日本国特許庁 JAPAN PATENT OFFICE

30.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年11月26日

出 願 番 号 Application Number:

特願2003-396278

[ST. 10/C]:

[JP2003-396278]

出 願 人

Applicant(s):

第一製薬株式会社

セレスター・レキシコ・サイエンシズ株式会社

特 許 Commi Japan F

特許庁長官 Commissioner, Japan Patent Office 2005年 1月13日

i) [1]

TIST AVAILABLE COPY

【書類名】 特許願
【整理番号】 NP03-1161
【あて先】 特許庁長官殿
【国際特許分類】 A61P 29/00 C12N 09/50

C12Q 01/37

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目3番地

幕張テクノガーデンD棟17階

セレスター・レキシコ・サイエンシズ株式会社内

土居 洋文

【発明者】

【氏名】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目3番地

幕張テクノガーデンD棟17階

セレスター・レキシコ・サイエンシズ株式会社内

【氏名】 桝田 彰一

【発明者】

【住所又は居所】 東京都江戸川区北葛西1丁目16番13号

第一製薬株式会社 東京研究開発センター内

【氏名】 井角 能隆

【特許出願人】

【識別番号】 000002831

【氏名又は名称】 第一製薬株式会社

【特許出願人】

【識別番号】 500520628

【氏名又は名称】 セレスター・レキシコ・サイエンシズ株式会社

【代理人】

【識別番号】 100088904

【弁理士】

【氏名又は名称】 庄司 隆 【電話番号】 03-3864-6572

【手数料の表示】

【予納台帳番号】 067070 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

以下の群より選ばれる阻害方法;

- (i) NOD 2 とプロカスパーゼ1 (procaspase -1) の結合を阻害することを特徴とするプロカスパーゼ1 の多量体化阻害方法、
- (i i) NOD 2 とプロカスパーゼ 1 (procaspase-1) の結合を阻害することを特徴とするプロカスパーゼ 1 の活性化阻害方法、および

(i i i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするカスパーゼ1 (caspase-1) の生成阻害方法。

【請求項2】

NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害することを特徴とする炎症性疾患の防止方法および/または治療方法。

【請求項3】

NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物を少なくとも1つ用いることを特徴とする炎症性疾患の防止方法および/または治療方法。

【請求項4】

炎症性疾患が、敗血症、炎症性腸疾患、クローン病またはリウマチである請求項2または3に記載の防止方法および/または治療方法。

【請求項5】

NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物の同定方法であって、NOD2とプロカスパーゼ1の結合を可能にする条件下、NOD2および/またはプロカスパーゼ1を化合物と接触させ、NOD2とプロカスパーゼ1の結合を検出することができるシグナルおよび/またはマーカーを使用する系を用いて、このシグナルおよび/またはマーカーの存在若しくは不存在および/または変化を検出することにより、NOD2とプロカスパーゼ1の結合を阻害するか否かを決定する方法。

【請求項6】

以下の群より選ばれる阻害剤;

- (i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするプロカスパーゼ1の多量体化阻害剤、
- (i i) NOD 2 とプロカスパーゼ 1 (procaspase-1)の結合を阻害することを特徴とするプロカスパーゼ 1 の活性化阻害剤、および
- (i i i) NOD 2 とプロカスパーゼ 1 (procaspase-1) の結合を阻害することを特徴とするカスパーゼ 1 (caspase-1) の生成阻害剤。

【請求項7】

以下の群より選ばれる阻害剤;

- (i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する化合物を少なくとも1つ含有するプロカスパーゼ1の多量体化阻害剤、
- (i i)NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物を少なくとも1つ含有するプロカスパーゼ1の活性化阻害剤、および
- (i i i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する化合物を少なくとも1つ含有するカスパーゼ1 (caspase-1) の生成阻害剤。

【請求項8】

NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とする炎症性疾患の防止剤および/または治療剤。

【請求項9】

NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する化合物を少なくとも1つ含有する炎症性疾患の防止剤および/または治療剤。

【請求項10】

請求項6または7に記載の阻害剤を含有する炎症性疾患の防止剤および/または治療剤。

【請求項11】

炎症性疾患が、敗血症、炎症性腸疾患、クローン病またはリウマチである請求項8から10のいずれか1項に記載の防止剤および/または治療剤。

【請求項12】

請求項5に記載の同定方法に用いることを特徴とする試薬キットであって、NOD2、NOD2をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つと、プロカスパーゼ1(procaspase-1)、プロカスパーゼ1をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つとを含んでなる試薬キット。

【書類名】明細書

【発明の名称】プロカスパーゼ1活性化阻害剤

【技術分野】

[0001]

本発明は、NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害することを特徴とするプロカスパーゼ1の多量体化阻害方法、プロカスパーゼ1の活性化阻害方法およびカスパーゼ1(caspase-1)の生成阻害方法に関する。また、NOD2とプロカスパーゼ1の結合を阻害することを特徴とする炎症性疾患の防止方法および/または治療方法に関する。さらに、NOD2とプロカスパーゼ1の結合を阻害する化合物の同定方法に関する。さらに、NOD2とプロカスパーゼ1の結合を阻害することを特徴とするプロカスパーゼ1の多量体化阻害剤、プロカスパーゼ1の活性化阻害剤およびカスパーゼ1の生成阻害剤、あるいは炎症性疾患の防止剤および/または治療剤に関する。さらに、NOD2、NOD2をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つと、プロカスパーゼ1をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つとを含んでなる試薬キットに関する。

【背景技術】

[0002]

カスパーゼ 1 は、インターロイキン 1 β 転換酵素(interleukin-1 β -converting enzyme; ICE)とも呼ばれ、炎症性サイトカインであるインターロイキン 1 (以下、IL-1 β と略称する)やインターロイキン 1 8 (以下、IL-1 β と略称する)をその前駆体から成熟型へと変換するシステインプロテアーゼである(非特許文献 1-4)。カスパーゼ 1 遺伝子は炎症性刺激、例えばリポポリサッカライド(以下、LPSと略称する)で誘導され、カスパーゼ 1 活性も同様の刺激で増加する(非特許文献 4-6)。また、種々の炎症性疾患、例えば、敗血症、炎症性腸疾患(inflammatory bowel disease)、リウマチ等において、カスパーゼ 1 活性の促進が報告されている。

[0003]

カスパーゼ1は、カスパーゼ1前駆体として発現するプロカスパーゼ1が多量体化を起こし、それに伴う自己切断により生成されると考えられている。この過程において、プロカスパーゼ1の多量体化は、RIP2またはNOD1がプロカスパーゼ1と結合することで誘導されることが報告されている(非特許文献7および8)。

[0004]

以下に本明細書において引用した文献を列記する。

【特許文献1】国際公開第WO01/67299号パンフレット。

【非特許文献1】「ネイチャー(Nature)」、1992年、第356巻、p. 768-774。

【非特許文献 2 】「サイエンス(S c i e n c e)」、1992年、第256巻、p. 97-100。

【非特許文献3】「ネイチャー」、1997年、第386巻、p. 619-623。

【非特許文献 4】 「サイエンス」、1997年、第275巻、p. 206-209。

【非特許文献 5】「ネイチャー」、1994年、第370巻、p. 270-275。

【非特許文献 6 】「ブラッド (Blood)」、1998年、第91巻、p. 577-584。

【非特許文献7】「カレント バイオロジー (Current Biology)」、1998年、第8巻、p. 885-888。

【非特許文献8】「バイオケミカル アンド バイオフィジカル リサーチ コミュニケーションズ (Biochemical and Biophysical Research Communications)」、2002年、第299巻、p.

出証特2004-3122102

652 - 658°

【非特許文献9】「ジャーナル オブ バイオロジカル ケミストリー (Journal of Biological Chemistry)」、2002年、第277巻、p. 41701-41705。

【非特許文献10】「ガット(Gut)」、2003年、第52巻、p. 840-846。

【非特許文献11】「ジャーナル オブ バイオロジカル ケミストリー」、200 1年、第276巻、p. 4812-4818。

【非特許文献12】ウルマー (K. M. Ulmer)、「サイエンス (Science)」、1983年、第219巻、p. 666-671。

【非特許文献13】「ペプチド合成」、丸善株式会社、1975年。

【非特許文献14】「ペプチド シンテシス (Peptide Synthesis)」、インターサイエンス (Interscience)、ニューヨーク (New York)、1996年。

【非特許文献15】「セル(Cell」、1995年、第80巻、p. 401-41 1。

【非特許文献16】「サイエンス」、1995年、第267巻、p. 2000-20 03。

【非特許文献17】「プロシーディングス オブ ザ ナショナル アカデミー オブ サイエンシズ オブ・ザ ユナイテッド ステーツ オブ アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」、2001年、第98巻、p13249-13254。

【非特許文献18】「ネイチャー」、2003年、第423巻、p. 356-361

【非特許文献19】「バイオケミカル ファーマコロジー (Biochemical Pharmacology)」、2002年、第64巻、p. 1-8。

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明の課題は、プロカスパーゼ1と結合してこれの多量体化を促進し、これを活性化する新たな蛋白質を見出し、該蛋白質とプロカスパーゼ1の結合を阻害することにより、プロカスパーゼ1の多量体化阻害、プロカスパーゼ1の活性化阻害およびカスパーゼ1の生成阻害、ひいては炎症性疾患の防止および/または治療を可能にする手段を提供することである。

【課題を解決するための手段】

[0006]

上記課題を解決すべく本発明者らは鋭意努力し、プロカスパーゼ1がNOD2と相互作用することをインシリコ(in silico)で予測し、そしてNOD2とプロカスパーゼ1が結合することにより、プロカスパーゼ1の多量体化が促進され、その結果プロカスパーゼ1からカスパーゼ1への活性化およびカスパーゼ1の生成が引き起こされることを実験的に証明して本発明を完成した。

[0007]

すなわち、本発明は、

- 1. 以下の群より選ばれる阻害方法;
- (i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするプロカスパーゼ1の多量体化阻害方法、
- (ii) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするプロカスパーゼ1の活性化阻害方法、および

