

CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIA DE DADOS (BIG DATA PROCESSING AND ANALYTICS)

Componente curricular: PARADIGMAS DE LINGUAGEM DE PROGRAMAÇÃO EM CIÊNCIA DE DADOS [TURMA 01D] - 2022/1 - Trilha 4.

Aluno: ROBSON DE FREITAS SAMPAIO.

URL deste notebook: https://github.com/rfsampaio/postgraduate_data_science/blob/main/notebooks/PL_A4.ipynb

Análise Exploratória de Dados (EDA).

Caso: objetivando exercitar a manipulação de datasets de diversas origens, buscamos unir dados de datasets localizados em https://wid.world/ e em https://www.gapminder.org/. Os dados versam sobre informações econômicas e macroenconômicas de diversos países do mundo. Nessa análise escolhemos apenas dados relacionados ao Brasil.

Exploração inicial dos Dados

```
In []: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import locale

%matplotlib inline

locale.setlocale(locale.LC_ALL, "pt_BR.UTF-8")

# datasets GAP: https://www.gapminder.org/
# acesso ao serviço de Saneamento Básico
   dfSanitation = pd.read_csv("../data/GAP_at_least_basic_sanitation_overall_access_percent.csv")
# Índice de Desenvolvimento Humano (IDH)
```

```
dfHdi = pd.read_csv("../data/GAP_hdi_human_development_index.csv")
# expectativa de vida da população
dfLife = pd.read_csv("../data/GAP_life_expectancy_years.csv")
# número de assassinatos ocorridos
dfMurders = pd.read_csv("../data/GAP_murder_total_deaths.csv")
# % de pessoas na extrema pobreza, vivendo com menos de USD 5,50/dia
dfPoverty = pd.read_csv("../data/GAP_poverty_percent_people_below_550_a_day.csv")
# dataset WID: https://wid.world/
# diversas informações econômicas, macroenconômicas e populacional dos países
dfWidBR = pd.read_csv("../data/WID_data_BR.csv")
# modificando o valor da série "country" no dataset WID
dfWidBR.loc[:, "country"] = "Brazil"
dfWidBR.head()
```

Out[]:		country	variable	percentile	year	value	age	pop
	0	Brazil	sptinc999j	p68p69	1820	0,01	999	j
	1	Brazil	sptinc999j	p68p69	1850	0,01	999	j
	2	Brazil	sptinc999j	p68p69	1880	0,01	999	j
	3	Brazil	sptinc999j	p68p69	1900	0,01	999	j
	4	Brazil	sptinc999j	p68p69	1910	0,01	999	j

Qualidade dos Dados

```
import pandas as pd
from functools import reduce

# definindo a precisão do ponto flutuante
pd.set_option("display.float_format", lambda x: locale.format_string("%.2f", x, grouping=True))

# Lista de variáveis populacionais no dataset WID
# npopul991f - População brasileira feminina de crianças
# npopul992f - População brasileira feminina adulta
# npopul999f - População brasileira feminina de todas as idades
# npopul991m - População brasileira masculina de crianças
# npopul992m - População brasileira masculina adulta
# npopul999m - População brasileira masculina de todas as idades
```

```
# npopul991i - População brasileira de crianças
# npopul992i - População brasileira adulta
# npopul999i - População brasileira de todas as idades
# filtrando o dataset WID pela série "variable"
values = [
    "npopul991f",
    "npopul992f",
    "npopul999f",
    "npopul991m",
    "npopul992m",
    "npopul999m",
    "npopul991i",
    "npopul992i",
    "npopul999i",
dfWidBR filtered = dfWidBR[dfWidBR.variable.isin(values)]
# modificando a estrutura dos datasets GAP utilizando a função melt() e em sequida convertendo a série "year" para inteiro
# GAP Sanitation
dfSanitation altered = dfSanitation.melt(
    id vars=["country"], var name="year", value name="%sanitation", ignore index=True
).sort values(["year"])
dfSanitation altered = dfSanitation altered.astype({"year": "int64"})
# GAP Hdi
dfHdi altered = dfHdi.melt(
    id vars=["country"], var name="year", value name="hdi", ignore index=True
).sort values(["year"])
dfHdi altered = dfHdi altered.astype({"year": "int64"})
# GAP Life
dfLife altered = dfLife.melt(
   id_vars=["country"], var_name="year", value_name="life", ignore_index=True
).sort values(["year"])
dfLife altered = dfLife altered.astype({"year": "int64"})
# GAP Murders
dfMurders_altered = dfMurders.melt(
    id_vars=["country"], var_name="year", value_name="murders", ignore_index=True
).sort values(["year"])
dfMurders_altered = dfMurders_altered.astype({"year": "int64"})
```

```
# GAP Poverty
dfPoverty_altered = dfPoverty.melt(
    id_vars=["country"], var_name="year", value_name="%poverty", ignore_index=True
).sort_values(["year"])
dfPoverty_altered = dfPoverty_altered.astype({"year": "int64"})

# combinando os datasets GAP com o dataset WID pelas séries "country" e "year"
dfs = [dfWidBR_filtered, dfSanitation_altered, dfHdi_altered, dfLife_altered, dfMurders_altered, dfPoverty_altered]
dfWidBR_merged = reduce(lambda left, right: pd.merge(left, right, on=["country", "year"], how='outer'), dfs)

# consultando o dataset WID após a combinação com todos os datasets GAP
years_filter = range(1989,2019)
variable_filter = ["npopul999i"]
dfWidBR_merged["country"] == "Brazil")
    & (dfWidBR_merged["country"] == "Brazil")
    & (dfWidBR_merged.variable.isin(variable_filter))
    & (dfWidBR_merged.year.isin(years_filter))
]
```

