

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2005年6月16日 (16.06.2005)

PCT

(10)国際公開番号
WO 2005/053821 A1

(51)国際特許分類⁷: B01D 53/26, B32B 27/18, G01N 31/00

(21)国際出願番号: PCT/JP2004/017597

(22)国際出願日: 2004年11月26日 (26.11.2004)

(25)国際出願の言語: 日本語

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2003-404271 2003年12月3日 (03.12.2003) JP
特願2004-154846 2004年5月25日 (25.05.2004) JP

(71)出願人(米国を除く全ての指定国について): 共同印刷株式会社 (KYODO PRINTING CO., LTD.) [JP/JP]; 〒1128501 東京都文京区小石川四丁目14番12号 Tokyo (JP).

(72)発明者: および

(75)発明者/出願人(米国についてのみ): 千葉英輔 (CHIBA, Eisuke) [JP/JP]; 〒1128501 東京都文京区小石川四丁目14番12号 共同印刷株式会社内 Tokyo (JP). 小川達也 (OGAWA, Tatsuya) [JP/JP]; 〒1128501 東京都文京区小石川四丁目14番12号 共同印刷株

式会社内 Tokyo (JP). 小泉真一 (KOIZUMI, Shinichi) [JP/JP]; 〒1128501 東京都文京区小石川四丁目14番12号 共同印刷株式会社内 Tokyo (JP). 高橋抄織 (TAKAHASHI, Saori) [JP/JP]; 〒1128501 東京都文京区小石川四丁目14番12号 共同印刷株式会社内 Tokyo (JP).

(74)代理人: 藤井紘一, 外 (FUJII, Koichi et al.); 〒1050001 東京都港区虎ノ門一丁目4番4号 川村ビル4階 Tokyo (JP).

(81)指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84)指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD,

/ 続葉有 /

(54) Title: MOISTURE ABSORBENT MATERIAL WITH INDICATOR FUNCTION, HUMIDITY INDICATOR AND PACKAGING BAG

(54)発明の名称: インジケータ機能付き吸湿材、湿度インジケータ及び包装袋

(57) Abstract: A moisture absorbent material (drying material) furnished with indicator function without the use of heavy-metal-containing cobalt chloride, low-molecular organic substance, etc.; and a humidity indicator with which the state of humidity can be found in a convenient manner. There is provided moisture absorbent material with indicator function (10) comprising resin layer (11) containing 5 to 80 wt.% of zeolite and, superimposed on at least one surface thereof, a printed layer of characters, pattern, picture, etc., so that expression of the printed layer is realized through clearing of the resin layer (11) by moisture absorption. There is further provided humidity indicator (20) comprising film (21) of zeolite-containing resin composition overlaid using an adhesive with aluminum foil (26) or polyolefin film (22) printed with pattern (24) consisting of characters, symbols, lines, etc. with diversified printing densities, so that sequential viewing of the pattern (24) through clearing of the film (21) of zeolite-containing resin composition by moisture absorption is realized to thereby reveal space humidity.

(57)要約: 重金属を含む塩化コバルトや、あるいは低分子有機物等を用いないでインジケータ機能を有する吸湿材(乾燥材)の提供と、簡便な方法で湿度の状態を知ることができる湿度インジケータの提供にある。インジケータ機能付き吸湿材(10)は、ゼオライトを5~80重量%含有する樹脂層(11)の少なくとも一面側に文字、柄、絵等からなる印刷層を配し、吸湿による該樹脂層(11)の透明化により該印刷層を発現するようにした。また、湿度インジケータ(20)は、ゼオライト含有樹脂組成物を使用したフィルム(21)と文字、記号、線等の印刷濃度に差を設けたパターン(24)を印刷したポリオレフィンフィルム(22)及びアルミニウム箔(26)とを接着剤を用いて積層し、ゼオライト含有樹脂組成物を使用したフィルム(21)の水分吸収による透明化により前記パターン(24)を順次視認できるようにして、空間の湿度が明確になるようにした。

WO 2005/053821 A1

SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

インジケータ機能付き吸湿材、湿度インジケータ及び包装袋 技術分野

[0001] 本発明は、水分を吸収したときに文字、柄、絵等からなるパターンを発現させるようにしたインジケータ機能付き吸湿材、文字等の印刷濃度の変化により湿度状態の視認を可能にした湿度インジケータ及び包装袋に関するものである。

背景技術

[0002] 従来から、インジケータ機能を有する吸湿材(乾燥剤)としてシリカゲルが知られている。シリカゲル自体は白色の物質であるが、吸湿状態を表示するために塩化コバルトを混合させて、乾燥状態では青色を呈示し、大気中の湿気(水分)を吸収すると桃色を呈示するようにしている。

[0003] しかしながら、現在、21世紀は環境とエネルギーの世紀といわれ、コバルトのような重金属の使用は環境面への配慮から極力避けたいという情勢にある。そこで、脱コバルトを目指したインジケータ機能を有する部材の開発が進められている。

[0004] 例えば、吸湿機能を提供するものではないが、インジケータ機能を有するものとして、例えばpH指示薬とアルカリ性物質を含みアルカリ性物質の蒸散による変色を利用するものが知られている(特許文献1、特許文献2参照)。

また、可変性色素とアルカリ性物質を含み、大気中の酸素又は湿気による変色を利用するものも知られている(特許文献3参照)。

さらにまた、色素と有機溶媒を含み、有機溶媒の揮散による発色を利用するもの(特許文献4、特許文献5参照)、あるいは光により変色する物質を利用するものなどが知られている(特許文献6参照)。

[0005] また、環境判定インジケータとして、次の発明も提案されている。

これらは、変色層として示温インキ、pH指示薬、フォトクロミックインキなどがもちいられ、温度、湿度、紫外線照射量、アンモニア濃度、pH値などの環境変化に対応するものである。環境の変化によって、変色層が有色から無色、薄色から濃色に変化することによってインジケータ機能を表すとされている(特許文献7参照)。

