RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/575,9/5
Source:	1 FWD
Date Processed by STIC:	3/14/07

ENTERED

IFWO

RAW SEQUENCE LISTING DATE: 03/14/2007 PATENT APPLICATION: US/10/575,915 TIME: 10:59:41

Input Set : A:\41943.txt

```
3 <110> APPLICANT: Wallach et al.
 5 <120> TITLE OF INVENTION: Use of Caspase-8 Inhibitors for Modulating Hematopoiesis
 7 <130> FILE REFERENCE: 30694/41943
 9 <140> CURRENT APPLICATION NUMBER: US 10/575,915
10 <141> CURRENT FILING DATE: 2006-04-14
12 <150> PRIOR APPLICATION NUMBER: PCT/IL2004/000977
13 <151> PRIOR FILING DATE: 2004-10-26
15 <150> PRIOR APPLICATION, NUMBER: IL 158599
16 <151> PRIOR FILING DATE: 2003-10-26
18 <160> NUMBER OF SEQ ID NOS: 23
20 <170> SOFTWARE: PatentIn version 3.3
22 <210> SEQ ID NO: 1
23 <211> LENGTH: 20
24 <212> TYPE: DNA
25 <213> ORGANISM: Artificial sequence
27 <220> FEATURE:
28 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
30 <400> SEQUENCE: 1
                                                                          20
31 agctggctgg tggcagatgg
34 <210> SEQ ID NO: 2
35 <211> LENGTH: 20
36 <212> TYPE: DNA
37 <213> ORGANISM: Artificial sequence
39 <220> FEATURE:
40 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
42 <400> SEQUENCE: 2
43 cgttgatgcc ggtgaacgtg
                                                                           20
46 <210> SEQ ID NO: 3.
47 <211> LENGTH: 25
48 <212> TYPE: DNA
49 <213> ORGANISM: Artificial sequence
51 <220> FEATURE:
52 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
54 <400> SEQUENCE: 3
55 tagcctcttt ggggttgttc tactg
                                                                           25
58 <210> SEQ ID NO: 4
59 <211> LENGTH: 25
60 <212> TYPE: DNA
61 <213> ORGANISM: Artificial sequence
63 <220> FEATURE:
64 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
66 <400> SEQUENCE: 4
                                                                          25
67 tggggcttcg tttagtctct acttc
```

RAW SEQUENCE LISTING DATE: 03/14/2007 PATENT APPLICATION: US/10/575,915 TIME: 10:59:41

Input Set : A:\41943.txt

Output Set: N:\CRF4\03142007\J575915.raw

70 <210> SEQ ID NO: 5 71 <211> LENGTH: 25 72 <212> TYPE: DNA 73 <213> ORGANISM: Artificial sequence 75 <220> FEATURE: 76 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 78 <400> SEQUENCE: 5 79 tagcctcttt ggggttgttc tactg 25 82 <210> SEQ ID NO: 6 83 <211> LENGTH: 25 84 <212> TYPE: DNA 85 <213> ORGANISM: Artificial sequence 87 <220> FEATURE: 88 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 90 <400> SEQUENCE: 6 91 tagcctcttt ggggttgttc tactg 25 94 <210> SEQ ID NO: 7 95 <211> LENGTH: 36 96 <212> TYPE: DNA 97 <213> ORGANISM: Artificial sequence 99 <220> FEATURE: 100 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 102 <400> SEQUENCE: 7 103 cgcggtcgac ttatcaagag gtagaagagc tgtaac 36 106 <210> SEQ ID NO: 8 107 <211> LENGTH: 24 108 <212> TYPE: DNA 109 <213> ORGANISM: Artificial sequence 111 <220> FEATURE: 112 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 114 <400> SEQUENCE: 8 115 gcgaacacgc cgtgtttcaa gggc 24 118 <210> SEQ ID NO: 9 119 <211> LENGTH: 22 120 <212> TYPE: DNA 121 <213> ORGANISM: Artificial sequence 123 <220> FEATURE: 124 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 126 <400> SEQUENCE: 9 127 ggaaacaagc tggtagctga ca 22 130 <210> SEQ ID NO: 10 131 <211> LENGTH: 21 132 <212> TYPE: DNA 133 <213> ORGANISM: Artificial sequence 135 <220> FEATURE: 136 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide 138 <400> SEQUENCE: 10 139 cctqqqtcaa cacaaqatqc t 21

