Tutorial 3 Total 10 marks

## Question 1 (1 mark)

Create a folder called Tutorial\_3 on the server (or on your machine) as per previous weeks.

## Question 2 (3 marks)

Write a C code which performs the compute shown in the flowchart shown on the next page. Save your code as Tutorial\_3a.c. Your code should save the values contained within the array **a** to file upon completion.

## Question 3 (4 marks)

Rewrite the code written for Question 2 using OpenMP to split the work across P = 8 processors. Save your code as Tutorial\_3b.c in the directory Tutorial\_3 you created in Question 1.

## Question 4 (2 marks)

Prove that the two dimensional heat transfer equation, written as:

$$\frac{dT}{dt} - \frac{d}{dx} \left( \alpha \frac{dT}{dx} \right) - \frac{d}{dy} \left( \alpha \frac{dT}{dy} \right) = 0$$

can be written in the discretized form:

$$\frac{T_{i,j}^{k+1} - T_{i,j}^{k}}{\Delta t} - \alpha \left( \frac{T_{i+1,j}^{k} + T_{i-1,j}^{k} - 2T_{i,j}^{k}}{\Delta x^{2}} \right) - \alpha \left( \frac{T_{i,j+1}^{k} + T_{i,j-1}^{k} - 2T_{i,j}^{k}}{\Delta y^{2}} \right) = 0$$

(Show me your proof for credit)

.

