Théorème de Tychonoff

Jean Pierre Mansour

16 Janvier 2022

Nous démontrons dans ce document le théorème de Tychonoff en utilisant les filtres. Commençons d'abord par une caractérisation fascinante des espaces topologiques compacts.

Proposition 0. Soit (E, \mathcal{T}) un espace topologique. Les propriétés suivantes sont équivalentes:

- (a) E est compact
- (b) Toute famille $(F_i)_{i\in I}$ de fermés de E vérifiant $\bigcap_{i\in I} F_i = \emptyset$, contient une famille finie $(F_i)_{i\in I'}$ avec $\bigcap_{i\in I'} F_i = \emptyset$.
- (c) Tout filtre \mathcal{F} sur E possède une valeur d'adhérence.
- (d) Tout ultrafiltre sur E converge. (Les ultrafiltres sont des éléments maximaux, donc il ne sont pas nécc. uniques)

Preuve. $(a \Rightarrow b)$ Soit $(F_i)_{i \in I}$ de fermés de E, avec $\bigcap_{i \in I} F_i = \emptyset$. Posons $O_i = E - F_i$ pour tout $i \in I$. Alors $\bigcup_{i \in I} O_i = \bigcup_{i \in I} E - F_i = E - \bigcap_{i \in I'} F_i = E$. Puisque $(O_i)_{i \in I}$ est un recouvrement d'ouverts de E, donc il admet un sous-recouvrement fini de E. Il existe $I' \subset I, I'fini/\bigcup_{i \in I'} O_i = E$. Alors $E = E - \bigcap_{i \in I'} F_i$. D'où $\bigcap_{i \in I'} F_i = \emptyset$.

 $(b\Rightarrow c)$ Par l'absurde, supposons qu'il existe un filtre $\mathcal F$ de base $\mathcal B$, n'admettant pas de valeurs d'adhérences. (Les valeurs d'adhérence forment un ensemble sur E)

$$\Rightarrow \bigcap_{B \in \mathcal{B}} \overline{B} = \emptyset \ (\overline{B} \text{ fermés de E})$$

$$\Rightarrow \exists F_1, ..., F_p \subset \mathcal{B} \in \mathcal{F} / \bigcap_{0 \le i \le p} \overline{B_i} = \emptyset \ (D'\text{après (b)})$$

$$\Rightarrow \bigcap_{B \in \mathcal{B}} \overline{B} = \emptyset \ Ce \text{ qui est absurde par définition d'}$$

 $\Rightarrow \bigcap_{0 \le i \le p} B_i = \emptyset.$ Ce qui est absurde par définition d'un filtre.

 $(c\Rightarrow d)$ Soit $\mathcal F$ sur $E\Rightarrow \mathcal F$ admet une valeur d'adhérence. Alors il existe un filtre $\mathcal F'$ contenant $\mathcal F$ tel que $\mathcal F'\longrightarrow x$. Mais $\mathcal F$ est un ultrafiltre donc $\mathcal F=\mathcal F'$. D'où $\mathcal F\longrightarrow x$.

 $(d \Rightarrow e)$ Par l'absurde, supposons qu'il existe un recouvrement d'ouverts $(O_i)_{i \in I}$ n'admettant pas un sous-recouvement fini. Nous verrons que cette structure sur l'espace E nous permettra de construire une base sur un filtre de E.

Pour $J \subset I$, J fini, prendre $B_J = E - \bigcup_{i \in J} O_i \neq \emptyset$ Pour $J' \subset I$, J' fini, prendre $B_{J'} = E - \bigcup_{i \in J'} O_i \neq \emptyset$.

 $B_J\cap B_{J'}=(E-\bigcup_{i\in J}O_i)\cap (E-\bigcup_{i\in J'}O_i)=E\cap\bigcap_{i\in J}O_i^c\cap E\cap\bigcap_{i\in J'}O_i^c=(E\cap\bigcap_{i\in J\cup J'}O_i^c=E-\bigcup_{i\in J\cup J'}O_i=B_{J\cup J'}\neq\emptyset.$ Donc on voit bien que pour tout J,J' fini dans $I,\,B_J\cap B_{J'}\neq\emptyset.$ Et $B_J\neq\emptyset, \forall J\subset I,\, J$ fini.

Alors $\mathcal{B}=\{B_J, J \text{ fini}\}\$ forme une base d'un filtre \mathcal{F}' .

Le lemme de Zorn confirme l'existence d'un ultrafiltre \mathcal{F} sup; F' qui converge vers un $x \in E$. Alors \mathcal{F} contient $\mathcal{U}(x)$, le filtre des voisinages de x. Puisque $(O_i)_{i \in I}$ recouvre tout E, il existe $i_0 \in I$, $U_{i_0} \in \mathcal{U}(x) \subset \mathcal{F}$. Pour $J = \{i_0\}$, $B_J = E - U_{i_0} \in \mathcal{B} \subset \mathcal{F}$. Alors $U_{i_0} \in \mathcal{F}$ et $E - U_{i_0} \in \mathcal{F}$. D'où $U_{i_0} \cap (E - U_{i_0}) = \emptyset$. Ce qui est absurde par définition d'un filtre.

