Analyse 3 SMAI-2 TD1 2022-2023

Série 1

Exercice 1:

- 1. Donner une condition nécessaire et suffisante pour qu'une fonction réelle deux fois dérivable soit convexe.
- 2. Montrer que la fonction f définie sur \mathbb{R}_+^* par $f(x) = x \ln(x)$ est convexe.
- 3. En déduire que pour tout réels strictement positifs x, y, a et b on a :

$$(x+y)ln\left(\frac{x+y}{a+b}\right) \le xln\left(\frac{x}{a}\right) + yln\left(\frac{y}{b}\right).$$

Exercice 2:

Soit $\alpha > 0$ fixé et $x_1, x_2, ..., x_n$ des nombres réels stictement positifs et quelconques.

- 1. Etudier la convexité de la fonction $x \mapsto x^{\alpha}$ sur \mathbb{R}_{+}^{*} en fonction de α .
- 2. En déduire que:

$$\left(\sum_{i=1}^{n} x_i\right)^{\alpha} \le n^{\alpha-1} \sum_{i=1}^{n} x_i^{\alpha}, \quad \forall n \in \mathbb{N}^*, \quad si \quad \alpha > 1.$$

Exercice 3:

Montrer que la fonction ln est concave sur son domaine de définition, puis en déduire la relation suivante:

pour tout x et y de \mathbb{R}_+^* , $x^{\alpha}y^{\beta} \leq \alpha x + \beta y$, avec $\alpha, \beta \in [0, 1]$ et $\alpha + \beta = 1$.

Exercice 4 (Inégalité de Hödler):

Soit $n \in \mathbb{N}^*$, $p, q, a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer que:

$$\sum_{i=1}^{n} a_i^{\frac{1}{p}} b_i^{\frac{1}{q}} \le \left(\sum_{i=1}^{n} a_i\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i\right)^{\frac{1}{q}}.$$

(Utiliser l'exercice précèdent)

Exercice 5:

Soit f une fonction réelles deux fois dérivable sur un intervalle non vide I et à valeurs dans \mathbb{R}_+^* . Pour tout réel a, on considère la fonction g_a définie sur I par $g_a(x) = e^{ax} f(x)$.

- 1. Donner une condition nécessaire et suffisante pour que f soit convexe sur I.
- 2. Donner une condition nécessaire et suffisante pour que ln(f) soit convexe sur I.
- 3. Donner une condition nécessaire et suffisante pour que g_a soit convexe sur I, pour tout $a \in \mathbb{R}$.
- 4. En déduire l'équivalence: ln(f) est convexe si et seulement si g_a est convexe, pour tout $a \in \mathbb{R}$.

Exercice 6:

- 1. Etudier la continuité et la dérivabilité de la fonction $V(x) = |x| \operatorname{sur} \mathbb{R}$.
- 2. Etudier la convexité de la fonction V sur \mathbb{R} .
- 3. Soient f et g deux fonctions convexes sur $\mathbb R$ telles que g est croissante.Montrer que $g \circ f$ est convexe sur $\mathbb R$.
- 4. En déduire l'étude de la convexité de la fonction $h(x) = e^{|x|}$ sur \mathbb{R} .