Guida al Livello Application del Modello OSI

Modello OSI e Livelli di Rete

Il modello OSI (Open Systems Interconnection) è un framework teorico che standardizza le funzioni dei sistemi di comunicazione in rete, suddividendole in sette livelli distinti. Questo approccio modulare consente l'interoperabilità tra sistemi diversi e facilita lo sviluppo e la manutenzione delle reti.

I Sette Livelli del Modello OSI:

- 1. Livello Fisico: trasmissione dei bit sul mezzo fisico
- 2. Livello Data Link: collegamento e gestione degli errori tra nodi adiacenti
- 3. Livello Network: routing e indirizzamento tra diverse reti
- 4. Livello Transport: gestione della connessione end-to-end e del flusso dati
- 5. **Livello Session**: gestione delle sessioni tra applicazioni
- 6. Livello Presentation: traduzione, compressione e crittografia dei dati
- 7. Livello Application: interfaccia con l'utente e servizi di rete per le applicazioni

Architettura TCP/IP vs Modello OSI:

Il modello TCP/IP, usato in Internet, consolida i livelli del modello OSI in un'architettura a quattro livelli:

Modello OSI	Architettura TCP/IP
Application, Presentation, Session	Application
Transport	Transport
Network	Internet
Data Link, Physical	Network Access

Livello 7 - Application

Il livello Application è il livello più alto del modello OSI e rappresenta l'interfaccia diretta con l'utente. In questo livello viene effettivamente svolto il lavoro utile per l'utente finale.

Caratteristiche del Livello Application:

- Fornisce servizi di rete direttamente alle applicazioni dell'utente
- Gestisce la semantica delle comunicazioni
- Implementa i protocolli per servizi specifici (email, trasferimento file, navigazione web)

Si occupa della comunicazione tra processi applicativi distribuiti

Componenti del Livello Application:

- 1. Protocolli di supporto generale: servono a tutte le applicazioni
- 2. Protocolli standardizzati: supportano applicazioni specifiche
- 3. Applicazioni conformi ai protocolli: implementano i protocolli standard
- 4. Applicazioni proprietarie: utilizzano protocolli privati

DNS (Domain Name System)

Il DNS è un sistema distribuito che traduce i nomi di dominio comprensibili agli umani in indirizzi IP numerici comprensibili alle macchine.

Funzionamento del DNS:

- 1. Un'applicazione richiede la risoluzione di un nome (es. fisica.unipd.it)
- 2. Il resolver contatta il DNS server locale
- 3. Se il server locale non conosce la risposta, interroga server di livello superiore
- 4. La risposta (indirizzo IP) torna al resolver e quindi all'applicazione
- 5. L'applicazione usa l'indirizzo IP per stabilire la connessione

Struttura Gerarchica del DNS:

Domini di Primo Livello (TLD):

- gTLD (generici): .com, .org, .net, .edu, .gov, .mil
- ccTLD (nazionali): .it, .fr, .uk, .jp, .de

Formato di un Nome DNS:

Dove:

- La prima sottostringa (più a sinistra) identifica il nome dell'host
- Le sottostringhe intermedie identificano i sottodomini
- L'ultima sottostringa (più a destra) identifica il top-level domain

Resource Records:

I server DNS memorizzano le informazioni in "descrittori di risorse" o resource records.

Esempio di Resource Record:

```
fisica.unipd.it 86400 IN A 151.100.17.110
```

Dove:

- fisica.unipd.it:domain name (nome simbolico)
- 86400 : time to live (durata in secondi della validità del record in cache)
- IN: class (classe del record, Internet in questo caso)
- A: type (tipo del record, Address in questo caso)
- 151.100.17.110 : value (indirizzo IP numerico)

Tipi di Resource Records:

- A: associa un nome di dominio a un indirizzo IPv4
- AAAA: associa un nome di dominio a un indirizzo IPv6
- MX: indica i server di posta per un dominio
- CNAME: crea un alias per un altro nome di dominio
- TXT: contiene testo informativo
- PTR: mappa un indirizzo IP a un nome (reverse lookup)
- SOA: indica l'autorità per una zona DNS
- NS: indica i nameserver autoritativi per una zona

Cache DNS:

- I server DNS memorizzano temporaneamente le risposte in una cache
- La durata della cache è determinata dal TTL (Time To Live) del record
- I record in cache sono meno affidabili dei record autoritativi
- La cache migliora le prestazioni e riduce il traffico di rete

SNMP (Simple Network Management Protocol)

SNMP è un protocollo per la gestione e il monitoraggio dei dispositivi di rete.

