

What is Dynamic Programming?

What is Dynamic Programming?

- Solving a problem by divide-and-conquer implies dividing a large problem into sub-problems and solving the large problem by combining the solutions of the smaller problems.
- Dynamic Programming is like divide-and-conquer but when the sub-problems overlap.

 Dynamic Programming optimizes the solution on situations where the same sub-problems happen to be solved several times.

What is Dynamic Programming? (History)

- A technique introduced by Richard Bellman
- Programming stands for planning not software coding as such
- Dynamic stands for flexibility or something...
- Dynamic Programming sounded as sophisticated title to get research funding:-)
- Yet the technique has shown to be a success!

Dynamic Programming Steps

- 1. Express the structure of the optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the optimal value of an optimal solution (B-U or T-D)
- 4. Construct an optimal solution (when distinguish between the final solution and the computation needed to find the solution). Subtile!

Dynamic Programming Characteristic

1. Optimal substructure

Optimal of the whole is obtained from optimal of the sub-problems

2. Overlapping sub-problems

Same sub-problems need to be solved over and over

Problems to Explore

- 1. Fibonacci numbers
- 2. Rod cutting
- 3. Matrix Chain Multiplication
- 4. Knapsack
- 5. Activity Selection

Fibonacci Numbers

$$F(n)=F(n-1)+F(n-2)$$

- Optimal substructure
- Overlapping subproblems
- TOP-Down with Memoization
- Bottom-UP following dependencies of subproblems

(Solved on blackboard)

Problem

Given a rod of length n and table of prices p_i where i = 1,2,...,n.

Determine the maximum revenue r_n obtain by cutting up the rod and selling the pieces.

Note!

Cutting does not cost!

Length i	1	2	3	4
Price (P i)	1	5	8	9

The structure

The maximum revenue r_n that can be obtained for a piece of length n, is given by:

$$r_n = max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

Optimal substructure because:

Solving the problem max r_n requires solving the subproblems max of

$$r_{n-1}, r_{n-2}, \ldots, r_1$$

Length i	1	2	3	4
Price (P i)	1	5	8	9

Recursive definition

The maximum revenue r_n that can be obtained for a piece of length n, is given by:

$$r_n = max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) \text{ and } r_0 = 0$$

Length i	1	2	3	4
Price (P i)	1	5	8	9

Recursive top-down

Recursive top-down with memoization

(Because overlapping sub-problems)

```
Cut-Rod(p, n)
    if n == 0
                                                           MEMOIZED-CUT-ROD (p, n)
          return 0
                                                           1 let r[0..n] be a new array
   q = -\infty
                                                           2 for i = 0 to n
 4 for i = 1 to n
                                                                  r[i] = -\infty
          q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))
                                                           4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
     return q
                                                           MEMOIZED-CUT-ROD-AUX(p, n, r)
                                                           1 if r[n] \ge 0
r_n = \max (p_i + r_{n-i}) and r_0 = 0
                                                                  return r[n]
       1 < i < n
                                                             if n == 0
                                                                  q = 0
                                                             else q = -\infty
                                                                 for i = 1 to n
r_n = max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)
                                                                     q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
                                                           8 r[n] = q
                                                              return q
```


Top-down with memoization

Bottom-up

```
MEMOIZED-CUT-ROD (p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX (p, n, r)

MEMOIZED-CUT-ROD-AUX (p, n, r)

1 if r[n] \ge 0

2 return r[n]

3 if n = 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

Solves subproblems of sizes j = 0,1,...,n in that order

Construct the optimal solution

Print the solution

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
    let r[0..n] and s[0..n] be new arrays
 2 r[0] = 0
    for j = 1 to n
        q = -\infty
 5
        for i = 1 to j
            if q < p[i] + r[j-i]
                q = p[i] + r[j-i]
 8
                s[j] = i
        r[j] = q
    return r and s
```

```
PRINT-CUT-ROD-SOLUTION (p, n)
1 (r,s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p,n)
  while n > 0
3
       print s[n]
      n = n - s[n]
```

length
$$i$$
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 price p_i
 1
 5
 8
 9
 10
 17
 17
 20
 24
 30

Solving for n=10 gives this table

What would print (p,5) output?

Problem

Given a sequence (chain) $\langle A_1, A_2, \dots, A_n \rangle$. Place parenthesis such the cost of multiplication is minimum.

Example

Given a sequence of matrices $\langle A_1A_2A_3A_4\rangle$. Matrix multiplication is associative, i.e., the product can be obtained in 5 distinct ways:

- $(A_1(A_2(A_3A_4)))$
- $(A_1((A_2A_3)A_4))$
- $((A_1A_2)(A_3A_4))$
- $((A_1(A_2A_3))A_4)$
- $(((A_1A_2)A_3)A_4)$

Problem

Example

If: A is p x q matrix and B is q x r matrix.

Then $C=A \times B$ is $p \times r$ matrix.

The cost of computing C is thus dominated by p.q.r

The size of C will be p.r

Given a sequence of matrices $\langle A_1,A_2,A_3\rangle$, where A_1 is 10 x 100, A_2 is 100 x 5, and A_3 is 5 x 50. What are the possible multiplication costs?

