UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/571,606	02/27/2007	Ingo Meirick	4147-144	9780
23117 NIXON & VA	7590 02/17/200 NDERHYE, PC	EXAMINER		
901 NORTH G	LEBE ROAD, 11TH F	PATEL, MAHENDRA R		
ARLINGTON, VA 22203			ART UNIT	PAPER NUMBER
			4172	
			MAIL DATE	DELIVERY MODE
			02/17/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)			
	10/571,606	MEIRICK ET AL.			
Office Action Summary	Examiner	Art Unit			
	MAHENDRA R. PATEL	4172			
The MAILING DATE of this communication app Period for Reply	ears on the cover sheet with the c	orrespondence address			
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w. - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim vill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE	lely filed the mailing date of this communication. (35 U.S.C. § 133).			
Status					
Responsive to communication(s) filed on <u>02/27</u> 2a) This action is FINAL . 2b) This 3) Since this application is in condition for allowar closed in accordance with the practice under <i>E</i>	action is non-final. nce except for formal matters, pro				
Disposition of Claims					
4) ☐ Claim(s) 1-29 is/are pending in the application. 4a) Of the above claim(s) is/are withdray 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-29 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or Application Papers 9) ☐ The specification is objected to by the Examine 10) ☐ The drawing(s) filed on 10 March 2006 is/are: a Applicant may not request that any objection to the or	vn from consideration. r election requirement. r. a)⊠ accepted or b)⊡ objected to	·			
Replacement drawing sheet(s) including the correcti		• •			
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.					
Priority under 35 U.S.C. § 119					
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 					
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 03/10/2006.	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ite			

Art Unit: 4172

DETAILED ACTION

This communication is in response to application #10/571606 filed on 02/27/2007 (i.e. AMENDMENTS TO THE CLAIMS). Claims 1-29 are pending.

General Note

The Reference characters enclosed within parentheses (e.g. (P (k)), S (K+1)) in Claims 1-29 are treated as an example characters and no special consideration is given during the examination of the claims.

Claim Rejections - 35 USC § 103

- 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- 1. Determining the scope and contents of the prior art.
- 2. Ascertaining the differences between the prior art and the claims at issue.
- 3. Resolving the level of ordinary skill in the pertinent art.
- 4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Art Unit: 4172

2. Claims 1-4 are rejected under 35 U.S.C. 103(a) as being unpatentable over Besset et al. (US 6711126 B1), in view of Spitzer et al. (US 20050207437 A1).

Regarding claim 1, Besset teaches a method of managing a data buffer comprising a queue of consecutive segments of data packets in a base station system of a mobile communications system ([Col 7, lines 12-14) (e.g. FIG. 4 shows the queuing of CPS packets at the buffer entrance for the case of example 2, waiting to be multiplexed to form CPS PDUs);

comprising the steps of: said base station system comparing a size of a data packet segment with a size of a next consecutive data packet segment in said buffer ([Col 2, lines 4-12] (e.g. an ATM adaptation layer comprises a number of sub-layers: a service specific segmentation (i.e. comparing a size of a data packet segment with a size of a next consecutive data packet segment in a buffer) and reassembly sub layer (SSSAR) forming part of SEG-SSCS which allows data packets exceeding 45 octets (i.e. size) to be segmented));

Said base station system identifying said complete data packet based id comparison ([Col 10, lines 36-42) (e.g. the algorithm (i.e. based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment)));

And said base station system discarding said identified complete data ([Col 11, lines 23-35) (e.g. If the buffer is saturated, the algorithm follows branch which leads to the step of

discarding the current CPS packet and setting the parameter PD.sub.AAL2 =TRUE.

Consequently, the algorithm for all the following CPS packets up to but excluding the next first packet will then evolve described above to step and thereafter follow branch, whereupon these packets shall be systematically discarded. Thus in the event of a buffer overflow as determined by the decision algorithm for overflow management the current CPS packet and all the following CPS packets of an AAL2 SDU are systematically discarded even if one or several initial packet(s) had been recorded in the buffer memory));

Besset does not expressly teach base station system of a mobile communications system and data segments.

