Computabilità e Algoritmi (Computabilità) 22 Marzo 2013

Esercizio 1

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e, utilizzando esclusivamente la definizione, dimostrare che è primitiva ricorsiva la funzione $half: \mathbb{N} \to \mathbb{N}$, definita da half(x) = x/2.

Soluzione: L'insieme \mathcal{PR} delle funzioni primitive ricorsive è il minimo insieme di funzioni che contiene le funzioni di base:

- 1. $\mathbf{0}: \mathbb{N} \to \mathbb{N}$ definita da $\mathbf{0}(x) = 0$ per ogni $x \in \mathbb{N}$;
- 2. $\mathbf{s}: \mathbb{N} \to \mathbb{N}$ definita da $\mathbf{s}(x) = x + 1$ per ogni $x \in \mathbb{N}$;
- 3. $\mathbf{U}_j^K: \mathbb{N}^k \to \mathbb{N}$ definita da $\mathbf{U}_j^K(x_1, \dots, x_k) = x_j$ per ogni $(x_1, \dots, x_k) \in \mathbb{N}^k$.

e chiuso rispetto a composizione generalizzata e ricorsione primitiva, definite come segue. Date le funzioni $f_1, \ldots, f_n : \mathbb{N}^k \to \mathbb{N}$ e $g : \mathbb{N}^n \to \mathbb{N}$ la loro composizione generalizzata è la funzione $h : \mathbb{N}^k \to \mathbb{N}$ definita da:

$$h(\vec{x}) = g(f_1(\vec{x}), \dots, f_n(\vec{x})).$$

Date le funzioni $f: \mathbb{N}^k \to \mathbb{N}$ e $g: \mathbb{N}^{k+2} \to \mathbb{N}$ la funzione definita per ricorsione primitiva è $h: \mathbb{N}^{k+1} \to \mathbb{N}$:

$$\begin{cases} h(\vec{x}, 0) = f(\vec{x}) \\ h(\vec{x}, y + 1) = g(\vec{x}, y, h(\vec{x}, y)) \end{cases}$$

Occorre dimostrare che la funzione half può essere ottenuta dalle funzioni di base (1), (2) e (3), utilizzando ricorsione primitiva e composizione generalizzata. Si può procedere come segue.

Si definisce in primo luogo la funzione $\overline{sg}: \mathbb{N} \to \mathbb{N}$ tale che $\overline{sg}(x) = 1$ se x = 0 e $\overline{sg}(x) = 0$ altrimenti:

$$\begin{cases} \overline{sg}(0) = 1 \\ \overline{sg}(x+1) = 0 \end{cases}$$

Quindi la funzione $rm_2: \mathbb{N} \to \mathbb{N}$ che restituisce il resto della divisione di x per 2:

$$\begin{cases} rm_2(0) &= 0\\ rm_2(x+1) &= \overline{sg}(rm_2(x)) \end{cases}$$

Infine la funzione $half : \mathbb{N} \to \mathbb{N}$ può essere definita come:

$$\begin{cases} half(0) = 0 \\ half(x+1) = half(x) + rm_2(x) \end{cases}$$

Esercizio 2

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice totale crescente quando è totale e per ogni $x, y \in \mathbb{N}$, se x < y allora f(x) < f(y). Dimostrare che l'insieme delle funzioni totali crescenti non è numerabile.

Soluzione: Data una qualsiasi enumerazione delle funzioni totali crescenti $\{f_n\}_{n\in\mathbb{N}}$ si può definire una funzione $f:\mathbb{N}\to\mathbb{N}$

$$f(x) = 1 + \sum_{n=0}^{x} f_n(n),$$

che è totale crescente e diversa da tutte le f_n . Infatti,

- f è chiaramente totale per definizione.
- f è crescente, dato che $f(x+1) = f(x) + \varphi_{x+1}(x+1) > f(x)$. L'ultima disuguaglianza segue dal fatto che, essendo φ_{x+1} crescente, $\varphi_{x+1}(x+1) > \varphi_{x+1}(x) \ge 0$.
- f è diversa da tutte le f_x dato che per ogni $x \in \mathbb{N}$,

$$f(x) = 1 + \sum_{n=0}^{x} \varphi_n(n) \ge 1 + \varphi_x(x) > \varphi_x(x).$$

Ne consegue che nessuna enumerazione può contenere tutte le funzioni totali crescenti. \Box

Esercizio 3

Dato un sottoinsieme $X \subseteq \mathbb{N}$ si definisca $F(X) = \{0\} \cup \{y, y+1 \mid y \in X\}$. Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : W_x = F(E_x)\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme in esame è saturato, dato che $A = \{x : \varphi_x \in A\}$, dove $A = \{f \in \mathcal{C} : dom(f) = F(cod(f))\}\}$.

