Introducción a la Programación Algoritmos y Estructuras de Datos I

Primer cuatrimestre de 2024

Polimorfismo, Currificación y Recursión sobre enteros

Variables de tipos

¿Qué tipo tienen las siguientes funciones?

```
identidad x = x
primero x y = x
segundo x y = y
constante5 x y z = 5
```

Variables de tipo

- ► Son parámetros que se escriben en la signatura usando variables minúsculas
- ► En lugar de valores, denotan tipos
- ► Cuando se invoca la función se usa como argumento el tipo del valor

Polimorfismo

- ► Se llama polimorfismo a una función que puede aplicarse a distintos tipos de datos (sin redefinirla).
- ▶ se usa cuando el comportamiento de la función no depende paramétricamente del tipo de sus argumentos
- lo vimos en el lenguaje de especificación con las funciones genéricas.
- ► En Haskell los polimorfismos se escriben usando variables de tipo y conviven con el tipado fuerte.
- ► Ejemplo de una función polimórfica: la función identidad.

Variables de tipo (cont.)

Funciones con variables de tipo

```
identidad :: t -> t
identidad x = x

primero :: tx -> ty -> tx
primero x y = x

segundo :: tx -> ty -> ty
segundo x y = y

constante5 :: tx -> ty -> tz -> Int
constante5 x y z = 5

mismoTipo :: t -> t -> Bool
mismoTipo x y = True
```

Si dos argumentos deben tener el mismo tipo, se debe usar la misma variable de tipo

▶ Luego, primero True 5 :: Bool, pero mismoTipo 1 True 0 no tipa

Clases de tipos

¿Qué tipo tienen las siguientes funciones?

Clases de tipos

- ► Conjunto de tipos a los que se le pueden aplicar ciertas funciones
- ► Un tipo puede pertenecer a distintas clases

Los Float son números (Num), con orden (Ord), de punto flotante (Floating), etc.

En este curso

- ▶ No vamos a evaluar el uso de clases de tipos, pero . . .
- ... saber la mecánica permite comprender los mensajes del compilador de Haskell (GHCi)

Clases de tipos (cont)

Las clases de tipos se describen como restricciones sobre variables de tipos

(Floating t, Eq t, Num u, Eq u) => ... significa que:

- ▶ la variable t tiene que ser de un tipo que pertenezca a Floating y Eq
- ▶ la variable u tiene que ser de un tipo que pertenezca a Num y Eq

Clases de tipos (cont)

Clase de tipos

 Conjunto de tipos de datos a los que se les puede aplicar un conjunto de funciones

Algunas clases:

```
1. Integral := ({ Int, Integer, ... }, { mod, div, ... })
2. Fractional := ({ Float, Double, ... }, { (/), ... })
3. Floating := ({ Float, Double, ... }, {
    sqrt, sin, cos, tan, ... })
4. Num := ({ Int, Integer, Float, Double, ... }, {
    (+), (*), abs, ... })
5. Ord := ({Bool, Int, Integer, Float, Double, ... }, {
    (<=), compare })
6. Eq := ({ Bool, Int, Integer, Float, Double, ... }, { (==), (/=) })</pre>
```

Ejercitación conjunta

Averiguar el tipo asignado por Haskell a las siguientes funciones

¿Qué error ocurre cuándo ejecutamos f4 5 5 True? ¿Tiene sentido? ¿Y si ejecutamos f5 5 5 True? ¿Qué cambió?

Nueva familia de tipos: Tuplas

Tuplas

▶ Dados tipos $A_1, ..., A_k$, el tipo k-upla $(A_1, ..., A_k)$ es el conjunto de las k-uplas $(v_1, ..., v_k)$ donde v_i es de tipo A_i

```
(1, 2) :: (Int, Int)
(1.1, 3.2, 5.0) :: (Float, Float, Float)
(True, (1, 2)) :: (Bool, (Int, Int))
(True, 1, 2) :: (Bool, Int, Int)
```

► En Haskell hay infinitos tipos de tuplas

Funciones de acceso a los valores de un par en Prelude

```
    ▶ fst :: (a, b) -> a
    Ejemplo: fst (1 + 4, 2) → 5
    ▶ snd :: (a, b) -> b
    Ejemplo: snd (1, (2, 3)) → (2, 3)
```

