Improved Bounds for Online Routing and Packing Via a Primal-Dual Approach

In proceeding of: Foundations of Computer Science, 2006. FOCS

Zhang Xiaoxi zxx1121xiaoxi@gmail.com

Online Computation

- Input is revealed in parts
- Oline algorithms respond to each new input upon arrival
- Competitive Ratio c:

Competitive Ratio c:

- > A minimization problem I.
- For each instance of I, there is a set of feasible solutions
- > For each feasible solution, there is a cost
- > OPT(I) is the optimal cost for an instance of I

$$\min \sum_{i=1}^{n} c_i X_i$$

$$\sum_{i=1}^{n} a_{ij} X_{i} \geq b_{j}, \forall 1 \leq i \leq n, X_{i} \geq 0$$

c-competitive algorithm:

For every instance of I, the cost is at most c*OPT(I)+a

Competitive Ratio c:

- > A minimization optimization problem I.
- For each instance of I, there is a set of feasible solutions
- > For each feasible solution, there is a cost
- OPT(I) is the optimal cost for an instance of I

c-competitive algorithm

Minimization Problem:

For every instance of I, the **cost** is at most c*OPT(I)+a

Maximization Problem:

For every instance of I, the **profit** is at least OPT(I)/c-a

How to give the bound of competitive ratio?

We will discuss later

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize:	$\sum_{i=1}^{n} c_i x_i$	Maximize:	$\sum_{j=1}^{m} y_j$
subject to:		subject to:	
$\forall 1 \leq j \leq m \colon$	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \le c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Covering Problem
 - > Cost function is known in advance

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize: subject to:	$\sum_{i=1}^{n} c_i x_i$	Maximize: subject to:	$\sum_{j=1}^{m} y_j$
$\forall 1 \leq j \leq m$:	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \le c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Covering Problem
 - Cost function is known in advance
 - Linear constraints are given to the algorithm one-

$$\sum_{i \in S(j)} a_{ij} X_i \ge 1$$

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize:	$\sum_{i=1}^{n} c_i x_i$	Maximize:	$\sum_{j=1}^{m} y_j$
subject to:		subject to:	
$\forall 1 \leq j \leq m \colon$	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \le c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Covering Problem
 - Cost function is known in advance
 - Linear constraints are given to the algorithm oneby-one
 - The algorithm increase the variables without decreasing any previously increased variables

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize: subject to:	$\sum_{i=1}^{n} c_i x_i$	Maximize: subject to:	$\sum_{j=1}^{m} y_j$
$\forall 1 \leq j \leq m :$	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \leq c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Packing Problem
 - > Values ci are known in advance
 - ➤ Profit function and exact packing constraints are not known in advance

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize: subject to:	$\sum_{i=1}^{n} c_i x_i$	Maximize: subject to:	$\sum_{j=1}^{m} y_j$
$\forall 1 \leq j \leq m$:	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \le c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Packing Problem
 - > Values ci are known in advance
 - ➤ Each packing constraint is revealed gradually

(P): Primal (Covering)		(D): Dual (Packing)	
Minimize: subject to:	$\sum_{i=1}^{n} c_i x_i$	Maximize: subject to:	$\sum_{j=1}^{m} y_j$
$\forall 1 \leq j \leq m :$	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \leq c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- ➤ Online Packing Problem
 - ➤ Values ci are known in advance
 - > Each packing constraint is revealed gradually
 - Each y_i is increased in its round without decreasing any previously given variables

Online Routing Model

The splittable routing problem

The splittable routing problem (dual) and its corresponding primal problem

Primal	Dual	
Minimize: $\sum_{e \in E} u(e)x(e) + \sum_{r_i} z(r_i)$	Maximize: $\sum_{r_i} \sum_{P \in \mathbb{P}(r_i)} f(r_i, P)$	
subject to:	subject to:	
$\forall r_i \in \mathbb{R}, P \in \mathbb{P}(r_i): \sum_{e \in P} x(e) + z(r_i) \ge 1$	$\forall r_i \in \mathbb{R}: \sum_{P \in \mathbb{P}(r_i)} f(r_i, P) \leq 1$	
$\forall r_i \in \mathbb{R}, P \in \mathbb{P}(r_i): \sum_{e \in P} x(e) + z(r_i) \ge 1$	$\forall e \in E: \sum_{r_i \in \mathbb{R}, P \in \mathbb{P}(r_i) e \in P} f(r_i, P) \leq u(e)$	
$\forall r_i, z(r_i) \ge 0, \ \forall e, x(e) \ge 0$	$\forall r_i, P: f(r_i, P) \ge 0$	

Dual	
Maximize: $\sum_{r_i} \sum_{P \in \mathbb{P}(r_i)} f(r_i, P)$ subject to:	
$\forall r_i \in \mathbb{R}: \sum_{P \in \mathbb{P}(r_i)} f(r_i, P) \leq 1$ $\forall e \in E: \sum_{r_i \in \mathbb{R}, P \in \mathbb{P}(r_i) e \in P} f(r_i, P) \leq u(e)$ $\forall r_i, P: f(r_i, P) \geq 0$	
(D): Dual (Packing)	
Maximize: $\sum_{j=1}^{m} y_j$ subject to:	
$\forall 1 \le i \le n$: $\sum_{j i \in S(j)} y_j \le c_i$ $\forall 1 \le j \le m$: $y_j \ge 0$	

