

CSE 4304 Database Systems

Text Book:

Database System Concepts, 6th Edition, Silberschatz, Korth and Sudarshan

Reference:

"Fundamentals of Database Systems", 6th Edition, Ramez Elmasri and Shamkant Navathe, Pearson

Education

Contact

email: roshan.jathanna@manipal.edu

□ **Mob**: 9845702658

DBS: Syllabus

- 1. Introduction
- 2. DB Design and ER Model
- 3. SQL
- 4. Normalization
- Data Storage & Indexing
- 6. Transactions, Concurrency Control & Recovery

Introduction

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Database Application

Database Management System (DBMS)

DBMS contains information about a particular enterprise

- Collection of interrelated data
- Set of programs to access the data
- An environment that is both convenient and efficient to use

Database Management System (DBMS)

Database Applications:

- Banking: transactions
- Airlines: reservations, schedules
- Universities: registration, grades
- Sales: customers, products, purchases
- Online retailers: order tracking, customized recommendations
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions
- Databases can be very large.
- Databases touch all aspects of our lives

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems
 - Set of files and application programs
 - For every new requirement, new files and new application programs were added

Drawbacks of using file systems to store data

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Drawbacks of using file systems to store data (Cont.)

Atomicity of updates

- Failures may leave database in an inconsistent state with partial updates carried out
- Example: Transfer of funds from one account to another should either complete or not happen at all

Concurrent access by multiple users

- Concurrent access needed for performance
- Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time

Security problems

Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

View of Data

Data Abstraction

Levels of Abstraction

- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

```
type instructor = record

ID : string;
    name : string;
    dept_name : string;
    salary : integer;
end;
```

View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

Instances and Schemas

- ☐ Similar to types and variables in programming languages
- □ **Schema** the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- □ **Instance** the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Data Models

- A collection of conceptual tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Relational Model

□ Relational model (Chapter 2)

Example of tabular data in the relational model

-			
ID	пате	dept_name	salary
22222	Einstein	Physics	95000 ← Rows
12121	Wu	Finance	90000 /
32343	El Said	History	60000 /
45565	Katz	Comp. Sci.	75000 /
98345	Kim	Elec. Eng.	80000 /
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000 /
83821	Brandt	Comp. Sci.	92000 /
15151	Mozart	Music	40000 /
33456	Gold	Physics	87000 /
76543	Singh	Finance	80000 ₹

(a) The *instructor* table

Columns

A Sample Relational Database

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The department table