Honours Algebra Notes

Anthony Catterwell

$March\ 4,\ 2019$

Contents

T	vec	vector Spaces				
	1.1	Solutions of simultaneous linear equations	2			
	1.2	Fields and vector spaces	2			
	1.3	Products of sets and of vector spaces	3			
	1.4	Vector subspaces	3			
	1.5	Linear independence and bases	3			
	1.6	Dimension of a vector space	4			
	1.7	Linear mappings	5			
	1.8	Rank-Nullity theorem	6			
2	Linear Mappings and Matrices					
	2.1	Linear mappings $F^m \to F^n$ and matrices	6			
	2.2	Basic properties of matrices	7			
	2.3	Abstract linear mappings and matrices	8			
	2.4	Change of a matrix by change of basis	8			
3	Rings and Modules					
	3.1	Rings	9			
	3.2	Properties of rings	9			
	3.3	Polynomials	10			
	3.4	Homomorphisms, Ideals, and Subrings	11			
	3.5	Equivalence Relations	13			
	3.6	Factor Rings and the First Isomorphic Theorem	13			
	3.7	Modules	14			
4	Det	erminants and Eigenvalues Redux	16			
5	Reference					
	5.1	Terminology of Algebraic Structures	16			

1 Vector Spaces

1.1 Solutions of simultaneous linear equations

• Theorem 1.1.4: Solution sets of inhomogeneous systems of linear equations
If the solution set of a linear system of equations is non-empty, then we obtain all solutions by adding component-wise an arbitrary solution of the associated homogenised system to a fixed solution of the system.

1.2 Fields and vector spaces

• Definition 1.2.1:

A field F is a set with functions

addition = + :
$$F \times F \to F$$
; $(\lambda, \mu) \mapsto \lambda + \mu$
multiplication = . : $F \times F \to F$; $(\lambda, \mu) \mapsto \lambda \mu$

such that (F, +) and $(F \setminus \{0\}, .)$ are abelian groups, with

$$\lambda(\mu+\nu)=\lambda\mu+\lambda\nu\in F,\quad\forall\lambda\nu\in F$$

The neutral elements are called $0_F, 1_F$. In particular

$$\lambda + \mu = \mu + \lambda$$
, $\lambda \cdot \mu = \mu \cdot \lambda$, $\lambda + 0_F = \lambda$, $\lambda \cdot 1_F = \lambda \in F$, $\forall \lambda, \mu \in F$

For every $\lambda \in F$ there exists $-\lambda \in F$ such that

$$\lambda + (-) = 0_F \in F$$

For every $\lambda \neq 0 \in F$ there exists $\lambda^{-1} \neq 0 \in F$ such that

$$\lambda(\lambda^{-1}) = 1_F \in F$$

A vector space V over a field F is a pair consisting of an abelian group V = (V, +) and a mapping

$$F \times V \to V : (\lambda, \mathbf{v}) \mapsto \lambda \mathbf{v}$$

such that for all $\lambda, \mu \in F$ and $\mathbf{v}, \mathbf{w} \in V$ the following identities hold:

$$\lambda(\mathbf{v} + \mathbf{w}) = (\lambda \mathbf{v}) + (\lambda \mathbf{w})$$
 (distributivity)

$$(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{v})$$
 (distributivity)

$$\lambda(\mu \mathbf{v}) = (\lambda \mu)\mathbf{v}$$
 (associativity)

$$1_F \mathbf{v} = \mathbf{v}$$

A vector space V over a field F is called an F-vector space.

- Lemma 1.2.2: Product with the scalar zero If V is a vector space and $\mathbf{v} \in V$, then $0\mathbf{v} = \mathbf{0}$
- Lemma 1.2.3: Product with the scalar (-1) If V is a vector space and $\mathbf{v} \in V$, then $(-1)\mathbf{v} = -\mathbf{v}$.
- Lemma 1.2.4: Product with the zero vector If V is a vector space over a field F, then $\lambda \mathbf{0} = \mathbf{0}$ for all $\lambda \in F$. Furthermore, if $\lambda \mathbf{v} = \mathbf{0}$, then either $\lambda = 0$ or $\mathbf{v} = \mathbf{0}$.

1.3 Products of sets and of vector spaces

1.4 Vector subspaces

• Definition 1.4.1: Vector subspaces

A subset U of a vector space V is called a vector subspace or subspace if U contains $\mathbf{0}$ and

$$\mathbf{u}, \mathbf{v} \in U$$
 and $\lambda \in F \implies \mathbf{u} + \mathbf{v} \in U$ and $\lambda \mathbf{u} \in U$

• Proposition 1.4.5: Generating a vector subspace from a subset

Let T be a subset of a vector space V over a field F. Then amongst all vector subspace of V that include T, there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V$$

It can be described as the set of all vectors $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_r \mathbf{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\mathbf{v}_1, \ldots, \mathbf{v}_r \in T$, together with $\mathbf{0}$ in the case $T = \emptyset$.

