COL 351: Analysis and Design of Algorithms

Tutorial Sheet - 9

Question 1 Let $G = (V, E, c : E \to \mathbb{Z}^+)$ be a directed graph with source $s \in V$, sink $t \in V$, and integer edge capacities $c(e) \geq 1$. Let $R = \max_{e \in E} c(e)$. Present an O(mnR) algorithm to decide whether G has a unique minimum (s, t)-cut.

Question 2 Let G = (V, E) be a directed graph, and (s, t) be a vertex pair. Two paths from s to t are said to be *internally-vertex-disjoint* if they do not share any vertex except end-points s and t. Present an O(mn) algorithm to compute the maximum number of vertex disjoint paths from s to t.

Question 3 There are n clients (c_1, \ldots, c_n) who want to be connected to one of the k mobile towers (m_1, \ldots, m_k) in a town. You are given the (x,y) coordinates of each client and each tower, a distance parameter d, and a load parameter L. Design a polynomial time algorithm to decide if every client can be connected simultaneously to some mobile tower subject to the following constraints.

- 1. Each client is connected with exactly one of the mobile towers, and a client can only be connected to tower that is within distance d.
- 2. No more than L clients can be connected to any single mobile tower.

Question 4 Let $X = (x_{ij})$ be a square matrix of size n storing positive real numbers. It is given that the sum of elements of each column as well as each row is a positive integer. Prove that elements of X can be replaced by integers without changing any column sum or row sum.

Question 5 Provide an extension of hashing based pattern searching algorithm covered in Lecture 28 (Rabin-Karp algorithm) for searching a pattern of $k \times k$ matrix in an $n \times n$ binary matrix. What is the time complexity of your algorithm?

Question 6 Let U = [1, M] be a universe of M elements, p be a prime in range [M+1, 2M], and $S \subseteq [1, M]$ be a set of size n (<< M). Let r, c be uniformly chosen random numbers in [2, p-1] interval that are independent of S. Consider the hash function:

$$H_{r,c}(x) := ((rx+c) \mod p) \mod n$$

Prove that for any distinct $x, y \in [1, M]$, $Prob[H_{r,c}(x) = H_{r,c}(y)] \leq \frac{1}{n}$.