Biol-360 Bioinformatics

Bioinformatics

Flat files versus linked files

Highly-linke Structures

databases Data Quali

Summary

Reading Assignment

Intro to Biological Databases

Lec'04'slides

Outline for today

Bioinformatics

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summar

Reading Assignment Bioinformatics Databases

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

- 2 Summary
- **3** Reading Assignment

Bioinformatics Databases

Flat files versilinked files
Highly-linked
Structures
Relational
databases
Data Quality
Quick NCBI
Demo

Summar

Reading Assignment Bioinformatics Databases

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

- 2 Summary
- Reading Assignment

Sequence databases: The Big Picture

Bioinformatics Databases

Hat hies versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summary

Reading Assignment

How do we do this efficiently?

>mouse hexokinase CCTGGTTAGTCGTTAC TCATCGTTCGAGGCGG

. .

Bioinformatic

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summar

Reading Assignment 1 Bioinformatics Databases
Flat files versus linked files
Highly-linked Structures
Relational databases
Data Quality
Quick NCBI Demo

- 2 Summary
- 3 Reading Assignment

Simple **flat file** nucleotide sequence

Bioinformatics

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI

Summar

Reading Assignment >gi|24653803|Drosophila melanogaster hexokinase C GTTTCCAAGGCGCACTGCATCTCAACGCCTGGCTCTTATCAGGCACCCAGG GGCTCGCCAGGCGCCTGGTTAGTCGTTACTCATCGTTCGAGGCGGTTACAA CAAGCAAAATGCTGGACGCGGAGGTGCGAGAACTTATGCAACCCTTTGTGT GGAAGTGTACAGTCGCTTTTGCCTGGAAGTGGCCCGTGGACTTAAGCGGTC GTCA AGTGTTTTCCCA CGTA CGTGCA GGATCTGCCCA CGGGCGA CGA GATG ATCTCGGCGGTACCAACTTCCGAGTACTGCTCGTCTCGCTGAAAGGTCACC $\mathsf{TCAGATCTATGCCGTGCCAAAGGACCTGATGGTGGGGCCCGGTGTGGACCT$ TGCCTGGCCAAATTTGTGGAGAAACACGACATGAAGACCGCATATCTGCCA TCCCTTGCGTGCAACTAGGCCTTAAGGAGGGCATCCTGGTACGCTGGACTA GGTTGAGGGCGAGGATGTGGGCCGCATGCTGCACGAGGCCATTCAGCGGCG GTGGTGGCTATACTCAACGATACCACTGGCACCTTGATGTCCTGCGCCCAT

What kind of flat file is this?

Flat files are ancient computer history

Bioinformatics

Flat files versus

Highly-linked Structures Relational databases Data Quality

Summar

Reading Assignmen

Flat file databases

Bioinformatic

Databases
Flat files versus linked files
Highly-linked
Structures
Relational databases
Data Quality
Quick NCBI
Demo

Summar

Reading Assignment

(A)			
	NAME	TELEPHONE	ADDRESS
	S. Claus	0203 450	The North Pole, Lapland
	M. Mouse	0202 453	Disneyworld, Florida
	A. Moonman	0104 459	Craterland, The Moon

(B) GenBank Flat-File Format

LOCUS SCU49845 5028 bp DNA

DEFINITION Saccharomyces cerevisiae TCP1-beta gene, partial cds, and

Ax12p

(AXL2) and Rev7p (REV7) genes, complete cds.

ACCESSION U49845

VERSION U49845.1 GI:1293613

KEYWORDS SOURCE

Saccharomyces cerevisiae (baker's yeast)

M Saccharomyces cerevisiae

Eukaryota; Fungi; Ascomycota; Saccharomycotina;

Saccharomycetes;

 ${\tt Saccharomycetales; Saccharomycetaceae; Saccharomyces.}$

Properties of flat files

Bioinformatics

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summar

Reading Assignmen Technically trivial – just a "document"

- Examples:
 - >Hexokinase
 AACCTTGTCCAGGCATTACGGAGAA...
 - Atomic coordinates of a protein model:

Atom	X	Υ	Z
H213	213	423	322
N53	423	593	89
C67	235	675	865
:	:	:	

- Flat files commonly used for small items (bytes to megabytes)
 - Informal definition: 1 byte = 1 text character

Big limitation:

Flat files do not cross-reference other flat files

Flat files versus linked files

LOCUS NM_079935 1578 bp mRNA linear DEFINITION

Drosophila melanogaster hexokinase C

ACCESSION NM 079935

REFERENCE

AUTHORS Hoskins, R.A., Carlson, J.W., Kennedy, C.,

Acevedo, D., Evans-Holm, M., Frise, E.,

Wan, K.H., Park, S., Mendez-Lago, M., Rossi, F., Villasante, A., Dimitri, P.,

Karpen, G.H. and Celniker, S.E.

TITI.E. Sequence finishing and mapping of Drosophila

melanogaster heterochromatin

Science 316 (5831), 1625-1628 (2007) JOURNAL.

17569867 DIIBMED **FEATURES**

/protein_id="NP_524674.1"

Databases
Flat files versi
linked files
Highly-linked
Structures
Relational
databases
Data Quality

Summary

Reading Assignment 1 Bioinformatics Databases

Flat files versus linked files

Highly-linked Structures

Relational databases Data Quality Quick NCBI Demo

- 2 Summary
- 3 Reading Assignment

Contrast: We need highly-linked structures I

Bioinformatics

Plat files versus

Highly-linked Structures

Relational databases Data Qualit Quick NCBI

Summary

Assignmen

Contrast: We need highly-linked structures II

Bioinformatics

Databases
Flat files versus

Highly-linked Structures

databases Data Qualit Quick NCBI

Summary

Reading Assignment

Contrast: We need highly-linked structures III

Highly-linked

Structures

Contrast flat files with relational databases

Bioinformatics

Databases
Flat files versus

Highly-linked Structures

databases

Data Qualit

Quick NCB

Summary

Reading Assignment

A Relational database uses keys to relate data

protab1			
Protein-code	Protein-name	Length	Species-origin
P1001	Hemoglobin	145	Bovine
P1002	Hemoglobin	136	Ovine
P1003	Eye Lens Protein	234	Human

protab2	
Protein-code	Protein-sequence
P1001	MDRTTHGFDLKLLSPRTVNQWLMLALFFGHS
P1002	MDKTSHGFEIKLLTPKKLQQWLMIAIYFGHT
P1003	SRTHEEEGKLMQWPPRPLYIALFTEPPYP

Outline

Bioinformatic

Flat files versu: linked files Highly-linked

Relational

databases Data Qualit Quick NCBI Demo

Summary

Reading Assignment Bioinformatics Databases

Flat files versus linked files Highly-linked Structures

Relational databases

Data Quality
Quick NCBI Demo

- 2 Summary
- 3 Reading Assignment

Relational databases link complex data

Bioinformatics

Databases
Flat files versus linked files
Highly-linked

Relational databases

Data Qualit Quick NCB

Summary

Reading Assignmen

Metadata = annotation = "data about the data"

Bioinformatics Databases

Flat files versus linked files Highly-linked

Relational databases Data Quality Quick NCBI

Summary

Reading Assignment Data of a picture $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$

Title Aunt Carla at the beach

Date 2014.02.07

Camera Canon PowerShot SX280

Metadata about the picture:

String Title
YYYY.MM.DD Date
Brand Type Model Came

Brand Type Model Camera

Data of a gene:

Sequence AACCGGTACCTAGAC...

Name hexokinase

Location Chr 4 18247-19345

Metadata about the gene:

[ACGT] Sequence String Name "Chr" Chr Start-End Location

Outline

Bioinformatics

Flat files versulinked files Highly-linked Structures Relational

Data Quality Quick NCBI Demo

Summary

Reading Assignment 1 Bioinformatics Databases

Flat files versus linked files Highly-linked Structures Relational databases

Data Quality
Quick NCBI Demo

2 Summary

3 Reading Assignment

Primary and secondary data

Bioinformatics

Flat files versus linked files Highly-linked Structures Relational databases Data Quality

C.....

