Learning-Python-AlpaVantage-ML

December 11, 2020

0.1 Stock Analysis and ML

[9]: api_key = 'Y6OSPOUFVK3CU8DP'

```
0.1.1
           Stock Analysis
[3]: import pandas as pd
    import yfinance as yf
[4]: tickerSymbol = 'HD'
[5]: hd df = yf.Ticker(tickerSymbol)
[6]: dt range = hd df.history(period='1d', start='2020-12-3', end='2020-12-4')
[7]: hd df.recommendations
[7]:
                                    Firm
                                            To Grade From Grade Action
    Date
    2012-02-22 09:06:00
                               Jefferies
                                                                 main
                                                Hold
    2012-02-22 11:12:00
                                     UBS
                                                                 main
                                                Buy
    2012-03-20 06:30:00 Deutsche Bank
                                                Hold
                                                                 main
    2012-03-21 06:10:00 Credit Suisse Outperform
                                                                 main
    2012-03-26 08:48:00 Canaccord Genuity
                                                Hold
                                                                 init
    2020-08-19 13:58:34 B of A Securities
                                                        Neutral
                                                Buy
    2020-09-18 15:11:12
                            Oppenheimer Perform Outperform down
    2020-10-07 11:33:40 Morgan Stanley Overweight
                                                                 main
    2020-11-12 12:30:33 Gordon Haskett
                                                Buy Accumulate
                                                                   up
    2020-12-04 14:55:12 Morgan Stanley Overweight
                                                                 main
    [217 rows x 4 columns]
[6]: # quandl api key = Quandl API KEY
     # alpha vantage key = ALPHA API KEY
[8]: import pandas as pd
    from alpha vantage.timeseries import TimeSeries
    import time
```

```
[10]: ts = TimeSeries(key=api key, output format='json')
[11]: data, meta data = ts.get intraday(symbol='HD', interval = '1min', outputsize = 1
     ,→ 'full')
[12]: print(data)
    {'2020-12-10 20:00:00': {'1. open': '266.0000', '2. high':
    '266.0000', '3. low': '266.0000', '4. close': '266.0000', '5.
    volume': '204'}, '2020-12-10 19:25:00':
    {'1. open': '266.0000', '2. high': '266.0000', '3. low': '266.0000',
    '4. close': '266.0000', '5. volume': '200'}, '2020-12-10 18:50:00':
    {'1. open': '265.9000', '2. high': '265.9000', '3. low': '265.9000',
    '4. close': '265.9000', '5. volume': '183'}, '2020-12-10 18:35:00':
    {'1. open': '264.8100', '2. high': '264.8100', '3. low': '264.8100',
    '4. close': '264.8100', '5. volume': '13955'}, '2020-12-10 18:26:00':
    {'1. open': '266.0900', '2. high': '266.1000', '3. low': '266.0900',
    '4. close': '266.1000', '5. volume': '903'}, '2020-12-10 18:00:00':
    {'1. open': '265.9400', '2. high': '265.9400', '3. low': '265.9400',
    '4. close': '265.9400', '5. volume': '202'}, '2020-12-10 17:16:00':
    {'1. open': '265.9700', '2. high': '265.9700', '3. low': '265.9700',
     . . . Truncated . . .
    {'1. open': '273.4768', '2. high': '273.4868', '3. low': '273.4768',
    '4. close': '273.4868', '5. volume': '492'}, '2020-11-27 08:32:00':
    {'1. open': '273.4867', '2. high': '273.4867', '3. low': '273.4867',
    '4. close': '273.4867', '5. volume': '520'}, '2020-11-27 08:27:00':
    {'1. open': '273.3873', '2. high':
    '273.3873', '3. low': '273.3873', '4. close': '273.3873', '5.
    volume': '510'},
    '2020-11-27 08:01:00': {'1. open': '273.4768', '2. high': '274.0735',
    '273.4768', '4. close': '274.0735', '5. volume': '2670'}, '2020-11-27
    07:29:00': {'1. open': '273.2481', '2. high': '273.2481', '3. low':
    '273.0890', '4. close': '273.0890', '5. volume': '806'}, '2020-11-27
    07:05:00': {'1. open': '273.4768', '2. high': '273.9840', '3. low':
    '273.4768', '4. close': '273.9840', '5. volume': '520'}, '2020-11-27
    07:01:00': {'1. open': '273.4868', '2. high': '273.4868', '3. low':
    '273.4868', '4. close': '273.4868', '5. volume': '634'}}
```

[13]: import pandas as pd
 from alpha_vantage.timeseries import TimeSeries
 import time
 import matplotlib.pyplot as plt

