

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

Principais Decisões

[1] - Horizonte de atuação:

O primeiro passo foi definir como funcionaria o nosso preditor. Tínhamos duas possibilidades: a primeira seria permitir ao usuário fornecer uma entrada de dados manualmente e, através dessa entrada, realizar uma predição do preço de fechamento daquele dia. Já a outra hipótese se baseia em prever o preço de fechamento do dia posterior, visto que temos os dados até o dia corrente.

Introduzidas as duas abordagens, analisando o formato dos nossos dados e, somando a isso, na tentativa de implementar uma ideia mais "ousada", optamos por utilizar a segunda abordagem como horizonte para desenvolvimento deste projeto. Dessa forma, a nossa aplicação prevê com 1 dia de antecedência o preço de fechamento do *Bitcoin*.

[2] - Aquisição de dados:

A aquisição de dados da nossa aplicação é feita via uma API do *Yahoo Finance*. A biblioteca utilizada é a pandas_datareader.Os dados dessa API são atualizados diariamente e, dessa forma, todo dia podemos realizar uma predição do *Bitcoin* amanhã. Em relação ao período de dados, obtemos dados a partir do ano de 2018.

	High	Low	Open	Close	Volume	Adj Close
Date						
2018-01-01	14112.200195	13154.700195	14112.200195	13657.200195	10291200000	13657.200195
2018-01-02	15444.599609	13163.599609	13625.000000	14982.099609	16846600192	14982.099609
2018-01-03	15572.799805	14844.500000	14978.200195	15201.000000	16871900160	15201.000000
2018-01-04	15739.700195	14522.200195	15270.700195	15599.200195	21783199744	15599.200195
2018-01-05	17705.199219	15202.799805	15477.200195	17429.500000	23840899072	17429.500000
2022-03-23	42893.507812	41877.507812	42364.378906	42892.957031	25242943069	42892.957031
2022-03-24	44131.855469	42726.164062	42886.652344	43960.933594	31042992291	43960.933594
2022-03-25	44999.492188	43706.285156	43964.546875	44348.730469	30574413034	44348.730469
2022-03-26	44735.996094	44166.273438	44349.859375	44500.828125	16950455995	44500.828125
2022-03-27	44859.601562	44449.078125	44505.839844	44820.730469	19630307328	44820.730469

Figura 1: Formato dos dados obtidos via API.

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

[3] - Preparação dos dados:

Na etapa de *Data Preparation*, a nossa aplicação leva em consideração alguns aspectos:

- 1) Limpeza de outliers: em um processo tradicional de construção de um modelo de machine learning, é de extrema importância a implementação de uma etapa de limpeza dos outliers. Entretanto, a nossa aplicação não contém um fator externo que possa cometer erros (como um erro de medição de um sensor em um processo industrial, por exemplo). Dessa forma, não julgamos relevante a implementação de uma etapa de remoção dos outliers. Além disso, também assumimos que as grandes variações são interessantes para o processo de construção de informação do nosso modelo, vide a nossa aplicação no mercado acionário.
- 2) Normalização dos dados: inicialmente, tínhamos uma ideia de testar modelos de deep learning como LSTM, GRU e MLP para testes. Dessa forma, a literatura expõe que tais modelos funcionam melhor com dados normalizados e, sendo assim, foram implementadas funções normalizadoras por mínimos e máximos e também por desvio padrão.
- 3) Ajuste de target: observando a Figura 1 temos apenas o preço de fechamento do último dia. Como queremos prever o preço de fechamento do dia posterior(chamamos de Close_Tomorrow) ao último, precisamos criar essa coluna através do pandas.shift(-1.Há também uma nova coluna chamada Close_Yesteday que nos diz o preço de fechamento do dia anterior. Logo, a nossa target agora é a coluna Close_Tomorrow.

