- 1. Прерывания
- 2. Таймер/счетчик 1
- 3. Аналого-цифровой преобразователь
- 4. Аналоговый компаратор

1. Прерывания (Interrupt)

Определение. Внешние и внутренние прерывания. Векторы прерываний. Приоритеты фиксированы порядком в списке.

Обработка прерываний. Вложенные прерывания.

	Address	Name	Interrupt Definition				
1	\$0000	RESET	LOW на входе RESET, включение питания				
2	\$0001	INT0	Запрос прерывания по входу INT0 (PD2)				
3	\$0002	INT1	Запрос прерывания по входу INT1 (PD3)				
4	\$0003	TIMER2_COMP	Достижение порога в таймере 2				
5	\$0004	TIMER2_OVF	Переполнение в таймере 2				
6	\$0005	TIMER1_CAPT	Фиксация содержимого таймера 1 в ICR1				
7	\$0006	TIMER1_COMPA	Достижение порога А в таймере 1				
8	\$0007	TIMER1_COMPB	Достижение порога В в таймере 1				
9	\$0008	TIMER1_OVF	Переполнение в таймере 1				
10	\$0009	TIMER0_OVF	Переполнение в таймере 0				
11	\$000A	SPI, STC	Окончание передачи по SPI				
12	\$000B	USART, RxC	USART прием закончил				
13	\$000C	USART, UDRE	Регистр данных USART пуст				
14	\$000D	USART.TxC	USART передачу закончил				
15	\$000E	ADC	АЦП закончено				
16	\$000F	EE_RDY	EEPROM готов к новой записи				
17	\$0010	ANA_COMP	Срабатывание аналогового компаратора				
18	\$0011	TWI	Прерывание двухпроводного интерфейса				
19	\$0012	INT2	Запрос прерывания по входу INT2 (PB2)				
20	\$0013	TIMER0_COMP	Достижение порога в таймере 0				
21	\$0014	SPM_RDY	Память программ готова к записи				

Реакция на прерывание

Управление: 7-й разряд (I) в SREG, маски, флаги STACK \leftarrow PC, I \leftarrow 0, сброс флага

10-разрядный Stack Pointer (SP): SP9 и SP8 в 1-м и 0-м разрядах SPH (\$3E), SP7:SP0 в SPL (\$3D); дно стека \$025F, (SP) >= \$0060 РС ← адрес соответствующего вектора прерывания

Переход к программе обработки прерывания (jmp, rjmp) по адресу, указанному в векторе данного прерывания

Запоминание в самом начале программы обработки прерываний содержимого SREG и других регистров, используемых в основной программе Собственно обработка прерывания

Восстановление SREG и других регистров, используемых в основной программе

Последняя команда в программе обработки прерывания - reti (return from interrupt): PC \leftarrow STACK, I \leftarrow 1

Управление на примере внешних прерываний INT0 / PD2 / [16], INT1 / PD3 / [17] и INT2 / AIN0 / PB2 / [3]

Address \$3F	Name SREG	Bit 7 Bit 6 I T I – Globa	Bit 5 H I Interrupt	Bit 4 S Enable	Bit 3 V	Bit 2 N	Bit 1	Bit 0	Status Register
\$3B	GICR	INT1 INT0 INT1 – Extern	INT2 nal Interrup	– t 1 (PD3	_ / [17]) Ena	– able			General Interrupt Control Register
\$3A	GIFR	INTF1 INTF0	INTF2 nal Interrup	– t Flag 1		-	_	_	General Interrupt Flag Register
\$35	MCUCR				ISC11	ISC10	ISC01	ISC00	MicroController Unit (MCU)Control Register ISC – (External) Interrupt Sense Control

ISC11	ISC10	Условие прерывания
0	0	LOW на входе INT1 / PD3 / [17]
0	1	Любое изменение на входе INT1 / PD3 / [17]
1	0	Переход из 1 в 0 на входе INT1 / PD3 / [17]
1	1	Переход из 0 в 1 на входе INT1 / PD3 / [17]