However, the preceding limitation is known in the art of communications. In the same field of endeavor, Spitzer teaches a complete buffer discarding technique ([0005] (e.g. Packet-switched networks (i.e. local area networks (LANs), the Internet or Radio communication network with Base station) can be used to carry audio, video or other continuous signals, such as Internet telephony or video conferencing signals. In such an application, a sender and a receiver typically communicate with each other according to a protocol, such as the Real-time Transport Protocol (RTP). The sender digitizes the continuous input signal, such as by sampling the signal at fixed or variable intervals. The sender sends a series of packets over the network to the receiver. Each packet contains data representing one or more discrete signal samples. (Sometimes, data representing a segment, such as a 10 millisecond segment, of the signal is referred to as a "sample," even though such a sample includes many discrete digitized values. Discrete digitized values are referred to herein as "samples" or "sample data units," which can be 8-bit bytes or other size data units.) The sender typically sends the packets at regular time intervals. The

receiver reconstructs the continuous signal from the received samples and typically outputs the reconstructed signal, such as through a speaker or on a screen of a computer (i.e. or Mobile device))).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invitation to implement the method of Spitzer within the method of Besset to provide enhanced buffer management in the protocol communication technique in a radio communication network. The new method improves networking performance with discarding redundant data packets.

Regarding claim 2, Besset in view of Spitzer teaches all the limitations of clam 1.

Besset further teaches the method according to claim 1, wherein said identifying step comprises the steps of: identifying said next data packet segment as a first data packet segment (FIRST) of said complete data, packet in said buffer if said size of said data packet segment is smaller than said size of said next data packet segment ([Col 10, lines 36-42) (e.g. The algorithm (i.e. User defined rules for data packet segments based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment))):

and associating said identified first data packet segment with a first segment identifier (FIRST) ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets

referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size). Consequently, the 150-octet (e.g. buffer size) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, Next data packet segment, etc) and the 15 remaining octets (i.e. smaller than size) can be loaded into a fourth SSSAR PDU)).

Regarding claim 3, Besset in view of Spitzer teaches all the limitations of clam 2.

Besset further teaches the method according to claim 1, wherein said identifying step comprises the steps of: identifying said next data packet segment as a last data packet segment (LAST)) of said complete data packet in said buffer if said size of said data packet segment differs from said size of said next data packet segment ([Col 3, lines 65-67, Col 4, lines 1-2] (e.g. The thus-multiplexed CPS PDUs are then transferred to the ATM layer via the ATM service access point (SAP), The ATM layer comprises ATM cells which are each composed of a 5 octet header (i.e. header is use for identifying beginning of a data packet (or next data packet segment) and a 48 octet payload. A CPS PDU can thus be integrally contained in the payload of an ATM cell));

And associating said identified last data packet segment with a last segment identifier (LAST) ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size). Consequently, the 150-octet (e.g. buffer size S(K)) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet

Application/Control Number: 10/571,606

Art Unit: 4172

Page 7

segment, and LAST data packet segment) and the 15 remaining octets (i.e. **smaller than size** can be loaded into a fourth SSSAR PDU)).

Regarding claim 4. Besset in view of Spitzer teaches all the limitations of clam 3. Besset further teaches the method according to claim 2, wherein said discarding step comprises the step of discarding said data, packet segment (FIRST) associated with said first segment identifier (FIRST), said data packet segment (LAST)) associated with said last segment identifier (LAST) and any intermediate data packet segments between said data packet segment (FIRST) associated with said first segment identifier (FIRST) and said data packet segment (LAST) associated with said last segment identifier (LAST) in said buffer ([Col 11, lines 23-35) (e.g. If the buffer is saturated, the **algorithm** (i.e. user defined rules to discard the FIRST, LAST or intermediate data from the buffer) follows branch which leads to the step of discarding the current CPS packet and setting the parameter PD.sub.AAL2 =TRUE. Consequently, the algorithm for all the following CPS packets up to but excluding the next first packet will then evolve described above to step and thereafter follow branch, whereupon these packets shall be systematically discarded. Thus in the event of a buffer overflow as determined by the decision algorithm for overflow management the current CPS packet and all the following CPS packets of an AAL2 SDU are systematically discarded even if one or several initial packet(s) had been recorded in the buffer memory)).

3. Claims 5-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Besset et al. (US 6711126 B1), in view of Spitzer et al. (US 20050207437 A1).

