Homework 2

From Allaire's book.

Ex 2.25

Plot the image of the unit circle of \mathbb{R}^2 by the matrix

$$A = \begin{pmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{pmatrix}$$

to reproduce previous figure. Use the Matlab function svd.

```
A = [-1.25 \ 0.75; \ 0.75 \ -1.25];
[U,S,V] = svd(A);
v1 = V(:,1);
v2 = V(:,2);
u1 = zeros(2,1);
u2 = zeros(2,1);
theta = linspace(0,2*pi);
x = [cos(theta); sin(theta)];
y1 = V*x;
y2 = S*y1;
y3 = U*y2;
plot(x(1,:), x(2,:), 'r', 'LineWidth', 1.0)
hold on
plot(y1(1,:), y1(2,:),'y--','LineWidth',1.0)
plot(y2(1,:), y2(2,:), 'g--', 'LineWidth', 1.0)
plot(y3(1,:), y3(2,:), 'b--', 'LineWidth', 1.0)
hold off
axis equal
legend('Id','V','SV','A=SVD')
```

93b10e3fba6258b279307b7d8201249560d979d3.png

```
quiver(0,0,v1(1),v1(2),'r') hold on quiver(0,0,v2(1),v2(2),'r')
```

```
u1 = V*v1;
u2 = V*v2;
quiver(0,0,u1(1),u1(2),'y--')
quiver(0,0,u2(1),u2(2),'y--')
axis equal
hold off
156839d9db67646bd99350c7ce4c9a68571ae742.png
quiver(0,0,v1(1),v1(2),'r')
hold on
quiver(0,0,v2(1),v2(2),'r')
u1 = S*V*v1;
u2 = S*V*v2;
quiver(0,0,u1(1),u1(2),'g--')
quiver(0,0,u2(1),u2(2),'g--')
axis equal
hold off
3b8ca194cea56071d205b6434a83aa853f5ea646.png
quiver(0,0,v1(1),v1(2),'r')
hold on
quiver(0,0,v2(1),v2(2),'r')
u1 = A*v1;
u2 = A*v2;
quiver(0,0,u1(1),u1(2),'b--')
quiver(0,0,u2(1),u2(2),'b--')
axis equal
hold off
```

f1bde47c260ed4d4af5a7f4f05f3f18a338eea88.png

The pictures above exemplify how the SVD decomposition $A = U\Sigma V^*$ works. Firstly, we change coordinates employing the orthogonal matrix V^* . Secondly, we do a dilatation using Σ . Finally, we do a change of coordinates through U. Notice that a reasonable basis choice allows us to preserve orthogonality when applying the different matrices.

Ex 2.26

Justify.

For different choices of m and n, compare the singular values of a matrix A=rand(m,n) and the eigenvalues of the block matrix

$$B = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}.$$

disp('* * *')
for k=2:5
 n = ceil(k*rand());
 m = ceil(k*rand());

A = rand(m,n);
B = [zeros(m,m) A; A' zeros(n,n)];
disp(['Current size of A: ',num2str(m),',',num2str(n)])
disp('Singular values of A')
disp(svd(A))
disp('Eigenvalues of B')
disp(eig(B))

* * *

end

Current size of A: 1,2 Singular values of A 1.0401

disp('* * *')

Eigenvalues of B

-1.0401

0.0000

1.0401

```
* * *
Current size of A: 3,2
Singular values of A
    1.1405
    0.0250
Eigenvalues of B
   -1.1405
   -0.0250
    0.0000
    0.0250
    1.1405
* * *
Current size of A: 3,1
Singular values of A
    1.0850
Eigenvalues of B
   -1.0850
         0
         0
    1.0850
Current size of A: 5,5
Singular values of A
    2.9421
    0.8522
    0.4866
    0.2370
    0.0302
Eigenvalues of {\tt B}
   -2.9421
   -0.8522
   -0.4866
   -0.2370
   -0.0302
    0.0302
```

* * *

0.2370 0.4866 0.8522 2.9421 We say that (v, σ, u) is a singular triple of A if, and only if, (v, σ^2) is a spectral pair of A^*A and $Av = \sigma u$, with $\sigma > 0$.

