

ECE 414/517 Reinforcement Learning

LECTURE 6: BELLMAN OPTIMALITY EQUATIONS AND DYNAMIC PROGRAMMING SEP. 15 2022

(ADAPTED FROM SLIDES BY DR. ITAMAR AREL)

Bellman Optimality Equation

- 1. Since $V^*(s)$ is the value function for a policy, it must satisfy the Bellman Equation
- 2. When using the optimal policy we call the equation the **Bellman Optimality Equation**.
- 3. Intuitively, the Bellman Optimality Equation expresses the fact that the value of a state under an optimal policy must equal the expected return for the best action from that state:

$$V^{*}(s) = \max_{a} E[r_{t+1} + \gamma V^{*}(s_{t+1}) | S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V^{*}(s')]$$

$$Q^{*}(s,a) = E[r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1},a') | S_{t} = s, A_{t} = a]$$

$$= \sum_{s',r} p(s',r|s,a) [r + \gamma \max_{a'} Q^{*}(s',a')]$$

Bellman Optimality Equations Example

$$V^*(s) = \max_{a} E[r_{t+1} + \gamma V^*(s_{t+1}) | S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V^*(s')]$$

$$= \sum_{a} p(s',r|s,a)[r + \gamma V^*(s',r|s,a)]$$

3

Bellman Optimality Equations Example

$$Q^{*}(s, a) = E[r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1}, a') | S_{t} = s, A_{t} = a]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} Q^{*}(s', a') \right]$$

h: high

I: low

s: search

w: wait

re: recharge

Solving the Bellman Optimality Equation

- 1. Finding an optimal policy by solving the Bellman Optimality Equation (for example with dynamic programming) requires the following:
 - Accurate knowledge of the environment dynamics (environment model)
 - Enough space and time to do the computation
 - The Markov property
- 2. How much space and time do we need:
 - Polynomial in the number of states (will discuss in next chapter)
 - However, number of states can be extremely large (e.g. backgammon has about 10^{20} states)
- 3. We usually have to settle for approximations
- 4. Many RL methods can be understood as approximately solving the Bellman Optimality Equation.
 - Advantages of approximation?
 - learn more effectively
 - feature extraction can reduce noise
 - · can address large scale problems

Solving the Bellman Optimality Equation

- 1. During the next few weeks we'll talk about techniques for solving the RL problem:
 - Dynamic Programming well developed mathematically, solves the Bellman equations, but requires an accurate model of the environment.
 - Monte Carlo Methods Do not require an exact model, but work only on episodic tasks since returns only calculated at the end.
 - Temporal Difference Learning Do not require an exact model and can work on non episodic tasks.
 - More complex to analyze
 - Launched the revisiting of RL as a pragmatic framework (1988)
- 2. All methods differ in efficiency and speed of convergence to the optimal solution.

Review

$$V^*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma V^*(s')]$$

- 1. Multi Armed Bandits ($\gamma = 0.9$)

 - States? | State

 Actions? Pull lever- 4 actions

 [0,1,2,3]

 - Rewards?

Bernoulli

1.4

3.6

0.1

2.7

what should
$$V^{\phi}$$
 be?

$$V^{\phi}(s) = 3.6 + 0.4 \cdot 3.6 + 0.9^{3} \cdot 3.6 + ...$$

$$= \frac{3.6}{1-0.9} = 3.6$$

$$V^{\phi}(s) = \frac{3.6}{1.4 + (0.9) \cdot V^{\phi}(s)}$$

$$Tr^{*}(5) = \begin{cases} a & 0 \\ b & 1 \\ c & 3 \end{cases}$$

$$V^{*}(5) = 36$$
 $TT^{*}(5) = \frac{a_{11}}{b_{12}} a_{13}$
 36
 $TT^{*}(5) = \frac{a_{11}}{b_{12}} a_{13}$

$$V^{\psi}(s) = \frac{3.6}{1-0.9} = 36$$

$$V^{\psi}(s) = \frac{3.6}{0.00} = \frac{1.4 + (0.9) \cdot V^{\phi}(s)}{3.6 + (0.9) \cdot V^{\phi}(s)}$$

$$= \frac{3.6}{1-0.9} = \frac{1.4 + (0.9) \cdot V^{\phi}(s)}{3.6 + (0.9) \cdot V^{\phi}(s)}$$

$$= \frac{3.6}{1-0.9} = \frac{3.6}{1.9} = \frac{3.6}{1.9}$$

Summary

- Agent environment interaction
 - states
 - actions
 - rewards
- 2. Policy: $\pi(a|s)$
 - probability of selecting action in state
- 3. Return: (weighted) sum of future rewards
 - episodic vs. continuing tasks
- 4. Markov property
- Markov Decision Process:
 - Transition probability
 - Expected reward

