SE-PQA Dataset

Personalized Information Retrieval

Presentation by Andrea Scalora

2025

Objectives

• Enhance traditional retrieval methods using different approaches.

• Combining multiple retrieval scores.

Models

BM25

- Robust baseline in information retrieval.
- Relies purely on statistical term matching.
- Grid Search used to ensure optimal *k1* and *b*.

Neural Rerankers

 Both capture semantic relationships between queries and documents.

MiniLM

- It generates efficient sentence embeddings.
- Small model size.
- Fast inference speed.

DistilBert-QA

- It generates sentence embeddings.
- Version of DistilBERT fine-tuned for Q&A.
- Slightly higher resource requirements.

T5-small

- Model to enrich user query.
- Tokens related to the user query.
- Grid Search used to optimise the maximum number of tokens added.
- Improves retrieval performance.

Fusion Strategies

RRF

- Computes a RRF score as 1 / (k + rank).
- Sum the RRF scores to obtain a final score.
- Boost consistently high-ranking documents.

Sum of Weights

- Combine scores using a weighted linear sum.
- Weights are chosen by empirical evaluation.
- T5 >> BM25 > MiniLM == Distilbert-QA.

Methodology

Data Preparation

- Preprocessing.
- Merging and Standardization.
- Index
 Construction.

Models Construction

- Baseline.
- Neural Re-rankers.

Query Expansion

• T5-small based.

Fusion Retrieval

- RRF Score.
- Weighted Sum Score.

2025

Results

- BM25 Baseline: Strong starting point for retrieval.
- **Neural Re-ranking**: The neural re-rankers did not outperform the baseline, possibly due to domain-specific factors.
- Query Expansion: Context added via T5 can help => tune to avoid introducing noise.
- Fusion Strategies: Combining multiple signals shows potential for modest improvements.

	or o		4	
Models	P@1	recall@100	MAP@100	NDCG@3
BM25	0.71	0.93	0.77	0.77
MiniLM	0.63	0.85	0.69	0.69
DistilBert-QA	0.64	0.84	0.70	0.70
T5-small	0.72	0.93	0.78	0.77
RRF Fusion	0.66	0.93	0.72	0.71
Weighted Fusion	0.71	0.93	0.78	0.78

Table to show the results of each model.

Future Improvements

Thank You!

Presentation by Andrea Scalora

2025