Principe de Kerckhoff 1/3 Atinope de Shannon
1 30 · · · · · · · · · · · · · · · · · ·
Algorithme Connu (public) un chiffrement doit apporter de la Confusion et la diffusion
To be confusion at a diffusion
Cryptosystème? c'est l'ensemble des clès possibles des textes clairs et chiffres possibles associés à un algorithme donné.
possibles associés à un algorithme donné.
WILDING SALL SALL SALL SALL SALL SALL SALL SAL
Or arrivalise 5 disuder tourines to adprova series:
CS à cles asymétriques
C Gyptosystèmes à clès symétriques.
→ clès identiques: clè de chiff = clè de déchiff Alors Hance Parfort
→ Clè secrête Algorithmes: (DI 1 C. 1 (DEC 1EC)
· 2 types - chiff. par substitution (Slock apper (Des, Hes)
. 2 types / Chiff. par substitution Chiff par transposition ∑ { Block Cipher (DES, AES) } Steam Cipher (RC4) (xOR)
· Notre de Clés pour mentités. n (m-1)
Notre de Clés pour mentités: m (m-1)
€ Cryptsystèmes à clès asymétriques: → Bour chaque enhité, une clè publique (diffusée), une clè privée (gardée secreté) → Notre de clés associations
Productions;
Jour Chaque entité, une cle publique (diffusée), une cle privée gardée secreté
→ Notre de cla pour mentités: 2 m
Exemple:
RA, clé privée
KA: Clé publique
@ A demande à B sa KB
A & B envoie so KB B A chiffre le mag avec ko D(1)
C = C = C = C = C = C = C = C = C = C =
4 y ,
B déchiffre avec sa RB

Chapitre 2. Chiffrement Symétrique

· chif. classiques

· Moder de chif.

Problèmes:

. il faut un échange au préalable de la clé.

o Dans un reseau à n'entités, il font distribuer ~(N-1) clès.

9 Les Méthodes de chiffrement Clossiques 8

· Par Indstitution Mono - aphabetique:

-> la soubs trimple (13 subs mono alphabétique 8 Pour chaque lettre de l'alphabet de base, on de donne une autre lettre utilisée dons le texte chiffré.

Ex: chiff de cesar (décalage).

· Techniques d'attaques statistiques:

-> on réalise une analyse statistique des textes chiffres Et on détermine la frèq d'apparition des symboles Comparaison à celle dans les langues.

· Substitution poly-alphabetique.

Ex: Chiff de Vigenère > c'est une amélioration de Césor

(Me yasmalch mofs el pas de décologe)

Exemple 8 Texte Clair: VIGENERE!

clè 8 BACHELIE!R

Décotoge 8 1 0 2 7 4 11 8 4 Chiffleg MIIIKEZI

L'outil indispensable -> "Is table de Vigenere" (Slides).

Autres Substitutions &

a Sub. homophoniques

& Sub. polygrammes -> Au moyen d'une table (Système de Playfair) → Au moyen d'une transformation mathématique (Système de Hill)

Système de Play Fair:

Matrice 5x5

Exemple: On découpe le texte clair en 2 lettres

Texte clair. CHIFFRE DE PLAYFAIRX on ajoute le X car le nambre de lettre est impair.

B	Y	\mathcal{D}	G	₹
4	8	F	U	P
L	A	R	K	X
C	D	I	٧	E
(3)	N	M	H	T

-> Texte Chiffie, VGIMRR IIZTX ARDSR OKL

· Chiff de sub à longueur de cle égale à celle du texte et clès jetables: -> Pour éviter les attaques statistiques.

AS Solution.

- . A chaque fois, en génére une cle qui est une suite binsire parfailement aléaboire.
 - · Pour chiffrer le mag. meg & clè -> meg chiffre ou exclusif (=1 hi on a Det1)

· Chiff par transposition.

L'à base matricielle. (voir stide 19) (Page 21)

2) L'Algorithme Data Encryption Standard (DES)

DES -> produit de transpositions et substitutions nombreuses et Compliquées pour une cle relativement Courte.

Transposition à l'aide des <u>F-Box</u> Permutation > Substitution à l'aide des 8-Box

Boîte de transposition: « P-Box »

Exemple de 4 bits:

→ le bit remplace le

Exemple.

Principe du DES:

- @ Taille de bloc: 64 bits (8 ochets)
- (2) cle de 64 toits à laquelle on enlève les 8 bits de parité ~ 56 bits
- @ Permutation initiale des blocs.
- Découpage des blocs en 2 parties
 → Gauche
 → Droite
- 6 16 itérations de permutation + substitution
- @ Recollement des parties G et D pous permutation initiale inverse.

