Электрические свойства кремниевых диодов Шоттки, содержащих металлические пленки различного состава

© И.Г. Пашаев ¶

Бакинский государственный университет, Az-1148 Баку, Азербайджан

(Получена 2 апреля 2012 г. Принята к печати 21 мая 2012 г.)

Получены и исследованы диоды Шоттки $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si, а также изучены электрофизические свойства диодов, содержащих металлические пленки различного состава (x=0,14,30,38,60,80,100). Рентгенофазовым анализом установлено, что пленка сплава $\mathrm{Au}_{38}\mathrm{Ti}_{62}$ имеет аморфную структуру, а остальные пленки $\mathrm{Au}_x\mathrm{Ti}_{100-x}$ — поликристаллическую. Определены основные параметры диодов Шоттки в зависимости от состава и структуры пленок металла. В результате выявлено, что электрофизические свойства диодов Шоттки $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si связаны с изменением состава и структуры пленок металла.

1. Введение

Настоятельной потребностью современной полупроводниковой техники остается увеличение надежности и улучшение качества электронных приборов, в том числе приборов на основе барьеров Шоттки. В литературе, посвященной физике и технологии контакта металлполупроводник, изучена лишь роль полупроводника в происходящих процессах, ролью металла в большинстве случаев пренебрегали. Роль металлов и его кристаллической структуры либо не рассмотрена, либо недостаточно изучена. Чтобы идентифицировать роль металла, были изучены свойства диодов Шоттки в зависимости от структуры металла и размера области контакта. Доказано, что главные параметры диодов Шоттки, такие как плотность тока насыщения, высота барьера, напряжение пробоя, коэффициент неидеальности, зависят от размера области контакта и толщины пленки металла [1-5]. Экспериментальные результаты были объяснены в модели неоднородного контакта [2,3,5]. Согласно этой модели, контакт рассматривается как параллельное соединение элементов с различными высотами барьера и различными другими параметрами. Для модели неоднородного контакта предложена геометрическая модель устройства диодов Шоттки [3,5]. Изучено влияние микроструктуры металла на электрические характеристики контакта. Для улучшения качества диодов Шоттки предлагается использовать аморфные пленки металлов. Доказано, что диоды Шоттки с аморфными пленками металлов более надежны и термостабильны [1-6, что важно для электроники высокой температуры. В последние годы XX столетия внимание физиков и материаловедов привлечено к таким конденсированным средам, для которых характерно неупорядоченное расположение атомов в пространстве. Открытие аморфных металлов внесло большой вклад в науку о металлах, существенно изменив наши представения о них. Оказалось, что аморфные металлы разительно отличаются по своим свойствам от металлических кристаллов с упорядоченным расположением атомов [1-7].

Известно, что аморфные пленки металлов хорошо выполняют функции диффузионных барьеров в микроэлектронных структурах [1,5,6,8] и позволяют изготавливать диоды Шоттки (ДШ) с высоким потенциальным барьером (до 1 эВ), что представляет интерес для солнечной энергетики [1,2,8].

С изменением температуры и состава пленки металла происходит структурное изменение металлических сплавов, в связи с этим изменяются и параметры ДШ [1,5,8].

Данная работа посвящена получению ДШ $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si и изучению влияния пленок металла различного состава и структуры на электрофизические свойства ДШ.

2. Экспериментальный процесс

Для изготовления ДШ в качестве полупроводника использовали кремниевую пластину n-типа проводимости с ориентацией (111) и удельным сопротивлением $0.7\,\mathrm{OM}\cdot\mathrm{cm}$. В качестве металла использовали сплав $\mathrm{Au}_x\mathrm{Ti}_{100-x}$ (x=0,14,30,38,60,80,100). Пленки сплава $\mathrm{Au}_x\mathrm{Ti}_{100-x}$ получены методом электронно-лучевого испарения из двух источников. Структура сплава пленки контролировалась методом рентгенографического анализа на промышленной установке ДРОН-2. Рентгенограмма приведена на рис. 1.

Как видно из рис. 1, пленка сплава $\mathrm{Au_{38}Ti_{62}}$ имеет аморфную структуру, а остальные пленки — поликристаллическую. Последний вывод сделан на основании того, что наблюдается четко выраженная серия максимумов и минимумов, свидетельствующая не только о правильном расположении ближайших атомов, но и о существовании дальнего порядка (в кристаллах можно провести координаты, по которым взаимное расположение атомов на одном и том же расстоянии во много раз превышает величину элементарной ячейки) [9].

В аморфной пленке $Au_{38}Ti_{62}$, как и в кристаллах, первый максимум полностью разрешен, т.е. первый минимум касается оси абсцисс. Это значит, что на определенном угловом расстоянии плотность рассеянных электронов практически равна нулю. Максимумы

[¶] E-mail: islampachayev@rambler.ru

762 И.Г. Пашаев

Рис. 1. Рентгенограммы пленок сплавов $\operatorname{Au}_x\operatorname{Ti}_{100-x}$: x=0 (*I*), 14 (*2*), 30 (*3*), 38 (*4*), 60 (*5*), 80 (*6*), 100 (*7*).

