Prosocial Decision-Making in Early Childhood

Sara Altman May 21, 2018

Introduction

Humans, both as adults and as children, routinely help others. Adults help strangers, family, and people in-between. They will hold open doors for people whose hands are full, cook food for people who are hungry, donate money to people who ask for it, and give directions to tourists. All these situations require us to think about the other person, as helping someone requires an understanding of what that her is, and what stands in the way of her achieving that goal (Warneken & Tomasello, 2006). Those goals can be action-based (e.g., opening a door), or more abstract (e.g., learning algebra), and the obstacles can stem from the person's own abilities (e.g., strength), from the physical world, or from other people. Helping is therefore a complicated cognitive skill. It requires an understanding that others have goals, the ability to determine, often from ambiguous evidence, what those goals are, and the understanding that various types of obstacles can prevent them from achieving those goals. Helping effectively also requires that you understand how to remove or alleviate the obstacles to your social partner's goals, which can require you to have prior experience with the situation (e.g., knowledge of algebra) or particular skills (e.g., atypical strength).

Helping involves the helper giving something to her social partner, but what they give will depend on the situation and the goals of the social partner. Helpers typically provide either goods, services, or information (M. Tomasello, 2009). These types of helping vary not only in the currency of the helping behavior, but also in the specific cognitive skills required to help effectively. Providing goods (i.e., a blanket if the social partner is cold) requires knowledge about what kinds of goods can fulfill various goods. Providing services requires the physical and cognitive abilities to perform those services. Helping situations involving sharing information are different from the other categories because they involve reasoning about what you know that your social partner does not. This may involve realizing that the social partner has a false belief, but can also involve realizing that the social partner is ignorant to some crucial piece of knowledge. It also does not necessarily involve verbally explaining the missing piece of information; 12-month-olds will, for example, point out the location of objects that an adult is looking for (Liszkowski, Carpenter, Striano, & Tomasello, 2006).

Much has been written about altruism in humans (M. Tomasello, 2009; Warneken & Tomasello, 2009), but helping is not necessarily altruistic. Regardless of whether the helper is rewarded for her help, she had to harness the various cognitive skills discussed earlier. Therefore, the research discussed in this thesis investigates the cognitive skills involved in helping without dwelling on the exact motivations of the children involved. We wanted to know how children help when they are motivated, for whatever reason, to do so, and thus took various steps to motivate children to help.

[transition]

Development of the motivation to help

By their second birthday, children willingly help others in a variety of contexts. Infants as young as 12 months will point to show others objects that they are looking for (Liszkowski et al., 2006). They are also sensitive to exactly what information others lack, and will selectively point out only the information that others need to fulfill their goals (Liszkowski, Carpenter, & Tomasello, 2008). At 18 months, children will reliably hand adults objects out of their reach, open doors for them if their hands are full, and correct their actions on a simple toy (Warneken & Tomasello, 2006). Children in these experiments not only spontaneously helped in the various situations, but were able to discern when the adult needed help and when they did not. For example, infants were more likely to pick up a dropped object for the adult if she apparently dropped it accidentally than if she purposefully threw it on the floor. Thus, by 18 months, infants are sensitive to

information about what others' goals are, and will only help if they perceive that the other person may not be able to meet those goals by herself.

There is evidence that children's propensity to help and the types of situations in which children will help changes during the second and third years of life. One-year-olds not only are less likely to help overall than two-year-olds, but also, in contrast to two-year-olds, do not help reliably in situations in which they are required to respond to a partner's emotional distress (Svetlova, Nichols, & Brownell, 2010). One-year-olds may also require more communication from their social partner in order to help than two-year-olds, as increased requests for help and scaffolding from a social partner can also increase one-year-olds likeliness of helping (Spinrad & Stifter, 2006; Svetlova et al., 2010). Thus, two-year-olds readily help in more situations and with less guidance than one-year-olds.

Young children appear more or less likely to help appropriately depending on the specifics of the situation, as different situations require different cognitive and social skills, as well as different motivations (Thompson & Newton, 2013). Instrumental helping, which requires the helper to perform some action to fulfill the partner's goals, requires the ability to understand others' goals and determine the correct actions to take to fulfill those goals. Sharing and responding to emotional distress may be more difficult. Sharing requires incurring an immediate cost and responding to emotional distress requires reasoning about the emotions of others, as well as what actions would positively affect those emotions. Informing, as mentioned previously, requires the helper to reason about the differences in knowledge between herself and her partner. Children first help consistently in instrumental tasks (Schachner, Newton, Thompson, & Goodman-Wilson, 2018; Svetlova et al., 2010). Both the 18- and 30-month-olds in Svetlova et al.'s (2010) study helped appropriately more often in situations that involved action-based helping than in situations that involved responding to emotional distress or giving up something of their own (e.g., a favorite toy). However, a majority (87%) of the 30-month-olds helped appropriately in response to emotional distress, whereas only 13% of the 18-month-olds did so.

The 18-month-olds in Warneken and Tomasello's (2006) study also demonstrated considerable variability in helping behavior depending on the specifics of the task. Some of the tasks involved instrumental helping (e.g., fetching out-of-reach objects for the experiment, removing physical objects), but others involved informing the experimenter about the correct way to use an object once the child observed her using it incorrectly. In these tasks, children had to observe the experimenter's actions and infer that they had knowledge that she did not that she could use to fulfill her goals. Fewer children helped in these types of tasks than in the ones that required instrumental helping.

Reasoning about others' goals

Children start to understand goal-directed actions at a very young age. Children as young as five months will view both adult's and inanimate objects' repeated choice of one object over another as goal-directed, and expect the agent to continue choosing that object (Luo & Baillargeon, 2005; A. Woodward, 1998). 6.5-month-olds who watched inanimate objects repeatedly move around obstacles to reach a destination expected those objects to move efficiently toward the destination once the obstacles were removed, suggesting both that they understand motion as goal-directed and that they expect agents to achieve goals efficiently (Csibra, 2008). At 9 months, children can distinguish between situations in which an adult does not want to give them a toy and situations in which she is unable to do so (Behne, Carpenter, Call, & Tomasello, 2005). By 18-months, children can infer the intentions of others even from incomplete actions (Meltzoff, 1995). This skill is particularly crucial when helping others, as people in need of help typically fall short of their intended action, and it is thus necessary to infer a goal without witnessing the person accomplish that goal first.

It is possible that it is easier for children to understand another's goal when you have experience with the actions required to complete that goal yourself (Sommerville, Woodward, & Needham, 2005). This suggests that children may have a more difficult time helping in tasks in which they are unfamiliar with the actions involved, not only because they do not know how to help, but also because they may be unsure of the other person's goal.

Goal attribution often involves reasoning about the preferences of others. Agents sometimes choose objects at random because they have no preference for any one object over another. However, choices are sometimes

indicative of a preference for a specific object or object type. It is important to distinguish between these two scenarios when helping someone with an object, as it is often necessary to know if they need help with a specific object (i.e., they need to open their own car door) or if any object of a certain type will do (i.e., they need any AA battery). Spaepen and Spelke (2007) explored how 12-month-olds reasoned about the goal behind an agent's reach; specifically how narrowly defined a goal infants would attribute to the reacher. Their results suggest that infants use course features, or global category membership, when attributing goals (e.g., a truck versus a doll), but not finer grain information (e.g., a red pickup truck versus an orange dump truck). Furthermore, infants in their experiments did not use spatiotemporal information to construct a more detailed goal, and instead relied on general categories.

[sentence needed]

Children as young as 20 months also interpret violations of random sampling as evidence that an agent prefers one type of object over another (Kushnir, Xu, & Wellman, 2010). Together, these studies suggest that infants use information about both the object an agent chooses itself and the environment from which the agent chooses the object when attributing a goal to an agent.

Helping in complex situations

[this section is disorganized and I'm probably going to delete it and move the content around]

There is evidence that by, age two, children can reason flexibly about how to help, and have complex representations about helping scenarios.

There are various other considerations one might need to take into account in helping scenarios. One such consideration involves what kind of actions you or others can take to help the person in need. Paulus and Moore (2010) found that 3.5-year-olds take the physical capabilities of actors into account when reasoning about who someone might ask for help. They found no evidence that the younger children in the study, who were 2.5, were capable of this type of reasoning, although it is unclear if children at this age would perform better if they were they person seeking help.

