Outline

Cuprins

L	Recapitulare	1
2	Algoritmul Knuth-Morris-Pratt	2
3	Expresii regulate	8

1 Recapitulare

String Searching (Matching) Problem

Input Două şiruri: $s = s[0] \dots s[n-1]$, numit subject sau text, şi $p = p[0] \dots p[m-1]$, numit pattern.

Output Prima apariție a patternului p în textul s, dacă există; -1, altfel.

Algoritmul naiv (brute force)

- $O(n \cdot m)$ în cazul cel mai nefavorabil, O(min(n,m)) în cazul cel mai favorabil
- numărul mediu de comparații $\leq 2(n+1-m)$

Întrebare: putem obține O(n) în cazul cel mai nefavorabil?

Algoritmul Rabin-Karp

- utilizează tehnica tabelelor de dispersie (hash)
- trebuie să fie ușor de calculat și de comparat valorile hash
- complexitatea în cazul cel mai nefavorabil $O(n \cdot m)$, dar foarte puțin probabil să apară în practică
- complexitatea medie O(m+n)
- extensibil la cazul bidimensional (imagini)

Algoritmul Boyer-Moore

- regula caracterului rău: pentru cazul cel mai nefavorabil are complexitatea $O(m\cdot n)$
- Regula sufixului bun:
 - complexitate O(n+m) dacă patternul p nu apare în subiect; altfel rămâne $O(n\cdot n)$
 - totuși, cu o simplă modif
care (regula Galil, 1979) se poate obține ${\cal O}(n+m)$ în to
ate cazurile
 - algoritmul original al lui Boyer-Moore (1977) utilizează o variantă simplificată a regulei sufixului bun
 - -Richard Colen (1991) a stabilit o limită de 3n

Algoritmul Knuth-Morris-Pratt $\mathbf{2}$

Algoritmul naiv 1

a	b	c	b	a	b	a	b	a	a	b	c	b	a	b
				=	=	=	=	=	\neq					
				a	b	a	b	a	c	a				

${\bf Intuiția}^2$

a	b	c	b	a	b	a	b	a	a	b	c	b	a	b
				=	=	=	=	=	\neq					
				a	b	a	b	a	c	a				
					a	b	a	b	a	c	a			
						a	b	a	b	a	c	a		

${\bf Intuiția}^3$

? ? ? ?	a	b	a	b	a	?	?	?	?	?	?
	=	=	=	=	=	\neq					
	a	b	a	b	a	?	?				
		a	b	a	b	?	?	?			
			a	b	a	?	?	?	?		

Pentru pattern-ul ababaca, dacă la o poziție i se potrivesc exact 5 caractere, nu există nicio șansă ca pattern-ul să se potrivească la poziția i+1.

Ideea

?	?	?	?	x_1	x_2	x_3	x_4	x_5	x_6	x_7	?	?	?	?	?	?	?	?
				=	=	=	=	=	=	=	=							
				x_1	x_2	x_3	x_4	x_5	x_6	x_7	?]						
								=	=	=								
								x_1	x_2	x_3	x_4	x_5	x_6	x_7	?			

Ideea

?	?	?	?	x_1	x_2	x_3	x_4	x_1	x_2	x_3	?	?	?	?	?	?	?	?
				=	=	=	=	=	=	=	#							
				x_1	x_2	x_3	x_4	x_1	x_2	x_3	?							
								=	=	=								
								x_1	x_2	x_3	x_4	x_1	x_2	x_3	?			

 $^{^{1}}$ Exemplu din [CLRS] 2 Exemplu din [CLRS] 3 Exemplu din [CLRS]

Ideea

?	?	?	?	x_1		x_k		x_1		x_k	?	?	?	?
				=	=	=	=	=	=	=	\neq			
				x_1		x_k		x_1		x_k	?			

Ne interesează cea mai mare valoarea a lui k astfel încât $x_1 \dots x_k$ să fie atât prefix cât și sufix al părții din pattern care s-a potrivit.

