k-mean

23 ноября 2019 г.

- 1 Peaлизация k-means с помощью numpy+matplotlib. Некоторые исследования алгоритма и его модификации.
- 1.1 Глава 1, в которой появляется реализация k-means.

```
[2]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.datasets import make_blobs
     %matplotlib inline
     #определим значение seed для воспроизводимости результатов
     seed = 1984
     #создадим датасет и выберем число кластеров
     data, true_labels = make_blobs(n_samples=150, n_features=2,
                              centers=3, random_state=seed)
     k = 3
     #нарисуем датасет
     fig = plt.figure(figsize=(5, 5))
     plt.scatter(data[:,0], data[:,1], color='k')
     plt.show()
     #определим цвета для кластеров
     colors = {1: 'r', 2: 'g', 3: 'b'}
```


Словесное описание алгоритма по шагам:

- 1. Инициализация выберем как-то(случайно или по определенному алгоритму) к центроидов.
- 2. Распределение для каждой точки из набора определим кластер, в зависимости от того, к какому центроиду она ближе.
- 3. Пересчёт пересчитаем центроиды для каждого кластера.
- 4. Повторяем шаги 2,3 пока решение не сойдется.
- 5. На выходе имеем набор из к центроидов и набор точек, распределенных по к кластерам.

```
[3]: #определим центроиды, выбрав их случайно из точек выборки
пр.random.seed(seed)
def init(k):
    centroids = data[np.random.choice(data.shape[0], size=k),:]
    return centroids

centroids = init(k)

#нарисуем выбранные центроиды
fig = plt.figure(figsize=(5, 5))
plt.scatter(data[:,0], data[:,1], color='k', alpha=0.5)
for i in range(k):
```

```
plt.scatter(*centroids[i], color=colors[i+1])
plt.show()
```


Видно, что центроиды выбраны не очень оптимально и первичное распределение слишком неправдоподобно. Но перейдем к следующему этапу алгоритма с надеждой, что итоговый результат будет лучше.

```
[5]: #peanusyem функцию nepecчёта центроидов

def update(centroids):
    for i,centr in enumerate(centroids):
        centr[0] = np.mean(data[labels == i][:, 0])
        centr[1] = np.mean(data[labels == i][:, 1])
    return centroids
```

Соберём весь процесс воедино и будем выполнять его до сходимости.

```
[6]: while True:
    old_centroids = centroids.copy()
    centroids = update(centroids)
    labels = assignment(data, centroids)
    if np.all(np.equal(old_centroids, centroids)):
        break

#нарисуем имоговое распределение мочек по класмерам
fig = plt.figure(figsize=(5, 5))
```


После сходимости распределение выглядит действительно правдоподобно, за исключением, возможно, некоторых точек на границе. Сравним полученный результат с результатом алгоритма, встроенного в библотеку sklearn:

plt.scatter(*centr, color=colors[i+1])
plt.show()

Результаты совпадают (с точностью до цвета кластеров), что говорит о том, что алгоритм реализован правильно.

Промежуточные выводы о свойствах и проблемах k-means

- 1. k-means очень чувствителен к выбору начальных центров кластеров.
- 2. Оптимальное число кластеров необходимо выбирать самостоятельно.
- 3. Не гарантируется достижение глобального экстремума, алгоритм может "застрять" в какой-то локальной оптимальной точке (например по причине неудачного выбора начальных центроидов).

1.2 Глава 2, в которой анализируется скорость алгоритма k-means:

Будем использовать готовую реализацию k-means в библиотеке sklearn с целью протестировать её на входных данных разного размера и сложности. Для оценки скорости сходимости будем измерять число итераций. Также будем измерять непосредственно время выполнения алгоритма, чтобы оценить насколько k-means "тормозит" на больших выборках. С точки зрения теории: алгоритмическая сложность каждой итерации алгоритма составляет O(nmk), где п - количество объектов, m - количество признаков, k - число кластеров. При этом число итераций почти всегда больше одной, таким образом на больших выборках ожидается сильное