142 <210> SEQ ID NO: 11

20

21

16

RAW SEQUENCE LISTING DATE: 03/14/2007
PATENT APPLICATION: US/10/575,915 TIME: 10:59:41

Input Set : A:\41943.txt

- 143 <211> LENGTH: 20 144 <212> TYPE: DNA 145 <213> ORGANISM: A
- 145 <213> ORGANISM: Artificial sequence
- 147 <220> FEATURE:
- 148 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
- 150 <400> SEQUENCE: 11
- 151 agcctcctct accgccagaa 20
- 154 <210> SEQ ID NO: 12
- 155 <211> LENGTH: 20
- 156 <212> TYPE: DNA
- 157 <213> ORGANISM: Artificial sequence
- 159 <220> FEATURE:
- 160 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
- 162 <400> SEQUENCE: 12
- 163 gtgccagact cctccttgct
- 166 <210> SEQ ID NO: 13
- 167 <211> LENGTH: 21
- 168 <212> TYPE: DNA
- 169 <213> ORGANISM: Artificial sequence
- 171 <220> FEATURE:
- 172 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
- 175 <220> FEATURE:
- 176 <221> NAME/KEY: misc feature
- 177 <222> LOCATION: (1)..(1)
- 178 <223> OTHER INFORMATION: 6-FAM (6-caroxy-fluorescein) conjugated nucleotide
- 180 <220> FEATURE:
- 181 <221> NAME/KEY: misc_feature
- 182 <222> LOCATION: (21)..(21)
- 183 <223> OTHER INFORMATION: MGB(minor grove binder) conjugated nucleotide
- 185 <400> SEQUENCE: 13
- 186 ttaacttcct cacttgatca t
- 189 <210> SEQ ID NO: 14
- 190 <211> LENGTH: 16
- 191 <212> TYPE: DNA
- 192 <213> ORGANISM: Artificial sequence
- 194 <220> FEATURE:
- 195 <223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide
- 198 <220> FEATURE:
- 199 <221> NAME/KEY: misc_feature
- 200 <222> LOCATION: (1)..(1)
- 201 <223> OTHER INFORMATION: 6-FAM (6-caroxy-fluorescein) conjugated nucleotide
- 203 <220> FEATURE:
- 204 <221> NAME/KEY: misc feature
- 205 <222> LOCATION: (16)..(16)
- 206 <223> OTHER INFORMATION: MGB(minor grove binder) conjugated nucleotide
- 208 <400> SEQUENCE: 14
- 209 accagaaccg agcaaa
 - 212 <210> SEQ ID NO: 15
 - 213 <211> LENGTH: 64

