In [10]: #1) Create a data frame with null values and fill #the null values by python.

```
Cell In[12], line 17
   index=index)
   ^
SyntaxError: invalid syntax. Maybe you meant '==' or ':=' instead of '='?
```

Out[23]:

	names	age	city	marks	fathers_name
Α	avinash	20.0	NaN	85.0	mr.k
В	suresh	23.0	banglore	90.0	NaN
С	NaN	24.0	delhi	95.0	mr.l
D	ramesh	NaN	calcutta	NaN	mr.p

In [24]: data1.fillna('python')

Out[24]:

naı	nes	aç	ge		city	mark	(S	fathers_	_name
avir	ash	20	.0	pyt	hon	85	.0		mr.k
sui	resh	23	0.0	bang	lore	90	.0		python
py	hon	24	.0	c	lelhi	95	.0		mr.l
ram	esh	pytho	on	calc	utta	pytho	on		mr.p

In []: #2) Explain the types of sampling in statistics-theory.

```
In [48]: import pandas as pd
import numpy as np

Q1=np.percentile(visa_df['value'],25)
Q2=np.percentile(visa_df['value'],50)
Q3=np.percentile(visa_df['value'],75)

IQR=Q3-Q1
c1=visa_df['continent']<1b
c2=visa_df['continent']>ub
con=c1|c2

c1=visa_df['continent']>b
c2=visa_df['continent']>ub
con=c1&c2
non_outliers_df=visa_df[c1&c2]
non_outliers_df
```

```
KeyError
                                          Traceback (most recent call las
t)
File C:\anaconda\Lib\site-packages\pandas\core\indexes\base.py:3653, in In
dex.get_loc(self, key)
   3652 try:
-> 3653
            return self._engine.get_loc(casted_key)
   3654 except KeyError as err:
File C:\anaconda\Lib\site-packages\pandas\_libs\index.pyx:147, in pandas._
libs.index.IndexEngine.get_loc()
File C:\anaconda\Lib\site-packages\pandas\ libs\index.pyx:176, in pandas.
libs.index.IndexEngine.get loc()
File pandas\ libs\hashtable class helper.pxi:7080, in pandas. libs.hashtab
le.PyObjectHashTable.get_item()
File pandas\ libs\hashtable class helper.pxi:7088, in pandas. libs.hashtab
le.PyObjectHashTable.get item()
KeyError: 'value'
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call las
t)
Cell In[48], line 9
      2 import numpy as np
     4 #data={'no':[1,2,3,4],
              'value':[10,20,30,40]}
     6 #df=pd.DataFrame(data)
      7 #df
----> 9 Q1=np.percentile(visa_df['value'],25)
     10 Q2=np.percentile(visa_df['value'],50)
     11 Q3=np.percentile(visa df['value'],75)
File C:\anaconda\Lib\site-packages\pandas\core\frame.py:3761, in DataFram
e.__getitem__(self, key)
   3759 if self.columns.nlevels > 1:
            return self._getitem_multilevel(key)
-> 3761 indexer = self.columns.get loc(key)
   3762 if is integer(indexer):
   3763
            indexer = [indexer]
File C:\anaconda\Lib\site-packages\pandas\core\indexes\base.py:3655, in In
dex.get_loc(self, key)
   3653
           return self._engine.get_loc(casted_key)
   3654 except KeyError as err:
          raise KeyError(key) from err
-> 3655
   3656 except TypeError:
   3657 # If we have a listlike key, _check_indexing_error will raise
   3658
          # InvalidIndexError. Otherwise we fall through and re-raise
          # the TypeError.
   3659
          self. check indexing error(key)
   3660
KeyError: 'value'
```

```
In [ ]:
```

In []: #ans4)Explain central limit theorem by random data-python.

Central Limit Theorem:

The Central Limit Theorem (CLT) is a fundamental theorem in statistics. If the data does not follow normality, then we have to divide the data into

samples and calculate the sample means, then the distribution of these follow normality.

• Example:

visa_df

- It is ideally shown that dividing into 30samples and calculate 30 sample means
- If we take n=10 it is nearer to sample distribution

In []: #5) Plot the Bar plot, histogram plot, heat map, scatter plot, #pie chart for the # given data set. -python.

In [25]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns path=r"C:\Users\tanma\DATASCIENCE\data\Visadataset.xlsx" visa_df=pd.read_excel(path)

Out[25]:

,	has_job_experience	requires_job_training	no_of_employees	yr_of_estab	region_of_employme
I	N	N	14513	2007	We
;	Υ	N	2412	2002	Northea
;	N	Υ	44444	2008	We
;	N	N	98	1897	We
;	Υ	N	1082	2005	Sou
				•••	
;	Υ	Υ	2601	2008	Soı
I	Υ	N	3274	2006	Northea
;	Υ	N	1121	1910	Sou
;	Υ	Υ	1918	1887	Wŧ
;	Υ	N	3195	1960	Midwe

Out[26]:

_		continent	count
-	0	Asia	16861
	1	Europe	3732
	2	North America	3292
	3	South America	852
	4	Africa	551
	5	Oceania	192

bar chart

```
In [28]: plt.figure(figsize=(9,5))
    plt.bar('continent','count',data=continent_vc_df)
    plt.xlabel('continent')
    plt.ylabel('count')
    plt.title('bar chart')
    plt.show()
```



```
In [34]: keys=visa_df['continent'].value_counts().keys()
values=visa_df['continent'].value_counts().values
values
```

Out[34]: array([16861, 3732, 3292, 852, 551, 192], dtype=int64)

histogram

In [39]: f,i,n=plt.hist(visa_df['continent'],bins=40)

scatter plot

In []:	
In []:	
In []:	
In []:	