中国科学技术大学

2020—2021学年第二学期期末试卷

	考试科目	随机过程E	<u> </u>	得分		
	所在系	姓名 _		学号		
	考试时间: 2021年7月5日8:30—10:30					
(20 /\ \ E	ᆙ ᆄᄼᆉ	((ケケ 日石 なて ・1・1			
一. (30分) 是				工路上不		
` ') <mark>判断下列有</mark> 有平稳增量的					
,	两个状态不互		`	,		
3). 若	有无穷个状态	5且不可约, 见	训所有状态不	可能都是常返的	. ()	
*				它一次.()		
5). M	arkov链中,片	制期为尤穷大	的状态一定是	:非常返的.()	
					与 $N(t)$ 独立且 $P(T >$	
t) = e	$\exp\{-\mu t\}, \mu, t$	>0 ,则对 $k \ge$	$\geq 0, P(N(T) =$	= k) =	·	
3. (3分)	下列说法不正	E确的是	·			
	·	•		S出发只能到达常		
C. Po	isson过程是半	· 稳过程	D. 有限状态	S的MC一定存在	止吊返念.	
					$1, \mu > 0), \ \mathbb{P}N(t) =$	
	P(N(t) = n) =	9		7布密度函数为f	$S_{S_n}(x) = \underline{\hspace{1cm}}$	
` '	下列说法正确 (4)]			M(t)地 目Doiggo	}- - }- -	
•	. , ,			M(t)也是Poisso 一辆车记录一下.	m过程。 则被记录下的车辆	
	以 B 从 Poisson 过		C.I.I., -7171111	11717271	7/1 // / / / / / / / / / / / / / / / / /	
C. R($\tau) = \tau e^{-\tau^2/2}$	有可能成为某	4个平稳过程	(或序列)的协力	方差函数.	
D. 初	始分布为平稳	分布的Marko	w链为严平稳	过程.		
6. (3分)	设 {X(t)} 为	Gauss 平稳;	过程,均值为	零, 功率谱密度	$S(\omega) = \frac{1}{1+\omega^2}$. \mathbb{N}	
	落在区间 [0.5,				1 γ ω	
7. (4分)	某种粒子按引	属度为λ 的泊 ^γ	松过程来到一	一个计数器,每个	>到达的粒子都使计	
					团状态,它就被记录	
下来。	则在时间区门	$\exists (t,t+r)$ 中	记录到一个粒	子的概率为	$(t \geq r)$.	

- 二. (12分) 某网站负责某项职业考试的网上报名工作,该项考试共有A、B、C三门课程,考生中报考这三门课程的考生所占的比例分别为35%、40% 和25%, 而三门考试的报名费分别为30元、30元和50元. 设考生按速率为 λ 的泊松过程到该网站报名,其中 $\lambda=10$ 人/天, 若以X(t) 表示到第t 天为止该网站收到的报名费总额,试求X(t) 的期望EX(t)、方差Var(X(t)) 和矩母函数 $g_{X(t)}(\mu)=Ee^{\mu X(t)}$ 。
- 三. (15分) 市场上有a 种牌号的牙膏,记为 $\{1,2,\ldots,a\}$. 假定消费者相继使用的牙膏 牌号构成马氏链,选用第i 种牌号牙膏的消费者继续使用第i 种牌号牙膏的概率 为 $p_{i,i}$, $(0 < p_{i,i} < 1, i = 1, 2, \ldots, a)$. 若他对原来使用的牙膏不满意, 就在其它a-1 种牙膏中任选一种, 即有: $p_{i,j} = \frac{1-p_{i,i}}{a-1}$, $(j \neq i)$,
 - (1) 试写出该马氏链的转移概率矩阵P 并对马氏链作状态分类;
 - (2) 试求长时间后第i 种牌号牙膏的市场占有率 π_i , (i = 1, 2, ..., a).
- 四. (15分)设一质点在正整数点上做随机游动, 质点处于正整数点i时,以概率 p_i 往右走一格,概率 $1-p_i$ 退回到点 $1, p_i = e^{-\frac{1}{i}}, i = 1, 2, \ldots$ 记 X_n 表示时刻n质点所处的位置,
 - (1) 写出过程的状态空间, 说明该过程为Markov链.
 - (2) 讨论该各状态的周期性和常返性。
- 五. (16分)设 $\{X(t), -\infty < t < +\infty\}$ 是均值为0的平稳过程,令 $Y(t) = X(t)\cos(\omega_0 t + \Theta)$, $-\infty < t < +\infty$,其中 ω_0 是实常数, $\Theta \sim U[0, 2\pi]$,且 $\{X(t), -\infty < t < +\infty\}$ 与 Θ 相互独立, $R_X(\tau)$ 和 $S_X(\omega)$ 分别是 $\{X(t), -\infty < t < +\infty\}$ 的协方差函数和功率谱密度. 试证:
 - (1) $\{Y(t), -\infty < t < +\infty\}$ 是平稳过程,且协方差函数

$$R_Y(\tau) = \frac{1}{2} R_X(\tau) \cos \omega_0 \tau.$$

(2) $\{Y(t), -\infty < t < +\infty\}$ 的功率谱密度为

$$S_Y(\omega) = \frac{1}{4} \left[S_X \left(\omega - \omega_0 \right) + S_X \left(\omega + \omega_0 \right) \right].$$

六. (12分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为0, 谱密度函数为

$$S(\omega) = \frac{\omega^2 + 2}{\omega^4 + 7\omega^2 + 12}, -\infty < \omega < \infty$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t) 是否有均值遍历性? 为什么?