RAW SEQUENCE LISTING DATE: 03/14/2007 PATENT APPLICATION: US/10/575,915 TIME: 10:59:41

Input Set : A:\41943.txt

214	<212> TYPE: DNA	
	<213> ORGANISM: Artificial sequence	
	<220> FEATURE:	
	<223> OTHER INFORMATION: SiRNA sense oligonucleotide	
	<400> SEQUENCE: 15	
	gatccccgtt cctgagcctg gactacttca agagagtagt ccaggctcag gaactttttg	60
	gaaa	64
	<210> SEQ ID NO: 16	
	<211> LENGTH: 64	
	<212> TYPE: DNA	
	<213> ORGANISM: Artificial sequence	
	<220> FEATURE:	
	<223> OTHER INFORMATION: SiRNA anti-sense oligonucleotide	
	<400> SEQUENCE: 16	
	agetttteca aaaagtteet gageetggae tactetettg aagtagteea ggeteaggaa	60
	cggg	64
	<210> SEQ ID NO: 17	
	<211> LENGTH: 34	
	<212> TYPE: DNA	
243	<213> ORGANISM: Artificial sequence	
	<220> FEATURE:	
246	<223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide	
	<400> SEQUENCE: 17	
249	ataacttcgt atagcataca ttatacgaag ttat	34
252	<210> SEQ ID NO: 18	
253	<211> LENGTH: 34	
254	<212> TYPE: DNA	
255	<213> ORGANISM: Artificial sequence	
	<220> FEATURE:	
	<223> OTHER INFORMATION: Single strand synthetic DNA oligonucleotide	
	<400> SEQUENCE: 18	
261	ataacttcgt ataatgtatg ctatacgaag ttat	34
	<210> SEQ ID NO: 19	
	<211> LENGTH: 1975	
	<212> TYPE: DNA	
	<213> ORGANISM: Mus musculus	
	<400> SEQUENCE: 19	
	ctaaacattc ggaggcattt ctgtccccta tgccctagtt ctctcagttg tctttcattc	60
	tgacttcggt gcttaaaagt ccagcttctc ggaatcggta gcaaacctct gtgagccggc	120
	gtggaacagg aagtgagtac agttctgggg agcgccggcc cgggctggag gctcggaaag	180
	cccaagccag cggaggcctc gcccgagctg gagttgtgac cggcgcggca ggtactcggc	240
	cacaggttac agetetteta cetettgata agaatggatt tecagagttg tetttatget	300
	attgctgaag aactgggcag tgaagacctg gctgccctca agttcctgtg cttggactac	360
	atcccacaca agaagcagga gaccatcgag gatgcccaga agctatttct gaggctgcgg	420
	gaaaagggga tgttggagga aggcaatctg tctttcctga aagagctgct tttccacatc	480
	agtcggtggg acctgctggt caacttccta gactgcaacc gagaggagat ggtgagagag	540
	ctgcgggatc cagacaatgc ccagatttct ccctacaggg tcatgctctt taagctctca	600
	gaagaagtga gcgagttgga attgagatct tttaagttcc ttttgaacaa tgagatcccc	660
292	aaatgtaagc tggaagatga cttgagcctg cttgaaattt ttgtagaaat ggagaagagg	720

