Constants of Physics and Mathematics

a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy.

Stan's Library, ISSN 2421-1230, Vol.I., First release March 1, 2005. Permalink via DOI: 10.3247/SL2Phys07.001

Based on the latest CODATA 2010 values and their successive improvements!

Physics BOOKS | SI Units | SI Dimensions

MATHEMATICAL Constants (on a separate page)

Physics LINKS | Stan's HUB

This is a constant-at-a-glance list. You can also download a PDF version of this document for off-line use. But keep coming back, the list is growing!

- · Universal constants
- · Electromagnetic constants
- Electromagnetic radiation constants
- Electron & atomic physics constants
- References & Links

- Physico chemical constants
- Basic nuclear physics
- Particle physics
- · Cosmic microwave background
- Formats and Notes

- Metrics of the known Universe
- Milky Way galaxy
- Solar system data
- Planetary data (also as pdf)
- Planet Earth data
- Conventional constants
- Engineering constants
- Conversion factors

Constant	Value	Dimension	Alias	Definition & Notes
Universal constants used in too ma	iny categories to constrain the	eir scope		
Speed of light c	2.997 924 580 e+8	m.s ⁻¹	m/s	Assigned (see SI units)
Permeability of vacuum μ ₀	12.566 370 614 359 e-7	kg.m.s ⁻² .A ⁻²	H/m N/A ²	= 4π.10 ⁻⁷ . Assigned .
Permittivity of vacuum ε ₀	8.854 187 817 620 e-12	kg ⁻¹ .m ⁻³ .s ⁴ .A ²	F/m	= 1 / ($c^2 \mu_0$). Assigned.
Gravitation constant G	6.673 84[80] e-11	kg ⁻¹ .m ³ .s ⁻²		force = $G M_1 M_2 / r_{12}^2$
Planck constant h	6.626 069 57[29] e-34	kg.m ² .s ⁻¹	J.s	= (energy transfer quantum)/(channel frequency)
Angular Planck constant	1.054 571 726[47] e-34	kg.m ² .s ⁻¹	J.s	= h/2π, the angular momentum quantum
Charge/Quantum ratio	2.417 989 348[53] e+14	kg ⁻¹ .m ⁻² .s ² .A	A/J	= e / h
Elementary charge e	1.602 176 565[35] e-19	s.A	С	
Quantum/Charge ratio	4.135 667 52[10] e-15	kg.m ² .s ⁻² .A ⁻¹	J/A	= h / e
Fine structure constant α	7.297 352 5698[24] e-3	Dimensionless		$= \mu_0 c e^2 / 2h.$
Inverse of fine structure constant	137.035 999 074[45]	Dimensionless		= $1/\alpha$ = 2h / (μ_0 c e ²). See ref.[1].
Boltzmann constant k	1.380 6488[13] e-23	kg.m ² .s ⁻² .K ⁻¹	J/K	Sets thermodynamic temperature
Planck mass m _p	2.176 51[13] e-8	kg		$m_p^2 = (h/2\pi) c / G$
Planck time t _p	5.391 06[32] e-44	s		$= (h/2\pi) / (m_p c^2)$
Planck length I _p	1.616 199[97] e-35	m		= ct _p

Planck temperature	1.416 833[85] e+32	К		$= m_p c^2 / k$
Electromagnetic constants other th	an those already listed			
Impedance of vacuum Z ₀	376.730 313 461	kg.m ² .s ⁻³ .A ⁻²	Ω	Derived from assigned 's: $Z_0^2 = \mu_0/\epsilon_0$.
Magnetic flux quantum Φ ₀	2.067 833 758[46] e-15	kg.m ² .s ⁻² .A ⁻¹	Wb	= h / 2e
Josephson constant K _J	4.835 978 70[11] e14	kg ⁻¹ .m ⁻² .s ² .A	Hz/V	= 2e / h . Conventional: 483597.9 GHz/V
von Klitzing constant R _K	2.581 280 744 34[84] e+4	kg.m ² .s ⁻³ .A ⁻²	Ω	= h / e^2 . Conventional: 25812.807 Ω
Conductance quantum G ₀	7.748 091 7346[25] e-5	kg ⁻¹ .m ⁻² .s ³ .A ²	S	$= 2e^2 / h = 2 / R_K$
Inverse of conductance quantum	1.290 640 372 17[42] e+4	kg.m ² .s ⁻³ .A ⁻²	Ω	= R _K / 2
Electromagnetic radiation constan	ts. For solar constant, see s	solar system		
Stefan-Boltzmann const. σ	5.670 373[21] e-8	kg.s ⁻³ .K ⁻⁴	$W/m^2.K^4$	$= 2 \pi^5 k^4 / 15 h^3 c^2$
1st radiation constant c ₁	3.741 771 53[17] e-16	kg.m ⁴ .s ⁻³	W.m ²	$= 2 \pi h c^2$
2nd radiation constant c ₂	1.438 7770[13] e-2	m.K		= h c / k
Wien λ displacement constant λ _{max} T	2.897 7721[26] e-3	m.K		= c ₂ / 4.9651423
Wien f displacement constant f/T	5.878 9254[53] e+10	s ⁻¹ .K ⁻¹	Hz/K	
Max. luminous efficacy: absolute	683	cd.sr.kg ⁻¹ .m ⁻¹ .s ³	lm/W	100% efficient, ideal 555 nm light source.
Max. luminous efficacy: black-body	95	cd.sr.kg ⁻¹ .m ⁻¹ .s ³	lm/W	Achieved at 7000 °K
Solar luminous efficacy	93	cd.sr.kg ⁻¹ .m ⁻¹ .s ³	lm/W	see Wikipedia
Solar illuminance	1.280[10] e5	cd.sr.m ⁻²	lx	in the brightest sunlight, on Earth
Electron and atomic physics const	ants			
Rydberg constant R∞	1.097 373 156 8539[55] e+7	m ⁻¹	m ⁻¹	$= c \alpha^2 m_e / 2h$
Hartree energy E _H	4.359 744 34[19] e-18	kg.m ² .s ⁻²	J	$= \alpha^2 m_e c^2 = 2h c R^{\infty}$
Bohr radius	5.291 772 1092[17] e-11	m	m	= α / (4π R∞)
Bohr magneton µB	9.274 009 68[20] e-24	m ² .A	J/T	$= (1/2)(h/2\pi)(e/m_e)$
Bohr magneton in Hz/T	1.399624555[31] e+10	kg ⁻¹ .s.A	Hz/T	= μ _B /h = [Larmor frequency]/[g-factor]; ~ 14 GHz/
Quantum of circulation	3.636 947 5520[24] e-4	m ² .s ⁻¹	m ² /s	= h / 2m _e
Richardson constant	1.20173 e+6	A.m ⁻² .K ⁻²		= $4\pi e m_e k^2 / h^3$; arises in thermionic emission
Electron (stable lepton, charge -1, spin 1/2, fo	ermion, its antiparticle positron has	s positive charge)		
Electron rest mass m _e	9.109 382 91[40] e-31	kg		= 5.485 799 0946[22] e-4 u

