Basic Notions — Spectral Sequences

Pedro Núñez

University of Freiburg

10th December 2020

"You could have invented spectral sequences"¹

Notation gets ugly real quick

▶ Only finite dimensional vector spaces over ℚ for simplicity.

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.

- Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^i(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^0(C) \xrightarrow{0} H^1(C) \cdots \right).$$

- ▶ Only finite dimensional vector spaces over ℚ for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^{i}(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^{0}(C) \xrightarrow{0} H^{1}(C) \cdots\right).$$

If it is clear to which C we refer, denote H(C) simply by H.

- ▶ Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^{i}(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^{0}(C) \xrightarrow{0} H^{1}(C) \cdots\right).$$

- ▶ If it is clear to which C we refer, denote H(C) simply by H.
- (Decreasing) filtrations are always finite for simplicity:

$$F^{\bullet}A: \quad 0 = F^nA \subseteq \ldots \subseteq F^0A = A.$$

- Only finite dimensional vector spaces over Q for simplicity.
- ightharpoonup (Cochain) complexes denoted with capital letters C and not C^{\bullet} .
- ▶ Cohomology again denoted just H(C) and not $H^{\bullet}(C)$.
- ► Cohomology is regarded as a copmlex with 0 differentials

$$H(C) = \bigoplus_{i \in \mathbb{Z}} H^i(C)[-i] := \left(\cdots H^{-1}(C) \xrightarrow{0} H^0(C) \xrightarrow{0} H^1(C) \cdots \right).$$

- ▶ If it is clear to which C we refer, denote H(C) simply by H.
- (Decreasing) filtrations are always finite for simplicity:

$$F^{\bullet}A: \quad 0 = F^nA \subseteq \ldots \subseteq F^0A = A.$$

▶ The graded object associated to a filtration F•A is denoted

$$\operatorname{gr} A = \bigoplus_{p \in \mathbb{N}} \operatorname{gr}^p A := \bigoplus_{p \in \mathbb{N}} (F^p A / F^{p+1} A).$$

Goal: compute cohomology with the help of a filtration

Starting point: a filtration on our complex

If we do not have any extra information about C^{\bullet} , there is not much more we can do besides applying the definition

$$H^{\bullet} = \ker(d^0)[0] \oplus \frac{\ker(d^1)}{\operatorname{im}(d^0)}[-1] \oplus \frac{C^2}{\operatorname{im}(d^1)}[-2].$$

Starting point: a filtration on our complex

If we do not have any extra information about C^{\bullet} , there is not much more we can do besides applying the definition

$$H^{\bullet} = \ker(d^0)[0] \oplus \frac{\ker(d^1)}{\operatorname{im}(d^0)}[-1] \oplus \frac{C^2}{\operatorname{im}(d^1)}[-2].$$

▶ But C^{\bullet} has often some <u>useful</u> filtration $F^{\bullet}C^{\bullet}$, say

1. $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ induces a filtration $0 \subseteq F^1H^{\bullet} \subseteq H^{\bullet}$ given by $F^1H^i := \operatorname{im}\left(H^i(F^1C^{\bullet}) \to H^i(C^{\bullet})\right) \text{ for all } i \in \{0,1,2\}.$

- 1. $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ induces a filtration $0 \subseteq F^1H^{\bullet} \subseteq H^{\bullet}$ given by $F^1H^i := \operatorname{im}\left(H^i(F^1C^{\bullet}) \to H^i(C^{\bullet})\right) \text{ for all } i \in \{0,1,2\}.$
- 2. We can then recover H^i as the associated graded vector space $\operatorname{gr}(F^{\bullet}H^i) = F^1H^i \oplus (H^i/F^1H^i) \cong H^i$ for all $i \in \{0, 1, 2\}$.

