Zusammenfassung Markovketten

© Fin Baumann, http://timbaumann.info/uni-spicker

Abzählbare Markovketten

Notation. Sei im Folgenden $\{Z_n\}$ eine Markovkette auf einem abzählbaren Zustandsraum E.

Def. Für $x \in E$ und $n \in \mathbb{N}$ definiere die ZV $\tau_x^{(n)}$ induktiv durch

$$\tau_x^{(1)} := \inf \{ n > 0 \, | \, Z_n = x \} \in \mathbb{N} \cup \{ \infty \}
\tau_x^{(k)} := \inf \{ n > \tau_x^{(k-1)} \, | \, Z_n = x \}, \ k > 1.$$

(Beachte: $\tau_x^{(k)}$ ist eine messbare Abbildung.)

Bem. Ferner gilt $\{\tau_x^{(k)} = n\} \in \sigma(Z_0, Z_1, \dots, Z_n)$.

Def. Für $x, y \in E$ sei $F(x, y) := P(\tau_y^{(1)} < \infty \mid Z_0 = x)$

Lem. Für alle $x, y \in E$ und k > 1 gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = F(x, y) \cdot F(y, y)^{k-1}.$$

Bem. Setze $\widetilde{\ell}(y) := \sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\}$. Dann gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = P(\widetilde{\ell} \ge k \mid Z_0 = x).$$

Def. Ein Zustand $x \in E$ heißt

- absorbierend, falls p(x,x)=1,
- rekurrent, falls F(x,x)=1 und
- transient, falls F(x,x) < 1.

Bem. Absorbierende Zustände sind rekurrent.

Bsp. In der Markovkette

$$(0) \underbrace{1 \atop 1-p} (1) \underbrace{p \atop 1-p} (2) \underbrace{p \atop 1-p} (3) \underbrace{1-p} \cdots$$

ist (0) genau dann rekurrent, falls p < 1/2, ansonsten transient. TODO: genauer!

Def. Die Anzahl der Besuche in $u \in E$ ist

$$\ell(y) := \sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\}.$$

Die Green'sche Funktion von $\{Z_n\}$ ist $G: E \times E \to [0, \infty]$ mit

$$G(x,y) := \mathbb{E}(\ell(y) \mid Z_0 = x).$$

Bem.
$$G(x,y) = \mathbb{E}\left(\sum_{k=0}^{\infty} \mathbb{I}\left\{Z_{k} = y\right\} \mid Z_{0} = x\right)$$

 $= \sum_{k=0}^{\infty} P(Z_{k} = y \mid Z_{0} = x)$
 $= \delta_{xy} + \sum_{k=1}^{\infty} p^{(k)}(x,y).$

Satz. Für alle $x, y \in E$ gilt

$$G(x,y) = \begin{cases} F(x,y)/(1 - F(y,y)) & \text{falls } x \neq y, \\ 1/(1 - F(y,y)) & \text{falls } x = y. \end{cases}$$

Kor. x ist rekurrent $\iff G(x,x) = \infty$

Lem. Ist $F(x,y) \in (0,1)$, so ist x nicht rekurrent.

Satz. Ist $x \in E$ returrent und F(x,y) > 0, so ist y auch returrent und F(x, y) = F(y, x) = 1.

Satz. Es sind äquivalent:

- x ist rekurrent
- $\begin{array}{ll} \bullet & F(x,x) = 1 \\ \bullet & G(x,x) = \infty \end{array} \qquad \begin{array}{ll} \bullet & \forall \, y \in E \, : \, F(x,y) \in \{0,1\} \\ \bullet & \forall \, y \in E \, : \, G(x,y) \in \{0,\infty\} \end{array}$

Bem. $F(x,y) > 0 \iff \exists n > 1 : p^{(n)}(x,y) > 0$

Def. $\{Z_n\}$ heißt **irreduzibel**, falls $\forall x, y \in E : F(x, y) > 0$.

Satz. Sei $\{Z_n\}$ irreduzibel. Dann sind entweder alle Zustände rekurrent oder alle Zustände transient.

Satz. Irreduzible Ketten auf endlichen Räumen sind rekurrent.

Rekurrenz und Transienz von Irrfahrten

Situation. $\{Z_n\}$ ist eine Irrfahrt auf \mathbb{Z}^d , d. h.

$$p(x,y) = p(0, y - x) =: q(y - x).$$

Mit and. Worten: Die Zuwächse $\{Z_n - Z_{n-1}\}_{n \ge 1}$ sind i. i. d. ZVn.

Bsp. Einfache Irrfahrt auf \mathbb{Z} : p(0,1) = p, p(0,-1) = q = 1-p

In diesem Fall kann man die Greensche Funktion exakt berechnen:

$$G(x,x) = G(0,0)$$

$$= \sum_{m=0}^{\infty} p^{(m)}(0,0)$$

$$= 1 + \sum_{n=1}^{\infty} p^{(2n)}(0,0)$$

$$= 1 + \sum_{n=1}^{\infty} {2n \choose n} p^n (1-p)^n$$

$$= 1 + \sum_{n=1}^{\infty} {2n \choose n} 4^{-n} (4p(1-p))^n$$

$$= (1 - 4p(1-p))^{-1/2}$$

$$= 1/|2p-1|$$

Satz. Sei $\{Z_n\}$ eine Irrfahrt auf \mathbb{Z} mit

$$\mathbb{E}|Z_1 - Z_0| = \sum_{x \in \mathbb{Z}} |x| p(0, x) < \infty.$$

Dann gilt: $\{Z_n\}$ ist rekurrent $\iff \sum_{x \in \mathbb{Z}} xp(0,x) = 0$.

Def. Die einfache symmetrische Irrfahrt auf \mathbb{Z}^d ist die translationsinvariante Markovkette mit

$$p(0, \pm e_i) = \frac{1}{2d}$$
 für $i = 1, \dots, d$.

Bem. Für einfache symmetrische Irrfahrten gilt:

$$p^{(2n)}(x,x) = \sum_{\substack{k_1,\dots,k_d \in \mathbb{N} \\ k_1+\dots+k_d=n}} \frac{(2n)!}{(k_1!)^2 \cdots (k_d!)^2} (\frac{1}{2d})^{2n}$$

Für d=2 gilt $p^{(2n)}(0,0)=\big[{2n\choose n}\big(\frac{1}{2}\big)^{2n}\big]^2.$ Mit der Stirling'schen Formel folgt $p^{(2n)}(0,0) \approx \frac{1}{\pi n}$. Somit gilt $\sum p^{(2n)}(0,0) = \infty$.

