1.1. POJMOVI I OZNAKE MATEMATIČKE LOGIKE

Zbog preciznosti i kratkoće u izlaganju, u matematici se koriste neki pojmovi i oznake matematičke logike.

Definicija 1. Pod sudom se podrazumeva iskaz koji ima smisla i za koji važe sledeća dva principa:

- 1° (Princip isključenja trećeg). Svaki sud ima bar jednu od osobina istinitosti ili neistinitosti, tj. ne postoji sud koji ne bi bio ni istinit ni neistinit;
- 2° (Princip kontradikcije). Svaki sud ima najviše jednu od osobina istinitosti ili neistinitosti, tj. nema suda koji bi bio i istinit i neistinit.

Ovo je opisna, intuitivna, definicija suda.

Prema ovoj definiciji, dakle, svaki sud ima samo jednu vrednost istinitosti: sud je ili istinit ili neistinit.

Definicija 2. U matematici se istinit sud zove teorema ili stav.

Vrednost istinitog suda označava se sa \top ili sa 1, a neistinitog \bot ili 0. Među elementima \top i \bot , odnosno 1 i 0, definišu se operacije od kojih su osnovne: konjunkcija (\land), disjunkcija (\lor), negacija ('), implikacija (\Rightarrow), ekvivalencija (\Leftrightarrow).

1.1.1. KONJUNKCIJA, DISJUNKCIJA, NEGACIJA

Ako su p i q dva suda, sud »p i q« zovemo konjunkcija (ili proizvod) sudova p i q i označavamo ga $p \wedge q$.

Taj sud je istinit jedino ako su oba suda p i q istiniti.

Navedena činjenica pregledno se predstavlja tablicom istinitosti¹

P	q	$p \wedge q$		
Т	Т	Т		
T	1	1		
1	T	1		
1	1	1		

Ako su p i q dva suda, pod sudom »p ili q« podrazumeva se tvrđenje da vredi bilo sud p bilo sud q, uz mogućnost da istovremeno vrede oba.

Ovaj složeni sud zove se disjunkcija (inkluzivna) (ili zbir) sudova p i q i označava se sa $p \lor q$.

Disjunkcija $p \lor q$ je istinita ako je istinit bar jedan od sudova p i q. U ovom slučaju tablica vrednosti istinitosti glasi:

p	9	PVq
T	Т	Т
T	1	T
1	T	т
1	1	- Τ

Negacija suda p označava se sa p'. Sud p' je istinit ako i samo ako je sud p neistinit, i neistinit ako i samo ako je sud p istinit.

Odgovarajuća tablica vrednosti istinitosti glasi:

Sud »p ili q, ali ne oba« zove se ekskluzivna disjunkcija. Ovaj sud se izražava pomoću

$$(p \wedge q') \vee (q \wedge p')$$

i obeležava se sa p V q.

Ova činjenica, predstavljena pomoću tablice vrednosti istinitosti, glasi:

P	9	$p \vee q$
Т	T:	Τ
T	1	. T
T	T	Т
1	1	T

1.1.2. IMPLIKACIJA

Ako su p i q sudovi, sud: »Ako p tada q« zovemo implikacija suda q sa sudom p, ili implikacija od suda p na sud q, i označavamo ga $p \Rightarrow q$.

Sud »Ako p tada q« ima isto značenje kao:

- (1) p je dovoljan uslov za q;
- (2) q je potreban uslov za p;
- (3) iz p sleduje q;
- (4) q je posledica suda p.

Implikacija $p \Rightarrow q$ je neistinita ako i samo ako je p istinito a q neistinito, tj. $(\top \Rightarrow \bot) = \bot$.

Inače je

$$(T \Rightarrow T) = (\bot \Rightarrow T) = (\bot \Rightarrow \bot) = T.$$

Ovo se pregledno prikazuje shemom koja se naziva tablica vrednosti istinitosti za operaciju implikacija:

P	q	$p \Rightarrow q$
Т	T	7
T	T	1
1	T	T
1	1	Т

 $q \Rightarrow p$ znači da iz q ne proističe p.

PRIMER 1. $a = -1 \Rightarrow a^2 = 1$. $a^2 = 1 \Rightarrow a = -1$.

PRIMER 2. $a>0 \Rightarrow a^2>0$. $a<0 \Rightarrow a^2>0$. $a^2>0 \Rightarrow a>0$. $a^2>0 \Rightarrow a<0$

Da bi se pravila razlika između suda i njegove vrednosti istinitosti, ponekad se sudovi označavaju velikim slovima, a odgovarajuće vrednosti istinitosti malim slovima.

1.1.3. EKVIVALENCIJA

Ako su p i q sudovi, sud: »Ako p, tada q i ako q tada p« zove se ekvivalencija suda p sa sudom q i označava se $p \Leftrightarrow q$.

Sud $p \Leftrightarrow q$ isto znači kao:

- (1) p je ako i samo ako je q;
- (2) p je potreban i dovoljan uslov za q.

Prema tome, ekvivalencija je složen sud $(p \Rightarrow q) \land (q \Rightarrow p)$ i njena tablica vrednosti istinitosti glasi:

P	q	$p \Leftrightarrow q$
Т	Т	Т
T	T	1
1	Т	1
1		Т

PRIMER 1.
$$a>0 \Rightarrow \frac{1}{a}>0$$
; $\frac{1}{a}>0 \Rightarrow a>0$; $a>0 \Leftrightarrow \frac{1}{a}>0$.

PRIMER 2.
$$a^2+b^2=0 \Leftrightarrow a=0 \land b=0$$
 $(a, b \in \mathbb{R})$.
 $a^2 \neq 1 \Leftrightarrow a \neq 1 \land a \neq -1$ $(a \in \mathbb{C})$.

1.1.4. KVANTIFIKATORI

Iskaz »za svako a važi a = a« simbolizuje se

$$(\forall a), a=a \text{ ili } \forall a, a=a.$$

Iskaz »za svako a i b iz skupa C kompleksnih brojeva važi¹ $(a+b)(a-b) = a^2 - b^2$ «

simbolizuje se

$$(\forall a), (\forall b) (a, b \in \mathbb{C}) \Rightarrow (a+b)(a-b) = a^2 - b^2.$$

Iskaz »postoji bar jedno x iz skupa C kompleksnih brojeva takvo da "je $a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = 0$ $(a_0, a_1, \ldots, a_n \in C)$ ".

simbolizuje se

$$(\forall a_0, a_1, \ldots, a_n \in \mathbb{C}) (\exists x \in \mathbb{C}) \quad a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = 0.$$

Iskaz »za svako x postoji bar jedno y takvo da je x < y « simbolizuje se $(\forall x) (\exists y) \quad x < y$.

Oznake ∀ (svaki, svi) i ∃ (postoji bar jedno) zovu se kvantifikatori (kvantori).

1.1.5. TAUTOLOGIJA, KONTRADIKCIJA

Definicija 1. Svaki složeni sud dobijen primenom logičkih operacija \land , \lor , ', \Rightarrow , \Leftrightarrow na neke polazne sudove naziva se formula.

Formule su, na primer, $p \Rightarrow (q \land r)$, $(p \lor q)' \Leftrightarrow (r \Rightarrow (s \land t))$.

Definicija 2. Formula koja za sve vrednosti istinitosti sudova koji ulaze u tu formulu dobija vrednost \top naziva se tautologija.

Primeri nekih važnijih tautologija dati su u 1.1.6.

Definicija 3. Formula koja za sve vrednosti istinitosti sudova koji ulaze u tu formulu dobija vrednost \perp naziva se kontradikcija.

PRIMER 1. p \ p' je kontradikcija.

1.1.6. OSOBINE LOGIČKIH SIMBOLA

Stav 1. Konjunkcija, disjunkcija i ekvivalencija su komutativne: $(p \land q) \Leftrightarrow (q \land p); (p \lor q) \Leftrightarrow (q \lor p); (p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p).$

Stav 2. Konjunkcija, disjunkcija i ekvivalencija su asocijativne: $((n \land a) \land r) \Leftrightarrow (n \land (a \land r)) : ((n \lor a) \lor r) \Leftrightarrow (n \lor (a \lor r))$

$$((p \land q) \land r) \Leftrightarrow (p \land (q \land r)); \quad ((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r));$$

$$((p \Leftrightarrow q) \Leftrightarrow r) \Leftrightarrow (p \Leftrightarrow (q \Leftrightarrow r)).$$

Stav 3. Konjunkcija i disjunkcija su idempotentne: $(p \land p) \Leftrightarrow p$; $(p \lor p) \Leftrightarrow p$.

Stav 4. Konjunkcija i disjunkcija su distributivne:

$$(p \wedge (q \wedge r)) \Leftrightarrow ((p \wedge q) \wedge (p \wedge r)); \quad (p \vee (q \vee r)) \Leftrightarrow ((p \vee q) \vee (p \vee r)).$$

Stav 5. Konjunkcija je distributivna prema disjunkciji i obratno:

$$(p \wedge (q \vee r)) \Leftrightarrow ((p \wedge q) \vee (p \wedge r)); \quad (p \vee (q \wedge r)) \Leftrightarrow ((p \vee q) \wedge (p \vee r)).$$

Stav 6. Konjunkcija je apsorptivna prema disjunkciji i obratno: $(p \land (p \lor q)) \Leftrightarrow p; (p \lor (p \land q)) \Leftrightarrow p.$

Stav 7. Negacija je involutivna: $(p')' \Leftrightarrow p$.

