O szukaniu dziury w całym Czyli analiza danych za pomocą topologii

Bartosz Furmanek

Program na dzisiaj

Dlaczego?

Kompleksy

Wstęp

Kompleks kostkowy

Filtracja

Stabilność diagramów persystencji

Uwaga: fioletowe komentarze służą do tego, żebym nie zapomniał niczego. Proszę zwracać mi uwagę, gdybym je zignorował!!! Wszystkie materiały są dostępne na GitHubie: https://github.com/BartTheBartender/o-szukaniu-dziury-w-calym.

Datasaurus Dozen

Datasaurus Dozen

Jupter notebook: datasaurus – bez bottleneck distance na razie.

Datasaurus Dozen

Jupter notebook: datasaurus – bez bottleneck distance na razie. Jupter notebook: cat – tylko pokazać.

Kompleks symplicjalny

Kompleks symplicjalny zbudowany jest z sympleksów, czyli punktów, odcinków, trójkątów, czworościanów, itd. ...

Kompleks kostkowy

... natomiast *kompleks kostkowy* zbudowany jest z *kostek*, czyli punktów, odcinków, kwadratów, sześcianów, itd.

Kompleks kostkowy

... natomiast *kompleks kostkowy* zbudowany jest z *kostek*, czyli punktów, odcinków, kwadratów, sześcianów, itd.

Jak wygląda tutaj liczenie homologii?

Kompleks symplicialny

Kompleks symplicialny

Dowolny zbiór punktów na płaszczyźnie, w przestrzeni ... można *ztriangulować*, czyli podzielić na sympleksy

Kompleks symplicialny
Dowolny zbiór punktów na
płaszczyźnie, w przestrzeni ...
można ztriangulować, czyli
podzielić na sympleksy

Kompleks kostkowy

Kompleks symplicialny

Dowolny zbiór punktów na płaszczyźnie, w przestrzeni ... można ztriangulować, czyli podzielić na sympleksy

Kompleks kostkowy

Posiada naturalny sposób indeksowania kostek, co więcej często wystarcza pamiętać najwyżejwymiarowe kostki.

Filtracja

Jeśli mamy kompleks \mathcal{K} , to *filtracją na* \mathcal{K} nazywamy ustawienie sympleksów/kostek po kolei, tak, żeby każdy sympleks/kostka pojawiał(a) się po wszystkich swoich ścianach.

Filtracja

Jeśli mamy kompleks \mathcal{K} , to *filtracją na* \mathcal{K} nazywamy ustawienie sympleksów/kostek po kolei, tak, żeby każdy sympleks/kostka pojawiał(a) się po wszystkich swoich ścianach. Przykład filtracji – tak naprawdę to już znacie.

Filtracja

Jeśli mamy kompleks \mathcal{K} , to filtracją na \mathcal{K} nazywamy ustawienie sympleksów/kostek po kolei, tak, żeby każdy sympleks/kostka pojawiał(a) się po wszystkich swoich ścianach. Przykład filtracji – tak naprawdę to już znacie. Mniej oczywisty przykład: jupyter notebook cubical – bez bottleneck na razie.

Kompleks Vietorisa-Ripsa

Niech $A=a_0,a_1\dots a_n\subseteq \mathbb{R}^n$. Może to być zbiór punktów w dowolnie wymiarowej przestrzeni. Ustalamy promień $r\geqslant 0$. Kompleks Vietorisa-Ripsa dla A i r składa się z takich sympleksów $S\subseteq A$, że każde dwa punkty $x,y\in S$ odległe są o co najwyżej r.

