RL-TR-96-265 Final Technical Report April 1997

DIGITAL OPTICAL COMPUTING

Alabama A and M University

Anthony Ololo and H. John Caulfield

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19970605 089

DITIC QUALITY INSPECTED 4

Rome Laboratory
Air Force Materiel Command
Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RL-TR-96-265 has been reviewed and is approved for publication.

APPROVED:

RICHARD J. MICHALAK

Whirdeald_

Project Engineer

FOR THE COMMANDER:

DONALD W. HANSON, Director Surveillance & Photonics Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list, or if the addressee is no longer employed by your organization, please notify RL/OCP, 25 Electronics Pky, Rome, NY 13441-4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 2	2202-4302, and to the Offi	ice of Management	and Budget, Paperwork Reduction I	Project (070	4-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave bla			3. REPORT TYPE AND		
	April	1997	FINAL, Sep 94 - 8	Sep 95	
4. TITLE AND SUBTITLE	1				DING NUMBERS
DIGITAL OPTICAL COMPU	TING			C - PE - PR -	F30602-94-C-0251 62702F 4600
6. AUTHOR(S)				TA -	P3
	016:-14			WU -	
Anthony Ololo, Dr. H. John	Caulfield			WU -	PX
7. PERFORMING ORGANIZATION	NAME(S) AND ADD	RESS(ES)		i	ORMING ORGANIZATION
Alabama A&M University				REPO	ORT NUMBER
University Eminent Scholar					
P.O. Box 1268					
Normal AL 35762					
9. SPONSORING / MONITORING /	GENCY NAME(S) A	ND ADDRESS	(ES)	10. SP0	DNSORING / MONITORING
Rome Laboratory/OCP				AG	ENCY REPORT NUMBER
25 Electronic Pky					
Rome NY 13441-4515			I	RL-TR	-96-265
Notife N 1 13441-4515			į		
44 OUDDI ENTENTA DV NOTEC			·		
11. SUPPLEMENTARY NOTES					
Rome Laboratory Project En	ngineer: Richard	J. Michala	k, OCP, (315) 330-31	50	
12a. DISTRIBUTION AVAILABILITY STATEMENT 12b.			12b. Dl	STRIBUTION CODE	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED					
13. ABSTRACT (Maximum 200 w	ords)				
This effort examined the us or all-optical computers. In	se of Dammann the effort Gene	tic algorithi	n codes were develop	ed in C	+ + . Extensive
optimization runs were per	ormed to explor	e the Genet	iic algorithm paramete	er space	in the design of
efficient Dammann grating	devices. Severa	al grating m	asks were then fabrica	ated us	ing image setting
technology.			•		
•					
14. SUBJECT TERMS					15. NUMBER OF PAGES
optical interconnects, Dammann gratings, optical computing,					262
-	-		···································	h	16. PRICE CODE
genetic algorithms, diffract	ive optics				
			40. GEOUBLEY OF 100 TO 1	<u> </u>	OO LIMITATION OF A DOTTO
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASS OF THIS PAGE	SIFICATION	19. SECURITY CLASSIFICATI OF ABSTRACT	IUN	20. LIMITATION OF ABSTRACT
	UNCLASS	IEIED	UNCLASSIFIED	l	UNLIMITED
UNCLASSIFIED	UNCLASS	ILIED	ONCLASSIFIED	1	CHEIMITED

ABSTRACT

THE EVOLUTION OF GENERALISED OPTIMAL OPTICAL INTERCONNECTIONS USING GENETIC ALGORITHMS

This work is aimed at the possibility of using an optimization algorithm to an optical element that is necessary for the design and then fabricate implementation of a digital optical computer and determine analytically for optical interconnection applications, the proper location of a Spatial Light Modulator on an optical processor. For the generation of the optical element, several techniques binary optical element such as have been employed in devising this type of simulated annealing, but in this work, a novel technique and objective function was proposed by us. Here, we proposed to use Genetic Algorithms to design an optical element generally called Dammann Gratings. Dammann Gratings are optical devices that are capable of producing an array of equal intensity light spots from a single incident light wave. For this research effort, I generated 9x9, 17x17, 33x33 and 65x65 array sized Dammann Gratings using various Genetic Algorithm (GA) parameters such as population size, crossover rate, and mutation rate. Also an adaptive mutation mechanism was employed to the various Dammann Grating sizes using a commercial GA package Genesis 5.0 and GenesYs 1.0. The Dammann Grating structures generated in this way were then fabricated as amplitude modulated masks. These masks differ from phase masks only in the "D.C." term (i.e. the signal which occurs in the absence of a mask). The fabrication of the modulated masks was achieved by employing the services of a Graphic Arts Imagesetters. The resulting masks can be optically evaluated using a conventional

"4f" Fourier Transform (FT) lens systems. The results from the optical evaluation are expected to yield 50% of the original incident beam when diffracted through any of the fabricated binary element into the Fraunhofer or the far field region.

KEY WORDS: optical interconnections, genetic algorithms, dammann gratings. spatial light modulators

TABLE OF CONTENTS

	Page
Abstract	i
List of Tables	v
List of Figures	vi
List of Symbols	xv
Chapter 1 - INTRODUCTION	1
Optical Interconnections	1
Dammann Gratings	5
Spatial Light Modulators	11
Optical Clock Signal Distribution	18
Genetic Algorithms (Optimization Technique)	20
Fast Fourier Transform	28
LiteratureReview	29
Chapter 2 - THEORETICAL ANALYSIS	34
Spatial Light Modulator Fourier Analysis	34
Handling Multiple Objective Functions	35
Chapter 3 - DESIGN AND EXPERIMENTAL OVERVIEW	43
Computer Simulation	43
Fabrication of Amplitude Dammann Grating	45
Optical Evaluation of Amplitude Grating	46
Chapter 4 - RESULTS AND DISCUSSION	48
9 x 9 Amplitude Dammann Gratings	48
17 x 17 Amplitude Dammann Gratings	107

33 x 33 AmplitudeDammannGratings	146
65 x 65 Amplitude DammannGratings	193
Chapter 5 - CONCLUSIONS AND SUGGESTION FOR FURTHER	
WORK	200
List of References	236

LIST OF TABLES

Table		Page
2.1	Matrix Presentation of SLM Fourier Analysis	40
4.1	9x9 Dammann Grating Arrays with different settings	
	(Genesis 5.0, standard mutation, 1-point crossover)	73
4.2	9x9 Dammann Grating Arrays with different Genetic Algorithms	
	settings (GenesYs 1.0, standard mutation, 2-point crossover)	76
4.3	9x9 Dammann Grating Arrays with different settings (GenesYs 1.0,	
	adaptive mutation, 2-point crossover)	87
4.4	9x9 Dammann Grating Arrays with different settings (GenesYs 1.0,	
	standard mutation, 1-point crossover)	92
4.5	9x9 Dammann Grating Arrays with different settings (GenesYs 1.0,	
	adaptive mutation, 1-point crossover)	101
4.6	17x17 Dammann Grating Arrays with different settings (GenesYs 1.0	ı
	standard mutation, 2-point crossover)	106
4.7	17x17 Dammann Grating Arrays with different settings (GenesYs 1.0),
	adaptive mutation, 2-point crossover)	117
4.8	17x17 Dammann Grating Arrays with different settings (GenesYs 1.	Ο,
	standard mutation, 1-point crossover)	122

4.9	17x17 Dammann Grating Arrays with different settings (GenesYs 1.0,
	adaptive mutation, 1-point crossover)
4.10	33x33 Dammann Grating Arrays with different settings (GenesYs 1.0,
	standard mutation, 2-point crossover)
4.11	33x33 Dammann Grating Arrays with different settings (GenesYs 1.0,
	adaptive mutation, 2-point crossover)
4.12	33x33 Dammann Grating Arrays with different settings (GenesYs 1.0,
	standard mutation, 1-point crossover)
4.13	33x33 Dammann Grating Arrays with different settings (GenesYs 1.0,
	adaptive mutation, 1-point crossover)
4.14	65x65 Dammann Grating Arrays with different settings (GenesYs 1.0,
	standard mutation, 2-point crossover)
4.15	65x65 Dammann Grating Arrays with different settings (GenesYs 1.0,
	adaptive mutation, 2-point crossover)177
4.16	65x65 Dammann Grating Arrays with different settings (GenesYs 1.0,
	standard mutation, 1-point crossover)182
4.17	65x65 Dammann Grating Arrays with different settings (GenesYs 1.0,
	adaptive mutation, 1-point crossover) 191

LIST OF FIGURES

		Page
1.1	Break-even line length versus rise time	3
1.2	Limits of Electrical and Optical Interconnects	4
1.3	Dammann Grating as an array illuminator	. 6
1.4	Array generator used as space-invariant interconnect	7
1.5	Schematic representation of one dimensional even-ordered	
	Dammann Grating single period	. 12
1.6	Representation of one dimensional odd Dammann Grating	
	Structure	13
1.7	Representation of two dimensional Grating structure	. 14
1.8	Kinoform structure Dammann Grating single period	. 15
1.9	9x9 equal intensity light spot array representation	. 16
1.10	Electrically addressed Spatial Light Modulator	. 19
1.11	Optical clock distribution technique using free space	. 21
1.12	Fiber optics technique for optical clock distribution	22
1.13	Integrated waveguide optical clock distribution technique	23
2.1	Space invariant interconnection based on two successive optical	
	fourier transform lenses with SLM in the transform plane	36

2.1A	Butterfly space-invariant optical interconnection	37
2.2	Coherent global transform architecture with two SLMs in	
	the image and transform planes	38
2.3	Coherent global transform architecture with SLMs in the image and	
	fourier transform planes	39
3.1	DOE optical evaluation processor	47
4.1	9x9 one dimensional Diffraction Pattern	49
4.2	9x9 one dimensional Dammann Grating	50
4.3	9x9 Dammann Grating Cell	51
4.4	9x9 array objective function value	52
4.5	9x9 one dimensional Diffraction Pattern	53
4.6	9x9 one dimensional Dammann Grating	54
4.7	9x9 Dammann Grating Cell	55
4.8	9x9 one dimensional Diffraction Pattern	56
4.9	9x9 one dimensional Diffraction Pattern	57
4.10	9x9 one dimensional Dammann Grating	58
4.11	9x9 Dammann Grating Cell	59
4.12	9x9 array objective function value	61
4.13	9x9 one dimensional Diffraction Pattern	62
1.14	9x9 one dimensional Dammann Grating	63
1 15	9v9 Dammann Grating Cell	64

4.16	9x9 array objective function value	65
4.17	9x9 one dimensional Diffraction Pattern	66
4.18	9x9 one dimensional Dammann Grating	67
4.19	9x9 Dammann Grating Cell	68
4.20	9x9 array objective function value	69
4.21	Population size and objective function	70
4.22	Crossover Rate and Objective function	71
4.23	Mutation Rate and Objective function	72
4.24	9x9 Fabricated Amplitude Dammann Grating	75
4.25	9x9 one Dimensional Diffraction Pattern	77
4.26	9x9 one dimensional dammann grating	78
4.27	9x9 Dammann Grating Cell	79
4.28	9x9 Fabricated Amplitude Dammann Grating	80
4.29	9x9 array objective function value	81
4.30	9x9 one dimensional diffraction pattern (high mutation rate)	82
4.31	9x9 one dimensional dammann grating (high mutation rate)	83
4.32	9x9 Dammann Grating Cell (high mutation rate)	84
4.33	9x9 array objective function value (high mutation rate)	85
4.34	9x9 one dimensional diffraction pattern (adaptive mutation)	88
4.35	9x9 one dimensional dammann grating (adaptive mutation)	89
4.36	9x9 Dammann Grating Cell (adaptive mutation)	90

4.37	9x9 array objective function value (adaptive mutation)	91
4.38	9x9 one dimensional diffraction pattern	93
4.39	9x9 one dimensional dammann grating	94
4.40	9x9 Dammann Grating Cell	95
4.41	9x9 array objective function value	96
4.42	9x9 one dimensional diffraction pattern (high mutation rate)	97.
4.43	9x9 one dimensional dammann grating (high mutation rate)	98
4.44	9x9 Dammann Grating Cell (high mutation rate)	99
4.45	9x9 array objective function value (high mutation rate)	100
4.46	9x9 one dimensional diffraction pattern(adaptive mutation)	102
4.47	9x9 one dimensional dammann grating (adaptive mutation)	103
4.48	9x9 Dammann Grating Cell (adaptive mutation)	104
4.49	9x9 array objective function value (adaptive mutation)	105
4.50	17x17 one dimensional diffraction pattern	108
4.51	17x17 one dimensional dammann grating	109
4.52	17x17 Dammann Grating Cell	110
4.53	17x17 fabricated amplitude Dammann Grating	111
4.54	17x17 array objective function value	112
4.55	17x17 one dimensional Diffraction pattern (high mutation rate)	113
4.56	17x17 one dimensional Dammann Grating (high mutation rate)	114
4 57	17x17 Dammann Grating Cell (high mutation rate)	115

4.58	17x17 array objective function value (high mutation rate)	116
4.59	17x17 one dimensional diffraction pattern (adaptive mutation)	118
4.60	17x17 one dimensional Dammann Grating (adaptive mutation)	119
4.61	17x17 Dammann Grating Cell (adaptive mutation)	120
4.62	17x17 array objective function value (adaptive mutation)	121
4.63	17x17 one dimensional diffraction pattern	123
4.64	17x17 one dimensional Dammann Grating	124
4.65	17x17 Dammann Grating Cell	125
4.66	17x17 array objective function value	126
4.67	17x17 one dimensional diffraction pattern (high mutation rate)	127
4.68	17x17 one dimensional Dammann Grating (high mutation rate)	128
4.69	17x17 Dammann Grating Cell (high mutation rate)	129
4.70	17x17 array objective function value (high mutation rate)	130
4.71	17x17 one dimensional diffraction pattern (adaptive rate)	132
4.72	17x17 one dimensional Dammann Grating (adaptive rate)	133
4.73	17x17 Dammann Grating Cell (adaptive rate)	134
4.74	17x17 array objective function value (adaptive rate)	135
4.75	33x33 one dimensional diffraction pattern	138
4.76	33x33 one dimensional Dammann Grating	139
4.77	33x33 Dammann Grating Cell	140
4.78	33x33 array objective function value	141

4.79	33x33 one dimensional diffraction pattern (high mutation rate)	142
4.80	33x33 one dimensional Dammann Grating (high mutation rate)	143
4.81	33x33 Dammann Grating Cell (high mutation rate)	144
4.82	33x33 array objective function value (high mutation rate)	145
4.83	33x33 one dimensional diffraction pattern (adaptive rate)	148
4.84	33x33 one dimensional Dammann Grating (adaptive rate)	149
4.85	33x33 Dammann Grating Cell (adaptive rate)	150
4.86	33x33 array objective function value (adaptive rate)	151
4.87	33x33 one dimensional diffraction pattern	153
4.88	33x33 one dimensional Dammann Grating	154
4.89	33x33 Dammann Grating Cell	155
4.90	33x33 fabricated amplitude Dammann Grating	156
4.91	33x33 array objective function value	157
4.92	33x33 one dimensional diffraction pattern (high mutation rate)	158
4.93	33x33 one dimensional Dammann Grating (high mutation rate).	159
4.94	33x33 Dammann Grating Cell (high mutation rate)	160
4.95	33x33 array objective function value (high mutation rate)	161
4.96	33x33 one dimensional diffraction pattern (adaptive rate)	163
4.97	33x33 one dimensional Dammann Grating (adaptive rate)	164
4.98	33x33 Dammann Grating Cell (adaptive rate)	165
4 99	33x33 array objective function value (adaptive Mutation)	166

