Content and Context: Two-pronged Bootstrapped Learning for Regex-formatted Entity Extraction

ENTITY

CS course

Intel CPU

REGEX

 $CS\d{3}$

 $i\d-\d{3}$

Stanley Simoes[†], Deepak P[‡], Munu Sairamesh[†], Deepak Khemani[†], Sameep Mehta[‡] †Indian Institute of Technology Madras [‡]Queen's University Belfast

IBM Research - India

MATCHED

INSTANCE

CS376

i5-750

IBM Research

1. Regexes for Entity Extraction

- Regular Expressions (regexes) can be used to elegantly characterize entities having an underlying syntactical pattern
- Easy to develop, interpret, maintain, and incorporate domain knowledge
- ▶ high precision: all matches are instances • High quality regexes have: ▶ **high recall:** all instances are matches
- Difficult to manually design a high quality regex for entity extraction > A human would generalize some instances to a high precision regex, but would miss out on some variants
 - \triangleright eg: CS\d{3} does not match CS courses CS6880 and CSE578 (high precision, low recall)
- Need a system that automatically learns and suggests: a) overlooked instances b) high quality regexes
 - ▷ design a regex for a new entity extraction system ▶ enhance regex in an existing entity extraction system

2. Problem Statement

- Given:
 - \triangleright a high precision seed regex r_{seed} \triangleright a document corpus \mathcal{D}
 - i.e., a set of seed matches \mathcal{M}_{seed}
- Goal: To identify
- a) \mathcal{M}_{exp} : instances in \mathcal{D} not matched by r_{seed}
- b) \mathcal{R} : set of diverse, high quality regexes
- Proposed Approach: (Two stages)

Stage I: Match Set Expansion

3. High Quality Regexes

- Search the generalization space of r_{seed}
- Regex units: character class & quantifier \triangleright eg: [A-Z]{2}\d{3,4}
- Generalizing a regex:
 - a) allow more characters in character class
 - b) decrease quantifier's lower bound
 - c) increase quantifier's upper bound

4. Match Set Expansion

- Expand using **Bootstrapping** \triangleright repeat $\{build \rightarrow score \rightarrow update\}$
- candidates:
- \triangleright matches of r_{seed} 's generalizations
- model: Logistic Regression $\triangleright \mathcal{M}_{exp}$ as 1
 - > candidates as 0
- Matches represented using: > content ▷ context

5. Regex Recommendation

- ullet Generate a set of regexes ${\mathcal R}$ with
- ⊳ high recall:
 - $\forall r \in \mathcal{R}, r \text{ is a generalization of } r_{seed}$
- ▶ high precision:
 - $\forall r \in \mathcal{R}, r$'s matches are in \mathcal{M}_{exp}
- ▶ high diversity:
 - $\forall r_1, r_2 \in \mathcal{R}, r_1$'s matches are not in r_2 's

- Using Maximal Marginal Relevance
 - \triangleright add generalization r to \mathcal{R} that maximizes $\lambda \cdot Sim_1(r, \mathcal{M}_{exp}) - (1 - \lambda) \cdot Sim_2(r, \mathcal{R})$ RELEVANCE TERM DIVERSITY TERM
 - $\triangleright Sim_1$: similarity to \mathcal{M}_{exp}

Thirty-Second AAAI Conference on Artificial Intelligence ebruary 2–7, 2018, Hilton New Orleans Riverside, New Orleans, Louisiana, USA

CONTENT FEATURES

• Matches in \mathcal{M}_{exp} within k edit distance

 $Content-Score_k(CS6880) = \frac{4}{6} = 0.67$

• **F1**: Content-Score₂ (2 edit distance) **F2:** $Content-Score_3$ (3 edit distance)

CONTEXT FEATURES

• Similarity to contexts of matches in \mathcal{M}_{exp}

• Language model $L_{\mathcal{P}}$: \mathcal{M}_{exp} 's left contexts

• **F3**: $Context-Score_L$ (left contexts) **F4:** $Context-Score_R$ (right contexts)

6. Experiments

- Two extraction tasks: $\triangleright \ \mathrm{DATE_{WEBKB}}$ $\d{2}/\d{2}/\d{2}$
 - Coursewebke
 Cours
 - $CS\d{3}$

> 150 iterations

 $\triangleright \le 4$ regex units generalized • Parameters:

TASK

> 1% expansion per iteration $\triangleright \lambda = 0.7$

	COMPAR	LISON C	OF OUR	MATC	H SET	EXPAN	NDER'S	ACCU	RACY V	VITH E	SASELI	NES		
		PRECISION				RECALL				F-SCORE				
	FREQ	GM_{10}	$\mathrm{GM}_{1\%}$	Ours	\mathcal{M}_{seed}	GM_{10}	$\mathrm{GM}_{1\%}$	Ours	\mathcal{M}_{seed}	Freq	GM_{10}	$\mathrm{GM}_{1\%}$	Ours	
MppI/I	$\frac{1}{10032}$	0.186	0.479	1.000	0.251	0.436	0.330	0.857	0.402	0.063	0.261	0.391	0.923	

 $\mathrm{DATE}_{\mathrm{WEBKB}}$ Coursewerkb 0.6720.3420.0700.6330.9940.3480.3490.8550.5090.1310.4500.9190.459 \triangleright PRECISION of $\mathcal{M}_{seed} = 1$ \triangleright RECALL of Freq = 1 *best values **boldfaced**

RECOMMENDED REGEXES TASK Coursewerkb $DATE_{WEBKB}$ $d{2}/d{2}/d{2}$ $CS\d{3}$ eg: *CS376* eg: 12/13/01eg: 2/3/01 $C^{?}[a-zA-Z]\{1,2\}\d{3}$ eg: *CSE578* $d{\frac{1}{2}}/d{\frac{1}{2}}/d{2}$ $d{2}/d{1,2}/d{2}$ eg: 12/3/01 $[a-zA-Z] \{1, 2\}S^{?} \setminus d\{3\}$ eg: *cs615* eg: *CS382M* $\d{\frac{1}{2}}/\d{2}/\d{2}$ eg: 2/13/01 $CS\backslash w\{1,3\}\backslash d\backslash w$

*generalized units in red and underlined

⊠ stanleysimoes@gmail.com