Artificial Neural Networks

[Read Ch. 4] [Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics

Connectionist Models

Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10¹⁰
- \bullet Connections per neuron ~ 10^{4-5}
- Scene recognition time ~ .1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

Examples:

- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction

ALVINN drives 70 mph on highways

Perceptron

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron

Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- \bullet o is perceptron output
- \bullet η is small constant (e.g., .1) called $learning\ rate$

Perceptron training rule

Can prove it will converge

- If training data is linearly separable
- \bullet and η sufficiently small

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})
\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- ullet Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient $\nabla E_D[\vec{w}]$
- $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent:

Do until satisfied

- For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$
 - $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Multilayer Networks of Sigmoid Units

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

We can derive gradient decent rules to train

- One sigmoid unit
- $Multilayer\ networks$ of sigmoid units \rightarrow Backpropagation

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$
$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- \bullet Often include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

Learning Hidden Layer Representations

A target function:

Input	Output
10000000 -	→ 10000000
01000000 -	$\rightarrow 01000000$
00100000 -	$\rightarrow 00100000$
00010000 -	$\rightarrow 00010000$
00001000 -	$\rightarrow 00001000$
00000100 -	$\rightarrow 00000100$
00000010 -	$\rightarrow 00000010$
00000001 -	$\rightarrow 00000001$

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input		Hidden				Output	
Values							
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000	
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000	
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000	
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000	
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000	
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100	
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010	
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001	

Training

Training

Training

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Overfitting in ANNs

Neural Nets for Face Recognition

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

Typical input images

http://www.cs.cmu.edu/~tom/faces.html

Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

Tie together weights:

• e.g., in phoneme recognition network

Recurrent Networks

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time

Evaluating Hypotheses

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4]

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods

Two Definitions of Error

The **true error** of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The **sample error** of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_{\mathcal{S}}(h)$ estimate $error_{\mathcal{D}}(h)$?

Problems Estimating Error

1. Bias: If S is training set, $error_S(h)$ is optimistically biased

$$bias \equiv E[error_S(h)] - error_D(h)$$

For unbiased estimate, h and S must be chosen independently

2. Variance: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$

Example

Hypothesis h misclassifies 12 of the 40 examples in S

$$error_S(h) = \frac{12}{40} = .30$$

What is $error_{\mathcal{D}}(h)$?

Estimators

Experiment:

- 1. choose sample S of size n according to distribution \mathcal{D}
- 2. measure $error_S(h)$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_{S}(h)$ is an unbiased estimator for $error_{D}(h)$

Given observed $error_S(h)$ what can we conclude about $error_D(h)$?

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

where

$$N\%$$
: 0.67 0

$error_S(h)$ is a Random Variable

Rerun the experiment with different randomly drawn S (of size n)

Probability of observing r misclassified examples:

$$P(r) = \frac{n!}{r!(n-r)!} error_{\mathcal{D}}(h)^r (1 - error_{\mathcal{D}}(h))^{n-r}$$

Binomial Probability Distribution

Probability P(r) of r heads in n coin flips, if $p = \Pr(heads)$

• Expected, or mean value of X, E[X], is

$$E[X] \equiv \sum_{i=0}^{n} iP(i) = np$$

• Variance of X is

$$Var(X) \equiv E[(X - E[X])^2] = np(1 - p)$$

• Standard deviation of X, σ_X , is

$$\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)}$$

Normal Distribution Approximates Binomial

 $error_S(h)$ follows a Binomial distribution, with

- mean $\mu_{error_S(h)} = error_{\mathcal{D}}(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} = \sqrt{rac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Approximate this by a *Normal* distribution with

- mean $\mu_{error_S(h)} = error_{\mathcal{D}}(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

Normal Probability Distribution

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x)dx$$

• Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

 \bullet Variance of X is

$$Var(X) = \sigma^2$$

• Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

Normal Probability Distribution

80% of area (probability) lies in $\mu \pm 1.28\sigma$

N% of area (probability) lies in $\mu \pm z_N \sigma$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

equivalently, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

which is approximately

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 cdots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
 - $error_{\mathcal{D}}(h)$
- 2. Choose an estimator
 - $\bullet \ error_S(h)$
- 3. Determine probability distribution that governs estimator
 - $error_S(h)$ governed by Binomial distribution, approximated by Normal when $n \geq 30$
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
 - Use table of z_N values

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$$

2. Choose an estimator

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{\mathrm{error}_{S_1}(h_1)(1 - \mathrm{error}_{S_1}(h_1))}{n_1} + \frac{\mathrm{error}_{S_2}(h_2)(1 - \mathrm{error}_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\hat{d}\pm z_{N}\sqrt{rac{error_{S_{1}}(h_{1})(1-error_{S_{1}}(h_{1}))}{n_{1}}+rac{error_{S_{2}}(h_{2})(1-error_{S_{1}}(h_{1}))}{n_{2}}}$$

Paired t test to compare h_A, h_B

- 1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

$$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

 $\overline{N\%}$ confidence interval estimate for d:

$$ar{\delta} \pm t_{N,k-1} \; s_{ar{\delta}}$$

$$s_{ar{\delta}} \equiv \sqrt{rac{1}{k(k-1)}\sum\limits_{i=1}^k (\delta_i - ar{\delta})^2}$$

Note δ_i approximately Normally distributed

Comparing learning algorithms L_A and L_B

What we'd like to estimate:

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

where L(S) is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D} .

But, given limited data D_0 , what is a good estimator?

• could partition D_0 into training set S and training set T_0 , and measure

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

• even better, repeat this many times and average the results (next slide)

Comparing learning algorithms L_A and L_B

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i

- $\bullet \ S_i \leftarrow \{D_0 T_i\}$
- $\bullet h_A \leftarrow L_A(S_i)$
- $\bullet h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Comparing learning algorithms L_A and L_B

Notice we'd like to use the paired t test on $\bar{\delta}$ to obtain a confidence interval

but not really correct, because the training sets in this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

$$E_{S\subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

instead of

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

but even this approximation is better than no comparison