CENG471 – CRYPTOGRAPHY Midterm-2 – 2019 FALL Term – Dec. 17, 2019

Student No & Name:	
Q.1 (25 points)	
a) (15 points) We do not confuse confidentiality with authentical words with correct meanings in the following story:	ation terms and concepts. Please use these
"Whether or not a person is allowed access to something is part	of the and authorization
processes. An analogy: You are throwing a party. Because your	house got trashed the last time, you want
to ensure that only people who are invited attend. That is	, because you decided up front
who would be invited. When the people come, they have to pre	esent an invitation to the doorman. That is
, because each guest had to show proof that	they are who they claim to be. In general,
is planned in advance while	happens as a user attempts to access a
system.	

Answer:

"Whether or not a person is allowed access to something is part of the <u>authentication</u> and authorization processes. An analogy: You are throwing a party. Because your house got trashed the last time, you want to ensure that only people who are invited attend. That is <u>confidentiality</u>, because you decided up front who would be invited. When the people come, they have to present an invitation to the doorman. That is <u>authentication</u>, because each guest had to show proof that they are who they claim to be. In general, <u>confidentiality</u> is planned in advance while <u>authentication</u> happens as a user attempts to access a system.

b) (10 points) Please calculate the result value for $7^{43} \equiv ? \mod 41$.

Answer: $7^{43}=7^{40}.7^3 mod\ 41$ and from FLT we know that $7^{40}\equiv 1\ mod\ 41$ so $7^3 mod\ 41=343\ mod\ 41\equiv 15$

- Q.2 (25 points) Answer the questions below regarding key generation with Diffie-Hellman and RSA.
 - a) **(5 points)** Suppose the Diffie-Hellman public values *p* and *g* are 7 and 4, respectively. Compute a legal *y* value.
 - b) (5 points) Suppose your partner's y value is 3. What is your shared key?
 - c) (5 points) Suppose that you are computing an RSA key pair. What are p and q and $\Phi(n)$ for n=51?
 - d) **(5 points)** Find a legal RSA public key pair for this *p* and *q*.
 - e) (5 points) How many possible values for e are there?

Answer:

- a) $y = g^x mod p$ where x could be pretty much any value, I will choose 4. Therefore, $y = 4^4 mod 7 = 256 mod 7 = 4$.
- b) The shared key $z = y^x \mod p = 3^4 \mod 7 = 4$.
- c) p = 3, q = 17 (or vice versa), and $Q(n) = 2 \cdot 16 = 32$.
- d) A valid e is 5, as it is relatively prime to 32. Given e = 5, d.e mod $\Phi(n)$ = 1, so d can equal 13 (5.13mod32 = 1). Officially, d = (13, 51) and e = (5, 51).
- e) Odd numbers less than 32 = 16. Other odds are permissible in general too.

Q.3 (25 points)

a) (5 points) Why should you include a message authentication code (MAC) with a message? What is the difference between a MAC and an HMAC?

CENG471 – CRYPTOGRAPHY Midterm-2 – 2019 FALL Term – Dec. 17, 2019

Student No & Name:	
--------------------	--

Answer: Provide authenticity and especially integrity. HMAC is a special form of a MAC that prevents extension attacks. HMAC computes $h(K \oplus a \parallel K \oplus b \parallel m)$, where a and b are specified constants. The message itself is only hashed once, and the output hashed again with the key.

b) (10 points) Alice's ElGamal public key is $(p, \alpha, \beta) = (17,3,6)$. Bob is confused which of two different ElGamal signatures (without hash) for the message m = 12 he wrote down is the correct one: one of these possible signatures has appendix (r, s) = (13, 7), the other (r, s) = (12, 8). Check which of them is the valid signature. (Hint: $v_1 \equiv \beta^r r^s, v_2 \equiv \alpha^m \mod p$)

Answer: Bob has to check $v_1 \equiv v_2 \mod p$ or not. If (r,s) = (13,7), then $v_1 = 6$ and $v_2 = 4$. In the case (r,s) = (12,8) we have $v_1 \equiv 4 \equiv v_2 \mod 17$, hence only second signature value is correct.

c) (10 points) Suppose a second message m'=7 is signed with signature (r', s')=(12, 15). Find (together with the knowledge from the first part) the secret integer k. (Hint: In the ElGamal signature scheme, $s \equiv k^{-1}(m-a.r) \mod p-1$)

Answer:

Let (r,s)=(12,8) and (r',s')=(12,15). Since r=r', the same k was used for both signatures. We get;

$$s.k-m \equiv -a.r \equiv s'.k-m' \mod p-1$$
,

therefore

$$(s-s').k \equiv m-m' \mod p-1$$

that is

$$(-7)$$
. $k \equiv 5 \mod 16$

Now, gcd(-7,16) = 1, and (with the extended Euclidean algorithm) we get,

$$k \equiv (-7)^{-1}.5 \equiv 13 \mod 16$$

Q.4) (25 points) In this task, we shall consider the RSA public key (n,e) = (667, 417).

- a) (15 points) Given that $667 = 23 \cdot 29$, find the corresponding RSA private key d.
- **b) (10 points)** Explain the basic RSA encryption scheme. Compute the decryption of the message C = 2, what is the m?

Answer:

a) n=667=p.q=23.29 \rightarrow $\Phi(n) = (23-1)(29-1) = 22.28 = 616$ Public key is given as e = 417. We will use Extended Euclidean Algorithm and its backward steps:

616=1.417+199	= 21.417 - 44.(616 - 417) = 21.417 - 44.616 + 44.417 = 65.417 - 44.616
417=2.199+19	= 21.(417 - 2.199) - 2.199 = 21.417 - 42.199 - 2.199 = 21.417 - 44.199
199=10.19+9	=19-2(199–10.19)=19 – 2.199 + 20.19 = 21.19 – 2.199
19=2.9+1	1=19-2.9

CENG471 – CRYPTOGRAPHY Midterm-2 – 2019 FALL Term – Dec. 17, 2019

	Student No & Name:	
--	--------------------	--

So; $1 = 65.417 - 44.616 \Rightarrow 1 = 27105 - 27104$ The private key is d=65 which is the multiplicative inverse of 417 for modulus 616.

In basic encryption scheme of RSA; C=m^e mod n

And basic decryption scheme; M=C^d mod n

b) For C=2 decryption is: $M=2^{65} \mod 667$; to calculate the result we can use repeated squaring method:

 $2^2 = 4 \mod 667$

$$2^4 = (2^2)^2 = 4^2 = 16 \mod 667$$

$$2^8 = (2^4)^2 = 16^2 = 256 \mod 667$$

$$2^{16}=(2^8)^2=256^2=65536 \mod 667=170$$

$$2^{32}=(2^{16})^2=170^2=28900 \mod 667=219$$

$$2^{64}=(2^{32})^2=219^2=47961 \mod 667=604$$

 2^{65} = 2^{64} .2= 604.2 mod 667 = 541; hence m=541.