Package 'DTSR'

November 8, 2024

Version 0.1.0

Date 2024-10-22			
Type Package			
Title Distributed Trimmed Scores Regression for Handling Missing Data			
Author Guangbao Guo [aut, cre, cph] (https://orcid.org/0000-0002-4115-6218), Ruiling Niu [aut]			
Maintainer Guangbao Guo <ggb111111111@163.com></ggb111111111@163.com>			
Description Provides functions for handling missing data using Distributed Trimmed Scores Regression and other imputation methods. It includes facilities for data imputation, evaluation metrics, and clustering analysis. It is designed to work in distributed computing environments to handle large datasets efficiently. The philosophy of the package is described in Guo G. (2024) <doi:10.1080 03610918.2022.2091779="">.</doi:10.1080>			
License GPL-3			
Encoding UTF-8			
Depends R (>= $3.5.0$)			
Repository CRAN			
Imports stats, mvdalab, DMwR2, cluster, MASS			
RoxygenNote 7.3.2			
NeedsCompilation no			
Date/Publication 2024-11-08 14:30:06 UTC			
Contents			
DEM DRPCA DTSR EM IndexCPP KNN mean MLPCA DTSR 10			

2 DEM

		Distributed EM Imputation (DEM) for Handling Missing Data	_
Index		19	9
	TSR		6
	SVD		4
	RPCA		3
	NIPALS		2

Description

This function performs DEM to handle missing data by dividing the dataset into D blocks, applying the EM imputation method within each block, and then combining the results. It calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
DEM(data0, data.sample, data.copy, mr, km, D)
```

Arguments

data0 The original dataset containing the response variable and features.

The dataset used for sampling, which may contain missing values.

A copy of the original dataset, used for comparison or validation.

The number of clusters for k-means clustering.

The number of blocks to divide the data into.

Value

A list containing:

XDEMThe imputed dataset.RMSEDEMThe Root Mean Squared Error.MAEDEMThe Mean Absolute Error.REDEMThe Relative Eelative Error.GCVDEMThe DEM Imputation for Generalized Cross-Validation.

The BENT imparation for Generalized Gross va

timeDEM The DEM algorithm execution time.

See Also

EM for the original EM function.

DRPCA 3

Examples

```
# Create a sample dataset with missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample
data0 <- data.frame(data.sample, response = rnorm(n))
mr <- sample(1:n, 10)  # Sample rows for evaluation
km <- 3  # Number of clusters
D <- 2  # Number of blocks
# Perform DEM imputation
result <- DEM(data0, data.sample, data.copy, mr, km, D)
# Print the results
print(result$XDEM)</pre>
```

DRPCA

Distributed Robust Principal Component Analysis (DRPCA) for Handling Missing Data

Description

This function performs DRPCA to handle missing data by dividing the dataset into D blocks, applying the Robust Principal Component Analysis (RPCA) method to each block, and then combining the results. It calculates various evaluation metrics including RMSE, MMAE, RRE, and Generalized Cross-Validation (GCV) using different hierarchical clustering methods.

Usage

```
DRPCA(data0, data.sample, data.copy, mr, km, D)
```

Arguments

data0	The original dataset containing the response variable and features.
data.sample	The dataset used for sampling, which may contain missing values.
data.copy	A copy of the original dataset, used for comparison or validation.
mr	Indices of the rows with missing values that need to be predicted.
km	The number of clusters for k-means clustering.
D	The number of blocks to divide the data into.

DTSR

Value

A list containing:

XDRPCA The imputed dataset.

RMSEDRPCA The Root Mean Squared Error.

MAEDRPCA The Mean Absolute Error.

REDRPCA The Relative Eelative Error.

GCVDRPCA Distributed DRPCA Imputation for Generalized Cross-Validation.

timeDRPCA The DRPCA algorithm execution time.

See Also

RPCA for the original RPCA function.

Examples

```
# Create a sample dataset with missing values
set.seed(123)
n <- 100
p <- 10
D <- 2
data.sample <- matrix(rnorm(n * p), nrow = n)
data.sample[sample(1:(n-10), (p-2))] <- NA
data.copy <- data.sample
data0 <- data.frame(data.sample, response = rnorm(n))
mr <- sample(1:n, 10)  # Sample rows for evaluation
km <- 3  # Number of clusters
result <- DRPCA(data0, data.sample, data.copy, mr, km, D)
#Print the results
print(result$XDRPCA)</pre>
```

DTSR Distributed Trimmed Scores Regression (DTSR) for Handling Missing
Data

Description

This function performs DTSR to handle missing data by dividing the dataset into D blocks, applying the Trimmed Scores Regression (TSR) method to each block, and then combining the results. It calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
DTSR(data0, data.sample, data.copy, mr, km, D)
```

DTSR 5

Arguments

data.sample The dataset used for sampling, which may contain missing values.

data.copy A copy of the original dataset, used for comparison or validation.

mr Indices of the rows with missing values that need to be predicted.

km The number of clusters for k-means clustering.