4.100	65x65 one dimensional diffraction pattern	169
4.101	65x65 one dimensional Dammann Grating	170
4.102	65x65 Dammann Grating Cell	171
4.103	65x65 array objective function value	172
4.104	65x65 one dimensional diffraction pattern (high mutation rate)	173
4.105	65x65 one dimensional Dammann Grating (high mutation rate)	174
4.106	65x65 Dammann Grating Cell (high mutation rate)	175
4.107	65x65 array objective function value (high mutation rate)	176
4.108	65x65 one dimensional diffraction pattern (adaptive mutation)	178
4.109	65x65 one dimensional Dammann Grating (adaptive mutation)	179
4.110	65x65 Dammann Grating Cell (adaptive mutation)	180
4.111	65x65 array objective function value (adaptive mutation)	181
4.112	65x65 one dimensional diffraction pattern	183
4.113	65x65 one dimensional Dammann Grating	184
4.114	65x65 Dammann Grating Cell	185
4.115	65x65 array objective function value	186
4.116	65x65 one dimensional diffraction pattern (high mutation rate)	187
4.117	65x65 one dimensional Dammann Grating (high mutation rate)	188
4.118	65x65 Dammann Grating Cell (high mutation rate)	189
4.119	65x65 array objective function value (high mutation rate)	190
4.120	65x65 one dimensional diffraction pattern (adaptive mutation)	192

4.121	65x65 one dimensional Dammann Grating (adaptive mutation)	196
4.122	65x65 Dammann Grating Cell (adaptive mutation)	197
4.123	65x65 fabricated amplitude Dammann Grating (adaptive mutation)	198
4 124	65x65 array objective function value (adaptive mutation)	199

LIST OF SYMBOLS

$\frac{\text{Symbol}}{\sum}$	<u>Name</u> Sigma	Meaning Sum
η	Eta	
δ	Delta	Rate of change
Δ	Delta	Difference
${\cal E}$	Epsilon	
ſ	Integral	Summation
П	Pi	
ρ	Rho	
Ω	Omega	
**		Convolution
∞		Infinity

CHAPTER ONE

INTRODUCTION

1.1 Optical Interconnections

The study and subject of optical interconnections are generating unprecedented interest in the optics community [1]. The interest is a result of the potential advantages to be gained from optics which are absolutely absent from other known methods of information transfer such as electronics. In the area of optical information processing, optics is known to be faster in many cases, to use less power in most, to have a larger space bandwidth product, and to exhibit no electric field interference. With these interesting advantages, come various areas of applications: areas such as digital optical computing, electronic multiprocessors. and communications [2]. In the long run, optical interconnection may be expected to replace electronic interconnections in some domains due to speed and the inherent overlapping of beams without interference. This advantage allows for a greater density of interference-free interconnections in free space. One disadvantage of free space interconnection, is the loss of energy which is attributed to diffraction and light scattering. This problem is known to lead to unavoidable cross-talk [3].

Optical interconnections can be divided into four main groups.

These are (1) Guided optical interconnections, (2) Free space interconnects,

(3) Dynamic interconnects, and (4) Massively parallel dynamic holographic

interconnects. In guided optical interconnections, we have applications such as optical fiber bus routing, optical waveguide interconnects, and monolithic GaAs circuits. In free space interconnects, we have applications such as clock distribution to VLSI chips, space-invariant multiple imaging, SLM based interconnection, and Dammann grating illuminators. In dynamic interconnect, we have optical crossbars, optical multistage interconnection, optical clos networks, and optical crossover network. And in massively parallel dynamic holographic interconnects, we have N⁴ weighted interconnections and dynamic volume holographic interconnections.

From the various studies already done in this field, clear comparisons of optical and electronic interconnections have been documented [4]. The study [4] established, as shown in figure 1.1, that as densities of interconnections and data rates increase, electronic interconnects approach a limit as set by interline crosstalk and transmission line attenuation. A higher density is achieved with optical interconnect which is limited only by diffraction. In figure 1.2, the study shows the regions of superiority for optical and electronic interconnections. The figure also indicates that optical interconnects have a smaller ratio of power dissipation to data rate than electrical interconnects.

As a contribution to this fascinating and growing topic, I propose to investigate the feasibility of evolving a diffractive optical element (DOE) for optical interconnection purposes by using a nonlinear optimization technique such as Genetic Algorithms as the design tool. My goal in this research effort therefore was: (i) to explore the possibility of using Genetic Algorithms to

Fig. 1.1 Break-even line length versus Rise time

Fig. 1.2 Shows the limits of Electrical and Optical Interconnects.

handle various multiple objective functions, (ii) to evolve various optical architectures using Spatial Light Modulators (SLMs) and analytically determine locations on the optical system the SLM can be placed to yield the desired result. and (iii) to present a computer generated result of the use of Genetic Algorithms as a design tool to make an off-line diffractive optical element such as binary phase Dammann Gratings and any diffractive optical element that is capable of generating an array of equal intensity light spots projected on the far field or the Fraunhofer diffraction region and the fabricated optical element.

1.2 Dammann Gratings

Dammann gratings are primarily binary or multilevel phase gratings used to produce a one or two dimensional array of equal intensity light spots from a single incident laser beam [5]. As binary phase gratings, Dammann gratings allow transmitted light through it to be phase shifted by 0 and π . For a phase shift smaller or larger than π , the zeroth diffraction order or dc term may be much brighter than the other elements, a result which is not generally desirable. The array of equal intensity light spots generated from Dammann gratings can then be used, for example, as the optical power supply to bias an array of optical logic devices as illustrated in figure 1.3. Other uses include the making of star couplers, digital optical computing, coherent summation of beams from different laser sources, and space-invariant interconnect. The space-invariant interconnection application is shown in figure 1.4.

Fig. 1.3 *Dammann Grating as an array illuminator

Fig. 1.4 Array generator used as space-invariant interconnect.

The idea of using a special type of diffraction grating to generate an array of equal intensity light spots, came from Hans Dammann, a German holographer, in the early 1970s [6]. His idea later became the first important DOE and any DOEs that could generate uniform array of points of light, and hence came to be known as Dammann Gratings whether or not it applies the formula of Hans Dammann.

For a given single period of a one dimensional Dammann grating which is symmetric and given also that the period p is set to unity p = 1, the transmission function will have values 1 and -1 which corresponds to phase values of 0 and π . The consequence of this, is that the grating is completely characterized by its N transition points given as x_1, \ldots, x_n where the phase changes occur. The transition points or coordinates can be determined by the design algorithm of such design tools as Genetic Algorithms, stimulated annealing, and other known optimization algorithms to yield an array of diffraction orders that are equal in intensity rather than by Dammann's formula. Due also to the symmetry requirements of this type of gratings, the positive and the negative diffraction orders has the same values. Hence, for the first N orders to be equal in intensity to the zeroth order, there will be N equations for the N transition points. For a one dimensional Dammann Grating with N transition points, there are 2N + 1 diffraction orders, and for a two dimensional grating there are $(2N + 1)^2$ diffraction orders [5]. These may not be the only diffraction orders present. There are also higher diffraction orders occurring in the vicinity due to scattered light. These higher orders compromise the efficiency of the diffracted beams.

A Dammann grating, as a periodic binary-phase function, can be mathematically expressed as [7]

$$F(u) = f(u) *comb(u), \tag{1.1}$$

for a one dimensional grating. Here f(u) is the single period grating function and comb(u) is the sharp peak diffraction pattern. The inverse Fourier transform of the function, which is the response of the grating is given by

$$f(\chi) = \sum_{n=-\infty}^{\infty} f(n)\delta(\chi - n)$$

$$(1.2)$$

with

$$f(n) = \int F(u) \exp(j2\pi nu) du .$$

$$-1/2$$
(1.3)

For a two dimensional Dammann grating which can be obtained by crossing two one dimensional Dammann grating patterns, the expression is

$$F(u,v) = f(u,v)^{**}comb(u,v).$$
 (1.4)

The response of the grating is then calculated by

$$f(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f(n,m) \, \delta(x-n, y-m) , \qquad (1.5)$$

with

$$f(n,m) = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} F(u,v) \exp[j2\pi(nu+mv)] du dv$$
(1.6)

For a single period Dammann grating whose positive side is O< x<1/2, the amplitude transmission function H(x) is expressed as

N

$$H(x) = \sum (-1)^{n} rect(x - (x_{n+1} + x_n)/2/(x_{n+1} - x_n))$$

$$n=0$$
(1.7)

where rect(x) 1 for IxI 1/2, rect(x) 0, for IxI 1/2 and $x_0 = 0$ as defined [8]. By using Fourier transformation, the amplitudes of the diffraction orders can be calculated to be

$$N h_{o} = 2 \sum (-I)^{n} (x_{n+I} - x_{n}),$$

$$n = 0$$
(1.8)

Due to the symmetry property of Dammann gratings, the coefficients are symmetric ($h_m = h_m$) and are real valued ($h_m = h^*_m$). And according to Parseval's theorem, the sum of the intensities of light of the diffraction orders is equal to one:

$$\sum_{l} I_{m} = 1 . (1.10)$$

$$m = -\infty$$

The light efficiency can be calculated as

$$\eta = Ih_0I^2 + 2\sum Ih_mI^2 .$$
(1.11)
$$m=1$$

The minimum feature size, that is, the minimal distance between adjacent transition points is calculated as

$$\delta = \min |x_{n+1} - X_n| . \qquad (1.12)$$

$$O \le n \le N$$

As a measure of the quality of Dammann gratings, it is imperative to calculate a reconstruction error R expressed as

$$\Delta R = \max\{1 - (2N+1)h_{\text{m}}/\eta, \qquad (1.13)$$

$$m \in [-N, N]$$

where N is the transition points, and h_m the amplitude of the diffracted order m in the array of equal intensity light spots. Reconstruction error is the maximum intensity of light deviation from the ideal intensity.

Other kinds of Dammann gratings are the kinoform structures, quarternary binary phase grating, and the generalized binary phase gratings. Figures 1.5 and 1.6 show the schematic diagram of one dimensional single period even and odd Dammann grating. The two dimensional and kinoform structure Dammann gratings are shown in figures 1.7 and 1.8. Figure 1.9 shows a 9x9 diffraction pattern of equal intensity light spots array.

1.3 Spatial Light Modulators

Spatial light modulators (SLMs) are the key elements in the implementation and construction in many optical interconnection systems. SLMs, square or rectangularly shaped, can be electronically or optically addressed. In an optical processing unit, SLMs allow laser beams incident on them to be transformed by a lens to a Fourier plane which may contain a

Fig. 1.5 Schematic representation of one dimensional even-ordered Dammann Grating single period.

Fig. 1.6 Representation of one dimensional odd Dammann Grating Structure

Fig. 1.7 Representation of two dimensional Dammann Grating structure.

Fig 1.8 Kinoform structure Dammann Grating single period.

Fig. 1.9 9x9 equal intensity light spot array representation.

myriad of patterns. These patterns are then used as the information to complete an intended optical computation. Typically, SLMs can hold considerable amount of information, up to the order of 106 picture elements or pixels. According to Nyquist et al, one can anticipate to control up to N/2 x N/2 array of optical beams with an N x N non-negative valued SLM. The uses of SLMs include optical information processing, communications, display systems, miniature liquid crystal TV monitors, large screen projectors for theaters, and flight simulation application [16]. They are also used to parallel information fundamental operations on amplification and signal regeneration, parallel analog arithmetic, and binary logic functions. In artificial neural networks, which are anticipated to revolutionize the computation of complex problems in multiple constraint optimization, pattern recognition, associative memory, adaptive and learning systems, and a host of other challenging artificial intelligence domains such as symbolic processing, vision, speech, and robotics, SLMs are needed to present the optical data that are to be processed, and also to encode stored information. The use of novel optical materials such as quantum wells and ferroelectric liquid crystals allows the construction of very powerful SLMs. SLM technologies today is penetrating into new fields such as phase conjugation, adaptive optics, and neural net systems.

Electronically addressed SLMs essentially can be achieved in at least three ways: (1) electron beams, (2) electrode matrix, and (3) photoconductor. In the electron-beam devices, the modulating material is placed in a vacuum envelope and written on by a scanned electron beam, much like the phosphor screen in a cathode ray tube. Using the electrode

matrix scheme, individual pixels are addressed at the intersections of two perpendicularly- crossing linear arrays of electrodes. The crossed electrodes can either be on opposite faces of the modulating material, or in a single plane. Matrix addressing offers the choice of loading an entire row of information simultaneously to obtain a frame update time equal to the material response time multiplied by the number of rows. In the photoconductor addressing method, photoconductor devices are employed at the junctions of a crossed matrix to provide nonlinearity [17].

Optically addressed spatial light modulators adopt the basic sandwich structure as shown in figure 1.10. In operation, a bias voltage applied to the sandwich is shunted within the illuminated regions of the photoconductor to a voltage-controlled phase, amplitude, and/or polarization modulating material such as electrooptic materials. The essential elements of the optically addressed SLM are the photoconductor or photoreceptor and the modulating material which are separated by a dielectric mirror. The input image activates the photoconductor, which produces a corresponding charge image across the modulator that provides the electric field for the readout material [18].

1.4 Optical Clock Signal Distribution

Clock signal distribution is another significant and practical application of free space optical interconnections [8]. Optical clock signal distribution and wafer scale broadcast are quite useful in sending information to various parts of a multiprocessor system all at the same time, thereby ensuring synchronization and fast operation of the system [9]. Variations in the arrival

Fig. 10 Electrically Addressed Spatial Light Modulator

times of clock signal can cause problems known as "clock skew". Clock skew is capable of slowing down and causing serious errors in the entire system. This problem can arise due to variations in the run lengths of the clock distribution system, nonuniformity of the signal distribution, and nonuniformity of the detectors [10].

Several methods of using optics to implement clock signal distribution and wafer scale broadcast system are available. Methods such as the use of fiber optics, integrated waveguide optics and free space optics. In this study, we will employ the use of free space solution which may also be extendible to the implementation of parallel high-density data links between various chips and the clocking links.

An optical clock distribution system generally will comprise of an input signal source such as a laser which generates and broadcasts periodic signals of light pulses to various detectors and a diffractive optical element designed to implement the clock distribution network. Figure 1.11 shows a schematic diagram of clock distribution network employing the free space method. Other methods of implementing clock signal distribution are shown in figures 1.12 and 1.13 respectively.

1.5 Genetic Algorithms (Optimization Technique)

The design tool or optimization method we will employ in this study to evolve an accurate diffractive optical element such as Dammann Grating and Optical Clock Signal Distribution, is Genetic Algorithms. Genetic Algorithms is a stochastic search algorithm based on the mechanics of natural selection

Fig. 1.11 Optical clock distribution technique using free space.

Fig. 1.12 Fiber optics technique for optical clock distribution

Fig. 1.13 Integrated waveguide optical clock distribution technique.

and evolution. Genetic Algorithms was developed by John Holland and his colleagues in 1975 working at the University of Michigan. In developing this algorithm, Holland and his colleagues had two goals in mind: (1) to explain the adaptive processes of natural systems, and (2) to design artificial systems software that retains the important mechanics of natural systems [11]. The beauty of Genetic Algorithms is the fact that it is robust. That is it strikes a balance between efficiency and efficacy, two necessary factors required for survival in many different environments.

