## Grupos Topológicos

Cristo Daniel Alvarado

13 de febrero de 2024

# Índice general

| B. Topología              | <b>2</b> |
|---------------------------|----------|
| B.1. Espacios Topológicos | 2        |
| C. Funciones Cardinales   | 6        |
| C.1. nose                 | 6        |

## Capítulo B

## Topología

### **B.1.** Espacios Topológicos

En esta parte se hará un breve recordatorio de los resultados más relevantes de la parte de espacios topológicos.

#### Definición B.1.1

Un **espacio topológico** es una pareja  $(X, \tau)$  que consiste en un conjunto X y una familia  $\tau$  de subconjuntos de X con las siguientes propiedades:

- 1).  $\emptyset, X \in \tau$ .
- 2). Si  $U_1, U_2 \in \tau$ , entonces  $U_1 \cap U_2 \in \tau$ .
- 3). Si  $\mathcal{F} \subseteq \tau$ , entonces

$$\bigcup_{F \in \mathfrak{T}} F \in \tau$$

A los miembros de  $\tau$  se les conoce como **conjuntos abiertos** en X. La familia  $\tau$  es una **topología** en X.

#### Definición B.1.2

Sea X un espacio topológico y  $x \in X$ . Si U es un subconjunto abierto de X tal que  $x \in U$ , diremos que U es una vecindad de x.

Como resultado de lo anterior, se tiene que un subconjunto  $V \subseteq X$  es abierto si para todo  $x \in V$  existe una vecindad  $U_x$  contenida en V.

#### Definición B.1.3

Sea X un espacio topológico. Una **base** del espacio topológico X es una familia  $\mathcal{B} \subseteq \tau$  tal que todo subconjunto abierto no vacío de X es unión de elementos de  $\mathcal{B}$ .

#### Proposición B.1.1

Sea X un espacio topológico. Una familia  $\mathcal{B} \subseteq \tau$  es una base del espacio si y sólo si para todo punto  $x \in X$  y para cualquier vecindad V de x existe  $U \in \mathcal{B}$  tal que  $x \in U \subseteq V$ .

El objetivo de la base de un espacio topológico es la de disminuir el número de elementos de la familia  $\tau$ , y de que esta familia más pequeña cumple propiedaes más generales que, resultan útiles para resultados posteriores.

#### Proposición B.1.2

Sea X un espacio topológico. Una base  $\mathcal{B}$  de X tiene las propiedades siguientes:

- B1). Para cualesquier  $U_1, U_2 \in \mathcal{B}$  y todo punto  $x \in U_1 \cap U_2$  existe un  $U \in \mathcal{B}$  tal que  $x \in U \subseteq U_1 \cap U_2$ .
- B2). Para todo  $x \in X$  existe  $U \in \mathcal{B}$  tal que  $x \in U$ , es decir  $X = \bigcup_{B \in \mathcal{B}} B$ .

Además, si una familia  $\mathcal B$  de subconjuntos de X cumple B1) y B2), entonces existe una única topología  $\tau$  en X para la cual  $\mathcal B$  es una base.

#### Definición B.1.4

Si  $(X, \tau)$  es un espacio topológico que posee una base numerable  $\mathcal{B}$ , se dice que X es **segundo** numerable.

Una familia  $\mathcal{P} \subseteq \tau$  es una **sub-base** de un espacio topológico  $(X, \tau)$  si la familia de todas las intersecciones finitas  $U_1 \cap U_2 \cap \cdots \cap U_k$ , donde  $U_i \in \mathcal{P}$  para  $i = 1, \ldots, k$ , es una base de  $(X, \tau)$ .

#### Definición B.1.5

Una familia  $\mathcal{B}(x)$  de vecindades de x es una **base local** en  $x \in X$  en el espacio topológico  $(X, \tau)$ , si para toda vecindad V de x existe  $U \in \mathcal{B}(x)$  tal que  $x \in U \subseteq V$ .

Observe que si  $\mathcal{B}$  es una base de  $(X, \tau)$ , la familia  $\mathcal{B}(x)$  consistente en todos los elementos de  $\mathcal{B}$  que contienen a x es una base local para x en  $(X, \tau)$ . Por otro lado, si para todo  $x \in X$  contamos con una base local  $\mathcal{B}(x)$  para x, enotnces  $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}(x)$  es un base de  $(X, \tau)$ .

#### Definición B.1.6

Sea  $(X, \tau)$  un espacio topológico y supongamos que para todo  $x \in X$  tenemos una base local  $\mathfrak{B}(x)$  en x; la familia

$$\big\{ \mathfrak{B}(x) \big| x \in X \big\}$$

es un sistema de vecindades para el espacio topológico  $(X, \tau)$ .

#### Proposición B.1.3

Sea X un espacio topológico. Entonces, cualquier sistema de vecindades para el espacio X tiene las siguientes propiedades:

- BP1). Para toda  $x \in X$ ,  $\mathcal{B}(x) \neq \emptyset$  y para toda  $U \in \mathcal{B}(x)$ ,  $x \in U$ .
- BP2). Si  $U_1 \in \mathcal{B}(x)$ ,  $U_2 \in \mathcal{B}(y)$  y  $z \in U_1 \cap U_2$ , existe un  $U \in \mathcal{B}(z)$  tal que  $U \subseteq U_1 \cap U_2$ .