D The number of blocks to divide the data into.

Value

A list containing:

XDTSR The imputed dataset.

RMSEDTSR The Root Mean Squared Error.

MAEDTSR The Mean Absolute Error.

REDTSR The Relative Eelative Error.

GCVDTSR The DTSR for Generalized Cross-Validation.

timeDTSR The DTSR algorithm execution time.

See Also

TSR for the original TSR function.

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 10
D <- 2
data.sample <- matrix(rnorm(n * p), nrow = n)
data.sample[sample(1:(n-10), (p-2))] <- NA
data.copy <- data.sample
data0 <- data.frame(data.sample, response = rnorm(n))
mr <- sample(1:n, 10)  # Sample rows for evaluation
km <- 3  # Number of clusters
# Perform DTSR imputation
result <- DTSR(data0, data.sample, data.copy, mr, km,D)
# Print the results
print(result$XDTSR)</pre>
```

6 EM

Expectation-Maximization	Imputation with Evaluation Metrics
--------------------------	------------------------------------

Description

ΕM

This function performs Expectation-Maximization (EM) imputation on a dataset with missing values. It uses the 'imputeEM' function from the 'mvdalab' package to estimate the missing values. The function also calculates various evaluation metrics including RMSE, MMAE, and RRE. Additionally, it performs k-means and hierarchical clustering to assess the quality of the imputation.

Usage

```
EM(data0, data.sample, data.copy, mr, km)
```

Arguments

data0	The original dataset containing the response variable and features.
data.sample	The dataset used for sampling, which may contain missing values.
data.copy	A copy of the original dataset, used for comparison or validation.
mr	Indices of the rows with missing values that need to be predicted.
km	The number of clusters for k-means clustering.

Value

A list containing:

Xnew	The imputed dataset.
RMSE	The Root Mean Squared Error.
MMAE	The Mean Absolute Error.
RRE	The Relative Eelative Error.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeEM	The EM algorithm execution time.

IndexCPP 7

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform EM imputation
result <- EM(data0, data.sample, data.copy, mr, km)</pre>
# Print the results
print(result$RMSE)
print(result$MMAE)
print(result$RRE)
print(result$CPP1)
print(result$Xnew)
```

IndexCPP

Calculate the Consistency Proportion Index (CPP)

Description

This function calculates the Consistency Proportion Index (CPP), a measure of the consistency of clustering results. The CPP is calculated by determining the most common cluster assignment for each group and then computing the proportion of cases that are assigned to these clusters.

Usage

IndexCPP(I)

Arguments

Ι

A matrix where each row represents a case and each column represents a cluster assignment. The last column should indicate the group membership (1, 2, or 3).

Value

A list containing:

ICPP

The Consistency Proportion Index.

8 KNN

Examples

```
# Example usage
set.seed(123)
n <- 100
values1 <- sample(1:3, 30, replace = TRUE)
values2 <- sample(1:3, 30, replace = TRUE) + 1
values3 <- sample(1:3, 40, replace = TRUE) + 2
values <- c(values1, values2, values3)
categories <- c(rep(1, 30), rep(2, 30), rep(3, 40))
I <- cbind(1:n, values, categories)
CPP <- IndexCPP(I)
print(CPP)</pre>
```

KNN

This function performs imputation using the K-Nearest Neighbors (KNN) algorithm and calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods. It also records the execution time of the process.

Description

This function performs imputation using the K-Nearest Neighbors (KNN) algorithm and calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods. It also records the execution time of the process.

Usage

```
KNN(data0, data.sample, data.copy, mr, km)
```

Arguments

data.sample The dataset used for sampling, which may contain missing values.

data.copy A copy of the original dataset, used for comparison or validation.

mr Indices of the rows with missing values that need to be predicted.

km The number of clusters for k-means clustering.

Value

A list containing:

Xnew The imputed dataset.

RMSE The Root Mean Squared Error.

mean 9

MMAE	The Mean Absolute Error.
RRE	The Relative Eerror.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeKNN	The KNN algorithm execution time.

mean	Mean Imputation with Evaluation Metrics	
mean	Mean Imputation with Evaluation Metrics	

Description

This function performs mean imputation on a dataset with missing values. It replaces missing values with the column means and calculates various evaluation metrics including RMSE, MMAE, and RRE. Additionally, it performs k-means and hierarchical clustering to assess the quality of the imputation.

Usage

```
mean(data0, data.sample, data.copy, mr, km)
```

Arguments

data. sample The original dataset containing the response variable and features.

The dataset used for sampling, which may contain missing values.

A copy of the original dataset, used for comparison or validation.

