Appunti di Aritmetica

Gabriel Antonio Videtta

24 settembre 2022

Indice

1	Teo	oria degli insiemi
	1.1	L'operazione di unione
	1.2	L'operazione di intersezione
		1.2.1 Relazioni tra l'operazione di intersezione e di unione
	1.3	L'operazione di sottrazione e di complemento
		1.3.1 Le leggi di De Morgan
		1.3.2 La logica affrontata con gli insiemi
	1.4	
2	Rel	lazioni di equivalenza e applicazioni
	2.1	Le relazioni di equivalenza
		2.1.1 Classi di equivalenza
	2.2	Le applicazioni
		2.2.1 Proprietà delle applicazioni
		2.2.2 Composizione di applicazioni
	2.3	Applicazione inversa
	2.4	Il gruppo $A(S)$ delle corrispondenze biunivoche

Capitolo 1

Teoria degli insiemi

Il concetto di insieme è primitivo e pertanto non definito formalmente in questa sede. Viene tuttavia definita la terminologia che riguarda le teoria dei suddetti insiemi.

Quando si leggerà $a \in S$, s'intenderà che "a appartiene all'insieme S", mentre $a \notin S$ si legge "a non appartiene all'insieme S". Un insieme A si dice sottoinsieme di B ($A \subseteq B$) quando $a \in A \to a \in B$; in particolare si dice sottoinsieme proprio di B ($A \subseteq B$) quando $A \subseteq B \land \exists b \in B \mid b \notin A$.

Due insiemi A e B sono uguali se e solo se $A \subseteq B \land B \subseteq A$. L'insieme vuoto è l'insieme che non ha elementi, ed è sottoinsieme di ogni insieme.

1.1 L'operazione di unione

L'unione di due insiemi A e B è un'operazione che restituisce un insieme $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Tale operazione si può estendere a più insiemi mediante l'introduzione di un insieme di indici T per una famiglia di insiemi. Un insieme di indici T rispetto a un famiglia $F = \{A_t\}$ ha la seguente proprietà: $\forall t \in T, \exists A_t \in F$; ossia è in grado di enumerare gli insiemi della famiglia F.

L'unione è pertanto definita su una famiglia F come $\bigcup_{t \in T} A_t = \{x \mid (\exists t \in T \mid x \in A_t)\}.$

L'unione gode delle seguente proprietà: $A \subseteq B \to A \cup B = B$ (in particolare, $A \cup \emptyset = A$).

1.2 L'operazione di intersezione

Analogamente a come è stata definita l'unione, l'intersezione è un'operazione che resistuisce un insieme $A \cap B = \{x \mid x \in A \land x \in B\}$; ossia estesa a più insiemi: $\bigcap_{t \in T} A_t = \{x \mid (\forall t \in T \mid x \in A_t)\}.$

In modo opposto all'unione, l'intersezione è tale per cui $A\subseteq B\to A\cap B=A$ (in particolare, $A\cap\varnothing=\varnothing$).

1.2.1 Relazioni tra l'operazione di intersezione e di unione

Si può facilmente dimostrare la seguente relazione, valida per qualunque scelta di insiemi $A, B \in C$: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

Dimostrazione. Prima di tutto, un elemento di entrambi i due insiemi appartiene obbligatoriamente a C: nel caso del primo membro, il motivo è banale; riguardo al secondo membro, invece, ci accorgiamo che esso appartiene almeno a uno dei due insiemi dell'unione, riconducendoci a un'intersezione con l'insieme C.

Ogni elemento di $(A \cup B) \cap C$ appartiene inoltre ad almeno A o B, e quindi, appartenendo anche a C, appartiene a $A \cap C$ o $B \cap C$, e quindi a $(A \cap C) \cup (B \cap C)$. Pertanto $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$.

In direzione opposta, ogni elemento di $(A \cap C) \cup (B \cap C)$ appartiene almeno ad uno di dei due insiemi dell'unione. Per appartenere all'intersezione, tale elemento appartiene ad almeno A o B; e quindi appartiene ad $A \cup B$. Appartenendo anche a C, appartiene anche $(A \cup B) \cap C$. Quindi $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$.

Valendo l'inclusione in entrambe le direzioni, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

1.3 L'operazione di sottrazione e di complemento

L'operazione di sottrazione su due insiemi A e B è definita come $A \setminus B = \{x \mid x \in A \land x \notin B\}$. Si può facilmente verificare che $A = (A \cap B) \cup (A \setminus B)$.

