Convolutional Networks

So far we have worked with deep fully-connected networks, using them to explore different optimization strategies and network architectures. Fully-connected networks are a good testbed for experimentation because they are very computationally efficient, but in practice all state-of-the-art results use convolutional networks instead.

First you will implement several layer types that are used in convolutional networks. You will then use these layers to train a convolutional network on the CIFAR-10 dataset.

In [1]:

```
# As usual, a bit of setup
from __future__ import print function
import numpy as np
import matplotlib.pyplot as plt
from cs231n.classifiers.cnn import *
from cs231n.data utils import get CIFAR10 data
from cs231n.gradient_check import eval numerical gradient array, eval numerica
l gradient
from cs231n.layers import *
from cs231n.fast layers import *
from cs231n.solver import Solver
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipyt
%load ext autoreload
%autoreload 2
def rel error(x, y):
  """ returns relative error """
  return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

```
In [2]:
```

```
# Load the (preprocessed) CIFAR10 data.

data = get_CIFAR10_data()
for k, v in data.items():
   print('%s: ' % k, v.shape)
```

```
X_train: (49000, 3, 32, 32)
y_train: (49000,)
X_val: (1000, 3, 32, 32)
y_val: (1000,)
X_test: (1000, 3, 32, 32)
y_test: (1000,)
```

Convolution: Naive forward pass

The core of a convolutional network is the convolution operation. In the file cs231n/layers.py, implement the forward pass for the convolution layer in the function conv forward naive.

You don't have to worry too much about efficiency at this point; just write the code in whatever way you find most clear.

You can test your implementation by running the following:

In [3]:

```
x_shape = (2, 3, 4, 4)
w \text{ shape} = (3, 3, 4, 4)
x = np.linspace(-0.1, 0.5, num=np.prod(x_shape)).reshape(x_shape)
w = np.linspace(-0.2, 0.3, num=np.prod(w_shape)).reshape(w_shape)
b = np.linspace(-0.1, 0.2, num=3)
conv param = {'stride': 2, 'pad': 1}
out, = conv forward naive(x, w, b, conv param)
correct_out = np.array([[[-0.08759809, -0.10987781],
                          [-0.18387192, -0.2109216]
                          [[0.21027089, 0.21661097],
                          [ 0.22847626, 0.23004637]],
                          [[0.50813986, 0.54309974],
                           [0.64082444, 0.67101435]],
                         [[-0.98053589, -1.03143541],
                           [-1.19128892, -1.24695841]
                          [[0.69108355, 0.66880383],
                          [0.59480972, 0.56776003]
                          [[ 2.36270298, 2.36904306],
                          [ 2.38090835, 2.38247847]]])
# Compare your output to ours; difference should be around 2e-8
print('Testing conv forward naive')
print('difference: ', rel error(out, correct out))
```

Testing conv_forward_naive difference: 2.2121476417505994e-08

Aside: Image processing via convolutions

As fun way to both check your implementation and gain a better understanding of the type of operation that convolutional layers can perform, we will set up an input containing two images and manually set up filters that perform common image processing operations (grayscale conversion and edge detection). The convolution forward pass will apply these operations to each of the input images. We can then visualize the results as a sanity check.

In [4]:

```
kitten, puppy = imread('kitten.jpg'), imread('puppy.jpg')
# kitten is wide, and puppy is already square
d = kitten.shape[1] - kitten.shape[0]
kitten_cropped = kitten[:, d//2:-d//2, :]

img_size = 200  # Make this smaller if it runs too slow
x = np.zeros((2, 3, img_size, img_size))
x[0, :, :, :] = imresize(puppy, (img_size, img_size)).transpose((2, 0, 1))
x[1, :, :, :] = imresize(kitten_cropped, (img_size, img_size)).transpose((2, 0, 1))
# Set up a convolutional weights holding 2 filters, each 3x3
```

```
W = np.zeros((2, 3, 3, 3))
# The first filter converts the image to grayscale.
# Set up the red, green, and blue channels of the filter.
w[0, 0, :, :] = [[0, 0, 0], [0, 0.3, 0], [0, 0, 0]]
w[0, 1, :, :] = [[0, 0, 0], [0, 0.6, 0], [0, 0, 0]]
w[0, 2, :, :] = [[0, 0, 0], [0, 0.1, 0], [0, 0, 0]]
# Second filter detects horizontal edges in the blue channel.
w[1, 2, :, :] = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
# Vector of biases. We don't need any bias for the grayscale
# filter, but for the edge detection filter we want to add 128
# to each output so that nothing is negative.
b = np.array([0, 128])
# Compute the result of convolving each input in x with each filter in w,
# offsetting by b, and storing the results in out.
out, = conv_forward_naive(x, w, b, {'stride': 1, 'pad': 1})
def imshow noax(img, normalize=True):
    """ Tiny helper to show images as uint8 and remove axis labels """
    if normalize:
        img max, img min = np.max(img), np.min(img)
        img = 255.0 * (img - img min) / (img max - img min)
    plt.imshow(img.astype('uint8'))
    plt.gca().axis('off')
# Show the original images and the results of the conv operation
plt.subplot(2, 3, 1)
imshow noax(puppy, normalize=False)
plt.title('Original image')
plt.subplot(2, 3, 2)
imshow noax(out[0, 0])
plt.title('Grayscale')
plt.subplot(2, 3, 3)
imshow noax(out[0, 1])
plt.title('Edges')
plt.subplot(2, 3, 4)
imshow_noax(kitten_cropped, normalize=False)
plt.subplot(2, 3, 5)
imshow noax(out[1, 0])
plt.subplot(2, 3, 6)
imshow_noax(out[1, 1])
plt.show()
```

/Users/amirgavrieli/anaconda3/lib/python3.7/site-packages/ipykerne l_launcher.py:3: DeprecationWarning: `imread` is deprecated! `imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2. 0. Use ``imageio.imread`` instead. This is separate from the ipykernel package so we can avoid doin g imports until /Users/amirgavrieli/anaconda3/lib/python3.7/site-packages/ipykerne l launcher.py:10: DeprecationWarning: `imresize` is deprecated! `imresize` is deprecated in SciPy 1.0.0, and will be removed in 1. Use ``skimage.transform.resize`` instead. # Remove the CWD from sys.path while we load stuff. /Users/amirgavrieli/anaconda3/lib/python3.7/site-packages/ipykerne l_launcher.py:11: DeprecationWarning: `imresize` is deprecated! `imresize` is deprecated in SciPy 1.0.0, and will be removed in 1. 2.0.

Use ``skimage.transform.resize`` instead.
This is added back by InteractiveShellApp.init_path()

Convolution: Naive backward pass

Implement the backward pass for the convolution operation in the function <code>conv_backward_naive</code> in the file <code>cs231n/layers.py</code>. Again, you don't need to worry too much about computational efficiency.

When you are done, run the following to check your backward pass with a numeric gradient check.

In [5]:

```
np.random.seed(231)
x = np.random.randn(4, 3, 5, 5)
w = np.random.randn(2, 3, 3, 3)
b = np.random.randn(2,)
dout = np.random.randn(4, 2, 5, 5)
conv_param = {'stride': 1, 'pad': 1}
dx num = eval numerical gradient array(lambda x: conv forward naive(x, w, b, c
onv_param)[0], x, dout)
dw num = eval numerical gradient array(lambda w: conv forward naive(x, w, b, c
onv_param)[0], w, dout)
db_num = eval_numerical_gradient_array(lambda b: conv forward naive(x, w, b, c
onv param)[0], b, dout)
out, cache = conv forward naive(x, w, b, conv param)
dx, dw, db = conv backward naive(dout, cache)
# Your errors should be around 1e-8'
print('Testing conv backward naive function')
print('dx error: ', rel_error(dx, dx_num))
print('dw error: ', rel_error(dw, dw_num))
print('db error: ', rel error(db, db num))
```

Testing conv_backward_naive function dx error: 1.159803161159293e-08 dw error: 2.2471264748452487e-10 db error: 3.37264006649648e-11

Max pooling: Naive forward

Implement the forward pass for the max-pooling operation in the function <code>max_pool_forward_naive</code> in the file <code>cs231n/layers.py</code> . Again, don't worry too much about computational efficiency.

Check your implementation by running the following:

In [6]:

```
x \text{ shape} = (2, 3, 4, 4)
x = np.linspace(-0.3, 0.4, num=np.prod(x_shape)).reshape(x_shape)
pool_param = {'pool_width': 2, 'pool_height': 2, 'stride': 2}
out, = max pool forward naive(x, pool param)
correct_out = np.array([[[-0.26315789, -0.24842105],
                          [-0.20421053, -0.18947368]
                         [[-0.14526316, -0.13052632],
                          [-0.08631579, -0.07157895]],
                         [[-0.02736842, -0.01263158],
                          [0.03157895, 0.04631579]]
                        [[[0.09052632, 0.10526316],
                          [0.14947368, 0.16421053]],
                         [[0.20842105, 0.22315789],
                          [ 0.26736842, 0.28210526]],
                         [[0.32631579, 0.34105263],
                          [ 0.38526316, 0.4
                                                   ]]]])
# Compare your output with ours. Difference should be around 1e-8.
print('Testing max pool forward naive function:')
print('difference: ', rel error(out, correct out))
```

Testing max_pool_forward_naive function: difference: 4.1666665157267834e-08

Max pooling: Naive backward

Implement the backward pass for the max-pooling operation in the function max_pool_backward_naive in the file cs231n/layers.py . You don't need to worry about computational efficiency.

Check your implementation with numeric gradient checking by running the following:

In [9]:

```
np.random.seed(231)
x = np.random.randn(3, 2, 8, 8)
dout = np.random.randn(3, 2, 4, 4)
pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}

dx_num = eval_numerical_gradient_array(lambda x: max_pool_forward_naive(x, pool_param)[0], x, dout)

out, cache = max_pool_forward_naive(x, pool_param)
dx = max_pool_backward_naive(dout, cache)

# Your error should be around le-12
print('Testing max_pool_backward_naive function:')
print('dx error: ', rel_error(dx, dx_num))
```

```
Testing max_pool_backward_naive function: dx error: 3.27562514223145e-12
```

Fast layers

Making convolution and pooling layers fast can be challenging. To spare you the pain, we've provided fast implementations of the forward and backward passes for convolution and pooling layers in the file cs231n/fast_layers.py.

The fast convolution implementation depends on a Cython extension; to compile it you need to run the following from the cs231n directory:

```
python setup.py build ext --inplace
```

The API for the fast versions of the convolution and pooling layers is exactly the same as the naive versions that you implemented above: the forward pass receives data, weights, and parameters and produces outputs and a cache object; the backward pass recieves upstream derivatives and the cache object and produces gradients with respect to the data and weights.

NOTE: The fast implementation for pooling will only perform optimally if the pooling regions are non-overlapping and tile the input. If these conditions are not met then the fast pooling implementation will not be much faster than the naive implementation.

You can compare the performance of the naive and fast versions of these layers by running the following:

```
from cs231n.fast_layers import conv_forward_fast, conv_backward_fast
from time import time
np.random.seed(231)
x = np.random.randn(100, 3, 31, 31)
w = np.random.randn(25, 3, 3, 3)
b = np.random.randn(25,)
dout = np.random.randn(100, 25, 16, 16)
conv param = {'stride': 2, 'pad': 1}
t0 = time()
out naive, cache naive = conv forward naive(x, w, b, conv param)
t1 = time()
out fast, cache fast = conv forward fast(x, w, b, conv param)
t2 = time()
print('Testing conv_forward_fast:')
print('Naive: %fs' % (t1 - t0))
print('Fast: %fs' % (t2 - t1))
print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
print('Difference: ', rel error(out naive, out fast))
t0 = time()
dx naive, dw naive, db naive = conv backward naive(dout, cache naive)
t1 = time()
dx fast, dw fast, db fast = conv backward fast(dout, cache fast)
t2 = time()
print('\nTesting conv backward fast:')
print('Naive: %fs' % (t1 - t0))
print('Fast: %fs' % (t2 - t1))
print('Speedup: %fx' % ((t1 - t0) / (t2 - t1)))
print('dx difference: ', rel_error(dx_naive, dx_fast))
print('dw difference: ', rel_error(dw_naive, dw_fast))
print('db difference: ', rel_error(db_naive, db_fast))
Testing conv forward fast:
Naive: 7.053042s
Fast: 0.024327s
Speedup: 289.926025x
```

```
Difference: 4.926407851494105e-11

Testing conv_backward_fast:
Naive: 11.412368s
Fast: 0.018667s
Speedup: 611.366498x
dx difference: 1.949764775345631e-11
dw difference: 5.155328198575201e-13
db difference: 0.0
```

```
In [11]:
```

```
from cs231n.fast layers import max pool forward fast, max pool backward fast
np.random.seed(231)
x = np.random.randn(100, 3, 32, 32)
dout = np.random.randn(100, 3, 16, 16)
pool param = {'pool height': 2, 'pool width': 2, 'stride': 2}
t0 = time()
out naive, cache naive = max pool forward naive(x, pool param)
t1 = time()
out_fast, cache_fast = max_pool_forward_fast(x, pool_param)
t2 = time()
print('Testing pool_forward_fast:')
print('Naive: %fs' % (t1 - t0))
print('fast: %fs' % (t2 - t1))
print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
print('difference: ', rel error(out naive, out fast))
t0 = time()
dx naive = max pool backward naive(dout, cache naive)
t1 = time()
dx fast = max pool backward fast(dout, cache fast)
t2 = time()
print('\nTesting pool_backward_fast:')
print('Naive: %fs' % (t1 - t0))
print('speedup: %fx' % ((t1 - t0) / (t2 - t1)))
print('dx difference: ', rel_error(dx_naive, dx_fast))
Testing pool forward fast:
Naive: 0.181155s
```

```
Testing pool_forward_fast:
Naive: 0.181155s
fast: 0.002334s
speedup: 77.619675x
difference: 0.0

Testing pool_backward_fast:
Naive: 2.265589s
speedup: 141.590586x
dx difference: 0.0
```

Convolutional "sandwich" layers

Previously we introduced the concept of "sandwich" layers that combine multiple operations into commonly used patterns. In the file cs231n/layer_utils.py you will find sandwich layers that implement a few commonly used patterns for convolutional networks.

In [12]:

```
from cs231n.layer_utils import conv_relu_pool_forward, conv_relu_pool_backward
np.random.seed(231)
x = np.random.randn(2, 3, 16, 16)
w = np.random.randn(3, 3, 3, 3)
b = np.random.randn(3,)
dout = np.random.randn(2, 3, 8, 8)
conv_param = {'stride': 1, 'pad': 1}
pool param = {'pool height': 2, 'pool width': 2, 'stride': 2}
out, cache = conv relu pool forward(x, w, b, conv param, pool param)
dx, dw, db = conv relu pool backward(dout, cache)
dx num = eval numerical gradient array(lambda x: conv relu pool forward(x, w,
b, conv param, pool param)[0], x, dout)
dw num = eval numerical gradient array(lambda w: conv relu pool forward(x, w,
b, conv param, pool param)[0], w, dout)
db num = eval numerical gradient array(lambda b: conv relu pool forward(x, w,
b, conv param, pool param)[0], b, dout)
print('Testing conv relu pool')
print('dx error: ', rel error(dx num, dx))
print('dw error: ', rel_error(dw_num, dw))
print('db error: ', rel_error(db_num, db))
```

Testing conv relu pool

dx error: 6.514336569263308e-09 dw error: 1.490843753539445e-08 db error: 2.037390356217257e-09 In [13]:

```
from cs231n.layer_utils import conv_relu_forward, conv_relu_backward
np.random.seed(231)
x = np.random.randn(2, 3, 8, 8)
w = np.random.randn(3, 3, 3, 3)
b = np.random.randn(3,)
dout = np.random.randn(2, 3, 8, 8)
conv_param = {'stride': 1, 'pad': 1}
out, cache = conv relu forward(x, w, b, conv param)
dx, dw, db = conv relu backward(dout, cache)
dx num = eval numerical gradient array(lambda x: conv relu forward(x, w, b, co
nv param)[0], x, dout)
dw num = eval numerical gradient array(lambda w: conv relu forward(x, w, b, co
nv param)[0], w, dout)
db_num = eval_numerical_gradient array(lambda b: conv relu forward(x, w, b, co
nv param)[0], b, dout)
print('Testing conv_relu:')
print('dx error: ', rel_error(dx_num, dx))
print('dw error: ', rel_error(dw_num, dw))
print('db error: ', rel_error(db_num, db))
```

Testing conv_relu:

dx error: 3.5600610115232832e-09
dw error: 2.2497700915729298e-10
db error: 1.3087619975802167e-10

Three-layer ConvNet

Now that you have implemented all the necessary layers, we can put them together into a simple convolutional network.

Open the file cs231n/classifiers/cnn.py and complete the implementation of the ThreeLayerConvNet class. Run the following cells to help you debug:

Sanity check loss

After you build a new network, one of the first things you should do is sanity check the loss. When we use the softmax loss, we expect the loss for random weights (and no regularization) to be about log(C) for C classes. When we add regularization this should go up.

In [19]:

```
model = ThreeLayerConvNet()

N = 50

X = np.random.randn(N, 3, 32, 32)
y = np.random.randint(10, size=N)

loss, grads = model.loss(X, y)
print('Initial loss (no regularization): ', loss)

model.reg = 0.5
loss, grads = model.loss(X, y)
print('Initial loss (with regularization): ', loss)
```

```
Initial loss (no regularization): 2.302585647096208
Initial loss (with regularization): 2.5082799202104122
```

Gradient check

After the loss looks reasonable, use numeric gradient checking to make sure that your backward pass is correct. When you use numeric gradient checking you should use a small amount of artifical data and a small number of neurons at each layer. Note: correct implementations may still have relative errors up to 1e-2.

In [20]:

```
num inputs = 2
input dim = (3, 16, 16)
reg = 0.0
num classes = 10
np.random.seed(231)
X = np.random.randn(num_inputs, *input_dim)
y = np.random.randint(num classes, size=num inputs)
model = ThreeLayerConvNet(num filters=3, filter size=3,
                          input dim=input dim, hidden dim=7,
                          dtype=np.float64)
loss, grads = model.loss(X, y)
for param name in sorted(grads):
    f = lambda : model.loss(X, y)[0]
    param grad num = eval numerical gradient(f, model.params[param name], verb
ose=False, h=1e-6)
    e = rel_error(param_grad_num, grads[param_name])
    print('%s max relative error: %e' % (param_name, rel_error(param_grad_num,
grads[param name])))
```

```
W1 max relative error: 1.380104e-04
W2 max relative error: 1.822723e-02
W3 max relative error: 3.064049e-04
b1 max relative error: 3.477652e-05
b2 max relative error: 2.516375e-03
b3 max relative error: 7.945660e-10
```

Overfit small data

A nice trick is to train your model with just a few training samples. You should be able to overfit small datasets, which will result in very high training accuracy and comparatively low validation accuracy.

In [21]:

```
np.random.seed(231)
num train = 100
small_data = {
  'X_train': data['X_train'][:num_train],
  'y train': data['y train'][:num train],
  'X val': data['X val'],
  'y_val': data['y_val'],
}
model = ThreeLayerConvNet(weight scale=1e-2)
solver = Solver(model, small data,
                num_epochs=15, batch_size=50,
                update_rule='adam',
                optim config={
                  'learning_rate': 1e-3,
                },
                verbose=True, print_every=1)
solver.train()
```

```
(Iteration 1 / 30) loss: 2.414060
(Epoch 0 / 15) train acc: 0.190000; val acc: 0.128000
(Iteration 2 / 30) loss: 2.609504
(Epoch 1 / 15) train acc: 0.230000; val acc: 0.094000
(Iteration 3 / 30) loss: 2.113380
(Iteration 4 / 30) loss: 1.971811
(Epoch 2 / 15) train acc: 0.310000; val acc: 0.098000
(Iteration 5 / 30) loss: 1.676728
(Iteration 6 / 30) loss: 1.801782
(Epoch 3 / 15) train acc: 0.570000; val acc: 0.191000
(Iteration 7 / 30) loss: 1.652683
(Iteration 8 / 30) loss: 1.598651
(Epoch 4 / 15) train acc: 0.570000; val acc: 0.194000
(Iteration 9 / 30) loss: 1.070849
(Iteration 10 / 30) loss: 1.408982
(Epoch 5 / 15) train acc: 0.740000; val acc: 0.188000
(Iteration 11 / 30) loss: 0.816042
(Iteration 12 / 30) loss: 0.807953
(Epoch 6 / 15) train acc: 0.820000; val acc: 0.256000
(Iteration 13 / 30) loss: 0.971160
(Iteration 14 / 30) loss: 0.568949
(Epoch 7 / 15) train acc: 0.860000; val acc: 0.236000
(Iteration 15 / 30) loss: 0.394380
(Iteration 16 / 30) loss: 0.401405
(Epoch 8 / 15) train acc: 0.910000; val acc: 0.194000
(Iteration 17 / 30) loss: 0.723469
(Iteration 18 / 30) loss: 0.258560
(Epoch 9 / 15) train acc: 0.910000; val acc: 0.169000
(Iteration 19 / 30) loss: 0.242372
(Iteration 20 / 30) loss: 0.235556
(Epoch 10 / 15) train acc: 0.940000; val acc: 0.199000
(Iteration 21 / 30) loss: 0.212628
(Iteration 22 / 30) loss: 0.126721
(Epoch 11 / 15) train acc: 0.940000; val acc: 0.213000
(Iteration 23 / 30) loss: 0.113127
(Iteration 24 / 30) loss: 0.270010
(Epoch 12 / 15) train acc: 0.970000; val acc: 0.204000
(Iteration 25 / 30) loss: 0.067624
(Iteration 26 / 30) loss: 0.081088
(Epoch 13 / 15) train acc: 1.000000; val acc: 0.207000
(Iteration 27 / 30) loss: 0.029606
(Iteration 28 / 30) loss: 0.051089
(Epoch 14 / 15) train acc: 1.000000; val acc: 0.209000
(Iteration 29 / 30) loss: 0.027549
(Iteration 30 / 30) loss: 0.025578
(Epoch 15 / 15) train acc: 1.000000; val_acc: 0.209000
```

Plotting the loss, training accuracy, and validation accuracy should show clear overfitting:

In [22]:

```
plt.subplot(2, 1, 1)
plt.plot(solver.loss_history, 'o')
plt.xlabel('iteration')
plt.ylabel('loss')

plt.subplot(2, 1, 2)
plt.plot(solver.train_acc_history, '-o')
plt.plot(solver.val_acc_history, '-o')
plt.legend(['train', 'val'], loc='upper left')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.show()
```


Train the net

By training the three-layer convolutional network for one epoch, you should achieve greater than 40% accuracy on the training set:

In [23]:

```
(Iteration 1 / 980) loss: 2.304740
(Epoch 0 / 1) train acc: 0.103000; val acc: 0.107000
(Iteration 21 / 980) loss: 2.132736
(Iteration 41 / 980) loss: 1.890223
(Iteration 61 / 980) loss: 1.790478
(Iteration 81 / 980) loss: 1.745026
(Iteration 101 / 980) loss: 1.892161
(Iteration 121 / 980) loss: 1.890149
(Iteration 141 / 980) loss: 1.964029
(Iteration 161 / 980) loss: 1.741861
(Iteration 181 / 980) loss: 1.886438
(Iteration 201 / 980) loss: 1.958140
(Iteration 221 / 980) loss: 1.789366
(Iteration 241 / 980) loss: 1.693459
(Iteration 261 / 980) loss: 1.507454
(Iteration 281 / 980) loss: 1.622408
(Iteration 301 / 980) loss: 1.845511
(Iteration 321 / 980) loss: 1.737180
(Iteration 341 / 980) loss: 1.680309
(Iteration 361 / 980) loss: 1.749498
(Iteration 381 / 980) loss: 1.420701
(Iteration 401 / 980) loss: 1.685015
(Iteration 421 / 980) loss: 1.733135
(Iteration 441 / 980) loss: 1.591582
(Iteration 461 / 980) loss: 1.700545
(Iteration 481 / 980) loss: 1.492935
(Iteration 501 / 980) loss: 1.404087
(Iteration 521 / 980) loss: 1.712702
(Iteration 541 / 980) loss: 1.459696
(Iteration 561 / 980) loss: 1.607686
(Iteration 581 / 980) loss: 1.232315
(Iteration 601 / 980) loss: 1.641778
(Iteration 621 / 980) loss: 1.560701
(Iteration 641 / 980) loss: 1.642898
(Iteration 661 / 980) loss: 1.651685
(Iteration 681 / 980) loss: 1.799905
(Iteration 701 / 980) loss: 1.447530
(Iteration 721 / 980) loss: 1.538806
(Iteration 741 / 980) loss: 1.893407
(Iteration 761 / 980) loss: 1.408911
(Iteration 781 / 980) loss: 2.160169
(Iteration 801 / 980) loss: 1.850402
(Iteration 821 / 980) loss: 1.542580
(Iteration 841 / 980) loss: 1.441510
(Iteration 861 / 980) loss: 1.779246
(Iteration 881 / 980) loss: 1.656049
(Iteration 901 / 980) loss: 1.455208
(Iteration 921 / 980) loss: 1.820103
(Iteration 941 / 980) loss: 1.526195
(Iteration 961 / 980) loss: 1.639982
(Epoch 1 / 1) train acc: 0.484000; val acc: 0.485000
```

Visualize Filters

You can visualize the first-layer convolutional filters from the trained network by running the following:

```
In [24]:
```

```
from cs231n.vis_utils import visualize_grid

grid = visualize_grid(model.params['W1'].transpose(0, 2, 3, 1))
plt.imshow(grid.astype('uint8'))
plt.axis('off')
plt.gcf().set_size_inches(5, 5)
plt.show()
```


Spatial Batch Normalization

We already saw that batch normalization is a very useful technique for training deep fully-connected networks. Batch normalization can also be used for convolutional networks, but we need to tweak it a bit; the modification will be called "spatial batch normalization."

Normally batch-normalization accepts inputs of shape (N, D) and produces outputs of shape (N, D), where we normalize across the minibatch dimension N. For data coming from convolutional layers, batch normalization needs to accept inputs of shape (N, C, H, W) and produce outputs of shape (N, C, H, W) where the N dimension gives the minibatch size and the (H, W) dimensions give the spatial size of the feature map.

If the feature map was produced using convolutions, then we expect the statistics of each feature channel to be relatively consistent both between different images and different locations within the same image. Therefore spatial batch normalization computes a mean and variance for each of the $\,^{\circ}$ C feature channels by computing statistics over both the minibatch dimension $\,^{\circ}$ N and the spatial dimensions $\,^{\circ}$ H and $\,^{\circ}$ W.

Spatial batch normalization: forward

In the file cs231n/layers.py, implement the forward pass for spatial batch normalization in the function spatial batchnorm forward. Check your implementation by running the following:

In [40]:

```
np.random.seed(231)
# Check the training-time forward pass by checking means and variances
# of features both before and after spatial batch normalization
N, C, H, W = 2, 3, 4, 5
x = 4 * np.random.randn(N, C, H, W) + 10
print('Before spatial batch normalization:')
print(' Shape: ', x.shape)
print(' Means: ', x.mean(axis=(0, 2, 3)))
print(' Stds: ', x.std(axis=(0, 2, 3)))
# Means should be close to zero and stds close to one
gamma, beta = np.ones(C), np.zeros(C)
bn param = {'mode': 'train'}
out, = spatial batchnorm forward(x, gamma, beta, bn param)
print('After spatial batch normalization:')
print(' Shape: ', out.shape)
print(' Means: ', out.mean(axis=(0, 2, 3)))
print(' Stds: ', out.std(axis=(0, 2, 3)))
# Means should be close to beta and stds close to gamma
gamma, beta = np.asarray([3, 4, 5]), np.asarray([6, 7, 8])
out, _ = spatial_batchnorm_forward(x, gamma, beta, bn_param)
print('After spatial batch normalization (nontrivial gamma, beta):')
print(' Shape: ', out.shape)
print(' Means: ', out.mean(axis=(0, 2, 3)))
print(' Stds: ', out.std(axis=(0, 2, 3)))
Before spatial batch normalization:
  Shape: (2, 3, 4, 5)
 Means: [9.33463814 8.90909116 9.11056338]
  Stds: [3.61447857 3.19347686 3.5168142 ]
After spatial batch normalization:
  Shape: (2, 3, 4, 5)
```

Means: [6.18949336e-16 5.99520433e-16 -1.22124533e-16]

After spatial batch normalization (nontrivial gamma, beta):

Stds: [0.99999962 0.99999951 0.9999996]

Stds: [2.99999885 3.99999804 4.99999798]

Shape: (2, 3, 4, 5) Means: [6. 7. 8.]

```
In [52]:
```

```
np.random.seed(231)
# Check the test-time forward pass by running the training-time
# forward pass many times to warm up the running averages, and then
# checking the means and variances of activations after a test-time
# forward pass.
N, C, H, W = 10, 4, 11, 12
bn_param = {'mode': 'train'}
gamma = np.ones(C)
beta = np.zeros(C)
for t in range (50):
  x = 2.3 * np.random.randn(N, C, H, W) + 13
  spatial batchnorm forward(x, gamma, beta, bn param)
bn param['mode'] = 'test'
x = 2.3 * np.random.randn(N, C, H, W) + 13
a_norm, _ = spatial_batchnorm_forward(x, gamma, beta, bn param)
# Means should be close to zero and stds close to one, but will be
# noisier than training-time forward passes.
print('After spatial batch normalization (test-time):')
print(' means: ', a norm.mean(axis=(0, 2, 3)))
print(' stds: ', a norm.std(axis=(0, 2, 3)))
After spatial batch normalization (test-time):
 means: [-0.08034406 0.07562881 0.05716371
```

```
stds: [0.96718744 1.0299714 1.02887624 1.00585577]
```

Spatial batch normalization: backward

In the file cs231n/layers.py, implement the backward pass for spatial batch normalization in the function spatial_batchnorm_backward. Run the following to check your implementation using a numeric gradient check:

In [54]:

```
np.random.seed(231)
N, C, H, W = 2, 3, 4, 5
x = 5 * np.random.randn(N, C, H, W) + 12
gamma = np.random.randn(C)
beta = np.random.randn(C)
dout = np.random.randn(N, C, H, W)
bn param = {'mode': 'train'}
fx = lambda x: spatial_batchnorm_forward(x, gamma, beta, bn_param)[0]
fg = lambda a: spatial batchnorm forward(x, gamma, beta, bn param)[0]
fb = lambda b: spatial batchnorm forward(x, gamma, beta, bn param)[0]
dx num = eval numerical gradient array(fx, x, dout)
da num = eval numerical gradient array(fg, gamma, dout)
db num = eval numerical gradient array(fb, beta, dout)
, cache = spatial batchnorm forward(x, gamma, beta, bn param)
dx, dgamma, dbeta = spatial batchnorm backward(dout, cache)
print('dx error: ', rel_error(dx_num, dx))
print('dgamma error: ', rel_error(da_num, dgamma))
print('dbeta error: ', rel_error(db_num, dbeta))
```

dx error: 2.7866481929016103e-07
dgamma error: 7.0974817113608705e-12
dbeta error: 3.275608725278405e-12

Extra Credit Description

If you implement any additional features for extra credit, clearly describe them here with pointers to any code in this or other files if applicable.