Wrangle Report

Synopsis

- 1. Introduction
- 2. Data Gathering
- 3. Data Assessing
- 4. Data Cleaning
- 5. Conclusions

ND111 - Project 02 - Data Science II

Wrangle and Analyze Data

Anderson Hitoshi Uyekita 03 January 2019

Wrangle Report

Synopsis

Along the Data Wrangling process, in the twitter_archive_enhanced.csv file, I have found several problems in the dog's name column, probably the regex used to gather/find it (from the Twitter user <code>@dog_rates</code> also known as WeRateDogs[™] (https://twitter.com/dog_rates)) was not well calibrated, and in many cases has gathered articles, nouns, etc. or any other ordinary word. I have fixed it assuming these problematic dog's names as None.

I have also found problems in rating_numerator and rating_denominator columns, both from image_predictions.tsv file, which has required a new process of "scrapping" these values from the text column.

Finally, I have combined the files twitter_archive_enhanced.csv and image_predictions.tsv into a new data frame called twitter_archive_master.csv, which I have aggregated some new features:

- retweet_count , and;
- favorite_count.

Both features, are gathered from the WeRateDogs™ tweets using the tweepy package.

1. Introduction

This Wrangle Report is a part of a Data Science Course Project offered by Udacity (ND111 - Data Science II (https://br.udacity.com/course/fundamentos-data-science-ii--nd111)). The project aims to gather data from Twitter and combine it with a third party data frame to create analysis about the tweets and the predicted dog's breed.

2. Data Gathering

I have gathered the files <code>image_predictions.tsv</code> and <code>twitter_archive_enhanced.csv</code> using the <code>requests package</code>. Although the <code>image_predictions.tsv</code> file has almost all the information from the WeRateDogs $^{\text{TM}}$ user, there is some missed variable, which I have gathered using the <code>tweepy package</code>.

3. Data Assessing

The Data Assessing process have found several issues, which I have detailed in Table 1:

Table 1 - Summary of Issues Identified.

Issue ID	Table	Issue Type	Dimension	Method	Column	Description	
1	df_ach	Quality	Validity	Visual	name	Invalid names or non- standard names.	
2	df_ach	Tidiness	-	Visual	source	HTML tags, URL, and content in a single column.	
3	df_ach	Quality	Validity	Programmatic	rating_numerator	Invalid ratings. Value varies from 1776 to 0. Data Structure must be converted from int to float.	
4	df_ach	Quality	Validity	Programmatic	rating_denominator	Invalid denominator, I expected a fixed base. Data Structure must be converted from int to float.	
5	df_ach	Tidiness	-	Programmatic	doggo, floofer, pupper, and puppo	This is a categorical variable, and I can combine these columns into one column.	
6	df_ach	Tidiness	-	Programmatic	text	There is two information in a single column. Split the text from the URL.	
7	df_ach	Quality	Validity	Programmatic	timestamp	Convert to date.	
8	df_ach	Quality	Validity	Programmatic	tweet_id	Following the example of zip code, it must be a string.	
9	df_ach	Quality	Accuracy	Programmatic	retweeted_status_id	The same dog could be recorded twice or more in cases of retweets.	
10	df_ach	Quality	Accuracy	Programmatic	in_reply_to_status_id	The same dog could be recorded twice or more in cases of reply.	
11	df_img	Quality	Consistency	Visual	p1, p2, and p3	Dog's breed has no standard. Capital letter or lowercase names.	
12	df_img	Quality	Validity	Programmatic	tweet_id	Convert to string.	
13	df_img	Quality	Validity	Programmatic	jpg_url	It has duplicated images and consequently double entry.	
14	twt_ach_mstr	Tidiness	-	Programmatic	-	Merging these two tables (df_ach and df_img) into one.	
15	df_img	Quality	Completeness	Programmatic	"retweet count"	Gather additional info in tweet_json.txt file.	
16	df_img	Quality	Completeness	Programmatic	"favorite count"	Gather additional info in tweet_json.txt file.	

Issue ID	Table	Issue Type	Dimension	Method	Column	Description
17	twt_ach_mstr	Quality	Validity	Programmatic	"many columns"	Remove in_reply_to_status_id, in_reply_to_user_id, retweeted_status_timestamp, retweeted_status_id, and retweeted_status_user_id.

Legend:

- df_ach:Loaded data frame from twitter_archive_enhanced.csv;
- df_img:Loaded data frame from image_predictions.tsv, and;
- twt_ach_mstr:Loaded data frame from twitter_archive_master.csv.

4. Data Cleaning

The dog's names issue was solved evaluating if it starts with a capital letter it was a name if not it was an ordinary word and I have converted to "None". Most of the issues involving non-usual values to rating_numerator and rating_denominator were solved using a new tailored regular expression to gather the ratings from text column.

In respect to the data type problems in timestamp and tweet_id columns, were fixed using the .astype() method and .loc[].

In regard to the duplicated information, I decided to remove all retweets and reply to avoid double entries of the same dog.

Finally, I have solved the tidiness issues combining the tables twitter_archive_enhanced.csv and image_predictions.tsv in one called twitter_archive_master.csv. I have also merged 4 columns (doggo, pupper, puppo, and floofer) into one, which I have bundled and named as dogtionary.

5. Conclusions

I have documented 17 issues but this final file version is not totally free of issues, because I faced the Data Wrangle as an iterative process, what I did so far was the first iteration.

For this reason, the twitter_archive_master.csv file is the final file version with a minored number of issues, and ready for a Data Analysis. This file has 1968 observations and 24 features.

Caveats.: Bear in mind, there are some tweet_id that do not have retweet_count and favorite_count, which means there are observations with NaN.

Additional Info

For further information about Project 02 from Data Science II, you can access the following link:

- ND111 Project 02 Repository (https://github.com/AndersonUyekita/ND111_data_science_foundations_02/tree/master/03-Chapter03/00-Project_02) (Github Repository)
- ND111 Project 02 Wrangle Act (https://github.com/AndersonUyekita/ND111_data_science_foundations_02/blob/master/03-Chapter03/00-Project 02/wrangle act.ipynb) (Jupyter Notebook File)
- ND111 Project 02 Act Report (http://rpubs.com/AndersonUyekita/nd111_project_02_act_report) (Markdown File)
- ND111 Data Science II Nanodegree Repository (https://github.com/AndersonUyekita/ND111_data_science_foundations_02) (Github Repository)

A work by AH Uyekita (https://andersonuyekita.github.io/site/cv.html)

anderson.uyekita[at]gmail.com

in (https://linkedin.com/in/andersonuyekita/) Ω (https://github.com/AndersonUyekita/)