Lineare Algebra 1 Hausaufgabenblatt Nr. 13

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 27, 2024)

Problem 1. Es seien

$$A := \begin{pmatrix} 10 & -31 & -60 & 180 \\ 0 & 3 & -21 & 63 \\ 2 & -8 & 0 & 0 \\ 10 & -31 & -60 & 183 \end{pmatrix}, B := \begin{pmatrix} 1 & 3 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- (a) Bestimmen Sie die Determinante von *B* direkt mit dem Laplace'schen Entwicklungssatz
- (b) Bestimmen Sie die Determinante von *A* einmal, indem Sie den Laplace'schen Entwicklungssatz direkt anwenden, und einmal, indem Sie vorher eine geschickte Zeilenumformung durchführen.
- (c) Wie verhält es sich mit dem Aufwand jetzt gegenüber letzter Woche? Beschreiben Sie eine Strategie zum geschickten Berechnen von Determinanten bei Matrizen geeigneter Struktur.

Problem 2. Es sei K ein Körper. Für eine Matrix $A \in \text{Mat}(n \times n, K)$ und $k \leq n$ bezeichnen wir mit A[1:k,1:k] die Untermatrix von A, die aus den ersten k Spalten der ersten k Zeilen besteht, dh. für

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

wäre

$$A[1:2,1:2] = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}.$$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

- (a) Beweisen Sie: Sind $L, R, D \in \operatorname{Mat}(n \times n, K)$ der Reihe nach eine linke untere Dreiecksmatrix mit ausschließlich Einsen auf der Diagonalen, eine rechte obere Dreiecksmatrix mit ausschließlich Einsen auf der Diagonalen und eine Diagonalmatrix, deren Diagonaleinträge alle $\neq 0$ sind, dann gilt für A = LDR und alle $k = 1, \ldots, n \det(A[1:k,1:k]) \neq 0$.
- (b) Beweisen Sie: Ist $A \in \operatorname{Mat}(n \times n, K)$ eine Matrix, für die für alle $k \leq n \det(A[1:k,1:k]) \neq 0$ gilt, ann gibt es eine linke untere Dreiecksmatrix L mit ausschließlich Einsen auf der DIagonalen, eine rechte obere Dreiecksmatrix R mit ausschließlich Ensen auf der Diagonalen und eine Diagonalmatrix D, deren Diagonaleinträge alle $\neq 0$ snd, sodass A = LDR gilt.
- (c) Erklären Sie, was dieses Resultat mt elementaren Zeilenumformungen zu tun hat.

Problem 3. Es sei $A \in \text{Mat}(n \times n, K)$ eine invertierbare Matrix. Zeigen Sie, dass die folgenden Aussagen äquivalent sind.

- (a) A ist invertierbar.
- (b) $det(A) \neq 0$.
- (c) Die Spalten von A sind linear unabhängig.
- (d) Der Rang von A ist n.
- (e) Die Zeilen von A sind linear unabhängig.
- (f) Die Abbildung $L_A: K^n \to K^n, x \to Ax$ ist surjektiv.
- (g) Die Abbildung L_A ist injektiv.
- (h) Die Abbildung L_A ist bijektiv.
- (i) Es gilt $ker(A) = \{0\}.$
- (j) Jedes Gleichungssystem der Form Ax = b mit $b \in K^n$ ist eindeutig lösbar.
- (k) Es gilt Ax = 0 nur für x = 0.

Proof. Hier ist der Plan

- 1. Per Definition ist *A* invertierbar genau dann, wenn die Abbildung invertierbar ist. Abbildungen sind invertierbar genau dann, wenn die bijektiv sind.
- 2. Bijektive Abbildungen sind sowohl injektiv als auch surjektiv.
- 3. Per Definition ist der Rang die Dimension des Bildraums. Sei jetzt die Abbildung surjektiv. Dann ist $Bild(L_A) = K^n$ mit dimension n, also (f) \Longrightarrow (d).
- 4. Sei jetzt L_A injektiv. Dann ist $\dim(L_A(K^n)) = \dim(K^n) = n$, also Dimension des Bilds ist gleich Dimension des Definitionsbereiches.
- 5. Rang ist *n* genau dann, wenn die Spalten linear unabhängig sind (Zeilenstufenform).
- 6. Spalten sind linear unabhängig genau dann wenn Zeilen linear unabhängig sind (Zeilenrang = Spaltenrang, im Skript).
- 7. Per letzte Übungsblatt: Linear unabhängige Spalten \implies det $(A) \neq 0$.
- 8. (g) \iff (i) per Satz 5.3.10 (Homomorphiesatz).
- 9. (i) \iff (k) per Definition des Kerns.

10. Bijektivität liefert eine eindeutige Lösung. Surjektivität liefert eine Lösung, Injektivität liefert Eindeutigkeit. □

Problem 4. Es sei *V* ein endlich dimensionaler *K*-Vektorraum. Beweisen oder widerlegen Sie:

- (a) Sind $U, V \subseteq V$ Unterräume mit $U \not\subseteq W$ und $W \not\subseteq U$, dann ist $U \cup W$ kein Unterraum von V.
- (b) Sind $U, W \subset V$ Unterräume mit $\dim(U) = \dim(W) = 2$ und gilt $\dim(V) = 3$, dann gilt U = W oder $\dim(U \cap W) = 1$.
- (c) Sind U,W Unterräume von V und sind $\phi:U\to K, \psi:W\to K$ lineare Abbildungen, dann gibt es eine lineare Abbildung $\phi:U+W\to K$ mit $\Psi(u)=\phi(u)$ für alle $u\in U$ und $\Psi(w)=\psi(w)$ für $w\in W$.
- (d) Ist $U \subseteq V$ ein Unterraum, dann gibt es genau einen Unterraum $W \subseteq V$ mit $U \oplus W = V$.
- *Proof.* (a) Wahr. Per Definition gibt es $u \in U$, aber $u \notin W$ und $w \in W$, aber $w \notin U$. Falls $U \cup W$ ein Unterraum wäre, würde $u + w \in U \cup W$, also entweder $u + w \in U$ oder $u + w \in W$. Sei $u + w = v \in U$. Dann gilt $w = v u \in U$, also $w \in U$, ein Widerspruch. Analog bekommt man ein Widerspruch falls $u + v \in W$.
 - (b) Wahr. Aus $U \cap W \subseteq U$ gilt $\dim(U \cap W) \leq 2$. Wenn es 2 wäre, ist $U = U \cap W$. Daraus folgt: U = W.

Wir müssen daher nur den Fall $\dim(U \cap W) = 0$ ausschließen. In diesem Fall: Sei u_1, u_2 eine Basis von U sowie w_1, w_2 eine Basis von W. Da $\dim(U \cap W) = 0$, st $U \cap W = \{e\}$ und $\{u_1, u_2, w_1, w_2\}$ ist linear unabhängig. Dadurch haben wir 4 linear unabhängige Vektoren in einem Raum mit Dimension 3, ein Widerspruch.