VLSI实验二报告_22336216+陶宇卓

算法逻辑与实现思路

1. 算法选择

本实验采用**模拟退火算法(Simulated Annealing)**作为核心优化方法,结合**贪心策略的初始布局**,以最小化总线长为目标进行FPGA布局设计。

2. 实现流程

- 1. 初始布局 (initializePlacement)
 - **模块选择**: 从未布局的模块中,选择与已布局模块连接密度最大的模块。连接密度通过模块所在网络中的已布局邻居数量计算。
 - **位置选择**:遍历所有空位,计算将模块放置到每个位置后的总线长(目标函数),选择代价最小的位置进行放置。
 - **目标**:通过贪心策略为后续模拟退火提供较优的初始解,减少退火阶段的搜索时间。

2. 模拟退火优化(myplacementAlgorithm)

- **参数设置**:初始温度(T=1000)、降温速率(alpha=0.98)、最低温度(T_mi n=1e-5)。
- 扰动操作:
 - **交换操作**:随机选择两个未固定模块,交换其位置,计算新总线长。
 - **移动操作**: 随机选择一个未固定模块,将其移动至随机空位。
- 接受准则:
 - 若新解更优(总线长减少),则接受;
 - 否则,以概率 exp(-Δ/T) 接受较差解,避免陷入局部最优。
- **降温过程**: 每轮迭代后按 **T** *= alpha 降温, 直至温度低于阈值。
- **最优解保存**:记录退火过程中找到的最优解,最终恢复至全局状态。

3. 约束处理

- 固定模块:通过 inst->isFixed() 跳过已固定模块的操作。
- **位置冲突**:移动或交换时检查目标位置是否为空,避免模块重叠。

• **合法性验证**: **reportValid()** 函数检查实例位置与块的一致性,确保布局合法。

4. 算法创新点

• 混合策略: 结合贪心初始布局与模拟退火,提升收敛速度。

• 双扰动操作: 同时支持交换和移动操作, 增强搜索多样性。

• 动态接受概率: 通过指数函数控制较差解的接受概率, 平衡探索与开发。

实验结果

(以下数据需根据实际运行结果补充)

数据集	优化后总线长	运行时间(s)
small	444	8
med1	3989	35
med2	4627	37
lg1	14983	129
lg2	18037	140
xl	37026	525
huge	76247	1660

实验总结

优点

1. 全局优化能力:模拟退火有效跳出局部最优,尤其在初始布局基础上进一步优化。

2. **灵活性**: 支持多种扰动操作, 适应不同规模的FPGA布局问题。

3. 鲁棒性: 通过合法性检查确保解的有效性。

缺点

1. 计算开销大: 遍历空位和频繁评估总线长导致时间复杂度较高。

- 2. 随机性依赖:解的质量受随机扰动操作影响,可能需多次运行取最优。
- 3. 初始布局效率: 贪心策略在大型FPGA上可能耗时过长。

改进方向

- 1. 加速评估: 增量式计算总线长, 避免全量重新评估。
- 2. 启发式初始布局:引入聚类分析或力导向布局,提升初始解质量。
- 3. 并行化: 利用多线程加速退火过程中的扰动操作。