Университет ИТМО Факультет ПИиКТ

ЛИНЕЙНАЯ АЛГЕБРА

I CEMECTP

Лектор: Дмитрий Валерьевич Карпов

Автор: Александр Калиев

Содержание

1	2023-09-08-1	2
	1.1 Ring and field	. 2
	1.2 Sub-field and sub-ring	. 4
	1.3 Homomorphism	. 4
	1.4 Homomorphism types	. 5
	1.5 Isomorphic rings	. 6
2	2023-09-08-2	7
	2.1 Complex numbers	7

$1 \quad 2023-09-08-1$

1.1 Ring and field

Let K be a set, we call it's elements *numbers*. Two operations are also defined:

$$+: K \times K \mapsto K$$

$$\cdot: K \times K \mapsto K.$$

Properties:

- 1. (Ассоциативность +): $\forall a, b, c \in K : (a + b) + c = a + (b + c)$
- 2. (Commutativity +): $\forall a,b \in K : a+b=b+a$
- 3. Zero: $\exists 0 \in K : a + 0 = a$
- 4. (Inverse element for +): $\forall a \in K \exists (-a) \in K : a + (-a) = 0$
- 5. (Distributivity): $\forall a,b,c \in K : a \cdot (b \cdot c) = (a+b) \cdot c \& a \cdot (b+c) = a \cdot b + a \cdot c$
- 6. (Associativity ·): (ab)c = a(bc)
- 7. (Commutativity \cdot): ab = ba
- 8. (Neutral element ·): $\exists 1 : \forall a \in K : 1 \cdot a = a$.
- 9. (Inverse element for \cdot):

$$\forall a \in K \setminus \{0\} \ \exists (a)^{-1} \in K : a \cdot (a)^{-1} = (a)^{-1} \cdot a = 1$$

$$\triangleright 1 - 6 \Rightarrow K - ring$$

 $\triangleright 1 - 7 \Rightarrow K - commutative ring$

$$\triangleright 1 - 6 \& 8 \Rightarrow K - ring with 1$$

$$\triangleright 1-6, 8, 9 \Rightarrow K-body$$

$$\triangleright 1-9 \Rightarrow K-field$$

Свойство 1.1.1. Zero is the only one.

Доказательство. Let there be 0_1 and 0_2 . Then:

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2.$$

Coourmo 1.1.2. $\forall a \in K$, the reverse element for + is the only one.

Доказательство. Let there be 2 reverse elements for $a \in K$: $b_1 \& b_2$. Then:

$$b_1 = b_1 + 0 = b_1 + (a + b_2) = (b_1 + a) + b_2 = 0 + b_2 = b_2$$

Свойство 1.1.3. $\forall a \in K : -(-a) = a$

Доказательство.
$$a = a + ((-a) + (-(-a))) = (a + (-a)) + (-(-a)) = (-(-a))$$

Свойство 1.1.4. No more than 1 unit in a ring.

Доказательство. Let there be $1_1 \& 1_2$. Then:

$$1_1 = 1_1 \cdot 1_2 = 1_2$$
.

Определение 1.1. Let K be a ring with 1. An element $a \in K$ is reversible, if $\exists a^{-1} \in K$

 \triangleleft in the fiels, all elements except 0 are reversible.

Coourmo 1.1.5. Let K be a ring with 1. Then, $\forall a \in K \exists$ no more than 1 reverse element for ...

Доказательство. Let there be 2 reverse elements: $b_1 \& b_2$. Then:

$$b_1 = b_1 \cdot 1 = b_1 \cdot (a \cdot b_2) = (b_1 \cdot a) \cdot b_2 = 1 \cdot b_2 = b_2$$

Cooucmoo 1.1.6. Let K be a ring with 1. Then, \forall reversible $a \in K : (a^{-1})^{-1} = a$

Доказательство. $a=a\cdot 1=a\cdot (a^{-1}\cdot (a^{-1})^{-1})=(a\cdot a^{-1})\cdot (a^{-1})^{-1}=1\cdot (a^{-1})^{-1}=(a^{-1})^{-1}$ Свойство 1.1.7. -0 = 0

Доказательство. Follows from the 0 + 0 = 0.

Cooutemeo 1.1.8. If K is a ring with 1, then $1^{-1} = 1$

Доказательство. Follows from $1 \cdot 1 = 1$

Определение 1.2.

▷ Substraction – addition a reverse element for +:

$$a - b := a + (-b).$$

 \triangleright Division on a reversible element b is a multiplication by b^{-1} :

$$\frac{a}{b} := a \cdot b^{-1}.$$

1.2 Sub-field and sub-ring

Определение 1.3.

- \triangleright Let $K \subset L$ (both are rings with the same operations). Then K is a **sub-ring** of L, and L is an **supra-ring** of K.
- \triangleright Let $K \subset L$ (both are fields with the same operations). Then K is a **sub-field** of L; L is a **supra-field** of K.

Лемма 1.1. Let L be a ring, $K \subset L$. Conditions:

- 1. Closedness of $+: \forall a,b \in K: a+b \in K$
- 2. Closedness of $\cdot : \forall a,b \in K \ a \cdot b \in K$
- 3. Existence of reverse element for + $\forall a \in K \ \exists -a \in K$
- 4. Existence of reverse element for $\forall a \in K, a \neq 0, \exists a^{-1} \in K.$

Then K is a field, then, it's a sub-field of L.

Доказательство.

- \triangleright By Lemma 1, K commutative sub-ring of L.
- \triangleright It remains to check the existence of 1 in K. Consider any non-zero element $a \in K$. Then $a^{-1} \in K$, and that means, that $a \cdot a^{-1} = 1 \in K$.

1.3 Homomorphism

Определение 1.4. \triangleleft Let K, L be a rings. Then a relation $f: K \mapsto L$ is called **homomorphism**, if $\forall a, b \in K$:

$$f(a + b) = f(a) + f(b) & f(ab) = f(a)f(b)$$

A kernel of homomorphism f is denoted as $\operatorname{Ker} f = \{x \in K : f(x) = 0\}$ An image of homomorphism f is denoted as $\operatorname{Im} f = \{y \in L : \exists x \in K : f(x) = y\}$.

Cooutemed 1.3.1. If $f: K \mapsto L$ is homomorphism, then $f(0_K) = 0_L$.

Доказательство. $f(0_K) = f(0_K + 0_k) = f(0_K) + f(0_K)$. Substracting from left and right side $f(0_k)$, we get $f(0_K) = 0_L$

Лемма 1.2. Let K, L be rings, $f: K \mapsto L$ – homomorphism of rings. Then:

- \triangleright Ker f is a sub-ring of K.
- \triangleright Im f is a sub-ring of L.

Доказательство. It's enough to check conditions from Lemma 1.

- 1. $ightharpoonup \operatorname{Let} a, b \in \operatorname{Ker} f$. Then $f(a+b) = f(a) + f(b) = 0 + 0 = 0 \Rightarrow a+b \in \operatorname{Ker} f$. $ho f(ab) = f(a)f(b) = 0 \cdot 0 = 0 \Rightarrow ab \in \operatorname{Ker} f$. $ho f(-a) = -f(a) = -0_L = 0_L$.
- 2. \triangleright Let $y, y' \in \text{Im } f$, and $x, x' \in K$ are such that f(x) = y & f(x') = y'. \triangleright Then $y + y' = f(x) + f(x') = f(x + x') \in \text{Im } f \& y \cdot y' = f(x) \cdot f(x') \in \text{Im } f$. $\triangleright -y = -f(x) = f(-x) \in \text{Im } f$.

1.4 Homomorphism types

- \triangleright Let $f: K \mapsto L$ homomorphism of rings.
- \triangleright If f is an injection, then f is **monomorphism**
- \triangleright If f is a surjection (Im f = L), then f is an **epimorphism**
- \triangleright If f is a biection, then f is isomorphism
- \triangleright Isomorphism = monomorphism + epimorphism.

Лемма 1.3. Let $f: K \mapsto L$ be a homomorphism of rings. Then f is monomorphism if and only if $Ker f = \{0\}$.

 \mathcal{A} оказательство. \Rightarrow

- \triangleright If f is monomorphism, then f is an injection.
- \triangleright Let $a \in \operatorname{Ker} f$. From f(a) = 0 = f(0) implies, that a = 0 (because of the injection f).

 \Leftarrow

 \triangleright Let f(a) = f(b). Then f(a - b) = f(a) - f(b) = 0.

 \triangleright That means that $a - b \in \operatorname{Ker} f = \{0\}$, from this a = b. In conclusion, f is an injection, and that means f is monomorphism.

Лемма 1.4. Let $f: K \mapsto L$ be an isomorphism of rings. Then $f^{-1}: L \mapsto K$ is an isomorphism of rings.

