Algorithm to triangulate a non-monotone (normal) polygon

- Step 1: Partition a Polygon to monotone pieces
- Step 2 :Triangulate each monotone piece (can be done in linear time)
- If step 1 can be done efficiently (less than $O(n^2)$), then we can develop an efficient algorithm than the current $O(n^2)$ algorithm for triangulating a polygon
- We proceed focusing on a normal polygon

Restrict our choice of a vertex to connect to:

• If we can restrict the choice of a vertex

Horizontal trapezoidalization

Removing the interior cusp

Downward pointing cusps

Eg: 8,6,12

Upward pointing cusp

Eg: 11, 15

Monotone sub polygons

Idea of the Algorithm for trapezoidalization

- Uses a technique : Line Sweep (Plane Sweep)
- Line sweep (Nievergelt & Preparata 1982)
- Sweep a horizontal line over the plane maintaining a data structure along the line

Line Sweep

- The horizontal line L sweeps downward stopping at each vertex
- The sweep stops at discrete events and the data structure is updated

Updating the data structure

- The processing required at each vertex is finding the edge immediately to the left and immediately to the right of v along L
- To do this efficiently, a sorted list (LIST) of polygon edges pierced by L is maintained all times
- Hence, the vertices should be sorted with respect to x coordinate (For sorting : O(n logn))

• For example in the figure, LIST = $(e_{19}, e_{18}, e_{17}, e_6, e_8, e_{10})$

 How to find out v lies between which two lines (efficiently)? How to find out v lies between which all lines (efficiently)?

- Suppose LIST = $(e_{19}, e_{18}, e_{17}, e_{6}, e_{8}, e_{10})$ is available
- Suppose e_i is a pointer to an edge from which the coordinates of its endpoints can be found out
- Suppose the vertical coordinate of v (and L) is y which is known

We have to find out the x coordinate of the intersection

between L and e_i

Eg: How to find out v lies between which all lines (efficiently)?

- We have pointers for e₁₉, e₁₈, e₁₇, e₆, e₈, e₁₀
- We know y coordinate of L
- We know the coordinates of v
- We can compute:
 - x coordinate of the intersection bw L and all e_i

• Thus we know v lies bw e_{17} and e_6

Complexity of maintaining LIST

- If we search the whole LIST to search v lies between which all edges, this will take O(n)
- Suppose the list is maintained as a height balanced tree, the search can be done in O(log n)
- It is enough to show that all the operations on the data structure take place in O(log n) time
- What all are the operations on this data structure?
- The operations depends on events.
- What all are the events possible?

Events: Example

- Assume:
 - v falls between edgesa and b on L
 - v be shared by edges cand d on L
- Eg:

Three events: Event 1

1. c is above L and d below. Then delete c from \mathcal{L} and insert d:

$$(\ldots, a, c, b, \ldots) \Rightarrow (\ldots, a, d, b, \ldots).$$

Event 2

2. Both c and d are above L. Then delete both c and d from \mathcal{L} :

$$(\ldots, a, c, d, b, \ldots) \Rightarrow (\ldots, a, b, \ldots).$$

Event 3

3. Both c and d are below L. Then insert both c and d into \mathcal{L} :

$$(\ldots, a, b, \ldots) \Rightarrow (\ldots, a, c, d, b, \ldots).$$

Complexity of maintaining LIST

- Complexity is O(log n)
- Why?
- Only additions and deletions to a List
- Both can be done in O(log n) in a height balanced tree

$$(e_{12}, e_{11})$$

 $(e_{15}, e_{14}, e_{12}, e_{11})$

 $(e_{15}, e_{14}, e_{12}, e_6, e_7, e_{11})$

 $(e_{15}, e_{14}, e_{13}, e_{6}, e_{7}, e_{10})$

 $(e_{16}, e_{14}, e_{13}, e_6, e_7, e_{10})$

 $(e_{16}, e_6, e_7, e_{10})$

 $(e_{16}, e_6, e_8, e_{10})$

 $(e_{19}, e_{18}, e_{16}, e_{6}, e_{8}, e_{10})$

 $(e_{19}, e_{18}, e_{17}, e_6, e_8, e_{10})$.

Triangulation

Algorithm: POLYGON TRIANGULATION: MONOTONE PARTITION Sort vertices by y coordinate.

Perform plane sweep to construct trapezoidalization.

Partition into monotone polygons by connecting from interior cusps.

Triangulate each monotone polygon in linear time.

Monotone Partitioning Algorithm

- (1) Sort vertices by decreasing height: v_0, \ldots, v_{n_i} with v_0 being the highest
- (2) {Descending pass}
- for i = 1 to n do
- Remove upward-pointing interior cusps
- (3) {Ascending pass}
- for i = n 1 downto 0 do
- Remove downward-pointing interior cusps

Reading exercise

- Partitioning in to monotone mountains
- Triangulation of monotone mountains
- Refer J. O Rourke, Computational Geometry in C, 2/e, Cambridge University Press, 1998.
- Reading exercise will be considered for Midterm test

References

- J. O'Rourke: Art Gallery Theorems and Algorithms
- J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998)
- https://www.cs.jhu.edu/~misha/Spring16/05.
 pdf
 - From John Hopkins University

Thank you