замедление алгоритма. Перейдём непосредственно к тестам:

```
[9]: ## Зависимость от числа кластеров
     #импортируем библиотеку для измерения времени выполнения
     import timeit
     # протестируем на числе кластеров из отрезка [1,100]
     n_clusters = np.arange(1, 101)
     n_{samples} = 1500
     seed = 2019
     timers = \Pi
     iters = []
     for k in n_clusters:
         data, true_labels = make_blobs(n_samples=n_samples, n_features=2,
                              centers=k, random_state=seed)
         kmeans = KMeans(n_clusters=k, init='random', random_state=seed)
         start_time = timeit.default_timer()
         kmeans.fit(data)
         labels = kmeans.predict(data)
         timers.append(int((timeit.default_timer() - start_time) * 1000))
         iters.append(kmeans.n_iter_)
     #нарисуем получившуюся зависимость
     fig = plt.figure(figsize=(13, 9))
     plt.subplots_adjust(hspace=0.3)
     ax1 = plt.subplot(211)
     ax2 = plt.subplot(212)
     ax1.set_title("Зависимость времени выполнения от числа кластеров")
     ax1.set_xlabel("n_clusters")
     ax1.set_ylabel("time(mc)")
     ax1.grid()
     ax1.plot(n_clusters, timers, color='orangered')
     ax2.set_title("Зависимость скорости сходимости от числа кластеров")
     ax2.set_xlabel("n_clusters")
     ax2.set_ylabel("iters")
     ax2.grid()
     ax2.plot(n_clusters, iters, color='dodgerblue')
     plt.show()
```


Из графиков видно, что с увеличением числа кластеров время выполнения увеличивается линейно. В то время как число итераций (скорость сходимости) практически не меняется. Можно сделать вывод, что от числа кластеров скорость сходимости не зависит. Теперь исследуем зависимость скорости выполнения/скорости сходимости от размера выборки.

```
labels = kmeans.predict(data)
    timers.append(int((timeit.default_timer() - start_time) * 1000))
    iters.append(kmeans.n_iter_)
#нарисуем получившуюся зависимость
fig = plt.figure(figsize=(13, 9))
plt.subplots_adjust(hspace=0.3)
ax1 = plt.subplot(211)
ax2 = plt.subplot(212)
ax1.set_title("Зависимость времени выполнения от размеров выборки")
ax1.set_xlabel("n_samples")
ax1.set_ylabel("time(mc)")
ax1.grid()
ax1.plot(n_samples, timers, color='orangered')
ax2.set_title("Зависимость скорости сходимости от размеров выборки")
ax2.set_xlabel("n_samples")
ax2.set_ylabel("iters")
ax2.grid()
ax2.plot(n_samples, iters, color='dodgerblue')
plt.show()
```


Можно заметить, что и в этом случае число итераций (скорость сходимости) слабо зависит от размера выборки. В то время как время выполнения увеличивается так же линейно. Таким образом, и от размера выборки скорость сходимости не зависит.

Подведём краткие итоги:

- 1. Наблюдаемая скорость выполнения и её зависимость от числа кластеров/размера датасета совпадает с ожидаемой теоретической оценкой.
- 2. Скорость сходимости же, не зависит ни от числа кластеров, ни от размера датасета.
- 3. Алгоритм сходится довольно быстро: максимальное число итераций, которое потребовалось для сходимости 50

Смотря на графики, кажется что сходимость алгоритма зависит в большей степени от состава выборки: как именно объекты расположены относительно друг друга. Подтвердим или опровергнем эту гипотезу в следующей главе, исследуя k-means на выборках, разных по составу и внутреннему устройству.

1.3 Глава 3, в которой говорится о задачах, для которых подходит k-means, и о задачах, где его лучше не использовать.

