Vectorial approach to momentum and mass conservation equations

Marius Berge Eide

AST5110: ITA, UiO m.b.eide@astro.uio.no

October 27, 2014

Overview

- 1 Restating the problem
 - Momentum equation from N2L
 - Equations to be solved
- 2 Numerical solution
 - Solving in time
 - Solving in space
 - Equations restated
- 3 Results
 - Stability check
 - Stable without pressure
 - Stable for small amplitudes
- 4 To do
 - To do
 - Stagger code

Momentum equation from N2L

- Have a volume element ω with surface $\partial \omega$
- Change in momentum due to internal stresses and external forces:

$$\frac{d}{dt} \int_{\omega} \mathbf{p} \, dv = \int_{\partial \omega} \mathbf{t} \cdot \mathbf{n} \, da + \int_{\omega} \mathbf{F}_{\text{ext}} \, dv \quad (1)$$
$$= \int_{\omega} \nabla \cdot \mathbf{t} \, dv + \int_{\omega} \mathbf{F}_{\text{ext}} \, dv \quad (2)$$

onto local form:

$$\frac{\partial \mathbf{p}}{\partial t} + \mathbf{v} \cdot (\nabla \mathbf{p}) + \mathbf{p} (\nabla \cdot \mathbf{v}) = \nabla \cdot \mathbf{t} + \nabla \rho_{\text{gas}} + \rho \mathbf{g}$$
(3)

where

$$\mathbf{v} \cdot (\nabla \mathbf{p}) + \mathbf{p} (\nabla \cdot \mathbf{v}) = \nabla \cdot (\mathbf{p} \mathbf{v})$$
 (4)

To solve

Momentum equation

$$\frac{\partial \mathbf{p}}{\partial t} = -\nabla \cdot (\mathbf{p}\mathbf{v}) + \nabla \cdot \mathbf{t} + \nabla p_{\text{gas}} + \rho \mathbf{g}$$
 (5)

Mass continuity equation

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \mathbf{p} \tag{6}$$

Solving in time

Euler:

$$\mathbf{f}^{t}(\mathbf{x}) = \frac{\partial \mathbf{F}(t, \mathbf{x})}{\partial t} = \frac{\mathbf{F}(\mathbf{x}, t + \Delta t) - \mathbf{F}(\mathbf{x}, t)}{\Delta t} + \mathcal{O}(\Delta t^{2})$$
(7)

giving

$$\mathbf{F}^{t+1}(\mathbf{x}) \approx \mathbf{F}^{t}(\mathbf{x}) + \mathbf{f}^{t}(\mathbf{x})\Delta t$$
 (8)

Runge-Kutta 4th order

$$\mathbf{F}^{t+1} = \mathbf{F}^t + \frac{\Delta t}{6} \left(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4 \right) \tag{9}$$

where

$$\begin{split} \mathbf{k}_1 &= \mathbf{F}^t(\mathbf{x}) \\ \mathbf{k}_2 &= \mathbf{F}^{t+1/2} \left(\mathbf{x} + \frac{\Delta t}{2} \mathbf{k}_1 \right) \\ \mathbf{k}_3 &= \mathbf{F}^{t+1/2} \left(\mathbf{x} + \frac{\Delta t}{2} \mathbf{k}_2 \right) \\ \mathbf{k}_4 &= \mathbf{F}^{t+1} \left(\mathbf{x} + \Delta t \mathbf{k}_3 \right) \end{split}$$

Solving in space

Figure: Staggered grid with cyclic boundary conditions

Interpolate forward half a step $(\Delta x/2)$:

$$T_x^+(\mathbf{g}(x, y, z, \cdots)) = \mathbf{g}(x + 1/2\Delta x, y, z, \cdots) = \mathbf{g}_{x+1/2}$$
 (10)

$$= a(\mathbf{g}_{x} + \mathbf{g}_{x+1}) + b(\mathbf{g}_{x-1}\mathbf{g}_{x+2}) + c(\mathbf{g}_{x-2} + \mathbf{g}_{x+3})$$
(11)

$$= \begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_{x} + \mathbf{g}_{x+1} \\ \mathbf{g}_{x-1} + \mathbf{g}_{x+2} \\ \mathbf{g}_{x-2} + \mathbf{g}_{x+3} \end{bmatrix}$$
(12)

$$a = \frac{1}{2} - b - c;$$
 $b = -\frac{1}{24} - 5c;$ $c = \frac{3}{640}$

Solving in space

$$T_x^+(\mathbf{g}(x, y, z, \cdots)) = \mathbf{g}_{x+1/2} = \begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_x + \mathbf{g}_{x+1} \\ \mathbf{g}_{x-1} + \mathbf{g}_{x+2} \\ \mathbf{g}_{x-2} + \mathbf{g}_{x+3} \end{bmatrix}$$
 (13)

$$\partial_{,x}^{+}(\mathbf{g}(x,y,z,\cdots)) = \mathbf{g}_{x+1/2}^{\prime} = \begin{bmatrix} a^{\prime} & b^{\prime} & c^{\prime} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_{x} - \mathbf{g}_{x+1} \\ \mathbf{g}_{x-1} - \mathbf{g}_{x+2} \\ \mathbf{g}_{x-2} - \mathbf{g}_{x+3} \end{bmatrix}$$
(14)

Figure: Numpy's ROLL(array, steps) causing cyclic boundaries, using this to interpolate and differentiate

Equations restated

Solve only for momentum ρv and density ρ , meaning the velocity can be found (at ρv 's location):

$$v = \frac{\rho v}{T_z^+[\rho]} \tag{15}$$

Momentum equation

$$\frac{\partial \rho v}{\partial t} = -\partial_{,z}^{+} \left[\frac{1}{\rho} \left(T_{z}^{-} \left((\rho v)^{2} \right) \right) \right] + \partial_{,z}^{+} \left[p_{\text{gas}} + Q \right] + T_{z}^{+} \left[\rho \right] g_{z}$$
 (16)

Mass continuity equation

$$\frac{\partial \rho}{\partial t} = -\partial_{,z}^{-} \left[\rho v \right] \tag{17}$$

Stability check

► http://77.237.250.152/wordpress/studier/stability_web.mp4

Stable without pressure

http://77.237.250.152/wordpress/studier/alive.mp4

Stable for small amplitudes

http://77.237.250.152/wordpress/studier/working.mp4

To do:

- I Remember. There is no such thing as negative density
- ${\bf 2}$ Try with sine peak as initial condition for ρ
- 3 Try to get the artificial diffusion implemented:

$$\nabla \cdot \mathbf{t} = \nabla \cdot \mathbf{Q} \stackrel{\text{1D}}{=} \mu \frac{\mathsf{d} \nu}{\mathsf{d} x} \tag{18}$$

with $\mu = \rho c_s \lambda$ and $\lambda = \nu \Delta x$.

4 Don't forget that there's no such thing as negative density

stagger.py

```
#1/usr/bin/env python
# AST5110
# Mon 29/09/2014
# Marius Berge Eide
import matplotlib, pylab as plt
import matplotlib animation as animation
from numpy import +
# Exercise 2
# Operators
# Derivative
def deriv(farray, dx, dim=0, direction=1):
   "" Derivative of array FARRAY along dimension DIM in
   direction DIRECTION, where:
    1: Shift 1/2 step forward
   -1: shift 1/2 step backward
   and DX is step length""
   c = 3./640
   b = -1./24
                   - 5.+c
   a = 1. - 3.+b + 5.+c
   coeffs = array([a,b,c]) / dx
   p = +direction
   start= array([farray, \
           roll(farray, -p, axis=dim), \
           roll(farray, -2+p, axis=dim) ])
   stop = array([roll(farray, p, axis=dim), \
           roll(farray, 2+p, axis-dim).
           roll(farray, 3+p, axis=dim) ])
   return dot(coeffs, (start - stop))
def interp(farray, dim=0, direction=1):
   "" Interpolates the array FARRAY along dimension DIM in
   direction DIRECTION returning the values at shifted 1/2 + DIRECTION
   location"
   c = 3./256
   b = -1./16
                      - 3.+c
   a = 1./2 - b - c
   coeffs = array([a,b,c])
   p = +direction
   start= array([farray, \
           roll(farray. -p. axis=dim). \
           roll(farray, -2+p, axis=dim) ])
   stop = array([roll(farray, p, axis=dim), \
           roll(farray, 2+p, axis-dim).
           roll(farray, 3+p, axis=dim) ])
   return dot(coeffs , (start + stop))
```

What happens when you have negative density

► http://77.237.250.152/wordpress/studier/blowup_web.mp4

