6. Conditional Probability and Independence

Baye's Theorem [Ross S3.3]

Law of Total Probability:

Let
$$E, F \subset S$$
.

Then
$$E = ES = E(F \cup F^c) = EF \cup EF^c$$

and
$$\begin{split} P[E] &= P[EF] + P[EF^c] \\ &= P[E|F]P[F] + P[E|F^c]P[F^c] \end{split}$$

Example 6.1: The probability of an insurance claim is

- 0.4 for 30% of persons (type 1),
- 0.5 for 70% of persons (type 2).

What is the probability that a random person has a claim?

Solution:

Let $F_1, ..., F_n$ partition S.

Then
$$E = ES = E\left(\bigcup_{i=1}^{n} F_i\right)$$

= $\bigcup_{i=1}^{n} (EF_i)$

So
$$P[E] = P[\bigcup_{i=1}^{n} (EF_i)]$$

$$= \sum_{i=1}^{n} P[EF_i]$$

$$= \sum_{i=1}^{n} P[E|F_i]P[F_i]$$
 [Law of total probability]

Example 6.2: You roll a 4-sided die. If result is ≤ 2 , you roll once more, otherwise you stop. What is probability that the sum ≥ 4 ?

Solution:

Baye's Theorem and Inference:

Let F_1, F_2, \ldots, F_n partition S.

Say we know $P[E|F_j]$ and $P[F_j]$. We want to compute $P[F_j|E]$:

$$P[F_{j}|E] = \frac{P[EF_{j}]}{P[E]}$$

$$= \frac{P[E|F_{j}]P[F_{j}]}{P[E|F_{1}]P[F_{1}] + P[E|F_{2}]P[F_{2}] + \dots + P[E|F_{n}]P[F_{n}]}$$
(6.1)

This is Baye's theorem/rule.

Application to inference:

Before any partial information is revealed (i.e., observing ${\cal E}$ occurs), the probabilities are:

$$P[F_1], P[F_2], \dots, P[F_n]$$
 "prior probabilities"

After observing E occur, they are revised as:

$$P[F_1|E], P[F_2|E], \dots, P[F_n|E]$$
 "posterior probabilities"

according to (6.1).

Posterior probabilities are key to practical inference (e.g., classification, pattern recognition, detection, etc.)

Example 6.3: A 3-card deck has

- · one card with red on both sides
- · one card with black on both sides
- one card with red on one side + black on the other.

One side of 1 card is picked at random. It is red. What is the probability that other side is black?

Solution:

Example 6.4: A blood test has 95% prob of detecting a desease when it is present. It has a 1% false positive rate when it is not present. 0.5% of people have the desease.

- a) If a random person tests positive, what is prob. that desease is present?
- b) If a random person tests negative, what is prob. that desease is present?

Solution: