Solutions to CS3236 Exam

2018/19 Semester 2

Problem 1 – Source and Channel Coding (30 Points)

(1) (10 Points) Consider a fixed-length source coding setting with rate R, block length n, alphabet \mathcal{X} , source sequence $\mathbf{X} \in \mathcal{X}^n$ assumed to be discrete and memoryless according to P_X , estimate $\hat{\mathbf{X}} \in \mathcal{X}^n$, and error probability $P_{\mathbf{e}}$.

Consider the following chain of inequalities:

$$nR \stackrel{(i)}{\geq} H(\hat{\mathbf{X}})$$

$$\stackrel{(iii)}{\geq} H(\hat{\mathbf{X}}) - H(\hat{\mathbf{X}}|\mathbf{X})$$

$$\stackrel{(iii)}{=} I(\mathbf{X}; \hat{\mathbf{X}})$$

$$\stackrel{(iv)}{=} H(\mathbf{X}) - H(\mathbf{X}|\hat{\mathbf{X}})$$

$$\stackrel{(v)}{\geq} H(\mathbf{X}) - nP_{\mathrm{e}} \log_{2} |\mathcal{X}| - 1$$

$$\stackrel{(vi)}{=} nH(X) - nP_{\mathrm{e}} \log_{2} |\mathcal{X}| - 1$$

In the space to the right of each of steps (i)–(vi), write down the most suitable explanation (one only) among the following:

- Definition of entropy
- Definition of mutual information
- Non-negativity of entropy
- Non-negativity of mutual information
- The source is memoryless
- Data processing inequality
- Fano's inequality
- Uniform distribution maximizes entropy
- Conditioning reduces entropy
- Chain rule for mutual information

Solution. (i) Uniform distribution maximizes entropy; (ii) Non-negativity of entropy; (iii) Definition of mutual information; (iv) Definition of mutual information; (v) Fano's inequality; (vi) The source is memoryless.

(b) (20 Points) Consider the discrete memoryless channel with alphabets $\mathcal{X} = \mathcal{Y} = \{1, 2, 3, 4\}$ and transition probabilities depicted in the following diagram:

- (i) Compute the channel capacity $C = \max_{P_X} I(X;Y)$, showing your working.
- (ii) Write down two different capacity-achieving input distributions P_X^* that both attain the maximum in $\max_{P_X} I(X;Y)$.
- (iii) Briefly describe a simple method (i.e., encoder and decoder) for transmitting at a positive rate while achieving an error probability of exactly zero.

Solution.

(i) Write I(X;Y) = H(Y) - H(Y|X), and note that conditioned on any X = x, the conditional probabilities $P_{Y|X}(y|x)$ are always $\frac{1}{2}$ for two values of y, and zero for all other values. Therefore, H(Y|X) = 1, and I(X;Y) = H(Y) - 1.

Observe that H(Y) is at most 2, because there are four outputs (uniform maximizes entropy). In addition, we can make H(Y) equal to 2 by letting X be uniform: $P_Y(1) = \frac{1}{2}P_X(1) + \frac{1}{2}P_X(4) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$ and similarly $P_Y(2) = P_Y(3) = P_Y(4) = \frac{1}{4}$. Therefore, $C = \max_{P_X} H(Y) - 1 = 2 - 1 = 1$ bit/use.

- (ii) We can also make Y be uniform by letting $P_X(1) = P_X(3) = \frac{1}{2}$ and $P_X(2) = P_X(4) = 0$. So this is one possible P_X^* , uniform on $\{1, 2, 3, 4\}$ is another one.
- (iii) Let the number of messages be $M=2^n$, so the rate is R=1. Represent the message $m \in \{1,\ldots,2^n\}$ as a binary sequence of length n, and transmit that sequence in n channel uses by mapping 0 to X=1 and 1 to X=3 (never use symbols 2 or 4). At the decoder, simply map both symbols Y=1 and Y=2 back to X=0, and map Y=3 and Y=4 back to X=1.

