ALGÈBRE DE BASE ET THÉORIE DES NOMBRES

(ALGB)

Mark BAKER

M1 maths fonda Université de Rennes 1

Chapitre 1 – Rapi	PELS SUR LES GROUPES ET LES ANNEAUX,		3.3	Théorèmes de structures	16
	LITÉ	1	Сна	APITRE 4 – GÉOMÉTRIE DES NOMBRES	19
1.1 Rappels sur le	s groupes	1	4.1	Pássaux et applications	19
1.2 Rappels sur le	s anneaux	_		Réseaux et applications	19
	nalité	2	4.2	Représentation d'un nombre par une forme quadra-	
		_	tiqu	e	20
Chapitre 2 – Cori	PS	3			
2.1 Extension de	corps	3	CHA	APITRE 5 – NOMBRES ET ENTIERS ALGÉBRIQUES, CORPS	
	ure, corps de décomposition	4	DE N	NOMBRES	24
2.3 Corps finis .		5	5.1	Nombres et entiers algébriques	24
2.4 Polynômes irr	éductibles	7	5.2	Corps quadratiques	24
2.5 Réciprocité qu	ıadratique			Factorisation dans les anneaux \mathcal{O}_d	25
Chapitre 3 – Mod	ULE SUR UN ANNEAU	12	5.4	Corps quadratique imaginaire	26
	dule	12	5.5	Factorisation dans \mathcal{O}_d	27
3.2 Algèbre linéai	re dans un module	14	5.6	Classes d'idéaux et groupe des classes	30

Chapitre 1

RAPPELS SUR LES GROUPES ET LES ANNEAUX, CRITÈRES DE PRIMALITÉ

1.1 Rappels sur les groupes	1	1.3 Critère de primalité	2
1.2 Rappels sur les anneaux	2		

1.1 RAPPELS SUR LES GROUPES

THÉORÈME 1.1 (LAGRANGE). Soient G un groupe fini et H < G. Alors l'ordre de H divise celui de G.

DÉFINITION 1.2. Soit G un groupe. Un sous-groupe H < G est normal (ou $distingu\hat{e}$) si

$$\forall g \in G, \forall h \in H, ghg^{-1} \in H.$$

On note alors $H \triangleleft G$.

- \triangleright EXEMPLES. Si $f: G \rightarrow G'$ est un morphisme de groupes, alors son noyau Ker f < G est normal.
 - Si *G* est un groupe abélien, alors tout sous-groupe de *G* est normal.

DÉFINITION-PROPOSITION 1.3. Soient G un groupe et H < G. On note G/H l'ensemble des classes $\{gH \mid g \in G\}$. Si H est normal, alors G/H est un groupe.

▶ EXEMPLE. Pour $n \ge 1$, l'ensemble n**Z** est un sous-groupe normal de **Z**, donc le quotient **Z**/n**Z** est un groupe.

THÉORÈME 1.4. Soit $\varphi \colon G \to G'$ un morphisme de groupes surjectif. On note $N \coloneqq \operatorname{Ker} \varphi$. Alors $N \triangleleft G$ et l'application $\overline{\varphi} \colon G/N \to G'$ donnée par $\overline{\varphi}(gN) = \varphi(g)$ pour tout $g \in G$ est un isomorphisme.

NOTATION. Lorsque deux groupes G et G' sont isomorphes, on note $G \cong G'$.

- ► EXEMPLES. L'application $x \in \mathbf{R} \longmapsto e^{2i\pi x} \in \mathbf{S}^1$ est un morphisme de groupes surjectif de noyau \mathbf{Z} , donc les groupes \mathbf{R}/\mathbf{Z} et \mathbf{S}^1 sont isomorphes (et même homéomorphe).
 - Le groupe \mathbb{C}/\mathbb{Z} est homéomorphe à un cylindre, lui-même homéomorphe à $\mathbb{S}^1 \times \mathbb{R}$.
 - On considère $GL_n(\mathbf{C})$. L'application det: $GL_n(\mathbf{C})$ → \mathbf{C}^* est un homéomorphisme surjectif de noyau $SL_n(\mathbf{C})$. On en déduit $GL_n(\mathbf{C})$ / $SL_n(\mathbf{C}) \cong \mathbf{C}^*$.

THÉORÈME 1.5 (de structure des groupes abéliens finis). Soit G un groupe abélien fini. Alors il existe des nombres premiers $p_1, \ldots, p_k \in \mathbb{N}^*$ et des entiers $e_1, \ldots, e_k, p \in \mathbb{N}$ tels que

$$G \cong \frac{\mathbf{Z}}{p_1^{e_1}\mathbf{Z}} \times \cdots \times \frac{\mathbf{Z}}{p_k^{e_k}\mathbf{Z}} \times \mathbf{Z}^p.$$

FIGURE 1.1 - Représentations du cylindre C/Z

1

1.2 RAPPELS SUR LES ANNEAUX

IMPORTANT. Dans la suite du cours, tous les anneaux sont supposés commutatifs, sauf éventuellement les anneaux de matrices.

 \triangleright EXEMPLE. Pour tout anneau A, il existe un unique morphisme d'anneaux $\varphi \colon \mathbf{Z} \to A$ donné par

$$\varphi(n) = \begin{cases} n \cdot 1_A & \text{si } n \ge 0, \\ -(-n \cdot 1_A) & \text{sinon,} \end{cases} \quad n \in \mathbf{Z}.$$

THÉORÈME 1.6. Soit $f: A \to B$ un morphisme d'anneaux surjectifs. Alors le noyau Ker f est un idéal de A et l'application $f: A/\operatorname{Ker} f \to B$ donnée par $\overline{f}(a+\operatorname{Ker} f)=f(a)$ pour tout $a \in A$ est un isomorphisme d'anneaux.

► EXEMPLES. – En considérant le morphisme d'anneaux $P \in \mathbf{R}[X] \mapsto P(i) \in \mathbf{C}$, on obtient $\mathbf{R}[X]/\langle X^2 + 1 \rangle \cong C$. – On a $\mathbf{Z}[i]/\langle 1 + 3i \rangle \cong 10\mathbf{Z}$.

1.3 CRITÈRE DE PRIMALITÉ

THÉORÈME 1.7 (petit théorème de FERMAT). Soit $n \ge 1$ un entier. S'il existe $a \ge 1$ tel que $a^{n-1} \ne 1 \mod p$, alors n n'est pas premier.

Un tel entier $a \in \mathbb{N}$ s'appelle un témoin de FERMAT de non-primalité de n.

LEMME 1.8. Soient $n \ge 1$ et $a \in [1, n]$ des entiers premiers entre eux, i. e. $a \notin (\mathbf{Z}/n\mathbf{Z})^{\times}$. Alors l'entier a est un témoin de FERMAT de n

Ceci montrer que les éléments de $\mathbb{Z}/n\mathbb{Z}\setminus (\mathbb{Z}/n\mathbb{Z})^{\times}$ sont des témoins de FERMAT de n. Mais le test des éléments de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est rendu plus compliqué par l'existence des nombres de CARMICHAEL.

DÉFINITION 1.9. Un nombre de CARMICHAEL est un entier $n \ge 2$ non premier vérifiant $a^{n-1} \equiv 1 \mod n$ pour tout $a \in [2, n]$ tel que pgcd(a, n) = 1.

PROPOSITION 1.10. Soit $n \ge 2$ un nombre non premier. S'il n'est pas de CARMICHAEL, alors il y a au moins la moitié des nombres de [1, n-1] qui sont des témoins de FERMAT de n.

Preuve Comme n n'est pas de Carmichael, il existe $a \in (\mathbf{Z}/n\mathbf{Z})^{\times}$ tel que $a^{n-1} \not\equiv 1 \mod n$. Or l'ensemble

$$\{a \in (\mathbf{Z}/n\mathbf{Z})^{\times} \mid a^{n-1} = 1\}$$

est un sous-groupe de $(\mathbf{Z}/n\mathbf{Z})^{\times}$, donc c'est un sous-groupe stricte, donc son cardinal est inférieur à $\frac{1}{2} \sharp (\mathbf{Z}/n\mathbf{Z})^{\times}$. Alors au moins la moitié des éléménts de $(\mathbf{Z}/n\mathbf{Z})^{\times}$ sont des témoins de FERMAT de n

PRINCIPE DE MILLER-RABIN. Soient $n \ge 0$ un entier impair et $a \ge 1$ un entier tels que pgcd(a, n) = 1.

- 1. Si $a^{n-1} \not\equiv \mod n$, alors l'entier n n'est pas premier d'après le théorème de FERMAT.
- 2. Supposons $a^{n-1} \equiv \mod n$. Alors n est impair, donc n-1 est pair, donc $a^{(n-1)/2}$ vérifie $x^2-1 \equiv 0 \mod n$. Si n est premier, alors $a^{(n-1)/2} \equiv \pm 1 \mod n$. Donc $a^{n-1} \equiv 1 \mod n$ et $a^{(n-1)/2} \not\equiv \pm 1 \mod n$ impliquent que n n'est pas premier.
- 3. Si $a^{(n-1)/2} \equiv -1 \mod n$, alors on abandonne. Si $a^{(n-1)/2} \equiv 1 \mod n$, alors (n-1)/2 est pair et on recommande l'étape 2. Si $a^{(n-1)/2} \equiv 1 \mod n$ et $a^{(n-1)/4} \not\equiv \pm 1 \mod n$, alors n n'est pas premier.

DÉFINITION 1.11. Soit $n \ge 2$ un entier. Un témoin de non-primalité de MILLER-RABIN est un entier $a \in [1, n-1]$ vérifiant une des deux conditions suivantes :

- $-a^{n-1} \not\equiv 1 \mod n$:
- il existe $k \ge 0$ tel que $2^{k+1} \mid n-1$ et $a^{(n-1)/2^k} \equiv 1 \mod n$ et $a^{(n-1)/2^{k+1}} \ne \pm 1 \lceil n \rceil$.

THÉORÈME 1.12. Soit $n \ge 2$ un entier impair. S'il n'est pas premier, alors au moins trois quarts des entiers de l'ensemble [1, n-1] sont des témoins de non-primalité de MILLER-RABIN.

Chapitre 2

CORPS

2.1 Extension de corps		2.4.2 Polynômes irréductibles sur Q ou Z	8
2.2 Corps de rupture, corps de décomposition		2.4.3 Critère d'EISENSTEIN	8
2.3 Corps finis		2.4.4 Polynômes cyclotomiques	8
2.3.1 Préliminaire	5	2.5 Réciprocité quadratique	9
2.3.2 Propriétés des corps finis	5	2.5.1 Congruence quadratique	9
2.3.3 Construction des corps \mathbf{F}_p	6	2.5.2 Symbole de Legendre	9
2.3.4 Plongements	6	2.5.3 Preuve de la loi de réciprocité quadratique	11
2.4 Polynômes irréductibles			
2.4.1 Polynômes irréductibles sur \mathbf{F}_p			

2.1 EXTENSION DE CORPS

DÉFINITION 2.1. Une *extension* d'un corps *K* est un corps *E* tel que

- (i) on ait $K \subset E$;
- (ii) le corps K soit un sous-corps de E.

DÉFINITION 2.2. Une extension E d'un corps K est dite *finie* si sa dimension en tant que K-espace vectoriel est finie. La quantité $[E:K] := \dim_K E$ est appelée le degré de l'extension E de K.

PROPOSITION 2.3 (base télescopique). Soient K, L et E trois corps tels que $K \subset L \subset E$. Soient $(e_i)_{i \in I}$ une base du K-espace vectoriel E. Alors $(e_i f_j)_{(i,j) \in I \times J}$ est une base du E-espace vectoriel E. De plus, si les degrés sont finis, on a

$$[E:K] = [E:L][L:K].$$

DÉFINITION 2.4. Soient K un corps, E une extension de K et $\alpha \in E$. On note

- $K[\alpha]$ le sous-anneau de E engendré par K et α ;
- $K(\alpha)$ le sous-corps de E engendré par K et α .

On dit l'élément α est *algébrique* sur K s'il existe un polynôme non nul $P \in K[X]$ tel que $P(\alpha) = 0$. Dans le cas contraire, il est dit *transcendant* sur K.

- \diamond REMARQUE. Le corps $K(\alpha)$ est le corps des fractions de $K[\alpha]$.
- LEMME 2.5. Soit K un corps. Alors tout élément d'une extension finie $K \subseteq E$ est algébrique sur K.

Preuve Soit $\alpha \in E$. On note $d := [E : K] < +\infty$. Alors les éléments $1, \alpha, ..., \alpha^d$ sont linéairement indépendants, donc il existe des éléments $a_0, ..., a_d \in K$ non tous nuls tels que $a_0 + \cdots + a_d \alpha^d = 0$. Cela montre que l'élément α est algébrique sur K.

LEMME 2.6. Soient K un corps, E un extension de K et $\alpha_1, \ldots, \alpha_n \in K$. Alors $K[\alpha_1, \ldots, \alpha_n] = K(\alpha_1, \ldots, \alpha_n)$.

Preuve Il suffit de montrer que chaque élément non nul de l'anneau $B := K[\alpha_1, ..., \alpha_n]$ est inversible. On remarque que l'application

$$\theta_a : \begin{vmatrix} B \longrightarrow B, \\ x \longmapsto ax \end{vmatrix}$$

est une transformation K-linéaire. Comme B est intègre, l'application θ_a est injective. Comme $\dim_K B < +\infty$, il s'agit d'un isomorphisme. Ainsi il existe un unique élément $b \in B$ tel que ab = 1.

PROPOSITION 2.7. Soient K un corps, E un extension de K et $\alpha \in E$ un élément algébrique sur K. Alors il existe un unique polynôme $M \in K[X]$ irréductible et unitaire tel que $M(\alpha) = 0$. Un tel polynôme M est appelé le *polynôme minimal* de α sur K.

Preuve On considère le morphisme d'évaluation

$$h_{\alpha}: \left| K[X] \longrightarrow E, \atop P \longmapsto P(\alpha). \right|$$

Alors son noyau est un idéal de K[X] et donc engendré par un unique polynôme unitaire $M \in K[X]$. De plus, ce dernier est irréductible car le quotient $K[X]/\langle M \rangle \cong \operatorname{Im} h_{\alpha} \subset E$ est intègre.

PROPOSITION 2.8. Soient K un corps, E un extension de K et $\alpha \in E$ un élément algébrique sur K de polynôme minimal $M \in K[X]$. On note $n := \deg M$. Alors

- 1. on a $K(\alpha) \cong K[X]/\langle M \rangle$;
- 2. la famille $(1, \alpha, ..., \alpha^{n-1})$ est une base du K-espace vectoriel $K[\alpha]$;
- 3. on a $[K(\alpha):K] = n$;
- 4. on a $K[a] = K(\alpha)$.

Preuve 1. Le proposition ci-dessus assure $K[X]/\langle M \rangle \cong \operatorname{Im} h_{\alpha} = K[\alpha]$ qui est un corps, donc $K(\alpha) = K[a]$.

- 2. La preuve de ce point utilise principalement la division euclidienne.
- \triangleright EXEMPLES. Comme $\sqrt{2}$ est algébrique sur **Q** de polynôme minimal X^2 2, on a

$$[\mathbf{O}(\sqrt{2}) : \mathbf{O}] = 2.$$

– On considère $\mathbf{Q} \subset \mathbf{Q}(\sqrt{2}, \sqrt{3})$. On veut montrer ue $\mathbf{Q} \subset \mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\sqrt{2}, \sqrt{3})$ avec

$$[\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}(\sqrt{2})] = 2 \tag{*}$$

auquel cas on aura

$$[\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}] = 4.$$

Montrons l'égalité (*). Puisque X^2-3 annule $\sqrt{3}$, on a $[\mathbf{Q}(\sqrt{2},\sqrt{3}):\mathbf{Q}(\sqrt{2})]\in\{1,2\}$. Raisonnons par l'absurde et supposons $[\mathbf{Q}(\sqrt{2},\sqrt{3}):\mathbf{Q}(\sqrt{2})]=1$. Alors le polynôme X^2-3 est réductible dans $\mathbf{Q}(\sqrt{2})$, c'est-à-dire $\pm\sqrt{3}\in\mathbf{Q}(\sqrt{2})$. Ainsi il existe $a,b\in\mathbf{Q}$ tel que $\sqrt{3}=a+b\sqrt{2}$. En élevant au carré, on obtient $3=a^2+2b^2+2ab\sqrt{2}$ et donc $\sqrt{2}\in\mathbf{Q}$ ce qui est absurde. On en déduit l'égalité (*).

2.2 CORPS DE RUPTURE, CORPS DE DÉCOMPOSITION

POSITIONNEMENT DU PROBLÈME. Soit *K* un corps. On veut résoudre les deux problèmes suivants :

- − étant donné un polynôme $P \in K[X]$ irréductible et de degré d > 1, on veut construire une extension de K dans laquelle P admet une racine;
- étant donné un polynôme P ∈ K[X], on veut construire une extension de K dans laquelle on peut décomposer P est en produit de facteurs de degré 1.

DÉFINITION 2.9. Soit $P \in K[X]$ un polynôme irréductible de degré d > 1. Une extension L de K est un *corps de rupture* de P sur K s'il existe une racine $\alpha \in L$ de P telle que $L = K[\alpha]$.

- ▶ EXEMPLES. Le corps **C** est le corps de rupture de $X^2 + 1$ sur **R**.
 - Le corps $\mathbf{Q}(i)$ est le corps de rupture de $X^2 + 1$ sur \mathbf{Q} .
 - le corps $\mathbf{Q}(\sqrt[3]{2})$ est un corps de rupture de X^3 − 2 sur \mathbf{Q} .