- (i i i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするカスパーゼ1 (caspase-1) の生成阻害方法、
- 2. NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害することを 特徴とする炎症性疾患の防止方法および/または治療方法、
- 3. NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物を少なくとも1つ用いることを特徴とする炎症性疾患の防止方法および/または治療方法
- 4. 炎症性疾患が、敗血症、炎症性腸疾患、クローン病またはリウマチである前記2. または3. の防止方法および/または治療方法、
- 5. NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物の同定方法であって、NOD2とプロカスパーゼ1の結合を可能にする条件下、NOD2および/またはプロカスパーゼ1を化合物と接触させ、NOD2とプロカスパーゼ1の結合を検出することができるシグナルおよび/またはマーカーを使用する系を用いて、このシグナルおよび/またはマーカーの存在若しくは不存在および/または変化を検出することにより、NOD2とプロカスパーゼ1の結合を阻害するか否かを決定する方法、
- 6. 以下の群より選ばれる阻害剤;
- (i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害することを特徴とするプロカスパーゼ1の多量体化阻害剤、
- $(i\ i)\ NOD2$ とプロカスパーゼ $1\ (procaspase-1)$ の結合を阻害することを特徴とするプロカスパーゼ1 の活性化阻害剤、および
- $(i\ i\ i)\ NOD 2$ とプロカスパーゼ $1\ (p\ r\ o\ c\ a\ s\ p\ a\ s\ e\ -1)$ の結合を阻害することを特徴とするカスパーゼ $1\ (c\ a\ s\ p\ a\ s\ e\ -1)$ の生成阻害剤、
- 7. 以下の群より選ばれる阻害剤;
- (i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する化合物を少なくとも1つ含有するプロカスパーゼ1の多量体化阻害剤、
- (i i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する化合物を少なくとも1つ含有するプロカスパーゼ1の活性化阻害剤、および
- (i i i) NOD2とプロカスパーゼ1 (procaspase-1) の結合を阻害する 化合物を少なくとも1つ含有するカスパーゼ1 (caspase-1) の生成阻害剤、
- 8. NOD 2 とプロカスパーゼ 1 (p r o c a s p a s e -1) の結合を阻害することを特徴とする炎症性疾患の防止剤および/または治療剤、
- 9. NOD2とプロカスパーゼ1(procaspase-1)の結合を阻害する化合物を少なくとも1つ含有する炎症性疾患の防止剤および/または治療剤、
- 10. 前記6. または7. の阻害剤を含有する炎症性疾患の防止剤および/または治療剤
- 11. 炎症性疾患が、敗血症、炎症性腸疾患、クローン病またはリウマチである前記8.から10. のいずれかの防止剤および/または治療剤、
- 12. 前記5. の同定方法に用いることを特徴とする試薬キットであって、NOD2、NOD2をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つと、プロカスパーゼ1(procaspase-1)、プロカスパーゼ1をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体のうちの少なくともいずれか1つとを含んでなる試薬キット、に関する。

【発明の効果】

[0008]

本発明ではNOD2がプロカスパーゼ1と結合することを見出した。すなわち、NOD 2とプロカスパーゼ1が結合することにより、プロカスパーゼ1の多量体化が促進され、 その結果プロカスパーゼ1からカスパーゼ1への活性化およびカスパーゼ1の生成が引き起こされることを初めて明らかにした。カスパーゼ1は炎症性反応に関与する因子であり、炎症性疾患においてその活性の促進が報告されている。これらから、NOD2とプロカスパーゼ1の結合を阻害することを特徴とする本発明は、炎症性疾患の防止および/または治療のために非常に有用である。

【発明を実施するための最良の形態】

[0009]

以下、本発明について発明の実施の態様をさらに詳しく説明する。

本明細書においては単離された若しくは合成の完全長蛋白質;単離された若しくは合成の完全長ポリペプチド;または単離された若しくは合成の完全長オリゴペプチドを意味する総称的用語として「ポリペプチド」という用語を使用することがある。ここで蛋白質、ポリペプチド若しくはオリゴペプチドはペプチド結合または修飾されたペプチド結合により互いに結合している2個以上のアミノ酸を含むものである。以降、アミノ酸を表記する場合、1文字または3文字にて表記することがある。

[0010]

本発明においては、NOD2がプロカスパーゼ1と相互作用することを、国際公開WO01/67299号パンフレット記載の方法に従ってインシリコで予測した。そして実験的に、NOD2がプロカスパーゼ1と結合することを明らかにした。さらに、NOD2とプロカスパーゼ1が結合することにより、プロカスパーゼ1の多量体化が促進され、その結果プロカスパーゼ1からカスパーゼ1への活性化およびカスパーゼ1の生成が引き起こされ、細胞内で $IL-1\beta$ 前駆体($proIL-1\beta$)のカスパーゼ依存的な切断が誘導されて成熟型 $IL-1\beta$ の分泌が促進されることを初めて明らかにした。

[0011]

NOD2は、CARD15とも呼ばれ、単球(非特許文献9)、好中球(非特許文献9)、白血球(非特許文献9)、顆粒球(非特許文献9)、樹状細胞(非特許文献9)、腸上皮細胞(非特許文献9および10)、およびマクロファージ(非特許文献10)で発現していること、急性前骨髄球性白血病細胞株HL-60や正常大腸細胞株FHCではLPSや腫瘍壊死因子 α (以下、TNF- α と略称する)等の炎症刺激でNOD2遺伝子が増加することが報告されている(非特許文献9)。NOD2の機能としては、NOD2遺伝子をHL-60細胞に一過性発現させることによりNF- α Bが活性化されることが報告されている(非特許文献11)。しかしながら、NOD2がプロカスパーゼー1と結合して機能するという報告はない。

[0012]

これらから、NOD2とプロカスパーゼ1の結合を阻害することにより、プロカスパーゼ1の多量体化、プロカスパーゼ1の活性化およびカスパーゼ1の生成を阻害でき、その結果、カスパーゼ1の増加により発症・進展する炎症性疾患の防止および/または治療が可能になる。

[0013]

これら知見に基づいて、本発明においては、NOD2とプロカスパーゼ1の結合を阻害することを特徴とする、プロカスパーゼ1の多量体化阻害方法、プロカスパーゼ1の活性化阻害方法およびカスパーゼ1の生成阻害方法、並びにカスパーゼ1の増加に基づく疾患、具体的には炎症性疾患の防止方法および/または治療方法を提供する。

[0014]

NOD2遺伝子および該遺伝子がコードするポリペプチドは、それぞれ配列表の配列番号1および配列番号2に記載の各配列からなる。プロカスパーゼ1遺伝子および該遺伝子がコードするポリペプチドは、それぞれ配列表の配列番号3および配列番号4に記載の各配列からなる。NOD2、プロカスパーゼ1およびこれらの遺伝子は上記各配列からなるものに限らず、一般に知られているNOD2およびプロカスパーゼ1の機能を有する限りにおいて、上記各配列において1乃至数個の変異を有するポリペプチドおよびポリヌクレオチドであることができる。また、これらの機能を促進するあるいは欠失させるといった

[0015]

「NOD2とプロカスパーゼ1の結合」とは、NOD2とプロカスパーゼ1が複合体を形成するように、水素結合、疎水結合および静電的相互作用等の非共有結合により、NOD2とプロカスパーゼ1が相互作用することを意味する。ここでの結合とは、NOD2とプロカスパーゼ1がそれら分子の一部分において結合すれば足りる。例えば、NOD2またはプロカスパーゼ1を構成するアミノ酸の中に、NOD2とプロカスパーゼ1の結合に関与しないアミノ酸が含まれていてもよい。

[0016]

NOD2とプロカスパーゼ1の結合は、免疫沈降物による共沈物の確認、ツーハイブリッド法、ウエスタンブロット法および蛍光共鳴エネルギー転移法等の自体公知の方法またはこれらの方法を組合わせることにより検出され得る。

[0017]

例えば、実施例2に示すように、C末にmyc-His-tagが付加されたNOD2とN末にFLAG-tagが付加されたプロカスパーゼ1との結合を、両ポリペプチドの共存下において、抗myc抗体または抗FLAG M2抗体を用いて免疫沈降した共沈物を抗FLAG M2抗体または抗myc抗体を用いてウエスタンブロッティングすることにより検出され得る。

[0018]

「プロカスパーゼ1の多量体化」とは、プロカスパーゼ1同士が結合し、該結合により複合体を形成することを意味する。多量体化は、NOD2とプロカスパーゼ1とが結合することにより促進される。また、プロカスパーゼ1が有するカスパーゼリクルートメントドメイン(Caspase recruitment domain; CARD)が、多量体化に重要な役割を果たしていることが知られている。該複合体を構成するプロカスパーゼ1の分子数は特に制限されず、プロカスパーゼ1が自己を切断し、その結果、カスパーゼ1が生成される程度に、プロカスパーゼ1同士が結合し、複合体を形成すればよい。

[0019]

「プロカスパーゼ1の活性化」とは、プロカスパーゼ1の多量体化に伴い、プロカスパーゼ1が自己切断され、カスパーゼ1が生成されることを意味する。NOD2とプロカスパーゼ1とが結合することによりプロカスパーゼ1の多量体化が促進され、それに伴う自己切断が起こり、その結果、カスパーゼ1が生成される。

[0020]

「カスパーゼ1の生成」とは、プロカスパーゼ1が活性化された結果、カスパーゼ1が 生成されることを意味する。

[0021]

プロカスパーゼ1の多量体化阻害、プロカスパーゼ1の活性化阻害およびカスパーゼ1 の生成阻害は、例えば、NOD2とプロカスパーゼ1の結合を阻害する化合物を用いることにより実施できる。ここでは、このような阻害効果を有する化合物(後述する例として競合阻害効果を有するポリペプチド類、抗体および低分子化合物等が挙げられる)を阻害剤と称する。

[0022]

NOD2とプロカスパーゼ1の結合を阻害する化合物として、好ましくは当該結合を特異的に阻害する化合物、より好ましくは当該結合を特異的に阻害する低分子量化合物が挙げられる。NOD2とプロカスパーゼ1の結合を特異的に阻害するとは、当該結合を強く阻害するが、他の蛋白質間結合は阻害しないか、弱く阻害することを意味する。

[0023]

NOD2とプロカスパーゼ1の結合を阻害する化合物として、例えば、NOD2とプロカスパーゼ1が結合する部位のアミノ酸配列からなるポリペプチドが例示できる。かかるポリペプチドは、蛋白質間の結合を競合的に阻害し、ひいてはプロカスパーゼ1の多量体

化およびプロカスパーゼ1の自己切断を阻害することができる。かかるポリペプチドは、NOD2またはプロカスパーゼ1のアミノ酸配列から設計し、自体公知のペプチド合成法により合成したものから、NOD2とプロカスパーゼ1の結合を阻害するものを選択することにより得ることができる。このように特定されたポリペプチドに、1個乃至数個のアミノ酸の欠失、置換、付加または挿入等の変異を導入したものも本発明の範囲に包含される。このような変異を導入したポリペプチドは、NOD2とプロカスパーゼ1の結合を阻害するものが好ましい。変異を有するポリペプチドは天然に存在するものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであってもよい。欠失、置換、付加または挿入等の変異を導入したものであって、当該ポリペプチドの基本的な性質(物性、機能または免疫学的活性等)を変化させないという観点から、例えば、同族アミノ酸(物性でミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ酸、陰性荷電アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ酸、さらに、これら利用できるポリペプチドは、その構成アミノ基またはカルボキシル基等を、例えばアミド化修飾する等、機能の著しい変更を伴わない程度に改変が可能である。

[0024]

上記ポリペプチドは、ペプチド化学において知られる一般的な方法で製造できる。例えば、成書(非特許文献13および14)に記載の方法が例示されるが、これらに限らず公知の方法が広く利用可能である。具体的には、通常の液相法および固相法によるペプチド合成法、例えばFmoc法等を挙げることができる。または市販のアミノ酸合成装置を用いて製造可能である。あるいは遺伝子工学的手法により取得することもできる。例えば目的とするポリペプチドをコードする遺伝子を宿主細胞中で発現できる組換えDNA(発現ベクター)を作成し、これを適当な宿主細胞、例えば大腸菌にトランスフェクションして形質転換した後に該形質転換体を培養し、次いで得られる培養物から目的とするポリペプチドを回収することにより製造可能である。

[0025]

