Optimization toolbox for deep learning:

The convergence analysis of Gradient Descent & Gradient Flow

Yushun Zhang

The Chinese University of Hong Kong, shenzhen, China

March 25, 2021

Mainly based on:

Matus Telgarsky. Deep learning theory lecture notes. 2021-01-18 v0.0-e018a871 (pre-alpha) Chapter 9, 10, 11 Andre Milzarek. Optimization Theory and Algorithms CIE / DDA 6010 – Fall 2020/21

Introduction

Goal:

$$\min_{w} \widehat{\mathcal{R}}(w) \tag{1}$$

where
$$\widehat{\mathcal{R}}(w) := n^{-1} \sum_{i} \ell\left(y_i f\left(x_i; w\right)\right)$$

- ▶ We will cover primarily first-order methods, e.g, GD.
- lacktriangle we'll cover classical inequalities when $\widehat{\mathcal{R}}(w)$ is:
 - a) smooth and nonconvex,
 - b) smooth and convex,
 - c)strongly convex.

Introduction

Most of our contents will be based on first order methods:

▶ We will cover primarily first-order methods, namely gradient descent:

$$w_{t+1} := w_t - \eta_t \nabla \widehat{\mathcal{R}}\left(w_t\right) \left(\eta_t \text{ sufficiently small}\right)$$

as well as the gradient flow

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \dot{w}(t) = -\nabla \widehat{\mathcal{R}}(w(t))$$

Warm-up question: How are these two related?

Introduction

- $lackbox{ velocity of } w \colon \frac{\mathrm{d} w}{\mathrm{d} t} = \dot{w}(t) = \nabla \widehat{\mathcal{R}}(w(t))$
- ▶ if at time t we are at point w_t and know our velocity is $\dot{w}(t)$, where should we go next? The velocity vector tells us where we will approximately be in the near future:
- lacktriangle Define a discretized sequence: $w_k := w_{\delta k}$
- then we obtain an algorithm in discrete time:

$$w_{k+1} = w_k + \delta F\left(w_k\right)$$

Thus, we can view algorithms in discrete time as a discretization of dynamics in continuous time, or dynamics as the continuous-time limit $(\delta \to 0)$ of algorithms.

Outline

Smooth and nonconvex case

smooth and convex case

Smooth and strongly convex case

Definition 1.

We say " $\widehat{\mathcal{R}}$ is β -smooth" to mean β -Lipschitz gradients:

$$\|\nabla \widehat{\mathcal{R}}(w) - \nabla \widehat{\mathcal{R}}(v)\| \le \beta \|w - v\|$$

Lemma 1.

Descent lemma: When $\widehat{\mathcal{R}}$ is β -smooth, we have:

$$\widehat{\mathcal{R}}(v) \le \widehat{\mathcal{R}}(w) + \langle \nabla \widehat{\mathcal{R}}(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^2$$

Proof of Descent lemma:

By the Fundamental theorem of calculus:

$$\begin{split} &|\widehat{\mathcal{R}}(v) - \widehat{\mathcal{R}}(w) - \langle \nabla \widehat{\mathcal{R}}(w), v - w \rangle| \\ &= |\int_0^1 \langle \nabla \widehat{\mathcal{R}}(w + t(v - w)), v - w \rangle \mathrm{d}t - \langle \nabla \widehat{\mathcal{R}}(w), v - w \rangle| \\ &\leq \int_0^1 |\langle \nabla \widehat{\mathcal{R}}(w + t(v - w)) - \nabla \widehat{\mathcal{R}}(w), v - w \rangle| \mathrm{d}t \\ &\leq \int_0^1 \|\nabla \widehat{\mathcal{R}}(w + t(v - w)) - \nabla \widehat{\mathcal{R}}(w)\| \cdot \|v - w\| \mathrm{d}t \\ &\leq \int_0^1 t\beta \|t(v - w) + w - w\| \|v - w\| \mathrm{d}t \\ &\leq \int_0^1 t\beta \|v - w\|^2 \mathrm{d}t \\ &= \frac{\beta}{2} \|v - w\|^2 \end{split}$$

Smooth and nonconvex case

Figure 5.4: Plot of $f_1(x) = \log(1+x)$ and $f_2(x) = \arctan(x)$ and of the quadratic upper surrogate functions $q_1(y) = y + \frac{1}{2}y^2$ and $q_2(y) = y + \frac{3\sqrt{3}}{16}y^2$ at x = 0. (The Lipschitz constant of the derivatives $f_1'(x) = (1+x)^{-1}$ and $f_2'(x) = (1+x^2)^{-1}$ is given by L = 1 and $L = 3\sqrt{3}/8$, respectively).

