Energy Methods for Pin-Jointed Trusses

Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

23 January 2018

- 1. Introduction: Strain energy
- 2. Castigliano's theorems
 - 2.1 Key concepts
 - 2.2 Application: Displacement due to an external force Q
 - 2.3 Application: Displacements at any joint (virtual force method)
- 3. Principle of Stationary Potential Energy (PSPE)
 - 3.1 Key concepts
 - 3.2 Application: Internal forces in statically indeterminate trusses

- Energy methods are alternatives to the 'conventional method' of solving forces and displacements under static equilibrium
 - Energy (positive scalar) is a function of both forces <u>and</u> displacements (which are vector fields)
- They enable the solution of forces and displacements in structures which cannot be analysed by equations of static equilibrium alone (e.g. statically indeterminate problems)
- Examples:
 - Castigliano's Theorems
 - Principle of Stationary Potential Energy (PSPE)
 - Principle of Virtual Work (Virtual Displacements or Virtual Forces)
 - Etc.

Conventional method:

- Equations of static equilibrium
- Compatibility of displacements
- Constitutive relations
 - Force-displacement F = k e or stress-strain $\sigma = E \varepsilon$

Energy methods:

- Equations of static equilibrium
- Strain energy theorems

- Can be applied to pin-jointed trusses, beams, rigid-jointed frames
- Convenient means of analysing statically indeterminate structures
- Simple solution of deflections
- Results in rapid approximate numerical solutions
 - For problems which do not have exact closed-form analytical solutions, e.g.
 complex geometries, nonlinearities etc.

Consider an axially-loaded member:

- Assuming a non-linear elastic material:
- Remember: work = force × distance
- For this 'nonlinear spring': $U = \int_{0}^{\infty} F \, de$
- *l.e.* strain energy = area <u>under</u> the F-e curve

Energy Methods Castigliano's Theorems

Dr Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

23 January 2018

- 1. Introduction: Strain energy
- 2. Castigliano's theorems
 - 2.1 Key concepts
 - 2.2 Application: Displacement due to an external force Q
 - 2.3 Application: Displacements at any joint (virtual force method)
- 3. Principle of Stationary Potential Energy (PSPE)
 - 3.1 Key concepts
 - 3.2 Application: Internal forces in statically indeterminate trusses

Key Concepts – Complementary Strain Energy

- Consider now the area **above** the *F-e* curve:
- This is the complementary strain energy:

$$U_C = \int_0^F e \, \mathrm{d}F$$

• Note that for a non-linear elastic material $U_C \neq U$

Complementary Strain Energy

Differentiating strain energy and complementary strain energy:

Strain Energy

The derivative of strain energy w.r.t. deflection gives the force causing this deflection → Castigliano's 1st Theorem

Complementary Strain Energy

The derivative of complementary strain energy w.r.t. force gives the deflection at that particular point

→ Castigliano's 2nd Theorem

 These theorems are after Carlo Alberto Castigliano (1847–1884, Milan) who proposed these in 1873 (at the age of 25)

Note that for a <u>linear elastic material</u>:

$$F = k e$$
 : $e = \frac{F}{k}$

$$U = \int_{0}^{e} F \, de$$

$$= \int_{0}^{e} k e \, de$$

$$= \int_{0}^{e} k e \, de$$

$$= \int_{0}^{F} \frac{F}{k} \, dF$$

$$= \frac{k e^{2}}{2k} = \frac{k e^{2}}{2}$$

- Therefore for linear elastic materials $U_{
 m C}$ =U
- *i.e.* U_C and U become interchangeable

Complementary Strain Energy

$$U_C = \int_0^F e \, \mathrm{d}F \longrightarrow \frac{\partial U_C}{\partial F} = e$$

For a truss made of axial members:

$$(U_C)_i = \frac{1}{2}F_i e_i = \frac{1}{2}F_i \left(\frac{F_i}{k_i}\right) = \frac{1}{2}\frac{F_i^2}{k_i} : U_C = \sum_{i=1}^{n} \left(\frac{1}{2}\frac{F_i^2}{k_i}\right)^{i}$$

$$U_C = \sum \left(\frac{1}{2} \frac{r_i}{k_i} \right)$$

$$\frac{\partial U_C}{\partial Q} = \sum \left(\frac{\partial U_C}{\partial F_i} \cdot \frac{\partial F_i}{\partial Q} \right) = e$$

Finally:
$$\frac{\partial U_C}{\partial Q} = \sum \left(\frac{F_i L_i}{A_i E_i} \cdot \frac{\partial F_i}{\partial Q} \right) = e$$

where:
$$\frac{\partial F_i}{\partial O} = F_i$$

Most common problem: for a statically <u>determinate</u> or <u>indeterminate</u> truss where the internal forces F_i are **known**, find the **displacements** at the joint where the known external force Q is applied

- 1. Tabulate the values of F_i , L_i , A_i and E_i
- 2. Find the derivatives $F_i = \frac{\partial F_i}{\partial O}$
 - Since F_i and Q are constants, simply <u>divide</u> one by the other
- 3. Perform the summation $\sum \left(\frac{F_i L_i}{A_i E_i} \cdot \frac{\partial F_i}{\partial Q} \right) = e$ to find the displacement e
- 4. Note that the direction and sense of e are relative to the force vector Q!

General procedure: For a statically <u>determinate or indeterminate</u> truss where the internal forces F_i are known, find the displacements at any joint

- Tabulate the values of F_i , L_i , A_i and E_i
- Go back to the truss and temporarily remove the external force Q
- Now introduce a <u>unit force P</u> (a.k.a. a **virtual force**) at the joint of <u>interest</u> and pointing <u>in the direction of interest</u>
- 4. Using the **method of joints** or **method of sections**, find the **virtual internal forces** F_i due to the virtual force P
- 5. Perform the summation $\sum \left(\frac{F_i L_i}{A \cdot E} \cdot F_i'\right) = e_P$
 - The displacement e_P is the <u>real displacement</u> at the joint where the virtual force P was applied

