Native GATK: why you should care about performance

Mauricio Carneiro, PhD

Group Lead, Computational Technology Development Broad Institute

Software is becoming slower more rapidly than hardware is becoming faster

-Niklaus Wirth, a plea for lean software

The Importance of Scale... Early Success Stories (at 1,000s of exomes)

Type 2 Diabetes

- 13,000 exomes
- SLC30A8
 (Beta-cell-specific Zn⁺⁺ transporter)
- 3-fold protection against T2D!
- 1 LoF per 1500 people

Coronary Heart Disease

- 3,700 exomes
- APOC3
- 2.5-fold protection from CHD
- 4 rare disruptive mutations (~1 in 200 carrier frequency)

Schizophrenia

- 5,000 exomes
- Pathways
 - Activity-regulated cytoskeletal (ARC) of post-synaptic density complex (PSD)
 - Voltage-gated Ca⁺⁺ Channel
- 13-21% risk in carriers
- Collection of rare disruptive mutations (~1/10,000 carrier frequency)

Early Heart Attack

- 5,000 exomes
- APOA5
- 22% risk in carriers
- 0.5% Rare disruptive / deleterious alleles

Broad Institute in 2013

50 HiSeqs

10 MiSeqs

2 NextSeqs **14** HiSeq X

6.5 Pb of data

427 projects

180 people **2.1** Tb/day

Broad Institute in 2013

44,130 exomes

2,484 exome express

2,247 genomes

2,247 assemblies

8,189 RNA

9,788 16S

47,764 arrays

228 cell lines

Terabases of Data Produced by Year

GATK is both a toolkit and a programming framework, enabling NGS analysis by scientists worldwide

Extensive online documentation & user support forum serving >10K users worldwide

Workshop series educates local and worldwide audiences

Past:

- Dec 4-5 2012, Boston
- July 9-10 2013, Boston
- July 22-23 2013, Israel
- Oct 21-22 2013, Boston
- March 3-5 2014, Thailand
- June 6-9 2014, Belgium
- Sep 17-18 2014, Philadelphia
- Oct 18-29 2014, San Diego

2012 GATK BroadE: GATK Broad Institute

Format

- Lecture series (general audience)
- Hands-on sessions (for beginners)

Portfolio of workshop modules

- GATK Best Practices for Variant Calling
- Building Analysis Pipelines with Queue
- Third-party Tools:
 - GenomeSTRiP

Tutorial materials, slide decks and videos all available online through the GATK website, YouTube and iTunesU

- High levels of satisfaction reported by users in polls
- Detailed feedback helps improve further iterations

BroadE: Overview of GATK & best practices

by broadinstitute • 1 week ago • 1 view

Copyright Broad Institute, 2013. All rights reserved. The presentations below were filmed during the 2013 GATK Workshop, part of ...

We have defined the best practices for sequencing data processing

It takes 2 days to process a single genome!

step	threads	time
BWA	24	7
samtools view	1	2
sort + index	1	3
MarkDuplicates	1	11
RealignTargets	24	1
IndelRealigner	24	6.5
BaseRecalibrator	24	1.3
PrintReads + index	24	12.3
Total		44

data from 24 core sandy bridge processor

The software is not using the cpu efficiently

But I don't care about performance when I can just throw more computers at this problem!

really?

Modern CPUs are too fast

- 1,000,000,000 cycles per second
- 12+ cores per socket
- 3+ execution ports per core
- 36,000,000,000 instructions per second
- We can't waste all this power waiting for data!

We need faster memory

1 cycle on a 3 GHz processor	1 ns
L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	25 ns
Main memory reference	100 ns
Compress 1K bytes with Snappy	3,000 ns
Send 1Kb over 1Gbps network	10,000 ns
Read 4K randomly from SSD	150,000 ns
Read 1Mb sequentially from SSD	1,000,000 ns
Disk seek	10,000,000 ns
Read 1Mb sequentially from disk	20,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

data from sandy bridge processor

The java codebase has severe limitations

- More than 70% of the instructions in the current GATK pipeline are memory access — the processor is just waiting.
- Excessive use of strings, lists, maps and sets to handle basic data structures that are frequently used in the codebase.
- Java makes it extremely difficult to explore memory contiguity in its data structures.
- Java floating point model is incompatible with modern x86 hardware.
- Java does not offer access to the hardware for optimizations even when desired. As a result, we are forced to underutilize modern hardware.

C++ DOESN'T GIVE YOU PERFORMANCE IT GIVES YOU CONTROL OVER PERFORMANCE

- Chandler Carruth, Google

native GATK frameworks are open source!

Gamgee memory model

in-memory representation is the same as on-disk binary representation

Gamgee memory model

in-memory representation is the same as on-disk binary representation

VariantBuilder is optimized to preserve data locality and avoid dynamic allocation as much as possible when building records

- Same idea as Short String Optimization (SSO) in std::string
- Almost impossible to achieve in Java

Reading BAM files is 17x faster in gamgee

Reading VCF/BCF files is much faster in gamgee

2GB (1KG)	GATK C++	GATK Java
Text Variant File (VCF)	32.71s	137.57s
Binary Variant File (BCF)	4.61s	242.33s

the new memory model makes the binary version of the file extremely fast to read and write

Heterogeneous compute speeds up variant calling significantly

Technology	Hardware	Runtime	Improvement
_	Java (gatk 2.8)	10,800	_
_	C++ (baseline)	1,267	9x
FPGA	Convey Computers HC2	834	13x
AVX	Intel Xeon 1-core	309	35x
GPU	NVidia GeForce GTX 670	288	38x
GPU	NVidia GeForce GTX 680	274	40x
GPU	NVidia GeForce GTX 480	190	56x
GPU	NVidia GeForce GTX Titan	80	135x
GPU	NVidia Tesla K40	70	154x
AVX	Intel Xeon 24-core	15	720x

MarkDuplicates is 5x faster (was 10x)

	GATK C++	new Picard (java)	old Picard (java)
Exome	4m	20m	2h23m
Genome	1h15m	4h47m	11h06m

exact same implementation in Java after our C++ version was presented

Thank you

We welcome your contribution!

Gamgee source code available: https://github.com/broadinstitute/gamgee

start using it today!