પ્રશ્ન 1(અ) [3 ગુણ]

માઇક્રોપ્રોસેસરને વ્યાખ્યાયિત કરો અને તેનો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

માઇકોપ્રોસેસર એક પ્રોગ્રામેબલ ડિજિટલ ઉપકરણ છે જે સંગ્રહિત સૂચનાઓ અનુસાર ડેટા પર અંકગણિત અને તાર્કિક કામગીરી કરે છે.

બ્લોક ડાયાગ્રામ:

- CPU: સેન્ટ્રલ પ્રોસેસિંગ યુનિટ બધી કામગીરી કરે છે
- મેમરી: પ્રોગ્રામ અને ડેટા સંગ્રહ કરે છે
- કંટ્રોલ યુનિટ: સૂચના અમલીકરણ ક્રમને નિયંત્રિત કરે છે

યાદગાર વાક્ય: "માટું કમ્પ્યુટર પ્રોગ્રામ સમજે" (મેમરી-CPU-પ્રોગ્રામ-સૂચનાઓ)

પ્રશ્ન 1(બ) [4 ગુણ]

યોગ્ય instruction ના ઉદાહરણ સાથે ઓપરેન્ડ અને ઓપકોડ સમજાવો.

જવાબ:

ઓપકોડ કરવાની કામગીરી સ્પષ્ટ કરે છે. **ઓપરેન્ડ** કામગીરી થવાનો ડેટા સ્પષ્ટ કરે છે.

ઉદાહરણ કોષ્ટક:

સૂચના	ઓપકોડ	ઓપરેન્ડ	รเช่
MOV A,B	MOV	A,B	B ને A માં ખસેડો
ADD A,#05H	ADD	A,#05H	A માં 05H ઉમેરો

• ઓપકોડ: ઓપરેશન કોડ (MOV, ADD, SUB)

• ઓપરેન્ડ: ડેટા કે એડ્રેસ (A, B, #05H)

• ફોર્મેટ: ઓપકોડ + ઓપરેન્ડ = સંપૂર્ણ સૂચના

યાદગાર વાક્ય: "ઓપરેશન ઓન ડેટા" (ઓપકોડ-ઓપરેન્ડ-ડેટા)

પ્રશ્ન 1(ક) [7 ગુણ]

માઇક્રોપ્રોસેસર અને માઇક્રોકંટ્રોલરની સરખામણી કરો.

જવાબ:

પેરામીટર	માઇક્રોપ્રોસેસર	માઇક્રોકંટ્રોલર
વ્યાખ્યા	માત્ર CPU	CPU + મેમરી + I/O
મેમરી	ଦାହା RAM/ROM	આંતરિક RAM/ROM
I/O પોર્ટ્સ	બાહ્ય ઇન્ટરફેસ	બિલ્ટ-ઇન પોર્ટ્સ
કિંમત	વધુ સિસ્ટમ કિંમત	ઓછી સિસ્ટમ કિંમત
પાવર	વધુ વપરાશ	ઓછો વપરાશ
ઝડપ	ઝડપી પ્રક્રિયા	મધ્યમ ઝડપ
ઉપયોગ	કમ્પ્યુટર, લેપટોપ	વોશિંગ મશીન, માઇક્રોવેવ

• **માઇક્રોપ્રોસેસર: સામાન્ય હેતુ** કમ્પ્યુટિંગ

• **માઇક્રોકંટ્રોલર: વિશિષ્ટ એમ્બેડેડ** એપ્લિકેશન્સ

• **ઇન્ટિગ્રેશન: માઇક્રોકંટ્રોલર** માં બધું એક ચિપ પર

યાદગાર વાક્ય: "માઇક્રો મીન્સ મોર ઇન્ટિગ્રેશન" (માઇક્રોકંટ્રોલર-મેમરી-મોર-ઇન્ટેગ્રેશન)

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

RISC અને CISC ની સરખામણી કરો.

