Fiche d'entraînement : variations de fonctions (par calculs)

Exercice 1

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 12x + 22$

- 1) Sur $]-\infty$; 3]:
 - **a)** Montrer que f(a) f(b) = (a b) [2(a + b) 12].
 - **b)** Étudier le sens de variation de f sur $]-\infty$; 3].
- 2) Sur $[3; +\infty[:$
 - a) Montrer que la forme canonique de f est $f(x) = 2(x-3)^2 + 4$.
 - **b)** Étudier le sens de variation de f sur $[3; +\infty[$.
- **3)** Dresser le tableau de variations de f sur \mathbb{R} .

Exercice 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = -3x^2 - 24x - 43$

- 1) Sur $[-4; +\infty[:$
 - **a)** Montrer que f(a) f(b) = (a b)[-3(a + b) 24].
 - **b)** Étudier le sens de variation de f sur $[-4; +\infty[$.
- 2) Sur $]-\infty$; -4]:
 - a) Montrer que la forme canonique de f est $f(x) = -3(x+4)^2 + 5$.
 - **b)** Étudier le sens de variation de f sur $]-\infty$; -4].
- 3) Dresser le tableau de variations de f sur \mathbb{R} .

Exercice 3

Soit f la fonction définie sur \mathbb{R} par $f(x) = -2x^2 - 4x$

- 1) Sur $]-\infty;-1]:$
 - a) Montrer que f(a) f(b) = (a b)[-2(a + b) 4].
 - **b)** Étudier le sens de variation de f sur $]-\infty$; -1].
- 2) Sur $[-1; +\infty[:$
 - a) Montrer que la forme canonique de f est $f(x) = -2(x+1)^2 + 2$.
 - **b)** Étudier le sens de variation de f sur $[-1; +\infty[$.
- **3)** Dresser le tableau de variations de f sur \mathbb{R} .

Exercice 4

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 6x^2 - 60x + 149$

- 1) Sur $[5; +\infty[:$
 - a) Montrer que f(a) f(b) = (a b) [6(a + b) 60].
 - **b)** Étudier le sens de variation de f sur $[5; +\infty[$.
- **2)** Sur $]-\infty$; 5]:
 - a) Montrer que la forme canonique de f est $f(x) = 6(x-5)^2 1$.
 - **b)** Étudier le sens de variation de f sur $]-\infty$; 5].
- **3)** Dresser le tableau de variations de f sur \mathbb{R} .

Solutions

Exercice 1

- a) $f(a) f(b) = 2a^2 12a + 22 (2b^2 12b + 22) = 2a^2 2b^2 12a + 12b = 2(a^2 b^2) 12(a b)$ 1) f(a) - f(b) = 2(a+b)(a-b) - 12(a-b) = (a-b)[2(a+b) - 12]
 - **b)** Soient a et b deux réels appartenant à $]-\infty$; 3] tels que

$$f(a) - f(b) = \underbrace{(a - b)}_{\text{car } a < b} \underbrace{ \begin{bmatrix} 2(a + b) - 12 \end{bmatrix}}_{a < 3}$$

$$b < 3$$

$$\text{et donc } 2(a + b) < 12$$

$$\text{donc } 2(a + b) - 12 < 0$$

$$\underbrace{ \begin{bmatrix} 2(a + b) - 12 \end{bmatrix}}_{\text{cond}}$$

Donc f(a) - f(b) > 0 donc f(a) > f(b) et donc f est décroissante sur $] - \infty$; 3].

- a) $f(x) = 2x^2 12x + 22 = 2(x^2 6x) + 22 = 2(x^2 6x + 9 9) + 22 = 2[(x 3)^2 9] + 22$ 2) $f(x) = 2(x-3)^2 - 18 + 22 = 2(x-3)^2 + 4$
 - **b)** Soient a et b deux réels appartenant à [3; $+\infty$ [tels que a < b:

 $3 \le a < b \text{ donc}$

 $0 \le a - 3 < b - 3$ (on soustrait 3) donc

 $0 \le (a-3)^2 < (b-3)^2$ (on passe au carré avec des nombres positifs) donc

 $0 \le 2(a-3)^2 < 2(b-3)^2$ (on multiplie par 2) donc

$$4 \le \underbrace{2(a-3)^2 + 4}_{f(a)} < \underbrace{2(b-3)^2 + 4}_{f(b)}$$
 (on ajoute 4)

Donc f(a) < f(b) et donc f(a) < f(b) et donc f est croissante sur $[3; +\infty[$.

Exercice 2

- a) $f(a) f(b) = -3a^2 24a 43 (-3b^2 24b 43) = -3a^2 + 3b^2 24a + 24b$ $f(a) - f(b) = -3(a^2 - b^2) - 24(a - b) = -3(a + b)(a - b) - 24(a - b) = (a - b)[-3(a + b) - 24]$
 - **b)** Soient a et b deux réels appartenant à $[-4; +\infty[$ tels que (a(<

$$f(a) - f(b) = \underbrace{(a - b)}_{\text{car } a < b} \underbrace{\begin{bmatrix} -3(a + b) - 24 \end{bmatrix}}_{\text{a} > -4}$$

$$\underbrace{\begin{array}{c} a > -4 \\ b > -4 \\ \end{array}}_{\text{et donc } -3(a + b) < 24}$$

$$\underbrace{\begin{array}{c} \text{donc } -3(a + b) < 24 \\ \text{donc } -3(a + b) - 24 < 0 \\ \end{array}}_{\text{(+)}}$$

Donc f(a) - f(b) > 0 donc f(a) (>) f(b) et donc f est décroissante sur $[-4; +\infty[$.

