Displacement functional and absolute continuity of Wasserstein barycenters

Jianyu MA, IMT

March 14, 2024, Séminaire Images Optimisation et Probabilités

Barycenters

- Notion of mean for probability measures μ on metric spaces (E, d)
- Always exist in proper spaces (metric spaces whose bounded closed sets are compact)

Wasserstein spaces $(\mathcal{W}(E), W)$

- Metric spaces for optimal transport between probability measures on a Polish space (a complete and separable metric space)
- Wasserstein spaces are Polish spaces.

Definitions

Barycenters

- Notion of mean for probability measures μ on metric spaces (E, d)
- Always exist in proper spaces (metric spaces whose bounded closed sets are compact)

Wasserstein spaces $(\mathcal{W}(E), W)$

- Metric spaces for optimal transport between probability measures on a Polish space (a complete and separable metric space)
- Wasserstein spaces are Polish spaces.

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$.

Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$.

Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Remark

By definition, $\mathbb P$ is a probability measure on $\mathcal W(E)$, its barycenter $\overline{\mu}$ is thus a probability measure on E.

Definition

Given a Polish space (E, d), the Wasserstein space $(\mathcal{W}(E), W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)), \mathbb{W})$.

Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Example (Displacement interpolation)

Consider the earth surface (E,d) with two uniform measures μ,ν supported on two regions. We simulate the barycenter of $\frac{1}{2}\delta_{\mu}+\frac{1}{2}\delta_{\nu}$ by discrete points.

Definition

Given a Polish space (E,d), the Wasserstein space $(\mathcal{W}(E),W)$ is also Polish, over which we can construct the Wasserstein space $(\mathcal{W}(\mathcal{W}(E)),\mathbb{W})$.

Barycenters $\overline{\mu}$ of measures $\mathbb{P} \in \mathcal{W}(\mathcal{W}(E))$ are called Wasserstein barycenters.

Existence [Le Gouic and Loubes, 2017]

Assuming that (E,d) is a proper space, Wasserstein barycenters in $\mathcal{W}(E)$ always exist.

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Construction of $\overline{\mu}:=B_\#\gamma$

- 1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.
- 2. Let γ be a measure (multi-marginal optimal transport plan) on E^n s.t

$$\int_{E^n} c_{\lambda} d\gamma = \inf_{\theta \in \Theta} \int_{E^n} c_{\lambda} d\theta \quad \text{with } c_{\lambda}(x_1, \dots, x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i d(x_i, y)^2,$$

where Θ is the set of measures on E^n with marginals μ_1,μ_2,\ldots,μ_n and $\gamma\in\Theta$.

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Construction of $\overline{\mu} := B_{\#} \gamma$

- 1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.
- 2. Let γ be a measure (multi-marginal optimal transport plan) on E^n s.t.

$$\int_{E^n} c_\lambda \, \mathrm{d} \, \gamma = \inf_{\theta \in \Theta} \int_{E^n} c_\lambda \, \mathrm{d} \, \theta \quad \text{with } c_\lambda(x_1, \dots, x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i \, d(x_i, y)^2$$

where Θ is the set of measures on E^n with marginals $\mu_1, \mu_2, \dots, \mu_n$ and $\gamma \in \Theta$.

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Construction of $\overline{\mu} := B_{\#} \gamma$

- 1. Let $B: E^n \to E$ be a measurable map (barycenter selection map) sending (x_1, x_2, \ldots, x_n) to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$.
- 2. Let γ be a measure (multi-marginal optimal transport plan) on E^n s.t.

$$\int_{E^n} c_{\lambda} d\gamma = \inf_{\theta \in \Theta} \int_{E^n} c_{\lambda} d\theta \quad \text{with } c_{\lambda}(x_1, \dots, x_n) := \inf_{y \in E} \sum_{i=1}^n \lambda_i d(x_i, y)^2,$$

where Θ is the set of measures on E^n with marginals $\mu_1, \mu_2, \dots, \mu_n$ and $\gamma \in \Theta$.

Fix a proper space (E,d) and n positive real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$. Given n measures $\mu_1, \mu_2, \ldots, \mu_n$, one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Recall

B sends $\vec{x} = (x_1, \ldots, x_n)$ to a barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{x_i}$; γ has marginals μ_1, \ldots, μ_n .

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} d\gamma(\vec{x})$$

$$= \int_{E^{n}} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_{1}, \dots, X_{n})$$

$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i},)^{2}$$

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Recall

 $c_{\lambda}(\vec{x})$ is the barycenter cost $\inf_{y \in E} \sum_{i=1}^{n} \lambda_i \ d(x_i, y)^2$

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} d\gamma(\vec{x})$$

$$= \int_{E^{n}} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_{1}, \dots, X_{n})$$

$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i},)^{2}$$

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Recall

 γ is an optimal plan w.r.t. c_{λ} ; Choose r.v. X_i with law μ_i .

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} d\gamma(\vec{x})$$

$$= \int_{E^{n}} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_{1}, \dots, X_{n})$$

$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, Y)^{2}$$

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Notation

X is a new r.v. with arbitrarily chosen law ν ; the coupling (X_i,X) could be optimal.

$$\sum_{i=1}^{n} \lambda_{i} W(\mu_{i}, \overline{\mu})^{2} \leq \sum_{i=1}^{n} \lambda_{i} \int_{E^{n}} d(x_{i}, B(\vec{x}))^{2} d\gamma(\vec{x})$$

$$= \int_{E^{n}} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_{1}, \dots, X_{n})$$

$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i} d(X_{i}, X)^{2} = \sum_{i=1}^{n} \lambda_{i} W(\mu_{i},)^{2}$$

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Conclusion

Choose (X_i,X) to be optimal. $\overline{\mu}$ is a barycenter since ν is arbitrary.

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 \leq \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 d\gamma(\vec{x})$$

$$= \int_{E^n} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \leq \mathbb{E} c_{\lambda}(X_1, \dots, X_n)$$

$$\leq \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \nu)^2$$

Fix a proper space (E,d) and n positive real numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that $\sum_{i=1}^n\lambda_i=1$. Given n measures μ_1,μ_2,\ldots,μ_n , one can construct a barycenter $\overline{\mu}$ of $\sum_{i=1}^n\lambda_i\delta_{\mu_i}$ as follows.

Why $\overline{\mu} = B_{\#} \gamma$ is a barycenter?

Notes of current step

Corollary

Set $\nu = \overline{\mu}$; $(\operatorname{proj}_i, B)_{\#} \gamma$ is thus an optimal transport plan between μ_i and $\overline{\mu}$.

$$\sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2 = \sum_{i=1}^{n} \lambda_i \int_{E^n} d(x_i, B(\vec{x}))^2 d\gamma(\vec{x})$$

$$= \int_{E^n} c_{\lambda}(\vec{x}) d\gamma(\vec{x}) \le \mathbb{E} c_{\lambda}(X_1, \dots, X_n)$$

$$\le \mathbb{E} \sum_{i=1}^{n} \lambda_i d(X_i, X)^2 = \sum_{i=1}^{n} \lambda_i W(\mu_i, \overline{\mu})^2$$

Consistency [Le Gouic and Loubes, 2017]

Let (E,d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j,\mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Remark

Construction for finitely many measures + consistency \implies general existence.

Indeed, we rely on the consistency to investigate general barycenters.

Consistency [Le Gouic and Loubes, 2017]

Let (E,d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j,\mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Consistency [Le Gouic and Loubes, 2017]

Let (E,d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j,\mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Agueh and Carlier, 2011]

Let $\mu_1, \mu_2, \ldots, \mu_n$ be n probability measures on \mathbb{R}^m . If μ_1 is absolutely continuous with bounded density function, then the unique barycenter of $\sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$ is also absolutely continuous.

