Supervised learning

CM5 : Perceptron

CM5 : Perceptron 1 / 47

Not about

CM5 : Perceptron 2 / 47

Section 1

Background

CM5 : Perceptron 3 / 47

Supervised learning

We are given a training set of N examples input-output pairs

$$(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$$

where each pair was generated by an unknown function f:

$$y = f(x)$$

Objective: discover a function h, the **hypothesis** that approximates the true function f.

CM5 : Perceptron 4 / 47

Running example

Let say that I want to sell my apartment in the center of Toulouse.

My apartment¹ has:

- 165 m^2
- 4 rooms
- on the 6th floor

Question: what is the market price for such an apartment?

CM5 : Perceptron 5 / 47

¹completly fictional. I am just an associate professor

Dataset

I look at several apartments on sell in the neighborhood and come up with the following dataset:2

	X	Y	
m^2	Num Rooms	Floor	Price (€)
24	1	4	102 000
46	3	2	140 000
50	3	6	353 600
211	5	3	892 000
74	3	1	198 000

6 / 47 CM5: Perceptron

²Source: leboncoin.fr

Vocabulary

Each example i has 3 **features** $(m^2, \#rooms, floor)$

$$x_i = [x_{i,1}, x_{i_2}, x_{i,3}]$$

and associated ground truth y_i .

The unknown function f associates each example with its ground truth:

$$f(x_i) = y_i$$

For instance: f([24,1,4]) = 102k \in

I want to know the market price for my apartment: f([165, 4, 6]) = ??

CM5 : Perceptron 7 / 47

Hypothesis space

I want to **learn** a function h that closely approximates f.

i.e.
$$h(x) \approx f(x), \forall x$$
 (more complex in practice)

Among the set of all possible functions \mathcal{H} , I want to choose the one that has the least different behavior from f:

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \ \operatorname{diff}(h, f)$$

 \mathcal{H} , the set of all possible functions, is called the **hypothesis space**.

CM5 : Perceptron 8 / 47

What's a suitable hypothesis space?

The set of possible python functions:

```
def h(sqm, nroom, floor):
price = 4000 * sqm + 10000 * nrooms
if floor == 1:
    price -= 30000
return price
```

The set of linear functions:

```
h(sqm, nrooms, floor) = 4000 * sqm + 10000 * nrooms + 10000 * floor
```

... or the set of possible decision trees.

CM5 : Perceptron 9 / 47

What's a suitable hypothesis space?

Each hypothesis space has its own characteristics:

- **bias:** tendency to underfit the data.
 - linear function strongly limit the possible hypotheses which could result in a failure to fit the data
- **variance**: tendency to overfit the data
 - python is turing complete and could be made to produce exactly the ground truth for each example

Rule of thumb

- simple model:
 - high-bias, low variance / poor-fit but generalizes well
- complex model:
 - low-bias, high variance / great fit but generalizes poorly
- (Deep) neural network: complex model that (sometimes) generalizes well

What's a good hypothesis in \mathcal{H} ?

Given a prediction

$$\hat{y} = h(x)$$

The **loss function** measures how bad it is to have the prediction \hat{y} instead of the true value y for the example x.

$$L(x, y, \hat{y})$$

It is often stated independently of x: $L(y, \hat{y})$

CM5 : Perceptron 11 / 47

Some common loss functions

Absolute-value loss	$L_1(y, \hat{y}) = y - \hat{y} $
Squared-error loss	$L_2(y, \hat{y}) = (y - \hat{y})^2$
0/1 loss	$L_{0/1}(y,\hat{y})=0$ if $y=\hat{y}$, else 1

Note that for any (well-formed) loss function:

$$L(y,y) = 0$$

i.e., nothing is lost if the prediction is perfect.

Evaluating a hypothesis: the perfect measure

An agent should choose the hypothesis that minimizes the expected loss over all input-output pairs it **will** see.

Let $\mathcal E$ be the set of all possible examples and P(X,Y) be a probability distribution over examples.

We can define the **generalization loss** for a hypothesis h and a loss function L:

$$GenLoss_L(h) = \sum_{(x,y)\in\mathcal{E}} L(y,h(x)) \times P(x,y)$$

The best hypothesis is the one with the minimum expected generalization loss:

$$h^* = \arg\min_{h \in \mathcal{H}} GenLoss_l(h)$$

CM5 : Perceptron 13 / 47

Evaluating a hypothesis: the empirical measure

Problem: P(X,Y) is usually unknown. Instead we only have a set of examples E.

The **empirical loss** is an estimate of the generalization loss on a set of examples E:

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y,h(x)) \times \frac{1}{|E|}$$

The estimated best hypothesis \hat{h}^* is the one with the minimum empirical loss:

$$\hat{h}^* = \underset{h \in \mathcal{H}}{\arg\min} \, EmpLoss_{L,E}(h)$$

CM5 : Perceptron 14 / 47

Section 2

The perceptron (regression)

CM5 : Perceptron 15 / 47

Where we see a first neuron

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

16 / 47 CM5: Perceptron

The elements of the \mathbf{w} vector are called the weights of the perceptron.

Given an input vector x, the output of the perceptron is a linear combination of its input.