Problem 2 – Discrete and Continuous Information Measures (25 Points)

(a) (18 Points) Let X and Y be discrete real-valued random variables with joint probability mass function P_{XY} , and let U and V be continuous real-valued random variables with joint probability density function f_{UV} . Recall that $H(\cdot)$ denotes the entropy for discrete random variables, and $h(\cdot)$ denotes the differential entropy for continuous random variables.

For each of the following, either explain why the given statement is <u>always true</u>, or explain why it is <u>sometimes false</u>. In your answers, you may make use of any statement proved in the lectures, unless it is the exact statement in the question.

(Hint: If done well, each of these can be answered correctly in 1 or 2 sentences.)

- (i) $I(X;Y) \leq H(X)$
- (ii) $I(U;V) \leq h(U)$
- (iii) H(X) = H(cX) for any fixed constant c > 0
- (iv) h(U) = h(cU) for any fixed constant c > 0
- (v) $H(X) \le \frac{1}{2} \log_2 \left(2\pi e \mathbb{E}[X^2]\right)$
- (vi) $h(U) \leq \frac{1}{2} \log_2 \left(2\pi e \mathbb{E}[U^2]\right)$

Solution. (i) This is always true, because I(X;Y) = H(X) - H(X|Y) and $H(X|Y) \ge 0$.

- (ii) This may be false; for example, it is false when h(U) < 0, since even for continuous random variables we have I(U; V) > 0.
- (iii) This is always true, because the distributions of X and cX are described by the same collection of probability values.
- (iv) This may be false, because $h(cU) = h(U) + \log_2 |c|$.
- (v) This may be false, because if $\mathbb{E}[X^2]$ is small enough then the right-hand side is negative, whereas for the left hand side $H(X) \geq 0$.
- (vi) This is always true, because the Gaussian distribution maximizes differential entropy for a given variance, its differential entropy is $\frac{1}{2}\log_2\left(2\pi e\operatorname{\sf Var}[U]\right)$, and $\operatorname{\sf Var}[U] \leq \mathbb{E}[U^2]$ with equality if $\mathbb{E}[U] = 0$.
- (b) (7 Points) The exponential distribution has a probability density function given by

$$f_{\exp}(u) = \begin{cases} \lambda e^{-\lambda u} & u \ge 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\lambda > 0$ is a parameter. The mean of this distribution is $\frac{1}{\lambda}$ (you do not need to prove this). Show that any non-negative valued random variable with some density function $f_U(u)$ and mean $\frac{1}{\lambda}$ must have a differential entropy no higher than that of the exponential distribution.

Solution. Letting $f = f_U$ and $g = f_{exp}$, we have

$$D(f||g) = \mathbb{E}_f \left[\log_2 \frac{f(U)}{g(U)} \right]$$

$$= \mathbb{E}_f \left[\log_2 \frac{1}{g(U)} \right] - \mathbb{E}_f \left[\log_2 \frac{1}{f(U)} \right]$$

$$= \mathbb{E}_f \left[\log_2 \frac{1}{g(U)} \right] - h(U).$$

Substituting $g(u) = f_{\exp}(u)$ given in the question, and using the fact that a random variable with density $f = f_U$ only takes non-negative values by assumption, we obtain

$$D(f||g) = \mathbb{E}_f \left[\lambda U \log_2 e + \log_2 \frac{1}{\lambda} \right] - h(U)$$
$$= \log_2 e + \log_2 \frac{1}{\lambda} - h(U),$$

since by assumption $\mathbb{E}_f[U] = \frac{1}{\lambda}$. Since $D(f||g) \geq 0$ with equality if and only if f = g, we deduce that $h(U) \leq \log_2 e + \log_2 \frac{1}{\lambda}$ with equality if and only if f has the exponential distribution.

Problem 3 – Linear Codes (25 Points)

Consider the linear channel code with generator matrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

All of questions (a)–(c) below concern this particular code.

(a) (10 Points) Write down all of the codewords of the code, as well as the parity check matrix \mathbf{H} and the minimum distance d_{\min} .

