Biology Study Guide for Finals

U1-C1 The Study of Life

- 1. Introduction to biology
 - 1. Define biology.
 - The study of living things and how they respond to stimuli
 - 2. Identify possible benefits from studying biology.
 - Cure diseases
 - Learn more about the world
 - Improve agriculture
 - 3. Summarize the characteristics of living things.
 - Made of one or more cells
 - Displays organization
 - Grows and develops
 - reproduces
 - Responds to stimuli
 - Requires energy
 - Maintains homeostasis
 - Adaptations evolve over time
- 2. Nature of science
 - 1. Explain the characteristics of science.
 - 1. Expands scientfiic knowledge
 - 2. Challenges accepted theories
 - 3. Questions results
 - 4. Tests claims
 - 5. Undergoes peer review
 - 6. Uses metric system
 - 2. Compare something that is scientific with something that is pseudoscientific.
 - 1. Fake science, not open to criticism
 - 2. Lone workers instead of peer reviewed
 - 3. No evidence

- 3. Describe the importance of the metric system and SI.
 - Important so all scienctists use the same quantities
 - All proofs are repeatable

3. Methods of science

- 1. Describe the difference between an observation and an inference.
 - Inference is an educated guess
 - Observation is reading
- 2. Differentiate among control (positive and negative), independent variable, dependent variable and controlled/constant variable.
 - Positive control: Expected to have results (like the current best medicine vs new medicine)
 - Negative control: Not expected to have change (water pill vs new medicine)
 - Independent variable: The thing you purposely change
 - Dependent variable: the thing you observe the results of
 - Control variable: The variable that is held constant the whole time to ensure this it is not effecting the dependent variable
- 3. Identify the scientific methods a biologist uses for research
 - Observation
 - You see something intriguing
 - Asking question
 - Ask why it happens
 - Hypothesis
 - A potential answer to your question
 - Variables (independent, dependent, controlled/constant)
 - See above ^65c217
 - Data analysis
 - Look at your data to see what it prooves
 - Conclusion
 - Draw conclusions to what you have observed

U2-C6 Chemistry in Biology

1. Enzymes

- Define the term catalyst and enzyme.
 - Catalyst: something that speeds up a reaction
 - Enzyme: a natural catalyst in cells and living things

- Describe the role of enzymes in catalyzing reactions in living cells.
 - Speeds up the reactions (like digestion)
- State factors that affect the rate of an enzyme-controlled reaction and their effects
 - Temperature
 - Too hot = denatured
 - Too cold = no reaction and denatured
 - o PH
 - Too high = deformed, can be recovered
 - Same for too low
 - Concentration
 - More = faster

2. Properties of water

- 1. Evaluate how the structure of water makes it a good solvent.
 - Hydrogen bond
 - Makes a strong intermolecular force between water molecules
 - Cohesion
 - Binding to itself
 - adhesion
 - Binding to other polar things
 - surface tension
 - Edge of water beads up because it wants to minimise surface area
 - Polarity
 - Water is polar from its hydrogen bonds
 - Specific heat and heat of vaporization
 - High specific heat, take a lot of energy to heat it up
 - Resistent to temperature change
 - 100 degrees to vaporize
 - Density
 - Hotter = less dense
 - When water freezes, it is less dense
 - Gets a crystal lattice structure
- 3. Biological macromolecules
 - 1. Structure, function, monomers/basic units, food tests
 - 1. Describe the role of carbon in living organisms.

- The glue of life
- Bonds to a lot of things
- 4 valence electrons
- 2. Compare the functions of each group of biological macromolecules.
 - Carbohydrates
 - o C, H, O
 - Quick energy
 - Provides a little structure
 - Made of monosachhrides (simple sugars)
 - Monomer:
 - Lipids
 - C, H, O
 - Stores energy
 - Polar phosphate head, 3 non-polar fatty acid tails
 - Polysacchrides
 - Not a polymer (everything else is)
 - Saturated
 - Single bonds
 - Non-saturated
 - Double bonds, has space to bond
 - Protein
 - o C, H, O, N
 - 20 types of protein from the R group
 - Structure, muscles
 - Enzyme, other cell functions depend on protein
 - 4 types of structures
 - Primary sequence of amino acids
 - Secondary: alpha helices or beta pleated sheets (due to hydrogen bonding)
 - Tertiary: interactions of side chains leads to a folding of the molecule
 - Quaternary: sometimes multiple chains come together to create a larger protein
 - Amino Acid structure:
 - Carbon, NH₂, Carboxyl (COOH),
 - Nucleic acids
 - C, H, O, N, P
 - DNA
 - Two strands (double helix)

RNA

Single strand (single helix)

TESTS

Test for reducing sugar:

- Benedict's test: Fill a beaker with 2/3 of water and boil it. Add 2 mL of a solution of the reducing sugar to a test tube, or crush your food entirely and add in water up to 2 mL. Add an equal volume of Benedict's solution. Shake and bring gently to the water bath, allow it to boil.
- Observation: The initial blue coloration of the mixture turns green, then yellowish and may finally form a brick red precipitate.
- Basis of test: Benedict's solution contains copper sulphate.
 Reducing sugars reduce soluble blue copper sulphate containing copper (II) ions (Cu2+) to insoluble red brown copper oxide containing copper (I). The latter is seen as a precipitate.

