Действия с матрици. Обратна матрица.

Нека F е числово поле, а $m,n\in\mathbb{N}$. Обичайно с $F_{m\times n}$ означаваме множеството от всички $m \times n$ матрици с елементи от F. В $F_{m \times n}$ въвеждаме следните две операци

следните две операции:
$$\underline{1} \colon \text{Aко } A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \in F_{m \times n} \text{ и } B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \dots & \dots & \dots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \in F_{m \times n}, \text{ то }$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \dots & \dots & \dots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\underline{2} \colon \text{Ako } A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \in F_{m \times n}, \text{ a } \lambda \in F, \text{ то }$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in F_{m \times n}.$$

Матрицата, чиито елементи са всичките равни на нула, наричаме *нулева*

матрица и означаваме
$$\mathbb{O}_{m\times n}=\begin{pmatrix} 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}\in F_{m\times n}$$
 (или нак-

ратко само \mathbb{O}). За $\forall A \in F_{m \times n}$ е изпълнено $A + \mathbb{O} = A$.

Означаваме
$$-A = \begin{pmatrix} -a_{11} & \dots & -a_{1n} \\ \dots & \dots & \dots \\ -a_{m1} & \dots & -a_{mn} \end{pmatrix} \in F_{m \times n}$$
. Ясно е, че $A + (-A) = \mathbb{O}$.

Поради това си свойство матрицата -A се нарича npomusonoложна на матрицата A. За $A, B \in F_{m \times n}$ означаваме с A - B матрицата A + (-B). Тя се нарича разлика на матриците A и B.

Относно по-горе въведените операции в $F_{m \times n}$ са изпълнени следните свойства (навсякъде $A, B, C \in F_{m \times n}, \lambda, \mu \in F$):

1) A + B = B + A (комутативност)

Наистина, нека $A=(a_{ij}), B=(b_{ij}).$ Тогава $A+B=(a_{ij}+b_{ij})=(b_{ij}+a_{ij})=B+A.$

- 2) (A + B) + C = A + (B + C) (асоциативност)
- 3) $A + \mathbb{O} = \mathbb{O} + A = A$ sa $\forall A$
- 4) $A + (-A) = (-A) + A = \mathbb{O}$ sa $\forall A$
- 5) 1.A = A за $\forall A$
- 6) $(\lambda + \mu)A = \lambda A + \mu A$
- 7) $\lambda(A+B) = \lambda A + \lambda B$
- 8) $\lambda(\mu A) = (\lambda \mu) A$.

Фактът, че горните осем свойства са в сила определят множеството $F_{m \times n}$ като *линейно пространство* над полето F. Тези свойства са известни още като аксиоми за линейно пространство.

Нека сега $A_{m\underline{s}}=(a_{ij}), B_{\underline{s}n}=(b_{ij}), \ m,n,s\in\mathbb{N}$. Дефинираме нова операция - умножение на матрици. В случая $A.B=C,\ C_{m\times n}=(c_{ij}),$ където $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj},\ \forall i=1,2,\ldots,m;\ \forall j=1,2,\ldots,n.$ С други думи две матрици се умножават по правилото "ред по стълб" 1. По-специално $\exists AB\ \underline{u}\ \exists BA\Leftrightarrow A_{m\times s}, B_{s\times m}$. Тогава $(AB)_{m\times m},\ a\ (BA)_{s\times s}$. Оттук се вижда, че в общия случай матриците AB и BA са различни, т.е. умножението на матрици \underline{He} е комутативно. Затова е важно да се има предвид, че дори когато умножаваме квадратни матрици A,B, естествено от един и същи ред n, произведенията AB и BA ще бъдат също квадратни матрици от ред n, но в общия случай $AB \neq BA$.

Друга особеност при умножението на матрици е, че е възможно да имаме $A \neq \mathbb{O}, B \neq \mathbb{O}$, но $AB = \mathbb{O}$. В този случай A и B се наричат ∂ елители на нулата. Например при $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ имаме, че

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbb{O}.$$

¹Забележете, че точно поради това е необходимо броят на стълбовете на едната матрица да е равен на броят на редовете на другата матрица. В противен случай умножението на матрици не е дефинирано: например в случая, ако $m \neq n$, не можем да намерим произведението BA.

За всеки две квадратни матрици $A_{n\times n}$ и $B_{n\times n}$ е в сила равенството $\det(AB) = \det A \cdot \det B$. Това следва от теоремата за умножение на детерминанти и дефиницията на операцията умножение на матрици.

