Dynamic Data-Race Prediction Fundamentals, Theory and Practice

Umang Mathur and Andreas Pavlogiannis

Welcome!

- The tutorial is recorded using Zoom
- Streamed on 'ACM SIGPLAN' YouTube channel
- Multiple sections with Q&A breaks after each section
- Please be muted outside Q&A
- If your question can't wait, raise hand in zoom
 - Click "Reactions", then "raise hand" ()
- You can also ask questions in chat
 - Zoom chat is disabled use the clowdr chat in our tutorial's room
- Tutorial slides & related material accessible on the tutorial's web-page (on popl21.sigplan.org)

Outline

Introduction

Preliminaries

Schedulable Happens-Before

Weak Causal Precedence

Fundamentals

M2

Conclusion

Introduction

• Ubiquitous in modern software

• Ubiquitous in modern software

• Back-bone of big-data, AI revolutions

• Ubiquitous in modern software

• Back-bone of big-data, AI revolutions

Challenging to write concurrent software

• Ubiquitous in modern software

Challenging to write concurrent software

Large interleaving space

• Back-bone of big-data, AI revolutions

• Ubiquitous in modern software

• Back-bone of big-data, AI revolutions

Challenging to write concurrent software

- Large interleaving space
- Concurrency bugs
 - data races, deadlocks, etc.,
 - · manifest in production
 - despite rigorous testing
 - severe outcomes

Dynamic Analysis for Detecting Concurrency Bugs

Three desirable properties of an effective dynamic analysis:

Three desirable properties of an effective dynamic analysis:

- (1) Scalability to real world applications
 - executions with billions of events.

Three desirable properties of an effective dynamic analysis:

- (1) Scalability to real world applications
 - executions with billions of events.
- (2) Soundness, or, no false positives
 - otherwise users need to manually confirm each reported bug.

Three desirable properties of an effective dynamic analysis:

- (1) Scalability to real world applications
 - executions with billions of events.
- (2) Soundness, or, no false positives
 - otherwise users need to manually confirm each reported bug.
- (3) High predictive power (not miss many bugs)
 - high coverage.

- foundations of dynamic data race detection,
- recent algorithmic advances in effective race detection, and
- the fundamental limits in dynamic detection of data races.

- foundations of dynamic data race detection,
- recent algorithmic advances in effective race detection, and
- the fundamental limits in dynamic detection of data races.

- foundations of dynamic data race detection,
- recent algorithmic advances in effective race detection, and
- the fundamental limits in dynamic detection of data races.

- foundations of dynamic data race detection,
- recent algorithmic advances in effective race detection, and
- the fundamental limits in dynamic detection of data races.

Preliminaries

Setting - Concurrent programs

```
public class Test extends Thread{
    static int x,y;
    static Object lock;
    public int id;
    @Override
    public void run() {
        if(id == 1){
            v = x + 5:
        else{
            synchronized(lock){
                v = x + 10;
    public static void main(String args[])
      throws Exception {
        final Test t1 = new Test():
        final Test t2 = new Test():
        t1.id = 1;
        t2.id = 2
        t1.start():
        t2.start();
        t1.join();
        t2. join();
```

Concurrent Program

- Threads
- Local variables
- Shared memory
- Synchronization constructs (locks)
- Sequential consistency

• Sequences of events

- Sequences of events
- Event $e = \langle t, op \rangle$.

- Sequences of events
- Event $e = \langle t, op \rangle$.
- op can be

- Sequences of events
- Event $e = \langle t, op \rangle$.
- op can be
 - $r(\cdot)$, $w(\cdot)$

- Sequences of events
- Event $e = \langle t, op \rangle$.
- op can be
 - $r(\cdot)$, $w(\cdot)$
 - $acq(\cdot)$, $rel(\cdot)$

- Sequences of events
- Event $e = \langle t, op \rangle$.
- op can be
 - $r(\cdot)$, $w(\cdot)$ - $acq(\cdot)$, $rel(\cdot)$
- Well formedness critical sections on the same lock do not overlap

```
t_1 t_2

1 acq(\ell)
2 r(x)
3 w(y)
4 r(x)
5 rel(\ell)
6 acq(\ell)
7 w(y)
8 acq(\ell)
```

- Sequences of events
- Event $e = \langle t, op \rangle$.
- op can be
 - $r(\cdot)$, $w(\cdot)$ - $acq(\cdot)$, $rel(\cdot)$
- Well formedness critical sections on the same lock do not overlap

Data Races

A data race in σ is a pair (e_1, e_2) of events such that

- e_1 and e_2 are conflicting
 - access same memory location x
 - at least one writes to x
- e_1 and e_2 are concurrent
 - e_1 and e_2 are simultaneously enabled in some prefix π of σ

Data Races

A data race in σ is a pair (e_1, e_2) of events such that

- e_1 and e_2 are conflicting
 - access same memory location x
 - at least one writes to x
- e₁ and e₂ are concurrent
 - e_1 and e_2 are simultaneously enabled in some prefix π of σ

Data Races

A data race in σ is a pair (e_1, e_2) of events such that

- e₁ and e₂ are conflicting
 - access same memory location x
 - at least one writes to x
- e₁ and e₂ are concurrent
 - e_1 and e_2 are simultaneously enabled in some prefix π of σ

How to detect data races dynamically?

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

Execution σ

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

Execution σ No data race

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

	t_1	t_2
1	$acq(\ell)$ $r(x)$	
3		w(z)
4 5	$rel(\ell)$	w(x)

Execution σ No data race

Execution σ'

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

	t_1	t_2
1	$acq(\ell)$	
2	r(x)	
3		w(z)
4	$rel(\ell)$	
5		w(x)

Execution σ No data race

Execution σ' Data race exists

Detecting Data Races

How to detect data races dynamically?

• Execute a program, check if it witnesses a data race

Execution σ No data race

Execution σ' Data race exists

Executions can be reordered to expose data races!

Possible source program (Initially, x = 0, y = 0)

Possible source program (Initially, x = 0, y = 0)

Source agnostic analysis - some reorderings are not allowed

(Principle behind predictive analysis)

A reordering σ^* of an observed execution σ is allowed if any program P that generates σ can also generate σ^*

(Principle behind predictive analysis)

A reordering σ^* of an observed execution σ is allowed if any program P that generates σ can also generate σ^*

How do we formalize predictive analysis?

(Principle behind predictive analysis)

A reordering σ^* of an observed execution σ is allowed if any program P that generates σ can also generate σ^*

How do we formalize predictive analysis?

