

Fundamentals of Deep Learning

Dr Jony Castagna – Hartree Centre

NVidia DLI Ambassador

Agenda

- Part 1: An Introduction to Deep Learning
- Part 2: How a Neural Network Trains
- Part 3: Convolutional Neural Networks
- Part 4: Data Augmentation and Deployment
- Part 5: Pre-Trained Models
- Part 6: Advanced Architectures

Al ...is ALREADY 70 years of RESEARCH!

ML Tribes

Tribe	Origins	Master Algorithm
Symbolists	Logic, philosophy	Inverse deduction
Connectionists	Neuroscience	Backpropagation
Evolutionaries	Evolutionary biology	Genetic programming
Bayesians	Statistics	Probabilistic inference
Analogizers	Psychology	Kernel machines

Trend #1 [Scale]

Trend #1 [Scale]

DEEP LEARNING APPROACH

Input Backward propagation

Forward propagation

Process

- Forward propagation yields an inferred label for each training image
- Loss function used to calculate difference between known label and predicted label for each image
- Weights are adjusted during backward propagation
- Repeat the process

Deep Learning Compared to Other Al

Computing Power

Need a way for our artificial "brain" to observe lots of data within a practical amount of time.

THE BIG BANG IN MACHINE LEARNING

THE EXPANDING UNIVERSE

Big Data GPU Algorithms

api.ai

BLUERIVER

clarifai

visual recognition platform

deep genomics

Genomics genetic interpretation drive.ai Tech

Automotive

®MetaMind

eCommerce & Medical recommendation engines

//// Morpho

Tech computer vision

Orbital Insight

Geospatial predictions from images

nervana

EZ

Alibaba.com

AstraZeneca 🕏

 ∞

Baid的首度

Bloomberg

charles schwab

CISCO

ebay

FANUC

ROBOTICS

Al-as-a-service

YSADAKO

Waste Management sorting robots

SocialEyes*

HOW ARE YOU

Education

teaching robots

1,000+ AI START-UPS

\$5B IN FUNDING

Source: Venture Scanner

yel

DEEP LEARNING IN PRODUCTION

Speech Recognition

Recommender Systems

Autonomous Driving

Real-time Object Recognition

Robotics

Real-time Language Translation

Many More...

What are NN: biological Inspiration

How Do Children Learn?

- Expose them to lots of data
- Give them the "correct answer"
- They will pick up the important patterns on their own

Expert Systems - Limitations

What are these three images?

Difference in Workflow

Classic Machine Learning [1990 : now]

Hand Designed
Features

Model / Mapping

Examples [Regression and SVMs]

Deep/End-to-End Learning [2012 : now]

Simple Features Complex Features Model/ Mapping

Example [Conv Net]

When to Choose Deep Learning

Classic Programming

If rules are clear and straightforward, often better to program it

Deep Learning

If rules are nuanced, complex, difficult to discern, use deep learning

Warnings!!

- 1. Lack of a solid theory!!!
- 2. Lack of solid reference
- 3. Continuous new architectures
- 4. Deep learning frameworks are libraries
- 5. Graph vs imperative
- 6. Matrix orientation

Lack of solid theory!!!

Only 3 main theorems have been found so far:

- 1) NN are universal approximator https://doi.org/10.1016%2F0893-6080%2889%2990020-8
- 2) With more layer the abstraction power grows exponentially https://arxiv.org/abs/1705.05502
- 3) Layer width matters: no many how many you add, if not wide enough some problems cannot be solved! https://arxiv.org/abs/1810.00393

...the rest is a bit of black magic!!!

See also:

https://www.quantamagazine.org/foundations-built-for-a-general-theory-of-neural-networks-20190131/

Graph vs imperative program

(a) A source code snippet of an imperative DL program

Easy to write, difficult to optimize (PyTorch)

(b) A symbolic DL graph generated from loss_fn

Difficult to write, easy to optimize (TensorFlow)

Careful!!

Matrix orientation:

Fortran is matching the mathematical standard!

PyTorch, TensorFlow

$$\begin{pmatrix} 411 & 412 \\ 421 & 422 \\ 431 & 432 \end{pmatrix}$$

$$\begin{pmatrix} 311 & 312 \\ 321 & 322 \\ 331 & 332 \end{pmatrix}$$

$$\begin{pmatrix} 211 & 212 \\ 221 & 222 \\ 231 & 232 \end{pmatrix}$$

$$A(4x3x2) = \begin{pmatrix} 111 & 112 \\ 121 & 122 \\ 131 & 132 \end{pmatrix}$$

and A(32x3x1024x1024) is...?

