Optimization 1

Winter 2020/2021

(g) M

What is this course about?

- Gaining tools in order to solve non-linear problems:
 - Characterization of solutions
 - Duality
 - Iterative methods
- Understanding what optimization problems are easy/hard
- Hands on experience coding
- Writing proofs:
 - Mathematical accuracy
 - Logic
 - Finding the "holes"

Optimization I - Topics

- Theory
 - Unconstrained optimization (optimality conditions, semidefiniteness)
 - Convex Analysis convex sets, functions, separation and alternative theorems.
 - Convex Optimization
 - Stationarity
 - KKT conditions
 - Duality
- Applications such as: geometric fitting, portfolio optimization, robust regression, localization, signal estimation, clustering...
- Algorithms only a flavor:
 - gradient
 - projected gradient
 - Newton
 - Gauss-Newton
 - Dual-Based.
- Also, MATLAB, CVX...

Optimization II -Topics

Theory

- Nonsmooth analysis subgradients.
- Strong convexity/smoothness.
- Proximal operator
- Gradient Mapping.
- Algorithms Rigorous.
 - Classical algorithms (conjugate gradient, Newton, Quasi Newton).
 - Proximal Gradient Algorithms.
 - Fast Proximal Gradient Algorithms (FISTA)
 - Mirror Descent
 - Bundle
 - Stochastic Gradient
 - Dual-Based Methods
 - Alternating minimization
 - ADMM
 - and more...

Optimization under uncertainty

- Types of uncertainty
- Robust feasibility and optimality
- Robust optimization
 - Constructing uncertainty set
 - The robust counterpart
 - Adaptive optimization
 - Affine decision rules.
 - Multi-period robust optimization.
- Distributionally robust optimization
 - Stochastic programming
 - Ambiguity sets
 - Solution methods and approximations
- Data-driven robust methods
 - How can we utilize data to construct robust solutions

Books

- 1. "Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB", Beck.
- 2. "Convex Optimization", Boyd and Vandenberghe.
- 3. "Nonlinear Programming" Bertsekas
- 4. "The Mathematics of Nonlinear Programming", Peressini, Sullivan, Uhl.
- 5. "Convex Analysis", Rockafellar.
- 6. "Convex Analysis and Optimization", Bertsekas.

Policies

- Grading
 - 45% HW given every week (11-12 assignments take best of 9-10)
 No solutions will be published.
 - 55% final
- Course staff and office hours
 - Lecturer: Dr. Shimrit Shtern, 409 Bloomfield/Zoom <u>shimrits@technion.ac.il</u>
 - Thursdays upon appointment
 - TA: Eyal Gur, <u>eyal.gur@campus.technion.ac.il</u> Tuesdays 15:30-16:30 Location 426 Cooper Build./Zoom