COMMON ENTRANCE TEST - 2011

DATE	SUBJECT	TIME
28-04-2011	CHEMISTRY	02.30 PM to 03.50 PM

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR		YOUR	QUESTION BOOKLET DETAILS		
C	ET NUN	BER	VERSION CODE	SERIAL NUMBER	
	1		A-1	727393	

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after the 2nd Bell, i.e., after 02.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should be shaded completely.
- 5. Compulsory sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. The timing and marks printed on the OMR answer sheet should not be damaged/mutilated/spoiled.
- The 3rd Bell rings at 02.40 p.m. till then;
 - Do not remove the seal/staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have one statement and four distracters (four different options / choices).
- After the 3rd Bell is rung at 02.40 p.m., remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- During the subsequent 70 minutes :
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options/choices) given under each question/statement.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN
 against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

- 4. Please note that even a minute unintended ink dot on the OMR sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **03.50 p.m.**, stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room Invigilator as it is.
- 8. After separating and retaining the top sheet (KEA Copy), the Invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

SR - 49 Turn Over

CHEMISTRY

- Which one of the following statements is FALSE? 1.
 - 1) During roasting, moisture is removed from the ore.
 - The ore is freed from almost all nonmetallic impurities.
 - Calcination of ore is carried out in the absence of any blast of air.
 - The concentrated zinc blende is subjected to calcination during its extraction by pyrometallurgy.
- Which one of the following sets of quantum numbers represents the highest energy level 2. in an atom?

1)
$$n=4$$
, $l=0$, $m=0$, $s=+\frac{1}{2}$ 2) $n=3$, $l=1$, $m=1$, $s=+\frac{1}{2}$

2)
$$n=3$$
, $l=1$, $m=1$, $s=+\frac{1}{2}$

3)
$$n=3$$
, $l=2$, $m=-2$, $s=\pm \frac{1}{2}$

3)
$$n=3$$
, $l=2$, $m=-2$, $s=+\frac{1}{2}$ 4) $n=3$, $l=0$, $m=0$, $s=+\frac{1}{2}$

- 3. When O_2 is converted into O_2^+ ;
 - 1) both paramagnetic character and bond order increase
 - bond order decreases
 - paramagnetic character increases 3)
 - 4) paramagnetic character decreases and the bond order increases
- In chromite ore, the oxidation number of iron and chromium are respectively 4.

1)
$$+3$$
, $+2$

$$2) +3, +6$$

$$4) +2, +3$$

- The number of naturally occurring p-block elements that are diamagnetic is
 - 1) 18

2) 6

3) 5

4) 7

6.	If the er	nergies of	the two photo	ns are in the rat	tio of 3:2, their	wavelengths will be in
	the ratio	o of				
	1)	9:4		2)	2:3	
	3)	1:2		4)	3:2	
7.	Which o	ne of the	se is NOT TRU	JE for benzene?		
	1)	There a bonds.	re three carbon	n-carbon single l	oonds and three	carbon-carbon double
	2)	It forms	only one type	of monosubstitu	ated product.	
	3)	The bon	d angle between	en carbon-carbon	bonds is 120°.	
	4)	Heat of	hydrogenation	of benzene is le	ss than the theor	retical value.
8.				energy increase OT an exception		d. But there are some
	1)	Na and	Mg	2)	Be and B	
	3)	N and (0	4)	Mg and Al	
9.			two compounds a particular t		OH	ОН
	is					NO ₂
			an that of A			
	2)	higher t	han that of A		T	
	3)	same as	that of A		NO_2 (A)	(B)
	4)		r lower than A			
10.	Increasi	ng order	of carbon-carbo	on bond length fo	or the following i	s
	C_2	H_4	C_2H_2	C_6H_6	C_2H_6	
	(A	.)	(B)	(C)	(D)	

(Space for Rough Work)

 $2) \quad C < B < A < D$

4) D < C < A < B

 $1) \quad B < C < A < D$

 $3) \quad B < A < C < D$

- - 1) 31.5

2) 75

3) 25

4) 40.2

- - 1) 10 cm³

2) 12 cm^3

3) 16.2 cm³

4) 21.0 cm³

- 13. The rms velocity of hydrogen is $\sqrt{7}$ times the rms velocity of nitrogen. If T is the temperature of the gas, which of the following is true?
 - 1) $T_{N_2} = T_{H_2}$