THÉORÈME 2.10. Soit $P \in K[X]$ un polynôme irréductible. Alors il existe un corps de rupture L de P sur K. De plus, ce corps L est unique à K-isomorphisme près.

Preuve • *Existence.* Posons $L := K[X]/\langle P \rangle$. Comme P est irréductible, le quotient L est un corps. De plus, le corps K s'injecte naturellement dans L, donc on considère L comme une extension de K. Enfin, si on note $\alpha \in L$ la classe de X dans L, alors $P(\alpha) = 0$ et $L = K[\alpha] = K(\alpha)$. Donc le corps L convient.

- *Unicité*. Soit L' un autre corps de rupture de P sur K. Alors il existe $\beta \in L'$ tel que $P(\beta) = 0$ et $L' = K[\beta]$. D'après la construction de L et L', il existe des isomorphismes $\varphi \colon K[X]/\langle P \rangle \longrightarrow K[\alpha]$ et $\psi \colon K[X]/\langle P \rangle \longrightarrow K[\beta]$. Alors le morphisme $\psi \circ \varphi^{-1} \colon L \longrightarrow L'$ est un isomorphisme.
- EXEMPLE. Le polynôme X^2-2 est irréductibles dans $\mathbf{Q}[X]$ possédant trois racines α_i (pour $i \in \{1,2,3\}$), donc les corps $\mathbf{Q}(\alpha_i)$ sont ceux de ruptures de X^3-2 et ils sont tous isomorphes par les \mathbf{Q} -isomorphismes $\mathbf{Q}(\alpha_i) \longrightarrow \mathbf{Q}(\alpha_j)$ envoyant α_i sur α_i .

DÉFINITION 2.11. Soit $P \in K[X]$ un polynôme. Une extension L de K est un *corps de décomposition* de P sur K si vérifie les deux conditions suivantes :

(i) le polynôme P est scindé dans L[X];

(ii) le corps L est engendré sur K par les racines de P.

THÉORÈME 2.12. Soit $P \in K[X]$ un polynôme. Alors il existe un corps de décomposition L de P sur K. De plus, ce corps L est unique à K-isomorphisme près.

Preuve L'unicité est laissée à titre d'exercice. Montrons l'existence. Soit $Q \in K[X]$ un facteur irréductible de P de degré supérieur ou égal à 2. Dans $L_1 := K[X]/\langle P \rangle$, il existe un polynôme $P_1 \in L[X]$ et $x_1 \in L$ tels que $P = (X - x_1)P_1$ et deg $P_1 <$ deg P. En répétant ce processus, on obtient un corps L contenant toutes les racines x_1, \ldots, x_d de P et tel que ce dernier soit scindé sur L. En fait, on a $L = K[x_1, \ldots, x_d]$. □

- ► EXEMPLES. Trouvons le corps de décomposition du polynôme $X^4 2$ sur \mathbf{Q} . Les quatre racines de ce polynôme sont $\pm \sqrt[4]{2}$ et $\pm i \sqrt[4]{2}$. Donc son corps de rupture est $\mathbf{Q}(\pm \sqrt[4]{2}, \pm i \sqrt[4]{2}) \cong \mathbf{Q}(\sqrt[4]{2}, i)$.
 - De même, pour le polynôme X^3 2 sur \mathbf{Q} , son corps de rupture est

$$\mathbf{Q}(\sqrt[3]{2}, \sqrt[3]{2}j, \sqrt[3]{2}j^2) \cong \mathbf{Q}(\sqrt[3]{2}, j) \quad \text{avec} \quad j \coloneqq e^{2i\pi/3}.$$

EXERCICE 2.1. Calculer les degrés $[\mathbf{Q}(\sqrt[4]{2},i):\mathbf{Q}]$ et $[\mathbf{Q}(\sqrt[3]{2},j):\mathbf{Q}]$.

2.3 CORPS FINIS

2.3.1 Préliminaire

DÉFINITION 2.13. Soit *K* un corps.

- Le *sous-corps premier* de K est le plus petit sous-contenant 1, i. e. c'est l'image de l'unique morphisme de \mathbf{Z} dans K. Il s'agit de \mathbf{Q} ou de $\mathbf{Z}/p\mathbf{Z}$ pour un nombre premier p.
- La *caractéristique* de K est soit p si son sous-corps premier est $\mathbb{Z}/p\mathbb{Z}$ soit 0 si son sous-corps premiers est \mathbb{Q} . On note $\operatorname{car}(K)$ sa caractéristique.
- ♦ REMARQUE. Si le corps K est fini, alors son sous-corps premier est $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$ et donc $\operatorname{car}(K) = p$.
- PROPOSITION 2.14. Soit K un corps fini de caractéristique p. Alors il existe $n \ge 1$ tel que $|K| = p^n$.

Preuve Comme le corps est fini, le corps \mathbf{F}_p est un sous-corps de K, donc le corps K est un \mathbf{F}_p -espace vectoriel. On a alors $|K| = p^n$ où $n := [K : \mathbf{F}_p]$.

PROPOSITION 2.15. Soient K un corps et $\theta: K \to K$ un morphisme de corps. Alors l'ensemble $Fix(\theta) \subset K$ des points fixes de θ est un sous-corps de K.

DÉFINITION-PROPOSITION 2.16. Soit K un corps de caractéristique p > 0. Alors l'application

$$\varphi \colon \left| \begin{matrix} K \longrightarrow K, \\ x \longmapsto x^p \end{matrix} \right|$$

est un morphisme de corps, appelé morphisme de Frobenius. De plus, il s'agit d'un automorphisme de K si le corps K est fini. Pour $n \ge 1$, on note $\varphi^n \colon K \to K$ la composée n fois de φ par lui-même et alors l'ensemble Fix (φ^n) est l'ensemble des racines du polynôme $X^{p^n} - X$ dans K.

2.3.2 Propriétés des corps finis

THÉORÈME 2.17. Soient p un nombre premier et n > 0 un entier. Alors il existe un corps de cardinal $q := p^n$, unique à \mathbf{F}_p -isomorphisme près, on le note \mathbf{F}_q . C'est le corps de décomposition du polynôme $X^q - X$ sur \mathbf{F}_p .

- ♦ REMARQUE. Attention, le notation \mathbf{F}_q désigne l'unique corps, à \mathbf{F}_p -isomorphisme près, possédant q éléments et pas l'ensemble $\mathbf{Z}/q\mathbf{Z}$ qui n'est pas un corps.
 - *Preuve Unicité*. Soit K un corps de cardinal q. Alors c'est le corps de décomposition du polynôme $X^q X$ car tout élément de K est racine de ce polynôme (le neutre 0 est bien racine et cela se montre facilement en utilisant le théorème de Lagrange pour les éléments de K^\times) qui admet au plus q racines. Donc le corps K est le corps de décomposition du polynôme $X^q X$ sur \mathbf{F}_p et, de ce fait, il est unique à \mathbf{F}_p -isomorphisme près.
 - *Existence*. Tout d'abord, remarquons que le polynôme $X^q 1$ a des racines simples dans toute extension de \mathbf{F}_p . En effet, son polynôme dérivé $qX^{q-1} 1 = -1$ est constant, donc il ne peut pas avoir de racines multiples.

On sait que le corps de décomposition K du polynôme $X^q - X$ sur \mathbf{F}_p existe et qu'il est unique à \mathbf{F}_p -isomorphisme près. Montrons que |K| = q. Mais on sait que les racines de $X^q - X$ sont distinctes dans K et que l'ensemble des q-racines de $X^q - X$ est un sous-corps $K' \subset K$ de cardinal q puisque $K' = \mathrm{Fix}(\varphi^n)$. Comme $K' \subset K$ et le corps K' contient les racines du polynôme $X^q - X$, le corps K' est le corps de décomposition. Finalement, on en déduit K = K' et |K| = q.

THÉORÈME 2.18. Soit K un corps fini. Alors le groupe K^{\times} est cyclique.

Preuve Comme le groupe K^{\times} est abélien d'ordre fini, le théorème de structure assure qu'il existe une isomorphie

$$K^{\times} \cong \mathbf{Z}/p_1^{e_1}\mathbf{Z} \times \cdots \times \mathbf{Z}/p_k^{e_k}\mathbf{Z}$$

pour des nombres premiers p_i et des entiers $e_i \ge 1$. Si les nombres p_i sont distincts, alors le théorème des restes chinois assure

$$K^{\times} \cong \mathbf{Z}/(p_1^{e_1}\cdots p_k^{e_k})\mathbf{Z}$$

qui est cyclique. Raisonnons par l'absurde et supposons qu'il existe $i, j \in [1, k]$ tels que $i \neq j$ et $p := p_i = p_j$. Quitte à renuméroter les nombres p_i , on suppose i = 1 et j = 2. Alors

$$K^{\times} \cong \mathbf{Z}/p^{e_1}\mathbf{Z} \times \mathbf{Z}/p^{e_2}\mathbf{Z} \times \mathbf{Z}/p_3^{e_3}\mathbf{Z} \times \cdots \times \mathbf{Z}/p_k^{e_k}\mathbf{Z}.$$

Mais le groupe $\mathbb{Z}/p^{e_1}\mathbb{Z}\times\mathbb{Z}/p^{e_2}\mathbb{Z}$ contient plus de p éléments d'ordre p et ceci n'est pas possible car ces éléments sont racines du polynômes $X^p-1\in K[X]$ qui admet au plus p racines dans K. Ainsi les nombres p_i sont distincts et on se ramène au cas précédent. D'où le théorème.

- ♦ REMARQUES. En général, le groupe $(\mathbf{Z}/n\mathbf{Z})^{\times}$ pour un entier $n \ge 1$ quelconque n'est pas cyclique. Par exemple, on a $(\mathbf{Z}/12\mathbf{Z})^{\times} \cong (\mathbf{Z}/2\mathbf{Z})^2$.
 - Ce théorème donne $\mathbf{F}_q^{\times} \cong (\mathbf{Z}/(q-1)\mathbf{Z}, +)$. Cependant, cette isomorphisme est dur à expliciter.

2.3.3 Construction des corps F_p

RAPPEL. Soient p un nombre premier et $P \in \mathbf{F}_p[X]$ un polynôme irréductible de degré $n \ge 1$. On a vu que le quotient $\mathbf{F}_p[X]/\langle P \rangle$ est un corps fini d'ordre p^n .

THÉORÈME 2.19. Soient $n \ge 1$ un entier et K un corps fini d'ordre p^n . Alors il existe un polynôme $P \in \mathbf{F}_p[X]$ irréductible, unitaire et de degré n tel que

$$K \cong \mathbf{F}_n[X]/\langle P \rangle$$
.

Preuve Soit $\gamma \in K^{\times}$ un générateur du groupe cyclique K^{\times} . On considère le morphisme d'évaluation

$$h_{\gamma} : \begin{vmatrix} \mathbf{F}_p[X] \longrightarrow K, \\ P \longmapsto P(\gamma) \end{vmatrix}$$

qui est surjectif. Le théorème d'isomorphisme assure

$$K \cong \mathbf{F}_p[X] / \operatorname{Ker} h_{\gamma}$$
.

Par ailleurs, comme K est un corps, le noyau $\operatorname{Ker} h_{\gamma} \subset \mathbf{F}_p[X]$ est un idéal maximal. Comme $\mathbf{F}_p[X]$ est principal, il existe un polynôme $P \in \mathbf{F}_p[X]$ irréductible et unitaire tel que $\operatorname{Ker} h_{\gamma} = \langle P \rangle$. Ceci termine la preuve.

COROLLAIRE 2.20. Soit $n \ge 1$ un entier. Alors il existe un polynôme de $\mathbf{F}_n[X]$ qui est irréductible et de degré n.

2.3.4 Plongements

LEMME 2.21. Soit K un corps et $m, n \ge 1$ deux entiers. Alors $X^n - 1 \mid X^m - 1$ dans K[X] si et seulement si $n \mid m$.

Preuve Il suffit d'effectuer la division euclidienne de m par n et de travailler dans le quotient $K[X]/\langle X^n-1\rangle$. \square

Théorème 2.22. Soient $k, \ell \ge 1$ deux entiers. Alors le corps \mathbf{F}_{p^k} est un sous-corps de \mathbf{F}_{p^ℓ} si et seulement si $k \mid \ell$. Dans ce cas, on a

$$[\mathbf{F}_{n^{\ell}}:\mathbf{F}_{n^k}]=\ell/k.$$

Preuve ⇒ On suppose que le corps \mathbf{F}_{p^k} est un sous-corps de \mathbf{F}_{p^ℓ} . Alors le corps \mathbf{F}_{p^ℓ} est un \mathbf{F}_{p^k} -espace vectoriel de dimension $d \ge 1$. On en déduit $p^\ell = (p^k)^d = p^{kd}$, donc $k \mid \ell$.

 \Leftarrow Réciproquement, on suppose $k \mid \ell$. Soit K un corps d'ordre p^{ℓ} . Alors c'est le corps de décomposition du polynôme $X^{p^{\ell}} - X$. Si $X^{p_k} - X \mid X^{p^{\ell}} - X$, alors il contient toutes les p^k racines du polynôme $X^{p^k} - X$ et ses racines forment une sous-corps $K' \subset K$ de cardinal p^k .

Il suffit alors de montrer $X^{p_k} - X \mid X^{p^\ell} - X$. Avec le lemme précédent, on a les équivalences

$$X^{p_k} - X \mid X^{p^{\ell}} - X \iff X^{p_k - 1} - 1 \mid X^{p^{\ell} - 1} - 1$$
$$\iff p^k - 1 \mid p^{\ell} - 1$$
$$\iff k \mid \ell.$$

Ceci permet de conclure.

 \triangleright EXEMPLES. Considérons le corps F_{4096} . On remarque que $4096 = 2^{12}$ et les diviseurs de 12 sont 1, 2, 3, 4, 6, 12, donc les sous-corps de F_{4096} sont F_2 , F_4 , F_8 , F_{16} , F_{64} et F_{4096} .

2.4 POLYNÔMES IRRÉDUCTIBLES

2.4.1 Polynômes irréductibles sur F_p

Pour un entier $d \ge 1$, on note $\mathcal{P}_d \subset \mathbf{F}_p[X]$ l'ensemble des polynômes irréductibles et unitaires de degré d à coefficients dans \mathbf{F}_p et on pose $S_d \coloneqq \prod_{P \in \mathcal{P}_d} P$.

Théorème 2.23. Soit $n \ge 1$ un entier. Alors

$$X^{p^n} - 1 = \prod_{d \mid n} S_d.$$

Preuve Tout d'abord, remarquons que le polynôme $X^{p^n} - X$ admet uniquement des racines simples dans toute extension de \mathbf{F}_p car son polynôme dérivé est constant dans $\mathbf{F}_p[X]$. Montrons maintenant le lemme suivant.

LEMME 2.24. Soit $A \in \mathbb{F}_p[X]$ un polynôme irréductible et unitaire de degré $d \ge 1$. Alors $A \mid X^{p^n} - X$ si et seulement si $d \mid n$.

Preuve \Leftarrow On suppose $d \mid n$. Le corps $K \coloneqq \mathbf{F}_p[X]/\langle P \rangle \cong \mathbf{F}_{p^d}$ est un corps de rupture de A sur \mathbf{F}_p . Puisque $d \mid n$, on a $\mathbf{F}_{p^d} \subset \mathbf{F}_{p^n}$. Le corps \mathbf{F}_{p^n} étant un corps de décomposition de $P \coloneqq X^{p^n} - X$ dans \mathbf{F}_p , la classe $\alpha \in K$ de X dans K est une racine de P. Maintenant, en faisant une division euclidienne de P par A et en évaluant en α , on montre que $A \mid P$.

⇒ Réciproquement, on suppose $A \mid P$. Alors la classe α est une racine de A et, comme $A \mid P$, c'est aussi une racine de P. Puisque \mathbf{F}_{p^n} contient \mathbf{F}_p et α , on a $\mathbf{F}_{p^d} \subset \mathbf{F}_{p^n}$ car $\mathbf{F}_{p^d} \cong K = \mathbf{F}_p(\alpha)$. D'où $d \mid n$.

Ceci conclut la preuve. □

► EXEMPLE. Montrons que le polynôme $P := X^2 + X + 1 \in \mathbf{F}_p[X]$ est irréductible sur \mathbf{F}_p lorsque $p \equiv 2 \mod 3$. On suppose $p \equiv 2 \mod 3$. Il suffit de montrer qu'il ne possède pas de facteur linéaire, i. e. il ne possède pas de racines dans \mathbf{F}_p . Raisonnons par l'absurde et supposons qu'il ait une racine $\alpha \in \mathbf{F}_p$. Alors $\alpha^3 = 1$ car $X^3 = (X-1)P$. De plus, comme $P(1) \neq 1$, on a $\alpha \neq 1$, donc $\alpha \in \mathbf{F}_p^{\times}$ et $o(\alpha) = 3$. Ceci est absurde car $3 \nmid p - 1 = |\mathbf{F}_p^{\times}|$.

2.4.2 Polynômes irréductibles sur Q ou Z

DÉFINITION 2.25. Un *corps de nombre* est une extension finie de **Q**.

PROPOSITION 2.26. 1. Pour tout corps de nombre K, on a $\mathbf{Q} \subset K \subset \mathbf{C}$.

2. Pour tout entier n > 0, il existe un corps de nombres d'indice n dans **Q**.

Preuve Pour le point 2, il suffit de considérer le corps $\mathbf{Q}[X]/(X^n+2)$ car le polynôme X^n+2 est irréductible. \square

THÉORÈME 2.27. Soit K un corps de nombre. Alors il existe $\alpha \in K$ tel que $K = \mathbf{Q}(\alpha)$.