Regarding claim 5, Besset teaches a system for managing a data buffer comprising a queue of consecutive segments of data packets in a base station system of a mobile communications system ([Col 7, lines 12-14) (e.g. FIG. 4 shows the queuing of CPS packets at the buffer entrance for the case of example 2, waiting to be multiplexed to form CPS PDUs);

comprising: means for comparing a size of a data packet segment with a size of a next consecutive data packet segment in said buffer ([Col 2, lines 4-12] (e.g. an ATM adaptation layer comprises a number of sub-layers: a service specific segmentation (i.e. a size of a data packet segment with a size of a next consecutive data packet segment in a buffer) and reassembly sub layer (SSSAR) forming part of SEG-SSCS which allows data packets exceeding 45 octets (i.e. size) to be segmented));

Said base station system identifying said complete data packet based

Id comparison ([Col 10, lines 36-42) (e.g. the algorithm (i.e. based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment)));

And said base station system discarding said identified complete data ([Col 11, lines 23-35) (e.g. If the buffer is saturated, the algorithm follows branch which leads to the step of discarding the current CPS packet and setting the parameter PD.sub.AAL2 =TRUE.

Consequently, the algorithm for all the following CPS packets up to but excluding the next first

packet will then evolve described above to step and thereafter follow branch, whereupon these packets shall be systematically discarded. Thus in the event of a buffer overflow as determined by the decision algorithm for overflow management the current CPS packet and all the following CPS packets of an AAL2 SDU are systematically discarded even if one or several initial packet(s) had been recorded in the buffer memory));

Besset does not expressly teach base station system of a mobile communications system and data segments.

However, the preceding limitation is known in the art of communications. In the same field of endeavor, Spitzer teaches a complete buffer discarding technique ([0005] (e.g. Packetswitched networks (i.e. local area networks (LANs), the Internet or Radio communication network with Base station) can be used to carry audio, video or other continuous signals, such as Internet telephony or video conferencing signals. In such an application, a sender and a receiver typically communicate with each other according to a protocol, such as the Real-time Transport Protocol (RTP). The sender digitizes the continuous input signal, such as by sampling the signal at fixed or variable intervals. The sender sends a series of packets over the network to the receiver. Each packet contains data representing one or more discrete signal samples. (Sometimes, data representing a segment, such as a 10 millisecond segment, of the signal is referred to as a "sample," even though such a sample includes many discrete digitized values. Discrete digitized values are referred to herein as "samples" or "sample data units," which can be 8-bit bytes or other size data units.) The sender typically sends the packets at regular time intervals. The receiver reconstructs the continuous signal from the received samples and

typically outputs the reconstructed signal, such as through a speaker or on a screen of a computer (i.e. or Mobile device))).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invitation to implement the method of Spitzer within the method of Besset to provide enhanced buffer management in the protocol communication technique in a radio communication network. The new method improves networking performance with discarding redundant data packets.

Regarding claim 6, Besset in view of Spitzer teaches all the limitations of clam 5.

Besset further teaches the system according to claim 5, wherein said identifying means is adapted for identifying said next data packet segment as a first data packet of said complete data packet in said buffer if said size of said data packet segment is smaller than said size of said next data packet segment, said system further comprises means for associating said identified first data packet segment (FIRST) with a first segment identifier (FIRST) ([Col 10, lines 36-42) (e.g. The algorithm (i.e. User defined rules for data packet segments based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2. (I.e. next data packet segment as a first data packet segment)); and associating said identified first data packet segment with a first segment identifier

(FIRST) ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and

reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size) Consequently, the 150-octet (e.g. buffer size S(K)) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, Next data packet segment, etc) and the 15 remaining octets (i.e. smaller than size) can be loaded into a fourth SSSAR PDU)).

Regarding claim 7, Besset in view of Spitzer teaches all the limitations of clam 6.

Besset further teaches the system according to claim 5, wherein said identifying means is adapted for identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer if said size of said data packet segment differs from said size of said next data packet segment, ([Col 10, lines 36-42) (e.g. The algorithm (i.e. User defined rules for data packet segments based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment)));

said system further comprises means for associating said identified last data packet segment (LAST) with a last segment identifier (LAST) buffer ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs

Art Unit: 4172

whose maximum size by default is 45 octets (i.e. size). Consequently, the 150-octet (e.g. buffer size AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, LAST data packet segment, etc) and the 15 remaining octets (i.e. smaller than size) can be loaded into a fourth SSSAR PDU)).

Regarding claim 8, Besset in view of Spitzer teaches all the limitations of clam 7. Besset further teaches the system according to claim 6, wherein said discarding means is adapted for discarding said data packet segment (FIRST) associated with said first segment identifier (FIRST), said data packet segment (LAST) associated with said last segment identifier (LAST) and any intermediate data packet segments between said data packet segment (FIRST) associated with said first segment identifier (FIRST) and said data packet segment (LAST) associated with said last segment identifier (LAST) in said buffer ([Col 4, lines 34-43] (e.g., the present invention proposes a method of managing data packets **originating** from data frames (i.e. packet segment (FIRST), the packets being presented to buffer means prior to processing, wherein, when a packet corresponding to the **start of a frame** (i.e. FIRST) is presented to the buffer stage, it is determined whether the filling level of the buffer means exceeds a first predetermined filling threshold corresponding to a state of congestion and, if such is the case, this packet and all packets belonging to that same frame are systematically discarded (i.e. discarding step comprises the step of discarding data based on industry known techniques such as FIFO)).

Regarding claim 9, Besset in view of Spitzer teaches all the limitations of clam 8. Spitzer further teaches a base station network node of a base station system in a mobile communications system comprising: a data buffer comprising a queue of consecutive segments of data packets; and a system for managing said data buffer according claim 5 ([0016] (e.g. Thus, embodiments more or less aggressively conserve (ration) or discard data in the jitter buffer, based on the fluctuating amount of data in the jitter buffer. This fine-grained management (i.e. managing data buffer) of the amount of data in the jitter buffer maintains a buffer size that can provide a steady stream of packets to the receiver, without requiring excessive storage (i.e. queuing of consecutive segments of data) capacity and without significantly impacting the fidelity of the signal)).

Regarding claim 10, Besset in view of Spitzer teaches all the limitations of clam 9. Besset further teaches a method of enabling identification of a complete data packet in a data buffer comprising a queue of consecutive data packet segments, comprising the steps of: comparing a size of a data packet segment with a size of a next consecutive data packet segment in said buffer; and identifying said complete data packet based on said comparison ([Col 2, lines 34-40] (e.g. the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size of a buffer). Consequently, the 150-octet (e.g. buffer size) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, Next data packet segment, etc) and the 15 remaining octets (i.e. compare and identify smaller size packets)) can

be loaded into a fourth SSSAR PDU)).

Regarding claim 11, Besset in view of Spitzer teaches all the limitations of clam 10.

Besset further teaches the method according to claim 10, further comprising the step of providing a segment counter associated with a data packet segment in said buffer ([Col 6, lines 28-41] (e.g. In order to manage the possible congestion and overflow conditions of the buffer efficiently, the method advantageously operates so that: for each incoming CPS packet, the Length Indicator field (LI) of the CPS Packet header is read to determine the length of the arriving CPS Packet; the thus determined length of the arriving CPS packet is used to update a buffer occupancy counter (i.e. segment counter associated with a data packet segment) which is configured to store at least one amongst: i) the instantaneous number of octets used in the buffer for a given AAL2 connection; ii) the instantaneous number of octets used in the buffer by all AAL2 connections stored therein.)).

Regarding claim 12, Besset in view of Spitzer teaches all the limitations of clam 11.

Besset further teaches the method according to claim 11, further comprising the steps of:

comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer; identifying said next data packet segment as a first data packet segment (FIRST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter is smaller than said size of said next data packet segment ([Col 2, lines 34-40] (e.g. the SSSAR will segment (and reassemble) the SSSAR

SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. data segment size). Consequently, the 150-octet (e.g. packet size) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, Next data packet segment, etc) and the 15 remaining octets (i.e. compare and identify smaller size packets)) can be loaded into a fourth SSSAR PDU).

Regarding claim 13, Besset in view of Spitzer teaches all the limitations of clam 12. Besset further teaches the method according to claim 11, further comprising the steps of: (a) comparing a size of the data packet segment currently associated with said counter with a size of a next consecutive data packet segment in said buffer; and (b) associating said counter with said next data packet segment if said size of the data packet segment currently associated with said counter is equal to or larger than said size of said next data packet segment; and repeating both said comparison step (a) and said associating step (b) until said size of the data packet currently associated with said counter is smaller than said size of said next data packet segment, whereby said next data packet segment is identified as a first data packet segment (FIRST) of said complete data packet in said buffer ([Col 6, lines 28-41] (e.g. In order to manage the possible congestion and overflow conditions of the buffer efficiently, the method advantageously operates so that: for each incoming CPS packet, the Length Indicator field (LI) of the CPS Packet header is read to determine the length of the arriving CPS Packet (e.g. comparing a size of the data packet segment)); the thus determined length of the arriving CPS packet is used to update a buffer occupancy counter (i.e. segment counter associated with a data packet segment

) which is configured to store at least one amongst: i) the instantaneous number of octets used in the buffer for a given AAL2 connection; ii) the instantaneous number of octets used in the buffer for a given group of AAL2 connections; iii) the instantaneous number of octets used in the buffer by all AAL2 connections stored therein.)).

