# Module 4: Sampling and Confidence Intervals

# Sampling and Confidence Intervals

- ▶ Populations and Samples
- ▶ Point Estimation of a Population Mean and Proportion
- ▶ The Standard Normal
- ► Confidence Interval Estimation
- ► Sample Size Determination
- ▶ The Finite Correction Factor

# Populations and Samples

▶ Definition of Population and Population Parameters

Populations and Samples

Population Parameters

- Samples and Sample Statistics
- Simple Random Sample

Sampling Strategies

Simple Random Sample

Problems in Sampling (Bias)

#### Population vs Sample

- A population includes all elements
- ► CENSUS: survey the entire population => NO ERROR
- A sample: a subset of the population that observed
- ▶ More than one sample can be derived from the same population
- ▶ STATISTIC: A measurable characteristic of a sample
  - => It's intended to represent or estimate the population (with MINIMUM/ACCEPTABLE ERROR)

# Population Parameters

- ▶ Population: collection of all objects of interest, example:
  - All voters registered for a US Presidential election
  - All the customers shopping in a department store on a given day
- ▶ Population Parameters: numerical characteristic of a population, example:
  - The fraction of voters that prefer the Democratic candidate for president.
  - The average weight of all the cows in India.

The standard deviation of the amount spent by a dept. store customer on a given day.

# Sampling Strategy

- Sample must be representative of the population of interest.
- Stratification Method
- Random Method
- Cluster Method
- Multi-Stage Clustering Method
- Convenient Sampling Method
- Use random function in Excel to create a random number

# Sampling Strategy – Simple Random Sample

#### <u>Simple Random Sample (SRS)</u>

- each set of n individuals has the same chance of being chosen
- Example Population (N) = 5 and sample size (n) =2

Possible combination are:

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

Each population member has chance 2/5 = 40% of being chosen

### Sampling Strategy – Stratified Random Sampling

#### **Stratified Random Sampling**

- the population is divided into groups, called strata, based on some characteristic
- within each group, a sample, usually random, is selected
- How many are selected from each strata depends on the purpose for creating the strata initially
- In most cases, stratification is done to ensure that sample percentages match population percentages on some key characteristic

## Sampling Strategy – Cluster Sampling

#### **Cluster Sampling**

- dividing up the population into clusters and then selecting clusters to be part of the sample
- Every cluster should represent the population on a small scale and be as heterogenous as possible
- Every population element must belong to one and only one cluster
- one-stage clustering (include all from the cluster)
- multi-stage clustering (randomly selects from the cluster)

### Sampling Strategy – Systematic Random Sampling

#### Systematic Random Sampling

- Randomly picks the first item of the population
- Continue by picking the n<sup>th</sup> subject from the list
- The results are usually representative of the population unless certain characteristics of the population are repeated for every n'th individual, which is highly unlikely

# Sampling Strategy - Convenient Sampling

#### **Convenient Sampling**

- subjects are selected because of their convenient accessibility and proximity to the researcher
- Example Professor selected his students because they are easy to reach in campus

# Problem in Sampling (Bias)

Unintentional Error in preparing the sample:

Non Random Sample: 10<sup>th</sup> machine is faulty

Selection bias: survey by phone

Non-Response bias: reluctant to response

Publication bias: Bill Gates & Steve job => drop out from schooll

Response bias/ Desirability bias: response only what nice to say

Survivorship bias:

# Point Estimation of a Population Mean and Proportion

Mean, Variance and Standard Deviation of Sample Mean (Xbar  $\bar{x}$ ):

Mean, Variance, and Standard Deviation of Sample Mean Xbar and Mean, Variance, and Standard Deviation of Xbar

- Examples of Sample Mean  $(\bar{x})$ Example of  $\bar{x}$  Formulas
- $\blacktriangleright$  Estimate Population Proportion using P-hat  $(\hat{p})$

# Sample & Population Notations

 $\sigma^2$ : Population variance

σ: Population standard deviation

s<sup>2</sup>: Sample variance

s: Sample standard deviation

μ: Population mean

 $\bar{x}$ : Sample mean

N: Number of observations in the population

n: Number of observations in the sample

# Population & Sample Notation

| Notation              | Population | Sample             |
|-----------------------|------------|--------------------|
| Number of observation | N          | n                  |
| Variance              | $\sigma^2$ | s <sup>2</sup>     |
| Standard Deviation    | σ          | S                  |
| Mean                  | u          | $ar{oldsymbol{x}}$ |

# Sample Mean

- ▶ The sample mean symbol is  $\bar{x}$ , pronounced "x bar".
- ► The sample mean is an average value found in a sample.
- Formula:  $\bar{x} = (\sum x_i) / n$   $\bar{x} = \frac{x_1 + x_2 + \cdots x_n}{n}$
- ► The sampling distribution of the sample mean is a probability distribution of all the sample means.