Consistency [Le Gouic and Loubes, 2017]

Let (E,d) be a proper space. Given a sequence of measures $\mathbb{P}_j \in \mathcal{W}(\mathcal{W}(E))$ with barycenters $\overline{\mu}_j$, if $\mathbb{W}(\mathbb{P}_j,\mathbb{P}) \to 0$, then $\overline{\mu}_j$ converges to a barycenter of \mathbb{P} up to extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d_g) be a Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Kim and Pass, 2017]

Let (M, d_g) be a compact Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to a set of absolutely continuous measures with uniformly bounded density functions, then its unique barycenter is absolutely continuous.

(a.c stands for absolutely continuous)

Absolute continuity and compactness [Kim and Pass, 2017]

Let (M, d_g) be a compact Riemannian manifold. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to a set of a.c measures with uniformly bounded density functions, then its barycenter is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz. (See details later)
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \leq i \leq n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general μ_i , $i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz. (See details later)
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \le i \le n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general μ_i , $i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Sketch of proof, when $\mathbb{P} = \sum_{i=1}^{n} \lambda_i \, \delta_{\mu_i}$ and each μ_i has compact support Similar to the case of displacement interpolation: locally Lipschitz + compactness

- 1. When μ_1 is a.c and μ_i 's for $2 \le i \le n$ are Dirac measures, the optimal transport map from $\overline{\mu}$ to μ_1 is locally Lipschitz. (See details later)
- 2. Apply a divide-and-conquer (conditional measure) argument for the case when $\mu_i, 2 \le i \le n$ are discrete measures to retain the Lipschitz estimate.
- 3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate for approximating sequences of general $\mu_i, i \leq 2 \leq n$.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of $\ensuremath{\mathbb{P}}$ by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \text{ Hess } \phi_i = 0.$$

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of \mathbb{P} by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^{n} \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \operatorname{Hess} \phi_i \ge 0.$$

Approach of [Kim and Pass, 2017]: apply change of variable formula in the inequality and bound the density of $\overline{\mu}$ by a uniform upper bound of those of μ_i 's.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M,d_g) be a complete Riemannian manifold with a lower Ricci curvature bound. If $\mathbb{P}\in\mathcal{W}(\mathcal{W}(M))$ gives mass to the set of a.c measures, then its barycenter $\overline{\mu}$ is a.c.

Pass to the general case of \mathbb{P} by consistency

Hessian equality for Wasserstein barycenters: let $\overline{\mu}$ be the unique a.c barycenter of $\sum_{i=1}^n \lambda_i \delta_{\mu_i}$ and let $\exp(-\nabla \phi_i)$ be the optimal transport map between $\overline{\mu}$ and μ_i , then

$$\sum_{i=1}^{n} \lambda_i \text{ Hess } \phi_i = 0.$$

Our approach [Ma, 2023]: define nice functionals admitting finite values only for a.c measures, and bound them from above with the help of Souslin space theory.

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_\#\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y):=\frac{1}{2}d_g(x,y)^2$ and $h(y):=-\frac{1}{\lambda_1}\sum_{i=2}^n\lambda_i\,c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $u := \sum_{i=1}^n \lambda_i \, \delta_x$

$$\iff z$$
 -reaches the infimum of $2\lambda_1 \mathrm{inf}_{y \in M} \{ c(x_1,y) - h(y) \}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

 $z \in Y$ and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of u

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c.

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y):=\frac{1}{2}d_g(x,y)^2$ and $h(y):=-\frac{1}{\lambda_1}\sum_{i=2}^n\lambda_i\,c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

$$\iff z$$
 reaches the infimum of $2\lambda_1\inf_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c.

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y):=rac{1}{2}d_g(x,y)^2$ and $h(y):=-rac{1}{\lambda_1}\sum_{i=2}^n\lambda_i\,c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

$$\iff z$$
 reaches the infimum of $2\lambda_1\inf_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y):=rac{1}{2}d_g(x,y)^2$ and $h(y):=-rac{1}{\lambda_1}\sum_{i=2}^n\lambda_i\,c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$ c-conjugation of h

$$\iff z$$
 reaches the infimum of $2\lambda_1\inf_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y):=rac{1}{2}d_g(x,y)^2$ and $h(y):=-rac{1}{\lambda_1}\sum_{i=2}^n\lambda_i\,c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

$$\iff z$$
 reaches the infimum of $2\lambda_1\inf_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c

Fix $\mathbb{P}=\sum_{i=1}^n\lambda_i\,\delta_{\mu_i}$, where μ_1 is a.c with compact support and $\mu_i=\delta_{x_i}$ for $i\geq 2$. Its unique barycenter is $\overline{\mu}=B_{\#}\gamma$, where B is a measurable barycenter selection map and $\gamma=\mu_1\otimes\delta_{x_2}\otimes\cdots\delta_{x_n}$ is the unique coupling of its marginals.

c-conjugating formulation of B

- 1. Define $c(x,y) := \frac{1}{2} d_g(x,y)^2$ and $h(y) := -\frac{1}{\lambda_1} \sum_{i=2}^n \lambda_i \, c(x_i,y)$
- 2. Given $x_1 \in M$, z is a barycenter of $\nu := \sum_{i=1}^n \lambda_i \, \delta_{x_i}$

$$\iff z$$
 reaches the infimum of $2\lambda_1\inf_{y\in M}\{c(x_1,y)-h(y)\}$

3. Define $X = \operatorname{supp}(\mu_1)$ and Y the set of barycenters of ν when x_1 runs through X. The map h is smooth on Y [Kim and Pass, 2015]. Set $F := \exp(-\nabla h)$.

$$z \in Y$$
 and $x_1 = F(z) \iff x_1 \in X$ and z is a barycenter of ν

Conclusion: $F_{\#}\overline{\mu} = \mu_1$. Since F is Lipschitz, $\overline{\mu}$ is a.c.

Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional $\mathcal{G}: f \cdot \mathrm{Vol} \mapsto \int_M G(f) \, \mathrm{d} \, \mathrm{Vol}$

- 1. $m = \dim(M)$, $\mathrm{Ric}_M \geq -(m-1)K g_M$; $\mathbb{P} = \sum_{i=1}^n \lambda_i \, \delta_{\mu_i}$, μ_i has compact support.
- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol}$ of $\mathbb P$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define $\Lambda := \sum_{i=1}^k \lambda_i$, then

$$\mathcal{G}(\overline{\mu}) := \int_M G(f) \, \mathrm{d} \, \mathrm{Vol} \leq \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \int_M G(g_i) \, \mathrm{d} \, \mathrm{Vol} + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) \,.$$

Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional $\mathcal{G}: f \cdot \mathrm{Vol} \mapsto \int_M G(f) \, \mathrm{d} \, \mathrm{Vol}$

- 1. $m := \dim(M)$, $\mathrm{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.
- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define $\Lambda := \sum_{i=1}^k \lambda_i$, then

$$\mathcal{G}(\overline{\mu}) := \int_M G(f) \, \mathrm{d} \operatorname{Vol} \leq \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \int_M G(g_i) \, \mathrm{d} \operatorname{Vol} + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) \; .$$

Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional $\mathcal{G}: f \cdot \mathrm{Vol} \mapsto \int_M G(f) \, \mathrm{d} \, \mathrm{Vol}$

- 1. $m := \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.
- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define $\Lambda := \sum_{i=1}^k \lambda_i$, then

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) .$$

Special case: curvature-dimension condition

Take $G(x) := x \log x$, n = k = 2, $\Lambda = L_H = 1$. Set $\lambda = \lambda_1$ and $\mathrm{Ent} = \mathcal{G}$, then

$$\operatorname{Ent}(\overline{\mu}) \leq \lambda \operatorname{Ent}(\mu_1) + (1 - \lambda) \operatorname{Ent}(\mu_2) + \frac{K}{2} \lambda (1 - \lambda) W(\mu_1, \mu_2)^2 + \frac{m^2}{2} + m.$$

Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional $\mathcal{G}: f \cdot \mathrm{Vol} \mapsto \int_M G(f) \, \mathrm{d} \, \mathrm{Vol}$

- 1. $m := \dim(M)$, $\operatorname{Ric}_M \ge -(m-1)K g_M$; $\mathbb{P} := \sum_{i=1}^n \lambda_i \delta_{\mu_i}$, μ_i has compact support.
- 2. $\mu_i = g_i \text{ Vol}, 1 \leq i \leq k$ are a.c; the unique barycenter $\overline{\mu} = f \text{ Vol of } \mathbb{P}$ is a.c.
- 3. $G: \mathbb{R}^+ \to \mathbb{R}$ with G(0) = 0 such that $H(x) := G(e^x)e^{-x}$ is \mathcal{C}^1 with non-negative derivatives bounded above by $L_H > 0$.

Define $\Lambda := \sum_{i=1}^k \lambda_i$, then

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^k \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m) .$$

Difference from classical displacement functionals

Gradient flow theory (first-order) and displacement convexity (second-order) gives that

$$\mathcal{G}(\mu_i) \ge \mathcal{G}(\overline{\mu}) + \int_M \Delta \phi_i \, H'(\log f) \, \mathrm{d}\, \overline{\mu} - \frac{L_H \, K}{2} \, W_2(\overline{\mu}, \mu_i)^2, \quad 1 \le i \le k.$$

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then $\mathcal G$ is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a $\mathrm{B}(G,L)$ set, the set of a.c measures whose values under \mathcal{G} are bounded by L>0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^{\infty})$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then $\mathcal G$ is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a $\mathrm{B}(G,L)$ set, the set of a.c measures whose values under \mathcal{G} are bounded by L>0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^{\infty})$ topology are B(G, L) sets
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then $\mathcal G$ is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a $\mathrm{B}(G,L)$ set, the set of a.c measures whose values under \mathcal{G} are bounded by L>0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^{\infty})$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then $\mathcal G$ is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a $\mathrm{B}(G,L)$ set, the set of a.c measures whose values under \mathcal{G} are bounded by L>0;
- 4. Compact sets w.r.t. the $\sigma(L^1,L^\infty)$ topology are B(G,L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

Reminder of the problem setting

We approximate a general measure $\mathbb{P} \in \mathcal{W}(\mathcal{W}(M))$ with \mathbb{P}_j . After proving that the barycenter $\overline{\mu}_j$ of \mathbb{P}_j is a.c, how to show that the barycenter $\overline{\mu} = \lim \overline{\mu}_j$ of \mathbb{P} is also a.c?

- 1. Assume G is in addition super-linear and convex, then $\mathcal G$ is lower semi-continuous;
- 2. Bound $\{\mathcal{G}(\overline{\mu}_j)\}_{j\geq 1}$ from above, for which we use the displacement inequality;
- 3. By choosing the sequence \mathbb{P}_j properly, it reduces to show that \mathbb{P} gives mass to a $\mathrm{B}(G,L)$ set, the set of a.c measures whose values under \mathcal{G} are bounded by L>0;
- 4. Compact sets w.r.t. the $\sigma(L^1, L^{\infty})$ topology are B(G, L) sets;
- 5. Souslin space theory implies that several different topologies of a.c measures generate the same Borel sets, on which \mathbb{P} is a Radon measure.

References

Cordero-Erausquin, D., McCann, R. J., and Schmuckenschläger, M. (2001). A Riemannian interpolation inequality à la Borell, Brascamp and Lieb.

