

Springs Washer Belleville Equation

Machinery's Handbook, 29th Edition Large Print & Toolbox Editions

Search

Membership

Main Categories

· Home

- Engineering Book Store
- Engineering Forum
- Engineering News
- Engineering Videos
- Engineering Calculators
- Engineering Toolbox
- · <u>Engineering 1001</u> Directory
- Engineering Jobs
- GD&T Training
- Geometric Dimensioning
 Tolerancing
- DFM DFA Training
- Training Online
- Engineering PDH
- Advertising Center

Print Webpage

Residual Stress XR

Residual Stress Measurements NDT for Grinding Burn and Hardness

» Copyright Notice

Become a Engineers Edge Contributor

Solutions By Des

M.S. in Engineering Mgmt.

Online, Grad in Less than a Year. Fully Accredited. Learn More Today.

bolted joint. The equations below will determine the various characteristics including the applied load of a Belleville spring or washer. Springs Washer Belleville Equation / Formula

A Belleville spring or washer is formed into a conical or cone shaped

geometry. The slight or aggressive conical shape gives the washer a spring

characteristic and action. Belleville washers are typically used as springs

where the spring action is used to apply a pre-load or flexible quality to a

Springs Washer Belleville Equation

Spring Design Menu | Spring Suppliers and Manufacturers

Unloaded height of truncated cone of free spring

h = H - t [mm, in]

Where:

H = unloaded spring height [mm, in] t = spring material thickness [mm, in]

Diameter Ratio

 $\delta = \frac{D}{d}$

Where:

D = outer spring diameter [mm] d = inner spring diameter [mm]

Calculation coefficient a

$$\alpha = \frac{1}{\pi} \cdot \frac{\left(\frac{\delta - 1}{\delta}\right)^2}{\frac{\delta + 1}{\delta - 1} - \frac{2}{\ln \delta}}$$

Calculation coefficient B

$$\beta = \frac{1}{\pi} \cdot \frac{6}{\ln \delta} \left(\frac{\delta - 1}{\ln \delta} - 1 \right)$$

Calculation coefficient ⁷

$$\gamma = \frac{\delta - 1}{\pi} \cdot \frac{3}{\ln \delta}$$

Limit Washer Deflection

Where:

h = unloaded height of truncated cone of free spring [mm, in]

Force at Maximum Spring Deflection and Limit Deflection:

$$F_{\text{max}} = \frac{4E \cdot t^3 \cdot s_{\text{m}}}{(1 - \mu^2) \cdot \alpha \cdot D^2} \quad [\text{N, lb}]$$

Where:

E = Spring modulus of elasticity [MPa, psi] t = Spring material thickness [mm, in]

 s_m = limit spring deflection [mm, in] μ = Poisson's ratio

P Poisson's fatio

α = calculation coefficient
D = outside spring diameter [mm, in]

Force Exerted by the Spring at s Deflection:

$$\mathsf{F} = \frac{4\mathsf{E} \cdot \mathsf{t}^4}{(1-\mu^2) \cdot \alpha \cdot \mathsf{D}^2} \cdot \frac{\mathsf{s}}{\mathsf{t}} \cdot \left[\left(\frac{\mathsf{h}}{\mathsf{t}} - \frac{\mathsf{s}}{\mathsf{t}} \right) \cdot \left(\frac{\mathsf{h}}{\mathsf{t}} - \frac{\mathsf{s}}{2\mathsf{t}} \right) + 1 \right] \quad [\mathsf{N}, \mathsf{lb}]$$

Where:

E = spring modulus of elasticity [MPa, psi]

t = spring material thickness [mm, in]

s = working deflection of a spring [mm, in]

Poisson's ratio

 α = calculation coefficient

D = outside spring diameter [mm, in]

h = unloaded height of truncated cone of free spring [mm, in]

Maximum Pressure Stress in Spring at s Deflection:

$$\sigma = \frac{4E \cdot t \cdot s}{(1 - \mu^2) \cdot \alpha \cdot D^2} \cdot \left[\beta \cdot \left(\frac{h}{t} - \frac{s}{2t} \right) + \gamma \right] \quad [MPa, psi]$$

Where:

E = spring modulus of elasticity [MPa, psi]

t = spring material thickness [mm, in]

s = working deflection of a spring [mm, in]

= Poisson's ratio

 α = calculation coefficient

D = outside spring diameter [mm, in]

 β = calculation coefficient

h = unloaded height of truncated cone of free spring [mm, in]

 γ = calculation coefficient

Total Springs in a Set or Stack up

 $\chi = ni$

Where:

n = spring number in a set with unidirectional mounting i = spring number in a set with opposite mounting or number of sets with unidirectional mounting in a set with combined mounting

Stroke of Deflection of a Spring Set (Stack up)

z = is [mm, in]

Where:

i = spring number in a set with opposite mounting or number of sets with unidirectional mounting in a set with combined mounting s = working deflection of a spring [mm, in]

Force Exerted by a Spring Set (Stack up)

$$F = n F_1 [N, lb]$$

Where:

n = spring number in a set with unidirectional mounting F_1 = force exerted by one washer [N, lb]

Height of Spring Stack up Unloaded

$$L_0 = i(h + nt)$$
 [mm, in]

Where:

i = spring number in a set with opposite mounting or number of sets with unidirectional mounting in a set with combined mounting
 h = unloaded height of truncated cone of free spring [mm, in]
 n = spring number in a set with unidirectional mounting
 t = spring material thickness [mm, in]

Height of Loaded Spring Stack up

$$L = L_0 - z$$
 [mm, in]

 L_0 = Height of spring set in unloaded state [mm, in] z = stroke (deflection) of spring set [mm, in]

Residual Stress XRD

Residual Stress Measurements NDT for Grinding Burn and Hardness

Submit an article

Become a Engineers Edge contributor

© Copyright 2000 - 2016, by Engineers Edge, LLC www.engineersedge.com
All rights reserved

<u>Disclaimer</u> | <u>Feed Back</u> | <u>Advertising</u> | <u>Contact</u>