54AC/74AC245 • 54ACT/74ACT245 **Octal Bidirectional Transceiver** with TRI-STATE® Inputs/Outputs

General Description

The 'AC/'ACT245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

Features

- I_{CC} and I_{OZ} reduced by 50%
- Noninverting buffers
- Bidirectional data path
- A and B outputs source/sink 24 mA
- 'ACT245 has TTL-compatible inputs
- Standard Military Drawing (SMD)
 - 'AC245: 5962-87758
- 'ACT245: 5962-87663

Commercial	Military	Package Number	Package Description			
74ACT245PC		N20A	20-Lead Molded Dual-In-Line (0.300" Wide)			
74ACT245SC (Note 1)		M20B	20-Lead Molded Small Outline (0.300" Wide), JEDEC			
74ACT245SJ (Note 1)		M20D	20-Lead Molded Small Outline, EIAJ Type II			
74ACT245MTC (Note 1)		MTC20	20-Lead Molded Thin Shrink Small Outline Package, JEDEC			
74ACT245MSA (Note 1)		MSA20	20-Lead Molded Small Shrink Outline Package, (EIAJ SSOP)			
	54ACT245DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line			
	54ACT245FM (Note 2)	W20A	20-Lead Cerpak			
	54ACT245LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			

Note 1: Devices also available in 13" Tape and Reel. Use suffix SCX, SJX, and MTCX.

Note 2: Military grade device with environmental and burn-in processing, use suffix DMQB, FMQB and LMQB.

Logic Symbols

TL/F/9944-1

Pin Names	Description
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A TRI-STATE Inputs or TRI-STATE
	Outputs
B ₀ -B ₇	Side B TRI-STATE Inputs or TRI-STATE
	Outputs

TL/F/9944-2

Connection Diagrams

Pin Assignment for DIP, Flatpak, SSOP, SOIC and TSSOP

TL/F/9944-3

Pin Assignment for LCC

TL/F/9944-4

Truth Table

Inp	uts	Outputs
ŌĒ	T/R	Catpats
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	X	HIGH-Z State

 $\begin{array}{l} H = \mbox{HIGH Voltage Level} \\ L = \mbox{LOW Voltage Level} \\ X = \mbox{Immaterial} \end{array}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V $_{\rm CC}$) $-0.5{\rm V}$ to $+7.0{\rm V}$ DC Input Diode Current (I $_{\rm IK}$)

DC Output Diode Current (I_{OK})

 $\begin{array}{c} V_O = -0.5V & -20 \text{ mA} \\ V_O = V_{CC} + 0.5V & +20 \text{ mA} \\ DC \text{ Output Voltage (V_O)} & -0.5V \text{ to V}_{CC} + 0.5V \\ \end{array}$

DC Output Source

or Sink Current (I $_{\mbox{O}}$) $\pm\,50$ mA

DC $\ensuremath{\text{V}_{\text{CC}}}$ or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA

Storage Temperature (T_{STG}) -65°C to $+150^{\circ}\text{C}$

Junction Temperature (T_J)

 CDIP
 175°C

 PDIP
 140°C

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC})

'AC 2.0V to 6.0V 'ACT 4.5V to 5.5V Input Voltage (V_I) 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC}

Operating Temperature (T_A)

74AC/ACT -40°C to +85°C 54AC/ACT -55°C to +125°C

Minimum Input Edge Rate ($\Delta V/\Delta t$)

