INFORMATIKAI ALAPISMERETEK

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

- A megoldásokra kizárólag a javítási útmutatóban leírt pontszámok adhatók.
- A pontszámok minden esetben egész számok!
- Ha a vizsgázó nem a feladatban meghatározottak szerint válaszol, akkor a válasz nem fogadható el!
 - Pl.: **H** betű helyett nem válaszolhat **N** betűvel
- Ha a feladat egyetlen válasz (pl. egyetlen betűjel) megadását kéri, és a vizsgázó több különböző választ (pl. több különböző betűjelet) ad meg, akkor a feladatra 0 pontot kell adni!
- Ha egy kérdésre a leírás szerint csak egyetlen válasz adható, akkor az erre adható pontszám nem osztható, tehát pl. egy 2 pontos kérdés esetében vagy 0, vagy 2 pont adható!
- Egyéb esetekben a javítási útmutató részletesen leírja, hogy milyen módon adható részpontszám!
- Ha valamely feladatban a vizsgázó javított a megoldásán, de a javítása nem egyértelmű, akkor a válasz nem fogadható el, a feladatrészre 0 pontot kell adni! Egyértelmű javítás esetén a kijavított megoldást kell értékelni!
- Ha a vizsgázó valamely kérdésre egy általánostól eltérő rendszer használata miatt nem a várt válasz adja, de a válasza és az indoklása elfogadható, akkor a kérdésre adható pontszámot meg kell adni.

I. Tesztfeladat megoldása

1.	b	A gépet tartalmazó hálózat címe: 195.141.121.0 A gép címe: 0.0.0.12 1 pont
2.	c	A merevlemez áramfelvétele több lehet, mint az egy USB
		porton szolgáltatott maximális áram. 1 pont
3.	c	A kijelzőpanel az elsőnél hátulról speciális fénycsővel megvilágított LCD panel, míg a másodiknál a kijelzőpanelt hátulról LED-ekkel világítják meg
4.	b	300/2.54*10=1181~1180
5.	d	GIF, JPG, WAV, PNG három kép és egy hangformátum
6.	b	Hamis: Egy bekezdésen belül többféle sortávolság is alkalmazható 1 pont
7.	b	cache, BIOS, puffer, operatív tár. Három tároló, a BIOS pedig nem 2 pont
8.		Az algebrai alak: F=((A·B)+C)·A
		Az igaz állítás: c, a
9.	a)b)c)d)	A fejlécben egy két oszlopot tartalmazó táblázatot hozunk létre, és a cellákba írt adatokat balra, illetve jobbra igazítjuk; vagy az oldalszámot jobbra igazító tabulátorra illesztjük. A képet keretbe vagy szövegdobozba illesztjük. Igen. Nem. 0 vagy 1 helyes válasz: 0 pont, 2 vagy 3 helyes válasz: 1 pont, 4 helyes válasz: 2 pont
10	. c =	-D\$4+\$E5

A kérdésekre adható maximális pontszám csak helyes válasz esetén jár. Pontszámot megbontani csak az előírt esetben lehet.

II. Számítógépes feladat és számítógéppel végzett interaktív gyakorlat Szövegszerkesztési, táblázatkezelési, prezentáció készítési ismeretek

1. A – 1. B feladat 25 pont

Feladatkitűzés:

Készítse el szövegszerkesztő program használatával az alábbi informatikadolgozat feladatsort! A forrásszöveg a *dolgozat.txt* állományban, a szükséges képek a mellékelt *jpg* állományokban találhatók meg. A szöveg formázásakor tartsa be a következő oldalon leírtakat!

Név:				osztály:	<u></u>
	I. TÉM	IAZÁRÓ DOL Informatika	GOZAT		
1. Töltse ki	az alábbi táblázatot!				(6 po
	Decimális	Bináris	Hexadeci	mális	_
	2010	1001 1100 0011	ABC		_
2. Bizonyíts	a be az alábbi logikai a	zonosságot az igazság	táblázat helyes l	kitöltésével!	(5 pc
	-	$\neg (A \lor B) = \neg A \land \neg B$	*		
A	B A∨B	¬(A ∨B) ¬A	A ¬B	$\neg A \land \neg B$	
<u></u>	1				
1	↓		8		
1			3		
	meg a képen látható hír ontos alkotásukat!	res magyar informatik	ısokat és írja a r	nevük alá	(6 pc
		res magyar informatik	usokat és írja a r	nevük alá	(6 pa
		res magyar informatik		nevük alá	(6 po
	ontos alkotásukat!				(6 po
egy-egy :	ontos alkotásukat!	igy, hogy az egy N ele			
4. Javítsa k tömbben L:=iç I:=1 Ciklu	az alábbi algoritmust ú megkeresse az első pára az s amíg (I<=N) és (r. Ha (A[I] div 2)=0 akkor	igy, hogy az egy N ele atlan értéket!			
4. Javítsa k tömbben L:=ig I:=1 Ciklu	az alábbi algoritmust ú megkeresse az első pára az s amíg (I<=N) és (r. Ha (A[I] div 2)=0 akkor L:=igaz Ind:=0	igy, hogy az egy N ele atlan értéket!		okat tartalmazó	(6 pa
4. Javítsa k tömbben L:=iç I:=1 Ciklu	az alábbi algoritmust ú megkeresse az első pára az s amíg (I<=N) és (r Ha (A[I] div 2)=0 akkor L:=igaz	igy, hogy az egy N ele atlan értéket!			