[14]: from alpha_vantage.timeseries import TimeSeries # Please Contact for Professional Services print(data)

		1. open 2	. high	3. low 4. close	e 5. volume
date					
2020-12-10 266.0000	20:00:00	266.0000	266.0000	266.0000	204.0
2020-12-10 266.0000	19:25:00	266.0000	266.0000	266.0000	200.0
2020-12-10	18:50:00	265.9000	265.9000	265.9000	183.0
2020-12-10 264.8100	18:35:00	264.8100	264.8100	264.8100	13955.0
2020-12-10 266.1000	18:26:00	266.0900	266.1000	266.0900	903.0
2020-11-27 273.3873	08:27:00	273.3873	273.3873	273.3873	510.0
2020-11-27 274.0735	08:01:00	273.4768	274.0735	273.4768	2670.0
2020-11-27 273.0890	07:29:00	273.2481	273.2481	273.0890	806.0
2020-11-27 273.9840	07:05:00	273.4768	273.9840	273.4768	520.0
2020-11-27 273.4868	07:01:00	273.4868	273.4868	273.4868	634.0
[4129 rows	x 5 colur	mns]			

```
[15]: data['4. close'].plot()
   plt.title('Intraday TimeSeries Google')
   plt.show()
```



```
[17]: from alpha_vantage.techindicators import TechIndicators
# Please Contact for Professional Services
plt.show()
```


[18]: from alpha_vantage.cryptocurrencies import CryptoCurrencies # Please Contact for Professional Services plt.show()

1a.	open (C	AD) 1b.	open (U	SD) 2a	. high	(CAD) 2k	o. high	(USD)	\
date									
2020-12-13	L 23267.	763374	182	54.81	23316.	.096585	182	92.73	
2020-12-10	23632.	913647	185	41.29	23653.	.345645	185	57.32	
2020-12-09	23356.	093847	183	24.11	23758.	.182318	186	39.57	
2020-12-08	3 24430.	322409	191	66.90	24593.	.396012	192	94.84	
2020-12-07	7 24674.	754369	193	58.67	24754.	.086095	194	20.91	
2018-03-22	11324.	680420	88	84.82	11598.	.951000	91	00.00	
2018-03-23	11356.	724116	89	09.96	11697.	.108716	91	77.01	
2018-03-20	10955.	285696	85	95.01	11535.	.220500	90	50.00	
2018-03-19	9 10437.	781290	81	89.00	11095.	.773210	87	05.23	
2018-03-18	9972.	561386	78	24.01	10601.	.441214	83	17.40	
3a.	low (CA	D) 3b. 1	low (USD) 4a.	close ((CAD) 4b	. close	(USD)	\
date									
2020-12-1	1 22879.2	249500	17950	0.00	22950.	602168	1800)5.98	
2020-12-1	0 22829.	692663	17911	.12	23267.	533944	1825	54.63	
2020-12-0	9 22496.	866500	17650	0.00	23632.	900901	1854	11.28	
2020-12-0	8 23197.	902000	18200	0.00	23356.	093847	1832	24.11	

2020-12-07	24093.799877	18902.88	24430.322409	19166.90
		•••		
2018-03-22	10789.701111	8465.10	11118.295569	8722.90
2018-03-21	11153.602266	8750.60	11324.909850	8885.00
2018-03-20	10553.770800	8280.00	11356.749608	8909.98
2018-03-19	10309.555524	8088.40	10961.646000	8600.00
2018-03-18	9332.694420	7322.00	10439.043154	8189.99

5. volume 6. market cap (USD)

date 2020-12-11 3892.503080 3892.503080 2020-12-10 52890.675094 52890.675094 2020-12-09 79585.553801 79585.553801 2020-12-08 61626.947614 61626.947614 2020-12-07 41372.296293 41372.296293 2018-03-22 40617.556809 40617.556809 2018-03-21 39972.405371 39972.405371 2018-03-20 44865.105835 44865.105835 2018-03-19 55297.084942 55297.084942 2018-03-18 59488.231711 59488.231711

[1000 rows x 10 columns]

[19]: from alpha_vantage.timeseries import TimeSeries # Please Contact for Professional Services print(data)