[0006] さらに、特許文献8には、吸湿して色が変化する染料を用いた湿度インジケータについての記載がある。

特許文献1:特開昭56-131684号公報(明細書全文)

特許文献2:特開昭62-179640号公報(明細書全文)

特許文献3:特開昭57-104884号公報(明細書全文)

特許文献4:特開平01-161081号公報(明細書全文)

特許文献5:特開平02-290591号公報(明細書全文)

特許文献6:特公平02-033385号公報(明細書全文)

特許文献7:特開2003-192908号公報(明細書全文)

特許文献8:実公平5-15089号公報(明細書全文)

発明の開示

発明が解決しようとする課題

[0007] しかしながら、これらインジケータは、いずれも低分子有機物が含まれているため、高温(150°C~200°C)で成形すると、黒化するか、あるいは分解して性能が低下してしまう。また毒性の問題もある。

[0008] 本発明の課題は、重金属を含む塩化コバルトや、あるいは低分子有機物等を用いないでインジケータ機能を有する吸湿材(乾燥材)の提供と、簡便な方法で湿度の状態を知ることができる湿度インジケータ及び包装袋の提供にある。

課題を解決するための手段

[0009] 上記課題に鑑み、本発明は次のような手段を採用した。

請求項1記載のインジケータ機能付き吸湿材は、ゼオライトを5~80重量%含有する樹脂層の少なくとも一面側に文字、柄、絵等からなる印刷層を配し、吸湿による該樹脂層の透明化により該印刷層を発現することを特徴としている。

水分を吸収して白濁から透明に変化するので、吸収性能の限界点に達したことを示すインジケータとして作用する。

請求項2記載のインジケータ機能付き吸湿材は、請求項1記載の発明において、印刷層は文字、記号、線等のパターンの印刷濃度に差を設けてあることを特徴としている。

[0010] 請求項3記載のインジケータ機能付き吸湿材は、請求項1又は2記載の発明において、前記樹脂層の印刷層を配した面側にゼオライトを5～80重量%含有する樹脂層が積層されていることを特徴としている。

請求項4記載のインジケータ機能付き吸湿材は、請求項1～3の何れか1項記載の発明において、前記樹脂層の少なくとも一面にはバリアフィルムが積層されていることを特徴としている。

[0011] 請求項5記載のインジケータ機能付き吸湿材は、請求項4記載の発明において、前記バリアフィルム層と印刷層との間に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工したことを特徴としている。

[0012] 請求項6記載のインジケータ機能付き吸湿材は、請求項1～4の何れか1項記載の発明において、前記印刷層が設けられた樹脂層の逆面に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工したことを特徴としている。

[0013] 請求項7記載のインジケータ機能付き吸湿材は、請求項1～6の何れか1項記載の発明において、前記樹脂層が飽和吸湿状態になったときに光の透過率が70%以上となることを特徴としている。

請求項8記載のインジケータ機能付き吸湿材は、請求項1～7の何れか1項記載の発明において、前記樹脂層の印刷を行った印刷層面に反射面を有したフィルムを積層したことを特徴としている。

請求項9記載のインジケータ機能付き吸湿材は、請求項1～8の何れか1項記載の発明において、前記印刷層に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%であることを特徴としている。

請求項10記載のインジケータ機能付き吸湿材は、請求項1、2、9の何れか1項記載の発明において、前記印刷層のインキ膜厚は、0.3 μm～100 μmであることを特徴としている。

請求項11記載のインジケータ機能付き吸湿材は、請求項1～10の何れか1項記載の発明において、前記樹脂層の白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現する構成にしたことを特徴として

いる。

請求項12記載の湿度インジケータは、ゼオライト含有樹脂組成物を使用したフィルムとパターンを印刷したポリオレفينフィルム及び反射面を有したフィルムとを積層し、ゼオライト含有樹脂組成物を使用したフィルムの水分吸収に伴い白濁状態から透明に変化することを利用して前記パターンを視認できるようにしたことを特徴としている。

- [0014] 請求項13記載の湿度インジケータは、請求項12記載の発明において、前記樹脂組成物の上に熱可塑性樹脂を積層することにより吸湿速度を抑え、パターンの視認速度を制御させたことを特徴としている。
- [0015] 請求項14記載の湿度インジケータは、請求項13記載の発明において、前記熱可塑性樹脂の表面に視野角拡大用の塗料を塗工したことを特徴としている。
- [0016] 請求項15記載の湿度インジケータは、請求項12～14の何れか1項記載の発明において、前記パターンを印刷したポリオレفينフィルム層と前記反射面を有したフィルム層との間に低屈折率のフィルムを積層したことを特徴としている。
- [0017] 請求項16記載の湿度インジケータは、請求項12記載の発明において、前記ゼオライト含有樹脂組成物を使用したフィルムとパターンを印刷したポリオレ Feinsteinフィルム及び反射面を有したフィルムとを積層したものの全体を前記ゼオライト含有樹脂組成物を使用したフィルムより幅広のフィルムで上下から挟みヒートラミネーション加工したことを特徴としている。
- [0018] 請求項17記載の湿度インジケータは、請求項16記載の発明において、前記ヒートラミネーションに用いたフィルムの水蒸気透過度は $0.1\text{ (g/m}^2\text{/day)}$ から $100\text{ (g/m}^2\text{/day)}$ までのものであることを特徴としている。
- [0019] 請求項18記載の湿度インジケータは、請求項16又は17記載の発明において、前記ヒートラミネーションに用いたフィルムのフィルム層に、吸湿して発現するパターンの状態を判定するための色見本を印刷したことを特徴としている。
- [0020] 請求項19記載の湿度インジケータは、請求項12記載の発明において、パターンの文字、記号、線等の印刷濃度に差を設け、視認度に変化が現れるようにして、空間の湿度が明確になるようにしたことを特徴としている。

