Complexe Analyse

Luc Veldhuis

20 Februari 2017

Herhaling

Afleidbaarheid

 $f:D \to \mathbb{C}$ analytisch met D open $\Leftrightarrow \forall z \in D \ f$ is afleidbaar in $z \in D \Leftrightarrow f(z) = \lim_{\Delta z \to 0} rac{f(z + \Delta z) - f(z)}{\Delta z}$

Belangrijke stelling

f=u+iv analytisch $\Leftrightarrow u,v$ partieel afleidbaar op continue manier, $u_x=v_y$, $u_y=-v_x$ (Cauchy-Riemann vergelijkingen)

Voorbeeld

$$f(z) = |z|^2$$
, $\frac{\partial}{\partial x} = u_x \neq v_y = 0$ niet analytisch.

Harmonische functies

Vraag

Gegeven $u: \mathbb{R}^2 \to \mathbb{R}$ bestaat er altijd $v; \mathbb{R}^2 \to \mathbb{R}$ zodat f: u+iv analytisch is?

Nee!

Definitie

Een functie $u: \mathbb{R}^2 \to \mathbb{R}$ wordt **harmonisch** genoemd als deze aan de Laplace vergelijking voldoet.

$$0 = \Delta u = u_{xx} + u_{yy}$$

<u>Voor</u>beeld

$$u(x, y) = e^{x} \cos(y), \ u_{xx} = e^{x} \cos(y) = -u_{yy}.$$

Harmonische functies

Stelling

Zij $f = u + iv : D \to \mathbb{C}$ analytisch en neem aan dat f' analytisch is. Dan zijn u en v harmonisch.

Bewijs

$$u_{xx} = {}^{CR} v_{yx} = v_{xy} = {}^{CR} - u_{yy}$$

 $v_{xx} = {}^{CR} - u_{yx} = -u_{xy} = {}^{CR} - v_{yy}$

Speciale eigenschappen

Stelling

Stel $f_1, f_2: D \to \mathbb{C}$ analytische functies en zij $D' \subset D$ een deelverzameling of $D' = D \cap I$ met I een lijn.

Als $f_1(z)=f_2(z) \ \forall z \in D'$, dan $f_1=f_2$ op D. Bewijs later.

Corollary (Schwartz reflexion principle)

Zij $D \subset \mathbb{C}$ domein, zodat $\overline{D} = \{\overline{z} : z \in D\} = D$ (symmetrisch in reële as) en f analytisch, dan geldt dat als $\forall z \in D$ $f(\overline{z}) = \overline{f(z)} \Leftrightarrow \forall z \in D \cap \mathbb{R}$: $f(z) \in \mathbb{R}$.

Speciale eigenschappen

Bewijs

We laten eerst zien dat $\tilde{f}: D \to \mathbb{C}$, $\tilde{f}(z) = \overline{f(\overline{z})}$ ook analytisch is.

Met
$$\tilde{f} = \tilde{u} + i\tilde{v}$$
 geeft $\tilde{u}(x,y) = u(x,-y)$, $\tilde{v}(x,y) = -v(x,-y)$. $\tilde{u}_x = u_x = v_y = \tilde{v}_y$ en $\tilde{u}_y = -u_y = v_x = -\tilde{v}_x$.

Daarmee kunnen we de stelling gebruiken met $f_1=f$, $f_2=\tilde{f}$ en $f_1=f$

$$\forall z \in D \cap \mathbb{R} : f(z) \in \mathbb{R}$$

$$\forall z \in D \cap \mathbb{R} : f(z) = \tilde{f}(z)$$

$$\forall z \in D \cap \mathbb{R} : f(z) = \tilde{f}(z) = \overline{f(\overline{z})}$$

$$\forall z \in D \cap \mathbb{R} : \overline{f(z)} = f(\overline{z})$$

Definitie

Voor de complexe getallen is de exponentiële functie gedefinieerd als $\exp(z) = e^z = e^x e^{iy}$, waarbij $e^{iy} = \cos(y) + i\sin(y)$ en z = x + iy.

