

WEST BENGAL UNIVERSITY OF TECHNOLOGY

ES-201

BASIC ELECTRICAL & ELECTRONIC ENGINEERING - II

Time Allotted: 3 Hours

Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PART-I(Electrical)
(Used blue color answer book for this part)
GROUP A
(Multiple Choice Type Questions)

1. Answer any five questions.

 $5 \times 1 = 5$

- (i) The output voltage of a dc generator is
 - (A) ac square wave
- (B) ac sinusoidal wave
- (C) pulsating dc
- (D) pure dc
- (ii) In a transformer, the flux phasor
 - (A) leads the induced emf by 90°
 - (B) lags the induced emf by 90°
 - (C) leads the induced emf by slightly less than 90°
 - (D) lags the induced emf by slightly less than 90°

Turn Over

- (iii) When a 50 Hz transformer is operated at 400 Hz, its KVA rating is
 - (A) increased by 8 times
 - (B) reduced by 8 times
 - (C) unaffected
 - (D) determined by load on secondary
- (iv) Two wattmeters are connected to measure the input to a balanced three phase circuit. The readings of the instruments are W_1 & W_2 respectively. The currents lag by an angle θ behind the corresponding phase voltages
 - (A) if $\theta = 0^{\circ}$, $W_1 > W_2$
 - (B) if $\theta < 60^{\circ}$ both $W_1 \& W_2$ are positive
 - (C) if $\theta = 30^{\circ}$, $W_2 > 0$
 - (D) for $\theta > 60^{\circ}$, W_1 is positive
- (v) Power developed by dc motor is maximum when the ratio of back emf & applied voltage is
 - (A) double

(B) zero

(C) unity

- (D) half
- (vi) The critical resistance of a dc generator refers to the resistance of
 - (A) load

(B) brushes

(C) field

(D) armature

GROUP B (Short Answer Type Questions)

Answer any two questions.

 $2 \times 5 = 10$

2. Draw the exact equivalent circuit of a transformer & describe briefly the various parameters involved in it.

- 3. Find an expression of electric field intensity and electric potential of an isolated point charge.
- 4. Show that the power in a three phase circuit can be measured using 2 wattmeters.
- 5. What is slip? Deduce a relationship between rotor current frequency & supply frequency in terms of slip of an induction motor.

GROUP C (Long Answer Type Questions)

Answer any two questions. $2 \times 10 = 20$ 6. (a) Why is the open circuit test on a transformer conducted at a 3+7 rated voltage? Explain. (b) A 20 KVA, 2000/200V single phase transformer has a primary resistance of 2.1Ω and a secondary resistance of 0.02Ω . If the total iron loss equals 200W, find the efficiency on (i) full load & a p.f of 0.5 lagging (ii) half load & a p.f of 0.8 leading. 7. (a) What is meant by back emf? Explain the principle of torque 5 production in a dc motor. (b) A dc motor takes an armature current of 100A at 230V. The 5 armature resistance is 0.05Ω . The total number of lap connected armature conductors are 500 & the number of poles is 4. The flux per pole is 0.03wb. Find the speed & torque. 8. (a) "A rotating field is created in' a three phase induction motor when a balanced three phase ac supply is applied at the stator". Explain.

Turn Over

www.makaut.com

CS/B.Tech/Even/Sem-2nd/ES-201/2015

(0)	at full load with an efficiency of 90% at a power factor of 0.8 lagging. Calculate (i) the input power (ii) the line current.	3
9.(a)	In a three phase four wire power distribution system, phase B is open while current through $R \& Y$ are $100 \angle -30 \&$	4
	$60 \angle 60^{\circ}$. Find the current through the neutral connection.	
(b)	Three equal charges each of magnitude 3.5×10 ⁻⁶ C are placed	6
	at three corners of a right angled triangle of sides 3cm, 4cm,	
	5cm. Find the force on the charge at the right angle corner.	

PART-II(Electronics) (Used green color answer book for this part) GROUP A (Multiple Choice Type Questions)

1.	Answer any five questions.	•	5×
(i)	FET is less noisy than BJT because of		
	(A) high input resistance(C) voltage controlled current	* /	
(ii)	MOSFET is a		
	(A) current controlled device(B) voltage controlled device(C) temperature controlled dev(D) none of these	vice	

- (iii) Current shunt feedback is used in
 - (A) voltage amplifier
 - (B) current amplifier
 - (C) transconductance amplifier
 - (D) transresistance amplifier
- (iv) An OP-AMP has
 - (A) negligible input resistance
 - (B) infinitely large voltage gain
 - (C) very large output inpedance
 - (D) all of these
- (v) The simplest form of Boolean expression A⊕ĀB is
 - (A) A

(B) B

5

(C) AB

(D) A+B

2024

Turn Over

1 = 5

- (vi) What range of decimal values can be represented by an eight bit positive unsigned binary number
 - (A) 0 to 63

(B) 0 to 127

(C) 0 to 255

(D) 0 to 511

GROUP B (Short Answer Type Questions)

		Answer any two questions.	$2\times5=10$
2.	` '	What is the relation among JFET parameters? What are the advantages of FET over BJT?	2.5+2.5
3.		Deriving proper expression explain the effect of positive feedback on gain, input impedance, output impedance, stability and bandwidth.	5
4.		Draw the block diagram of an OP-AMP and write down the characteristics of an ideal OP-AMP.	5
5.		Perform the following number conversion: (i) (11011.1010) ₂ = (?) ₁₀ (ii) (756.603) ₈ = (?) ₁₆ Realize the Boolean expression using minimum number of NOR gates	2.5+2.5
		V = AR' + A'R	

GROUP C (Long Answer Type Questions)

Answer any two questions.

 $2 \times 10 = 20$

7+3

6. (a) An N-channel JFET amplifier with a voltage divider biasing circuit as shown in the figure has the following parameters: $V_p = -4V$, $I_{DSS} = 4mA$. Calculate the value of drain current at the operating point. Verify whether the FET will operate in the pinch-off region.

(b) Explain the basic operation of depletion type n channel MOSFET with a suitable diagram.

- SET 55 W/TURN 8P (744X494)

5+2+3

CS/B.Tech/Even/Sem-2nd/ES-201/2015

7. (a) Obtain the closed loop gain, CMRR in dB and maximum operating frequency for the non-inverting amplifier shown in the figure whose common-mode gain is 0.003 and slew rate is $0.2 \text{ V/}\mu\text{s}$.

- (b) What do you mean by negative feedback?
- (c) Why is it used in designing an amplifier?
- 8. (a) Why NAND gate is called a 'universal' gate? Explain with examples. 5+5
 - (b) A current series feedback amplifier has the following circuit parameters: $R_L = 1K\Omega$, $R_E = 100\Omega$, $R_2 = 20k\Omega$, $R_1 = 30k\Omega$ and $h_{fe} = 100$. Calculate A, β , R_{if} , A_f and loop gain in dB.
- 9. Write short notes on any two of the following: 2×5
 - (a) Slew rate
 - (b) Barkhausen criterion
 - (c) Pinch-off condition of JFET
 - (d) Op-amp as an integrator.