MA 111

 ${\bf Calculus} \ {\bf 2: Double, Triple \ Integration \ and \ Vector \ Calculus}$ ${\bf Notes}$

Double Integration

• A closed bounded rectangle \mathcal{R} in \mathbb{R}^2 is a subset of the form

$$\mathcal{R} = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R} : a \le x \le b, c \le y \le d\}$$

• A partition \mathcal{P} of a rectangle $\mathcal{R} = [a, b] \times [c, d]$ is the Cartesian product of partition \mathcal{P}_1 of [a, b] and \mathcal{P}_2 of [c, d].

$$\mathcal{P}_1 = \{x_0, x_1, ..., x_m\}, \ a = x_0 < x_1 < x_2 < ... < x_m = b$$

$$\mathcal{P}_2 = \{y_0, y_1, ..., y_n\}, \ c = y_0 < y_1 < y_2 < ... < y_n = b$$

$$\mathcal{P} = \{(x, y) | i \in \{0, 1, ..., m\}, \ j \in \{0, 1, ..., n\}\}$$

The points in \mathcal{P} break \mathcal{R} into mn non-overlapping rectangles.

$$\mathcal{R} = \bigcup_{i=1, j=1}^{i=m, j=n} \mathcal{R}_{ij}, \text{ where } \mathcal{R}_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

Area of each rectangle \mathcal{R}_{ij} is $\Delta_{ij} = (x_{i+1} - x_i)(y_{j+1} - y_j)$

• Norm of partition $\mathcal P$ of $\mathcal R$ is

$$\|\mathcal{P}\| = \max\{(x_{i+1} - x_i), (y_{j+1} - y_j) \mid i = 0, 1, ..., m - 1, j = 0, 1, ..., n - 1\}$$

Darboux and Riemann Integrals

• Let $f: \mathcal{R} \to \mathbb{R}$ be a **bounded** function.

$$m(f) = \inf\{f(x,y) \mid (x,y) \in \mathcal{R}\}\$$
and $M(f) = \sup\{f(x,y) \mid (x,y) \in \mathcal{R}\}\$
 $m_{ij}(f) = \inf\{f(x,y) \mid (x,y) \in \mathcal{R}_{ij}\}\$ and $M_{ij}(f) = \sup\{f(x,y) \mid (x,y) \in \mathcal{R}_{ij}\}\$

• Let \mathcal{P} be a partition of \mathcal{R} . Lower Darboux sum is defined as

$$L(f, \mathcal{P}) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} m_{ij}(f) \Delta_{ij}$$

and the Upper Darboux sum is

$$U(f, \mathcal{P}) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} M_{ij}(f) \Delta_{ij}$$

The upper and lower ${f Darboux}$ integrals are defined as

$$U(f) = \inf\{U(f, \mathcal{P}) \mid \mathcal{P} \text{ is a partition of } \mathcal{R}\}$$

$$L(f) = \sup\{L(f, \mathcal{P}) \mid \mathcal{P} \text{ is a partition of } \mathcal{R}\}\$$

- A bounded function $f: \mathcal{R} \to \mathbb{R}$ is said to be **Darboux integrable** if L(f) = U(f). The double integral of f is the common value U(f) = L(f) and is denoted by $\iint_{\mathcal{R}} f(x,y) dA$ or $\iint_{\mathcal{R}} f(x,y) dx dy$
- A bounded function $f: \mathcal{R} \to \mathbb{R}$ is integrable if and only if for every $\epsilon > 0 \exists$ partition \mathcal{P}_{ϵ} of \mathcal{R} such that

$$|U(f, \mathcal{P}_{\epsilon}) - L(f, \mathcal{P}_{\epsilon})| < \epsilon$$

• Let $t = \{t_{ij} | t_{ij} \in \mathcal{R}_{ij}\}$ be the set of tags of partition \mathcal{P} of \mathcal{R} . Riemann sum of f associate to (\mathcal{P}, t) is

$$S(f, \mathcal{P}, t) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} f(t_{ij}) \Delta_{ij}$$

• A bounded function $f: \mathcal{R} \to \mathbb{R}$ is **Riemann integrable** if there exists $S \in \mathbb{R}$ such that for any $\epsilon > 0 \; \exists \; a \; \delta > 0$ such that for every tagged partition \mathcal{P}

$$|S(f, \mathcal{P}, t) - S| < \epsilon \implies ||\mathcal{P}|| < \delta$$

- The double integral geometrically gives signed volume.

 A function is Darboux integrable if and only if it is Riemann integrable.

 Every continuous function is integrable.
- If a < b and c < d

$$\iint_{[b,a]\times[c,d]} f(x,y) \, dx \, dy := -\iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy$$

$$\iint_{[a,b]\times[d,c]} f(x,y) \, dx \, dy := -\iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy$$

$$\iint_{[b,a]\times[d,c]} f(x,y) \, dx \, dy := \iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy$$

- **Domain additivity property**: f is integrable on \mathcal{R} if and only f it is integrable over all its sub-rectangles \mathcal{R}_{ij} and if exists, integral of f over \mathcal{R} is sum of integrals of f over all \mathcal{R}_{ij} .
- Cavalieri's principle: Suppose two regions of space can be included between two parallel planes. If each parallel plane in between them intersects both regions in cross-sections of equal area, then the volumes of two regions are equal.