- a) $f(x) = -3x^2 24x 43 = -3(x^2 + 8x) 43 = -3(x^2 + 8x + 16 16) 43$ 2) $f(x) = -3[(x+4)^2 - 16] - 43 = -3(x+4)^2 + 48 - 43 = -3(x+4)^2 + 5$
 - **b)** Soient a et b deux réels appartenant à $]-\infty$; -4] tels que a(<)b: $a < b \le -4$ donc $a+4 < b+4 \le 0$ (on ajoute 4) donc

 $(a+4)^2 > (b+4)^2 \ge 0$ (on passe au carré avec des nombres négatifs) donc

Donc f(a) < f(b) et donc f(a) < f(b) et donc f est croissante sur $]-\infty$; -4].

Exercice 3

1) **a)**
$$f(a) - f(b) = -2a^2 - 4a - (-2b^2 - 4b) = -2a^2 + 2b^2 - 4a + 4b = -2(a^2 - b^2) - 4(a - b)$$

 $f(a) - f(b) = -2(a + b)(a - b) - 4(a - b) = (a - b)[-2(a + b) - 4]$

b) Soient
$$a$$
 et b deux réels appartenant à $]-\infty;-1]$ tels que $a < b$

$$f(a) - f(b) = \underbrace{(a - b)}_{\text{car } a < b} \underbrace{\begin{bmatrix} -2(a + b) - 4 \end{bmatrix}}_{a < -1}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

$$\underbrace{\begin{cases} -2(a + b) - 4 \end{bmatrix}}_{\text{donc } a + b < -2}$$

Donc f(a) - f(b) < 0 donc f(a) < f(b) et donc f(a) est croissante sur $[-\infty; -1]$.

2) a)
$$f(x) = -2x^2 - 4x = -2(x^2 + 2x) = -2(x^2 + 2x + 1 - 1) = -2[(x + 1)^2 - 1] = -2(x + 1)^2 + 2$$

- **b)** Soient a et b deux réels appartenant à $[-1; +\infty[$ tels que a < b:
 - $-1 \le a < b \text{ donc}$
 - $0 \le a+1 < b+1$ (on ajoute 1) donc
 - $0 \le (a+1)^2 < (b+1)^2$ (on passe au carré avec des nombres positifs) donc
 - $0 \ge -2(a+1)^2 > -2(b+1)^2$ (on multiplie par -2) donc
 - $2 \ge \underbrace{-2(a+1)^2 + 2}_{f(a)} > \underbrace{-2(b+1)^2 + 2}_{f(b)}$ (on ajoute 2)

Donc f(a) > f(b) et donc f(a) > f(b) et donc f est décroissante sur $[-1; +\infty[$.

Exercice 4

1) a)
$$f(a) - f(b) = 6a^2 - 60a + 149 - (6b^2 - 60b + 149) = 6a^2 - 6b^2 - 60a + 60b$$

 $f(a) - f(b) = 6(a^2 - b^2) - 60(a - b) = 6(a + b)(a - b) - 60(a - b) = (a - b)[6(a + b) - 60]$

b) Soient a et b deux réels appartenant à $[5; +\infty[$ tels que (a < b)

$$f(a) - f(b) = \underbrace{(a - b)}_{\text{car } a < b} \underbrace{\begin{bmatrix} 6(a + b) - 60 \end{bmatrix}}_{a > 5}$$

$$\underbrace{\begin{array}{c} a > 5 \\ b > 5 \end{array}}_{\text{et donc } 6(a + b) > 60}$$

$$\underbrace{\begin{array}{c} donc 6(a + b) > 60 \\ donc 6(a + b) - 60 > 0 \end{array}}_{\text{+}}$$

Donc f(a) - f(b) < 0 donc f(a) < f(b) et donc f est croissante sur $[5; +\infty[$.

2) **a)**
$$f(x) = 6x^2 - 60x + 149 = 6(x^2 - 10x) + 149 = 6(x^2 - 10x + 25 - 25) + 149$$

 $f(x) = 6[(x - 5)^2 - 25] + 149 = 6(x - 5)^2 - 150 + 149 = 6(x - 5)^2 - 1$

b) Soient a et b deux réels appartenant à $]-\infty$; 5] tels que a < b:

$$a < b \le 5$$
 donc

 $a-5 < b-5 \le 0$ (on soustrait 5) donc

 $(a-5)^2 > (b-5)^2 \ge 0$ (on passe au carré avec des nombres négatifs) donc

$$6(a-5)^2 > 6(b-5)^2 \ge 0$$
 (on multiplie par 6) donc
 $6(a-5)^2 > 6(b-5)^2 \ge 0$ (on multiplie par 6) donc
 $6(a-5)^2 - 1 > 6(b-5)^2 - 1 \ge -1$ (on soustrait 1)

Donc f(a) > f(b) et donc f(a) > f(b) et donc f est décroissante sur $]-\infty$; 5].

3)	x	$-\infty$	5	+∞
	f(x)		-1	