L12 Monotone Allocations and Myerson's Lemma

CS 280 Algorithmic Game Theory Ioannis Panageas

Inspired and some figures by Tim Roughgarden notes

Recap

Three desirable guarantees

1. DSIC: Truthful bidding is a dominant strategy.

Easy to play for bidders, Predict outcome.

2. Social surplus maximization:

$$\sum_{i=1}^{n} x_i v_i$$

where x_i is the amount allocated to i.

3. The auction can be implemented in polynomial time.

An Example: Sponsored Search Auctions

Every time you type a query into a search engine, an auction is run to decide which advertisers' links are shown, the order of the links, and how advertisers are charged.

An Example: Sponsored Search Auctions

Every time you type a query into a search engine, an auction is run to decide which advertisers' links are shown, the order of the links, and how advertisers are charged.

Items for sale are k "slots"

Probability to get a click

- Bidders are the advertisers.
- Each slot j has CTR (click-through-rate) a_j .
- Each bidder i has private valuation v_i and gets value $a_i \cdot v_i$. Note $a_1 \geq ... \geq a_k$

Definitions

Definition (Single parameter environments). A single parameter environment is defined:

- n bidders with private v_i,
- Feasible set X, each element of which is a n-dimensional vector $(x_1, ..., x_n)$ in which x_i is the amount of "stuff" given to i.

Examples:

- 1. Single-item auctions: \mathcal{X} is 0-1 vectors with at most one 1, i.e., $\sum x_i \leq 1$.
- 2. k identical goods, each bidder gets at most one: \mathcal{X} is 0-1 vectors with $\sum x_i \leq k$.
- 3. In sponsored search, \mathcal{X} is the set of n-vectors with x_i being a_j if slot j is assigned to bidder i.

More Definitions

Examples:

- 1. Single-item auctions: \mathcal{X} is 0-1 vectors with at most one 1, i.e., $\sum x_i \leq 1$.
- 2. k identical goods, each bidder gets at most one: \mathcal{X} is 0-1 vectors with $\sum x_i \leq k$.
- 3. In sponsored search, \mathcal{X} is the set of n-vectors with x_i being a_j if slot j is assigned to bidder i.

Definition (Allocation and Payments). A sealed-bid auction is defined:

- 1. Bidders report bids $b = (b_1, ..., b_n)$,
- 2. Auctioneer chooses feasible allocation $x(b) \in \mathcal{X}$.
- 3. Auctioneer chooses payments $p(b) \in \mathbb{R}^n$.
- 4. Bidder i gets utility $u_i = v_i \cdot x_i(b) p_i(b)$.

Monotone Allocations and Myerson's Lemma

Definition (Monotone Allocations). An allocation rule x for a single-parameter environment is monotone if for every bidder i and bids b_{-i} by rest of bidders, the allocation

 $x_i(z,b_{-i})$ is nondecreasing in z.

Monotone Allocations and Myerson's Lemma

Definition (Monotone Allocations). An allocation rule x for a single-parameter environment is monotone if for every bidder i and bids b_{-i} by rest of bidders, the allocation

 $x_i(z, b_{-i})$ is nondecreasing in z.

Theorem (Myerson's Lemma). Let (x, p) be a mechanism. We assume that $p_i(b) = 0$ whenever $b_i = 0$, for all bidders i.

- 1. It holds that if (x, p) is DSIC mechanism then x is monotone.
- 2. If x is a monotone allocation, then there is a unique payment rule such that (x, p) is DSIC.

Proof. Suppose (x, p) is a DSIC and let $0 \le y \le z$.

If bidder i has **private valuation** z, to avoid reporting y, DSIC demands

$$z \cdot x_i(z) - p_i(z) \ge z \cdot x_i(y) - p_i(y)$$
 for all i.

Proof. Suppose (x, p) is a DSIC and let $0 \le y \le z$.

If bidder i has **private valuation** z, to avoid reporting y, DSIC demands

$$z \cdot x_i(z) - p_i(z) \ge z \cdot x_i(y) - p_i(y)$$
 for all i.

If bidder i has **private valuation** y, to avoid reporting z, DSIC demands

$$y \cdot x_i(y) - p_i(y) \ge y \cdot x_i(z) - p_i(z)$$
 for all i.

Proof. Suppose (x, p) is a DSIC and let $0 \le y \le z$.

If bidder i has **private valuation** z, to avoid reporting y, DSIC demands

$$z \cdot x_i(z) - p_i(z) \ge z \cdot x_i(y) - p_i(y)$$
 for all i.

If bidder i has **private valuation** y, to avoid reporting z, DSIC demands

$$y \cdot x_i(y) - p_i(y) \ge y \cdot x_i(z) - p_i(z)$$
 for all i.

Combining the two inequalities:

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

Proof. Suppose (x, p) is a DSIC and let $0 \le y \le z$.

If bidder i has **private valuation** z, to avoid reporting y, DSIC demands

$$z \cdot x_i(z) - p_i(z) \ge z \cdot x_i(y) - p_i(y)$$
 for all i.

If bidder i has **private valuation** y, to avoid reporting z, DSIC demands

$$y \cdot x_i(y) - p_i(y) \ge y \cdot x_i(z) - p_i(z)$$
 for all i.

Combining the two inequalities:

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

$$x_i(y) \le x_i(z)$$

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise constant (simple function). if there is a jump at z (say of magnitude h) then as $y \to z$ from left we get

$$z \cdot h \le p(y) - p(z) \le y \cdot h.$$

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise constant (simple function). if there is a jump at z (say of magnitude h) then as $y \to z$ from left we get

$$z \cdot h \le p(y) - p(z) \le y \cdot h.$$

Hence there exists a jump in p so that

jump in p at z = z · jump in x_i at z

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise constant (simple function). if there is a jump at z (say of magnitude h) then as $y \to z$ from left we get

$$z \cdot h \le p(y) - p(z) \le y \cdot h.$$

Hence there exists a jump in p so that

jump in
$$p$$
 at $z = z \cdot$ jump in x_i at z

We conclude that (given $p_i(0) = 0$)

$$p_i(b_i, b_{-i}) = \sum_{j=1}^l z_j \cdot \text{jump in } x_i(., b_{-i}) \text{ at } z_j,$$

where $z_1, ..., z_l$ are the breakpoints of $x_i(., b_{-i})$ in $[0, b_i]$.

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

$$p_i(b_i, b_{-i}) = \sum_{j=1}^{l} z_j \cdot \text{jump in } x_i(., b_{-i}) \text{ at } z_j$$

Proof cont. Assume x is monotone and suppose that x is differentiable.

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

$$p_i(b_i, b_{-i}) = \sum_{j=1}^{l} z_j \cdot \text{jump in } x_i(., b_{-i}) \text{ at } z_j$$

Proof cont. Assume x is monotone and suppose that x is differentiable.

If we devide both sides on the top inequality and let $y \to z$ we get

$$p_i'(z) \le z \cdot x_i'(z)$$

$$z \cdot (x_i(y) - x_i(z)) \le p(y) - p(z) \le y \cdot (x_i(y) - x_i(z))$$

$$p_i(b_i, b_{-i}) = \sum_{j=1}^{l} z_j \cdot \text{jump in } x_i(., b_{-i}) \text{ at } z_j$$

Proof cont. Assume x is monotone and suppose that x is differentiable.

If we devide both sides on the top inequality and let $y \to z$ we get

$$p_i'(z) \le z \cdot x_i'(z)$$

$$p_i(b_i, b_{-i}) = \int_0^{b_i} z \cdot \frac{dx_i(z, b_{-i})}{dz} dz.$$

Myerson's Lemma: DSIC

Proof cont. By picture.

Remark: Myerson's Lemma regenerates the Vickrey auction as a special case. (why?)

```
Remark: Myerson's Lemma regenerates the Vickrey auction as a special case. (why?) Answer: Fix i, b_{-i} and set B = \max_{j \neq i} b_j. Then x_i(z, b_{-i}) is 0 for 0 \le z < B for and 1 for z \ge B. Moreover, p_i(z, b_{-i}) = B for z \ge B and 0 for 0 \le z < B.
```

Remark: Myerson's Lemma regenerates the Vickrey auction as a special case. (why?) Answer: Fix i, b_{-i} and set $B = \max_{j \neq i} b_j$. Then $x_i(z, b_{-i})$ is 0 for $0 \leq z < B$ for and 1 for $z \geq B$. Moreover, $p_i(z, b_{-i}) = B$ for $z \geq B$ and 0 for $0 \leq z < B$.

Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we assign bidders to slots so that we can maximize surplus?
- Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC holds?

Remark: Myerson's Lemma regenerates the Vickrey auction as a special case. (why?) Answer: Fix i, b_{-i} and set $B = \max_{j \neq i} b_j$. Then $x_i(z, b_{-i})$ is 0 for $0 \le z < B$ for and 1 for $z \ge B$. Moreover, $p_i(z, b_{-i}) = B$ for $z \ge B$ and 0 for $0 \le z < B$.

Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we assign bidders to slots so that we can maximize surplus?
- Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC holds?
- Assign to the j-th highest bidder the j-th highest slot for $j=1,\ldots,k$. Note that this can be done in polynomial time. Moreover, the allocation is monotone!

Remark: Myerson's Lemma regenerates the Vickrey auction as a special case. (why?) Answer: Fix i, b_{-i} and set $B = \max_{j \neq i} b_j$. Then $x_i(z, b_{-i})$ is 0 for $0 \le z < B$ for and 1 for $z \ge B$. Moreover, $p_i(z, b_{-i}) = B$ for $z \ge B$ and 0 for $0 \le z < B$.

Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we assign bidders to slots so that we can maximize surplus?
- Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC holds?
- Assign to the j-th highest bidder the j-th highest slot for $j=1,\ldots,k$. Note that this can be done in polynomial time. Moreover, the allocation is monotone! From Myerson's Lemma, there are payments that make the above DSIC.

Approach:

- Step 1: Assume, without justification, that bidders bid truthfully. How should we assign bidders to slots so that we can maximize surplus?
- Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC holds?
- Assign to the j-th highest bidder the j-th highest slot for $j=1,\ldots,k$. Note that this can be done in polynomial time. Moreover, the allocation is monotone! From Myerson's Lemma, there are payments that make the above DSIC.

Consider $b_1 \ge ... \ge b_n$. Focus on first bidder (fix other bidders) and assume bid ranges from 0 to b_1 . The allocation $x_1(z, b_{-1})$ ranges from 0 to a_1 with a jump at b_{j+1} of $a_j - a_{j+1}$ (when bidder 1 becomes j-th highest effectively).

Approach:

• Assign to the j-th highest bidder the j-th highest slot for $j=1,\ldots,k$. Note that this can be done in polynomial time. Moreover, the allocation is monotone! From Myerson's Lemma, there are payments that make the above DSIC.

Consider $b_1 \ge ... \ge b_n$. Focus on first bidder (fix other bidders) and assume bid ranges from 0 to b_1 . The allocation $x_1(z,b_{-1})$ ranges from 0 to a_1 with a jump at b_{j+1} of $a_j - a_{j+1}$ (when bidder 1 becomes j-th highest effectively). Hence for the i-th highest bidder we get the payment

$$p_i(b) = \sum_{j=i}^k b_{j+1}(a_j - a_{j+1})$$