	Com	· · · · · · · · · · · · · · · · · · ·		
Electron rest energy (m _e c ²)	8.187 105 06[36] e-14	kg.m ² .s ⁻²	J	= 0.510 998 928[11] MeV
Electron charge/mass ratio	- 1.758 820 088[39] e11	kg ⁻¹ .s.A	C/kg	= e / m _e
Compton wavelength of electron λ _{C,e}	2.426 310 2389[16] e-12	m		= h / c m _e
Classical electron radius r _e	2.817 940 3267[27] e-15	m		$= e^2 / (4\pi\epsilon_0 m_e c^2)$
Thomson cross section σ_{e}	0.665 245 8734[13] e-28	m ²		$= (8\pi/3) r_e^2$
Electron magnetic moment μ _e	- 9.284 764 30[21] e-24	m ² .A	J/T	
Electron g-factor g _e	- 2.002 319 304 361 53[53]	Dimensionless		$= (\mu_e / \mu_B) / S_e$
Electron magnetic moment anomaly	1.159 652 180 76[27] e-3	Dimensionless		= (abs(g _e) - 2) / 2
Electron gyromagnetic ratio γ _e /2π	28.024 952 66[62] e+9	kg ⁻¹ .s.A	Hz/T	= μ_e / (hS _e); ~ 28 GHz/T
Electron/Proton mass ratio	5.446 170 2178[22] e-4	Dimensionless		
Electron/Proton magnetic moments ratio	- 658.210 6848[54]	Dimensionless		
Electron/Proton magnetic moments ratio	- 658.227 597 1[72]	Dimensionless		Shielded in water; standard conditions
Physico-chemical constants	•			
Atomic mass constant u	1.660 538 921[73] e-27	kg		Mass of ¹² C nuclide / 12
Molar mass of ¹² C	12 e-3	kg		Assigned
Molar mass constant	1.0 e-3	kg.mol ⁻¹	kg/mol	Assigned
		. 2 -2 -1		
Boltzmann constant k	1.380 6488[13] e-23	kg.m ² .s ⁻² .K ⁻¹	J/K	Sets thermodynamic temperature
	1.380 6488[13] e-23 8.617 3324[78] e-5	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹	J/K V/K	Sets thermodynamic temperature = k/e. Electrochemical potential ~ (k/e)T ln(c1/c2)
Boltzmann constant in eV/K				
Boltzmann constant in eV/K Avogadro's number N _A	8.617 3324[78] e-5	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹	V/K	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2)
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant	8.617 3324[78] e-5 6.022 141 29[27] e+23	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹	V/K count/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹	V/K count/mol J.s/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c Electron molar mass	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10 0.119 626 565 779[84]	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹ kg.m ³ .s ⁻² .mol ⁻¹	V/K count/mol J.s/mol J.m/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A = h c N _A
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c Electron molar mass Electron molar charge	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10 0.119 626 565 779[84] 5.485 799 0946[22] e-7	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹ kg.m ³ .s ⁻² .mol ⁻¹ kg.mol ⁻¹	V/K count/mol J.s/mol J.m/mol kg/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A = h c N _A = m _e N _A
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c Electron molar mass Electron molar charge Faraday constant F	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10 0.119 626 565 779[84] 5.485 799 0946[22] e-7 - 9.648 533 65[21] e+4	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹ kg.m ³ .s ⁻² .mol ⁻¹ kg.mol ⁻¹ s.A.mol ⁻¹	V/K count/mol J.s/mol J.m/mol kg/mol C/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A = h c N _A = m _e N _A = e N _A .
Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c Electron molar mass Electron molar charge Faraday constant F Molar gas constant R	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10 0.119 626 565 779[84] 5.485 799 0946[22] e-7 - 9.648 533 65[21] e+4 +9.648 533 65[21] e+4	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹ kg.m ³ .s ⁻² .mol ⁻¹ kg.mol ⁻¹ s.A.mol ⁻¹	V/K count/mol J.s/mol J.m/mol kg/mol C/mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A = h c N _A = m _e N _A = e N _A . = electron molar charge .
Boltzmann constant k Boltzmann constant in eV/K Avogadro's number N _A Molar Planck constant Molar Planck constant by c Electron molar mass Electron molar charge Faraday constant F Molar gas constant R Molar volume of ideal gas V _m Loschmidt constant n ₀	8.617 3324[78] e-5 6.022 141 29[27] e+23 3.990 312 7176[28] e-10 0.119 626 565 779[84] 5.485 799 0946[22] e-7 - 9.648 533 65[21] e+4 +9.648 533 65[21] e+4 8.314 4621[75]	kg.m ² .s ⁻³ .A ⁻¹ .K ⁻¹ mol ⁻¹ kg.m ² .s ⁻¹ .mol ⁻¹ kg.m ³ .s ⁻² .mol ⁻¹ kg.mol ⁻¹ s.A.mol ⁻¹ s.A.mol ⁻¹	V/K count/mol J.s/mol J.m/mol kg/mol C/mol C/mol J/K.mol	= k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) ~ 602 Z (<i>Zetta</i>) particles in a mole of substance = h N _A = h c N _A = m _e N _A = e N _A . = electron molar charge . = k N _A

Basic nuclear physics data (those listed in CODATA)

Fermi coupling G _F /(hc/2π) ³	3.670 336[31] e+48	kg ⁻²		= (1.026 8365[88] e-5) / m _p ²
Fermi coupling in eV ⁻²	1.166 364[5] e+4	eV ⁻²		
Weak mixing angle $\sin^2\!\theta_W$	0.2223[21]	Dimensionless		$= 1 - (m_W/m_Z)^2$
Nuclear magneton μ_N	5.050 783 53[11] e-27	m ² .A	J/T	$= (1/2)(h/2\pi)(e/m_p)$
Nuclear magneton in Hz/T	7.622 593 57[17] e+6	kg ⁻¹ .s.A	Hz/T	= μ_N /h = [Larmor frequency]/[g-factor]; ~ 7.6 MHz/T
Proton (stable baryon, nucleon, hadron, charge	e +1, spin 1/2, fermion, parity +, i	sospin 1/2, its anti-part	icle antiproto	on has opposite charge)
Proton rest mass m _p	1.672 621 777[74] e-27	kg		1.007 276 466 812[90] u
Proton rest energy (mc ²)	1.503 277 484[66] e-10	kg.m ² .s ⁻²	J	938.272 046[21] MeV; quarks composition: uud
Proton / electron mass ratio	1836.15267245[75]	Dimensionless		inverse: 5.4461702178[22]e-4
Compton wavelength of proton $\lambda_{C,p}$	1.321 409 856 23[94] e-15	m		$\lambda_{C,p} = h / c m_p$
Proton rms charge radius	0.8775[51] e-15	m		
Proton magnetic moment	1.410 606 743[33] e-26	m ² .A	J/T	μ_{p}
Proton g-factor	5.585 694 713[46]	Dimensionless		$= \mu_p / (S_p \mu_N)$
Proton gyromagnetic ratio	42.577 4806[10] e+6	kg ⁻¹ .s.A	Hz/T	$\gamma_p = \mu_p / h S_p$.
Proton gyromagnetic ratio shielded	42.576 388 1[12] e+6	kg ⁻¹ .s.A	Hz/T	In H ₂ O, standard conditions
Proton magnetic shielding	25.694[14] e-6	Dimensionless		Relative value for pure water at 25 °C
Electric dipole moment	< 8.7 e-45	m.s.A	C.m	< 5.4 e-24 e.cm; existence not confirmed
Electric polarizibility	1.20[6] e-48	m ³		
Magnetic polarizibility	1.9[5] e-49	m ³		
Neutron (baryon, nucleon, hadron, charge 0, s	pin 1/2, fermion, parity +, isospin	1/2, its anti-particle is	antineutron)
Neutron rest mass m _n	1.674 927 351[74] e-27	kg		1.008 664 916 00[43] u
Neutron rest energy (mc ²)	1.505 349 631[66] e-10	kg.m ² .s ⁻²	J	939.565 379[21] MeV; quarks composition udd
Compton wavelength of neutron $\lambda_{C,n}$	1.319 590 9068[11] e-15	m		$\lambda_{C,n} = h / c m_n$
Neutron half-life time	881.5[15]	s		Beta-decay into proton + e ⁻ + v _e
Neutron magnetic moment	- 0.966 236 47[23] e-26	m ² .A	J/T	μ _n
Neutron g-factor	- 3.826 085 45[90]	Dimensionless		$=\mu_n/(S_n \mu_N)$
Neutron gyromagnetic ratio	29.164 6943[69] e+6	kg ⁻¹ .s.A	Hz/T	$\gamma_n = \mu_n / h S_n$
Electric dipole moment	< 4.6 e-47	m.s.A	C.m	< 2.9 e-26 e.cm; existence not confirmed
Electric polarizibility	1.16[15] e-48	m ³		