- Value Functions
 - State value function for a policy
 - Action value function for a policy
- 7. Bellman Equations
- 3. Optimal value functions
- 9. Optimal Policies
- **10**. The need for approximation

Dynamic Programming

Dynamic programming is the collection of algorithms that can be used to compute optimal policies give a perfect model of the environment.

- 1. DP constitutes a theoretically optimal methodology
- 2. In reality it is often limited since DP is computationally expensive.
- 3. As related to other methods:
 - Hope to do "just as well" as DP
 - Hopefully can do it with less computation
 - Hopefully can do it with less memory
 - Hopefully without model
- 4. Key Idea (In general): Use value function to derive optimal policy
- 5. Need to find a way to calculate optimal state value function

Policy Iteration

- Technique for obtaining the optimal policy
- 2. Comprises of two complementing steps:
 - Policy Evaluation: updating the value function in view of current policy
 - Policy Improvement: updating the policy given the current value function (which can be suboptimal)

$$\pi_0 \xrightarrow{E} V_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \dots \xrightarrow{I} \pi_* \xrightarrow{E} V_{\pi_*}$$

- 3. The process converges by bouncing between these two steps
 - Finding a greedy policy for V_{π_i} makes the state value function incorrect
 - Finding a value function for a given policy makes the policy not greedy anymore
 - Yet together they drive each other to the optimal solution: π_* , V_{π_*}

Calculating Value Function

We will simply convert the Bellman Equations into update rules for improving our approximation:

```
Jacobi Method

+= ay+b=

+= c++d=

z=c++fy
```

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V^{\pi}(s')]$$

$$V^{\pi}_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V^{\pi}_{k}(s')]$$

Iterative Policy Evaluation

- 1. Choose an arbitrary V_0 (except terminal states)
- 2. Perform a series of sweeps where at each step you use the Bellman Equation:

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_{k}^{\pi}(s')]$$

3. Sweeps:

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_k \rightarrow V_{k+1} \rightarrow \cdots \rightarrow V^{\pi}$$

- 4. Can be proven to converge to V^{π} as $k \to \infty$
- 5. In each iteration all states are updated
 - scheme can be computationally heavy

 $V_{1}^{40}(0,0) = \frac{1}{4}(-1+0.4-0) + \frac{1}{4}(-1+0.4-0)$ $+ \frac{1}{4}(0+0.4-0) + \frac{1}{4}(0+0.4-0)$ $V_{1}^{40}(0,1) = 10+0.4+0.5 + \frac{1}{4}(-1+0.4-0.5)$ $\frac{\sqrt{2}}{\sqrt{2}}(0,0) = \frac{1}{4}(-1+0.4-0.5) + \frac{1}{4}(-1+0.4-0.5)$ $\frac{1}{4}(0+0.4-10) + \frac{1}{4}(0+0.4-0.5)$

Example: Grid World

$$\pi(s) = \{0.25, 0.25, 0.25, 0.25\} \ \forall s \in S$$
$$\gamma = 0.9$$

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_{k}^{\pi}(s')]$$

3.31	8.79	4.43	5.32	1.49
1.52	2.99	2.25	1.91	0.55
0.05	0.74	0.67	0.36	-0.40
	-0.44			
	-1.34			

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

)		-0.50	10.0	-0.25	5.00	-0.5	
)		-0.25	0.00	0.00	0.00	-0.25	
)		-0.25	0.00	0.00	0.00	-0.25	
)		-0.25	0.00	0.00	0.00	-0.25	
)				-0.25			
	'						٠.