Test for starch:

- lodine/potassium iodide test.
- Place your food on a piece of white tile. Add a few drops of iodine solution.
- Observation:
 - A blue-black colouration.
- Basis of test:
 - A polyiodide complex is formed with starch.

Test for lipid:

Emulsion test:

 Crush your food entirely and add in 5 mL of ethanol. Place it in the water bath to boil. At the meantime, prepare another test tube with 5 mL of cold water (tap water). Decant the liquid from the first test tube into the one with water. Be careful not to pour in your food debris.

Observation:

A cloudy white suspension.

Basis of test:

 Lipids are immiscible with water. Adding water to a solution of the lipid in alcohol results in emulsion of tiny droplets in the water which reflect light and give a white, opalescent appearance.

- Filter paper test:
 - Rub your food on the filter paper and view it under a light source.
 - Observation:
 - Translucent mark.
- Test for protein:
 - Biuret test:
 - Crush your food entirely and add in water up to 2 mL. Add an equal volume of Biuret reagent. No heating is required.
 - Observation:
 - A mauve or purple colour develops slowly.
 - Basis of test:
 - A test for peptide bonds. In the presence of dilute copper sulphate in alkaline solution, nitrogen atoms in the peptide chain for a purple complex with copper (II) ions (Cu2+).
 Buiret is a compound derived from urea which also contains the -COHN- group and gives positive results.

U3-C7 Cellular Structure and Function

- 1. Cell Discovery and Cell Theory
 - 1. Relate advances in microscope technology to discoveries about cells.
 - Robert Hooke
 - Saw cell through microscope
 - Named them cells because looked like monk cells
 - Anton van Leeuwenhoek
 - Named them animocules
 - Made a microscope
 - 2. Compare compound light microscopes with electron microscopes.
 - Light microscope
 - Uses optics to magnify small things (glass)
 - Can see living things
 - Electron microscope
 - More magnification
 - Can only see dead things
 - Uses magnets to aim electrons to see things

- 3 types
 - Transmission
 - Scanning
 - Scanning tunneling (working on living things)
- 3. Summarize the principles of the cell theory.
 - Every organism is made out of cells
 - · Cells are the basic units of life
 - Arise from only preexisting cells
- 4. Differentiate between a prokaryotic cell and a eukaryotic cell.
 - Prokaryotic
 - Simple
 - No nuclear membrane
 - No membrane bound organelles
 - Have a cell wall
 - Eukaryotic
 - Complicated
 - 100x bigger than prokaryotic
 - Neucleus has a membrane
 - Has organeles

2. The Plasma Membrane

- 1. Describe how a cell's plasma membrane functions.
 - Maintains homeostasis
 - Selective permeability
 - Help signal other cells (comms)
 - Holds the cell together
- 2. Identify the roles of proteins, carbohydrates and cholesterol in the plasma membrane.
 - Proteins
 - Tubes and other things that help facilitate diffusion
 - Only let certain things in
 - Carbs
 - like antennas
 - Comms
 - Bind to outside things
 - Cholesterol
 - Keep the tails inside the wall from sticking to each other
- 3. Structure
 - Heads are made of hydrophyllic molecules (attacts water)

- Tails are made of hydrophobic molecules (repells water)
- 3. Cell structures and organelles
 - 1. Identify the structure and function of the parts of a typical eukaryotic cell.
 - Check textbook Ch 7.3
 - 2. Compare and contrast structures of plant and animal cells.
 - Plants
 - Have cell walls
 - Central vacuole
 - Cholophasts
 - Animals
 - Dont have that

4. Cellular transport

- 1. Explain the processes of diffusion, facilitated diffusion, and active transport.
 - Diffusion
 - High concentration to low concentration
 - Happens naturally
 - Facilitated diffusion
 - Use the movement from high to low through a protein
 - Uses transport proteins
 - From high to low
 - Active transport
 - Pumps from low to high forcefully
 - Needs ATP and a carrier protein
 - Channel proteins (facilitated)

Carrier protein (active)