Preuve Voir le polycopié de Tobias SCHMIDT (théorème 3.3.1).

THÉORÈME 2.28. Soit K un corps de nombre. Alors il existe un polynôme irréductible $P \in \mathbf{Q}[X]$ de degré $[K:\mathbf{Q}]$ tel que $K \cong \mathbf{Q}[X]/\langle P \rangle$.

Preuve Soit $\alpha \in K$ un élément tel que $K = \mathbf{Q}(\alpha)$. Le morphisme d'évaluation

$$\begin{vmatrix} \mathbf{Q}[X] \longrightarrow K, \\ S \longmapsto S(\alpha) \end{vmatrix}$$

est surjectif et, comme $\mathbf{Q}[X]$ est principal, son noyau est engendré par un polynôme irréductible $P \in \mathbf{Q}[X]$. Le théorème d'isomorphisme donne alors $K \cong \mathbf{Q}[X]/\langle P \rangle$ qui est de degré $[K:\mathbf{Q}] = \deg P$.

2.4.3 Critère d'EISENSTEIN

THÉORÈME 2.29 (EISENSTEIN). Soient $P := a_n X^n + \dots + a_0 \in \mathbf{Z}[X]$ un polynôme et p un nombre premier tels que

- (i) $p \nmid a_n$,
- (ii) $p \mid a_i$ pour tout $i \in [0, n-1]$;
- (iii) $p^2 \nmid a_0$.

Alors le polynôme P est irréductible dans $\mathbf{Q}[X]$. De plus, si $\operatorname{pgcd}(a_1,\ldots,a_n)=1$, alors il est irréductible dans $\mathbf{Z}[X]$.

 \triangleright EXEMPLE. En prenant p = 3, le polynôme $2X^2 + 3X + 3$ est irréductible dans $\mathbf{Q}[X]$ et $\mathbf{Z}[X]$.

Preuve On le réduit modulo p et on obtient un polynôme $\overline{P} \in \mathbf{F}_p[X]$. Les conditions (i) et (ii) donne $\overline{P} = \overline{a_n}X$ avec $\overline{a_n} \neq 0$. Raisonnons par l'absurde et supposons qu'il soit réductible dans $\mathbf{Q}[X]$. Alors il existe $R, S \in \mathbf{Z}[X]$ tel que P = RS. Alors les polynômes \overline{R} et \overline{S} divisent \overline{P} dans $\mathbf{F}_p[X]$, donc ce sont des monômes. On en déduit que tous les coefficients de R et S, sauf les coefficients dominants, sont divisibles par P. Soient P0, P1 est termes constants de P2 et P3. Alors P4 est irréductible dans P6 est irréductible dans P6.

2.4.4 Polynômes cyclotomiques

Soit $n \ge 1$. On considère $\mu_n \subset \mathbb{C}^*$ le groupe multiplicatif des racines n-ième de l'unité. Une racine $\zeta \in \mu_n$ est dite *primitive* si $\zeta^k \ne 1$ pour tout $k \in [1, k-1]$. Le groupe des racines primitives est

$$\mu_n^\times = \{e^{2i\pi k/n} \mid k \in \llbracket 1, n \rrbracket, \operatorname{pgcd}(k, n) = 1\}$$

qui est donc de cardinal $\varphi(n)$. Le n-ième polynôme cyclotomique est le polynôme unitaire

$$\Phi_n \coloneqq \prod_{\zeta \in \mu_n^\times} (X - \zeta).$$

► EXEMPLES. On a

$$-\Phi_1 = X - 1,$$

$$-\Phi_2 = X + 1$$
,

$$-\Phi_3 = X^2 + X + 1$$
,

$$-\Phi_4 = X^2 + 1.$$

PROPOSITION 2.30. On a

$$X^n - 1 = \prod_{d|n} \Phi_d$$
 et $\Phi_n \in \mathbf{Z}[X]$.

Preuve La première égalité résulte du fait

$$\mu_n = \bigsqcup_{d \mid n} \mu_d^{\times}$$
.

En effet, l'inclusion \supset est claire. Réciproquement, soit $\zeta \in \mu_n$. Alors le théorème de Lagrange assure que l'ordre de ζ divise n. Par ailleurs, on a $\zeta \in \mu_{o(\zeta)}^{\times}$. Cela montre l'autre inclusion.

Par récurrence, montrons que le polynôme Φ_n est à coefficients entiers pour tout $n \ge 1$. L'initialisation est évidente. Soit $n \ge 2$. Supposons que $\Phi_d \in \mathbf{Z}[X]$ pour tout d < n. Alors $X^n - 1 = \Phi_n A$ où le polynôme

$$A\coloneqq \prod_{\substack{d\mid n\\d< n}}\Phi_d$$

est unitaire et à coefficients entiers. On peut alors en déduire que le polynôme Φ_n est à coefficients entiers. \Box

THÉORÈME 2.31. Le polynôme Φ_n est irréductible dans $\mathbf{Q}[X]$.

COROLLAIRE 2.32. 1. Le polynôme Φ_n est irréductible dans $\mathbf{Z}[X]$ car il est unitaire.

2. Soit $\zeta \in \mu_n^{\times}$. Alors le polynôme Φ_n est le polynôme minimal de ζ sur \mathbf{Q} . On en déduit $[\mathbf{Q}(\zeta):\mathbf{Q}] = \varphi(n)$. Ainsi le corps $\mathbf{Q}(\zeta)$ est le corps de décomposition de Φ_n .

2.5 RÉCIPROCITÉ QUADRATIQUE

2.5.1 Congruence quadratique

Soit p un nombre premier. On considère les congruences quadratiques de la forme $X^2 \equiv a \mod p$ pour un entier $a \in \mathbb{Z}$. Si a = 0, alors l'équation admet une solution $X \equiv 0$. Si $p \nmid a$, alors elle admet soit deux solutions soit aucun solution modula p.

DÉFINITION 2.33. On dit qu'un entier $a \in \mathbf{Z}$ est un *résidu quadratique modulo p* si l'équation $X^2 \equiv a \mod p$ admet une solution dans \mathbf{Z} .

THÉORÈME 2.34 (critère d'EULER). Soit $a \in \mathbb{Z}$ un entier premier avec p. Alors

- 1. l'entier a est un résidu quadratique modulo p si $a^{(p-1)/2} \equiv 1 \mod p$;
- 2. l'entier a est un non-résidu quadratique modulo p si $a^{(p-1)/2} \equiv -1 \mod p$.

Preuve Puisque les résidus et les non-résidus sont calculés modulo p, il suffit de considérer les éléments inversibles de \mathbf{F}_p . Notons que chaque élément de \mathbf{F}_p^{\times} est soit un résidu soit un non-résidu. Montrons que \mathbf{F}_p^{\times} est partagé en (p-1)/2 résidus et (p-1)/2 non résidus. Pour cela, considérons le morphisme

$$\theta \colon \begin{vmatrix} \mathbf{F}_p^{\times} \longrightarrow \mathbf{F}_p^{\times}, \\ x \longmapsto x^2. \end{vmatrix}$$

Son image est l'ensemble des résidus quadratiques et son noyau est réduit à ± 1 . Comme $|\mathbf{F}_p^{\times}| = |\mathrm{Ker}\,\theta|\,|\mathrm{Im}\,\theta|$, on en déduit que \mathbf{F}_p^{\times} contient (p-1)/2 résidus quadratique et autant de non-résidus quadratiques.

D'après le théorème de FERMAT, tous les éléments de \mathbf{F}_p^{\times} sont racines du polynôme $X^{p-1}-1$. Or dans $\mathbf{F}_p[X]$, on a $X^{p-1}-1=(X^{(p-1)/2}-1)(X^{(p-1)/2}+1)$. Ainsi, parmi les p-1 éléments de \mathbf{F}_p^{\times} , la moitié vérifie $X^{(p-1)/2}-1=0$ et l'autre moitié vérifie $X^{(p-1)/2}+1=0$. Et on remarque que cette première moitié sont les résidus quadratiques. \square

2.5.2 Symbole de LEGENDRE

DÉFINITION 2.35. Soit $a \in \mathbb{Z}$. On définit le *symbole de* LEGENDRE associé au couple (a, p) la quantité

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{si } a \equiv 0 \mod p, \\ 1 & \text{si } a \text{ est un carr\'e modulo } p, \\ -1 & \text{sinon} \end{cases}$$

Autrement dit, cette quantité vaut 1 (respectivement -1) si l'entier a est un (non-)résidu quadratique modulo p.

PROPOSITION 2.36. Soient $a, b \in \mathbb{Z}$. Alors

1. si
$$a \equiv b \mod p$$
, alors $(\frac{a}{p}) = (\frac{b}{p})$;

- 2. si pgcd(a, p) = 1, alors $(\frac{a^2}{p})$ = 1;
- 3. si p > 0, alors $(\frac{a}{p}) \equiv a^{(p-1)/2} \mod p$;
- 4. si pgcd(a, p) = pgcd(b, p) = 1, alors $(\frac{ab}{p})$ = $(\frac{a}{p})(\frac{b}{p})$

Théorème 2.37 (de la réciprocité quadratique). Soient p et q deux nombres premiers impairs. Alors

- 1. $(\frac{-1}{n}) = (-1)^{(p-1)/2}$, *i. e.* -1 est un résidu quadratique modulo p si et seulement si $p \equiv 1 \mod 4$;
- 2. $(\frac{2}{p}) = (-1)^{(p^2-1)/8}$, *i. e.* 2 est un résidu quadratique modulo *p* si et seulement si $p \equiv \pm 1 \mod 8$;
- 3. $(\frac{p}{q})(\frac{q}{p}) = (-1)^{(p-1)/2 \cdot (q-1)/2}$.
- ♦ REMARQUE. Les points 1 et 2 s'appellent les lois complémentaires. Dû à GAUSS, le point 3 s'appelle la loi de la réciprocité quadratique. Ces trois lois permettent de calculer les résidus quadratiques modulo p.
- ► EXEMPLES. L'équation $X^2 \equiv 17 \mod 97$ n'admet pas de solution car $(\frac{17}{97}) = -1$.
 - L'équation $X^2 = 85$ [17] admet des solutions car, comme $(\frac{17}{97}) = -1$ et $(\frac{5}{97}) = (\frac{97}{5}) = (\frac{2}{5}) = -1$, on a

$$\left(\frac{85}{97}\right) = \left(\frac{17 \times 5}{97}\right) = \left(\frac{17}{97}\right)\left(\frac{5}{97}\right) = 1.$$

- Calculer $(\frac{34}{71})$. Comme $71 \equiv 7 \mod 8$, la deuxième loi donne $(\frac{2}{71}) = 1$. De plus, on a

$$\left(\frac{17}{71}\right) = \left(\frac{71}{17}\right) = \left(\frac{3}{17}\right) = \left(\frac{17}{3}\right) = \left(\frac{-1}{3}\right) = -1.$$

D'où $(\frac{34}{71}) = -1$.

Preuve du point 1 du théorème 2.37 D'après le critère d'EULER et comme p est impair, on a

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} \mod p = (-1)^{(p-1)/2}.$$

Preuve du point 2 du théorème 2.37 D'abord, on remarque que l'élément 2 est un résidu quadratique modulo p si et seulement si le polynôme X^2-1 admet une solution dans \mathbf{F}_p^{\times} si et seulement si il est réductible sur \mathbf{F}_p . Ainsi l'élément 2 est un non-résidu quadratique modulo p si et seulement si le polynôme X^2-2 est irréductible sur \mathbf{F}_p . Comme $\mathbf{F}_{p^2} \cong \mathbf{F}_p[X]/\langle X^2-2\rangle$ est un corps de rupture pour X^2-2 , ce polynôme admet une racine dans \mathbf{F}_{p^2} . Donc l'élément 2 est un résidu (respectivement non-résidu) quadratique modulo p si et seulement si le polynôme X^2-2 admet une racine dans \mathbf{F}_p (respectivement dans $\mathbf{F}_{p^2} \setminus \mathbf{F}_p$).

D'après le TD, le groupe $\mathbf{F}_{p^2}^{\times}$ contient un élément α d'ordre 8 tel que $\alpha^4 = -1$. Il vérifie donc $\alpha^2 = -\alpha^{-2}$. On considère alors l'élément $\beta = \alpha + \alpha^{-1} \in \mathbf{F}_{p^2}^{\times}$ qui vérifie $\beta^2 = 2$. Ainsi l'élément 2 est un carré si et seulement si $\beta \in \mathbf{F}_p^{\times}$. Or comme Fix $\varphi = \mathbf{F}_p$, on a

$$\beta \in \mathbf{F}_p \iff \beta^p \equiv \beta \mod p$$

$$\iff (\alpha + \alpha^{-1})^p \equiv \alpha + \alpha^{-1} \mod p.$$

Comme p est premier impair, il est congru à 1, 3, 5 ou 7 modulo 8.

- Si $p \equiv \pm 1 \mod 8$, alors $(\alpha + \alpha^{-1})^p = \alpha^p + \alpha^{-p} = \alpha + \alpha^{-1}$.
- Si $p \equiv \pm 3 \mod 8$, alors $(\alpha + \alpha^{-1})^p = \alpha^p + \alpha^{-p} = -(\alpha + \alpha^{-1}) \neq \alpha + \alpha^{-1}$. En effet, comme $\alpha^8 = 1$, on a $\alpha^4 = -1$, donc $\alpha^3 = -\alpha^{-1}$. Ceci permet d'écrire

$$\beta^3 = (\alpha + \alpha^{-1})^3 = \alpha^3 + \alpha^{-3} = -(\alpha + \alpha^{-1}) = -\beta.$$

On en conclut que l'élément 2 n'est pas un carré si $p \equiv 3 \mod 8$. De même si $p \equiv -3 \mod 8$.

Ceci conclut le point 2.

CAS DE RÉSIDUS QUADRATIQUE MODULO $p_1 \cdots p_k$. Soient p_1, \ldots, p_k des nombres premiers deux à deux distincts. On note $n := p_1 \cdots p_k$. Le théorème des restes chinois assure

$$(\mathbf{Z}/n\mathbf{Z})^{\times} \cong (\mathbf{Z}/p_1\mathbf{Z})^{\times} \times \cdots \times (\mathbf{Z}/p_k\mathbf{Z})^{\times}.$$

Donc un élément $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ est un carré si et seulement si c'est un carré modulo p_i pour tout $i \in [1, k]$.

▶ EXEMPLES. L'entier 85 n'est pas un carré modulo 403 = 13 × 31. En effet, on a

$$\left(\frac{85}{13}\right) = \left(\frac{7}{13}\right) = \left(\frac{13}{7}\right) = \left(\frac{-1}{7}\right) = -1,$$

$$\left(\frac{85}{31}\right) = \left(\frac{23}{31}\right) = (-1)\left(\frac{31}{23}\right) = -\left(\frac{8}{23}\right) = -\left(\frac{2}{23}\right) = -1.$$

2.5.3 Preuve de la loi de réciprocité quadratique

Soient p et q deux nombres premiers. On souhaite montrer la loi de réciprocité quadratique

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)/2 \cdot (q-1)/2}.$$

On pose $\zeta_p:=e^{2i\pi/p}$ une racine p-ième de l'unité. La somme quadratique de Gauss est la quantité

$$g_p \coloneqq \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \zeta_p^k.$$

Cette somme vérifie $g_p^2=p^*$ en notant $p^*\coloneqq (\frac{-1}{p})p$. Maintenant, avec le critère d'EULER, on a

$$g_p^{q-1} = (g_p^2)^{(q-1)/2} = (p^*)^{(q-1)/2} \equiv \left(\frac{p^*}{q}\right) \mod q,$$

donc

$$g_p^q \equiv \left(\frac{p^*}{q}\right) g_p \mod q. \tag{1}$$

Par ailleurs, le théorème de FERMAT assure

$$g_p^q \equiv \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \zeta_p^{qk} \mod q.$$

Soit $a \in \mathbb{F}_p^{\times}$ l'inverse de q modulo p. En effectuant le changement de variables t = qk, on a

$$g_p^q \equiv \left(\frac{a}{p}\right) \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \zeta_p^t \mod q.$$

Comme $aq \equiv 1 \mod p$, on a $(\frac{a}{p}) = (\frac{q}{p})$ et on obtient

$$g_p^q \equiv \left(\frac{q}{p}\right) g_p \mod q.$$
 (2)

Avec les relations (1) et (2), on obtient

$$\left(\frac{p^*}{q}\right)g_p \equiv \left(\frac{q}{p}\right)g_p \mod q.$$

En multipliant par g_p et en utilisant $g_p^2 = p^2$, on trouve

$$\left(\frac{p^*}{q}\right)p^* \equiv \left(\frac{q}{p}\right)p^* \mod q.$$

Puisque p^* est inversible modulo q et que les symboles de Legendre valent ± 1 , on obtient

$$\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right).$$

Enfin, on a

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right) = \left(\frac{(-1)^{(p-1)/2}}{q}\right) \left(\frac{p}{q}\right) = ((-1)^{(p-1)/2})^{(q-1)/2} \left(\frac{p}{q}\right).$$

Ceci montre la loi de réciprocité quadratique.

