11. Komplex számok

11.1. Az elméleti anyag

11.1.1. A komplex szám fogalma

A másodfokú egyenletek megoldásánál találkoztunk azzal a problémával, hogy ha a diszkrimináns negatív, akkor a gyök alatt negatív szám áll és így nincs valós megoldása a kérdéses egyenletnek. Például az

$$x^2 + 1 = 0$$

egyenlet ilyen. Tehát a valós számok körében nincs olyan $x \in \mathbb{R}$ szám, melynek a négyzete -1 lenne. Vajon ez akkor is igaz marad, ha valamilyen más számhalmazra térnénk át a valós számok helyett? Az eddigi középiskolai ismereteink szerint a valós számok kimerítették a legbővebb számhalmazt. Egy merész gondolattal vezessük be az úgynevezett imaginárius egységet: egy i-vel jelölt objektumot, melyről tételezzük fel, hogy éppen azt tudja, amit a fent említett x valós számok nem teljesítettek, nevezetesen, hogy:

$$i^2 = -1$$
.

Ezzel az imaginárius egységgel tudunk definiálni új típusú számokat, úgynevezett komplex számokat az alábbiak szerint:

Definíció: Legyenek $x, y \in \mathbb{R}$ tetszőleges valós számok és i a fent bevezett imaginárius egység, tehát $i^2 = -1$. Ekkor a

$$z := x + i \cdot y$$

alakú kifejezéseket komplex (összetett) számoknak fogjuk nevezni. A komplex számokra gyakran használjuk a z, w, ε, \dots vagy az indexelt $z_1; z_2, w_1; \dots$ jelöléseket.

Például:

$$z = 1 + 2 \cdot i; \ w = -3 - \sqrt{2} \cdot i; \ \varepsilon = \frac{2}{3} - i;$$

$$z_1 = 2 + 0 \cdot i = 2; \ z_2 = 0 - 6 \cdot i = -6 \cdot i; \dots$$

Ha például

$$z = x + i \cdot y$$

egy komplex szám, akkor azt mondjuk, hogy x a z valós része és y a z képzetes része. Jelölésben

$$z = x + i \cdot y \iff x = \operatorname{Re}(z) \land y = \operatorname{Im}(z).$$

A fenti példákban

$$\operatorname{Re}(1+2\cdot i) = 1 \wedge \operatorname{Im}(1+2\cdot i) = 2;$$

 $\operatorname{Re}(w) = \operatorname{Re}(-3-\sqrt{2}\cdot i) = -3 \wedge \operatorname{Im}(w) = \operatorname{Im}(-3-\sqrt{2}\cdot i) = -\sqrt{2};$

$$\operatorname{Re}(\varepsilon) = \operatorname{Re}\left(\frac{2}{3} - i\right) = \frac{2}{3} \wedge \operatorname{Im}(\varepsilon) = \operatorname{Im}\left(\frac{2}{3} - i\right) = -1;$$

$$Re(z_1) = Re(2 + 0 \cdot i) = 2 \land Im(z_1) = Im(2 + 0 \cdot i) = 0;$$

Látható, hogy itt a képzetes rész 0, ilyenkor $z=x+0\cdot i=x \ (x\in\mathbb{R})$ valós szám. Ennek megfelelően tehát a valós számok is speciális komplex számoknak tekinthetőek, nevezetesen a képzetes részük 0.

$$Re(z_2) = Re(0 - 6 \cdot i) = 0 \land Re(z_2) = Re(0 - 6 \cdot i) = -6.$$

Ebben az esetben a valós rész 0. Az ilyen komplex számokat, tehát amelyek

$$z = 0 + y \cdot i = yi \quad (y \in \mathbb{R})$$

alakúak, tiszta vagy tisztán $k\acute{e}pzetes$ $sz\acute{a}moknak$ nevezzük. Jelölje $\mathbb C$ a fent bevezetett komplex számok halmazát, vagyis:

$$\mathbb{C} := \{ z = x + i \cdot y \mid x, y \in \mathbb{R} \}.$$

A komplex számok precíz bevezetésére és a \mathbb{C} számhalmaz mélyebb vizsgálatára a későbbi tanulmányaikban fognak kitérni. Jelenlegi célunk mindössze annyi, hogy a komplex számokat bevezessük, néhány fontos tulajdonságukat megmutassuk, illetve a velük végzett algebrai számolásokat begyakoroljuk. A fenti észrevételt formálisan is megfogalmazva, a valós számok egyben komplex számok is, tehát:

$$\mathbb{R}\subset\mathbb{C}$$
,

de \mathbb{C} bővebb halmaz mint az \mathbb{R} , ugyanis például $i \in \mathbb{C} \setminus \mathbb{R}$.

