AAAI-12

Symbolic Dynamic Programming for Continuous State and Action MDPs

Zahra Zamani Scott Sanner

Cheng Fang

Massachusetts Institute of Technology

Continuous State and Action MDPs: e.g., Inventory Control

This work: optimal closed-form

policies for multivariate

continuous state and action MDPs

Continuous state and actions

State: inventory quantities

Action: how much of each item to reorder

- Inventory closed-form optimal policy?
 - Scarf's solution (1958) for 1D inventory

First optimal policies for multi-item inventory control on 50+ years!

Where do we start?

Previous Work on Continuous State and **Discrete** Actions

Hybrid State, Discrete Action MDPs

Hybrid discrete / continuous state

$$(\vec{b}, \vec{x}) = (b_1, \dots, b_n, x_1, \dots, x_m) \in \{0, 1\}^n \times \mathbb{R}^m$$

- Discrete action set $a \in A$
- DBN factored transition model

$$P(\vec{b}', \vec{x}' | \vec{b}, \vec{x}, a) = \underbrace{\left(\prod_{i=1}^{n} P(b'_{i} | \vec{b}, \vec{x}, a)\right) \left(\prod_{j=1}^{m} P(x'_{j} | \vec{b}, \vec{b}', \vec{x}, a)\right)}_{\text{discrete}}$$

Arbitrary action-dependent reward

$$R_a(\vec{b}, \vec{x}) = x_1^2 + x_1 x_2$$

Value Iteration for Hybrid MDPs

- Value of policy in state is expected sum of rewards
- Want optimal value $V^{h,*}$ over horizons $h \in 0...H$
 - Implicitly provides optimal horizon-dependent policy
- Compute inductively via Value Iteration for h∈0..H
 - Regression step:

$$Q_a^{h+1}(\vec{b}, \vec{x}) = R_a(\vec{b}, \vec{x}) + \gamma \cdot \sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^n P(b'_i | \vec{b}, \vec{x}, a) \prod_{j=1}^m P(x'_j | \vec{b}, \vec{b}', \vec{x}, a) \right) V^h(\vec{b}', \vec{x}') d\vec{x}'$$

– Maximization step:

$$V_{h+1} = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})$$

Exact Solutions to Hybrid MDPs: Domain

- 2-D Navigation
- State: $(x,y) \in \mathbb{R}^2$
- Actions:
 - move-x-2
 - x' = x + 2
 - y' = y
 - move-y-2
 - x' = x
 - y' = y + 2

Assumptions:

- 1. Continuous transitions are deterministic and linear
- 2. Discrete transitions can be stochastic
- Reward is piecewise rectilinear

Reward:

$$- R(x,y) = I[(x > 5) \land (x < 10) \land (y > 2) \land (y < 5)]$$

Exact Solutions to Hybrid MDPs: Regression

Continuous regression is just translation of "pieces"

Exact Solutions to Hybrid MDPs: Maximization

Q-value maximization yields piecewise rectilinear solution

Previous Work Limitations I

Exact regression when transitions nonlinear?

Previous Work Limitations II

max(.,.) when reward/value arbitrary piecewise?

A solution to previous limitations:

Symbolic Dynamic Programming (SDP)

n.b., motivated by SDP from Boutilier *et al* (IJCAI-01) but here continuous instead of relational

Piecewise Functions (Cases)

$$z = f(x,y) = \begin{cases} (x > 3) \land (y \cdot x) : & x + y \end{cases}$$
 Partition
Constraint
Constraint
Value

Linear constraints and value

Linear constraints, constant value

Quadratic constraints and value

Case Operations: ⊕, ⊗

$$egin{cases} \phi_1: & f_1 \ \phi_2: & f_2 \end{cases} \oplus egin{cases} \psi_1: & g_1 \ \psi_2: & g_2 \end{cases} = egin{cases} igwidge{2} \ ig$$

