实验五(1)实验报告

一. 实验目的

熟悉 JK 触发器的逻辑功能, 掌握 JK 触发器构成异步计数器和同步计数器

- 二. 实验仪器及期间
 - 1.实验箱、万用表、示波器
 - 2.74ls73、74ls00、74ls08、74ls20
- 三. 实验预习
 - 1.复习时序逻辑电路的设计方法
 - 2.按实验内容设计逻辑电路画出逻辑图

四. 实验原理

本实验采用集成 J-K 触发器 74ls73 构成时序电路, 其外引线图见表

图 1 J-K 触发器符号

(2) 功能:

表 1 J-K 触发器功能表

CP	J	K	Q*	Q^{n+1}	功能
↓	0	0	0	0	/U +±.
1	0	0	1	1	— 保持
↓	0	1	0	0	清零
↓	0	1	1	0	
↓	1	0	0	1	置位
↓	1	0	1	1	

(3) 状态转换图:

图 2 J-K 触发器状态转换图

(4) 特性方程:

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

五.实验内容

1 使用 JK 触发器设计一个 16 进制异步计数器,用逻辑分析仪观察 cp 和各端的波形 利用 4 个 J-K 触发器分别输出四位二进制数,J-K 触发器不共用同一个时钟信号。 J-K 触发器 74LS73 在时钟下降沿时发生状态改变。所以设计将较低位的输出 Q 作为下一位输入

2.设计16进制同步计数器

利用 4 个 J-K 触发器分别输出四位二进制数,4 个 J-K 触发器共用同一个时钟信号。 J-K 触发器 74LS73 在时钟下降沿时发生状态改变。

J0 =K0=HIGH;

J1=K1=Q0;

J2=K2=Q0Q1;

J3=K3=Q0Q1Q2;

仿真实验的电路图如下:

3.用 J-K 触发器和门电路设计一个具有置零,保持,左移,右移,并行送数功能的二进制四位计数器模仿 74LS194 功能。

74LS194 芯片功能表如下:

Cr'	S1	S0	工作状态
0	X	X	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行送数

通过与门将控制端和相应的输入关联,再用或门把所有的选择输入到j k 触发器的j k 端

六. 实验心得

这次实验,最大的收获,就是理解了如何通过门电路来将多路选择输入连到一路输入端,通过控制端和输入通过与门相连,达到选择的功能。

其次,对于负责电路,如何简化和抽象成小模块去分析,很重要