

First experiences with an Arm-based HPC-testbed at NHR@KIT

14.11.2022, AHUG@SC22, Dallas

René Caspart, Steinbuch Centre for Computing, Karlsruhe Institute of Technology

Outline

- ■HPC at NHR@KIT
- Operational experiences with an ARM testbed
- Experiences and first results with benchmarks and mini-apps

HPC at KIT

- KIT is a center in the German national high performance computing alliance (NHR)
 - ■NHR: Alliance of national academic Tier 2 HPC provider
 - ■NHR@KIT focuses on expert level support and software sustainability among other aspects
 - Novel and disruptive technologies as a key aspect
- KIT operates two HPC systems
 - General purpose Tier-3 system for the state of Baden Württemberg
 - ■Tier-2 system with two subsystems
 - HAICORE → AI specific setup
 - Future Technologies Partition

Hochleistungsrechner Karlsruhe - HoreKa

- Tier 2 System in the National High Performance Computing alliance
- Modern hybrid system
 - ■~60k CPU cores
 - 668 Nvidia A100
 - 200 Gbit/s interconnect
 - ■16 PB storage
- ■Peak #13 in the Green500 and #52 in the TOP500 (June 2021)
- In operation for the scientific community since 1st June 2021

The Future Technologies Partition

- Our goal:
 - Enabling Scientists and Research Software Engineers to explore new hard- and software options
 - Preparing for possible future clusters
- We provide a testbed for this type of HPC hardware and software
 - Future Technologies Partition
 - Accessible to all users of HoreKa upon request

The Future Technologies Partition before 2022

The Future Technologies Partition in 2022

Architectures and Accelerators at NHR@KIT

	x86	ARM
Only CPU	HoreKa	FTP
Nvidia	HoreKa	FTP
AMD	FTP	FTP
Graphcore	FTP	

Operational Aspects – Cluster Management

- KITE as tooling for cluster deployment and management
 - Based on Open Source Software components
 - Required adaptions for ARM platform straight forward
 - Little changes needed
- ■Base OS Rocky Linux 8

Operational Aspects – Userspace Software

- Installing userspace software, mostly straight forward
 - Compiler: GNU, LLVM, NVIDIA HPC SDK, ARM
 - MPI: OpenMPI, MVAPICH
 - OpenMP
 - BLIS, openBLAS, cuBLAS
 - **...**

Cluster-Job-Performance Monitoring

- Cluster-Job-Performance Monitoring
 - Cluster Cockpit Monitoring stack largely developed by NHR@FAU and NHR@KIT
 - cc-metric-collector node-agent to collect metrics for each node
 - Many different types of metrics (compute, network, data, ...)
- Largely works out-of-the box
 - Some dependencies not (yet) available on ARM
 - Some information from the CPU differs to x86 processors
 - → Small adaptions needed

- Running selection of synthetic benchmarks
 - Babelstream
 - DGEMM
 - Graph500

- For comparison results from two platforms
 - Nvidia ARM HPC Dev Kits
 - Single socket, Ampere Altra Q80-30
 - 2 Nvidia A100-40 PCIe
 - 512 GB DDR4-3200
 - HoreKa compute nodes
 - Dual socket, Intel Xeon Platinum 8368
 - 4 Nvidia A100-40 SXM4
 - 512 GB DDR4-3200

Source: Simon Raffeiner

Source: Lenovo

Note: x86 system is dual socket with twice as many memory channels

DGEMM

- DGEMM
 - Using the A100 GPUs with cuBLAS
 - Similar performance on both platforms
 - Known different powerbudget for A100 with PCIe vs SXM4

Graph500

https://graph500.org

Mini-Applications

- Run exemplary workload applications from users on HoreKa
 - LAMMPS
 - OpenLB
 - OpenFOAM
 - Machine Learning (CIFAR10 with ResNet18)
 - High Energy Physics (HEPScore)

LAMMPS

- Run three different workloads
 - FENE beadspring
 - Chute flow with frozen base at 26 degrees
 - Rhodopsin model

https://docs.lammps.org/Speed_bench.html

OpenFOAM

- ■3D Lid driven cavity
- Modelsize: S
- ■500 iterations

https://develop.openfoam.com/committees/hpc

OpenLB

- Standard OpenLB example
 - Laminar 3D cavity

https://www.openlb.net/lid-driven-cavity/

Machine Learning

- Train a ResNet18 on the CIFAR10 dataset
 - Compare time per epoch for two setups with Nvidia A100-40 PCIe GPUs
 - Nvidia ARM HPC Developer Kits
 - x86 server; Intel Ice Lake
- Setting up
 - Native setup not available
 - No pytorch modules available with ARM and CUDA
 - Containers for pytorch available from Nvidia
 - Our two supported containerization tools enroot and singularity work out of the box

Machine Learning

- ■Train ResNet18 on the CIFAR10 dataset
- Evaluate time per epoch using 1 and 2 GPUs

High-Energy-Physics Use case

- KIT has a strong particle physics community
 - No traditional HPC workflows (mainly HTC)
 - Hosting one of the WLCG Tier 1 computing centers
 - So far mainly x86 resources
- Interest in seeing performance and portability to ARM
 - Two benchmark sets
 - Old: HEPSpec06, based on Spec06
 - New: HEPScore, successor of HEPSpec06

High-Energy-Physics Use case

- HEPScore
 - Based on mini-apps by the user communities
 - Partially available for ARM (ongoing efforts for others)
 - Only utilizing the CPU

https://gitlab.cern.ch/hep-benchmarks/hep-score

- Results
 - Nvidia ARM HPC Dev Kit: 5.3
 - Dual socket AMD EPYC 7742: 6.9

One General Observed Problem

- Our HPC Dev Kits experience issues with internode and GPU-to-GPU communication
 - Unfortunately, so far no solution found
 - Active support from e.g. Nvidia (thanks a lot!)
- Clearly visible in benchmarks
 - E.g. OSU Micro-Benchmarks

Summary

- The Nvidia ARM HPC Dev Kits provide an interesting testbed for HPC administrators and users
 - Most setups need only minor adaptions
 - Benchmarks provide expected performance results
 - However: some issues still pending
- ■The Future Technologies Partition at NHR@KIT provides a valuable testbed for HPC users and operators
 - Looking forward to see more HPC specialized ARM CPUs and nodes in the (near) future!