Journal Report 5 9/30/19-10/7/19 Bryan Lu Computer Systems Research Lab Period 2, White

Daily Log

Monday, September 30

I refined the objects.txt and relations.txt files by hand based on the frequency data, removing redundant words. These files list out all the abstract objects and relationships between any two objects in the problem dataset exactly once.

Tuesday, October 1

I researched the GEOS program referenced in the original paper and what it might do to help with the project with respect to its lexicon, methods, etc.

Thursday, October 3

I wrote a simple script to identify whether a word (possibly with a stem) was a word that corresponded to an object or relation in <code>objects.txt</code> or <code>relations.txt</code>, and identified them as such.

Timeline

Date	Goal	Met
9/16	Finish writing the webscraper to	I was not able to get my web-
	scrape arbitrarily many problems off	scraper to work, but I've successfully
	of the forums, properly formatted.	started to format the approximately
	Begin the process of filtering posts	300 problems I actually have.
	from the dataset.	
9/23	Filter posts that are not standard	Yes, I created two separate files for
	olympiad geometry problems, and	various geometrical objects and rela-
	construct a standard lexicon of key-	tions that I found that appeared in my
	words to look for in a problem both	data set.
	as objects and as relations.	
9/30	Write code that creates a graph struc-	My code definitely is able to iden-
	ture corresponding to the problem	tify all the nodes/concepts and what
	statement, with objects as nodes and	kinds of relations are present in the
	relations as edges.	problem, but not much more.
10/7	Create a logical language to give	N/A
	more structure and properties to the	
	objects and relations detected in the	
	problem.	
10/14	Research how to write code to create	N/A
	a log-linear classifier and figure how	
	to pass the proper structures detected	
	in the problem statement to it.	

Reflection

This week, I found myself diving into the heart of the problem for the first time. I re-read the original paper whose method I'm replicating in this project, just to be sure of the structure I wanted for the graph that the rest of the project builds upon. It turns out that their method (GEOS) relies on their own logical language of relations and objects that they used in order to label the concepts and endow with additional structure other than identifying it as a relation. This is something I didn't realize I had to create myself, so I tried to see if they published the code for the method online and hopefully look at how they structured their code. Unfortunately, I didn't find any piece of code related to their paper, and I think it'd be helpful for me to see it as a template for what my objects and relations should look like.

According to my timeline, I put down the creation of lexicon and the graph as two separate items to do, spanning 4 weeks of work. I think these two things are actually pretty related, and I'm tackling them together at this point. Technically, I already have code that finds the possible edges and vertices in my graph based on what words are in the problem, but I'm not sure at all that what I have is enough to move on to the next step. My timeline still allows me 2 weeks to figure out what additional structure I need to implement, and I want to use this time to build a more sound foundation for the model I need to train to detect geometric relations in a problem.