請求項20記載の包装袋は、請求項1～19のいずれか1項記載のゼオライト含有樹脂層を全面又は1部に設けたフィルムを用いて袋体に成形したことを特徴としている。

発明の効果

[0021] 請求項1～11記載の発明は、脱コバルトを実現した環境対応型のインジケータ機能付き吸湿材を提供することができる。また、従来技術で示したような変色層を層として挿入する必要がなく、パターン印刷を行うのみなので製品コストを軽減させることができるとなる。また、発現する文字の光学濃度と吸湿量との関係から、包装袋としたときに内部を開けて吸湿能力を確認する必要がなくなる。

また、ゼオライト含有したフィルムにポリオレフィン等の種々のフィルムを積層することで、その厚さにより飽和到達時間を制御することができる。また、ゼオライトを含有した樹脂層の厚さを変えることで、吸湿量を調整することができる。

請求項12～19記載の発明は、上記のように構成したので、吸湿によるフィルムの透明化度によって吸湿度に応じたパターンが順に視認可能となるので、途中段階の吸湿状態を把握することができる。

さらに、請求項20記載の発明は、包装袋内の収納された物品の湿度を吸収して物品を適度な乾燥状態に置くことができる。

図面の簡単な説明

[0022] [図1]本発明に係るインジケータ機能付き吸湿材の実施の形態の断面図である。

[図2]本発明に係るインジケータ機能付き吸湿材の他の実施の形態を示す図で、(a)は断面図、(b)はその作用の説明図、(c)は他の例の断面図である。

[図3](a)～(i)は本発明に係るインジケータ機能付き吸湿材のうちフィルム部分の変形型をそれぞれ示す図である。

[図4]本発明に係る湿度インジケータの実施の形態を示す図である。

[図5]図4に示す湿度インジケータに用いるパターンの図である。

[図6]図4に示す湿度インジケータに用いる他のパターンの図である。

[図7]図4に示す湿度インジケータに用いるさらに他のパターンの図である。

[図8]網点面積率の違いと湿度の変化によるインジケータ出現テストの図である。

[図9]フィルムの吸湿前後によって変化する光学濃度の差を表す図である。

[図10]図4に示す湿度インジケータの吸湿フィルム上に熱可塑性樹脂を積層した例を示す図である。

[図11]図10に示す湿度インジケータの熱可塑性樹脂の厚さを変えて吸湿フィルムの吸湿状態を測定し、その状態を示した図である。

[図12]熱可塑性樹脂の厚みを変えて吸湿フィルムの完全透明化する目を測定し、その状態を示した図である。

[図13]図10に示す湿度インジケータの表面に光反射防止用の低屈折率層を塗工した状態を示す図である。

[図14]パターンを印刷した樹脂層と反射フィルムとの間に低屈折率フィルムを積層した状態を示す図である。

[図15]湿度インジケータ全体をヒートラミネーションした状態を示す図である。

[図16]吸湿フィルム単独と吸湿フィルムのヒートラミネーションした場合の吸湿量の変化状態を測定し、その状態を示す図である。

[図17]湿度インジケータの上面にパターンと同じ判定色を印刷した例を示す図である。

[図18]図17で示す湿度インジケータが完全に吸湿した状態を示す図である。

[図19]ゼオライト含有樹脂層を全面又は一部に用いたフィルムで成形した包装袋の図である。

発明を実施するための最良の形態

[0023] 図1に、本発明に係るインジケータ機能付き吸湿材の実施の形態を示す。

インジケータ機能付き吸湿材10は、図に示すように、ゼオライトを含有した有機樹脂組成物を成形したゼオライトフィルム11を有しており、該フィルム11を成形の際に、その両面にポリオレфин(例えばLLDPE)12, 12を共押し出しで積層し、更に一方のポリオレфин面にはバリアフィルム13としてポリエステル(この例ではPET)を積層している。また、バリアフィルム13の表面には文字、柄、絵等からなるパターン14が印刷されている。

[0024] 上記ゼオライトフィルム11は、次のようにして製造する。

先ず、ベース樹脂にゼオライトを5ー80%混合し、さらにこれらの親和性を高めるため添加剤としてエチレン・アクリル酸エステル・無水マレイン酸共重合体等を混合比1ー20%を添加してフィルム状に成形する。なお、ゼオライトの混合比は、好ましくは、重量比で約40ー80重量%と、さらに好ましくは重量比で約50ー80重量%とする。

[0025] ベース樹脂としては、例えばLDPE(低密度ポリエチレン)、LLDPE(直鎖状低密度ポリエチレン)、PP(ポリプロピレン)、各種共重合体(コポリマー)として、アイオノマー、EAA、EMAA、EVA、EEA、EMA、EMMA等から1種又は複数種を混合して用いられ、このような樹脂の中から高MFR(メルトフローレート)、好ましくは温度190°C、荷重21.18Nの条件下で測定したMFRが10(g／10分)以上のものを含むように適宜選んで使用する。

[0026] ゼオライトは、3Åから10Åの細孔径を有する粉末状の無機多孔性物質であり、好適な吸着剤として用いられる。その平均粒子径は、例えば10μm前後のものが好適に用いられる。

[0027] ゼオライトは、極性を有し、分子の大きさの違いによって物質を分離するのに用いられる多孔質の粒状物質であり、均一な細孔をもつ構造であり、細孔の空洞に入る小さな分子を吸収して一種のふるいの作用をする。

[0028] このようにして形成したゼオライトフィルム11は、吸湿して飽和するとフィルム11は白濁から透明への変化が起こるので、視認する側から見てフィルム11の裏側にパターンを印刷しておけば、フィルム11が吸湿することによってパターンが視認できるようになる。

また、ゼオライトフィルム11の印刷層を設けた面側に更にゼオライトフィルムを積層させ、印刷層の両側にゼオライトフィルムを設ける構成とすることで、ゼオライトフィルムが不透明な状態のときに、どちらの面から見ても印刷層が視認できなくなるので、両面から視認できる構成の湿度インジケータとして用いる場合特に有用である。

