Difference Equasions

Linear Difference Equasion

The linear difference equation has the form:

$$y_{n+1} = ay_n + b$$

The general solution for y_n is:

$$y_n=rac{b}{1-a}+(y_0-rac{b}{1-a})a^n$$

Long term behaviour

Type of behaviour	Indicator	Condition	Behavior
Vertical behavior	Sign of a	a > 0	Solution monotone
		a < 0	Solution oscillating
Long term behavior	Sign of a	lal < 1	Attracted to equilibrium
		lal > 1	Repelled by equilibrium

An equilibrium will be found at the point:

$$k = \frac{b}{1 - a}$$

Special Cases

- 1. If $y_{n+1}=y_n+b$ then there is no equilibrium.
- 2. If $y_{n+1}=ay_n\,$ then the equilibrium is $y=0\,$

Logistic Difference Equation

The logistic difference equasion has the form:

$$egin{aligned} y_{n+1} &= y_n + r y_n (M - y_n) \end{aligned}$$

Where the initial value y_0 is given and M represents the carrying capacity.

Theorem 2

so...

$$\Delta y = r y_n (M - y_0)$$

$$rac{\Delta y}{y_n} = r(M-y_0) = rM-ry_0$$

but...

$$rac{\Delta y}{y_n} = a y_n + b$$

so...

$$a=-r, \ \ b=rm$$

Theorem 3

$$Let \ \frac{1}{r} < M < \frac{2}{r}$$

- 1. There exists 2 equilibria y = 0 and y = m.
- 2. If $y_0 \ge M + 1/r$, then $y_1 \le 0$.
- 3. If $0 < y_0 < M + 1/r$, then y_n tends to equilibrium M as n increases.
- 4. The population will start oscillating as soon as y > 1/r

Constructing a Logistic Difference Equasion from Data

Recall that the relative growth for a logistic difference equasion is:

$$rac{\Delta y_n}{y_n} = a y_n + b_n$$

where a=-r and b=rM

This way when we construct a line through the data and reveive an *a* and *b* we can convert them back to r and M.

Other Difference Equasions

$$y_{n+1} = r(y_n)y_n$$

where $r(y_n)$ is the growth factor. Equilibria are obtained by setting r(y)=0

Systems of Difference Equasions