Multi-Model Based Incident Prediction and Risk Assessment in Dynamic Cybersecurity Protection for Industrial Control Systems

Zhang Qi qiqi@hust.edu.cn

October 11, 2015

Automation School, Huazhong University of Science and Technology, Wuhan.

Outlines

Simulation

- Simulation Platform
- Simulation and Result Analysis

Simulation Platform

The simulation object is a chemical reactor whose control structure is shown as the following figure.

_ Legend	
HDS	Historical data server
ES	Engineer station
G1	Gateway of Ethernet
G2	Gateway of CANBUS
G3	Gateway of CANBUS
PLC1	Controller of V1 and V2
PLC2	Data collection of P, T and L
PLC3	Controller of M
PLC4	Controller of SW
PLC5	Controller of V4
PLC6	Controller of V3
V1	Valve of material
V2	Valve of another material
V3	Valve of product
V4	Valve of pressure reducing
M	Motor of B
SW	Switch of H
P	Pressure sensor
T	Temperature sensor
L	Liquid level sensor
В	Blender
Н	Heater

Simulation Platform

The simulation platform is implemented in Matlab, which consists of three modules: an evidence generator, an incident prediction module, and a risk assessment module.

3