Stav 8. (DE MORGANOVI zakoni): $(p \lor q)' \Leftrightarrow p' \land q'; (p \land q)' \Leftrightarrow p' \lor q'.$

Stav 9. \top je neutralni element za konjunkciju i ekvivalenciju, $a \perp za$ disjunkciju: $(p \land \top) \Leftrightarrow (\top \land p) \Leftrightarrow p; (p \Leftrightarrow \top) \Leftrightarrow (\top \Leftrightarrow p) \Leftrightarrow p; (p \lor \bot) \Leftrightarrow (\bot \lor p) \Leftrightarrow p.$

Stav 10. \uparrow je nula-element za disjunkciju, $a \perp za$ konjunkciju: $(p \lor \uparrow) \Leftrightarrow (\uparrow \lor p) \Leftrightarrow \uparrow; (p \land \bot) \Leftrightarrow (\bot \land p) \Leftrightarrow \bot.$

Navedene osobine mogu se dokazati, na primer, pomoću tablica vrednosti istinitosti. Primera radi, dokazaćemo, na ovaj način, stav 4 i stav 7.

Dokaz stava 5. Odgovarajuća tablica vrednosti istinitosti je

		4.4	- 1 T				
P	q	. v. f	qvr	$p \wedge (q \vee r)$	$p \wedge q$	<i>p</i> ∧ <i>r</i>	$(p \wedge q) \vee (p \wedge r)$
T	Т	T	Ŧ	. Т	T	Т	. т
.1.	.1.	T	Τ.	T		Т	- Т
J.	Τ.	T	T	1	T	1	1
.1.	J.	T	Т	1	1	1	1
T	T	1	T	T	Т	1	Т
T	1	1	1	2 2 Tel '87	1	-L	T
.1.	T	1	T	1	.L	.L	1.
1	,L	1	1	01.1	.L	.1.	Τ.
			-34				

¹ O značenju ∈ videti 1.2.

Kako su peta i osma kolona u ovoj tablici identične, zaključujemo da je tačna prva osobina navedena u stavu 5.

Dokaz stava 8. Dokaz neposredno sleduje iz jednakosti 6. i 10. kolone, odnosno 8. i 9. kolone u sledećoj tablici istinitosti:

P	q	p'	q'	$p \lor q$	$(p \lor q)'$	$p \wedge q$	$(p \wedge q)'$, P'Vq'	$p' \wedge q'$
Т	Т	1	1	T.	Τ	т	1, 1	1	1
T	1	1	T	T	1	T	Т	T	1
1	T	T	1	Т	Τ,	1	Т	T.	1
1	1	т	T	1	Т	1	Т	Т	Т

PRIMER 1. $(p \land q) \lor (p' \land q') \Leftrightarrow (p \Leftrightarrow q)$.

Tablica vrednosti istinitosti je

			•				
P	q	P'	q'	$P \wedge q$	$p' \wedge q'$	$(p \wedge q) \vee (p' \wedge q')$	$p \Leftrightarrow q$
Т	Т		1	Т	1	Т	Т
T	1	1.	T	1	1	Ţ	1
1	Т	T	Ι,	1	Τ.	1	Τ.
1	1	Т	Т	T	Т	Т	Т

Kako su poslednje dve kolone jednake, data ekvivalencija je dokazana.

PRIMER 2. $(p \Rightarrow (q \land r)) \Leftrightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$.

Tablica vrednosti istinitosti je:

P	q	r	$q \wedge r$	$p \Rightarrow (q \wedge r)$	$p \Rightarrow q$	$p \Rightarrow r$	$(p \Rightarrow q) \wedge (p$	⇒ r)
Т	Т	Т	Т	Т	Т	Т	т .	
T	\perp	T	1	1	T	7	Τ.	
1	T	Т	Т	T	Т	T	Т	
1	1	Т	Τ .	Т	Т	T	Т	
T	T	1	1	1	Т	1.	1	**
T	\perp	1	1	1	1	. <u>T</u>	1	
1	T	1	1	Т	T	. T	Т	
T	1	1	1	T	Т	, . T	Т	

Kako su u ovoj tablici peta i osma kolona istovetne, ekvivalencija je tačna.

1.2. POJAM SKUPA

Skup (množina, mnoštvo, klasa, kolekcija) i njegovi elementi (članovi, tačke, objekti) su o novni pojmovi matematike.

Ako skup S szčinjavaju elementi x, y, z, \ldots , označava se $S = \{x, y, z, \ldots\}$. Sa $S = \{x \mid P(x)\}$ ili $S = \{x : P(x)\}$ označava se skup svih elemenata x koji imaju osobinu P.

Ako je S skup, tada $x \in S$ označava da je x element skupa S ili da x pripada skupu S.

Negacija ovog iskaza označava se $x \in S$ ili x non $\in S$.

Za neke skupove, koji su u čestoj upotrebi, usvojene su sledeće oznake:

N skup svih prirodnih brojeva,

Z skup svih celih brojeva,

Q skup svih racionalnih brojeva,

R skup svih realnih brojeva,

R+ skup svih pozitivnih brojeva,

I skup svih iracionalnih brojeva,

C skup svih kompleksnih brojeva,

(a, b) otvoren interval u R ili kraće interval,

[a, b] zatvoren interval u R ili kraće segment.

