CS 2340 – Computer Architecture

4 Signed Number Representations Dr. Alice Wang

What is the difference between a programmer and a non-programmer?

The non-programmer thinks a kilobyte is 1000 bytes while a programmer is convinced that a kilometer is 1024 meters.

Review: Bin/Dec/Hex

Hex	Dec	Bin
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hex	Dec	Bin
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Review: Bin/Dec/Hex conversion rules

Given a number: a_{N-1} , a_{N-2} , ..., a_1 , a_0

From	То		Example	
Decimal	Binary	Divide by 2, Remainder is binary	9	$9/2 = 4R1$, $4/2 = 2R0$, $2/2 = 1R0$, $1/2 = 0R1 \rightarrow 0b1001$
Decimal	Hexadecimal	Divide by 16, Remainder is binary	93	93/16 = 5R 13 "D", 5/16 = 0R 5 → 0x5D
Binary	Decimal	$\Sigma a_i^* 2^i$ from i = 0 to N-1	0b0110	$0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 6$
Hexadecimal	Decimal	$\Sigma a_i^* 16^i$ from i = 0 to N-1	0xB8	11* 16 ¹ + 8 * 16 ⁰ = 184
Binary	Hexadecimal	Convert every 4 bits to hex	0b0011_ 1110	0b0011 → 0x 3 , 0b1110 → E 0x3E
Hexadecimal	Binary	Convert every hex digit to bits	0x59	5 → 0101, 9 → 1001: 0b0101_1001

Review: Unsigned Binary Numbers

Unsigned Binary Number

Power of 2
$$2^7$$
 2^6 2^5 2^4 2^3 2^2 2^1 2^0

Binary Representation $\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} = 2^6 + 2^5 + 2^1 + 2^0 = 99_{10}$

$$\Sigma a_i^* r^i \text{ from } i = 0 \text{ to N-1}$$

$$r = \text{radix 2 (binary)}$$

- Multiply every digit in the binary number with 2 raised to the power based on its position to get the decimal number
- Assumes all numbers are positive (unsigned)

Signed Binary Numbers

- How do we represent negative numbers?
- 2 methods
 - Signed Magnitude
 - Two's Complement

Signed Magnitude

Signed Magnitude Binary Number

- Most Significant Bit (MSB) is the sign bit
- Multiply the magnitude by -1 raised to the sign bit
 - \circ Note: $(-1)^0$ is equal to 1

Signed Magnitude example - My Turn

Example: What is the decimal value of Signed Magnitude 0b10011?

1 0 0 1 1 Sign 2³ 2² 2¹ 2⁰

Signed Magnitude example - Your Turn

Example: What is the decimal value of Signed Magnitude 0b11101?

1 1 0 1 Sign $2^3 2^2 2^1 2^0$

Signed Magnitude Format

$$A = (-1)^{a_{n-1}} * \sum_{i=0}^{n-2} a_i 2^i$$

- The MSB indicates the sign (1 = negative, 0 = positive)
- Range of an N-bit signed magnitude number: [-(2^{N-1}-1), 2^{N-1}-1]

Example: N=4

- Most positive 4-bit number: 0111 = 7
- Most negative 4-bit number: 1111 = -7
- Range of a 4-bit signed magnitude number: [-7, 7]

Signed Magnitude arithmetic

Two problems with Signed Magnitude representation:

1. Addition doesn't work, for example -6 + 6:

-6 1110
+6
$$\pm 0110$$

0 \neq 10100 (not zero!)

2. Two representations of $0 (\pm 0)$:

```
1000 is zero0000 is also zero
```

Two's Complement number representation

Two's Complement Binary Number

- Second way to represent Positive and Negative numbers
- The Power of 2 of the MSB is <u>negative</u>
- Multiply every binary number with its base raised to the power based on its position to get the decimal number

Two's Complement example - My Turn

Example: What is the decimal value of Two's Complement 0b10101?

10101

 $-2^4 2^3 2^2 2^1 2^0$

Two's Complement example - Your Turn

Example: What is the decimal value of Two's Complement 0b11000?

11000

 $-2^4 2^3 2^2 2^1 2^0$

Two's Complement facts

- Doesn't have the same issues as Signed/Magnitude
 - Addition works!
 - One "Zero", not two
- Two's complement is a <u>number representation</u> or <u>format</u>
 - Both positive and negative numbers are Two's Complement numbers
- Two's complement is also a <u>procedure</u> or a <u>method</u>
 - "Take the Two's complement of a number" means that
 - \circ Pos (+) \rightarrow Neg (-)
 - \circ Neg (-) \rightarrow Pos (+)

Two's Complement Format

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- The MSB indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number: [-2^{N-1}, 2^{N-1}-1]

Example: N = 4

- Most positive 4-bit number: 0111 = 7
- Most negative 4-bit number: 1000 = -8
- Range of a 4-bit number: [-8, 7]

Two's Complement Procedure - Step-by-step

- This procedure converts from a positive 2s complement number to negative 2s complement number
 - Step 1: Starting with the equivalent positive number.
 - Step 2: Inverting (or flipping) all bits changing every 0 to 1, and every 1 to 0;
 - Step 3: Adding 1 to the entire inverted number, ignoring any overflow. Accounting for overflow will produce the wrong value for the result.
- It is the <u>same procedure</u> to go from negative 2s complement to positive
 2s complement number

Example: Two's Complement method - My turn

Example: What is -7 in Two's Complement Binary (Hex)?

Step 1: Start with pos # Ob_____ (0x______)

Step 2: Flip the bits Ob_____ (0x______)

Step 3: +1 to LSB Ob (0x

Example: Two's Complement method - Your turn

Example: What is -12 in Two's Complement Binary (Hex)?

Step 1: Start with pos # 0b_____ (0x____)

Step 2: Flip the bits 0b_____ (0x____)

0b

(0x)

Step 3: +1 to LSB

Important concept: Sign Extension

- Sign bit copied to MSB's
- Number value is same

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011 is still 3

Example 2:

- 4-bit representation of -7 = 1001
- 8-bit sign-extended value: 11111001 is still -7

Decimal to bin/hex example

Express decimal 14 in all formats below (My Turn):

	Unsigned	Sign/Magnitude	Two's Complement
Binary			
Hexadecimal			

Express decimal -14 in all formats below (Your Turn):

	Unsigned	Sign/Magnitude	Two's Complement
Binary			
Hexadecimal			

Two's complement is best for arithmetic

- Has the advantage that the fundamental arithmetic operations of addition, subtraction, and multiplication are identical to those for unsigned binary numbers
- The system is simpler to implement, especially for higher-precision arithmetic
- This why computers use the unsigned and two's complement number formats and not signed magnitude

Two's complement subtraction - My turn

- Example: Perform 20-7 in binary.
- Hint: Use 2's complement format on the second number, then perform binary addition

```
20 =
```

$$-7 =$$

Add them...

Two's complement subtraction - Your turn

- Example: Perform 7-20 in binary.
- Hint: Use 2's complement format on the second number, then perform binary addition

```
20 =
```

-20 **=**

Add them...

Summary: Number System Comparison

Number System	Range
Unsigned	$[0, 2^N-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Next lecture

Arithmetic and Logical Operations

