is equivalent to the vector equation

$$3\begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix} - 2\begin{bmatrix} 5\\ 1\\ -8 \end{bmatrix} + 0\begin{bmatrix} -2\\ 9\\ -1 \end{bmatrix} - 4\begin{bmatrix} 0\\ -5\\ 7 \end{bmatrix} = \begin{bmatrix} -7\\ 9\\ 0 \end{bmatrix},$$

which expresses **b** as a linear combination of the columns of A.

2.
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 + 20 \\ 3 + 4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$

$$A\mathbf{u} + A\mathbf{v} = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 11 \end{bmatrix} + \begin{bmatrix} 19 \\ -4 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \end{bmatrix}$$

Remark: There are, in fact, infinitely many correct solutions to Practice Problem 3. When creating matrices to satisfy specified criteria, it is often useful to create matrices that are straightforward, such as those already in reduced echelon form. Here is one possible solution:

3. Let

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}, \text{ and } \mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

Notice the reduced echelon form of the augmented matrix corresponding to $A\mathbf{x} = \mathbf{b}$

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

which corresponds to a consistent system, and hence $A\mathbf{x} = \mathbf{b}$ has solutions. The reduced echelon form of the augmented matrix corresponding to $A\mathbf{x} = \mathbf{c}$ is

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

which corresponds to an inconsistent system, and hence $A\mathbf{x} = \mathbf{c}$ does not have any solutions.

1.5 Solution Sets of Linear Systems

Solution sets of linear systems are important objects of study in linear algebra. They will appear later in several different contexts. This section uses vector notation to give explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be **homogeneous** if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^m . Such a system $A\mathbf{x} = \mathbf{0}$ always has at least one solution, namely $\mathbf{x} = \mathbf{0}$ (the zero vector in \mathbb{R}^n). This zero solution is usually called the **trivial solution**. For a given equation $A\mathbf{x} = \mathbf{0}$, the important question is whether there exists a **nontrivial solution**, that is, a nonzero vector \mathbf{x} that satisfies $A\mathbf{x} = \mathbf{0}$. The Existence and Uniqueness Theorem in Section 1.2 (Theorem 2) leads immediately to the following fact.

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial solution. Then describe the solution set.

$$3x_1 + 5x_2 - 4x_3 = 0$$
$$-3x_1 - 2x_2 + 4x_3 = 0$$
$$6x_1 + x_2 - 8x_3 = 0$$

SOLUTION Let A be the matrix of coefficients of the system and row reduce the augmented matrix $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to echelon form:

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & -9 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 5 & -4 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since x_3 is a free variable, $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions (one for each nonzero choice of x_3). To describe the solution set, continue the row reduction of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to *reduced* echelon form:

$$\begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 & -\frac{4}{3}x_3 = 0 \\ x_2 & = 0 \\ 0 & = 0 \end{array}$$

Solve for the basic variables x_1 and x_2 and obtain $x_1 = \frac{4}{3}x_3$, $x_2 = 0$, with x_3 free. As a vector, the general solution of $A\mathbf{x} = \mathbf{0}$ has the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}x_3 \\ 0 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix} = x_3 \mathbf{v}, \quad \text{where } \mathbf{v} = \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$

Here x_3 is factored out of the expression for the general solution vector. This shows that every solution of $A\mathbf{x} = \mathbf{0}$ in this case is a scalar multiple of \mathbf{v} . The trivial solution is obtained by choosing $x_3 = 0$. Geometrically, the solution set is a line through $\mathbf{0}$ in \mathbb{R}^3 . See Figure 1.

Notice that a nontrivial solution \mathbf{x} can have some zero entries so long as not all of its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of equations. Describe all solutions of the homogeneous "system"

$$10x_1 - 3x_2 - 2x_3 = 0 (1)$$

FIGURE 1

SOLUTION There is no need for matrix notation. Solve for the basic variable x_1 in terms of the free variables. The general solution is $x_1 = .3x_2 + .2x_3$, with x_2 and x_3 free. As a vector, the general solution is

Examples 1 and 2, along with the exercises, illustrate the fact that the solution set of a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can always be expressed explicitly as Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for suitable vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$. If the only solution is the zero vector, then the solution set is Span $\{0\}$. If the equation $A\mathbf{x} = \mathbf{0}$ has only one free variable, the solution set is a line through the origin, as in Figure 1. A plane through the origin, as in Figure 2, provides a good mental image for the solution set of $A\mathbf{x} = \mathbf{0}$ when there are two or more free variables. Note, however, that a similar figure can be used to visualize Span $\{u, v\}$ even when **u** and **v** do not arise as solutions of $A\mathbf{x} = \mathbf{0}$. See Figure 11 in Section 1.3.

The original equation (1) for the plane in Example 2 is an *implicit* description of the plane. Solving this equation amounts to finding an *explicit* description of the plane as the set spanned by **u** and **v**. Equation (2) is called a **parametric vector equation** of the plane. Sometimes such an equation is written as

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v} \quad (s, t \text{ in } \mathbb{R})$$

to emphasize that the parameters vary over all real numbers. In Example 1, the equation $\mathbf{x} = x_3 \mathbf{v}$ (with x_3 free), or $\mathbf{x} = t \mathbf{v}$ (with t in \mathbb{R}), is a parametric vector equation of a line. Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we say that the solution is in **parametric vector form**.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be written in parametric vector form as one vector plus an arbitrary linear combination of vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax = b, where

$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

FIGURE 2

SOLUTION Here A is the matrix of coefficients from Example 1. Row operations on [A b] produce

$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \begin{aligned} x_1 & -\frac{4}{3}x_3 &= -1 \\ x_2 & = 2 \\ 0 & = 0 \end{aligned}$$

Thus $x_1 = -1 + \frac{4}{3}x_3$, $x_2 = 2$, and x_3 is free. As a vector, the general solution of $A\mathbf{x} = \mathbf{b}$ has the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{4}{3}x_3 \\ 2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{4}{3}x_3 \\ 0 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}$$

$$\uparrow$$

$$\uparrow$$

$$\downarrow$$

The equation $\mathbf{x} = \mathbf{p} + x_3 \mathbf{v}$, or, writing t as a general parameter,

$$\mathbf{x} = \mathbf{p} + t\mathbf{v} \quad (t \text{ in } \mathbb{R}) \tag{3}$$

describes the solution set of $A\mathbf{x} = \mathbf{b}$ in parametric vector form. Recall from Example 1 that the solution set of Ax = 0 has the parametric vector equation

$$\mathbf{x} = t\mathbf{v} \quad (t \text{ in } \mathbb{R}) \tag{4}$$

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by adding the vector **p** to the solutions of $A\mathbf{x} = \mathbf{0}$. The vector **p** itself is just one particular solution of $A\mathbf{x} = \mathbf{b}$ [corresponding to t = 0 in (3)].

Suppose L is the line through $\bf 0$ and $\bf v$, described by equation (4). Adding $\bf p$ to each point on L produces the translated line described by equation (3). Note that \mathbf{p} is on the line in equation (3). We call (3) the equation of the line through p parallel to v. Thus the solution set of $A\mathbf{x} = \mathbf{b}$ is a line through \mathbf{p} parallel to the solution set of $A\mathbf{x} = \mathbf{0}$. Figure 5 illustrates this case.

FIGURE 5 Parallel solution sets of Ax = b and $A\mathbf{x} = \mathbf{0}$.

The relation between the solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$ shown in Figure 5 generalizes to any *consistent* equation $A\mathbf{x} = \mathbf{b}$, although the solution set will be larger than a line when there are several free variables. The following theorem gives the precise statement. See Exercise 37 at the end of this section for a proof.

FIGURE 3 Adding **p** to **v** translates **v** to $\mathbf{v} + \mathbf{p}$.

FIGURE 4 Translated line.

THEOREM 6

Suppose the equation Ax = b is consistent for some given b, and let p be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Theorem 6 says that if $A\mathbf{x} = \mathbf{b}$ has a solution, then the solution set is obtained by translating the solution set of $A\mathbf{x} = \mathbf{0}$, using any particular solution \mathbf{p} of $A\mathbf{x} = \mathbf{b}$ for the translation. Figure 6 illustrates the case in which there are two free variables. Even when n > 3, our mental image of the solution set of a consistent system $A\mathbf{x} = \mathbf{b}$ (with $\mathbf{b} \neq \mathbf{0}$) is either a single nonzero point or a line or plane not passing through the origin.

FIGURE 6 Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$.

Warning: Theorem 6 and Figure 6 apply only to an equation $A\mathbf{x} = \mathbf{b}$ that has at least one nonzero solution **p**. When A**x** = **b** has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC VECTOR FORM

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution x as a vector whose entries depend on the free variables, if any.
- 4. Decompose x into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Reasonable Answers

To verify that the solutions you found are indeed solutions to the homogeneous equation Ax = 0, simply multiply the matrix by each vector in your solution and check that the result is the zero vector. For example, if

$$A = \begin{bmatrix} 1 & -2 & 1 & 2 \\ 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$
, and you found the homogeneous solutions to

Reasonable Answers (Continued)

be
$$x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$
, check $\begin{bmatrix} 1 & -2 & 1 & 2 \\ 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and

$$\begin{bmatrix} 1 & -2 & 1 & 2 \\ 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Then } A \left(x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right)$$

$$= x_3 A \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 A \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix}, \text{ which is equal to } x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

as desired.

If you are solving $A\mathbf{x} = \mathbf{b}$, then you can again verify that you have correct solutions by multiplying the matrix by each vector in your solutions. The product of A with the first vector (the one that is *not* part of the solution to the homogeneous equation) should be \mathbf{b} . The product of A with the remaining vectors (the ones that are part of the solution to the homogeneous equation) should of course be $\mathbf{0}$.

For example, to verify that $\begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix}$ are solutions to

$$A\mathbf{x} = \begin{bmatrix} 5 \\ 13 \\ 8 \end{bmatrix}$$
, check $\begin{bmatrix} 1 & -2 & 1 & 2 \\ 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \\ 8 \end{bmatrix}$, and use the

calculations from above. Notice $A \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix} + x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$

$$= A \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} + x_3 A \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 A \begin{bmatrix} -8 \\ -3 \\ 0 \\ 1 \end{bmatrix}, \text{ which is equal to } \begin{bmatrix} 5 \\ 13 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$+x_4\begin{bmatrix}0\\0\\0\end{bmatrix} = \begin{bmatrix}5\\13\\8\end{bmatrix}$$
, as desired.

Practice Problems

1. Each of the following equations determines a plane in \mathbb{R}^3 . Do the two planes intersect? If so, describe their intersection.

$$x_1 + 4x_2 - 5x_3 = 0$$
$$2x_1 - x_2 + 8x_3 = 9$$

- 2. Write the general solution of $10x_1 3x_2 2x_3 = 7$ in parametric vector form, and relate the solution set to the one found in Example 2.
- 3. Prove the first part of Theorem 6: Suppose that **p** is a solution of $A\mathbf{x} = \mathbf{b}$, so that $A\mathbf{p} = \mathbf{b}$. Let \mathbf{v}_h be any solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$, and let $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$. Show that \mathbf{w} is a solution to $A\mathbf{x} = \mathbf{b}$.

1.5 Exercises

In Exercises 1–4, determine if the system has a nontrivial solution. Try to use as few row operations as possible.

1.
$$2x_1 - 5x_2 + 8x_3 = 0$$

 $-2x_1 - 7x_2 + x_3 = 0$
 $4x_1 + 2x_2 + 7x_3 = 0$
2. $x_1 - 3x_2 + 7x_3 = 0$
 $-2x_1 + x_2 - 4x_3 = 0$
 $x_1 + 2x_2 + 9x_3 = 0$

3.
$$-3x_1 + 5x_2 - 7x_3 = 0$$

 $-6x_1 + 7x_2 + x_3 = 0$
4. $-5x_1 + 7x_2 + 9x_3 = 0$
 $x_1 - 2x_2 + 6x_3 = 0$

In Exercises 5 and 6, follow the method of Examples 1 and 2 to write the solution set of the given homogeneous system in parametric vector form.

5.
$$x_1 + 3x_2 + x_3 = 0$$
 6. $x_1 + 3x_2 - 5x_3 = 0$
 $-4x_1 - 9x_2 + 2x_3 = 0$ $x_1 + 4x_2 - 8x_3 = 0$
 $-3x_2 - 6x_3 = 0$ $-3x_1 - 7x_2 + 9x_3 = 0$

In Exercises 7–12, describe all solutions of $A\mathbf{x} = \mathbf{0}$ in parametric vector form, where A is row equivalent to the given matrix.

7.
$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5 \end{bmatrix}$$
 8. $\begin{bmatrix} 1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6 \end{bmatrix}$

9.
$$\begin{bmatrix} 2 & -8 & 6 \\ -1 & 4 & -3 \end{bmatrix}$$
 10. $\begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \end{bmatrix}$

11.
$$\begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

12.
$$\begin{bmatrix} 1 & 5 & 2 & -6 & 9 & 0 \\ 0 & 0 & 1 & -7 & 4 & -8 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

You may find it helpful to review the information in the Reasonable Answers box from this section before answering Exercises 13-16.

- **13.** Verify that the solutions you found to Exercise 9 are indeed homogeneous solutions.
- 14. Verify that the solutions you found to Exercise 10 are indeed homogeneous solutions.
- 15. Verify that the solutions you found to Exercise 11 are indeed homogeneous solutions.
- 16. Verify that the solutions you found to Exercise 12 are indeed homogeneous solutions.
- 17. Suppose the solution set of a certain system of linear equations can be described as $x_1 = 5 + 4x_3$, $x_2 = -2 - 7x_3$, with x_3 free. Use vectors to describe this set as a line in \mathbb{R}^3 .
- 18. Suppose the solution set of a certain system of linear equations can be described as $x_1 = 3x_4$, $x_2 = 8 + x_4$, $x_3 = 2 - 5x_4$, with x_4 free. Use vectors to describe this set as a line in \mathbb{R}^4 .
- 19. Follow the method of Example 3 to describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set and compare it to that in Exercise 5.

$$x_1 + 3x_2 + x_3 = 1$$

$$-4x_1 - 9x_2 + 2x_3 = -1$$

$$-3x_2 - 6x_3 = -3$$

20. As in Exercise 19, describe the solutions of the following system in parametric vector form, and provide a geometric comparison with the solution set in Exercise 6.

$$x_1 + 3x_2 - 5x_3 = 4$$

$$x_1 + 4x_2 - 8x_3 = 7$$

$$-3x_1 - 7x_2 + 9x_3 = -6$$

- **21.** Describe and compare the solution sets of $x_1 + 9x_2 4x_3 = 0$ and $x_1 + 9x_2 - 4x_3 = -2$.
- **22.** Describe and compare the solution sets of $x_1 3x_2 + 5x_3 = 0$ and $x_1 - 3x_2 + 5x_3 = 4$.

In Exercises 23 and 24, find the parametric equation of the line through **a** parallel to **b**.

23.
$$\mathbf{a} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$
 24. $\mathbf{a} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -4 \\ 9 \end{bmatrix}$

In Exercises 25 and 26, find a parametric equation of the line M through \mathbf{p} and \mathbf{q} . [Hint: M is parallel to the vector $\mathbf{q} - \mathbf{p}$. See the figure below.]

25.
$$\mathbf{p} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$
 26. $\mathbf{p} = \begin{bmatrix} -6 \\ 3 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$

The line through **p** and **q**.

In Exercises 27–36, mark each statement True or False (T/F). Justify each answer.

- 27. (T/F) A homogeneous equation is always consistent.
- **28.** (T/F) If **x** is a nontrivial solution of A**x** = **0**, then every entry in **x** is nonzero.
- **29.** (T/F) The equation $A\mathbf{x} = \mathbf{0}$ gives an explicit description of its solution set.
- **30.** (T/F) The equation $\mathbf{x} = x_2\mathbf{u} + x_3\mathbf{v}$, with x_2 and x_3 free (and neither \mathbf{u} nor \mathbf{v} a multiple of the other), describes a plane through the origin.
- **31.** (T/F) The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if the equation has at least one free variable.
- **32. (T/F)** The equation $A\mathbf{x} = \mathbf{b}$ is homogeneous if the zero vector is a solution.
- **33.** (T/F) The equation $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ describes a line through \mathbf{v} parallel to \mathbf{p} .
- **34.** (T/F) The effect of adding \mathbf{p} to a vector is to move the vector in a direction parallel to \mathbf{p} .
- **35.** (T/F) The solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the equation $A\mathbf{x} = \mathbf{0}$.
- **36.** (T/F) The solution set of $A\mathbf{x} = \mathbf{b}$ is obtained by translating the solution set of $A\mathbf{x} = \mathbf{0}$.
- 37. Prove the second part of Theorem 6: Let \mathbf{w} be any solution of $A\mathbf{x} = \mathbf{b}$, and define $\mathbf{v}_h = \mathbf{w} \mathbf{p}$. Show that \mathbf{v}_h is a solution of $A\mathbf{x} = \mathbf{0}$. This shows that every solution of $A\mathbf{x} = \mathbf{b}$ has the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, with \mathbf{p} a particular solution of $A\mathbf{x} = \mathbf{b}$ and \mathbf{v}_h a solution of $A\mathbf{x} = \mathbf{0}$.

- **38.** Suppose $A\mathbf{x} = \mathbf{b}$ has a solution. Explain why the solution is unique precisely when $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **39.** Suppose *A* is the 3×3 zero matrix (with all zero entries). Describe the solution set of the equation $A\mathbf{x} = \mathbf{0}$.
- **40.** If $\mathbf{b} \neq \mathbf{0}$, can the solution set of $A\mathbf{x} = \mathbf{b}$ be a plane through the origin? Explain.

In Exercises 41–44, (a) does the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution and (b) does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for every possible \mathbf{b} ?

- **41.** A is a 3×3 matrix with three pivot positions.
- **42.** A is a 3×3 matrix with two pivot positions.
- **43.** A is a 3×2 matrix with two pivot positions.
- **44.** A is a 2×4 matrix with two pivot positions.
- **45.** Given $A = \begin{bmatrix} -2 & -6 \\ 7 & 21 \\ -3 & -9 \end{bmatrix}$, find one nontrivial solution of

 $A\mathbf{x} = \mathbf{0}$ by inspection. [Hint: Think of the equation $A\mathbf{x} = \mathbf{0}$ written as a vector equation.]

- **46.** Given $A = \begin{bmatrix} 4 & -6 \\ -8 & 12 \\ 6 & -9 \end{bmatrix}$, find one nontrivial solution of $A\mathbf{x} = \mathbf{0}$ by inspection.
- **47.** Construct a 3 × 3 nonzero matrix A such that the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$.
- **48.** Construct a 3×3 nonzero matrix A such that the vector $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$.
- **49.** Construct a 2×2 matrix A such that the solution set of the equation $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (4, 1) and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^2 such that the solution set of $A\mathbf{x} = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$. Why does this *not* contradict Theorem 6?
- **50.** Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{y}$ does *not* have a solution. Does there exist a vector \mathbf{z} in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{z}$ has a unique solution? Discuss.
- **51.** Let *A* be an $m \times n$ matrix and let **u** be a vector in \mathbb{R}^n that satisfies the equation $A\mathbf{x} = \mathbf{0}$. Show that for any scalar *c*, the vector $c\mathbf{u}$ also satisfies $A\mathbf{x} = \mathbf{0}$. [That is, show that $A(c\mathbf{u}) = \mathbf{0}$.]
- **52.** Let A be an $m \times n$ matrix, and let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^n with the property that $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{v} = \mathbf{0}$. Explain why $A(\mathbf{u} + \mathbf{v})$ must be the zero vector. Then explain why $A(c\mathbf{u} + d\mathbf{v}) = \mathbf{0}$ for each pair of scalars c and d.

Solutions to Practice Problems

1. Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -5 & 0 \\ 2 & -1 & 8 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -5 & 0 \\ 0 & -9 & 18 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -2 & -1 \end{bmatrix}$$
$$x_1 + 3x_3 = 4$$
$$x_2 - 2x_3 = -1$$

Thus $x_1 = 4 - 3x_3$, $x_2 = -1 + 2x_3$, with x_3 free. The general solution in parametric vector form is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 - 3x_3 \\ -1 + 2x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

The intersection of the two planes is the line through \mathbf{p} in the direction of \mathbf{v} .

2. The augmented matrix $\begin{bmatrix} 10 & -3 & -2 & 7 \end{bmatrix}$ is row [1 -.3 -.2 .7], and the general solution is $x_1 = .7 + .3x_2 + .2x_3$, with x_2 and x_3 free. That is,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .7 + .3x_2 + .2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .7 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} .3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} .2 \\ 0 \\ 1 \end{bmatrix}$$
$$= \mathbf{p} + x_2 \mathbf{u} + x_3 \mathbf{v}$$

The solution set of the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$ is the translated plane $\mathbf{p} + \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}\$, which passes through \mathbf{p} and is parallel to the solution set of the homogeneous equation in Example 2.

3. Using Theorem 5 from Section 1.4, notice

$$A(\mathbf{p} + \mathbf{v}_h) = A\mathbf{p} + A\mathbf{v}_h = \mathbf{b} + \mathbf{0} = \mathbf{b},$$

hence $\mathbf{p} + \mathbf{v}_h$ is a solution to $A\mathbf{x} = \mathbf{b}$.

1.6 Applications of Linear Systems

You might expect that a real-life problem involving linear algebra would have only one solution, or perhaps no solution. The purpose of this section is to show how linear systems with many solutions can arise naturally. The applications here come from economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter's introduction, is now known as a Leontief "input-output" (or "production") model. 1 Section 2.6 will examine this model in more detail, when more theory and better notation are available. For now, we look at a simpler "exchange model," also due to Leontief.

¹ See Wassily W. Leontief, "Input-Output Economics," Scientific American, October 1951, pp. 15–21.