- 2. Predict the effect of a hypotonic, hypertonic, or isotonic solution on a cell.
 - 1. All of these are in comparison to something else
 - Hypotonic solution
 - The cell is hypertonic
 - A solution with less solute concentration
 - Cell will recieve water
 - Cell will swell = Lysed
 - Hypertonic solution
 - The cell is hypotonic
 - A solution with more solute concentration
 - Cell will send water
 - Cell will shrivel = Shriveled
 - Isotonic
 - Two solutions with the same solute concentration
- 3. Discuss how large particles enter and exit cells.
 - 1. Requires energy
 - Endocytosis
 - When big things enter the cell
 - Call membrance surrounds the object
 - Exocytosis
 - When big things exit the cell
 - Vesicles being the things to the cell membrane
 - Dumps the trash outside
- 4. Define osmosis
 - Diffusion of water through a selectively permeable membrane
 - Low to high solution concentraction

U4-C8 Cellular Energy

1. How organisms obtain energy

- 1. Summarize the two laws of thermodynamics.
 - 1. Cant create or destroy energy
 - Can only change the form of energy
 - Total amount of energy does not change
 - 2. The amount of useful energy forms over time (entropy) decreases
 - Unusable energy (such as heat) increases over time
- 2. Compare and contrast autotrophs and heterotrophs.
 - Autotrophs
 - Feed themselves
 - Plants
 - Gets energy from other surrounding things (chemicals)
 - Photoautotrophs
 - Energy comes from sun
 - Heterotrophs
 - Find food
 - Animals
- 3. Identify anabolic and catabolic pathways.
 - Anabolic
 - Put together
 - Photosynthesis
 - Making glucose
 - Storing energy
 - Catabolic
 - Tearing apart
 - Respiration
 - Using glucose
 - Using energy
- 4. Describe how ATP works in a cell.
 - It is useful chemical energy for a cell
 - Stores energy
 - Breaking off one phosphate group makes usable chemical energy
 - Turns into ADP once the energy is released

2. Photosynthesis

- https://www.youtube.com/watch?v=sQK3Yr4Sc_k
- 1. Summarize the two phases of photosynthesis.
 - Light-dependent reaction

- Uses light
- Happens inside the thylakoid
- High gradient from Thylakoid space to the stroma
- Calvin cycle
 - https://www.youtube.com/watch?v=00jbG_cfGuQ
 - Where most of the energy is made
 - Uses 18 ATP and 12 NADPH to make one glucose
 - Inside the stoma
 - Start with 10 RuBP (5 Carbon molecue) and carbon dioxide and produces one glucose, with 10 RuBP left over for the next cycle
 - Takes 2 full cycles to produce one glucose
- 2. Explain the function of a chloroplast during the light reactions.
 - Allows light into the cell to excite the electrons
 - Site of photosynthesis
 - Its green because it reflects off the green light
 - · absorbs violet and red light
- 3. Describe and diagram electron transport.

Page 225 in the textbook

3. Cellular respiration

- 1. Summarize the stages of cellular respiration.
 - 1. Glycolysis
 - 1. Glucose → Pyruvic Acid + 2 ATP
 - 2. Goes into Aerobic or Anaerobic after glycolysis

- Aerobic
 - 1. Formation of Acetyl CoA (optional learning)
 - Pyruvic Acid + CoA → Carbon Dioxide + Acetyl CoA + Energy
 - 2. Krebs Cycle (Citric Acid cycle or TCA)
 - Acetyl CoA → CoA + 2 Carbon Dioxide + 4 NADH + 1 FADH
 - 3. Electron Transport chain
 - NADH → 2.5 ATP
 - FADH → 1.5 ATP
 - Total produces 36-38 ATP
- Anaerobic
 - Called fermentation
 - Two types
 - Yeast fermentation (Alcoholic Fermentation)
 - Pyruvic acid → Ethanol
 - Cannot repay the oxygen debt
 - Toxic
 - Lactic Acid fermentation
 - Pyruvic acid → Lactic acid
 - Can be paid back
 - Also toxic
- 2. Identify the role of electron carriers in each stage of cellular respiration.
 - NADH
 - FADH2
 - Drop electrons off at the mitochondria

U5-C9 Cellular reproduction

- 1. Cellular growth
 - 1. Explain why cells are relatively small.
 - Highers surface area to volume ratio
 - Helps remove waste
 - Helps comms
 - Helps get substances into the cell
 - 2. Summarize the primary stages of the cell cycle.
 - \bullet G_1
 - S
 - \bullet G_2
 - Mitosis

- Prophase
- Metaphase
- Anaphase
- Telophase
- Cytokinesis
- 3. Describe the stages of interphase.

