ĐẠI SỐ TUYẾN TÍNH

Chương 4

ÁNH XẠ TUYẾN TÍNH

lvluyen@hcmus.edu.vn

Web: bit.do/daisotuyentinh

FB: fb.com/daisotuyentinh

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

---- Năm 2020 ----

Nội dung

Chương 4. ÁNH XẠ TUYẾN TÍNH

- Dịnh nghĩa
- Nhân và ảnh của ánh xạ tuyến tính
- Ma trận biểu diễn ánh xạ tuyến tính

4.1. Định nghĩa

Ánh xạ

Ánh xạ tuyến tính

4.1.1. Ánh xạ

Định nghĩa. Một ánh xa f từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho mỗi phần tử x của X được liên kết duy nhất một phần tử y của Y, ký hiệu: y = f(x)

$$f: X \longrightarrow Y$$
$$x \longmapsto y = f(x).$$

Khi đó X được gọi là $t\hat{q}p$ $ngu\hat{o}n$, Y được gọi là $t\hat{q}p$ dích.

Không là ánh xạ

Ví dụ.

6 $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 + 2x - 1$ là ánh xạ.

6 $h: \mathbb{Q} \to \mathbb{Z}$ xác định bởi $h(\frac{m}{n}) = m$ không là ánh xạ.

4.1.2. Ánh xạ tuyến tính

Định nghĩa. Cho V và W là hai không gian vectơ trên \mathbb{R} . Ta nói ánh xạ $f:V\longrightarrow W$ là một ánh xạ tuyến tính nếu thỏa hai điều kiện sau:

Nhận xét. Điều kiện i) và ii) trong định nghĩa có thể được thay thế bằng một điều kiện :

$$f(\alpha u + v) = \alpha f(u) + f(v), \forall \alpha \in \mathbb{R}, \forall u, v \in V.$$

Ký hiệu.

- L(V, W) là tập hợp các ánh xạ tuyến tính từ V vào W.
- Nếu $f \in L(V, V)$ thì f được gọi là một **toán tử tuyến tính** trên V. Viết tắt $f \in L(V)$.

Ví dụ. Cho ánh xạ $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (x + 2y - 3z, 2x + z).$$

Chứng tỏ f là ánh xạ tuyến tính.

Giải. Với mọi $u = (x_1, y_1, z_1)$ và $v = (x_2, y_2, z_2) \in \mathbb{R}^3$, ta có

$$f(u+v) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= ((x_1 + x_2) + 2(y_1 + y_2) - 3(z_1 + z_2), 2(x_1 + x_2) + (z_1 + z_2))$$

$$= (x_1 + x_2 + 2y_1 + 2y_2 - 3z_1 - 3z_2, 2x_1 + 2x_2 + z_1 + z_2)$$

$$= (x_1 + 2y_1 - 3z_1, 2x_1 + z_1) + (x_2 + 2y_2 - 3z_2, 2x_2 + z_2)$$

$$= f(u) + f(v).$$

Tính chất $\forall \alpha \in \mathbb{R}, f(\alpha u) = \alpha f(u)$ được kiểm tra tương tự.

 \mathbf{V} í dụ.(tự làm) Cho ánh xạ $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ xác định bởi

$$f(x, y, z) = (x + y + z, x - 2y, y - 3z).$$

Chứng tỏ f là ánh xa tuyến tính.

Mệnh đề. Cho $f: V \to W$ là ánh xạ tuyến tính. Khi đó

- **0** $f(\mathbf{0}) = \mathbf{0};$
- **1** Với mọi $u \in V$, ta có f(-u) = -f(u);

$$f(\boldsymbol{\alpha_1}u_1 + \cdots + \boldsymbol{\alpha_m}u_m) = \boldsymbol{\alpha_1}f(u_1) + \cdots + \boldsymbol{\alpha_m}f(u_m).$$

Ví dụ. Cho $f \in L(\mathbb{R}^3, \mathbb{R}^2)$ và

$$f(1,2,1) = (2,1); f(-1,2,3) = (4,-3).$$

Tính f(5, 2, -3)?

Giải. Ta có
$$(5, 2, -3) = 3(1, 2, 1) - 2(-1, 2, 3)$$
. Suy ra

$$f(5,2,-3) = 3(2,1) - 2(4,-3) = (-2,9).$$

Định lý. Cho V và W là hai không gian vectơ và $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là cơ sở của V. Khi đó, nếu $S = \{v_1, v_2, \dots, v_n\}$ là một tập con của W thì **tồn tại duy nhất** một ánh xạ tuyến tính $f: V \to W$ sao cho

$$f(u_1) = v_1, f(u_2) = v_2, \dots, f(u_n) = v_n.$$

Hơn nữa, nếu
$$[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
 thì

$$f(u) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \cdots + \alpha_n f(u_n).$$

Ví dụ. Trong không gian \mathbb{R}^3 cho các vectơ:

$$u_1 = (1, -1, 1); u_2 = (1, 0, 1); u_3 = (2, -1, 3).$$

- Chứng tỏ $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- Tìm ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ sao cho $f(u_1) = (2, 1, -2); \ f(u_2) = (1, 2, -2); \ f(u_3) = (3, 5, -7).$

Giải.

a) Chứng tỏ $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .

Lập
$$A = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$
. Ta có $\det A = 1$, suy ra $\mathcal B$ độc lập

tuyến tính. Vì dim
 $\mathbb{R}^3=3$ bằng số vectơ của $\mathcal B$ nên
 $\mathcal B$ là một cơ sở của $\mathbb{R}^3.$

b) Tìm ánh xạ tuyến tính
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 thỏa: $f(u_1) = (2, 1, -2); f(u_2) = (1, 2, -2); f(u_3) = (3, 5, -7).$

Cho $u=(x,y,z)\in\mathbb{R}^3$, ta sẽ tìm $[u]_{\mathcal{B}}$. Lập ma trận mở rộng

$$\begin{bmatrix} u_1^\top u_2^\top u_3^\top \mid u^\top \end{bmatrix} = \begin{bmatrix} \begin{array}{ccc|c} 1 & 1 & 2 & x \\ -1 & 0 & -1 & y \\ 1 & 1 & 3 & z \end{bmatrix} \rightarrow \begin{bmatrix} \begin{array}{ccc|c} 1 & 0 & 0 & x-y-z \\ 0 & 1 & 0 & 2x+y-z \\ 0 & 0 & 1 & -x+z \end{bmatrix}.$$

Vây
$$[u]_{\mathcal{B}} = \begin{bmatrix} x - y - z \\ 2x + y - z \\ -x + z \end{bmatrix}$$
. Suy ra
$$u = (x - y - z)u_1 + (2x + y - z)u_2 + (-x + z)u_3.$$

Vậy, ta có

$$f(u) = (x - y - z)f(u_1) + (2x + y - z)f(u_2) + (-x + z)f(u_3)$$

$$= (x - y - z)(2, 1, -2) + (2x + y - z)(1, 2, -2)$$

$$+ (-x + z)(3, 5, -7)$$

$$= (x - y, y + 2z, x - 3z).$$

Ví dụ.(tự làm) Cho

 $\mathcal{B} = (u_1 = (1, -2, 2); u_2 = (-2, 5, -4); u_3 = (0, -1, 1))$ là một cơ sở của \mathbb{R}^3 . Tìm $f \in L(\mathbb{R}^3, \mathbb{R}^3)$ thỏa

$$f(u_1) = (1, 1, -2); f(u_2) = (1, -2, 1); f(u_3) = (1, 2, -1).$$

Dáp án. f(x, y, z) = (-x + 3y + 4z, -3x + 2z, -3y - 4z).

4.2. Nhân và ảnh của ánh xạ tuyến tính

- Không gian nhân
- Không gian ảnh

4.2.1. Không gian nhân

Định nghĩa. Cho $f:V\to W$ là một ánh xạ tuyến tính. Ta đặt

$$\mathbf{Ker} f = \{ u \in V \mid f(u) = \mathbf{0} \}$$

Khi đó $\mathbf{Ker} f$ là không gian con của V, ta gọi $\mathbf{Ker} f$ là $\mathbf{không}$ \mathbf{gian} $\mathbf{nhân}$ của f.

