Ordinary Differential Equation Tentative Topics Schedule

MTH 321 Sections A & B Fall 2024 University of Portland

See Books & Online Resources Lists for the readings & practice materials.

The reading materials are not mandatory but it is encouraged.

The "Reading" column in the table below contains page numbers (Pg.) or chapters (ch.) on which it refers to a label in the Books & Online Resources List. For example "Pg. 1-5 [H]" refers to pages 1-5 of the first item in the list, which is the textbook titled "Ordinary Differential Equations: A Primer on Dynamics and Systems".

Topics and Materials

Week	Day	Topic	Worksheet	Homework	Reading
1	Tu 8/27	Introduction and Orientation	Review	-	Syllabus
		to ODEs	Algebra and		
			Calculus		
	Th $8/29$	Modeling Physical	Classify	-	Ch. 1.1 [T]
		Systems, Classification of	ODEs and		
		Equations, &Principles of	Verifying		
		Solutions	Solutions		
2	Tu $9/3$	1st-Order ODEs,Existence and	Analyze	Assigned:	Ch. 1.2 [T]
		Uniqueness, & Analyzing	1st-Order	Homework 1	& Ch. 2.1
		Equilibriums of 1st-Order	ODEs Quali-		[T]
		ODEs	tatively		
	Th $9/5$	Nullclines and Isoclines	Solve	-	Ch. 1.3 [T]
		&Euler's Method for solving	1st-Order		& Ch. 3.1
		1st-Order ODEs	ODEs		[T]
			Graphically		
			and		
			Numerically		5-1
3	Tu 9/10	Separation of Variables for	Separate the	Assigned:	Ch. $2.2 [T]$
		Solving 1st-Order ODEs	Variables	Homework 2	
	Th $9/12$	Integrating Factors for Solving	Choose an	-	Ch. $2.6 [T]$
		1st-Order ODEs	Integrating		
	/		Factor		
$oldsymbol{4}$	Tu 9/17	Laplace Transforms for Solving	Introduce	-	Ch. 8.1 [T]
		1st-Order ODEs	the Laplace		& Ch. 8.2
			Transform		[T]

Week	Day	Topic	Worksheet	Homework	Reading
	Th 9/19	Bifurcations in One Dimension	Apply Bifurcation Analysis to Physical Systems	-	TBA
5	Tu 9/24	Review	Exam 1 Examples	-	Exam 1 Topics
	Th $9/26$	Exam 1	-	-	-
6	Tu 10/1	Systems of 1st-Order ODEs,Existence and Uniqueness, &Modeling Physical Processes	Interpret 1st-Order System of ODEs	Assigned: Homework 3	TBA
	Th 10/3	Analyzing Equilibriums to 1st-Order System of ODEs	Find Equilibriums of 1st-Order System of ODEs	-	-
7	Tu 10/8	Linear Transformations & Eigentheory	Solve 1st-Order System of ODEs using Eigentheory	Assigned: Homework 4	TBA
	Th 10/10	Stability Analysis & Solutions to 1st-Order System of ODEs	Use Lin- earization and Stability Analysis	-	TBA
8	Tu 10/15 Th 10/17	$Fall\ Vacation \ Fall\ Vacation$	- -	-	-
9	Tu 10/22	Eigenvalues and Eigenvectors for solving 1st-Order Linear Systems	Use Distinct or Repeated Eigenvalues	-	TBA
	Th 10/24	Complex Solutions of 1st-Order Linear Systems	Use Complex Exponentials	-	TBA
10	Tu 10/29	Review	Exam 2 Examples	-	Exam 2 Topics
	Th $10/31$	Exam 2	-	-	-
11	Tu 11/5	Higher Order ODEs, Classification of Equations, & Modeling Physical Processes	Find Homogeneous and Particular Solutions	Assigned: Homework 5	TBA
	Th 11/7	Analyzing 2nd-Order Linear ODEs	Use Substitution and Non- Dimensionaliz	- ation	TBA

Week	Day	Topic	Worksheet	Homework	Reading
12	Tu 11/12	Undetermined Coefficients for	Determine	Assigned:	TBA
		Solving Linear 2nd-Order	the Undeter-	Homework 6	
		ODEs	\min ed		
	Th $11/14$	Variation of Parameters for	Vary the	-	TBA
		Solving Linear 2nd-Order ODEs	Parameters		
13	Tu 11/19	Laplace Transforms for Solving	Transform	-	-
		Linear 2nd-Order ODEs	the		
			Derivatives		
	Th $11/21$	Review	Exam 3	-	Exam 3
			Examples		Topics
$\bf 14$	$Tu \ 11/26$	Exam 3	-	-	-
	Th $11/28$	$Thanksgiving\ Vacation$	-	-	-
15	Tu $12/3$	Bifurcations in Two	Apply	-	TBA
		Dimensions	Bifurcation		
			Theory to		
			Physical		
			Systems		
	Th $12/5$	Dynamics and Chaos Theory	Analyze the	-	TBA
			Lorenz		
			System		
16	Tu 12/11	Final Exam Section A	-	-	-
	Th $12/12$	Final Exam Section B		-	

Along with textbooks [H] and [T], and websites [C] and [P], most of the course materials (contents of worksheets and homework) of each topic was taken from these following sources:

- Inquiry oriented differential equations (IODE) by Rasmussen et al. (2018)
- Differential equations and linear algebra by Strang (2014)
- Applied differential equations: The primary course by Dobrushkin (2022)
- Differential Equations by MIT Open Courseware (2015)

Books & Online Resources Lists

Click on the link to access the resources.

Textbooks

[T] Trench WF (2013). Elementary Differential Equations. Faculty Authored, and Edited Books & CDs. 8., https://digitalcommons.trinity.edu/mono/8/.

Websites

[C] Clontz S (2022). "Differential Equations - Checkit.", https://stevenclontz.github.io/checkit-clontz-diffeq.

[P] Dawkins P (2023). "Paul's Online Notes on Differential Equations.", https://tutorial.math.lamar.edu/Classes/DE/DE.aspx.

References

- Dobrushkin, V. A. (2022). Applied differential equations: The primary course (2nd ed.). Chapman; Hall/CRC.
- MIT Open Courseware. (2015). Differential equations. https://ocw.mit.edu/courses/res-18-009-learn-differential-equations-up-close-with-gilbert-strang-and-cleve-moler-fall-2015/
- Rasmussen, C., Keene, K. A., Dunmyre, J., & Fortune, N. (2018). *Inquiry oriented differential equations:* Course materials. https://iode.sdsu.edu
 - This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/
- Strang, G. (2014). Differential equations and linear algebra. Wellesley-Cambridge Press.