The sample mean is an average value found in a sample.



## Variance & Standard Deviation of Sample Mean

▶ Variance of Sample Mean:

$$s^2 = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}{n-1}$$

Variance in a population is:

$$\sigma^2 = rac{\sum (x-\mu)^2}{n}$$

 $[x_i \text{ is the ith observation from a sample of the population, x-bar is the sample mean, n (sample size) -1 is <u>degrees of freedom</u>, <math>\Sigma$  is the summation]

Standard deviation is Square root of variance

# Standard Deviation of Sample

▶ Standard Deviation of Sample Mean:

$$(\hat{p}) = \sqrt{\frac{\hat{p} * (1 - \hat{p})}{n}}$$

 $\hat{p}$ : point estimation of p

 $\bar{x}$ : point estimation of  $\mu$ 

#### The Standard Normal & the .S Functions

- ► The standard normal distribution is special case of the normal distribution.
- ▶ It is a distribution that occurs when a normal random variable has a mean of zero and a standard deviation of one.
- ▶ Often called as Z
- NORM.S Functions: Excel function take into account the  $\mu$ =0 and  $\sigma$ =1

#### Confidence Interval Estimation

► Confidence Interval for Population Mean:

to describe the amount of uncertainty associated with a sample estimate of a population parameter

Examples: 95% Confidence Interval for Population Mean

Demonstration of Meaning for Confidence Interval:

Demonstration of Meaning for 95% Confidence Interval

Confidence Interval for Population Proportion

95% Confidence Interval for Population Proportion

Blyth's Formula for Proportion Confidence Interval

#### Confidence Interval Estimation

▶ Demonstration of Meaning for 95% Confidence Interval:

You are told the standard deviation of invoice values is \$500.

A sample of 100 invoices taken from a large sample of invoices has a sample mean value of \$4500.

You are 95% sure the mean size of an invoice is within what range?

|   | C                       | D                    | E        |
|---|-------------------------|----------------------|----------|
| 1 | ,                       |                      |          |
| 2 | y ta Kantila bakila shi | samplemean           | 4500     |
| 3 |                         | popsigma             | 500      |
| 4 |                         | samplesize           | 100      |
| 5 |                         | z.025                | -1.95996 |
| 6 |                         | z. <mark>97</mark> 5 | 1.959964 |
| 7 |                         |                      |          |
| 8 |                         | Lower Limit          | 4402.002 |
| 9 |                         | <b>Upper Limit</b>   | 4597.998 |

# Sample Size Determination

- ► The bigger sample size, the better quality of Population mean estimation
- Sample Size for Estimating Population Mean
- ▶ Sample Size for Estimating a Population Proportion

#### ► M4L5HW1

In a Presidential election poll, how many voters need to be sampled so we can be 95% confident that our estimate is within 2% of the true percentage of voters preferring the Democratic candidate?

#### ► Solution/Answer:

n= 
$$1.96^2/(4*E^2)$$
  
n=2400.912 ≈ 2401  
(Must be rounded UP)

| 1 | A                | В                                      | С         | D             |
|---|------------------|----------------------------------------|-----------|---------------|
| 1 | M4L5HW1          | n = 1.96 <sup>2</sup> /4E <sup>2</sup> |           |               |
| 2 | Error            | 0.02                                   |           |               |
| 3 | α                | 0.05                                   |           | 1             |
| 4 | Z <sub>a/2</sub> | 1.959963985                            |           |               |
| 5 | Sample Size      | 2400.911763                            | =Zalpha2/ | 2/(4*Error^2) |
| 6 | 1.3              | ≈ 2401                                 |           |               |

 $\blacktriangleright$  If the standard deviation ( $\sigma$ ) is KNOWN

$$n = \frac{(z_{\alpha/2})^2 \sigma^2}{E^2}$$

The formula above provide the sample size needed (n) under the requirement of population mean interval estimate at (1 –a) confidence level, margin of error E, and population variance  $\sigma^2$ .

 $z_{\alpha/2}$  is the 100(1 –  $\alpha/2$ ) percentile of the standard normal distribution.

