

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION FAST School of Computing, National University of Computer and Emerging Sciences, Karachi

PROGRAM TO BE EVALUATED

BS-School of Computing– Fall 2022

Course Description

Course Description						
Course Code	EL2003					
Course Title	Computer Organization & Assembly Language Lab					
Credit Hours	1	1				
Prerequisites by Course(s) and Topics	PF, DLD					
Grading Policy	Absolute grading					
Policy about missed assessment items in the course	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.					
Course Plagiarism Policy	Plagiarism in project or midterm/ final exam may result in F grade in the course. Plagiarism in an Lab will result in zero marks in the whole Lab marks category.					
Assessment	Assessment Items					
Instruments with Weights	Assessment Item	Number	Weight (%)			
(homework,	Lab Activity	12	20%			
quizzes, midterms,	Project	1	10%			
final, programming assignments, lab	Midterm Exam	1	20%			
work, etc.)	Final Exam	1	50%			
Course Instructors	Ms. Atiya					
Lab Instructors	Muhammad Nadeem					
Course Coordinator	Dr. Muhammad Nouman Durrani					
URL (if any)						
Current Catalog Description	 Programming Methodology of low-level languages How to access computer hardware directly Overview of a user-visible architecture (of Intel 80x86 processors) Intel 80x86 instruction set, assembler directives, macro, etc. 					

NCEAC.FORM.001-D

	 How programs interact with the operating system for various services including memory management and input/output services How is it possible to interface high-level language and low-level language modules
Textbook (or Laboratory Manual for Laboratory Courses)	Assembly Language for Intel Based Computers K.Irvine 7 th Edition MIPS Assembly Language Programming by Ed Jorgensen, Version 1.1.35 April 2018
Reference Material	Computer organization and design: the hardware/software interface by David A. Patterson and John L. Hennessy Computer Organization & Embedded Systems Hamacher et al. 6th Ed.

NCEAC.FORM.001-D

Course Learning Outcomes

A. Lab Learning Outcomes (CLOs)

On successful completion of this course students will have to know how of:

LLO	Lab Learning Outcome (LLO)	Domain	Taxonomy Level	PLO	Tools
01	Use of an Integrated Development Environment (IDE) to compile, debug, run, and refactor x86 Assembly code	Cognitive	3	05	L, M, F, P
02	Identify the use of addressing modes for solving problems related to conditional processing, shift operations, stack operations and string handling.	Cognitive	4	02	L,M,F
03	Design a coding project in x86 or RISC Assembly.	Cognitive	5	03, 05	F,P

For each attribute below, indicate whether this attribute is covered in this course

or not. Leave the cell blank if the enablement is little or non-existent.

Tool: L = Labs, M = Midterm, F = Final, P = Project

B. Pro	ogram	Learning	Outcomes
--------	-------	----------	-----------------

6. Society

8. Ethics

Responsibility

7. Environment

and Sustainability

problems.

practice.

Apply knowledge of mathematics, natural sciences, 1. Computing Knowledge computing fundamentals, and a computing specialization to the solution of complex computing problems. 2. Problem Identify, formulate, research literature, and analyze **Analysis** complex computing problems. reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences. 3. Design/ Design solutions for complex computing problems Develop and design systems, components, and processes that meet specified needs with appropriate Solutions consideration for public health and safety, cultural, societal, and environmental considerations. 4. Investigation & Conduct investigation of complex computing Experimentation problems using research-based knowledge and research-based methods. 5. Modern Tool Create, select, and apply appropriate techniques, resources and modern computing tools, including Usage prediction and modeling for complex computing problems.

Apply reasoning informed by contextual knowledge

to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing

Understand and evaluate sustainability and impact

of professional computing work in the solution of

Apply ethical principles and commit to professional

ethics and responsibilities and norms of computing

complex computing problems.

NCEAC.FORM.001-D

9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Mapping of LLOs on PLOs (LLO: Lab Learning Outcome, PLOs: Program Learning Outcomes) **PLOs**

NCEAC.FORM.001-D

Topics covered in
the course with
number of
lectures on each
topic (Assume 15
weeks of instruction
and 1 hour lecture
duration)

Topics to be covered					
List of Topics	Week	No. of Weeks	Contact Hours	CLO(s)	
Introduction to Assembly and Configuration of Visual Studio	1	1	3	1	
Debugging, Basic elements of Assembly Language, Defining Data, Intrinsic Data types, Data Definition statements	2	1	3	1	
Data Initialization, Multiple Initialization, String Initialization	3	1	3	2	
Data transfer Instruction, Instructions and Flags	4	1	3	2	
Working with data related operators and directives, Indirect Addressing	5	1	3	2	
7	Theory Mid	I	1		
Working with arrays and loops, and built-in procedures	6	1	3	2	
	Lab Mid	ı	1		
Stack operations, procedures & Boolean conditional jumps	7	1	3	2	
Working with Conditional processing	8	1	3	2	
Theory Mid II					
Shift & Rotate, Multiplication & Division instructions, Extended Addition & Subtraction	9	1	3	2	
Stack Frames, Recursion, INVOKE, ADDR, PROC, PROTO Directives	10	1	3	2	
String and Arrays: String Handling Instructions, Two dimensional array	11	1	3	2	

NCEAC.FORM.001-D

	Project evaluations		12	1	3	3	
	Week 16	Final Exam					
	Review			1	3		
	Total			16	48		
Laboratory Projects/Experime nts Done in the Course	Mentioned in Lab	Mentioned in Lab Mannuals					
Class Time Spent	Theory (%)	Problem Analysis (%)	s Soluti	on Design (%)		and Ethical ues (%)	
(in percentage)	10	50		35		5	
Oral and Written Communications	research report for	equired to submit at lea mat. Students will also here necessary in Lab	be called fo				

Instructor Name: Muhammad Nadeem Ghouri

Instructor Signature: Muhammad Nadeem Ghouri

Date: 16th Aug 2022