Remark 1.

Consider gradient iteration $w' = w - \frac{1}{\beta} \nabla \widehat{\mathcal{R}}(w)$, then the descent lemma implies:

$$\widehat{\mathcal{R}}(w') \le \widehat{\mathcal{R}}(w) - \langle \widehat{\mathcal{R}}(w), \widehat{\mathcal{R}}(w)/\beta \rangle + \frac{1}{2\beta} \|\widehat{\mathcal{R}}(w)\|^2 = \widehat{\mathcal{R}}(w) - \frac{1}{2\beta} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (2)

- we can guarantee gradient descent does not increase the objective.
- This inequality will occur a lot.

Remark 2.

Consider gradient iteration $w' = w - \eta \nabla \widehat{\mathcal{R}}(w)$, then the descent lemma implies:

$$\widehat{\mathcal{R}}(w') \leq \widehat{\mathcal{R}}(w) + \left\langle \nabla \widehat{\mathcal{R}}(w), w' - w \right\rangle + \frac{\beta}{2} \left\| w' - w \right\|^2 \tag{3}$$

$$= \widehat{\mathcal{R}}(w) - \eta \|\nabla \widehat{\mathcal{R}}(w)\|^2 + \frac{\beta \eta^2}{2} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (4)

$$= \widehat{\mathcal{R}}(w) - \eta \left(1 - \frac{\beta \eta}{2}\right) \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (5)

If we choose η appropriately $(\eta \le 2/\beta)$ then:

- either we are near a critical point $(\nabla \widehat{\mathcal{R}}(w) \approx 0)$,
- ightharpoonup or we can decrease $\widehat{\mathcal{R}}(w)$.

Theorem 1.

Let $(w_i)_{i>0}$ be given by gradient descent on β -smooth $\widehat{\mathcal{R}}(w)$. For stepsize $\eta \leq \frac{2}{\beta}$:

$$\min_{i < t} \|\nabla \widehat{\mathcal{R}}(w)\|^2 \leq \frac{1}{t} \sum_{i < t} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (6)

$$\stackrel{(Remark 2)}{\leq} \frac{2}{t\eta(2-\eta\beta)} \left(\widehat{\mathcal{R}} \left(w_0 \right) - \widehat{\mathcal{R}} \left(w_t \right) \right) \tag{7}$$

$$\leq \frac{2}{t\eta(2-\eta\beta)} \left(\widehat{\mathcal{R}}(w_0) - \inf_{w} \widehat{\mathcal{R}}(w) \right) \tag{8}$$

E.g. when
$$\eta = \frac{1}{\beta}$$
 we have: $\min_{i < t} \|\nabla \widehat{\mathcal{R}}(w)\|^2 \le \frac{2\beta}{t} \left(\widehat{\mathcal{R}}\left(w_0\right) - \widehat{\mathcal{R}}\left(w_t\right)\right)$.

Remark 3.

We have no guarantee about the last iterate $\|\nabla \widehat{\mathcal{R}}(w_t)\|$: we may get near a flat region at some i < t, but thereafter bounce out. With a more involved proof, we can guarantee we bounce out (J. D. Lee et al. 2016), but there are cases where the time is exponential in dimension.

Remark 4.

This derivation is at the core of many papers with a "local optimization" (stationary point or local optimum) guarantee for gradient descent.

Remark 5.

The gradient iterate with step size $\frac{1}{\beta}$ is the result of minimizing the quadratic provided by smoothness:

$$w - \frac{1}{\beta} \nabla \widehat{\mathcal{R}}(w) = \arg \min_{w'} \left(\widehat{\mathcal{R}}(w) + \left\langle \nabla \widehat{\mathcal{R}}(w), w' - w \right\rangle + \frac{\beta}{2} \|w' - w\|^2 \right)$$

$$= \arg \min_{w'} \left(\left\langle \nabla \widehat{\mathcal{R}}(w), w' \right\rangle + \frac{\beta}{2} \|w' - w\|^2 \right)$$
(10)

This relates to proximal descent and mirror descent generalizations of gradient descent.

Gradient flow (GF) version:

Recall GF: $\dot{w}(t) = -\nabla \hat{\mathcal{R}}(w(t))$. Using FTC, chain rule, and definition:

$$\widehat{\mathcal{R}}(w(t)) - \widehat{\mathcal{R}}(w(0)) \stackrel{(\mathsf{FTC})}{=} \int_0^t \widehat{\mathcal{R}}(w(t)) dt \tag{11}$$

(Chain rule)
$$\int_{0}^{t} \langle \nabla \widehat{\mathcal{R}}(w(s)), \dot{w}(s) \rangle ds$$
 (12)

$$(GF) = -\int_{0}^{t} \|\nabla \widehat{\mathcal{R}}(w(s))\| ds$$

$$\leq -t \inf_{s \in [0,t]} \|\nabla \widehat{\mathcal{R}}(w(s))\|^{2}$$
(14)

$$\leq -t \inf_{s \in [0,t]} \|\nabla \widehat{\mathcal{R}}(w(s))\|^2 \tag{14}$$

Theorem 2.

For the gradient flow:

$$\inf_{s \in [0,t]} \|\nabla \widehat{\mathcal{R}}(w(s))\|^2 \le \frac{1}{t} (\widehat{\mathcal{R}}(w(0)) - \widehat{\mathcal{R}}(w(t)))$$
(15)

Remark 6.

Compare with GD: $\min_{i < t} \|\nabla \widehat{\mathcal{R}}(w)\|^2 \leq \frac{2\beta}{t} \left(\widehat{\mathcal{R}}\left(w_0\right) - \widehat{\mathcal{R}}\left(w_t\right)\right)$

- \triangleright β is from step size.
- ▶ "2" is from the smoothness term in descent lemma. (avoided in GF).

Discussion:

- \blacktriangleright All the previous results are based on the assumption: $\nabla \widehat{\mathcal{R}}(w)$ is Lipschitz continuous.
- This may not be true for NNs.
- lacktriangle Yet, people still assume the iterates are bounded so that $\nabla \widehat{\mathcal{R}}(w)$ is Lipschitz continuous.
- ► How to ensure the boundedness of iterates?
 - For convex problem: Adaptive Gradient Descent without Descent.
 - For nonconvex NNs: Add a regularization term to the loss, aka, weight decay.

Outline

Smooth and nonconvex case

smooth and convex case

Smooth and strongly convex case

smooth and convex case 17 / 38

For convex functions, we have subgradient inequalities:

Lemma 3.

Subgradient inequality: For any w' and w: $\widehat{\mathcal{R}}(w') \geq \widehat{\mathcal{R}}(w) + \left\langle \nabla \widehat{\mathcal{R}}(w), w' - w \right\rangle$

Theorem 4.

Suppose $\widehat{\mathcal{R}}$ is β -smooth and convex, and $(w_i) \geq 0$ given by GD with $\eta_i := 1/\beta$, then for any z:

$$\widehat{\mathcal{R}}(w_t) - \widehat{\mathcal{R}}(z) \le \frac{\beta}{2t} \left(\left\| w_0 - z \right\|^2 - \left\| w_t - z \right\|^2 \right) \tag{16}$$

*: The reference point z allows us to use this bound effectively when $\widehat{\mathcal{R}}$ lacks an optimum, or simply when the optimum is very large. (linear separable logistic regression.)

smooth and convex case 18 / 38

Proof of Theorem 4:

$$\|w' - z\|^2 = \|w' - w + w - z\|^2$$
(17)

$$\stackrel{\text{(GD)}}{=} \quad \| -\frac{1}{\beta} \nabla \widehat{\mathcal{R}}(w) + w - z \|^2 \tag{18}$$

$$= \|w - z\|^2 - \frac{2}{\beta} \langle \nabla \widehat{\mathcal{R}}(w), w - z \rangle + \frac{1}{\beta^2} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (19)

$$\stackrel{(1)(2)}{=} \|w - z\|^2 + \frac{2}{\beta}(\widehat{\mathcal{R}}(z) - \widehat{\mathcal{R}}(w)) + \frac{2}{\beta}\left(\widehat{\mathcal{R}}(w) - \widehat{\mathcal{R}}(w')\right) \tag{20}$$

$$= \|w - z\|^2 + \frac{2}{\beta} \left(\widehat{\mathcal{R}}(z) - \widehat{\mathcal{R}}(w')\right)$$
 (21)

where (1): subgradient inequality, (2): Descent lemma.

$$\widehat{\mathcal{R}}(w') \leq \widehat{\mathcal{R}}(w) + \langle \nabla \widehat{\mathcal{R}}(w), w' - w \rangle + \frac{\beta}{2} \|w' - w\|^2 = \widehat{\mathcal{R}}(w) - \frac{1}{\beta} \|\nabla \widehat{\mathcal{R}}(w)\|^2 + \frac{1}{2\beta} \|\nabla \widehat{\mathcal{R}}(w)\|^2 \quad \square$$

Proof continued:

Rearranging and applying $\sum_{i < t}$

$$\frac{2}{\beta} \sum_{i < t} \left(\widehat{\mathcal{R}}(w_{i+1}) - \widehat{\mathcal{R}}(z) \right) \le \sum_{i < t} \left(\|w_i - z\|^2 - \|w_{i+1} - z\|^2 \right)$$

The final bound follows by noting $\widehat{\mathcal{R}}\left(w_{i}\right) \geq \widehat{\mathcal{R}}\left(w_{t}\right)$, and since the right hand side telescopes.

$$\widehat{\mathcal{R}}(w_t) - \widehat{\mathcal{R}}(z) \le \frac{\beta}{2t} \left(\|w_0 - z\|^2 - \|w_t - z\|^2 \right)$$

Г

We have similar results for gradient flow (GF):

Theorem 5.

Suppose $\widehat{\mathcal{R}}$ is β -smooth and convex, for any z, GF satisfies:

$$\widehat{\mathcal{R}}(w(t))) - \widehat{\mathcal{R}}(z) \le \frac{1}{2t} \left(\|w(0) - z\|^2 - \|w(t) - z\|^2 \right)$$
 (22)

*: difference with GD: no β . Are these two results consistent with each other? Yes

smooth and convex case 21 / 38

Are these two results consistent with each other? Yes

- ▶ Suppose $\|\nabla \widehat{\mathcal{R}}(w)\| \approx 1$ for sake of illustration.
- ▶ The "distance traveled" by GD: $\|w_t w_0\| = \left\|\frac{1}{\beta}\sum_i \nabla\widehat{\mathcal{R}}\left(w_i\right)\right\| \leq \sum_i \frac{1}{\beta}\left\|\nabla\widehat{\mathcal{R}}\left(w_i\right)\right\| \approx \frac{t}{\beta}$
- ▶ The "distance traveled" by GF is (via Jensen):

$$||w(t) - w(0)|| = \left\| \int_0^t \nabla \widehat{\mathcal{R}}(w(s)) ds \right\| = \left\| \frac{1}{t} \int_0^t t \nabla \widehat{\mathcal{R}}(w(s)) ds \right\|$$
$$\leq \frac{1}{t} \int_0^t ||t \nabla \widehat{\mathcal{R}}(w(s))|| ds \approx t$$

▶ So for GD and GF: $\widehat{\mathcal{R}}(w(t))$ − $\widehat{\mathcal{R}}(z)$ are of the same order.

smooth and convex case 22 / 38

Proof of Theorem 5: By the Fundamental Theorem of Calculus (FTC):

$$\frac{1}{2}\|w(t) - z\|_2^2 - \frac{1}{2}\|w(0) - z\|_2^2 \qquad \stackrel{\text{(FTC)}}{=} \qquad \frac{1}{2} \int_0^t \frac{\mathrm{d}}{\mathrm{d}s} \|w(s) - z\|_2^2 \, \mathrm{d}s \qquad \text{(23)}$$

$$\stackrel{\text{(Chain rule)}}{=} \qquad \int_0^t \left\langle \frac{\mathrm{d}w}{\mathrm{d}s}, w(s) - z \right\rangle \mathrm{d}s \qquad \text{(24)}$$

$$\stackrel{\text{(subgradient inequality)}}{\leq} \qquad \int_0^t (\widehat{\mathcal{R}}(z) - \widehat{\mathcal{R}}(w(s))) \mathrm{d}s; \qquad \text{(25)}$$

Then we have:

$$t\widehat{\mathcal{R}}(w(t)) + \frac{1}{2} \|w(t) - z\|_{2}^{2} \stackrel{\text{(1)}}{\leq} \int_{0}^{t} \widehat{\mathcal{R}}(w(s)) ds + \frac{1}{2} \|w(t) - z\|_{2}^{2}$$

$$\leq t\widehat{\mathcal{R}}(z) + \frac{1}{2} \|w(0) - z\|_{2}^{2}$$
(26)

smooth and convex case * (1): $\mathcal{R}(w(t))$ is nonincreasing in t

Some rules of thumb for convex opt (not comprehensive, and there are other ways).

- ▶ $\frac{1}{\sqrt{t}}$ uses Lipschitz of $\widehat{\mathcal{R}}$, (thus $\|\nabla\widehat{\mathcal{R}}\| = \mathcal{O}(1)$) in place of smoothness upper bound on $\|\nabla\widehat{\mathcal{R}}\|$.
- $ightharpoonup rac{1}{t}$ is often from Lipschitz Gradient.
- $ightharpoonup \frac{1}{t^2}$ uses "acceleration," which is a fancy momentum inside the gradient.
- $ightharpoonup \exp(-\mathcal{O}(t))$ uses strong convexity (or other fine structure on $\widehat{\mathcal{R}}$).
- Stochasticity changes some rates and what is possible, but there are multiple settings and inconsistent terminology.

smooth and convex case 24 / 38

Outline

Smooth and nonconvex case

smooth and convex case

Smooth and strongly convex case

Definition 6.

We say that smooth function $\widehat{\mathcal{R}}$ is λ -strongly-convex $(\lambda-\mathbf{sc})$ when

$$\widehat{\mathcal{R}}(w') \ge \widehat{\mathcal{R}}(w) + \left\langle \nabla \widehat{\mathcal{R}}(w), w' - w \right\rangle + \frac{\lambda}{2} \left\| w' - w \right\|^2$$
(28)

* Strongly convex function could be nonsmooth, with an alternative definition:

$$\widehat{\mathcal{R}}$$
 is λ -sc iff $\widehat{\mathcal{R}} - \|\cdot\|_2^2/2$ is convex.

Lemma 7.

PL condition: Suppose $\widehat{\mathcal{R}}$ is λ -sc. Then we have

$$\forall w \cdot \widehat{\mathcal{R}}(w) - \inf_{v} \widehat{\mathcal{R}}(v) \le \frac{1}{2\lambda} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
 (29)

Remark 7.

- Every stationary point is a global min.
- ▶ Recall descent lemma: $\frac{1}{2\beta} \left\| \nabla \widehat{\mathcal{R}} \left(w_i \right) \right\|^2 \leq \widehat{\mathcal{R}} \left(w_i \right) \widehat{\mathcal{R}} \left(w_{i+1} \right)$, which means every limit point of GD will be a global min.

Proof of PL condition:

Let w be given, and define the convex quadratic: (By $\lambda - \mathrm{sc}$, $\widehat{\mathcal{R}}(v) \geq Q_w(v)$.)

$$Q_w(v) := \widehat{\mathcal{R}}(w) + \langle \nabla \widehat{\mathcal{R}}(w), v - w \rangle + \frac{\lambda}{2} \|v - w\|^2$$
(30)

which attains its minimum at $\bar{v}:=w-\nabla\widehat{\mathcal{R}}(w)/\lambda$. By definition $\lambda-\mathrm{sc}$

$$\inf_{v} \widehat{\mathcal{R}}(v) \ge \inf_{v} Q_w(v) = Q_w(\bar{v}) = \widehat{\mathcal{R}}(w) - \frac{1}{2\lambda} \|\nabla \widehat{\mathcal{R}}(w)\|^2$$
(31)

Lemma 8.

(weight decay): Given $\widehat{\mathcal{R}}_{\lambda}(w) = \widehat{\mathcal{R}}(w) + \lambda \|w\|^2/2$ with $\widehat{\mathcal{R}} \geq 0$, optimal point \bar{w} satisfies

$$\frac{\lambda}{2} \|\bar{w}\|_2^2 \stackrel{(1)}{\leq} \widehat{\mathcal{R}}_{\lambda}(\bar{w}) \stackrel{(2)}{\leq} \widehat{\mathcal{R}}_{\lambda}(0) = \widehat{\mathcal{R}}(0)$$
(32)

* (1): $\widehat{\mathcal{R}} \geq 0$,, (2): plug in w = 0. No convexity used here.

