Топ-5 теорем, которые не помогут построить дом

Направление точных наук

Лунёв Егор (@egorrshuk)

Место под соснами Лето, 2024

Аннотация

Доказательство перпендикулярности — это очень частое явление в задачах. Поэтому на этом факультативе мы будем учиться проверять перпендикулярность прямых разными способами: счет углов, поиск ортоцентра, свойства ортоцентра, прямая Симсона, задача 255, ортодиагональные четырехугольники, радикальные оси, ортологичные треугольники и другие..

Чтобы понять каждую тему, нужно лишь владеть знаниями о вписанных четырехугольниках, т.е. после окончания восьмого класса вы сможете понять данный материал, если изучили эту тему. В каждой главе есть секция с задачами на эту тему. Сложность задач примерно (\approx) возрастает (\uparrow). Задачи, разделенные горизонтальной коричнево-зеленой чертой, относятся к разным темам. Все хорошие, всех люблю, приходите! \heartsuit

Содержание

1	Счет углов	2
	Задачи	3
2	Свойства ортоцентра	5
	2.1 Симметрии ортоцентра	5
	2.2 Остальные свойства ортоцентра	7
	2.3 Окружность Эйлера	8
	Задачи	9
3	Ортодиагональные четырёхугольники	10
	Задачи	10
4	Радикальная ось и линия центров	12
	4.1 Степень точки	12
	4.2 Радикальная ось	13
	Задачи	15
5	Известные конструкции	16
	5.1 Прямая Уоллеса-Симсона	17
	5.2 Задача №255	18
	Задачи	19
A	Анкета	i
В	Заметки	ii

1 Счет углов

скажи им, что нужно быть счастливыми и что главное стать хорошим человеком

дед всегда прав

Это самое базовое, что можно сделать, чтобы доказать перпендикулярность: просто посчитать углы, и из этого сделать вывод (какой-то угол будет равен 90°).

Теорема 1.1. *Высоты треугольника* конкурентны¹.

Лемма 1.2. Четырехугольник ABCD является вписанным, если $\angle ABC$ равен смежному углу $\angle ADC$.

 $^{^{1}}$ Пересекаются в одной точке.

Задачи

Было тяжело подобрать задачи, в которых требуется исключительно доказательство перпендикулярности; поэтому тут задачи, которые в целом хорошо делаются счетом углов, а не только на ортогональность.

- 1. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.
- 2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что $EF \parallel BC$.
- 3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности.
- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_1 и C_1 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки $B,\,C,\,B_1,\,C_1$ концикличны.
 - (b) Докажите, что отрезок, соединяющий проекции точек B_1 и C_1 , на прямые AB и AC соответственно, параллелен стороне BC.
- 5. В остроугольном треугольнике ABC проведена высота AD. Пусть точки K и L проекции точки D на стороны AB и AC соответственно. Известно, что $\angle BAC = 72^\circ, \angle ABL = 30^\circ$. Чему равен угол $\angle DKC$?
- 6. (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1, B_1 и A_1 соответственно. Докажите, что окружности $(AB_1C_1), (A_1BC_1)$ и (A_1B_1C) пересекаются в одной точке.

- (b) (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке. 8. В треугольнике ABC точки B_1 и C_1 – основания высот, проведенных из вершин B и C соответственно. Точка D – проекция точки B_1 на сторону AB, точка E – пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$. 9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO – биссектриса угла ABC. 10. В треугольнике ABC угол A равен 60°. Биссектрисы треугольника BB_1 и CC_1 пересекаются в точке I. Докажите, что $IB_1 = IC_1$. 11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 – проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$. 12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке T. Докажите, что AQ – биссектриса угла $\angle PAT$. 13. Пусть AA_1 , BB_1 и CC_1 – высоты остроугольного треугольника ABC. До-
- 14. В треугольнике ABC точки D и E основания биссектрис из углов A и C соответственно, а точка I центр вписанной в треугольник ABC окружности. Точки P и Q пересечения прямой DE с (AIE) и (CID) соответственно, причем $P \neq E, Q \neq D$. Докажите, что $\angle EIP = \angle DIQ$.

кажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллине-

арны.

 $^{^{1}}$ Точка B называется точкой Шалтая треугольника APQ.

2 Свойства ортоцентра

Опеределение 2.1. Ортоцентр (\mathbf{H}) – это точка пересечения высот треугольника.

Я всегда буду ортоцентр треугольника ABC обозначать большой зеленой точкой (просто я так решил), а центр описанной окружности как выколотую (так уже более принято).

2.1 Симметрии ортоцентра

Ортоцентр – это такая особенная точка: конструкции, в которых используются его **симметрии** относительно чего-либо, **замечательно** связанны с описанной окружностью, и наоборот!

Теорема 2.1. Если отразить ортоцентр относительно стороны, то он попадет на описанную окружность.

Теорема 2.2. Если ортоцентр отразить относительно середины стороны, то он попадет на описанную окружность.

Следствие 2.2.1. Точка из теоремы 2.2 диаметрально противоположна противо-лежащей стороне вершине.

Следствие 2.2.2. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружености до противолежащей стороны.

Лемма 2.3 (Окружность Джонсона). (ABC) = (ABH), т.е. окружности, описанные вокруг $\triangle ABC$ и $\triangle ABH$ равны.

Опеределение 2.2 (Изогональное сопряжение¹). Точки P, Q называются изогонально сопряженными, если $\angle PAB = \angle QAC$, $\angle PBC = \angle QBA$, $\angle PCB = \angle QCA$.

 $^{^{1}{\}rm M}{\rm o}{\rm ж}{\rm h}{\rm o}$ думать об изогональном сопряжении, как о симметрии относительно биссектрисы.

2.2 Остальные свойства ортоцентра

Опеределение 2.3. Инцетр – это центр, вписанной в многоугольник окружности.

Опеределение 2.4. Ортотреугольник – это треугольник, вершины которого являются основаниями высот исходного треугольник.

Пемма 2.5. Ортоцентр является инцентром для ортотреугольника.

Следствие 2.5.1. Радиусы описанной окружености, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

Пемма 2.6. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружености.

Лемма 2.7. Если AA_1 и BB_1 – высоты треугольника ABC, то $\triangle ABC$ \sim $\triangle A_1B_1C$, $k=\cos \angle C$.

2.3 Окружность Эйлера

Давайте соединим пару свойств, которые мы уже знаем (а именно по теоремам 2.1 и 2.2) и сделаем парочку незамысловатых размышлений. Получим окруженость Эйлера или окруженость девяти точек.

Опеределение 2.5 (Окружность Эйлера). Окружностью Эйлера называют окружность, проходящую через основания высот, середины сторон и середины отрезков, соединяющих вершины с ортоцентром треугольника.

Опеределение 2.6 (Прямая Эйлера). Точки O, O_9, H, M лежат на одной прямой, называемой прямой Эйлера.

Теорема 2.8. Отрезки на прямой Эйлера хорошо относятся.

$$\overrightarrow{O_9M}: \overrightarrow{MO}: \overrightarrow{OH} = 1:2:(-3)$$

Рис. 1: Окружность Эйлера и прямая Эйлера.

