Математические методы диагностики ишемической болезни по электрокардиограмме сверхвысокого разрешения

И.С. Ямщиков

Научный руководитель: К. В. Воронцов Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Москва июнь 2014г.

Цель работы

Исследуется задача диагностики ишемической болезни по электрокардиограмме высокого разрешения. Такими электрокардиаграмамми называют снимающиеся с частотами более 250Гц (в отличие от стандартных ≤ 100 Гц)

В работе используется данные СП6ГМУ. ЭКГ снималась на частоте 2кГц. В эксперименте проводилось моделирование ишемии миокарда на крысах.

Авторами эксперимента утверждается, что развитие ишемии сопровождается изменениями в высокочастотной части спектра, причем они становятся заметны еще до видимых глазу изменений кардиограммы в целом (элевация ST сегмента).

Задача

Имеется набор электрокадиограмм $ECG = \{ecg_i\}$ Рассматриваются кардиограммы особей в двух состояниях:

- Здоровая особь
- Раннее развитие ишемии

Требуется по высокочастотной части кардиограммы восстановить состояние особи

Исходные данные

Каждая ЭКГ представляет собой временной ряд $ecg_i = ecg_i(t)$ Введем признаки, характеризующие изменение высокочастотных компонент сигнала. Абсолютная величина сигнала зависит от настроек аппаратуры и может внести нежелательные искажения, поэтому в дальнейшем все время будем рассматривать нормированный сигнал:

$$\widetilde{ecg} = \frac{ecg}{(\|ecg\|_2)^2}$$

Используем преобразование Фурье:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} ecg(t)e^{-it\omega}dt$$

В качестве признаков возьмем L2 норму отрезков фурье-образа сигнала:

$$F_{[\omega_1, \omega_2]} = \int_{\omega_1}^{\omega_2} |\widehat{f}(\omega)|^2 d\omega$$

И возьмем 10 признаков, равномерно покрывающих частоты $100-500\ \Gamma$ ц

Для классификации используется SVM Полученная оценка качества классификации - 75.7%

Временная локализация

Рассмотренные выше признаки оценивают спектральную плотность по всей записи.

Попробуем теперь локализовать эффект внутри кардиоцикла. То есть оценить спектральную плотность высокочастотных компонент на отдельных участках.

Выделение кардиоциклов

Для начала необходимо разбить запись на отдельные кардиоциклы. Наиболее часто используемым подходом для этого является выделение R зубца.

В существующих работах описано множество подходов детектирования R зубцов.

В данной работе используется подход с использованием вейвлет-преобразования.

Алгоритм:

Параметры: масштаб s, порог h

● Вычислить вейвлет-преобразование

$$T_s(b) = \int_{-\infty}^{\infty} ecg(t)\psi^*(\frac{t-b}{s})dt$$

- ② Найти времена, соответствующие локальным максимумам преобразования $\{t_M\}$
- **3** R пики: $\{t_R \in \{t_M\}: T_s(t_R) > h\}$

Новые признаки

Проверим гипотезу, что эффект локализован в QRS части кардиоцикла. Для этого построим признаки при помощи оконного преобразования Фурье:

Для каждого кардиоцикла берем t_{R_i} - момент времени, соответствующий R зубцу и окно W(t) шириной 0.3 размера кардиоцикла.

И вычисляем оконное преобразование Фурье:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} W(t - t_{R_i}) ecg(t) e^{-it\omega} dt$$

Аналогично предыдущему пункту выделяем признаки:

$$Fw_{[\omega_1,\omega_2]} = \sum_{i} \int_{\omega_1}^{\omega_2} \widehat{f}_{t_{R_i}} d\omega$$

Полученная оценка качества классификации - 81,1%

Результаты

- Предложена система признаков, позволяющая классифицировать раннее развитие ишемической болезни
- Показано, что учет локальных особенностей высокочастотной части спектра позволяет улучшить качество классификации

