Rocket Motor Calculations

Optimisation of a solid fuel motor using RNX-57V propellant

Malcolm Snowdon

21 August 2009

Operating Parameters

p chamber :=
$$4.5 \times 10^6$$
 *Design pressure

Casing Geometry

$$t_{casing} := 0.002_{*}$$
 Tube wall thickness $N_{screws} := 8_{*}$

$$\phi_i_casing := 0.053_{\text{*}} \quad \text{Tube inner diameter} \qquad \qquad L_segment := 0.11_{\text{*}} \quad \text{Segment length}$$

$$\phi_{segment} := \phi_{i_casing} - 0.002$$
 * Propellant OD $t_{segment} := 0.020$ * Segment wall thickness

$$\phi$$
 screw := 0.006* Cap screw diameter N segments := 3* # propellant segments

Material Properties

$$\sigma$$
 yield casing := $250 \cdot 10^6$ * Supplier (Atlas Steels) spec for mild steel tubing

$$\tau_{\text{screws_yield}} := 500 \cdot 10^6 * Standard black finish cap screws$$

Aerodynamic Parameters

$$Cd := 0.75_*$$
 Drag coeff from CFD simulation $m_dry := 6_*$ Allowing 1.2 kg more than 1st rocket for payload and

electronics, assuming

some mass will be lost

$$\phi$$
 airframe := .087

Area :=
$$\pi \cdot \frac{\phi_{airframe}^2}{4}$$
 * Compatible with Cd $\rho_{air} := 1.2_*$ Assume 25 deg. C, Patmos

Propellant Parameters

A
$$RNX := 400.9_*$$
 From Nakka's charts, adjusted after static test

$$n RNX := 0.641_*$$
 From Nakka's charts

$$k := 1.055_*$$
 Determined from Nakka's charts

$$\rho$$
 RNX := 1664* Measured by volumetric displacement, agrees with literature

Burn Surface Area

$$A_ends(d_burn) := \frac{N_segments \cdot 2 \cdot \pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn \right)^2 \right] *$$

 $A_core(d_burn) := N_segments \cdot \pi \cdot (\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn) \cdot (L_segment - 2 \cdot d_burn) *$

 $A_burn(d_burn) := A_core(d_burn) + A_ends(d_burn)_*$

N_points := 100*

 $\underline{d}_b := 0, \frac{\underline{t}_segment}{N \ points} ... \, \underline{t}_segment_* \qquad \text{Array of burn distance for plotting against burn surface area}$

Solve for the maximum burn area

$$Grad(d) := \frac{d}{dd} A_burn(d) \to 6 \cdot \pi \cdot (.11 - 2 \cdot d) - 6 \cdot \pi \cdot (.11e-1 + 2 \cdot d) + \frac{3}{2} \cdot \pi \cdot [(-.44e-1) - 8 \cdot d]_*$$

 $guess := 0_*$ Initail guess for the solver to work with

d A max := root(Grad(guess), guess)*

A burn $max := A core(d A max) + A ends(d A max)_*$

Propellant mass assuming square end faces

$$m_propellant := N_segments \cdot \rho_RNX \cdot \frac{\pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment \right)^2 \right] \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_segment - 2 \cdot t_segment \right]^2 \cdot L_segment * \left[\phi_seg$$

Motor Operating Conditions

Potter and Wiggert Equation 9.3.12:

$$Mach_exit := \left[\left(\frac{2}{k-1} \right) \cdot \left(\frac{p_chamber}{p_exit} \right)^{\frac{k-1}{k}} - \frac{2}{k-1} \right]^{\frac{1}{2}}$$

$$Mach_exit := 2.82$$

Combining Potter and Wiggert Equations 9.3.12 and 9.3.13:

$$T_chamber := T_exit \cdot \left[1 + \left(\frac{k-1}{2} \right) \cdot Mach_exit^2 \right] * T_chamber = 1.571 \times 10^3$$

Casing Stresses

$$\sigma_{-}hoop := p_chamber \cdot \frac{\phi_i_casing}{2 \cdot t_casing} * \qquad \sigma_{-}hoop = 5.963 \times 10^7$$

$$\sigma_{-}axial := p_chamber \cdot \frac{\phi_i_casing^2}{\left(\phi_i_casing + 2 \cdot t_casing\right)^2 - \phi_i_casing^2} * \qquad \sigma_{-}axial = 2.873 \times 10^7$$

$$\sigma_{-}von_Mises := \left[\frac{1}{2} \cdot \left[\left(\sigma_hoop - \sigma_axial\right)^2 + \left(\sigma_axial - p_chamber\right)^2 + \left(p_chamber - \sigma_hoop\right)^2 \right]^{\frac{1}{2}} *$$

$$Safety_factor_casing := \frac{\sigma_yield_casing}{\sigma_von_Mises} * \qquad \sigma_von_Mises = 4.786 \times 10^7$$

$$Safety_factor_casing := \frac{\sigma_yield_casing}{\sigma_von_Mises} * \qquad Safety_factor_casing = 5.224$$

$$\tau_screws := p_chamber \cdot \frac{\phi_i_casing^2}{\phi_screw^2 \cdot N_screws} * \qquad (Assumes pure shear)$$

$$Safety_factor_screws := \frac{\tau_screws_yield}{\tau_screws} * \qquad Safety_factor_screws = 11.392$$

$$\sigma_holes := p_chamber \cdot \frac{\pi}{4} \phi_i_casing \cdot N_screws * \qquad (Assumes pressure acts uniformly over a rectangle of dimensions $\phi_hole \times t_wall)$$$

$$Safety_factor_holes := \frac{\sigma_yield_casing}{\sigma_holes} * \sigma holes = 1.034 \times 10^8 \\ Safety_factor_holes = 2.417$$

(Assumes pressure acts uniformly over a

Nozzle Geometry at Design Condition

$$K_n := A_RNX \cdot \left(\frac{p_chamber}{10^6}\right)^{n_RNX} *$$

(Ratio of burn surface area to throat area, p conv. to MPa) Note: For p_chamber = 1 MPa, n_RNX has no effect on K n. A RNX only was adjusted to correct chamber pressure from previous iteration

Nakka Equation 14 - Nozzle Theory

Expansion_ratio :=
$$\left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \cdot \left(\frac{p_exit}{p_chamber}\right)^{\frac{1}{k}} \cdot \left[\frac{k+1}{k-1} \cdot \left[1 - \left(\frac{p_exit}{p_chamber}\right)^{\frac{k-1}{k}}\right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
Expansion_ratio = 0.116

Expansion ratio = 0.116

$$A_star := \frac{A_burn_max}{K_n} * A_star = 3.353 \times 10^{-5}$$

$$A_{\text{exit}} := \frac{A_{\text{star}}}{\text{Expansion ratio}} * A_{\text{exit}} = 2.882 \times 10^{-4}$$

$$\phi_throat := \sqrt{4 \cdot \frac{A_star}{\pi}} * \qquad \qquad \phi_throat = 6.534 \times 10^{-3}$$

$$\phi_{\text{exit}} := \sqrt{\frac{4 \cdot A_{\text{exit}}}{\pi}} * \qquad \qquad \phi_{\text{exit}} = 0.019$$

Perfromance Metrics

Nakka Equation 3 - Solid Rocket Motor Thrust Calculations:

Thrust := A_star·p_chamber·
$$\frac{2 \cdot k^2}{k-1} \cdot \left[\left(\frac{2}{k+1} \right)^{\frac{k+1}{k-1}} \cdot \left[1 - \left(\frac{p_exit}{p_chamber} \right)^{\frac{k-1}{k}} \right] \right]^{\frac{1}{2}} *$$
 Thrust = 244.976 *

Potter and Wigert Equation ???:

Trajectory Approximation by Numerical Method

$$\begin{array}{ll} t_inc := 0.1_* & t_sim := 70_* & N_sim := floor \\ \hline \begin{pmatrix} \underline{t_sim} \\ \underline{t_inc} \end{pmatrix} tim := 0, t_inc...t_sim \\ \\ thrust(tim) := \begin{bmatrix} Thrust & if tim < Burn_time \\ 0 & otherwise \\ \end{bmatrix}$$

$$mass(tim) := \begin{bmatrix} m_propellant + m_dry - \frac{m_propellant}{Burn_time} \cdot tim & if \ tim < Burn_time \\ m_dry & otherwise \end{bmatrix}$$

$$\begin{split} \mathbf{U} \coloneqq & \begin{vmatrix} \mathbf{U}_0 \leftarrow \mathbf{1} \cdot \mathbf{10}^{-12} \\ \text{for } \mathbf{i} \in \mathbf{1} ... \, \mathbf{N}_{\text{sim}} - \mathbf{1} \end{vmatrix} \\ & \begin{vmatrix} \mathbf{F} \mathbf{d}_i \leftarrow \frac{1}{2} \cdot \mathbf{C} \mathbf{d} \cdot \boldsymbol{\rho}_{\text{air}} \cdot \mathbf{Area} \cdot \left(\mathbf{U}_{i-1}\right)^2 \cdot \frac{\mathbf{U}_{i-1}}{\left|\mathbf{U}_{i-1}\right|} \\ & \mathbf{F}_{\text{total}}_i \leftarrow \text{thrust}(\mathbf{i} \cdot \mathbf{t}_{\text{inc}}) - \mathbf{F} \mathbf{d}_i - 9.81 \cdot \text{mass}(\mathbf{i} \cdot \mathbf{t}_{\text{inc}}) \\ & \mathbf{U}_i \leftarrow \mathbf{U}_{i-1} + \frac{\mathbf{F}_{\text{total}}_i}{\text{mass}(\mathbf{i} \cdot \mathbf{t}_{\text{inc}})} \cdot \mathbf{t}_{\text{inc}} \\ & \text{return } \mathbf{U} \end{aligned}$$

$$\begin{aligned} \mathbf{h} &\coloneqq & \begin{vmatrix} \mathbf{h}_0 \leftarrow \mathbf{0} \\ &\text{for } i \in 0.. \, \mathbf{N}_\mathbf{sim} - 1 \\ &\mathbf{h}_{i+1} \leftarrow \mathbf{h}_i + \mathbf{U}_i \cdot \mathbf{t}_\mathbf{inc} \\ &\text{return } \mathbf{h} \end{aligned}$$

$$h_{max} := max(h)$$
 $h_{max} = 1.679 \times 10^{3}$
 $U_{max} := max(U)$
 $U_{max} = 175.248$

Results Summary

m_propellant =
$$1.07$$
 *

Mach_exit = 2.82 *

T_chamber = 1.571×10^3 *

Safety_factor_casing = 5.224 *

Safety_factor_screws = 11.392 *

Safety_factor_holes = 2.417 *

 ϕ _throat = 6.534×10^{-3} *

 ϕ _exit = 0.019 *

Thrust = 244.976 *

Burn_time = 7.692 *

 ϕ _max = 1.679×10^3

U_max = 175.248

Output to Excel Spreadsheet 'Motor Parameters'

Solid Rocket Motor Parameters		
For use with SolidWorks and MathCad		
Malcolm Snowdon		
24/08/2009		
Parameter	Value	Details
Throat Diameter	0.006534201	0.0032671
Exit Diameter	0.019155699	0.00957785
Segment Length	0.11	
Segment Wall	0.02	
Segment Diameter	0.051	