NOD2とプロカスパーゼ1の結合の阻害は、NOD2またはプロカスパーゼ1を認識する抗体であって、NOD2とプロカスパーゼ1の結合を阻害する抗体を用いることによっても実施可能である。かかる抗体は、NOD2またはプロカスパーゼ1自体、またはこれらの断片ポリペプチド、好ましくはNOD2とプロカスパーゼ1が結合する部位のアミノ酸配列からなるポリペプチドを抗原として自体公知の抗体作製法により得ることができる。

[0026]

NOD2とプロカスパーゼ1の結合を阻害する化合物は、自体公知の医薬品スクリーニ ングシステムを利用して当該化合物の同定方法を構築し、これを使用して取得可能である 。例えば、NOD2とプロカスパーゼ1の結合を可能にする条件を選択し、当該条件下で 、調べようとする化合物(被検化合物)とNOD2および/またはプロカスパーゼ1とを 接触させ、NOD2とプロカスパーゼ1の結合を検出することができるシグナルおよび/ またはマーカーを使用する系を用いて、このシグナルおよび/またはマーカーの存在若し くは不存在または変化を検出することにより、NOD2とプロカスパーゼ1の結合を阻害 する化合物を同定できる。例えばNOD2とプロカスパーゼ1の結合により生じるシグナ ルまたは該結合のマーカーが、被検化合物をNOD2および/またはプロカスパーゼ1と 接触させたときに消失する、あるいは低減する等の変化を示した場合、当該被検化合物は NOD2とプロカスパーゼ1の結合を阻害するものであると判定できる。かかる同定方法 において、被検化合物をNOD2および/またはプロカスパーゼ1と予め接触させ、その 後にNOD2とプロカスパーゼ1を結合させることも可能であり、または被検化合物をこ れらの結合の過程に共存させることも可能である。NOD2とプロカスパーゼ1の結合を 可能にする条件は、インビトロのものであってよく、インビボのものであってもよい。例 えば、NOD2とプロカスパーゼ1とを共発現させた細胞を用いることもできる。細胞に おける共発現は、NOD2をコードするポリヌクレオチドを含む適当なベクターとプロカ

スパーゼ1をコードするポリヌクレオチドを含む適当なベクターとを用いて慣用の遺伝子工学的方法でこれらを細胞にトランスフェクションすることにより達成できる。ここでシグナルとは、そのもの自体がその物理的または化学的性質により直接検出され得るものを指し、マーカーとはそのものの物理的または生物学的性質を指標として間接的に検出され得るものを指す。シグナルとしてはルシフェラーゼや放射性同位体等、マーカーとしては、レポーター遺伝子、例えばクロラムフェニコールアセチルトランスフェラーゼ遺伝子、または検出用のエピトープタグ、例えば6×Hisーtag等、公知のものが利用できる。これらシグナルまたはマーカーの検出方法は当業者には周知のものである。NOD2とプロカスパーゼ1の結合は、簡便には、これら蛋白質の存在若しくは不存在の検出および/またはその量の変化の測定により判定可能である。蛋白質の検出あるいは蛋白質量の定量は、自体公知の蛋白質またはペプチドの検出方法、例えばウェスタンプロッティング法等を用いて実施できる。

[0027]

具体的には、例えばNOD2またはプロカスパーゼ1の一方を固相化し、他方をシグナルで標識化して用いて結合反応を行い、標識シグナルを定量的に測定するといった当業者に知られた一般的なインビトロ(in vitro)における結合実験系に、被検化合物を加えて評価することにより、NOD2とプロカスパーゼ1の結合を阻害する化合物を得ることができる。

[0028]

あるいは、実施例2に示したように、NOD2遺伝子およびプロカスパーゼ1遺伝子を 共発現させた細胞を用いて細胞内における結合反応を検出する試験系に、被検化合物を作 用させ、NOD2とプロカスパーゼ1の結合を免疫沈降法やウェスタンブロッティング等 の公知方法で検出することによって、インビボ(in vivo)においてNOD2とプロカスパーゼ1の結合を阻害する化合物を得ることができる。

[0029]

また、公知のツーハイブリッド(two-hybrid)法を用いることも可能である。例えば、NOD2とDNA結合蛋白質を融合蛋白質として発現するプラスミド、プロカスパーゼ1と転写活性化蛋白質を融合蛋白質として発現するプラスミド、および適切なプロモーター遺伝子に接続した 1ac2等レポーター遺伝子を含有するプラスミドを酵母、真核細胞等に導入し、被検化合物を共存させた場合のレポーター遺伝子の発現量を被検化合物非存在下でのレポーター遺伝子の発現量とを比較することにより達成できる。被検化合物を共存させた場合のレポーター遺伝子の発現量が被検化合物非存在下でのレポーター遺伝子の発現量と比較して減少した場合には、該被検化合物にはNOD2とプロカスパーゼ1との結合を阻害する作用があると判定できる。

[0030]

ビアコアシステム (BIACORE system) 等の表面プラズモン共鳴センサー、シンチレーションプロキシミティアッセイ法 (Scintillation proximity assay、SPA)、あるいは蛍光共鳴エネルギー転移 (Fluores cence resonance energy transfer、FRET) を応用した方法を用いて、NOD2とプロカスパーゼ1との結合を阻害する化合物を同定することも可能である。

[0031]

また、NOD2によるプロカスパーゼ1の多量体化を可能にする条件を選択し、該条件下でNOD2および/またはプロカスパーゼ1と被検化合物を接触させ、次いで、NOD2によるプロカスパーゼ1の多量体化を検出することのできるシグナルおよび/またはマーカーを使用する系を導入し、このシグナルおよび/またはマーカーの存在、不存在、またはその変化を検出することにより、NOD2によるプロカスパーゼ1の多量体化を阻害する化合物を同定可能である。例えば、実施例3に示したように、NOD2遺伝子またはプロカスパーゼ1遺伝子を共発現させた細胞を用いて細胞内におけるカスパーゼ1の多量体化を測定する実験系を用いて、NOD2によるプロカスパーゼ1の多量体化を阻害する

化合物を同定可能である。

[0032]

また、NOD2によるプロカスパーゼ1の活性化を可能にする条件を選択し、該条件下でNOD2および/またはプロカスパーゼ1と被検化合物を接触させ、次いで、NOD2によるプロカスパーゼ1の活性化を検出することのできるシグナルおよび/またはマーカーを使用する系を導入し、このシグナルおよび/またはマーカーの存在、不存在、またはその変化を検出することにより、NOD2によるプロカスパーゼ1の活性化を阻害する化合物を同定可能である。例えば、実施例4に示したように、NOD2遺伝子およびプロカスパーゼ1遺伝子が共発現するIL-1 β 安定発現細胞外に分泌されるIL-1 β 量を低減させる、または消滅させる化合物を選択することにより、NOD2によるプロカスパーゼ1の活性化を阻害する化合物を同定可能である。NOD2によるプロカスパーゼ1の活性化を阻害するとにより、プロカスパーゼ1の自己切断によるカスパーゼ1の生成が阻害されるため、該化合物はカスパーゼ1の生成を阻害する化合物としても用い得る。

[0033]

NOD2およびプロカスパーゼ1は、これらを遺伝子工学的手法で発現させた細胞、無細胞系合成産物、化学合成産物、または該細胞や生体試料から調製したものであってよく、これらからさらに精製されたものであってもよい。また、NOD2とプロカスパーゼ1の結合、およびこれら蛋白質の機能、さらにプロカスパーゼ1からその活性化により生成されるカスパーゼ1の性質等に影響がなければ、N末側やC末側に別の蛋白質やポリペプチド、例えば β -ガラクトシダーゼ、IgG等の免疫グロブリンFc断片、His-tag、Myc-tag、HA-tag、FLAG-tag、またはXpress-tag等のtagペプチド類を、直接的にまたはリンカーペプチド等を介して間接的に、遺伝子工学的手法等を用いて付加したものであってもよい。

[0034]

NOD2とプロカスパーゼ1の結合またはNOD2によるプロカスパーゼ1の多量体化を阻害する化合物の同定においては、該結合によるプロカスパーゼ1の多量体化に伴うプロカスパーゼ1の自己切断により、該結合または該多量体化の検出が困難になる場合がある。かかる場合は、結合または多量体化を容易に検出するために、NOD2と結合して多量体化するが自己切断されないプロカスパーゼ1変異体、例えばそのアミノ酸配列285番目のシステインをアラニンに置換した変異体を作製して用いることもできる。

[0035]

被検化合物としては、例えば化学ライブラリーや天然物由来の化合物、またはNOD2またはプロカスパーゼ1の一次構造や立体構造に基づいてドラッグデザインして得られた化合物等が挙げられる。あるいは、NOD2とプロカスパーゼ1の結合部位のアミノ酸配列からなるポリペプチドの構造に基づいてドラッグデザインして得られた化合物等も被検化合物として好適である。

[0036]

上記同定方法で得られた化合物は、プロカスパーゼ1の多量体化阻害剤、プロカスパーゼ1の活性化阻害剤およびカスパーゼ1の生成阻害剤として利用可能である。当該化合物は、生物学的有用性と毒性のバランスを考慮して選別することにより、医薬組成物として調製可能である。医薬組成物の調製において、これら化合物は、単独で使用することもできるし、複数を組み合わせて使用することも可能である。

[0037]

上記化合物および上記阻害剤はさらに、カスパーゼ1の作用やその増加に基づく疾患の防止剤および/または治療剤、並びに当該疾患の防止方法および/または治療方法に利用可能である。かかる疾患としては、例えば敗血症、炎症性腸疾患、クローン病およびリウマチ等を挙げることができる。

[0038]

敗血症は、細菌や毒素(エンドトキシンやエキソトキシン等)等の刺激によって遊離された炎症性サイトカインによって惹起される生体の過剰な反応、すなわち感染に起因した

全身性炎症反応症候群(systemic inflammatory response syndrome)である。カスパーゼ1遺伝子欠損マウスでは、エンドトキシンショックに対する抵抗性が増すことが報告されている(非特許文献15)。また、カスパーゼ1遺伝子欠損マウスから調製されたマクロファージや単球で、LPSで誘導されるILー1 β およびILー18の産生がほぼ完全に抑制されることが報告されている(非特許文献4、15および16)。これらから、カスパーゼ1の活性を阻害することにより、マクロファージや単球から分泌されるILー1 β およびILー18の産生増加を介して起こるエンドトキシンショックを抑制し得ると考えられる。一方、NOD2遺伝子も単球やマクロファージで発現が確認されている(非特許文献9および10)。したがって、NOD2とプロカスパーゼ1の結合を阻害し、ひいてはプロカスパーゼ1の多量体化阻害、プロカスパーゼ1の活性化阻害およびカスパーゼ1の生成阻害により敗血症の防止および/または治療が可能になると考える。

[0039]

炎症性腸疾患は、多くは慢性に経過し、難治性の種々の病因(クローン病等)によって生じる大腸や小腸の炎症性疾患を指す。正常マウスにデキストラン硫酸(以下、DSSと略称する)を慢性投与した場合には大腸炎を発症するが、カスパーゼ1遺伝子欠損マウスにDSSを慢性投与した場合には大腸炎を発症しないこと、DSS投与したカスパーゼ1遺伝子欠損マウスから調製した大腸組織培養のIL-1 β およびIL-18分泌量は、DSS投与した正常マウスに比して有意に減少していることが報告されている(非特許文献17)。これらの結果は、大腸炎の発症・進展にカスパーゼ1活性の増加とそれに伴うIL-1 β およびIL-18分泌の増加が重要である可能性を示すものである。一方、NOD2遺伝子も腸上皮細胞やマクロファージで発現が確認されている(非特許文献10)。したがって、NOD2とプロカスパーゼ1の結合を阻害し、ひいてはプロカスパーゼ1の多量体化阻害、プロカスパーゼ1の活性化阻害およびカスパーゼ1の生成阻害により炎症性腸疾患の防止および/または治療が可能になると考える。

