

Beyond Log-concavity: Provable Guarantees for Sampling Multi-Modal Distributions using Simulated Tempering Langevin Monte Carlo

Rong Ge¹, Holden Lee², Andrej Risteski³

Problem

Sample from distribution $p(x) \propto e^{-f(x)}$, $x \in \mathbb{R}^d$ given access to f(x), $\nabla f(x)$. (e.g. sampling posteriors)

Background

The great divide of optimization

Convex optimization

- S Local minima = global minima
- S Gradient descent finds global min.
- S Provable algorithms, beautiful math
- ML problems often non-convex

Non-convex optimization

- S Possibly bad local minima
- S Gradient descent can be bad
- S NP-hard in the worst-case (messy?)
- Works remarkably well in practice

The great divide of sampling

Log-concave distribution

- **S** Unimodal
- S Natural algorithm: Langevin diffusion
- S Provable algorithms, beautiful math
- ML problems often non-log-concave

Non-log-concave distribution

- S Potentially multimodal
- S Langevin can mix exponentially slowly
- \$\mathscr{G}\$ #P-hard in the worst-case (messy?)
- Morks well in practice w/temperature

Fixing Langevin?

A Markov chain with local moves such as Langevin diffusion gets stuck in a local mode.

Creating a meta-Markov chain which changes the temperature (simulated tempering) can exponentially speed up mixing.

Our question: Can we give provable guarantees for such an algorithm in natural "non-log-concave" settings?

Main Theorem

Let $p(x) \propto e^{-f(x)}$ on \mathbb{R}^d be s.t. $f(x) = -\log\left(\sum_{j=1}^n w_j e^{-\frac{\left\|x-\mu_j\right\|^2}{2\sigma^2}}\right)$ and we can query f(x), $\nabla f(x)$. There is an algorithm (based on Langevin diffusion + simulated tempering) running in time poly $\left(\frac{1}{w_{\min}}, \frac{1}{\sigma^2}, \frac{1}{\varepsilon}, d, \max \left\|\mu_j\right\|\right)$ that samples from a distribution q with $\|p-q\|_1 \leq \varepsilon$. A L^∞ perturbation of Δ multiplies time by a factor $\operatorname{poly}(e^{\Delta})$.

Algorithmic tools

- 1. Langevin diffusion (gradient flow + Brownian motion, or in discrete form, gradient descent + gaussian noise)
- 2. **Simulated tempering**: heuristic for speeding up MCs on multimodal distributions

Simulated tempering + Langevin diffusion

At point (i, x),

- So Evolve according to Langevin with inverse temperature β_i : $dx_t = -\beta_i \nabla f(x_t) dt + \sqrt{2} dW_t.$
- So Propose swaps with rate λ.

 When a swap is proposed, pick $i' = i \pm 1$ with probability ½. Set next point to (i', x) with probability min $\left(\frac{p_{i'}(x)}{p_{i}(x)}, 1\right)$.

Proof outline

1. Markov chain decomposition theorem

2. Mixing for each component

3. Mixing for "projected" chain

=> Mixing for "approximate" heating: $\widetilde{p}_i \propto \sum_{j=1}^m w_j \exp\left(-\frac{\beta_i \|x - \mu_j\|^2}{2}\right)$

4. Mixing for "actual" heating $p_i \propto \left[\sum_{j=1}^m w_j \exp\left(-\frac{\|x-\mu_j\|^2}{2}\right)\right]^{\beta_i}$

Main theorem

Decomposing using distributions

Inspiration: MC decomposition theorem (Madras, Randall 2002)

If MC mixes rapidly when restricted to each set of a partition, and "projected" MC mixes rapidly => MC mixes rapidly.

(Transition in projected chain: avg. prob. flow between sets.)

We prove a new decomposition theorem for distributions instead of sets.

Soft decomposition theorem

Let tempering chain be made up of Markov chains M_i . Suppose there is a **decomposition** $M_i(x,y) = \sum_{j=1}^m w_{ij} M_{ij}(x,y)$ where M_{ij} has stationary distribution p_{ij} . If each M_{ij} mixes in time C and projected chain mixes in time \bar{C} => simulated tempering chain mixes in time $O(C(\bar{C}+1))$.

Intuition:

(i) mixing time is equal to Poincaré constant $\max_{g}[\mathrm{Var}_p(g)/\mathcal{E}(g,g)]$ where

 $\mathcal{E}(g,h) = -\langle g, \mathcal{L}h \rangle_p$ is Dirichlet (bilinear) form and \mathcal{L} is the generator of MC.

(2) Dirichlet form "decomposes" into Langevin chains for components, and variance decomposes as

$$\operatorname{Var}_{p}(g) = \sum_{i=1}^{L} \sum_{j=1}^{m} \frac{1}{L} w_{ij} \left[\operatorname{Var}_{p_{ij}}(g_i) + \left(\mathbb{E}_{p_{ij}} g_i - \mathbb{E} g \right)^2 \right]$$

Use Poincare inequality for p_{ij} , get factor of C.

Use Poincare inequality for \bar{p} , get factor of \bar{C} .

Again, for intuition, 2 extreme cases.

- I. If all expectations $\mathbb{E}_{p_i}g_i$ are equal => factor \mathcal{C} from the component chains.
- 2. If g_i 's constant on each p_{ij} , only vary between p_{ij} 's => factor \bar{C} from projected chain.

The projected chain has large probability flow between (i, j) in the same or adjacent levels with similar distributions: $\overline{L}((i, j), (i, j')) = \frac{w_{ij'}}{\chi_{\text{sym}}^2(p_{ij}, p_{ij'})}$

Using the decomposition theorem:

- (1) Apply Langevin for "approximately" heated distributions (Langevin on individual components $p_{ij} \propto \exp\left(-\frac{\beta_i \|x-\mu_j\|^2}{2}\right)$ mixes rapidly).
- (2) Compare to "actually" heated distributions, losing factors of w_{\min} .
- 1. Duke University
- 2. Princeton University
- 3. Massachusetts Institute of Technology

More info: tiny.cc/glr17