CM W. CLAIMS:

1. A penicillin derivative represented by the following formula

7590 \times N=N R_1 R_2 R_2 R_1 R_2 R_2

wherein R₁ is hydrogen or trialkylsilyl; R₂ is hydrogen, trialkylsilyl or COOR₂' wherein R₂' is hydrogen, C₁₋₁₈ alkyl, C₂₋₇ alkoxymethyl, C₃₋₈ alkylcarbonyloxymethyl, C₄₋₉ alkylcarbonyloxyethyl, (C₅₋₇ cycloalkyl)carbonyloxymethyl, C₉₋₁₄ benzylcarbonyloxyalkyl, C₃₋₈ alkoxy-

carbonylmethyl, C_{4-9} alkoxycarbonylethyl, phthalidyl, crotonolacton-4-yl, γ -butyrolacton-4-yl, halogenated C_{1-6} alkyl substituted with 1 to 3 halogen atoms, C_{1-6} alkoxy- or nitro-substituted or unsubstituted benzyl, benzhydryl, tetrahydropyranyl, dimethylaminoethyl,

dimethylchlorosilyl, trichlorosilyl, (5-substituted C_{1-6} alkyl or phenyl or unsubstituted-2-oxo-1,3-dioxoden 4-yl)methyl, C_{8-13} benzoyloxyalkyl or group for forming a pharmaceutically acceptable salt; and R_3 has the same meaning as above R_2 '.

2. The penicillin derivative as defined in claim 1 wherein R_3 is C_{2-7} alkoxymethyl.

- 3. The penicillin derivative as defined in claim 1 wherein R3 is $^C3-8$ alkylcarbonyloxymethyl, $^C4-9$ alkylcarbonyloxyethyl, $^C5-7$ cycloalkyl)carbonyloxymethyl, $^C9-14$ benzylcarbonyloxyalkyl or $^C8-13$ benzyloxyalkyl.
- 4. The penicillin derivative as defined in claim 1 wherein R_3 is C_{3-8} alkoxycarbonylmethyl or C_{4-9} alkoxycarbonylethyl.
- 5. The penicillin derivative as defined in claim 1 wherein R_3 is phthalidyl.
- 6. The penicillin derivative as defined in claim 1 wherein R₃ is crotonolacton-4-yl and
 γ-butyrolacton-4-yl.
 - 7. The penicillin derivative as defined in claim 1 wherein R_3 is (5-substituted C_{1-6} alkyl or phenyl or unsubstituted-2-oxo-1,3-dioxoden-4-yl)methyl.
 - 8. The penicillin derivative as defined in claim 1 wherein \mathbf{R}_3 is a group for forming a pharmaceutically acceptable salt.
 - 9. The penicillin derivative as defined in claim 1 wherein R_3 is C_{1-6} alkyl or halogenated C_{1-6} alkyl substituted with 1 to 3 halogen atoms, C_{1-6} alkoxy- or nitro-substituted or unsubstituted benzyl, benzhydryl, tetrahydropyranyl, dimethylchlorosilyl and trichlorosilyl.

10. The penicillin derivative as defined in

Cara 12

5

for NV

claim 8 wherein the group for forming a pharmaceutically acceptable salt represented by R₃ is alkali metal atom, alkaline earth metal atom, organic amine residue, basic amino, acid residue or ammonium residue.

- ll. The penicillin derivative as defined in claim 1 wherein \mathbf{R}_1 and \mathbf{R}_2 are hydrogen.
- 12. The penicillin derivative as defined in claim 1 wherein R_1 is hydrogen and R_2 is \bar{R}_2^{COOR} .
- 13. The penicillin derivative as defined in

10 claim 12 wherein R_2 ' is C_{1-18} alkyl.

the penicillin derivative as defined in claim 11 or 12 wherein R_3 is C_{3-8} alkylcarbonyloxymethyl, hydrogen, C_{4-9} alkylcarbonyloxyethyl, (C_{5-7} cycloalkyl)-carbonyloxymethyl, C_{9-14} benzylcarbonyloxyalkyl, C_{3-8} alkoxycarbonylmethyl, C_{4-9} alkoxycarbonylethyl, phthalidyl, crotonolacton 4-yl, γ -butyrolacton-4-yl, (5-substituted C_{1-6} alkyl or phenyl or unsubstituted-

2-oxo-1,3-dioxoden-4-yl)methyl, C₈₋₁₃ benzoyloxyalkyl or group for forming a pharmaceutically acceptable salt.

The penicillin derivative as defined in claim 1 wherein R_2 is trialkylsilyl.

16. A process for preparing a penicillin derivative represented by the following formula

25

20

$$\begin{array}{c|c}
& N = N \\
& \downarrow \\$$

wherein R_1 is hydrogen or trialkylsily1; R_2 is hydrogen, trialkylsilyl or COOR2' wherein R2'/is hydrogen, C1-18 alkyl, C₂₋₇ alkoxymethyl, C₃₋₈ alkylcarbonyloxymethyl, C_{4-9} alkylcarbonyloxyethyl, $(C_{5-1}$ cycloalkyl)carbonyloxymethyl, C_{9-14} benzylcarbonyloxyalkyl, $C_{3/8}$ alkoxycarbonylmethyl, C4-9 alkoxycarbonylethyl, phthalidyl, crotonolacton-4-yl, γ -butyrolagton-4-yl, halogenated c_{1-6} alkyl substituted with f to 3 halogen atoms, c_{1-6} alkoxy- or nitro-substituted or unsubstituted benzyl, 10 benzhydryl, tetrahydropyrahyl, dimethylaminoethyl, dimethylchlorosilyl, trichlorosilyl, (5-substituted C_{1-6} alkyl or phenyl/or unsubstituted-2-oxo-1,3-dioxoden-4-yl)methyl, C₈₋₁₃ penzoyloxyalkyl or group for forming a pharmaceutically acceptable salt; and R_3 has the same 15 meaning as above \mathbb{R}_2 , the process comprising reacting a compound represented by the formula