С така въведената нова операция умножение на матрици са изпълнени още свойствата:

9)
$$(AB)C = A(BC)$$
 (асоциативност)
10) $(A+B)C = AC+BC$ и $C(A+B) = CA+CB$ (дистрибутивност)²

Нека направим проверка на асоциативността (свойство 9) за матрици $A,B,C\in F_{n\times n}$. Нека $A=(a_{ij}),B=(b_{ij}),C=(c_{ij})$ и нека $AB=D,\ D=(d_{ij}),$ където $d_{ij}=a_{i1}b_{1j}+\cdots+a_{in}b_{nj}=\sum_{k=1}^n a_{ik}bkj$. Сега означаваме $(AB)C=DC=H,\ H=(h_{ij}),\ h_{ij}=\sum_{l=1}^n d_{il}c_{li}=\sum_{l=1}^n (\sum_{k=1}^n a_{ik}b_{kl})\ c_{lj}=\sum_{k=1}^n \sum_{l=1}^n a_{ik}b_{kl}c_{lj}$. Да означим още $BC=P,\ P=(p_{ij}),p_{ij}=\sum_{l=1}^n b_{il}c_{lj}$ и оттук $A(BC)=AP=Q,\ Q=(q_{ij}),q_{ij}=\sum_{k=1}^n a_{ik}p_{kj}=\sum_{k=1}^n a_{ik}(\sum_{l=1}^n b_{kl}c_{lj})=\sum_{k=1}^n \sum_{l=1}^n a_{ik}b_{kl}c_{lj}$. Очевидно $h_{ij}=q_{ij}\ \forall i,j=1,2,\ldots,n$. Следователно H=Q, т.е. (AB)C=A(BC).

Нека имаме матрицата
$$E_{n\times n}=\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
. Еквивалентно

може да запишем $E = (\delta_{ij})$, където δ_{ij} е символът на Кронекер. За всяка матрица $A \in F_{n \times n}$ е изпълнено AE = EA = A. Поради този факт матрицата E се нарича единична матрица (от ред n). Изпълнено е свойството:

11)
$$\lambda . A = (\lambda . E) A$$
 за $\lambda \in F, A \in F_{n \times n}$.

Нека имаме матрицата
$$A=\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, A=(a_{ij})_{m\times n}.$$
 Да си припомни, че матрицата $A^t=\begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}, A^t=(a_{ji})_{n\times m}$ се

 $^{^2}$ Това свойство е валидно в случаите, когато събирането и умножението на матрици са дефинирани едновременно - например в $F_{n \times n}$.

нарича транспонирана на матрицата A. Операцията транспониране на матрица има следните свойства:

- $i) (A^t)^t = A$
- $(ii)(A+B)^t = A^t + B^t \text{ (ako } \exists A+B)$
- $iii) (\lambda A)^t = \lambda A^t$ за произволно $\lambda \in F$
- $(AB)^t = B^t A^t$ (ako $\exists AB$)

Да направим проверка на свойство iv) за $A=(a_{ij})_{n\times n}, B=(b_{ij})_{n\times n}$. Нека $AB=C=(c_{ij}),\ c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}$. От друга страна да запишем $(AB)^t=C^t=D=(d_{ij}), d_{ij}=c_{ji}=\sum_{k=1}^n a_{jk}b_{ki}$. Ако означим $B^tA^t=H=(h_{ij}), h_{ij}=\sum_{k=1}^n b_{ki}a_{jk}$. Следователно $h_{ij}=d_{ij}$ за $\forall i,j=1,2,\ldots,n$, или еквивалентно H=D, т.е. $B^tA^t=(AB)^t$.

Нека $A \in F_{n \times n}$ е <u>квадратна</u> матрица. Казваме, че матрицата A е обратима или неособена, ако съществува матрица $A^{-1} \in F_{n \times n}$, такава че $AA^{-1} = A^{-1}A = E$. Тогава имаме $AA^{-1} = E \Rightarrow \det(AA^{-1}) = \det E \Rightarrow \det A \det A^{-1} = 1 \Rightarrow \det A \neq 0$. С други думи, необходимо условие една матрица да е неособена е детерминантата й да е различна от нула. Скоро ще видим, че това условие е и достатъчно³. Имаме още, че $\det A^{-1} = \frac{1}{\det A}$. Освен това матрицата A^{-1} е единствена. Наистина, нека $X \in F_{n \times n}$ и AX = XA = E. Тогава имаме $X = EX = (A^{-1}A)X = A^{-1}(AX) = A^{-1}E = A^{-1}$, т.е. $X = A^{-1}$.

