INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA AERONÁUTICA CURSO DE ENGENHARIA AERONÁUTICA

PLANO DE DISCIPLINA

1. IDENTIFICAÇÃO

Disciplina	MVO-31 – Desempenho de Aeronaves				
Carga horária semanal	Teoria	Exercícios		Laboratório	Estudo
	2	0		1	6
Pré-requisitos	AED-11 ou equivalente				
Período	1º Semestre		Ano: 2019		
Docente (s)	Flávio Cardoso Ribei	ro			

2. EMENTA

Atmosfera padrão, forças aerodinâmicas e propulsivas. Definição e medida de velocidade. Desempenho pontual: planeio, voo horizontal, subida, voo retilíneo não-permanente, manobras de voo, diagrama altitude-número de Mach. Envelope de voo. Métodos de Energia. Desempenho integral em alcance, autonomia e combustível consumido: cruzeiro, voo horizontal não-permanente, subida e voos curvilíneos. Decolagem, aterrissagem e conceitos de certificação.

3. OBJETIVOS

Fazer uma introdução ao estudo de desempenho, apresentando os conceitos e a metodologia de obtenção das equações. Dessa maneira, ao terminar o curso o aluno deve ser capaz de aplicar a mesma metodologia para outros modelos de aeronaves.

4. RECURSOS E MÉTODOS

O curso segue o desenvolvimento da referência [1] deste plano de disciplina, conforme o cronograma indicado abaixo. As aulas teóricas são dadas no quadro branco, as de exercícios em Matlab. Além disso, cada aluno participará de dois ensaios em voo.

5. AVALIAÇÃO

1º bimestre: 30% lista de exercício; 30% lista de Matlab; 40% prova. 2º bimestre: 30% lista de exercício; 30% lista de Matlab; 40% prova.

Exame: ensaios em vôo e relatório.

6. BIBLIOGRAFIA

- [1] McClamroch, N.H., Steady Aircraft Flight and Performance, Princeton University Press, 2011;
- [2] Anderson, J.D., Aircraft performance and design, Boston: WCB/McGraw-Hill, 1999;
- [3] Vinh, N.K., Flight mechanics of high-performance aircraft, New York, University Press, 1993.

7. CRONOGRAMA

Semana	Conteúdo
1	Introdução à mecânica do voo, modelos atmosférico,
	aerodinâmicos (Capítulos 1 e 2)
2	Planeio (Capítulos 5 e 6)
3	Laboratório de Matlab: modelo atmosférico e planeio
4	Modelo Propulsivo, Cruzeiro (capítulos 4 e 7)
5	Subida e descida (capítulo 8)
6	Laboratório de Matlab: cruzeiro, subida
7	prova bimestral
8	Ensaios em voo
9	Voo em curva no plano - capítulo 9
10	Voo em curva com subida/descida - Capítulo 10
11	Laboratório de Matlab: voo em curva
12	Desempenho integral: alcance e autonomia - Cap. 11
13	Desempenho integral: alcance e autonomia - Cap. 11
14	Manobras na vertical, desempenho em pista (Caps. 12 e 13)
15	Prova bimestral
16	ensaios em voo

Obs.: Capítulos da Ref. [1]