As mentioned earlier, helping, and specifically, informing, often requires reasoning about the beliefs of others. In Buttelmann, Carpenter, and Tomasello (2009), toddlers learned how to operate two boxes with locks and then watched an experimenter put a toy in one of the boxes, but did not lock it. In one condition, the "False Belief" condition, the experimenter then left the room and a second experimenter moved the toy into the second box. In the other condition, the "True Belief" condition, the first experimenter remained in the room the entire time. The first experimenter also locked both boxes. After the toy was moved, the second experimenter then kneeled down by the box that he had originally placed the toy in and tried to open it. Children could then approach either box. Children in the False Belief condition tended to open the box containing the toy, but children in the True Belief condition tended to open the box that the experimenter was actively trying to open, indicating that children attributed different goals to the experimenter depending on whether he had seen the toy move to the second box.

Buttelmann, Carpenter, and Tomasello argue that this suggests that children in the study understand that, in the False Belief condition, the experimenter has the false belief that his toy is in the original box. However, a leaner interpretation is that the children simply attribute ignorance to the experimenter (i.e., he does not know where his toy is), and thus he chooses randomly between the two boxes. The authors argue that this is an implausible explanation because children need to realize that the experimenter possesses "cognitive context driving his behavior" (Buttelmann, Carpenter, & Tomasello, 2009), p. 341). However, it is possible that children in the False Belief condition think that the experimenter possesses no belief about where the toy is, but understand that he possesses the goal of retrieving his toy.

In this study, children needed to reason about what they knew that the experimenter did not. In the False Belief condition, children possessed two pieces of knowledge that the experimenter did not: how to open the locked boxes and the location of the toy. In the True Belief condition, the experimenter knew the location of the toy but did not know how to open the locked boxes. Therefore, this suggests that young toddlers are not only sensitive to differences in knowledge between themselves and their social partner when deciding how

to help, but are also able to use the specific, pertinent beliefs that they hold about objects to guide their helping behavior.

It is also sometimes necessary to override a preference in order to effectively help someone achieve her goal. For example, if someone indicates that she would like to use a particular computer, but you know that computer is broken, it makes sense to help her with a different computer. This can require realizing that someone's goals can be hierarchical: she ideally wants to use a specific computer, but, if that is not possible, any reasonable computer can fulfill her broader goal. Martin and Olson (2013) found that three-year-olds would override an adult's verbal request if her requests were incompatible with her ultimate goal.

Causal reasoning

Even if someone's goal is clear, it is often unclear what is preventing them from achieving that goal and it is necessary to reason about what interventions you can take in order to remove the relevant obtacles. In many of the helping studies described previously, the helpful action for children to take did not depend on them reasoning about the cause of the experimenter's failure. In Warnekan and Tomasello (2006), for example, the instrumental helping tasks involved only one source of failure (e.g., the experimenter could not open the cupboard door) and, furthermore, the correct action could usually be inferred directly from the experimenter's goal. Even in the more complicated Buttelmann et al. (2009) task, although there were multiple causes of the confederate's failure (i.e., ignorance about the toy's location and how to open the locked boxes), children did not have to reason about which cause was more likely. Instead, the helpful action depended only on the confederate's goal (i.e., to either retrieve the toy or open an empty box) and knowledge of a single barrier (the locks) preventing the experimenter from achieving his goal.

Many helping scenarios do involve choosing between multiple possible sources of failure. For example, consider someone trying to turn on a television with a remote. You watch him push a button, but nothing happens. It is possible that the he is operating the remote incorrectly by pushing the wrong button, but it is also possible that the remote is out of batteries, the television is broken, he has the wrong remote, etc. Helping him will require reasoning about which of these possible causes is the most likely. Although you could try them all, you might want to help him as quickly as possible, and you will probably have a sense of which causes are more likely than others based on prior experience with televisions, remotes, or this particular person. Once you have decided which cause to target first, you will also need to devise an appropriate intervention. For example, if you think he is pushing the wrong button, you will need to push the correct button or in some way direct him to push the correct button.

Children as young as two are able to use variation and covariation information to infer the physical cause of a physical effect, and, by age three, children are able to intervene on such a system to stop the physical effect (Gopnik, Sobel, Schulz, & Glymour, 2001). There is evidence to suggest that three-year-olds can reason similarly in other domains as well. Schulz and Gopnik (2004) introduced three- and four-year-olds to a monkey that sneezed when in contact with some flowers, but not others. Similar to the children in Gopnik (2001), they were able to detect the flower that caused the monkey to sneeze when shown that the monkey sneezed in the presence of single flower, or in the presence of that flower and another flower, but not in the presence of the second flower only. Children were also able to keep track of the conditional probabilities that various flowers caused the monkey to sneeze when shown only various pairs of flowers, as well as intervene to remove the flower that caused the monkey to sneeze.

This work suggests not only that young children are able to reason about the cause of an effect and intervene to stop the effect, but also that they are able to do so even if the effect is restricted the the reaction of another agent (i.e., sneezing). Furthermore, Schulz and Gopnik (2004) also created a second set of scenarios in which children had to figure out which animal made a bunny scared. Children were again able to reason about cause of the bunny's fear and intervene by removing the causal animal, suggesting that these causal reasoning abilities extend to the psychological domain. This provides evidence that young children may be able to recruit their causal reasoning abilities in helping scenarios, which often involve reasoning about why a certain effect or emotion has been produced in other agent.

Furthermore, previous work by Gweon and Schulz (2011) suggests that children as young as 16 months are capable of inferring the causes of their own failed actions and helping themselves accordingly. In the study, children either witnessed that a toy sometimes worked and sometimes did not, regardless of who operated the toy, or that the toy worked for some agents but not others. Children were then given the opportunity to try the toys for themselves, but the toys never activated. Children who witnessed that toy functionality did not depend on the agent were more likely to reach for a new toy, suggesting that they attributed their failure to the toy itself. In contrast, children who witnessed that toy functionality did depend on the agent were more likely to hand the toy off to their parent. This suggests that they attributed their failure to themselves, and thus needed someone else to operate the toy in order to make it activate.

We designed three experiments to investigate 24- to 48-month-olds ability to reason about the causes of others' failed actions and then offer effective help. In all three experiments, children observed an adult fail to activate a toy either because she took the wrong action on the toy or because she selected a broken toy. The adult then asked the child for help and children could choose between helping her with the toy she had already tried or with a second toy. The effectiveness of each choice varied with the actual cause of the adult's failure. Therefore, if children are able to reason about the cause of the adult's failure and address that cause when helping, their responses would also vary wit heth cause of her failure.

Experiment 1

We presented children with a situation in which there were multiple ways to help another person. We manipulated the likely cause of the person in need of help's failure, which made one course of action more helpful than another.

Methods

Participants

We recruited fifty-two 24- to 48-month-olds (M(SD) = 2.78(0.48)yrs, 44% female) from a museum in Palo Alto, CA. An additional 18 children were excluded from analysis due to parental interference (n = 9), experimenter error (n = 3), shyness (n = 3), or lack of video recording (n = 3). We randomly assigned children to one of two conditions: the Broken Toy condition (n = 26; M(SD) = 2.78(0.54)yrs) or the Broken Button condition (n = 26; M(SD) = 2.78(0.43)yrs).

Stimuli

We constructed three identical-looking toys. One side of each toy was covered in yellow felt and had a yellow button in the center. The opposite side was covered in red felt and had a red button in the center. The yellow button on two toys played music, while the yellow button on the third toy was inert. All red buttons were inert. The toys were placed on a white plastic tray and covered with grey felt. See Figure 1 for a schematic of the toys.

Procedure

The experiment began with a warm-up phase in which a confederate and experimenter engaged the child in reciprocal games (e.g., rolling a ball back and forth through a tube) in order to help the child feel comfortable with the researchers, and promote general helping behavior (see Cortes Barragan & Dweck, 2014). After approximately 5 minutes of warm-up, the confederate excused herself from the room, explaining that she had work to do.

Figure 1: Schematic of toys used in Experiment 1

Figure 2: Order in which children saw and pressed the buttons in each of the conditions. Children explored both buttons on a toy before moving onto the next toy. In the Broken Toy condition, children encountered the yellow button on each toy before the red button. In the Broken Button condition, children encountered the red button on each toy before the yellow button.

Then, the child gained experience with the toys during the play phase. The experimenter behaved as if she were exploring the toys for the first time. She took one toy out at a time and showed it to the child. In the Broken Toy condition, the toys were oriented such that the yellow side was on top. She noticed the yellow button, pressed it, and reacted positively to the music that played. She also encouraged the child to press the yellow button and again reacted positively, saying, "Music! The yellow side plays music!". She then turned the toy around in her hands until she discovered the red button on the opposite side, and expressed mild surprise, as if she did not expect it to be there. She pressed the red button and also encouraged the child to do so, acting perplexed and disappointed that it did not play music. The experimenter then took the second toy out, which she and the child explored in the same way (i.e., the experimenter pressed each button, and then encouraged the child to do so). This second toy was always the broken toy. This process was repeated with the third toy, which functioned the same as the first (i.e., the yellow button played music, but the red button did nothing). The child and experimenter then explored each toy again, taking turns pressing the buttons. The Broken Button condition proceeded identically except that the toys were placed with the red side up, such that the red button was discovered first, and then the yellow. By the end of the play phase, all children experienced that pressing the yellow buttons on two of the toys played music (and one was inert), and that none of the red buttons played music. See Figure 2 for a schematic of the play phase.