Skup ne zavisi od poretka kojim su dati njegovi elementi. Tako, na primer, skupovi {1, 2, 3} i {2, 1, 3} su jednaki. Skupovi {1, 2, 3}, {1, 1, 2, 3}, {1, 2, 2, 3, 3} takođe su jednaki.

Ako je n prirodan broj, skup $S = \{x_1, \ldots, x_n\}$ od n elemenata x_1, \ldots, x_n je konačan. Skup je beskonačan ako broj njegovih elemenata nije konačan.

1.3. INKLUZIJA

Definicija 1. Za skup B kaže se da je sadržan u skupu A, tj. da je B podskup ili deo skupa A, ako je svaki element skupa B takođe element skupa A, tj. ako iz $x \in B$ sleduje $x \in A$.

Činjenica da je B deo skupa A označava se

 $B \subset A$ ili $A \supset B$.

Znak C odnosno D zove se znak inkluzije.

Na slici 1.3.1 su shematski prikazani skupovi A i B takvi da je $B \subset A$ (ovaj način prikazivanja skupova, koji se poglavito upotrebljava u srednjoj školi, poznat je kao Vennovi ili EULER-VENNOVI dijagrami. Treba primetiti da ovo ne predstavlja sredstvo za dokazivanje stavova iz teorije skupova već samo shematsku ilustraciju).

Sl. 1.3.1.

Logičkim simbolima relacija BCA se piše u obliku

 $B \subset A \Leftrightarrow (\forall x)(x \in B \Rightarrow x \in A).$

Definicija 2. Skupovi A i B su jednaki ako je $B \subset A$ i $A \subset B$.

Prema tome, za dva skupa A i B kaže se da su jednaki ako i samo ako se sastoje od istih elemenata. Ako su A i B jednaki skupovi, to se simbolizuje A = B. Ako oni nisu jednaki, označava se $A \neq B$.

Simbolima matematičke logike jednakost skupova A i B izražava se sa

 $B \subset A \land A \subset B \Leftrightarrow A = B$.

Činjenicu da A nije jednako B označavamo $A \neq B$.

Definicija 3. Ako je $B \subset A$ i $A \neq B$, kaže se da je B pravi podskup skupa A.

Inkluzija ima osobine:

 $A \subset A$ (refleksivnost)

 $(C \subset B \land B \subset A) \Rightarrow C \subset A$ (tranzitivnost).

Definicija 4. Partitivni skup skupa M, u oznaci P(M), je skup svih podskupova skupa M.

1.4. UNIJA, PRESEK I DIFERENCIJA SKUPOVA

1.4.1. UNIJA SKUPOVA

Definicija 1. Ako su A i B dva skupa, pod unijom (zbirom) skupova A i B (u oznaci $A \cup B$) podrazumeva se skup svih elemenata koji se nalaze bar u jednom od skupova A i B.

Unija skupova A i B označava se takođe A+B. Pomoću logičkih simbola definicija unije skupova A i B glasi:

$$A \cup B = \{x \mid x \in A \lor x \in B\},\$$

ili

$$(\forall x) (x \in A \cup B) \Leftrightarrow (x \in A \lor x \in B).$$

Stav 1. Unija ima osobine:

 $A \cup A = A$ (idempotentnost),

 $A \cup B = B \cup A$ (komutativnost),

 $(A \cup B) \cup C = A \cup (B \cup C)$ (asocijativnost),

 $(A \cup B) \cup C = (A \cup C) \cup (B \cup C)$ (distributivnost),

 $A \subset B \Rightarrow A \cup B = B \ (apsorptivnost),$

gde su A, B, C tri ma koja skupa.

Dokaz. Da unija ima osobinu idempotentnosti zaključujemo iz sledećeg:

 $x \in A \cup A \Leftrightarrow x \in A \lor x \in A \Leftrightarrow x \in A$

pri čemu smo iskoristili prvu od ekvivalencija iz stava 3 u 1.1.6.

Komutativnost sleduje iz komutativnosti disjunkcije (stav 1 u 1.1.6)

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Leftrightarrow x \in B \lor x \in A \Leftrightarrow x \in B \cup A.$

Osobina asocijativnosti unije posledica je sledećih ekvivalencija

 $x \in (A \cup B) \cup C \Leftrightarrow x \in (A \cup B) \lor x \in C$

 $\Leftrightarrow (x \in A \lor x \in B) \lor x \in C$

 $\Leftrightarrow x \in A \lor (x \in B \lor x \in C)$

 $\Leftrightarrow x \in A \lor (x \in B \cup C)$

 $\Leftrightarrow x \in A \cup (B \cup C),$

pri čemu smo primenili drugu od ekvivalencija iz stava 2 u 1.1.6.