According to John Holland, a Genetic Algorithm can be expressed with the following 8-tuple:

$$GA(P^{\circ},S,I,s,\rho,\Omega,f,t)$$
 (1.14)

where

$P^{\circ} = (X_1,X_S)$	initial population		
S	population size		
1	length of individual's representation		
s	selection operator		
ρ	operator determination function		
Ω	genetic operator set		
f	fitness function		
t	termination criterion		

P°, generally, is the randomly or heuristically generated initial population. The S and I parameters describe the number of individuals representing one generation and the length of the genetic representation of each individual, respectively. s the selection operator, produces an intermediate population P't from the population Pt by the generation of copies of elements from Pt: P't = s(Pt). This is accomplished by taking S subsequent samples from Pt = (xt₁.... xt_s) as dictated by the probability distribution p_s. ρ determines an operator wti for each individual x'ti ϵ P't which will be applied to this individual. Ω the genetic operator set includes crossover and mutation. The stochastic elements of these operators (application probabilities, e.g. p_m = 0.001 and p_c = 0.6) [12]. The fitness values are obtained by the fitness function f, and t designates the termination criterion.

As a random search algorithm, Genetic Algorithms can be applied in many facets of our practical day to day activities: in business decisions, science and engineering problems, and in social sciences. Genetic Algorithms solve problems such as finding the best value of x for a function f(x) by first generating an encoded population of candidate solutions. These candidate solutions are described in a form of of structured string of ones and zeros called chromosomes. Several of these strings of ones and zeros make up a population of the candidate solutions. Each 1 or 0 bit is called genome while the whole string is called a phenome.

With the string of population of binary numbers, one proceeds to apply simple genetic algorithm operators. These are:

Reproduction,

Crossover, and

Mutation.

The process of reproduction accounts for individual strings being copied according to a defined objective function. Strings with higher objective function values have higher probability of being copied, hence are eligible to contribute one or more offsprings in the next generation of new population of candidate solutions. These strings therefore would be selected and allowed to mate (in pairs) at a randomly chosen crossover site. Two new strings are formed from this coupling of each pair of the previously selected strings.

For a pair of strings such as

with high fitness values, the crossover site, an integer m is selected at between (I, I - 1). I is the length of the string. For the above strings, the crossover site is chosen as the vertical lines shown above. The two new strings formed are:

BI = 1110100011011001

B2 = 0011101011001111

The crossover type used here is the 'one-point' crossover process. Two-point and uniform crossover points are among the other types.

The strings with lowest fitness values are replaced in the next generation by the offsprings. This process is repeated many times until the best result is obtained.

The mutation operator is the occasional random change of the value of the string position. In other words, an intentional change of a 1 bit to a O bit and vice versa. The rate at which mutation occurs is quite small. This is so in order that the strings remain less diversified and reduce noisy signals.

The fundamental theorem guiding the principle and applications of Genetic Algorithms is the Schema theorem [13]. For fitness proportionate reproduction, simple crossover, and mutation, the expected number of duplicates k of a hyperplane of schema H is given by

$$k(H,t+1) \ge k(H,t)f(H)/f [1-p_c \delta(H)/(I-1) - p_m o(H)].$$
 (1.15)

Here f(H) is the hyperplane or schema average fitness, f is the average fitness of the population, p_C and p_M are crossover and mutation probabilities respectively. $\delta(H)$ and $\delta(H)$ are defining length and order of the schema respectively. f is length of each individual string. In Genetic Algorithms, $\delta(H)$ is the distance between the outermost defining positions of a hyperplane or schema. For example, the defining length of the schema $\delta(H)$ is a value $\delta(H)$, i.e. $\delta(H)$ asterisk or star *, is a don't care or wild card symbol which corresponds to either a 0 or a 1 at a particular position. The order of the schema $\delta(H)$, is its fixed number of positions. The schema

011*01.** has order equals to 5 and 1*1***** has order of 2. The schema average fitness f(H) is calculated as:

$$f(H) = \sum f(si)/k(H,t), \qquad (1.16)$$

$$si \in H$$

k(H,t) is the expected number of representatives of the hyperplane H. A careful examination of the schemata theorem, leads one to conclude that schemata with fitness values above average will gain an increasing number of trials or sample in the successive generations, while schemata with values below average will undoubtedly receive decreasing number of trials.

1.6 Fast Fourier Transform

The importance of this subject in this work can not be over emphasised. A detailed treatment of the subject will not be carried out in this research as this has already been done by experts in the subject. A Fast Fourier Transform (FFT) will be used extensively in this work, especially in the computation of the various elements involved in this research such as the computation of the power spectrum of the diffractive optical element, Dammann Gratings.

Generally speaking, FFTs are computational tools used by researchers to compute very large data. The FFT algorithm came in existence in the mid-1960s as a consequence of the work of J.W. Cooley and J.W. Tukey. The many algorithms developed for the purpose of computation, is available for FFT computation of Real Functions, Sine and

Cosine Transforms, Convolution and Deconvolution, Correlation and Autocorrelation, Optimal (Wiener) Filtering, and Power Spectrum Estimation [19].

1.7 Literature Review

Research to derive accurate and efficient diffractive optical elements for optical interconnection systems for applications in digital optical computing is still going on. The use of devices such as binary and multilevel phase gratings for multiple image generation and as array illuminators is of great interest. The earliest computer designed array illuminator or multiple image generation was first derived by Hans Dammann [6]. Dammann used a multiple phase hologram inserted into a conventional optical imaging system to obtain instead of a normal single image, a central block of equally bright In this research, he found that using commonly recorded images. holograms, multiple images were generated instead of array of point light sources. He also found that the holograms were less efficient due to the low reconstruction efficiency of the recorded thin holograms. The multiple images generated, he found were formed as off-axis images which in practice always leads to aberrations. To overcome this drawback, Dammann et al [6] suggested the use of high efficiency, inline, phase-only holograms. Using the multiple phase-only hologram, they generated a 15x15 multiple images with 41% of the total radiant flux.

.J. Turunen and colleagues researching in this field, and using a nonlinear optimization methods (simulated annealing and damped leastsquares) advanced the technology by calculating array of equal beam size of N=53 with diffraction efficiencies of 80% and 65% for one dimension and two dimension Dammann Grating respectively [14]. The gratings were reported to have low non-uniformity error in the order of few per cent given a grating period of I mm. They also suggested that the Dammann Grating and the focusing lens be combined into a single element. That with, this technology, unwanted high diffraction orders and zero order beam can be filtered off spatially, and hence allow diffraction efficiency of the resulting elements close to 100%. They noted also, that to increase the number of spot arrays beyond 50, it is imperative to multiply the copied holograms resulting from copying the wavefront emerging from the single combination of Dammann Grating and the focusing lens on a thick holographic material such as dichromated gelatin in an array. Their view is that, using this method, there is the possibility of generating N=1000 array of light spots, a size required in parallel optical computers. In another study done by F.B. McCormick of AT&T Bell Laboratories [15] demonstrated a simple technique for generating large (IOOxIOO+) arrays of uniform intensity light spots with good contrast by using Binary Phase Gratings (BPG). The large size array is produced by cascaded BPGs in which the first BPG (or pair of BPGs) forms a small array of spots and the next BPG multiply the images of the small array to form the large array. The reported diffraction efficiency for the combination of four BPGs is of the order of 24.6%. His analysis of the performance of the BPGs, leads to conclusion that inferred that using BPGs with a few transition points,

each contributing relatively large amount of error, seems to offer better performance than BPGs with many transition points, with each contributing a small amount of error. For this reason, he said, the multiple imaging scheme offers better spot array uniformity, especially when producing large light spot arrays.

On the design of one dimensional Dammann gratings with phase shift [20] discussed the problems concerning the of $\theta = \pi$, H. Lupken *et al* control of design algorithms which have deterred the progress of advancing the design of Dammann gratings. In this work, they showed how design theory of diffractive elements can be used to avoid these difficulties and how to formulate a straightforward design method to derive a grating optimized in diffraction efficiency and low reconstruction error or uniformity. And by employing the design theory of diffractive elements $\Delta \eta = \eta_1 - \eta$, Lupken and his colleagues designed various Dammann gratings M=15, 33, 53, 101 all with high diffraction efficiency and low reconstruction low. Kwak and his colleagues [21], designed a 9x9 Dammann Grating somewhat optimized by the Newton-Raphson method. Their primary contribution on this on going research effort, was their use of photoinduced anisotropic materials for fabrication which they concluded was easy compared to fabrication process involving common etching processes.

Work on synthetic diffractive optical elements, traditionally known as computer-generated holograms was done by Mohammad *et al* [22]. They inferred that synthetic DOEs might play important role in most optical

computing and photonic switching demonstration circuits. In this case, they perform functions such as array illumination, fan-in, and optical interconnection between logic element arrays. At their institution, they designed and fabricated a Fourier-type synthetic DOEs separable Dammann gratings with fan-out up to 128 X 128 with efficiency of 65% and uniformity or reconstruction error of 10%. Also, they fabricated a large number of non-separable trapezoidal designs with 32 X 32 spot arrays.

Since my work generally is dependent on the exploration of the use of Genetic Algorithms for the generation of solutions for binary optical element, we present reviews on previous works done by other researchers employing Genetic Algorithms. Uri Mahlab and colleagues, reported in their 1991 publication, the use of GAs for the implementation of Optical Pattern Recognition [23]. The work centered on the discrimination of two sets of patterns by generating a filter that produces a strong and narrow peak for patterns of the first class and a uniform distribution for patterns of the second class. Goldberg reported in his book "Genetic Algorithms in Search, Optimization, and Machine Learning", the optimization of Pipeline systems using Genetic Algorithms[11]. Other works reported by Goldberg in his book stated above, is the optimization of building structures and medical image registration using GAs. From this work and others, it infers that GAs are quite adaptable to various problems.

In carrying out a feasibility study of Dammann gratings, in which several parameters important for the computation and fabrication are

considered, Jahns *et al* computed and fabricated a 40 x 40 array of light spots [24]. From their study, they concluded that array sizes above 40 x 40 present immense problems in computation and resolution. Using simulated annealing and the greedy algorithm techniques, Taghizadeh and colleagues, found a solution to a grating structure with fan-out as large as 201x201 [25]. In the report, they inferred that using the technique large array structures can be calculated, but with increase in computation time using personal computer. In this study also, it was revealed that fabrication materials such as glass and thin films of photoresist, suffer disadvantages such as difficulty in creating accurate structures. The grating generated in the study a 15x15 was fabricated on silicon nitride medium with diffraction efficiency as high as 65%. The calculated diffraction efficiency was as high as 68%.

CHAPTER TWO

THEORETICAL ANALYSIS

This chapter carefully examines and analyses the placement of evolvable on-line elements such as spatial light modulators which contain independent information as well as the methodology for handling multiple objective functions. The analysis carried out on the evoluable on-line elements, was found to exhaust the independent information that is injectable into the system.

2.1 Spatial Light Modulator Fourier Analysis

In this analysis, I consider three different SLM based optical interconnection architectures and where in such architectures evolvable elements should be placed to achieve the desired result. Each architecture uses either space-invariant or a space-variant point spread function. Each architecture, in my view, is potentially valuable. The first architecture employs a single SLM which is inserted in the optical system's Fourier plane as shown in figure 2.1. The output of the written pattern on the SLM is observed on the image plane using space-invariant optical interconnection methods. For example, butterfly interconnections can be viewed as space invariant as shown in figure 2.1A. The observed output pattern is, butterfly shaped and assymetric. For this geometry, coherence requirements are neither necessary nor harmful. If the individual beams on the left are mutually incoherent, it does not matter as no beam interference is required. Should the beams be mutually coherent, the interference will simply re-distribute light within the focussed

point. This approach we must state, allows the loss of one third of light in the system. I show this as a representative space-invariant case.

The second and third architectures as shown in figures 2.2 and 2.3 respectively, employ two spatial light modulators. In the case of figure 2.2, one SLM is placed in the fourier plane while the other is inserted in the image or conjugate plane of the first SLM. The resulting output from this architecture is observed on the fourier plane and is space variant. This geometry provides quite an interesting task which we call Global Mapping. It can convert one arbitrary 2-dimensional pattern into another. The possibility of this happening, squarely depends on the input pattern being coherently illuminated and the insertion of SLMs in two conjugate planes.

The third architecture of figure 2.3, is another case of space variant optical interconnection. Two SLMs are placed in the image and fourier planes. The output is observed on the image plane. Again, this architecture absolutely requires that the illuminating beams be mutually coherent.

From this study, it has been found that the two SLM planes are quite independent if they are in Fourier conjugate. Further SLMs can insert no additional information. Also, the mask written on the SLMs should be a phase-only mask and the output should be observed on the fourier plane of the last mask. In Table 2.1, a matrix summary of the above SLM analysis is presented.

2.2 Handling Multiple Objective Functions

The employment of an optimization technique such as Genetic Algorithms for the solutions of objective functions, has generally been restricted to single cost or objective function [12]. An example of a single objective function is as shown in equation 2.1.

Fig. 2.1 Space invariant interconnection based on two successive optical fourier transform lenses with SLM in the transform plane.

2.1A Butterfly Space-invariant Optical Interconnection.

Fig 2.2 A coherent global transform architecture with two SLMs in the image and transform planes.

2.3 Coherent global transform architecture with SLMs in the image and fourier transform planes.

	LOCATION	IMAGE	FOURIER	3 IMAGE	FOURIER	
SLM LOCATION	2		IMAGE	FOURIER		
	7	FOURIER	FOURIER	IMAGE	IMAGE	
		Space Invariant	Space Variant 1	Space Variant 11	Space Invariant 11	

Table 2.1. Matrix presentation of SLM Fourier Analysis

$$f = \sum_{i=1}^{N} x_i^2 \tag{2.1}$$

where f(x) is the objective function which is to be maximised or minimised in a search space. But in this work, and for the first time, we show how multiple objective functions can be handled using Genetic Algorithms. Two possible approaches are studied, but do not exhaust the possibilities. They are a good place to start. The first of the two possible ways we call the combined figure of merit approach. Both additive and multiplicative versions follow. The additive method uses a linear combination of the figures of merit.

For two figures of merit M1 and M2,

$$S = \alpha M1 + (1 - \alpha)M2 \tag{2.2}$$

for $0 \le \alpha \le 1$.

The multiplicative method is given below as

$$P = M1^{\alpha} M2^{(1-\alpha)} . {(2.3)}$$

Without loss of generality, we have assumed M1 and M2 are to be jointly maximized. Considering equations 2.2 and 2.3 respectively, it is clear that for $\alpha = 1$, $S = P = M_1$, and $\alpha = 0$, $S = P = M_2$. The intermediate cases are especially interesting.

The second approach is to use M1 and M2 independently and sequentially. A stochastic experiment can be set up which chooses to optimize

M2 or (log M2) a fraction of (1- α) of the generations and to maximize M1 or (log M1) a fraction α of the generations.

