Extremum Estimators – Analytical Exercises

Ryan Benschop

1. Kullback-Leibler information inequality

Claim: Let $\{f(y|x;\theta)\}_{\theta\in\Theta}$ be a class of conditional density functions such that, for each $\theta\in\Theta$, $\mathbb{E}[\ln f(y|x;\theta)]$ exists and is finite. Then, for any $\theta,\theta_0\in\Theta$:

$$\mathbb{P}[f(y|x;\theta) \neq f(y|x;\theta_0)] > 0 \implies \mathbb{E}[\ln f(y|x;\theta)] < \mathbb{E}[\ln f(y|x;\theta_0)]$$

where the expectation is taken with respect to the density $f(y|x;\theta_0)$.

Proof. Suppose $\mathbb{P}[f(y|x;\theta) \neq f(y|x;\theta_0)] > 0$. Notice that the event $f(y|x;\theta) \neq f(y|x;\theta_0)$ is a subset of the event $f(y|x;\theta)/f(y|x;\theta_0) \neq 1$. Hence, the probability measure of the event $f(y|x;\theta)/f(y|x;\theta_0) \neq 1$ is greater than zero. Thus, by Jensen's inequality:

$$\mathbb{E}\left[\ln\left(\frac{f(y|x;\theta)}{f(y|x;\theta_0)}\right)\right] < \ln\left(\mathbb{E}\left[\frac{f(y|x;\theta)}{f(y|x;\theta_0)}\right]\right)$$

where these expectations are taken with respect to the density $f(y|x;\theta_0)$. By the law of iterated expectations:

$$\mathbb{E}\left[\frac{f(y|x;\theta)}{f(y|x;\theta_0)}\right] = \mathbb{E}_x \left[\mathbb{E}\left[\frac{f(y|x;\theta)}{f(y|x;\theta_0)}\middle|x\right]\right]$$
$$= \mathbb{E}_x \left[\int \frac{f(y|x;\theta)}{f(y|x;\theta_0)} f(y|x;\theta_0) dy\right]$$
$$= \mathbb{E}_x \left[\int f(y|x;\theta) dy\right]$$
$$= \mathbb{E}_x [1] = 1$$

Since ln(1) = 0, the above inequality becomes:

$$\mathbb{E}\left[\ln\left(\frac{f(y|x;\theta)}{f(y|x;\theta_0)}\right)\right] < 0$$

Noting that $\ln(f(y|x;\theta)/f(y|x;\theta_0)) = \ln(f(y|x;\theta)) - \ln(f(y|x;\theta_0))$, we have:

$$\mathbb{E}[\ln f(y|x;\theta)] < \mathbb{E}[\ln f(y|x;\theta_0)]$$

as desired. \Box

2. (Information matrix equality) _____

Claim: Let $\{f(y|x;\theta)\}_{\theta\in\Theta}$ be a class of conditional densities. Let $\theta_0\in\Theta$. Then:

$$-\mathbb{E}\left[\frac{\partial^2 \ln f(y|x;\theta_0)}{\partial \theta \partial \theta'}\right] = \mathbb{E}\left[\left(\frac{\partial \ln f(y|x;\theta_0)}{\partial \theta_0}\right) \left(\frac{\partial \ln f(y|x;\theta_0)}{\partial \theta_0}\right)'\right]$$

where the expectation is taken with respect to the density $f(y|x;\theta_0)$.

Proof. Notice, since $f(y|x;\theta)$ is a density:

$$\int f(y|x;\theta)dy = 1$$

Assuming conditions allowing the interchange of differentiation and integration:

$$\frac{\partial}{\partial \theta} \left[\int f(y|x;\theta) dy \right] = 0 \implies \int \frac{\partial}{\partial \theta} f(y|x;\theta) dy = 0$$

Differentiating $\ln f(y|x;\theta)$ with respect to θ , we find:

$$\frac{\partial}{\partial \theta} [\ln f(y|x;\theta)] = f(y|x;\theta)^{-1} \frac{\partial}{\partial \theta} f(y|x;\theta) \implies \frac{\partial}{\partial \theta} f(y|x;\theta) = f(y|x;\theta) \frac{\partial}{\partial \theta} [\ln f(y|x;\theta)]$$

So, the previous equality can be written as:

$$\int f(y|x;\theta) \frac{\partial}{\partial \theta} [\ln f(y|x;\theta)] = 0$$

Differentiating with respect to θ , we have:

$$\int \frac{\partial^2 \ln f(y|x;\theta)}{\partial \theta \partial \theta'} f(y|x;\theta) + \frac{\partial \ln f(y|x;\theta)}{\partial \theta} \frac{\partial f(y|x;\theta)'}{\partial \theta} dy = 0$$

$$\int \frac{\partial^2 \ln f(y|x;\theta)}{\partial \theta \partial \theta'} f(y|x;\theta) + \frac{\partial \ln f(y|x;\theta)}{\partial \theta} \frac{\partial \ln f(y|x;\theta)'}{\partial \theta} f(y|x;\theta) dy = 0$$

Rearranging the expression and evaluating it at $\theta = \theta_0$, noting that in this case the integral gives the relevant expected values with respect to the density $f(y|x;\theta_0)$, we have, as desired:

$$-\mathbb{E}\left[\frac{\partial^2 \ln f(y|x;\theta_0)}{\partial \theta \partial \theta'}\right] = \mathbb{E}\left[\left(\frac{\partial \ln f(y|x;\theta_0)}{\partial \theta}\right) \left(\frac{\partial \ln f(y|x;\theta_0)}{\partial \theta}\right)'\right]$$