## Algorithmes gloutons

August 22, 2021

## Algorithmes gloutons

August 22, 2021

#### Connexité

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.



Graphe non connexe



Graphe connexe

#### Graphe acyclique

Un graphe est acyclique (ou: sans cycle) s'il ne contient pas de cycle.



Graphe contenant un cycle



Graphe acyclique

#### Arbre

#### Définition

Un graphe est un arbre s'il est connexe et sans cycle

#### Arbre

#### Définition

Un graphe est un arbre s'il est connexe et sans cycle

#### Question

Les graphes ci-dessous sont-ils des arbres?



#### Arbre couvrant de poids minimal

#### Arbre couvrant

Soit G un graphe pondéré (chaque arête possède un poids). Un arbre couvrant de G est un ensemble d'arêtes de G qui forme un arbre et qui contient tous les sommets. Son poids est la somme des poids des arêtes de l'arbre.

#### Arbre couvrant de poids minimal

#### Arbre couvrant

Soit G un graphe pondéré (chaque arête possède un poids). Un arbre couvrant de G est un ensemble d'arêtes de G qui forme un arbre et qui contient tous les sommets. Son poids est la somme des poids des arêtes de l'arbre.

#### Arbre couvrant de poids minimal

Un arbre couvrant dont le poids est le plus petit possible est appelé un arbre couvrant de poids minimal.

### Arbre couvrant de poids minimal : exemple



### Arbre couvrant de poids minimal : exemple



#### Arbre couvrant de poids minimal : algorithmes

Il existe deux algorithmes très connus pour trouver un arbre couvrant de poids minimal :

- Kruskal : algorithme glouton utilisant un tri des arêtes
- **Prim** : algorithme construisant l'arbre de proche en proche, similaire à Dijkstra

Trier les arêtes par poids croissant. Commencer avec un arbre T vide (aucune arête).

Pour chaque arête *a* par poids croissant: Si l'ajout de *a* ne créé pas de cycle dans T: Ajouter *a* à T















Commencer avec un arbre T contenant un seul sommet.

Tant que T ne contient pas tous les sommets: Ajouter l'arête sortante de T de poids minimum













