4.11 ANSWERS TO EXERCISES

4.11 Exercise 1

```
1. 45 – COOH<sup>+</sup>
43 - CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>
equations: CH<sub>3</sub>
```

ions: $CH_3CH_2CH_2COOH^+ \rightarrow CH_3CH_2CH_2^+ + COOH$ $CH_3CH_2CH_2COOH^+ \rightarrow CH_3CH_2CH_2 + COOH^+$

29 - CH₃CH₂⁺ 59 - CH₂COOH⁺

equations: $CH_3CH_2CH_2COOH^{+} \rightarrow CH_3CH_2^{+} + CH_2COOH$ $CH_3CH_2CH_2COOH^{+} \rightarrow CH_3CH_2^{-} + CH_2COOH^{+}$

 $15 - CH_3^+$ 73 - $CH_2CH_2COOH^+$

equations: $CH_3CH_2COOH^+ \rightarrow CH_3 + CH_2CH_2COOH^+ \\ CH_3CH_2CH_2COOH^+ \rightarrow CH_3^+ + CH_2CH_2COOH$

Methylpropanoic acid contains no peaks at 29 and 59 as it contains no such fragments

- 2. Pentan-2-one gives a peak at 43 due to CH₃CH₂CH₂⁺ and CH₃CO⁺ equations: CH₃CH₂CH₂COCH₃⁺. → CH₃CH₂CH₂· + COCH₃ CH₃CH₂CH₂COCH₃· → CH₃CH₂CH₂· + COCH₃⁺ Pentan-3-one gives no peak at 43 as it contains no such fragments
- 3. a) 15 CH₃CH₂CH₂CH₂CH₃⁺ \rightarrow CH₃⁺ + CH₂CH₂CH₂CH₃ 29 CH₃CH₂CH₂CH₂CH₃⁺ \rightarrow CH₃CH₂⁺ + CH₂CH₂CH₃ 43 CH₃CH₂CH₂CH₂CH₃⁺ \rightarrow CH₃· + +CH₂CH₂CH₂CH₃ 57 CH₃CH₂CH₂CH₂CH₃⁺ \rightarrow CH₃CH₂· + +CH₂CH₂CH₃
 - b) 15 CH₃COOCH₂CH₃⁺ \rightarrow CH₃⁺ + COOCH₂CH₃ 15 - CH₃COOCH₂CH₃⁺ \rightarrow CH₃COOCH₂ + +CH₃ 29 - CH₃COOCH₂CH₃⁺ \rightarrow CH₃COO + +CH₂CH₃ 43 - CH₃COOCH₂CH₃⁺ \rightarrow CH₃CO⁺ + OCH₂CH₃
 - c) 15 CH₃CH₂COOH⁺ \rightarrow CH₃⁺ + CH₂COOH 29 - CH₃CH₂COOH⁺ \rightarrow CH₃CH₂⁺ + COOH 57 - CH₃CH₂COOH⁺ \rightarrow CH₃CH₂CO⁺ + OH
 - d) 15 CH₃CH₂CH₂CH₂CHO⁺. \rightarrow CH₃⁺ + CH₂CH₂CH₂CHO 29 - CH₃CH₂CH₂CH₂CHO⁺. \rightarrow CH₃CH₂C+ + CH₂CH₂CHO 43 - CH₃CH₂CH₂CH₂CHO⁺. \rightarrow CH₃CH₂CH₂⁺ + CH₂CHO 57 - CH₃CH₂CH₂CHO⁺. \rightarrow CH₃CH₂CH₂CH₂⁺ + CHO

4.11 Exercise 2

- 1. peak at 1.1 is CH₃- adjacent to -CH₂peak at 2.2 is -CH₂CO-, adjacent to CH₃peak at 11.8 is -COOH
 so molecule is propanoic acid, CH₃CH₂COOH
- 2. a) peak at 1.2 is CH₃-, adjacent to -CH₂peak at 1.3 is also CH₃-, adjacent to -CH₂peak at 2.3 is -CH₂CO-, adjacent to CH₃peak at 4.1 is -CH₂O-, adjacent to CH₃so molecule is ethyl propanoate, CH₃CH₂COOCH₂CH₃
 - b) CHCl₃ is not used as a solvent because it contains a proton which will interfere with the spectrum of the substance being analysed.
 - c) TMS is a good standard because
 - it contains 12 identical protons, giving a single intense peak
 - it contains highly shielded protons, which do not interfere with the spectrum
 - it is cheap and non-toxic
- 3. a) Propanal has three peaks, propanone has two
 - b) Both have three peaks, two with chemical shift between 0 and 50. However the third peak in propanone will have a chemical shift at 160 220, but the third peak in propan-2-ol will have a chemical shift at 50 90
 - c) i) 4 ii) 5 iii) 3

4.11 Exercise 3

1. Molecular formula = $C_5H_{10}O_2$

```
infra-red spectrum:

peak at 1710 cm<sup>-1</sup> indicates a carbonyl

proton nmr spectrum:

peak at 0.8 is CH<sub>3</sub>- adjacent to -CH<sub>2</sub>-

peak at 1.1 is -CH<sub>2</sub>- adjacent to CH<sub>3</sub>- and -CH<sub>2</sub>-

peak at 2.3 is -CH<sub>2</sub>CO- adjacent to -CH<sub>2</sub>-

peak at 3.7 is CH<sub>3</sub>O-

so molecule is methyl butanoate, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOCH<sub>3</sub>

mass spectrum:

peak at 43 from:

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOCH<sub>3</sub>+· → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>+ · COOCH<sub>3</sub>

peak at 71 from:

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOCH<sub>3</sub>+· → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sup>+</sup> + · OCH<sub>3</sub>
```