La couche réseau dans Internet

UE LU3IN033 Réseaux 2021-2022

Prométhée Spathis promethee.spathis@sorbonne-universite.fr

8

11 Web & DNS	Application	
	Transport	10 TCP (suite) 9 UDP & TCP
8 Routage7 DHCP, ARP et NAT6 Paquets IP5 Adresses IP	Réseau	
Liaison	LLC MAC	4 Réseaux d'entreprise 3 Liaison
	Physique	2 Physique

Plan du cours

- Adresses IP
 - Format et notation
 - Attribution des adresses
- Format du paquet IP
 - Champs de l'entête
 - Options IP
 - Fragmentation
- Protocole ICMP
 - Tests et diagnostic d'erreurs
 - ping et traceroute
- Configuration des machines hôtes
 - Découverte des paramètres réseau
 - Découverte de l'adresse physique/MAC des autres machines

3

Rôle de la couche réseau

Les paquets de données sont de proche en proche en se basant sur l'adresse IP de leur destination

Couche réseau dans Internet

5

Adresses IP

Adressage dans les réseaux de données

- Les adresses identifient les noeuds d'un réseau :
 - Pour acheminer des données vers une destination
 - Pour répondre à la source qui a envoyé ces données
- Questions à se poser :
 - Combien d'adresses ? (longueur d'une adresse)
 - Qui attribuent les adresses aux machines ?
 - Quelle adresse attribuée à une machine ?
 - Comment les machines découvrent-elles leur adresse ?
 - Celle des destinations ?

- ...

7

Adresses postales

- Exemple en France :
 - Localité : Paris
 - Code postal: 75005
 - département : 75, arrondissement : 5e
 - Libellé de la voie : place Jussieu
 - Numéro de la voie : 4
 - Complément d'adresse : 26-00/128
 - Identité du destinataire : Prométhée Spathis

Corrélation entre adresses postales et découpage du territoire en départements et en arrondissements (Paris, Marseille, Lyon)

Numéros de téléphone

- Géographiques
 - indicatifs nationaux

- Non géographiques
 - 1XX : numéros d'urgence (15 SAMU)
 - 30XX, 31XX, 36XX : numéros courts
 - 08 : numéros SAV (0800 numéros verts)
 - 09 : services téléphoniques offerts par les FAI
 - 06, 07 : numéros des téléphones mobiles

Attribution des adresses postales et numéros de téléphone

- · Les zones habitées sont découpées et organisées en :
 - pays, régions, départements, villes, ...
- Les adresses et codes postaux dépendent de ce découpage :
 - pour améliorer l'acheminement du courrier
- Les numéros de téléphone sont affectés selon la situation d'un abonné par rapport à ce découpage :
 - pour améliorer l'acheminement des appels
- Identification hiérarchique
 - résistance au facteur d'échelle : scalabilité

Il en va de même des adresses IP dans l'Internet

Adresses IP

- La longueur des adresses IP est de :
 - 32 bits IPv4 (2³² au total soit 4 294 967 296 adresses)
 - 128 bits IPv6 (2¹²⁸ au total soit 3,4028237e+38)
- Une adresse IP se compose de deux parties :
 - Identifiant de réseau (netid) appelé adresse réseau ou préfixe
 - Identifiant de la machine hôte (hostid)
 - le hostid tout à 0 est réservé pour l'adresse réseau
 - le hostid tout à 1 est réservé pour l'adresse de broadcast
- Notation:
 - IPv4 : décimale pointée
 - les 4 groupes de 8 bits sont convertis en décimal et séparé par un point '.':

132.227.61.3 (132.227 est le net id, 61.3 le hostid)

11

Attribution des adresses IP

- Comment assurer l'acheminement efficace des données ?
 - Identification hiérarchique à deux niveaux :
 - 1. attribution de l'adresses réseau
 - 2. numérotation des machines hôtes

Adressage IP hiérarchique

- Attribution des adresses réseau :
 - 1.2.3.0/24 pour le LAN1
 - 5.6.7.0/24 pour le LAN2
- Puis, numérotation des machines hôtes
- Tables de routage : une entrée par réseau

Adressage IP hiérarchique

Ajout/retrait de machines

- La topologie interne des réseaux est invisible pour les routeurs
 - ajout de la machine hôte 5.6.7.213 sur le LAN2
 - les tables de routage ne sont pas modifiées
- Les changements internes aux réseaux locaux n'affectent pas les routeurs

Adressage plat (non hiérarchique)

- Attribution des adresses complètes indépendamment de leur réseau d'appartenance
- C'est le cas des adresses MAC
- Tables de commutation : une entrée par machine hôte

