ODEs

Jinyuan Wu

January 17, 2023

1 First order ODEs

1.1 Linear ODEs

An ODE in the form of

$$y'(x) + p(x)y(x) = q(x) \tag{1}$$

is considered linear. All linear ODEs can be solved by the following procedure. First we have

$$(y' + py)e^{\int pdx} = qe^{\int pdx},$$
(2)

and now the LHS is a derivative:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{\int p \mathrm{d}x} \right) = q \mathrm{e}^{\int p \mathrm{d}x},\tag{3}$$

and now we can integrate over x and get

$$y e^{\int p dx} = \int q e^{\int p dx} dx,$$
 (4)

$$y = e^{-\int p dx} \int q e^{\int p dx} dx.$$
 (5)

1.2 "Energy-conservation lines" and exact equations

Another way to represent the solution of an ODE is the form $\phi(x,y) = \text{const.}$ Note that the RHS contains no variables, and we have

$$0 = \frac{\mathrm{d}\phi}{\mathrm{d}x} = \frac{\partial\phi}{\partial x} + \frac{\partial\phi}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x},\tag{6}$$

and thus if

$$y' = f(x, y) \tag{7}$$

is algebraically equivalent to (6), the equation is already solved: We should find M, N such that

$$y' = -\frac{M}{N}, \quad M = \frac{\partial \phi}{\partial x}, \quad N = \frac{\partial \phi}{\partial y},$$
 (8)

and then $\phi(x,y)$ solves the equation. In this case we say y'=-M/N is **exact**.

To test for exactness, we only have to test whether

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x},\tag{9}$$

and if so, the existence of ϕ is guaranteed. (Since we work on a topological trivial space, things like cohomology group will not bother us.) We can now use "partial integral" to find ϕ .

Example: suppose in a calculation we find

$$\frac{\partial \phi}{\partial x} = 2y^2 + ye^{xy}, \quad \frac{\partial \phi}{\partial y} = 4xy + xe^{xy} + 2y.$$
 (10)

After partial integration, we find

$$\phi(x,y) = \underbrace{2xy^2 + e^{xy} + h(y)}_{\int \frac{\partial \phi}{\partial x} dx} = \underbrace{2xy^2 + e^{xy} + y^2 + g(x)}_{\int \frac{\partial \phi}{\partial y} dy},$$
(11)

and we have to choose

$$h(y) = y^2, \quad g(x) = \text{const}, \tag{12}$$

and the solution is

$$\phi(x,y) = 2xy^2 + e^{xy} + y^2 + \text{const.}$$
(13)

Note that even when the decomposition f = -M/N doesn't give an exact equation for us, we can still use the method of exact equations: we can multiply a factor μ to both M and N, and try to guess the form of μ so that

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x}. (14)$$

An example can be found in solving

$$y' = -\frac{1}{3x - e^{-2y}}. (15)$$

We have

$$\frac{\partial 1}{\partial y} = 0, \quad \frac{\partial (3x - e^{-2y})}{\partial x} = 3,$$

so the equation is not exact if we choose M=1 and $N=3x-\mathrm{e}^{-2y}$. However, (14) can be fulfilled now: it's now

$$\frac{\partial \mu}{\partial y} = 3\mu + \left(3x - e^{-2y}\right) \frac{\partial \mu}{\partial x},$$

and the most convenient way to solve it (we don't need to find all solutions of this equation!) is to let μ contain y only, so the tricky term on the RHS disappears, and thus we choose $\mu = e^{3y}$, and we get

$$\phi(x,y) = \int \mu M \, dx = \int e^{3y} \, dx = xe^{3y} + u(y),$$

$$\phi(x,y) = \int \mu N \, dy = \int (3xe^{3y} - e^y) \, dy = xe^{3y} - e^y + v(x),$$

so

$$\phi(x,y) = xe^{3y} - e^y + \text{const.}$$
(16)