Indices of the rows with missing values that need to be predicted.

The number of clusters for k-means clustering.

Value

A list containing:

Xnew	The imputed dataset.
RMSE	The Root Mean Squared Error.
MMAE	The Mean Absolute Error.
RRE	The Relative Eelative Error.
CPP1	The K-means clustering Consistency Proportion Index.

10 MLPCA

CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timemean	The mean algorithm execution time.

See Also

kmeans in the stats package for more information on k-means clustering. hclust in the stats package for more information on hierarchical clustering.

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA</pre>
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform mean imputation
result <- mean(data0, data.sample, data.copy, mr, km)</pre>
# Print the results
print(result$RMSE)
print(result$MMAE)
print(result$RRE)
print(result$CPP1)
print(result$Xnew)
```

MLPCA

Multilinear Principal Component Analysis with Missing Data

Description

This function performs Multilinear Principal Component Analysis (MLPCA) to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates the RMSE and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
MLPCA(data0, data.sample, data.copy, mr, km)
```

MLPCA 11

Arguments

data. sample

The original dataset containing the response variable and features.

The dataset used for sampling, which may contain missing values.

A copy of the original dataset, used for comparison or validation.

The dataset used for comparison or validation.

km The number of clusters for k-means clustering.

Value

A list containing:

Xnew	The imputed dataset.
RMSE	The Root Mean Squared Error.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeKNN	The MLPCA algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform MLPCA imputation
result <- MLPCA(data0, data.sample, data.copy, mr, km)</pre>
# Print the results
print(result$RMSE)
print(result$CPP1)
print(result$Xnew)
```

NIPALS NIPALS

NIPALS	NIPALS Algorithm with RPCA and Clustering

Description

This function performs the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates the RMSE and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
NIPALS(data0, data.sample, data.copy, mr, km)
```

Arguments

data0	The original dataset containing the response variable and features.
data.sample	The dataset used for sampling, which may contain missing values.
data.copy	A copy of the original dataset, used for comparison or validation.
mr	Indices of the rows with missing values that need to be predicted.
lem	The number of clusters for k-means clustering

The number of clusters for k-means clustering.

Value

A list containing:

Xnew	The imputed dataset.
RMSE	The Root Mean Squared Error.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeNIPALS	The NIPALS algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

RPCA 13

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform NIPALS imputation
result <- NIPALS(data0, data.sample, data.copy, mr, km)</pre>
# Print the results
print(result$RMSE)
print(result$CPP1)
print(result$Xnew)
```

RPCA

Robust Principal Component Analysis with Missing Data

Description

This function performs Robust Principal Component Analysis (RPCA) to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
RPCA(data0, data.sample, data.copy, mr, km)
```

Arguments

data0 The original dataset containing the response variable and features.

The dataset used for sampling, which may contain missing values.

A copy of the original dataset, used for comparison or validation.

The number of clusters for k-means clustering.

Value

A list containing:

Xnew The imputed dataset.

RMSE The Root Mean Squared Error.

14 SVD

MMAE	The Mean Absolute Error.
RRE	The Relative Relative Error.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	The Hierarchical Clustering Complete Linkage Consistency Proportion Index.
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeRPCA	The RPCA algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform RPCA imputation
result <- RPCA(data0, data.sample, data.copy, mr, km)
# Print the results
print(result$RMSE)
print(result$MMAE)
print(result$RRE)
print(result$CPP1)
print(result$Xnew)
```

SVD

This function performs imputation using Singular Value Decomposition (SVD) and calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Description

This function performs imputation using Singular Value Decomposition (SVD) and calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

SVDImpute 15

Usage

```
SVD(data0, data.sample, data.copy, mr, km)
```

Arguments

data. sample The dataset used for sampling, which may contain missing values.

data.copy A copy of the original dataset, used for comparison or validation.

mr Indices of the rows with missing values that need to be predicted.

km The number of clusters for k-means clustering.

Value

A list containing:

Xnew The imputed dataset. **RMSE** The Root Mean Squared Error. MMAE The Mean Absolute Error. The Relative Eelative Error. RRE CPP1 The K-means clustering Consistency Proportion Index. CPP2 The Hierarchical Clustering Complete Linkage Consistency Proportion Index. CPP3 The Hierarchical Clustering Single Linkage Consistency Proportion Index. CPP4 The Hierarchical Clustering Average Linkage Consistency Proportion Index. CPP5 The Hierarchical Clustering Centroid linkage Consistency Proportion Index. The Hierarchical Clustering Median Linkage Consistency Proportion Index. CPP6 CPP7 The Hierarchical Clustering Ward's Method Consistency Proportion Index. timeSVD The SVD algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Description

This function performs imputation using Singular Value Decomposition (SVD) with iterative refinement. It begins by filling missing values with the mean of their respective columns. Then, it computes a low-rank (k) approximation of the data matrix. Using this approximation, it refills the missing values. This process of recomputing the rank-k approximation with the newly imputed values and refilling the missing data is repeated for a specified number of iterations, 'num.iters'.

16 TSR

Usage

