Safe Send Final Design Review

By: Allen Zhao, Andrew Donis, Dean Kalcic, Grant Gottlieb, Michael Barth

05/02/25

Problem Overview

- Shipping solution for precision assemblies and components
- Key stakeholders include precision engineering and shipping companies
 - Optics Companies
 - Microelectronics
 - Biomedical

- Tracking provides engineering companies information about shipping status
- Key Requirements
 - Minimize acceleration on payload to below 15 g from a 1-meter drop
 - Protect payload from heat and moisture
 - Track acceleration, temp, humidity

Manufacturing

Outer Shell and Frame

- 12 individual 80-20 extrusions make up the frame
 - Drilled
- Frame contains mounts for springs, wire rope, and electronics
- Panels attached to exterior
 - Water Jet
- 3D printed mounts and inner box

Manufacturing Drawings

Assembly - Drawings

Assembly - Results

Assembly - Changes

Differences from CDR

- Panel gaps observed during assembly
 - Epoxy didn't fully seal
- Edges taped with adhesive foil
 - Air barrier & water proofing
- Wire Rope Orientation
 - Loop shape to X formation
- Electronics Wiring
 - SPI Daisy Chain -> Iterate using code
 - Logic stepper

Electronics & Sensing

Wiring and Improvements

- Two sets of accelerometers and temp/humidity sensors write data to SD card
- 3 Protoboards soldered for tracking
 - Main housing had Arduino Micro, SD Card, and Logic Stepper
 - Each measurement apparatus held a DHT22 temperature and humidity sensor and a ADXL373 accelerometer using SPI communication
- Soldered connections improved data acquisition
- Improved wire quality which enhanced reliability

Electronics Potential Improvements

- Address acceleration data noise
 - PCB to ensure high-quality connections
- Improve data storage capacity
 - Test and implement accelerometer "wake up" mode to save data storage space
 - Increase storage size
- Improve ease of recharging for batteries
 - Charging from wall outlet

Shock Analysis

- ANSYS Transient Structural
- Simulates conditions of worst case 1 m drop
 - Input 4.43 m/s velocity
- Max displacement = 5.5 inches
- Meets max acceleration requirement (15 g)
- Used this result to drive spring selection
 - Minimum 500 N/m Spring
 - Dampers needed to stop vibration
 - Wire Rope

Validation Testing

Shock Testing

- Conducted 5 trials of 1 meter drop test
- Maximum acceleration of the outer box is 16.2 g
- Maximum acceleration of the inner box is 13.1 g
- Nearly a 97.38% decrease in loading based on calculated g-force
- Meets requirement of reducing shock to below 15 g

$$a = rac{v^2}{2s} = rac{(4.43)^2}{2 imes 0.002} = rac{19.6}{0.004} = 4,900 \, ext{m/s}^2$$

$$\text{G-force} = \frac{4,900}{9.81} \approx \boxed{500 \, g}$$

Validation Testing

Vibration Testing

- 15-minute drive in car
- Shape of PSD is as predicted in the CDR
- Peak at 5 Hz instead of 3 Hz
- Attenuation starting at 10 Hz
 - 5 15 dB attenuation past 20 Hz
 - Meets 3 dB requirements
 - Inner box power is 3% to 31% of environment
 - Average of 10%

Validation Testing

Thermal Performance

- Box subjected to a 35° C temperature gradient in a sauna
- Inner box experienced 0.5° C increase from 26.1 to 26.6 in 15 minutes
 - 0.033° C/min
 - Estimated 0.042 °C/min at 45° C gradient
- Meets 0.5° C/min requirement
- Outer Box increased 7.9° C

Humidity Testing

- Box subjected to a 35% humidity difference
 - Sauna less humid than ambient
- Inner box experienced extremely steady humidity
- Outer Box decreased by 10%
 - Absolute humidity stayed the same
- Unable to perform original waterproof testing due to poor alignment caused by insufficient rivet installation

Requirements & Results Recap

Shock:

Requirement: < 15 g with 1 meter drop

Result: 13.1 g

Vibrations: 3 dB attenuation above 10 Hz

Result: Negligible attenuation from 10 – 20 Hz

5 – 15 dB attenuation above 20 Hz

Thermal:

V

 $|\mathbf{x}|$

 $\overline{\mathbf{A}}$

Requirement: 0.5° C/min when subject to a 45° C

temperature gradient

Result: 0.042° C/min

Humidity:

Requirement: Humidity does not change when

sprayed by water

Result: No change with 35% humidity gradient

Business Proposition

Renting Safe Send

- Safe Send will rent units out
- Assumptions:
 - Each device used 40 times a year
 - Every 9 days
 - 4405 devices in circulation
 - \$135.87 to make; \$598,507 upfront cost
- Revenue:
 - Rent for \$15 a day
 - \$15.86 million annual revenue
- Impact:
 - Protects delicate components
 - Relaxes design requirements

Sector	Annual Shipments	0.01% precision shipments	5% Market Share
MEMS Devices	34 Billion	3,400,000	170,000
Semiconductor	1.15 Billion	115,000	5,750
Medical Device	85 Million	8,500	425

Design Improvements

Frame

- Injection molded foamed ABS frame
 - Fixes bolt alignment
 - New box is 18.5 lbs
- Handles

Vibrations

Foam/rubber mounts for springs and dampers

Electronics

- Rechargeable battery
- Increased data storage
- Reduce data noise
- App for tracking

Thank You!

Backup – Cost Estimate

Sample Injection Molding Cost – Main Body

Injection Molded Body:

Material Cost: 7741.92 cm3 x 1.05 g/cm3 x

0.00293 \$/g = \$23.81

Projected Area: 2580.64 cm2

Runner %: 5%

Shot area: 2709.67 cm2

Injection Pressure: 500 bar

8500 kN machine used

Cycle time

T = 70 s

Mold Point System:

Base cost = 50 + 0.023A*h0.4 = 150 hours

Ejection hours 2.5*A0.5 = 30 hours

Geometric complexity: 30 surface patches, 15

hours

10% increase for not critical finish, 2% for

tolerance

Mold Cost = 218.4 hours = \$8736

Total Cost = (Nt/n)(k1+m1F)t + C1n0.766 + NtCm

Cost = \$27.70 per part

Final Cost Estimate

Component	Average Unit Cost (USD)
Microcontroller (Arduino-equivalent)	\$2.00
Accelerometer (high sample rate)	\$1.75
Humidity + Temp sensor	\$1.25
Battery	\$2.00
PCB Fabrication (2-layer)	\$1.50
Assembly + Passives	\$3.00
Firmware flashing + Testing	\$1.50
Overhead/Buffer	\$1.50
Total per unit	\$11.50

Bought in bulk for 4500 units

Springs: \$0.75 per spring = \$6

Wire Rope: \$4.50 for 10 feet

Rubber Gasket: \$14

Fasteners: \$3

Injection Molded Costs:

Body: \$27.70

Lid: \$7.97

Inner Box: \$6.55

Assembly time: 60 minutes = \$30

Total Cost (with 20% fudge factor) = \$135.87 per

unit

Eng requirements

Customer Requirements

Engineering Requirements	Metric	Units
Thermal Insulation		
Designed for range of outdoor temperatures	-29 to 57	Celsius
Inside shall be below a temperature change of less than 0.5 C/min given a temperature gradient of 45 C	0.5	C/min
Shock		
The package shall resist shock from 1 meter flat and corner drop test, limiting package acceleration to 15 g's.	15	g
Vibrations		
Natural frequencies of fragile components are attenuated >100 Hz	-3	dB
Natural frequencies of shock/vibration isolation system are attenuated ~10 Hz	-3	dB
Environment		
Package shall withstand water up to 0.5m for 30 minutes	0.5	m
Avoid using materials that could produce particulate	n/a	n/a
Tracking		
Product shall track any vibrational and thermal disturbances throughout the whole shipping duration	3	days
School of Mechanical Engineering		
1 +		

