Compito di Meccanica Quantistica

4 Settembre 2006

Esercizio 1) - Una particella di massa m è vincolata nella regione 0 < x < a dove è libera di muoversi. Al tempo t = 0 la sua funzione d'onda normalizzata è:

$$\psi(x, t = 0) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin\left(\frac{\pi x}{a}\right)$$

- a) Quale è la funzione d'onda al tempo $t = t_0$?
- b) Quale è l'energia media del sistema a t = 0 e $t = t_0$?
- c) Quale è la probabilità di trovare la particella nella regione $0 \le x \le a/2$ a $t = t_0$?

Esercizio 2) - Una particella ha una funzione d'onda

$$\psi(x, y, z) = K(x + y + 2z)e^{-\alpha r}$$

dove $r = \sqrt{x^2 + y^2 + z^2}$ e K ed α sono costanti reali.

- a) Mostrare che la particella si trova in uno stato di momento angolare definito (autostato di \vec{L}^2) e determinare il corrispondente autovalore.
- b) Quale è il valore di aspettazione della componente z del momentio angolare, L_z ?
- c) Se si misurasse la componente z del momento angolare, quale sarebbe la probabilità di trovare come risultato $L_z = h/?$
- d) Quale è la probabilità di trovare la particella nell'angolo solido $d\Omega$ corrispondente agli angoli θ e ϕ ?

Esercizio 3) La componente z dello spin di un elettrone libero viene misurata ed il risultato è $\hbar/2$.

- a) Se successivamente si musura la componente x dello spin, quali sono i possibili risultati e le corrispondenti probabilità?
- b) Se misuriamo la componente dello spin in una direzione che forma un angolo θ con l'asse z, quali sono le probabilità dei possibili risultati?
- c) Quale è il valore di aspettazione di s_z se nella misura precedente abbiamo trovato come risultato $\hbar/2$?