19	00	nstants of Friysics and ivi	atricinatios	
Magnetic polarizibility	3.7[20] e-49	m^3		
Deuteron (stable nuclide, protons 1, neutrons 1,	charge +1, spin 1, boson)		•	•
Deuteron rest mass	3.343 583 48[15] e-27	kg		2.013 553 212 712[77] u
Deuteron rest energy (mc ²)	3.005 062 97[13] e-10	kg.m ² .s ⁻²	J	1875.612 859[41] MeV
Deuteron rms charge radius	2.1424[21] e-15	m		
Deuteron magnetic moment	0.433 073 489[10] e-26	m ² .A	J/T	
Deuteron g-factor	0.857 438 2308[72]	Dimensionless		
Deuteron gyromagnetic ratio	6.535 903 381 41 e+6	kg ⁻¹ .s.A	Hz/T	
Deuteron quadrupole moment	4.581 e-50	m ² .s.A	C.m ²	0.2859 e(fm) ²
Triton (stable nuclide, protons 1, neutrons 2, cha	arge +1, spin 1/2, fermion)			
Triton rest mass	5.007 356 30[22] e-27	kg		3.015 500 7134[25] u
Triton rest energy (mc ²)	4.500 387 41[20] e-10	kg.m ² .s ⁻²	J	2808.921 005[62] MeV
Triton half-life time	3.888[70] e+8	s		= 12.32 years; beta-decay into ³ He + e ⁻ + v _e
Triton magnetic moment	1.504 609 447[38] e-26	m ² .A	J/T	
Triton g-factor	5.957 924 896[76]	Dimensionless		
Triton gyromagnetic ratio	45.413 674 6[13] e+6	kg ⁻¹ .s.A	Hz/T	
Helion (stable nuclide, protons 2, neutrons 1, ch	arge +2, spin 1/2, fermion, nucl	ide)		
Helion rest mass	5.006 412 34[22] e-27	kg		3.014 932 2468[25] u
Helion rest energy (mc ²)	4.499 539 02[20] e-10	kg.m ² .s ⁻²	J	2808.391 482[62] MeV
Helion magnetic moment	- 1.074 617 486[27] e-26	m ² .A	J/T	Shielded
Helion g-factor	- 4.255 250 613[50]	Dimensionless		
Helion gyromagnetic ratio	32.434 101 98[90] e+6	kg ⁻¹ .s.A	Hz/T	Shielded
Alpha particle (stable nuclide, protons 2, neutro	ns 2, charge +2, spin 0, magne	tic moment 0, boson)		
α-particle rest mass	6.644 656 75[29] e-27	kg		4.001 506 179 125[62] u
$\alpha\text{-particle rest energy }(\text{mc}^2)$	5.971 919 67[26] e-10	kg.m ² .s ⁻²	J	3727.379 240[82] MeV
Particle physics data (source: Particle D	ata Group)			
Neutrinos v (stable leptons, charge 0, exist in e,μ	ı,τ flavors, each has matter / an	ti-matter version with o	pposite chira	lity, spin 1/2, fermions)
Electron neutrino v _e rest energy (mc ²)	max 3.5 e-13	kg.m ² .s ⁻²	J	0 to 2.2 eV

19		constants of Fifysics and iv		
Tau neutrino v_{T} rest energy (mc^2)	max 24.8 e-13	kg.m ² .s ⁻²	J	0 to 15.5 MeV
Muon μ^{\pm} (lepton, charge ± 1 , matter μ^{-} , antim	atter μ ⁺ , spin 1/2, fermion)	•		•
Muon rest energy (mc ²)	1.692 833 667[86] e-11	kg.m ² .s ⁻²	J	105.658 3715[35] MeV
Muon rest mass	1.883 531 475[96] e-28	kg		0.113 428 9267[29] u
Muon magnetic moment	- 4.490 448 07[15] e-26	m ² .A	J/T	
Muon g-factor g _µ	- 2.002 331 8418[13]	Dimensionless		$(\mu / \mu_B) * (m / m_e) / spin$
Muon magnetic moment anomaly	1.165 920 91[63] e-3	Dimensionless		(abs(g _µ) - 2) / 2
Muon gyromagnetic ratio	135.538 817[12] e+6	kg ⁻¹ .s.A	Hz/T	$= \mu_n / h S_n$
Muon half-life time	1.52 e-6	s		
Tau \mathbf{r}^{\pm} (lepton, charge ± 1 , matter \mathbf{r}^{-} , antimatte	er τ ⁺ , spin 1/2, fermion)			
Tau rest energy (mc ²)	2.846 78[26] e-10	kg.m ² .s ⁻²	J	1776.82[16] MeV
Tau rest mass	3.167 47[29] e-27	kg		1.907 49[17] u
Tau half-life time	2.9 e-13	s		
Quarks with charge +2/3 (baryon number 1/3	, exist in u,c,t flavors, each has m	atter / anti-matter version	ons with some	e property flipped, spin 1/2, fermions)
u (up) quark rest energy (mc ²)	3.8 e-13	kg.m ² .s ⁻²	J	2.4 MeV, stable
c (charm) quark rest energy (mc ²)	2.03 e-10	kg.m ² .s ⁻²	J	1.27 GeV, unstable
t (top) quark rest energy (mc ²)	2.743 e-8	kg.m ² .s ⁻²	J	171.2 GeV, terribly unstable
Quarks with charge -1/3 (baryon number 1/3,	exist in d,s,b flavors, each has m	atter / anti-matter versio	ons with some	e property flipped, spin 1/2, fermions)
d (down) quark rest energy (mc ²)	7.7 e-13	kg.m ² .s ⁻²	J	4.8 MeV, stable
s (strange) quark rest energy (mc ²)	1.67 e-11	kg.m ² .s ⁻²	J	104 MeV, unstable
b (bottom) quark rest energy (mc ²)	6.7 e-10	kg.m ² .s ⁻²	J	4.2 GeV, unstable
Pions $π^{±}$ (mesons, hadrons, charge ±1, anti-	particles of each other, spin 0, bo	son, parity -, isospin 1)	-	-
Pions π [±] rest energy (mc ²)	2.236 1607[56] e-11	kg.m ² .s ⁻²	J	139.570 18[35] MeV
Pions π [±] rest mass	2.488 0643[62] e-28	kg		0.149 834 75[37] u
Pions π^{\pm} half-life time	2.6 e-8	s		quarks composition: π ⁺ : ud' , π ⁻ : du'
Pion $π^0$ (meson, hadron, charge 0, its own a	ntiparticle, spin 0, boson, parity -,	C-parity +, isospin 1)		
Pion π ⁰ rest energy (mc ²)	2.162 5634[96] e-11	kg.m ² .s ⁻²	J	134.976 60[60] MeV
Pion π^0 rest mass	2.406 176[11] e-28	kg		0.144 903 34[64] u
Pion π^0 half-life time	8.4 e-17	s		quarks composition: (uu'-dd')/&radiv2

Kaons K [±] rest energy (mc ²)	7.909 58[26] e-11	kg.m ² .s ⁻²	J	493.677[16] MeV
Kaons K [±] rest mass	8.800 591[29] e-28	kg		0.529 984[17] u
Kaons K [±] half-life time	1.2380[21] e-8	s		quarks composition: K ⁺ : us' , K ⁻ : su'
Kaon K⁰ ('strange' meson, hadron, charge	0, self-antiparticle, spin 0, boson,	isospin 1/2, parity -)		
Kaon K ⁰ rest energy (mc ²)	7.972 65[38] e-11	kg.m ² .s ⁻²	J	497.614[24] MeV; quarks: see below
Kaon K ⁰ rest mass	8.870 77[42] e-28	kg		0.534 211[26] u
Kaon K ⁰ L half-life time (long)	5.116[20] e-8	s		quarks composition: (ds'+sd')/√2
Kaon K ⁰ S half-life time (short)	8.953[5] e-11	s		quarks composition: (ds'-sd')/√2
Eta mesons η and η' (hadrons, charge 0, a	antiparticles of each other, spin inte	eger, bosons,		
η rest energy (mc ²)	8.777 57[38] e-11	kg.m ² .s ⁻²	J	547.853[24] MeV
η rest mass	9.766 36[42] e-28	kg		0.588 144[25] u
η half-life time	5.0[3] e-19	s		quarks composition: (uu'+dd'-2ss')/√6
η' rest energy (mc ²)	1.53434[38] e-10	kg.m ² .s ⁻²	J	957.66[24] MeV
η' rest mass	1.70718[43] e-27	kg		1.02809[26] u
η' half-life time	3.2[2] e-21	s		quarks composition: (uu'+dd'+ss')/√3
Lambda hyperons (baryons, charge 0 or +1	1, spin 1/2, fermions, parity +; pred	licted only: top Λ_t^+ , qua	arks udt , but t-	quark decays before it hadronizes)
Λ ⁰ rest energy (mc ²)	1.7875211[96] e-10	kg.m ² .s ⁻²	J	1.1156830[60] GeV; charge 0
Λ^0 rest mass	1.988885[11] e-27	kg		1.1977349[64] u
Λ^0 half-life time	2.631[20] e-10	s		quarks composition: uds
Bottom Λ ⁰ _b rest energy (mc ²)	9.0046[26] e-10	kg.m ² .s ⁻²	J	5.6202[16] GeV; charge 0
Bottom Λ ⁰ _b rest mass	1.00189[29] e-26	kg		6.0335[17] u
Bottom $\Lambda^0_{\ b}$ half-life time	1.409[55] e-12	s		quarks composition: udb
Charmed Λ ⁺ _c rest energy (mc ²)	3.66331[22] e-10	kg.m ² .s ⁻²	J	2.28646[14] GeV; charge +1
Charmed Λ ⁺ _C rest mass	4.07599[25] e-27	kg		2.45462[15] u
Charmed Λ ⁺ _C half-life time	2.000[60] e-13	s		quarks composition: udc
Sigma hyperons with spin 1/2 (barions, cha	arge -1, 0, +1 or +2, fermions, parit	y +; predicted only: ud	b, uut, udt, de	dt)
Σ ⁺ rest energy (mc ²)	1.90558[11] e-10	kg.m ² .s ⁻²	J	1.189370[70] GeV; charge +1
Σ ⁺ rest mass	2.12024[12] e-27	kg	İ	1.276841[75] u