Case Operations: ⊕, ⊗

$$\begin{cases} \phi_1: & f_1 \\ \phi_2: & f_2 \end{cases} \oplus \begin{cases} \psi_1: & g_1 \\ \psi_2: & g_2 \end{cases} = \begin{cases} \phi_1 \wedge \psi_1: & f_1 + g_1 \\ \phi_1 \wedge \psi_2: & f_1 + g_2 \\ \phi_2 \wedge \psi_1: & f_2 + g_1 \\ \phi_2 \wedge \psi_2: & f_2 + g_2 \end{cases}$$

- Similarly for ⊗
 - Expressions trivially closed under +, *
- What about max?
 - max(f₁, g₁) not pure arithmetic expression ☺

Case Operations: max

$$\max \left(egin{array}{ll} \left\{ egin{array}{ll} \phi_1: & f_1 \ \phi_2: & f_2 \end{array}, \, \left\{ egin{array}{ll} \psi_1: & g_1 \ \psi_2: & g_2 \end{array}
ight) = \end{array}
ight.$$

Case Operations: max

$$\max \left(\begin{cases} \phi_1 : & f_1 \\ \phi_2 : & f_2 \end{cases}, \begin{cases} \psi_1 : & g_1 \\ \psi_2 : & g_2 \end{cases} \right) =$$

$$\max \left(\begin{cases} \phi_{1}: & f_{1} \\ \phi_{2}: & f_{2} \end{cases}, \begin{cases} \psi_{1}: & g_{1} \\ \psi_{2}: & g_{2} \end{cases} \right) = \begin{cases} \phi_{1} \wedge \psi_{1} \wedge f_{1} > g_{1}: & f_{1} \\ \phi_{1} \wedge \psi_{1} \wedge f_{1} \cdot g_{1}: & g_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} > g_{2}: & f_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} \cdot g_{2}: & g_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} > g_{1}: & f_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} \cdot g_{1}: & g_{1} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} > g_{2}: & f_{2} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} \cdot g_{2}: & g_{2} \end{cases}$$

Key point: still in case form!

Size blowup? We'll get to that...

Symbolic Dynamic Programming

- In a nutshell
 - R(.), P(.|.) defined as case statements
 - Value iteration uses case operations
 - ⊕, ⊗, max
 - If all VI operations maintain case, then
 - V^h(.) is in case form for all horizons h!
- Almost there: we still need to define ∫_x

SDP Regression Step

Continuous variables x_i

$$-\int_x \delta[x-y]f(x)dx = f(y)$$
 triggers symbolic substitution

- e.g.,
$$\int_{x_j'} \delta[x_j' - g(\vec{x})] V' dx_j' = V' \{x_j'/g(\vec{x})\}$$

$$\int_{x_1'} \delta[x_1' - (x_1^2 + 1)] \left(\begin{cases} \underline{x_1'} < 2 : & \underline{x_1'} \\ \underline{x_1'} \ge 2 : & \underline{x_1'}^2 \end{cases} \right) dx_1' = \begin{cases} \underline{x_1^2 + 1} < 2 : & \underline{x_1^2 + 1} \\ \underline{x_1^2 + 1} \ge 2 : & \underline{(x_1^2 + 1)}^2 \end{cases}$$

- If g is case: need conditional substitution
 - see Sanner et al (UAI 2011)

That's Discrete Action SDP!

- Value Iteration for h∈0..H
 - Regression step:

$$Q_a^{h+1}(\vec{b}, \vec{x}) = R_a(\vec{b}, \vec{x}) + \gamma \cdot \sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^n P(b'_i | \vec{b}, \vec{x}, a) \prod_{j=1}^m P(x'_j | \vec{b}, \vec{b}', \vec{x}, a) \right) V^h(\vec{b}', \vec{x}') d\vec{x}'$$

Maximization step:

$$V_{h+1} = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})$$

Continuous Actions

- Inventory control
 - Reorder based on stock, future demand
 - Action: $a(\vec{\Delta}); \vec{\Delta} \in \mathbb{R}^{|a|}$

Need max , in Bellman backup

$$V_{h+1} = \max_{a \in A} \max_{\vec{\Delta}} Q_a^{h+1}(\vec{b}, \vec{x}, \vec{\Delta})$$

How to compute?