Fazit. Die zweidimensionale einfache symm. Irrfahrt ist rekurrent.

Bem. Man kann zeigen: Für einfache symm. Irrfahrten auf \mathbb{Z}^d gilt

$$p^{(2n)}(0,0) \le C_d/n^{d/2}$$

für eine Konstante $C_d > 0$. Somit ist die einfache Irrfahrt transient für alle d > 3.

Def.
$$\varphi(t) := \sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p(0, x)$$
 für $t \in \mathbb{R}^d$

Bem. Da die Zuwächse $\{Z_n - Z_{n-1}\}$ i. i. d. sind, gilt

$$\sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p^{(n)}(0, x) = \varphi^n(t), \quad n \ge 1$$

Inversions formel: $p^{(n)}(0,x) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi)^d} e^{-i(t\cdot x)} \varphi^n(t) dt$

Satz. Für jede Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d gilt

$$G(0,0) = \left(\frac{1}{2\pi}\right)^d \lim_{\lambda \uparrow 1} \int_{t \in [-\pi,\pi)^d} Re\left(\frac{1}{1-\lambda \varphi(t)}\right) dt = \infty$$

Bsp. Für die einfache symm. Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d ist

$$\varphi(t) = \frac{1}{d} \sum_{k=1}^{d} \cos(t_k)$$

Mit der Ungleichung $1 - \cos(u) \ge c_0 u^2$ für alle $u \in [-\pi, \pi]$ folgt $\varphi(t) > \frac{c_0}{2} |t|^2.$

Es folgt

$$\frac{1}{1-\lambda\varphi(t)} \le \frac{d}{\lambda c_0} |t|^{-2}$$

Die Funktion $|t|^{-2}$ ist auf $[-\pi,\pi)^d$ für jedes $d\geq 3$ integrierbar. Somit ist die einfache Irrfahrt auf \mathbb{Z}^d , $d\geq 3$, transient.

Satz. Jede irreduzible Irrfahrt auf \mathbb{Z}^d mit $d \geq 3$ ist transient.

Bsp. Sei $\{Z_n\}$ eine Irrfahrt auf \mathbb{Z} mit p(0,x)=p(0,-x). Gelte

$$x^{\alpha}p(0,x) \xrightarrow{x \to \infty} c \in (0,\infty)$$

für ein $\alpha > 1$. Dann ist

$$1 - \varphi(t) = \sum_{n = -\infty}^{\infty} (1 - \cos(nt)) p(0, n) \text{ und } \frac{1 - \varphi(t)}{|t|^{\alpha - 1}} = \sum_{n = -\infty}^{\infty} |n|^{\alpha} p(0, n) |t| f(nt)$$

mit $f(x) = (1 - \cos(x))/|x|^{\alpha}$. Außerdem $|n|^{\alpha}p(0,n) = c + \epsilon_n$, wobei $\epsilon_n \to 0$ für $|n| \to \infty$. Es folgt

$$\frac{1-\varphi(t)}{|t|^{\alpha-1}} = \sum_{n=-\infty}^{\infty} c|t|f(nt) + \sum_{n=-\infty}^{\infty} \epsilon_n|t|f(nt).$$

Für $t \to 0$ hat man

$$\sum_{n=-\infty}^{\infty} |t| f(nt) \to \int_{-\infty}^{\infty} f(x) dx \text{ und } \sum_{n=-\infty}^{\infty} \epsilon_n |t| f(nt) \to 0.$$

Es folgt für $\alpha < 3$:

$$\lim_{t \to 0} \frac{1 - \varphi(t)}{|t|^{\alpha - 1}} = c \int_{-\infty}^{\infty} \frac{1 - \cos(x)}{|x|^{\alpha}} \, \mathrm{d}x < \infty$$

Folglich ist $\frac{1}{1-\varphi(t)}$ für $\alpha < 2$ integrierbar und somit $\{Z_n\}$ transient. Für $\alpha = 2$ ist $1/(1-\varphi(t))$ in der Umgebung von null nicht integrierbar und damit $\{Z_n\}$ rekurrent.

Für $\alpha > 2$ ist $\sum |x|p(0,x) < \infty$ und somit ist die Irrfahrt rekurrent, da der Erwartungswert der Zuwächse null ist.

Erneuerungstheorie

Situation. Seien $\{X_k\}_{k\geq 1}$ unabhängige ZVn mit Werten in $\mathbb N$ und $P(X_k\geq 1)>0$, wobei $\{X_k\}_{k\geq 2}$ identisch vert. sind. Dann definiert

$$Z_n := \sum_{k=1}^n X_k + Z_0$$

eine Irrfahrt $\{Z_n\}_{n\geq 0}$ mit nicht-negativen Zuwächsen auf \mathbb{Z} .

Ziel. Untersuche das asympt. Verhalten von G(0, x).

Def. Die erzeugende Funktion einer Folge $\{a_n\}$ ist

$$A(s) := \sum_{n=0}^{\infty} a_n s^n.$$

Bsp. Setze $p_k := P(X_2 = k), k \ge 0$. Wir nehmen an, dass

$$a := \mathbb{E}[X_2] = \sum_{k=1}^{\infty} k p_k \in (0, \infty)$$
.

Definiere $q_k := \frac{1}{a} \sum_{j=k}^{\infty} p_j$ für $k \ge 1$. Dann ist $\sum_{k=1}^{\infty} q_k = 1$. Sei X_1 eine ZV mit $P(X_1 = k) = q_k, \ k \ge 1$. Setze

$$f(s) := \sum_{k=1}^{\infty} p_k s^k = \mathbb{E}[s^{X_2}], |s| \le 1$$

$$g(s) := \sum_{k=1}^{\infty} q_k s^k = \mathbb{E}[s^{X_1}]$$

$$\psi(s) := \sum_{x=1}^{\infty} G(0, x) s^x, |s| < 1$$

Dann gilt für |s| < 1:

$$\psi(s) = \sum_{k=1}^{\infty} g(s)f(s)^{k-1} = g(s)/(1 - f(s))$$

Außerdem gilt:

$$g(s) = \frac{s}{a(1-s)}(1-f(s))$$

Es folgt:

$$\psi(s) = \sum_{x=1}^{\infty} \frac{1}{a} s^x$$

Somit ist $G(0,x) = \frac{1}{a}$.

 ${\bf Satz.}\,$ Angenommen, ${\rm ggT}\{k\,|\,p_k>0\}=1.$ Dann gilt für jede Verteilung von $X_1,$ dass

$$G(0,x) \xrightarrow{x \to \infty} \frac{1}{a}$$
.

