August 2024

Intel Gaudi 3 Al Accelerator: Architected for Gen Al Training and Inference

Roman Kaplan, Ph.D.

Principal Al Performance Architect

Intel Corporation August 2024

Gaudi Product Generations

Product Parameter	Gaudi	Gaudi 2	Gaudi 3	
TDP(OAM)	400 W	600W	900W (Air) / 1200W (Liquid)	
Peak Compute (BF16)	60 TFLOPs	432 TFLOPs	1835 TFLOPs	
HBM Capacity	32 GB	96 GB	128 GB	
Peak HBM BW	900 GB/s	2.46 TB/s	3.67 TB/s	
Peak PCIe BW (bi-directional)	64 GB/s	64 GB/s	128 GB/s	
Embedded NIC BW (bi-directional)	2 Tb/s	4.8 Tb/s	9.6 Tb/s	

Intel® Gaudi® 3 Al Accelerator OAM

- OAM: Open Compute Platform Acceleration Module
- 2 compute dies connected over an interposer bridge
- 8 HBM2e stacks
- Up to 900W with air cooling
- Up to 1200W with liquid cooling
- PCle Gen5 xl6
- 24x 200GbE RoCE via 48 112G PAM4 Serdes

Intel® Gaudi® 3 Spec and Block Diagram

Feature/Product	Intel® Gaudi® 3 Accelerator		
BF16 Matrix TFLOPs	1835		
FP8 Matrix TFLOPs	1835		
BF16 Vector TFLOPs	28.7		
MME Units	8		
TPC Units	64		
HBM Capacity	128 GB		
HBM Bandwidth	3.67 TB/s		
On-die SRAM Capacity	96 MB		
On-die SRAM Bandwidth (L2 Cache)	12.8 TB/s		
Networking	1200 GB/s bidirectional		
Host Interface	PCle Gen5 x16		
Host Interface Peak BW	128 GB/s bidirectional		
Media Engine	Rotator + 14 Decoders (HEVC, H.264, JPEG, VP9)		

Architecture in Depth

- Uniform memory mapping of HBM by MMU
- Compute is clustered:
 - 4 Deep Learning Cores (DCORE)
 - Each DCORE: 2xMME, 16xTPC, 24MB cache
- L2 and L3 data caches:
 - L2: Allocated only in DCORE cache
 - L3: Uniformly distributed across all DCORE caches
- Media accelerators:
 - Decoder and Rotator
- NW Sub-system containing:
 - 24 RDMA NIC 200GbE ports
 - (details in a separate slide)
- Control has a separate block and NOC fabric

Intel Gaudi 3 Al Accelerator Block Diagram **DCORE** Die 1 12 x 200Gbps, RDMA NIC Media Engine 16GB 16GB HBM2e HBM2e 2 x MME $2 \times MME$ 16GB Cache 16GB Cache 16 x TPC 16 x TPC HBM2e HBM2e 24MB 24MB Cache Cache 16GB 16**GB** 16 x TPC 16 x TPC HBM2e 24MB 24MB HBM2e 2 x MME 2 x MME 16GB 16GB HBM2e HBM2e Media Engine PCIe Gen5 12 x 200Gbps, RDMA NIC

Die 0

Matrix Multiplication Engine (MME)

- Executes all matrix multiplication operations
- Configurable, not programmable
- Each MME is a large output stationary systolic array:
 - 256x256 MAC structure w/ FP32 accumulators
 - 64k MACs/cycle for BF16 and FP8
- Internal pipeline to maximize compute throughput:
 - Input read, compute & output write all execute in parallel
 - Integrated transpose engines for zero-overhead input transpose
 - Accumulated result is converted to any precision before write out
- Internal buffers for input reuse replacing L1\$
- Integrated Address Generation Unit (AGU):
 - Address calculation within 5-D data tensor
 - OOB read padding and write prevention

Tensor Processor Core (TPC)

- Total of 64 TPC units across the chip
- Executes non-Matmul operations
- Programmable: C enhanced with TPC intrinsics
- VLIW with 4 separate pipeline slots:
 - Vector: 256B-wide SIMD
 - Scalar
 - Load: Vector or scalar
 - Store: Vector or scalar
- Load and Store slots integrate Address Generation Unit
 - Calculates the memory address within a 5-D data tensor
- Supports main 1/2/4-Byte datatypes: FP and integer
- 12KB vector register file
- 80KB of vector local memory (VLM)
- Latency hiding mechanism