Adresses IP vs Adresses MAC

	Adresse IP	Adresse MAC
Exemple	134.157.250.59	58-55-CA-F8-C1-87
Longueur	32 bits (IPv4), 128 bits (IPv6)	48 bits
Structure	Hiérarchique	Plate
Configuration	Logicielle (manuelle ou dynamique)	Matérielle (vissée en dur)
A l'usage de	Machines hôtes, routeurs IP	Stations, commutateurs
Portabilité	Change selon la localisation de la machine et au cours du temps	Constante pour toute la durée de vie de la carte réseau
Allocation, niveau supérieur	Prefixes de longueur variable, allouée par l'ICANN, un RIR, et l'ISP	Blocs d'adresses de taille identique (2 ²⁴), allouées par l'IEEE aux constructeurs
Allocation, niveau inférieur	Attribuée aux interfaces par l'administrateur local ou DHCP	Attribuée aux cartes réseau par les constructeurs

Hiérarchie des adresses IP

- Les adresses IP des machines connectées au même réseau :
 - partagent le même préfixe
 - sont identifiées par un hostid unique sur ce réseau
- Exemple : l'adresse 12.34.158.5 a un préfixe long de 24 bits

Comment spécifier la longueur du préfixe ? Quelle longueur pour le préfixe ?

17

Longueur des préfixes

Adressage avec classes (A, B, C)

- Les adresses IP sont divisées en 3 classes : A, B, et C
- La classe d'une adresse IP est déterminée par ses premiers bits :
 - Classe A: 0*
 - Classe B: 10*
 - Classe C: 110
- La longueur du préfixe d'une adresse
 IP est déterminée par sa classe :
 - Classe A : préfixe long de 8 bits
 - Classe B : préfixe long de 16 bits
 - Classe C : préfixe long de 24 bits

Adressage sans classe (CIDR)

- La longueur du préfixe est déterminée par une 'adresse' supplémentaire appelée masque :
 - Les bits du préfixe sont positionnés à 1 dans le masque
- Exemple:
 - Le masque 255.255.248.0 indique que le préfixe est long de 21 bits
 - Ce masque est adapté à des réseaux hébergeant 2046 (2³²⁻²¹ -2) machines

hostid réservés :

- tout à 0 : adresse réseau
- tout à 1 : adresse de diffusion

Le CIDR assure une meilleure utilisation des adresses IP

- Un préfixe unique est attribuée aux machines appartenant au même réseau physique
 - Les adresses de ce bloc ne peuvent être utilisées qu'au sein de ce réseau
- Le découpage des adresses IP en classes prédéfinies est inefficace :
 - Une adresse réseau de classe A est justifiée si le réseau contient :

- Une adresse réseau de classe B est justifiée si le réseau contient :

(216 - 2) soit 65,534 machines

- Exemple :
 - Le campus de Jussieu à deux adresses de classe B (131,072 adresses)
 - On utilise 10% de ces adresses (~13,000 machines)
 - Les 90% adresses restantes sont gaspillées
- Le CIDR attribue une adresse réseau selon la taille du réseau
 - Un réseau hébergeant $2^{(n-2)}$ machines a besoin d'un préfixe long de 2^{32-n} bits

Adressage sans classe Classless Inter-Domain Routing (CIDR)

- Une machine hôte est identifiée par deux adresses de 32 bits : Adresse IP + Masque
- La longueur du masque dépend du nombre de machines hébergées
- Adresse 12.34.158.5 et masque 255.255.248.0 :
 - adresse réseau : 12.34.152.0/21 (21 est la longueur du masque/du préfixe)
 - nombre max de machines : 2^{11} 2 = 2046

	12	34	158	5
Adresse	00001100	00100010	10011	110 00000101
	255	255	248	0
Masque	11111111	11111111	11111	000 00000000
	12	34	152	0
Adresse réseau	00001100	00100010	10011	000 00000000

notation habituelle : 12.34.152.0/21

21

Réorganisation des classes

Subnetting

- concerne principalement les adresses de classe B
- configuration d'un masque de longueur supérieur à 16
- découpage d'une classe B en plusieurs adresses de sous-réseaux

 $132.227.0.0/16 \rightarrow 132.227.(0-224).0/19$

132	227	0000	0000	0
132	227	0010	0000	0
		0100	0000	
		0110	0000	
		1000	0000	
		1010	0000	
		1100	0000	
132	227	1110	0000	0

Supernetting

- concerne principalement les adresses de classe C
- configuration d'un masque de longueur inférieur à 24
- agrégation de plusieurs classes C en une adresse de réseau

 $192.168.(0-7).0/24 \rightarrow 192.168.0.0/21$

192	168	0000	0000	0
192	168	0000	0001	0
		0000	0010	
		0000	0011	
		0000	0100	•••
		0000	0101	
		0000	0110	
192	168	0000	0111	0

22

	Subnetting : déco	upage d'une cla	sse B	
255.255.0.0	255.255.128.0	255.255.192.0	255.255.224.0	
132.227.0.0/16	132.227.0.0/17 132.227.128.0/17	132.227.0.0/18 132.227.64.0/18 132.227.128.0/18 132.227.192.0/18	132.227.0.0/19 132.227.32.0/19 132.227.64.0/19 132.227.96.0/19 132.227.128.0/19 132.227.160.0/19 132.227.192.0/19 132.227.224.0/19	•••
Supe	rnetting : agrégat	tion de plusieurs	classes C	
255.255.255.0	255.255.254.0	255.255.252.0	255.255.248.0	
192.168.0.0/24 192.168.1.0/24 192.168.2.0/24 192.168.3.0/24 192.168.4.0/24 192.168.5.0/24 192.168.6.0/24 192.168.7.0/24	192.168.0.0/23	192.168.0.0/22		
	192.168.2.0/23	13211001010/22	192.168.0.0/21	
	192,168,4,0/23	192.168.4.0/22	23211331313,21	
	192.168.6.0/23			

23

Hiérarchisation CIDR

- Les préfixes sont déterminants pour la scalabilité de l'Internet
 - Le calcul des routes et l'acheminement des données se font sur la base des prefixes
 - Les tables de routage contiennent ~150,000-200,000 préfixes
- Division multi-niveau des adresses réseau :

```
12.0.0.0/16
              12.1.0.0/16
                              12.3.0.0/24
              12.2.0.0/16
                              12.3.1.0/24
              12.3.0.0/16
                              12.3.255.0/24
12.0.0.0/8
                                12.253.0.0/19
                                12.253.32.0/19
                                12.253.64.0/19
              12.254.0.0/16
                                12.253.96.0/19
              12.255.0.0/16
                                12.253.128.0/19
                                12.253.160.0/19
                                12.253.192.0/19
```

Le CIDR contribue à la réduction des tailles des tables de routage

Acheminement des paquets sans CIDR

- Quand les adresses étaient organisées selon les 3 classes A, B, C
 - Les entrées des tables de routage concernaient des préfixes tels que définis par la classe de l'adresse destination
 - Les classes A, B, C étant disjointes, au plus une entrée concorde avec l'adresse destination d'un paquet

CIDR complexifie l'acheminement des paquets

- Le CIDR permet une attribution efficace des adresses IP
 - Mais le CIDR rend l'acheminement des paquets plus compliqué
- Une table de routage peut contenir plusieurs chemins pour une même destination
 - L'adresse 201.10.6.17 appartient aux blocs 201.10.0.0/21 et 201.10.6.0/23
 - Quelle route utilisée ?

Acheminement des paquets avec CIDR

Longest prefix match LPM

- Les routeurs choisissent l'entrée dont l'adresse destination partage le plus grand nombre de bits avec l'adresse destination du paquet
- Pire cas : parcours complet de la table de routage pour identifier cette entrée
 - Solution 1: structurer les tables sous forme arborescente (par exemple : Patricia Trie)
 - Solution 2 : faire le lookup au niveau matériel

Evolution des tailles de tables de routage

Attribution des adresses IP par blocs

- Attribution hiérarchique
 - préfixe: attribuée au réseau d'une institution
 - adresses (hostids) : attribuées aux machines par l'institution (leurs admins)
- Qui attribue les préfixes?
 - Internet Corp. for Assigned Names and Numbers (ICANN)
 - découpage et attribution de larges blocs au Regional Internet Registries (RIR)
- Regional Internet Registries (RIR)
 - ARIN, RIPE NCC, APNIC, ...
 - attribuent des blocs d'adresses aux FAI et aux grandes institutions
- Fournisseurs d'accès Internet (FAI ou ISP)
 - attribuent des blocs d'adresses à leurs clients
 - qui peuvent à leur tour attribuer des sous-blocs à leurs propres clients ...

Les adresses IPv4 suffisent-elles?

- En théorie, les adresses IPv4 sont nombreuses
 - $-2^{32} = 4294967296 (~4,3 milliards)$
- Les adresses IP ne se sont pas toutes disponibles
 - Certaines sont réservées pour des usages spécifiques
 - Les adresses sont attribuées par blocs : gaspillage inevitable
- De plus de plus d'équipements nécessitent une adresse IP
 - Ordinateurs, routeurs, smartphones, tablets, montres, frigos, cuiseurs, ...
- Solution à long terme : augmenter le nombre d'adresses
 - Adresses IPv6 ($2^{128} = 3.403 \times 10^{38}$)
- Solution à court terme
 - Réutilisation d'adresses (DHCP)
 - Adresses privées et Network address translation (NAT)

31

Conclusion

- Adresses IP
 - Longues de 32 bits pour IPv4 (128 bits pour IPv6)
 - Hiérarchiques
 - pour une utilisation efficace
 - pour un acheminement efficace
- Acheminement de paquet
 - Basé sur le préfixe des adresses
 - le plus long partagé entre adresses destination des chemins et celle des paquets
- Cours prochain
 - Format du paquet IP (entête et options IP)
 - Protocole ICMP