Lem. Sei $g(\theta)$ integrierbar auf $[-\pi, \pi)$. Dann gilt

$$\int_{[-\pi,\pi)} e^{i\theta x} g(\theta) d\theta \xrightarrow{|x| \to \infty} (x \in \mathbb{Z})$$

Lem. Seien alle X_k identisch verteilt und $\operatorname{ggT}\{p \mid p_k > 0\} = 1$. Dann existiert $L := \lim_{x \to \infty} G(0, x)$.

Def. Seien $\{X_k\}_{k\geq 1}$ unabhängige, nichtneg. ZVn und seien $\{X_k\}_{k\geq 2}$ identisch verteilt. Setze $Z_n:=\sum_{k=1}^n X_k$. Dann heißt

$$\begin{array}{lll} \eta(t) & \coloneqq & \min\{k \geq 1 \,|\, Z_k > t\} & \text{ Erneuerungsprozess und} \\ H(t) & \coloneqq & \mathbb{E}[\eta(t)] & \text{ Erneuerungsfunktion.} \end{array}$$

Falls X_k nur Werte aus \mathbb{N} annimmt, so können wir das Verhalten von H(t) - H(t-1) wie folgt beschreiben:

$$\begin{split} H(t) &= \mathbb{E}[\eta(t)] = \sum_{k=0}^{\infty} P(\eta(t) > k) = \sum_{k=0}^{\infty} P(Z_k \le t) \\ &\rightsquigarrow \quad H(t) - H(t-1) = \sum_{k=0}^{\infty} P(Z_k = t) \xrightarrow{t \to \infty} 1/\mathbb{E}[X_2]. \end{split}$$

$$\begin{array}{cccc} \mathbf{Def.} & \pmb{\gamma(t)} & \coloneqq & t - Z_{\eta(t)-1} \geq 0 & \text{heißt } \mathbf{Undershoot}, \\ \pmb{\chi(t)} & \coloneqq & Z_{\eta(t)} - t > 0 & \text{heißt } \mathbf{Overshoot}. \end{array}$$

Satz. Sind die Bedingungen des letzten Satzes erfüllt, so gilt

$$P(\gamma(t)=i,\chi(t)=j) \xrightarrow{t\to\infty} \frac{p_{i+j}}{\mathbb{E}[X_2]} \qquad \text{für alle } i\geq 0, j\geq 1.$$

Kor.
$$P(\gamma(t) = i)$$
 $\xrightarrow{t \to \infty}$ $\frac{1}{a} \sum_{k=i+1}^{\infty} p_k$, $P(\gamma(t) = j)$ $\xrightarrow{t \to \infty}$ $\frac{1}{a} \sum_{k=j}^{\infty} p_k$

TODO: Eine der Gleichungen im Korollar sollte χ beinhalten.

Positive Rekurrenz

Def. $x \in E$ heißt **positiv rekurrent**, falls $\mathbb{E}[\tau_x^{(1)}|Z_0 = x] < \infty$. Ist x rekurrent, aber nicht pos. rekurrent, so heißt x **nullrekurrent**.

Bem. positive Rekurrenz \implies Rekurrenz

Lem. Sei x ein positiv rekurrenter Zustand. Ist F(x, y) > 0, so ist auch y positiv rekurrent.

Kor. Ist $\{Z_n\}$ irreduzibel und $x_0 \in E$ positiv rekurrent, so gilt:

- alle Zustände sind positiv rekurrent
- $m(x,y) := \mathbb{E}[\tau_y^{(1)}|Z_0 = x] < \infty$ für alle $x,y \in E$

Def. Die Zahl $d_x := \operatorname{ggT}\{n \ge 1 \mid p^{(n)}(x,x) > 0\}$ heißt **Periode** von x. Falls $d = d_x$ für alle $x \in E$, so heißt d Periode der Kette $\{Z_n\}$.

Lem. Ist $\{Z_n\}$ irreduzibel, so gilt $d_x = d_y$ für alle $x, y \in E$.

Satz. Es gibt eine Familie $\{\pi_y \in \mathbb{R}_{>0}\}_{y \in E}$, sodass

$$\forall x, y \in E : p^{(n)}(x, y) \xrightarrow{n \to \infty} \pi_y$$

genau dann, wenn

- $\{Z_n\}$ irreduzibel und
- aperiodisch (d. h. d = 1) ist und
- ein x_0 existiert, sodass $m(x_0, x_0) < \infty$.

Die Folge $\{\pi_y\}_{y\in E}$ ist die eindeutige Lösung zu

$$\left\{ \begin{array}{l} \sum_{y \in E} |P_y| < \infty \\ \sum_{y \in E} \pi_y = 1 \\ \sum_{x \in E} \pi_x p(x,y) = \pi_y \text{ für alle } y \in E \end{array} \right.$$

Es gilt $\pi_y = 1/m(y,y)$.

Def. Eine Verteilung $\{\mu_x\}_{x\in E}$ auf E heißt stationär, falls

$$\mu_x = \sum_{y \in E} \mu_y p(y, x)$$
 für alle $x \in E$ (kurz: $\mu = \mu P$).

Bem. Für eine stationäre Verteilung $\{\mu_x\}_{x\in E}$ gilt

$$\mu_x = \sum_{y \in E} \mu_y p^{(n)}(y, x)$$
 für alle $x \in E$ und $n \in \mathbb{N}$

Lem. Sei x ein positiv rekurrenter Zustand. Dann definiert

$$\mu_y^{(x)} := \frac{1}{m(x,x)} \cdot \mathbb{E} \left[\sum_{k=0}^{\tau_x^{(1)} - 1} \mathbb{1} \{ Z_k = y \} \middle| Z_0 = x \right]$$

für alle $y \in E$ eine stationäre Verteilung $\{\mu_y^{(x)}\}_{y \in E}$.

Satz. Sei $\{Z_n\}$ eine irreduzible Kette. Dann gilt:

 $\{Z_n\}$ ist pos. rekurrent $\iff \{Z_n\}$ hat eine stationäre Verteilung.

In diesem Fall ist die stationäre Verteilung eindeutig.

Satz. Eine irreduzible Kette auf einem endlichen Zustandsraum ist immer positiv rekurrent. Ferner existieren C > 0 und $g \in (0,1)$ mit

$$P(\tau_n^{(1)} > n \mid Z_0 = x) < Cq^n$$
 für alle $n > 1$ und $x, y \in E$.