Fubini's Theorem

• Iterated integrals of f on rectangle \mathcal{R} are

$$\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$
$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx$$

- Fubini's theorem: Let $\mathcal{R} := [a,b] \times [c,d]$ and $f : \mathcal{R} \to \mathbb{R}$ be an integrable function. Let I be the integral of f on \mathcal{R} . Then
 - If for each $x \in [a, b]$, the Riemann integral $\int_{c}^{d} f(x, y) dy$ exists, then the iterated integral $\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$ exists and is equal to I.
 - If for each $y \in [c, d]$, the Riemann integral $\int_a^b f(x, y) dx$ exists, then the iterated integral $\int_c^d \int_a^b f(x, y) dx dy$ exists and is equal to I.
- Using this theorem, we can also conclude that if both the iterated integrals exists but are unequal, then the integral (double integral) I doesn't exist.
- If $f: \mathcal{R} \to \mathbb{R}$ is a continuous function, then f is integrable over \mathcal{R} . Also both the iterated integrals exist and are equal to the double integral.
- Let $A:[a,b]\to\mathbb{R}$ and $B:[c,d]\to\mathbb{R}$ be Riemann integrable and f(x,y):=A(x)B(y) \forall $(x,y)\in\mathcal{R}=[a,b]\times[c,d]$. Then f is integrable on \mathcal{R} and

$$\iint_{\mathcal{R}} f(x,y) dx dy = \left(\int_{a}^{b} A(x) dx \right) \left(\int_{c}^{d} B(y) dy \right)$$

- If f is **bounded and monotonic** in each of two variables, then f is integrable on \mathcal{R} .
- Sets of measure zero: Let $A \in \mathbb{R}^n$, we say A has measure zero in \mathbb{R}^n if for every $\epsilon > 0$, there is a covering Q_1, Q_2, \ldots of A by countably many rectangles such that

$$\sum_{i=1}^{\infty} \text{volume}(Q_i) < \epsilon$$

If A is closed, bounded and has measure zero, then the collection $\{Q_i\}_n$ can be chosen to be finite and we say that A has **content zero**.

Let $f:[a,b]\to\mathbb{R}$ be a bounded function and y:=f(x). $S=\{(x,y)\,|\,y=f(x)\}$ has measure zero in \mathbb{R}^2 .

• Let \mathcal{R} be a closed rectangle in \mathbb{R} , let $f: \mathcal{R} \to \mathbb{R}$ be a bounded function. Let D be the set of all points in \mathcal{R} where f is discontinuous. f is integrable over \mathcal{R} if and only if D has measure zero.

3

Integrals over non rectangular sets

- Any bounded set \mathcal{D} can be enclosed by a some rectangle \mathcal{R} . That is we can always find rectangle \mathcal{R} such that $\mathcal{D} \subseteq \mathcal{R}$.
- Let $f: \mathcal{D} \to \mathbb{R}$ be a function. Let \mathcal{R} be some rectangle that encloses \mathcal{D} . Then we define

$$f^*(x,y) := \begin{cases} f(x,y) & (x,y) \in \mathcal{D} \\ 0 & (x,y) \notin \mathcal{D} \end{cases}$$

• The function $f: \mathcal{D} \to \mathbb{R}$ is said to be integrable on \mathcal{D} if f^* is integrable on \mathcal{R} and the integral is defined as

$$\iint_{\mathcal{D}} f(x,y) \, dx \, dy := \iint_{\mathcal{R}} f^*(x,y) \, dx \, dy$$

• Let $\mathcal{D}_1, \mathcal{D}_2 \subseteq \mathcal{D}$ such that $\mathcal{D}_1 \cup \mathcal{D}_2 = \mathcal{D}$ and $\mathcal{D}_1 \cap \mathcal{D}_2$ has content zero. If f is integrable on \mathcal{D}_1 and \mathcal{D}_2 then f is integrable on \mathcal{D} and

$$\iint_{\mathcal{D}} f = \iint_{\mathcal{D}_1} f + \iint_{\mathcal{D}_2} f$$

- Boundary of a set: Let $D \subseteq \mathbb{R}^n$ be a bounded set. A point $x \in \mathbb{R}^n$ is said to be a boundary point of D if there is a sequence $\{x_n\}_n$ in D and $\{y_n\}_n$ in $\mathbb{R}^n D$, such that $\{x_n\}_n \to x$ and $\{y_n\}_n \to x$. The set of all such boundary points is called boundary and is denoted by ∂D .
- Path: A path γ in \mathbb{R}^2 (or \mathbb{R}^3) means a continuous function $\gamma:[a,b]\to\mathbb{R}^2$ (or $\gamma:[a,b]\to\mathbb{R}^3$).

Path is said to be closed if $\gamma(a) = \gamma(b)$.

By **curve** we mean image of γ in \mathbb{R}^2 (or \mathbb{R}^3). A good curve is always of measure zero.

- Let D be a bounded set whose boundary ∂D is given by finitely many closed, continuous curves. Then any bounded and continuous function $f: D \to \mathbb{R}$ is integrable over D.
- Elementary Regions in \mathbb{R}^2
- **Type 1**: Let $\mathcal{D} \subset \mathbb{R}^2$ be a bounded region. If $\forall a \in \mathbb{R}$, lines x = a intersects \mathcal{D} in an interval then \mathcal{D} is of type 1.

$$\mathcal{D} = \{(x, y) \mid \alpha \le x \le \beta, h_1(x) \le y \le h_2(x)\}$$

Let $\mathcal{R} = [a, b] \times [c, d]$ such that $c < h_1(x)$ and $h_2(x) < d \ \forall x \in [\alpha, \beta]$ and $a < \alpha, \beta < b$.

$$\iint_{\mathcal{D}} f = \iint_{\mathcal{R}} f^* = \int_a^b \int_c^d f^*(x, y) \, dy \, dx = \int_{\alpha}^{\beta} \int_{h_1(x)}^{h_2(x)} f(x, y) \, dy \, dx$$

- **Type 2**: Let $\mathcal{D} \subset \mathbb{R}^2$ be a bounded region. If $\forall a \in \mathbb{R}$, lines y = a intersects \mathcal{D} in an interval then \mathcal{D} is of type 2.

$$\mathcal{D} = \{ (x, y) \mid h_1(y) \le x \le h_2(y), \ \gamma \le y \le \delta \}$$

Let $\mathcal{R} = [a, b] \times [c, d]$ such that $a < h_1(y)$ and $h_2(y) < b \ \forall y \in [\gamma, \delta]$ and $c < \gamma, \delta < d$.

$$\iint_{\mathcal{D}} f = \iint_{\mathcal{R}} f^* = \int_c^d \int_a^b f^*(x, y) \, dx \, dy = \int_{\gamma}^{\delta} \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy$$

- Type 3: If the region is neither of type 1 nor of type 2, then it is of type 3.

