Števili e^2 in π^2 sta iracionalni

Ema Češek

Povzetek

Na kratko o mojem članku.

Iracionalna števila

Na splošno o iracionalnosti števil, zgledi, malo zgodovine. Potem omejim na e in $\pi.$

Iracionalnost števila e^2

Liouville 1840, podobno za e^4

Izrek 1. Število e^2 je iracionalno.

Dokaz. Izrek bomo dokazali s protislovjem. Predpostavimo, da je e^2 racionalno število. Torej ga lahko zapišemo v obliki

$$e^2 = \frac{a}{b}$$

kjer je $a \in \mathbb{Z}$ in $b \in \mathbb{N}$. V naslednjem koraku enačbo preoblikujemo v

$$be = ae^{-1}$$

in na obeh straneh enačbe pomnožimo zn!,kjer je n sodo število in $n\geq 0.$ Dobimo

$$n!be = n!ae^{-1}. (1)$$

Ker znamo funkcijo e^x razviti v potenčno vrsto $e^x=\sum_{k=0}^\infty \frac{x^k}{k!}$, lahko e in e^{-1} zapišemo z vrstama

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$
$$e^{-1} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots$$

in ju vstavimo v enačbo (1).

Najprej si oglejmo, kaj dobimo na levi strani enačbe:

$$\begin{split} n!be &= n!b \bigg(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \bigg) \\ &= n!b \bigg(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \bigg) + n!b \bigg(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \dots \bigg) \\ &= n!b \bigg(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \bigg) + b \bigg(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \dots \bigg) \end{split}$$

Vsoto smo razbili na dva dela. V prvem delu so členi, ki se pojavijo pred $\frac{1}{n!}$. Ker imajo vsi členi imenovalec manjši od n!, pri množenju z n! dobimo cela števila. Torej bo prvi del predstavljal neko celo število. Drugi del, kjer smo vzeli vse nadaljne člene, smo že množili z n!. Ocenimo

$$\frac{b}{n+1} < \left(\frac{b}{(n+1)} + \frac{b}{(n+1)(n+2)} + \frac{b}{(n+1)(n+2)(n+3)} + \dots\right)$$

$$< \left(\frac{b}{(n+1)} + \frac{b}{(n+1)^2} + \frac{b}{(n+1)^3} + \dots\right)$$

$$= \frac{b}{n+1} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots\right)$$

$$= \frac{\frac{b}{n+1}}{1 - \frac{1}{n+1}}$$

$$= \frac{b}{n}.$$

Uporabili smo formulo za računanje vsote neskončne geometrijske vrste. Dobimo oceno, da je drugi del večji od $\frac{b}{n+1}$ in manjši od $\frac{b}{n}$. Za dovolj velik n, to zagotovo ne bo celo število.

Podobno obravnavamo desno stran enačbe (1):

$$n!ae^{-1} = n!a\left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots\right)$$

$$= n!a\left(\frac{1}{2!} + \dots + (-1)^n \frac{1}{n!}\right) + n!a(-1)^{n+1}\left(\frac{1}{(n+1)!} - \frac{1}{(n+2)!} + \frac{1}{(n+3)!} - \dots\right)$$

$$= n!a\left(\frac{1}{2!} + \dots + (-1)^n \frac{1}{n!}\right) + a(-1)^{n+1}\left(\frac{1}{(n+1)} - \frac{1}{(n+1)(n+2)} + \dots\right)$$

Prvi del bo znova neko celo število. Spomnimo, da smo na začetku predpostavili, da je n sodo. Torej bo drugi del enak

$$-a\left(\frac{1}{(n+1)} - \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \dots\right).$$

Znova želimo ta del oceniti. Na naslednjih neenakostih uporabimo formulo za

vsoto neskončne geometrijske vrste:

$$\begin{split} &-a\bigg(\frac{1}{(n+1)}+\frac{1}{(n+1)^2}+\frac{1}{(n+1)^3}+\dots\bigg)\\ &<-a\bigg(\frac{1}{(n+1)}-\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}-\dots\bigg)\\ &<-a\bigg(\frac{1}{(n+1)}-\frac{1}{(n+1)^2}-\frac{1}{(n+1)^3}-\dots\bigg)\\ &=-\frac{a}{(n+1)}\bigg(1-\bigg(\frac{1}{(n+1)}+\frac{1}{(n+1)^2}+\dots\bigg)\bigg) \end{split}$$

Ocenimo, da je drugi del večji od $-\frac{a}{n}$ in manjši od $-\frac{a}{n+1}$. Torej bi v enačbi (1) veljalo, da je leva stran malo večja od celega števila, desna stran pa malo manjša. Vendar enačaj v tem primeru ne velja.

