Matemática Discreta

Conjuntos

Conjunto é uma coleção de objetos. Em alguns casos, podemos dizer que elementos dos conjuntos possuem alguma propriedade em comum, além de pertencerem ao mesmo conjunto; assim qualquer objeto que possua esta propriedade pertence ao conjunto específico e todo objeto que não possui a mesma propriedade não pertence a tal conjunto.

■ NOTAÇÃO

Usaremos letras maiúsculas para denotar conjuntos e o símbolo $, \in$, para denotar pertinência em um conjunto. Assim, $a \in A$ significa que o objeto a pertence ao conjunto A, ou também que a é um elemento de A; e $b \notin A$ significa que o objeto b não pertence ao conjunto A (ou simplesmente que b não é um elemento de A).

Se
$$A = \{violeta, verde, castanho\} \Rightarrow \Box verde \in A e roxo \notin A$$

Os elementos em um conjunto não têm nenhuma ordem, de modo que {violeta, verde, castanho} é o mesmo que {violeta, castanho, verde}. Além disso, cada elemento do conjunto é listado apenas uma vez. Dois conjuntos são iguais se contêm os mesmos elementos.

$$A=B$$
 significa $(\forall x)[(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)]$

Um conjunto que não possui elementos é chamado de conjunto vazio, e é representado por Ø ou simplesmente por { }.

Os conjuntos podem ser representados de diversas maneiras analíticas e gráficas. Em geral a representação de um conjunto é suficiente para identificar quais elementos pertencem ou não pertencem ao conjunto em questão.

♦ Representação por Descrição

A representação por descrição é uma representação baseada em linguagem natural, por exemplo: "O conjunto A possui todos os números pares maiores que 5 e menores que 10", assim sabemos que o conjunto A possui os elementos 6 e 8.

♦ Representação por Lista

A representação por listagem consiste em elencar todos os elementos, por exemplo: $A = \{6,8\}$.

♦ Representação por Predicados

A representação por predicados consiste em descrever através de propriedades predicativas, por exemplo: P(x) é um predicado verdadeiro sempre que x é um número ímpar positivo, então $B = \{x/P(x)\}$ é o conjunto que contém os números ímpares, $B = \{1,3,5,7,...\}$.

Podemos entender que o a formulação por predicados é uma forma de representação por uma fórmula lógica, sempre que o predicado for verdadeiro para algum elemento, então aquele elemento pertence ao conjunto.

Ex.:

- a) P(x): x é um número ímpar;
- b) Q(x): x é um número par;
- c) R(x): x é um número positivo;
- d) S(x): x é um número negativo.

 $C = \{x/P(x) \land R(x)\}$, também pode ser representado por $C = \{1, 3, 5, 7, \ldots\}$

 $D = \{x/P(x) \land R(x)\}$, também pode ser representado por $D = \{\} = \emptyset$.

♦ Representação por Recorrência

A representação por recorrência consiste em estabelecer regras de formação para o conjunto. Essas regras são divididas em dois grupos:

- 1) Regras bases, que estabelecem quais os elementos que pertencem diretamente ao conjunto;
- 2) Regras de formação, estabelece iterações sobre os elementos do conjunto para encontrar novos elementos.

Ex.:

- 1) 2∈*E* ;
- 2) Se $n \in E$, então $(n+2) \in E$.

Portanto: $E = \{2, 4, 6, ...\}$

■ CARDINALIDADE

Dado um conjunto S a cardinalidade, representada por |S|, de um conjunto refere-se a quantidade de elementos que o conjunto possui, nesse contexto dizemos que o conjunto pode ser finito ou infinito. O conjunto ser´a finito quando a sua cardinalidade for um número natural, ou seja, se $|S| \in \mathbb{N}$, por outro lado, dizemos que S é um conjunto infinito quando ele for tão grande quanto se queira (o conjunto E é um exemplo de conjunto infinito). O conjunto vazio possui cardinalidade zero: $|\mathcal{S}| = 0$.