Slično ovome, osobina distributivnosti sleduje na osnovu sledećih ekvivalencija

 $x \in (A \cup B) \cup C \Leftrightarrow x \in (A \cup B) \lor x \in C$ $\Leftrightarrow (x \in A \lor x \in B) \lor x \in C$

 $\Leftrightarrow (x \in A \lor x \in C) \lor (x \in B \lor x \in C)$

 $\Leftrightarrow (x \in A \cup C) \lor (x \in B \cup C)$

 $\Leftrightarrow x \in (A \cup C) \cup (B \cup C).$

Ovde je primenjena prva od ekvivalencija iz stava 4 u 1.1.6. Dokažimo na kraju osobinu apsorptivnosti. Najpre imamo

 $(1) x \in A \cup B \Leftrightarrow x \in A \lor x \in B.$

Kako je (videti 1.3)

 $(2) \qquad A \subset B \iff (x \in A \implies x \in B)$

iz (1) i (2) sleduje da važi implikacija $A \subset B \Rightarrow A \cup B = B$.

Navedene osobine idempotentnosti i distributivnosti operacije U u odnosu na samu sebe nemaju ni sabiranje ni množenje u običnoj aritmetici.

Zajednički rezultat izraza $(A \cup B) \cup C$ i $A \cup (B \cup C)$ označava se $A \cup B \cup C$.

Unija skupova A_1, \ldots, A_n skraćeno se obeležava sa $\bigcup_{i=1}^n A_i$.

1.4.2. PRESEK SKUPOVA

Definicija 1. Presek (proizvod, zajednički deo) datih skupova A i B (u oznaci $A \cap B$) je skup svih elemenata koji u isti mah pripadaju i skupu A i skupu B.

Presek skupova A i B označava se takođe $A \cdot B$ ili AB.

Pomoću logičkih simbola definicija preseka skupova A i B glasi:

ili
$$(\forall x) \quad (x \in A_1 \cap B) \Leftrightarrow (x \in A \land x \in B),$$

 $A \cap B = \{x \mid x \in A \land x \in B\}.$

Definicija 2. Za dva skupa kaže se da su disjunktni ako nemaju zajedničkih elemenata.

Ovo navodi na uvođenje pojma skupa bez elemenata. To je prazan (pust) skup. Obeležava se \emptyset ili ν (vakuum) ili Λ .

Simbolička del'inicija praznog skupa glasi:

$$A = \emptyset \iff (\forall x) \quad x \notin A, \quad \text{ili} \quad \emptyset = \{x \mid x = x\}.$$

Prema tome, jednakost $A \cap B = \emptyset$ izražava da je skup $A \cap B$ prazan, tj. da su $A \cap B$ disjunktni.

Za svaki skup A i za skup Ø važi

$$A \cap \emptyset = \emptyset$$
, $A \cup \emptyset = A$.

Da skupovi A i B nisu disjunktni, označava se sa

 $(\exists x)$ $x \in A \cap B$, ili $A \cap B \neq \emptyset$.

Stav 1. Presek ima osobine

 $A \cap A = A$ (idempotentnost),

 $A \cap B = B \cap A$ (komutativnost),

 $(A \cap B) \cap C = A \cap (B \cap C)$ (asocijativnost),

 $(A \cap B) \cap C = (A \cap C) \cap (B \cap C)$ (distributivnost),

 $A \subset B \Rightarrow A \cap B = A$ (apsorptivnost),

gde su A, B, C tri ma koja skupa.

Dokaz stava 1 može se izvesti analogno dokazu stava 1 iz 1.4.1.

Navedene osobine idempotentnosti i distributivnosti operacije \cap u odnosu na samu sebe nemaju ni sabiranje ni množenje u običnoj aritmetici.

Zajednički rezultat izraza $(A \cap B) \cap C$ i $A \cap (B \cap C)$ označava se $A \cap B \cap C$.

Presek skupova A_1, \ldots, A_n skraćeno se obeležava sa $\bigcap_{i=1}^n A_i$.

Bez teškoće dokazuje se sledeći stav:

Stav 2. Po dve i dve od tri relacije

 $A \subset B$, $A \cap B = A$, $A \cup B = B$

su ekvivalentne, naime

 $A \subset B \Leftrightarrow (A \cap B = A) \Leftrightarrow (A \cup B = B).$

1.4.3. DISTRIBUTIVNOST U PREMA O, I OBRATNO

Stav 1. Operacije unija i presek distributivne su jedna prema drugoj, tj. za ma kakve skupove A, B, C je

- $(1) \qquad (A \cup B) \cap C = (A \cap C) \cup (B \cap C),$
- (2) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

