Vector Spaces

- · Common methematical theme:

 Eproperties something has } mos Egeneral definition?
- · "Vector spaces" are precisely the general notions of vectors, linear maps, ... that we've seen so far
- · EVERYWHERE in maths and science.

The abstract definitions

- · Fix a field F (eg, R, G, Zp,...) We cell elements ce F scalars
- · A vector space V over a field F is
 - OAn abelian group with respect to +, with 1 A "compatible" sceler multiplication

Examples

· Directed segments in plane or space, F=R

("physics vectors")

teil"

addition.

• $V = F^n = \left\{ (a_1, ..., a_n) \middle| a_i \in F^3 \right\}$ $- \text{ These, or the column versions } \left(\begin{array}{c} \vdots \\ a_n \end{array} \right),$ are what we've worked with

all along and called "vectors"

- Component-vise addition and scaling
- Exercise: check the axioms!

· More interesting exemples ??...

Eg:
$$\mathbb{R}^{[0,1]} = \{f: [0,1] \rightarrow \mathbb{R}\}$$

Ech function

is a vector

in $\mathbb{R}^{[0,1]}$

•
$$F^{\times}$$
 is a vector space with pointwise operations:

• $F \in F^{\times}$, $A \in F$, $A \in F$, $A \in F^{\times}$

by $(AF)(x) := AF(x)$

Scalar multiplication in F

•
$$f, g \in F^{\times}$$
, $define$ $f+g \in F^{\times}$
by $(f+g)(x) := f(x) + g(x)$
 $ext{caldition in } F$

• Exercise: How can be associate vectors
$$y \in F^{n} \text{ with functions } f \in F^{\{1,2,\dots,n\}}?$$

· Example:
$$R^{R} = \{ \text{ functions } R \rightarrow R \} \text{ includes important}$$

subsets like

idea $C(R) := \{ \text{ continuous functions } R \rightarrow R \}$

of $C'(R) := \{ \text{ differentiable functions } R \rightarrow R \}$
 $C'(R) := \{ \text{ twice diff'| functions } \}$
 $C'(R) := \{ \text{ infinitely diff'| functions } \}$
 $C'(R) := \{ \text{ infinitely diff'| functions } \}$
 $C'(R) := \{ \text{ infinitely diff'| functions } \}$
 $C'(R) := \{ \text{ infinitely diff'| functions } \}$

- pointwise operations:
$$(ax_1 + bx^3) + (c + dx^3)$$

= $c + ax_1 + dx^3 + bx^3$

:
$$\lambda(\alpha x^2 + bx) = \lambda \alpha x^2 + \lambda bx$$

· Let
$$P := \bigcup_{\kappa=0}^{\infty} P_{\kappa}$$

but must be a finite sum

 $(p(x) \in P \Rightarrow \exists k : p(x) \in P_{\kappa})$

Then we have inclusions

· Excuple: Formal pour series over F. FIXI = { a0+ a, x, +a, x2+...+a, x4...} "formal" pour savies aj EF. - Again, pointwise operations P&FIXI I finite power series: caj=0 Hi > k for some k.