- $\blacktriangleright$  If the standard deviation ( $\sigma$ ) is UNKNOWN
- a.  $\sigma \approx \text{range}/4$ Why  $\frac{1}{4}$ ? (the highest value of (p \* (1-p) happens when p=0.5 is  $\frac{1}{4}$ ) (1-p) \* p = 0.5 \* 0.5 = 1/4 n=  $(Z_{\alpha/2})^2/(4*E^2)$
- -OR-
- $\alpha$ . Calculate sample standard deviation (s) and use it in place of  $\sigma$
- b. Estimate the value of  $\sigma$  using other method

Problem

Assume the population standard deviation  $\sigma$  of the student height in survey is 9.48. Find the sample size needed to achieve a 1.2 centimeters margin of error at 95% confidence level.

► Solution/Answer:  $n=239.75 \approx 240$ 

| 1 | Α              | В        | С                        | D |  |
|---|----------------|----------|--------------------------|---|--|
| 1 | Error          | 1.2      |                          |   |  |
| 2 | α              | 0.05     |                          |   |  |
| 3 | $Z_{\alpha/2}$ | 1.959964 | =NORM.S.INV(1-Alpha/2)   |   |  |
| 4 | sigma          | 9.48     |                          |   |  |
| 5 | Sample Size    | 239.7454 | =Zalpha2^2*sigma^2/Err^2 |   |  |
| 6 |                | ≈ 240    |                          |   |  |

#### ► <u>M4L5HW2:</u>

How many soda cans need to be sampled in order to be 95% confident that your estimate of the average number of ounces in a soda can is accurate within 0.03 ounces?

Assume standard deviation of ounces in a can is 0.15 ounces.

#### ► <u>M4L5HW3:</u>

How many American men's heights need to be sampled to be 95% confident that you can estimate the average height of an American man within 1 inch?

Assume the standard deviation of an American men's height is 3 inches.

# Sample Size for Estimating Proportion

#### Sample

suppose we want to estimate the fraction of registered voters preferring the Republican candidate in a Texas election. We would like our estimate to have a 95% chance of being accurate within 3%.

How large of a sample is needed?

Answer: 1067.072

 $n = 1.96^2/(4*E^2)$ 

n = 1068

(Must be rounded UP)

| 1 | А              | В        | C                        |  |  |
|---|----------------|----------|--------------------------|--|--|
| 1 | Error          | 0.03     |                          |  |  |
| 2 | α              | 0.05     |                          |  |  |
| 3 | $Z_{\alpha/2}$ | 1.959964 | =NORM.S.INV(1-Alpha/2)   |  |  |
| 4 | sigma          | 0.5      |                          |  |  |
| 5 | Sample Size    | 1067.072 | =Zalpha2^2*sigma^2/Err^2 |  |  |
| 6 |                | ≈ 1068   |                          |  |  |

► Finite Correction Formula for Sample Size

Applied when sample size bigger (> 10% of population)

n: sample size with Correction factor

 $N_0$ : sample size without Correction factor

$$n = \frac{N_0 * N}{N_0 + N - 1}$$

N: Population size

#### ► Sample:

Suppose we want to estimate the mean salary of Fortune 500 CEOs and be 95% sure our estimate is accurate within \$1 million. How large of a sample is needed? (standard deviation is known \$5 million)

# The Sample Size with Finite Correction Factor

#### ► Solution:

|   | Α                    | В        | C                   | D         | E         | F       |
|---|----------------------|----------|---------------------|-----------|-----------|---------|
| 1 | Error                | 1        |                     |           |           |         |
| 2 | α                    | 0.05     |                     |           |           |         |
| 3 | Z <sub>α/2</sub>     | 1.959964 | =NORM.S.INV(1-Alpha | a/2)      |           |         |
| 4 | sigma                | 5        |                     |           |           |         |
| 5 | N                    | 500      |                     |           |           |         |
| 6 | Sample Size(No FC)   | 96.03647 | =Zalpha2^2*sigma^2/ | Err^2     |           |         |
| 7 | Sample Size(With FC) | 80.69797 | =SampleNoFC*PopSiz  | e/(Sample | NoFC+PopS | Size-1) |
| 8 |                      | ≈ 81     |                     |           |           |         |

▶ Finite Correction Formula for Estimating Population Mean Applied when sample size bigger (> 10% of population) n: sample size with Correction factor

 $N_0$ : sample size without Correction factor

 $n = \frac{N_0 * N}{N_0 + N - 1}$ 

N: Population size

# Finite Correction Factor Confidence Interval for Population Mean

#### Sample:

Suppose we want to estimate the average salary of Fortune 500 CEOs. Assume the standard deviation of these salaries is known to be \$5 million.