- Answer:

Problem

Example

Given a sequence (chain)

$$\langle A_1, A_2, \dots, A_n \rangle$$
. A matrix A_i has

dimension $p_{i-1} \times p_i$

The number of possible

parenthesizations P(n) is given by a

recurrent split k of parenthesised sub

products.

•
$$(A_1(A_2(A_3A_4)))$$

•
$$(A_1((A_2A_3)A_4))$$

•
$$((A_1A_2)(A_3A_4))$$

•
$$((A_1(A_2A_3))A_4)$$

•
$$(((A_1A_2)A_3)A_4)$$

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

Reason about P(k) and P(n-k)

Optimal substructure (Step 1)

• $A_{i..j}$, where $i \leq j$ is the matrix dimension for the product $A_i A_{i+1} \dots A_j$

- By have also $A_{i..j} = A_{i..k} A_{k+1...j}$ where $i \leq k < j$
- The cost that we get from parenthesising $A_{i..j}$ is the cost of computing $A_{i..k}$ plus the cost $A_{k+1...j}$, plus the cost of multiplying them.

Proof of optimal substructure

- Suppose the optimal is $A_{i..j} = A_{i..k} A_{k+1...j}$
- It means that the way we find $A_{i..k}$ must lead to optimal cost (minimum cost), because if it was a better way than $A_{i..k}$ is not the optimal. contradiction!

The optimal solution of a problem is composed of the optimal solution of the subproblems

Recursive relation (Step 2)

- Let m[i,j] be the minimum number of scalar multiplications to compute $A_{i..j}$, where $1 \le i \le j \le n$. The lowest cost for $A_{1..n}$ would then be m[1,n]
- Recall that the multiplication of $A_{i..k}A_{k+1..j}$ costs $p_{i-1}p_kp_j$ multiplications.
- Assuming a k (optimal parenthesization) $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
- We don't know k but we know it is between i and j, so:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \ , \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \ . \end{cases}$$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13,000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 &= 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11,375 \\ &= 7125. \end{cases}$$

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases}$$

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

Computing the optimal costs (Step 3) Top down or bottom up

```
MATRIX-CHAIN-ORDER (p)
RECURSIVE-MATRIX-CHAIN (p, i, j)
                                                                 1 \quad n = p.length - 1
1 if i == j
                                                                    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
        return 0
                                                                    for i = 1 to n
   m[i, j] = \infty
                                                                         m[i,i] = 0
   for k = i to j - 1
                                                                    for l = 2 to n
                                                                                               # l is the chain length
        q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k)
                                                                         for i = 1 to n - l + 1
             + RECURSIVE-MATRIX-CHAIN(p, k + 1, j)
                                                                             i = i + l - 1
             + p_{i-1}p_kp_j
                                                                             m[i,j] = \infty
       if q < m[i, j]
6
                                                                             for k = i to j - 1
                                                                 9
            m[i, j] = q
                                                                                  q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
                                                                10
   return m[i, j]
                                                                                  if q < m[i, j]
                                         m
                                                                                      m[i, j] = q
                                                                                      s[i, j] = k
                                                                    return m and s
                                       (15,125)
                                                          i
                                   (11,875 \times 10,500)
                                9,375
                                        7,125
                                                5,375
                            7,875
                                    4,375
                                            2,500
                                                    3,500
                       (15,750)
                                2,625
                                         750
                                                1,000
                                                        5,000
                              0
```

 A_5

 A_1

 A_2

 A_3

Computing the optimal costs (Step 3) Bottom UP

Construct the optimal solution (Step 4)

