Antifeviornagnetism

In 1936 Neel Showed theoretically that it exchange integral Ji = -ve; twee a State of lowest energy is obtained obere the spin of neighbouring atoms have apposite orientation. Such materials are known an anti-feroio magnetic materials.

Hspin

Two interpracting Sublattice A & B

M = MA + MB

newest neighbour interation " IN FM C magnetization MA = A-Sublattice MB = B-Subtattice

1 MA 1 = 1 MB1

TH = Neel temporature M=MA+MB=D

1 ma-MB1 = Stagged ned Magnetism is used on parameter

Wiess molecular field theory for AFM
Consider magnetic materials with two sublattices 1 & B
Bee lattice A - 1 conner points B - 1 Bee position
An atom at A -size has neavest neighbour that all lie on A-sites.
B-Sites
$H_{M+} = -\lambda M$
HM- = -2 M+
the molecular field HMA acting on ac
Hmm = - NAMMA - NABMO MA & MB = Magnetizations
of A and 13
Sublattice c
MAB = Molecular Field
company too the
Potago Han:
MAPE = 11 For Near Meanust Neighbour Int.
Merghous Ent
The moleular Field HmB acting on the atom B-site
Hmm = - NBA MA - NBB MB
NAA = NBB = NIII
7
on the A and B lattice would be HA = HI HMA HB = HI HMB
on the A will MA - NAB MB - W HB=H+HmB
H-A = 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N. M.
HB = H- NABMA-NAMB (2)
HB = H- NABMA-NIMB (2)
HB = HI NABMA - NAMB - (2) MA = NBMB J BJ (2) NA = JBMB HA MA = MBMB J BJ (2)
$H_{B} = H_{1} - N_{AB}M_{A} - N_{1}M_{B} - (2)$ $M_{A} = N_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{A} = \frac{J_{2}M_{B}}{K_{B}T}H_{A}$ $M_{B} = \frac{N_{2}}{2}J_{AB}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$ $M_{B} = J_{2}M_{B}J_{B}J_{A}(x_{B})$
HB = H- NABMA-NIMB (2)

RE- CONTRACTOR

Case-1: Behavious above Th T) TN By (N)-1 37+1 X MA = Hghad J+1 = Jgha HA

KAT HA AH (I+E) [Brown BN MB = Ngress J(J+1) HB = Ngress. J(J+1)

Ni: Mas

MA M = MA + MB M = Ngrusy J(J+1) [2H - NAB (MA+MB) - Ni M] $M \left[1 + \left(N_{AB} + N_{ii} \right) \frac{N_0^2 N_B^2}{6 N_0 T} \right] = \frac{N_0^2 N_B^2}{6 N_0 T} \int (J_1 + I) \cdot \frac{3}{4} dt$ Ax= H = Ngvusv. J(J+1) - I + (NAB+ Nii) Ngrangv 7(J+1) $\chi = \frac{1}{1 + (N_{AB} + N_{ii})} \cdot \frac{1}{1 + (N_{AB} + N_{ii})} \cdot$ $\chi = \frac{\sqrt{r}}{1 + \sqrt{2r} \left(N_{AB} + N_{ii}\right)}$ T+ C (NAB+NII) for the AFM ET (1+E)[var py = 9 ON= C(NINAMAB) X = C / TON / X = T + ON XI TE I TNI 30N X