High Level Design (HLD):

Project Title:

Cryptocurrency Liquidity Prediction for Market Stability

Project Goal:

The goal of this project is to predict the liquidity ratio of cryptocurrencies based on features such as price, 24-Hour trading volume, market capitalization, and volatility. This helps in understanding how easily cryptocurrencies can be bought or sold, thereby contributing to market stability.

Overview:

• Data Collection:

Collected data from **CoinGecko** on two specific dates: March 16 and March 17, 2022.

Data Cleaning:

Removed missing values and duplicates to ensure data quality.

Feature Engineering:

Created new features such as:

- > 2-day moving averages
- > Volatility
- > Liquidity Ratio

• Exploratory Data Analysis (EDA):

- > Analyzed trends and patterns in the data
- > Generated visualization like price plots and correlation heatmaps
- > Summarized key statistics to understand feature distributions

Model Building:

- ➤ Linear Regression (Used as a basic model for baseline comparison)
- ➤ Random Forest Regressor (Used as the final model with hyperparameter tuning)

Model Evaluation:

Using metrics like RMSE, MAE, and R² score

Model Deployment & Testing:

- ➤ Model saved using **Joblib**
- > Built an interactive web app using **Streamlit**
- ➤ Deployed locally using **ngrok**
- > Successfully tested with **custom user inputs** to generate predictions

Major Components

1. Data Ingestion:

Loading CSV files into Pandas DataFrames.

2. Data Cleaning:

- Handling missing value
- Duplicate removal
- Data type conversion

3. Feature Engineering:

Created new columns:

Price_ma_2, mkt_cap_ma_2, volatility, liquidity_ratio

4. EDA:

- Plotting Bitcoin price over time
- Correlation heatmap
- Summary Statistics

5. Model Training and Tuning:

• Linear Regression (Baseline)

• Random Forest Regressor with hyperparameter tuning

6. Model Evaluation:

• Evaluation Metrics: RMSE, MAE, R² score

7. Model Saving:

Saved using Joblib as liquidity_prediction_model.pkl

8. Deployment:

- Streamlit app created for UI
- Ngrok used for local testing
- Verified prediction with user-defined inputs

Tools and Technologies:

- Python
- Pandas, NumPy
- Matplotlib, Seaborn
- Scikit-learn
- Joblib
- Streamlit / Flask for local deployment (Optional)

High level Design (HLD) Diagram for cryptocurrency liquidity prediction project

