VARIABEL RANDOM DISKRIT

Probabilitas dan Statistika

Teknik Informatika, FTEIC Institut Teknologi Sepuluh Nopember Surabaya

Variabel Random

- Representasi angka hasil dari eksperimen
 - □ Diskrit → angka tersebut bulat
 - □Kontinyu → angka tersebut berupa interval

Lemparan 3 koin					
3 muka	1				
2 muka	3				
1 muka	3				
0 muka	1				

Diskrit, $X = \{0, 1, 2, 3\}$

Tinggi badan mahasiswa COC					
155 ≤ x < 160	25				
160 ≤ x < 165	52				
165 ≤ x < 170	16				
170 ≤ x < 175	41				

Kontinyu, X={[155,160), [160, 165), [165, 170), [170, 175)}

Distribusi Peluang Diskrit

- Jika X={x₁,...,x_n} adalah variabel random diskrit
 - $P(x_i) = P(X=x_i)$ adalah peluang munculnya $X = x_i$ dari seluruh hasil ruang sampel
 - □ Distribusi peluang X adalah peluang untuk semua nilai $X=\{x_1...x_i\}$
- Eksperimen pelemparan dadu
 - □ Variabel random X = {1, 2, 3, 4, 5, 6}
 - Distribusi peluang X:

I	x _i	1	2	3	4	5	6
	$P(X=x_i)$	P(X=1) =1/6	P(X=2) =1/6	P(X=3) =1/6	P(X=4) =1/6	P(X=5) =1/6	P(X=6) =1/6

Sifat Distribusi Peluang Diskrit

Jika:

- \square X={x₁,...,x_n} adalah variabel random diskrit
- $P(x_i) = P(X=x_i)$ adalah peluang munculnya $X = x_i$ dari seluruh hasil ruang sampel
- □ Distribusi peluang X adalah peluang untuk semua nilai X={x₁...x_i}

Maka:

- \square $P(x_i) \ge 0$
- \square Σ P(x_i) = 1 dengan i={1,...,n}

Xi	1	2	3	4	5	6	Σ
P(X=x _i)	P(X=1) =1/6	P(X=2) =1/6	P(X=3) =1/6	P(X=4) =1/6	P(X=5) =1/6	P(X=6) =1/6	1

Distribusi Peluang Kumulatif Diskrit

■ Jika f(x) menyatakan peluang sebuah nilai pada variabel random diskrit, maka fungsi peluang kumulatif F(x) adalah:

$$F(x) = P(X \le x) = \sum_{t \le x} f(t) \operatorname{dengan} -\infty < x < \infty$$

X _i	1	2	3	4	5	6
$P(X=x_i)$	1/6	1/6	1/6	1/6	1/6	1/6

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{6} & 1 \le x < 2 \\ \frac{1}{3} & 2 \le x < 3 \\ \frac{1}{2} & 3 \le x < 4 \\ \frac{2}{3} & 4 \le x < 5 \\ \frac{5}{6} & 5 \le x < 6 \\ 1 & x \ge 6 \end{cases}$$

Variabel Random Diskrit dgn Distribusi Peluang Kumulatif

- Jika $X=\{x_1,...,x_n\}$ adalah variabel random diskrit, maka peluang kumulatif $F(x_i)$ akan ...
 - \square 0 \leq $F(x_i)$ \leq 1 untuk setiap x_i
- Jika terdapat nilai variabel random $x_0 < x_1$ maka $F(x_0) \le F(x_1)$
 - Untuk $x_0 = 3$ dan $x_1 = 4$, $x_0 < x_1$
 - F(3) = f(0) + f(1) + f(2) + f(3) = 1/2
 - F(4) = f(0) + f(1) + f(2) + f(3) + f(4) = 2/3
 - $F(3) \le F(4)$ karena $1/2 \le 2/3$

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{6} & 1 \le x < 2 \\ \frac{1}{3} & 2 \le x < 3 \\ \frac{1}{2} & 3 \le x < 4 \\ \frac{2}{3} & 4 \le x < 5 \\ \frac{5}{6} & 5 \le x < 6 \\ 1 & x \ge 6 \end{cases}$$

