Application No. 10/580,505

Amendment and Response to Office Action Dated June 8, 2009

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- (Previously Presented) A digital microphone comprising:
 a microphone housing having a sound inlet and comprising:
 - a transducer element comprising a displaceable diaphragm and adapted to generate a transducer signal representative of sound received through the sound inlet,
 - an analog-to-digital converter comprising a multi-level quantizer operatively coupled to the transducer element to convert the transducer signal into multi-bit samples representative of the transducer signal, the multi-level quantizer having at least three discrete quantization levels, each of the discrete quantization levels being represented by a set of corresponding symbols, each symbol comprises a number of one signs, the number of one signs being proportional with a magnitude of the transducer signal represented by the corresponding multi-bit sample.
 - a digital signal converter adapted to convert the multi-bit samples into an unformatted single-bit output signal, and
 - an externally accessible terminal adapted to provide the unformatted single-bit output signal.
- (Previously Presented) A digital microphone according to claim 1, wherein the analog-to digital converter comprises an oversampled delta-sigma modulator.
- (Previously Presented) A digital microphone according to claim 1, comprising an
 integral clock generator operatively coupled to the analog-to-digital converter and the digital
 signal converter.
- (Previously Presented) A digital microphone according to claim 1, wherein the microphone housing comprises a second externally accessible terminal for receipt of an external clock signal.

Application No. 10/580,505 Amendment and Response to Office Action Dated June 8, 2009

5. (Previously Presented) A digital microphone according to claim 4, comprising a DC voltage generating means for deriving a DC voltage supply for operating at least the analog-to-digital converter, the DC voltage supply means being disposed within the microphone housing and operatively coupled to the external clock signal.

 (Previously Presented) A digital microphone according to claim 1, wherein the multi-level quantizer of the analog-to-digital converter comprises between 3 and 64 discrete quantization levels.

(Previously Presented) A digital microphone according to claim 1, wherein the
multi-bit samples provided by the analog-to-digital converter are represented in two's
complement format.

(Canceled)

9. (Previously Presented) A digital microphone according to claim 1, wherein the multi-level quantizer comprises 3 or 5 discrete quantization levels.

10. (Previously Presented) A digital microphone according to claim 1, wherein the multi-level quantizer comprises N discrete quantization levels and each corresponding symbol comprises N-1 bits; N being an integer between 3 and 17.

11. (Previously Presented) A digital microphone according to claim 9, wherein the digital signal converter comprises a delay circuit in cascade with an integer ratio upsampler.

(Previously Presented) A digital microphone according to claim 1, comprising a
preamplifier interposed between the transducer element and the analog-to-digital converter.

- 13. (Previously Presented) A digital microphone according to claim 1, comprising an interpolator operatively coupled between the multi-bit samples provided by the analog-to-digital converter and the digital signal converter.
- (Previously Presented) A portable communication device comprising a digital microphone according to claim 1.
- 15. (Previously Presented) A monolithic integrated circuit for a miniature microphone, comprising:
- a preamplifier adapted to provide an amplified transducer signal and comprising an input section couplable to a miniature electret or condenser transducer element,
- an analog-to-digital converter comprising a multilevel-quantizer operatively coupled to the amplified transducer signal and adapted to convert the amplified transducer signal into multibit samples representative of the amplified transducer signal, the multi-level quantizer having at least three discrete quantization levels, each of the discrete quantization levels being represented by a set of corresponding symbols, each symbol comprises a number of one signs, the number of one signs being proportional with a magnitude of the transducer signal represented by the corresponding multi-bit sample,
- a digital signal converter adapted to convert the multi-bit samples into an unformatted single-bit output signal, and
 - an integrated circuit pad adapted to provide the single-bit output signal.
- 16. (Canceled)
- (Previously Presented) A monolithic integrated circuit according to claim 15, wherein the analog-to-digital converter comprises an oversampled delta-sigma modulator.
- 18. (Previously Presented) A monolithic integrated circuit according to claim 15, wherein the multi-level quantizer of the analog-to-digital converter comprises 3 or 5 discrete quantization levels.

- (Previously Presented) A digital microphone according to claim 1, wherein the digital signal converter is a sigma-delta signal converter.
- 20. (Previously Presented) A digital microphone according to claim 1, wherein:

the analog-to-digital converter is a tri-level sigma-delta modulator, the tri-level sigmadelta modulator outputs two bit samples in standard two's format, and

the digital signal converter comprises a first D-type Flip Flop, a second D-type Flip Flop, a third D-type Flip Flop, a fourth D-type Flip Flop, a dual-input multiplexer and an XOR gate, where:

the first D-type Flip Flop receives a clock frequency from a clock input and outputs a half frequency, the half frequency being half of the clock frequency,

the second D-type Flip Flop receives and operates on the half frequency, the second D-type Flip Flop further receives a first of the two bit samples from the analogto-digital converter, the second D-type Flip Flop outputs from a non-inverted output a first signal,

the third D-type Flip Flop receives and operates on the half frequency, the third D-type Flip Flop further receives a second of the two bit samples from the analog-to-digital converter, the third D-type Flip Flop outputs a second signal from a non-inverted output and a third signal from an inverted output,

the XOR gate receives the first and second signals and outputs a fourth signal,

the multiplexer receives and operates on the half frequency, the multiplexer further receives the third and fourth signals, the multiplexer outputs a fifth signal,

the fourth D-type Flip Flop receives the clock frequency and the fifth signal signal, the fourth D-type Flip Flop outputs the unformatted single-bit output signal.

 (Previously Presented) A monolithic integrated circuit according to claim 15, wherein:

the analog-to-digital converter is a tri-level sigma-delta modulator, the tri-level sigmadelta modulator outputs two bit samples in standard two's format, and the digital signal converter comprises a first D-type Flip Flop, a second D-type Flip Flop, a third D-type Flip Flop, a fourth D-type Flip Flop, a dual-input multiplexer and an XOR gate, where:

the first D-type Flip Flop receives a clock frequency from a clock input and outputs a half frequency, the half frequency being half of the clock frequency,

the second D-type Flip Flop receives and operates on the half frequency, the second D-type Flip Flop further receives a first of the two bit samples from the analogto-digital converter, the second D-type Flip Flop outputs from a non-inverted output a first signal,

the third D-type Flip Flop receives and operates on the half frequency, the third D-type Flip Flop further receives a second of the two bit samples from the analog-todigital converter, the third D-type Flip Flop outputs a second signal from a non-inverted output and a third signal from an inverted output,

the XOR gate receives the first and second signals and outputs a fourth signal.

the multiplexer receives and operates on the half frequency, the multiplexer further receives the third and fourth signals, the multiplexer outputs a fifth signal,

the fourth D-type Flip Flop receives the clock frequency and the fifth signal signal, the fourth D-type Flip Flop outputs the unformatted single-bit output signal.