Towards Bringing Together Numerical Methods for Technology Partial Differential Equation and Deep Neural Networks

Project presentation, Supervisor - Markus Hoffmann Stanislav Arnaudov | 4. Juni, 2020

CHAIR FOR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Introduction

Basic idea: Apply machine learning and image processing in computational fluid dynamics context

4. Juni, 2020

Introduction

•000

Introduction

Basic idea: Apply machine learning and image processing in computational fluid dynamics (CFD) context

- Machine learning through deep neural networks
- DNNs for image generation

4. Juni, 2020

Introduction

Why

Models

Introduction

Basic idea: Apply machine learning and image processing in computational fluid dynamics (CFD) context

- Machine learning through deep neural networks
- DNNs for image generation

- Simulation of fluids through mathematical models
- Differential equations
- Specialized solvers for the equations

How

Project

- What we aimed to do?
- Why is our research being done?
- How were our goals achieved?

Introduction

Predict the flow around an object in a channel.

Introduction

Why

How

Data Generation

Models

Evaluation

Predict the flow around an object in a channel.

Figure: Simulation Setup

Introduction

Predict the flow around an object in a channel.

Parameters for the whole simulation

- Inflow speed of the fluid
- Viscosity and density of the fluid

Why

Solutions

for each timestep

- Velocity field (x&y directions)
- Pressure field

4. Juni, 2020

Introduction

Predict the flow around an object in a channel.

4. Juni, 2020

Introduction

- Predict the flow around an object in a channel.
- Network Principle

Introduction

- Predict the flow around an object in a channel.
- Network Principle

Introduction

Why

Image: Second content of the cont

What

Why

How

Data Generation

Introduction

Models

- Lots of parameters to tweak
- Complicated workflow
- Computationally expensive

- Everything is learned during training
- DNNs are well established in image processing tasks
- Faster image generation

How

What

Introduction

How

•00

How

- Not a single holistic model
 - Constant model
 - Inflow speed model
 - Viscosity-density model

Introduction

How

000

How

- Not a single holistic model
- Model variations
 - Usage of the pressure field
 - No usage of the pressure field

Introduction

Introduction

Why

How

- Real simulation data gathering
 - Define large amount of simulations
 - Solving HiFlow3¹ as numerical solver
 - Rendering ParaView² as visualization toolkit

"HiFlow3 - Technical Report on Release 2.0"

イロト イタト イミト イミト 900 **Data Generation** Models

¹Avachit. Utkarsh, "The ParaView Guide: A Parallel Visualization Application, Kitware", 2015. ISBN 978-1930934306

²Gawlok, S., Gerstner, P., Haupt, S., Heuveline, V., Kratzke, J., Lösel, P., Mang, K., Schmidtobreick, M., Schoch, N., Schween, N., Schwegler, J., Song, C. and Wlotzka, M.,

- Real simulation data gathering
- Separate data sets for each model
 - Single simulation for the constant model
 - Multiple simulations for the other models

4. Juni, 2020

Introduction

- Real simulation data gathering
- Separate data sets for each model
- Parameters for the simulations
 - Not chosen at random
 - Reynolds number in [90, 450]
 - Non-trivial simulations

4. Juni, 2020

Introduction

How

- Real simulation data gathering
- Separate data sets for each model
- Parameters for the simulations

Figure: X velocity

Introduction

Why

Evaluation

- Real simulation data gathering
- Separate data sets for each model
- Parameters for the simulations
- Test train splits
 - 80/20 split for all data sets
 - No common Reynolds numbers between the simulations in the trainand test-sets

Introduction

Real numbers handling

4. Juni, 2020

Introduction

Real numbers handling

Introduction

- Real numbers handling
- Approach based on Pix2Pix³
 - General image-to-image translation framework
 - Impressive results in recent years

input output Figure: Example image from the pix2pix paper

³Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-resolution image synthesis and semantic manipulation with conditional

Introduction Stanislav Arnaudov - Research Project

Data Generation

0000000

4. Juni, 2020

27/49

- Real numbers handling
- Approach based on Pix2Pix
- Conditional GAN (cGAN)

Figure: Training a cGAN

- Real numbers handling
- Approach based on Pix2Pix
- Conditional GAN (cGAN)
- Generator Architecture
 - UNet

Figure: The UNet architecture

4. Juni, 2020

Introduction

- Real numbers handling
- Approach based on Pix2Pix
- Conditional GAN (cGAN)
- Generator Architecture
- Discriminator Architecture
 - PatchGAN

Introduction

What Stanislav Arnaudov - Research Project

Introduction

Why

Models

Evaluation Strategies

Individual Images

Recursive Application

Introduction

How

- **Evaluation Strategies**
- Results Views
 - Numerical point of view
 - Perceptual/Visual point of view

4. Juni, 2020

Introduction

Numerical View

- Average difference
- Maximal difference

Introduction

How

Why

Models

Numerical View

Model	Max diff.	Average diff.
Constant	14.56%	0.60%
Inflow speed	32.16%	0.55%
Viscosity-density	57.00%	13.85%

Table: All of the results are from models using the pressure field

Introduction

Numerical View

Model	Max diff.	Average diff.
Constant	14.56%	0.60%
Inflow speed	32.16%	0.55%
Viscosity-density	57.00%	13.85%

Table: All of the results are from models using the pressure field

4. Juni, 2020

Introduction

Numerical View

Figure: Visible pattern in a generated image

4. Juni, 2020

Introduction

Perceptual view

- Correlation
- PSNR (Peak Signal to Noise Ration)

Introduction

Why

How

Perceptual view

- Correlation
- PSNR (Peak Signal to Noise Ration)

4. Juni, 2020

Introduction

How

Perceptual view

- Correlation
- PSNR (Peak Signal to Noise Ration)

How

Perceptual view

- Correlation
- **PSNR** (Peak Signal to Noise Ration)

Introduction

Perceptual view: PSNR — higher is better

Introduction

Figure: Inflow speed model

Figure: Fluid model

Data Generation

Introduction

Perceptual view: PSNR — higher is better

Why

Figure: Inflow speed model recursive results

Introduction

Evaluation

Perceptual view

Figure: Predicted simulation from the viscosity-density model

4. Juni, 2020

Introduction

Performance

4. Juni, 2020

0000000000000000

Introduction

Why

How

Data Generation

Models

Performance

Method	Single core	Multi-Core (12)	GPU
Our Networks	$pprox$ 600 \emph{ms}	≈ 100 <i>ms</i>	4ms
HiFlow3	$pprox$ 8000 \emph{ms}	≈ 1000 <i>ms</i>	_

Table: Time in milliseconds needed per simulation-step

4. Juni, 2020

Introduction

Thank you for your attention.

Introduction

Why

Models

Questions?

4. Juni, 2020

Introduction