ArrayList implementation & Complexity

CS 62 - Fall 2015 Michael Bannister

PostIt App

- See how ArrayList used in methods for PostItApplication
 - findWindowInList, moveToTop, removeWindow
 - Used in mouse-event-handling methods

ArrayList

- · Not using Bailey implementation
 - see code on-line for implementation by Tomassia & Goodrich
- Standard Java libraries have lots of extra methods not in our implementation:
 - · Many involve working on other collections
 - irrelevant for us at this point.
 - addAll, clear, contains, containsAll, listIterator, removeAll, replaceAll, retainAll, sort, spliterator, sublist, toArray

Back to ArrayList

- Interface is IndexList<E>
- See ArrayIndexList<E>
 - · Similar to ArrayList
 - · Instance variables:
 - · elts: array instance variable,
 - · eltsFilled: number of slots filled.
- · Creating new ArrayList is weird
 - recall can't construct array of variable type!
 - · Create array of Object, but coerce to believe array of E.

ArrayList Implementation

- Some operations very cheap:
 - size, isEmpty, get, set take constant time (no search)
- Others more expensive

Adding Elts in Slot i

- · Easy if there is space:
 - · At end, just add it
 - If before end, must move all elements at i and beyond to right before inserting
 - Delete similar
- What if run out of space
 - Create new array twice as big and copy old elements over before adding.
- How expensive is this?

Complexity

- Count the number of elementary operations used to perform a task (i.e., a method).
- Elementary Operations:
 - Read/Write
 - Arithmetic

Adding to ArrayList

- Suppose n elements in ArrayList and we add 1 element.
- If space:
 - Add to end is a constant number of ops
 - Add to beginning is ~n copy ops
- If not space,
 - What is cost of ensureCapacity?
 - ~n copy ops because n elements in array

Multiple Adds

- What if only increase in size by 1 each time?
 - Adding n elements one at a time to end
 - Total cost is 1+2+3+...+(n-1) = n(n-1)/2 copy ops
- What if double in size each time?
 - Suppose add n new elements to end
 - Total cost is 1+2+4+...+n/2 = n-1 copy operations