2) $T_{H_2} = \sqrt{7} T_{N_2}$

3) $T_{N_2} = 2T_{H_2}$

- 4) $T_{N_2} = \sqrt{7} T_{H_2}$
- 14. 25 g of each of the following gases are taken at 27°C and 600 mm pressure. Which of these will have the least volume?
 - 1) HBr

2) HCl

3) HF

- 4) HI
- 15. The amount of heat evolved when 500 cm³ of 0.1 M HCl is mixed with 200 cm³ of 0.2 M NaOH is
 - 1.292 kJ

2) 2.292 kJ

0.292 kJ

4) 22.9 kJ

- - 1) -100

2) +100

3) +342

- 4) -342
- 17. Based on the first law of thermodynamics, which one of the following is correct?
 - 1) For an isothermal process, q = +w
 - 2) For an isochoric process, $\Delta U = -q$
 - 3) For an adiabatic process, $\Delta U = -w$
 - 4) For a cyclic process, q = -w
- 18. Consider the following gaseous equilibria with equilibrium constants K_1 and K_2 respectively.

$$SO_{2(g)} + \frac{1}{2} \, O_{2(g)} \Longleftrightarrow SO_{3(g)}$$

$$2SO_{3(g)} \Longleftrightarrow 2SO_{2(g)} + O_{2(g)}$$

The equilibrium constants are related as

1) $2K_1 = K_2^2$

 $2) \quad K_1^2 = \frac{1}{K_2}$

3) $K_2^2 = \frac{1}{K_1}$

- (4) $K_2 = \frac{2}{K_1^2}$
- 19. During the adsorption of Krypton on activated charcoal at low temperature;
 - 1) $\Delta H < 0$ and $\Delta S < 0$
- 2) $\Delta H > 0$ and $\Delta S < 0$
- 3) $\Delta H > 0$ and $\Delta S > 0$
- 4) $\Delta H < 0$ and $\Delta S > 0$
- 20. For the reversible reaction, $A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} + D_{(g)} \Delta G^0 = -350 \,\mathrm{kJ}$, which one of the following statements is true?
 - 1) The reaction is thermodynamically nonfeasible.
 - 2) The entropy change is negative.
 - 3) Equilibrium constant is greater than one.
 - 4) The reaction should be instantaneous.

21. Identify B and D in the following sequence of reactions.

- 1) Methanol and bromoethane
- 2) Ethyl hydrogen sulphate and alcoholic KOH
- 3) Ethyl hydrogen sulphate and aqueous KOH
- 4) Ethanol and alcoholic KOH
- - 1) butan-1-ol

- 2) butan-2-ol
- 3) 2-methyl propan-2-ol
- 4) 2-methyl propan-1-ol
- 23. Ethyl benzene CANNOT be prepared by
 - 1) Wurtz reaction

- 2) Wurtz-Fittig reaction
- 3) Friedel-Crafts reaction
- 4) Clemmensen reduction
- 24. 1.2 g of organic compound on Kjeldahlization liberates ammonia which consumes 30 cm³ of 1 N HCl. The percentage of nitrogen in the organic compound is
 - 1) 30

2) 35

3) 46.67

- 4) 20.8
- 25. Carbon cannot reduce Fe_2O_3 to Fe at a temperature below 983 K because
 - 1) free energy change for the formation of CO is more negative than that of ${\it Fe}_2{\it O}_3$
 - 2) CO is thermodynamically more stable than Fe_2O_3
 - 3) carbon has higher affinity towards oxygen than iron
 - 4) iron has higher affinity towards oxygen than carbon

	(Sp	ace for Rough Work)
	3) 5	4) 6
. 9.	1) 4	2) 7
30.		of Fe^{2+} ion (in BM) is approximately
	3) NaNO ₃ only	4) $NaNO_2$ and $NaNO_3$
	· · · · · · · · · · · · · · · · · · ·	
	1) NaNO ₂ only	2) NO and NO ₂
29.	In Ramsay and Rayleigh's isol is finally converted into	ation of noble gases from air, the nitrogen of the air
	4) NaOH solution does no	
		is soluble in excess of NaOH solution.
	2) NaOH is a primary sta	andard in volumetric analysis.
	1) NaOH is used in the c	oncentration of bauxite ore.
28.	Which one of the following is tr	ue?
	3) 3	4) 1
	1) 2	2) 5
		f silver still left in the lead layer is approximately
27.		ted between 10 cm ³ of molten zinc and 100 cm ³ of molten
	3) lead acetate	4) sodium chromate
	1) chromic acid	2) lead chromate
20.		
26.	The vellow precipitate formed of	luring the chromyl chloride test is chemically