[0029] ここで、ゼオライトフィルム単独ではフィルム表面が樹脂とゼオライトが混じり合っている状態であるため荒く、光の透過率が低くなる。また、ゼオライトフィルムのみでは大気中の水分の吸収速度は非常に速く、飽和到達時間の制御が困難であり、かつフィルム強度は劣る。

[0030] そこで、ポリオレフィン12のような材質のフィルムを積層することによって、フィルム全体の強度を高め、かつフィルム表面の粗さを減少させ、かつゼオライト結晶凝集体の離脱を押さえ、更に吸湿による透明化をより際だたせる効果を発揮する。また、フィルムを貼り合わせることによって吸湿速度をフィルムの材質や厚さにより制御することも可能になる。なお、ここで用いるポリオレフィン12は透明のものである。

[0031] 積層用樹脂としては、LDPE(低密度ポリエチレン)、LLDPE(直鎖状低密度ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)、PMMA(ポリメチルメタクリレート)、ナイロン、ポリエステル(PET、PBT、PEN)、PAN(ポリアクリロニトリル)、各種共重合体(コポリマー)としてアイオノマー、EAA、EMAA、EVA、EVOH、EEA、EMA、EMMAが用いられる。また、PTFE等のフッ素系樹脂も使用できる。

[0032] また、バリアフィルム13であるポリエステルは、水分の透過に対するバリア性を有しているため、これを貼ることにより片面あるいは両面からの吸湿を制御することが更に可能となる。

なお、バリア層としては、ガスバリア性フィルムのものが好ましく、例えばアルミラミネートフィルム、アルミ蒸着フィルム、無機蒸着フィルム、無機酸化物蒸着フィルム、Kコートフィルム(塩化ビニリデンー塩化ビニル共重合体ラックスを塗布したフィルム)、OPPフィルム(二軸延伸ポリプロピレンフィルム)、OPEフィルム(延伸ポリエチレンフィルム)等が用いられる。

また、共押出フィルム、ポリイミド、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルファイド)等のエンジニアリングプラスチック系フィルム、PTFE等のフッ素系樹脂フィルム等も使用できる。

これによって、フィルムの飽和到達時間を、例えば1日から100日以上も制御が可能となる。また、ポリオレフィン系フィルムの上に貼り合わせることで、より透明感を際だたせるという利点がある。

[0033] また、パターン14印刷に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05~50重量%で、その膜厚は、0.3 μm~100 μmの範囲で使用すると都合がよい。

また、反射層としては、アルミニウム箔、アルミニウム蒸着、錫箔、錫蒸着、ニッケル

箔等の反射性を有する金属箔、金属蒸着層によって設けることができる。

[0034] なお、上記例では、パターン14をバリアフィルム13の外側面に印刷しているが、ゼオライトフィルム11の反対側に積層されているポリオレフィン12の表面に印刷する場合もある。例えば、包装袋として使用し、内部に湿気を吸湿しようとする食品等の物質を入れる場合には、外側をバリアフィルム13にして、大気中の湿気が内部に侵入しにくいようにする必要が生じるからである。

[0035] また、上記例では、インジケータ機能付き吸湿材10のフィルム部分を、ゼオライトを含有した有機樹脂組成物を成形したゼオライトフィルム11と、該フィルム11を成形の際に、その両面に共押し出しで積層したポリオレフィン(LLDPE)12, 12と、更に一方のポリオレフィン面に積層したバリアフィルム13としてのポリエステル(この例ではPET)とで構成しているが、これ以外にも、多数の層構成があり、例えば場合によっては、図3(a)に示すように、ゼオライトフィルム11のみでも良い。

[0036] また、図3(b)に示すように、ゼオライトフィルム11の片面にのみポリオレフィン12を積層したものでも良く、図3(c)に示すように、ゼオライトフィルム11の片面にのみポリエステル13を積層したものでも良い。

また、図3(d)に示すように、ゼオライトフィルム11の両面にポリオレフィン12を積層したものでも良く、図3(e)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層したものでも良い。

またさらに、図3(f)に示すように、ゼオライトフィルム11の片面にはポリオレフィン12を、他の面にはポリエステル13を積層したものでも良く、図3(g)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層して、一方のポリエステル13の上にのみポリオレフィン12を積層したものでも良い。

また、図3(h)に示すように、ゼオライトフィルム11の両面にポリオレフィン12を積層し、さらにその両面にポリエステル13を積層したものでも良く、あるいは図3(i)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層し、その上にポリオレフィン12を積層したものでも良い。

また、ゼオライトフィルムに積層させる熱可塑性樹脂、バリアフィルムの層構成はこれに限定されるものではない。

[0037] 上記何れのフィルムを使用するにしても、インジケータとしてのパターン14は、これを視認する側から見て、ゼオライトフィルム11の裏側に印刷するのが通常である。なお、パターン14の色をゼオライトフィルム11の白濁した色と同じ色にするならば、視認する側から見て、ゼオライトフィルム11の表側に印刷して利用することも可能である。ゼオライトフィルム11が白濁状態ではパターン14は背景の色に同化して見えず、ゼオライトフィルム11が透明になると、見えてくることになる。

また、印刷層はその目的や用途に応じて上記積層フィルムの任意の場所に設けることが可能である。

[0038] なお、ゼオライトフィルム11が飽和吸湿状態になったときに、パターン14が視認しにくいという場合には、図2(a)に示すように、インジケータ機能付き吸湿材10のパターン14印刷面にアルミニウム(Al)箔16を接着剤15にて貼り付けて使用すると反射率が上がり、より白濁状態が濃くなる。

図2(b)に示すように、ゼオライトフィルム11が水分を吸湿する前は、白濁して白く見えていたものが、吸湿することにより透明化して、アルミニウムによる反射光の中にパターン14(図では「KP」の文字)が浮かび上がった状態で視認することができる。

また、図2(c)のように、パターン14印刷面の両面にゼオライトフィルム11を積層することで表裏両面からパターン14を視認するのに適した構成とすることができる。

[0039] これらの場合、内部に収納した物質の吸湿乾燥用として包装袋とするのは難しい。内部が視認できなくなるからである。従って、このインジケータ機能付き吸湿材10を一枚のシートにして、目的の吸湿乾燥用の物質とともに透明袋に入れて、外部から視認するようにする方法がある。

