- INF01047 -Rasterização de linhas no plano

1

Como formamos as imagens na tela?

Hierarquia de Rasterização

A rasterização de um objeto é feita rasterizandose os polígonos que o compõem. A rasterização de cada polígono é feita a partir da rasterização das arestas definidoras do mesmo.

3

Rasterização = Scan Conversion

Representação Vetorial

Visualização Matricial

Rasterização de linhas

- Algoritmos de conversão de definição geométrica para pixels
- Rasterizar = escolher pixels
- · Operação muito frequente
 - Deve ser eficiente!!

Aritmética de inteiros Usar somas no lugar de multiplicações

5

Desenho de linhas

- Sejam as retas definidas por
 - P1=(1,1) e P2=(6,3)
 - P1=(0,1) e P2=(1,4)
 - Quais são os pixels que devem ser "ligados"?

Desenho de linhas

- Sejam as retas definidas por
 - P1=(1,1) e P2=(6,3)
 - P1=(0,1) e P2=(1,4)
 - Quais são os pixels que devem ser "ligados"?

7

Desenho de linhas: algoritmo básico

Dados os pontos extremos da linha na tela (já inteiros)

$$Pt1 = (x1, y1), Pt2 = (x2, y2)$$

- Calcula coeficientes da equação da reta
 - 2 operações com inteiros
 - 3 operações de ponto flutuante
- · Liga todos os pixels que pertencem à reta

$$y = mx + b$$

$$m = \frac{y2 - y1}{x2 - x1}$$

$$b = y1 - m \cdot x1$$

for $\mathbf{x} = x1$ to x2 (assume incrementos unitários de x) $\mathbf{y} = \mathbf{m} * \mathbf{x} + \mathbf{b}$

Desenha ponto(x,y) (x, y) inteiros! Como? Arredondamento

Para o exemplo anterior

X	у
1	1
2	2/5*2+3/5 7/5=1.4=1
3	2/5*3+3/5 9/5=1.8= <mark>2</mark>
4	2/5*4+3/5 11/5=2.2= 2
5	2/5*5+3/5 13/5=2.6= 3
6	2/5*6+3/5 15/5= <mark>3</mark>

UFRGS

Problemas...

- Assume 0<=m<=1
- 2 operações de ponto flutuante por pixel (multiplicação e soma)
- Porque trabalhar com float se pixels tem coordenadas inteiras?

Desenho de linhas: outra opção

 Usando a equação paramétrica da reta

$$P = Pt1 + t * (Pt2 - Pt1), 0 <= t <= 1$$
 $dx = x2 - x1 dy = y2 - y1$
 $x = x1 + t * dx$
 $y = y1 + t * dy$

$$x(t) = 1 + t(6-1) = 1 + 5t$$

 $y(t) = 1 + t(3-1) = 1 + 2t$

Para t=1/2 teríamos

$$x(0.5) = 1 + 5/2 = 7/2 = 3.5$$

 $y(0.5) = 1 + 1 = 2$

11

Desenho de linhas

• "Pinta" todos os pixels que pertencem à reta

```
y = y1;
x = x1;
for t = 0 to 1
    desenha ponto(x,y);
    y = y1 + t * dy;
    x = x1 + t * dx;
```

Continua com 2 multiplicações de ponto flutuante por pixel

Como saber o valor para incrementar em t?

Desenho de linhas

- Resumo dos problemas
 - Inclinação das linhas
 - Desempenho
 - Número de operações
 - Operações com números reais x inteiros
 - Multiplicações x adições

- Soluções
 - eliminar ou reduzir operações com números reais
 - aproveitar coerência espacial
 - similaridade de valores referentes a pixels vizinhos
- Exemplos:
 - DDA: Digital Differential Analyzer
 - Bresenham (1965)

13

Desenho de linhas: DDA

- Dados pontos extremos de um segmento de reta
 - Pt1 = (x1, y1)
 - Pt2 = (x2, y2)
- · Da álgebra elementar

$$m = (y2 - y1)/(x2 - x1)$$

 $m (x2 - x1) = y2 - y1$

$$y2 = m(x2 - x1) + y1$$
, x variando de x1 a x2

 Qual o incremento em y, se x varia unitariamente?

Resolvendo ...

- y = m(x x1) + y1
- y' = m((x+1) x1) + y1
- y' y = ?
- [m((x+1)-x1) + y1] [m(x-x1) + y1]
- m(x+1) mx1 + y1 mx + mx1 y1
- m(x+1) mx1 + y1 mx + mx1 y1
- mx + m mx

O incremento em y é m!

15

Desenho de linhas: DDA

```
/* Interpolate values between start (xa, ya) and end (xb, yb) */
void DDA (int xa, int ya, int xb, int yb)
{
    int x;
    float m = (float) (yb - ya) / (float) (xb - xa); //m is the slope
    float y = ya;
    for (x=xa; x<=xb; x++) {
        output(x, round(y));
        y = y + m;
    }
}</pre>
```

 Ainda mantém uma operação de ponto flutuante por pixel

$$y = y + m$$

Necessidade do arredondamento

Desenho de linhas: Bresenham (1965)

• Idéia chave: a cada avanço
unitário em x, é preciso
escolher apenas entre 2
pixels

Pixel Northeast (NE)

Pixel East (E)

+

Desenho de linhas: Bresenham

0<=m<=1

- Para incrementos unitários em x
 - A opção entre incrementar y ou não é determinada em função da distância do segmento de reta até o ponto na grade (raster).
 - Esta distância é chamada de erro (diferença para o y ideal, sobre a reta)
 - Minimizar este erro

Desenho de linhas: Bresenham

 Na reta real, quando x tem incremento unitário, y é incrementado de m

19

Desenho de linhas: Bresenham

UEDOS

Desenho de linhas: Bresenham

Calcular erro = s-t envolve avaliar números reais!