Теорема. Квадратната матрица $A = (a_{ij}) \in F_{n \times n}$ е обратима \Leftrightarrow det $A \neq 0$. Тогава обратната матрица A^{-1} е единствена u

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$

където A_{ij} са адюнгираните количества в $\det A$.

Доказателство. По-горе вече видяхме, че ако матрицата A е обратима, то $\det A \neq 0$. Остава да докажем, че за дадената матрица A^{-1} е изпълнено $AA^{-1} = A^{-1}A = E$ при предположение, че $\det A \neq 0$. Да означим

³Достатъчността ще следва от доказателството на следващата теорема, която дава конструктивен метод за намиране на обратна матрица, който е в сила винаги когато детерминантата на изходната матрица е различна от нула.

 $\Delta = \det A \neq 0$. Нека AA-1 = C, $C = (c_{ij})_{n \times n}$. Имаме, че i-тият ред на A е $a_{i1}, a_{i2}, \ldots, a_{in}$, а j-тият стълб на A^{-1} е $\frac{1}{\Delta}A_{j1}, \frac{1}{\Delta}A_{j2}, \ldots, \frac{1}{\Delta}A_{jn}$. Тогава $c_{ij} = \frac{1}{\Delta}(a_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{in}A_{jn}) = \frac{1}{\Delta}\delta_{ij}\Delta = \delta_{ij}$, т.е. $c_{ij} = \delta_{ij}$ за $\forall i, j = 1, 2, \ldots, n \Rightarrow C = E$. Така получихме, че $AA^{-1} = E$. Аналогично се доказва, че $A^{-1}A = E$. Следователно така зададената A^{-1} е обратната на A.

Да отбележим, че посоченият по-горе метод за конструиране на обратна матрица има преди всичко теоретично значение. В практиката се използват други методи, които значително по-бързо довеждат до намирането на A^{-1} .

Ако $A, B \in F_{n \times n}$ са обратими, то матрицата AB също е обратима и $(AB)^{-1} = B^{-1}A^{-1}$. Наистина, директно се проверява, че $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E$. Следователно $(AB)^{-1} = B^{-1}A^{-1}$.

Нека сега за $A \in F_{n \times n}$ и $k \in \mathbb{N}$ дефинираме $A^k = \underbrace{A.A...A}_k$. В такъв

случай очевидно е изпълнено, че $A^kA^l=A^{k+l}$ и $(A^k)^l=A^{kl}$ за $\forall k,l\in\mathbb{N}$. По дефиниция приемаме, че $A^0=E$. Ако имаме $\det A\neq 0 (\Leftrightarrow \exists A^{-1}),$ за $k\in\mathbb{N}$ дефинираме $A^{-k}=(A^k)^{-1}=(A^{-1})^k.$ По този начин $A^kA^l=A^{k+l}$ и $(A^k)^l=A^{kl}$ за $\forall k,l\in\mathbb{Z}.$

Нека $A, B \in F_{n \times n}$ и det $A \neq 0$. Разглеждаме матричното уравнение

$$AX = B$$
,

където $X \in F_{n \times n}$ е неизвестна матрица, която търсим. Умножавайки уравнението от двете страни с A^{-1} , получаваме $A^{-1}AX = A^{-1}B$ и следователно $X = A^{-1}B$. Тогава $X = A^{-1}B$ е единственото решение на даденото уравнение и се нарича условно "ляво частно на B и A". Аналогично, уравнението

$$YA = B$$

има единствено решение $Y=BA^{-1}$, което условно се нарича "дясно частно на B и A".

Пример:

Да се реши матричното уравнение AX = B, където $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$,

 $B=\begin{pmatrix} -2 & 0 \\ 4 & 3 \end{pmatrix}$. Имаме, че $\det A=3.2-1.2=4\neq 0$ и следователно A е обратима. Единственото решение на уравнението е $X=A^{-1}B$. имаме, че $A^{-1}=\frac{1}{\det A}\begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$. $A_{11}=(-1)^{1+1}\Delta_{11}=2, A_{21}=(-1)^{2+1}\Delta_{21}=1$

$$-1, A_{12} = (-1)^{1+2} \Delta_{12} = -2, A_{22} = (-1)^{2+2} \Delta_{22} = 3, \text{ т.е. } A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}.$$
 Сега $X = A^{-1}B = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 4 & 3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2.(-2) + (-1).4 & 2.0 + (-1).3 \\ (-2).(-2) + 3.4 & (-2).0 + 3.3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -8 & -3 \\ 16 & 9 \end{pmatrix}$ или $X = \begin{pmatrix} -2 & -\frac{3}{4} \\ 4 & \frac{9}{4} \end{pmatrix}.$