Introducción a R: Ejercicios Día 2

Juan Ramón Gómez Berzosa 17/10/2018

Ejercicio 1: Matrices

* Ejecuta los siguientes comandos.

```
matrix(data=5, nr=2, nc=2)
        [,1] [,2]
## [1,]
## [2,]
          5
               5
matrix(1:6, 2, 3)
##
        [,1] [,2] [,3]
## [1,]
          1 3
## [2,]
           2
matrix(1:6, 2, 3, byrow=TRUE)
##
        [,1] [,2] [,3]
## [1,]
          1 2
## [2,]
```

 * Crea un vector z con los 30 primeros números y crea con el una matriz m con 3 filas y 10 columnas.

```
z = c(1:30)
m = matrix(z,nrow= 3)
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]
                     7
                         10
                             13
                                 16
                                             22
                                                   25
                                                        28
                                       19
## [2,]
           2
                5
                     8
                         11
                              14
                                   17
                                        20
                                             23
                                                   26
                                                         29
## [3,]
                                        21
                                                   27
                6
                     9
                         12
                              15
                                   18
                                             24
                                                         30
```

* Escribe la tercera columna en un vector

```
vector = m[,3]
vector
```

[1] 7 8 9

^{*} Create in R the matrices

```
x = c(3,-1,21,1)
x = matrix(x,nrow = 2)
##
    [,1] [,2]
## [1,] 3 21
## [2,] -1
y = c(1,0,4,1,0,-1)
y= matrix(y,nrow = 2)
У
     [,1] [,2] [,3]
## [1,] 1 4 0
## [2,]
         0 1
                  -1
* Calcula los efectos de los siguientes comandos
(a) x[1,]
(b) x[2,]
(c) x[,2]
(d) y[1,2]
(e) y[,2:3]
x[1,]
## [1] 3 21
x[2,]
## [1] -1 1
x[,2]
## [1] 21 1
y[1,2]
## [1] 4
y[,2:3]
## [,1] [,2]
## [1,]
         4 0
## [2,]
          1 -1
```

* Transforma la matriz m que creaste en el ejercicio anterior en un array multidimensional. (Pista: averigua lo que puedas de la función dim().)

```
array = array(m,dim= dim(m))
array
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
## [1,]
                 4
                       7
                           10
                                 13
                                       16
                                            19
                                                  22
                                                       25
            1
## [2,]
            2
                 5
                                                  23
                                                              29
                       8
                           11
                                 14
                                       17
                                            20
                                                       26
## [3,]
            3
                 6
                                            21
                                                  24
                                                       27
                                                              30
                       9
                           12
                                 15
                                       18
```

* Crea un array de 5 x 5 y rellénalo con valores del 1 al 25. Investiga la función array(). Llama al array x

```
x = array(1:25, dim = c(5,5))
         [,1] [,2] [,3] [,4] [,5]
## [1,]
            1
                 6
                      11
                            16
                                 21
## [2,]
            2
                 7
                      12
                            17
                                 22
## [3,]
            3
                      13
                            18
                                 23
## [4,]
            4
                 9
                            19
                      14
                                 24
## [5,]
            5
                10
                      15
                            20
                                 25
```

* Dadas las matrices m1 y m2 usa rbind() y cbind() para crear matrices nuevas utilizando estas funciones, llamalas M1 y M2. ¿En que se diferencian las matrices creadas?

```
m1 <- matrix(1, nr = 2, nc = 2)
m2 \leftarrow matrix(2, nr = 2, nc = 2)
M1 = rbind(m1, c(69, 13))
M2 = cbind(m2, c(14,22))
M1
##
         [,1] [,2]
## [1,]
            1
                  1
## [2,]
                  1
            1
## [3,]
           69
                13
M2
##
         [,1] [,2] [,3]
## [1,]
            2
                  2
                      14
## [2,]
            2
                  2
                      22
```

* El operador para el producto de dos matrices es "% * %". Por ejemplo, considerando las dos matrices creadas en el ejercicio anterior utilízalo.

* Usa la matriz M1 del ejercicio anterior y aplica la función t(). ¿qué hace esa función?

```
t(M1)
        [,1] [,2] [,3]
##
## [1,]
                     69
           1
                 1
## [2,]
           1
                     13
Genera la matriz traspuesta.
* Ejecuta los siguientes comandos basados en la función diag() sobre las matrices creadas
anteriormente m1 y m2. ¿Qué tipo de acciones puedes ejecutar con ella?
diag(m1)
diag(rbind(m1, m2)) %*% cbind(m1, m2)) ###diag(m1) <- 10 ###diag(3) ###v <- c(10, m2)
20, 30) \# \# \# \operatorname{diag}(v) \# \# \# \operatorname{diag}(2.1, nr = 3, nc = 5)
diag(m1)
## [1] 1 1
diag(rbind(m1, m2) %*% cbind(m1, m2))
## [1] 2 2 8 8
diag(m1) <- 10
diag(3)
##
        [,1] [,2] [,3]
## [1,]
                 0
           1
## [2,]
           0
                      0
## [3,]
           0
                      1
v \leftarrow c(10, 20, 30)
diag(v)
        [,1] [,2] [,3]
##
## [1,]
          10
                 0
## [2,]
                20
           0
                      0
## [3,]
           0
                 0
                     30
diag(2.1, nr = 3, nc = 5)
        [,1] [,2] [,3] [,4] [,5]
## [1,] 2.1 0.0 0.0
                                 0
                            0
## [2,]
        0.0 2.1 0.0
                            0
                                 0
## [3,]
        0.0 0.0 2.1
                                 0
```

Con la función diag() podemos extraer o reemplazar la diagonal de una matriz, además de poder construir una matriz diagonal.

** Ordena la matriz x <- matrix(1:100, ncol=10):

a. en orden descendente por su segunda columna y asigna el resultado a una nueva matrix x1. Pista: función order()

b. en orden descendente por su segunda fila y asigna el resultado a una nueva matrix x2

c. Ordena solo la primera columna de x de forma descendente

```
## a
x = matrix(1:100, ncol=10)
x1 = x[order(x[,2], decreasing = TRUE),]
x1
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
##
    [1,]
             10
                  20
                        30
                              40
                                    50
                                          60
                                                70
                                                      80
                                                                  100
    [2,]
                                                      79
##
              9
                  19
                        29
                              39
                                    49
                                          59
                                                69
                                                            89
                                                                  99
##
    [3,]
              8
                  18
                        28
                              38
                                    48
                                          58
                                                68
                                                      78
                                                            88
                                                                  98
              7
                  17
                        27
                              37
                                                67
                                                      77
                                                            87
                                                                  97
##
    [4,]
                                    47
                                          57
    [5,]
                        26
                                    46
                                                      76
##
              6
                  16
                              36
                                          56
                                                66
                                                            86
                                                                  96
                                                      75
##
    [6,]
              5
                  15
                        25
                              35
                                    45
                                          55
                                                65
                                                            85
                                                                  95
              4
                                                      74
##
    [7,]
                  14
                        24
                              34
                                    44
                                          54
                                                64
                                                            84
                                                                  94
##
    [8,]
              3
                  13
                        23
                              33
                                    43
                                          53
                                                63
                                                      73
                                                            83
                                                                  93
##
    [9,]
              2
                  12
                        22
                              32
                                    42
                                          52
                                                62
                                                      72
                                                            82
                                                                  92
              1
                  11
                        21
                              31
                                          51
                                                61
                                                      71
                                                            81
## [10,]
                                    41
                                                                  91
## b
x2= x[,order(x[2,], decreasing = TRUE)]
x2
##
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
    [1,]
            91
                  81
                        71
                              61
                                    51
                                          41
                                                31
                                                      21
                                                            11
    [2,]
                                    52
                                                                    2
            92
                  82
                        72
                                          42
                                                32
                                                      22
                                                            12
##
                              62
##
    [3,]
            93
                  83
                        73
                              63
                                    53
                                          43
                                                33
                                                      23
                                                            13
                                                                    3
##
    [4,]
            94
                  84
                        74
                              64
                                    54
                                          44
                                                34
                                                      24
                                                            14
                                                                    4
##
    [5,]
            95
                  85
                        75
                              65
                                    55
                                          45
                                                35
                                                      25
                                                            15
                                                                    5
    [6,]
                        76
                                                                    6
##
            96
                  86
                              66
                                    56
                                          46
                                                36
                                                      26
                                                            16
    [7,]
            97
                  87
                        77
                              67
                                    57
                                          47
                                                37
                                                      27
                                                            17
                                                                    7
##
                        78
##
    [8,]
            98
                  88
                              68
                                    58
                                          48
                                                38
                                                      28
                                                            18
                                                                    8
##
    [9,]
            99
                  89
                        79
                              69
                                    59
                                          49
                                                39
                                                      29
                                                            19
                                                                    9
## [10,]
           100
                  90
                        80
                              70
                                    60
                                          50
                                                40
                                                      30
                                                            20
                                                                   10
## c
x[,1] = x[order(x[,1],decreasing = TRUE),1]
##
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
    [1,]
             10
                  11
                        21
                              31
                                    41
                                          51
                                                61
                                                      71
                                                            81
                                                                  91
    [2,]
                        22
                                                      72
                                                                  92
##
              9
                  12
                              32
                                    42
                                          52
                                                62
                                                            82
##
    [3,]
              8
                  13
                        23
                              33
                                    43
                                          53
                                                63
                                                      73
                                                            83
                                                                  93
##
              7
    [4,]
                  14
                        24
                              34
                                    44
                                          54
                                                64
                                                      74
                                                            84
                                                                  94
##
    [5,]
              6
                  15
                        25
                              35
                                    45
                                          55
                                                65
                                                      75
                                                            85
                                                                  95
    [6,]
              5
                  16
                        26
                              36
                                    46
                                          56
                                                66
                                                      76
                                                            86
                                                                  96
##
##
    [7,]
              4
                  17
                        27
                              37
                                    47
                                          57
                                                67
                                                      77
                                                            87
                                                                  97
                  18
                        28
                              38
                                          58
                                                68
                                                      78
                                                            88
                                                                  98
##
    [8,]
              3
                                    48
```

```
## [9,]
            2
                 19
                      29
                            39
                                 49
                                       59
                                            69
                                                  79
                                                       89
                                                             99
## [10,]
             1
                 20
                      30
                            40
                                 50
                                       60
                                            70
                                                  80
                                                       90
                                                            100
```

Primero confirma que los datos están ordenados de forma creciente según la altura (height) y el peso (weight) sin mirar los datos

Crea una nueva variable "bmi". Este valor responde a la siguiente fórmula: BMI = (Weight in Pounds / (Height in inches) / (Height in inches)) x 703

Investiga las funciones is.unsorted(), sort() and order()

```
aux = women
aux = aux[order(aux$height),]
women == aux
##
         height weight
    [1,]
           TRUE
                   TRUE
##
##
    [2,]
           TRUE
                   TRUE
    [3,]
##
           TRUE
                   TRUE
##
    [4,]
           TRUE
                   TRUE
    [5,]
           TRUE
                   TRUE
##
##
    [6,]
           TRUE
                   TRUE
    [7,]
##
           TRUE
                   TRUE
    [8,]
           TRUE
                   TRUE
##
##
    [9,]
           TRUE
                   TRUE
## [10,]
           TRUE
                   TRUE
## [11,]
           TRUE
                   TRUE
## [12,]
           TRUE
                   TRUE
## [13,]
           TRUE
                   TRUE
## [14,]
           TRUE
                   TRUE
## [15,]
           TRUE
                   TRUE
aux = aux[order(aux$weight),]
women == aux
##
         height weight
##
    [1,]
           TRUE
                   TRUE
##
    [2,]
           TRUE
                   TRUE
    [3,]
           TRUE
                   TRUE
##
##
    [4,]
           TRUE
                   TRUE
    [5,]
##
           TRUE
                   TRUE
##
    [6,]
           TRUE
                   TRUE
    [7,]
           TRUE
                   TRUE
##
##
    [8,]
           TRUE
                   TRUE
    [9,]
##
           TRUE
                   TRUE
## [10,]
           TRUE
                   TRUE
##
  [11,]
           TRUE
                   TRUE
## [12,]
           TRUE
                   TRUE
## [13,]
           TRUE
                   TRUE
```

^{*} Accede al dataset "women".

```
## [14,] TRUE TRUE
## [15,] TRUE TRUE
```

Como podemos ver los datos están ordenados por peso y altura de forma ascendente.

```
aux$bmi = (women$weight / women$height/ women$height ) * 703
aux
```

```
##
      height weight
## 1
          58
                115 24.03240
## 2
          59
                117 23.62856
                120 23.43333
## 3
          60
## 4
          61
                123 23.23811
## 5
          62
                126 23.04318
## 6
          63
                129 22.84883
## 7
          64
                132 22.65527
## 8
          65
                135 22.46272
## 9
          66
                139 22.43274
## 10
          67
                142 22.23791
                146 22.19680
## 11
          68
## 12
          69
                150 22.14871
## 13
          70
                154 22.09429
## 14
          71
                159 22.17358
## 15
          72
                164 22.23997
```

