Métodos Lineares Explícitos de Três Passos

Luís Eduardo dos Santos Lopes ¹

Instituto de Matemática e Estatística, Universidade de São Paulo. MAP5725 - Tratamento Numérico de Equações Diferenciais (2021)

Resumo

Os métodos lineares explícitos de n-passos, em particular n=3, são utilizados para encontrar soluções numéricas de Equações Diferenciais Ordinárias (EDO) com condição inicial. Neste trabalho, foi analisado o comportamento e convergência desses métodos a partir da implementação usando a linguagem de programação Python.

1. Introdução

Considere o problema de Cauchy na forma normal:

$$z'(t) = f(t, z(t))$$
 com $z(t_0) = z_0$ (1)

E com esse tipo de problema busca-se os métodos numéricos para calcular soluções aproximadas de (1) no intervalo de estudo $I=[t_0,T]\in Dom(y(t))$. O intervalo I é dividido em $m\in\mathbb{N}$ subintervalos, i.e., esse m significa o número de passos de integração $h=\frac{T-t_0}{m}$, onde h é o tamanho do passo de integração.

Um método de passo múltiplo linear (ou método de n-passos linear) tem a forma

$$a_n z_{k+n} + \dots + a_1 z_{k+1} + a_0 z_k = h[b_n f_{k+n} + \dots + b_1 f_{k+1} + b_0 f_k]$$
(2)

onde os parâmetros a_j e b_j , $j=0,\cdots,n$, são constantes, sendo $a_n \neq 0$, $a_0^2+b_0^2 \neq 0$ e $f_{k+i}=f(t_{k+i},z_{k+i})$ com $t_{k+1}=t_k+h$, $k=0,\cdots,n-1$, e o passo de integração h. Note que o intervalo é igualmente espaçado.

O método numérico definido por (2) é implícito quando $b_n \neq 0$ e explícito quando $b_n = 0$. Sem perda de generalidade, assume-se que $a_n = 1$.

Estamos interessados em estudar os métodos lineares explícitos de 3 passos que podem ser escritos com a seguinte fórmula para cada passo no tempo

$$z_{k+3} + a_2 z_{k+2} + a_1 z_{k+1} + a_0 z_k = h[b_2 f_{k+2} + b_1 f_{k+1} + b_0 f_k]$$
(3)

 $^{^1} luislopes@ime.usp.br\\$

onde os parâmetros a_j e b_j , j = 0, 1 e 2, são constantes a serem determinadas. Esses métodos podem ser extendidos para EDO's de ordens superiores adotando o modelo n-dimensional.

Para analisar esses métodos precisamos recordar alguns conceitos importantes dos métodos de passos múltiplos lineares. Baseado no capítulo 6 de Roma [1], o primeiro e o segundo polinômio característico destes métodos são definidos, respectivamente, por ρ e σ ,

$$\rho(w) = w^3 + a_2 w^2 + a_1 w + a_0 = (w - 1)(w - r_2)(w - r_3) \tag{4}$$

$$\sigma(w) = b_2 w^2 + b_1 w + b_0 \tag{5}$$

onde as raízes $1, r_2$ e r_3 são três números complexos.

Definimos também

$$\pi(s) = \rho(s) - \theta\sigma(s) \tag{6}$$

o polinômio de estabildade absoluta associado a um problema linear de 3 passos, onde ρ e σ são definidos, respectivamente, em (4) e (5), e $\theta = \lambda h \in \mathbb{C}$.

Se todas as raízes s_j do polinômio de estabildade absoluta forem $|s_j| < 1$, diremos que o método é absolutamente estável para θ dado. A região de estabilidade absoluta é definida pelo conjunto de valores de θ no plano complexo tal que o método é absolutamente estável.

O intervalo de estabildade absoluta pode ser determinado calculando as raízes de (6) para um conjunto de valores de θ numa vizinhança da origem, em seguinda representar graficamente as funções $|s_j(\theta)|$ e observar os intervalos para os quais $|s_j(\theta)| < 1$. Também há outra forma de determinar o intervalo de estabildade absoluta que será apresentado mais a frente e aplicado nos métodos.

Neste trabalho, estudaremos três métodos explícitos de 3 passos e aplicaremos para dois casos de EDO's. Nosso objetivo é comparar o desempenho de cada método com o auxílio da implementação em Python. Os algoritmos foram organizados em 2 arquivos: $T4.caso1_Luis.py$ e $T4.caso2_Luis.py$. E pode ser acessado pelo arquivo .py anexado ao trabalho ou pelo github.

2. Métodos Lineares Explícitos de Três Passos

Inicialmente iremos apresentar e/ou construir os três métodos explícitos de 3 passos e determinar seus coeficientes, raízes do primeiro polinômio e intervalo de estabilidade absoluta.