- 1. $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ induces a filtration $0 \subseteq F^1H^{\bullet} \subseteq H^{\bullet}$ given by $F^1H^i := \operatorname{im}\left(H^i(F^1C^{\bullet}) \to H^i(C^{\bullet})\right) \text{ for all } i \in \{0,1,2\}.$
- 2. We can then recover H^i as the associated graded vector space

$$\operatorname{gr}(F^{\bullet}H^i) = F^1H^i \oplus \left(H^i/F^1H^i\right) \cong H^i \text{ for all } i \in \{0,1,2\}.$$

3. $F^{\bullet}C^{\bullet}$ being a filtered complex means that $F^{1}C^{\bullet} \subseteq C^{\bullet}$ is a subcomplex, so that $F^{1}C^{\bullet}$ and $C^{\bullet}/F^{1}C^{\bullet}$ are complexes as well.

- 1. $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ induces a filtration $0 \subseteq F^1H^{\bullet} \subseteq H^{\bullet}$ given by $F^1H^i := \operatorname{im}\left(H^i(F^1C^{\bullet}) \to H^i(C^{\bullet})\right) \text{ for all } i \in \{0,1,2\}.$
- 2. We can then recover H^i as the associated graded vector space $\operatorname{gr}(F^{\bullet}H^i) = F^1H^i \oplus (H^i/F^1H^i) \cong H^i$ for all $i \in \{0, 1, 2\}$.
- 3. $F^{\bullet}C^{\bullet}$ being a filtered complex means that $F^{1}C^{\bullet} \subseteq C^{\bullet}$ is a subcomplex, so that $F^{1}C^{\bullet}$ and $C^{\bullet}/F^{1}C^{\bullet}$ are complexes as well.
- ▶ **Q1:** Can we compute the cohomologies of F^1C^{\bullet} and $C^{\bullet}/F^1C^{\bullet}$?

- 1. $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ induces a filtration $0 \subseteq F^1H^{\bullet} \subseteq H^{\bullet}$ given by $F^1H^i := \operatorname{im}\left(H^i(F^1C^{\bullet}) \to H^i(C^{\bullet})\right) \text{ for all } i \in \{0,1,2\}.$
- 2. We can then recover H^i as the associated graded vector space $\operatorname{gr}(F^{\bullet}H^i) = F^1H^i \oplus (H^i/F^1H^i) \cong H^i$ for all $i \in \{0, 1, 2\}$.
- 3. $F^{\bullet}C^{\bullet}$ being a filtered complex means that $F^{1}C^{\bullet} \subseteq C^{\bullet}$ is a subcomplex, so that $F^{1}C^{\bullet}$ and $C^{\bullet}/F^{1}C^{\bullet}$ are complexes as well.
- ▶ **Q1:** Can we compute the cohomologies of F^1C^{\bullet} and $C^{\bullet}/F^1C^{\bullet}$?
- **Q2:** Are these cohomologies related to F^1H^{\bullet} and $H^{\bullet}/F^1H^{\bullet}$?

▶ Suppose $C^{\bullet} = C_1^{\bullet} \oplus C_2^{\bullet}$ with $H^{\bullet}(C_1^{\bullet})$ and $H^{\bullet}(C_2^{\bullet})$ computable.

- ▶ Suppose $C^{\bullet} = C_1^{\bullet} \oplus C_2^{\bullet}$ with $H^{\bullet}(C_1^{\bullet})$ and $H^{\bullet}(C_2^{\bullet})$ computable.
- ▶ Then we are done, because $H^{\bullet}(C^{\bullet}) = H^{\bullet}(C_1^{\bullet}) \oplus H^{\bullet}(C_2^{\bullet})$.

- ▶ Suppose $C^{\bullet} = C_1^{\bullet} \oplus C_2^{\bullet}$ with $H^{\bullet}(C_1^{\bullet})$ and $H^{\bullet}(C_2^{\bullet})$ computable.
- ▶ Then we are done, because $H^{\bullet}(C^{\bullet}) = H^{\bullet}(C_1^{\bullet}) \oplus H^{\bullet}(C_2^{\bullet})$.
- To rephrase this with filtrations we take

$$F^1C^{\bullet} := C_1^{\bullet} \quad (\Rightarrow C^{\bullet}/F^1C^{\bullet} = C_2^{\bullet}.)$$

