Regression

PSY-GS 8875 Behavioral Data Science

Overview

Overview: Week 2

Readings

- ESL Chapters: 3.1, 3.2, 4.4, and 4.4.1
- HML Chapters: 4.1-4.5 and 5.1-5.5
- Yarkoni and Westfall 2017

Optional

none

- Linear regression and **regression** metrics
- Logistic regression and classification metrics
- Gradient descent-style regression
- Activity: regression new wine in old bottles

Linear Regression

Goal: predict some outcome Y using some features X

- known as a "supervised learning" problem
- supervised: outcome is known and used in "learning"
- learning: estimation of model parameters

What relationship does *linear* regression learn between Y and X?

Solves a regression problem

What relationship does *linear* regression learn between Y and X?

Solves a regression problem

But how does it "learn" to solve this problem?

Formally:

$$y_i = \sum_{i=1}^n X_i \beta_i + \epsilon_i$$

or

$$\mathbf{y} = \mathbf{X}\beta + \epsilon$$

ordinary least squares (OLS): estimate a line that minimizes the distance between \boldsymbol{y} and $\boldsymbol{\widehat{y}}$

$$\widehat{eta} = \arg\min_{\widehat{eta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2$$

The OLS solution is a *closed-form* solution meaning can be solved analytically without any numerical optimization procedures such as Newton's method

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

LINEAR REGRESSION

Common Usage

$$ullet R^2 = 1 - rac{\sum (\hat{y_i} - y_i)^2}{\sum (y_i - \bar{y})^2}$$

•
$$p < 0.05$$
 using $\hat{se}(\hat{b}) = \sqrt{\frac{n\hat{\sigma}^2}{n\sum x_i^2 - (\sum x_i)^2}}$

• Assumptions?

Assumptions

- continuous outcome
- ullet linear relationship between ${f y}$ and $\widehat{{f y}}$
- normality distributed errors (methods to check?)
- homoskedasticity or equal error variance (methods to check?)
- ullet (lack of) multicollinearity (variance inflation factor or VIF > 5)

$$VIF_i = \frac{1}{1 - R_i^2},$$

where R_i^2 is each predictor treated as an outcome and predictor by all other predictors

 ${\sf R} \,\, {\sf Example}$

Dataset

- Student math success in two Portegeuse schools [source]
- 395 students

```
# Load data
math <- read.csv("../../data/student_math/student_math_clean.csv")</pre>
```

Variables of Interest

Dependent Variable

• final_grade: math grade earned (0-20)

Independent Variables

- study_time: weekly study time (1 = < 2 hours, 2 = 2-5 hours, 3 = 5-10 hours, 4 = > 10 hours)
- class_failures: number of past class failures (1-3; otherwise, 4)
- school_support: extra educational support (yes/no)
- family_support: extra family support (yes/no)
- extra_paid_classes: extra (outside of school) classes that were paid for (yes/no)
- higher_ed: wants to go to higher education (yes/no)
- internet_access: whether they had internet access at home (yes/no)
- absences: number of days absent from school (0-93)

```
# Select variables
math_voi <- math[,c(
  "final_grade", "study_time", "class_failures",
  "school_support", "family_support", "extra_paid_classes",
  "higher_ed", "internet_access", "absences"
)1
# Set study time
replace values <- 1:4
names(replace values) <- unique(math voi$study time)</pre>
math_voi$study_time <- replace_values[math_voi$study_time]
# Set "yes/no" responses to numeric
math_voi[,4:8] <- ifelse(math_voi[,4:8] == "yes", 1, 0)
# Separate out outcome and predictors
Y <- as.matrix(math voi[, 1])
X <- as.matrix(math_voi[, -1])</pre>
X <- cbind(1, X) # add intercept
# Compute betas (transposed for print)
t(solve(t(X) %*% X) %*% t(X) %*% Y)
              study_time_class_failures_school_support_family_support
```

```
# Linear model function
math lm <- lm(final grade ~ .. data = math voi)
# Print summary
summary(math lm)
Call:
lm(formula = final_grade ~ ., data = math_voi)
Residuals:
    Min
              10
                  Median
                              30
                                      Max
-12 2968 -1 9497
                0.2201
                          2.8957
                                   8 1426
Coefficients:
                 Estimate Std. Error t value
                                                  Pr(>|t|)
(Intercept)
                 8.38678
                            1.24186 6.753 0.0000000000533 ***
study_time
                 0.19578
                            0.21229 0.922
                                                   0.3570
class_failures -2.03698
                            0.30520 -6.674 0.0000000000865 ***
school support -1.07157
                            0.64273 -1.667
                                                   0.0963
family_support
              -0.70063
                            0.46339 -1.512
                                                  0.1314
                            0.46439 0.691
                                                   0.4897
extra_paid_classes 0.32110
higher ed
                1.94509 1.03675 1.876
                                                   0.0614 .
internet access 0.86068
                            0.58458 1.472
                                                   0.1418
absences
                 0.03396
                            0.02701 1.257
                                                   0.2094
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.244 on 386 degrees of freedom
Multiple R-squared: 0.1594, Adjusted R-squared: 0.142
F-statistic: 9.15 on 8 and 386 DF, p-value: 0.0000000001514
```

Linear Regression | Model Evaluation

Model Evaluation

- Usual suspects: R^2 and statistical significance
- More common in data science to use (root) mean square error

$$RMSE = \sqrt{\frac{\sum (\hat{y_i} - y)^2}{n}}$$

```
# Compute RMSE
sqrt(mean((predict(math_lm) - math_voi$final_grade)^2))
```

[1] 4.195114

Is that good?