[0040]

リウマチは、関節の滑膜に存在するマクロファージから分泌されるサイトカインによって進行し、IL-1 β やIL-1 8 もリウマチの進行に寄与していることが報告されている(非特許文献 1 8) 。また、コラーゲンで誘導される関節炎モデルマウスにカスパーゼ 1 阻害剤を投与すると炎症が抑制されることが報告されている(非特許文献 1 9) 。これらの事実は、滑膜のマクロファージにおけるカスパーゼ 1 活性の増加とそれに伴う I L-1 8 分泌の増加がリウマチの進行に寄与している可能性を示すものである。実際、リウマチ治療薬としてカスパーゼ 1 阻害剤(P r a l n a c a s a n o e r

[0041]

本発明に係る疾患の防止剤および/または治療剤は、上記化合物、上記プロカスパーゼ1の多量体化阻害剤、上記プロカスパーゼ1の活性化阻害剤および上記カスパーゼ1の生成阻害剤のうち少なくともいずれか1つを有効成分としてその有効量含む医薬となしてもよいが、通常は、1種または2種以上の医薬用担体を用いて医薬組成物として製造することが好ましい。

[0042]

本発明に係る医薬製剤中に含まれる有効成分の量は、広範囲から適宜選択されるが、通常約 $0.0001\sim70$ 重量%、好ましくは $0.0001\sim5$ 重量%程度の範囲とするのが適当である。

[0043]

医薬用担体としては、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結合剤、付湿剤、崩壊剤、表面活性剤、滑沢剤等の希釈剤や賦形剤等を例示でき、これらは得られる製剤の投与形態に応じて適宜選択使用される。

[0044]

例えば水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース等が挙げられる。これらは、本発明に係る剤形に応じて適宜1種類または2種類以上を組合せて使用される。

[0045]

所望により、通常の蛋白質製剤に使用され得る各種の成分、例えば安定化剤、殺菌剤、 緩衝剤、等張化剤、キレート剤、pH調整剤、界面活性剤等を適宜使用して調製すること もできる。

[0046]

安定化剤としては、例えばヒト血清アルブミンや通常のLーアミノ酸、糖類、セルロース誘導体等を例示でき、これらは単独でまたは界面活性剤等と組合せて使用できる。特にこの組合せによれば、有効成分の安定性をより向上させ得る場合がある。上記Lーアミノ酸は、特に限定はなく、例えばグリシン、システイン、グルタミン酸等のいずれでもよい。糖類も特に限定はなく、例えばグルコース、マンノース、ガラクトース、果糖等の単糖類、マンニトール、イノシトール、キシリトール等の糖アルコール、ショ糖、マルトース、乳糖等の二糖類、デキストラン、ヒドロキシプロピルスターチ、コンドロイチン硫酸、ヒアルロン酸等の多糖類等およびそれらの誘導体等のいずれでもよい。セルロース誘導体も特に限定はなく、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースナトリウム等のいずれでもよい。界面活性剤も特に限定はなく、イオン性および非イオン性界面活性剤のいずれも使用できる。これには、例えばポリオキシエチレングリコールソルビタンアルキルエステル系、ポリオキシエチレンアルキルエーテル系、ソルビタンモノアシルエステル系、脂肪酸グリセリド系等が包含される。

[0047]

緩衝剤としては、ホウ酸、リン酸、酢酸、クエン酸、εーアミノカプロン酸、グルタミン酸および/またはそれらに対応する塩(例えばそれらのナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等のアルカリ金属塩やアルカリ土類金属塩)等を例示できる

[0048]

等張化剤としては、例えば塩化ナトリウム、塩化カリウム、糖類、グリセリン等を例示できる。

[0049]

キレート剤としては、例えばエデト酸ナトリウム、クエン酸等を例示できる。

[0050]

本発明に係る医薬および医薬組成物は、溶液製剤として使用できる他に、これを凍結乾燥化し保存し得る状態にした後、用時、水や生埋的食塩水等を含む緩衝液等で溶解して適当な濃度に調製した後に使用することも可能である。

[0051]

医薬組成物の用量範囲は特に限定されず、含有される成分の有効性、投与形態、投与経路、疾患の種類、対象の性質(体重、年齢、病状および他の医薬の使用の有無等)、および担当医師の判断等応じて適宜選択される。一般的には適当な用量は、例えば対象の体重 $1 \, k \, g$ あたり約0. $0 \, 1 \, \mu \, g$ 乃至 $1 \, 0 \, 0 \, m \, g$ 程度、好ましくは約0. $1 \, \mu \, g \sim 1 \, m \, g$ 程度の範囲であることが好ましい。しかしながら、当該分野においてよく知られた最適化のた

めの一般的な常套的実験を用いてこれらの用量の変更を行うことができる。上記投与量は 1日1~数回に分けて投与することができ、数日または数週間に1回の割合で間欠的に投 与してもよい。

[0052]

本発明の医薬組成物を投与するときには、該医薬組成物を単独で使用してもよく、あるいは目的の疾患の防止および/または治療に必要な他の化合物または医薬と共に使用してもよい。

[0053]

投与経路は、全身投与または局所投与のいずれも選択することができる。この場合、疾患、症状等に応じた適当な投与経路を選択する。例えば、非経口経路として、通常の静脈内投与、動脈内投与の他、皮下、皮内、筋肉内等への投与を挙げることができる。あるいは経口による投与も可能である。さらに、経粘膜投与または経皮投与も可能である。

[0054]

投与形態としては、各種の形態が目的に応じて選択でき、その代表的なものとしては、 錠剤、丸剤、散剤、粉末剤、細粒剤、顆粒剤、カプセル剤等の固体投与形態や、水溶液製 剤、エタノール溶液製剤、懸濁剤、脂肪乳剤、リポソーム製剤、シクロデキストリン等の 包接体、シロップ、エリキシル等の液剤投与形態が含まれる。これらは更に投与経路に応 じて経口剤、非経口剤(点滴剤、注射剤)、経鼻剤、吸入剤、経膣剤、坐剤、舌下剤、点 眼剤、点耳剤、軟膏剤、クリーム剤、経皮吸収剤、経粘膜吸収剤等に分類され、それぞれ 通常の方法に従い、調合、成形、調製することができる。

[0055]

さらに本発明は、NOD2、NOD2をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクター、および該ベクターを含有する形質転換体のうちの少なくともいずれか1つと、プロカスパーゼ1、プロカスパーゼ1をコードするポリヌクレオチド、該ポリヌクレオチドを含有するベクター、および該ベクターを含有する形質転換体のうちの少なくともいずれか1つとを含んでなるキットを提供する。当該キットは、例えば本発明に係る同定方法に使用できる。

[0056]

ポリヌクレオチドは、例えばヒトcDNAライブラリーから自体公知の遺伝子工学的手法により調製することができる。ポリヌクレオチドを含有するベクターおよび該ベクターを含有する形質転換体は、当該ポリヌクレオチドを適当な発現DNAベクター、例えば細菌プラスミド由来のベクターに自体公知の遺伝子工学的手法で導入することにより、また得られたベクターを周知の方法で適当な細胞にトランスフェクションすることにより得られる。

[0057]

上記キットは、NOD2とプロカスパーゼ1の結合を検出するためのシグナルおよび/またはマーカー、緩衝液、並びに塩等、必要とされる物質を含むことができる。さらに、安定化剤および/または防腐剤等の物質を含んでいてもよい。製剤化にあたっては、使用する各物質それぞれに応じた製剤化手段を導入すればよい。

[0058]

以下、本発明を実施例に基づき具体的に説明するが、本発明は下記の実施例に限定されない。

【実施例1】

[0059]

(プロカスパーゼ1と相互作用する機能を有する蛋白質のインシリコでの探索)

プロカスパーゼ1と相互作用する機能を有する蛋白質を、特許文献1に記載の予測方法に従って予測した。すなわち、プロカスパーゼ1のアミノ酸配列をある長さのオリゴペプチドに分解し、各オリゴペプチドのアミノ酸配列あるいはそのアミノ酸配列と相同なアミノ酸配列を持った蛋白質をデータベース中で検索し、得られた蛋白質とプロカスパーゼ1との間でローカルアライメントを行い、ローカルアライメントのスコアの高いものをプロ

カスパーゼ1と相互作用すると予測した。

解析の結果、プロカスパーゼ 1 と相互作用する機能を有すると予測される蛋白質として 、NOD 2 を見出した。

【実施例2】

[0060]

(NOD2とプロカスパーゼ1の結合解析)

NOD2とプロカスパーゼ1が結合するか否かを、インビボ バインディングアッセイにより検討した。

[0061]

<材料およびその調製>

本実施例においては、プロカスパーゼ1として、プロカスパーゼ1のアミノ酸配列285番目のシステインをアラニンに変換した変異体(C285A)を用いた。プロカスパーゼ1 (C285A) は、この1アミノ酸置換により、自己切断が起きない。プロカスパーゼ1 (C285A) のオープンリーディングフレーム(以下、ORFと略称する)を p C MV-Tag2 (STRATAGENE社) に挿入し、N末にFLAG-tagが付加されたプロカスパーゼ1 (C285A) [FLAG-procaspase-1.(C285A)] 発現用プラスミドを得た。また、NOD2のORFをpcDNA3.1/myc-His (INVITROGEN社)に挿入し、C末にmyc-His-tagが付加されたNOD2 (NOD2-myc-His) 発現用プラスミドを得た。

[0062]

<方法>

HEK293T細胞に、FLAG-procaspase-1 (C285A) 発現用プ ラスミドのみ、NOD2-myc-His発現用プラスミドのみ、または両方を組み合わ せて、FuGene6(Roche社)を用いてトランスフェクションした。各発現用プ ラスミドは、それぞれ 2. 5 μ g ずつ用いた。また、DNAの総量は 5 μ g となるように pCMV-Tag2またはpcDNA3.1(-)/myc-Hisにて調整した。48 時間培養後、0.5mlのリシスバッファー1〔lysis buffer 1:50m M Tris-HCl (pH7. 6) /150mM NaCl/0.1% ノニデットP -40 (NP-40)] にて細胞溶解液を作製した。各細胞溶解液にマウス I g G 結合ア ガロース (mouse IgG-conjugated agarose、Sigma社) またはウサギIgG結合アガロース (Sigma社)を添加し、4℃で1時間転倒混和 した後、上清を回収した。各上清に抗FLAG M2抗体結合アガロース(Santa Cruz社)または抗myc抗体結合アガロース(Santa Cruz社)を添加し、 4℃で一晩転倒混和した後、上清を除去して結合画分を回収した。結合画分をSDS-P AGEで展開後、抗myc抗体(Santa Cruz社)および抗FLAG M2抗体 を用いたウエスタンブロッティングにて各蛋白質を検出した。また、各細胞溶解液につい てもウエスタンブロッティングにて各蛋白質を検出した。