In the helping phase, the experimenter placed toys back on the tray and covered them with the felt. The toys were placed as they were during the play phase: yellow-side-up in the Broken Toy condition, and red-side-up in the Broken Button condition. The child sat approximately 6 feet away from the tray, either by him-/herself or with a parent. The experimenter then called the confederate back into the room and explained that she and the child were playing with toys that played music. The confederate said, "I love music!" and knelt down behind the tray, facing the child. She appeared to think about which toy to select, then said, "Hmm, I think I'll play with this one!" She then took a toy out from behind the felt such that the child could not see from where on the tray the toy was selected. She placed her chosen toy in front of her and moved the tray containing the remaining two toys, covered by felt, off to one side (counterbalanced).

She then pressed the button on top of her chosen toy (the yellow button in the Broken Toy condition; the red

Figure 3: Depiction of the helping phase in the Broken Toy condition. The Broken Button condition proceeded identically, except that all three toys were oriented such that the red button was on top.

button in the Broken Button condition). The toy did not play music. The confederate remarked, "Hmm, no music!" and pressed the button again, expressing disappointment and saying, "Still no music! I really want to play music!" She then put one hand on the tray, and at the same time, slid her toy with the other hand such that it was parallel with the tray but on her opposite side. Once the toy and tray were equidistant from the confederate, she removed her hand from the toy and removed the felt from the tray to reveal the two other toys. She then gestured to both the toy and the tray and asked, "Can you help me play music?" The toy and tray were far enough apart (approximately 2 ft) and from the child (approximately 5 ft) that s/he could not approach both simultaneously.

If the child did not respond, the confederate and experimenter provided planned prompts, waiting 5 seconds in between, until the child responded. The last of these prompts involved the confederate moving closer to the child (approximately 2 feet) and placing the tray and the toy within the child's reach but still far enough apart that the child could only reach to one location at a time.

Thus, the only differences across conditions involved what color button the child perceived as the bottom or hidden buttons. In the Broken Toy condition, the experimenter presented the yellow button of each toy to the child first, then revealed the non-obvious red button. The toys were still oriented this way when the confederate came in, chose her toy, and acted upon the toy. In the Broken Button condition, the experimenter presented the red, inert buttons first, and the red buttons were on top during the confederate's interaction with the toys.

We were interested in children's first response after the confederate's failure to activate her toy (i.e., her first button press). The key dependent measure was the target toy of this behavior, coded as either the "confederate's toy" or the "toys on the tray". All children who responded fell into one of these two categories.

We also looked at the consequence of children's first helping responses. We coded whether the behavior was "successful" or "unsuccessful" in achieving the confederate's goal of playing music. In the Broken Toy condition, we coded a child's first response as "successful" if the child pressed the yellow button on a toy from the tray or directed the confederate to press it (e.g., telling her to do so, pointing, or handing her a toy yellow side up). "Unsuccessful" responses included pressing or directing the confederate to press the red button on any toy or the yellow button on the confederate's toy. In the Broken Button condition, we coded a behavior as "successful" if a child flipped and pressed the yellow button or directed the confederate to do so (e.g., telling her to press it, flipping a toy and handing it to the confederate or pointing to a yellow side). Therefore, in the Broken Button condition, children could respond successfully regardless of which toy they targeted. In the Broken Toy condition, however, children could only respond successfully if they targeted the toys on the tray. A researcher blind to the hypotheses coded these transcriptions for reliability and agreement was 100%.

Results

Children in both conditions saw the same set of toys and watched the confederate perform the same action (pressing an obvious button on the top of a toy, which subsequently did not play music). All children could then either approach the toy the confederate had just pressed or a toy on the tray. The conditions differed only in the likely source of the confederate's failure to play music. We manipulated the likely source of her

failure by varying whether the button pressed by the confederate was the type of button that worked on a majority of the toys (i.e., a yellow button; Broken Toy condition) or the type of button that was always inert (i.e., a red button; Broken Button condition).

We predicted responses to vary across conditions depending on the source of the confederate's failure. In the Broken Toy condition, the confederate presses a yellow button. From this action alone, you can infer that she has the inert toy, since yellow buttons produce music on all toys except one. The source of her failure is therefore the toy itself. Her action (pressing a yellow button) would have produced music if she had chosen another toy. The child can thus only help the confederate achieve her goal of playing music by targeting a new toy from the tray.

In the Broken Button condition, however, it is only possible to infer that the confederate is taking the wrong action on a toy (i.e., pressing a red button instead of a yellow one). Each toy has an inert red button, so the confederate's action provides no information about which type of toy (functional or inert) she has chosen. Therefore, in this condition, children could help the confederate by approaching her toy, as toy may have a functional yellow button on the bottom. We predicted that more children would approach the "toys on the tray" in the Broken Toy condition than in the Broken Button condition. As predicted, children were significantly more likely to direct their help toward a toy on the tray in the Broken Toy condition than in the Broken Button condition (73% vs. 27%; two-tailed Fisher's Exact Test, p = 0.002).

We then looked at children's responses within each condition. In the Broken Toy condition, children could not help fulfill the confederate's goal of producing music by acting on the confederate's toy. We thus predicted that children in this condition would preferentially direct their help toward a toy on the tray. As predicted, children were more likely to approach the "toys on the tray" than the "confederate's toy" (19/26; two-tailed binomial test, p = 0.029).

In the Broken Button condition, however, it is not clear which toy the confederate has chosen. There is a 33% chance that any toy is the inert toy, and thus all toys are equally likely to be capable of producing music. It is therefore reasonable to target any toy. However, there are several reasons to expect that children would prefer the confederate's toy in this condition. First, children may be inclined to approach the toy just acted upon by the confederate. Second, children may conclude that the confederate's goal is not just to play music, but to play music specifically with her chosen toy. Thus, we expected that children would show a preference for the confederate's toy. The majority of children in the Broken Button condition did approach the "confederate's toy" (19/26; two-tailed binomial test, p = 0.029). See Figure 2 for a summary of children's first responses.

As a secondary measure, we looked at the success of children's helping responses. We considered a response successful if the child acted in a way that could fulfill the confederate's goal of playing music. In the Broken Toy condition, a behavior could be successful only if it involved approaching the "toys on the tray." In the Broken Button condition, successful behaviors involved revealing a yellow button on any of the toys. In the

Broken Button condition, helping involved the more complex action of revealing a non-obvious button, but it was also possible to successfully help by targeting either toy. All children in the Broken Button condition included in this analysis helped successfully (25/25). One child in the Broken Button condition was dropped from this analysis because the camera angle prevented visual access to the content of her helping behavior. Children in the Broken Button condition were more likely to help successfully than children in the Broken Button condition (73% in Broken Toy vs. 100% in Broken Button; two-tailed Fisher's Exact Test, p=0.01). Within each condition, children were more likely to help successfully than unsuccessfully (Broken Toy: 19/26, two-tailed binomial test, p=0.0289593; Broken Button: 25/25, two-tailed binomial test, p<0.001).

Experiment 1: Success of helping behavior by condition

As an exploratory analysis, we coded children's first responses as "correct" (Broken Toy: "toys on tray"; Broken Button: "confederate's toy") or "incorrect". We fit a generalized linear model with correctness as the outcome variable, condition as a categorical predictor variable, and age as a continuous predictor variable. This analysis revealed that age is a significant predictor of "correctness" ($\beta = 1.67$, p = 0.03), but that condition is not ($\beta = -0.08$, p = 0.9). For details, see Table 1.

Term	Estimate	SE	Z statistic	p_value
Intercept	-3.45	2.07	-1.67	0.09
condition:Broken Button	-0.08	0.66	-0.13	0.90
Age	1.67	0.78	2.13	0.03

As a second exploratory analysis, we investigated how often children targeted a non-obvious (i.e., bottom) button. This is similar to the helpfulness analysis discussed above—we coded children in the Broken Button condition as "helpful" if and only if they targeted a bottom button and "unhelpful" if they targeted a top button. However, in the Broken Toy condition, children could be unhelpful regardless of whether or not they targeted a bottom button. They could target a red button on a toy on the tray or confederate's toy, but they could also target the yellow button on the confederate's toy. The two codes were therefore distinct in the Broken Toy condition.