Reading Assignment

Primary data

- Raw experimental data Examples: DNA sequence, 3D protein structure
- Primary data may be redundant. Example:
 - Several labs sequence a gene
 - 2 These labs publish their sequences to a database
 - 3 Now: multiple copies of sequence in database
 - 4 Published sequences might differ! Metadata may differ! TACG A TTA versus TACG C TTA How can this happen?

Secondary data

- Curated by experts
- Consensus of primary data
- Nonredundant
- Always use curated secondary data if available

DNA chromatograms reveal sequencing errors

Bioinformatics

Flat files versus linked files Highly-linked Structures Relational

Data Quality Quick NCBI

Summar

Reading Assignmen

Heterozygous SNP

Towards end of run

Annotations can be wrong too (and misleading)

Bioinformatics

Databases
Flat files versus linked files
Highly-linked Structures
Relational databases
Data Quality

C.....

Reading Assignmen Three labs sequence the same gene and put data in GenBank:

• Lab 1:

Sequence ACCGGACCTACCGGACCTACCGGACCT

Function Protein of unknown function

Lab 2:

Sequence ACCGGACCTACCGGACCTACCGGACCT
Function Shares domains with HOX-family genes

Lab 3:

Sequence ACCGGACCTACCGGACCTACCGGACCT

Function Appears related to glycolysis

NCBI's artwork of primary and 2'ndary data

Bioinformatic

Flat files versus linked files Highly-linked Structures Relational databases Data Quality

Summary

Reading Assignmen

Biological data goes into huge data warehouses

Bioinformatics

Databases
Flat files versus
linked files
Highly-linked
Structures
Relational
databases
Data Quality

Summar

Reading Assignment

Huge data warehouses:

NCBI National Center for Biotechnology Information

EBI European Bioinformatics Institute

PDB Protein Data Bank

International Sequence Database Collaboration shares biological data between warehouses

Bioinformatics Databases

Flat files versi linked files Highly-linked Structures Polational

Data Quality Quick NCBI

Summary

Reading Assignmen

Wide variety of biological data available

linked files Highly-linked Structures

Data Quality Quick NCBI

Summar

Assignmen

Bioinformati Databases Flat files versu linked files Highly-linked Structures Relational databases Data Quality Quick NCBI

Demo Summary

Reading Assignment Bioinformatics Databases

Flat files versus linked files
Highly-linked Structures
Relational databases
Data Quality

Quick NCBI Demo

- 2 Summary
- 3 Reading Assignment

Reading Assignment

- National Center for Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov/
- NCBI is **HUGE**
- NCBI is just the tip of the iceberg.
- Lots of our work will be at NCBI.
- Feel free to use other tools too.
- Using NCBI, what can we quickly learn about hemoglobin?

Outline

Bioinformatic

Jatabases
Flat files versu
linked files
Highly-linked
Structures
Relational
databases
Data Quality
Quick NCBI
Demo

Summary

Reading Assignment 1 Bioinformatics Databases
Flat files versus linked files
Highly-linked Structures
Relational databases
Data Quality
Quick NCBI Demo

- 2 Summary
- 3 Reading Assignment

Summary

Bioinformatics Databases Flat files versus

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summary

Reading Assignment

- Metadata describes/defines the format of the data
- Primary versus secondary data
- Huge primary and secondary sequence databases
- Lots of biological data freely available
- NCBI is a great resource that we will be using A LOT!

Outline

Bioinformatic

Flat files versus linked files Highly-linked Structures Relational databases Data Quality Quick NCBI Demo

Summar

Reading Assignment

1 Bioinformatics Databases
Flat files versus linked files
Highly-linked Structures
Relational databases
Data Quality
Quick NCBI Demo

- 2 Summary
- **3** Reading Assignment

Reading for next time

Bioinformatics

Flat files versus linked files

Highly-linked Structures

Data Quali Quick NCE

Summar

Reading Assignment

Chapter 2

Section "Command-line Access to Data at NCBI" to ${\sf End\ of\ the\ Chapter}$

Chapter 3

Section "Introduction" to
Section "Scoring Matrices"

Pages	Notes
42–60	Read
69–79	Read