1. open 2. high 3. low 4. close 5	5. volume
date	
2020-12-10 20:00:00 266.0000 266.0000 266.0000 266.0000	204.0
2020-12-10 19:25:00 266.0000 266.0000 266.0000	200.0
266.0000 2020-12-10 18:50:00 265.9000 265.9000 265.9000	183.0
265.9000 2020-12-10 18:35:00 264.8100 264.8100 264.8100	13955.0
264.8100 2020-12-10 18:26:00 266.0900 266.1000 266.0900	903.0
266.1000	
2020-11-27 08:27:00 273.3873 273.3873 273.3873 273.3873	510.0
2020-11-27 08:01:00 273.4768 274.0735 273.4768 274.0735	2670.0
2020-11-27 07:29:00 273.2481 273.2481 273.0890 273.0890	806.0
2020-11-27 07:05:00 273.4768 273.9840 273.4768 273.9840	520.0
2020-11-27 07:01:00 273.4868 273.4868 273.4868 273.4868	634.0
[4129 rows x 5 columns]	

[20]: # Please Contact for Professional Services print(percentage_change)

date

2020-12-10	NaN
20:00:00	
2020-12-10	0.000000
19:25:00	
2020-12-10	-
18:50:00	0.000376
2020-12-10	-
18:35:00	0.004099
2020-12-10	0.004871
18:26:00	
2020-11-27	-
08:27:00	0.000363
2020-11-27	0.002510
08:01:00	

2020-11-27 0.003592 07:29:00 2020-11-27 0.003277 07:05:00 2020-11-27 07:01:00 0.001815

Name: 4. close, Length: 4129, dtype: float64

[21]: change = percentage_change[-1]

[22]: print(change)

-0.001814704508292353

0.1.2 Stock ML

[24]: # Please Contact for Professional Services

[25]: print(dataML)

1. open 2. high 3. low 4. date	. Close J. Volume
2020-12-10 20:00:00 266.0000 266.0000 266.000	0 204.0
266.0000	
2020-12-10 19:25:00 266.0000 266.0000 266.000	0 200.0
266.0000	
2020-12-10 18:50:00 265.9000 265.9000 265.900	0 183.0
265.9000	
2020-12-10 18:35:00 264.8100 264.8100 264.810	0 13955.0
264.8100	
2020-12-10 18:26:00 266.0900 266.1000 266.090	0 903.0
266.1000	
2020-11-27 08:27:00 273.3873 273.3873 273.387	3 510.0
273.3873	
2020-11-27 08:01:00 273.4768 274.0735 273.476	8 2670.0
274.0735	
2020-11-27 07:29:00 273.2481 273.2481 273.089	0 806.0
273.0890	
2020-11-27 07:05:00 273.4768 273.9840 273.476	8 520.0
273.9840	604.0
2020-11-27 07:01:00 273.4868 273.4868 273.486	8 634.0
273.4868	
[4129 rows x 5 columns]	

```
[26]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
```

```
[60]: datML = data[['2. high','4. close']]
```

[62]: # Please Contact for Professional Services plt.show()


```
[33]: datML2 = data[['4. close','5. volume']]
[38]: # Please Contact for Professional Services
plt.show()
```



```
[35]: datML3 = data[['3. low','5. volume']]
[37]: # Please Contact for Professional Services
plt.show()
```



```
[41]: train = datML3[:(int((len(data)*0.7)))]
     test = datML3[(int((len(data)*0.3))):]
[44]: # Please Contact for Professional Services
     regr.fit(train x, train y)
[44]: LinearRegression()
[46]: print ('coefficients : ', regr.coef)
     #Slope print ('Intercept :
     ',regr.intercept_) #Intercept
     coefficients : [[-649.34138257]]
     Intercept : [182458.55257284]
[50]: plt.scatter(train['3. low'], train['5. volume'],
     color="blue") plt.plot(train x, regr.coef *train x +
     regr.intercept_, "-r") plt.xlabel('Low')
     plt.ylabel('Volume')
[50]: Text(0, 0.5, 'Volume')
             250000
             200000
             150000
             100000
              50000
                  0
                           260
                                  262
                                          264
                                                  266
                                                          268
                                                                  270
                                              Low
```

```
[51]: # Please Contact for Professional Services
return predicted_values
```

```
[54]: # Please Contact for Professional
    Services print ('Estimated Volume
    :',estimatd_volume)
    Estimated Volume : -142212.13871063487

[55]: # Please Contact for Professional
    Services test_y_ = regr.predict(test_x)

[59]: print('Mean absolute error: %.2f' % np.mean(np.absolute(test_y_ -
    test_y))) print('Mean sum of squares (MSE): %.2f' % np.mean((test_y_ -
    test_y) ** 2)) print('R2-score: %.2f' % r2_score(test_y_ , test_y)
    )

    Mean absolute error: 6104.30
    Mean sum of squares (MSE): 237280186.53
    R2-score: -24.77

[]:
```