Задачи

15. В треугольнике ABC проведены высоты BB_1 и CC_1 , а также отм точка M – середина стороны BC . Точка H – его ортоцентр, а точк пересечения луча (!) MH с окружностью (ABC) . Докажите, что P,A,B_1,C_1 концикличны.				
16.	Во вписанном четырехугольнике $ABCD$ точка P – точка пересечения диагоналей AC и BD . Точка O – центр окружности (ABP) . Докажите, что $OP \perp CD$.			
17.	(Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD . Точка M — середина отрезка BC . Точка N такова, что точка M — середина отрезка AN , докажите что $BC \perp ND$.			
18.	в. В треугольнике ABC проведена высота AD и отмечен центр описанной окружности – O . Пусть точки E и F – проекции точек B и C на прямую AO . N – точка пересечения прямых AC и DE , а M – точка пересечения прямых AB и DF . Докажите, что точки A, D, N, M концикличны.			
19.	9. (Baltic Way, 2019, problem 12) Let ABC be a triangle and H its orthocenter Let D be a point lying on the segment AC and let E be the point on the line BC such that $BC \perp DE$. Prove that $EH \perp BD$ if and only if BD bisects AE .			
20.	Докажите теорему об окружности девяти точек с помощью леммы о трезубце и внешней леммы о трезубце.			
21.	(a) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.			
	(b) Докажите, что прямые Эйлера треугольников $ABC,\ HBC,\ AHC$ и ABH пересекаются в одной точке.			
	(c) Докажите, что центры описанных окружностей треугольников ABC , HBC , AHC и ABH образуют четырехугольник, симметричный четырехугольнику $HABC$.			
22.	Высоты BD и CE треугольника ABC пересекаются в точке H . Продолжения сторон AB и AC пересекают окружность BHC в точках P и Q . Докажите, что отрезок PQ в два раза больше отрезка DE .			

- 23. (Заключительный этап ВСОШ, 2015, 9.7) Остроугольный треугольник ABC (AB < AC) вписан в окружность ω . Пусть M его центроид 1 , а D основании высоты, опущенной из вершины A. Луч MD пересекает ω в точке E. Докажите, что окружность (BDE) касается AB.
- 24. (Высшая проба, 2013, 9.5) Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC. На стороне AB выбрана точка P так, что окружность (PA_1B_1) касается стороны AB. Найдите PC_1 , если PA=30 и PB=10.
- 25. Треугольник высекает на своей окружности Эйлера три туги. Докажите, что одна из этих дуг равна сумме двух других.

3 Ортодиагональные четырёхугольники

Рис. 2: Ортодиагональные четырёхугольники (выпуклый и невыпуклый).

Теорема 3.1. Диагонали AC и BD четырехугольника ABCD (выпуклого или не выпуклого) перпендикулярны тогда и только тогда, когда

$$AB^2 + CD^2 = BC^2 + AD^2.$$

Задачи

26. Докажите, что высоты треугольника конкурентны.;)

¹Точка пересечения медиан.

- 27. (Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD. Точка M середина отрезка BC. Точка N такова, что точка M середина отрезка AN, докажите что $BC \perp ND$.
- 28. (Baltic Way, 2019, problem 13) Let ABCDEF be a convex hexagon in which AB = AF, BC = CD, DE = EF and $\angle ABC = \angle EFA = 90^{\circ}$. Prove that $AD \perp CE$.
- 29. (а) (Теорема Штейнера) Пусть ABC и $A_1B_1C_1$ невырожденные треугольники. Докажите, что перпендикуляры, опущенные из точек A_1 , B_1 , C_1 на прямые BC, AC, AB пересекаются в одной точке тогда и только тогда, когда

$$C_1A^2 + A_1B^2 + B_1C^2 = C_1B^2 + B_1A^2 + A_1C^2.$$

- (b) Докажите, что если перпендикуляры, опущенные из точек A_1 , B_1 , C_1 на прямые BC, AC, AB пересекаются в одной точке, то и перпендикуляры, опущенные из точек A, B, C на прямые B_1C_1 , A_1C_1 , A_1B_1 тоже. \Box
- 30. (Теорема об изогональном сопряжении) Чевианы AA_1 , BB_1 , CC_1 треугольника ABC пересекаются в одной точке. Докажите, что чевианы, симметричные им относительно биссектрис соответствующих углов, тоже пересекаются в одной точке. 2
- 31. Пусть точки P и Q изогонально сопряженные точки треугольника ABC. $B_p,\, C_p$ и $B_q,\, C_q$ перпендикуляры из P и Q на прямые AC и AB соответственно.
 - (a) Докажите, что треугольники PB_pC_p и QB_qC_q подобны.
 - (b) Докажите, что вершины педальных треугольников изогонально сопряженных точек лежат на одной окружности. Найдите её центр. ○
- 32. Углы A и C четырехугольника ABCD равны. Докажите, что середина отрезка AC и проекции D на прямые AB, BC и AC концикличны.