• Semantics of underlying programming language

Principle behind predictive analysis

A reordering σ^* of an observed execution σ is allowed if any program P that generates σ can also generate σ^*

How do we formalize predictive analysis?

- Semantics of underlying programming language
- Properties of concurrent objects and operations on them [HW90]
 - locks, shared variables, threads

Principle behind predictive analysis

A reordering σ^* of an observed execution σ is allowed if any program P that generates σ can also generate σ^*

How do we formalize predictive analysis?

- Semantics of underlying programming language
- Properties of concurrent objects and operations on them [HW90]
 - locks, shared variables, threads
- Local determinism and prefix closedness [\$CR13]

• Events $_{\sigma}$ - set of events of σ .

- Events $_{\sigma}$ set of events of σ .
- Thread order (a.k.a program order) \leq_{TO}^{σ}

- Events $_{\sigma}$ set of events of σ .
- Thread order (a.k.a program order) \leq_{TO}^{σ}
- Reads-from mapping \mathcal{RF}_{σ} : Reads $_{\sigma} \to \mathsf{Writes}_{\sigma}$
 - $\mathcal{RF}_{\sigma}(e)$ is the last write event before e in σ that writes to the same memory location as x.
 - ullet e reads the value written by $\mathcal{RF}_{\sigma}(e)$

- Events $_{\sigma}$ set of events of σ .
- Thread order (a.k.a program order) \leq_{TO}^{σ}
- Reads-from mapping \mathcal{RF}_{σ} : Reads $_{\sigma} \to \mathsf{Writes}_{\sigma}$
 - $\mathcal{RF}_{\sigma}(e)$ is the last write event before e in σ that writes to the same memory location as x.
 - ullet e reads the value written by $\mathcal{RF}_{\sigma}(e)$
- $\bullet \leq_{\mathsf{TRF}}^{\sigma} = (\leq_{\mathsf{TO}}^{\sigma} \cup \mathcal{RF}_{\sigma}^{-1})^{+}$

Correct Reordering

Correct Reordering [Sma+12]

A sequence σ^* is a correct reordering of trace σ if

- 1. σ^* is a well-formed trace
- 2. Events $_{\sigma^*} \subseteq \mathsf{Events}_{\sigma}$
- 3. Events $_{\sigma^*}$ is downward closed with respect $\leq_{\mathsf{TRF}}^{\sigma}$
- 4. $\leq_{TO}^{\sigma^*} = \leq_{TO}^{\sigma}|_{Events_{\sigma^*}}$
- 5. $\mathcal{RF}_{\sigma^*} = \mathcal{RF}_{\sigma}|_{\mathsf{Events}_{\sigma^*}}$

Any program that can generate σ can generate all correct reorderings of σ

A pair (e_1, e_2) in σ is a predictable data race if

- e1 and e2 are conflicting
- there is a correct reordering σ^* of σ , such that e_1 and e_2 are both σ -enabled in σ^*

A pair (e_1, e_2) in σ is a predictable data race if

- e₁ and e₂ are conflicting
- there is a correct reordering σ^* of σ , such that e_1 and e_2 are both σ -enabled in σ^*

A pair (e_1, e_2) in σ is a predictable data race if

- e1 and e2 are conflicting
- there is a correct reordering σ^* of σ , such that e_1 and e_2 are both σ -enabled in σ^*

A pair (e_1, e_2) in σ is a predictable data race if

- e1 and e2 are conflicting
- there is a correct reordering σ^* of σ , such that e_1 and e_2 are both σ -enabled in σ^*

If a program *P* has an execution with a predictable data race, then *P* has an execution with a data race

Soundness and Completeness

- whenever $\mathcal{A}(\sigma) = \mathsf{YES}$, then σ has a predictable data race.
- $A(\sigma) = YES$ whenever σ has a predictable data race.

Eraser's lockset algorithm

Lockset principle (Eraser [Sav+97] style race detection):

Two events cannot be simultaneously enabled in any correct reordering if they are protected by a common lock.

```
\begin{array}{c|cccc} & t_1 & t_2 \\ & & & \\ 1 & & \\ 2 & & & \\ 3 & & \\ rel(\ell) & & \\ 5 & & & \\ 6 & & & \\ rel(\ell) & & \\ \end{array}
```

Eraser's lockset algorithm

Lockset principle (Eraser [Sav+97] style race detection):

Two events cannot be simultaneously enabled in any correct reordering if they are protected by a common lock.

Unsound

- Data race prediction is in NP
 - $\bullet\,$ Guess a sequence of events and check if it is a correct reordering having a race

- Data race prediction is in NP
 - Guess a sequence of events and check if it is a correct reordering having a race
- Explicit enumerative techniques [SRA05; CR07]
 - Generate all correct reorderings and check
 - O(poly(2ⁿ))

- Data race prediction is in NP
 - Guess a sequence of events and check if it is a correct reordering having a race
- Explicit enumerative techniques [SRA05; CR07]
 - Generate all correct reorderings and check
 - O(poly(2ⁿ))
- Symbolic techniques [Wan+09; Sai+11; HMR14]
 - Encode the existence of a correct reordering with race as a SAT/SMT constraint
 - O(SAT(poly(n)))

- Data race prediction is in NP
 - Guess a sequence of events and check if it is a correct reordering having a race
- Explicit enumerative techniques [SRA05; CR07]
 - Generate all correct reorderings and check
 - O(poly(2ⁿ))
- Symbolic techniques [Wan+09; Sai+11; HMR14]
 - Encode the existence of a correct reordering with race as a SAT/SMT constraint
 - O(SAT(poly(n)))
- Sound and complete, but don't scale

Happens-Before

For a trace σ , the happens-before relation on σ is the smallest partial order $\leq_{\rm HB}^{\sigma}$ such that

1. $\leq_{\mathsf{TO}}^{\sigma} \subseteq \leq_{\mathsf{HB}}^{\sigma}$,

Happens-Before

For a trace σ , the happens-before relation on σ is the smallest partial order \leq_{HB}^{σ} such that

- 1. $\leq_{\mathsf{TO}}^{\sigma} \subseteq \leq_{\mathsf{HB}}^{\sigma}$,
- 2. for any lock ℓ and events $e_1 = \langle \cdot, \text{rel}(\ell) \rangle$ and $e_2 = \langle \cdot, \text{acq}(\ell) \rangle$ with $e_1 \leq_{\text{tr}}^{\sigma} e_2$, $e_1 \leq_{\text{HB}}^{\sigma} e_2$

Happens-Before

For a trace σ , the happens-before relation on σ is the smallest partial order $\leq_{\rm HB}^{\sigma}$ such that

- 1. $\leq_{\mathsf{TO}}^{\sigma} \subseteq \leq_{\mathsf{HB}}^{\sigma}$,
- 2. for any lock ℓ and events $e_1 = \langle \cdot, \text{rel}(\ell) \rangle$ and $e_2 = \langle \cdot, \text{acq}(\ell) \rangle$ with $e_1 \leq_{\text{tr}}^{\sigma} e_2$, $e_1 \leq_{\text{HB}}^{\sigma} e_2$

Happens-Before - Race Detection

HB-race : Pair of conflicting events (e_1, e_2) such that $e_1 \not \leq_{\mathsf{HB}} e_2$ and $e_2 \not \leq_{\mathsf{HB}} e_1$.

