§ 1.2 集合的运算

1.2.3 并 union

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.2.4 交 intersection

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.2.5 余 complement,设 U 为全集,

$$\overline{A} = U - A$$

1.2.6 差 difference

$$A - B = \{x \mid x \in A \land x \notin B\}$$

1.2.7 对称差 symmetric difference

$$A \oplus B = (A - B) \cup (B - A) = \{x \mid x \in A - B \lor x \in B - A\}$$

§ 1.2 集合的运算

例 U =
$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}.$
Then
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A \cap B = \{4, 5\}$$

$$\overline{A} = \{0, 6, 7, 8, 9, 10\}$$

$$\overline{B} = \{0, 1, 2, 3, 9, 10\}$$

$$A - B = \{1, 2, 3\}$$

$$B - A = \{6, 7, 8\}$$

$$A \oplus B = \{1, 2, 3, 6, 7, 8\}$$

§ 1.2 集合的运算

现在将并、交、余运算进行推广

$$A \cap B \cap C = \{x \mid x \in A \land x \in B \land x \in C\}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \cdots \cap A_{n}$$

$$= \{x \mid x \in A_{1} \land x \in A_{2} \land \cdots \land x \in A_{n}\}$$

$$A \cup B \cup C = \{x \mid x \in A \lor x \in B \lor x \in C\}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}$$

$$= \{x \mid x \in A_{1} \lor x \in A_{2} \lor \cdots \lor x \in A_{n}\}$$

Algebraic Properties of Set Operations

Theorem 1. 集合运算满足如下性质:

交換律 Commutative Properties

1.
$$A \cap B = B \cap A$$

$$2. \qquad A \bigcup B = B \bigcup A$$

结合律 Associative Properties

3.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

4.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Algebraic Properties of Set Operations

Theorem 1. 集合运算满足如下性质:

分配律 Distributive Property

5.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

6.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

幂等律 Idempotent Properties

7.
$$A \cap A = A$$

8.
$$A \cup A = A$$

Algebraic Properties of Set Operations

Theorem 1. 集合运算满足如下性质:

• 复原律

9.
$$\bar{A} = A$$

• 补余率 Properties of the Complement

10.
$$A \cap \overline{A} = \emptyset$$

11.
$$A \cup \overline{A} = U$$

12.
$$\overline{\emptyset} = U$$

13.
$$\overline{U} = \emptyset$$

Algebraic Properties of Set Operations

Theorem 1. 集合运算满足如下性质:

• 德·摩根律 De Morgan's Law (对偶律)

14.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

15.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

• 0-1 律 Properties of a universal set and the empty set

16.
$$A \cap U = A$$

17.
$$A \cup U = U$$

18.
$$A \cap \emptyset = \emptyset$$

19.
$$A \cup \emptyset = A$$

§ 1.2.9集合运算性质的证明

Property 14: 德·摩根律 De Morgan's Law

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

证明时可以由文氏图来说明两个集合互相包含, 从而说明他们相等。

§ 1.2.9集合运算性质的证明

Proof: For any x,

$$x \in \overline{A \cap B}$$

 $\Leftrightarrow x \notin A \cap B$

$$\Leftrightarrow x \in A - B \lor x \in \overline{A} \lor x \in B - A \lor x \in \overline{B}$$

$$\Leftrightarrow x \in \overline{A} \lor x \in \overline{B}$$

$$\Leftrightarrow x \in \overline{A} \cup \overline{B}$$

Thus, we have $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and

$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$
 .

Hence
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
.

集合运算的一些其它性质

20.
$$A \cap B \subseteq A, A \cap B \subseteq B$$

21.
$$A \subseteq A \cup B$$
, $B \subseteq A \cup B$

22.
$$A - B \subseteq A$$

23.
$$A - B = A \cap \overline{B}$$

24.
$$A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow A - B = \phi$$

25.
$$A \oplus B = B \oplus A$$

26.
$$A \oplus A = \phi$$

27.
$$A \oplus \phi = A$$

Property 23: $A-B=A\cap \overline{B}$

Proof: For any x,

$$x \in A - B$$

$$\Leftrightarrow x \in A \land x \notin B$$

$$\Leftrightarrow x \in A \land x \in \overline{B}$$

$$\Leftrightarrow x \in A \cap \overline{B}$$

Thus, we have $A-B=A\cap \overline{B}$.