Nhận xét. Dựa vào định nghĩa, ta được

$$u \in \mathbf{Ker} f \Leftrightarrow f(u) = \mathbf{0}.$$

Ví dụ. Cho $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (x + y - z, 2x + 3y - z, 3x + 5y - z).$$

Tìm một cơ sở của $\operatorname{Ker} f$?

$$f(x,y,z) = (x+y-z, 2x+3y-z, 3x+5y-z)$$

Giải. Gọi $u=(x,y,z)\in\mathbb{R}^3$. Ta có

$$u \in \operatorname{Ker} f \iff f(u) = \mathbf{0}$$

$$\Leftrightarrow \begin{cases} x + y - z = 0 \\ 2x + 3y - z = 0 \\ 3x + 5y - z = 0 \end{cases}$$

$$\text{Ma trận hóa ta được } \tilde{A} = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & -1 \\ 3 & 5 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hệ phương trình có nghiệm

$$(x, y, z) = (2t, -t, t)$$
 với $t \in \mathbb{R}$.

Nghiệm cơ bản của hệ là $u_1 = (2, -1, 1)$.

Vậy, Ker f có một cơ sở là $\{u_1 = (2, -1, 1)\}$.

Ví dụ. (tự làm) Cho $f: \mathbb{R}^4 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z, t) = (x + 2y + 3z + 2t, x + 3y + 3z - t, 2x + 3y + 6z + 7t).$$

Tìm một cơ sở của $\operatorname{Ker} f$?

Hướng dẫn. Xét hệ phương trình thuần nhất với ma trận mở rộng

$$\tilde{A} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 3 & 3 & -1 \\ 2 & 3 & 6 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 8 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hệ phương trình có nghiệm

$$(x, y, z, t) = (-3a - 8b, 3b, a, b) \text{ v\'oi } a, b \in \mathbb{R}.$$

Nghiệm cơ bản của hệ là $u_1 = (-3, 0, 1, 0)$ và $u_2 = (-8, 3, 0, 1)$.

Vậy, Ker f có một cơ sở là $\{u_1 = (-3, 0, 1, 0); u_2 = (-8, 3, 0, 1)\}.$

4.2.1. Không gian ảnh

Định nghĩa. Cho $f:V\to W$ là một ánh xạ tuyến tính. Ta đặt

$$\mathrm{Im} f = \{ f(u) \, | \, u \in V \}.$$

Khi đó Im f là không gian con của W, ta gọi Im f là không gian ảnh của f.

Định lý. Cho $f: V \to W$ là một ánh xạ tuyến tính. Khi đó, nếu

$$S = \{u_1, u_2, \ldots, u_m\}$$

là tập sinh của V thì

$$f(S) = \{f(u_1), f(u_2), \dots, f(u_m)\}$$

là tập sinh của Imf.

Nhận xét. Dựa vào Định lý trên, để tìm cơ sở $\mathrm{Im} f$, ta chọn một tập $\sinh S$ của V (để đơn giản ta nên chọn cơ sở chính tắc). Khi đó $\mathrm{Im} f$ $\sinh b$ ởi tập ảnh của S.

Ví dụ. Cho $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (x + y - z, 2x + 3y - z, 3x + 5y - z).$$

Tìm một cơ sở của Im f?

