Ensembles: Bagging, Random Forests, Boosting

Alipio Jorge (DCC-FCUP)

December 2020

Overview

- What is an ensemble?
- Bagging
- Random Forests
- Boosting
- Why trees?

What is an ensemble?

Imagine

- A project evaluation committee
- A juri in a court
- The government of a country
- The referees in a VAR decision

• A Committee of experts

- Each model is one expert
- Each expert has a different view
- The final decision is a combination of the decisions of the experts

What is an ensemble?

Figure 1: Simplified generic ensemble architecture (Han et al.)

Why ensembles?

- Robustness
 - individual errors are compensated by the other experts
 - a judge that overlooks a piece of evidence
- Consistency
 - collective decisions are more stable
- Power and accuracy
 - the collective may be **better** than each individual

More formally: learning

- Given
 - a dataset D with labelled examples
- Produce
 - $k \mod B$ $M_1, \ldots, M_k \mod D$
- Issues
 - how different must the models be?
 - how many models do we need?
 - how do we obtain the models from data?

More formally: classification and regression

- Given
 - an ensemble of k models
 - an example x to classify/predict
- Do
 - **obtain** the decision $\hat{y}_i = M_i(x)$ for each model M_i
 - each M_i is a **base** model
 - **combine** the decisions into $\hat{y} = Aggreg_i(\hat{y}_i)$
- Issues
 - how to combine the decisions
 - voting, averaging, . . .

Famous Ensemble methods (families)

- Bagging
 - using different sub-samples of D for each M_i
- Random Forests
 - sub-sample D and use different attributes in each (step of) M_i
- Boosting
 - build each M_i to correct the errors of other models
- Note
 - these methods are mostly for decision trees
 - · we will see why
 - but not only

Simple Example

- A classification problem
 - 2 inputs
 - linear diagonal boundary
- Result with a single tree (unpruned)

Simple Example

The model

Figure 3: Single Decision Tree model

Result of an ensemble

Figure 4: Ensemble of trees boundary

Bagging

- Bootstrap Aggregation
 - aggregate models obtained from bootstrap
- Bootstrap Sampling
 - Sample from *D* with replacement
 - Example: $D = \{1, 2, 3, 4, 5, 6\}$
 - Bootstrap sample of D is for example $\{1, 2, 2, 4, 6, 6\}$

Bagging

- Given
 - a dataset D with labelled examples
 - a number k of models
 - ullet a learning algorithm A
- For each $1 \le i \le k$
 - S_i = bootstrap sample from D
 - $\bullet \ M_i = A(S_i)$
- Notes
 - typically A is a decision tree learner

Bagging

Classification

- Majority vote
 - $\hat{y}(x) = mode\{M_1(x), \dots, M_k(x)\}$

Regression

- Average
 - $\hat{y}(x) = mean\{M_1(x), \dots, M_k(x)\}$

- Models are different from each other
 - each model is learned from a different sample
 - an ensemble of similar models adds nothing
- Why are they different?
 - each sample misses less representative cases
 - noise, rare situations
 - each sample has repeated cases
 - tends to give importance to more likely cases
- Bootstrapping simulates having more data
 - you can obtain multiple views from one D and one A
 - very data efficient

- Learning agorithms have two main error components
 - Bias
 - Variance
- Bias
 - the error caused by the assumptions of the algorithm
- Variance
 - the error caused by important random processes
 - sample
 - random initialization

- Error decomposition
- Expected prediction error
 - $Error(x) = IrreducibleError + Bias^2 + Variance$
- Bias-Variance tradeoff
 - variance can be reduced by increasing bias
 - e.g. linear models are stable but have strong assumptions
 - reducing bias ususally leads to increase in variance
 - e.g. decision trees are sensitive to changes in data

- Bagging and the tradeoff
 - reduces variance
 - does not affect (much) bias
- Bagging works better when the base models have
 - low bias (more expressive)
 - high variance (sensitive to changes)
 - low computational cost
- Bagging is popular with Decision Trees

