tag{6}$$

where in line (6) we used the fact that $f^{-1}\left((\alpha,\infty]\right)\subset (E\cup F).$

Therefore, as desired, f must be measurable.