Math-42 Worksheet #21

Binomial Coefficients and Identities

- 1. Expand: $(x + y)^6$
- 2. Expand: $(2x + 3y)^4$
- 3. Expand: $(x^2 2y)^3$
- 4. What is the x^4y^6 coefficient of $(x+y)^{10}$.
- 5. What is the x^6y^4 coefficient of $(x+y)^{10}$.
- 6. What is the x^4y^6 coefficient of $(x-2y)^{10}$.
- 7. We know that $2^n = \sum_{k=1}^n \binom{n}{k}$. Construct similar expressions for 3^n and 4^n . Can you generalize this for m^n ?
- 8. Prove Pascal's Identity analytically (i.e., by manipulating the factorials).
- 9. Construct a clear committee selection argument for Pascal's Identity.

10. For this last exercise we will prove the binomial theorem using induction:

$$(x+y)^n = \sum_{k=1}^n \binom{n}{k} x^{n-k} y^k$$

- (a) Start with the base case for n = 0.
- (b) Write the inductive hypothesis.
- (c) Rewrite $(x+y)^{n+1}$, apply the inductive hypothesis, and then distribute.
- (d) Bring the extra x and y into their respective sums (since they are not dependent on the index).
- (e) Move the index on the sum with the extra y from 0 to 1.
- (f) Pull out the k=0 term from the sum with the extra x.
- (g) Combine the two sums.
- (h) Apply Pascal's Identity.
- (i) Fold the k = 0 term back into the sum.