- In bagging models are different
 - but we can reduce the correlation of models in an ensemble
 - less correlated models may improve predictive performance
- RF: a generalization of Bagging
 - a bootstrap sample for each base model
 - a different set of attributes for each base model
 - or in each step of the model construction
- RF: designed for decision trees
 - but principles can be used with other models
- RF were introduced by Leo Breiman (1928-2005)

Given

- a dataset D with labelled examples
- a number k of models (or tries)
- a number m of attributes to use in each split
- a decision tree learning algorithm DT
- For each 1 < i < k
 - S_i = bootstrap sample from D
 - M_i is learned with DT but sampling m attributes in each split
- Notes
 - typically A is a decision tree learner

- **Example:** build a RF base tree for *Iris* with m = 2
 - attributes are
 - SL=Sepal Length, SW=Sepal Width,
 - PL=Petal Length, PW=Petal Width,
 - take a bootstrap sample *S* from *Iris*
 - S has the same size of Iris
 - some examples are repeated
 - some are missing
 - Randomly sample 2 attributes
 - e.g. SL and PW
 - Make the top split using only these
 - Build the rest of the tree
 - allways sample m = 2 attributes for each split

- Reduce variance
- More accurate than Bagging (in general)
- Robust to errors and outliers
- Base models are less correlated
 - if m is low
 - suggested $m = log_2(|D|) + 1$
- Improves as *k* increases
 - does not tend to overfit
- Faster than Bagging

Random Forests boundary

Figure 5: Random Forests boundary

Boosting

- Boosting is a very powerful idea
 - found in many different variants
- Boosting is building an ensemble by
 - minimizing the error
 - using optimization based search

Boosting

- Questions:
 - can we build a strong model from weak base models?
 - can it be iterativelly improved?
- A weak model
 - slightly better than random guessing
 - e.g. a tree of depth 1
- Overall idea (intuitively)
 - obtain a first model
 - identify difficult cases
 - obtain a new model that corrects these errors
 - iterate until convergence or a maximum number of models
 - apply models with weighted aggregation

AdaBoost (Yoav Freund and Robert Schapire)

- A popular boosting algorithm
 - Adaptive Boosting
- Overall idea
 - start with D and give equal weights to all cases
 - in each iteration
 - get a sample S from D using the weights
 - build a model from S
 - increase the weights of cases with wrong decisions

AdaBoost: in detail

- Given
 - a dataset D with n class-labelled examples
 - a number k of models (or tries)
 - a learning algorithm A
- **Assign** equal weights $w_i = 1/n$
- For each $1 \le i \le k$
 - $S_i = \text{sample } D \text{ with replacement using } w_i$
 - $M_i = A(S_i)$
 - e_i = error rate of M_i on S_i
 - if $e_i < 0.5$ repeat previous steps
 - for each example x_i update weights
 - $w_i = w_i \cdot e_i / (1 e_i)$
 - high e_i -> low w_i
 - max-normalize the weigths

AdaBoost

Weight as a function of error

Figure 6: Example weight as a function of error

AdaBoost

The boundary for AdaBoost

 $Figure \ 7: \ AdaBoost \ boundary \\$

Boosting

- Computational efficiency
 - base learners are very simple
- one parameter (k)
 - better "off-the-shelf" algorithm
- Can be stated as an optimization approach
 - very powerful paradigm
- Tends to beat Bagging and RF
- May overfit
 - by focusing "too much" on recovering errors
 - Bagging and RF are not prone to overfitting

Other tasks

- Regression
 - These approaches are directly adapted
- Recommender systems
- Clustering and non-supervised learning

Interpretability

- Decision trees are highly interpretable
 - transparency
 - explainability
- Ensembles complicate interpretability
 - e.g. aggregation of 100 models
- But we can obtain a rank of important features
 - Features that are more common in the trees
 - Features in the top split
 - Mean decrease impurity (normalised)
 - how much a feature decreases impurity in a tree
- An overview of feature importance
 - https://machinelearningmastery.com/calculate-feature-importancewith-python/

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
 - Jake VanderPlas, Data Science Handbook, O'Reilly
 - Tibshirani et al., Elements of Statistical Learning