#### Definición B.1.7

Si  $(X, \tau)$  es un espacio topológico tal que todo punto  $x \in X$  posee una base local en x numerable, decimos que X es un espacio **primero numerable**.

#### Definición B.1.8

Sea  $(X, \tau)$  un espacio topológico. Decimos que un subconjunto  $F \subseteq X$  es **cerrado**, si  $X \setminus F \in \tau$ , es decir, si su complemento relativo a X es abierto. De forma inmediata se deducen las propiedades siguientes:

C1). El conjunto X es cerrado, lo mismo con  $\emptyset$ .

- C2). La unión de dos conjuntos cerrados es cerrada.
- C3). La intersección de cualquier familia de conjuntos cerrados es cerrada.

De ahora en adelante, cada que se mencione al conjunto X, se entenderá que es el espacio topológico  $(X, \tau)$ . Si no hay ambiguedad, no se mencionará la topología  $\tau$ .

Ahora se procederá a definir dos conjuntos importantes para todo subconjunto  $A \subseteq X$ , con el objetivo de relacionar a éste con algún elemento de la topología  $\tau$ .

#### Definición B.1.9

Sea  $A \subseteq X$ . Considere la familia  $\mathcal{C}_A$  de todos los conjuntos cerrados que contienen a A. La intersección

$$\overline{A} = \bigcap_{E \in \mathcal{C}_A} E$$

es la **cerradora** o **clausura de** A. Es claro que  $\overline{A}$  es un conjunto cerrado.

#### Proposición B.1.4

Sea X un espacio topológico; enotnces

- 1).  $A \subseteq \overline{A}$ .
- 2). Si  $A \subseteq B$ , entonces  $\overline{A} \subseteq \overline{B}$ .
- 3). Si  $x \in \overline{A}$ , entonces para toda vecindad U de x se cumple que
- 4).  $U \cap A \neq \emptyset$ .
- 5).  $\overline{\emptyset} = \emptyset$ .
- 6).  $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .
- 7).  $\overline{\overline{A}} = \overline{A}$ .

#### Definición B.1.10

El interior de un subconjunto  $A \subseteq X$  de un espacio topológico X es la unión de todos los subconjuntos abiertos contenidos en A, o en forma equivalente, el abierto más grande contenido en A. El interior de A se denota como IntA y es claramente un conjunto abierto.

4

Algunas propiedades del interior de un conjunto son las siguientes:

#### Proposición B.1.5

Sea X un espacio topológico, enotnces

- 1). Para todo  $A \subseteq X$  se cumple que  $\operatorname{Int} A = X \setminus \overline{X \setminus A}$ .
- 2). Int X = X.
- 3). Int $A \subseteq A$ .
- 4).  $\operatorname{Int} A \cap B = \operatorname{Int} A \cap \operatorname{Int} B$ .
- 5). IntIntA = IntA.

Bajo esta perspectiva, podemos considerar a la cerradura e interior de un conjunto como operadores que actúan sobre los subconjuntos de un espacio topológico. Ahora definiremos un operador más en un espacio topológico:

#### Definición B.1.11

Un punto  $x \in X$  de un espacio topológico X es un **punto de acumulación** de un conjunto  $A \subseteq X$ , si  $x \in \overline{A \setminus \{x\}}$ ; el conjunto de todos los puntos de acumulación de A es el **conjunto** derivado de A y se denota por  $A^d$ .

A los puntos de  $A^d$  se les conoce como **puntos no aislados** del conjunto A. Un punto x es **aislado** en X si y sólo si el conjunto  $\{x\}$  es abierto.

Algunas de las propiedades del conjunto derivado son las siguientes:

#### Proposición B.1.6

Sean X un espacio topológico,  $x \in X$  y  $A \subseteq X$ . Entonces,

- D1). El punto x pertenece a  $A^d$  si y sólo si toda vecindad de x contiene al menos un punto de A distinto de x.
- D2).  $\overline{A} = A \cup A^d$ .
- D3). Si  $A \subseteq B$ , entonces  $A^d \subseteq B^d$ .
- D4).  $(A \cup B)^d = A^d \cup B^d$ .
- D5).  $\bigcup_{i \in I} A_i^d \subseteq (\bigcup_{i \in I} A_i)^d$ .

Ahora se definirán varios conceptos importantes en la topología general.

#### Definición B.1.12

Sea X un espacio topológico.

- 1). Un conjunto  $A \subseteq X$  es **denso** en X si  $\overline{A} = X$ .
- 2). Un conjunto  $A \subseteq X$  es denso en ninguna parte en X, si  $X \setminus \overline{A}$  es denso en X.
- 3). Un conjunto  $A \subseteq X$  es **denso en sí mismo** si  $A = A^d$ .

Entre las propiedades de subconjuntos de espacios relativas a la definición anterior se cuentan las siguientes:

## Capítulo C

## **Funciones Cardinales**

C.1. nose