Suites numériques

Définitions générales et notations

Définition 1

Une **suite** numérique u, également notée (u_n) , est une fonction définie sur \mathbf{N} à valeurs dans \mathbf{R} .

 $u : \mathbf{N} \to \mathbf{R}$ $n \mapsto u(n)$

Définition 2

Le nombre u(n), image par u du nombre entier n, est appelé le **terme d'indice** n; il est noté u_n .

Remarques

	<u> </u>) 1 _	premier terme	1 _ 1
1 1 11 a AC	T ID TORMO	a indica ii	· C DCT ID	nromior forma	מדוווים פו מה ב

 \square Une suite numérique (u_n) est une <u>liste ordonnée</u> de nombres réels, qui peut permettre de modéliser un **phénomène discret**.

 \square Dans le plan muni d'un repère, une suite est représentée par le <u>nuage de points</u> de coordonnées (n, u_n) où $n \in \mathbb{N}$.

Notations

	□ Pour tout nom	bre entier nature	l \emph{n} non nul, le ter i	me aui précèdo	e u_n est noté u_{n-1}
--	-----------------	-------------------	---------------------------------------	----------------	----------------------------

 \square Pour tout nombre entier naturel n, le **terme qui suit** u_n est noté u_{n+1} .

Définition à l'aide d'une formule explicite

Définition 3

Une suite (u_n) est donnée par une **formule explicite** lorsque le nombre u_n est donné en fonction du nombre entier naturel n. On a donc $u_n = f(n)$ où f est une fonction.

Conséquence

Dans le plan muni d'un repère, les point du nuage représentant une suite de terme général $u_n = f(n)$, où $n \in \mathbb{N}$, sont situés sur la courbe représentative de la fonction f.

Définition à l'aide d'une relation de récurrence

Définition 4

Une suite (u_n) est donnée **sous forme récurrente** (d'ordre 1) lorsque :

- un terme de la suite est donné;
- le nombre u_{n+1} est donné en fonction du nombre u_n .

On a donc $u_{n+1} = f(u_n)$, appelée **relation de récurrence**, où f est une fonction.

Remarque

Un terme de la suite peut être donné en fonction de deux termes précédents. La forme récurrente est alors dite d'ordre 2.

Exemple

la suite (u_n) définie par $u_0 = 1$, $u_1 = 1$ et, pour tout entier naturel n, $u_{n+2} = u_{n+1} + u_n$.

Modéliser une situation à l'aide d'une suite récurrente consiste à traduire cette situation en explicitant un procédé qui permet de calculer les termes de la suite à l'aide des termes précédents, c'est-à-dire déterminer une relation de récurrence.

Sens de variation d'une suite

Définition 5

\square Une suite (u_n) est dite croissante à partir de l'indice p , où $p \in \mathbb{N}$, si et seulement si
pour tout nombre entier naturel n , avec $n \ge p$, $u_{n+1} \ge u_n$;
The suite (a) and discontinuous and court a mantinuous de Pindian and a continuous and a co

\sqcup Une suite (u_n) est dite strictement croissante à partir de l'indice p , où $p \in \mathbb{N}$, si	et
seulement si pour tout nombre entier naturel n , avec $n \ge p$, $u_{n+1} > u_n$;	

□ Une suite
$$(u_n)$$
 est dite **décroissante** à partir de l'indice p , où $p \in \mathbb{N}$, si et seulement si pour tout nombre entier naturel n , avec $n \ge p$, $u_{n+1} \le u_n$;

$$\square$$
 Une suite (u_n) est dite **strictement décroissante** à partir de l'indice p , où $p \in \mathbb{N}$, si et seulement si pour tout nombre entier naturel n , avec $n \ge p$, $u_{n+1} < u_n$;

$$\square$$
 Une suite (u_n) qui est (strictement) croissante ou décroissante est dite (strictement) **monotone**.

Méthodes pour étudier le sens de variation d'une suite

□ Pour déterminer le sens de variation d'une suite il suffit d'étudier, p	our tout	entier
naturel n , le signe de la différence $u_{n+1} - u_n$.		

$$\square$$
 Lorsque la suite (u_n) est définie, pour tout entier naturel n , à l'aide d'une formule explicite $u_n = f(n)$ et que la fonction f est définie et monotone sur $[p; +\infty[$, alors la suite (u_n) a la même monotonie que la fonction f .

$$\square$$
 Lorsque (u_n) est une suite telle que, pour tout entier naturel n supérieur ou égal à p , u_n est strictement positif :

— La suite
$$(u_n)$$
 est **strictement croissante** à partir de l'indice p si et seulement si, pour tout entier naturel n , avec $n \ge p$,

$$\frac{u_{n+1}}{u_n} > 1.$$

— La suite (u_n) est **strictement décroissante** à partir de l'indice p si et seulement si, pour tout entier naturel n, avec $n \ge p$,

$$\frac{u_{n+1}}{u_n} < 1.$$