a) Alapvető beállítások (3 pont)

- Oldalbeállítások
 - Az oldalméret A4-es, a tájolás álló, a margók mérete 2,5 cm legyen!
- Betűtípus, méret
 - A betűtípus Times New Roman, illetve az első táblázatban és az algoritmusban Courier New legyen!
 - Ha esetleg ezek nem állnak rendelkezésre, akkor Times New Roman helyett bármely talpas, Courier New helyett bármely azonos karakterszélességű betűtípus megfelelő.
 - A dokumentumban 12, 14 és 20 pontos betűméretet alkalmazzon a minta szerint!

b) Szövegtörzs (17 pont)

- Fejléc
 - A Név, évfolyam, osztály szövegek a fejlécbe kerüljenek!
 - A vonalakat formázott tabulátorokkal alakítsa ki, a hosszuk 7 cm, illetve 1,5-1,5 cm legyen!
- Címek
 - A főcím kiskapitális betűvel legyen formázva!
 - A főcím és alcím legyen középre igazítva!
- Feladatok
 - A feladatok automatikusan legyenek sorszámozva a minta szerint, a feladatok szövege előtt és után állítson be 12 pontos térközt!
 - A feladatok szövegétől jobbra a minta szerint jelenítse meg a feladatokra adható pontszámokat, dőlt betűvel, zárójelben, a jobb margón kívül!
 - A pontszámok alatt, a mintának megfelelően helyezzen el 0,5x0,5 cm-es árnyékolt négyzeteket, amelyekbe a tényleges pontszámok kerülhetnek!
 - A 2. feladatban alkalmazzon a mintának megfelelő lábjegyzetet!

Táblázatok

- Az 1. és 2. feladat táblázatát alakítsa ki a minta szerint!
- Alkalmazza a megfelelő szegélyezést és igazításokat!
- Az 1. feladat táblázatában 4 cm-es, a második feladat táblázatában 1,5 és 2,3 cm-es oszlopszélességet állítson be!
- Helyezze el a 2. feladat szövegében és táblázatában a mintának megfelelő szimbólumokat!

Képek

- A 3. feladatban a képeket rendezze el a mintának megfelelően, szegély nélküli táblázat alkalmazásával!
- A képeket méretezze át úgy, hogy magasságuk egységesen 3,25 cm legyen!
- A képek alatt formázott tabulátorok segítségével alakítsa ki a szaggatott vonalakat!
- A szaggatott vonalakat tartalmazó bekezdések esetében alkalmazzon 1,5-es sorközt!
- Algoritmus
 - Az algoritmusban a minta szerinti behúzások megvalósításához használjon tabulátorokat, 1 cm-től kezdve, 1 cm-enként elhelyezve!
- Pontszám, érdemjegy
 - Alakítsa ki a mintának megfelelő táblázatot, külön szövegdobozban, és írja bele a megfelelő szöveget, félkövér 14-es betűvel!
 - Az oszlopok szélessége 3, illetve 1,5 cm legyen!
- Mentse a megoldását *dolgozat* néven!

- c) Hozzon létre táblázatkezelő program segítségével az alábbi mintának megfelelő egyszerű táblázatot, amellyel kiértékelhetők egy 10 fős csoport által írt dolgozat eredményei! (5 pont)
 - A táblázat elkészítéséhez használja fel az ertekel.csv állományban található adatokat!
 - A **Maximum** sor az egyes feladatokra kapható maximális pontokat tartalmazza.
 - Alkalmazza a mintán látható cellaösszevonásokat, szegélyezést, igazításokat, betűstílusokat!
 - Az Összpont és a % oszlopokban másolható képlettel határozza meg az egyes tanulók pontszámait és százalékos teljesítményét, illetve a dolgozatra kapható maximális pontszámot!
 - Rendezze a táblázat sorait név szerint növekvően!
 - Mentse a táblázatot *ertekel* néven!

Sorszám	Név		Felad	atok		Öccznont	%
Surszam	IVE	1. feladat	2. feladat	3. feladat	4. feladat	Összpont	70
1.	Esze István	5	2	6	4	17	77%
2.	Józsa Noémi	0	4	4	2	10	45%
3.	Karády Lilla	1	3	6	3	13	59%
4.	Kiss Csilla	3	5	4	3	15	68%
5.	Kiss Tímea	4	5	6	4	19	86%
6.	Lajtai Kristóf	6	1	4	2	13	59%
7.	Nagy Zsolt	З	4	5	4	16	73%
8.	Rátai Dávid	6	3	6	3	18	82%
9.	Törköly Andrea	4	5	4	2	15	68%
10.	Zsolt lstván	6	4	5	3	18	82%
	Maximum	6	5	6	5	22	

A feladatban felhasznált képek forrásai:

 $http://pctrs.network.hu/clubpicture/4/9_/neumann_janos_a_szamitogep_atyja_49885_510098.jpg$

http://bin.sulinet.hu/ikep/2003/12/nemes.jpg

http://spillerlaszlo.files.wordpress.com/2010/10/kempelen_farkas.jpg

Mintamegoldás:

A feladat megoldása megtalálható a *dolgozat.doc* és *ertekel.xls* állományban.