Kompleks Vietorisa-Ripsa

Niech $A=a_0,a_1\ldots a_n\subseteq\mathbb{R}^n$. Może to być zbiór punktów w dowolnie wymiarowej przestrzeni. Ustalamy promień $r\geqslant 0$. Kompleks Vietorisa-Ripsa dla A i r składa się z takich sympleksów $S\subseteq A$, że każde dwa punkty $x,y\in S$ odległe są o co najwyżej r. Python: complex visualization: Vietoris Rips

Kompleks Čecha

Niech $A=a_0, a_1 \dots a_n \subseteq \mathbb{R}^n$. Może to być zbiór punktów w dowolnie wymiarowej przestrzeni. Ustalamy promień $r\geqslant 0$. Kompleks Čecha dla A i r składa się z takich sympleksów $S\subseteq A$, że wszystkie kule o środkach w punktach $s\in S$ i promieniu r mają wspólny punkt.

Kompleks Čecha

Niech $A=a_0,a_1\dots a_n\subseteq \mathbb{R}^n$. Może to być zbiór punktów w dowolnie wymiarowej przestrzeni. Ustalamy promień $r\geqslant 0$. Kompleks Čecha dla A i r składa się z takich sympleksów $S\subseteq A$, że wszystkie kule o środkach w punktach $s\in S$ i promieniu r mają wspólny punkt.

Python: complex visualization: Čech

Kompleks Vietorisa-Ripsa

Kompleks Vietorisa-Ripsa Oblicza się dużo szybciej niż kompleks Čecha.

Kompleks Vietorisa-Ripsa Oblicza się dużo szybciej niż kompleks Čecha. Kompleks Čecha

Kompleks Vietorisa-Ripsa Oblicza się dużo szybciej niż kompleks Čecha.

Kompleks Čecha

Zachodzi *Twierdzenie Čecha o nerwie*: kompleks Čecha jest homotopijnie równoważny z sumą kul z których powstał.

Kompleks Vietorisa-Ripsa Oblicza się dużo szybciej niż kompleks Čecha.

Kompleks Čecha

Zachodzi *Twierdzenie Čecha o nerwie*: kompleks Čecha jest homotopijnie równoważny z sumą kul z których powstał.

Jupyter Notebook: cat – do końca

Kompleks Vietorisa-Ripsa Oblicza się dużo szybciej niż kompleks Čecha.

Kompleks Čecha

Zachodzi *Twierdzenie Čecha o nerwie*: kompleks Čecha jest homotopijnie równoważny z sumą kul z których powstał.

Jupyter Notebook: cat - do końca

Pojawia się jednak bardzo ważne pytanie ...

ILE WYMIARÓW MAJĄ TE KOMPLEKSY?

ILE WYMIARÓW MAJĄ TE KOMPLEKSY?

Rozwiązania są dwa: albo ignorujemy sympleksy wysokich wymiarów, albo w przypadku kompleksu Čecha modyfikujemy konstrukcję.

Teraz możemy zdefiniować alpha complex dla zbioru $A\subseteq \mathbb{R}^n$ oraz $r\geqslant 0$. Sympleksami w nim są takie sympleksy z triangulacji Delaunaya, że wszystkie kule o środkach w wierzchołkach tych sympleksów i promieniu r mają wspólny punkt.

Niech $\mathcal K$ będzie kompleksem symplicjalnym. Filtr na $\mathcal K$ to funkcja $\mathcal K \to \mathbb R$, która zadaje filtrację. Przykłady to (w prezentacji były dwa):

Niech $\mathcal K$ będzie kompleksem symplicjalnym. Filtr na $\mathcal K$ to funkcja $\mathcal K \to \mathbb R$, która zadaje filtrację. Przykłady to (w prezentacji były dwa):

Natężenie jasności piksela.

Niech \mathcal{K} będzie kompleksem symplicjalnym. Filtr na \mathcal{K} to funkcja $\mathcal{K} \to \mathbb{R}$, która zadaje filtrację. Przykłady to (w prezentacji były dwa):

- Natężenie jasności piksela.
- Wartość r, dla którego w kompleksie
 Vietorisa-Ripsa/Čecha/alpha dodawany jest sympleks

Niech \mathcal{K} będzie kompleksem symplicjalnym. Filtr na \mathcal{K} to funkcja $\mathcal{K} \to \mathbb{R}$, która zadaje filtrację. Przykłady to (w prezentacji były dwa):

- Natężenie jasności piksela.
- Wartość r, dla którego w kompleksie
 Vietorisa-Ripsa/Čecha/alpha dodawany jest sympleks

Idea: mała zmiana filtra mało wpływa na zmianę diagramu persystencji.