Funzionalità di SNMP:

- Consente la gestione di nodi della rete attraverso la rete stessa
- Permette la configurazione di apparecchiature
- Raccoglie statistiche sul traffico
- Segnala guasti e problemi di rete

Componenti dell'architettura SNMP:

- Agent: software che gira sui dispositivi gestiti
- Manager: sistema che monitora e controlla gli agenti
- MIB (Management Information Base): database che definisce i parametri accessibili

Operazioni SNMP:

- GET: richiede informazioni da un dispositivo
- SET: modifica parametri su un dispositivo
- TRAP: notifiche asincrone inviate dai dispositivi al manager

Posta Elettronica

La posta elettronica è uno dei servizi più consolidati di Internet, che consente lo scambio di messaggi tra utenti.

Componenti del Sistema di Posta Elettronica:

- Mail User Agent (MUA): software client utilizzato dagli utenti finali
- Mail Transfer Agent (MTA): server che si occupa del trasporto dei messaggi
- Mail Delivery Agent (MDA): componente che consegna i messaggi nelle caselle degli utenti

Protocolli di Posta Elettronica:

SMTP (Simple Mail Transfer Protocol):

- Utilizzato per l'invio di messaggi email
- Opera sulla porta TCP 25 (o 587 per submission)
- Comunicazione principalmente testuale
- Flusso: MUA → MTA di partenza → MTA intermedi → MTA di destinazione

POP3 (Post Office Protocol version 3):

Utilizzato per scaricare messaggi dal server

- Opera sulla porta TCP 110 (995 per POP3S)
- Tipicamente scarica i messaggi e li rimuove dal server
- Semplice, ma con funzionalità limitate

IMAP (Internet Message Access Protocol):

- Alternativa più avanzata a POP3
- Opera sulla porta TCP 143 (993 per IMAPS)
- Mantiene i messaggi sul server
- Supporta cartelle, ricerche, operazioni parziali

Struttura di un Messaggio Email:

- · Header: contiene metadati sul messaggio
 - From: indirizzo del mittente
 - To: indirizzo del destinatario
 - Cc : destinatari in copia carbone
 - Bcc : destinatari in copia carbone nascosta
 - Subject : oggetto del messaggio
 - Date : data e ora di invio
 - Message-ID: identificatore univoco del messaggio
- Body: contiene il contenuto del messaggio
- I due componenti sono separati da una linea vuota

Formato degli Indirizzi Email:

username@hostname

Dove:

username : identifica l'utente

hostname: nome di dominio DNS o indirizzo IP

Processo di Invio e Ricezione:

- 1. L'utente compone un messaggio tramite il MUA
- 2. Il MUA consegna il messaggio al MTA locale (via SMTP)
- 3. Il MTA locale determina la route per la consegna
- 4. Il messaggio viene inoltrato tra vari MTA fino a destinazione
- L'MTA di destinazione memorizza il messaggio
- II destinatario utilizza POP3 o IMAP per recuperare il messaggio

Record MX nel DNS:

I record MX (Mail Exchange) indicano quali server gestiscono la posta per un dominio specifico.

Esempio:

```
gmail.com MX mail.gmail.com
mail.gmail.com A 142.250.184.17
```

Estensioni:

- **MIME** (Multipurpose Internet Mail Extensions): permette l'invio di contenuti non testuali (immagini, documenti, ecc.)
- S/MIME (Secure/MIME): aggiunge crittografia e firme digitali

DHCP (Dynamic Host Configuration Protocol)

DHCP è un protocollo che consente l'assegnazione automatica di indirizzi IP e altre configurazioni di rete ai dispositivi.

