华东师范大学测验试卷(1)

2023 - 2024 学年第 2 学期 (2024-4-2)

课程	名称: _	实分析			学生姓名:				
点名册号:					<u> </u>	女 与	⊒; J:		
专	业: _	数学科学学院			年级/班级:2022 级本科生 (非师范)				
课程性质:专业必修课									
1	2	3	4	5	6	7	8	总分	阅卷人签名
注意: 无论本试卷中是否有答题位置, 均应将答案写在答题纸上 (写明题号), 并请在答题纸首页标明你的点名册对应号码. 共七道大题, 总分 100 分. $ - 、(10\ \mathcal{)}) $ 请叙述并证明 Borel-Cantelli 定理. $ = (10\ \mathcal{)}) $ 设 $X = \mathbb{R},$ 定义 2^X 上的集函数 $\mu(A) = \begin{cases} 1, & \text{若 } 0 \in A, \\ 0, & \text{若 } 0 \notin A. \end{cases} $ 证明: μ 是一个测度.									

- Ξ 、 $(10\ \mathcal{H})$ 设 \mathcal{R} 是基本空间 X 上的 σ -环, μ 是 \mathcal{R} 上非负的满足有限可加性和次可列可加性的集函数, 且 $\mu(\emptyset)=0$. 证明: μ 是一个测度.
- 四、 $(10\ \mathcal{G})$ 设集 E 上的实函数列 f_n 有极限 f, 证明: 对任意实数 c, 成立

$$E(f \le c) = \bigcap_{k=1}^{\infty} \liminf_{n \to \infty} E(f_n \le c + \frac{1}{k}).$$

五、(15 分) 设 $X = \mathbb{R}$, 定义 2^X 上的集函数 μ_* 使得 $\mu_*(\emptyset) = 0$, 而当 $A \neq \emptyset$ 时 $\mu_*(A) = 1$.

- (1) 证明: μ_* 是次可列可加的;
- (2) 写出 μ_* 可测集的 Caratheodory 条件;
- (3) 证明: μ_* 可测集构成的 σ -代数是 { \emptyset , X}.

六、(15分)证明:任意可列集的有限子集的全体仍然是可列集.

- 七、(30 分) (1) 定义: 设 X 是基本空间, $\mathcal{P} \subset 2^X, \mathcal{P} \neq \emptyset$. 如果由 $A, B \in \mathcal{P}$ 可知 $A \cap B \in \mathcal{P}$, 就称 \mathcal{P} 是一个 π -系.
 - (2) \mathcal{L} 称为是 λ -系, 若具有如下性质: (i) $X \in \mathcal{L}$; (ii) 若 $A, B \in \mathcal{L}$ 且 $A \subset B$, 则 $B A \in \mathcal{L}$; (iii) 若 $A_k \in \mathcal{L}$, $k = 1, 2, \ldots$, 且 $A_k \subset A_{k+1}$, 则 $\bigcup_{k=1}^{\infty} A_k \in \mathcal{L}$.
 - (3) 请按以下步骤证明如下 $\underline{\pi} \lambda$ 定理: 设 \mathcal{P} 是 π -系, \mathcal{L} 是 λ -系, 且 $\mathcal{P} \subset \mathcal{L}$, 则 $S(\mathcal{P}) \subset \mathcal{L}$. 这里 $S(\mathcal{P})$ 是 \mathcal{P} 生成的 σ -代数.
 - (4) 定义 $S = \bigcap_{\mathcal{L}' \supset \mathcal{P}} \mathcal{L}'$, 其中 \mathcal{L}' 是 λ -系. 证明 S 是包含 \mathcal{P} 的最小的 λ -系.
 - (5) 下面证明 \mathcal{S} 是 π -系. 为此, 作 $\mathcal{A} = \{C \subset X : A \cap C \in \mathcal{S}\}$. 证明: 当 $A \in \mathcal{P}$ 时, 成立 $\mathcal{P} \subset \mathcal{A}$.
 - (6) 请进一步证明: 当 $A \in S$ 时, $A \in \lambda$ -系.
 - (7) 由此证明: $S \subset A$, 并证明 $S \not\in \pi$ -系.
 - (8) 证明 S 是 σ -代数.
 - (9) 证明 $S(\mathcal{P}) \subset \mathcal{L}$.

[全部测验题结束]