21

Bresenham

· Determinando o erro incrementalmente

Bresenham (Definições)

23

Bresenham (Definições)

WEDGE

Bresenham (Atualização do erro)

27

Bresenham (Definições)

UED C.C

Bresenham (Definições)

Bresenham (Definições)

Caso 2 do próximo erro (pixel escolhido E)

Bresenham (Definições)

Caso 2 do próximo erro (pixel escolhido E)

31

Algoritmo Bresenham Real

```
ALGORITMO BRES_REAL (x0, y0, x1, y1)
```

```
x = x0; y = y0;
```

2.
$$dy = y1-y0$$
; $dx = x1-x0$;

3.
$$m = dy/dx$$
;

4.
$$e = m - 0.5$$
;

7. IF
$$(e > 0)$$
 {

8.
$$y = y+1$$
;

9.
$$e = e - 1;$$

10.
$$e = e+m;$$

11.
$$x = x+1$$
;

Substituindo e por $ei = 2e^*dx$

```
-> ei = 2 * (m-0.5)*dx
ALGORITMO BRES_REAL (x0, y0, x1, y1)
                                                     -> ei = (2*dy/dx-1)*dx
1.
     x = x0; y = y0;
                                                     -> ei = 2*dy-dx
2.
     dy = y1-y0; dx = x1-x0;
3. m = dy/dx;
                                                     -> 2*(e-1)*dx
4.
    e = m - 0.5:
    FOR i=0 TO dx
5.
                                                     -> 2edx - 2dx
       WritePixel(x, y);
6.
                                                     -> ei – 2dx
7.
       IF (e > 0) {
8.
          y = y+1;
9.
          e = e - 1;|
                                                     -> 2*(e + dy/dx)*dx
10.
        e = e + m;
                                                     -> 2edx + 2dy
11.
        x = x+1;
      ENDFOR
                                                     -> ei + 2dy
12.
```

<u>∳</u> UFRGS

Bresenham inteiro

```
-> ei = 2 * (m-0.5)*dx
ALGORITMO BRES_INT (x0, y0, x1, y1)
                                                      -> ei = (2*dy/dx-1)*dx
1.
     x = x0; y = y0;
                                                      -> ei = 2*dy-dx
2.
     dy = y1-y0; dx = x1-x0;
3.
4. e = 2dy-dx;
                                                      -> 2*(e-1)*dx
5.
     FOR i=0 TO dx
                                                      -> 2edx - 2dx
6.
       WritePixel(x, y);
                                                      -> ei – 2dx
7.
       IF (e > 0) {
8.
          y = y+1;
9.
          e = e - 2dx;
10.
     e = e + 2dy;
                                                      -> 2*(e + dy/dx)*dx
11.
        x = x+1;
                                                      -> 2edx + 2dy
12.
     ENDFOR
                                                      -> ei + 2dy
```


Bresenham inteiro

```
ALGORITMO BRES_INT (x0, y0, x1, y1) .
     x = x0; y = y0;
2.
     dy = y1-y0; dx = x1-x0;
3.
4.
    e = 2dy-dx
5.
     FOR i=0 TO dx
6.
       WritePixel(x, y);
7.
       IF (e > 0) {
8.
         y = y+1;
9.
         e = e - 2dx;
10. e = e+2dy;
11.
       x = x+1;
12. ENDFOR
```

- Usa simetria para reduzir a complexidade
 - Linhas em outros quadrantes
- Escolha se limita a dois pixels
- Usa função de erro como critério de escolha
- Trabalha em aritmética de inteiros
- Ótimo para implementar em hardware

35

Outros tipos de retas

- Caso for horizontal ou vertical tratar como caso especial
- Caso x₁ > x₂ inverter ordem dos pontos
- Para as outras inclinações de segmentos extensões do caso principal

Bresenham (outros octantes)

Exemplos

• P0=(1,1) P1=(3,5) m = (5-1)/(3-1) = 4/2 = 2

y0<y1

• P0=(-1,-1) P1=(-5,-3) m = (-3+1)/(-5+1)= -2/-4 = 0.5 5o. octante

2o. octante

x1<x0

Bresenham (2o octante)

x = y0; y = x0;

e = 2dy - dx;

ALGORITMO BRES_INTEIRO (x0, y0, x1, y1)

dy = x1-x0; dx = y1-y0;

Trocar x por y

```
4.
     FOR i=0 TO dx
         WritePixel(x, y);
         IF (e > 0) {
6.
7.
             x = x+1;
              e = e - 2dx;
8.
          e = e + 2dy;
9.
10.
         y = y+1;
     ENDFOR
11.
```


Outros objetos gráficos...

Círculos

- Equação do círculo: $(x-xc)^2 + (y-yc)^2 = r^2$
- Outra opção: forma paramétrica
 - $x = xc + r \cos\theta$
 - $y = yc + r sen \theta$
- Custo alto computação
- Desenho não-uniforme do círculo
- Equivalente Bresenham para círculos

Outros objetos gráficos...

Simetria:
 precisamos
 rasterizar
 apenas um
 octante. Os
 outros 7 são
 encontrados
 por simetria