Chapitre 3

MODULE SUR UN ANNEAU

3.1 Notion de module		12	3.2.2 Réduction de matrice à coefficients entiers	14
3.1.1	Définition	12	3.2.3 Générateurs et relations les Z -modules	16
3.1.2	Morphisme de modules	12	3.3 Théorèmes de structures	16
3.1.3	Module quotient	12	3.3.1 Théorème de la base adaptée	16
3.1.4	Produit direct et somme directe de modules	13	3.3.2 Théorème de structure principal	16
3.1.5	Modules libres	13	3.3.3 Groupes abéliens données par des générateurs et	
3.1.6	Module de type fini	13	relations	17
3.2 Alg	gèbre linéaire dans un module	14	3.3.4 Preuve de la proposition 3.23	18
3.2.1	Matrice	14		

3.1 NOTION DE MODULE

3.1.1 Définition

DÉFINITION 3.1. Soit A un anneau commutatif. Un A-module est un groupe abélien (M, +) muni du multiplication scalaire

$$\begin{vmatrix} A \times M \longrightarrow M, \\ (a, x) \longmapsto a \cdot x \end{vmatrix}$$

vérifiant les quatre points suivants :

- (i) pour tout $x \in M$, on a $1_A \cdot x = x$;
- (ii) pour tous $a, b \in A$ et $x \in M$, on a $(ab) \cdot x = a \cdot (b \cdot x)$;
- (iii) pour tous $a, b \in A$ et $x \in M$, on a $(a + b) \cdot x = a \cdot x + b \cdot x$;
- (iv) pour tous $a \in A$ et $x, y \in M$, on a $a \cdot (x + y) = a \cdot x + a \cdot y$.

DÉFINITION 3.2. Un *sous-module* d'un module M est un sous-groupe de (M, +) stable par multiplication par un scalaire.

- ▶ EXEMPLES. Soit *K* un corps. Alors tout *K*-module est un *K*-espace vectoriel.
 - Les notions de **Z**-module et de groupe abélien coïncident (où la multiplication scalaire est alors définie naturellement).
 - Tout idéal de A est un A-module pour la multiplication dans A. En particulier, l'anneau A est un A-module.

3.1.2 Morphisme de modules

DÉFINITION 3.3. Soient M et N deux A-modules. Une application $f: M \longrightarrow N$ est un *morphisme de* A-module lorsque

$$f(ax+by)=af(x)+bf(y), \quad \forall x,y\in M,\, \forall a,b\in A.$$

On note $\operatorname{Hom}_A(M, N)$ l'ensemble des morphismes de M dans N.

- ♦ REMARQUE. Comme pour les espaces vectoriels, on définit le noyau et l'image d'un morphisme de A-module.
- ► EXEMPLE. L'application

$$\begin{vmatrix} \mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z} \times \mathbf{Z}, \\ (m, n) \longmapsto (2m, 3n) \end{vmatrix}$$

est un morphisme de **Z**-module.

3.1.3 Module quotient

THÉORÈME 3.4. Soient M un A-module et N un sous-module de M. Alors le quotient M/N est un A-module par rapport à la multiplication scalaire

$$\begin{vmatrix} A \times M/N \longrightarrow M/N, \\ (a, m+N) \longmapsto am+N. \end{vmatrix}$$

De plus, la projection canonique

$$\pi: \begin{bmatrix} M \longrightarrow M/N, \\ m \longmapsto m+N \end{bmatrix}$$

est un morphisme surjectif de A-module vérifiant $\operatorname{Ker} \pi = N$

PROPOSITION 3.5 (propriété universelle du module quotient). Soient $f: M \longrightarrow P$ un morphisme de A-module et N un A-module tel que $N \subset \text{Ker } f$. Alors il existe une unique morphisme $\overline{f}: M/N \longrightarrow P$ tel que $f = \overline{f} \circ \pi$.

PROPOSITION 3.6 (premier théorème d'isomorphisme). Soient M et Q deux A-modules et $f: M \longrightarrow Q$ un morphisme surjectif de A-module. Alors le morphisme $\overline{f}: M/\operatorname{Ker} f \longrightarrow Q$ est un isomorphisme de A-module.

Théorème 3.7 (de correspondance). Il y a une bijection entre les sous-modules de M/N et les sous-modules de M contenant N.

3.1.4 Produit direct et somme directe de modules

Définition 3.8. Soit $(M_i)_{i \in I}$ une famille de A-modules.

- Le *produit direct* de cette famille est le produit cartésien $\prod_{i \in I} M_i$ munit des opérations termes à termes.
- La *somme directe* de cette famille est le sous-module de $\prod_{i \in I} M_i$, noté $\bigoplus_{i \in I} M_i$, composé des familles presque nulles $(x_i)_{i \in I}$ de ce produit.
- Pour un ensemble *I*, on note $A^{(I)} := \bigoplus_{i \in I} M_i$ et $A^I := \prod_{i \in I} M_i$.
- Si I = [1, n], on a $\prod_{i=1}^n M_i = \bigoplus_{i=1}^n M_i$ et on note $A^n := \prod_{i=1}^n A_i$.

3.1.5 Modules libres

DÉFINITION 3.9. Soit M un A-module. On dit qu'une partie $S \subset M$ est génératrice si tout élément de M est une combinaison linéaire finie d'éléments de S. Dans ce cas, les éléments de S sont appelés des générateurs de M. De plus, cette partie S est libre si toute combinaison linéaire finie nulle a ses coefficients nuls. Enfin, cette partie S est une base si elle est génératrice et libre. Si le A-module M admet une base, on dit qu'il est libre.

 \triangleright EXEMPLE. Pour tout $n \ge 2$, le **Z**-module **Z**/n**Z** n'est pas libre.

DÉFINITION 3.10. Soit I un ensemble. Le A-module libre $A^{(I)}$ est appelé le A-module libre standard de base I. Une base de celui-ci est la famille $(e_i)_{i \in I}$ où on a posé $e_i := (\delta_{i,j})_{j \in I}$ pour tout $i \in I$.

PROPOSITION 3.11. Soient M un A-module et $S := (x_i)_{i \in I}$ une famille de M. Alors il existe une unique morphisme de A-module $\phi_S : A^{(I)} \longrightarrow M$ tel que $\phi_S(e_i) = x_i$ pour tout $i \in I$. De plus, la famille S est

- génératrice si et seulement si l'application ϕ_S est surjective;
- libre si et seulement si l'application ϕ_S est injective;
- une base si et seulement si l'application ϕ_S est bijective.
- \diamond REMARQUE. Un A-module est donc libre si et seulement s'il est isomorphe à A-module $A^{(I)}$ pour un certain ensemble I.
- PROPOSITION 3.12. Tout *A*-module est un quotient d'un *A*-module libre.

Preuve Soient M un A-module et $S := (x_i)_{i \in I} \subset M$ une partie génératrice. Alors le morphisme ϕ_S est surjectif ce qui assure

$$M \cong A^{(I)} / \operatorname{Ker} \phi_S$$

où le A-module $A^{(I)}$ est libre.

3.1.6 Module de type fini

DÉFINITION 3.13. Un A-module est de type fini s'il admet une partie génératrice finie.

PROPOSITION 3.14. Soient $r, s \ge 1$ deux entiers. Si $A^r \cong A^s$, alors r = s.

Preuve On suppose $A^r \cong A^s$. D'après le théorème de Krull, il existe un idéal maximal \mathfrak{m} de A. Considérons le sous-module $\mathfrak{m}A^r$. Soit $\theta \colon A^r \longrightarrow A^s$ un isomorphisme de A-modules. Puisque celui-ci est A-linéaire, on obtient donc $\theta(\mathfrak{m}A^r) = \mathfrak{m}A^s$. Ainsi il induit un isomorphisme $\overline{\theta} \colon A^r/\mathfrak{m}A^r \longrightarrow A^s/\mathfrak{m}A^s$. Maintenant, comme \mathfrak{m} est un idéal, on a $\mathfrak{m}A^r = \mathfrak{m}^r$ et $\mathfrak{m}A^s = \mathfrak{m}^s$. De plus, le quotient $K \coloneqq A/\mathfrak{m}$ est un corps tel que $A^r/\mathfrak{m}^r = K^r$ et $A^s/\mathfrak{m}^s = K^s$. Or l'application $\overline{\theta} \colon K^r \longrightarrow K^s$ est un isomorphisme de K-espace vectoriel. D'où r = s.

DÉFINITION 3.15. On appelle *rang* d'un *A*-module de type fini l'unique entier $r \ge 0$ vérifiant $M \cong A^r$.

3.2 ALGÈBRE LINÉAIRE DANS UN MODULE

Soient M et N deux A-modules. On peut munir l'ensemble $\operatorname{Hom}_A(M,N)$ d'une structure de A-module de manière naturelle. On suppose que les modules M et N sont libres. Il existe des bases (v_1,\ldots,v_m) et (w_1,\ldots,w_n) de M et N pour lesquelles les applications

$$\phi \colon \begin{vmatrix} A^m \longrightarrow M, \\ e_i \longmapsto v_i \end{vmatrix} \text{ et } \psi \colon \begin{vmatrix} A^n \longrightarrow N, \\ e_i \longmapsto w_i \end{vmatrix} \text{ avec } e_i \coloneqq (\delta_{i,j})_{j \in [\![1,m]\!]}$$

sont des isomorphismes.

Par rapport à ces bases, il y a des morphismes de A-modules entre l'ensemble des morphismes $\operatorname{Hom}_A(M,N)$ et l'ensemble des matrices $\mathcal{M}_{n,m}(A)$.

3.2.1 Matrice

Pour tout morphisme $f \in \operatorname{Hom}_A(M,N)$, on note $[f] \in \mathcal{M}_{n,m}(A)$ sa matrice dans les bases choisies. On peut également définir la notion de déterminant dans un A-module.

PROPOSITION 3.16. Une matrice de $\mathcal{M}_n(A)$ est inversible si et seulement si son déterminant est inversible.

PROPOSITION 3.17. Soient $B \in \mathcal{M}_n(A)$ et $f_B : A \longrightarrow A$ l'endomorphisme associé. Alors

- 1. l'endomorphisme f_B est surjectif si et seulement si det $B \in A^{\times}$;
- 2. si det B n'est pas un diviseur de 0 dans A, alors f_B est injectif.

3.2.2 Réduction de matrice à coefficients entiers

On souhaite simplifier une matrice $B \in \mathcal{M}_{m,n}(\mathbf{Z})$ à l'aide des opérateurs élémentaires sur les lignes et les colonnes. Comme pour les matrices de $\mathcal{M}_{m,n}(K)$, cela revient à multiplier à multiplier à droite ou à gauche la matrice B par des matrices élémentaires. Pour $i \in [\![1,m]\!]$, $j \in [\![1,n]\!]$ et $s \in \mathbf{Z}$, en notant $E_{i,j}(s) := I_k + sE_{i,j}$, l'opération $L_i \longrightarrow L_i + sL_j$ correspond à la multiplication $E_{i,j}(s)B$ et l'opération $C_i \longrightarrow C_i + sC_j$ correspond à la multiplication $BE_{i,j}(s)$. De même, pour $i \in [\![1,k]\!]$, on note $E_{i,i}(-1) := I_n - 2E_{i,i} \in \mathrm{GL}_k(\mathbf{Z})$ et, on considérant les bonnes dimensions, les multiplications $E_{i,i}(-1)B$ et $BE_{i,i}(-1)$ correspondent à la multiplication de la ligne L_i ou de la colonne C_i par -1. Cela constituent les opérations élémentaires.

PROPOSITION 3.18. Toute suite d'opérations élémentaires sur les lignes et colonnes d'une matrice $B \in \mathcal{M}_{m,n}(\mathbf{Z})$ peut-être décrit sous la forme B' = PBQ avec $P \in GL_m(\mathbf{Z})$ et $Q \in GL_n(\mathbf{Z})$.

Maintenant, pour un corps K, une matrice $B \in \mathcal{M}_{m,n}(K)$ peut se réduire sous la forme

$$B = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}.$$

Mais ceci n'est pas toujours possible lorsque les coefficients sont entiers. Par exemple, la matrice $(2) \in \mathcal{M}_1(\mathbf{Z})$ ne peut être réduite sous cette forme.

Théorème 3.19 (forme normale de SMITH, dans **Z**). Soit $B \in \mathcal{M}_{m,n}(\mathbf{Z})$. Alors il existe $P \in GL_m(\mathbf{Z})$ et $Q \in GL_n(\mathbf{Z})$

telles que

$$PBQ = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_r & \\ & & & \mathbf{0} \end{pmatrix}$$

où les entiers $d_1, ..., d_r \in \mathbf{N}^*$ vérifient $d_1 \mid d_2 \mid \cdots \mid d_r$.

Idée de la preuve À l'aide des opérations élémentaires, on transforme la matrice B en une matrice de la forme

$$\begin{pmatrix} d_1 & 0 \\ 0 & M \end{pmatrix}$$

avec $M \in \mathcal{M}_{m-1,n-1}(\mathbf{Z})$ et l'entier d_1 divise tous les coefficients de M. On peut alors procéder par récurrence. \square

▶ EXEMPLE. Trouver la forme de SMITH de la matrice

$$\begin{pmatrix} 6 & -8 \\ -4 & 10 \end{pmatrix}$$

Tout d'abord (étape 1), on met en premiers coefficients un entier positif plus petit que tous les autres en valeurs absolues :

$$\begin{pmatrix} 6 & -8 \\ -4 & 10 \end{pmatrix} \xrightarrow{L_1 \to L_2} \begin{pmatrix} -4 & 10 \\ 6 & -8 \end{pmatrix} \xrightarrow{L_1 \to -L_1} \begin{pmatrix} 4 & -10 \\ 6 & -8 \end{pmatrix}.$$

Ensuite (étape 2), on effectue la division $a_{2,1} = a_{1,1}q + r$. Si r = 0, on remplace $a_{2,1}$ par 0 ce qui n'est ici pas le cas. Sinon on refait l'étape 1 et on a

$$\begin{pmatrix} 4 & -10 \\ 6 & -8 \end{pmatrix} \xrightarrow{L_2 \to L_2 - L_1} \begin{pmatrix} 4 & -10 \\ 2 & 2 \end{pmatrix} \xrightarrow{L_1 \to L_2} \begin{pmatrix} 2 & 2 \\ 4 & -10 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 2 \\ 0 & -14 \end{pmatrix}.$$

Maintenant, on refait la division et le reste est ici nul: on obtient

$$\begin{pmatrix} 2 & 2 \\ 0 & -14 \end{pmatrix} \xrightarrow{C_2 \to C_2 - C_1} \begin{pmatrix} 2 & 0 \\ 0 & -14 \end{pmatrix} \xrightarrow{C_2 \to -C_2} \begin{pmatrix} 2 & 0 \\ 0 & 14 \end{pmatrix}.$$

On a ici terminé. Cependant (étape 3), si jamais une coefficient b de B n'est pas divisible par $a_{1,1}$, on ajoute la colonne C_1 à la colonne C_1 et on refait l'étape 2. Par exemple, on a

$$\begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} \xrightarrow{C_1 \to C_1 + C_2} \begin{pmatrix} 2 & 0 \\ 5 & 5 \end{pmatrix} \xrightarrow{L_2 \to L_2 - 2L_1} \begin{pmatrix} 2 & 0 \\ 1 & 5 \end{pmatrix}$$
$$\longrightarrow \begin{pmatrix} 1 & 5 \\ 2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 5 \\ 0 & -10 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -10 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -10 \end{pmatrix}.$$

THÉORÈME 3.20 (forme normale de SMITH). Soient A un anneau principal et $B \in \mathcal{M}_{m,n}(A)$. Alors il existe deux matrices $P \in GL_m(A)$ et $Q \in GL_n(A)$ telles que

$$PBQ = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_r & \\ & & & \mathbf{0} \end{pmatrix}$$

où les entiers $d_1, \ldots, d_r \in A \setminus \{0\}$ vérifient $d_1 \mid d_2 \mid \cdots \mid d_r$.

Preuve Si l'anneau A est euclidien, il suffit de remplacer, dans la preuve précédente, les utilisations de la valeur absolue par le stathme $v: A \longrightarrow \mathbf{N}$. Si l'anneau A n'est pas euclidien, alors on admet le théorème : le procédé n'est pas algorithmique.

THÉORÈME 3.21. Soient M et N deux **Z**-modules libre de type fini et $f: M \to N$ un morphisme. Alors il existe deux bases de M et N pour lesquelles la matrice de f soit diagonale.

Preuve Soit B la matrice de f dans des bases quelconques. D'après le théorème précédente, on peut trouver deux matrices $P \in GL_m(A)$ et $Q \in GL_n(A)$ telle que la matrice PBQ soit une forme normale de SMITH. Mais les matrices P et Q sont des matrices de changements de bases. D'où le résultat. □

3.2.3 Générateurs et relations les Z-modules

Soit M un **Z**-module de type fini. On note (v_1, \ldots, v_m) une famille génératrice de M. Alors le morphisme

$$\phi: \begin{vmatrix} \mathbf{Z}^m \longrightarrow M, \\ (r_1, \dots, r_m) \longmapsto r_1 v_1 + \dots + r_m v_m \end{vmatrix}$$

est injectif. On en déduit $M \cong \mathbb{Z}^m / \operatorname{Ker} \phi$ et les éléments du noyau $\operatorname{Ker} \phi$ donnent les relations entre les éléments générateurs v_i . Par exemple, le \mathbb{Z} -module $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$ est le sous-module de \mathbb{Z}^2 engendré par les éléments $v_1 := (1,0)$ et $v_2 := (0,1)$ dans lequel on impose les relations $4v_1 = 0$ et $12v_2 = 0$.

3.3 THÉORÈMES DE STRUCTURES

3.3.1 Théorème de la base adaptée

Soient M un A-module et $N \subset M$ un sous-module. Dans la suite, on voudrait avoir une propriété qui dit que, si M est de type fini, alors N l'est aussi. Malheureusement, celle-ci n'est pas vraie si A n'est pas noethérien : dans cas cas, il existe un idéal $I \subset A$ qui n'est pas de type fini.