Для начала, так как мы используем понятие расстояния в алгоритме, то это значит, что на множестве признаков должна быть задана какая то адекватная метрика. Поэтому, в случае если признаки (или их большая часть) категориальные, то k-means явно не лучший выбор. Алгоритм хорошо работает, когда объекты чётко разделимы: образуют компактные сгустки, растояния между которыми велико. В обратном случае алгоритм k-means зачастую дает неправдоподобное разделение на кластеры, как например если один кластер вложен в другой или кластеры имеют форму линий. Это происходит из-за того, что минимизируя расстояние от точек до центроида кластера, мы неявно делаем предположение, что кластеры имеют форму "шара". Также k-means не подходит для случая, когда один из соседних кластеров намного больше другого. Перейдем к примерам, подтверждающим сформулированные выше идеи:

```
blobs = datasets.make_blobs(n_samples=n_samples, random_state=seed)
# полностью заполненный квадрат
full = np.random.rand(n_samples, 2),None
# 2 кластера разных размеров
two_spheres = datasets.make_blobs(n_samples=[2700, 300],
                          centers=[(0.0,0.0),(2.5,0.0)],
                          cluster_std=[0.7, .3],random_state=seed)
# кучки-линии
X, y = datasets.make_blobs(n_samples=n_samples, random_state=seed)
transform = [[0.6, -0.6], [-0.4, 0.8]]
X_linear = np.dot(X, transform)
linear = (X_linear, y)
# кучки разной степени "скученности"
varied = datasets.make_blobs(n_samples=n_samples,
                               cluster_std=[1.0, 2.5, 0.5],
                               random_state=seed)
datasets = [circles, moons, two_spheres, blobs, full, linear, varied]
n_{clusters} = [2, 2, 2, 3, 3, 3, 3]
# зафиксируем цвета кластеров и подготовим графики
colors = {1: 'dodgerblue', 2: 'orangered', 3: 'lime'}
fig = plt.figure(figsize=(15,8))
plt.subplots_adjust(hspace=0.3)
axes = [fig.add_subplot(x) for x in range(331, 338)]
# применим Ктеапз к каждому датасету и нарисуем результат
for i,tmp in enumerate(datasets):
   X, y = tmp
    kmeans = KMeans(n_clusters=n_clusters.pop(0), init='random', ___
 →random_state=seed)
   kmeans.fit(X)
    labels = kmeans.predict(X)
    axe = axes.pop(0)
    axe.set_title(f''(\{i+1\})'')
    axe.scatter(X[:, 0], X[:, 1], s=10, color=[colors[x + 1] for x in labels])
    # будем выводить также число итераций для каждого датасета
    print(f"{i+1}: {kmeans.n_iter_} итераций")
plt.show()
```

1: 20 итераций 2: 7 итераций 3: 27 итераций 4: 4 итераций 5: 6 итераций 6: 12 итераций 7: 7 итераций

Видно, что на выборках вида (1), (2), (6), где кластеры "не-шары", алгоритм k-means работает недопустимо плохо. В то же время на (4), (7), где кластеры "шары", алгоритм работает намного лучше (результаты хотя бы отчасти правдоподобны). При этом лучшая кластеризация достигается на выборке (4), как и ожидалось. Из результата на выборке (5) становится понятна ещё одна особенность k-means - кластеры получаются сбалансированными по числу объектов. Проблема двух кластеров разного размера отражена на выборке (3) - видно, что меньший кластер "отщепляет" часть данных от кластера-соседа большего размера.

Заметим также, что гипотеза, сформулированная в конце предыдущей главы, подтверждается. Число кластеров, число объектов, число признаков у датасетов совпадает. Однако, число итераций на некоторых выборках намного больше, чем на других. Таким образом, скорость сходимости в большей степени определяется именно внутренним устройством выборки, а не её размером или числом кластеров.

Суммируя все наблюдения: k-means хорош, когда: 1. Кластеры - "шары". 2. Кластеры чётко разделимы (расстояния между центрами велико). 3. Кластеры имеют приблизительно одинаковое число объектов.

k-means плох, когда: 1. Кластеры - "не-шары". 2. Кластеры смешаны (расстояние между центрами мало/сравнимо с расстоянием между объектами одного кластера). 3. Кластеры не сбалансированы по числу объектов: один явно больше других.

Таким образом, для успешного применения алгоритма требуется дополнительная информация о выборке и предварительная обработка данных, что сокращает спектр задач, в которых применим k-means, и делает этот алгоритм менее универсальным. В этом случае единственным существенным "плюсом" алгоритма остается его простота.

1.4 Глава 4, в которой исследуется стратегия выбора начального приближения.

Как было сказано в конце главы 1, k-means сильно чувствителен к выбору начальных центров кластеров. Попробуем показать это, а также рассмотреть методы устранения этого недостатка. Рассмотрим следующий пример:

```
[276]: #пример результата с разными начальными приближениями
       seed = 5
       #создадим датасет и выберем число кластеров
       X, y = make_blobs(n_samples=150, n_features=2,
                                centers=3, random_state=seed)
       k = 3
       # используем Ктеапs на данных с аргументами init='random', n\_init=1
       kmeans1 = KMeans(n_clusters=k, init='random', n_init=1, random_state=seed)
       kmeans1.fit(X)
       labels1 = kmeans1.predict(X)
       # применим Kmeans ещё раз, но с другим значением random_state
       seed += 1
       kmeans2 = KMeans(n_clusters=k, init='random', n_init=1, random_state=seed)
       kmeans2.fit(X)
       labels2 = kmeans2.predict(X)
       # отобразим результаты и сравним
       fig = plt.figure(figsize=(7, 7))
       ax1 = fig.add_subplot(211)
       ax2 = fig.add_subplot(212)
       ax1.scatter(X[:,0], X[:,1], color=[colors[c+1] for c in labels1],
                   alpha=0.5, edgecolor='k')
       ax2.scatter(X[:,0], X[:,1], color=[colors[c+1] for c in labels2],
                   alpha=0.5, edgecolor='k')
       plt.show()
```