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Happens-Before - Race Detection

HB-race: Pair of conflicting events (e_1, e_2) such that $e_1 \not\leq_{\mathsf{HB}} e_2$ and $e_2 \not\leq_{\mathsf{HB}} e_1$.

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Algorithm:

- Vector clock algorithm, single pass, streaming
- Linear time and constant space
- Implemented by most commercial race detectors TSan [SI09], FastTrack [FF09], Helgrind, Intel Inspector, etc.,

Witness correct reordering

Predictable race missed by ${\sf HB}$

Witness correct reordering

Predictable race missed by ${\sf HB}$

HB misses simple races (Poor predictive power)

Witness correct reordering

What happens after the first race?

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Execution

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Execution

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Execution

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

Possible Program (Initially, x = 0, y = 0)

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

What it is

If σ has an HB-race, then σ has some predictable race

Soundness of HB

If a trace σ has an HB-race, then σ has a predictable data race.

What it is

If σ has an HB-race, then σ has some predictable race

What it is **NOT**

If (e_1, e_2) is an HB-race in σ , then (e_1, e_2) is a predictable race

(More precise) Soundness Guarantee of HB

First HB-race : HB-race (e_1, e_2) such that there is no earlier HB-race in σ :

 $\label{eq:total_problem} \begin{array}{l} \bullet \mbox{ for every HB-race } (e_1',e_2'), \mbox{ either} \\ e_2 \leq_{tr}^{\sigma} e_2', \mbox{ or } (e_2 = e_2' \mbox{ and } e_1' \leq_{tr}^{\sigma} e_1). \end{array}$

More Precise Soundness of HB

If a trace σ has an HB-race, then the first HB-race in σ is a predictable data race.

What about other HB races?

- Not every HB-race is predictable.
- Deciding whether an arbitrary HB-race (e_1, e_2) is predictable is intractable
- What if we restrict to HB-respecting orderings?

For a trace σ , the schedulable-happens-before relation on σ is the smallest partial order $\leq_{\rm SHB}^{\sigma}$ such that

- 1. $\leq_{\mathsf{HB}}^{\sigma} \subseteq \leq_{\mathsf{SHB}}^{\sigma}$,
- 2. for events e_1, e_2 such that $\mathcal{RF}_{\sigma}(e_2) = e_1, \text{ then } e_1 \leq_{\mathsf{SHB}}^{\sigma} e_2$

```
t_1
                        t2
                                        t<sub>3</sub>
1
     acq(\ell)
      rel(\ell)
      w(z)
                     acq(\ell)
5
                      rel(\ell)
                      w(x)
6
7
                                       r(x)
8
                                      w(z)
```

For a trace σ , the schedulable-happens-before relation on σ is the smallest partial order $\leq_{\mathsf{SHB}}^{\sigma}$ such that

- 1. $\leq_{\mathsf{HB}}^{\sigma} \subseteq \leq_{\mathsf{SHB}}^{\sigma}$,
- 2. for events e_1, e_2 such that $\mathcal{RF}_{\sigma}(e_2) = e_1, \text{ then } e_1 \leq_{\mathsf{SHB}}^{\sigma} e_2$

For a trace σ , the schedulable-happens-before relation on σ is the smallest partial order $\leq_{\mathsf{SHB}}^{\sigma}$ such that

- 1. $\leq_{\mathsf{HB}}^{\sigma} \subseteq \leq_{\mathsf{SHB}}^{\sigma}$,
- 2. for events e_1, e_2 such that $\mathcal{RF}_{\sigma}(e_2) = e_1, \text{ then } e_1 \leq_{\mathsf{SHB}}^{\sigma} e_2$

Beyond the First Race - Soundness of SHB

Soundness of SHB

Let (e_1, e_2) be an HB-race of σ . Then, (e_1, e_2) is a predictable race witnessed by a HB-respecting correct reordering of σ iff there is no e_3 for which $e_1 \leq_{\mathsf{SHB}}^\sigma e_3 \leq_{\mathsf{SHB}}^\sigma e_2$ or $e_2 \leq_{\mathsf{SHB}}^\sigma e_3 \leq_{\mathsf{SHB}}^\sigma e_1$.

SHB Algorithm and Evaluation

Algorithm

Evaluation

- One pass, streaming algorithm
- Vector clock algorithm, similar to HB
- Can be easily implemented in existing HB-based race detectors.
- Linear time and constant space (like HB)

SHB Algorithm and Evaluation

Algorithm

- One pass, streaming algorithm
- Vector clock algorithm, similar to HB
- Can be easily implemented in existing HB-based race detectors.
- Linear time and constant space (like HB)

Evaluation

- Implemented in RAPID (github.com/umangm/rapid)
- Evaluated on standard benchmarks
- 50% fewer race reports than HB
- Most others were confirmed to be false positives
- Scales linearly (like HB)

Weak Causal Precedence

Predicting races beyond HB in linear time

HB is conservative!

• HB orders all critical sections on the same lock

HB is conservative!

- HB orders all critical sections on the same lock
- \bullet Space of correct reorderings = linearizations of $\leq_{\rm HB}$
 - Linear time (scalability)
 - No false positives (soundness)

HB is conservative!

- HB orders all critical sections on the same lock
- ullet Space of correct reorderings = linearizations of \leq_{HB}
 - Linear time (scalability)
 - No false positives (soundness)
- Does not reflect any 'hard' orderings

HB is conservative!

- HB orders all critical sections on the same lock
- ullet Space of correct reorderings = linearizations of $\leq_{\rm HB}$
 - Linear time (scalability)
 - No false positives (soundness)
- Does not reflect any 'hard' orderings
- Misses simple races

Can we relax some HB-orderings?