Σ^+ half-life time	8.018[26] e-11	s		quarks composition: uus
Σ^0 rest energy (mc ²)	1.910823[38] e-10	kg.m ² .s ⁻²	J	1.192642[24] GeV; charge 0
Σ^0 rest mass	2.126077[43] e-27	kg		1.280353[26] u
Σ^0 half-life time	7.40[70] e-20	s		quarks composition: uds
Σ rest energy (mc ²)	1.918525[48] e-10	kg.m ² .s ⁻²	J	1.197449[30] GeV; charge -1
Σ⁻ rest mass	2.13465[53] e-27	kg		1.285514[32] u
Σ⁻ half-life time	1.479[11] e-10	s		quarks composition: dds
Charmed Σ _c ⁺⁺ rest energy (mc ²)	3.93177[29] e-10	kg.m ² .s ⁻²	J	2.45402[18] GeV; charge +2
Charmed $\Sigma_{\text{C}}^{\ ++}$ rest mass	4.37469[32] e-27	kg		2.63450[19] u
Charmed Σ_c^{++} half-life time	3.00[40] e-22	s		quarks composition: uuc
Charmed Σ _c ⁺ rest energy (mc ²)	3.92998[64] e-10	kg.m ² .s ⁻²	J	2.45290[40] GeV; charge +1
Charmed Σ _C ⁺ rest mass	4.37269[71] e-27	kg		2.63330[43] u
Charmed Σ _c ⁺ half-life time	>1.4 e-22	s		quarks composition: udc
Charmed Σ _c ⁰ rest energy (mc ²)	3.93136[29] e-10	kg.m ² .s ⁻²	J	2.45376[18] GeV; charge 0
Charmed Σ _c ⁰ rest mass	4.37422[32] e-27	kg		2.63422[19] u
Charmed $\Sigma_c^{\ 0}$ half-life time	3.0 e-22	s		quarks composition: ddc
Bottom Σ _b ⁺ rest energy (mc ²)	9.3051[62] e-10	kg.m ² .s ⁻²	J	5.8078[39] GeV; charge +1
Bottom Σ _b ⁺ rest mass	1.03533[69] e-26	kg		6.2349[42] u
Bottom Σ _b ⁺ half-life time	?	s		quarks composition: uub
Bottom Σ _b ⁻ rest energy (mc ²)	9.3170[43] e-10	kg.m ² .s ⁻²	J	5.8152[27] GeV; charge -1
Bottom Σ _b ⁻ rest mass	1.03665[48] e-26	kg		6.2429[30] u
Bottom Σ _b ⁻ half-life time	?	s		quarks composition: ddb
Sigma [*] hyperons with spin 3/2 (barions, charge	-1, 0, +1 or +2, fermions, parity	+; predicted only: uul	b, udb, ddb, ut	ut, udt, ddt)
Σ*+ rest energy (mc ²)	2.21549[64] e-10	kg.m ² .s ⁻²	J	1.38280[40] GeV; charge +1
Σ ^{*+} rest mass	2.46506[71] e-27	kg		1.48450[43] u
Σ ^{*+} half-life time	1.840[40] e-23	s		quarks composition: uus
Σ ^{*0} rest energy (mc ²)	2.21693[16] e-10	kg.m ² .s ⁻²	J	1.38370[10] GeV; charge 0
Σ ^{*0} rest mass	2.46667[18] e-27	kg		1.48546[11] u
$\Sigma^{\star0}$ half-life time	1.80[30] e-23	s		quarks composition: uds

$\Sigma^{^{\star_{-}}}$ rest energy (mc 2)	2.22254[80] e-10	kg.m ² .s ⁻²	J	1.38720[50] GeV; charge -1
Σ^{*-} rest mass	2.47291[89] e-27	kg		1.48922[54] u
Σ^{*-} half-life time	1.670[90] e-23	s		quarks composition: dds
Charmed Σ^{*++}_{c} rest energy (mc ²)	4.03492[96] e-10	kg.m ² .s ⁻²	J	2.51840[60] GeV; charge +2
Charmed Σ^{*++}_{C} rest mass	4.4894[11] e-27	kg		2.70361[64] u
Charmed Σ^{*++}_{C} half-life time	4.40[60] e-23	s		quarks composition: uuc
Charmed Σ*+ _c rest energy (mc ²)	4.0335[37] e-10	kg.m ² .s ⁻²	J	2.5175[23] GeV; charge +1
Charmed Σ ^{*+} _C rest mass	4.4879[41] e-27	kg		2.7026[25] u
Charmed Σ^{*+}_{C} half-life time	> 3.9 e-23	s		quarks composition: udc
Charmed Σ ^{*0} _c rest energy (mc ²)	4.03428[80] e-10	kg.m ² .s ⁻²	J	2.518 GeV; charge 0
Charmed Σ^{*0}_{c} rest mass	4.48874[89] e-27	kg		2.70318[54] u
Charmed Σ^{*0}_{C} half-life time	4.10[50] e-23	s		quarks composition: ddc
Xi hyperons (barions, charge -1, 0, +1, spin 1/2,	fermions, parity +; predicted only.	ucc, ubb, dbb, ucb, o	dcb)	
Ξ ⁰ rest energy (mc ²)	2.106638[32] e-10	kg.m ² .s ⁻²	J	1.31486[20] GeV; charge 0
∃ ⁰ rest mass	2.34395[35] e-27	kg		1.41156[21] u
∃ ⁰ half-life time	2.900[90] e-10	s		quarks composition: uss
Ξ⁻ rest energy (mc²)	2.11697[21] e-10	kg.m ² .s ⁻²	J	1.32131[13] GeV; charge -1
∃⁻ rest mass	2.35544[23] e-27	kg		1.41848[14] u
∃⁻ half-life time	1.639[15] e-10	s		quarks composition: dss
Charmed ≡ _c ⁺ rest energy (mc ²)	3.95401[64] e-10	kg.m ² .s ⁻²	J	2.46790[40] GeV; charge +1
Charmed ∃ _c ⁺ rest mass	4.39943[71] e-27	kg		2.64940[43] u
Charmed ∃ _c ⁺ half-life time	4.42[26] e-13	s		quarks composition: usc
Charmed ≡ _c ⁰ rest energy (mc ²)	3.95898[64] e-10	kg.m ² .s ⁻²	J	2.47100[40] GeV; charge 0
Charmed Ξ_c^0 rest mass	4.40496[71] e-27	kg		2.65273[43] u
Charmed ∃ _c ⁰ half-life time	1.12[13] e-13	s		quarks composition: dsc
Double charmed ∃ _{cc} ⁺ rest energy (mc ²)	5.6379[14] e-10	kg.m ² .s ⁻²	J	3.51890[90] GeV; charge +1
Double charmed ∃ _{cc} ⁺ rest mass	6.2730[16] e-27	kg		3.77769[97] u
Double charmed Ξ_{cc}^+ half-life time	< 3.3 e-14	s		quarks composition: dcc
Bottom ≡ _b ⁰ rest energy (mc ²)	9.2798[48] e-10	kg.m ² .s ⁻²	J	5.7920[30] GeV; charge 0