NK

wherein R_4 represents penicillin carboxyl-protecting group with an acetylene compound represented by the formula

 $R_1^C \equiv CR_5$

wherein R_1 is as defined above and R_5 is trialkylsilyl or COOR_2 ' wherein R_2 ' is as defined above and, when required, carrying out any of de-esterification, esterification subsequent to de-esterification, ester interchange reaction—and salt-forming reaction.

10

treating bacterial infections in mammals which comprises

62

(A) a $\mbox{$\beta$-lactam}$ antibiotic and (B) a compound of the formula

wherein R₁ is hydrogen or trialkylsilyl; R₂ is hydrogen, trialkylsilyl or COOR₂' wherein R₂' is hydrogen, C₁₋₁₈ alkyl, C₂₋₇ alkoxymethyl, C₃₋₈ alkylcarbonyloxymethyl, C₄₋₉ alkylcarbonyloxyethyl, (C₅₋₇ cycloalkyl)carbonyloxymethyl, C₉₋₁₄ benzylcarbonyloxyalkyl, C₃₋₈ alkoxycarbonylmethyl, C₄₋₉ alkoxycarbonylethyl, phthalidyl, crotonolacton-4-yl, \gamma-butyrolacton-4-yl, halogenated

 C_{1-6} alkyl substituted with 1 to 3 halogen atoms, C_{1-6} alkoxy- or nitro-substituted or unsubstituted benzyl, benzhydryl, tetrahydropyranyl, dimethylaminoethyl, dimethylchlorosilyl, trichlorosilyl, (5-substituted C_{1-6} alkyl or phenyl or unsubstituted-2-oxo-1,3-dioxoden=9 4-yl)methyl, C_{8-13} benzoyloxyalkyl or group for forming a pharmaceutically acceptable salt; and R_{3} has the same meaning as above R_2 ', the weight ratio of (A)/(B) being 0.1 to 10, said β -lactam antibiotics being selected from 10 the group consisting of penicillins such as ampicillin, amoxicillin, hetacillin, ciclacillin, mecillinam, carbenicillin, sulbenicillin, ticarcillin, piperacillin, apalcillin, methicillin, mezlocillin, bacampicillin, carindacillin, talampicillin, carfecillin and 15 pivmecillinam; cephalosporins such as cephaloridine, cephalothin, cephapirin, cephacetrile, cefazolin, cephalexin, cefradine, cefotiam, cefamandole, cefuroxime, cefoxitin, cefmetazole, cefsulodin, cefoperazone, cefotaxime, ceftizoxime, cefmenoxime, latamoxef, cefaclor, 20 cefroxadine, cefatrizine, cefadroxil and cephaloglycin; and pharmaceutically acceptable salts thereof.

in a mammal subject which comprises administering to said subject (A) a ß-lactam antibiotic and (B) a compound of the formula

wherein R_1 is hydrogen or trialkylsilyl; R_2 is hydrogen, $\stackrel{(40)}{}$ trialkylsilyl or COOR $_2$ ' wherein R $_2$ ' is hydrogen, C $_{1-18}$ alkyl, C_{2-7} alkoxymethyl, C_{3-8} alkylcarbonyloxymethyl, C_{4-9} alkylcarbonyloxyethyl, $(C_{5-7}$ cycloalkyl)carbonyloxy-5 methyl, C₉₋₁₄ benzylcarbonyloxyalkyl, C₃₋₈ alkoxycarbonylmethyl, C_{4-9} alkoxycarbonylethyl, phthalidyl, crotonolacton-4-yl, Y-butyrolacton-4-yl, halogenated $\mathrm{C}_{\mathrm{1-6}}$ alkyl substituted with 1 to 3 halogen atoms, $\mathrm{C}_{\mathrm{1-6}}$ alkoxy- or nitro-substituted or unsubstituted benzyl, 10 benzhydryl, tetrahydropyranyl, dimethylaminoethyl, dimethylchlorosilyl, trichlorosilyl, (5-substituted C₁₋₆ alkyl or phenyl or unsubstituted-2-oxo-1,3-dioxodem 4-yl)methyl, C_{8-13} benzoyloxyalkyl or group for forming a pharmaceutically acceptable salt; and R_3 has the same 15 meaning as above R_2 , the weight ratio of (A)/(B) administered being 0.1 to 10, said ß-lactam antibiotics being selected from the group consisting of penicillins such as ampicillin, amoxicillin, hetacillin, ciclacillin, 20 mecillinam, carbenicillin, sulbenicillin, ticarcillin, piperacillin, apalcillin, methicillin, mezlocillin,

6.5

bacampicillin, carindacillin, talampicillin, carfecillin and pivmecillinam;—cephalosporins_such_as cephaloridine, cephalothin, cephapirin, cephacetrile, cefazolin, cephalexin, cefradine, cefotiam, cefamandole, cefuroxime, cefoxitin, cefmetazole, cefsulodin, cefoperazone, cefotaxime, ceftizoxime, cefmenoxime, latamoxef, cefaclor, cefroxadine, cefatrizine, cefadroxil and cephaloglycin; and pharmaceutically acceptable salts thereof.

5