જવાબ:

પેરામીટર	RISC	CISC
સૂચનાઓ	સરળ, ઓછી	જટિલ, વધુ
સૂચના સાઇઝ	નિશ્ચિત લંબાઇ	વેરિયેબલ લંબાઇ
એક્ઝિક્યુશન ટાઇમ	સિંગલ સાઇકલ	બહુવિધ સાઇકલ
મેમરી એક્સેસ	ફક્ત લોડ/સ્ટોર	કોઇપણ સૂચના
રજિસ્ટર્સ	વધુ રજિસ્ટર્સ	ઓછા રજિસ્ટર્સ
પાઇપલાઇન	કાર્યક્ષમ પાઇપલાઇનિંગ	જટિલ પાઇપલાઇનિંગ
ઉદાહરણો	ARM, MIPS	x86, 8085

• RISC: રિક્યુસ્ડ ઇન્સ્ટ્રક્શન સેટ કમ્પ્યુટર

• CISC: કોમ્પ્લેક્સ ઇન્સ્ટ્રક્શન સેટ કમ્પ્યુટર

• પર્ફોર્મન્સ: RISC ઝડપી, CISC વધુ લવચીક

યાદગાર વાક્ય: "રિક્યુસ્ક ઇન્સ્ટ્રક્શન્સ સ્પીડ કમ્પ્યુટિંગ" (RISC-ઇન્સ્ટ્રક્શન્સ-સ્પીડ-કમ્પ્યુટિંગ)

પ્રશ્ન 2(અ) [3 ગુણ]

8085 માઇક્રોપ્રોસેસરનું બસ ઓર્ગેનાઇઝેશન સમજાવો.

જવાબ:

8085 માં બાહ્ય ઉપકરણો સાથે સંચાર માટે ત્રણ પ્રકારની બસ છે.

બસ ઓર્ગેનાઇઝેશન કોષ્ટક:

બસ પ્રકાર	લાઇન્સ	รเช็
એડ્રેસ બસ	16 લાઇન્સ (A0-A15)	મેમરી એડ્રેસિંગ
ડેટા બસ	8 લાઇન્સ (D0-D7)	ડેટા ટ્રાન્સફર
કંટ્રોલ બસ	બહુવિધ લાઇન્સ	કંટ્રોલ સિગ્નલ્સ

• **એડ્રેસ બસ: યુનિડાયરેક્શનલ**, 64KB મેમરી એડ્રેસિંગ

• **ડેટા બસ**: **બાઇડાયરેક્શનલ**, 8-બિટ ડેટા ટ્રાન્સફર

• કંટ્રોલ બસ: રીડ, રાઇટ, IO/M સિગ્નલ્સ

યાદગાર વાક્ય: "એડ્રેસ ડેટા કંટ્રોલ" (ADC)

પ્રશ્ન 2(બ) [4 ગુણ]

ડાયાગ્રામ સાથે ALE સિગ્નલનું કાર્ય સમજાવો.

જવાબ:

ALE (એડ્રેસ લેચ એનેબલ) મલ્ટિપ્લેક્સ્ડ બસ પર એડ્રેસ અને ડેટાને અલગ કરે છે.

ALE ટાઇમિંગ ડાયાગ્રામ:

• **હાઇ ALE**: એડ્રેસ AD0-AD7 પર ઉપલબ્ધ

• **લો ALE**: **ડેટા** AD0-AD7 પર ઉપલબ્ધ

• કાર્ય: લોઅર એડ્રેસ બાઇટ લેચ કરે છે

• ફ્રીક્વન્સી: ALE = Clock frequency ÷ 2

યાદગાર વાક્ય: "એડ્રેસ લેચ એનેબલ" (ALE)

પ્રશ્ન 2(ક) [7 ગુણ]

આકૃતિની મદદથી 8085 માઇક્રોપ્રોસેસરના આર્કિટેક્ચરનું વર્ણન કરો.

જવાબ:

મુખ્ય ઘટકો:

- ALU: અંકગણિત અને તાર્કિક કામગીરી કરે છે
- **રજિસ્ટર્સ**: અસ્થાયી ડેટા સંગ્રહ કરે છે (A, B, C, D, E, H, L)
- પ્રોગ્રામ કાઉન્ટર: આગળની સૂચના તરફ નિર્દેશ કરે છે
- સ્ટેક પોઇન્ટર: સ્ટેક ટોપ તરક નિર્દેશ કરે છે
- **કંટ્રોલ યુનિટ**: **કંટ્રોલ સિગ્નલ્સ** જનરેટ કરે છે

યાદગાર વાક્ય: "ઓલ રજિસ્ટર્સ પ્રોગ્રામ સ્ટેક કંટ્રોલ" (A-R-P-S-C)

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

8085 માઇક્રોપ્રોસેસરનો ફ્લેગ રજિસ્ટર દોરો અને તેને સમજાવો.

