Sparse Gaussian process inference: how many inducing points do you really need?

David Burt, Carl E. Rasmussen and Mark van der Wilk Cambridge University

December 2nd 2018

Outline

- 1 Introduction
- **2** Bounds on the marginal likelihood and understanding the KL-divergence

3 Eigenfunction inducing features

4 Number of features needed for sparse inference

Introduction

Gaussian Process Regression

Gaussian process priors allow us to perform exact Bayesian inference in regression by directly placing a prior on functions instead of parameters.

Sparse Gaussian Inference

Idea: Make a variational approximation to the posterior process that is Gaussian and only uses $M \ll N$ inducing features.

Main Question

Question: How many inducing points are needed to be sure that a sparse approximation accurately approximates inference in the full model?

Main Question

Question: How many inducing points are needed to be sure that a sparse approximation accurately approximates inference in the full model?

• We approach this problem by proving bounds on the KL-divergence that hold with high probability for large *N*, with training inputs i.i.d draws from some distribution.

Main Question

Question: How many inducing points are needed to be sure that a sparse approximation accurately approximates inference in the full model?

- We approach this problem by proving bounds on the KL-divergence that hold with high probability for large N, with training inputs i.i.d draws from some distribution.
- In separate work, we introduce eigenfunction inducing features an interdomain feature with diagonal covariance matrix. We derive bounds using these features.

KL-divergence

Bounds on the marginal likelihood

and understanding the

The Variational Lower Bound

Recall,

$$\log(p(\mathbf{y})) = \mathcal{L} = \log\left(\mathcal{N}\left(\mathbf{y}; 0, \mathbf{K}_{f,f} + \sigma_{\textit{noise}}^2 \mathbf{I}\right)\right).$$

The Variational Lower Bound

Recall,

$$\log(p(\mathbf{y})) = \mathcal{L} = \log\left(\mathcal{N}\left(\mathbf{y}; 0, \mathbf{K}_{f,f} + \sigma_{noise}^{2} \mathbf{I}\right)\right).$$

The variational lower bound for sparse GP regression is [Titsias, 2009]:

$$\begin{split} \mathcal{L}_{lower} &= \log \left(\mathcal{N} \left(\mathbf{y}; 0, \mathbf{Q}_{f,f} + \sigma_{noise}^2 \mathbf{I} \right) \right) \\ &- \frac{1}{2\sigma_{noise}^2} \underbrace{\operatorname{tr} \left(\mathbf{K}_{f,f} - \mathbf{Q}_{f,f} \right)}_{\mathbf{t}} \end{split}$$
 with
$$\mathbf{Q}_{f,f} = \mathbf{K}_{u,f}^T \mathbf{K}_{u,u}^{-1} \mathbf{K}_{u,f}.$$

The Variational Lower Bound

Recall,

$$\log(p(\mathbf{y})) = \mathcal{L} = \log\left(\mathcal{N}\left(\mathbf{y}; 0, \mathbf{K}_{f,f} + \sigma_{noise}^{2}\mathbf{I}\right)\right).$$

The variational lower bound for sparse GP regression is [Titsias, 2009]:

$$\mathcal{L}_{lower} = \log \left(\mathcal{N} \left(\mathbf{y}; 0, \mathbf{Q}_{f,f} + \sigma_{noise}^2 \mathbf{I} \right) \right)$$
$$- \frac{1}{2\sigma_{noise}^2} \underbrace{\operatorname{tr} \left(\mathbf{K}_{f,f} - \mathbf{Q}_{f,f} \right)}_{\operatorname{t}}$$

with
$$\mathbf{Q}_{f,f} = \mathbf{K}_{u,f}^T \mathbf{K}_{u,u}^{-1} \mathbf{K}_{u,f}$$
.

 $\mathcal{L} - \mathcal{L}_{lower}$ is a KL-divergence from the variational approximation to the full posterior [Matthews et al., 2016].

An Upper Bound on the Marginal Likelihood

We want to bound $\mathcal{L} - \mathcal{L}_{lower}$.

We have the upper bound [Titsias, 2014]:

$$\begin{split} \mathcal{L} &\leq \mathcal{L}_{\textit{upper}} := \log \left(\mathcal{N}(\mathbf{y}; 0, \mathbf{Q}_{f,f} + t \mathbf{I} + \sigma_{\textit{noise}}^2 \mathbf{I}) \right) \\ &+ \frac{1}{2} \log \left(|\mathbf{Q}_{f,f} + t \mathbf{I} + \sigma_{\textit{noise}}^2 \mathbf{I}| \right) \\ &- \frac{1}{2} \log \left(|\mathbf{Q}_{f,f} + \sigma_{\textit{noise}}^2 \mathbf{I}| \right), \end{split}$$

• This upper bound depends on $\mathbf{Q}_{f,f}$ and t, making it easier to compare to the lower bound.

A Bound on the Gap (KL-divergence)

Using the upper and lower bound and manipulating matrices,

$$\mathit{KL}(Q\|\hat{P}) \leq \frac{t}{2\sigma_{noise}^2} \underbrace{\left(1 + \frac{\|\mathbf{y}\|_2^2}{\sigma_{noise}^2 + t}\right)}_{O(N)}.$$

• Under weak assumptions $\|\mathbf{y}\|^2 = O(N)$.

• In order to show the KL divergence tends to 0 it suffices to choose M = M(N) so that t = o(1/N).

Eigenfunction inducing features

Bounds with Standard Inducing Points

Recall,

$$t := \operatorname{tr}\left(\mathbf{K}_{f,f} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,u}^{-1} \mathbf{K}_{u,f}\right).$$

• Subsampled inducing points ⇒ Nyström approximation.

Bounds with Standard Inducing Points

Recall,

$$t := \operatorname{tr}\left(\mathbf{K}_{f,f} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,u}^{-1} \mathbf{K}_{u,f}\right).$$

- Subsampled inducing points ⇒ Nyström approximation.
- Bounds tend to depend heavily on $\mathbf{K}_{f,f}$ being 'well-behaved' (coherence).

Bounds with Standard Inducing Points

Recall,

$$t := \operatorname{tr}\left(\mathbf{K}_{f,f} - \mathbf{K}_{u,f}^{T} \mathbf{K}_{u,u}^{-1} \mathbf{K}_{u,f}\right).$$

- Subsampled inducing points ⇒ Nyström approximation.
- Bounds tend to depend heavily on K_{f,f} being 'well-behaved' (coherence).
- A major obstacle in a more direct approach to understanding this bound when M is allowed to grow as a function of N is $\mathbf{K}_{u,u}^{-1}$.

Given a kernel k, assume the training inputs are are i.i.d. draws according to measure ρ . The covariance operator associated to k, ρ is:

$$\mathcal{K}: [\mathcal{K}f](\mathbf{x}') = \int_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) d\rho(\mathbf{x}).$$

Given a kernel k, assume the training inputs are are i.i.d. draws according to measure ρ . The covariance operator associated to k, ρ is:

$$\mathcal{K}: [\mathcal{K}f](\mathbf{x}') = \int_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) d\rho(\mathbf{x}).$$

• As $N \to \infty$ the eigenvalues of $\mathbf{K}_{f,f}$ approach the eigenvalues of \mathcal{K} .

Given a kernel k, assume the training inputs are are i.i.d. draws according to measure ρ . The covariance operator associated to k, ρ is:

$$\mathcal{K}: [\mathcal{K}f](\mathbf{x}') = \int_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) d\rho(\mathbf{x}).$$

- As $N \to \infty$ the eigenvalues of $\mathbf{K}_{f,f}$ approach the eigenvalues of \mathcal{K} .
- For the SE-kernel and a normal input density, the eigenvalues of ${\cal K}$ have a closed form and decay exponentially.

Given a kernel k, assume the training inputs are are i.i.d. draws according to measure ρ . The covariance operator associated to k, ρ is:

$$\mathcal{K}: [\mathcal{K}f](\mathbf{x}') = \int_{\mathbf{x} \in \mathcal{X}} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) d\rho(\mathbf{x}).$$

- As $N \to \infty$ the eigenvalues of $\mathbf{K}_{f,f}$ approach the eigenvalues of \mathcal{K} .
- \bullet For the SE-kernel and a normal input density, the eigenvalues of ${\cal K}$ have a closed form and decay exponentially.