[0040] なお、バリアフィルム層(ポリエステル)13と印刷層との間に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工し、機能発現時に視認されるパターン14の色をそれらの色にしておいてもよい。

あるいは、印刷層が設けられた樹脂層の逆面に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工し、機能発現時に視認されるパターン14の視認性を向上させるように構成してもよい。

単色のインジケータは吸收波長が限られているため視認度に限界があるが、上記

の色を任意に混色することで吸収波長が広がり視認性を高めることができる。

[0041] なお、上記ゼオライトフィルム11は、低分子有機物が分解する温度において成形しても、インジケータ機能の劣化がない。

実施例 1

[0042] A. インジケータ機能付き吸湿材10のフィルム部分の吸湿テストを行った。

フィルムは、図1に示す構成のもので、ゼオライトフィルム11(3Åの細孔径を持つゼオライト(モレキュラーシーブス3A)を50重量%、LDPEを50重量%)の厚さを130μm、熱可塑性樹脂層(LLDPE)12の厚さを両方とも10μm、バリアフィルム(PET)13を25μmとしたものからなり、経時による吸湿量、透明化に伴う可視光の透過率について測定した。テストは25°C、相対湿度20%下で行った。その結果を表1に示す。フィルムの吸湿量が18%を超えると、可視光の透過率は70%を超え、フィルムの透明化が顕著となる。

この場合、吸湿量の計算式は、

$$(水分增加量 / フィルム中のゼオライトの量) \times 100$$

である。

なお、

水分増加量 = 計測時のフィルムの重量 - 計測初期のフィルムの重量

フィルム中のゼオライトの量 = 最初のフィルムの重量 - 樹脂の重量

とする。

[0043] [表1]

吸湿テスト

	吸湿率 (%)	透過率 (%)	フィルムの状態
実験開始直後	0	30	白濁
3日経過後	12.0	60	白濁
6日経過後	18.8	70	フィルムの透明化顕著
8日経過後	21.5	80	フィルム飽和

[0044] B. インジケータテストを行った。

図2(a)に示すような構成のものであるが、フィルムはゼオライトフィルム11(3Åの細孔径を持つゼオライト(モレキュラーシーブス3A)を50重量%、LDPEを50重量%)のみである。ゼオライトフィルム11に直接パターン14を印刷し、これに接着剤15を塗布し反射面を有したフィルムとしてアルミニウム(Al)箔16を貼り付けた。パターン印刷に用いたインキは、樹脂に対する顔料あるいは染料の重量比が、0.05~50重量%で、その膜厚は、0.3 μm~100 μmの範囲でおこなった。その結果を表2に示す。表2は顔料の重量比が1重量%、膜厚が5 μmでおこなったものである。

アルミニウム箔を吸湿フィルムの下部に貼ることによって、光の反射率を上昇させ、透明化による印刷パターンの発現をより際だたせている。実験は白色、イエロー、マゼンタ、シアン、黒色にて実施し、それぞれのパターンの発現時間について測定を行った。表2は白色パターンのインジケータテストである。

吸湿方向は、フィルム上面からのみである。

環境によって、飽和到達時間は異なるが、パターンが発現するのに要する吸湿率はほぼ一致している。

表1の経過時間と、インジケータの発現時間は異なるものの吸湿率は、ほぼ同じである。

[0045] [表2]

インジケータテスト

試験環境	23°C、50%RH	25°C、20%RH
パターン発現までの 経過日数	5日	8日
吸湿率	17.8%	17.4%

[0046] C. 印刷パターンの光学濃度数字化テストを行った。

フィルム構成は、図1に示す構成であり、ゼオライトフィルム11(3Åの細孔径を持つゼオライト(モレキュラーシーブス3A)を50重量%、LDPEを50重量%)の厚さは60

$\mu\text{ m}$ 、熱可塑性樹脂層(LLDPE)の厚さは両面とも $20\mu\text{ m}$ 、PETの厚さは $25\mu\text{ m}$ である。印刷パターンは白色である。

試験環境は、温度 23°C 、相対湿度50%である。結果を表3に示す。

測定器: Macbeth RD918

4日目にフィルムが透明化してきた。すなわち、このように構成すると、フィルムの白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現することになる。

[0047] [表3]

光学濃度数字化テスト

	パターン濃度	地肌濃度	パターン発現
1日目	0.18	0.18	×
2日目	0.20	0.20	×
3日目	0.23	0.21	×
5日目	0.27	0.22	○
6日目	0.31	0.22	○

パターン濃度は図2 (b) の符号14、地肌濃度は図2 (b) の符号16

注: ×はフィルムが白濁状態でパターンが目視できず、○はフィルムが透明化してパターンが目視できる状態を示す。

[0048] 次ぎに、本発明に係る湿度インジケータの実施の形態について説明する。

湿度インジケータ20は、図4に示すように、ゼオライト含有樹脂組成物を使用したフィルム21とパターンを印刷したポリオレフィンフィルム22及びアルミニウム箔26とを接着剤を用いて積層したものである。なお、ゼオライト含有樹脂組成物を使用したフィルム21(3Åの細孔径を持つゼオライト(モレキュラーシーブス3A)を50重量%、LDPEを50重量%)の厚さを $130\mu\text{ m}$ 、ポリオレフィンフィルム(LLDPE)22の厚さを $10\mu\text{ m}$ 、アルミニウム箔26の厚さは $9\mu\text{ m}$ としている。

ゼオライト含有樹脂組成物を使用したフィルム21は、先のインジケータ機能付き吸湿材10の実施の形態にて説明したゼオライトフィルム11と同質のものである。また、

ポリオレフィンフィルム22も先の実施の形態で説明したポリオレフィンフィルム12と同質のものである。アルミニウム箔26はアルミラミネートフィルム、アルミ蒸着フィルムでもよい。

