1. Convert $\frac{(i+1)}{\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)}$ in polar form.

(1) $\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$

(3) $\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]$ mathongo mathongo

(2) $\cos\left(\frac{\pi}{2}\right) - i\sin\left(\frac{\pi}{2}\right)$ (4) $\sqrt{2}\left[\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right]$ mathongo we mathongo we have

2. If $z_r = \cos\frac{2r\pi}{5} + i\sin\frac{2r\pi}{5}$, $r = 0, 1, 2, 3, 4, \dots$, then $z_1z_2z_3z_4z_5$ is equal to

(1)a#1bngo ///. mathongo ///. mathongo ///. mathongo (3) 1

(2) Oathongo /// mathongo /// mathongo /// mathongo /// (4) none of these

3. The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ is:

(1) 6^5 $(3) -2^{15}$

(2) 2^{15} i (4) $-2^{15}i$

(4) $\cos 2n\theta + i \sin 2n\theta$

(4) 0

(1) 0(3) -1

(2) 1

mathons $\binom{n}{2}$ $-i\sin\left(\frac{\theta}{2}\right)$ $-i\sin$ is equal to

 $1 + \cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right)$ athongo /// mathongo (1) $\cos n\theta - i \sin n\theta$

(3) $\cos 2n\theta - i\sin 2n\theta$

6. If 1, ω , ω^2 are the cube roots of unity, then $(3 + \omega^2 + \omega^4)^6$ is equal to

(1) 64 ngo /// mathongo /// mathongo /// mathongo (3) 2

Let ω be a complex number satisfying $2\omega + 1 = z$, where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then the value of k is mathons with mathons 2ω .

///. (1) ±½ ongo ///. mathongo ///. (3) -1

8. If $i=\sqrt{-1}$ then $4+5\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{334}-3\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{365}$ is equal to -

(1) $1 - i\sqrt{3}$ (3) $4\sqrt{3}i$

9. If $z = \frac{\sqrt{3}}{2} + \frac{i}{2}(i = \sqrt{-1})$, then $(1 + iz + z^5 + iz^8)^9$ is equal to:

 $(3) (-1+2i)^9$

10. Let z and w be two non-zero complex numbers such that |z|=|w| and $\arg z+\arg w=\pi$ then z equals –

 $(3)_{a}\overline{w}_{ongo}$ /// mathongo // mathongo

(2) $-1+i\sqrt{3}$

(4) $-i\sqrt{3}$

(4) -1

 $(2) -\omega$

(2) 729 hongo /// mathongo /// mathongo /// mathongo

www.mathongo.com