Introduire davantage d'écologie des communautés dans les modèles de distribution d'espèce

Une théorie à renouveler

Le travail de Gotelli *et al.* est également un exemple de démarche intégrative où un nombre important de processus peuvent être inclus via un système de combinaison de scénarios et tester par simulations stochastiques ?. Enfin, en construisant des réseaux basés sur la cooccurrence des espèces, Araújo *et al.* revisitent le problème de l'interdépendance des espèces ? : ils s'interrogent sur la résistance des réseaux de cooccurrence obtenus face aux futurs changement climatiques, ils mettent ainsi en évidence des risques accrus de perte des espèces les moins connectés (celles qui cooccurent moins). Ces travaux témoignent de la volonté d'une biogéographie intégrative.

L'ensemble des trois éléments jusqu'ici évoqués (environnement abiotique, interaction, évolution) peuvent également être étroitement associé. Grant et Grant 2006 rapportent le cas de la compétition entre trois espèces de pinsons (dits de Darwin) sur l'ile de Daphne (Galapagos) qui engendre une modification de la taille de leurs becs. Cette évolution liée à la compétition est elle même reliée à l'environnement abiotique car, par l'abondance ou l'absence de précipitations, il détermine la disponibilité des ressources et donc l'intensité de la compétition?. A travers cet exemple, nous comprenons l'importance d'inclure l'ensemble des différents processus pour construire un modèle intégratif en biogéographie. Un tel modèle serait capable, par exemple, de renseigner les risques d'exclusion compétitive dans l'exemple décrit par Grant et Grant.

L'ajout des interactions dans un modèle incluant l'environnement abiotique interroge la relation que les deux processus entretiennent. Si les espèces n'ont pas les mêmes performances dans différents milieux du fait de leur physiologie, pour les mêmes espèces considérées, les réseaux n'ont pas de raison d'être identiques d'un milieu à un autre. C'est sur ce fait que Poisot *et al.* 2012 ont proposé une mesure de dissimilarité des réseaux ?. Defossez *et al.* montrent que les interactions négatives entre l'hêtre commun (*Fagus Sylvaitca*) et les micro-organismes du sol diminuent avec l'altitude ?. Ainsi, les contraintes biotiques sont à relier à l'environnement ?? et un modèle intégratif doit donner un cadre cohérent à ces rétroactions entre processus. Enfin, l'importance des interactions est à mettre en relation avec l'échelle considérée ?. Pour deux espèces en interaction, plus l'échelle d'étude est large, moins les effets des interactions locales sont susceptibles d'être capturés, le pouvoir explicatif de la présence d'une espèce sur l'autre peut être alors discutable ?. Comprendre quels sont les processus à prendre en compte aux différentes échelles spatio-temporelles et comprendre comment le changement d'échelle affecte nous prédictions est aussi un véritable challenge en biogéographie ?.

Vers une théorie plus intégrative

Dans la réédition de 2001 [] Wilson rappelle que le problème :

"The flaws of the book lie in its oversimplification and incompleteness, which are endemic to most efforts

at theory and synthesis."

L'effort théorique nécessaire en biogéographie porte sur l'intégration ordonnée de concepts clés issus de différents champs de l'écologie ?. Ainsi, alors que les conditions climatiques et plus généralement la géographie physique sont classiquement évoquées pour expliquer la répartition des espèces ?, les interactions entre espèces sont quant à elles souvent occultées. De même, bien que les processus évolutifs soient souvent évoqués comme déterminants majeurs de la diversité des espèces ?, leurs effets à court terme sont souvent ignorés ? dans les scénarios décrivant la biodiversité de demain ?. La difficulté principale est alors de produire des modèles (théoriques en première instance) qui intègrent l'ensemble des processus et les relations qu'ils entretient ? tout en gardant une relative simplicité. Une théorie intégrative en biogéographie pourrait être le meilleur point d'ancrage pour construire de nouvelles approches appliquées. Avec une telle théorie en main, nous pourrions aller vers l'enjeux majeurs de ces dernières années en biogéographie : relâcher les hypothèses que les modèles classiques de répartitions des espèces d'aujourd'hui utilisent (notamment en occultant les interactions) pour prédire la biodiversité de demain ?.

