Faglig kontakt under eksamen: Navn: Iver Brevik, tlf.: 735 93555

KONTINUASJONSEKSAMEN I EMNE TEP4105 FLUIDMEKANIKK FOR FAK. F1

(Linje for Fysikk og matematikk) ./£..august 2005 Tid: 0900 – 1300 Studiepoeng: 7.5

Sensuren faller i uke 36...

Hjelpemidler C:

Typegodkjent kalkulator, i henhold til NTNU's regler.

Trykte hjelpemidler:

Formelsamling i matematikk.

Formelliste, vedheftet oppgavesettet.

Oppgave 1

P_α 55 ω

///m/// H

R

En lukket sylindrisk beholder er festet til en stav og holdt på plass i et kar fylt med væske med konstant tetthet ρ . Beholderen med innhold har masse m. Dens ytre radius er R; høyden er H. Atmosfæretrykket er p_0 .

Karet med innhold dreies om sin symmetriakse (z-akse) med konstant vinkelhastighet ω slik at sentrum O av beholderens toppflate blir fri mot atmosfæren.

- a) Finn trykkfordelingen p(r) over beholderens toppflate og bunnflate.
- b) Finn stangkraften.

En væske med tetthet ρ og kinematisk viskositet ν renner laminært og stasjonært nedover et skråplan som har helningsvinkel θ . Væskesjiktet har fri overflate mot atmosfæren. Atmosfæretrykket er p_{σ} . Strømningen er todimensjonal, med strømlinjer som overalt er parallelle med x-aksen. Tyngdens akselerasjon er g. Anta at det blåser en vind imot den frie overflaten, slik at det oppstår en konstant skjærspenning (tangensialspenning) τ_{σ} oppover, imot den viste x-retningen. Anta at τ_{σ} (> 0) er en kjent størrelse.

a) De eneste ukjente størrelsene er trykket p samt hastigheten u = u(y) i x-retningen.
 Skriv opp x- og y- komponentene av Navier-Stokes' ligning, og vis at størrelsen K, definert ved

$$K = \frac{\partial p}{\partial x} - \gamma \sin \theta ,$$

hvor $\gamma = \rho g$, er en konstant som er uavhengig av x og y.

- b) Spesifisér grensebetingelsene på hastighetsfeltet ved y = 0 og y = h. Hvorfor er $\partial p / \partial x = 0$ overalt i væsken?
- c) Vis ved integrasjon at hastighetsprofilet blir

$$u(y) = \frac{gh \sin \theta}{v} y \left(1 - \frac{y}{2h}\right) - \frac{\tau_0}{\rho v} y ...$$

d) Bestem skjærspenningen τ_o på sjiktets ytterkant slik at netto massestrøm i sjiktet blir lik null. Lag en kvalitativ skisse av hastighetsprofilet gjennom sjiktet for dette tilfellet.

Side 3 av 3

Oppgave 3

En tornado modelleres som en potensialstrømning, hvor et sluk av styrke m (< 0) er superponert med en virvel av styrke K. Hastighetspotensialet oppgis å være

$$\phi = m \ln r + K\theta$$

hvor r og θ er plane polarkoordinater.

- a) Skriv opp uttrykket for strømfunksjonen ψ , og bestem strømlinjenes form. Skissér en typisk strømlinje for tilfellet m/K = -1/ π .
- b) Anta at volumstrømningen Q inn i sluket (per lengdeenhet i vertikal z-retning), samt sirkulasjonen Γ omkring z-aksen, er kjent. (Sett Q > 0.) Finn sammenhengen mellom konstantene m, K og Q, Γ .
- c) Fluidet har en fri overflate som langt unna z-aksen er horisontal og gitt ved z=0. Finn ligningen for overflaten i rz-planet, og skissér resultatet for tilfellet gitt under pkt. a) og med $Q=0.84 \text{ m}^2/\text{s}$. Sett $g=9.81 \text{m/s}^2$.

. TEP4105 Filmidmehanikh. Kontinuarjouseksamen 15. august 2005 (
Lasuing Oupgave 1
42
4500 a) Bereelestin
Po a) Beverglushigning i roberende system:
$0 = -\frac{1}{2}\nabla p + R\omega^2 e_R^2 + \frac{3}{2}$
g g & Jokongrundel vashe:
$\sqrt{\frac{p}{s} - \frac{1}{2} \lambda^2 \omega^2 + qz} = 0 = >$
D=-4z+ 2p2w2+C, x=89
Da $p = p_0$ i $r = 0$, $z = 0$ en $p = -yz + \frac{1}{z}p_1\omega + p_0$ Topphase $z = 0$ air
$p(\Lambda) = \frac{1}{2} p_{\Lambda} \omega + h$
Bunnflate z = -H gir p(x) = yH + 1 px 2 + po 3
y series pa expellate:
$\frac{P}{h_{ph}} = 2\pi \int_{0}^{R} \left(\frac{1}{2}gR\omega + p_{0}\right) RdR = \pi R^{2} \left(gR\omega + p_{0}\right)$
S R
Bunnflate: P = 211 (yH + 2920+pa)rdr =
$= \pi_V H R^2 + \pi R^2 (g R^2)$
The my should P = P = V. TTP H
as the currents of his D. B.
ar mostore righter has before
the transfer of the state of the
5 = Y. 1124 - mg

TEP4105 Fluidmehanikh. Kontinanjouschamm 15. august 2005 Oppgare 2, forts d.) There in lugdrenbet in i planet. To = = 3 yh siu D 4(4) 40 TEP 4105 Fluidmehanikh. Kontinuazionselsamen 15. august 2005

dosning Oppgave 3

a) Git &= mhr + KB. Tilmounde stronfuntgin er 4 = - Klur + u. D. (formelask)

Swamlinger 4 = konstant besternt out

How
$$|m|/K = 1/II$$
 for $r = e \cdot e = r(0)e$

Sirkulasjon [= gv.da = Vo.211p = k.211p = 211k

() For pokunialshamming er
$$\sqrt{x}\sqrt{z}=0$$
 og Bernoulli kan bruhes.

$$\frac{1}{2}V^2 + \frac{p_0}{9} + \frac{1}{9}Z = \left(\frac{1}{2}V^2 + \frac{p_0}{9}\right)$$

Da V > 6 nar
$$r > \infty$$
 fro $-z(r) = \frac{V^2}{2g} = \frac{V_R + V_0^2}{2g} = \frac{w + k}{2g}$
Fra plot a) or $k^2 = m^2 \pi^2$, =>

$$\frac{Z(\pi) = \frac{m^2(1+\pi^2)}{2q} \frac{1}{n^2} = \frac{Q^2(1+\pi^2)}{8\pi^2 q} \frac{1}{n^2}$$

Numerisk
$$Z(R) = \frac{0.84(1+\overline{n}^2)}{8\pi^2} \frac{1}{9.81} \frac{0.010}{R^2}$$

A Overflaten Z(IL)