Satz. Sei $\{Z_n\}$ irreduzibel und positiv rekurrent. Sei $f: E \to \mathbb{R}$ integrierbar bezüglich der stationären Verteilung $\{\pi_x\}$, d. h. $\sum_{x \in E} |f(x)| \pi_x < \infty$. Dann gilt

$$\frac{1}{n} \sum_{k=0}^{n-1} f(Z_k) \xrightarrow{\text{f. s.}} \sum_{x \in E} f(x) \pi_x$$

Bsp. Für $f(y) := \mathbb{1}\{y = x_0\}$ für eine $x_0 \in E$ erhalten wir

$$\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1} \{ Z_k = x_0 \} \xrightarrow{\text{f. s.}} \pi_{x_0}.$$

Es folgt mit majorisierter Konvergenz:

$$\frac{1}{n}\sum_{k=0}^{n-1}p^{(k)}(x,x_0)\xrightarrow{n\to\infty}\pi_{x_0}.$$

Bsp. Sei $\{Z_n\}$ irreduzibel, periodisch mit Periode p>1. Dann gilt

$$p^{(dk)}(x_0, x_0) \xrightarrow{d} /m(x_0, x_0).$$

Lem. Sei $\{Z_n\}$ eine irreduzible Kette mit der Periode $d \ge 1$. Für jedes $x \in E$ existiert ein $m_x \ge 1$ mit

$$p^{(md)}(x,x) > 0$$
für alle $m \ge m_x$.

Prop. Sei $\{Z_n\}$ irreduzibel und periodisch mit $d \geq 1$. Dann existieren paarweise disjunkte $C_0, C_1, \ldots, C_{d-1} \subseteq E$ mit $C_0 \cup \ldots \cup C_{d-1} = E$ und

$$\{y \in E \mid x \in C_i, p(x,y) > 0\} = C_{(i+1)\%d}$$

In anderen Worten: Die Mengen C_i werden zyklisch besucht.

Bem. Die Markovkette $\{Z_{md}\}_{m\geq 0}$ ist nicht irreduzibel (für d>1) aber die Restriktion auf jedes C_i ist irreduzibel und außerdem aperiodisch. Mit dem Ergodensatz erhalten wir

$$p^{(md)}(x,y) \xrightarrow{m \to \infty} d/m(y,y)$$
 für alle $x, y \in C_i$

Falls $x \in C_0$ und wir wollen $p^{(md+r)}(x,y)$ berechnen, so reicht es $y \in C_r$ zu betrachten. Definiere

$$F_r(x,y) := \mathbb{P}(\tau_u^{(1)} < \infty, \, \tau_u^{(1)} \equiv r \, (\text{mod } d) \, | \, Z_0 = x)$$

Es gilt dann:

$$p^{(md+r)}(x,y) \xrightarrow{m \to \infty} F_r(x,y)d/m(y,y)$$

Martingale

Sei im Folgenden (Ω, \mathcal{F}, P) ein Maßraum.

Def. Eine wachsende Folge $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots$ von σ -Algebren heißt **Filtration**. Eine Folge von ZVen $\{M_n\}$ heißt **adaptiert** an die Filtration $\{\mathcal{F}_n\}$, falls M_n \mathcal{F}_n -messbar ist für jedes $n \geq 0$.

Def. Sei X eine ZV mit $\mathbb{E}[|X|] < \infty$. Dann heißt \widehat{X} bedingte **Erwartung** von X bzgl. σ -Algebra \mathcal{A} falls \widehat{X} \mathcal{A} -messbar ist und $\mathbb{E}[X\mathbbm{1}_A] = \mathbb{E}[\widehat{X}\mathbbm{1}_A]$ für alle $A \in \mathcal{A}$.

Def. Eine $\{F_n\}$ -adapt. Folge $\{M_n\}$ mit $\forall n : \mathbb{E}[|M_n|] < \infty$ heißt

$$\begin{array}{c} \textbf{Martingal} \\ \textit{Submartingal} \\ \textit{Supermartingal} \end{array} \right\} \ \ \text{falls} \ \ \mathbb{E}[M_{n+1}|\mathcal{F}_n] \left\{ \begin{array}{c} = \\ \geq \\ \leq \end{array} \right\} M_n \quad \forall \, n \geq 0.$$

Bem. • $\{M_n\}$ ist Submartingal $\iff \{-M_n\}$ ist Supermartingal

• $\{M_n\}$ ist Martingal \iff $\{M_n\}$ ist Super- und Submartingal

Bem. Martingal-Strategie für wdh. Werfen einer fairen Münze:

- 1. Runde: Einsatz = 1 Euro, bei Gewinn Ausstieg
- 2. Runde: Einsatz = 2 Euro, bei Gewinn Ausstieg, ...
- n. Runde: Einsatz = 2^{n-1} Euro, bei Gewinn Ausstieg

Es gilt: $T=\inf\{n\geq 1\,|\, n\text{-te Runde ist gewonnen}\}<\infty$ fast sicher, der Gewinn ist 1 Euro.

Bsp. Seien $\{X_i\}$ unabh. ZVen mit $\mathbb{E}[X_i] = 0$ for alle $i \geq 0$. Sei $M_n \coloneqq X_1 + \ldots + X_n$. Dann ist $\{M_n\}$ ein Martingal bzgl. der Filtration $\{\mathcal{F}_n\}$ mit $\mathcal{F}_n \coloneqq \sigma(X_1, \ldots, X_n)$.

Def. Für eine Folge $\{M_n\}$ von ZVen heißt $\{\sigma(M_0, M_1, \dots, M_n)\}_{n>0}$ natürliche Filtration.

Lem. Ist $\{M_n\}$ ein Martingal bzgl. einer bel. Filtration, so ist $\{M_n\}$ auch ein Martingal bzgl. der natürlichen Filtration.

Def. $\{M_n\}$ ist Martingal $:\iff \{M_n\}$ ist Martingal bzgl. der natürlichen Filtration

Lem. Ist $\{M_n\}$ ein Submartingal, so gilt $\mathbb{E}[M_{i+1}] \geq \mathbb{E}[M_i]$.

Lem. Sei $\{M_n\}$ ein Martingal bzgl. $\{\mathcal{F}_n\}$. Dann gilt:

$$\mathbb{E}[M_n|\mathcal{F}_i] = M_i \quad \text{für alle } i \le n.$$

Lem. Sei $\{M_n\}$ ein Martingal bzgl. $\{\mathcal{F}_n\}$ und sei φ eine konvexe messbare Funktion. Falls $\mathbb{E}[|\varphi(M_n)|] < \infty$ für alle $n \geq 1$, so ist die Folge $\{\varphi(M_n)\}_{n \geq 0}$ ein Submartingal bzgl. $\{F_n\}$

Bem. Die Aussage des vorh. Lemmas gilt auch, falls $\{M_n\}$ nur ein Submartingal, dafür aber φ zusätzlich monoton wachsend ist.