Can we relax some HB-orderings?

• Naively \implies infeasible reorderings

Can reorder critical sections

Can we relax some HB-orderings?

Naively ⇒ infeasible reorderings

	ι_1	ι2
1	w(x)	
2	$acq(\ell)$	
3	$rel(\ell)$	
4		$acq(\ell)$
5		$rel(\ell)$
6		w(x)

Can reorder critical sections

Cannot reorder critical sections

Can we relax some HB-orderings?

- Naively \improx infeasible reorderings
- Carefully ⇒ expensive (?)

	τ_1	τ ₂
1	w(x)	
2	$acq(\ell)$	
2	$rel(\ell)$	
4		$acq(\ell)$
5		$rel(\ell)$
6		w(x)

Can reorder critical sections

Cannot reorder critical sections

Can we relax some HB-orderings?

- Naively \improx infeasible reorderings
- Carefully ⇒ expensive (?)

	t_1	t_2
1	w(x)	
2	$acq(\ell)$	
3	$rel(\ell)$	
4		$acq(\ell)$
5		$rel(\ell)$
6		w(x)

Can reorder critical sections

Cannot reorder critical sections

WCP effectively identifies when to (not) order critical sections

Weak Causal Precedence (WCP)

For a trace $\sigma, \prec_{\rm WCP}^\sigma$ is the smallest transitive order with the following properties:

Weak Causal Precedence (WCP)

For a trace σ , $\prec^{\sigma}_{\text{WCP}}$ is the smallest transitive order with the following properties:

1. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are **conflicting** events $e_1 \in C_1$ and $e_2 \in C_2$, then $\operatorname{rel}(C_1) \prec_{\mathsf{WCP}}^{\sigma} e_2$

Weak Causal Precedence (WCP)

For a trace σ , $\prec_{\text{WCP}}^{\sigma}$ is the smallest transitive order with the following properties:

- 1. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are **conflicting** events $e_1 \in C_1$ and $e_2 \in C_2$, then $\operatorname{rel}(C_1) \prec_{\mathsf{WCP}}^{\sigma} e_2$
- 2. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are events $e_1 \in C_1$ and $e_2 \in C_2$ such that $e_1 \prec^{\sigma}_{\mathsf{WCP}} e_2$, then $\mathsf{rel}(C_1) \prec^{\sigma}_{\mathsf{WCP}} \mathsf{rel}(C_2)$

Weak Causal Precedence (WCP)

For a trace σ , $\prec^{\sigma}_{\text{WCP}}$ is the smallest transitive order with the following properties:

- 1. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are **conflicting** events $e_1 \in C_1$ and $e_2 \in C_2$, then $\operatorname{rel}(C_1) \prec_{\mathsf{WCP}}^{\sigma} e_2$
- 2. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are events $e_1 \in C_1$ and $e_2 \in C_2$ such that $e_1 \prec^{\sigma}_{\mathsf{WCP}} e_2$, then $\mathsf{rel}(C_1) \prec^{\sigma}_{\mathsf{WCP}} \mathsf{rel}(C_2)$
- 3. $\prec^{\sigma}_{\text{WCP}}$ is closed under composition with $\leq^{\sigma}_{\text{HB}}$:
 - $\bullet \ \leq^{\sigma}_{\mathsf{HB}} \circ \prec^{\sigma}_{\mathsf{WCP}} \subseteq \prec^{\sigma}_{\mathsf{WCP}}$
 - $\bullet \ \, \prec^{\sigma}_{\mathsf{WCP}} \circ \leq^{\sigma}_{\mathsf{HB}} \subseteq \prec^{\sigma}_{\mathsf{WCP}}$

Weak Causal Precedence (WCP)

For a trace σ , $\prec^{\sigma}_{\text{WCP}}$ is the smallest transitive order with the following properties:

- 1. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are **conflicting** events $e_1 \in C_1$ and $e_2 \in C_2$, then $\operatorname{rel}(C_1) \prec_{\mathsf{WCP}}^{\sigma} e_2$
- 2. Let C_1 and C_2 be critical sections on the same lock ℓ . If there are events $e_1 \in C_1$ and $e_2 \in C_2$ such that $e_1 \prec^{\sigma}_{\mathsf{WCP}} e_2$, then $\mathsf{rel}(C_1) \prec^{\sigma}_{\mathsf{WCP}} \mathsf{rel}(C_2)$
- 3. $\prec^{\sigma}_{\text{WCP}}$ is closed under composition with $\leq^{\sigma}_{\text{HB}}$:
 - $\bullet \ \leq^{\sigma}_{\mathsf{HB}} \circ \prec^{\sigma}_{\mathsf{WCP}} \subseteq \prec^{\sigma}_{\mathsf{WCP}}$
 - $\bullet \ \, \prec^{\sigma}_{\mathsf{WCP}} \circ \leq^{\sigma}_{\mathsf{HB}} \subseteq \prec^{\sigma}_{\mathsf{WCP}}$

Finally,
$$\leq_{WCP}^{\sigma} = \prec_{WCP}^{\sigma} \cup \leq_{TO}^{\sigma}$$

Soundness of WCP

WCP-race: Pair of conflicting events (e_1, e_2) such that $e_1 \not \leq_{\mathsf{WCP}} e_2$ and $e_2 \not \leq_{\mathsf{WCP}} e_1$.

Soundness of WCP

If a trace σ has an WCP-race, then σ either has a **predictable data race** or a **predictable deadlock**.

Comparison with HB

WCP is strictly more predictive than HB:

- For every trace σ , $\leq_{WCP}^{\sigma} \subseteq \leq_{HB}^{\sigma}$. Thus, every HB-race is also a WCP-race.
- There is a trace σ for which $\leq_{\mathsf{WCP}}^{\sigma} \subsetneq \leq_{\mathsf{HB}}^{\sigma}$. Thus, WCP can catch races that HB can miss.

Comparison with HB

WCP is strictly more predictive than HB:

- For every trace σ , $\leq_{\text{WCP}}^{\sigma} \subseteq \leq_{\text{HB}}^{\sigma}$. Thus, every HB-race is also a WCP-race.
- There is a trace σ for which $\leq_{\mathsf{WCP}}^{\sigma} \subsetneq \leq_{\mathsf{HB}}^{\sigma}$. Thus, WCP can catch races that HB can miss.