Out[]:		country	variable	percentile	year	value	age	pop	%sanitation	hdi	life	murders	%poverty
	358	Brazil	npopul999i	p0p100	1989	146.328.304,00	999,00	i	NaN	0,61	67,30	43.8k	57,60
	367	Brazil	npopul999i	p0p100	1990	149.003.216,00	999,00	i	NaN	0,62	67,90	43.6k	NaN
	376	Brazil	npopul999i	p0p100	1991	151.648.016,00	999,00	i	NaN	0,63	68,30	42.8k	58,00
	385	Brazil	npopul999i	p0p100	1992	154.259.376,00	999,00	i	NaN	0,64	68,40	45.8k	56,60
	394	Brazil	npopul999i	p0p100	1993	156.849.072,00	999,00	i	NaN	0,64	68,80	47.5k	NaN
	403	Brazil	npopul999i	p0p100	1994	159.432.720,00	999,00	i	NaN	0,65	69,20	51.1k	45,00
	412	Brazil	npopul999i	p0p100	1995	162.019.904,00	999,00	i	NaN	0,66	69,50	51.8k	45,50
	421	Brazil	npopul999i	p0p100	1996	164.614.688,00	999,00	i	NaN	0,67	70,10	53.3k	45,50
	430	Brazil	npopul999i	p0p100	1997	167.209.040,00	999,00	i	NaN	0,67	70,40	55.7k	44,50
	439	Brazil	npopul999i	p0p100	1998	169.785.248,00	999,00	i	NaN	0,68	70,80	55.4k	45,80
	448	Brazil	npopul999i	p0p100	1999	172.318.672,00	999,00	i	73,10	0,69	71,20	57.8k	NaN
	457	Brazil	npopul999i	p0p100	2000	174.790.336,00	999,00	i	74,00	0,69	71,50	60k	41,10
	466	Brazil	npopul999i	p0p100	2001	177.196.048,00	999,00	i	74,90	0,70	71,80	62k	40,30
	475	Brazil	npopul999i	p0p100	2002	179.537.520,00	999,00	i	75,80	0,69	72,00	62.1k	41,50
	484	Brazil	npopul999i	p0p100	2003	181.809.248,00	999,00	i	76,70	0,70	72,30	60.6k	40,10
	493	Brazil	npopul999i	p0p100	2004	184.006.480,00	999,00	i	77,60	0,70	72,80	59.9k	37,90
	502	Brazil	npopul999i	p0p100	2005	186.127.104,00	999,00	i	78,40	0,70	73,10	60.2k	34,00
	511	Brazil	npopul999i	p0p100	2006	188.167.360,00	999,00	i	79,30	0,71	73,30	60k	31,90
	520	Brazil	npopul999i	p0p100	2007	190.130.448,00	999,00	i	80,20	0,72	73,50	61k	28,70
	529	Brazil	npopul999i	p0p100	2008	192.030.368,00	999,00	i	81,00	0,72	73,70	62.5k	27,30
	538	Brazil	npopul999i	p0p100	2009	193.886.512,00	999,00	i	81,90	0,73	73,80	62.9k	NaN
	547	Brazil	npopul999i	p0p100	2010	195.713.632,00	999,00	i	82,70	0,73	74,00	63k	23,80
	556	Brazil	npopul999i	p0p100	2011	197.514.528,00	999,00	i	83,50	0,73	74,30	65.6k	21,70
	565	Brazil	npopul999i	p0p100	2012	199.287.296,00	999,00	i	84,40	0,75	74,50	66.5k	19,90

	country	variable	percentile	year	value	age	pop	%sanitation	hdi	life	murders	%poverty
574	Brazil	npopul999i	p0p100	2013	201.035.904,00	999,00	i	85,20	0,76	74,80	68.1k	18,40
583	Brazil	npopul999i	p0p100	2014	202.763.744,00	999,00	i	86,00	0,76	75,00	68.1k	19,50
592	Brazil	npopul999i	p0p100	2015	204.471.776,00	999,00	i	86,90	0,76	75,00	69.6k	21,10
601	Brazil	npopul999i	p0p100	2016	206.163.056,00	999,00	i	87,70	0,76	75,40	69.3k	21,20
610	Brazil	npopul999i	p0p100	2017	207.833.824,00	999,00	i	88,50	0,76	75,70	67k	20,80
619	Brazil	npopul999i	p0p100	2018	209.469.328,00	999,00	i	89,30	0,77	75,80	65.9k	20,60

