全国青少年信息学奥林匹克竞赛

CCF NOI2021 统一省选

Day1 (A 卷)

时间: 2021 年 4 月 10 日 08:30 ~ 13:00

题目名称	卡牌游戏	矩阵游戏	图函数
题目类型	传统型	传统型	传统型
目录	card	matrix	graph
可执行文件名	card	matrix	graph
输入文件名	card.in	matrix.in	graph.in
输出文件名	card.out	matrix.out	ananh aut
柳山入口石	Caru.out	matrix.out	graph.out
每个测试点时限	1.0 秒	1.0 秒	graph.out 1.0 秒
每个测试点时限	1.0 秒	1.0 秒	1.0 秒

提交源程序文件名

对于 C++ 语言	card.cpp	matrix.cpp	graph.cpp
-----------	----------	------------	-----------

编译选项

对于 C++ 语言	-02
-----------	-----

注意事项与提醒(请选手务必仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中主函数的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参照各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题, 申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 全国统一评测时采用的机器配置为:Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 8. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。
- 9. 最终评测时所用的编译命令中不含编译选项之外的任何优化开关。

卡牌游戏 (card)

【题目描述】

Alice 有 n 张卡牌,第 i ($1 \le i \le n$) 张卡牌的正面有数字 a_i ,背面有数字 b_i ,初始时所有卡牌正面朝上。

现在 Alice 可以将不超过 m 张卡牌翻面,即由正面朝上改为背面朝上。Alice 的目标是让最终朝上的 n 个数字的极差(最大值与最小值的差)尽量小。请你帮 Alice 算一算极差的最小值是多少。

【输入格式】

从文件 card.in 中读入数据。

第一行两个正整数 n, m,代表卡牌张数与至多翻面张数。

第二行 n 个正整数, 第 i 个数字表示 a_i 。

第三行 n 个正整数, 第 i 个数字表示 b_i 。

数据保证卡牌上的 2n 个数字互不相同,且卡牌按照 a_i 升序给出。

【输出格式】

输出到文件 *card.out* 中。 仅一行一个整数表示答案。

【样例1输入】

1 6 3

2 8 11 13 14 16 19

3 10 18 2 3 6 7

【样例1输出】

1 8

【样例1解释】

最优方案之一: 将第 1,5,6 张卡牌翻面,最终朝上的数字依次为 10,11,13,14,6,7,极差为 14-6=8。

【样例 2】

见选手目录下的 card/card2.in 与 card/card2.ans。

【样例 3】

见选手目录下的 card/card3.in 与 card/card3.ans。

【数据范围】

对于所有测试数据: $3 \le n \le 10^6$, $1 \le m < n$, $1 \le a_i, b_i \le 10^9$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊限制
$1 \sim 2$	10	 无
$3 \sim 4$	500	
$5 \sim 6$	5×10^5	$m \le 1000$
7	1×10^5	
8	4×10^5	
9	7×10^5	
10	1×10^6	

矩阵游戏 (matrix)

【题目描述】

Alice 有一个 $n \times m$ 的矩阵 $a_{i,j}$ $(1 \le i \le n, 1 \le j \le m)$,其每个元素为大小不超过 10^6 的非负整数。

Bob 根据该矩阵生成了一个 $(n-1) \times (m-1)$ 的矩阵 $b_{i,j}$ ($1 \le i \le n-1$, $1 \le j \le m-1$),每个元素的生成公式为

$$b_{i,j} = a_{i,j} + a_{i,j+1} + a_{i+1,j} + a_{i+1,j+1}$$

现在 Alice 忘记了矩阵 $a_{i,j}$, 请你根据 Bob 给出的矩阵 $b_{i,j}$ 还原出 $a_{i,j}$ 。

【输入格式】

从文件 matrix.in 中读入数据。

本题有多组数据。

第一行一个整数 T 表示数据组数。

每组数据第一行两个正整数 n, m,表示矩阵 $a_{i,i}$ 的大小。

每组数据第 $2 \sim n$ 行每行 m-1 个非负整数,表示 $b_{i,i}$ 。

【输出格式】

输出到文件 matrix.out 中。

对于每组数据:

- 1. 若矩阵 $b_{i,j}$ 无法被生成,则输出一行一个字符串 NO。
- 2. 若矩阵 $b_{i,j}$ 可被生成,则先输出一行一个字符串 YES,接下来输出 n 行每行 m 个(用单个空格分隔的)大小不超过 10^6 的非负整数表示 $a_{i,j}$ 。

若有多个矩阵 $a_{i,j}$ 可生成给出的 $b_{i,j}$,输出其中任意一个即可。

【样例1输入】

```
1 3 2 3 3 3 3 2 8 25 4 24 25 5 3 3 6 15 14 7 14 12 8 3 3
```

```
9 0 3000005
```

10 0 0

【样例1输出】

```
1
YES

2
7 8 8

3
8 5 4

4
7 9

5
YES

6
4 2 2

7
5 4 6

8
5 0 2

9
NO
```

【数据范围】

对于所有测试数据: $1 \le T \le 10$, $2 \le n, m \le 300$, $0 \le b_{i,j} \le 4 \times 10^6$ 。 每个测试点的具体限制见下表:

测试点编号	$n, m \leq$	特殊限制
$1 \sim 4$	3	无
$5 \sim 7$	10	m=2
8 ~ 10	100	m-2
$11 \sim 15$	300	$0 \le b_{i,j} \le 1$
$16 \sim 20$	300	无

图函数 (graph)

【题目描述】

对于一张 n 个点 m 条边的有向图 G (顶点从 $1 \sim n$ 编号), 定义函数 f(u,G):

- 1. 初始化返回值 cnt = 0,图 G' = G。
- 2. 从 $1 \subseteq n$ 按顺序枚举顶点 v,如果当前的图 G' 中,从 u 到 v 与从 v 到 u 的路 径都存在,则将 cnt+1,并在图 G' 中删去顶点 v 以及与它相关的边。
- 3. 第 2 步结束后,返回值 cnt 即为函数值。

现在给定一张有向图 G,请你求出 $h(G) = f(1,G) + f(2,G) + \cdots + f(n,G)$ 的值。 更进一步地,记删除(按输入顺序给出的)第 $1 \sim i$ 条边后的图为 G_i ($1 \leq i \leq m$),请你求出所有 $h(G_i)$ 的值。

【输入格式】

从文件 graph.in 中读入数据。

第一行两个整数 n, m 表示图的点数与边数。

接下来 m 行每行两个整数,第 i 行的两个整数 x_i, y_i 表示一条有向边 $x_i \to y_i$ 。 数据保证 $x_i \neq y_i$ 且同一条边不会给出多次。

【输出格式】

输出到文件 graph.out 中。

输出一行 m+1 个整数,其中第一个数表示给出的完整图 G 的 h(G) 值。第 i $(2 \le i \le m+1)$ 个整数表示 $h(G_{i-1})$ 。

【样例1输入】

```
1
4
6

2
2
3

3
2

4
4
1

5
1
4

6
2
1

7
3
1
```

【样例1输出】

6554444

【样例1解释】

对于给出的完整图 G:

- 1. f(1,G) = 1, 过程中删除了顶点 1。
- 2. f(2,G) = 1, 过程中删除了顶点 2。
- 3. f(3,G) = 2,过程中删除了顶点 2,3。
- 4. f(4,G) = 2,过程中删除了顶点 1,4。

【样例 2】

见选手目录下的 *graph/graph2.in* 与 *graph/graph2.ans*。

【数据范围】

对于所有测试数据: $2 \le n \le 1000$, $1 \le m \le 2 \times 10^5$, $1 \le x_i, y_i \le n$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	$m \leq$
$1 \sim 4$	10	10
$5 \sim 11$	100	2000
$12 \sim 20$	1000	5000
$21 \sim 25$		2×10^5