Polar Coordinates

For any $(x, y) \in \mathbb{R}$, the polar coordinate (r, θ) is such that

$$x = r\cos\theta$$
, $y = r\sin\theta$, $r \in [0, \infty)$, $\theta \in [0, 2\pi)$

$$\mathcal{D}^* = \{ (r, \theta) \in [0, \infty) \times [0, 2\pi) \mid (r \cos \theta, r \sin \theta) \in \mathcal{D} \}$$
$$g(r, \theta) := f(r \cos \theta, r \sin \theta), \ (r, \theta) \in \mathcal{D}^*$$

The sun-rectangles in polar coordinates will have an area of $r\Delta r\Delta\theta$.

$$\iint_{\mathcal{D}} f(x,y) \, dx \, dy = \iint_{\mathcal{D}^*} g(r,\theta) r \, dr \, d\theta$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}}$$

This can be easily evaluated by squaring and changing into polar coordinates.

Triple Integration

• Let $f: \mathcal{B} = [a, b] \times [c, d] \times [e, f] \to \mathbb{R}$. \mathcal{B}_{ijk} is the cuboid defined by a partition $\mathcal{P} = \mathcal{P}_1 \times \mathcal{P}_2 \times \mathcal{P}_3$ with tags t_{ijk} . The Riemann sum will be

$$S(f, \mathcal{P}, t) = \sum_{i=0}^{l-1} \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} f(t_{ijk}) \Delta_{ijk}$$

Where Δ_{ijk} is volume of \mathcal{B}_{ijk} .

- The definitions of Riemann and Darboux integrals are same. Darboux and Riemann conditions are equivalent just like in single and double integration.

 The triple integral is denoted by $\iiint_{\mathcal{B}} f$ or $\iiint_{\mathcal{B}} f(x,y,z) \, dV$ or $\iiint_{\mathcal{B}} f(x,y,z) \, dx \, dy \, dz$ Many other theorems also have the same behaviour here.
- Fubini's Theorem: If $f: \mathcal{B} \to \mathbb{R}$ is integrable on the cuboid \mathcal{B} , then if any of the iterated integrals exists, it is equal to the triple integral. For example,

$$\iiint_{\mathcal{B}} f(x,y,z) \, dx \, dy \, dz = \int_a^b \int_c^d \int_e^f f(x,y,z) \, dz \, dy \, dx$$

if exists.

- For a continuous function $f: \mathcal{B} \to \mathbb{R}$, all the iterated integrals exist and are equal to the triple integral.
- If \mathcal{B} is not a cuboid, then we define a cuboid \mathcal{R} which encloses \mathcal{B} and extend the definition of f to f^* , just like in double integration.
- Elementary Regions in \mathbb{R}^3 If the domain of the function is of the form

$$\mathcal{B} = \{(x, y, z) \in \mathbb{R}^3 \mid \gamma_1(x, y) \le z \le \gamma_2(x, y), (x, y) \in \mathcal{D}\}$$

where \mathcal{D} is elementary region in \mathbb{R}^2 . For example, if \mathcal{D} is of type 1,

$$\iiint_{\mathcal{B}} f(x, y, z) \, dx \, dy \, dz = \int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \int_{\gamma_{1}(x, y)}^{\gamma_{2}(x, y)} f(x, y, z) \, dz \, dy \, dx$$

The Jacobian

• Change of variables in \mathbb{R}^2

Suppose we change coordinates (u, v) to the coordinates (x, y) with linear functions with translations (affine linear functions)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

A unit square in (u, v) coordinates will have an area of $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ in (x, y) coordinates.

• Area element for a change of coordinates

Now the coordinates (x, y) and (u, v) are related by a general mapping (may or may not be linear) given by

$$x = h_1(u, v), y = h_2(u, v)$$

Let us assume h_1 and h_2 are one-one, continuously differentiable functions.

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix}$$

Area of rectangle with sides $(\Delta x, \Delta y)$ near $(h_1(u, v), h_2(u, v))$ will be $\Delta u \Delta v \begin{vmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{vmatrix}_{(u, v)}$

in (u, v) coordinates.

• The Jacobian

The matrix

$$J(h) = [J_{ij}]_{n \times n} = \left[\frac{\partial h_i}{\partial u_j}\right]_{n \times n}$$

is the Jacobian matrix for the function $h = (h_1, ..., h_n) : \mathbb{R}^n \to \mathbb{R}^n$.

• Change of variables theorem

Let $h: \mathcal{A} \to \mathcal{B}$ be a \mathcal{C}^1 diffeomorphism of open bounded sets in \mathbb{R}^n . Let $f: \mathcal{B} \to \mathbb{R}$ be a continuous function.

f is integrable over \mathcal{B} if and only if the function $(f \circ h)|\det J(h)|$ is integrable over \mathcal{A} and in this case,

$$\int \cdots \int_{\mathcal{B}} f = \int \cdots \int_{\mathcal{A}} (f \circ g) |\det J(h)|$$

h is a \mathcal{C}^1 diffeomorphism if it is differentiable, one-one, onto and J(h) is continuous, invertible on \mathcal{A} , $h^{-1}: \mathcal{B} \to \mathcal{A}$ is also a \mathcal{C}^1 diffeomorphism.

