Thème 4 – Potentiel électrostatique

I- Champ dipolaire

On admet que le potentiel scalaire électrostatique créé par une molécule polaire située en un point O, de moment dipolaire $\vec{p} = p\vec{u}_z$, est donné en un point M situé à grande distance de la molécule par :

$$V(M) = \frac{\vec{p}.\vec{r}}{4\pi\varepsilon_0 r^3}$$
 où $\vec{r} = \overrightarrow{OM}$.

À l'aide de l'opérateur gradient en coordonnées sphériques, exprimer le champ électrique $\vec{E}(M)$ créé par la molécule.

II- Circulation d'un champ électrostatique

Une charge ponctuelle q, placée en O, crée un champ électrostatique $\vec{E}(M)$ en tout point M de l'espace. On note $r_A = OA$ et $r_B = OB$.

- 1- Calculer la circulation de \vec{E} le long du trajet (1) $A \to B$, puis le long du trajet (2) $B \to C$.
- 2- \vec{E} est un champ à circulation conservative. Que cela signifie-t-il ? En déduire la circulation de ce champ le long du trajet (3) $A \rightarrow C$.
- 3- Retrouver les résultats précédents de façon directe à partir du l'expression du potentiel scalaire électrostatique créé par la charge ponctuelle.

III- Champ et potentiel électrostatiques créés par une distribution discrète de charges

Trois charges ponctuelles q < 0 sont placées sur un cercle de rayon R et de centre O, à égale distance l'une de l'autre. Exprimer le champ électrostatique $\vec{E}(O)$ et le potentiel scalaire V(O) au centre du cercle.