

(2)	1(32	, 4,, 203)			
×	p(x)	F(x)	Q[x,0.3] = 6			
2	0.1	0-1	Q[x,0.9]=18			
400	0.1	0.2	Q[X, 0.85]=16 X	FW)= 0.85		
10		0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
12		0.6				
18	V	0.8				
20		1.0				
f X	is a	Continuous	ry with Continues &	pport ie one	internal with re	
			real numbers but not e			
			increasing thus invertible			
9,2	F(x)	would be	F'(q) ZX = F'	(g) = Q[x,97		
X	Exp (a)= 2e ==================================	> $F(x) = 1 - e^{-2x}$ quantil	the quartile	function, F (9)	
9=	1-e-2	× 7 1-9=	e-7x > ln(1-q)=-7	× =×= th	(1-9)	
=>	x	ln(T-q)= F	-'(q).			
			Annual Long			
X~	Exp(1)	> Med[x	$7 = F'(0.5) = I_n(2)$			
		Q	x,0.8] = ln(5)			
1'5	rare	to have a	quartile function in	closed form since	e H's rare to	
			ed form. e.g.			
Xnl	trlang(K,2), F(x)= P(K,2x). Q[X,9	I can be fau	nd by solving for x	
n +	he fol	loving equa)= $P(K,2x)$. $Q[X,g]$ tion: $g=P(K,2x)$.		Y K	

.

X-Exp(s), Y= Kex, K>O. Find fy(y) $\frac{y}{k} = e^{x} \Rightarrow x = \ln(\frac{y}{k}) = \ln(y) - \ln(k) = g^{-1}(y)$, fr(y)= fx(g'(y)) = fx[g'(y)] $\Rightarrow = \pi e^{-\pi \ln(\frac{y}{\kappa})} + 1 = \frac{\pi}{y} e^{\ln(\frac{y}{\kappa})} \frac{1}{1}$ $\ln y - \ln \kappa + [0, \infty)$ $F_{Y}(y) = \int_{-\frac{1}{2}}^{x} \frac{\pi k^{2}}{t^{2+1}} dt = \pi k^{2} \left[-\frac{1}{2} \frac{1}{x^{2}} \right]_{k}^{x} = K^{2} \left[\frac{1}{k^{2}} - \frac{1}{y^{2}} \right] = 1 - \left(\frac{K}{y} \right)^{2} = q$ FY(q) = K(1-q) = Remember, openential is a survival/waiting line r.v. So is the Parto. The Pareto is used to model population spread, hard-drive time-to-failure. There is also the "Parelo Principle". In 1896, Vittredo Parelo voticed that 80% of the land in Italy was award by 20% of the people. That is a property of a specific Parelo distribution, Parelo I (1,1.161)

X, Y ill Exp(1), let D= X-Y = X+(-Y) fo(d) = fold (x) fold -x) 1 dx
d-x & Supp[=] if deo = Laplace (O,1) Standard Laplace X= p+0D~ Laplace(p,0):= 1 e-1x-pt MER, 0>0 this is are a farmous or and it has another name: the 'dutte expressial' Laplace published tens distribution in 1774 calling it the "first law of errors. f(d)