• Definition 1.4.7: Generating set

A subset of a vector space is called a *generating set* of our vector space if its span is all of the vector space. A vector space that has a finite generating set is said to be *finitely generated*.

• Definition 1.4.9:

The set of all subsets $\mathcal{P}(X) = \{U : U \subseteq X\}$ of X is the power set of X.

A subset of $\mathcal{P}(X)$ is a system of subsets of X.

Given such a system $\mathcal{U} \subseteq \mathcal{P}(X)$ we can create two new subsets of X, the *union* and the *intersection* of the sets of our system \mathcal{U} :

$$\bigcup_{U \in \mathcal{U}} U = \{x \in X : \exists U \in \mathcal{U}. x \in U\}$$
$$\bigcap_{U \in \mathcal{U}} U = \{x \in X : x \in U \ \forall \ U \in \mathcal{U}\}$$

In particular the intersection of the empty system of subsets of X is X, and the union of the empty system of subsets X is the empty set.

1.5 Linear independence and bases

• **Definition 1.5.1:** Linear independence

A subset L of a vector space V is *linearly independent* if for all pairwise different vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r \in L$ and arbitrary vectors $\alpha_1, \ldots, \mathbf{v}_r \in F$,

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0} \implies \alpha_1 = \dots = \alpha_r = 0$$

• Definition 1.5.2: Linear dependence

A subset L of a vector space V is called *linearly dependent* if it is not linearly independent.

• Definition 1.5.8: Basis

A basis of a vector space V is a linearly independent generating set in V.

• Theorem 1.5.11: Linear combinations of basis elements

Let F be a field, V be a vector space over F, and $\mathbf{v}_1, \dots, \mathbf{v}_r \in V$ vectors. The family $(\mathbf{v}_i)_{1 \leq i \leq r}$ is a basis of V if and only if the following "evaluation" mapping

$$\Phi: F^r \to V$$
$$(\alpha_1, \dots, \alpha_r) \mapsto \alpha \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r$$

is a bijection.

• **Theorem 1.5.12:** Characterisation of bases

The following are equivalent for a subset E of a vector space V:

- 1. E is a basis, i.e. a linearly independent generating set;
- 2. E is minimal among all generating sets, meaning that $E \setminus \{\mathbf{v}\}$ does not generate $V, \forall \mathbf{v} \in E$;
- 3. E is maximal among all linearly independent subsets, meaning that $E \cup \{\mathbf{v}\}$ is not linearly independent $\forall \mathbf{v} \in V$.

• Corollary 1.5.13: The existence of a basis

Let V be a finitely generated vector space over a field F. The V has a basis.

• **Theorem 1.5.14:** (Useful variant on the Characterisation of bases) Let V be a vector space.

- 1. If $L \subset V$ is a linearly independent subset and E is minimal amongst all generating sets of our vector space with the property that $L \subseteq E$, then E is a basis.
- 2. If $E \subseteq V$ is a generating set and if L is maximal amongst all linearly independent subsets of our vector space with the property $L \subseteq E$, then L is basis.

• Definition 1.5.15:

Let X be a set and F a field. The set Maps(X, F) of all mappings $f: X \to F$ becomes an F-vector space with the operations of point-wise addition and multiplication by a scalar. The subset of all mappings which send almost all elements of X to zero is a vector subspace

$$F\langle X \rangle \subseteq \operatorname{Maps}(X, F)$$

This vector subspace is called the free vector space on the set X.

• Theorem 1.5.16: (Useful variant on Linear combinations of basis elements) Let F be a field, V an F-vector space, and $(\mathbf{v}_i)_{i\in I}$ a family of vectors from the vector space V. The following are equivalent:

- 1. The family $(\mathbf{v}_i)i \in I$ is a basis for V;
- 2. For each vector $\mathbf{v} \in V$ there is precisely one family $(a_i)_{i \in I}$ of elements of our field F, almost all of which are zero and such that

$$\mathbf{v} = \sum_{i \in I} a_i \mathbf{v}_i$$

1.6 Dimension of a vector space

• Theorem 1.6.1: Fundamental estimate of linear algebra

No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset, and $E \subseteq V$ a generating set, then:

• Theorem 1.6.2: Steinitz exchange theorem

Let V be a vector space, $L \subset V$ and finite linearly independent subset, and $E \subseteq V$ and generating set. Then there is an injection $\Phi: L \to E$ such that $(E \setminus \Phi(L)) \cup L$ is also a generating set for V.

• Lemma 1.6.3: Exchange lemma

Let V be a vector space, $M \subseteq V$ a linearly independent subset, and $E \subseteq V$ a generating subset, such that $M \subseteq E$. If $\mathbf{w} \in V \setminus M$ is a vector set not belonging to M such that $M \cup \{\mathbf{w}\}$ is linearly independent, then there exists $\mathbf{e} \in E \setminus M$ such that $\{E \setminus \{\mathbf{e}\}\} \cup \{\mathbf{w}\}$ is a generating set for V.

• Corollary 1.6.4: Cardinality of bases

Let V be a finitely generated vector space.

- 1. V has a finite basis;
- 2. V cannot have an infinite basis;
- 3. Any two bases of V have the same number of elements.

• **Definition 1.6.5:** Dimension

The cardinality of one (and each) basis of a finitely generated vector space V is called the dimension of V and is denoted dimV. If the vector space is not finitely generated, then dim $V = \infty$ and V is infinite dimensional.

• Corollary 1.6.8: Cardinality criterion for bases

Let V be a finitely generated vector space.

- 1. Each linearly independent subset $L \subset V$ has at most dim V elements, and if $|L| = \dim V$, then L is actually a basis;
- 2. Each generating set $E \subseteq V$ has at least dim V elements, and if $|E| = \dim V$ then E is actually a basis.

• Corollary 1.6.9: Dimension estimate for vector subspaces

A proper vector subspace of a finite dimensional vector space has itself a strictly smaller dimension.

• **Theorem 1.6.11:** The dimension theorem

Let V be a vector space containing vector subspaces $U, W \subseteq V$. Then

$$\dim(U+W) + \dim(U \cap W) = \dim U + \dim W$$

1.7 Linear mappings

• **Definition 1.7.1:** Linear mappings

Let V, W be vector spaces over a field F. A mapping $f: V \to W$ is called *linear* if for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and $\lambda \in F$ we have

$$f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$
$$f(\lambda \mathbf{v}_1) = \lambda f(\mathbf{v}_1)$$

A bijective linear mapping is called an *isomorphism* of vector spaces. If there is an isomorphism of vector spaces, we call them *isomorphic*. A homomorphism from one vector space to itself is called an *endomorphism*. An isomorphism of a vector space to itself is called an *automorphism*.

• Definition 1.7.5: Fixed point

A point that is sent to itself by a mapping is called a *fixed point* of the mapping. Given a mapping $f: X \to X$, we denote the set of fixed points by

$$X^f = \{x \in X : f(x) = x\}$$

• **Definition 1.7.6:** Complementary

Two vector subspace V_1, V_2 of a vector space V are complementary if addition defines a bijection

$$V_1 \times V_2 \to V$$

• Theorem 1.7.7: Classification of vector spaces by their dimension Let $n \in \mathbb{N}$. Then a vector space over a field F is isomorphic to F^n if and only if it has dimension n. • Lemma 1.7.8: Linear mappings and bases

Let V, W be vector spaces over F and let $B \subset V$ be a basis. Then restriction of a mapping gives a bijection

$$\operatorname{Hom}_F(V, W) = \operatorname{Hom}(V, W) \subseteq \operatorname{Maps}(V, W)$$

 $f \mapsto f|_B$

In other words, each linear mapping determines and is completely determined by the values it takes on a basis.

• Proposition 1.7.9

- 1. Every injective linear mapping $f:V\to W$ has a left inverse, in other words a linear mapping $g:W\to V$ such that $g\circ f=\mathrm{id}_V$
- 2. Every surjective linear mapping $f:V\to W$ has a right inverse, in other words a linear mapping $g:W\to V$ such that $f\circ g=\mathrm{id}_W$

1.8 Rank-Nullity theorem

• Definition 1.8.1:

The *image* of a linear mapping $f: V \to W$ is the subset $\operatorname{im}(f) = f(V) \subseteq W$. It is a vector subspace of W. The pre-image of the zero vector of a linear mapping $f: V \to W$ is denoted by

$$\ker(f) \equiv f^{-1}(0) = \{ v \in V : f(v) = 0 \}$$

and is called the kernel of the linear mapping f. The kernel is a vector subspace of V.

• Lemma 1.8.2:

A linear mapping $f: V \to W$ is injective if and only if $\ker_f = 0$.

• Theorem 1.8.4: Rank-Nullity theorem

Let $f: V \to W$ be a linear mapping between vector spaces. Then

$$dimV = dim(ker f) + dim(im f)$$

= nullity + rank

• Corollary 1.8.5: (Dimension theorem, again)

Let V be a vector space, and $U, W \subseteq V$ vector subspaces. Then

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

2 Linear Mappings and Matrices

2.1 Linear mappings $F^m \to F^n$ and matrices

• Theorem 2.1.1: Linear mappings $F^m \to F^n$ and matrices

Let F be a field and let $m, n \in \mathbb{N}$. There is a bijection between the space of linear mappings $F^m \to F^n$ and the set of matrices with n rows and m columns and entries in F

$$M : Hom_F(F^m, F^n) \to Mat(n \times m; F)$$

 $f \mapsto \lceil f \rceil$

This attaches to each linear mapping f its representing matrix $M(f) \equiv [f]$. The columns of this matrix are the images under f of the standard basis elements of F^m

$$[f] \equiv (f(\mathbf{e}_1)|f(\mathbf{e}_2)|\cdots|f(\mathbf{e}_m))$$

• Definition 2.1.6: Product

Let $n, m, l \in \mathbb{N}$, F and field, and let $A \in \operatorname{Mat}(n \times m; F)$ and $B \in \operatorname{Mat}(m \times l; F)$ be matrices. The product $A \circ B = AB \in \operatorname{Mat}(n \times l; F)$ is the matrix defined by