CHAPTER THREE

DESIGN AND EXPERIMENTAL OVERVIEW

This chapter presents the process involved in the design and fabrication of a binary optical element proposed for this study. First, the process involved the utilisation of an optimization algorithm designed to find the best solution for the optical element. Second, the optimized computer generated gratings are then fabricated on a photolithographic film as an amplitude mask. Third, the fabricated optical element could then be optically evaluated using a conventional "4f" Fourier transform (FT) lens systems shown in figure 3.1

3.1 Computer Simulation

The generation or production of the particular binary optical element proposed for this research was designed and fabricated by us. The generation of the grating structures were accomplished by the use of the evolutionary strategies of Genetic Algorithms: a nonlinear optimization technique such as the well known Simulated Annealing [26].

To employ the use of Genetic Algorithms, we imported into our computer system Genetic Algorithm software packages which are available in public domain. The software packages include the well known Genesis 5.0 version designed by John Grefenstette of the Navy Center for Applied Research in Artificial Intelligence and GenesYs 1.0 package designed by Thomas Back of the University of Dortmund. These packages were designed for general applications of Genetic Algorithms. I used Genesis 5.0 only to generate a 9x9 grating with the application of standard mutation and one point crossover scheme. The computation of this size grating is less tasking on the

Sun workstation at Rome Laboratory. GenesYs 1.0 package was also used to generate a 9x9 grating structure. In addition, the package was used to generate 17x17, 33x33 and 65x65 size Dammann Gratings with one and two point crossover scheme, standard and adaptive mutation mechanisms. GenesYs 1.0 has many advantages over Genesis 5.0, hence, we ported it into our system. These many advantages found in this package enabled me to carry out the difficult task in the computations of the larger size Dammann Gratings. The advantages over Genesis 5.0 or features implemented in GenesYs 1.0 include proportional selection, linear ranking, Whitley's linear ranking, uniform ranking, uniform ranking with copying, inverse linear ranking, and m-point crossover.

Having successfully imported the two packages in our system, a novel objective function defined by us as described in chapter two, as well as an optional population initialization function, was used in the simulation and generation of the binary element. The implemented objective function, is the linear combination of diffraction efficiency and reconstruction error (maximum relative deviation of intensity from the ideal intensity) [20]. With this chosen objective function, we designed a computer program that implements the function and hence ported into the main Genetic Algorithm code. program is listed in Appendix A together with a Fast Fourier Transform code obtained from numerical Recipes in "C" [19]. Then mapping of each gene to a two level binary phase mask i.e. 0 and π was carried out. A one bit corresponds to a pixel of positive amplitude (i.e. +1), and each zero bit corresponds to a negative amplitude (i.e. -1). Each calculated binary string holds a number of bit elements corresponding to the size of the Dammann Grating. For example, a 9x9 grating requires 256 bit elements, 17x17 a 512 bit element, 33x33 a 1024 bit element while a 65x65 grating holds 2048 elements. A Fast Fourier Transform (FFT) of this binary input mask was then calculated. Given that the input pattern is real and symmetric, the output is therefore real and symmetric by the properties of the fourier transform [27]. For this reason, the Discrete Cosine Transform (DCT) was employed which is a special form of the FFT which is four times more efficient since it exploits the two symmetries noted above. The DCT algorithm of the transform of the input mask is also listed in Appendix A.

For Genetic Algorithms to find solutions to a given task, it requires a population of candidate solutions which are made up of ones and zeros. For example:

10001010100011101 00111101110110101 11010101110011010 000101011100111010

To this end, the population of candidate solutions were randomly generated in our system and was used in the simulation process of the binary elements. And by using the Sun workstation, I then proceeded to simulate and optimize the binary optical elements by applying various genetic algorithms parameters such as crossover and mutation.

3.2 Fabrication of Amplitude Dammann Grating

With acceptable convergence result from the simulation of the grating, I proceeded to fabricate an amplitude grating of the various array sizes

generated for this work. The process involved using a hand coded Postscript program we had designed. This program takes the mask pattern with a defined resolution and makes repeated images of the grating cells. After accomplishing this task, we sent the images on a floppy disk to an imagesetting service bureau to transfer onto a lithographic film at a resolution of 2540 dpi (dots per inch).

3.3 Optical Evaluation of Amplitude Grating

Using the optical processor shown in figure 3.1, one can evaluate one or all the manufactured optical elements for this work for comparison with the computer generated results. Here as shown in the figure, a 632 nm He-Ne laser would be incident on the grating. And using a ccd camera, the array of equal light spots diffracted by the grating can be detected and hence displayed on a TV monitor connected to the camera. The signal would then be transmitted to a Spiricon Beam Analyser connected to the TV monitor. The beam analyser is used to evaluate each light spot for intensity variations as compared to the neighboring light spots.

Fig. 3.1 DOE optical evaluation processor

CHAPTER FOUR

RESULTS AND DISCUSSION

The results obtained in this research work for the diffractive optical element I have devised and analysed in our laboratory are presented in this chapter. The presentation includes results from the computer simulation and fabrication of the binary optical element.

4.1 9x9 Amplitude Dammann Gratings

Employing the nonlinear optimization technique of Genetic Algorithms, I generated a 9 x 9 Dammann Gratings using our novel cost The cost function for this particular design, is the linear combination function as given by equation 2.2 on page 41. Genesis 5.0 Genetic Algorithm package with single crossover point Grefenstette was used for the simulation. After various modifications carried out on the package to suit my purpose, an objective function program was written to incorporate our cost function with the Genesis code. Here, I have utilised alpha equals to 0.5. Using different settings such as crossover rate, population size, and mutation rate, I generated various structures of a two dimensional Dammann Gratings. With a population size of 100, 256 binary elements, 0.75 crossover rate, and 0.001 mutation rate, I generated Dammann Gratings with 90% diffraction efficiency and $1.4x10^{-7}$ objective function value. The results from this simulation are shown in figures 4.1, 4.2, 4.3, and 4.4. In a second run with population size of 200, 0.50 crossover rate, and 0.001 mutation

Fig. 4.1 9x9 Standard Mutation One Dimensional Diffraction Pattern

Transmircea Amplicude

Dammann Grating

Fig. 4.3 9x9 Dammann Grating Cell

Fig. 4.4 9x9 Objective Function Value

Fig. 4.5 9x9 One Dimensional Diffraction Pattern

24 Transmitted beatingment

Fig. 4.7 9x9 Dammann Grating Cell

Fig. 4.8 9x9 Objective Function Value

Vaieneanl besitsmioN

Fig. 4.10 9x9 One Dimensional Dammann Grating Structure

Fig. 4.11 9x9 Dammann Grating Cell

 $4.1x10^{-7}$ objective function value. The results are rate. I obtained 4.5, 4.6, 4.7 and 4.8 respectively. I obtained shown in figures $5.7x10^{-7}$ in a third run with crossover rate of 0.25, population size of 50, and 0.001 mutation rate. The results are shown in figures 4.9, 4.10, $9.1x10^{-7}$ objective function value was 4.11, and 4.12 respectively. obtained for a run using population size of 200, 0.50 crossover rate, and 0.001 mutation rate. This run was done with "Rank based selection" option as given by the Genesis 5.0 package. The results are shown in figures 4.13, 4.14, 4.15, and 4.16 respectively. A fifth simulation with population size of 50, 0.10 mutation rate and 0.50 crossover rate with "Rank based selection" option, I obtained a value of $9.4x10^{-7}$. Figures 4.17, 4.18, 4.19, and 4.20 show the results generated from the run. These runs were done with 1500 generations lasting about fifteen to The best result twenty minutes computing time on Sun workstation. obtained from these simulations is that given by using population size of 50, 0.25 crossover rate, and 0.001 mutation rate. The use of high mutation rate and low crossover rate for simulation employing Genetic Algorithms, I found, gave undesirable results as indicated by a run using a population of 100, 0.25 crossover rate and 0.50 mutation rate. The objective function value obtained was too high, a value of 1.1x10-3. A relationship between population size, crossover rate, mutation rate and objective function is shown in figures 4.21, 4.22, and 4.23. It was observed that low objective function value is obtained if population size is within 100. At higher population sizes, the value tends to increase, Table 4.1 shows which indicates the design will be undesirable.

Fig. 4.12 9x9 Objective Function Value

Normalized Intensity

Transmitted Amplitude

Fig. 4.15 9x9 Dammann Grating Cell

Fig. 4.16 9x9 Objective Function Value

Voineant besitsmioN

ebusiiqmA bessimensT

9x9 Dammann Grating

Fig. 4.19 9x9 Dammann Grating Cell

Fig. 4.20 9x9 Objective Function Value

Fig. 4.21 Population Size versus Objective Function Value

Fig. 4.22 Grossover Rate versus Objective Function Value

Fig. 4.23 Mutation Rate versus Objective Function Value

Table 4.1 9x9 Dammann Gratings Array With Different Setting

(Genesis 5.0)

(One Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.75	0.001	7.7 x 10 ⁻⁶
100	0.75	0.001	1.4×10^{-7}
200	0.75	0.001	1.2 x 10 ⁻⁶
50	0.50	0.10	7.0 x 10 ⁻⁶
100	0.50	0.10	7.0 x 10 ⁻⁶
200 -	0.50	0.10	1.6 x 10 ⁻⁶
50	0.25	0.001	5.7 x 10 ⁻⁷
100	0.25	0.001	2.9 x 10 ⁻⁶
200	0.25	0.001	3.3 x 10 ⁻⁶

various runs with different settings and objective function value for the generation of 9 x 9 Dammann Gratings.

Using the best result obtained from the simulations, I (through an imagesetting service bureau), fabricated an amplitude Dammann Gratings with 2540 dpi (dots per inch) resolution. This grating when optically evaluated will generate at Fraunhofer or the far field region, a 9x9 array of equal light spots with high diffraction efficiency. The feature sizes of this grating is about $7\,\mu m$. The fabricated amplitude grating is shown in figure 4.24.

Using the Genetic Algorithm code by Thomas Back (GenesYs 1.0) which was modified by us for our purpose. Employing a two point scheme and standard mutation, I generated a 9x9 crossover Dammann Grating arrays at 3000 number of generations. Also, a generation of the above size gratings was carried out using adaptive mutation and two point crossover mechanism. Simulation of this optical element was also carried out using one point crossover scheme with standard mutation and one point crossover scheme with adaptive Standard mutation scheme allows one the mutation mechanism. freedom to determine what mutation probability to use in a given generation or simulation, while adaptive mutation incorporates the mutation probability into the individual's bit string or genotype. The results obtained from applying low standard mutation rate as was observed from the simulations did not differ significantly from the adaptive mutation scheme. A major difference was however observed when high standard mutation rate was applied in the simulation compared to adaptive mutation mutation rate. It was also observed that

Fig. 4.24 9x9 Fabricated Amplitude Dammann Grating Device

Table 4.2 9x9 Dammann Grating Arrays with different Genetic Algorithms setting (GenesYs 1.0)

(Two Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.75	0.001	3.0507 x10 ⁻³
100	0.75	0.001	3.0422 x10 ⁻³
200	0.75	0.001	2.9738 x10 ⁻³
50	0.50	0.10	4.6839 x10 ⁻³
100	0.50	0.10	4.7431 x10 ⁻³
200	0.50	0.10	4.8927 x10 ⁻³
50	0.60	0.001	2.9285 x10 ⁻³
100	0.60	0.001	2.8129 x10 ⁻³
200	0.60	0.001	2.9440 x10 ⁻³

Fig. 4.26 9x9 One Dimensional Dammann Grating Structure

Fig. 4.27 9x9 Dammann Grating Cell

0.76 512

Fig. 4.28 9x9 Fabricated Amplitude Dammann Grating

Fig. 4.29 9x9 Objective Function Value

Fransmitted Amplitude

Dammann Grating

Fig. 4.32 9x9 Dammann Grating Cell (High Mutation Rate)

Fig. 4.33 9x9 Objective Function Value (High Mutation Rate)

high mutation rate produces noisy diffraction pattern and hence a grating that could not be fabricated because of very low resolution of the Table 4.2 shows the various runs with different grating structure. settings and the resulting objective function value. Figures 4.25, 4.26, show the output diffraction pattern, input 4.27, 4.28 and 4.29 Dammann Grating structure, single period two dimensional Dammann Grating cell, a fabricated 9x9 amplitude Dammann Grating and the string structure respectively with objective function value of 3.0348 x10° ³. From figure 4.25, it is observed that the diffraction efficiency obtained for this 9x9 grating is about 50% with highly resolved diffraction pattern. The amplitude Dammann Grating fabricated on a photolithographic film shown in figure 4.28 is fabricated at a resolution of 2540 dpi (dots per inch). The input grating as shown in figure 4.26 is also highly resolved. Figures 4.30, 4.31, 4.32 and 4.33 show the results obtained with high mutation rate. As a result of the high mutation, it is observed from figure 4.30 that the diffraction efficiency is about 15%. Here, as indicated by figure 4.30, the diffraction efficiency was drastically reduced as compared to the result of figure 4.25.

The results obtained from the above simulation using adaptive mutation and two point crossover scheme are shown in table 4.3 and in figures 4.34, 4.35, 4.36, and 4.37 respectively. Again, the diffraction efficiency is about 50% with fairly resolved diffraction pattern. The input Dammann Grating as shown in figure 4.35 is also highly resolved. For the one point crossover scheme and standard mutation, the results are as shown in table 4.4 and in figures 4.38, 4.39, 4.40, and 4.41 respectively. The diffraction efficiency, again is about 50%. The

Table 4.3 9x9 Dammann Grating Arrays with different Genetic Algorithms setting (GenesYs 1.0)

(Two Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.75	и	3.0889x10 ⁻³
100	0.75	и	3.1905x10 ⁻³
200	0.75	· · · · · · · · · · · · · · · · · · ·	2.8923x10 ⁻³
50	0.50	и	3.2173x10 ⁻³
100	0.50	а	2.8033x10 ⁻³
200	0.50	u	2.9817x10 ⁻³
50	0.60	и	3.0971x10 ⁻³
100	0.60	Œ	2.9575x10 ⁻³
200	0.60	u	2.6219x10 ⁻³

Transmitted Amplitude

Dammann Grating

Fig. 4.36 9x9 Dammann Grating Cell (Adaptive Mutation)

Fig. 4.37 9x9 Objective Function Value (Adaptive Mutation)

Table 4.4 9x9 Dammann Grating Arrays with different Genetic Algorithms setting (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.75	0.001	2.9347 x10 ^{.3}
100	0.75	0.001	3.1016 x10 ⁻³
200	0.75	0.001	3.1570 x10 ⁻³
50	0.50	0.10	4.3571 x10 ⁻³
100	0.50	0.10	4.7165 x10 ⁻³
200	0.50	0.10	5.2993 x10 ⁻³
50	0.60	0.001	2.9289 x10 ⁻³
100	0.60	0.001	3.1143 x10 ⁻³
200	0.60	0.001	3.1278 x10 ⁻³

Pranshitted AbutitmensiT

Dammann Grating

Fig. 4.40 9x9 Dammann Grating Cell

Fig. 4.41 9x9 Objective Function Value

Fransmitted Amplitude 98

Dammann Grating

Fig. 4.44 9x9 Dammann Grating Cell (High Mutation Rate)

Fig. 4.45 9x9 Objective Function Value (High Mutation Rate)

Table 4.5 9x9 Dammann Grating Arrays with different Genetic Algorithms setting (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.75	u	2.9866 x10 ⁻³
100	0.75	и	3.0876 x10 ⁻³
200	0.75	и	3.2444 x10 ⁻³
50	0.50	и	2.9028 x10 ⁻³
100	0.50	и	2.9932 x10 ⁻³
200	0.50	и	3.1018 x10 ⁻³
50	0.60	и	3.4860 x10 ⁻³
100	0.60	и	3.0553x10 ⁻³
200	0.60	ti	2.8861 x10 ⁻³

103 Transmitted Amplitude

Dammann Grating

Fig. 4.48 9x9 Dammann Grating Cell (Adaptive Mutation)

Fig. 4.49 9x9 Objective Function Value (Adaptive Mutation)

Table 4.6 17x17 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

(Two Point Crossover)

	(**************************************		
Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.75	0.001	9.1284 x 10 ⁻⁴
100	0.75	0.001	8.2262 x 10 ⁻⁴
200	0.75	0.001	9.0223 x 10 ⁻⁴
50	0.50	0.10	1.8442 x 10 ⁻³
100	0.50	0.10	1.9068 x 10 ⁻³
200	0.50	0.10	1.8448 x 10 ⁻³
50	0.60	0.001	7.9977 x 10 ⁻⁴
100	0.60	0.001	8.8623 x 10 ⁻⁴
200	0.60	0.001	8.7483 x 10 ⁻⁴

diffraction pattern as shown in figure 4.38 is highly resolved. Shown in figures 4.42, 4.43, 4.44, and 4.45 are results of the simulation with high mutation rate. In the case of the one point crossover and adaptive mutation, the results obtained are shown in table 4.5 and in figures 4.46, 4.47, 4.48, and 4.49 respectively. Again, it was observed that siimilar results were obtained when lower standard mutation rate and and adaptive mutation were used. Two or one point crossover scheme made no significant difference in the results that were obtained.

