平成30年 電磁気学1

大山主朗

平成30年 電磁気学II 第1回小テスト

- 1 以下の (a) 及び (c) に示す物理定数は電磁気学を修めた者であれば常識的に 覚えていなければならない数値である.それぞれの値を示せ.
- (a) 真空の誘電率 $\varepsilon_0: 8.854 \times 10^{-12} \, \mathrm{F/m}$
- (b) 真空の透磁率 $\mu_0: 1.257 \times 10^{-6} \, \mathrm{H/m}$
- (c) 電子の電荷 $e:-1.602\times 10^{-19}\,\mathrm{C}$
- 2 一辺の長さ a の正方形がある.点 A に -2q[C],点 B に +1q[C],点 C に -4q[C],点 D に +3q[C],が点 O に -q[C] の点電荷が存在するとき,点 O にある電荷にはたらく力 F の大きさを求めよ.ただし,q>0 とする.

$$\begin{split} & \boldsymbol{F}_{A} = \frac{1}{4\pi\varepsilon_{0}} \frac{-2q(-q)}{\left(\left(-\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{ -\frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j} \right\} [N] \\ & \boldsymbol{F}_{B} = \frac{1}{4\pi\varepsilon_{0}} \frac{q(-q)}{\left(\left(-\frac{a}{2}\right)^{2} + \left(-\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{ -\frac{a}{2}\boldsymbol{i} - \frac{a}{2}\boldsymbol{j} \right\} [N] \\ & \boldsymbol{F}_{C} = \frac{1}{4\pi\varepsilon_{0}} \frac{-4q(-q)}{\left(\left(\frac{a}{2}\right)^{2} + \left(-\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{ \frac{a}{2}\boldsymbol{i} - \frac{a}{2}\boldsymbol{j} \right\} [N] \\ & \boldsymbol{F}_{D} = \frac{1}{4\pi\varepsilon_{0}} \frac{3q(-q)}{\left(\left(\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{ \frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j} \right\} [N] \\ & \boldsymbol{F} = \boldsymbol{F}_{A} + \boldsymbol{F}_{B} + \boldsymbol{F}_{C} + \boldsymbol{F}_{D} \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{q^{2}}{\left(\left(\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{ \left(-a + \frac{a}{2} + 2a - \frac{3}{2}a\right)\boldsymbol{i} + \left(a + \frac{a}{2} - 2a - \frac{3}{2}a\right)\boldsymbol{j} \right\} \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{q^{2}}{\left(\frac{a^{2}}{4}\right)^{3/2}} (-2a\boldsymbol{j}) \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{8q^{2}}{a^{3}} (-2a\boldsymbol{j}) \\ & = -\frac{4q^{2}}{\pi\varepsilon_{0}a^{2}} \boldsymbol{j} [N] \\ & |\boldsymbol{F}| = \frac{4q^{2}}{\pi\varepsilon_{0}a^{2}} [N] \quad \text{y 軸 Fin E} \end{split}$$

3 一辺の長さaの正方形がある、点Bに+m[Wb],点Cに-3m[Wb],点Dに+2m[Wb],点Oに+m[Wb]の点磁荷が存在するとき,点Aにできる磁界Hの大きさを求めよ、ただし,m>0とする、

- 4 以下の (a) から (c) に示すような電荷分布が存在するとき,それぞれの電荷分布が周囲につくる電界 E をガウスの法則を用いて求めよ.
- (a) q[C]の点電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{q}{4\pi \varepsilon_{0} r^{2}} [V/m]$$

(b) 線電荷密度 λ [C/m] で分布する無限長直線電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{\lambda l}{2\pi \varepsilon_{0} r l}$$

$$= \frac{\lambda}{2\pi \varepsilon_{0} r} [V/m]$$

(c) 面電荷密度 σ [C/m²] の無限長面電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{\sigma S}{\varepsilon_{0} S}$$

$$= \frac{\sigma}{\varepsilon_{0}} [V/m]$$

 $oldsymbol{5}$ 導体板の面積 S , 導体板の平行平板キャパシタの内部が比誘電率 $arepsilon_r$ の誘電体で満たされているとき,この平行平板キャパシタの静電容量 C が $C=arepsilon_0 arepsilon_r$ で求められる理由を説明せよ.