- ightharpoonup EXEMPLE. On considère l'anneau des suites entières $A := \mathbf{Z}^{\mathbf{N}}$. Alors le A-module A est de type fini, mais son sous-module des suites finies $\mathbf{Z}^{(\mathbf{N})}$ n'est pas de type fini.
- DÉFINITION 3.22. Un A-module M est dit noethérien si tout sous-module de M est de type fini.
- PROPOSITION 3.23. Soit A un anneau noethérien. Alors tout A-module de type fini est noethérien.

THÉORÈME 3.24 (de la base adaptée). Soient A un anneau principal, M un A-module libre de rang $m \ge 0$ et $N \subset M$ un sous-module. Alors il existe une base (x_1, \dots, x_m) de M et une base (y_1, \dots, y_n) de N telles que

- (i) $n \le m$;
- (ii) pour tout $i \in [1, n]$, il existe $d_i \in A \setminus \{0\}$ tel que $y_i = d_i x_i$;
- (iii) $d_1 \mid \cdots \mid d_n \text{ et } \langle d_1 \rangle \supset \cdots \supset \langle d_n \rangle$.

Preuve Soient $X := (v_1, \dots, v_m)$ une base de M et $Y := (w_1, \dots, w_n)$ une partie génératrice minimale de N. Alors il existe un isomorphisme $\phi_X \colon A^m \longrightarrow M$ et un morphisme surjectif $\phi_Y \colon A^n \longrightarrow N$. On peut donc identifier ces familles comme respectivement des bases de A^m et A^n . On note $B \in \mathcal{M}_{m,n}(A)$ la matrice de Y dans X. Plus formellement, en notant $i \colon N \longrightarrow M$ l'inclusion, la matrice B est celle du morphisme $u := \phi_X^{-1} \circ i \circ \phi_Y$ de sorte que la diagramme

$$A^{n} \xrightarrow{u} A^{m}$$

$$\phi_{Y} \downarrow \qquad \downarrow \phi_{X}$$

$$N \xrightarrow{i} M$$

commute. En utilisant le théorème de SMITH, il existe $P \in GL_m(A)$ et $Q \in GL_n(A)$ telles que

$$B' := PBQ = \operatorname{diag}(d_1, \dots, d_k, 0).$$

Alors cette matrice B' est la matrice d'une nouvelle base $X' := (x_1, \ldots, x_m)$ de M dans une nouvelle famille génératrice $Y' := (y_1, \ldots, y_n)$ de N (i. e. $Y' = Q^{-1}Y$ et X' = PX). Alors pour $i \in [1, n]$, on a $y_i = d_i x_i$ avec $d_i \neq 0$ sinon cela contredirait la minimalité de (w_1, \ldots, w_n) . Montrons que la famille Y' est libre. Soient $a_1, \ldots, a_n \in A$ tels que $a_1y_1 + \cdots + a_ny_n = 0$. Alors $a_1d_1x_1 + \cdots + a_nd_nx_n = 0$. Comme (x_1, \ldots, x_m) est libre, pour tout $i \in [1, n]$, on a $a_id_i = 0$, donc $a_i = 0$ car l'anneau A est intègre. D'où la liberté de Y'.

COROLLAIRE 3.25. Soient A un anneau principal et M un A-module libre de rang $m \ge 0$. Alors tout sous-module de M est libre et de rang inférieur ou égal à m.

3.3.2 Théorème de structure principal

THÉORÈME 3.26 (de structure principal). Soient A un anneau principal et M un A-module de type fini. Alors il

existe $d_1, ..., d_r \in A \setminus (A^{\times} \cup \{0\})$ et $s \ge 0$ tels que

$$d_1 \mid \cdots \mid d_r$$
 et $M \simeq A/\langle d_1 \rangle \oplus \cdots \oplus A/\langle d_r \rangle \oplus A^s$.

L'entier s et la suite d'idéaux $\langle d_1 \rangle \supset \cdots \supset \langle d_r \rangle$ ne dépendent que de M

Preuve Soient $X := (x_1, ..., x_m)$ une partie génératrice minimale de M et $\phi_X : A^m \longrightarrow M$ la surjection naturelle associée. Alors $M \simeq A^m / \operatorname{Ker} \phi_X$. De plus, le noyau $K := \operatorname{Ker} \phi_X$ est un sous-module libre de A^m de rang $n \le m$, donc le théorème précédent assure qu'il existe une base $(v_1, ..., v_n)$ de K, une base $(w_1, ..., w_m)$ de M et des éléments $d_1, ..., d_n \in A \setminus \{0\}$ tels que

$$d_1 \mid \dots \mid d_n$$
 et $v_i = d_i w_i$, $\forall i \in [1, n]$.

On a donc

$$M \simeq A^m / K \simeq \bigoplus_{i=1}^m Aw_i / \bigoplus_{i=1}^n Ad_i w_i$$
$$= A/\langle d_1 \rangle \oplus \cdots \oplus A/\langle d_n \rangle \oplus A^s$$

avec $s := m - n \ge 0$. Montrons que les éléments d_i appartiennent à $A \setminus (A^\times \cup \{0\})$. Comme (v_1, \dots, v_n) est une base de K ou $v_i = d_i w_i$ pour tout $i \in [1, n]$, on a $d_i \ne 0$. De plus, comme (w_1, \dots, w_m) est minimale, on a $d_i \notin A^\times$ car sinon $A/\langle d_i \rangle = \{0\}$, donc M peut-être engendré par moins de m générateurs ce qui est impossible. L'unicité est montrée dans le polycopié.

 \diamond REMARQUE. En appliquant ce théorème pour $A = \mathbf{Z}$, on obtient le théorème de structure des groupes abéliens de type fini.

3.3.3 Groupes abéliens données par des générateurs et relations

 \triangleright EXEMPLES. On considère le **Z**-module *M* donné par trois générateurs x_1, x_2 et x_3 et les deux relations

$$2x_1 + 2x_2 + 8x_3 = 0$$
 et $-2x_1 + 2x_2 + 4x_3 = 0$.

Intuitivement, ce module est le quotient de \mathbb{Z}^3 , dont on note (x_1, x_2, x_3) une base, par le sous-module $K \subset \mathbb{Z}^3$ engendré par les éléments $r_1 := 2x_1 + 2x_2 + 8x_3$ et $r_2 := -2x_1 + 2x_2 + 4x_3$. Plus formellement, en notant $\phi : \mathbb{Z}^3 \longrightarrow M$ l'unique morphisme surjectif envoyant chaque élément e_i de la base canonique de \mathbb{Z}^3 sur x_i , on a $M \simeq \mathbb{Z}^3$ / Ker ϕ .

On considères la base canonique (x_1, x_2, x_3) de \mathbf{Z}^2 . Alors la famille (r_1, r_2) est génératrice du noyau $\operatorname{Ker} \phi$. De plus, la matrice

$$B := \begin{pmatrix} 2 & -2 \\ 2 & 2 \\ 8 & 4 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbf{Z}).$$

définit une morphisme $B: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^3$ et il vérifie $\operatorname{Im} B = \operatorname{Ker} \phi$ et $\mathbb{Z}^3 / \operatorname{Im} B \simeq M$.

DÉFINITION 3.27. Le *conoyau* d'un morphisme de A-modules $h: P \longrightarrow Q$ est le quotient

Coker
$$h := Q / \operatorname{Im} h$$
.

Si un module M s'écrit $M \simeq \operatorname{Coker} B$ pour un morphisme $B \colon P \longrightarrow Q$, on dit que ce module M est présenté par B ou que la matrice B est la matrice de présentation de M

PROPOSITION 3.28. Soit $B \in \mathcal{M}_{m,n}(\mathbf{Z})$ une matrice de présentation d'un **Z**-module M. Alors les matrices suivantes présentent le même module M:

- la forme normale de SCHMIDT de B convient;
- la matrice B à laquelle on a supprimé une colonne de zéros convient;
- − quelque soit $j \in [1, n]$, si la j-ième colonne de B est $(\delta_{i,j})_{i \in [1,m]}$, alors la matrice B à laquelle on a supprimé la i-ième ligne et la j-ième colonne convient.
- ${\color{blue} \rhd} \ \ \text{Exemples.} \ \ \text{Reprenons l'exemple précédent et mettons } B \text{ sous sa forme normale de Schmidt: on obtient}$

$$B \xrightarrow{L_{3} \leftarrow L_{2} - 5L_{1}} \begin{pmatrix} 2 & -2 \\ 0 & 4 \\ 0 & 12 \end{pmatrix} \xrightarrow{L_{2} \leftarrow L_{2} + L_{1}} \begin{pmatrix} 2 & -2 \\ 0 & 0 \\ 0 & 12 \end{pmatrix} \xrightarrow{L_{3} \leftarrow L_{3} - 3L_{2}} \begin{pmatrix} 2 & 0 \\ 0 & 4 \\ 0 & 0 \end{pmatrix}.$$

On en déduit $M \simeq \mathbb{Z}^3/(2\mathbb{Z} \oplus 4\mathbb{Z} \oplus \{0\}) \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}$.

3.3.4 Preuve de la proposition 3.23

LEMME 3.29. Un A-module est noethérien M si et seulement si toute suite croissante de sous-modules de M est stationnaire, i. e. pour toute suite croissante $(M_n)_{n \in \mathbb{N}}$ de sous-modules de M, il existe un entier $n_0 \in \mathbb{N}$ tel que la suite $(M_n)_{n \geqslant n_0}$ soit constante.

LEMME 3.30. Soient M un A-module et $N \subset M$ un sous-module. Alors M est noethérien si et seulement si N et M/N sont noethériens.

Preuve Le sens direct est assez clair (cf. TD8). Réciproquement, on suppose que N et M/N sont noethériens. Notons $\pi: M \longrightarrow M/N$ la projection. Alors M est de type fini. Soit $M' \subset M$ un sous-module. Alors comme M/N est noethérien, le sous-module $\pi(M') \subset M/N$ est de type fini. De plus, le sous-module $M' \cap N \subset N$ est de type fini. Ainsi comme $\pi(M') \simeq M'/(M' \cap N)$, le sous-module M' est de type fini. On en déduit que M est noethérien. \square

LEMME 3.31. Soient A un anneau noethérien et $n \ge 1$ un entier. Alors le A-module libre A^n est noethérien.

Preuve Procédons par récurrence sur l'entier $n \ge 1$. Par hypothèse, on a le résultat pour n = 1. Soit $n \ge 2$ un entier. Supposons que les A-modules A, ..., A^{n-1} sont noethériens. Alors les modules $A \simeq A^n/A^{n-1}$ et A^{n-1} sont noethériens : on a bien un isomorphisme $A \simeq A^n/A^{n-1}$ car on a la suite exacte

$$0 \longrightarrow A^{n-1} \xrightarrow{\subset} A^n \xrightarrow{\pi} A \longrightarrow 0$$
$$(a_1, ..., a_n) \longmapsto a_n$$
$$(a_1, ..., a_{n-1}) \longmapsto (a_1, ..., a_{n-1}, 0)$$

Par le lemme précédent, le module A^n est alors noethériens.

♦ REMARQUE. Tout anneau euclidien est principal et donc noethérien.

Preuve de la proposition 3.23 Soient A un anneau noethérien et M un A-module de type fini. Montrons que M est noethérien. On sait qu'il existe un entier $n \ge 1$ et une surjection $\phi \colon A^n \longrightarrow M$. Par le deuxième lemme, le module M est noethérien.

Chapitre 4

GÉOMÉTRIE DES NOMBRES

4.1 Réseaux et applications		4.2 Représentation d'un nombre par une forme quadratique	20
4.1.1 Réseaux	19	4.2.1 Positionnement du problème et définition	20
4.1.2 Théorème de Minkowski	19	4.2.2 L'action à droite de $SL_2(\mathbf{Z})$	21
4.1.3 Théorème des deux carrés	19	4.2.3 Réduction des formes quadratiques définies posi-	
4.1.4 Représentation d'un nombre premier par une forme		tives	22
quadratique		4.2.4 Forme des discriminants représentant un entier	23

4.1 RÉSEAUX ET APPLICATIONS

4.1.1 Réseaux

Soit $n \ge 1$ un entier. On considère l'espace \mathbb{R}^n muni du produit scalaire euclidien.

DÉFINITION 4.1. Un *réseau* de \mathbb{R}^n est un sous-groupe additif $\Lambda \subset \mathbb{R}^n$ s'écrivant sous la forme $v_1 \mathbb{Z} + \cdots + v_n \mathbb{Z}$ où la famille (v_1, \dots, v_n) est une base du \mathbb{R} -espace vectoriel \mathbb{R}^n .

ightharpoonup EXEMPLES. L'ensemble \mathbf{Z}^n est un réseau de \mathbf{R}^n . En identifiant \mathbf{C} et \mathbf{R}^2 , les ensembles $\mathbf{Z}[i]$ et $\mathbf{Z}[e^{2i\pi/3}]$ sont des réseaux de \mathbf{C} .

DÉFINITION 4.2. Le parallélépipède fondamental d'un réseau Λ de \mathbf{R}^n de base $(v_1, ..., v_n)$ est l'ensemble

$${a_1 v_1 + \cdots + a_n v_n \mid a_1, \dots, a_n \in [0, 1]}.$$

Le *déterminant* du réseau Λ est le volume de son parallélépipède fondamental, on le note det Λ . Autrement dit, on a det $\Lambda = |\det(v_1 \ldots v_n)|$.

- ♦ REMARQUE. Cette définition ne dépend pas de la base choisie en utilisant les propriétés du déterminant.
- DÉFINITION 4.3. Un sous-réseau d'un réseau Λ de \mathbf{R}^n est un sous-groupe Λ' de Λ qui est un réseau.
- \triangleright EXEMPLE. L'ensemble 2**Z** × 2**Z** est un sous-réseau de **Z**².

LEMME 4.4. Soient Λ un réseau de \mathbb{R}^n et Λ' un sous-réseau de Λ . Alors

$$[\Lambda : \Lambda'] = \frac{\det \Lambda'}{\det \Lambda}.$$

4.1.2 Théorème de MINKOWSKI

THÉORÈME 4.5 (MINKOWSKI). Soient Λ un réseau de \mathbf{R}^n et $S \subset \mathbf{R}^n$ une partie non vide, bornée, convexe et symétrique par rapport à 0. On suppose vol $(S) > 2^n \det \Lambda$. Alors S contient un point non nul de Λ .

♦ REMARQUE. Le résultat est faux si on a uniquement l'inégalité large. En effet, il suffit de considérer le réseau Z² et l'intérieur S du carré de sommets (±1,±1).

Preuve On montre uniquement le cas où $\Lambda = \mathbb{Z}^2$. Considérons la projection $f : S \longrightarrow \mathbb{R}^2/(2\mathbb{Z})^2$. Alors on peut montrer vol $f(S) \le 4$. De plus, cette application n'est pas injective. En effet, comme elle préserve les volumes localement, si elle était injective, elle préserverait le volume de S et donc vol(f(S)) = vol(S) > 4 ce qui est impossible. Ainsi il existe deux points distincts $p_1, p_2 \in S$ tels que $f(p_1) = f(p_2)$ et on peut écrire $p_2 - p_1 = (2k, 2\ell)$ avec $(k, \ell) \in \Lambda$ tel que $(k, \ell) \ne (0, 0)$. L'ensemble S étant symétrique par rapport à 0 et convexe, on obtient successivement $-p_1 \in S$ et $[-p_1, p_2] \subset S$, donc $(k, \ell) = \frac{1}{2}(-p_1 + p_2) \in S$ ce qui montre le théorème dans ce cas particuliers.

4.1.3 Théorème des deux carrés

Théorème 4.6. Un nombre premier p est le somme de deux carrés d'entiers si et seulement si

$$p = 2$$
 ou $p \equiv 1 \mod 4$.

Preuve ⇒ Modulo 4, les carrés sont 0 et 1, donc les sommes de deux carrés sont 0, 1 et 2. On suppose p > 2. Alors $p \equiv 1,3 \mod 4$. Donc si p est la somme de deux carrés, alors $p \equiv 1 \mod 4$.

 \Leftarrow On suppose $p \equiv 1 \mod 4$. D'après le critère d'EULER, l'entier -1 est un résidu quadratique modulo p, donc il existe $m \in \mathbb{N}$ tel que $m^2 \equiv -1 \mod p$. Maintenant, considérons le réseau $\Lambda \subset \mathbb{R}^2$ donné par la base (v_1, v_2) avec $v_1 := (p, 0)$. Alors pour tous $a, b \in \mathbb{Z}$, on a

$$||av_1 + bv_2||^2 = (am + bp)^2 + a^2 \equiv a^2m^2 + a^2 \mod p$$

 $\equiv a^2(1 + m^2) \mod p$
 $\equiv 0 \mod p$.

Ceci montre que, pour tout $w \in \Lambda$, on a $p \mid \|w\|^2$. Par ailleurs, on a det $\Lambda = p$. Soit $D \subset \mathbf{R}^2$ le disque de rayon $\sqrt{2p}$ centré en (0,0). Alors $\operatorname{vol}(D) = 2p\pi > 4p = 4\det\Lambda$. Comme D est borné, convexe et symétrique par rapport à 0, le théorème de Minkowski assure l'existence d'un point $w \in D \cap \Lambda$ non nul. On a alors $\|w\|^2 < 2p$ et $p \mid \|w\|^2$, donc $p = \|w\|^2$ ce qui assure la conclusion.

4.1.4 Représentation d'un nombre premier par une forme quadratique

PROPOSITION 4.7. Un nombre premier p est de la forme $p = x^2 + 2y^2$ avec $x, y \in \mathbb{Z}$ si et seulement si

$$p = 2$$
 ou $p \equiv 1,3 \mod 8$.

♦ REMARQUE. L'application $(x, y) \mapsto x^2 + 2y^2$ est une forme quadratique définie positive sur \mathbb{Z}^2 .