Dokaz. Dokazaćemo jednakost (1). Ona je posledica sledećih ekvivalencija:

$$x \in (A \cup B) \cap C \Leftrightarrow x \in A \cup B \land x \in C$$

$$\Leftrightarrow (x \in A \lor x \in B) \land x \in C$$

$$\Leftrightarrow (x \in A \land x \in C) \lor (x \in B \land x \in C)$$

$$\Leftrightarrow x \in A \cap C \lor x \in B \cap C$$

$$\Leftrightarrow x \in (A \cap C) \lor (B \cap C).$$

Ovde je primenjena prva od ekvivalencija iz stava 4 u 1.1.6. Analogno se dokazuje i jednakost (2):

$$x \in (A \cap B) \cup C \iff x \in A \cup B \land x \in C$$

$$\iff (x \in A \land x \in B) \lor x \in C$$

$$\iff (x \in A \lor x \in C) \land (x \in B \lor x \in C)$$

$$\iff x \in A \cup C \land x \in B \cup C$$

$$\iff x \in (A \cup C) \cap (B \cup C).$$

Jednakosti (1) i (2) mogu se dokazati i pomoću tablica istinitosti. Primera radi, dokazaćemo na taj način jednakost (2).

Ako x pripada skupu, označićemo sa \top , a ako ne pripada sa \bot . Tada je tablica vrednosti istinitosti

$x \in A$	$x \in B$	$x \in C$	x∈ A∩B	xe	$(A \cap B) \cup C$	$x \in A \cup C$	$x \in B \cup C$	xE (AL)C	$\cap (B \cup C)$
T	T	Т	Ť		Т	т Т	Т	T	
Т	1	Т	1		Т	T	T	Т	
T	T	T	1		Т	Т	T	. 7	
1	1	Τ.	1		T	Т	Т	Т	
T	T	1	T		T	Т	T	Т	
T	1	1	Ť		1	Т	1		
1	T	1	Ţ		1	1	Т	1	
1	1	1	1		1	1	1	1	

Kako su peta i osma kolona identične, dokazali smo ekvivalenciju

 $(\forall x) \quad x \in (A \cap B) \cup C \iff x \in (A \cup C) \cap (B \cup C).$

1.4.4. DIFERENCIJA DVA SKUPA

Definicija 1. Pod diferencijom (razlikom) dva skupa A i B (u oznaci $A \setminus B$) podrazumeva se skup svih elemenata skupa A koji ne pripadaju skupu B.

Diferencija skupova A i B, pomoću ranije uvedenih simbola, izražava se

$$A \backslash B = \{x \mid x \in A \land x \in B\},\$$

tj.

$$(\forall x) \quad x \in A \backslash B \Leftrightarrow x \in A \land x \in B.$$

Definicija 2. Unija skupova $A \setminus B$ i $B \setminus A$ naziva se simetrična diferencija skupova A i B i označava $A \triangle B$, tj.

$$A \triangle B = (A \backslash B) \cup (B \backslash A)$$
$$= \{x \mid x \in A \underline{\vee} x \in B\}.$$

1.4.5. KOMPLEMENT SKUPA

Ako je A⊂I i Ø prazan skup, važe relacije

$$\emptyset \subset A \subset I$$
, $\emptyset \cap A = \emptyset$, $\emptyset \cup A = A$, $I \cap A = A$, $I \cup A = I$.

Druga i treća od ovih relacija već su bile navedene u 1.4.2.

Definicija 1. Ako je ACI, skup

$$A' = \{x \mid x \in A \land x \in I\}$$

je komplement skupa A u odnosu na skup I.

Ovoj definiciji ekvivalentna je

Definicija 2. Komplement skupa A u odnosu na skup I je skup A' takav da je $A' = I \setminus A$.

Diferenciju skupova A i B (A, $B \subset I$) možemo pomoću preseka i komplementa izraziti na sledeći način:

$$A \setminus B = A \cap B'$$
.

Bez teškoće se dokazuje sledeći stav:

Stav 1. Važe jednakosti

$$A \cap A' = \emptyset$$
, $A \cup A' = I$ $(A \subset I)$.

Dokazaćemo sada DE MORGANOV stav:

Stav 2. Važe dualne relacije

- $(A \cap B)' = A' \cup B'$ (1)
- $(A \cup B)' = A' \cap B'$. (2)

Dokaz. Dokažimo prvo jednakost (1):

$$x \in (A \cap B)' \iff x \notin (A \cap B) \iff x \notin A \lor x \notin B \iff x \in A' \lor x \in B'$$
$$\iff x \in (A' \cup B').$$

Jednakost (2) dokazaćemo pomoću tablice istinitosti:

$x \in A$	$x \in B$	$x \in (A \cup B)$	$x \in (A \cup B)'$	x∈A'	$x \in B'$	$x \in (A' \cap B')$
T	Т	Т	1	1	. 1	Τ.
Т	1	T	1		т.	Ι Ι
1	Т	Т	1	Т	1	T
1	1	1	Т	Т	T	· T

Na sličan način mogu se dokazati stavovi:

Stav 3. Važe sledeće ekvivalencije

$$A = B \iff (A \cap B = A \land A \cup B = A)$$
$$\iff (A \cap B' = \emptyset \land A' \cup B = I)$$
$$\iff (A \cup B = A \land A' \cup B = I).$$

Stav 4. Komplement skupa ima osobinu involutivnosti, tj. za svaki skup A važi (A')' = A.

1.4.6. APSORPTIVNOST

Stav 1. Za ma koje skupove A i B važe apsorptivne jednakosti $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$.

Dokaz. Pre svega je
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B),$$

pa možemo staviti

$$D = A \cup (A \cap B) = A \cap (A \cup B).$$

Dalie ie

$$A \cup D = A \cup (A \cup (A \cap B)) = A \cup (A \cap B) = D,$$

$$A \cap D = A \cap (A \cap (A \cup B)) = A \cap (A \cup B) = D.$$

Iz ovih jednakosti sleduje A = D.

Primetimo da se stav može takođe dokazati pomoću tablica istinitosti.

1.5. PARTITIVNI SKUP

Definicija 1. Partitivni skupa I, u oznaci P(I), je skup svih podskupova skupa I. Kako je prazan skup podskup svakog skupa i kako je svaki skup podskup samog sebe, iz gornje definicije sleduje da $\emptyset \in P(I)$ i $I \in P(I)$.

Ako skup I ima n elemenata, partitivni skup će imati 2ⁿ elemenata. Zaista, u partitivni skup ulazi prazan skup, zatim svi jednočlani skupovi kojih ima $\binom{n}{1}$ (broj kombinacija od n elemenata prve klase-videti (5.3)), zatim svi dvočlani skupovi kojih ima $\binom{n}{2}$, ..., i najzad svi n-to člani skupovi kojih ima $\binom{n}{n}$. Prema tome, partitivni skup ima $1+\binom{n}{1}+\cdots+\binom{n}{n}=(1+1)^n=2^n$ elemenata.

PRIMER 1. Ako je $I = \{a, b, c\}$, partitivni skup će biti

$$P(I) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, I\}.$$

Ovaj skup ima 23 - 8 elemenata.

Sledeći stav dokazuje se bez teškoće.

Stav 1. Ako su A, $B \in P(I)$, tada su A', $A \cup B$, $A \cap B$ takođe elementi skupa P(I).

Ako se u razmatranjima pojavljuje samo skup I i njegovi podskupovi ponekad se skup I naziva univerzalni skup.

Primetimo da univerzalni skup u različitim slučajevima može biti različit, ali da u toku jedne određene diskusije ne može da se menja.

1.6. UREĐENI PAR

Simboli {a, b} i {b, a} označavaju isti skup od dva elementa a i b. Uvešćemo sada pojam uređenog para čija je prva projekcija (komponenta) a i druga projekcija (komponenta) b. Taj par označavaćemo (a, b) ili (a, b). Smatraćemo da je (a, b) različito od (b, a), osim ako je a = b.

Parovi (a, b) i (c, d) jednaki su ako i samo ako je a = c i b = d.

Pojam uređenog para može se definisati na razne načine. Usvojićemo sledeću definiciju:

Definicija 1. Uređeni par elemenata a i b, u oznaci (a, b), je

$$(a, b) = \{\{a\}, \{a, b\}\}.$$

Stav 1. $(a, b) = (c, d) \Leftrightarrow (a = c) \land (b = d)$.

Dokaz. Neka je (a, b) = (c, d), tj. $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$. Da bi ova dva skupa bila jednaka, njihovi elementi moraju biti isti, tj. $\{a\} = \{c\}$ i $\{a, b\} = \{c, d\}$ ili $\{a\} = \{c, d\}$ i $\{c\} = \{a, b\}$.

U prvom slučeju dobijamo iz prve jednakosti a=c, pa druga jednakost postaje $\{a, b\} = \{a, d\}$, odakle je b=d.

Prva jednakost u drugom slučaju može da nastupi ako i samo ako je c=d i tada mora biti i a=c=d. Iz druge jednakosti dobijamo c=a=b, pa ovaj slučaj može da nastupi ako i samo ako je a=b=c=d.

Ovim smo dokazali implikaciju

$$(a, b) = (c, d) \Rightarrow (a - c) \wedge (b = d).$$

Da važi i obrnuta implikacija proverava se bez teškoće. Ovim je stav I dokazan.

Definicija 2. Uređena trojka (a, b, c) elemenata a, b, c definiše se pomoću jednakosti

$$(a, b, c) = ((a, b), c).$$

Analogno stavu I dokazuje se:

Stav 2.
$$(a_1, b_1, c_2) = (a_2, b_2, c_2) \Leftrightarrow (a_1 = a_2) \wedge (b_1 = b_2) \wedge (c_1 = c_2)$$
.

Slično se definiše uređena n-torka (a_1, \ldots, a_n) , koja se označava i $\langle a_1, \ldots, a_n \rangle$.

Uređeni par i uopšte uređena n-torka mogu imati jednake elemente. Na primer, (a, b, a) i (a, a, b) su dve različite uređene trojke osim ako je a = b, dok su skupovi $\{a, b, a\}$, $\{a, a, b\}$ i $\{a, b\}$ jednaki.