RAW SEQUENCE LISTING DATE: 03/14/2007 PATENT APPLICATION: US/10/575,915 TIME: 10:59:41

Input Set : A:\41943.txt

294																	
	acca	tgct	gg (cagaa	aaata	aa ct	tgga	aaac	c cta	aaaat	caa	tct	gtgad	cca g	ggtca	acaa	g 780
296	agco	tgct	gg 9	ggaag	gatco	ga gg	gatta	atgaa	a aga	atcaa	agca	caga	agaga	aag a	aatga	agcct	t 840
298	gaag	gaag	ggg a	aagag	gttgd	cc ac	ctto	agtt	tt	gate	gaga	tgag	gcct	caa a	aatg	gcgga	a 900
300	ctgt	gtga	act o	cgcca	agag	ga ac	caaga	acagt	gag	gtcad	cgga	ctto	caga	caa a	agttt	acca	a 960
302	atga	agaa	aca a	aacct	cggc	g at	acto	gtete	ato	catca	aaca	atca	atgai	ttt (cagca	aggc	c 1020
304	cggg	aaga	aca 1	taaco	caac	ct co	gaaa	aat	aag	gaca	agaa	aagg	gaaca	aga (ctgt	gataa	a 1080
		_				_	_	-	-		_		_			actg	
																acaa	
																acgga	
	_	_		_	_					_		_	_		_	cttc	
						_	-	_								agaa	
																catc	
																gtgaa	
																gcca	_
						-	_	_								gtgaa	_
																ccac	
																gttca	
																tttt	
																gtta	_
		_														acata	
	acac										. –	_					1975
	<210										5005						
	<211																
	<212																
					**												
			₹(÷ΔN	1 > M +	HOmc	1 SAT	າາຍກາ	3									
						sa <u>r</u>	piens	3									
342	<400	> SI	EQUE	NCE:	20				Ara	Tle	Asn	Ara	Leu	Asp	Leu	Leu	
342 344	<400 Ser	> SI	EQUE	NCE:	20 Glu				Arg		Asn	Arg	Leu	Asp		Leu	
342 344 345	<400 Ser 1	> SI Phe	EQUEI Leu	NCE: Lys	20 Glu 5	Leu	Leu	Phe	_	10		_			15		
342 344 345 348	<400 Ser	> SI Phe	EQUEI Leu	Lys Lys Leu	20 Glu 5	Leu	Leu	Phe	Glu	10		_			15		
342 344 345 348 349	<400 Ser 1 Ile	> SI Phe Thr	EQUEI Leu Tyr	NCE: Lys Leu 20	20 Glu 5 Asn	Leu Thr	Leu Arg	Phe Lys	Glu 25	10 Glu	Met	Glu	Arg	Glu 30	15 Leu	Gln	
342 344 345 348 349 352	<400 Ser 1	> SI Phe Thr	EQUE Leu Tyr Gly	NCE: Lys Leu 20	20 Glu 5 Asn	Leu Thr	Leu Arg	Phe Lys	Glu 25	10 Glu	Met	Glu	Arg	Glu 30	15 Leu	Gln	
342 344 345 348 349 352 353	<400 Ser 1 Ile Thr	> SI Phe Thr Pro	EQUE Leu Tyr Gly 35	NCE: Lys Leu 20 Arg	20 Glu 5 Asn Ala	Leu Thr Gln	Leu Arg Ile	Phe Lys Ser 40	Glu 25 Ala	10 Glu Tyr	Met Arg	Glu Val	Arg Met 45	Glu 30 Leu	15 Leu Tyr	Gln Gln	
342 344 345 348 349 352 353 356	<400 Ser 1 Ile Thr	> SI Phe Thr Pro Ser	EQUE Leu Tyr Gly 35	NCE: Lys Leu 20 Arg	20 Glu 5 Asn Ala	Leu Thr Gln	Leu Arg Ile Arg	Phe Lys Ser 40	Glu 25 Ala	10 Glu Tyr	Met Arg	Glu Val Ser	Arg Met 45	Glu 30 Leu	15 Leu Tyr	Gln Gln	
342 344 345 348 349 352 353 356 357	<400 Ser 1 Ile Thr	> SI Phe Thr Pro Ser 50	EQUEI Leu Tyr Gly 35 Glu	Leu 20 Arg	20 Glu 5 Asn Ala Val	Leu Thr Gln Ser	Leu Arg Ile Arg 55	Phe Lys Ser 40 Ser	Glu 25 Ala Glu	10 Glu Tyr Leu	Met Arg Arg	Glu Val Ser 60	Arg Met 45 Phe	Glu 30 Leu Lys	15 Leu Tyr Phe	Gln Gln Leu	
342 344 345 348 349 352 353 356 357 360	<400 Ser 1 Ile Thr Ile Leu	> SI Phe Thr Pro Ser 50	EQUEI Leu Tyr Gly 35 Glu	Leu 20 Arg	20 Glu 5 Asn Ala Val	Leu Thr Gln Ser	Leu Arg Ile Arg 55	Phe Lys Ser 40 Ser	Glu 25 Ala Glu	10 Glu Tyr Leu	Met Arg Arg Asp	Glu Val Ser 60	Arg Met 45 Phe	Glu 30 Leu Lys	15 Leu Tyr Phe	Gln Gln Leu Leu	
