EYP 1025-1027 Métodos Probabilísticos Clase 22

Profesor: Reinaldo B. Arellano-Valle

Departamento de Estadística Pontificia Universidad Católica de Chile

Contenido I

- Convergencia Estocástica y Teoremas Límites
 - Teorema de Slutsky
 - Ejemplos
 - Ejemplos
 - Convergencia en distribución en el caso discreto
 - Ejemplos

2 Proceso de Poisson: Nociones Básicas

Teorema de Slutsky

Teorema 1.1 (Slutsky)

Sean $\{X_n; n \geq 1\}$ e $\{Y_n; n \geq 1\}$ secuencias de variables aleatorias tales que $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{P}{\to} b$ (*b* constante). Entonces, para cualquier función continua $g: \mathbb{R}^2 \to \mathbb{R}$, se tiene que,

$$g(X_n, Y_n) \stackrel{d}{\to} g(X, b).$$

Nota: La extensión secuencias multivariadas es inmediata

Demostración 1.1

Idea de la demostración: Como $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{P}{\to} b$, se tiene que $(X_n, Y_n) \stackrel{d}{\to} (X, b)$, y por tanto, $g(X_n, Y_n) \stackrel{d}{\to} g(X, b)$ por el teorema de la aplicación continua.

Corolario 1.1 (Versión clásica de Teorema de Slutsky)

Si $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{P}{\to} b$, entonces

- i) $X_n + Y_n \stackrel{d}{\rightarrow} X + b$;
- ii) $Y_n X_n \stackrel{d}{\to} bX$;
- iii) $\frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{b}$ siempre que $b \neq 0$.

Apicación: Suponga, por ejemplo, que $X \sim N(\mu, \sigma^2)$. Entonces:

i)
$$\Longrightarrow X_n + Y_n \stackrel{d}{\to} X + b \sim N(\mu + b, \sigma^2)$$
, y por lo tanto,

$$P(X_n + Y_n \le z) \simeq P(X + b \le z) = \Phi\left(\frac{z - \mu - b}{\sigma}\right),$$

para "n lo suficientemente grande";

ii)
$$\Longrightarrow X_n Y_n \stackrel{d}{\to} Xb \sim N(\mu b, \sigma^2 b^2)$$
, y por lo tanto,

$$P(X_n Y_n \le z) \simeq P(Xb \le z) = \Phi\left(\frac{z - \mu b}{\sigma b}\right),$$

para "n lo suficientemente grande";

iii)
$$\Longrightarrow \frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{b} \sim N(\mu/b, \sigma^2/b^2)$$
 para $b \neq 0$, y por lo tanto,

$$P\left(\frac{X_n}{Y_n} \leq z\right) \simeq P\left(\frac{X}{b} \leq z\right) = \Phi\left(\frac{bz - \mu}{\sigma}\right),$$

para " n lo suficientemente grande" .

Demostración Teorema 1.4, Clase 21: La parte i) de Corolario 1.1 también permite demostrar que si $Z_n \overset{P}{\to} Z$, entonces $Z_n \overset{d}{\to} Z$. En efecto, sean $X_n = Z$ e $Y_n = Z_n - Z$. Entonces, $X_n \overset{d}{\to} Z$ e $Y_n \overset{P}{\to} 0$; luego, por el Corolario 1.1 i), se tiene que,

$$Z_n = Z + (Z_n - Z) = X_n + Y_n \stackrel{d}{\to} Z + 0 = Z.$$

Teorema 1.2

Sean $\{X_n; n \geq 1\}$ e $\{Y_n; n \geq 1\}$ secuencias de variables aleatorias tales que $X_n \stackrel{P}{\to} a$ e $Y_n \stackrel{P}{\to} b$, donde a y b constantes. Entonces, para cualquier función continua $g: \mathbb{R}^2 \to \mathbb{R}$, se tiene que,

$$g(X_n, Y_n) \stackrel{P}{\to} g(a, b).$$

Demostración 1.2

Idea de la demostración: Como $X_n \stackrel{P}{\to} a$, entonces $X_n \stackrel{d}{\to} a$. Así, se tiene que $X_n \stackrel{d}{\to} a$ e $Y_n \stackrel{P}{\to} b$. Luego, por el Teorema 1.1 (Slutsky), $g(X_n, Y_n) \stackrel{d}{\to} g(a, b)$ (constante), y por tanto, $g(X_n, Y_n) \stackrel{P}{\to} g(a, b)$.

Nota: La extensión del Teorema 1.4 a más de dos secuencias, o bien a secuencias multivariadas, es inmediata.

Ejemplos

Ejemplo 1.1

1) Sean $X_1, X_2, ...$ variables aleatorias iid con media μ y varianza σ^2 (finita). Entonces, por la LDGN se tiene que,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu = E(X_1), \quad (*)$$

$$\frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{P} \mu^2 + \sigma^2 = E(X_1^2). \quad (**)$$

Considerando (*) y el hecho que la función $g(x) = x^2$ es continua, se tiene que,

$$g(\bar{X}_n) = \bar{X}_n^2 \stackrel{P}{\to} \mu^2. \quad (***)$$

Luego, usando (**), (***) y el Teorema 1.2 con $g(x,y)=x-y^2$, se concluye que,

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}_n^2 \stackrel{P}{\to} \mu^2 + \sigma^2 - \mu^2 = \sigma^2.$$

Sea,

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2, \quad n \ge 2.$$

Entonces,

$$S_n^2 = \underbrace{\frac{n}{n-1}}_{\stackrel{P}{\longrightarrow} 1} \underbrace{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}_{\stackrel{P}{\longrightarrow} \sigma^2} \stackrel{P}{\longrightarrow} \sigma^2.$$

De aquí, también se tiene que, $S_n = \sqrt{S_n^2} \stackrel{P}{\to} \sigma$, o bien, $S_n/\sigma = \stackrel{P}{\to} 1$ o, $\sigma/S_n = \stackrel{P}{\to} 1$.

Por otro lado, por el TLC se sabe que,

$$\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma} \stackrel{d}{\to} N(0, 1),$$

y como fue visto, $\sigma/S_n \stackrel{P}{\to} 1$.

Luego, aplicando Slutsky (más específicamente, la parte ii) del Corolario 1.1), se tiene que,

$$\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{S_n} = \underbrace{\frac{\sigma}{S_n}}_{\stackrel{P}{\to} 1} \underbrace{\frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma}}_{\stackrel{d}{\to} N(0,1)} \stackrel{d}{\to} N(0,1).$$

2) Sean X_1, X_2, \ldots variables aleatorias iid $N(\mu, \sigma^2)$. Se vio que,

$$\begin{cases} \frac{\sqrt{n}\left(\bar{X}_n - \mu\right)}{\sigma} \sim N(0, 1) & \forall \ n \geq 1, \\ \frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2 & \forall \ n \geq 2, \end{cases} \text{ y son va's independientes}.$$

Bajo este contexto, también se vio que,

$$T_n = \frac{\sqrt{n} \left(\bar{X}_n - \mu \right)}{S_n} \sim t_{n-1} \text{ (exacta) } \forall n \ge 1,$$

donde t_{ν} denota la distribución t (de Student) con ν grados de libertad. Además, por el Ejemplo 1.1, se tiene que,

$$T_n \stackrel{d}{\to} N(0,1)$$
, cuando $n \to \infty$,

y por tanto que, $t_{\nu} \stackrel{d}{\to} N(0,1)$, cuando $\nu \to \infty$.

- 3) Sean $\{a_n;n\geq 1\}$ una secuencia de números reales y $\{Z_n;n\geq 1\}$ una secuencia de variables aleatorias, tales que:
 - a) $a_n \to \infty$ cuando $n \to \infty$; y
 - b) $a_n(Z_n \theta) \stackrel{d}{\to} X$, para alguna constante θ y variable aleatoria X.

Entonces,

$$Z_n \stackrel{P}{\to} \theta.$$

Demostración: Basta demostrar que $Z_n - \theta \stackrel{P}{\to} 0$. Para probar esto, note que,

$$Z_n - \theta = \frac{1}{a_n} a_n (Z_n - \theta) = Y_n X_n,$$

donde $Y_n=1/a_n\to 0$, cuando $n\to \infty$, y por ende que $Y_n\stackrel{P}{\to} 0$, y $X_n=a_n(Z_n-\theta)\stackrel{d}{\to} X$. Luego, usando Slutsky, se tiene que $Z_n-\theta=Y_nX_n\stackrel{d}{\to} 0\cdot X=0$ o equivalentemente, $Z_n-\theta\stackrel{p}{\to} 0$.

Aplicación de 3): Sea X_1, X_2, \ldots una secuencia de variables aleotorias iid con media μ y varianza σ^2 (finita). Entonces,

$$\begin{split} &\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0,1) \quad \text{(por el TLC)} \\ &\iff \sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0,\sigma^2) \\ &\implies \bar{X}_n \xrightarrow{P} \mu \quad (a_n = \sqrt{n}, \quad Z_n = \bar{X}_n, \quad \theta = \mu). \end{split}$$

Teorema 1.3

Sean $\{a_n; n \geq 1\}$ una secuencia de números reales y $\{Z_n; n \geq 1\}$ una secuencia de variables aleatorias, tales que:

- a) $a_n \to \infty$ cuando $n \to \infty$; y
- b) $a_n(Z_n \theta) \stackrel{d}{\to} Z$, para alguna constante θ y variable aleatoria Z.

Si $g:\mathbb{R}\to\mathbb{R}$ es una función continua y diferenciable en $\theta,$ entonces,

$$a_n(g(Z_n) - g(\theta)) \xrightarrow{d} g'(\theta)Z$$
, cuando $n \to \infty$,

donde g' es la derivada de g.

Demostración 1.3

Idea de la demostración: Como fue probado, si $a_n(Z_n - \theta) \stackrel{d}{\to} Z$, entonces $Z_n - \theta \stackrel{P}{\to} 0$, o bien, $Z_n \stackrel{P}{\to} \theta$. Luego, como g es continua, entonces, $g(Z_n) \stackrel{P}{\to} g(\theta)$, o bien, $g(Z_n) - g(\theta) \stackrel{P}{\to} 0$. Así, se tiene que,

$$\frac{g(Z_n) - g(\theta)}{Z_n - \theta} = \frac{g(\theta + (Z_n - \theta)) - g(\theta)}{Z_n - \theta} \xrightarrow{P} g'(\theta).$$

Por lo tanto, usando Slutsky, se tiene que,

$$a_n(g(Z_n) - g(\theta)) = \underbrace{\frac{g(Z_n) - g(\theta)}{Z_n - \theta}}_{\stackrel{P}{\to} g'(\theta)} \underbrace{a_n(Z_n - \theta)}_{\stackrel{d}{\to} Z} \stackrel{d}{\to} g'(\theta)Z.$$

Ejemplo 1.2 (Método delta)

Suponga que $\sqrt{n}(Z_n - \theta) \xrightarrow{d} Z \sim N(0, \sigma^2)$, cuando $n \to \infty$, y sea g una función continua y diferenciable en θ . Entonces,

$$\sqrt{n}(g(Z_n) - g(\theta)) \stackrel{d}{\to} g'(\theta)Z \sim N(0, (g'(\theta))^2 \sigma^2).$$

Nota: Si
$$g'(\theta) = 0$$
, entonces $\sqrt{n}(g(Z_n) - g(\theta)) \stackrel{d}{\to} N(0,0) \equiv 0$.

Nota: La extensión al caso multivariado es inmediata.

Aplicación: Sean X_1, X_2, \ldots variables aleatorias iid con media μ y varianza σ^2 (finita). Entonces, por el TLC, se tiene que,

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} Z \sim N(0, \sigma^2).$$

Luego, si g es una función continua y diferenciable en μ , el método delta implica que,

$$\sqrt{n}(g(\bar{X}_n) - g(\mu)) \stackrel{d}{\to} g'(\mu)Z \sim N(0, (g'(\mu))^2 \sigma^2).$$

Ejemplos

Ejemplo 1.3

- 1) Si X_1, X_2, \ldots variables aleatorias iid con media μ y varianza σ^2 (finita), entonces $\sqrt{n}(\bar{X}_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$, y por tanto,
- a) $\sqrt{n}(\bar{X}_n^2 \mu^2) \stackrel{d}{\to} N(0, 4\mu^2\sigma^2)$ $(g(x) = x^2 \text{ y } g'(x) = 2x);$
- b) $\sqrt{n}(e^{\bar{X}_n} e^{\mu}) \stackrel{d}{\to} N(0, e^{2\mu}\sigma^2) \quad (g(x) = e^x \text{ y } g'(x) = e^x);$
- c) $\sqrt{n}(\Phi(\bar{X}_n) \Phi(\mu)) \stackrel{d}{\to} N(0, \phi(\mu)^2 \sigma^2)$ $(g(x) = \Phi(x) \text{ y } g'(x) = \phi(x),$ la fda y fdp de la distribución N(0, 1);

etc.

Ejemplo 1.4

- 2) Si X_1, X_2, \ldots variables aleatorias iid $\exp(\lambda)$ $(\lambda > 0)$, entonces $\sqrt{n} \left(\bar{X}_n \frac{1}{\lambda}\right) \stackrel{d}{\to} N\left(0, \frac{1}{\lambda^2}\right)$, y por tanto,
- a) $\sqrt{n} \left(\frac{1}{X_n} \lambda \right) \stackrel{d}{\to} N \left(0, \lambda^2 \right) \quad (g(x) = 1/x \text{ y } g'(x) = -1/x^2, x > 0);$
- b) $\sqrt{n} \left(\log \bar{X}_n \log \frac{1}{\lambda} \right) = \sqrt{n} \log(\lambda \bar{X}_n) \xrightarrow{d} N(0, 1) \quad (g(x) = \log x \text{ y}$ g'(x) = 1/x, x > 0);

g(w) = 1/w, w > 0

etc.

Convergencia en distribución en el caso discreto

Teorema 1.4

Sean $\{Z_n; n \geq 1\}$ y Z variables aleatorias con valores enteros no negativos (por ejemplo, Poisson, geométrica, binomial, etc.). Entonces, una condición suficiente para que $Z_n \stackrel{d}{\to} Z$ esta dada por,

$$P(Z_n = z) \to P(Z = z), \quad \forall \ z = 0, 1, 2, \dots,$$

cuando $n \to \infty$.

Ejemplos

Ejemplo 1.5

1) Sea $Z_N \sim Hip(N, N_1, n)$; por ejemplo, $Z_N =$ número de elementos de tipo 1 en una muestra aleatoria de n elementos extraídos sin devolución de una población con N elementos, de los cuales N_1 son de tipo 1. La fmp de Z_N es,

$$P(Z_N = z) = \frac{\binom{N_1}{z} \binom{N - N_1}{n - z}}{\binom{N}{z}}.$$

Suponga que $\frac{N_1}{N} \to p > 0$ cuando $N \to \infty$. Entonces,

$$P(Z_N = z) \to P(Z = z) = \binom{n}{z} p^z (1-p)^{n-z}, \quad z = 0, 1, \dots, n,$$

cuando $N \to \infty$ y n permanece fijo, donde $Z \sim Bin(n, p)$.

2) Sea $Z_n \sim Bin(n,p_n)$, donde $np_n \to \lambda$ cuando $n \to \infty$. Entonces,

$$P(Z_n = z) = \binom{n}{z} p^z (1-p)^{n-z} \to \frac{e^{-\lambda} \lambda^z}{z!} = P(Z = z), \quad z = 0, 1, 2, \dots,$$

cuando $n \to \infty$, donde $Z \sim P(\lambda)$.

Tarea: Pruebe los resultados de los ejemplos 1) y 2).

Sea,

 X_t = número de ocurrencias de un cierto fenómeno (o evento) en un intervalo (0,t], $t \ge 0$.

Entonces, $\{X_t; t \geq 0\}$ es un proceso estocástico asumiendo valores enteros no negativos, es decir, para cada $t \geq 0$, X_t es una variable aleatoria con valores en $\mathbb{Z}_+ = \{0,1,2,\ldots\}$.

Definición 2.1

 $\{X_t; t \geq 0\}$ se llama proceso de Poisson si $X_0 = 0$ y se verifican las siguientes hipótesis:

H1) Los incrementos son independientes:

$$\{X_t = k_1\}$$
 y $\{X_{t+s} - X_s = k_2\}$ son eventos independientes $\forall k_1, k_2 \in \mathbb{Z}_+$ y $\forall t, s \geq 0$.

H2) Los incrementos son estacionarios:

$$P(X_{t+s}-X_s=k)=P(X_t=k):=p_k(t)\quad\forall\ k\in\mathbb{Z}_+\ \mathrm{y}\ \forall\ t,s\geq0.$$

Es decir, la probabilidad de observar k ocurrencias en un intervalo (s,s+t] sólo depende del tamaño (largo) del intervalo (y no de la posición), o sea, de t y no de s.

H3) No se producen ocurrencias simultaneas:

$$P(X_t \ge 2 | X_t \ge 1) = \frac{P(X_t \ge 2)}{P(X_t \ge 1)}$$

$$= \frac{1 - P(X_t = 0) - P(X_t = 1)}{1 - P(X_t = 0)}$$

$$= 1 - \frac{P(X_t = 1)}{1 - P(X_t = 0)} \to 0, \quad t \to 0$$

$$\iff \frac{P(X_t = 1)}{1 - P(X_t = 0)} = \frac{p_1(t)}{1 - p_0(t)} \to 1, \quad t \to 0.$$

Se puede demostrar que la solución está dada por,

$$p_k(t) = P(X_t = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k = 0, 1, 2, \dots, \quad t \ge 0,$$

donde

$$\lambda = \lim_{t \to 0} \frac{1 - p_0(t)}{t} =$$
tasa o intensidad de ocurrencia por unidad de tiempo.

Es decir, se tiene que, $X_t \sim P(\lambda t)$, $t \geq 0$, es un proceso de Poisson con intensidad λ ($\lambda > 0$).

Sea,

 $T_1={\sf tiempo}$ transcurrido hasta que se produce la primera ocurrencia.

Note que,

$$\{T_1 > t\} \equiv \{X_t = 0\} = \text{no hay ocurrencias en } (0, t], \ t \ge 0.$$

Equivalentemente,

$${T_1 \le t} \equiv {X_t = 0}^c, \quad t \ge 0.$$

Luego,

$$F_{T_1}(t) = P(T_1 \le t)$$

$$= P(\{X_t = 0\}^c)$$

$$= 1 - P(X_t = 0)$$

$$= 1 - \frac{(\lambda t)^0 e^{-\lambda t}}{0!} = 1 - e^{-\lambda t}, \quad t \ge 0.$$

Es decir,

$$F_{T_1}(t) = \begin{cases} 0, & \text{si } t < 0, \\ 1 - e^{-\lambda t}, & \text{si } t \ge 0, \end{cases} \quad (\lambda > 0)$$

de modo que $T_1 \sim \exp(\lambda)$. Recordando que,

$$P(T_1 > t + s | T_1 > s) = \frac{P(T_1 > t + s)}{P(T_1 > s)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}, \quad \forall \ t, s \ge 0,$$

se concluye que el proceso de Poisson no tiene memoria.

Tarea: Sea T_k el tiempo transcurrido hasta la k-ésima ocurrencia (de un proceso de Poisson con intensidad λ), $k=1,\ldots,n$. Pruebe que:

- (a) $T_1, T_2 T_1, \dots, T_n T_{n-1}$ (tiempos entre dos ocurrencias consecutivas) son variables aleatorias iid $\exp(\lambda)$;
- (b) $T_n \sim Gama(n, \lambda)$.