Project Initialization and Planning Phase

Date	15 July 2024	
Team ID	739858	
Project Title	SDSS galaxy classification using Machine	
	Learning	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

Resource Type	Description	Specification/Allocation
Hardware		
Computing Resources	CPU/GPU specifications, number of cores	NVIDIA RTX 3090
Memory	RAM specifications	8 GB

Storage Disk space for data, models, and logs	1 TB SSD
---	----------

The Sloan Digital Sky Survey(SDSS) has amassed a vast repository of galaxy images aand spectra, offering a rich dataset for astronomical research. Traditional mathods of classifying galaxies based on visual inspection are time-consuming and subjective. This project purposes a leaverage machine learning techniques to automate the classification process, aiming to enhance accuracy and efficiency in identifying galaxy types within the SDSS database.

Project Overview		
Objective	Improving efficiency and accuracy over manual methods, facilitating	
	faster analysis and deeper insights into astronomical data	
Scope	Classify galaxies by analyzing their spectra, identifying types like	
	spirals or ellipticals, aiding in understanding cosmic structure and	
	evolution.	
Problem Statement		
Description	SDSS uses machine learning to classify galaxies by analyzing their	
	spectra, distinguishing types like spirals or ellipticals, enhancing our	
	understanding of cosmic structure and evolution.	
Impact	SDSS's machine learning-driven galaxy classification revolutionizes	
	astronomy by automating and refining categorization, enabling	
	largescale studies of galaxy populations, evolution, and the broader	
	universe.	
Proposed Solution		
Approach	SDSS employs supervised machine learning models trained on galaxy	
	spectra to classify types such as spirals or ellipticals, enhancing	
	accuracy and scalability in large-scale astronomical surveys.	
Key Features	SDSS uses machine learning to classify galaxies based on spectral	
	features, employing algorithms like random forests and neural	
	networks for accurate identification of galaxy types and properties.	

Resource Requirements

Software		
Frameworks	Python frameworks	TensorFlow, PyTorch
Libraries	Additional libraries	Matplotlib, Seaborn
Development Environment	IDE, version control	Jupyter Notebook, Python
Data		
Data	Source, size, format	Kaggle dataset, csv