Institute for Analysis and Scientific Computing

Lothar Nannen, Michael Neunteufel

Numerik partieller Differentialgleichungen: stationäre Probleme - Übung 6

Übungstermin: 13.1.2021 17. Dezember 2020

Aufgabe 26:

Sei $\Omega \subset \mathbb{R}^2$ ein konvexes Gebiet mit stückweise glattem Rand $\partial\Omega$. Wir betrachten in dieser Aufgabe a-priori Abschätzungen der Fehler einer FEM-Lösung die dadurch entstehen, dass Ω approximiert wird durch ein Gebiet $\Omega_h := \bigcup_{T \in \mathcal{T}_h} T \subset \mathbb{R}^2$ mit einer regulären Triangulierung \mathcal{T}_h aus Dreiecken T mit maximaler Gitterweite h. Dabei nehmen wir an, dass die Ecken der Triangulierung \mathcal{T}_h auf dem Rand $\partial\Omega$ liegen und dass die jeweiligen Randteile von $\partial\Omega$ zwischen zwei benachbarten Randecken V_j und V_k als hinreichend glatte Funktion über der Randkante $\overline{V_jV_k}$ darstellbar ist.

a) Sei $T \in \mathcal{T}_h$. Falls T ein Randdreieck ist, so bezweichne B_T das Gebiet zwischen den Randkanten von T und $\partial\Omega$. Andernfalls sei $B_T = \emptyset$. Beweisen Sie, dass für Funktionen $u \in L^{\infty}(\Omega)$ gilt

$$\forall T \in \mathcal{T}: \quad \int_{B_T} u(x)dx = \|u\|_{L^{\infty}(\Omega)} \mathcal{O}(h^3). \tag{1}$$

b) Sei V_h definiert durch

$$V_h := \{ f \in C(\Omega) | \forall T \in \mathcal{T}_h : f|_T \in P_1 \land f|_{B_T} \equiv 0 \}.$$
 (2)

Zeigen Sie, dass für eine hinreichend glatte Funktion $u \in H_0^1(\Omega)$ gilt

$$\inf_{v_h \in V_h} \|u - v_h\|_{H^1(\Omega)} \le Ch,\tag{3}$$

wobei C > 0 nicht von h abhängen darf.

c) Begründen Sie, warum lineare Finite Elemente zur Lösung eines Poisson-Problems mit homogenen Dirichlet-Randbedingungen auch dann linear konvergieren, wenn Ω durch Ω_h ersetzt wird. An welcher Stelle wird die Voraussetzung konvex benötigt? Worauf könnte man eine Konvergenztheorie bei nicht konvexen Gebieten aufbauen?

Aufgabe 27:

a) Vervollständigen Sie den Konvergenzbeweis aus der Vorlesung vom 16.12, wenn für das Problem

$$\int_{\Omega} (\nabla u \cdot \nabla v + cu \, v) \, dx = f(v), \qquad u, v \in H_0^1(\Omega)$$
(4)

mit c>0 nicht-konforme Finite Elemente auf Basis des Crouzeix-Raviart-Elementes verwendet werden.

b) Beweisen Sie, dass für $c \ge 0$ die durch die diskrete Bilinearform induzierte diskrete Norm tatsächtlich eine Norm auf $H_0^1(\Omega) + V_{h,0}^{CR}$ ist.

Aufgabe 28:

Sei $u \in H_0^1(\Omega)$ die Lösung des Poisson-Problems

$$\forall v \in H_0^1(\Omega) : a(u; v) = (f, v)_{L^2(\Omega)} \qquad \text{mit } a(u, v) := (\nabla u; \nabla v)_{L^2(\Omega)}$$
 (5)

und $u_h \in V_h$ die zugehörige diskrete Lösung mit $V_h := \mathcal{S}_0^1(\mathcal{T})$. Weiter sei $u \in H^2(\Omega)$ für beliebige Funktionen $f \in L^2(\Omega)$. Zeigen Sie, dass dann eine Konstante C > 0 unabhängig von u und h existiert sodass

$$||u - u_h||_{L^2(\Omega)} \le Ch^2 ||u||_{H^2(\Omega)}.$$
 (6)

Hinweis: Verwenden Sie die Lösung w des Problems $a(v,w)=(u-u_h,v)_{L^2(\Omega)}, v\in H^1_0(\Omega)$, bei gegebenem $u-u_h$. Nutzen Sie die Galerkin-Orthogonalität und das Approximationstheorem 3.5 für w.

Aufgabe 29:

Sei $\Omega \subset \mathbb{R}^2$ ein Lipschitz-Gebiet. Formulieren und beweisen Sie die wesentlichen Aussagen aus der a priori Analysis in Chapter 3, wenn \mathcal{T} keine Triangulierung aus Dreicken sondern aus Rechtecken ist. Der diskrete Raum $\mathcal{Q}^{1,1}(\mathcal{T})$ sei dabei definiert durch

$$Q^{1,1}(\mathcal{T}) := \left\{ v \in C(\Omega) | \quad \forall Q \in \mathcal{T} \quad v|_Q = \mathcal{P}^1 \otimes \mathcal{P}^1 \right\},\tag{7}$$

wobei \mathcal{P}^1 der Raum der eindimensionalen, affin linearen Polynome ist. Welche Vor- bzw. Nachteile haben Rechteckselemente im Vergleich zu Dreieckselementen?

Aufgabe 30:

Implementieren Sie einen $Goal\ Driven$ Fehlerschätzer für lineare Funktionale. Verwenden Sie dazu den ZZ-Fehlerschätzer von Bsp 24/25 und die Zusatzmaterialien $goal_driven_error_estimator.pdf$ und $GoalDriven_estimator.ipynb$.

Sei $\Omega := [0,1]^2$. Gesucht ist ein $u \in H_0^1(\Omega)$ sodass für alle $v \in H_0^1(\Omega)$

$$\int_{\Omega} \nabla u \nabla v \, dx = \int_{[0.2, 0.3] \times [0.45, 0.55]} 100 \, v \, dx. \tag{8}$$

Testen Sie die Funktionale

- $b_1(u) = 100 \int_{[0.7,0.8] \times [0.45,0.55]} u \, dx$ (Referenzwert = 0.042556207995730),
- $b_2(u) = 10 \int_{\{0.75\} \times [0.45, 0.55]} u \, ds$ (Referenzwert = 0.042349426604237),
- $b_3(u) = u(0.75, 0.5)$ (Referenzwert = 0.042557119266960).

Erstellen Sie Konvergenzplots für den Fehler im Zielfunktional mit verschiedenen Polynomordnungen und vergleichen Sie mit der Verfeinerungsstrategie aus Bsp 24/25. Wie unterscheiden sich die generierten Meshes?

Bemerkung: Falls Probleme beim Meshen der Geoemtrie auftreten, können Sie das mesh direkt mit mesh = Mesh("mesh_bsp30.vol") laden.

Hinweis: Mit ..*ds("bcname") kann über einen spezifischen Rand integriert werden und mit b += v(0.75,0.5) eine Punktkraft als rechte Seite angegeben werden. Auswertung eines linearen Funktionals via InnerProduct(b.vec, u.vec).