	High	Low	Open	Close	Volume	Close_Yesterday	Close_Tomorrow
Date							
2018-01-01	-0.324967	-0.337359	-0.305377	13657.200195	-0.749441	NaN	14982.099609
2018-01-02	-0.253006	-0.336850	-0.332397	14982.099609	-0.432707	13657.200195	15201.000000
2018-01-03	-0.246082	-0.240665	-0.257350	15201.000000	-0.431484	14982.099609	15599.200195
2018-01-04	-0.237068	-0.259108	-0.241128	15599.200195	-0.194187	15201.000000	17429.500000
2018-01-05	-0.130915	-0.220162	-0.229676	17429.500000	-0.094766	15599.200195	17527.000000
2022-03-23	1.229461	1.306229	1.261455	42892.957031	-0.027024	42358.808594	43960.933594
2022-03-24	1.296342	1.354791	1.290419	43960.933594	0.253215	42892.957031	44348.730469
2022-03-25	1.343201	1.410876	1.350198	44348.730469	0.230575	43960.933594	44500.828125
2022-03-26	1.328970	1.437198	1.371567	44500.828125	-0.427689	44348.730469	46881.011719
2022-03-28	1.466905	1.583099	1.508944	46881.011719	0.213118	44500.828125	NaN

Figura 2: Criação das novas colunas.

Nome: João Victor Magalhães Souza. Matrícula: 3483.

Lucas Ranieri Oliveira Martins. Matrícula: 3479.

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

[4] - Feature engineering:

Como evidenciado na Figura 1, nosso conjunto inicial de dados possui apenas 5 variáveis de entrada. Dessa forma, criamos algumas *features* para acrescentar informação aos modelos a serem testados. Tais *features* foram:

- Derivada;
- Integral;
- Momentos estatísticos;
- Combinações polinomiais;
- Subtrações entre variáveis.

Derivada

A derivada surge com intuito de adicionar informações de taxa de variação ao dataset. Para fazer isso, foi feito uso da função *diff*, que faz a diferença entre as linhas de forma par-a-par, considerando cada uma das colunas do dataset.

```
1. def derivada(self):
2.     for column in self.data.columns:
3.     if column != self.target:
4.          self.df_fe[f'{column}_derivative'] =
                self.data[column].diff()
```

Assim teremos uma nova coluna que tem a terminação "derivative" para cada uma das nossas colunas de base.

Integral

A integral surgiu da ideia de *data driven* que o grupo escolheu ter como abordagem, assim, foram feitas algumas operações com intuito de checar, experimentalmente, se teríamos bons resultados. A adição da ideia de integral foi uma das experimentações e sua aplicação foi na utilização de uma janela de três dias para realização da soma dos valores das colunas. Assim, supondo que uma linha seja referente ao dia 23/04, então as colunas dessa linha serão somadas as colunas correspondentes nos 3 últimos dias.

```
1. def integral(self):
2.     for column in self.data.columns:
3.         if column != self.target:
4.         #Integral numa janela de 3 dias.
5.         self.df_fe[f'{column}_integral'] = self.data[column].rolling(3).sum()
```


Nome: João Victor Magalhães Souza. Matrícula: 3483.

Lucas Ranieri Oliveira Martins. Matrícula: 3479.

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

Momentos estatísticos

Quanto a momentos estatísticos, foi escolhido pelo grupo trabalhar com a média móvel e o desvio padrão móvel. Essa escolha se deu principalmente pela natureza variável do Bitcoin, onde informações não tão generalistas funcionam melhor. Para janela, foi escolhido novamente os últimos 3 dias, e essas novas colunas serão novamente baseadas em cada uma das colunas já existentes.

