國立成功大學 資訊工程學系 影像處理

期末專題報告

Segmentation of Carpal Tunnel from magnetic resonance image (MRI)

學生: P76094169 黃仁鴻

授課老師: 孫永年 教授

中華民國 110年1月

目錄

鉻	i
、問題描述	
、研究方法	2
3.1 資料前處理	2
3.2 Loss Function	4
、模型架構	5
、成果與討論	7
5.1 開發環境	7
5.2 實驗討論	7
考文獻	8
	、研究方法 3.1 資料前處理 3.2 Loss Function 模型架構 、成果與討論 5.1 開發環境 5.2 實驗討論

表目錄

表	1	深度學習開發環境	7
表	2	GUI 開發環境	7
表	3	實驗結果	7
		图 日 经	
		圖目錄	
置	1	step 1, 切下中央 384 x 384 的範圍	2
置	2	step 2, 裁切出 9 個位置的影像	3
置	3	step 3, 將步驟 2 所得到的影像旋轉四種角度	3
置	4	VoVNet	5
置	5	實驗模型	5

一、問題描述

本次研究透過深度學習的方法,使用核磁共振成像所取得之 T1 與 T2 兩張影像作為輸入,來分割出 腕隧道(Carpal tunnel, CT)、屈肌腱(Flexor tendons, FT)以及 正中神經(Median nerve, MN) 三個類別。

在研究過程中遇到的以下兩點問題將會在研究方法中說明如何處理:

- 1. 資料量過少
- 2. 正中神經無法辨識

三、研究方法

3.1 資料前處理

本次實驗可使用的資料為 207 份大小為 512 x 512 pixel 的 T1、T2、CT、FT 與 MN 影像,但使用深度學習方法時面臨到資料量過少的問題,且一張影像上許多地方都是為拍攝到物體的黑色區域,因此先對資料進行前處理與資料擴充,處理流程如下:

- 1. 在前處理時會先將四周裁切掉 64 pixel 的寬度(如圖 1)
- 2. 以 256 x 256 pixel 的大小切出 左上、上、右上,左、中、右 與 左下、下、右 下這九個位置(如圖 2)
- 3. 將切出的圖片分別旋轉 0°、90°、180°、270° (如圖 3)

經過這三個步驟後就可將資料量擴增至36倍。

圖 1 step 1, 切下中央 384 x 384 的範圍

圖 2 step 2, 裁切出 9 個位置的影像

圖 3 step 3 , 將步驟 2 所得到的影像旋轉四種角度

3.2 Loss Function

在一開始的實驗中使用的損失函數是 Binary Cross Entropy(BCE) Loss 來對每個 pixel 進行分類,但這個 loss 卻無法偵測到 MN,原因在於 MN 只占整張影像面積的一小部分,就算沒能成功分類也不會有太大的影響。為了處理這個問題,實驗將 BCE Loss 改成 Dice Coefficient(DC) Loss 與自訂的 Weighted BCE Loss。

3.2.1 Dice Coefficient Loss

式一為 DC Loss 的計算公式:

DC Loss
$$(y, \hat{y}) = 1 - \frac{sum(y \times \hat{y}) \times 2}{sum(y + \hat{y})}$$
), $y = 0$ or $1, 0 \le \hat{y} \le 1$

如果是使用 DC Loss 便可以避免掉 MN 偵測不到的問題,但卻會使得切割形狀破碎不連貫。Weighted BCE Loss 便是為了改善這個問題而加入的

3.2.2 Weighted BCE Loss

式二為一般 BCE Loss 的計算公式:

BCE Loss(y,
$$\hat{y}$$
) = $-[y \times \log(\hat{y}) + (1 - y) \times \log(1 - \hat{y})]$ (2)

而 Weighted BCE Loss 則改成式三的公式

Weighted BCE Loss(y,
$$\hat{y}$$
) = (3)
-[(1-w) × y × log(\hat{y}) + w × (1 - y) × log(1 - \hat{y})]

其中的w表示 label 切割面積占整張圖片的比例,如果占比較低,便會得到較大的權重。利用這種方式來強化像是 MN 這種小區塊的重要性,但缺點是會切割出過大的面積。因此使用 DC Loss 佔 0.7 與 Weighted BCE Loss 佔 0.3 的比例混和 Loss 進行訓練。

四、模型架構

在最開始的實驗是使用 U-Net [1]作為模型架構,但並沒有獲得良好的成果。因此後續將 U-Net 改成由 FCN [2]與 VoVNet [3](如圖 4)組成的模型。

圖 4 VoVNet

圖 5 是本次實驗使用的模型架構圖,在最開始由 Encoder 獲得多尺度的特徵,並將各尺度的特徵通過 pixel shuffle(sub-pixel [4])成 128 x 128 後串接在一起後進入 VoVNet 的區塊,最後再通過一次 pixel shuffle 成 256 x 256 並加上最開始的後進行分類。

圖 5 實驗模型

五、成果與討論

5.1 開發環境

表 1 深度學習開發環境

深度學習環境	Google Colab			
使用語言	Python3			
深度學習函式庫	pytorch 1.7.0+cu101			
	表 2 GUI 開發環境			
作業系統	Windows 10 專業版 Insider Preview, OS 組建: 21286.1000			
編輯器	VSCode + rust-analyzer			
程式語言	Rust			
編譯器	Rustc 1.49.0			
GUI 函式庫	iced 0.2			
深度學習函式庫	tch-rs 0.3.1,搭配 libtorch 1.7.1 cpu			

5.2 實驗討論

訓練時所使用的 optimizer 是 Adamax(使用預設的參數設定),loss 則是 0.3 Weighted BCE Loss + 0.7 DC Loss,每次訓練都會經過 5 個 epoch。最後驗證時將實驗的資料分成五個 fold 進行交叉驗證,實驗數據如表 2。

表 3 實驗結果

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean
CT	0.8888	0.8239	0.8572	0.8322	0.8959	0.8596
FT	0.8566	0.8063	0.8091	0.8133	0.8604	0.8291
MN	0.5887	0.5567	0.675	0.6638	0.6216	0.6212
Mean	0.7781	0.7289	0.7804	0.7698	0.7926	0.77

從實驗結果可以看到的是 MN 的正確率都比 CT 與 FT 還要低上許多,可能是因為單是從影像上用肉眼判斷就不容易將 MN 從 CT 中區分開來,MN 本身的大小又相對小了許多,就算判別出來,分割的形狀也不一定正確。

参考文獻

- [1] Olaf Ronneberger, Philipp Fischer, Thomas Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," arXiv preprint arXiv:1505.04597, 2015.
- [2] Jonathan Long, Evan Shelhamer, Trevor Darrell, "Fully Convolutional Networks for Semantic Segmentation," arXiv preprint arXiv:1411.4038, 2014.
- [3] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, Jongyoul Park, "An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection," arXiv preprint arXiv:1904.09730, 2019.
- [4] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, Zehan Wang, "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network," arXiv preprint arXiv:1609.05158, 2016.