■ SUBCONJUNTOS

Sejam F = { 2; 3; 5; 12 } e G = { 2; 3; 4; 5; 9; 12} dois conjuntos, podemos perceber que todo elemento que está em F também está em G, portanto dizemos que F é um subconjunto de G.

Uma definição mais formal seria: dados dois conjuntos S e T, dizemos que S é subconjunto de T se:

$$(\forall x)(x \in S \Rightarrow x \in T)$$

Se um conjunto S for subconjunto de um conjunto T, escreveremos $S \subseteq T$, mas se existe pelo menos um elemento de S que n $\tilde{}$ ao está em T dizemos que S é um subconjunto próprio de T e podemos escrever como $S \subseteq T$.

Observe que com a definição de subconjuntos, podemos entender que dois conjuntos S e T são iguais se, e somente se, $S \subseteq T$ e $T \subseteq S$.

■ CONJUNTO DAS PARTES

Observe que inicialmente utilizamos os objetos como elementos básicos dentro do universo que estamos trabalhando. Porém esta ideia inicial 'e equivocada, pois podemos ter conjuntos como elementos de outros conjuntos e 'e onde costumamos encontrar alguns problemas de interpretação. Por exemplo, sejam H = { 1, 2 { 3 } } e I = { { 1, 2 }, 3 }, temos:

$$1 \in H, 1 \notin I$$

 $3 \notin H, 3 \in I$
 $\{3\} \in H, \{3\} \subseteq I$
 $\{1,2\} \subseteq H, \{1,2\} \in I$
 $|H| = 3, |I| = 2$

Dito isso, dado um conjunto S, o conjunto das partes de S (P(S)) é um conjunto formado por todos os subconjuntos de S.

Ex.: seja J = { 1, 2, 3 } então P(J)= {
$$\{\emptyset\}$$
 , { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 } { 2, 3 }, { 1, 2, 3 }}

Uma maneira intuitiva de pensarmos o conjunto das partes 'e lembrar que ele contém todos os subconjuntos de cardinalidade zero (0), contém também os de cardinalidade 2, 3, assim por diante até o conjunto inteiro (que é subconjunto dele mesmo).

É importante perceber que para qualquer conjunto S, a cardinalidade do conjunto das partes de S é sempre maior que a cardinalidade do conjunto inicial.

■ OPERAÇÕES EM CONJUNTOS

Dado um conjunto U que possui todos objetos em que podemos trabalhar, chamaremos este conjunto de Universo.

♦ União

Sejam dois conjuntos S e T, o conjunto resultante V da união dos conjuntos S e T, denotada por $V = S \cup T$, contém todos os elementos de S e T.

$$V = S \cup T = \{x/x \in S \lor x \in T\}$$

◆ Interseção

Sejam dois conjuntos S e T, o conjunto resultante V da interseção dos conjuntos S e T, denotada por $V = S \cap T$, contém os elementos que estão em S e T ao mesmo tempo.

$$V = S \cap T = \{x/x \in S \land x \in T\}$$

◆ Diferença

Sejam dois conjuntos S e T, o conjunto resultante V da diferença dos conjuntos S e T, denotada por V = S - T, contém os elementos que estão em S e não estão T.

$$V = S - T = \{x/x \in S \land x \notin T\}$$

◆ Complemento

Seja um conjunto S o complemento de S, denotado por \bar{S} , contém todos os elementos de U que não estão em S.

$$\bar{S} = U - S = \{x/x \in U \land x \notin S\}$$

♦ Produto Cartesiano

Sejam a e b objetos do nosso universo, podemos formar um novo objeto (a, b), denominado par ordenado. Diferentemente dos conjuntos, a ordem dos elementos nos pares ordenados é importante e faz com que, a for diferente de b, então $(a,b)\neq(b,a)$.