Children in the Broken Button condition were significantly more likely to target a non-obvious button than children in the Broken Toy condition (96% vs. 12%; two-tailed Fisher's Exact Test, p < 0.001). Furthermore, children in the Broken Button condition were significantly more likely to target a non-obvious button than an obvious button (25/26, two-tailed binomial test, p < 0.001), while children in the Broken Toy condition were significantly more likely to target an obvious button than a non-obvious one (3/26, two-tailed binomial test, p < 0.001). This provides more evidence that children are sensitive to the likely source of the confederate's failure and are then helping effectively.

Discussion

These results suggest that 2- and 3-year-olds were able to use prior knowledge to use prior knowledge to infer the likely cause of another agent's failure and then effectively help the agent achieve her goal. When the likely cause of the confederate's failure was the toy itself (Broken Toy condition), children helped by changing the toy, but when the likely cause was the confederate's action on the toy (Broken Button condition), children helped by changing her action on that toy. Thus, children did not help in a uniform way across conditions; they responded to the likely cause of the confederate's failure.

The only way to address the source of the confederate's failure in the Broken Toy condition was to target a new toy. However, in the Broken Button condition, there were multiple ways to fulfill the confederate's goal. Children needed to correct her action, by showing her that she needed to act on a yellow button instead of a red one, but they could do so on either the confederate's own toy or on a new toy. Each toy was equally like to have a functional yellow button, but children in this condition were more likely to show the confederate the correct action on the toy that she had previously chosen. It is possible that children are more inclined to approach a toy upon which someone has already chosen to act. However, it is also possible that children thought that the confederate's goal was to play music with her chosen toy, rather than to play music generally.

Children not only responded according to the likely source of the confederate's failure, but also tailored their actions so that they effectively helped the confederate fulfill her goal. A majority of children in the Broken Toy condition targeted an obvious button, while a majority of children in the Broken Button condition targeted a non-obvious button, even though children saw the exact same toys in both conditions. This suggests that the children not only realized which toy could help the confederate fulfill her goal, but also which action to take on that toy would be the most effective. Furthermore, of the 7 out of 26 children in the Broken Button condition who targeted the toys on the tray, all targeted a bottom button. Thu, even though these children changed the toy, their behavior at their chosen toy suggests that they did not attribute the source of the confederate's failure solely to the toy itself. In contrast, none of the 19 in the Broken Toy condition who targeted the toys on the tray targeted a bottom button.

We did find an age-related trend in terms of "correctness." However, this does not necessarily suggest that 2-year-olds are less capable of performing this task than 3-year-olds. Instead, it is possible that 2-year-olds are more likely to help by targeting the toys on the tray in this condition, which, as explained earlier, is still helpful. 2-year-olds may have a stronger aversion to acting on a toy that someone has already failed to work, or may interpret the confederate's goal differently than 3-year-olds.

Figure 4: Schematic of the toys used in Experiment 2. All 4 toys were visually identical. In the Broken Button condition, the toys were also functionally identical. In the Broken Toy condition, one toy had two functional buttons and the other had two inert buttons.

Experiment 2

In Experiment 1, the Broken Button condition did not require children to infer the soruce of the confederate's failure. The confederate's mistake is marked in red and all possible helpful actions are marked in yellow because of how the toys are color-coded. Therefore, children in this condition can help effectively by remembering that yellow produces music, and do not need to infer that the confederate's action on the toy is the source of her failure. This is not the case in the Broken Toy condition. Both the confederate's failed action and all helpful actions are marked in yellow. Children need to target a yellow button on a *new* toy and cannot simply target a particular color. To eliminate this alternative explanation in the Broken Button condition as well as the asymmetry between the two conditions, we designed a second experiment with two identical toys.

Methods

Participants

We recruited 64 24- to 48-month-old participants (M(SD) = 3.03, 42% female) from a local preschool. An additional 11 children were excluded from analysis due to experimenter error (n = 2), the child responding too early (n = 4), the child having prior exposure to the experiment (n = 4), or lack of video recording (n = 1). We randomly assigned children to one of two conditions: the Broken Toy condition (n = 32; M(SD) = 3.05(0.47)yrs) or the Broken Button condition (n = 32; M(SD) = 3(0.41)yrs).

Stimuli

We constructed four toys, similar to those used in Experiment 1. Two opposite sides of each toy were covered in red felt and had a red button in the center. The others sides of the toys were covered in blue felt. Two of the toys were used in the Broken Toy condition and the other two were used in the Broken Button condition. The pair of toys used in the Broken Toy condition consisted of one toy with two buttons that played music when pressed. The other toy in this pair had two inert buttons. The two toys used in the Broken Button condition were identical. One button on each toy played music when pressed. The other button on each toy was inert. In each condition, the two toys were placed in a woven basket. See Figure 4 for a schematic of the toys.

Procedure

As in Experiment 1, the experiment consisted of a warm-up phase, play phase, and helping phase. During the warm-up phase, the confederate engaged the child in the same reciprocal games as in Experiment 1. The warm-up phase lasted approximately three minutes. This was two minutes shorter than the warm-up phase in Experiment 1 because the children in this experiment were already familiar with the experimenter and room in which the experiment was held.

During the play phase, the experimenter and the child interacted with two of the four toys. The experimenter behaved in a manner similar to that of Experiment 1. In contrast to Experiment 1, however, children saw different sets of toys in each condition. The child engaged with the fully inert toy and the fully functional toy in the Broken Toy condition. In the Wrong Action condition, the child engaged with the two identical toys that each had one functional button and one inert button.

The play phase began with the two toys in the woven basket. The experimenter took one toy out of the basket. She remarked that it had a blue bottom on the top and pushed the button. In both conditions, this first button played music. The experimenter reacted positively to the music and said, "Music! It plays music!" She then asked the child if s/he would like to try and encouraged him/her to push the button. After the child pressed the button, the experimenter said, "Music! It plays music! This side plays music."

The experimenter then wondered aloud if the toy could do anything else, while turning the toy over in her hands. Upon finding the bottom button, the confederate acted mildly surprised and remarked that the toy had a blue button on the bottom. She then pressed the button. In the Broken Toy condition, this button played music. She reacted as she had to the top button, encouraged the child to press the button, then said, "Music! It plays music! This side plays music. So this toy plays music." In the Broken Button condition, however, the bottom button on the first toy did not play music. The experimenter remarked, "Nothing! No music," and shook her head while she spoke. She then encouraged the child to push the button. After the child had done so, she said, "Nothing! No music! This side does not play music. So only this side plays music," pointing to the functional side of the toy.

The process was repeated for the second toy. The confederate placed the toy to the side and removed the second toy from the basket. In the Broken Toy condition, this toy was the inert toy. In the Broken Button condition, the inert button was on the top. The experimenter again remarked that the toy had a blue button on top. She pressed the button and it did nothing. She reacted as described previously (commenting that it did not play music, summarizing that the side did not play music after the child had pressed the button). The experimenter discovered the bottom button of the toy as she had with the first toy. In the Broken Toy condition, this button was also inert and the confederate acted as just described. In the Broken Button condition, this button was functional. The confederate acted as she had when the button on the first toy had played music. Thus, by the end of the play phase, all children had either experienced that one toy had two functional buttons and one had two inert buttons (Broken Toy) or that each toy had one functional and one inert button (Broken Button).

In the helping phase, the experimenter returned the toys to the basket before placing the toys approximately 4 feet in front of the child and 4 feet 6 inches apart from each other. The midpoint between the two toys was directly in front of the child so that the child was equidistant from each toy. In the Broken Button condition, both toys were oriented so that the inert button was on top. As in Experiment 1, the experimenter called the confederate back into the room and explained that she and the child were playing with toys that played music. The confederate responded, "I love music!" and stood 2 feet behind the toys such that she was equidistant from each toy. She glanced at each toy, then fixed her gaze on one (side counterbalanced) and said, "Hmm, I think I'll play with this one." She knelt behind her chosen toy and pressed the top button, which did not play music. As in Experiment 1, she remarked, "Hmm, no music!" and then pressed it again and said, "Still no music!" She then returned, still kneeling, to her original spot behind the toys and said, "I really want music! Can you show me?" while gesturing to each toy simultaneously.

In summary, the confederate appeared to choose between two toys that remained visible throughout the helping phase. She pressed only the top button on her chosen toy, as she had in Experiment 1. After failing

to operate her toy, she then moved back so that she was no longer directly behind her chosen toy. At this point, she stated her goal and prompted the child to respond.

If the child did not respond, the confederate and experimenter provided additional prompts as in Experiment 1. They provided these prompts until either the child responded or the last prompt was given. Before delivering the final prompt, the confederate picked up both toys and brought them closer, but still out of reach, of the child.

