INTRODUCTION TO STATISTICS

LECTURE 10

- MIN and MAX scores:
 - 5.25 and 40
- Mean score:
 - 23 points

- MIN and MAX scores:
 - 5.25 and 40
- Mean score:
 - 23 points
- Median score:
 - 23.1 points
- Standard deviation:
 - 10.5 points

PLANS FOR THE WEEK

- MONDAY
 - Cl recap
 - Hypothesis testing I
- TUESDAY
 - Hypothesis testing II
- WEDNESDAY
 - Covariance and correlation
 - Linear regression
- THURSDAY
 - Big recap
- FRIDAY
 - Final exam

PLANS FOR THE WEEK

- MONDAY
 - Cl recap
 - Hypothesis testing I
- TUESDAY
 - Hypothesis testing II
- WEDNESDAY
 - Covariance and correlation
 - Linear regression
- THURSDAY
 - Big recap
- FRIDAY
 - Final exam

- Assignment 4, part I is due 23:59
- Assignment 4, part II is out

- Assignment 4, part II is due 23:59
- Assignment 5 is out

Assignment 5 is due 23:59

LAST TIME

- Confidence intervals:
 - z-interval;
 - t-interval;
 - χ^2 -interval;
 - some examples.
- Hypothesis testing
 - The Lady Tasting Tea experiment;
 - an introduction to hypothesis testing.

LAST TIME

- Confidence intervals:
 - z-interval;
 - t-interval;
 - χ^2 -interval;
 - some examples.

CONFIDENCE INTERVALS

A BRIEF RECAP

Is your data normally distributed?

z-interval: CI: A BRIEF RECAP YES \dots mean μ Is true standard deviation σ known? You need to construct a CI for... NO YES Is your data \ldots standard deviation σ normally distributed? NO

z-interval: YES CI: A BRIEF RECAP \dots mean μ Is true standard deviation σ known? You need to construct a CI for... t-interval: NO YES Is your data \ldots standard deviation σ normally distributed? NO

z-interval: CI: A BRIEF RECAP YES \dots mean μ Is true standard deviation σ known? You need to construct a CI for... t-interval: NO YES χ^2 -interval: Is your data \dots standard deviation σ $\left[\frac{\sqrt{(n-1)}s}{\sqrt{(n-1)}s} \cdot \frac{\sqrt{(n-1)}s}{\sqrt{(n-1)}s} \right]$ normally distributed? NO

YES

z-interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$$

You need to construct a CI for...

YES

Is your data normally distributed?

...mean μ

Is true standard deviation σ known?

t-interval:

NO $\bar{X} \pm \frac{3}{\sqrt{n}} t_{1-\alpha}$

 \ldots standard deviation σ

$$\chi^{2}\text{-interval:}$$

$$\left[\frac{\sqrt{(n-1)s}}{\sqrt{\chi_{1-\alpha/2}^{2}}}; \frac{\sqrt{(n-1)s}}{\sqrt{\chi_{\alpha/2}^{2}}}\right]$$

CI for large samples (using CLT):

$$\bar{X} \pm \frac{s}{\sqrt{n}} z_{1-\alpha/2}$$

NO

QUICK QUIZ

A machine fills in wine bottles with a random amount of wine that follows normal distribution with unknown mean μ and unknown standard deviation σ .

You check the last 100 bottles and see that on average they were filled with $\bar{X} = 705$ ml of wine, with sample std s = 3 ml.

Which interval would you use to construct a 95%-Cl for μ ?

In a study on cholesterol levels a sample of 1000 patients was chosen.

The average plasma cholesterol levels subjects was X=6 mmol/L, with sample std s=0.4 mmol/L.

Which interval would you use to construct a 95%-CI for the true mean?

Height of a female student is a random variable following normal distribution with unknown mean μ and standard deviation $\sigma=5$ cm.

The average height of 100 female students $\bar{X}=165$ cm, and you sample std s=4 cm

Which interval would you use to construct a 95%-CI for μ ?

On a candy factory, a machine fills packs with random number of candies which follows normal distribution with unknown mean μ and unknown standard deviation σ .

In the last 50 packs, there were on average $\overline{X} = 90$ g of sweets, with sample std s = 7 g.

