

Histogram Equalization

Author: Shih-Shinh Huang

Version: v011

Date: February 27, 2021

Outline

- Image Histogram
- Equalization Algorithm
- Theorem and Proof

• Definition

• The histogram of a digital image is a discrete function $p(r_k)$ with gray values $r_0, r_1, \dots r_{L-1}$.

$$p(r_k) = \frac{n_k}{n}$$

- n_k : number of pixels with gray value r_k :
- n: total number of pixels in the image

Definition

• Example: A 10x10 image I_{in} with gray values with gray values $r_0 = 0, r_1 = 1, ... r_7 = 7$

	\$ \$ 1 kg									
****	0	6	5	3	4	1	1	3	4	1
•	3	2	3	4	3	2	3	4	3	2
	2	1	0	က	4	2	2	0	4	2
	1	0	5	6	1	2	5	б	7	2
	6	*-3-	4	6	1	1	4	6	7	1
	3	1	5	.2.	1	3	0	2	1	3
	2	1.	2	0	4	2	2	3	4	2
	1	0	5	6	7	2	5	6.	7	2
	1	3	4	1	7	0	4	0	7	1
	3	1	5	2	1	3	5	2	1	0
									•	

- Typical Histograms
 - Histogram provides a global description of the image appearance

Dark Image

• Typical Histograms

- The histogram of the high contrast image is more uniformly distributed in all gray values.
- Histogram equalization is an algorithm to transfer the original histogram to a more flat one.

- Formal Description
 - Design a transformation s = T(r) to equalize the distribution of the original image I_{in} .

• Design of s = T(r)

Cumulative Distribution

Function

Maximal Intensity
$$S_k = T(r_k) = (L-1) \times \sum_{j=0}^{k} p_{in}(r_j)$$

$$s_{0} = T(r_{0} = 0) = (L-1) \times \sum_{\substack{j=0 \ j=0}}^{k=0} (p_{0})(r_{j})$$

$$s_{1} = T(r_{1} = 1) = (L-1) \times \sum_{\substack{j=0 \ j=0}}^{k=1} (p_{0})(r_{j}) p_{in}(r_{1})$$

$$s_1 = T(r_1 = 1) = (L - 1) \times \sum_{j=0}^{\infty} p(r_0)r_j p_{in}(r_1)$$

• Design of s = T(r)

$$s_k = T(r_k) = (L-1) \times \sum_{j=0}^k p_{in}(r_j)$$

$$s_0 = T(r_0 = 0) = 7 \times (0.1) = 0.7 \rightarrow 1$$

$$s_1 = T(r_1 = 1) = 7 \times (0.1 + 0.2) = 2.1 \rightarrow 2$$

$$r s_7 = T(r_7 = 7) = 7 \times (0.1 + ... + 0.06) = 7$$

• Image Transformation

$$I_{out}(x,y) = T(I_{in}(x,y))$$

0	6	5	3-	4	1	1	3	4	1
3	2	3	4	3	2	3	4	3	2
2	1	0	3	4	2	2	8	4	2
1	0	5	6	1	2	3	6	7	2
6	3	4	6	1	1	4	6	7	1
3	1	5	2	1	3	0	2	1	3
2	1	2	8	4	2	2	3	4	2
1	0	5	6	7	2	5	6	7	2
1	3	4	1	7	0	4	0	7	1
3	i	5	2	i	3	5	2	i	0

1	7	6	5	5	2	2	5	5	2
5	4	5	5	5	4	5	5	5	4
4	2	1	5	5	4	4	1	5	4
2	1	6	7	2	4	6	7	7	4
7	5	5	7	2	2	5	7	7	2
5	2	6	4	2	5	1	4	2	5
4	2	4	1	5	4	4	5	5	4
2	1	6	7	7	4	6	7	7	4
2	5	5	2	7	1	5	1	7	2
5	2	6	4	2	5	6	4	2	1

(2)

255

• Examples

- Pseudo Code
 - Step 1: Compute the histogram of input image

$$p(r_k) = \frac{n_k}{n}$$

• Step 2: Compute the transformation function

$$s_k = T(r_k) = (L-1) \times \sum_{j=0}^k p_{in}(r_j)$$

• Step 3: Transform the value of each pixel by

$$I_{out}(x,y) = T(I_{in}(x,y))$$

- Assumptions
 - T(r) is a monotonically increasing continuous function without loss of generality
 - T(r) is a function mapping from [0,1] to [0,1]

Proposition

- Let $p_{in}(r)$ denote the probability density of the Gray values in the input image.
- Let $p_{out}(s)$ be the probability density of $p_{in}(r)$ after transformation s = T(r)

Discrete:
$$S_k = T(r_k) = \sum_{j=0}^k p_{1j}(x_j \sum_{j=0}^k p_{in}(r_j))$$

Continuous: $S = T(r) = \int_0^r p_{in}(w)dw$ $0 \le r \le 1$

- Proposition $s = T(r) = \int_0^r p_{in}(w)dw$
 - **Prove:** $p_{out}(s)$ is uniformly distributed in [0,1]

- Proof
 - Use the fundamental theorem of calculus

• Proof

• Derive
$$p_{out}(s)$$
 using $s = T(r) = \int_0^r p_{in}(w)dw$

$$p_{out}(s) = p_{in}(r)\frac{dr}{ds} = p_{in}(r)\left(\frac{ds}{dr}\right)^{-1}$$

$$= p_{in}(r) \left(\frac{d \int_{0}^{r} \dot{p}_{in}(w) dw}{dr} \right)^{-1} = p_{in}(r) \left(p_{in}(r) \right)^{-1} = 1$$

$$\Rightarrow p_{out}(s) = 1$$
 Uniformly Distributed

• Discussion

- The output probability density $p_{out}(s)=1$ is uniform regardless of the input
- The histogram of output image is only approximately uniform since it is in the **discrete** case.

- Discussion
 - This algorithm usually **but not always** results in an enhanced image.

