ЛР №4 «Астатизмы»

Отчет

Студент Кирилл Лалаянц R33352 336700 Вариант - 6

Преподаватель Пашенко А.В.

Факультет Систем Управления и Робототехники

ИТМО

Содержание

1	Вводные данные				
	1.1	.1 Цель работы			
2	Вып	Выполнение работы			
	2.1	Задание 1. Задача стабилизации с идеальным дифференцирующим звеном.			
		2.1.1	Теория	2	
		2.1.2	Результаты	2	
	2.2	Задание 2. Задача стабилизации с реальным дифференцирующим			
		звено		3	
		2.2.1	Теория	3	
		2.2.2	Результаты	3	
	2.3	Задание 3. Исследование влияния шума			
		2.3.1	Теория	4	
		2.3.2	Результаты	4	
	2.4		ние 4. Задача слежения для системы с астатизмом нулевого цка	5	
		2.4.1	Теория	5	
		2.4.2	Результаты	5	
	2.5	Задание 5. Задача слежения для системы с астатизмом первого			
		поряд	цка	7	
		2.5.1	Теория	7	
		2.5.2	Результаты	7	
	2.6 Задание 6. Исследование линейной системы замкнутой регулятор				
		общег	го вида	9	
		2.6.1	Теория	9	
		262	Розупьтаты	10	

3	Заключение			
	3.1 Выводы	11		

1 Вводные данные

1.1 Цель работы

В этой работе будет проведенно исследование следующих вопросов:

- Астатизмы.
- Принцип внутренней модели.
- Идеальное и реальное дифференцирующие звенья

2 Выполнение работы

2.1 Задание 1. Задача стабилизации с идеальным дифференцирующим звеном.

2.1.1 Теория

B этом задании будет проведена симуляция системы с $\Pi Д$ регулятором, используя дифференциальное звено, для open- и closed-loop систем.

2.1.2 Результаты

Ожидаемо, замкнутая система успешно свела ошибку к 0, а открытая – нет.

Задание 1. Задача стабилизации с идеальным дифференцирующим звеном

Рис. 1: Результат выполнения первого задания.

2.2 Задание 2. Задача стабилизации с реальным дифференцирующим звеном.

2.2.1 Теория

В этом задании будет проведена симуляция системы с $\Pi Д$ регулятором, используя реальное дифференциальное звено. Так же исследован параметр T на предмет устойчивости.

2.2.2 Результаты

Заметно, что параметр $=10^{-3}$ уже достаточно мал, и отличий с $=10^{-5}$ нет. Граница устойчивости была получена через решение системы уравнений следующих из матрицы Гурвица. Ее значение экспериментально подтвердилось (было взято число чуть больше, поэтому график расходится).

Рис. 2: Результат выполнения второго задания.

2.3 Задание 3. Исследование влияния шума.

2.3.1 Теория

В этом задании будет проведено исследование влияния шума на конечный результат.

2.3.2 Результаты

Четко видно, что ошибка прямопропорциональна шуму. Однако, более важно тут то, что на грубую сходимость системы это никак не влияет и в начале графики выглядят идентично. Разница становится заметна только при значениях ошибки уже близким к 0 — система с большой погрешностью в заметно более широкой окрестности цели.

Рис. 3: Результат выполнения третьего задания.

2.4 Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

2.4.1 Теория

В этом задании будет проведено исследование слежения системы с астатизмом нулевого порядка при различных входных воздействиях.

2.4.2 Результаты

На графике представлены поведение системы при различных коэффициентах k. Заметно, что при константном воздействии (рис. 4) он уменьшает ошибку. Ее предельное значение было посчитано через предельную теорему и представлено в легенде.

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 4: Система с астатизмом 0. Константное воздействие.

На графике (рис. 5) представлено поведение системы при линейном воздействии. Графики расходятся – ошибка стремится к бесконечности.

На графике (рис. 6) представлено поведение системы при переодическом воздействии. Ошибка стремится к 0.

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 5: Система с астатизмом 0. Линейное воздействие.

t, [c]

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 6: Система с астатизмом 0. Переодическое воздействие.

2.5 Задание 5. Задача слежения для системы с астатизмом первого порядка.

2.5.1 Теория

Задание аналогично предыдущему, только на этот раз ПИ регулятор, который повышает порядок астатизма.

2.5.2 Результаты

Сначала было проведенно влияние П коэффициента. Заметно, что при константном воздействии (рис. 7) его влияние уже не столь очевидно. Так же заметен вклад И части – ошибка всех графиков сходится к 0. При линейном воздействии

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 7: Система с астатизмом 0. Константное воздействие.

(рис. 8) ошибка никак не зависит от П коэффициента.

При переодическом воздействии (рис. 9) влияние коэффициента Π определить крайне тяжело.

При константном воздействии (рис. 10) влияние И очень заметно. Он ускорят время переходного процесса, но при этом вызывает перерегулирование. При линейном воздействии (рис. 11) ошибка обратно пропорциональна И.

При переодическом воздействии (рис. 12) влияние коэффициента И определить крайне тяжело.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 8: Система с астатизмом 0. Линейное воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 9: Система с астатизмом 0. Переодическое воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 10: Система с астатизмом 0. Константное воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 11: Система с астатизмом 0. Линейное воздействие.

2.6 Задание 6. Исследование линейной системы замкнутой регулятором общего вида.

2.6.1 Теория

В этом задании был протестирован принцип внутренней модели и получена управляемая система.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 12: Система с астатизмом 0. Переодическое воздействие.

2.6.2 Результаты

Благодаря принципу замкнутой модели был синтезирован регулятор для управления системой.

Задание 6. Исследование линейной системы замкнутой регулятором общего вида.

Рис. 13: Результат синтеза регулятора.

3 Заключение

В этой работе было проведенно исследование следующих вопросов:

- Астатизмы.
- Принцип внутренней модели.
- Идеальное и реальное дифференцирующие звенья

3.1 Выводы

- 1. Проведено моделирование вынужденного движение систем с различным ненулевым входным воздействием.
- 2. На практике проверенно влияние мод на характер поведения системы.
- 3. Наглядно проверенно, что свертка оригиналов равносильна перемножению образов Лапласа.