Which interval would you use to construct a 95%-CI for σ ?

• Test whether a default assumption about the data is plausible.

Key idea: you can't prove something, but you can disprove it.

• Test whether a default assumption about the data is plausible.

ASSUMPTION: ALL THE SWANS ARE WHITE

ASSUMPTION: ALL THE SWANS ARE WHITE

EVIDENCE:

ASSUMPTION: ALL THE SWANS ARE WHITE

EVIDENCE: NOT CONVINCING...

ASSUMPTION: ALL THE SWANS ARE WHITE

EVIDENCE:NOW IT's CONVINCING!

ASSUMPTION:
ALL THE SWANS ARE WHITE

EVIDENCE:

ASSUMPTION: THERE'RE NO ALIENS ON THE MOON

ASSUMPTION: THERE'RE NO ALIENS ON THE MOON

EVIDENCE:

ASSUMPTION:
THERE'RE NO ALIENS ON THE MOON

EVIDENCE:

STILL NO REASON TO BELIEVE THERE ARE ALIENS

ASSUMPTION: THERE'RE NO ALIENS ON THE MOON

EVIDENCE:

STILL NO REASON TO BELIEVE THERE ARE ALIENS

ASSUMPTION: THERE'RE NO ALIENS ON THE MOON

EVIDENCE:

THERE ARE ALIENS!!!

ASSUMPTION:
THERE'RE NO ALIENS ON THE MOON

EVIDENCE:

THERE ARE ALIENS!!!

• Note:

• Default assumption = "status quo".

Note:

• Default assumption = "status quo".

• Alternative: something we can find evidence for.

HOW TO TEST A HYPOTHESIS

BASIC INGREDIENTS

RUNNING EXAMPLE

How to check if a coin is a fair one?

RUNNING EXAMPLE

We flip a coin 10 times to test if it's a fair one.

We flip a coin 10 times to test if it's a fair one.

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

 H_0 : p = 0.5 'the coin is fair'

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

 H_1 : $p \neq 0.5$ 'the coin is not fair'

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

 H_1 : $p \neq 0.5$ 'the coin is not fair'

$$H_1$$
: $p > 0.5$

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

 H_1 : $p \neq 0.5$ 'the coin is not fair'

$$H_1$$
: $p > 0.5$ or H_1 : $p < 0.5$

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

Two-sided: H_1 : $p \neq 0.5$ 'the coin is not fair'

One-sided: $H_1: p > 0.5$ or $H_1: p < 0.5$

We flip a coin 10 times to test if it's a fair one.

• The null hypothesis H_0 : the default assumption for the model generating the data.

$$H_0$$
: $p = 0.5$ 'the coin is fair'

• The alternative hypothesis H_1 : if we reject H_0 , we accept H_1 as the best explanation for the data.

Two-sided: H_1 : $p \neq 0.5$ 'the coin is not fair'

One-sided: $H_1: p > 0.5$ or $H_1: p < 0.5$

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• **Test statistic**: computed from the data

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• **Test statistic**: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

 $X \sim$

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

 $X \sim Binomial($

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• **Test statistic**: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

X						
$P(X H_0)$						

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$											

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001										0.001

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• Test statistic: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01								0.01	0.001

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

• **Test statistic**: computed from the data

X — number of H

• **Null distribution**: the probability distribution of X assuming H_0

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

	X	0	1	2	3	4	5	6	7	8	9	10
P	$(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

• **Rejection region R**: if X is in the rejection region, we reject H_0 in favor of H_1 .

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- **Rejection region R**: if X is in the rejection region, we reject H_0 in favor of H_1 .
- Significance level $\alpha : P(X \in R | H_0) \le \alpha$
 - Typically chosen in advance (common values are 0.1, 0.05, 0.01.)

• Distribution of the test statistic under H_0 , two-sided alternative:

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$\alpha = 0.2$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$\alpha = 0.2$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- The null hypothesis is the cautious default
 - we won't claim the coin is unfair unless we have compelling evidence.

- The null hypothesis is the cautious default
 - we won't claim the coin is unfair unless we have compelling evidence.

- **Rejection region**: data that is extreme under the null hypothesis = outcomes in the tail(s) of the null distribution.
 - depends on the significance level α of the test.

