

Physique Numérique – Semaine 5

Rappel des concepts introduits en semaine 2

- ☐ Schémas Runge-Kutta d'ordre 2 et d'ordre 4 (RK2, RK4)
- ☐ Tests RK4 sur la gravitation, problème à un corps comète de Halley

Plan de la semaine 3

- ☐ Poursuite des tests de RK4, comparer avec Verlet.
- Algorithme à pas de temps Dt adaptatif.
- ☐ Tests de convergence du schéma adaptatif, comparaisons avec le cas Dt fixe.
- ☐ Exercice 3: mise en orbite de Webb.
- □ Problème à 3 corps «réduit»
- □ Points de Lagrange
- Quelques autres exemples

Documentation

- Lecture pour la Semaine #4: Notes de cours
 - Chapitre 2, Sections 2.8, 2.10 (en particulier 2.10.3)

http://moodle.epfl.ch/mod/resource/view.php?id=8220

Pour l'Exercice 3: Runge-Kutta ordre 4 (2.8)

Gravitation - 1 corps

- Comète de Halley
- Orbite elliptique fortement excentrique r_{max}/r_{min}=59.6. T=75.986 ans
- Unités astronomiques (UA):
 - Demi grand axe orbite terre (150 mio km)

Intégration numérique avec Runge-Kutta d'ordre 4 et pas temporel ∆t constant

Halley, Verlet, 1000 ans

- Précession non physique.
- Bonne conservation de Emec en moyenne sur de longs temps.
 Mauvaise lorsque r=r_{min}, (accélération maximale).
- La période obtenue converge en ∆t², mais pas très grande précision.

Schémas à pas de temps adaptatif

- On a constaté que l'erreur était importante aux instants où le corps est fortement accéléré
- Raffiner le ∆t à ces instants, augmenter ∆t autrement... comment faire ceci avant de connaître la solution?
- Algorithme de ∆t adaptatif: à chaque pas de temps, comparer les résultats obtenus après
 - □ a) 1 pas de ∆t
 - b) 2 pas de ∆t/2
- En supposant une loi de convergence pour l'algorithme de base utilisé, on peut en déduire quel ∆t choisir, i.e. contrôler l'algorithme. (développements au tableau)

Schéma à pas de temps adaptatif

Chacune des flèches symbolise un pas complet d'un algorithme de base: par exemple les 4 étapes d'un schema Runge-Kutta du 4e ordre.

On veut choisir Δt de telle sorte que d soit inférieur à une valeur donnée ϵ

 ϵ joue le rôle d'un paramètre de **contrôle** de l'algorithme, et n'est PAS la précision obtenue sur y à la fin de la simulation. Cette dernière doit être obtenue par une étude de convergence: $\lim \epsilon \to 0$

Algorithme adaptatif

Si d<ε, passer au pas suivant avec un pas proposé rallongé:

$$\Delta t_{\text{new}} = \Delta t \left(\frac{\epsilon}{d}\right)^{\frac{1}{n+1}}$$

Si $d>\epsilon$:

Tant que $d>\epsilon$, raccourcir le pas et le refaire:

$$\Delta t_{\text{refaire}} = f \, \Delta t \left(\frac{\epsilon}{d}\right)^{\frac{1}{n+1}}$$
.

avec f<1 pour éviter une boucle infinie

Halley, Runge-Kutta 4e ordre, Δt variable

Runge-Kutta a une tendance à long terme de diminuer E_{mec} Le pas Δt variable permet une très grande efficacité Convergence très rapide

Halley, Verlet, Runge-Kutta 4, ∆t fixe ou variable, convergence de la période

Pour 5000 pas de temps, on est 10 millions de fois plus précis avec le schéma adaptatif qu'avec ∆t fixe!

En résumé:

- Verlet conserve bien E_{mec} en moyenne sur de longues périodes, mais donne une précession non physique.
- Runge-Kutta 4e ordre: converge très rapidement la période, la distance maximale, etc, mais dimunution séculaire non physique de E_{mec}
- Un algorithme à pas ∆t adaptatif est de plusieurs ordres de grandeur plus efficace qu'à ∆t fixe, en particulier dans les cas où les forces varient fortement au cours du mouvement.