1.47	9.78	3.07	5.00	0.34	2.25	9.57	3.75	4.95	0.67
-0.48	2.19	-0.06	1.07	-0.48	0.37	2.07	1.42	0.99	-0.13
				-0.42					
-0.48	-0.11	-0.06	-0.11	-0.48	-0.66	-0.24	-0.14	-0.24	-0.66
				-0.84					

 V_0

 V_1

 V_2

 V_3

Iterative Policy Evaluation

- 1. Choose an arbitrary V_0
- 2. Perform a series of sweeps where at each step you use the Bellman Equation:

$$V_{k+1}^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_{k}^{\pi}(s')]$$

3. Sweeps:

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_k \rightarrow V_{k+1} \rightarrow \cdots \rightarrow V^{\pi}$$

- 4. Can be proven to converge to V^{π} as $k \to \infty$
- 5. In each iteration all states are updated
 - scheme can be computationally heavy
- 6. When to stop?
 - Since we cannot do infinite iterations, do until largest update is smaller then some threshold $\max_{s \in S} |V_{k+1}(s) V_k(s)|$

In place schemes

- 1. Update all values in single array, instead of in new one
- 2. Usually converges quicker since it using newer values earlier
- 3. Can depend on the order in which the update happens.

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

10.0	-0.25	5.00	-0.5
0.00	0.00	0.00	-0.25
0.00	0.00	0.00	-0.25
0.00	0.00	0.00	-0.25
-0.25	-0.25	-0.25	-0.5
	0.00	0.00 0.00 0.00 0.00 0.00 0.00	10.0 -0.25 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 -0.25 -0.25

1.47	9.78	3.07	5.00	0.34
-0.48	2.19	-0.06	1.07	-0.48
				-0.42
				-0.48
-0.84	-0.48	-0.42	-0.48	-0.84

2.25	9.57	3.75	4.95	0.67
0.37	2.07	1.42	0.99	-0.13
-0.57	0.37	-0.05	0.12	-0.57
		-0.14		
-1.09	-0.66	-0.57	-0.66	-1.09

17

Out Place Converges in 112

V_0									
0	0	0	0	0					
0	0	0	0	0					
0	0	0	0	0					
0	0	0	0	0					
0	0	0	0	0					

V_1									
-0.50	10.0	2.00	5.00	0.63					
-0.36	2.17	0.94	1.34	0.19					
-0.33	0.41	0.30	0.37	-0.12					
-0.32	0.02	0.07	0.10	-0.26					
-0.57	-0.37	-0.32	-0.30	-0.62					

		V_2		
1.44	9.66	3.71	5.33	1.02
0.41	2.57	1.78	1.73	0.38
				-0.13
				-0.47
-0.95	-0.63	-0.51	-0.5/	-1.02

	v_3							
2.42	9.43	4.31	5.47	1.28				
0.92	2.86	2.15	1.92	0.53				
-0.07	0.76	0.79	0.58	-0.14				
-0.60	-0.09	0.05	-0.09	-0.64				
-1.21	-0.80	-0.66	-0.78	-1.28				

In Place Converges in 81

Policy Improvement

- 1. Policy evaluation deals with finding the value function under a given policy
- 2. However, how do we find the optimal policy? (and therefore the optimal value function)
 - Policy Improvement
- 3. Suppose that for some arbitrary policy π we've computed the value function (using policy evaluation)
- 4. Let policy π' be a deterministic policy defined such that in each state s it selects action α that maximizes the first-step value, i.e.:

$$\pi'(s) = \arg\max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma V^{\pi}(s')]$$

- Note the difference between $\pi(s, a)$ and $\pi(s)$
- 5. It can be shown that π' is at least as good as π , and if they are equal they are both the optimal policy.

Policy Improvement

- 1. What is the value if we first choose action α which is not necessarily $\pi(s)$?
 - The value of behaving this way:

$$Q^{\pi}(s,a) = \sum_{s',r} p(s',r|s,a)[r + \alpha V^{\pi}(s')]$$

- 2. If this is higher than $V^{\pi}(s)$, then it should be better to select action a and then follow π
- 3. Shouldn't that mean that it is always better to select action a at s?
 - Should we change the policy?
- 4. Yes Policy improvement theorem.
 - Given two deterministic policies π and π' :

if:

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \quad \forall \ s \in S$$

Then:
 $V^{\pi'}(s) \ge V^{\pi}(s)$

Policy Improvement

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = \pi'(s)]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) \mid S_{t+1}] \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(S_{t+2}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3}) \mid S_{t} = s]$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots \mid S_{t} = s]$$

$$= v_{\pi'}(s).$$

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2