Data driven decision making driving towards the vision of shopping experience with minimal or no human interaction

Ishan H Mistry

Student of Information and Communication Technology
Pandit Deendayal Petroleum University, Raisan - Gandhinagar, Gujarat,India
Email: mistryishan25@gmail.com; mistryishan@ymail.com

Khush Joshi

Student of Information and Communication Technology
Pandit Deendayal Petroleum University, Raisan - Gandhinagar, Gujarat,India
Email: khushvipin73@gmail.com

Alister Rodrigues

Student of Information and Communication Technology
Pandit Deendayal Petroleum University, Raisan - Gandhinagar, Gujarat,India
Email: alister.rodrigs@gmail.com

Nishant Doshi

Professor in Dept. of Computer Engineering at Pandit Deendayal Petroleum University ,Raisan - Gandhinagar, Gujarat,India Email : Nishant.Doshi@sot.pdpu.ac.in

Pandit Deendayal Petroleum university

Abstract

An attempt to create a data model that could accurately represent the instances of the real time data that flows into a plain regular grocery shop into a database model that can be automated in the later stages, such that less and less human intervention prevails, even when it comes to data manipulation. Incorporating the sensor fusion and RFID architecture in order to identify all the items and the customers, and also the combined effect i.e items carried/ purchased by the customer.

Keywords:

No Human Intervention, IoT based smart shopping, Out of stock scanning/inventory counting, Sensor fusion, Relational Database model, Virtual warehouse,Intelligent tracking Data-driven decision-making driving towards the vision of shopping experience with minimal human intervention.

Introduction

One of the constants that prevail in almost every city and town and even in the rural suburbs in India is the *retail shops* or *market shops* or *specialist stores*, *kiranas* which have all been categorized under the name "Unorganized retail". The problem many of the current grocery stores suffer from the problem of poor logistics and our project tries to tackle the same by making adjustments in the database so as to fire queries that can directly supply the user with the relevant information. This paper gives some early insights into the underlying data model for **future applications** based on similar technologies.

Unique features:

- 1. We have tried to implicitly add and promote the very idea of using eco-friendly by allowing the users of our system to bring their own utensils, say glassware, like glass bottles to carry some items like oil or cereal (as we try and promote the local vendors, most of the items might be in a specific packaging).
- 2. We have also created a series of queries for the database that can be put into modules later and could be accessed easily through **wrapper**. These queries provide valuable information that could be inferred from the dummy data that has been fed into our model for experimental purposes.
- 3. An alternative approach that is a comparatively lesser expensive approach to verifying the status of objects that are picked by the

customers to the more computationally expensive option of computer vision.

4. Personalization is a factor that has become the driving force for many of the applications that surround us and this approach tries to make the shopping experience more personalized and ultra-convenient.

Proposed Work

Relational Diagram: The Relational or the Schema diagram is the skeleton structure of the entire database or we can say it is a logical representation of the database. It defines how the data is organised in the tables and how the tables are associated with each other with foreign keys. It also formulates the constraints that are to be applied on the data. It defines tables, views and integrity constraints.

All of our tables in the relational diagram can be categorised mainly in 3 categories

- 1.) Sensors Related Information (sensors, front, readers, band_tag and RFID_raw_data)
- 2.) Customer Related Information (customer_information, payment_information, list, shopping list, medical log and medical information)
- 3.) Inventory Related Information (Seller, Grocery, Medicines, analysis Gdata, analysis Mdata, analysis Sdata)

Keeping in mind the unique features the eco-friendliness feature is visible in the band_tag table where we have vessel_tagID and vessel_weight. So the vessel that is brought by the customer will be given a tag and that will be weighed and we are going to use triggers to update the weight by the difference of the empty vessel to the filled vessel.

Secondly, we are not only relying on the RFID architecture but we are also trying to incorporate sensors to verify the things

Entity Relationship Diagram: The Entity Relationship diagram describes how the different entities in the database are connected with each other or we can say it defines the relationship among them. It also gives us the idea of how we can fetch the data from these connected entities. ER model can be further divided in the three sub parts:

- 1. Based on the relations (Identifying Relations and Non Identifying Relations)
- 2. ER model has a variety of attributes (Key Attributes, Normal Attributes, Derived Attributes, Multivalued Attributes.)
- 3. Also the ER model follows the cardinality relationship (One to One, One to Many, Many to one, Many to Many.)

