

Images and Models of the Epsilon Aurigae System

Brian Kloppenborg

Robert Stencel, John Monnier, Gail Schaefer, Ming Zhao, Fabien Baron, Hal McAlister, Theo ten Brummelaar, Xiao Che, Chris Farrington, Ettore Pedretti, PJ Sallave-Goldfinger, Judit Sturmann, Laszlo Sturmann, Nathalie Thureau Nils Turner, Sean M. Carroll

Outline

- Introduction to eps Aur
- Images
 - Artifact Discussion
 - All 9 in-eclipse epochs
- Model Fitting
- Future Work

Pre-Eclipse Understanding

- Discovered in 1821
- 27.1 Year Period Confirmed 1903

Explaining The Eclipses

- Hyperionized IR Star
- Black Hole

Chadima (2010)

Pre-Eclipse Understanding

1965: Block of Opaque Material

1986: Block is tilted

1990: Disk consists of rings of material, is also highly inclined.

Ferluga (1990)

Evolutionary Scenarios

27.3 yr Period12 AU separation2.6 E-5 M/yr

Supergiant

- F-star ~15 M
- Disk+Star ~15 M

Post-AGB

- F-Star ~4 M
- Disk + Star 6-7

RGB

New, not fully explored

Ingress Imaging

Epsilon Aurigae Eclipse (CHARA-MIRC)

Ingress Imaging of epsilon Aurigae. Kloppenborg et. al. 2010

Potential Artifacts

Artifact Discussion

Titiliact Discussion							
	Data w/ BSMEM	Best Fit Model	Sampled Model w/ BSMEM				
2010-09							
2010-11							

Likely Artifacts:

- Bright Spots along equator
- Bright spot at North Pole
- Dark alias in northern hemisphere
- Scalloped Edge of disk

Not Artifacts:

Southern Pole

Undecided:

Straight Edges on F-star

CHARA Collaboration Year-Seven Science Review • 2009-11 2009-12 2010-02 2010-08 **BSMEM** MACIM 2010-10 2010-11 2010-09 2010-12 2011-01 **BSMEM** MACIM l'Observatoire LESIA Georgia State University

Single Epoch Model Fitting

		F-Star .	Di: Semi-Minor Axis (mas	sk	
Date	MJD	LDD (mas)	Semi-Minor Axis (mas	Smoothing Coefficien	Reduced Chi2
2009-11		2.304	0.417	0.221	2.38
2009-12			0.489	0.240	7.59
2010-02	55243	2.398	0.550	0.240	2.39 9.21
2010-08		2.353	0.536		9.21
2010-09		2.340	0.508		3.60
2010-10		2.358		0.240	3.22
2010-11		2.354	0.570	0.233	5.28
2010-12	55543	2.364	0.562	0.403	4.67

Silhouette

*figure manually adjusted from initial orbital fit

Multi-Epoch Model Fitting

- Starting Simple (2D):
 - Rectangle, Ellipse
- More Complicated (3D projected to 2D):
 - Torrid, Lopsided Torrid
 - YSO / Debris Disk
- But, these require an orbital solution....

Current solutions don't work

 $\Omega \sim 92 + /- 3 \text{ (VdK)}$

 $\omega = 39.2$ (Stefanik)

i = 89-90

 $T \sim 27.1 \ yr$ (Stefanik)

e = 0.227 +/- 0.011 (Stefanik)

 $\tau \sim 2,454,515$ (Stefanik)

asin(i) ~ 1800 E9 km (Stefanik)

Towards a new orbital solution

Simultaneously Fit

- → Astrometry
- → Radial Velocity
- → Interferometry

Constraining Results:

 $\Omega \sim 110$ (from CHARA)

$$\omega$$
 = 39.2 (from RV)

i = 89-90

e = 0.227 + / -0.011

 $T \sim 27.1 \text{ yr}$

 $\tau \sim 2,454,515$

 $a_1 \sin(i) \sim 1800 E9 km$

$$\alpha_1 = ?$$
, $\alpha_2 = ?$ $\alpha_2 = ?$

$$d = ?$$

RV data from Stefanik et al. 2010 Chadima et al. 2010

Back to Astrometry

Sproul Observatory:

1051 Plates

301 Nights

