Soit l'ensemble d'entraînement suivant :

\mathbf{x}_t	y_t
[4, 4, 0]	0
[1, 2, 4]	0
[2, 2, 2]	0
[8, 0, 0]	0
[1, 1, 1]	0
[2, 5, 5]	1
[3, 3, 3]	1
[0, 0, 9]	1
[1, 3, 5]	1
[5, 5, 3]	1

Soit une entrée de test $\mathbf{x} = [4.2, 2.1, 3.7]$.

- 1. Donnez la classe de \mathbf{x} qui serait prédite par l'algorithme des k plus proches voisins basé sur la distance Euclidienne $d_1(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_i (x_i x_i')^2}$, et ce pour $k = 1, \ k = 3$ et k = 5.
- 2. Donnez également les prédictions pour $k=1,\ k=3$ et k=5, mais pour la distance de Manhattan $d_2(\mathbf{x},\mathbf{x}')=\sum_i |x_i-x_i'|.$

Soit la fonction :

$$g(\mathbf{x}) = \frac{x_1 + x_2^2 - \log(x_3)}{\exp(x_2) + x_4}$$

Calculez toutes les dérivées partielles, c'est-à-dire :

- 1. $\frac{\partial g(\mathbf{x})}{\partial x_1}$ 2. $\frac{\partial g(\mathbf{x})}{\partial x_2}$ 3. $\frac{\partial g(\mathbf{x})}{\partial x_3}$ 4. $\frac{\partial g(\mathbf{x})}{\partial x_4}$