It is easy to check that a spectral pair of B allows us to construct a singular triple of A. Indeed, let (x, λ) a spectral pair for B. Then, if we put $x^* = [u^*|v^*]$, we have

 $Bx = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} Av \\ A^*u \end{bmatrix} = \begin{bmatrix} \lambda u \\ \lambda v \end{bmatrix} = \lambda x.$

Thus $Av = \lambda u$ and $A^*u = \lambda v$. This implies $A^*Av = \lambda A^*u = \lambda^2 v$, so necessarily $|\lambda|$ is a singular value of A, and $(v, |\lambda|, \operatorname{sgn}(\lambda)u)$ is a singular triple.

Conversely, if (v, σ, u) is a singular triple, then $x^*_1 = [u^*|v^*]$ and $\lambda = \sigma$ give us a spectral pair of B. This is just the above computation. Where is the other spectral pair? Notice that $Av = \sigma u = (-\sigma)(-u)$ and $A^*(-u) = -\sigma v$, so $x^*_2 = [-u^*|v^*]$ and $\lambda = -\sigma$ give us the missing spectral pair of B, as x_1 and x_2 cannot be linearly dependent vectors.

Ex 2.27

Compute the pseudoinverse A^{\dagger} (function pinv) of the matrix

$$A = \begin{pmatrix} 1 & 1 & 4 \\ 2 & 2 & 0 \\ 3 & 3 & 5 \\ 1 & -1 & 0 \end{pmatrix}.$$

Compute $A^{\dagger}A$, AA^{\dagger} , $AA^{\dagger}A$, and $A^{\dagger}AA^{\dagger}$. What do you observe? Justify.

```
A = [1 -1 4; 2 -2 0; 3 -3 5; -1 -1 0];
Adag = pinv(A)
```

Adag*A A*Adag

A*Adag*A

Adag*A*Adag

Adag =

ans =

1.0000 0.0000 -0.0000

ans =

-0.0000	0.3756	-0.3286	0.5305
0	0.2629	0.7700	-0.3286
-0.0000	0.6995	0.2629	0.3756
1.0000	0.0000	0.0000	0.0000

ans =

ans =

Set $A = U\Sigma V^*$ in its SVD decomposition, and consider $A^{\dagger} = V\hat{\Sigma}U^*$ its pseudoinverse, where $\hat{\Sigma}$ is the transpose of the non-zero multiplicative inverses of the elements of Σ . Then:

1. $A^{\dagger}A=(V\hat{\Sigma}U^*)(U\Sigma V^*)=V\begin{bmatrix}\operatorname{Id}_{r\times r}&0\\0&0\end{bmatrix}_{m\times m}V^*,$ and notice that the rank of the matrix equals the number of columns $\{rank\}(A)=3=m,$ so

$$\begin{bmatrix} \operatorname{Id}_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m} = \operatorname{Id}_{3 \times 3}$$

in this case.

$$\begin{aligned} 2. \ \ AA^\dagger &= (U\Sigma V^*)(V\hat{\Sigma}U^*) = U\begin{bmatrix} \mathrm{Id}_{r\times r} & 0 \\ 0 & 0 \end{bmatrix}_{n\times n} U^*. \text{ As } n=4>3 = \mathrm{rank}(A), \\ \text{we cannot neglect the contribution of } \Sigma\hat{\Sigma} &= \begin{bmatrix} \mathrm{Id}_{r\times r} & 0 \\ 0 & 0 \end{bmatrix}_{n\times n}. \end{aligned}$$

3.
$$A^{\dagger}AA^{\dagger} = (V\hat{\Sigma}U^*)(U\Sigma V^*)(V\hat{\Sigma}U^*) = V\begin{bmatrix} \operatorname{Id}_{r\times r} & 0\\ 0 & 0 \end{bmatrix}_{m\times m} \hat{\Sigma}U^* = V\hat{\Sigma}U^* = V\hat{\Sigma}U^*$$

```
\begin{split} A^{\dagger}. \\ 4. \ \ AA^{\dagger}A &= (U\Sigma V^*)(V\hat{\Sigma}U^*)(U\Sigma V^*) = U\begin{bmatrix} \mathrm{Id}_{r\times r} & 0 \\ 0 & 0 \end{bmatrix}_{n\times n}\Sigma V^* = U\Sigma V^*. \end{split}
```

