Tutorat 12

Analysis I

Panajiotis Christoforidis

1 Gleichmäßige, punktweise Konvergenz

i)

$$f_n(x) = \begin{cases} 0 & x = 1\\ x^n & x \in [0, 1) \end{cases}$$

Behauptung (1.1): $f_n \xrightarrow[\text{punktweise}]{n \to \infty} 0$ (1), aber nicht gleichmäßig (2)

Beweis. (1):

$$x \in [0,1) : \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0.$$

$$x = 1 : \lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} 0 = 0.$$

(2), da $x \mapsto x^n$ stetig, streng monoton steigend $\lim_{x \to 1} = 1$:

$$||f_n - 0|| = \sup_{x \in [0,1]} |f(x) - 0| = \sup_{x \in [0,1]} x^n = 1 \neq 0.$$

 \Longrightarrow Also konvergiert f_n nicht gleichmäßig gegen die Nullfunktion

ii)

$$g_n(x) = \begin{cases} 0 & x = 0\\ \frac{1}{1 + n \cdot x} & x \in (0, 1] \end{cases}$$

Behauptung (1.2): $g_n \xrightarrow[\text{punktweise}]{n \to \infty} 0(1)$, aber nicht gleichmäßig.(2)

Beweis. (1):

$$x = 0 \lim_{n \to \infty} g_n(0) = \lim_{n \to \infty} 0 = 0$$

$$x \in (0,1] \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{1}{1 + \underbrace{n \cdot x}_{\to \infty}} = 0$$

(2):

$$||g_n - 0|| = \sup_{x \in [0,1]} |g_n - 0| = \sup_{x \in [0,1]} \left| \frac{1}{1 + n \cdot x} \right| \stackrel{\text{da } g_n \text{ stetig, streng monoton}}{=} 1 \neq 0$$

iii)

$$h_n(x) = \frac{x}{1 + n \cdot x}$$

Behauptung (1.3): h_n konvergiert gleichmäßig gegen die Nullfunktion.

Beweis.

$$\left| \left| \frac{x}{1+n \cdot x} - 0 \right| \right| = \sup_{x \in [0,1]} \left| \frac{x}{1+n \cdot x} \right| \stackrel{\text{(1)}}{=} \frac{1}{1+n} \xrightarrow{n \to \infty} 0$$

Zu (1): h_n stetig, streng monoton steigend

 $\Rightarrow h_n$ konvergiert gleichmäßig gegen Nullfunktion, insbesondere also auch punktweise.

2 Regelfunktionen

Aus Vorlesung:

Satz (2.1): $f: D \to \mathbb{R}$ Regelfunktion $\Leftrightarrow \forall x \in D$ existieren beide einseitigen Grenzwerte

a)

$$f(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} & x \in (0, 1] \end{cases}$$

Behauptung (2.1): f keine Regelfunktion.

Beweis. f ist nicht beschränkt, da $\lim_{x\searrow 0} f(x) = \infty$. Also ist f keine Regelfunktion.

$$g(x) = \begin{cases} 0 & x = 0\\ \sin(\frac{1}{x}) & x \in (0, 1] \end{cases}$$

Behauptung (2.2): g keine Regelfunktion

 $Beweis. \xrightarrow{(2.1)} g$ keine Regelfunktion, da $\lim_{x \searrow 0} \sin(\frac{1}{x})$ nicht existiert.

$$h(x) = \begin{cases} 0 & x = 0\\ x \cdot \sin(\frac{1}{x}) & x \in (0, 1] \end{cases}$$

Behauptung (2.3): h Regelfunktion

Beweis. $x \cdot \sin(\frac{1}{x})$ stetig auf (0,1], da Komposition stetiger Funktionen.

 $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$, insbesondere ist $\lim_{x\to 0} x \cdot \sin(\frac{1}{x}) = 0 = h(0)$, also h in 0 stetig.

Da stetige Funktionen Regelfunktionen sind, ist h eine Regelfunktion.

b)

Behauptung (2.4): $f, g \in T([a, b]) \Rightarrow (f \cdot g) \in T([a, b])$

Beweis. trivial, selbst

c)

Behauptung (2.5): $f, g \in R([a, b]) \Rightarrow (f \cdot g) \in R([a, b])$

Beweis.

 $f,g \in R([a,b]) \Leftrightarrow$ es existieren je alle einseitigen Grenzwerte in [a,b] $\xrightarrow{\text{GWS}} \text{ es existieren von } f \cdot g \text{ alle einseitigen Grenzwerte}$ $\Leftrightarrow (f \cdot g) \in R([a,b])$

3 Regelfunktionen contin'd

 $f:[a,b]\to\mathbb{R}$ Regelfunktion, stetig

a)

Behauptung (3.1):
$$\int_{[a,b]} |f(x)| dx = 0 \Rightarrow f = 0$$

Beweis. Angenommen nicht.

Es existiert
$$x_0 \in [a, b]$$
 mit $f(x_0) \neq 0$
o.B.d.A $f(x_0) > 0$

Da f stetig eyistiert eine Umgebung $[c,d] \subset [a,b]$ von x_0 ,

sodass
$$\forall x \in [c, d] : f(x) \ge \frac{f(x_0)}{2}$$

Also ist für $g(x) := \begin{cases} \frac{f(x_0)}{2} & x \in [c, d] \\ 0 & x \notin [c, d] \end{cases}$
$$|g(x)| \le |f(x)| \text{ für alle } x \in [a, b]$$

Da das Integral monoton ist und $\int_a^b g(x) dx = (d-c) \cdot \frac{f(x_0)}{2} > 0$:

$$0 < \int_{a}^{b} g(x) dx \le \int_{a}^{b} |g(x)| dx \le \int_{a}^{b} |f(x)| dx = 0.4 s$$

b)

$$F: [a,b] \to \mathbb{R}$$

 $F(x) = \int_{a}^{x} f(t)dt$

Behauptung (3.2): F stetig

Beweis. $\forall \varepsilon > 0$

$$\begin{split} \delta := \frac{\varepsilon}{||f||}, \quad |x-y| < \delta : |F(x) - F(y)| &= \left| \int\limits_a^x f(t) dt - \int\limits_a^y f(t) dt \right| \\ &= \left| \int\limits_x^y f(t) dt \right| \\ &\leq |x-y| \cdot ||f|| < \delta \cdot ||f|| = \varepsilon. \end{split}$$

4 Präsenzaufgabe

 f_n nicht gleichmäßig, da $||f_n||=1$