Objective: Sentiment Classification Reviews categorized into positive, negative, or neutral sentiments, evaluated using accuracy

Previously, we have compared three models for sentiment classidication on a subset of the raw dataset: Logistic Regression, LSTM models and DistilBERT. Considering best performce for malti-class analysis and time consuming, we chose to apply the LSTM model on the whole dataset and it can be found in https://github.com/sondhia/amazonfinefood/blob/main/sentiment/scr/LSTM%20on%20whole%20dataset.ip

Evaluate the LSTM Model

accuracy macro avg

weighted avg

0.56

0.72

0.38

0.78

Here we use f1-score, accuracy, and confusion matrix to evaluate the LSTM model

```
In [29]: # Predict probabilities on the test set and convert to predicted class indices
         y_pred_probs = lstm_model.predict(X_test_pad)
         y_pred = np.argmax(y_pred_probs, axis=1)
         # Calculate evaluation metrics
         accuracy = accuracy_score(y_test, y_pred)
         weighted_f1 = f1_score(y_test, y_pred, average='weighted')
         print("\n--- LSTM Model Evaluation (Multi-Class) ---")
         print("Accuracy: {:.4f}".format(accuracy))
         print("Weighted F1 Score: {:.4f}".format(weighted_f1))
         print("\nClassification Report:\n", classification_report(y_test, y_pred))
         # Plot confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(6, 4))
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
         plt.title("Confusion Matrix: LSTM (Multi-Class)")
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.show()
                                    1s 6ms/step
        116/116 -
        --- LSTM Model Evaluation (Multi-Class) ---
        Accuracy: 0.7789
        Weighted F1 Score: 0.7121
        Classification Report:
                       precision
                                    recall f1-score
                                                       support
                   0
                           0.46
                                     0.14
                                               0.21
                                                          534
                   1
                           0.44
                                     0.02
                                               0.04
                                                          308
                   2
                           0.79
                                     0.98
                                               0.88
                                                         2848
```

0.78

0.38

0.71

3690

3690

3690

From the classification report and confusion matrix, we can see the f1-score of 0 and 1 is significant low which could due to the imbalanced calss in the data set. Next, we checked the sentiment distribution and found most of the sentiment are 2 (Positive)

```
In [31]: # Plot the sentiment distribution
   plt.figure(figsize=(8,6))
   sns.countplot(x='Sentiment', data=df)
   plt.title('Sentiment Distribution')
   plt.xlabel('Sentiment')
   plt.ylabel('Count')
   plt.show()
```

Sentiment Distribution

To address the imbalance issue, we compute each class weights among the training set and it will be used in the uopdated model training

```
In [33]: # Compute class weights based on the original training set
         classes = np.unique(y_train)
         class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=y_train
         class_weight_dict = dict(zip(classes, class_weights))
         print("\nComputed class weights:")
         print(class_weight_dict)
        Computed class weights:
        {0: 2.301669006395258, 1: 3.989186266558529, 2: 0.431992505416008}
In [35]: # Train the model
         history = lstm model.fit(
             X_train_pad, np.array(y_train),
             epochs=5,
             batch_size=32,
             validation_split=0.1,
             class_weight=class_weight_dict,
             verbose=2
```

```
Epoch 1/5
        415/415 - 9s - 22ms/step - accuracy: 0.6940 - loss: 0.9407 - val_accuracy: 0.4031 - val_l
        oss: 1.0270
        Epoch 2/5
        415/415 - 9s - 21ms/step - accuracy: 0.7387 - loss: 0.8895 - val_accuracy: 0.7446 - val_l
        oss: 0.8504
        Epoch 3/5
        415/415 - 9s - 21ms/step - accuracy: 0.6903 - loss: 0.8722 - val_accuracy: 0.7940 - val_l
        oss: 0.8893
        Epoch 4/5
        415/415 - 9s - 21ms/step - accuracy: 0.7733 - loss: 0.7578 - val accuracy: 0.7737 - val l
        oss: 0.7437
        Epoch 5/5
        415/415 - 9s - 21ms/step - accuracy: 0.8275 - loss: 0.7231 - val_accuracy: 0.7561 - val_l
        oss: 0.8604
In [37]: #Evaluate the LSTM Model
         # Predict probabilities on the test set and convert to predicted class indices
         y_pred_probs = lstm_model.predict(X_test_pad)
         y_pred = np.argmax(y_pred_probs, axis=1)
         # Calculate evaluation metrics
         accuracy = accuracy_score(y_test, y_pred)
         weighted_f1 = f1_score(y_test, y_pred, average='weighted')
         print("\n--- LSTM Model Evaluation (Multi-Class) ---")
         print("Accuracy: {:.4f}".format(accuracy))
         print("Weighted F1 Score: {:.4f}".format(weighted_f1))
         print("\nClassification Report:\n", classification_report(y_test, y_pred))
         # Plot confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(6, 4))
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
         plt.title("Confusion Matrix: LSTM (Multi-Class)")
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.show()
                                    • 1s 6ms/step
        116/116 -
        --- LSTM Model Evaluation (Multi-Class) ---
        Accuracy: 0.7385
        Weighted F1 Score: 0.7575
        Classification Report:
                       precision
                                    recall f1-score
                                                       support
                   0
                           0.50
                                     0.55
                                               0.52
                                                          534
                                     0.26
                                               0.20
                                                          308
                   1
                           0.16
```

2

accuracy

macro avg

weighted avg

0.90

0.52

0.78

0.83

0.54

0.74

0.86

0.74

0.53

0.76

2848

3690

3690

3690

The LSTM model is trained by class_weight and the evaluation report show better f1-score in each class.

Model improvment

Next we try to use different hyperparameters—the number of LSTM units, dropout rates, and additional layer to improve the model accuracy. A loop is used to train models with different settings and compare the accuracy.

```
In [53]: # Hyperparameter grid
         lstm_units_list = [32, 64, 128]
         dropout_rates = [0.2, 0.3, 0.5]
         stacked_options = [False, True]
         best_val_acc = 0
         best_config = None
         for units in lstm_units_list:
             for dropout in dropout_rates:
                 for stacked in stacked_options:
                     print(f"Training model with LSTM units: {units}, Dropout: {dropout}, Stacked
                     model = Sequential()
                     model.add(Embedding(input_dim=10000, output_dim=64))
                     # First LSTM layer with return_sequences if stacking is desired
                     model.add(LSTM(units, return_sequences=stacked))
                     model.add(Dropout(dropout))
                     # Optional second LSTM layer
                     if stacked:
                         model.add(LSTM(units))
                         model.add(Dropout(dropout))
                     model.add(Dense(len(np.unique(y_train)), activation='softmax'))
                     model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metr
                     history = model.fit(X_train_pad, np.array(y_train),
                                          epochs=5,
```

```
batch_size=32,
                                 validation_split=0.1,
                                 class_weight=class_weight_dict,
                                 verbose=0)
             val acc = history.history['val accuracy'][-1]
             print(f"Validation Accuracy: {val_acc:.4f}")
             if val_acc > best_val_acc:
                 best_val_acc = val_acc
                 best_config = (units, dropout, stacked)
 print("\nBest configuration:")
 print(f"LSTM Units: {best_config[0]}, Dropout: {best_config[1]}, Stacked: {best_config[2]
Training model with LSTM units: 32, Dropout: 0.2, Stacked: False
Validation Accuracy: 0.6829
Training model with LSTM units: 32, Dropout: 0.2, Stacked: True
Validation Accuracy: 0.1992
Training model with LSTM units: 32, Dropout: 0.3, Stacked: False
Validation Accuracy: 0.7622
Training model with LSTM units: 32, Dropout: 0.3, Stacked: True
Validation Accuracy: 0.6795
Training model with LSTM units: 32, Dropout: 0.5, Stacked: False
Validation Accuracy: 0.7215
Training model with LSTM units: 32, Dropout: 0.5, Stacked: True
Validation Accuracy: 0.7256
Training model with LSTM units: 64, Dropout: 0.2, Stacked: False
Validation Accuracy: 0.6755
Training model with LSTM units: 64, Dropout: 0.2, Stacked: True
Validation Accuracy: 0.7344
Training model with LSTM units: 64, Dropout: 0.3, Stacked: False
Validation Accuracy: 0.5874
Training model with LSTM units: 64, Dropout: 0.3, Stacked: True
Validation Accuracy: 0.7466
Training model with LSTM units: 64, Dropout: 0.5, Stacked: False
Validation Accuracy: 0.3035
Training model with LSTM units: 64, Dropout: 0.5, Stacked: True
Validation Accuracy: 0.6728
Training model with LSTM units: 128, Dropout: 0.2, Stacked: False
Validation Accuracy: 0.7432
Training model with LSTM units: 128, Dropout: 0.2, Stacked: True
Validation Accuracy: 0.6592
Training model with LSTM units: 128, Dropout: 0.3, Stacked: False
Validation Accuracy: 0.7249
Training model with LSTM units: 128, Dropout: 0.3, Stacked: True
Validation Accuracy: 0.7812
Training model with LSTM units: 128, Dropout: 0.5, Stacked: False
Validation Accuracy: 0.7358
Training model with LSTM units: 128, Dropout: 0.5, Stacked: True
Validation Accuracy: 0.6504
Best configuration:
LSTM Units: 128, Dropout: 0.3, Stacked: True, Val Accuracy: 0.7812
 The Best configuration is applied to train the model (LSTM Units: 128, Dropout: 0.3, Stacked: True, Val
 Accuracy: 0.7812)
```

```
LSTM(128),
    Dropout(0.3),
    Dense(num_classes, activation='softmax')
])

lstm_best_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metric lstm_best_model.summary()
```