2.1. Método I: Método de Adams-Bashforth de 3 passos

O método de Adams-Bashforth de 3 passos é da forma

$$z_{k+3} - z_{k+2} = h\left[\frac{23}{12}f_{k+2} - \frac{16}{12}f_{k+1} + \frac{5}{12}f_k\right]$$
 (7)

a dedução deste método pode ser encontrada nas notas de aula de Jim Lambers [2].

Por (7) tem-se os seguintes parâmetros:

$$a_0 = a_1 = 0, a_2 = -1, b_0 = \frac{5}{12}, b_1 = -\frac{16}{12} e b_2 = \frac{23}{12}$$

Assim, o primeiro polinômio característico deste método é dado por

$$\rho(w) = w^3 - w^2 + 0w + 0 = (w - 1)(w - r_2)(w - r_3)$$

$$= w^3 - w^2r_3 - w^2r_2 + wr_2r_3 - w^2 + wr_3 + wr_2 - r_2r_3$$

$$= w^3 + (-1 - r_2 - r_3)w^2 + (r_2 + r_2r_3 + r_3)w - r_2r_3$$

Ou seja,

$$\begin{cases}
-1 &= -1 - r_2 - r_3 \\
0 &= r_2 + r_2 r_3 + r_3 \\
0 &= -r_2 r_3
\end{cases}$$

Logo, as raízes são 1 e $r_2 = -r_3$. Note que a única possibilidade disto ocorrer é quando $r_2 = r_3 = 0$. De fato, bastava ter observado que $\rho(w) = w^3 - w^2$, i.e., $w^2(w-1) = 0$. Com isso, concluimos que 1 e 0 são as raízes de $\rho(w)$.

O polinômio de estabilidade absoluta para este método é

$$\pi(s) = s^3 - s^2 - \frac{\theta}{12}(23s^2 - 16s + 5) \text{ onde } \theta = \lambda h$$
 (8)

Assim,

$$s^{3} - s^{2}(1 + \frac{23}{12}\theta) + \frac{16}{12}\theta s - \frac{5}{12}\theta = 0$$
(9)

Seu intervalo de estabilidade absoluta pode ser observado na Figura (1) ou estimado com precisão de 0.1 de modo a ser verificado que para $\theta = \lambda h = -0.1, -0.2, -0.3, \cdots$ o polinômio de estabilidade absoluta relacionado com θ tenha todas as raízes com módulo menor que 1.

Vejamos as possibilidades, iremos escolher valores para θ e estimar as raízes para cada caso em (9).

• Para
$$\theta = -0.1 = -\frac{1}{10}$$
:

$$s^3 - \frac{97}{120}s^2 - \frac{2}{15}s + \frac{1}{24} = 0$$

Tem-se as raízes $s_1 \approx -0.26818$, $s_2 \approx 0.17171$ e $s_3 \approx 0.90480$. Todas satisfazem $|s_j| < 1$.

Figura 1: Região de Estabilidade para o Método de Adams-Bashforth de 3 passos.

• Para $\theta = -0.2 = -\frac{1}{5}$:

$$s^3 - \frac{37}{60}s^2 - \frac{4}{15}s + \frac{1}{12} = 0$$

Tem-se as raízes $s_1 \approx -0.43540$, $s_2 \approx 0.23395$ e $s_3 \approx 0.81811$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.3 = -\frac{3}{10}$:

$$s^3 - \frac{17}{40}s^2 - \frac{2}{5}s + \frac{1}{8} = 0$$

Tem-se as raízes $s_1 \approx -0.59662, \, s_2 \approx 0.28407$ e $s_3 \approx 0.73755$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.4 = -\frac{2}{5}$:

$$s^3 - \frac{7}{30}s^2 - \frac{8}{15}s + \frac{1}{6} = 0$$

Tem-se as raízes $s_1 = -\frac{1}{3}$, $s_2 = \frac{-1-\sqrt{201}}{20}$ e $s_3 = \frac{1-\sqrt{201}}{20}$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.5 = -\frac{1}{2}$:

$$s^3 - \frac{1}{24}s^2 - \frac{2}{3}s + \frac{5}{24} = 0$$

Tem-se as raízes $s_1 \approx -0.92393, \, s_2 \approx 0.39556$ e $s_3 \approx 0.57004$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.6 = -\frac{3}{5}$:

$$s^3 + \frac{3}{20}s^2 - \frac{4}{5}s + \frac{1}{4} = 0$$

Tem-se as raízes $s_1 \approx -1.0921$, $s_2 \approx 0.47106 - 0.08375i$ e $s_3 \approx 0.47106 + 0.08375i$. Note que $|s_1| > 1$ contradizendo a definição de estabilidade absoluta. Portanto, o intervalo de estabilidade absoluta do Método de Adams-Bashforth de 3 passos é I = (-0.6, 0) com precisão de 0.1.