Értékelés:

b) Szövegtörzs	17 pont
 Fejléc, cím 	
 A Név, évfolyam, osztály szövegek a fejlécbe kerültek A vonalak tabulátorokkal lettek kialakítva, a hosszuk 7 cm, 	-
illetve 1,5-1,5 cm	
 A főcím kis kapitális betűformátumú, középre igazított, 	1
az alcím is középre igazított	1 pont
Feladatok	-
 A feladatok sorszámozása automatikus, a minta szerinti; 	
a feladatok szövege előtt és után 12 pontos térköz van	1 pont
 A pontszámok a feladatok szövegétől jobbra, dőlt betűvel, 	
zárójelben, a jobb margón kívül szerepelnek	1 pont
 A pontszámok alatt, a mintának megfelelő elhelyezésben, 	
0,5x0,5 cm-es árnyékolt négyzetek	-
 A 2. feladatban a mintának megfelelő lábjegyzet 	1 pont
– Táblázatok	
 Az 1. és 2. feladatok táblázata megfelelően kialakítva 	
 A táblázatokban a mintának megfelelő szegély és igazítás 	
 Az oszlopok szélessége mindkét táblázatban a feladatleírás: 	
megfelelő	
 A 2. feladat szövegében és táblázatában a mintának megfel 	
szimbólumok	1 pont
– Képek	
 A 3. feladat képei a mintának megfelelően elrendezve, szeg 	
nélküli táblázat alkalmazásával	
A képek magassága egységesen 3,25 cm	
 A képek alatt formázott tabulátorok segítségével kialakítva 	
a szaggatott vonalak; 1,5-es sorköz	I pont
- Algoritmus	
 Az algoritmusban a minta szerinti behúzások megvalósítva 	
1 cm-enként elhelyezett tabulátorokkal	I pont
- Pontszám, érdemjegy	
 A pontszámok a mintának megfelelő táblázatban, külön 	1 ,
szövegdobozban	
 Az oszlopok szélessége 3, illetve 1,5 cm, félkövér, 14-es be 	etu 1 pont
c) A táblázat létrehozása	5 nont
 Létezik az <i>ertekel</i> állomány a megfelelő adatokkal, kiegészítve 	3 pont
a sorszámokkal, megfelelő a szegélyezés	1 nont
 Jók a cellaösszevonások, az igazítások és a betűstílusok és a szá 	
formátumgigazitasok és a betűsítűsök és a sza	
 Helyes az Összpont oszlop képlete, másolható 	1 poiit 1 nont
 Helyes a % oszlop képlete, másolható 	-
 A táblázat név szerint növekvően rendezett 	
11 tautazat nev szetint novekvuch tenaezett	1 poin

Adatbázis alapismeretek

2. A – 2. B feladat 25 pont

Feladatkitűzés:

Az alábbi táblázat egy webshop néhány vásárlójának az adatait tartalmazza. Végezze el az ezzel kapcsolatos egyszerű adatbázis-kezelési feladatokat!

- a) Hozzon létre egy *webshop* nevű adatbázist! (8 pont)
 - Az adatbázison belül hozzon létre egy vasarlok nevű adattáblát!
 - Hozza létre a szükséges adatmezőket a megfelelő típussal, az azon mezőt állítsa be elsődleges kulcsként!
 - Töltse fel az adattáblát az alább megadott adatokkal!

azon	nev	varos	regisztralas	koltott
A001	Késmárki Edvárd	Budapest	2010.11.06	49 900
A946	Zwigler Hajnalka	Pécs	2008.01.21	145 900
B234	Kiss Emil	Budapest	2009.05.07	96 300
B723	Isépi József	Budapest	2010.07.05	23 100
C556	Hell József	Sopron	2010.03.30	16 500
H743	Zalavölgyi Emília	Pécs	2010.01.23	34 200
K843	Szemlőhegyi Ubul	Sopron	2009.05.21	53 200
X556	Kriston Adrián	Győr	2009.07.21	7 800

