Classification And Regression Trees (CART) & Random Forest

Richard Alligier, David Gianazza & Pascal Lezaud

ENAC

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

A decision tree is a "cascade" of questions. At the bottom end, there is the predicted value.

A decision tree encodes a partition of the input space into regions.

Building a tree minimizing $\sum\limits_{i=1}^N\!\ell(y_i,h(x_i))$ is a highly combinatorial problem

A Greedy Algorithm that Grows the Tree

Computationaly efficient, but do not produce the optimal partitionning

Data: A set of examples $\{(x_i, y_i) | \forall i \in [1, N] \}$

Result: Decision tree

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region, split it: replace the leaf by a node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

end

[36, 24]

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf; while there is a splittable region do Using examples in the region, split it: replace the leaf by a node: $x_2 \le -0.17$ end samples = 60False True $x_1 \le 1.04$ $x_2 \le 1.28$ samples = 29samples = 31True False 2 · False True $[12 \ 12]$ -2 -4

7/38

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,

split it: replace the leaf by a

node;

[20 0]

How the Tree is Built?

initialize a tree as one leaf;

while there is a splittable region do

Using examples in the region,
split it: replace the leaf by a
node;
end

Considered Conditions

The considered conditions use only one variable

- Numerical variable: $X_i \le t$, where t is a threshold value
- Categorical variable: $X_j = \text{Category}_{j,k}$

How to choose variable j (and threshold t)?

We want to split the region R, we define:

$$R^{(l)}(j,t) = \{ y_i \mid \forall i \in [1;N] / x_i \in R \text{ and } x_{i,j} \le t \}$$

$$R^{(r)}(j,t) = \{ y_i \mid \forall i \in [1;N] / x_i \in R \text{ and } x_{i,j} > t \}$$

We use a function H measuring the "heterogeneity"

Choose j and t minimizing the "heterogeneity" inside the new regions:

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)_{\text{8/38}}$$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

Choice of H quantifying the "heterogeneity"

- For regression, we use $H(Y) = \min_{c} \frac{1}{|Y|} \sum_{y \in Y} \ell(y, c)$
 - L2-loss: $H(Y) = \frac{1}{|Y|} \sum_{y \in Y} (y \text{mean}(Y))^2$
- For classification, we note $p_k = \frac{1}{|Y|} \sum_{y \in Y} \mathbb{1}(y = k)$
 - Cross-entropy: $H(Y) = -\sum_{k=1}^{K} p_k \log p_k$ Gini impurity: $H(Y) = \sum_{k=1}^{K} p_k (1 p_k)$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing ${\cal G}$?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p],$ with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G ?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities !

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{j,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p]$, with p input features
- $t \in \mathbb{R} \leftarrow \text{hard to enumerate}$

Choose the Condition in the Node Replacing the Leaf

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G?

$$j, t = \underset{j, t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities!

- $j \in [1; p],$ with p input features
- For a fixed j, we sort the values of the feature j: $x_{(1),j} \leq \ldots \leq x_{(|R|),j}$ Then, we only have to test: $t \in \{\frac{x_{(i-1),j} + x_{(i),j}}{2} \mid \forall i \in [2;|R|]\}$

Choose the Condition in the Node Replacing the Leaf

$$G(j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

How to find (j,t) minimizing G ?

$$j, t = \underset{i,t}{\operatorname{argmin}} G(j, t)$$

Generate and test all the possibilities !

- $j \in [1; p],$ with p input features
- For a fixed j, we sort the values of the feature j: $x_{(1),j} \leq \ldots \leq x_{(|R|),j}$ Then, we only have to test: $t \in \{\frac{x_{(i-1),j} + x_{(i),j}}{2} \mid \forall i \in [2;|R|]\}$

(|R|-1)p possibilities for (j,t)

Which Value is Predicted inside Each Region?