2.2. Método II

Para o segundo método iremos escolher as raízes $r_2 = 0$ e $r_3 = 1/10$ e substituir em (4) de modo que o método seja zero-estável. Com isso, obtemos o primeiro polinômio característico deste método

$$\rho(w) = w^3 + a_2 w^2 + a_1 w + a_0 = (w - 1)(w)(w - 1/10)$$
$$= w^3 - \frac{11}{10}w^2 + \frac{1}{10}w$$

Logo,
$$a_0 = 0$$
, $a_1 = \frac{1}{10}$ e $a_2 = -\frac{11}{10}$.

Agora para determinar os b_j de modo que o método tenha ordem 3 de consistência, precisamos usar o Teorema 5.3 das notas de Roma [1], isto é, mostrar que $C_0 = C_1 = C_2 = C_3 = 0$ e $C_4 \neq 0$ onde

$$C_p = \sum_{j=0}^{n} \frac{j^p a_j}{p!} - \sum_{j=0}^{n} \frac{j^{p-1} b_j}{(p-1)!}$$

Vejamos,

$$C_0 = a_0 + a_1 + a_2 + 1 = 1/10 - 11/10 + 1 = 0$$

$$C_1 = a_1 + 2a_2 + 3 - b_0 - b_1 - b_2 = 0 \Rightarrow b_0 + b_1 + b_2 = \frac{9}{10}$$

$$C_2 = \frac{a_1 + 4a_2 + 9}{2} - b_1 - 2b_2 = 0 \Rightarrow b_1 + 2b_2 = \frac{47}{20}$$

$$C_3 = \frac{a_1 + 8a_2 + 27}{6} - \frac{b_1 + 4b_2}{2} = 0 \Rightarrow b_1 + 4b_2 = \frac{61}{10}$$

Com isso, temos

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{9}{10} \\ \frac{47}{20} \\ \frac{61}{10} \end{bmatrix}$$

Logo,
$$b_0 = \frac{17}{40}$$
, $b_1 = -\frac{56}{40}$ e $b_2 = \frac{75}{40}$.

Por fim, $C_4 \neq 0$. De fato,

$$C_4 = \frac{a_1 + 16a_2 + 81a_3}{24} - \frac{b_1 + 8b_2}{6} = \frac{1/10 + 16(-11/10) + 81}{24} - \frac{-56/40 + 8(75/40)}{6} = \frac{91}{240} \neq 0$$

Substituindo em (3) os parâmetros encontrados, obtemos a forma do Método 2:

$$z_{k+3} - \frac{11}{10}z_{k+2} + \frac{1}{10}z_{k+1} = \frac{h}{40}[75f_{k+2} - 56f_{k+1} + 17f_k]$$
(10)

O polinômio de estabilidade absoluta para este método é

$$\pi(s) = s^3 - \frac{11}{10}s^2 + \frac{1}{10}s - \frac{\theta}{40}(75s^2 - 56s + 17) \text{ onde } \theta = \lambda h$$
 (11)

Ou seja,

$$s^{3} - s^{2}\left(\frac{11}{10} + \frac{75}{40}\theta\right) + s\left(\frac{1}{10} + \frac{56}{40}\theta\right) - \frac{17}{40}\theta = 0$$
 (12)

Para estimar o intervalo de estabilidade absoluta deste método usaremos a mesma ideia feito no caso do Método I, verificando com θ onde tem todas as raízes com módulo menor que 1.

Antes de iniciar os cálculos, faremos uma observação que será útil neste trabalho.

Observação 1. Seja r = x + iy uma raiz complexa. Se queremos que todas as raízes sejam |r| < 1, i.e., $\sqrt{x^2 + y^2} < 1$, precisamos que $x^2 + y^2 < 1$.

Vejamos as possibilidades.

• Para $\theta = -0.1 = -\frac{1}{10}$:

$$s^3 - \frac{73}{80}s^2 - \frac{1}{25}s + \frac{17}{400} = 0$$

Tem-se as raízes $s_1 \approx -0.21291$, $s_2 \approx 0.22062$ e $s_3 \approx 0.90479$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.2 = -\frac{1}{5}$:

$$s^3 - \frac{29}{40}s^2 - \frac{9}{50}s + \frac{17}{200} = 0$$

Tem-se as raízes $s_1 \approx -0.37220, \, s_2 \approx 0.27918$ e $s_3 \approx 0.18802$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.3 = -\frac{3}{10}$:

$$s^3 - \frac{43}{80}s^2 - \frac{8}{25}s + \frac{51}{400} = 0$$

Tem-se as raízes $s_1 \approx -0.52746$, $s_2 \approx 0.32800$ e $s_3 \approx 0.73696$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.4 = -\frac{2}{5}$:

$$s^3 - \frac{7}{20}s^2 - \frac{23}{50}s + \frac{17}{100} = 0$$

Tem-se as raízes $s_1 \approx -0.68462, \, s_2 \approx 0.37841$ e $s_3 \approx 0.65621$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.5 = -\frac{1}{2}$:

$$s^3 - \frac{13}{80}s^2 - \frac{3}{5}s + \frac{17}{80} = 0$$

Tem-se as raízes $s_1 \approx -0.84507$, $s_2 \approx 0.45543$ e $s_3 \approx 0.55213$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.6 = -\frac{3}{5}$:

$$s^3 + \frac{1}{40}s^2 - \frac{37}{50}s - \frac{51}{200} = 0$$

Tem-se as raízes $s_1 \approx -1.0089$, $s_2 \approx 0.49197 - 0.10346i$ e $s_3 \approx 0.49197 + 0.10346i$. Note que $|s_1| > 1$ que contradiz a definição de estabilidade absoluta. Portanto, o intervalo de estabilidade absoluta do Método II é I = (-0.6, 0) com precisão de 0.1.

2.3. Método III

Para o terceiro e último método deste trrabalho, iremos escolher duas raízes complexas conjugadas. Note que se r=x+iy e queremos que o método seja zero-estável, isto é, $|r|=|x+iy|\leq 1 \Rightarrow x^2+y^2\leq 1$, podemos tomar $x=y=\frac{1}{2}$. Assim, $(\frac{1}{2})^2+(\frac{1}{2})^2=\frac{1}{2}<1$.

Então, escolhendo $r_2 = \frac{1}{2} + \frac{i}{2}$ e $r_3 = \frac{1}{2} - \frac{i}{2}$ temos que o método é zero-estável. Substituindo em (4), obtemos o primeiro polinômio característico deste método

$$\rho(w) = w^3 + a_2 w^2 + a_1 w + a_0 = (w - 1)(w - \frac{1+i}{2})(w - \frac{1-i}{2})
= w^3 + (-1 - \frac{1+i}{2} - \frac{1-i}{2})w^2 + (\frac{1+i}{2} + (\frac{1+i}{2})(\frac{1-i}{2}) + \frac{1+i}{2})w - (\frac{1+i}{2})(\frac{1-i}{2})
= w^3 - 2w^2 + \frac{3}{2}w - \frac{1}{2}$$

Logo,
$$a_0 = -\frac{1}{2}$$
, $a_1 = \frac{3}{2}$ e $a_2 = -2$.

Agora para determinar os b_j de modo que o método tenha ordem 3 de consistência, precisamos usar novamente o Teorema 5.3 das notas de Roma [1], isto é, mostrar que $C_0 = C_1 = C_2 = C_3 = 0$ e $C_4 \neq 0$ onde

$$C_p = \sum_{j=0}^{n} \frac{j^p a_j}{p!} - \sum_{j=0}^{n} \frac{j^{p-1} b_j}{(p-1)!}$$

Vejamos,

$$C_0 = a_0 + a_1 + a_2 + 1 = -1/2 + 3/2 - 2 + 1 = 0$$

$$C_1 = a_1 + 2a_2 + 3 - b_0 - b_1 - b_2 = 0 \Rightarrow b_0 + b_1 + b_2 = \frac{1}{2}$$

$$C_2 = \frac{a_1 + 4a_2 + 9}{2} - b_1 - 2b_2 = 0 \Rightarrow b_1 + 2b_2 = \frac{5}{4}$$

$$C_3 = \frac{a_1 + 8a_2 + 27}{6} - \frac{b_1 + 4b_2}{2} = 0 \Rightarrow b_1 + 4b_2 = \frac{25}{6}$$

Com isso, temos

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{5}{4} \\ \frac{25}{6} \end{bmatrix}$$

Logo,
$$b_0 = \frac{17}{24}$$
, $b_1 = -\frac{5}{3}$ e $b_2 = \frac{35}{24}$.

Por fim, $C_4 \neq 0$. De fato,

$$C_4 = \frac{a_1 + 16a_2 + 81a_3}{24} - \frac{b_1 + 8b_2}{6} = \frac{-1/2 + 16(-2) + 81}{24} - \frac{-5/3 + 8(-35/24)}{6} = \frac{97}{48} + \frac{20}{9} \neq 0$$

Substituindo em (3) os parâmetros encontrados, obtemos a forma do Método 3:

$$z_{k+3} - 2z_{k+2} + \frac{3}{2}z_{k+1} - \frac{1}{2}z_k = h\left[\frac{35}{24}f_{k+2} - \frac{5}{3}f_{k+1} + \frac{17}{24}f_k\right]$$
(13)

O polinômio de estabilidade absoluta para este método é

$$\pi(s) = s^3 - 2s^2 + \frac{3}{2}s - \frac{1}{2} - \theta(\frac{35}{24}s^2 - \frac{5}{3}s + \frac{17}{24}) \text{ onde } \theta = \lambda h$$
 (14)

Ou seja,

$$s^{3} - s^{2}(2 + \frac{35}{24}\theta) + s(\frac{3}{2} + \frac{5}{3}\theta) - \frac{1}{2} - \frac{17}{24}\theta = 0$$
 (15)

Para estimar o intervalo de estabilidade absoluta deste método usaremos a mesma ideia feito no caso do Método I e II, verificando com θ onde tem todas as raízes com módulo menor que 1.