Ex 2.28

Fix n=100. For different values of $r \leq n$, compare the rank of A=MatRank(n,n,r) and the trace of AA^{\dagger} . Justify.

```
%%file MatRank.m
function A = MatRank(n,m,r)
if (r>min(n,m))
    A = 0:
    disp('Error')
else
    sigma = 0;
    while (det(sigma)==0)
        sigma = rand(r,r);
    Sigma = [sigma zeros(r,m-r); zeros(n-r,r) zeros(n-r,m-r)];
    U = 0;
    V = 0;
    while ((\det(U)==0) | | (\det(V)==0))
        U = GramSchmidt(rand(n,n));
        V = GramSchmidt(rand(m,m));
    end
    A = U*Sigma*V;
end
Created file 'D:\GitHub\NLA-IMA\hw2\MatRank.m'.
%%file GramSchmidt.m
function Q = GramSchmidt(A)
n = size(A,2);
Q = zeros(size(A));
for k = 1:n
    Q(:,k) = zeros(size(A,1),1);
    for j = 1:(k-1)
        Q(:,k) = Q(:,k) + dot(A(:,k),Q(:,j))*Q(:,j);
    end
    Q(:,k) = A(:,k) - Q(:,k);
    if (norm(Q(:,k))~=0)
        Q(:,k) = Q(:,k)./norm(Q(:,k));
```

```
end
end
Created file 'D:\GitHub\NLA-IMA\hw2\GramSchmidt.m'.
n = 100;
disp('* * *')
for r = 5:5:(n-1)
    A = MatRank(n,n,r);
    disp(['Rank of A: ',num2str(r)])
    disp(['Trace of A pinv A: ',num2str(trace(A*pinv(A)))])
    disp('* * *')
end
* * *
Rank of A: 5
Trace of A pinv A: 5
* * *
Rank of A: 10
Trace of A pinv A: 10
* * *
Rank of A: 15
Trace of A pinv A: 15
* * *
Rank of A: 20
Trace of A pinv A: 20
* * *
Rank of A: 25
Trace of A pinv A: 25
* * *
Rank of A: 30
Trace of A pinv A: 30
* * *
Rank of A: 35
Trace of A pinv A: 35
Rank of A: 40
Trace of A pinv A: 40
* * *
Rank of A: 45
Trace of A pinv A: 45
* * *
Rank of A: 50
Trace of A pinv A: 50
* * *
Rank of A: 55
```

```
Trace of A pinv A: 55
* * *
Rank of A: 60
Trace of A pinv A: 60
* * *
Rank of A: 65
Trace of A pinv A: 65
* * *
Rank of A: 70
Trace of A pinv A: 70
Rank of A: 75
Trace of A pinv A: 75
Rank of A: 80
Trace of A pinv A: 80
Rank of A: 85
Trace of A pinv A: 85
* * *
Rank of A: 90
Trace of A pinv A: 90
* * *
Rank of A: 95
Trace of A pinv A: 95
```

Notice that given $A=U\Sigma V^*$ in its SVD decomposition, we have $A^\dagger=V\hat{\Sigma}U^*$. This implies $AA^\dagger=U\Sigma\hat{\Sigma}U^*$, as V is an orthogonal matrix. The cyclic property of the trace easily implies that

$$\operatorname{trace}(AA^{\dagger}) = \operatorname{trace}(U\Sigma\hat{\Sigma}U^{*}) = \operatorname{trace}(\Sigma\hat{\Sigma}) = r,$$

as $\Sigma\hat{\Sigma}$ is a block matrix whose principal block is an identity matrix of rank r, and the other entries are null.

Ex 2.29

The goal of this exercise is to investigate another definition of the pseudoinverse matrix. Fix m=10, n=7. Let A be a matrix defined by A=MatRank(m,n,5). We denote by P the orthogonal projection onto $(\ker A)^{\perp}$, and by Q the orthogonal projection onto im A.

```
m = 10;
n = 7;
A = MatRank(m,n,5);
```

1. Compute a basis of $(\ker A)^{\perp}$, then the matrix P.

```
First notice that (\ker A)^{\perp} = \overline{\operatorname{im} A^*}. So:
```

```
kerAp = orth(A');
P = kerAp*kerAp';
```

1. Compute a basis of im A, then the matrix Q.

```
imA = orth(A);
Q = imA*imA';
```

1. Compare on the one hand $A^{\dagger}A$ with P, and on the other hand, AA^{\dagger} with Q. What do you notice? Justify your answer.

```
disp('* * *')
disp('pinv A A')
pinv(A)*A
disp('Orthogonal proyection P onto ker A perp')
pinv A A
ans =
                                              0.3093
    0.6161
             -0.0860
                                   -0.2727
                                                        -0.1520
                         0.1881
   -0.0860
              0.7815
                        -0.0047
                                    0.2469
                                              0.2724
                                                        -0.1357
                                                                   -0.0989
    0.1881
             -0.0047
                         0.8968
                                    0.2060
                                             -0.1038
                                                         0.0506
                                                                   -0.0366
   -0.2727
              0.2469
                         0.2060
                                    0.3301
                                              -0.0942
                                                         0.0491
    0.3093
              0.2724
                        -0.1038
                                   -0.0942
                                              0.5439
                                                         0.2260
```