Giải. Gọi $\mathcal{B}_0 = \{e_1, e_2, e_3\}$ là cơ sở chính tắc của \mathbb{R}^3 . Ta có

$$f(e_1) = f(1,0,0) = (1,2,3),$$

$$f(e_2) = f(0,1,0) = (1,3,5),$$

$$f(e_3) = f(0,0,1) = (-1,-1,-1).$$

Khi đó Imf sinh bởi $\{f(e_1), f(e_2), f(e_3)\}.$

Lập ma trận
$$A = \begin{bmatrix} f(e_1) \\ f(e_2) \\ f(e_3) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Do đó Imf có cơ sở là $\{v_1 = (1, 2, 3), v_2 = (0, 1, 2)\}.$

Ví dụ.(tự làm) Cho $f: \mathbb{R}^3 \to \mathbb{R}^4$ được xác định bởi:

$$f(x, y, z) = (x + 2y - 3z, 3x + 2y, 2x + 2y - z, 4x - y + 5z).$$

Tìm một cơ sở của Im f?

Định lý. Cho $f: V \to W$ là ánh xạ tuyến tính và V hữu hạn chiều. Khi đó

$$\dim \operatorname{Im} f + \dim \operatorname{Ker} f = \dim V.$$

Ví dụ. Cho $f \in L(\mathbb{R}^8, \mathbb{R}^7)$. Biết số chiều của Imf là 5, hãy tìm số chiều của Kerf?

Đáp án. 3.

4.3. Ma trận biểu diễn ánh xạ tuyến tính

Định nghĩa. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là cơ sở của V, $\mathcal{C} = (v_1, v_2, \dots, v_m)$ là cơ sở của W và $f \in L(V, W)$. Ta đặt

$$P = [[f(u_1)]_{\mathcal{C}} \ [f(u_2)]_{\mathcal{C}} \ \dots \ [f(u_n)]_{\mathcal{C}}].$$

Khi đó ma trận P được gọi là ma trận biểu diễn của ánh xạ f theo cặp cơ sở \mathcal{B}, \mathcal{C} , ký hiệu $P = [f]_{\mathcal{B}, \mathcal{C}}$ (hoặc $[f]_{\mathcal{B}}^{\mathcal{C}}$).

Nhận xét. Khi $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, ta có phương pháp tìm $[f]_{\mathcal{B},\mathcal{C}}$ như sau:

- $Tinh \ f(u_1), f(u_2), \dots, f(u_n).$
- Dặt $M = \begin{bmatrix} v_1^\top & v_2^\top \dots & v_m^\top \mid f(u_1)^\top & f(u_2)^\top \dots & f(u_n)^\top \end{bmatrix}$.
- ullet Dùng thuật toán Gauss-Jordan, đưa M về dạng $[I_m \mid P]$
- Khi đó $[f]_{\mathcal{B},\mathcal{C}} = P$.

Ví dụ. Xét ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x,y,z) = (x-y,2x+y+z)$$

và cặp cơ sở $\mathcal{B} = (u_1 = (1, 1, 0), u_2 = (0, 1, 2), u_3 = (1, 1, 1)),$ $\mathcal{C} = (v_1 = (1, 3), v_2 = (2, 5)).$ Tìm $[f]_{\mathcal{B}\mathcal{C}}$?

Giải. Ta có

$$f(u_1) = (0,3),$$

 $f(u_2) = (-1,3),$
 $f(u_3) = (0,4).$

$$\begin{bmatrix} v_1^\top & v_2^\top & | & f(u_1)^\top & f(u_2)^\top & f(u_3)^\top \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 3 & 5 & 3 & 3 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 6 & 11 & 8 \\ 0 & 1 & -3 & -6 & -4 \end{bmatrix}.$$

Vậy

$$[f]_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 6 & 11 & 8 \\ -3 & -6 & -4 \end{bmatrix}.$$

Ví dụ. (tự làm) Xét ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (2x + y - z, -y + 2z)$$

và cặp cơ sở $\mathcal{B} = \{u_1 = (1, 1, 0), u_2 = (1, 0, 1), u_3 = (0, 1, 1)\}$ $\mathcal{C} = \{u'_1 = (1, 2), u'_2 = (3, 5)\}$. Tìm $[f]_{\mathcal{B},\mathcal{C}}$?

Đáp án.
$$[f]_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} -18 & 1 & 3 \\ 7 & 0 & -1 \end{bmatrix}$$
.