Critical sections can be swapped Race detected by WCP, missed by HB

Comparison with HB

WCP is strictly more predictive than HB:

- For every trace σ , $\leq_{WCP}^{\sigma} \subseteq \leq_{HB}^{\sigma}$. Thus, every HB-race is also a WCP-race.
- There is a trace σ for which $\leq_{WCP}^{\sigma} \subsetneq \leq_{HB}^{\sigma}$. Thus, WCP can catch races that HB can miss.

 t_1 t_2 w(y) $acq(\ell)$ w(x) $rel(\ell)$ $rel(\ell)$

Critical sections can be swapped bv HB

Critical sections cannot be swapped Race detected by WCP, missed Race detected by WCP, missed bv HB

Comparison with HB

WCP is strictly more predictive than HB:

- For every trace σ , $\leq_{WCP}^{\sigma} \subseteq \leq_{HB}^{\sigma}$. Thus, every HB-race is also a WCP-race.
- There is a trace σ for which $\leq_{WCP}^{\sigma} \subsetneq \leq_{HB}^{\sigma}$. Thus, WCP can catch races that HB can miss.

Critical sections cannot be swapped Race detected by WCP, missed Race detected by WCP, missed bv HB

No predictable race

Race prediction using WCP

- Vector Clock algorithm
- \bullet Uses constant number of vector clocks + FIFO queues

Race prediction using WCP

- Vector Clock algorithm
- ullet Uses constant number of vector clocks + FIFO queues
- One pass, streaming
- Linear time $O(\mathcal{N} \cdot \mathcal{T}(L + \mathcal{T}))$
- ullet Linear space in worst case $O(\mathcal{N} \cdot \mathcal{T})$
 - Low space overhead in practice

Race prediction using WCP

- Vector Clock algorithm
- Uses constant number of vector clocks + FIFO queues
- One pass, streaming
- Linear time $O(\mathcal{N} \cdot \mathcal{T}(L + \mathcal{T}))$
- Linear space in worst case $O(\mathcal{N} \cdot \mathcal{T})$
 - Low space overhead in practice

WCP detects more races than HB and runs in linear time (like HB)

Evaluating WCP

 $RAPID \ \ \ dynamic \ \ analysis \ framework \\ github.com/umangm/rapid$

Evaluating WCP

RAPID dynamic analysis framework github.com/umangm/rapid

Benchmarks [KMV17]

- 18 benchmark programs (Dacapo, Apache projects, IBM Contest suite, Java Grande Forum)
- Trace sizes- 50 to 216M

Evaluating WCP

RAPID dynamic analysis framework github.com/umangm/rapid

Benchmarks [KMV17]

- 18 benchmark programs (Dacapo, Apache projects, IBM Contest suite, Java Grande Forum)
- Trace sizes- 50 to 216M

WCP scales linearly, like HB

Technique	Races	Avg. Time
HB	182	144 s
WCP	190	198 s
SMT*	51	2258 s

^{*} RVPREDICT (commercial race detector)

Fundamentals

What is the cost of a sound and complete algorithm?

Approaches So Far

- Existing sound and complete techniques take exponential time
- Search over the exponential space of correct reorderings
 - Explicit (enumerate all correct reorderings)
 - Symbolic (SAT/SMT)

Approaches So Far

- Existing sound and complete techniques take exponential time
- Search over the exponential space of correct reorderings
 - Explicit (enumerate all correct reorderings)
 - Symbolic (SAT/SMT)

Is exponential time necessary?

What Is The Search Space?

Recall our definition of a correct reordering

Input trace

Correct reordering

What Is The Search Space?

Recall our definition of a correct reordering

Input trace

Subset trace

Correct reordering

What Is The Search Space?

Recall our definition of a correct reordering

Input trace

Subset trace

Correct reordering

 $Witness = Choose \ event \ set + choose \ ordering$

General Approach In Data Race Prediction

General Approach In Data Race Prediction

Complexity $O(\alpha \cdot \beta)$

- ullet α is the number of guesses for X
- ullet eta is the complexity to decide a correct ordering of X

General Approach In Data Race Prediction

Complexity $O(\alpha \cdot \beta)$

- α is the number of guesses for X
- ullet eta is the complexity to decide a correct ordering of X

 ${\mathcal N}$ events, ${\mathcal T}$ threads

ullet 2 $^{\mathcal{N}}$ subsets in general

 ${\mathcal N}$ events, ${\mathcal T}$ threads

• $2^{\mathcal{N}}$ subsets in general

Event subsets downwards closed wrt $<_{\text{TO}}$

 ${\mathcal N}$ events, ${\mathcal T}$ threads

• $2^{\mathcal{N}}$ subsets in general

Event subsets downwards closed wrt $<_{\text{TO}}$

 ${\mathcal N}$ events, ${\mathcal T}$ threads

• $2^{\mathcal{N}}$ subsets in general

Event subsets downwards closed wrt $<_{\text{TO}}$

 ${\mathcal N}$ events, ${\mathcal T}$ threads

- $2^{\mathcal{N}}$ subsets in general
- ullet $\mathcal{N}^{\mathcal{T}}$ event subsets suffice
- ullet Polynomial for small ${\mathcal T}$

Event subsets downwards closed wrt $<_{\text{TO}}$

How Much Time To Decide Realizability?

Realizability of RF-Posets

Input: (X, P, \mathcal{RF})

- X is an event set
- $<_P$ is a partial order over X with $<_{\mathsf{TRF}} \subseteq <_P$
- \mathcal{RF} is a reads-from function over X

<u>Decide</u>: Can we linearize $(X, <_P)$ to a trace σ^* such that $\mathcal{RF}_{\sigma^*} = \mathcal{RF}$?

How Much Time To Decide Realizability?

Realizability of RF-Posets

Input: (X, P, \mathcal{RF})

- X is an event set
- $<_P$ is a partial order over X with $<_{\mathsf{TRF}} \subseteq <_P$
- \mathcal{RF} is a reads-from function over X

<u>Decide</u>: Can we linearize (X, \leq_P) to a trace σ^* such that $\mathcal{RF}_{\sigma^*} = \mathcal{RF}$?

How Much Time To Decide Realizability?

Realizability of RF-Posets

Input: (X, P, \mathcal{RF})

- X is an event set
- $<_P$ is a partial order over X with $<_{TRF} \subseteq <_P$
- \mathcal{RF} is a reads-from function over X

<u>Decide</u>: Can we linearize (X, \leq_P) to a trace σ^* such that $\mathcal{RF}_{\sigma^*} = \mathcal{RF}$?