Let \mathcal{A}^* and \mathcal{B}^* be closed bounded sets with interiors \mathcal{A} and \mathcal{B} respectively. If $\partial \mathcal{A}^*$ and $\partial \mathcal{B}^*$ are of measure zero, then we can use \mathcal{A}^* and \mathcal{B}^* for integration.

• Notation

$$J = \frac{\partial(x_1, ..., x_n)}{\partial(u_1, ..., u_n)}$$

7

Vector Calculus

• Let \mathcal{D} be a subset of \mathbb{R}^n .

A scalar field on \mathcal{D} is a map $f: \mathcal{D} \to \mathbb{R}$.

A vector field on \mathcal{D} is a map $\mathbf{F}: \mathcal{D} \to \mathbb{R}$.

• Del operator (∇)

The del operator or the **gradient** operator is defined as

$$\nabla = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \hat{e}_i$$

in *n*-dimensions, where \hat{e}_i is a unit vector along x_i axis.

$$\nabla = \frac{\partial}{\partial x}\widehat{x} + \frac{\partial}{\partial y}\widehat{y} + \frac{\partial}{\partial z}\widehat{z}$$

in 3-dimensions.

• Gradient vector field

Let $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then the vector field associated to ∇f is called gradient vector field. In 3-dimensions,

$$\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y} + \frac{\partial f}{\partial z}\hat{z}$$

• Conservative vector field

A vector field \mathbf{F} is called a conservative vector field if there exists a scalar function U such that $\mathbf{F} = -\nabla U$. In this case, U is called a potential function for \mathbf{F} .

Line Integrals

• Flow lines of a Vector field

Let $\mathbf{F}: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^n$ be a vector field. A flow line or an integral curve is a path, that is, a map $\mathbf{c}: [a,b] \to \mathcal{D}$ such that

$$\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t)), \quad \forall t \in [a, b]$$

 \mathbf{F} is called as the **velocity field** of the path \mathbf{c} .

• Let $\mathbf{F} = (P, Q, R)$ where $P, Q, R : \mathcal{D} \to \mathbb{R}$, then the flow lines of the vector field \mathbf{F} , $\mathbf{c}(t) = (x(t), y(t), z(t))$ are the solutions of the system of ordinary differential equations.

$$x'(t) = P(x(t), y(t), z(t))$$

$$y'(t) = Q(x(t), y(t), z(t))$$

$$z'(t) = R(x(t), y(t), z(t))$$

• Path and Curve

A curve in \mathbb{R}^n is the image of a path $\mathbf{c}:[a,b]\to\mathbb{R}^n$.

Path **c** is called as **closed** if $\mathbf{c}(a) = \mathbf{c}(b)$.

Path **c** is called as **simple** if $\mathbf{c}(t_1) \neq \mathbf{c}(t_2)$ for any $t_1 \neq t_2$ other than $t_1 = a$ and $t_2 = b$. If a \mathcal{C}^1 curve **c** is such that $\mathbf{c}'(t) \neq 0 \ \forall t \in [a, b]$, the curve is called a **regular** or **non-singular parametrised** curve.

• Line Integrals of Vector Fields

Let $\mathbf{F}: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field and $\mathbf{c}: [a, b] \to \mathcal{D}$ be a \mathcal{C}^1 path. The **line integral** of \mathbf{F} over \mathbf{c} is defined as

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} := \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

In 3-dimensions, $\mathbf{F} = (f_1, f_2, f_3)$ and $\mathbf{c}'(t) = (x(t), y(t), x(t))$,

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \left(f_1(\mathbf{c}(t)) \frac{dx(t)}{dt} + f_2(\mathbf{c}(t)) \frac{dy(t)}{dt} + f_3(\mathbf{c}(t)) \frac{dz(t)}{dt} \right) dt$$

• Let $\mathbf{c}_i : [a_i, a_{i+1}]$ be \mathcal{C}^1 paths with $\mathbf{c}_i(a_{i+1}) = \mathbf{c}_{i+1}(a_{i+1}) \ \forall i \in \{1, 2, ..., n\}$. The union of paths \mathbf{c}_i is written as $\mathbf{c} = \mathbf{c}_1 + \mathbf{c}_2 + ... + \mathbf{c}_n$. Then

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} := \int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} + \dots + \int_{\mathbf{c}_n} \mathbf{F} \cdot d\mathbf{s}$$

For a path \mathbf{c} on [a, b], the path traversed in the reverse direction, $\widetilde{\mathbf{c}}$, is also denoted by $-\mathbf{c}$. And

$$\int_{\mathbf{a}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{a}} \mathbf{F} \cdot d\mathbf{s}$$

• Reparameterization

Let $\mathbf{c}:[a,b]\to\mathbb{R}^n$ be a non-singular $(\mathbf{c}'(t)\neq 0)$ path. Let $h:[\alpha,\beta]\to[a,b]$ be a \mathcal{C}^1 diffeomorphism and t=h(u). $\gamma(u)$ is called as a reparameterization of $\mathbf{c}(t)$, $\gamma(u)=\mathbf{c}(h(u))$. If $h(\alpha)=a$ and $h(\beta)=b$ (we will assume this), the orientation is not changed.

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\alpha}^{\beta} \mathbf{F}(\gamma(u)) \cdot \gamma'(u) \, du = \int_{\alpha}^{\beta} \mathbf{F}(\mathbf{c}(h(u))) \cdot \mathbf{c}'(h(u)) h'(u) \, du$$
$$= \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$$

If the reparameterization changes the orientation, then

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$$

• Line integral along a geometric curve C is calculated by choosing a convenient parameterized path \mathbf{c} traversing C in the given direction

$$\int_C \mathbf{F} \cdot d\mathbf{s} := \int_C \mathbf{F} \cdot d\mathbf{s}$$

 \oint_C means line integral over a closed curve C.

• Arc-length parameterization

One of the convenient parameterizations is to take the parameter to be length of curve from the starting point.