 \mathbf{V} í dụ. Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ định bởi

$$f(x, y, z, t) = (x - 2y + z - t, x + 2y + z + t, 2x + 2z).$$

Tìm ma trận biểu diễn ánh xạ tuyến tính f theo cặp cơ sở chính tắc.

Giải.

$$[f]_{\mathcal{B}_0,\mathcal{B}_0'} = \begin{bmatrix} 1 & -2 & 1 & -1 \\ 1 & 2 & 1 & 1 \\ 2 & 0 & 2 & 0 \end{bmatrix}$$

Định nghĩa. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là cơ sở của V và $f \in L(V)$. Khi đó ma trận $[f]_{\mathcal{B},\mathcal{B}}$ được gọi là ma trận biểu diễn toán tử tuyến tính f, ký hiệu $[f]_{\mathcal{B}}$. Rỗ ràng

$$[f]_{\mathcal{B}} = [[f(u_1)]_{\mathcal{B}} \ [f(u_2)]_{\mathcal{B}} \ \dots \ [f(u_n)]_{\mathcal{B}}]$$

Ví dụ. Cho $f \in L(\mathbb{R}^3)$ xác định bởi

$$f(x, y, z) = (2x + y + z, x - 4y + 3z, 2x - y - z)$$

và \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^3 . Tìm $[f]_{\mathcal{B}_0}$?

Đáp án.

$$[f]_{\mathcal{B}_0} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -4 & 3 \\ 2 & -1 & -1 \end{bmatrix}.$$

Ví dụ. Trong không gian \mathbb{R}^3 cho các vecto:

$$u_1 = (1, 1, 0); u_2 = (0, 2, 1); u_3 = (2, 3, 1)$$

và ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ định bởi:

$$f(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, x_1 + 2x_2 - x_3, 2x_1 - x_2 + 3x_3)$$

- **©** Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- \bullet Tim $[f]_{\mathcal{B}}$.

Đáp án.
$$[f]_{\mathcal{B}} = \begin{bmatrix} -1 & 1 & -8 \\ -1 & 1 & -3 \\ 2 & 0 & 7 \end{bmatrix}$$
.

Định lý. Cho V và W là các không gian vectơ; $\mathcal{B}, \mathcal{B}'$ và $\mathcal{C}, \mathcal{C}'$ tương ứng là các cặp cơ sở của V và W. Khi đó, với mọi ánh xạ tuyến tính $f: V \to W$ ta có

Hệ quả. Cho \mathcal{B} và \mathcal{B}' là hai cơ sở của không gian hữu hạn chiều V. Khi đó đối với mọi toán tử tuyến tính $f \in L(V)$ ta có

Ví dụ. Trong không gian \mathbb{R}^3 cho cơ sở

$$\mathcal{B} = (u_1 = (1, 1, 0); u_2 = (0, 2, 1); u_3 = (2, 3, 1))$$

và ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ định bởi: f(x, y, z) = (2x + y - z, x + 2y - z, 2x - y + 3z). Tìm $[f]_{\mathcal{B}}$?

Giải. Gọi \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^3 , ta có

$$[f]_{\mathcal{B}_0} = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

Áp dụng hệ quả trên, ta được

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1} [f]_{\mathcal{B}_0} (\mathcal{B}_0 \to \mathcal{B}),$$

trong đó
$$(\mathcal{B}_0 \to \mathcal{B}) = \begin{bmatrix} u_1^\top & u_2^\top & u_3^\top \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
, do đó

$$(\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{bmatrix} -1 & 2 & -4 \\ -1 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

Suy ra

$$[f]_{\mathcal{B}} = (\mathcal{B}_0 \to \mathcal{B})^{-1}[f]_{\mathcal{B}_0}(\mathcal{B}_0 \to \mathcal{B})$$

$$= \begin{bmatrix} -1 & 2 & -4 \\ -1 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -8 & 7 & -13 \\ -3 & 2 & -3 \\ 5 & -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -8 \\ -1 & 1 & -3 \\ 2 & 0 & 7 \end{bmatrix}.$$

Ví dụ. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$, biết ma trận biểu diễn của f theo cặp cơ sở $\mathcal{B} = (u_1 = (1,1,1); u_2 = (1,0,1); u_3 = (1,1,0))$ và $\mathcal{C} = (v_1 = (1,1); v_2 = (2,1))$ là

$$[f]_{\mathcal{B},\mathcal{C}} = \left| \begin{array}{ccc} 2 & 1 & -3 \\ 0 & 3 & 4 \end{array} \right|.$$

Tìm công thức của f.