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

The set of functions representable by a perceptron is the set of linear functions. That's our hypothesis space \mathcal{H}_{perc} .

CM5 : Perceptron 17 / 47

Х	Υ	
m^2	Price (€)	
24	102 000	
46	140 000	
50	353 600	
211	892 000	
74	198 000	

CM5 : Perceptron 18 / 47

Perceptron for predicting the price

We have a single feature (x_1 : squared meters), thus a function representable by a perceptron would have the form:

$$h_w(sqm) = w_0 + w_1 \times x_1$$

where we can interpret:

- w_0 as the base price
- lacksquare w_1 as the price per squared meters

CM5 : Perceptron 19 / 47

Perceptron for predicting the price

Making an educated guess we could set:

$$w_0 = 10000 \ ()$$

 $w_1 = 3000 \ ()/m^2)$

20 / 47 CM5: Perceptron

Perceptron: prediction error

For an example (x,y) and predictor h_w

prediction error
$$=|y-h_w(x)|$$
 (length of red segments) L_2 loss: $L_2(y,\hat{y})=(y-h_w(x))^2$ (squared error)

This leads to the empirical loss (for L_2) over the entire dataset E:

$$EmpLoss_{L_2,E}(h_w) = \sum_{(x,y)\in E} \frac{(y - h_w(x))^2}{|E|}$$

21 / 47

I want the hypothesis \hat{h}^* , with the minimum empirical loss:

$$\hat{h}^* = \underset{h_w \in \mathcal{H}_{perc}}{\operatorname{arg\,min}} EmpLoss_{L_2, E}(h_w)$$

For the perceptron, this means finding the best weights \hat{w}^* in the weight space.

$$\hat{w}^* = \underset{w}{\operatorname{arg\,min}} \, EmpLoss_{L_2,E}(h_w)$$

Posing $Loss(w) = EmpLoss_{L_2,E}(h_w)$, we obtain:

$$\hat{w}^* = \operatorname*{arg\,min}_{w} Loss(w)$$

CM5 : Perceptron 22 / 47

Gradient: direction of steepest ascent

In any point w of the function, the gradient defines the direction of steepest ascent:

$$\vec{\nabla}g(w)$$

It can be computed from the partial derivatives:

$$\vec{\nabla}g(w) = \begin{bmatrix} \frac{\delta}{\delta w_0} g(w) \\ \frac{\delta}{\delta w_1} g(w) \\ \vdots \\ \frac{\delta}{\delta w_m} g(w) \end{bmatrix}$$

Figure: Gradient of $f(x, y) = -(\cos^2(x) + \cos^2(y))^2$

CM5: Perceptron 23 / 47

Gradient descent

From a point w, compute a new candidate w' by following the direction of steepest descent (opposite of the gradient).

$$w' = w - \alpha \times \vec{\nabla}g(w)$$

The distance traveled is parameterized by the step size α .

Since the function is decreasing in this direction, there is a good chance that

$$g(w') < g(w)$$

CM5: Perceptron 24 / 47 Applying this repeatedly, we get the gradient descent algorithm:³

 $w \leftarrow$ any value in the parameter space while not converged do $w \leftarrow w - \alpha \times \nabla Loss(w)$ end while

Typical convergence criteria: stop when the update did not provide an improvement for the last k iterations (e.g. k=5).

CM5: Perceptron 25 / 47

³Recal that Loss(w) is shortcut for $EmpLoss_{L,E}(h_w)$

Computing the gradient (L_2 loss, single example)

Partial derivative of the L_2 loss for a single example (x, y):

$$\frac{\delta}{\delta w_i} Loss(w) = \frac{\delta}{\delta w_i} (y - h_w(x))^2$$
$$= 2(y - h_w(x)) \times \frac{\delta}{\delta w_i} (y - h_w(x))$$

Applied to our system with a single feature (x_1) we obtain:

$$\frac{\delta}{\delta w_0} Loss(w) = -2(y - h_w(x))$$
$$\frac{\delta}{\delta w_1} Loss(w) = -2(y - h_w(x)) \times x_1$$

CM5 : Perceptron 26 / 47

Update rules

Updating the weights based on a single example:⁴

$$w_0 \leftarrow w_0 + \alpha \times (y - h_w(x))$$

$$w_1 \leftarrow w_1 + \alpha \times (y - h_w(x)) \times x_1$$

Updating the weights based on the entire training set E:

$$w_0 \leftarrow w_0 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x))$$
$$w_1 \leftarrow w_1 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_1$$

CM5: Perceptron 27 / 47

 $^{^4}$ Note that the -2 factor from the previous equation is included in α term.

$$w = [10, 000, 3, 000]$$

5
With $alpha = 10^{-5}$

$$w' = [10010.53, 4343.82]$$

CM5 : Perceptron 28 / 47

Result of the gradient descent

Repeating the gradient descent step, we eventually converge to our best solution.

$$\hat{w}^* = [9947.29, 4235.02]$$

I should sell my apartment for:

$$9947.29 + 4235.02 \times 165 = 708725 \in$$

CM5: Perceptron 29 / 47

Gradient descent (applied to a perceptron with L_2 loss)

```
w \leftarrow any value in the parameter space while not converged do w_0 \leftarrow w_0 + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) for i \in 1 \dots n do w_i \leftarrow w_i + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_i end for end while
```

CM5 : Perceptron 30 / 47

Representation trick

In the previous slides, we always had to deal with the w_0 weight specially because it has no corresponding feature.