342 344 345 348 349 352 353 356 357 360 361	<400 Ser 1 Ile Thr Ile Leu 65	Phe Thr Pro Ser 50 Gln	EQUE Leu Tyr Gly 35 Glu Glu	Lys Leu 20 Arg Glu Glu	20 Glu 5 Asn Ala Val Ile	Leu Thr Gln Ser Ser	Leu Arg Ile Arg 55 Lys	Phe Lys Ser 40 Ser Cys	Glu 25 Ala Glu Lys	10 Glu Tyr Leu Leu	Met Arg Arg Arg	Glu Val Ser 60 Asp	Arg Met 45 Phe Asp	Glu 30 Leu Lys Met	15 Leu Tyr Phe	Gln Gln Leu Leu 80	
342 344 345 348 349 352 353 356 357 360 361 364	<400 Ser 1 Ile Thr Ile Leu	Phe Thr Pro Ser 50 Gln	EQUE Leu Tyr Gly 35 Glu Glu	Lys Leu 20 Arg Glu Glu	20 Glu 5 Asn Ala Val Ile	Leu Thr Gln Ser Ser	Leu Arg Ile Arg 55 Lys	Phe Lys Ser 40 Ser Cys	Glu 25 Ala Glu Lys	10 Glu Tyr Leu Leu Arg	Met Arg Arg Arg	Glu Val Ser 60 Asp	Arg Met 45 Phe Asp	Glu 30 Leu Lys Met	Tyr Phe Asn	Gln Gln Leu Leu 80	
342 344 345 348 349 352 353 356 357 360 361 364 365	<400 Ser 1 Ile Thr Ile Leu 65 Leu	Phe Thr Pro Ser 50 Gln Asp	EQUE Leu Tyr Gly 35 Glu Glu	Lys Leu 20 Arg Glu Glu Phe	20 Glu 5 Asn Ala Val Ile Ile 85	Leu Thr Gln Ser Ser 70 Glu	Leu Arg Ile Arg 55 Lys Met	Phe Lys Ser 40 Ser Cys Glu	Glu 25 Ala Glu Lys	10 Glu Tyr Leu Leu Arg 90	Met Arg Arg Asp 75 Val	Glu Val Ser 60 Asp	Arg Met 45 Phe Asp	Glu 30 Leu Lys Met	Tyr Phe Asn Glu 95	Gln Gln Leu Leu 80 Gly	
342 344 345 348 349 352 353 356 357 360 361 364 365 368	<400 Ser 1 Ile Thr Ile Leu 65	Phe Thr Pro Ser 50 Gln Asp	EQUE Leu Tyr Gly 35 Glu Glu	Lys Leu 20 Arg Glu Glu Phe	20 Glu 5 Asn Ala Val Ile Ile 85	Leu Thr Gln Ser Ser 70 Glu	Leu Arg Ile Arg 55 Lys Met	Phe Lys Ser 40 Ser Cys Glu	Glu 25 Ala Glu Lys Lys	10 Glu Tyr Leu Leu Arg 90	Met Arg Arg Asp 75 Val	Glu Val Ser 60 Asp	Arg Met 45 Phe Asp	Glu 30 Leu Lys Met Gly	Tyr Phe Asn Glu 95	Gln Gln Leu Leu 80 Gly	
342 344 345 348 349 352 353 356 357 360 361 364 365 368 369	<pre>Ser I Ile Thr Ile Leu 65 Leu Lys</pre>	Phe Thr Pro Ser 50 Gln Asp	EQUED Leu Tyr Gly 35 Glu Glu Ile Asp	Lys Leu 20 Arg Glu Glu Phe Ile 100	20 Glu 5 Asn Ala Val Ile 11e 85 Leu	Leu Thr Gln Ser Ser 70 Glu Lys	Leu Arg Ile Arg 55 Lys Met Arg	Phe Lys Ser 40 Ser Cys Glu Val	Glu 25 Ala Glu Lys Lys Cys 105	10 Glu Tyr Leu Leu Arg 90 Ala	Met Arg Arg Asp 75 Val Gln	Glu Val Ser 60 Asp Ile Ile	Arg Met 45 Phe Asp Leu Asn	Glu 30 Leu Lys Met Gly Lys 110	Tyr Phe Asn Glu 95 Ser	Gln Gln Leu Leu 80 Gly Leu	
342 344 345 348 349 352 353 356 357 364 365 368 369 372	<400 Ser 1 Ile Thr Ile Leu 65 Leu	Phe Thr Pro Ser 50 Gln Asp	EQUENTED LEU Tyr Gly 35 Glu Glu Ile Asp Ile	Lys Leu 20 Arg Glu Glu Phe Ile 100	20 Glu 5 Asn Ala Val Ile 11e 85 Leu	Leu Thr Gln Ser Ser 70 Glu Lys	Leu Arg Ile Arg 55 Lys Met Arg	Phe Lys Ser 40 Ser Cys Glu Val	Glu 25 Ala Glu Lys Lys Cys 105	10 Glu Tyr Leu Leu Arg 90 Ala	Met Arg Arg Asp 75 Val Gln	Glu Val Ser 60 Asp Ile Ile	Arg Met 45 Phe Asp Leu Asn Glu	Glu 30 Leu Lys Met Gly Lys 110	Tyr Phe Asn Glu 95 Ser	Gln Gln Leu Leu 80 Gly Leu	