Bottom ∃ _b ⁰ rest mass	1.0325[53] e-26	kg		6.2180[32] u
Bottom $\Xi_b^{\ 0}$ half-life time	1.42[28] e-12	s		quarks composition: usb
Bottom ∃ _b ⁻ rest energy (mc²)	9.2815[48] e-10	kg.m ² .s ⁻²	J	5.7929[30] GeV; charge -1
Bottom ∃ _b ⁻ rest mass	1.0335[53] e-26	kg		6.2191[32] u
Bottom ∃ _b ⁻ half-life time	1.42[28] e-12	s		quarks composition: dsb
= resonances: {uss, S=3/2, 1.53180[32]] GeV}, { dss , S=3/2, 1.53500[60]	GeV}, { usc , S=1/2, 2.5	7570[31] GeV}, {	(dsc, S=1/2, 2.57800[29] GeV, 1.1e-13 s},
Omega hyperons (barions, charge -1 or 0,	spin 1/2 or 3/2, fermions, parity +;	predicted only: scc, sc	cb, sbb, ccc, ccl	b, cbb, bbb)
Ω ⁻ rest energy (mc ²)	2.67956[46] e-10	kg.m ² .s ⁻²	J	1.67245[29] GeV; charge -1, spin 3/2
Ω⁻ rest mass	2.98141[52] e-27	kg		1.79544[31] u
Ω ⁻ half-life time	8.21[11] e-11	s		quarks composition: sss
Charmed Ω^0_c rest energy (mc ²)	4.3219[41] e-10	kg.m ² .s ⁻²	J	2.6975[26] GeV; charge 0, spin 1/2
Charmed $\Omega^0_{\ \ C}$ rest mass	4.8087[28] e-27	kg		2.8959[28] u
Charmed $\Omega^0_{\ c}$ half-life time	6.9[12] e-14	s		quarks composition: ssc
Bottom Ω ⁻ _b rest energy (mc ²)	9.700[11] e-10	kg.m ² .s ⁻²	J	6.0544[68] GeV; charge -1, spin 1/2
Bottom Ω^b rest mass	1.0793[12] e-26	kg		6.49967[73] u
Bottom Ω⁻ _b half-life time	1.13[53] e-12	s		quarks composition: ssb
W [±] gauge boson (charge ±1, matter W ⁻ , a	ntimatter W ⁺ , spin 1)	<u>.</u>	-	•
W boson rest energy (mc ²)	1.28791[24] e-8	kg.m ² .s ⁻²	J	80.385[15] GeV
W boson rest mass	1.432993[25] e-25	kg		86.296[16] u
Z gauge boson (charge 0, spin 1)	•	<u>.</u>	-	•
Z boson rest energy (mc ²)	1.460986[33] e-8	kg.m ² .s ⁻²	J	91.1876[21] GeV
Z boson rest mass	1.625566[37] e-25	kg		97.8939[23] u
Higgs boson H ⁰ (charge 0, spin 0, predicte	ed only, not found)	<u>.</u>	-	•
H ⁰ rest energy (mc ²)	2.0042[34] e-8	kg.m ² .s ⁻²	J	125.09[21] GeV; ATLAS/CMS 26 Mar 2015
H ⁰ rest mass	2.2299[37] e-25	kg		134.29[23] u
H ⁰ half-life time	1.56 e-22	s		h/(2πΓ), predicted Γ = 4.21 MeV
Cosmic microwave background (CN	<u></u>			
Mean apparent CMB temperature	2.72548[57]	К	Kelvin	From CMB black-body radiation spectrum
rms variations of CMB temperature	1.8 e-7	К		18 μK; deviations from perfect isotropy
	<u> </u>			<u> </u>

Peak frequency density v _{max}	1.6023 e+11	Hz		160.23 GHz, corresponding to λ = 1.871 mm
Peak wavelength density λ _{max}	1.063 e-3	m		1.063 mm, corresponding to 318.7 GHz
Metrics of the known Universe (for the pre	efixes M (Mega), G (Giga), Z (Ze	tta), and Y (Yocto), clic	k here)	
Diameter visible by Hubble telescope	8.80[10] e+26	m		~ 93 G light-years
Volume of the visible sphere	3.60[10] e+80	m ³		~ 420 MY light-years ³ (<i>Mega-Yocta</i>)
Mass contained therein	3.56[10] e+54	kg		~ 3.56 MYY kg; mostly dark energy & matter
Mean density	9.90[20] e-27	kg.m ⁻¹	kg/m	~ 9.9 e-30 g/ml
Age, assuming Big Bang theory	4.366[54] e+17	s		~ 13.75±0.17 G years
Mean expansion rate	2.29[13] e-18	s ⁻¹		~ 70.8±4.0 (km/s)/ M pc (km/s per Megaparsec)
Number of stars	3.0[10] e+23	Dimensionless		~ 300 Z , or 0.5 mols of stars
Number of galaxies	1.25[20] e+11	Dimensionless		~ 125 G , or 0.2 pico-mols of galaxies
Number of fundamental particles	1.00[25] e+80	Dimensionless		~ 100 MYYY (Mega-Yocto-Yocto-Yocto)
Mean concentration of particles	0.28[10]	m ⁻³	counts/m ³	~ 4.5e-28 molar "solution"
Milky Way galaxy. Type BSc (barred spiral), lentil-shaped, 9 arms, cent	er in the direction of	Sagittarius co	onstellation
Diameter	1.04[10] e+21	m		100000 - 120000 light-years (30 - 37 Kpc)
Thickness	1.00[10] e+19	m		~1000 light-years (~300 pc)
Mass	2.50[50] e+42	kg		1.25[25] e+12 solar masses
Number of stars	3.0[10] e+11	Dimensionless	count	~300 e+9
Oldest known star	4.156[50] e+17	s		13.2 e+9 years
Speed with respect to CMB	5.520[60] e+5	m.s ⁻¹		552 ± 6 km/s; the absolute galaxy motion
Angle between galactic plane and the ecliptic	1.05[10]	rad		~60 degrees
Milky Way arms look like logarithmic-spirals; gal	axy is a kind of vortex and its ap	parent features keep cl	hanging faster	than the motions of its stars
Arms pattern rotation (apparent)	1.58[15] e+15	s		~50 million years; move like ripple patterns
Arms pattern rotation (apparent) Milky Way central bar	1.58[15] e+15	s		~50 million years; move like ripple patterns
, , , ,	1.58[15] e+15 5.20[47] e+14	s		~50 million years; move like ripple patterns 15-18 million years; moves like a ripple pattern
Milky Way central bar	5.20[47] e+14			
Milky Way central bar Bar pattern rotation period (apparent)	5.20[47] e+14			