Eigenfunction Inducing Features

We define eigenfunction inducing features by,

$$\mathbf{u}_m = \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \frac{1}{\sqrt{\lambda_m}} \phi_m(\mathbf{x}) d\mu(\mathbf{x}).$$

where μ is a probability measure and the (λ_m, ϕ_m) come from the eigendecompostion of \mathcal{K}_{μ} .

Eigenfunction Inducing Features

We define eigenfunction inducing features by,

$$\mathbf{u}_m = \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \frac{1}{\sqrt{\lambda_m}} \phi_m(\mathbf{x}) d\mu(\mathbf{x}).$$

where μ is a probability measure and the (λ_m, ϕ_m) come from the eigendecompostion of \mathcal{K}_{μ} .

- These are an example of interdomain inducing features:
 - Same argument as for inducing points can be used to establish the variational lower bound for these features.

Eigenfunction Inducing Features

We define eigenfunction inducing features by,

$$\mathbf{u}_m = \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \frac{1}{\sqrt{\lambda_m}} \phi_m(\mathbf{x}) d\mu(\mathbf{x}).$$

where μ is a probability measure and the (λ_m, ϕ_m) come from the eigendecompostion of \mathcal{K}_{μ} .

- These are an example of interdomain inducing features:
 - Same argument as for inducing points can be used to establish the variational lower bound for these features.
 - Need to compute covariance matrices: $K_{u,f}$ and $K_{u,u}$.

Covariances

$$cov(\mathbf{u}_m, \mathbf{u}_n) = \int_{\mathbf{x} \in \mathcal{X}} \int_{\mathbf{x}' \in \mathcal{X}} \mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] \frac{1}{\sqrt{\lambda_m} \sqrt{\lambda_n}} \phi_m(\mathbf{x}) \phi_n(\mathbf{x}') d\mu(\mathbf{x}') d\mu(\mathbf{x})$$
$$= \delta_{m,n}.$$

So
$$\mathbf{K}_{u,u} = \mathbf{I}!$$

Covariances

$$cov(\mathbf{u}_m, \mathbf{u}_n) = \int_{\mathbf{x} \in \mathcal{X}} \int_{\mathbf{x}' \in \mathcal{X}} \mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] \frac{1}{\sqrt{\lambda_m} \sqrt{\lambda_n}} \phi_m(\mathbf{x}) \phi_n(\mathbf{x}') d\mu(\mathbf{x}') d\mu(\mathbf{x})$$
$$= \delta_{m,n}.$$

So $\mathbf{K}_{u,u} = \mathbf{I}!$

$$cov(\mathbf{u}_m, f(\mathbf{x})) = \int_{\mathbf{x} \in \mathcal{X}} \mathbb{E}[f(\mathbf{x})f(\mathbf{x}')] \frac{1}{\sqrt{\lambda_m}} \phi_m(\mathbf{x}') d\mu(\mathbf{x}')$$
$$= \sqrt{\lambda_m} \phi_m(\mathbf{x}).$$

These are the entries in $\mathbf{K}_{u,f}$.

Mercer's Theorem

Recall Mercer's Theorem,

$$(\mathbf{K}_{f,f})_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{m=1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i) \phi_m(\mathbf{x}_j),$$

where the $\lambda_{\it m},\phi_{\it m}$ are eigenvalue, eigenfunction pairs of the operator $\mathcal{K}_{\mu}.$

Mercer's Theorem

Recall Mercer's Theorem,

$$(\mathbf{K}_{f,f})_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{m=1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i) \phi_m(\mathbf{x}_j),$$

where the λ_m, ϕ_m are eigenvalue, eigenfunction pairs of the operator \mathcal{K}_{μ} . From the covariance calculation

$$(\mathbf{Q}_{f,f})_{i,j} = \left(\mathbf{K}_{u,f}^T \mathbf{K}_{u,f}\right)_{i,j} = \sum_{m=1}^M \lambda_m \phi_m(\mathbf{x}_i) \phi_m(\mathbf{x}_j),$$

for the eigenfunction inducing features defined with respect to the measure $\mu.$

Number of features needed for

sparse inference

Using the two formulas from the previous slide,

$$t_i = (\mathbf{K}_{f,f})_{i,i} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,f} = \sum_{m=M+1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i)^2.$$

Using the two formulas from the previous slide,

$$t_i = (\mathbf{K}_{f,f})_{i,i} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,f} = \sum_{m=M+1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i)^2.$$

Consider the expected value of t_i , (now assuming the training examples are drawn i.i.d. according to μ).

$$\mathbb{E}[t_i] = \sum_{m=M+1}^{\infty} \int \lambda_m \phi_m(\mathbf{x})^2 d\mu(\mathbf{x}) = \sum_{m=M+1}^{\infty} \lambda_m.$$

Using the two formulas from the previous slide,

$$t_i = (\mathbf{K}_{f,f})_{i,i} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,f} = \sum_{m=M+1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i)^2.$$

Consider the expected value of t_i , (now assuming the training examples are drawn i.i.d. according to μ).

$$\mathbb{E}[t_i] = \sum_{m=M+1}^{\infty} \int \lambda_m \phi_m(\mathbf{x})^2 d\mu(\mathbf{x}) = \sum_{m=M+1}^{\infty} \lambda_m.$$

The strong law of large numbers tells us that $\frac{1}{N}t$ tends to its expected value as $N \to \infty$.

Using the two formulas from the previous slide,

$$t_i = (\mathbf{K}_{f,f})_{i,i} - \mathbf{K}_{u,f}^T \mathbf{K}_{u,f} = \sum_{m=M+1}^{\infty} \lambda_m \phi_m(\mathbf{x}_i)^2.$$

Consider the expected value of t_i , (now assuming the training examples are drawn i.i.d. according to μ).

$$\mathbb{E}[t_i] = \sum_{m=M+1}^{\infty} \int \lambda_m \phi_m(\mathbf{x})^2 d\mu(\mathbf{x}) = \sum_{m=M+1}^{\infty} \lambda_m.$$

The strong law of large numbers tells us that $\frac{1}{N}t$ tends to its expected value as $N \to \infty$.

As long as the eigenfunctions are "well-behaved" we can use this to bound t.

Example: SE Kernel, Normal Inputs

Figure: Bounds for normally distributed data with 200 training inputs.

For small M the bound is not useful, but in this case with M=50 to 60 features the bound gives strong guarantees.

Number of Inducing Features Needed

Theorem

For inference using a squared exponential kernel, if the $x_i \sim \mathcal{N}(0, s'^2)$ i.i.d. For sparse inference with eigenfunction inducing features defined with respect to $q(x) \sim \mathcal{N}(0, s^2)$ with $2s'^2 < s^2$ there exists an N_0 such that for all $N > N_0$ inducing point inference with a set of $M = c \log(N)$ features results in:

$$Pr(KL(Q||\hat{P}) > \epsilon) < \delta.$$

 Straightforward to address multidimensional data with additive or multiplicative kernel in a similar framework.

What does this tell us about hyperparameter selection?

With an ideal optimizer and assuming the error surface is continuous, if $\mathcal{L}_{lower} \approx \mathcal{L}$ we must be near the optimal choice of hyperparameters!

Conclusion

Convergence guarantees can be obtained for sparse variational GP regression. For a certain set of inducing features with normally distributed training inputs we proved:

- A probabilistic upper bound on the KL-divergence.
- The loss from sparsity can be made arbitrarily small with high probability using $M = O(\log(N))$ features for the SE-kernel.

Extensions

• Can anything be said about sparse non-conjugate variational inference (how much more do we lose from sparsity)?

 Bounds on Nyström approximation tailored to optimized inducing points?

How tight are these bounds?

References

- A. G. d. G. Matthews, J. Hensman, R. Turner, and Z. Ghahramani. On sparse variational methods and the Kullback-Leibler divergence between stochastic processes. *Journal of Machine Learning Research*, 51:231–239, 2016.
- M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In *Artificial Intelligence and Statistics*, pages 567–574, 2009.
- M. K. Titsias. Variational Inference for Gaussian and Determinantal Point Processes. Dec. 2014. Published: Workshop on Advances in Variational Inference (NIPS 2014).