AVL Tree

授課老師: 詹寶珠教授

AVL Trees

- Dynamic tables may also be maintained as binary search trees.
- Depending on the order of the symbols putting into the table, the resulting binary search trees would be different. Thus the average comparisons for accessing a symbol is different.

Binary Search Tree for The Months of The Year

Input Sequence: JAN, FEB, MAR, APR, MAY, JUNE, JULY, AUG,

A Balanced Binary Search Tree For The Months of The Year

Input Sequence: JULY, FEB, MAY, AUG, DEC, MAR, OCT, APR, JAN, JUNE, SEPT, NOV

Smart Media & Intelligent Living Excellence Lab.

Degenerate Binary Search Tree

Minimize The Search Time of Binary Search Tree In Dynamic Situation

- From the above three examples, we know that the average and maximum search time will be minimized if the binary search tree is maintained as a complete binary search tree at all times.
- However, to achieve this in a dynamic situation, we have to pay a high price to restructure the tree to be a complete binary tree all the time.
- In 1962, Adelson-Velskii and Landis introduced a binary tree structure that is balanced with respect to the heights of subtrees. As a result of the balanced nature of this type of tree, dynamic retrievals can be performed in O(log n) time if the tree has n nodes. The resulting tree remains height-balanced. This is called an AVL tree.

AVL Tree

- Definition: An empty tree is height-balanced. If T is a nonempty binary tree with T_L and T_R as its left and right subtrees respectively, then T is height-balanced iff
 - (1) T_L and T_R are height-balanced, and
 - (2) $|h_L h_R| \le 1$ where h_L and h_R are the heights of T_L and T_R , respectively.
- Definition: The *balance factor*, BF(T), of a node T is a binary tree is defined to be $h_L h_R$, where h_L and h_R , respectively, are the heights of left and right subtrees of T. For any node T in an AVL tree, BF(T) = -1, 0, or 1.

AVL Tree

- The addition of a node to a balanced binary search tree could unbalance it.
- The rebalancing was carried out using four different kinds of rotations:
 - LL: Y is inserted in the left subtree of the left subtree of A
 - LR: Y is inserted in the right subtree of the left subtree of A
 - RR: Y is inserted in the right subtree of the right subtree of A
 - RL: Y is inserted in the left subtree of the right subtree of A

These rotations are characterized by the **nearest ancestor**, **A**, of the **inserted node**, **Y**, whose **balance factor** becomes **±2**.

AVL Tree

 $\uparrow \uparrow$: inserted node Y $\uparrow \uparrow$: nearest ancestor A, balance factor = ± 2

Rebalancing Rotation LL

Rebalancing Rotation RR

Rebalancing Rotation LR(a)

Rebalancing Rotation LR(b)

Rebalancing Rotation LR(c)

(g) Insert DECEMBER

(h) Insert JULY

(j) Insert JUNE

(k) Insert OCTOBER

AVL Trees (Cont.)

- Once rebalancing has been carried out on the subtree in question, examining the remaining tree is unnecessary.
- To perform insertion, binary search tree with n nodes could have O(n) in worst case. But for AVL, the insertion time is O(log n).

AVL Insertion Complexity

- Let N_h be the minimum number of nodes in a height-balanced tree of height h. In the worst case, the height of one of the subtrees will be h-1 and that of the other h-2. Both subtrees must also be height balanced. $N_h = N_{h-1} + N_{h-2} + 1$, and $N_0 = 0$, $N_1 = 1$, and $N_2 = 2$.
- The recursive definition for N_h and that for the Fibonacci numbers $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$.
- It can be shown that $N_h = F_{h+2} I$. Therefore we can derive that $N_h \approx f^{h+2} / \sqrt{5} 1$. So the worst-case insertion time for a height-balanced tree with n nodes is $O(\log n)$.

Probability of Each Type of Rebalancing Rotation

 Research has shown that a random insertion requires no rebalancing, a rebalancing rotation of type LL or RR, and a rebalancing rotation of type LR and RL, with probabilities 0.5349, 0.2327, and 0.2324, respectively.

Comparison of Various Structures

Operation	Sequential List	Linked List	AVL Tree
Search for x	O(log n)	O(n)	O(log n)
Search for kth item	O (1)	O(k)	O(log n)
Delete x	O(n)	O(1) ¹	O(log n)
Delete kth item	O(n-k)	O(k)	O(log n)
Insert x	O(n)	$O(1)^2$	O(log n)
Output in order	O(n)	O(n)	O(n)

- 1. Doubly linked list and position of x known.
- Position for insertion known