Example 1: $A-(B \cup C) = (A-B) \cap (A-C)$

Proof 1. (用集合相等的定义)

For any x,

$$x \in A - (B \cup C)$$

$$\Leftrightarrow x \in A \land x \notin B \cup C$$

$$\Leftrightarrow x \in A \land (x \notin B \land x \notin C)$$

$$\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$

$$\Leftrightarrow x \in (A - B) \land x \in (A - C)$$

$$\Leftrightarrow x \in (A-B) \cap (A-C)$$

Hence, we have

$$A-(B\cup C)=(A-B)\cap (A-C)$$

Example 1: $A-(B \cup C) = (A-B) \cap (A-C)$

Proof 2. (用集合运算的性质)

$$A - (B \cup C) = A \cap \overline{B} \cup \overline{C}$$

$$= A \cap (\overline{B} \cap \overline{C}) = (A \cap \overline{B}) \cap (A \cap \overline{C})$$

$$= (A - B) \cap (A - C)$$

Example 2: $\overline{A} \subseteq B$, 则 $\overline{B} \subseteq \overline{A}$

Proof: Since $A \subseteq B$, with the property 24, we have: $A \subseteq B \Leftrightarrow A \cup B = B$, So $\overline{A \cup B} = \overline{B}$. And with De Morgan's Law, we obtain $\overline{A} \cap \overline{B} = \overline{B}$. Use the property 24, $\overline{A} \cap \overline{B} = \overline{B} \Leftrightarrow \overline{B} \subseteq \overline{A}$, $\overline{B} \subseteq \overline{A}$ is gotten.

上述集合关系和性质的证明主要使用属于(集合互相包含)和集合的运算性质来证明。

下面,我们引进一种新的方法来刻画集合。

复习与归纳:

- 集合的概念,元素,集合及其集合之间的运算,运算性质
- 集合的3种表示方法

Characteristic Function

If A is a subset of a universe U, A的特征函数the characteristic function f_A of A is defined:

$$f_A: U \to \{0,1\}, x \in U \to f_A(x) \in \{0,1\}$$

For each $x \in U$,

$$f_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

集合与其特征函数之间的对应关系是一一对应的。

§ 1.2.10 特征函数 Characteristic Function

例,设 X={1,2,3,4,5}, A={2,3,4}, 则

$$f_A(1)=0$$
, $f_A(2)=1=f_A(3)=f_A(4)$, $f_A(5)=0$

Characteristic Function

Theorem 1. 特征函数的性质 Properties of characteristic functions

• 集合的交: A∩B, that is

$$f_{A\cap B}(x) = f_A(x)f_B(x)$$
, for all x.

• 集合的余: Ā, that is

$$f_{\overline{A}}(x) = 1 - f_A(x)$$
 for all x.

• 集合的差: A - B, that is

$$f_{A-B}(x) = f_A(x) - f_A(x) f_B(x)$$
 for all x.

因为 $A - B = A \cap \overline{B}$,因此

$$f_{A-B}(x) = f_A(x)f_{\bar{B}}(x) = f_A(x)[1 - f_B(x)] = f_A(x) - f_A(x)f_B(x)$$

Characteristic Function

Theorem 1. 特征函数的性质 Properties of characteristic functions

• 集合的并: $A \cup B$, 如果 $A \cap B = \emptyset$, 则

$$f_{A \cup B}(x) = f_A(x) + f_B(x)$$
 for all x

一般来说

$$f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x)f_B(x) \text{ for all } x.$$

$$A \cup B = A \cup (B - A) = A \cup (B \cap \overline{A})$$

$$f_{A \cup B}(x) = f_A(x) + f_{B \cap \overline{A}}(x) = f_A(x) + f_B(x)[1 - f_A(x)]$$

$$= f_A(x) + f_B(x) - f_A(x)f_B(x)$$

Characteristic Function

Theorem 1. 特征函数的性质 Properties of characteristic functions

• 集合的幂运算: $A = A \cap A$, that is

$$f_A^2(x) = f_A(x), \ \forall A \in P(X), x \in A$$

• 集合的对称差: $A \oplus B = (A - B) \cup (B - A)$, that is

$$f_{A \oplus B}(x) = f_A(x) + f_B(x) - 2f_A(x)f_B(x)$$

for all x.