Opmerking

Blijkbaar geldt $|e^z|=e^x$ (omdat $|e^{iy}|=\cos(y)^2+\sin(y)^2=1$) en $arg(e^z)=y+e\pi n,\ n\in\mathbb{Z}$ waarbij de **meerwaardige** functie arg gedefinieerd is als $arg(z):=Arg(z)+2\pi n\in(-\pi,\pi],\ n\in\mathbb{Z}$

Stelling

Het geldt

•
$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$
, $e^{-z}=\frac{1}{e^z}$, $e^{nz}=(e^z)^n$

•
$$e^z = e^x$$
 als $z = x$, $e^{iy} = e^{iy + 2\pi n}$, $n \in \mathbb{Z}$ voor $z = x + iy$.

• $\exp : \mathbb{C} \to \mathbb{C}$ analytisch met $\exp' = \exp$

Bewijs

$$\begin{split} e^{z_1+z_2} &= e^{x_1+x_2}(\cos(y_1+y_2)+i\sin(y_1+y_2)) = \\ e^{x_1}(\cos(y_1)+i\sin(y_1))e^{x_2}(\cos(y_2)+i\sin(y_2)) \\ e^z &= e^x\cos(y)+ie^x\sin(y). \ u_x = e^x\cos(y) = v_y, \\ u_y &= -e^x\sin(y) = -v_x \Rightarrow exp \text{ analytisch met } f' = u_x+iv_x = f \end{split}$$

Voorbeeld

$$\exp(2 \pm 3\pi i) = \exp(2 + \pi i) = \exp(2) \exp(\pi i) = e^2(\cos(\pi) + i\sin(\pi)) = -e^2$$

Vraag

Wat is de oplossing van $e^w = z$? In poolcoordinaten: $z = re^{i\theta} = e^x e^{iy} = e^w$. $\Rightarrow \begin{cases} x &= \ln(r) = \ln|z| \\ y &= \theta + 2\pi n = arg(z) \end{cases}$ meerwaardig voor $n \in \mathbb{Z}$.

Definitie

Het logaritme over de complexe getallen is gedefinieerd als **meerwaardige**(!) functie voor $z \in \mathbb{C}$:

$$\log(z) = \ln|z| + i \arg(z)$$

Opmerking

$$e^{\log(z)}=z$$
, $\log(e^z)=z+i2\pi n$, $n\in\mathbb{Z}$
Want $\ln|e^z|+i$ $arg(e^z)=x+i(y+2\pi n)$ voor $n\in\mathbb{Z}$ als $z=x+iy$

Voorbeeld

- $\log(e) = \ln|e| + i \arg(e) = 1 + i2\pi n, n \in \mathbb{Z}.$
- $\log(i) = \ln|i| + i \ arg(i) = 0 + i\frac{1}{2}\pi + 2\pi n, \ n \in \mathbb{Z}.$
- $\log(-1+i\sqrt{3}) = \ln|-1+i\sqrt{3}| + i \arg(-1+i\sqrt{3}) = \ln|2| + 2\pi i(\frac{1}{3}+n), n \in \mathbb{Z}.$

Stelling

Het geldt

- $\log(z_1z_2) = \log(z_1) + \log(z_2)$
- $\log(\frac{1}{z}) = -\log(z)$, $\log(z^n) = n\log(z)$

Bewijs

$$\log(z_1 z_2) = \ln|z_1 z_2| + i \ arg(z_1 z_2) = \ln|z_1| + \ln|z_2| + i \ (arg(z_1) + arg(z_2))$$
 want arg is meerwaardig.

Opmerking

$$Arg(z_1z_2) \neq Arg(z_1) + Arg(z_2)$$
 op $(-\pi, \pi]$.

Tak van de logaritme

Definitie

Een tak van de logaritme is een beperking van de meervoudige functie log tot een domein $D \subset \mathbb{C}$ zodat de restrictie eenwaardig en analytisch is (continu).

Voorbeeld

Zij $I \in \mathbb{C}$ een straal die bij $O \in \mathbb{C}$ begint, dan bestaat een tak van log die op $D = \mathbb{C} \setminus I$ gedefinieerd is.

Definitie

De **hoofdtak** (of **principal branch**) is gedefinieerd als $Log: \mathbb{C} \setminus \mathbb{R}^- \to \mathbb{C}$, $Log(z) = \ln |z| i$ Arg(z). Er geldt $\theta \neq \pm \pi$. Een andere tak kan zijn: $Log: \mathbb{C} \setminus \mathbb{R}^+ \to \mathbb{C}$ dan zit het argument tussen $(0,2\pi)$.