Experimental Analysis

Working through our database model we made a lot of queries and other function that might test the system but as the system was not put in practice hence we couldn't collect the real time analysis data of any sort and hence we rely on the literature survey that we have performed. The following section guides one through the all the decisions that we made and also some of the most relevant queries that we have performed.

TABLE 1 - RFID versus Bar Code Technology

Bar Codes	RFID Tags
Bar Codes require line of sight to be read	RFID tags can be read or updated without line of sight
Bar Codes can only be read individually	• Multiple RFID tags can be read simultaneously
 Bar Codes cannot be read if they become dirty or damaged 	 RFID tags are able to cope with harsh and dirty environments
• Bar Codes must be visible to be logged	 RFID tags are ultra thin, and they can be read even when concealed within an item
• Bar Codes can only identify the type of item	RFID tags can identify a specific item
Bar Code information cannot be updated	Electronic information can be over- written repeatedly on RFID tags
 Bar Codes must be manually tracked for item identification, making human error an issue 	RFID tags can be automatically tracked, eliminating human error

A very convincing and summarised way of the exact reasons we found the usage of barcode verification as not a go-to solution always when it comes to correct measurement and hence [16] validates our notion of using sensor fusion as the underlying verification mechanism.

Group of Items	Number of Items	Reading Time using RFID (Minutes)	Reading Time using Barcode (Minutes)
1	50	1,51	3,55
2	45	1,22	3,21
3	60	1,62	3,82
4	69	1,69	3,89
5	55	1,53	3,68
6	78	1,71	4,15
7	85	1,82	4,62
8	68	1,68	3,81
9	81	1,8	4,32
10	67	1,67	3,85
TOTAL	658	16,25	38,9

Table 1: RFID Reading vs Barcode Reading

Figure 12: Process based on RFID vs Process based on Barcode

14320

Along the similar lines by the practical analysis conducted in the paper [9], the usage of barcode is clearly an inefficient way of determining the system and also in a way it quite restricted in use(as previously explained by the table)

1. List sensor_id and location spot of the sensors that have the same location.

SELECT A.sensor_ID AS sensorid1, B.sensor_ID AS sensorid2, A.location_spot
FROM sensors A, sensors B
WHERE A.sensor_id <> B.sensor_id

AND A.location_spot = B.location_spot

ORDER BY A.location_spot;

	sensorid1	sensorid2	location_spot
Þ	BUT000	BUT240	H5
	BUT000	BUT419	H5
	BUT000	BUT592	H5
	BUT000	BUT703	H5
	BUT001	BUT060	C8
	BUT001	BUT 100	C8
	BUT001	BUT 155	C8
	BUT006	BUT 160	G5
	BUT006	BUT688	G5
	BUT006	BUT 790	G5
	BUT006	BUT793	G5
	BUT007	BUT104	B9
	BUT007	BUT415	B9
	BUT007	BUT785	B9
	BUT007	BUT963	B9

2. List all the medicines and their counts(as actual purchases) that were truly verified as "purchased" from the analysis_mdata table.

SELECT medicines.item_name, COUNT(analysis_mdata.true_positives) **AS** actual_purchases

FROM analysis_mdata

INNER JOIN medicines ON analysis_mdata.m_id = medicines.m_id
WHERE item_category != 'paracetamol' OR item_category != 'pain
killer'

GROUP BY item_category;

	item_name	actual_purchases
١	Chelidonium Curcuma	38
	OxyContin	32
	NIACIN	34
	SunZone Family SPF 45	24
	Lac Hydrin	38
	Lyrica	26

