Contents

1	\mathbf{test}	1	1
	1.1	test 2	1
		1.1.1	test 3
2	Mel	ting A	1
_	2.1	_	ound re: melting
		2.1.1	Theories of melting, 3D, 2D, bulk
		2.1.2	Expectations for 2D finite crystallites
	2.2		ment of Savage et. al
		2.2.1	Setup
		2.2.2	Tunable Depletion potential
		2.2.3	Results
	2.3	Simula	tions
		2.3.1	Motivation
		2.3.2	GROMACS System
		2.3.3	Brownian dynamics
		2.3.4	Simulated Depletion Potential
		2.3.5	Simulated Lennard-Jones Potential
		2.3.6	Results
		2.3.7	Discussion
3	Mel	ting B	3
	3.1	_	round
		3.1.1	Hypothesis: thermally-activated defects enhance melting
			rate in short-range 2D system
	3.2	Simula	tion Methods
		3.2.1	Gromacs system
		3.2.2	Brownian Dynamics
		3.2.3	Characteristics of Simulated Depletion Potential 3
		3.2.4	Initial configurations
	3.3	Results	3
		3.3.1	N vs t
		3.3.2	Order vs. N
		3.3.3	Breakdown by layers
	3.4	Conclu	sions
4	Dia	meter o	of Random Clusters 3
_	4.1		round
	4.2		tions
		D 14	

5	Phase Transitions in Computational Complexity				
	5.1	Background			
		5.1.1	Constraint Satisfaction Problems (CSP)		
		5.1.2	Proposal: study complexity of percolation model		
	5.2	Percola	ation		
		5.2.1	The Model		
		5.2.2	Background / applications		
	5.3	PRAM	1		
		5.3.1	Applications in comp sci		
		5.3.2	PRIORITY CRCW		
	5.4	Paralle	el Algorithm for Percolation		
	5.5	.5 Results			
		5.5.1	D_2 vs. p for several system sizes L		
		5.5.2	$\log(D_2)$ vs. $\log(L)$		
		5.5.3	Distribution of cluster sizes		

1 test 1

1.1 test 2

1.1.1 test 3

• test 4

2 Melting A

2.1 Background re: melting

2.1.1 Theories of melting, 3D, 2D, bulk

- 3D crystallites w/ stable surfaces melt from within via Born melting In this case, melting can be viewed as nucleation and growth of fluid phase within the solid.
- 2D large crystallites melt by two-step process via hexatic phase
- 2D finite crystallites melt from perimeter
 - if melt from perimeter, dN/dt goes as $N^{1/2}$

- 2.1.2 Expectations for 2D finite crystallites
- 2.2 Experiment of Savage et. al
- 2.2.1 Setup
- 2.2.2 Tunable Depletion potential
- 2.2.3 Results
 - N vs. t
 - $< psi6 >^2 vs. N$
 - C_6 vs. N, by layer
 - No dependence of fast-melting feature on initial cluster size or melting rate
- 2.3 Simulations
- 2.3.1 Motivation
- 2.3.2 GROMACS System
- 2.3.3 Brownian dynamics
- 2.3.4 Simulated Depletion Potential
- 2.3.5 Simulated Lennard-Jones Potential
- 2.3.6 Results
 - N vs. t
 - $< psi6 >^2 vs. N$
 - C_6 vs. N, by layer
 - mean-square fluctuations in bond lengths
 - $\bullet\,$ N vs. t for Lennard-Jones potential
 - Phase diagram showing lack of fluid phase with short-range potential

2.3.7 Discussion

3 Melting B

- 3.1 Background
- 3.1.1 Hypothesis: thermally-activated defects enhance melting rate in short-range 2D system
- 3.2 Simulation Methods
- 3.2.1 Gromacs system
- 3.2.2 Brownian Dynamics
- 3.2.3 Characteristics of Simulated Depletion Potential
- 3.2.4 Initial configurations
- 3.3 Results
- 3.3.1 N vs t
- 3.3.2 Order vs. N
- 3.3.3 Breakdown by layers
- 3.4 Conclusions
- 4 Diameter of Random Clusters
- 4.1 Background
- 4.2 Simulations
- 4.3 Results
- 5 Phase Transitions in Computational Complexity
- 5.1 Background
- 5.1.1 Constraint Satisfaction Problems (CSP)
 - Examples
 - kSAT
 - Graph-coloring

- Spin models
- error-correcting codes
- Observation of threshold behavior in CSP
- Difficulties in tackling phase behavior of CSP
- 5.1.2 Proposal: study complexity of percolation model
- 5.2 Percolation
- 5.2.1 The Model
- 5.2.2 Background / applications
- **5.3** PRAM
- 5.3.1 Applications in comp sci
- 5.3.2 PRIORITY CRCW
- 5.4 Parallel Algorithm for Percolation
- 5.5 Results
- 5.5.1 D_2 vs. p for several system sizes L
- 5.5.2 $log(D_2)$ vs. log(L)
- 5.5.3 Distribution of cluster sizes
 - logarithmic or power law? (power law -¿ algorithm will often fail)