0.0.1 Unidades

magnitud	símbolo	dimensiones	unidad	
longitud		ℓ	metro	m
tiempo		t	segundo	s
masa		M	kilógramo	K
energía		$M\ell^2t^{-2}$	Joule	J
potencial	Р	$M\ell^2t^{-3}$	watt	w=J/s
corriente eléctrica	I	$\sqrt{M\ell}t^{-1}$	ampère	А
carga	q, e, Q	$\sqrt{M\ell}$	coulomb	C = A s
potencial eléctrico	V	$\sqrt{M}\ell^{3/2}t^{-2}$	volt	V
cpo. eléctrico	$ec{E}$	$\sqrt{M\ell}t^{-2}$	volt/metro	V/m
cte. dieléctrica	ε	$t^2 \ell^{-2}$	farad/metro	F/m
cpo. de desplazamiento	$ec{ec{D}}$	$\sqrt{M}\ell^{-3/2}$	$cou omb / metro^2$	C/m^2
capacidad	C	$t^2\ell^{-1}$	farad	F = C/V
resistencia	R	ℓt^{-1}	ohm	$\Omega = V/A$
densidad de corriente	$ec{J}$	$\sqrt{M}t^{-1}\ell^{-3/2}$	$amp\`ere/metro^2$	A/m^2
cpo. magnético	$R \ \vec{J} \ \vec{B} \ \vec{H}$	$\sqrt{M/\ell}t^{-1}$	tesla	$T=Wb/m^2$
intensidad magnética	$ec{H}$	$\sqrt{M/\ell}t^{-1}$	ampère/metro	A/m
permeabilidad magnética	μ	1	henry/metro	H ['] /m
magnetización	\dot{M}	$\sqrt{M/\ell}t^{-1} \ \sqrt{M}\ell^{3/2}t^{-1}$	ampère/metro	A/m
flujo magnético	Φ	$\sqrt{M}\ell^{3/2}t^{-1}$	weber	Ŵb
reluctancia	${\cal R}$		ampère/weber	A/Wb
inductancia	L	ℓ	henry	Ĥ

Algunas de las cantidades importantes y sus unidades. Se puede tomar como unidades independientes de tiempo el segundo [s], de longitud el metro [m], de corriente el ampère [A] y de potencial el volt, [V]. Así entonces, por ejemplo, el ohm no es una unidad independiente sino que Ω =V/A.