Kapitel 2

Kombinatorik und Urnenmodelle

In diesem Abschnitt nehmen wir an, dass (Ω, \mathcal{A}, P) ein Laplace'scher Wahrscheinlichkeitsraum ist (vgl. Bsp.1.3), d.h. Ω ist endlich, $\mathcal{A} = P(\Omega)$ und $P(A) = \frac{|A|}{|\Omega|} \forall A \subset \Omega$. Für reale Vorgänge muss zunächst der "richtige" Wahrscheinlichkeitsraum gefunden werden.

Beispiel 2.1 Ein Ehepaar hat zwei Kinder. Wie groß ist die Wahrscheinlichkeit, dass die Kinder unterschiedliches Geschlecht haben.

$$\Omega = \{MM, MJ, JM, JJ\}$$

$$A = \{MJ, JM\} \Rightarrow P(A) = \frac{1}{2}$$

Ist der Wahrscheinlichkeitsraum aufgestellt, so müssen zur Bestimmung der Wahrscheinlichkeit P(A) "nur" die Elemente in A (und Ω) gezählt werden.

2.1 Permutationen

Gegeben seien n verschiedene Objekte. Eine Permutation der Objekte ist eine beliebige Anordnung darstellen (in Reihe)

Beispiel 2.2 Gegeben seien a,b,c. Mögliche Permutationen abc, acb, bac, bca, cab, cba

Lemma 2.1

Die Anzahl der Permutationen von n verschiedenen Objekten ist $n! = n \cdot (n-1) \cdots 1$

Beweis Für den ersten Platz hat man n Möglichkeiten, für den zweiten Platz (n-1) etc.

Bemerkung 2.1 Gegeben seien n Objekte, die nicht alle verschieden sind. Es seien n_1 vom Typ 1, n_2 vom Typ 2, ..., n_k vom Typ k Also: $n_1 + \cdots + n_k = n$

Lemma 2.2 Die Anzahl der Permutationen von n Objekten mit jeweils n_1, n_2, \ldots, n_k gleichen Objekten ist $\frac{n!}{n_1! \cdot n_2! \cdots n_k!}$

Beispiel 2.3 Eine Schachtel enthält 10 Glühbirnen 5 rote, 2 gelbe, 3 blaue. Die Glühbirnen werden nacheinander zufällig in eine Lichterkette geschraubt. Wie groß ist die Wahrscheinlichkeit, dass zuerst die roten, dann die gelben und zuletzt die blauen Glühbirnen aufgehängt werden?

Antwort: $\frac{5! \cdot 2! \cdot 3!}{10!}$

Beweis (von Lemma 2.2) Zunächst nummerieren wir die gleichen Objekte durch, um sie zu unterscheiden. Dann gibt es nach Lemma 2.1 n! mögliche Permutationen. Zu einer Klasse K_i fassen wir die Permutationen zusammen, bei denen die Elemente vom Typ i die Plätze tauschen.

Da $|K_i| = n_i!$ folgt die Behauptung.

2.2 Urnenmodelle

Gegeben sei eine Urne mit n Objekten, nummeriert mit $1, 2, \ldots, n$. k Objekte werden zufällig gezogen.

A Ziehen mit Zurücklegen, mit Berücksichtigung der Reihenfolge.

Formal können die Ergebnisse dieser Ziehung durch folgende Menge beschrieben werden:

$$M_n^k := \{(i_1, \dots, i_k) | i_{\nu} \in \{1, \dots, n\}, \nu = 1, \dots, k\} = \{1, \dots, n\}^k$$

 $M_n^k:=\{(i_1,\ldots,i_k)|i_\nu\in\{1,\ldots,n\}, \nu=1,\ldots,k\}=\{1,\ldots,n\}^k$ Die Elemente von M_n^k nennt man k-Permutationen von $\{1,\ldots,n\}$ mit Wiederholung.

Satz 2.3
$$|M_n^k| = n^k$$

Beispiel 2.4 Wie viele verschiedene 3-stellige Zahlen kann man mit den Ziffern $1, 2, \dots, 9$ bilden?

Anwort: $9^3 = 729$

B Ziehen ohne Zurücklegen, mit Berücksichtigung der Reihenfolge.

Ergebnisse werden beschrieben durch:

$$M_B = \{(i_1, \dots, i_k) = M_n^k | i_\nu \neq i_\mu \text{ für } \nu \neq \mu \}$$

Die Elemente von M_B nennt man die k-Permutationen von $\{1,\ldots,n\}$ ohne Wiederholung.