Inventiones mathematicae, 146(2):219–257.

Kim, Y.-H. and Pass, B. (2015). Multi-marginal optimal transport on Riemannian manifolds. *American Journal of Mathematics*, 137(4):1045–1060.

Kim, Y.-H. and Pass, B. (2017). Wasserstein barycenters over Riemannian manifolds. *Advances in Mathematics*, 307:640–683.

Le Gouic, T. and Loubes, J.-M. (2017). Existence and consistency of Wasserstein barycenters. *Probability Theory and Related Fields*, 168(3):901–917.

Ma, J. (2023). Absolute continuity of Wasserstein barycenters on manifolds with a lower Ricci curvature bound.

arXiv preprint arXiv:2310.13832.

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_{i}}{\Lambda} \mathcal{G}(\mu_{i}) + \frac{L_{H}K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^{2} + \frac{L_{H}}{2\Lambda} (m^{2} + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) \, \mathrm{d} \overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$.

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) \, \mathrm{d} \overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$.

By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a c-concave function.

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) \, \mathrm{d}\, \overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $\operatorname{dexp}(-\nabla\phi_i)$ implies $l_i \geq \Delta\phi_i - K\|\nabla\phi_i\|^2/2$ for $1 \leq i \leq k$. Second variation formula implies $m + m^2/2 \geq \Delta\phi_i - K\|\nabla\phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{\kappa} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f=g(F_i)\operatorname{Jac} F_i$, $\mathcal{G}(\mu_i)=\int_M H(\log f+l_i)\operatorname{d}\overline{\mu}$, where $l_i:=-\log\operatorname{Jac} F_i$. By McCann-Brenier theorem, $F_i=\exp(-\nabla\phi_i)$ with ϕ_i a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $d\exp(-\nabla\phi_i)$ implies $l_i \geq \Delta\phi_i - K\|\nabla\phi_i\|^2/2$ for $1 \leq i \leq k$. Second variation formula implies $m + m^2/2 \geq \Delta\phi_i - K\|\nabla\phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H

$$H(\log f + l_i) - H(\log f) \ge L_H(\Delta \phi_i - K \|\nabla \phi_i\|^2/2) - L_H(m + m^2/2).$$

$$\mathcal{G}(\overline{\mu}) \leq \sum_{i=1}^{k} \frac{\lambda_i}{\Lambda} \mathcal{G}(\mu_i) + \frac{L_H K}{2\Lambda} \mathbb{W}(\mathbb{P}, \delta_{\overline{\mu}})^2 + \frac{L_H}{2\Lambda} (m^2 + 2m)$$

Step 1, change of variables

Denote by F_i the optimal transport map from $\overline{\mu}$ to μ_i , by $\operatorname{Jac} F_i$ the Jacobian of F_i . Since $f = g(F_i) \operatorname{Jac} F_i$, $\mathcal{G}(\mu_i) = \int_M H(\log f + l_i) d\overline{\mu}$, where $l_i := -\log \operatorname{Jac} F_i$.

By McCann-Brenier theorem, $F_i = \exp(-\nabla \phi_i)$ with ϕ_i a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for $d \exp(-\nabla \phi_i)$ implies $l_i \geq \Delta \phi_i - K \|\nabla \phi_i\|^2 / 2$ for $1 \leq i \leq k$.

Second variation formula implies $m+m^2/2 \geq \Delta\phi_i - K\|\nabla\phi_i\|^2/2$. [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H

$$H(\log f + l_i) - H(\log f) > L_H(\Delta \phi_i - K \|\nabla \phi_i\|^2/2) - L_H(m + m^2/2).$$

Step 4, integrate and apply the Hessian equality

The Hessian equality $\sum_{i=1}^{n} \lambda_i \operatorname{Hess}_x \phi_i = 0$ implies $\sum_{i=1}^{n} \lambda_i \Delta \phi_i(x) = 0$.