 $^{^1}$ Треугольники ABC и $A_1B_1C_1$ из задачи называют ортологичными. Пишут $\triangle ABC \perp \triangle A_1B_1C_1$. При этом точки пересечения соответствующих перпендикуляров называют центрами ортологии.

²Рассмотрите педальный треугольник этой точки.

4 Радикальная ось и линия центров

Не всегда удается "счетом углов" доказать принадлежность четверки точек одной окружности. Часто нужно использовать "счет в отрезках". С этим нам помогает степень точки. А чтобы доказать, что три прямые пересекаются в одной точке, можно сказать что это радикальный центр какой-то тройки окружностей.

4.1 Степень точки

Опеределение 4.1 (Степень точки). Степень точки P, находящейся на расстоянии d от центра окружности ω радиусом r, относительно этой же окружности:

$$pow(P, \omega) = d^2 - r^2.$$

Теорема 4.1. Если прямая $\ell \ni P$ касается окруженость в точке K, то

$$pow(P, \omega) = PK^2$$
.

Теорема 4.2. Если прямая $\ell \ni P$ пересекает окружность ω в точках A и B, тогда

$$pow(P, \omega) = \overrightarrow{PA} \cdot \overrightarrow{PB}.$$

Следствие 4.2.1 (Теорема о касательной и секущей). Если из точки P, проведена касательная PK к окружности ω и прямая $(\ell \ni P)$ пересекает окружность ω в точках A и B, тогда

$$PK^2 = PA \cdot PB.$$

Теорема 4.3 (Главная теорема о степени точки). Если через точку P проходят две прямые, которые пересекают окружность ω в точках A_1, A_2 и B_1, B_2 соответственно, то

$$\operatorname{pow}(P,\omega) = \overrightarrow{PA_1} \cdot \overrightarrow{PA_2} = \overrightarrow{PB_1} \cdot \overrightarrow{PB_2}.$$

4.2 Радикальная ось

Теорема 4.4. Геометрическое место точек (ГМТ), степени которых относительно двух неконцентрических окружностей равны, есть прямая, перпендикулярная линии центров этих окружностей.

Опеределение 4.2 (Радикальная ось). Прямая, состоящая из точек, степени которых относительно двух данных окружностей равны, называется радикальной осью этих окружностей.

Рис. 3: Радикальная ось двух окружностей.

Теорема 4.5 (Радикальный центр). *Радикальные оси трех окружностей либо конкурентны, либо параллельны.*

Рис. 4: Радикальный центр трех окружностей.

Теорема 4.6. $AC \perp BD^1$, если

$$pow(B, \omega_a) - pow(B, \omega_c) = pow(D, \omega_a) - pow(D, \omega_c)$$

 $^{^{1}}$ Типа крутая теореме 3.1

Задачи

Судя по карте, дорога здесь одна. Трясет на ухабах — мы переносим с одобреньем.

Александр Башлачёв

Простите меня заранее за такие трудные задачи. Если вы отвалитесь довольно рано – не горюйте. Я вам всегда помогу! Удачи \heartsuit

- 33. Докажите, что высоты треугольника конкурентны. 0_0
- 34. Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник равносторонний.
- 35. Окружности ψ и ω вписаны в вертикальный угол $\angle nm$, ψ касается прямой n в точке N, а ω касается прямой m в точке M. Докажите, что ψ и ω высекают на NM равные отрезки.
- 36. (ММО, 2013, 11.3) Четырёхугольник ABCD такой, что AB = BC и AD = DC. Точки K, L и M середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведённый из точки A к прямой BC, пересекается с перпендикуляром, проведённым из точки C к прямой AD, в точке T. Докажите, что прямые $KL \perp TM$.
- 37. Точка D основание биссектрисы из точки A треугольника ABC. Окружность (ABD) повторно пересекает прямую AC в точке E, а окружность (ACD) повторно пересекает прямую BC в точке F. Докажите, что BF = CE.
- 38. Окружность ω проходит через вершины A и D равнобокой трапеции ABCD и пересекает диагональ BD и боковую сторону CD в точках P и Q соответственно. Точки P' и Q' симметричны точкам P и Q относительно середин отрезков BD и CD соответственно. Докажите, что B, C, P' и Q' концикличны.
- 39. (JBMO Shortlist, 2022, G6) Пусть Ω описанная окружность треугольника ABC. Взяты точки P и Q, так что P равноудалена от A и B, а Q равноудалена от A и C и углы PBC и QCB равны. Докажите, что касательная к Ω в точке A, прямая PQ и BC пересекаются в одной точке.