Легко видеть, что результаты отличаются, при том существенно. В первом случае ещё можно говорить о правдоподобном разделении на кластеры, но второй результат очевидно ошибочен. Именно в этом и заключается проблема выбора начального приближения для алгоритма k-means. Решение приходит простое: запускать алгоритм несколько раз, используя разные случайные начальные значения, а потом брать лучший результат среди всех запусков. Именно так и работает Кmeans в библиотеке sklearn (за это отвечает параметр n_init, который мы установили равным 1). Проверим на прошлом примере, что многократный запуск действительно решает проблему начального приближения:

```
[278]: #пример сходимости за счёт многократного числа инициализаций

# используем Ктеапs с аргументами init='random', n_init=10

seed = 5

new_kmeans1 = KMeans(n_clusters=k, init='random', n_init=10, random_state=seed)
```

```
new_kmeans1.fit(X)
labels1 = new_kmeans1.predict(X)
# применим Kmeans ещё раз, но с другим значением random_state
seed += 1
new_kmeans2 = KMeans(n_clusters=k, init='random', n_init=10, random_state=seed)
new_kmeans2.fit(X)
labels2 = new_kmeans2.predict(X)
# нарисуем результаты и сравним
fig = plt.figure(figsize=(7, 7))
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.scatter(X[:,0], X[:,1], color=[colors[c+1] for c in labels1],
            alpha=0.5, edgecolor='k')
ax2.scatter(X[:,0], X[:,1], color=[colors[c+1] for c in labels2],
            alpha=0.5, edgecolor='k')
plt.show()
```


Видно, что результаты совпадают с точностью до цвета. Таким образом, многократная инициализация случайными значениями с последующим отбором лучшего результата, в Kmeans для этого используется значение инерции (аттрибут inertia_), действительно является простой и эффективной стратегией выбора начального приближения. Кроме этого способа существуют и другие, основанные на эвристике, например метод, реализованный в k-means++.

[6]: # Для использования
$$k$$
-means++ метода необходимо просто запустить k -means c_{\sqcup} \rightarrow параметром $init='k$ -means++'

1.5 Глава 5, в которой исследуется выбор оптимального числа кластеров.

Чтобы говорить об оптимальности или неоптимальности чего-либо, сначала необходимо определить, как именно эта "оптимальность" будет измеряться. В случае k-means логично в качестве метрики качества кластеризации использовать инерцию - сумму квадратов расстояний от

точек до центроидов кластеров, к которым они относятся. Логично, потому что Kmeans, реализованный в sklearn, считает эту инерцию и позволяет нам работать с ней. Ещё одна причина в пользу использования инерции - минимизация инерции это ровно то, что мы хотим: точки кластера находятся близко к центроиду. Однако, понятно что минимум инерции достигается в случае, когда число кластеров равно числу объектов (каждый в своём кластере), а это явно не оптимальный выбор. Поэтому, будем искать такое число кластеров, начиная с которого инерция почти не изменяется - "точку перелома".

```
[68]: ## Рассмотрим пример
      # выберем seed и зафиксируем истинное число кластеров
      seed_1 = 42
      true_k = 4
      #создадим датасет Х
      X, y = make_blobs(n_samples=100, n_features=2,
                               centers=true_k, random_state=seed_1)
      # вычислим инерцию для каждого числа кластеров
      inertias = []
      for k in range(1, X.shape[0]):
          clr = KMeans(n_clusters=k, init='random', random_state=seed_1).fit(X)
          inertias.append(np.sqrt(clr.inertia_))
      plt.title("Распределение точек")
      plt.scatter(X[:,0],X[:,1], color='b', alpha=0.8)
      plt.show()
      plt.title("Зависимость инерции от числа кластеров")
      plt.plot(range(1, 10), inertias[:9], marker='s');
      plt.xlabel('k')
      plt.ylabel('J(Ck)')
      plt.show()
```


На графике выше видно, что при ${\bf k}<4$ значение инерции резко убывает, а при ${\bf k}>4$ значение

инерции почти не меняется. Таким образом имеем в точке k=4 искомый "перелом". Заметим, что при этом оптимальное значение кластеров для выборки действительно равно 4: по построению и как видно из графика распределения точек.

