Indian Institute of Technology Roorkee

CHN-323 Computer Applications in Chemical Engineering

Ashwini Kumar Sharma

Department of Chemical Engineering Indian Institute of Technology Roorkee

Email: ashwini.fch@iitr.ac.in

Solving nonlinear algebraic equations

> Single equation

$$f(x) = 0$$
$$f(x, p) = 0$$

p = parameter

> Set of equations

$$f_1(x_1, x_2) = 0$$

 $f_2(x_1, x_2) = 0$

> Generalized

$$\underline{f}(\underline{x}) = 0$$

$$\underline{f}(\underline{x}, \underline{p}) = 0$$

Single nonlinear equation

$$f(x) = 0$$
$$f(x, p) = 0$$

x = unknown variable, p = parameter

- > Example: $ax^2 + bx + c = 0$ $f(x) = ax^2 + bx + c$
- > Solving this equation means finding the roots
 - Values of x that make f(x) equal to zero
 - Also called the zeros of f(x)
- > The roots depends on the values of parameters (a, b and c)

Example 1

> Van der Waals equation of state

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT \qquad a = \frac{27}{64} \left(\frac{R^2 T_c^2}{P_c}\right) \qquad b = \frac{RT_c}{8P_c}$$

- > P (atm), V(L/gmol), R=0.08206 atm.L/(gmol. K)
- \succ T_c=405.5 K, P_c=111.3 atm for ammonia
- Calculate the molar volume and compressibility factor for ammonia gas at a pressure of 56 atm and a temperature of 450 K.

Example 2

- > Second law of motion,
 - rate of change of momentum of a body is equal to the resultant force acting on it

$$\frac{d(mv)}{dt} = F_{net}$$

> The net force on the body is

$$F_{net} = F_g - F_r = mg - c_d v^2$$

> Substituting, we get

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

Example 2 continued...

> Analytical solution

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right)$$

- > Model for the bungee jumper's velocity
- > You can predict the jumper's velocity
- Such computations can be performed directly because v is expressed <u>explicitly</u> as a function of the model parameters. That is, it is isolated on one side of the equal sign.

Example 2 continued...

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right)$$

- According to medical studies, bungee jumper's chances of sustaining a significant vertebrae injury increase significantly if the free fall velocity exceeds 36 m/s after 4 s of free fall
- Determine the critical mass at which this criterion is exceeded given a drag coefficient of 0.25 kg/m

Example 2 continued...

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right)$$

- > All unknowns, except m
- We have an equations (to determine m), but it cannot be solved explicitly for m
- > m is said to be implicit
- > To solve for m, we can write

$$f(m) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}}t\right) - v(t) = 0$$

$$\sqrt{\frac{9.81m}{0.25}} \tanh\left(\sqrt{\frac{9.81(0.25)}{m}}4\right) - 36 = 0$$

Single nonlinear equation

$$ax^2 + bx + c = 0$$

> Direct solution

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- \succ There are many equations that could not be solved directly \rightarrow Approximate solution techniques
 - 1. Graphical method
 - 2. Trial and error method
 - 3. Numerical methods: systematic strategies to arrive at the roots

Graphical method

- > Make a plot of the function
- \triangleright Observe where it crosses the x axis
- This point, which represents the x value for which f(x) = 0, provides a rough approximation of the root

Solve example 2 by graphical method in MATLAB

Graphical method

Number of ways in which roots can occur (or be absent) in an interval prescribed by a lower and upper bound

Trial and error method

- \triangleright Guess a value of x and evaluate whether f(x) is zero
- \triangleright If not, make another guess for x
- Again evaluate f(x) to check if the new value of x provides a better estimate of the root
- \triangleright Repeat until a guess results in an f(x) that is close to zero.

Numerical methods

- Bracketing methods: Based on two initial guesses that bracket the root
 - Bisection method
 - False position method
- Den methods: Can involve one or more initial guesses, but there is no need for them to bracket the root.
 - Secant method
 - Newton's method
 - Muller's method
 - Fixed point iteration method

Bisection method

- \blacktriangleright Key idea: if f(x) is continuous and it changes signs at two x-values, there must be at least one root between these x-values
- To determine a root of f(x) = 0 given values x_0 and x_1 such that $f(x_0) * f(x_1) < 0$

Example

> Solve in MATLAB by bisection method

$$f(x) = 3x + \sin x - e^x = 0$$
$$x0 = 0 \text{ and } x1 = 1$$
$$tolerance = 1 \times 10^{-4}$$

 \succ Key idea: approximate the curve with a straight line for x between the values of x_0 and r.

The straight line is assumed to be the secant which connects the two points (x_0 , $f(x_0)$) and (x_1 , $f(x_1)$)

Both the secant line and the new root estimate x_2 are shown in red

 x_2 is closer to the root r than either x_1 or x_0

https://www.lehigh.edu/~ineng2/clipper/notes/secant.htm

> Repeat this process (green line)

> Getting closer to r

- > Slope of red line $m = \frac{f(x_1) f(x_0)}{x_1 x_0}$
- \triangleright Equation of red line considering one point as $(x_1, f(x_1))$

$$y - f(x_1) = m(x - x_1)$$

The point $x = x_2$ corresponds to the point of the straight line where y = 0

$$-f(x_1) = m(x_2 - x_1)$$

> Thus

$$x_2 = x_1 - \frac{f(x_1)}{m}$$

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

> Generalizing, we get

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

 \succ To determine a root of f(x) = 0, given two values, x_0 and x_1 , that are near the root,

```
If |f(x_0)| < |f(x_1)| Then

Swap x_0 with x_1

Repeat

Set x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}

Set x_0 = x_1

Set x_1 = x_2

Until |f(x_2)| < tolerance
```

Example

> Solve in MATLAB by secant method

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 0 \text{ and } x_1 = 1$$

$$tolerance = 1 \times 10^{-4}$$

False position (linear interpolation method)

> Key idea: mix of bisection and secant method.

