Termodinámica

★ Conducción

Ley de Fourier

$$\phi = \lambda A \frac{dT}{dx} [W]$$

$$H = \lambda A \Delta T [W]$$

Densidad de Flujo de Calor

$$\delta_{\Phi} = \frac{\Phi}{A} \left[\frac{W}{m^2} \right]$$

Resistencia Térmica

$$R = \frac{\Delta T}{\Phi} \left[\frac{K}{W} \right]$$

Resistividad Térmica

$$\rho = \frac{1}{\lambda}$$

Resistencia Térmica en Cuerpos Cilíndricos

$$R = \frac{\Delta x}{\lambda A}$$

$$R = \rho \frac{\Delta x}{A}$$

Asociación en Serie - Resistencias

Flujo a través de la Resistencia	$\varphi = \varphi_1 = \varphi_2$
Variación de Temperatura	$\Delta T = \Delta T_1 + \Delta T_2$
Calculamos la resistencia resultante	$R_{eq} = \frac{\Delta T}{\Phi} = \frac{\Delta T_1}{\Phi} + \frac{\Delta T_2}{\Phi}$
Resistencia Equivalente	$R_{eq} = R_1 + R_2$

★ Convección

Ley de Enfriamiento de Newton

$$H = \phi = h A \left(T_{1} - T_{\infty} \right) [W]$$

★ Radiación

Constante S-B

$$\sigma = 5,67 * 10^{-8} \left[\frac{W}{m^2.K^4} \right]$$

Ley de Stefan Boltzmann

$$\frac{dQ}{dt} = H_{emitida} - H_{absorbida} = \sigma. e. A. (T^4 - T_0^4)$$

Asociación en Paralelo - Resistencias

Flujo a través de la Resistencia	$\phi = \phi_1 + \phi_2$
Variación de Temperatura	$\Delta T = \Delta T_1 = \Delta T_2$
Resistencia Equivalente	$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$