Indian Institute of Science Education and Research Mohali

MTH307: Topology End Semester Examination: 01 May 2025

Instructions:

- Time Allowed: Three Hours.
- Maximum Marks: 50.
- Make sure that the particulars required are entered on your answer book.
- The numbers in the margin indicate how many marks are available for each question.
- R denotes the set of real numbers.
- \mathbb{R}^{ω} denotes the cartesian product of countably infinite copies of \mathbb{R} .
- Z denotes the set of integers.
- N denotes the set of natural numbers.
- $X \setminus A$ denotes the set $\{x \in X \mid x \notin A\}$.
- (1) State without justification whether the following statements are TRUE or FALSE:
 - (i) Let τ_1 and τ_2 be two topologies on a set X such that $\tau_1 \subset \tau_2$. If (X, τ_1) is connected, then so is (X, τ_2) .
 - (ii) Let τ_1 and τ_2 be two topologies on a set X such that $\tau_1 \subset \tau_2$. If (X, τ_2) is Hausdorff, then so is (X, τ_1) .
 - (iii) Every topology on a countable set is Lindelöf.
 - (iv) Every topology on a finite set is discrete.
 - (v) Every homeomorphism is a quotient map.
 - (vi) Every regular topological space is normal.
 - (vii) Every open map between topological spaces is continuous.
 - (viii) The sets Z and Q equipped with discrete topologies are homeomorphic.
 - (ix) Every subspace of a path connected topological space is connected.
 - (x) The discrete topology on a set is second countable if and only if the set is finite.
 - [10 Marks]
- (2) Let \mathbb{R}_K denote the set of real numbers with K-topology, where $K = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. Show that [0, 1] is not compact as a subspace of \mathbb{R}_K .
- (3) Consider $X = \mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$ with the usual topology. Let \sim be an equivalence relation on X such that $(x,y) \sim (x',y')$ iff they lie on the ray emanating from the origin (0,0). Determine the quotient space X/\sim up to homeomorphism. [6 Marks]
- (4) Let $(x_n)_{n\geq 1}$ be a sequence in a topological space X converging to an element $x\in X$. Show that the set $\{x_n\mid n\in\mathbb{N}\}\cup\{x\}$ is a compact subspace of X. Further, show that the limit of a sequence in a topological space need not be unique. [4+3 Marks]
- (5) Show that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is homeomorphic to the product space $\mathbb{R}_d \times \mathbb{R}_u$, where \mathbb{R}_d is the set of reals equipped with the discrete topology and \mathbb{R}_u is the set of reals with the usual topology. Deduce that $\mathbb{R} \times \mathbb{R}$ in the dictionary order topology is metrizable [4+3 Marks]

(7) Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are eventually zero. Define the product and the box topologies on \mathbb{R}^{ω} . Determine the closures of \mathbb{R}^{∞} with respect to the product and the box topologies on \mathbb{R}^{ω} . [3+4 Marks]