Két komplex számot pontosan akkor tekintünk egyenlőnek, ha valós és képzetes részeik rendre megegyeznek, tehát ha z=x+iy és $w=a+ib \ (x,y,a,b\in\mathbb{R})$ komplex számok, akkor:

$$z = w \iff x + iy = a + ib \iff (x = a \land y = b).$$

Ez lehetővé tesz számunkra egy egyértelmű megfeleltetést a z=x+iy komplex számok és az ennek megfelelő (x;y) rendezett párok között. Ez utóbbi pontok (síkbeli vektorok) már ismertek a koordináta geometria köréből és szemléletes tartalmuk átvihető a komplex számok szemléltetéséhez és a Gauss-féle komplex számsík modellezéséhez.

11.1.2. Komplex számok szemléltetése a Gauss-féle számsíkon

Tekintsünk egy $z=x+iy\in\mathbb{C}$ komplex számot. Ekkor a valós és a képzetes részek $x,y\in\mathbb{R}$ valós számok. Ábrázoljuk ezeket egy Descartes-féle derékszögű koordináta rendszer vízszintes és függőleges tengelyein (mint valós számegyeneseken). A vízszintes tengelyen jelöljük a valós részt és a függőleges tengelyen a képzetes részt. Mivel egy $(x;y)\in\mathbb{R}^2$ rendezett számpárhoz egyértelműen hozzárendelhető egy és csakis egy komplex szám (nevezetesen z=x+iy), illetve egy és csakis egy pont a Descartes-féle koordináta

síkunkon, ezért feleltessük meg ennek egy (x,y) pontját a Gauss-sík z=x+iy komplex pontjának.

A vektorok hosszának mintájára vezessük be a komplex szám hosszát (modulusát, abszolút értékét) és a komplex szám konjugáltját (a valós tengelyre vett tükörképét):

Definíció: Legyen $z=x+iy \ (x,y\in\mathbb{R})$ tetszőleges komplex szám. Ekkor a hossza, vagy abszolút értéke (modulusa) a

$$|z| := \sqrt{x^2 + y^2} \in [0; +\infty)$$

nemnegatív valós szám, illetve a konjugáltja a

$$\overline{z} := x - iy \in \mathbb{C}$$

komplex szám.

Például:

$$|7 - 4i| = \sqrt{49 + 16} = \sqrt{65}; \ |-1 + 2i| = \sqrt{1 + 4} = \sqrt{5}; \ |i| = \sqrt{1} = 1;$$

$$\overline{1 - 2i} = 1 + 2i; \ \overline{-1 + 2i} = -1 - 2i; \ \overline{-5i} = 5i;$$

Megjegyzés: A bevezetésben felvetett analógia a vektorok és a komplex számok között, illetve a megfelelő szemléltetés lehetőséget ad a komplex számok további átírására egy másik alakra, amit trigonometrikus alaknak nevezünk, de jelen tárgy keretei között erre nem fogunk kitérni. Itt és most a komplex számokat csupán a bevezetett, úgynevezett algebrai alakjukban fogjuk használni.

11.1.3. Műveletek algebrai alakú komplex számokkal

Definíció: Vezessük be a négy alapműveletet (összeadás, kivonás, szorzás, osztás). Legyenek ehhez $z_1 = x_1 + iy_1$ és $z_2 = x_2 + iy_2$ $(x_1, x_2, y_1, y_2 \in \mathbb{R})$ komplex számok. Ekkor definíció szerint:

$$z_1 + z_2 := (x_1 + iy_1) + (x_2 + iy_2) := (x_1 + x_2) + (y_1 + y_2) \cdot i;$$

$$z_1 - z_2 := (x_1 + iy_1) - (x_2 + iy_2) := (x_1 - x_2) + (y_1 - y_2) \cdot i;$$

$$z_1 \cdot z_2 := (x_1 + iy_1) \cdot (x_2 + iy_2) := (x_1 \cdot x_2 - y_1 \cdot y_2) + (x_1 \cdot y_2 + x_2 \cdot y_1) \cdot i;$$

$$z_1/z_2 := \frac{z_1}{z_2} := \frac{x_1 + iy_1}{x_2 + iy_2} := \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{x_2^2 + y_2^2} + \frac{-x_1 \cdot y_2 + x_2 \cdot y_1}{x_2^2 + y_2^2} \cdot i;$$