- b) Készítsen lekérdezést, amely megadja annak a vásárlónak az azonosítóját és nevét, aki a 2010-ben regisztrált budapesti vásárlók közül a legtöbbet költötte! (5 pont)
 - A lekérdezés neve legyen *maxbp2010*!
- c) Készítsen lekérdezést, amely minden, az adatbázisban szereplő város esetében megadja, hogy az adott városból hány regisztrált vásárló van, és átlagosan mennyit költöttek a webshopban az adott városban lakók! (7 pont)
 - A számított mezők neve legyen *vasarloszam*, illetve *atlagoskoltes*!
 - Az átlagos költés legyen egészre kerekített érték!
 - A lista elsősorban a vásárlók száma, másodsorban az átlagos költés szerint legyen rendezve, mindkét szempont szerint csökkenően!
 - A lekérdezés neve legyen varosok!
- d) A webshop vidéki vásárlóinak, illetve azoknak, akik már 80 000 Ft-nál többet költöttek, az elköltött pénz 15%-ának megfelelő értékű kupont ajándékoz, melyet azonnal le kell vásárolniuk. Azoknak, akik mindkét feltételt teljesítik, nem jár dupla kedvezmény. Készítsen lekérdezést, amely az előbb leírtak szerint módosítja a kuponban részesülők elköltött pénzét! (5 pont)
 - A lekérdezés teszteléséhez hozzon létre vasarlok2 nevű adattáblát, a lekérdezést erre a táblára vonatkozóan készítse el!
 - A lekérdezés neve legyen kupon!

Mintamegoldás: ld. a mellékelt webshop.mdb állományban.

Értékelés: Léteznek a megfelelő típusú és nevű adatmezők: 2 pont (hibánként -1 pont, minimum 0 pont) o A 4 pont csak abban az esetben adható meg, ha az adatbevitel teljesen hibátlan o Hibásan bevitt értékenként 1-1 pont levonás jár o Negatív pontszám nem adható Helyes a szűrés az évre² 1 pont Rendezés a költött pénz szerint csökkenően⁴ 1 pont Csak a csúcsérték jelenik meg⁵ 1 pont Egy lehetséges megoldás MS-SQL-ben: SELECT TOP 15 vasarlok.azon, vasarlok.nev1 FROM vasarlok WHERE (((vasarlok.regisztralas) Like "2010*")² And ((vasarlok.varos)="Budapest"))³ ORDER BY vasarlok.koltott DESC⁴: A lekérdezés listázza a városneveket, csoportosítás városnevek Helyes a kerekítés⁴ 1 pont Rendezés a vásárlók száma szerint, csökkenően⁶ 1 pont Egy lehetséges megoldás MS-SQL-ben: SELECT vasarlok.varos¹, Count²(vasarlok.azon) AS vasarloszam⁵, Round⁴(Avg³(vasarlok.koltott)) AS atlagoskoltes⁵ FROM vasarlok GROUP BY vasarlok.varos¹ ORDER BY Count(vasarlok.azon) DESC^6 , $\mathsf{Round}(\mathsf{Avg}(\mathsf{vasarlok}.\mathsf{koltott})) \mathsf{DESC}^7$;

d)	A kupon lekérdezés helyes megfogalmazása	5 pont
	 Létezik a vasarlok2 tábla¹ 	1 pont
	 Frissítő lekérdezést alkalmaz² 	1 pont
	 Helyes a költésekre vonatkozó frissítés³ 	1 pont
	 Helyes a költésekre vonatkozó szűrőfeltétel, VAGY kapcsolat 	_
	a következő feltétellel ⁴	1 pont
	 Helyes a városra vonatkozó szűrőfeltétel⁵ 	1 pont
	Egy lehetséges megoldás MS-SQL-ben:	
	UPDATE ² vasarlok2 ¹ SET vasarlok2.koltott = vasarlok2.koltott*1.15 ³	
	WHERE (((vasarlok2.koltott)>80000) ⁴ Or ⁴	
	(Not (vasarlok2.varos)="Budapest")) ⁵ :	

A megoldásban szerepeltetett felső indexek az előbbiekben felsorolt részfeladatokat jelölik, nem részei az SQL lekérdezésnek!

Algoritmus kódolása

3. A feladat 13 pont

Feladatkitűzés:

Kódolja az alábbi algoritmust a választott programozási nyelven!

Az algoritmus a generált számokat szétválogatja a következő módon:

- Azt az elemet, amely eredetileg az első volt, áthelyezi egy másik helyre. Ez a szám lesz az elválasztó elem.
- Az elválasztó elemnél kisebb számokat az elválasztó elem elé, a nála nagyobbakat pedig mögé helyezi.

Pl. ha a sorozat elemei eredetileg 5, 8, -1, 2, 10, 3, akkor a szétválogatás után 3, 2, -1, 5, 10, 8.

Beadandó a feladatot megoldó program forráskódja! A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk!

```
Konstans N=20
Változó A[0..N-1]:valós elemű tömb
Eliárás Feltolt:
Változó I:egész
   Ciklus I:=0-től N-1-ig
  A[I]:=VéletlenValós(-500,500)
   Ciklus vége
Eljárás vége
Eljárás Kiir:
Változó I:egész
   Ciklus I:=0-től N-1-ig
      Ki: Kerekít(A[I],2)
   Ciklus vége
Eljárás vége
Eljárás SzetValogat:
Változó K,L:egész
            X:valós
   K:=0
   L:=N-1
   X:=A[K]
   Ciklus amíg (K<L)
      Ciklus amíg (K < L) és (A[L] >= X)
         L:=L-1
      Ciklus vége
      Ha (K<L)
         Akkor
            A[K]:=A[L]
            K := K+1
      Elágazás vége
      Ciklus amíg (K < L) és (A[K] <= X)
         K:=K+1
      Ciklus vége
      Ha (K<L)
         Akkor
            A[L]:=A[K]
L:=L-1
      Elágazás vége
   Ciklus vége
   A[K]:=X
Eljárás vége
Program:
   Feltolt
   Kiir
   Szetvalogat
   Kiir
```

Program vége.