Length $l(\mathbf{c})$ of curve \mathbf{c} of path $\mathbf{c}:[a,b]\to\mathbb{R}^3$ is

$$l(\mathbf{c}) = \int_{a}^{b} \|\mathbf{c}'(t)\| dt = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

Let $s: [a, b] \to [0, l(\mathbf{c})]$ be defined as $(\mathbf{c} \text{ is non-singular})$

$$s(t) = \int_{a}^{t} \|\mathbf{c}'(u)\| du$$

Let $h:[0,l(\mathbf{c})]\to[a,b]$ be s^{-1} . Let $\widetilde{\mathbf{c}}(u)=\mathbf{c}(h(u))$ be a reparameterization. $\widetilde{\mathbf{c}}$ is called as the arc-length parameterization.

$$\int_{\widetilde{\mathbf{c}}} \cdot d\mathbf{s} = \int_{0}^{l(\mathbf{c})} \mathbf{F}(\widetilde{\mathbf{c}}(u)) \cdot \widetilde{\mathbf{c}}'(u) \, du = \int_{0}^{l(\mathbf{c})} \mathbf{F}(\mathbf{c}(h(u))) \cdot \frac{\mathbf{c}(h(u))}{\|\mathbf{c}'(h(u))\|} \, du$$
$$= \int_{0}^{l(\mathbf{c})} \mathbf{F}(\mathbf{c}(h(u))) \cdot \mathbf{T}(h(u)) \, du$$

where $\mathbf{T}(t) = \frac{\mathbf{c}'(t)}{\|\mathbf{c}'(t)\|}$, is the unit tangent vector along the curve.

- For reparameterization, the path must be non-singular.
- Line Integral of a Scalar Function

Let $f: \mathcal{D} \to \mathbb{R}$ be a continuous scalar function. and $\mathbf{c}: [a,b] \to \mathcal{D}$ be a non-singular path. The line integral of f along \mathbf{c} is

$$\int_{\mathbf{c}} f \, ds := \int_{a}^{b} f(\mathbf{c}(t)) \| \mathbf{c}'(t) \| \, dt$$

Conservative Vector Fields

• Fundamental Theorem of Calculus

Let $\mathbf{c}:[a,b]\to\mathcal{D}\subset\mathbb{R}^n$ be a smooth path and $f:\mathcal{D}\to\mathbb{R}$ be a differentiable function with continuous gradient field on \mathbf{c} .

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = f(\mathbf{c}(b)) - f(\mathbf{c}(a))$$

• Let **F** be any continuous conservative field, with $\mathbf{F} = \nabla f$ for some \mathcal{C}^1 scalar function f. Then for any smooth path \mathbf{c} ,

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = f(\mathbf{c}(b)) - f(\mathbf{c}(a))$$

Line integral of a conservative vector field between two given points is independent of the path traversed.

Connected

A set $\mathcal{D} \subset \mathbb{R}^n$ is called connected if it cannot be written as a disjoint union of two nonempty subsets $\mathcal{D}_1 \cup \mathcal{D}_2$ with $\mathcal{D}_1 = \mathcal{D} \cap U_1$ and $\mathcal{D}_2 = \mathcal{D} \cap U_2$, where U_1 and U_2 are open sets.

• Path Connected

A set $\mathcal{D} \subset \mathbb{R}^n$ is called path connected if any two points in the set can be connected by a curve (image of a **continuous** path) inside \mathcal{D} .

An open set is connected if and only if it is path connected.

In general path connected sets are connected.

• Converse

Let $\mathbf{F}: \mathcal{D} \to \mathbb{R}^3$ be a continuous vector field on a connected open region (implies path connected) \mathcal{D} in \mathbb{R}^3 . If the line integral of \mathbf{F} is independent of path in \mathcal{D} , then \mathbf{F} is a conservative vector field in \mathcal{D} .

• Necessary condition for conservative fields

Let $\mathbf{F}(x, y, z) = f_1(x, y, z)\hat{x} + f_2(x, y, z)\hat{y} + f_3(x, y, z)\hat{z}$ be a conservative vector field and f_1, f_2, f_3 have continuous first order partial derivatives on an open region \mathcal{D} , then

$$\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}, \quad \frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x}, \quad \frac{\partial f_2}{\partial z} = \frac{\partial f_3}{\partial y} \text{ on } \mathcal{D}$$

Satisfying above conditions may not mean that the field is conservative (the field may need to satisfy other requirements). However, not satisfying definitely means non-conservative.

Simply connected domain

A subset \mathcal{D} of \mathbb{R}^n for n=2,3 is simply connected if \mathcal{D} is connected and any simple closed curve lying in \mathcal{D} encloses a region that is in \mathcal{D} . That is, simply connected region shouldn't have a hole.

• If \mathcal{D} is a simply connected open set, then the necessary condition (partial derivative test) becomes sufficient.

Green's Theorem

Jordan curve theorem

If $\mathbf{c}:[a,b]\to\mathbb{R}^2$ is a simple closed path, then $\mathbb{R}^2-\mathbf{c}([a,b])$ is divided into two connected regions - 'interior' and 'exterior' such that any path from one to other will have to intersect $\mathbf{c}([a,b])$. The bounded region is the 'interior' and the unbounded region is the 'exterior'.

• Positive and negative orientations in \mathbb{R}^2

- By convention, the positive orientation of a simple closed curve corresponds to the anti-clockwise direction.
- The boundary curve C of a bounded region $\mathcal{D} \subset \mathbb{R}^2$ is positively oriented if the region \mathcal{D} always lies to the left of an observer walking along the curve .
- Positive orientation of a curve C in \mathbb{R}^2 is given by the vector field $\hat{z} \times \vec{n}_{\text{out}}$, where \vec{n}_{out} is the unit normal vector field pointing outward along the curve.

• Green's Theorem

- Let \mathcal{D} be a bounded region in \mathbb{R}^2 with a positively oriented boundary $\partial \mathcal{D}$ consisting of finite number of non-intersecting simple, closed and piecewise continuously differentiable curves.
- Let Ω be an open set in \mathbb{R}^2 such that $(\mathcal{D} \cup \partial \mathcal{D}) \subset \Omega$ and let $\mathbf{F} : \Omega \to \mathbb{R}^2$ be a vector field with $\mathbf{F} = f_1 \hat{x} + f_2 \hat{y}$ where $f_1, f_2 : \Omega \to \mathbb{R}^2$ are \mathcal{C}^1 functions. Then,

$$\int_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \int_{\partial \mathcal{D}} f_1 \, dx + f_2 \, dy = \iint_{\mathcal{D}} \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \, dx \, dy$$

Curl and Divergence

• Curl

Curl of a vector field $\mathbf{F} = (f_1, f_2, f_3), \nabla \times \mathbf{F}$ is defined as

$$\nabla \times \mathbf{F} := \begin{vmatrix} \widehat{x} & \widehat{y} & \widehat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

Curl of a vector field indicates the 'rotation'.

• Curl of velocity field is twice the angular velocity at the point.

If curl of field is zero at a point, then that point is free from rotations.

A curl free field is called as **irrotational** field.

• Curl of a Gradient Field

Let $\mathbf{F} = \nabla f$ for some \mathcal{C}^2 scalar function f. Then

$$\nabla \times \nabla f = \begin{vmatrix} \widehat{x} & \widehat{y} & \widehat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix} = 0$$

As for any C^2 function, $\frac{\partial^2 f}{\partial u \partial v} = \frac{\partial^2 f}{\partial v \partial u}$.

So $\nabla \times \mathbf{F} = 0$ is a necessary condition for smooth vector field \mathbf{F} to be a gradient field.

• Green's theorem using curl

Let $\mathbf{F} = f_1 \hat{x} + f_2 \hat{y}$ be a \mathcal{C}^1 vector field on an open connected region \mathcal{D} with $\partial \mathcal{D}$ positively oriented. Then,

$$\int_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{s} = \iint_{\mathcal{D}} [(\nabla \times \mathbf{F}) \cdot \widehat{z}] \, dx \, dy$$

• Conservative field and curl in \mathbb{R}^2

Let Ω be an open, simply connected region in \mathbb{R}^2 and vector field $\mathbf{F} = f_1 \hat{x} + f_2 \hat{y}$ is such that f_1 and f_2 have continuous first order partial derivatives on Ω . Then, \mathbf{F} is a conservative field if and only if $\nabla \times \mathbf{F} = 0$ in Ω .

• Divergence

Lef $\mathbf{F} = (f_1, f_2, f_3)$ be a vector field. The divergence $\nabla \cdot \mathbf{F}$ of \mathbf{F} is a scalar function defined by

$$\nabla \cdot \mathbf{F} := \left(\frac{\partial}{\partial x} \widehat{x} + \frac{\partial}{\partial y} \widehat{y} + \frac{\partial}{\partial z} \widehat{z} \right) \cdot (f_1 \widehat{x} + f_2 \widehat{y} + f_3 \widehat{z}) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

• Let vector field \mathbf{v} represent the velocity field of a fluid in \mathbb{R}^2 . Cosider a fluid element at a point P (x,y) at t=0. Let the point move under the velocity field with its coordinates at a time t given by (X,Y)=(X(x,y,t),Y(x,y,t)). Now consider the time evolution of small area Δ of fluid element initially at point P.

$$\Delta(t) = J(x, y, t)\Delta_0$$

Where, J(x, y, t) is the Jacobian

$$J(x, y, t) = \begin{vmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y} \end{vmatrix}$$

The rate of change of $\Delta(t)$ is $\frac{\partial \Delta}{\partial t} = \frac{\partial J}{\partial t} \Delta_0$

$$\frac{\partial J}{\partial t} = (\nabla \cdot \mathbf{v})J$$

Divergence of a velocity field of fluid measures the expansion/compression of fluid.
 A divergence free field is called as incompressible field.
 Divergence free vector field is area preserving.

• Divergence of Curl

Divergence of any curl is zero.

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$

13

• Green's theorem using divergence

Let $\partial \mathcal{D}$ be a non-singular, positively oriented curve in \mathbb{R}^2 , parameterized by $\mathbf{c}:[a,b]\to\mathbb{R}^3$ such that $\mathbf{c}(t)=(x(t),y(t),0)$. The unit tangent \mathbf{T} to the curve and the outward normal \mathbf{n} are

$$\mathbf{T}(\mathbf{t}) = \frac{\mathbf{c}'(t)}{\|\mathbf{c}'(t)\|}, \quad \mathbf{n}(t) = \mathbf{T}(t) \times \widehat{z} \quad \forall t \in [a, b]$$

Divergence form or normal form of Green's theorem :

$$\int_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{\mathcal{D}} \nabla \cdot \mathbf{F} \, dx \, dy$$

where $ds = \|\mathbf{c}'(t)\| dt$.

Surface Integrals

- A curve is a 1-D object as one parameter is sufficient to describe it. A surface is a 2-D object, so, two parameters are required.
- Definition of a Surface

Let $\mathcal{D} \subset \mathbb{R}^2$ be a path connected subset. A **parameterized surface** is a continuous function $\phi : \mathcal{D} \to \mathbb{R}^3$. The image $S = \phi(\mathcal{D})$ of parameterized surface ϕ is called as **geometric surface**.

For $(u, v) \in \mathcal{D}$, $\phi(u, v)$ is a vector in \mathbb{R}^3 given by

$$\phi(u,v) = (x(u,v),y(u,v),z(u,v))$$

 ϕ is said to be **smooth** if the fuctions x, y and z have continuous partial derivatives in an open subset of \mathbb{R}^2 containing \mathcal{D} .