Ejemplo: suma de vectores en \mathbb{R}^2

```
suma :: (Float, Float) -> (Float, Float) -> (Float, Float)
suma v w = ((fst v) + (fst w), (snd v) + (snd w))
```

Podemos usar pattern matching para acceder a los valores de una tupla

```
suma (vx, vy) (wx, wy) = (vx + wx, vy + wy)
```

Parámetros vs. tuplas

¿Conviene tener dos parámetros escalares o un parámetro dupla?

```
suma :: (Float, Float) → (Float, Float) → (Float, Float)
suma (vx, vy) (wx, wy) = (vx + wx, vy + wy)

— normaVectorial2 x y es la norma de (x,y)
normaVectorial2 :: Float → Float → Float
normaVectorial2 x y = sqrt (x^2 + y^2)

— normaVectorial1 (x,y) es la norma de (x,y)
normaVectorial1 :: (Float, Float) → Float
normaVectorial1 (x,y) = sqrt (x^2 + y^2)

normaISuma :: (Float, Float) → (Float, Float) → Float
normaISuma v1 v2 = normaVectorial1 (suma v1 v2)

norma2Suma :: (Float, Float) → (Float, Float) → Float
norma2Suma v1 v2 = normaVectorial2 (fst s) (snd s)
where s = suma v1 v2
```

Pattern matching sobre tuplas

Podemos usar pattern matching sobre constructores de tuplas y números

```
esOrigen :: (Float, Float) -> Bool
esOrigen (0, 0) = True
esOrigen (-, -) = False

angulo0 :: (Float, Float) -> Bool
angulo0 (-, 0) = True
angulo0 (-, -) = False

{-
No podemos usar dos veces la misma variable
angulo45 :: (Float, Float) -> Bool
angulo45 (x,x) = True
angulo45 (x,x) = True
angulo45 (x,x) = True
angulo45 :: (Float, Float) -> Bool
angulo45 (x,y) = x = y

patternMatching :: (Float, (Bool, Int), (Bool, (Int, Float))) -> (Float, (Int, Float))
patternMatching (f1, (True, -), (-, (0, f2))) = (f1, (1, f2))
patternMatching (-, -, (-, (-, f))) = (f, (0, f))
```

Currificación

11

► Diferencia entre promedio1 y promedio2

```
promedio1 :: (Float, Float) -> Float
promedio1 (x,y) = (x+y)/2
promedio2 :: Float -> Float -> Float
promedio2 x y = (x+y)/2
```

Currificación

► Diferencia entre promedio1 y promedio2

```
promedio1 :: (Float, Float) -> Float
promedio1 (x,y) = (x+y)/2
promedio2 :: Float -> Float -> Float
promedio2 x y = (x+y)/2
```

- ▶ solo cambia el tipo de datos de la función
 - promedio1 recibe un solo parámetro (una dupla)
 - promedio2 recibe dos Float separados por un espacio
 - para declararla, separamos los tipos de los parámetros con una flecha
 - tiene motivos teóricos y prácticos (que no veremos ahora)
- ▶ la notación se llama currificación en honor al matemático Haskell B. Curry
- ▶ para nosotros, alcanza con ver que evita el uso de varios signos de puntuación (comas y paréntesis)
 - promedio1 (promedio1 (2, 3), promedio1 (1, 2))
 - promedio2 (promedio2 2 3) (promedio2 1 2)

Recursión

► Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".

Funciones binarias: notación prefija vs. infija

Funciones binarias

- ► Notación prefija: función antes de los argumentos (e.g., suma x y)
- ► Notación infija: función entre argumentos (e.g. x + y, 5 * 3, etc)
- La notación infija se permite para funciones cuyos nombres son operadores
- ► El nombre real de una función definido por un operador es (•)
- ► Se puede usar el nombre real con notación prefija, e.g. (+) 2 3
- ► Haskell permite definir nuevas funciones con símbolos, e.g., (*+) (no hacerlo!)
- ▶ Una función binaria f puede ser usada de forma infija escribiendo 'f'