Mintamegoldás: az algoritmus C# nyelven kódolva

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
namespace Szétválogatás
  class Szetvalogato
   { private const int n=20;
     private double[] a=new double[n];
     private Random r=new Random();
     public void Feltolt()
       for (int i = 0; i < n; i++)
          a[i] = r.NextDouble() * 1000 - 500;
     public void Kiir(string s)
       Console.WriteLine(s);
       for (int i = 0; i < n; i++)
          Console.Write(Math.Round(a[i],2)+" ");
       Console.ReadLine();
     public void Szetvalogat()
       int k = 0;
       int l = n-1;
       double x = a[k];
       while (k < l)
          while ((k < l) && (a[l] >= x))
            1--;
          if (k \le l)
            a[k++] = a[1];
          while ((k < 1) & (a[k] \le x))
            k++;
          if (k \le l)
            a[1--] = a[k];
       a[k] = x;
```

```
class Program
{
    static void Main(string[] args)
    {
        Szetvalogato s = new Szetvalogato();
        s.Feltolt();
        s.Kiir("Eredeti sorozat:");
        s.Szetvalogat();
        s.Kiir("Szétválogatott sorozat:");
    }
}
```

Értékelés:

a) A progra	im szerkezete, valtozok deklaralasa	4	i pont
- A p	rogramkód szintaktikailag hibátlan, lefordítható, eljárásokra tagolt	1 pont	
– Mir	den eljárás meghívásra, tevékenységük végrehajtásra került	1 pont	
	O A továbbiakban már nem kell pontot levonni azért, mert		
	a program esetleg nincs eljárásokra tagolva!		
- Ato	ömbváltozó és a konstans helyes deklarálása	1 pont	
	algoritmusnak megfelelő lokális változók deklarálása		
1	turk (177		
b) Tömb te	ltöltése és kiírása		4 pont
	ömbelemekbe valós érték kerül		
	negfelelő intervallumbeli elemek kerülnek a tömbbe		
– Mir	den tömbelem kiírásra kerül	1 pont	
Két	tizedesjegyre kerekített értékek jelennek meg	1 pont	
c) Szétválo	gatásgatás		5 pont
*	ső ciklus előtti és utáni értékadások, külső ciklusfej kódolása		5 pont
	· · · · · · · · · · · · · · · · · · ·		
	iklusmagban lévő első beágyazott ciklus helyes kódolása	-	
	iklusmagban lévő első beágyazott elágazás helyes kódolása		
	iklusmagban lévő második beágyazott ciklus helyes kódolása		
- A c	iklusmagban lévő második beágyazott elágazás helyes kódolása	1 pont	

Input adatsoron dolgozó program elkészítése

4. A feladat 22 pont

Feladatkitűzés:

Egy iskola diákönkormányzata elnökválasztást rendez.

Minden szavazásra jogosult tag egy elnökjelöltre szavazhat, olyan módon, hogy a jelölt sorszámát felírja egy papírra. Öt jelölt esetén például a szavazásra jogosultak egy 1 és 5 közötti egész szám megadásával szavazhatnak.

Nem kötelező minden szavazásra jogosultnak szavaznia. A szavazás már akkor is érvényes, ha a jogosultak több mint fele érvényes szavazatot ad le.

Írjon programot, amely lehetővé teszi a papírra írt szavazatok számítógépes rögzítését és segíti a szavazás eredményének a kiértékelését!

- a) Adatbevitel (10 pont)
- Először a program kérje be az elnökjelöltek és a szavazásra jogosultak számát!
 - Az elnökjelöltek száma legfeljebb 10, a szavazásra jogosultak száma legfeljebb 20 legyen!
 - Ha a beírt adat típusa vagy tartománya nem megfelelő, a program adjon hibaüzenetet, és kérje újra az adatot, amíg szükséges!
 A jelöltek számára vonatkozóan helytelen adat lehet például: 11, 5.5, 'a'.
- Ezután a program tegye lehetővé a szavazatok egyenkénti beírását!
 - Ha a szavazatként beírt adat típusa nem megfelelő, a program adjon hibaüzenetet, és kérje újra az adatot, amíg szükséges! Helytelen típusú adat lehet például: 6.8, 'b'.
 - Ha a szavazatként beírt adat pozitív egész érték, de nem a megfelelő tartományba esik, akkor a szavazat érvénytelen!
 - Pl. 5 jelölt esetén a 7 érték megadása érvénytelen szavazatot jelent.
 - Egy szavazat érvénytelenségét a program rögtön a beírást követően üzenetben jelezze!
 - Ha a felhasználó 0-t vagy negatív egész számot ad meg szavazatként, azzal azt jelzi, hogy be kívánja fejezni az adatbevitelt. Az ilyen értéket a program ne tekintse szavazatnak!
 - A program folyamatosan jelezze ki, hogy hányadik szavazat beírásánál tart!
 - Ha a beírt szavazatok száma elérte a szavazásra jogosultak számát, a program automatikusan fejezze be az adatbekérést!
- b) Ezt követően a program értékelje ki a szavazatokat! (4 pont)
- Írja ki
 - a szavazásra jogosultak számát,
 - az összes leadott szavazatok számát,
 - az érvényes és érvénytelen szavazatok számát!
- A program állapítsa meg, hogy a szavazásra jogosultak hány százaléka szavazott érvényesen, és írja ki, hogy a szavazás érvényes volt-e!
- c) Ha a szavazás érvényes volt, akkor írja ki az egyes jelöltek eredményét táblázatszerűen, a megszerzett szavazatok száma szerint csökkenően rendezve! (8 pont)

A táblázat tartalmazza minden jelöltről a következőket:

- a jelölt helyezését;
- a jelölt sorszámát;
- a jelölt által szerzett összes szavazatok számát;
- azt, hogy a jelölt az érvényes szavazatok hány százalékát szerezte meg.
- Az azonos számú szavazatot szerzett jelöltek között a helyezést a jelöltek sorszáma döntse el, a kisebb sorszámú jelölté legyen a jobb helyezés!

Egyszerű példa a program lefutására:

Adja meg az alapvető adatokat!

Jelöltek száma (max. 10): 5

Szavazásra jogosultak száma (max. 20): 15

Írja be a leadott szavazatokat!

- 1. szavazat: 2
- 2. szavazat: 4
- 3. szavazat: a

Hibás adatbevitel, adja meg újra!

- 3. szavazat: 4
- 4. szavazat: 8

Érvénytelen szavazat!

- 5. szavazat: 4
- 6. szavazat: 1
- 7. szavazat: 5
- 8. szavazat: 6

Érvénytelen szavazat!

- 9. szavazat: 1
- 10. szavazat: 2
- 11. szavazat: 0

Összesítés:

A szavazásra jogosultak száma: 15 Leadott szavazatok száma: 10 Érvényes szavazatok száma: 8 Érvénytelen szavazatok száma: 2

Érvényesen szavazott a jogosultak 53%-a, a szavazás érvényes!

A jelöltek eredményei:

Helyezés	Jelölt sorszáma	Szavazatszám	Szavazat arány	
	1. 4		3	38%
4	2. 1		2	25%
3	3. 2		2	25%
4	4. 5		1	12%
4	5 3		0	0%

Mintamegoldás: a feladat egy lehetséges megoldása C# nyelven

