GNANAMANI COLLEGE OF TECHNOLOGY(Pachal,Namakkal.) DEPARTMENT OF BIO MEDICAL

ENGINEERING

(Third Year)

Title: Smart parking

Team Members: B.Kavinila(620821121048)

M.Nandhini(620821121072)

V.Abinayasri(620821121006)

K.Abinaya(620821121004)

T.Gowriamirtha(620821121028)

BY

Gowri Amirtha. T

SMART PARKING

PROBLEM:

Difficulty in Accurate parking Space Detection-One common challenge in smart parkingSystems is accurately detecting whether a parking space is occupied or vacind in accutare detection can lead to confusion and insufficiency

KEYWORDS:

- 1)Internet of things
- 2)Smart city
- 3) Messaging protocols
- 4)Standerdization
- 5)Introperability
- 6)Protuct life cycle management

INTRODUCTION:

- * . An IOT based parking system is a vechile parking management system to is the search for the vacant parking spot in a parking lot through a smart phone.
- *. The system utilizes various sensors and microcontrollers with internet capability for decting parked vechiles and to uptate the data in real time on internet .

DESIGN OF SMART PARKING:

*. As Mentioned above the proposed smart parking lot circuit will be equipped

With several sensors

*. Inexpensive microcontrollers and wifi module using which a car/any vechile won car check if there is a vacant space in a parking lot using his /her phone or tabelet or even on computer.

DATA FUSION:

Compain data from multiple sensor to increase accuracy for example, you can use both infrared and ultra sonicsensors in tandem by cross referencing their

Data can reduce false readings.

MACHINE LEARNING:

- *.Implement machine learning algorithms to analog sensor data
- *.Machine learning can help in fine tuning occupancy detection by accounting for various factors like sesor noise lighting conditions and environmentalChanges.

REAL TIME UPDATES:

- *. Connect the sensor data to a central system or a mobile app that provides Realtime updates to users
- *.Indicating available parking space this ensures that drivers are directed to the nearest vacant spot

MAINTENANCE AND CALIBRATION:

- *.Regularly maintain and calibration the sensors to ensure their accuracy over time . this includes checking for sensor malfunctions or obstructions
- *.By addressing the accuracy of parking space detection through IOT Sensors

 And data processing.you can improve the efficiency and user experience of your

 SMART PARKING PROJECT.

SOFTWARE:

Software used for arduino based smart parking system project is arduino IDE

ARDUINO IDE:

This is the primary software for programming Arduino boards you can downloade it from the official arduino web site.

PHASE-2

INNOVATION

1. **IoT Connectivity:**

- Utilize IoT modules (such as ESP8266 or ESP32) with Arduino to connect the system to the internet.
- Enable bidirectional communication, allowing the system to send data to the cloud and receive commands or updates.

2. **Soil Moisture Sensing:**

- Implement soil moisture sensors in key locations to measure the moisture content of the soil.
- Use capacitive soil moisture sensors for accurate readings, and calibrate them to specific soil types.

3. **Data Transmission:**

- Establish a secure connection to an IoT platform (like ThingSpeak, Blynk, or AWS IoT) to transmit real-time data.
 - Ensure data encryption for privacy and security.

4. **Cloud-Based Analytics:**

- Implement cloud-based analytics to process and analyze the collected data.
- Utilize machine learning algorithms to predict future soil moisture levels based on historical data, weather forecasts, and other relevant parameters.

5. **Mobile Application:**

- Develop a user-friendly mobile app for farmers or users to monitor and control the system remotely.
- Include features such as real-time soil moisture levels, historical data graphs, and the ability to adjust irrigation settings.

6. **Automated Irrigation Control:**

- Implement an automated irrigation system that adjusts water flow based on real-time sensor data.
- Include features like scheduling, threshold alerts, and emergency shutdown in case of sensor malfunctions or extreme conditions.

7. **Energy Efficiency:**

- Design the system to be energy-efficient by using low-power components and optimizing the communication protocols.

8. **Scalability:**

- Ensure that the system is scalable, allowing users to expand the coverage area or add more sensors as needed.

