DATA HANDLING AND ASSUMPTIONS

Making the Most of Your Data

Erik Kusch

erik.kusch@au.dk

Section for Ecoinformatics & Biodiversity

Center for Biodiversity and Dynamics in a Changing World (BIOCHANGE)

Aarhus University

25/03/2020

- 1 Data Etiquettes
 - Data Recording
 - Data Storing
 - Data Handling
 - Data Mining
 - Data Sharing
- 2 Statistical Assumptions
 - Normality
 - Independence
 - Homogeneity of Variances

Why Care?

Biostatisticians often use 70% of their time to handle data and just 30% to actually analyse it.

Why care?

- Proper data collection and data handling ensure accurate results
- Proper data collection cuts dowr on data handling time
- Proper data handling will make reproducing an analysis much easier

What to consider?

- Which data format to use
- What kind of data to record
- How data values are recorded/stored
- What kind of data values are feasible

Why Care?

Biostatisticians often use 70% of their time to handle data and just 30% to actually analyse it.

Why care?

- Proper data collection and data handling ensure accurate results
- Proper data collection cuts down on data handling time
- Proper data handling will make reproducing an analysis much easier

What to consider?

- Which data format to use
- What kind of data to record
- How data values are recorded/stored
- What kind of data values are feasible

Why Care?

Biostatisticians often use 70% of their time to handle data and just 30% to actually analyse it.

Why care?

- Proper data collection and data handling ensure accurate results
- Proper data collection cuts down on data handling time
- Proper data handling will make reproducing an analysis much easier

What to consider?

- Which data format to use
- What kind of data to record
- How data values are recorded/stored
- What kind of data values are feasible

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

Guidelines for data recording:

- When collecting categorical data, know what values the variables are allowed to take
- When collecting continuous data, know which range the variable values can fall into
- Make sure everyone involved in data collection is on the same page
- Make regular back-ups of your data set

- Preparing content-aware excel files for data entry
 - Only allow pre-defined values to be entered
 - Need some excel macro writing
- Using a cloud-service featuring version control for data storage

The Decimals

Always use a dot to indicate decimals

 \rightarrow It is the standard in science

To NA Or Not To NA?

Never enter NA values manually into your data

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

ightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

 \rightarrow Reduces storage space and chances for errors.

The Decimals

Always use a dot to indicate decimals

 \rightarrow It is the standard in science

To NA Or Not To NA?

Never enter NA values manually into your data

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

 \rightarrow Reduces storage space and chances for errors.

The Decimals

Always use a dot to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

→ Reduces storage space and chances for errors.

The Decimals

Always use a dot to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

→ Reduces storage space and chances for errors.

The Decimals

Always use a *dot* to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data.

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value $has\ meaning$ in your set-up, \textit{enter] it!

ightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

ightarrow Reduces storage space and chances for errors.

The Decimals

Always use a dot to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data.

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

ightarrow Empty cells are interpreted as NA by R

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

ightarrow Reduces storage space and chances for errors.

The Decimals

Always use a dot to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data.

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R.

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

 \rightarrow Reduces storage space and chances for errors.

The Decimals

Always use a *dot* to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data.

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R.

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

→ Reduces storage space and chances for errors.

The Decimals

Always use a *dot* to indicate decimals.

 \rightarrow It is the standard in science.

To NA Or Not To NA?

Never enter NA values manually into your data.

 \rightarrow They cause problems in R.

Entering 0?

If a 0 value has meaning in your set-up, \textit{enter] it!

 \rightarrow Empty cells are interpreted as NA by R.

Redundancy Or Sparsity?

Don't clutter data with unnecessary data records.

→ Reduces storage space and chances for errors.

- excel files (.xls, .xlsx, .csv)
- → Easiest to handle outside of R, most storage-heavy
- ightarrow Make sure to provide co-workers with a master file before data collection to avoid cell formatting issues on different computers
 - text files (.txt)
- ightarrow Difficult to handle outside of R, easy on storage
- ightarrow I advise against using these, formatting issues are far too common
 - RDS files (.rds)
- ightarrow Impossible to handle outside of ${ t R},$ easy on storage
- ightarrow I **highly** recommend using these for every step of your work past initial data recording

- excel files (.xls, .xlsx, .csv)
- → Easiest to handle outside of R, most storage-heavy
- ightarrow Make sure to provide co-workers with a master file before data collection to avoid cell formatting issues on different computers
 - text files (.txt)
- → Difficult to handle outside of R, easy on storage
- ightarrow I advise against using these, formatting issues are far too common
 - RDS files (.rds
- ightarrow Impossible to handle outside of R, easy on storage
- ightarrow I **highly** recommend using these for every step of your work past initial data recording

