Reporte de operaciones con S.E.L

Universidad Centroamericana "José Simeón Cañas" Análisis numérico

Método iterativo de Jacobi

Resolución del sistema de ecuaciones lineales A

$$= 0$$

$$= 0$$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Fórmula del proceso iterativo:

$$\mathbf{X}^{(k)} = \mathbf{T}\mathbf{X}^{(k-1)} + \mathbf{C} \quad \forall \ k \ge 1$$

Condiciones iniciales de proceso:

$$\mathbf{T} = \begin{bmatrix} 0 & -nan \\ -nan & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} -nan \\ -nan \end{bmatrix} \quad \mathbf{X}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Resultados de apoximaciones del la solución $\mathbf{X} \approx \mathbf{X}^{(k)}$

\overline{k}	1	2	3	4	5	6	7		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	0	-nan	-nan	-nan	-nan	-nan	-nan		
$a_1^{(k)}$	0	-nan	-nan	-nan	-nan	-nan	-nan		
k	8	9	10	11	12	13	14		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
$a_1^{(k)}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
k	15	16	17	18	19	20	21		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
$a_1^{(k)}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
$\frac{k}{2}$	22	23	24	25	26	27	28		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan	-nan	-nan	ı -nar	-nan	-nan	-nan		
$\underline{a_1^{(\kappa)}}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
$\frac{k}{(k)}$	29	30	31	32	33	34	35		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
$a_1^{(\kappa)}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
					1				
$\frac{k}{(k)}$	36	37	38	39	40	41	42		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan	-nan	-nan	-nan	-nan	-nan	-nan		
$\underline{a_1^{(n)}}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
	10			1 40		1 40	10		
$\frac{k}{(k)}$	43	44	45	46	47	48	49		
$\frac{a_0^{(k)}}{a_1^{(k)}}$	-nan				-nan				
$a_1^{(n)}$	-nan	-nan	-nan	-nar	-nan	-nan	-nan		
	F0	F-1	F0	F0	F 4		F.C.		
$\frac{k}{(k)}$	50	51	52	53	54	55	56		
$\frac{a_0^{(k)}}{a_0^{(k)}}$	-nan								
$a_1^{(k)}$	-nan	ı -nan	-nan	ı -nar	-nan	ı -nan	-nan		

1

k	57	58	59	60	61	62	63
$a_0^{(k)}$	-nan						
$a_1^{(k)}$	-nan						
k	64	65	66	67	68	69	70
$a_0^{(k)}$	-nan						
$a_1^{(k)}$	-nan						
k	71	72	73	74	75	76	77
$a_0^{(k)}$	-nan						
$a_1^{(k)}$	-nan						
k	78	79	80	81	82	83	84
$a_0^{(k)}$	-nan						
$a_1^{(k)}$	-nan						
k	85	86	87	88	89	90	91
$a_0^{(k)}$	-nan						
$a_1^{(k)}$	-nan						
k	92	93	94	95	96	97	98
$a_0^{(k)}$	-nan						

k	99	100	101
$a_0^{(k)}$	-nan	-nan	-nan
$a_1^{(k)}$	-nan	-nan	-nan