Bsp. $\{M_n\}$ Martingal $\implies M_n^2, M_n^+, |M_n|$ Submartingale

Bsp. Ein Anleger kauft H_0 Aktien einer Firma. Es sei W_0 der Wert der Aktien beim Kauf, Y_n der Kurs der Aktie n Tage nach dem Kauf und H_n die Anzahl der Aktien n Tage nach dem Kauf. Forderung: H_n soll $\sigma(Y_0, \ldots, Y_{n-1})$ -messbar sein. Sei W_n der Wert der Aktien n Tage nach dem Kauf. Es gilt

$$W_n = W_{n-1} + H_n(Y_n - Y_{n-1}) = W_0 + \sum_{i=1}^n H_i(Y_i - Y_{i-1})$$

Falls $\{Y_n\}$ ein Martingal ist, so gilt

$$\mathbb{E}[W_{n+1}|\mathcal{F}_n]$$

$$= \mathbb{E}[W_n + H_{n+1}(Y_{n+1} - Y_n)|\mathcal{F}_n]$$

$$= W_n + \mathbb{E}[H_{n+1}(Y_{n+1} - Y_n)|\mathcal{F}_n]$$

$$= W_n + H_{n+1}\mathbb{E}[Y_{n+1} - Y_n|\mathcal{F}_n]$$

$$= W_n + H_{n+1}(\mathbb{E}[Y_{n+1}|\mathcal{F}_n] - Y_n)$$

 $= W_n$ (bzw. $\geq W_n$ für Sub- und $\leq W_n$ für Supermartingale).

Fazit: Mit Handelsstrategie kann man keine Anlage verbessern.

Def. Eine Folge $\{H_n\}_{n\geq 1}$ heißt **prävisibel**, falls H_n \mathcal{F}_{n-1} -messbar ist für alle $n\geq 1$. Definiere $\{H\cdot Y\}_n$ durch

$$(H \cdot Y)_n := \sum_{i=1}^n H_i (Y_i - Y_{i-1})$$

Satz. Sei $\{Y_n\}$ ein Supermartingal und sei $\{H_n\}$ prävisibel jeweils bzgl. der Filtration $\{\mathcal{F}_n\}$. Falls $H_n \in [0, C_n]$ für Konstanten $\{C_n\}$, so ist $\{(H \cdot Y)_n\}$ auch ein Supermartingal.

Bem. Man kann den Satz für Submartingale und Martingale formulieren. Für Martingale reicht es anzunehmen, dass $|H_n| \leq C_n$.

Def. Eine Abb. $T: \Omega \to \mathbb{N} \cup \{\infty\}$ heißt **Stoppzeit** bzgl. $\{F_n\}$, falls

$$\{T=n\}\in\mathcal{F}_n\quad \text{für alle }n\geq 0.$$

Bsp. Sei $\{M_n\}$ eine Folge von ZVen und sei $A \in \mathfrak{B}(\mathbb{R})$. Dann ist $T = \inf\{n > 0 \mid M_n \in A\}$ eine Stoppzeit bzgl. $\{\sigma(M_0, \dots, M_n)\}_n$.

Satz (Optional Stopping Theorem 1).

Ist $\{M_n\}$ ein (Sub-/Super-) Martingal und T eine Stoppzeit, so ist $\{M_{\min(T,n)}\}$ auch ein (Sub-/Super-) Martingal.

Sei $\{M_n\}$ eine Folge von ZVen Seien a < b. Definiere

$$\begin{array}{ll} N_0 & \coloneqq -1, \\ N_{2k-1} & \coloneqq \inf\{n > N_{2k-2} \,|\, M_n < a\}, \\ N_{2k} & \coloneqq \inf\{n > N_{2k} \,|\, M_n \ge b\} \end{array}$$

Die Anzahl der Aufkreuzungen ist dann

$$U_n := \max\{k \mid N_{2k} \le n\}.$$

Satz (Doob'sche Aufkreuzungsungleichung).

Ist $\{M_n\}$ ein Submartingal, so gilt für alle a < b und alle $n \ge 1$:

$$\mathbb{E}[U_n] \le (\mathbb{E}[(M_n - a)^+] - \mathbb{E}[(M_0 - a)^+])/(b - a).$$

Satz (Martingalkonvergenzsatz).

Sei $\{M_n\}$ ein Submartingal mit $\sup_{n\geq 0}\mathbb{E}[M_n^+]<\infty$. Dann existiert eine ZV M_∞ mit $\mathbb{E}[|M_\infty|]<\infty$ sodass $M_n\to M_\infty$ fast-sicher.

Bsp (Polya-Urne). Urne mit b blauen und r roten Kugeln. In jeder Runde wird eine Kugel gezogen und mit einer weiteren Kugel gleicher Farbe zurückgelegt. Sei R_n di Anzahl von zugefügten roten Kugeln nach n Runden.

Man kann zeigen: $\{M_n\coloneqq (r+R_n)/(r+b+n)\}_{n\geq 0}$ ist ein Martingal. Außerdem gilt sup $\mathbb{E}[M_n^+]\leq 1$ Nach dem vorherigen Satz gilt also $M_n\to M_\infty$ fast-sicher. Man kann zeigen, dass $M_\infty\sim \mathrm{Beta}(r,b)$,

$$f_{M_{\infty}}(x) = \frac{1}{B(r,b)} x^{r-1} (1-x)^{b-1}.$$

Kor. Sei $\{M_n\}$ ein nichtnegatives Supermartingal. Dann existiert $M_{\infty} \in L_1$ mit $M_n \to M_{\infty}$ fast-sicher.

Satz. Sei $\{M_n\}$ ein Submartingal und sei T eine Stoppzeit bzgl. derselben Filtration mit $P(T \leq N) = 1$ für ein $N \geq 1$. Dann gilt:

$$\mathbb{E}[M_0] \le \mathbb{E}[M_T] \le \mathbb{E}[M_N].$$

Satz (Doob'sche Ungleichung).

Sei $\{M_n\}$ ein Submartingal. Dann gilt:

$$P(\max_{k \le n} M_k \ge \lambda) \le 1/\lambda \cdot \mathbb{E}[M_n \mathbb{1}\{\max_{k \le n} M_k \ge \lambda\}] \le 1/\lambda \cdot \mathbb{E}[M_n^+]$$

Bem. Die Doob'sche Ungl. verbessert die Markov-Ungleichung.