* Crea los siguientes vectores:

```
\label{eq:constraints} \begin{split} \text{new\_hope} &= \text{c}(460.998007,\,314.4) \\ \\ \text{empire\_strikes} &= \text{c}(290.475067,\,247.9) \\ \\ \text{return\_jedi} &= \text{c}(309.306177,\,165.8) \end{split}
```

```
new_hope = c(460.998007, 314.4)
empire_strikes = c(290.475067, 247.9)
return_jedi = c(309.306177, 165.8)
```

- * Los datos se corresponden con las ventas en millones de la trilogía de la guerra de las galaxias. El primer numero corresponde a las ventas en US y el segundo al resto de países.
- a) Construye la matriz star_wars_matrix con esos vectores
- b) Añádele nombres a las columnas y filas de la matriz seg??n las descripciones dadas anteriormente de los datos
- c) Calcula las ganacias mundiales de cada película y guardalas en un vector que se llame worldwide_vector.
- d) Añade éste último vector como una columna nueva a la matriz star_wars_matrix y asigna el resultado a all_wars_matrix. Usa para ello la función cbind().
- e) Calcula las ganancias totals en USA y fuera de USA para las tres películas. Puedes usar para ello la función colSums().
- f) Calcula la media de ganancias para todas las pel??culas fuera de los estados unidos. Asigna esa media la variable non_us_all.
- g) Haz lo mismo pero solo par alas dos primeras películas . Asigna el resultado a la variable non_us_some.
- h) Calcula cuantos visitantes hubo para cada película en cada área geográfica. Ya tienes las ganancias totales en star_wars_matrix. Asume que el precio de las entradas es de cinco euros/dólares (Nota: el numero total de visitantes para cada pelicula dividido por el precio del ticket te da el numero de visitantes)
- i) Calcula la media de visitantes en territorio USA y en territorio noUS.

worldwide_vector 775.398

```
#a
star_wars_matrix = cbind(cbind(new_hope,empire_strikes),return_jedi)
rownames(star_wars_matrix) = c("ventas_US","ventas_resto")
View(star_wars_matrix)
worldwide_vector = star_wars_matrix["ventas_US",] + star_wars_matrix["ventas_resto",]
worldwide_vector
##
         new_hope empire_strikes
                                    return_jedi
                        538.3751
         775.3980
                                       475.1062
##
#El ejercicio pide hacerlo por columnas, pero como el resultado no tiene sentido lo har?? por filas
all wars matrix = rbind(star wars matrix, worldwide vector)
all wars matrix
##
                    new_hope empire_strikes return_jedi
                                   290.4751
                                               309.3062
## ventas_US
                     460.998
## ventas_resto
                     314.400
                                   247.9000
                                               165.8000
```

475.1062

538.3751

```
#Al igual que en el ejercicio anterior, hemos construido la matriz de forma que las ventas
#est??n representadas en las filas y las pel??culas en las columnas, as?? que usaremos la funci??n rowS
#para que tenga sentido
rowSums(star_wars_matrix)
##
      ventas_US ventas_resto
##
       1060.779
                     728.100
non_us_all = mean(star_wars_matrix["ventas_resto",])
non_us_all
## [1] 242.7
#g
non_us_some = mean(star_wars_matrix["ventas_resto",1:2])
non_us_some
## [1] 281.15
#h
entrada = 5
visitantes = star_wars_matrix / 5
mean(visitantes["ventas_US",])
## [1] 70.71862
mean(visitantes["ventas_resto",])
## [1] 48.54
Ejercicio 2: Subsetting matrices y arrays
* Crea un array i <- array(c(1:10),dim=c(5,2)). ¿Que información te dan los siguientes co-
mandos?
dim(i);
nrow(i);
ncol(i)
i = array(c(1:10), dim=c(5,2))
dim(i)
## [1] 5 2
nrow(i)
## [1] 5
ncol(i)
## [1] 2
```

La función dim nos da la dimensión del array en filas y columnas como si fuera una matriz, nrow nos da el número de filas y ncol el n??mero de columnas.

* Crea un array de dimensiones 5 filas y dos columnas y rellénalo con valores del 1-5 y del 5 al 1.

```
x = array(c(1:5,5:1),dim=c(5,2))
##
         [,1] [,2]
## [1,]
            1
## [2,]
            2
                 4
            3
                 3
## [3,]
## [4,]
            4
                 2
## [5,]
            5
                 1
```

* ¿Qué hace el comando x[i] ??. Comprueba que tienes en x antes ?

x[i] me da el valor que se almacena en la posición i del vector o array.

```
* \mathbf{y} el comando \mathbf{x}[\mathbf{i}] < 0?
```

Asigna a la posición i de x el valor 0.

* Descárgate el fichero array_datos.txt de PRADO (Datos/) e impórtalo en tu work space de R teniendo en cuenta que es un texto tabulado. Después crea un documento con los mismos datos pero en formato csv en vez de tab separated

```
# el método read.delim tiene por defecto como separador el tabulador
array_datos = read.delim("array_datos.txt",header=TRUE)
array_datos
```

```
write.csv(array_datos, file = "array_datos.csv")
```

Ejercicio 3: Factores

* Dado x = c(1, 2, 3, 3, 5, 3, 2, 4, NA), ¿cuáles son los levels de factor(x)?

- a) 1, 2, 3, 4, 5
- b) NA
- c) 1, 2, 3, 4, 5, NA

```
x = c(1, 2, 3, 3, 5, 3, 2, 4, NA)
factor(x,exclude = NULL )
```

```
## [1] 1 2 3 3 5 3 2 4 <NA>
## Levels: 1 2 3 4 5 <NA>
```

Los levels del factor son 1,2,3,4,5,NA la opción c, ya que factor si lo ejecutamos por defecto tiene la opción exclude = NA que exclude de la salida los valores NA, pero si ejecutamos el comando de forma que no los excluya, esta los incluye en los levels.

* Dado x <- c(11, 22, 47, 47, 11, 47, 11) y la ejecución de la sentencia

factor(x, levels=c(11, 22, 47), ordered=TRUE); cuál es el cuarto elemento de la salida? ###a. 11 ###b. 22 ###c. 47

```
x <- c(11, 22, 47, 47, 11, 47, 11)
factor(x, levels=c(11, 22, 47), ordered=TRUE)
```

```
## [1] 11 22 47 47 11 47 11
## Levels: 11 < 22 < 47
```

El cuarto elemento sería 47.

* Para el factor z <- c("p", "a", "g", "t", "b"), reemplaza el tercer elemento de z por "b".

```
a.factor(z[3]) <- "b"
```

b.levels(z[3]) < - "b"

```
z <- c("p", "a" , "g", "t", "b")
z[3] <- "b"
z
```

```
## [1] "p" "a" "b" "t" "b"
```

El apartado c sería la opción correcta.