Utilizzando il teorema di Rice-Shapiro si prova A e \overline{A} sono entrambi non r.e.:

• A non r.e. Si consideri la funzione

$$f(x) = \begin{cases} 0 & \text{se } x = 0, 1, 2 \\ \uparrow & = \text{altrimenti} \end{cases}$$

Si ha che $f \notin \mathcal{A}$, in quanto $dom(f) = \{0, 1, 2\}$ e $cod(f) = \{0\}$. Dunque $F(cod(f)) = \{0, 1\} \neq dom(f)$. Inoltre se consideriamo

$$\theta(x) = \begin{cases} 0 & \text{se } x = 0, 1\\ \uparrow & = \text{altrimenti} \end{cases}$$

chiaramente $\theta \subseteq f$. Inoltre $dom(\theta) = \{0,1\}$ e $cod(\theta) = \{0\}$. Dunque $F(cod(\theta)) = \{0,1\} = dom(\theta)$ e pertanto $\theta \in \mathcal{A}$. Per il teorema di Rice-Shapiro si conclude quindi che A non è r.e.

• \overline{A} non r.e.

Si noti che se θ è la funzione definita al punto precedente, $\theta \notin \overline{\mathcal{A}}$, ma la funzione sempre indefinita $\emptyset \in \overline{\mathcal{A}}$, dato che $dom(\emptyset) = cod(\emptyset) = \emptyset$ e pertanto $F(cod(\emptyset)) = \{0\} \neq dom(\emptyset)$. Quindi, riassumendo $\theta \notin \overline{\mathcal{A}}$, ma ammette una parte finita, ovvero la funzione sempre indefinita $\emptyset \in \overline{\mathcal{A}}$. Per il teorema di Rice-Shapiro si conclude quindi che \overline{A} non è r.e.

Esercizio 4

Una funzione $f : \mathbb{N} \to \mathbb{N}$ si dice *crescente* quando per ogni $x, y \in dom(\underline{f})$, se x < y allora f(x) < f(y). Indicato con $B = \{x \in \mathbb{N} : \varphi_x \text{ crescente}\}$, dimostrare che $\overline{K} \leq_m B$.

Soluzione: Si può procedere in modo simile alla prova del teorema di Rice-Shapiro e definire

$$g(x,y) = \begin{cases} y & \text{se } \neg H(x,x,y) \\ 0 & \text{altrimenti} \end{cases}$$

In questo modo, se $x \in \bar{K}$ allora g, vista come funzione di y sarà l'identità, che è crescente. Altrimenti esisterà un numero di passi per cui H(x, x, y) e quindi da quel punto in poi g(x, y) è costantemente uguale a 0 e quindi non crescente

Più precisamente, si osserva che la funzione g(x,y) è calcolabile, dato che

$$g(x,y) = y \cdot \chi_{\neg H}(x,x,y)$$

Quindi per il teorema SMN, si ha che esiste una funzione $s:\mathbb{N}\to\mathbb{N}$ calcolabile totale tale che per ogni $x,y\in\mathbb{N}$

$$\varphi_{s(x)}(y) = g(x,y)$$

La funzione s è funzione di riduzione di \bar{K} a B. Infatti

- Se $x \in \bar{K}$ allora per ogni $y \in \mathbb{N}$ è falso H(x, x, y). Pertanto $\varphi_{s(x)}(y) = g(x, y) = y$ per ogni $y \in \mathbb{N}$. Quindi $\varphi_{s(x)}$ è crescente e pertanto $s(x) \in B$.
- Se $x \notin \bar{K}$ allora esiste un $y \in \mathbb{N}$ tale che vale H(x, x, y), e quindi vale anche H(x, x, y + 1). Pertanto $\varphi_{s(x)}(y) = 0 = \varphi_{s(x)}(y + 1)$. Quindi $\varphi_{s(x)}$ non è crescente e pertanto $s(x) \notin B$.

Alternativamente, in modo più semplice, si può osservare che la funzione sempre indefinita è crescente e la costante 0 non lo è. Pertanto basta definire $g(x,y) = sc_K(x)$ (funzione semi-caratteristica dell'insieme K, che è nota essere calcolabile dato che K è r.e.) e si procede poi come sopra.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che se C è un insieme tale che $C \leq_m \overline{C}$, allora C non è saturato.

Soluzione: Il Secondo Teorema di Ricorsione asserisce che data una funzione calcolabile totale $h: \mathbb{N} \to \mathbb{N}$ esiste $e \in \mathbb{N}$ tale che $\varphi_{h(e)} = \varphi_e$.

Per quanto riguarda la domanda, sia $C \leq_m \bar{C}$ e sia f la funzione di riduzione, ovvero $f: \mathbb{N} \to \mathbb{N}$ è calcolabile e totale, e soddisfa:

$$x \in C \quad \text{iff} f(x) \notin C$$
 (1)

Siccome f è calcolabile totale, per il Secondo Teorema di Ricorsione, esiste e tale che

$$\varphi_e = \varphi_{f(e)}. \tag{2}$$

Ora se $e \in C$, essendo C saturato, da (2) segue che $f(e) \in C$ e questo contraddice (1). Analogamente se $e \notin C$, si arriva ad una contraddizione. Quindi se ne conclude che la funzione di riduzione non può esistere e quindi C non è saturato.