Coefficients:

Step 1: The coefficient for SoyaBeans is 0.003 (p<0.001), indicating a significant positive relationship with Beef Value SlaughterMarket.

Step 2: The coefficients for SoyaBeans and BeefConsumption_US are 0.002 (p<0.001) and -5.840 (p<0.001), respectively, indicating significant positive and negative relationships with Beef Value SlaughterMarket.

Excluded Variables: This table shows the variables that were not included in the model, along with their p-values and collinearity statistics. None of the excluded variables met the criteria for inclusion in the model.

Collinearity Diagnostics: The collinearity diagnostics table indicates that multicollinearity is not a major concern in this model. The variance inflation factors (VIF) for both predictor variables (SoyaBeans and BeefConsumption_US) are close to 1, which is an acceptable level.

In conclusion, the stepwise regression analysis resulted in a model with two significant predictor variables, SoyaBeans and BeefConsumption US, which together explain about 70.9% of the variability in the Beef Value SlaughterMarket.

Regression – SPSS stepwise

Variables Entered/Removeda

Model	Variables Entered	Variables Removed	Method
1	SoyaBeans		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).
2	BeefConsumpt ion_US		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).

a. Dependent Variable: Beef_Value_SlaughterMarket

Model Summary^c

						Char	nge Statistics	3	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.686ª	.470	.441	9.16725	.470	15.964	1	18	<.001
2	.860 ^b	.740	.709	6,61327	.269	17.587	1	17	<.001

a. Predictors: (Constant), SoyaBeans

b. Predictors: (Constant), SoyaBeans, BeefConsumption_US

c. Dependent Variable: Beef_Value_SlaughterMarket

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1341.606	1	1341.606	15.964	<.001 ^b
	Residual	1512.692	18	84.038		
	Total	2854.298	19			
2	Regression	2110.798	2	1055.399	24.132	<.001°
	Residual	743.500	17	43.735		
	Total	2854.298	19			

a. Dependent Variable: Beef_Value_SlaughterMarket

b. Predictors: (Constant), SoyaBeans

c. Predictors: (Constant), SoyaBeans, BeefConsumption_US

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confider	nce Interval for B	Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
1	(Constant)	-17.379	19.198		905	.377	-57.713	22.955		
	SoyaBeans	.003	.001	.686	3.996	<.001	.001	.004	1.000	1.000
2	(Constant)	149.724	42.184		3.549	.002	60.723	238.724		
	SoyaBeans	.002	.000	.588	4.669	<.001	.001	.003	.966	1.035
	BeefConsumption US	-5.840	1.393	528	-4.194	<.001	-8.778	-2.902	.966	1.035

a. Dependent Variable: Beef_Value_SlaughterMarket

Excluded Variables

						Collinearity Statistics			
Model	Beta In		t	Sig.	Partial Correlation	Tolerance	VIF	Minimum Tolerance	
1	BeefConsumption_US	528 ^b	-4.194	<.001	713	.966	1.035	.966	
	Beef_Production_BillionPo unds	227 ^b	-1,356	.193	312	1.000	1.000	1,000	
	Barley	.056 ^b	.235	.817	.057	.547	1.829	.547	
	Maize	267 ^b	747	.465	178	.236	4.244	.236	
	Sorghum	393 ^b	-1.623	.123	-,366	.460	2.173	.460	
	Precipitation	029 ^b	146	.885	035	.790	1.266	.790	
	AvgTemp	.066 ^b	.353	.728	.085	.877	1.140	.877	
2	Beef_Production_BillionPo unds	.106°	.692	.499	.170	.669	1.495	.646	
	Barley	325°	-1.855	.082	421	.436	2.292	.436	
	Maize	276°	-1.089	.292	263	.236	4.245	.234	
	Sorghum	266°	-1.484	.157	348	.446	2.243	.431	
	Precipitation	087°	611	.550	151	.782	1.278	.778	
	AvgTemp	.107°	.802	.435	.196	.872	1.147	.842	

- a. Dependent Variable: Beef_Value_SlaughterMarket
- b. Predictors in the Model: (Constant), SoyaBeans
- c. Predictors in the Model: (Constant), SoyaBeans, BeefConsumption_US

Collinearity Diagnostics^a

				Variance Proportions				
Model	Dimension	Eigenvalue	Condition Index	(Constant)	SoyaBeans	BeefConsumpt ion_US		
1	1	1.994	1.000	.00	.00			
	2	.006	18.678	1.00	1.00			
2	1	2.991	1.000	.00	.00	.00		
	2	.009	18.725	.01	.85	.04		
	3	.001	65.233	.99	.15	.96		

a. Dependent Variable: Beef_Value_SlaughterMarket

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	41.6968	75.8221	58.8900	10.54014	20
Std. Predicted Value	-1.631	1,606	.000	1.000	20
Standard Error of Predicted Value	1.491	3.644	2.500	.572	20
Adjusted Predicted Value	40.1262	78.7104	58.6208	10.66014	20
Residual	-14.05064	11.35390	.00000	6.25552	20
Std. Residual	-2.125	1.717	.000	.946	20
Stud. Residual	-2.181	1.987	.019	1.029	20
Deleted Residual	-15.01043	15.20410	.26924	7.43039	20
Stud. Deleted Residual	-2.493	2.200	.002	1.114	20
Mahal, Distance	.015	4.818	1.900	1.277	20
Cook's Distance	.000	.446	.065	.118	20
Centered Leverage Value	.001	.254	.100	.067	20

a. Dependent Variable: Beef_Value_SlaughterMarket

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Section V: Conclusion and Discussion

In both models, the significant relationships between the dependent variable and the two predictors (SoyaBeans and BeefConsumption_US) are consistent, with SoyaBeans having a positive relationship and BeefConsumption_US having a negative relationship. Overall, the two models have the same predictor variables and show similar results in terms of adjusted R-squared values and the relationships between the dependent variable and predictors. The stepwise regression model automated the process of selecting significant predictors, while the manual removal of variables allowed for a more controlled approach. In this case, both methods led to the same conclusion.

- 1. An increase in the production of primary feed crops, such as maize and soya beans, leads to an increase in beef production.
- 2. Climatic factors, such as temperature and precipitation, have a direct impact on beef production.
- 3. Changes in consumer preferences and dietary habits can impact beef production.

Our analysis of the factors influencing the total value of beef at slaughter markets has revealed the complex interplay of various variables, including crop production, climatic factors, cattle population, and meat consumption. By using a stepwise regression model, we have identified the most significant factors and provided insights into their impact on beef production. This knowledge can help stakeholders in the beef industry make informed decisions and implement strategies to optimize production while addressing the challenges posed by changing consumer preferences, climate conditions, and global food security concerns. It's important to consider that the model may not capture all the complexities and nuances of the real-world situation. Although maize is essential for cattle production and climatic factors play a significant role in crop growth, these variables were not found to be significant predictors of the Beef_Value_SlaughterMarket in the current model. Given the knowledge that climatic factors play a role in crop production we should explore these interactions further and compare models.