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- If we get 0, 1, 9, 10 H
 - Reject H_0

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- If we get 0, 1, 9, 10 H
 - Reject H_0
- If we get 2, 3, 4, 5, 6, 7, 8 H, then the test statistic is in the non-rejection region.

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- If we get 0, 1, 9, 10 H
 - Reject H_0
- If we get 2, 3, 4, 5, 6, 7, 8 H, then the test statistic is in the non-rejection region.
 - Interpretation: the data 'does not support rejecting the null hypothesis'.

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

- If we get 0, 1, 9, 10 H
 - Reject H_0
- If we get 2, 3, 4, 5, 6, 7, 8 H, then the test statistic is in the non-rejection region.
 - Interpretation: the data 'does not support rejecting the null hypothesis'.
 - Never claim that the data proves the null hypothesis is true.

EXPERIMENT

EXPERIMENT

• Toss a coin 10 times, record the number of heads you got.

EXPERIMENT

• Toss a coin 10 times, record the number of heads you got.

Based on the result, do you reject the null hypothesis?

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

INCORRECTLY REJECTING H₀

 H_0 : p = 0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

What is the probability to incorrectly reject H_0 ?

INCORRECTLY REJECTING H₀

 H_0 : p=0.5 'the coin is fair', H_1 : $p \neq 0.5$ 'the coin is not fair'

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

What is the probability to incorrectly reject H_0 ?

$$P(Reject\ H_0|H_0) = P(X \in R|H_0) = \alpha$$
 -
significance level

ONE-SIDED ALTERNATIVES

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.1$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.1$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.05$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.1$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

We flip a coin 10 times to test if it's a fair one.

$$H_0$$
: $p = 0.5$,

$$\alpha = 0.1$$

X	0	1	2	3	4	5	6	7	8	9	10
$P(X H_0)$	0.001	0.01	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.01	0.001

Z-TEST

When the data is coming from normal distribution and variance is known

• IQ follows $N(\mu_0, \sigma^2)$ where σ is known.

- IQ follows $N(\mu_0, \sigma^2)$ where σ is known.
- We suspect that HarbourSpace students are different. How do we test it?

- IQ follows $N(\mu_0, \sigma^2)$ where σ is known.
- We suspect that HarbourSpace students are different. How do we test it?

$$H_0: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} = \mu_0$$

'HarbourSpace students' IQs are the same as those of the general population'

$$H_1: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} > \mu_0$$

'HarbourSpace students' IQs are higher than those of the general population'

- IQ follows $N(\mu_0, \sigma^2)$ where σ is known.
- We suspect that HarbourSpace students are different. How do we test it?

$$H_0: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} = \mu_0$$

'HarbourSpace students' IQs are the same as those of the general population'

$$H_1: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} \neq \mu_0$$

'HarbourSpace students' IQs aren't the same as than those of the general population'

- IQ follows $N(\mu_0, \sigma^2)$ where σ is known.
- We suspect that HarbourSpace students are different. How do we test it?

$$H_0: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} = \mu_0$$

'HarbourSpace students' IQs are the same as those of the general population'

$$H_1: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} < \mu_0$$

'HarbourSpace students' IQs are lower than those of the general population'

- IQ follows $N(\mu_0, \sigma^2)$ where σ is known.
- We suspect that HarbourSpace students are different. How do we test it?

$$H_0: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} = \mu_0$$

'HarbourSpace students' IQs are the same as those of the general population'

$$H_1: X \sim N(\mu_{HS}, \sigma^2), \qquad \mu_{HS} \neq \mu_0$$

'HarbourSpace students' IQs aren't the same as than those of the general population'

• IQ follows $N(\mu_0, \sigma^2)$ where σ is known.

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2)$$
, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$

• IQ follows $N(\mu_0, \sigma^2)$ where σ is known.

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2)$$
, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$

• Average IQ of n students: \overline{X}

• IQ follows $N(\mu_0, \sigma^2)$ where σ is known.

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2)$$
, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$

- Average IQ of n students: \overline{X}
- Significance level lpha

• IQ follows $N(\mu_0, \sigma^2)$ where σ is known.