Kor (Kolmogorov-Ungleichung). Seien $\{X_i\}$ unabh. ZVen mit $\mathbb{E}[X_i] = 0$ und $\mathbb{E}[X_i^2] < \infty$. Setze $S_k = X_1 + \ldots + X_k$. Dann gilt:

$$\mathbb{P}(\max_{k \le n} |S_k| \ge \lambda) \le \operatorname{Var}(S_n)/\lambda^2.$$

Satz. Ist $\{M_n\}$ ein Submartingal, dann gilt für jedes $p \in (1, \infty)$:

$$\mathbb{E}[(\max_{k \le n})^p] \le (p/(p-1))^p \mathbb{E}[(M_n^+)^p]$$

Kor. Sei $\{M_n\}$ ein Martingal. Dann gilt für jedes $p \in (1, \infty)$:

$$\mathbb{E}[(\max_{k \le n} |M_k|)^p \le (p/(p-1))^p \mathbb{E}[|M_n|^p]]$$

Satz. Sei $\{M_n\}$ ein Martingal mit $\sup_{n\geq 1} \mathbb{E}[|M_n|^p] < \infty$ für ein p>1. Dann konvergiert M_n fast-sicher und in L^p .

Def. Eine Familie $\{X_i\}_{i\in I}$ heißt gleichgradig integrierbar, falls

$$\forall \epsilon > 0 : \exists M > 0 : \forall i \in I : \mathbb{E}[|X_i| \mathbb{1}_{\{|X_i| > M\}}] < \epsilon.$$

Lem. Sei (Ω, \mathcal{F}, P) ein Wkts-Raum, $X \in L^1(\Omega, \mathcal{F}, P)$ und $\{A_i\}_{i \in I}$ eine Famile von σ -Algebren mit $A_i \subseteq \mathcal{F}$ für alle $i \in I$. Dann ist die Familie $\{\mathbb{E}[X|A_i]\}_{i \in I}$ gleichgradig integrierbar.

Lem. Sei $\{\mathcal{F}_n\}$ eine Filtration und $X \in L^1$. Dann ist $\{M_n\}$ mit $M_n := \mathbb{E}[X|\mathcal{F}_n]$ ein gleichgradig integrierbares Martingal.

Satz. Für jedes Martingal $\{M_n\}$ (bzgl. $\{\mathcal{F}_n\}$) sind äquivalent:

- $\{M_n\}$ ist gleichgradig integrierbar
- $\{M_n\}$ konvergiert fast sicher und in L^1
- $\{M_n\}$ konvergiert in L^1
- $\{\exists M \in L^1 : \forall n \geq 0 : M_n = \mathbb{E}[M|\mathcal{F}_n]\}$

Satz. Sei $\{\mathcal{F}_n\}$ eine Filtration. Betrachte $\mathcal{F}_{\infty} := \sigma(\cup_{n=0}^{\infty} \mathcal{F}_n)$

Bsp. Seien $\{X_i\}$ unabhängig und $\tau := \cap_{n \geq 1} \sigma(X_n, X_{n+1}, \ldots)$ die terminale σ -Algebra. Dann folgt aus dem vorh. Satz, dass $P(A) \in \{0,1\}$ für alle $A \in \tau$.

Bsp. Betrachte eine Lipschitz-stetige Funktion $f:[0,1)\to\mathbb{R}$. Setze

$$\begin{array}{rcl} X_n & := & \sum_{k=1}^{2^n} (k-1)/2^n \mathbb{1} \left[(k-1)/2^n, k/2^n \right), \\ M_n & := & 2^n (f(X_n+1/2^n) - f(X_n)). \end{array}$$

Dies sind ZVen auf $\Omega=[0,1)$ mit dem Lebesgue-Maß. Dann ist $\{M_n\}$ ein gleichgradig integrierbares Martingal. Somit gibt es ein $M\in L^1$ mit $M_n\xrightarrow{n\to\infty} M$ fast-sicher und in L^1 . Es gilt dann

$$f(x) - f(0) = \int_{0}^{x} M(t) dt$$
 für alle $x \in [0, 1)$.

Satz. Sei T eine Stoppzeit. Falls

- $\{M_n\}$ ein gleichgradig integrierbares Submartingal ist oder
- $\mathbb{E}[|M_T|] < \infty$ und $\{M_n \mathbb{1}\{T > n\}\}$ gleichgradig integrierbar sind, so ist die Folge $\{M_{T \wedge n}\}$ ebenfalls gleichgradig integrierbar.

Satz. Sei $\{M_n\}$ ein gleichgradig integrierbares Submartingal. Dann gilt für jede Stoppzeit T:

$$\mathbb{E}[M_0] < \mathbb{E}[M_T] < \mathbb{E}[M_\infty].$$

Satz (Optional Stopping Theorem 2).

Seien $S \leq T$ zwei Stoppzeiten. Ist $\{M_{T \wedge n}\}$ ein gleichgradig integrierbares Submartingal, so gilt

$$M_S \leq \mathbb{E}[M_T | \mathcal{F}_S].$$

Rekurrenz/Transienz mit Martingaltheorie

Sei $\{Y_n\}$ eine Folge nichtnegativer ZVen.

Def. $\{Y_n\}$ heißt (topologisch) rekurrent, falls

$$\exists r > 0 : P(\liminf_{n \to \infty} Y_n \le r) = 1.$$

 $\{Y_n\}$ heißt (topologisch) transient, falls $P(\lim_{n\to\infty}Y_n=\infty)=1$.

Satz. Sei $\{Y_n\}$ eine Folge mit $P(\limsup_{n\to\infty}Y_n=\infty)=1$. Falls ein M>0 mit $\mathbb{E}[Y_{n+1}|Y_n=x_n,\ldots,Y_0=x_0]\leq x_n$ für alle $x_n\geq M$ existiert, so ist $\{Y_n\}$ rekurrent.

Definiere
$$U_n^{(k)} := Y_{k+n} \cdot \mathbb{1}\{\min(Y_k, Y_{k+1}, \dots, Y_{n+k-1}) \ge M\}.$$

Lem. Unter Vor. des Satzes: Sei $\mathcal{F}_n^{(k)} := \sigma(Y_0, Y_1, \dots, Y_{n+k})$. Dann ist $\{U_n^{(k)}\}$ ein Supermartingal bzgl. $\{F_n^{(k)}\}$.

Satz. Sei $\{Y_n\}$ und T>0 mit $P(Y_n\leq T)=1$ für alle $n\in\mathbb{N}$ und $P(\limsup_{n\to\infty}Y_n=T)=1$. Falls $\mathbb{E}[Y_{n+1}|Y_n=x_n,\ldots,Y_0=x_0]\geq x_n$ für alle $n\in\mathbb{N}$ und $x_n\geq M$ für ein M< T, so gilt: $Y_n\xrightarrow{n\to\infty}T$ fast-sicher.