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

Matrix multiplication produces a mapping

$$\operatorname{Mat}(n \times m; F) \times \operatorname{Mat}(m \times l; F) \to \operatorname{Mat}(m \times l; F)$$

$$(A, B) \mapsto AB$$

• Theorem 2.1.8: Composition of linear mappings and products of matrices Let $g: F^l \to F^m$ and $f: F^m \to F^n$ be linear mappings. The representing matrix of their composition is the product of their representing matrices

$$[f \circ g] = [f] \circ [g]$$

• Proposition 2.1.9: Calculating with matrices

Let $k, l, m, n \in \mathbb{N}$, $A, A' \in \operatorname{Mat}(n \times m; F)$, $B, B' \in \operatorname{Mat}(m \times l; F)$, $C \in \operatorname{Mat}(l \times k; F)$ and $I = I_m$. Then the following hold for matrix multiplication

$$(A + A')B = AB + A'B$$

$$A(B + B') = AB + AB'$$

$$IB = B$$

$$AI = A$$

$$(AB)C = A(BC)$$

2.2 Basic properties of matrices

• Definition 2.2.1: Invertible

A matrix A is called *invertible* if there exist matrices B and C such that BA = I and AC = I.

• **Definition 2.2.2:** Elementary matrix

An *elementary matrix* is any square matrix that differs from the identity matrix in at most one entry.

• Theorem 2.2.3:

Every square matrix can be written as a product of elementary matrices.

• Definition 2.2.4: Smith Normal Form

Any matrix whose only non-zero entries lie on the diagonal, and which has first 1s on along the diagonal followed by 0s is in *Smith Normal Form*.

• Theorem 2.2.5: Transformation of a matrix into Smith-Normal form

For each matrix $A \in \operatorname{Mat}(n \times m; F)$ there exist invertible matrices P and Q such that PAQ is a matrix in Smith Normal Form and Q such that PAQ is a matrix in Smith Normal Form.

• Definition 2.2.6: Rank

The *column rank* of a matrix $A \in \text{Mat}(n \times m; F)$ is the dimension of the subspace of F^n generated by the columns of A. Similarly, the *row rank* of A is the dimension of the subspace of F^m generated by the rows of A.

• Theorem 2.2.7:

The column rank and the row rank of any matrix are equal.

• Definition 2.2.8: Full rank

Whenever the rank of a matrix is equal to the number of rows (or columns — whichever is smaller), it has *full rank*.

2.3 Abstract linear mappings and matrices

• Theorem 2.3.1: Abstract linear mappings and matrices Let F be a field, V and W vector spaces over F with ordered bases $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ and $\mathcal{B} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$. Then to each linear mapping $f: V \to W$ we associated a representing matrix $\mathcal{B}[f]_A$ whose entries a_{ij} are defined by the identity

$$f(\mathbf{v}_i) = a_{1i}\mathbf{w}_1 + \dots + a_{ni}\mathbf{w}_n \in W$$

This produces a bijection, which is even an isomorphism of vector spaces

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \mathrm{Hom}_{F}(V, W) \to \mathrm{Mat}(n \times m; F)$$

$$f \mapsto_{\mathcal{B}} [f]_{\mathcal{A}}$$

Theorem 2.3.2: The representing matrix of a composition of linear mappings
Let F be a field and U, V, W finite-dimensional vector spaces over F with ordered bases A, B, C If f: U → V and g: V → W are linear mappings, then the representing matrix of the composition g ∘ f: U → W is the matrix product of the representing matrices of f and g

$$_{\mathcal{C}}[g \circ f]_{A} =_{\mathcal{C}} [g]_{\mathcal{B}} \circ_{\mathcal{B}} [f]_{A}$$

• Definition 2.3.3:

Let V be a finite-dimensional vector spaces with an ordered basis $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_m)$ We denote the inverse to the bijection $\Phi_{\mathcal{A}} : F^m \to V, (\alpha_1, \dots, \alpha_m)^T \mapsto \alpha_1 \mathbf{v}_1 + \dots + \alpha_m \mathbf{v}_m$ by

$$\mathbf{v}\mapsto_{\mathcal{A}} [\mathbf{v}]$$

The column vector $_{\mathcal{A}}[\mathbf{v}]$ is called the representation of the vector \mathbf{v} with respect to the basis \mathcal{A} .