If we sample 100 CEOs and find an average salary of \$40 million,

With 95% confidence interval, we are sure that the actual mean salary of Fortune 500 CEOs is between \$\_\_\_\_\_ and \$\_\_\_\_\_

# Finite Correction Factor Confidence Interval for Population Mean

► Solution: between \$39.12 to \$40.87

| 2  | Α              | В        | С          | D          | E          | F         |
|----|----------------|----------|------------|------------|------------|-----------|
| 1  |                |          |            |            |            |           |
| 2  |                |          |            |            |            |           |
| 3  | samplesize (n) | 100      |            |            |            |           |
| 4  | popsize(N)     | 500      |            |            |            |           |
| 5  | sigma          | 5        |            |            |            |           |
| 6  | xbar           | 40       |            |            |            |           |
| 7  |                |          |            |            |            |           |
| 8  | FC             | 0.895323 |            |            |            |           |
| 9  | With FC        |          |            |            |            |           |
| 10 | LowerLimit     | 39.12258 | =xbar-1.96 | 5*FC*sigma | /SQRT(sar  | nplesize) |
| 11 | UpperLimit     | 40.87742 | =xbar+1.9  | 6*FC*sigma | a/SQRT(sa  | mplesize) |
| 12 |                |          |            |            |            |           |
| 13 | Without FC     |          |            |            |            |           |
| 14 | LowerLimit     | 39.02    | =xbar-1.96 | 5*sigma/SC | QRT(sample | esize)    |
| 15 | UpperLimit     | 40.98    | =xbar+1.9  | 6*sigma/S0 | QRT(sampl  | esize)    |

# The Blyth Formula

- ▶ Blyth formula: a confidence interval formula to be used when all trials result in success or failure (one outcome is nearly 100%, the other one is nearly 0%)
- ▶ Suppose my son has driver to work 500 times without an accident. Let's find a 95% confidence interval for the chance he will have, or will not have an accident.

# The Blyth Formula

Simply enter the number of trials in cell C3 and alpha of .05 for a 95% confidence interval (alpha of .01 for a 99% confidence interval) in C4. In cells C8 and D8 we find that we are 95% sure the chance of an accident is between 0 and 0.005974 and from cells C11 and D11 we find that we are 95% sure the chance of no accident is between 0,99492645 and 1.

|    | Α         | В                 | С          | D        | E                      | F                    |
|----|-----------|-------------------|------------|----------|------------------------|----------------------|
| 1  | Blyth Cor | nfidence Interval |            |          |                        |                      |
| 2  |           |                   | Ĭ          |          |                        |                      |
| 3  |           | n                 | 500        |          |                        |                      |
| 4  |           | alpha             | 0.05       | 3        |                        |                      |
| 5  |           |                   |            |          |                        |                      |
| 6  |           | 5                 |            |          |                        | 9                    |
| 7  |           | Successes         | Lower      | Upper    |                        | 8                    |
| 8  |           | 0                 | 0          | 0.005974 |                        | 0 =1-alpha^(1/n)     |
| 9  |           | 1                 | 5.0634E-05 | 0.007351 | =1-(1-0.5*alpha)^(1/n) | =1-(0.5*alpha)^(1/n) |
| 10 |           | 499               | 0.99264939 | 0.999949 | =(0.5*alpha)^(1/n)     | =(1-0.5*alpha)^(1/n) |
| 11 |           | 500               | 0.99402645 | 1        | =(alpha)^(1/n)         |                      |

#### ► <u>M4L6HW1:</u>

In a local election poll in a town with 5000 registered voters, how many voters need to be sampled so we can be 95% confident that we can estimate the true percentage of voters preferring the Democratic candidate within 2%? Apply the finite correction factor to obtain your answer..

#### Answer:

#### ► M4L6HW2:

In a batch of 200 soda cans, how many soda cans need to be sampled in order to be 95% confident that your estimate of the average number of ounces in a soda can is accurate within 0.03 ounces? Assume standard deviation of ounces in a can is 0.15 ounce.

Apply the finite correction factor to obtain your answer.

#### Answer:

#### ► <u>M4L6HW3:</u>

You are told the standard deviation of the invoice size in a population of 200 invoice values is \$1,000. A sample of 50 invoices yields an average invoice size of \$5,000. You are 95% confident that the average size of an invoice is between which two values? Calculate the lower and upper limit, and apply the finite correction factor to obtain your answer..

#### Answer:

# Homework & Quiz