ÉQUATION TRIGONOMÉTRIQUE (3)

Résoudre dans l'intervalle $]-\pi$; π] l'équation $\cos(4x) = -\frac{1}{2}$.

On remarque que $-\frac{1}{2} = \cos\left(\pm\frac{2\pi}{3}\right)$. Il s'agit donc de résoudre l'équation : $\cos(4x) = \cos\left(\pm\frac{2\pi}{3}\right)$. Les solutions sont de la forme $4x + 2k\pi = \pm\frac{2\pi}{3}$ avec $k \in \mathbb{Z}$.

i) $4x + 2k\pi = \frac{2\pi}{3} \Rightarrow x = \frac{\pi}{6} - \frac{k\pi}{2}$. Puisque l'on travaille sur l'intervalle $]-\pi$; π], k doit satisfaire à la double inégalité :

 $-\pi < \frac{\pi}{6} - \frac{k\pi}{2} \le \pi \Rightarrow -\frac{7\pi}{6} < -\frac{k\pi}{2} \le \frac{5\pi}{6} \Rightarrow -\frac{7}{3} < -k \le \frac{5}{3} \Rightarrow -\frac{5}{3} \le k < \frac{7}{3}$. Et puisque $k \in \mathbb{Z}$, on obtient $-1 \le k \le 2$, d'où quatre solutions pour x données dans le tableau suivant :

$\frac{2\pi}{2}$	$\frac{\pi}{\epsilon}$	$-\frac{\pi}{2}$	$-\frac{5\pi}{6}$

ii) $4x + 2k\pi = -\frac{2\pi}{3} \Rightarrow x = -\frac{\pi}{6} - \frac{k\pi}{2}$. Puisque l'on travaille sur l'intervalle $]-\pi$; π], k doit satisfaire à la double inégalité :

 $-\pi < -\frac{\pi}{6} - \frac{k\pi}{2} \le \pi \Rightarrow -\frac{5\pi}{6} < -\frac{k\pi}{2} \le \frac{7\pi}{6} \Rightarrow -\frac{5}{3} < -k \le \frac{7}{3} \Rightarrow -\frac{7}{3} \le k < \frac{5}{3}$. Et puisque $k \in \mathbb{Z}$, on obtient $-2 \le k \le 1$, d'où quatre solutions pour x données dans le tableau suivant :

k	-2	– 1	0	1
x	$\frac{5\pi}{6}$	$\frac{\pi}{3}$	$-\frac{\pi}{6}$	$-\frac{2\pi}{3}$

Soit au total huit solutions représentées ci-dessous sur le cercle trigonométrique :