* Dado z <- factor(c("p", "q", "p", "r", "q")) escribe una expresión de R que cambie el level "p" a "w"

```
z <- factor(c("p", "q", "p", "r", "q"))
levels(z)[1] = "w"
z

## [1] w q w r q
## Levels: w q r</pre>
```

* Usa el dataset "iris"":

*Escribe la expresión necesaria para convertir la variable "Sepal.Length" en un factor con cinco niveles (levels) . Pista(mira la función table() y la función cut().(

```
levels1 = cut(iris$Sepal.Length, breaks = 5)
iris$Sepal.Length = levels1
levels1
```

```
[1] (5.02,5.74] (4.3,5.02]
                                 (4.3, 5.02]
                                              (4.3, 5.02]
                                                          (4.3, 5.02]
##
##
     [6] (5.02,5.74] (4.3,5.02]
                                  (4.3, 5.02]
                                              (4.3, 5.02]
                                                           (4.3, 5.02]
##
    [11] (5.02,5.74] (4.3,5.02]
                                  (4.3, 5.02]
                                              (4.3, 5.02]
                                                           (5.74, 6.46]
    [16] (5.02,5.74] (5.02,5.74] (5.02,5.74] (5.02,5.74] (5.02,5.74]
##
##
    [21] (5.02,5.74] (5.02,5.74] (4.3,5.02]
                                              (5.02,5.74] (4.3,5.02]
##
    [26] (4.3,5.02]
                     (4.3, 5.02]
                                  (5.02,5.74] (5.02,5.74] (4.3,5.02]
##
    [31] (4.3,5.02]
                     (5.02,5.74] (5.02,5.74] (5.02,5.74] (4.3,5.02]
##
    [36] (4.3,5.02]
                     (5.02,5.74] (4.3,5.02]
                                              (4.3, 5.02]
                                                           (5.02, 5.74]
    [41] (4.3,5.02]
                     (4.3, 5.02]
                                  (4.3, 5.02]
                                              (4.3, 5.02]
                                                           (5.02, 5.74]
##
##
    [46] (4.3,5.02]
                     (5.02,5.74] (4.3,5.02]
                                              (5.02,5.74] (4.3,5.02]
##
    [51] (6.46,7.18] (5.74,6.46] (6.46,7.18] (5.02,5.74] (6.46,7.18]
##
    [56] (5.02,5.74] (5.74,6.46] (4.3,5.02]
                                              (6.46,7.18] (5.02,5.74]
##
    [61] (4.3,5.02]
                     (5.74,6.46] (5.74,6.46] (5.74,6.46] (5.02,5.74]
    [66] (6.46,7.18] (5.02,5.74] (5.74,6.46] (5.74,6.46] (5.02,5.74]
    [71] (5.74,6.46] (5.74,6.46] (5.74,6.46] (5.74,6.46] (5.74,6.46]
##
    [76] (6.46,7.18] (6.46,7.18] (6.46,7.18] (5.74,6.46] (5.02,5.74]
##
    [81] (5.02,5.74] (5.02,5.74] (5.74,6.46] (5.74,6.46] (5.02,5.74]
##
##
    [86] (5.74,6.46] (6.46,7.18] (5.74,6.46] (5.02,5.74] (5.02,5.74]
    [91] (5.02,5.74] (5.74,6.46] (5.74,6.46] (4.3,5.02]
                                                           (5.02, 5.74]
##
##
    [96] (5.02,5.74] (5.02,5.74] (5.74,6.46] (5.02,5.74] (5.02,5.74]
## [101] (5.74,6.46] (5.74,6.46] (6.46,7.18] (5.74,6.46] (6.46,7.18]
  [106] (7.18,7.9]
                     (4.3, 5.02]
                                  (7.18, 7.9]
                                              (6.46,7.18] (7.18,7.9]
  [111] (6.46,7.18] (5.74,6.46] (6.46,7.18] (5.02,5.74] (5.74,6.46]
## [116] (5.74,6.46] (6.46,7.18] (7.18,7.9]
                                              (7.18, 7.9]
                                                           (5.74,6.46]
## [121] (6.46,7.18] (5.02,5.74] (7.18,7.9]
                                              (5.74,6.46] (6.46,7.18]
## [126] (7.18,7.9]
                     (5.74,6.46] (5.74,6.46] (5.74,6.46] (7.18,7.9]
## [131] (7.18,7.9]
                     (7.18, 7.9]
                                  (5.74,6.46] (5.74,6.46] (5.74,6.46]
## [136] (7.18,7.9]
                     (5.74,6.46] (5.74,6.46] (5.74,6.46] (6.46,7.18]
## [141] (6.46,7.18] (6.46,7.18] (5.74,6.46] (6.46,7.18] (6.46,7.18]
## [146] (6.46,7.18] (5.74,6.46] (6.46,7.18] (5.74,6.46] (5.74,6.46]
## Levels: (4.3,5.02] (5.02,5.74] (5.74,6.46] (6.46,7.18] (7.18,7.9]
```

Escribe la expresión necesaria para generar una tabla de frecuencias con dos filas y tres columnas . Las filas deben referirse a si la variable "Sepal.length" es menor que 5 y las columnas a las diferentes expecies.

```
# El vector c(4,4.9,8) hace referencia a los intervalos para las divisiones
# serían del (4, 4.9] y del (4.9,8]
rm(iris)
tabla<-cut(iris$Sepal.Length, breaks =c(4,4.9,8), labels=(c("TRUE", "FALSE")))
factor(tabla)
##
            [1] FALSE TRUE
                                                TRUE TRUE FALSE FALSE TRUE FALSE TRUE
##
         [12] TRUE TRUE
                                                 TRUE
                                                                FALSE FALSE FALSE FALSE FALSE FALSE FALSE
         [23] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
         [34] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
                                                                                                                                                          TRUE FALSE
##
         [45] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
         [56] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
        [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
        [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
        [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FAL
## [111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [122] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [144] FALSE FALSE FALSE FALSE FALSE FALSE
## Levels: TRUE FALSE
table(tabla, iris$Species)
##
## tabla
                           setosa versicolor virginica
            TRUE
                                     20
                                                                                           1
                                                                  1
            FALSE
                                    30
                                                                                         49
##
                                                                49
```

* El factor responses se define como:

responses <- factor(c("Agree", "Agree", "Strongly Agree", "Disagree", "Agree")), sin embargo nos damos cuenta que tiene un nuevo nivel, "Strongly Disagree", que no estaba presente cuando se creó. Añade el nuevo nivel al factor y conviértelo en un factor ordenado de la siguiente forma:

Levels: Strongly Agree < Agree < Disagree < Strongly Disagree

* Dado el factor:

```
x <- factor(c("high", "low", "medium", "high", "high", "low", "medium"))
```

escribe la expresión en R que permita dar valores numéricos únicos para los distintos niveles (levels) de x según el siguiente esquema:

```
level high => value 1
level low => value 2
level medium => value 3
```

Pista: investiga la función unique() y los parámetros de data.frame()

```
x <- factor(c("high", "low", "medium", "high", "high", "low", "medium"))
## [1] high
              low
                     medium high
                                   high
                                           low
                                                  medium
## Levels: high low medium
data.frame(levels = unique(x), value = as.numeric(unique(x)))
##
     levels value
## 1
       high
## 2
        low
                2
## 3 medium
                3
```

4. Acceso y selección de secciones de un data frames

* Vamos a trabajar con un ejemplo que viene por defecto en la instalación de R USArrests. Este data frame contiene la información para cada estado Americano de las tasas de criminales (por 100.000 habitantes). Los datos de las columnas se refieren a Asesinatos, violaciones y porcentaje de la población que vive en áreas urbanas. Los datos son de 1973. Contesta a las siguientes preguntas sobre los datos:

```
#Las dimensiones del dataframe
dim(USArrests)

## [1] 50 4

#La longitud del dataframe (filas o columnas)
length(USArrests)

## [1] 4

#Numero de columnas
ncol(USArrests)

## [1] 4

#Cómo calcularlas el número de filas?
nrow(USArrests)
## [1] 50
```

#Obtén el nombre de las filas y las columnas para este data frame row.names.data.frame(USArrests)

```
[1] "Alabama"
##
                         "Alaska"
                                           "Arizona"
                                                             "Arkansas"
   [5] "California"
                         "Colorado"
                                           "Connecticut"
                                                            "Delaware"
                                                            "Idaho"
## [9] "Florida"
                         "Georgia"
                                           "Hawaii"
## [13] "Illinois"
                         "Indiana"
                                           "Iowa"
                                                            "Kansas"
## [17] "Kentucky"
                         "Louisiana"
                                           "Maine"
                                                             "Maryland"
                                           "Minnesota"
## [21] "Massachusetts"
                         "Michigan"
                                                            "Mississippi"
## [25] "Missouri"
                         "Montana"
                                           "Nebraska"
                                                            "Nevada"
## [29] "New Hampshire"
                         "New Jersey"
                                           "New Mexico"
                                                            "New York"
                                           "Ohio"
## [33] "North Carolina" "North Dakota"
                                                            "Oklahoma"
## [37] "Oregon"
                         "Pennsylvania"
                                           "Rhode Island"
                                                            "South Carolina"
                                           "Texas"
                                                             "Utah"
## [41] "South Dakota"
                         "Tennessee"
## [45] "Vermont"
                         "Virginia"
                                           "Washington"
                                                             "West Virginia"
## [49] "Wisconsin"
                         "Wyoming"
colnames(USArrests)
```

```
## [1] "Murder" "Assault" "UrbanPop" "Rape"
```

$\#\acute{E}$ chale un vistazo a los datos, por ejemplo a las seis primeras filas USArrests[1:6,]

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	${\tt California}$	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

#Ordena de forma decreciente las filas de nuestro data frame según el porcentaje de población #en el área urbana. Para ello investiga la función order () y sus parámetros.

USArrests[order(USArrests\$UrbanPop,decreasing = TRUE),]

##		Murder	Assault	UrbanPop	Rape
##	California	9.0	276	91	40.6
##	New Jersey	7.4	159	89	18.8
##	Rhode Island	3.4	174	87	8.3
##	New York	11.1	254	86	26.1
##	Massachusetts	4.4	149	85	16.3
##	Hawaii	5.3	46	83	20.2
##	Illinois	10.4	249	83	24.0
##	Nevada	12.2	252	81	46.0
##	Arizona	8.1	294	80	31.0
##	Florida	15.4	335	80	31.9
##	Texas	12.7	201	80	25.5
##	Utah	3.2	120	80	22.9
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Ohio	7.3	120	75	21.4
##	Michigan	12.1	255	74	35.1
##	Washington	4.0	145	73	26.2
##	Delaware	5.9	238	72	15.8

```
## Pennsylvania
                     6.3
                              106
                                        72 14.9
## Missouri
                     9.0
                              178
                                        70 28.2
## New Mexico
                    11.4
                              285
                                        70 32.1
## Oklahoma
                                        68 20.0
                     6.6
                              151
## Maryland
                    11.3
                              300
                                        67 27.8
## Oregon
                              159
                                        67 29.3
                     4.9
## Kansas
                     6.0
                                        66 18.0
                              115
                              249
                                        66 22.2
## Louisiana
                    15.4
## Minnesota
                     2.7
                              72
                                        66 14.9
## Wisconsin
                     2.6
                               53
                                        66 10.8
## Indiana
                     7.2
                              113
                                        65 21.0
## Virginia
                     8.5
                              156
                                        63 20.7
                              102
## Nebraska
                     4.3
                                        62 16.5
                    17.4
                                        60 25.8
## Georgia
                              211
## Wyoming
                              161
                                        60 15.6
                     6.8
## Tennessee
                    13.2
                              188
                                        59 26.9
## Alabama
                              236
                    13.2
                                        58 21.2
## Iowa
                     2.2
                              56
                                        57 11.3
## New Hampshire
                              57
                                        56 9.5
                     2.1
## Idaho
                     2.6
                              120
                                        54 14.2
## Montana
                     6.0
                              109
                                        53 16.4
## Kentucky
                     9.7
                              109
                                        52 16.3
## Maine
                              83
                                        51 7.8
                     2.1
## Arkansas
                     8.8
                              190
                                        50 19.5
## Alaska
                                        48 44.5
                    10.0
                              263
## South Carolina
                    14.4
                              279
                                        48 22.5
## North Carolina
                    13.0
                              337
                                        45 16.1
## South Dakota
                               86
                     3.8
                                        45 12.8
## Mississippi
                    16.1
                              259
                                        44 17.1
## North Dakota
                     0.8
                               45
                                        44 7.3
## West Virginia
                     5.7
                               81
                                        39 9.3
## Vermont
                     2.2
                               48
                                        32 11.2
```

#¿Podrías añadir un segundo criterio de orden?, ¿cómo?

USArrests[order(USArrests\$UrbanPop,USArrests\$Rape,decreasing = TRUE),]

##		Murder	Assault	${\tt UrbanPop}$	Rape
##	California	9.0	276	91	40.6
##	New Jersey	7.4	159	89	18.8
##	Rhode Island	3.4	174	87	8.3
##	New York	11.1	254	86	26.1
##	Massachusetts	4.4	149	85	16.3
##	Illinois	10.4	249	83	24.0
##	Hawaii	5.3	46	83	20.2
##	Nevada	12.2	252	81	46.0
##	Florida	15.4	335	80	31.9
##	Arizona	8.1	294	80	31.0
##	Texas	12.7	201	80	25.5
##	Utah	3.2	120	80	22.9
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Ohio	7.3	120	75	21.4
##	Michigan	12.1	255	74	35.1
##	Washington	4.0	145	73	26.2

```
## Pennsylvania
                     6.3
                             106
                                       72 14.9
## New Mexico
                    11.4
                             285
                                       70 32.1
## Missouri
                     9.0
                             178
                                       70 28.2
## Oklahoma
                     6.6
                             151
                                       68 20.0
## Oregon
                     4.9
                             159
                                       67 29.3
## Maryland
                    11.3
                             300
                                       67 27.8
                                       66 22.2
## Louisiana
                             249
                    15.4
## Kansas
                     6.0
                             115
                                       66 18.0
## Minnesota
                             72
                                       66 14.9
                     2.7
## Wisconsin
                     2.6
                              53
                                       66 10.8
                     7.2
                                       65 21.0
## Indiana
                             113
## Virginia
                     8.5
                             156
                                       63 20.7
## Nebraska
                             102
                                       62 16.5
                     4.3
## Georgia
                    17.4
                             211
                                       60 25.8
## Wyoming
                     6.8
                             161
                                       60 15.6
## Tennessee
                    13.2
                             188
                                       59 26.9
## Alabama
                    13.2
                             236
                                       58 21.2
## Iowa
                     2.2
                             56
                                       57 11.3
## New Hampshire
                     2.1
                              57
                                       56 9.5
## Idaho
                     2.6
                             120
                                       54 14.2
## Montana
                     6.0
                             109
                                       53 16.4
                                       52 16.3
## Kentucky
                     9.7
                             109
## Maine
                     2.1
                              83
                                       51 7.8
## Arkansas
                     8.8
                             190
                                       50 19.5
## Alaska
                    10.0
                             263
                                       48 44.5
## South Carolina
                    14.4
                             279
                                       48 22.5
## North Carolina
                             337
                                       45 16.1
                  13.0
## South Dakota
                     3.8
                              86
                                       45 12.8
                                       44 17.1
## Mississippi
                    16.1
                             259
                                       44 7.3
## North Dakota
                     0.8
                              45
## West Virginia
                     5.7
                              81
                                       39 9.3
## Vermont
                     2.2
                              48
                                       32 11.2
#Muestra por pantalla la columna con los datos de asesinato
USArrests $Murder
## [1] 13.2 10.0 8.1 8.8 9.0 7.9 3.3 5.9 15.4 17.4 5.3 2.6 10.4 7.2
        2.2 6.0 9.7 15.4 2.1 11.3 4.4 12.1 2.7 16.1 9.0 6.0 4.3 12.2
## [15]
## [29]
        2.1 7.4 11.4 11.1 13.0 0.8 7.3 6.6 4.9 6.3 3.4 14.4 3.8 13.2
## [43] 12.7 3.2 2.2 8.5 4.0 5.7 2.6 6.8
#Muestra las tasas de asesinato para el segundo, tercer y cuarto estado
USArrests[2:4, "Murder"]
## [1] 10.0 8.1 8.8
#Muestra las primeras cinco filas de todas las columnas
USArrests[1:5,]
##
              Murder Assault UrbanPop Rape
## Alabama
                13.2
                         236
                                   58 21.2
## Alaska
                10.0
                         263
                                   48 44.5
```

238

5.9

Delaware

Arizona

8.1

294

72 15.8

80 31.0

```
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
```

#Muestra todas las filas para las dos primeras columnas

USArrests[,1:2]

##		Murder	Assault
##	Alabama	13.2	236
##	Alaska	10.0	263
##	Arizona	8.1	294
##	Arkansas	8.8	190
##	California	9.0	276
##	Colorado	7.9	204
##	Connecticut	3.3	110
##	Delaware	5.9	238
##	Florida	15.4	335
##	Georgia	17.4	211
##	Hawaii	5.3	46
##		2.6	120
	Illinois	10.4	249
##	Indiana	7.2	
##	Iowa	2.2	
##		6.0	
##	J	9.7	109
##		15.4	249
##		2.1	83
##	. J	11.3	300
##		4.4	149
##	. 6	12.1	255
##		2.7	72
##	11	16.1	259
##		9.0	178
##	Montana Nebraska	6.0 4.3	109 102
##	Nevada	12.2	252
##	New Hampshire	2.1	252 57
##	-	7.4	159
##	New Mexico	11.4	285
##	New York	11.1	254
##		13.0	337
##		0.8	45
	Ohio	7.3	120
##	Oklahoma	6.6	151
##	Oregon	4.9	159
##	Pennsylvania	6.3	106
##	Rhode Island	3.4	174
##	South Carolina	14.4	279
##	South Dakota	3.8	86
##	Tennessee	13.2	188
##	Texas	12.7	201
##	Utah	3.2	120
##	Vermont	2.2	48
##	Virginia	8.5	156
##	Washington	4.0	145

```
## West Virginia 5.7 81

## Wisconsin 2.6 53

## Wyoming 6.8 161

#Muestra todas las filas de las columnas 1 y 3

USArrests[,c(1,3)]
```