RMSE from the paper:

• neural networks: 4.41

• support vector machines: 4.37

decision trees: 4.46

• random forest: 3.90

Seems like we did pretty good, right?

RMSE from the paper:

neural networks: 4.41

• support vector machines: 4.37

decision trees: 4.46

• random forest: 3.90

Seems like we did pretty good, right?

There's a catch...

- they held out data and were computing RMSE on the data held out (more on that next week)
- we had the knowledge of their better predictors and used those only (there were a lot of irrelevant predictors in the dataset)

Logistic Regression

Goal: predict some outcome Y using some features X

- known as a "supervised learning" problem
- supervised: outcome is known and used in "learning"
- learning: estimation of model parameters

What relationship does *logistic* regression learn between Y and X?

What relationship does *logistic* regression learn between Y and X?

Solves a classification problem

classification: categorizing observations into two (or more)
 classes

Formally:

$$P(Y = 1|X) = \frac{1}{1 + e^{-(\sum_{i=1}^{n} X_i \beta_i)}}$$

Conversely, it could be:

$$\sigma(z)=\frac{1}{1+e^{-z}},$$

where

$$z = \sum_{i=1}^{n} X_i \beta_i$$

More on this notation when we cover neural networks. . .

Unlike linear regression, there isn't a closed-form solution for logistic regression

Instead, a numerical optimization method is used such as Newton's method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or iteratively reweighted least squares (IRLS):

$$\mathbf{w}_{k+1} = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{S}_k \mathbf{X} \mathbf{w}_k + \mathbf{y} - \mu_k),$$

where $\mathbf{S} = \operatorname{diag}(\mu(i)(1 - \mu(i)))$ is a diagonal weighting matrix

The end goal is to seek a minimize of the difference between the predicted class (0 or 1) and the actual class

$$\widehat{\beta} = \arg\min_{\widehat{\beta}} \sum \log(1 + \mathrm{e}^{(-\mathrm{y} \mathbf{X} \beta)})$$

Assumptions?

Assumptions?

Fewer than linear regression but...

- (lack of) multicollinearity
- ullet balanced outcome (i.e, 1s pprox 0s)

Logistic Regression | R Example

R Example

Logistic Regression | R Example

Predicting whether a student had extra paid classes outside of school

```
# Logistic regression function (don't forget to set 'family')
math_log <- glm(extra_paid_classes ~ ., data = math_voi, family = "binomial")</pre>
# Print summaru
summary(math log)
Call:
glm(formula = extra_paid_classes ~ ., family = "binomial", data = math_voi)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
              -3.646498 1.145916 -3.182 0.00146 **
final_grade
              0.014419 0.026773 0.539 0.59019
            -0.138488 0.108597 -1.275 0.20222
study_time
class_failures -0.463546  0.191990 -2.414  0.01576 *
school_support -0.354765 0.325253 -1.091 0.27539
family_support 1.234305 0.234664 5.260 0.000000144 ***
higher ed
            2 405163 1 064476 2 259 0 02385 *
internet access 0.755183 0.317798 2.376 0.01749 *
           0.002583
                         0.014899 0.173
                                             0.86236
absences
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 544.83 on 394 degrees of freedom
Residual deviance: 477.10 on 386 degrees of freedom
ATC: 495.1
Number of Fisher Scoring iterations: 5
```

Logistic Regression | Model Evaluation

Model Evaluation

Logistic Regression | Model Evaluation

- \bullet Usual suspects: pseudo- R^2 and statistical significance
- More common in data science to use confusion matrix metrics

		Predicted condition		Sources: [21][22][23][24][25][26][27][28][29] view -talk - edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP/PP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) $= \frac{\text{TPR}}{\text{FPR}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = TN/PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP

Wikipedia

Common Metrics

sensitivity:
$$\frac{TP}{TP+FP}$$

specificity:
$$\frac{TN}{TN+FN}$$

Accuracy:
$$\frac{TP+TN}{TP+FP+TN+FN}$$

F1:
$$\frac{2TP}{2TP+FP+FN}$$

Matthew's Correlation Coefficient (MCC or phi coefficient):

$$\frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{(\mathit{TP} + \mathit{FP})(\mathit{TP} + \mathit{FN})(\mathit{TN} + \mathit{FP})(\mathit{TN} + \mathit{FN})}}$$