જવાબ:

ફ્લેગ રજિસ્ટર ફોર્મેટ:

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| S | Z | 0 | AC | 0 | P | 1 | C |
+---+---+---+----+
```

ફ્લેગ કાર્યો:

- ડ (સાઇન): પરિણામ નેગેટિવ હોય તો સેટ
- Z (ઝીરો): પરિણામ શૂન્ય હોય તો સેટ
- AC (ઓક્સિલિયરી કેરી): BCD ઓપરેશન્સ માટે સેટ
- P (પેરિટી): ઇવન પેરિટી માટે સેટ
- C (કેરી): કેરી/બોરો જ્યારે થાય તો સેટ

યાદગાર વાક્ય: "સમ ઝીરો ઓક્સિલિયરી પેરિટી કેરી" (SZAPC)

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

8085 માઇક્રોપ્રોસેસર માટે એડ્રેસ અને ડેટા બસોનું ડીમલ્ટિપ્લેક્સિંગ સમજાવો.

જવાબ:

ડીમલ્ટિપ્લેક્સિંગ AD0-AD7 લાઇન્સમાંથી એડ્રેસ અને ડેટા સિગ્નલ્સને અલગ કરે છે.

ડીમલ્ટિપ્લેક્સિંગ સર્કિટ:

- ALE હાઇ: એડ્રેસ બાહ્ય લેચમાં લેચ થાય છે
- ALE લો: ડેટા બફર દ્વારા વહે છે
- **74LS373**: **સામાન્ય લેચ IC** વપરાય છે
- ફાયદો: અલગ એડ્રેસ અને ડેટા બસ

યાદગાર વાક્ય: "એડ્રેસ લેચ એક્સ્ટર્નલ ડિમલ્ટિપ્લેક્સ" (ALED)

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

આકૃતિની મદદથી 8085 માઇક્રોપ્રોસેસરના પિન ડાયાગ્રામનું વર્ણન કરો.

જવાબ:

RESET	3 38	HLDA
SOD	4 37	CLK
SID	5 36	RESET
TRAP	6 35	READY
RST7.5	7 34	IO/M
RST6.5	8 33	S1
RST5.5	9 32	RD
INTR	10 31	WR
INTA	11 30	ALE
AD0	12 29	S0
AD1	13 28	A15
AD2	14 27	A14
AD3	15 26	A13
AD4	16 25	A12
AD5	17 24	A11
AD6		A10
AD7	19 22	A9
VSS	20 21	A8
+-		+

પિન કેટેગરીઝ:

• પાવર: VCC, VSS

• ક્લોક: X1, X2, CLK

• એડ્રેસ/ડેટા: AD0-AD7, A8-A15

• ទំខ្លាំថៈ ALE, RD, WR, IO/M

• ರ-೭೪೪: INTR, INTA, RST7.5, RST6.5, RST5.5, TRAP

યાદગાર વાક્ય: "પાવર ક્લોક એડ્રેસ કંટ્રોલ ઇન્ટરપ્ટ" (PCACI)

પ્રશ્ન 3(અ) [3 ગુણ]

DPTR અને PC નું કાર્ય લખો.

જવાબ:

કાર્યો કોષ્ટક:

રજિસ્ટર	รเข้	સાઇઝ
DPTR	ડેટા પોઇન્ટર	16-બિટ
PC	પ્રોગ્રામ કાઉન્ટર	16-બિટ

DPTR รเขเ๊:

• બાહ્ય મેમરી: બાહ્યુ ડેટા મેમરી એક્સેસ કરે છે

• **એડ્રેસિંગ: MOVX સૂચનાઓ** માટે 16-બિટ એડ્રેસ

PC કાર્યો:

- ઇન્સ્ટ્રક્શન પોઇન્ટર: આગળની સૂચના તરફ નિર્દેશ કરે છે
- ઓટો ઇન્ક્રિમેન્ટ: દરેક સૂચના ફેચ પછી વધે છે

યાદગાર વાક્ય: "ડેટા પ્રોગ્રામ કાઉન્ટર" (DPC)

પ્રશ્ન 3(બ) [4 ગુણ]

8051 નું PCON SFR દોરો અને દરેક બિટનું કાર્ય સમજાવો.

જવાબ:

PCON રજિસ્ટર (87H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
|SMOD| - | - | - |GF1|GF0|PD |IDL|
+---+---+---+---+---+
```

બિટ કાર્યો:

• SMOD: સીરિયલ પોર્ટ બોડ રેટ ડબલર

• **GF1, GF0**: **સામાન્ય હેતુ** ફ્લેગ્સ

• PD: **પાવર ડાઉન મોડ** કંટ્રોલ

• IDL: આઇડલ મોડ કંટ્રોલ

પાવર મેનેજમેન્ટ:

• IDL = 1: CPU બંધ, પેરિફેરલ્સ ચાલે છે

• PD = 1: સંપૂર્ણ પાવર ડાઉન

યાદગાર વાક્ય: "સીરિયલ જનરલ પાવર આઇડલ" (SGPI)

પ્રશ્ન 3(ક) [7 ગુણ]

આકૃતિની મદદથી 8051 માઇક્રોકંટ્રોલરનું આર્કિટેક્ચર સમજાવો.