3. Find the customer_id, first_name, address and date_of_shopping of all the customers who bought the item grocery between the dates 2019-01-1 and 2019-12-31 and their mode of payment was through Net Banking.

```
SELECT customer_id, first_name,date_of_shopping, address, mode_of_payment from dbms.customer_information natural join dbms.lists natural join dbms.shopping_lists natural join dbms.payment_information where item_category="grocery" and date_of_shopping between "2019-01-1"and"2019-12-31" and mode_of_payment="Net Banking";
```

customer_id	first_name	first_name date_of_shopping		mode_of_payment	
95	Allis	2019-11-19	Kolape	Net Banking	
91	Flynn	2019-03-11	Livorno	Net Banking	
91	Flynn	2019-03-11	Livorno	Net Banking	
103	Bernette	2019-12-22	Matur	Net Banking	
111	Nola	2019-08-15	Armavir	Net Banking	
93	Ruperto	2019-05-28	Laguna Salada	Net Banking	
102	Wilfrid	2019-09-22	Prabuty	Net Banking	
77	Janela	2019-03-09	Sīrīs	Net Banking	
77	Janela	2019-03-09	Sīrīs	Net Banking	
62	Liam	2019-12-11	Pokrovka	Net Banking	
56	Ammamaria	2019-12-16	Buenavista	Net Banking	
99	Martelle	2019-09-03	Jiaqu	Net Banking	
131	Marlowe	2019-11-19	Mitzpe Ramon	Net Banking	
73	Kalie	2019-08-25	Yong'an	Net Banking	

4. List the total number of orders placed already for items in grocery which have a quantity less than 100.

```
SELECT (grocery.item__name), COUNT(grocery.item__restock__date) AS
NumberOfOrdersPlaced
FROM analysis__gdata
INNER JOIN grocery ON analysis__gdata.g__id = grocery.g__id
GROUP BY grocery.g__id
HAVING COUNT(grocery.item__quantity) <100;</pre>
```

item_name	NumberOfOrdersPlaced
Condensed	1
Oyster	1
Blackcurrant	1
Romaine, Heart	1
Diet	1
Wheat Baguette	1
Mix	1
Franks Pineapple	1
Sprinkles, Assorted	1
15l White, With Handle	1
Chocolate Chip	1
Fillet	1
Black Cherry, 591 Ml	1
Clear 32 Oz	1
Breakfast	1
Padano	1
Sweetbread	1

5.List sensor_id and location spot of the sensors that have the same location

SELECT A.sensor_id AS sensorid1, B.Sensor_id AS sensorid2, A.location_spot
FROM sensors A, sensors B
WHERE A.sensor_id <> B.sensor_id
AND A.location_spot = B.location_spot
ORDER BY A.sensor_id;

	sensorid1	sensorid2	location_spot
١	BUT000	BUT240	H5
	BUT000	BUT592	H5
	BUT000	BUT703	H5
	BUT000	BUT419	H5
	BUT001	BUT100	C8
	BUT001	BUT155	C8
	BUT001	BUT060	C8
	BUT006	BUT688	G5
	BUT006	BUT160	G5
	BUT006	BUT793	G5
	BUT006	BUT790	G5
	BUT007	BUT963	B9
	BUT007	BUT104	B9
	BUT007	BUT785	B9
	BUT007	BUT415	B9
	BUT012	BUT356	C6
	BUT012	BUT948	C6

6.Info about customers without any home brought vessel.

SELECT first_name, last_name, Age
FROM Band_Tag A
RIGHT JOIN customer_information B
ON A.customer_id = B.customer_id
WHERE vessel_tag_id IS NULL;

	first_name	last_name	Age
•	Tawsha	Mault	34
	Max	Broad	55
	Valencia	Alway	46
	Hakim	Ghiotto	76
	Babara	Folley	48
	Etan	Berntsson	60
	Mirabelle	Georgeou	31
	Nellie	Birkin	27
	Beatriz	Sinclaire	41
	Ches	Petheridge	73
	Petunia	MacKall	73
	Mollie	Koppeck	69
	Dougy	Revington	51
	Andres	Pirson	61
	Luelle	Kennea	28
	Bobine	Waggitt	79

7. Find the customer_id, medicine_id and doctor_id of all the customers who purchased either Acetaminophen or Avobenzone

USE dbms;

SELECT customer_id, m_id, doctor_id and doze_prescribed
FROM medical_info NATURAL JOIN medical_log
NATURAL JOIN customer_indformation
WHERE doze_prescribed = 'Acetaminophen' OR doze_prescribed = 'Avobenzone';

customer_id	m_id	doctor_id	doze_prescribed
4	M4	12159	Avobenzone
10	M10	12930	Acetaminophen
42	M42	12250	Acetaminophen
47	M47	12988	Avobenzone
49	M49	12885	AVOBENZONE
66	M66	12117	Acetaminophen
77	M77	12386	ACETAMINOPHEN
92	M92	12710	Acetaminophen
97	M97	12012	Acetaminophen
101	M101	12393	Avobenzone