Solution. The codewords are

The parity check matrix is

$$\mathbf{H} = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

The minimum distance is $d_{min} = 2$, the lowest non-zero weight among the codewords listed above.

(b) (5 Points) Let $d_{\rm H}(\cdot,\cdot)$ denote the Hamming distance, and again let $d_{\rm min}$ be the minimum distance of the code. Is it possible to find three <u>different</u> codewords \mathbf{x} , \mathbf{x}' , and \mathbf{x}'' of this code such that both $d_{\rm H}(\mathbf{x},\mathbf{x}')=d_{\rm min}$ and $d_{\rm H}(\mathbf{x},\mathbf{x}'')=d_{\rm min}$? Explain.

(Note: It is important to observe that both of these $d_H(\cdot,\cdot)$ expressions have the same first argument \mathbf{x} .)

Solution. It is not possible. We see in part (b) that only one codeword has weight 2, and so only one codeword is at a minimum distance from the all-zero codeword (i.e., $\mathbf{x} = \mathbf{0}$). By linearity, the same is true for any \mathbf{x} : If we were to have $d_H(\mathbf{x}, \mathbf{x}') = d_{\min}$ and $d_H(\mathbf{x}, \mathbf{x}'') = d_{\min}$, then subtracting \mathbf{x} from all three codewords would give $d_H(\mathbf{0}, \mathbf{x}' \oplus \mathbf{x}) = d_{\min}$ and $d_H(\mathbf{0}, \mathbf{x}'' \oplus \mathbf{x}) = d_{\min}$, which is impossible since $\mathbf{x}' \oplus \mathbf{x}$ and $\mathbf{x}'' \oplus \mathbf{x}$ are distinct valid codewords.

(c) (10 Points) Let $\mathbf{u} = (u_1, u_2, u_3)$ be a triplet of information bits, and let $\mathbf{x} = \mathbf{u}\mathbf{G}$ be the resulting codeword. Suppose that a noise vector $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5, z_6)$ is generated by drawing an index $i \in \{1, 2, 3, 4, 5, 6\}$ uniformly at random and setting $z_i = 1$, then setting all other z_j ($j \neq i$) to zero. The resulting output vector $\mathbf{y} = \mathbf{x} \oplus \mathbf{z}$ (with modulo-2 addition) is passed to a decoder, who also knows \mathbf{G} and \mathbf{H} . Describe a decoder based on syndrome decoding that is able to recover \mathbf{u} with success probability 5/6.

Solution. The possible noise sequences and their syndromes are computed via the mapping $\mathbf{z} \to \mathbf{z} \mathbf{H}$ as follows:

 $\begin{array}{c} 100000 \rightarrow 100 \\ 010000 \rightarrow 110 \\ 001000 \rightarrow 111 \\ 000100 \rightarrow 100 \\ 000010 \rightarrow 010 \\ 000001 \rightarrow 001 \end{array}$

The decoder therefore computes $\mathbf{S} = \mathbf{yH}$, and if \mathbf{S} is any of 110, 111, 010, or 001, then the corresponding \mathbf{z} in the above list is added to \mathbf{y} to compute \mathbf{x} , and \mathbf{u} is identified as the first 3 bits of \mathbf{x} .

If **S** is 100, we choose $\mathbf{z} = 100000$ and proceed similarly. This means we get the case $\mathbf{z} = 100000$ correct, but get the case $\mathbf{z} = 000100$ (with the same syndrome) wrong.

Hence, we decode correctly for 5 out of the 6 possible **z** vectors, meaning the success probability is 5/6.

Problem 4 – A Challenging Calculation (20 Points)

Consider the setup shown in the following illustration, where:

- The random variables U_1, U_2, X_1, X_2 take values on $\{0, 1\}$, whereas Y_1 and Y_2 take values on $\{0, e, 1\}$ with e representing an "erasure";
- U_1 and U_2 are independent, and equal 0 or 1 with probability $\frac{1}{2}$ each;
- We have $X_2 = U_2$, and $X_1 = U_1 \oplus U_2$, with \oplus denoting modulo-2 addition;
- "BEC 1" and "BEC 2" are binary erasure channels, each having transition law $\mathbb{P}[Y_i = X_i] = 1 \epsilon$ and $\mathbb{P}[Y_i = e] = \epsilon$ (for some $\epsilon \in (0, 1)$) with independence between the two channels.