Définition. (Topologie sur un espace produit quelconque)

Soit $(E_i, \mathscr{T}_i)_{I \in I}$ une famille quelconque d'espaces topologiques et $E = \prod_{i \in I} E_i$. Considérons une famille d'applications $f_i : E \to E_i$. On munit E d'une topologie choisie d'une manière subtile, $\mathscr{T} = \{\bigcup_{qlq} \bigcap_{fini} f_i^{-1}(O_i), O_i \in \mathscr{T}_i\}$ nommée la topologie initiale. Je vous laisse le soin de vérifier qu'elle est bien une topologie.

Par construction, la topologie \mathscr{T} est la moins fine qui rend les applications f_i continues. On munit \mathscr{T} d'une base $\mathcal{B} = \{\bigcap_{fini} f_i^{-1}(O_i), O_i \in \mathscr{T}_i\}.$

Proposition 1. Soit (E, \mathcal{T}) une espace topologique et $B \subset \mathcal{P}(X)$. On a l'équivalence:

- (a) \mathcal{B} est une base de \mathscr{T}
- (b) Pour tout $x \in E$, les éléments de \mathcal{B} contenant x forment une base de voisinages. (Si \mathcal{G} est une base de voisinage de x, alors pour tout $V \in \mathcal{V}(x)$, $\exists N \in \mathcal{G}/N \subset V$)

Proposition 2. Soit $(E_i, \mathscr{T}_i)_{I \in I}$ une famille quelconque d'espaces topologiques et $E = \prod_{i \in I} E_i$ muni de la topologie initiale et \mathcal{B} sa base associée. Et une famille d'applications $p_i : E \to E_i, x \in E$. Les propriétés suivantes sont équivalentes:

- (a) $\mathcal{F} \longrightarrow x$
- (b) Pour tout $i \in I$, $p_i(\mathcal{F}) \longrightarrow p_i(x)$. $(p(\mathcal{F}) \text{ est l'image directe d'un filtre})$

Preuve. $(a \Rightarrow b)$ Puisqu'on munit E de la topologie initiale, toutes les f_i

sont continues. On a $\mathcal{F} \longrightarrow x$. Montrons que $p_i(\mathcal{F}) \longrightarrow p_i(x), \forall i \in I$.

On a $\mathcal{U}(x) \subset \mathcal{F}$. Et V_i voisinage de $p_i(x)$. Alors $p_i^{-1}(V_i) \in \mathcal{U}(x)$ (Par définition de la continuité)

Donc $p_i^{-1}(V_i) \in \mathcal{F}$. Alors $V_i \in p_i(\mathcal{F})$ (Par définition de l'image directe d'une famille de parties). D'où $\mathcal{U}(p_i(x)) \subset p_i(\mathcal{F})$, et $p_i(\mathcal{F}) \longrightarrow p_i(x)$.

 $(b \Rightarrow a)$ D'après la proposition 1 et la continuité,

 $\mathcal{G} = \{ \bigcap_{i \in I} p_i^{-1}(O_i), \text{ I fini et } O_i \in \mathcal{U}(p_i(x)) \}$ (Pour que x soit dans les $p_i^{-1}(O_i)$), \mathcal{G} forme une base de voisinages de x.

Soit $U \in \mathcal{U}(x)$. Il existe donc $I' \subset I / \bigcap_{i \in I'} p_i^{-1}(O_i) \subset U$, $O_i \in \mathcal{U}(p_i(x))$. Donc $O_i \in p_i(\mathcal{F}. \text{ Alors } p_i^{-1}(O_i) \in \mathcal{F} \text{ donc } \bigcap_{i \in I'} p_i^{-1}(O_i) \in \mathcal{F}.$ Par la définition d'un filtre, $\mathcal{U} \in \mathcal{F}.$

Proposition 2. Si \mathcal{F} est un ultrafiltre sur un espace topologique E et $f: E \to F$ une application. Alors $f(\mathcal{F})$ est un ultrafiltre sur F.

(On utilise: \mathcal{F} ultrafiltre \iff Pour tout $A \in \mathcal{P}(E)$, $A \in \mathcal{F}$ ou $E - A \in \mathcal{F}$)

Théorème (Tychonoff)

Soit $(E_i, \mathcal{T}_i)_{I \in I}$ une famille quelconque d'espaces topologiques et $E = \prod_{i \in I} E_i$ muni de la topologie initiale.

 $\forall i \in I, E_i \text{ compact} \iff E \text{ est compact.}$

Preuve. (\Rightarrow) On utilise les projections partielles p_i . L'image d'un compact par une application continue est un compact.

(\Leftarrow) Soit \mathcal{F} un ultrafiltre sur E. Alours pour tout $i \in I$, $p_i(\mathcal{F})$ est un ultrafiltre sur E_i compact. Alors il converge pour tous les $i \in I$. Par la proposition 2, $\mathcal{F} \longrightarrow x$. Et \mathcal{F} un ultrafiltre. Par la proposition 0, E est compact.