

**COMP 3647 Human-Al Interaction Design** 

Topic 15
Ethics in Al

Dr. Swaroop Panda, Prof. Effie Law

## Roadmap

- Tech Ethics
- Explainable & Responsible Al
- ML Fairness
- Bias & Discrimination
- Human Autonomy & Privacy
- Governance & Legal Aspects



#### What is Ethics

- Aristotle's Ethics
- Normative Ethics
  - Virtue Ethics
  - Deontology
  - Consequentialism



## **Tech Ethics**

• The Trolley Problem



Image by McGeddon (CC BY-SA 4.0)



#### **Tech Ethics**

You have two options:

- 1. Do nothing, and the trolley kills the five people on the main track.
- 2. Pull the lever, diverting the trolley onto the side track where it will kill one person.

Which is the most **ethical choice?** 



## **Explainable Al**





## **Explainable Al**





## **Explainable Al**

## Some XAI Methods,

- 1. LIME (Local Interpretable Model Agnostic Explanations)
- 2. Anchors
- 3. Layer-wise Relevance Propagation
- 4. Deep Taylor Decomposition (DTD)
- 5. Others







## Responsible Al





## **ML Fairness**

#### **Confusion Matrix**

|                       | Actual Positive                             | Actual Negative                     |                                                                 |                                                   |
|-----------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
|                       | Y = 1                                       | Y = 0                               |                                                                 |                                                   |
| Predicted<br>Positive | TP<br>(True Positive)                       | FP<br>(False Positive)              | $\mathbf{PPV} = \frac{TP}{TP + FP}$                             | $\mathbf{FDR} = \frac{FP}{TP + FP}$               |
| $\hat{Y}=1$           |                                             | Type I error                        | Positive Predictive Value Precision PV+ Target Population Error | False Discovery Rate<br>Target Population Error   |
| Predicted<br>Negative | FN<br>(False Negative)                      | TN<br>(True Negative)               | $\mathbf{FOR} = \frac{FN}{FN + TN}$                             | $\mathbf{NPV} = \frac{TN}{FN + TN}$               |
| $\hat{Y} = 0$         | Type II error                               |                                     | False Omission Rate<br>Success Predictive Error                 | Negative Predictive Value<br>PV-                  |
|                       | $\mathbf{TPR} = \frac{TP}{TP + FN}$         | $\mathbf{FPR} = \frac{FP}{FP + TN}$ | $\mathbf{OA} = \frac{TP + TN}{TP + FP + TN + FN}$               | $\mathbf{BR} = \frac{TP + FN}{TP + FP + TN + FN}$ |
|                       | True Positive Rate<br>Sensitivity<br>Recall | False Positive Rate<br>Model Error  | Overall Accuracy                                                | Base Rate<br>Prevalence (p)                       |
|                       | $\mathbf{FNR} = \frac{FN}{TP + FN}$         | $\mathbf{TNR} = \frac{TN}{FP + TN}$ |                                                                 |                                                   |
|                       | False Negative Rate<br>Model Error          | True Negative Rate<br>Specificity   |                                                                 |                                                   |



#### **ML Fairness**

#### Definitions,

- Equalised odds
- Equal Opportunity
- Demographic Parity
- Fairness through awareness
- Test-fairness or calibration
- Others ...



## **ML Fairness - FairGAN**





## **ML Fairness**





### **Bias & Discrimination**

### Types of Bias

- Measurement Bias
- Omitted Variable Bias
- Representation Bias
- Aggregation Bias
  - Simpson's Paradox.
  - Modifiable Areal Unit Problem



#### **Bias & Discrimination**

## Types of Bias

- Algorithmic Bias
- User Interaction Bias
- Popularity Bias
- Emergent Bias
- Evaluation Bias
- Population Bias
- Historical Bias & Others



#### **Bias & Discrimination**

#### **Discrimination vs Bias**

## Types of Discrimination,

- Systemic Discrimination
- Statistical Discrimination



## **Human Autonomy**

Replacing Human Labor





## **Human Autonomy**

Autonomous Weapons





## **Human Autonomy**

- Replacing Humans





## **Privacy**

- Is Siri/Alexa hearing us?





## **Privacy**

### Surveillance





## **Privacy**

### - Facial Recognition





## **Legal Aspects**

Who should regulate AI?

## From a 'race to Al' to a 'race to Al regulation': regulatory competition for artificial intelligence

Nathalie A. Smuha

Faculty of Law, KU Leuven, Leuven, Belgium



## **Legal Aspects**

Who should regulate AI?



(4) Industry Sector Self-Regulation

(3) Organisational Self-Regulation

Self-Safeguards,
Governance Mitigation





## **Legal Aspects**

### **Equality**



The assumption is that everyone benefits from the same supports. This is equal treatment.

#### **Equity**



Everyone gets the supports they need (this is the concept of "affirmative action"), thus producing equity.

#### **Justice**



All 3 can see the game without supports or accommodations because the cause(s) of the inequity was addressed.

The systemic barrier has

The systemic barrier has been removed.



#### Smart Governance



## Freedom at Work: Understanding, Alienation, and the Al-Driven Workplace

Kate Vredenburgh 🕩

Department of Philosophy, Logic, and Scientific Method, The London School of Economics, London, United Kingdom Email: K.Vredenburgh@lse.ac.uk



# Designing AI with Rights, Consciousness, Self-Respect, and Freedom

Eric Schwitzgebel, with Mara Garza



Al to oppress

Organizing workers and machine learning tools for a less oppressive workplace

Amber Grace Young <sup>a, \*</sup>, Ann Majchrzak <sup>b</sup>, Gerald C. Kane <sup>c</sup>



<sup>&</sup>lt;sup>a</sup> Sam M. Walton College of Business, University of Arkansas, 220 N McIlroy Ave #301, Fayetteville, AR, 72701, USA

<sup>&</sup>lt;sup>b</sup> Marshall School of Business, University of Southern California, 3670 Trousdale Pkwy, Los Angeles, CA, 90089, USA

<sup>&</sup>lt;sup>c</sup> Carroll School of Management, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA, 02467, USA









## Wrapping Up

- Ethics in Technology
- Explainable & Responsible Al Methods
- Fairness in AI
- Bias & Discrimination
- Human Autonomy & Privacy
- Governance & Legal Aspects



## **Thanks**

Any Questions?