Dans le projet ici présenté, nous proposons de construire des modèles théoriques plus intégratifs en repartant d'un modèle théorique classique, celui de la théorie de la biogéographie des îles proposée par MacArthur et Wilson ?. Dans un premier temps, nous y ajoutons les interactions entre espèces et une relation explicite avec l'environnement abiotique au travers d'une approche communauté centrée qui étend le modèle classique. Dans un second temps, nous combinons une approche population centrée et les processus évolutifs pour une biogéographie insulaire plus mécaniste. Enfin, au regard des enjeux que soulève le rôle des interactions entre espèces dans la construction de la biodiversité, nous réfléchissons sur l'inférence d'espèces interdépendantes.

différentes théories pour différentes échelles ??

De part son pouvoir explicatif et son élégance, le modèle de MacArthur et Wilson est un point de départ approprié pour construire des modèles plus intégratifs en intégrant explicitement des processus écologiques et évolutifs. Cette idée n'est pas nouvelle et les auteurs de la TIB ont étudié un certain nombre de processus écologiques. Notamment, ils ont intégré les phénomènes de spéciation ? et réfléchis sur l'importance des interactions quant à la répartition des espèces ?. Néanmoins, dans le modèle classique, l'ensemble de ces aspects sont absents, l'idée que les processus écologiques importent peu aux larges échelles domine. Nous allons, dans ce projet, à l'encontre de cette idée et proposons de construire des modèles intégratifs qui étendent la TIB.

L'information des réseaux

Des contraintes physiologiques

L'abstraction des espèces

L'abstraction de l'espèce ? pour des questions centrales : - quelles especace av interagir avce qui ?%

Traits fonctionnels

Les traits fonctionnels sont des propriétés mesurables sur les organismes en relation avec leurs performances et leur rôle dans l'écosystème ?. Les traits étudiés peuvent être de différentes natures, 1-morphologiques : taille de différentes parties du corps, position des yeux, taille des oeufs chez les organismes ovipares, taille des graines pour les végétaux, 2- physiologiques: taux métaboliques de bases, stœchiométrie (rapport de la concentration entre divers éléments qui compose l'organismes) ???. Un ensemble approprié de ces propriétés peut être un outil puissant pour décrire un ensemble d'espèce dans un même espace. Leur proximité dans l'espace des traits est alors un indice précieux d'une proximité fonctionnelle. Ainsi, à l'aide de 13 traits ecomorphlogiques, Albouy et al. 2011 parviennent à prédire les guildes trophiques de 35 espèces de poissons de la Méditerranée ?. Edwards et al. 2013 montrent que l'effet saisonnier sur une communauté de phytoplancton dans la Manche peut être capturé à l'aide de traits décrivant : le taux maximal de croissance, la compétitivité pour la lumière et l'azote ?. La distribution des traits fonctionnels au sein de la biodiversité est aussi une entrée de choix pour réfléchir quand à la fragilité potentielle des fonctions remplies par les écosystèmes ?. %DG: je comprends cette citation de Mouillot, mais juste une mise en garde contre ce type de référence. Mouillot se base sur l'hypothèse que les traits nous informent du fonctionnement, sans jamais documenter cette relation. Ce qui est souvent le cas, et par conséquent contribue à bâtir des mythes dans la littérature qui à l'occasion ne sont pas toujours bien appuyés. L'approche par traits est un bel exemple, on a édifié rapidement une structure conceptuelle sur les traits, mais on n'a pas solidement appuyé le concept sur de bonnes bases empiriques.

