Física quântica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Sumário

- Quantização da energia
- Dualidade onda partícula
- O modelo atômico
- **Aplicações**
- **Apêndice**

Um corpo negro é um material que absorve toda a radiação que incide sobre ele. Após absorver a radiação, o corpo negro aquece e emite radiação própria, que por sua vez depende da temperatura.

Corollary

Representação de um corpo negro.

Corollary

Desde Maxwell consideramos que a luz é uma onda eletromagnética, cuja intensidade é definida como energia por tempo e área;

Prof. Flaviano W. Fernandes

O que era esperado pela teoria clássica

A radiação emitida pelo corpo negro deveria assumir qualquer valor, independente da frequência da onda eletromagnética.

A intensidade da onda eletromagnética é diretamente proporcional ao quadrado da frequência, portanto a intensidade da radiação deveria aumentar com o aumento da frequência.

O que os físicos observaram

A radiação emitida pelo corpo negro aumenta até uma certa frequência, atingindo um valor máximo e decaindo a zero em seguida, à medida que a frequência aumenta.

A Lei de Planck

Hipótese de Planck

A energia das cargas oscilantes no interior do corpo negro não pode assumir qualquer valor, mas sim valores discretos (quantizados), e que seria proporcional a frequência da radiação emitida,

$$E_n = nhf, \quad n = 0, 1, 2, \cdots$$

 $h \approx 6,63 \times 10^{-34} \, \text{J} \cdot \text{s}, \quad \text{(Constante de Planck)}.$

Corollary

As idéias de Plank sobre quantização da energia marca o nascimento da Física quântica.

A luz incide na parte T, os elétrons do metal absorve a energia da luz e pela teoria clássica deveria escapar do material, acusando uma corrente i no amperímetro.

O que era esperado pela teoria clássica

- ✓ A energia cinética dos elétrons deveria depender da intensidade da luz;
- ✓ O efeito fotoelétrico deveria ocorrer com luz de qualquer frequência;
- ✓ Deveria haver um retardo no tempo, de modo que o elétron absorveria continuamente o feixe de energia.

Montagem usada para o estudo do efeito fotoelétrico...

Prof. Flaviano W. Fernandes

O efeito fotoelétrico - O que foi obtido!

O que era esperado pela teoria clássica

- ✓ Os elétrons não escapam do material, independente da intensidade da luz incidente;
- ✓ Foi observado um valor mínimo para a frequência para que os elétrons escapem do material;
- ✓ Os elétrons não escapam do material se a frequência for menor que o valor mínimo, não importa o tempo que fique exposto.

Elétron escapando do metal após absorver a energia do fóton.

Hipótese de Einstein

A luz é constituída por pacotes de energia (E = hf) chamados fótons.

Postulado de de Broglie

Hipótese de de Broglie

Devido a simetria da natureza, o dualismo onda-partícula é um fenômeno absolutamente geral,

$$f = \frac{E}{h}$$
, (Efeito fotoelétrico), $\lambda = \frac{h}{p}$, (Postulado de de Broglie).

Corollary

Os elétrons se movem como ondas ao redor do núcleo, o que explica o modelo atômico de Bohr.

Modelo planetário do átomo

O que era esperado pela teoria clássica

Os elétrons se movem ao redor do núcleo em órbitas circulares;

Pela teoria do eletromagnetismo, cargas em movimento emitem radiação diminuindo sua energia;

À medida que a energia diminui, a órbita do elétron encolhe e ele colapsa para dentro do núcleo.

Teoria clássica.

Corollary

Com o colapso do elétron no interior do núcleo, não seria possível a formação de moléculas ou demais combinações envolvendo átomos.

Prof. Flaviano W. Fernandes

O átomo de Bohr

Postulados de Bohr

Os elétrons se movem em certas órbitas bem definidas sem irradiar energia;

O átomo emite radiação quando um elétron faz uma transição de uma órbita para outra;

No limite de grandes órbitas e altas energias, os resultados quânticos devem coincidir com a teoria clássica.

Modelo de Bohr.

Princípio da correspondência

Para grandes números guânticos, os cálculos guânticos e os clássicos levam ao mesmo resultado.

Espectro de linhas do hidrogênio

Níveis de energia do átomo de hidrogênio

$$E_n = \frac{E_1}{n^2}, \quad (n = 1, 2, 3, \cdots),$$

 $E_1 = -2, 18 \times 10^{-18} \, \text{J}, \quad \text{(estado fundamental)}.$

Corollary

O elétron ao redor do átomo adquire valores discretos de energia, e no limite $n \to \infty$ se aproxima do resultado clássico (energias no continuum).

Níveis de energia do hidrogênio.

Laser

Laser de Argônio [2].

Laser usado para cortar chapas metálicas [3].

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	E	ϵ, ε
Zeta	Z	ζ
Eta	Н	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

)
)
-
)
-
,
φ
/
,
,

Referências

- https://nl.m.wikipedia.org/wiki/Bestand:Nci-vol-2268-300 argon ion laser.jpg
- https://www.thefabricator.com/article/lasercutting/back-to-basics-the-subtlescience-of-burr-free-laser-cutting

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education