Homework 1

Arjun Koshal

January 24, 2022. (Revised January 26, 2022)

Theorem. For any natural number n, the number $n^2 - n$ is even.

Proof. We have two cases: either n is even or n is odd.

Case 1: n is even.

If n is even, then we can represent n=2k for some integer k. Then, $n^2-n=n(n-1)$ by factoring out n. Therefore, n(n-1)=2k(2k-1), which has a factor of 2, and is even.

Case 2: n is odd.

If n is odd, then we can represent n=2k+1 for some integer k. Then, $n^2-n=n(n-1)$ by factoring out n. Therefore, $n(n-1)=(2k+1)(2k)=4k^2+2k=2k(2k+1)$, which has a factor of 2, and is even.

Since both the cases are true, for any natural number n, the number $n^2 - n$ must be even.