HINTS OF PRACTICE PROBLEMS FOR FINAL MATH H54

- (1) Write P = A + B, and replace B by P A.
- (2) Consider the restrictions of T_A to the images $\text{Im}(T_B)$ and $\text{Im}(T_{BC})$, and apply the rank-nullity theorem.
- (5) $A^T A$ is a symmetric matrix with 1's on its diagonal, therefore has trace n (the size of A). Then recall that trace (resp. determinant) is the sum (resp. product) of eigenvalues.
- (6) Suppose \vec{w} is a vector in W with $\vec{w} = \vec{w}_1 + \cdots + \vec{w}_n$ its unique decomposition into sum of eigenvectors (with respect to distinct eigenvalues). One can use the fact that $T(W) \subseteq W$ to show that each w_i lies in W.
- (7) Apply the rank-nullity theorem.
- (8) The eigenvalues of A must be real (why?) and satisfy $\lambda^3 2\lambda = 4$.
- (10) Make use of HW5, Problem 9.
- (13) Show that $(\mathbb{I} BA)\vec{x} = \vec{0}$ implies $\vec{x} = \vec{0}$.
- (14) Prove by contradiction: Suppose there exists $\vec{v}_1 \in W_1 \setminus W_2$ and $\vec{v}_2 \in W_2 \setminus W_1$, consider whether their sum $\vec{v}_1 + \vec{v}_2$ lies in $W_1 \cup W_2$ or not.
- (15) First show that A is invertible.