Contents

0.1	Self-pairing implies failure of DDH	1
0.2	BLS Signatures are complete	1
0.3	BLS signature aggregation	1

0.1 Self-pairing implies failure of DDH

Let $h = e(g_0, g_1)$ $e(a \cdot g_0, b \cdot g_1) = h^{ab}$ $e(\sqrt{y} \cdot g_0, \sqrt{y} \cdot g_1) = h^{\sqrt{y^2}} = h^y$

Check that: $h^y = h^{ab}$

0.2 BLS Signatures are complete

Properties of a bilinear map (elliptic pairing e):

$$e(a \cdot x, y) = a \cdot e(x, y) = e(x, a \cdot y)$$

$$e(x_1, y_1) + e(x_2, y_2) = e(x_1 + x_2, y_1 + y_2)$$

Call the signature $\sigma = a * H(m)$, And H(m) is in G_1 , so it can also be represented as $H(m) = \phi \cdot g_1$

Starting from

$$e(g_0, \sigma) = e(pk, H(m))$$

expand inner terms

$$e(g0, a \cdot \phi \cdot g_1) = e(a \cdot g_0, \phi \cdot g_1)$$

take terms out of e and you see they are equal, so the check is sufficient to prove a correct signature will match a pk with hash of m.

$$(a \cdot \phi) \cdot e(g_0, g_1) = (a \cdot \phi) \cdot e(g_0, g_1)$$

0.3 BLS signature aggregation

First we show that $e(g_0, \sigma_0 + \sigma_1) = e(g_0, \sigma_0) + e(g_0, \sigma_1)$

By expanding

$$e(g_0, (a_0\phi_0 + a_1\phi_1) \cdot g_1)$$

Take out the inner term

$$(a_0\phi_0 + a_1\phi_1) \cdot e(g_0, g_1)$$

Distribute

$$(a_0\phi_0) \cdot e(g_0, g_1) + (a_1\phi_1) \cdot e(g_0, g_1)$$

Reintroduce terms

$$e(g_0, (a_0\phi_0) \cdot g_1) + e(g_0, (a_1\phi_1) \cdot g_1)$$

$$= e(g_0, \sigma_0 g_1) + e(g_0, \sigma_1 g_1)$$

We've shown that an aggregate σ is the same as computing each σ independently. Now we just need to show that $e(g_0, \sigma) = e(pk, H(m))$ (completeness of BLS signatures), which was just proved in 2.