То же самое в отношении прерываний по входу INT0 / PD2 / [16] согласно ISC01, ISC00

2. Таймер/счетчик 1

\$2F, \$2E	TCCR1A, TCCR1B	– управление таймером 1 (TCCR – Timer/Counter Control Register)
\$2D, \$2C	TCNT1H, TCNT1L	– сам счетчик: старший и младший байты (TCNT – Timer/Counter; H – High, L – Low)
\$2B, \$2A	OCR1AH, OCR1AL	– порог A (OCR – Output Compare Register; H – High, L – Low)
\$29, \$28	OCR1BH, OCR1BL	– порог B (OCR – Output Compare Register; H – High, L – Low)
\$27, \$26	ICR1AH, ICR1AL	– значение в счетчике в момент захвата (ICR – Input Capture Register; Input Capture Pin: ICP / PD6 / [20])

dress	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$2F	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0			WGM11	WGM10
\$2E	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10

CS12	CS11	CS10	Выбор тактового сигнала			
0	0	0	Нет счета (останов)			
0	0	1	clk (I/O Clock)			
0	1	0	clk/8			
0	1	1	clk/64			
1	0	0	clk/256			
1	0	1	clk/1024			
1	1	0	От T1 / PB1 / [2] Negative Edge			
1	1	1	От T1 / PB1 / [2] Positive Edge			

For non-PWM mode:

COM1A1	COM1A0	Сигнал на выводе ОС1A / PD5 / [19]
0	0	Нормальный вывод порта D, ОС1A отключен
0	1	Переключение в момент совпадения с порогом А
1	0	Уст. LOW в в момент совпадения с порогом A
1	1	Уст. HIGH в в момент совпадения с порогом А

PWM - Pulse Width Modulation OC - Output Compare

То же самое в отношении вывода OC1B / PD4 / [18] согласно COM1B1, COM1B0

WGM13	WGM12	WGM11	WGM10	Waveform Generation Mode	TOP	Upd.OCR	TOV1
0	0	0	0	Normal (счёт)	\$FFFF	Immediate	MAX
0	0	0	1		\$00FF	TOP	BOTTOM
0	0	1	0		\$01FF	TOP	воттом
0	0	1	1		\$03FF	TOP	BOTTOM
0	1	0	0	Clear Timer on Compare (CTC)	OCR1A	Immediate	MAX
0	1	0	1		\$00FF	TOP	TOP
0	1	1	0		\$01FF	TOP	TOP
0	1	1	1		\$03FF	TOP	TOP
1	0	0	0		ICR1	воттом	воттом
1	0	0	1		OCR1A	воттом	воттом
1	0	1	0		ICR1	TOP	воттом
1	0	1	1		OCR1A	TOP	воттом
1	1	0	0	Clear Timer on Compare (CTC)	ICR1	Immediate	MAX
1	1	0	1		_		-
1	1	1	0		ICR1	TOP	TOP
1	1	1	1		OCR1A	TOP	TOP

ВОТТОМ – счетчик достигает дна, когда его содержимое становится равным \$0000

МАХ – счетчик достигает максимума, когда его содержимое становится равным \$FFFF

ТОР – счетчик достигает заданного наибольшего значения, когда его содержимое

 счетчик достигает заданного наибольшего значения, когда его содержимое становится равным \$00FF, \$01FF или \$03FF или тому, что запомнено в ОСR1A или в ICR1в зависимости от режима работы

Upd.OCR (Update OCR1x at...)

