Die Hough-Transformation

Nicolas Dorrmann Jannik Scheller

30.04.2020

Historisches

- Peter Hough späte 50er, Patentanmeldung des Verfahrens im Jahre 1962.
- Ursprünglich zur maschinellen Analyse von Bildern aus Blasenkammern entwickelt.
- Teilchen in einer Blasenkammer ziehen lineare Spuren hinter sich her.
- Anhand eines Bildes bspw. Eintrittswinkel des Teilchens bestimmen.

Motivation

- Erkennung von geometrischen Figuren in Bildern.
- Ursprünglich zur Erkennung von Linien entwickelt.
- Anwendbar auf diverse geometrische Figuren, z. B. auch Kreise.
- Bedingt eine Vorverarbeitung mit einem Kantenfilter (Sobel, Canny, o. Ä.).

Grundidee

- geometrische Figuren lassen sich durch Parameter beschreiben
 - Linie: Punkt und Winkel
 - Kreis: Mittelpunkt und Radius
- Transformation des Bildes in den Hough-Raum
 - Raum der Figurenparameter
 - "Votingverfahren" über die wahrscheinlichsten Parameter einer Figur

Parameter einer Linie: Erster Ansatz

$$y = mx + b$$

- m Geradensteigung
- b Schnittpunkt der y-Achse
- **Nachteil**: *m* kann bei vertikalen Linien unendlich sein, folglich wäre auch der Parameterraum unbegrenzt.

Figure 1: Hough-Transformation einer Linie

Parameter einer Linie: Zweiter Ansatz

 (r, θ)

- r Länge der Normalen der Linie zum Ursprung
- θ Winkel der Normalen zur x-Achse
- Parametrierung auch bekannt als Hesse'sche Normalform einer Geradengleichung
- Vorteil: Kein unbegrenzter Parameterraum, r ist beschränkt auf Bildgröße und $0 \le \theta < 2\pi$

Figure 2: Darstellung der Parameter

Kreis Detektion

- Leichte Abwandlung des Verfahrens notwendig
- Akkumulator wird inkrementiert, bei Möglichkeit als Kreismittelpunkt
- Hoher Akkumulatorwert = Höhere Wahrscheinlichkeit für den Kreismittelpunkt
- Anwendbar auch auf Elipsen

Der Generalized Hough Transform (GHT)

- Erweiterung durch Dana H. Ballard, 1981
- Detektion von beliebigen geometrischen Figuren, die nicht durch Gleichungen parametriert sein müssen
- Besteht aus zwei Teilen:
 - Vorausberechnung einer Modelltabelle (R-Table)
 - Votingverfahren mittels Modelltabelle und Bild (Input)

Grafik: Berechnung der Modelltabelle

Figure 3: Berechnung der R-Tabelle

i	ϕ_i	R_{ϕ_i}
0	0	$(r_{11},\alpha_{11}),\ldots$
1	$\Delta \phi$	$(r_{21}, \alpha_{21}), \ldots$
2	$2\Delta\phi$	$(r_{31},\alpha_{31}),\ldots$

Algorithmus: Berechnung der Modelltabelle

- Wähle Referenzpunkt (p_x, p_y)
- Erstelle Tabelle mit Indizes $i\Delta\phi$, $i\in\{0,\ldots,n\}$
- Für alle Randpunkte des Objekts x:
 - ullet berechne den Gradientenwinkel ϕ
 - berechne die Länge r_{ij} und den Winkel α_{ij} der Verbindungsgeraden zum Referenzpunkt
 - füge das Tupel (r_{ij}, α_{ij}) dem Index $i\Delta\phi$ hinzu, das am nächsten am Gradientenwinkel ϕ liegt

Algorithmus: Objektsuche

Initialisiere die Hough-Matrix aller Bildpunkte

$$A(x,y)=0$$

- Durchlaufe die Pixel aller gefundenen Kanten im Bild
- Berechne zu jedem Kantenpixel den Gradientenwinkel ϕ und finde den passenden Bereich ϕ_i in der Tabelle
- Aus Position und Gradientenwinkel ϕ_i , berechne für alle Tabelleneinträge mit ϕ_i :

$$x_c = x_i \pm r_{ij} \cos \alpha_{ij}$$

 $y_c = y_i \pm r_{ij} \sin \alpha_{ij}$

• Inkrementiere $A(x_c, y_c)$ um 1

Parametrierung der Modelltabelle

- Allgemeine Parametrierung des Objekts durch $\{\theta, s\}$:
 - $oldsymbol{ heta}$ Orientierungswinkel des Objekts
 - $s = (s_x, s_y)$ Skalierungsfaktoren in x- und y-Richtung
- ullet Leicht durchführbare Transformationen der Punkte $(\emph{r}_{ij}, \alpha_{ij})$

Demo: Kreise finden mit der Hough-Transformation

Link zum Video

 $https://drive.google.com/file/d/1PAdR9x5h-w-OzPdrl-IRmIdOcCzTYC_/view?usp=sharing$