UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/820,347	04/07/2004	Eric K. Hall	907A.0141.U1(US)	8144
29683 7590 02/16/2010 HARRINGTON & SMITH			EXAMINER	
4 RESEARCH	DRIVE, Suite 202	TIMORY, KABIR A		
SHELTON, CT 06484-6212			ART UNIT	PAPER NUMBER
			2611	
			MAIL DATE	DELIVERY MODE
			02/16/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)		
	10/820,347	HALL ET AL.		
Office Action Summary	Examiner	Art Unit		
	KABIR A. TIMORY	2611		
The MAILING DATE of this communication a Period for Reply	ppears on the cover sheet with the	correspondence address		
A SHORTENED STATUTORY PERIOD FOR REF WHICHEVER IS LONGER, FROM THE MAILING - Extensions of time may be available under the provisions of 37 CFR after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period. - Failure to reply within the set or extended period for reply will, by stat Any reply received by the Office later than three months after the mail earned patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNICATION 1.136(a). In no event, however, may a reply be tile of will apply and will expire SIX (6) MONTHS from ute, cause the application to become ABANDONE	N. mely filed the mailing date of this communication. ED (35 U.S.C. § 133).		
Status				
1) ☐ Responsive to communication(s) filed on 22 2a) ☐ This action is FINAL . 2b) ☐ The substitution of t	nis action is non-final. vance except for formal matters, pro			
Disposition of Claims	Ex parte Quayle, 1999 9.5. 11, 4	00 0.0.210.		
4) Claim(s) 1-31 is/are pending in the application 4a) Of the above claim(s) is/are withdress 5) Claim(s) is/are allowed. 6) Claim(s) 1-31 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and	rawn from consideration.			
Application Papers				
9) The specification is objected to by the Exami 10) The drawing(s) filed on is/are: a) a Applicant may not request that any objection to the Replacement drawing sheet(s) including the correctable. 11) The oath or declaration is objected to by the	ccepted or b) objected to by the ne drawing(s) be held in abeyance. Se ection is required if the drawing(s) is ob	e 37 CFR 1.85(a). jected to. See 37 CFR 1.121(d).		
Priority under 35 U.S.C. § 119				
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 				
Attachment(s) 1) Notice of References Cited (PTO-892)	4) 🔲 Interview Summary			
2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date Paper No(s)/Mail Date Paper No(s)/Mail Date				

DETAILED ACTION

Request for Continued Examination (RCE) Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 12/22/2009 has been entered.

Response to Arguments

- This office action is in response to the amendment filed on 12/22/2009. Claims
 1-31 are pending in this application and have been considered below.
- 3. The rejection under 35 USC 112 1st paragraph to claims 1-31 is corrected by the amendments; therefore, the rejection is withdrawn.
- 4. Applicant's arguments with respect to claims 1, 14, 27, 30, and 31 have been considered but are most in view of new ground(s) of rejection. However, the examiner would like to respond to the applicant's representative's argument.

Applicant's argument: "More particularly from the receiver's perspective as claim 1 recites, the Ling receiver cannot insert "zero symbols into a received symbol

Art Unit: 2611

stream to replace symbols degraded by the signal degrading event", but instead inserts its zero values into the positions at which it knows the transmitter punctured".

Examiner's response: In paragraph 0139, Ling et al. disclose: "De-puncturer 159 then inserts "erasures" for code bits that have been deleted (i.e., punctured) at the transmitter. The erasures typically have a value of zero ("0"), which is indicative of the punctured bit being equally likely to be a zero or a one". In this paragraph Ling et al. clearly disclose that the depuncturer 159 is capable of replacing the code bits (interpreted to be symbols) that have been Moreover, in Par 0025, Ling et al. disclose: "The deleted by the at the transmitter". interleaving provides time and frequency diversity for the coded bits, permits the data to be transmitted based on an average SNR for the subchannels used for the data transmission, combats fading, and further removes correlation between coded bits used to form each modulation symbol, as described below. The interleaved bits are then punctured (i.e., deleted) to provide the required number of coded bits. The encoding, channel interleaving, and puncturing are described in further detail below. The unpunctured coded bits are then provided to a symbol mapping element 118". Therefore, the Ling receiver can insert "zero symbols into a received symbol stream to replace symbols degraded by the signal degrading event".

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2611

6. Claims 1, 2, 4, 6-8, 13-15, 17, 19-21, and 26 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ling et al (US 2003/0043928).