Satz 2.4
$$|M_B| = \frac{n!}{(n-k)!}$$

Beweis Beim ersten Zug gibt es n Möglichkeiten.

Beim zweiten Zug gibt es (n-1) Möglichkeiten.

Beim k-ten Zug gibt es (n - k + 1) Möglichkeiten.

Insgesamt also
$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Beispiel 2.5 Wieviele 3-stellige Zahlen mit verschiedenen Ziffern 1-9 gibt es?

Antwort: $9 \cdot 8 \cdot 7 = 504$

C Ziehen ohne Zurücklegen, ohne Berücksichtigung der Reihenfolge.

Ergebnisse werden beschrieben durch:

$$M_C = \{(i_1, \dots, i_k) \in M_n^k | i_1 < i_2 < \dots < i_k \}$$

Die Elemente von M_C nennt man k-Kombinationen von $\{1, \ldots, n\}$ ohne Wiederholung.

Satz 2.5
$$|M_C| = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Beweis Berücksichtigt man die Reihenfolge, so kann jedes Element aus M_C auf k! verschiedene Arten dargestellt werden. Also gilt der Zusammenhang: $|M_C| \cdot k! = |M_B| \Rightarrow |M_C| = \frac{n!}{k! \cdot (n-k)!}$

Beispiel 2.6 (Lotto: 6 aus 49) Es gibt $\binom{49}{6} = 13983816$ verschiedene Ziehungsergebnisse

D Ziehen mit Zurücklegen ohne Berücksichtigung der Reihenfolge.

Ergebnisse werden beschrieben durch:

$$M_D = \{(i_1, \dots, i_k) = M_n^k | i_1 \le i_2 \le \dots \le i_k \}$$

Die Elemente von M_D nennt man k-Kombinationen von $\{1, \ldots, n\}$ mit Wiederholung.

Satz 2.6
$$|M_D| = {n+k-1 \choose k}$$

Beweis Wir betrachten folgende Abbildung f:

Sei (i_1, \ldots, i_k) mit $i_1 \leq i_2 \leq \cdots \leq i_k$ ein Element aus M_D . Dieses wird abgebildet auf $f((i_1, \ldots, i_k)) = (i_1, i_2 + 1, i_3 + 2, \ldots, i_k + k - 1) = (j_1, \ldots, j_k)$ offenbar gilt $1 \leq j_1 < j_2 < \cdots < j_k \leq n + k - 1$

 $f: M_D \to \{(j_1,\ldots,j_k) \le M_{n+k-1}^k | j_1 < j_2 < \cdots < j_k\} =: M^*$ ist bijektiv da durch $i_\nu = j_\nu - \nu + 1$ die Umkehrabbildung gegeben ist.

Die Anzahl der Elemente in den Mengen M_D und M^* ist also gleich $\Rightarrow |M_D| = {n+k-1 \choose k}$

Bemerkung 2.2 Für $|M_D|$ gibt es auch eine weitere Interpretation: $\binom{n+k-1}{k}$ ist die Anzahl der Möglichkeiten k Objekte auf n Fächer aufzuteilen (wobei Mehrfachbelegungen möglich sind).

Beispiel 2.7 Wie viele Möglichkeiten gibt es eine natürliche Zahl k als Summe von n nicht negativen, ganzen Zahlen zu schreiben?

$$k = 5, n = 2 \Rightarrow \{(0+5), (5+0), (1+4), (4+1), (2+3), (3+2)\}$$

Antwort: $\binom{n+k-1}{k} = \binom{6}{5} = 6$

Zusammen	fassung:

Anzahl der Möglichkeiten bei Ziehung vom Umfang k aus $\{1 \dots n\}$	mit Zurücklegen	ohne Zurücklegen
mit Reihenfolge	n^k	$n \cdot (n-1) \cdot \dots \cdot (n-k+1)$ $= \frac{n!}{(n-k)!}$
ohne Reihenfolge	$\binom{n+k-1}{k}$	$\frac{n!}{(n-k)!k!} = \binom{n}{k}$

2.3 Weitere Beispiele

Beispiel 2.8

1. Das Geburtstagsproblem

Im Hörsaal seien n Studenten. Wie groß ist die Wahrscheinlichkeit, dass mindestens 2 davon am gleichen Tag Geburtstag haben? Wir machen folgende Annahmen:

- den 29.Februar berücksichtigen wir nicht
- die Wahrscheinlichkeit an einem bestimmten Tag Geburtstag zu haben ist für alle Tage gleich
- keine Zwillinge

Es gilt:
$$\Omega = \{(i_1, \dots, i_n) | i_{\nu} \in \{1, \dots, 365\}, \nu = 1, \dots, n\} = \{1, \dots, 365\}^n$$

