딥러닝 소개

장점

예측 및 분류가 목적일 때 머신러닝보다 좋은 성능

비정형 데이터 처리에 좋음

자동화로 인간의 개입 최소화

단점

학습 데이터 확보에 시간과 비용 ↑

컴퓨터의 학습내용을 알 수 없어서 해석 불가능

과적할 문제 (Overfitting)

기본구조

DL은 Hidden Layer가 두 개 이상 (DNN)

기본구조

UNIT=NEURON

710

Feed Forward Neural Network (FFNN)

: 입력층 - 은닉층 - 출력층으로 연산 진행

hidden layer

DL은 Hidden Layer가 두 개 이상 (DNN)

Flow Forward

1. 활성화 함수로 입력값에 대한 예측을 계산

Flow Forward

2. 손실 함수로 예측값과 실제값의 오차 측정

Flow Backward

3. Backpropagation: feature selection, 가중치 업데이트 (using Chain rule)

Flow Backward

< 정리 >

학습은 loss를 최소화하는 Weights와 Intercept 즉, Model parameter 의 조합을 찾는 과정 !!!

3. Backpropagation: feature selection, 가중치 업데이트 (using Chain rule)

Activation Functions

각 Layer의 input을 output으로 변환해주는 함수

활성화 함수로거의 다 비선형 함수 사용

ex) sigmoid, relu, tanh

선형 함수를 잘 사용하지 않는 이유

층을 쌓는 이점이 상쇄되기 때문!

f(x) = cx를 사용하여 3개의 layer을 쌓는 경우,

 $y = f(f(f(x))) = c^3X$ 와 같음

즉, layer를 여러 번 추가하더라도 한 번 추가한 것과 같게 됨

딥러닝은 어떻게 생겼을까?

Optimizer

Stochastic Gradient Descent

Gradient descent (경사하강법) 란?!

기울기(gradient)를 사용해 모델을 조정하는 optimization 알고리즘

가장 일반적인 optimizer

Gradient를 고려해 기울어진 방향으로 이동하는 방식

매 epoch마다 train set의 샘플 순서를 섞어 optimal weights를 계산

다양하게 탐색해야 optimal weights를 제대로 찾을 수 있기 때문

딥러닝은 어떻게 생겼을까?

Optimizer

Stochastic Gradient Descent

Generalization

새로운 데이터에 대해

올바른 예측 혹은 분류 가능한 모델 개발이 목적

정확한 예측 및 분류를 위해서는 모델의 성능을 높이는 최적화 과정이 필요한데 새로운 데이터에 대해서도 좋은 성능을 보이도록 하는 것이 중요!!

Generalization

최적화를 하는 동시에 일반화 고려

Epoch 를 늘릴수록 train set 에 대한 성능 높아짐

Validation set 에 대한 성능은 어느 순간 낮아짐

Avoiding Overfitting

유닛 및 레이어 줄이기

모델이 너무 단순해도 성능 저하

적정한 유닛과 레이어 수 결정하는 공식 없음

적은 수의 레이어와 유닛으로 시작하여 점차 모델의 크기를 조절

Avoiding Vanishing Gradient

미분하여 기울기가 0이 되어 Gradient가 사라지지 않는 것이 중요

Backpropagation 과정에서

미분을 통해 가중치를 갱신하면서 최적화

Avoiding Vanishing Gradient

Batch Normalization

내부 공변량 변화 문제를 해결하고 Vanishing Gradient를 막기 위해
Batch Normalization 사용

각 층에서 활성화 함수 통과하기 전 수행 배치 단위로 접근하여 정규화 진행 정규화된 값에 매개변수 γ 와 β 를 사용하여 스케일과 시프트 진행