Ejemplos:

```
(>=) :: Ord a \Rightarrow a \rightarrow a \rightarrow Bool

(>=) 5 \ 3 — evalua a True

(==) :: Eq a \Rightarrow a \rightarrow a \rightarrow Bool

(==) 3 \ 4 — evalua a False

(^) :: (Num a, Int b) \Rightarrow a \rightarrow b \rightarrow a

(^) 2 \ 5 — evalua 32.0

mod :: (Integral a) \Rightarrow a \rightarrow a \rightarrow a

5 \ 'mod' \ 3 — evalua 2

div :: (Integral a) \Rightarrow a \rightarrow a \rightarrow a

5 \ 'div' \ 3 — evalua 1
```

Recursión

12

- ► Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ightharpoonup ¿Cómo es una función en Haskell para calcular el factorial de un número $n\in\mathbb{N}_0$?

Recursión

- ► Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ▶ ¿Cómo es una función en Haskell para calcular el factorial de un número $n \in \mathbb{N}_0$?

$$n! = \prod_{k=1}^{n} k$$

$$n! = \prod_{k=1}^{n} k$$

$$n! = \begin{cases} 1 & \text{si } n = 0 \\ n \times (n-1)! & \text{si } n > 0 \end{cases}$$

Recursión

- ► Hasta ahora, especificamos funciones que consistían en "expresiones sencillas".
- ▶ ¿Cómo es una función en Haskell para calcular el factorial de un número $n \in \mathbb{N}_0$?

$$n! = \prod_{k=1}^{n} k$$

$$n! = \prod_{k=1}^{n} k$$

$$n! = \begin{cases} 1 & \text{si } n = 0 \\ n \times (n-1)! & \text{si } n > 0 \end{cases}$$

¡La segunda definición de factorial involucra a esta misma función del lado derecho!

Recursión y reducción

; Podemos definirla usando otherwise?

Recursión y reducción

14

15

; Podemos definirla usando otherwise?

```
factorial :: Int -> Int
factorial n \mid n == 0 = 1
             | otherwise = n * factorial (n-1)
```

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

Recursión y reducción

; Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

15

Recursión y reducción

; Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

factorial 3

15

Recursión y reducción

```
¿Podemos definirla usando otherwise?
```

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

factorial $3 \rightsquigarrow 3 * factorial 2$

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

```
factorial 3 \leadsto 3 * factorial 2 \leadsto 3 * 2 * factorial 1 \leadsto \leadsto 6 * factorial 1
```

Recursión y reducción

; Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

factorial 3 \rightsquigarrow 3 * factorial 2 \rightsquigarrow 3 * 2 * factorial 1

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

```
factorial 3 \leadsto 3 * factorial 2 \leadsto 3 * 2 * factorial 1 \leadsto \leadsto 6 * factorial 1 \leadsto 6 * 1 * factorial 0
```

15

15

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

```
factorial 3 \leadsto 3 * factorial 2 \leadsto 3 * 2 * factorial 1 \leadsto \leadsto 6 * factorial 1 \leadsto 6 * 1 * factorial 0 \leadsto 6 * factorial 0 \leadsto \leadsto 6 * 1
```

Asegurarse de llegar a un caso base

Veamos este programa recursivo para determinar si un entero positivo es par:

```
esPar :: Int -> Bool
esPar n | n==0 = True
| otherwise = esPar (n-2)
```

¿Qué problema tiene esta función?

Recursión y reducción

¿Podemos definirla usando otherwise?

¿Podemos definirla usando pattern matching?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)
```

¿Cómo reduce la expresión factorial 3?

```
factorial 3 \leadsto 3 * factorial 2 \leadsto 3 * 2 * factorial 1 \leadsto \leadsto 6 * factorial 1 \leadsto 6 * 1 * factorial 0 \leadsto 6 * factorial 0 \leadsto \leadsto 6 * 1 \leadsto 6
```

Asegurarse de llegar a un caso base

Veamos este programa recursivo para determinar si un entero positivo es par:

```
esPar :: Int -> Bool
esPar n | n==0 = True
| otherwise = esPar (n-2)
```

¿ Qué problema tiene esta función?

¿Cómo se arregla?

15

Asegurarse de llegar a un caso base

Veamos este programa recursivo para determinar si un entero positivo es par:

```
esPar :: Int -> Bool
esPar n | n==0 = True
| otherwise = esPar (n-2)
```

¿Qué problema tiene esta función?

¿Cómo se arregla?

```
esPar :: Int -> Bool
esPar n | n==0 = True
| n==1 = False
| otherwise = esPar (n-2)
```

```
esPar :: Int -> Bool
esPar n | n==0 = True
| otherwise = not (esPar (n-1))
```

¿Cómo pensar recursivamente?

- ▶ Si queremos definir una función recursiva, por ejemplo factorial,
 - ▶ en el paso recursivo, suponiendo que tenemos el resultado para el caso anterior, ¿qué falta para poder obtener el resultado que quiero? En este caso, suponemos ya calculado factorial (n-1) y lo combinamos multiplicándolo por n para lograr obtener factorial n.
 - además, identificamos el o los casos base. En el ejemplo de factorial, definimos como casos base la función sobre 0: factorial n | n == 0 = 1

¿Cómo pensar recursivamente?

- ► Si queremos definir una función recursiva, por ejemplo factorial,
 - ▶ en el paso recursivo, suponiendo que tenemos el resultado para el caso anterior, ¿qué falta para poder obtener el resultado que quiero? En este caso, suponemos ya calculado factorial (n-1) y lo combinamos multiplicándolo por n para lograr obtener factorial n.

17

17

¿Cómo pensar recursivamente?

16

- ▶ Si queremos definir una función recursiva, por ejemplo factorial,
 - ▶ en el paso recursivo, suponiendo que tenemos el resultado para el caso anterior, ¿qué falta para poder obtener el resultado que quiero? En este caso, suponemos ya calculado factorial (n-1) y lo combinamos multiplicándolo por n para lograr obtener factorial n.
 - además, identificamos el o los casos base. En el ejemplo de factorial, definimos como casos base la función sobre 0: factorial n | n == 0 = 1
- Propiedades de una definición recursiva:
 - las llamadas recursivas tienen que "acercarse" a un caso base.
 - tiene que tener uno o más casos base que dependerán del tipo de llamado recursivo. Un caso base, es aquella expresión que no tiene paso recursivo.

¿Cómo pensar recursivamente?

- Casos bases: identificar el o los casos bases.
- ► Casos recursivos: **suponiendo que la llamada recursiva es correcta**, ¿qué tengo que hacer para completar la solución?

¿Cómo pensar recursivamente?

- ► Casos bases: identificar el o los casos bases.
- ► Casos recursivos: **suponiendo que la llamada recursiva es correcta**, ¿qué tengo que hacer para completar la solución?

Otro Ejemplo:

```
sumaLosPrimerosNImpares :: Integer -> Integer
sumaLosPrimerosNImpares n
| n == 1 = 1
| n > 1 = ... sumaLosPrimerosNImpares (n-1) ...
```

- ▶ Verificar que (n==1) es el caso base, está bien definido y no hay otros.
- ► Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos!

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

¿Cómo pensar recursivamente?

- Casos bases: identificar el o los casos bases.
- ► Casos recursivos: **suponiendo que la llamada recursiva es correcta**, ¿qué tengo que hacer para completar la solución?

Otro Ejemplo:

```
sumaLosPrimerosNImpares :: Integer -> Integer
sumaLosPrimerosNImpares n
| n == 1 = 1
| n > 1 = ... sumaLosPrimerosNImpares (n-1) ...
```

- ► Verificar que (n==1) es el caso base, está bien definido y no hay otros.
- ► Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos!

18

¿Cómo pensar recursivamente?

- ► Casos bases: identificar el o los casos bases.
- ► Casos recursivos: **suponiendo que la llamada recursiva es correcta**, ¿qué tengo que hacer para completar la solución?

18

Otro Ejemplo:

```
sumaLosPrimerosNImpares :: Integer -> Integer
sumaLosPrimerosNImpares n
| n == 1 = 1
| n > 1 = ... sumaLosPrimerosNImpares (n-1) ...
```

- ► Verificar que (n==1) es el caso base, está bien definido y no hay otros.
- ► Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos!

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

