"MIFA Δ IKE Σ Σ Υ NAPTH Σ EI Σ " - Σ HMM Υ -E.M. Π . 10/07/2017

Θέμα 1: (α) (1,5 μ.) Να δείξετε ότι η συνάρτηση $u(x,y)=e^x\cos y+e^y\cos x+xy$ είναι αρμονική στο \mathbb{R}^2 και να βρείτε ακέραια συνάρτηση f ώστε $u=\operatorname{Real} f$ και f(0)=2.

- (β) Έστω $A\subseteq \mathbb{C}$ ανοικτό και συνεκτικό.
- (i) (0,5 μ.) Εάν $f \in \mathcal{H}(A)$ με $\overline{f} \in \mathcal{H}(A)$, να δείξετε ότι η f είναι σταθερή.
- (ii) (0,5 μ.) Εάν $f,g\in\mathcal{H}(A)$ και $f(z)+\overline{g(z)}\in\mathbb{R}, \quad \forall z\in A,$ να δείξετε ότι υπάρχει $c\in\mathbb{R}$ ώστε $f(z)=g(z)+c, \quad \forall z\in A.$

 Θ έμα 2: (α)(1,5 μ.) Δίνεται ο δακτύλιος $\Delta=\{z\in\mathbb{C}:1/2\leq |z|\leq 1\}$. Να βρείτε το $\max_{z\in\Delta}\frac{|e^z|}{|z|}$, καθώς και τα σημεία του Δ στα οποία η παραπάνω μέγιστη τιμή λαμβάνεται.

(β) (1 μ.) Αναπτύξτε σε σειρά Laurent τη συνάρτηση $f(z) = \frac{1}{z} + \frac{2}{3-z}$ γύρω από το 1, στο δακτύλιο 1 < |z-1| < 2.

 Θ έμα 3: (α)(1,5 μ.) Έστω $f:\mathbb{C}\to\mathbb{C}$ φραγμένη ολόμορφη συνάρτηση. Να δείξετε ότι για κάθε $z_0\in\mathbb{C},$

$$\lim_{R \to +\infty} \int_{\gamma_R} \frac{f(z)}{(z - z_0)^2} dz = 0,$$

όπου $\gamma_R(t)=z_0+Re^{it},\ t\in[0,2\pi]\ (R>0).$ Δείξτε στη συνέχεια ότι η f είναι σταθερή.

(β) (1 μ.) Έστω $g: \mathbb{C} \to \mathbb{C}$ ολόμορφη συνάρτηση με $\operatorname{Real}(g(z)) \leq \operatorname{Real}(z), \ \forall z \in \mathbb{C}$. Να δείξετε ότι $g(z) = z + c, \ \forall z \in \mathbb{C}, \$ για κάποια σταθερά $c \in \mathbb{C}$.

 Θ έμα $4\colon (\alpha)(1,5$ μ.) Να βρείτε ολόμορφη συνάρτηση $\varphi:\mathbb{C} \to \mathbb{C}$ τέτοια ώστε

$$1 - \cos z = z^2 \varphi(z), \quad \forall z \in \mathbb{C}, \quad \varphi(0) \neq 0.$$

 Σ τη συνέχεια, να υπολογίσετε το ολοκλήρωμα $\int_{\gamma}h(z)dz$, όπου

$$h(z) = \frac{1}{1 - \cos z} + z^5 \sin(1/z^2), \qquad \gamma(t) = e^{it}, \ t \in [0, 2\pi].$$

(β) (1 μ.) Να υπολογίσετε το ολοκλήρωμα $\int_0^{+\infty} \frac{x^2}{1+x^4} dx.$ (Παρατηρήστε ότι $(e^{i\pi/4})^4 = -1.$)