An Interactive Tool to Visualize Results from **Uncertainty Quantification**

Matt Isaac

e-mail: matt.isaac@aggiemail.usu.edu

April 9, 2019

Outline

- Introduction
- **Methods**
- **Results**
- **Discussion**

Motivation

Introduction

Uncertainty Quantification (UQ):

- Is a branch of simulation analysis that is used often in engineering contexts;
- Assists engineers and decision-makers in finding a balance between design efficiency and design sufficiency (avoid under/over designing);
- Provides a quantification of how variability in a system can influence the end state of that system.

UQ Overview - Terminology

- aleatory uncertainty: Uncertainty resulting from randomness inherent to a given parameter. Gaining more knowledge about the parameter will not reduce the uncertainty of the parameter.
- epistemic uncertainty: Uncertainty resulting from a lack of knowledge about a given parameter. Gaining more knowledge about the parameter could reduce the uncertainty of the parameter.
- engineering model: A mathematical model that defines the relationship between the parameters (model inputs) and SRQ (model output).
- system response quantity (SRQ): A parameter of particular interest directly related to the engineering system in question. The SRQ is the output (i.e. prediction) from the engineering model.

UQ Overview - Algorithm

Introduction

00000

Aleatory model inputs: A_k , k = 1, 2, 3

Epistemic model inputs: E_k , k = 1, 2, 3

$$SRQ = E_1^{E_2} A_3 A_2^{A_1} + E_3$$

 Probability distributions for each input is selected by subject matter expert

Example adapted from Ewing et al. (2018)

UQ Overview - Algorithm

Introduction

00000

Diagram adapted from Ewing et al. (2018)

Project Goal

Introduction

00000

Goal: Develop an interactive tool to create meaningful visualizations (like the one below) and useful interpretations of results from a UQ simulation.

Key Features

- upload data via a .csv file
- toggle P-box and CDF's on/off
- select upper/lower percentiles to be used in P-box calculation
- adjustable transparency for CDF ensemble
- extract either a probability interval or an SRQ interval from P-box
- download and save visualization as a .png file

Planned Layout

R Packages

- **dplyr:** The dplyr package (Wickham et al. 2013) was used for data wrangling and data manipulation
- **shiny:** The shiny package (Chang et al. 2018) provided the framework on which the application was developed and deployed. It also contains the implementations for all user-interface components (toggle buttons, check boxes, numeric inputs, sliders, etc.).
- shinydashboard: The shinydashboard package (Chang and Borges Ribeiro 2018) was used as a wrapper around the shiny framework to give a clean, polished appearance to the application.
 - **ggplot2:** The plotting functionality of the ggplot2 package (Wickham 2016) was used to generate the actual visualization and to add, remove, or adjust components on the plot.

Deployment

Introduction

Shiny App currently deployed at:

https://misaac.shinyapps.io/UQViz/

Data Source

- Users can upload .csv files for visualization. The files should have the x values in the 1st column, and the CDFs in subsequent columns.
- For convenience, a sample data set is also provided

Visualization Options

Introduction

Several options are provided to allow customized visualizations

Visualization Options

Labeling

Introduction

 Custom title and x-axis label can be added to adapt visualization to domain.

Interpretation - Extract Probability or SRQ Intervals

There are two ways a P-box can be used for interpretation:

- Input SRQ value to extract probability interval
- Input probability value to extract SRQ interval

Results

Interpretation - Extract Probability Interval

Interpretation - Extract SRQ Interval

Challenges

- Long render time for hundereds (or thousands!) of traces on a plot
- File upload size limit to shiny web applications

Future Work

- Create a self contained UQ simulation tool perform entire process, start to finish
 - Choose an SRQ function
 - Define inputs as aleatory or epistemic
 - Specify the number of inner and outer loop iterations
 - Visualization generated automatically

Questions ?? —

or e-mail: matt.isaac@aggiemail.usu.edu

Results

Sources

- Chang, W., Borges Ribeiro, B., 2018. shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1
 - (https://CRAN.R-project.org/package=shinydashboard).
- Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J., 2018. shiny: Web Application Framework for R. R package version 1.2.0 (https://CRAN.R-project.org/package=shiny).
- Ewing, M., Liechty, B. C., Black, D., 2018. A General Methodology for Uncertainty Quantification in Engineering Analyses Using a Credible Probability Box. Journal of Verification, Validation, and Uncertainty Quantification 3 (2), https://doi.org/10.1115/1.4041490.
- Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, (http://ggplot2.org).
- Wickham, H., Francois, R., Henry, L., Muller, K., 2013. dplyr: A Grammer of Data Manipulation. R package version 0.7.6.
 - (https://CRAN.R-project.org/package=dplyr).