图论基础

子图和补图

Lijie Wang

丁區

元王国

子图和补图

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

子图和补图

Lijie Wang

子图

完全暨

Definition

设有图 G=<V,E> 和图 $G_1=<V_1,E_1>$.

子图和补图

Lijie Wang

子

完全图

Definition

设有图 $G = \langle V, E \rangle$ 和图 $G_1 = \langle V_1, E_1 \rangle$.

• 若 $V_1 \subseteq V$, $E_1 \subseteq E$, 则称 $G_1 \neq G$ 的子图(subgraph), 记为 $G_1 \subseteq G$.

子图和补图

Lijie Wang

于自

完全图

Definition

设有图 $G = \langle V, E \rangle$ 和图 $G_1 = \langle V_1, E_1 \rangle$.

- 若 $V_1 \subseteq V$, $E_1 \subseteq E$, 则称 G_1 是 G 的子图(subgraph) , 记为 $G_1 \subseteq G$.
- 若 $G_1 \subseteq G$,且 $G_1 \neq G$ (即 $V_1 \subset V$ 或 $E_1 \subset E$),则称 G_1 是 G 的真子图(proper subgraph),记为 $G_1 \subset G$.

子图和补图

Lijie Wang

完全图

Definition

设有图 $G = \langle V, E \rangle$ 和图 $G_1 = \langle V_1, E_1 \rangle$.

- 若 V₁ ⊆ V , E₁ ⊆ E , 则称 G₁ 是 G 的子图(subgraph) , 记为 G₁ ⊆ G.
- 若 $G_1 \subseteq G$,且 $G_1 \neq G$ (即 $V_1 \subset V$ 或 $E_1 \subset E$),则称 G_1 是 G 的真子图(proper subgraph),记为 $G_1 \subset G$.
- 若 $V_1 = V$, $E_1 \subseteq E$, 则称 G_1 是 G 的生成子图(spanning subgraph).

子图和补图

Lijie Wang

.

九土区

Definition

设有图 $G = \langle V, E \rangle$ 和图 $G_1 = \langle V_1, E_1 \rangle$.

- 若 $V_1 \subseteq V$, $E_1 \subseteq E$, 则称 G_1 是 G 的子图(subgraph) , 记为 $G_1 \subseteq G$.
- 若 $G_1 \subseteq G$, 且 $G_1 \neq G$ (即 $V_1 \subset V$ 或 $E_1 \subset E$) , 则称 G_1 是 G 的真子图(proper subgraph) , 记为 $G_1 \subset G$.
- 若 $V_1 = V$, $E_1 \subseteq E$, 则称 G_1 是 G 的生成子图(spanning subgraph).
- 设 V₂ ⊆ V 且 V₂ ≠ Ø , 以 V₂ 为结点集 , 以两个端点均在 V₂ 中的边的全体为边集
 的 G 的子图 , 称为 V₂ 导出的 G 的子图 , 简称 V₂ 的导出子图(induced subgraph).

子图和补图

Lijie Wang

于国

76-151

Example G G_1 v_2 v_2 v_3 G_2 G_3 v_2 ℃ V5 V_2 *v*₃ b *v*₃ b

子图和补图

Lijie Wang

子图

元全图

Example G G_1 子图 v_2 v_2 真子图 导出子图 V_3 G_2 G_3 V_2 ℃ V5 V_2 *v*₃ b *v*₃ b

子图和补图

Lijie Wang

子图

元王国

Example G G_1 子图 v_2 v_2 真子图 导出子图 **V**3 G_2 G_3 子图 ℃ V5 V_2 v_2 真子图 生成子图 **V**3 *v*₃ b

子图和补图

Lijie Wang

子图

元王国

Example G G_1 子图 v_2 v_2 真子图 导出子图 **V**3 G_2 G_3 子图 子图 ℃ V5 V_2 v_2 真子图 真子图 生成子图 **V**3 *v*₃ b

Lijie Wang

图和补图

Lijie Wang

子图

完全

Definition

子图和补图

Lijie Wang

) I=1

完全图

Definition

• 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。

于国和作图

Lijie Wang

完全图

Definition

- 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。
- 设 G=<V,E> 为一个具有 n 个结点的有向简单图,如果 G 中任意两个结点间都有两条方向相反的有向边相连,则称 G 为有向完全图,在不发生误解的情况下,也记为 K_n 。