Lemma

RF-Poset realizability can be decided in $O(\mathcal{T} \cdot \mathcal{N}^{\mathcal{T}})$.

Upper-bound

Theorem

Dynamic data-race prediction can be solved in $O(\mathcal{T}\cdot\mathcal{N}^{2\cdot\mathcal{T}})$ time.

 \bullet $\, \mathcal{N}$ events, \mathcal{T} threads

Upper-bound

Theorem

Dynamic data-race prediction can be solved in $O(\mathcal{T} \cdot \mathcal{N}^{2 \cdot \mathcal{T}})$ time.

ullet ${\cal N}$ events, ${\cal T}$ threads

Upper-bound

Theorem

Dynamic data-race prediction can be solved in $O(\mathcal{T} \cdot \mathcal{N}^{2 \cdot \mathcal{T}})$ time.

ullet ${\cal N}$ events, ${\cal T}$ threads

Can we do better? $O(\mathcal{N}^{O(1)})$? $O(2^T \cdot \mathcal{N}^{O(1)})$?

Lower-bound

Theorem

Data-race prediction is W[1]-hard parameterized by the number of threads \mathcal{T} .

Lower-bound

Theorem

Data-race prediction is W[1]-hard parameterized by the number of threads \mathcal{T} .

- NP-hard when $\mathcal{T} = \Omega(\mathcal{N})$
- Unlikely to solve in $f(\mathcal{T}) \cdot \mathcal{N}^{O(1)}$, for any function f
- ullet Our upper bound $\mathit{O}(\mathcal{T}\cdot\mathcal{N}^{2\cdot\mathcal{T}})$ is "tight"

Lower-bound

Theorem

Data-race prediction is W[1]-hard parameterized by the number of threads \mathcal{T} .

- NP-hard when $\mathcal{T} = \Omega(\mathcal{N})$
- Unlikely to solve in $f(\mathcal{T}) \cdot \mathcal{N}^{O(1)}$, for any function f
- ullet Our upper bound $\mathit{O}(\mathcal{T}\cdot\mathcal{N}^{2\cdot\mathcal{T}})$ is "tight"

Other meaningful parameterizations that make race prediction tractable?

Acyclic Communication Topologies

Communication Topology

An undirected graph G = (V, E)

- ullet $V=\{t_1,\ldots,t_{\mathcal{T}}\}$ is the set of threads
- ullet $(t_i,t_j)\in E$ if t_i , t_j communicate over shared variables/locks

Communication Topology

An undirected graph G = (V, E)

- $V = \{t_1, \dots, t_{\mathcal{T}}\}$ is the set of threads
- $(t_i, t_j) \in E$ if t_i , t_j communicate over shared variables/locks

Focus on acyclic topologies

Pipeline

Divide and concquer

RF-Poset Closure

RF-Poset $(X, <_P, \mathcal{RF})$ is closed if

RF-Poset Closure

RF-Poset $(X, <_P, \mathcal{RF})$ is closed if

- 1. For every read r and conflicting write w
 - if $w <_P r$ then $w <_P \mathcal{RF}(r)$
 - if $\mathcal{RF}(r) <_P w'$ then $r <_P w'$

RF-Poset Closure

RF-Poset $(X, <_P, \mathcal{RF})$ is closed if

- 1. For every read r and conflicting write w
 - if $w <_P r$ then $w <_P \mathcal{RF}(r)$
 - if $\mathcal{RF}(r) <_P w'$ then $r <_P w'$
- 2. For every two critical sections $acq_1 \dots rel_1$ and $acq_2 \dots rel_2$ on the same lock
 - ullet if $\operatorname{acq}_1 <_P \operatorname{rel}_2$ then $\operatorname{rel}_1 <_P \operatorname{acq}_2$

RF-Poset Closure

RF-Poset $(X, <_P, \mathcal{RF})$ is closed if

- 1. For every read r and conflicting write w
 - if $w <_P r$ then $w <_P \mathcal{RF}(r)$
 - if $\mathcal{RF}(r) <_P w'$ then $r <_P w'$
- 2. For every two critical sections $acq_1 \dots rel_1$ and $acq_2 \dots rel_2$ on the same lock
 - if $acq_1 <_P rel_2$ then $rel_1 <_P acq_2$

How fast can we compute the closure?

Lemma

Lemma

Lemma

Lemma

Upper-Bound On Acyclic Topologies

Theorem

Dynamic data-race prediction over acyclic communication topologies can be solved in $O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^2 \cdot \log \mathcal{N})$ time.

ullet ${\cal N}$ events, ${\cal T}$ threads, ${\it V}$ variables/locks

No exponential dependence on any parameter!

Upper-Bound On Acyclic Topologies

Theorem

Dynamic data-race prediction over acyclic communication topologies can be solved in $O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^2 \cdot \log \mathcal{N})$ time.

• N events, T threads, V variables/locks

No exponential dependence on any parameter!

Upper-Bound On Acyclic Topologies

Theorem

Dynamic data-race prediction over acyclic communication topologies can be solved in $O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^2 \cdot \log \mathcal{N})$ time.

• N events, T threads, V variables/locks

No exponential dependence on any parameter!

Can we do better? $O(\mathcal{N}^{2-\epsilon})$?

Lower-Bound On Acyclic Topologies

Theorem (Quadratic hardness of race prediction)

Consider traces σ over

- T = 2 threads
- V = 8 variables
- a single lock

For any fixed $\epsilon > 0$, data race prediction over σ has no $O(N^{2-\epsilon})$ algorithm.

Lower-Bound On Acyclic Topologies

Theorem (Quadratic hardness of race prediction)

Consider traces σ over

- T = 2 threads
- V = 8 variables
- a single lock

For any fixed $\epsilon > 0$, data race prediction over σ has no $O(N^{2-\epsilon})$ algorithm.