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2)$$
, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$

- Average IQ of n students: \overline{X}
- Significance level lpha
- Can we reject H_0 ?

• $H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$

• Test statistic:

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Assuming H_0 , $X_i \sim$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\Rightarrow$$
 $\sim N(0,1)$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\Rightarrow \frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} \sim N(0,1)$$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\Rightarrow T(X_1, ..., X_n) = \frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$$

•
$$H_0: X \sim N(\mu_{HS}, \sigma^2), \ \mu = \mu_0 \qquad H_1: X \sim N(\mu_{HS}, \sigma^2), \ \mu \neq \mu_0$$

• Test statistic:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\Rightarrow T(X_1, ..., X_n) = \frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$$

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu \neq \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

ONE-SIDED ALTERNATIVES

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu > \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu > \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu < \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

- $H_0: X \sim N(\mu_{HS}, \sigma^2)$, $\mu = \mu_0$ $H_1: X \sim N(\mu_{HS}, \sigma^2)$, $\mu < \mu_0$
- Test statistic: $T(X_1, ..., X_n) = \frac{(\bar{X} \mu_0)\sqrt{n}}{\sigma} \sim N(0, 1)$
- Significance level α
- (non-) Rejection region:

Z-TEST: EXAMPLE 1

- Weight loss is described by $X \sim N(5, 7^2)$.
- n = 30 patients followed an experimental diet.
- Average weight loss $\bar{X} = 6.1$ kg.

Does the diet make any difference?

Z-TEST: EXAMPLE 2

- A bakery supplies loaves of bread to supermarkets. Not every loaf weighs the same: loaf weight $X \sim N(\mu_0, 0.1^2)$, supermarket expects $\mu_0 = 2$ kg.
- A supermarket draws a sample of n=20 loaves: average weights is $\bar{X}=1.97$ kg.
- The supermarket wants to be sure that the weights are, on average, not lower than 2 kg.

Is there evidence against this?

When the data is coming from normal distribution and variance is unknown

• Hypothesis about μ from $X \sim N(\mu_0, \sigma^2)$, σ is unknown.

- Hypothesis about μ from $X \sim N(\mu_0, \sigma^2)$, σ is unknown.
- Unknown variance is estimated from the sample:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- Hypothesis about μ from $X \sim N(\mu_0, \sigma^2)$, σ is unknown.
- Unknown variance is estimated from the sample:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• The test statistic is therefore:

$$T(X_1, \dots, X_n) = \frac{(\bar{X} - \mu_0)\sqrt{n}}{S} \sim$$

- Hypothesis about μ from $X \sim N(\mu_0, \sigma^2)$, σ is unknown.
- Unknown variance is estimated from the sample:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• The test statistic is therefore:

$$T(X_1, ..., X_n) = \frac{(\bar{X} - \mu_0)\sqrt{n}}{S} \sim t(n-1)$$

T-TEST: EXAMPLE 1

- A bakery supplies loaves of bread to supermarkets. Not every loaf weighs the same: loaf weight $X \sim N(\mu_0, \sigma^2)$, supermarket expects $\mu_0 = 2$ kg.
- A supermarket draws a sample of n=20 loaves: average weights is $\bar{X}=1.9668$ kg, $s^2=0.0927^2$
- The supermarket wants to be sure that the weights are, on average, not lower than 2 kg.

Is there evidence against this?

T-TEST: EXAMPLE 2

- Sales at your company: $X \sim N(\mu_0, \sigma^2)$, $\mu_0 = 100$ dollars per transaction.
- You hire new employees. Based of a sample of n=25 salesmen, average sale is $\bar{X}=130$ dollars, with sample standard deviation s=15.

Are the new employees better than the old ones? Test your hypothesis at $\alpha = 0.05$.

TO SUM UP

- Hypothesis testing ingredients
 - H0 and H1
 - Test statistic
 - Null distribution
 - Rejection region
 - Two- and one-sided alternatives

TO SUM UP

- Hypothesis testing ingredients
 - H0 and H1
 - Test statistic
 - Null distribution
 - Rejection region
 - Two- and one-sided alternatives
- One-sample tests:
 - Z-test: normal distribution, variance known
 - T-test: normal distribution, variance unknown