Jetson-inference environment construction

Jetson-inference environment construction

- Install jetson-inference environment
 - 1.Instructions before use
 - 2. The environment version configuration of this tutorial is as shown in the figure:
 - 3. Start building
 - 3.1 Download required dependencies
 - 3.2 Download related source code
 - 3.3 Download the relevant python module
 - 3.4 Make changes to files
 - 4.Install model
 - 5. Start compiling
 - 6. Verify whether the installation is successful
- 二、Install Mediapipe environment
 - 1.Preparing Files
 - 2.Install bazel
 - 3.Install mediapipe
 - appendix

The Raspberry Pi motherboard series does not currently support this tutorial.

—、Install jetson-inference environment

1.Instructions before use

This tutorial is suitable for building a jetson nano image independently. If you use the YAHBOOM version of the image directly, you can ignore this tutorial.

2.The environment version configuration of this tutorial is as shown in the figure:

```
jtop MAXN|CPU 30.9%|GPU 0.0%
jtop 4.2.0 - (c) 2023, Raffaello Bonghi [raffaello@rnext.it]
Website: https://rnext.it/jetson_stats
Platform
                                          Serial Number: [s|XX CLICK TO READ XX
X]Machine: aarch64
                                          Hardware
 System: Linux
                                           Model: NVIDIA Jetson Nano Developer
 Distribution: Ubuntu 18.04 Bionic Beaver 699-level Part Number: 699-13448-000
 Release: 4.9.253-tegra
                                           P-Number: p3448-0000
 Python: 3.6.9
                                           BoardIDs: p3448
                                           Module: NVIDIA Jetson Nano (4 GB ram
Libraries
                                           SoC: tegra210
 CUDA: 10.2.300
                                           CUDA Arch BIN: 5.3
 cuDNN: 8.2.1.32
                                           Codename: Porq
 TensorRT: 8.2.1.8
                                           L4T: 32.7.1
 VPI: 1.2.3
                                           Jetpack: 4.6.1
 Vulkan: 1.2.70
 OpenCV: 4.1.1 with CUDA: NO
                                          Hostname: yahboom
                                          Interfaces
                                           wlan0: 192.168.2.68
                                           docker0: 172.17.0.1
      2GPU 3CPU 4MEM 5ENG 6CTRL 7INFO Quit
                                                                   (c) 2023, RB
```

If you don't want to build it completely by yourself, you can use the jetson-inference compressed package we provide, pass the compressed package into jetson nano, unzip it, and start directly from "Installing Modules"

3. Start building

3.1 Download required dependencies

```
sudo apt-get update
sudo apt-get install git cmake
```

3.2 Download related source code

```
git clone https://github.com/dusty-nv/jetson-inference
cd jetson-inference
git submodule update --init
```

3.3 Download the relevant python module

Find the file torch-1.8.0-cp36-cp36m-linux_aarch64.whl from the attachment built by our environment and transfer it to jetson nano

```
sudo apt-get install libpython3-dev python3-numpy
sudo apt-get install python3-scipy
sudo apt-get install python3-pandas
sudo apt-get install python3-matplotlib
sudo apt-get install python3-sklearn
pip3 install torch-1.8.0-cp36-cp36m-linux_aarch64.whl
```

3.4 Make changes to files

Edit jetson-inference/CMakePrebuild.sh. Comment out ./download-models.sh (add a # comment in front) as shown in the figure)

```
echo
# break on errors
#set -e
# docker doesn't use sudo
if [ $BUILD_CONTAINER = "YES" ]; then
    SUDO=""
else
        SUD0="sudo"
fi
# install packages
 SUDO apt-get update
 SUDO apt-get install -y dialog
 SUDO apt-get install -y libpython3-dev python3-numpy
SUDO apt-get install -y libglew-dev glew-utils libgstreamer1.0-dev libgstrea
libglib2.0-dev
 SUDO apt-get install -y qtbase5-dev
#$SUDO apt-get install -y libopencv-calib3d-dev libopencv-dev
$SUDO apt-get update
# download/install models and PyTorch
         ./download-models.sh $BUILD INTERACTIVE
         ./install-pytorch.sh $BUILD_INTERACTIVE
        # in container, the models are mounted and PyTorch is already install
fi
echo "[Pre-build] Finished CMakePreBuild scri
```

4.Install model

Method 1: You can perform the following steps

```
cd jetson-inference/tools
./download-models.sh
```

After making a selection, the model will be automatically downloaded to the file path of data/network.

Method 2: You can find the packages required by jetson-inference in the attachments we provide for environment construction, transfer the compressed packages inside to jetson-inference/data/network of jetso nano, and then decompress them.

Unzip command

```
for tar in *.tar.gz; do tar xvf $tar; done
```

Note:

- 1. For decompressing multiple .gz files, use this command: for gz in *.gz; do gunzip \$gz; done
- 2. For decompressing multiple .tar.gz files, use the following command for tar in *.tar.gz; do tar xvf \$tar; done

5. Start compiling

```
cd jetson-inference
mkdir build
cd build
cmake ../
make (or make -j4)  # (In the build directory)
sudo make install  # (In the build directory)
```

If an error is reported during the process, it means that the source code download is incomplete. please go back to step 3.2 and execute the command git submodule update --init.

6. Verify whether the installation is successful

```
cd jetson-inference/build/aarch64/bin

./imagenet-console ./images/bird_0.jpg output.jpg

# After the execution waits for a long time, the following appears (the first time it takes a long time, the subsequent execution will be very fast)
```

```
_ D X
-- dim #1 224 (SPATIAL)
-- dim #2 224 (SPATIAL)
                                                  'prob'
                             -- # dims 3
             -- # dims 3
-- dim #0 1000 (CHANNEL)
-- dim #1 1 (SPATIAL)
-- dim #2 1 (SPATIAL)
binding to input 0 data binding index: 0
binding to input 0 data dims (b=1 c=3 h=224 w=224) size=602112
binding to output 0 prob binding index: 1
binding to output 0 prob dims (b=1 c=1000 h=1 w=1) size=4000
GFU. networks/bylc googlenet.caffemodel initialized.
  evice GPU, networks/bvlc_googlenet.caffemodel initialized.
 [TRT] networks/bvlc_googlenet.caffemodel loaded
imageNet -- loaded 1000 class info entries
  etworks/bvlc_googlenet.caffemodel initialized.
 (image) loaded './images/bird_0.jpg' (368 x 500, 3 channels)
 class 0015 - 0.998702 (robin, American robin, Turdos migratorias)
imagenet-console: './images/bird_0.jpg' -> 99.87018% class $15 (robin, American robin, Turdus migrator
               Timing Report networks/bvlc_googlenet.caffemodel

        Pre-Process
        CPU
        0.08995ms
        CUDA
        0.64693ms

        Network
        CPU
        72.14478ms
        CUDA
        71.47083ms

        Post-Process
        CPU
        0.97890ms
        CUDA
        1.06088ms

        Total
        CPU
        73.21364ms
        CUDA
        73.17864ms

  TRT
               note -- when processing a single image, run 'sudo jetson_clocks' before
                              to disable DVFS for more accurate profiling/timing measurements
 imagenet-console: attempting to save output image to 'output.jpg'
imagenet-console: completed saving 'output.jpg'
imagenet-console: shutting down...
imagenet-console: shutdown complete
```

Find the corresponding directory and view output.jpg as shown below. The recognition result will be displayed at the top of the picture.

二、Install Mediapipe environment

1.Preparing Files

Transfer the two files bazel and mediapipe-0.8-cp36-cp36m-linux_aarch64.whl in the attachment of the environment setup to the jetson nano

2.Install bazel

Open a terminal and run the following command

```
sudo chmod +x bazel
mv bazel /usr/local/bin
```

Check whether the installation of bazel is complete. If the version number can be printed, the installation is complete.

```
bazel --version
```

```
jetson@yahboom:~$ bazel --version
bazel 5.4.0- (@non-git)
```

3.Install mediapipe

Open a terminal and run the following command

```
pip3 install opencv-contrib-python==3.4.18.65
pip3 install mediapipe-0.8-cp36-cp36m-linux_aarch64.whl
pip3 uninstall opencv-contrib-python
```

Verify successful installation

```
python3
import mediapipe as mp
```

```
jetson@yahboom: ~

jetson@yahboom: ~$ python3

Python 3.6.9 (default, Mar 10 2023, 16:46:00)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import mediapipe as mp
>>> Import mediapipe as mp
>>> Import mediapipe as mp
```

appendix

Other reference tutorial URLs:

- 1.https://blog.csdn.net/aal779/article/details/122055432
- 2.https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md
- 3.https://blog.csdn.net/weixin 43659725/article/details/120211312