Workshop Problems 3

- **Problem 1.** Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ span \mathbb{R}^n , and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Suppose that $T(\mathbf{v}_i) = \mathbf{0}$ for $i = 1, 2, \dots, p$. Show that T is the zero transformation. That is, show that $T(\mathbf{x}) = \mathbf{0}$ for all \mathbf{x} in \mathbb{R}^n .
- **Problem 2.** Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations. Show that the map $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation (from \mathbb{R}^n to \mathbb{R}^p). This map is called the *composition of* S and T.
- **Problem 3.** An affine transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m . Show that an affine transformation T is a linear transformation if and only if $\mathbf{b} = \mathbf{0}$.
- **Problem 4.** Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Assume that T is one-to-one. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be vectors in \mathbb{R}^n . Show that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent if and only if $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)$ are linearly independent.

Caution: The final statement in this problem $may\ be\ false$ if T is not one-to-one. In other words, not all linear transformations have this property.