જવાબ:

મુખ્ય બ્લોક્સ:

• CPU: ALU સાથે 8-બિટ પ્રોસેસર

• મેમરી: 4KB ROM, 128B RAM

• **ટાઇમર્સ**: **બે 16-બિટ** ટાઇમર્સ

• સીરિયલ પોર્ટ: ફુલ ડુપ્લેક્સ UART

• I/O પોર્ટ્સ: થાર 8-બિટ પોર્ટ્સ

• ઇન્ટરપ્ટ્સ: 5 ઇન્ટરપ્ટ સોર્સ

યાદગાર વાક્ય: "CPU મેમરી ટાઇમર સીરિયલ IO ઇન્ટરપ્ટ" (CMTSII)

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

8051 માઇક્રોકંટ્રોલરના સામાન્ય ફીચર્સની યાદી બનાવો.

જવાબ:

સામાન્ય ફીચર્સ:

• CPU: 8-બિટ માઇક્રોકંટ્રોલર

• મેમરી: 4KB ROM, 128B RAM

• **I/O પોર્ટ્સ**: **32 I/O લાઇન્સ** (4 પોર્ટ્સ)

• ટાઇમર્સ: બે 16-બિટ ટાઇમર્સ/કાઉન્ટર્સ

• સીરિયલ પોર્ટ: ફુલ ડુપ્લેક્સ UART

• ઇન્ટરપ્ટ્સ: 5 ઇન્ટરપ્ટ સોર્સ

• ક્લોક: 12MHz મહત્તમ ફ્રીક્વન્સી

યાદગાર વાક્ય: "CPU મેમરી IO ટાઇમર સીરિયલ ઇન્ટરપ્ટ ક્લોક" (CMITSIC)

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

8051 નું IP SFR દોરો અને દરેક બિટનું કાર્ય સમજાવો.

જવાબ:

IP રજિસ્ટર (B8H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| - | - | PS | PT1 | PX1 | PT0 | PX0 |
+---+---+---+---+----+
```

બિટ કાર્યો:

- PS: **સીરિયલ પોર્ટ ઇન્ટરપ્ટ** પ્રાઇઓરિટી
- PT1: ટાઇમર 1 ઇન્ટરપ્ટ પ્રાઇઓરિટી
- PX1: એક્સ્ટર્નલ ઇન્ટરપ્ટ 1 પ્રાઇઓરિટી
- PTO: ટાઇમર 0 ઇન્ટરપ્ટ પ્રાઇઓરિટી
- PXO: એક્સ્ટર્નલ ઇન્ટરપ્ટ 0 પ્રાઇઓરિટી

પ્રાઇઓરિટી લેવલ્સ:

- 1: હાઇ પ્રાઇઓરિટી
- 0: લો પ્રાઇઓરિટી

યાદગાર વાક્ય: "પ્રાઇઓરિટી સીરિયલ ટાઇમર એક્સ્ટર્નલ" (PSTE)

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

આકૃતિની મદદથી 8051 માઇક્રોકંટ્રોલરનો પિન ડાયાગ્રામ સમજાવો.

જવાબ:

```
8051 Microcontroller
  P1.0-- 1
                       40 |--VCC
  P1.1-- 2
                      39 |--P0.0/AD0
  P1.2-- 3
                      38 |--P0.1/AD1
                      37 |--P0.2/AD2
  P1.3-- 4
  P1.4-- 5
                      36 |--P0.3/AD3
  P1.5-- 6
                      35 |--P0.4/AD4
  P1.6-- 7
                      34 |--P0.5/AD5
  P1.7-- 8
                      33 |--P0.6/AD6
  RST -- 9
                      32 |--P0.7/AD7
P3.0/RXD| 10
                      31 |--EA/VPP
P3.1/TXD | 11
                      30 |--ALE/PROG
P3.2/INT0 | 12
                      29 |--PSEN
P3.3/INT1 | 13
                      28 |--P2.7/A15
P3.4/T0- 14
                      27 |--P2.6/A14
                      26 |--P2.5/A13
P3.5/T1- 15
P3.6/WR-| 16
                       25 | --P2.4/A12
                      24 |--P2.3/A11
P3.7/RD-| 17
XTAL2 -- | 18
                      23 |--P2.2/A10
XTAL1 -- | 19
                      22 |--P2.1/A9
  VSS -- 20
                       21 |--P2.0/A8
       +----+
```

પિન ગ્રુપ્સ:

• પાવર: VCC (40), VSS (20)

• รดโร: XTAL1 (19), XTAL2 (18)

• રીસેટ: RST (9)

• પોર્ટ્સ: P0, P1, P2, P3

• s͡zlìd: ALE, PSEN, EA

યાદગાર વાક્ય: "પાવર ક્લોક રીસેટ પોર્ટ્સ કંટ્રોલ" (PCRPC)

પ્રશ્ન 4(અ) [3 ગુણ]

એરિથમેટિક instruction ઉદાહરણ સાથે સમજાવો.

જવાબ:

અંકગણિત સૂચનાઓ:

સૂચના	รเช้	ઉદાહરણ
ADD	બસ્તારણ	ADD A,#10H
SUBB	બાદબાકી	SUBB A,R0
MUL	ગુણાકાર	MUL AB
DIV	ભાગાકાર	DIV AB
INC	વૃદ્ધિ	INC A
DEC	ઘટાડો	DEC R1

• ADD A,#10H: એક્યુમ્યુલેટરમાં 10H ઉમેરો

• ફ્લેંગ્સ: અંકગણિત કામગીરીથી પ્રભાવિત થાય છે

ચાદગાર વાક્ય: "એડ સબ મલ ડિવ ઇન્ક ડેક" (ASMIDI)

પ્રશ્ન 4(બ) [4 ગુણ]

મેમરી લોકેશન 65H પર સંગ્રહિત મૂલ્યના 2's complement ને શોધવા માટે 8051 એસેમ્બલી લેંગ્વેજ પ્રોગ્રામ લખો તેમજ પરિણામ સમાન સ્થાન પર મૂકો.

જવાબ:

```
ORG 0000H ; प्रोत्राम स्टार्ट अंड्रेस

MOV A,65H ; 65H dìsetal वंत्यु dìs seì

CPL A ; वंत्युनो डोम्प्लिमेन्ट seì (1's complement)

ADD A,#01H ; 2's complement मेणववा 1 ઉमेरो

MOV 65H,A ; परिणाम पाछुं 65H मां स्टोर seì

SJMP $ ; प्रोत्राम लंध seì
```

પ્રોગ્રામ સ્ટેપ્સ:

- **લોડ**: મેમરી લોકેશન 65H થી વેલ્યુ મેળવો
- ક્રોમ્પ્લિમેન્ટ: CPL વાપરીને 1's complement જનરેટ કરો
- 1 ઉમેરો: 2's complement માં કન્વર્ટ કરો
- સ્ટોર: પરિણામ સમાન લોકેશન પર પાછું મૂકો

યાદગાર વાક્ય: "લોડ કોમ્પ્લિમેન્ટ એડ સ્ટોર" (LCAS)

પ્રશ્ન 4(ક) [7 ગુણ]

8051 માઇક્રોકંટ્રોલરના એડ્રેસિંગ મોડ્સની યાદી બનાવો અને તેમને ઉદાહરણ સાથે સમજાવો.

જવાબ:

એડ્રેસિંગ મોડ્સ કોષ્ટક:

મોડ	વર્ણન	ઉદાહરણ	ઉપયોગ
ઇમીડિયેટ	સૂચનામાં ડેટા	MOV A,#25H	કોન્સ્ટંટ ડેટા
રજિસ્ટર	રજિસ્ટરમાં ડેટા	MOV A,R0	ઝડપી એક્સેસ
ડાયરેક્ટ	મેમરી એડ્રેસ	MOV A,30H	RAM એક્સેસ
ઇન્ડાયરેક્ટ	રજિસ્ટરમાં એડ્રેસ	MOV A,@R0	પોઇન્ટર એક્સેસ
ઇન્ડેક્સ્ડ	બેઝ + ઓફસેટ	MOVC A,@A+DPTR	ટેબલ એક્સેસ
રિલેટિવ	PC + ઓફસેટ	SJMP LOOP	બ્રાન્ય સૂચનાઓ -
બિટ	બિટ એડ્રેસ	SETB P1.0	બિટ ઓપરેશન્સ

ઉદાહરણો:

• MOV A,#25H: ઇમીડિયેટ વેલ્યુ 25H લોડ કરો

• MOV A,@R0: R0 માં આપેલા એડ્રેસ થી લોડ કરો

• SJMP LOOP: વર્તમાન PC ની સાપેક્ષે જમ્પ કરો

યાદગાર વાક્ય: "ઇમીડિયેટ રજિસ્ટર ડાયરેક્ટ ઇન્ડાયરેક્ટ ઇન્ડેક્સ્ડ રિલેટિવ બિટ" (IRDIIRB)

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

લોજીકલ instruction ઉદાહરણ સાથે સમજાવો.

જવાબ:

તાર્કિક સૂચનાઓ:

સૂચના	รเช้	ઉદાહરણ
ANL	AND ઓપરેશન	ANL A,#0FH
ORL	OR ઓપરેશન	ORL A,R1
XRL	XOR ઓપરેશન	XRL A,#55H
CPL	કોમ્પ્લિમેન્ટ	CPL A
RL	લેફ્ટ રોટેટ	RL A
RR	રાઇટ રોટેટ	RR A

- ANL A,#0FH: **એક્યુમ્યુલેટરને 0FH સાથે AND** કરો (માસ્ક ઓપરેશન)
- એપ્લિકેશન્સ: બિટ માસ્કિંગ, ડેટા મેનિપ્યુલેશન

યાદગાર વાક્ય: "એન્ડ ઓર એક્સઓર કોમ્પ્લિમેન્ટ રોટેટ" (AOXCR)

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

રજિસ્ટર R3 માં સંગ્રહિત સંખ્યાને રજિસ્ટર R0 માં સંગ્રહિત સંખ્યા વડે ગુણાકાર કરવા માટે 8051 એસેમ્બલી લેંગ્વેજ પ્રોગ્રામ લખો અને પરિણામને ઇન્ટર્નલ RAM સ્થાન 10h(MSB) અને 11h(LSB) માં મૂકો.

જવાબ:

```
ORG 0000H ; પ્રોગ્રામ સ્ટાર્ટ એડ્રેસ

MOV A,R3 ; R3 ને એક્ચુમ્યુલેટરમાં મૂવ કરો

MOV B,R0 ; R0 ને B રિજસ્ટરમાં મૂવ કરો

MUL AB ; A અને B નો ગુણાકાર કરો

MOV 10H,B ; MSB (B) ને લોકેશન 10H માં સ્ટોર કરો

MOV 11H,A ; LSB (A) ને લોકેશન 11H માં સ્ટોર કરો

SJMP $ ; પ્રોગ્રામ બંધ કરો
```

પ્રોગ્રામ ક્લો:

• **લોડ**: **ગુણ્ય અને ગુણક** ને A અને B માં મૂવ કરો

• ગુણાકાર: MUL AB સૂચના વાપરો

• સ્ટોર: MSB B રજિસ્ટરમાં, LSB A રજિસ્ટરમાં

• પરિણામ: 16-બિટ પરિણામ બે લોકેશન માં સ્ટોર કર્યું

યાદગાર વાક્ય: "લોડ મલ્ટિપ્લાય સ્ટોર રિઝલ્ટ" (LMSR)

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

ઉદાહરણ સાથે ડેટા ટ્રાન્સફર instruction સમજાવો.

જવાલ:

ડેટા ટ્રાન્સફર સૂચનાઓ:

કેટેગરી	સૂચના	ઉદાહરણ	ธเน้
રજિસ્ટર	MOV	MOV A,R0	રજિસ્ટર થી રજિસ્ટર
ઇમીડિયેટ	MOV	MOV A,#25H	ઇમીડિયેટ થી રજિસ્ટર
ડાયરેક્ટ	MOV	MOV A,30H	મેમરી થી રજિસ્ટર
ઇન્ડાયરેક્ટ	MOV	MOV A,@R0	ઇન્ડાયરેક્ટ એડ્રેસિંગ
એક્સ્ટર્નલ	MOVX	MOVX A,@DPTR	એક્સ્ટર્નલ મેમરી
કોડ	MOVC	MOVC A,@A+DPTR	ક્રોડ મેમરી
સ્ટેક	PUSH/POP	PUSH ACC	સ્ટેક ઓપરેશન્સ

ઉદાહરણો:

• MOV A,R0: R0 ની **સામગ્રી એક્યુમ્યુલેટર** માં મૂવ કરો

• MOVX A,@DPTR: એક્સ્ટર્નલ ડેટા મેમરી થી વાંચો

• PUSH ACC: એક્યુમ્યુલેટરને સ્ટેક પર પુશ કરો

ડેટા મૂવમેન્ટ:

• આંતરિક: 8051 મેમરી સ્પેસ અંદર

• બાહ્ય: એક્સ્ટર્નલ મેમરી તરફ/થી

• કોડ: પ્રોગ્રામ મેમરી થી

યાદગાર વાક્ય: "મૂવ ડેટા બિટવીન લોકેશન્સ" (MDBL)

પ્રશ્ન 5(અ) [3 ગુણ]

PSW ફોર્મેટની મદદથી 8051 ફ્લેગ્સ સમજાવો.

જવાબ:

PSW રજિસ્ટર (D0H):

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| C | AC | F0 | RS1 | RS0 | OV | - | P |
+---+---+---+---+---+---+
```