[0063]

<結果>

図1-Aに示すように、それぞれの細胞溶解液に目的とする蛋白質が発現していることが確認できた。また、図1-Bの左図に示すように、NOD2-myc-HisとFLAG-procaspase-1 (C285A)を共発現させた細胞から作製した細胞溶解液について抗FLAG M2抗体を用いて免疫沈降した結果、NOD2-myc-Hisを単発現させて作製した細胞溶解液を免疫沈降した時に検出されたバンド強度に比して強かったことから、NOD2がプロカスパーゼ1と共沈すると考えられた。また同様に、図1-Bの右図に示すように抗myc抗体で免疫沈降した結果、NOD2-myc-HisとFLAG-procaspase-1 (C285A)を共発現させた細胞溶解液でのみ、FLAG-procaspase-1 (C285A)のバンドが検出されたことから、プロカスパーゼ1がNOD2と共沈すると考えられた。以上の結果から、NOD2はプロカスパーゼ1と結

合すると結論づけた。

【実施例3】

[0064]

(NOD2によるプロカスパーゼ1の多量体化の促進の検討)

プロカスパーゼ1からカスパーゼ1への活性化は、プロカスパーゼ1の多量体化とそれに伴う自己切断により引き起こされると考えられている。そこで、NOD2がプロカスパーゼ1の多量体化にどのような効果を示すか検討を行った

[0065]

<材料およびその調製>

各発現用プラスミド

プロカスパーゼ1 (C285A) ORFをpCMV-Tag3 (STRATAGENE社) に挿入し、N末にmyc-tagが付加されたプロカスパーゼ1 (C285A) [Myc-procaspase-1 (C285A)] 発現用プラスミドを得た。また、NOD2 ORFをpCMV-Tag5 (STRATAGENE社) に挿入し、C末にmyc-tagが付加されたNOD2 (NOD2-myc) 発現用プラスミドを得た。さらに、実施例2と同様の方法で調製したFLAG-procaspase-1 (C285A) を用いた。

[0066]

<方法>

HEK293T細胞に、FLAG-procaspase-1 (C285A) 発現用プラスミド0. 5μ gおよびMyc-procaspase-1 (C285A) 発現用プラスミド0. 5μ gとNOD2-myc発現用プラスミド0~1. 0μ gとをFuGene 6 (Roche社) を用いてトランスフェクションした。DNAの総量は 2μ gとなるようにpCMV-Tag5にて調整した。24時間培養後、0.25ml/wellのリシスバッファー2 [20mM Tris-HCl(pH7.5) / 150mM NaCl/2mM エチレンジアミン四酢酸(EDTA) / 0.5% NP-40] にて細胞溶解液を作製した。各細胞溶解液 0.2mlに抗FLAG M2抗体結合アガロース15 μ lを添加し、4℃で一晩転倒混和した後、上清を除去してアガロースを回収した。リシスバッファー2を0.5ml用いてアガロースを2回洗浄後、 $2\times$ SDSサンプルバッファーを15 μ l加え、100℃で5分間熱処理した。SDS-PAGEで展開し、抗myc抗体を用いてウエスタンブロッティングを行い、FLAG-procaspase-1 (C285A) の量を測定することでプロカスパーゼ1の多量体化の度合いを評価した。また、各細胞溶解液についてウエスタンブロッティングにて各蛋白質の発現量をチェックした。

[0067]

<結果>

図2-Aに示すように、細胞溶解液から抗FLAG M2抗体により回収された試料において、NOD2-myc発現用プラスミド量依存的に抗myc抗体で検出されるバンドの量が増加した。このことは、FLAG-procaspase-1 (C285A)と結合するMyc-procaspase-1 (C285A)量が、NOD2-myc発現用プラスミド量依存的に増加したことを意味する。また図2-Bに示すように、各発現用プラスミドをトランスフェクションした細胞のいずれにおいても、Myc-procaspase-1 (C285A)およびFLAG-procaspase-1 (C285A)がほぼ同量発現していることが確認できた。これらから、NOD2がプロカスパーゼ1の多量体化を促進することが明らかになった。

【実施例4】

[0068]

(細胞内でのカスパーゼ 1 依存的な p r o I L - 1 β から I L - 1 β への切断と I L - 1 β 分泌に及ぼす N O D 2 の効果)

proIL-1β安定発現細胞に、プロカスパーゼ1発現用プラスミドおよび/または 出証特2004-3122102 NOD2発現用プラスミドを導入し、NOD2存在下でプロカスパーゼ1からカスパーゼ1への活性化が引き起こされ、細胞内でのproIL-1 β からIL-1 β への切断および細胞外へのIL-1 β 分泌量に変化が観察されるか否か検討を行った。

[0069]

<材料およびその調製>

1. 各発現プラスミドの作成

プロカスパーゼ1 ORFをpCMV-Tag2に挿入し、N末にFLAG-tagが付加されたプロカスパーゼ1 (FLAG-procaspase-1) 発現用プラスミドを得た。また、NOD2-myc発現用プラスミドは、実施例3と同様の方法で作製した用いた。ProIL-1 β ORFをpcDNA3. 1/myc-Hisに挿入し、C末にmyc-Hisが付加されたproIL-1 β 発現用プラスミドを得た。

[0070]

2. pro I L-1 β 安定発現細胞の作成

HEK293細胞に、proIL-1 β 発現用プラスミドをFuGene6(Roche社)を用いてトランスフェクションした。その後、1mg/mlのジェネティシン(geneticin)含有培地で増殖してくるクローンを選択した。選択したクローンのうち、proIL-1 β の発現が認められたクローンを実験に用いた〔ProIL-1 β 安定発現細胞(HEK293)〕。

[0071]

く方法>

1. 細胞内でのproIL-1βからIL-1βへの切断に及ぼすNOD2の効果

6 ウエルプレートに、IL-1 β 安定発現細胞(HEK293)を 5×10^5 /well 1 播種して一晩培養後、FLAG-procaspase-1 発現用プラスミド 0.5μ gおよび/またはNOD2-myc 発現用プラスミド $0.1\sim2.0\mu$ gをFuGene 6 (Roche社) を用いてトランスフェクションした。DNAの総量は 2.5μ gとなるようにpCMV-Tag2 またはpCMV-Tag5にて調整した。24 時間培養後、細胞に 0.25m1/well 1 のリシスバッファー 25m1、細胞溶解液を作製した。

[0072]

[0073]

2. カスパーゼー 1 依存的な Ι L ー 1 β 分泌に及ぼすNOD 2 の効果

6ウエルプレートに、 $IL-1\beta$ 安定発現細胞(HEK293)を 5×10^5 /well 1播種して一晩培養後、FLAG-procaspase-1発現用プラスミド 0.5μ gおよび/またはNOD2-myc発現用プラスミド $0.1\sim1.0\mu$ gをFuGene 6を用いてトランスフェクションした。DNAの総量は 2.5μ gとなるようにpCMV -Tag2またはpCMV-Tag5にて調整した。24時間培養後、培養上清を回収した。回収した各ウエルの培養上清を10% 牛胎児血清(FCS)含有DMEMで2倍希釈し、 $1L-1\beta$ ELISA kit (Bio Source社)を用いて付属のプロトコールに従い、培養上清中の $1L-1\beta$ 量を測定した。

[0074]

<結果>

図3に示すように、FLAG-procaspase-1発現プラスミドとNOD2-myc発現プラスミドとを共発現させた細胞において、NOD2-mycの発現量依存的に細胞内 IL-1 β 量の増加が認められた。すなわち、細胞内でのカスパーゼー1依存的なpro IL-1 β から IL-1 β への切断が、NOD2により促進されることが判明した。

[0075]

図4に示すように、FLAG-procaspase-1発現プラスミドとNOD2-myc発現プラスミドとを共発現させた細胞において、NOD2-myc発現プラスミド量依存的に、細胞外への $IL-1\beta$ 分泌量の増加が認められた。すなわち、カスパーゼー1依存的な $IL-1\beta$ の細胞外への分泌が、NOD2により促進されることが判明した。【産業上の利用可能性】

[0076]

本発明は、炎症性疾患、例えば敗血症、炎症性腸疾患、クローン病およびリウマチ等の重篤なあるいは難治性の疾患の防止および/治療のために利用可能であり、医薬分野において非常に有用性が高い。

【図面の簡単な説明】

[0077]

【図1-A】FLAG-procaspase-1 (C285A)発現用プラスミドのみ、NOD2-myc-His発現用プラスミドのみ、または両方を組み合わせてトランスフェクションした細胞から作製した細胞溶解液における各蛋白質の発現量を示す図である。蛋白質の検出はウェスタンブロッティング (WB) により行った。(実施例2)

【図1-B】左図は、NOD2-myc-HisとFLAG-procaspase -1 (C285A)を共発現させた細胞から作製した細胞溶解液について抗FLAG M2抗体を用いて免疫沈降(IP)した結果、NOD2-myc-Hisのバンドが検出されたことを示す図である。右図は、上記細胞溶解液について抗myc抗体で免疫沈降した結果、NOD2-myc-HisとFLAG-procaspase-1 (C285A)を共発現させた細胞溶解液でのみ、FLAG-procaspase-1 (C285A)のバンドが検出されたことを示す図である。蛋白質の検出はウェスタンプロッティング(WB)により行った。(実施例2)

【図2-A】FLAG-procaspase-1(C285A)発現用プラスミドおよびMyc-procaspase-1(C285A)発現用プラスミドと図示した濃度のNOD2-myc発現用プラスミドとをトランスフェクションした細胞から作製した細胞溶解液を抗FLAG抗体で処理して得た画分において、抗myc抗体で検出されるバンドの量がNOD2-myc発現用プラスミド量依存的に増加したことを説明する図である。(実施例3)

【図2-B】FLAG-procaspase-1 (C285A) 発現用プラスミド およびMyc-procaspase-1 (C285A) 発現用プラスミドと図示した濃度のNOD2-myc 発現用プラスミドとをトランスフェクションした細胞から 作製した細胞溶解液における各蛋白質の発現量を示す図である。(実施例3)

【図3】 FLAG-procaspase-1発現プラスミドとNOD2-myc発現プラスミドとを共発現させた細胞において、NOD2-mycの発現量依存的に細胞内IL-1 β 量の増加が認められたことを説明する図である。(実施例4)

【図4】 FLAG-procaspase-1発現プラスミド $(0.5 \mu g)$ とNOD 2発現プラスミドとを共発現させた細胞において、NOD 2発現プラスミド量依存的に、細胞外への IL-1 β 分泌量が増加したことを説明する図である。図中、ベクターとは、各細胞に導入する DNA量を一定にするために加えた空ベクターを意味する。(実施例 4)