· Tangent planes of a surface

The normal vector corresponding to the tangential plane of the surface at a point corresponding to (u_0, v_0) is obtained by considering the cross product of tangent vectors to curves $\mathbf{c}_1(u) = \phi(u, v_0)$ and $\mathbf{c}_2(v) = \phi(u_0, v)$.

$$\mathbf{T}_1 = \mathbf{c}_1'(u_0) = \frac{\partial \phi}{\partial u}(u_0, v_0) = \phi_u(u_0, v_0)$$

$$\mathbf{T}_{2} = \mathbf{c}_{2}'(v_{0}) = \frac{\partial \phi}{\partial v}(u_{0}, v_{0}) = \phi_{v}(u_{0}, v_{0})$$

The normal vector of the tangent plane is parallel to **n**

$$\mathbf{n} = \mathbf{T}_1 \times \mathbf{T}_2 = \phi_u \times \phi_v$$

The equation of tangent plane is given by

$$\mathbf{n}(u_0, v_0) \cdot (\vec{r} - \phi(u_0, v_0)) = 0$$

where $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$.

• Non-singular

A surface ϕ is called **regular or non-singular** parameterized surface if ϕ is \mathcal{C}^1 and $\phi_u \times \phi_v \neq 0$ at all points.

• Unit normal

For any regular (non-singular) surface parameterized by $\phi : \mathcal{D} \to \mathbb{R}^3$, the unit normal \widehat{n} to surface at a point $P = \phi(u_0, v_0)$ is defined by

$$\widehat{n} := \frac{\phi_u \times \phi_v}{\|\phi_u \times \phi_v\|}$$

• Surface Area

Let $\phi: \mathcal{D} \to \mathbb{R}^3$ be a smooth parameterized surface, where \mathcal{D} is a bounded, path-connected subset of \mathbb{R}^2 with boundary $\partial \mathcal{D}$ of content zero.

Let $(u, v) \in \mathcal{D}$ and $h, k \in \mathbb{R}$ with $h \to 0, k \to 0$. Let $P = \phi(u, v), P_1 = \phi(u + h, v), P_2 = \phi(u, v + k)$ and $Q = \phi(u + h, v + h)$. The area of parallelogram PP_1P_2Q is $\|\phi_u(u, v) \times \phi_v(u, v)\| \|hk\|$. So, area of ϕ will be

$$Area(\phi) = \iint_{\mathcal{D}} \|(\phi_u \times \phi_v)(u, v)\| \, du \, dv$$

Similar to $ds = \|\gamma'(t)\| dt$ in case of a curve, we have

$$dS = \|\phi_u \times \phi_v\| \, du \, dv$$

in case of a surface.

• Area Vector

A rectangle of sides du and dv at a point (u, v) in \mathcal{D} will be a parallelogram in $\phi(\mathcal{D})$ with sides $\phi_u du$ and $\phi_v dv$. The area vector of this parallelogram will be

$$d\mathbf{S} = (\phi_u \times \phi_v) du dv$$

It has a magnitude $dS = ||d\mathbf{S}||$.

$$d\mathbf{S} = \widehat{n} \, dS$$

where \hat{n} is the unit normal vector at the point.

Let $\phi(u, v) = (x, (u, v), y(u, v), z(u, v)),$

$$d\mathbf{S} = \begin{vmatrix} \widehat{x} & \widehat{y} & \widehat{z} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} du dv$$

$$dS = \sqrt{\left[\frac{\partial(y,z)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(z,x)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^2} \, du \, dv$$

in terms of three Jacobians.

• Surface integral of a Scalar function

Any bounded scalar function $f: S \to \mathbb{R}$ can be integrated over a surface as

$$\iint_{S} f \, dS = \iint_{\mathcal{D}} f(x, y, z) \sqrt{\left[\frac{\partial(y, z)}{\partial(u, v)}\right]^{2} + \left[\frac{\partial(z, x)}{\partial(u, v)}\right]^{2} + \left[\frac{\partial(x, y)}{\partial(u, v)}\right]^{2}} \, du \, dv$$

provided the RHS integral exists.

Let $\Sigma = \bigcup_{i=1}^{n} S_i$, where surfaces S_i intersect only along their boundary curves. Then

$$\iint_{\Sigma} = \sum_{i=1}^{n} \iint_{S_i} f \, dS$$

• Surface integral of a Vector field

Let **F** be a bounded vector field on \mathbb{R}^3 such that the domain of **F** contains the non-singular parameterized surface $\phi : \mathcal{D} \to \mathbb{R}^3$. The surface integral of **F** over S is

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} := \iint_{S} \mathbf{F} \cdot \widehat{n} \, dS := \iint_{\mathcal{D}} \mathbf{F}(\phi(u, v)) \cdot (\phi_{u} \times \phi_{v}) \, du \, dv$$

• Reparameterization of a Surface

Let $\phi: \mathcal{D} \to \mathbb{R}^3$ be a smooth parameterized surface and \mathcal{D} be path-connected subset of \mathbb{R}^2 with an area. Let \mathcal{E} be a path-connected subset of \mathbb{R}^2 with an area. Let $h: \mathcal{E} \to \mathcal{D}$ be a continuously differentiable one-one function such that $h(\mathcal{E}) = \mathcal{D}$ and its Jacobian J(h) doesn't vanish on \mathcal{E} . The smooth surface $\psi = \phi \circ h$ is called as reparameterization of ϕ .

$$(\psi_p \times \psi_q)(p,q) = [(\phi_u \times \phi_v) \circ h(p,q)] J(h(p,q))$$

The surface integral of a continuous scalar field over a smooth surface is invariant under reparameterization upto a sign (sign may change).

• Oriented Surface

A surface S is said to be orientable if there exists a continuous vector field $\mathbf{F}: S \to \mathbb{R}^3$ such that for each point P in S, $\mathbf{F}(P)$ is a unit vector normal to the surface S at P. Some surfaces like Mobius strip cannot have a continuous vector field representing the normal vectors. They are non-orientable.

• Preserving and Reversing of orientation

Consider an oriented geometric surface S that is described as \mathcal{C}^1 non-singular parameterized surface $\phi(u,v)$. Let

$$\widehat{n}_{\phi} = \frac{\phi_u \times \phi_v}{\|\phi_u \times \phi_v\|}$$

If the unit normal vector \hat{n}_{ϕ} agrees with the given orientation \hat{n} of the surface S, we say that ϕ is orientation preserving. Otherwise we say that ϕ is orientation reversing. Let ϕ_1 and ϕ_2 be parameterizations of oriented surface S.

If both are orientation preserving or both are orientation reversing,

$$\iint_{\phi_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{\phi_2} \mathbf{F} \cdot d\mathbf{S}$$

If one of them is preserving and the other reversing,

$$\iint_{\phi_1} \mathbf{F} \cdot d\mathbf{S} = -\iint_{\phi_2} \mathbf{F} \cdot d\mathbf{S}$$

Stokes Theorem

• Homeomorphism

Let ψ be a function from $\mathcal{D}_1 \subset \mathbb{R}^n$ to $\mathcal{D}_2 \subset \mathbb{R}^m$. The mapping $\psi : \mathcal{D}_1 \to \mathcal{D}_2$ is called homeomorphism if ψ is continuous, bijective map such that $\psi^{-1} : \mathcal{D}_2 \to \mathcal{D}_1$ is also continuous

The spaces \mathbb{R}^m and \mathbb{R}^n are homeomorphic only if m = n. An **open** ball in \mathbb{R}^2 of radius r is homeomorphic to \mathbb{R}^2 .

• Boundary

A surface $S \subset \mathbb{R}^3$ is called as a surface without a boundary if for every point $P \in S$, there is an open subset $U \subseteq \mathbb{R}^3$ containing P such that $U \cap S$ is homeomorphic to \mathbb{R}^2 . A surface $S \subset \mathbb{R}^3$ is called as a surface with a boundary if for every point $P \in S$, there is an open subset $U \subseteq \mathbb{R}^3$ containing P such that $U \cap S$ is homeomorphic to either \mathbb{R}^2 or the upper half plane $\mathbb{H} = \{(x,y) \in \mathbb{R}^2 \mid y \geq 0\}$. A point $P \in S$ lies in the boundary ∂S if there is an open subset $U \subseteq \mathbb{R}^3$ and a homeomorphism $\psi : U \cap S \to \mathbb{H}$ such that $\psi(P) \in \mathbb{H} = \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$. The boundary ∂S is a curve.

• Induced orientation

Let S be an oriented surface with boundary that is a disjoint union simple, closed, piecewise non-singular parameterized curves. Let $\widehat{n}(P)$ denote the prescribed unit normal at all interior points $P \in S$. The direction of \widehat{n} induces orientation of ∂S :

If you walk in the positive direction around ∂S with head pointing in the direction of \hat{n} , then the surface will always be on the left.

Alternatively we can use the right hand thumb rule. If the right hand thumb points in the direction of \hat{n} , the direction in which the fingers curl is the positive orientation of the boundary.

If \mathcal{D} is a path-connected subset on \mathbb{R}^2 and $\phi: \mathcal{D} \to \mathbb{R}^3$ is a smooth orientation preserving parameterization of the surface S, then $\phi(\partial \mathcal{D}) = \partial S$ and the induced orientation of ∂S corresponds to the positive orientation of $\partial \mathcal{D}$ with respect to \mathcal{D} .

• Stokes Theorem

Let S be a bounded piecewise smooth oriented surface (at least C^2) with non-empty boundary ∂S . Suppose S is a closed subset of \mathbb{R}^3 .

Let the boundary ∂S of S be a disjoint union of simple closed curves each of which is a piecewise non-singular parameterized curve with the induced orientation.

Let $\mathbf{F} = f_1 \hat{x} + f_2 \hat{y} + f_3 \hat{z}$ be a \mathcal{C}^1 vector field defined on an open subset containing S. Then,

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

• If two different oriented surfaces S_1 and S_2 have the **same boundary** C, then from Stokes theorem,

$$\iint_{S_1} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{S_2} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

• Let S be a closed oriented smooth surface in \mathbb{R}^3 with $\partial S = \phi$. Suppose F be a vector

field on an open subset containing S. Then (using domain additivity)

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0$$

• Let \mathbf{F} be a smooth vector field on an open subset \mathcal{D} of \mathbb{R}^3 such that $\nabla \times \mathbf{F} = 0$ on \mathcal{D} . Suppose S is a bounded oriented, piecewise \mathcal{C}^2 surface in \mathcal{D} and let ∂S denote its boundary with the induced orientation. Then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = 0$$

If **F** is defined on \mathbb{R}^3 , then **F** is a gradient field on \mathcal{D} .

Gauss's Divergence Theorem

• Closed Surfaces

A surface S in \mathbb{R}^3 is said to be closed if it is bounded, complement is open and the boundary of S is empty.

• Simple soild region

A region $W \subset \mathbb{R}^3$, which is simultaneously Type 1, Type 2 and Type 3 and the boundary of the region is a closed surface, is called a simple soild region.

• Gauss's Divergence Theorem

If W is a closed, bounded and simple soild region in \mathbb{R}^3 . Let the boundary ∂W of W be a closed surface and positively oriented. Let \mathbf{F} be a smooth vector field on an open subset on \mathbb{R}^3 containing W. Then,

$$\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} (\nabla \cdot \mathbf{F}) \, dx \, dy \, dz$$

• Flux

Flux of a vector field \mathbf{F} across an oriented surface S is

$$flux(\mathbf{F}) = \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$