Tutorial – Week5

Q1. Simple direct proof:

Prove "If 5|2a for $a \in \mathbb{Z}$, then 5|a." "Read as 5 divides a"

Note: Remind you 5|20. It means $\exists q \in \mathbf{Z}$, (5)(q) = 20 or $\frac{20}{5} = q$.

Proof:

If
$$5|2a \Rightarrow \exists x \in \mathbb{Z}$$
, $(5)(x) = 2a$,

we need prove $5|a \Rightarrow \exists k \in \mathbb{Z}$, (5)(k) = a.

 $a \in Z : 2a$ is even.

Frim the above, we know (5)(x) must be even

And \because 5 is odd. $\therefore x$ must be even.

It means x = 2k for some $k \in \mathbf{Z}$, by the definition of an even integer.

Then
$$\exists k \in \mathbb{Z}, (5)(2k) = 2a \Rightarrow \exists k \in \mathbb{Z}, (5)(k) = a$$

We proved 5|a.

Q2. Example 1 on contrapositive proof.

Prove "If n is an integer and 3n + 2 is odd, then n is odd."

Proof:

Contrapositive flip the statement becomes $n \in \mathbf{Z}$,

"If n is NOT odd, then 3n + 2 is NOT odd."

Or "If n is EVEN, then 3n + 2 is EVEN."

Now assume n is even $\Rightarrow n = 2x$ for some $x \in Z$.

$$3n + 2 = 3(2x) + 2 = 6x + 2 = 2(3x + 1)$$
 - we like this form $2(\cdots)$, it shows it is even.

$$x \in Z \Rightarrow 2(y)$$
, where $y = 3x + 1$

 $\therefore 3n + 2$ must be even.

There, it shows 3n + 2 is EVEN, so "If n is EVEN, then 3n + 2 is EVEN."

Or we proved "If n is an integer and 3n + 2 is odd, then n is odd."

Q3. Example 2 on contrapositive proof.

Prove "If n is an integer, and 3n + 2 is even, then n is even."

Proof:

Flip \Rightarrow If n is NOT EVEN, then 3n + 2 is NOT EVEN.

Or to prove If n is odd, then 3n + 2 is odd.

Assume n is odd, so we rewrite n = 2x + 1 for some $x \in \mathbb{Z}$, by the definition of an odd integer.

$$3n + 2 = 3(2x + 1) + 2 = 6x + 3 + 2 = 6x + 5 = 2(3x + 2) + 1 = 2(y) + 1$$

y is integer.

 \therefore 3*n* + 2 must be odd.

We proved "If n is odd, then 3n + 2 is odd."

Or "If 3n + 2 is even, n is even."

Q4. Proof by counter example.

"If
$$x, y \in R$$
, $\forall x \exists y \ x^2 > y^2$."

Is the above statement TRUE or FALSE?

Solution:

The statement is False.

Counter example:

Let
$$x = 0$$
, $x^2 = 0$

 $\forall x \exists y \ x^2 > y^2$ is False as $x^2 = 0$ in the counter example.

Q5. If and only if (iff) proof.

Let $a \in \mathbb{Z}$, prove that 33|a (33 divides a) iff 11|a and 3|a.

Proof: (2 step2 or 2 directions proof for iff proof)

Step 1: Show $33|a \Rightarrow 11|a$ and 3|a.

Assume $33|a \Rightarrow a = 33k$ for some k, and $k \in Z$

 $a = 11(3k) \Rightarrow 11|a \quad (33|a \Rightarrow 11|a \text{ is proved})$

Because 11 is a factor of (11)(3k)

Now $a = 11(3k) \Rightarrow a = 3(11k) \Rightarrow 3|a|$, (because 11k must be integer so it means 3 divides a)

We proved the first direction: If 33|a, then 11|a and 3|a.

Step 2: We want to show 11|a and 3|a, then 33|a.

Assume $11|a, 3|a \Rightarrow a = 3k$ for some k condition (i)

 $a=11\omega$ for some ω condition (ii)

Use $a = 11\omega$ and a =3k condition (i) and (ii) to prove then 33|a

$$\Rightarrow \omega = \frac{a}{11}$$
 and $a = 3k \Rightarrow \omega = \frac{3k}{11}$

Since 3 cannot be divided by 11 to give integer $\boldsymbol{\omega}.$

 $\omega = \frac{3k}{11} \Rightarrow \frac{k}{11}$ must give an integer, or 11 divides k.

 $\Rightarrow 11|k$ (11 divides k) or k = 11n for some n.

 \Rightarrow 3(11)|(3)k or 33|a, where a = (33)(k)

Thus If 11|a and 3|a, then 33|a is proved.

We proved "If 11|a and 3|a, then 33|a."

Based on step 1 necessary, step 2 sufficient, we prove 33|a iff 11|a and 3|a.