IS-ZC444: ARTIFICIAL INTELLIGENCE

Lecture-09: Adversarial Search, Constraint Satisfaction

Dr. Kamlesh Tiwari Assistant Professor

Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA

Oct 24, 2020 FLIPPED

(WILP @ BITS-Pilani Jul-Nov 2020)

Issue: Number of next states (branching factor) becomes infinite

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

• If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

- If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.
- If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible.

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

- If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.
- If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible.
- Given locally correct values of $\frac{\partial f}{\partial x_1} = 2 \sum_{c \in C_1} (x_i x_c)$ one can perform steepest-ascent using $x \leftarrow x + \alpha \nabla f$

Non-Deterministic: not sure what would be the next state¹

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- *suck* in 1, would lead {5,7}

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- *suck* in 1, would lead {5,7}
- Solution would have nested if-else

[suck, if state=5 then [right, suck else []]

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- *suck* in 1, would lead {5,7}
- Solution would have nested if-else

[suck, if state=5 then [right, suck else []]

Search tree would contain some OR nodes and some AND nodes

¹Percepts would tell where have we reached.

AND-OR Search Tree

AND-OR Search Tree

Solution

- has goal node at every leaf
- takes one action at each OR node
- includes every outcome branch at each AND node

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

• **Sensor less**. consider [right,suck,left,suck] guarantees to reach in state 7 that is a goal state (traverses through belief states)

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

- Sensor less. consider [right, suck, left, suck] guarantees to reach in state 7 that is a goal state (traverses through belief states)
- All possible belief states may not be reachable (only 12 out of 28)

Agent interleaves computation and action

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

- Consider following maze problem
- A robot need to go from S to G
- Shows nothing about the environment

Random-walk?

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

- Consider following maze problem
- A robot need to go from S to G
- Stroke in the servironment with the servironment in the serviro

Random-walk?

No algorithm can avoid dead-end in all state space

Agents having conflicting goals in competitive multiagent environment

Agents having conflicting goals in competitive multiagent environment

Deterministic, fully-observable, turn-taking, two-player, zero-sum

Agents having conflicting goals in competitive multiagent environment

- Deterministic, fully-observable, turn-taking, two-player, zero-sum
- Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes
- Finding optimal move is infeasible but, needs an ability to decide

Agents having conflicting goals in competitive multiagent environment

- Deterministic, fully-observable, turn-taking, two-player, zero-sum
- Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes
- Finding optimal move is infeasible but, needs an ability to decide

Game is between MAX and MIN (MAX moves first)

- S₀: the initial state
- PLAYER(s): defines which player has move to start
- ACTIONS(s): returns set of legal moves in a state
- RESULT(s, a):termination model defining result of a move
- TERMINAL_TEST(s): is true when game is over
- UTILITY(s, p): utility function defining reward (for chess +1,0,1/2)

Game Tree for tic-tac-toe

The search tree of the game has less than 9! = 362880 nodes.

Game Tree for tic-tac-toe

The search tree of the game has less than 9! = 362880 nodes.

MAX must find a contingent **strategy**.

Analogous to AND-OR search (MAX plays OR and MIN plays AND)

Two half moves is one ply

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

Two half moves is one ply

Given the game tree, optimal strategy can be determined from **minimax value** of each node.

```
\textit{MINIMAX}(s) = \left\{ \begin{array}{l} \textit{UTILITY}(s) \\ \textit{argmax}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \\ \textit{argmin}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \end{array} \right.
```

 $\begin{array}{l} \text{if } \textit{TERMINAL_TEST}(s) \\ \text{if } \textit{PLAYER}(s) = \textit{MAX} \\ \text{if } \textit{PLAYER}(s) = \textit{MIN} \end{array}$

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

Two half moves is one ply

Given the game tree, optimal strategy can be determined from **minimax value** of each node.

```
\textit{MINIMAX}(s) = \left\{ \begin{array}{ll} \textit{UTILITY}(s) & \text{if } \textit{TERMINAL\_TEST}(s) \\ \textit{argmax}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MAX} \\ \textit{argmin}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MIN} \\ \end{array} \right.
```

Action a_1 is the optimal choice ² (essentially optimizing worst-case outcome for MAX)

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

MINIMAX Algorithm

Returns the action corresponding to best move

```
function MINIMAX-DECISION(state) returns an action
   return \arg \max_{a \in ACTIONS(s)} Min-Value(Result(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))
  return v
```

Recursion proceeds all the way down to the leaves.

MINIMAX Algorithm

Returns the action corresponding to best move

```
function MINIMAX-DECISION(state) returns an action
   return arg \max_{a \in ACTIONS(s)} MIN-VALUE(RESULT(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))
  return v
```

Recursion proceeds all the way down to the leaves. Time complexity $O(b^m)$ that is impractical but provides a basis of solution.

ALPHA-BETA Pruning

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning

ALPHA-BETA Pruning

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

ALPHA-BETA Pruning

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

 $\begin{aligned} & \text{MINIMAX(root)} \\ &= \text{max}(\; \text{min}(3,12,8), \; \text{min}(2,x,y), \; \text{min}(14,5,2)) \end{aligned}$

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

MINIMAX(root)

- $= \max(\min(3.12.8), \min(2.x.v), \min(14.5.2))$
- = max(3, min(2,x,y), 2)

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

MINIMAX(root) = max(min(3,12,8), min(2,x,y), min(14,5,2)) = max(3, min(2,x,y), 2) = max(3, z, 2) where z=min(2,x,v) < 2

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

```
\begin{array}{l} \text{MINIMAX(root)} \\ = \max(\; \min(3,12,8), \; \min(2,x,y), \; \min(14,5,2)) \\ = \max(\; 3, \; \min(2,x,y), \; 2) \\ = \max(\; 3, \; z, \; 2) & \text{where } z = \min(2,x,y) \leq \; 2 \\ = 3 & \end{array}
```

 Alpha-beta pruning can be applied to trees of any depth, and it is often possible to prune entire subtree rather than just leaves.

If m is better than n for player then we would never go to n in play

α	=	value of best choice (high-
		est) found so far for MAX
β	=	value of best choice (low-
		est) found so far for MIN

```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in ACTIONS(state) with value v
function Max-Value(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v < \alpha then return v
      \beta \leftarrow MIN(\beta, v)
  return v
```

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{MAX}(\alpha, v) return v
```

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return Utility(state) v \leftarrow +\infty for each a in ACTIONS(state) do v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{Result}(s, a), \alpha, \beta)) if v \leq \alpha then return v \beta \leftarrow \text{MIN}(\beta, v) return v
```

Order matters. So, examine likely to be best successor first.

```
 \begin{array}{l} \textbf{function Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if Terminal-Test}(state) \ \textbf{then return Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in Actions}(state) \ \textbf{do} \\ v \leftarrow \textbf{Min}(v, \textbf{Max-Value}(\textbf{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return } v \\ \beta \leftarrow \textbf{Min}(\beta,v) \\ \textbf{return } v \\ \end{array}
```

Order matters. So, examine likely to be best successor first.

Is it possible?

```
function Alpha-Beta-Search(state) returns an action v \leftarrow \text{MAX-Value}(state, -\infty, +\infty) return the action in Actions(state) with value v

function Max-Value(state, \alpha, \beta) returns a utility value if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for each a in Actions(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(\text{Result}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{Max}(\alpha, v) return v
```

```
 \begin{array}{l} \textbf{function } \text{Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if } \text{Terminal-Test}(state) \ \textbf{then return } \text{Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in } \text{ACTIONS}(state) \ \textbf{do} \\ v \leftarrow \text{Min}(v, \text{Max-Value}(\text{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return } v \\ \beta \leftarrow \text{Min}(\beta,v) \\ \textbf{return } v \\ \end{array}
```

Order matters. So, examine likely to be best successor first.

Is it possible?

In-action: ALPHA-BETA Pruning

Move Ordering

- With perfect ordering we need to examine only $O(b^{m/2})$ nodes
- When successors are examined in random order it needs to examine $O(b^{3m/4})$ nodes
- In chess, a strategy that capture \rightarrow threat \rightarrow forward \rightarrow backward, gets you to within about a factor of 2 of the best case $O(b^{m/2})$
- Try first the move that were found useful in past (killer move)
- Iterative deepening could help (adds constant fraction time)
- Hash table of previously seen positions (transposition table) can restrict re-computation of states

Imperfect Real-time Decision

- Generating entire search space is overkill
- Covering till large depth is not possible
- Idea is to cutoff the search earlier

```
\textit{H-MINIMAX}(s,d) = \left\{ \begin{array}{ll} \textit{Eval}(s) & \textit{if CUTOFF\_TEST}(s,d) \\ \textit{argmax}_{a \in \textit{Actions}(s)} \textit{H-MINIMAX}(\textit{RESULT}(s,a),d+1) & \textit{if PLAYER}(s) = \textit{MAX} \\ \textit{argmin}_{a \in \textit{Actions}(s)} \textit{H-MINIMAX}(\textit{RESULT}(s,a),d+1) & \textit{if PLAYER}(s) = \textit{MIN} \\ \end{array} \right.
```

Evaluation Function

- Returns the estimate of expected utility
- Performance would deeply depend on it
- Eval(win) ≥ Eval(draw) ≥ Eval(lose)
- Computation should be quick
- Value should relate to actual chance of winning
- Can use features (Number of pawns, Number of queens, ...)
- Can have various categories (all pawn vs one pawn, etc) Suppose experience suggests 72% of states encountered in the two-pawn vs. one pawn category lead to win, 20% lose, and 8% in draw. then eval could be

$$0.72 \times 1 + 0.20 \times 0 + 0.08 \times 0.5 = 0.76$$

Weighted linear function are also possible

$$Eval(s) = w_1 \times f_1(s) + w_2 \times f_2(s) + w_3 \times f_3(s) + ...$$

Important Considerations

- Cutting off search: having fixed depth may not be a good idea.
 Quiescent states are unlikely to have wild swing so expand till it.
 Horizon effect is difficult to eliminate so singular extension³ could be used
- Forward Pruning: cutting off the some search without further consideration. (we do not evaluate all possibilities beam search, we only use some in our mind) This may be fatal.
- Search Vs Lookup We have some policy on how to start and finish well. Use them as lookup

Constraint Satisfaction

- A Constraint Satisfaction Problem (CSP) has three components
 - \bigcirc X as a set of variables $\{X_1, X_2, X_3, ..., X_n\}$
 - 2 D as a set of domains $\{D_1, D_2, D_3, ..., D_n\}$
 - 3 C set of constraints that specify allowable combinations of values
- Each D_i contains allowable set of values $\{v_1, v_2, v_3, ..., v_k\}$ for X_i
- Each C_i contains a pair <scope, relation> such as <(X_1 , X_3), $X_1 \neq X_3$ >
- To solve CSP it needs state space and a notion of solution
- An assignment of variables such as $(X_1 = v_1, X_2 = v_2, ..., X_n = v_n)$ that does not violates any constraints is called **consistent** or legal solution.
- Our target to have complete assignment that is consistent.

Example: Map Coloring

Given three colors {red,green,blue}, can you color following map such that no two neighboring region have same color.

- X = {WA, NT, Q, NSW, V, SA, T}
- $C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}$
- There are many solution to the problem
- It is helpful to visualize as a constraint graph (node: variable, edge: participate in constraint)

Constraint Propagation

- Once you choose (SA=blue)
- you can conclude that none of its five members could take the color blue
- Without taking advantage of constraint propagation, search needs to consider 3⁵ = 243 assignments for the five neighbors.
- With constraint propagation, it needs $2^5 = 32$ only
- 87% reduction

Example: Cryptarithmethc Puzzle

Consider following addition (we have to find digits)

- Each letter represents a different digit
- We need Alldiff{F,T,U,W,R,O}
- Additional constraints are

$$O + O = R + 10 \times C_{10}$$

$$C_{10} + W + W = U + 10 \times C_{100}$$

$$C_{100} + T + T = O + 10 \times C_{1000}$$

$$C_{1000} = F$$
(1)

Thank You!

Thank you very much for your attention! Queries ?

(Reference⁴)

⁴1) Book - *AIMA*, ch-04+05, Russell and Norvig.