EJERCICIOS DE MODELADO Y DIMENSIONAMIENTO DE REDES

Ejercicio 4 – Modelo umbral del retardo

Considérese la red representada en el grafo adjunto.

Se propone utilizar el encaminamiento indicado en la siguiente tabla, donde también se especifica el tráfico en paquetes/segundo entre cada par de nodos fuente-destino.

	DESTINOS								
FUENTES		A	В	С	D	Е			
	A		10	10	10	10			
			ADCB	ADC	AD	ADE			
	В	10		10	10	10			
		BCDA		BC	BCD	BCE			
	С	10	10		10	10			
		CDA	CB		CD	CE			
	D	10	10	10		10			
		DA	DCB	DC		DE			
	Е	10	10	10	10				
		EDA	ECB	EC	ED				

Los paquetes que circulan por la red tienen una distribución exponencial de valor medio 1000 bytes. La capacidad de todos los enlaces es de 512 Kbps.

a) Obtener el retardo medio de la red aplicando la fórmula derivada del Teorema de Jackson.

$$T = \sum_{i=1}^{M} \frac{\lambda_i}{\gamma} T_i = \sum_{i=1}^{M} \frac{\lambda_i}{\gamma} \cdot \frac{1}{\mu' C_i - \lambda_i} = \frac{1}{\gamma} \sum_{i=1}^{M} \frac{\lambda_i}{\mu' C_i - \lambda_i}$$

b) Aplicando el modelo umbral del retardo, obtener el valor de T_0 , retardo medio de la red en vacío, y el valor umbral γ^* del punto de saturación de la red.

Ejercicios 4 Octubre 2024

Ejercicio 5 – Asignación de capacidades

La siguiente matriz de distancias D (en unidades monetarias/bps) está asociada a la red de conmutación de paquetes de la figura.

$$D = \begin{pmatrix} 0 & 10 & \infty & 2 & 5 & \infty \\ 10 & 0 & 10 & \infty & 2 & 5 \\ \infty & 10 & 0 & \infty & \infty & 2 \\ 2 & \infty & \infty & 0 & 4 & \infty \\ 5 & 2 & \infty & 4 & 0 & 4 \\ \infty & 5 & 2 & \infty & 4 & 0 \end{pmatrix}$$

Para dicha red, calcular el conjunto de capacidades que minimiza el retardo medio de tránsito global, teniendo en cuenta los siguientes puntos.

- i) Se utiliza una función de coste lineal donde los coeficientes d_i son los que aparecen en la matriz D.
 - $d_i(C_i) = d_iC_i$
- ii) El coste permitido para la red es de 2.816.000 unidades monetarias. Es decir:

$$\sum_{i=1}^{M} d_i C_i = 2816000$$

- iii) La red de conmutación de paquetes se puede modelar como una red de colas tipo Jackson. La longitud media de los paquetes es $1/\mu$ '=512 bits/paquete y todos los tráficos de entrada son iguales siendo $\gamma_{jk} = 8$ paquetes/seg (con j \in {1,2,3,4,5,6}, k \in {1,2,3,4,5,6} y no habiendo tráfico para los casos j=k).
- iv) El algoritmo de enrutamiento utilizado da como resultado las siguientes tablas de encaminamiento:

Tablas de encaminamiento

	Nodo 1		Nodo 2		Nodo 3		Nodo 4		Nodo 5		Nodo 6	
	Vía	Coste										
Destino 1	-	-	5	7	6	11	1	2	1	5	5	9
Destino 2	5	7	1	-	6	7	5	6	2	2	2	5
Destino 3	5	11	6	7	-	-	5	10	6	6	3	2
Destino 4	4	2	5	6	6	10	ı	-	4	4	5	8
Destino 5	5	5	5	2	6	6	5	4	ı	-	5	4
Destino 6	5	9	6	5	6	2	5	8	6	4	-	-

Ejercicios 5 Octubre 2024