[0049] ポリオレフィンフィルム22に印刷するパターン24は、例えば図5に示すように、フィルム22を短冊型にして、その面の長手方向に直交させた形状で、網点面積率90、70、50、30、10%にした矩形型のパターンを順に印刷する。なお、この場合、フィルム22は透明で、網点は白色の点であり、図で黒で濃くなっている方が白の網点面積率が高い状態を示している。

フィルム21が水分を吸湿して、白濁状態から次第に透明化していく課程で背面のアルミニウム箔26をバックにして最初は最も網点面積率の高いパターンから見えてくる。フィルム21の吸湿が進むと順次網点面積率の低いパターンが見えてくることになる。

[0050] 他のパターン24として、例えば図6に示すように、短冊形のフィルム22の外縁部に網点面積率が高いパターンを印刷し、内側に行くに従って網点面積率の低いパターンを印刷するようにしてもよい。これは、吸湿フィルム21が端面から吸湿し飽和する速度が早いことを考慮したものである。

[0051] また、他のパターン24として、例えば図7に示すように、網点面積率を変化させた文字又は数字パターンを印刷し、フィルム21が透明化することを利用してこれに伴い湿度毎の数値を表すようにしてもよい。この図では、文字は「kp」となっているが、例えば網点面積率90%で数字40、網点面積率70%で数字45、網点面積率50%で数字50、網点面積率30%で数字55、網点面積率10%で数字60を印刷しておいて、網点面積率90%の数字40のパターンが視認されるときは、フィルムの配置された袋内の湿度40%であることがわかるようにしてもよい。

実施例 2

[0052] D. インジケータ出現テスト

透過性フィルム(LLDPE/PET)を用いた袋内に、10gのシリカゲルと上記のパターン24を有する湿度インジケータ20[ゼオライト含有樹脂組成物を使用したフィルム21(3Åの細孔径を持つゼオライト(モレキュラーシーブス3A)を50重量%、LDPE

を50重量%)の厚さを $130\mu\text{m}$ 、ポリオレフィンフィルム(LLDPE)22の厚さを $10\mu\text{m}$ 、アルミニウム箔26の厚さを $9\mu\text{m}$ としたもの]を封入し、袋内の湿度変化と視認度の変化を測定した。外部環境は温度 25°C 、湿度50%である。図8に示す結果が得られた。

湿度が40%付近まで上昇するとインジケータのパターンが視認できた(この場合の印刷層:顔料50%、網点面積率90%)。なお、吸湿フィルム21の厚さやゼオライトの含有量、パターン濃度などを変化させることによって任意の湿度のときにインジケータを発現させることが可能である。

図5, 6, 7に示すパターンはフィルムの吸湿前後によってパターンの光学濃度の差に変化が現れる。その状態を図9に示す。この結果、パターンと地肌との光学濃度差から、湿度状態を確認することが可能である。

なお、上記湿度インジケータの実施の形態では、パターンを白色の網点で形成したが、他に黒、赤、黄、青等を単独で網点にして形成してもよく、またこれらを混色させたものを網点として印刷したものでもよい。また、合成樹脂フィルム自体に着色したものを合わせて用いてもよい。

[0053] 上記湿度インジケータ20は、図4に示すように、ゼオライト含有樹脂組成物を使用したフィルム21とパターンを印刷したポリオレフィンフィルム22及びアルミニウム箔26とを接着剤を用いて積層したものであるが、図10に示すように、ゼオライト含有樹脂組成物を使用したフィルム21の上に熱可塑性樹脂33を積層した構成にしてもよい。

熱可塑性樹脂33としては、PET、LLDPE、LDPE、HDPE、ナイロン、EVA、PP、アイオノマー、ポリスチレン、PVC、EVOH、セロハンなどが挙げられる。

実施例 3

[0054] 図10に示す構成で、熱可塑性樹脂33としてPETを用い、吸湿フィルム単独のサンプルとの吸湿速度を比較してみた。その結果を図11に示す。なお、環境は温度 25°C 、湿度50%である。PETは東洋紡E5100(東洋紡績株式会社製)を用い、厚さを $12, 25, 50, 100\mu\text{m}$ と変えて実験してみた。

この結果、PETを積層させることによって、ゼオライト含有樹脂層の吸湿速度を減少させることが可能であることがわかる。また、PETの厚みを増すことによって、吸湿

速度が減少していくことがわかる。つまり、PETなどの熱可塑性樹脂を吸湿フィルム上に積層することによって、吸湿後に発現する印刷パターンの視認性を制御することが可能となることを示唆している。すなわち、このような熱可塑性樹脂を積層することによって、インジケータの保持期間を制御することが可能であると考えられる。

実施例 4

[0055] 次に、インジケータの視認速度を観察した。

吸湿フィルム上にPETを積層させたサンプルを、温度25°C、湿度50%と温度40°C、湿度90%の環境で保管し、視認性(フィルムが完全に透明化する日)について観察した。その結果を図12に示す。

なお、PETの厚みによって水蒸気透過度($\text{g}/\text{m}^2/\text{day}$)が変化することから、式はそれぞれの水蒸気透過度と完全に透明化する日による関数として表している。

[0056] 図10に示した湿度インジケータ20の場合、表面の光反射により見る角度が変わると状態の変化が視認しづらくなる可能性がある。そこで、図13に示すように、表面層3-5としてガラスビーズを15-30%含有させた樹脂からなる低屈折率層を塗工により形成した。これにより、蛍光灯などの光の表面反射を抑えて視野角を向上し視認性を高めた湿度インジケータ20を提供することができる。

実施例 5

[0057] 低屈折率層を形成する塗料は、アクリル系UV硬化樹脂にガラスビーズを配合したものであるが、含有量を変えてインジケータの視認性を確認した結果、表4のような結果が得られた。

[0058] [表4]

