

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

PME0016 MECHANICS

(Foundation in Engineering)

11 MARCH 2020
9.00 A.M. – 11.00 A.M.
(2 Hours)

INSTRUCTIONS TO STUDENTS

1. This question paper consists of 6 pages, including the cover page.
2. Answer all questions.
3. Write your answers in the Answer Booklet provided.
4. Show all relevant steps to obtain maximum marks.

QUESTION 1 (10 MARKS)

- a) An object is acted upon by only two forces that are of equal magnitude and oppositely directed. Is the object necessarily in static equilibrium? Explain why it is or is not. [2 marks]
- b) A child of mass $m = 55.0 \text{ kg}$ sits on the left end of a seesaw—a plank of length $L = 4.00 \text{ m}$, pivoted in the middle as in Figure Q1(a).

Figure Q1(a)

- (i) Where should the man of mass $m = 75 \text{ kg}$ sit if the system (seesaw together with the child and the man) is to be balanced about an axis at the pivot point? [2 marks]
- (ii) Find the normal force exerted by the pivot if the plank has a mass of $m = 12 \text{ kg}$. [2 marks]
- (iii) Repeat part (i), but this time the axis is at the left end of the plank. [2.5 marks]
- (iv) What happens to the torque due to the child's weight about the axis at the pivot point if the child now leans backwards? Explain. [1.5 marks]

Continued...

QUESTION 2 (10 MARKS)

- a) State the principle of conservation of energy. [1 mark]
- b) As shown in Figure Q2(b), a 90-N block at a height of 7 m slides down from rest. Surface AB is smooth whereas surface BC is rough. The frictional force along surface BC brings the block to rest at point C.

Figure Q2(b)

- (i) Calculate the distance S_{AB} . [1 mark]
- (ii) Calculate the net work done on the block along surface AB. [2 marks]
- (iii) Calculate the speed of the block just before it reaches point B. [3 marks]
- (iv) Calculate the energy lost due to frictional force along surface BC. [3 marks]

QUESTION 3 (10 MARKS)

- a) A bicycle odometer (which counts revolutions and is calibrated to report distance traveled) is attached near the wheel hub and is calibrated for 27-inch wheels. What happens if you use it on a bicycle 24-inch wheels? Will the reading of the odometer increase or decrease when we use 24-inch wheels? Explain your answer. [2.5 marks]
- b) A blade of a giant ceiling fan has a radius of 2 m. The blade is rotating with an initial angular velocity of 0.75 rev s^{-1} . The angular acceleration of the blade is 1.50 rev s^{-2} . Determine
 - (i) the angular velocity after 5s in rad/s, [2.5 marks]
 - (ii) the number of revolutions made by the blade in this time interval, [2 marks]
 - (iii) the tangential speed of a point on the tip of the blade at time $t = 5\text{s}$, [1.5 marks]
 - (iv) the centripetal acceleration of a point on the tip of the blade at time $t = 5\text{s}$. [1.5 marks]

Continued...

QUESTION 4 (10 MARKS)

- a) A metal sphere with a diameter of 4 cm has a density of 7000 kg m^{-3} .
- (i) Define apparent weight. Why is apparent weight value smaller than the actual weight?
[2 marks]
- (ii) Calculate its apparent weight when it is totally submerged in water. Density of water is 1000 kg/m^3 .
[3 marks]
- b) A wire 80 cm long and 0.15 m in radius stretches 0.002 m when a load of 5 kg is hung on its end. For the material of the wire, calculate.
- (i) the stress,
[2 marks]
- (ii) the strain,
[1.5 marks]
- (iii) the Young's modulus.
[1.5 marks]

QUESTION 5 (10 MARKS)

An oscillator is made up of a wooden block of mass 0.80 kg that is attached to a spring. The period of oscillation is 0.40 s and it undergoes simple harmonic motion with an amplitude of 0.40 m. Calculate

- (i) the frequency,
[1 mark]
- (ii) the angular frequency of oscillation,
[1.5 marks]
- (iii) the spring constant,
[1.5 marks]
- (iv) the maximum velocity,
[1.5 marks]
- (v) the potential and kinetic energy of the system at a position of 0.20 m from the equilibrium position,
[3 marks]
- (vi) the total energy of the system.
[1.5 marks]

Continued...