4.2 17 x 17 Amplitude Dammann Gratings

This amplitude Dammann Grating element was also generated using the modified GenesYs 1.0 package. Here, two point crossover scheme, one point crossover scheme, standard and adaptive mutation mechanisms were also employed. For a 17x17 size Dammann Gratings, 512 bit strings (0,1) were required, and these strings were randomly generated. The simulation of the element using different population sizes were done at 300000 number of trials. In terms of number of generations, a 100 size population is equivalent to 3000 In comparision to a 9x9 size Dammann Gratings, the degree of computation difficulties and time increases with this element. The resolution of the diffraction patterns decreases. The different settings used here, such as, population size, crossover rate, and mutation rate are shown in table 4.6 for the two-point standard mutation case. The results obtained with population size of 100, 75 per cent crossover rate, and standard mutation of 0.1 per cent are shown in figures 4.50, 4.51, 4.52, 4.53 and 4.54 respectively. Shown in figures

108 Transmitted Amplitude

Fig. 4.52 17x17 Dammann Grating Cell

Fig. 4.53 17x17 Fabricated Amplitude Dammann Grating Device

Fig. 4.54 17x17 Objective Function Value

Pig.4.56 17x17 One Dimensional Dammann Grating Structure (High Mutation Rate)

200

100

Fig. 4.57 17x17 High Mutation Rate Dammann Grating Cell

Fig. 4.58 17x17 Objective Function Value (High Mutation Rate)

Table 4.7 17x17 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(Two Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
	, , , , , , , , , , , , , , , , , , ,		
50	0.75	a	8.4271x10 ⁻⁴
100	0.75		9.7167x10 ⁻⁴
200	0.75	u	8.9792x10 ⁻⁴
50	0.50	ıı	8.4991x10 ⁻⁴
100	0.50	и	8.0058x10 ⁻⁴
200	0.50	и	8.7639x10 ⁻⁴
50	0.60	и	8.8887x10 ⁻⁴
100	0.60	ti	8.4602x10 ⁻⁴
200	0.60	и	8.3629x10 ⁻⁴

118 Normalized Intensity

118 Transmitted Amplitude

Fig. 4.61 17x17 Adaptive Mutation Dammann Grating Cell

Fig. 4.62 17x17 Adaptive Mutation Objective Function Value

Table 4.8 17x17 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.75	0.001	8.2270x10 ⁻⁴
100	0.75	0.001	8.9474x10 ⁻⁴
200	0.75	0.001	9.479510 ⁻⁴
50	0.50	0.10	1.7493×10 ⁻³
100	0.50	0.10	1.8217x10 ⁻³
200	0.50	0.10	1.8670x10 ³
50	0.60	0.001	9.3519x10 ⁻⁴
100	0.60	0.001	8.3775x10 ⁻⁴
200	0.60	0.001	8.8555x10 ⁻⁴

Fig. 4.63 17x17 One Dimensional Diffraction Pattern

154 Transhittude

Fig. 4.65 17x17 Dammann Grating Cell

Fig. 4.66 17x17 Objective Function Value

158 Transmitted Amplitude

Fig. 4.69 17x17 High Mutation Rate Dammann Grating Cell

Fig. 4.70 17x17 High Mutation Rate Objective Function Value

Table 4.9 17x17 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.75	и	9.4250x10 ⁻⁴
100	0.75	ıı	9.4148x10 ⁻⁴
200	0.75	ef.	8.8443×10 ⁻⁴
50	0.50	64	8.9964x10 ⁻⁴
100	0.50	н	8.9234x10 ⁻⁴
200	0.50	и	8.9334×10 ⁻⁴
50	0.60	16	8.8650×10 ⁻⁴
100	0.60	u	9.3510×10 ⁻⁴
200	0.60	u	8.6172×10 ⁻⁴

133 Transmitted Amplitude

Fig. 4.73 17x17 Adaptive Mutation Dammann Grating Cell

Fig. 4.74 17x17 Adaptive Mutation Objective Function Value

4.55, 4.56, 4.57 and 4.58 are the results obtained from using high or 10 per cent mutation rate. The results for the adaptive mutation and two point crossover scheme are shown in table 4.7 and in figures 4.59, 4.60, 4.61, and 4.62 respectively. In the simulation applying one point crossover and standard mutation, the results are shown in table 4.8 and in figures 4.63, 4.64, 4.65, and 4.66 respectively. Also shown in figures 4.67, 4.68, 4.69 and 4.70 are the results obtained for the one point crossover mechanism and high mutation rate of 10%. Table 4.9 and figures 4.71, 4.72, 4.73, and 4.74 respectively, show the results obtained from one point crossover and adaptive mutation mechanism.

Careful analysis of the results obtained for this particular array Dammann Gratings, show that, in the case of the two point crossover, standard mutation (lower rate), the diffraction efficiency is about 40% and the diffraction pattern fairly resolved. In the case of the application of high mutation rate, the diffraction efficiency fell to about 10% and showed noisy diffraction pattern with low resolution as observed in figure 4.55, 4.56, and 4.57 respectively. The two point crossover, adaptive mutation mechanism, produced similar results as was obtained from two point crossover, low standard mutation rate. These could be verified from tables 4.6 and 4.7 respectively. Also from figures 4.50 and 4.59.

From the one point crossover and standard mutation mechanisms, the best result obtained came a population of 200, 75 per cent crossover rate, and 0.1 per cent mutation rate. The diffraction efficiency as observed from figure 4.63 is about 57% on the average and has fairly resolved diffraction pattern. However, figure 4.67 which shows the diffraction pattern of the high mutation rate, produced as expected

Table 4.10 33x33 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.70	0.001	2.5085 x10 ⁻⁴
100	0.70	0.001	2.6050 x 10 ⁻⁴
200	0.70	0.001	2.7252 x 10 ⁻⁴
50	0.50	0.10	5.7169 x 10 ⁻⁴
100	0.50	0.10	5.7467 x 10 ⁻⁴
200	0.50	0.10	5.6469 x 10 ⁻⁴
50	0.60	0.001	2.5341 x 10 ⁻⁴
100	0.60	0.001	2.5731 x 10 ⁻⁴
200	0.60	0.001	2.5908 x 10 ⁻⁴

33x33 One Dimensional Diffraction Pattern

138

138 Transmitted Amplitude

Fig. 4.77 33x33 Dammann Grating Cell

Fig. 4.78 33x33 Objective Function Value

Transmitted Amplitude

Fig. 4.81 33x33 Dammann Grating Cell (High Mutation Rate)

Fig. 4.82 33x33 Objective Function Value (High Mutation Rate)

very low the diffraction efficiency and low resolution. The input Dammann Grating of figure 4.68 also showed very low resolution and hence, a grating that could not be fabricated. The results from the one point crossover, adaptive mutation scheme, however showed similar results as obtained from low standard mutation two point crossover mechanism. Though, as observed from figure 4.71, the resolution of the diffraction pattern is not quite high. The diffraction efficiency is estimated to be about 47% with the best result of the simulaltion given by a population of 50, and 75 per cent crossover rate.

4.3 33 x 33 Amplitude Dammann Gratings

To devise this size amplitude Dammann Gratings, the GenesYs 1.0 package was also utilised with 1024 bit binary elements. This simulation was carried out with a one and two point crossover, standard, and adaptive mutation mechanisms. Due to the long bit string, the degree of computation difficulty increases. Time of computation also increases. For a single run on the Sun workstation, the time required to complete computation is in the order of 60 minutes for the low mutation and adaptive mutation shemes. The time increases with high standard mutation rate. All the simulations for this size grating were carried out with 300,000 trials. For the two point crossover and standard mutation, the results obtained are shown in table 4.10 and in figures 4.75, 4.76, 4.77, and 4.78 respectively for a population size of 100, 70 per cent crossover rate, and 0.1 per cent mutation rate. In this simulation, the diffraction pattern obtained was of low resolution and of about 30% diffraction efficiency. Also shown in figures 4.79, 4.80, 4.81 and 4.82 are

Table 4.11 33x33 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

(I WO	Point	Crosso	ver)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.70	u	2.6313 x10 ⁻⁴
100	0.70	и	2.3933 x 10 ⁻⁴
200	0.70	и	2.6000 x 10 ⁻⁴
50	0.50	и	2.4171 x 10 ⁻⁴
100	0.50	u	2.5319 x 10 ⁻⁴
200	0.50	u,	2.4449 x 10 ⁻⁴
50	0.60	u	2.4884 x 10 ⁻⁴
100	0.60	ti.	2.4201 x 10 ⁻⁴
200	0.60	и	2.3874 x 10 ⁻⁴

Transmitted Amplitude

Fig. 4.85 33x33 Dammann Grating Cell (Adaptive Mutation)

Fig. 4.86 33x33 Objective Function Value (Adaptive Mutation)

Table 4.12 33x33 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.70	0.001	2.4093 x 10 ⁻⁴
100	0.70	0.001	2.5149 x 10 ⁻⁴
200	0.70	0.001	2.3368 x 10 ⁻⁴
50	0.50	0.10	5.6223 x 10 ⁻⁴
100	0.50	0.10	5.7695 x 10 ⁻⁴
200	0.50	0.10	5.8288 x 10 ⁻⁴
50	0.60	0.001	2.5689 x 10 ⁻⁴
100	0.60	0.001	2.6387 x 10⁴
200	0.60	0.001	2.5797 x 10 ⁻⁴

Transmitted Amplitude

Fig. 4.89 33x33 Dammann Grating Cell

Fig. 4.90 33x33 Fabricated Amplitude Dammann Grating Device

Fig. 4.91 33x33 Objective Function Value

128 Transmitted Amplitude

Fig. 4.94 33x33 Dammann Grating Cell (High Mutation Rate)

Fig. 4.95 33x33 Objective Function Value (High Mutation Rate)

Table 4.13 33x33 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.70	и	2.7922 x 10 ⁻⁴
100	0.70	16	2.7449 x 10 ⁻⁴
200	0.70	t ¢	2.5830 x 10 ⁻⁴
50	0.50	"	2.5868 x 10 ⁻⁴
100	0.50	2. u	2.6117 x 10 ⁻⁴
200	0.50	u	2.5506 x 10 ⁻⁴
50	0.60	tt	2.6912 x 10 ⁻⁴
100	0.60	tt .	2.5117 x 10 ⁻⁴
200	0.60	u	2.8547 x 10 ⁻⁴

164 Transmitted Amplitude

Fig. 4.98 33x33 Dammann Grating Cell (Adaptive Mutation)

Fig. 4.99 33x33 Objective Function Value(Adaptive Mutation)

the high mutation rate results. As can observed from the diffraction pattern of figure 4.79, the diffraction efficiency is of the order of 9%. The resolution of the pattern is as expected, very low. The input grating of figure 4.80 also showed very low resolution. This undesirable results The are attributed to the high mutation rate used for the simulation. grating cell of figure 4.81 also is of very low resolution. The implication of this, is that the grating could not be useful if fabricated either as amplitude grating or phase grating. For the adaptive mutation and two point crossover case, the results are as shown in table 4.11 and in figures 4.83, 4.84, 4.85 and 4.86 respectively. The diffraction efficiency is estimated to be about 40% with low resolution of the diffraction pattern. The input grating as inferred from figure 4.84, is fairly resolved as well as the grating cell. The results obtained for the one point crossover mechanism and for standard mutation rate are shown in figures 4.87, 4.88, 4.89, 4.90 and 4.91. Figure 4.90, shows the fabricated amplitude 33x33 Dammann Grating with 2540 dpi (dots per inch) resolution. The diffraction efficiency is about 40% with fairly resolved diffraction pattern. The input grating as observed in figure 4.88 is also fairly resolved. Shown in figures 4.92, 4.93, 4.94, and 4.95 are the results of high mutation rate. From figure 4.92, it could be estimated that the diffraction efficiency is about 7%, and resolution of the diffraction pattern is very low. The resolution of the input grating of figure 4.93 also is of low value. The Dammann Grating cell obtained in this simulation also is of very low resolution as is observed in figure 4.94. For the one point crossover and adaptive mutation scheme, the results obtained from this simulation are shown in table 4.13 and in figures 4.96, 4.97,

Table 4.14 65x65 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(Two Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.70	0.001	8.4808 x 10 ⁻⁵
100	0.70	0.001	8.9701 x 10 ⁻⁵
200	0.70	0.001	1.0105 x 10 ⁻⁵
50	0.50	0.10	1.6247 x 10 ⁻⁴
100	0.50	0.10	1.6025 x 10 ⁻⁴
200	0.50	0.10	1.6202 x 10 ⁻⁴
50	0.60	0.001	8.0708 x 10 ⁻⁵
100	0.60	0.001	8.6959 x 10 ⁻⁵
200	0.60	0.001	1.0082 x 10 ⁻⁴

Fig. 4.100 65x65 One Dimensional Diffraction Pattern

Transmitted Amplitude

Fig. 4.101 65x65 One Dimensional Dammann Grating Structure

Fig. 4.102 65x65 Dammann Grating Cell

Fig. 4.103 65x65 Objective Function Value

Fig. 4.104 65x65 One Dimensional Diffraction Pattern (High Mutation Rate)

124 Amplitude Fransmitt

Fig. 4.106 65x65 Dammann Grating Cell (High Mutation Rate)

Fig. 4.107 65x65 Objective Function Value (High Mutation Rate)

Table 4.15 65x65 Dammann Grating Arrays with different Genetic

Algorithms settings (GenesYs 1.0)

(Two Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.70	u	6.8573 x 10 ⁻⁵
100	0.70	u	7.5506 x 10 ⁻⁵
200	0.70	и	7.8459 x 10 ⁻⁵
50	0.50	и	6.6759 x 10 ⁻⁵
100	0.50	si .	6.9043 x 10 ⁻⁵
200	0.50	u	7.4291 x 10 ⁻⁵
50	0.60	и	6.8966 x 10 ⁻⁵
100	0.60	u	7.9246x 10 ⁻⁵
200	0.60	ıı	6.7257 x 10 ⁻⁵

