EA772 Circuitos Lógicos Prof. José Mario De Martino — Prova 03 — 1°. Semestre 2009

1.

a)	86 + 84 = 0A	C = 1	V = 1	N = 0	Z = 0
b)	39 + D5 = 0E	C = 1	V = 0	N = 0	Z = 0
c)	94 + F2 = 86	C = 1	V = 0	N = 1	Z = 0
d)	5A + 16 = 70	C = 0	V = 0	N = 0	Z = 0
e)	D3 + 1F = F2	C = 0	V = 0	N = 1	Z = 0
f)	E5 + 1B = 00	C = 1	V = 0	N = 0	Z = 1
g)	8C + 92 = 1E	C = 1	V = 1	N = 0	Z = 0
h)	32 + 4E = 80	C = 0	V = 1	N = 1	Z = 0
i)	AC + 37 = E3	C = 0	V = 0	N = 1	Z = 0
j)	73 + 65 = D8	C = 0	V = 1	N = 1	Z = 0

2.

				_
X 3	\mathbf{x}_2	\mathbf{x}_1	\mathbf{x}_0	f
0	0	0	0	0
0	0	0	1	1
	0	1	0	0
0	0	1	1	1
0 0 0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

f

	x' ₁ x' ₀	$\mathbf{X'}_1 \mathbf{X}_0$	$x_1 x_0$	$\mathbf{x}_1 \mathbf{x}'_0$
x' ₃ x' ₂	0	1	1	0
x'3 x2	1	1	0	0
x ₃ x ₂	0	1	0	1
x ₃ x′ ₂	0	1	0	0

f

Figura 1: Circuito do exercício 2.

3.

LD

	$\mathbf{Q'}_1 \mathbf{Q'}_0$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$
Q' ₃ Q' ₂	0	0	0	0
$Q'_3 Q_2$	0	0	0	0
$Q_3 Q_2$		X	X	X
$Q_3 Q'_2$	0	0	0	0

 $LD = Q_3 Q_2$

A Figura 2 apresenta o circuito resultante.

Figura 2: Circuito do exercício 3.

4.

Considerando c(m) o complemento bit a bit de m, sendo que c(m) = 15 - m, podemos escrever 16 - m = 15 - m + 1 = c(m) + 1

Assim, se inicarmos a contagem em c(m) precisamos terminar a contagem um estado antes, ou seja, em 16-2=14.

Portanto, temos um contador módulo 15 que inicia a contagem em c(m)

Z

	$Q_1 Q_0$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$	
Q' ₃ Q' ₂	0	0	0	0	
$Q'_3 Q_2$	0	0	0	0	7 -
$Q_3 Q_2$	0	0 (X	1	z =
$Q_3 Q_2$	0	0	0	0	

 $z = Q_3 Q_2 Q_1$

Figura 4: Circuito do exercício 4.

5.

	Resultado Soma Binária			Reusltado Soma BCD						
	C_{out}	\mathbf{Z}_3	\mathbf{z}_2	\mathbf{z}_1	z_0	Cout	b_3	b_2	b_1	b_0
-	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	1
	0	0	0	1	0	0	0	0	1	0
	0	0	0	1	1	0	0	0	1	1
	0	0	1	0	0	0	0	1	0	0
	0	0	1	0	1	0	0	1	0	1
	0	0	1	1	0	0	0	1	1	0
	0	0	1	1	1	0	0	1	1	1
	0	1	0	0	0	0	1	0	0	0
	0	1	0	0	1	0	1	0	0	1
	0	1	0	1	0	1	0	0	0	0
	0	1	0	1	1	1	0	0	0	1
	0	1	1	0	0	1	0	0	1	0
	0	1	1	0	1	1	0	0	1	1
	0	1	1	1	0	1	0	1	0	0
_	0	. 1	1	1	1	1	0	1	0	1
	1	0	0	0	0	1	0	1	1	0
	1	0	0	0	1	1	0	1	1	1
	1	0	0	1	0	1	1	0	0	0
	1	0	0	1	1	1	1	0	0	1

Para corrigir, somar 6

C sinal de correção

	$\mathbf{z'}_1 \mathbf{z'}_0$	$z'_1 z_0$	$z_1 z_0$	$\mathbf{z}_1 \mathbf{z'}_0$
z' ₃ z' ₂	0	0	0	0
$z'_3 z_2$	0	0	0	0
$z_3 z_2$		1	1	
$\mathbf{z}_3 \mathbf{z'}_2$	0	0	1	1

$$C = z_3 z_2 + z_3 z_1 + C_{out}$$

Figura 3: Circuito exercício 5.