3 Detailed design steps with K-Maps

3.1 Design Steps

- 1. Here we have to perform four types of arithmetic operations (Add, Negation, Add with carry, Increment) and two types of logical operations (logical AND, logical XOR).
- 2. For the adder, the first input X_i is either A_i or $\overline{A_i}$ or A_iB_i or $A_i \oplus B_i$. We used a 4×1 multiplexer for each bit. The MUX has S_{x_1} and S_{x_0} as selection bits. The selection bits are controlled by control bits $(c_{s_2}, c_{s_1}, c_{s_0})$. The details is shown in the truth table and k-Map.
- 3. For the adder, the second input Y_i is either B_i or 0. We used a 2×1 multiplexer for each bit. The mux has S_{y_0} as its selection bit. The selection bit is controlled by control bits $(c_{s_2}, c_{s_1}, c_{s_0})$. The details in shown in the truth table and k-Map.
- 4. The input carry(C_{in}) of the adder IC is either 0 or 1.It should be zero for negation, add with carry, and increment operations. This is also controlled by control bits($c_{s_2}, c_{s_1}, c_{s_0}$). The details is shown in the truth table and k-Map.
- 5. In the arithmetic unit, the adder adds A, B with $C_{in} = 0$ and $C_{in} = 1$ for Add, Add with Carry operations respectively. The multiplexers provide Y_i as a 0 for increment operation. During negation, $X_i = \overline{A_i}$ and $Y_i = 0$ and $C_{in} = 1$.
- 6. During logical operations, X_i is transferred as $Y_i=0$ and $C_{in}=0$.
- 7. Zero flag, ZF is computed by adding the 4 output bits using 3 OR gates and then inverting $O_0 + O_1 + O_2 + O_3$ by 1 XOR gate $(X \oplus 1 = \overline{X})$.
- 8. The carry flag(C) is directly obtained from C_{out} of the parallel adder
- 9. The sign flag(SF) is obtained from the MSB of the sum(S_3).
- 10. For the overflow flag, we needed C_{out} and C_3 . C_{out} is directly accessible from the Adder IC. C_3 is calculated as below:

$$S_3 = X_3 \oplus Y_3 \oplus C_3$$

$$S_3 \oplus C_3 = X_3 \oplus Y_3$$

$$C_3 = X_3 \oplus Y_3 \oplus S_3$$

$$OF = C_{out} \oplus C_3$$

$$OF = C_{out} \oplus X_3 \oplus Y_3 \oplus S_3$$

3.2 K-maps

We will be following Table ?? to construct the K-maps for selection bits of multiplexers and C_{in} .

3.2.1 K-maps for S_{x_1} and S_{x_0}

The IC of parallel adder takes X_i and Y_i and C_{in} as input. We need X_i as A_i or its complement or its logical changes with B.This values are received as X_i (output of the multiplexer) and the kmap for selection bits $(S_{x_1}$ and $S_{x_0})$ of the multiplexer are as follows:

3.2.2 K-map for S_{x_1}

We can easily express S_{x_1} as sum of minterms.

$$S_{x_1} = c_{s_2}c_{s_1} + c_{s_2}c_{s_0}$$

$$S_{x_1} = c_{s_2}(c_{s_1} + c_{s_0})$$

3.2.3 K-map for S_{x_0}

So, there are two minterms.

$$S_{x_0} = \overline{c_{s_1}} c_{s_0}$$

3.2.4 K-map for S_{y_0}

 S_{y_0} is the selection bit for the multiplexer that selects B and 0 as input of a $2\ast 1~\mathrm{MUX}$.

$$S_{y_0} == c_{s_2} + \overline{c_{s_1}} c_{s_0}$$

3.2.5 K-map for C_{in}

It is the input carry bit of the adder used inside arithmetic unit.

$$C_{in} = \overline{c_{s_2}}c_{s_0} + c_{s_2}\overline{c_{s_1}}.\overline{c_{s_0}}$$

$$C_{in}=\overline{c_{s_2}}c_{s_0}+c_{s_2}.\overline{c_{s_1}+c_{s_0}}$$