Notes of J.E. Marsden's – Foundations of Mechanics

Regoon Wang, ChemE@UNSW wang.regoon@gmail.com

October 1, 2013

Contents

Ι	Pr	reliminaries	4
1	Diff	ferential Theory	5
	1.1	Topology	5
	1.2	Finite-Dimensional Banach Sapce	8
	1.3	Local Differential Calculus	8
	1.4	Manifolds and Mappings	8
	1.5	Vector Bundles	8
	1.6	The Tangent Bundle	8
	1.7	Tensors	8
2		culus on Manifolds	9
	2.1	Vector Fields as Dynamical Systems	10
	2.2	Vector Fields as Differential Operators	10
	2.3	Exterior Algebra	10
	2.4	Cartan's Calculus of Differential Forms	10
	2.5	Orientable Manifolds	10
	2.6	Integration on Manifolds	10
	2.7	Some Riemannian Geometry	10
II	A	analytical Dynamics	11
3	Нэг	miltonian and Lagrangian Systems	12
J	3.1	Symplectic Algebra	13
	3.2	Symplectic Geometry	13
	3.3	Hamiltonian Vector Fields and Poisson Brackets	13
	3.4	Integral Invariants, Energy Surfaces, and Stability	13
	3.5	Lagrangian Systems	13
	3.6	The Legendre Transformation	13
	3.7	Mechanics on Riemannian Manifolds	13
	3.8	Variational Principles in Mechanics	13
4	Нат	miltonian Systems with Symmetry	14
•	4.1	Lie Groups and Group Actions	14
		The Momentum Mapping	

	4.3	Reduction of Phase Space with Symmetry	14						
	4.4	Hamiltonian Systems on Lie Groups and the Rigid Body	14						
	4.5	The Topology of Simple Mechanical Systems	14						
	4.6	The Topology of the Rigid Body	14						
5	Hai	Hamilton-Jacobi Theory and Mathematical Physics							
	5.1	Time-Dependent Systems	15 15						
	5.2	Canonical Transformations and Hamilton-Jacobi Theory	15						
	5.3	Lagrangian Submanifolds	15						
	5.4	Quantization	15						
	5.5	Introduction to Infinite-Dimensional Hamiltonian Systems	15						
	5.6	Introduction to Nonlinear Oscillations	15						
H	\mathbf{I}	An Outline of Qualitative Dynamics	16						
6	Tor	pological Dynamics	17						
U	6.1	Limit and Minimal Sets	17						
	6.2	Recurrence	17						
	6.3	Stability	17						
7	Diff	ferentiable Dynamics	18						
	7.1	Critical Elements	19						
	7.2	Stable Manifolds	19						
	7.3	Generic Properties	19						
	7.4	Structural Stability	19						
	7.5	Absolute Stability and Axiom A	19						
	7.6	Bifurcations of Generic Arcs	19						
	7.7	A Zoo of Stable Bifurcations	19						
	7.8	Experimental Dynamics	19						
8	Hai	miltonian Dynamics	20						
	8.1	Critical Elements	20						
	8.2	Orbit Cylinders	20						
	8.3	Stability of Orbits	20						
	8.4	Generic Properties	20						
	8.5	Structural Stability	20						
	8.6	A Zoo of stable Bifurcations	20						
	8.7	The General Pathology	20						
	8.8	Experimental Mechanics	20						
I	<i>V</i> (Celestial Mechanics	21						
9	The	e Two-Body Problem	22						
		Models for Two Bodies	22						

	9.2	Elliptic Orbits and Kepler Elements
	9.3	The Delaunay Variables
	9.4	Lagrange Brackets of Kepler Elements
	9.5	Whittaker's Method
	9.6	Poincare Variables
	9.7	Summary of Models
	9.8	Topology of the Two-Body Problem
10	The	Three-Body Problem 23
	10.1	Models for Three Bodies
	10.2	Critical Points in the Restricted Three-Body Problem
	10.3	Closed Orbits in the Restricted Three-Body Problem
	10.4	Topology of the Plannar n-Body Problem

Part I Preliminaries

Differential Theory

1.1 Topology

Definition 1.1. A topological space is a set S together with a collect \mathcal{O} of subsets called open sets s.t.

- (T1) $\emptyset \in \mathcal{O}$ and $S \in \mathcal{O}$;
- (T2) If $U_1, U_2 \in \mathcal{S}$, then $U_1 \cap U_2 \in \mathcal{O}$;
- (T3) The union of any collection of open sets is open.

