Bike Sharing in Washington D.C.

Ashley O'Mahony ashleyomahony.com | March 2019

Context

2011

1,500 bicycles

165 stations

18,000 members

2012

1,650 bicycles

175 stations

22,200 members

Objectives

- Predict the amount of users on an hourly basis
- 2. Ensure high level of service and availability
- 3. Optimize Logistics and Maintenance Teams

1. Project Structure

Project Organization

Data Preparation and Features Construction

Based on Exploratory Data Analysis and Machine Learning principles

Model and Predictions

Using a Linear Regression algorithm, test the impact of the features on the model score (R²)

GitHub + GitKraken

Teamwork improved using collaborative developer tools

Machine Learning Process

01	EDA and Data Preparation	 Remove Casual, Registered, Holiday, Feeling Temperature Scaling, Skewness, Encoding
02	Machine Learning Strategy	 Train set: Jan 2011 - Jul 2012 Test set: Aug 2012 - Dec 2012 Time Series Cross Validation (10 folds)
03	Feature Engineering	 Patterns on Dates and Hours Peak Detection Exceptional Weather Conditions Polynomials
04	Selection and Final Metric	 Recursive Feature Elimination Manual Selection Model Predictions vs Reality

2. Data Exploration Key Insights

2011-2012 Utilization

Our bike sharing system gets more users every year.

Number of bikes used over 2011-2012

Utilization by Hour

- Day time usage
- One peak around 8am
- One peak between 5-6pm
- Up to 1000 bikes within an hour

Utilization by Season

- Summer is the high season
- Winter is the low season
- Spring and Fall have similar utilization shapes

Overall and Hourly Utilizations by Season

Working Days

- 2 peaks on working days during commuting hours
- No peak during non working days, but higher overall utilization in the afternoon
- Slight change of shape on Fridays, maybe because people leave work earlier on that day

Hourly Utilization on Working/Non Working Days

Working Days

 Clear difference in behaviours between our registered users and the casual users

Commuting and Leisure effects

Hourly Utilization on Working/Non Working Days

Utilization by User Type

- Most users are registered
- High correlation with the Total number of bikes
 - ightarrow Casual and Registered users information removed from the dataset

Ratio of Registered Users

Weather Conditions

- Weather conditions have a small impact on the service utilization
- Rain has the clearest effect
- Strong Wind discourages users
- Humidity and Temperature seem to have less influence

Utilization based on Weather Conditions

Correlations

- Correlation between Actual and Feeling Temperatures is clear
- No other strong correlation between other variables

Correlation Matrix

Correlations

- Actual and Feeling Temperatures plot is clear
- Every Holiday is a Non-Working Day
 - → Feeling Temperature and Holiday information removed from the dataset

Pair Plots

3. Features Construction

Baseline

Baseline Predictions vs Reality

<u>Reminder</u> - Features removed from dataset: Casual, Registered, Holiday, Feeling Temperature

Calendar Features

Peaks

Peaks

(1+ x%) Mean Total Bikes

Peaks

Weather

Polynomials

Hour Bins

4. Model Selection

RFE

 R^2 **0.76**

BASELINE

57 Features

 R^2 **0.87**

PEAKS DETECTION

58 Features

RFE

R² **0.86**

54 Features

 R^2 **0.83**

HOUR BINS

40 Features

RFE

 \mathbf{R}^2 **0.82**

36 Features

4 Features Eliminated:

Manual Feat. Selection

Features Kept	Features Removed
Year	Actual Temperature
Month	Humidity
Days of the Week	Windspeed
Hours	Weather Condition
Peak Detection	Working Day Flag
	Seasons

Features: 46

R²: 0.85

BASELINE

Features: 57 R²: 0.76

Risk of shortage during peaks

PEAKS DETECTION

Features: 54 R²: 0.86

Better peaks anticipation

MANUAL SELECTION
Features: 46 R²: 0.85
Better general fit

2012-12-01

2012-12-31

2012-10-01

5. Business Conclusions

Optimization Using Data

Maintenance & Repair:

Data driven approach to optimize processes to keep bikes and docks in good repair, safe, and available.

Adapting Technologies for Future Usage:

Optimizing current operations, and the "bike valet service."

Determining Peak Times

- Peak times based on mean + 31.5%
- Process allows model flexibility
- Additional data will adapt to model

Peak Times + Maintenance Weekdays

- Weekdays/Commuting-highest usage
- Peak hours for determining maintenance time
- Goal: Least disturbance to business

Peak Times + Maintenance Weekends

- Weekend-lower usage
- Peak hours different from weekday
- Goal: Least disturbance to business

Optimizing Operations

- Rebalancing
- Bike Valet Service
- Geofencing/Station Availability

Peak Times and Growth Optimization

- Use models in conjunction with other departments
- Avg. time increases can provide insight on inventory
- Optimize inventory based on trends

Bike Sharing in Washington D.C.