Walpole, hal 72 no 3

- Eksperimen = pelemparan koin sebanyak 3 kali
- Koin memiliki bagian muka, m, dan belakang, b
- Variabel random W = jumlah m jumlah b

				_							
S	m	Ь	w								
mmm	3	0	3								
mmb	2	1	1								
mbm	2	1	1		Wi	-3	-1	1	3	1 .	
bmm	2	1	1		•						. . .
mbb	1	2	-1] [$P(X=x_i)$	1/8	3/8	3/8	1/8		F(x)
bmb	1	2	-1								
bbm	1	2	-1) /I <i>AI</i>	4	D/IMI	(۵)	<i>A</i> T	7/0\	
bbb	0	3	-3] a. F	P(W > 0) =		-		1 - F	(U)	
	•		-		_ 1	\	111 _	1/			

$$f(x) = \begin{cases} 0 & x < -3 \\ \frac{1}{8} & -3 \le x < -1 \\ \frac{4}{8} & -1 \le x < 1 \\ \frac{7}{8} & 1 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

a.
$$P(W > 0) = 1 - P(W \le 0) = 1 - F(0)$$

= $1 - \{f(-3) + f(-1)\} = \frac{1}{2}$

b.
$$P(-1 \le W < 3) = F(2) - F(-2) = 7/8 - 1/8 = 6/8$$

Walpole, hal 72 no 8

- Cari distribusi peluang variabel random diskrit W (W = jumlah m jumlah b) (Walpole, hal 72 no 3)
- Asumsi peluang muncul bagian muka = 2 x peluang muncul bagian belakang koin
- Peluang lemparan koin1 tidak mempengaruhi lemparan koin2 dan koin3
- Eksperimen pelemparan koin = kejadian saling bebas

S	m	b	w
mmm	3	0	3
mmb	2	1	1
mbm	2	1	1
bmm	2	1	1
mbb	1	2	-1
bmb	1	2	-1
bbm	1	2	-1
bbb	0	3	-3

Koin1	Koin2	Koin3	P(x1, x2, x3)
2/3	2/3	2/3	8/27
2/3	2/3	1/3	4/27
2/3	1/3	2/3	4/27
1/3	2/3	2/3	4/27
2/3	1/3	1/3	2/27
1/3	2/3	1/3	2/27
1/3	1/3	2/3	2/27
1/3	1/3	1/3	1/27

\mathbf{w}_{i}	-3	-1	1	3
$P(X=x_i)$	1/27	6/27	12/27	8/27

Distribusi Peluang Gabungan untuk Variabel Random Diskrit

- X dan Y adalah sepasang variabel random diskrit
- Fungsi peluang gabungan $P(x, y) = P(X = x \cap Y = y)$
- Sifat sifat peluang gabungan

a.
$$P(x, y) = P(X = x \cap Y = y) = f(x, y) \ge 0$$

b.
$$\sum_{x} \sum_{y} f(x, y) = 1$$

f(m, b)		b				
		0	1	2	3	
	0	-	ı	ı	1/8	
m	1	-	-	3/8	-	
m	2	-	3/8	-	-	
	3	1/8	-	-	-	

$$\sum_{m=0}^{3} \sum_{b=0}^{3} f(m,b) = 1$$

Walpole, hal 85 no 16

- Eksperimen = pelemparan satu koin sebanyak 3 kali atau pelemparan tiga koin sekaligus
- Variabel random diskrit X menyatakan jumlah munculnya bagian muka koin
- Variabel random diskrit Y menyatakan selisih munculnya muka dengan agian belakang koin

S	m	b	m-b
mmm	3	0	3
mmb	2	1	1
mbm	2	1	1
bmm	2	1	1
mbb	1	2	-1
bmb	1	2	-1
bbm	1	2	-1
bbb	0	3	-3

f(x , y)			Х					
		0	1	2	3			
	3	-	-	-	1/8			
v	1	-	-	3/8	-			
У	-1	-	3/8	ı	-			
	-3	1/8	-	-	-			

Distribusi Marginal Variabel Random Diskrit X, g(x)

- Jumlah peluang gabungan untuk semua nilai random variabel X
- $\sum g(x_i) = 1 \text{ dengan i=} \{1,...,n\}$