148 Transmitted Amplitude

Fig. 4.110 65x65 Dammann Grating Cell (Adaptive Mutation)

Fig. 4.111 65x65 Objective Function Value (Adaptive Mutation)

Table 4.16 65x65 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Mutation Rate	Objective Function Value
50	0.70	0.001	6.6047 x 10 ⁻⁵
100	0.70	0.001	6.6836 x 10 ⁻⁵
200	0.70	0.001	7.1834 x 10 ⁻⁵
50	0.50	0.10	1.5773 x 10 ⁻⁴
100	0.50	0.10	1.6100 x 10 ⁻⁴
200	0.50	0.10	1.6118 x 10 ⁻⁴
50	0.60	0.001	6.7147 x 10 ⁻⁵
100	0.60	0.001	6.6882 x 10 ⁻⁵
200	0.60	0.001	7.0096 x 10 ^{.5}

184 Transmitted Amplitude

Fig. 4.114 65x65 Dammann Grating Cell

```
11111111 11111111 10010011 01111111 7.1834e-05 1675 298933
```

Fig. 4.115 65x65 Objective Function Value

188 Transmitted Amplitude

Fig. 4.118 65x65 Dammann Grating Cell (High Mutation Rate)

Fig. 4.119 65x65 Objective Function Value (High Mutation Rate)

Table 4.17 65x65 Dammann Grating Arrays with different Genetic Algorithms settings (GenesYs 1.0)

(One Point Crossover)

Population Size	Crossover Rate	Adaptive Mutation	Objective Function Value
50	0.70	и	6.6047 x 10 ⁻⁵
100	0.70	и	7.2367 x 10 ⁻⁵
200	0.70	и	7.3438 x 10 ⁻⁵
50	0.50	u	7.1614 x 10 ⁻⁵
100	0.50	a	6.7920 x 10 ⁻⁵
200	0.50	и	7.4520 x 10 ⁻⁵
50	0.60	и	7.1242 x 10 ⁻⁵
100	0.60	н	7.6626 x 10 ⁻⁵
200	0.60	и	7.2326 x 10 ⁻⁵

4.98, and 4.99 respectively. The diffraction efficiency is estimated to be about 50% and fair resolved diffraction pattern. The input Dammann Grating structure of figure 4.97 is also fairly resolved.

4.4 65 x 65 Amplitude Dammann Gratings

The generation of this amplitude gratings requiring a bit string of 2048 was also carried out using the GenesYs 1.0 package. schemes used were two point crossover, one point crossover, standard and adaptive mutation mechanisms. The simulation was also done on a Sun workstation with each run carried out with 300,000 trials. Time of For a computation increased as well as the degree of computation. population size of 100, 70 per cent crossover rate, and 0.1 per cent mutation rate, the results obtained are as shown in table 4.14 and in figures 4.100, 4.101, 4.102, and 4.103 respectively. The resolution of the diffraction pattern as observed in figure 4.100, showed a very low resolution. The diffraction efficiency is estimated to be about 35%. The input grating of figure 4.101 is of very low resolution. The low resolution could be attributed to the size of the grating and perhaps the number of trials used in the simulation. With higher number of trials, it is envisaged that the resolution will drastically improve and hence produce a better Shown in figures 4.104, 4.105, 4.106, and 4.107 Dammann Grating. are the results from high mutation rate. As anticipated, the resolution of the diffraction pattern is very low and diffraction effificiency about 7%. Figure 4.105 which shows the input grating, it is evident from the figure that the resolution is quite low and that the grating structure would produce less resolved grating if it is fabricated as amplitude or phase

Simulating this devise with adaptive mutation method and two grating point crossover, the results obtained are shown in table 4.15 and in figures 4.108, 4.109, 4.110, and 4.111 respectively. The resolution and diffraction efficiency resulting in this case are quite similar to that obtained with the two point crossover and low standard mutation rate. Also, this grating was generated using one point crossover for standard and adaptive mutation mechanisms. The results obtained for the point crossover standard mutation are shown in table 4.16 and in figures 4.112, 4,113, 4.114 and 4.115 respectively. Again, the resolution and diffraction efficiency are similar to that obtained with two point crossover low standard mutation rate. The diffraction effficiency is estimated to be about 45%. Shown in figures 4.116, 4.117, 4.118 and 4.119 are the results obtained with high mutation rate. Finally, shown in table 4.17 and figures 4.120, 4.121, 4.122, 4.123, and 4.124 respectively. Figure 4.123 is the fabricated 65x65 amplitude grating produced Imagesetting Graphics Workshop of Syracuse, New York. Again, the resolution of the diffraction pattern as observed in figure 4.120 is very low and the diffraction efficiency is about 40%.

All the simulations for 9x9, 17x17, 33x33 and 65x65 size Dammann Gratings were done for 300,000 trials on the Sun workstation. The results of one point crossover mechanism, low standard and adaptive mutations were not significantly different from the results of the two point crossover, low standard and adaptive mutations. As could be observed from the figures showing results from the high standard mutation rate, high mutation rates generate less efficient and noisy

device. Therefore, the use of high mutation rates in Genetic Algorithms for the generation of this optical device is not recommended for further research in this field. The use of very low mutation rates or the use of adaptive mutation mechanisms are highly recommended for efficient system. Population size plays critical role in the application of Genetic Algorithms for optimization purposes. For my particular case, it was observed that using population of size 100 for most of the simulations, gave the best result. But, in some of the simulations, population size of 50 or 200 produced a good result. This is attributed probably to the High crossover rate in all cases mutation mechanism employed. produced good results. Very low crossover rate, however, was not experimented with in this project. For further research in this field, it will be interesting to explore the results that could be obtained with low crossover rate. The very low resolution obtained in especially the large size grating such as the 33x33 and 65x65 could be attributed to low number trials. Higher number of trials such as one million trials for the large size grating, is envisaged to produce high resolution grating with high diffraction efficiencies.

Fig. 4.121 65x65 One Dimensional Dammann Grating Structure (Adaptive Mutation)

Fig. 4.122 65x65 Dammann Grating Cell (Adaptive Mutation)

114.97 4096 doveelec.ps Dove Electronics 336-0230

Fig. 4.123 65x65 Fabricated Amplitude Dammann Grating (Adaptive Mutation)

```
11100001 01101101 11111111 11111111 7.6626e-05 3952 252270
```

Fig. 4.124 65x65 Objective Function Value (Adaptive Mutation)

CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The goal of this work was to explore the possibility of using Genetic Algorithms to design and fabricate a binary optical element for application in optical interconnections. The binary optical element designed and fabricated in this research effort is the so-called "Dammann Grating" after the German holographer, Hans Dammann, who first proposed the optical device in the early 1970's. This device as was noted earlier, generates an array of equal intensity light spots from a single incident beam. Also, the use of Spatial Light Modulators for on line evolution of optical interconnections and the proper location of the optical device on an optical processor was studied. The algorithm used to design the binary device "Genetic Algorithm" which is based on the principles of natural selection and the survival of the fittest, was developed also in the 1970's by John Holland and colleagues at the University of Michigan. In the SLM study, it was observed and concluded that, a potentially valuable architecture in the first instance, will employ a single SLM placed in the optical system's fourier plane or in between two lenses. It was also found that in this

architecture, coherence requirements are neither necessary nor harmful for the interconnection to take place. Other architectures studied employed two SLMs for the optical processor. In one case, the first SLM is placed in the Fourier plane while the other is inserted in the image or conjugate plane. This geometry, it was observed, could convert one arbitrary 2-dimensional pattern into another. Here, coherence is absolutely required. In the final case, one of the SLMs is placed in the image and the other in the Fourier plane. Again, this architecture requires that the illuminating beams be mutually coherent. And the mask written on the SLMs should be phase-only mask.

The binary optical device designed with the Genetic Algorithm requires that an objective function be established. With this fact, therefore, a novel objective function was formulated by us and termed "Multiple Objective Functions". The objective functions were categorised into additive and multiplicative methods. For this work, only the additive method was explored. The multiplicative method is left for further experimentation using Genetic Algorithms.

Using Genetic Algorithm software package obtained from the public domain, I have established the possibility of using the algorithm to design an optical device. I used the algorithm to design a 9x9, 17x17, 33x33, and 65x65 Dammann Gratings. One of the packages used for

simulation is the Genesis 5.0. This package was only used to design or simulate a 9x9 grating one point crossover scheme. The results obtained in this case, were quite impressive. The diffraction efficiency was about 90% and the diffraction pattern was highly resolved. Another package, GenesYs 1.0 was used. Here, this package was used to generate a 9x9, 17x17, 33x33 and 65x65 Dammann Gratings. This package was used because of its various features which were not included in Genesis 5.0 and the fact that I could not obtain resolvable patterns with large size arrays such 17x17 and so on. The features, include m-point crossover, adaptive mutation, proportional selection, linear ranking, uniform ranking and inverse linear ranking to name a few.

In generating the above mentioned size array Dammann Gratings, features provided in the GenesYs 1.0 such as m-point crossover and adaptive mutations were used. One and two point crossover schemes were used only to determine whether there would be significant differences in results obtained with the two schemes. As was observed from the results, this was not the case. The results from both schemes did not differ significantly. Another interesting phenomena was also observed when low standard mutation and adaptive mutation were used. In all cases, whether one point crossover or two point crossover, the results remain largely the same. This points to the fact that, adaptive

mutation only incorporates low standard mutation rate to the genotype at all times. And this indicates that, the algorithm at all times seeks low standard mutation rate for its processes in evaluating stated objective As was observed in all the simulations functions. applying high standard mutation rate, the algorithm produced noisy diffraction patterns and low diffraction efficiency. Therefore, it is concluded here, that the use of high standard mutation rate in evaluating objective functions in Genetic Algorithms is not recommended. Very low standard mutation rate such as 0.001 is highly recommended. Population size of 100 in most of the simulations carried out for this work gave the best result. Therefore, it is also concluded that this size of population is the best for evaluating objective functions in Genetic Algorithms. Population size above 100 was found in some cases to produce undesirable results. In the case of crossover rate, it was found that high crossover rate gives good objective function results. Low crossover rate in all cases in the simulations it was found, gave less objective function results

For further experimentation using Genetic Algorithms, it is suggested that using the additive method of the multiple objective functions, more simulations be carried out using more trials or number of generations than were used in this work and also to try the other values of alpha. For this work, I have used alpha equals to 0.5. It is also

suggested that, the multiplicative method and the second approach of our multiple objective function be experimented on and the results compared with results. I obtained in this work by using the additive method. Also, as a further work on this project, it is suggested that the generated gratings be optically evaluated, by using the optical setup shown in figure 3.1 in chapter three and the diffraction efficiencies compared with the computer generated results.

At this juncture therefore, I would like to state that, it has been shown and proven that, it is possible to use an optimization algorithm such as Genetic Algorithm to generate devices, and in this project, an optical device. The evaluation function algorithm developed for this work found in appendix A, is capable of generating any desired size Dammann Grating.

APPENDIX A

```
/* This program evaluates only the additive objective function proposed by us
             generation of the binary optical element for this research work. *\
for the
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define Pl 3.141592653589793
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr
void four1(float data[], unsigned long nn, int isign)
{
      unsigned long n,mmax,m,j,istep,i;
      double wtemp,wr,wpr,wpi,wi,theta;
      float tempr, tempi;
      n=nn << 1;
      i=1;
      for (i=1;i<n;i+=2) {
             if (i > i) {
                    SWAP(data[i],data[i]);
                    SWAP(data[i+1],data[i+1]);
             m=n >> 1;
             while (m >= 2 \&\& j > m) \{
                   i -= m;
                    m >>= 1;
             i += m;
      mmax=2;
      while (n > mmax) {
             istep=mmax << 1;
             theta=isign*(6.28318530717959/mmax);
             wtemp=sin(0.5*theta);
             wpr = -2.0*wtemp*wtemp;
             wpi=sin(theta);
             wr=1.0;
             wi=0.0;
             for (m=1;m<mmax;m+=2) {
                    for (i=m;i<=n;i+=istep) {
                          j=i+mmax;
                          tempr=wr*data[j]-wi*data[j+1];
                          tempi=wr*data[j+1]+wi*data[j];
                          data[j]=data[i]-tempr;
                          data[i+1]=data[i+1]-tempi;
                          data[i] += tempr;
```

```
data[i+1] += tempi;
                    wr=(wtemp=wr)*wpr-wi*wpi+wr;
                    wi=wi*wpr+wtemp*wpi+wi;
             mmax=istep;
      }
#undef SWAP
void realft(float data[], unsigned long n, int isign)
      void four1(float data[], unsigned long nn, int isign);
      unsigned long i,i1,i2,i3,i4,np3;
      float c1=0.5,c2,h1r,h1i,h2r,h2i;
      double wr,wi,wpr,wpi,wtemp,theta;
      theta=3.141592653589793/(double) (n>>1);
      if (isign == 1) {
             c2 = -0.5;
             four1(data,n>>1,1);
      } else {
             c2=0.5;
             theta = -theta;
      wtemp=sin(0.5*theta);
      wpr = -2.0*wtemp*wtemp;
      wpi=sin(theta);
      wr=1.0+wpr;
      wi=wpi;
      np3=n+3;
      for (i=2;i<=(n>>2);i++) {
             i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
             h1r=c1*(data[i1]+data[i3]);
             h1i=c1*(data[i2]-data[i4]);
             h2r = -c2*(data[i2]+data[i4]);
             h2i=c2*(data[i1]-data[i3]);
             data[i1]=h1r+wr*h2r-wi*h2i;
             data[i2]=h1i+wr*h2i+wi*h2r;
             data[i3]=h1r-wr*h2r+wi*h2i;
             data[i4] = -h1i+wr*h2i+wi*h2r;
             wr=(wtemp=wr)*wpr-wi*wpi+wr;
             wi=wi*wpr+wtemp*wpi+wi;
       if (isign == 1) {
             data[1] = (h1r=data[1])+data[2];
```

```
data[2] = h1r-data[2];
        } else {
               data[1]=c1*((h1r=data[1])+data[2]);
               data[2]=c1*(h1r-data[2]);
               four1(data,n>>1,-1);
}
void cosft1(float y[], int n)
        void realft(float data[], unsigned long n, int isign);
       int j,n2;
       float sum,y1,y2;
       double theta, wi=0.0, wpi, wpr, wr=1.0, wtemp;
       theta=PI/n;
       wtemp=sin(0.5*theta);
       wpr = -2.0*wtemp*wtemp;
       wpi=sin(theta);
       sum=0.5*(y[1]-y[n+1]);
       y[1]=0.5*(y[1]+y[n+1]);
       n2=n+2;
       for (j=2;j<=(n>>1);j++) {
              wr=(wtemp=wr)*wpr-wi*wpi+wr;
              wi=wi*wpr+wtemp*wpi+wi;
              y1=0.5*(y[i]+y[n2-i]);
              y2=(y[j]-y[n2-j]);
              y[j]=y1-wi*y2;
              y[n2-j]=y1+wi*y2;
              sum += wr^*y2;
       realft(y,n,1);
       y[n+1]=y[2];
       y[2]=sum;
       for (j=4;j<=n;j+=2) {
              sum += y[j];
              y[j]=sum;
       }
#undef PI
double eval(str, length, vect, genes)
char str[];
              /* string representation
                                                        */
             /* length of bit string
int length;
                    /* floating point representation
                                                               */
double vect[];
             /* number of elements in vect
                                                               */
int genes;
{
```

```
static int startup=1,mode,alpha,res;
static float toler=0.9;
FILE *tfile;
float *v;
double norm;
unsigned n,i,j;
int st;
double fitness=0.0, level, stfunc, dev, max, sum;
   if(startup)
    startup=0;
    tfile=fopen("tol","rt");
    if(tfile!=NULL)
       scanf(tfile, "%i%i%f%i", & mode, & alpha, & toler, & res);
    fclose(tfile);
   n=length;
   for(i=0;n>1;n>>=1,j++);
   n<<=i;
   if ((length-n>=8)&&(mode>2))
    alpha=0;
    for(i=n-1;i< n+8;i++)
       alpha<<=1;
       alpha+=(str[i]=='1');
   st=n/32+1;
   v=(float *) calloc(4,n+2);
   for(i=0; i< n; i++) {
        v[i+1] = 2.0*(str[i] = = '1')-1.0;
   cosft1(v,n); /* compute spectrum entire data set*/
   nom=0.0;
   max=0.0;
   for(i=1;i<=n;i++)
    v[i]*=v[i];
    norm+=v[i];
    if(norm>1.0e-10)
    \{for(i=1;i<=n;v[i++]/=2*norm);\}
```

```
else
 \{for(i=1;i<=n;v[i++]=0);\}
 level=toler/(st+0.5);
 fitness=0.0;
 max=0.0;
 sum=0.0;
 for(i=1;i<st+1;i++)
 if ((i<st)&&(i%2!=0))
    stfunc=level;
    dev=(stfunc-v[i]);
    dev*=dev;
    if(dev > = max)
    {max=dev;};
   sum+=dev;
 }
 else
   stfunc=0.0;
if((mode\%2)==0)
 {fitness=(alpha/256.0)*max+(1.0-alpha/256.0)*sum/st;}
else
 if(random(256)<alpha)
   {fitness=max;}
else
   {fitness=sum/st;};
};
free(v);
             /* free v[]
                            */
return fitness;
```