```
using System;
using System.Collections.Generic:
using System.Ling;
using System. Text;
namespace Szavazas
  struct osszesito
  { public int jeloltsorszam;
    public int kapottszavazat; }
  class Szavazo
     private const int maxjeloltszam = 10;
    private const int maxszavazoszam=20;
    private int[] szavazatok = new int[maxszavazoszam];
    private osszesito[] osszesites=new osszesito[maxjeloltszam];
    private int jeloltszam, szavazhat, szavazatdb, ervenyesdb;
     private int Egeszbeker(string uzenet, string hibauzenet)
       int be;
       Console.Write(uzenet);
       while (!(int.TryParse(Console.ReadLine(), out be)))
       { Console.Write(hibauzenet + "\n" + uzenet); }
       return be;
    private int Egeszbeker(string uzenet, string hibauzenet,int a,int b)
       int be;
       Console.Write(uzenet);
       while (!(int.TryParse(Console.ReadLine(), out be)
            && (be>=a) && (be<=b)))
       { Console.Write(hibauzenet + "\n" + uzenet); }
       return be;
    private double szazalek(int ertek, int alap)
     { return Math.Round((double)ertek/alap*100); }
    public void Adatbevitel()
       Console.WriteLine(" SZAVAZÁS");
       Console.WriteLine("\n=> Adja meg az alapvető adatokat!");
       jeloltszam = Egeszbeker(
         "\n Jelöltek száma (max. "+maxjeloltszam+") : ",
         " Hibás adatbevitel, adja meg újra!",1,maxjeloltszam);
       szavazhat = Egeszbeker(
         " Szavazásra jogosultak száma (max. " + maxszavazoszam + ") : ",
          " Hibás adatbevitel, adja meg újra!", 1, maxszavazoszam);
         for (int j = 0; j < jeloltszam; j++)
         osszesites[j].jeloltsorszam = j + 1;
         osszesites[j].kapottszavazat = 0;
       Console.WriteLine("\n=> Írja be a leadott szavazatokat!\n");
       szavazatdb=0; ervenyesdb=0;
       int be;
       do
```