342 344 345 348 349 352 353 356 361 364 365 368 369 372 373	<pre>Ser I Ile Thr Ile Leu 65 Leu Lys Leu</pre>	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys	EQUENTED LEU Tyr Gly 35 Glu Glu Ile Asp Ile 115	Leu 20 Arg Glu Glu Phe Ile 100 Ile	20 Glu 5 Asn Ala Val Ile 85 Leu Asn	Leu Thr Gln Ser 70 Glu Lys Asp	Leu Arg Ile Arg 55 Lys Met Arg Tyr	Phe Lys Ser 40 Ser Cys Glu Val Glu 120	Glu 25 Ala Glu Lys Lys Cys 105 Glu	10 Glu Tyr Leu Leu Arg 90 Ala Phe	Met Arg Arg Asp 75 Val Gln Ser	Glu Val Ser 60 Asp Ile Ile Lys	Arg Met 45 Phe Asp Leu Asn Glu 125	Glu 30 Leu Lys Met Gly Lys 110 Arg	Tyr Phe Asn Glu 95 Ser ser	Gln Gln Leu 80 Gly Leu Ser	
342 344 345 348 349 352 353 356 357 360 361 364 365 368 372 373 376	Ser 1 11e Thr Ile Leu 65 Leu Lys Leu Ser	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys Leu	EQUENTED LEU Tyr Gly 35 Glu Glu Ile Asp Ile 115	Leu 20 Arg Glu Glu Phe Ile 100 Ile	20 Glu 5 Asn Ala Val Ile 85 Leu Asn	Leu Thr Gln Ser 70 Glu Lys Asp	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp	Phe Lys Ser 40 Ser Cys Glu Val Glu 120	Glu 25 Ala Glu Lys Lys Cys 105 Glu	10 Glu Tyr Leu Leu Arg 90 Ala Phe	Met Arg Arg Asp 75 Val Gln Ser	Glu Val Ser 60 Asp Ile Ile Lys Gly	Arg Met 45 Phe Asp Leu Asn Glu 125	Glu 30 Leu Lys Met Gly Lys 110 Arg	Tyr Phe Asn Glu 95 Ser ser	Gln Gln Leu 80 Gly Leu Ser	
342 344 345 348 349 352 353 356 357 360 361 364 365 368 372 373 376 377	Ser 1 11e Thr Ile Leu 65 Leu Lys Leu Ser	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys Leu 130	EQUENTED LEU Tyr Gly 35 Glu Glu Ile Asp Ile 115 Glu	Leu 20 Arg Glu Glu Phe 11e 100 Ile	20 Glu 5 Asn Ala Val Ile 85 Leu Asn Ser	Leu Thr Gln Ser 70 Glu Lys Asp	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp 135	Phe Lys Ser 40 Ser Cys Glu Val Glu 120 Glu	Glu 25 Ala Glu Lys Lys Cys 105 Glu Phe	10 Glu Tyr Leu Leu Arg 90 Ala Phe Ser	Met Arg Arg Asp 75 Val Gln Ser Asn	Glu Val Ser 60 Asp Ile Lys Gly 140	Arg Met 45 Phe Asp Leu Asn Glu 125 Glu	Glu 30 Leu Lys Met Gly Lys 110 Arg Glu	Tyr Phe Asn Glu 95 Ser Ser	Gln Gln Leu 80 Gly Leu Ser Cys	
342 344 345 349 352 353 356 357 360 361 364 365 372 373 376 377 380	C400 Ser 1 1le Thr Ile Leu 65 Leu Lys Leu Ser Gly	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys Leu 130	EQUENTED LEU Tyr Gly 35 Glu Glu Ile Asp Ile 115 Glu	Leu 20 Arg Glu Glu Phe 11e 100 Ile	20 Glu 5 Asn Ala Val Ile 85 Leu Asn Ser	Leu Thr Gln Ser Ser 70 Glu Lys Asp Pro Ser	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp 135	Phe Lys Ser 40 Ser Cys Glu Val Glu 120 Glu	Glu 25 Ala Glu Lys Lys Cys 105 Glu Phe	10 Glu Tyr Leu Leu Arg 90 Ala Phe Ser	Met Arg Arg Asp 75 Val Gln Ser Asn Glu	Glu Val Ser 60 Asp Ile Lys Gly 140	Arg Met 45 Phe Asp Leu Asn Glu 125 Glu	Glu 30 Leu Lys Met Gly Lys 110 Arg Glu	Tyr Phe Asn Glu 95 Ser Ser	Gln Gln Leu 80 Gly Leu Ser Cys Ser	