Maximize:
$$\sum_{r_i} \sum_{P \in \mathbb{P}(r_i)} f(r_i, P)$$
 subject to:
$$\forall r_i \in \mathbb{R} : \sum_{P \in \mathbb{P}(r_i)} f(r_i, P) \leq 1$$

$$\forall e \in E : \sum_{r_i \in \mathbb{R}, P \in \mathbb{P}(r_i) | e \in P} f(r_i, P) \leq u(e)$$

Routing algorithm 1:

When a new request $r_i = (s_i, t_i)$ arrives:

 $\forall r_i, P: f(r_i, P) > 0$

- (1) if there exists a path $P \in \mathbb{P}(r_i)$ such that $\sum_{e \in P} x(e) < 1$:
 - (a) Route the request on P and set $f(r_i, P) \leftarrow 1$.
 - (b) Set $z(r_i) \leftarrow 1$.
 - (c) For each $e \in P$: $x(e) \leftarrow x(e)(1 + 1/u(e)) + 1/(|P| \cdot u(e))$, where |P| is the length of the path P.

Routing algorithm 1:

When a new request $r_i = (s_i, t_i)$ arrives:

- (1) if there exists a path $P \in \mathbb{P}(r_i)$ such that $\sum_{e \in P} x(e) < 1$:
 - (a) Route the request on P and set $f(r_i, P) \leftarrow 1$.
 - (b) Set $z(r_i) \leftarrow 1$.
 - (c) For each $e \in P$: $x(e) \leftarrow x(e)(1 + 1/u(e)) + 1/(|P| \cdot u(e))$, where |P| is the length of the path P.
- lackInitially, x(e)=0,z(ri)=0
- ◆This algorithm is 3-competitive
- ◆It violates the capacity of each edge by at most a factor of O(log d) (i.e. the load on each edge is at most O(log d) exceeding the capacity of the edge)

Routing algorithm 2:

Initially: $x(e) \leftarrow 0$.

When a new request $r_i = (s_i, t_i, \mathbb{P}(r_i))$ arrives:

- (1) If there exists a path $P(r_i) \in \mathbb{P}(r_i)$ of length < 1 with respect to x(e):
 - (a) Route the request on "any" path $P \in \mathbb{P}(r_i)$ with length < 1.
 - (b) $z(r_i) \leftarrow 1$.
 - (c) For each edge e in $P(r_i)$:

$$x(e) \leftarrow x(e) \exp\left(\frac{\ln(1+n)}{u(e)}\right) + \frac{1}{n} \left[\exp\left(\frac{\ln(1+n)}{u(e)}\right) - 1\right].$$

- ◆This algorithm is O(u(min)[exp(ln(1+n)/u(min))-1])-competitive
- ◆If u(min)>=log n then it's O(log n)-competitive
- ◆ It does not violate the capacity constraints

- (a) Route the request on "any" path $P \in \mathbb{P}(r_i)$ with length < 1.
- (b) $z(r_i) \leftarrow 1$.
- (c) For each edge e in $P(r_i)$:

$$x(e) \leftarrow x(e) \exp\left(\frac{\ln(1+n)}{u(e)}\right) + \frac{1}{n} \left[\exp\left(\frac{\ln(1+n)}{u(e)}\right) - 1\right].$$

Primal		Dual	
Minimize:	$\sum_{e \in E} u(e)x(e) + \sum_{r_i} z(r_i)$	Maximize:	$\sum_{r_i} \sum_{P \in \mathbb{P}(r_i)} f(r_i, P)$
subject to:		subject to:	

◆Proof.

When an ri is routed, the increase of the primal cost is at most:

$$1 + \sum_{e \in P} u(e) (x(e) [\exp(\ln(1+n)/u(e)) - 1] + \frac{1}{n} [\exp(\ln(1+n)/u(e)) - 1])$$

 $2(u(\min)[\exp(\ln(1+n)/u(\min))-1])+1$

While the increase of the dual profit is 1

- ◆This algorithm is O(u(min)[exp(ln(1+n)/u(min))-1])competitive
- ◆If u(min)>=log n then it's O(log n)-competitive
- ◆ It does not violate the capacity constraints
- ◆Proof.

When an ri is routed, the increase of the primal cost is at most:

$$1 + \sum_{e \in P} u(e) (x(e) [\exp(\ln(1 + n) / u(e)) - 1] + \frac{1}{n} [\exp(\ln(1 + n) / u(e)) - 1])$$

$$\leq 2(u(\min) [\exp(\ln(1 + n) / u(\min)) - 1]) + 1$$

While the increase of the dual profit is 1

Thus the ratio between the primal and dual solutions is at most O(u(min)[exp(ln(1+n)/u(min))-1])

How to compute or give a bound for the competitive ratio?

