Campus Crime Prediction-predictive analysis with Analytic Solver

Data source: Campus Crime Dataset,

link:https://www.kaggle.com/datasets/tobijoshua/campuscrime

Introduction:

Campus Crime Prediction Based on number of police, number of enrollment, schools

Y:number of crimes X_1 :Total enrollment X_2 :Police X_3 :Private school

Data process and modeling:

Step 1:scatter plot

According to the scatter plot, when use a simple linear regression model to estimate the crime amount ,police and total enrollment should be used because there seems to be linear relationship between them with number of crimes.

Step 2:

 X_1 :

Campus Crime Prediction

*X*₂:

The model using X_2 accounts for 80% of the variation in y,leaving 20% unaccounted for.

*X*₃:

Campus Crime Prediction

 X_1 doesn't help to explain the crime amount when X_2 is also in the model.

$X_2 \& X_3$:

$X_1 \& X_2 \& X_3$:

The model using X_2 accounts for 80% of the variation in y,leaving 20% unaccounted for. If X_3 , X_2 is also in the model, then the model using X_1 , X_2

and X_3 accounts for 84.5% of the variation in y,leaving 15.5% unaccounted for

Y:crime X_1 :Total enrollment X_2 :Police X_3 :Private school

$$\hat{Y} = b_1 + b_1 X_1 + b_2 X_2 + + b_3 X_3$$

 $\hat{Y} = 105.9195 - 0.0032567X_1 + 2.52X_2 - 65.38X_3$

Step 3-Crime rate mode:

To reduce the sample bias from total amount of Enrollment, use crime rate as dependent variable (crime rate=crime/total enrollment):

Y:crime-rate X_1 :Total enrollment X_2 :Police X_3 :Private school

$$\hat{Y} = \alpha_1 + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3$$

 $\hat{Y} = 0.010154 + 1.99E07X_1 - 0.000183121X_2 + 0.036475474X_3$

According to the above model, on average, if 1 unite increase in amount of police, then crime rate can be estimated decreased by 0.0183%, but not significant. And crime rate in private school is higher than non-private school.

Step 4-log-Crime rate mode:

Finally, log-scale graph may help us find better accuracy Log- y-axis:

Variables	R^2	Adj-R ²	SE
X_1 (total enrollment)	0.552916	0.528078	30.46099978
X_2 (police)	0.812833	0.802435	19.7089792
X_3 (private)	0.552916	0.528078	30.46099978
$X_2 \& X_1$	0.791901	0.791901	20.22758872
$X_2 \& X_3$	0.825892	0.805409	19.56007988
$X_1 & X_2 & X_3$	0.869813	0.845403	17.43447398
Crime rate-X ₁ &X ₂ &X ₃	0.908333	0.891145	0.006036221
Log(Crime rate)-X ₁ &X ₂ &X ₃	0.973973	0.969092	0.070705839

Regression models recommended to use and Conclusion:

When completed the log transform of crime rate, then use regression model methods, X_1 : Total enrollment X_2 : Police X_3 : Private school should be used to estimate log(crime-rate), since its highest Adj- R^2 (0.973973), the recommended model is log(crime rate) = -1.9166 -8.33619E06Enrollment -0.000484973 police+ 0.56283 Private. If 1 unit increase in police, than crime rate will be decreased by 0.0000485%. And on average, the crime rate of private school higher than non-private school.