Remark 8.

- ▶ thus it suffices to search over bounded set $\Big\{w \in \mathbb{R}^p : \|w\|^2 \leq 2\widehat{\mathcal{R}}(0)/\lambda\Big\}$. This can often be plugged directly into generalization bounds.
- ► In deep learning, this style of regularization ("weight decay") is indeed used, but it isn't necessary for generalization. (Chiyuan Zhang, rethinking generalization)

Theorem 9.

Suppose $\widehat{\mathcal{R}}(w)$ is $\lambda-\mathrm{sc}$ and β -smooth, and GD is run with step size $1/\beta$. Then a $\min \bar{w}$ exists, and

$$\widehat{\mathcal{R}}(w_t) - \widehat{\mathcal{R}}(\bar{w}) \le \left(\widehat{\mathcal{R}}(w_0) - \widehat{\mathcal{R}}(\bar{w})\right) \exp(-t\lambda/\beta)$$
(33)

$$\|w_t - \bar{w}\|^2 \le \|w_0 - \bar{w}\|^2 \exp(-t\lambda/\beta)$$
 (34)

Remark 9.

 β/λ is often called the condition number, we call the problem is well-conditioned when $\beta/\lambda \approx 1$.

Proof of Theorem 9:

$$\widehat{\mathcal{R}}(w_{i+1}) - \widehat{\mathcal{R}}(\bar{w}) \stackrel{\text{(Descent lemma)}}{\leq} \widehat{\mathcal{R}}(w_i) - \widehat{\mathcal{R}}(\bar{w}) - \frac{\left\|\nabla \widehat{\mathcal{R}}(w_i)\right\|^2}{2\beta}$$
(35)

$$\stackrel{\text{(PL condition)}}{\leq} \widehat{\mathcal{R}}(w_i) - \widehat{\mathcal{R}}(\bar{w}) - \frac{2\lambda \left(\widehat{\mathcal{R}}(w_i) - \widehat{\mathcal{R}}(\bar{w})\right)}{2\beta} \tag{36}$$

$$\leq \left(\widehat{\mathcal{R}}\left(w_{i}\right) - \widehat{\mathcal{R}}(\bar{w})\right) \left(1 - \lambda/\beta\right)$$
 (37)

Repeat it for
$$i$$
 times: since $\prod_{i < t} (1 - \lambda/\beta) \le \prod_{i < t} \exp(-\lambda/\beta) = \exp(-t\lambda/\beta)$ which gives the first bound.

Proof of Theorem 9:

$$\|w' - \bar{w}\|^{2} \stackrel{\text{(GD)}}{=} \|w - \frac{1}{\beta} \nabla \widehat{\mathcal{R}}(w) - \bar{w}\|^{2}$$

$$= \|w - \bar{w}\|^{2} + \frac{2}{\beta} \langle \nabla \widehat{\mathcal{R}}(w), \bar{w} - w \rangle + \frac{1}{\beta^{2}} \|\nabla \widehat{\mathcal{R}}(w)\|^{2}$$

$$\stackrel{\text{((1) \& (2))}}{\leq} \|w - \bar{w}\|^{2} + \frac{2}{\beta} \left(\widehat{\mathcal{R}}(\bar{w}) - \widehat{\mathcal{R}}(w) - \frac{\lambda}{2} \|\bar{w} - w\|_{2}^{2}\right)$$

$$+ \frac{1}{\beta^{2}} \left(2\beta \left(\widehat{\mathcal{R}}(w) - \widehat{\mathcal{R}}(w')\right)\right)$$

$$= (1 - \lambda/\beta) \|w - \bar{w}\|^{2} + \frac{2}{\beta} \left(\widehat{\mathcal{R}}(\bar{w}) - \widehat{\mathcal{R}}(w) + \widehat{\mathcal{R}}(w) - \widehat{\mathcal{R}}(w')\right)$$

$$\leq (1 - \lambda/\beta) \|w - \bar{w}\|^{2}$$

$$\leq (1 - \lambda/\beta) \|w - \bar{w}\|^{2}$$

$$(43)$$

Smooth and strongly convex case
(1): strong convexity, (2): Descent lemma

Now let us consider gradient flow:

Theorem 10.