由于
$$(A-B)\cap (B-A) = \emptyset$$
,故 $f_{A\oplus B}(x) = f_{A-B}(x) + f_{B-A}(x)$
$$= f_A(x) - f_A(x)f_B(x) + f_B(x) - f_A(x)f_B(x)$$
$$= f_A(x) + f_B(x) - 2f_A(x)f_B(x)$$

现在利用特征函数来证明集合的运算性质

例: $A-(B \cup C) = (A-B) \cap (A-C)$

Proof 1. (使用集合相等的定义)

Proof 2. (使用集合运算的性质)

例: $A-(B \cup C) = (A-B) \cap (A-C)$

Proof 3. (使用特征函数)

For all x, we have:

$$f_{A-(B\cup C)}(x) = f_A(x) - f_A(x) f_{B\cup C}(x)$$

$$= f_A(x) [1 - f_B(x) - f_C(x) + f_B(x) f_C(x)]$$

$$= f_A(x) [1 - f_B(x)] [1 - f_C(x)]$$

$$f_{(A-B)\cap(A-C)}(x) = f_{A-B}(x)f_{A-C}(x)$$

$$= f_A(x)[1 - f_B(x)]f_A(x)[1 - f_C(x)]$$

$$= f_A^2(x)[1 - f_B(x)][1 - f_C(x)]$$

$$= f_A(x)[1 - f_B(x)][1 - f_C(x)]$$

对偶律: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof (of the property 14)

For any x,

$$\begin{split} f_{\overline{A \cap B}}(x) &= 1 - f_{A \cap B}(x) = 1 - f_{A}(x) f_{B}(x) \\ &= 1 - f_{A}(x) + 1 - f_{B}(x) - f_{A}(x) f_{B}(x) - 1 + f_{A}(x) \\ &+ f_{B}(x) \\ &= [1 - f_{A}(x)] + [1 - f_{B}(x)] - [1 - f_{A}(x)][1 - f_{B}(x)] \\ &= f_{\overline{A} \cup \overline{B}}(x) \end{split}$$

Hence $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

证明:

$$\begin{split} f_{A \cap (B \cup C)}(x) &= f_A(x) [f_B(x) + f_C(x) - f_B(x) f_C(x)] \\ &= f_A(x) f_B(x) + f_A(x) f_C(x) - f_A(x) f_B(x) f_C(x) \\ f_{(A \cap B) \cup (A \cap C)}(x) &= f_A(x) f_B(x) + f_A(x) f_C(x) \\ &- f_A(x) f_B(x) f_A(x) f_C(x) \\ &= f_{A \cap (B \cup C)}(x) \end{split}$$

The cardinality of a finite set

If a set A has n distinct elements, $n \in N$, n is called the cardinality of A, is denoted by |A|.

有限集合中含有不同元素的个数。

$$|\{a,b,c,d\}|=4, |\{a,\{a\}\}|=2, |\emptyset|=0.$$

(不交集合的)加法原理The Addition Principle (of disjoint sets)

设A,B是论域U的两个有限子集,A,B不交,即 $A \cap B = \emptyset$, $|A \cup B| = |A| + |B|$

由文氏图可以得到

结论1: 设A, B是论域U的两个有限子集,则 $|A - B| = |A| - |A \cap B|$

$$A = (A - B) \cup (A \cap B), (A - B) \cap (A \cap B) = \emptyset$$

结论2:设A,B是论域U的两个有限子集,则

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$A \cup B = (A - B) \cup B$$
, $|A \cup B| = |A - B| + |B| = |A| + |B| - |A \cap B|$