Exercice 3. Orbite du téléscope spatial James Webb

Points de Lagrange. Runge-Kutta 4. Pas de temps adaptatif.

Ex.3. Deux problèmes physiques

Problème à 1 corps. Orbite de transfert. On ignore les effets du soleil, de la lune, etc

Problème à 3 corps «réduit»: $m_W << m_S$, m_T Mouvement {S,T} découplé du mouvement de W.

- 1) Mouvement de {S,T} dans référentiel du centre de masse.
- Mouvement de W dans le référentiel Z' tournant avec {S,T} (i.e. dans lequel S et T sont fixes.)

Problème à deux corps

- On se place dans le référentiel du centre de masse
- Le mvmt de chacun des 2 corps dans le référentiel du centre de masse est «identique» au mvmt à 1 corps (à des rapports de masse près) (*)
- Les lois de Kepler s'appliquent (avec une légère modif.)
 - Orbites= côniques avec un des foyers au centre de masse
 - Loi des aires
 - Période ~ (demi-grand-axe) ^{3/2}
- (*) Mouvement central en 1/r² avec r=distance au C.M.
 - □ La force est ~1/d², avec d= $|r_2-r_1|$. Def. C.M. \rightarrow relation fixe entre r_1 et d: $r_1=m_2$ d/(m_1+m_2), donc la force est ~1/ r_1 ².
 - "Central": force toujours dirigée vers un pt fixe du référentiel, dans ce cas le C.M.

Problème à trois corps

- Il semble difficile de trouver des orbites stables pour 3 corps de masses comparables placées à des distances comparables.(*)
- Lorsque un des 3 corps est de masse négligeable par rapport aux 2 autres, on parle de « problème à 3 corps réduit ».
 - Exemples: {Soleil, Jupiter, Astéroïde}; {Terre, Lune,
 Apollo}; {Saturne, Titan, Cassini}; {Soleil, Terre, Webb}
 - On résout d'abord le problème à 2 corps (lourds), en ignorant le 3^e corps (léger).
 - Ensuite, on étudie le mouvement du 3e corps (léger), en tenant compte du mouvement donné des 2 corps lourds.
- (*) Il existe une solution stable avec des trajectoires en forme de 8, voir par exemple https://www.youtube.com/watch?v=jKvnn1r-9lw, découverte en ... 1993 (!)

Problème réduit, « planète X » et autres points de Lagrange

- Mvmt d'un 3e corps céleste dans le système (soleil, planète)
 - $m_3 \ll m_1, m_2$
 - approximation d'orbites circulaires pour le soleil et pour la planète.
- On se place dans le référentiel dans lequel le soleil et la planète sont fixes. Référentiel en rotation.
- On cherche s'il existe des points d'équilibre pour le 3e corps dans ce référentiel
 - Effet de la force d'inertie (« centrifuge »). Calculs analytiques présentés au cours (en résumé).
- On examine la stabilité des points d'équilibre
 - Effet de Coriolis. Simulations numériques présentées au cours

Eqs du mvmt 3e corps dans \mathcal{R}'

$$\frac{d^{2}}{dt^{2}} \begin{pmatrix} x' \\ y' \end{pmatrix} = -\Omega^{2} \begin{pmatrix} \frac{d^{3}\beta(x' + \alpha d)}{r_{13}^{'3}} + \frac{d^{3}\alpha(x' - \beta d)}{r_{23}^{'3}} - x' \\ \frac{d^{3}\beta}{r_{13}^{'3}} y' + \frac{d^{3}\alpha}{r_{23}^{'3}} y' - y' \end{pmatrix} + 2\Omega \frac{d}{dt} \begin{pmatrix} y' \\ -x' \end{pmatrix}$$