- 40. Вневписанные окружности ω_b и ω_c треугольника ABC касаются сторон AC и AB соответственно в точках E и F. Прямая EF повторно пересекает окружности ω_b и ω_c в точках X и Y соответственно. Касательные в точках X и Y проведенные к окружностям ω_b и ω_c пересекают прямые AC и AB в точках K и L соответственно. Докажите, что середина отрезка KL равноудалена от точек E и F.
- 41. (а) Пусть C_1 и B_1 точки на сторонах AB и AC треугольника ABC соответственно. Докажите что, радикальная ось окружностей, построенных на BB_1 и CC_1 как на диаметре, проходит через ортоцентр треугольника ABC.
 - (b) (Ось Обера) Докажите, что четыре ортоцентра четырёх треугольников, образованных четырьмя попарно пересекающимися прямыми, никакие три из которых не проходят через одну точку¹, коллинеарны.
 - (c) (Теорема Гаусса-Боденмиллера) Докажите, что прямая Гаусса² перпендикулярна оси Обера.
- 42. Чевианы AD, BE и CF треугольника ABC конкурентны. Прямая EF пересекает окружность (ABC) в точках P и Q. Докажите, что P, Q, D и середина отрезка BC концикличны.
- 43. В треугольнике ABC проведены высоты AD, BE, CF. Прямые DE, EF и DF пересекаются прямые AB, BC и AC. В точках C_1 , B_1 , A_1 соответственно. Докажите, что точки A_1 , B_1 , C_1 лежат на прямой 3 перпендикулярной прямой 3 регольник 3

5 Известные конструкции

Этот раздел посвящен тому, чтобы при доказательстве перпендикулярности использовать какие-то известные вам конструкции (прямая Симсона, задача N255, или что вы там знаете..). Таких очень много, и это то, что по-сути и остается только изучать. Да и все, что мы до этого с вами проходили, можно тоже называть известными конструкциями.

 $^{^{1}}$ Такие прямые образуют фигуру, называемую полным четырёхсторонником.

 $^{^2}$ Прямой Гаусса полного четырёхсторонника называется прямая, проходящая через середины трех его диагоналей.

 $^{^{3}}$ Такая прямая называется трилинейной полярой ортоцентра, или ортоцентрической осью, или центральной линией центра описанной окружности.

5.1 Прямая Уоллеса-Симсона

Теорема 5.1 (Прямая Симсона). Проекции точки P на прямые, содержащие стороны треугольника ABC, коллинеарны, тогда и только тогда, когда точка P лежит на описанной окружности треугольника ABC.

Рис. 5: Педальные треугольники двух точек. Прямая Симсона.

5.2 Задача №255

Наверное, каждая содержательная геометрическая задача может быть источником целого ряда новых. Для этого с ней надо некоторое время «повозиться», посмотреть с разных сторон, попробовать перефразировать, обобщить. В результате удивительным образом может возникнуть новая, совершенно не похожая на «родителя» задача. Например, возьмём ту же задачу №255...

И. Ф. Шарыгин. Геометрия. Задачник 9-11

Теорема 5.2 (Лемма 255, Iran Lemma). Пусть M и N – точки касания вписанной окружности со сторонами AB и BC треугольника ABC, P – точка пересечения биссектрисы угла A с прямой MN. Докажите, что $\angle APC = 90^\circ$. Докажите, что точка P лежит на средней линии треугольника ABC, параллельной стороне AB.