【配列表】

SEQUENCE LISTING

<110> CELESTAR LEXICO-SCIENCES, INC. DATICHI PHARMACEUTICAL CO., LTD. <120> An inhibitor of procaspase-1 activation <130> NP03-1161 <160> 4 <170> PatentIn version 3.1 <210> 1 <211> 3120 <212> DNA <213> Homo sapiens <220> <221> CDS (1)...(3120)<222> <223> <400> 1 48 atg ggg gaa gag ggt ggt tca gcc tct cac gat gag gag gaa aga gca Met Gly Glu Glu Gly Gly Ser Ala Ser His Asp Glu Glu Glu Arg Ala 15 10 1 5 96 agt gtc ctc ctc gga cat tct ccg ggt tgt gaa atg tgc tcg cag gag Ser Val Leu Leu Gly His Ser Pro Gly Cys Glu Met Cys Ser Gln Glu 25 20 144 gct ttt cag gca cag agg agc cag ctg gtc gag ctg ctg gtc tca ggg Ala Phe Gln Ala Gln Arg Ser Gln Leu Val Glu Leu Leu Val Ser Gly 40 192 tcc ctg gaa ggc ttc gag agt gtc ctg gac tgg ctg ctg tcc tgg gag Ser Leu Glu Gly Phe Glu Ser Val Leu Asp Trp Leu Leu Ser Trp Glu 60 55 50 240 gtc ctc tcc tgg gag gac tac gag ggc ttc cac ctc ctg ggc cag cct Val Leu Ser Trp Glu Asp Tyr Glu Gly Phe His Leu Leu Gly Gln Pro 70 75 65 288 ctc tcc cac ttg gcc agg cgc ctt ctg gac acc gtc tgg aat aag ggt Leu Ser His Leu Ala Arg Arg Leu Leu Asp Thr Val Trp Asn Lys Gly 90 336 act tgg gcc tgt cag aag ctc atc gcg gct gcc caa gaa gcc cag gcc

Thr '	Trp		Cys 100	Gln	Lys	Leu	Ile	Ala 105	Ala	Ala	Gln	Glu	Ala 110	Gln	Ala	
gac Asp	agc Ser	cag Gln 115	tcc Ser	ccc Pro	aag Lys	ctg Leu	cat His 120	ggc Gly	tgc Cys	tgg Trp	gac Asp	ccc Pro 125	cac His	tcg Ser	ctc Leu	384
cac His	cca Pro 130	gcc Ala	cga Arg.	gac Asp	ctg Leu	cag Gln 135	agt Ser	cac His	cgg Arg	cca Pro	gcc Ala 140	att Ile	gtc Val	agg Arg	agg Arg	432
ctc Leu 145	cac His	agc Ser	cat His	gtg Val	gag Glu 150	aac Asn	atg Met	ctg Leu	gac Asp	ctg Leu 155	gca Ala	tgg Trp	gag Glu	cgg Arg	ggt Gly 160	480
ttc Phe	gtc Val	agc Ser	cag Gln	tat Tyr 165	gaa Glu	tgt Cys	gat Asp	gaa Glu	atc Ile 170	agg Arg	ttg Leu	ccg Pro	atc Ile	ttc Phe 175	aca Thr	528
ccg Pro	tcc Ser	cag Gln	agg Arg 180	Ala	aga Arg	agg Arg	ctg Leu	ctt Leu 185	Asp	ctt Leu	gcc Ala	acg Thr	gtg Val 190	Lys	gcg Ala	576
aat Asn	gga Gly	ttg Leu 195	gct Ala	gcc Ala	ttc Phe	ctt Leu	cta Leu 200	Gln	cat	gtt Val	cag Gln	gaa Glu 205	Leu	cca Pro	gtc Val	624
cca Pro	ttg Leu 210	Ala	ctg Leu	cct Pro	ttg Leu	gaa Glu 215	Ala	gcc Ala	aca Thr	tgc Cys	aag Lys 220	Lys	tat Tyr	atg Met	gcc Ala	672
aag Lys 225	Leu	agg Arg	acc Thr	acg Thr	gtg Val 230	Ser	gct Ala	cag a Glr	tct Ser	cgc Arg 235	g Phe	cto Lev	agt Ser	acc Thr	tat Tyr 240	720
gat Asp	gga Gly	gca Ala	gag Glu	acg Thr 245	Leu	tgo Cys	ctg Lei	g gag ı Glu	g gad 1 Asp 250	11e	tac Tyi	c aca	a gag : Gli	g aat 1 Asr 255	gtc Val	768
ctg Leu	gag Glu	g gto ı Val	tgg Trp 260	Ala	a gat a Asp	gtg Vai	g ggo l Gl	c atg y Mei 26	t Ala	t gga a Gly	a cco y Pro	c cca	g cag o Gli 270	n Lys	g agc s Ser	816
cca Pro	gco Ala	a Co a Thi 275	: Lei	g ggo ı Gly	c ctg 7 Lei	g gaş ı Glı	g gag 1 Gl: 28	u Lei	c tte u Ph	c ago	c ace	c cc r Pro 28	o GI	c cae	c ctc s Leu	864
aat Asr	gac Asp 290	Asp	t gcg o Ala	g gad a Asj	c act	t gt: r Va 29	l Le	g gt: u Va	g gt; l Va	g gg l Gl	t ga y Gli 30	u Ala	g gg a Gl	c ag y Se	t ggc r Gly	912

aag Lys 305	agc Ser	acg Thr	ctc Leu	ctg Leu	cag Gln 310	cgg Arg	ctg Leu	cac His	ttg Leu	ctg Leu 315	tgg Trp	gct Ala	gca Ala	ggg Gly	caa Gln 320	960
gac Asp	ttc Phe	cag Gln	gaa Glu	ttt Phe 325	ctc Leu	ttt Phe	gtc Val	ttc Phe	cca Pro 330	ttc Phe	agc Ser	tgc Cys	cgg Arg	cag Gln 335	ctg Leu	1008
cag Gln	tgc Cys	atg Met	gcc Ala 340	aaa Lys	cca Pro	ctc Leu	tct Ser	gtg Val 345	cgg Arg	act Thr	cta Leu	ctc Leu	ttt Phe 350	gag Glu	cac His	1056
tgc Cys	tgt Cys	tgg Trp 355	cct Pro	gat Asp	gtt Val	ggt Gly	caa Gln 360	gaa Glu	gac Asp	atc Ile	ttc Phe	cag Gln 365	tta Leu	ctc Leu	ctt Leu	1104
														gag Glu		1152
aag Lys 385	Phe	agg Arg	ttc Phe	acg Thr	gat Asp 390	cgt Arg	gaa Glu	cgc Arg	cac His	tgc Cys 395	tcc Ser	ccg Pro	acc Thr	gac Asp	ccc Pro 400	1200
acc Thr	tct Ser	gtc Val	cag Gln	acc Thr 405	Leu	ctc Leu	ttc Phe	aac Asn	ctt Leu 410	Leu	cag Gln	ggc	aac Asn	ctg Leu 415	ctg Leu	1248
aag Lys	aat Asn	gcc	cgc Arg 420	Lys	gtg Val	gtg Val	acc Thr	agc Ser 425	Arg	ccg Pro	gcc Ala	gct Ala	gtg Val 430	tcg Ser	gcg Ala	1296
ttc Phe	ctc Leu	agg Arg 435	Lys	tac Tyr	atc Ile	cgc Arg	acc Thr 440	Glu	ttc Phe	aac Asn	ctc Leu	aag Lys 445	Gly	ttc Phe	tct Ser	1344
gaa Glu	cag Gln 450	Gly	atc Ile	gag Glu	ctg Leu	tac Tyr 455	Leu	agg Arg	g aag g Lys	cgc Arg	cat His 460	His	gag Glu	ccc Pro	ggg Gly	1392
gtg Val 465	Ala	gaq Asp	c cgo Arg	cto Let	ato 11e 470	: Arg	ctg Lev	cto Leu	caa ıGlr	gag Glu 475	ı Thi	tca Ser	a gcc Ala	ctg Leu	cac His 480	1440
ggt Gly	ttg Leu	g tgo 1 Cys	c cac s His	ctg Let 485	ı Pro	gtc Val	tto Phe	tca Sei	tgg Tri 490) Met	g gtg : Val	g tco I Sei	aaa Lys	tgc Cys 495	cac	1488
cag	g gaa	a ctį	g ttg	g ctg	g cag	g gag	ggg	g ggg	g tco	c cca	a aag				gat 04-	1536 3 1 2 2 1 0

Gln Glu Leu	Leu Leu 500	Gln Glu	Gly Gly 505	Ser Pro	Lys Thr	Thr The	Asp	
atg tac ctg Met Tyr Leu 515	Leu Ile				_			1584
gac tca gct Asp Ser Ala 530								1632
ccc acc ctc Pro Thr Leu 545	_			_	Trp Gly		-	1680
tgc tgc tac Cys Cys Tyr	_	Ser Ala			-		l Ser	1728
cct gat gac Pro Asp Asp			_	Val Arg	_			1776
cca ggg agt Pro Gly Ser 595	Thr Ala	_	_				_	1824
ttc ttt gcc Phe Phe Ala 610		_	Āla Leu				_	1872
ttg ctc aga Leu Leu Arg 625					Gly Asn			1920
gcc agg ctc Ala Arg Leu	_	Thr Met					s Asp	1968
agc agc gtg Ser Ser Val				Ala Glu	_		_	2016
atc aca gca Ile Thr Ala 675	Ala Phe					His Tr		2064
ctg ctg gct Leu Leu Ala 690		_	Ser Glu				_	2112

gcc Ala 705	tgt Cys	gcc Ala	cgc Arg	tgg Trp	tgt Cys 710	ctg Leu	gcc Ala	cgc Arg	Ser	ctc Leu 715	cgc Arg	aag Lys	cac His	ttc Phe	cac His 720	2160
tcc Ser	atc Ile	ccg Pro	cca Pro	gct Ala 725	gca Ala	ccg Pro	ggt Gly	gag Glu	gcc Ala 730	aag Lys	agc Ser	gtg Val	cat His	gcc Ala 735	atg Met	2208
ccc Pro	ggg Gly	ttc Phe	atc Ile 740	tgg Trp	ctc Leu	atc Ile	cgg Arg	agc Ser 745	ctg Leu	tac Tyr	gag Glu	atg Met	cag Gln 750	gag Glu	gag Glu	2256
cgg Arg	ctg Leu	gct Ala 755	cgg Arg	aag Lys	gct Ala	gca Ala	cgt Arg 760	ggc Gly	ctg Leu	aat Asn	gtt Val	ggg Gly 765	cac His	ctc Leu	aag Lys	2304
ttg Leu	aca Thr 770	ttt Phe	tgc Cys	agt Ser	gtg Val	ggc Gly 775	ccc Pro	act Thr	gag Glu	tgt Cys	gct Ala 780	gcc Ala	ctg Leu	gcc Ala	ttt Phe	2352
gtg Val 785	ctg Leu	cag Gln	cac His	ctc Leu	cgg Arg 790	cgg Arg	ccc Pro	gtg Val	gcc Ala	ctg Leu 795	cag Gln	ctg Leu	gac Asp	tac Tyr	aac Asn 800	2400
tct Ser	gtg Val	ggt Gly	gac Asp	att Ile 805	ggc Gly	gtg Val	gag Glu	cag Gln	ctg Leu 810	Leu	cct	tgc Cys	ctt Leu	ggt Gly 815	Val	2448
tgc Cys	aag Lys	gct	ctg Leu 820	Tyr	ttg Leu	cgc Arg	gat Asp	aac Asn 825	ı Asn	atc Ile	tca Ser	gac Asp	cga Arg 830	Gly	atc	2496
tgc Cys	aag Lys	cto Leu 835	ı Ile	gaa Glu	ı tgt ı Cys	gct Ala	ctt Leu 840	ı His	tgc Cys	gag Glu	caa Glr	ttg Leu 845	Gln	aag Lys	g tta s Leu	2544
Ala	850	Phe	e Asr	n Ası	ı Lys	Leu 855	ı Thi	Ası	o Gly	y Cys	860 860	a His)	s Ser	· Met	g gct : Ala	2592
Lys 865	Leu 5	ı Leı	ı Ala	a Cy:	870	g Glr	n Ası	n Phe	e Leu	ı Ala 875	a Lei	ı Arg	g Leu	ı Gly	g aat y Asn 880	2640
Ası	т Тул	r Il	e Thi	r Al: 88	a Ala 5	a Gly	y Ala	a Gl	n Val 890	l Lei	ı Ala	a Gli	ı Gly	7 Let 89		2688
gge	c aac	cac	c tc	c tt	g cag	g tte	c ct	g gg	a tto	c tg	g gg	c aa	c aga	gt	g ggt	2736

Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val Gly 900 905 910	
gac gag ggg gcc cag gcc ctg gct gaa gcc ttg ggt gat cac cag agc Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln Ser 915 920 925	2784
ttg agg tgg ctc agc ctg gtg ggg aac aac att ggc agt gtg ggt gcc Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly Ala 930 935 940	2832
caa gcc ttg gca ctg atg ctg gca aag aac gtc atg cta gaa gaa ctc Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu Leu 945 950 955 960	2880
tgc ctg gag gag aac cat ctc cag gat gaa ggt gta tgt tct ctc gca Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu Ala 965 970 975	2928
gaa gga ctg aag aaa aat tca agt ttg aaa atc ctg aag ttg tcc aat Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser Asn 980 985 990	2976
aac tgc atc acc tac cta ggg gca gaa gcc ctc ctg cag gcc ctt gaa Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu Glu 995 1000 1005	3024
agg aat gac acc atc ctg gaa gtc tgg ctc cga ggg aac act ttc Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 1010 1015 1020	3069
tct cta gag gag gtt gac aag ctc ggc tgc agg gac acc aga ctc Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu 1025 1030 1035	3114
ttg ctt Leu Leu 1040	3120
.010. 0	
<210> 2 <211> 1040 <212> PRT	
<213> Homo sapiens	
<400> 2	
Met Gly Glu Glu Gly Gly Ser Ala Ser His Asp Glu Glu Glu Arg Ala 1 5 10 15	

- Ser Val Leu Leu Gly His Ser Pro Gly Cys Glu Met Cys Ser Gln Glu 20 25 30
- Ala Phe Gln Ala Gln Arg Ser Gln Leu Val Glu Leu Leu Val Ser Gly 35 40 45
- Ser Leu Glu Gly Phe Glu Ser Val Leu Asp Trp Leu Leu Ser Trp Glu 50 55 60
- Val Leu Ser Trp Glu Asp Tyr Glu Gly Phe His Leu Leu Gly Gln Pro 65 70 75 80
- Leu Ser His Leu Ala Arg Arg Leu Leu Asp Thr Val Trp Asn Lys Gly 85 90 95
- Thr Trp Ala Cys Gln Lys Leu Ile Ala Ala Ala Gln Glu Ala Gln Ala 100 105 110
- Asp Ser Gln Ser Pro Lys Leu His Gly Cys Trp Asp Pro His Ser Leu 115 120 125
- His Pro Ala Arg Asp Leu Gln Ser His Arg Pro Ala Ile Val Arg Arg 130 135 140
- Leu His Ser His Val Glu Asn Met Leu Asp Leu Ala Trp Glu Arg Gly 145 150 155 160
- Phe Val Ser Gln Tyr Glu Cys Asp Glu Ile Arg Leu Pro Ile Phe Thr 165 170 175
- Pro Ser Gln Arg Ala Arg Arg Leu Leu Asp Leu Ala Thr Val Lys Ala 180 185 190
- Asn Gly Leu Ala Ala Phe Leu Leu Gln His Val Gln Glu Leu Pro Val 195 200 205
- Pro Leu Ala Leu Pro Leu Glu Ala Ala Thr Cys Lys Lys Tyr Met Ala 出証特2004-3122102

Lys Leu Arg Thr Thr Val Ser Ala Gln Ser Arg Phe Leu Ser Thr Tyr Asp Gly Ala Glu Thr Leu Cys Leu Glu Asp Ile Tyr Thr Glu Asn Val Leu Glu Val Trp Ala Asp Val Gly Met Ala Gly Pro Pro Gln Lys Ser Pro Ala Thr Leu Gly Leu Glu Glu Leu Phe Ser Thr Pro Gly His Leu Asn Asp Asp Ala Asp Thr Val Leu Val Val Gly Glu Ala Gly Ser Gly Lys Ser Thr Leu Leu Gln Arg Leu His Leu Leu Trp Ala Ala Gly Gln Asp Phe Gln Glu Phe Leu Phe Val Phe Pro Phe Ser Cys Arg Gln Leu Gln Cys Met Ala Lys Pro Leu Ser Val Arg Thr Leu Leu Phe Glu His Cys Cys Trp Pro Asp Val Gly Gln Glu Asp Ile Phe Gln Leu Leu Leu Asp His Pro Asp Arg Val Leu Leu Thr Phe Asp Gly Phe Asp Glu Phe Lys Phe Arg Phe Thr Asp Arg Glu Arg His Cys Ser Pro Thr Asp Pro

Thr Ser Val Gln Thr Leu Leu Phe Asn Leu Leu Gln Gly Asn Leu Leu 405 410 415

- Lys Asn Ala Arg Lys Val Val Thr Ser Arg Pro Ala Ala Val Ser Ala 420 425 430
- Phe Leu Arg Lys Tyr Ile Arg Thr Glu Phe Asn Leu Lys Gly Phe Ser 435 . 440 445
- Glu Gln Gly Ile Glu Leu Tyr Leu Arg Lys Arg His His Glu Pro Gly 450 455 460
- Val Ala Asp Arg Leu Ile Arg Leu Leu Gln Glu Thr Ser Ala Leu His 465 470 475 480
- Gly Leu Cys His Leu Pro Val Phe Ser Trp Met Val Ser Lys Cys His 485 490 495
- Gln Glu Leu Leu Gln Glu Gly Gly Ser Pro Lys Thr Thr Asp 500 505 510
- Met Tyr Leu Leu Ile Leu Gln His Phe Leu Leu His Ala Thr Pro Pro 515 520 525
- Asp Ser Ala Ser Gln Gly Leu Gly Pro Ser Leu Leu Arg Gly Arg Leu 530 535 540
- Pro Thr Leu Leu His Leu Gly Arg Leu Ala Leu Trp Gly Leu Gly Met 545 550 555 560
- Cys Cys Tyr Val Phe Ser Ala Gln Gln Leu Gln Ala Ala Gln Val Ser 565 570 575
- Pro Asp Asp Ile Ser Leu Gly Phe Leu Val Arg Ala Lys Gly Val Val 580 585 590
- Pro Gly Ser Thr Ala Pro Leu Glu Phe Leu His Ile Thr Phe Gln Cys 595 600 605
- Phe Phe Ala Ala Phe Tyr Leu Ala Leu Ser Ala Asp Val Pro Pro Ala 出証特2004-3122102

610

615

620

Leu Leu Arg His Leu Phe Asn Cys Gly Arg Pro Gly Asn Ser Pro Met 625 630 635 640

Ala Arg Leu Leu Pro Thr Met Cys Ile Gln Ala Ser Glu Gly Lys Asp 645 650 655

Ser Ser Val Ala Ala Leu Leu Gln Lys Ala Glu Pro His Asn Leu Gln 660 665 670

Ile Thr Ala Ala Phe Leu Ala Gly Leu Leu Ser Arg Glu His Trp Gly 675 680 685

Leu Leu Ala Glu Cys Gln Thr Ser Glu Lys Ala Leu Leu Arg Arg Gln 690 695 700

Ala Cys Ala Arg Trp Cys Leu Ala Arg Ser Leu Arg Lys His Phe His 705 710 715 720

Ser Ile Pro Pro Ala Ala Pro Gly Glu Ala Lys Ser Val His Ala Met 725 730 735

Pro Gly Phe Ile Trp Leu Ile Arg Ser Leu Tyr Glu Met Gln Glu Glu 740 745 750

Arg Leu Ala Arg Lys Ala Ala Arg Gly Leu Asn Val Gly His Leu Lys 755 760 765

Leu Thr Phe Cys Ser Val Gly Pro Thr Glu Cys Ala Ala Leu Ala Phe 770 775 780

Val Leu Gln His Leu Arg Arg Pro Val Ala Leu Gln Leu Asp Tyr Asn 785 790 795 800

Ser Val Gly Asp Ile Gly Val Glu Gln Leu Leu Pro Cys Leu Gly Val 805 810 815

Cys Lys Leu Ile Glu Cys Ala Leu His Cys Glu Gln Leu Gln Lys Leu 835 840 845

Ala Leu Phe Asn Asn Lys Leu Thr Asp Gly Cys Ala His Ser Met Ala 850 855 860

Lys Leu Leu Ala Cys Arg Gln Asn Phe Leu Ala Leu Arg Leu Gly Asn 865 870 875 880

Asn Tyr Ile Thr Ala Ala Gly Ala Gln Val Leu Ala Glu Gly Leu Arg 885 890 895

Gly Asn Thr Ser Leu Gln Phe Leu Gly Phe Trp Gly Asn Arg Val Gly 900 905 910

Asp Glu Gly Ala Gln Ala Leu Ala Glu Ala Leu Gly Asp His Gln Ser 915 920 925

Leu Arg Trp Leu Ser Leu Val Gly Asn Asn Ile Gly Ser Val Gly Ala 930 935 940

Gln Ala Leu Ala Leu Met Leu Ala Lys Asn Val Met Leu Glu Glu Leu 945 950 955 960

Cys Leu Glu Glu Asn His Leu Gln Asp Glu Gly Val Cys Ser Leu Ala 965 970 975

Glu Gly Leu Lys Lys Asn Ser Ser Leu Lys Ile Leu Lys Leu Ser Asn 980 985 990

Asn Cys Ile Thr Tyr Leu Gly Ala Glu Ala Leu Leu Gln Ala Leu Glu 995 1000 1005

Arg Asn Asp Thr Ile Leu Glu Val Trp Leu Arg Gly Asn Thr Phe 出証特2004-3122102 1010 1015 1020

Ser Leu Glu Glu Val Asp Lys Leu Gly Cys Arg Asp Thr Arg Leu 1025 1030 1035

Leu Leu 1040

<210> 3

<211> 1212

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(1212)

