Тема 1 а Дефинирайте релация и релация на еквивалентност. Докажете, че всяка релация на еквивалентност разбива областта си на класовете на еквивалентност.

Тема 1 в Докажете, че неориентиран граф е свързан, точно когато има покриващо дърво.

Тема 2 а Докажете, че няма биекция $f: \mathbb{N} \to 2^{\mathbb{N}}$. Твърдението е известно като Диагонален метод на Кантор.

Тема 2 b Докажете, че е вярна следната формула на Нютон:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Тема 3 а Докажете, че има биекция $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Тема 3 b Докажете, че всяка булева функция може да се представи като формула над елементарните функции отрицание, конюнкция и дизюнкция. Твърдението е известно като $Teopema\ na\ Eyn$.

Тема 4 а Докажете теоремата на Ойлер, описваща необходимите и достатъчни условия за съществуване на ойлеров цикъл в граф.

Тема 4 b Докажете, че всяка булева функция може да се представи по единствен начин чрез полином на Жегалкин.

Тема 5 а Дефинирайте частична наредба, верига и контур в релация. Докажете, че една рефлексивна и транзитивна релация е частична наредба точно когато не съдържа контури.

Тема 5 b Дефинирайте функциите n! и $\binom{n}{k}$.

Нека A и B са крайни множества и |A|=n, |B|=m.

Изведете формули за броя на функциите $f: A \to B$, при допълнително изискване:

- (a) f е тотална.
- (b) f е частична.
- (c) f е инекция.

Тема 6 а Дефинирайте минимален и максимален елемент в частична наредба. Докажете, че всяка крайна частична наредба може да се разшири до пълна.

Тема 6 b Дефинирайте понятията импликанта и проста импликанта. Дайте пример на булева функция на 3 променливи, която има 4 единици в табличното си изписване, такава че минималната й Π съвпада със Съв Π С.

Тема 7 а Докажете, че няма биекция $f: \mathbb{N} \to 2^{\mathbb{N}}$. Твърдението е известно като Диагонален метод на Кантор.

Тема 7 b Дефинирайте графа на n-мерния хиперкуб. Дайте обоснован отговор на въпросите:

- (a) За кои стойности на n в този граф има хамилтонов цикъл?
- (b) За кои n в графа има ойлеров цикъл?

Тема 8 а Докажете, че има биекция $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Тема 8 b Опишете задачите, които решават алгоритмите на Прим и Дейкстра. Посочете прилики и разлики между тия задачи и между съответните алгоритми.

Тема Rel₁ Дефинирайте релация и релация на еквивалентност. Докажете, че всяка релация на еквивалентност разбива областта си на класовете на еквивалентност.

Тема Fun₁ Докажете, че няма биекция $f: \mathbb{N} \to 2^{\mathbb{N}}$. Твърдението е известно като Диагонален метод на Кантор.

Тема Fun₂ Докажете, че има биекция $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Tema Rel₂ Дефинирайте частична наредба, верига и контур в релация. Докажете, че една рефлексивна и транзитивна релация е частична наредба точно когато не съдържа контури.

Teма Rel₃ Дефинирайте минимален и максимален елемент в частична наредба. Докажете, че всяка крайна частична наредба може да се разшири до пълна.

Тема Comb₁ Докажете, че е вярна следната формула на Нютон:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Тема Comb₂ Дефинирайте функциите n! и $\binom{n}{k}$.

Нека A и B са крайни множества и |A| = n, |B| = m.

Изведете формули за броя на функциите $f: A \to B$, при допълнително изискване:

- (a) f е тотална.
- (b) f е частична.
- (c) f е инекция.

Тема Graph₁ Докажете, че неориентиран граф е свързан, точно когато има покриващо дърво.

Tema Graph₂ Докажете теоремата на Ойлер, описваща необходимите и достатъчни условия за съществуване на ойлеров цикъл в граф.

Тема Graph₃ Дефинирайте графа на n-мерния хиперкуб. Дайте обоснован отговор на въпро-

- (a) За кои стойности на n в този граф има хамилтонов цикъл?
- (b) За кои n в графа има ойлеров цикъл?

Тема Graph $_4$ Опишете задачите, които решават алгоритмите на Прим и Дейкстра. Посочете прилики и разлики между тия задачи и между съответните алгоритми.

Тема Bool₁ Докажете, че всяка булева функция може да се представи като формула над елементарните функции отрицание, конюнкция и дизюнкция. Твърдението е известно като Teopema на Eyn.

Tema Bool₂ Докажете, че всяка булева функция може да се представи по единствен начин чрез полином на Жегалкин.

Тема Bool $_3$ Дефинирайте понятията импликанта и проста импликанта. Дайте пример на булева функция на 3 променливи, която има 4 единици в табличното си изписване, такава че минималната й ДНФ съвпада със СъвДНФ.