$$\alpha = \frac{m_2}{m_1 + m_2}$$
 $\beta = \frac{m_1}{m_1 + m_2}$

$$d = r'_{12} = \text{const}$$

$$\Omega = \Omega_{R'} = \text{const} = \dots$$

Points de Lagrange, Soleil-Terre

Source: www.nasa.gov

N.B.: Soleil-Jupiter: astéroides Troyens en L4 et L5

Stabilité des points de Lagrange

Equipotentielles dans le référentiel tournant dans lequel m1, m2 sont fixes

Stabilité des pts de Lagrange : Coriolis

- Nous avons constaté que les orbites au voisinage des points de Lagrange L1, L2, L3 sont instables:
 - une condition initiale voisine du point d'équilibre conduit à des mouvements qui s'écartent fortement du point d'équilibre
- Qu'en est-il de L4 et L5 ? (EX.4)
 - Les orbites au voisinage de L4 et L5 sont stables, bien que ces points correspondent à des maxima du potentiel effectif
 - Il doit donc s'agir d'un effet d'une force qui ne dérive pas d'un potentiel: c'est la force de Coriolis!
 - Testons avec la simulation!

The annual cycle of 2010 TK7 relative to Earth slowly drifts around the Earth's orbit, from its current position to its maximum offset around 2209. It then reverses direction and heads back towards its current position, which it reaches in about 395 years.

Points de Lagrange: des tremplins pour l'exploration spatiale

The Lunar L₁ Gateway: Portal to the Stars and Beyond

Martin W. Lo Navigation and Mission Design Section Jet Propulsion Laboratory California Institute of Technology

Shane D. Ross Control and Dynamical Systems California Institute of Technology

AIAA Space 2001 Conference

www.gg.caltech.edu/~mwl/publications/papers

Albuque Junar Gateway. pdfugust 28-30, 2001

"Our Solar System is interconnected by a vast system of tunnels winding around the Sun generated by the Lagrange Points of all the planets and their moons. These passageways are identified by portals around L1 and L2, the halo orbits. By passing through a halo orbit portal, one enters this ancient and colossal labyrinth of the Sun. This natural Interplanetary Superhighway System (IPS, see Figure 1) provides ultra-low energy transport throughout the Earth's Neighborhood, the region between Earth's L1 and L2...."

www.gg.caltech.edu/~mwl/publications/papers/lunarGateway.pdf

Orbites des astéroides autour du soleil. Effet de Jupiter

 Effet de résonance entre la période de l'astéroide et celle de Jupiter Kirkwood gaps

Asteroid Main-Belt Distribution Kirkwood Gaps

 Il y a des « trous » dans la population des astéroides à certaines distances du soleil. Correspondent à des périodes en rapport rationnel avec la période de Jupiter

Anneaux de Saturne

- Image de la page précédente: http://apod.nasa.gov/apod/ap131021.html
- Certains « gaps » sont dus à des résonances avec les orbites de certaines lunes de Saturne

3 corps: soleil, « Jupiter », terre

- Mvmt de la terre dans le système (soleil, « jupiter »), où on a multiplié la masse réelle de Jupiter par un facteur arbitraire f.
- Cf Notes de Cours, sections 2.5.1 et 2.5.2
- Simulations avec les schémas de Verlet et de Runge-Kutta 4e ordre

Jupiter*300

Mouvement quasi-périodique

Jupiter*700

- La terre se fait capturer par « Jupiter », puis est « éjectée »…
- Chaos: sensitivité aux conditions initiales, difficulté de convergence

Problème à 3 corps: exemples Pythagore joue au billard cosmique

- 3 corps de masses 3,4,5, placées initialement aux sommets d'un triangle rectangle de côtés de longueurs 3,4,5 (unités astronomiques). Les vitesses initiales sont nulles.
- Runge-Kutta ordre 4, pas variable adaptatif.

t_{fin}=5 ans

80 ans

- Quasi-collisions: problème difficile, même avec ∆t adaptatif
 - Format « long double »
- Formation d'une étoile double et éjection de la troisième