Vejamos as possibilidades.

• Para $\theta = -0.1 = -\frac{1}{10}$:

$$s^3 - \frac{89}{48}s^2 + \frac{4}{3}s - \frac{103}{240} = 0$$

Tem-se as raízes $s_1 \approx -0.90475$, $s_2 \approx 0.47471 - 0.49900i$ e $s_3 \approx 0.47471 + 0.49900i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.2 = -\frac{1}{5}$:

$$s^3 - \frac{41}{24}s^2 + \frac{7}{6}s - \frac{43}{120} = 0$$

Tem-se as raízes $s_1 \approx 0.81732$, $s_2 \approx 0.44551 - 0.48985i$ e $s_3 \approx 0.44551 + 0.48985i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.3 = -\frac{3}{10}$:

$$s^3 - \frac{25}{16}s^2 + s - \frac{23}{80} = 0$$

Tem-se as raízes $s_1 \approx 0.73356$, $s_2 \approx 0.41447 - 0.46919i$ e $s_3 \approx 0.41447 + 0.46919i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.4 = -\frac{2}{5}$:

$$s^3 - \frac{17}{12}s^2 + \frac{5}{6}s - \frac{13}{60} = 0$$

Tem-se as raízes $s_1 \approx 0.64578$, $s_2 \approx 0.38544 - 0.43267i$ e $s_3 \approx 0.38544 - 0.43267i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.5 = -\frac{1}{2}$:

$$s^3 - \frac{61}{48}s^2 + \frac{2}{3}s - \frac{7}{48} = 0$$

Tem-se as raízes $s_1 \approx 0.53367$, $s_2 \approx 0.36858 - 0.37069i$ e $s_3 \approx 0.36858 + 0.37069i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.6 = -\frac{3}{5}$:

$$s^3 - \frac{9}{8}s^2 + \frac{1}{2}s - \frac{3}{40} = 0$$

Tem-se as raízes $s_1 \approx 0.29225$, $s_2 \approx 0.41637 - 0.28855i$ e $s_3 \approx 0.41637 + 0.28855i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.7 = -\frac{7}{10}$:

$$s^3 - \frac{47}{48}s^2 + \frac{1}{3}s - \frac{1}{240} = 0$$

Tem-se as raízes $s_1 \approx 0.012989$, $s_2 \approx 0.48309 - 0.29565i$ e $s_3 \approx 0.48309 + 0.29565i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -0.8 = -\frac{4}{5}$:

$$s^3 - \frac{5}{6}s^2 + \frac{1}{6}s + \frac{1}{15} = 0$$

Tem-se as raízes $s_1 \approx -0.18669$, $s_2 \approx 0.51001 - 0.31142i$ e $s_3 \approx 0.51001 + 0.31142i$.

• Para $\theta = -0.9 = -\frac{9}{10}$:

$$s^3 - \frac{11}{16}s^2 + \frac{11}{80} = 0$$

Tem-se as raízes $s_1 \approx -0.36197$, $s_2 \approx 0.52473 - 0.32330i$ e $s_3 \approx 0.52473 + 0.32330i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -1.0$:

$$s^3 - \frac{13}{24}s^2 - \frac{1}{6}s + \frac{5}{24} = 0$$

Tem-se as raízes $s_1 \approx -0.52649$, $s_2 \approx 0.53408 - 0.33236i$ e $s_3 \approx 0.53408 + 0.33236i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -1.1 = -\frac{11}{10}$:

$$s^3 - \frac{19}{48}s^2 - \frac{1}{3}s + \frac{67}{240} = 0$$

Tem-se as raízes $s_1 \approx -0.68521$, $s_2 \approx 0.54052 - 0.33948i$ e $s_3 \approx 0.54052 + 0.33948i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -1.2 = -\frac{12}{10}$:

$$s^3 - \frac{1}{4}s^2 - \frac{1}{2}s + \frac{7}{20} = 0$$

Tem-se as raízes $s_1 \approx -0.84044$, $s_2 \approx 0.54522 - 0.34523i$ e $s_3 \approx 0.54522 + 0.34523i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -1.3 = -\frac{13}{10}$:

$$s^3 - \frac{5}{48}s^2 - \frac{2}{3}s + \frac{101}{240} = 0$$

Tem-se as raízes $s_1 \approx -0.99339$, $s_2 \approx 0.54878 - 0.34997i$ e $s_3 \approx 0.54878 + 0.34997i$. Todas satisfazem $|s_j| < 1$.