Рис. 6: Лемма 255.

Задачи

- 44. Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая продолжение стороны CD в точке L. F точка пересечения KL и AC. Докажите, что $BF \perp KL$.
- 45. Пусть AA_1 , BB_1 , CC_1 высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.
- 46. (Обобщённая прямая Симсона) P произвольная точка описанной окружности треугольника ABC. Докажите, что точки $A_1,\,B_1,\,C_1$ на прямых $AC,\,BC,\,AB$ коллинеарны, когда выполняется равенство:

$$\angle(AB, PC_1) = \angle(BC, PA_1) = \angle(AC, PB_1).$$

- 47. Вписанная в треугольник ABC окружность касается сторон AB, BC, CA в точках C_1 , B_1 , A_1 соответственно. Пусть прямая C_1I пересекает прямую A_1B_1 в точке P. Тогда прямая CP содержит медиану треугольника ABC.
- 48. (а) Хорда PQ описанной окружности треугольника ABC и сторона BC перпендикулярны. Докажите, что прямая Симсона точки P относительно треугольника ABC параллельна прямой AQ.
 - (b) (Закл. этап ВСОШ, 2009-2010 гг., 10.6) Пусть H ортоцентр треугольника ABC. Точки X и Y проекции точки P, лежащей на описанной окружности треугольника ABC на стороны AB и BC. Докажите, что середина отрезка HP и точки X и Y коллинеарны. 1
- 49. (Прямая Штейнера) Пусть P произвольная точка на описанной окружности треугольника ABC. Точки P_a , P_b , P_c симметричны P относительно прямых BC, AC и AB соответственно. Докажите что, точки P_a , P_b , P_c , H коллинеарны.
- 50. Пусть ℓ прямая Штейнера точки R на описанной окружности ABC. Докажите, что если прямую ℓ отразить относительно стороны треугольника ABC, то полученная прямая пройдет через точку R.

¹Подсказка в том, что эта задача – пункт (b). Ну и симметрии ортоцентра.

- 51. (Л. А. Попов, Ф. Л. Бахарев) Точки A_1, B_1, C_1 основания высот остроугольного треугольника ABC из точек A, B, C соответственно. Точки A_1, B_1, C_1 отразили относительно средних линий треугольника, параллельных AB, BC, CA соответственно, получились точки A_2, B_2, C_2 соответственно. Докажите, что прямые AA_2, BB_2, CC_2 пересекаются в одной точке.
- 52. (Олимпиада им. И.Ф. Шарыгина, 2021, 8-9.6, устный тур) В треугольнике ABC, точка M середина стороны BC, точка H ортоцентр. Биссектриса угла A пересекает отрезок HM в точке T. Окружность построенная на отрезке AT, как на диаметре, пересекает стороны AB и AC в точках X и Y. Докажите, что точки X, Y и H коллинеарны.
- 53. (ММО, 2006, 10.6) Точки P и Q лежат на описанной окружности треугольника ABC. На прямой AB выбрана точка C_1 так, что $\angle(AB, PC_1) = \angle(QC_1, AB)$. Аналогично выбраны точки B_1 и C_1 на прямых AC и BC соответственно. Докажите, что точки A_1 , B_1 , C_1 коллинеарны.
- 54. (Теорема Дроз-Фарни) Обозначим точкой H ортоцентр треугольника ABC. Прямые ℓ и t проходят через H и $\ell \perp t$. Пусть L_a , L_b , L_c пересечение ℓ с прямыми BC, AC и AB соответственно, точки T_a , T_b и T_c определяются аналогично. Докажите, что середины отрезков T_aL_a , T_bL_b , T_cL_c коллинеарны.

Эта серия задач довольно простая, потому что у нас последнее (!) занятие. Ну и вы, кажется, должны были устать от "Симсона" и "степени точки". Поэтому отдыхайте и наслаждайтесь задачами! \heartsuit

- 55. (ММО, 1994) В треугольнике ABC точки M и N проекции вершины B биссектрисы углов A и C, а P и Q проекции на внешние биссектрисы этих же углов.
 - (a) Докажите, что точки M, N, P и Q коллинеарны.
 - (b) Докажите, что длина отрезка PQ равна полупериметру треугольника ABC.
- 56. В трапецию ABCD вписана окружность с центром I. Окружность вписанная в треугольник ACD касается сторон AD и AC в точках E и F. Докажите, что точки E, F и I коллинеарны.

