

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2009/2010 – 2nd Year Examination – Semester 3

IT3303: Mathematics for Computing-II PART 2 - Structured Question Paper 19th March 2010 (ONE HOUR)

To be completed by th	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is 1 (One) hour.
- The medium of instruction and questions is English.
- This paper has **3 questions** and **8 pages**.
- Answer all questions.

Questions Answered

- Question 2 (40% marks) and other questions (30% marks).
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.

Indicate by a cross (x), (e.g. X) the nu	mbers of	the ques	stions ans	wered.
To be completed by the candidate by marking a cross (x).	1	2	3	
To be completed by the examiners:				

1) Consider the following system of three linear equations.

$$x + 2y - 3z = -1$$

 $3x - y + 2z = 8$
 $5x + 3y - 4z = 6$

- (i) Transform this system of linear equations into matrix form and identify the coefficient matrix.
- (ii) Let the coefficient matrix be denoted by *A*. Is *A* invertible? Justify your answer.
- (iii) Write down the **three elementary row operations** used in matrix algebra.
- (iv) Apply elementary row operations to solve the given system of linear equations.
- (v) Is the given system of linear equations consistent? Justify your answer.

(30 Marks)

ANSWER IN THIS BOX

(i)
$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & -1 & 2 \\ 5 & 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & -2 & -3 \\ 3 & -1 & 2 \\ 5 & 3 & -4 \end{pmatrix}$$

- (ii) Not invertible. |A| = 0.
- (iii) 1 Interchanging two rows of a matrix
 - 2 Multiplying a row by a non-zero constant
 - 3 Adding a non-zero multiple of one row to another row

(iv) Multiplying the first row by -3 and adding it to the second row we obtain $\begin{pmatrix}
1 & 2 & -3 \\
0 & -7 & 11 \\
5 & 3 & -4
\end{pmatrix} \begin{pmatrix}
x \\
z
\end{pmatrix} = \begin{pmatrix}
-1 \\
11 \\
6
\end{pmatrix}$

Multiplying the first row by -5 and adding it to the third row we obtain

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & -7 & 11 \\ 0 & -7 & 11 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} -1 \\ 11 \\ 11 \end{pmatrix}$$

Multiplying row 2 by -1 and adding to row 3 we obtain

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & -7 & 11 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} -1 \\ 11 \\ 0 \end{pmatrix}$$

Multiplying row 2 by -1/7

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -\frac{11}{7} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ -\frac{11}{7} \\ 0 \end{pmatrix}$$

Multiplying row 2 by -2 and adding to row 1, we obtain

$$\begin{bmatrix}
1 & 0 & \frac{1}{7} \\
0 & 1 & -\frac{11}{7} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{z}
\end{bmatrix} = \begin{bmatrix}
15/7 \\
-\frac{11}{7} \\
0
\end{bmatrix}$$

This system has infinitely many solutions of the form

$$z = k$$
, $y = \frac{-11}{7}(k-1)$ $x = -\frac{1}{7}(15-k)$

(v) Consistent. As shown in (iv), it has infinitely many solutions.

2) Consider the follow figure of a unit circle with centre at the origin and $0 < \theta$, $\varphi < \frac{\pi}{2}$.

- (i) Write down the position vector of A and of B in terms of the unit vectors \underline{i} and \underline{j} .
- (ii) Find the dot product $\overset{\rightarrow}{OA}$. $\overset{\rightarrow}{OB}$ and the cross product $\overset{\rightarrow}{OA} \times \overset{\rightarrow}{OB}$.
- (iii) Using (ii), prove that
 - (a) $\cos(\theta \varphi) = \cos\theta\cos\varphi + \sin\theta\sin\varphi$ and
 - (b) $\sin(\theta \varphi) = \sin \theta \cos \varphi \cos \theta \sin \varphi$

(40 Marks)

ANSWERI	N THIS BOX											
→												
(i) $OA = \cos \theta$	$\theta \underline{i} + \sin \theta \underline{j}$											
$\overrightarrow{OB} = -\cos\varphi \underline{i} - \sin\varphi \underline{j}$												
\rightarrow \rightarrow												
(ii) $\overrightarrow{OA} \cdot \overrightarrow{OB} = (\cos \theta \underline{i} + \sin \theta \underline{j}).(-\cos \varphi \underline{i} - \sin \varphi \underline{j})$												
$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$												
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											
	$= -\cos\theta\cos\varphi - \sin\theta\sin\varphi - \dots (1)$											

Continued...