子图和补图

Lijie Wang

完全图

Definition

- 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。
- 设 G=<V,E> 为一个具有 n 个结点的有向简单图,如果 G 中任意两个结点间都有两条方向相反的有向边相连,则称 G 为有向完全图,在不发生误解的情况下,也记为 K_n 。

• 完全图的邻接矩阵除主对角线上的元素为 0 外, 其余元素均为 1;

子图和补图

Lijie Wang

完全图

元至图

Definition

- 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。
- 设 G=<V,E> 为一个具有 n 个结点的有向简单图,如果 G 中任意两个结点间都有两条方向相反的有向边相连,则称 G 为有向完全图,在不发生误解的情况下,也记为 K_n 。

- 完全图的邻接矩阵除主对角线上的元素为 0 外, 其余元素均为 1;
- 无向完全图 K_n 的边数为 $C_n^2 = \frac{1}{2}n(n-1)$;

子图和补图

Lijie Wang

完全图

70王国

Definition

- 设 $G = \langle V, E \rangle$ 为一个具有 n 个结点的无向简单图 , 如果 G 中任意两个结点间都有边相 连 , 则称 G 为无向完全图 , 简称 G 为完全图 , 记为 K_n 。
- 设 G=<V,E> 为一个具有 n 个结点的有向简单图,如果 G 中任意两个结点间都有两条方向相反的有向边相连,则称 G 为有向完全图,在不发生误解的情况下,也记为 K_n 。

- 完全图的邻接矩阵除主对角线上的元素为 0 外, 其余元素均为 1;
- 无向完全图 K_n 的边数为 $C_n^2 = \frac{1}{2}n(n-1)$;
- 有向完全图 K_n 的边数为 $P_n^2 = n(n-1)$.

Lijie Wang

Lijie Wang

子宫和朴图 Lijie Wang

子图

完全图

Example K_4 K_3 K_5

子图和补图

Lijie Wang

一人匠

完全图

设 $G = \langle V, E \rangle$ 为简单图, $G' = \langle V, E_1 \rangle$ 为完全图,则称 $G_1 = \langle V, E_1 - E \rangle$ 为 G的补图(complement of graph),记为 \overline{G} 。

设 $G = \langle V, E \rangle$ 为简单图, $G' = \langle V, E_1 \rangle$ 为完全图,则称 $G_1 = \langle V, E_1 - E \rangle$ 为 G 的补图(complement of graph),记为 \overline{G} 。

• 补图 G 就是从完全图中删除图 G 中的边;

设 $G = \langle V, E \rangle$ 为简单图, $G' = \langle V, E_1 \rangle$ 为完全图,则称 $G_1 = \langle V, E_1 - E \rangle$ 为 G的补图(complement of graph), 记为G。

- 补图 G 就是从完全图中删除图 G 中的边:
- 补图 G 就是以 V 为结点集,以所有能使 G 成为完全图 K_0 的添加边组成的 集合为边集的图:

设 G=<V,E> 为简单图, $G'=<V,E_1>$ 为完全图,则称 $G_1=<V,E_1-E>$ 为 G 的补图(complement of graph),记为 \overline{G} 。

- 补图 G 就是从完全图中删除图 G 中的边;
- 补图 G 就是以 V 为结点集,以所有能使 G 成为完全图 K,的添加边组成的集合为边集的图;
- 图 G 和它的补图 G 有相同的结点,两个结点在 G 里相邻,当且仅当它们在 G 里不相邻.

Lijie Wang

子图

完全图

作回

Lijie Wang

子图

元主性

...

Lijie Wang

, 121

元全图

TI IS

子園和补園

Lijie Wang

完全图

补图

Lijie Wang

, 121

完全图

TITE

Lijie Wang

) E

完全图

Lijie Wang

....

完全图

Lijie Wang

元王国

Lijie Wang

☞ 注意

画补图时,边和原图是互补关系,但结点不变。尤其是孤立结点,一定不要漏掉!

