

1 WHAT IS CLAIMED IS:

2

3 1. A computer implemented method of localizing a biomarker within a cell,
4 comprising:

5

6 identifying portions of a first image of the cell that corresponds to a first
7 defined area;

8

9 identifying portions of a second image of the cell that corresponds to at least
10 one biomarker;

11

12 determining portions of the second image that lie within the portions of the
13 first image to identify whether the biomarker is localized within the defined
14 area.

15

16 2. The method of claim 1, wherein the portions of the first image and portions of the
17 second image comprise pixels.

18

19 3. The method of claim 1, wherein the portions of the first image comprise pixels
20 having an intensity associated with the first defined area of the cell.

21

22 4. The method of claim 3, further comprising determining the intensity associated
23 with the first defined area of the cell.

24

25 5. The method of claim 2, wherein the portions of the second image comprise pixels
26 having an intensity corresponding to the at least one biomarker.

27

28 6. The method of claim 5, further comprising determining the intensity associated
29 with the at least one biomarker.

30

- 31 7. The method of claim 1, further comprising reducing representation of out-of-focus
32 elements in the first image.
- 33
- 34 8. The method of claim 7, wherein reducing representation comprises manipulating
35 image pixel intensities of the first image based on image pixel intensities of a third
36 image featuring a different depth of focus.
- 37
- 38 9. The method of claim 1, wherein the defined area is selected from the group
39 consisting of the cell nucleus, cytoplasm, nuclear membrane, cellular membrane,
40 mitochondria, endoplasmic reticulum, peroxisome and lysosome.
- 41
- 42 10. The method of claim 1, wherein the cellular component is selected from the
group consisting of a protein, peptide, nucleic acid, lipid or carbohydrate.
- 43
- 44 11. A method of analyzing a cell containing sample, comprising:
45
46 obtaining a first image of a cell with a first stain that is selective for a first
47 defined area within the cell and a second stain that is selective for at least one
48 biomarker;
49
50 determining an intensity value for the first stain at a plurality of pixel
51 locations in the first image;
52
53 based on the intensity values, determining pixel locations in the first image
54 that correspond to the first defined area within the cell and assigning
55 those pixel locations to the first defined area;
56 obtaining a second image and determining an intensity value for the second
57 stain at a plurality of pixel locations in the second image; and
58 comparing the first and second images to identify pixel locations in the second
59 image that are within the first cellular compartment.

- 60 12. The method of claim 11, wherein the defined area is selected from the group
61 consisting of the cell nucleus, cytoplasm, nuclear membrane, cellular membrane,
62 mitochondria, endoplasmic reticulum, peroxisome and lysosome.
- 63 13. The method of claim 11, wherein the cellular component is selected from the
64 group consisting of a protein, peptide, nucleic acid, lipid or carbohydrate.
- 65 14. The method of claim 11, wherein the cell is contacted with a third stain that
66 is selective for a second defined area within the cell, the method further
67 comprising:
68 in a third image of the distribution of the third stain in the cell, determining an
69 intensity value for each pixel location of a plurality of pixel locations in the
70 third image;
71 based on the intensity values, determining which pixel locations in the third
72 image correspond to the second defined area of the cell and assigning those
73 pixel locations to the second defined area; and
74 identifying which of the pixel locations in the second image are within the
75 second defined area.
- 76 15. The method of claim 14, further comprising assigning pixel locations not
77 assigned to the first or second defined areas to a third defined area, and identifying
78 which of the pixel locations in the second image are within the third defined area.
- 79 16. The method of claim 15, wherein the first, second, and third defined areas are
80 selected from the group consisting of: a nucleus, cytoplasm, nuclear membrane,
81 cellular membrane, mitochondria, endoplasmic reticulum, peroxisome and lysosome.
- 82 17. The method of claim 14, wherein the cell is contacted with a fourth stain that
83 is selective for a defined area in the cell, and at least one pixelated image of the
84 distribution of the fourth stain is acquired, the method further comprising

85 reading a third intensity value for each of a plurality of pixels in the image of
86 the fourth stain distribution;

87 determining a threshold intensity value from the third intensity values;

88 comparing the third intensity value for each of the plurality of pixels to the
89 threshold intensity; and

90 assigning pixel locations to a mask based on the threshold intensity value.

91 18. The method of claim 17, wherein the pixel locations in the plurality of pixels in
92 the image of the first stain distribution are the pixel locations in the mask set.

93 19. The method of claim 18, wherein the pixel locations assigned to the mask
94 comprise the location of pixels having third intensity values equal to or greater than
95 the threshold intensity value.

96 20. The method of claim 19, further comprising binning the third intensity values for
97 each of the plurality of pixels in the image of the fourth stain distribution.

98 21. The method of claim 20, wherein the threshold intensity value is determined from
99 an intensity value of a largest bin.

100 22. The method of claim 20, wherein the threshold intensity value is determined from
101 an intensity value of a second largest bin.

102 23. The method of claim 17, further comprising comparing for each pixel location
103 the first intensity value to the second intensity value and assigning the pixel location
104 to the second defined area when the second intensity value is greater than the
105 first intensity value.

106 24. The method of claim 17, further comprising reading a signal intensity value for
107 each pixel location in an array of pixels in the image of the second stain distribution,
108 and summing the signal intensity values to determine a total signal intensity.

109 25. The method of claim 17, wherein the array of pixels in the image of the second
110 stain distribution is the first defined area in the cell.

111 26. The method of claim 17, further comprising reading a signal intensity value for
112 each pixel location in an array of pixels in the image of the second stain distribution,
113 and summing the signal intensity values.

114

115 27. The method of claim 17, wherein the array of pixels in the image of the second
116 stain distribution is the second defined area.

117

118 28. The method of claim 17, further comprising reading a signal intensity value for
119 each pixel location in an array of pixels in the image of the second stain distribution,
120 and summing the signal intensity values to determine a total intensity.

121

122 29. The method of claim 17, wherein the array of pixels in the image of the second
123 stain distribution is the third defined area.

124

125 30. A method of analyzing a cell containing sample, comprising:

126

127 127 accessing a value for each of a plurality of pixel locations in a first image of a
128 cell;

129

130 130 accessing a value for each of the plurality of pixel locations in a second
131 image of a cell; and

132

133 133 subtracting a percentage of the intensity value for each pixel location in the
134 second image from the intensity value of the same pixel location in the first
135 image to obtain an adjusted intensity value.

136

137 31. The method of claim 30, wherein the first image is acquired at a first focal plane
138 and the second image is acquired at a second focal plane.

139

140 32. The method of claim 30, wherein the percentage of the intensity value for each
141 pixel location in the second image subtracted is determined from an intensity
142 distribution function.

143

144 33. A method of analyzing a plurality of spots, comprising:

145

146 locating the spots;

147

148 defining a reference point for the located spot;

149

150 connecting the reference point of the located spot to the reference point of a
151 set of nearest neighbor spots with a corresponding line segment; and

152

153 identifying points of intersection between line segments used to connect spots
154 to each other.

155

156 34. The method of claim 33, further comprising assigning reference points and points
157 of intersection a reference number.

158

159 35. The method of claim 34, further comprising tabulating the reference numbers and
160 spot locations.

161

162 36. The method of claim 33, wherein the reference point within each spot is the
163 center of the spot.

164

165 37. The method of claim 33, wherein the spots are histospots in a tissue microarray.

166

167 38. The method of claim 33, further comprising connecting each of a plurality of
168 reference points to a nearest edge using a corresponding line segment.

169