Regarding claims 1 and 14:

As shown in figure 1, Ling et al. discloses a method to operate a digital signal receiver, comprising:

- detecting occurrence of a symbol degrading event for a received signal (error detection is interpreted to be detecting the occurrence of a symbol degrading. Also channel interleaver provides diversity against path effects such as fading)
 (paragraph 0068, lines 1-3 and paragraph 0084, lines 1-4);
- wherein the symbol degrading event occurs after transmission and before reception of the received signal (this limitation is well known and inherent in the art. One of ordinary skilled in the art knows that the signal is expected to suffer propagation loss such as "symbol degrading event" as it travels from the transmitter to the receiver. In order to show the inherency for this limitation, the examiner is referring to a book "CDMA RF SYSTEM ENGINEERING" By Samuel C. Yang, Pages14-26, published by Artech House Publishers in 1998. Please note that this reference is not provided as a prior art for this rejection, but to show the inherency of this limitation.);
- inserting zero symbols into a received symbol stream to replace symbols degraded by the signal degrading event prior to de-interleaving the received signal (paragraph 0025, lines 9-18, paragraph 0029, lines 13-19); and

Art Unit: 2611

 error correction decoding the received symbol stream having the inserted zero symbols (figure 8, paragraph 0144, lines 1-6).

Ling et al. clearly disclose a channel Interleaver 116 and Puncturer 117 and also in paragraph 0025, Ling et al. discloses that this method is used to combat fading. Moreover, the system of figure 1 of Ling et al. illustrates that the de-puncturer 159 is located prior to the channel deinterleaver 160 and "erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164". in Par 0025, Ling et al. disclose: "The interleaving provides time and frequency diversity for the coded bits, permits the data to be transmitted based on an average SNR for the subchannels used for the data transmission, combats fading, and further removes correlation between coded bits used to form each modulation symbol, as described below. The interleaved bits are then punctured (i.e., deleted) to provide the required number of coded bits. The encoding, channel interleaving, and puncturing are described in further detail below. The unpunctured coded bits are then provided to a symbol mapping element 118". And in par 0029, Ling et al. disclose: "The received symbols for the transmission channels are then provided to a bit calculation unit 158 that performs processing complementary to that performed by symbol mapping element 118 and provides values indicative of the received bits. Erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data

sink 164. The channel deinterleaving, de-puncturing, and decoding are complementary to the channel interleaving, puncturing, and encoding performed at the transmitter".

Ling et al. disclose all of the subject matter as described above except for specifically teaching to replace symbols degraded by the signal degrading event. However, based on the cited portions of the ling et al. reference, it would have been obvious to one of ordinary skilled in the art at the invention was made to use the method of zero insertion as taught by Ling et al. to insert zero to "replace symbols degraded by the signal degrading event" (fading) in order to combat signal fading.

Regarding claims 2 and 15:

Ling et al. further discloses where error correction decoding comprises operating a Reed-Solomon decoder (the system which has Reed-Solomon coder would also have a Reed-Solomon decoder) (paragraph 0068, lines 3-6).

Regarding claims 4 and 17:

Ling et al. further discloses where error correction decoding comprises operating a Turbo decoder (paragraph 0135, lines 4-5).

Regarding claims 6 19:

Ling et al. further discloses where inserting occurs after a Viterbi decoder (paragraph 0147, lines 1-3).

Regarding claims 7 and 20:

Ling et al. further discloses where error correction decoding comprises first deinterleaving the received symbol stream having the inserted zero symbols (figure 8, 160, paragraph 0029, lines 13-19).

Art Unit: 2611

Regarding claims 8 and 21:

Ling et al. further discloses where detecting comprises:

estimating a signal to noise ratio (SNR) of a block of L contiguous received symbols,
 where L is an integer greater than or equal to one;

comparing the estimated SNR to a threshold SNR value (paragraph 0010, lines 6-9); and

 replacing L symbols with L zero symbols when the estimated SNR is less than the threshold SNR (paragraph 0025, lines 9-16).

Regarding claims 13 and 26:

Ling et al. further discloses where detecting uses information received from a transmitter that is indicative of a time when a deep fade occurs (figure 1, paragraph 0084, lines 1-4).

7. Claims 3, 5, 16, and 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ling et al. in view of Koetter et al. (Us 6,634,007).

Regarding claim 3 and 16:

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where error correction decoding comprises operating a BCH decoder.

However, Koetter et al., in the same field of endeavor, teaches where error correction decoding comprises operating a BCH decoder (column 12, lines 27-32).

One of ordinary skill in the art would have clearly recognized that in order to correct multiple random errors, coding methodology such as BCH (Bose-Chaudhuri-Hocquenghem) coding is used. By using this technique, we can estimate the likelihoods of the symbols that were input to the communication channel. In order to estimate the likelihood of the received symbols, it would have been obvious to one ordinary skill in the art at the time the invention was made to use BCH coding methodology as taught by Koetter et al. in the soft decoding of Reed-Solomon codes. Using BCH decoding techniques is advantageous because it will provide a sufficient method of soft-decision decoding and forward error-correction.

Regarding claim 5 and 18:

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where inserting occurs in conjunction with operating a BPSK bit metric calculator.

However, Koetter et al., in the same field of endeavor, teaches where inserting occurs in conjunction with operating a BPSK bit metric calculator (column 16, lines 66-67).

One of ordinary skill in the art would have clearly recognized that there are several modulation techniques such as Phase Shift Keying (PSK). Also in digital communication we can use BPSK (Binary Phase Shift Keying) modulation to modulate the phase of a reference signal. In BPSK, a finite number of phases are used. Each of

these phases is assigned a unique pattern of Binary Bits. Usually, each phase encodes an equal number of bits. Each pattern of bits forms the Symbols that is represented by the particular phase. In order to modulate the received signal in digital format, it would have been obvious to one ordinary skill in the art at the time the invention was made to use BPSK modulation methodology as taught by Koetter et al. in the soft decoding of Reed-Solomon codes. It is advantageous to use BPSK modulation because BPSK is the simplest form of PSK. It uses two phases which are separated by 180 degrees. Also BPSK modulation is the most robust of all the PSKs modulation.

8. Claims 9-12 and 22-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ling et al. in view of Slack et al. (Us 4,574,252).

Regarding claim 9 and 22:

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where detecting comprises examining the output of at least one Automatic Gain Control (AGC) circuit.

However, Slack et al., in the same field of endeavor, teaches, where detecting comprises examining the output of at least one Automatic Gain Control (AGC) circuit (figure 1, abstract, lines 1-6).

One of ordinary skill in the art would have clearly recognized Receivers for mobile communication systems include Automatic Gain Control (AGC) subsystems,

Art Unit: 2611

which attempt to minimize the fluctuations in the received signal energy and consequently amplitude. In order to accomplish an approximately constant received signal energy, it would have been obvious to one ordinary skill in the art at the time the invention was made to include a AGC circuit in the system as taught by Slack et al. To adjust the signal power level, it is advantageous to use an Automatic Gain Control subsystem to achieve the appropriate power level in the received signal.

Regarding claim 10 and 23:

Ling et al. further discloses means for replacing symbols with zero symbols when either the first or the second threshold is exceeded (paragraph 0029, lines 13-19).

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where said circuit comprises means for comparing the output of a slow AGC to a first threshold, means for comparing the output of a fast AGC to a second threshold.

However, Slack et al., in the same field of endeavor, teaches, where said circuit comprises means for comparing the output of a slow AGC to a first threshold, means for comparing the output of a fast AGC to a second threshold (figure 1, 20, 26, 34, 36).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. There are two types of degradation and fading: fast fading and slow fading. To control and adjust the signal power or amplitude level during these two fading conditions, it would have been obvious to one ordinary skill in the art at the time the invention was made to include AGC circuits to combat both fading conditions (fast

Art Unit: 2611

and slow) as taught by Slack et al. To adjust the signal power level, it is advantageous to use Automatic Gain Control subsystems to achieve the appropriate power level in the received signal in both fast and slow fading conditions.

Regarding claim 11 and 24:

Ling et al. further discloses means for replacing symbols with zero symbols when the difference exceeds the threshold (paragraph 0029, lines 13-19).

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where said circuit comprises means for comparing a difference between the output of a slow AGC and the output of a fast AGC to a threshold.

However, Slack et al., in the same field of endeavor, teaches, where said circuit comprises means for comparing a difference between the output of a slow AGC and the output of a fast AGC to a threshold (figure 1, 20, 26, 34, 36, column 3, lines 58-64).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. There are two types of degradation and fading: fast fading and slow fading. To control and adjust the signal power or amplitude level during these two fading conditions, it would have been obvious to one ordinary skill in the art at the time the invention was made to include AGC circuits to combat both fading conditions (fast and slow) as taught by Slack et al. To adjust the signal power level, it is advantageous to use Automatic Gain Control subsystems to achieve the appropriate power level in the received signal in both fast and slow fading conditions.

Regarding claim 12 and 25:

Ling et al. further discloses means for replacing symbols with zero symbols when the difference exceeds the threshold (paragraph 0029, lines 13-19).

Ling et al. disclose all of the subject matter as described above except for specifically teaching, where said circuit comprises means for comparing a difference between the output of a fast AGC and an average of the output of the fast AGC to a threshold.

However, Slack et al., in the same field of endeavor, teaches, where said circuit comprises means for comparing a difference between the output of a fast AGC and an average of the output of the fast AGC to a threshold (figure 1, 20, 26, 34, 36, column 3, lines 58-64).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. There are two types of degradation and fading: fast fading and slow fading. To control and adjust the signal power or amplitude level during these two fading conditions, it would have been obvious to one ordinary skill in the art at the time the invention was made to include AGC circuits to combat both fading conditions (fast and slow) as taught by Slack et al. To adjust the signal power level, it is advantageous to use Automatic Gain Control subsystems to achieve the appropriate power level in the received signal in both fast and slow fading conditions.

Art Unit: 2611

9. Claims 27- 31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ling et al. in view of Shor et al. and further in view of Rogards et al. (Us 4,718,066).

Regarding claim 27:

Ling et al. further disclose

- in response to detecting the occurrence of the fading condition, inserting zero symbols into a received symbol stream at the receiver (error detection is interpreted to be detecting the occurrence of a symbol degrading. Also channel interleaver provides diversity against path effects such as fading) (paragraph 0068, lines 1-3 and paragraph 0084, lines 1-4) to replace symbols degraded by the fading condition (abstract, par 0025 and par 0029);
- de-interleaving (figure 1, 160) the received symbol stream having the inserted zero symbols signal (paragraph 0029, lines 13-19); and
- decoding (figure 1, 162) the received symbol stream having the inserted zero symbols (Erasures have zero value indicatives) (figure 1,159).

Ling et al. clearly disclose a channel Interleaver 116 and Puncturer 117 and also in paragraph 0025, Ling et al. discloses that this method is used to combat fading.

Moreover, the system of figure 1 of Ling et al. illustrates that the de-puncturer 159 is located prior to the channel deinterleaver 160 and "erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data

Art Unit: 2611

sink 164". In par 0025, Ling et al. disclose: "The interleaving provides time and frequency diversity for the coded bits, permits the data to be transmitted based on an average SNR for the subchannels used for the data transmission, combats fading, and further removes correlation between coded bits used to form each modulation symbol, as described below. The interleaved bits are then punctured (i.e., deleted) to provide the required number of coded bits. The encoding, channel interleaving, and puncturing are described in further detail below. The unpunctured coded bits are then provided to a symbol mapping element 118". And in par 0029, Ling et al. disclose: "The received symbols for the transmission channels are then provided to a bit calculation unit 158 that performs processing complementary to that performed by symbol mapping element 118 and provides values indicative of the received bits. Erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164. The channel deinterleaving, de-puncturing, and decoding are complementary to the channel interleaving, puncturing, and encoding performed at the transmitter".

Ling et al. disclose all of the subject matter as described above except for specifically teaching to replace symbols degraded by the signal degrading event. However, based on the cited portions of the ling et al. reference, it would have been obvious to one of ordinary skilled in the art at the invention was made to use the method of zero insertion as taught by Ling et al. to insert zero to "replace symbols degraded by the signal degrading event" (fading) in order to combat signal fading.

Art Unit: 2611

Ling et al. disclose all of the subject matter as described above except for specifically teaching, detecting the occurrence of a fading condition due to obstruction by the propeller blade and caused by the obstructing propeller blade.

However, Rogards et al., in the same field of endeavor, teaches, detecting the occurrence of a fading condition due to obstruction by the propeller blade and caused by the obstructing propeller blade (periodic fading is interpreted to be a fading condition due to obstruction by the propeller blade) (figure 3, column 1, lines 22-34).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. Due to multipath phenomenon, in a communication system such as satellite radio waves experience phase and amplitude shifts. Also, small shifts in the transmission path could change the phase relationship of signals, causing periodic fading and produce bits or burst errors. To combat the signal fading, it would have been obvious to one ordinary skill in the art at the time the invention was made to design the system such that to be suitable for transmission of data frequently effected by periods of fading as taught by Rogards et al. To combat periodic fading, interleaving techniques are used. These techniques enable the reduction or elimination of the correlation between the errors, which affect the successive symbols applied to a decoder, particularly by transmitting the different components of a block in an order different from that which the decoder will receive. These interleaving techniques have the disadvantage of increasing further the transmission time.

Regarding claim 28:

Art Unit: 2611

Ling et al. further disclose, where decoding comprises operating a concatenated forward error correction (FEC) decoder (figure 1, 162, paragraph 0067, lines 3-5).

Regarding claim 29:

Ling et al. further disclose, where decoding comprises operating one of a Reed-Solomon decoder, a BCH decoder, or a Turbo decoder (paragraph 0135, lines 4-5).

Regarding claim 30:

Ling et al. further disclose

- in response to detecting the occurrence of the fading condition, inserting zero symbols into a received symbol stream at the satellite (paragraph 0029, lines 13-19) to replace symbols degraded by the fading condition (abstract, par 0025 and par 009);
- de-interleaving (figure 1, 160) the received symbol stream having the inserted zero symbols (paragraph 0029, lines 13-19); and
- error correction decoding (figure 1, 162) the received symbol stream having the inserted zero symbols (Erasures have zero value indicatives) (figure 1,159).

Ling et al. clearly disclose a channel Interleaver 116 and Puncturer 117 and also in paragraph 0025, Ling et al. discloses that this method is used to combat fading.

Moreover, the system of figure 1 of Ling et al. illustrates that the de-puncturer 159 is located prior to the channel deinterleaver 160 and "erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164". In par 0025, Ling et al. disclose: "The interleaving provides time and

Art Unit: 2611

frequency diversity for the coded bits, permits the data to be transmitted based on an average SNR for the subchannels used for the data transmission, combats fading, and further removes correlation between coded bits used to form each modulation symbol, as described below. The interleaved bits are then punctured (i.e., deleted) to provide the required number of coded bits. The encoding, channel interleaving, and puncturing are described in further detail below. The unpunctured coded bits are then provided to a symbol mapping element 118". And in par 0029, Ling et al. disclose: "The received symbols for the transmission channels are then provided to a bit calculation unit 158 that performs processing complementary to that performed by symbol mapping element 118 and provides values indicative of the received bits. Erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164. The channel deinterleaving, de-puncturing, and decoding are complementary to the channel interleaving, puncturing, and encoding performed at the transmitter".

Ling et al. disclose all of the subject matter as described above except for specifically teaching to replace symbols degraded by the signal degrading event. However, based on the cited portions of the ling et al. reference, it would have been obvious to one of ordinary skilled in the art at the invention was made to use the method of zero insertion as taught by Ling et al. to insert zero to "replace symbols degraded by the signal degrading event" (fading) in order to combat signal fading.

Art Unit: 2611

Ling et al. disclose all of the subject matter as described above except for specifically teaching, detecting, on the satellite, the occurrence of a fading condition due to obstruction by the propeller blade and caused by the obstructing propeller blade.

However, Rogards et al., in the same field of endeavor, teaches, detecting, on the satellite, the occurrence of a fading condition due to obstruction by the propeller blade and caused by the obstructing propeller blade (periodic fading is interpreted to be a fading condition due to obstruction by the propeller blade) (figure 3, column 1, lines 22-34).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. Due to multipath phenomenon, in a communication system such as satellite radio waves experience phase and amplitude shifts. Also, small shifts in the transmission path could change the phase relationship of signals, causing periodic fading and produce bits or burst errors. To combat the signal fading, it would have been obvious to one ordinary skill in the art at the time the invention was made to design the system such that to be suitable for transmission of data frequently effected by periods of fading as taught by Rogards et al. To combat periodic fading, interleaving techniques are used. These techniques enable the reduction or elimination of the correlation between the errors, which affect the successive symbols applied to a decoder, particularly by transmitting the different components of a block in an order different from that which the decoder will receive. These interleaving techniques have the disadvantage of increasing further the transmission time.

Art Unit: 2611

Regarding claim 31:

Ling et al. further disclose:

 inserting zero symbols into a received symbol stream (paragraph 0068, lines 1-3 and paragraph 0084, lines 1-4) to replace symbols corrupted by the fading condition (par 0025 and par 0029); and

 an error correction decoder (figure 1, 162) for decoding the received symbol stream having the inserted zero symbols (Erasures have zero value indicatives) (figure 1,159).

Ling et al. clearly disclose a channel Interleaver 116 and Puncturer 117 and also in paragraph 0025, Ling et al. discloses that this method is used to combat fading.

Moreover, the system of figure 1 of Ling et al. illustrates that the de-puncturer 159 is located prior to the channel deinterleaver 160 and "erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The de-punctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164".

Ling et al. clearly disclose a channel Interleaver 116 and Puncturer 117 and also in paragraph 0025, Ling et al. discloses that this method is used to combat fading.

Moreover, the system of figure 1 of Ling et al. illustrates that the de-puncturer 159 is located prior to the channel deinterleaver 160 and "erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data

Art Unit: 2611

sink 164". In par 0025, Ling et al. disclose: "The interleaving provides time and frequency diversity for the coded bits, permits the data to be transmitted based on an average SNR for the subchannels used for the data transmission, combats fading, and further removes correlation between coded bits used to form each modulation symbol, as described below. The interleaved bits are then punctured (i.e., deleted) to provide the required number of coded bits. The encoding, channel interleaving, and puncturing are described in further detail below. The unpunctured coded bits are then provided to a symbol mapping element 118". And in par 0029, Ling et al. disclose: "The received symbols for the transmission channels are then provided to a bit calculation unit 158 that performs processing complementary to that performed by symbol mapping element 118 and provides values indicative of the received bits. Erasures (e.g., zero value indicatives) are then inserted by a de-puncturer 159 for coded bits punctured at system 110. The depunctured values are then deinterleaved by a channel deinterleaver 160 and further decoded by a decoder 162 to generate decoded bits, which are then provided to a data sink 164. The channel deinterleaving, de-puncturing, and decoding are complementary to the channel interleaving, puncturing, and encoding performed at the transmitter".

Ling et al. disclose all of the subject matter as described above except for specifically teaching to replace symbols degraded by the signal degrading event. However, based on the cited portions of the ling et al. reference, it would have been obvious to one of ordinary skilled in the art at the invention was made to use the method of zero insertion as taught by Ling et al. to insert zero to "replace symbols degraded by the signal degrading event" (fading) in order to combat signal fading.

Art Unit: 2611

Ling et al. disclose all of the subject matter as described above except for specifically teaching, a satellite, comprising a receiver for receiving a signal that passes through a channel that is periodically obstructed, the receiver comprising circuitry for detecting the occurrence of a fading condition due to an obstruction and, in response to detecting the occurrence of the fading condition and caused by the periodic obstruction.

However, Rogards et al., in the same field of endeavor, teaches a satellite, comprising a receiver for receiving a signal that passes through a channel that is periodically obstructed, the receiver comprising circuitry for detecting the occurrence of a fading condition due to an obstruction and, in response to detecting the occurrence of the fading condition and caused by the periodic obstruction (column 1, lines 22-34).

One of ordinary skill in the art would have clearly that the signal propagation between the transmitting device and receiving device experience fading and signal degradation. Due to multipath phenomenon, in a communication system such as satellite radio waves experience phase and amplitude shifts. Also, small shifts in the transmission path could change the phase relationship of signals, causing periodic fading and produce bits or burst errors. To combat the signal fading, it would have been obvious to one ordinary skill in the art at the time the invention was made to design the system such that to be suitable for transmission of data frequently effected by periods of fading as taught by Rogards et al. To combat periodic fading, interleaving techniques are used. These techniques enable the reduction or elimination of the correlation between the errors, which affect the successive symbols applied to a decoder, particularly by transmitting the different components of a block in an order different from

Art Unit: 2611

that which the decoder will receive. These interleaving techniques have the disadvantage of increasing further the transmission time.

Conclusion

10. Any inquiry concerning this communication or earlier communications from the examiner should be directed to KABIR A. TIMORY whose telephone number is (571)270-1674. The examiner can normally be reached on 6:30 AM - 3:00 PM Monday-Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Shuwang Liu can be reached on 571-272-3036. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Art Unit: 2611

/Kabir A Timory/ Examiner, Art Unit 2611 /Shuwang Liu/ Supervisory Patent Examiner, Art Unit 2611