HW6 answer

Guojing Wu | gw2383 3/31/2019

Problem 1

$$\begin{aligned} varY_{i,j} &= var(\mu + b_i + e_{i,j}) \\ &= var(b_i) + var(e_{i,j}) \\ &= \sigma_b^2 + \sigma_e^2 \\ cov(Y_{i,j}, Y_{i,k}) &= E(Y_{i,j}Y_{i,k}) - E(Y_{i,j})E(Y_{i,k}) \\ &= E[(\mu + b_i + e_{i,j})(\mu + b_i + e_{i,k})] - E(Y_{i,j})E(Y_{i,k}) \\ &= E(\mu^2 + b_i^2 + 2\mu b_i + \mu e_{i,j} + \mu e_{i,k} + b_i e_{i,j} + b_i e_{i,k} + e_{i,j} e_{i,k}) - \mu^2 \end{aligned}$$

Since $b_i \sim N(0, \sigma_b^2)$, $(\frac{b_i}{\sigma_b})^2 \sim \chi_1^2$, so $E(b_i^2) = \sigma_b^2$. And since $e_{i,j}, e_{i,k}$ are independent, $E(e_{i,j}e_{i,k}) = E(e_{i,j})(e_{i,k})$. So,

$$cov(Y_{i,j}, Y_{i,k}) = \mu^2 + \sigma_b^2 - \mu^2$$

$$= \sigma_b^2$$

$$corr(Y_{i,j}, Y_{i,k}) = \frac{cov(Y_{i,j}, Y_{i,k})}{\sqrt{varY_{i,j}varY_{i,k}}}$$

$$= \frac{\sigma_b^2}{\sigma_b^2 + \sigma_e^2}$$

This suggest that the covariance pattern is compound symmetry

Problem 2

1) spaghetti plot

```
data_dist %>%
  ggplot(aes(x = Age, y = Distance, group = Child, col = Child)) +
  geom_line()
```


In general, the older the child is, the longer the distance is.

2)

We assume that $Y_1 \sim Y_{16}$ is male and $Y_{17} \sim Y_{27}$ is female. The covariance within same person is σ_a^2 , the covariance within the same gender is σ_b^2 :

3)

i)

```
CompSymm <- gls(Distance ~ Age + Gender, data_dist, correlation = corCompSymm(form = ~ 1 | Child), weights = var

Expo <- gls(Distance ~ Age + Gender, data_dist, correlation = corExp(form = ~ 1 | Child), weights = var

Auto <- gls(Distance ~ Age + Gender, data_dist, correlation = corAR1(form = ~ 1 | Child), weights = var

coeff = rbind(CompSymm$coefficients, Expo$coefficients, Auto$coefficients)

rownames(coeff) = c("CompSymmetry", "Exponential", "Autoregressive")

coeff %>% knitr::kable()
```

	(Intercept)	Age	Gender1
CompSymmetry Exponential Autoregressive	15.39576	0.6639005	2.151163
	15.35489	0.6593467	2.427299
	15.35488	0.6593470	2.427314

By the table above, the coefficient parameter estimates obtained by three methods are very similar.

ii)

```
varfunc = rbind(CompSymm$modelStruct$varStruct, Expo$modelStruct$varStruct, Auto$modelStruct$varStruct)
varfunc = cbind(rep(0, nrow(varfunc)), varfunc)
rownames(varfunc) = c("CompSymmetry", "Exponential", "Autoregressive")
colnames(varfunc) = c("8", "10", "12", "14")
varfunc %>% exp() %>% knitr::kable()
```

	8	10	12	14
CompSymmetry Exponential	1 1	0.8745886 0.9033459	1.042036 1.031869	$\begin{array}{c} 0.9649285 \\ 0.9078637 \end{array}$
Autoregressive	1	0.9033473	1.031880	0.9078541

By the table above, the variance function of different age obtained by three methods are very similar.

iii)

```
getVarCov(CompSymm)
```

```
## Marginal variance covariance matrix
## [,1] [,2] [,3] [,4]
## [1,] 5.6136 3.0281 3.6078 3.3409
## [2,] 3.0281 4.2938 3.1554 2.9219
## [3,] 3.6078 3.1554 6.0954 3.4813
## [4,] 3.3409 2.9219 3.4813 5.2267
## Standard Deviations: 2.3693 2.0722 2.4689 2.2862
getVarCov(Expo)
```

```
## Marginal variance covariance matrix
## [,1] [,2] [,3] [,4]
## [1,] 5.7424 3.2866 2.3786 1.3259
## [2,] 3.2866 4.6860 3.3914 1.8905
## [3,] 2.3786 3.3914 6.1143 3.4083
```

```
## [4,] 1.3259 1.8905 3.4083 4.7330
## Standard Deviations: 2.3963 2.1647 2.4727 2.1755

getVarCov(Auto)

## Marginal variance covariance matrix
## [,1] [,2] [,3] [,4]
## [1,] 5.7425 3.2867 2.3787 1.3260
## [2,] 3.2867 4.6861 3.3915 1.8905
## [3,] 2.3787 3.3915 6.1145 3.4084
## [4,] 1.3260 1.8905 3.4084 4.7330
## Standard Deviations: 2.3963 2.1647 2.4727 2.1755
```

By the table above, the covariance matrices matches each pattern. And since it's equal intervals of time, the autoregression and exponential methods are pretty similar.