Intervals, Transformations, and Slope Solution (version 43)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -7) \cup (-4, 1)$
Negative	$(-7, -4) \cup (1, 10)$
Increasing	$(-6, -2) \cup (6, 10)$
Decreasing	$(-9, -6) \cup (-2, 6)$
Domain	(-9, 10)
Range	(-5,6)

Intervals, Transformations, and Slope Solution (version 43)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=44$ and $x_2=56$. Express your answer as a reduced fraction.

\overline{x}	g(x)
33	56
44	33
56	60
60	44

$$\frac{f(56) - f(44)}{56 - 44} = \frac{60 - 33}{56 - 44} = \frac{27}{12}$$

The greatest common factor of 27 and 12 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{9}{4}$$

2