ビーズ含有量と視認性の関係

ビーズ含有量(wt%)	7.5	10	15	25
視認性	×	×	○	○

○：向上

×：向上せず

[0059] ガラスビーズの含有量によって塗工後のインジケータの視認性に影響を与えること

が確認できた。

[0060] また、インジケータの視認性を向上させるため、図10に示す構成において、アルミニウム箔26とパターン印刷層22との間に、図14に示すように、低屈折率フィルム36を積層させてもよい。

[0061] 上記湿度インジケータ20は、吸湿が側面から行われやすいので、図15に示すように湿度インジケータ20全体を湿度インジケータ20よりも幅広のヒートラミネーションフィルム50で被う加工を施せば、吸湿速度を制御することが可能となる。ヒートラミネーションフィルムとしては、LLDPE、LDPE、HDPEをPET、ナイロン、EVA、PP、アイオノマー、ポリスチレン、PVC、EVOH、セロハンなど熱可塑性樹脂と貼り合わせた構成のものが挙げられる。

実施例 6

[0062] 吸湿速度の実験

吸湿フィルム単独とその吸湿フィルムをヒートラミネーションしたものとを25°C、50%RHの環境に保管し、吸湿量(g/g)を測定した。結果を図16に示す。なお、使用したラミネートフィルムの水蒸気透過度は5.9(g/m²/day)である。

図16に示すように、この結果、吸湿フィルムの飽和に達する時間は、ヒートラミネーションすることにより変更でき、すなわち、ヒートラミネーションすることによって吸湿速度を制御することができる。また、ヒートラミネーションをしないと、湿度インジケータの側面からの吸湿が主となり透明化の変化は端部から中心に向かって徐々に起こるが、このような構成にすると、インジケータの表面全体から透明化しパターンの視認に関しては徐々に変化していくことが確認できた。

[0063] また、上記ゼオライト含有樹脂組成物を使用したフィルム21を用いた湿度インジケータ20は、白濁状態から透明化する湿度インジケータ20の文字パターンが視認可能になった時点で吸湿状態を判断しているが、人によって判断基準が異なることがあるため、以下に示すような構成にすると都合がよい。

すなわち、湿度インジケータ20を視認する側から見て前面側に、図17に示すように、フィルムの吸湿状態に対応した判定色印刷部40を設ける。これにより判定色の濃度と視認可能となった文字パターン14の濃度を比較することで吸湿状態が判断でき

るため、個人による判断時にずれを抑えることができる。図18にその結果を示す。判定色印刷部40の近傍に「判定色」という文字を印刷しておいて、判定の対象を明確にしておくと便利である。なお、図18(a)では、判定色印刷部40の文字は「30」としており、パターン14も「30」という文字にしている。図18(b)は判定色印刷部40のところは濃度で示し、パターン14も濃度で示している。

[0064] 図19は、湿度インジケータ機能を有するゼオライト含有樹脂層を全面又は一部に設けたフィルムを用いて袋体に成形した包装袋30を示したもので、袋内に収納された物品を適当な乾燥状態に置くことが可能となる。

また、ゼオライトフィルムと印刷層を積層させた構成でゼオライトフィルムを外側にした袋とすることによって、袋体の透明化に伴い、内部に印刷されたパターンを視認することが可能となる。また、袋体とする際には内側にヒートシール層を積層し三方シール袋、四方シール袋、ガゼット袋等にすることが可能であり、四方シール袋の場合に反射層を含むフィルムと反射層を含まないフィルムをラミネートするような構成とともに可能である。

産業上の利用可能性

[0065] 本発明に係るインジケータ機能付き吸湿材は、フィルム状にすることで、機能性包装材として電子部材や食品医薬品等の乾燥剤(吸湿材)付き包装袋として利用可能であり、またこれらに制限されるものではない。また、本発明に係る湿度インジケータはフィルムの透明化度によって吸湿度に応じたパターンが順に視認可能となるので、食品包装袋等に封入させて、内部の湿度状況を把握するのに好適である。

符号の説明

- [0066] 10 インジケータ機能付き吸湿材
- 11 ゼオライトフィルム
- 12 熱可塑性樹脂
- 13 バリアフィルム
- 14 パターン
- 15 接着剤
- 16 アルミニウム箔

- 20 濕度インジケータ
- 21 ゼオライト含有樹脂組成物を使用したフィルム
- 22 ポリオレフインフィルム
- 24 パターン
- 26 アルミニウム箔
- 30 包装袋
- 33 热可塑性樹脂(PET)
- 35 表面層(低屈折率層)
- 36 低屈折率フィルム
- 40 判定色印刷部

請求の範囲

- [1] ゼオライトを5～80重量%含有する樹脂層の少なくとも一面側に文字、柄、絵等からなる印刷層を配し、吸湿による該樹脂層の透明化により該印刷層を発現することを特徴とするインジケータ機能付き吸湿材。
- [2] 前記印刷層は、文字、記号、線等のパターンの印刷濃度に差を設けてあることを特徴とする請求項1記載のインジケータ機能付き吸湿材。
- [3] 前記樹脂層の印刷層を配した面側にゼオライトを5～80重量%含有する樹脂層が積層されていることを特徴とする請求項1又は2記載のインジケータ機能付き吸湿材。
 -
- [4] 少なくとも一面にはバリアフィルムが積層されていることを特徴とする請求項1～3の何れか1項記載のインジケータ機能付き吸湿材。
- [5] 前記バリアフィルム層と印刷層との間に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工したことを特徴とする請求項4記載のインジケータ機能付き吸湿材。
- [6] 前記印刷層が設けられた樹脂層の逆面に、白、黒、赤、青、緑、黄、藍、シアン、マゼンタの何れか又はそれらを混色させたインキを塗工したを特徴とする請求項1～4記載のインジケータ機能付き吸湿材。
- [7] 前記樹脂層が飽和吸湿状態になったときに光の透過率が70%以上となることを特徴とする請求項1～6の何れか1項記載のインジケータ機能付き吸湿材。
- [8] 少なくとも一面に反射面を有したフィルムを積層したことを特徴とする請求項1～7の何れか1項記載のインジケータ機能付き吸湿材。
- [9] 前記印刷層に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%であることを特徴とする請求項1～8の何れか1項記載のインジケータ機能付き吸湿材。
- [10] 前記印刷層のインキ膜厚は、0.3 μm～100 μmであることを特徴とする請求項1、2、9の何れか1項記載のインジケータ機能付き吸湿材。
- [11] 前記樹脂層の白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現する構成にしたことを特徴とする請求項1～10の何