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

PRINT-OPTIMAL-PARENS (s, i, j)

```
1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Calling PRINT-OPTIMAL-PARENS(s,1,6) prints what?

your answer

Optimal Substructure

An optimal solution to a problem contains within it optimal solutions to subproblems such as: Rod cutting and matrix chain multiplication.

Be careful not to assume wrong!

Example: Unweighted shortest path vs Unweighted longest path

Dynamic Programming Ingredients

Overlapping subproblems

The set of subproblems is relatively small (polynomial in the input size). When an algorithm (often recursive) revisits the same problem repeatedly gives the problem the property of "Overlapping subproblems"

Memoization

Computational saving (Matrix chain multiplication)

Problem

A Set of activities $S = \{a_1, a_2, \dots, a_n\}$ that require a resource. Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$, if a_i is selected it takes place in the half-open interval $[s_i, f_i)$.

Two activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap: $s_i \ge f_i$ or $s_i \ge f_i$.

We want to select a maximum subset of mutually compatible activities!

Example

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8 12	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Problem: Find the largest subset of mutually compatible activities.

Solution:

Example

i	1	2	3	4	5	6	7	8	9	10	11
										2	
f_i	4	5	6	7	9	9	10	11	12	14	16

Problem: Find the largest subset of mutually compatible activities.

Solution: $\{a_1, a_4, a_8, a_{11}\}$ or $\{a_2, a_4, a_9, a_{11}\}$

Dynamic programming approach

 S_{ii} the set of activities starting after f_i and finishing after a_i starts.

$$S_{1,7} = \{a_4, a_6, a_7\}$$

Dynamic programming approach

- S_{ij} the set activities starting after f_i and finishing after a_j starts
- Suppose A_{ij} is a maximum set of mutually compatible activities in S_{ij} , and that $a_k \in A_{ij}$
- With a_k in an optimal solution means $A_{ik}=A_{ij}\cap S_{ik}$ and $A_{kj}=A_{ij}\cap S_{kj}$
- Here A_{ik} are the activities that finish before a_k starts and A_{kj} are the activities that start after a_k finishes:
- $A_{ij}=A_{ik}\cup\{a_k\}\cup A_{kj}$ => the maximum size of A_{ij} from S_{ij} is $|A_{ij}|=|A_{ik}|+|A_{kj}|+1$

Dynamic programming approach

- S_{ij} the set activities starting after f_i and finishing after a_j starts
- Suppose A_{ij} is a maximum set of mutually compatible activities in S_{ij} , and that $a_k \in A_{ij}$
- With a_k in an optimal solution means $A_{ik}=A_{ij}\cap S_{ik}$ and $A_{kj}=A_{ij}\cap S_{kj}$
- Here A_{ik} are the activities that finish before a_k starts and A_{kj} are the activities that start after a_k finishes:
- $A_{ij}=A_{ik}\cup\{a_k\}\cup A_{kj}$ => the maximum size of A_{ij} from S_{ij} is $|A_{ij}|=|A_{ik}|+|A_{kj}|+1$ This the structure of our solution

Dynamic programming approach

Claim:

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj} => \text{ the maximum size of } A_{ij} \text{ from } S_{ij} \text{ is }$$

$$|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$$

Direction of a Proof:

If it was $|A'_{ki}|$ of mutually compatible activities in S_{ki} and $|A'_{ki}| > |A_{ki}|$ then we could use A'_{ki} to construct $|A_{ik}| + |A'_{ki}| + 1 > |A_{ik}| + |A_{ki}| + 1 = |A_{ii}|$, but A_{ii} is an optimal solution. Contradiction! We must have $|A'_{ki}| = |A_{ki}|$

Dynamic programming approach

Solution:

The size of an optimal solution for S_{ij} is c[i,j] = c[i,k] + c[k,j] + 1

because we don't know k, we have to find it:

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$
(16.2)

Greedy approach

 $S_k = \{a_i \in S : f_k \le s_i\}$ be the set of activities that starts after a_k finishes

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8 12	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Solution:

Greedy approach

 $S_k = \{a_i \in S : f_k \le s_i\}$ be the set of activities that starts after a_k finishes

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Example:

Solution: $\{a_1, a_4, a_8, a_{11}\}\$ or $\{a_2, a_4, a_9, a_{11}\}\$

Greedy approach

 $S_k = \{a_i \in S : f_k \le s_i\}$ be the set of activities that starts after a_k finishes

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof Let A_k be a maximum-size subset of mutually compatible activities in S_k , and let a_i be the activity in A_k with the earliest finish time. If $a_i = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k . If $a_j \neq a_m$, let the set $A'_k = A_k - \{a_j\} \cup \{a_m\}$ be A_k but substituting a_m for a_j . The activities in A'_k are disjoint, which follows because the activities in A_k are disjoint, a_j is the first activity in A_k to finish, and $f_m \leq f_j$. Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

0/1 Knapsack

Problem 0/1 Knapsack

- A set of n items $I = i_1, i_2, \dots, i_n$
- A Knapsack with maximum capacity W_{max}
- Every item has a value v_i and a weight w_i

Determine the maximum value V_{max} that can be obtained by selecting a subset of items such that the total weight of the items does not exceed W_{max}

0/1 Knapsack

Structure of the solution (optimal substructure)

• Let KS(i,c) be the maximum value that can be obtained using up to the i-th item with a total weight $\leq c$. (c is available capacity)

•
$$x_0 \cdot v_0 + x_1 \cdot v_1 + \dots + x_n \cdot v_n = V_{max}$$

• $x_0 . w_0 + x_1 . w_1 + \dots x_n . w_n = W_{max}$

• $x_i \in \{0,1\}$ choosing or not

0/1 Knapsack

0/1 Knapsack Problem

- A set of n items $I = i_1, i_2, \dots, i_n$
- A Knapsack with maximum capacity W_{max}
- Every item has a value v_i and a weight w_i

Determine the maximum value V_{max} that can be obtained by selecting a subset of items such that the total weight of the items does not exceed W_{max}

Can we solve it with a greedy approach?

Fractional Knapsack

Fractional Knapsack Problem

- A set of n items $I = i_1, i_2, \dots, i_n$
- A Knapsack with maximum capacity W_{max}
- Every item has a value v_i and a weight w_i

Determine the maximum value V_{max} that can be obtained by selecting a FRACTION from the items such that the total weight of the items does not exceed W_{max}

Can we solve it with a greedy approach?

Additional resources

1.https://www.youtube.com/watch?v=r4-cftqTcdl&ab_channel=MITOpenCourseWare

2