Our data consists of N observations $\{(x_i, y_i) | \forall i \in [1; N] \}$ In region $R^{(\text{new})}$ we predict:

$$c = \underset{c}{\operatorname{argmin}} \sum_{i/x_i \in R^{(\text{new})}} \ell(y_i, c)$$

Classification

misclassification loss: $\ell(y, \hat{y}) = 0$ if $y = \hat{y}$ else 1 $c = \text{Majority}(\{y_i | \forall i \in [1; N] | x_i \in R^{(\text{new})}\})$

Regression

- quadratic loss: $\ell(y, \hat{y}) = (y \hat{y})^2$ $c = \text{Avg}(\{y_i | \forall i \in [1; N]/x_i \in R^{(\text{new})}\})$
- L1-loss: $\ell(y, \hat{y}) = |y \hat{y}|$ $c = \text{Median}(\{y_i | \forall i \in [1; N] / x_i \in R^{(\text{new})}\})$

When a Region is Splittable?

If we consider that a region is splittable till it contains only 1 example then we obtain a very a large tree with a null training error \Rightarrow Setting a splittability criteria is a way to control the model complexity

Strategies to control the complexity of the model

- Set n_{\min} , the minimum number of examples in each leaf $\Rightarrow R$ must contain at least $2n_{\min}$
- Set a threshold mindecrease, split is allowed iff it reduces "heterogeneity" by at least mindecrease
- CART (Classification and Regression Trees): a two steps strategy [Breiman et al., 1984]
 - **1** Grow a large tree T_0
 - 2 Prune T_0 using weakest link pruning

Pruning

Pruning

Pruning

Pruning

Pruning

Pruning

Replace some nodes by leaves

A Lot of Possibilities!

Let us note P(h) the number of trees we can obtain by pruning one full binary tree of height $h\colon$

$$P(h) = P(h-1)^2 + 1$$
 with $P(0) = 0$; $\rightarrow P(10) \simeq 3.8 \times 10^{90}$

Weakest Link Pruning

- \blacksquare Let us note $E(T) = \sum\limits_{m=1}^{|T|} \sum\limits_{y \in R_m} \ell(y, c_m)$
- lacksquare we define the cost complexity criterion with $\alpha \geq 0$,

$$C_{\alpha}(T) = E(T) + \alpha |T|.$$

$$T_{\alpha} = \underset{T \subset T_0}{\operatorname{argmin}} C_{\alpha}(T)$$

 $lue{C}_{lpha}$ expresses a compromise, set by the hyperparameter lpha, between the tree cost E(T) and its complexity |T| (number of leaves)

end

return T

The choice of the node to replace is based on this criteria:

$$g(u) = \frac{E(f_u) - E(T_u)}{|T_u| - 1}$$

Why this criteria:

$$g(u) \le \alpha \Leftrightarrow C_{\alpha}(f_u) \le C_{\alpha}(T_u) \Leftrightarrow C_{\alpha}("T - T_u + f_u") \le C_{\alpha}(T)$$

 $T=T_0$:

True

1.52

samples = 48

False

4.14

samples = 41

1.10

samples = 105

```
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      samples = 500
                                                                      g(u) = 330.40
                                                            True
                                                                                          False
                                                                                             x_1 \le 2.31
                                                     x_2 \le 0.96
                                                   samples = 241
                                                                                           samples = 259
                                                    g(u) = 2.71
                                                                                           g(u) = 12.86
                                  True
                                                        False
                                                                                                                       False
                                                                                            True
                                                                                            x_2 \le -4.79
                      samples = 153
                                                   samples = 88
                                                                                           samples = 122
                                                                                                                          samples = 137
                       g(u) = 0.04
                                                   g(u) = 0.18
                                                                                           g(u) = 0.09
                                                                                                                           g(u) = 0.06
```

4.98

samples = 47

39.86

samples = 2

False

35.37

samples = 4

True

34.83

samples = 96

42.18

samples = 120

 $T=T_0$:

True

1.10

samples = 105

4.14

samples = 41

1.52

samples = 48

```
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      samples = 500
                                                                      g(u) = 330.40
                                                            True
                                                                                          False
                                                                                             x_1 \le 2.31
                                                     x_2 \le 0.96
                                                   samples = 241
                                                                                           samples = 259
                                                    g(u) = 2.71
                                                                                            g(u) = 12.86
                                  True
                                                        False
                                                                                                                       False
                                                                                             True
                       x_1 \le -3.83
                                                                                            x_2 \le -4.79
                      samples = 153
                                                                                           samples = 122
                                                   samples = 88
                                                                                                                           samples = 137
                       g(u) = 0.04
                                                   g(u) = 0.18
                                                                                            g(u) = 0.09
                                                                                                                            g(u) = 0.06
                             False
```

4.98

samples = 47

39.86

samples = 2

False

35.37

samples = 4

True

34.83

samples = 96

42.18

samples = 120

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                  x_1 \le -0.01
                                                 samples = 500
                                                 g(u) = 330.39
                                             True
                                                                     False
                                         x_2 \le 0.96
                                                                        x_1 \le 2.31
                                       samples = 241
                                                                      samples = 259
                                                                       g(u) = 12.86
                                        g(u) = 2.68
                              True
                                                                                                   False
                                             False
                                        x_1 \le -2.83
                                                                       x_2 \le -4.79
                                                                                                        x_2 \le 1.26
                          1.23
                                       samples = 88
                                                                      samples = 122
                                                                                                       samples = 137
                     samples = 153
                                                                                                       g(\hat{u}) = 0.06
                                        g(u) = 0.18
                                                                       g(u) = 0.09
                                                                  True
                                                                                   False
                                              False
                                                                                                        True
                                                                                                                           False
                        4.14
                                                                                                          34.83
                                           4.98
                                                               39.86
                                                                                     42.18
                                                                                                                                35.37
                   samples = 41
                                       samples = 47
                                                            samples = 2
                                                                                 samples = 120
                                                                                                       samples = 96
                                                                                                                            samples = 41
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                  x_1 \le -0.01
                                                 samples = 500
                                                 g(u) = 330.39
                                            True
                                                                     False
                                         x_2 \le 0.96
                                                                        x_1 \le 2.31
                                       samples = 241
                                                                      samples = 259
                                                                       g(u) = 12.86
                                        g(u) = 2.68
                              True
                                                                                                   False
                                             False
                                        x_1 \le -2.83
                                                                       x_2 \le -4.79
                                                                                                        x_2 \le 1.26
                          1.23
                                       samples = 88
                                                                      samples = 122
                                                                                                      samples = 137
                     samples = 153
                                                                                                       g(\hat{u}) = 0.06
                                        g(u) = 0.18
                                                                       g(u) = 0.09
                                                                  True
                                                                                   False
                                              False
                                                                                                        True
                                                                                                                           False
                        4.14
                                                                                                          34.83
                                           4.98
                                                               39.86
                                                                                     42.18
                                                                                                                                35.37
                   samples = 41
                                       samples = 47
                                                            samples = 2
                                                                                 samples = 120
                                                                                                       samples = 96
                                                                                                                            samples = 41
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      x_1 \le -0.01
                                                                     samples = 500
                                                                     g(u) = 330.37
                                                                 True
                                                                                 False
                                                             x_2 \le 0.96
                                                                                 x_1 \le 2.31
                                                           samples = 241
                                                                               samples = 259
                                                            g(u) = 2.68
                                                                               g(u) = 12.83
                                                   True
                                                                                                False
                                                                 False
                                                                                True
                                                            x_1 \le -2.83
                                                                                x_2 \le -4.79
                                              1.23
                                                                                                     34.99
                                                           samples = 88
                                                                               samples = 122
                                         samples = 153
                                                                                                samples = 137
                                                            g(u) = 0.18
                                                                                g(\hat{u}) = 0.09
                                                 True
                                                                 False
                                                                                True
                                                                                                   False
                                            4.14
                                                               4.98
                                                                                   39.86
                                                                                                        42.18
                                        samples = 41
                                                                                samples = 2
                                                                                                    samples = 120
                                                           samples = 47
```

```
T=T_0:
\quad \text{while} \ \min_{u \in T} \, g(u) \leq \alpha \, \operatorname{do}
       u_{\min} = \operatorname{argmin} g(u);
                           u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                                      x_1 \le -0.01
                                                                     samples = 500
                                                                     g(u) = 330.37
                                                                 True
                                                                                 False
                                                             x_2 \le 0.96
                                                                                 x_1 \le 2.31
                                                           samples = 241
                                                                               samples = 259
                                                            g(u) = 2.68
                                                                               g(u) = 12.83
                                                   True
                                                                                                False
                                                                                True
                                                                 False
                                                            x_1 \le -2.83
                                                                                x_2 \le -4.79
                                              1.23
                                                                                                     34.99
                                                           samples = 88
                                                                               samples = 122
                                         samples = 153
                                                                                                samples = 137
                                                            g(u) = 0.18
                                                                                g(\hat{u}) = 0.09
                                                 True
                                                                 False
                                                                                True
                                                                                                   False
                                            4.14
                                                               4.98
                                                                                   39.86
                                                                                                        42.18
                                        samples = 41
                                                                                samples = 2
                                                                                                    samples = 120
                                                           samples = 47
```

```
T=T_0:
while \min_{u \in T} g(u) \leq \alpha do
      u_{\min} = \operatorname{argmin} g(u);
                        u \in T
       replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                              x_1 \le -0.01
                                                             samples = 500
                                                             g(u) = 330.35
                                                       x_2 \le 0.96
                                                     samples = 241
                                                                    samples = 259
                                                      g(u) = 2.68
                                                                     g(u) = 12.79
                                              True
                                                                                     False
                                                           False
                                                                      True
                                          1.23
                                                                        42.14
                                                                                          34.99
                                                      samples = 88
                                      samples = 153
                                                                    samples = 122
                                                                                      samples = 137
                                                      g(u) = 0.18
                                                  True
                                                                False
                                                 4.14
                                                                  4.98
                                             samples = 41
                                                              samples = 47
```

```
T=T_0:
while \min_{u \in T} g(u) \leq \alpha do
      u_{\min} = \operatorname{argmin} q(u);
                       u \in T
      replace node u_{\min} by leaf;
end
return T
\alpha = 0.1
                                                           g(u) = 330.35
                                                     x_2 \le 0.96
                                                    samples = 241
                                                                  samples = 259
                                                    g(u) = 2.68
                                                                  g(u) = 12.79
                                            True
                                                                                  False
                                                                   True
                                                         False
                                        1.23
                                                                     42.14
                                                                                       34.99
                                                    samples = 88
                                    samples = 153
                                                                  samples = 122
                                                                                   samples = 137
                                                    g(u) = 0.18
                                                True
```

4.14

samples = 41

4.98

samples = 47

$$T_0 \supset T_{\alpha_1} \supset \ldots \supset T_{\alpha_k}$$
, with $0 < \alpha_1 < \ldots < \alpha_k$

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Advantages and Disadvantages of Decision Trees

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Embeds a feature selection
- Interpretability: the feature space partition is fully described by a single tree

Disadvantages

- Lack of smoothness (rectangular regions) with a constant prediction
- There are concepts that are hard to learn because decision trees do not express them easily
- Instability of Trees: a small change in the data can result in a very different series of splits.

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Use a training set S drawn from an unknown law (X,Y) and a learning algorithm $\mathcal A$ to build a model $\mathcal A[S]$ that predicts y from x

Remember bias-variance decomposition at a given point x_0 :

$$\mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] = \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right] + \operatorname{Var}_{S} \left(\mathcal{A}[S](x_{0}) \right)$$

Supervised Machine Learning

Use a training set S drawn from an unknown law (X,Y) and a learning algorithm $\mathcal A$ to build a model $\mathcal A[S]$ that predicts y from x

Remember bias-variance decomposition at a given point x_0 :

$$\mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] = \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right] + \operatorname{Var}_{S} \left(\mathcal{A}[S](x_{0}) \right)^{2}$$

$$\Rightarrow \mathbb{E}_{S} \left[\mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathcal{A}[S](x_{0}))^{2} \right] \right] \geq \mathbb{E}_{Y|X=x_{0}} \left[(Y - \mathbb{E}_{S}[\mathcal{A}[S](x_{0})])^{2} \right]^{19/38}$$

Bagging (Bootstrap Aggregating)[Breiman, 1996]

Idea

Try to approximate $\mathbb{E}_S[\mathcal{A}[S]]$ by averaging several models trained by \mathcal{A} If y is numeric: $f_S(x) = \frac{1}{B}\sum\limits_{b=1}^{B}\mathcal{A}[S_b](x)$ If y is a class: $f_S(x) = \text{Majority}\left(\{\mathcal{A}[S_1](x),\ldots,\mathcal{A}[S_B](x)\}\right)$

Bagging (Bootstrap Aggregating)[Breiman, 1996]

Idea

Try to approximate $\mathbb{E}_S[\mathcal{A}[S]]$ by averaging several models trained by \mathcal{A} If y is numeric: $f_S(x) = \frac{1}{B}\sum\limits_{b=1}^B \mathcal{A}[S_b](x)$ If y is a class: $f_S(x) = \text{Majority}\left(\{\mathcal{A}[S_1](x), \ldots, \mathcal{A}[S_B](x)\}\right)$

Intuition About the Choice of the Learning Algorithm ${\mathcal A}$

If we succeed then $f_S(x_0) \simeq \mathbb{E}_S[\mathcal{A}[S](x_0)]$ $\Rightarrow \mathbb{E}_{Y|X=x_0}[(Y-f_S(x_0))^2] \simeq \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}[S](x_0)])^2]$ \Rightarrow Better choose a low bias (and high variance) learning algorithm \mathcal{A}

The Ideal Case: We Can Freely Draw From (X,Y) Law

