Polygenic Risk Scores for SSNS, SRNS

Alejandro Ochoa

StatGen, Biostatistics & Bioinformatics — Duke University

2024-02-07 — NS U01 working group

Overview

- Completed PRS testing on a new setup
- Redid PRS testing on old setup
- Under the hood
 - Streamlined code
 - ▶ Added PC conditioning, which slightly increased correlations

How PRS works

Score is generally a linear model:

$$\mathsf{PRS}_j = \sum_i \beta_i x_{ij}.$$

- i: variant index
- j: individual index
- $\triangleright \beta_i$: coefficient of variant i
- $ightharpoonup x_{ij}$: genotype (0,1,2) at variant i, individual j

Challenge is about picking β_i :

- Not all variants are in all datasets
- ▶ If starting from GWAS, need to decorrelate (LD or clumping), shrink (p-value threshold or fancier models)

Basics of PRS construction and evaluation

- ▶ PRS construction and validation requires 3 disjoint datasets:
 - ▶ Base set: Used to fit "GWAS summary statistics": variant coefficients (betas), standard errors, p-values
 - ▶ Training set: Used to fit PRS parameters: p-value threshold, or heritability and sparsity
 - Modifies betas, usually by shrinking them to zero and reducing correlation due to LD
 - Testing set: Data where nothing was trained, reveals true performance (correlation to trait)

Testing setups

Name	Base	Train	Test
Old SSNS-	Discov SSNS-SRNS	Bristol SSNS-SRNS 70%	Bristol SSNS-SRNS 30%
SRNS	(725/193)	(252/103)	(113/46)
Old	Discov SSNS-Ctrl	Bristol SSNS-SRNS 70%	Bristol SSNS-SRNS 30%
SSNS-Ctrl	(725/3553)	(252/103)	(113/46)
New	Discov SSNS-Ctrl	Discov SSNS-SRNS	Bristol SSNS-SRNS 100%
SSNS-Ctrl	(532/3553)	(193/193)	(365/149)

To incorporate soon, CureGN version SSNS-SRNS (250/170), based on these rules:

SSNS: MCD and age ≤ 21SRNS: FSGS and age ≤ 21

Test results: New SSNS-Ctrl

Test results: Old SSNS-Ctrl

Test results: Old SSNS-SRNS

Next steps

- Use LD of base data instead of training data
- Include clump and threshold method
- Include CureGN's SSNS/SRNS (allows base data to be for both SSNS-SRNS and SSNS-Ctrl, as with old setup)
- Use HLA haplotypes!
- Vary SNP set filters
 - Due to LD runtime, only using array SNPs right now
 - Could enrich for more significant ones or higher severity variants
- Try Barry et al., 2023 base data

Train results: New Idpred-inf

Train results: Old SSNS-Ctrl Idpred-inf

Train results: Old SSNS-SRNS Idpred-inf

Train results: New Idpred-grid-h0.1

Train results: Old SSNS-Ctrl ldpred-grid-h0.1

Train results: Old SSNS-SRNS ldpred-grid-h0.1

Train results: New Idpred-lassosum

Train results: Old SSNS-Ctrl ldpred-lassosum

Train results: Old SSNS-SRNS Idpred-lassosum

