「ROS」学习笔记

陈策

版本: 0.0

更新: 2019年11月21日

表 1: 中文术语表 A

英文术语	中文术语
Node	节点
Master	主节点
Package	功能包
Metapackage	元功能包
Dependent Package	依赖包
Message	消息
Service	服务
Topic	话题
Service Server	服务服务器
Service Client	服务客户端
Parameter Server	参数服务器
Publisher	发布者
Subscriber	订阅者

表 2: 中文术语表 B

英文术语	中久术诗
Launch	启动
Client Library	客户端库
Repositories	存储库
Namespace	命名空间
Base Name	基本名称
Global Name	全局名称
Private Name	私有名称
Relative Name	相对名称
Node Handle	节点句柄
Timer	计时器
Transform	变换
Master PC	总机
Host PC	主机
Build	构建

表 3: 中文术语表 C

中文术语
运动规划
侧位
姿态
回放
自检
图标
导航推测
基座
连杆
关节
末端执行器

- 1 机器人软件平台
- 1.1 平台的组件
- 1.2 机器人软件平台
- 1.3 机器人软件平台的必要性
- 1.4 机器人软件平台将带来的未来
- 2 机器人操作系统 ROS
- 2.1 ROS 简介
- 2.2 元操作系统

- 2.3 ROS 45 6 45
- 2.4 ROS 药组件
- 2.5 ROS 的生态系统
- 2.6 ROS 的历史
- 2.7 ROS 约版本
- 2.7.1 版本规则
- 2.7.2 版本周期
- 2.7.3 选择版本

3 搭建 ROS 开发环境

- 3.1 麥菜 ROS
- 3.1.1 常规安装
- 3.1.2 简易安装
- 3.2 搭建 ROS 开发环境
- 3.2.1 ROS 配置
- 3.2.2 集成开发环境 (IDE)
- 3.3 ROS 操作测试

4 ROS 的重要概念

- 4.1 ROS 术语
- 4.2 消息通信
- 4.2.1 诺题 (topic)
- 4.2.2 服务 (service)
- 4.2.3 ** (action)
- 4.2.4 参数 (parameter)
- 4.2.5 消息通信的过程
- 4.3 消息

- 4.3.1 Msg 文件
- 4.3.2 Srv 条件
- 4.3.3 Action 文件
- 4.4 名称 (name)
- 4.5 全标变换 (TF)
- 4.6 客户编车
- 4.7 异构设备间的通信
- 4.8 文件系统
- 4.8.1 文件组织结构

- 4.8.2 安装日录
- 4.8.3 工作目录
- 4.9 构建系统
- 4.9.1 创建功能包
- 4.9.2 修改功能包配置文件 (package.xml)
- 4.9.3 修改构建配置文件 (CMakelists.txt)
- 4.9.4 编写源代码
- 4.9.5 构建功能包
- 4.9.6 运行节点

5 ROS 命令

- 5.1 ROS 命含彻述
- 5.2 ROS shell 命令
- 5.2.1 Rosed: 移动 ROS 图象
- 5.2.2 Rosls:ROS 文件列表
- 5.2.3 Rosed:ROS 编辑命令
- 5.3 ROS 执行命令
- 5.3.1 Roscore: 建行 roscore
- 5.3.2 Rosrun: 运行 ROS 节点

- 5.3.3 Roslaunch: 运行多个 ROS 节点
- 5.3.4 Roscrea: 检查及删除 ROS 日志
- 5.4 ROS 信息命令
- 5.4.1 运行节点
- 5.4.2 Rosnode:ROS 节点
- 5.4.3 Rostople:ROS 希题
- 5.4.4 Rosservice:ROS 服务
- 5.4.5 Rosparam:ROS 参数
- 5.4.6 Rosmsg:ROS 消息信息

- 5.4.7 Rossrv:ROS 服务信息
- 5.4.8 Rosbag:ROS & 志信息
- 5.5 ROS catkin 命令
- 5.6 ROS 功能包命令
- 6 ROS工具
- 6.1 三维可视化工具(RViz)
- 6.1.1 RViz 安装与运行
- 6.1.2 RViz 函面布局