Jeśli f,g są filtrami na \mathcal{K} , to chcemy sensownie zdefiniować odległość między nimi. Przyjmujemy

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|.$$

Przykład?

Jeśli f, g są filtrami na K, to przez Dgm(f), Dgm(g) oznaczymy ich diagramy persystencji. Jak policzyć odległość między nimi?

Jeśli f, g są filtrami na K, to przez Dgm(f), Dgm(g) oznaczymy ich diagramy persystencji. Jak policzyć odległość między nimi?

$$d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi:\mathsf{Dgm}(f)\to\mathsf{Dgm}(g)} \max_{x\in\mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Nazywamy to bottleneck distance.

Jeśli f, g są filtrami na K, to przez Dgm(f), Dgm(g) oznaczymy ich diagramy persystencji. Jak policzyć odległość między nimi?

$$d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi: \mathsf{Dgm}(f) \to \mathsf{Dgm}(g)} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Nazywamy to bottleneck distance.

Przykład? – Jupyter Notebooks: datasaurus & cubical ale najpierw ...

Niech f,g będą filtrami na $\mathcal K$ oraz

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|,$$

$$d(\mathsf{Dgm}(f), \mathsf{Dgm}(g)) := \min_{\substack{\phi : \mathsf{Dgm}(f) \to \mathsf{Dgm}(g) \ x \in \mathsf{Dgm}(f)}} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Niech f,g będą filtrami na $\mathcal K$ oraz

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|,$$

$$d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi: \mathsf{Dgm}(f) \to \mathsf{Dgm}(g)} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Zachodzi wówczas

$$d(\mathsf{Dgm}(f), \mathsf{Dgm}(g)) \leqslant d(f, g),$$

z czego wynika, że

Niech f,g będą filtrami na \mathcal{K} oraz

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|,$$

 $d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi: \mathsf{Dgm}(f) \to \mathsf{Dgm}(g)} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$

Zachodzi wówczas

$$d(\mathsf{Dgm}(f), \mathsf{Dgm}(g)) \leqslant d(f, g),$$

z czego wynika, że

mała zmiana filtra nie zaburza nam znacznie diagramu persystencji – robimy to od samego początku !!! Niech f,g będą filtrami na \mathcal{K} oraz

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|,$$

$$d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi: \mathsf{Dgm}(f) \to \mathsf{Dgm}(g)} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Zachodzi wówczas

$$d(\mathsf{Dgm}(f), \mathsf{Dgm}(g)) \leqslant d(f, g),$$

z czego wynika, że

- mała zmiana filtra nie zaburza nam znacznie diagramu persystencji – robimy to od samego początku !!!
- ▶ Jeśli $d(\mathsf{Dgm}(f), \mathsf{Dgm}(g))$ jest duże, to filtry muszą znacznie się różnić.

Niech f,g będą filtrami na $\mathcal K$ oraz

$$d(f,g) := \max_{\sigma \in \mathcal{K}} |f(\sigma) - g(\sigma)|,$$

$$d(\mathsf{Dgm}(f),\mathsf{Dgm}(g)) := \min_{\phi: \mathsf{Dgm}(f) \to \mathsf{Dgm}(g)} \max_{x \in \mathsf{Dgm}(f)} \|x - \phi(x)\|$$

Zachodzi wówczas

$$d(\mathsf{Dgm}(f), \mathsf{Dgm}(g)) \leqslant d(f, g),$$

z czego wynika, że

- mała zmiana filtra nie zaburza nam znacznie diagramu persystencji – robimy to od samego początku !!!
- ▶ Jeśli d(Dgm(f), Dgm(g)) jest duże, to filtry muszą znacznie się różnić.

Jupyter Notebooks: datasaurus & cubical