電極に $\pm Q$ の電荷を与える. 次に,電極間に発生する電界 E を求め,電極間の電圧 V を求める.それらを, $C=\frac{Q}{V}$ に代入すことにより,与式が導出される.

$$\begin{split} C &= \frac{Q}{V} \\ &= \frac{Q}{Ed} \\ &= \frac{Q}{\frac{Qd}{\varepsilon_0 \varepsilon_r S}} \\ &= \varepsilon_0 \varepsilon_r \frac{S}{d} \left[\mathbf{F} \right] \end{split}$$

- 6 真空中に単磁荷mが存在する.ただしm < 0とする.このとき以下の問いに答えよ.
- (a) 点磁荷mが、距離rの位置に作る磁界Hを求めよ.

$$H = \frac{m}{4\pi\mu_0 r^2} \left[\text{A/m} \right]$$

- (b) 点磁荷 m が作る磁界の様子を磁力線を用いて図示せよ.
- (c) 点磁荷 m から距離 r の位置における磁束密度 B を求めよ.

$$B = \mu_0 H = \frac{m}{4\pi r^2} [T]$$

(d) 点磁荷 m から距離 r の位置を通過する磁束 Φ を磁束密度 B より求めよ.

$$\Phi = BS = m \, [\mathrm{Wb/m}]$$

3

- 7 xy 直交座標系において,同量異符号の点磁荷 $\pm m$ が距離 l に固定された磁気双極子が存在する.このとき以下の問いに答えよ.ただし,x 方向の基準ベクトルを j とする
- (a) 点 A に存在する磁荷 -m が点 $P(x_0,y_0)$ に作る磁界 \boldsymbol{H}_1 を求めよ.

$$\boldsymbol{H}_{1} = \frac{1}{4\pi\mu_{0}} \frac{-m}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left\{ \left(x_{0} + \frac{l}{2}\right) \boldsymbol{i} + y_{0} \boldsymbol{j} \right\} [A/m]$$

(b) 点 B に存在する磁荷 +m が点 $P(x_0,y_0)$ に作る磁界 \boldsymbol{H}_2 を求めよ.

$$H_2 = \frac{1}{4\pi\mu_0} \frac{m}{\left(\left(x_0 - \frac{l}{2}\right)^2 + y_0^2\right)^{3/2}} \left\{ \left(x_0 - \frac{l}{2}\right) i + y_0 j \right\} [A/m]$$

(c) 点 P での磁界 **H** を求めよ.

 $\boldsymbol{H} = \boldsymbol{H}_1 + \boldsymbol{H}_2$

$$= \frac{m}{4\pi\mu_0} \left[\frac{-1}{\left(\left(x_0 + \frac{l}{2} \right)^2 + y_0^2 \right)^{3/2}} \left\{ \left(x_0 + \frac{l}{2} \right) \mathbf{i} + y_0 \mathbf{j} \right\} + \frac{1}{\left(\left(x_0 - \frac{l}{2} \right)^2 + y_0^2 \right)^{3/2}} \left\{ \left(x_0 - \frac{l}{2} \right) \mathbf{i} + y_0 \mathbf{j} \right\} \right] [A/m]$$

(d) 磁気双極子モーメント M を求めよ.

$$\mathbf{M} = m\mathbf{l}$$
$$= ml\mathbf{i} [\text{Wb} \cdot \text{m}]$$

(e) 点 P が原点 O より十分遠方にあると仮定すると、 $\sqrt{(x_0-l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ 及び $\sqrt{(x_0+l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ と近似できる.このことを用いて (c) にて得た磁界 ${\bf H}$ を簡略化せよ.

$$egin{aligned} oldsymbol{H} &\simeq -rac{1}{4\pi\mu_0}rac{ml}{\left(x_0^2+y_0^2
ight)^{3/2}}oldsymbol{i}\left[\mathrm{A/m}
ight] \ &\left(\simeq -rac{oldsymbol{M}}{4\pi\mu_0r^3}\left[\mathrm{A/m}
ight]
ight) \end{aligned}$$

(f) y 方向に一様な磁界 H_0 が存在するとき、磁気双極子にはたらくトルク T を求めよ.

$$egin{aligned} oldsymbol{T} &= oldsymbol{M} H_0 \sin \theta \ &= m l oldsymbol{i} \sin rac{\pi}{2} \ &= m l oldsymbol{i} \ &| oldsymbol{T}| = m l \left[\mathrm{Wb} \cdot \mathrm{m} \right], \ \mathrm{x} \ \mathrm{mhd} \ \mathrm{f} \ \mathrm{f} \ \mathrm{f} \end{aligned}$$

8 強磁性体,常磁性体,反磁性体の3つの磁性体の性質を,比透磁率と磁化率を用いて説明せよ.

強磁性体は磁化率が0よりかなり大きく,透磁率が1よりかなり大きい磁性体を指す.そのため,磁界と同じ方向に磁化され,その大きさも大きい.

常磁性体は磁化率が0より大きく,透磁率は1未満の磁性体を指す.そのため,磁界と同じ方向に磁化され,その大きさは大きくない.

反磁性体は磁化率が0より小さく,透磁率が1より小さい磁性体を指す.そのため,磁界と逆方向に磁化され,その大きさは小さい.

平成30年 電磁気学II 第2回小テスト

- 1 以下の (a) 及び (c) に示す物理定数は電磁気学を修めた者であれば常識的に 覚えていなければならない数値である.それぞれの値を示せ.
- (a) 真空の誘電率 $\varepsilon_0: 8.854 \times 10^{-12} \, \mathrm{F/m}$
- (b) 真空の透磁率 $\mu_0: 1.257 \times 10^{-6} \, \mathrm{H/m}$
- (c) 電子の電荷 $e:-1.602\times10^{-19}$ C
- 2 磁化されていない強磁性体に磁界 H を外部から印加し,強磁性体内部での磁束密度 B を観測すると,図 3 に示すような結果が得られた.このとき,図中の行程 1: 点 O \rightarrow 点 P_1 ,行程 2: 点 P_1 \rightarrow 点 P_2 ,行程 3: 点 P_2 \rightarrow 点 P_3 ,行程 4: 点 P_3 \rightarrow 点 P_4 ,行程 5: 点 P_4 \rightarrow 点 P_5 , 行程 6: 点 P_5 \rightarrow 点 P_6 ,行程 7: 点 P_6 \rightarrow 点 P_1 の 7 つの行程に着目して,測定結果を説明せよ.
- 3 xyz 直角座標空間において,y 軸上の点 $\mathbf{P}(0,h,0)$ を中心とし,y=h の平面内に半径 a の円形ループ電流 I が流れている.このとき,以下の各問いに答えよ.
- (a) 点 P に発生する磁界 **H** を求めよ.

x 方向, y 方向, z 方向の基底ベクトルをそれぞれ i,j,k とする $dl \times l$ の方向より dH は y 軸左向き

$$H = \oint dH$$

$$= \oint \frac{IdI \times r}{4\pi a^3}$$

$$= \frac{I}{4\pi a^3} \oint r \times dI$$

$$|H| = \frac{I}{4\pi a^3} \oint r \sin \frac{\pi}{2} dl$$

$$= \frac{I}{4\pi a^2} 2\pi a$$

$$= \frac{I}{2a} [A/m]$$

$$H = \frac{I}{2a} \mathbf{j} [A/m]$$

(b) 点 O に発生する磁界 **H** を求めよ.

x方向, y方向, z方向の基底ベクトルをそれぞれ i, j, k とする

z>0 に円周上の微小磁界 $d\mathbf{H}_1$ を

z < 0 に円周上の微小磁界 $d\mathbf{H}_2$ を考える.

またそれぞれの線素ベクトルを dl ととる.

ここで、 $d\mathbf{H}_1$ と $d\mathbf{H}_2$ の外積より、2つの磁界は打ち消される方向となっているため、

 $d\mathbf{H}_1$ と $d\mathbf{H}_2$ を合成した磁界を $d\mathbf{H}$ とする. $(\phi: d\mathbf{H}_2$ と $d\mathbf{H}$ のなす角)

また dH の向きはy 軸左方向である

$$|d\mathbf{H}_{1}| = |d\mathbf{H}_{2}| = \frac{Idl}{4\pi r^{2}} \sin \theta$$

$$= \frac{Idl}{4\pi (a^{2} + h^{2})}$$

$$d\mathbf{H} = 2d\mathbf{H}_{1} \cos \phi$$

$$= 2d\mathbf{H}_{1} \frac{a}{r}$$

$$= 2d\mathbf{H}_{1} \frac{a}{\sqrt{a^{2} + h^{2}}}$$

$$|d\mathbf{H}| = 2|d\mathbf{H}_{1}| \frac{a}{\sqrt{a^{2} + h^{2}}}$$

$$= \frac{aIdl}{2\pi (a^{2} + h^{2})^{3/2}}$$

$$\mathbf{H} = \oint d\mathbf{H}_{1}$$

$$|\mathbf{H}| = \frac{1}{2} \oint |d\mathbf{H}|$$

$$= \frac{1}{2} \oint \frac{aIdl}{2\pi (a^{2} + h^{2})^{3/2}}$$

$$= \frac{1}{2} \cdot \frac{aI}{2\pi (a^{2} + h^{2})^{3/2}} \cdot 2\pi a$$

$$= \frac{a^{2}I}{2(a^{2} + h^{2})^{3/2}} [\mathbf{A}/\mathbf{m}]$$

$$\mathbf{H} = \frac{a^{2}I}{2(a^{2} + h^{2})^{3/2}} \mathbf{j} [\mathbf{A}/\mathbf{m}]$$