• Para $\theta = -1.4 = -\frac{14}{10}$:

$$s^3 + \frac{1}{24}s^2 - \frac{5}{6}s + \frac{59}{120} = 0$$

Tem-se as raízes $s_1 \approx -1.1448$, $s_2 \approx 0.55156 - 0.35394i$ e $s_3 \approx 0.55156 + 0.35394i$. Note que $|s_1| > 1$ que contradiz a definição de estabilidade absoluta. Portanto, o intervalo de estabilidade absoluta do Método III é I = (-1.4, 0) com precisão de 0.1.

3. Resultados

Para um dado passo de integração h e um instante de tempo t, calculamos as soluções numéricas $\eta(t,h)$ e, digamos h/2, $\eta(t,h/2)$. Se h for suficientemente pequeno, podemos escrever o erro de discretização global como $e(t,h) = y(t) - \eta(t,h)$ e para h/2 a forma $e(t,h/2) = y(t) - \eta(t,h/2)$.

Nesta seção iremos aplicar os três métodos numéricos e compará-los em dois casos de edo's.

3.1. Caso 1

Seja o Problema de Cauchy

$$\begin{cases} x'(t) &= y(t) \\ y'(t) &= \frac{y(t)}{t} - 4t^2 x(t) \end{cases}$$
 (16)

com $t \in [\sqrt{\pi}, T]$ e condições iniciais $x(\sqrt{\pi}) = 0$ e $y(\sqrt{\pi}) = -2\sqrt{\pi}$.

Podemos reescrever o sistema (16) da forma

$$\mathbb{Z}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \mathbb{F}(t, \mathbb{Z}) = \begin{pmatrix} y(t) \\ \frac{y(t)}{t} - 4t^2 x(t) \end{pmatrix}$$
(17)

com

$$\mathbb{Z}(\sqrt{\pi}) = \begin{pmatrix} 0\\ -2\sqrt{\pi} \end{pmatrix} \tag{18}$$

A solução exata de (17) pode ser escrita como

$$\mathbb{Z}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \sin(t^2) \\ 2t\cos(t^2) \end{pmatrix}$$
 (19)

De fato,

$$\mathbb{Z}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 2t\cos(t^2) \\ 2\cos(t^2) - 4t^2\sin(t^2) \end{pmatrix} = \begin{pmatrix} y(t) \\ \frac{y(t)}{t} - 4t^2x(t) \end{pmatrix}$$
(20)

e

$$\mathbb{Z}(\sqrt{\pi}) = \begin{pmatrix} \sin(\pi) \\ 2\sqrt{\pi}\cos(\pi) \end{pmatrix} = \begin{pmatrix} 0 \\ -2\sqrt{\pi} \end{pmatrix}$$
 (21)

Tomando $T=2\pi$, temos a solução (19) para $t \in [\sqrt{\pi}, 2\pi]$ como na Figura (2). É um espiral que roda cada vez mais rápido em cada passo de integração e para ver esse compartamento iremos aplicar em métodos de 3 passos.

Figura 2: Solução Exata do Sistema (17) para $t \in [\sqrt{\pi}, 2\pi]$.

Iremos testar os três métodos de três passos proposto neste trabalho usando o intervalo $[\sqrt{\pi},2\pi]$. Então, o passo de integração é $h=\frac{T-t_0}{n}=\frac{2\pi-\sqrt{\pi}}{n}$, onde adotaremos nessa seção o valor n sendo o número de passos de integração. E sabendo que a solução exata em $T=2\pi$ vale $[x(2\pi),y(2\pi)]=[0.97834055,-2.60126196]$.

A) Método I: Método de Adams-Bashforth de 3 passos

Usando a equação (7) no problema (17) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método I, organizamos a Tabela (1) para facilitar a visualização da convergência.

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
128	0.9869948803802941		
256	0.10689819371612508	9.233036088535991	3.20680
512	0.00703906505515306	15.186419343840067	3.92470
1024	0.00076753204365009	9.17103737021567	3.19708
2048	6.6118035114581e-05	11.60851259902044	3.53711

Tabela 1: Verificação da Ordem de Convergência do Método I aplicado em (17) no instante $t=2\pi$.

Obsevamos pela Tabela (1) o comportamento esperado para o Método I com o erro proporcional a h. A Figura (3) ilustra a aproximação numérica para h suficientemente pequeno e pertencente ao intervalo de estabilidade absoluta estudado na seção 2.1. E assim, encontramos pela Tabela (1) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a teoria.

Figura 3: Aproximação Numérica da EDO (17) pelo Método de Adams-Bashforth de 3 passos para n=256 e n=1024.

B) Método II

Usando a equação (10) no problema (17) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método II, organizamos a Tabela (2) com alguns testes para facilitar a visualização da convergência.

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
512	0.007953044889055016		
1024	0.0008779432637591178	9.058723060305981	3.17930
2048	7.833869806128657e-05	11.207018823216567	3.48633

Tabela 2: Verificação da Ordem de Convergência do Método II aplicado em (17) no instante $t=2\pi$.