и минимумы проявляются благодаря наличию разных межатомных расстояний, стремясь в пределе к плавной кривой. В аморфной пленке $Au_{38}Ti_{62}$ соблюдается только ближний порядок в пределах каждой элементарной ячейки, построенной так же, как и в кристалле; за пределами ячейки порядок нарушается. Это происходит потому, что каждая следующая ячейка несколько повернута относительно предыдущей, причем направление поворота — статистическая величина [10].

3. Результаты и обсуждение

В результате рентгенофазового анализа системы Au-Ti установлено, что в зависимости от количества атомов Au до состава $Au_{38}Ti_{62}$ периоды кристаллической решетки изменяются, не подчиняясь закону Вегарда [9].

Из литературы известно [9], что Ті имеет объемноцентрированную решетку J с периодом элементарной ячейки $a=3.33\,\mathrm{\AA}$, Аи имеет гранецентрированную решетку F с периодом $a=3.52\,\mathrm{\AA}$. Также есть сведения о существовании гексагональных модификаций этих компонентов. Однако полученные нами дифрактограммы чистых Аи и Ті показали, что рефлексы дифрактограммы индицируются на основе примитивных кубических решеток (см. таблицу). Поэтому, приняв за основу кубическую решетку, проиндицировали рентгенограммы, соответствующие различным составам $\mathrm{Au}_x \mathrm{Ti}_{100-x}$.

Выявлено, что увеличение количества Au в области x = 0, 14, 30, 38 приводит к кристаллизации образца.

Однако нет никаких закономерных изменений периода решетки.

Изменение периода и типа решетки связано со статистическим распределением отдельных атомов в неравноправных кристаллических положениях $(J \to P : F \to P)$.

На рис. 2 представлены прямые ветви вольт-амперных характеристик (ВАХ) 7 исследованных партий ДШ, изготовленных с применением сплавов Au_xTi_{100-x} с различным значением х. Как видно, характеристики контактов чувствительны к составу металлического сплава. Все ВАХ диодных структур в полулогарифмическом масштабе описываются прямой линией, как это следует из однородной модели Шоттки, которая справедлива для однородного контакта [3]. В наших случаях из всех изученных контактных структур относительно однородную границу раздела должен иметь ДШ $Au_{38}Ti_{62}/n$ -Si, так как сплав Au₃₈Ti₆₂ имеет аморфную структуру. Во всех других случаях граница неоднородна из-за поликристалличности пленки металла или металлического сплава. Анализ показывает, что ВАХ и однородного, и неоднородного контактов описываются одним и тем же законом. Таким образом, можно заключить, что прямолинейности в ВАХ полулогарифмическом масштабе

Рис. 2. Прямые ветви ВАХ ДШ $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si с металлическими пленками различного состава: x=0 (I), 14 (2), 30 (3), 38 (4), 60 (5), 80 (6), 100 (7). $T=300\,\mathrm{K}$.

Nο	x = 0		x = 14		x = 30		x = 38		x = 60		x = 80		x = 100	
пика	d, Å	hkl	d, Å	hkl	d, Å	hkl	d, Å	hkl	d, Å	hkl	d, Å	hkl	d, Å	hkl
1 2 3 4 5	2.356 1.690 1.364 1.175 1.054	110 200 211 220 310	2.797 2.254 1.408 1.275 1.163	110 111 220 300 222	3.083 2.311 1.824 1.435 1.175	110 200 211 311 321	- - - -	- - -	2.058 1.564 1.266 1.199 1.100	111 210 220 300 310	4.430 2.016 1.566 1.266 1.199 1.100	100 210 220 222 321 400	2.018 1.800 1.239 1.110 16.037	111 200 220 311 222
<u>а, Å</u> тип	3.33 J		3.92 P		4.45 P		_		3.52 P		4.45 P		3.52 P	

Межплоскостные расстояния d, индексы hkl, период a и тип решетки на основании рентгенограмм сплавов Au_xTi_{100-x}

недостаточно для утверждения об однородности границы раздела и справедливости модели Шоттки [3]. Для установления взаимосвязи между свойствами контактов и степени однородности границы нами были изучены зависимости высоты барьера и коэффициента неидеальности ДШ $\operatorname{Au}_x\operatorname{Ti}_{100-x}/n$ -Si от процентного содержания компонентов в металлических сплавах. На рис. 3, a,b по-

Рис. 3. Зависимости высоты барьера (a) и коэффициента неидеальности ВАХ (b) ДШ $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si от состава сплава.