APPENDIXES

LIST OF PHYSICAL CONSTANTS

Electron mass,	m_e	=	9.11×10^{-31} kg
Proton mass,	m_p	=	1.67×10^{-27} kg
Neutron mass,	m_n	=	1.67×10^{-27} kg
Magnitude of the electron charge,	e	=	1.602×10^{-19} C
Universal gravitational constant,	G	=	6.67×10^{-11} N.m ² kg ⁻²
Universal gas constant,	R	=	8.314 J/K.mol
Hydrogen ground state,	E_o	=	13.6 eV
Boltzmann's constant,	k_B	=	1.38×10^{-23} J/K
Compton wavelength,	λ_c	=	2.426×10^{-12} m
Planck's constant,	h	=	6.63×10^{-34} J.s $=$ 4.14×10^{-15} eV.s
Speed of light in vacuum,	c	=	3.0×10^8 m/s
Rydberg constant,	R_H	=	1.097×10^7 m ⁻¹
Acceleration due to gravity,	g	=	9.81 m s ⁻²
Unified atomic mass unit,	1 u	=	931.5 MeV/c ²
1 electron volt,	1 eV	=	1.66×10^{-27} kg
Avogadro's number,	N_A	=	6.023×10^{23} mol ⁻¹
Threshold of intensity of hearing,	I_o	=	1.0×10^{-12} W m ⁻²
Coulomb constant,	$k = \frac{1}{4\pi\epsilon_0}$	=	9.0×10^9 Nm ² C ⁻²
Permittivity of free space,	ϵ_0	=	8.85×10^{-12} C ² /N.m ⁻²
Permeability of free space,	μ_0	=	$4\pi \times 10^{-7}$ (T.m)/A
1 atmosphere pressure,	1 atm	=	1.0×10^5 N/m ² $=$ 1.0×10^5 Pa
Earth: Mass,	M_E	=	5.97×10^{24} kg
Radius (mean),	R_E	=	6.38×10^3 km
Moon: Mass,	M_M	=	7.35×10^{22} kg
Radius (mean),	R_M	=	1.74×10^3 km
Sun: Mass,	M_S	=	1.99×10^{30} kg
Radius (mean),	R_S	=	6.96×10^5 km
Earth-Sun distance (mean),		=	149.6×10^6 km
Earth-Moon distance (mean),		=	384×10^3 km

Continued...

LIST OF FORMULA

Differential Rule $y = kx^n$ $\frac{dy}{dx} = knx^{n-1}$	Trigonometric Identity $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $\sin \alpha + \sin \beta = 2 \cos\left(\frac{\alpha - \beta}{2}\right) \sin\left(\frac{\alpha + \beta}{2}\right)$ $\sin(\alpha - \beta) + \sin(\alpha + \beta) = 2 \sin \alpha \cos \beta$		
NEWTONIAN MECHANICS			
$v = \frac{\Delta x}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$	$v = u + at$	$s = ut + \frac{1}{2}at^2$
$v^2 = u^2 + 2as$	$s = \left(\frac{u+v}{2}\right)t$		
$W = Fs \cos \theta$	$W = mg$	$\sum F = F_{net} = ma$	
$f = \mu N$	$p = mv$	$\sum F = \frac{\Delta p}{\Delta t}$	
$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$	$m_1u_1 + m_2u_2 = (m_1 + m_2)v$	$P = \frac{W}{t} = \frac{E}{t} = \frac{Fd}{t} = Fv$	
$K = \frac{1}{2}mv^2$	$PE_s = \frac{1}{2}kx^2$	$F_s = -kx$	$PE_G = mgy$
$v_{\text{circular}} = \frac{2\pi r}{T}$	$a_c = \frac{v^2}{r}$	$F_g = G \frac{m_1 m_2}{r^2}$	$U_g = -G \frac{m_1 m_2}{r}$
$T^2 = K_s r^3$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	$F_c = m \frac{v^2}{r}$	
$\omega = \sqrt{\frac{k}{m}}$	$\omega = \sqrt{\frac{g}{l}}$	$T_p = 2\pi \sqrt{\frac{l}{g}}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$

End of Page.