LECTURB 9 MAXIMAL TORI. § 5.1 ERRATA FROM LAST TIMB PROP. 4.2.3 Every connected compact lie group with finite cuti his a compect lie algebra COUNTERBXAMPLZ: O(2) 7(G) c ken (Ad). Atoms T is a lie group which is isomorphic to S'), for some h >0. Ex33 A comet d lie group G is abelian if and only if lie G is abelian. Grabelian conected => G ~ R / P , Polishte suspup. The a consisted abelian lie group, $G \subseteq (S')^{\alpha} \times (\mathbb{R})^{5}$. PE We just mud to show that a distrete susquep of M

PE We just much to show that a distrete susquep of \mathbb{N} is generated to glimenty independ vectors $\{v_i\}$ To $\Gamma = \int_{i=1}^{K} a_i v_i \mid a_i \in \mathbb{Z}$ and $\mathbb{R}^m / \Gamma \cong (S^1)^k \times \mathbb{R}^{m-k}$

We show the claim by ind. on m.
<u>w=0</u> \
Pistrivial V.
Asme (not trivial =>] V F / (o), st. V is mininal.
(,) suelon product on pr
$p: \mathbb{R}^m \longrightarrow V$. $p(\Gamma)$ is a district embgrap of V .
$\alpha \in \rho(\Gamma)$.
$P^{-1}(a) \cap \Gamma = \alpha + cv + 7/v, \alpha \leq \frac{1}{2}$
if $p(\Gamma)$ is not olivate, $\exists \alpha \in p(\Gamma)^{lot}$ s.t. $ \alpha < \frac{1}{2} v $.
$\alpha + cv \in \Gamma$, $\ (\alpha + cv)\ ^2 \le \ (\alpha + cv)\ ^2 \le \frac{1}{4} \ (v)\ ^2 \le \frac{1}{4} \ (v)\ ^2 + \frac{1}{4} \ (v)\ ^2$
=) (u+cv < v . } 5/c v wa minial.
Exp(r) was obsute in v= m^-
$\Rightarrow p(r) = \langle \overline{v_1}, \overline{v_k} \rangle / \overline{v_i} / \overline{v_k} $ and vectors.
$v_i \in P^{-1}(\overline{v_i}) \cap P = \langle v_i v_{i_1}, v_k \rangle$
Cor If to is compact com. abeliantie group, then
Gris a tows.

Det let k be a corpect lie group.
We call a maximal tons of k a surjust ch
which is ironophic to (S1), and that it is not contained in any other tons.
in any other tons.
Maxinol tous always exist!
EXAMPLES, SO3 (R) > St = 1 rotations along the trans Every VERS dufines a tous by taking rotations ith axis V
Every VEM3 dufines à tous by taking notations
with axis V. All maximal ton are conjugated.
All maxinal ton are conjugates.
· Un (C). a maximal tous is given by diagonal
matrices; m UnCC)
$T = \begin{cases} \begin{pmatrix} x^{i\theta}, & 0 \\ 0 & e^{i\theta} \end{pmatrix} & \stackrel{\sim}{=} S_{i}^{N} \end{cases}$
$\frac{1}{2}\left(\frac{1}{2}\right)\right)\right)}{\frac{1}{2}}\right)\right)}\right)\right)}\right)}\right)}\right)}\right)}\right)}$
Come k compact lie group. I maximal tous Ch.
$Z_{L}(T) = T$
· · · · · · · · · · · · · · · · · · ·
Pt ? is clear.
Since they are both corrected, it's month to show
Since they are both corrected, it's maybe to show lie to (T) = lie T
1/2, 2 $1/2$

 $x \in ke_{h}(T)$. $\frac{\Phi}{\chi}: \mathbb{R} \times T \longrightarrow \chi$ $(a,t) \longmapsto e^{a\chi}t.$ $\frac{\pi}{2}(T)$ (m Ex is ablian lie grup, and corrected $e^{ax}t^{1}=e^{(a+a')x}t^{1}=$ ea'x raxt't= ea'xt'eaxt In Ex is an abelian compact connected. =) (m d is a toms. and T c limitex =) limitex = T. Fx(a,1) ET YaER= e et tager => x shet. & lie grop, N novol closed subgroup We can take the quotient GrN. The Gyn is a lie group. We onit the proof.

H closed relaporp. Cop is a differentiable rainfold.
N C a closed morel suggesp.
hel Chie Grisaniolud.
ha Killing for of G
halvien = kn.
Admen now N is compact. din-dink olink-olin N Lie G= Lie N D (Lie N)
lie G ≈ lie N ⊕ (lie N)
p. G > G/N => dp: lie G > lie G/N)
dp (lie N) = 0 (b/c. dp(o))=dpox(t)) (=0
at,
her(olp) = he N => do indres an iso between.
her (olp) = he N => dp inshes an iso between. (he N) = he (G/N) Lua k corpaet he group, with a monal susquep N Ch which is a toms, and
Clohd
Lua K Corpaet lie group, with a monal susprup
NCh which is a toms, and
N/N is orgain a tons, then h is also a tons
Pf lieh ≈ lie N + lie N +
(ie N° = Lie (h/n) asolion

=) he k is abelian => h abelian commet copact =) h toms The k connected opt. he group. () txeh IT maximal tons s.t. XET, 2) (4 T, T' are maximal toni, thun IgEk s.t. g Tg-12T1. Pt TCh maxinal tous inh. Hun g Tg dis a maximal tous ty the lix a nax. tous T. We want to Now K= Og Tg geT We show this by ind. onk. olin N = 6, h=let $\frac{1}{2}$ dinh > 0 $\frac{1}{2}$ = $\frac{1}{2}$ (K) center. TZ° is conceted corpet abelian mayor =) TZ'isatoms =) T=TZ°=> Z°CT

T/70 c le/20 is a maximal tous. If olim 70>0, din (4/20) = din K-din 7 cdin k $h/z_0 = 0 \quad \text{a} \quad \text{Ta}^{-1} \quad \text{Z}^0/z_0 \Rightarrow h = 0 \quad \text{geho}$ gehoxth x= qtq-1- = y(tz)g-1. What hoppins if $7^\circ = 1e^{3}$?
We claim q(T) = k 7 $q \in k$ Taling closures UgTg = h Note Ug Tg - is closed Sic its the inoger
of P: hxT >h $(g_1+) \mapsto g+g^{-1}$. (f dinh = 1 =) h=T. If olinh 22. => h / t is corrected. So it is enough to show Ug(T(7)g) Ch(7 closed and open.

· closed because Hg gtg= g(T(7)g] UZ Ogtg = Ug (T(7)g UZ
gth gth · Why I g(T/7) g is open? te Tit, 20 open mehd U, st contained in Ug(T (7)g-1. H=Zn(+), TCH & K, T maximal olinh

Ay ind. H= U gTg (1) (1) $H = \int h(T)^{-1} \int g(HT)^{-1}$ $h \in H$ geh gek (heH gh(T)7) (gh)7)

Y: N × (H)7) -> h $(q,h) \rightarrow ghg^{-1}$ Jyc Lm(Y) By the inverse inog thronen we are olone if we show that differential of X is sujective $Y': k \times H \longrightarrow k$ $(g, h) \longmapsto t'gthg'$ Want to Now that I' has sny, diff. in dy: hehxhiett -> hiek (1,1) $(x,y) \mapsto Ad(t^{-1})x + y - x$ $(Ad(t^{-1})-Id) \times tM$ (INA)liet = fx + lieh (Ad(t)x=x Ht) Liett C ka (Ad(t-1)-ld).