Obsevamos pela Tabela (2) o comportamento esperado para o Método II com o erro proporcional a h. A Figura (4) ilustra a aproximação numérica para h suficientemente pequeno e pertencente ao intervalo de estabilidade absoluta estudado na seção 2.2. E assim, encontramos pela Tabela (2) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a ordem estabelecida na seção 2.2.

Figura 4: Aproximação Numérica da EDO (17) pelo Método II para n = 256 e n = 1024.

C) Método III

Usando a equação (13) no problema (17) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método II, organizamos a Tabela (3) com alguns testes para facilitar a visualização da convergência.

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
256	0.24403495549819132		
512	0.01775485258941445	13.744690600455137	3.78080
1024	0.0021137579388530447	8.399662167111002	3.07033
2048	0.0002344565028357115	9.015565417412194	3.17241

Tabela 3: Verificação da Ordem de Convergência do Método III aplicado em (17) no instante $t=2\pi$.

Obsevamos pela Tabela (3) o comportamento esperado para o Método III com o erro proporcional a h. A Figura (5) ilustra a aproximação numérica para h suficientemente pequeno e pertencente ao intervalo de estabilidade absoluta estudado na seção 2.3. E assim, encontramos pela Tabela (3) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a ordem estabelecida na seção 2.3.

Figura 5: Aproximação Numérica da EDO (17) pelo Método III para n=256 e n=1024.

Após observar a aplicação dos três métodos numéricos de 3 passos, concluimos que todos esses métodos possuem a ordem 3 de convergência e a partir das tabelas apresentadas temos a diferença entre eles. O método I é o que melhor se aproxima da solução exata, em seguida do Método II e III, isto é, os três métodos se aproximam com a mesma ordem de convergência, mas método I possui o menor erro de discretição global ao compará-los.

3.2. Caso 2

Seja o Problema de Cauchy

$$y'(t) = \left(-2t + \frac{5\cos(5t)}{2 + \sin(5t)}\right)y(t) \tag{22}$$

com $t \in [-\pi, 3\pi]$ e condição inicial $y(-\pi) = 2exp(-\pi^2)$.

A solução exata de (22) pode ser escrita como

$$y(t) = exp(-t^2)(2 + \sin(5t))$$
(23)

De fato,
$$y'(t) = -2te^{-t^2}(2 + \sin(5t)) + 5e^{-t^2}\cos(5t) = -2te^{-t^2}(2 + \sin(5t)) + \frac{5\cos(5t)e^{-t^2}}{2 + \sin(5t)}(2 + \sin(5t)) = -2ty(t) + \frac{5\cos(5t)}{2 + \sin(5t)}y(t) = \left(-2t + \frac{5\cos(5t)}{2 + \sin(5t)}\right)y(t).$$

Para $t \in [-\pi, 3\pi]$, temos na Figura (6) a solução exata de (22). É ilustrado algumas oscilações numa região limitada.

Figura 6: Solução Exata da EDO (22) para $t \in [-\pi, 3\pi]$.

Iremos testar novamente os três métodos de três passos proposto neste trabalho usando o intervalo $[-\pi, 3\pi]$. Então, o passo de integração é $h = \frac{3\pi - (-\pi)}{n} = \frac{4\pi}{n}$.

A) Método I: Método de Adams-Bashforth de 3 passos

Usando a equação (7) no problema (22) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método I, organizamos a Tabela (4) para facilitar a visualização da convergência.

Obsevamos pela Tabela (4) o comportamento esperado para o Método I com o erro proporcional a h. A Figura (7) ilustra a aproximação numérica para h suficientemente pequeno e

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
1024	1.00420338e-39	$4.80908848\mathrm{e}{+00}$	$2.26576347\mathrm{e}{+00}$
2048	1.22596637e-40	8.19111683e+00	3.03406017e+00
4096	1.46911785e-41	8.34491511e+00	3.06089737e+00
8192	1.79207085e-42	$8.19787816\mathrm{e}{+00}$	3.03525055e+00
16384	2.21206060e-43	$8.10136417\mathrm{e}{+00}$	3.01816486e+00

Tabela 4: Verificação da Ordem de Convergência do Método I aplicado em (22) no instante $t=3\pi$.

pertencente ao intervalo de estabilidade absoluta estudado na seção 2.1. E assim, encontramos pela Tabela (4) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a teoria.

Figura 7: Aproximação Numérica da EDO (22) pelo Método de Adams-Bashforth de 3 passos para n=1024 e n=8192.

B) Método II

Usando a equação (10) no problema (22) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método II, organizamos a Tabela (5) com alguns testes para facilitar a visualização da convergência.

Obsevamos pela Tabela (5) o comportamento esperado para o Método II com o erro proporcional a h. A Figura (8) ilustra a aproximação numérica para h suficientemente pequeno e pertencente ao intervalo de estabilidade absoluta estudado na seção 2.2. E assim, encontramos pela Tabela (2) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a ordem estabelecida na seção 2.2.