(c) (b) で得られた解答 $m{H}$ を用いて $\int_{-\infty}^{\infty} m{H} dh$ を計算せよ.

$$\int_{-\infty}^{\infty} \boldsymbol{H} dh = \int_{-\infty}^{\infty} \frac{a^2 I}{2(a^2 + h^2)^{3/2}} \boldsymbol{j} dh$$

$$h = a \tan \theta \succeq \mathbb{E}$$
連奏する.
$$\frac{dh}{d\theta} = \frac{a}{\cos^2 \theta} \quad \therefore dh = \frac{a}{\cos^2 \theta} d\theta$$
また積分範囲は $-\infty \to \infty$ から $-\frac{\pi}{2} \to \frac{\pi}{2}$ に変わる.
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{a^2 I}{2a^3 (1 + \tan^2 \theta)^{3/2}} \boldsymbol{j} \frac{a}{\cos^2 \theta} d\theta$$

$$= \frac{I}{2} \boldsymbol{j} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{(1 + \tan^2 \theta)^{3/2}} \frac{1}{\cos^2 \theta} d\theta$$

$$= \frac{I}{2} \boldsymbol{j} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{(\frac{1}{\cos^2 \theta})^{3/2}} \frac{1}{\cos^2 \theta} d\theta$$

$$= \frac{I}{2} \boldsymbol{j} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d\theta$$

$$= \frac{I}{2} \boldsymbol{j} \{1 - (-1)\}$$

$$= I \boldsymbol{j} [A/m]$$

xyz 直角座標空間において,y 軸上の点 $A(0,c_1,0)$ から点 $B(0,c_2,0)$ まで y 軸 に沿って直線状に流れる電流Iがある.このとき,x軸上の点 $\mathrm{P}(\mathrm{a},0,0)$ に 発生する磁界 H を求めよ、また、電流 I の始点 A と終点 B の座標がそれぞ $\mathbf{h}(0,-\infty,0),(0,\infty,0)$ となった場合の点 P に発生する磁界 \mathbf{H} を求めよ.

x方向, y方向, z方向の基底ベクトルをそれぞれ i, j, k とする

この時
$$d\mathbf{l} = dy\mathbf{i}, \mathbf{r} = a\mathbf{i} - y\mathbf{j}$$

$$d\mathbf{l} \times \mathbf{r} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & dy & 0 \\ a & -y & 0 \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{k} \\ a & 0 \end{vmatrix} = -ady\mathbf{k}$$

$$egin{aligned} m{H} &= \int_C dm{H} \ &= -\int_C rac{aIm{k}}{4\pi(a^2 + y^2)^{3/2}} dy \ &= -\int_{c_c}^{c_2} rac{aIm{k}}{4\pi(a^2 + y^2)^{3/2}} dy \end{aligned}$$

$$\frac{dh}{d\theta} = \frac{a}{\cos^2 \theta} \quad \therefore dh = \frac{a}{\cos^2 \theta} d\theta$$

また積分範囲は $c_1 \to c_2$ から $\alpha - \frac{\pi}{2} \to \beta - \frac{\pi}{2}$ に変更される.

$$= -\int_{\alpha - \frac{\pi}{2}}^{\beta - \frac{\pi}{2}} \frac{a^{2}I}{4\pi a^{3}(1 + \tan^{2}\theta)^{3/2}} \mathbf{j} \frac{a}{\cos^{2}\theta} d\theta$$

$$= -\frac{I}{4\pi} \mathbf{j} \int_{\alpha - \frac{\pi}{2}}^{\beta - \frac{\pi}{2}} \frac{1}{(1 + \tan^{2}\theta)^{3/2}} \frac{1}{\cos^{2}\theta} d\theta$$

$$= -\frac{I}{4\pi a} \mathbf{j} \int_{\alpha - \frac{\pi}{2}}^{\beta - \frac{\pi}{2}} \frac{1}{(\frac{1}{\cos^{2}\theta})^{3/2}} \frac{1}{\cos^{2}\theta} d\theta$$