- 6.1.3 RViz 显示屏
- 6.2 ROSGUI开发工具 (rqt)
- 6.2.1 Rqt 安装与运行
- 6.2.2 Rqt 插件
- 6.2.3 Rqt _ image _ view
- 6.2.4 Rqt _ graph
- 6.2.5 Rat _ plot
- 6.2.6 Rqt _ bag
- 7 ROS 编程基础

7.1 ROS 编程前须知事项

- 7.1.1 标准单位
- 7.1.2 坐标表现方式
- 7.1.3 编程规则
- 7.2 发布者节点和订陶者节点的创建和运行
- 7.2.1 创建功能包
- 7.2.2 修改功能包配置文件
- 7.2.3 修改构建配置文件 (Cmakelists.txt)

- 7.2.4 创建消息文件
- 7.2.5 创建发布者节点
- 7.2.6 创建订说者节点
- 7.2.7 构建 (build) 节点
- 7.2.8 运行发布者
- 7.2.9 运行订陶者
- 7.2.10 检查运行中的节点的通信状态
- 7.3 创建和运行服务服务器与客户 缔节点

- 7.3.1 创建功能包
- 7.3.2 修改功能包配置文件 (package.xml)
- 7.3.3 修改构建配置文件 (CMakelists.txt)
- 7.3.4 创建服务文件
- 7.3.5 创建服务服务器节点
- 7.3.6 创建服务客户编节点
- 7.3.7 构建节点
- 7.3.8 运行服务服务器
- 7.3.9 运行服务客户缔

- 7.3.10 Rosservice call 命令的周弦
- 7.3.11 GUI 工具 ServiceCaller 的用法
- 7.4 创建和运行动作服务器和客户 编节点
- 7.4.1 生成功能包
- 7.4.2 修改功能包配置文件 (package.xml)
- 7.4.3 修改构建配置文件 (CMakelists.txt)
- 7.4.4 创建动作文件
- 7.4.5 创建动作服务节点

- 7.4.6 创建客户编节点
- 7.4.7 构建节点
- 7.4.8 运行动作服务器
- 7.4.9 运行动作客户输
- 7.5 参数的闲法
- 7.5.1 利用参数创建节点
- 7.5.2 设置参数
- 7.5.3 读取参数
- 7.5.4 构建节点和运行节点

- 7.5.5 查看参数目录
- 7.5.6 参数的用例
- 7.6 Roslaunch 的用法
- 7.6.1 Roslaunch 的应用
- 7.6.2 Launch 徐答
- 8 机器人、传感器和电机
- 8.1 机器人功能包
- 8.2 传感器功能包
- 8.2.1 传感器的类型

- 8.2.2 传感器功能包的分类
- 8.3 相和
- 8.3.1 USB 摄像头相关功能包
- 8.3.2 USB 摄像头测试
- 8.3.3 查看图像信息
- 8.3.4 远程传输图像
- 8.3.5 相机核准
- 8.4 深度相和 (Depth Camera)
- 8.4.1 Depth Camera 的类型

- 8.4.2 Depth Camera 测试
- 8.4.3 Point Cloud Data(点云数据) 的可视化
- 8.4.4 Point Cloud Data 相美库
- 8.5 激光距离传感器
- 8.5.1 LDS 传感器距离测量原理
- 8.5.2 LDS 测试
- 8.5.3 可视化 LDS 勾距离值
- 8.5.4 LDS 的应用
- 8.6 电初功能包

- 8.6.1 Dynamixel 舱和
- 8.7 己公开的功能包的用法
- 8.7.1 搜索功能包
- 8.7.2 安装作赖包
- 8.7.3 安装功能包
- 8.7.4 运行功能包
- 9 嵌入式系统
- 9.1 OpenCR
- 9.1.1 特点

- 9.1.2 控制报规格
- 9.1.3 搭建开发环境
- 9.1.4 OpenCR 例程
- 9.2 RosseriaL
- 9.2.1 Rosserial server
- 9.2.2 Rosserial client
- 9.2.3 Rosserial that
- 9.2.4 Rosserial 约约京条件
- 9.2.5 安装 rosserial

