# RELATIONAL MODEL

revised by 김태연

KROENKE AND AUER - DATABASE PROCESSING, 13th Edition © 2014 Pearson Education, Inc.

#### **OBJECTIVES**

- ➤ To understand basic relational terminology
- ➤ To understand the characteristics of relations
- ➤ To be able to identify functional dependencies, determinants, and dependent attributes
- > To identify primary, candidate, and composite keys
- ➤ To be able to identify possible insertion, deletion, and update anomalies in a relation

#### **HOW MANY TABLES?**

➤ Should we store these two tables as they are, or should we combine them into one table in our new database?



#### THE RELATIONAL MODEL

- ➤ Introduced in 1970
- Created by E.F. Codd
- ➤ He was an IBM engineer
- ➤ The model used mathematics known as "relational algebra"
- ➤ Now the standard model for commercial DBMS products.

Codd. E.F., "A Relational Model of Data for Large Shared Data Banks", CACM, June 1970

#### RELATION

➤ In relational database theory, a relation, as originally defined by E. F. Codd, is a set of tuples (d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>n</sub>), where each element d<sub>i</sub> is a member of D<sub>i</sub>, a data domain.



| Table    | Column    | Row   |
|----------|-----------|-------|
| Relation | Attribute | Tuple |

### RELATION EXAMPLES

- Three named attributes: 'ID' from the domain of integers, and 'Name' and 'Address' from the domain of strings.
- ➤ A predicate for this relation might be "Employee number ID is known as Name and lives at Address".
  - ➤ Employee 102 is known only by that name, Yonezawa Akinori, and does not live anywhere else but in Naha, Okinawa

| ID (Integer) | Name (String)      | Address (String)   |  |
|--------------|--------------------|--------------------|--|
| 102          | Yonezawa Akinori   | Naha, Okinawa      |  |
| 202          | Murata Makoto      | Sendai, Miyagi     |  |
| 104          | Sakamura Ken       | Kumamoto, Kumamoto |  |
| 152          | Matsumoto Yukihiro | Okinawa, Okinawa   |  |

#### CHARACTERISTICS OF RELATIONS

- ➤ Relational DBMS products store data about entities in relations, which are a special type of table.
- ➤ A relation is a two-dimensional table that has the following characteristics:
  - ➤ Rows contain data about an entity.
  - Columns contain data about attributes of the entity.
  - ➤ All entries in a column are of the same kind.
  - ➤ Each column has a unique name.
  - Cells of the table hold a single value.
  - ➤ The order of the columns is unimportant.
  - ➤ The order of the rows is unimportant.
  - ➤ No two rows may be identical.

An entity is some identifiable thing that users want to track such as Order, Customer, etc.

삼라만상 (森羅萬象):[명사] 우주에 있는 온갖 사물과 현상.

## **EMPLOYEE RELATION**

"Columns contain of the entity."

"All entries in a column data about attributes are of the same kind."

"Each column has a unique name."

"Rows contain data about an entity."

"No two rows may be identical."

| EmployeeNumber | FirstName                                    | LastName  | Department | Email            | Phone    |
|----------------|----------------------------------------------|-----------|------------|------------------|----------|
| 100            | Jerry                                        | Johnson   | Accounting | JJ@somewhere.com | 834-1101 |
| 200            | Mary                                         | Abernathy | Finance    | MA@somewhere.com | 834-2101 |
| 300            | Liz                                          | Smathers  | Finance    | LS@somewhere.com | 834-2102 |
| 400            | Tom                                          | Caruthers | Accounting | TC@somewhere.com | 834-1102 |
| 500            | Tom                                          | Jackson   | Production | TJ@somewhere.com | 834-4101 |
| 600            | Eleanore                                     | Caldera   | Legal      | EC@somewhere.com | 834-3101 |
| 700            | 700 Richard Bandalone Legal RB@somewhere.com |           | 834-3102   |                  |          |

Copyright © 2016, by Pearson Education, Inc.,

"The order of the rows and the columns is unimportant."

"Cells of the table hold a single value."

# TABLES THAT ARE NOT RELATIONS

Multiple Entries per Cell

| EmployeeNumber | FirstName | LastName  | Department | Email            | Phone                              |
|----------------|-----------|-----------|------------|------------------|------------------------------------|
| 100            | Jerry     | Johnson   | Accounting | JJ@somewhere.com | 834-1101                           |
| 200            | Mary      | Abernathy | Finance    | MA@somewhere.com | 834-2101                           |
| 300            | Liz       | Smathers  | Finance    | LS@somewhere.com | 834-2102                           |
| 400            | Tom       | Caruthers | Accounting | TC@somewhere.com | 834-1102,<br>834-1191,<br>834-1192 |
| 500            | Tom       | Jackson   | Production | TJ@somewhere.com | 834-4101                           |
| 600            | Eleanore  | Caldera   | Legal      | EC@somewhere.com | 834-3101                           |
| 700            | Richard   | Bandalone | Legal      | RB@somewhere.com | 834-3102,<br>834-3191              |

Copyright @2014 Pearson Education

Order of Rows Matters

| EmployeeNumber | FirstName | LastName                       | Department       | Email            | Phone    |
|----------------|-----------|--------------------------------|------------------|------------------|----------|
| 100            | Jerry     | Johnson                        | Accounting       | JJ@somewhere.com | 834-1101 |
| 200            | Mary      | Abernathy                      | Finance          | MA@somewhere.com | 834-2101 |
| 300            | Liz       | Smathers                       | Finance          | LS@somewhere.com | 834-2102 |
| 400            | Tom       | Caruthers                      | Accounting       | TC@somewhere.com | 834-1102 |
|                |           |                                |                  | Fax:             | 834-9911 |
|                |           |                                |                  | Home:            | 723-8795 |
| 500            | Tom       | Jackson                        | Production       | TJ@somewhere.com | 834-4101 |
| 600            | Eleanore  | nore Caldera Legal EC@somewher | EC@somewhere.com | 834-3101         |          |
|                |           |                                |                  | Fax:             | 834-9912 |
|                |           |                                |                  | Home:            | 723-7654 |
| 700            | Richard   | Bandalone                      | Legal            | RB@somewhere.com | 834-3102 |