- (1)Compute the ratio B between primal and dual(routing)
- (2)Compute the increment of the cost and profit in primal and dual

Proof.

```
Primal:=Minimizing problem

Minimum=X (offline)

Using weak duality: X (offline) >=Y (offline)

Online version: X(online) & Y(online)

(1)Then if we have X(online)<=BY(online), we'll get:

Y(online)>=X(online)/B>=X(offline)/B>=Y(offline)/B
```

(2)It's just because the values of the primal and dual solutions are all zero initially.

- Definition of a (c1,c2)-competitive routing algorithm:
- Routes at least 1/c1 of the maximum possible bandwidth

- Definition of a (c1,c2)-competitive routing algorithm:
- Routes at least 1/c1 of the maximum possible bandwidth—competitive ratio

- (c1,c2)-competitive routing algorithm:
- Routes at least 1/c1 of the maximum possible bandwidth—competitive ratio
- Guarantees that the load on each edge is at most c2

 Guarantees that the load on each edge is at most c2—violate the capacity constraint

(P): Prim	(P): Primal (Covering)		ual (Packing)
Minimize: subject to:	$\sum_{i=1}^{n} c_i x_i$	Maximize: subject to:	$\sum_{j=1}^{m} y_j$
$\forall 1 \leq j \leq m$:	$\sum_{i \in S(j)} x_i \ge 1$	$\forall 1 \leq i \leq n$:	$\sum_{j i\in S(j)} y_j \le c_i$
$\forall 1 \leq i \leq n :$	$x_i \ge 0$	$\forall 1 \leq j \leq m$:	$y_j \ge 0$

- Routes at least 1/c1 of the maximum possible bandwidth
- Guarantees that the load on each edge Is at most c2
- Our Algorithm is (1,O(logn))-competitive
- Advantage: competitive ratio is small

A Generic Online Routing Algorithm

Initially, $\forall j \colon x(e,j) \leftarrow u(\min,j)/m \cdot u(e,j)$. When new request $r_i = (s_i, t_i, \mathbb{P}(r_i))$ arrives:

- (1) Consider all copies of G from G_k to G_0 . In each copy G_j :
 - (a) Let $P(r_i, j) \in \mathbb{P}(r_i, j)$ be the shortest path with respect to x(e, j) and let α be the length of $P(r_i, j)$.
 - (b) If $\alpha < 1$:
 - (i) Route the request on $P(r_i, j)$.
 - (ii) For each edge e in $P(r_i, j)$: $x(e, j) \leftarrow x(e, j)(1 + 1/u(e, j))$.
 - (iii) $z(r_i, j) \leftarrow 1 \alpha$.
 - (c) Else $(\alpha > 1)$:
 - (i) If the total bandwidth routed in this step in G_j is less than $u(\min, j)$, and the current request can be routed in G_j , route the request in an arbitrary feasible path $P \in \mathbb{P}(r_i, j)$.
 - (d) If the request is routed finish.
- Reject requests that got rejected from all copies.

When new request $r_i = (s_i, t_i, \mathbb{P}(r_i))$ arrives:

- (1) Consider all copies of G from G_k to G_0 . In each copy G_j :
 - (a) Let $P(r_i, j) \in \mathbb{P}(r_i, j)$ be the shortest path with respect to x(e, j) and let α be the length of $P(r_i, j)$.
 - (b) If $\alpha < 1$:
 - (i) Route the request on $P(r_i, j)$.
 - (ii) For each edge e in $P(r_i, j)$: $x(e, j) \leftarrow x(e, j)(1 + 1/u(e, j))$.
 - (iii) $z(r_i, j) \leftarrow 1 \alpha$.

Decompose G(V,E) into graphs G0,G1,...,Gk For each j of 0 $^{\sim}$ k, the vertex set of Gj is V The edges in Gj are those of G having capacity at least M^{j}

- (b) If $\alpha < 1$:
 - (i) Route the request on $P(r_i, j)$.
 - (ii) For each edge e in $P(r_i, j)$: $x(e, j) \leftarrow x(e, j)(1 + 1/u(e, j))$. (iii) $z(r_i, j) \leftarrow 1 - \alpha$.

When a request is routed in jth copy, the total primal value in jth copy increases by

$$(1 - \alpha) + \sum_{e \in P(r_i, j)} x(e, j) = 1 - \alpha + \alpha = 1$$

And the dual profit increase 1 too. So its competitive ratio is 1

- One weakness:
- the duration of the request it doesn't consider
- ——B. Awerbuch, Y. Azar, and S. Plotkin.
 Thoughtput-competitive online routing. In Proc. Of 34th FOCS, page 32-40, 1993

My future work

- Study some details to construct 'half' problem based on the other half
- Study how to adjust my algorithm(competitive ratio is not good) if I even don't know the physical meaning of the variables in the other half problem
- How to make the math model more delicate if the constraints in real problem are so many

Thank you!Q&A