18CS36

USN | | | | | | |

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU) 111 Semester B. E. Additional Examinations Dec-2020

Computer Science and Engineering DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours Instructions to candidates: Maximum Marks: 100

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

	at a second with	
1 1.1		01
	the two bits 00?	O1
1.2		-
	ABRACADABRA with all As must be consecutive.	01
1.3	Give the recursive definition of the sequence a_n , $n = 1,2,3,$ if	
	a = n(n+1)	01
1.4	$\frac{1}{1}$	
	n = 1.2 $f(n+1) = f(n)f(n-1).$	01
1.5	Let $n(x,y)$ denote the sentence "x divides y". What is the truth value of	
	$\forall x \ni y P(x, y)$ where the domain of x, y is the set $\{1, 2, 4, 6, 12\}$?	01
1.6	Express the negation of the statement so that all negation symbols	
	immediately precede predicates. $\forall x \ni y(P(x,y) \land \exists z R(x,y,z))$.	01
1.7	to a control of the matrix Man	
	Let $A = \{1,2,3,4\}$. The relation R of A is given by the indicate M_R . Determine the properties of R . $M_R = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. If $\{\{a,c,e\},\{b,d,f\}\}$ is a partition of the set $A = \{a,b,c,d,e,f\}$. Determine	
	Determine the properties of R , $M_R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ & & & 1 \end{bmatrix}$	
	Determine the properties of N. 1.4	02
		02
1.8	If $\{\{a,c,e\},\{b,d,f\}\}\$ is a partition of the set $A=\{a,b,c,d,e,f\}$. Determine	01
	the corresponding equivalence relation induced by this partition.	02
1.9	Find $GLB(\{15,45\})$ and $LUB(\{3,5\})$ in the $POSET(\{3,5,9,15,24,45\},1)$.	02
1.1		01
	range of $f(R)$, $f = x^2 + x$.	UI
1.1	For the NFA given below, find the language of the given NFA.	1
	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
	- (A) o (C)	
		02

	1.12	Find $\delta^*(A, 00122)$ in the <i>NFA</i> — \in below.	
		- Be Be	
10 mm () () ()	1.13	If the binary operation * is associative then find X and Y in the following table.	02
		* a b c d	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1.14	Let $E: 2^3 \to 2^9$ be the encoding function for the (9,3) triple repetition code. If $D: 2^9_2 \to 2^3_2$ is the corresponding decoding function by applying	01
		D. UCCOUR The received word 111101100	01
	1.15	The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix G as below:	
		$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$. Find the associated parity check matrix H .	02

PART-B

	2 a	How many solutions are there to the equation	
	_ ~	solutions are micre to the equation	
		$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29$, where x_i ; $i = 1, 2, 6$ is a non-negative integer such that.	e
		i) $x_i > 1$ for $i = 1,2,3,4,5,6$?	
		ii) $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4, x_5 > 6, x \ge 6$?	Ì
		iii) $x_1 \le 5$?	
4		iv) $x_1 < 8 \& x_2 > 8$?	04
-	Ъ	The sequence of Lucas numbers is defined by $l_0 = 2, l_1 = 1$ and	
Ì		$l_n = l_{n-1} + l_{n-2}$ for $n = 2,3,4,$ prove that $f_n + f_{n+2} = l_{n+1}$ whenever n	
		is a positive integer, where f_i and l_i are the i^{th} Fibonacci and i^{th} Lucas	
1		number respectively.	06
	С	Solve the recurrence relation $a_{n+2} - 6a_{n+1} + 9a_n = 3(2^n) + 7(3^n)$, where	1
		$n \ge 0$ and $a_0 = 1$ and $a_1 = 4$.	06
3	а	State and prove the following rules of inference.	
		i) Law of syllogism	
		ii) Rule of destructive dilemma	06
	b	Let $P(x), q(x)$ and $r(x)$ be the following open statements:	
		$P(x): x^2 - 7x + 10 = 0, q(x): x^2 - 2x - 3 = 0, r(x): x < 0.$ Determine the	
		truth or falsity of the following statements where the universe is all	
		integers. If the statement is false provide a counter example or	
		explanation.	
		i) $\forall x (p(s) \rightarrow \sim r(x))$	
		ii) $\exists x (p(x) \rightarrow r(x))$	
		$iii) \qquad \ni x \big(q(x) \to r(x) \big)$	
		$iv) \qquad \forall x \left(q(x) \to r(x) \right) $	4

		Show that the $(j \vee \neg j) \rightarrow (i \rightarrow h) \vdash j \vee k$. Argument $h \rightarrow t (h \land b)$	
1	,1	$\forall x[p(x) \lor q(x)]$ $\exists x \sim p(x)$ $\forall x[\sim q(x) \lor r(x)]$	06
	b	contrapositive of the implies $r(x): x < -3$. Write the converse in the implies $r(x): x < -3$.	06
	С	formula. What is their negation? i) All humming birds are richly colored. ii) No large birds live on honey. iii) Birds that do not live on honey are dull in the state of the following statements in equivalent predicate logic of the following sta	04
		iv) Humming birds are small.	06_
5	a b	Let R be a relation on Z such that aRb iff $ab > 0$ for all $a, b \in Z$. Verify whether R is an equivalence relation. Let R be the relation whose digraph is given below. i) Draw digraph of R^3 . ii) Write M_R^6 .	04
		a do de	06
	С	Let $f, g, h: z \to z$ defined by $f(x) = x - 1, g(x) = 3x, h(x) = \begin{cases} 0, x \text{ even} \\ 1, x \text{ odd} \end{cases}$ Determine fog, hog, fo(goh) and h^3 .	06
6	а	Define <i>POSET</i> . Draw the Hasse diagram representing the partial ordering $\{(a,b) a \text{ divides }b\}$ on the set $\{1,2,3,6,12,24,36,48\}$. Find the lower bounds, upper bounds, GLB, LUB for the sets $\{2,6,12\}$	05
	b c	and $\{12,36,48\}$. Let $f: R \to R$ determine whether f is invertible and if so determine f where $f_1 = \{(x,y)/2x + 3y = 7\}$. Let $A = \{1,2,3,4,5,6,7\}$ and $B = \{v,w,x,y,z\}$. Determine the number of functions $f: A \to B$ where	05
		i) $ f(A) = 2$ ii) $f(A) = \{w, x, y\}$ iii) $ f(A) = 4$	06

a

b

C

d

8

b

С

d

the given DFA.

is an abelian group.

isomorphism from G_2 to G_1 .

Construct NFA which accepts the following language over $\Sigma = \{0,1\}$. i

Set of all strings ends with 01 or 10 Set of all strings consists of 101 as a substring.

Define the binary operation * on Z by x * y = x + y + 1. Verify that (z,*)Find all subgroups of $(z_{18}, +)$. Prove that if f is an isomorphism from G_1 to G_2 , then f^{-1} is an 04

04

04

04

04

04

04

The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix Determine all the code words. Find the associated parity check matrix H. Use H to decode the received words 00111,00110.