

CORES TG – July 1 2024

Arjan Bink

Jérôme Quevremont

Davide Schiavone

Attendance

Agenda

- CV32E40Pv2: final RTL Freeze status (Yoann Pruvost)
- CV32E40PX: CV32E40P SIMD datapath refactoring (preparation work for RVP extensions support) (Manuel Pezzin)

CV32E40Pv2 final RTL Freeze status

Pascal Gouédo

Yoann Pruvost

Bee Nee Lim

Project

- Project
 - Design & Verification meeting
 - Wednesday 14:00 CET every week (<u>Ical</u>)
 - Dedicated technical meetings when needed
 - Reporting to Cores TG

- Mattermost channels
 - TWG: Cores: CV32E4*P
 - TWG: Verification

- Resources
 - Pascal Gouédo
 - Specification, Design, Verification & Formal
 - Yoann Pruvost
 - Design, Verification & Formal
 - Bee Nee Lim
 - Verification leader
 - Xavier Aubert
 - Verification
 - Bao Shan Mak
 - Verification
- OpenHW staff
 - Mike Thompson
 - Verification support
 - Davide Schiavone
 - Architecture & Design support

User Manual

dev branch merged to master
Release and User Manual created from master branch

- v1.8.2
 - Update pointer to v1.0.0 coverage reports (PR #989)
 - Verification section update (PR #992)
- v1.8.3
 - Debug request management + Additional verification section update

Design

No remaining opened or non-explained issues

• Last tag with RTL updates: v1.8.0

Verification: Non-regressions

- v1.8.3 RTL tag & v1.8.3 core-v-verif tag
- Non-regression results
 - Riscof Architecture tests passing on 4 PULP & PULP_FPU configurations
 - 4 non-regressions ran on 7 configurations
 - Total of 27 non-regressions
 - 32682 tests run, 4 failing tests
 - 2 new ISS mismatches on corner cases
 - 2 timeout

Verification : Coverage results

- Simulation RTL Code Coverage results
 - PULP configuration

Statement: 99.8% Branch: 99.6% Condition: 99.2%

PULP_FPU_0CYCLAT configuration

Statement: 99.9% Branch: 99.8% Condition: 99.4%

- Functional Coverage results
 - Combined from 7 configurations using PULP_FPU_0CYCLAT as master

FPU: 100% HWLOOP: 100% Debug: 100%

Interrupts: 100% OBI: 100% Assertions & Directive: 100%

riscvISACOV covergroups: 95.1% Covergroup Bins: 98%

Combined from 3 configurations using PULP_ZFINX_0CYCLAT as master

ZFINX: 100%

Verification: Remaining RTL coverage holes

cv32e40p_controller:

- 2 causes resulting in 16 holes
- They concern RTL lines specific to HW Loop with corner case conditions
- Uncovered RTL Code analysis file for cv32e40p_controller
- Issues created to describe all <u>waived</u> or <u>remaining</u> holes

RISC-V ISA Formal Verification

- On v1.8.3 RTL tag, Control and Datapath assertions checking runs launched on 2 configurations
 - PULP
 - PULP_FPU (0 cycle latency)
- Successful unbounded check on both configurations
- Siemens Questa Processor (formerly OneSpin) setup and script files pushed on cv32e40p repo

Tools

- SW toolchain
 - Final release created on May 30, 2024
 - Pre-built packages available forever on Embecosm web site
- Imperas Reference Model
 - Final release is from May 30, 2024.
 - Tagged in Imperas internal databases

RTL Freeze

- All verification documents and plans are available in core-v-verif/cv32e40p/docs/VerifPlans
- All reports are available in <u>CV32E40Pv2/Milestone-data/RTL_v1.8.3</u>
 - RTL Freeze checklist
 - RTL v1.8.3 verification summary
 - <u>Verification documents html index</u> (repo to clone to open index file)
- All documents and links will be updated next week to point to final repositories tags and merged before creating all repos tags, releases and User Manual.

CV32E40PX status

Manuel Pezzin

Sayri Paredes Remache

Project objectives

- CPU core tailored for deeply embedded real-time control/DSP
 - Main objective: support official RVB (and a part of RVK) and (upcoming) RVP extensions
 - Second objective: keeping <u>functional</u> backward compatibility with CV32E40Pv1/v2
 - XPULP custom extensions are kept
 - Reuse of existing verification framework
 - Effort to maintain a sequential equivalence on backward-compatible configurations
 - Efforts to improve v2 (mainly XPULP) configuration(s)
 - No effort to improve v1 (mainly IMC) configuration(s)
- "Nice-to-have" features also considered:
 - XPULP custom extensions enhancements
 - CV-X-IF support (based on Davide / EPFL current work)
 - CLIC support
 - Improved OBI interface

Current Design plan (subject to changes)

- Start from CV32E40Pv2 stable version
 - Current work aligned on tag 1.4.1, will be rebased on 1.8.3 once RTL freeze / release process is finished
- 1st step: multiplier/dot product restructuring ← we are here and will discuss this today
 - Prepare datapath to make it easier to add RVP base instructions
 - mainly MUL/MAC/DOT products variants
 - Single-cycle instructions
 - Prepare datapath for full (double size) result support
 - Share more processing resources between instructions
 - No functional change
- 2nd step: RVP MUL/MAC/DOT support
 - Add missing features to multiplier for RVP features that have (almost) an equivalent in XPULP
 - Saturation support may be added here (?)
 - Merge of SIMD/fused add/sub with multiplication datapath also considered
- 3rd step: Shift support
 - RVB, RVK and RVP will be addressed together to share resources between scalar and SIMD variants
 - Reuse of existing XPULP "post shift" feature
 - averaging variants of RVP instructions support
 - Q-Format support
- Last step: remaining stuff
 - Non-shift bit manipulation instructions
 - Merge of CV-X-IF support (may happen sooner, depending on EPFL work progress)
 - Nice-to-have features (CLIC, improved OBI)

MUL/DOT modified microarchitecture

Karatsuba_mult

32-bit multiplier restructured using Karatsuba multiplication

• 2 levels of recursion to reach byte level

algorithm

• This microarchitecture was slightly modified to add SIMD, DOT product and complex numbers support (see next slides)

Karatsuba ABh

result_abhl

Scalar operations: MUL/MULH and complex product

MUL / MULH

N = 32

Modified Karatsuba algorithm is widely used in DSP HW for size-efficient complex multiplication

- One subtraction and some muxes added to compute both with the same HW
- Notes:
 - MULH is now obtained in on cycle (MUL and MULH are now computed simultaneously) → 4x throughput improvement
 - power-efficient 16 bit multiplication may still be obtained on AB output thanks to datapath gating
 - Real and Imaginary part of complex product are now computed simultaneously → 2x throughput improvement if a new instruction is added

COMPLEX PRODUCT

N = 2x16 (IM/RE)

SIMD operations: Parallel MUL and DOT product

PARALLEL PRODUCT

N = 2x16

N = 4x8 by recursion on AB_H and AB_L

- Parallel multiplication and dot product are intermediate results of Karatsuba algorithm
- Only a few muxes required to get the result →SIMD support "almost for free"
- Notes:
 - full multiplication result is obtained, need to isolate low/high parts
 - 9 multipliers are available. 8x4bits vectors operations support may be added with only a few muxes (but muxing routes may be complex) → may be considered by UNIBO for their "light" Al extensions

DOT PRODUCT

N = 2x16

N = 4x8 by recursion on AB_H and AB_L

Preliminary implementation results

CORE-V*

- Synthesis trials on TSMC 40nm ULP process
- Frequency range from 33MHz to 500MHz (666 and 1GHz trials to be checked, given for information)
- ~20%-25% size improvement for PULP=1 config
 - Expected size improvement
 - No major change in std cells Vt distribution →~same QOR
- ~15% size improvement for PULP=0 config
 - unexpected result!
 - possible explanation: original multiplier architecture not appropriate for advanced nodes →FPGA and older nodes synthesis trials needed

		Frequency (MHz)	33	50	125	200	333	500	667	1000
AREA (μm²)	PULP=0	CV32E40P	17343	17348	17366	17493	18163	20148	19564	19434
		CV32E40PX	14567	14591	14612	14766	15127	16679	16615	16376
		Ratio	84%	84%	84%	84%	83%	83%	85%	84%
		CV32E40P	27382	27389	27450	27755	28583	28583	30273	30067
		CV32E40PX	20831	20843	20874	21228	21955	23570	23902	23413
		Ratio	76%	76%	76%	76%	77%	82%	79%	78%

Verification challenges

- Simulation challenges:
 - Micro-architecture optimization based on "arithmetic tricks"
 - → almost impossible to debug intermediate values visually
 - → debug helpers needed (assertions/local models)
 - Non-trivial ranges of values on intermediate results → verification plan to be carefully checked
- Formal checks trials
 - Sequential equivalence
 - Trivial approach without multipliers black-boxing leads to runtime issues
 - Multipliers black-boxing must be done carefully → CAD vendor support needed!
 - Reachability analysis being considered

Thank you!