Notații

- \bullet reamintim: frontieră (bordură) a unui șir t un factor (subșir) care este si prefix și sufix al lui t
- notăm: maxFr(i) frontiera maximă a lui p[0..i-1] care e factor propriu $(\neq p[0..i-1])$ f[i] = |maxFr(i)| (lungimea frontierei (bordurii) maxime a lui p[0..i-1])

• să vedem pe un exemplu cum poate fi utilizat eficient f[i]

Exemplu 1/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
=	=	\neq												
a	b	a	b	a	c	a								
0	1	2	3	4	5	6								

- eșec la pozițiile i = k = 2 (poziția i în subject, poziția k în pattern)
- f[k] = f[2] = 0
- se face un salt egal cu k f[k] = 2 0 = 2
- următoarele poziții ce se vor compara: i = 2, k = 0 (k devine f[k])

Exemplu 2/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
		\neq												
		a	b	a	b	a	c	a						
		0	1	2	3	4	5	6						

- ullet eșec la pozițiile i=2, k=0
- f[0] = ?
- $\bullet\,$ se face un salt egal cuk-f[k]=0-f[0]=1,deci luăm f[0]=-1
- \bullet următoarele poziții ce se vor compara: i=3, k=0 (se incrementează cu 1 atât i cât și k)

Exemplu 3/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
			\neq											
			a	b	a	b	a	c	a					
			0	1	2	3	4	5	6					

- eșec la pozițiile i = 3, k = 0
- f[0] = -1
- $\bullet\,$ se face un salt egal cuk-f[k]=0-f[0]=1
- următoarele poziții ce se vor compara: i=4, k=0 (se incrementează cu 1 atât i cât și k)

Exemplu 4/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
				=	=	=	=	=	#					
				a	b	a	b	a	c	a				
				0	1	2	3	4	5	6				

- eșec la pozițiile i = 9, k = 5
- f[5] = 3
- se face un salt egal cu k f[k] = 5 f[5] = 2
- $\bullet\,$ următoarele poziții ce se vor compara: i=9, k=3~(k devine f[k])

Exemplu 5/6

	0														14
ſ	a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
							=	=	=	=	=	\neq			
							\overline{a}	b	a	b	a	c			
							0	1	2	3	4	5	6		

- esec la pozițiile i = 11, k = 5
- f[5] = 3
- \bullet se face un salt egal cuk-f[k]=5-f[5]=2
- următoarele poziții ce se vor compara: i = 11, k = 3 (k devine f[k])

Exemplu 6/6

0	1	2	3	4	5	6	7				11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
								=	=	=	=	=	=	=
								a	b	a	b	a	c	a
								0	1	2	3	4	5	6

• s-a găsit prima apariție

Algoritmul KMP în Alk

```
KMP(s, n, t, m, f) {
    i = 0;
    k = 0;
    while (i < n) {
        while (k != -1) && (p[k] != s[i])
            k = f[k];
        if (k = m-1)
            return i-m+1; /* gasit p in s */
        else {
        i = i+1;
        k = k+1;
        }
    }
    return -1; /* p nu apare in s */
}</pre>
```

Timpul de execuție

Reamintim funcția eșec pentru exemplul precedent:

0	1	2	3	4	5	6
a	b	a	b	a	c	a
-1	0	0	1	2	3	0

1. Observații:

- (a) pentru orice $k, -1 \le f[k] < k$.
- (b) valoarea lui k va creste de cel mult n ori (ca si i)
- (c) la fiecare iterație while interioară k descrește, dar va fi ≥ -1
- (d) per total, k nu va putea descrește de mai multe ori de câte ori crește
- (e) deci while interior va face cel mult n iterații în total
- 2. Concluzie: timpul de execuție pentru KMP este O(n)

Funcția eșec f: introducere

- \bullet deoarece feste utilizată atunci când o comparație eșuează, f se numește și funcție eșec (failure function)
- \bullet notată și cu π (de exemplu in [CLR])

• reamintim că f[i] = |maxFrp[0..i-1]| (lungimea frontierei maxime a lui p[0..i-1]

a	b	a	b	a	c	a
-1	0	0	1	2	3	0

O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).