Why it is not a practical solution?

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Properties

Mean of Z^* :

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*: \mathbb{E}[Z^*] = \sum_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_{i} will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i\Rightarrow \mathbb{E}[Z^*] \xrightarrow[n\to+\infty]{\mathrm{p.s.}} \mathbb{E}[Z]$$
 CDF of $Z^*:$
$$F_{Z^*}(z)=\frac{1}{n}\sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$

Problem

We want to build a surrogate of the distribution generating Z To do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^{\ast} , we draw equiprobably one index i and z_i will be the sample drawn

Properties

Mean of
$$Z^*:\mathbb{E}[Z^*]=\sum\limits_{i=1}^n z_i\mathbb{P}(I=i)=\frac{1}{n}\sum\limits_{i=1}^n z_i\Rightarrow \mathbb{E}[Z^*] \xrightarrow[n\to+\infty]{\mathrm{p.s.}} \mathbb{E}[Z]$$
 CDF of $Z^*:$
$$F_{Z^*}(z)=\frac{1}{n}\sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$

One can show that:

$$\sup_{z} |F_{Z^*}(z) - F_Z(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Problem

We want to build a surrogate of the distribution generating ZTo do this, we have a **fixed set** z_1, \ldots, z_n *i.i.d.* samples of Z.

Solution: Empirical Distribution

To generate one sample of Z^* , we draw equiprobably one index i and z_i will be the sample drawn

Mean of
$$Z^*:\mathbb{E}[Z^*] = \sum\limits_{i=1}^n z_i \mathbb{P}(I=i) = \frac{1}{n} \sum\limits_{i=1}^n z_i \Rightarrow \mathbb{E}[Z^*] \xrightarrow[n \to +\infty]{\text{p.s.}} \mathbb{E}[Z]$$

CDF of $Z^*:$

$$F_{Z^*}(z) = \frac{1}{n} \sum\limits_{i=1}^n \mathbb{1}_{]-\infty;z_i]}(z)$$
One can show that:
$$\sup_{z} |F_{Z^*}(z) - F_{Z}(z)| \xrightarrow[n \to +\infty]{\text{p.s.}} 0$$

Bagging (I)

Bootstrap Come to the Rescue!

Draw from S with a uniform probability approximates drawing from (X,Y)

Bagging (II)

Algorithm 1: Bagging

Data: Dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Result: A set of models $A[S_b]$

 $BaggedModels = \{\};$

for b = 1 to B do

Draw a bootstrap set S_b of size n from the training data;

Train the model using the bootstrap training set $A[S_b]$;

Add $A[S_b]$ to BaggedModels;

end

return BaggedModels containing $\{A[S_1], \dots, A[S_B]\}$

Prediction Using $\{A[S_1], \dots, A[S_B]\}$

- For regression: $f_S(x) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_B](x)$
- For classification: $f_S(x) = \text{Majority}(\{\mathcal{A}[S_1](x)\})$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

1 Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(A[S_i](x_0), A[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

If S_1, \ldots, S_B were actual draws from (X, Y), then $\rho = 0$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Bias term:

$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}[S_1](x_0)])^2]$$

- 2 Variance term:
 - Let us assume that $Var_S[A[S_b](x_0)] = \sigma^2$
 - And $\forall i \neq j$, $\operatorname{corr}_S(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0)) = \rho$, then:

$$Var_S[f_S(x_0)] = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2$$

If S_1,\ldots,S_B were actual draws from (X,Y), then $\rho=0$ But they are boostrap sets, so is $\rho=0$?

Simulate draws of $(\mathcal{A}[S_i](x_0), \mathcal{A}[S_j](x_0))$, and compute correlation !

With this simulation $\rho \simeq 0.56$

Simulate draws of $(A[S_i](x_0), A[S_j](x_0))$, and compute correlation!

With this simulation $\rho \simeq 0.56$

$$Var_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

As B increases, the 2^{nd} term decreases, but the 1^{st} term remains, and hence the correlation of pairs limits the benefits of averaging $_{26/38}$

Conclusion on Bagging

Advantage

- lacksquare No hypothesis on the learning algorithm ${\cal A}$
- lacktriangle Especially useful when ${\cal A}$ has a low bias and large variance

Disadvantage

- Needs to compute several models
- The variance term reduction is limited by the correlation caused by bootstrap

Plan

- 1 Classification And Regression Trees (CART) [Breiman et al., 1984]
- 2 Bagging [Breiman, 1996]
- 3 Random Forest [Breiman, 2001]

Random Forest [Breiman, 2001]

Idea

Use Bagging with $\mathcal{A}=$ "modified CART" to reduce correlation between $\mathcal{A}[S_i](x_0)$ and $\mathcal{A}[S_j](x_0)$.

This correlation reduction is here to further reduce the variance of f_{S}

Tree Growth Modified

```
Data: A set of examples \{(x_i, y_i) | \forall i \in [1, N]\}; m \in [1, \dots, p]
```

Result: Decision tree

initialize a tree as one leaf;

while there is a splittable region do

Choose randomly a set of m variables among the p input variables; Using examples in the region, considering the m variables, split it: replace the leaf by the "best" node;

end

 $m=p \rightarrow$ "vanilla" CART; $m=1 \rightarrow$ random split variable j

Does it Actually Reduce the Correlation Between Trees?

Let us perform simulations on a regression problem with 50 variables, and compute correlation for each m using draws of $(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

■ Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow \rho \searrow \rho$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow_{\sigma} \sigma^2 \leadsto \rho\sigma^2 \searrow_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \bowtie_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma} \sigma^2 \wp_{\sigma} \rho\sigma^2 \bigvee_{\sigma}$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow$: $\rho \searrow$, $\sigma^2 \leadsto \Rightarrow \rho\sigma^2 \searrow$

■ Sq. Bias
$$\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2]$$
: $\mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y - \mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathsf{Var}_{S}[f_{S}(x_{0})]$$

Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow, \sigma^2 \leadsto \rho\sigma^2 \searrow$

■ Sq. Bias $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2]$: $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$ When $m \searrow$: Squared Bias \nearrow

$$f_S(x_0) = \frac{1}{B} \sum_{b=1}^{B} \mathcal{A}_m[S_b](x_0)$$

$$\mathbb{E}_{S}\left[\mathbb{E}_{Y|X=x_{0}}[(Y-f_{S}(x_{0}))^{2}]\right] = \mathbb{E}_{Y|X=x_{0}}[(Y-\mathbb{E}_{S}[f_{S}(x_{0})])^{2}] + \mathrm{Var}_{S}[f_{S}(x_{0})]$$

- Variance $\operatorname{Var}_S[f_S(x_0)]$: $\operatorname{Var}_S[f_S(x_0)] = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$ with $\rho = \operatorname{corr}_S(\mathcal{A}_m[S_i](x_0), \mathcal{A}_m[S_j](x_0))$ and $\sigma^2 = \operatorname{Var}_S[\mathcal{A}_m[S_b](x_0)]$ When $m \searrow : \rho \searrow, \sigma^2 \leadsto \rho\sigma^2 \searrow$
- Sq. Bias $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2]$: $\mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[f_S(x_0)])^2] = \mathbb{E}_{Y|X=x_0}[(Y-\mathbb{E}_S[\mathcal{A}_m[S_b](x_0)])^2]$ When $m \searrow$: Squared Bias \nearrow

 $$\rm{m}$$ Source: "The Elements of Statistical Learning

Choice for the A_m 's hyper-parameters and B

Choice for the A_m 's hyper-parameters

- The inventors of the algorithm make the following recommendations:
 - For classification, the default value for m is $\lfloor \sqrt{p} \rfloor$, and the minimum number examples in leaf is 1 (cf HTF),
 - For regression, the default value for $m = \lfloor p/3 \rfloor$, and the minimum number examples in leaf is 5 (cf HTF).
- In practice the best values for these parameters will depend on the problem and they should be tuned

Choice of B

- The expected risk $\mathbb{E}_S\left[\mathbb{E}_{Y|X=x_0}[(Y-f_S(x_0))^2]\right]$ decreases as $B\nearrow$
- As B increases, the computational cost increases

Be careful, Random Forest can overfit even with a large B:

- $\bullet f_S(x_0) \xrightarrow[B \to +\infty]{} \mathbb{E}_{S_b|S}[\mathcal{A}_m[S_b](x_0)]$

Out-Of-Bag (OOB) Samples/Error

Out-Of-Bag (OOB) Samples

- lacktriangle We note $S_b^{
 m OOB}=S\setminus S_b$, these examples were not used to train $\mathcal{A}[S_b]$
- lacksquare $S_b^{
 m OOB}$ is called the *Out-Of-Bag (OOB) samples*
- $\blacksquare \ S_b^{\rm OOB}$ contains on average $(1-\frac{1}{n})^n \underset{n \to +\infty}{\longrightarrow} \simeq 37\%$ of the samples of S

Out-Of-Bag Error

The Out-Of-Bag Error is defined as: $OOB_{error} = \frac{1}{N} \sum_{i=1}^{N} \ell\left(y_i, h^{(-i)}(x_i)\right)$

Variable Importance For One Tree

Remember How we Choose the Node Condition

We want to split the region R, we define:

$$R^{(l)}(j,t) = \{ y_i \mid \forall i \in [1;N] \mid x_i \in R \text{ and } x_{i,j} \le t \}$$

$$R^{(r)}(j,t) = \{ y_i \mid \forall i \in [1;N] \mid x_i \in R \text{ and } x_{i,j} > t \}$$

We use a function H measuring the "heterogeneity" (impurity) Choose j and t minimizing the "heterogeneity" inside the new regions:

$$G(R,j,t) = \frac{|R^{(l)}(j,t)|}{|R|} H\left(R^{(l)}(j,t)\right) + \frac{|R^{(r)}(j,t)|}{|R|} H\left(R^{(r)}(j,t)\right)$$

Variable Importance for One Tree [Breiman et al., 1984]

We can compute the *impurity* decrease: $\Delta H(R,j,t) = H(R) - G(R,j,t)$ For one tree T, we use:

$$VI(j,T) = \sum_{u \in Node(T)/var(u)=j} \frac{|Region(u)|}{N} \Delta H(Region(u), var(u), thresh(u))$$

Variable Importance: Mean Decrease Impurity

Mean Decrease Impurity [Breiman, 2001]

For an ensemble of trees T_1, \ldots, T_b in a Random Forest, we use:

$$VI^{MDI}(j) = \frac{1}{B} \sum_{b=1}^{B} VI(j, T_b)$$

Advantages/Drawbacks

- Computationally cheap as it is computed along the training process
- Biased towards high cardinality features
- It quantifies the usefulness of a feature to reduce the training error, not the usefulness to make an actual prediction

Variable Importance: Permutation Importance and Mean Decrease Accuracy

Permutation Importance [Breiman, 2001]

Idea: Quantify the impact of the permutation of variable j on predictive

$$\text{Shuffle}(S,j) = \begin{pmatrix} x_{1,1} & \dots & x_{1,j-1} & x_{\pi(1),j} & x_{1,j+1} & \dots & x_{1,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{i,1} & \dots & x_{i,j-1} & x_{\pi(i),j} & x_{i,j+1} & \dots & x_{i,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{n,1} & \dots & x_{n,j-1} & x_{\pi(n),j} & x_{n,j+1} & \dots & x_{n,p} \end{pmatrix}$$

Importance of variable j in a model h is measured on a test set $test_{set}$: "VI^{PI} $(h, test_{set}, j) = error(h, Shuffle(test_{set}, j)) - error(h, test_{set})$ "

Variable Importance: Permutation Importance and Mean Decrease Accuracy

Permutation Importance [Breiman, 2001]

Idea: Quantify the impact of the permutation of variable j on predictive

$$\text{Shuffle}(S,j) = \begin{pmatrix} x_{1,1} & \dots & x_{1,j-1} & x_{\pi(1),j} & x_{1,j+1} & \dots & x_{1,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{i,1} & \dots & x_{i,j-1} & x_{\pi(i),j} & x_{i,j+1} & \dots & x_{i,p} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{n,1} & \dots & x_{n,j-1} & x_{\pi(n),j} & x_{n,j+1} & \dots & x_{n,p} \end{pmatrix}$$

Importance of variable j in a model h is measured on a test set test_{set}: "VI^{PI} $(h, \text{test}_{\text{set}}, j) = \text{error}(h, \text{Shuffle}(\text{test}_{\text{set}}, j)) - \text{error}(h, \text{test}_{\text{set}})$ "

Mean Decrease Accuracy [Breiman, 2001]

Idea: Compute the average VI^{PI} over the trees T_1, \ldots, T_h in the Random Forest using Out-Of-Bag samples $S_1^{\text{OOB}}, \dots, S_R^{\text{OOB}}$

$$\Rightarrow$$
 Importance of variable j : $VI^{MDA}(j) = \frac{1}{B} \sum_{b=1}^{B} VI^{PI}(T_b, S_b^{OOB}, j)$

Advantages and Disadvantages of Random Forest

Advantages

- No variable scaling/normalization required
- Can handle numerical and categorical variable without pre-processing
- Can easily manage missing variable
- Relatively undisturbed by outliers (they are isolated in small nodes)
- Trees can be trained in parallel
- Easy to tune and powerful
- Can be used for feature selection

Disadvantages

- Interpretability
- Uses deep trees, if a large number of trees is used then prediction can be slow

```
[Breiman, 1996] Breiman, L. (1996).
Bagging predictors.
Machine learning, 24(2):123–140.
```

[Breiman, 2001] Breiman, L. (2001).

Machine learning, 45(1):5-32.

[Breiman et al., 1984] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984).

Classification and regression trees.

CRC press.