Preuve \Leftarrow On suppose qu'il existe $x, y \in \mathbb{Z}$ tels que $p = x^2 + 2y^2$. Alors $-2y^2 \equiv x^2 \mod p$ ce qui implique

$$1 = \left(\frac{-2y^2}{p}\right) = \left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{2}{p}\right).$$

Distinguons les deux cas.

- Si $(\frac{-1}{p}) = (\frac{2}{p}) = +1$, alors $p \equiv 1 \mod 4$ et $p \equiv 1, 7 \mod 8$, donc $p \equiv 1 \mod 8$.
- Si $(\frac{-1}{p}) = (\frac{2}{p}) = -1$, alors $p \equiv 3 \mod 4$ et $p \equiv 3, 5 \mod 8$, donc $p \equiv 3 \mod 8$.

 \Leftarrow Le cas p=2 est trivial. On suppose désormais $p\equiv 1,3\mod 8$. Alors l'entier -2 est un résidu quadratique comme le montre le raisonnement ci-dessus, donc il existe $m\in \mathbb{N}$ tel que $m^2\equiv -2\mod p$. Considérons le même réseau $\Lambda\subset \mathbb{R}^2$ que dans la preuve précédente et l'ellipse ouverte

$$E := \{(x, y) \in \mathbf{R}^2 \mid x^2 + 2y^2 < 2p\}.$$

Alors $\operatorname{vol}(E) = \pi \sqrt{2} p > 4p = 4 \det \Lambda$ et, comme l'ellipse vérifie les bonnes propriétés, le théorème de MINKOWSKI assure l'existence d'un élément $(x_0, y_0) \in E \cap \Lambda \setminus \{(0, 0)\}$. Alors $x_0^2 + 2y_0^2 < 2p$ et $p \mid x_0^2 + 2y_0$, donc $p = x_0^2 + 2y_0$. \square

4.2 REPRÉSENTATION D'UN NOMBRE PAR UNE FORME QUADRATIQUE

4.2.1 Positionnement du problème et définition

PROBLÈME. Soient $a, b, c \in \mathbb{Z}$. On considère la forme quadratique binaire $q: (x, y) \in \mathbb{Z}^2 \longmapsto ax^2 + bxy + cy^2$. Quels entiers $n \in \mathbb{Z}$ s'écrit sous la forme n = q(x, y) avec $(x, y) \in \mathbb{Z}^2$.

DÉFINITION 4.8. – Un entier $n \in \mathbb{Z}$ est dit

- représenté par q s'il existe $(x, y) \in \mathbb{Z}^2$ tel que n = q(x, y);
- o proprement représenté par q s'il existe $(x, y) \in \mathbb{Z}^2$ tel que n = q(x, y) et pgcd(x, y) = 1.
- Pour $a, b, c \in \mathbb{Z}$, la forme quadratique $q(x, y) = ax^2 + bxy + cy^2$ sera notée q = (a, b, c) et son *discriminant* est l'entier disc $q := b^2 4ac$.

LEMME 4.9. Un entier $n \in \mathbf{Z}$ est proprement représenté par une forme quadratique $q: \mathbf{Z}^2 \longrightarrow \mathbf{Z}$ si et seulement s'il existe une base (v_1, v_2) de \mathbf{Z}^2 vérifiant $q(v_1) = n$.

Preuve D'après la définition, il suffit de montrer qu'un vecteur $(x, y) \in \mathbb{Z}^2$ peut-être complété en une base de \mathbb{Z}^2 si et seulement si pgcd(x, y) = 1. Pour cela, utilisons le résultat suivant, démontré dans la suite

LEMME 4.10. Soient $(\alpha, \gamma), (\beta, \delta) \in \mathbf{Z}^2$. Alors la famille $((\alpha, \gamma), (\beta, \delta))$ est une base de \mathbf{Z}^2 si et seulement si son déterminant vaut ± 1 .

Soit $(x, y) \in \mathbb{Z}^2$ un vecteur quelconque. Si pgcd(x, y) = 1, alors il existe $r, s \in \mathbb{Z}$ tels que rx + sx = 1, donc le lemme assure que la famille ((x, y), (-s, r)) est une base de \mathbb{Z}^2 car son déterminant vaut 1. Si $d := \operatorname{pgcd}(x, y) > 1$, alors pour tout $r, s \in \mathbb{Z}$, la déterminant de la famille ((x, y), (s, r)) soit divisible par d et donc différent de 1, donc le vecteur (x, y) ne fait pas partie d'une base de \mathbb{Z}^2 .

Preuve du lemme 4.10 Le sens réciproque est évident. Directement, on suppose que la famille $((\alpha, \gamma), (\beta, \delta))$ est une base de \mathbb{Z}^2 . Considérons l'endomorphisme $B: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$ canoniquement associé à la matrice

$$B := \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}.$$

Alors l'image de B est \mathbb{Z}^2 , donc son conoyau est triviale, donc cette matrice B présente le \mathbb{Z} -module trivial. Mettons cette matrice sous sa forme normale de SMITH

$$B' = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$

avec $d_1 > 0$ et $d_1 \mid d_2$. Alors cette matrice B' présente le même module que la matrice B, donc $d_1 = d_2 = 1$. Mais comme det $B = \pm \det B'$, on en déduit det $B = \pm 1$.

4.2.2 L'action à droite de $SL_2(Z)$

♦ REMARQUE. Pour toute forme quadratique $q: \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ et toute matrice $M \in SL_2(\mathbb{Z})$, la composée $q \circ M$ est une forme quadratique.

LEMME 4.11. Soient $n \in \mathbb{Z}$ et $q: \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ une forme quadratique. Alors

- 1. pour toute $M \in SL_2(\mathbf{Z})$, l'entier n est proprement représenté par q si et seulement s'il est proprement représenté par $q \circ M$;
- 2. l'entier n est proprement représenté par q si et seulement s'il existe $M \in SL_2(\mathbf{Z})$ telle que $q \circ M(1,0) = n$.

Preuve 1. Soient $(x, y) \in \mathbb{Z}^2$ et $(x', y') := M^{-1}(x, y)$. Alors $q \circ M(x', y') = q(x, y)$. De plus, on peut montrer que les entiers x et y sont premiers entre eux si et seulement si les entiers x' et y' le sont. Ceci assure le point 1.

2. Le sens réciproque est évident. On suppose que l'entier n est proprement représenté par q. Alors il existe deux entiers $\alpha, \gamma \in \mathbf{Z}$ premiers entre eux tels que $n = q(\alpha, \gamma)$. De plus, le théorème de Bézout assure alors qu'il existe $\beta, \delta \in \mathbf{Z}$ tels que $\alpha\delta - \gamma\beta = 1$. Il suffit alors de considérer la matrice

$$M := \begin{pmatrix} \alpha & \delta \\ \beta & \gamma \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}).$$

DÉFINITION 4.12. Deux formes quadratiques $q, q' : \mathbf{Z}^2 \longrightarrow \mathbf{Z}$ sont *équivalentes* s'il existe une matrice $M \in \mathrm{SL}_2(\mathbf{Z})$ telle que $q' = q \circ M$. On note alors $q \sim q'$.

♦ REMARQUE. Le relation ~ définit une relation d'équivalence sur les formes quadratiques. De plus, par le lemme précédent, deux formes quadratiques équivalentes représentent les mêmes entiers.

ÉCRITURE SOUS FORME MATRICIELLE D'UNE FORME QUADRATIQUE. Soient $q := (a, b, c) : \mathbb{Z}^2 \longrightarrow \mathbb{Z}$ une forme quadratique. Alors pour tous $x, y \in \mathbb{Z}$, cette forme quadratique s'écrit sous la forme matricielle

$$q(x, y) = \begin{pmatrix} x & y \end{pmatrix} Q \begin{pmatrix} x \\ y \end{pmatrix}$$
 avec $Q := \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$.

L'action de $\operatorname{SL}_2(\mathbf{Z})$ sur les formes quadratiques via l'application $(M,q) \longmapsto q \circ M$ peut alors se traduire par une action de $\operatorname{GL}_2(\mathbf{Z})$ sur les matrices symétriques via l'application $(M,Q) \longmapsto {}^t MQM$. En reprenant les notations précédent, le discriminant de q est disc $q = -4 \det Q$.

Ce discriminant est invariant sous l'action de $SL_2(\mathbf{Z})$, c'est-à-dire qu'on a $disc(q \circ M) = disc q$ pour toute forme quadratique q et toute matrice $M \in SL_2(\mathbf{Z})$.

Dans la suite du cours, on va considérer les formes quadratiques définies positives, *i. e.* les formes quadratiques q := (a, b, c) tels que disc q < 0 et a, c > 0.

4.2.3 Réduction des formes quadratiques définies positives

OBJECTIF. On veut simplifier une forme quadratique définies positives (a, b, c) par l'action de $SL_2(\mathbf{Z})$ afin de diminuer l'entier |b| le plus possible.

DÉFINITION 4.13. Une forme quadratique (a, b, c) est une forme réduite si

$$\begin{cases} |b| \le a \le c, \\ |b| = a \text{ ou } a = c \implies b \ge 0. \end{cases}$$

▶ EXEMPLES. Les formes quadratiques (1,0,1) et (1,1,4) sont réduites.

THÉORÈME 4.14. 1. Toute forme quadratique définie positive est équivalente à une unique forme réduite. 2. Étant donné un entier $\Delta < 0$, il n'existe qu'un nombre fini de formes réduites définies positives dont le discriminant vaut Δ .

Preuve Le point 1 sera démontré en TD. Le lemme suivant implique le point 2.

ALGORITHME DE RÉDUCTION. Pour trouver une forme réduite équivalente à une forme quadratique définie positive q := (a, b, c) donnée, on utilises les deux opérations suivantes qui diminuent les entiers a et |b|.

Opération nº 1 Si c < a, on remplace q par $q' := (c, -b, a) = q \circ M$ où

$$M \coloneqq \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Opération nº 2 Si $|b| \ge a$, on remplace q par q' := (a, b', c') avec

$$b' = b + 2\delta a$$
 et $c' := \frac{b'^2 - \operatorname{disc} q}{4}$

pour un entier $\delta \in \mathbb{Z}$ bien choisi de telle sorte que $b' \in]-a,a]$. Ceci correspond à $q'=q \circ M$ avec

$$M := \begin{pmatrix} 1 & \delta \\ 0 & 1 \end{pmatrix}.$$

ightharpoonup EXEMPLE. Soit q := (25, -14, 2). Son discriminant vaut -4 et sa matrice associée est

$$Q := \begin{pmatrix} 25 & -7 \\ -7 & 2 \end{pmatrix}.$$

Alors

$$(25,-14,2) \xrightarrow{\begin{array}{c} \text{opération n° 1} \\ M_1 := \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} M_2 := \begin{pmatrix} 1 & -3 \\ 0 & 1 \\ \end{array} \\ \begin{array}{c} M_2 := \begin{pmatrix} 1 & -3 \\ 0 & 1 \\ \end{array} \\ \begin{array}{c} \text{opération n° 2} \\ \hline \\ \begin{array}{c} M_3 := \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} M_3 := \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ \end{array} \\ \begin{array}{c} M_4 := \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_4 := \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ \end{array} \\ \begin{array}{c} M_4 := \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_4 := \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ \end{array} \\ \end{array}$$

Alors sa forme réduite est $q' := q \circ M = (1, 0, 1)$ avec

$$M := M_1 M_2 M_3 M_4 = \begin{pmatrix} -1 & -1 \\ -3 & -4 \end{pmatrix}.$$

LEMME 4.15. Soit q := (a, b, c) une forme quadratique définie positive et réduite. Alors

$$1 \le a \le \sqrt{\frac{|\operatorname{disc} q|}{3}}.$$

Preuve Comme disc q < 0 et $|b| \le a \le c$, on a - disc $q = 4ac - b^2 \ge 4a^2 - a^2 = 3a^2$ ce qui donne ensuite l'inégalité recherchée.

ightharpoonup EXEMPLE. Il n'existe qu'une seule forme réduite de discriminant -4: c'est $x^2 + y^2$. En particulier, comme chaque forme quadratique définie positive sont équivalentes à une unique forme réduite, elles sont équivalentes entre elles.

4.2.4 Forme des discriminants représentant un entier

THÉORÈME 4.16. Soient $n, \Delta \in \mathbb{Z}$. Alors

- 1. il existe une forme quadratique de discriminant Δ représentant proprement n si et seulement si l'entier Δ est un carré modulo 4n;
- 2. si Δ est un carré modulo 4n et $b_1, \ldots, b_n \in]-n, n]$ sont les racines carrées de Δ modulo 4n, alors toute forme quadratique représentant proprement n est équivalente à une forme quadratique (n, b_i, c_i) où l'entier $c_i \in \mathbf{Z}$ vérifie $b_i^2 4nc_i = \Delta$.
- *Preuve* 1. D'après le lemme 4.11, l'entier n est proprement représenté par une forme quadratique q := (a, b, c) si et seulement s'il existe une forme quadratique q' équivalente à q telle que q'(1,0) = n, c'est-à-dire q' = (n,b,c). Donc une telle forme quadratique existe si et seulement si $\operatorname{disc}(n,b,c) = \Delta$ avec $\operatorname{disc}(n,b,c) = b^2 4nc$, c'est-à-dire que Δ est un carré modulo n.
- 2. Soit q une forme quadratique représentant n de discriminant Δ telle que q(1,0) = n. Alors q = (n,b,c) pour des entiers $b,c \in \mathbb{Z}$ tels que $b^2 4nc = \Delta$, i.e. l'entier b est une racine carrée de Δ modulo 4n. En effectuant une opération n° 2, on obtient l'équivalence $q \sim q' \coloneqq (n,b+2\delta n,c')$ pour un entier $\delta \in \mathbb{Z}$ bien choisi de telle sorte à avoir $b+2\delta_c \in]-n,n]$. Et il suffit de remarquer la congruence $(b+2\delta)^2 \equiv b^2 \mod 4n$.

EXERCICE 4.1. Considérons la forme quadratique q := (1,2,6) qui est équivalente à q' := (1,0,5) et de discriminant -20. Les entiers 7 et 11 sont-ils proprement représentés par q?

⊳ Comme $-20 \equiv 0 \mod 4$ et $\left(\frac{-20}{7}\right) = \left(\frac{1}{7}\right) = 1$, l'entier -20 est un carré modulo $4 \times 7 = 20$. De plus, ce n'est pas un carré modulo 44 puisque $\left(\frac{-20}{11}\right) = \left(\frac{2}{11}\right) = -1$. Trouvons les racines carrées $b \in]-7,7]$ de -20 modulo 28. Le théorème chinois donne $\mathbb{Z}/28\mathbb{Z} \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ et, pour tout $b \in [-7,7]$, on a

$$b^2 \equiv -20 \mod 28 \iff \begin{cases} b^2 \equiv -20 \mod 4, \\ b^2 \equiv -20 \mod 7 \end{cases} \iff \begin{cases} b \equiv 0, 2 \mod 4, \\ b \equiv \pm 1 \mod 7 \end{cases} \iff b = \pm 6.$$

D'après le théorème précédent, les formes quadratiques $q_1 := (7, -6, 2)$ et $q_2 := (7, 6, 2)$ représentent 7 et sont de discriminant -20. Or ces deux formes sont équivalentes à la même forme réduite (2, 2, 3), donc $q_1 \sim q_2$. Maintenant, la forme quadratique $q \sim q'$ n'est pas équivalente à q_1 , donc elle ne représente pas 7. De plus, elle ne représente pas non plus 11.

Chapitre 5

Nombres et entiers algébriques, corps de nombres

5.1 Nombres et entiers algébriques		5.5 Factorisation dans \mathcal{O}_d	27
5.2 Corps quadratiques		5.5.1 Propriété des idéaux de \mathcal{O}_d	27
5.2.1 Conjugaison, trace et norme	25	5.5.2 Norme d'un idéal de \mathcal{O}_d	27
5.2.2 L'anneau des entiers d'un corps	25	5.5.3 Divisibilité d'idéaux	27
5.3 Factorisation dans les anneaux \mathcal{O}_d	25	5.5.4 Factorisation d'idéaux	28
5.4 Corps quadratique imaginaire	26	5.5.5 Caractérisation des anneaux \mathcal{O}_d qui sont factoriels	28
5.4.1 Les anneaux \mathcal{O}_d qui sont factoriels	26	5.5.6 Structure des idéaux premiers de \mathcal{O}_d	28
5.4.2 Les entiers d'EISENSTEIN	26	5.5.7 Exemples de factorisation d'idéaux	29
5.4.3 Une autre preuve du théorème des deux carrés	26	5.6 Classes d'idéaux et groupe des classes	30

5.1 Nombres et entiers algébriques

DÉFINITION 5.1. Un nombre complexe $\alpha \in \mathbf{C}$ est un *entier algébrique* s'il existe un polynôme unitaire $P \in \mathbf{Z}[X]$ tel que $P(\alpha) = 0$.

PROPOSITION 5.2 (caractérisation des entiers algébriques). Soit $\alpha \in \mathbb{C}$. Alors les propositions suivantes sont équivalentes :

- (i) le complexe α est un entier algébrique;
- (ii) le complexe α est un nombre algébrique et son polynôme minimal appartient à $\mathbf{Z}[X]$;
- (iii) le **Z**-module $\mathbf{Z}[\alpha]$ est de type fini.