Funzionalità di DHCP:

- Assegna automaticamente indirizzi IP, subnet mask, gateway e server DNS
- Gestisce un pool di indirizzi disponibili
- Fornisce configurazioni temporanee (lease) con durata definita
- Centralizza la gestione degli indirizzi di rete

Vantaggi del DHCP:

- Riduce gli errori di configurazione manuale
- Facilita la mobilità dei dispositivi
- Ottimizza l'utilizzo degli indirizzi IP
- Semplifica la riconfigurazione della rete

Processo DHCP in 4 Fasi:

1. DHCPDISCOVER:

- Il client trasmette un messaggio broadcast per trovare server DHCP
- Indirizzo sorgente: 0.0.0.0 (client senza IP)
- Indirizzo destinazione: 255.255.255.255 (broadcast)
- Contiene: MAC address del client, nome del client

2. DHCPOFFER:

• I server DHCP rispondono offrendo un indirizzo IP e altre configurazioni

 Contiene: MAC address del client, IP offerto, subnet mask, durata del lease, IP del server

3. DHCPREQUEST:

- Il client seleziona un'offerta e la richiede formalmente
- Broadcast che permette agli altri server di ritirare le loro offerte
- Specifica quale server DHCP ha fornito l'offerta accettata

4. DHCPACK/DHCPNACK:

- DHCPACK: il server conferma l'assegnazione dell'indirizzo
- DHCPNACK: il server rifiuta la richiesta (es. indirizzo non più disponibile)

DHCP Relay Agent:

- Inoltra i messaggi DHCP tra sottoreti diverse
- Permette di avere un unico server DHCP per più segmenti di rete
- Converte i messaggi broadcast in messaggi unicast verso il server DHCP

Considerazioni sulla Sicurezza:

- DHCP standard non offre autenticazione
- Rischio di server DHCP non autorizzati (rogue DHCP)
- Possibilità di attacchi man-in-the-middle
- Soluzioni: DHCP snooping, autenticazione 802.1x

HTTP (HyperText Transfer Protocol)

HTTP è il protocollo alla base del World Wide Web, utilizzato per il trasferimento di documenti ipertestuali e altre risorse.

Caratteristiche di HTTP:

- Protocollo a livello applicazione che opera su TCP (porta 80)
- Modello request/response
- Stateless (ogni transazione è indipendente)
- Testuale e leggibile dall'uomo
- Non sicuro (trasmissione in chiaro)

URL (Uniform Resource Locator):

Struttura di un URL:

http://www.example.com:80/path/to/resource? param1=value1¶m2=value2#fragment

Componenti:

http://:schema/protocollo

www.example.com: nome del server

• :80 : porta (opzionale, 80 è il default per HTTP)

/path/to/resource: percorso della risorsa

?param1=value1¶m2=value2 : query string (parametri)

#fragment : frammento (posizione nella pagina)

Metodi HTTP:

GET: richiede una risorsa

POST: invia dati al server (es. form)

• PUT: carica una risorsa sul server

• **DELETE**: rimuove una risorsa

HEAD: richiede solo le intestazioni (come GET ma senza body)

OPTIONS: richiede le opzioni disponibili per una risorsa

PATCH: applica modifiche parziali a una risorsa

Differenze tra GET e POST:

Caratteristica	GET	POST	
Visibilità dei dati	Visibili nell'URL	Nel corpo della richiesta	
Dimensione massima	Limitata (2048 caratteri)	Praticamente illimitata	
Caching	Può essere memorizzato	Non memorizzabile	
Idempotenza	Sì (ripetibile)	No (può avere effetti collaterali)	
Tipo di dati	Solo testo	Qualsiasi formato	
Bookmark	Possibile	Non possibile	
Uso tipico	Recupero dati	Invio dati, modifica	

Codici di Stato HTTP:

1xx: Informazioni

100 Continue

2xx: Successo

200 OK

201 Created

204 No Content

3xx: Redirezione

301 Moved Permanently

- 302 Found
- 304 Not Modified
- 4xx: Errore Client
 - 400 Bad Request
 - 401 Unauthorized
 - 403 Forbidden
 - 404 Not Found
- 5xx: Errore Server
 - 500 Internal Server Error
 - 502 Bad Gateway
 - 503 Service Unavailable

HTTPS (HTTP Secure):

- Versione sicura di HTTP che utilizza SSL/TLS
- Opera sulla porta 443
- Fornisce:
 - Confidenzialità: cripta i dati
 - Integrità: previene modifiche dei dati
 - Autenticazione: verifica l'identità del server

Cookie HTTP:

- Meccanismo per mantenere lo stato tra richieste
- Inviati dal server con l'header Set-Cookie
- Memorizzati dal browser e rinviati con le richieste successive
- Usati per sessioni, preferenze, tracking

FTP (File Transfer Protocol)

FTP è un protocollo per il trasferimento di file tra un client e un server.

Caratteristiche di FTP:

- Utilizza due connessioni separate:
 - Connessione di controllo (porta 21): per comandi e risposte
 - Connessione dati (porta 20 o dinamica): per il trasferimento effettivo dei file
- Supporta autenticazione utente (username/password)
- Permette navigazione nelle directory
- Supporta diverse modalità di trasferimento
- Non sicuro (dati e credenziali in chiaro)

Modalità di Connessione Dati:

- Modalità attiva: il server si connette al client
 - 1. Il client apre la porta di controllo (21)
 - 2. Il client informa il server su quale porta è in ascolto
 - 3. Il server apre la connessione dati dalla porta 20 alla porta specificata dal client
- Modalità passiva: il client si connette al server
 - 1. Il client richiede una connessione passiva
 - 2. Il server apre una porta casuale e la comunica al client
 - 3. Il client si connette a quella porta per i dati

Modalità di Trasferimento:

- ASCII: per file di testo, con conversione dei caratteri di fine riga
- Binary: per file binari, senza modifiche al contenuto

Comandi FTP Comuni:

USER: specifica il nome utente

PASS: specifica la password

CWD : cambia directory

LIST: elenca i file nella directory corrente

RETR: scarica un file

STOR: carica un file

DELE: elimina un file

MKD : crea una directory

RMD: rimuove una directory

QUIT : termina la sessione

Sicurezza:

FTP standard trasmette dati e credenziali in chiaro. Per sicurezza si utilizzano:

FTPS: FTP con SSL/TLS

• **SFTP**: protocollo di trasferimento file su SSH (non è una variante di FTP)

Comparazione dei Protocolli del Livello Application

Protocollo	Porta	Funzione	Sicurezza	Caratteristiche
DNS	53 (UDP/TCP)	Risoluzione nomi	Bassa (DNSSEC migliora)	Gerarchico, distribuito

Protocollo	Porta	Funzione	Sicurezza	Caratteristiche
DHCP	67/68 (UDP)	Configurazione IP	Bassa	Automatico, temporaneo
HTTP	80 (TCP)	Web	Nessuna	Stateless, testuale
HTTPS	443 (TCP)	Web sicuro	Alta (SSL/TLS)	Crittografato, autenticato
FTP	21/20 (TCP)	Trasferimento file	Nessuna	Due connessioni
FTPS	990/989 (TCP)	Trasferimento file sicuro	Alta (SSL/TLS)	Crittografato
SMTP	25 (TCP)	Invio email	Bassa	Testuale
POP3	110 (TCP)	Ricezione email	Bassa	Scarica e cancella
IMAP	143 (TCP)	Gestione email	Bassa	Mantiene sul server
SMTPS	465 (TCP)	Invio email sicuro	Alta (SSL/TLS)	Crittografato
POP3S	995 (TCP)	Ricezione email sicura	Alta (SSL/TLS)	Crittografato
IMAPS	993 (TCP)	Gestione email sicura	Alta (SSL/TLS)	Crittografato
SNMP	161/162 (UDP)	Gestione rete	Bassa (v3 migliora)	Monitoraggio

