CS 335: Introduction to Large Language Models *Habib University*

Activity Sheet 02

Name:	ID:
Question 01: Temperature	
let's consider a simple example with four possible ou have a probability distribution	tcomes: 'cheese', 'room', 'it', and 'in'. Let's say we
$p(x_i x_i)$	$\chi_{1:i-1}$)
Over these four outcomes such that	
$egin{cases} p(ext{"cheese"} \ p(ext{"room"} \ p(ext{"it"} \ \ x_1 \ p(ext{"in"} \ \ x_2 \ \end{pmatrix}$	$ x_{1:i-1} = 0.1$ $x_{1:i-1} = 0.2$ $x_{1:i-1} = 0.3$ $x_{1:i-1} = 0.4$
Now Consider	
$p(x_i x_1)$	$(i-1)^{1/T}$
(a) What can we conclude about the distribution as T approaches 1 ($T \rightarrow 1$).	

(b) What can we conclude about the distribution as T approaches $0 \ (T \to 0)$.

CS 335: Introduction to Large Language Models *Habib University*

(c) What can we conclude about the distribution as T approaches ∞ ($T \to \infty$).

(You may have to normalize the distribution)

Question 02: Perplexity

Perplexity can be interpreted as the average "branching factor" per token. In other words, Perplexity is a measure of how "surprised" the model is when predicting the next word.

$$PP(x_{1:L}) = \exp\left(\frac{1}{L} \sum_{i=1}^{L} \log\left(\frac{1}{p(x_i|x_{1:i-1})}\right)\right)$$

We have a language model that assigns probabilities

$$\begin{cases} p(\text{the}) = \alpha_1 \\ p(\text{cat} \mid \text{the}) = \alpha_2 \\ p(\text{sat} \mid \text{the cat}) = \alpha_3 \end{cases}$$

(a) Calculate the perplexity of test sequence "the cat sat" when $\alpha_1=0.4$, $\alpha_2=0.6$, $\alpha_3=0.8$.

CS 335: Introduction to Large Language Models *Habib University*

(b) Calculate the perplexity of test sequence "the cat sat" when $\alpha_1=0.3$, $\alpha_2=0.4$, $\alpha_3=0.6$.

(c) Calculate the perplexity of test sequence "the cat sat" when $\alpha_1=\alpha_2=\alpha_3=\frac{1}{3}$

(d) When the perplexity is higher, is the language model "more sure" or "less sure" about which word to choose? Explain.