Chapter 6

6.1 Eq. (6.4):
$$\gamma_{\text{zav}} = \frac{\gamma_w}{w + \frac{1}{G_s}} = \frac{62.4}{w + \frac{1}{2.75}} = \frac{62.4}{w + 0.3636}$$
.

The table can now be prepared.

w (%)	$\gamma_{\rm zav}$ (lb/ft ³)
5	150.9
8	140.7
10	134.6
12	129.0
15	121.5

6.2
$$\gamma_{\text{zav}} = \frac{9.81}{w + \frac{1}{2.65}} = \frac{9.81}{w + 0.3773}$$

w (%)	$\gamma_{\rm zav}~({\rm kN/m}^3)$
5	23.15
8	21.45
10	20.55
12	19.73
15	18.60

$$\rho_d = \frac{G_s \rho_w}{1 + \frac{G_s w}{S}}$$

			$\rho_d @ S (kg/m^3)$		
G_s	$\rho_w (kg/m^3)$	w (%)	80%	90%	100%
2.67 10	1000	10	2002	2059	2107
	1000	20	1601	1676	1741

6.4

Volume (ft ³)	Weight of soil mass, W (lb)	$\gamma = \frac{W}{V}$ (lb/ft ³)	W (%)	$\gamma_d = \frac{\gamma}{1 + \frac{w(\%)}{100}}$ $(1b/ft^3)$
1/30	3.26	97.8	8.4	90.2
1/30	4.15	124.5	10.2	113.0
1/30	4.67	140.1	12.3	124.8
1/30	4.02	120.6	14.3	105.5
$\frac{1}{30}$	3.63	108.9	16.8	93.2

The plot of γ_d versus w is shown. $\gamma_d \approx 125 \text{ lb/ft}^3$ @ w = 12.4%

6.5
$$\gamma_d = \frac{G_s \gamma_w}{1+e}; \quad 125 = \frac{(2.72)(62.4)}{1+e}; \quad e \approx \mathbf{0.358}$$

$$S = \frac{wG_s}{e} = \frac{(0.124)(2.72)}{0.358} = 0.94 = 94\%$$

6.6	Volume of mold <i>V</i> (cm ³)	Mass of wet soil <i>M</i> (kg)	$\rho = \frac{M}{V}$ (kg/m ³)	w (%)	ρ_d (kg/m ³)
	943.3	1.68	1781.0	9.9	1620.6
	943.3	1.71	1812.8	10.6	1639.1
	943.3	1.77	1876.4	12.1	1673.9
	943.3	1,83	1940.0	13.8	1704.7
	943.3	1.86	1971.8	15.1	1713.1
	943.3	1.88	1993.0	17.4	1697.6
	943.3	1.87	1982.4	19.4	1660.3

The plot of ρ_d versus w is shown.

1.85

943.3

1961.2

21.2

1618.2

From the graph, $\rho_{d(\text{max})} = 1716 \text{ kg/m}^3$ and $w_{\text{opt}} = 15.5\%$.

6.7
$$\rho_d = \frac{\rho}{1+w} = \frac{1705}{1+\frac{10.5}{100}} = 1543 \text{ kg/m}^3$$

$$R = \frac{\gamma_d}{\gamma_{d(\text{max})}} = \frac{1543}{1716} = 89.9\%$$

6.8
$$\gamma_{\text{(in situ)}} = 105 \text{ lb/ft}^3; \ \gamma_{d \text{(in situ)}} = \frac{105}{1 + \frac{18}{100}} = 88.98 \text{ lb/ft}^3; \ \gamma_{d \text{(compacted)}} = 103.5 \text{ lb/ft}^3$$

Volume of soil to be excavated =
$$(10,000) \left(\frac{103.5}{88.98} \right) = 11,632 \text{ yd}^3$$

Weight of moist soil to be transported = $(11,632 \times 27)(105)$ lb

Number of truck loads =
$$\frac{(11,632)(105)}{(20)(2000)}$$
 = 824.4 \approx **825**

6.9 Dry unit weight of solids required

=
$$8000\gamma_d$$
 kN = $(8000)\left(\frac{G_s \times 9.81}{1.7}\right)$ = $46,164.7G_s$ kN

