

EECS 489Computer Networks

OSI Layers

Agenda

- Network Layers
- Performance Metrics

Announcements

- Please complete the getting started with AWS exercise
- Important Note:
 - Please "End Lab" each time after you are done working on AWS

Simplest network

- How do we connect two computers/devices/hosts?
 - We just use a wire to connect them

- How do we transmit data from A to B?
 - Data is always going to be a sequence of 0s and 1s

The voltage on the wire can be high or low

Frequency Shift

Phase Shift

And Others

Medium of Transmission

- Twisted pair cable
- Coaxial Cable
- Optical Fibre
- Radio Transmissions

Data Frames

- Frames are way of breaking a stream of bits into data
- A Frame defines which bits have which function
- At a minimum frames mark where data starts and where data ends

Error Checking

- A Frame can have bit errors some bits flip from 0 to 1 or from 1 to 0
 - Electrical Interference
 - Thermal Noise

Preamble del. Header Data CRC		7-byte reamble	del.	Ethernet Header	Data	CRC
-------------------------------	--	-------------------	------	--------------------	------	-----

- CRC block is used to detect errors
- CRC = Cyclic Redundancy Check

Performance

 Lets assume some wired connection with high/low voltage representing 1/0

- Delay
 - Propagation Delay Time for one bit to move from A to B

- \blacksquare 30km / 3 x 10⁸ m/sec = 0.0001 sec
- Transmission Delay
 - Size of data / Bandwidth (bits/(bits/sec))

Delay = Propagation + Transmission (for now)

Packet delay - Sending a 100-byte packet

Sending a large file using 100-byte packets

Pipe view of a link

Transmission delay decreases as bandwidth increases

Simple Network with multiple hosts

- What are the challenges?
 - Addressing
 - Collisions

Addressing

- Assign an address to each hardware device (actually the network interface)
- So when A transmits to B, the frame will have address for A and address for B
 - Why address of A?

Collisions

- Carrier Sense, Multiple Access with Collision Detect (CSMA/CD)
 - CSMA
 - Sense the carrier, if activity detected wait
 - Transmit if no activity
 - CD
 - Listen on the channel while transmitting, if you hear your own message no collision

What do we have so far

- We can send bits between two computers using some physical medium
- We can send bits using a Frame between two computers on a physical medium with multiple computers

Scaling the network

- Single collision domain
- Harder to Manage and difficult to scale
- Physical limitation on number of hosts in some cases

Switches

Switches

- What do switches do:
 - Forward packets from one port to the other ports
 - Breakup collision domains
 - Allow for scalability

Communications

Hosts A and C have data to Transmit to Host E

Communications – Issues?

Host A and C have data to Transmit to Host E

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Depends on traffic pattern
 - Arrival rate at the queue
 - Nature of arriving traffic (bursty or not?)
 - Transmission rate of outgoing link

Queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Characterized with statistical measures
 - Average queuing delay
 - Variance of queuing delay
 - Probability delay exceeds a threshold value

Basic queueing theory terminology

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"
- L: average number of packets waiting in the queue
 - L for "length of queue"

Little's Law (1961)

- L = A x W
- Compute L: count packets in queue every second
- Why do you care?
 - Easy to compute L, harder to compute W

- Arrival process: how packets arrive
 - Average rate A
- W: average time packets wait in the queue
 - W for "waiting time"
- L: average number of packets waiting in the queue
 - L for "length of queue"

4. Processing Delay

- How long does the switch take to process a packet?
 - Negligible

End-to-end delay

```
transmission
        propagation
                    queueing
                    processing
                         transmission
                               propagation
                                           queueing
                                           processing
                                              transmission
                                                     propagation
```


Loss

What fraction of the packets sent to a destination are dropped?

Throughput

At what rate is the destination receiving data from the source

Throughput – Single Link

Transmission rate R bits/sec

File of size F bits
Packets of size L bits

Transfer time (T) = F/R + propagation delay

Average throughput = $F/T \approx R$

End-to-end throughput

Average throughput = $\min\{R, R'\} = R$

What do we have so far

- We can send bits between two computers using some physical medium
- We can send bits using a Frame between two computers on a physical medium with multiple computers
- We can connect multiple computes using some physical medium
- We can connect multiple networks through switches/bridges to break collision domains

Network Layers

Link Layer Defines the format of data + MAC Addresses
 Physical Layer Transmits raw bits over physical medium

Finding hosts

A wants to transmit to E

Network Layer

- Physical addresses are agnostic to geography
- How do we scale the routing system (how we find paths between packet source to packet destinations)?
- Hierarchy in network addresses will help.
- IP (Internet Protocol) addresses
 - **1**92.168.24.1
- IP is a best effort protocol I will try my best to get your packet to the destination

A closer look at the network

A closer look at the network

Switches vs. Routers

- Switches do what routers do but don't participate in global delivery, just local delivery
 - Switches only need to support L1, L2
 - Routers support L1-L3
- Won't focus on the router/switch distinction
 - Almost all boxes support network layer these days

Network Layers

Network Layer
 Determines routes for data through the network
 Link Layer
 Defines the format of data + MAC Addresses
 Physical Layer
 Transmits raw bits over physical medium

What gets implemented in the network?

- Bits arrive on wire → physical layer (L1)
- Packets must be delivered across links and local networks → datalink layer (L2)
- Packets must be delivered between networks for global delivery → network layer (L3)
- Switches implement only physical and datalink layers (L1, L2)
- Routers implement the network layer too (L1, L2, L3)

End to End connectivity

- If we are pedantic, hosts don't communicate with each other processes do – hosts are just carrying process data
- Processes have different requirements
 - Get my packet to the host as soon as possible
 - Make sure my packet gets to the destination
 - Make sure packets gets to the destination with some time guarantee
- If we receive a packet, we need to know which process it belongs to
 - Port numbers

Transport Layer

- End-to-End Protocols
- UDP
 - Connectionless protocol.
 - It is used for VoIP, video streaming, gaming and live broadcasts.
 - The packets don't necessarily arrive in order.
 - Allows missing packets -- the sender is unable to know whether a packet has been received.
 - Better suited for applications that need fast, efficient transmission

TCP

- Reliable protocol where the receiver always sends either positive or negative acknowledgement about the data packet to the sender.
- Ensures in-order delivery of data.
- Connection oriented requires that connection between source and destination is established before sending data.
- TCP provides flow control and quality of service.

Round Trip Time (RTT)

- Time for a packet to go from a source to a destination and to come back
- Why do we care?
 - Measuring delay is hard from one end
- RTT/2 equals average end-to-end delay
 - Why not exact?

Network Layers

3	Transport	Provides End-to-End connectivity
3	Network Layer	Determines routes for data through the network
2	Link Layer	Defines the format of data + MAC Addresses
1	Physical Layer	Transmits raw bits over physical medium

Top Three layers

- Application Layer
 - This is where the application protocols reside like HTTP, FTP, SMPT, DNS, etc.
- Presentation Layer
 - Encryption/Decryption
 - Compression
 - Encoding
- Session Layer
 - Communication Channels
 - Checkpointing Data Transfers

Network Layers

-	7	Application	High level applications that users can interact with
- (5	Presentation	Data Encoding, Compression, and encryption
ļ	5	Session	Maintain Connections and ports
4	4	Transport	Provides End-to-End connectivity
	3	Network Layer	Determines routes for data through the network
	2	Link Layer	Defines the format of data + MAC Addresses
	1	Physical Layer	Transmits raw bits over physical medium

Quiz 1 – Due Aug 28 by 10pm

https://forms.gle/tG6EU5cQSPTsfKi3A

