浮点运算与数值运算的误差

北京师范大学物理系 彭芳麟

浮点运算的误差

为什么有

0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1

分析: MATLAB使用浮点数,而浮点数中没有0.1,只能用二进制中最接近0.1的数来近似表示.

结果必然有误差!

- 数值计算不是使用全部实数,也没有极限与无限等实数概念.
- 使用浮点算术体系(有限精度的有限数集合), 计算中会产生:
 - 舍入(roundoff)
 - 下溢出(underflow)
 - 上溢出 (overflow)
 - 机器最小精度(eps)
 - 非数(NaN)

	二进制	十进制
eps	2^{-52}	2.2204e-16
realmin	2^{-1022}	2.2251e-308
realmax	$(2 - eps)2^{1023}$	1.7977e + 308

双精度浮点数表示形式与存储方式:

浮点数的整个小数部分不是f,而是1+f它占53位.然而首位的1并不需要存储,这样IEEE格式便将65位的信息打包成64位的一个字节(word).

浮点数表示中整数部份由 2^e (二进制)表示,e的取值限制整数的范围. 其中 2^{10} =1024,用去10位(bit),再用1位(bit)表示指数,共用11位. e的实际取值为- $(2^{10}$ -2) <= e <= $(2^{10}$ -1);

即 -1022 <= e <=1023, 得最小数2⁻¹⁰²²,最大数2¹⁰²³ e的正负值取值范围不同,正值为1到+1023,所以不必存储e正负号. e=1024,f=0 表示无穷大(Inf),e=1024,f≠0 表示非数(NaN). e=-1024时表示最小的规范数,e=-1023时表示最小的非规范数.

浮点数的表示法 $x = \pm (1+f) \cdot 2^e$ f 的取值限制数的精度.

$$0 \leqslant f \leqslant 1;$$
 $2^e \leqslant 2^e + f \cdot 2^e < 2^{e+1}$

它表示利用f在[2^e , 2^{e+1}]之间等间隔插入的 2^{52} 个数,相邻小数的间隔为 2^{e-52} , 全部小数的取值为 $f \cdot 2^e = n \cdot 2^{-52} \cdot 2^e$, $n = (0, 1, 2, 3 \cdots, 2^{52} - 1)$

例如当整数值为

二进制2 2-1022	2-2	2-1	2 ⁰	21	2 ²	2 ³		2 ¹⁰²³
十进制数 最小实数 .	1/4	1/2	1	2	4	8	::	最大实数

小数值为(以1与2之间插入的小数为例)

2º (1+f)	2 ⁰ =(1+ <mark>0</mark>)	2 ⁰ (1+2 ⁻⁵²)	$2^{0}(1+2\cdot 2^{-52})$	•••	20(1+251.2-52)	2 ¹ (1+0)=2
十进制数	1	$1+2^{-52} = 1\frac{1}{4503599627370496}$	1+2·2 ⁻⁵²	•••	1+(2 ⁵² -1)*2 ⁻⁵²	2 ************************************

江箝
$$x=\pm(1+t)2^e$$
, t 変[0,1,2,3,4,5,6,7]* 2^{-3} , $e_{\min} = -4$, $e_{\max} = 3$,

在每个二进制区间, $2^e \le x \le 2^{e+1}$,数按间隔 2^{e-t} 等距排列,

$$eps=2^{-52} \approx 2.2204 \cdot 10^{-16}$$

是两个浮点数的最大相对间距,eps/2是计算结果的最大相对误差.

要得到t=0.1就必须进行舍入,因为用二进制表示十进制的分数1/10需要一个无穷级数,所以存储于t的数值并不精确地等于0.1.事实上,

$$\frac{1}{10} = \frac{1}{2^4} + \frac{1}{2^5} + \frac{0}{2^6} + \frac{0}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{0}{2^{10}} + \frac{0}{2^{11}} + \frac{1}{2^{12}} + \cdots$$

在第一项之后,后续项的系数按1,0,0,1重复出现,根据这个规律以4项为一组进行合并后,可得到一个基为16,或十六进制的序列.

$$\frac{1}{10} = 2^{-4} \left(1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \frac{9}{16^4} + \cdots \right)$$

需要在二进制表达式的第52项或十六进制表达式的第13项截断这个无穷级数的小数部分,然后进行向上或向下舍入,才能得到1/10的浮点数近似值.因此 $t_1 < \frac{1}{10} < t_2$

$$t_1 = 2^{-4} \left(1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \dots + \frac{9}{16^{12}} + \frac{9}{16^{13}} \right)$$
$$t_2 = 2^{-4} \left(1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \dots + \frac{9}{16^{12}} + \frac{10}{16^{13}} \right)$$

下面使用符号计算证明1/10更接近于t2

浮点数0.1 更接近于t2的证明(用符号计算)

- >> syms k,a=symsum(1/16^k,1,13)
- a = 300239975158033/4503599627370496
- \Rightarrow >> t1=2^(-4)*(1+a*9)
- t1 = 7205759403792793/72057594037927936
- \Rightarrow >> t2=t1+2^(-4)*1/16^(13)
- t2 = 3602879701896397/36028797018963968
- \Rightarrow >> eval((1/10-t1)>(t2-1/10))
- \diamond ans = 1

误差的起源

•模型误差

忽略次要因素建立的模型与实际有偏差.

•观测误差

模型中使用的观测参数有误差.

•计算方法带来的误差 数值计算方法是近似方法,会产生误差.

•计算过程中的舍入误差 如浮点数计算中所产生的误差.

2

思考题

双精度浮点数存储方式是什么?

谢谢!

浮点数的表示法 $x = \pm (1+f) \cdot 2^e$ 其中歐敶彫仔 $2^e + 互返却 - 寿庚 - 1022 \le e \le 102$, e的取值限制整数的范围小数部分取决于f,表示在 $[2^e$, 2^{e+1}]之间插入的小数,其取值限制数的精度. $0 \le f \le 1$; $f = [0, 2^n]$, n = [-52, -51..., -2, -1],

二进制2e	2-1022		2-2	2-1	2 ⁰	21	2 ²	2 ³		2 ¹⁰²³
十进制数	最小实数	•••	1/4	1/2	1	2	4	8	•••	最大实数

两个数之间插入的数计算: $0 <= f <= 1; 1 <= (1+f) <= 2; 2^e <= (1+f) 2^e <= 2^{e+1}$ 例如要计算1与2之间插入的数值

十进制数 1 1+2 ⁻⁵² = 1+ 1 1+2 ⁻⁵² 1+2/2 ⁻⁵² 1+3/2 ⁻⁵² 2	20	(1+f)	2 ⁰ =(1+0)	2 ⁰ (1+2 ⁻⁵²)	2 ⁰ (1+2 <mark>2⁻⁵²)</mark>	•••	2 ⁰ (1+2 ⁻²)	20(1+2-1)	2 ¹ (1+0)=2
	+:	进制数	1	$1+2^{-52} = 1 + \frac{1}{4503599627370496}$	1+2/2 ⁻⁵²		1+3/2 ⁻⁵²	1+2/2 ⁻⁵²	a MAL