L'approche de la biodiversité par les traits fonctionnels est plus quantitative que l'approche taxonomique et permet de déduire un grand nombre de propriétés en se passant de la connaissance de leur identité. Ainsi McGill, dans son article d'opinion de 2006, propose une approche nouvelle de l'écologie des communautés qui transforme les questions centrées autour des espèces par des questions qui interrogent la répartition et la variabilité des traits?. L'emploi des traits fonctionnels est en fait un appel à une écologie plus mécaniste, qui se penche sur la physiologie des organismes, en prend les faits les plus importants (relativement au problème traité) pour les placer dans un espace de traits commun. Cette approche est aussi en lien avec la controversée théorie métabolique en écologie ??. Dans cette théorie un certain nombre de grandeurs (comme le taux métabolique) sont reliées à la biomasse corporelles de l'adulte, fournissant ainsi en un seul trait de nombreuses relations pour des groupes d'organismes très différents. Par ces nouvelles approches, l'espérance de s'extraire de la seule identité des espèces est accrue, l'idée d'avoir des règles générales se concrétise.

Dans une théorie intégrative de la biogéographie, les traits fonctionnels peuvent être un pivot très intéressant pour rassembler les différents concepts que nous avons développés dans les paragraphes précédents. Les traits peuvent tout d'abord être mis en relation avec le milieu abiotique. Le taux métabolique ou encore la sensibilité à la sécheresse sont des indices performant pour décrire la survie dans un milieu donné ?? que l'on peut capturer sous forme de traits. Kearney *et al.* 2010 propose une approche prometteuse dans laquelle, l'environnement physique, la disponibilité des ressources et la dynamique énergétique sont reliées par les traits fonctionnelles le tout aboutissant à un modèle de distribution très mécanistes. La structure d'un réseaux peut également être dérivée à partir de l'espace des traits. Dans leur méthode proposée cette année, Gravel *et al.* infèrent les paramètres du modèle de niche de Williams et Martinez ?

à partir des relations de masse du corps entre proie et prédateurs ?. Ils sont alors en mesure de dériver un réseau global pour un ensemble d'espèce donné. Enfin, en tant qu'expression phénotypique, les traits fonctionnels sont soumis aux processus évolutifs. Sur les temps longs, l'expression de l'évolution résulte en la modification progressive des traits qui se répercute sur l'ensemble des propriétés qui en découle. Ainsi la considération d'une modification des traits est une approche simple et réaliste pour introduire les processus évolutifs et leurs conséquences ??.

Des données nouvelles

Comme souvent en écologie / science nous avons besoin de données, mais ce n'est pas une qeustion vaine, L'Accumulation des données doit se faire avec une certaine normalisation pour utiliser les. Il est souvent difficile et la conséquence c'est de trouver des difficultés pour réintégrer des anciennes données ? celle des muséum ? Malgré les espoirs des remplacer les ordinateurs pour formuler les hypothèse, toujours besoin d'un développemnt théorique plus de que de corrélations essayer d'estimer aujourd'hui en utilisant le plus près possible la méthode d'hier pour savoir quel biais prbable il y avait. Ici si on détecte beaucoup plus bas qu'avant avec la même méthode, alors on peut se dire que le fait que ce soit des fausses absence est faible. Par contre si on essaye d'avoir des comparaison et que les résultats sont du à la période de l'année... C'est plus compliqué! Aller vers des occupancy model

Les défis à relever dans un monde en changement

Une érosion de la biodiversité affolantes

L'érosion de la biodiversité exergue une certaine nostalgie qui parfois conduit une forme de fatalisme chez certain experts. Relevons la tête il va falloir trouver les solutions dans le mimétisme ?

Alllant jusqu'à des porblèmes de santé La tique la souris le réservoir et des hommes des problèmes de productions Sommes nous en train de biaisé le signal phylogénétique ? (cf article Thuillier)

Avons-nous des espoirs vains?

Le royaume de la contingence du à l'impact historique de l'histoire evolutive. Alors comment finder des espoinr de généralité quand le moteur repose sur de la stochasticité Mais cette loi mène à des prédictions exoecologie Les bactéries mais comment généraliser alors que l'evolution à afit émerger bon nombre d'organisme qui en soi loin quoique complèlemnt immbriqué on a plus de miro-organimes que de cellules...

inertie historique comment imaginer des plantes sans mycorrhyze mais d'autres systeme auraiengt pu marcher En fait quand on pense à la plante don pense à lMunité de lante + mycorrhuze et quand on pense à un vertébrés on inclu tout ces bactérie on ne peut certes pas comprendre comment l'un marche sans l'autre mais pour on a pas besoin de tout connaître c'est un problème de rupture de symétrie.

Les conséquences sont compliqués des changements climatiques sont nombreuses et certaines espèce voir le range grandir d'autre diminuer pour cds espèce de co existent et donc à un changemnet prononc. de al morphologoe des communautés alors que le nombre d'espèce peut être peu affecté ?

On nous fait miroiter que finalement que l'érosion de la biodiversité est dramatiques et le ressort actuel pour faire un levier face à cela c'est les services ecosystémiques qui sont actuelelemet l'argument choc pour renforcer la production de la nature. Il y a un côté pervers qui est la financiarisation et la substituabilité l'argent oeut alors être utilisée pour intervertir ou alors remplacer un type d'écisystème par un autre ailleurs... En fait on a l'impressonq ue c'est pus un principe de précaution qui erst invoquer et ultimement il est vraisemblable que la destruction de la nature tel que nous la connaissons soit dans le future un générateur de conflit.... et uttiment on a a craindre de faire un panete invivable pour nous mêm. Mais les changement sont des remplacemnt et pour la conservation on peut se demander les startégie. Dans son arctile 'Don't juge a species on their origin' Mark Davis prend à revers un sertain nombre d'idée recu et souligne qye les effects des invedeurs peuvent être positives ?.

Des écosystèmes bouleversés

Reconfiguration des écosystèmes naturelle li y a eu d'autre crise avant. Finalemnt avec du catastrophisme, la question s'est si nous on ira mal. On est grons pour la taille de la planète peut être plus suceptibel è l'extinciton que l'on pense. Maid ce ,est pas le pessismise qui m'importe. - Et si on faisait rien pour le frelon asiatique ?

Transient

Faire une écologie prédictive?

Un espoir

La défense des modèle climqtaiur bioclimate enveloppe de Pearson comme une dpremière approximation utilise se faitt sur 3 exemple de plantes ?

Catégories

L'écologie ne traite pas de telle ou telle manière les différentes espèces. Il y a des champs entier dédier à des classes d'espèces. Par exemple, on traite mcro-organisme ou metaphyte vs. metazoaire. Les échelles et la proximité nous biaise fortement la vision de la biodiversité. Il est difficile d'appliquer les théories à l'ensemble des espèces, peut être

seulement la théorie de l'évolution mais se qui est intéressant c'est que ce processus est finalemnt l'essence de la vie. L'aphrisne de Dobzansky à mon avis ne devrait simpemtn dire que la biologie est à regarder à la lumière mais que le vivant est une ensemble dde moécule organique dont l'organisation est soumise à l'évolution. Il existe des sepécificités des êtres.

Malgré les apparences, La TIB n'est pas formulée pour l'ensemble des espèces. Le premier exemple du livre herpetofaune puis les fourmis de la famille des Ponerinae [?]. De même la théorie neutre a été classique tropical les arbres dans els forêts tropicaux et les coraux. Biensur ces théories sont liées à la connaissance fine mais biaisée du vivant (comment avoir une connaissance exhastive du vivant...). Aisin, certaine théorie s'applique à certaine partie du monde vivant, il y aurait donc une classification à faire ou une compréhension du côté de pourquoi telle ou telle propriété est Ok pour telle ou telle partie diu vivant. Cela conduit à une intérogation sur les règles possibles de composition des écosystèmes.

Wallace n'aurait-il pas eu plus de mal à comprndre les zones aujourd'hui. Si naïvemnt on réduit aux villes, l'homogénéité ++ mais avec les espèces invasive le signal est fortemnt briollé aussi! Je pense qu'on est a un tournant de la biogoe vers un chamgemnt de paradigme communaité centré qui ne nit pas les travaux précédant mais les suit.

Information dans les distributions gecko australien généraliste *Heteronotia binoei* => alors peut être que ça marche bien mais sur une espèce spécialiste ??

Les produits de l'évolution

Quelles hypothèse pouvons nous faire sur les produits de évolution? Si on peut supposer qu'il y a des compétition ou la règle est le changemnt cette même propriété a-t-elle des propriétés sur le long terme. Peut-on affirmer que les produits de l'évoluton dans un enviroemnt stable amène à des entités qui optimise l'tilisation de l'énergie. Si oui, que dire des produites de l'évoltion dans avec variation. Si on peut faire des hypothèses comment les tester. Dans l'article de

Si l'évolution est imprévisible si au dela d'un certain temps on ne peut presque rien dire... Si la chance de des abeilles européennes changeait comment prédire cela changement de comportement mais que nous sommes dand l'incapacité de le prédire que pensé du status de l'écologie et de l'évoluton en tant que science. Si la composant historique domine le royaume de la biologie devons-nous nous dsatisfaire de le décire. L'espoir mais la publication de Ian Hatton êut faire douter de l'absence de l'absence de règel. Comment croire qu'il n'y a pas des principes d'ordre enerétique la-dessous. Convergence...

2014, Hurlbert et Stegen propose une série d'hypothèse pour mettre en évidence l'impact de l'énergy sur l'évolution la troisième hypothèse est temps suffisant pour équilibre. Une telle hypothèse une forme de maximistaion de la production de la biomasse et l'utilisation qui est peut être. Peut-être que les différents mécanismes en jeu dans les processu évolutifs amène probablement à une forme de stationarité...

Quels types de prédictions pouvons-nous faire?

Quels objet qu'est ce qui peut faire l'obejt d'une prédiction / qu'est ce qui ne peut pas?

Une question d'échelle?

L'écologie porte sur l'ensemble du monde vivant quelques soiten leur taille mais les différent champs ne sont pas toutes

relatoves à la m^me échelle alors il y a bien els échelles de temps, les echelles spatiales mais il y a le lével d'organisation.

Il est bien inportant de comprendre cela!

Un scéhma avec des variables qui émergenet ave différemts paramères et quelques éxemelpme de théorie! (DEB

Evolution foodweb...) et l'action de

Repartition des especes des passges histroqiere dans l'origin des espèces et dans Wallace. Le principe même de

l'écologie (la definition de ecologie). On arrive à l'idée de ; la niche. Exemple histriques. Dans son ouvrage, le grand

biogéographe Wallace reconait en introduction le caractère facinant de la réaortition de la biodiversité des îles avec des

faot intriguant wuant à la faune et la flore. Ainsi il constate qu'il peut y avir plus deux différence entre île très éloigné et

deux île s très proche. Il écrit que la faune et la flore sont plus dissimilaire entre ldeles deux piles des Galapagos Bali et

Lombik qu'entre Hokaido (Yesso) et La grand bretagne ouy encore la Nouvelle Zéland et l'Australie,

Exemple classique de grinnel et des Trasher + evolution avec les charcter displacement.

Nous accumulons des évidences quand aux impact du changement anthropique. A diiférentes échelles la diminution de

la biodiversité, changemnt en composition??

La biogéographie avec au moins 3 problèmes d'échelles => spatiale => temporelle plus on augmente plus l'enpreinte

historiques est forte => grands evenemnt géologique (lacitaion mouvement des plques) biogéogrpahies historiques mais

aussi forme un pool d'espèces => Mais aussi l'échelle taxonomique : la relaton aire espèce est décrite à l'intérieru des

taxons les relations allométriques à l'inérieur des taxons E O Wilson a commencé à rappporter des relation sur les

formis les exemples du livre sont herpeta faun (reptile plus amphibien) mecanisme => diversité de milieu

Prédire des communautés

Contraintes énergétiques

Moi je pars vers ça....

=> des interactions changer de paradigme => abstraction des espèces

7

Les dangers d'aller trop vite

There is also a danger that predictions grow faster than our understanding of ecological systems, resulting in a gap between the scientists generating the predictions and stakeholders using them

"Predictive ecology in a changing world" [?]