Rotation around galaxy center: orbital speed	2.20 e+5	m.s ⁻¹	m/s	approximately opposed to absolute galaxy motion
Absolute speed with respect to CMB	3.7 e+5	m.s ⁻¹	m/s	370 km/s; 0.123% of the speed of light
Extension (max.aphelion of a minor planet)	1.598 e+14	m		over 1068 au; planetoid (87269) 2000 OO67
Distance to nearest-neighbour system	3.970[50] e+16	m		4.2 light-years; Proxima Centauri
The Sun; spectral class G2V, main sequence (V)	yellow dearf (G2). Composition:	73.46% H, 24.85% He	, 0.77% O, 0.2	29 C, 0.16% Fe, 0.12% Ne, 0.09% N
Mass	1.98910[20] e+30	kg		330'000 times that of Earth
Mean radius	6.9550[50] e+8	m		109.2 times that of Earth
Flattening	9 e-6	Dimensionless		(equatorial - polar)/equatorial radii
Volume	1.41226[50] e+27	m^3		1'304'000 times that of Earth
Mean density	1.408 e+3	kg.m ⁻³	kg/m ³	0.255 times that of Earth
Surface gravity on equator	2.74 e+2	m.s ⁻²	m/s ²	27.94 g
Escape velocity	6.176 e+2	m.s ⁻¹	m/s	55.2 times that of Earth
Photosphere temperature	5778	К		In the layer emitting the light we see
Absolute visual magnitude	+4.83	Dimensionless		see stellar magnitudes (Conventional constants)
Radiance I _{sol}	2.009 e+7	W.m ² .sr ⁻¹		total from the layer emitting the light we see
Luminose efficacy	98	lm.kg ⁻¹ .m ⁻² .s ³	lm/W	see "Electromagnetic radiation constants"
Luminosity L _{sol}	3.841[14] e+26	kg.m ² .s ⁻³	W	~3.75 e+28 lm
Loss of mass due to elmag radiation	4.273[16] e+9	kg.s ⁻¹	kg/s	<electromagnetic output="" power=""> / c²</electromagnetic>
Total neutrino emissions	1.830[50] e+38	s ⁻¹	count/s	Mean value (very variable)
Age	1.4420[14] e+17	s		4.57 e+9 years
Planet Earth in relation to the Sun and the Solar	system. The orbit of Earth define	s the ecliptic plane .	_	
Earth aphelion, largest distance from Sun	1.52098232 e+11	m		1.01671388 au
Earth perihelion, smallest distance from Sun	1.47098290 e+11	m		0.98329134 au
Longitude of ascending node	6.08665006	rad		348.73936 degrees
Argument of perihelion	1.9933026	rad		114.20783 degrees
Semi-major orbital axis	1.49598261 e+11	m		1.00000261 au
Earth orbit inclination to Sun equator	0.1249	rad		7.155 degrees
Earth orbit inclination to invariable plane	0.0275533	rad		1.57869 degrees
Earth orbital excentricity	0.01671123	Dimensionless		will be about 0.015 after 5000 years

	00110	starito or i riyotoo aria mat	nomado.		
Mean anomaly of Earth orbit	3.5751716 e+2	Dimensionless			
Earth mean orbital velocity	2.9780 e+4	m.s ⁻¹	m/s	107200 km/h	
Sun visual brightess from the Earth	-26.74	Dimensionless		see stellar magnitudes (Conventional constants)	
Sun angular diameter seen from the Earth	0.00919 - 0.00951	rad		Varies between 0.527 and 0.545 degrees	
Solar constant (mean value for Earth)	1.36594[48] e3	kg.s ⁻³	W/m ²	Elmag irradiation from Sun at 1 AU distance	
Solar neutrinos flux on Earth surface	6.50[10] e+14	m ⁻² .s ⁻¹		Mean count per m ² per second; very variable	
Satellites count	1 natural	Dimesionless		994 artificial (December 2011)	
Planets: see the PDF document SOLAR SYSTEM	M PLANETS AT A GLANCE and	the NASA Planetary F	act Sheets		
Number of planets	8	Dimensionless	count	Planetary data table	
Minor planets; see also NASA Facts Sheets: Plu	uto, Chiron, Asteroids, Comets,				
Registered, with known orbits	583'767	Dimensionless	count	Apr 2012; ~3000 are added every month	
Numbered minor planets	326'266	Dimensionless	count	Apr 2012	
Named minor planets	17'055	Dimensionless	count	Apr 2012	
Planet Earth (Terra) data, other than those listed	above; see also NASA Earth Fa	ct Sheet			
Age	1.4327[14] e+17	s		4.54 e+9 years	
Global composition in weight %	Fe 32.1, O 30.1, Si 15.1, Mg 1	3.9, S 2.9, Ni 1.8, Ca 1	.5, Al 1.4, the	rest: 1.2	
Atmospheric composition in weight %	N ₂ 78.08, O ₂ 20.95, Ar 0.93, CO ₂ 0.038, the rest: 0.002; extra: 1% of H ₂ O wapor (variable)				
Mass	5.9736 e+24	kg			
Volume	1.08321 e+21	m ³		108.321 km ³	
Mean density	5.515 e+3	kg.m ⁻³	kg/m ³	5.515 g/cm ³	
Mean radius	6.3710 e+6	m		this is volumetric mean	
Equatorial radius	6.3781 e+6	m		6378.1 km; circumpherence 40075.017 km	
Polar radius	6.3568 e+6	m		6356.8 km; circumpherence 40007.860 km	
Flattening	0.00335	Dimensionless		f = (a-b)/a; a = equatorial, b = polar radius	
Surface area	5.100720 e+14	m ²		5.100720 e+8 km ²	
Dry land surface area	1.48940 e+14	m ²		1.48940 e+8 km (29.200 %) ²	
Surface temperature, mean	287.2	К		14.0 °C; range 184 to 331 K (-90 to 58 °C))	
Surface pressure, mean	1.01325 e+5	kg.m ⁻¹ .s ⁻²	Pa	1 atm = 101325 Pa	
Equatorial surface gravity	9.780327	m.s ⁻²	m/s ²	0.99732 g	

19	CO	ristants of Friysics and M	atticitatios		
Escape velocity	1.1186 e+4	m.s ⁻¹	m/s	11.186 km/s	
Albedo, geometric	0.367	Dimensionless			
Albedo, Bond	0.306	Dimensionless			
Sidereal rotation period	8.616410 e+4	s		0.99726968 days, or 23 h 56 m 4.100 s	
Equatorial rotation speed	465.1	m.s ⁻¹	m/s	0.4651 km/s (4.1579 % of escape volocity))	
Axial tilt	0.40763819	rad		23.355948°, or 23° 26' 21".4119	
Radius of the core	3.485 e+6	m		3485 km	
Average lunar month	2.5514430[5] e+6	s		29 days+ 12 hours+ 44 minutes+ 3 seconds	
Conventional constants					
Molar mass constant	0.001	kg.mol ⁻¹	kg/mol	Assigned (exact)	
Molar mass of ¹² C	0.012	kg		Assigned (exact)	
Standard gravity acceleration	9.806 65	m.s ⁻²	m/s ²	Assigned. Called 1 g (gee).	
Standard atmosphere	101 325	Pa		Assigned. Called 1 atm .	
Stellar magnitudes. Reference points: Appa	rent brightness: bolometric, initially	/ Vega was 0 (now it is	s +0.03). Abso l	lute: the Sun is 4.83 (used to be 4.75)	
Stellar apparent magnitude unit	2.511 886 431 509 580	Dimensionless	a ratio	100 ^{1/5} = 10 ^{0.4} ; also stellar brightness	
Stellar absolute magnitude unit	2.511 886 431 509 580	Dimensionless	a ratio	Brightness of a star when distant 10 parsecs	
Conventional engineering constan	ts. See also Math constants pe	ertinent to Engineerin	ng definitions		
dBm					
0 dBm power	0.001	kg.m ² .s ⁻³	Watts	1 mW; assigned	
0 dBm potential	0.774 596 669 241 483	kg.m ² .s ⁻³ .A ⁻¹	Volts	1 mW into 600 Ohm load	
0 dBm current	0.001 290 994 448 736	А	Amperes	1 mW into 600 Ohm load	
dBW					
0 dBW power	1.0	kg.m ² .s ⁻³	Watts	1 W; assigned	
0 dBW potential	7.071 067 811 865 475	kg.m ² .s ⁻³ .A ⁻¹	Volts	sqrt(Z ₀); 1 W into 50 Ohm load Z ₀	
0 dBW current	0.141 421 356 237 310	A	Amperes	sqrt(1/Z ₀); 1 W into 50 Ohm load Z ₀	
Conversion of dBW into dBm (additive)	+30	Dimensionless	dB	In terms of power	
Relative luminance Y of RGB color primari	ies: Y = 0.2126.R + 0.7152.G + 0.0	722.B. More info			
Relative luminance of Red/RGB	0.2126	Dimensionless	a ratio		
Relative luminance of Green/RGB	0.7152	Dimensionless	a ratio	Human eye is most sensitive to green	

