ORACLE

DatabaseWorld @ CloudWorld

Oracle Autonomous Database as a Platform for Data Science and Machine Learning DIG3519

Mark Hornick

Senior Director Oracle Machine Learning September 2023

Oracle Autonomous Database

Using the Cloud to eliminate the complexity of data management

Autonomous Database

Oracle Database reimagined for the Cloud

- Completely automating the full database management lifecycle
- Supporting mission-critical databases
- Enabling you to innovate more, pay less, and ensure data security

Oracle's Converged Database

Instead of single-use proprietary databases run converged, open Database

All modern data types, analytics, and the latest development paradigms built into one product at no additional cost

Autonomous Database as a Platform for Data Science and Machine Learning

Deployment

Data Understanding Data Preparation Modeling

Autonomous Database as a Platform for Data Science and Machine Learning

Data Studio Tools

Catalog

Insights

Machine Learning Notebooks

Graph Studio

Spatial Studio

Use cases and machine learning techniques

Address business problems that impact customers, products, operations, and employees

Classification

Association Rules

Product cross sell and upsell Product bundling

Next best offer

Customer segmentation Document classification

Biological species classification Location-based house value analysis Exploratory data analysis

Clustering

Customer lifetime value prediction

Loan prepayment prediction Probability of default

Predictive maintenance

Customer loyalty/churn Customer acquisition Employee retention

Fraud detection Network intrusion detection

Unusual case identification **Anomaly Detection** Regression

Demand forecasting Sales and revenue forecasting ATM withdrawal forecasting

Time Series

Oracle Machine Learning In-Database Algorithms

Address a wide range of business problems

Classification

Decision Tree

Explicit Semantic Analysis

Logistic Regression (GLM)

Naïve Bayes

Neural Network

Random Forest

Support Vector Machine (SVM)

XGBoost

Clustering

Hierarchical K-Means Hierarchical O-Cluster

Expectation Maximization

Row Importance

CUR Decomposition

Ranking

XGBoost

Regression

Generalized Linear Model (GLM) Neural Network

Support Vector Machine (SVM)

Stepwise Linear regression

XGBoost

Feature Extraction

Principal Comp Analysis (PCA) Non-negative Matrix Factorization Singular Value Decomposition (SVD) Explicit Semantic Analysis (ESA)

Attribute Importance

Minimum Description Length Random Forest Unsupervised Pairwise KL Divergence CUR decomposition for row & Al

- OML Algorithm Cheat Sheet
- Algorithm Documentation
- OML Performance on ADB

Time Series

Exponential Smoothing Multiple Time Series (23c) Includes popular models e.g., Holt-Winters with trends, seasonality, irregular time series

Anomaly Detection

One-Class SVM MSET-SPRT Expectation Maximization (23c)

Association Rules

A priori

Survival Analysis

XGBoost

Includes support for partitioned models, integrated text mining, automatic data preparation

Oracle Machine Learning In-Database Algorithms

Empower users with ML included in Oracle Autonomous Database

In-database, parallelized, distributed algorithms

ML models as first-class database objects

Faster time-to-market through immediate solution deployment

Build in-database models from OML APIs: SQL, R, Python

Example - determine which customers are likely to buy travel insurance

Build in-database models from OML APIs: SQL, R, Python

Example - determine which customers are likely to buy travel insurance

```
CUSTOMERS = oml.sync(table="CUSTOMERS")

X = CUSTOMERS.drop("BUY_TRAVEL_INSURANCE")

y = CUSTOMERS["BUY_TRAVEL_INSURANCE"]

svm_mod = svm()

svm_mod = svm_mod.fit(X, y,

model_name = 'BUY_TRAVEL_INSUR')
```


Build in-database models from OML APIs: SQL, R, Python

Example - determine which customers are likely to buy travel insurance

```
CUSTOMERS = oml.sync(table="CUSTOMERS")

X = CUSTOMERS.drop("BUY_TRAVEL_INSURANCE")

y = CUSTOMERS["BUY_TRAVEL_INSURANCE"]

svm_mod = svm()

svm_mod = svm_mod.fit(X, y,

model_name = 'BUY_TRAVEL_INSUR')
```

Apply a machine learning model to predict probability that individual customer is likely to buy

```
SELECT prediction_probability(BUY_TRAVEL_INSUR, 'Yes'

USING 98400 as income, 45 as age, 'Married' as marital_status, 2 as num_previous_cruises)

FROM dual;

PREDICTION_PROBABILITY(BUY_INSUR1, YES'USING3

1 0.9276956709910801
```


Machine Learning Modeling Process

Automated Machine Learning (AutoML)

