Algoritmos e Estruturas de Dados

RECURSIVIDADE

Prof. Dr. André Mendes Garcia

- As funções recursivas são aquelas que fazem chamadas de si próprias
- Em outras palavras, uma função recursiva é chamada dentro dela mesma
- É necessário ter um controle de parada através de uma estrutura condicional para que não entre em uma recursividade infinita
- Internamente, quando uma função faz a chamada de si mesma, o fluxo de execução desta chamada é inserida em uma pilha, e à medida que o algoritmo é executado, esta pilha é esvaziada executando cada linha de execução inserida na pilha
- Vantagens:
 - Complexidade Logarítmica Melhor desempenho Mas não são todos algoritmos (Fibonacci por exemplo)
 - Permite implementação fácil em programação paralela

- Exemplo: Calcular o fatorial do número N
 - Maneira Iterativa

$$N! = N * (N - 1) * (N - 2) * (N - 3) ... * 1$$

Maneira Recursiva

$$N! = \begin{cases} N * (N-1)!, para N > 1 \\ 1, para N = 1 \end{cases}$$

• Exemplo: N = 5

$$5! = 5 * 4 * 3 * 2 * 1 = 120$$

• Exemplo: Calcular o fatorial do número N

```
int Fatorial(int n)
{
    if( n > 1 )
    {
       return n * Fatorial(n-1);
    }
    else
    {
       return 1;
    }
} // int Fatorial(int n)
```

• Exemplo: Sequência de Fibonacci

Índice	1	2	3	4	5	6	7	8	9	•••
Valor	1	1	2	3	5	8	13	21	34	

- Fazer uma função recursiva onde o índice da sequência é passado como parâmetro e o valor da sequência de Fibonacci correspondente deve ser retornado
- Exemplo: Fibonacci(8) = 21

• Exemplo: Sequência de Fibonacci

```
int Fibonacci(int n)
{
    if( n == 1 || n == 2)
    {
        return 1;
    }
    else
    {
        return Fibonacci(n-1) + Fibonacci(n-2);
    }
} // int Fibonacci(int n)
```

• Exemplo: Método de Ordenação QuickSort

```
void QuickSort(int *v, int i, int f)
{
   int k;
   if( i < f)
   {
       Particionar(v, i, f, k);
       // Ordenando o Seguimento da Esquerda
       QuickSort(v, i, k-1);
       // Ordenando o Seguimento da Direita
       QuickSort(v, k+1, f);
   }
} // QuickSort</pre>
```

- Exemplo: Busca Binária
 - Consiste em pesquisar um valor dentro de um vetor, analisando sempre a posição central de seguimentos do vetor
 - Para utilizar a busca binária, o vetor **DEVE ESTAR ORDENADO**
 - O exemplo a seguir ilustra a busca do valor 258 dentro do vetor V de 17 posições, através da busca binária

Exemplo: Busca Binária

Chave	258
_	

		índice	V
	i	0	-98
		1	-8
		2	-98 -8 0,2 2
		3	2
		4	4
		5	5
		6	7
		7	7,5 47
(i+j)/2 = 8		8	47
		9	51
		10	87
		11	258
		12	357
		13	405
		14	487
		15	7682
	j	16	98741

BuscaBin(V, 0, 16, Chave)

Exemplo: Busca Binária

|--|

		índice	V
	i	0	-98
		1	-8
		2	0,2
		3	2
		4	4
		5	5
		6	7
		7	7,5 47
(i+j)/2 = 8		8	47
		9	51
		10	87
		11	258
		12	357
		13	405
		14	487
		15	7682
	j	16	98741

	Chave	258
--	-------	-----

			<i>'</i>	.,
			índice	V
			0	-98
			1	-8
			2	0,2
			3	2
			4	4
			5	5
			6	7
			7	7,5
			8	47
		i	9	51
			10	87
			11	258
			12	357
+j)/2 =	13		13	405
			14	487
			15	7682
		j	16	98741

BuscaBin(V, 0, 16, Chave)

BuscaBin(V, 9, 16, Chave)

Exemplo: Busca Binária

Chave	258

		índice	V
	i	0	-98
		1	-8
		2	0,2
		3	2
		4	4
		5	5
		6	7
		7	7,5
(i+j)/2 = 8		8	7,5 47
		9	51
		10	87
		11	258
		12	357
		13	405
		14	487
		15	7682
	j	16	98741

Chave	258

		índice	V
		0	-98
		1	-98 -8 0,2 2 4
		2	0,2
		3	2
		4	
		5	5 7
		6	7
		7	7,5
		8	47
	i	9	51
		10	87
		11	258
		12	357
i+j)/2 = 13		13	405
		14	487
		15	7682
	j	16	98741

Ch	ave	258

		•	-
		índice	V
		0	-98
		1	-98 -8
		2	0,2 2 4
		3	2
		4	4
		5	5
		6	7
		7	7,5 47
		8	47
	i	9	51
		10	87
i+j)/2 = 11		11	258
	j	12	357
		13	405
		14	487
		15	7682
		16	98741

BuscaBin(V, 0, 16, Chave)

BuscaBin(V, 9, 16, Chave)

BuscaBin(V, 9, 12, Chave)

- Exemplo: Busca Binária Implementação
 - Fazer uma função com o seguinte protótipo:

$$BuscaBin(V,i,j,Chave) = \begin{cases} -1 \ caso \ n\~{a}o \ encontre \ o \ valor \\ Ou \ a \ posi\~{c}\~{a}o \ onde \ encontrou \ o \ valor \end{cases}$$

- Onde:
 - V : Vetor a ser pesquisado
 - i : Posição inicial do seguimento de busca
 - j : Posição final do seguimento de busca
 - Chave : Valor a ser procurado

 Exemplo: Busca Binária Implementação

```
int BuscaBin(float *V, int i, int j, float Chave)
    int k;
    if( i <= j )
        k = (i+j)/2;
        if( V[k] == Chave )
            return k;
        else
            if( Chave < V[k] )</pre>
                return BuscaBin(V, i, j-1, Chave);
                return BuscaBin(V, i+1, j, Chave);
        return -1;
} // BuscaBin
```

- Exercícios com funções recursivas
 - 1. Implementar em um só programa as funções Fatorial e Fibonacci
 - 2. Implementar a Busca Binária Observação: Copie as funções do QuickSort dos exercícios anteriores e utilize este método para ordenar o vetor antes de utilizar a busca binária
 - 3. Implementar em um só programa as seguintes funções:
 - 1. Cálculo da potência de um número, exemplo: Potencia(2,3) = 8
 - 2. Determinar a soma dos n primeiros números naturais
 - 3. Determinar a soma dos n primeiros números pares