ક્લેગ કાર્યો:

- C (કેરી): કેરી/બોરો જ્યારે થાય તો સેટ
- AC (ઓક્સિલિયરી કેરી): BCD અંકગણિત માટે
- **OV (ઓવરફલો)**: **સાઇન્ડ ઓવરફલો** થાય તો સેટ
- P (પેરિટી): એક્યુમ્યુલેટરની ઇવન પેરિટી
- RS1, RS0: રજિસ્ટર બેંક સિલેક્ટ બિટ્સ

યાદગાર વાક્ય: "કેરી ઓક્સિલિયરી ઓવરફ્લો પેરિટી રજિસ્ટર" (CAOPR)

પ્રશ્ન 5(બ) [4 ગુણ]

માઇક્રોકંટ્રોલર સાથે 7 સેગમેન્ટ ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

7-સેગમેન્ટ ઇન્ટરફેસ સર્કિટ:

ઘટકો:

• ULN2003: ระ่ะ รูเยฯ IC

• રેઝિસ્ટર્સ: કરંટ લિમિટિંગ (330Ω)

• ડિસ્પ્લે: કોમન કેથોડ પ્રકાર

કામકાજ: પોર્ટ ડેટા કરંટ ડ્રાઇવર દ્વારા ડિસ્પ્લે સેગમેન્ટ્સ ચલાવે છે

યાદગાર વાક્ય: "પોર્ટ ડ્રાઇવર ડિસ્પ્લે ગ્રાઉન્ડ" (PDDG)

પ્રશ્ન 5(ક) [7 ગુણ]

માઇક્રોકંટ્રોલર સાથે 8 LED ને ઇન્ટરફેસ કરો અને ચાલુ અને બંધ કરવા માટે પ્રોગ્રામ લખો.

જવાબ:

LED ઇન્ટરફેસ સર્કિટ:

```
      8051
      Current Limiting
      LEDs

      P1.0
      ------> 330Ω
      ------> LED0
      ----> +5V

      P1.1
      ------> 330Ω
      ------> LED1
      ----> +5V

      P1.2
      ------> 330Ω
      ------> LED2
      ----> +5V

      P1.3
      -------> 330Ω
      ------> LED4
      ----> +5V

      P1.4
      -------> 330Ω
      -------> LED5
      -----> +5V

      P1.5
      -------> 330Ω
      -------> LED6
      ----> +5V

      P1.6
      ------> 330Ω
      -------> LED7
      -----> +5V

      P1.7
      ------> 330Ω
      -------> LED7
      -----> +5V
```

એસેમ્બલી પ્રોગ્રામ:

```
ORG 0000H ; સ્ટાર્ટ એડ્રેસ

MAIN:

MOV P1,#0FFH ; બધા LEDs ચાલુ કરો (logic 0)

CALL DELAY ; ડિલે સબરૂટિન કોલ કરો

MOV P1,#00H ; બધા LEDs બંધ કરો (logic 1)

CALL DELAY ; ડિલે સબરૂટિન કોલ કરો
```

```
SJMP MAIN ; સતત રિપીટ કરો

DELAY:

MOV R2,#250 ; આઉટર લૂપ કાઉન્ટર

D1: MOV R3,#250 ; ઇનર લૂપ કાઉન્ટર

D2: DJNZ R3,D2 ; R3 શૂન્ય થાય ત્યાં સુધી ઘટાડો

DJNZ R2,D1 ; R2 શૂન્ય થાય ત્યાં સુધી ઘટાડો

RET ; સબરૂટિનથી રિટર્ન કરો
```

યાદગાર વાક્ય: "લાઇટ ઇમિટિંગ ડિસ્પ્લે ઇન્ટરફેસ" (LEDI)

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

વિવિદ્ય ક્ષેત્રોમાં માઇક્રોકંટ્રોલરની એપ્લિકેશનોની સૂચિ બનાવો.