Memory Sub-System

- Unified Memory space of L2 / L3 / HBM
- Near Memory Compute:
 - Add/Sub
 - Max / Min
- Usage of Memory Context ID (MCID) to tag cache lines with shared algorithmic usage
- Cache Directives:
 - No-\$, L2\$, L3\$, L2\$+L3\$
 - Discard: Invalidate all same-MCID CLs
 - Degrade: Reset same-MCID CLs hit count

Memory Sub-System Logical View 24× $2 \times$ $2\times$ 2xMedia MME TPC MME MME MME NIC ALU ALU ALU ALU L2 Cache L2 Cache L2 Cache L2 Cache L3 Cache **HBM** PCIE

Control Path and Runtime Driver

- Separate NOC fabric for control path messages
- Sync Manager handles on-die control logic:
 - Dispatches work to the designated units
 - Waits on counted events, and triggers start-ofjob to the units
- Runtime Driver:
 - Sets engine work dependencies by configuring the Sync Manager
 - Submits jobs through Submission Queues
 - Accepts completion events through Completion Queues
- Interrupt Manager enables passing events asynchronously to the driver

Intel® Gaudi® Software Suite

- Integrates the main frameworks used today
- Supports FP16/BF16 → FP8 quantization
- Main proprietary SW layers:
 - Graph Compiler: Determines all engine dependency and scheduling logic
 - Matrix operations: Configuring the MME
 - TPC kernels: All non-Matrix operations
 - Collective Communication Library (HCCL)
- Several sources for TPC Kernels:
 - Habana's optimized TPC kernel library
 - Custom user kernels
 - MLIR-based fused kernels: generated during graph compilation

MME-TPC Parallelism via Pipelining

- Graph Compiler orchestrates MME & TPC parallelism
 - Long chunks of work are split to smaller independent slices
 - Pipeline using producer → consumer relation
- Slice size is determined to balance between the following:
 - High compute utilization
 - Fit within the cache capacity
 - Maximize engine parallelism
- NOC fabric was designed to support the parallel work of MME and TPC

Networking and Habana Labs Server 3 (HLS3)

- Network ports exposed as NICs to driver
- NICs are activated via RDMA verbs over Device Virtual Space
- Collective operations execute w/ low control overhead

Habana Labs Server (HLS) Node

- 2x Intel Xeon Host CPUs
- 8x Gaudi 3 OAM Cards
- Peer-to-peer (P2P) connection between each pair of Gaudi3 cards
- Gaudi NICs are used both for scale-up and for scale-out
- No need for a network switch inside the node to support scale-out
- Scale-up BW: Total of 67.2Tb/s bi-directional
- Scale-out BW: Total of 9.6Tb/s bi-directional

Performance: GenAl Inference Benchmarks

- Initial measured benchmarks:
 - FP8 precision
 - Intermediate results using development version before 1.18 release
 - 1.18 performance results will be published during September
- Gen-over-gen improvement of up to 2.8x
- All main LLM models and GenAl models are functional on Gaudi3
- Software optimization continues on LLMs for future software releases – working on wide range of use-cases

Model & Execution Parameters				Gaudi2 Measured		Gaudi3 Measured	
Model	TP (# Devices)	Input Length	Output Length	Batch Size	Throughput (tokens/sec)	Batch Size	Throughput (tokens/sec)
LLAMA2-7B	1	128	2048	163	4,789	217	6,574
	1	2048	2048	81	1,969	81	2,427
LLAMA3-8B	1	128	2048	289	11,098	768	18,769
	1	2048	2048	155	5,380	364	6,922
LLAMA2-70B	1	128	2048	88	1,126	164	3,218
	1	2048	2048	45	499	60	1,160
LLAMA2-70B	2	128	2048	327	3,212	512	6,225
	2	2048	2048	78	1,394	240	2,550

Gaudi 3: Al Acceleration at any Scale

- Close collaboration between SW and HW teams to reach high performance
- SW stack is continuously improving performance and expanding functionality
- Gaudi3 provides Al acceleration at any scale: Card → Node → Rack → Cluster
- Multiple HLS3 clusters are being designed and built
- More details in the Whitepaper ("Gaudi3 Whitepaper" on Google):
 https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html

Thank You