9. **Weather Integration:**

- Integrate weather APIs to incorporate forecast data into the decision-making process.
- Adjust irrigation schedules based on upcoming weather conditions to avoid unnecessary watering during or after rainfall.

10. **Community and Data Sharing:**

- Allow for community-based data sharing where users can contribute anonymized data for broader analysis.
- Promote a collaborative approach to water management, especially in regions facing water scarcity

PHASE-3

DEVELOPMENT-1

1. **Hardware Setup**:

- Install sensors (e.g., ultrasonic, infrared, or magnetic) in parking spaces to detect vehicle presence.
 - Deploy cameras for visual monitoring and license plate recognition.
- Set up a microcontroller or IoT device (e.g., Raspberry Pi, Arduino, or specialized hardware) to connect and manage the sensors and cameras.

2. **Connectivity**:

- Establish a reliable internet connection, either through Wi-Fi, cellular, or a dedicated network for your IoT devices.
 - Ensure proper security measures for data transmission.

3. **Data Collection**:

- Collect data from the sensors and cameras, such as occupancy status and license plate information.
 - Send this data to a central server or cloud platform for processing and analysis.

4. **Data Processing and Storage**:

- Process the incoming data to determine parking space occupancy.
- Store historical data for trend analysis and reporting.

5. **User Interface**:

- Develop a user-friendly mobile app or web interface for users to check parking availability, reserve spots, and pay for parking.

6. **Notifications**:

- Implement real-time notifications for users, such as alerts when a parking spot becomes available or when a reservation is about to expire.

7. **Payment Integration**:

- Integrate payment gateways for users to pay for parking using various methods, such as credit cards, mobile wallets, or prepaid accounts.

8. **Security**:

- Implement security measures to protect the IoT devices and data, including encryption, access control, and device authentication.

9. **Analytics**:

- Use data analytics to gather insights on parking space utilization and optimize parking management.

10. **Maintenance and Monitoring**:

- Set up monitoring tools to track the health and status of IoT devices.
- Regularly maintain and calibrate sensors and cameras to ensure accuracy.

11. **Scalability**:

- Design the system to be scalable, allowing for easy expansion to more parking spaces or locations.

12. **Regulatory Compliance**:

- Ensure compliance with local regulations and privacy laws, especially regarding data collection and user privacy.

13. **Testing and Deployment**:

- Thoroughly test the system in a controlled environment before deploying it in a real-world setting.

14. **Feedback and Improvement**:

- Continuously gather user feedback to improve the system's features and performance.

15. **Integration with Smart City Initiatives**:

- Explore opportunities to integrate your smart parking system with broader smart city initiatives, like traffic management and sustainability efforts.

PHASE-4

DEVELOPMENT-2

1. **Feature Engineering**:

- **Sensor Data**: Collect data from sensors (e.g., cameras, ultrasonic sensors) to monitor parking spaces.
- **Time Features**: Incorporate time-related features such as day of the week, time of day, and holidays to capture patterns.
- **Weather Data**: Include weather conditions (e.g., rain, snow) as they can affect parking behavior.
 - **Historical Data**: Use historical occupancy data to establish trends and patterns.
- **External Data**: Integrate traffic data and event schedules that may impact parking demand.

2. **Model Training**:

- **Classification Models**: Train classification models like Random Forest, SVM, or Neural Networks to predict parking space occupancy (occupied or vacant).
- **Regression Models**: If you want to predict the duration of parking, use regression models.
- **Time Series Analysis**: For time-dependent patterns, use techniques like ARIMA or LSTM.
- **Reinforcement Learning**: RL can be used to optimize parking strategies over time, e.g., pricing or guidance to users.
- **Anomaly Detection**: Detect anomalies or unauthorized parking using anomaly detection models.

3. **Evaluation**:

- **Metrics**: Use metrics like accuracy, precision, recall, F1-score for classification models, or RMSE for regression models.
 - **Cross-Validation**: Employ cross-validation to assess model generalization.
- **Real-time Testing**: Test the model in a real-time environment, comparing predictions with actual occupancy.
- **User Feedback**: Collect feedback from users to gauge system satisfaction and effectiveness.
- **Optimization**: Measure the efficiency of the parking system by evaluating whether it reduces congestion and optimizes space usage.