an - aft

- Interactions are quantised and described by virtual particles
- The propagator $\frac{1}{q^2-m^2}$ enters the

$$-0 \quad \text{M} \approx \frac{\text{Zeie}}{q^2 - m^2}$$

For E = E' :

$$h \rightarrow \frac{22e^2}{(E-E')^2-191^2-m^2} = \frac{-e^2+2}{191^2+m^2}$$

$$M = m$$

$$\frac{m-00}{1\overline{9}^{2}} - \frac{e^{2} + 2}{1\overline{9}^{2}}$$

- Elementary particles can and will decay and can be produced from other fields as long as all quentum now sens are conserved

7. Irelastic Scattering

So for all scattering processes have been elastic: the object off which we scatter is left unchanged. Inelastic Scattering: The target is changed by the scattering.

$$P = \begin{pmatrix} \vec{F} \\ \vec{p} \end{pmatrix}$$

$$P = \begin{pmatrix} \vec{F} \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} - \vec{P}' \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} - \vec{P}' \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} + \vec{F} \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} - \vec{P}' \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} + \vec{F} \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{p} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{F} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F}' \\ \vec{F} \end{pmatrix}$$

$$Q = \begin{pmatrix} \vec{F} - \vec{F} \\ \vec{F} \end{pmatrix}$$

$$= M(E-E') = E-E'$$

given by the energy transfur (in he has fune)

For elastic scattering $W^2 = M^2$

 $=D \qquad 2MU-Q^2=0$

If re collision is inelastic

2 hu - Q2 >0

For elastic scattering we only had one parameter to describe the scattering, because the scattering angle was related to the momentum transfer (i.e. $1\overline{q}1^{*}=2E\sin\varphi_{2}$)

The lastic scattering needs 2 parameters.

Deep irelastic scattering

For inelastic scattering

 $\frac{dG}{d\Omega dE'} = \left(\frac{dG}{d\Omega}\right)_{tott,} \left[\omega_2(Q^2, v) + 2\omega_1(Q^2, v) + 2\omega_2(Q^2, v)\right]$

no recoil

The four factors Wi, We of irelastic scattering non depend on 2 parameters and one called Structure functions.

$$X = \frac{Q^2}{2H\omega}$$

which measures he elasticity of the scattering process

$$= 0 \qquad 1 \geq x > 0$$

For elastic scattering x=1.

Define dinersionless Structure functions

and

$$\frac{d^2G}{d\Omega dQ^2} = \frac{4\pi \alpha^2}{Q^4} \left(\frac{1}{x} \left(1 - y - \frac{m^2 y^2}{Q^2} \right) F_2(x, Q^2) \right)$$

and $y = \frac{P.q}{P.q}$

measures the factional enargy loss of the probe.

Figure 20: Differential cross section for an electron off a proton for a fixed scattering angle of 10° and a beam energy of $4.9\,\mathrm{GeV}$. Data from [7] and figure from [2].

x - dependence of the shocker factions $Q^{2}R^{2} \ll 1$ elastic $Q^{2}R^{2} \simeq 1$ irelastic

