Architecture proposal for AWF by Tier IV Inc.

Agenda

- 1. Why we need a new architecture
- 2. Considered use cases
- 3. Architecture overview
 - Layered architecture
 - High level introduction of each module
- **4**. Contribution steps to Autoware community
- 5. Conclusion

Why we need a new architecture

Why we need a new architecture

It's diffcult to improve
 Autoware.Al capabilities

- No concrete architecture design
- A lot of technical debt
 - Tight coupling between modules
 - Unclear responsibility of modules

- Define a layered architecture
- Clarify the role of each module
- Simplify the interface between modules

Considered use cases

Considered use cases

Example use cases that were considered during architecture design:

Module	Use cases		
Sensing	360-degree sensing by the camera-LiDAR fusion		
Perception	Recognition of dynamic objects and traffic lights		
Localization	Robust Localization using multiple data sources		
Planning	Planning Route planning, dynamic planning based on vector map (not only waypoint following) Automatic parking Object avoidance		
Control	High control performance on many kinds of vehicle-controllers		

Features that are not considered yet (for the sake of development speed)

- Real-time processing
- HMI / Fail safe / Redundant system / State monitoring system / etc...

Will consider these items at AWF WGs

Demo video

Module	Contents	
Whole	Scenario demo	
Sensing+Perception	360° FOV, Prediction	
Localization	Robustness of localization, Return from error	
Planning	Lane change, Obstacle avoid, Parking	
Control	Slow brake (normal stop), Rapid brake (emergency stop)	

3

Architecture overview

Layered architecture High level introduction of each module

[Architecture] Sensing

Role: Conversion of sensing data to ROS message

[Architecture] Map

Role: Distribute static environment information to other modules

[Architecture] Localization [

Role: Integration of each sensor data and estimation of self-pose and self-twist

Support multiple localization methods based on different sensors(LiDAR/Camera/GNSS)

Merge sensor inputs

[Architecture] Perception

Role: Dynamic object recognition and traffic light recognition

[Architecture] Planning

Role : From a calculation of the route to the goal to drive trajectory generation

[Architecture] Control

-steering angle

4. Contribution steps to Autoware community

Contribution steps to Autoware community

5 Conclusion

Conclusion

- We proposed a new architecture of Autoware
- Tier IV will contribute our achievements to Autoware community
 - Detailed design documents
 - Reference source code
- We would like to discuss the new architecture at WGs
 - Any feedback is welcome
- We will make an effort to implement the new architecture in Autoware. Auto

Backup

Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achevements

Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achevements

[Design alternative] Planning (1/2)

Pre-study of the planning architecture

Туре	Structure	Pros.	Cons.
BOSS type (Junior type)	Mission Behavior Motion	Structure is intuitive and easy to understand. Easy to handle separately.	Behavior has to make a conservative decision in order to reduce discrepancies with a motion's decision.
CMU Dr. paper type	Mission Trajectory	•It solves and optimizes both behavior and motion simultaneously to overcome a cons. of the BOSS type.	 Difficult to improve if any issue was found. Optimization of the whole autonomous driving functions is not realistic
Victor Tango type	Mission Behavior Motion	 Behavior and motion are tightly coupled to overcome a cons. of the BOSS type. Easy to improve if any issue was found 	Difficult to take a new research result into the modules.
Apollo type	Mission Scenario Scenario	 Scenario is one layer upper concept. We can adopt prefered types of the planning structure according to each scenario. 	 In the scenario, cons. such as things described above are still remained. If scenarios increased, switching mechanism can be complicated.

[Design alternative] Planning (2/2)

Finally, we adopted **Apollo + Boss type**

Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achevements

TF Tree

[Sensing] Components

[Sensing] Feature

Distortion correction

Corrects a distortion of the pointclouds due to an observation time gap
 Accuracy of the localization is improved

Ground filter

Removes a ground from pointclouds (.ai has same feature)

Outlier filter

 Removes outliers by ring-base method ⇒ Reduce impacts of leaves and insects

Concat filter

- Integrates some pointclouds
- Reduces an impact when a part of sensors stop

[Localization] Components

[Localization] Feature

Pose initializer

Automatic initial self position estimation by GNSS + Monte-Carlo method

NDT scan matcher

- Uses an estimated value of EKF as an initial position of the scan matching ⇒ If scan matching was failed, localization can be returned
- Performance and accuracy are improved (Open-MP implementation, accuracy improvement of the initial position, improvement of the gradient method, distortion correction of pointclouds, and etc.)

Scan matching failure judgement

- Monitors statuses of scan matching based on a score
- If score is lower than a threshold, an estimated result isn't output

EKF localization

- Integrates the estimated self position of the scan matching and the velocity of CAN+IMU
- o If scan matching broke down, the vehicle can drive a certain distance with odometry only

IMU Vehicle-twist fusion

Uses a translation velocity of CAN and yaw rate of IMU ⇒ Accuracy of odometry is improved

Localizer Diagnostics

 Monitors a status of a whole localization module (Temporary implementation) X Only NDT is implemented in Pose Estimator now. In future, other estimators like a white line recognition based one will be added.

[Perception] Components

[Perception] Feature

Dynamic Object

- Point Cloud Segmentation : Splits pointclouds into object clusters
 - Becomes faster by algorithm improvement (It can work in real-time on CPU)
- Image Detection : Detects objects on an image as ROI
 - Becomes to work on 40FPS on Jetson AGX by Tensor RT and int8 quantization
- Fusion: Matches the result of Pointclouds Segmentation and the ROI of the image detection result
 - Matching accuracy is improved by using IoU
- Shape Estimation: Geometrically approximates the whole size of the objects by Point Cloud Segmentation
 - Shape estimations by each object class
 - Accuracy improvement by changing fitting algorithm of Bounding Box
- Multi-Object Tracking: Assigns IDs based on time series data, estimates the velocity and the acceleration, and removes outliers
 - Performance improvement by changing a tracking model by class labeling
 - Data association considering the class label and the size
- Map Based Prediction: Predicts moving path of the objects with the lane information in a map
 - Infers objects' intent of the behavior and estimates each reliability of the predicted moving paths.

Traffic Light

- Map Based Detection: Extracts an ROI of the traffic light in camera image based on the self position and map data
 - Takes errors of a self position, a calibration and a hardware vibration into consideration
- Fine Detection
 - Extracts the ROI of the traffic light more precisely with a learner
- Classifier: Recognizes a state of the traffic light by a color information in the image
 - \circ Reduces detection errors by fine noise removement process

[Planning] Components

[Planning] Feature

Scenario selector

Chooses and executes "lane_following" or "parking" scenario according to the information of the mission

Mission planner

- Automatically searches the route from a self position to a goal via certain pass through points (by using lanelet function)
- Automatically generates a route by using a map information

Lane change

- Judges a situation which needs lane change (Drive route limitation / street parking avoidance)
- Judges whether a collision with a dynamic will happen obstacle and if a lane change is possible, it will be executed

Behavior Velocity Planner

- Plans a velocity based on traffic rules
- Supports intersections, crosswalks, back-side check when turning right/left, stop with traffic lights and temporary stop line
- Uses results of the perception (dynamic object information)

Obstacle avoidance (motion path planner)

- Plans a path to avoid the obstacle while driving (A* + QP)
- Generate a smooth path considering a drivable area and the obstacle

Obstacle stop (obstacle stop planner)

Judges whether a collision with obstacle pointcoulds considering the vehicle shape, and fill a stop velocity

Jerk filter

- Smoothens the velocity under the limitation of max speed, acceleration and lateral acceleration (QP)
- Enables to switch rapid/slow acceleration and deceleration plans

[Control] Components

Longitudinal Controller

- Calculates a target velocity and a target acceleration by PID
- Supports a gradient correction and start/stop at a slope
- Supports a smoothly stop

Lateral Controller

Calculates a steering angle and an angular velocity (pure pursuit or MPC)

LatLon Coupler

Integrates the longitudinal and lateral control command values

Vehicle Cmd Gate

- Switches the some command values like "remote" and "auto"
- Attaches a limitation for the control command
 - longitudinal/lateral acceleration, longitudinal/lateral jerk

- •In this implementation, longitudinal and lateral controls are separately culcurated
- •In future implementation, these might be culcurated collectively

[Vehicle Interface] Components

Accel Map Converter

- Converts a target acceleration to a vehicle specific accel/brake pedal value by Accel Map
- If the vehicle_interface supports a velocity/acceleration command, this converter isn't necessary

Vehicle Interface (vehicle specific)

- Interface between Autoware and a vehicle
- Communicates control signals
- Obtains the vehicle information

Other features

Web Controller

• Through this controller, we can engage and specify the max velocity and also use "Go Home" button, "lane change OK" button and sensor Hz monitor

Autoware State Monitor

State monitoring (Initializing / WaitForEngage / Driving / ...)

Backup agenda

- Design alternative
- Module implementation
 - Implementation details
 - Achevements

Achievements (1/2)

- Automatic initial self pose estimation
- Robustness of self pose estimation improvement
 - CAN / imu fusion, EKF feedback, Gradient method algorithm improvement, pointclouds distortion correction, estimation speed improvement by Open-MP implementation
- 3D objects class recognition and shape estimation
- Performance improvement of dynamic objects tracking
- Moving path prediction of dynamic objects by using map information
- 360-degree sensing by the camera-LiDAR fusion
- Automatic lane change planning & decision
- Object avoidance (with lane change/ in the same lane)
- Intersection support (consider the oncoming vehicles and crossing vehicles)
- Person recognition at pedestrian crossing

Achievements (2/2)

- Performance improvement of the traffic light recognition
- Blind spot check when turning right/left
- Route generation from current position to a destination (via specified passing points)
 - With this feature, "Go Home button" can be implemented
- Automatic parking
- Slope support
- Slow / rapid brake planning support
- Performance improvement of the vehicle control
- Automatic deceleration at curve
- Collision judgement considering a vehicle shape