Max-out: $\max_{x} f(x)$

How to compute for case?

```
\max_{x} \begin{cases} \phi_{1} : f_{1} \\ \vdots & \vdots \\ \phi_{k} : f_{k} \end{cases} = \max_{x} \max_{i=1...k} [\phi_{i}] \cdot f_{i}
= \max_{i=1...k} \left[ \max_{x} [\phi_{i}] \cdot f_{i} \right]
```

Just max_x case partitions, case-max results!

Example of Partition Max-out

$$\max_{x}[\phi_1] \cdot f_1$$

Consider function -∞ when constraints do not hold

$$\phi_1 := [x > -1] \wedge [x > y - 1] \wedge [x \cdot z] \wedge [x \cdot y + 1] \wedge [y > 0]$$

$$f_1 := x^2 - xy$$

$$LB := \begin{cases} y - 1 > -1 : y - 1 \\ y - 1 \cdot -1 : -1 \end{cases} \quad UB := \begin{cases} z < y + 1 : z \\ z \ge y + 1 : y + 1 \end{cases}$$

$$\frac{\partial}{\partial x}f_1 = 0 : Der\theta_x = \frac{y}{2}$$

Now an unconstrained max!

What constraints here?

- those independent of x
- pairwise UB > Der0 > LB

$$[\phi_{cons}] \max_{x \in \{LB, UB, Der \theta\}} f_1$$

But how to evaluate?

Max-out Case Operation

- max x case(x)
 - Reduced to partition max
 ...max w.r.t. critical points
 - LB, UB
 - Der0_x
 - max(case(x/LB), case(x/UB), case(x/Der0_x)

See UAI 2011 paper for efficient substitutions into cases

– Can even track substitutions through max to recover function of maximizing assignments!

Case → XADD

SDP needs an efficient data structure for

- compact, minimal case representation
- efficient case operations

XADDs

Extended ADD representation of case statements

XADD Maximization

Maintaining XADD Orderings I

Max may get variables out of order

Maintaining XADD Orderings II

Substitution may get vars out of order

Decision ordering (root→leaf):

• x > y

• y > 0

• x > z

x > z

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x > y

x >

Correcting XADD Ordering

- Obtain ordered XADD from unordered XADD
 - key idea: binary operations maintain orderings

z is out of order result will have z in order! $\begin{array}{c|c} Z & & & \\ \hline & Z & & \\ \hline & & \\ \hline & & & \\ \hline & &$

XADD Pruning

Node unreachable – x + y < 0 always false if x > 0 & y > 0

If **linear**, can detect with feasibility checker of LP solver & prune

Empirical Results

Illustrative Example

Symbolic Value (Symbolic Policy: y=...)

Reservoir Control

Value Functions (vs level in each reservoir)

Policy

 (time to hold drain
 vs. reservoir levels)

Inventory Control

Open Problems

Nonlinear constraints

Optimal solutions
 for restricted cases
 e.g., quadratic,
 multilinear

Bounded (interval) approximation

This XADD has1000 nodes!

Conclusions

- Key novel insights over Sanner et al (UAI 2011):
 - Introduced continuous actions
 - Showed how to compute max_x f(x) in closed form
 - All operations remains closed for value iteration
- Need compact case, efficient operations
 - Case → Extended ADD (XADD)
 - Extend to handle $\max_{x} f(x)$
- First exact, closed-form solutions to subset of n-D continuous state-action MDPs

First exact policies for continuous variant of multivariate inventory control... unsolved for 50+ years!