Figure 1

System Architecture

Figure 4

49, THE ENTIRE SKIN SURFACE

Figure 4, Cont.

4e. SHOWLDERS, CHEST, BACK & ARMS

Figure 4, Cont.

4g. CHEST, BACK, TRRSO, \$ LEGS

Control Alg rithm - Co ling

Temperature Gradient [Cooling]

 ΔT Temperature Gradient $= |T_{Core} \cdot T_{Interface}|$

Heat Transfer is the Driving Force in: at the

Thermal Interface

• Cooling: $T_{Interface} < T_{Core}$

• Warming: T_{Interface} > T_{Core}

Figure 7

TInterface affects Vasoconstriction & Vas dilati n (as measured by Blood Flow)

For each individual,

• Vasoconstriction [VC] occurs below a certain Temp range

· Vasodilation [VD] occurs

above that Temp range

Blood Flow can be measure by:

- · Laser Doppler
- Bio-Impedance
- Light Absorption (Pulse Oximetry)

Figure 8

Heat Transfer = $f(Temp Grad \times Blood Flow)$

Figure shows Temp Grad & Blood Flow vs. $T_{\text{interface}}$ superimposed

Maximum Heat Transfer occurs @

The lowest T_{Interface} where Vasodilation occurs

Hysterysis:

T_{Interface} [°C]

The transition between Vasoconstriction and Vasodilation is NOT Identically Reversible...

The transition occurs at a different temperature range depending on the initial condition

Typically, the transition from:

VC → VD occurs at a T_{Interface} range above $VD \longrightarrow VC$

If Vas dilati n is initially det cted

- A Blood Flow Sensor detects VD, T_{interface} = T_{set}
- B System controller decreases T_{interface} until VC detected
- C T_{interface} increases above transition temp range, VD occurs
- D System controller decreases T_{interface} to T_{Max Heat Transfer}

T_{Max Heat Transfer} < T_{set}

If Vasoc nstricti n is initially detect d

- A Blood Flow Sensor detects VC, T_{Interface} = T_{set}
- B System controller increases T_{Interface}
- © T_{interface} increases above transition temp range, VD occurs
- D System controller decreases T_{Interface} to T_{Max Heat Transfer}

T_{Max Heat Transfer} > T_{set}