Optimality for acyclic topologies

- Recall our bound $O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^2 \cdot \log \mathcal{N})$
- Nearly optimal for moderate number of threads and variables $(\mathcal{T}, V = \mathsf{polylog}(\mathcal{N}))$

In Summary

	General	Acyclic Topologies
Upper-bound	$O(\mathcal{T} \cdot \mathcal{N}^{2 \cdot \mathcal{T}})$	$O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^2 \cdot \log \mathcal{N})$
Lower-bound	W[1]-hard	No $O(\mathcal{N}^{2-\epsilon})$

- ullet ${\cal N}$ events
- ullet ${\cal T}$ threads
- ullet V variables/locks

M2

Turning complete theory into (almost) complete practice

Witness = Choose event set + choose ordering

Witness = Choose event set + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

Witness = **Choose event set** + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Witness = **Choose event set** + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

```
t<sub>1</sub>
                        to
                                        tз
        w(y)
      acq(\ell)
        w(x)
         e_1
       rel(\ell)
                      w(y)
 6
                       r(y)
 8
                                    acq(\ell)
                                     w(x)
 9
                                     w(y)
10
                                     rel(\ell)
11
12
                       r(x)
13
                        e_2
```

Witness = **Choose event set** + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Witness = **Choose event set** + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Witness = Choose event set + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Witness = Choose event set + choose ordering

Heuristic: close all critical sections not containing e_1 and e_2

Choose X as the smallest set so that

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Only 1 event subset

Witness = Choose event set + choose ordering

Heuristic: close all critical sections not containing e₁ and e₂

Choose X as the smallest set so that

- 1. X contains all $<_{TO}$ predecessors of e_1 , e_2
- 2. X is downwards closed wrt $<_{\mathsf{TRF}}$
- No open critical sections except those containing e₁, e₂

Only 1 event subset

If $\{e_1, e_2\} \cap X \neq \emptyset$ report "No race"

Constructing The Witness

 $\mbox{Witness} = \mbox{Choose event set} + \mbox{choose ordering}$

Constructing The Witness

Witness = Choose event set + **choose ordering**

Recall our solution for rf-poset realizability on acyclic topologies

Lemma

Constructing The Witness

Witness = Choose event set + **choose ordering**

Recall our solution for rf-poset realizability on acyclic topologies

Lemma

MaxMin Linearizations

Theorem (MaxMin Linearizations)

Take a closed rf-poset (X, P, \mathcal{RF}) where X is partitioned into Y_1, Y_2 , where

- 1. $(Y_1, <_P)$ is a total order
- 2. $(Y_2, <_P)$ orders all conflicting writes.

Then (X, P, \mathcal{RF}) is realizable.

Input: A trace σ , a conflicting pair (e_1, e_2)

Input: A trace σ , a conflicting pair (e_1, e_2) Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $rel_1 \rightarrow acq_2$ if acq_2 does not close

Input: A trace σ , a conflicting pair (e_1,e_2)

Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $\mathsf{rel}_1 \to \mathsf{acq}_2$ if acq_2 does not close

Close \rightarrow

Input: A trace σ , a conflicting pair (e_1, e_2)

Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $\mathsf{rel}_1 \to \mathsf{acq}_2$ if acq_2 does not close

Close \rightarrow

Let Y_1 be all events in the thread of e_1 and Y_2 all other events

Algorithm: M2

Input: A trace σ , a conflicting pair (e_1, e_2)

Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $\mathsf{rel}_1 \to \mathsf{acq}_2$ if acq_2 does not close

Close \rightarrow

Let Y_1 be all events in the thread of e_1

and Y_2 all other events

while $\exists \overline{w}_1, \overline{w}_2 \in Y_{\neq i}$ conflicting and unordered do

Order $\overline{e}_1, \overline{e}_2$ in σ as in σ , then close ightarrow

end

Algorithm: M2

Input: A trace σ , a conflicting pair (e_1, e_2)

Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $\mathsf{rel}_1 \to \mathsf{acq}_2$ if acq_2 does not close

Close →

Let Y_1 be all events in the thread of e_1 and Y_2 all other events

while $\exists \overline{w}_1, \overline{w}_2 \in Y_{\neq i}$ conflicting and unordered do

Order $\overline{e}_1, \overline{e}_2$ in σ as in σ , then close \rightarrow

end

Algorithm: M2

Input: A trace σ , a conflicting pair (e_1, e_2)

Start with a partial order \rightarrow

- (a) $\mathcal{RF}_{\sigma}(r) \rightarrow r$ for every read r
- (b) $\mathsf{rel}_1 \to \mathsf{acq}_2$ if acq_2 does not close

Close \rightarrow

Let Y_1 be all events in the thread of \emph{e}_1

and Y_2 all other events

while $\exists \overline{w}_1, \overline{w}_2 \in Y_{\neq i}$ conflicting and unordered do

| Order $\overline{e}_1, \overline{e}_2$ in σ as in σ , then close o

end

Use MaxMin to linearize \rightarrow to a witness σ^*

M2 Illustration

Input trace

Correct reordering

M2 Illustration

Input trace

Correct reordering

Theorem

M2 makes sound predictions of data races with complexity $O(\mathcal{T}^2 \cdot V \cdot \mathcal{N}^4 \cdot \log \mathcal{N})$.

ullet For $\mathcal{T}=2$ threads, M2 is also complete.

Experiments

Benchmark	Size	НВ	WCP	DC	SHB	M2
		Races	Races	Races	Races	Races
critical	49	3	3	3	8	
airtickets	116	3	3	3	4	
account	125	1	1	1	1	
pingpong	126	2	2	2	2	
bbuffer	322	2	2	2	2	
mergesort	3K	1	1	1	1	
bubblesort	4K	4	4	5	6	
raytracer	16K	3	3	3	3	
ftpserver	48K	23	23	24	23	
moldyn	164K	2	2	2	2	
derby	1M	12	12	12	12	
jigsaw	3M	8	10	10	9	
bufwriter	11M	2	2	2	2	
hsqldb	18M	4	4	5	9	
cryptorsa	57M	5	5	7	5	
eclipse	86M	33	34	39	54	
xalan	122M	7	7	9	11	
lusearch	216M	30	30	30	52	
Total	514M	145	148	160	206	

Experiments

Benchmark	Size	НВ	WCP	DC	SHB	M2
		Races	Races	Races	Races	Races
critical	49	3	3	3	8	8
airtickets	116	3	3	3	4	4
account	125	1	1	1	1	1
pingpong	126	2	2	2	2	2
bbuffer	322	2	2	2	2	2
mergesort	3K	1	1	1	1	2
bubblesort	4K	4	4	5	6	6
raytracer	16K	3	3	3	3	3
ftpserver	48K	23	23	24	23	26
moldyn	164K	2	2	2	2	2
derby	1M	12	12	12	12	12
jigsaw	3M	8	10	10	9	11
bufwriter	11M	2	2	2	2	2
hsqldb	18M	4	4	5	9	9
cryptorsa	57M	5	5	7	5	7
eclipse	86M	33	34	39	54	67
xalan	122M	7	7	9	11	15
lusearch	216M	30	30	30	52	52
Total	514M	145	148	160	206	231