```
SVDImpute(x, k, num.iters = 10, verbose = TRUE)
```

Arguments

x A data frame or matrix where each row represents a different record.

k The rank-k approximation to use for the data matrix.

num.iters The number of times to compute the rank-k approximation and impute the miss-

ing data.

verbose If TRUE, print status updates during the process.

Value

A list containing:

data.matrix The imputed matrix with missing values filled.

Examples

```
# Create a sample matrix with random values and introduce missing values
x = matrix(rnorm(100), 10, 10)
x[x > 1] = NA

# Perform SVD imputation
imputed_x = SVDImpute(x, 3)

# Print the imputed matrix
print(imputed_x)
```

TSR

Trimmed Scores Regression with Missing Data

Description

This function performs Trimmed Scores Regression (TSR) to handle missing data by imputing the missing values based on the correlation structure within the data. It also calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods.

Usage

```
TSR(data0, data.sample, data.copy, mr, km)
```

TSR 17

Arguments

data. sample The original dataset containing the response variable and features.

The dataset used for sampling, which may contain missing values.

A copy of the original dataset, used for comparison or validation.

Indices of the rows with missing values that need to be predicted.

km The number of clusters for k-means clustering.

Value

A list containing:

Xnew	The imputed dataset.
RMSE	The Root Mean Squared Error.
MMAE	The Mean Absolute Error.
RRE	The Relative Relative Error.
CPP1	The K-means clustering Consistency Proportion Index.
CPP2	$\label{thm:constraint} The\ Hierarchical\ Clustering\ Complete\ Linkage\ Consistency\ Proportion\ Index.$
CPP3	The Hierarchical Clustering Single Linkage Consistency Proportion Index.
CPP4	The Hierarchical Clustering Average Linkage Consistency Proportion Index.
CPP5	The Hierarchical Clustering Centroid linkage Consistency Proportion Index.
CPP6	The Hierarchical Clustering Median Linkage Consistency Proportion Index.
CPP7	The Hierarchical Clustering Ward's Method Consistency Proportion Index.
timeTSR	The TSR algorithm execution time.

See Also

princomp and svd for more information on PCA and SVD.

Examples

```
# Create a sample matrix with random values and introduce missing values
set.seed(123)
n <- 100
p <- 5
data.sample <- matrix(rnorm(n * p), nrow = n)</pre>
data.sample[sample(1:(n*p), 20)] <- NA</pre>
data.copy <- data.sample</pre>
data0 <- data.frame(data.sample, response = rnorm(n))</pre>
mr <- sample(1:n, 10) # Sample rows for evaluation</pre>
km <- 3 # Number of clusters
# Perform TSR imputation
result <- TSR(data0, data.sample, data.copy, mr, km)</pre>
# Print the results
print(result$RMSE)
print(result$MMAE)
print(result$RRE)
```

TSR

print(result\$CPP1)
print(result\$Xnew)

Index

DEM	Turke CDD 7
* DEM	IndexCPP, 7
DEM, 2	* consistency
* DRPCA	IndexCPP, 7 * evaluation
DRPCA, 3	* evaluation mean, 9
* DTSR	* imputation
DTSR, 4	DEM, 2
*EM	DRPCA, 3
DEM, 2 * KNN	DTSR, 4
KNN, 8	KNN, 8
* MLPCA	mean, 9
MLPCA, 10	MLPCA, 10
* NIPALS	NIPALS, 12
NIPALS, 12	RPCA, 13
* PCA	SVD, 14
DRPCA, 3	TSR, 16
DTSR, 4	* k-means
MLPCA, 10	DEM, 2
NIPALS, 12	
RPCA, 13	DEM, 2
SVD, 14	DRPCA, 3
TSR, 16	DTSR, 4
* RPCA	EM, 2, 6
DRPCA, 3	211, 2, 0
NIPALS, 12	hclust, <i>10</i>
RPCA, 13	_
* SVD	IndexCPP, 7
DRPCA, 3	kmeans, 10
DTSR, 4	KNN, 8
MLPCA, 10	Kin, U
NIPALS, 12	mean, 9
RPCA, 13	MLPCA, 10
SVD, 14	
TSR, 16	NIPALS, 12
* TSR	princomp, 11, 12, 14, 15, 17
DTSR, 4	ρι 111COπιρ, 11, 12, 14, 13, 17
TSR, 16	RPCA, 4, 13
* clustering	
DEM, 2	SVD, 14

20 INDEX

svd, *11*, *12*, *14*, *15*, *17* SVDImpute, 15

TSR, 5, 16