AI Lab CS236 Lab2

- 1. Create two matrics, P and Q, each of size 10⁶ X 10⁴ with random values. Perform the following.
 - a. Matrix multiplication P.Q^T using loops in Python.
 - b. Vectorized matrix multiplication to compute P.Q^T.
 - c. Calculate the speedup for operations a) and b):

Speed up =
$$t1/t2$$

- 2. Assume any two vectors P and Q with random values. Do the following.
 - a. Compute the euclidean distance between them.

Hint: Euclidean distance between two vectors p and q are as follows:

$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

b. Compute the Pearson correlation coefficient (PCC) between them.

Hint: PCC between two vectors x and y can be computed using:

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

where \overline{x} and \overline{y} are the mean of x and y.

- 3. Write a program to find the angle between the vectors $\mathbf{u} = (2, 1, 2)$ and $\mathbf{v} = (1, 1, 1)$ using the cosine formula $\cos \theta = \frac{u \cdot v}{||u|| \, ||v||}$ and convert \mathbf{u} and \mathbf{v} into unit vectors.
- 4. Obtain two random matrices of integers, A and B. Find A^TB and eigenvalues of AB and BA.

Hint: For a given matrix A,

$$(A - \lambda I) X = 0$$

Where λ is an Eigenvalue and X is an eigenvector.

5.

a. Assume any two vectors X and Y with random values. Compute the Manhattan Distance (L1 distance) between them.

Hint: The Manhattan Distance can be calculated as follows:

$$D(x, y) = \sum_{i=1}^{k} |x_i - y_i|$$

b. Given an m x n matrix, return all matrix elements in spiral order.

Hint: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]

Output: [1,2,3,6,9,8,7,4,5]

6. Given a random variable x with n size sample space, Plot the probability distribution. Hint: The probability density function (pdf) for Normal Distribution can be calculated using

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi * \sigma^2}} * e^{-\frac{1}{2} * (\frac{x-\mu}{\sigma})^2}$$

Probability Density Function Of Normal Distribution where, μ = Mean , σ = Standard deviation , x = input value.

7.

- a. Create a 1D array M with random values.
- b. Then calculate the Standard Deviation using the following formula:

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

Here, x_i = Each value from the population, μ and Nis the Population Mean and N is the size of the population respectively.

8.

- a. Create two matrices X and Y with random values.
- b. Calculate the value of $X^{-1}Y$, $X^{T}X$ and $X^{T}Y$.
- 9. Create a random list of 15 variables and by using statistical formulas calculate Mean, Median, and Variance Standard deviation and verify your output using inbuilt python functions.

Hint:
$$Mean(\bar{x}) = \frac{\sum x}{n}$$

 $Median(x) = \frac{n}{2}, \frac{n}{2} + 1$, for even and odd numbers respectively.

$$Variance(\sigma^2) = \frac{\Sigma(x-\mu^2)}{N}$$
 $\mu = Mean, N = number of terms$

Standard deviation: formula from Q7.

10. Consider a 2-dimensional space having three points P1 (X1, Y1), P2 (X2, Y2), and P3 (X3, Y3), Find the Minkowski distance for p = 1, 2, 3, 4

Hint: for given p, Minkowski distance can be calculated as follows:

$$(|X1 - Y1|^{n}p + |X2 - Y2|^{n}p + |X3 - Y|^{n}p)^{n}$$

- 11. Implement normalizeRows() function to normalize the rows of a matrix. After applying this function to an input matrix x, each row of x should be a vector of unit length.
- 12. For the following two vectors.

$$x_1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]$$

 $x_2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]$

Find the following

- a. Vectorized dot product of vectors
- b. Vectorized outer product
- c. Vectorized elementwise multiplication
- d. Vectorized general dot product