'AC Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

'ACT Devices

V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

DC Characteristics for 'AC Family Devices

			74.	AC	54AC	C 74AC					
Symbol	Parameter	V _{CC} (V)	T _A =	$T_{A} = +25^{\circ}C \qquad T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C $		T _A = -40°C to +85°C	Units	Conditions			
			Тур		Guaranteed Lir	mits					
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$			
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	0.9 1.35 1.65	٧	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$			
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	2.9 4.4 5.4	٧	$I_{OUT} = -50 \mu\text{A}$			
		3.0 4.5 5.5		2.56 3.86 4.86	2.4 3.7 4.7	2.46 3.76 4.76	V	$\label{eq:VIN} \begin{split} ^*V_{\text{IN}} &= V_{\text{IL}} \text{or} V_{\text{IH}} \\ &- 12 \text{mA} \\ I_{\text{OH}} &- 24 \text{mA} \\ &- 24 \text{mA} \end{split}$			
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	٧	I _{OUT} = 50 μA			
		3.0 4.5 5.5		0.36 0.36 0.36	0.50 0.50 0.50	0.44 0.44 0.44	٧	$^* V_{\text{IN}} = V_{\text{IL}} \text{ or } V_{\text{IH}}$ 12 mA $I_{\text{OL}} \qquad 24 \text{ mA}$ 24 mA			
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	± 1.0	± 1.0	μΑ	$V_{I} = V_{CC}$, GND			

 $[\]ensuremath{^{*}\text{All}}$ outputs loaded; thresholds on input associated with output under test.

DC Characteristics for 'AC Family Devices (Continued)

			74AC		54AC	74AC				
Symbol	Parameter	V _{CC} (V)	T _A =	+ 25°C	T _A = -55°C to +125°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions		
			Тур		Guaranteed Lir	nits				
l _{OLD}	†Minimum Dynamic	5.5			50	75	mA	V _{OLD} = 1.65V Max		
IOHD	Output Current	5.5			-50	-75	mA	V _{OHD} = 3.85V Min		
Icc	Maximum Quiescent Supply Current	5.5		4.0	80.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND		
lozt	Maximum I/O Leakage Current	5.5		±0.3	± 6.0	±3.0	μΑ	$V_{I}(OE) = V_{IL}, V_{IH}$ $V_{I} = V_{CC}, GND$ $V_{O} = V_{CC}, GND$		

[†]Maximum test duration 2.0 ms, one output loaded at a time.

Note: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}. I_{CC} for 54AC @ 25°C is identical to 74AC @ 25°C.

DC Characteristics for 'ACT Family Devices

			74	ACT	54ACT	74ACT			
Symbol	Parameter	V _{CC} (V)			T _A = -55°C to +125°C	T _A = -40°C to +85°C	Units	Conditions	
			Тур		Guaranteed Limits				
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	٧	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	٧	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	٧	$I_{OUT} = -50 \mu A$	
		4.5 5.5		3.86 4.86	3.70 4.70	3.76 4.76	V	$\begin{tabular}{ll} *V_{\mbox{\footnotesize IN}} &= V_{\mbox{\footnotesize IL}} \mbox{ or } V_{\mbox{\footnotesize IH}} \\ &- 24 \mbox{ mA} \\ &- 24 \mbox{ mA} \end{tabular}$	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	V	$I_{OUT} = 50 \mu A$	
		4.5 5.5		0.36 0.36	0.50 0.50	0.44 0.44	٧	$\label{eq:VIN} \begin{array}{l} ^*V_{IN} = V_{IL} \text{or} V_{IH} \\ I_{OL} \qquad \qquad 24 \text{mA} \\ 24 \text{mA} \end{array}$	
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	± 1.0	±1.0	μΑ	$V_I = V_{CC}$, GND	
ГССТ	Maximum I _{CC} /Input	5.5	0.6		1.6	1.5	mA	$V_{I} = V_{CC} - 2.1V$	
I _{OLD}	†Minimum Dynamic	5.5			50	75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current	5.5			-50	-75	mA	V _{OHD} = 3.85V Min	
lcc	Maximum Quiescent Supply Current	5.5		4.0	80.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND	
lozt	Maximum I/O Leakage Current	5.5		±0.3	±6.0	±3.0	μΑ	V_{I} (OE) = V_{IL} , V_{IH} V_{I} = V_{CC} , GND V_{O} = V_{CC} , GND	

 $^{^{*}}$ All outputs loaded; thresholds on input associated with output under test.

Note: I_{CC} for 54ACT @ 25°C is identical to 74ACT @ 25°C.

