## Trabajo Temas 7 y 8 MED (MUM)

Beatriz Coronado Sanz

Curso 2018-2019

## Índice

- Conjunto datos
- Modelos CART
- Modelos Random Forests
- Conclusiones

## Data frame LetterRecognition

- Este data frame contiene imágenes de las distintas letras del alfabeto.
- Se usa para fabricar modelos que reconozcan unas letras de otras. Nosotros realizaremos modelos de clasificación binaria basados en la metodología CART y Random Forests.
- En nuestro caso vamos a trabajar con dos letras elegidas aleatoriamente (la I y la F).

## Representación de LetterRecognition



## Partición en conjunto de entrenamiento/test

- Trabajaremos con todos los casos de las dos letras escogidas.
- Partiremos este conjunto de datos en dos: un conjunto de entrenamiento (70 %) y un conjunto de test (30 %).
- Observamos que los datos del conjunto de entrenamiento son equilibrados: 539 para la letra F y 532 para la letra I
- Del mismo modo, los datos del conjunto test son equilibrados:
  236 para la letra F y 223 para la letra I

### Primer modelo CART

- El primer modelo CART que estudiaremos será el que nos ofrezca la función rpart sobre el conjunto de entrenamiento sin ningún parámetro adicional.
- Los resultados de este modelo para el conjunto de test son:

| Real/Predicción | F   | I   |
|-----------------|-----|-----|
| F               | 228 | 8   |
| I               | 12  | 211 |

• El acierto para la letra F es del 96,61 % y del 94,62 % para la letra I. El acierto total es del 95,64 %.

# Representación gráfica del árbol obtenido en el primer modelo CART

#### CART datos letter recognition 1



## Curva COR para el primer modelo CART





Siendo su AUC igual a 0,97.



## Conclusiones del primer modelo CART

- Aunque este primer modelo ya es bastante bueno, vamos a intentar obtener un nuevo modelo en donde la impureza sea menor.
- Para ello añadiremos a la función rpart el parámetro cp = 0,01 y así no se parará hasta que las divisiones tengan un mínimo de impureza igual a esa cantidad.

# Reducción de la impureza del segundo modelo CART gráficamente



### Resultados del segundo modelo CART

• Los resultados de este modelo para el conjunto de test son:

| Real/Predicción | F   | ı   |
|-----------------|-----|-----|
| F               | 218 | 18  |
| ı               | 3   | 220 |

- El acierto para la letra F es del 92, 27 % y del 98,65 % para la letra I. El acierto total es del 95,42 %.
- Observamos que el acierto para la letra I mejora respecto al primer modelo pero empeora para la letra F. El acierto total permanece prácticamente constante.

# Representación gráfica del árbol obtenido en el segundo modelo CART

#### CART datos letter recognition 2. CP=0.001



## Conclusiones del segundo modelo CART

- Hemos observamos que el árbol obtenido es muy grande, por lo que podría sobreajustar nuestro problema.
- Para solucionar esto utilizaremos la regla 1-ES para saber por donde tenemos que cortar este árbol para que el error VC sea mínimo.
- De esta forma obtenemos nuestro tercer y último modelo para la metodología CART.

#### Tercer modelo CART

- Se construye con la función *rpart* a partir del corte óptimo del árbol del segundo modelo.
- Los resultados de este modelo para el conjunto de test son:

| Real/Predicción | F   | ı   |
|-----------------|-----|-----|
| F               | 229 | 7   |
| I               | 16  | 207 |

- El acierto para la letra F es del 97,03 % y del 92,83 % para la letra I. El acierto total es del 94,99 %.
- Observamos que el acierto total es menor que en los otros dos modelos y que se acierta más en la letra F que en la letra I.

## Representación gráfica del árbol obtenido en el tercer modelo CART

#### **CART** recortado



## Curva COR para el tercer modelo CART



Siendo su AUC igual a 0,96.

## Conclusiones finales de la metodología CART

- Hemos tenido la suerte, o la desgracia, de que las dos letras escogidas son bastante parecidas entre si. Por lo que todos los modelos sesgan un poco y reconocen más una de las dos letras.
- Aun así, observamos que todos los modelos aciertan por encima del 94 %.
- Además, seguramente nuestros modelos 1 y 3 sean muy robustos a la entrada de nuevos datos.

### Curiosidades de los modelos CART obtenidos

- Como curiosidad,se ha añadido en el código una lista de reglas de clasificación para cada uno de los modelos obtenidos.
- También se ha añadido una lista de importancia de las variables para cada modelo. Se observa que las variables y.bar, x.bar y x2ybr son las más importantes para los tres modelos pero sus valores de importancia fluctúan un poco entre modelos. A partir de aquí los resultados se vuelven más heterogéneos.

#### Primer modelo RF

- Creamos el primer modelo RF con la función randomForest
- Los resultados en el conjunto de entrenamiento para este modelo son:

| Real/Predicción | F   | I   | Error por clase |
|-----------------|-----|-----|-----------------|
| F               | 533 | 6   | 0.011           |
| I               | 9   | 523 | 0.017           |

• Los resultados en el conjunto de test para este modelo son:

| Real/Predicción | F   | I   |
|-----------------|-----|-----|
| F               | 233 | 3   |
| I               | 3   | 220 |

- El acierto para la letra F es del 98,73 % y del 98,65 % para la letra I. El acierto total es del 98,69 %.
- En la siguiente gráfica observamos que el error de la letra l siempre es un poco mayor que el de la letra F.

## Representación gráfica de los errores en el primer modelo RF



## Importancia de las variables en el primer modelo RF

RF



## Curva COR para el primer modelo RF







## Conclusiones del primer modelo RF

- Observamos que la estrategia de construir 500 árboles y elegir para un nuevo dato la clase mayoritaria da bastante mejores resultados que la metología CART.
- En este caso no se produce un sesgo hacia ninguna de las clases y los resultados globales están por encima del 98 %.
- Vemos en la siguiente diapositiva una comparativa de las curvas COR para este modelo de RF y el tercer modelo de la metodología CART.

## Comparación entre RF y el modelo 3 de CART



## Segundo modelo RF

- Por último, vamos a construir un modelo RF usando procesamiento paralelo.
- Los resultados en el conjunto de test para este modelo son:

| Real/Predicción | F   | ı   |
|-----------------|-----|-----|
| F               | 232 | 4   |
| I               | 3   | 220 |

- El acierto para la letra F es del 98,31 % y del 98,65 % para la letra I. El acierto total es del 98,47 %.
- Observamos que los resultados son parecidos a los obtenidos con el primer modelo.

## Curva COR para el segundo modelo RF







#### Conclusiones finales

- Hemos comprobado que ambas metodologías son satisfactorias a la hora de reconocer dos letras del alfabeto, incluso cuando estas letras se parecen mucho.
- Tendríamos que comprobar si estos resultados se mantienen aumentando el número de letras a reconocer.