CS240, Spring 2022 Assignment 2: Question 4

Q4a) On the example (15, 10, ...) above, show us what these heaps would contain at each of the 5 steps (we don't know if these are min-heaps or max-heaps yet, so just tell us what elements they contain).

Steps	H_{lo}	H_{hi}
1	15	
2	10	15
3	1, 10	15
4	1, 10	15, 20
5	1, 10, 15	20, 30

Q4b) We would like to be able to read off the (current) median using just one access to H_{lo} . What kind of heap should it be, a min-heap or a max-heap? How long does finding the current median take?

We should use a max-heap, finding the current median should take O(1) time as we are accessing the root of H_{lo}

Q4c) Describe how to update the two heaps when inserting the next element. In particular, in which heap do you insert the element, and how do you ensure that H_{lo} and H_{hi} have the required size afterwards? Give the runtime of your update method, with a short justification; it should be o(n). (At this stage, you will have to explain whether H_{hi} should be a min-heap or a max-heap.)

We know that the maximum of H_{lo} and the minimum of H_{hi} is stored in the roots. We can check if the new element is greater than the max of H_{lo} we can insert it into H_{hi} . If element is less than the minimum of H_{hi} we can insert into H_{lo}

If the counter for H_{lo} is larger then H_hi+1 then we can use deleteMax for H_{lo} after storing the value in a temporary value, and vise versa for if H_{hi} is larger then $H_{lo}+1$. We will then apply a fix down to make sure the order remains the same

Note that our inserting, deleting (min/max) will take O(log(n)) and from our lectures we know that $log(n) \in o(n)$. Thus it follows that our algorithium will have a time complexity of o(n) as required.