##		Murder	UrbanPop
	Alabama	13.2	58
	Alaska	10.0	48
	Arizona	8.1	80
	Arkansas	8.8	50
##	California	9.0	91
##	Colorado	7.9	78
##	Connecticut	3.3	77
##	Delaware	5.9	72
##	Florida	15.4	80
##	Georgia	17.4	60
##	Hawaii	5.3	83
	Idaho	2.6	54
	Illinois	10.4	83
	Indiana	7.2	65
	Iowa	2.2	57
	Kansas	6.0 9.7	66
	Kentucky Louisiana	15.4	52 66
	Maine	2.1	51
	Maryland	11.3	67
	Massachusetts	4.4	85
	Michigan	12.1	74
	Minnesota	2.7	66
##	Mississippi	16.1	44
	Missouri	9.0	70
##	Montana	6.0	53
##	Nebraska	4.3	62
##	Nevada	12.2	81
	New Hampshire	2.1	56
	New Jersey	7.4	89
##		11.4	70
	New York	11.1	86
	North Carolina North Dakota	13.0	45
	Ohio	0.8 7.3	44 75
##		6.6	68
##	Oregon	4.9	67
##	Pennsylvania	6.3	72
##	Rhode Island	3.4	87
##		14.4	48
##	South Dakota	3.8	45
##	Tennessee	13.2	59
##	Texas	12.7	80
##	Utah	3.2	80
##	Vermont	2.2	32
##	Virginia	8.5	63

```
## Washington
                    4.0
                              73
## West Virginia
                    5.7
                              39
## Wisconsin
                    2.6
                              66
## Wyoming
                    6.8
                              60
\# Muestra solo las primeras cinco filas de las columnas 1 y 2
USArrests[1:5,1:2]
##
             Murder Assault
## Alabama
               13.2
               10.0
                        263
## Alaska
## Arizona
                8.1
                        294
## Arkansas
                8.8
                        190
## California
                9.0
                        276
#Extrae las filas para el ??ndice Murder
USArrests[,"Murder"]
## [1] 13.2 10.0 8.1 8.8 9.0 7.9 3.3 5.9 15.4 17.4 5.3 2.6 10.4 7.2
## [15] 2.2 6.0 9.7 15.4 2.1 11.3 4.4 12.1 2.7 16.1 9.0 6.0 4.3 12.2
## [29] 2.1 7.4 11.4 11.1 13.0 0.8 7.3 6.6 4.9 6.3 3.4 14.4 3.8 13.2
## [43] 12.7 3.2 2.2 8.5 4.0 5.7 2.6 6.8
\#_{\dot{c}} Que estado tiene la menor tasa de asesinatos? \dot{c} qué línea contiene esa información?, obtén esa informa
datos = USArrests[order(USArrests$Murder,decreasing = FALSE),]
datos
```

##		Murder	Assault	UrbanPop	Rape
##	North Dakota	0.8	45	44	7.3
##	Maine	2.1	83	51	7.8
##	New Hampshire	2.1	57	56	9.5
##	Iowa	2.2	56	57	11.3
##	Vermont	2.2	48	32	11.2
##	Idaho	2.6	120	54	14.2
##	Wisconsin	2.6	53	66	10.8
##	Minnesota	2.7	72	66	14.9
##	Utah	3.2	120	80	22.9
##	Connecticut	3.3	110	77	11.1
##	Rhode Island	3.4	174	87	8.3
##	South Dakota	3.8	86	45	12.8
##	Washington	4.0	145	73	26.2
##	Nebraska	4.3	102	62	16.5
##	Massachusetts	4.4	149	85	16.3
##	Oregon	4.9	159	67	29.3
##	Hawaii	5.3	46	83	20.2
##	West Virginia	5.7	81	39	9.3
##	Delaware	5.9	238	72	15.8
##	Kansas	6.0	115	66	18.0
##	Montana	6.0	109	53	16.4
##	Pennsylvania	6.3	106	72	14.9
##	Oklahoma	6.6	151	68	20.0
##	Wyoming	6.8	161	60	15.6
##	Indiana	7.2	113	65	21.0
##	Ohio	7.3	120	75	21.4
##	New Jersey	7.4	159	89	18.8
##	Colorado	7.9	204	78	38.7

```
## Arizona
                      8.1
                               294
                                         80 31.0
## Virginia
                      8.5
                               156
                                         63 20.7
## Arkansas
                      8.8
                               190
                                         50 19.5
## California
                      9.0
                              276
                                         91 40.6
## Missouri
                      9.0
                              178
                                         70 28.2
                      9.7
                                         52 16.3
## Kentucky
                              109
## Alaska
                                         48 44.5
                     10.0
                               263
## Illinois
                              249
                                         83 24.0
                     10.4
## New York
                     11.1
                               254
                                         86 26.1
                              300
## Maryland
                     11.3
                                         67 27.8
## New Mexico
                     11.4
                               285
                                         70 32.1
## Michigan
                     12.1
                              255
                                         74 35.1
## Nevada
                     12.2
                              252
                                         81 46.0
## Texas
                                         80 25.5
                     12.7
                              201
## North Carolina
                     13.0
                              337
                                         45 16.1
## Alabama
                     13.2
                              236
                                         58 21.2
## Tennessee
                              188
                                         59 26.9
                     13.2
## South Carolina
                     14.4
                              279
                                         48 22.5
## Florida
                              335
                                         80 31.9
                     15.4
## Louisiana
                     15.4
                               249
                                         66 22.2
## Mississippi
                     16.1
                               259
                                         44 17.1
## Georgia
                     17.4
                               211
                                         60 25.8
USArrests[which(USArrests == datos[1, "Murder"]),]
##
                 Murder Assault UrbanPop Rape
## North Dakota
                                       44 7.3
El estado del Norte de Dakota es el que menor tasa de asesinatos tiene y está en la posición 34 del dataset
USArrests.
# ¿Que estados tienen una tasa inferior al 4%?, obtén esa información.
USArrests[which(USArrests$Murder < 4),]</pre>
##
                  Murder Assault UrbanPop Rape
## Connecticut
                     3.3
                             110
                                        77 11.1
## Idaho
                     2.6
                             120
                                        54 14.2
## Iowa
                     2.2
                              56
                                        57 11.3
## Maine
                     2.1
                              83
                                        51 7.8
## Minnesota
                     2.7
                              72
                                        66 14.9
## New Hampshire
                     2.1
                              57
                                        56 9.5
## North Dakota
                     0.8
                              45
                                        44
                                            7.3
## Rhode Island
                     3.4
                                        87 8.3
                             174
## South Dakota
                     3.8
                                        45 12.8
                              86
## Utah
                     3.2
                                        80 22.9
                             120
## Vermont
                     2.2
                               48
                                        32 11.2
## Wisconsin
                     2.6
                              53
                                        66 10.8
# Que estados estan en el cuartil superior (75) en lo que a poblacion en zonas urbanas se refiere
quantile(USArrests$UrbanPop)
           25%
                  50%
                        75% 100%
## 32.00 54.50 66.00 77.75 91.00
USArrests[which(USArrests$UrbanPop >= quantile(USArrests$UrbanPop)[4]) ,]
```

Murder Assault UrbanPop Rape

##

```
## Arizona
                     8.1
                              294
                                        80 31.0
## California
                     9.0
                              276
                                        91 40.6
## Colorado
                     7.9
                              204
                                        78 38.7
## Florida
                    15.4
                              335
                                        80 31.9
## Hawaii
                     5.3
                               46
                                        83 20.2
                                        83 24.0
## Illinois
                    10.4
                              249
## Massachusetts
                     4.4
                                        85 16.3
                              149
## Nevada
                    12.2
                                        81 46.0
                              252
## New Jersey
                     7.4
                              159
                                        89 18.8
## New York
                                        86 26.1
                    11.1
                              254
## Rhode Island
                     3.4
                              174
                                        87
                                            8.3
                    12.7
## Texas
                              201
                                        80 25.5
## Utah
                                         80 22.9
                     3.2
                              120
```