342 344 345 349 352 353 356 357 360 361 364 365 372 373 376 377 380 381	C400 Ser 1 1le Thr Ile Leu 65 Leu Lys Leu Ser Gly 145	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys Leu 130 Val	EQUENTED Leu Tyr Gly 35 Glu Glu Ile Asp Ile 115 Glu Met	Leu 20 Arg Glu Glu Phe 11e 100 Ile Gly Thr	20 Glu 5 Asn Ala Val Ile 85 Leu Asn Ser Ile	Leu Thr Gln Ser 70 Glu Lys Asp Pro Ser 150	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp 135 Asp	Phe Lys Ser 40 Ser Cys Glu Val Glu 120 Glu Ser	Glu 25 Ala Glu Lys Lys Cys 105 Glu Phe	10 Glu Tyr Leu Leu Arg 90 Ala Phe Ser Arg	Met Arg Arg Asp 75 Val Gln Ser Asn Glu 155	Glu Val Ser 60 Asp Ile Lys Gly 140 Gln	Arg Met 45 Phe Asp Leu Asn Glu 125 Glu Asp	Glu 30 Leu Lys Met Gly Lys 110 Arg Glu Ser	Tyr Phe Asn Glu 95 Ser Leu Glu	Gln Gln Leu 80 Gly Leu Ser Cys Ser 160	
342 344 345 348 349 352 353 356 357 361 364 365 372 373 376 377 380 381 384	Ser 1 11e Thr Ile Leu 65 Leu Lys Leu Ser Gly 145 Gln	> SIPhe Thr Pro Ser 50 Gln Asp Leu Lys Leu 130 Val	EQUENTED Leu Tyr Gly 35 Glu Glu Ile Asp Ile 115 Glu Met	Leu 20 Arg Glu Glu Phe 11e 100 Ile Gly Thr	20 Glu 5 Asn Ala Val Ile 85 Leu Asn Ser Ile Lys	Leu Thr Gln Ser 70 Glu Lys Asp Pro Ser 150	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp 135 Asp	Phe Lys Ser 40 Ser Cys Glu Val Glu 120 Glu Ser	Glu 25 Ala Glu Lys Lys Cys 105 Glu Phe	10 Glu Tyr Leu Leu Arg 90 Ala Phe Ser Arg	Met Arg Arg Asp 75 Val Gln Ser Asn Glu 155	Glu Val Ser 60 Asp Ile Lys Gly 140 Gln	Arg Met 45 Phe Asp Leu Asn Glu 125 Glu Asp	Glu 30 Leu Lys Met Gly Lys 110 Arg Glu Ser	Tyr Phe Asn Glu 95 Ser Leu Glu Gly	Gln Gln Leu 80 Gly Leu Ser Cys Ser 160	
342 344 345 348 349 352 353 356 361 364 365 368 372 376 377 380 381 384 385	Ser 1 11e Thr Ile Leu 65 Leu Lys Leu Ser Gly 145 Gln	> SIP Phe Thr Pro Ser 50 Gln Asp Leu Lys Leu 130 Val	EQUENTED Leu Tyr Gly 35 Glu Glu Ile Asp Ile 115 Glu Met Leu	Leu 20 Arg Glu Glu Phe 11e 100 Ile Gly Thr Asp	20 Glu 5 Asn Ala Val Ile 85 Leu Asn Ser Ile Lys 165	Leu Thr Gln Ser 70 Glu Lys Asp Pro Ser 150 Val	Leu Arg Ile Arg 55 Lys Met Arg Tyr Asp 135 Asp	Phe Lys Ser 40 Ser Cys Glu Val Glu 120 Glu Ser Gln	Glu 25 Ala Glu Lys Cys 105 Glu Phe Pro	10 Glu Tyr Leu Leu Arg 90 Ala Phe Ser Arg	Met Arg Arg Asp 75 Val Gln Ser Asn Glu 155 Ser	Glu Val Ser 60 Asp Ile Lys Gly 140 Gln Lys	Arg Met 45 Phe Asp Leu Asn Glu 125 Glu Asp Pro	Glu 30 Leu Lys Met Gly Lys 110 Arg Glu Ser Arg	Tyr Phe Asn Glu 95 Ser Leu Glu Gly 175	Gln Gln Leu 80 Gly Leu Ser Cys Ser 160 Tyr	

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/10/575,915

DATE: 03/14/2007 TIME: 10:59:42

Input S

Input Set : A:\41943.txt

Output Set: N:\CRF4\03142007\J575915.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:22; Xaa Pos. 339

VERIFICATION SUMMARY

DATE: 03/14/2007

PATENT APPLICATION: US/10/575,915

TIME: 10:59:42

Input Set : A:\41943.txt

Output Set: N:\CRF4\03142007\J575915.raw

L:652 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:22 after pos.:336