- 9.2.6 Rosserial 例程
- 9.3 TurtleBot3 的目件
- 9.3.1 TurtleBot3 Burgeri 🔞 🎋
- 9.3.2 TurtleBot3 Waffle 和 Waffle Pi 固件
- 9.3.3 Turtlebot3 配置固件
- 10 移动机器人
- 10.1 ROS 支持的机器人
- 10.2 TurtleBot3 系列机器人

- 10.3 TurleBot3 的硬件
- 10.4 Turtlebot3 软件
- 10.5 Turtlebot3 的开发环境
- 10.6 Turtlebot3 远程控制
- 10.6.1 選控 TurtleBot3
- 10.6.2 可视化 TurtleBot3
- 10.7 Turtlebot3 裕级
- 10.7.1 订陶话题
- 10.7.2 通过订陶话题控制机器人

- 10.7.3 发布转题
- 10.7.4 通过发布诺题识别机器人状态
- 10.8 使用 RViz 传真 Turtlebot3
 - 10.8.1 传真
- 10.8.2 运行虚拟机器人
- 10.8.3 Odometry 和 TF
- 10.9 利用 Gazebo 信真 Turtlebot3
- 10.9.1 Gazebo 传真器
- 10.9.2 启动虚拟机器人

10.9.3 虚拟 SLAM 和导航

11 SLAM 和导航

11.1 导航及其组成要素

11.1.1 移动机器人的导航

11.1.2 地图

11.1.3 测量或估计机器人盗态的功能

11.1.4 识别障碍物如墙壁和物体

11.1.5 计算量优格经和行效功能

11.2 SLAM 实习篇

11.2.1 对于使用 SLAM 的机器人的硬件限制

11.2.2 SLAM 的实验环境

11.2.3 用于 SLAM 的 ROS 功能包

11.2.4 运行 SLAM

11.3 利用预先准备好的 bag 文件运行的 SLAM

11.4 SLAM 应用篇

11.4.1 地图

11.4.2 SLAM 所需的信息

- 11.4.3 SLAM 的处理过程
- 11.4.4 坐标变换 (TF)
- 11.4.5 Turtlebot3_slam 功能包
- 11.5 SLAM 建论篇
- 11.5.1 SLAM
- 11.5.2 多种位置估计 (localization) 专法论
- 11.6 导航实战篇
- 11.6.1 用于导航的 ROS 功能包
- 11.6.2 运行导航

11.7 导航应用程序

11.7.1 导航

11.7.2 导航所需的信息

11.7.3 Turtlebot3 _ navigation 的各节点和话题 状态

11.7.4 Turtlebot3 _ navigation 设置

11.7.5 设置 turtlebot3 _ navigation 的详细参数

11.8 导航理论篇

11.8.1 Costmap

11.8.2 AMCL

11.9 Dynamic Window Approach(DWA)

12 服务机器人

12.1 配关服务机器人

12.2 美服务机器人的结构

12.2.1 系统结构

12.2.2 系统设计

12.2.3 服务核心节点

12.2.4 服务主节点

12.2.5 服务从节点

12.3 俄 ROS Java 进行 Android 平板 PC 编程

13 机械手臂

- 13.1 机械手臂介绍
- 13.1.1 机械手臂的结构和控制
- 13.1.2 机械手臂和 ROS
- 13.2 OpenManipulator。建模和传真
- 13.2.1 OpenManipulator
- 13.2.2 机械手臂建模

- 13.2.3 Gazebo 设置
- 13.3 MoveIt!
- 13.3.1 Move _ group
- 13.3.2 MoveIt!Setup Assistant
- 13.3.3 Gazebo 传真
- 13.4 应用子实际平台
- 13.4.1 准备和控制 OpenManipulator
- 13.4.2 OpenManipulator \$\frac{1}{2}\$ turtleBot3Waffle \$\tilde{\chi}\$ Waffle Pi