- excel files (.xls, .xlsx, .csv)
- → Easiest to handle outside of R, most storage-heavy
- ightarrow Make sure to provide co-workers with a master file before data collection to avoid cell formatting issues on different computers
 - text files (.txt)
- → Difficult to handle outside of R, easy on storage
- → I advise against using these, formatting issues are far too common
 - RDS files (.rds
- ightarrow Impossible to handle outside of R, easy on storage
- ightarrow I **highly** recommend using these for every step of your work past initial data recording

- excel files (.xls, .xlsx, .csv)
- → Easiest to handle outside of R, most storage-heavy
- ightarrow Make sure to provide co-workers with a master file before data collection to avoid cell formatting issues on different computers
 - text files (.txt)
- \rightarrow Difficult to handle outside of R, easy on storage
- → I advise against using these, formatting issues are far too common
 - RDS files (.rds)
- \rightarrow Impossible to handle outside of R, easy on storage
- ightarrow I **highly** recommend using these for every step of your work past initial data recording

Data Structure

I recommend a structure like the one below with at least two hierarchy levels.

The only files allowed in your first hierarchy level are

- R master file
- Manuscript master file

Additionally, make sure to **back-up your project folder frequently** and use **version control** on it

Data Structure

I recommend a structure like the one below with at least two hierarchy levels.

The only files allowed in your first hierarchy level are:

- R master file
- Manuscript master file

Additionally, make sure to **back-up your project folder frequently** and use

Data Structure

I recommend a structure like the one below with at least two hierarchy levels.

The only files allowed in your first hierarchy level are:

- R master file
- Manuscript master file

Additionally, make sure to **back-up your project folder frequently** and use **version control** on it.

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on

- Identifying problems within the data records
- Explorative data analyses

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on

- Identifying problems within the data records
- Explorative data analyses

The README File

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

The README File

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

The README File

Using the **README file**, one can identify what information is contained within the data set and thus decide:

- What type/class a data record should be of
- Which variables may be redundant
- Which data records exceed their variable-specific feasible thresholds
- Where to get comparative data sets from

Data Mining should then focus on:

- Identifying problems within the data records
- Explorative data analyses

For data mining, one may wish to enlist the use of Descriptive Statistics & Data Visualization:

Descriptive Statistics:

- summary (
- -str()

Data Visualizations

- Histograms (hist())
- Scatter plots (ggplot2 Package
- iterative sub-setting and inspection

The R package skimr offers the function skim() to do all of this in one line of code.

For data mining, one may wish to enlist the use of Descriptive Statistics & Data Visualization:

Descriptive Statistics:

- summary()
- -str()

Data Visualizations

- Histograms (hist())
- Scatter plots (ggplot2 Package
- iterative sub-setting and inspection

The R package skimr offers the function skim() to do all of this in one line of code.

For data mining, one may wish to enlist the use of Descriptive Statistics & Data Visualization:

Descriptive Statistics:

- summary()
- -str()
- iterative sub-setting and inspection

Data Visualizations:

- Histograms (hist())
- Scatter plots (ggplot2 Package)

The R package skimr offers the function skim() to do all of this in one line of code.

For data mining, one may wish to enlist the use of Descriptive Statistics & Data Visualization:

Descriptive Statistics:

- summary()
- -str()
- iterative sub-setting and inspection

Data Visualizations:

- Histograms (hist())
- Scatter plots (ggplot2 Package)

The R package skimr offers the function skim() to do all of this in one line of code.

For data mining, one may wish to enlist the use of Descriptive Statistics & Data Visualization:

Descriptive Statistics:

- summary()
- -str()
- iterative sub-setting and inspection

Data Visualizations:

- Histograms (hist())
- Scatter plots (ggplot2 Package)

The R package skimr offers the function skim() to do all of this in one line of code.

Recording Data Collection - The README File

Documenting data recording is just as important as proper data collection!

To do so, one usually uses a **README** file containing the following

- Project Name and Summary
- Primary contact information
- Your name and title (if you aren't the primary contact)
- Other people working on the project
- Location of data and supporting info
- Organization and naming conventions used for the data
- Any previous work on the project and where its located
- Funding information

This file is always saved in conjunction with the actual data set!

Recording Data Collection - The README File

Documenting data recording is just as important as proper data collection!

To do so, one usually uses a **README** file containing the following:

- Project Name and Summary
- Primary contact information
- Your name and title (if you aren't the primary contact)
- Other people working on the project
- Location of data and supporting info
- Organization and naming conventions used for the data
- Any previous work on the project and where its located
- Funding information

This file is always saved in conjunction with the actual data set!

Recording Data Collection - The README File

Documenting data recording is just as important as proper data collection!

To do so, one usually uses a **README** file containing the following:

- Project Name and Summary
- Primary contact information
- Your name and title (if you aren't the primary contact)
- Other people working on the project
- Location of data and supporting info
- Organization and naming conventions used for the data
- Any previous work on the project and where its located
- Funding information

This file is always saved in conjunction with the actual data set!

Open science conduct is essential and you should (read have to as a student/employee of Aarhus University) share your data & coding to ensure reproducibility of your work:

Aarhus Guideline: Store data on the Ecoinf/Biochange data server. NOT on

Open science conduct is essential and you should (read *have to* as a student/employee of Aarhus University) share your data & coding to ensure **reproducibility** of your work:

Peer-to-Peer:

- Raw data
- Code
- You may just as well point your peers

to public repositories

Public:

- Raw data
- Code
- Literation and the action

.... , mapviev

Websites

Aarhus Guideline: Store data on the Ecoinf/Biochange data server. NOT on the computational server. Read more here.

Open science conduct is essential and you should (read *have to* as a student/employee of Aarhus University) share your data & coding to ensure **reproducibility** of your work:

Peer-to-Peer:

- Raw data
- Code
- You may just as well point your peers to public repositories

Public:

- Raw data
- Code
- Html visualizations (shiny, mapview)
- Websites

Aarhus Guideline: Store data on the Ecoinf/Biochange data server. NOT on the computational server. Read more here.

Open science conduct is essential and you should (read *have to* as a student/employee of Aarhus University) share your data & coding to ensure **reproducibility** of your work:

Peer-to-Peer:

- Raw data
- Code
- You may just as well point your peers to public repositories

to public repositories

Public:

- Raw data
- Code
- Html visualizations (shiny, mapview)
- Websites

Aarhus Guideline: Store data on the Ecoinf/Biochange data server. NOT on the computational server. Read more here.

- Normality: Data follow a norma distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

- Normality: Data follow a normal distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

- Normality: Data follow a normal distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

- Normality: Data follow a normal distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

- Normality: Data follow a normal distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

- Normality: Data follow a normal distribution
- Randomness: Data are truly random
- Independence: Data are independent
- Homogeneity of variances: Data from separate groups have same variance
- Linearity: Data have linear relationship

Testing for normality of the data is **crucial** for certain statistical procedures.

Testing for normality of the data is **crucial** for certain statistical procedures.

The Shapiro-Wilks Test In Theory The QQ Plot In Theory

Testing for normality of the data is **crucial** for certain statistical procedures.

The Shapiro-Wilks Test In Theory

- Base assumption: The data is normally distributed
- If p-value < chosen significance level, the data is **not** normally distributed
- Very sensitive to sample size

The QQ Plot In Theory

Testing for normality of the data is **crucial** for certain statistical procedures.

The Shapiro-Wilks Test In Theory

- Base assumption: The data is normally distributed
- If p-value < chosen significance level, the data is **not** normally distributed
- Very sensitive to sample size

The QQ Plot In Theory

- Method for comparing two probability distributions by plotting their quantiles against each other
- If the two distributions being compared are similar, the plot will show the line y = x.
- Compare the data distribution to the normal distribution

Theory:

- Even the smallest dependence in you data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one
 individual should not influence each
 other. This is often an issue with
 repeated measurement approaches.

Theory:

- Even the smallest dependence in you data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
 - Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one
 individual should not influence each
 other. This is often an issue with
 repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one
 individual should not influence each
 other. This is often an issue with
 repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data:

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
 - Within Individuals

 Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data:

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
 - Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data:

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one
 individual should not influence each
 other. This is often an issue with
 repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data:

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals
 Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Theory:

- Even the smallest dependence in your data can turn into heavily biased results (which may be undetectable).
- A dependence is a connection between/within the data.
- The assumption of independence relies on the absence of any connection in your data that haven't been accounted for in your approach (accounting for it is difficult).

Independent data:

- Between Groups
 Groups of data records should be pulled from different individuals.
- Within Groups
 Data values within the same group are not to influence one another.
- Within Individuals Data values recorded for one individual should not influence each other. This is often an issue with repeated measurement approaches.

Homogeneity of Variances

Particularly important for t-Tests and ANOVAs

- Assumption: Data from separate groups have same variance
- **Test**: leveneTest() in the car package.

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 337 <2e-16 ***
## 1998
## ---
```

Homogeneity of Variances

Particularly important for t-Tests and ANOVAs

- **Assumption**: Data from separate groups have same variance
- **Test**: leveneTest() in the car package.