

Art of Problem Solving 2005 Iran MO (2nd round)

National Math Olympiad (Second Round) 2005

Day 1	
1	Let $n, p > 1$ be positive integers and p be prime. We know that $n p-1$ and $p n^3-1$. Prove that $4p-3$ is a perfect square.
2	In triangle ABC , $\angle A = 60^{\circ}$. The point D changes on the segment BC . Let O_1, O_2 be the circumcenters of the triangles $\triangle ABD$, $\triangle ACD$, respectively. Let M be the meet point of BO_1, CO_2 and let N be the circumcenter of $\triangle DO_1O_2$. Prove that, by changing D on BC , the line MN passes through a constant point.
3	In one galaxy, there exist more than one million stars. Let M be the set of the distances between any 2 of them. Prove that, in every moment, M has at least 79 members. (Suppose each star as a point.)
Day 2	
1	We have a $2 \times n$ rectangle. We call each 1×1 square a room and we show the room in the i^{th} row and j^{th} column as (i, j) . There are some coins in some rooms of the rectangle. If there exist more than 1 coin in each room, we can delete 2 coins from it and add 1 coin to its right adjacent room OR we can delete 2 coins from it and add 1 coin to its up adjacent room. Prove that there exists a finite configuration of allowable operations such that we can put a coin in the room $(1, n)$.
2	BC is a diameter of a circle and the points X, Y are on the circle such that $XY \perp BC$. The points P, M are on XY, CY (or their stretches), respectively, such that $CY PB$ and $CX PM$. Let K be the meet point of the lines XC, BP . Prove that $PB \perp MK$.
3	Let \mathbb{R}^+ be the set of positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all positive real numbers x, y the equation holds:
	$(x+y)f(f(x)y) = x^2 f(f(x) + f(y))$

www.artofproblemsolving.com/community/c3889

Contributors: sororak