If the child provided help that did not involve a physical demonstration (i.e., pointed or gave verbal instructions) before the confederate moved back to the center and gave her prompt, the confederate indicated that she had noticed the help by saying, "Ooh." She then moved back to the center, and said, "Can you show me?" If the child did not respond, the experimenter and confederate continued prompting as explained above.

As in Experiment 1, the key dependent measure was the target of the child's first response after the confederate's failure. We coded the target as either the toy that the confederate had acted upon ("confederate's toy") or the other toy that she had not touched ("other toy"). All children included in this experiment fell into one of these two categories.

The consequence of each child's first response was also coded. We coded a response as "successful" if the behavior helped the confederate play music, and "unsuccessful" otherwise. In the Broken Toy condition, we coded a response as "successful" if the child pressed a button on the other toy or indicated (by pointing or verbally instructing) that the confederate should do so. We coded a response as "unsuccessful" if the target of the child's first behavior was the confederate's toy. In the Broken button condition, we coded a response as "successful" if the child flipped and pressed the bottom button on either of the two toys, or indicated (by pointing or verbally instructing) that the confederate should flip and press a bottom button. Unsuccessful behaviors involved acting on a top button or indicating that the confederate should act on a top button.

Results

To verify that children did not express a side bias or preference for any confederate or experimenter, we ran a logistic regression with "correctness" of response as the outcome and toy side, experimenter identity, and confederate identity as predictors. In the Broken Toy condition, "correct" responses were those that targeted the other toy; in the Broken Button condition, they were responses that targeted the confederate's toy. None of the coefficients were significant. See Table 2 for details.

Term	Estimate	SE	Z statistic	p-value
Intercept	2.53	1.69	1.50	0.13
toySideR	0.20	0.61	0.33	0.74
experimenter2	-0.40	1.31	-0.31	0.76
experimenter1	-1.15	1.50	-0.77	0.44
confederate5	-1.06	1.20	-0.89	0.37
confederate4	-1.71	1.43	-1.20	0.23
confederate3	-1.22	1.46	-0.83	0.41
confederate2	-0.07	1.51	-0.05	0.96
${\it confederate1}$	-1.61	1.27	-1.27	0.21

As in Experiment 1, children in each condition saw identical-looking toys and watched the confederate perform the same set of actions. We manipulated the cause of the confederate's failure by varying the functionality of the toy chosen by the confederate. In the Broken Toy condition, one toy is fully inert and one plays music. Thus, the source of the confederate's failure is her toy. However, in the Broken Button condition, each toy is capable of making music. The source of the confederate's failure is her choice of button, not her choice of toy.

Children in the Broken Toy condition were more likely to target the other toy than children in the Broken Button condition (84% % vs. 41%; two-tailed Fisher's Exact Test, p < .001). As in Experiment 1, children

cannot help fulfill the confederate's goal by targeting her own toy, but children in the Broken Button condition can. This result therefore replicates the finding from Experiment 1, suggesting that children in this experiment again vary their helping responses with the likely source of the confederate's failure. It also suggests that the red and yellow visual markers from Experiment 1 are not necessary for children to infer the source of the confederate's failure and use that information to help effectively.

We also looked at responses within each condition. Children in the Broken Toy condition were more likely to target the "other toy" than the "confederate's toy" (27/32; two-tailed binomial test, p < 0.001). This again replicates the result from Experiment 1, and provides further evidence that children in this condition are using their prior knowledge about the toys to guide their helping behavior.

We did not have a directed prediction for the Broken Button condition because, as described earlier, targeting either toy can be helpful. Children in the Broken Button condition showed no preference for either toy (13/32; two-tailed binomial test, p = 0.377).

Again, as a secondary measure, we looked at the success of children's helping behaviors. Successful behaviors again included only those that aided the confederate in her goal of playing music. In the Broken Toy condition, children could successfully help only if they targeted the other toy. In the Broken Button condition, children could successfully help if they targeted the bottom button on either toy. We found no difference in the success of helping behavior across the two conditions (84% in Broken Toy vs. 72 in Broken Button; two-tailed Fisher's Exact Test, p = 0.365). We then collapsed across conditions and found that children were more likely to successfully help than to unsuccessfully help (50/64; two-tailed binomial test, p < 0.001). Thus, not only were children varying their responses based on the source of the confederate's failure, they targeted their responses in a way that could help fulfill her goal of playing music.

Experiment 2: Success of helping behavior by condition

As another secondary analysis, we investigated how often children in each condition exhibited the "correct" response. In the Broken Toy condition, "correct" responses are those that target the other toy. In the Broken Button condition, "correct" responses are those that target the confederate's toy. We found no significant difference across conditions (84% in Broken Toy vs. 59% in Broken Button; two-tailed Fisher's Exact Test, p=0.05). We then collapsed across conditions to test if children were more likely to respond "correctly" or "incorrectly" versus the alternative. Children were more likely to respond "correctly" than "incorrectly" (46/64; two-tailed binomial test, p<0.001)

Finally, as an exploratory measure, we again looked at how often children targeted a non-obvious, bottom button. Children in the Broken Button condition were significantly more likely to target a bottom button than in the Broken Toy condition (72% vs. 3%; two-tailed Fisher's exact test, p < 0.001), indicating that children were using prior knowledge about the toys' functionality when responding to the confederate. Children were also more likely to target a non-obvious bottom button than an obvious top button in the Broken Button condition (23/32; two-tailed binomial test, p = 0.02) and children in the Broken Toy condition were more likely to target an obvious button than a non-obvious button (1/32; two-tailed binomial test, p < 0.001).

Experiment 2: Button type targeted by condition

Discussion

In this experiment, 2- and 3-year-old children were again able to infer the likely cause of anther individual's failure and offer appropriate help. This experiment served as a conceptual replication of Experiment 1.

Although the toys were different, children still had to choose between helping the confederate with her own toy or a new toy, and the source of the confederate's failure varied in the same manner. We replicated our main finding from Experiment 1 that children's responses varied with the likely cause of the confederate's failure. We also replicated the finding that children in the Broken Toy condition were more likely to target a new toy than to target the confederate's toy. This suggests that children are able to infer the cause of the confederate's failure without the aid of visual markers.

In contrast to Experiment 1, children showed no preference for either toy in the Broken Button condition. However, they did prefentially target non-obvious buttons, and were more likely to successfully help the confederate than to unsuccessfully help her. This provides evidence that children in this condition understood the toys and were able to address the source of the confederate's failure. Thus, children's lack of preference for a given toy does not imply that they did not know how to help the confederate. Instead, it suggests that they thought it was equally helpful to target either toy.

The comparative helpfulness of targeting one toy over the other in the Broken Button condition depends on how specific the confederate's goal is: does she just want to play music in general (the general goal), or does she want to play music with her chosen toy (the specific goal)? She does explicitly choose a toy, but when she asks the child to "show her", she does not reiterate this preference. If she just wants to play music and has no toy preference, then it does not matter which toy the child helps her with. If she wants help with her chosen toy, then it more directly fulfills her goal to help her with that toy. However, because the toys are visually and functionally identical in this condition, it is also possible to show her how her own toy works by showing her how to operate the other toy. It is also possible that children in this condition are not distinguishing between the two toys. They may then not interpret the confederate's actions as indicating a preference for one toy over another, which in turn could imply that she possesses the general goal. This is consistent with prior research suggesting that young toddlers view a repeated choice between two objects as a preference if the two objects belong to different global categories, but will not view a repeated choice between two identical objects as an expression of a side preference (Spaepen & Spelke, 2007).

Regardless of the confederate's goal, it would be more expedient to target the confederate's toy, since children have more information about this toy. They do not know which button (functional or inert) is which on the other toy, but they can infer that the functional button is on the bottom of the confederate's toy. Children do not appear to be taking this into account. Although it is possible that they are not inferring that the bottom button must play music, it seems more likely that they are not motivated to help in the most efficient way possible. They may not care about maximizing the probability of playing music on a single button press, as there is nothing to indicate that they can only press one button or offer one piece of help.

The percentages of children in the Broken Button condition who targeted the other toy in this experiment and in Experiment 1 were not significantly different (41% vs. 27%; two-tailed Fisher's Exact Test, p = 0.4053). Therefore, we cannot compare the two experiments to determine what differences may have led to children in this experiment failing to express a preference.

[where was i going with this?]

Of the 13 children in the Broken Button condition who targeted the other toy, only 5 flipped or indicated that the confederate should flip the toy over. These children were therefore included in the unsuccessfully helpful category. However, the children did not know which button was on top, and so probably tried the obvious one first to see if it would work. When it did not produce music, 11/13 of these children tried again, mostly (10/11) by flipping over the other toy. Thus, even though children who targeted the top button on the other toy were counted as unhelpful, they were able to integrate prior knowledge about how the toys worked and respond appropriately to their own failure.