补图的邻接矩阵

图和补图

Lijie Wang

子图

完全图

Example v_1 v_2 v_3 v_3 v_4 v_4 v_5 v_6 v_7 v_8 v_8 v_8 v_8 v_8 v_8 v_8 v_8

补图的邻接矩阵

图和补图

Lijie Wang

子图

完全图

Example

邻接矩阵求补图的方法

若设简单图 G 的邻接矩阵 $A=(a_{ij})_{n\times n}$,则它的补图 \overline{G} 的邻接矩阵 $\overline{A}=(\overline{a_{ij}})_{n\times n}$

$$\overline{a_{ij}} = \begin{cases} 1 - a_{ij} & i \neq j \\ 0 & i = j \end{cases}$$
 , $(i, j = 1, 2, 3, \dots, n)$

子图和补图

Lijie Wang

空全8

九土国

1958 年美国《数学月刊》上的一个数学问题:

Example

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是相互的)。

补图

Lijie Wang

Example

1958 年美国《数学月刊》上的一个数学问题:

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是 相互的)。

Proof.

把参加集会的人作为结点,相互认识的人之间连边,得到图 G,设 \overline{G} 为 G 的补图,这样问题就 转化为证明 G 或 \overline{G} 中至少有一个完全子图 K_3 。

子图和补图

补图

.

1958 年美国《数学月刊》上的一个数学问题:

Example

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是相互的)。

Proof.

把参加集会的人作为结点,相互认识的人之间连边,得到图 G,设 \overline{G} 为 G 的补图,这样问题就转化为证明 G 或 \overline{G} 中至少有一个完全子图 K_3 。 考虑完全图 K_6 ,结点 v_1 与其余 5 个结点各有一条边相连,这 5 条边一定有 3 条在 G 或 \overline{G} 中,不妨设有 3 条边在 G 中,设这 3 条边为 $(v_1,v_2),(v_1,v_3),(v_1,v_4)$ 。

补图

1958 年美国《数学月刊》上的一个数学问题:

Example

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是 相互的)。

Proof.

把参加集会的人作为结点,相互认识的人之间连边,得到图 G,设 \overline{G} 为 G 的补图,这样问题就 转化为证明 G 或 \overline{G} 中至少有一个完全子图 K_3 。 考虑完全图 K_6 ,结点 V_1 与其余 5 个结点各有 一条边相连, 这 5 条边一定有 3 条在 G 或 \overline{G} 中, 不妨设有 3 条边在 G 中, 设这 3 条边为 (v₁, v₂), (v₁, v₃), (v₁, v₄)。 考虑结点 v₂, v₃, v₄。若 v₂, v₃, v₄ 在 G 中无边相连,则 v₂, v₃, v₄ 相互 不认识;若 v₂、v₃、v₄ 在 G 中至少有一条边相连,例如(v₂、v₃),则 v₁、v₂、v₃ 就相互认识。

子图和补图

Lijie Wang

完全图

1958 年美国《数学月刊》上的一个数学问题:

Example

证明:在任意6个人的集会上,总会有3个人相互认识或者有3个人互相不认识(假设认识是相互的)。

Proof.

把参加集会的人作为结点,相互认识的人之间连边,得到图 G,设 \overline{G} 为 G 的补图,这样问题就转化为证明 G 或 \overline{G} 中至少有一个完全子图 K_3 。 考虑完全图 K_6 ,结点 v_1 与其余 5 个结点各有一条边相连,这 5 条边一定有 3 条在 G 或 \overline{G} 中,不妨设有 3 条边在 G 中,设这 3 条边为 $(v_1,v_2),(v_1,v_3),(v_1,v_4)$ 。 考虑结点 v_2,v_3,v_4 。若 v_2,v_3,v_4 在 G 中无边相连,则 v_2,v_3,v_4 相互不认识;若 v_2,v_3,v_4 在 G 中至少有一条边相连,例如 (v_2,v_3) ,则 v_1,v_2,v_3 就相互认识。 因此,总会有 3 个人相互认识或者有 3 个人互相不认识。

E图和补图

Lijie Wang

子图

元王国

作園

THE END, THANKS!