

me rele icon hret= /lavicon.ico

Centro Universitário Presidente Antônio Carlos Teoria de Grafos

Subgrafo, Conectividade e Caminhos Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

O que vamos aprender nessa aula

- SubGrafos;
- Conectividade;
- Caminhos;

Subgrafo

Definição

Um grafo $G_s = (V_s, A_s)$ é dito ser um subgrafo de um grafo G = (V, A) se todos os vértices e todas as arestas de G_s estão em G, ou seja, se $V_s \subset V$ e $A_s \subset A$.

Observações:

- Todo grafo é subgrafo de si próprio;
- ightharpoonup O subgrafo G_{s2} de um subgrafo G_{s3} de G também é subgrafo de G;
- ightharpoonup Um vértice simples de G é um subgrafo de G;
- Uma aresta simples de G (juntamente com suas extremidades) é um subgrafo de G.

Subgrafo

Enumere 20 subgrafos do grafo acima

Passeio

- Um passeio é uma sequência finita de vértices e arestas.
- Cada vértice da sequência é incidente a aresta que o precede e a aresta seguinte.
- Essa sequência deve acabar e iniciar em um vértice (não necessariamente os mesmos).

Passeio

Passeio

Este exemplo: Ex.: 1 - a - 2 - c - 3 - d - 4 d - 3 - e - 5 ou: 1 - 2 - 3 - 4 - 3 - 5

- O passeio pode ser:
 - Aberto: quando inicia e acaba em vértices diferentes (o caso acima).
 - Fechado: quando inicia e acaba no mesmo vértice. Ex.: 1-2-3-4-3-5-3-1.

Passeio - Cadeia

• Um passeio que não repete arestas.

Passeio - Cadeia

• Um passeio que não repete arestas.

• Uma cadeia sem repetição de vértices.

Uma cadeia sem repetição de vértices.

Ex.: 1 - 2 - 3 - 5

Uma cadeia sem repetição de vértices.

- Aberto: quando inicia e acaba em vértices diferentes (o caso acima).
- Fechado: quando inicia e acaba no mesmo vértice. Ex.: 1-2-3-1.

• Uma cadeia sem repetição de vértices.

- Aberto: quando inicia e acaba em vértices diferentes (o caso acima).
- Fechado: quando inicia e acaba no mesmo vértice. Ex.: 1-2-3-1.
- Comprimento: o comprimento de um caminho é o número de arestas que o mesmo inclui.

Resumindo

- Passeio: Sequência finita de vértices e arestas.
- Cadeia: Um passeio que não repete arestas.
- Caminho: Uma cadeia sem repetição de vértices.

Exercícios - Parte 1

- 1. Descreva um passeio aberto e um fechado no Grafo acima.
- 2. Descreva uma cadeia aberta e uma fechada no Grafo acima.
- 3. Quantos caminhos existem entre os vértices b e f?

Caminhos

Teorema 1

Se um grafo possui exatamente 2 vértices de grau ímpar, existe um caminho entre esses dois vértices.

Caminhos

Teorema 1

Se um grafo possui exatamente 2 vértices de grau ímpar, existe um caminho entre esses dois vértices.

Teorema 2

O número mínimo de arestas de um grafo simples com n vértices e k componentes é n-k.

Caminhos

Teorema 1

Se um grafo possui exatamente 2 vértices de grau ímpar, existe um caminho entre esses dois vértices.

Teorema 2

O número mínimo de arestas de um grafo simples com n vértices e k componentes é n-k.

Teorema 3

Um grafo simples com n vértices e k componentes possui no máximo (n-k)(n-k+1)/2 arestas (caso trivial).

Ciclos

Definição

Um ciclo é um caminho fechado.

Alguns autores, utilizam o termo circuito para o caso de grafos orientados.

Grafo Ciclo: Um grafo ciclo C_n é um grafo com n vértices formado por apenas um ciclo passando por todos os vértices.

Exercícios - Parte 2

Quantos grafos ciclos são subgrafos do grafo acima?

Ciclos - Cintura

A Cintura de um grafo é o comprimento do menor ciclo existente no mesmo.

Ciclos - Cintura

A Cintura de um grafo é o comprimento do menor ciclo existente no mesmo.

Ciclos - Circunferência

A Circunferência de um grafo é o comprimento do maior ciclo existente no mesmo.

Ciclos - Circunferência

A Circunferência de um grafo é o comprimento do maior ciclo existente no mesmo.

Exercícios - Parte 3

1. Qual a cintura e a circunferência do grafo acima?

Dúvidas??