GEOMETRÍA ANALÍTICA

Estudia las figuras geométricas desde el punto de vista algebraico.

PLANO CARTESIANO

DISTANCIA ENTRE DOS PUNTOS

COORDENADAS DEL PUNTO MEDIO DE UN SEGMENTO

Dado los puntos A(1,2) y B(4,7) Calcular la pendiente

Calcular la pendiente si se sabe que su ángulo de inclinación es 45°

ECUACIÓN DE LA RECTA

FORMA 1: Ax + By + C = 0

FORMA 2: y - y1 = m(x - x1)

35. Dado el bosquejo de la gráfica de la recta en el plano cartesiano, hallar su pendiente:

Halle la ecuación de la recta que pasa por los puntos (-2,2) y (3, -1).

A.
$$y + 1 = -\frac{3}{5}x$$

B. $y + 1 = -\frac{3}{5}(x - 3)$
C. $y + 1 = -\frac{3}{5}(x + 3)$

B.
$$y + 1 = -\frac{3}{5}(x - 3)$$

C. $y + 1 = -\frac{3}{5}(x + 3)$
D. No se puede precisar

CIRCUNFERENCIA

Sea P(x;y) un punto del plano XY cuya distancia constante a otro punto fijo C(h;k) es R.

Luego la ecuación de la circunferencia es

 \mathscr{C} : $(x-h)^2 + (y-k)^2 = R^2$

Centro: C(h; k)

Radio: R

Punto genérico: P(x; y)

Determinar el centro y el radio de la circunferencia cuya ecuación en forma general es: x²+y²+10x-4y+25=0

Primero agrupamos los términos: $(x^2+10x+...) + (y^2+4y+...) = -25$ Ahora completamos los cuadrados: $(x^2+10x+25)+(y-4y^2+4)=-25+25+26$

$$(x^2 + 10x + 25) + (y - 4y^2 + 4) = -25 + 25 + 4$$

 $(mitad)^2$ $(mitad)^2$
 $\Rightarrow \mathscr{C}: (x+5)^2 + (y-2)^2 = 4$

Vemos que el centro es (-5; 2) y el radio es 2

ECUACIÓN DE LA CIRCUNFERENCIA

$$x^2 + y^2 + 4x + 6y=23$$

Su forma ordinaria es:
A) $(x - 2)^2 + (y + 3)^2 = 36$
B) $(x + 2)^2 + (y + 3)^2 = 28$
C) $(x + 2)^2 + (y + 3)^2 = 36$
D) $(x - 2)^2 + (y + 3)^2 = 28$
E) $(x + 2)^2 + (y - 3)^2 = 36$