Im Folgenden sei $\tau := \inf\{n \ge 1 \mid Y_n \le r\}$.

Satz. Angenommen, für die Folge $\{\tilde{Y}_n\}$ mit $\tilde{Y}_n := Y_{n \wedge \tau}$ gilt $\mathbb{E}[\tilde{Y}_{n+1} | \sigma(Y_0, \dots, Y_n)] < \tilde{Y}_n - \epsilon \mathbb{I} \{\tau > n\} \quad \text{für ein } \epsilon > 0.$

Dann gilt für jeden konst. Startwert Y_0 die Ungleichung

$$\mathbb{E}[\tau] \le Y_0/\epsilon < \infty.$$

Satz. Falls $Y_0 > r$ und $\mathbb{E}[\tilde{Y}_{n+1} | \sigma(Y_0, \dots, Y_n)] \geq \tilde{Y}_n$ gilt und ein M > 0 mit $\mathbb{E}[|\tilde{Y}_{n+1} - \tilde{Y}_n|| \sigma(Y_0, \dots, Y_n)] \leq M$ fast-sicher existiert, so gilt $\mathbb{E}[\tau] = \infty$.

Sei $\{Z_n\}$ eine Markovkette auf \mathbb{N}_0 . Definiere $m_1(x) := \mathbb{E}[Z_1 - Z_0|Z_0 = x] = \sum\limits_{k \in \mathbb{Z}} kp(x, x+k)$ und $m_2(x) := \mathbb{E}[(Z_1 - Z_0)^2|Z_0 = x] = \sum\limits_{k \in \mathbb{Z}} k^2p(x, x+k)$.

Bem. Falls $m_1(x) \leq -\epsilon$ für alle $x \geq x_0$, so können wir direkt Satz 4.5 verwenden: Die Stoppzeit $\tau_r := \min\{n \geq 0 \mid Z_n \leq r\}$ hat endlichen Erwartungswert für jedes $r \geq x_0$.

Frage. Was passiert in dem Fall, wenn $m_1(x)$ von Null nicht getrennt ist? Hier hängt vieles von $m_2(x)$ ab.

Satz. Falls es ein $\epsilon > 0$ gibt mit

$$\forall x \ge x_0 : 2xm_1(x) + m_2(x) \le -\epsilon,$$

so ist die Kette $\{Z_n\}$ positiv rekurrent.

Beweisidee. Betrachte $Y_n = Z_n^2$. Dann gilt

$$\mathbb{E}[Y_{n+1} - Y_n | \sigma(Z_0, \dots, Z_n)] \le -\epsilon \quad \text{auf } \{Y_n \ge x_0^2\}.$$

Somit ist $\{Y_n\}$ nach Satz 4.5 und damit auch $\{Z_n\}$ rekurrent.

Falls $m_1(x) \sim -c/x$ und $m_2(x) \sim 1$, so ist $2xm_1(x) + m_2(x) \sim 1 - 2c$. Falls $c > \frac{1}{2}$, so ist die Kette positiv rekurrent.

Satz. Sei $\{Z_n\}$ eine irreduzible Kette mit $|Z_{n+1} - Z_n| \le B$ fast-sicher für alle n für ein B > 0. Außerdem gelte $\inf_x m_2(x) > 0$.

- Falls $2xm_1(x) \le (1 \epsilon)m_2(x)$ für alle $x \ge x_1$, so ist $\{Z_n\}$ rekurrent.
- Falls $2xm_1(x) \ge (1+\epsilon)m_2(x)$ für alle $x \ge x_2$, so ist die Kette $\{Z_n\}$ transient.

Bsp. Sei $\{Z_n\}$ eine einfache Irrfahrt auf \mathbb{Z}^d mit $Z_{n+1} - Z_n \in U_d = \{\pm e_1, \dots, \pm e_d\}$, alle gleich wahrscheinlich. Wir wissen: $\{Z_n\}$ ist rekurrent $\iff d \leq 2$ Dies können wir auch wie folgt zeigen:

Betrachte $X_n := ||Z_n||$. Dann ist

$$\mathbb{E}[X_{n+1} - X_n | Z_n = x] = \dots = \frac{1/2 - 1/d}{\|x\|} + O(1/\|x\|^2)$$

und

$$\mathbb{E}[(X_{n+1} - X_n)^2 | Z_n = x] = \dots = 1/d + O(1/||x||)$$

Für d=1 ist also

$$\mathbb{E}[X_{n+1} - X_n | X_n = x] \le (1 - \epsilon) \mathbb{E}[(X_1 - X_0)^2 | Z_0 = x] / (2||x||)$$

Mit Hilfe von $Y_n := \log(1+X_n)$ erhalten wir, dass $\{X_n\}$ rekurrent ist. Bei $d \geq 3$ gilt

$$\mathbb{E}[X_{n+1} - X_n | Z_n = x] \ge (1 + \epsilon) \mathbb{E}[(X_1 - X_0)^2 | Z_0 = x] / (2||x||)$$

Für d=2 können wir den vorh. Satz leider nicht benutzen. Man kann den Satz aber verbessern, sodass aus

$$2xm_1(x) \le (1 + \frac{1-\epsilon}{\log x})m_2(x)$$

schon Rekurrenz folgt.

Lem. Sei $\{Z_n\}$ eine irreduzible abzählbare Markovkette. Falls es eine endliche Menge $A \subseteq E$ mit

$$\mathbb{E}[\tau_A|Z_0=x]<\infty \quad \forall \, x\in A$$

gibt, so ist $\{Z_n\}$ positiv rekurrent.

Satz (Kriterium von Foster). Sei $\{Z_n\}$ eine irreduzible abzählbare Markovkette. Dann sind äquivalent:

- Die Kette $\{Z_n\}$ ist positiv rekurrent.
- Es gibt eine Abbildung $f: E \to \mathbb{R}_{\geq 0}$, ein $\epsilon > 0$ und eine endliche Teilmenge $A \subseteq E$ mit

$$\forall x \in E: \qquad \mathbb{E}[f(Z_1)|Z_0 = x] < \infty$$
 und
$$\forall x \in E \setminus A: \qquad \mathbb{E}[f(Z_1) - f(Z_0)|Z_0 = x] \le -\epsilon.$$

Bem. Man kann sogar immer $\epsilon = 1$ und |A| = 1 erreichen.

