Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(2-\sqrt{2})+\sqrt{2}(\sqrt{3}-\sqrt{6})=2\sqrt{3}-\sqrt{6}+\sqrt{6}-\sqrt{12}=$	3p
	$=2\sqrt{3}-2\sqrt{3}=0$	2p
2.	$f(a) = a^2 - 2$	2p
	$a^2 - 2 = a$, deci $a = -1$ sau $a = 2$	3 p
3.	$2^{7x-5} = 2^{2x} \Leftrightarrow 7x-5 = 2x$	3 p
	x=1	2p
4.	Mulțimea A are 5 elemente, deci sunt 5 cazuri posibile	1p
	În mulțimea A sunt 4 numere care verifică relația dată, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{5}$	2p
5.	Q(5,2)	2p
	$MQ = \sqrt{(5-1)^2 + (2-2)^2} = 4$	3p
6.	$\sin 30^\circ = \cos 60^\circ , \sin 45^\circ = \cos 45^\circ$	2p
	$\sin 30^{\circ} + \sin 45^{\circ} - \cos 60^{\circ} - \cos 45^{\circ} = \sin 30^{\circ} + \sin 45^{\circ} - \sin 30^{\circ} - \sin 45^{\circ} = 0$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - (-1) \cdot 1 =$	3p
	=4+1=5	2 p
b)	$ \begin{pmatrix} x & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} y & 1 \\ -1 & 2 \end{pmatrix} = 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} xy-1 & x+2 \\ -y-2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} $	3p
	x = -2, $y = -2$	2p
c)	$A(p)\cdot A(p)+I_2 = \begin{pmatrix} p^2 & p+2 \\ -p-2 & 4 \end{pmatrix} \Rightarrow \det(A(p)\cdot A(p)+I_2) = 5p^2+4p+4$	2p
	$5p^2 + 4p + 4 = 5 \Leftrightarrow 5p^2 + 4p - 1 = 0$ şi, cum p este număr întreg, obținem $p = -1$	3p
2.a)	$2*2=2\cdot 2-(2+2)+2=$	3р
	=4-4+2=2	2 p
b)	x * y = xy - x - y + 1 + 1 =	2p
	=x(y-1)-(y-1)+1=(x-1)(y-1)+1, pentru orice numere reale x și y	3 p
c)	1*x = x, pentru orice număr real x	3 p
	1*2*3**2018 = 1*(2*3**2018) = 1	2p

SUBIECTUL al III-lea (30 de puncte)

	· -	
1.a)	$f'(x) = \frac{(2x+1)(x^2+2x+2)-(x^2+x+1)(2x+2)}{(x^2+2x+2)^2} =$	3p
	$= \frac{x^2 + 2x}{\left(x^2 + 2x + 2\right)^2} = \frac{x(x+2)}{\left(x^2 + 2x + 2\right)^2}, \ x \in \mathbb{R}$	2 p
b)	f(-1)=1, f'(-1)=-1	2 p
	Ecuația tangentei este $y - f(-1) = f'(-1)(x+1)$, adică $y = -x$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -2] \Rightarrow f$ este crescătoare pe $(-\infty, -2]$, $f'(x) \le 0$, pentru orice $x \in [-2, 0] \Rightarrow f$ este descrescătoare pe $[-2, 0]$ și $f'(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f$ este crescătoare pe $[0, +\infty)$	2p
	$\lim_{x \to -\infty} f(x) = 1, \ f(-2) = \frac{3}{2}, \ f(0) = \frac{1}{2} \text{ si } \lim_{x \to +\infty} f(x) = 1, \ \text{deci } \frac{1}{2} \le f(x) \le \frac{3}{2} \text{ si } \frac{1}{2} \le f(y) \le \frac{3}{2},$ $\text{de unde obținem } 1 \le f(x) + f(y) \le 3, \text{ pentru orice numere reale } x \text{ si } y$	3 p
2.a)	$\int_{0}^{1} \left(f(x) - x^{3} \right) dx = \int_{0}^{1} \left(-6x^{2} + 12x + 5 \right) dx = \left(-2x^{3} + 6x^{2} + 5x \right) \Big _{0}^{1} =$ $= -2 + 6 + 5 - 0 = 9$	3p 2p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a lui $f \Rightarrow F'(x) = f(x)$, $F''(x) = 3x^2 - 12x + 12$, $x \in \mathbb{R}$	3p
	$F''(x) = 3(x-2)^2 \ge 0$, pentru orice număr real x , deci funcția F este convexă pe \mathbb{R}	2p
c)	$f'(x) = 3(x-2)^2 \Rightarrow \int_2^4 \frac{3}{f'(x)+12} dx = \int_2^4 \frac{1}{(x-2)^2+4} dx = \frac{1}{2} \operatorname{arctg} \frac{x-2}{2} \Big _2^4 =$	3 p
	$= \frac{1}{2} \left(\operatorname{arctg} 1 - \operatorname{arctg} 0 \right) = \frac{\pi}{8}$	2p