Explorando perguntas relevantes sobre os Dados

1. Da população brasileira, quantas pessoas eram beneficiadas pelo serviço de Saneamento Básico em 2009 e em 2018, respectivamente?

```
In [ ]: # definindo a precisão do ponto flutuante
        pd.set option("display.float format", lambda x: locale.format string("%.2f", x, grouping=True))
        dfWidBR merged["pop total"] = dfWidBR merged["value"]
        dfWidBR merged["pop beneficiada saneamento"] = ((dfWidBR merged["value"] * dfWidBR merged["%sanitation"])/100)
         year values=[2009,2018]
        variable values=["npopul999i"]
        df filtered = dfWidBR merged[(dfWidBR merged.year.isin(year values)) & (dfWidBR merged.variable.isin(variable values))]
        df_filtered[["year", "pop_total", "pop_beneficiada saneamento", "%sanitation"]]
Out[]:
             vear
                      pop_total pop_beneficiada_saneamento %sanitation
         538 2009 193.886.512,00
                                             158.793.053,33
                                                               81,90
         619 2018 209.469.328,00
                                             187.056.109,90
                                                               89,30
```

Observamos acima que universalização do serviço de Saneamento Básico no Brasil atingiu um crescimento de 9% em 9 anos.

2. Da população brasileira, quantas pessoas estavam na extrema pobreza em 1980 e em 2018, respectivamente?

```
In [ ]: # definindo a precisão do ponto flutuante
pd.set_option("display.float_format", lambda x: locale.format_string("%.2f", x, grouping=True))
```

```
dfWidBR_merged["pop_total"] = dfWidBR_merged["value"]
dfWidBR_merged["pop_extrema_pobreza"] = ((dfWidBR_merged["value"] * dfWidBR_merged["%poverty"])/100)

year_values=[1980,2018]
variable_values=["npopul999i"]
df_filtered = dfWidBR_merged[(dfWidBR_merged.year.isin(year_values)) & (dfWidBR_merged.variable.isin(variable_values))]
df_filtered[["year", "pop_total", "pop_extrema_pobreza", "%poverty"]]
```

Out[]: year pop_total pop_extrema_pobreza %poverty 277 1980 120.694.008,00 72.657.792,82 60,20 619 2018 209.469.328,00 43.150.681,57 20,60

Observamos acima que a extrema pobreza no Brasil teve uma redução de aproximadamente 66% em 38 anos.

3. Qual a evolução da expectativa de vida da população brasileira no período de 1980 a 2018?

```
In [ ]: # definindo a precisão do ponto flutuante
        pd.set option("display.float format", lambda x: locale.format string("%.2f", x, grouping=True))
        # filtrando o dataset
        vear values=range(1980,2019)
        variable values=["npopul999i"]
        df filtered = dfWidBR merged[(dfWidBR merged.year.isin(year values)) & (dfWidBR merged.variable.isin(variable values))]
        # criando o gráfico
        df = pd.DataFrame(df filtered, columns=["year", "life"]).sort values("life",ascending=False)
        plt.figure(figsize=(24,10))
        plt.style.use(["seaborn"])
        # incluindo labels nas barras
        ax = sns.barplot(x=df.year,y=df.life,data=df)
        for i in ax.containers:
            ax.bar_label(i,)
        plt.xticks(rotation=90)
        plt.show()
```


Observamos acima que a expectativa de vida da população brasileira teve um aumento de aproximadamente 20% em 38 anos.

4. Qual a evolução do Índice de Desenvolvimento Humano (IDH) no Brasil no período de 1989 a 2018?

```
In []: # definindo a precisão do ponto flutuante
    pd.set_option("display.float_format", lambda x: locale.format_string("%.2f", x, grouping=True))

# filtrando o dataset
    year_values=range(1989,2019)
    variable_values=["npopul999i"]
    df_filtered = dfWidBR_merged[(dfWidBR_merged.year.isin(year_values)) & (dfWidBR_merged.variable.isin(variable_values))]

# criando o gráfico
    df = pd.DataFrame(df_filtered, columns=["year", "hdi"]).sort_values("hdi",ascending=False)
    plt.figure(figsize=(24,10))
    plt.style.use(["seaborn"])
```

```
# incluindo labels nas barras
ax = sns.barplot(x=df.year,y=df.hdi,data=df)
for i in ax.containers:
    ax.bar_label(i,)

plt.xticks(rotation=90)
plt.show()
```


Observamos acima que o Índice de Desenvolvimento Humano (IDH) da população brasileira teve um aumento de aproximadamente 25% em 29 anos.