казаны зависимости высоты барьера φ_b и коэффициента неидеальности n для ДШ $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si от содержания компонентов.

Высота барьера и коэффициент неидеальности вычисляются по известной формуле для ВАХ [3,11]:

$$I = SAT^{2} \exp\left(-\frac{\varphi_{b}}{kT}\right) \left[\exp\left(\frac{eU}{nkT}\right) - 1\right],$$

где I — ток, S — площадь контакта, A — постоянная Ричардсона, T — температура контакта, U — потенциал смещения, k — постоянная Больцмана, e — заряд электрона.

Указанные зависимости снимались при комнатной температуре для диодов с площадью $S=1200\,\mathrm{mkm}^2.$

Как отмечалось выше, в зависимости от количества атомов Au до получения состава $Au_{38}Ti_{62}$ период кристаллической решетки изменяется линейно. С увеличением количества атомов Au увеличивается высота барьера и уменьшается коэффициент неидеальности ДШ (рис. 3, a и b). Образец состава $Au_{38}Ti_{62}$ является аморфным. Из рис. 3 видно, что этому составу соответствует наибольшая высота барьера и наименьший коэффициент неидеальности ДШ. Представленные результаты позволяют заключить, что контакт с аморфным сплавом обладает сравнительно однородной границей раздела [1,3].

С дальнейшим увеличением количества Au (в области x=38,60,80,100) уменьшается высота барьера и увеличивается коэффициент неидеальности ДШ. Это объясняется тем, что система Au—Ti образует твердые растворы.

Сравнивая результаты рентгенофазового анализа и величины параметров ДШ $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n\text{-Si}$, можно заключить, что изменение параметров диодов связано именно с изменением состава и структуры пленки металлов.

4. Заключение

Полученные результаты позволяют сделать вывод, что при составе $\mathrm{Au}_{38}\mathrm{Ti}_{62}$ сплав является аморфным. Такому составу соответствует бо́льшая высота барьера ДШ и меньший коэффициент неидеальности ВАХ по сравнению с поликристаллической пленкой металла. В случае

764 И.Г. Пашаев

контакта аморфной пленки металла с кремнием граница раздела относительно однородна, с увеличением количества Au (в области x=38,60,80,100) уменьшается высота барьера (высота барьера весьма чувствительна к составу металлического сплава) и увеличивается коэффициент неидеальности ДШ. Таким образом, электрофизические свойства ДШ $\mathrm{Au}_x \mathrm{Ti}_{100-x}/n$ -Si зависят от состава и структуры пленки металла.

Список литературы

- [1] D.K. Wickenden, M.J. Sisson et al. Solid-State Electron., 27, 515 (1984).
- [2] Sh.G. Askerov, I.G. Pashayev. Proc. Secong Int. Conf. on Technical and Physical Problems in Power Engineering (Tabriz, 2004) p. 367.
- [3] Ш.Г. Аскеров. Автореф. докт. дис. (Баку, 1992).
- [4] K.T.-Y. Kung, I. Suni, M.-A. Nikolet. Appl. Phys. Lett., 55, 3882 (1984).
- [5] Ш.Г. Аскеров, И.Г. Пашаев. Тез. докл. Междунар. конф. "Fizika-2005" (Азербайджан, 2005) с. 193.
- [6] И.В. Золотихин, Ю.И. Соколов. ЭТ. Сер. 3. Микроэлектроника, вып. 1 (130), 23 (1989).
- [7] Ю.А. Осипьян. Наука и жизнь (1988).
- [8] W. Wiley, I.H. Pereperko, I.E. Nordman. IEEE Trans. Industrial Electron., 29, 154 (1982).
- [9] А. Гипье. Рентгенография кристаллов (М., 1961).
- [10] К. Судзуки, Х. Фудзимори, К. Хасимото. Аморфные металлы (М., Металлургия. 1987).
- [11] А.И. Иващенко, Б.Е. Саморуков, А. Соломанов. ФТП 4, 770 (1979).

Редактор Л.В. Шаронова

Electrophysical properties of silicon Schottky diodes with metal films of various composition

I.G. Pashaev

Baku State University, Az-1148 Baku, Azerbaijan

Abstract In the given activity are received and investigated $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si Schottky diodes, and also electrophysical properties of the diodes containing metal films of various composition $(x=0,\,14,\,30,\,38,\,60,\,80,\,100)$ are studied. By means of *X*-ray phase analysis, it is established that the film of $\mathrm{Au}_{38}\mathrm{Ti}_{62}$ alloy has amorphous structure, and the other films have polycrystalline one. Critical parameters of the Schottky diodes in dependence on composition and structure of metal films are determined. As a result, it is revealed that electrophysical properties of $\mathrm{Au}_x\mathrm{Ti}_{100-x}/n$ -Si Schottky diodes are connected with change of composition and structure of metal films.