- 31. The IUPAC name of the complex $\left[Co \left(NH_3 \right)_4 Cl_2 \right] Cl$ is
 - . 1) dichloro tetraammine cobalt (III) chloride
 - 2) tetraammine dichloro cobalt (III) chloride
 - 3) tetraammine dichloro cobalt (II) chloride
 - 4) tetraammine dichloro cobalt (IV) chloride
- - 1) 287×10^{-3}

2) 143.5×10^{-3}

3) 143.5×10^{-2}

- 4) 287×10^{-2}
- 33. The following data were obtained during the first order decomposition of $2A_{(g)} \to B_{(g)} + C_{(s)}$ at a constant volume and at a particular temperature.

Sr. No.	Time	Total pressure in Pascal
1	At the end of 10 min	300
2	After completion	200

The rate constant in min⁻¹ is

1) 0.0693

2) 69.3

3) 6.93

- 4) 6.93×10^{-4}
- 34. The time required for 100% completion of a zero order reaction is
 - 1) ak

 $\frac{a}{2b}$

3) $\frac{a}{k}$

- 4) $\frac{2k}{a}$
- - 1) 0.01

2) 0.1

3) 0.02

4) 0.001

- 36. pH value of which one of the following is NOT equal to one?
 1) 0.1 M CH₃COOH
 2) 0.1 M HNO₃
 - 4) 50 cm³ 0.4 M HCl + 50 cm³ 0.2 M NaOH
- - 1) pK_a

2) $pK_a + 2$

3) $pK_a - Log 2$

3) 0.05 M H₂SO₄

- 4) $pK_a + Log 2$
- 38. H_2S is passed into one dm³ of a solution containing 0.1 mole of Zn^{2+} and 0.01 mole of Cu^{2+} till the sulphide ion concentration reaches 8.1×10^{-19} moles. Which one of the following statements is true?

 $[K_{sp} \text{ of } ZnS \text{ and } CuS \text{ are } 3 \times 10^{-22} \text{ and } 8 \times 10^{-36} \text{ respectively}]$

- 1) Only ZnS precipitates
- 2) Both CuS and ZnS precipitate
- 3) Only CuS precipitates
- 4) No precipitation occurs
- 39. E_1 , E_2 and E_3 are the emfs of the following three galvanic cells respectively:
 - (i) $Zn(s) | Zn^{2+}(0.1 \text{ M}) | | Cu^{2+}(1 \text{ M}) | Cu(s)$
 - (ii) $Zn(s) \mid Zn^{2+}(1M) \mid\mid Cu^{2+}(1M) \mid\mid Cu(s)$
 - (iii) $Zn(s) | Zn^{2+}(1M) | | Cu^{2+}(0.1M) | Cu(s)$

Which one of the following is true?

1) $E_2 > E_1 > E_3$

2) $E_1 > E_2 > E_3$

 $3) \quad E_3 > E_1 > E_2$

- 4) $E_3 > E_2 > E_1$
- 40. 0.023 g of sodium metal is reacted with 100 cm³ of water. The pH of the resulting solution is
 - 1) 10

2) 8

3) 9

4) 12

	cell involving 2 moles of electrons in its redox reaction i
0.59 V. The equilibrium constant	nt for the redox reaction of the cell is
1) 10 ²⁰	$2) 10^5$
3) 10	$4) 10^{10}$
magnesium metal thus obtaine	rent is passed through fused anhydrous $MgCl_2$. The d is completely converted into a Grignard reagent. The expert obtained is
	2) 1 × 10 ⁻⁴
3) 5×10^{-5}	4) 1×10^{-5}
compound exerts the same os	melectrolyte is CH_2O . A solution containing 3 g of th motic pressure as that of 0.05 M glucose solution. Thought is
	$2) C_2H_4O_2$
3) $C_4 H_8 O_4$	4) $C_3H_6O_3$
Which one of the following is a	covalent crystal?
1) Rock salt	2) Ice
3) Quartz	4) Dry ice
Which one of the following DO	ES NOT involve coagulation?
1) Clotting of blood by t	ne use of ferric chloride
2) Formation of delta re	gion
4) Peptization	
	1) 10 ²⁰ 3) 10 9.65 coulombs of electric curmagnesium metal thus obtained number of moles of Grignard results in the second of the compound exerts the same ost molecular formula of the compound exerts the sam

