Cấu Trúc Dữ Liệu & Giải Thuật Phân Tích Thuật Toán

Thuật Toán

- Một chuỗi các bước tính toán được định nghĩa rõ ràng để giải quyết một vấn đề
- Nhận vào một tập các giá trị đầu vào
- Trả về một tập các giá trị đầu ra
- Biểu diễn bằng: mã nguồn, mã giả
- Tính đúng đắn (cần thiết): kết quả trả về phản ánh đúng mong muốn của thông tin nhận vào
- Tính hiệu quả (quan trọng): độ tin cậy, tốc độ xử lý, tài nguyên sử dụng

Thuật Toán - Đánh Giá

- Một vấn đề giải quyết bởi thuật toán khác nhau
- Với mỗi thuật toán
 - Thời gian: thời gian chạy của thuật toán
 - Không gian: dung lượng bộ nhớ sử dụng
- Thời gian chạy
 - Dữ liệu đầu vào
 - Kĩ năng lập trình
 - Chương trình dịch, hệ điều hành
 - Tốc độ phép toán trên máy tính

- Phụ thuộc vào độ lớn dữ liệu đầu vào
 - \blacktriangleright Tìm một phần tử trong danh sách n phần tử
 - \blacktriangleright Sắp xếp danh sách n phần tử
 - ightharpoonup Bài toán người giao hàng cần thăm n điểm
- Với dữ liệu cùng độ lớn, thời gian thay đổi
 - \blacktriangleright Tìm một phần tử trong danh sách n phần tử
 - □Phần tử nằm ở đầu danh sách
 - □Phần tử nằm ở cuối danh sách
 - □Phần tử nằm ở giữa danh sách

- Phân tích thực nghiệm
 - Đo thời gian chạy thực, vẽ đồ thị, ...
 - Có kịch bản tiến hành thực nghiệm
 - Cần cài đặt thuật toán (khó, lâu)
 - Đôi khi không thể chạy hết các bộ dữ liệu
 - Đế so sánh các thuật toán, phải sử dụng cùng môi trường (phần cứng & phần mềm)
 - Phù hợp cho dự đoán

- Phân tích toán học
 - Ước lượng số phép toán là hàm của độ lớn dữ liệu đầu vào
 - Thông thường thông qua sử dụng mã giả
 - Xét tất cả các bộ dữ liệu đầu vào
 - Không phụ thuộc môi trường tính toán
 - Phù hợp cho cả dự đoán và giải thích
 - Thường được sử dụng đế đánh giá

- Trường hợp xấu nhất (thông thường)
 - Thời gian chạy lớn nhất của thuật toán trên tất cả các dữ liệu có cùng độ lớn
- Trường hợp trung bình (đôi khi)
 - Thời gian chạy trung bình của thuật toán trên tất cả các dữ liệu có cùng độ lớn
 - Khó: do phải biết phân phối xác suất của dữ liệu
- Trường hợp tốt nhất (hiếm)
 - Thời gian chạy ít nhất của thuật toán trên tất cả các dữ liệu có cùng độ lớn

Mã Giả (pseudo-code)

- Mô tả bậc cao của một thuật toán
- Cấu trúc rõ ràng hơn văn xuôi
- Không chi tiết như mã nguồn
- Được ưa thích trong biểu diễn giải thuật
- Án đi các khía cạnh thiết kế chương trình

```
Algorithm arraySum(A,n):

Input: mang A (n số nguyên)

Output: tổng các phần tử của A

sum \leftarrow 0;

for i \leftarrow 0 to n-1 do

sum \leftarrow sum + A[i];

return currentMax;
```

Phân Tích Độ Phức Tạp Thời Gian

- Đánh giá thời gian chạy thuật toán
 - T(n) = số lượng phép toán sơ cấp cần thực hiện (số học, lô-gic, so sánh)
 - Mỗi phép toán sơ cấp thực hiện trong khoảng thời gian cố định
 - \blacktriangleright Chỉ quan tâm tới tốc độ tăng của hàm T(n)
 - $ightharpoonup Vi dụ: T(n) = 2n^2 + 3n + 10$

Phân Tích Độ Phức Tạp Thời Gian

- Xác định số lượng các phép toán sơ cấp là hàm của độ lớn dữ liệu đầu vào
- $T(n) = \Sigma$ các phép toán sơ cấp

$$T(n) = (n+2) \leftarrow$$

$$+(n+1) <$$

$$+(2n) +$$

$$= nc_0 + c_1$$

Algorithm arraySum(A,n):

Input: mang A (n số nguyên)

Output: tổng các phần tử của A $sum \leftarrow 0$;

for $i \leftarrow 0$ to n-1 do $sum \leftarrow sum + A[i]$;

return sum;

Độ Tăng Của Hàm

- Với n là độ lớn dữ liệu đầu vào
- Tỷ lệ tăng trưởng (chính xác):
 - $\rightarrow an^2 + bn + c$
 - $\rightarrow an + b$
 - \rightarrow an $\log n + bn + c$
- Bậc tăng trưởng (xấp xỉ):
 - $\triangleright an^2 + bn + c =$ bậc n^2
 - $\triangleright an + b = > bậc n$
 - $\triangleright an \log n + bn + c =>$ bậc $n \log n$

Ký Hiệu Tiệm Cận (O- – Ô-lớn)

→ 0- – Ô-lớn (chặn trên):

Ta nói rằng f(n) là ô lớn của g(n) nếu tồn tại các hằng số c>0, và $n_0>0$ sao cho:

$$0 \le f(n) \le cg(n)$$

với mọi $n \geq n_0$

Ký hiệu: $f(n) \in O(g(n))$

Ví dụ: $2n^2 \in O(n^3)$

Hàm không phải giá trị

Ký Hiệu 0- – Biểu Diễn Thời Gian Chạy

- Lấy cận trên chặt biểu diễn thời gian chạy của thuật toán
- ightharpoonup f(n) là cận trên chặt của T(n) nếu
 - $T(n) \in O(f(n))$, và
 - Nếu $T(n) \in O(g(n))$ thì $f(n) \in O(g(n))$
- Nói cách khác
 - Nhông thể tìm được một hàm g(n) là cận trên của T(n) mà tăng chậm hơn hàm f(n)

Cấp Độ Thời Gian Chạy

Ký hiệu ô lớn Tên gọi		
OCD	hàng logarit tuyén tính nlogn blinh phương phương ngiai thừa	hằng
Ký hiệu ô lớn đ(t) đ(t) đ(m log n) đ(m log n) đ(m log n) đ(m log n)	Tên gọi hằng logarit tuyến tính nlogn bình phương mộ phương giai thừa	logarit
Ky hiệu ô lớn g(t) g(log m) g(m) g(m) g(m) g(m) g(m) g(m)	Tên gọi hằng logarit tuyến tính nlogn bình phương lợp phương giai thừa	tuyến tính
Ký hiệu ô lớn đ(t) đ(t) đ(m log n) đ(m log n) đ(m log n) đ(m log n) đ(m log n) đ(m log n)	Tên gọi hằng logarit tuyến tính nlogn bịnh phương phương mg giai thừa	nlogn
Ký hiệu ô lớn o(1) o(log n) o(m log n) o(m²) o(n²) o(n²)	Tên gọi hằng logarit tuyến tính nlogn nlogn phương lập phương giai thừa	bình phương
Ký hiệu ô lớn đ(t) đ(t) đ(m log n) đ(m log n) đ(m log n) đ(m log n) đ(m log n) đ(m log n)	Tên gọi hằng logarit tuyến tính nlogn bịnh phương phương mg giai thừa	lập phương
Ký hiệu ô lớn o(t) o(log n) o(m log n) o(m²) o(c²) o(c²)	Tên gọi hằng logarit tuyến tính nlogn bình phương man phương man thừa giai thừa	mũ
Ký hiệu ô lớn a (1) a (log n) a (m) a (m) a (m) a (m) a (m) a (m²) a (m²) a (m²) a (m²) a (m²)	Tên qọi hâng logarit tuyến tính nlogn bình phương lập phương mã giai thừa	giai thừa

Phân Tích Tiệm Cận Thuật Toán

- Xác định thời gian chạy sử dụng ký hiệu O-
 - Tìm số lần các phép toán sơ cấp thực hiện nhiều nhất là hàm của độ lớn dữ liệu đầu vào
 - ▶ Miêu tả hàm này theo ký hiệu O-
- Ví dụ:
 - Thuật toán arraySum(A,n) chạy nhiều nhất (4n + 2) phép toán sơ cấp
 - ▶ Ta nói thuật toán arraySum(A,n) chạy trong thời gian O(n)

Kỹ Thuật Đánh Giá Thời Gian Chay

- Thời gian chạy các lệnh
 - Gán
 - Lựa chọn
 - Lặp
- Không đệ quy so với đệ quy

Thời Gian Chay Của Các Lệnh

Lệnh gán

X=<biểu thức>

Thời gian chạy của lệnh gán bằng thời gian thực hiện biểu thức

Lệnh lựa chọn

```
if (điều kiện) \rightarrow T_0(n)

lệnh 1 \rightarrow T_1(n)

else

lệnh 2 \rightarrow T_2(n)

Thời gian: T_0(n) + \min(T_1(n), T_2(n))
```

Thời Gian Chay Của Các Lệnh

Lệnh lặp: for, while, do-while

$$\sum_{i=1}^{X(n)} (T_0(n) + T_i(n))$$

X(n): số vòng lặp

 $T_0(n)$: điều kiện lặp

 $T_i(n)$: thời gian thực hiện vòng lặp thứ i

Phân Tích Hàm Đệ Quy

- Định nghĩa đệ quy có 2 phần
 - Phần cơ sở: định nghĩa một số phần tử đầu tiên trong chuỗi
 - ▶ Phần đệ quy
- VÍ dụ: thời gian tính hàm giai thừa
 - ▶ $T(1) \in O(1)$
 - T(n) = T(n-1) + O(1) với n > 1

```
for (i = 0; i < n; i++)
                               for (j = 0; j < n; j++)
                                  a[i][j] = 0;
                           for (i = 0; i < n; i++)
                               a[i][i] = 1;
T_3 = O(1)
T_2 = O(n)
T_{23} = O(n) \times O(1) = O(n)
T_1 = O(n)
T_{123} = O(n) \times O(n) = O(n^2)
T_5 = O(1)
T_A = O(n)
T_{45} = O(n) \times O(1) = O(n)
T_{12345} = T_{123} + T_{45} = O(n^2) + O(n) = O(n^2 + n) = O(n^2)
```

```
T_4 = O(1)
T_6 = O(1)
T_3 = O(1)
T_{3456} = O(1)
T_2 = O(n)
T_{23456} = O(n) \times O(1) = O(n)
T_1 = O(n)
T_{12345} = O(n) \times O(n) = O(n^2)
```

```
1 for (i = 0; i < n; i++)
2   for (j = 0; j < n; j++)
3.   if (i == j)
4.   a[i][j] = 1;
5   else
6   a[i][j] = 0;</pre>
```

```
for (i = 0; i < n; i++)
                               for (j = 0; j < n; j++)
                                  a[i][j] = 0;
                           for (i = 0; i < n; i++)
                               a[i][i] = 1;
T_3 = O(1)
T_2 = O(n)
T_{23} = O(n) \times O(1) = O(n)
T_1 = O(n)
T_{123} = O(n) \times O(n) = O(n^2)
T_5 = O(1)
T_A = O(n)
T_{45} = O(n) \times O(1) = O(n)
T_{12345} = T_{123} + T_{45} = O(n^2) + O(n) = O(n^2 + n) = O(n^2)
```

```
1 sum = 0
2 for (i = 0; i < n; i++)
3    for (j = i + 1; j <= n; j++)
4    for (k = 1; k < 10; k++)
5    sum = sum + i * j * k;</pre>
```

```
1 sum = 0
2 for (i = 0; i < n; i++)
3    for (j = i + 1; j <= n; j++)
4        for (k = 1; k < m; k++) {
5            x = 2 * y
6            sum = sum + i * j * k;
7    }</pre>
```

```
1 sum = 0
2 thisSum = 0
3 for (i = 0; i < n; i++) {
4    thisSum += a[i];
5    if (thisSum > sum)
6        sum = thisSum;
7    else
8        thisSum = sum;
9 }
```