0.0506

-0.0366

0.0246

0.1789

0.0866

-0.0435

0.9437

Orthogonal proyection P onto ker A perp

-0.1357

-0.0989

P =

-0.1520

0.0246

```
0.6161
          -0.0860
                       0.1881
                                -0.2727
                                            0.3093
                                                      -0.1520
                                                                  0.0246
-0.0860
           0.7815
                     -0.0047
                                 0.2469
                                            0.2724
                                                      -0.1357
                                                                 -0.0989
 0.1881
           -0.0047
                       0.8968
                                 0.2060
                                            -0.1038
                                                       0.0506
                                                                 -0.0366
-0.2727
           0.2469
                      0.2060
                                 0.3301
                                           -0.0942
                                                       0.0491
                                                                  0.1789
 0.3093
           0.2724
                     -0.1038
                                -0.0942
                                            0.5439
                                                       0.2260
                                                                  0.0866
-0.1520
           -0.1357
                                 0.0491
                                            0.2260
                                                                 -0.0435
                       0.0506
                                                       0.8880
 0.0246
          -0.0989
                     -0.0366
                                 0.1789
                                            0.0866
                                                      -0.0435
                                                                  0.9437
```

0.0491

0.1789

0.2260

0.0866

0.8880

-0.0435

```
disp('* * *')
disp('A pinv A')
A*pinv(A)
disp('Orthogonal proyection Q onto Im A')
* * *
A pinv A
ans =
              -0.0081
    0.6567
                         -0.0594
                                     0.0796
                                               -0.1077
                                                           0.2536
                                                                     -0.0333
                                                                                 0.3358
                                                                                           -0.1288
   -0.0081
               0.4543
                          0.1704
                                     0.2617
                                                0.0169
                                                           0.2820
                                                                     -0.1029
                                                                                -0.1610
                                                                                            0.1196
   -0.0594
               0.1704
                          0.2719
                                     0.2083
                                                0.2939
                                                           0.0500
                                                                      0.1346
                                                                                -0.0428
                                                                                           -0.0944
                                                0.0009
    0.0796
               0.2617
                          0.2083
                                     0.4998
                                                           0.0027
                                                                      0.0755
                                                                                 0.0152
                                                                                            0.2172
   -0.1077
               0.0169
                          0.2939
                                     0.0009
                                                0.5213
                                                           0.0111
                                                                      0.2848
                                                                                 0.0688
                                                                                           -0.2339
    0.2536
               0.2820
                          0.0500
                                     0.0027
                                                0.0111
                                                           0.3976
                                                                     -0.1578
                                                                                -0.0321
                                                                                           -0.1442
   -0.0333
              -0.1029
                          0.1346
                                     0.0755
                                                0.2848
                                                          -0.1578
                                                                      0.3429
                                                                                 0.2666
                                                                                            0.1031
              -0.1610
                                                          -0.0321
                                                                      0.2666
                                                                                 0.4868
    0.3358
                         -0.0428
                                     0.0152
                                                0.0688
                                                                                            0.1493
               0.1196
                         -0.0944
                                     0.2172
                                               -0.2339
                                                          -0.1442
                                                                      0.1031
                                                                                            0.6645
   -0.1288
                                                                                 0.1493
   -0.0957
                                                           0.2153
               0.1404
                         -0.0652
                                    -0.2805
                                                0.1030
                                                                      0.0458
                                                                                 0.0998
                                                                                            0.1659
Orthogonal proyection Q onto Im A
Q =
    0.6567
              -0.0081
                         -0.0594
                                     0.0796
                                               -0.1077
                                                           0.2536
                                                                     -0.0333
                                                                                           -0.1288
                                                                                 0.3358
   -0.0081
               0.4543
                          0.1704
                                     0.2617
                                                0.0169
                                                           0.2820
                                                                     -0.1029
                                                                                -0.1610
                                                                                            0.1196
   -0.0594
               0.1704
                          0.2719
                                     0.2083
                                                0.2939
                                                           0.0500
                                                                      0.1346
                                                                                -0.0428
                                                                                           -0.0944
               0.2617
                                                0.0009
                                                           0.0027
                                                                      0.0755
                                                                                 0.0152
    0.0796
                          0.2083
                                     0.4998
                                                                                            0.2172
   -0.1077
               0.0169
                          0.2939
                                     0.0009
                                                0.5213
                                                           0.0111
                                                                      0.2848
                                                                                 0.0688
                                                                                           -0.2339
    0.2536
               0.2820
                          0.0500
                                     0.0027
                                                0.0111
                                                           0.3976
                                                                     -0.1578
                                                                                -0.0321
                                                                                           -0.1442
   -0.0333
              -0.1029
                          0.1346
                                     0.0755
                                                0.2848
                                                          -0.1578
                                                                      0.3429
                                                                                 0.2666
                                                                                            0.1031
    0.3358
              -0.1610
                         -0.0428
                                     0.0152
                                                0.0688
                                                          -0.0321
                                                                      0.2666
                                                                                 0.4868
                                                                                            0.1493
   -0.1288
               0.1196
                         -0.0944
                                     0.2172
                                               -0.2339
                                                          -0.1442
                                                                      0.1031
                                                                                 0.1493
                                                                                            0.6645
   -0.0957
               0.1404
                         -0.0652
                                    -0.2805
                                                0.1030
                                                           0.2153
                                                                      0.0458
                                                                                 0.0998
                                                                                            0.1659
```