10		-		_	
Relative luminance of Blue/RGB	0.0722	Dimensionless	a ratio		
Music and acoustics		•			
Frequency of the A4 reference note	440.0	s ⁻¹	Hz	ISO 16	
Full-octave frequency ratio	2.0 exact	Dimensionless	Ratio	C,C#,D,D#,E,F,F#,G,G#,A,A#,B,next C	
Half-tone frequency ratio 2 ^{1/12}	1.059 463 094 359 295	Dimensionless	Ratio	12 half-tones per octave, each worth 100 cents	
Conversion factors for entities tol	erated by SI, as well as son	ne others			
Energy & its equivalents					
Electron volt	1.602 176 565[35] e-19	kg.m ² .s ⁻²	J	Basic eV-to-SI conversion	
Electron volt to mass	1.782 661 845[39] e-36	kg		mass = energy/c ²	
Electron volt to atomic units u	1.073 544 150[24] e-9	-	u	a mass equivalent	
Electron volt to frequency	2.417 989 348[53] e+14	s ⁻¹	Hz	frequency = energy/h	
Electron volt to half-life time	6.582 119 28[22] e-16	s		Inverse relationship: $\tau = h/(2\pi\Gamma)$	
Joul to eV	6.241 509 34[14] e+18	-	eV	Basic SI-to-eV conversion	
Mass to eV	5.609 588 85[12] e+35	-	eV	energy = mass.c ²	
Atomic unit u to eV	931.494 061[21] e+6	-	eV	a bit less than 1 GeV/atomic_unit	
Frequency (1 Hz) to eV	4.135 667 516[91] e-15	-	eV	energy = frequency*h	
Atomic mass constant u, m _u	1.660 538 921[73] e-27	kg		Mass of ¹² C nuclide / 12	
Atomic mass energy (uc ²)	1.492 417 954[66] e-10	kg.m ² .s ⁻²	J	931.494 061[21] MeV	
Length / Distance		•			
Astronomical unit ua, au	1.49597870[30] e+11	m	~150 Gm	Mean Earth-to-Sun distance	
Light-year ly	9.4607304725808 e+15	m	~9.5 Pm	Exact: light covers it in one Julian year	
Parsec pc (~ 32.6 ly)	3.08567757[60] e+16	m	~30 Pm	Corresponds to au parallax of 1 second	
Time					
Hour	3.600 e+3	s		Exact: 3600 seconds	
Day	8.6400 e+4	s		Exact: 24 hours	
Julian year	3.1557600 e+7	s		Exact: 365.25 days	
Gregorian year (mean)	3.1556952 e+7	s		Exact: 365.2425 days	
Tropical year (drops ~0.53 s/century)	3.155692518747072 e+7	s	365.2421896698 days in year 2000		
Plane and solid angles					
·			1		

1 radian in degrees	5.729577951308232 e+1	Dimensionless	°, degree	180/π; planar angle; 57° 17' 44.806247"
1° degree in radians	1.745329251994330 e-2	Dimensionless	rad	π/180; planar angle
1' minute in radians	2.908882086657215 e-4	Dimensionless	rad	π/180/60; planar angle
1" second in radians	4.848136811095359 e-6	Dimensionless	rad	π/180/60/60; planar angle
1 steradian in degree ²	3.282806350011744 e+3	Dimensionless	degree ²	$(180/\pi)^2$; for solid angle infinitesimals
1 degree ² in steradians	3.046174197867086 e-4	Dimensionless	sr	$(\pi/180)^2$; for solid angle infinitesimals

Formats and Notes:

Formats of numeric values

Mantissa[Uncertainty] **e**±Exponent. The uncertainty, when specified, consists in the probable error in the last two digits of mantissa, enclosed in square brackets. When omitted, the constant is either assigned (see below) or else the error is implicitely [5] units in the first omitted position. The format of the **exponent** is either **e+value** or **e-value**. When the exponent specification is missing, **e+0** is intended. *Examples:*

- 2.34567[17] e+2 indicates a quantity with the most probable value of 234.567 and an expected error of ±0.017.
- 2.34567 e+2 indicates a quantity with the most probable value of 234.567 and an implicit error of ±0.0005.

Bold magenta values indicate constants whose values are assigned by convention

and therefore not subject to experimental assessment. In particular this applies to the **speed of light** which now indirectly defines the *meter*, and the **permeability of vacuum** which fixes the electromagnetic field *gauche* and indirectly defines the *ampere*. In turn, these determine the **permittivity** and **characteristic impedance of vacuum**, making them assigned as well. The values of assigned constants and some of their functions are listed also on OEIS, the **Online Encyclopedia of Integer Sequences**. See the generic comments for entry A003678 (speed of light c), as well as these entries:

A182999 (c²), A019694 (μ0), A081799 (ε0), A213610 (Z0), A072915 (standard gravity), A213611 (standard atmosphere), A213612 (Julian year), A213613 (Gregorian year), A213614 (light-year).

Bold black values indicate physics constants which can not be directly derived from others.

This is potentialy subject to discussion, since the constants form an interconnected net which is carefully fitted to all available experimental data.

Vertical bar is used to separate various alias expressions for a dimension.

Classification does not exactly follow NIST standard but reflects the Author's opinions on what came first - whether the hen or the egg :-)

Conventional values:

- a) The conventional (adopted) value of the Josephson constant is used to realize voltage reference devices [Benz 2004].
- b) The conventional (adopted) value of the von Klitzing constant is used to realize electric resistance reference devices [Bachmair 2003].

The value of Hubble constant

was estimated by the group of W.Freedman in 1999 as 70±7.0 (km/s)/Megaparsec. Values as low as 50 and as high as 82 km/s/Mp were found in earlier measurements but the latest one is now believed to be in error of not more than 10% (the conversion factor for parsec, taken from the current NIST database, is 3.085678e+16 m). The value reported here corresponds to the latest adjustments adopted by NASA (see Wikipedia). No attempt was made to report this constant's rate of change, consider too uncertain so far.

References: Constants of Physics, sorted by year and by the first author

1. Newcomb Simon,

The Elements Of The Four Inner Planets And The Fundamental Constants Of Astronomy,

Visitor # 2523 105
Extra Byte

Link Directories:

Nabu Press 2011. ISBN 978-1178952315. more >>

2. Karshenboim Savely G., Peik Ekkehard,

Astrophysics, Clocks and Fundamental Constants.

Springer 2010. ISBN 978-3642060250. more >>

3. Nakamura K. et al (Particle Data Group),

Review of Particle Physics,

J.Phys.G: Nucl.Part.Phys. 37 075021 (2010).

4. Fritzsch Harald,

The Fundamental Constants: A Mystery of Physics,

World Scientific Publishing Company 2009. ISBN 978-9812834324. more >>

5. Mohr Peter J., Taylor Barry N., Newell David B.

CODATA recommended values of the fundamental physical constants: 2006,

Rev.Mod.Phys. 80,633-730 (2008). DOI: 10.1103/RevModPhys.80.633.

This is the basic source of CODATA 2010.

6. Haensch T., Leschiutta S., Wallard A.J.,

Metrology and Fundamental Constants.

IOS Press 2007. ISBN 978-1586037840. more >>

7. Hatch E.,

A Few Simple Facts: From the Electron through the Fundamental Constants,

Lulu.com 2007. ISBN 978-1430307907. more >>

8. Gabrielse G., Hanneke D., Kinoshita T., Nio M., Odom B.,

New Determination of the Fine Structure Constant from the Electron g Value and QED,

Phys.Rev.Letters 97, 030802 (2006).

9. Odom B., Hanneke D., D'Urso B., Gabrielse G.,

New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron,

Phys.Rev.Letters 97, 030801 (2006).

10. Barrow John.

The Constants of Nature:

The Numbers That Encode the Deepest Secrets of the Universe.

Vintage 2004. ISBN 978-1400032259. more >>.

11. Benz S.P., Hamilton C.A.,

Application of the Josephson Effect to Voltage Metrology,

Proc.IEEE **92**(10),1617-1629 (2004).

12. Frölich C., Lean J.,

Solar Radiative Output and its Variability: Evidence and Mechanisms,

Astron. Astrophys. Rev. 12,273-320 (2004). DOI.

13. Karshenboim S.G., Peik E., Editors,

Astrophysics, Clocks and Fundamental Constants,

Springer Verlag 2004. ISBN 978-3540219675. more >>

14. Pap J.M., Fox P.A., Frölich C., Editors,

Solar Variability and its Effect on Climate.

in Geophysical Monograph Series, No.141,

American Geophysical Union 2004. ISBN 978-0875904061. more >>

15. Landwehr G.,

25 Years of quantum Hall effect: how it all came about,

Physica E **20**(1-2), 1-13 (2003).