A műveletek eredményét : az új komplex számot (összeg, különbség, szorzat, hányados) algebrai alakban tüntettük fel (leolvasható a valós és a képzetes részük). Vajon hogyan jött ki ez a definíció?

Például: Legyenek $z_1 := 2 + 3i$ és $z_2 := -1 + 5i$. Végezzük el a kijelölt műveleteket:

$$z_1+z_2 = (2+3i)+(-1+5i) = 1+8i; \land z_1-z_2 = (2+3i)-(-1+5i) = 2+3i+1-5i = 3-2i;$$

 $z_1 \cdot z_2 = (2+3i) \cdot (-1+5i) = -2+10i-3i+15i^2 = -2+7i-15 = -17+7i;$

$$z_1/z_2 = \frac{z_1}{z_2} = \frac{2+3i}{-1+5i} = \frac{(2+3i)\cdot(-1-5i)}{(-1+5i)\cdot(-1-5i)} = \frac{13-13i}{1-25i^2} = \frac{13-13i}{26} = \frac{1}{2} - \frac{1}{2} \cdot i;$$

$$\frac{1}{1+i} = \frac{1-i}{(1+i)\cdot(1-i)} = \frac{1-i}{1-i^2} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2} \cdot i;$$

$$3z_1 := 3 \cdot z_1 = 3 \cdot (2+3i) = 6+9i;$$

$$iz_1 := i \cdot z_1 = i \cdot (2+3i) = 2i+3i^2 = -3+2i;$$

$$z_1^2 = (2+3i)^2 = 4+12i+9i^2 = -5+12i;$$

$$2z_1 = 2 \cdot (2+3i) = 4+6i;$$

$$\frac{1}{z_1+2z_2} = \frac{1}{(2+3i)+2\cdot(-1+5i)} = \frac{1}{13i} = \frac{i}{13i^2} = -\frac{1}{13} \cdot i;$$

Megjegyzés: Megfigyelhető, hogy a komplex számok összeadása és kivonása, illetve a valós skalárral (számmal) való szorzása megfeleltethető a vektoroknál tanult hasonló műveleteknek. Más a helyzet a szorzással. A vektoroknál tanult skaláris és vektoriális szorzás nincs kapcsolatban a megfelelő komplex számok szorzásával. Osztásról a vektorok esetében nem is beszélhetünk.

Egy érdekes összefüggés vezethető le a komplex szám, annak hossza és konjugáltja között, ami sokszor használható a számolások során is. Legyen ehhez $z=x+iy\ (x,y\in\mathbb{R})$ a szokásos jelölésű komplex számunk. Ekkor:

$$z \cdot \overline{z} = (x + iy) \cdot (x - iy) = x^2 - y^2 \cdot i^2 = x^2 + y^2 = |z|^2 \ (z \in \mathbb{C}),$$

tehát bármely z komplex szám esetén:

$$z \cdot \overline{z} = |z|^2 \ (z \in \mathbb{C}),$$

vagy

$$|z| = \sqrt{z \cdot \overline{z}} \ (z \in \mathbb{C}).$$

Speciálisan, ha $z=x+0i=x\in\mathbb{R}$ valós szám, akkor a fenti azonosság az alábbi ismerős alakot ölti:

$$|z| = |x| = \sqrt{z \cdot \overline{z}} = \sqrt{x \cdot x} = \sqrt{x^2},$$

azaz

$$\sqrt{x^2} = |x| \ (x \in \mathbb{R}).$$

Kérdés: Mit jelent geometriailag az alábbi nemnegatív szám, ha z_1 és z_2 két tetszőlegesen rögzített komplex szám:

$$|z_1-z_2|$$
?

11.1.4. Valós együtthatós polinomok és komplex gyökök

Végül egy utolsó pontban térjünk vissza a kiindulásként felvetett problémához, nevezetesen például olyan valós együtthatós másodfokú egyenletekhez és megoldásaikhoz, ahol a diszkrimináns negatív. Például oldjuk meg az

$$x^2 + 2x + 4 = 0$$

másodfokú egyenletet. Alkalmazva a tanult megoldóképletet:

$$x_{1,2} = \frac{-2 \pm \sqrt{-12}}{2} = -1 \pm \sqrt{-3}.$$

Ahogy annak idején megállapítottuk a gyök alatt nem állhat negatív szám (ezért nincs valós megoldás) és mit értsünk akkor a $\sqrt{-3}$ szám alatt?

Most, hogy bevezettük az i imaginárius egységet, melyre $i^2 = -1$ alakítsuk az alábbi módon a fenti egyenletet (teljes négyzet alak):

$$(x+1)^2 + 3 = 0 \iff (x+1)^2 = -3 \iff (x+1)^2 = 3 \cdot i^2 \iff (x+1)^2 - (\sqrt{3} \cdot i)^2 = 0 \iff (x+1 - \sqrt{3} \cdot i) \cdot (x+1 + \sqrt{3} \cdot i) = 0.$$

Innen már leolvasható a két gyök:

$$x_{1,2} = -1 \pm \sqrt{3} \cdot i.$$

Látható, hogy ilyenkor a két megoldás egymásnak komplex konjugáltja. Összevetve a kapott megoldásokat a megoldóképletben kapott eredménnyel egy kérdés marad: mit értsünk a $\sqrt{-3}$ szám alatt? Ez itt a komplex gyökvonás fogalmát igényli, amit a későbbi tanulmányok során fognak tanulni. Jelenleg egyezzünk meg abban, hogy

$$\sqrt{-1} = i$$

és, hogy

$$\sqrt{-3} = \sqrt{3} \cdot \sqrt{-1} = \sqrt{3} \cdot i.$$

Ezzel az "egyezménnyel" kikerülhető a szorzattá alakításos levezetés és használhatjuk az ismert megoldóképletet.

Megjegyzések:

1. A komplex gyökvonás bevezetésével látni fogjuk, hogy például -1-nek a négyzetgyöke két érték lehet, nevezetesen: $\pm i$, hiszen mindkettőre igaz, hogy

$$(\pm i)^2 = i^2 = -1.$$

Egyezzünk meg jelenleg abban, hogy $\sqrt{-1} = i$.

2. A $\sqrt{-3} = \sqrt{3} \cdot \sqrt{-1}$ egyenlőség általában nem igaz a komplex számok körében, azaz ha $z, w \in \mathbb{C}$ tetszőleges komplex számok, akkor általában **nem igaz**, hogy

$$\sqrt{z \cdot w} = \sqrt{z} \cdot \sqrt{w}$$
.

A minket érintő mostani témakörben előforduló x > 0 valós esetekben igazolható az alábbi egyenlőség:

$$\sqrt{-x} = \sqrt{x} \cdot \sqrt{-1}$$
.

Az általános esethez, legyenek $a,b,c\in\mathbb{R}$ és $a\neq 0$ rögzített valós számok és tekintsük az ezekkel képzett másodfokú egyenletet:

$$ax^2 + bx + c = 0 \ (x \in \mathbb{C}),$$

ahol tehát x most a komplex számok köréből vehet fel értékekeket és tegyük fel, hogy a diszkrimináns negatív, tehát:

$$b^2 - 4ac < 0$$
.

A korábban megismert megoldóképlet teljesen analóg módon vezethető le és a fenti egyezménnyel az alábbi (konjugált) komplex gyököket kapjuk:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{4ac - b^2} \cdot \sqrt{-1}}{2a} = \frac{-b \pm i \cdot \sqrt{4ac - b^2}}{2a}.$$

Megjegyzés:

1. Jegyezzük meg, hogy a magasabb fokú valós együtthatós polinomok első vagy a valós számhalmazon tovább nem bontható másodfokú tényezők szorzatára bonthatóak (hogyan?) és ha ez megvan innen már könnyű a valós és a komplex gyökök megadása.

Például oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^4 - x^3 - 8x^2 + 9x - 9 = 0.$$

Megoldás: Vegyük észre (nem mindig egyszerű), hogy:

$$x^{4} - x^{3} - 8x^{2} + 9x - 9 = 0 \iff x^{4} - 9x^{2} - x^{3} + 9x + x^{2} - 9 = 0 \iff$$

$$\iff x^{2} \cdot (x^{2} - 9) - x \cdot (x^{2} - 9) + (x^{2} - 9) = 0 \iff (x^{2} - 9) \cdot (x^{2} - x + 1) = 0 \iff$$

$$\iff x^{2} = 9 \lor x^{2} - x + 1 = 0.$$

Tehát a keresett megoldások az alábbiak:

$$x_{1,2} = \pm 3; \quad x_{3,4} = \frac{1 \pm \sqrt{3} \cdot i}{2}.$$

111

11.1.5. Ellenőrző kérdések az elmélethez

- 1. Mikor igaz, hogy z = w, ha $z, w \in C$ komplex számok?
- 2. Definiálja a \mathbb{C} komplex számhalmazt.
- 3. Definiálja egy z komplex szám konjugáltját.
- 4. Adja meg az $\frac{2i-1}{5+3i}$ komplex szám valós és képzetes részét.
- 5. Ha $z=x+iy\in C$ komplex szám $(x,y\in\mathbb{R})$, akkor adja meg a z^2 komplex szám valós és képzetes részét.
- 6. Adottak a $z_1 \neq 0$ és $z_2 \in \mathbb{C}$ komplex számok. Adja meg a $\frac{z_2}{z_1}$ komplex szám valós és képzetes részét.
- 7. Igaz-e, hogy

$$\forall z, w \in \mathbb{C} : |z \cdot w| = |z| \cdot |w|$$
?

8. Milyen z komplex számokra igaz, hogy

$$z^2 + \overline{z}^2 = 0$$
?

9. Melyek azok a z komplex számok a Gauss-féle számsíkon, amelyekre

$$Re(z-1+i) = 2$$
?

10. Melyek azok a z komplex számok a Gauss-féle számsíkon, amelyekre

$$-1 < \text{Re } z \le 3$$
?

- 11. Határozza meg a $z=(\sqrt{2}-i\cdot\sqrt[4]{3})^2$ komplex szám modulusát.
- 12. Melyek azok a zkomplex számok (és ábrázoljuk őket), amelyekre z^3 valós szám?
- 13. Mennyi $\left(\frac{1-i}{1+i}\right)^{2018}$?
- 14. Mennyi lesz $1 + \frac{1+i}{1-i} \cdot i$?
- 15. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^3 - 1 = 0.$$

112

11.1.6. További kérdések az elmélethez

- 1. Számítsa ki a $(2-i)^3$ komplex számot.
- 2. Adja meg a $\frac{2}{3-i}$ komplex szám valós és képzetes részét.
- 3. Adja meg a $\frac{3-i}{i}$ komplex szám valós és képzetes részét.
- 4. Adja meg a $\frac{1}{z}$ komplex szám valós és képzetes részét, ha $z=x+iy\in\mathbb{C}\setminus\{0\}.$
- 5. Adja meg az $\frac{1}{(1+2i)^2}$ komplex szám valós és képzetes részét.
- 6. Definiálja egy z komplex szám abszolút értékét.
- 7. Igaz-e minden z komplex számra, hogy $|z^2| = |z|^2$?
- 8. Igaz-e, hogy

$$\forall z, w \in \mathbb{C} : \overline{z \cdot w} = \overline{z} \cdot \overline{w} ?$$

9. Igaz-e, hogy

$$\forall z, w \in \mathbb{C}, w \neq 0 : \overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}} ?$$

10. Igaz-e, hogy

$$\forall z, w \in \mathbb{C}, w \neq 0 : \left| \frac{z}{w} \right| = \frac{|z|}{|w|} ?$$

11. Igaz-e, hogy

$$\forall\,z,w\in\mathbb{C}:\ \overline{z+w}=\overline{z}+\overline{w}\,?$$

12. Igaz-e, hogy

$$\forall\,z,w\in\mathbb{C}:\ |z+w|=|z|+|w|\,?$$

- 13. Mikor igaz, hogy $z = \overline{z}$?
- 14. Fejezzük ki egy z komplex szám valós és képzetes részét z és \overline{z} segítségével.
- 15. Mit fejez ki geometria
ilag a $|z \sqrt{3} + i|$ szám ?
- 16. Mennyi lesz $|z \overline{z}|$?
- 17. Mennyi lesz $|z + \overline{z}|$?
- 18. Igaz-e, hogy:

$$\forall\,z\in\mathbb{C}:\ \overline{\overline{z}}=z\ ?$$

19. Mennyi lesz $\overline{z-\overline{z}}$?

11.2. Feladatok 113

20. Mit ad meg a komplex számsíkon az alábbi ponthalmaz, ha $z\in\mathbb{C}$ egy rögzített komplex szám :

$$L := \{c \cdot z \mid c \in \mathbb{R}\}?$$

21. Melyek azok a zkomplex számok a Gauss-féle számsíkon, amelyekre

$$|\text{Im } z| > 2$$
?

22. Melyek azok a z komplex számok a Gauss-féle számsíkon, amelyekre

$$|{\rm Im}\,z+1| < 1 \ \land |{\rm Re}\,z-1| \le 2$$
 ?

23. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^2 + 2x + 3 = 0.$$

24. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^3 + 1 = 0.$$

25. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^2 + 8 = 0$$
.

26. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^4 - 16 = 0.$$

27. Oldjuk meg a komplex számok halmazán az alábbi egyenletet:

$$x^4 + x^2 - 1 = 0$$
.

11.2. Feladatok

11.2.1. Órai feladatok

- 1. Határozzuk meg az $x,y\in\mathbb{R}$ valós számokat úgy, hogy az alábbi egyenlőségek teljesüljenek (i az imaginárius egységet jelöli, azaz $i^2=-1$):
 - (a) $(1-2i) \cdot x + (1+2i) \cdot y = 1+i$;
 - (b) $(2+i) \cdot x (2-i) \cdot y = x y + 2i;$

(c)
$$(4-3i) \cdot x^2 + (3+2i) \cdot xy = 4y^2 - \frac{1}{2}x^2 + (3xy - 2y^2) \cdot i;$$

(d)
$$\frac{x-3}{3+i} + \frac{y-3}{3-i} = i$$
.

- 2. Végezzük el az alábbi műveleteket és hozzuk algebrai alakra a kapott kifejezéseket (i az imaginárius egységet jelöli, azaz $i^2 = -1$):
 - (a) $\frac{1}{2-3i}$;
 - (b) $\frac{1+5i}{3+2i}$;
 - (c) $(1-2i)\cdot(5+i)$;
 - (d) $\frac{1}{1+\frac{1}{1+\frac{1}{1+i}}};$
 - (e) $(2-i)^2 + (2+i)^3$;
 - (f) $(3 \sqrt{2}i)^3 \cdot (3 + \sqrt{2}i)$;
 - (g) $\frac{1+i}{3-i} + \frac{3-i}{1+i}$;
 - (h) $\frac{(1+i)^2}{1-i} \pm \frac{(1-i)^3}{(1+i)^2}$;
 - (i) $\left(\frac{1+i}{1-i}\right)^{2018} + \left(\frac{1-i}{1+i}\right)^{2019}$.
- **3.** Igazoljuk, hogy a megadott egyenletnek a felsorolt komplex számok megoldásai (i az imaginárius egységet jelöli, azaz $i^2 = -1$):
 - (a) $x^3 x^2 + 8x + 10 = 0$; $z_1 := 1 + 3i \land z_2 := 1 3i$;

(b)
$$x^4 + x^2 + 1 = 0$$
; $z_1 := -\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2} \wedge z_2 := -\frac{1}{2} - i \cdot \frac{\sqrt{3}}{2}$.

4. Adottak az alábbi komplex számok:

$$z_1 = \frac{\sqrt{2} + i}{\sqrt{2} - i} \wedge z_2 = \frac{i}{-2\sqrt{2} + 2i}.$$

Számítsuk ki az alábbi kifejezéseket:

$$z_1 + z_2$$
; $z_1 \cdot z_2$; $\frac{z_1}{z_2}$; $z_1^2 + z_2^2$; $z_1^3 + z_2^3$; $z_1^4 + z_2^4$; $z_1^{-3} \cdot z_2^5$.

5. Számítsuk ki az alábbi összegeket:

<u>11.2. Feladatok</u> 115

(a)
$$S_{2018} = \sum_{k=0}^{2018} i^k;$$

(b)
$$S_{2019} = \sum_{k=0}^{2019} (-1)^k \cdot i^k$$
.

6. Tegyük fel, hogy a $z,w\in\mathbb{C}$ komplex számokra |z|=|w|=1. Bizonyítsuk be, hogy ekkor:

$$\frac{z+w}{1+z\cdot w}\in\mathbb{R}.$$

7. Határozzuk meg |z|-et, ha:

$$z = \left(\sqrt{2 + \sqrt{2}} + i \cdot \sqrt{2 - \sqrt{2}}\right)^4.$$

- 8. Határozzuk meg azokat a z komplex számokat és szemléltessük őket a Gauss-féle számsíkon, amelyekre z^3 tisztán képzetes szám.
- 9. Milyen $z\in\mathbb{C}$ komplex számok elégítik ki az alábbi egyenleteteket:

(a)
$$z^2 = 1 + i$$
;

(b)
$$z^3 = \overline{z}$$
?

Ábrázoljuk a kapott megoldásokat a komplex síkon.

10. Bizonyítsuk be, hogy bármely $z,w\in\mathbb{C}$ komplex számok esetén igaz az alábbi azonosság:

$$|z + w|^2 + |z - w|^2 = 2 \cdot (|z|^2 + |w|^2).$$

Mi a geometriai jelentése a fenti azonosságnak?

- 11. Mi lesz |z-i-1| legkisebb és ha van legnagyobb értéke és mely z komplex számok esetén veszi ezt fel, ha:
 - (a) Im z = -2?
 - (b) $\operatorname{Im} z = 2 \cdot \operatorname{Re} z$?
 - (c) |z+1|=1?

Valós együtthatós polinomok, komplex gyökök

12. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán:

(a)
$$x^3 - 1 = 0$$
;

(b)
$$x^4 - 1 = 0$$
;

(c)
$$x^2 - 2\sqrt{2} \cdot x + 5 = 0$$
;

(d)
$$x^3 - 9x^2 + 18x + 28 = 0$$
;

(e)
$$x^4 - 30x^2 + 289 = 0$$
.

11.2.2. További feladatok

1. Határozzuk meg az $x, y \in \mathbb{R}$ valós számokat úgy, hogy az alábbi egyenlőségek teljesüljenek (i az imaginárius egységet jelöli, azaz $i^2 = -1$):

(a)
$$2x + i + x \cdot i \cdot (x + y) = 3 + y \cdot (1 - i);$$

(b)
$$3 \cdot \sqrt{x^2 - 2y} + (1 - i)x^2 = 2 \cdot (1 + 2i)y + 4 - 19i$$
;

(c)
$$\frac{2}{3x+iy} - \frac{3}{5+i} = 2.$$

(d)
$$\frac{x-1}{1+i} + \frac{y+1}{1-i} = \frac{i}{2}$$
.

2. Végezzük el az alábbi műveleteket és hozzuk a legegyszerűbb alakra a kapott kifejezéseket (i az imaginárius egységet jelöli, azaz $i^2 = -1$):

(a)
$$\frac{3}{\sqrt{2}-i}$$
;

(b)
$$\frac{i - \sqrt{5}}{i + \sqrt{5}};$$

(c)
$$(i^2 - 7i) \cdot (2+i)$$
;

(d)
$$\frac{1}{1+\frac{1}{1+\frac{1}{i-1}}};$$

(e)
$$(2+i)^2 + (2-3i)^3$$
;

(f)
$$\frac{i-6}{2+5i} + \frac{2-i}{2+i}$$
;

(g)
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^6 + \left(\frac{-1-i\sqrt{3}}{2}\right)^6$$
;

(h)
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^5 + \left(\frac{-1-i\sqrt{3}}{2}\right)^5$$
;

(i)
$$\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^6$$
;

11.2. Feladatok 117

(j)
$$\frac{(1/\sqrt{2}+i)^3 - (1/\sqrt{2}-i)^3}{(1/\sqrt{2}+i)^2 - (1/\sqrt{2}-i)^2};$$

(k)
$$\left(\frac{19+7i}{9-i}\right)^4 + \left(\frac{20+5i}{7+6i}\right)^4$$
.

3. Igazoljuk, hogy a megadott egyenletnek a felsorolt komplex számok megoldásai (i az imaginárius egységet jelöli, azaz $i^2 = -1$):

(a)
$$x^3 - 3\sqrt{2} \cdot x^2 + 7x - 3\sqrt{2} = 0$$
; $z_1 := \sqrt{2} - i \land z_2 := \sqrt{2} + i$;

(b)
$$x^4 - 2x^3 + (6 + \sqrt{2})x^2 - 8x + 4 \cdot (\sqrt{2} + 2) = 0$$
; $z_{1,2} := \pm 2i \land z_{3,4} := 1 \pm i \cdot \sqrt{1 + \sqrt{2}}$.

4. Adottak az alábbi komplex számok:

$$z_1 = \frac{5i}{\sqrt{3} + \sqrt{2} \cdot i} \wedge z_2 = \frac{5}{\sqrt{2} + \sqrt{3} \cdot i}.$$

Számítsuk ki az alábbi kifejezéseket és az eredményt adjuk meg algebrai alakban:

$$z_1 + z_2$$
; $z_1 \cdot z_2$; $\frac{z_1}{z_2}$; $z_1^2 + z_2^2$; $z_1^3 + z_2^3$; $z_1^4 + z_2^4$; $z_1^3 \cdot z_2^{-3} - z_1^{-3} \cdot z_2^3$.

5. Milyen $n \in \mathbb{N}^+$ pozitív természetes szám esetén igaz, hogy:

$$(1+i)^n = (1-i)^n$$
?

6. Bizonyítsuk be, hogy minden $n \in \mathbb{N}$ természetes szám esetén igaz, hogy:

$$(1+i)^n + (1-i)^n \in \mathbb{R} .$$

7. Számítsuk ki az alábbi összegeket:

(a)
$$S_{2018} = \sum_{k=1}^{2018} (1+i)^k$$
;

(b)
$$S_{2019} = \sum_{k=1}^{2019} \left(\frac{1-i}{1+i}\right)^{3k}$$
.

8. Bizonyítsuk be, hogy tetszőleges $a \in \mathbb{R}$ valós paraméter esetében az alábbi komplex szám abszolút értéke 1:

$$z := \frac{1 + ia}{1 - ia}.$$

9. Határozzuk meg |z|-et, ha:

$$z = \frac{1}{\left(\sqrt{\sqrt{2} + 1} - i \cdot \sqrt{\sqrt{2} - 1}\right)^4}.$$

- 10. Határozzuk meg azokat a z komplex számokat és szemléltessük őket a Gauss-féle számsíkon, amelyekre z^4 valós szám.
- 11. Határozzuk meg azokat a z komplex számokat és szemléltessük őket a Gauss-féle számsíkon, amelyekre z^4 tisztán képzetes szám.
- 12. Határozzuk meg az alábbi feltételeknek eleget tevő z komplex számokat:
 - (a) $|z+i| = |\overline{z}-1| = |z-iz|$;
 - (b) $|z+1-i|=1 \land |z-1+i|=\sqrt{5}$;
 - (c) $|z+2+i| = 1 \land |z| = \sqrt{5} 1;$
 - (d) $|z 1| = |1 + iz| = \sqrt{z \cdot \overline{z}}$.
- 13. Milyen $z \in \mathbb{C}$ komplex számok elégítik ki az alábbi egyenleteteket:
 - (a) $z^2 = 1 i\sqrt{3}$;
 - (b) $z^3 = \frac{i}{z}$?

Ábrázoljuk a kapott megoldásokat a komplex síkon.

- 14. Mi lesz |z-1+i| legkisebb és ha van legnagyobb értéke és mely z komplex számok esetén veszi ezt fel, ha:
 - (a) Im z = 2;
 - (b) Re z = -1;
 - (c) |z i| = 1;

 $Val\'os\ egy\"utthat\'os\ polinomok,\ komplex\ gy\"ok\"ok$

- 15. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán:
 - (a) $x^2 + 2x + 3 = 0$;
 - (b) $x^3 + 1 = 0$;
 - (c) $x^6 + 1 = 0$;
 - (d) $x^3 \sqrt{2} \cdot x^2 + 4x 4\sqrt{2} = 0$;
 - (e) $x^4 4x^3 + 10x^2 20x + 25 = 0$.