CPS in Japan

Keisuke Kawata

2021-05-08

# Contents

| 1 | Sun                          | nmary                                      | 5  |
|---|------------------------------|--------------------------------------------|----|
| 2 | Simple description: Long-run |                                            | 7  |
|   | 2.1                          | Environment                                | 7  |
|   | 2.2                          | Data                                       | 7  |
|   | 2.3                          | Employment rate                            | 7  |
|   | 2.4                          | Year-to-year difference of employment rate | 8  |
|   | 2.5                          | Gender gap                                 | 9  |
| 3 | Simple description 1         |                                            |    |
|   | 3.1                          | Environment                                | 11 |
|   | 3.2                          | Data                                       | 11 |
|   | 3.3                          | Employment rate                            | 11 |
|   | 3.4                          | Year-to-year difference of employment rate | 12 |
|   | 3.5                          | Gender gap                                 | 13 |

4 CONTENTS

# Chapter 1

# Summary

- Describe Japanese Labor market from 1986-2021.
- Use the Labor force survey, which is open-access and includes similar variables as the current population survey in U.S.

## Chapter 2

# Simple description: Long-run

#### 2.1 Environment

```
library(data.table)
library(tidytable)
library(tidyverse)
library(lubridate)
```

#### 2.2 Data

#### 2.3 Employment rate

• Report  $e_{g,m,y} = \frac{Employment_{g,m,y}}{Population_{g,m,y}}$ , where  $Employment_{g,m,y}$  and  $Population_{g,m,y}$  are numbers of employment and population over 15 years old in month m, year y and gender group g, respectively.



### 2.4 Year-to-year difference of employment rate

- Report change of employment rate  $\tilde{e}_{g,m,y} = e_{g,m,y} - e_{g,m,y-1}$ 



### 2.5 Gender gap

- Report change of employment rate  $\tilde{e}_{male,m,y} - \tilde{e}_{female,m,y}$ 

```
arrange(sex,
        month,
        year) %>%
group_by(sex,
         month) %>%
mutate(employment = employment - lag(employment)) %>%
ungroup %>%
filter(year >= 1969) %>%
arrange(date,
        sex) %>%
group_by(date) %>%
mutate(employment = employment - lag(employment)) %>%
ungroup %>%
filter(sex == "male") %>%
ggplot(aes(x = date,
           y = employment)
       ) +
geom_line() +
geom_hline(yintercept = 0) +
ylab("") +
xlab("") +
theme_bw()
```



## Chapter 3

# Simple description

#### 3.1 Environment

```
library(data.table)
library(tidytable)
library(tidyverse)
library(lubridate)
```

#### 3.2 Data

#### 3.3 Employment rate

• Report  $e_{g,m,y} = \frac{Employment_{g,m,y}}{Population_{g,m,y}}$ , where  $Employment_{g,m,y}$  and  $Population_{g,m,y}$  are numbers of employment and population over 15 years old in month m, year y and gender group g, respectively.



## 3.4 Year-to-year difference of employment rate

- Report change of employment rate  $\tilde{e}_{g,m,y} = e_{g,m,y} - e_{g,m,y-1}$ 



### 3.5 Gender gap

- Report change of employment rate  $\tilde{e}_{male,m,y} - \tilde{e}_{female,m,y}$ 

```
raw %>%
mutate(year = year(date),
```

```
month = month(date)
       ) %>%
arrange(sex,
        month,
        year) %>%
group_by(sex,
         month) %>%
mutate(employment = employment - lag(employment)) %>%
ungroup %>%
filter(year >= 2019) %>%
arrange(date,
        sex) %>%
group_by(date) %>%
mutate(employment = employment - lag(employment)) %>%
ungroup %>%
filter(sex == "male") %>%
ggplot(aes(x = date,
          y = employment)
       ) +
geom_line() +
geom_point() +
geom_hline(yintercept = 0) +
ylab("") +
xlab("") +
theme_bw()
```