Applicazioni Pratiche e Strumenti di Diagnostica Strumenti per DNS:

• nslookup: interroga i server DNS

```
nslookup www.example.com
```

• **dig**: strumento avanzato per query DNS (Linux/Unix)

```
dig www.example.com
```

host: semplice utilità di lookup DNS

```
host www.example.com
```

• ipconfig /displaydns: visualizza la cache DNS locale (Windows)

Strumenti per HTTP:

curl: invia richieste HTTP da riga di comando

```
curl -v http://www.example.com
```

wget: scarica risorse da web

```
wget http://www.example.com
```

- Developer Tools dei browser: analizzano traffico HTTP
- Wireshark: cattura e analizza pacchetti, incluso HTTP

Strumenti per FTP:

Client FTP a riga di comando:

```
ftp ftp.example.com
```

- FileZilla: client FTP grafico
- WinSCP: client SFTP/FTP per Windows

Strumenti per DHCP:

- ipconfig /all: visualizza configurazioni di rete (Windows)
- ifconfig o ip addr: visualizza configurazioni di rete (Linux)
- ipconfig /release e ipconfig /renew: rilascia e rinnova il lease DHCP (Windows)

Scenari di Risoluzione dei Problemi

Problema DNS:

Scenario: Un utente non riesce ad accedere a www.example.com, ma può accedere ad altri siti.

Troubleshooting:

1. Verificare se il problema è di risoluzione DNS:

```
ping www.example.com
```

Se non risolve, ma funziona con un IP diretto, è un problema DNS.

2. Controllare i server DNS configurati:

```
ipconfig /all
```

3. Verificare se altri nomi vengono risolti:

```
nslookup google.com
```

4. Provare a usare server DNS alternativi:

```
nslookup www.example.com 8.8.8.8
```

5. Svuotare la cache DNS:

```
ipconfig /flushdns
```

Problema DHCP:

Scenario: Un dispositivo non ottiene un indirizzo IP automaticamente.

Troubleshooting:

1. Verificare l'attuale configurazione IP:

```
ipconfig /all
```

Se l'indirizzo è 169.254.x.x, indica un fallimento DHCP.

2. Rilasciare e rinnovare il lease DHCP:

```
ipconfig /release
ipconfig /renew
```

- 3. Verificare la connettività fisica (cavi, switch)
- 4. Riavviare il servizio DHCP sul router/server
- 5. Verificare se altri dispositivi ottengono indirizzi IP

Problema HTTP:

Scenario: Impossibile accedere a un sito web specifico.

Troubleshooting:

1. Verificare se il dominio viene risolto (problema DNS o sito):

```
ping www.example.com
```

2. Verificare se la porta è aperta:

```
telnet www.example.com 80
```

3. Analizzare la risposta HTTP:

```
curl -I www.example.com
```

4. Verificare se HTTPS funziona invece di HTTP:

```
curl -I https://www.example.com
```

- 5. Controllare certificati SSL se si usa HTTPS
- 6. Verificare proxy o firewall che potrebbero bloccare l'accesso

Conclusione

Il livello Application del modello OSI è fondamentale perché rappresenta l'interfaccia con cui gli utenti interagiscono con la rete. I protocolli di questo livello sono quelli che rendono possibili i servizi che usiamo quotidianamente: navigazione web, email, trasferimento file e configurazione automatica dei dispositivi.

La comprensione di questi protocolli è essenziale per:

- Progettare e implementare reti efficienti
- Diagnosticare e risolvere problemi di rete
- Configurare correttamente servizi e applicazioni
- Garantire la sicurezza delle comunicazioni

L'evoluzione tecnologica continua a introdurre nuovi protocolli e migliorare quelli esistenti, ma i concetti fondamentali del livello Application rimangono alla base di tutte le comunicazioni di rete moderne.