La Prueba ZIP de Conway del Teorema de Clasificación de Superficies

Juan Valero Oliet

Universidad Complutense de Madrid

Dirigido por: Manuel Alonso Morón

16 de octubre de 2020

Introducción al trabajo

Teorema (Clasificación de Superficies)

Sea S una superficie compacta y conexa. Entonces S es homeomorfa a una y sólo una de las siguientes superficies:

- La esfera \mathbb{S}^2 .
- Una suma conexa de copias del toro $\mathbb{T}^2 \# \dots \# \mathbb{T}^2$.
- Una suma conexa de copias del plano proyectivo $\mathbb{P}^2\#\ldots\#\mathbb{P}^2$.

Introducción Histórica

- 1863 Möbius
- 1866 Jordan
- 1888 von Dick
- 1907 Dehn y Heegard
- 1915 Alexander
- 1920 Brahana
- 1925 Radó

Introducción Histórica

- 1863 Möbius
- 1866 Jordan
- 1888 von Dick
- 1907 Dehn y Heegard
- 1915 Alexander
- 1920 Brahana
- 1925 Radó

Textos de hoy en día \longrightarrow Seifert - Threlfall.

- 1999 artículo de Francis y Weeks.
- John H. Conway (1937-2020).
- Prueba de Irrelevancia Cero.

- ullet 1999 \longrightarrow artículo de Francis y Weeks.
- John H. Conway (1937-2020).
- Prueba de Irrelevancia Cero.

Ventajas

- Se basa en el concepto de suma conexa.
- Más intuitivo.

- 1999 artículo de Francis y Weeks.
- John H. Conway (1937-2020).
- Prueba de Irrelevancia Cero.

Ventajas

- Se basa en el concepto de suma conexa.
- Más intuitivo.

Problemas

- No se definen algunos conceptos utilizados.
- No se desarrollan en profundidad algunos resultados.
- No se demuestra que las superficies no sean homeomorfas entre sí.

Trabajo

- Estudiar los conceptos previos.
- Estudiar la demostración clásica.
- Tratamiento riguroso de la prueba ZIP.
- Completar con la segunda parte del teorema.

Triangulación

Teorema (Teorema de Radó)

Toda superficie es triangulable.

Teorema (Teorema de Schönflies)

Sea f un homeomorfismo entre dos curvas simples cerradas C y C'. Entonces f se puede extender a un homeomorfismo de todo el plano.

Teorema de Radó

Idea de la demostración (Thomassen)

- Recubrir la superficie con un número finito de discos coordenados.
- Triangular cada disco de forma que sea compatible con los anteriores.

Perforaciones

Figura: El disco cerrado como una esfera perforada.

Perforaciones

Proposición

Toda superficie con borde compacta es homeomorfa a una superficie compacta con perforaciones.

Proposición (Teorema de Clasificación)

Sean M_1 y M_2 superficies con borde compactas tales que ∂M_1 y ∂M_2 tienen el mismo número de componentes conexas. Entonces M_1 y M_2 son homeomorfas si y solo si las superficies M_1^* y M_2^* son homeomorfas.

Suma Conexa

Figura: Suma conexa de dos toros.

- Se consideran dos superficies M_1 y M_2 .
- **Q** Realizamos una perforación en cada superficie \longrightarrow superficies con borde M_1^o y M_2^o .
- **3** Consideramos un homeomorfismo $f: \partial M_1^o \to \partial M_2^o$.
- **3** Relacionamos en $M_1^o \coprod M_2^o$ cada punto de ∂M_1^o con su imagen por f.
- **3** Al espacio cociente $M = \frac{M_1^o \coprod M_2^o}{\sim}$ lo llamamos **suma conexa** de M_1 y M_2 .

Representación de superficies

• Polígonos con aristas que se identifican.

Figura: El toro como cociente de un cuadrado.

Representación de superficies

Figura: Construcción de la botella de Klein.

Representación de superficies

(b) El toro \mathbb{T}^2 .

(c) La esfera \mathbb{S}^2 .

(a)
$$\mathbb{P}^2 = \langle a, b \mid abab \rangle$$
.

(b)
$$\mathbb{T}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$
.

(c)
$$\mathbb{S}^2 = \langle a, b \mid abb^{-1}a^{-1} \rangle$$
.

Representación de superficies con borde

Figura: La superficie $\mathbb{T}^2 \# \mathbb{T}^2$ con dos perforaciones.

Operaciones elementales

Transformaciones sobre los polígonos que den lugar a superficies homeomorfas.

(a) Subdividir/Consolidar

Operaciones elementales

Prueba Clásica

Forma Normal

Se prueba que toda representación poligonal de una superficie se puede transformar en siete pasos en una de las siguientes:

(a) Esfera

$$\langle a \mid aa^{-1} \rangle$$

(b) Suma conexa de n toros.

$$\langle a_1, \ldots, a_n, b_1, \ldots, b_n \mid a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_n b_n a_n^{-1} b_n^{-1} \rangle$$

(c) Suma conexa de n planos proyectivos.

$$\langle a_1, \ldots, a_n \mid a_1 a_1 \ldots a_n a_n \rangle$$

Definición (Cremalleras)

- Consideramos una identificación entre dos subconjuntos del borde de una superficie perforada.
- cremallera: cada uno de estos dos subconjuntos que se identifican.
- par-zip: el par formado por dos cremalleras que se identifican.

Figura: Construcción del cap.

Figura: Construcción del crosscap.

Figura: Construcción del handle.

Figura: Construcción del crosshandle.

Representación de las superficies con cremalleras.

Figura: La superficie $\mathbb{T}^2 \# \mathbb{T}^2$ con un crosshandle.

Proposición

Sea M una superficie. Los siguientes espacios son homeomorfos:

- a) M con un cap y M.
- b) M con un crosscap y $M\#\mathbb{P}^2$.
- c) M con un handle y $M\#\mathbb{T}^2$.
- d) M con un crosshandle y M#K (siendo K la botella de Klein).

Definición

Una superficie con borde se dice **ordinaria** si es homeomorfa a una colección finita de esferas cada una con un número finito de *handles*, *crosshandles*, *crosscaps* y perforaciones.

Lema

Sea M una superficie con borde con un par-zip. Entonces, si M es ordinaria antes de identificar las cremalleras, es ordinaria también después.

• Las cremalleras no ocupan perforaciones en su totalidad \longrightarrow informal.

Teorema (Clasificación de Superficies, versión preeliminar)

Toda superficie con borde compacta es ordinaria.

Teorema (Clasificación de Superficies, versión preeliminar)

Toda superficie con borde compacta es ordinaria.

- Consideramos una triangulación de la superficie con borde.
- Ponemos una cremallera en cada 1-símplice que sea cara de dos 2-símplices.
- El conjunto de 2-símplices es una superficie ordinaria con cremalleras.
- Por inducción, vamos identificando las cremalleras una a una.

Lema (1)

Un crosshandle es homeomorfo a dos crosscaps.

Lema (2)

Handles y crosshandles son equivalentes en la presencia de crosscaps.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

• Caso 1: Al menos hay un crosshandle en la superficie.

Lema (1)

Un crosshandle es homeomorfo a dos crosscaps.

Lema (2)

Handles y crosshandles son equivalentes en la presencia de crosscaps.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

• Caso 1: Al menos hay un crosshandle en la superficie \rightarrow esfera con crosscaps y handles.

Lema (1)

Un crosshandle es homeomorfo a dos crosscaps.

Lema (2)

Handles y crosshandles son equivalentes en la presencia de crosscaps.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

• Caso 1: Al menos hay un crosshandle en la superficie \rightarrow esfera con crosscaps y handles \rightarrow esfera crosscaps y crosshandles.

Lema (1)

Un crosshandle es homeomorfo a dos crosscaps.

Lema (2)

Handles y crosshandles son equivalentes en la presencia de crosscaps.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

 Caso 1: Al menos hay un crosshandle en la superficie → esfera con crosscaps y handles → esfera crosscaps y crosshandles → esfera con crosscaps.

Teorema

Toda superficie con borde compacta y conexa es homeomorfa o bien a una esfera con handles o bien a una esfera con crosscaps, junto con k perforaciones.

Demostración.

Por la versión preeliminar del teorema \longrightarrow toda superficie compacta conexa es homeomorfa a una esfera con handles, crosshandles, crosscaps y perforaciones.

- Caso 1: Al menos hay un crosshandle en la superficie \rightarrow esfera con crosscaps y handles \rightarrow esfera crosscaps y crosshandles \rightarrow esfera con crosscaps.
- Caso 2: No hay ni crosshandles ni crosscaps en la superficie \rightarrow esfera con handles.

Teorema de Clasificación, segunda parte

Idea

Grupos isomorfos tienen abelianizados isomorfos.

- Obtenemos las presentaciones de los grupos fundamentales a partir de las representaciones poligonales.
- Calculamos los abelianizados a partir de las presentaciones de los grupos fundamentales.
- Vemos que los abelianizados no son isomorfos.

Conclusiones

Conclusiones

- La representación nos ha permitido formalizar la prueba ZIP y demostrar la segunda parte del teorema.
- Cobinando herramientas de la prueba clásica hemos demostrado el teorema de clasificación de forma rigurosa con las ideas de Conway sin perder la parte intuitiva.