Final Assessment 1

Kaviyadevi(20106064)

In [1]: #importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: #importing dataset
 data1=pd.read_csv(r"C:\Users\user\Downloads\madrid_2012.csv")
 data1

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	s
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN	280
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4	280
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5	280
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN	280
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN	280
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN	280
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN	280
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN	280
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN	280
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN	280

210720 rows × 14 columns

localhost:8888/notebooks/madrid_2012.ipynb

```
In [3]: data1.info()
```

```
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):
              Non-Null Count
 #
     Column
                               Dtype
     -----
              -----
                               ----
 0
     date
              210720 non-null object
                               float64
 1
    BEN
              51511 non-null
 2
    CO
              87097 non-null
                               float64
                               float64
 3
    EBE
              51482 non-null
 4
    NMHC
              30736 non-null
                               float64
 5
    NO
              209871 non-null float64
              209872 non-null
 6
    NO_2
                              float64
 7
    0_3
              122339 non-null
                              float64
 8
    PM10
              104838 non-null
                              float64
 9
    PM25
              52164 non-null
                               float64
 10 SO_2
              87333 non-null
                               float64
                               float64
 11 TCH
              30736 non-null
 12 TOL
              51373 non-null
                               float64
 13
    station 210720 non-null
                              int64
dtypes: float64(12), int64(1), object(1)
memory usage: 22.5+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [4]: data=data1.head(50000)

In [5]: #filling null values
 df=data.fillna(0)
 df

Out[5]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	static
0	2012- 09-01 01:00:00	0.0	0.2	0.0	0.00	7.0	18.0	0.0	0.0	0.0	2.0	0.00	0.0	280790
1	2012- 09-01 01:00:00	0.3	0.3	0.7	0.00	3.0	18.0	55.0	10.0	9.0	1.0	0.00	2.4	280790
2	2012- 09-01 01:00:00	0.4	0.0	0.7	0.00	2.0	10.0	0.0	0.0	0.0	0.0	0.00	1.5	280790
3	2012- 09-01 01:00:00	0.0	0.2	0.0	0.00	1.0	6.0	50.0	0.0	0.0	0.0	0.00	0.0	280790
4	2012- 09-01 01:00:00	0.0	0.0	0.0	0.00	1.0	13.0	54.0	0.0	0.0	3.0	0.00	0.0	280790
49995	2012- 03-26 20:00:00	0.0	0.3	0.0	0.00	7.0	54.0	33.0	0.0	0.0	0.0	0.00	0.0	280790
49996	2012- 03-26 20:00:00	0.0	0.0	0.0	0.00	3.0	29.0	62.0	0.0	0.0	3.0	0.00	0.0	280790
49997	2012- 03-26 20:00:00	0.2	0.4	1.0	0.00	4.0	36.0	62.0	29.0	0.0	2.0	0.00	0.4	280790
49998	2012- 03-26 20:00:00	0.3	0.2	0.2	0.17	1.0	26.0	72.0	25.0	14.0	2.0	1.23	0.8	280790:
49999	2012- 03-26 20:00:00	0.0	0.0	0.0	0.17	1.0	31.0	67.0	0.0	0.0	0.0	1.22	0.0	280790;

50000 rows × 14 columns

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1d115d93220>


```
In [8]: sns.distplot(data["BEN"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='BEN', ylabel='Density'>

MODEL BUILDING

1.Linear Regression

```
In [11]: #split the dataset into training and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [12]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[12]: LinearRegression()

```
In [13]: print(lr.intercept_)
```

[57987.49167714]

```
In [14]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[14]: <matplotlib.collections.PathCollection at 0x1d12cc75eb0>


```
In [15]: print(lr.score(x_test,y_test))
```

0.7537693237620529

2. Ridge Regression

```
In [16]: from sklearn.linear_model import Ridge
```

```
In [17]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=10)

```
In [18]: rr.score(x_test,y_test)
Out[18]: 0.7534104823730857
```

3.Lasso Regression

```
In [19]: from sklearn.linear_model import Lasso
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
In [21]: la.score(x_test,y_test)
Out[21]: -2.64929742690434e-05
```

4.ElasticNet Regression

```
In [22]:
         from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[22]: ElasticNet()
In [23]:
         print(en.coef_)
                                                  0.00053264 0.00209504 -0.
          [-0.
                         0.
                                     0.
            0.00123358 0.
                                    -0.
                                                               0.04399504 -0.00614486]
In [24]:
         print(en.predict(x_test))
           [0.05702859 \ 0.03235718 \ 0.10240988 \ \dots \ 0.08483021 \ 0.00349833 \ 0.07321679] 
In [25]: |print(en.score(x_test,y_test))
          0.40344157128662583
```

5.Logistic Regression

```
In [26]: from sklearn.linear_model import LogisticRegression

In [27]: feature_matrix = df1.iloc[:,0:14]
    target_vector = df1.iloc[:,-1]
```

6.Random Forest

Results

```
1.Linear regression: 0.8455591055403516

2.Ridge regression: 0.845561600678548

3.Lasso regression: -0.00022865063965538113

4.Elasticnet regression: 0.6309166326143854

5.Logistic regression: 0.75178

6.Random forest regression: 0.7791428571428571

Hence Linear regression gives high accuracy for the madrid_2012 model.
```