#### FUNCTIONAL DEPENDENCY

- ➤ Functional dependency is a constraint between two sets of attributes in a relation from a database.
- ➤ The attribute on the left side of the functional dependency is called the determinant.
- ➤ Composite determinant is a determinant of a functional dependency that consists of more than one attribute.
- ➤ Functional dependencies may be based on equations
- ➤ Function dependencies are not equations!

```
StudentID -> StudentName
StudentID -> (DormName, DormRoom, Fee)
ExtendedPrice = Quantity X UnitPrice
(Quantity, UnitPrice) -> ExtendedPrice
```

# FUNCTIONAL DEPENDENCIES IN THE SKU\_DATA TABLE

- > SKU —> (SKU\_Description, Department, Buyer)
- ➤ Anything else?

| SKU    | SKU_Description            | Department   | Buyer        |
|--------|----------------------------|--------------|--------------|
| 100100 | Std. Scuba Tank, Yellow    | Water Sports | Pete Hansen  |
| 100200 | Std. Scuba Tank, Magenta   | Water Sports | Pete Hansen  |
| 101100 | Dive Mask, Small Clear     | Water Sports | Nancy Meyers |
| 101200 | Dive Mask, Med Clear       | Water Sports | Nancy Meyers |
| 201000 | Half-dome Tent             | Camping      | Cindy Lo     |
| 202000 | Half-dome Tent Vestibule   | Camping      | Cindy Lo     |
| 301000 | Light Fly Climbing Harness | Climbing     | Jerry Martin |
| 302000 | Locking Carabiner, Oval    | Climbing     | Jerry Martin |

#### PROPERTIES OF FUNCTIONAL DEPENDENCIES

- ➤ Given that X, Y, and Z are sets of attributes in a relation R, one can derive several properties of functional dependencies:
  - $\triangleright$  Reflexivity: If Y is a subset of X, then X  $\rightarrow$  Y
  - ightharpoonup Augmentation: If  $X \to Y$ , then  $XZ \to YZ$
  - ightharpoonup Transitivity: If  $X \to Y$  and  $Y \to Z$ , then  $X \to Z$
- From these rules, we can derive these secondary rules:
  - ▶ Union: If  $X \to Y$  and  $X \to Z$ , then  $X \to YZ$
  - $\blacktriangleright$  Decomposition: If  $X \to YZ$ , then  $X \to Y$  and  $X \to Z$
  - ightharpoonup Pseudotransitivity: If X  $\rightarrow$  Y and WY  $\rightarrow$  Z, then WX  $\rightarrow$  Z
  - $\blacktriangleright$  Composition: If X  $\rightarrow$  Y and Z  $\rightarrow$  W, then XZ  $\rightarrow$  YW

## CLOSURE OF FUNCTIONAL DEPENDENCY

- ➤ The closure is essentially the full set of values that can be determined from a set of known values for a given relationship using its functional dependencies.
- ➤ Imagine the following list of FD's. We are going to calculate a closure for A from this relationship.
  - ► 1. A  $\rightarrow$  B
  - $\triangleright$  2. B  $\rightarrow$  C
  - $\triangleright$  3. AB → D
- ➤ The closure would be as follows:
  - $\triangleright$  a) A  $\rightarrow$  A (by Armstrong's reflexivity)
  - $\blacktriangleright$  b) A  $\rightarrow$  AB (by 1. and (a))
  - $\triangleright$  c) A  $\rightarrow$  ABD (by (b), 3, and Armstrong's transitivity)
  - $\blacktriangleright$  d) A  $\rightarrow$  ABCD (by (c), and 2)

A is a good candidate key!

#### WHAT MAKES DETERMINANT VALUES UNIQUE?

- ➤ A determinant is unique in a relation if and only if, it determines every other column in the relation.
- ➤ You cannot find the determinants of all functional dependencies simply by looking for unique values in one column:
  - ➤ Data set limitations
  - Must be logically a determinant
- ➤ Best strategies are to think about the nature of the business activity.

#### KEY

- ➤ A key is a combination of one or more columns that is used to identify rows in a relation.
- ➤ A candidate key is a key that determines all of the other columns in a relation.
- ➤ A primary key is a candidate key selected as the primary means of identifying rows in a relation.
  - There is only one primary key per relation.
  - ➤ The primary key may be a composite key.
  - ➤ The ideal primary key is short, numeric, and never changes.

#### **SURROGATE KEY**

- ➤ A surrogate key is an artificial column added to a relation to serve as a primary key.
  - ➤ DBMS supplied
  - ➤ Short, numeric, and never changes—an ideal primary key
  - ➤ Has artificial values that are meaningless to users
  - Normally hidden in forms and reports

```
RENTAL_PROPERTY without surrogate key:

RENTAL_PROPERTY (Street, City,

State/Province, Zip/PostalCode, Country, Rental_Rate)

RENTAL_PROPERTY with surrogate key:

RENTAL_PROPERTY (PropertyID, Street, City,

State/Province, Zip/PostalCode, Country, Rental_Rate)
```

#### **FOREIGN KEY**

- ➤ A foreign key is the primary key of one relation that is placed in another relation to form a link between the relations.
  - ➤ A foreign key can be a single column or a composite key.
  - ➤ The term refers to the fact that key values are foreign to the relation in which they appear as foreign key values.

