CSC236 Week 06: Automata and Languages

Hisbaan Noorani

October 14 – October 20, 2021

Contents

 $1 \quad L = \{x \in \{0,1\}^* \mid x \text{ begins and ends with a different bit}\}$ $2 \quad \text{RE identities}$ 1 $3 \quad \text{Turnstile finite-state machine}$ 2

1 $L = \{x \in \{0,1\}^* | x \text{ begins and ends with a different bit}\}$

The language $L'((0(0+1)^*1) \cup (1(1+0)^*0))$ should be the same language as the one listed above.

If we want to prove this, we can show that $\forall x \in L, x \in L' \land \forall x \in L', x \in L$. This is the same as showing that $L \subseteq L' \land L' \subseteq L$, which is equivalent to L = L', what we are trying to show.

Proof: First we show that $L' \subseteq L$: Let $x \in L'$. Then either x = 1y0 where $y \in \{0, 1\}^*$ or x = 0w1, where $w \in \{1, 0\}^*$. Without loss of generality, assume x = 1y0, otherwise just replace 1 with 0, 0 with 1, and y with w.

Then $1 \in L(1), 0 \in L(0)$, and $y \in L(0+1)^*$, since it is the concatenation of 0 or more strings from L(0+1). So $x \in L(1)L(0+1)^*L(0)$, so it begins with 1 and ends with 0, which are different, so $x \in L$.

Next we show that $L \subseteq L$: left as an exercise to the reader

So since we have shown that $L \subseteq L' \wedge L' \subseteq L$, L = L'.

2 RE identities

Some of these follow from set properties, others require some proof

- Commutativity of union: $R + S \equiv S + R$
- Associativity of union: $(R+S)+T \equiv R+(S+T)$
- Associativity of concatenation: $(RS)T \equiv R(ST)$

• Left distributivity: $R(S+T) \equiv RS + RT$

• Right distributivity: $(S+T)R \equiv SR + ST$

• Identity for union: $R + \emptyset \equiv R$

• Identity for concatenation: $R\varepsilon \equiv R \equiv \varepsilon R$

• Annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R\emptyset$

• Idempotence of Kleene star: $(R^*)^* \equiv R^*$

3 Turnstile finite-state machine

Let out alphabet be $\{t, p, b\}$, where p denotes push, t denotes tap or token, and b denotes bicycle.

We will study three different states: $Q = \{U, L, D\}$. U denotes unlocked, L denotes locked, D stands for dead (or jammed or deactivated).

 Σ^* is all strings over $\{t, p, b\} = \{t, p, b\}^*$

Is tptppt accepted? We start at L, go to U with the first t, go back to L with p and so on. When we have a p but we are at L, then nothing happens as pushing on a locked turnstile will do nothing. Similarly, when we have a t when we are at a U, then nothing will happen as using a tap/token on an unlocked turnstile will also do nothing. Following these rules, we arrive at the following:

$$L \xrightarrow{t} U \xrightarrow{p} L \xrightarrow{t} U \xrightarrow{p} L \xrightarrow{p} L \xrightarrow{t} U$$

And thus the combination is accepted.