Preuve Les implications (ii) \Rightarrow (i) et (i) \Rightarrow (ii) sont claires. On suppose (iii) et montrons (ii). Alors il existe un polynôme unitaire $P \in \mathbf{Z}[X]$ telle que $P(\alpha) = 0$, donc le complexe α est un nombre algébrique. De plus, prenons le polynôme unitaire $M \in \mathbf{Z}[X]$ de degré minimal tel que $M(\alpha) = 0$. Alors celui-ci est irréductible dans $\mathbf{Z}[X]$ et donc dans $\mathbf{Q}[X]$, donc c'est le polynôme minimal du complexe α .

COROLLAIRE 5.3. L'ensemble *B* des entiers algébriques est un sous-anneau de l'ensemble des nombres algébriques.

Preuve Cela se démontre comme dans le cas des nombres algébriques.

DÉFINITION 5.4. L'*anneau des entiers* d'un corps de nombre K, c'est-à-dire $\mathbf{Q} \subset K \subset \mathbf{C}$ et $[K:\mathbf{Q}] < +\infty$, est l'anneau $\mathcal{O}_K := K \cap B$, i.e. c'est les éléments de K qui sont des entiers algébriques.

 \triangleright EXEMPLES. On a $\mathcal{O}_{\mathbf{0}} = \mathbf{Z}$.

5.2 Corps quadratiques

DÉFINITION 5.5. Un sur-corps K de \mathbb{Q} est *quadratique* si $[K : \mathbb{Q}] = 2$.

PROPOSITION 5.6. Soient K un corps quadratique et $d \in \mathbb{Z} \setminus \{0,1\}$ un entier sans facteur carré. Alors $K = \mathbb{Q}(\sqrt{d})$.

Preuve Soit $\alpha \in K \setminus \mathbf{Q}$. Alors le \mathbf{Q} -espace vectoriel $K = \mathbf{Q}[\alpha]$ admet pour base $(1, \alpha)$. Soit $M := X^2 + bX + c \in \mathbf{Q}[X]$ le polynôme minimal de α . Alors $2\alpha = -b \pm \sqrt{b^2 - 4ac}$, donc

$$K = \mathbf{Q}(\sqrt{b^2 - 4ac}) = \mathbf{Q}(\sqrt{u/v}) = \mathbf{Q}(\sqrt{uv}) = \mathbf{Q}(\sqrt{d}).$$

pour tous $u, v \in \mathbb{Z}^*$ car $\sqrt{b^2 - 4ac} \in \mathbb{Q}$ et $u/v = uv/v^2$.

DÉFINITION 5.7. Soit $d \in \mathbb{Z}^*$. Le corps $\mathbb{Q}(\sqrt{d})$ est dit *quadratique réel* (respectivement *quadratique imaginaire*) si d > 0 (respectivement d < 0).

П

5.2.1 Conjugaison, trace et norme

DÉFINITION 5.8. Soient $K := \mathbf{Q}(\sqrt{d})$ un corps quadratique et $\alpha := x + y\sqrt{d}$. On pose

$$\overline{\alpha} := x - y\sqrt{d}$$
,
 $\operatorname{Tr}(\alpha) := \alpha + \overline{\alpha}$ et
 $N(\alpha) := \alpha \overline{\alpha}$

appelé respectivement le conjugué, la trace et la norme de α .

PROPOSITION 5.9. 1. La trace Tr: $K \longrightarrow \mathbf{Q}$ est additive.

- 2. La norme $N: K \longrightarrow \mathbf{Q}$ est multiplicative.
- 3. Pour tous $a, b \in \mathbb{Q}$, on a $\text{Tr}(a + b\sqrt{d}) = 2a$ et $N(a + b\sqrt{d}) = a^2 db^2$.
- 4. Le polynôme minimal sur \mathbf{Q} d'un élément $\alpha \in K \setminus \mathbf{Q}$ est le polynôme $X^2 \text{Tr}(\alpha)X + N(\alpha) \in \mathbf{Q}[X]$.

5.2.2 L'anneau des entiers d'un corps

PROPOSITION 5.10. Soit $K := \mathbf{Q}(\sqrt{d})$ un corps quadratique. Alors un élément de K est un entier algébrique si et seulement si sa trace et sa norme sont des entiers.

Preuve Il suffit d'appliquer le point 4 de la proposition 5.9 ainsi que le point (ii) de la proposition 5.2. □

THÉORÈME 5.11. Soit $d \in \mathbb{Z} \setminus \{0,1\}$. On note \mathcal{O}_d l'anneau des entiers du corps quadratique $\mathbb{Q}(\sqrt{d})$. Alors

- 1. si $d \equiv 2,3 \mod 4$, alors $\mathcal{O}_d = \mathbf{Z}[\sqrt{d}]$;
- 2. si $d \equiv 1 \mod 4$, alors $\mathcal{O}_d = \mathbf{Z}[\omega]$ avec $\omega := \frac{1}{2}(1 + \sqrt{d})$.

Preuve Montrons d'abord que $\mathbf{Z}[\sqrt{d}] \subset \mathcal{O}_d$. Pour cela, on remarque que les éléments 1 et \sqrt{d} sont des entiers algébriques puisqu'ils sont respectivement racines des polynômes X-1 et X^2-d . Or $\mathbf{Z}[\sqrt{d}]=\{a+b\sqrt{d}\mid a,b\in\mathbf{Z}\}$. Ceci conclut l'inclusion. Ensuite, on remarque que

$$\omega \in \mathcal{O}_d \iff N(\omega) = \frac{1-d}{4} \in \mathbb{Z} \iff d \equiv 1 \mod 4,$$

donc $\mathbf{Z}[\omega] \subset \mathcal{O}_d$ si $d \equiv 1 \mod 4$. On peut également montrer l'inclusion réciproque dans ce cas ce qui conclut le point 2. On montre de même le point 1.

5.3 FACTORISATION DANS LES ANNEAUX \mathcal{O}_d

PROPOSITION 5.12. Soit $\alpha \in \mathcal{O}_d$. Alors

- 1. on a $\alpha \in \mathcal{O}_d^{\times}$ si et seulement si $N(\alpha) = \pm 1$;
- 2. si l'entier $|N(\alpha)|$ est premier, alors l'élément α est irréductible.

Preuve On montre ces deux points de la même manière que lorsque d=-1, i. e. $\mathbf{Z}[i]=\mathcal{O}_{-1}$.

Théorème 5.13. Tout élément $\alpha \in \mathcal{O}_d \setminus (\mathcal{O}_d^{\times} \cup \{0\})$ se factorise dans \mathcal{O}_d , i. e. se décompose en un produit d'éléments irréductibles de \mathcal{O}_d .

Preuve Procédons par récurrence sur l'entier $|N(\alpha)|$. Si $|N(\alpha)| = 2$, alors l'élément 2 est irréductible d'après la proposition précédente. Soit $n \ge 3$. Supposons que tout élément $\alpha \in \mathcal{O}_d \setminus (\mathcal{O}_d^\times \cup \{0\})$ tel que $1 < |N(\alpha)| < n-1$ se factorise dans \mathcal{O}_d . Soit $\alpha \in \mathcal{O}_d \setminus (\mathcal{O}_d^\times \cup \{0\})$ un élément de norme absolue n. Si α est irréductible, c'est fini. On suppose alors qu'il existe deux éléments non inversibles $\beta, \gamma \in \mathcal{O}_d$ tels que $\alpha = \beta \gamma$. Alors $|N(\alpha)| = |N(\beta)| |N(\gamma)|$, donc $1 < |N(\beta)|, |N(\gamma)| < n$. D'après l'hypothèse de récurrence, les éléments β et γ se factorisent dans \mathcal{O}_d et il en va de même pour l'élément α ce qui termine la récurrence. □

QUESTION. Quels anneaux \mathcal{O}_d sont factoriels?

5.4 CORPS QUADRATIQUE IMAGINAIRE

5.4.1 Les anneaux \mathcal{O}_d qui sont factoriels

On a vu que l'anneau $\mathcal{O}_{-1} = \mathbf{Z}[i]$ est euclidien et donc factoriel, mais que l'anneau $\mathcal{O}_{-4} = \mathbf{Z}[i\sqrt{5}]$ n'est pas factoriel. En fait, dans la plupart des cas, l'anneau \mathcal{O}_d n'est pas factoriel.

THÉORÈME 5.14. Soit d < 0 un entier. Alors l'anneau \mathcal{O}_d est factoriel si et seulement si

$$d \in \{-1, -2, -3, -7, -11, -19, -43, -67, -163\}.$$

♦ REMARQUE. Le sens réciproque est dû à GAUSS. Le sens direct est un résultat montré par STARK et BAKER en 1966, il s'agit d'une preuve très difficile.

PROPOSITION 5.15. Soit d < 0 un entier congrus à 3 modulo 4. Alors \mathcal{O}_d est factoriel si et seulement si d = -1. En particulier, les anneaux \mathcal{O}_{-5} , \mathcal{O}_{-9} , \mathcal{O}_{-13} , ... ne sont pas factoriels.

Preuve Si d < -1, alors

$$1-d=2\frac{1-d}{2}$$
 et $1-d=(1+\sqrt{d})(1-\sqrt{d})$,

donc l'anneau \mathcal{O}_d n'est pas factoriel. Réciproquement, on suppose que l'anneau \mathcal{O}_d est factoriel. Remarquons que l'élément 2 est irréductible car sa norme vaut 2 et, dans \mathcal{O}_d , c'est l'élément de plus petite norme strictement supérieure à 1. Donc si $d \neq -1$, alors $2 \mid 1 \pm d$ ce qui est impossible car $\frac{1}{2}(1 \pm d) \notin \mathcal{O}_d$. Donc d = -1.

PROPOSITION 5.16. L'anneau $\mathcal{O}_{-2} = \mathbf{Z}[i\sqrt{2}]$ est euclidien.

Preuve On procède comme pour l'anneau $\mathbf{Z}[i]$ en faisant d'abord une remarque d'ordre géométrique : on peut trouver un point de $\mathbf{Q}(i\sqrt{2})$ le plus proche d'un point de $\mathbf{Z}[i\sqrt{2}]$.

♦ REMARQUE. En fait, dès que d > 2, l'anneau $\mathbf{Z}[i\sqrt{d}]$ n'est pas euclidien.

5.4.2 Les entiers d'EISENSTEIN

L'anneau des entiers d'EISENSTEIN est l'anneau $\mathcal{O}_{-3} = \mathbf{Z}[\omega]$. Le norme d'un élément $a + b\omega \in \mathbf{Z}[\omega]$ est égale à l'entier $a^2 - ab + b^2$. De plus, on a $\mathbf{Z}[\omega]^{\times} = \{\pm 1, \pm \omega, \pm (1 + \omega)\}$.

PROPOSITION 5.17. L'anneau \mathcal{O}_{-3} est euclidien.

Preuve Comme pour $\mathbf{Z}[i]$, l'anneau $\mathbf{Z}[\omega] \subset \mathbf{C}$ est le réseau hexagonal et, pour tout point $z \in \mathbf{C}$, on peut trouver un point de $\mathbf{Z}[\omega]$ à distance strictement inférieure à 1 de z.

5.4.3 Une autre preuve du théorème des deux carrés

On souhaite ici montrer le théorème des deux carrés à l'aide de l'anneau $\mathbf{Z}[i]$ des entiers de GAUSS. Rappelons que ce théorème affirme qu'une nombre premier $p \ge 3$ est la somme de deux carrés d'entiers si et seulement s'il est congru à 1 modulo 4.

Preuve Le sens direct se fait comme dans la précédente preuve. Réciproquement, on suppose $p \equiv 1 \mod 4$. Alors −1 est un résidu quadratique modulo p par le critère d'EULER, i. e. il existe $m \in \mathbb{N}$ tel que $m^2 \equiv -1 \mod p$. On considère $p \in \mathbb{Z} \subset \mathbb{Z}[i]$. Comme $p \equiv 1 \mod 4$, l'élément p n'est pas irréductible dans $\mathbb{Z}[i]$. En effet, on a

$$m^2 + 1 = (m+i)(m-i).$$

Si l'élément p est irréductible dans $\mathbf{Z}[i]$, alors il serait premier car l'anneau $\mathbf{Z}[i]$ est euclidien, donc $p \mid m \pm i$ ce qui est impossible car l'élément p est réel. Donc il n'est bien pas irréductible dans $\mathbf{Z}[i]$. On peut donc trouver des entiers $a,b,c,d \in \mathbf{Z}$ tels que p=(a+ib)(c+id) avec $N(a+ib) \neq 1$ et $N(c+id) \neq 1$. En appliquant la norme à cette égalité, on obtient $p^2=N(a+ib)N(c+id)$. Mais comme $p \geq 3$ est premier, on obtient $p=N(a+ib)=a^2+b^2$ ce qui conclut.

5.5 FACTORISATION DANS \mathcal{O}_d

5.5.1 Propriété des idéaux de \mathcal{O}_d

PROBLÈME. Les anneaux \mathcal{O}_d ne sont pas tours factoriels. Cependant, si on considère les idéaux de \mathcal{O}_d , on récupère la factorise unique à idéaux près. On veut donc avoir des informations sur ces idéaux.

NOTATION. Soit $d \in \mathbb{Z} \setminus \{0,1\}$ un entier non divisible par 4. On pose

$$\omega := \begin{cases} \sqrt{d} & \text{si } d \equiv 2,3 \mod 4, \\ \frac{1}{2}(1+\sqrt{d}) & \text{si } d \equiv 1 \mod 4 \end{cases}$$

de sorte que $\mathcal{O}_d = \mathbf{Z}[\omega]$.

PROPOSITION 5.18. Soient I et J deux idéaux de \mathcal{O}_d . Alors

- 1. l'idéal *I* est engendré par au plus deux générateurs;
- 2. en notant $I = \langle \alpha_1, \beta_1 \rangle$ et $J = \langle \alpha_2, \beta_2 \rangle$, on a $IJ = \langle \alpha_1 \alpha_2, \alpha_1 \beta_2, \beta_1 \alpha_2, \beta_1 \beta_2 \rangle$ et on peut réduire son nombre de générateurs au nombre de deux;
- 3. tout idéal premier et non nul *I* est maximal.

Preuve 1. Le **Z**-module $\mathbf{Z}[\omega] \simeq \mathbf{Z}^2$ est libre et de rang 2, donc l'idéal I est un sous-module qui vaut 0, \mathbf{Z} ou \mathbf{Z}^2 . Donc il est engendré par au plus deux générateurs comme **Z**-module et donc comme \mathcal{O}_d -module.

3. Soit $\alpha \in I \setminus \{0\}$. Alors $n := \alpha \overline{\alpha} \in I$, donc $\langle n \rangle = n\mathbf{Z} + n\omega\mathbf{Z} \subset I \subset \mathcal{O}_d = \mathbf{Z} + \omega\mathbf{Z}$, donc le **Z**-module I est d'indice fini dans \mathcal{O}_d . Comme I est premier, le quotient \mathcal{O}_d / I est intègre et fini, donc c'est un corps (cf. TD), donc l'idéal I est maximal.

5.5.2 Norme d'un idéal de \mathcal{O}_d

DÉFINITION 5.19. La norme d'un idéal non nul I de \mathcal{O}_d est l'entier $N(I) := [\mathcal{O}_d : I]$.

LEMME 5.20. Soit I un idéal non nul de \mathcal{O}_d . On note $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$. Alors il existe $n \in \mathbb{Z}$ tel que $I\overline{I} = \langle n \rangle$. De plus, on a N(I) = n.

ightharpoonup EXEMPLE. On considère l'idéal $I := \langle 3, 1 + \sqrt{-5} \rangle \subset \mathcal{O}_{-5}$. Alors

$$N(I) = \operatorname{Card}\left(\frac{\mathbf{Z}[\sqrt{-5}]}{\langle 3, 1 + \sqrt{-5} \rangle}\right) = \operatorname{Card}\left(\frac{\mathbf{Z}}{3\mathbf{Z}}\right) = 3$$

et on a aussi

$$I\overline{I} = \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 9, 3 + 3\sqrt{-5}, 3 - 3\sqrt{-5}, 6 \rangle = \langle 3, 3 + 3\sqrt{-5} \rangle = \langle 3 \rangle.$$

PROPOSITION 5.21. 1. Le norme est multiplicative.

- 2. Pour tout $\alpha \in \mathcal{O}_d$, on a $N(\langle \alpha \rangle) = N(\alpha)$.
- 3. Tout idéal de \mathcal{O}_d dont la norme est un nombre premier est premier.

Preuve Les deux premiers points se vérifient aisément avec le lemme 5.20. Pour le point 3, soit I un idéal dont la norme est un nombre premier. Alors le cardinal $Card(\mathcal{O}_d/I)$ est premier, donc l'idéal I est maximal et donc premier d'après la proposition 5.18.

5.5.3 Divisibilité d'idéaux

DÉFINITION 5.22. Un idéal I de \mathcal{O}_d divise un autre idéal J de \mathcal{O}_d s'il existe un idéal K de \mathcal{O}_d tel que J = IK. On note alors $I \mid J$.

- ♦ REMARQUE. Si $I \mid J$, alors $J = IK \subset I\mathcal{O}_d \subset I$ pour un certain idéal K de \mathcal{O}_d . La réciproque est vraie comme le montre le lemme suivant.
- LEMME 5.23. Soient I et J deux idéaux non nuls de \mathcal{O}_d . Alors $I \mid J$ si et seulement si $J \subset I$.

Preuve Montrons le sens réciproque et supposons $J \subset I$. Alors $J\overline{I} \subset I\overline{I} = \langle N(I) \rangle$. Alors l'idéal $K := N(I)^{-1}J\overline{I}$ est un idéal de \mathcal{O}_d vérifiant IK = J. D'où $I \mid J$.

LEMME 5.24. Soient I, J et K trois idéaux non nuls de \mathcal{O}_d tels que IJ = IK. Alors J = K.