Borrow pit	γ_d at borrow pit (kN/m ³)	Volume to be excavated from borrow pit = $[46,164.7G_s/\gamma_{d(borrow pit)}]$	Cost/m ³ (\$)	Total cost (\$)
A	$\frac{G_s \times 9.81}{1 + 0.82} = 5.39G_s$	8564.9 m ³	8	68,519.20
В	$\frac{G_s \times 9.81}{1 + 1.1} = 4.67G_s$	9885.4 m ³	5	49,427.00
С	$\frac{G_s \times 9.81}{1 + 0.9} = 5.16G_s$	8946.6 m ³	9	80,519.40
D	$\frac{G_s \times 9.81}{1 + 0.78} = 5.51G_s$	8378.3 m ³	12	100,539.60

Borrow Pit B

6.10 From Eq. (6.11):
$$D_r = \left[\frac{\gamma_{d(\text{field})} - \gamma_{d(\text{min})}}{\gamma_{d(\text{max})} - \gamma_{d(\text{min})}} \right] \left[\frac{\gamma_{d(\text{max})}}{\gamma_{d(\text{field})}} \right]$$

$$0.78 = \left[\frac{\gamma_{d(\text{field})} - 93}{104 - 93}\right] \left[\frac{104}{\gamma_{d(\text{field})}}\right]; \quad \gamma_{d(\text{field})} = 101.35 \text{ lb/ft}^3$$

$$R(\%) = \frac{\gamma_{d \text{ (field)}}}{\gamma_{d \text{ (max)}}} (100) = \left(\frac{101.36}{104}\right) (100) = 97.5\%$$

$$6.11 \qquad D_r = \left[\frac{\rho_{d(\text{field})} - \rho_{d(\text{min})}}{\rho_{d(\text{max})} - \rho_{d(\text{min})}}\right] \left[\frac{\rho_{d(\text{max})}}{\rho_{d(\text{field})}}\right]; \quad 0.7 = \left[\frac{\rho_{d(\text{field})} - 1510}{1682 - 1510}\right] \left[\frac{1682}{\rho_{d(\text{field})}}\right]$$

 $\rho_{d(\text{field})} = 1626.4 \text{ kg/m}^3$

$$R(\%) = \frac{\rho_{d \text{ (field)}}}{\rho_{d \text{ (max)}}} \times 100 = \left(\frac{1626.4}{1682}\right) (100) = 96.7\%$$

6.12 a.
$$R = 0.9 = \frac{\gamma_{d \text{ (field)}}}{\gamma_{d \text{ (max)}}} = \frac{\gamma_{d \text{ (field)}}}{108}; \quad \gamma_{d \text{ (field)}} = 97.2 \text{ lb/ft}^3$$

b.
$$D_r = D_r = \left[\frac{\gamma_{d \text{ (field)}} - \gamma_{d \text{ (min)}}}{\gamma_{d \text{ (max)}} - \gamma_{d \text{ (min)}}}\right] \left[\frac{\gamma_{d \text{ (max)}}}{\gamma_{d \text{ (field)}}}\right] = \left(\frac{97.2 - 93}{108 - 93}\right) \left(\frac{108}{97.2}\right) = 0.311 = 31.1\%$$

c.
$$\gamma = \gamma_d(1+w) = (97.2)(1+0.12) = 108.86 \text{ lb/ft}^3$$

6.13 In the field:

Sand used to fill the hole and cone: 5.99 kg - 2.81 kg = 3.18 kg

Sand used to fill the hole: 3.18 kg - 0.117 kg = 3.063 kg

Volume of the hole: $\frac{3.063 \text{ kg}}{1667 \text{ kg/m}^3} = 0.001837 \text{ m}^3$

Moist density of compacted soil: $\frac{3.331}{0.001837} = 1813.2 \text{ kg/m}^3$

$$\gamma = \frac{(1813.2)(9.81)}{1000} = 17.79 \text{ kN/m}^3$$

$$\gamma_d = \frac{\gamma}{1 + \frac{w(\%)}{100}} = \frac{17.79}{1 + \frac{11.6}{100}} = 15.94 \text{ kN/m}^3$$

6.14
$$S_N = (1.7)\sqrt{\frac{3}{(D_{50})^2} + \frac{1}{(D_{20})^2} + \frac{1}{(D_{10})^2}} = (1.7)\sqrt{\frac{3}{(1.3)^2} + \frac{1}{(0.19)^2} + \frac{1}{(0.11)^2}} = \mathbf{18}$$

Rating: GOOD

6.15
$$S_N = (1.7)\sqrt{\frac{3}{(0.61)^2} + \frac{1}{(0.25)^2} + \frac{1}{(0.09)^2}} = 20.65$$

Rating: FAIR