れか1項記載のインジケータ機能付き吸湿材。

- [12] ゼオライト含有樹脂組成物を使用したフィルムとパターンを印刷したポリオレフィンフィルム及び反射面を有したフィルムとを積層し、ゼオライト含有樹脂組成物を使用したフィルムの水分吸収に伴い白濁状態から透明に変化することを利用して前記パターンを視認できるようにしたことを特徴とする湿度インジケータ。
- [13] 前記ゼオライト含有樹脂組成物を使用したフィルムの上に熱可塑性樹脂を積層することにより吸湿速度を抑え、パターンの視認速度を制御させたことを特徴とする請求項12記載の湿度インジケータ。
- [14] 前記熱可塑性樹脂の表面に視野角拡大用の塗料を塗工したことを特徴とする請求項13記載の湿度インジケータ。
- [15] 前記パターンを印刷したポリオレフィンフィルム層と前記反射面を有したフィルム層との間に低屈折率のフィルムを積層したことを特徴とする請求項12～14の何れか1項記載の湿度インジケータ。
- [16] 前記ゼオライト含有樹脂組成物を使用したフィルムとパターンを印刷したポリオレフィンフィルム及び反射面を有したフィルムとを積層したものの全体を前記ゼオライト含有樹脂組成物を使用したフィルムより幅広のフィルムで上下から挟みヒートラミネーション加工したことを特徴とする請求項12記載の湿度インジケータ。
- [17] 前記ヒートラミネーションに用いたフィルムの水蒸気透過度は $0.1\text{ (g/m}^2\text{/day)}$ から $100\text{ (g/m}^2\text{/day)}$ までのものであることを特徴とする請求項16記載の湿度インジケータ。
- [18] 前記ヒートラミネーションに用いたフィルムのフィルム層に、吸湿して発現するパターンの状態を判定するための色見本を印刷したことを特徴とする請求項16又は17記載の吸湿インジケータ。
- [19] 前記パターンは文字、記号、線等の印刷濃度に差を設け、視認度に変化が現れるようにして、空間の湿度が明確になるようにしたことを特徴とする請求項12記載の湿度インジケータ。
- [20] 請求項1～19の何れか1項記載のゼオライト含有樹脂層を全面又は一部に設けたフィルムを用いて袋体に成形したことを特徴とする包装袋。

[図1]

[図2]

(a)

(b)

(c)

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

[図13]

[図14]

[図15]

[図16]

[図17]

[図18]

[図19]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/017597

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ B01D53/26, B32B27/18, G01N31/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ B01D53/26, B32B27/18, G01N31/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2004
Kokai Jitsuyo Shinan Koho	1971-2004	Toroku Jitsuyo Shinan Koho	1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-206046 A (Kyodo Printing Co., Ltd.), 26 July, 2002 (26.07.02), Claims; Par. Nos. [0016], [0023], [0040], [0045], [0046], [0047] (Family: none)	1, 4, 5, 7-13, 16-18, 20 2, 3, 6, 14, 15, 19
Y	JP 6-262028 A (S.T. Chemical Co., Ltd.), 20 September, 1994 (20.09.94), Abstract; Par. No. [0032] (Family: none)	1, 4, 5, 7-13, 16-18, 20 2, 3, 6, 14, 15, 19
Y	JP 2001-267064 A (Nitto Denko Corp.), 28 September, 2001 (28.09.01), Claims; Par. No. [0009]; Fig. 1 & US 2001/26853 A1 & EP 1135004 A2	13

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
22 February, 2005 (22.02.05)Date of mailing of the international search report
15 March, 2005 (15.03.05)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/017597

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5224373 A (Williams et al.), 06 July, 1993 (06.07.93), Full text; all drawings (Family: none)	16-18
A	JP 2002-226715 A (Kyodo Printing Co., Ltd.), 14 August, 2002 (14.08.02), Claims; Par. No. [0051] (Family: none)	1-20
A	JP 2000-72977 A (The Pilot Ink Co., Ltd.), 07 March, 2000 (07.03.00), Full text & US 6228804 B1 & EP 919604 A2	1-20

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' B01D53/26, B32B27/18, G01N31/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' B01D53/26, B32B27/18, G01N31/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国実用新案登録公報	1996-2004年
日本国登録実用新案公報	1994-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-206046 A (共同印刷株式会社) 2002.07.26, 特許請求の範囲, 段落0016, 段落0023, 段落0040, 段落0045, 段落0046, 段落0047 (ファミリーなし)	1, 4, 5, 7-13, 16-18, 20
A		2, 3, 6, 14, 15, 19

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 22.02.2005	国際調査報告の発送日 15.3.2005
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 本間 友孝 電話番号 03-3581-1101 内線 3468 4Q 3128

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 6-262028 A (エステー化学株式会社) 1994. 09. 20, 要約, 段落0032 (ファミリーなし)	1, 4, 5, 7-13, 16-18, 20
A		2, 3, 6, 14, 15, 19
Y	JP 2001-267064 A (日東電工株式会社) 2001. 09. 28, 特許請求の範囲, 段落0009, 図1 & US 2001/26853 A1 & EP 1135004 A2	13
Y	US 5224373 A (Williams et al.) 1993. 07. 06, 全文, 全図 (ファミリーなし)	16-18
A	JP 2002-226715 A (共同印刷株式会社) 2002. 08. 14, 特許請求の範囲, 段落0051 (ファミリーなし)	1-20
A	JP 2000-72977 A (パイロットインキ株式会社) 2000. 03. 07, 全文 & US 6228804 B1 & EP 919604 A2	1-20