结论3: 设A, B, C是论域U的三个有限子集, A, B, C互不相交, 即 $A \cap B = \emptyset$, $B \cap C = \emptyset$, $A \cap C = \emptyset$, 则

$$|A \cup B \cup C| = |A| + |B| + |C|$$

定理 (Theorem) 设A, B, C 是有限子集,则

$$|A \cup B \cup C|$$

$$=|A|+|B|+|C|-|A \cap B|-|A \cap C|$$

$$-|B \cap C|+|A \cap B \cap C|$$

证明:

因为

$|A \cup B \cup C| = |[(A \cup B) - C] \cup C|$ $= |A \cup B| - |(A \cup B) \cap C| + |C|$ $= |A| + |B| - |A \cap B| - |A \cap C|$ $- |B \cap C| + |(A \cap C) \cap (B \cap C)| + |C|$ $= |A| + |B| + |C| - |A \cap B| - |A \cap C|$

 $-|B\cap C|+|A\cap B\cap C|$

思考:

对于有限集合 $\bigcup_{i=1}^{n} A_i$,则 $\bigcup_{i=1}^{n} A_i$ 的计算。 留作思考。

下面,我们用两个实例来验证上述结论。

Example 3: Let $A = \{a, b, c, d, e\}$ and $B = \{c, e, f, h, k, m\}$

Solution:

$$A \cup B = \{a, b, c, d, e, f, h, k, m\}$$
 and
 $A \cap B = \{c, e\}$
 $|A| = 5, |B| = 6, |A \cup B| = 9$ and
 $|A \cap B| = 2$
 $|A| + |B| - |A \cap B| = 9$
 $|A| + |B| - |A \cap B| = |A \cup B|$

Example 4: Let $A = \{a, b, c, d, e\}$, $B = \{a, b, e, g, h\}$ and $C = \{b, d, e, g, h, k, m, n\}$

Solution:

$$A \cup B \cup C = \{a, b, c, d, e, g, h, k, m, n\},$$

 $A \cap B = \{a, b, e\},$
 $A \cap C = \{b, d, e\},$
 $B \cap C = \{b, e, g, h\},$
 $A \cap B \cap C = \{b, e\}$
 $|A| = 5, |B| = 5, |C| = 8, |A \cup B \cup C| = 10,$

Example 4: Let $A = \{a, b, c, d, e\}$, $B = \{c, e, f, h, k, m\}$ and $C = \{b, d, e, g, h, k, m, n\}$

$$|A \cap B| = 3$$
, $|A \cap C| = 3$, $|B \cap C| = 4$,
 $|A \cap B \cap C| = 2$.
 $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B| - |B \cap C|$
 $|B \cap C|$
 $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap C|$

推论(Corrallory):如果全集是有限集合,则

$$\begin{split} &|\overline{A} \cap \overline{B} \cap \overline{C}| = |\overline{A \cup B \cup C}| \\ &= |U| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C| \end{split}$$

问题1: 1000以内不能被5,6,8整除的整数有多少个?

U: 1,2,3,...,1000 的整数,

A: U 中能被 5 整除的整数,

B: U 中能被 6 整除的整数,

C: U 中能被 8 整除的整数,

则,|U|=1000,|A|=200,|B|=166,|C|=125.

 $|A \cap B| = 33$, $|A \cap C| = 25$, $|B \cap C| = 41$,

 $|A \cap B \cap C| = 8$.

 $|\overline{A \cap B \cap C}|$

=1000-200-166-125+33+25+41-8

=600

问题2: 将1, 2, 3, ···, n做全排列,计算1不在第一个位置的排列数。 (n-1)*(n-1)!

A:1在第一个位置的排列数

思考: 进一步,所有i, i=1, 2, ..., n都不在第i个位置的排列数。 其排列数是

$$n!\{1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!\}$$

$$e^{-1}$$
 = 1-1/1!+1/2!-1/3!+...+(-1)ⁿ *1/n!+...

作业

- 习题1.1 29,36
- 习题1.2 14, 24, 35, 38, 40