• Low-Frequency Response of RC-Coupled Amplifier:

Complete Circuit

ac Schematic

- ightharpoonup DC analysis gives $I_C = 1$ mA and $V_{CE} = 4$ V $\Rightarrow r_E = 26$ Ω and $r_\pi = 2.6$ kΩ (assuming $\beta = 100$)
- > Neglect Early effect $\Rightarrow r_0 \rightarrow \infty$
- ➤ 3 capacitors (C_B , C_E , C_C) with time constants τ_1 , τ_2 , τ_3 , and corresponding cutoff frequencies f_1 , f_2 , f_3
- To apply the *IVTC technique*, we have to take one capacitor at a time and treat other capacitors as short circuits
- > The analysis can be done by inspection!

$> C_B$

- Short C_C and C_E
- $R_3 = R_1 || R_2 = 9 \text{ k}\Omega$
- $R_4 = R_C || R_L = 1.75 \text{ k}\Omega$
- $R_i = r_{\pi} = 2.6 \text{ k}\Omega$
- By inspection, the *Thevenin resistance* seen by C_B:

$$R_{\rm B}^{\infty} = R_{\rm S} + (R_3 || R_{\rm i}) = 3 \text{ k}\Omega$$

$$\Rightarrow \tau_1 = R_B^{\infty} C_B = 150 \text{ ms}$$

$$\Rightarrow$$
 f₁ = 1/(2 π τ ₁) = 1.06 Hz

$\succ C_E$:

- Short C_C and C_B
- $R_{01} = r_E + (R_S || R_3)/(\beta + 1)$ = 34.9 Ω
- By inspection, the *Thevenin resistance* seen by C_E:

$$R_E^{\infty} = R_E \parallel R_{01} = 32.6 \Omega$$

 $\Rightarrow \tau_2 = R_E^{\infty} C_E = 3.26 \text{ ms}$
 $\Rightarrow f_2 = 1/(2\pi\tau_2) = 48.8 \text{ Hz}$

$> C_C$:

- Short C_E and C_B
- By inspection, the *Thevenin resistance* seen by C_C :

$$R_C^{\infty} = R_C + R_L = 7 \text{ k}\Omega$$

 $\Rightarrow \tau_3 = R_C^{\infty} C_C = 350 \text{ ms}$
 $\Rightarrow f_3 = 1/(2\pi\tau_3) = 0.45 \text{ Hz}$

■ Thus, the *lower cutoff frequency* of the circuit:

$$f_{L} = \left[f_{1}^{2} + f_{2}^{2} + f_{3}^{2}\right]^{1/2} = 48.8 \text{ Hz}$$

- \triangleright Note that f_L is equal to f_2 (contributed by C_E)
- Now let's attempt to *minimize* the *total* capacitance requirement of the circuit

> Minimization of the Total Capacitance:

- From the previous analysis, we note that C_E sees the least Thevenin resistance across its two terminals
 - \Rightarrow Let's choose C_E to contribute the $DP f_d$, and let C_C and C_B each contribute poles at $f_d/10$

$$\Rightarrow 48.8 = \sqrt{f_d^2 + 2(f_d/10)^2}$$

$$\Rightarrow$$
 f_d = 48.3 Hz and f_d/10 = 4.83 Hz

■ Thus:

$$\begin{split} &C_{E} = 1 \! \! \left/ \! \! \left(2 \pi f_{d} R_{E}^{\infty} \right) \! = \! 101.1 \; \mu F \\ &C_{B} = 1 \! \! \left/ \! \! \left[2 \pi \! \left(f_{d} / 10 \right) R_{B}^{\infty} \right] \! = \! 11 \; \mu F \\ &C_{C} = 1 \! \! \left/ \! \! \left[2 \pi \! \left(f_{d} / 10 \right) R_{C}^{\infty} \right] \! = \! 4.7 \; \mu F \end{split}$$