Dimostrazione. Ogni elemento di A può appartenere o non appartenere a B: nel primo caso, appartiene anche a $A \cap B$, e quindi a $(A \cap B) \cup (A \setminus B)$; altrimenti appartiene per definizione a $A \setminus B$, e quindi sempre a $(A \cap B) \cup (A \setminus B)$. Pertanto $A \subseteq (A \cap B) \cup (A \setminus B)$.

Ogni elemento di $(A \cap B) \cup (A \setminus B)$ appartiene ad almeno uno dei due operandi dell'unione; in entrambi i casi deve appartenere ad A. Quindi $(A \cap B) \cup (A \setminus B) \subseteq A$.

In particolare, se $B \subseteq A$, $A \setminus B$ si dice **complemento di** B **in** A.

L'operazione di complemento viene indicata con A' qualora sia noto l'universo di riferimento U per cui $A' = U \setminus A$.

1.3.1 Le leggi di De Morgan

Si possono dimostrare le seguenti proprietà:

- $(A \cup B)' = A' \cap B'$
- $(A \cap B)' = A' \cup B'$

Prima legge di De Morgan. Un elemento che appartiene a $(A \cup B)'$ non appartiene né a A né a B, e quindi appartiene sia a A' che a B', pertanto anche alla loro intersezione $A' \cap B'$ $[(A \cup B)' \subseteq A' \cap B']$.

Allo stesso modo, un elemento di $A' \cap B'$ non appartiene né ad A né a B, e quindi non appartiene ad $A \cup B$, appartenendo dunque a $(A \cup B)'$ $[A' \cap B' \subseteq (A \cup B)']$. Pertanto $(A \cup B)' = A' \cap B'$.

Seconda legge di De Morgan. Un elemento che appartiene a $(A \cap B)'$ può appartenere al più ad A o esclusivamente a B; pertanto appartiene ad almeno A' o B', e qunidi alla loro unione $[(A \cap B)' \subseteq A' \cup B']$.

Allo stesso modo, un elemento di $A' \cup B'$ appartiene ad almeno A' o B', e quindi non può appartenere a entrambi A e B, appartenendo dunque a $(A \cap B)'$ $[A' \cup B' \subseteq (A \cap B)']$. Pertanto $(A \cap B)' = A' \cup B'$.

1.3.2 La logica affrontata con gli insiemi

In modo veramente interessante, ogni operatore logico segue la logica dell'insiemistica (e viceversa); laddove l'operatore \cup (o \cap) ha una certa proprietà, la soddisfa anche \vee (o \wedge).

Quindi valgono tutte le leggi sopracitate:

- $(a \lor b) \land c = (a \land c) \lor (b \land c)$
- $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$
- $\neg(a \land b) = \neg a \lor \neg b$
- $\neg(a \lor b) = \neg a \land \neg b$

1.4 Il prodotto cartesiano

Il prodotto cartesiano di una famiglia ordinata di insiemi F con un certo insieme di indici T è l'insieme $X_{t \in T} A_t = \{(a_{t_0}, a_{t_1}, \ldots) \mid a_{t_0} \in A_{t_0} \land a_{t_1} \in A_{t_1} \land \ldots\}$. In particolare, il prodotto cartesiano di due due insiemi A e B si indica con $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Una *n*-tupla ordinata, ossia la forma in cui è raccolto un certo elemento di un prodotto cartesiano, è uguale ad una altra tupla se e solo se ogni elemento di una tupla è uguale a quello corrispondente in ordine dell'altra: pertanto, in generale, $(a,b) \neq (b,a)$.

Inoltre, il prodotto cartesiano $A \times A$ viene indicato con A^2 (analogamente, $A^n = \underset{i-1}{\times} A$).

Capitolo 2

Relazioni di equivalenza e applicazioni

2.1 Le relazioni di equivalenza

Utilizzando le nozioni di base della teoria degli insiemi è possibile definire formalmente il concetto di relazione di equivalenza.

Dato un sottoinsieme R di $A \times A$, R si dice relazione di equivalenza se:

- $(a, a) \in R$ (proprietà riflessiva)
- $(a,b) \in R \implies (b,a) \in R$ (proprietà simmetrica)
- $(a,b),(b,c) \in R \implies (a,c) \in R$ (proprietà transitiva)

Tale definizione può essere semplificata implementando l'operazione binaria \sim tale per cui $a \sim b \iff (a,b) \in R$. In questo modo, le condizioni di una relazione di equivalenza R diventano:

- $a \sim a$
- $a \sim b \implies b \sim a$
- $a \sim b \wedge b \sim c \implies a \sim c$

Lemma 2.1.1. Definita una relazione di equivalenza R con operazione binaria \sim , $a \sim b \land c \sim b \implies a \sim c$.

Dimostrazione. Dalla proprietà riflessiva di R, $c \sim b \implies b \sim c$. Verificandosi sia $a \sim b$ che $b \sim c$, si applica la proprietà transitiva di R, che implica $a \sim c$.

2.1.1 Classi di equivalenza

Si definisce classe di equivalenza di a per un certo insieme A e una certa relazione di equivalenza R l'insieme cl $(a) = \{x \in A \mid a \sim x\}$, ossia l'insieme di tutti i punti che si relazionano ad a mediante tale relazione di equivalenza.

Teorema 2.1.2. Le classi di equivalenza partizionano l'insieme di relazione in insiemi a due a due disgiunti.

Dimostrazione. Prima di tutto è necessario dimostrare che l'unione di tutte le classi di equivalenza dà luogo all'insieme di relazione A.

Per ogni elemento $a \in A$, a appartiene a cl(a) per la proprietà riflessiva di R, ossia della relazione di equivalenza su cui cl è definita. Pertanto $\bigcup_{a \in A} cl(a)$, che contiene solo elementi di A, è uguale ad A.

In secondo luogo, è necessario dimostrare che le classi di equivalenza sono o disgiunte o identiche. Ponendo l'esistenza di un $a \in \operatorname{cl}(x) \cap \operatorname{cl}(y)$, la dimostrazione deriva dalle proprietà di R: sia $b \in \operatorname{cl}(x)$, allora $b \sim a$; dunque, dal momento che $b \sim a$ e che $a \sim y$, $b \sim y$, ossia $\operatorname{cl}(x) \subseteq \operatorname{cl}(y)$ (analogamente si ottiene $\operatorname{cl}(y) \subseteq \operatorname{cl}(x)$, e quindi $\operatorname{cl}(x) = \operatorname{cl}(y)$).

Teorema 2.1.3. Data una partizione di un insieme che lo compone in insiemi a due a due disgiunti, è sempre possibile costruire delle classi di equivalenza.

Dimostrazione. Vogliamo dimostrare che, data la stessa appartenenza ad un insieme come relazione, essa è una relazione di equivalenza.

Sicuramente $a \sim a$ (proprietà riflessiva). Inoltre, $a \sim b \implies a, b \in A_{\alpha} \implies b \sim a$ (proprietà simmetrica). Infine, $a \sim b, b \sim c \implies a, b, c \in A_{\alpha} \implies a \sim c$ (proprietà transitiva).

In particulare, dato $a \in A_{\alpha}$, $cl(a) = A_{\alpha}$.

2.2 Le applicazioni

La nozione di applicazione di un insieme in un altro ci permette di generalizzare, ma soprattutto di definire, il concetto di funzione.

Definizione 2.2.1 (Applicazione). Dati due insiemi S e T, si dice che σ è un'applicazione da S a T, se $\sigma \subseteq (S \times T) \land \forall s \in S, \exists! t \in T \mid (s,t) \in \sigma$. Tale applicazione allora si scrive come $\sigma : S \to T$.

Si scrive $\sigma: s \mapsto \sigma(s)$ per sottintendere che $\forall (s,t) \in \sigma, (s,t) = (s,\sigma(t))$. Dato $t = \sigma(s)$, si dice che t è l'immagine di s appartenente al codominio T, enunciato come $\operatorname{Cod}(\sigma)$, mentre s è la preimmagine di t, appartenente al dominio S, detto $\operatorname{Dom}(\sigma)$. L'insieme $(s,t) \in \operatorname{Dom}(\sigma) \times \operatorname{Cod}(\sigma) \mid (s,t) \in \sigma$ è detto grafico di σ , ossia $\operatorname{Gr}(\sigma)$.

2.2.1 Proprietà delle applicazioni

Definizione 2.2.2 (Iniettività). Un'applicazione si dice iniettiva se ad ogni immagine è corrisposto al più un elemento, ossia anche che $s_1 \neq s_2 \implies \sigma(s_1) \neq \sigma(s_2)$.

Definizione 2.2.3 (Surgettività). Un'applicazione si dice surgettiva (o talvolta $su\ T$) se ad ogni immagine è corrisposto almeno un elemento, ossia anche che $\forall t \in T, \exists s \mid \sigma(s) = t$.

Definizione 2.2.4 (Bigettività). Un'applicazione si dice bigettiva se è sia iniettiva che suriettiva, ossia se $\forall t \in T, \exists! s \in S \mid \sigma(s) = t$.

2.2.2 Composizione di applicazioni

Definizione 2.2.5 (Composizione). Date due applicazioni $\sigma: S \to T$ e $\tau: T \to U$, si può definire un'applicazione detta composizione $(\tau \circ \sigma): S \to U$, tale per cui $(\tau \circ \sigma): s \mapsto \tau(\sigma(s))$.

Dobbiamo tuttavia assicurarci che tale applicazione possa esistere, ossia verificare che $\forall s \in S \exists ! u \in U \mid (s,u) \in S \times U$; quindi che $\tau(\sigma(s))$ sia unico. Tuttavia questa proprietà è banale: $\sigma(s)$ è Sicuramente unico poiché σ è un'applicazione, e pertanto $\tau(\sigma(s))$ lo è, essendo anch'essa un'applicazione.

Proprietà associativa della composizione

È inoltre interessante dimostrare che la composizione rispetta la proprietà associativa, ossia che $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.

Lemma 2.2.1 (Proprietà associativa della composizione). *Date tre applicazioni* α , β , γ , $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$.

Dimostrazione. Preso un a appartenente al dominio di γ , per il primo membro abbiamo:

$$((\alpha \circ \beta) \circ \gamma)(a) = (\alpha \circ \beta)(\gamma(a)) = \alpha(\beta(\gamma(a)))$$

Analogamente per il secondo membro abbiamo:

$$(\alpha \circ (\beta \circ \gamma))(a) = \alpha((\beta \circ \gamma)(a)) = \alpha(\beta(\gamma(a)))$$

Iniettività, surgettività e bigettività della composizione

L'iniettività, la surgettività e la bigettività di una composizione sono ereditate dalle applicazioni di cui è composta se tutte queste le rispettano, ossia:

- $(\tau \circ \sigma)$ è iniettiva se τ e σ lo sono.
- $(\tau \circ \sigma)$ è surgettiva se τ e σ lo sono.
- $(\tau \circ \sigma)$ è bigettiva se τ e σ lo sono.

Lemma 2.2.2 (Iniettività della composizione). $(\tau \circ \sigma)$ è iniettiva se τ e σ lo sono.

Dimostrazione. Dal momento che σ è iniettiva $s_1 \neq s_2 \implies \sigma(s_1) \neq \sigma(s_2)$, ma a sua volta, essendo τ iniettiva, $\sigma(s_1) \neq \sigma(s_2) \implies \tau(\sigma(s_1)) \neq \tau(\sigma(s_2))$.

Lemma 2.2.3 (Surgettività della composizione). $(\tau \circ \sigma)$ è surgettiva se τ e σ lo sono.

Dimostrazione. Dal momento che τ è surgettiva, allora $\forall u \in \operatorname{Cod}(\tau), \exists t \in \operatorname{Dom}(\tau) \mid u = \tau(t)$. Poiché $t \in \operatorname{Cod}(\sigma)$, allora, poiché anche σ è surgettiva, $\exists s \in \operatorname{Dom}(\sigma) \mid t = \sigma(s)$. Pertanto $\exists s \in \operatorname{Dom}(\sigma) \mid u = \tau(\sigma(s))$.

Lemma 2.2.4 (Bigettività della composizione). $(\tau \circ \sigma)$ è bigettiva se τ e σ lo sono.

Dimostrazione. Se τ e σ sono bigettive, sono sia iniettive che surgettive; pertanto $(\tau \circ \sigma)$ è sia iniettiva che bigettiva per i lemmi 2.2.2 e 2.2.3.

2.3 Applicazione inversa

Qualora un'applicazione $\sigma: S \to T$ sia bigettiva, si dice che essa crea una corrispondenza biunivoca tra S e T, ossia che dato un elemento qualsiasi appartenente a S è possibile associarlo ad un unico elemento di T, e viceversa. Questo è possibile dal momento che σ è sia iniettiva ($\forall t \in T, \exists! \lor \nexists s \in S \mid t = \sigma(s)$) che surgettiva ($\forall t \in T, \exists! s \in S \mid t = \sigma(s)$), prescrivendo che $\forall t \in T, \exists! s \in S \mid t = \sigma(s)$.