Simplify the modeling process

Eliminate repetitive tasks of model building and evaluation

Increase user **productivity**

Enable **non-experts** to produce ML models

Apply ML to the ML process to reduce search space and compute

Build in-database models using Python and skip the details

OML4Py AutoML API simplifies the modeling process

Algorithm Selection

Build in-database models using Python and skip the details

OML4Py AutoML API simplifies the modeling process

Algorithm Selection

```
%python
 as wine cl = automl.AlgorithmSelection(mining function='classification',
                                       score metric='accuracy', parallel=2)
                                                                                                    Feature Selection
 wine alg ranking cl = as wine cl.select(WINE X cl, WINE y cl, k=4)
                                 %python
                                                                                                                  FINISHED
 print("Ranked algorithms:\n",
                                                                                                            ▷ 洗 圃 ⊹
                                 fs wine cl = automl.FeatureSelection(mining function = 'classification',
 selected wine alg cl = next(ite
                                                                      score metric = 'accuracy', parallel=2)
 print("Best algorithm: ", select
                                 selected wine features cl = fs wine cl.reduce(selected wine alg cl,
Ranked algorithms:
                                                                               WINE X cl, WINE y cl)
[('svm gaussian', 0.98255159474
2114714554), ('rf', 0.9495470383
                                 WINE X reduced cl = WINE X cl[:,selected wine features cl]
Best algorithm: svm gaussian
                                 print("Selected columns:", WINE X reduced cl.columns)
                                 print("Number of columns:")
                                 "{} reduced to {}".format(len(WINE X cl.columns), len(selected wine features cl))
                                Selected columns: ['alcohol', 'ash', 'alcalinity of ash', 'flavanoids', 'nonflavanoid pheno
                                ls', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
                                Number of columns:
                                '13 reduced to 9'
```


Build in-database models using Python and skip the details

OML4Py AutoML API simplifies the modeling process

Algorithm Selection

```
围
 %python
 as wine cl = automl.AlgorithmSelection(mining function='classification',
                                       score metric='accuracy', parallel=2)
                                                                                                   Feature Selection
 wine alg ranking cl = as wine cl.select(WINE X cl, WINE y cl, k=4)
                                 %python
                                                                                                                 FINISHED
 print("Ranked algorithms:\n",
                                                                                                           ▷ 洗 圃 ⊹
                                 fs_wine_cl = automl.FeatureSelection(mining_function = 'classification',
 selected wine alg cl = next(ite
                                                                     score metric = 'accuracy', parallel=2)
 print("Best algorithm: ", select
                                 selected wine features cl = fs wine cl.reduce(selected wine alg cl,
Ranked algorithms:
                                                                                                                                    Model Tuning
                                                                              WINE X cl, WINE y cl)
[('svm gaussian', 0.98255159474
2114714554), ('rf', 0.9495470383
                                 WINE X reduced cl = WINE X
                                                            %pvthon
                                                                                                                                             FINISHED
Best algorithm: svm gaussian
                                                                                                                                               囯
                                                                                                                                                  print("Selected columns:"
                                 print("Number of columns:
                                                             mt wine cl = automl.ModelTuning(mining function = 'classification', parallel=2)
                                 "{} reduced to {}".format
                                                             results cl = mt wine cl.tune(selected wine alg cl, WINE X reduced cl, WINE y cl)
                                Selected columns: ['alcohol
                                                            tuned model cl = results cl['best model']
                                                             tuned model cl
                                ls', 'color_intensity', 'hu
                                Number of columns:
                                '13 reduced to 9'
                                                           Algorithm Name: Support Vector Machine
                                                           Mining Function: CLASSIFICATION
```

Click your way to an ML model

OML AutoML UI accelerates model building with a no-code interface

Select the prepared data table and the column you want to predict

Start automated build and compare of multiple models with model quality metrics

Generate editable notebooks for desired models with AutoML-selected hyperparameter values

Rename models to easily recognize models in model repository

Deploy models immediately using SQL or deploy to OML Services as REST endpoints

Enhance data scientist productivity and help non-experts produce ML models

Use ML models from REST endpoints with OML Services

MLOps with ease of application integration

Model Management Deployment Monitoring **Cognitive Text** Topics and Text Store/ Version/ Real-time Batch Data Model keyword summary/ Organize Monitoring Monitoring Compare Scoring Scoring extraction similarity

Lightweight scoring using REST endpoints

Real-time data scoring for streaming and other applications

Singleton, small batch, and full batch scoring

Supports classification, regression, clustering and feature extraction models

Deploy in-database (native format) and third-party (ONNX format) models

Pay only for actual scoring compute – no separate VM provisioning or management

Simplify Python and R solution deployment

Data scientists and R/Python users develop solutions

Manage and invoke Python or R user-defined functions from the database environment Use third-party packages to augment database functionality Invoke from SQL and REST

No need to worry about starting, stopping, or managing Python or R engines explicitly Invoke user-defined functions in a data-parallel, task-parallel, and non-parallel manner

Top 10 enterprise requirements for data science and machine learning platform

For more information...

Webpages

https://oracle.com/machine-learning

https://www.oracle.com/database/spatial

https://www.oracle.com/database/graph

OML Blog

https://bit.ly/omlblogs

OML GitHub Repository

https://bit.ly/omlgithub

OML Office Hours

https://bit.ly/omlofficehours

Try on Oracle LiveLabs

Overview: https://bit.ly/omlfundamentalshol

OML4Py: https://bit.ly/oml4pyhol

OML Documentation

https://docs.oracle.com/en/database/oracle/machine-learning

Thank you

Mark Hornick

mark.hornick@oracle.com

@MarkHornick

MarkHornick

Group: Oracle Machine Learning