TOV1 (TOV1 Flag Set on...); TOV1 - Timer/Counter 1 Overflow Flag

Чтение и запись 16-разрядных слов **TCNT1**, OCR1A, OCR1B, ICR1 по 8-разрядной шине без остановки счета

read:	in r18, SREG	,	write:	in r18, SREG	;
	cli	; I ← 0		cli	; I ← 0
	in r16, TCNT1L	; TEMP ← TCNT1H		out TCNT1H, r17	; TEMP ← TCNT1H
	in r17, TCNT1H	; r17 ← TEMP		out TCNT1L, r16	; TCNT1H ← TEMP
	out SREG, r18	;		out SREG, r18	•

Прерывания, связанные с таймером/счетчиком 1

Внешнее прерывание \$0005 TIMER1_CAPT Фиксация в ICR1AH, ICR1AI значения TCNT1H, TCNT1L

в момент поступления требования захвата на входе ICP / PD6 / [20]

Внутренние прерывания \$0006 TIMER1_COMPA Достижение порога А TIMER1_COMPB
TIMER1_OVF \$0007 Достижение порога В

\$0008 Переполнение Timer/Counter1, Overflow Interrupt Enable

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$39	TIMSK			TICIE1	OCIE1A	OCIE1B	TOIE1			Timer/Counter Interrupt Mask Register
				TICIE1	- Timer/0	Counter1,	Input Cap	ture Inte	rrupt Enab	le
					OCIE1A	Timer/C	Counter1,	Output C	Compare A	Match Interrupt Enable
						OCIE1B -	Timer/0	Counter1,	, Output Co	ompare B Match Interrupt Enable
							TOIE1	Timer/	Counter1,	Overflow Enable
						, , ,			, ,	
\$38	TIFR			ICF1	OCF1A	OCF1B	TOV1			Timer/Counter Interrupt Flag Register
				ICF1	Timer/0	Counter1,	Interrupt	Capture F	Flag	
						Timor/C	Countar1	Output C	omnoro A	Motob Flog

OCF1A - Timer/Counter1, Output Compare A Match Flag OCF1B - Timer/Counter1, Output Compare B Match Flag TOV1 - Timer/Counter1, Overflow Flag

3. Аналого-цифровой преобразователь (ADC)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 **SFIOR** ADTS2 ADTS1 ADTS0 \$30 ACME PUD PSR2 PSR10

Special Function I/O Register

ADTS - ADC Auto Trigger Source

ACME - Analog Comparator Multiplexer Enable; при ACME = 1 и ADEN = 0 мультиплексор MUX2:0 используется аналоговым компаратором(2)

PUD - Pull-Up Disable

PSR – Timer/Counter Prescaler Reset (сброс делителя частоты на входе таймера/счетчика)

\$07 **ADMUX** REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADC Multiplexer Selection Register

REFS – Voltage Reference Selection ADLAR – ADC Left Adjust Result

MUX4:0 - ADC Analog Channel and Gain Selection

\$06 **ADCSRA** ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADC Control and Status Register A

ADEN – ADC Enable; запись 1 в ADEN запускает преобразование

ADSC - ADC Start Conversion

ADATE – ADC Auto Trigger Enable; при ADATE = 1 запуск ADC положительным фронтом от ADTS2:0 в регистре SFIOR⁽¹⁾

ADIF - ADC Interrupt Flag ADIE – ADC Interrupt Enable ADPS – ADC Prescaler Select

\$05, \$04 ADCH, ADCL - ADC Data Registers: High, Low (старший и младший байты преобразования в АЦП)

ADPS2	ADPS1	ADPS0	Clock Frequency
0	0	0	clk/2
0	0	1	clk/2
0	1	0	clk/4
0	1	1	clk/8
1	0	0	clk/16
1	0	1	clk/32
1	1	0	clk/64
1	1	1	clk/128

MUX4	MUX3	MUX2	MUX1	MUX0	Выбор входа АЦП
0	0	0	0	0	PA0 / ADC0 / [40]
0	0	0	0	1	PA1 / ADC1 / [39]
0	0	0	1	0	PA2 / ADC2 / [38]
0	0	0	1	1	PA3 / ADC3 / [37]
0	0	1	0	0	PA4 / ADC4 / [36]
0	0	1	0	1	PA5 / ADC5 / [35]
0	0	1	1	0	PA6 / ADC6 / [34]
0	0	1	1	1	PA7 / ADC7 / [33]