We can define an artificial feature x_0 that always has the value 1. And reformulate h_m :

$$h_w(x) = \sum_{i \in [0,m]} w_i \times x_i$$

$$h_w(x) = w \cdot x \quad \text{(dot product)}$$

and the update rule (for L_2 loss):

$$w_i \leftarrow w_i + \alpha \times \sum_{(x,y) \in E} (y - h_w(x)) \times x_i$$

CM5: Perceptron 31 / 47

Section 3

A perceptron for classification

CM5 : Perceptron 32 / 47

A classification problem

I now want to buy a new apartment to replace the one I just sold. To be reactive I built an automated system that sends me any new announce of an apartment for sale.

- Problem: there are dozens of announces every day and I don't have time to look at them all.
- Solution: build an AI system that will predict whether I will be interested in a particular apartment based on a few of its features. If it predicts that I am not interested, it will discard the announce.

CM5 : Perceptron 33 / 47

A classification problem: dataset

So far, I collect the following information stating whether an announce that I previously saw was interesting.

	Y			
m^2	Num Rooms	Floor	Price (€)	Interesting
24	1	4	102 000	true
46	3	2	140 000	false
50	3	6	353 600	false
211	5	3	892 000	true
74	3	1	198 000	true

CM5 : Perceptron 34 / 47

A classification problem: dataset visualization

CM5 : Perceptron 35 / 47

Our previous perceptron

$$h_w(x) = w_0 + w_1 \times x_1 + w_2 \times x_2 + \dots + w_n \times x_n$$

$$h_w(x) = w \cdot x$$

CM5 : Perceptron 36 / 47

Perceptron for classification

$$h_w(x) = Step(w \cdot x)$$
 where $Step(z) = 1$ if $z \geq 0$ and 0 otherwise

CM5 : Perceptron 37 / 47

The perceptron as a linear classifier

The perceptron defines a **decision boundary** that separates two classes.

Linearly separable Perfectly classifiable by a perceptron

Not linearly separable **Not** perfectly classifiable by a perceptron

CM5 : Perceptron 38 / 47

The step function

$$h_w(x) = Step(w \cdot x)$$
 where $Step(z) = 1$ if $z \ge 0$ and 0 otherwise

We now have a function that we could train in order to output:

- 1 if the example is in the class (interesting)
- 0 otherwise (not interesting)

Problem: the function is:

- non-differentiable in 0
- the gradient is 0 everywhere else

Step(z)

CM5 : Perceptron 39 / 47

The perceptron learning rule

Nevertheless, an rule was proposed the **perceptron update rule** (here for a single example (x, y)):

$$w_i \leftarrow w_i + \alpha \times (y - h_w(x)) \times x_i$$

which is identical to the update rule for linear regression (for L_2).

The rule is show to converge to a solution when the data is linearly separable.

CM5 : Perceptron 40 / 47

The perceptron learning rule (under non separable data)

However the perceptron learning rule is unstable when the data is not linearly separable:

CM5 : Perceptron 41 / 47

Replacing the step function

Turns out we can replace the step function with one with nicer properties.

$$Logistic(z) = \frac{1}{1 + e^{-z}}$$

and redefine our hypothesis function:

$$h_w(x) = Logistic(w \cdot x) = \frac{1}{1 + e^{-w \cdot x}}$$

Often called the logistic regression.

CM5 : Perceptron 42 / 47

Back on track

This allows us to reuse gradient descent for training:

$$w \leftarrow w - \alpha \times \vec{\nabla} Loss(w)$$

For an L_2 loss we obtain the update rule:

$$w_i \leftarrow w_i + \alpha(y - h_w(x)) \times h_w(x) \times (1 - h_w(x)) \times x_i$$

CM5 : Perceptron 43 / 47

Training the logistic regression (under non separable data)

The logistic regression tends to converge more quickly an reliable in the presence of noisy and non-separable data.

CM5 : Perceptron 44 / 47

Section 4

Synthesis

CM5 : Perceptron 45 / 47

Synthesis

We saw to classes of perceptrons:

- linear regressor
- linear classifier

Both can be trained with gradient descent in attempt to minimize the loss.

In the next course, the perceptron will be a neural unit in a neural network.

CM5: Perceptron 46 / 47

- I am selling my apartment and I really want it to be sold quickly even if its means loosing some money in the process. Propose a loss function that would help a learning system come up with a reasonable price for selling.
- 2 What's the update formula of a regression perceptron using the L_1 loss?
- 3 You have N examples in your dataset, each with M features. Give an estimate of the computational cost of a single update step. Does it scale to large-scale datasets (e.g. $N=10^5, M=10^4$)
- 4 For the linear regression (regression perceptron), are we guaranteed to find the optimal weights with gradient descent?

CM5 : Perceptron 47 / 47