Satz. Sei $\{Z_n\}$ eine irr. Markovkette auf E, E abzählbar. Dann gilt:

$$\{Z_n\} \text{ ist transient} \iff \exists \, A \neq \emptyset \subset E \, \colon \exists \, f : E \to \mathbb{R}_{\geq 0} \, \colon \\ \inf_{x \in E} f(x) < \inf_{x \in A} f(x), \\ \forall \, x \in E \backslash A \, \colon \mathbb{E}[f(Z_1) - f(Z_0) \, | \, Z_0 = x] \leq 0.$$

Lem. Im Kontext der rechten Seite des Satzes: Sei $y \in E \setminus A$ mit $y < \inf_{x \in A} f(x)$. Dann gilt:

$$\mathbb{P}(\tau_A < \infty \mid Z_0 = y) \le f(y) / \inf_{x \in A} f(x).$$

Kor. Sei $\{Z_n\}$ eine irr. Markovkette auf E, E abzählbar. Dann gilt:

$$\{Z_n\}$$
 ist transient $\iff \exists x_0 \in E: \exists h: E \to \mathbb{R}: h$ beschränkt, nicht konstant und $\forall x \neq x_0: \mathbb{E}[f(Z_1) - f(Z_0) \, | \, Z_0 = x] = 0.$

Def. Eine Funktion $f: X \to \mathbb{R}$ (mit $|X| = \infty$) heißt **unbeschränkt**, falls $\sup_{x \in B} f(x) = \infty$ für jede unendliche Teilmenge $B \subseteq X$.

Satz. Sei $\{Z_n\}$ eine irr. Markovkette auf E, E abzählbar. Dann gilt:

$$\{Z_n\} \text{ ist rekurrent} \iff \exists \text{ endliche Teilmenge } A \subset E: \\ \exists \text{ unbeschränkte Funktion } f: E \to \mathbb{R}_{\geq 0}: \\ \forall \, x \in E \backslash A: \, \mathbb{E}[f(Z_1) - f(Z_0) \, | \, Z_0 = x] \leq 0.$$

Harmonische Fktn für Übergangskerne

Def. $P = (p(x,y))_{x,y \in E}$ heißt substochast. Übergangskern, falls

- $p(x,y) \ge 0$ für alle $x,y \in E$ und
- $\sum_{y \in E} p(x, y) \le 1$ für alle $x \in E$.

Er heißt strikt substochastisch, falls $\sum_{y\in E} p(x_0,y) < 1$ für mindestens ein $x_0\in E$.

Notation. Für $h: E \to \mathbb{R}$ sei $Ph: E \to \mathbb{R}$ definiert durch

$$(Ph)(x) := \sum_{y \in E} p(x, y)h(y).$$

(Annahme dabei: hist integrierbar,d. h. $\sum_{y\in E} p(x,y)|h(y)|<\infty.)$

Def. Eine integrierbare Funktion $h: E \to \mathbb{R}$ heißt

$$\label{eq:harmonisch} \left\{ \begin{array}{l} \mathbf{harmonisch} \\ \mathbf{superharmonisch} \end{array} \right\} \ \, \mathrm{falls} \ \, h(x) \left\{ \begin{array}{l} = \\ \geq \end{array} \right\} (Ph)(x) \ \, \forall \, x \in E.$$

hheißt strikt superharmonisch, falls $h(x_0)>\sum_{y\in E}p(x_0,y)h(y)$ für mindestens ein $x_0\in E.$

Bsp. Bei Diskretisierung der Laplace-Gleichung auf \mathbb{R}^2 mit der Finite-Differenzen-Methode erhält man das Gleichungssystem

$$Ph = h$$
.

wobei P der stochastische Übergangskern der einfachen symmetrischen Irrfahrt auf \mathbb{Z}^2 ist.

Bsp. Sei $\{Z_n\}$ eine irreduzible Irrfahrt auf \mathbb{Z} . Setze

$$h(x) := \mathbb{P}(\forall n > 0 : Z_n > 0 | Z_0 = x)$$
 für $x \in \mathbb{Z}$.

Dann ist h harmonisch für den substochastischen Übergangskern

$$P(x,y) := p(x,y) \mathbb{1} \{x \ge 1, y \ge 1\}.$$

Verfahren. Falls P substochastisch ist, so kann man die Gleichung für harmonische Fktn zu einer Gleichung mit einem stochastischen (aber leider nicht irreduziblen) Kern umformulieren: Setze

$$E' := E \sqcup \{\dagger\}$$

und definiere $p': E' \times E' \to [0,1]$ für $x,y \in E$ durch

$$p'(x,y) \coloneqq p(x,y), \quad p'(x,\dagger) \coloneqq 1 - \sum_{y \in E} p(x,y),$$

$$p'(\dagger,y) \coloneqq 0, \qquad p'(\dagger,\dagger) = 1.$$

Beachte: p' ist stochastisch. Für $h: E \to \mathbb{R}$ sei $h': E' \to \mathbb{R}$ def. durch

$$h'|_E := h \quad \text{und} \quad h'(\dagger) := 0.$$

Dann gilt für alle $h: E \to \mathbb{R}$:

h ist harmonisch für $p \iff h'$ ist harmonisch für p'.

Bem. Ist P stochastisch, so ist jede Konstante harmonisch. Ist P strikt substochastisch, so ist jede Konstante $\neq 0$ strikt superharmonisch.

Bsp. Sei P ein substochastischer Kern und

$$G(x,y) := \sum_{n=0}^{\infty} p^{(n)}(x,y)$$

die Greensche Funktion. Für festes $y \in E$ betrachte die Funktion

$$h_y(x) \coloneqq G(x,y).$$

Ist y transient (d. h. G(y,y)), so ist h_y superharmonisch. Ist P irreduzibel (d. h. $\forall x,y \in E: \exists n \geq 1: p^{(n)}(x,y) > 0$), so gilt außerdem $h_y(x) > 0$ für alle $x \in E$.

Lem (Maximumsprinzip). Sei P irreduzibel, substochastisch und h harmonisch für P. Falls ein Zustand $x_0 \in E$ mit

$$M := h(x_0) = \max_{x \in E} h(x)$$

existiert, so ist $h \equiv M$ konstant.

Ferner gilt: Falls $M \neq 0$, so ist P stochastisch.

Lem. Sei P irreduzibel und $h \ge 0$ superharmonisch. Dann gilt:

- $P^{(n)}h$ ist superharmonisch für alle n > 0.
- Entweder ist $h \equiv 0$ konstant oder $\forall x \in E : h(x) > 0$.

Lem. Sei $\{h_i\}_{i\in I}$ eine Familie von superharmon. Funktionen. Ist $h(x) := \inf_{i\in I} h(x)$ integrierbar, so ist auch h superharmonisch.