There were also 25 children who offered help after the confederate pressed the top button on her chosen toy, but before she moved back to the center and asked the child to "show her." These children exhibited similar responses as did children who responded after the confederate gave her prompt. These children spontaneously helped and did not require the confederate to either state or goal or to prompt the child to "show her." Thus, they were motivated to inform the confederate about how the toys worked even though they were not explicitly asked to do so. About half of these children also helped from where they were sitting, without getting up to operate a toy themselves (13 / 25), suggesting that they were informing the confederate about the toys, and not motivated solely by the desire to produce music themselves as soon as they saw the confederate fail to do so.

Thus, it is unclear what children thought of confederate's goal in this experiment, and subsequently why children in the Broken Button condition demonstrated no preference for either toy. In a third experiment, we made it clearer that the confederate's goal was to play with her chosen toy, as well as eliminated the possibility of demonstrating how to operate one toy by acting on another.

Experiment 3

In the third experiment, we changed the structure of one toy in each pair to make the toys visually and functionally distinct. This eliminated the possibility of demonstrating how to operate the confederate's toy by acting on the other toy. Additionally, when the confederate makes a choice between the two toys, it is now more likely that she is indicating her preference for one toy type over another, and thus more likely that she holds the specific goal.

Figure 5: Schematic of the toys used in Experiment 3.

Methods

Participants

We recruited 72 24- to 48-month-old participants (M(SD) = 2.96(0.52), 47% female). Of these children, 37 (M(SD) = 2.88(0.46)) were recruited from a museum in Palo Alto, CA and 35 of these participants (M(SD) = 3.04(0.56)) were recruited from a local preschool. An additional 19 children were excluded from analysis due to experimenter error (n = 1), parental or sibling interference (n = 4), the child responding too early (n = 7), the child having prior exposure to the experiment (n = 1), or lack of video recording (n = 1).

We randomly assigned children to one of two conditions: the Broken Toy condition (n = 36; M(SD) = 2.98(0.48)yrs) or the Broken Button condition (n = 36; M(SD) = 2.94(0.55)yrs).

Stimuli

We constructed three pairs of toys. One toy in each pair looked identical to the toys constructed in Experiment 2 (top-bottom toys). The other three toys had a button on the top and on an adjacent side (top-side toys), instead of on the top and bottom, but were otherwise identical to the toys in Experiment 2. The toys in one pair each had one functional button and one inert button. For the other two pairs of toys, one toy had two functional buttons and the other had two inert buttons. In one of these pairs, the functional toy was a top-bottom toy; in the other pair, the functional toy was a top-side toy. See Figure 9.

Procedure

Again, the experiment consisted of a warm-up phase, play phase, and helping phase. The warm-up phase was identical to the warm-up phase in Experiment 2.

The play phase was also identical to the play phase in Experiment 2, except that each child saw one top-side toy and one top-bottom toy. Children were again assigned to either the Broken Button or Broken Toy condition. Each child in the Broken Button condition played two toys that each had one functional button and one inert button. Half of children in the Broken Toy condition played with a functional top-side toy and an inert top-bottom toy, and half played with a functional top-bottom toy and an inert top-side toy.

The helping phase was identical to the helping phase in Experiment 2, except for the presence of one top-side toy. The experiment placed the top-side toys such that one button was on top and the other button faced the child. In the Broken Button condition, the top button was inert and the side button was functional. The helping phase then proceeded identically to the helping phase in Experiment 2.

Again, we coded the target of each child's first behavior after the confederate's failure (i.e., her first button press). This target was either the confederate's toy or the other toy, and all children who responded fell into one of these two categories. As in the previous two experiments, we also coded responses as successful or unsuccessful. The criteria were the same as in Experiment 2 for both conditions.

Results

To verify that children did not express a bias for a particular toy type, side, confederate, or experimenter, we ran a logistic regression with all of the listed variables as predictors and an indicator variable representing whether or not children responded as predicted (i.e., targeted the confederate's toy in Broken Button or other toy in Broken Toy) as the response. None of the predictors were significant. See Table 2 for details.

Table 3: Table 2

Term	Estimate	SE	Z statistic	p-value
Intercept	32.71	5464.61	0.01	1.00
toySideR	0.26	0.65	0.40	0.69
toyTypetop-side	0.71	0.69	1.03	0.30
experimenterSara	-14.95	2870.19	-0.01	1.00
experimenterSophie	17.41	2870.19	0.01	1.00
confederate Fernanda	-17.01	4650.16	0.00	1.00
confederate Grace	-17.20	4650.16	0.00	1.00
confederate Natalie	-16.75	4650.16	0.00	1.00
confederateSara	-33.19	5464.61	-0.01	1.00
$confederate \\ Sophie$	-16.34	4650.16	0.00	1.00

Again, we predicted that responses would vary across conditions depending on the source of the confederate's failure, and that children in the Broken Toy condition would be more likely to target the "other toy" than children in the Broken Button condition. As predicted, children were significantly more likely to direct their help toward the "other toy" in the Broken Toy condition than in the Broken Button condition (94% vs. 31%; two-tailed Fisher's Exact Test, p < 0.001). This replicates the findings in Experiment 1 and 2.

As in the previous two experiments, we also predicted and found that children within the Broken Toy condition would be more likely to target the "other toy" than the "confederate's toy" (34/36; two-tailed binomial test, p < 0.001).

In contrast to Experiment 2, we predicted that children within the Broken Button condition would preferentially target the "confederate's toy" over the "other toy." The two toys in this experiment are visually different. Therefore, in the Broken Button condition, children can no longer effectively help the confederate by demonstrating the correct action on the "other toy." Additionally, because the toys are visually distinct, it now appears more likely that the confederate expresses a preference for one type of toy over the other when she selects a toy to operate. If children interpret her choice as a preference for her chosen type of toy, then they may also think it is more likely that she holds the "specific" goal of playing music with her chosen toy, and not the "general" goal of playing music with either toy. As predicted, children in this condition were more likely to target the "confederate's toy" than the "other toy" (11/36; two-tailed binomial test, p = 0.029).

As a secondary analysis, we investigated whether the proportion of children who behaved as predicted differed across conditions. Again, children in the Broken Toy condition behaved as predicted if they targeted the other toy. Children in the Broken Button condition behaved as predicted if they targeted the confederate's toy. Children were significantly more likely to behave as predicted in the Broken Toy condition than in the Broken Button condition (94% vs. 69%; two-tailed Fisher's Exact Test, p = 0.012).

Since we found a significant difference across conditions, we then looked at children's tendencies to behave as predicted within each condition. These analyses are identical to the analyses run to test our predictions about response within each condition. Thus, both children in the Broken Toy condition and Broken Button condition were significantly more likely to behave as predicted than not.

Experiment 3: Target matches prediction by condition

As another secondary analysis, we again looked at the proportion of children who were helped successfully. Children could successfully help in the Broken Toy condition if they targeted the other toy. Children could successfully help in the Broken Button condition if they targeted the non-obvious (i.e., either the bottom or side) button of either the confederate's toy or the other toy. We found that children in the Broken Toy condition were significantly more likely to help successfully than children in the Broken Button condition (94% vs. 31%; two-tailed Fisher's Exact Test, p = 0.046). Children in the Broken Toy condition were significantly more likely to help successfully than to help unsuccessfully (34/36; two-tailed binomial test, p < 0.001). Children in the Broken Button condition were also significantly more likely to help successfully than to unsuccessfully (27/36; two-tailed binomial test, p = 0.004).

Experiment 3: Success of helping behavior by condition

Finally, as an exploratory analysis, we looked at the tendency of children to target the non-obvious button on a toy. In this experiment, a non-obvious button could be a bottom or side button. Children were significantly more likely to target a non-obvious button in the Broken Button condition than in the Broken Toy condition (69% % vs. 69%; two-tailed Fisher's Exact Test, p < 0.001). Furthermore, children in the Broken Button condition were significantly more likely to target a non-obvious button than an obvious button (25/36; two-tailed binomial test, p = 0.029). Children in the Broken Toy condition were significantly more likely to target an obvious button than a non-obvious button (2/36; two-tailed binomial test, p < 0.001).

Experimnent 3: Button type targeted by condition

1.00

0.75

Target button of first response
Obvious
Non-obvious

Broken Toy
Condition
Figure 13

Discussion

The results from this experiment again suggest that children are able to use prior knowledge to infer the source of the confederate's failure, and then respond effectively to the source of her failure. We also again found that children will change the toy if the toy is likely the cause of her failure (i.e., Broken Toy condition), but will change the action on the toy if her action is likely the cause of her failure (i.e., Broken Button condition).