Preuve Comme IJ = IK, on a $\overline{I}IJ = \overline{I}IK$, donc N(I)J = N(I)K, donc J = K.

LEMME 5.25. Soient I un idéal premier de \mathcal{O}_d et J et K deux idéaux de \mathcal{O}_d tels que $I \mid JK$. Alors $I \mid J$ ou $I \mid K$.

Preuve Supposons $I \nmid j$. Alors $J \not\subset I$, donc $I \subset I + J$. On a même $I \subsetneq I + J$ car sinon on aurait $I = I + J \supset J$ ce qui est impossible. Maintenant, comme I est premier, il est maximal, donc $I + J = \mathcal{O}_d$. En particulier, il existe $\alpha \in I$ et $\beta \in J$ tels que $1 = \alpha + \beta$. Ainsi pour tout $\gamma \in K$, on a $\gamma = \gamma \alpha + \gamma \beta \in I + JK \subset I$ puisque $I \mid JK$. D'où $K \subset I$ et cela conclut $I \mid K$.

5.5.4 Factorisation d'idéaux

Théorème 5.26. Tout idéal I de \mathcal{O}_d tel que $\{0\} \subsetneq I \subsetneq \mathcal{O}_d$ admet une facteurs en produits d'idéaux premiers, i. e. il existe des idéaux premiers $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ de \mathcal{O}_d tels que $I = \mathfrak{p}_1 \cdots \mathfrak{p}_k$. Cette factorisation est unique à l'ordre des facteurs près.

Preuve On procède par récurrence sur le norme de l'idéal I.

EXEMPLE. L'anneau \mathcal{O}_{-5} n'est pas factoriel. Par exemple, on a $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. Mais au niveau des idéaux, cela marche bien. En effet, on a $\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle = \langle 2, 1 + \sqrt{-5} \rangle \langle 2, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle$ où les idéaux apparaissant à droite sont tous premiers (leurs normes sont premières).

5.5.5 Caractérisation des anneaux \mathcal{O}_d qui sont factoriels

Théorème 5.27. L'anneau \mathcal{O}_d est factoriel si et seulement s'il est principal.

Preuve Le sens réciproque est vrai dans un cas beaucoup plus général. On suppose que l'anneau \mathcal{O}_d est factoriel. Remarquons d'abord que, pour tout élément irréductible $\alpha \in \mathcal{O}_d$, l'idéal $\langle \alpha \rangle$ est premier.

Soit I un idéal premier. Montrons qu'il est principal. Supposons $I \neq \{0\}$. Alors $\langle N(I) \rangle = I\overline{I} \subset I$, donc $I \mid \langle N(I) \rangle$. Notons $N(I) = u_1 \cdots u_k$ pour des éléments irréductibles $u_i \in \mathcal{O}_d$. Alors $\langle N(I) \rangle = \langle u_1 \rangle \cdots \langle u_k \rangle$ avec $I \mid \langle N(I) \rangle$, donc le lemme 5.25 assure qu'il existe un entier $i \in [1, k]$ tels que $I \mid \langle u_i \rangle$. Mais comme les idéaux I et $\langle u_i \rangle$ sont premiers, on en déduit $I = \langle u_i \rangle$, donc l'idéal I est principal.

Soit I un idéal de \mathcal{O}_d . On peut l'écrire sur la forme $I=\mathfrak{p}_1\cdots\mathfrak{p}_k$ où les idéaux \mathfrak{p}_i sont premiers. D'après ce qui précède, pour tout $i\in [1,k]$, l'idéal \mathfrak{p}_i est principal, donc il s'écrit $\mathfrak{p}_i=\langle u_i\rangle$. On en déduit que l'idéal $I=\langle u_1\cdots u_k\rangle$ est principale qui termine la preuve.

5.5.6 Structure des idéaux premiers de \mathcal{O}_d

LEMME 5.28. Soit $\mathfrak p$ un idéal premier de $\mathcal O_d$. Alors il existe un nombre premier p tels que $\langle p \rangle \subset \mathfrak p$ et $N(\mathfrak p) \in \{p, p^2\}$.

Preuve On écrit $N(\mathfrak{p}) = p_1 \cdots p_k$ où les entiers p_i sont premiers. Comme $\mathfrak{p} \mid \mathfrak{p}\overline{\mathfrak{p}} = \langle N(\mathfrak{p}) \rangle$, on a $\mathfrak{p} \mid \langle p_1 \rangle \cdots \langle p_k \rangle$, donc le lemme 5.25 assure qu'il existe un entier $i \in [1, k]$ tels que $\mathfrak{p} \mid \langle p_i \rangle$, donc $\langle p_i \rangle \subset \mathfrak{p}$. Comme $N(\langle p_i \rangle) = p_i^2$, on a $N(\mathfrak{p}) \in \{p_i, p_i^2\}$.

LEMME 5.29. Soit I un idéal non nul de \mathcal{O}_d . Alors il existe des entiers $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$ tels que $I = \langle n, a + b\omega \rangle$.

Preuve Puisque $I \neq \{0\}$, il existe $\alpha \in I$ tel que $\alpha \overline{\alpha} \in I \cap \mathbb{N}$. On note $n := \min(I \cap \mathbb{N})$. Soit $a + b\omega \in I$ où l'entier b > 0 est minimal. Alors $\langle n, a + b\omega \rangle \subset I$ et on peut montrer l'inclusion réciproque. □

LEMME 5.30. Soit I un idéal de \mathcal{O}_d dont la norme p est première. Alors il existe $a \in [0, p-1]$ tels que $I = \langle p, a + \omega \rangle$ et $p \mid N(a + \omega)$.

Preuve D'après le lemme 5, on peut écrire $I = \langle n, a + b\omega \rangle$ avec $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$. On sait que les vecteurs (n, 0) et (a, b) génère I dans la base $(1, \omega)$ de \mathcal{O}_d , donc

$$\begin{vmatrix} n & a \\ 0 & b \end{vmatrix} = p.$$

On en déduit nb = p, donc n = p et b = 1. En effet, si n = 1 et b = p, alors $1 \in I$, donc $I = \mathcal{O}_d$ ce qui est impossible car $N(\mathcal{O}_d) = d^2$.

DÉFINITION 5.31. On dit qu'un nombre premier p est

- *inerte* s'il existe un idéal premier \mathfrak{p} tel que $\langle p \rangle = \mathfrak{p}$, c'est-à-dire $N(\mathfrak{p}) = p^2$;
- ramifié s'il existe un idéal premier p tel que $\langle p \rangle = \mathfrak{p}^2$, c'est-à-dire $\mathfrak{p} = \overline{\mathfrak{p}}$ et $N(\mathfrak{p}) = p$;
- *scindé* s'il existe un idéal premier \mathfrak{p} tel que $\langle p \rangle = \mathfrak{p}\overline{\mathfrak{p}}$, c'est-à-dire $\mathfrak{p} \neq \overline{\mathfrak{p}}$ et $N(\mathfrak{p}) = p$.
- ▶ EXEMPLES. On se place dans l'anneau $\mathcal{O}_{-1} = \mathbf{Z}[i]$.
 - Le nombre premier 2 est ramifié car

$$\langle 2 \rangle = \langle 1 + i \rangle^2$$
 et $N(\langle 1 + i \rangle) = 2$.

– Le nombre premier 3 est inerte car l'idéal $\langle 3 \rangle$ est premier puisque, comme le polynôme $X^2 + 3$ est irréductible dans \mathbf{F}_3 , le quotient

$$\frac{\mathbf{Z}[i]}{\langle 3 \rangle} \simeq \frac{\mathbf{Z}[X]/\langle X^2 + 1 \rangle}{\langle 3 \rangle} = \frac{\mathbf{Z}[X]}{\langle 3, X^2 + 1 \rangle} = \frac{\mathbf{F}_3[X]}{\langle X^2 + 1 \rangle}$$

est un corps.

– Le nombre premier 5 est scindé car $\langle 5 \rangle = \langle 2+i \rangle \langle 2-i \rangle$ avec $N(\langle 2+i \rangle) = N(\langle 2-i \rangle) = 5$.

THÉORÈME 5.32. Soit *p* un nombre premiers.

- 1. On suppose p > 2. Alors
- si $(\frac{d}{n})$ = −1, alors p est inerte dans \mathcal{O}_d ;
- si $(\frac{d}{p}) = 0$, alors p est ramifié dans \mathcal{O}_d ;
- si $(\frac{d}{p})$ = 1, alors p est scindé dans \mathcal{O}_d .
- 2. On suppose p = 2. Alors
- si $d \not\equiv 1 \mod 4$, alors 2 est ramifié dans \mathcal{O}_d ;
- si $d \equiv 1 \mod 8$, alors 2 est scindé dans \mathcal{O}_d ;
- si $d \equiv 5 \mod 8$, alors 2 est inert dans \mathcal{O}_d .

Preuve On a vu que, pour tout idéal premier \mathfrak{p} , il existe un nombre premier p tel que $\mathfrak{p} \mid \langle p \rangle$, i. e. $\langle p \rangle \subset \mathfrak{p}$. Donc le comportement de l'idéal $\langle p \rangle$ dépend de l'existence ou non d'idéaux de norme p.

Montrons uniquement le point 2. On suppose p > 2. Si $d \equiv 2,3 \mod 4$, alors $\omega = \sqrt{2}$ et $N(a + \sqrt{d}) = a^2 - d \equiv 0$ mod p qui admet 0, 1 ou 2 solutions a modulo p selon la valeur de $(\frac{d}{p})$.

Si $d \equiv 1 \mod 4$, alors $\omega = \frac{1}{2}(1 + \sqrt{d})$ et, pour tout $a \in \mathcal{O}_d$, on a

$$N(a+\omega) \equiv 0 \mod p \iff a^2 + a - \frac{d-1}{4} \equiv 0 \mod p$$

 $\iff (2a+1)^2 \equiv d \mod p$
 $\iff b^2 \equiv d \mod p$

avec b := 2a + 1, donc cette équation à $1 + (\frac{d}{p})$ solutions b modulo p, donc elle est $1 + (\frac{d}{p})$ solutions a modulo p. Ceci termine la preuve avec la remarque du début de cette preuve.

5.5.7 Exemples de factorisation d'idéaux

(i) Premier exemple

On se place dans $\mathcal{O}_{-1} = \mathbf{Z}[i]$. Rappelons que, comme il est euclidien, il est principal, i. e. tous ses idéaux sont principaux. Trouvons la factorisation de l'idéal $\langle 5+3i \rangle$. Sa norme vaut $34=2\times 12$. L'entier 2 est ramifié puisque, comme 2=(1+i)(1-i), on a $\langle 2 \rangle = \langle 1+i \rangle^2$. De plus, l'entier 17 est scindé puisque $(\frac{-1}{17})=1$. On en déduit la factorisation

$$\langle 5 + 3i \rangle = \langle 1 + i \rangle \langle 4 - i \rangle.$$

(ii) Deuxième exemple

On se place dans $\mathscr{O}_{-13} = \mathbf{Z}[\sqrt{-13}]$. Trouvons la factorisation de l'idéal $\langle 42 \rangle$. On a $42 = 2 \times 3 \times 7$. L'entier 2 est scindé puisque $\langle 2 \rangle = \langle 2, 1 + \sqrt{-13} \rangle \langle 2, 1 - \sqrt{-13} \rangle$ où $\langle 2, 1 + \sqrt{-13} \rangle = \langle 2, 1 - \sqrt{-13} \rangle$. De plus, l'entier 3 est inerte puisque $(\frac{-13}{3}) = (\frac{2}{3}) = -1$. Enfin l'entier 7 est scindé puisque $\langle 7 \rangle = \langle 7, 1 + \sqrt{-13} \rangle \langle 7, 1 - \sqrt{-13} \rangle$. On en déduit la factorisation

$$\langle 42 \rangle = \langle 2, 1 + \sqrt{-13} \rangle^2 \langle 3 \rangle \langle 7, 1 + \sqrt{-13} \rangle \langle 7, 1 - \sqrt{-13} \rangle.$$

5.6 CLASSES D'IDÉAUX ET GROUPE DES CLASSES

Soit d < 0 un entier. On considère l'anneau \mathcal{O}_d . Pour tous idéaux I et J de \mathcal{O}_d , on note $I \sim J$ s'il existe deux entiers $\alpha, \beta \in \mathcal{O}_d$ tels que $\alpha I = \beta J$. On note $\mathrm{Cl}(\mathcal{O}_d)$ l'ensemble des classes d'équivalence pour la relation \sim . Pour tout idéal I de \mathcal{O}_d , on note $[I] \in \mathrm{Cl}(\mathcal{O}_d)$ sa classe d'équivalence. Pour tous idéaux I, I', J et J' de \mathcal{O}_d , on remarque que les relations $I \sim I'$ et $J \sim J'$ impliquent la relation $IJ \sim I'J'$. Ainsi la multiplication des idéaux induit une loi de composition interne dans $\mathrm{Cl}(\mathcal{O}_d)$. L'élément neutre est $[\mathcal{O}_d]$ et l'inverse d'un élément [I] est $[\overline{I}]$.

- DÉFINITION 5.33. L'ensemble Cl (\mathcal{O}_d) muni de la multiplication est le groupe des classes de \mathcal{O}_d .
- \diamond Remarque. On peut montrer que la classe [\mathcal{O}_d] contient exactement les idéaux principaux.
- THÉORÈME 5.34. Le groupe $Cl(\mathcal{O}_d)$ est abélien et fini.

Preuve Ce théorème découle du lemme suivant qu'on va admettre provisoirement.

LEMME 5.35. Dans chaque classe de $Cl(\mathcal{O}_d)$, il existe un idéal I tel que

$$N(I) \le \begin{cases} \frac{4}{\pi} \sqrt{|d|} & \text{si } d \equiv 2,3 \mod 4, \\ \frac{2}{\pi} \sqrt{|d|} & \text{si } d \equiv 1 \mod 4. \end{cases}$$

Il est clair que ce groupe est abélien. Montrons qu'il est fini. D'après le lemme, il existe un entier $K \in \mathbb{N}$ tel que chaque classe [I] contienne un idéal J vérifiant $N(J) \leq K$. Mais il y a seulement un nombre fini d'idéaux de norme inférieur ou égal à K (cf. paragraphe suivant), donc le nombre de classe est fini.

Justifions le fait qu'il existe qu'un nombre fini d'idéaux I tels que $N(I) \le K$. Pour tout nombre premier $p \le K$, selon les cas, il y a

- un idéal premier de norme p^2 si le nombre premier p est inerte;
- un idéal premier de norme p si le nombre premier p est ramifié;
- deux idéaux premiers de norme p si le nombre premier p est scindé.

Donc il y a un nombre fini d'idéaux premiers de norme inférieur ou égale à K. Maintenant, comme tout idéal se factorise en un produit unique d'idéaux premiers, on en déduit le résultat.

Preuve du lemme On plonge l'anneau \mathcal{O}_d dans \mathbf{C} de sorte qu'il soit vu comme un réseau de \mathbf{C} . Le volume de son parallélogramme fondamental vaut

$$\operatorname{vol} P_{\mathcal{O}_d} = \begin{cases} \sqrt{|d|} & \text{si } d \equiv 2,3 \mod 4, \\ \frac{1}{2}\sqrt{|d|} & \text{si } d \equiv 2,3 \mod 4. \end{cases} \tag{\star}$$

et le volume du parallélogramme fondamental d'un idéal I vaut vol $P_I = N(I)$ vol $P_{\mathcal{O}_d}$. Appliquons le théorème de MINKOWSKI. Soit r > 0. Considérons le disque ouvert

$$D_r := \{x + i \, y \in \mathbb{C} \mid x^2 + y^2 < r^2\} \subset \mathbb{C}$$

qui est une partie non vide, bornée, convexe et symétrique par rapport à 0. Son volume vaut vol $D_r = \pi r^2$. Soit I un idéal. On suppose $r^2 > \frac{4}{\pi} \operatorname{vol} P_I$ de sorte que $\operatorname{vol} D_r > 4 \operatorname{vol} P_I$. Alors le théorème de MINKOWSKI assure qu'il existe un complexe $\alpha := x + iy \in D_r \cap I$ tel que $\alpha \neq 0$. Ainsi pour tout $\varepsilon > 0$, il existe un élément $\alpha \in I \setminus \{0\}$ tel que

$$|\alpha|^2 < \frac{4}{\pi} \operatorname{vol} P_I + \varepsilon.$$

Comme le réseau $I \subset \mathbb{C}$ est discret, il existe donc un élément $\alpha \in I \setminus \{0\}$ tel que

$$|\alpha|^2 \leq \frac{4}{\pi} \operatorname{vol} P_I$$
.

En considérant l'idéal conjugué \overline{I} , il existe un élément $\alpha \in \overline{I} \setminus \{0\}$ tel que $N(\alpha) \leq \frac{4}{\pi} \operatorname{vol} P_{\overline{I}}$. On a $\overline{I} \mid \langle \alpha \rangle$, donc il existe un idéal J tel que $\overline{I}J = \langle \alpha \rangle$. On obtient alors

$$N(\overline{I})N(J) = N(\overline{I}J) = N(\langle \alpha \rangle) \leq \frac{4}{\pi} \operatorname{vol} P_{\overline{I}} = \frac{4}{\pi} N(\overline{I}) \operatorname{vol} P_{\mathcal{O}_d}$$

ce qui permet de conclure $N(J) \leq \frac{4}{\pi} \operatorname{vol} P_{\mathcal{O}_d}$. En utilisant les inégalités (\star) , le lemme est donc démontré

 \diamond Remarque. Lorsque \mathcal{O}_d est euclidien, il est principal et le groupe $\mathrm{Cl}(\mathcal{O}_d)$ est trivial.