$$= -\frac{I}{4\pi a} \mathbf{j} \int_{\alpha - \frac{\pi}{2}}^{\beta - \frac{\pi}{2}} \cos\theta d\theta$$

$$= -\frac{I}{4\pi a} \mathbf{j} \left[\sin\theta \right]_{\alpha - \frac{\pi}{2}}^{\beta - \frac{\pi}{2}}$$

$$= -\frac{I}{4\pi a} \mathbf{j} \left\{ \sin\left(\beta - \frac{\pi}{2}\right) - \sin\left(\alpha - \frac{\pi}{2}\right) \right\}$$

$$= -\frac{I}{4\pi a} \mathbf{j} \left(-\cos \beta + \cos \alpha \right)$$
$$= -\frac{I}{2\pi a} \mathbf{j} \left(\cos \alpha - \cos \beta \right) \left[A/m \right]$$

$$= -\frac{I}{4\pi a} \boldsymbol{j} \left(\cos \alpha - \cos \beta\right) [A/m]$$

始点 A と終点 Bの座標がそれぞれ $(0, -\infty, 0), (0, \infty, 0)$ の場合は

$$\alpha = 0, \beta = \pi$$
 であるので

$$oldsymbol{H} = -rac{I}{4\pi a} \cdot 2oldsymbol{j} \ = -rac{I}{2\pi a}oldsymbol{j} \left[\mathrm{A/m}
ight]$$

- 5 半径 a の円 O に外接する正多角形の辺上に電流が流れているとき,以下の問に答えよ.
- (a) 正三角形の辺上を流れる電流 I が内接円の中心 O につくる磁界 H を求めよ.

問
$$4$$
 より
$$oldsymbol{H} = -\frac{I}{4\pi a} i \left(\cos \alpha - \cos \beta\right) \left[\mathrm{A/m} \right]$$
 ここでそれぞれの作る磁界は同一方向で、 $\alpha = \frac{\pi}{6}, \beta = \pi - \frac{\pi}{6}$ であるため $|oldsymbol{H}| = \frac{3I}{4\pi a} \left(\cos \frac{\pi}{6} - \cos \frac{5}{6}\pi\right)$ $= \frac{3I}{4\pi a} \left(\frac{1}{2} + \frac{1}{2}\right)$ $= \frac{3I}{2\pi a} \left[\mathrm{A/m} \right]$

(b) 一般的な正 n 角形 (ただし,n は 3 以上の自然数) の辺上を流れる電流 I が内接円の中心 O につくる磁界 H を求めよ.

上問より正n角形の内接円の中心につくる磁界は各辺がつくる磁界のn倍であることがわかる

$$|\mathbf{H}| = \frac{nI}{2\pi a} (\cos \alpha) [A/m]$$

 α は正n角形の頂点の半分であるため

$$\alpha = \frac{1}{2} \left(\pi - \frac{2\pi}{n} \right)$$

$$= \frac{\pi}{2} - \frac{\pi}{n}$$

$$|\mathbf{H}| = \frac{nI}{2\pi a} \left\{ \cos \left(\frac{\pi}{2} - \frac{\pi}{n} \right) \right\}$$

$$\cos \left(\frac{\pi}{2} - \theta \right) = \sin \theta$$

$$= \frac{nI}{2\pi a} \left(\sin \frac{\pi}{n} \right) [A/m]$$

(c) (b) で求めた正 n 角形が、その内接円の中心 O につくる磁界 H を用いて、 $n \to \infty$ の場合の極限値を求めよ.

$$|\mathbf{H}| = \frac{nI}{2\pi a} \sin \frac{\pi}{n}$$

$$= \frac{I}{2\pi a} n \sin \frac{\pi}{n}$$

$$= \frac{I}{2\pi a} \frac{\sin \frac{\pi}{n}}{\frac{1}{n}}$$

$$= \frac{I}{2\pi a} \frac{-\frac{\pi}{n^2} \cos \frac{\pi}{n}}{-\frac{1}{n^2}}$$

$$\lim_{n \to \infty} |\mathbf{H}| = \frac{I}{2\pi a} \lim_{n \to \infty} \left(\frac{-\frac{\pi}{n^2} \cos \frac{\pi}{n}}{-\frac{1}{n^2}} \right)$$

$$= \frac{I}{2a} \lim_{n \to \infty} \left(\cos \frac{\pi}{n} \right)$$

$$= \frac{I}{2a} [A/m]$$