- ▶ Suppose $C^{\bullet} = C_1^{\bullet} \oplus C_2^{\bullet}$ with $H^{\bullet}(C_1^{\bullet})$ and $H^{\bullet}(C_2^{\bullet})$ computable.
- ▶ Then we are done, because $H^{\bullet}(C^{\bullet}) = H^{\bullet}(C_1^{\bullet}) \oplus H^{\bullet}(C_2^{\bullet})$.
- ► To rephrase this with filtrations we take

$$F^1C^{\bullet} := C_1^{\bullet} \quad (\Rightarrow C^{\bullet}/F^1C^{\bullet} = C_2^{\bullet}.)$$

Then we have

$$F^1H^{\bullet}:=\operatorname{im}(H^{\bullet}(F^1C^{\bullet})\to H^{\bullet}(C^{\bullet}))=H^{\bullet}(C_1^{\bullet})=H^{\bullet}(F^1C^{\bullet})$$
 and similarly $H^{\bullet}/F^1H^{\bullet}=H^{\bullet}(C_2^{\bullet})=H^{\bullet}(C^{\bullet}/F^1C^{\bullet}).$

- ▶ Suppose $C^{\bullet} = C_1^{\bullet} \oplus C_2^{\bullet}$ with $H^{\bullet}(C_1^{\bullet})$ and $H^{\bullet}(C_2^{\bullet})$ computable.
- ▶ Then we are done, because $H^{\bullet}(C^{\bullet}) = H^{\bullet}(C_1^{\bullet}) \oplus H^{\bullet}(C_2^{\bullet})$.
- ► To rephrase this with filtrations we take

$$F^1C^{\bullet} := C_1^{\bullet} \quad (\Rightarrow C^{\bullet}/F^1C^{\bullet} = C_2^{\bullet}.)$$

Then we have

$$F^1H^{\bullet} := \operatorname{im}(H^{\bullet}(F^1C^{\bullet}) \to H^{\bullet}(C^{\bullet})) = H^{\bullet}(C_1^{\bullet}) = H^{\bullet}(F^1C^{\bullet})$$
 and similarly $H^{\bullet}/F^1H^{\bullet} = H^{\bullet}(C_2^{\bullet}) = H^{\bullet}(C^{\bullet}/F^1C^{\bullet}).$

So in this case we can carry out our naive strategy of computing each graded piece of the induced filtration in cohomology separately:

Possible scenario II: the bad

Suppose we know nothing about C^{\bullet} . The *stupid filtration*

$$\begin{cases} F^1 C^{\bullet} := & \cdots \to 0 \to 0 \to C^1 \xrightarrow{d^1} C^2 \to 0 \to \cdots \\ F^2 C^{\bullet} := & \cdots \to 0 \to 0 \to 0 \to C^2 \to 0 \to \cdots \end{cases}$$

induces the cohomology filtration

$$\begin{cases} F^1 H^{\bullet} := \operatorname{im}(H^{\bullet}(F^1 C^{\bullet}) \to H^{\bullet}(C^{\bullet})) = H^1(C^{\bullet})[-1] \oplus H^2(C^{\bullet})[-2] \\ F^2 H^{\bullet} := \operatorname{im}(H^{\bullet}(F^2 C^{\bullet}) \to H^{\bullet}(C^{\bullet})) = H^2(C^{\bullet})[-2] \end{cases}$$

whose graded pieces are $H^0(C^{\bullet})[0]$, $H^1(C^{\bullet})[-1]$ and $H^2(C^{\bullet})[-2]$. So in this case computing $\operatorname{gr}^i H^{\bullet}(C^{\bullet})$ is as hard as computing $H^i(C^{\bullet})$ and we just wasted our time with this detour.

Possible scenario III: the ugly

Suppose now that we are somewhere in between the good and the bad scenarios. Namely, assume that we have some filtration $0 \subseteq F^1C^{\bullet} \subseteq C^{\bullet}$ which does not correspond to a direct sum decomposition but such that we can compute the graded pieces $\operatorname{gr}^i(H^{\bullet}(C^{\bullet}))$ of the filtration induced in cohomology.

References

Timothy Y. Chow.

You could have invented spectral sequences.

Notices Amer. Math. Soc., 53(1):15–19, 2006.

1

The Stacks project authors.

The stacks project.

https://stacks.math.columbia.edu, 2020.

(document)