1.7. DEKARTOV PROIZVOD

Definicija 1. Dekartov ili kombinovani proizvod dva skupa X i Y je skup Z čiji su elementi uređeni parovi sa prvom komponentom iz skupa X i drugom iz skupa Y, ti.

$$Z = X \times Y = \{(x, y) | x \in X \land y \in Y\}.$$

Dekartov proizvod nije u opštem slučaju komutativna operacija, tj.

$$X \times Y \neq Y \times X$$
.

PRIMER I. Dokažimo da važi implikacija

$$A \times B \subset X \times Y \Rightarrow A \subset X \land B \subset Y$$

gde su A i B neprazni skupovi. Neka skup B sadrži element b. Tada za svako $a \in A$ je $(a, b) \in A \times B$, pa je i $(a, b) \in X \times Y$. Prema tome, imamo (a, b) = (x, y) za jedno $x \in X$ i jedno $y \in Y$, pa mora biti a - x za jedno $x \in X$, dakle $A \subset X$. Slično se dokazuje da je $B \subset Y$.

Definicija Dekartovog proizvoda analogno se prenosi i na slučajeve kada imamo više od dva skupa. Tako je Dekartov proizvod tri skupa X, Y, Z definisan sa

$$X \times Y \times Z = \{(x, y, z) | x \in X \land y \in Y \land z \in Z\},$$

a Dekartov proizvoć od n skupova X_1, \ldots, X_n je

$$X_1 \times \cdots \times X_n = \{(x_1, \ldots, x_n) \mid x_1 \in X_1 \wedge \cdots \wedge x_n \in X_n\}.$$

Dekartovi proizvodi $X \times X$, $X \times X \times X$, ... obeležavaju se redom sa X^2 , X^3 , ...

1.8. BINARNA RELACIJA

Definicija 1. Ako su X i Y dva skupa, binarna relacija u skupu $X \times Y$ je svaki njegov podskup.

Ako je X = Y, relacija u skupu $X \times Y = X \times X = X^2$ zove se i relacija u skupu X.

PRIMER 1. Neka je $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}$. Tada je

$$X \times Y = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)\}.$$

U posmatranom skupu X × Y relacije su, na primer.

- (a) {(1, 1), (3, 2), (4, 1)};
- (b) {(3, 1), (4, 2), (3, 3), (4, 1)}.

Takođe su relacije u skupu $X \times Y$

- (c) $\{(x, y) | x y\} = \{(1, 1), (2, 2), (3, 3)\};$
- (d) $\{(x, y) \mid x < y\} = \{(1, 2), (1, 3), (2, 3)\};$
- (e) $\{(x, y) \mid y-x-2\} = \{(1, 3)\};$
- (f) $\{(x, y) | y = x^2 + 3\} = \emptyset;$
- (g) $\{(x, y) \mid y \mid x\} = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 3), (4, 1), (4, 2)\};$
- (h) $\{(x, y) \mid y \ge x^2\} = \{(1, 1), (1, 2), (1, 3)\}.$

Definicija 2. Neka je ρ binarna relacija u skupu $X \times Y$. Kažemo da je x u relaciji ρ sa y (u oznaci $x \rho y$) ako je $(x, y) \in \rho$.

Dakle,
$$(x, y) \in \rho \Leftrightarrow x \rho y$$
.

Slično je $(x, y) \notin \rho \Leftrightarrow x \operatorname{non} \rho y$.

PRIMER 2. Relacije >, <, ≥, ≤ su binarne relacije u skupu realnih brojeva R.

Definicija 3. Neka je ρ binarna relacija u skupu S. Relacija ρ je refleksivna ako je

Definicija 4. Neka je ρ binarna relacija u skupu S. Relacija ρ je simetrična ako je

$$(\forall a, b \in S) \qquad a \rho b \Rightarrow b \rho a.$$

Definicija 5. Neka je ρ binarna relacija u skupu S. Relacija ρ je antisimetrična ako je

$$(\forall a, b \in S)$$
 $a \circ b \wedge b \circ a \Rightarrow a = b.$

Definicija 6. Neka je ρ binarna relacija u skupu S. Relacija ρ je tranzitivna ako je

$$(\forall a, b, c \in S)$$
 $a \rho b \wedge b \rho c \Rightarrow a \rho c$.

Opštije od definicije 1 daje se sledeća:

Definicija 7. Neka su X_1, \ldots, X_n dati skupovi. Relacija dužine n u skupu $X_1 \times \cdots \times X_n$ je svaki podskup skupa $X_1 \times \cdots \times X_n$.

1.9. RELACIJA EKVIVALENTNOSTI

Definicija 1. Neka je S proizvoljan skup i ρ jedna relacija u skupu S. Relacija ρ zove se relacija ekvivalentnosti ako je relacija: 1° refleksivna, 2° simetrična i 3° tranzitivna.

PRIMER 1. Jednakost je relacija ekvivalentnosti jer je ova relacija refleksivna, simetrična i tranzitivna.