Regarding claim 14, Besset in view of Spitzer teaches all the limitations of clam 13.

Besset further teaches the method according to claim 12, further comprising the step of associating said segment counter with said first data packet segment

(FIRST) of said complete data packet ([Col 6, lines 28-41] (e.g. In order to manage the possible congestion and overflow conditions of the buffer efficiently, the method advantageously operates so that: for each incoming CPS packet (i.e. associating first incoming segment to segment counter with said first data packet segment (FIRST), the Length Indicator field (LI) of the CPS Packet header is read to determine the length of the arriving CPS Packet; thus determined length of the arriving CPS packet is used to update a buffer occupancy counter (i.e. segment counter associated with a data packet segment))).

Regarding claim 15, Besset in view of Spitzer teaches all the limitations of clam 14.

Besset further teaches the method according to claim 14, further comprising the steps of:

comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer; and identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter differs from said size of said next data packet

segment ([Col 2, lines 34-40] (e.g. the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. data segment size).

Consequently, the 150-octet (e.g. packet size) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, second data packet segment, LAST data packet segment, etc) and the 15 remaining octets (i.e. compare and identify smaller size packets))) can be loaded into a fourth SSSAR PDU)).

Regarding claim 16, Besset in view of Spitzer teaches all the limitations of clam 15.

Besset further teaches the method according to claim 15, wherein said complete data packet is identified as comprising said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete data packet and any intermediate data packet segments between said first (FIRST) and last (LAST) data packet segment of said complete data packet in said buffer ([Col 2, lines 34-40] (e.g. the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. Segment size). Consequently, the 150-octet (e.g. Data Packet size) AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First data packet segment, intermediate data packet segment, LAST data packet segment, etc))).

Regarding claim 17, Besset in view of Spitzer teaches all the limitations of clam 16. Besset further teaches the method according to claim 15, further comprising the steps of:

Art Unit: 4172

determining a total size of said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete data packet and any intermediate data packet segments between said first (FIRST) and last (LAST) data packet segment of said complete data packet in said buffer; comparing said total size with a minimum size threshold; and identifying said complete data packet as comprising said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete data packet and any intermediate data packet segments between said first (FIRST) and last (LAST) data packet segment of said complete data packet in said buffer if said total size is larger than said minimum size threshold ([Col 10, lines 36-42) (e.g. The algorithm (i.e. User defined rules for data packet segments based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment)));

said system further comprises means for associating said identified last data packet segment (LAST) with a last segment identifier (LAST) buffer ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size). Consequently, the 150-octet (e.g. buffer size AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First

Art Unit: 4172

data packet segment, second data packet segment, LAST data packet segment, etc) and the 15 remaining octets (i.e. **smaller than size**) can be loaded into a fourth SSSAR PDU)).

Regarding claim 18, Besset in view of Spitzer teaches all the limitations of clam 17.

Besset further teaches the method according to claim 11, further comprising the steps of: comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer; and identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter differs from said size of said next data packet segment ([Col 10, lines 36-42) (e.g. The algorithm (i.e. User defined rules for data packet segments based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2 (i.e. next data packet segment as a first data packet segment)));

said system further comprises means for associating said identified last data packet segment (LAST) with a last segment identifier (LAST) buffer ([Col 2, lines 34-40] (e.g. As its name indicates, the SSSAR will segment (and reassemble) the SSSAR SDUs (in the present case 1 AAL2 SDU=1 SSSAR SDU) into packets referred to as SSSAR protocol data units PDUs whose maximum size by default is 45 octets (i.e. size). Consequently, the 150-octet (e.g. buffer size AAL2 SDU of the example can be divided up into three 45-octet SSSAR PDUs (e.g. First

Art Unit: 4172

data packet segment, second data packet segment, LAST data packet segment, etc) and the 15 remaining octets (i.e. **smaller than size**) can be loaded into a fourth SSSAR PDU)).

Regarding claim 19, Besset in view of Spitzer teaches all the limitations of clam 17.

Spitzer further teaches the method according to claim 11, further comprising the steps of:

(c) comparing a size of the data packet segment currently associated with said counter with a size of a next consecutive data packet segment in said; (d) associating said counter with said next data packet segment if said size of the data packet segment currently associated with said counter is equal to said size of said next data packet segment; and repeating both said comparison step (c) and said associating step (d) until said size of the data packet segment currently associated with said differs from said size of said next data packet segment, whereby said next data packet segment is identified as a last data packet segment (LAST) of said complete data packet in said buffer ([0012] (e.g. The Embodiments monitor and control data (i.e. compare size of data segments or packets, update counter, etc) in jitter buffers with more resolution than in conventional jitter buffers. For example, in one embodiment, a jitter buffer can buffer, count, provide, discard and otherwise manage individual bytes, samples or other sample data units (i.e. data segments), rather than entire packets.)).

4. Claims 20-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Besset et al. (US 6711126 B1), in view of Spitzer et al. (US 20050207437 A1).

Art Unit: 4172

Regarding claim 20, Besset teaches a system for enabling identification of a complete data packet in a data buffer comprising a queue of consecutive data packet segments ([Col 7, lines 12-14) (e.g. FIG. 4 shows the queuing of CPS packets at the buffer entrance for the case of example 2, waiting to be multiplexed to form CPS PDUs),

comprising: means for comparing a size of a data packet segment with a size of a next consecutive data packet segment in said buffer and means for identifying said complete data packet based on said comparison ([Col 2, lines 4-12] (e.g. an ATM adaptation layer comprises a number of sub-layers: a service specific segmentation (i.e. comparing a size of a data packet segment with a size of a next consecutive data packet segment in a buffer) and reassembly sub layer (SSSAR) forming part of SEG-SSCS which allows data packets exceeding 45 octets (i.e. size) to be segmented));

Besset does not expressly teach base station system of a mobile communications system and data segments.

However, the preceding limitation is known in the art of communications. In the same field of endeavor, Spitzer teaches a complete buffer discarding technique ([0005] (e.g. Packet-switched networks (i.e. local area networks (LANs), the Internet or Radio communication network with Base station) can be used to carry audio, video or other continuous signals, such as Internet telephony or video conferencing signals. In such an application, a sender and a receiver typically communicate with each other according to a protocol, such as the Real-time Transport Protocol (RTP). The sender digitizes the continuous input signal, such as by sampling the signal at fixed or variable intervals. The sender sends a series of packets over the network to the receiver. Each

packet contains data representing one or more discrete signal samples. (Sometimes, data representing a segment, such as a 10 millisecond segment, of the signal is referred to as a "sample," even though such a sample includes many discrete digitized values. Discrete digitized values are referred to herein as "samples" or "sample data units," which can be 8-bit bytes or other size data units.) The sender typically sends the packets at regular time intervals. The receiver reconstructs the continuous signal from the received samples and typically outputs the reconstructed signal, such as through a speaker or on a screen of a computer (i.e. or Mobile device))).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invitation to implement the method of Spitzer within the method of Besset to provide enhanced buffer management in the protocol communication technique in a radio communication network. The new method improves networking performance with discarding redundant data packets.

Regarding claim 21, Besset in view of Spitzer teaches all the limitations of clam 20. Spitzer further teaches the system according to claim 20, comprising means for associating a segment counter with a data packet segment in said buffer ([0031] (e.g. the disclosed system monitors and controls data in sample jitter buffers with more resolution than in conventional jitter buffers. For example, a sample jitter buffer can buffer, count (i.e. segment counter), provide, discard and otherwise manage individual bytes, samples or other sample data units, rather than entire packets. When a sample jitter buffer receives a packet of data, the sample jitter buffer extracts the data from the packet (decompressing the data, if necessary) and handles the sample data units individually (i.e. segment), rather than as a packet)).