Sejam dois conjuntos S e T, o produto cartesiano V = S x T consiste em todos os pares ordenados (x, y) tais que $x \in S$ e $y \in T$.

$$V = S \times T = \{(x, y) | x \in S \land y \in T\}$$

■ RELAÇÕES

Dado um conjunto S uma relação binária (ou simplesmente relação) em S é um subconjunto de S x S (um conjunto de pares ordenados de elementos de S).

Da mesma maneira, uma relação entre dois conjuntos diferentes S e T, uma relação de S para T, é um subconjunto do produto cartesiano S x T.

Analogamente, podemos pensar em relações envolvendo muitos conjuntos $(S_1,\,S_2,\,...,\,S_n)$, uma relação n-ária é um subconjunto do produto cartesiano S_1 x S_2 x ... x S_n .

Assim, normalmente uma relação p de S em T ($p: S \to T$) consiste em escolher pares ordenados que satisfazem alguma regra que relacionará elementos de S aos elementos de T.

Por exemplo, sejam A = { 1, 2, 3, 4, 5 } e B = { 6, 7, 8, 9, 10 }.

Uma relação: R: A \rightarrow B que relacione um número: com o seu dobro, assim R = { (3, 6), (4, 8), (5, 10) }.

Uma relação S: A \rightarrow B que relacione um número com todos os valores maiores que o seu triplo, assim R = { (1; 6); (1; 7); (1; 8); (1; 9); (1; 10); (2; 7); (2; 8); (2; 9); (2; 10); (3; 10) }.

As relações podem ser definidas como regras arbitrárias que relacionam os elementos dos dois conjuntos.

◆ Propriedades

Dado um conjunto S e uma relação binária *p* de S em S, de acordo com os elementos que estão em *p* dizemos que esta relação possui ou não possui alguma propriedade, abaixo relacionase algumas propriedades que as relações podem possuir.

♦ Reflexiva

A propriedade reflexiva estabelece que se o elemento x pertence ao conjunto S, então o par ordenado (x; x) está na relação p.

$$(\forall x)(x \in S \Rightarrow (x, x) \in p)$$

Simétrica

A propriedade simétrica estabelece que se o par ordenado (x, y) está na relação p, então o par ordenado (y, x) também deve estar.

$$(\forall x)(\forall y)((x,y) \in p \Rightarrow (y,x) \in p)$$

◆ Transitiva

A propriedade transitiva estabelece que se os pares ordenados (x; y) e (y; z) pertencem a relação p, então o par ordenado (x; z) também deve estar.

$$((\forall x)(\forall x)(\forall y)(\forall z)((x,y)) \in p \land (y,y) \Rightarrow (x,z) \in p)$$

♦ Anti–Simétrica

A propriedade anti-simétrica estabelece que se os pares ordenados (x; y) e (y; x) pertencem a relação p, então x deve ser igual a y.

$$(\forall x)(\forall x,y)((x,y)) \in p \land (\forall y,x) \in p \Rightarrow x = y)$$

♦ Fecho de Relação

Dado uma relação *rho* em um conjunto S, o fecho de uma relação (p^*) em relação a uma propriedade P é o conjunto minimal tal que $rho \subset p^*$ e p^* possui a propriedade P.

♦ Relação Inversa

Dado uma relação $p: S \to T$, uma relação inversa $(p^{-1}: T \to S)$ é tal que se (x; y) está em p, então (y; x) está em p^{-1} .

$$(\forall x)(\forall y)((x,y)\in \Rightarrow (x,y)\in p^{-1})$$

Função

Uma função é uma regra de correspondência que associa a cada elemento x de um certo conjunto(domínio) a um, e apenas um, elemento y de um outro conjunto (contradomínio).

Sejam X e Y conjuntos. Uma função de X em Y é um terno (f: X, Y), sendo f uma relação de X para Y satisfazendo:

- Domínio
$$(f) = X$$
;

- Se
$$(x,y) \in f$$
 e $(x,z) \in f$, então y = z.

