CZ2003: Tutorial 8

Due on March 16, 2021 at 10:30am

 $Assoc\ Prof\ Alexei\ Sourin\ -\ SS3$

Pang Yu Shao U1721680D

16/03/2021

A quadrilateral on the XY plane is defined by four corner points whose homogenous coordinates are (0, 2, -2), (2, -2, 1), (6, 3, 3), (0, 0.5, 0.5). Analyze whether the quadrilateral a square, a rectangle, or a trapezium.

Solution

First, normalize the homogenous coordinates such that the last parameter is 1.

$$(0,2,-2) \to (0,-1,1)$$

$$(2,-2,1) \to (2,-2,1)$$

$$(6,3,3) \rightarrow (2,1,1)$$

$$(0, 0.5, 0.5) \rightarrow (0, 1, 1)$$

Plotting the 4 corners on a graph, we get:

Therefore, it is a **trapezium**.

Figure Q2 shows a 2D house model and a 2D affine transformation matrix M.

- i Apply M to the house and sketch the transformed model. Label the coordinates of all vertices on your sketched figure.
- ii This matrix **M** represents a composition of several basic transformations. Write the matrix for each basic transformation and describe the order of these transformations. Note that translation, rotation and scaling are basic transformations.

Figure Q2

Solution

Part i: First, we label the vertices on the original figure and obtain their homogenous coordinates:

$$a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \ c = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \ d = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \ e = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Multiplying **M** to all vertices,

$$a = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 2 \\ 1 \end{bmatrix} b = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 2 \\ 1 \end{bmatrix}$$

$$c = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix} d = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 6 \\ 1 \end{bmatrix}$$

$$e = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 6 \\ 1 \end{bmatrix}$$

Sketching the resulting house using the new locations of the vertices, we get the following:

Part ii: We can visually deduce the basic transformations and the order they were performed:

- 1. Rotate CCW about origin for 90 degrees / 0.5π
- 2. Scale in Y axis by 2 times, X axis by 0.5 times.
- 3. Translate by y: +2, x: +0.5

We get the matrices for the basic transformations described above,

$$R = \begin{bmatrix} \cos(0.5\pi) & -\sin(0.5\pi) & 0 \\ \sin(0.5\pi) & \cos(0.5\pi) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Now we try to apply the transformation matrices in reverse order (i.e., TSR):

$$SR = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -0.5 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$TSR = \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -0.5 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -0.5 & 0.5 \\ 2 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{M}$$

As we see that the resultant affine matrix is the same as M, we conclude that the transformation matrices and the order they are applied are correct.

A 2D geometric object is scaled with respect to the point with coordinates (1,1) in the x-coordinate by 5 times and the y-coordinate by 3 times. Then the object is rotated about the origin by 90° in the clockwise direction. Finally, the object is reflected through the x-axis. Write in a proper order the matrices constituting this transformation.

Solution

Steps:

- 1. Translate by x: -1, y:-1 $(\mathbf{T_1})$
- 2. Scale by: x: 5, y:3 (S_1)
- 3. Translate by x: 1, y: 1 ($\mathbf{T_2}$)
- 4. Rotate by 90° clockwise ($\mathbf{R_1}$)
- 5. Reflect by x-axis $(\mathbf{R_2})$

Proper order of multiplying matrices for the transformation: $X' = R_2 R_1 T_2 S_1 T_1 X$

Let \mathbf{R} be a 2D rotation about the origin and \mathbf{T} a 2D translation. Do \mathbf{RT} and \mathbf{TR} define the same composite transformation? Justify your answer mathematically

Solution

For rotation,

$$R = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let $a = cos(\alpha)$, $b = sin(\alpha)$

$$R = \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For translation,

$$T = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore,

$$RT = \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a & -b & at_x - bt_y + 1 \\ b & a & bt_x + at_y + 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$TR = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, RT and TR do not define the same transformations.