* Vamos a trabajar con otro dataframe. Descarga el fichero student.txt de la plataforma PRADO, almacena la informaci??n en una variable llamada "students". Ten en cuenta que los datos son tab-delimited y tienen un texto para cada columna. Comprueba que R ha leído correctamente el fichero imprimiendo el objeto en la pantalla

```
students = read.delim(file = "student.txt")
students
## height shoesize gender population
```

```
## 1
          181
                     44
                          male
                                     kuopio
## 2
          160
                                    kuopio
                     38 female
## 3
          174
                     42 female
                                    kuopio
## 4
          170
                     43
                          male
                                    kuopio
## 5
          172
                     43
                          male
                                    kuopio
## 6
                     39 female
          165
                                    kuopio
## 7
                     38 female
                                    kuopio
          161
                     38 female
## 8
          167
                                   tampere
## 9
                     39 female
                                   tampere
          164
## 10
          166
                     38 female
                                   tampere
## 11
          162
                     37 female
                                   tampere
## 12
          158
                     36 female
                                   tampere
## 13
          175
                     42
                          {\tt male}
                                   tampere
## 14
                     44
          181
                          male
                                   tampere
## 15
          180
                     43
                          male
                                   tampere
## 16
          177
                     43
                          male
                                   tampere
## 17
          173
                     41
                          male
                                   tampere
```

Imprime solo los nombres de la columnas

```
colnames(students)
## [1] "height" "shoesize" "gender" "population"
```

Llama a la columna height solo

```
students$height
```

```
## [1] 181 160 174 170 172 165 161 167 164 166 162 158 175 181 180 177 173
```

??Cuantas observaciones hay en cada grupo?. Utiliza la función table(). Este commando se puede utilizar para crear tablas cruzadas (cross-tabulations)

```
table(students$gender)
##
## female
             male
##
                8
table(students$gender, students$height)
##
##
             158 160 161 162 164 165 166 167 170 172 173 174 175 177 180 181
##
                                      1
                                                        0
                                                            0
##
     male
               0
                        Ω
                                 0
                                      0
                                          0
                                               \cap
                                                   1
                                                        1
                                                            1
                                                                 \cap
                                                                     1
                                                                                  2
```

Crea nuevas variables a partir de los datos que tenemos. Vamos a crear una variable nueva "sym" que contenga M si el genero es masculino y F si el genero es femenino. Busca en la ayuda información sobre la función ifelse(). Crea una segunda variable "colours" cuyo valor será "Blue" si el estudiante es de kuopio y "Red" si es de otro sitio.

```
students$gender
## [1] male
            female female male
                                     female female female female
                               male
## [11] female female male male
                               male
                                     male
                                           male
## Levels: female male
sym = ifelse(students$gender == "male", "M", "F")
\operatorname{\mathtt{sym}}
colours = ifelse(students$population == "kuopio", "Blue", "Red")
colours
                                                       "Red"
## [1] "Blue" "Blue" "Blue" "Blue" "Blue" "Blue" "Red"
                                                             "Red"
                               "Red"
## [11] "Red" "Red" "Red" "Red"
                                     "Red"
                                           "Red"
```

Con los datos anteriores de height y shoesize y las nuevas variables crea un nuevo data.frame que se llame students.new

```
students.new = data.frame(students$height, students$shoesize, sym, colours)
students.new
##
      students.height students.shoesize sym colours
## 1
                   181
                                       44
                                            Μ
                                                 Blue
                                            F
## 2
                                       38
                                                 Blue
                   160
## 3
                   174
                                       42
                                            F
                                                 Blue
## 4
                   170
                                       43
                                            Μ
                                                 Blue
## 5
                   172
                                       43
                                                 Blue
                                            М
## 6
                   165
                                       39
                                            F
                                                 Blue
## 7
                   161
                                       38
                                            F
                                                 Blue
```

```
## 8
                    167
                                          38
                                                F
                                                       Red
## 9
                    164
                                          39
                                               F
                                                       Red
## 10
                    166
                                          38
                                               F
                                                       Red
                    162
                                          37
                                               F
## 11
                                                       Red
## 12
                    158
                                          36
                                                F
                                                       Red
## 13
                                          42
                                                       Red
                    175
                                               М
## 14
                    181
                                          44
                                                       Red
                                                М
## 15
                    180
                                          43
                                                М
                                                       Red
## 16
                    177
                                          43
                                                Μ
                                                       Red
## 17
                    173
                                                       Red
                                          41
                                                М
```

Comprueba que la clase de student.new es un dataframe

```
class(students.new)
## [1] "data.frame"
```

Crea dos subsets a partir del dataset student. Dividelo dependiendo del sexo. Para ello primero comprueba que estudiantes son hombres (male). Pista: busca información sobre la función which.

```
which(students$gender == "male")
## [1] 1 4 5 13 14 15 16 17
```

Basándote en esa selección dada por which() toma solo esas filas del dataset student para generar el subset stundent.male

- -Basándote en esa selección dada por which() toma solo esas filas del dataset student para generar el subset stundent.male
- Repite el procedimiento para seleccionar las estudiantes mujeres (females)

```
students.male = students[which(students$gender == "male"),]
students.male
      height shoesize gender population
## 1
         181
                    44
                                   kuopio
                         male
## 4
         170
                    43
                         male
                                   kuopio
## 5
         172
                    43
                         {\tt male}
                                   kuopio
## 13
         175
                    42
                                  tampere
                         {\tt male}
## 14
         181
                    44
                                  tampere
                         male
## 15
         180
                    43
                         male
                                  tampere
## 16
         177
                    43
                         male
                                  tampere
## 17
         173
                    41
                         male
                                  tampere
students.female = students[which(students$gender == "female"),]
students.female
##
      height shoesize gender population
## 2
         160
                    38 female
                                   kuopio
## 3
         174
                    42 female
                                   kuopio
```

```
kuopio
                 39 female
## 6
        165
## 7
        161
                 38 female
                            kuopio
## 8
                 38 female tampere
        167
## 9
        164
                 39 female
                          tampere
                 38 female
                           tampere
## 10
        166
## 11
        162
                 37 female
                            tampere
## 12
        158
                 36 female
                             tampere
```

Utiliza la function write.table() para guarder el contenido de student.new en un archivo.

```
write.table(students.new, file = "student_new.txt", sep = "\t")
```