- 57. (Ф. Л. Бахарев, Санкт-Петербургская олимпиада, 1999) В неравнобедренном треугольнике ABC проведены биссектрисы AA_1 и CC_1 и отмечены точки K и L середины сторон AB и BC соответственно. AP и CQ перпендикуляры, опущенные на CC_1 и AA_1 соответственно. Докажите, что прямые PK и QL пересекаются на стороне AC.
- 58. (а) (Первая внешняя Лемма 255) Пусть M и N точки касания вневписанной окружности ω_a треугольника ABC со стороной BC и продолжением стороны AC, а P точка пересечения биссектрисы угла A с прямой MN. Докажите, что $\angle APB = 90^\circ$.
 - (b) (Вторая внешняя Лемма 255) Пусть M и N точки касания вневписанной окружности ω_a треугольника ABC с продолжениями сторон AB и AC, а P точка пересечения биссектрисы внешнего угла B с прямой MN. Докажите, что $\angle BPC = 90^\circ$.
- 59. В равнобедренном треугольнике $ABC\ (AB=BC)$ средняя линия, параллельная стороне BC пересекается со вписанной окружностью в точке D, не лежащей на AC. Докажите, что касательная к окружности в точке D пересекается с биссектрисой угла C на стороне AB.
- 60. В треугольнике ABC точки A_c , B_c , C_c точки касания прямых BC, AC и AB с вневписанной окружностью ω_c (с центром в I_c). Точки A_b , B_b , C_b определяются аналогично.

$$\begin{cases} B_1 &= A_c C_c \cap A_b C_b \\ C_1 &= A_b B_b \cap A_c B_c \\ A_1 &= A_b B_b \cap A_c C_c \\ A_2 &= A_c B_c \cap A_b C_B \end{cases}$$

- (a) Докажите, что точки $A,\,B_1,\,C_1,\,I_b,\,I_c$ коллинеарны.
- (b) Докажите, что $A_1 A_2 \perp BC$.

А Анкета

Фамилия Имя, класс:			O
Команда:	3ı	нак зодиака:	
Хобби:		колько дней в году:	
Любимый цвет (можно нарисс			
Любимая музыкальная группа	:		
Любимый фильм:			
Любимая футбольная команд	1:		
Нарисуйте лошадь:			

i

В Заметки

Награда	Доля от количества	Количество (
Конфета	33%	≈ 14
Шоколадка	50%	≈ 21
Значок	Особо старательным	
Общее количество	100%	42

Таблица 1: Таблица ништяков.

1 True Love Waits (Live in Oslo)

Intro: $C Em6^{\flat} Am E^{\flat}6$

 $Em6^{\circ}$ I'll drown my beliefs

Am $E^{\flat}6$ To have your babies

I'll dress like your niece

And wash your swollen feet

 $C_{
m Just}$ Fmaj7/C $_{
m don't}$ G6(11) $C_{
m leave}$ Fmaj7/C G6(11) Am G6(11)Don't leave

 $\mathop{Em6}^{\flat}$ I'm not living

 $E^{\flat}6$ I'm just killing time Your tiny hands

Your crazy kitten smile $E^{\flat}6$

 $C_{
m Just}$ Fmaj7/C $_{
m don't}$ G6(11) $C_{
m leave}$ Fmaj7/C G6(11) Am G6(11)Don't leave

Bridge: $C Em6^{\flat} Am G6(11) E^{\flat}6$ Fmaj7/C

And true love waits $Em6^{\flat}$

 $Am \frac{E^{\flat}6}{\text{In haunted attics}}$

And true love lives $Em6^{\circ}$

Am On lollipops and crisps

| C | Fmaj7/C | G6(11)