Recall that, if $A = U\Sigma V^*$, then

$$A^\dagger A = V \begin{bmatrix} \mathrm{Id}_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m} V^* \quad \text{and} \quad AA^\dagger = U \begin{bmatrix} \mathrm{Id}_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} U^*.$$

The near-identity blocks are idempotent and symetric. If we define

$$\hat{V} = V \begin{bmatrix} \mathrm{Id}_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{m \times m}$$
 and $\hat{U} = U \begin{bmatrix} \mathrm{Id}_{r \times r} & 0 \\ 0 & 0 \end{bmatrix}_{n \times n}$,

then we find $A^{\dagger}A = \hat{V}\hat{V}^*$ and $A^{\dagger}A = \hat{U}\hat{U}^*$.

Observe that \hat{V} has the first $r := \operatorname{rank}(A)$ column vectors of V and \hat{U} has the first r column vectors of U. So if write consider the first r column vectors of V, $v_i, i = 1, \ldots, r$, and of $U, u_i, i = 1, \ldots, r$, and the reduced SVD decomposition of A, given by

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*,$$

its oblivious to see that $x \in \ker A$ if and only if $x \perp v_i$, i = 1, ..., r, so v_i , i = 1, ..., r span $(\ker A)^{\perp}$. This implies that $\hat{V}\hat{V}^*$ is an orthogonal proyector onto $(\ker A)^{\perp}$.

Thus $A^{\dagger}A = \hat{V}\hat{V}^* = P$. In a similar fashion, $AA^{\dagger} = \hat{U}\hat{U}^* = Q$.

1. Let $y \in \mathbb{C}^m$ and define $x_1 := Px$, where $x \in \mathbb{C}^n$ is such that Ax = Qy. Prove (without using MATLAB) that there exists a unique such x_1 . Consider the linear map $\phi : \mathbb{C}^m \to \mathbb{C}^n$ by $\phi(y) = x_1$. Show (without using MATLAB) that the matrix corresponding to this map (in the canonical basis) is A^{\dagger} .

Let $y \in \mathbb{C}^m$. As $Qy \in \text{im } A$, there exist $x \in \mathbb{C}^n$ such that Ax = Qy. Then, we can such x_1 . Now, suppose that exist $x_2 = Px'$, with Ax' = Qy. This implies A(x - x') = Qy - Qy = 0, and $x - x' \in \text{ker } A$. So

$$x_1 - x_2 = Px - Px' = P(x - x') = 0,$$

and $x_1 = x_2$.

Now set e_i , $i=1,\ldots,n$ for the canonical basis of \mathbb{C}^n . Keep in mind that $A^{\dagger}A=P$ and $AA^{\dagger}=Q$. Then if we set $\phi(e_1)=x_1$, then x_1 is given by $x_1=Px=A^{\dagger}Ax$ and $Ax=Qe_i=AA^{\dagger}e_i$ So

$$A^{\dagger}e_i = A^{\dagger}AA^{\dagger}e_i = A^{\dagger}Ax = x_1,$$

i.e. $\phi(e_i) = A^{\dagger}e_i$, for each i = 1, ..., n, and A^{\dagger} is the matrix associated to ϕ .