A imagem de uma função são os elementos $y \in Y$, tais que existe pelo menos um $x \in X$ e f(x) = y.

$$im(f) = \{ y \mid f(x) = y \}$$

♦ Injetora

Uma função é dita injetora, se não existem dois valores x_1 e x_2 relacionados com o mesmo valor de y.

$$x_1, x_2 \in f \land f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$$

♦ Sobrejetora

Uma função é dita sobrejetora, se existe pelo menos um valor x do domínio relacionado a cada valor y do contra domínio.

$$Im(f) = CD(f)$$

♦ Bijetora

Uma função é dita bijetora, se é ao mesmo tempo injetora e bijetora.

◆ Função Inversa

Dada uma função $f: S \to T$, dizemos que a relação inversa $f^1: T \to S$ é uma função inversa de f se satisfaz as propriedades de função.

Uma função f admite função inversa se, e somente se, for uma função bijetora.

♦ Conjuntos Contáveis

Trabalho

■ INDUÇÃO MATEMÁTICA

A indução matemática é uma técnica muito importante para provar resultados que envolvem números naturais e estruturas recursivas. Por exemplo, provar que:

$$1+2+3+...+n=\frac{n(n+1)}{2}$$

A ideia intuitiva da indução matemática deriva da dependência da ocorrência de um fato a ocorrência de um fato anterior. Por exemplo, uma fila de domínios alinhados. Se o primeiro

domínio cair, ele vai derrubar o segundo, o segundo vai derrubar o terceiro e assim por diante, então o k – ésimo domínio vai derrubar o (k + 1) - ésimo domínio.

Matematicamente, devemos provar que dada uma afirmação P(k), para uma função P(n); $n \in \mathbb{N}$, essa afirmação implica em P(k+1). Assim, quando mostramos que P(1) vale, logo P(2) também vale, pois $P(k) \to P(k+1)$. Portanto P(j) vale para todo $j \in \mathbb{N}$.

Formalização: Seja P(n) uma função, para $n \in \mathbb{N}$.

- Se P(1) é uma afirmação verdadeira:
- $P(k) \Rightarrow P(k+1), \forall k \in \mathbb{N}$

Ex.:

Seja P(n) = 1 + 2 + 3 + ... + n, vamos provar que
$$P(n) = \frac{n(n+1)}{2}$$

■ RELAÇÃO DE RECORRÊNCIA

♦ Objetivo

Apresentar técnica recursiva que permite reduzir um problema envolvendo n objetos a outro problema semelhante com n^i ($n^i < n$) objetos, que por sua vez pode ser reduzido para um problema com n^{ii} ($n^{ii} < n^i$) objetos e assim por diante até que o problema seja suficientemente pequeno e fácil de resolver.

Uma relação de recorrência é uma fórmula que relaciona a_n aos seus predecessores: a_{n-1} , a_{n-2} , ..., a_1

Ex.:

Seja S_n a soma dos primeiros n números naturais. Determine a relação de recorrência em termos de S_{n-1} .

$$S_n = 1 + 2 + ... + (n \square 1) + n$$

 $S_n = S_{n-1} + n$

Porém, é necessário que se estabeleça uma condição de parada para a recursão, neste caso: S_1 = 1.

Ex.:

Problema dos coelhos:

O problema dos coelhos foi proposto em 1202 por Leonardo de Pisa e consiste em determinar o número de pares de coelhos ao final de 12 meses sob as seguintes condições:

- a) Inicialmente tem-se um único par de coelhos recém-nascidos;
- b) Todo mês, cada par de coelhos com pelo menos 2 meses produz um novo casal de coelhos; e
- c) Nenhum coelho morre durante o processo.

A figura 1 ilustra a evolução da quantidade de pares de coelhos em função do tempo. Que pode ser representada na fórmula a seguir:

$$F_n = F_{n-1} + F_{n-2}$$
 $F_1 = 1$
 $F_0 = 1$

Figura 1. Evolução dos pares de coelhos.