Университет ИТМО

Факультет программной инженерии и компьютерной техники

Индивидуальное домашнее задание №6

по «Математической статистике» Вариант 9

Выполнили:

Студенты группы Р3233

Хасаншин Марат

Шикунов Максим

Номер команд: 9

Санкт-Петербург 2024

Цель работы

Оценить характер зависимости между параметрами двумерной случайной величины (обработка двумерной выборки)

Исходные данные

XX	31	41	46	51
26	0	0	45	10
36	20	30	80	0
46	15	0	0	0

Ход выполнения

Высчитаем n_i и n_i :

Į	XX	31	41	46	51	n_i
	26	0	0	45	10	55
	36	20	30	80	0	130
	46	15	0	0	0	15
	n_j	35	30	125	10	n=200

По формулам считаем:

$$\bar{X}_{n} = \frac{1}{n} \sum_{i=1}^{k} n_{i} x_{i}^{*}$$

$$\bar{Y}_{n} = \frac{1}{n} \sum_{j=1}^{m} n_{j} y_{j}^{*}$$

$$\sigma_{n}(X) = \sqrt{\frac{1}{n} \sum_{i=1}^{k} n_{i} (x_{i}^{*})^{2} - \bar{X}_{n}^{2}}$$

$$\sigma_{n}(Y) = \sqrt{\frac{1}{n} \sum_{j=1}^{m} n_{j} (y_{j}^{*})^{2} - \bar{Y}_{n}^{2}}$$

$$r_{n}(X, Y) = \frac{\sum_{i=1}^{k} \sum_{j=1}^{m} n_{ij} x_{i}^{*} y_{j}^{*} - n \cdot \bar{X}_{n} \bar{Y}_{n}}{n \cdot \sigma_{n}(X) \cdot \sigma_{n}(Y)}$$

$$y(x) = \bar{Y}_{n} + r_{n}(X, Y) \frac{\sigma_{n}(Y)}{\sigma_{n}(X)} (x - \bar{X}_{n})$$

Получается:

$$\bar{X}_{200}$$
=34
 \bar{Y}_{200} = 42.875
 $\sigma_n(X)$ = 5.567764
 $\sigma_n(Y)$ = 5.882973
 $r_n(X,Y)$ = -0.61059
 $y(x)$ = 42.875 - 0.61059 · ($\frac{5.882973}{5.567764}$)(x - 34)
 $y(x)$ = 64.805 - 0.645 x

Сравним оценки условных математических ожиданий, вычисленные:

- а) по данным таблицы, полагая, как и ранее, $P(y_j^*) = p_j^* = \frac{n_{ij}}{n_i}$
- б) на основе последнего уравнения

Например, при $x^* = 36$ имеем:

a)
$$M(Y|X = 36) = \frac{(20.31 + 30.41 + 80.46)}{130} = 42.538$$

б)
$$M(Y|X = 36) = 64.805 - 0.645 \cdot 36 = 41.585$$

Ответы примерно одинаковы

Построим зависимость условного математического ожидания компонента у от значений компонента х и график функции регрессии линейного вида.

a)

x_i	26	36	46
$M(Y X=x_i)$	46.91	42.538	31

$$y(x) = 64.805 - 0.645x$$

Вывод

По нашим данным нормализовали и линейно выровняли характер зависимости двумерной выборки компонента у от компонента х.