```
be = Egeszbeker
              (" " + String.Format("\{0,3\}", (szavazatdb + 1)) + ". szavazat: ",
               " Hibás adatbevitel, adja meg újra!");
       if ((be \ge 1) \&\& (be \le jeloltszam))
       { szavazatok[ervenyesdb++] = be;
         osszesites[be-1].kapottszavazat++;
         szavazatdb++; }
       else
       if ((be>0))
       { Console.WriteLine("
                                  Érvénytelen szavazat!");
         szavazatdb++; }
    while (!(be<=0) && (szavazatdb<szavazhat));
  public void Rendezes()
     for (int i = 0; i < jeloltszam-1; i++)
       for (int j = i+1; j < jeloltszam; j++)
        if
        ((osszesites[i].kapottszavazat <osszesites[j].kapottszavazat)||
        ((osszesites[i].kapottszavazat==osszesites[j].kapottszavazat)&&
        (osszesites[i].jeloltsorszam > osszesites[j].jeloltsorszam)))
         { osszesito s = osszesites[i];
            osszesites[i] = osszesites[j];
            osszesites[i] = s; }
  public void Eredmenyek()
     Console.WriteLine("\n=> Összesítés\n");
    Console.WriteLine(String.Format("{0,-42}{1,4}",
      "A szavazásra jogosultak száma:",szavazhat));
    Console.WriteLine(String.Format("{0,-42}{1,4}"
      "Leadott szavazatok száma:", szavazatdb));
    Console.WriteLine(String.Format("{0,-42}{1,4}",
      "Érvényes szavazatok száma:", ervenyesdb));
    Console.WriteLine(String.Format("{0,-42}{1,4}",
      "Érvénytelen szavazatok száma:",szavazatdb-ervenyesdb));
    double szavazoszazalek = szazalek(ervenyesdb, szavazhat);
    bool ervenyes=szavazoszazalek>50;
 Console.WriteLine("\n Érvényesen szavazott a jogosultak " +
                                szavazoszazalek + " %-a, a szavazás " +
     (ervenyes? "érvényes!" : "érvénytelen!"));
    if (ervenyes)
     { Console.WriteLine("\n=> A jelöltek eredményei\n");
       Console.WriteLine(String.Format("{0,10}{1,20}{2,15}{3,20}",
"Helyezés", "Jelölt sorszáma", "Szavazatszám", "Szavazat arány"));
            for (int i = 0; i < jeloltszam; i++)
     Console.WriteLine(
     String.Format("{0,6}{1,15}{2,18}{3,15}{4,5}{5,3}",
              (i+1)+ ".", osszesites[i].jeloltsorszam,
              osszesites[i].kapottszavazat."".
              szazalek(osszesites[i].kapottszavazat,
              ervenyesdb)," %"));
```