• Theorem 2.3.4: Representation of the image of a vector Let V, W be finite-dimensional vector-spaces over F with ordered bases \mathcal{A}, \mathcal{B} and let $f: V \to W$ be a linear mapping. The following holds for $\mathbf{v} \in V$:

$$_{\mathcal{B}}[f(\mathbf{v})] =_{\mathcal{B}} [f]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathbf{v}]$$

2.4 Change of a matrix by change of basis

• **Definition 2.4.1:** Change of basis matrix Let $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and $\mathcal{B} = (\mathbf{w}_1, \dots, \mathbf{w}_n)$ be ordered bases of the same F-vector space V. Then the matrix representing the identity mapping with respect to these bases

$$\mathcal{B}[\mathrm{id}_V]_A$$

is called a *change of basis matrix*. By definition, its entries are given by the equalities $\mathbf{v}_j = \sum_{i=1}^n a_{ij} \mathbf{w}_i$.

• Theorem 2.4.3: Change of basis

Let V and W be finite-dimensional vector-spaces over F and let $f: V \to W$ be a linear mapping. Suppose that A, A' are ordered bases of V and B, B' are ordered bases of W. Then

$$_{\mathcal{B}'}[f]_{A'} =_{\mathcal{B}'} [\mathrm{id}_W]_{\mathcal{B}} \circ_{\mathcal{B}} [\mathrm{f}]_{A} \circ_{\mathcal{A}} [\mathrm{id}_V]_{A'}$$

• Corollary 2.4.4: Let V be a finite-dimensional vector-space and let $f: V \to V$ be an endomorphism of V. Suppose that $\mathcal{A}, \mathcal{A}'$ are ordered bases of V. Then

$$_{\mathcal{A}'}[f]_{\mathcal{A}'} =_{\mathcal{A}'} [\mathrm{id}_V]_{\mathcal{A}'}^{-1} \circ_{\mathcal{A}} [f]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathrm{id}_V]_{\mathcal{A}'}$$

• Theorem 2.4.5: Smith Normal Form

Let $f: V \to W$ be a linear mapping between finite-dimensional F-vector spaces. There exist an ordered basis \mathcal{A} of V and an ordered basis $\mathcal{B}W$ of W such that the representing matrix $\mathcal{B}[f]_{\mathcal{A}}$ has zero entries everywhere except possibly on the diagonal, and along the diagonal there are 1s first, followed by 0s.

• Definition 2.4.6: Trace

The trace of a square matrix is defined to be the sum of its diagonal entries. We denote this by

tr(A)

3 Rings and Modules

3.1 Rings

• Group Axioms

- 1. Closure
- 2. Associativity
- 3. Existence of identity
- 4. Existence of inverses

• Definition 3.3.1: Ring

A ring is a set with two operations (R, +, .) that satisfy

- 1. (R, +) is an abelian group;
- 2. (R, \cdot) is a *monoid*; this means that the second operation $\cdot : R \cdot R \to R$ is associative and that there is an *identity element* $1 = 1_R \in R$.
- 3. The distributive laws hold.

The two operations are called addition and multiplication in our ring.

A ring in which multiplication is commutative is a *commutative ring*.

• **Proposition 3.1.7:** Divisibility by sum

A natural number is divisible by 3 (respectively 9) precisely when the sum of its digits is divisible by 3 (respectively 9).

• Definition 3.1.8: Field

A field F is a non-zero commutative ring in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$.

• Proposition 3.1.11:

Let $m \in \mathbb{Z}^+$. The commutative ring $\mathbb{Z}/m\mathbb{Z}$ is a field if and only if m is prime.

3.2 Properties of rings

• Lemme 3.2.1: Additive inverses

Let R be a ring and let $a, b \in R$. Then

1.
$$0a = 0 = a0$$

2.
$$(-a)b = -(ab) = a(-b)$$

3.
$$(-a)(-b) = ab$$

• Definition 3.2.3:

Let $m \in \mathbb{Z}$. The m-th multiple ma of an element a in abelian group R is

$$ma = \underbrace{a + a + \dots + a}_{m \text{ terms}}$$
 if $m > 0$

0a = 0, and negative multiples are defined by (-m)a = -(ma).

• Lemma 3.2.4: Rules for multiples

Let R be a ring, let $a, b \in R$ and let $m, n \in \mathbb{Z}$. Then

- 1. m(a+b) = ma + mb;
- 2. (m+n)a = ma + na;
- 3. m(na) = (mn)a;
- 4. m(ab) = (ma)b = a(mb);
- 5. (ma)(nb) = (mn)(ab);

• Definition 3.2.6: Unit

Let R be a ring. An element $a \in R$ is called a *unit* if it is invertible in R or (in other words) has a multiplicative inverse in R.

• **Proposition 3.2.10:**

The set R^{\times} of units in a ring R forms a group under multiplication.

• Definition 3.2.13 Integral domains

An integral domain is a non-zero commutative ring that has no zero-divisors.

• Proposition 3.2.16: Cancellation law for integral domains

Let R be an integral domain and let $a, b, c \in R$.

$$ab = ac$$
 and $a \neq 0 \implies b = c$

• **Proposition 3.2.17:**

Let $m \in \mathbb{N}$. Then $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.

• Theorem 3.2.18:

Every *finite* integral domain is a field.

3.3 Polynomials

• Definition 3.1.1:

Let R be a ring. A polynomial over R is an expression of the form

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

for some $m \in \mathbb{N}$ and elements $a_i \in R$ for $i \in [0, m]$.

The set of all polynomials over R is denoted by R[X].

In case a_m is non-zero, the polynomial P has degree m, written $\deg(P)$, and a_m is its leading coefficient.

When the leading coefficient is 1, the polynomial is a monic polynomial.

A polynomial of degree one is called *linear*, a polynomial of degree two is called *quadratic*, and a polynomial of degree three is called *cubic*.

• **Definition 3.3.2:** Ring of polynomials

The set R[X] is a ring called the *ring of polynomials over* R. The zero and the identity of R[X] are the zero and identity of R, respectively.

• Lemma 3.3.3:

- 1. If R is ring with no zero-divisors, then R[X] has no zero-divisors and deg(PQ) = deg(P) + deg(Q) for non-zero $P, Q \in R[X]$.
- 2. If R is an integral domain, then so is R[X]
- **Theorem 3.3.4:** Division and remainder

Let R be an integral domain, and let $P, Q \in R[X]$ with Q monic. Then there exists unique $A, B \in R[X]$ such that P = AQ + B and $\deg(B) < \deg(Q)$ or B = 0.

• Definition 3.3.6:

Let R be a commutative ring and $P \in R[X]$ a polynomial. Then the polynomial P can be evaluated at $\lambda \in R$ to produce $P(\lambda)$ by replacing the powers of X in the polynomial P by the corresponding powers of λ . This gives a mapping

$$R[X] \to \operatorname{Maps}(R,R)$$

An element $\lambda \in R$ is a root of P if $P(\lambda) = 0$.

• Proposition 3.3.9:

Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of P(X) if and only if $(X - \lambda)$ divides P(X).

• Theorem 3.3.10:

Let R a ring, or more generally, an integral domain. Then an non-zero polynomial $P \in R[X] \setminus \{0\}$ has at most $\deg(P)$ roots in R.

• Definition 3.3.11: Algebraically closed

A field F is algebraically closed if each non-constant polynomial $P \in F[X] \setminus F$ with coefficients F has a root in F.

• Theorem 3.3.13: Fundamental theorem of algebra

If F is an algebraically closed field, then every non-zero polynomial $P \in F[X] \setminus \{0\}$ decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n \geq 0, c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$. This decomposition is unique up to reordering of the factors.

3.4 Homomorphisms, Ideals, and Subrings

• **Definition 3.4.1:** Ring homomorphism

Let R and S be rings. A mapping $f:R\to S$ is a ring homomorphism if the following hold $\forall x,y\in R$

$$f(x + y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$

• Prelude to ideals

Let $f: R \to S$ be a ring homomorphism with ker $f = \{r \in R : f(r) = 0_S\}$. Then ker f is:

- a subgroup of R under addition
- $-0_R \in \ker f$
- closed under multiplication
- closed under left and right multiplication by arbitrary elements of R i.e. $x \in \ker f \implies rx, xr \in \ker f \ \forall r \in R$

• Lemma 3.4.5:

Let R and S be rings and $f: R \to S$ a ring homomorphism. Then $\forall x, y \in R$ and $m \in \mathbb{Z}$

- 1. $f(0_R) = 0_S$
- 2. f(-x) = -f(x)
- 3. f(x-y) = f(x) f(y)
- 4. $f(m \cdot x) = m \cdot f(x)$

Where mx denotes the m-th multiple of x.

• Definition 3.4.7: Ideal

A subset I of a ring R is an *ideal*, written $I \subseteq R$, if the following hold:

- 1. $I \neq \emptyset$
- 2. I is closed under subtraction (it's a subgroup)
- 3. $\forall i \in I \text{ and } \forall r \in R \text{ we have } ri, ir \in I \text{ (}I \text{ is closed under multiplication by elements of }R\text{)}$

Ideals satisfy the properties of rings, except possibly the existence of a multiplicative identity.

Ideals are subrings which are closed under multiplication with elements from the ring — not just elements from within the ideal!

• Definition 3.4.11: Generated ideal

Let R be a commutative ring and let $T \subset R$. Then the ideal of R generated by T is the set

$$_{R}\langle T \rangle = \{r_{1}t_{1} + \dots + r_{m}t_{m} : t_{1}, \dots, t_{m} \in T, r_{1}, \dots, r_{m} \in R\}$$

together with the zero element in the case $T = \emptyset$.

• Proposition 3.4.14:

Let R be a commutative ring and let $T \subseteq R$. Then $R\langle T \rangle$ is the smallest ideal of R that contains T.

• Definition 3.4.15: Principle ideal

Let R be a commutative ring. An ideal $I \subseteq R$ is called a *principle ideal* if $I = \langle t \rangle$ for some $t \in R$.

• Definition 3.4.17: Kernel

Let R and S be rings, and let $f: R \to S$ be a ring homomorphism. Since F is in particular a group homomorphism from (R, +) to (S, +), the kernel of f already has a meaning:

$$\ker f = \{ r \in R : f(r) = 0_S \}$$

• Proposition 3.4.18:

Let R and S be rings and $f: R \to S$ a ring homomorphism. Then ker f is an ideal of R.

- Lemma 3.4.20: f is injective if and only if $\ker f = \{0\}$
- Lemma 3.4.21: The intersection of any collection of ideals of a ring R is an ideal of R.
- Lemma 3.4.22: Let I and J be ideals of a ring R. Then

$$I+J=\{a+b:a\in I,b\in J\}$$

is an ideal of R.

• Definition 3.4.23: Subring

Let R be a ring. A subset $R' \subseteq R$ is a *subring* of R if R' is itself a ring under the operations of addition and multiplication defined in R.

• Proposition 3.4.26: Test for a subring

Let R be a ring, and $R' \subseteq R$. Then R' is a subring if and only if

- 1. R' has a multiplicative identity, and
- 2. R' is closed under subtraction, and
- 3. R' is closed under multiplication.
- Proposition 3.4.29: Let R and S be rings and $f: R \to S$ a ring homomorphism.
 - 1. If R' is a subring of R then f(R') is a subring of S. In particular, f is a subring of S.
 - 2. Assume that $f(1_R) = 1_S$. Then if x is a unit in R, f(x) is a unit is in S and $(f(x))^{-1} = f(x^{-1})$. In this case f restricts to a group homomorphism $f|_{R^{\times}} : R^{\times} \to S^{\times}$.

3.5 Equivalence Relations

• Definition 3.5.1: Relation

A relation R on a set X is a subset $R \subseteq X \times X$. R is an equivalence relation on X when $\forall x, y, z \in X$ the following hold:

- 1. Reflexivity: xRx
- 2. Symmetry: $xRy \iff yRx$
- 3. Transitivity: xRy and $yRz \implies xRz$

• Definition 3.5.3:

Suppose that \sim is an equivalence relation on a set X. For $x \in X$ the set $E(x) \equiv \{z \in X : z \sim x\}$ is called the *equivalence class* of x.

A subset $E \subseteq X$ is called an *equivalence class* for \sim if $\exists x \in X \ni E = E(x)$.

An element of an equivalence class is called a representative of the class.

A subset $Z \subseteq X$ containing precisely one element from each equivalence class is called a *system* of representatives for the equivalence relation.

• **Definition 3.5.5:** Set of equivalence classes

Given an equivalence relation \sim on the set X, the set of equivalence classes, which is a subset of $\mathcal{P}(X)$, is

$$(X/\sim) \equiv \{E(x) : x \in X\}$$

There is a canonical mapping can : $X \to (X/\sim)$, $x \mapsto E(x)$. It is obviously a surjection.

Remark

Suppose that \sim is an equivalence relation on X. If $f: X \to Z$ is a mapping with the property that $x \sim y \implies f(x) = f(y)$, then there is a unique mapping $\overline{f}: (X \setminus \sim) \to Z$ with $f = \overline{f} \circ \operatorname{can}$. Its definition is easy: f(E(x)) = f(x). This property is called the *universal property of the set of equivalence classes*.

• Definition 3.5.7: Well-defined

 $g:(X/\sim)\to Z$ is well-defined if there is a mapping $f:X\to Z$ such that f has the property $x\sim y\implies f(x)=f(y)$ and $g=\overline{f}$.

3.6 Factor Rings and the First Isomorphic Theorem

• Definition 3.6.1: Cosets

Let $I \subseteq R$ be an ideal in a ring R. The set

$$x + I \equiv \{x + i : i \in I\} \subseteq R$$

is a coset of I in R.

• Definition 3.6.3: Factor ring

Let R be a ring, $I \subseteq R$ be an ideal, and \sim the equivalence relation defined by $x \sim y \iff x - y \in I$. Then R/I, the factor ring of R by I or the quotient of R by I, is the set $(R \setminus \sim)$ of cosets of I in R.

• Theorem 3.6.4:

Let R be a ring, and $I \subseteq R$ an ideal. Then R/I is a ring, where the operation of addition is defined by

$$(x+I)\dot{+}(y+I) = (x+y)+I \quad \forall x,y \in R$$

and multiplication is defined by

$$(x+I) \cdot (y+I) = xy + I \quad \forall x, y \in R$$

• Theorem 3.6.9: First Isomorphic Theorem for Rings Let R and S be rings. Then every ring homomorphism $f: R \to S$ induces a ring isommorphism

$$\overline{f}: R/\ker f \to \mathrm{im} f$$

3.7 Modules

• **Definition 3.7.1:** A (left) module M over a ring R is a pair consisting of an abelian group $M = (M, \dot{+})$ and a mapping

$$R \times M \to M$$

 $(r, a) \mapsto ra$

such that $\forall r, s \in R$ and $a, b \in M$ the following identites hold:

$$r(a \dot{+} b) = (ra) \dot{+} (rb)$$
 (distributivity)
 $(r+s)a = (ra) \dot{+} (sa)$ (distributivity)
 $r(sa) = (rs)a$ (associativty)
 $1_R a = a$

- Lemma 3.7.8: Let R be a ring, and M an R-module.
 - 1. $0_R a = 0_M \ \forall a \in M$
 - 2. $r0_M = 0_M \ \forall r \in R$
 - 3. (-r)a = r(-a) = -(ra), $\forall r \in R, a \in M$. (Here, the first negative is in R, and the last two negatives are in M.)

• Definition 3.7.11:

Let R be a ring, and let M, N be R-modules. A mapping $f: M \to N$ is an R-homomorphism if the following hold $\forall a, b \in M$ and $r \in R$:

$$f(a+b) = f(a) + f(b)$$
$$f(ra) = rf(a)$$

The kernel of f is ker $f = \{a \in M : f(a) = 0_N\} \subseteq M$ and the image of f is im $f = \{f(a) : a \in M\} \subseteq N$.

If f is a bijection then it is an *isomorphism*.

• Definition 3.7.15:

A non-empty subset M' of an R-module M is a submodule if M' is an R-module with respect to the operations of the R-module M restricted to M'.

• Proposition 3.7.20: Test for a submodule

Let R be a ring and let M be an R-module. A subset $M' \subseteq M$ is a submodue if and only if

1.
$$0_M \in M'$$

$$2. \ a,b \in M' \implies a-b \in M'$$

$$3. r \in R, a \in M' \implies ra \in M'$$

• Lemma 3.7.21:

Let $f: M \to N$ be an R-homomorphism. Then ker f is a submodule of M and im f is a submodule of N.

• Lemma 3.7.22:

Let R be a ring, let M and N be R-modules and let $f: M \to N$ be an R-homomorphism. Then f is injective if and only if ker $f = \{0_M\}$.

• Definition 3.7.23:

Let R be a ring, M an R-module, and let $T \subseteq M$. Then the submodule of M generated by T is the set

$$_{R}\langle T \rangle = \{r_1t_1 + \dots + r_mt_m : t_1, \dots, t_m \in T, r_1, \dots, r_m \in R\},\$$

together with the zero element in case $T = \emptyset$.

The module M is finitely generated if it is generated by a finite set: $M =_r \langle \{t_1, \dots, t_n\} \rangle$. It is *cyclic* f it is generated by a singleton: $M =_R \langle t \rangle$.

- Lemma 3.7.28: Let $T \subseteq M$. Then $r\langle T \rangle$ is the smallest submodule of M that contains T.
- Lemma 3.7.29: The intersection of any collection of submodules of M is a submodule of M.
- Lemma 3.7.30: Let M_1 and M_2 be submodules of M. Then

$$M_1 + M_2 = \{a + b : a \in M_1, b \in M_2\}$$

is a submodule of M.

• Theorem-Definition 3.7.31:

Let R be a ring, M an R-module, and N a submodule of M. For each $a \in M$, the coset of a with respect to N in M is

$$a + N = \{a + b : b \in N\}.$$

It is a coset of N in the abelian group M and os is an equivalence class for the equivalence relation $a \sim b \iff a - b \in N$.

• Theorem 3.7.32: The Universal Property of Factor Modules

Let R be a ring, and let L and M be R-modules, and N a submodule of M.

- 1. The mapping can : $M \to M/N$ sending a to a+N, $\forall a \in M$ is a surjective R-homomorphism with kernel N.
- 2. If $f: M \to L$ is an R-homomorphism with $f(N) = \{0_L\}$, so that $N \subseteq \ker f$, then there is a unique homomorphism $\overline{f}: M/N \to L$ such that $f = \overline{f} \circ \operatorname{can}$.
- **Theorem 3.7.33:** First Isomorphism Theorem for Modules

Let R be a ring and let M and N be R-modules. Then every R-homomorphism $f:M\to N$ induces a R-isomorphism

$$\overline{f}:M/\ker f\to \mathrm{im} f$$

4 Determinants and Eigenvalues Redux

5 Reference

5.1 Terminology of Algebraic Structures

	Associativity	Identity	Inverses
Group	Yes	Yes	Yes
Monoid	Yes	Yes	No
Semigroup	Yes	No	No
Magma	No	No	No

Ring = (Group, Monoid)