A Q-Values Sharing Framework for Multiple Independent Q-Learners

Final Project

Presented by Denaldo Lapi, Hailey S. Miles

Contents

- Paper Summary
- Simulation Procedure
- Demo
- Results
- Conclusions

Paper Summary

Setting:

Cooperative MARL involving multiple IQL sharing the same environment

Develop a *partaker-sharer* advising framework (PSAF) where agents must also learn when to ask for Q-values and when to provide Q-values

Partaker

• can request Q-values for insufficiently explored states.

Sharer

• Agents evaluate their confidence of the max Q-value. Sharer shares when its confidence is higher than the partaker.

Simulation Procedure

Predator-Prey Scenario

Environment

- · Grid world
- Predators are agents
- Prey takes evasive action 80% of the time, random action 20% of the time.
- Goal state: One predator is in the same square as the prey, the other is in an adjacent square.
- Time to goal: Number of steps necessary to reach prey.

Agent

Actions		State
Up	Moves 1 grid space in y direction	<x1, x2="" y1,="" y2=""> Relative distances to predator and prey.</x1,>
Down	Moves 1 grid space in -y direction	
Left	Moves 1 grid space -x direction	$\begin{cases} 1, if predator is in the same grid space as the prey \\ Reward = \begin{cases} and the other predator is in an adjacent grid space \end{cases}$
Right	Moves 1 grid space in x direction	0, otherwise
Nothing	Does not move	

Demo

SOAS Demo

Test 1: Moving prey vs. Stationary prey

How does the behavior of the prey affect learning?

Test 2: PSAF vs Multiple IQL

Does communication between agents accelerate learning?

Test 3: PSAF with varying grid sizes

What affect does a larger grid size have on learning?

Test 4: Various budget sizes

Conclusions

- PSAF is better suited to complex scenarios
- PSAF accelerates learning compared to multiple IQL
- Larger grid sizes are much more complex as more states have to be explored and thus learning is slower
- The ask and give budgets are most critical at the beginning if the learning stages.

Questions

Thank you for listening