```
}
Console.ReadLine();
}
}
class Program
{
  static void Main(string[] args)
  {
    Szavazo sz = new Szavazo();
    sz.Adatbevitel();
    sz.Rendezes();
    sz.eredmenyek();
}
}
```

Értékelés:

a)	Adatbevitel	10 pont
	Alapadatok beírása:	
	 A program bekéri az elnökjelöltek számát 	
	 A program bekéri a szavazásra jogosultak számát 	1 pont
	 Típus vagy tartományellenőrzés mindkét adat esetében 	1 pont
	 Típus és tartományellenőrzés mindkét adat esetében 	1 pont
	 Típus és tartományellenőrzés mindkét adat esetében, hiba esetén 	
	üzenet és újra kér, amíg szükséges	1 pont
	Szavazatok beírása:	
	 A program bekéri a szavazatokat, 0, vagy negatív szám beírásával, 	
	vagy egyéb végjellel ki lehet lépni	1 pont
	 Ha a beírt szavazatok száma eléri a szavazásra jogosultak számát, 	
	a program automatikusan befejezi az adatbekérést	1 pont
	 Típusellenőrzés a szavazatoknál, hiba esetén üzenet és újra kér, amíg 	
	szükséges	
	 Tartományellenőrzés a szavazatoknál, érvénytelen szavazat kiírása 	1 pont
	 A program folyamatosan kijelzi, hogy hányadik szavazat beírásánál 	
	tart	1 pont
b)	A szavazatok kiértékelése	4 pont
	 Kiírja a szavazásra jogosultak számát, az összes leadott szavazatok 	
	számát	1
	 Megállapítja és kiírja az érvényes és érvénytelen szavazatok számát 	1 pont
	 Megállapítja, hogy a szavazásra jogosultak hány százaléka 	1
	szavazott érvényesen	
	 Megállapítja, és kiírja, hogy a szavazás érvényes volt-e 	1 pont

c)	Egyéni eredmények táblázatos kiírása	8 pont
	 A táblázat akkor jelenik meg, ha a szavazás érvényes volt	t
	 A jelöltek csökkenően vannak rendezve a kapott szavazatok száma 	
	szerint	t
	 Az azonos szavazatot kapott jelöltek között a kisebb sorszámú 	
	jelölté a jobb helyezés	t
	 A táblázat tartalmazza a jelöltek helyezését és sorszámát	t
	 A táblázat tartalmazza a jelöltek által szerzett szavazatok számát 1 pon 	t
	 A táblázat tartalmazza, hogy a jelöltek az érvényes szavazatok hány 	
	százalékát szerezték meg	t
	 A táblázatnak van fejléce, áttekinthető	t

Papíron megoldandó feladatok

Elektrotechnikai feladat

3. B feladat

Maximális pontszám: 13 pont

Vásároltunk egy alapműszert, amely 100 mV méréshatárú, ideálisnak tekinthető voltmérő. Szeretnénk belőle egy változtatható méréshatárú mérőműszert készíteni, amely átkapcsolható 100 mV, 1 V, 10 V, 100 V méréshatárokra. Az elkészített mérőműszer bemeneti ellenállása 100 mV-os méréshatáron 100 kΩ legyen!

Számítsa ki az ehhez szükséges feszültségosztó hálózatban szereplő:

- a) R1 ellenállás értékét (5 pont),
- b) R2 ellenállás értékét (4 pont).
- c) R3, R4 ellenállások értékeit (4 pont)

3.B Elektrotechnikai feladat megoldása

Maximális pontszám: 13 pont

a) R₁ ellenállás értéke

5 pont

100 mV-os méréshatárban a bemeneti ellenállás

- 1 pont
- $R_1+R_2+R_3+R_4=100 \text{ k}\Omega.$ A feszültségosztás összefüggését felhasználva: $0,1 = \frac{100 \cdot R_1}{100}$
- 2 pont

 $R_1=0,1 \text{ k}\Omega$

2 pont

b) R2 ellenállás értéke

4 pont

- 10 V-os méréshatárban a feszültségosztás: $0,1 = \frac{10 \cdot (R_1 + R_2)}{100}$
- 2 pont

 $R_2=0.9 \text{ k}\Omega$

2 pont

c) R₃, R₄ ellenállás értéke

4 pont

- 1 V-os méréshatárban a feszültségosztás: $0,1 = \frac{1 \cdot (R_1 + R_2 + R_3)}{100}$
- $10=1+R_3$, így $R_3=9 k\Omega$ $R_4 = 100 - R_1 - R_2 - R_3$

2 pont

 $R_4=100 \text{ k}\Omega - 0.1 \text{ k}\Omega - 0.9 \text{ k}\Omega - 9 \text{ k}\Omega = 90 \text{ k}\Omega$

2 pont

Digitális elektronikai feladat

4. B feladat

Maximális pontszám: 22 pont

Adott egy logikai kapukból álló, 4 bemenetű áramkör:

a) Írja fel a kimeneti függvényt algebrai alakban!

(4 pont)

- b) Adja meg a kapcsolás igazságtáblázatát és írja fel a függvényt mintermek kapcsolataként, s határozza meg a függvény a diszjunktív sorszámos alakját! (6 pont)
- c) Karnough-tábla segítségével végezze el a függvény grafikus egyszerűsítését! (6 pont)
- d) Valósítsa meg az egyszerűsített függvényt NOT, AND és OR kapukkal! (6 pont)

4.B Digitális elektronikai feladat megoldása

Maximális pontszám: 22 pont

a) A kimeneti függvény algebrai alakja:

4 pont

$$F^4 = \overline{(A+B+C)} + C \cdot D$$

b) A kapcsolás igazságtáblázata, mintermes és diszjunktív sorszámos alak felírása
 6 pont
 igazságtáblázat
 2 pont

D	C	В	A	\mathbf{F}^{4}
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Mintermes alak

2 pont

$$F^4 = D \cdot C \cdot B \cdot A + D \cdot C \cdot B \cdot A$$

Diszjunktív sorszámos alak

$$F^4 = \sum (0,8,12,13,14,15)$$

2 pont

c) Karnaugh-tábla felrajzolása, grafikus egyszerűsítés

2 pont

6 pont

Ha helyesen tölti ki

2 pont

Ha helyesen von össze

ВA	00	01	11	10
BA DC				
00	1			
01				
11 <	1	1	1	\cap
10	1	\		

$$F^4 = \overline{C} \cdot \overline{B} \cdot \overline{A} + D \cdot C$$

Ha jól adja meg az eredményt

2 pont

Logikailag helyes, de nem a legegyszerűbb alak megadása esetén 1 pont levonás.

d) Áramkör felrajzolása

6 pont

Logikailag helyes, de a szükségesnél több kaput tartalmazó megoldás esetén maximálisan 4 pont adható.

A feladatok értékelésének általános szabályai

A megoldási útmutatótól eltérő, de szakmailag jó megoldásokat is el kell fogadni a feltüntetett pontszámokkal.

A feladatra (részfeladatra) adható maximális pontszámot csak akkor kaphatja meg a vizsgázó, ha a képletbe az adatokat szakszerűen behelyettesíti, és így számítja ki a végeredményt.

Az adatok normál alakban való használatát indokolt esetben kell megkövetelni.

A végeredmény csak akkor fogadható el teljes pontszámmal, ha az eredmény számértéke és mértékegysége is kifogástalan.

A részkérdésekre adható legkisebb pontszám 1 pont, tört pontszám nem adható.

Összefüggő részkérdések esetén, ha hibás valamelyik részfeladat eredménye, akkor a hibás eredmény következő részfeladatban (részfeladatokban) való felhasználása esetén a kifogástalan megoldásokra a feltüntetett pontokat kell adni.

Pontlevonást eredményez, ha:

- a továbbvitt részeredmény szakmailag egyértelműen lehetetlen, illetve extrém,
- a felhasznált részeredmény csökkenti az utána következő részfeladat(ok) megoldásának bonyolultságát.