DES est basé sour 2 concepts. Product ciphers

Feistel ciphers

Feister aphers.

Texte Clair de longueur 2t-bût (Lo; Ro) J→ processus de r-tours ; où r>=1 Texte chiffre (Lr, Rr)

1 Pour 1 & 2 & r.

$$R_{\lambda} = L_{\ell-1} \oplus {\lbrace (R_{\ell-1}, K_{\ell}) \rbrace}$$

Les carachéristiques du DES.

· Tous les bits de C dépendent de bous les boits de M = effet d'avalanche

· faiblesses: -> les S-box peuvent contenir des failles

| > la taille de la cle

Solution 8 Utiliser le DES 3 fois en série, avec 2 ou 3 clés #.

Le 3DES.

-> Permet 1 la sécurité du DES mais demande plus de ressources.

On a plusieurs types,

. DES-EEE3 : 3 chiff DES avec 3 dés +

· JES-EDE3 & 1 cle + pour chaque operation du DES (chiff, Déc, chiff)

. DES-EEE2 et DES-EDE2 8 seulement la dé de chiff est =.

Altaques sur DES:

Gypto analyse différentielle. (on dispose de la boîte noire) 2 47 txtes clairs

Crypto analyse linéaire: Plus efficace mais moins pratique (Las
de boîte moire) 2 43 couples.

Compremis lemps - mémoire 8 on calcule une lable immense qui

Contient boules les versions possibles chiffres de ce mag.

lorsque l'en inlerceple avec un mag chiffre, on peut déduire

la de utilisée

3 L'Algorithme Advanced Encryption Standard & AES

Algorithme de Dyndoel: (symétrique) . Toille de blocs = 128 bits

· Trille clé: 128 hits, 192 ou 256 bits

Structure de l'Algorithme:

La c'est un algo ilétalif, peut être découpé en 3 blocs:

(1) Initial Round = Add Round Rey

@ N Rounds <u>avec.</u> N=9 in clé = 128 bits N=41 in clé = 492 bits N=43 in clé = 256 bits

Chaque ilération 5 on a 4 opérations: [Sub bytes

8 Final Round → Elle est identique à @ Soul pas de "Mix columns" Exemple Pour clé = 128 boils 4=0 N=9.

8 Mix - columns:

La c'est une transformation linéaire, un produit matriciel utilisant les 4 octets d'une colonne.

$$\begin{bmatrix} S_{0,C}^{2} \\ S_{A,C}^{2} \\ S_{2,C}^{2} \\ S_{3,C}^{2} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 04 & 04 \\ 04 & 02 & 03 & 04 \\ 04 & 04 & 02 & 03 \\ 03 & 04 & 04 & 02 \\ \end{bmatrix} \begin{bmatrix} S_{0,C} \\ S_{A,C} \\ S_{2,C} \\ S_{3,C} \end{bmatrix}$$

@ Transformation Add Round key:

Prérequil.
$$X \oplus X = 0$$

 $0 \oplus a = a$
 $X \oplus a \oplus X = a$

4) des modes de chiffrement 8

· Un mode d'apération est la manière de trailer les blocs en texte chairs et chiffrés au seun d'un algo de chiffrement par bloc

Electronic codebook Mode - ECB

si on a 1 x1, x2, -... Xn blocs de lextes clairs

Alors. $C_1, C_2, C_3 - C_n = \overline{E_k}(X_1) \cdot \overline{E_k}(X_2) - \overline{E_k}(X_n)$

Caracteristique!

- Limitation de la propagation d'erreur
- -> la sécurité repose enhièrement sur le secret de la clè

Ŷ

Solution. Enchaînement des blocs.

Vecteur d'initialization? -> bloc de bits utilisé pour initialiser un état de chif. La doit être connu par le destinatoire

apher Block Chaming Mode - CBC

 $C_{j} \leftarrow \bar{E}_{k} \left(X_{j} \oplus C_{j-1} \right)$

déchi ffrement: Xj ← D (Cj) @ Cj-1

Soul Inconvenient: Propagation d'errour?

June erreur en Xi modifie bus les Gi qui souvent Mais ne se retrouve qu'en Xi après déchiff.

-> la perte ou ajout d'un toit C; affecte tous les tolocs qui suivent après déchiffrement.

Cipher-Feedback Mode - CFB

Chiffrement par Thux (Stresm Cipher) C;← m; @ k;

· une erreur dans C: n'a ffecte qu'un 1 bit de Mi. P: _
. la poerte ou l'ajout d'un bit de C: affecte
tous les bits souvants de M après déchiffrement.

en utilisant PRNG Ciphertext Encrypt