Newton's method

> Key idea

- Make a initial guess, say x_i
- A tangent can be drawn from the point $[x_i, f(x_i)]$
- The point where this tangent crosses the x axis usually represents an improved estimate of the root

Newton's method

https://www.youtube.com/watch?v=R0no1yo-ckQ

Newton's method

> We know that

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

Rearranging this gives

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton's method by Taylor Series Interpretation

 \succ Let us write Taylor series expansion of f(x) around the point x_i

$$f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(x_i)(x - x_i)^2}{2!} + \cdots$$

> Retaining only the first order term

$$f(x) = f(x_i) + f'(x_i)(x - x_i)$$

Good approximation of f(x) at x_i and in the vicinity of x_i

> Consider x = r (root) $f(r) = f(x_i) + f'(x_i)(r - x_i)$

Newton's method by Taylor Series Interpretation

 \triangleright But f(r) = 0

$$0 = f(x_i) + f'(x_i)(r - x_i)$$

> This implies

$$r = x_i - \frac{f(x_i)}{f'(x_i)}$$

> In general

$$x^{[n+1]} = x^{[n]} - \frac{f(x^{[n]})}{f'(x^{[n]})}$$

Newton's method: algorithm

To determine a root of f(x) = 0, given x_0 reasonably close to the root,

```
Compute f(x_0), f'(x_0).

If f(x_0) \neq 0 And f'(x_0) \neq 0 Then

Repeat

Set x_1 = x_0.

Set x_0 = x_0 - \frac{f(x_0)}{f'(x_0)}

Until (|x_1 - x_0|) < *tol1 Or |f(x_1)| < tol2.
End If.
```

Extended Newton's method

- When we derived Newton's method from Taylor series expansion, we retained only the first order term
- > We can retain both linear and quadratic terms, it is called extended Newton's method

$$f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(x_i)(x - x_i)^2}{2}$$

 \triangleright Consider x = r (root)

$$f(r) = f(x_i) + f'(x_i)(r - x_i) + \frac{f''(x_i)(r - x_i)^2}{2}$$

Extended Newton's method

> But
$$f(r) = 0$$

$$0 = f(x_i) + f'(x_i)(r - x_i) + \frac{f''(x_i)(r - x_i)^2}{2}$$

$$\to f(x_i) + (r - x_i) \left[f'(x_i) + \frac{f''(x_i)(r - x_i)}{2} \right] = 0$$

The $(r - x_i)$ term inside the square braces may be replaced by the results of the Newton Method

$$r = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$\to f(x_i) + (r - x_i) \left[f'(x_i) - \frac{f''(x_i) f(x_i)}{2f'(x_i)} \right] = 0$$

Extended Newton's method

$$(r - x_i) = \frac{-f(x_i)}{\left[f'(x_i) - \frac{f''(x_i) f(x_i)}{2f'(x_i)}\right]}$$

$$\rightarrow r = x_i - \frac{f(x_i)}{\left[f'(x_i) - \frac{f''(x_i)f(x_i)}{2f'(x_i)}\right]}$$

$$x^{[n+1]} = x^{[n]} - \frac{f(x^{[n]})}{\left[f'(x^{[n]}) - \frac{f''(x^{[n]})f(x^{[n]})}{2f'(x^{[n]})}\right]}$$

- \triangleright Key idea: approximate the function f(x) with a quadratic polynomial for x.
- > We need three initial guesses
- > Similar to secant method

- Let the three initial guesses be (x_0, x_1, x_2) . Let the function values at these three points be denoted by (f_0, f_1, f_2) .
- \triangleright Define $v = x x_0$
- > We construct a 2nd degree polynomial as

$$P_2(v) = av^2 + bv + c$$

 \triangleright Let $h_1 = x_1 - x_0$ and $h_2 = x_0 - x_2$

> We estimate the coefficients (a, b and c) by evaluating $P_2(v)$ at the 3 points

$$v = 0$$
: $a(0)^2 + b(0) + c = f_0$; $c = f_0$
 $v = h_1$: $ah_1^2 + bh_1 + c = f_1$; $c = f_0$
 $v = -h_2$: $ah_2^2 - bh_2 + c = f_2$.

$$a = \frac{f_2 + \gamma f_1 - f_0 (1 + \gamma)}{\gamma h_1^2 (1 + \gamma)} \quad \text{and} \quad b = \frac{f_1 - f_0 - a h_1^2}{h_1}$$
 where $\gamma = \frac{h_2}{h}$

2 eqns and 2 unknowns

- > We have now obtained the values of a, b & c
- The roots of the equation $P_2(v) = 0$ are given by (analytical expression for quadratic equation)

$$v = \tilde{r} - x_0 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\widetilde{r} = x_0 + \left[\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \right]$$

 \tilde{r} is a better guess for the root of f(x) = 0