Cách 1. Do
$$[f]_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{bmatrix}$$
. Ta có

•
$$[f(u_1)]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
. Suy ra $f(u_1) = 2v_1 + 0v_2 = (2, 2)$.

•
$$[f(u_2)]_{\mathcal{C}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
. Suy ra $f(u_2) = v_1 + 3v_2 = (7, 4)$.

•
$$[f(u_3)]_{\mathcal{C}} = \begin{bmatrix} -3\\4 \end{bmatrix}$$
. Suy ra $f(u_3) = -3v_1 + 4v_2 = (5,1)$.

Cho $u = (x, y, z) \in \mathbb{R}^3$. Tìm $[u]_{\mathcal{B}}$.

$$\text{Lập } (u_1^\top u_2^\top u_3^\top | u^\top) = \left[\begin{array}{ccc|c} 1 & 1 & 1 & x \\ 1 & 0 & 1 & y \\ 1 & 1 & 0 & z \end{array} \right] \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & 0 & -x + y + z \\ 0 & 1 & 0 & x - y \\ 0 & 0 & 1 & x - z \end{array} \right].$$

Vây
$$[u]_{\mathcal{B}} = \begin{bmatrix} -x + y + z \\ x - y \\ x - z \end{bmatrix}$$
.

Suy ra $u = (-x + y + z)u_1 + (x - y)u_2 + (x - z)u_3$.

Vậy, ta có

$$f(u) = (-x + y + z)f(u_1) + (x - y)f(u_2) + (x - z)f(u_3)$$

= $(-x + y + z)(2, 2) + (x - y)(7, 4) + (x - z)(5, 1)$
= $(10x - 5y - 3z, 3x - 2y + z).$

Cách 2. Gọi \mathcal{B}_0 và \mathcal{C}_0 lần lượt là cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^2 . Áp dụng công thức ta có

$$[f]_{\mathcal{B}_0,\mathcal{C}_0} = (\mathcal{C} \to \mathcal{C}_0)^{-1} [f]_{\mathcal{B},\mathcal{C}}(\mathcal{B} \to \mathcal{B}_0).$$

Ta có

•
$$(\mathcal{C} \to \mathcal{C}_0)^{-1} = (\mathcal{C}_0 \to C) = (v_1^\top v_2^\top) = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
.

•
$$(\mathcal{B}_0 \to \mathcal{B}) = (u_1^\top u_2^\top u_3^\top) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Hơn nữa
$$(\mathcal{B} \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B})^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
.

Vậy

$$[f]_{\mathcal{B}_{0},\mathcal{C}_{0}} = (\mathcal{C} \to \mathcal{C}_{0})^{-1}[f]_{\mathcal{B},\mathcal{C}}(\mathcal{B} \to \mathcal{B}_{0})$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 7 & 5 \\ 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & -5 & -3 \\ 3 & -2 & 1 \end{bmatrix}.$$

Suy ra f(x, y, z) = (10x - 5y - 3z, 3x - 2y + z).

 $\mbox{\bf V\'i}$ dụ.
(tự làm) Cho f là toán tử tuyến tính trong không gian
 \mathbb{R}^3 được xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + 3x_2, -2x_2 + x_3, 4x_1 - x_2 + 2x_3).$$

- Tìm ma trận biểu diễn f theo cơ sở chính tắc của \mathbb{R}^3 .
- \bullet Tìm ma trận biểu diễn f theo cơ sở

$$\mathcal{B} = (u_1 = (-1, 2, 1), u_2 = (0, 1, 1), u_3 = (0, -3, -2)).$$