Dokaz je bil povzet iz [1]. Splošneje velja naslednji izrek.

Izrek 2. Število e^r je iracionalno za vsak $r \in \mathbb{Q}$.

Izreka ne bomo dokazali. Dokaže se z uporabo idej, ki jih bomo navedli v dokazu iracionalnosti števila π^2 .

Iracionalnost števila π^2

Trditev 1. Naj bo $n \ge 1$ in $f(x) = \frac{x^n(1-x)^n}{n!}$.

- 1. Funkcija je oblike $f(x) = \frac{1}{n!} \sum_{i=n}^{2n} c_i x^i$, kjer $c_i \in \mathbb{Z}$
- 2. $Za \ 0 < x < 1 \ velja \ 0 < f(x) < \frac{1}{n!}$.
- 3. Vrednosti odvoda $f^{(k)}(x)$ za x = 0 in x = 1 sta celi števili za $\forall k \geq 0$.

Dokaz. 1. Po binomskem izreku razvijemo $(1-x)^n$. Dobimo predpis

$$f(x) = \frac{x^n}{n!} \sum_{k=0}^{n} \binom{n}{k} (-1)^k x^k$$

iz katerega je razvidno, da se x pojavlja v potencah x^n, \ldots, x^{2n} .

2.

3. Najprej si oglejmo vrednosti $f^{(k)}(x)$. Za $k=0,\ldots,n-1$ bo v odvodu še vedno nastopal x s pozitivno potenco, torej bo $f^{(k)}(0)=0$. Za $k=2n+1,\ldots$ bo vrednost odvoda prav tako 0, ker ...

Izrek 3. Število π^2 je iracionalno.

Dokaz. Denimo, da je π^2 racionalno in ga lahko zapišemo kot $\pi^2=\frac{a}{b},$ kjera,b>0celi števili. Definiramo

$$F(x) := b^{n}(\pi^{2n}f(x) - \pi^{2n-2}f^{(2)}(x) + \pi^{2n-4}f^{(4)}(x) - \dots)$$

za funcijo f(x) iz trditve 1. Z izračunom odvodov

$$F'(x) = b^{n}(\pi^{2n}f'(x) - \pi^{2n-2}f^{(3)}(x) + \pi^{2n-4}f^{(5)}(x) - \dots)$$

$$F''(x) = b^{n}(\pi^{2n}f^{(2)}(x) - \pi^{2n-2}f^{(4)}(x) + \pi^{2n-4}f^{(6)}(x) - \dots)$$

dobimo zvezo

$$F''(x) = -F(x)\pi^2 + b^n \pi^{2n+2} f(x).$$
 (2)

Po trditvi...

Izračunamo odvod

$$\frac{d}{dx} \left(F'(x) sin(\pi x) - \pi F(x) cos(\pi x) \right)$$

$$= F''(x) sin(\pi x) + \pi F'(x) cos(\pi x) - \pi F'(x) cos(\pi x) - \pi^2 F(x) sin(\pi x)$$

$$= \left(F''(x) - \pi^2 F(x) \right) sin(\pi x) *$$

in upoštevamo enačbo (2) ter zapis π^2 kot racionalnega števila:

$$* = b^n \pi^{2n+2} f(x) sin(\pi x)$$
$$= a^n \pi^2 f(x) sin(\pi x).$$

Definiramo

$$\begin{split} N :&= \pi \int_0^1 a^n f(x) sin(\pi x) dx \\ &= \pi \int_0^1 \frac{1}{\pi^2} \frac{d}{dx} \big(F'(x) sin(\pi x) - \pi F(x) cos(\pi x) \big) dx \\ &= \frac{1}{\pi} \big(F'(x) sin(\pi x) - \pi F(x) cos(\pi x) \big) \big|_0^1 \\ &= \frac{1}{\pi} F'(1) sin(\pi) - F(1) cos(\pi) - \frac{1}{\pi} F'(0) sin(0) + F(0) cos(0) \\ &= F(1) + F(0), \end{split}$$

ki bo tako celo število. Iz trditve vemo, da za 0 < x < 1 velja f(x) > 0. \Box Dokaz je bil povzet iz [1].

Literatura

[1] Martin Aigner and Günter M. Ziegler. *Proofs from THE BOOK*. Springer, 2010.