For such a topological space the **closed sets** are the elements of $\gamma = \{A \mid A^c \in \mathcal{O}\}$. An **open neighborhood of a point** u is a topological space S is an open set U s.t. $u \in U$. Similarly, for a subset A of S, U is an **open neighborhood** of A if U is open and $A \subset U$. If A is a subset of a topological space S, the **relative topology** on A is defined by $\mathcal{O}_A = \{U \cap A \mid U \in \mathcal{O}\}$.

Then a **basis** for the topology is a collection \mathcal{B} of opensets s.t. every open set of S is a union of elements of \mathcal{B} . The topology is called **first coutable** if for each $u \in S$, there is a countable collection $\{U_n\}$ of neighborhoods of u s.t. for any neighborhood U of u, there is an n so $U_n \subset U$. The topology is called **second countable** if it has a countable basis.

Let $\{u_n\}$ be a sequence of points in S. The sequence is said to **coverge** if there is a point $u \in S$ s.t. for every neighborhood U of u, there is an N s.t. $n \geq N$ implies $u_n \in U$. We say that $\{u_n\}$ converges to u or u is a **limit point** of $\{u_n\}$.

Example 1.1. The standard topology of \mathbb{R} is the unions of open intervals (a, b). Then \mathbb{R} is second countable (hence first countable) with a basis

$$\left\{ \left(r_n - \frac{1}{m}, r_n + \frac{1}{m} \right) \mid r_n \in \mathbb{Q}, m \in \mathbb{N}^+ \right\}$$

Definition 1.2. Let S be a topological space and $A \subset S$. Then the **closure** of A, denoted \overline{A} is the inersection of all colsed sets containing A. The **interior** of A, denoted \mathring{A} is the union of all open sets contained in A. The **boundary** of A, denoted $\partial A := \overline{A} \cap \overline{A^c}$.

Thus, ∂A is closed, and $\partial A = \partial A^c$. Note that A is open iff $A = \mathring{A}$ and closed iff $A = \overline{A}$.

Propsition 1.1. Let S be a topological space and $A \subset S$.

- (i) $u \in \overline{A}$ iff for every neighborhood U of $u, U \cap A \neq \emptyset$.
- (ii) $u \in \mathring{A}$ iff there is a neighborhood U of u s.t. $U \subset A$.
- (iii) $u \in \partial A$ iff for every neighborhood U of $u, U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$.

Definition 1.3. A point $u \in S$ is called **isolated** iff $\{u\}$ is open. A subset A of S is called **dense** in S iff $\overline{A} = S$ and is called **nowhere dense** iff $(\overline{A})^c$ is dense in S. Thus, A is nowhere dense iff $\overline{A} = \emptyset$.

Definition 1.4. A topological space S is called **Hausdorff** iff each two distinct points have disjoint neighborhoods. Similarly, S is called **normal** iff each two disjoint closed sets have disjoint neighborhoods.

Propsition 1.2. (i) A space S is Hausdorff iff $\Delta_S = \{(u, u) \mid u \in S\}$ is closed in $S \times S$ is the product topology.

(ii) A first countable space S is Hausdorff iff all sequences have at most one limit point.

Proof. If Δ_S is closed and u_1, u_2 are distinct, there is an open rectangle $U \times V$ containing (u_1, u_2) and $U \times V \subset \Delta_S^c$. Then in S, U and V are disjoint because if $\exists p \in U \cap V$, then $(p, p) \in U \times V$ it countered with closed set Δ_S . The converse is similar and we leave it as an exercise.

Definition 1.5. Let \mathbb{R}^+ denote the nonnegative real numbers with a point $\{+\infty\}$ adjoined, and topology generated by the open intervals of the form (a,b). A **metric** on set M is a function $d: M \times M \to \mathbb{R}^+$ s.t.

- (M1) $d(m_1, m_2) = 0$ iff $m_1 = m_2$;
- (M2) $d(m_1, m_2) = d(m_2, m_1);$
- (M3) $d(m_1, m_3) \le d(m_1, m_2) + d(m_2, m_3)$

For $\varepsilon > 0$, the ε disk about m is defined by $D_{\varepsilon}(m) = \{m' \in M \mid d(m', m) < \varepsilon$. The collection of subsets of M that are unions of such disks is the metric topology of the metric space (M,d). Two metrics on a set are called **equivalent** if they induce the same metric topology. $\{u_n\}$ is a **Cauchy sequence** iff for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ s.t. $n, m \geq N$ implies $d(u_n, u_m) < \varepsilon$. The space M is called **complete** if every Cauchy sequence converges. We define $d(u, A) = \inf\{d(u, v) \mid v \in A\}$ and $d(u, \emptyset) = \infty$.

