Aufgabe 1

Ausgangspixel				
210	212	10	12	12
211	213	12	216	14
213	214	11	14	11
214	210	15	13	13
213	212	213	11	12
211	214	210	212	14
212	212	211	142	64
214	213	146	62	13
212	141	61	14	12

Prewitt_x

-1	0	1	
-1	0	1	
-1	0	1	
Prewitt_y			

-1	-1	-1
0	0	0
1	1	1

Sobel_x

-1	0	1
-2	0	2
-1	0	1
Sobel v		

-1	-2	-1
0	0	0
1	2	1

1.1)

markierte Pixel:

11

1.2)

--> y=

11	> x=	-399
11	> y=	395
210	> x=	-273
210	> y=	129
62	> x=	-329
62	> y=	-330
	11 210 210 62	11> y= 210> x= 210> x= 62> x=

213	> x=
213	> y=
214	> x=
214	> y=
12	> x=
12	> y=
11	> x=
11	> y=

Der Unterschied, der zu sehen ist, ist, dass bei dem Sobel Operator viel extremere Zahlen raus kommen, also häufiger größer ausschlagen. Das liegt daran, dass der Sobel Operator doppelt so stark gewichtet ist. Dies führt dazu, dass man genauere Werte für die Gradientenstärke bekommt.

1.3)

Gradienten berechnen:

-->Vektor, der aus gx und gy Komponente aus den beiden partiellen Ableitungen besteht

$$\begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

wobei gx gerade die Anwendung des Sobel-Operators auf einen Pixelbereich ist, wie in Aufgabe 1.2 bereits geschehen

1.4)

Gradientenstärke: sqrt((x)^2+(y)^2)

213	800,04
214	802,00
12	394,05
11	626,77
11	844,30
210	302,91
62	650,54
	•