<223>

<400> 3

atg gcc gac aag gtc ctg aag gag aag aga aag ctg ttt atc cgt tcc

Met Ala Asp Lys Val Leu Lys Glu Lys Arg Lys Leu Phe Ile Arg Ser

1 5 10 15

atg ggt gaa ggt aca ata aat ggc tta ctg gat gaa tta tta cag aca 96
Met Gly Glu Gly Thr Ile Asn Gly Leu Leu Asp Glu Leu Leu Gln Thr
20 25 30

agg gtg ctg aac aag gaa gag atg gag aaa gta aaa cgt gaa aat gct
Arg Val Leu Asn Lys Glu Glu Met Glu Lys Val Lys Arg Glu Asn Ala
35 40 45

aca gtt atg gat aag acc cga gct ttg att gac tcc gtt att ccg aaa 192
Thr Val Met Asp Lys Thr Arg Ala Leu Ile Asp Ser Val Ile Pro Lys
50 55 60

ggg gca cag gca tgc caa att tgc atc aca tac att tgt gaa gaa gac
Gly Ala Gln Ala Cys Gln Ile Cys Ile Thr Tyr Ile Cys Glu Glu Asp
65 70 75 80

agt tac ctg gca ggg acg ctg gga ctc tca gca gat caa aca tct gga
Ser Tyr Leu Ala Gly Thr Leu Gly Leu Ser Ala Asp Gln Thr Ser Gly
85 90 95

aat tac ctt aat atg caa gac tct caa gga gta ctt tct tcc ttt cca
Asn Tyr Leu Asn Met Gln Asp Ser Gln Gly Val Leu Ser Ser Phe Pro
100 105 110

gct Ala	Pro	cag Gln 115	gca Ala	gtg Val	cag Gln	Asp .	aac Asn 120	cca Pro	gct Ala	atg Met	ccc Pro	aca Thr 125	tcc Ser	tca Ser	ggc Gly	384	
tca Ser	gaa Glu 130	ggg Gly	aat Asn	gtc Val	aag Lys	ctt Leu 135	tgc Cys	tcc Ser	cta Leu	gaa Glu	gaa Glu 140	gct Ala	caa Gln	agg Arg	ata Ile	432	
tgg Trp 145	aaa Lys	caa Gln	aag Lys	tcg Ser	gca Ala 150	gag Glu	att Ile	tat Tyr	cca Pro	ata Ile 155	atg Met	gac Asp	aag Lys	tca Ser	agc Ser 160	480	
cgc Arg	aca Thr	cgt Arg	ctt Leu	gct Ala 165	ctc Leu	att Ile	atc Ile	tgc Cys	aat Asn 170	gaa Glu	gaa Glu	ttt Phe	gac Asp	agt Ser 175	att Ile	528	
cct Pro	aga Arg	aga Arg	act Thr 180	gga Gly	gct Ala	gag Glu	gtt Val	gac Asp 185	atc Ile	aca Thr	ggc Gly	atg Met	aca Thr 190	atg Met	ctg Leu	576	
cta Leu	caa Gln	aat Asn 195	Leu	ggg Gly	tac Tyr	agc Ser	gta Val 200	gat Asp	gtg Val	aaa Lys	aaa Lys	aat Asn 205	Leu	act Thr	gct Ala	624	
tcg Ser	gac Asp 210	Met	act Thr	aca Thr	gag Glu	ctg Leu 215	gag Glu	gca Ala	ttt Phe	gca Ala	cac His 220	Arg	cca Pro	gag Glu	cac His	672	
aag Lys 225	Thr	tct Ser	gac Asp	ago Ser	acg Thr 230	Phe	ctg Leu	gtg Val	ttc Phe	atg Met 235	Ser	cat His	ggt Gly	att Ile	cgg Arg 240	720	
gaa Glu	ggc Gly	att Ile	tgt Cys	ggg Gly 245	Lys	aaa Lys	cac	tct Ser	gag Glu 250	ı Glr	gto Val	cca Pro	a gat o Asp	ata Ile 255	cta Leu	768	
caa Gln	cto Lev	aat Asr	gca 1 Ala 260	ı Ile	ttt Phe	aac Asn	atg Met	ttg Let 265	ı Ası	aco Thi	c aag Lys	g aad s Asr	tgo n Cys 270	s Pro	agt Ser	816	
ttg Lev	g aag 1 Lys	g gad S Asp 27) Lys	a cca s Pro	g aag o Lys	g gtg Val	ato 116 280	e Ile	c ato	c cag e Gli	g gco n Ala	tgo a Cys 28	s Arg	t ggt g Gly	gac Asp	864	
ago Sei	cct Pro 290	Gl	t gt: y Va	g gti l Va	g tgg l Trp	g ttt Phe 295	e Lys	a ga s Asj	t to p Se	a gta r Va	a gga 1 G1; 30	y Va	t tc [.] 1 Se:	t gga r Gly	a aac y Asn	912	
cta Lei	a tci ı Sei	t tt: r Le	a cc u Pr	a ac o Th	t acar	a gaa r Glu	a gaş ı Gli	g tt u Ph	t ga e Gl	g ga u As	t ga p As	p Al	a Il	e Ly:	g aaa s Lys O 4 —	960 - 3 1 2 2 1	0

		•	
305	310	315	320
gcc cac ata gag aag Ala His Ile Glu Lys 325	Asp Phe Ile A	gct ttc tgc tct tcc a Ala Phe Cys Ser Ser T 330	ca cca gat 1008 hr Pro Asp 335
aat gtt tct tgg aga Asn Val Ser Trp Arg 340	His Pro Thr M	atg ggc tct gtt ttt a Met Gly Ser Val Phe I 345	tt gga aga 1056 le Gly Arg
ctc att gaa cat atg Leu Ile Glu His Met 355	g caa gaa tat g g Gln Glu Tyr A 360	gcc tgt tcc tgt gat g Ala Cys Ser Cys Asp V 365	gtg gag gaa 1104 Val Glu Glu
att ttc cgc aag gtt Ile Phe Arg Lys Val 370	cga ttt tca t Arg Phe Ser F 375	ttt gag cag cca gat g Phe Glu Gln Pro Asp G 380	ggt aga gcg 1152 Gly Arg Ala
cag atg ccc acc acc Gln Met Pro Thr Thr 385	t gaa aga gtg a r Glu Arg Val 1 390	act ttg aca aga tgt t Thr Leu Thr Arg Cys F 395	ttc tac ctc 1200 Phe Tyr Leu 400
ttc cca gga cat Phe Pro Gly His			1212
<210> 4 <211> 404 <212> PRT <213> Homo sapien	s		
<400> 4			
Met Ala Asp Lys Va 1 5	l Leu Lys Glu	Lys Arg Lys Leu Phe	Ile Arg Ser 15
Met Gly Glu Gly Th		Leu Leu Asp Glu Leu 25	Leu Gln Thr 30
Arg Val Leu Asn Ly 35	rs Glu Glu Met 40	Glu Lys Val Lys Arg 45	Glu Asn Ala
Thr Val Met Asp Ly	s Thr Arg Ala 55	Leu Ile Asp Ser Val	Ile Pro Lys

60

50

55

Gly Ala Gln Ala Cys Gln Ile Cys Ile Thr Tyr Ile Cys Glu Glu Asp 65 70 75 80

Ser Tyr Leu Ala Gly Thr Leu Gly Leu Ser Ala Asp Gln Thr Ser Gly 85 90 95

Asn Tyr Leu Asn Met Gln Asp Ser Gln Gly Val Leu Ser Ser Phe Pro 100 105 110

Ala Pro Gln Ala Val Gln Asp Asn Pro Ala Met Pro Thr Ser Ser Gly 115 120 125

Ser Glu Gly Asn Val Lys Leu Cys Ser Leu Glu Glu Ala Gln Arg Ile 130 135 140

Trp Lys Gln Lys Ser Ala Glu Ile Tyr Pro Ile Met Asp Lys Ser Ser 145 150 155 160

Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Glu Glu Phe Asp Ser Ile 165 170 175

Pro Arg Arg Thr Gly Ala Glu Val Asp Ile Thr Gly Met Thr Met Leu 180 185 190

Leu Gln Asn Leu Gly Tyr Ser Val Asp Val Lys Lys Asn Leu Thr Ala 195 200 205

Ser Asp Met Thr Thr Glu Leu Glu Ala Phe Ala His Arg Pro Glu His 210 215 220

Lys Thr Ser Asp Ser Thr Phe Leu Val Phe Met Ser His Gly Ile Arg 225 230 235 240

Glu Gly Ile Cys Gly Lys Lys His Ser Glu Gln Val Pro Asp Ile Leu 245 250 255

Gln Leu Asn Ala Ile Phe Asn Met Leu Asn Thr Lys Asn Cys Pro Ser 260 265 270 Leu Lys Asp Lys Pro Lys Val Ile Ile Ile Gln Ala Cys Arg Gly Asp 275 280 285

Ser Pro Gly Val Val Trp Phe Lys Asp Ser Val Gly Val Ser Gly Asn 290 295 300

Leu Ser Leu Pro Thr Thr Glu Glu Phe Glu Asp Asp Ala Ile Lys Lys 305 310 315 320

Ala His Ile Glu Lys Asp Phe Ile Ala Phe Cys Ser Ser Thr Pro Asp 325 330 335

Asn Val Ser Trp Arg His Pro Thr Met Gly Ser Val Phe Ile Gly Arg 340 345 350

Leu Ile Glu His Met Gln Glu Tyr Ala Cys Ser Cys Asp Val Glu Glu 355 360 365

Ile Phe Arg Lys Val Arg Phe Ser Phe Glu Gln Pro Asp Gly Arg Ala 370 375 380

Gln Met Pro Thr Thr Glu Arg Val Thr Leu Thr Arg Cys Phe Tyr Leu 385 390 395 400

Phe Pro Gly His

【書類名】図面 【図1-A】

【図1-B】

IP:抗FLAG抗体 WB:抗myc抗体 IP:抗myc抗体 WB:抗FLAG抗体

【図2-A】

NOD2ーmyc トランスフェクション量(μg) 0 0.05 0.1 0.2 0.5 1.0 Mycーprocaspaseー1 (C285A)

【図2-B】

【図4】

【要約】

【課題】プロカスパーゼ1と結合してこれの多量体化を促進し、これを活性化する新たな蛋白質を見出し、該蛋白質とプロカスパーゼ1の結合を阻害することにより、プロカスパーゼ1の多量体化阻害、プロカスパーゼ1の活性化阻害およびカスパーゼ1の生成阻害、ひいては炎症性疾患の防止および/または治療を可能にする手段を提供すること。

【解決手段】NOD2とプロカスパーゼ1の結合を阻害することを特徴とする、プロカスパーゼ1の多量体化の阻害方法および阻害剤、プロカスパーゼ1の活性化の阻害方法および阻害剤、カスパーゼ1の生成の阻害方法および阻害剤、炎症性疾患の防止方法および/または治療方法、炎症性疾患の防止剤および/または治療剤、NOD2とプロカスパーゼ1の結合を阻害する化合物の同定方法、並びに該同定方法に用いる試薬キット。

特願2003-396278

認定・付加情報

特許出願の番号 特願 2 0 0 3 - 3 9 6 2 7 8

受付番号 50301948259

書類名 特許願

担当官 植田 晴穂 6992

作成日 平成15年11月27日

<認定情報・付加情報>

【提出日】 平成15年11月26日

ページ: 1/E

特願2003-396278

出願人履歴情報

識別番号

[000002831]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

東京都中央区日本橋3丁目14番10号

氏 名

第一製薬株式会社

特願2003-396278

出願人履歴情報

識別番号

[500520628]

1. 変更年月日

2000年10月26日

[変更理由]

新規登録

住 所

千葉県千葉市美浜区中瀬1丁目3番地 幕張テクノガーデンD

1 7

氏 名

セレスター・レキシコ・サイエンシズ株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017586

International filing date: 26 November 2004 (26.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-396278

Filing date: 26 November 2003 (26.11.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ CRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.