Readme for dconv_multiV4

Table of Contents

1	\mathbf{d}	${ m conv_multiV4}$ operation manual $\dots \dots$	1
	1.1	Intro	1
	1.2	How to run the program	1
	1.3	Column meaning	1
	1.4	How to choose the right columns	1

1 dconv_multiV4 operation manual

1.1 Intro

dconv_multiV4 is an application for LISA data reduction. It writes an ASCII file as output containing the calibrated energy and the principal counters needed for data analysis.

1.2 How to run the program

Place the dconv_configV4.txt configuration file in the same directory of the .exe file. Double click the dconv_multiV4.exe file, and wait for the program to load, it may take a while.

Select the file(s) to convert and press Convert.

The output files are written in the same directory of the input files and have the same name of the datafile with a final _c.

1.3 Column meaning

eBraggEnergy: Calibrated energy in eV

I0_EH2: Incoming x-ray intensity on the sample in EH2

I1_EH2: Transmitted x-ray intensity after the sample in EH2

IX_EH2: Transmitted x-ray intensity after the reference in EH2

IR_EH2: Total Electron Yield counter

c8 and c9: free counters

fluo01, fluo02, ..., fluo13: fluorescence counters

I0_EH1: Incoming x-ray intensity on the sample in EH1

I1_EH1: Transmitted x-ray intensity after the sample in EH1

IX_EH1: Photodiode counter

1.4 How to choose the right columns

For transmission meausure in EH1 absorption coefficient of the sample, $\mu = ln(\frac{I0-EH1}{I1-EH1})$

For transmission measure in EH2 absorption coefficient of the sample, $\mu = ln(\frac{I0-EH2}{I1-EH2})$

For flourescence measure normalized fluorescence, $fluo_norm = \left(\frac{fluo01+fluo02+...}{I0_EH2}\right)$ Absorption coefficient of the reference, $\mu_ref = ln\left(\frac{I1_EH2}{IX_EH2}\right)$