We can express the joint mutual information $I(U_1, U_2; Y_1, Y_2)$ using the chain rule as

$$I(U_1, U_2; Y_1, Y_2) = I(U_1; Y_1, Y_2) + I(U_2; Y_1, Y_2 | U_1),$$

By carefully using the assumptions in the above four dot points, find exact expressions for both $I(U_1; Y_1, Y_2)$ and $I(U_2; Y_1, Y_2|U_1)$, writing your answer in terms of the erasure probability ϵ .

Solution. (i) For the first term, we write

$$I(U_1; Y_1, Y_2) = H(U_1) - H(U_1|Y_1, Y_2) = 1 - H(U_1|Y_1, Y_2)$$

and observe the following:

- If an erasure occurs in BEC 1, then the value of U_1 has no impact on either of the outputs. This implies that $H(U_1|Y_1 = e, Y_2 = y_2) = H(U_1) = 1$.
- Suppose an erasure occurs in BEC 2. Then given $Y_1 = y_1$ and $Y_2 = e$, U_1 is always equally likely to be 0 or 1, because whatever pair (u_1, u_2) produced the output y_1 would have also been produced by $(u'_1, u'_2) = (1 u_1, 1 u_2)$ (and both U_1 and U_2 are uniform). Hence, we again have $H(U_1|Y_1 = y_1, Y_2 = e) = 1$.
- Suppose that neither BEC 1 nor BEC 2 have an erasure. Then given $(Y_1, Y_2) = (y_1, y_2)$, we trivially have $X_1 = y_1$ and $X_2 = y_2$, from which we can deterministically produce $U_2 = X_2$ and $U_1 = X_1 \oplus X_2$. Hence, the outputs determine U_1 , so we have $H(U_1|Y_1 = y_1, Y_2 = y_2) = 0$.

Combining these cases, and noting that the third case has probability $(1-\epsilon)^2$, we obtain

$$H(U_1|Y_1, Y_2) = \sum_{y_1, y_2} P_{Y_1Y_2}(y_1, y_2) H(U_1|Y_1 = y_1, Y_2 = y_2) = 1 - (1 - \epsilon)^2$$

and hence $I(U_1; Y_1, Y_2) = (1 - \epsilon)^2$.

(ii) For the second term, we use the independence of U_1 and U_2 to write

$$I(U_2; Y_1, Y_2|U_1) = H(U_2|U_1) - H(U_2|Y_1, Y_2, U_1) = 1 - H(U_2|Y_1, Y_2, U_1)$$

and observe the following:

- Suppose an erasure occurs in both BEC 1 and BEC 2. Then the value of U_2 has no impact on the output, so its conditional distribution given (y_1, y_2, u_1) is uniform, and the corresponding conditional entropy is 1.
- Suppose that no erasure occurs in BEC 2. Then we must have $X_2 = Y_2$, from which we get $U_2 = X_2$, so that Y_2 determines U_2 .
- Suppose that no erasure occurs in BEC 1. Then we must have $X_1 = Y_1$, from which we get $U_2 = X_1 \oplus U_1$, so that the pair (U_1, Y_1) determines U_2 .

Since the first case occurs with probability ε^2 , we deduce that $H(U_2|Y_1,Y_2,U_1) = \epsilon^2$, which implies that $I(U_2;Y_1,Y_2|U_1) = 1 - \epsilon^2$.

Observe that the two mutual information terms sum to $1 - \epsilon^2 + (1 - \epsilon)^2 = 2(1 - \epsilon)$, the same value as $I(X_1, X_2; Y_1, Y_2)$. The fact that $I(U_1, U_2; Y_1, Y_2) = I(X_1, X_2; Y_1, Y_2)$ could have also been used to do only one of the above two calculations and then easily infer the other term via the chain rule.

END OF PAPER