Data Science for Business Lecture #3 Limitations of k-Means

Prof. Alan L. Montgomery

The University of Hong Kong & Carnegie Mellon University, Tepper School of Business email: alanmontgomery@cmu.edu

All Rights Reserved, © 2020 Alan Montgomery

Do not distribute, post, or reproduce without Alan Montgomery's Permission

Outline

Influence of Scaling Data on Clustering

Influence of Initial Starting Points

Limitations of k-Means in Detecting Patterns

Influence of Scaling Data on Clustering

Structuring the data for k-Means

The basic objective of k-Means is to identify a grouping of observations that allows us to reduce the amount of information that must be considered. For k-Means to be useful we really want it to be robust, so that different people should reach the same conclusion with the same data.

k-Means requires the analyst to make several choices:

- 1. What data is to be used?
- 2. What is the value of k?
- 3. Select an initial partitioning of the data from which the algorithm works

What is the effect of using "scaled" versus "unscaled" data for the k-Means analysis of the Ford Ka demographic data?

Compare the Scaled and Unscaled Ford Ka Demographic Data

Unscaled data (e.g., "Natural Units")

What is the difference in information between the two datasets?

> describe(ford[,qdlist])													
	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Age	1 2	50	36.36	9.11	36	36.13	10.38	20	58	38	0.18	-0.73	0.58
ChildrenCategory	2 2	50	0.62	0.82	0	0.53	0.00	0	2	2	0.78	-1.06	0.05
FirstTimePurchase	3 2	50	1.85	0.36	2	1.94	0.00	1	2	1	-1.97	1.89	0.02
Gender	4 2	50	1.48	0.50	1	1.48	0.00	1	2	1	0.08	-2.00	0.03
IncomeCategory	5 2	50	3.68	1.57	4	3.71	1.48	1	6	5	-0.08	-1.15	0.10
MaritalStatus	6 2	50	1.87	0.94	1	1.84	0.00	1	3	2	0.26	-1.81	0.06
NumberChildren	7 2	50	0.73	1.04	0	0.53	0.00	0	4	4	1.25	0.46	0.07

Scaled data (e.g., mean standardized to 0 and standard deviation to 1)

```
> describe(xford[,qdlist])
                       n mean sd median trimmed mad
                                                    min max range skew kurtosis
                            0 1 -0.04 -0.03 1.14 -1.80 2.38 4.17 0.18
                   1 250
                                                                           -0.73 0.06
Age
ChildrenCategory
                   2 250
                           0 1 -0.76 -0.11 0.00 -0.76 1.68 2.44 0.78
                                                                           -1.06 0.06
FirstTimePurchase
                   3 250
                            0 1 0.42
                                       0.25 0.00 -2.39 0.42 2.81 -1.97
                                                                           1.89 0.06
Gender
                   4 250
                            0 1 -0.96 -0.01 0.00 -0.96 1.04 2.00 0.08
                                                                           -2.00 0.06
                           0 1 0.20 0.02 0.94 -1.71 1.48 3.18 -0.08
IncomeCategory
                   5 250
                                                                           -1.15 0.06
                           0 1 -0.93 -0.03 0.00 -0.93 1.21 2.14 0.26
                                                                           -1.81 0.06
MaritalStatus
                   6 250
NumberChildren
                   7 250
                            0 1 -0.70 -0.19 0.00 -0.70 3.16 3.86 1.25
                                                                            0.46 0.06
```


Compare the correlation patterns

Unscaled data (e.g., "Natural Units")

> round(cor(ford[,qdlist	t]),2)					
	Age	ChildrenCategory	FirstTimePurchase	Gender	IncomeCategory	MaritalStatus	NumberChildren
Age	1.00	0.04	0.20	-0.03	0.12	0.07	0.08
ChildrenCategory	0.04	1.00	0.03	0.09	0.08	-0.10	0.96
FirstTimePurchase	0.20	0.03	1.00	-0.14	0.09	0.00	0.03
Gender	-0.03	0.09	-0.14	1.00	-0.03	-0.10	0.07
IncomeCategory	0.12	0.08	0.09	-0.03	1.00	-0.05	0.06
MaritalStatus	0.07	-0.10	0.00	-0.10	-0.05	1.00	-0.08
NumberChildren	0.08	0.96	0.03	0.07	0.06	-0.08	1.00

Scaled data (e.g., mean standardized to 0 and standard deviation to 1)

> round(cor(xford	[,qdlis	st]),2)					
	Age	ChildrenCategory	${\it First Time Purchase}$	Gender	IncomeCategory	MaritalStatus	NumberChildren
Age	1.00	0.04	0.20	-0.03	0.12	0.07	0.08
ChildrenCategory	0.04	1.00	0.03	0.09	0.08	-0.10	0.96
${\tt FirstTimePurchase}$	0.20	0.03	1.00	-0.14	0.09	0.00	0.03
Gender	-0.03	0.09	-0.14	1.00	-0.03	-0.10	0.07
IncomeCategory	0.12	0.08	0.09	-0.03	1.00	-0.05	0.06
MaritalStatus	0.07	-0.10	0.00	-0.10	-0.05	1.00	-0.08
NumberChildren	0.08	0.96	0.03	0.07	0.06	-0.08	1.00

Compare the k-Means solution (with 3 clusters)

Unscaled data (e.g., "Natural Units")

What interpretation would you give for each cluster solution?

> print(grpAcenter	r,digit	ts=2)	
	1	2	3
Age	44.74	24.66	32.83
ChildrenCategory	0.65	0.45	0.72
FirstTimePurchase	1.89	1.78	1.85
Gender	1.47	1.47	1.50
IncomeCategory	3.86	3.33	3.68
MaritalStatus	1.89	1.91	1.81
NumberChildren	0.82	0.47	0.79

Scaled data (e.g., mean standardized to 0 and standard deviation to 1)

<pre>> print(grpBcenter</pre>	,urgres		
	1	2	3
Age	0.071	-0.57	0.12
ChildrenCategory	-0.588	-0.28	1.37
${\tt FirstTimePurchase}$	0.416	-2.39	0.26
Gender	-0.252	0.31	0.38
IncomeCategory	-0.056	-0.24	0.23
MaritalStatus	0.079	0.04	-0.18
NumberChildren	-0.565	-0.32	1.34

Compare the k-Means solution (with 3 clusters)

Compare the cluster assignments from the Unscaled and Scaled data

What was the impact of standardization on the solution?

Summary

k-Means is attempting to find the groups of observations that explain as much of the variation as possible.

Scaling changes the variation of the data. If we standardize then all the variables have equal weights. Sometimes this is useful, when we really want all the variables to have about the same weight, but bad if there are some variables that we know are really important (say age and gender for ad buys or profits)

Lesson. The scale of the data matters. The variables you use and how you transform them can dramatically alter the solutions you find.

"Let the data speak" or "Let me speak to the data"

Influence of Initial Starting Points for k-Means

Robustness of k-Means

The basic objective of k-Means is to identify a grouping of observations that allows us to reduce the amount of information that must be considered. For k-Means to be useful we really want it to be robust, so that different people should reach the same conclusion with the same data.

Remember that k-Means requires the analyst to make several choices:

- 1. What data is to be used?
- 2. What is the value of k?
- 3. Select an initial partitioning of the data from which the algorithm works

Typically we focus on the first two questions, but let's consider the 3rd question of the initial point.