જવાબ:

ક્ષેત્ર પ્રમાણે એપ્લિકેશન્સ:

ક્ષેત્ર	એપ્લિકેશન્સ
ઘર	વોશિંગ મશીન, માઇક્રોવેવ, AC
ઓટોમોટિવ	એન્જિન કંટ્રોલ, ABS, એરબેગ
ઇન્ડસ્ટ્રિયલ	પ્રોસેસ કંટ્રોલ, રોબોટિક્સ
મેડિકલ	પેસમેકર, બ્લડ પ્રેશર મોનિટર
કમ્યુનિકેશન	મોબાઇલ ફોન્સ, મોડેમ્સ
સિક્યુરિટી	એક્સેસ કંટ્રોલ, બર્ગલર એલાર્મ
એન્ટરટેનમેન્ટ	ગેમિંગ કન્સોલ્સ, રિમોટ કંટ્રોલ

યાદગાર વાક્ય: "હોમ ઓટો ઇન્ડસ્ટ્રિયલ મેડિકલ કમ્યુનિકેશન સિક્યુરિટી એન્ટરટેનમેન્ટ" (HAIMCSE)

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

8051 સાથે ડીસી મોટરનું ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

ડીસી મોટર ઇન્ટરફેસ:

ઘટકો:

• L293D: ડ્યુઅલ H-બ્રિજ ડ્રાઇવર IC

• મોટર: 12V ડીસી મોટર

• કંટ્રોલ: દિશા અને સ્પીડ કંટ્રોલ

કંટ્રોલ લોજિક:

• นเอด: P1.1=0, P1.2=1

• ผีย: P1.1=0, P1.2=0

યાદગાર વાક્ય: "ડ્રાઇવર કંટ્રોલ મોટર ડાયરેક્શન" (DCMD)

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

માઇક્રોકંટ્રોલર સાથે એલસીડી ઇન્ટરફેસ કરો અને "માઇક્રોપ્રોસેસર અને માઇક્રોકંટ્રોલર" દર્શાવવા માટે એક પ્રોગ્રામ લખો.

જવાબ:

LCD ઇન્ટરફેસ:

```
8051 16x2 LCD
P2.0 -----> RS (Register Select)
P2.1 ----> EN (Enable)
P1.0-P1.7 ----> D0-D7 (Data lines)
GND ----> VSS, RW
+5V ----> VDD, VEE (via 10kΩ pot)
```

એસેમ્બલી પ્રોગ્રામ:

```
ORG 0000H
                       ; LCD ઇનિશિયલાઇઝ કરો
   CALL LCD_INIT
                       ; મેસેજ તરફ પોઇન્ટ કરો
   MOV DPTR,#MSG1
                       ; મેસેજ ડિસ્પ્લે કરો
    CALL DISPLAY_MSG
                       ; બંધ કરો
    SJMP $
LCD_INIT:
   MOV P1,#38H
                        ; Function set: 8-bit, 2-line
    CLR P2.0
                         ; RS=0 (command)
    SETB P2.1
                         ; EN=1
```

```
CLR P2.1
                        ; EN=0 (pulse)
    CALL DELAY
    MOV P1,#01H
                       ; Clear display
    CLR P2.0
    SETB P2.1
    CLR P2.1
    CALL DELAY
    RET
DISPLAY MSG:
   MOVC A, @A+DPTR ; seese Hood
                      ; જો શૂન્ય હોય તો બહાર નીકળો
   JZ EXIT
                      ; કેરેક્ટર મોકલો
   MOV P1,A
   SETB P2.0
                       ; RS=1 (data)
   SETB P2.1
                       ; EN=1
   CLR P2.1
                       ; EN=0
   CALL DELAY
   INC DPTR ; આગળનો કેરેક્ટર
SJMP DISPLAY_MSG ; ચાલુ રાખો
EXIT:
   RET
MSG1: DB "Microprocessor and Microcontroller",0
DELAY:
   MOV R1,#50
D1: MOV R2,#255
D2: DJNZ R2,D2
   DJNZ R1,D1
   RET
```

મુખ્ય પગલાઓ:

• LCD ઇનિશિયલાઇઝેશન: 8-બિટ મોડ, 2-લાઇન ડિસ્પ્લે

• મેસેજ ડિસ્પ્લે: કેરેક્ટર દ્વારા કેરેક્ટર

• કંટ્રોલ સિગ્નલ્સ: RS અને EN સિગ્નલ્સ

યાદગાર વાક્ય: "લિક્વિડ ક્રિસ્ટલ ડિસ્પ્લે ઇન્ટરફેસ" (LCDI)