Formation Data Scientist

Soutenance Projet 6 : Classifiez automatiquement des biens de consommation

-- Mélanie WARY --

PROBLÉMATIQUE

L'entreprise "Place de marché", qui lance une marketplace e-commerce et souhaite automatiser l'attribution de la catégorie de chaque article.

MISSIONS

- (1) Réaliser une première <u>étude de</u>
 <u>faisabilité</u> d'un moteur de classification
 d'articles en différentes catégories, basée
 sur l'image et la description fournies
 pour chaque article, avec un niveau de
 précision suffisant.
- (2) Présenter les résultats de la classification sous la forme d'une représentation en 2D

CONTRAINTES & INTERPRÉTATION:

- > Pré-traitement et extraction de features des données
 - textuelles (description)
 - visuelles (photo) SIFT / ORB / SURF
- Réduction(s) dimensionnelle(s) 2D
- Clustering non supervisé nombre de clusters = nombre de « catégories vraies »
- ➤ **Optimisation** et mesure du niveau de **précision** par comparaison à la « catégorisation vraie ».

JEU DE DONNEES

- → 1050 produits
- → 3 variables d'intérêt:

CATEGORIES

Arbre de catégories

Min. 2 et max. 7 catégories

Format =

["Categ1 >> Categ2"]

["Categ1 >> Categ2 >>

Categ3 >> ... >> Categ7 "]

IMAGES

1 par produit
En couleur
Différentes tailles
Généralement sur fond blanc

DESCRIPTIONS

1 par produit

En anglais

De 13 à 572 mots

MÉTHODOLOGIE GÉNÉRALE

CATEGORIES

Détermination et encodage des k « catégories vraies »

Min. 2 catégories

Perte d'individus avec l'utilisation des niveaux de catégorie supérieurs à 2

Non équilibrées

Encodage

Pré-traitement

Img + descript. Catégories Descriptions Introduction Conclusions **Images**

Images originales

D-Link

Ex: nb max descripteurs = 500

Size1000 + noise

Size224 + padding

MiniBatchKMeans ◀

Extraction de features

Nb max descripteurs : [25,100,500,1000,5000,10000]

Nb visual words: $[k_{min}, k_{mean}, k_{max}]$

$$k_{min} = 10 \times nb \ catégories = 70$$

 $k_{max} = \lfloor \sqrt{nb \text{ total de descripteurs de l'ensemble des images}} \rfloor$

$$k_{mean} = \left[\frac{k_{min} + k_{max}}{2} \right]$$

Images originales

D-Link

Réduction dimensionnelle 2 --- tSNE 2D

Perplexity: [2,5,10,25,50,75,100,500]

Réduction dimensionnelle 2 --- tSNE 2D

Perplexity: [2,5,10,25,50,75,100,500]

Clustering non supervisé (k-means à k=7)

Réduction dimensionnelle 2 --- tSNE 2D

Perplexity: [2,5,10,25,50,75,100,500]

Clustering non supervisé (k-means à k=7)

Analyse des performances (ARI)

Meilleur ARI ≈ 0.08

→ Bilan intermédiaire 1 (IMAGES):

- Extraction features via SIFT moins performante (et moins rapide) que via VGG16-Transfer Learning
- Meilleures performances : ARI = 0.42, rappel = 0.68, précision = 0.71

Améliorations possibles:

- Niveau dataset:
 - Regarder les produits mal classifiés pour identifier les raisons sous-jacentes et si possible les corriger avant le passage à l'échelle de la marketplace ?
- Niveau pré-traitement et extraction de features :
 - Tester ORB / SURF ?
 - Tester autre modèle CNN (+ Transfer Learning) avec images plus similaires?
 - Ajouter une couche de pooling pour réduire encore la dimension des vecteurs features en sortie du CNN?
- Niveau classification:
 - Autre approche Transfer Learning = ajouter un classifieur 7 classes (couche Dense, activation softmax) en fin de modèle → entrainement seulement du classifieur → prédiction des clusters ?

Img + descript. Catégories Introduction Descriptions **Images**

tsne1

tsne1

tSNE 2D selon les clusters

tsne2

tsne2

Conclusions

Pré-traitement

Tokenisation, suppr ponctuation, suppr caractères numériques, mise en minuscules, suppr English stopwords + mots fréquents, lemmatisation

Extraction de features

BoW BoW tf-idf bigrams tf-idf

Nb vecteurs =

Réduction dimensionnelle 1 --- PCA

[50,100, 200,300,5001

Word2Vec

Variance expliquée: [80%, 90%, 99%]

Réduction dimensionnelle 2 --- tSNE 2D

Perplexity: [2,5,10,15,20,25,30,35,40,45,50,75,100,500]

(+ init. PCA pour W2V)

Clustering non supervisé (k-means à k=7)

250

Analyse visuelle 2D des clusters vs. catégories vraies

Analyse des performances (ARI, précision, matrice de confusion, ...)

Meilleur ARI ≈ 0.63

Bilan intermédiaire 2 (DESCRIPTIONS):

- extraction features via Bag-of-words tf-idf plus performante que BoW classique, Bag-of-bigrams tf-idf et word embedding via Word2Vec
- Meilleures performances : ARI = 0.63, rappel = 0.80, précision = 0.82

Améliorations possibles:

- Niveau dataset:
 - Regarder les produits mal classifiés pour identifier les raisons sous-jacentes et si possible les corriger avant le passage à l'échelle de la marketplace ?
- Niveau pré-traitement et extraction de features :
 - Optimiser le pré-traitement de texte (e.g. lemmatisation vs racinisations)
 - Tester un autre algorithme de plongement de mots?
 - Tester un modèle RNN (+ Transfer Learning)?
- Niveau modélisation:
 - Tester clustering sur données réduites en 3D?
 - Tester l'utilisation d'un RNN (+ Transfer Learning) pour la classification?

Bilan intermédiaire 3 (IMAGES + DESCRIPTIONS):

- Performances non améliorées, équivalentes à celles obtenues sur la base des images seules

Données	Meilleur ARI	Meilleur rappel	Meilleure précision
Images	0,42	0,68	0,71
Descriptions	0,63	0,80	0,82
Images + descriptions	0,43	0,68	0,72

Améliorations possibles, en plus de celles spécifiques aux images et aux descriptions déjà mentionnées:

- Niveau pré-traitement et extraction de features :
 - Tester d'autres combinaisons de méthodes (pas uniquement les plus performantes séparément) ?
- Niveau modélisation:
 - Tester clustering sur données réduites en 3D?

Conclusions générales

 Meilleures performances obtenues sur classification basée sur descriptions seules

Données	Meilleur ARI	Meilleur rappel	Meilleure précision
Images	0,42	0,68	0,71
Descriptions	0,63	0,80	0,82
Images + descriptions	0,43	0,68	0,72

ARI comparison between tested methods

- Suffisamment bonnes pour attester de la faisabilité (avec une bonne précision) :
 - d'une automatisation non supervisée (après tests supplémentaires et améliorations)
 - d'une automatisation **supervisée**, avec un **jeu de données plus conséquent** (après passage à l'échelle de la marketplace), de l'attribution de catégories aux produits.

Améliorations possibles, en plus de celles déjà mentionnées:

- Vérifier la validité des « catégories vraies » actuelles / détecter l'occurrence éventuelle de catégories plus adaptées ?
- Classification « manuelle » des descriptions via l'identification de mots-clés spécifiques pour chaque catégorie?

Baby Care

Home Furnishing

Kitchen & Dining

Beauty and Personal Care

Watches

Computers

Home Decor & Festive Needs