<i>f</i> (m, b)		b				~ ()
<i>)</i> (III	, υ)	0	1	2	3	g(m)
	0	-	•	•	1/8	1/8
m	1	-	-	3/8	-	3/8
	2	-	3/8	-	-	3/8
	3	1/8	-	-	-	1/8

$$\sum_{m=0}^{3} g(m) = g(0) + g(1) + g(2) + g(3) = 1$$

Distribusi Marginal Variabel Random Diskrit Y, h(y)

- Jumlah peluang gabungan untuk semua nilai random variabel Y

<i>f</i> (m	b)	b				
<i>f</i> (m	, υ)	0	1	2	3	
	0	-	-	-	1/8	
	1	-	-	3/8	-	
m	2	-	3/8	-	-	
	3	1/8	-	-	-	
h(b)	1/8	3/8	3/8	1/8	

$$h(0) = \sum_{b=0}^{3} \sum_{m=0}^{3} f(m,b) = f(0,0) + f(1,0) + f(2,0) + f(3,0)$$

$$h(3) = \sum_{b=3}^{3} \sum_{m=0}^{3} f(m,b) = f(0,3) + f(1,3) + f(2,3) + f(3,3)$$

$$\sum_{b=0}^{3} h(b) = h(0) + h(1) + h(2) + h(3) = 1$$

Peluang Bersyarat

- Terdapat pasangan variabel random diskrit X dan Y
- Fungsi peluang bersyarat untuk (X, Y) adalah peluang terjadinya Y = y jika nilai X = x

Atau sebaliknya ...

Peluang terjadinya X = x jika nilai Y = y

$$P(y \mid x) = \frac{P(x, y)}{P(x)}$$

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

Peluang gabungan variabel random X dan Y adalah kejadian saling bebas jika dan hanya jika ...

$$P(x, y) = P(x)P(y)$$
 untuk semua kemungkina n x dan y

Walpole, hal 85 no 13, 20 edisi 9: hal 106, soal 3.49)

Let X denote the number of times a certain numerical control machine will malfunction 1, 2 or 3 times on any given day. Let Y denote the number of times a technician is called in on an emergency call. The joint probability distribution is given by:

f(x , y)			Margi		
		1	2	3	nal y
	1	0.05	0.05	0.1	0.2
У	2	0.05	0.1	0.35	0.5
	3	0	0.2	0.1	0.3
Marginal x		0.1	0.35	0.55	1

Suppose a technician is not always called in because the operator is able to deal with the malfunction.

Walpole, hal 85 no 13, 20. Edisi 9: hal 106, soal 3.49)

- Variabel random diskrit X menyatakan jumlah kerusakan mesin yang mungkin terjadi dalam satu hari
- Variabel random diskrit Y menyatakan jumlah panggilan untuk teknisi dalam satu hari tersebut guna memperbaiki kerusakan mesin
- Apakah X dan Y saling bebas?
- Hitung peluang gabungan P(Y=3|X=2)

f(x , y)			Margi		
		1	2	3	nal y
У	1	0.05	0.05	0.1	0.2
	2	0.05	0.1	0.35	0.5
	3	0	0.2	0.1	0.3
Marginal x		0.1	0.35	0.55	1

X dan Y adalah kejadian saling bebas jika dan hanya

$$P(x, y) = P(x)P(y)$$
 untuk semua kemungkinan.

Untuk x = 2, y = 1:

$$P(x = 2, y = 1) = g(x = 2)h(y = 1)$$
?

$$0.05 \neq 0.35 \times 0.2$$

Jadi variabel X dan Y tidak saling bebas

$$P(Y=3 | X=2) = \frac{P(x,y)}{P(x)} = \frac{0.2}{0.35}$$

Tugas

- NRP no ganjil → Kerjakan lima soal no ganjil dari Exercises Walpole bab 3 (pilih lima soal dari Exercises no 3.1 sd 3.81).
- NRP no genap → Kerjakan lima soal no genap dari Exercises Walpole bab 3 (pilih lima soal dari Exercises no 3.1 sd 3.81).
- Silakan memilih buku Walpole Edisi berapapun. Tuliskan soal yang Anda kerjakan (bukan hanya nomor soal).
- Scan / foto hasil kerja Anda dan upload ke
 MyITSClassroom (maks 28 Feb 2022, pk 10:00)...