SEMAINE DU 08/10 AU 12/10

1 Cours

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler et formule de Moivre, argument et interprétation géométrique, racines $n^{\text{èmes}}$ de l'unité et d'un complexe non nul.

Equations du second degré Racines carrées d'un complexe, résolution d'une équation du second degré à coefficients complexes, somme et produit des racines.

Trigonométrie Linéarisation. Développement. Sommes trigonométriques.

Géométrie Angle de vecteurs et complexes. Caractérisation de la colinéarité et de l'orthogonalité. Expression complexe des homothéties, rotations et similitudes.

Exponentielle complexe Définition et propriétés. Module et argument de e^z .

Applications

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. $f: E \to F$ est bijective **si et seulement si** il existe $g: F \to E$ telle que $g \circ f = Id_E$ et $f \circ g = Id_F$ et dans ce cas, $f^{-1} = g$.

2 Méthodes à maîtriser

- $ightharpoonup z \in \mathbb{R} \iff \overline{z} = z, z \in i\mathbb{R} \iff \overline{z} = -z.$
- $ightharpoonup z \in \mathbb{U} \iff \overline{z} = \frac{1}{z}.$
- $\blacktriangleright \ z \in \mathbb{R} \iff \arg z \equiv \mathfrak{0}[\pi], z \in \mathfrak{i}\mathbb{R} \iff \arg z \equiv \frac{\pi}{2}[\pi].$
- ► Extraction de racines n^{èmes} par méthode trigonométrique.
- ▶ Extraction de racines carrées, résolution d'équations du second degré à coefficients dans ℂ.
- ▶ Les vecteurs d'affixes z_1 et z_2 sont colinéaires **si et seulement si** $\frac{z_2}{z_1} \in \mathbb{R}$ et orthogonaux **si et seulement si** $\frac{z_2}{z_1} \in i\mathbb{R}$.
- ▶ Résoudre dans \mathbb{C} une équation du type $e^z = a$.
- ▶ Passage en complexe pour le calcul de sommes trigonométriques.
- ▶ Méthode de l'arc-moitié pour factoriser $e^{i\theta_1} \pm e^{i\theta_2}$ où $(\theta_1, \theta_2) \in \mathbb{R}^2$.
- ▶ Savoir prouver l'injectivité en pratique : «Soit (x, x') tel que f(x) = f(x')» puis montrer que x = x'.
- ► Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- ► Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = Id$ et $f \circ g = Id$.
 - Montrer que f est injective et surjective.

3 Questions de cours

- ▶ Soient $f: E \to F$ et $g: F \to G$ deux applications.
 - 1. Montrer que si f et g sont injectives, alors $g \circ f$ l'est également.
 - 2. Montrer que si $g \circ f$ est injective, alors f l'est également.
- $\blacktriangleright \;$ Soient f: E \rightarrow F et g: F \rightarrow G deux applications.
 - 1. Montrer que si f et g sont surjectives, alors $g \circ f$ l'est également.
 - 2. Montrer que si g o f est surjective, alors g l'est également.
- ightharpoonup Déterminer une bijection de $\mathbb N$ sur $\mathbb Z$.
- \blacktriangleright Soit $n\in\mathbb{N}^*.$ Calculer la somme et le produit des racines $n^{\grave{e}mes}$ de l'unité.