			12	A - 1
46.	A solution them. H	on of two liquids boils at a ten lence, the binary solution show	nperatur	e more than the boiling point of either of
	1)	negative deviation from Raou	ılt's law	
	2)	positive deviation from Raou	lt's law	
		no deviation from Raoult's la		
				oult's law depending upon the composition
				0
	A Direction			
47.	Which o	one of the nitrogen atoms in H	$_{2}N - NH$	$I-C-NH_2$ is the most nucleophilic?
			I II	III
	1)	III		
	2)			
	3)	II		
	4)	All three nitrogen atoms are	equally	strong nucleophilic centers
48.	The ma	ximum number of possible opt	ical isom	ers in 1-bromo-2-methyl cyclobutane is
	*	4	2)	2
		8	4)	16
				6 1-1
49.	Which	one of the following is the mos		tic conformation of cyclohexane?
	1)	Boat	2)	
	3)	Chair	4)	Half chair
50.		one of the following is an intersence of anhydrous $AlCl_3$?	mediate	in the reaction of benzene with CH_3Cl in
		Cl^+	2)	CH_3^-

0)	OTT
3)	CH_3

		13	A
51.		one of the following is NOT TRUE for the hydrolysis of t -butyl bromide is $NaOH$?	witl
	1)	Reaction occurs through the S _N 1 mechanism.	
	2)	The intermediate formed is a carbocation.	
	3)	Rate of the reaction doubles when the concentration of alkali is doubled.	
	4)	Rate of the reaction doubles when the concentration of t-butyl bromid doubled.	de i
52.	Followin	ng is the substitution reaction in which -CN replaces -Cl.	
	R– Cl	$+ \frac{KCN}{(alcoholic)} \xrightarrow{\Delta} R - CN + KCl$	
	To obtai	n propanenitrile, R-Cl should be	
	1)	chloroethane 2) 1-chloropropane	
	3)	chloromethane 4) 2-chloropropane	
53.	The con	version of m-nitrophenol to resorcinol involves respectively	
	1)	hydrolysis, diazotization and reduction	
	2)	diazotization, reduction and hydrolysis	
	3)	hydrolysis, reduction and diazotization	
	4)	reduction, diazotization and hydrolysis	
54.	Formic a	acid is a stronger acid than acetic acid. This can be explained using	

1) +M effect 2) -I effect

3) +I effect

4) -M effect

55. The reagent with which both acetaldehyde and acetone react is

1) Fehling's solution

 $2) \quad I_2 \ / \ NaOH$

3) Tollens' reagent

4) Carbonic acid

56.	Which of the following gives an aldehyde on dry distillation?
	1) Calcium formate + calcium acetate

- 2) Calcium acetate + calcium benzoate
- 3) Calcium acetate
- 4) Calcium benzoate

57. α-maltose consists of

- 1) one α -D-glucopyranose unit and one β -D-glucopyranose unit with 1-2 glycosidic linkage
- 2) two α-D-glucopyranose units with 1-2 glycosidic linkage
- 3) two β-D-glucopyranose units with 1-4 glycosidic linkage
- 4) two α-D-glucopyranose units with 1-4 glycosidic linkage
- 58. Which one of the following DOES NOT correctly match with each other?
 - 1) Silk-polyamide

2) Lipase-enzyme

3) Butter-fat

- 4) Oxytocin-enzyme
- 59. In an alkaline medium, glycine predominantly exists as/in a/an
 - 1) cation

2) anion

3) zwitterion

4) covalent form

60. The IUPAC name of

1) but-3-enoic acid

2) but-1-enoic acid

3) pent-4-enoic acid

4) prop-2-enoic acid