```
| n > 1 = n_esimoImpar + sumaLosPrimerosNImpares (n-1)
```

Cambiamos el problema: ahora sólo falta definir n_esimoImpar.

¿Cómo pensar recursivamente?

- ► Casos bases: identificar el o los casos bases.
- ► Casos recursivos: **suponiendo que la llamada recursiva es correcta**, ¿qué tengo que hacer para completar la solución?

Otro Ejemplo:

```
sumaLosPrimerosNImpares :: Integer -> Integer
sumaLosPrimerosNImpares n
| n == 1 = 1
| n > 1 = ... sumaLosPrimerosNImpares (n-1) ...
```

- ▶ Verificar que (n==1) es el caso base, está bien definido y no hay otros.
- ► Si podemos dar una solución correcta en base a una llamada recursiva correcta entonces, por inducción, ¡todos van a ser correctos!

Con el paso anterior resuelto: ¿Qué falta para que el nuevo paso esté resuelto?

```
\mid n > 1 = n_esimoImpar + sumaLosPrimerosNImpares (n-1)
```

Cambiamos el problema: ahora sólo falta definir n_esimoImpar.

```
\mid n > 1 = n_esimoImpar + sumaLosPrimerosNImpares (n-1) where n_esimoImpar = 2*n - 1
```

Inducción vs. Recursión

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base en Haskell: f 1 = 1

Inducción vs. Recursión

Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$

Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i - 1)$

Inducción vs. Recursión

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ► Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ► Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i 1)$
- ► Caso base en Haskell: f 1 = 1
- Supongo que ya sé calcular f(n-1), quiero calcular f(n)

19

Inducción vs. Recursión

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ► Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- ► Caso base en Haskell: f 1 = 1
- ▶ Supongo que ya sé calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Inducción vs. Recursión

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

► Uso la Hipótesis Inductiva *P*(*n*):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i-1)$
- \triangleright Caso base en Haskell: f 1 = 1
- ▶ Supongo que ya sé calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que sé calcular: f(n) = f(n-1) + 2n - 1

En Haskell: f n = f (n-1) + 2*n - 1

Inducción vs. Recursión

- Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$
- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n + 1$$

► Uso la Hipótesis Inductiva *P*(*n*):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

► ¡¿Pero cómo?! ¡¿Estoy usando lo que quiero probar?!

- Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i 1)$
- ► Caso base en Haskell: f 1 = 1
- Supongo que ya sé calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que sé calcular: f(n) = f(n-1) + 2n - 1

En Haskell: f n = f (n-1) + 2*n - 1

¡¿Pero cómo?! ¡¿Estoy usando la función que quiero definir?!

Inducción vs. Recursión

Probar por inducción $P(n): \sum_{i=1}^{n} (2i-1) = n^2$

19

19

- ▶ Vale para $n = 1 : \sum_{i=1}^{1} (2i 1) = 1^2$
- Supongo que vale P(n), quiero probar P(n+1)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n} (2i-1)$ y $\sum_{i=1}^{n+1} (2i-1)$?

$$\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + 2n+1$$

ightharpoonup Uso la Hipótesis Inductiva P(n):

$$\sum_{i=1}^{n+1} (2i-1) = n^2 + 2n + 1 = (n+1)^2$$

- ► ¡¿Pero cómo?! ¡¿Estoy usando lo que quiero probar?!
- Ah, claro... vale P(1) y P(n) => P(n+1), entonces įvale para todo n!

- ► Implementar una función recursiva para $f(n) = \sum_{i=1}^{n} (2i 1)$
- ► Caso base en Haskell: f 1 = 1
- Supongo que ya sé calcular f(n-1), quiero calcular f(n)
- ▶ ¿Qué relación hay entre $\sum_{i=1}^{n-1} (2i-1)$ y $\sum_{i=1}^{n} (2i-1)$?

$$\sum_{i=1}^{n} (2i-1) = \left(\sum_{i=1}^{n-1} (2i-1)\right) + 2n - 1$$

Uso la función que sé calcular: f(n) = f(n-1) + 2n - 1

En Haskell:
$$f n = f (n-1) + 2*n - 1$$

- ¡¿Pero cómo?! ¡¿Estoy usando la función que quiero definir?!
- Ah, claro... está definido f(1) y con f(n-1) sé obtener f(n), entonces ¡puedo calcular f para todo n!

19

Generalización de funciones

¿Una fácil?.. o no tanto

► Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

Generalización de funciones

¿Una fácil?.. o no tanto

► Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

Generalización de funciones

```
¿Una fácil?.. o no tanto
```

▶ Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

20

Generalización de funciones

20

20

```
¿Una fácil?.. o no tanto
```

▶ Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre *n*?

Generalización de funciones

¿Una fácil?.. o no tanto

► Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre *n*?

No hay ninguna relación sencilla entre sumaDivisores n y sumaDivisores (n-k) (para ningún k particular).

Generalización de funciones

¿Una fácil?.. o no tanto

► Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre n?

No hay ninguna relación sencilla entre sumaDivisores n y sumaDivisores (n-k) (para ningún k particular).

¿Qué sucede si definimos primero una funcion **más general** que devuelve la suma de los divisores de un número hasta cierto punto?

```
sumaDivisoresHasta :: Integer -> Integer -> Integer
```

Ahora **sí** existe una relación sencilla entre sumaDivisoresHasta n k y sumaDivisoresHasta n (k-1).; Por qué?

Generalización de funciones

```
¿Una fácil?.. o no tanto
```

▶ Implementar una función sumaDivisores :: Integer → Integer que calcule la suma de los divisores de un número entero positivo.

```
problema sumaDivisores(n : \mathbb{Z}) : \mathbb{Z}  { requiere: \{n > 0\} asegura: \{res = \sum_{i=1}^{n} \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi} \} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre *n*?

No hay ninguna relación sencilla entre sumaDivisores n y sumaDivisores (n-k) (para ningún k particular).

¿Qué sucede si definimos primero una funcion **más general** que devuelve la suma de los divisores de un número hasta cierto punto?

```
sumaDivisoresHasta :: Integer -> Integer -> Integer
```

20

21

Generalización de funciones

20

20

Veamos cómo sería la especificación:

```
problema sumaDivisoresHasta(n: \mathbb{Z}, k: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (k > 0)\} asegura: \{res = \sum_{i=1}^k \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi}\}
```

Generalización de funciones

Veamos cómo sería la especificación:

```
problema sumaDivisoresHasta(n: \mathbb{Z}, k: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (k > 0)\} asegura: \{res = \sum_{i=1}^k \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

Generalización de funciones

Veamos cómo sería la especificación:

```
problema sumaDivisoresHasta(n: \mathbb{Z}, k: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (k > 0)\} asegura: \{res = \sum_{i=1}^k \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

¿Y por último, cómo definimos SumaDivisores utilizando lo anterior?

```
sumaDivisores :: Integer -> Integer
sumaDivisores n = sumaDivisoresHasta n n
```

Generalización de funciones

Veamos cómo sería la especificación:

```
problema sumaDivisoresHasta(n: \mathbb{Z}, k: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (k > 0)\} asegura: \{res = \sum_{i=1}^k \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

¡Y por último, cómo definimos SumaDivisores utilizando lo anterior?

Generalización de funciones

Veamos cómo sería la especificación:

```
problema sumaDivisoresHasta(n: \mathbb{Z}, k: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (k > 0)\} asegura: \{res = \sum_{i=1}^k \text{ if } (n \mod i = 0) \text{ then } i \text{ else } 0 \text{ fi}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

¿Y por último, cómo definimos SumaDivisores utilizando lo anterior?

```
sumaDivisores :: Integer -> Integer
sumaDivisores n = sumaDivisoresHasta n n
```

Entonces, SumaDivisores, ¿es una función recursiva?

21

21

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}$$

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^n \sum_{j=1}^m i^j$$

Veamos primero la especificación:

```
problema sumatoriaDoble(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}\} }
```

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}$$

Veamos primero la especificación:

```
problema sumatoriaDoble(n : \mathbb{Z}, m : \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}\} }
```

22

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}$$

22

Veamos primero la especificación:

```
problema sumatoriaDoble(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}\} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre *n*?

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^n \sum_{j=1}^m i^j$$

Veamos primero la especificación:

```
problema sumatoriaDoble(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}\} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre n?