Dacă presupunem că f[0..i-1]a fost deja calculat, cum calculăm eficient f[i]?

Funcția eșec f: domeniul problemei

- notație: $u \leq_{fr} v$ d
dacă $u \leq_{pref} v$ și $u \leq_{suff} v$
- definiția formală a lui maxFr(v) $maxFr(v) <_{fr} v$ $(\forall w)w <_{fr} v$ implică $w \leq_{fr} maxFr(v)$
- notatie: $maxFr^{0}(v) = v$, $maxFr^{i+1}(v) = maxFr(maxFr^{i}(v))$
- avem: $maxFr^{i+1}(v) <_{fr} maxFr^{i}(v) <_{fr} \dots <_{fr} maxFr^{1}(v) maxFr^{0}(v) = v$

Theorem 1. $u \leq_{fr} v \ ddac \ a \ exist \ i \geq 0 \ a. \ i. \ u = max Fr^i(v).$

Corollary 2. $u <_{fr} v \ ddac \ a \ exist \ i > 0 \ a. \ \hat{i}. \ u = max Fr^i(v).$

Funcția eșec f:calcul

- reamintim că f[i] = |maxFr(p[0..i-1])
- rezultă că $f[i] = f^k[i-1]+1$, unde k este cel mai mic întreg cu proprietatea $p[f^k[i-1]+1] = p[i]$
- adică ne uităm la prefixele lui p care sunt sufixe ale lui p[0..i-2] și-l luăm pe cel mai mare cu proprietatea că următorul caracter coincide cu p[i-1], unde
- prefixele lui p care sunt sufixe ale lui p[0..i-2]: maxFr(p[0..i-2]), $maxFr^2(p[0..i-2])$, $maxFr^3(p[0..i-2])$, si
- $|maxFr^k(p[0..i-2])| = f^k[i-1]$

Observație:

$$\begin{split} |\max Fr^2(p[0..i-1])| &= |\max Fr(\max Fr(p[0..i-1]))| \\ &= \max Fr(p[0..f[i]-1) \\ &= f[f[i]] \\ &= f^2[i] \\ |\max Fr^3(p[0..i-1])| &= |\max Fr(\max Fr^2(p[0..i-1]))| \\ &= \max Fr(p[0..f^2[i]-1) \\ &= f[f^2[i]] \\ &= f^3[i] \end{split}$$

Calculul funcției eșec: reprezentarea în Alk

```
f[0] = -1;
k = -1;
for (i = 1; i <= m; ++i) {
  while(k >= 0 && p[k+1] != p[i])
    k = f[k];
  k = k + 1;
  f[i] = k;
}
```

Timp de execuție: $\Theta(m)$. Analiza e similară cu cea de la KMP.

Funcția eșec reprezentată ca un automat

Un automat este format din:

- alfabet de intrare (a, b, c)
- stări $(-1, 0, 1, \dots, 7)$
- starea inițială (-1)
- stare finală/acceptare (7)
- tranziții spontane: $(-1 \rightarrow 0, 0 \rightarrow -1, 1 \rightarrow 0, ...)$
- tranziții etichetate: (0 $\xrightarrow{a} 1, 1 \xrightarrow{b} 2, 2 \xrightarrow{a} 3, \ldots)$

3 Expresii regulate

Motivație: pattern-uri în Emacs (sau alt editor similar)

Pat	tern	Matches					
		Any single character except newline ("\n").					
\.		One period					
[0-9]]+	One or more digits					
[^ (0-9]+	One or more non-digit characters					
	Za-z]+	one or more letters					
	-Za-z0-9]+	one or more letter, digit, hyphen					
[_A-	-Za-z0-9]+	one or more letter, digit, underscore					
[A	-Za-z0-9]+	one or more letter, digit, hyphen, underscore					
	scii:]]+	one or more ASCII chars. (codepoint 0 to 127, inclusive)					
[[:no	onascii:]]+	one or more none-ASCII characters (For example, Unicode characters)					
$[\n$	\t]+	one or more {newline character, tab, space}.					

