§ 2 Von der Durchschnittsgeschwindigkeit zur Momentangeschwindigkeit

Entspricht der Graph einer Bewegung im t-s-Diagramm einer beliebig gekrümmten Linie, so bedeutet dies, dass sich die Geschwindigkeit v mit der Zeit ändert.

In diesem Fall kann man eine <u>Durchschnittsgeschwindigkeit</u> \overline{v} für ein zeitliches Intervall $[t_1; t_2]$ angeben, falls die zugehörigen Orte bzw. Positionen $s(t_1)$ und $s(t_2)$ durch Messung bekannt sind:

$$\bar{v} = \frac{s(t_1) - s(t_2)}{t_1 - t_2} = \frac{\Delta s}{\Delta t}$$

Interessiert man sich für die Geschwindigkeit $v(t_1)$ zu einem Zeitpunkt t_1 , so erhält man immer bessere Werte für $v(t_1)$, je näher man t_2 an t_1 wählt.

Rückt man mit t_2 "unendlich nah" an t_1 heran, so ergibt sich ein exakter Wert für $v(t_1)$, der als **Momentangeschwindigkeit** bezeichnet wird. Sie entspricht graphisch der Steigung der Tangente im Punkt $(t_1/s(t_1))$.

Momentangeschwindigkeit mathematisch ausgedrückt:

$$v(t_1) = \lim_{t_2 \to t_1} \frac{s(t_2) - s(t_1)}{t_2 - t_1} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$