Also gilt: $|\Omega| = 365^n$

Sei A das Ereignis, dass mindestens 2 Studenten am gleichen Tag Geburtstag haben. Es gilt $P(A) = \frac{|A|}{|\Omega|} = 1 - \frac{|A^c|}{|\Omega|}$ wobei A^c das Ereignis ist, dass alle Studenten an verschiedenen Tagen Geburtstag haben:

$$A^c = \{(i_1, \dots, i_n) \in \Omega | i_{\nu} \neq i_{\mu} \text{ für } \nu \neq \mu \}$$

 $A^c = \{(i_1, \dots, i_n) \in \Omega | i_{\nu} \neq i_{\mu} \text{ für } \nu \neq \mu \}$ Somit (Typ B) gilt: $|A^c| = \frac{365!}{(365-n)!}$ und die Wahrscheinlichkeit ist damit $P(A) = 1 - \frac{365!}{(365-n)! \cdot 365^n} \ (n \le 365)$

Für
$$n = 23$$
: $P(A) \ge 0, 5$

Für
$$n = 50$$
: $P(A) \approx 0.97$

Offenbar ist die Wahrscheinlichkeit wachsend in n.

2. Das Aufzugsproblem

Ein Aufzug fährt mit 7 Personen im Erdgeschoss los. Auf der Fahrt zur obersten Etage (5.Stock) steigen alle Fahrgäste aus.

a) Wie viele Möglichkeiten gibt es die Personen abzusetzen, wenn wir sie nicht unterscheiden wollen?

b) Wie viele Möglichkeiten gibt es die Personen abzusetzen, wenn sie aus 5 Frauen und 2 Männern bestehen und wir Männer und Frauen unterscheiden möchten?

Antwort:

- a) Es handelt sich um Typ D. \Rightarrow Wir haben n=5 Stockwerke (=Fächer) auf die wir k=7 Peronen (=Objekte) verteilen. $\binom{n+k-1}{k}=\binom{5+7-1}{7}=\binom{11}{7}=330$ Möglichkeiten
- b) Hier rechnen wir die Möglichkeiten für Männer und Frauen getrennt aus und multiplizieren sie dann.

Frauen: $\binom{5+5-1}{5} = \binom{9}{5} = 126$ Männer: $\binom{5+2-1}{2} = \binom{6}{2} = 15$ Insgesamt gibt es also $126 \cdot 15 = 1890$ Möglichkeiten.

3. Absolute Permutation

Es sei S_n die Menge aller Permutationen der Zahlen $\{1 \dots n\}$. Eine Permutation heißt absolut, falls sie keine einzige Zahl fest lässt.

Wie groß ist die Wahrscheinlichkeit, dass eine absolute Permutation auftritt, wenn alle Permutationen gleich wahrscheinlich sind?

Es sei Abs die Menge aller absoluten Permutationen und A_k die Menge aller Permutationen, die die Zahl k festhalten, $k = 1 \dots n$.

Dann ist $(Abs)^c = \bigcup_{k=1}^n A_k$.

Es sei

$$\overline{S_k} := \sum_{1 \leq i_1 < \dots < i_k \leq n} P(A_{i_1} \cap \dots \cap A_{i_k})$$

Mit der Siebformel (Satz 1.3) folgt:

$$P(Abs) = 1 - P(Abs^c) = 1 - \sum_{k=1}^{n} (-1)^{k-1} \cdot \overline{S_n}$$

Die Menge $A_{i_1} \cap \cdots \cap A_{i_k}$ ist die Menge aller Permutationen, die die Zahlen $i_1 \dots i_k$ festhalten. Also ist

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

Wichtig: Die letzte Wahrscheinlichkeit hängt nur von k ab, nicht von der konkreten Wahl der i_{μ}

In diesem Spezialfall gilt mit Typ C (Lotto):

$$\overline{S_k} = \frac{(n-k)!}{n!} \cdot |M_C| = \frac{(n-k)!}{n!} \cdot \binom{n}{k} = \frac{(n-k)!}{n!} \cdot \frac{n!}{k! \cdot (n-k)!} = \frac{1}{k!}$$

Also:

$$P(Abs) = 1 + \sum_{k=1}^{n} (-1)^k \cdot \frac{1}{k!} = 1 + \sum_{k=1}^{n} \frac{(-1)^k}{k!} = \sum_{k=0}^{n} \frac{(-1)^k}{k!} (0! := 1)$$

Insbesondere:

$$\lim_{n \to \infty} P(Abs_{(n)}) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} = \frac{1}{e}$$