In contrast to the previous experiment, children in the Broken Button condition preferentially targeted the confederate's toy. The results of this experiment cannot disentangle the various explanations offered in the previous discussion for the behavior of children in the Broken Button condition in Experiment 2. The proportion of children in this experiment in the Broken Button condition who targeted the other toy did

not differ from the corresponding proportion in Experiment 2 (31% vs. 41%; two-tailed Fisher's exact test, p = 0.45). However, this result does indicate that children are likely attributing the specific goal to the confederate in this experiment, and thus are sensitive to information about the confederate's goal. However, it is also possible that children think it is more informative to target the confederate's toy, as indicating that the confederate should act on the other toy, or acting on it for her, might suggest that her own toy is broken, which is not the case. This is perhaps particularly relevant because the toys are non-identical. If the toys were identical, the child might think it less likely that the confederate would infer that her own toy is broken. However, it is really only important that the confederate not think her own toy is broken if she actually has a preference for that toy. Thus, the latter explanation might actually entail the former. A child might target the confederate's toy because she thinks that the confederate has a preference for that toy, and if she targeted the other toy, the confederate might mistakenly infer that her own toy is not functional.

In the Broken Toy condition, children still preferentially target the other toy, even though the toys are now visually distinct. If children are attributing a toy preference to the confederate, this indicates that children are willing to override the confederate's choice of toy if they realize that her choice is incompatible with her goal. This can be considered mildly "paternalistic" helping, which requires the additional ability to realize that the confederate cares more about her ultimate goal (here, playing music) than she does about her intermediate preference or goal (playing music with her chosen toy) and that, to help her effectively, it is best to target her ultimate goal (see Martin & Olson (2013)).

Finally, children again tended to successfully help the confederate produce music, providing more evidence that 2- and 3-year-olds are both motivated to help and understand how to effectively help in this context.

General Discussion

In all three experiments, children responded differently depending on the likely source of the confederate's failure. Regardless of the source of the confederate's failure, children consistently offered help that could fulfill the confederate's goal. These results suggest that 2- and 3-year-olds can recruit prior knowledge to reason about the likely cause of others' failed actions and then offer help appropriate to that cause.

One possible counterargument to this interpretation is that children are not actually helping the confederate, but are merely acting to produce music for themselves. Children who want to produce music for themselves would also be expected to target the other toy in the Broken Toy condition and a hidden button in the Broken Button condition. However, these two interpretations predict different types of interactions between the child and the confederate. Children who just want to play music for themselves would likely push the buttons themselves, take the toy back with them, etc. Children who wanted to help the confederate might look at her when pushing a button, point to inform her of the correct action, or give her a toy. To more closely investigate how children interacted with the confederate, we coded for the presence of various social referencing behaviors. These behaviors included orienting the toy towards the confederate by handing it to her, pushing it towards her, etc.; orienting themselves so that they were facing the confederate, pointing towards a toy, looking at the confederate after making their choice (and before she responded to their choice), and verbally instructing the confederate to take some action on the toy. Only 7 children out of 52 in Experiment 1, and only 10 children out of 64 in Experiment 2 showed none of these behaviors. In fact, 0.8653846 children in Experiment 1 and 0.15625, 0.859375 in Experiment 2 performed at least one of the listed behaviors, and 0.2692308 children in Experiment 1 and 0.359375 in Experiment 2 showed two of the behaviors. Figure 13 and Figure 14 show the distribution of these behaviors by condition. If children were only playing music for their own sake, and were not thinking about the confederate's goals, we would not expect children to verbally instruct or gesture to her what to do. We also would expect children to operate the toy and not engage with the confederate by, for example, looking at her expectantly or orienting themselves and the toy such that they were facing her. This behavior provides evidence that children are oriented towards the confederate during the helping phase of the experiment.

Experiment 1: Social referencing behavior

Experiment 2: Social referencing behavior

Figure 14

Figure 15

A tibble: 7 x 14

```
##
     condition firstChoice firstChoiceTimi~ firstChoiceCorr~ firstBehaviorDe~
##
                            <chr>
                                                                <chr>
     <chr>>
                <chr>>
                                              <chr>>
## 1 person
                                                                "Points and say~
               toy
                            post prompt
                                              1
                                              0
                                                                gives toy but d~
## 2 person
               tray
                            post prompt
## 3 person
               tray
                            post prompt
                                              0
                                                                walks to tray p~
                                              0
## 4 person
                            post prompt
                                                                flipped toy ove~
               tray
## 5 person
               toy
                            post failure
                                              1
                                                                says flip it ov~
## 6 person
               toy
                            post failure
                                              1
                                                                "approaches toy~
## 7
    person
               toy
                            post failure
                                              1
                                                                "points to toy ~
     ... with 9 more variables: firstBehaviorCode <chr>,
       firstBehaviorHelpfulness <chr>, firstAndSecondChoiceConsistent <chr>,
       `child's first choice matches last look? (yes or no)` <chr>,
## #
## #
       secondChoice <chr>, secondChoiceTiming <chr>,
       secondBehaviorDescription <chr>, secondBehaviorCode <chr>,
## #
## #
       secondBehaviorHelpfulness <chr>
```

It is possible that the children both want to help the confederate and play music for themselves. To further understand the motivations in play, a possible follow-up study might involve toys with two functions, one more exciting for the child than another (e.g., moving lights and music), and a confederate that requests the less interesting function. This would potentially require children to set aside their own preferences when helping the confederate.

As discussed in the introduction, informing can be a type of helping. In our experiments, it was possible to help the confederate either instrumentally (i.e., by pushing a button for her), or by informing her about how the toys worked. Furthermore, in contrast to the experiment in Buttelmann, Carpenter, and Tomasello (2009), children did not need to reason about the confederate's beliefs in order to effectively help. They only needed to determine the cause of the confederate's failure and address that cause. For children to inform the confederate, they would need to reason about what information they possessed that the confederate could use in pursuit of her goal (i.e., which toy/button produced music). It is also not actually clear if the confederate wants the child to inform her how to play music, or just wants the child to produce music for her. If she possesses the latter goal, instrumental helping is sufficient.

The distinction between helping behaviors and informing behaviors in these experiments is also not clear. Children can inform the confederate by instrumentally helping—pushing a functional button tells the confederate how to produce music with the toys. Thus, when children instrumentally help, it is unclear if they are informing or just helping. However, many children produced behaviors that are more clearly informative and cannot be construed as instrumental help. Out of 116 in experiments 1 and 2, 72 (0.6206897%) pointed or provided verbal instructions to the confederate, suggesting that they were informing her. The verbal instructions tended to include things like, "other side" or "that one plays music," and the pointing was often directed at the other toy. These are informing behaviors; children are providing information for the confederate in fulfillment of her goals, and are not completing the necessary action themselves. This suggests that some children in our experiments were reasoning about the confederate's knowledge, as well as the gap between their own knowledge and that of the confederate. Interestingly, children tended not to fully explain the workings of all toys. Across all three experiments, children tended to only demonstrate or indicate one action; out of the 115 children from all experiments whose first response was successfully helpful, only 19 (0.1652174%). Of the 25 children whose first response was not successful in fulfilling the confederate's goal, 0.36%, but many might have been reacting to their initial failure to produce music and not intending to show the confederate more information. This is consistent with research by Gweon, Chu, and Schulz (2014) that found that 4- to 5-year-olds provide less information if their social partner wants to simply see what a toy does than if she wants to know how a toy works.

Note that even if some children are reasoning about the beliefs of the confederate, this does not imply that they are attributing a false belief to her. As in the experiment from Buttelmann, Carpenter, and Tomasello (2009), children can successfully inform the confederate by realizing that she is ignorant about which toy/button is functional. It is not necessary to think that she falsely believes that her toy and button combination is functional. In fact, the confederate never even provides evidence that she has any beliefs

about the functionality of the toys, besides that they play music in some way. The confederate here has no prior experience with either toy, and thus has no reason to expect that her toy/button choice will play music.

Whether or not children reason about the beliefs of the confederate may also be related to how they conceive of the cause of her failure. At one level of causation, the confederate's knowledge about the toys causes her failure. In the Broken Toy condition, the confederate does not know that one toy works and one toy does not. If she knew this, she would be able to quickly correct her mistake. Likewise, in the Broken Button condition, she does not know that there are buttons on the bottom, or that each toy has only one functional button. Again, if she knew this information, she would be able to correct her failure and would not need help from the child. However, it is not necessary to characterize the source of the confederate's failure in terms of her knowledge. The most proximal cause of the confederate's failure in both conditions involves the lack of crucial music-playing circuitry. At a slightly more distal level, and the one used to discuss these experiements previously, the confederate fails either because she is taking the wrong action on a toy (i.e., the Broken Button condition), or because she chose the wrong toy (i.e., Broken Toy condition). Therefore, the task involves a hierarchy of causes, and the more proximal causes can be addressed with instrumental helping, while the more distal cause (the confederate's knowledge) is most directly addressed by informing her about the functionality of the toys.