Da questa conclusione è possibile definire l'applicazione inversa di σ , detta σ^{-1} , che è l'applicazione che associa ad ogni $t \in T$ un unico $s \in S$. Quindi, $t = \sigma(s) \iff s = \sigma^{-1}(t)$.

In particolare, $(\sigma \circ \sigma^{-1}) = (\sigma^{-1} \circ \sigma) = \text{Id}$, ossia l'identità di σ , per la quale ogni elemento viene associato a sé stesso. Banalmente, per ogni applicazione α , $(\alpha \circ \text{Id}) = (\text{Id} \circ \alpha) = \alpha$.

Lemma 2.3.1. $\sigma: S \to T$ è una corrispondenza biunivoca se e solo se esiste un'applicazione $\mu: T \to S$ tale per cui $(\sigma \circ \mu) = (\mu \circ \sigma) = \mathrm{Id}$.

Dimostrazione. Dal momento che σ è bigettiva, σ^{-1} esiste, e questa è tale per cui $(\sigma \circ \mu) = (\mu \circ \sigma) = \operatorname{Id}$

In direzione opposta, se esiste una μ tale per cui $(\sigma \circ \mu) = (\mu \circ \sigma) = \mathrm{Id}$, allora:

- σ è iniettiva: $\sigma(s_1) = \sigma(s_2) \implies \mu(\sigma(s_1)) = \mu(\sigma(s_2)) \implies s_1 = s_2$.
- σ è surgettiva: $\forall t \in T, t = \sigma(\mu(t)) \implies \exists s = \mu(t) \in S \mid t = \sigma(s)$.

Lemma 2.3.2 (Unicità dell'applicazione inversa). Per ogni applicazione bigettiva σ , σ^{-1} è unica.

Dimostrazione. Poniamo $\alpha \neq \beta$ come due applicazioni inverse distinte di σ . Allora $\alpha = \alpha \circ (\sigma \circ \beta) = (\alpha \circ \sigma) \circ \beta = \beta$, che è una contraddizione.

2.4 Il gruppo A(S) delle corrispondenze biunivoche

Si definisce A(S) come l'insieme $\{\sigma: S \to S \mid \sigma \text{ sia biunivoca}\} = \{\sigma: S \to S \mid \forall s \in S \exists ! t \in S \mid t = \sigma(s)\}.$

Prendendo in considerazione l'operazione di composizione \circ , si può dimostrare che $(A(S), \circ)$ è un gruppo:

- $\forall \alpha, \beta \in A(S), \alpha \circ \beta \in A(S)$ (vd. Lemma 2.2.4).
- $\forall \alpha, \beta, \gamma \in A(S), (\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$ (vd. Lemma 2.2.1).
- $\exists \operatorname{Id} \in A(S) \mid \forall \alpha \in A(S), (\operatorname{Id} \circ \alpha) = (\alpha \circ \operatorname{Id}) = \alpha.$
- $\forall \alpha \in A(S), \exists \alpha^{-1} \in A(S) \mid (\alpha \circ \alpha^{-1}) = (\alpha^{-1} \circ \alpha) = \text{Id (vd. Lemma 2.3.1)}.$

Lemma 2.4.1. Se S consta di più di due elementi (||S|| > 2), allora esistono sicuramente due applicazioni $\alpha, \beta \in A(S)$ tale per cui $(\alpha \circ \beta) \neq (\beta \circ \alpha)$.

Dimostrazione. Se S consta di più di due elementi, S possiede almeno tre elementi s_1, s_2, s_3 , possiamo definire due applicazioni σ e τ come segue:

•
$$\sigma(s_1) = s_2$$
, $\sigma(s_2) = s_3$, $\sigma(s_3) = s_1$.

•
$$\tau(s_1) = s_1, \, \tau(s_2) = s_3, \, \tau(s_3) = s_2.$$

•
$$\sigma(a) = \tau(a) = a \,\forall \, a \notin \{s_1, s_2, s_3\}.$$

Allora
$$(\sigma \circ \tau)(s_1) = \sigma(s_1) = s_2$$
 e $(\tau \circ \sigma)(s_1) = \tau(s_2) = s_3$, ma $s_2 \neq s_3$.