ลูกบอลไฟฟ้า

ลูกบอลขนาดเล็กมวล 1 หน่วย จำนวน N ลูก เคลื่อนที่อยู่บนระนาบ ลูกบอลแต่ละลูกมี ประจุไฟฟ้าสะสมอยู่ อาจมีค่าเป็นบวกหรือลบ และแรงกระทำที่เกิดจากการพลักกันหรือดึงดูดกัน ของประจุไฟฟ้านั่นเองที่ทำให้ลูกบอลวิ่งไปมา

<u>แรงทางไฟฟ้า</u>

สมการด้านล่างระบุแรงกระทำระหว่างลูกบอล i และลูกบอล j ที่มีประจุไฟฟ้า q_i และ q_j ที่อยู่ใน ตำแหน่ง (x_i,y_i) และ (x_i,y_i)

$$f_{ij} = \frac{q_i \cdot q_j}{(x_i - x_j)^2 + (y_i - y_j)^2}$$

แรงทางไฟฟ้าจะมีทิศทางที่ดึงลูกบอลเข้าหากันถ้าประจุของ[°]ลูกบอลทั้งสองลูกมีเครื่องหมายตรงข้าม กัน และจะพลักลูกบอลออกจากกันถ้าประจุมีเครื่องหมายตรงกันข้ามกัน รูปด้านล่างแสดงตัวอย่าง ของแรงกระทำระหว่างลูกบอลสองลูก

การเคลื่อนที่

ลูกบอล i เคลื่อนที่ด้วยความเร็ว v_i โดยความเร็วจะเปลี่ยนไปตามเวลาเนื่องจากแรงภายนอกที่มา กระทำ ผลรวมของแรงกระทำที่เกิดจากลูกบอลต่าง ๆ จะทำให้เกิดความเร่งบนลูกบอลในทิศทาง ของแรงรวมนั้น ความเร่งจะมีขนาดเท่ากับ

$$a_i = \frac{F_i}{m_i}$$

เมื่อ F_i คือขนาดของแรงรวม และ m_i คือมวลของลูกบอล i

รูปด้านล่างแสดงแรงกระทำที่เกิดกับลูกบอลลูกหนึ่งและแรงรวม ทิศทางของแรงรวมจะเป็นทิศทาง ของความเร่ง

การจำลองการเคลื่อนที่

เราจะจำลองการเคลื่อนที่ของลูกบอล โดยพิจารณาการเปลี่ยนแปลงตำแหน่งและความเร็วในเวลา ต่าง ๆ สมมติว่าลูกบอล i อยู่ที่ตำแหน่ง (x_i, y_i) ในเวลา t มีความเร็ว v_i และมีความเร่ง a_i เราจะ กระจายความเร็วและความเร่ง (ดูรายละเอียดเพิ่มเติมส่วนที่ 1) ออกมาตามแกน x และ แกน y ได้เป็นความเร็ว (v_{ix}, v_{iy}) และ (a_{ix}, a_{iy}) และเราจะประมาณค่าโดยใช้ความละเอียดของเวลาเท่ากับ d หน่วย

เราจะคำนวณให้ตำแหน่งของลูกบอลที่เวลา t+d เป็น

$$(x_i + dv_{ix}, y_i + dv_{iy})$$

และมีความเร็ว (แยกตามแกน) ที่เวลา t+d เป็น

$$(v_{ix} + da_{ix}, v_{iy} + da_{iy})$$

สังเกตว่าเราจะปรับตำแหน่งโดยใช้ความเร็วที่เวลา t

ในการปรับค่าแบบไม่ต่อเนื่องดังกล่าวอาจทำให้เกิดความผิดพลาดในการจำลองการเคลื่อนที่ได้ แต่เพื่อความง่ายเราจะไม่สนใจกรณีนั้น (ดูรายละเอียดเพิ่มเติมในส่วนที่ 2)

นอกจากนี้ ในกรณีที่ลูกบอลบางลูกวิ่งไปที่พิกัดที่ไกลจากจุดกำเนิดเกินไป กล่าวคือมีค่าสัมบูรณ์ของ พิกัดในแกน x มากกว่า 1,000,000 หรือค่าสัมบูรณ์ของพิกัดในแกน y มากกว่า 1,000,000 ให้ตัด ลูกบอลลูกนั้นออกจากการคำนวณ

ถ้าเราต้องการจำลองสถานการณ์เป็นเวลา T หน่วย เราจะปรับตำแหน่งและความเร็วของลูกบอล ด้วยการคำนวณที่กล่าวมาข้างต้นเป็นจำนวน T/d ครั้ง

ข้อมูลป้อนเข้า

ให้อ่านจากแฟ้ม balls.in โดยข้อมูลมีรูปแบบดังนี้

บรรทัดแรก ระบุจำนวนเต็มสองจำนวน N (1<=N<=100,000) และ K (1<=K<=100) โดยที่ N แทนจำนวนลูกบอล และ K มีค่าเท่ากับ T/d (จำนวนรอบที่คำนวณค่า)