Combinações Polinomiais

As combinações polinomiais fazem operações entre diferentes features para buscar alguma nova feature que possua uma correlação boa. Novamente, trata-se de uma abordagem *data-driven*.

```
1. def combinacoes_polinomiais(self):
        df poly = PolynomialFeatures(2)
          cols = self.data.columns
         df poly = pd.DataFrame(df poly.fit transform(self.data[cols]))
5.
          qtde colunas = len(df poly.columns)
6.
         df poly = df poly.drop(columns=[x for x in range (len(cols)+1)])
         nome novas colunas = []
8.
          nao vistadas = list(cols.copy())
          for coluna in cols:
              atual = coluna
             nome novas colunas.append(f'{coluna}^2')
              for _ in nao_vistadas:
                  if (_ != atual):
                      nome novas colunas.append(f'{coluna}*{ }')
14.
              nao vistadas.remove(coluna)
         nome velhas colunas = [x for x in range(len(cols)+1,qtde colunas)]
          for i in range(nome_velhas_colunas[0], nome_velhas_colunas[-1]+1):
               df poly =
  df_poly.rename(columns={i:nome_novas_colunas[i-nome_velhas_colunas[0]]})
          for col in df_poly.columns:
               self.df fe[col] = df poly[col].values
```


Nome: João Victor Magalhães Souza. Matrícula: 3483.

Lucas Ranieri Oliveira Martins. Matrícula: 3479.

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

Subtrações entre variáveis

Finalmente, para fechar a etapa de feature-engineering, foram feitas subtrações entre os valores base em diversas ordens:

- high-low: subtrai o valor de baixa (vale) do valor de alta (pico), gerando a amplitude de variação.
- high-close: subtrai o valor de fechamento do valor de alta.
- low-close: subtrai o valor de fechamento do valor de baixa.
- **close-open**: subtrai o valor de abertura do valor de fechamento.
- high-open: subtrai o valor de abertura do valor de alta.
- **low-open**: subtrai o valor de abertura do valor de baixa.

```
1. def difference(self):
2.     df_final = pd.DataFrame()
3.     df_final['high-low'] = self.data['High'] - self.data['Low']
4.     df_final['high-close'] = self.data['High'] - self.data['Close']
5.     df_final['low-close'] = self.data['Low'] - self.data['Close']
6.     df_final['close-open'] = self.data['Close'] - self.data['Open']
7.     df_final['high-open'] = self.data['High'] - self.data['Open']
8.     df_final['low-open'] = self.data['Low'] - self.data['Open']
9.
10.     self.df_fe = self.df_fe.merge(df_final, left_index=True, right_index=True)
```

[5] - Modelo utilizado - XGBoost:

Foram realizados alguns testes com os seguintes modelos:

- LSTM;
- MLP simples;
- XGBoost:
- Catboost.

Entretanto, o algoritmo que apresentou melhores resultados foi o *XGBoost* com a seguinte configuração:

```
1. class ModelXGboost():
2.    def __init__(self, X_train, y_train):
3.         self.X_train = X_train
4.         self.y_train = y_train
5.
6.
7.    def fit(self):
8.         self.model = XGBRegressor(n_estimators=1500, learning_rate=0.05, max_depth=12, random_state=42,
9.         eval_metric='mae', gamma=0.5, reg_lambda = 0.6, reg_alpha=0.7,
```


Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

```
subsample=0.8)
         self.model.fit(self.X_train, self.y_train)
      def predict(self, X test xgb):
          self.y pred = self.model.predict(X test xgb)
14.
           return self.y pred
   def get booster(self):
         return self.model.get_booster()
18.
```

[6] - Resultados:

5.67

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

Disciplina: CCF 493 – Engenharia de Aprendizado de Máquina.

Professor: Dr. Fabrício Aguiar.

Relatório do projeto - Bitcoin Estimator.

Referências

[1] XGBoost. XGBoost 1.5.2 Documentation. Disponível em: https://xgboost.readthedocs.io/en/stable/index.html. Acesso em: 27/03/2022.

^[2] Dash. **Dash Documentation & User Guide.** Disponível em: https://dash.plotly.com/. Acesso em: 30/03/2022.