2. Mitosis

- 1. Describe the events of each stage of mitosis.
 - Prophase
 - Nucleus is still there
 - Chromosomes are condensing from the DNA
 - DNA gets shorter and thicker
 - Nucleus membrance disappears
 - Formation of microtubules
 - Attach to the chromosomes (centrometer of it)
 - Metaphase
 - Chromosomes line up to the middle of the cell
 - Anaphase
 - Chromosomes split (chromatins separate)
 - The chromosomes move away from the center to the edges of the cell
 - The spindles (microtubules) help pull them to the edges
 - Telophase
 - Chromosomes reach the poles
 - Two new neuclei are formed
 - Microtubules disappears
- 2. Explain the process of cytokinesis.
 - The cytoplasm splits and two cells are separated.
 - This part is not considered part of Mitosis

3. Cell cycle regulation

- 1. Summarize the role of cyclin proteins in controlling the cell cycle.
 - Cyclins
 - They are proteins
 - Regulate the cycle
 - Make sure everything is ready for the next step
 - Will start apoptosis if failed
 - CDKs

- Cyclin dependant kinases
- Manages the Cyclins itself
- Makes sure the cyclins are present and active
- 2. Explain how cancer relates to the cell cycle.
 - Cancer is uncontrolled cell growth
 - Unhealthy cells do not go though apoptosis
 - Trick cyclins into thinking it is healthy
- 3. Describe the role of apoptosis.
 - Kills bad cells
 - Makes sure stuff is healthy
- 4. Summarize the two types of stem cells and their potential uses.
 - Adult stem cells
 - Specialized
 - Can only form certain cell types
 - Embryonic stem cells
 - Unspecialized, can form anything
 - Found in the embryo
 - Healing permanent spinal damages (theoretically possible)

U6-C10 Sexual Reproduction and Genetics

1. Meiosis

- 1. Explain the reduction in chromosome number that occurs during meiosis.
 - After DNA synthesis, each chromosome will have two sister chromatids
 - Then, after meiosis 1, instead of the sister chromatids separating, the paired chromosomes will separate
 - After anaphase, each cell will have half the amount of chromosomes, making them haploids
- 2. Recognize and summarize the stages of meiosis.
 - Round 1
 - Important because it creates new DNA recombinant from the mom and dad's DNA.
 - 1. Prophase 1
 - 1. Nucleus is still there
 - 2. Chromosomes are condensing from the DNA

- 3. DNA gets shorter and thicker
- 4. The Homologous pairs of chromosomes get close to each other and switch portions of DNA
 - 1. This is called **Synapsis**
 - 2. This process does not need to be symmetrical across both daughter chromatids
 - 3. Synapsis is why we have 4 distinct and different gametes in the end
- 2. Prometaphase 1 (sometimes considered part of the metaphase)
 - 1. Nucleus membrance disappears
 - 2. Formation of microtubules
 - 1. Attach to the chromosomes (centrometer of it)
- 3. Metaphase 1 (Middle)
 - 1. Chromosomes line up to the middle of the cell
 - 2. They line up next to each other in homologous pairs down the middle of the cell
 - 3. They will not all line up in the same order, so the random assortment creates a new combination of genes
- 4. Anaphase 1 (Away)
 - 1. The homologous chromosomes get separated
 - 2. The sister chromatids do not get separated like normal mitosis
 - 3. The chromosomes move away from the center to the edges of the cell
 - 4. The spindles (microtubules) help pull them to the edges
- 5. Telophase 1 (Two)
 - 1. Chromosomes reach the poles
 - 2. Two new neuclei are formed
 - 3. Microtubules disappears

Round 2

- Round 2 happens similar to normal mitosis, except for the cells are already Haploids
- This results in 4 haploid cells from the original single precursor before meiosis
- 3. Analyze the importance of meiosis in providing genetic variation.
 - Law of segregation
 - Each parent only contributes one allele of each gene to the offspring
 - Law of independent assortment

- Each gene is inherited independently of each other
- This means that hair color does not effect eye color
- Everything is random
 - Synapsis
 - Orientation of the lining up in metaphase 1
 - Orientation in metaphase 2
- Exception is linked genes (on the same chromosome)
- Synapsis (crossing over)
 - During Metaphase 1
 - When two homologous chromosomes are close to each other
 - Swaps the ends of the chromatids

2. Mendelian genetics

- 1. Explain the significance of Mendel's experiments to the study of genetics.
 - Austrian Monk
 - Wanted to breed some peas
 - He cross bred green and yellow peas and only noticed that green peas resulted
 - but in F2, a quarter of them were yellow
 - Theory of dominant and recessive genes
 - Inheritence was not from the blood

See Ch10-11 Study Guide Topics for more information

Index

Word	Definition
Polymer	
entropy	
Apoptosis	Controlled cell death, then eated my lysosomes