Propsition 1.3. Every metric space is normal.

Proof. Let A and B be closed, disjoint subsets of M, and let

$$U = \{ u \in M \mid d(u, A) < d(u, B) \}$$

$$V = \{ v \in M \mid d(v, A) > d(v, B) \}$$

It is verified that U and V are open, disjoint and $A \subset U, B \subset V$.

Definition 1.6. If $\varphi: S \to T$ is **continuous** at $u \in S$ if $\forall V \ni \varphi(u), \exists U \ni u \Rightarrow \varphi(U) \subset V$. If $\forall V \subset T, \varphi^{-1}(V) = \{u \in S \mid \varphi(u) \in V \text{ is open in } S, \varphi \text{ is$ **continuous** $.}$

If $\varphi: S \to T$ is a **bijection**, φ and φ^{-1} are continuous, then φ is a **homeomorphism** and S and T are **homeomorphic**.

Propsition 1.4. φ is continuous iff $\forall A \subset S \Rightarrow \varphi(\overline{A}) \subset \overline{\varphi(A)}$.

Proof. If φ is continuous, then $\varphi^{-1}(\overline{\varphi(A)})$ is closed. But $A \subset \varphi^{-1}(\overline{\varphi(A)})$ and hence $\overline{A} \subset \underline{\varphi^{-1}(\overline{\varphi(A)})}$ or $\varphi(\overline{A}) \subset \overline{\varphi(A)}$. Conversely, let $B \subset T$ be closed and $A = \varphi^{-1}(B)$. Then $\overline{(A)} \subset \varphi^{-1}(B) = A$, so A is closed.

Propsition 1.5. Let $\varphi: S \to T$ and S first countable set. Then φ is continuous iff $\forall u_n \to u \Rightarrow \varphi(u_n) \to \varphi(u)$.

Propsition 1.6. Let M and N be metric spaces with N complete. Then the collection C(M,N) of all continuous maps $\varphi: M \to N$ forms a complete metric space with the metric $d^0(\varphi,\phi) = \sup\{d(\varphi(u),\phi(u)) \mid u \in M\}$.

Proof. It is readily verified that d^0 is a metric. Convergence of sequence $f_n \in C(M,N)$ to $f \in C(M,N)$ in the metric d^0 is the same as uniform convergence, that is, for all $\varepsilon > 0$ there is an N s.t. if $n \geq N$, $d(f_n(x), f(x)) \leq \varepsilon$ for all $x \in M$. If f_n is a Cauchy sequence in C(M,N), then since $d(f_n(x), f_m(x)) \leq d^0(f_n, f_m)$. $f_n(x)$ is Cauchy for each point $x \in M$. Thus f_n converges pointwise, define a function f(x). We must show that $f_n \to f$ uniformly and that f is continuous. First of all, given $\varepsilon > 0$, choose N s.t. $d^0(f_n, f_m) < \varepsilon/2$ if $n, m \geq N$. Then for any $x \in M$, pick $N_x \geq N$ s.t. $d(f_m(x), f(x)) < \varepsilon/2$ if $m \geq N_x$. Thus with $n \geq N$ and $m \geq N_x$, $d(f_n(x), f(x)) \leq d(f_n(x), f_m(x)) + d(f_m(x), f(x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$ So $f_n \to f$ uniformly.

Definition 1.7. S is called **compact** iff $\forall \cup_{\alpha} U_{\alpha} = S$ there is a finite subcovering. A subset $A \subset S$ is called **compact** iff A is compact in the relative topology. A space is called *locallycompact* iff each point has a neighborhood whose closure is compact.

Theorem 1.1 (Boizano-Weierstrass). If S is a first countable space and is compact, then every sequence has a convergent subsequence.

Proof. Suppose $\{u_n\}$ contains no convergent subsequences. Then we may assume all points are distinct. Each u_n has a neighborhood \mathcal{O}_n that contains no other u_m . $\{u_n\}$ is closed, so that \mathcal{O}_n together with $\{u_n\}^c$ forms an open covering of S, with no finit subcovering.

In a metric space, every compact subset is closed and bounded (Heine Borel theorem).

Propsition 1.7. Let S be a Hausdorff space. Then every compact subset of S is closed. Also, every compact Hausdorff space is normal.

Proof. Let $u \in A^c$ and $v \in A$, where A is compact in S. There are disjoint neighborhoods of u and v and, since A is compact, there are disjoint neighborhood of u and A. Thus A^c is open. The second part is an exercise.

Propsition 1.8. Let S be a Hausdorff space that is locally homeomorphic to a locally compact Hausdorff space. Then S is locally compact.

Proof. Let $U \subset S$ be homeomorphic to $\varphi(U) \subset T$. There is a neighborhood V of $\varphi(u)$ so $\overline{V} \subset \varphi(U)$ and \overline{V} is compact. Then $\varphi^{-1}(\overline{V})$ is compact, and hence closed in S. $\varphi^{-1}(\overline{V}) \subset \varphi^{-1}(V)$. Thus $\varphi^{-1}(V)$ has compact closure.

Exercises

1.2 Finite-Dimensional Banach Sapce

Exercises

1.3 Local Differential Calculus

Exercises

1.4 Manifolds and Mappings

Exercises

1.5 Vector Bundles

Exercises

1.6 The Tangent Bundle

Exercises

1.7 Tensors

Calculus on Manifolds

2.1	Vector	Fields	as	Dynamical	Systems

Exercises

2.2 Vector Fields as Differential Operators

Exercises

2.3 Exterior Algebra

Exercises

2.4 Cartan's Calculus of Differential Forms

Exercises

2.5 Orientable Manifolds

Exercises

2.6 Integration on Manifolds

Exercises

2.7 Some Riemannian Geometry

Part II Analytical Dynamics

Hamiltonian and Lagrangian Systems

3.1 Symplectic Algebra

Exercises

3.2 Symplectic Geometry

Exercises

3.3 Hamiltonian Vector Fields and Poisson Brackets

Exercises

3.4 Integral Invariants, Energy Surfaces, and Stability

Exercises

3.5 Lagrangian Systems

Exercises

3.6 The Legendre Transformation

Exercises

3.7 Mechanics on Riemannian Manifolds

Exercises

3.8 Variational Principles₁ in Mechanics

Hamiltonian Systems with Symmetry

4.1 Lie Groups and Group Actions

Exercises

4.2 The Momentum Mapping

Exercises

4.3 Reduction of Phase Space with Symmetry

Exercises

4.4 Hamiltonian Systems on Lie Groups and the Rigid Body

Exercises

4.5 The Topology of Simple Mechanical Systems

Exercises

4.6 The Topology of the Rigid Body

Hamilton-Jacobi Theory and Mathematical Physics

5.1 Time-Dependent Systems

Exercises

5.2 Canonical Transformations and Hamilton-Jacobi Theory

Exercises

5.3 Lagrangian Submanifolds

Exercises

5.4 Quantization

Exercises

5.5 Introduction to Infinite-Dimensional Hamiltonian Systems

Exercises

5.6 Introduction to Nonlinear Oscillations

Part III An Outline of Qualitative Dynamics

Topological Dynamics

6.1 Limit and Minimal Sets

Exercises

6.2 Recurrence

Exercises

6.3 Stability

Differentiable Dynamics

7.1	Critical	Elements
1 · L	Cilulai	Tiements

Exercises

7.2 Stable Manifolds

Exercises

7.3 Generic Properties

Exercises

7.4 Structural Stability

Exercises

7.5 Absolute Stability and Axiom A

Exercises

7.6 Bifurcations of Generic Arcs

- 7.7 A Zoo of Stable Bifurcations
- 7.8 Experimental Dynamics

Hamiltonian Dynamics

- 8.1 Critical Elements
- 8.2 Orbit Cylinders

Exercises

8.3 Stability of Orbits

Exercises

8.4 Generic Properties

- 8.5 Structural Stability
- 8.6 A Zoo of stable Bifurcations
- 8.7 The General Pathology
- 8.8 Experimental Mechanics

Part IV Celestial Mechanics

The Two-Body Problem

$^{\circ}$	Models	C		D 1.
9.1		tor	, , , , , , , , , , , ,	RODIES
$\boldsymbol{\sigma} \cdot \mathbf{L}$	MIOUCIS	101	\mathbf{T}	Doutes

Exercises

- 9.2 Elliptic Orbits and Kepler Elements
- 9.3 The Delaunay Variables
- 9.4 Lagrange Brackets of Kepler Elements
- 9.5 Whittaker's Method
- 9.6 Poincare Variables

Exercises

9.7 Summary of Models

Exercises

9.8 Topology of the Two-Body Problem

The Three-Body Problem

10.1 Models for Three Bodies

Exercises

10.2 Critical Points in the Restricted Three-Body Problem

Exercises

10.3 Closed Orbits in the Restricted Three-Body Problem

Exercises

10.4 Topology of the Plannar n-Body Problem

Appendix

General Theory by Kolmogorov