1.6 Глава 6, в которой исследуется эвристика для визуализации матрицы попарных расстояний

Матрица попарных расстояний - матрица размером (n,n), где n - число объектов в выборке, при этом элемент с индексами (i,j) равен евклидову расстоянию между объектами с номерами i и j. Очевидно, что матрица симметрична, её элементы неотрицательны и равны нулю на главной диагонали и только на ней. Рассмотрим пример, на котором покажем, как кластеризация влияет на матрицу попарных расстояний.

```
[246]: # создадим датасет
      seed = 1984
      k = 5
      X, y = make_blobs(n_samples=300, n_features=2,
                                centers=k, random_state=seed)
       # применим Ктеапѕ на данном наборе данных
      kmeans = KMeans(n_clusters=k, init='random', random_state=seed)
      kmeans.fit(X)
      labels = kmeans.predict(X)
      centroids = kmeans.cluster_centers_
       # нарисуем получившийся результат
      colors = {1: "r", 2: "g", 3: "b", 4: "y", 5: "k"}
      fig = plt.figure(figsize=(5, 5))
      plt.scatter(X[:,0], X[:,1], color=[colors[c+1] for c in labels],
                   alpha=0.5, edgecolor='k')
      plt.show()
```



```
[247]: # нарисуем матрицу попарных расстояний
from scipy.spatial.distance import cdist, pdist, squareform, euclidean

# до кластеризации
matrix = cdist(X, X)
plt.matshow(matrix, fignum=0)

# после кластеризации
order = [x[0] for x in sorted(enumerate(labels), key=lambda x: x[1])]
X_sort = X[order]
matrix_sort = cdist(X_sort, X_sort)
plt.matshow(matrix_sort)

plt.show()
```


Видно, что до кластеризации матрица неупорядочена и хаотична. После кластеризации виден некоторый шум, однако данные приобретают упорядоченность. На главной диагонале видны темные квадратные области - кластеры. Но применим некоторые дополнительные преобразования, которые возможно приведут к большей упорядоченности. В предположении, что число

кластеров много меньше числа объектов, построим матрицу попарных расстояний для них. Расстоянием между кластерами будем считать евклидово расстояние между центроидами этих кластеров. Начиная с произвольного кластера, обойдем все, каждый раз переходя в кластер, расстояние до которого минимально. Будем перебирать все кластеры, в качестве первоначального, и считать суммарное "пройденное" расстояние. Выберем путь обхода, соответствующий максимальному "пройденному" расстоянию, так как хотим, чтобы центры кластеров были далеко друг от друга. Внутри каждого кластера упорядочим точки в порядке возрастания расстояния от центра масс центроидов кластеров. Получим следующий резельтат:

```
[248]: # после дополнительных преобразований
      centr_matrix = squareform(pdist(centroids))
      centr = [np.mean(centroids[:, 0]),
                np.mean(centroids[:, 1])]
      scores = [0]*len(centroids)
      for i in range(len(centroids)):
           X[labels == i] = sorted(X[labels == i], key=lambda x: np.linalg.norm(x -___
        →centr))
           centr_order = [i,]
           score = 0
           tmp = i
           tmp_matrix = centr_matrix.copy()
           for _ in range(tmp_matrix.shape[0]-1):
               tmp_matrix[:, tmp] = np.inf
               j = np.argmin(tmp_matrix[tmp,:])
               score += tmp_matrix[tmp, j]
               tmp_matrix[tmp, :] = np.inf
               centr_order.append(j)
               tmp = j
           scores[i] = (score, centr_order)
      centr_order = max(scores, key=lambda x: x[0])[1]
      order = [x[0] for x in sorted(enumerate(labels),
                                            key=lambda x: centr_order.index(x[1]))]
      X_sort = X[order]
      matrix_sort = cdist(X_sort, X_sort)
      plt.matshow(matrix_sort)
      plt.show()
```


Видно, что теперь матрица попарных расстояний выглядит действительно упорядоченно, кроме того: деление на кластеры по прежнему остается. Также из матрицы можно извлечь дополнительную информацию: последние три кластера возможно стоило бы объединить в один большой, так как они достаточно близки друг к другу и при этом удалены от оставшихся двух кластеров. Таким образом, можно считать, что предложенный алгоритм действительно улучшает визуализацию матрицы попарных расстояний.

1.7 Глава 7, вместо заключения.

Такой себе отчёт получился, если честно.

[]: