

# Assignment 1

Take 4 labeled datasets (multiclass) from UCI repository and find 10-fold cross-validation accuracy using NB Classifier.

Nitesh Yadav(35), Rohit Rana(40), Rohit Shakya(41)

M.Sc. Computer Science
Department of Computer Science
University of Delhi

## **Title of Database**

**Blocks Classification** 

#### Source

Donato Malerba Department of Information University of Bari

## **Overview**

The problem consists in classifying all the blocks of the page layout of a document that has been detected by a segmentation process. This is an essential step in document analysis in order to separate text from graphic areas. Indeed, the five classes are:

- 1. text
- 2. horizontal line
- 3. picture
- 4. vertical line
- 5. graphic

# **Specifications**

- The 5473 examples come from 54 distinct documents.
- All attributes are numeric.
- Number of Instances: 5473
- Number of Attributes :

```
height: integer. | Height of the block.
length: integer. | Length of the block.
area: integer. | Area of the block (height * length);
eccen: continuous. | Eccentricity of the block (length / height);
p black: continuous. | Percentage of black pixels within the block (blackpix / area);
```

**p\_and**: continuous. | Percentage of black pixels after the application of the Run Length Smoothing Algorithm (RLSA)\* (blackand / area);

mean tr: continuous. | Mean number of white-black transitions (blackpix / wb trans);

**blackpix**: integer. | Total number of black pixels in the original bitmap of the block.

blackand: integer. | Total number of black pixels in the bitmap of the block after the RLSA.

**wb** trans: integer. | Number of white-black transitions in the original bitmap of the block.

\*RLSA - RUN LENGTH SMOOTHING ALGORITHM(RLSA) is a method mainly used to extract out the ROI(region of interest) with applied heuristics.

• Missing Attribute Values: No missing value

#### • Class Distribution:

| Class       | Frequency |
|-------------|-----------|
| text        | 4913      |
| horiz. line | 329       |
| graphic     | 28        |
| vert. line  | 88        |
| picture     | 115       |

<sup>\*</sup> Data is highly imbalanced.

## **Preprocessing:**

**Why preprocessing?**: It is useful to normalize the values of a normal distribution because they are easy to deal with using **z-score**.

#### **Definition:**

A z-score describes the position of a raw score in terms of its distance from the mean when measured in standard deviation units. The z-score is positive if the value lies above the mean, and negative if it lies below the mean.

#### Formula



#### **Gaussian NB**

In **Gaussian Naive Bayes**, continuous values associated with each feature are assumed to be distributed according to a **Gaussian** distribution. A **Gaussian** distribution is also called Normal distribution.

Gaussian Naive Bayes is an algorithm having a Probabilistic Approach. It involves prior and posterior probability calculation of the classes in the dataset and the test data given a class respectively.

$$Prior\ Probability(c) = \frac{\textit{No. of instances of class c}}{\textit{Total No. of instances in the dataset}}$$

Prior probabilities of all the classes are calculated using the same formula.

Posterior Probability
$$(x \mid c) = P(x_1 \mid c) * P(x_2 \mid c) * P(x_3 \mid c) * ... * P(x_n \mid c)$$

#### K-Fold:

That method is known as "k-fold cross-validation". It's easy to follow and implement. Below are the steps for it:

- 1. Randomly split your entire dataset into k"folds"
- 2. For each k-fold in the dataset, build a model on k 1 folds of the dataset. Then, test the model to check the effectiveness for kth fold
- 3. Record the error on each of the predictions
- 4. Repeat this until each of the k-folds has served as the test set
- 5. The average of k recorded errors is called the cross-validation error and will serve as a performance metric for the model

#### Stratified K-Fold

Stratification is the process of rearranging the data so as to ensure that each fold is a good representative of the whole

It is generally a better approach when dealing with both bias and variance. A randomly selected fold might not adequately represent the minor class, particularly in cases where there is a huge class imbalance.

# **Findings:**

#### 1. 5-Fold Cross-validation vs 10-Fold Cross-validation

The average accuracy in 10-fold cross-validation is less as compared to 5-fold cross-validation.

## 2. cross-validation score on different split point in k-fold



## 3. cross validation score on different split point in stratified k-fold



## **Conclusion:**

We can clearly conclude that accuracy improves in stratified k-fold as compared to simple k-fold.