Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ КАФЕДРА РАДИОТЕХНИЧЕСКИХ СИСТЕМ

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

по теме

Разработка модуля расчёта координат спутника Beidou

ФИО студента: Жеребцов И.С.
Группа: ЭР-15-16
Вариант №: 2
Дата:
Подпись:
ФИО преподавателя: Корогодин И.В.
Оценка:

Москва 2021

СОДЕРЖАНИЕ

BB	ЕДЕНИЕОшибка! Закладка не определена.
B3	АДАНИЕОшибка! Закладка не определена.
ПЕ	РВЫЙ ЭТАП: Использование сторонних средств6
1.	Определение формы орбиты и положения спутника на ней 6
2.	Расчет графика угла места собственного спутника от времени 7
3.	Расчет диаграммы угла места и азимута спутника
4.	Формирование таблины эфемерил собственного спутника

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ЗАДАНИЕ

Этап 1. Использование сторонних средств

Конечная цель всего курсового проекта - получить библиотеку функций на Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам. На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах)

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

Javad Lexon LGDD,

SwiftNavigation Piksi Multi,

Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

Этап 2. Моделирование

Эфемериды - параметры некоторой модели движения спутника. В разных ГНСС эти модели разные, а значит отличается и формат эфемерид, и алгоритмы расчета положения спутника.

Одна из самых простых и удобных моделей - в системе GPS. Beidou наследует данную модель.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущем этапе.

Построить трехмерные графики множества положений спутника Beidou с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в СК ЕСЕГ WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 8:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал (напоминаю, антенна на крыше корпуса E) и сравнить результат с Trimble GNSS Planning Online, полученный на прошлом этапе.

Этап 3. Реализация

Требуется разработать на языке C/C++ функцию расчета положения спутника Beidou на заданное время по шкале UTC, минимизируя время её исполнения и количество затрачиваемой оперативной памяти. Вызов функции не должен приводить к выбросу исключений или утечкам памяти при любом наборе входных данных.

Функция расчета положения спутника в Matlab/Python относительно проста, т.к. доступны библиотеки линейной алгебры и решения уравнений. Но при разработке встраиваемого ПО приходится сохранять лицензионную частоту, минимизировать вычислительную нагрузку и затраты памяти. Поэтому отобразить модель из Matlab/Python в прошивку приемника дословно, как правило, не получается. В рассматриваемом примере потребуется, как минимум, выполнить свою реализацию решения трансцендентного уравнения.

Программный модуль должен сопровождаться unit-тестами под check:

Тесты функции решения уравнения Кеплера

Тест расчетного положения спутника в сравнении с Matlab/Python с шагом 0.1 секунды.

Во время второго теста должно вычисляться и выводиться средняя длительность исполнения функции. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал (как на предыдущем этапе).

Требуется провести проверку на утечки памяти с помощью утилиты valgrind.

ПЕРВЫЙ ЭТАП: Использование сторонних средств

1. Определение формы орбиты и положения спутника.

Используя сервис «Википедия» определим ID и SCN спутника 7:

Nº ≑	Спутник ≑	PRN +	Дата (UTC) +	Ракета ≑	NSSDC ID +	SCN +	Орбита 💠	Статус 💠	Система 🕈
_	Бэйдоу-1 А	N/A	30.10.2000, 16:30	CZ-3A	2000-069A₽	26599ଟ	ГСО, 140° в. д.	выведен с декабря 2011	
_	Бэйдоу-1 В	N/A	20.12.2000, 16:20	CZ-3A	2000-082A₽	26643ଟ	ГСО, 80° в. д.	выведен с декабря 2011	Eaŭnov 1
_	Бэйдоу-1 С	N/A	24.05.2003, 16:34	CZ-3A	2003-021A₽	27813æ	ГСО, 110,5° в. д.	выведен с декабря 2012	Бэйдоу-1
_	Бэйдоу-1 D	N/A	02.02.2007, 16:28	CZ-3A	2007-003A₽	30323 മ	сведён с орбиты ⁽²³⁾	выведен с февраля 2009	
1	Компас М1	N/A	13.04.2007, 20:11	CZ-3A	2007-011A@	31115₺	<u>СОО,</u> ~21 500 км	выведен	
2	Компас G2	N/A	14.04.2009, 16:16	CZ-3C	2009-018A₽	34779🗗	неконтролируемая ^[24]	выведен	
3	Компас G1	N/A	16.01.2010, 16:12	CZ-3C	2010-001A₽	36287 ₽	ГСО, 140° в. д. ^[15]	в резерве	
4	Компас G3	N/A	02.06.2010, 15:53	CZ-3C	2010-024A₽	36590₽	ГСО, 110,5° в. д.	в резерве	
5	Компас IGSO-1	C06	31.07.2010, 20:50	CZ-3A	2010-036A@	36828₺	Геосинхронная, накл. 55°; 118° в. д.	действующий	
6	Компас G4	C04	31.10.2010, 16:26	CZ-3C	2010-057A₽	37210 @	ГСО, 160° в. д.	действующий	
7	Компас IGSO-2	C07	17.12.2010, 20:20	CZ-3A	2010-068A <mark>&</mark>	37256 <mark></mark> ණ	Геосинхронная, накл. 55°; 118° в. д.	действующий	

Рисунок 1 - Состояние системы BeiDou с сайта Википедия

Из таблицы рисунка 1, с сервис «Википедия», видно, что спутник 7 имеет ID 2010-068A и SCN 37256. Введем в сервисе CelesTrak, SCN спутника и проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0).

18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Рисунок 2 - Моделирование с помощью сервиса CelesTrak

2. Расчет графика угла места собственного спутника от времени

Настроим для моделирования GNSS Planning Online, координаты установим в соответствии с расположеним антенны — и они будут соответствовать значению корпуса Е МЭИ «55.756555, 37.702868». Начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 3 — Заданные параметры моделирования в сервисе Trimble GNSS Planning

Так же ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник – C07.

Рисунок 4 — График угла места собственного спутника от времени

По графику видно, что на указанном в задание интервале с 18:00 – 06:00, спутник не был виден, в область видимости же он попадает только после конца заданного интервала и виден 17 февраля с 6:10 до 15:10.

3. Расчет диаграммы угла места и азимута спутника

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале с 6:10 до 15:10 и зафиксируем положение спутника на небосводе в критических точках.

Рисунок 5 – Моделирование с помощью сервиса Trimble GNSS Planning в 17 февраля 2021 в 06:10

Рисунок 6 – Моделирование с помощью сервиса Trimble GNSS Planning в 17 февраля 2021 в 15:10

4. Формирование таблицы эфемерид собственного спутника

Таблица 1. Значения эфемерид спутника

Параметры	Значения	Размерность
Sat	07	-
Toe	284400000.000	МС
Crs	1.16406250000000000e+01	M
Dn	1.98079681996976564e-12	рад/с
M0	-2.45617118216572505e+00	рад
Cuc	2.35158950090408325e-07	рад
e	8.14774842001497746e-03	-
Cus	-2.74321064352989197e-06	рад
sqrtA	6.49292568778991699e+03	$_{ m M}^{1/}{}_{ m 2}$
Cic	-2.70549207925796509e-07	рад
omega0	2.63970155955976082e+00	рад
Cis	-1.01979821920394897e-07	рад
i0	8.91248838651520714e-01	рад
Crs	3.05328125000000000e+02	M
omega	-2.52291283308052350e+00	рад
OmegaDot	-2.82868925483299065e-12	рад/мс
iDot	-2.30009580822278564e-13	рад/мс
Tgd	2.43000000000000000e+05	МС
toc	2.8440000000000000e+08	MC
af2	0.00000000000000000e+00	MC^{-1}
af1	-1.36628486302470264e-11	-
af0	-9.36393141746520996e-01	MC
URA	0	-
IODE	257	-
IODC	1	-
codeL2	0	-
L2P	0	-
WN	789	-