 $[\]dagger \text{Maximum}$ test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics

			74AC		54AC		74AC			
Symbol	Parameter	Parameter V_{CC}^* (V)		T _A = +25°C C _L = 50 pF			$T_A = -55^{\circ}C$ $to + 125^{\circ}C$ $C_L = 50 pF$		$egin{aligned} {\sf T_A} &= -40^\circ {\sf C} \ {\sf to} &+85^\circ {\sf C} \ {\sf C_L} &= 50~{\sf pF} \end{aligned}$	
			Min	Тур	Max	Min	Max	Min	Max	<u> </u>
t _{PLH}	Propagation Delay A _n to B _n or B _n to A _n	3.3 5.0	1.5 1.5	5.0 3.5	8.5 6.5	1.0 1.0	11.5 8.5	1.0 1.0	9.0 7.0	ns
t _{PHL}	Propagation Delay A _n to B _n or B _n to A _n	3.3 5.0	1.5 1.5	5.0 3.5	8.5 6.0	1.0 1.0	10.0 7.5	1.0 1.0	9.0 7.0	ns
t _{PZH}	Output Enable Time	3.3 5.0	2.5 1.5	7.0 5.0	11.5 8.5	1.0 1.0	13.5 10.0	2.0 1.0	12.5 9.0	ns
t _{PZL}	Output Enable Time	3.3 5.0	2.5 1.5	7.5 5.5	12.0 9.0	1.0 1.0	14.5 10.5	2.0 1.0	13.5 9.5	ns
t _{PHZ}	Output Disable Time	3.3 5.0	2.0 1.5	6.5 5.5	12.0 9.0	1.0 1.0	13.5 10.5	1.0 1.0	12.5 10.0	ns
t _{PLZ}	Output Disable Time	3.3 5.0	2.0 1.5	7.0 5.5	11.5 9.0	1.0 1.0	14.0 10.5	1.5 1.0	13.0 10.0	ns

*Voltage Range 3.3 is 3.3V ± 0.3 V Voltage Range 5.0 is 5.0V ± 0.5 V

AC Electrical Characteristics

			74ACT			54ACT		74ACT		
Symbol	Parameter	V _{CC} *	T _A = +25°C C _L = 50 pF			$T_A = -55^{\circ}C$ to $+125^{\circ}C$ $C_L = 50 pF$		$egin{aligned} \mathbf{T_A} &= -40^{\circ}\mathbf{C} \\ \mathbf{to} &+85^{\circ}\mathbf{C} \\ \mathbf{C_L} &= 50~\mathbf{pF} \end{aligned}$		Units
			Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay A _n to B _n or B _n to A _n	5.0	1.5	4.0	7.5	1.0	9.0	1.5	8.0	ns
t _{PHL}	Propagation Delay A _n to B _n or B _n to A _n	5.0	1.5	4.0	8.0	1.0	10.0	1.0	9.0	ns
t _{PZH}	Output Enable Time	5.0	1.5	5.0	10.0	1.0	12.0	1.5	11.0	ns
t _{PZL}	Output Enable Time	5.0	1.5	5.5	10.0	1.0	13.0	1.5	12.0	ns
t _{PHZ}	Output Disable Time	5.0	1.5	5.5	10.0	1.0	12.0	1.0	11.0	ns
t _{PLZ}	Output Disable Time	5.0	2.0	5.0	10.0	1.0	12.0	1.5	11.0	ns

*Voltage Range 5.0 is 5.0V $\pm \, 0.5 \text{V}$

Capacitance

S	Symbol	Parameter	Тур	Units	Conditions
С	Pin	Input Capacitance	4.5	pF	$V_{CC} = OPEN$
С	71/0	Input/Output Capacitance	15.0	pF	$V_{CC} = 5.0V$
С	PD	Power Dissipation Capacitance	45.0	pF	$V_{CC} = 5.0V$

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Fax: +49 (0) 180-530 so so Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 95 58 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.