

# 第五章

# 贪心算法的设计与分析 原理

程思瑶 计算机科学与技术学院



# 提要

- 5.1 贪心算法的要素
- 5.2 活动选择(activity-selection)问题
- 5.3 Huffman编码
- 5.4 最小生成树问题
- 5.5 贪心算法的理论基础
- 5.6 任务调度问题



#### 29-29 从 11

The state of the s

# Introduction to Algorithms Chapter 16

Pages 370-405



# 5.1 贪心算法的要素

- · Greedy算法的基本概念
- · Greedy算法与动态规划方法的比较
- · Greedy算法的设计步骤



## Greedy算法的基本概念

Charles and the second of the

- Greedy算法的实例
  - 最短路径问题



- Greedy求解过程

Greedy算法不一定产生正确解



- · Greedy算法的基本思想
  - 求解最优化问题的算法包含一系列步骤
  - -每一步都有一组选择
  - -作出在当前看来最好的选择
  - -希望通过作出局部优化选择达到全局优化选择
  - -Greedy算法不一定总产生优化解
- · Greedy算法产生优化解的条件
  - -优化子结构
  - Greedy选择性(Greedy-choice property)



- · Greedy选择性
- 一个优化问题的全局优化解可以通过局部优化选择 得到。
- · Greedy选择性需证明
  - 归纳法
    - 对算法步数归纳或问题规模归纳
  - 交换论证法
    - 在保证最优性不变前提下,从一个最优解逐步替换, 最终得到贪心算法的解



#### • 优化子结构

若一个优化问题的优化解包含它的(剩余)子问题的优化解,则称其具有优化子结构



#### 与动态规划方法的比较

Company of the state of the sta

- 动态规划方法
  - -在每一步所做的选择通常依赖于子问题的解
  - -以自底向上方式, 先解小子问题, 再求解大子问题
- Greedy 方法
  - -在每一步先做出当前看起来最好的选择
  - 然后再求解本次选择后产生的剩余子问题
  - 一每次选择既不依赖于子问题的解,也不依赖于未来的选择
  - 以自顶向下方式,逐步进行贪心选择,不断减少子问题规模



## 与动态规划方法的比较

- 动态规划方法可用的条件
  - -优化子结构
  - -子问题重叠性
- · Greedy方法可用的条件
  - -优化子结构
  - -Greedy选择性
- · 可用Greedy方法时,动态规划方法可能不适用
- · 可用动态规划方法时,Greedy方法可能不适用



## 与动态规划方法的比较

- 例如: 0-1背包问题与部分背包问题
  - -都具有优化子结构
  - -但是,部分背包问题可用贪心策略解决,而0-1背 包问题却不行!
    - 计算每个物品每磅价值v<sub>i</sub>/w<sub>i</sub>, 并按照每磅价值由大到小顺序取物品





# 准确Greedy算法的设计步骤

- 1. 设计贪心选择方法:
  - 贪心选择方法
  - 剩余子问题

很重要!

决定能否得到 全局最优解

- 2. 证明:对于1中所求解的问题具有优化子结构
- 3. 证明:对于1中所求解的问题具有贪心选择性
- 4. 按照1中设计的贪心选择方法设计算法



# 5.2活动选择(activity-selection)问题

- 问题定义
- 问题求解
  - 设计贪心选择方法
  - 优化解的结构分析
  - Greedy选择性证明
  - 算法设计
  - 算法复杂性分析



#### 问题的定义

- 活动
  - •设S={1,2,...,n}是n个活动的集合,所有活动共享一个资源,该资源同时只能为一个活动使用
  - 每个活动i有起始时间 $S_i$ ,终止时间 $f_i$ , $S_i \leq f_i$
- ●相容活动
  - •活动i和j是相容的,若 $S_j$  $\preceq f_i$ 或 $S_i$  $\preceq f_j$ ,即





#### • 活动选择问题定义

-输入:  $S=\{1, 2, ..., n\}$ ,

$$F = \{ [s_i, f_i] \}, n \ge i \ge l$$

-输出: S的最大相容活动集合

#### 贪心思想:

为了选择最多的相容活动,每次选fi最小的活动,使我们能够选更多的活动

剩余子问题:  $S_i = \{j \in S \mid s_j \geq f_i\}$ 



## 优化解结构分析

引理1 设 $S=\{1,2,...,n\}$ 是n个活动集合, $[s_{i,j}f_{i,j}]$ 是活动i 的起始终止时间,且 $f_{1}=f_{2}=\dots=f_{n}$ ,S的活动选择问题的某个优化解包括活动1.

证设A是一个优化解,按结束时间排序A中活动, 设其第一个活动为k,第二个活动为j......



如果k=1,引理成立. 如果 $k\neq 1$ ,令 $B=A-\{k\}\cup\{1\}$ ,由于A中活动相容, $f_1\leq f_k\leq s_j$ ,B中活动相容. 因为|B|=|A|,所以B是一个优化解,且包括活动1.



定理1. 设 $S=\{1,2,...,n\}$ 是n个活动集合, $[s_{i,}f_{i}]$ 是活动i 的起始终止时间,且 $f_{1}$  $\leq f_{2} \leq .... \leq f_{n}$ ,设A是S的调度问题的一个优化解且包括活动I,则A'=A- $\{1\}$ 是S'= $\{i \in S | s_{i} \geq f_{i}\}$ 的调度问题的优化解.

证.显然, A'中的活动是相容的.

我们仅需要证明A'是最大的.

#### 定理1说明活动选择问题具有优化子结构

D及D的一个情.

由于|A|=|A'|+1, |B|=|B'|+1>|A'|+1=|A|, 与A最大矛盾.



#### Greedy选择性

定理2. 设  $S=\{1, 2, ..., n\}$  是 n 个活动集合,  $f_1 \leq f_2 \leq ... \leq f_n$ ,  $f_{l_0}=0$ ,  $l_i$  是 $S_i=\{j\in S\ |\ s_j\geq f_{l_{i-1}}\}$  中具有最小结束 $_k$ 时间  $f_{l_i}$  的活动.设A是S的包含活动l的优化解,则 $A=\bigcup\{l_i\}$ 

 $^{2}$ , 由定理1, $A=\{l_{1}=l_{1}^{=8}\cup A_{1}\}$ .  $S = \{ j \in S \mid s_i > f_i - f_j \}$ 

 $S_1 = \{ j \in S \mid s_i \ge f_{lo} = 0 \}$  $S_2 = \{ j \in S \mid s_i \ge f_{l_1} = f_1 \}$  $S_3 = \{ j \in S \mid s_i \ge f_{l_2} \}$ 

 $S_k = \{ j \in S \mid s_i \geq f_{l_{k-1}} \}$ 

| i     | 1  | 2       | 3  | 4                   | $k5^{l}$             | 6     | 7  | 8          | k9              | 10  | 11 |
|-------|----|---------|----|---------------------|----------------------|-------|----|------------|-----------------|-----|----|
| $s_i$ | 归邹 | 7 165 1 | 父3 | $A_{\mathfrak{z}}=$ | $\bigcup_{3}\{l_{i}$ | } 5 + | 龙, | $\sqrt{8}$ | $\bigcup \{l_i$ | } 2 | 12 |
| $f_i$ | 4  | 5       | 6  | 7                   | $=2_{8}$             | 9     | 10 | 11         | l=12            | 13  | 14 |



• 贪心选择方法

- 选择:
  - •每次选择具有最小结束时间的活动 $f_i$
- 剩余子问题:
  - $S_i = \{ j \in S / s_j \ge f_i \}$



#### • 算法

```
(设f_1 \leq f_2 \leq \dots \leq f_n已排序)
Greedy-Activity-Selector(S, F)
n\leftarrowlenyth(S);
A←{1}
j←1
For i\leftarrow 2 To n Do
     If s_i \ge f_i
      Then A \leftarrow A \cup \{i\}; j \leftarrow i;
Return A
```

## 复杂性分析

• 算法

```
(\partial f_1 \leq f_2 \leq \dots \leq f_n已排序)
Greedy-Activity-Selector(S, F)
n \leftarrow lenyth(S);
                                      • 如果结束肘间已排序
A \leftarrow \{1\}
                                         T(n) = \theta(n)
                                     • 如果 结束肘间未排序
j←1
For i \leftarrow 2 To n Do
                                     T(n) = \theta(n) + \theta(n\log n) = \theta(n\log n)
     If s_i \ge f_i
      Then A \leftarrow A \cup \{i\}; j \leftarrow i;
Return A
```



# 算法正确性证明

水水水 (1.10米·林) (1.10米·林) (1.10米·林) (1.10米·林) (1.10米·林) (1.10米·林)

定理3. Greedy-Activity-Selector算法能够产生最优解.

#### 证.

- (1) 由定理1可知活动选择问题具有优化子结构
- (2) 由定理2知贪心选择方法具有Greedy选择性
- (3) Greedy-Activity-Selector算法确实按照定理2的Greedy选择性进行局部优化选择.



# 5.3 Huffman 编码

- 问题定义
- 问题求解
  - 设计贪心选择方法
  - 优化解的结构分析
  - Greedy选择性证明
  - 算法设计
  - 算法复杂性分析



# 问题定义

- 二进制字符编码
  - -每个字符用一个二进制0、1串来表示.
- 固定长编码
  - -每个字符都用相同长度的0、1串表示.
- 可变长编码
  - -经常出现的字符用短码,不经常出现的用长码
- 前缀编码
  - 无任何字符的编码是另一个字符编码的前缀









- 编码树T的代价
  - -设C是字母表(给定文件中的字母集合), $\forall c \in C$
  - f(c)是c在文件中出现的频数
  - $-d_T(c)$ 是叶子c在树T中的深度,即c的编码长度
  - -T的代价是编码一个文件的所有字符的代码位数:

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$



#### • 优化编码树问题

输入: 字母表  $C = \{c_1, c_2, ..., c_n\}$ , 频数表  $F = \{f(c_1), f(c_2), ..., f(c_n)\}$ 

输出: 具有最小B(T)的C前缀编码树

#### 贪心思想:

循环地选择具有最低频数的两个结点, 生成一棵子树, 直至形成树

剩余子问题: ???



#### 贪心思想:

循环地选择具有最低频数的两个结点, 生成一棵子树, 直至形成树

f: 5

e: 9

c: 12

b: 13

d: 16

a: 45





#### 设计贪心选择方法

- 贪心选择方法
  - 选择方法:
    - •每次选择具有最低频数的两个节点x 和y, 构造一个子树:



-剩余子问题的结构:

• 
$$C' = C - \{x, y\} \cup \{z\}$$



## 优化解的结构分析

引理1. 设T是字母表C的优化前缀树, $\forall c \in C$ ,f(c)是c在文件中出现的频数.设x、y是T中任意两个相邻叶结点,z是它们的父结点,则z作为频数是f(z)=f(x)+f(y)的字符, $T'=T-\{x,y\}$ 是字母表 $C'=C-\{x,y\}\cup\{z\}$ 的优化前缀编码树.







#### 证. 往证B(T)=B(T')+f(x)+f(y).

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

$$= f(x)d_{T}(x) + f(y)d_{T}(y) + \sum_{c \in C' - \{z\}} f(c)d_{T}(c)$$

$$+ f(x)d_{T}(x) = d_{T}(y) = d_{T'}(z) + 1$$

$$= f(x)(d_{T'}(z)+1)+f(y)(d_{T'}(z)+1)+\sum_{c\in C'-\{z\}}f(c)d_{T'}(c)$$

$$= f(x) + f(y) + f(x)d_{T'}(z) + f(y)d_{T'}(z) + \sum_{c \in C' - \{z\}} f(c)d_{T'}(c)$$

$$+ f(x) + f(y) = f(z)$$

$$= f(x) + f(y) + f(z)d_{T'}(z) + \sum_{c \in C' - \{z\}} f(c)d_{T'}(c)$$

=B(T')+f(x)+f(y).

#### 若T'不是C'的优化前缀编码树,

则必存在T",使B(T)")<B(T).

因为Z是C'中字符,它必为T",中的叶子. 把结点x与y加入T",作为Z的子结点,则得到C的一个如下前缀编码树T"。









#### 如上可证:

$$B(T''') = B(T'') + f(x) + f(y)$$
。  
由于 $B(T'') < B(T')$ ,

$$B(T''') = B(T'') + f(x) + f(y) < B(T') + f(x) + f(y) = B(T)$$

与T是优化的矛盾,故T'是C'的优化编码树.



# Greedy选择性

引理2.设C是字母表, ∀c∈C, c具有频数f(c), x、y 是C中具有最小频数的两个字符,则存在一 个C的优化前缀树, x与y的编码具有相同最 大长度, 且仅在最末一位不同.

优化前缀树问题具有Greedy选择性.

证:若T是C的优化前缀树,如果x和y是具有最大深度的两个兄弟字符,则命题得证。

若不然,设b和c是具有最大深度的两个兄弟字符:



不失一般性,设 $f(b) \leq f(c)$ ,  $f(x) \leq f(y)$ . 因 $x \leq y$ 是具有最低频数的字符,  $f(x) \leq f(y) \leq f(b) \leq f(c)$ .

交换T的b和·····'x, 从T构造T'; 交换T'的c和y, 从T'构造T''



#### 往证T′是最优化前缀树.

B(T)-B(T')

$$= \sum f(c)d_T(c) - \sum f(c)d_{T'}(c)$$



$$= f(x)d_T(x) + f(b)d_T(b) - f(x)d_T(b) - f(b)d_T(x)$$

$$= (f(b)-f(x))(d_T(b)-d_T(x)).$$

 $:: f(b) \ge f(x), d_T(b) \ge d_T(x)$  (因为b的深度最大)

 $\therefore B(T)-B(T')\geq 0, B(T)\geq B(T')$ 

同理可证 $B(T') \ge B(T'')$ . 于是 $B(T) \ge B(T'')$ .

由于T是最优化的,所以 $B(T) \leq B(T)$ .

于是, B(T)=B(T''), T''是C的最优化前缀编码树.

在T"中,x和y具有相同最大长度编码,且仅最后位不同.









## 算法的设计

### • 基本思想

- 一循环地选择具有最低频数的两个结点,生成一棵子树,直至形成树
- 例子: f:5, e:9, c:12, b:13, d:16, a:45



f:5 e:9 c:12 b:13 d:16 a:45

第一步: c:12 b:13 14 d:16 a:45 f:5 e:9









## • Greedy算法 (Q是min-heap)

 $\operatorname{Huffman}(C, F)$ 

- 1.  $n \leftarrow |C|$ ;  $Q \leftarrow 根据F排序C$ ; T 为一个空树;
- 2. FOR  $i \leftarrow 1$  To n-1 Do
- 3.  $z \leftarrow Allocate-Node();$
- 4.  $left[z] \leftarrow x \leftarrow \text{Extract-min}(Q) /* \times Q \in \&x*/;$
- 5.  $right[z] \leftarrow y \leftarrow Extract-min(Q) /* 从Q删除y */;$
- 6.  $f(z) \leftarrow f(x) + f(y)$ ;
- 7. Insert(Q, z, f(z));
- 8. Return Extract-min(Q) /\* 返回树的根\*/



### 复杂性分析

```
Huffman(C, F)

1. n \leftarrow |C|; Q \leftarrow C(为C按照字符频数建立堆); T为一个空树;

2. FOR i \leftarrow I To n - I Do

3. z \leftarrow \text{Allocate-Node}();

4. left[z] \leftarrow x \leftarrow \text{Extract-min}(Q) /* \mathcal{M}Q \oplus \mathbb{R} x^* /;

5. right[z] \leftarrow y \leftarrow \text{Extract-min}(Q) /* \mathcal{M}Q \oplus \mathbb{R} y^* /;

6. f(z) \leftarrow f(x) + f(y);

7. Insert(Q, z, f(z));

8. Return Extract-min(Q) /* 返回树的根*/
```

- 第1步: 建堆*O(n)*
- 每次循环: O(logn),循环n-1次: O(nlogn)
- T(n)=O(nlogn)



### 正确性证明

定理3. Huffman算法产生一个优化前缀编码树证. 由于引理1、引理2成立,

且Huffman算法按照引理2的Greedy选择性确定的规则进行局部优化选择,所以Huffman算法产生一个优化前缀编码树。



# 5.4 最小生成树问题

- 问题定义
- 问题求解
  - -设计贪心选择法
  - -优化解结构分析
  - Greedy选择性证明
  - Kruskal算法
  - 算法复杂性



## 问题的定义

### • 生成树

- 设G=(V,E)是一个边加权无向连通图. G的生成树是无向树 $T=(V,E_T),E_T\subseteq E$ .
- 生成树的权
  - •如果  $W: E \rightarrow \{ x \} \}$  是G的权函数,T的权值 定义为 $W(T) = \sum_{(u,v) \in T} W(u,v)$ .



• G的最小生成树是W(T)最小的G之生成树.



输入: 无向连通图G=(V,E), 权函数W

输出: G的最小生成树







## • 实例











## 设计贪心选择方法

•基本思想



• 初始: A=空; 构造森林 $G_A=(V,A)$ ;



设A是一个最小生成树的 边子集合,如果A∪{(u,v)} 也是一个最小生成树的边 子集合,则(u,v)称为对A 是安全的.

•循环:选择连接 $G_A$ 中两棵树的最小安全边加入A,直至 $G_A$ 是一棵生成树.



- · 一般算法的定义 Generic-MST(G, W)
  - 1.  $A=\Phi$ ;
  - 2. While A 不是生成树 Do
  - 3. 寻找一个最小安全边(u, v);
  - 2.  $A=A\cup\{(u,v)\};$

算法的关键!

3. Return A

设A是一个最小生成树的 边子集合,如果A∪{(u,v)} 仍是一个最小生成树的 边子集合,则(u,v)称为 对A是安全的.



- 贪心选择方法
  - 贪心选择:
    - 从森林中选择一条最小安全边连接两棵子树为一棵子树, 直至森林成为一棵树





## 优化解的结构分析

定理1. 设T是G的最小生成树. 如果T包含子树 $T_1$ 和 $T_2$ ,  $T_1$ 是G的子连通图 $G_1$ 的生成树, $T_2$ 是G的子连通图 $G_2$ 的生成树,则 $T_1$ 是 $G_1$ 的最小生成树, $T_2$ 是 $G_2$ 的最小生成树。

### 证. (略)





## Greedy选择性

定义1. 无向图G=(V,E)的一个划分是V的划分(S,V-S).

定义2. 若 $u \in S$ ,  $v \in V - S$ , 则(u, v) 称为划分(S, V - S) 的交叉边.

定义3. 如果边集合A中没有边是划分(S, V-S)的交叉边,则称划分(S, V-S)尊重A.

定义4. 划分(S, V-S)的交叉边(u, v)称为轻边,如果在所有(S, V-S)的交叉边中,(u, v)的权值最小.





定理2. 设G=(V,E)是具有边加权函数W的无向连通图, $A\subseteq E$ 是包含在G的某最小生成树中的边集合,(S,V-S)是G的尊重A的任意划分,(u,v)是(S,V-S)的交叉轻边,则(u,v)对A是安全的.

证.

令T是包含A的最小生成树。 若(u, v)属于T,则(u, v)对A是安全的。 若(u, v)不属于T.

我们构造一个G的最小生成树T',使其包含 $A \cup \{(u, v)\}$ ,从而证明(u, v)安全.

设A是一个最小生成树的边子集合,如果A∪{(u, v)}也是一个最小生成树的边子集合,则(u, v) 称为对A是安全的.



- · S=黄结点集合
- V-S=蓝结点集合
- · A=红边集合

由于u和v在划分(S, V-S)的两边,T至少存在一条交叉边在从u到v的路径p中,设该交叉边为(x,y).由于划分尊重A,故(x,y)不在A中。删除p中的(x,y),增加(u,v),得到 $T'=T-\{(x,y)\}\cup\{(u,v)\}$ .

往证T'是最小生成树。

因为(u, v)是交叉轻边,(x, y)是交叉边, $W(u, v) \leq W(x, y)$ .

 $W(T')=W(T)-W(x,y)+W(u,v)\leq W(T)$ 由于T是最小生成树,W(T')=W(T). T'是最小生成树, $A\cup\{(u,v)\}\subseteq T'$ , (u,v)对于A是安全的.



推论1. 设G=(V,E)是具有边加权函数W的无向连通图,  $A\subseteq E$ 是包含在G的某个最小生成树中的边集合,  $C=(V_C, E_C)$ 是森 林 $G_A=(V,A)$ 中的树. 如果(u,v)是连接C和 $G_A$ 中另一个树的交 叉轻边,则(u, v)对A是安全的.

证. 划分 $(V_C, V-V_C)$ 尊重A, 因为A的边要么在C中,要么在  $G_A=(V,A)$ 的另一个树中. (u,v)是关于这个划分的交叉轻边. 于是, (u, v)对A是安全的.







### •基本思想

找到连接森林G(V,A)中两棵树的安全交叉轻边加入A,直至G(V,A)成为一棵树。



### MST-Kruskal(G, W)

- 1. A=Ф;
- 2. For  $\forall v \in V[G]$  Do
- 3. Make-Set(v); /\* 建立只有v的集合 \*/
- 4. 按照W值的递增顺序排序E[G];
- 5. For \(\( u, v \) ∈ E[G] (按W值的递增顺序) Do
- 6. If  $Find-Set(u) \neq Find-Set(v)$
- 7. Then  $A=A\cup\{(u,v)\}$ ; Union(u,v);
- 8. Return A



# 算法复杂性

#### MST-Kruskal(*G*, *W*)

- 1. A=Ф;
- 2. For  $\forall v \in V[G]$  Do
- 3. Make-Set(v); /\* 建立只有v 的集合 \*/
- 4. 按照W值的递增顺序排序E[G];
- For ∀(u, v) ∈ E[G] (按W值的递 增顺序) Do
- 6. If  $Find-Set(u) \neq Find-Set(v)$
- 7. Then  $A=A \cup \{(u, v)\};$  Union(u, v);
- 8. Return A

- $\sim n=|V|, m=|E|$ 
  - 第4步需要时间: O(mlogm)
  - 第2-3步执行O(n)个Make-Set操作
  - 第5-7步执行O(m)个Find-Set和Union操作
  - 需要时间:  $O(m\alpha(n))$
- · m≥n-1(因为G连通),由α(n)<logn<logm
- **总时间复杂性**: *O(mlogm)*

集合操作的复杂性见Intro. To Algo. 第21章 (498-509)



- 定理2. MST-Kruskal(G, W)算法能够产生图 G的最小生成树.
  - 证.因为算法按照Greedy选择性进行局部优化选择,并且每次选择的都是最小边.



## 5.5 贪心算法的基础理论

- Matroid (拟阵)
- Matroid 实例
- Matroid的性质
- · 加权Matroid上的Greedy算法
- 算法的正确性



### Matroid (拟阵)

### · Matroid 定义

Matroid是一个序对M=(S, I),满足:

- (1) S是一个有限非空集合.
- (2)  $I \subseteq 2^S$ , I 非空,I 中的子集称为S 的独立子集.
- (3) 遗传性: 如果 $A \in I$ ,  $B \subseteq A$ , 则 $B \in I$
- (4) 交換性: 如果 $A \in I$ ,  $B \in I$ , A < B, 则  $\exists x \in B A$  使得 $A \cup \{x\} \in I$ .

遗传性和交换性是拟阵最根本的2条性质,拟阵上的其他性质都是基于这2个性质发展出来的



### · 实例(Graphic Matroid)

定义1. 设 G=(V,E) 是一个无向连通图, $|E|\geq 1$ .由 G 确定的  $M_G=(S_G,I_G)$ 定义如下:  $S_G$ 是G的边集合E,  $I_G=\{A|A\subseteq E,G_A(V,A)$ 是森林}.

定理1. 如果G是一个无向连通图,则 $M_G$ = $(S_G,I_G)$ 是一个拟阵.

- 证. (1)  $S_G$ 非空有限性:  $S_G$ =E是一个非空有限集合.
  - (2)  $I_G$ 的非空性:  $\forall e \in E, G_e(V, \{e\})$ 是一个森林, $\{e\} \in I_G$ ,于是, $I_G$ 是 $S_G$ 的非空集族.
  - (3) M<sub>G</sub>满足遗传性:

如果 $A \in I_G$ ,  $B \subseteq A$ , 则 $G_B(V, B)$ 是一个森林. 于是, $B \in I_G$ ,  $M_G$ 满足遗传性.



定理1. 如果G是一个无向连通图,则 $M_G$ = $(S_G, I_G)$ 是一个拟阵.证(续).

### (4) M<sub>G</sub>满足交换性:

设 $A \in I_G$ ,  $B \in I_G$ , |A| < |B|.

图论定理:具有k条边的森林具有|V|-k棵树.

 $G_A=(V,A)$ 和 $G_B=(V,B)$ 分别具有|V|-|A|和|V|-|B|棵树.由于|V|-|A|>|V|-|B|, $G_B$ 中必存在树T,T的节点在 $G_A$ 的不同树中.否则 $G_A$ 中至少有一棵树的节点不在 $G_B$ 中,与 $G_B$ 的节点集合为V矛盾.

由于T是连通的,T必包含边(u,v): u,v在 $G_A$ 的不同树中,于是, $(V,A\cup\{(u,v)\})$ 是森林, $A\cup\{(u,v)\}\in I_G$ , $(u,v)\in B$ -A, $M_G$ 满足交换性.



### · Matroid的性质

- 定义2. 设M=(S, I)是一个Matroid,  $A \in I$ . 如果 $A \cup \{x\} \in I$ ,  $x \notin A$ ,  $x \notin A$  的一个扩展(extension).
- 定义3. 设M=(S, I)是Matroid,  $A \in I$ . 若A没有extension, 则称A为最大独立子集合.
- 定理2. 一个Matroid的所有最大独立子集合都具有相同大小.
  - 证. 设A是Matroid M的最大独立子集合,而且存在M的另一个独立子集合B, |A|<|B|.

根据M的交换性,  $\exists x \in B - A$  使 $A \cup \{x\} \in I$ , 与A 最大矛盾.



## **加权Matroid上的Greedy**算法

· Matroid的最优独立子集

### 实际背景:

很多可用Greedy算法获得最优解的问题可以归结为在加权Matroid中寻找最优独立子集问题,即给定M=(S,I)和权函数W,找到独立子集 $A \in I$ ,使得W(A)最大。



- 实例1: 最大生成森林问题
  - 问题定义

输入: 无向图G=(V,E), |E|>0, 权函数 $W:E\rightarrow$ 正整数集

输出: 边子集合 $A\subseteq E$ ,  $G_A(V,A)$ 是森林, W(A)最大

- 转换为加权Matroid上寻找最优独立子集问题
  - 构造:

 $M_G = (S_G, I_G), S_G = E, I_G = \{A | A \subseteq E, G_A(V, A)$ 是森林 $\}, M_G$  是拟阵

- • $M_G$ 的最优独立子集A满足:
  - -(V, A)是森林
  - W(A)最大



· 加权Matroid最优独立子集问题

输入: Matroid M=(S, I), 函数 $W: S \rightarrow$ 正数集

输出: M的独立子集 $A \in I$ , 使得W(A)最大



## 设计贪心选择方法

### · 贪心选择方法

从空集合A开始,每次选择权值最大的 $x \in S$ ,扩展A,使 $A \cup \{x\} \in I$ 

引理1.设M=(S, I)是一个Matroid. 如果 $\{x\} \notin I$ ,则x不是任何独立子集的元素.

证. 设x是独立子集A的元素, 即 $x \in A$ ,  $A \in I$ . 由M的遗传性,  $\{x\} \in I$ , 矛盾.

推论1.任何元素一旦不能被初始选中,则永远不会被选中.



## 设计贪心选择方法

### 贪心选择方法

从空集合A开始,每次选择权值最大的 $x \in S$ ,扩展A,使 $A \cup \{x\} \in I$ 

第一次选中X之后,剩余子问题:

 $S'=S-\{y \mid W(y)>W(x)\}-\{x\}$   $I'=\{B\subseteq S' \mid B\cup \{x\}\in I\}$  M'的权函数与M的权函数相同.

(如果元素y一旦没被选中, y不会属于任何最优独立子集)



## Greedy选择性

定理1. 设M=(S,I)是一个加权Matroid, W是M的权函数, S接W值递减排序. 设x是S中第一个满足 $\{x\}\in I$ 的元素, 则存在一个M的最 优独立子集 $A, x\in A$ .

证. 若存在最优独立子集A包含x,则定理得证.

否则,设B是任意非空最优独立子集, $x \notin B$ .

S中x之前的元素y必不在B中,否则由遗传性, $\{y\} \in I$ ,

与 " $x \in S$ 中第一个满足 $\{x\} \in I$ 的元素"矛盾。

显然,  $\forall z \in B$ ,  $W(x) \ge W(z)$ . 如下构造含x的优化子集A:

初始:  $A = \{x\} \in I$ ;

用交换性:  $\forall z \in B-A$ ,  $\exists A \cup \{z\} \in I$ ,  $A=A \cup \{z\}$ , 直至|A|=|B|.

显然,  $\exists w \in B, A = (B - \{w\}) \cup \{x\}.$ 

于 是,  $W(A)=W(B)-W(w)+W(x)\geq W(B)$ .

因为B是优化子集,所以 $W(A) \leq W(B)$ , W(A) = W(B).

A是优化子集,且 $x \in A$ .

## 优化解结构分析

定理2. 设x是第一个被Greedy算法选中的元素,A是包含x的最优独立子集, $A'=A-\{x\}$ 是子问题M'=(S',I')的最优独立子集. M'=(S',I')定义如下:

 $S'=S-\{y|W(y)>W(x)\}-\{x\}$   $I'=\{B\subseteq S'|B\cup \{x\}\in I\}$  M'的权函数与M的权函数相同.

#### 证.

因为 $A=A'\cup\{x\}\in I$ , 所以 $A'=A-\{x\}\in I'$ . (根据I'的定义)

A'不是M'的最优独立子集,则存在M'的一个最优独立子集B使得:W(B)>W(A').

由于B∪{x}∈I, W(A)=W(A')+W(x), W(B∪{x})=W(B)+W(x)>W(A')+W(x)=W(A), 与A最优矛盾.



### Greedy(M, W)

- $1 A = \Phi$ ;
- 2 桉权W值递减排序S;
- 3 For ∀x ∈S (按W(x)递减顺序) DO
- 4 If  $A \cup \{x\} \in I$  /\* 选择目前W(x)最大的x \*/
- 5 Then  $A=A\cup\{x\}$ ;
- 6 Return A.

### 时间复杂性

step 2:  $O(|S|\log|S|)$ 

step 4: O(f(|S|))

 $T(|S|) = O(|S|\log|S| + |S|f(|S|))$ 



## Greedy正确性

引理2. Greedy算法返回一个独立子集合.

证. 设Greedy返回集A, 对A 做数学归纳法.

当|A|=0时,A是空集,由遗传性,A是独立子集合.

 $\mathcal{U}|A| \leq k$ 时, A是独立子集.

|A|=k+1时, A 由第4-5步得到,  $pA=A\cup \{x\}$ .

第4步已判定 $A \cup \{x\} \in I$ , $A = A \cup \{x\}$  是独立子集.



## Greedy正确性

- 定理3.设M=(S, I)是一个Matroid, W是M的权函数, Greedy(M, W)返回一个M的最优独立子集.
  - 证.①. 引理1说明,任何没有被Greedy选中的S元素,以后不会被选中,可以不再考虑.
    - ②. 算法每次循环都按照定理1给出方法进行贪心选择最大元素x.
    - ③. 算法每次循环都按照定理2的优化子结构求解子问题M'的最优独立子集的问题.
    - 于是, Greedy(M, W)返回一个M的最优独立子集.



## 5.6 任务调度问题

展示如何把一个可用Greedy方法求解的问题转换为求解拟阵最优子集问题



- 单位时间任务需要一个单位时间就能够完成的任务
- 单位时间任务的调度问题

#### 输入:

单位时间任务集 $S=\{1, 2, ..., n\}$ 正整数任务期限 $D=\{d_1, d_2, ..., d_n\}$ ,任务i须在 $d_i$ 前完成 非负权集 $W=\{w_1, w_2, ..., w_n\}$ ,任务i不在 $d_i$ 前完成罚款 $w_i$ 输出:

S的一个调度(S的一个执行顺序),具有最小总罚款数



- · 转换为加权Matroid的最优子集问题
  - 定义1. 设S是一个任务调度.任务i在S中是迟任务如果它在 $d_i$ 之后完成; 否则是早任务.
  - 定义2. 如果在一个调度中,早任务总是先于迟任务,则称该调度具有早任务优先形式.
  - 定义3. 如果一个调度具有早任务优先形式而且按期 限单调递增顺序执行各个早任务,则称该调度 具有规范化形式.

例如:任务集合 $\{1,2,3,4\}$ ,期限集合 $\{d_1=1,d_2=1,d_3=4,d_4=3\}$ ,W= $\{4,6,3,8\}$ 可能的任务调度:1,2,4,3或2,1,4,3或1,3,4,2或1,4,3,2……其中,1,3,4,2及1,4,3,2是早任务优先调度。调度1,4,3,2具有规范化形式。





例如:任务集合 $S=\{1,2,3,4\}$ ,期限集合 $\{d_1=1,d_2=1,d_3=4,d_4=3\}$   $N_1(S)=2$ , $N_2(S)=2$ ,  $N_3(S)=3$ ,  $N_4(S)=4$ .

岩 $A = \{1,3,4\}$  ,则 $N_1(A) = 1$ , $N_2(A) = 1$ , $N_3(A) = 2$ , $N_4(A) = 3$ ;

定义4. 任务集合A标为独立集如果存在一个关于A的调度,使得A中的任务皆为早任务.

例. 一个优化调度的早任务集合是独立集.

#### 以下:

用I表示所有独立任务集合的集族用 $N_t(A)$ 表示任务集合A中期限小于等于t的任务数



任务集合 $\{1,2,3,4\}$ , 期限集合 $\{d_1=1,d_2=1,d_3=4,d_4=3\}$  $1,2,4,3 \Rightarrow 1,4,3,2$   $1,3,4,2 \Rightarrow 1,4,3,2$ 

### • 任务调度的规范化

第一步: 将调度安排成早任务优先形式, 即如果早任务x跟在迟任务y之后, 交换x和y的位置;

\*早任务优先形式不改变任何任务的早或迟状态第二步:如果任务i和j是早任务,而且分别完成于时刻k和k+1, $d_j < d_i$ ,交换i和j的位置.



寻找最优调度问题成为寻找最优早任务集合A的问题.一旦A被确定后,就可以按期限单调递增序列出A中的所有元素,然后按任意顺序列出迟任务(即-A)



### 

- 引理1. 对于任意任务集合A,下面的命题等价:
  - 1.A是独立集合,
  - 2. 对于 $t=1, 2, ..., n, N_t(A) \le t$ ,
  - 3. 如果按照期限递增顺序调度A中任务,则A中无迟任务。
- 证.  $1\rightarrow 2$ . 如果 $N_t(A)>t$ ,则有多于t个任务需要在t时间内完成,不存在使得A中无迟任务的调度.
  - 2→3. 若A中任务依其期限递增排列,则2意味着排序后, 在时间t之前必须完成的A中任务数至多为t.于是,按期 限递增顺序调度A中任务,A无迟任务.
  - 3→1. 显然.



定理1. 若S是一个带期限的单位时间任务的集合,且I为所有独立任务集构成的集族,则M=(S,I)是一个Matroid.

- 证明.1.5的非空有限性:显然.
  - 2. I的非空性:

因为单个任务集属于1,所以1非空.

3. 遗传性:



#### $N_t(A) = A$ 中期限小于等于t的任务数

 $A=\{1^1, 3^2, 4^3, 10^7, 8^8\}, B=\{5^1, 2^3, 4^3, 6^5, 10^7, 9^{10}, 7^{11}\}$   $i^d$ 表示任务i期限为d,选B中哪个任务加入A?

### 4. 交换性:

 $A'=A\cup\{9^{10}\}=\{1^1, 3^2, 4^3, 10^7, 8^8, 9^{10}\}$ 

设 $A, B \in I, |B| > |A|,$  往证 $\exists x \in B - A, A \cup \{x\} \in I.$  由于|B| > |A|, 不可能对于所有 $t, N_t(B) \le N_t(A)$  令  $k = max\{t \mid N_t(B) \le N_t(A)\}.$ 

$$\begin{array}{c|cccc}
N_t(B) \leq N_t(A) & N_t(B) \leq N_t(A) & N_t(B) > N_t(A) \\
\hline
t < k & t = k & t > k
\end{array}$$

于是,B中包含了比A中更多的具有期限k+1的任务. 设 $x \in B-A$ ,x具有期限k+1.

 $A'=A\cup\{x\}$ . 往证A'是独立集.

对于 $1 \le t \le k$ ,  $N_t(A') = N_t(A) \le t$ , 因为A 是独立集.

对于 $k \triangleleft \leq n$ ,  $N_t(A'=A \cup \{x\}) \leq N_t(B) \leq t$ , 因为B是独立集. 于是, A'是独立集.



- · 为M=(S, I)定义权值
  - $> w = \max\{w_1, w_2, ..., w_n\}$
  - $\forall x_i \in S, W(x_i) = w_i.$
  - $\forall A \in I, W(A) = nw \sum_{y \in S-A} W(y)$
- ·任务调度问题转换为M=(S, I)上寻找最大独立子 集(或优化子集)问题
  - 若A是优化子集,则 $W(A)=nw-\Sigma_{y\in S-A}W(y)$ 最大
  - 即罚款 $\sum_{y \in S-A} W(y)$ 最小