

CoDaSeq: Analyzing HTS using compositional data analysis

Greg Gloor

Department of Biochemistry

University of Western Ontario

ggloor.github.io

Geometry is key

We imagine ...

Counting our things

Example 100 random sample sets

range=1800-2200

range= 8000-12000

range=450-550

HTS is not counting

COUNTING

SEQUENCING

- Sequencing is a constant-sum operation
 - We only get the number of reads that the machine can deliver
- Any constant sum is equivalent

Effect of a constant sum?

Constant sum of 1000

Constant sum operations:

- Count normalization
- Rarefaction
- Proportion, percentage, relative abundance
- RNA-seq, metagenomics, tagsequencing

We have CoDa

Working on a Simplex

- Addition and subtraction are not useful operations
- Subsetting and aggregating are problematic (Subcompositions)
- Correlation and covariation are unreliable
- Scale dependence (Scale invariance)
- Sparse data becomes an issue
- Measurement error greatest at low count margin
- Problem remains regardless of dimension
 - It just 'looks' OK

Only ratio information on simplex

$$X = [x_1, x_2, ... x_D], g_X = geometric mean of X$$

$$clr(x) = [log(x_1/g_X), log(x_2/g_X), ... log(x_D/g_X)]$$

- Measurements are converted to ratios between parts
 - Abundance is not directly represented in the output
 - Values are now unconstrained
- The clr correction is scale invariant
- Must delete, estimate or replace 0 values

Analysis tools based on <u>variance of</u> the ratios between parts

- Compositional 0 replacement strategies
 - Prior to clr transformation
 - Best approaches are Bayesian but an open problem
- Outliers
- Exploratory data analysis
- Differential abundance
- Compositional association

Exploration: CoDa PCA biplot

Data Structure

- Exploratory Tool
- Samples + Variables after clr
- SVD is legal
 - But PCA is interpreted by ratios
- 1. Distance from origin ~ SD
- 2. Links ~ ratio abundance
- Links with multiple tips ~ linear ratio dependence
- 4. Orthogonal links means ratios of parts are not related

Generally robust to filtering

HMP dataset, BM vs. TD 4776 OTUs in 366 samples 187 tongue, 179 cheek

OTU

BM

TD

Filtering to remove rare or sparse variables is common

Variance ratios between remaining taxa are constant across filtering methds

~ subcompositionally coherent

Pairwise difference by effect

Effect plot: ALDEx2

Effect = Difference / Dispersion

- Bayesian estimate of clr values by Monte-Carlo sampling
 - Identifies OTUs where the difference between groups is robust to inferred technical replication
- Most values are seen not to be different between groups and so are non-discriminatory
- OTUs with an Abs(effect) > 0.8 colored by group

Association using Ø metric

Every measure of correlation is affected by CoDa

"in the absence of any other information or assumptions, correlation of relative abundances is just wrong" r=1 $\beta=1$

Lovell et al, PLoS Comp. Bio. 2015

$$r=1$$
 $\beta=1$

$$\emptyset(x_{ii}) = 1 + \beta 2 - 2\beta r =$$

$$(var(clr x_i) - var(clr x_i)) / (var(clr x_i) + var(clr x_i))$$

- If variances are equal, Ø(x_{ii}) = 0
- Measures constancy of proportion of OTUs across samples
- Enforces proper interpretation of associations
- Uses Bayesian estimate of distribution of clr values as input

CoDaSeq

Tools to analyze data in correct geometry

(16S rRNA geneseq, RNA-seq, metagenomics, ChIP-seq, SELEX, etc)
(Jean Macklaim, Metagenomics Talks)

- Data filtering
- Outlier detection
- Exploratory Data Analysis
- Differential Abundance
- Association and Correlation
- To be available on Bioconductor
 - Progress at ggloor.github.io

Acknowledgments

Canadian Centre for Human Microbiome and Probiotic Research

Andrew Fernandes

Jean Macklaim

Gregor Reid

I MEAN, THERE'S LIKE ONE OR TWO PINTS OF THEM IN HERE; THEIR CELLS OUTNUMBER MINE!

ANYWAY, THIS WAS A REAL TEAM EFFORT.

Vera Pawlowsky-Glahn Juan Jose Egozcue

Justin Silverman

Canadian Institutes Instituts de recherche of Health Research en santé du Canada

Non-Linear measurement error

We are working in the wrong space

Constant sum == CoDa

- Correlation/covariation
 - Ordination (PCA), clustering, networks
- Subcompositonal incoherence
 - Normalization, rarefaction, subsetting, aggregation
- Noise is greatest at low count margin
 - Often 'most significant' is least abundant

Outliers

Histogram of sample.var

Histogram of sample.var

- Similar to method developed by Barton lab for RNA-seq
 - (Schurch, RNA 2015)
- Samples that contribute > median + 2*IQR defined as outliers
- Generally best to discard outliers

ggloor.github.io

Proportionality: A Valid Alternative to Correlation for Relative Data

David Lovell , Vera Pawlowsky-Glahn, Juan José Egozcue, Samuel Marguerat, Jürg Bähler

Published: March 16, 2015 • http://dx.doi.org/10.1371/journal.pcbi.1004075