ń	_																_																	_
	-	 -	-	 -	-	 -	 	-	 -		 -	-	 -			-	-	 	-		-	-	 -	 -	 			-		-		-	 -	
	-	 -	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-	-	 -	 -	 			-		-		-	 -	
		 	_	 _	_	 -	 	_	 _		 _		 _		_	_	_	 _	_		-		 _	 	 			-		_		_	 	
	_	 	_	 	_	 	 	_	 		 _	_	 _	_			_	 	_			_	 _	 _	 					_		_	 _	
	-	 -	-	 -	-	 -	 	-	 -		 -	-	 -			-	-	 	-		-	-	 -	 -	 			-		-		-	 -	
	-	 	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-		 -	 -	 	-		-		-		-	 -	
									 	_	_	_		_								_		_	 _		_			_		_	 _	
	-	 	_	 -	-	 -	 	-	 -		 -		 _			-	_	 	_				 _	 _	 			-		-		-	 _	
	-	 	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-				 -	 	 			-		-		-	 	
	-	 	_	 -	-	 -	 	-	 -		 -		 -			-	_	 	-				 _	 	 	-		-		-		-	 	
	_	 	_	 	_	 	 	_	 		 _		 _				_	 	_				 _	 	 					_		_	 	
	-	 	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-		 -	 -	 			-		-		-	 -	
	-	 -	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-	-	 -	 -	 			-		-		-	 -	
		 _	_	 _	-	 _	 	-	 _	-	 _	_				_	_	 _	_		_		 _			_		_	-	_	-			
	_	 	_	 	_	 	 	_	 		 _	_	 _	_			_	 	_			_	 _	 _	 					_		_	 _	
	-	 	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-				 -	 	 			-		-		-	 	
	-	 -	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-		 -	 	 			-		-		-	 	
		 		 			 		 			_		_				 	_			_		 _	 							_	 _	
	-	 	_	 -	-	 -	 	-	 -		 -		 _			-	_	 	_			-	 _	 -	 			-		-		-	 -	
	-	 -	-	 -	-	 -	 	-	 -		 -	-	 -	-		-	-	 	-		-	-	 -	 -	 			-		-		-	 -	
	_	 	_	 _	-	 _	 	_	 _	-	 _		 _			-	_	 	_	-		-	 _	 _	 -	_		_		_		_	 _	
	_	 	_	 	_	 	 	_	 		 _		 _				_	 	_				 _	 	 					_		_	 	
	-	 	-	 	-	 -	 	-	 -		 -		 -			-	-	 	-				 -	 	 			-		-		-	 	
	-	 -	-	 -	-	 -	 	-	 -		 -		 -			-	-	 	-		-		 -	 -	 			-		-		-	 -	
1																																		

3) Let *X* be the continuous random variable which is defined as 'the length of a random access memory (RAM) card', in centimeters (cm), produced by a particular manufacturer. The probability density function (pdf) of *X* is given as follows.

$$f(x) = \begin{cases} kx & 0 \le x \le 6\\ 0 & otherwise \end{cases}$$

- (i) Calculate the value of k.
- (ii) Calculate the probability that the length of a RAM card is not more than 5 cm.
- (iii) Calculate the probability that the length of a RAM card is at least 5 cm.
- (iv) Evaluate the expected value of X.
- (v) Evaluate the standard deviation of X.

(30 Marks)

ANSWER IN (i)	THIS BOX	_
$\sin ce \int_{-\infty}^{+\infty} f(x) dx$	x = 1	
$\int_{0}^{6} kx dx$	=1	
0	=1	
$k \left[\frac{x^2}{2} \right]_0^6$ $k \left[\frac{6^2}{2} - 0 \right]$ $k \frac{36}{2}$	=1	
$k\left[\frac{6^2}{2}-0\right]$	=1	
$k\frac{36}{2}$	=1	
18 <i>k</i>	=1	
k	$=\frac{1}{18}$	

(ii)
$$P[X \le 5] = \int_0^5 \frac{1}{18} x dx = \frac{1}{18} \int_0^5 x dx = \frac{1}{18} \left[\frac{x^2}{2} \right]_0^5$$

$$= \frac{1}{18} \left[\frac{5^2}{2} - 0 \right] = \frac{25}{36}$$

$$= 0.6944$$

$$\therefore P[X \le 5] = 0.6944$$
(iii)
$$P[X \ge 5] = 1 - P[X < 5] = 1 - \frac{25}{36} = \frac{11}{36}$$

$$= 0.3056$$

$$\therefore P[X \ge 5] = 0.3056$$
(iv)
$$E[X] = \int_0^6 x \frac{1}{18} x dx = \frac{1}{18} \int_0^6 x^2 dx = \frac{1}{18} \left[\frac{x^3}{3} \right]_0^6 = \frac{1}{18} \left[\frac{6^3}{3} - 0 \right]$$

$$= \frac{6 \times 6 \times 6}{18 \times 3} = \frac{216}{54}$$

$$= 4$$

$$\therefore E[X] = 4cm$$
(v)
$$E[X^2] = \int_0^6 x^2 \frac{1}{18} x dx = \frac{1}{18} \int_0^6 x^3 dx = \frac{1}{18} \left[\frac{x^4}{4} \right]_0^6 = \frac{1}{18} \left[\frac{6^4}{4} - 0 \right]$$

$$= \frac{6 \times 6 \times 6 \times 6}{18 \times 4} = \frac{1296}{72}$$

$$= 18$$

$$\therefore E[X^2] = 18$$

$$V[X] = E[X^2] - [E[X]]^2$$

$$= 18 - 4^2$$

$$= 18 - 16$$

$$= 2$$
Therefore standard deviation = $\sqrt{2} = 1.414 \text{ cm}$
