Réseau d'un espace vectoriel Euclidien

a.k.a. a lattice, a discrete subgroup of \mathbb{R}^n

- Soient $n \in \mathbb{N}$ et $B \in GL_n(\mathbb{R})$ avec colonnes $b_1, \ldots, b_n \in \mathbb{R}^n$
- Alors le réseau ${\mathscr L}$ engendré par la base B se note

$$\mathcal{L}(B) = \left\{ \sum_{i=1}^{n} x_i b_i : x_i \in \mathbb{Z} \right\} \subseteq \mathbb{R}^n$$

• $\mathbb{E} \times \mathbb{Z}^2$:

×	×	×	×	×	×
×	(0,1) X	×	×	×	×
×	(0,0)	(1,0)	×	×	×
×	×	×	×	×	×

Problème du vecteur le plus court

a.k.a. the Shortest Vector Problem (SVP)

• Étant donné un réseau \mathscr{L} , notons la longueur de son plus petit vecteur non nul

$$\lambda(\mathcal{L}) = \min_{v \in \mathcal{L} \setminus \{0\}} ||v||$$

- Le problème du vecteur le plus court demande à trouver un tel v étant donné une base ${\it B}$