Din documentație:

[1ex]

Demo cu Emacs

Definiție

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție 1. Mulțimea expresiilor regulate peste alfabetul Σ este definită recursiv astfel:

- ε , empty sunt expresii regulate
- orice caracter din Σ este o expresie regulată;
- $dacă e_1, e_2$ sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

Arborele sintactic abstract: $pe\ tabla$.

Legătura cu pachetul <regex> din C++, Emacs

<regex></regex>	expresia regulata
[abc]	a + b + c
\d sau [[:digit:]]	$0 + 1 + \cdots + 9$
[[:digit:]]*	$(0+1+\cdots+9)^*$
[[:digit:]]+	$(0+1+\cdots+9)(0+1+\cdots+9)^*$

Limbajul definit de o expresie regulată

Definiție 2. Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

- $L(\varepsilon) = \{\varepsilon\}$ (ε este şirul vid (de lungime zero)), $L(\mathsf{empty}) = \emptyset$
- $dac\check{a} e = e_1e_2 \ atunci \ L(e) = L(e_1)L(e_2) = \{w_1w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$
- $dac\check{a}\ e = e_1 + e_2\ atunci\ L(e) = L(e_1) \cup L(e_2);$

• $dac\breve{a} e = (e_1) \ atunci \ L(e) = L(e_1).$

Exemplu: Fie alfabetul $A = \{a, b, c\}$. Avem $L(a(b+a)c) = \{abc, aac\}$ şi $L((ab)^*) = \{\varepsilon, ab, abab, ababab, \ldots\} = \{(ab)^k \mid k \geq 0\}.$ sfex

Căutare cu expresii regulate

Input Un text s, un pattern p exprimat ca o expresie regulată. [2ex] Output: Prima apariție a unui șir din limbajul definit de expresia regulată [3ex]

Algoritmul de căutare utilizează un automat asociat patternului, similar ca la KMP.

Automatul asociat unei expresii regulate

– cazul de bază

e este o litera (un simbol) $a \in \Sigma$

pentru cazul inductiv presupunem: start \rightarrow

 $\operatorname{start} \longrightarrow M_2 \longrightarrow \mathbb{O}$

Automatul asociat unei expresii regulate

Automatul asociat unei expresii regulate

Exemplu

 $e = (a + ab)^*ba$

Detaliile procesului de construție pe tablă

Utilizarea automatului în căutare

Pe tablă

Construcții mai performante

- automatului Brzozowski (1964)
- constructia unui automat determinist
- utilizând funcțiile first și follow (Berry, Setti, 1986)
- paralelizare (Myer, A Four Russians Algorithm for Regular Expression Pattern Matching)
- o altă construcție pentru automatul nedeterminist este Glushkov-McNaughton-Yamada (1960-1961), care poate fi si paralelizată (Navarro & Raffinot, 2004)

Mai multe detallii despre expresii regulate și automatele lor la cursul LFAC din anul II.

Complexitatea căutării cu expresii regulate

Presupunem că lungimea expresiei regulate este m (numărul de caractere fără operatori) și $m_{\Sigma} = |\Sigma \cup \{\cdot, +, *\}|$.

Theorem 3 (Thomson, 1968). Problema căutării cu expresii regulate poate fi rezolvată în timpul O(mn) cu automate nedeterministe și spațiu O(m).

Theorem 4 (Kleene, 1956). Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(n + 2^{m_{\Sigma}})$ cu automate deterministe şi spațiu $O(2^{m_{\Sigma}})$.

Theorem 5 (Myers, 1992). Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(mn/\log n)$ cu automate deterministe şi spațiu $O(mn/\log n)$.