Meet {caret}, your new best friend

Classification and Regression Training

```
# Load {caret}
library(caret)
# Get predicted probabilities from model
math probabilities <- predict(
 math log, type = "response"
  # don't forget to set `type = "response"`
# Convert to classes
math_classes <- factor( # ensure 'factor' mode!
 ifelse(math probabilities > 0.50, "ves", "no")
# Ensure 'factor' mode for actual!
math_actual <- factor( # ensure 'factor' mode!
  ifelse(math_voi$extra_paid_classes == 1, "yes", "no")
# Get confusion matrix
confusionMatrix(
 data = math_classes, # predicted
 reference = math_actual, # actual
 positive = "yes" # class = 1
```

```
Confusion Matrix and Statistics
         Reference
Prediction no yes
      no 145 60
      yes 69 121
              Accuracy: 0.6734
                95% CI: (0.6247, 0.7195)
   No Information Rate: 0.5418
   P-Value [Acc > NTR] : 0.00000006868
                 Kappa: 0.3448
Mcnemar's Test P-Value: 0.4812
           Sensitivity: 0.6685
           Specificity: 0.6776
        Pos Pred Value: 0.6368
        Neg Pred Value: 0.7073
            Prevalence: 0.4582
        Detection Rate : 0.3063
   Detection Prevalence: 0.4810
     Balanced Accuracy: 0.6730
      'Positive' Class : yes
```

Kappa

- Can be used to account for class imbalances
- Ranges from -1 (complete discordance) to 1 (complete concordance)
 - $\bullet \le 0$: no agreement
 - > 0.00: slight agreement
 - > 0.20: fair agreement
 - > 0.40: moderate agreement
 - > 0.60: substantial agreement
 - > 0.80: almost perfect agreement
- √ kappa = 0.345

- Numeric optimization method like Newton's method (or IRLS)
- Relatively simple to implement
- Computationally efficient for complex problems but inefficient relative to closed-form solutions or solutions amenable to Newton's method

Formally:

$$p_{n+1} = p_n - \eta \nabla f(p_n),$$

where

- ullet $\eta =$ learning rate (magnitude of "step" in direction of descent)
- p_n = current values (e.g., β s in regression)
- $\nabla f(p_n) = \text{gradient } \frac{\mathbf{X}^T(\hat{\mathbf{y}} \mathbf{y})}{n}$

Gradient Descent for Linear Regression

$$p_{n+1}=p_n-\eta\nabla f(p_n),$$

 p_n : $B_0 = 0$ and $B_1 = 0$

 η : 0.1

 $\nabla f(p_n)$: $B_0 = -2.851$ and $B_1 = -8.265$

 p_{n+1} : $B_0 = 0.285$ and $B_1 = 0.826$

OLS: $B_0 = 2.970$ and $B_1 = 1.014$

Did we get closer or further away?

Gradient Descent for Linear Regression

$$p_{n+1}=p_n-\eta\nabla f(p_n),$$

 p_n : $B_0 = 0.285$ and $B_1 = 0.826$

 η : 0.1

 $\nabla f(p_n)$: $B_0 = -2.663$ and $B_1 = -1.274$

 p_{n+1} : $B_0 = 0.551$ and $B_1 = 0.954$

OLS: $B_0 = 2.970$ and $B_1 = 1.014$

Did we get closer or further away?

Gradient Descent for Linear Regression

$$p_{n+1}=p_n-\eta\nabla f(p_n),$$

 p_n : $B_0 = 0.551$ and $B_1 = 0.954$

 η : 0.1

 $\nabla f(p_n)$: $B_0 = -2.412$ and $B_1 = -0.223$

 p_{n+1} : $B_0 = 0.793$ and $B_1 = 0.976$

OLS: $B_0 = 2.970$ and $B_1 = 1.014$

Did we get closer or further away?

Repeat for N iterations

How many iterations is enough?

- more complicated functions won't have closed-form solutions to check against (e.g., OLS)
- some criterion needs to be consulted for convergence
- change in criterion should stabilize (e.g., $\Delta_{criterion} < 0.001$ for n iterations)

Cost Functions

Mean square error (regression):

$$\frac{\sum_{i=1}^{n}(\hat{y}_i-y_i)^2}{n}$$

(Binary) cross-entropy loss (classification):

$$\frac{\sum_{i=1}^{n} -(y_i \log(\hat{y}_i) + (1 - y_i)(1 - \log(\hat{y}_i)))}{n}$$

These functions are sought to minimized

OLS:
$$B_0 = 2.970053$$
 and $B_1 = 1.013516$

GD:
$$B_0 = 2.969922$$
 and $B_1 = 1.013514$

Using 1000 iterations and $\eta = 0.01$

Iterations can be increased (21,401) and η (0.001) can be decreased to get closer and match OLS solution

In-class Activity

 ${\tt regression.R:} \ {\tt new} \ {\tt wine} \ {\tt in} \ {\tt old} \ {\tt bottles}$

At Home Activity

At Home Activity

Using the student_math_clean.csv data with the variables of interest used in these slides, get gradient descent linear and logistic regression parameters to match those presented in the slides

- Adjust max_iter and learning_rate as necessary
- Turn in final values of max_iter and learning_rate for the linear and logistic regression models to Brightspace

Readings for Next Week

Readings

- ESL Chapters: 7.10 and 7.11
- HML: Chapter 2
- Yarkoni 2022

Optional

• Shen et al. - 2017