	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5	Feature 6
[2]	Yes	No	No	No	No	No
[4]	Yes	Yes	No	No	No	Yes
[6]	Yes	Yes	No	No	No	No
[9]	Yes	Yes	No	No	No	Yes
[12]	Yes	Yes	Yes ^B	Yes	No	Yes

Legends:

Feature 1 - RFID based architecture

Feature 2 - Inventory management

Feature 3 - Verification mechanisms (Barcode - "B", Sensors - "S")

Feature 4 - Freedom of using custom vessels

Feature 5 - In-built Analysis information for future prediction

Feature 6 - No human input for data manipulation directly

Future scope/work

The whole database is currently to be hosted on-site but the remote management of the database on the cloud infrastructure is a possibility for the future to come.

With the current usage of the system going live we can once do all sorts of things including "regularly personalized recommendation" by using learning algorithms to capture the trends in your shopping styles and also to forecast the future trends.

Conclusion

We have basically tried to showcase a data model that could be then added to any other platform(website/app/custom implementation)

Outcome 1

The support in terms of a constant passive income for the local vegetable vendors

Outcome 2

Reducing human interaction essentially helps in times when having essentials is not easily accessible say in a pandemic

Outcome 3

As some of the queries displayed in the analysis section hint towards how we can easily have queries set up to make small decisions based on the data

References

- R. J. Abumaizar & J.A. Svestka () Rescheduling job shops under random disruptions, International Journal of Production Research, 35:7, 2065-2082, DOI: 10.1080/002075497195074
- 2. <u>Automatic Ration Material Distributions Based on GSM and RFID Technology,I.J. Intelligent Systems and Applications, 2013, 11, 47-54,S.Valarmathy, R.Ramani,Fahim Akhtar,S.Selvaraju, G.Ramachandran</u>
- 3. Oracle® Warehouse Management Implementation Guide
- 4. Stock Management System Using RFID and Geolocation Technologies Franz Gualoto Suárez, Germán Ñacato Caiza and Sang Guun Yoo
- Choosing the Right RFID-Based Architectural Pattern, Michel Simatic, doi: 10.5772/54069
- 6. Sheng, Q. Z., Li, X., Zeadally, S., 2008, "Enabling Next-Generation RFID Applications: Solutions and Challenges," Computer, 41(9), pp. 21-28.

- 7. <u>Developing RFID Database Models for Analysing Moving Tags in Supply Chain Management, Wilfred Ng, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong University</u>
- 8. <u>Brewer, A., Sloan, N., & Landers, T. L. (1999)</u>. <u>Journal of Intelligent Manufacturing</u>, <u>10(3/4)</u>, <u>245–250</u>. <u>doi:10.1023/a:1008995707211</u>
- 9. https://www.researchgate.net/publication/322795837_Stock_Management_System_Using_RFID_and_Geolocation_Technologies
- Wang, C., & Jiang, P. (2016). Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops. Journal of Intelligent Manufacturing. doi:10.1007/s10845-016-1194-1
- 11. Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters. Journal of Marketing, 64(3), 50–64. doi:10.1509/jmkg.64.3.50.18024
- 12. <u>Vougioukas, S., 2009, "Field experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting." Computers and Electronics in Agriculture, 66(2), pp. 166-172</u>
- 13. Weijters, B., Rangarajan, D., Falk, T., & Schillewaert, N. (2007). Determinants and Outcomes of Customers' Use of Self-Service Technology in a Retail Setting.

 Journal of Service Research, 10(1), 3–21. doi:10.1177/1094670507302990
- 14. <u>Demoulin, N. T. M., & Djelassi, S. (2016)</u>. An integrated model of self-service technology (SST) usage in a retail context. International Journal of Retail & <u>Distribution Management</u>, 44(5), 540–559. doi:10.1108/ijrdm-08-2015-0122
- 15. <u>THE ADOPTION OF RFID TECHNOLOGY IN THE RETAIL SUPPLY CHAIN Michael</u>
 A. Jones, David C. Wyld, Jeff W. Totten, Southeastern Louisiana University