Partial Regularization of First-Order Resolution Proofs

Jan Gorzny^{1*}
Bruno Woltzenlogel Paleo^{2,3}

jgorzny@uwaterloo.ca bruno@logic.at

¹University of Waterloo

²Vienna University of Technology

³Australian National University

*Supported by the Google Summer of Code Program 2014

Introduction

- As the ability of automated deduction has improved, it has been applied to new application domains; e.g. Furbach et al. [2] used it in natural language reasoning.
- ► Resolution proof production is a key feature of modern theorem provers; the best, most-efficient provers do not necessarily generate the best, least redundant proofs.
- For proofs using propositional resolution generated by SAT- and SMT-solvers, there are many proof compression techniques.
- ► One approach to compressing first-order logic proofs is to lift ideas used in propositional logic.

Propositional RecyclePivotsWithIntersection [1]

- Traverse a proof from the bottom up: store for every node a set of *safe literals*: literals resolved in all paths below the node
- For any node whose resolved literals are safe, replace it with one of its parents (*regularizing* it.)

The set of safe literals for a node η will be denoted $\mathcal{S}(\eta)$.

A Propositional Example

Consider the proof ψ shown below:

The algorithm RPI assigns $\mathcal{S}(\eta_5) \leftarrow \{a,c\}$, $\mathcal{S}(\eta_8) \leftarrow \{a,\neg c\}$, and $\mathcal{S}(\eta_4) \leftarrow \{a,c,b\} \cap \{a,\neg c,b\} = \{a,b\}$. Since $a \in \mathcal{S}(\eta_4)$ where a is a pivot of η_4 , η_4 is detected as a redundant node and regularalized by replacing it by its right parent η_3 :

A First-Order Example

Consider the proof ψ below. When computed as in the propositional case, $\mathcal{S}(\eta_3) \leftarrow \{ \vdash q(c), \ p(a,X) \}$

Since $p(W,X) \neq p(a,X)$, propositional RPI algorithm would not change ψ . However, η_3 's left pivot $p(W,X) \in \eta_1$ is unifiable with the safe literal p(a,X). Regularizing η_3 , by deleting the edge between η_2 and η_3 and replacing η_3 by η_1 , leads to further deletion of η_4 (because it is not resolvable with η_1) and finally to the following proof:

$$\eta_1$$
: $\vdash p(W,X)$ η_6 : $p(Y,b) \vdash \psi'$: \bot

Unifiability is Not Enough

Consider ψ below. When computed as in the propositional case, $\mathcal{S}(\eta_3) \leftarrow \{\vdash q(c), \ p(a, X)\}$, and as the pivot p(a, c) is unifiable with the safe literal p(a, X), η_3 appears to be a candidate for regularization.

However, if we attempt to regularize the proof, the same series of actions as in the last example would require resolution between η_1 and η_6 , which is not possible.

Pre-Regularization Unifiability

Let η be a node with pivot ℓ' unifiable with safe literal ℓ which is resolved against literals ℓ_1, \ldots, ℓ_n in a proof ψ . η is said to satisfy the *pre-regularization unifiability property* in ψ if ℓ_1, \ldots, ℓ_n , and $\overline{\ell'}$ are unifiable.

Pre-Regularization Unifiability: Still Not Enough

Consider the proof ψ below. After collecting the safe literals, $\mathcal{S}(\eta_3) \leftarrow \{q(T,V), p(c,d) \vdash q(f(a,e),c)\}$.

 η_3 's pivot q(f(a,V),U) is unifiable to (and even more general than) the safe literal q(f(a,e),c). Attempting to regularize η_3 would lead to the removal of η_2 , the replacement of η_3 by η_1 and the removal of η_4 (because η_1 does not contain the pivot required by η_5), with η_5 also being replaced by η_1 . Then resolution between η_1 and η_6 results in η_7' , which cannot be resolved with η_8 , as shown below.

$$egin{array}{c} \eta_8 : \ Q(f(a,e),c) dash \ \hline \psi' : \ ?? \end{array} egin{array}{c} rac{\eta_6 : \ ert P(c,d) \ \eta_1 : \ P(U,V) dash Q(f(a,V),U) \ \eta'_7 : \ ert Q(f(a,d),c) \ \hline \psi' : \ ?? \end{array}$$

 η_1 's literal q(f(a,V),U), which would be resolved with η_8 's literal, was changed to Q(f(a,d),c) due to resolution between η_1 and η_6 .

Regularization Unifiability

Let η be a node with safe literals $\mathcal{S}(\eta) = \phi$ that is marked for regularization with parents η_1 and η_2 , where η_2 is marked as a deletedNode in a proof ψ . η is said to satisfy the *regularization unifiability property* in ψ if there exists a substitution σ such that $\eta_1 \sigma \subseteq \phi$.

The First-Order Algorithm

- Similar idea to the propositional case, but with care taken to ensure proofs satisfy the last two properties.
- First order *factoring* also employed to reduce proof size further, e.g. if $\eta_1:p(X),p(Y)\vdash$, factor to $\eta_1':p(X)\vdash$ before performing resolution.
- ▶ Does not compress all first-order proofs (yet).

Preliminary Results

- First-order proofs generated by SPASS show some compression by Scala based implementation.
- ► Data set is small: only 308 proofs, all of which are short
- Evaluation with GFOLU [3], a first-order variant of LowerUnits, another propositional compression algorithm lifted to first-order logic.
 - ► Recycle pivots compresses 10x more than lower units in the propositional case
- Algorithm composition may matter less in the first-order case when compared to the propositional case.
- Quick compression: 40 minutes to generate all proofs, 8 seconds to compress all proofs.

Future Directions

- Larger evaluation more proofs, bigger proofs
- ► Identify properties that would enable all irregular first-order proofs to be compressed
- Investigate lifting other propositional proof compression techniques.

References

- [1] P. Fontaine, S. Merz, and B. Woltzenlogel Paleo.
 - Compression of propositional resolution proofs via partial regularization. In *CADE-23*. Springer, 2011.
- [2] Ulrich Furbach, Björn Pelzer, and Claudia Schon. Automated reasoning in the wild. In *CADE-25*. Springer, 2015.
- [3] J. Gorzny and B. Woltzenlogel Paleo.

Towards the compression of first-order resolution proofs by lowering unit clauses. *CADE-25*. Springer, 2015.