Problem 1

1. $n^2 + n \notin O(n \log n)$

Assume that $n^2 + n \in O(n \log n)$. Then, there exist positive constants c and n_0 such that for all $n \ge n_0$:

$$n^2 + n \le c \cdot n \log n$$

Divide both sides by n:

$$n+1 \le c \log n$$

As n approaches infinity, n+1 grows linearly, while $\log n$ grows logarithmically. Therefore, for any constant c, there exists an n large enough such that $n+1>c\log n$, contradicting our assumption.

2. $n^2 + n \notin o(n^2)$

Consider the limit:

$$\lim_{n\to\infty}\frac{n^2+n}{n^2}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=1$$

By definition, $f(n) \in o(g(n))$ if:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

But in this case, the limit is 1, not 0.

Problem 2

The total cost of the recursion tree is:

$$T(n) = \sum_{i=0}^{\log_2 n} n = (\log_2 n + 1)n = \frac{n \log n}{\log 2} + n \ge c' n \log n \ (c' = \frac{1}{\log 2})$$

Therefore, $T(n) \in \Omega(n \log n)$. Since $T(n) = O(n \log n)$ and $T(n) = \Omega(n \log n)$, it follows that $T(n) = \Theta(n \log n)$.

Problem 3

We need to prove that for all $n \ge n_0$, $T(n) \le cn \log n$. Assume it holds for $\lfloor n/2 \rfloor + 17$, then we have:

$$T(|n/2| + 17) \le c \cdot (|n/2| + 17) \cdot \log(|n/2| + 17)$$

Plug in the definition of T(n):

$$T(n) \le c \cdot (n+34) \cdot \log(n/2+17) + n$$

$$\le c \cdot (n+34) \cdot \log(n) + n \text{ (when } n \ge 34)$$

$$= c \cdot n \log n + n \cdot (1+34c\frac{\log n}{n})$$

Since $\log n$ grows slower than n, there exists a constant c_1 such that $1 + 34c \frac{\log n}{n} \le c_1$ for all $n \ge n_1$. Therefore, we have:

$$T(n) \le c \cdot n \log n + n \cdot c_1 \le c \cdot n \log n$$

This show that $T(n) \in O(n \log n)$.

Problem 4

The lower bound will be determined by the branch that terminates faster, which is the T(n/3) branch. The total cost of the recursion tree is:

$$T(n) = \sum_{i=0}^{\log_3 n} cn = (\log_3 n + 1)cn = \frac{cn \log n}{\log 3} + cn \ge c' n \log n \ (c' = \frac{c}{\log 3})$$

Therefore, $T(n) \in \Omega(n \log n)$.

Problem 5

In all of the following cases, $\log_b a = \log_2 4 = 2$

- 1. Since $f(n) = n = O(n^{2-\epsilon})$, the time complexity is $\Theta(n^2)$.
- 2. Since $f(n) = n^2 = \Theta(n^2)$, the time complexity is $\Theta(n^2 \log n)$.
- 3. Since $f(n) = n^3 = \Omega(n^{2+\epsilon})$, the time complexity is $\Theta(n^3)$.

Problem 6

We can implement using Radix Sort. The time complexity is O(d(n+b)). Since n^2-1 is the maximum value, $d=O(\log_b(n))$, which makes the time complexity to $O((n+b)\log_b(n))$. To make the time complexity O(n), we need to change the base to n, which makes $O(\log_b(n))$ to O(1). Therefore, the overall time complexity is O(n).