Sprawozdanie NUM5

Szymon Tomaszewski 23 listopada 2024

1. Wstęp

1.1. Treść zadania

Rozwiąż układ równań

$$\begin{pmatrix} d & 0.5 & 0.1 \\ 0.5 & d & 0.5 & 0.1 \\ 0.1 & 0.5 & d & 0.5 & 0.1 \\ \dots & \dots & \dots & \dots & \dots \\ & & 0.1 & 0.5 & d & 0.5 \\ & & & 0.1 & 0.5 & d \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ \dots \\ N-1 \\ N \end{pmatrix}$$

Dla N=200 za pomocą metod Jacobiego i Gaussa-Seidela, gdzie d jest elementem diagonalnym. Dla różnych wartości d i punktów startowych przedstaw graficznie różnicę pomiędzy dokładnym rozwiązaniem a jego przybliżeniami w kolejnych iteracjach. Odpowiednio dobierając zakres parametrów, porównaj dwie metody. Czy procedura iteracyjna zawsze jest zbieżna?

1.2. Wprowadzenie

Zaletą metod iteracyjnych jest ich prostota co przekłada się na prostą implementację. Metody te używa się najczęściej, chociaż nie tylko, gdy zastosowanie faktoryzacji powodowałaby wypełnień macierzy rzadkiej.

Pierwszą z tych metod jest **metoda Jacobiego.** W metodzie tej rozwiązanie macierzy jest możliwe jeśli owa macierz jest diagonalnie dominująca, to znaczy, że jej wartości bezwzględne elementów na głównej przekątnej są większe od sumy wartości bezwzględnych pozostałych elementów w danym wierszu. Dodatkowo ta metoda jest w pełni równoległa, każdą współrzędną nowego przybliżenia możemy wyznaczyć niezależnie od pozostałych.

W metodzie tej najpierw przekształcimy układ Ax=b do postaci

x=g+Hx gdzie
$$g_{i}=rac{b_{i}}{a_{ii}}$$
 , $h_{ij}=\{rac{-rac{a_{ij}}{a_{ii}}\,dla\,i\neq j}{0\;dla\,i=j}$

Kolejnym krokiem jest iteracyjne wyznaczanie kolejnych przybliżeń wektora x korzystając z wzoru:

$$x_i^{(k+1)} = g_i + \sum_{i=1}^n h_{ij} x_j^{(k)} dla k = 0, 1,..., dla i = 1, 2,...$$

lub w postaci macierzowej korzystając z wzoru

$$x^{(k+1)} = g + Hx^{(k)}, k = 0, 1, 2,...$$

W ten sposób otrzymujemy ciąg wektorów $\boldsymbol{x}^{(k)}$

Zanim przejdziemy do następnej metody zastanówmy się nad wektorem wyrazów wolnych $x^0=g$, który jest wymagany do rozpoczęcia iteracji. Jeśli macierz A jest dominująca przekątniowo to ciąg przybliżeń $x^{(k)}$ jest zawsze zbieżny do rozwiązania układu niezależnie od wyboru wektora startowego, dlatego często aby ułatwić sobie obliczenia wybiera się wektor zerowy.

Druga metoda jest metoda Gaussa - Seidela.

Metoda ta, tak jak wcześniejsza, jest iteracyjna, a różni się od poprzedniczki tym, że inaczej wyznaczany jest wektor $x^{(k)}$. Jest to swego rodzaju modyfikacja metody Jacobiego. W przypadku metody Gaussa–Seidla wykorzystujemy wartości wektora $x^{(k-1)}$ jak i z wyznaczonych już elementów wektora $x^{(k)}$.

Wektor $x^{(k)}$ wyznacza się w oparciu o wyrażenie

$$x_i^{(k+1)} = g_i + \sum_{j=1}^{i-1} h_{ij} x_j^{(k)} + \sum_{j=1}^{n} h_{ij} x_j^{(k)} dla k = 0, 1,..., dla i = 1, 2,...$$

2. Kod

W metodach iteracyjnych rozwiązanie dokładne otrzymuje się teoretycznie w granicy nieskończenie wielu kroków lecz w praktyce liczymy na to, że po skończonej i niewielkiej liczbie kroków zbliżymy się do wyniku ścisłego w granicach błędu zaokrąglenia.

Jeżeli macierz A jest rzadka, obie te metody iteracyjne będą efektywne tylko i wyłącznie wówczas, gdy we wzorach uwzględni się ich strukturę, to jest uniknie redundantnych mnożeń przez zera.

Nie należy zapomnieć o warunku stopu. W naszym przypadku algorytm zakończy się jeśli przekroczymy ustaloną ilość iteracji lub osiągniemy zadowalającą dokładność.

3. Wyniki

1. Wyniki rozbieżne dla wektora zerowego x.

2. Wyniki zbieżne dla wektora zerowego x.

3. Wyniki dla wektora zerowego x.

4. Dyskusja i Wnioski

Z wykresu widać, że niezależnie od wyboru wartości d metoda Gaussa-Seidela zbiega szybciej niż metoda Jacobiego, ponieważ używa najnowszych wartości. (wykres 2). Wartość elementu diagonalnego d mają duży wpływ na szybkość zbieżności, to znaczy, że wartość d odpowiada za dominację diagonalną macierzy. (wykres 1) Tym samym potwierdziliśmy twierdzenie, że Metoda Jacobiego jest zbieżna, jeśli macierz A jest silnie diagonalnie dominująca.

Zauważamy także, że metoda Gaussa-Seidela może działać przy słabszych warunkach a metoda Jacobiego wymaga silniejsze dominacji diagonalnej. (wykres 3)

Zauważalne jest także to, że przy metodzie Jacobiego przeważnie spełniony jest warunek określonej ilości iteracji gdzie przy Gaussa-Seidelu spełniony jest warunek końca iteracji.

Zmieniając punkty startowe dochodzimy do wniosku, że niezależnie od wyboru punktu startowego po określonej ilości iteracji wynik zbiegnie nam do wartości o ile macierz jest diagonalnie dominująca.