PHYSICS | CHEMISTRY Magnetic Resonance MATH | COMPUTING **ELECTRONICS** PATENTS+IP SCIENCE

More resources:

SI Units SI Dimensions Math constants **Unit Converters** HTML Glyphs

Support this site! **SHOP** from here:

amazon

SHOP. CONNECT. ENJOY.

Privacy

COMPUTERS:

Deals Bestsellers Accessories Calculators

This page is **SPONSORED** by:

16. Bachmair H. et al,

The von Klitzing resistance standard,

Physica E **20**(1-2), 14-23 (2003).

17. Conroy R.S.,

Frequency standards, metrology and fundamental constants,

Contemp.Phys. 4444(2), 99-135 (2003).

18. Finch S.,

Mathematical Constants,

Cambridge University Press 2003. ISBN 0-521-81805-2. more >>

19. Hall J.L., Ye J.,

Optical Frequency Standards and Measurement,

IEEE Trans.Instrum.Meas. 52(2), 227-231 (2003).

20. Hatch E.,

Common Factors of The Fundamental Constants of Particle Physics,

BookSurge Publishing 2003. ISBN 978-1594571749. more >>

21. Kragh H.,

Magic Number: A Partial History of the Fine-Structure Constant.

Arch. Hist. Exact. Sci. 57(5),395-431 (2003).

22. Uzan J.P.,

The fundamental constants and their variation: observational and theoretical status,

Rev.Mod.Phys. 75(2), 403-455 (2003).

23. Marciano W.J.,

Precision measurements and New Physics.

J.Phys. G 29(1), 225-234 (2003).

24. Martins, Editor,

The Cosmology of Extra Dimensions and Varying Fundamental Constants,

Springer Verlag 2003. ISBN 978-1402011382. more >>

25. Faller J.E.,

Thirty years of progress in absolute gravimetry:

a scientific capability implemented by technological advances.

Metrologia 39(5), 425-428 (2002).

26. Hagiwara K. et al,

Review of Particle Physics.

Phys.Rev. D 66, 010001, 974 p. (2002).

27. Fritzsch H.,

Fundamental Constants at High Energy,

Fortschr.Phys. **50**50(5-7), 518-524 (2002).

28. Becker P.,

History and progress in the accurate determination of the Avogadro constant,

Rep.Prog.Phys. 64(12), 1945-2008 (2001).

29. Quinn T.J.,

Recent Advance in Metrology and Fundamental Constants,

los Press 2001. ISBN 978-1586031671. more >>

30. Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,

Puzzle Of the Constancy Of Fundamental Constants,

Comments.At.Mol.Phys. 2(5), D223-232 (2001).

31. Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,

Problems of Cosmological Variability of Fundamental Physical Constants,

Phys. Scr. T95, 76-80 (2001).

32. Taylor B.N,

The International System of Units (SI),

NIST Special Publication 330, 2001 Edition (supersedes the 1991 Edition).

33. Mohr P.J., Taylor B.N.,

CODATA recommended values of the fundamental physical constants: 1998,

Rev.Mod.Phys. 72,351-495 (2000).

34. Mohr P.J., Taylor B.N.,

CODATA Recommended Values of the Fundamental Constants,

in Atomic and Molecular Data and Their Applications, Berrington K.A., Bell K.L., Editors, Vol.543,

Melville, New York: American Institute of Physics, 3-16 (2000).

35. Basov N.G., Gubin A.,

Quantum Frequency Standards,

IEEE J.Quantum Electron. 6(6), 857-868 (2000).

36. Luo J., Hu Z.K.,

Status of measurement of the Newtonian gravitational constant G,

Class.Quantum Grav. 17(12), 2351-2363 (2000).

37. Groom D.E. et al.,

Review of particle physics,

Eur.Phys.J. C 15(1-4), 1-878 (2000).

38. CODATA Recommended Values of the Fundamental Physical Constants: 1998,

J.Phys.Chem.Ref.Data, 28, No.6, 1999.

39. Quinn T.J.,

Practical realization of the definition of the metre (1997),

Metrologia 36(3), 211-244 (1999).

40. Johnstone W.D.,

For Good Measure:

The Most Complete Guide to Weights and Measures and Their Metric Equivalents,

NTC Pub.Group 1998. ISBN 0-844-20851-5. more >>

41. The International System of Units (SI),

Bureau International des Poids et Measures (BIPM), 7th Edition, 1998.

42. Johnson P.,

The Constants of Nature: A Realist Account,

Ashgate Publishing 1997. ISBN 978-1840141023. more >>

43. Cohen E.R., Taylor B.N.,

The Fundamental Physical Constants,

Phys.Today, Aug. 1996, bg9.

44. Cowie, Songaila,

Astrophysical Limits on the Evolution of Dimensionless Physical Constants over Cosmological Time,

Astrophysical Journal 453, 596 (1995).

45. Sanders J., Editor,

Atomic Masses and Fundamental Constants.

Springer Verlag 1995. ISBN 978-0306350849. more >>

46. Cohen-Tannoudji G.,

Universal Constants in Physics,

McGraw-Hill 1992. ISBN 978-0070116511. more >>

47. Sisterna P., Vucetich H.,

Time variation of fundamental constants: Bounds from geophysical and astronomical data,

Physical Review D, 41, 1034 (1990), 44, 3096 (1991).

48. De Sabbata V., Melnikov V.N., Editors,

Gravitational Measurements, Fundamental Metrology, and Constants,

NATA ASI Series C: Vol.230

D.Reidel Pub.Co. 1988. ISBN 978-9027727091. more >>

49. Petley B.W.,

Fundamental Physical Constants and the Frontier of Measurement,

Adam Hilger 1985. ISBN 978-0852744277. more >>

50. Lucas A.A., Cutler P.H., North A.,

Quantum Metrology and Fundamental Physical Constants,

Springer Verlag 1983. ISBN 978-0306413728. more >>

51. Richard E., Crowe K.M., Cohen J.W.M.D.,

The Fundamental Constants of Physics,

Intersience Publishers 1957. more >>

52. DuMond J.W.M., Cohen R.,

Least Squares Adjustment of the Atomic Constants,

Rev.Mod.Phys. 25, 691 (1952).

53. Furth R.,

The Limits of Measurement,

Scientific American. 183 (1), 48 (1950).

54. Birge R.T.,

Probable Values of General Physics Constants,

Rev.Mod.Phys. 1 (Supplement), 1-73 (1929). DOI Link.

Web links, other than those appearing in the Tables

BIPM. Bureau International des Poids et Measures. The home of the SI System of Units.

NIST CODATA Fundamental Physical Constants.

NIST Searchable Bibliography of Fundamental Physical Constants.

NIST Units of Measurements.

Particle Data Group, an international reference organization.

Standard Model on Wikipedia.

Hyperons on Wikipedia.

IAU, International Astronomical Union.

Solar constant. A brief review by Claus Frölich with 9 references.

How Many Fundamental Constants Are There?, a reflection by John Baez.

Have physical constants changed with time? by S.Carlip.

Lunar and Planetary Science by NASA.

Minor planets statistics at Minor Planets Center.

Mathematical constants. A related resource on this website.

Solar system planets at a glance. A related resource on this website.

Constants of physics and mathematics. Link to this resource. It can be cited also as a DOI link: 10.3247/SL2Phys07.001.

F Books Lists:	Popular Science	F Mathematics	F Physics	F Chemistry	
Patents+IP	F Electronics DSP	F Computing	Spintronics	F Materials	
WWW issues	F Instruments	Quantum Computing	F NMR ESR MRI	F Spectroscopy	
Hint: the F symbols above, where present, are links to free online texts (books, courses, theses,)					

TOP | Physics BOOKS | SI Units | SI Dimensions

MATHEMATICAL Constants (on a separate page)

Physics LINKS | Stan's Library | Stan's HUB

Copyright ©2005 Stanislav Sýkora. Stan's Library ISSN 2421-1230, DOI: 10.3247/SL2Phys07.001

Designed by Stan Sýkora (last update 03/09/2018 03:43:46)