REFS1	REFS0	Выбор опорного напряжения
0	0	AREF / [32], внутреннее V _{ref} отключено
0	1	AVCC / [30] с конденсатором на выводе AREF / [32]
1	0	-
1	1	Внутр. V _{ref} = 2.56 В с конд. на выводе AREF / [32]

ADLAR = 0 - сдвиг содержимого ADCH:ADCL вправо:

\$05	ADCH	-	-	_	-	-	_	ADC9	ADC8
\$04	ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0

ADLAR = 1 - сдвиг содержимого ADCH:ADCL влево:

\$05	ADCH	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2
\$04	ADCL	ADC!	ADC0	ı	ı	-	ı	_	_

ADTS2	ADTS1	ADTS0	ADC Auto Trigger Source
0	0	0	Free Running Mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter 0 Compare Match
1	0	0	Timer/Counter 0 Overflow
1	0	1	Timer/Counter 1 Compare Match B
1	1	0	Timer/Counter 1 Overflow
1	1	1	Timer/Counter 1 Capture Event

 $^{^{(1)}}$ При ADATE = 0 значения SFIOR7:5 игнорируются.

4. Аналоговый компаратор

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$30	SFIOR				_	ACME				Special Function I/O Register
			•			ACME	Analog	Compara	tor Multiple	exer Enable ⁽²⁾
\$07	ADMUX						MUX2	MUX1	MUX0	ADC Multiplexer Selection Register
							MUX2:0	Analog	Comparat	or Negative Input при ASME = 1 и ADEN = 0 ⁽²⁾
\$08	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Analog Comparator Control and Status Register
		ACD	Analog	Compara	tor Disabl	е				
			ACBG	Analog	Comparat	or Bandga	p Select			
				ACO	Analog	Comparat	or Output			
					ΔCI	_ Analog	Compara	tor Interru	nt Flag	

ACI — Analog Comparator Output

ACI — Analog Comparator Interrupt Flag

ACIE — Analog Comparator Interrupt Enable

ACIC — Analog Comparator Input Capture Enable

ACIS1:0 - Analog Comparator Interrupt Mode Select

При ACIC = 1 аналоговый компаратор запускает функцию захвата таймера/счетчика 1 (по входу ICP / PD6 / [20]); выход аналогового компаратора напрямую подключен к входу логики, вырабатывающей сигнал прерывания Timer/Counter1 Input Capture Interrupt с учетом полярности запускающего сигнала (edge select) и осуществляя или не осуществляя подавление шума (noise cancelation); прерывание происходит, если TICIE = 1 в регистре TIMSK.

При ACIC = 0 выход аналогового компаратора не подключен к входу логики Timer/Counter1 Input Capture Interrupt.

ACIS1	ACIS0	Условие возникновения прерывания по выходу АСО
0	0	При переключении (любом изменении) сигнала АСО
0	1	1
1	0	По спадающему фронту сигнала АСО
1	1	По нарастающему фронту сигнала АСО

⁽²⁾ Analog Comparator Multiplexed Input [бит ACME – в регистре SFIOR (\$30), бит ADEN – в регистре ADCSRA (\$06)]:

ACME	ADEN	MUX2:0	Analog Comparator Negative Input
0	Х	XXX	OC0 / AIN1 / PB3 / [4]
1	1	XXX	OC0 / AIN1 / PB3 / [4]
1	0	000	PA0 / ADC0 / [40]
1	0	001	PA1 / ADC1 / [39]
1	0	010	PA2 / ADC2 / [38]
1	0	011	PA3 / ADC3 / [37]
1	0	100	PA4 / ADC4 / [36]
1	0	101	PA5 / ADC5 / [35]
1	0	110	PA6 / ADC6 / [34]
1	0	111	PA7 / ADC7 / [33]