A similar hierarchy of causes is present in the Buttelmann et al. experiment. In the False Belief condition, the experimenter fails to retreive his toy partly because he looks in the wrong box. It is true that if he had the correct information, he would be able to choose the correct box. However, it is also true that if he had just chosen a different box, even without the complete information, he would have chosen the correct box. It would be interesting to further investigate the scenarios in which children in this age range will inform versus instrumentally help another person when both options are feasible.

Interestingly, in Experiment 1, each child is has the knowledge necessary to help the confederate in either mode of failure (picking the wrong toy or taking the wrong action). In Experiments 2 and 3, however, each child only has enough information to help the confederate in one condition, and only knows about one way to fail with the toys. Therefore, while all experiments provide evidence that children can choose help appropriate to the cause of another's failure, Experiment 1 in particular suggests that young children are able to reason about and correct the cause of another's failure when they know that multiple causes are possible. Additionally, if children are informing the confederate, this suggests that children are able to curate information about objects in order to be effectively helpful.

Finally, with the exception of "correctness" in Experiment 1, age did not predict children's behavior on any of the main metrics we investigated. We ran logistic regressions with each metric (first response, correctness, helpfulness, and targets non-obvious button) as a response and age as a predictor for each (age was the sole predictor for all models except the ones with first response as the response, which also included condition to account for any age differences between the two conditions). See Table Y for details. We thus did not find a developmental trend, and our results suggest that no significant develop in the skills required in our task occurs between the second and fourth birthdays. [maybe connect back to discussion about false beliefs—if false beliefs were necessary, or children were reasoning about them, would likely see a developmental trend]

In light of this lack of a developmental trend, we designed a version of our task for one-year-olds. We designed toys functionally identical to those used in Experiment 2, but, instead of involving a confederate, trained parents to request help from their children because the one-year-olds were often reluctant to approach a stranger. This work is still ongoing, but preliminary results suggest that the one-year-olds behavior differs from that of the two- and three-year-olds, regarding both the toys they target and the manner in which they engage with the person in need of help.

Table 4: First response

Experiment	Term	Estimate	SE	Statistic	p_value
1	Intercept	0.57	0.38	1.50	0.14
1	Age	0.06	0.13	0.45	0.66
1	Conditionbroken Button	-0.46	0.13	-3.65	0.00

Experiment	Term	Estimate	SE	Statistic	p_value
2	Intercept	0.39	0.39	0.99	0.33
2	Age	0.15	0.13	1.18	0.24
2	Conditionbroken Button	-0.43	0.11	-3.93	0.00
3	Intercept	1.32	0.26	5.13	0.00
3	Age	-0.13	0.08	-1.51	0.14
3	Conditionbroken Button	-0.64	0.09	-7.47	0.00

Table 5: Helpfulness

Experiment	Term	Estimate	SE	Statistic	p_value
1	Intercept	-2.70	2.50	-1.08	0.28
1	Age	1.66	0.97	1.71	0.09
2	Intercept	1.80	2.14	0.84	0.40
2	Age	-0.17	0.70	-0.25	0.80
3	Intercept	3.30	2.01	1.64	0.10
3	Age	-0.53	0.65	-0.81	0.42

Table 6: Correctness

Experiment	Term	Estimate	SE	Statistic	p_value
1	Intercept	-3.47	2.06	-1.68	0.09
1	Age	1.66	0.78	2.13	0.03
2	Intercept	0.88	1.97	0.45	0.66
2	Age	0.02	0.64	0.03	0.97
3	Intercept	1.35	1.79	0.75	0.45
3	Age	0.06	0.60	0.09	0.93

Table 7: Targets non-obvious button

Experiment	Term	Estimate	SE	Statistic	p_value
1	Intercept	0.52	1.64	0.32	0.75
1	Age	-0.13	0.58	-0.23	0.82
2	Intercept	1.33	1.85	0.72	0.47
2	Age	-0.61	0.61	-1.00	0.32
3	Intercept	-1.15	1.44	-0.80	0.43
3	Age	0.21	0.48	0.45	0.65

[concluding thoughts]

Behne, T., Carpenter, M., Call, J., & Tomasello, M. (2005). Unwilling versus unable: Infants' understanding of intentional action. $Developmental\ Psychology,\ 41(2),\ 328-337.\ https://doi.org/10.1037/0012-1649.41.2.328$

Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show false belief understanding in an active helping paradigm. Cognition, 112(2), 337-342. https://doi.org/10.1016/j.cognition.2009.05.006

Csibra, G. (2008). Goal attribution to inanimate agents by 6.5-month-old infants. Cognition, 107(2), 705–717.

https://doi.org/10.1016/j.cognition.2007.08.001

Gopnik, A., Sobel, D. M., Schulz, L. E., & Glymour, C. (2001). Causal Learning Mechanisms in Very Young Children: Two-, Three-, and Four-Year-Olds Infer Causal... *Developmental Psychology*, 37(5), 620. https://doi.org/10.1037//0012-1649.37.5.620

Kushnir, T., Xu, F., & Wellman, H. M. (2010). Young children use statistical sampling to infer the preferences of others, 21(8), 1134-1140. https://doi.org/10.1007/s10439-011-0452-9.Engineering

Liszkowski, U., Carpenter, M., & Tomasello, M. (2008). Twelve-month-olds communicate helpfully and appropriately for knowledgeable and ignorant partners. *Cognition*, 108(3), 732–739. https://doi.org/10.1016/j.cognition.2008.06.013

Liszkowski, U., Carpenter, M., Striano, T., & Tomasello, M. (2006). 12- and 18-Month Olds Point to Provide Information for Others. *Journal of Cognition and Development*, 7(2), 173–187. Retrieved from papers2://publication/uuid/24227DFC-BDD4-415C-9297-B7511208614B

Luo, Y., & Baillargeon, R. (2005). Can a self-propelled box have a goal? - Psychological reasoning in 5-month-old infants. *Psychological Science*, 16(8), 601–608. https://doi.org/10.1111/j.1467-9280.2005.01582.x

Martin, A., & Olson, K. R. (2013). When kids know better: Paternalistic helping in 3-year-old children. Developmental Psychology, 49(11), 2071–2081. https://doi.org/10.1037/a0031715

Meltzoff, A. N. (1995). Understanding the intentions of others: Re-enactment of intentions by 18-months-old children. *Developmental Psychology*, 31 (September), 838–850. https://doi.org/10.1037/0012-1649.31.5.838

Schachner, A. C., Newton, E. K., Thompson, R. A., & Goodman-Wilson, M. (2018). Becoming prosocial: The consistency of individual differences in early prosocial behavior. *Early Childhood Research Quarterly*, 43, 42–51. https://doi.org/10.1016/j.ecresq.2018.01.001

Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants' perception of others' actions, 96(1), B1–B11. https://doi.org/10.1007/s10439-011-0452-9.Engineering

Spaepen, E., & Spelke, E. (2007). Will any doll do? 12-month-olds' reasoning about goal objects. Cognitive Psychology, 54(2), 133-154. https://doi.org/10.1016/j.cogpsych.2006.06.001

Spinrad, T. L., & Stifter, C. A. (2006). Toddlers' empathy-related responding to distress: Predictions from negative emotionality and maternal behavior in infancy. *Infancy*, 10(2), 97–121. https://doi.org/10.1207/s15327078in1002 1

Svetlova, M., Nichols, S. R., & Brownell, C. A. (2010). Toddlers' Prosocial Behavior: From Instrumental to Empathic to Altruistic Helping. *Child Development*, 14(1), 1814-1827. https://doi.org/10.1111/j.1467-8624. 2010.01512.x.

Thompson, R. A., & Newton, E. K. (2013). Baby Altruists? Examining the Complexity of Prosocial Motivation in Young Children. *Infancy*, 18(1), 120–133. https://doi.org/10.1111/j.1532-7078.2012.00139.x

Tomasello, M. (2009). Why we cooperate. MIT Press. Retrieved from https://mitpress.mit.edu/books/why-we-cooperate

Warneken, F., & Tomasello, M. (2006). Helping in Human Infants and Young Chimpanzees. *Science*, 311 (5765), 1301–1303. https://doi.org/10.1126/science.1121448

Warneken, F., & Tomasello, M. (2009). Varieties of altruism in children and chimpanzees. *Trends in Cognitive Sciences*, 13(9), 397–402. https://doi.org/10.1016/j.tics.2009.06.008

Woodward, A. (1998). Infants selectively encode the goal object of an actor's reach. Cognition, 69(1), 1–34. https://doi.org/10.1016/S0010-0277(98)00058-4