Model: "sequential_22"

Layer (type)	Output Shape	Param #
embedding_22 (Embedding)	?	0 (unbuilt)
lstm_34 (LSTM)	?	0 (unbuilt)
dropout_34 (Dropout)	?	0
lstm_35 (LSTM)	?	0 (unbuilt)
dropout_35 (Dropout)	?	0
dense_22 (Dense)	?	0 (unbuilt)

Total params: 0 (0.00 B)

Trainable params: 0 (0.00 B)

Non-trainable params: 0 (0.00 B)

```
In [63]: history3 = lstm_best_model.fit(
             X_train_pad, np.array(y_train),
             epochs=5,
             batch size=32,
             validation_split=0.1,
             class_weight=class_weight_dict,
             verbose=2
        Epoch 1/5
        415/415 - 48s - 117ms/step - accuracy: 0.9855 - loss: 0.0558 - val_accuracy: 0.7514 - val
        _loss: 1.1678
        Epoch 2/5
        415/415 - 49s - 118ms/step - accuracy: 0.9831 - loss: 0.0601 - val_accuracy: 0.8015 - val
        _loss: 1.0470
        Epoch 3/5
        415/415 - 51s - 123ms/step - accuracy: 0.9812 - loss: 0.0738 - val_accuracy: 0.7656 - val
        loss: 1.0878
        Epoch 4/5
        415/415 - 53s - 127ms/step - accuracy: 0.9880 - loss: 0.0440 - val_accuracy: 0.8062 - val
        _loss: 0.9673
        Epoch 5/5
        415/415 - 49s - 118ms/step - accuracy: 0.9888 - loss: 0.0418 - val_accuracy: 0.8062 - val
        loss: 1.0789
In [65]: #Evaluate the stacked LSTM Model
```

Predict probabilities on the test set and convert to predicted class indices

y_pred_probs = lstm_best_model.predict(X_test_pad)

weighted_f1 = f1_score(y_test, y_pred, average='weighted')
print("\n--- LSTM Model Evaluation (Multi-Class) ---")

y_pred = np.argmax(y_pred_probs, axis=1)

accuracy = accuracy_score(y_test, y_pred)

Calculate evaluation metrics

```
print("Accuracy: {:.4f}".format(accuracy))
print("Weighted F1 Score: {:.4f}".format(weighted_f1))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
# Plot confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix: LSTM (Multi-Class)")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

```
116/116 -
                              5s 39ms/step
```

```
--- LSTM Model Evaluation (Multi-Class) ---
Accuracy: 0.7867
```

Weighted F1 Score: 0.7866

Classification Report:

	precision	recall	f1-score	support
0 1 2	0.60 0.24 0.88	0.50 0.28 0.90	0.55 0.26 0.89	534 308 2848
accuracy macro avg weighted avg	0.58 0.79	0.56 0.79	0.79 0.57 0.79	3690 3690 3690

Conclusion

The model was trained on Amazon review data, which was preprocessed by lowercasing, removing HTML tags and non-alphabetic characters, and eliminating extra spaces. Due to class imbalance, we applied class weighting during training. The goal is to improve the model's effectiveness in classifying sentimen.

Model Performance:

- The LSTM model effectively captures sequential patterns in text, leading to a robust baseline performance.
- Preprocessing steps such as lowercasing and cleaning contribute to the model's ability to focus on the core content of the reviews.
- Class weighting has helped mitigate the imbalance issue, allowing the model to learn features from underrepresented classes.

Limitation and Improvement:

- Despite class weighting, the inherent imbalance still causes the minority class (1 Netural) instances to be misclassified.
- The current model is relatively simple. There is potential for improvement by stacking more LSTM layers or using bidirectional LSTMs.

In []: