GRUPRO — Union-Find e extras

introdução, rollback, small-to-large

Jonathan Queiroz

Union-Find

Apresentação do problema

- Temos vários conjuntos (disjuntos) de elementos
 - Inicialmente, cada conjunto contém precisamente um elemento
- Duas operações:
 - merge(a, b): une os conjuntos aos quais a e b pertencem
 - same(a, b): verifica se a e b pertencem ao mesmo conjunto
- Exemplo
 - Esquerda: same(1, 2) = False
 - Meio: same(1, 2) = True
 - Direita: same(2, 4) = True

Teoria

- Podemos eleger um líder para cada conjunto
- Reformulando as operações:
 - merge(a, b): une os conjuntos aos quais a e b pertencem
 - find(a): retorna o líder do conjunto a
- Podemos reescrever same(a, b) como find(a) == find(b)
 - Esquerda: find(1) = 1 \neq 2 = find(2) \therefore same(1, 2) = F
 - Meio: find(1) = 1 = find(2) ∴ same(1, 2) = T
 - Direita: find(2) = 1 = find(4) ∴ same(1, 2) = T

Ideia da implementação

- Representar cada conjunto como uma árvore
- Basta saber o pai de cada elemento
 - uf [i] armazena o índice do pai do *i*-ésimo elemento
 - uf [i] = i indica que o i-ésimo elemento é o líder do seu conjunto

i	uf[i]
1	1
2	1
3	1
4	2
5	3


```
Implementação
int uf [MAX_N+1];
void init() {
    for (int i = 1; i <= MAX_N; ++i)</pre>
        uf[i] = i;
int find(int x) {
    if (uf[x] == x)
        return x;
    else
        return find(uf[x]);
void merge(int u, int v) {
    int a = find(u);
    int b = find(v);
    uf[a] = b;
```

Como melhorar?

Como melhorar ainda mais?

Abordagem: path compression

Teoria

- A cada operação find: fazer com que todos os nós acessados apontem diretamente para a raiz
- Intuição: buscas custosas ajudam a melhorar a árvore
- Tempo por operação: $O(\log n)$ amortizado
 - Operações individuais podem ter custo elevado
 - Exemplo?
 - Mas o custo médio das operações é baixo
 - Formalmente: m operações levam tempo $O(n + m \log n)$
 - Prova relativamente complexa

Abordagem: path compression

```
Implementação
int uf [MAX_N+1];
void init() {
    for (int i = 1; i <= MAX_N; ++i)</pre>
        uf[i] = i;
int find(int x) {
    if (uf[x] == x)
        return x;
    else
        return uf[x] = find(uf[x]);
void merge(int u, int v) {
    int a = find(u);
    int b = find(v);
    uf[a] = b;
```

Outra forma de melhorar

Teoria

- Unir conjuntos do menor para o maior
 - É necessário manter o tamanho de cada conjunto v
- Intuição: minimizar a profundidade dos conjuntos
- Tempo por operação: $O(\log n)$
 - Provaremos em breve

Implementação (parte 1)

```
int uf[MAX_N+1];
int sz[MAX_N+1];
void init() {
   for (int i = 1; i <= MAX_N; ++i) {
      uf[i] = i;
      sz[i] = 1;
   }
}</pre>
```

Implementação (parte 2)

```
int find(int x) {
   if (uf[x] == x) return x;
   else return find(uf[x]);
void merge(int u, int v) {
   int a = find(u);
   int b = find(v);
   if (sz[a] < sz[b]) {
       uf[a] = b;
       sz[b] += sz[a];
   } else {
       uf[b] = a;
       sz[a] += sz[b];
   }
```

Análise de complexidade (versão "small-to-large")

- Observação
 - Seja $v_1 v_2 \dots v_n$ um caminho, sendo v_1 o líder do conjunto
 - Então as uniões foram feitas na seguinte ordem:
 - conjunto de v_n com conjunto de v_{n-1}
 - conjunto de v_{n-1} com conjunto de v_{n-2}
 - ...
 - conjunto de v_3 com conjunto de v_2
 - conjunto de v₂ com conjunto de v₁
 - Por quê?
- Consequência
 - A cada união feita, o tamanho do conjunto pelo menos dobra
 - Logo a profundidade de um nó não pode exceder log₂ n

Análise de complexidade (versão alternativa)

