10/10

Convolution

- Using pixel intensities as the features assume pixels are independent of their neighbors. This is inappropriate for most of the computer vision
- Neighboring pixel intensities can be combined to create one feature that captures the information in the region around the pixel.
- Linearly combining pixels in a rectangular region is called convolution: Link, Wikipedia.
- \Rightarrow The convolution of a vector $x_i=(x_{i1},x_{i2},\ldots,x_{im})$ with a filter $w=(w_{-k},w_{-k+1},\ldots,w_{k-1},w_k)$ is: $a_i=(a_{i1},a_{i2},\ldots,a_{im})=x\star w$, where $a_{ij}=w_{-k}x_{i(j+k)}+w_{-k+1}x_{i(j+k-1)}+\ldots+w_kx_{i(j-k)}$ for $j=1,2,\ldots,m$.
- \Rightarrow The convolution of an m imes m matrix X_i with a (2k+1) imes (2k+1) filter W is $A_i=X_i\star W$, where

$$A_{ij}=W_{-k}\star X_{i(j+k)}+W_{-k+1}\star X_{i(j+k-1)}+\ldots+W_{k}\star X_{i(j-k)}$$
 for rows $j=1,2,\ldots,m$.

- ⇒ 3D convolution can be defined in a similar way.
- The convolution filter is also called "kernel", but different from the kernel matrix for SVMs.

We add zero paddings around the image so that it is larger

Remember to flip the kernel before use

Traditional computer vision algorithms

- Traditional computer vision algorithms use engineered features for images based on image gradients.
- ⇒ Image gradients are changes in pixel intensity due to the change in the location of the pixel: Wikipedia.
- ⇒ Histogram of Gradients (HOG) can be used as a features for images and is often combined with SVM for face detection and recognition tasks: Wikipedia.
- ► Math Note (Optional)
- ▼ Math Note (Optional)
- For HOG features: in every 8 by 8 pixel region of an image, the gradient vectors $\begin{bmatrix} \nabla_x I\left(s,t\right) \\ \nabla_y I\left(s,t\right) \end{bmatrix}$ are put into 9 orientation bins, for example,

$$\left[0,\frac{2}{9}\pi\right],\left[\frac{2}{9}\pi,\frac{4}{9}\pi\right],\ldots,\left[\frac{16}{9}\pi,2\pi\right]$$
 , and the histogram count is used as the HOG features.

- The resulting bins are normalized within a block of 2 by 2 regions.
- 📕 Scale Invariant Feature Transform (SIFT) produces similar feature representation using histogram of oriented gradients: Wikipedia.
- ⇒ It is location invariant.
- ⇒ It is scale invariant: images at different scales are used to compute the features.
- ⇒ It is orientation invariant: dominant orientation in a larger region is calculated and all gradients in the region are rotated by the dominant orientation
- ⇒ It is illumination and contrast invariant: feature vectors are normalized so that they sum up to 1, and thresholded (values smaller than a threshold, for example 0.2. are made 0).

Deep learning convolution

- The features can be engineered using computer vision techniques such as HOG or SIFT.
- They can also be learned as hidden units in a neural network. These neural networks are call convolutional neural networks (CNN): <u>Link, Link,</u> Wikipedia.
- \blacksquare Instead of activation units $a=g\left(w^{\top}x+b\right)$ or $a=g\left(w\cdot x+b\right)$, the dot product can be replaced by convolution (usually cross-correlation in practice, which is convolution without flipping the filters). The resulting matrix of activation units is called an activation map computed as $A=g\left(W\star x+b\right)$.
- \Rightarrow For filters in CNN, zero padding means adding zeros around the image pixel matrices so that the activation maps have the same size as the image; and no padding means not adding zeros around the image so the activation maps will be 2k pixels smaller than the image in each dimension
- \Rightarrow Filters with a stride of s means the skipping s-1 pixels when moving the filter around when computing the convolution: a stride of 1 is the standard convolution; and a stride of 2k+1 (filter size) is also called non-overlapping and each pixel is only used once in the computation of the convolution.

• Conv and pooling layers

0

- In the conv layer, there are 2 filters with size 3, we need to train 2 * 3 * 3 = 18 weights (possibly 2 biases)
- In the pooling layer, there are 2 filters, but none of the weights need to be trained
- In the output layer, there are 18 units in the previous layer, fully connected with 3 output units, 54 weights and 3 biases

10/17

- Google net / inception net
 - 1*1 convolution
 - mlp on each pixel
 - Shrink the size of the output
 - Multiple softmax halfway
 - Fix vanishing gradient problem