

Arithmétique Congruence 2

Mathématiques discrètes 2024 - 2025

Exercice 1

- 1. On souhaite déterminer le reste possible de la division euclidienne de 247^{349} par 7.
 - a. Montrer que cela revient à chercher le reste de la division euclidienne de 2^{349} par 7.
 - b. Montrer que, pour tout nombre entier naturel k:

•
$$2^{3k} \equiv 1[7], \quad 2^{3k+1} \equiv 2[7], \quad 2^{3k+2} \equiv 4[7]$$

- a. En déduire le résultat
- 2. Quel est le reste de la division par 11 du nombre 57383^{2015} ?

Exercice 2

Soient $(a, b) \in \mathbb{Z}^2$ dont les restes modulo 11 sont 7 et 2 respectivement.

Donner le reste modulo 11 de $a^2 - b^2$

Exercice 3

Un code barre est une suite de 12 chiffres $c_{12}c_{11}...c_1$ suivie d'un chiffre de contrôle c_0 vérifiant

$$c_{12} + 3c_{11} + c_{10} + 3c_{9} + c_{8} + 3c_{7} + c_{6} + 3c_{5} + c_{4} + 3c_{3} + c_{2} + 3c_{1} + c_{0} \equiv 0(10)$$

La suite de 12 chiffres attribuée à un produit est 308612610032.

Calculer son chiffre de contrôle.

Exercice 4

Quels sont les entiers x et y tels que $x^2 + y^2 \equiv 2(8)$?

Exercice 5

En utilisant un tableau de congruence, trouver tous les entiers relatifs n tels que $n^2 + n + 1$ soit divisible par 7.

Exercice 6

- 1. Pour tout entier naturel n, déterminer les restes possibles dans la division euclidienne de n^2 par 5.
- 2. En déduire les restes possibles dans la division euclidienne de n^4 par 5.
- 3. Montrer que $n(n^4 1)$ est divisible par 5.

Exercice 7 Exponentiation modulaire rapide

1. Un premier exemple avec $5^{11}(14)$

L'idée est de seulement calculer $5, 5^2, 5^4, 5^8$...et de réduire modulo n à chaque fois.

Pour cela on remarque que $11=2^3+2^1+2^0=8+2+1$ en décomposant uniquement avec des puissances de 2, donc

on calcule les $5^{2^i}(14)$:

- $5 \equiv 5(14)$
- $5^2 \equiv 25 \equiv 11(14)$
- $5^4 \equiv 5^2 \times 5^2 \equiv 11 \times 11 \equiv 121 \equiv 9(14)$
- $5^8 \equiv 5^4 \times 5^4 \equiv 9 \times 9 \equiv 81 \equiv 11(14)$

A chaque étape est effectuée une multiplication modulaire.

Conséquence :

•
$$5^{11} \equiv 5^{8+2+1}(14) \equiv 5^8 \times 5^2 \times 5(14)$$

•
$$5^{11} \equiv 11 \times 11 \times 5(14) \equiv 11 \times 55 \equiv 11 \times 13 \equiv 143 \equiv 3(14)$$
.

Nous obtenons donc un calcul de $5^{11}(14)$ en 5 opérations au lieu de 10 si on avait fait $5 \times 5 \times 5...$ et surtout avec des nombres plus petits à manipuler.

En fait, cette technique est basée sur la décomposition en base 2 de l'exposant.

1. Voici un autre exemple à compléter :

Calculer $17^{154}(100)$.

Tout d'abord on décompose l'exposant k = 154 en base 2 :

$$(154)_{10} = \dots$$

On en déduit la décomposition en somme de puissance de 2.

154 = ...

Ensuite on calcule $17, 17^2, 17^4, 17^8, ...(100)$

$$17 \equiv$$

$$17^{2} \equiv$$

$$17^{4} \equiv$$

$$17^{8} \equiv$$

$$17^{16} \equiv$$

$$17^{32} \equiv$$

$$17^{64} \equiv$$

 $17^{128} \equiv$

Il ne reste qu'à rassembler :

$$17^{\{154\}} \equiv \dots$$

Application:

Calculer 234⁹⁷[7]