Computing surface integrals

- 1. Computing surface integrals.
- 2. Computing flux.

Computing line integrals

Handling functions

- 1. Writing function files in Matlab
- 2. Using recursive function (if time permits)

Exercise

Computing surface integrals

1. Find the surface integral of $f(x, y, z) = x - z + \sin(x)$ on the surface

$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, -1/2 \le z \le 1/2\}$$

2. Find the flux of $\mathbf{F}(x, y, z) = (xy, e^y, x^2 + y)$ over the surface

$$S = \{(x, y, z) \mid z = x^2 - y^2, (x, y) \in [-1, 1] \times [-1, 1]\}$$

to the upward direction.

Computing line integrals

- 1. Find the line integral of $F(x,y) = (x^2, \cos x \sin y)$ along the unit circle $C = \{(x,y) \mid x^2 + y^2 = 1\}$ counter-clockwise direction.
- 2. Find the line integral of $F(x,y,z) = (xy,e^{x+z},y^2+\cos z)$ along the intersection of the cylinder $L = \{x^2 + y^2 = 1\}$ and the surface $S = \{z = x^2 y^2\}$, with counter-clockwise direction (with respect to *z*-axis).

Writing functions

- 1. Write a function sort_vert which sorts the vertices of a convex domain counter-clockwise.
 - The inputs are the coordinates of *n* vertices, represented by $n \times 2$ matrix.
- 2. Write a function area_conv which computes the area of a convex domain.
 - The inputs are the coordinates of n vertices, represented by $n \times 2$ matrix, which are already sorted (counter-)clockwise.