Meta analysis for binary data based on OddsRatio

Sajjad Bin Sogir

2023-07-08

Data description

The analysis is done for binary data where the effect size is odds ratio. There are two groups: Treated and Control group. Treated group consists of events(event.experiment), total(number.experiment) and Control group also consists of events(event.control) and total(number.control). Each group involves with unique id.

Results:

The results includes summary, I², T², Homogeneity checking, and a forest plot

```
#install.packages("meta")
library(meta)
## Loading 'meta' package (version 6.5-0).
## Type 'help(meta)' for a brief overview.
## Readers of 'Meta-Analysis with R (Use R!)' should install
## older version of 'meta' package: https://tinyurl.com/dt4y5drs
event.experiment=c(65,78,79,65,40,78,89,59,33,67)
number.experiment=c(747,765,631,357,484,807,470,646,640,701)
event.control=c(86,71,89,62,64,70,51,69,76,79)
nunmber.control=c(728,293,450,957,928,537,1036,593,448,573)
id=LETTERS[1:10]
data binary<-data.frame(id, event.experiment,</pre>
                        number.experiment,
                        event.control,
                        nunmber.control)
meta bin<-metabin(event.e = event.experiment,</pre>
                  n.e =number.experiment,
                  event.c =event.control,
                  n.c = nunmber.control,
                  studlab =id,
                  data=data binary,
                  method ="MH",
                  sm="OR",
                  MH.exact =TRUE,
                  method.tau="PM",
                  hakn = TRUE,
                  title = "Meta analysis of Binary data based on OR"
summary(meta_bin)
```

```
## Review:
               Meta analysis of Binary data based on OR
##
##
         OR
                      95%-CI %W(common) %W(random)
## A 0.7115 [0.5066; 0.9993]
                                   12.0
                                               10.1
## B 0.3550 [0.2488; 0.5065]
                                   13.9
                                               10.0
## C 0.5805 [0.4170; 0.8081]
                                   13.8
                                               10.1
## D 3.2134 [2.2148; 4.6622]
                                    4.2
                                               10.0
## E 1.2162 [0.8061; 1.8350]
                                    6.1
                                               9.9
## F 0.7138 [0.5066; 1.0058]
                                   11.5
                                               10.1
## G 4.5116 [3.1352; 6.4923]
                                    3.9
                                              10.0
## H 0.7633 [0.5288; 1.1017]
                                    9.9
                                              10.0
## I 0.2661 [0.1734; 0.4085]
                                   12.8
                                               9.8
## J 0.6608 [0.4675; 0.9341]
                                   11.9
                                              10.0
##
## Number of studies: k = 10
## Number of observations: o = 12791
## Number of events: e = 1370
##
##
                            OR
                                         95%-CI
                                                   z|t p-value
## Common effect model 0.8694 [0.7774; 0.9721] -2.46 0.0141
## Random effects model 0.8702 [0.4620; 1.6391] -0.50 0.6312
## Quantifying heterogeneity:
## tau^2 = 0.7485 [0.3345; 2.5814]; tau = 0.8652 [0.5784; 1.6067]
## I^2 = 95.4\% [93.2%; 96.8%]; H = 4.64 [3.82; 5.63]
## Test of heterogeneity:
##
         Q d.f. p-value
## 193.55
              9 < 0.0001
##
## Details on meta-analytical method:
## - Mantel-Haenszel method
## - Inverse variance method
## - Paule-Mandel estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model (df = 9)
```

Plot

```
forest.meta(meta_bin,layout = "RevMan5",fontsize = 5, spacing = .7)
```

	Experimental		Control		Weight	Weight	Odds Ratio	Odds Ratio	
Study	Events	Total	Events	Total	(common)	(random)	MH, Fixed + Random, 96% CI	MH, Fixed + Random, 96% CI	
A	65	747	86	728	12.0%	10.1%	0.71 [0.51; 1.00]	 <u>-</u>	
В	78	765	71	293	13.9%	10.0%	0.36 [0.25; 0.51]	_ _	
С	79	631	89	450	13.8%	10.1%	0.58 [0.42; 0.81]	— <u>—</u> i	
D	65	357	62	957	4.2%	10.0%	3.21 [2.21; 4.66]	_ _ -	
E	40	484	64	928	6.1%	9.9%	1.22 [0.81; 1.83]	_ ++	
=	78	807	70	537	11.5%	10.1%	0.71 [0.51; 1.01]	- 	
3	89	470	51	1036	3.9%	10.0%	4.51 [3.14; 6.49]	<u> </u>	
1	59	646	69	593	9.9%	10.0%	0.76 [0.53; 1.10]		
	33	640	76	448	12.8%	9.8%	0.27 [0.17; 0.41]		
J	67	701	79	573	11.9%	10.0%	0.66 [0.47; 0.93]		
Total (common effect, 95% CI)		8248		8543	100.0%	_	0.87 [0.78; 0.97]	.	
Total (random effect, 96% CI)					_	100.0%	0.87 [0.48; 1.84]		
Heterogeneity: Tau ² = 0.7465; Chi ² = 190.55; df = 9 (P < 0.01); f ² = 95%							0.2 0.5 1 2		
								0.2 0.5 1 2	