Art Unit: 4172

Regarding claim 22, Besset in view of Spitzer teaches all the limitations of clam 21. Besset further teaches the system according to claim 21, wherein said comparison means is adapted for comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer, wherein said identifying means is adapted for identifying said next data packet segment as a first data packet segment (FIRST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter is smaller than said size of said next data packet segment ([Col 10, lines 36-42) (e.g. The algorithm (i.e. based on ID comparison) starts by reading the UUI field of a CPS packet being processed. As explained above, this UUI field has the value 27 if at least one other CPS packet follows to complete the AAL2 SDU frame, and the value 26 if, on the contrary, the CPS packet is the last one of the frame. Note that a packet can be both the first ((FIRST) and last (LAST) packet of a frame, as in the case of packet 5 in FIG. 2. (I.e. next data packet segment as a first data packet segment)));

Regarding claim 23, Besset in view of Spitzer teaches all the limitations of clam 22. Besset further teaches the system according to claim 21, wherein said comparison means is adapted for comparing a size of the data packet segment currently associated with said counter with a size of a next consecutive data packet segment in said buffer, wherein said associating means is adapted for associating said counter with said next data packet segment if said size of the data packet segment currently associated with said counter is equal to or larger than said size of said next data packet segment, said comparison means is adapted for repeating said size

comparison and said associating means is adapted for repeating said counter association until said size of the data packet segment currently associated with said counter is smaller than said size of said next data packet segment whereby said identifying means is adapted for identifying said next data packet segment as a first data packet segment (FIRST) of said complete data packet in said buffer ([Col 8, lines 55-65] (e.g. It is then determined whether the buffer is in a state of congestion. If the buffer is in a state of congestion (CONG_VAL=OK), as determined at a previous sampling, the algorithm passes along branch b1, and the value CPS_CO+LI+1+3 is compared with the lower threshold (i.e. comparing a size of segments or packets). If CPS_CO+LI+1+3 (i.e. size) is lower than that threshold, then it is determined that the initially declared congestion condition is no longer true and the algorithm passes along branch b2 to set the value CONG_VAL=NOK. If CPS_CO+LI+1+3 (i.e. size) is greater than or equal to CPS_Low_Threshold, it is determined that a congestion condition still exists and the algorithm passes along branch b3 to maintain CONG_VAL=OK)).

Regarding claim 24, Besset in view of Spitzer teaches all the limitations of clam 23.

Besset further teaches the system according to claim 22 or 23, wherein said associating means is adapted for associating said segment counter with said first data packet segment (FIRST)) of said complete data packet ([Col 8, lines 32-44] (e.g. This is the counter which indicates (i.e. associating with segment) the buffer's current filling level (for an AAL2 connection, a group of AAL2 connections or the entire buffer). In other words it indicates the number of octets (i.e. segments) present in the buffer for a given AAL2 connection (or for a given group of connections, or the total number of octets used))).

Art Unit: 4172

Regarding claim 25, Besset in view of Spitzer teaches all the limitations of clam 24. Besset further teaches the system according to claim 24, wherein said comparison means is adapted for comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer, wherein said identifying means is adapted for identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter differs from said size of said next data packet segment ([Col 8, lines 55-65] (e.g. It is then determined whether the buffer is in a state of congestion. If the buffer is in a state of congestion (CONG VAL=OK), as determined at a previous sampling, the algorithm passes along branch b1, and the value CPS CO+LI+1+3 (i.e. size) is compared with the lower threshold (i.e. comparing a size of segments or packets). If CPS CO+LI+1+3 (i.e. size) is lower than that threshold, then it is determined that the initially declared congestion condition is no longer true and the algorithm passes along branch b2 to set the value CONG VAL=NOK. If CPS CO+LI+1+3 (i.e. size) is greater than or equal to CPS Low Threshold, it is determined that a congestion condition still exists and the algorithm passes along branch b3 to maintain CONG VAL=OK)).

Regarding claim 26, Besset in view of Spitzer teaches all the limitations of clam 25. Besset further teaches the system according to claim 25, wherein said identifying means is adapted for identifying said complete data packet as comprising said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete

data packet and any intermediate data packet segments between said first (FIRST) and last (LAST) data packet segment of said complete data packet in said buffer (Col 4, lines 3-11] (e.g. In practice, CPS packets are stored in buffers before being transposed into corresponding ATM cells via the **intermediate** (i.e. data packets) multiplexing into CPS PDUs. Indeed, the information arrives at the buffers asynchronously and some non-negligible processing time is required to transform the CPS packets into CPS PDUs. It is thus possible to receive at a given moment more information in the form of CPS packets than can be transferred on the interface. This is the reason why the packets must be buffered)).

