Lista 4

Mario Leston

27 de setembro de 2021

Suponha que você quer modelar o comportamento de uma sequência de semáforos em uma grande avenida. Defina três objetos para representar os possíveis estados do semáforo, digamos **green**, **yellow**, e **red**. Além disso, é necessário definir um método, digamos **next** que implementa a transição de estados em um semáforo:

```
green \mapsto yellow, yellow \mapsto red, red \mapsto green.
```

A sequência de semáforos em uma avenida será representada por uma lista ligada com a seguinte definição, vista em aula:

```
const emptyList = {s: 0};

const cons = (x, ls) \Rightarrow { return {h: x, t: ls, s: ls.s + 1}; };

const head = ls \Rightarrow ls.h;

const tail = ls \Rightarrow ls.t;

const size = ls \Rightarrow ls.s;
```

Escreva uma função

function count(ls, light)

que recebe uma lista ls e um possível estado do semáforo light e devolve o número de objetos de ls iguais a light.

Escreva uma função

function next(ls)

que recebe uma lista de semáforos **1s** e devolve uma lista de semáforos obtida de **1s** através da aplicação do método **next** a cada objeto de **1s**. Suponha que os semáforos estão sincronizados e que a cada unidade de tempo os semáforos sofrem uma transição. Ademais, admita que um automóvel leva uma unidade de tempo para transitar entre dois semáforos sucessivos. Escreva uma função

function time(ls)

que recebe uma lista de semáforos de uma avenida e devolve o número de unidades de tempo que um automóvel levará para atravessar a avenida. Por exemplo, um automóvel levará 5 unidades de tempo para atravessar uma avenida cuja lista de semáforos é

 $[\mathtt{green}, \mathtt{yellow}, \mathtt{green}, \mathtt{red}].$