}

```
/* This PCFFT.C program by J.G.G. Dobbe -- Performs an FFT on two arrays
(Re, Im) of type float. */
/* ----- Include directive ----- */
#include "pcfft.h"
#include <stdio.h>
#include <stdlib.h>
/* ----- Local variables ----- */
static float CosArray[28] =
{ /* \cos{-2pi/N} } for N = 2, 4, 8, ... 16384 */
-1.00000000000000, 0.000000000000, 0.70710678118655,
 0.92387953251129, 0.98078528040323, 0.99518472667220,
 0.99879545620517, 0.99969881869620, 0.99992470183914,
 0.99998117528260, 0.99999529380958, 0.99999882345170,
 0.99999970586288, 0.99999992646572,
/* cos{2pi/N} for N = 2, 4, 8, ... 16384 */
-1.00000000000000, 0.0000000000000, 0.70710678118655,
 0.92387953251129, 0.98078528040323, 0.99518472667220,
 0.99879545620517, 0.99969881869620, 0.99992470183914,
 0.99998117528260, 0.99999529380958, 0.99999882345170,
 0.99999970586288, 0.99999992646572
};
static float SinArray[28] =
{ /* sin{-2pi/N} for N = 2, 4, 8, ... 16384 */ }
 0.0000000000000, -1.00000000000, -0.70710678118655,
```

```
-0.38268343236509, -0.19509032201613, -0.09801714032956,
 -0.04906767432742, -0.02454122852291, -0.01227153828572,
 -0.00613588464915, -0.00306795676297, -0.00153398018628,
 -0.00076699031874, -0.00038349518757,
 /* \sin\{2pi/N\} \text{ for } N = 2, 4, 8, ... 16384 */
  0.0000000000000, 1.000000000000, 0.70710678118655,
  0.38268343236509, 0.19509032201613, 0.09801714032956,
  0.04906767432742, 0.02454122852291, 0.01227153828572,
  0.00613588464915, 0.00306795676297, 0.00153398018628,
  0.00076699031874, 0.00038349518757
};
/* ------ Function implementations ----- */
/* ----- ShuffleIndex ----- */
static unsigned int ShuffleIndex(unsigned int i, int WordLength)
/* Function : Finds the shuffle index of array elements. The array length
          must be a power of two; The power is stored in "WordLength".
 Return value: With "i" the source array index, "ShuffleIndex"
          returns the destination index for shuffling.
 Comment
*/
```

```
unsigned int NewIndex;
  unsigned char BitNr;
 NewIndex = 0;
 for (BitNr = 0; BitNr <= WordLength - 1; BitNr++)
  NewIndex = NewIndex << 1;
  if ((i \& 1) != 0) NewIndex = NewIndex + 1;
  i = i >> 1;
 return NewIndex;
}
/* ----- Shuffle2Arr -----*/
static void Shuffle2Arr(float *a, float *b, int bitlength)
/* Function : Shuffles both arrays "a" and "b". This function is called
         before performing the actual FFT so the array elements
         are in the right order after FFT.
 Return value: -
 Comment
*/
{
 unsigned int IndexOld, IndexNew;
 float
          temp;
 unsigned int N;
```

```
int bitlengthtemp;
                                    /* Save for later use */
bitlengthtemp = bitlength;
                             /* Find array-length */
N = 1;
do
 N = N * 2;
 bitlength = bitlength - 1;
} while (bitlength > 0);
                         /* Shuffle all elements */
for (IndexOld = 0; IndexOld <= N - 1; IndexOld++)
                   /* Find index to exchange elements */
 IndexNew = ShuffleIndex(IndexOld, bitlengthtemp);
 if (IndexNew > IndexOld)
                          /* Exchange elements: */
                                      /* Of array a */
  temp = a[IndexOld];
  a[IndexOld] = a[IndexNew];
  a[IndexNew] = temp;
                                      /* Of array a */
  temp = b[IndexOld];
  b[IndexOld] = b[IndexNew];
  b[IndexNew] = temp;
```

```
}
/* -----*/
void Fft(float *Re, float *Im, int Pwr, int Dir)
             : Actual FFT algorithm. "Re" and "Im" point to start of real
/* Function
          and imaginary arrays of numbers, "Pwr" holds the array sizes
          as a power of 2 while "Dir" indicates whether an FFT (Dir>=1)
         or an inverse FFT must be performed (Dir<=0).
 Return value: The transformed information is returned by "Re"
          and "Im" (real and imaginary part respectively).
 Comment
*/
 int pwrhelp;
 int N;
 int Section;
 int AngleCounter;
 int FlyDistance;
 int FlyCount;
 int index1;
 int index2;
 float tempr, tempi;
 float Re1, Re2, Im1, Im2;
```

```
float c, s;
 float scale;
 float sqrtn;
float temp;
float Qr, Qi;
                                   /* Shuffle before (i)FFT */
Shuffle2Arr(Re, Im, Pwr);
pwrhelp = Pwr;
                               /* Determine size of arrs */
N = 1;
do
 N = N * 2;
 pwrhelp--;
} while (pwrhelp > 0);
if (Dir >= 1) AngleCounter = 0;
                                              /* FFT */
          AngleCounter = 14;
                                        /* Inverse FFT */
else
Section = 1;
while (Section < N)
 FlyDistance = 2 * Section;
 c = CosArray[AngleCounter];
 s = SinArray[AngleCounter];
```

```
Qr = 1; Qi = 0;
for (FlyCount = 0; FlyCount <= Section - 1; FlyCount++)</pre>
{
 index1 = FlyCount;
 do
 {
  index2 = index1 + Section;
                        /* Perform 2-Point DFT */
  tempr = 1.0 * Qr * Re[index2] - 1.0 * Qi * Im[index2];
  tempi = 1.0 * Qr * Im[index2] + 1.0 * Qi * Re[index2];
  Re[index2] = Re[index1] - tempr;
                                          /* For Re-part */
  Re[index1] = Re[index1] + tempr;
                                         /* For Im-part */
  Im[index2] = Im[index1] - tempi;
  Im[index1] = Im[index1] + tempi;
  index1 = index1 + FlyDistance;
 } while (index1 \leftarrow (N - 1));
                                  */
            k
 /* Calculate new Q = cos(ak) + j*sin(ak) = Qr + j*Qi */
                                   */
        -2*pi
                                     */
 /* with: a = -----
```

```
*/
           Ν
  temp = Qr;
  Qr = Qr*c - Qi*s;
  Qi = Qi*c + temp*s;
 Section = Section * 2;
 AngleCounter = AngleCounter + 1;
                                 /* Normalize for */
if (Dir <= 0)
                           /* inverse FFT only */
 scale = 1.0/N;
 for (index1 = 0; index1 <= N - 1; index1\div+)
  Re[index1] = scale * Re[index1];
  Im[index1] = scale * Im[index1];
 }
```

```
(f_12.c new 4-27-94)
#include "extern.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "pcfft.h"
double f_12(str, length)
char str[]; /* string representation
                                            */
                                          */
int length; /* length of bit string
{
static int startup=1,mode=0,alpha=128,skip=4;
static float tol=0.7;
FILE *tfile;
float *v,*Re,*Im;
double norm;
unsigned n,i,j,maxzt,zt;
int st,tog=1;
double fitness=0.0, level, stfunc, dev, max, sum;
     if(startup)
    startup=0;
    tfile=fopen("tol","rt");
    if(tfile!=NULL)
     fscanf(tfile,"%i%i%f",&mode,&alpha,&tol);
    fclose(tfile);
```

```
n=length;
 for(j=0;n>1;n>>=1,j++);
 n<<=j;
 if ((length-n>=8)&&(mode>=2))
 alpha=0;
 for(i=n-1;i< n+8;i++)
 {
alpha<<=1;
alpha+=(str[i] ? 1:0);
 }
 st=n/8+1;
 maxzt=2*st+2;
 v=(float *) calloc(4,n+2);
 Re=(float *) calloc(4,n+2);
 Im=(float *) calloc(4,n+2);
 zt=0;
 tog=1;
 for(i=0; i< n; i++)
 {
  tog^* = ((str[i]) ? 1 : -1);
  v[i]=1.0*tog;
  if(i!=0)
```

```
if(v[i-1]!=v[i]) \{zt++;\}
  }
  Re[i]=v[i];
  Im[i]=0.0;
  }
 if(v[0]!=v[n-1]) \{zt++;\}
 fft(Re,lm,j,1); /* compute spectrum entire data set*/
 norm=0.0;
 max=0.0;
 for(i=0;i< n;i++)
  v[i]=Re[i]*Re[i]+Im[i]*Im[i];
  norm+=v[i];
 if(norm>1.0e-10)
  \{for(i=0;i<n;v[i++]/=norm);\}
 else
 \{for(i=0;i< n;v[i++]=0.0);\}
 level=1.0*tol*skip/(2*st-1);
 fitness=0.0;
 max=0.0;
 sum=0.0;
 for(i=0;i<st;i++)
 if ((i<st)&&(i%skip))
stfunc=level;
```

```
dev=(stfunc-v[i]);
dev*=dev;
if(dev>=max)
{max=dev;};
sum+=dev;
 else
stfunc=0.0;
 }
 }
 if((mode\%2)==0)
 {fitness=(alpha/256.0)*max+(1.0-alpha/256.0)*sum/st;}
 else
 if(random()*256.0<alpha*1.0)
{fitness=max;}
 else
{fitness=sum/st;};
};
 free(Re);
 free(lm);
              /* free v[]
                                */
free(v);
 if(zt>maxzt) {fitness+=fabs((zt-maxzt)*1.0e-8);}
 return fitness;
```

}

```
(powspec.c 4-27-95)
#include <stdio:h>
#include <stdlib.h>
#include <math.h>
#include "extern.h"
#include "pcfft.h"
double f_12x(str, length)
char str[]; /* string representation
                                           */
int length; /* length of bit string
                                         */
{
float *v, *w, *Re, *Im;
FILE *outfile;
double norm;
unsigned n,i,j;
int st,tog=1,skip=4;
double fitness=0.0, level, stfunc, dev, max, sum;
   n=length;
   for(j=0;n>1;n>>=1,j++);
   n<<=j;
   st=n/32+1;
   v=(float *) calloc(4,n+2);
   w=(float *) calloc(4,n+2);
   Re=(float *) calloc(4,n+2);
   Im=(float *) calloc(4,n+2);
   for(i=0; i< n; i++) {
   tog^*=2^*(str[i]=='1')-1;
   v[i]=1.0*tog;
```

```
Re[i]=v[i];
Im[i]=0.0;
fft(Re,Im,j,1); /* compute spectrum entire data set*/
norm=0.0;
for(i=0;i< n;i++)
w[i]=Re[i]*Re[i]+Im[i]*Im[i];
norm+=w[i];
level=1.0*skip/(2*st-1);
if(norm>1.0e-10)
\{for(i=0;i< n;w[i++]/=1.0*norm);\}
else
\{for(i=0;i< n;w[i++]=0);\}
outfile=fopen("powspec.dat","w+");
for(i=n/2;i< n;i++)
if (((i < st)| | (i > (n-st)) & (i%skip))
 stfunc=level;
else
 stfunc=0.0;
```

```
fprintf(outfile,"%4i %f %f %f \n",i-n,stfunc,w[i],v[i]);
    for(i=0;i< n/2;i++)
    {
    if (((i<st)| | (i>(n-st))&&(i%skip))
     stfunc=level;
    else
     stfunc=0.0;
    fprintf(outfile,"%4i %f %f %f \n",i,stfunc,w[i],v[i]);
   fclose(outfile);
   free(Re);
   free(lm);
   free(w);
                   /* free v[]
   free(v);
                                   */
    return 0.0;
main(int argc,char ** argv)
unsigned nv=128,j;
double fit=0.0;
char str[1024]=" ",tstr[10]="Length",Infile[10],Minfile[10],c;
```

```
FILE *stats, *data;
   if (argc < 2)
    strcpy(Infile,"in");
    strcpy(Minfile, "min");
   else
   sprintf(Infile, "in.%s", argv[1]);
   sprintf(Minfile, "min");
   stats=fopen(Infile,"rt");
   data=fopen(Minfile,"rt");
   if(stats!=NULL)
   while(0!=strcmp(tstr,str))
 {fscanf(stats,"%s",str);}
   fscanf(stats,"%s",str);
   fscanf(stats,"%s",str);
   fscanf(stats,"%s",str);
   fscanf(stats,"%i",&nv);
   fclose(stats);
   j=0;
   while((fscanf(data,"%c",&c))&&(j<nv))
 if((c=='1')| | (c=='0'))
```

```
{str[j++]=c;}
}
str[j]='\0';
fclose(data);
f_12x(str,nv);
}
else
{
  printf("invalid extension\n");
}
return 0;
}
```

```
/* This program prints out a single cell of a one or two dimensional Dammann
Gratings *\
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define PI 3.141592653589793
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr
void four1(float data[], unsigned long nn, int isign)
      unsigned long n,mmax,m,j,istep,i;
      double wtemp,wr,wpr,wpi,wi,theta;
      float tempr, tempi;
      n=nn << 1;
      j=1;
      for (i=1;i< n;i+=2) {
            if (j > i) {
                    SWAP(data[j],data[i]);
                    SWAP(data[j+1],data[i+1]);
            m=n >> 1;
            while (m >= 2 \&\& j > m) \{
                   j = m;
                   m >>= 1;
            i += m;
      mmax=2;
      while (n > mmax) {
            istep=mmax << 1;
            theta=isign*(6.28318530717959/mmax);
            wtemp=sin(0.5*theta);
            wpr = -2.0*wtemp*wtemp;
            wpi=sin(theta);
            wr=1.0;
            wi=0.0;
            for (m=1;m<mmax;m+=2) {
                   for (i=m;i<=n;i+=istep) {
                          j=i+mmax;
                          tempr=wr*data[j]-wi*data[j+1];
                          tempi=wr*data[i+1]+wi*data[i];
                          data[j]=data[i]-tempr;
                          data[i+1]=data[i+1]-tempi;
                          data[i] += tempr;
```

```
data[i+1] += tempi;
                    wr=(wtemp=wr)*wpr-wi*wpi+wr;
                    wi=wi*wpr+wtemp*wpi+wi;
             mmax=istep;
      }
#undef SWAP
void realft(float data[], unsigned long n, int isign)
      void four1(float data[], unsigned long nn, int isign);
      unsigned long i,i1,i2,i3,i4,np3;
      float c1=0.5,c2,h1r,h1i,h2r,h2i;
      double wr,wi,wpr,wpi,wtemp,theta;
      theta=3.141592653589793/(double) (n>>1);
      if (isign == 1) {
             c2 = -0.5;
             four1(data,n>>1,1);
      } else {
             c2=0.5;
             theta = -theta;
      wtemp=sin(0.5*theta);
      wpr = -2.0*wtemp*wtemp;
      wpi=sin(theta);
      wr=1.0+wpr;
      wi=wpi;
      np3=n+3;
      for (i=2;i<=(n>>2);i++) {
             i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
             h1r=c1*(data[i1]+data[i3]);
             h1i=c1*(data[i2]-data[i4]);
             h2r = -c2^*(data[i2] + data[i4]);
             h2i=c2*(data[i1]-data[i3]);
             data[i1]=h1r+wr*h2r-wi*h2i;
             data[i2]=h1i+wr*h2i+wi*h2r;
             data[i3]=h1r-wr*h2r+wi*h2i;
             data[i4] = -h1i+wr*h2i+wi*h2r;
             wr=(wtemp=wr)*wpr-wi*wpi+wr;
             wi=wi*wpr+wtemp*wpi+wi;
      if (isign == 1) {
             data[1] = (h1r=data[1])+data[2];
```

```
data[2] = h1r-data[2];
       } else {
              data[1]=c1*((h1r=data[1])+data[2]);
              data[2]=c1*(h1r-data[2]);
              four1(data,n>>1,-1);
       }
}
void cosft1(float y[], int n)
       void realft(float data[], unsigned long n, int isign);
       int j,n2;
       float sum,y1,y2;
       double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;
       theta=PI/n;
       wtemp=sin(0.5*theta);
       wpr = -2.0*wtemp*wtemp;
       wpi=sin(theta);
       sum=0.5*(y[1]-y[n+1]);
       y[1]=0.5*(y[1]+y[n+1]);
       n2=n+2;
       for (j=2;j<=(n>>1);j++) {
              wr=(wtemp=wr)*wpr-wi*wpi+wr;
              wi=wi*wpr+wtemp*wpi+wi;
              y1=0.5*(y[j]+y[n2-j]);
              y2=(y[j]-y[n2-j]);
              y[j]=y1-wi*y2;
              y[n2-j]=y1+wi*y2;
              sum += wr*y2;
       realft(y,n,1);
      y[n+1]=y[2];
      y[2]=sum;
      for (j=4;j<=n;j+=2) {
              sum += y[j];
              y[j]=sum;
#undef PI
double eval(str, length)
                                                       */
char str[];
           /* string representation
                                                       */
             /* length of bit string
int length;
float *v,*g;
                                          230
```

```
unsigned n.i.j,ia,ja;
double norm;
int byte;
FILE *imagef;
    n=length;
   for(j=0;n>2;n>>=1,j++);
   n<<=i;
   v=(float *) calloc(4,n+2);
    g=(float *) calloc(4,n+2);
   for(i=0; i< n; i++) {
        v(i+1) = 2.0*(str[i]=='1')-1.0;
        g[i+1] = v[i+1];
   cosft1(v,n); /* compute spectrum entire data set*/
   norm=0;
   for(i=1;i<=n;i++)
    V[i]^*=V[i];
    if(norm<v[i])
      norm=v(i);
   for(i=1;i<=n;v[i++]/=norm);
   imagef=fopen("dimage.ps","wt");
   fputs("%!PS-Adobe-2.0\n",imagef);
   fputs("gsave\n",imagef);
   fputs("initgraphics\n",imagef);
   fputs("0 0 translate\n",imagef);
   fputs("0.24 0.24 scale\n",imagef);
   fprintf(imagef,"/imline %d string def\n",n*2);
   fputs("/drawimage {\n",imagef);
   fprintf(imagef, "%d %d 8 \n", n, n);
   fprintf(imagef,"[%d 0 0 %d 0 %d]\n",n,-1*n,n);
   fputs("{currentfile imline readhexstring pop} image\n",imagef);
   fputs(") def\n",imagef);
   fputs("2550 2550 scale\n",imagef);
   fputs("drawimage\n",imagef);
   for(i=0;i< n;i++)
    for(j=0;j< n;j++)
      ia=i+1;
      ia=i+1;
       byte=(short) (255*(1-v[ia]*v[ja]));
      fprintf(imagef,"%02X",byte);
```

```
fputs("\n",imagef);
    fputs ("showpage \ngrestore \n", imagef);\\
    fclose(imagef);
                 /* free v[]
                                 */
    free(v);
    free(g);
    return 0.0;
grate(char str[],int len)
int i,j,nb,byte,nbyte;
char line1[1024]="",line0[1024]="",bite[4]="";
FILE *imagef;
nb=len/8;
for(i=0;i< nb;i++)
 byte=0;
 nbyte=0;
 for(j=0;j<8;j++)
 byte=(str[i*8+j]=='1')<<(7-j);
 nbytel=(str[i*8+j]=='0')<<(7-j);
 sprintf(bite, "%02x", byte);
 strcat(line0,bite);
 sprintf(bite,"%02x",nbyte);
 strcat(line1,bite);
strcat(line0,"\n");
strcat(line1,"\n");
imagef=fopen("image.ps","wt");
fputs("%!PS-Adobe-2.0\n",imagef);
fputs("/pixbuf 2 string def \n",imagef);
fputs("gsave\n",imagef);
fputs("/Helvetica findfont 24 scalefont setfont\n",imagef);
fputs("172 236 moveto\n",imagef);
fputs("(Dammann Grating) show\n",imagef);
fputs("172 272 translate\n",imagef);
fputs("256 256 scale\n",imagef);
fprintf(imagef, "%i %i 1 [%i 0 0 %i 0 0] \n", len, len, len, len);
fputs("{currentfile pixbuf readhexstring pop} image\n",imagef);
for(i=0;i<len;i++)
if(str[i]=='1')
```

```
{fputs(line1,imagef);}
 else
 {fputs(line0,imagef);}
fputs("showpage\ngrestore\n",imagef);
fclose(imagef);
grater(char str[],int len)
int i,j,toggle,trans,x1,y1,x2,y2;
char tog;
int line[1024];
FILE *imagef;
trans=1;
tog=str[0];
line[0]=0;
for(i=0;i<len;i++)
 if(tog!=str[i])
 tog=str[i];
 line[trans++]=i;
 line[trans]=len;
imagef=fopen("rimage.ps","wt");
fputs("%!PS-Adobe-2.0\n",imagef);
 fputs("/Helvetica findfont 24 scalefont setfont\n",imagef);
 fputs("172 236 moveto\n",imagef);
 fputs("(Dammann Grating) show\n",imagef);
 fputs("172 272 translate\n",imagef);
 fputs(".5 .5 scale\n",imagef);
 fputs("0 setgray \n",imagef);
 fputs("/r { /y1 exch def /x1 exch def /y2 exch def /x2 exch def \n",imagef);
 fputs("x1 y1 moveto\n",imagef);
 fputs("x1 y2 lineto\n",imagef);
 fputs("x2 y2 lineto\n",imagef);
 fputs("x2 y1 lineto\n",imagef);
 fputs("closepath fill } def\n",imagef);
 fputs("/tmask { /tar exch def\n",imagef);
 fputs("0 1 tar length 2 sub { /i exch def 0 1 tar length 2 sub {\n",imagef);
 fputs("/j exch defij add 2 mod 1 eq { tar i get tar j get \n",imagef);
 fputs("tar i 1 add get tar j 1 add get r\n",imagef);
 fputs(") if } for } for } def\n",imagef);
 fputs("\n [ ",imagef);
 for(i=0;i<trans;i++)
```

```
x1=line[i];
 fprintf(imagef,"%i ",x1);
fprintf(imagef,"%i ] tmask \n showpage\n",len);
fclose(imagef);
main(int argc,char ** argv)
unsigned nv=128,j;
double fit=0.0;
char str[1024]=" ",tstr[10]="Length",Infile[10],Minfile[10],imfile[10],c;
FILE *stats, *data, *imageg;
   if (argc < 2)
    strcpy(Infile,"in");
    strcpy(Minfile, "min");
   else
   sprintf(Infile, "in.%s", argv[1]);
   sprintf(Minfile, "min.%s", argv[1]);
   stats=fopen(Infile,"rt");
   data=fopen(Minfile,"rt");
   if(stats!=NULL)
    while(0!=strcmp(tstr,str))
       {fscanf(stats, "%s", str);}
    fscanf(stats, "%s", str);
    fscanf(stats, "%i", &nv);
    for(j=0;nv>1;nv>>=1,j++);
    nv<<=i:
    fclose(stats);
    i=0;
    while((fscanf(data, "%c", &c))&&(j<nv))
       if((c=='1')||(c=='0'))
        str[j+nv]=c;
        str[nv-j-1]=c;
        j++;
    }
```

```
str[j+nv]='\0';
fclose(data);
grate(str,nv*2);
grater(str,nv*2);
eval(str,nv);
}
else
{
  printf("invalid extension\n");
}
return 0;
}
```

LIST OF REFERENCES

- [1] S.A Collins, Jr. and H.J. Caulfield. "Optical holographic interconnects: categorization and potential efficient passive resonated holograms."

 J.Opt.Soc. Am A/Vol.6, No.10 1989.
- [2] H.M. Ozaktas and J.W. Goodman. "Implications of interconn- ection theory for optical digital computing." Applied Optics, Vol.31, No.26 p.5559 1992.
- [3] C. Tocci and H. J. Caulfield. "Optical Interconnection Foundations and Applications". Artech House, Inc., 1994
- [4] H. H. Arsenault, and Y. Sheng. "An Introduction to Optics in Computers". The International Society of Optical Engineering, p.54, 1992.
- [5] J. Jahns, M.M. Downs, M.E. Prise, N.Steibl, and S.J. Walker."Dammann Gratings for Laser beam shaping." Optical Engineering,Vol.28, No.12, p.1267, 1989.
- [6] H. Dammann and K. Gortler. "High-Efficiency In-Line Multiple Imaging by means of Multiple Phase Holograms." Optics Comm. Vol.3 No.5 p.312 1971.

- [7] J.N. Mait. "Design of binary-phase and multiphase Fourier gratings for array generation." Opt. Soc. Am. A/Vol.7, No.8 p.1514 1990.
- [8] U. Krackhardt and N. Streibl. "Design of Dammann Gratings for array generation." Optics Comm., Vol.74 No.1,2 p.31 1989.
- [9] D.G. Feitelson. "Optical Computing"
- [10] S.J. Walker and J. Jahns. "Optical clock distribution using integrated free-space optics." Optics Comm., Vol.90 p.359 1992.
- [11] D.E. Goldberg. "Genetic Algorithms in Search, Optimization, and Machine Learning." Addison-Wesley, Reading Mass., 1987.
- [12] F. Hoffmeister and T. Back. "Genetic Self-Learning." University of Dortmund, Dept. of Computer Science.
- [13] J. H. Holland. "Adaptation in Natural Artificial Systems." The University of Michigan Press, Ann Arbor, 1975.
- [14] J.Turunen, A.Vasara, J.Westerholm, G. Jin and A.Salin. "Optimisation and fabrication of grating beamsplitters." J.Physics, D21, S102,1988.
- [15] F.B. McCormick. "Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings." Optical Engineering, Vol.28 No.4 p.299, 1989.

- [16] U.Efron, A.D. Fisher, and C. Warde. "Spatial Light Modulator for Optical Information Processing." Applied Optics, Vol.28, p.4739 1989.
- [17] A.D. Fisher and J.N. Lee. "The current status of two dimensional Spatial Light Modulator technology." SPIE Proc. Vol.634, p.352, 1986.
- [18] D.Armitage, J.I. Thackara, and W.D.Eades. "Photoaddressed Liquid Crystal Spatial Light Modulators." Applied Optics Vol.28, No.22, 1989.
- [19] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering."Numerical Recipes in C". The Art of Scientific Computing. CambridgeUniversity Press Cambridge. P.398, 1988, First Edition.
- [20] H. Lupken, T. Pauka, R.Brauer, F. Wyrowski and O. Bryngdahl. "On the design of Dammann Gratings." Optics Communication No. 100 1993 pages 415-420.
- [21] C.H. Kwak, S.Y. Park, H.M. Kim, El-Hang Lee, and C.M. Kim.

 "Dammann gratings for Multispot array generation by using photoinduced anisotropic materials." Optics Communications No. 88 1992 pages 249-257.

- M. R. Taghizadeh and J. Turunen. "Synthetic diffractive elements for [22] optical interconnection." Optical Computing and Processing Vol.2 No. 4 1992, pages 221-242.
- U. Mahlab, J. Shamir, and H.J. Caulfield. "Genetic algorithm for optical [23] pattern recognition." Optics Letters, vol. 16, No.9 1991 pages 648-650.
- J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S.J. Walker. [24] "Dammann gratings for laser beam shaping." Optical Engineering, Vol.28, No.12 1989, pages 1267-1275.
- M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, and J. [25] Westerholm "Optimization and Fabrication of grating beamsplitters in Silicon Nitride". Applied Physics Letters, Vol. 54, No.16, 1989, pages 1492 -1494.
- [26] L. Davis "Genetic Algorithms and Simulated Annealing". Kaufmann Publishers, 1987.
- J. D. Gaskill, "Linear Systems, Fourier Transforms, and Optics". New [27 York, Wiley, 1978.

MISSION OF ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and technologies of command, control, communications and intelligence and to transition them into systems to meet customer needs. To achieve this, Rome Lab:

- a. Conducts vigorous research, development and test programs in all applicable technologies;
- b. Transitions technology to current and future systems to improve operational capability, readiness, and supportability;
- c. Provides a full range of technical support to Air Force Material Command product centers and other Air Force organizations;
 - d. Promotes transfer of technology to the private sector;
- e. Maintains leading edge technological expertise in the areas of surveillance, communications, command and control, intelligence, reliability science, electro-magnetic technology, photonics, signal processing, and computational science.

The thrust areas of technical competence include: Surveillance, Communications, Command and Control, Intelligence, Signal Processing, Computer Science and Technology, Electromagnetic Technology, Photonics and Reliability Sciences.