Regarding claim 27, Besset in view of Spitzer teaches all the limitations of clam 26. Besset further teaches the system according to claim 25, further comprising means for determining a total size of said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete data packet and any intermediate data packet segments between said first ((FIRST) and last (LAST) data packet segment of said complete data packet in said buffer, said comparison means is adapted for comparing said total size with a minimum size threshold, and said identifying means is adapted for identifying said complete data packet as comprising said first data packet segment (FIRST) of said complete data packet, said last data packet segment (LAST) of said complete data packet and any intermediate data packet segments between said first (FIRST) and last (LAST) data packet segment of said complete data packet in said buffer if said total size is larger than said minimum size threshold ([Col 8, lines 32-44] (e.g. This is the counter which indicates (i.e. associating with segment) the buffer's current filling level (for an AAL2 connection, a group of AAL2 connections or the

entire buffer). In other words it indicates the number of octets (i.e. .segments) present in the buffer for a given AAL2 connection (or for a given group of connections, or the **total number of octets used (i.e.** determining a total size of first (or last) data packet or segment)))).

Regarding claim 28, Besset in view of Spitzer teaches all the limitations of clam 27. Besset further teaches the system according to claim 21, wherein said comparison means is adapted for comparing a size of said data packet segment associated with said counter with a size of a next consecutive data packet segment in said buffer, wherein said identifying means is adapted for identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer if said size of said data packet segment associated with said counter differs from said size of said next data packet segment ([Col 8, lines 55-65] (e.g. It is then determined whether the buffer is in a state of congestion. If the buffer is in a state of congestion (CONG VAL=OK), as determined at a previous sampling, the algorithm passes along branch b1, and the value CPS CO+LI+1+3 (i.e. size) is compared with the lower threshold (i.e. comparing a size of segments or packets). If CPS CO+LI+1+3 (i.e. size) is lower than that threshold, then it is determined that the initially declared congestion condition is no longer true and the algorithm passes along branch b2 to set the value CONG VAL=NOK. If CPS CO+LI+1+3 (i.e. size) is greater than or equal to CPS Low Threshold, it is determined that a congestion condition still exists and the algorithm passes along branch b3 to maintain CONG VAL=OK)).

Regarding claim 29, Besset in view of Spitzer teaches all the limitations of clam 28.

Art Unit: 4172

Besset further teaches the system according to claim 21, wherein said comparison means is adapted for comparing a size of the data packet segment currently associated with said counter with a size of a next consecutive data packet segment in said buffer, wherein said associating means is adapted for associating said counter with said next data packet segment if said size of the data packet segment currently associated with said counter is equal to said size of said next data packet segment, said comparison means is adapted for repeating said size comparison and said associating means is adapted for repeating said counter associating until said size of the data packet segment currently associated with said counter differs from said size of said next data packet segment, whereby said identifying means is adapted for identifying said next data packet segment as a last data packet segment (LAST) of said complete data packet in said buffer ([Col 8, lines 55-65] (e.g. It is then determined whether the buffer is in a state of congestion. If the buffer is in a state of congestion (CONG VAL=OK), as determined at a previous sampling, the algorithm passes along branch b1, and the value CPS CO+LI+1+3 (i.e. size) is compared with the lower threshold (i.e. comparing a size of segments or packets). If CPS CO+LI+1+3 (i.e. size) is lower than that threshold, then it is determined that the initially declared congestion condition is no longer true and the algorithm passes along branch b2 to set the value CONG VAL=NOK. If CPS CO+LI+1+3 (i.e. size) is greater than or equal to CPS Low Threshold, it is determined that a congestion condition still exists and the algorithm passes along branch b3 to maintain CONG VAL=OK))

Conclusion

Art Unit: 4172

5. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

- Meirick et al. (US 20070229214 A1) Method For Discarding All Segments
 Corresponding To Same Packet In A Buffer.
- Sagfors et al. (US 20080084822 A1) Congestion Control Within A Radio Access Network
- Yeo et al. (US 20070288824 A1) Method For Retransmitting Packet In Mobile Communication System And Computer-Readable Medium Recorded Program Thereof.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to MAHENDRA R. PATEL whose telephone number is 571-270-7499. The examiner can normally be reached on 8: 30 AM to 5: 00 PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Lewis West can be reached on 571-272-7859. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 4172

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/MAHENDRA R PATEL/ Examiner, Art Unit 4172

/Lewis G. West/ Supervisory Patent Examiner, Art Unit 4172