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
1024	1.14056650e-39	$4.41951821\mathrm{e}{+00}$	$2.14388910\mathrm{e}{+00}$
2048	1.39126311e-40	$ \boxed{8.19806470\mathrm{e}{+00} }$	3.03528338e+00
4096	1.65945559e-41	$8.38385260 \mathrm{e}{+00}$	$3.06761335\mathrm{e}{+00}$
8192	2.01881913e-42	$8.21993199\mathrm{e}{+00}$	$3.03912646\mathrm{e}{+00}$
16384	2.48854384e-43	8.11245153e+00	$3.02013795\mathrm{e}{+00}$

Tabela 5: Verificação da Ordem de Convergência do Método II aplicado em (17) no instante $t=3\pi$.

Figura 8: Aproximação Numérica da EDO (22) pelo Método II para n = 1024 e n = 8192.

C) Método III

Usando a equação (13) no problema (22) encontramos a solução aproximada para h suficientemente pequeno. Para verificar a ordem de convergência do Método II, organizamos a Tabela (6) com alguns testes para facilitar a visualização da convergência.

n	e(t,h)	$q = \frac{ e(t,2h) }{ e(t,h) }$	$\log_2(q)$
1024	2.02459567e-39	$2.60583503\mathrm{e}{+00}$	$1.38174575\mathrm{e}{+00}$
2048	2.80798875e-40	7.21012743e+00	$2.85002476\mathrm{e}{+00}$
4096	3.42298059e-41	$ 8.20334407\mathrm{e}{+00} $	3.03621214e+00
8192	4.18365264e-42	$ 8.18179922\mathrm{e}{+00} $	3.03241813e+00
16384	5.16396438e-43	$oxed{8.10162955\mathrm{e}{+00}}$	3.01821212e+00

Tabela 6: Verificação da Ordem de Convergência do Método III aplicado em (22) no instante $t=3\pi$.

Obsevamos pela Tabela (6) o comportamento esperado para o Método III com o erro proporcional a h. A Figura (9) ilustra a aproximação numérica para h suficientemente pequeno e pertencente ao intervalo de estabilidade absoluta estudado na seção 2.3. E assim, encontramos pela Tabela (6) que $\log_2(q) \approx 3$, isto é, a ordem 3 do método coincide com a ordem estabelecida na seção 2.3.

Figura 9: Aproximação Numérica da EDO (22) pelo Método III para n = 1024 e n = 8192.

Após observar a aplicação dos três métodos numéricos de 3 passos, concluimos que todos esses métodos possuem a ordem 3 de convergência e a partir das tabelas apresentadas temos a diferença entre eles. O método I é o que melhor se aproxima da solução exata, em seguida do Método II e III, isto é, os três métodos se aproximam com a mesma ordem de convergência, mas método I possui o menor erro de discretição global ao compará-los.

4. Considerações Finais

No trabalho apresentado, os métodos lineares explícitos de 3 passos de terceira ordem foram utilizados com o objetivo de analisar seus resultados comparando-os com a solução analítica da teoria de EDO. Existem situações em que é preferível um método numérico ao método analítico ainda que este exista, por exemplo se a solução para um problema envolve muitos cálculos. A maior parte dos problemas concretos são, em geral, complexos e envolvem fenômenos não lineares, pelo que é comum de se encontrar numa situação em que os conhecimentos de matemática não são suficientes para a descoberta de uma solução exata para um problema real.

Com o estudo e desenvolvimento dos métodos numéricos pode-se concluir que para obter resultados coerentes e precisos, utilizando os métodos já mencionados, é necessário uma correta implementação do problema, atentando-se para a discretização do domínio e a correta substituição das aproximações na equação do problema em questão.

Os métodos numéricos apresentados neste trabalho são métodos de implementação que exige apenas um cálculo de f por passo no tempo e produzem soluções eficientes para diversos problemas envolvendo EDO's. E a implementação feita em Python aplicado nos dois casos de EDO de estudo foram bem sucedidos com o procedimento de verificação por solução manufaturada e razão de refinamento r=2, conforme apresentado nas tabelas.

De acordo com os problemas apresentados neste trabalho, nota-se que o método de Adams-Bashforth de 3 passos foi mais eficaz em relação aos outros métodos estudados. Isso parte do fato de que o método apresenta erro de ordem $O(h^3)$ e é o que possui o menor erro de discretização global (pequeno) ao compará-los.

Referências

- [1] ROMA, A. L.; BEVILACQUA, J. S.; NÓS, R. L. Métodos para a Solução Numérica de Equações Diferenciais Ordinárias a Valores Iniciais. Notas de aula em construção. São Paulo: IME-USP, ed. dez-2020.
- [2] LAMBERS, J. Lecture 5 Notes. MAT 461/561. Spring Semester 2009-10.