If $\widehat{\mathcal{R}}$ is $\lambda-\mathrm{sc},$ a minimum \bar{w} exists, and the GF w(t) satisfies

$$||w(t) - \bar{w}||^2 \le ||w(0) - \bar{w}||^2 \exp(-2\lambda t)$$
(44)

$$\widehat{\mathcal{R}}(w(t)) - \widehat{\mathcal{R}}(\bar{w}) \le (\widehat{\mathcal{R}}(w(0)) - \widehat{\mathcal{R}}(\bar{w})) \exp(-2t\lambda)$$
(45)

*: As in all other rates proved for GF and GD, $\frac{t}{\beta}$ is replaced by t.

To prove Theoerm 10, we need to prove Grönwall's inequality first:

Lemma 11.

Let β and u be real-valued continuous functions in interval $I = [a, \infty)$ or [a, b] or [a, b), if u is differential in the interior I° of I and satisfies the differential inequality:

$$u'(t) \le \beta(t)u(t), \quad t \in I^{\circ}$$

then for all $t \in I$ we have:

$$u(t) \le u(a) \exp\left(\int_a^t \beta(s) \mathrm{d}s\right)$$
 (46)

Proof of Grönwall's inequality:

Define the function

$$v(t) = \exp\left(\int_a^t \beta(s) ds\right), \quad t \in I.$$

Note that v satisfies

$$v'(t) = \beta(t)v(t), \quad t \in I^{\circ},$$

with v(a) = 1 and v(t) > 0 for all $t \in I$. By the quotient rule

$$\frac{d}{dt}\frac{u(t)}{v(t)} = \frac{u'(t)v(t) - v'(t)u(t)}{v^2(t)} = \frac{u'(t)v(t) - \beta(t)v(t)u(t)}{v^2(t)} \le 0, \quad t \in I^{\circ}$$

Thus the derivative of the function u(t)/v(t) is non-positive and the function is bounded above by its value at the initial point a of the interval $I: \frac{u(t)}{v(t)} \leq \frac{u(a)}{v(a)} = u(a), \quad t \in I$

which is Grönwall's inequality. Smooth and strongly convex case

Proof of Theorem 10:

By first-order optimality in the form $\nabla \widehat{\mathcal{R}}(\bar{w}) = 0$, we have:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} \|w(t) - \bar{w}\|^2 = \langle w(t) - \bar{w}, \dot{w}(t) \rangle \tag{47}$$

$$= -\langle w(t) - \bar{w}, \nabla \widehat{\mathcal{R}}(w(t)) \rangle \tag{48}$$

$$= -\langle w(t) - \bar{w}, \nabla \widehat{\mathcal{R}}(w(t)) - \nabla \widehat{\mathcal{R}}(\bar{w}) \rangle \tag{49}$$

$$\stackrel{(1)}{\leq} -\lambda \|w(t) - \bar{w}\|^2 \tag{50}$$

where (1) uses an property: f is λ -strongly convex iff

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \lambda ||x - y||^2$$

Proof continued:

By Grönwall's inequality, this implies

$$\|w(t) - \bar{w}\|^2 \le \|w(0) - \bar{w}\|^2 \exp\left(-\int_0^t 2\lambda ds\right)$$
 (51)

$$\leq \|w(0) - \bar{w}\|^2 \exp(-2\lambda t) \tag{52}$$

which prove the first part. As for the objective function part:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\widehat{\mathcal{R}}(w(t)) - \widehat{\mathcal{R}}(\bar{w})) = \langle \nabla \widehat{\mathcal{R}}(w(t)), \dot{w}(t) \rangle$$
(53)

$$= -\|\nabla\widehat{\mathcal{R}}(w(t))\|^2 \tag{54}$$

$$\stackrel{\text{(PL)}}{\leq} -2\lambda(\widehat{\mathcal{R}}(w(t)) - \widehat{\mathcal{R}}(\bar{w})) \tag{55}$$

Proof continued:

By Grönwall's inequality, this implies

$$\widehat{\mathcal{R}}(w(t)) - \widehat{\mathcal{R}}(\bar{w}) \le (\widehat{\mathcal{R}}(w(0)) - \widehat{\mathcal{R}}(\bar{w})) \exp(-2t\lambda)$$
(57)

we finish the proof now.

- ► Thanks for your time!
- ► Next time we will discuss stochastic gradients.