Experiments

Times	HB	WCP	DC	SHB	M2
Total	42m0s	34m14s	3h39m	40m31s	1h15m

Conclusion

Wrap-up and a small teaser

Advances in Predictive Analysis (This Tutorial)

Advances in Predictive Analysis (This Tutorial)

Other Recent Works

- Doesn't commute (DC) [RGB18]
- SDP, WDP [Gen+19]
- WDC [RGB20]
- DigHR [Luo+18]
- All unsound soundness is a challenge

1. Most efficient race detection

- The most efficient detectors must operate in linear time
- Challenge: Sound, linear-time + as precise as possible

1. Most efficient race detection

- The most efficient detectors must operate in linear time
- Challenge: Sound, linear-time + as precise as possible

2. Relaxing the notion of witnesses

- Utilize static information for increased precision (+ efficiency)
- ullet Relax the \mathcal{RF} function to be based on values

1. Most efficient race detection

- The most efficient detectors must operate in linear time
- Challenge: Sound, linear-time + as precise as possible

2. Relaxing the notion of witnesses

- Utilize static information for increased precision (+ efficiency)
- ullet Relax the \mathcal{RF} function to be based on values

3. Other Violations

- · Data races are the most well studied
- Deadlocks?
- Atomicity?
- . . .

Open Challenges (Cont.)

4. Relaxed Memory Models

More permissive reorderings \rightarrow more data races

Open Challenges (Cont.)

4. Relaxed Memory Models

More permissive reorderings \rightarrow more data races

5. Mixing Paradigms

- Mixing shared memory and message passing becomes the norm
 - E.g., in Go lang
- Concurrent data structures

Open Challenges (Cont.)

4. Relaxed Memory Models

More permissive reorderings \rightarrow more data races

5. Mixing Paradigms

- Mixing shared memory and message passing becomes the norm
 - E.g., in Go lang
- Concurrent data structures

6. More benchmarks

- DaCapo
- JavaGrande
- SIR
- . . .
- new?

Synchronization-Preserving Races

- HB principle: "do not reorder critical sections"
- Not complete for this principle
- Here a race is missed
- Exposed without reordering critical sections

Synchronization-Preserving Races

- HB principle: "do not reorder critical sections"
- Not complete for this principle
- Here a race is missed
- Exposed without reordering critical sections

What is the cost of a complete algorithm for this principle?

U. Mathur, A. Pavlogiannis, and M. Viswanathan. "Optimal Prediction of Synchronization-Preserving Races". In: POPL '21. To Appear. 2021

Tune in for the POPL talk!

- Watch the talk https://app.clowdr.org/conference/popl2021/item/ 6709324c-cd56-4d26-b2b3-266fa5e668f5
- Q&A on Thu 21 Jan 16:00 17:00 (CET): Concurrency (Shared Memory) at POPL-B

Literature Basis For This Tutorial I

J. FIDGE. "Timestamps in message-passing systems that preserve the partial ordering". In: *Proc.* 11th Australian Comput. Science Conf. 1988, pp. 56–66.

D. Kini, U. Mathur, and M. Viswanathan. "Dynamic Race Prediction in Linear Time". In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2017. ACM, 2017, pp. 157–170.

L. Lamport. "Time, Clocks, and the Ordering of Events in a Distributed System". In: *Commun. ACM* 7 (1978), pp. 558–565.

F. Mattern. "Virtual Time and Global States of Distributed Systems". In: Parallel and Distributed Algorithms: proceedings of the International Workshop on Parallel & Distributed Algorithms. Elsevier Science Publishers B. V., 1989, pp. 215–226.

U. Mathur, D. Kini, and M. Viswanathan. "What Happens-after the First Race? Enhancing the Predictive Power of Happens-before Based Dynamic Race Detection". In: *Proc. ACM Program. Lang.* OOPSLA (2018), 145:1–145:29.

U. Mathur, A. Pavlogiannis, and M. Viswanathan. "The Complexity of Dynamic Data Race Prediction". In: *Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '20. Association for Computing Machinery, 2020, pp. 713–727.

A. Pavlogiannis. "Fast, Sound, and Effectively Complete Dynamic Race Prediction". In: *Proc. ACM Program. Lang.* POPL (2019).

Other Related Literature I

M. Christiaens and K. D. Bosschere. "TRaDe: Data Race Detection for Java". In: *Proceedings of the International Conference on Computational Science-Part II*. ICCS '01. Springer-Verlag, 2001, pp. 761–770.

T. Elmas, S. Qadeer, and S. Tasiran. "Goldilocks: A Race and Transaction-aware Java Runtime". In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI '07. ACM, 2007, pp. 245–255.

C. Flanagan and S. N. Freund. "FastTrack: Efficient and Precise Dynamic Race Detection". In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI '09. ACM, 2009, pp. 121–133.

K. Genç et al. "Dependence-Aware, Unbounded Sound Predictive Race Detection". In: *Proc. ACM Program. Lang.* OOPSLA (2019).

J. Huang, P. O. Meredith, and G. Rosu. "Maximal Sound Predictive Race Detection with Control Flow Abstraction". In: *Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation*. PLDI '14. ACM, 2014, pp. 337–348.

P. Luo et al. "DigHR: precise dynamic detection of hidden races with weak causal relation analysis." In: *J. Supercomput.* 6 (2018), pp. 2684–2704.

U. Mathur, A. Pavlogiannis, and M. Viswanathan. "Optimal Prediction of Synchronization-Preserving Races". In: POPL '21. To Appear. 2021.

Other Related Literature II

J. Roemer, K. Genç, and M. D. Bond. "High-coverage, Unbounded Sound Predictive Race Detection". In: *Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation*. PLDI 2018. ACM, 2018, pp. 374–389.

J. Roemer, K. Genç, and M. D. Bond. "SmartTrack: Efficient Predictive Race Detection". In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2020. Association for Computing Machinery, 2020, pp. 747–762.

Y. Smaragdakis et al. "Sound Predictive Race Detection in Polynomial Time". In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '12. ACM, 2012, pp. 387–400.

M. Sulzmann and K. Stadtmüller. "Predicting All Data Race Pairs for a Specific Schedule". In: Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes. MPLR 2019. Association for Computing Machinery, 2019, pp. 72–84.

M. Sulzmann and K. Stadtmüller. "Efficient, near Complete, and Often Sound Hybrid Dynamic Data Race Prediction". In: Proceedings of the 17th International Conference on Managed Programming Languages and Runtimes. Association for Computing Machinery, 2020, pp. 30–51.

Thank You!