CS 346 Class Notes

Mark Lindberg

Feb 10, 2016

Last Time:

PRF F gives a (strongly) secure Mac for n-bit messages. $\Pi'(Mac', Vrfy')$.

We can use the Mac above to produce a (strongly) secure Mac for arbitrary-length messages. $\Pi(Mac, Vrfy)$.

The construction of Π was: Mac: Divide the message m into $\frac{n}{4}$ -bit blocks. We have an n-bit key k. $m=m_1,m_2,\ldots,m_d$ when broken up. m_d , the last block, is padded with 0s if necessary. Let ℓ be the length of the message before padding. Then $t_i = \mathsf{Mac}'_k(r||\langle\ell\rangle||\langle i\rangle||m_i)$, where r is an uniformly chosen $\frac{n}{4}$ -bit string, which is used for the entire message m, then sent with for verification. Tag = $(r, t_1, t_2, \ldots, t_d)$.

 $\mathsf{Vrfy}(m,t)$, where t is of the form above. Construct each of the blocks as above, using the given r and m, and then run Mac' on each of them and check equality.

This Time:

Theorem: This scheme is secure as long as Π' is secure.

Recall: Our "experiment" for security is the Mac-forge experiment. $\Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1]$ is negl.

Mac-forge means \mathcal{A} gets a Mac_k oracle, $m_1 \to t_1$, $m_2 \to t_2$, etc., leading to an output of (m,t). A wins if for some "new" m it chooses $\mathsf{Vrfy}_k(m,t)$ passes.

Fix an arbitrary PPT A.

Proof: We have 3 events.

 E_1 : \mathcal{A} succeeds.

 E_2 : "Repeat": Some r repeats.

 E_3 : "New Block": Some $(r||\langle \ell \rangle||\langle i \rangle||m_i)$ is passed to Mac'_k when checking \mathcal{A} 's output is "new".

$$\Pr[E_1] = \Pr[E_1 \wedge E_2] + \Pr[E_1 \wedge \overline{E_2} \wedge E_3] + \Pr[E_1 \wedge \overline{E_2} \wedge \overline{E_3}]$$

$$\leq \Pr[E_2] + \Pr[E_1 \wedge E_3] + \Pr[E_1 \wedge \overline{E_2} \wedge \overline{E_3}]$$

Then $\Pr[E_2] = \mathcal{O}\left(\frac{q(n)}{2^n}\right)$ (I can't read that part of the board very well, so don't trust this.)

Also, $\Pr[[E_1 \wedge \overline{E_2} \wedge \overline{E_3}] = 0$, because $\overline{E_2} \wedge \overline{E_3}$ means we have to send an m we've already seen, thus breaking success. That is, $\overline{E_2} \wedge \overline{E_3} \Rightarrow \overline{E_1}$.

Finally, $\Pr[E_1 \wedge E_3]$. If this is not neg1, then Π' is not secure. Assume we have an adversary \mathcal{A}' for Π' . Then when \mathcal{A} calls $\mathsf{Mac}_k(m)$, \mathcal{A}' chooses a random r, forms blocks of the proper form, then uses oracle for Mac'_k to get t'_i s. When \mathcal{A} outputs (m,t), \mathcal{A}' outputs...? It forms all d blocks, and does something. Need to reference the book. Conclusion: $\mathsf{negl}(n) \geq \Pr[\mathcal{A}' \text{ succeeds}] \geq \Pr[E_1 \cap E_3]$.

Therefore, $\Pr[E_1] \leq \operatorname{negl}(n)$.

Now we are going to examine a *practical* secure Mac for arbitrary length message. This is the CBC-MAC, Cipher Block Chaining Message Authentication Code.

Let $IV = 0^n$. Run CBC, and only output c_d , the last block of the cipher-text produced by the CBC. We assume that all messages m are of length $\ell(n)$ -bits.

This doesn't work for arbitrary-length messages, so we can set some long length, and pad shorter messages. Or we could include some F'_k , and we output $F'_k(c_d)$. Either fix the arbitrary-length message.

Authenticated Encryption:

• Combines confidentiality and integrity.

An authenticated encryption scheme must be

- 1. Unforgeable.
- 2. CCA-secure.

What does it mean to be unforgeable? Let $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$. Π is said to be unforgeable if it passes the $\mathsf{Enc}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(n)$ experiment.

The experiment:

 \mathcal{A} gets access to Enc_k oracle, and \mathcal{A} must produce a ciphertext c. \mathcal{A} wins the game if $\mathsf{Dec}_k(c) \neq \perp$. (?) And it is "new" (Not the output of some oracle query).

"Encrypt-then-authenticate". Ingredients

- 1. CPA-secure encryption scheme Π_E .
- 2. Strongly secure $\mathsf{Mac}\ \Pi_M$.

With different keys chosen uniformly at random.