- Para cada conjunto *v*, denotamos:
 - o seu tamanho por s_v ; e
 - a sua profundidade por d_v
- Invariante: $(\forall v)$ $d_v \leq \log_2 s_v$
 - Consequência: $(\forall v)$ $d_v \leq \log_2 n$
- No início do algoritmo, isso é verdade:

•
$$(\forall v)$$
 $d_v = 0$ e $s_v = 1$ $\log_2 s_v = 0$

- A invariante é mantida a cada união:
 - Sejam x e y dois conjuntos com $s_y \leq s_x$
 - Por hipótese: $d_x \le \log_2 s_x$ e $d_y \le \log_2 s_y$
 - Queremos mostrar: $d'_x \leq \log_2(s_x + s_y)$
 - Fato: $d'_x = \max\{d_x, d_y + 1\}$
 - Caso 1: $d'_x = d_x$
 - Fácil: $d'_x = d_x \leq_{HIP} \log_2 s_x \leq \log_2(s_x + s_y)$
 - Caso 2: $d'_x = d_y + 1$
 - $d'_x = d_y + 1 \le_{\mathsf{HIP}} \log_2 s_y + 1 = \log_2(s_y + s_y) \le \log_2(s_x + s_y)$

Rollback

Rollback com union by size

• Podemos desfazer as uniões imediatamente anteriores

- A cada operação merge, são feitas duas atribuições:
 - uf[i] = x;
 - sz[j] = y;
- Basta salvar os valores antigos em uma pilha!

Rollback com union by size

Implementação (parte 1)

```
int uf [MAX_N+1];
int sz[MAX_N+1];
stack<pair<int, int>> old_uf;
stack<pair<int, int>> old_sz;
void init() {
    for (int i = 1; i <= MAX_N; ++i) {
        uf[i] = i;
        sz[i] = 1:
int find(int x) {
    if (uf[x] == x) return x;
                    return find(uf[x]);
    else
```

Rollback com union by size

Implementação (parte 2)

```
void merge(int u, int v) {
    int a = find(u):
    int b = find(v);
    if (sz[a] > sz[b]) swap(a, b);
    old_uf.emplace(a, uf[a]);
    old_sz.emplace(b, sz[b]);
    uf[a] = b;
    sz[b] += sz[a]:
void rollback() {
    uf[old_uf.top().first] = old_uf.top().second;
    sz[old_sz.top().first] = old_sz.top().second;
    old_uf.pop();
    old_sz.pop();
}
```

Small-to-large

Cores em subárvores

Descrição do problema

- Entrada: árvore na qual os vértices possuem cores
- Objetivo: encontrar a quantidade de cores da subárvore enraizada em cada vértice

Cores em subárvores

Abordagem ingênua

- Busca em profundidade
- Para cada nó, unir os conjuntos de cores dos seus filhos

```
set<int> dfs(int v) {
    set<int> colors;
    colors.insert(color[v]);
    for (int w : adj[v])
        for (int c : dfs(w))
            colors.insert(c);
    ans[v] = colors.size();
    return colors;
}
```

- Complexidade no pior caso: $\Theta(n^2 \log n)$
 - Como construir tal caso?

Cores em subárvores

Abordagem "small-to-large"

• Mesma ideja mas unindo conjuntos do menor para o maior

```
void dfs(int v) {
    colors[v].insert(color[v]):
    for (int w : adj[v]) {
        dfs(w):
        if (colors[w].size() > colors[v].size())
            swap(colors[v], colors[w]);
        for (int c : colors[w])
            colors[v].insert(c);
    }
    ans[v] = colors[v].size();
```

- Complexidade no pior caso: $\Theta(n \log^2 n)$
 - Mesmo argumento do union by size!

Exercícios

Exercícios (links clicáveis)

Competição no codepit

Link: http://goo.gl/d2yQAT

Union-Find

- Fusões (SPOJ-BR)
- Famílias de Troia (SPOJ-BR)
- Gincana (SPOJ-BR)
- Energia (SPOJ-BR)
- Learning languages (codeforces) desafio
- War (UVa) desafio

Rollback

- Coleção de livros (codeforces)
 - necessário entrar no grupo do GRUPRO no codeforces (clique aqui)

Small-to-large

- Tree (e-olymp) não consta no codepit
- Lowest Common Ancestor (SPOJ) desafio
- Lomsat gelral (codeforces) super-desafio