Доказательство.

- \triangleright It's enough to proof that f^{-1} is homomorphism (because relation that is reverse to biection is a biection).
- \triangleright Consider any $a,b \in L$.
- \triangleright Let $w = f^{-1}(a+b) f^{-1}(a) f^{-1}(b)$. Because of f is a biection, we have:

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b)) = a+b-a-b = 0$$

- \triangleright From (f(w) = 0 = f(0)) and because of f is a biection, we implie that w = 0.
- ightharpoonup Therefore, $f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$
- ightharpoonup Let $z = f^{-1}(ab) f(f^{-1}(a)) \cdot f(f^{-1}(b)) = ab ab = 0$.
- \triangleright From f(z) = 0 = f(0) and because of f is a biection, we implie that z = 0

Therefore,
$$f^{-1}(ab) = f^{-1}(a) \cdot f^{-1}(b)$$
.

1.5 Isomorphic rings

Определение 1.5. If $\exists f: K \mapsto L \ (f \text{--isomorphism})$, then we say that K, L are isomorphic. Denotion: $K \simeq L$.

Теорема 1.1. \simeq is a relation of equality on the set of all rings.

Доказательство.

- \triangleright Reflexivity is obvious: id: $K \mapsto K$ (id(x) = x $\forall x \in K$) is obviously an isomorphism
- ▷ Symmetry is proven in Lemma 5.
- \triangleright Let's prove transitivity: let K, L, M be rings, $K \simeq L \& L \simeq M$.
- \triangleright Then there are isomorphisms $f: K \mapsto L \& g: L \mapsto M$. Let's prove that $g \cdot f: K \mapsto M$ (set up by rule gf(a) := g(f(a))) is also an isomorphism.

- ▷ Composition of these biections is obviously a biection.
- \triangleright Checking that gf is homomorphism of rings:

$$gf(a+b) = g(f(a+b)) = g(f(a) + f(b)) = g(f(a)) + g(f(b)) = gf(a) + gf(b)$$
$$gf(ab) = g(f(ab)) = g(f(a) \cdot f(b)) = g(f(a)) \cdot g(f(b)) = gf(a) \cdot gf(b)$$

 $2 \quad 2023 - 09 - 08 - 2$

2.1 Complex numbers

Определение 2.1.

▷ A set of *complex numbers* contains sorted pairs of real numbers:

$$\mathbb{C} = \{(a,b) : a,b \in \mathbb{R}\}\$$

- \triangleright Addition: (a,b) + (a',b') := (a + a', b + b')
- \triangleright Multiplication: $(a,b) \cdot (a',b') := (aa' bb', ab' + ba').$

Определение 2.2.

- \triangleright Let $z=(a,b)\in\mathbb{C}$
- \triangleright A real part of z is denoted as Re(z) := a.
- \triangleright An **imaginary part** of z is denoted as Im(z)
- \triangleright Complex conjugation: $\overline{z} := (a, -b)$
- \triangleright Norm of z is denoted as $N(z) := a^2 + b^2$
- ightharpoonup Module of z is denoted as $|z| := \sqrt{N(z)} = \sqrt{a^2 + b^2}$
- \triangleright Obviously, $\overline{\overline{z}} = z$.

Теорема 2.1. \mathbb{C} is a field.

Доказательство. \triangleright (1) and (2) because addition in \mathbb{C} is componented, so associativity and commutativity are inherited from \mathbb{R} .

 \triangleright (3) Zero in \mathbb{C} is 0 := (0,0).

- \triangleright (4) Reverse element for +. For z=(a,b) set -z:=(-a,-b).
- ▷ (7) Commutativity of multiplication:

$$(a,b) \cdot (a',b') = (aa' - bb', ab' + ba') = (a'a - b'b, a'b + b'a) = (a',b') \cdot (a,b)$$

▷ (5) It's enough to check one distributivity (because multiplication is commutative):

$$(a,b) \cdot ((c_1,d_1) + (c_2,d_2)) = (a,b) \cdot (c_1 + c_2,d_1 + d_2) =$$

$$(ac_1 + ac_2 - bd_1 - bd_2, ad_1 + ad_2 + bc_1 + bc_2) =$$

$$(ac_1 - bd_1, ad_1 + bc_1) + (ac_2 - bd_2, ad_2 + bc_2) = (a,b) \cdot (c_1,d_1) + (a,b) \cdot (c_2,d_2)$$

 \triangleright