Supplementary Material for "LGI-GT: Graph Transformers with Local and Global Operators Interleaving"

Paper ID: 2470

A Dataset Statistics

15

16

17

18 19

20

21

22

23

25

26

27

28

29

30

- In the main paper, we performed comparison experiment on
 five datasets to demonstrate the superiority of our LGI-GT
 over the state-of-the-art (SOTA) GNNs and GTs, and further
- conducted another comparison experiment to validate the ef-
- 6 fectiveness of our proposed LGI scheme. Statistics of all the
- 7 datasets concerned are concluded in Table 1.

8 B Hyperparameters and Runtime

9 For the experiment comparing with the SOTA methods, the 10 final hyperparameters for our LGI-GT on related datasets are 11 concluded in Table 2, while the runtime hardware and indi-12 cators (including number of parameters and time consumed) 13 are shown in Table 3.

14 C Different Combinations of n and m

Although we have tried a different configuration for values of n (the number of GConvs) and m (the number of TLayers) when demonstrating the effectiveness of the LGI scheme in the main paper (n=2,m=1), here we explore more on this.

Figure 1 shows how the values of n and m influence the performance of LGI-GT on CLUSTER and ogbg-moltox21. From Figure 1(a), we can see that the best configuration for CLUSTER is just n=m=1 and the performance is degraded as either n or m becomes larger, while Figure 1(b) shows n=2, m=1 is the best for ogbg-moltox21. We can conclude that there is no such a fixed combination of n and m optimal across all the datasets, and small values of them are recommended in our experience.

D Effectiveness of the Skip Forward Propagating Method for the [CLS] Token

Particularly for our LGI-GT, the embedding of the [CLS] token is propagated in a skip manner. Here we compare the performance of LGI-GT models with different readout methods for aggregating node representations to get a final graph representation. See Figure 2, our proposed [CLS] skip propagating method is consistently better than the other readout methods, demonstrating its great compatibility with LGI-GT.

Figure 1: Performance w.r.t. different combinations of n and m.

Figure 2: Performance on ogbg-molpcba and ogbg-code2 w.r.t. the readout methods.

38

39

40

41

42

43

44

45

46

47

48

E Visualizations

In addition to examples shown in the main paper, we give more visualization results here in Figure 3. Also, the first column displays the original molecules from ogbg-molpcba, and the other columns from left to right are the visualization results of LGI-GT, GNN+Transformer and Parallel GT in turn. We can see LGI-GT made the [CLS] node attend more on join nodes of several motifs and important nodes to better distinguish different graphs or motifs, which demonstrates LGI-GT is good at handling structure information and focuses on the discriminative nodes.

Dataset	# Graphs	Average # nodes	Average # edges	Directed	Task	Task level	Metric
ZINC	12,000	23.2	24.9	No	regression	graph	MAE
PATTERN	14,000	118.9	3,039.3	No	binary classification	inductive node	Accuracy
CLUSTER	12,000	117.2	2,150.9	No	6-class classification	inductive node	Accuracy
ogbg-molpcba	437,929	26.0	28.1	No	128-task binary classification	graph	AP
ogbg-code2	452,741	125.2	124.2	Yes	5-token sequence prediction	graph	F1 score
NCI1	4,110	29.9	32.3	No	binary classification	graph	Accuracy
NCI109	4,127	29.7	32.1	No	binary classification	graph	Accuracy
ogbg-molbbbp	2,039	24.1	26.0	No	1-task binary classification	graph	ROC-AUC
ogbg-moltox21	7,831	18.6	19.3	No	12-task binary classification	graph	ROC-AUC

Table 1: Summary of datasets: the top five are used in comparison experiments, while the others are for the ablation study.

Hyperparameter	ZINC	PATTERN	CLUSTER	ogbg-molpcba	ogbg-code2
# Blocks (Layers)	10	6	16	5	4
# Hidden dim	64	64	48	384	256
GConv	GINEConv	GCNConv	GCNConv	EELA	GCNConv
TLayer	Transformer	Transformer	Transformer	Transformer	Transformer
# Heads	4	4	8	8	4
GConv dropout	0.0	0.0	0.0	0.3	0.0
Attention dropout	0.5	0.3	0.5	0.3	0.0
TLayer FFN dropout	0.0	0.3	0.1	0.3	0.4
Graph pooling	sum	_	_	CLS	CLS
PE/SE	RWSE-20	RWSE-7	RWSE-6	_	_
# PE dim	28	16	16	_	_
# PE encoder	linear	linear	linear	_	_
Batch size	32	32	32	256	32
Learning rate	0.001	0.0003	0.001	0.0002	0.0002
# Epochs	2000	100	100	100	30
# Warmup Epochs	50	5	5	10	5
Weight decay	1e-5	1e-5	1e-5	1e-4	1e-6
Scheduler	linear	none	cosine	linear	linear

Table 2: The final hyperparameters of our LGI-GT in the comparison experiments. For the sake of fair comparison, we set n=m=1 for LGI-GT on all these five datasets (do not tune them as hyperparemeters).

Runtime	ZINC	PATTERN	CLUSTER	ogbg-molpcba	ogbg-code2
# Parameters	841,701	252,432	381,650	9,738,368	12,846,898
Hardware	GTX 1080 Ti	GTX 1080 Ti	RTX 3090	RTX 3090	RTX 3090
Time (epoch/total)	34s / 18.74h	32s / 0.90h	55s / 1.52h	190s / 5.28h	1463s / 12.19h

Table 3: Runtime hardware and indicators of our LGI-GT in the comparison experiments.

Figure 3: Visualization of the $[\mathtt{CLS}]$ node attention to the real nodes.