¿Qué sucede si definimos primero una funcion **más específica** que devuelve la sumatoria interna?

```
sumatoriaInterna :: Integer -> Integer -> Integer
```

Recursión en más de un parámetro

Veamos cómo sería la especificación:

```
problema sumatoriaInterna(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{j=1}^{m} n^{j}\} }
```

Recursión en más de un parámetro

Implementar la siguiente función:

$$f(n,m) = \sum_{i=1}^{n} \sum_{i=1}^{m} i^{j}$$

Veamos primero la especificación:

```
problema sumatoriaDoble(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{i=1}^{n} \sum_{j=1}^{m} i^{j}\} }
```

Pregunta clave: ¿alcanza con hacer recursión sobre n?

¿Qué sucede si definimos primero una funcion **más específica** que devuelve la sumatoria interna?

```
sumatoriaInterna :: Integer -> Integer -> Integer
```

Ahora parece más sencillo definir sumatoriaDoble n m utilizando sumatoriaInterna n m. ¡Cómo lo hacemos?

Recursión en más de un parámetro

Veamos cómo sería la especificación:

22

23

```
problema sumatoriaInterna(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{j=1}^m n^j\} }
```

Ahora podemos definir esta función en Haskell recursivamente

```
sumatorialnterna :: Integer \rightarrow Integer \rightarrow Integer sumatorialnterna _ 0 = 0 sumatorialnterna n j = n^j + sumatorialnterna n (j-1)
```

22

Recursión en más de un parámetro

Veamos cómo sería la especificación:

```
problema sumatoriaInterna(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{j=1}^{m} n^{j}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

```
sumatorialnterna :: Integer \rightarrow Integer \rightarrow Integer sumatorialnterna _ 0 = 0 sumatorialnterna n j = n^j + sumatorialnterna n (j-1)
```

¿Y por último, cómo definimos sumatoriaDoble utilizando lo anterior?

Recursión en más de un parámetro

Veamos cómo sería la especificación:

```
problema sumatoriaInterna(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{j=1}^m n^j\} }
```

Ahora podemos definir esta función en Haskell recursivamente

```
sumatorialnterna :: Integer \rightarrow Integer \rightarrow Integer sumatorialnterna _{-} 0 = 0 sumatorialnterna n j = n^j + sumatorialnterna n (j-1)
```

 \cite{Y} por último, cómo definimos sumatoria Doble utilizando lo anterior?

```
sumatoriaDoble :: Integer \rightarrow Integer \rightarrow Integer sumatoriaDoble 0 _{-}=0 sumatoriaDoble n m = sumatoriaDoble (n-1) m + sumatoriaInterna n m
```

Entonces, sumatoriaDoble, ¿cuántas recursiones involucra?

Recursión en más de un parámetro

Veamos cómo sería la especificación:

```
problema sumatoriaInterna(n: \mathbb{Z}, m: \mathbb{Z}): \mathbb{Z} { requiere: \{(n > 0) \land (m > 0)\} asegura: \{res = \sum_{j=1}^{m} n^{j}\} }
```

Ahora podemos definir esta función en Haskell recursivamente

```
sumatorialnterna :: Integer \rightarrow Integer \Rightarrow Integer sumatorialnterna _ 0 = 0 sumatorialnterna n j = n^j + sumatorialnterna n (j-1)
```

¡Y por último, cómo definimos sumatoriaDoble utilizando lo anterior?

```
sumatoriaDoble :: Integer \rightarrow Integer \rightarrow Integer sumatoriaDoble 0 _{-}=0 sumatoriaDoble n m = sumatoriaDoble (n-1) m + sumatoriaInterna n m
```

Práctica 3: Ejercicio 6

Especificar e implementar la función sumaDigitos :: Integer -> Integer que calcula la suma de dígitos de un número natural. Para esta función pueden utilizar div y mod.

23

23

Práctica 3: Ejercicio 7

Implementar la función todosDigitosIguales :: Integer -> Bool que determina si todos los dígitos de un número natural son iguales, es decir:

```
problema todosDigitosIguales(n : \mathbb{Z}) : bool\{ requiere: \{(n > 0)\} asegura: \{res \leftrightarrow todos los dígitos de <math>n son iguales \}
```