Compare k-Means with two different starting points

```
# first cluster solution
set.seed(1248765792)
grpA1=kmeans(xford[,qdlist],centers=3)
> print(grpA1center,digits=2)
Age
                  0.071 -0.57 0.12
ChildrenCategory -0.588 -0.28 1.37
FirstTimePurchase 0.416 -2.39 0.26
Gender
                 -0.252 0.31 0.38
IncomeCategory
                 -0.056 -0.24 0.23
MaritalStatus
                  0.079 0.04 -0.18
NumberChildren
                 -0.565 -0.32 1.34
```

```
# second cluster solution
set.seed(5682991)
grpA2=kmeans(xford[,qdlist],centers=3)
> print(grpA2center,digits=2)
                              2
                  -0.022 -0.4881 0.210
Age
ChildrenCategory
                  0.183 -0.0690 -0.189
FirstTimePurchase 0.416 -2.3945 0.416
Gender
                  0.049 0.3369 -0.184
IncomeCategory
                  0.110 -0.2264 -0.043
                 -0.867 -0.0076 1.020
MaritalStatus
NumberChildren
                  0.162 -0.0766 -0.161
```

What is the difference in cluster solutions?

Two different k-Means Clusterings

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Problem with Random Selection of Initial Centroids

If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.

- Chance is relatively small when K is large
- If clusters are the same size, n, then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- \circ For example, if K = 10, then probability = 10!/1010 = 0.00036
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example with an Alternative Initialization

Starting with some pairs of clusters having three initial centroids, while other have only one.

10 Clusters Example with an Alternative Initialization

Starting with some pairs of clusters having three initial centroids, while other have only one.

Illustration of k-Means using Packed Circles *Moral: Bad initializations can yield bad solutions*

Illustration of k-Means using Packed Circles *Moral: Bad initializations can yield bad solutions*

How to pick the initial centroids?

I'll Choose

Randomly

Farthest Point

Restart

Solutions to Initialization Problem

Multiple runs

Helps, but probability is not on your side

Sample and use hierarchical clustering to determine initial centroids

Select more than k initial centroids and then select among these initial centroids

Select most widely separated

Postprocessing

Bisecting k-Means

Not as susceptible to initialization issues

Limitations of k-Means in Detecting Patterns

Limitations of k-Means

k-Means has problems when clusters are of differing

- Sizes
- Densities
- Non-globular shapes

k-Means has problems when the data contains outliers.

Limitations of k-Means: Differing Sizes

Original Points

k-Means (3 Clusters)

Limitations of k-Means: Differing Density

Original Points

k-Means (3 Clusters)

Limitations of k-Means: Non-globular Shapes

Original Points

k-Means (2 Clusters)

Overcoming k-Means Limitations

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming k-Means Limitations

k-Means Clusters

Overcoming k-Means Limitations

Original Points

k-Means Clusters

Illustration of k-Means using a Smiley Face *Moral: Overcome limitations by increasing k*

Illustration of k-Means using a Smiley Face *Moral: Overcome limitations by increasing k*

How to pick the initial centroids?

I'll Choose

Randomly

Farthest Point

Restart

Discussion

Strengths:

Easy, explainable

Widely applicable

Easily updated, automatically adapts to changing data

Weaknesses:

Need entire dataset to classify new instance: difficult to search and to store

Heavy reliance on distance function or scaling of original data

What Cluster Analysis is Not...

Supervised classification

Have class label information

Simple segmentation

• Dividing students into different registration groups alphabetically, by last name

Results of a query

Groupings are a result of an external specification

Graph partitioning

 $\,^\circ$ Some mutual relevance and synergy, but areas are not identical

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Illustration of k-Means using Uniform Data Moral: k-Means finds a structure even if your data lacks one

Illustration of k-Means using Uniform Data Moral: k-Means finds a structure even if your data lacks one

How to pick the initial centroids?

I'll Choose

Randomly

Farthest Point

Restart

Clustering

The science part of cluster analysis is the algorithm, the art of applying cluster analysis applying the various methods to find a scheme that yields "good" clusters

Cluster Analysis reduces large datasets with millions of records to a small number of prototypical records

Clustering is unsupervised, since there is not "solution" the appropriateness is largely at the discretion of the analyst

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