บรรทัดที่สอง ระบุจำนวนจริง d

จากนั้นอีก N บรรทัดจะระบุสถานะเริ่มต้นของลูกบอล กล่าวคือ

บรรทัดที่ 1+i สำหรับ i=1,...,N ระบุจำนวนจริง 6 จำนวน คือ m_i q_i x_i y_i v_{ix} v_{iy} ซึ่ง m_i ระบุ มวล, q_i ระบุค่าประจุไฟฟ้า, (x_i, y_i) ระบุตำแหน่งและ (v_{ix}, v_{iy}) ระบุความเร็ว ของลูกบอล i โดยมีขอบเขตของแต่ละค่าดังนี้

$$1 <= m_i <= 1,000; -1,000 <= q_i <= 1,000$$

```
-10,000 \le x_i \le 10,000; -10,000 \le y_i \le 10,000
-1,000 \le v_{ix} \le 1,000; -1,000 \le v_{iy} \le 1,000
```

ข้อมูลส่งออก

ให้เขียนลงที่แฟ้ม balls.out ระบุตำแหน่งของลูกบอลทั้ง N ลูก ตั้งแต่เวลาเริ่มต้นจนครบการ จำลองทั้ง K รอบ แฟ้มดังกล่าวจะมี (K+1)(N+1) บรรทัด โดยแบบข้อมูลเป็นชุด ๆ รวม K+1 ชุด ในแต่ละชุดมีข้อมูลส่งออก N+1 บรรทัด

สำหรับชุดที่ t สำหรับ $t=0,\ 1,\ ...,\ N$ ข้อมูลจะเริ่มที่บรรทัดที่ (N+1)t โดยมีรายละเอียดดังนี้ บรรทัดที่ (N+1)t+i สำหรับ i=1,...,N ระบุข้อมูลของลูกบอล i ถ้าลูกบอลดังกล่าวถูกตัด ออกจากการคำนวณให้พิมพ์สตริง out ในบรรทัดดังกล่าว ถ้าไม่เช่นนั้นให้ระบุจำนวนจริง 2 จำนวนคือ x_i y_i โดยที่ $(x_i,\ y_i)$ คือตำแหน่งของลูกบอลลูกที่ i ภายหลังการจำลองการเคลื่อนที่ไป t รอบ

ในบรรทัดที่ (N+1)t+N+1 จะระบุสตริง --- เพื่อบอกการสิ้นสุดของชุดข้อมูล

ตัวอย่าง

1 77 '	
<u>balls.in</u>	<u>balls.out</u>
2 5	100.000000 -40.000000
0.5	-100.000000 40.000000
1 300 100 -40 -10 0	
1 -300 -100 40 10 0	98.981991 -39.992796
1 300 100 40 10 0	-98.981991 39.992796
	-90.901991 39.992790
	07.04567720.070107
	97.945677 -39.978197
	-97.945677 39.978197
	96.890749 -39.956000
	-96.890749 39.956000
	05 016005 20 025004
	95.816885 -39.925994
	-95.816885 39.925994
	94.723746 -39.887956
	-94.723746 39.887956

<u>ข้อมูลทางเทคนิค</u>

ให้ใช้ข้อมูลประเภท double ในการเก็บจำนวนจริง **อย่างไรก็ตามเนื่องจากความผิดพลาดในการ** ปัดตัวเลขในการตรวจจะยอมให้มีความผิดพลาดได้ 1%

<u>รายละเอียดเพิ่มเติม</u>

1. การกระจายแรงในแนวแกน x และ y

พิจารณาเวกเตอร์ (a,b) ขนาดของเวกเตอร์ดังกล่าวคือ $\sqrt{a^2+b^2}$ ให้ L แทนขนาดดังกล่าว พิจารณาเวกเตอร์ขนาด R ที่มี ทิศทางเดียวกับเวกเตอร์ (a,b) เราสามารถกระจายเวกเตอร์ R ออกเป็น เวกเตอร์ R_x และ R_y ได้ดังรูป กล่าวคือ $R_x = \frac{aR}{L}$ และ $R_y = \frac{bR}{L}$

2. ความผิดพลาดในการจำลองสถานการณ์

เนื่องจากเราจำลองสถานการณ์แบบไม่ต่อเนื่อง (discrete) และไม่ได้คำนึงถึงเหตุการณ์หลาย ๆ อย่าง เช่นการที่ลูกบอลชนกัน ผลลัพธ์ที่ได้อาจเกิดความผิดพลาดได้หลายแบบ ยกตัวอย่างเช่น ถ้า มีลูกบอลที่มีประจุต่างกันอยู่ใกล้กันมาก ๆ ในความเป็นจริงแล้วลูกบอลทั้งสองลูกนั้นจะชนกัน (แล้วอาจแตกสลายไป) อย่างไรก็ตามเราอาจคำนวณได้เพียงว่าแรงกระทำระหว่างลูกบอลสองลูก นั้นจะสูงมาก และหลังจากการปรับค่าลูกบอลสองลูกนั้นจะวิ่งทะลูกันไปด้วยความเร็วที่สูงมาก

เพื่อความง่ายในการแข่งขันนี้ ผู้เข้าแข่งขันไม่จำเป็นต้องคำนึงถึงกรณีดังกล่าว (โดยจะถือว่านั่น คือพฤติกรรมที่ถูกตั องของลูกบอลแล้ ว)