

RISC-V Virtual Hackathon Softmax Challenge

- Time to Hack Away

Agenda

Environment and Getting Started

Environment Intro

- OS: Ubuntu 20.04.6 LTS. A Linux OS.
- AndeSight: v5.3.3. AndeSight is the IDE tool for C code development. GNU
 Toolchains are included.
- COPILOT: v7.2.0. COPILOT is a tool to create custom instructions (ACE)
 - Integrated in the AndeSight
- AndesClarity: CPU Pipeline visualizer tool
 - Integrated in the AndeSight
- AX45MPV: An Andes 8-stage pipeline dual-issue core with a vector processor
- ACE: Andes Custom Extension
- Sim: CPU simulator

Tool Location

- AndeSight: /home/ubuntu/Andestech/AndeSight_STD_v533/ide/AndeSight.
- COPILOT: /home/ubuntu/Andestech/AndeSight_STD_v533/COPILOT/bin/copilot

Open a Terminal

ANDES

- Click " \times "
- Type "terminal" in the search box
- Click "Terminal" in the search and hit enter key

Hackathon Project

 The Hackathon project root is at /home/ubuntu/Hackathon_prj/sfm_ace_demo folder

Background and Challenge

Softmax in Neural Networks:

- Softmax is a very common activation function for many networks including Transformers, CNNs, and RNNs.
- It is challenging and not well implemented by general-purpose CPUs and GPUs because it is a very specific computation for machine learning.
- It is an imperative function in neural network performance especially for LLMs which are seeing a huge increase in model size and sequence length and softmax function usage scales with these parameters.

Your challenge:

Implement a softmax function on an Andes RISC-V vector processor while optimizing for accuracy and performance.

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

 σ = softmax

 \vec{z} = input vector

 $oldsymbol{e^{z_i}}$ = standard exponential function for input vector

 $oldsymbol{K}$ = number of classes in the multi-class classifier

 e^{z_j} = standard exponential function for output vector

 e^{z_j} = standard exponential function for output vector

Code Structure

- Main code: tc_src/t_softmax_f32.c
- Library source: lib_src/riscv_nn_softmax_f32.c
- ACE source file: ace_file/exp.ace

Code Flow

- The main() function in the tc_src/t_softmax_f32.c invokes riscv_nn_softmax_f32() function in the lib_src/riscv_nn_softmax_f32.c
- The riscv_nn_softmax_f32() invokes ace_exp_f32m8() intrinsic function.
- The ace_exp_f32m8() function is a custom instruction/function, i.e. exp, created by the COPILOT tool. The input of the COPILOT is ace_file/exp.ace which describes the custom instruction names, input/output operands, and the behavior model.
- The exp instruction is implemented with the following equation, in which the accuracy is low.

•
$$f(x) = e^x = 2^{23} * \left(\frac{x}{\ln(2)} + 127 - C\right)$$

For the custom instruction generation, please run the build_ace.sh in the ace_file folder.
 For more details, please refer to Andes_Custom_Extension_Programmer's_Manual.pdf

What can you do?

- Increase the accuracy of the exponential function or use your own algorithm
- Use LLVM auto-vectorization to convert scalar operations into vector operations
- Use Vector Instrinsics to create your own vectorized implementation
- Create your own custom extension for implementing the operation of the exponential function or the softmax function

HAVE FUN!!

Solution Criteria and Judging

- Judging will be based on the following:
 - Accuracy of your Softmax as measured by SNR (higher is better)
 - Performance of your Softmax, as measured by cycle counts (lower is better)
 - Creativity of solution
 - For those who implement custom instructions, consideration of HW implementability.

Hackathon Feedback

- **!** Let us know what you thought about the hackathon here:
 - https://forms.gle/74aV3VDri16RQ6ws7

Thank You!

