

A TUTORIAL ON MACHINE LEARNING WITH WEKA

STEFANO PIO ZINGARO

PH.D. STUDENT IN COMPUTER SCIENCE AND ENGINEERING

STEFANOPIO.ZINGARO [AT] UNIBO.IT

CS.UNIBO.IT/~STEFANOPIO.ZINGARO

Except where otherwise <u>noted</u>, content on this site is licensed under a <u>Creative Commons Attribution 4.0 International license</u>.

OVERVIEW

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt.

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time.

DEEP LEARNING

Subset of ML in which multilayered neural networks learn from vast amounts of data.

BASIC ASSUMPTIONS FOR THE TUTORIAL

SOME KNOWLEDGE ON... BUT NO KNOWLEDGE ON...

- The concept of independent and dependent variables;
- The concept of error in statistic;
- The concepts of Supervised and Unsupervised Learning;
- Boolean variables (TRUE and FALSE).

- Programming Languages;
- Coding;
- Machine Learning techniques;
- Neural Networks;
- Minimisation or Maximisation of a function.

MACHINE LEARNING VS. DEEP LEARNING

CLASSIC MACHINE LEARNING

How do you engineer the best features?

FEATURES

- ▶Roundness of face;
- Distance between eyes;
- Nose width;
- Eye socket depth;
- Cheek bone structure;
- Jaw line length...

CLASSIFIER ALGORITHMS

- SVM;
- Random Forest;
- Naïve Bayes;
- Decision Tree;
- Regression
- ...many more...

Jim Carrey

Jim

Carrey

DEEP LEARNING

How do you guide the model to find the best features?

DEEP LEARNING BREAKTHROUGHS

IMAGE RECOGNITION

SPEECH RECOGNITION

MACHINES ABLE TO MEET OR EXCEED HUMAN IMAGE & SPEECH RECOGNITION (TO SOME EXTEND...)

DEEP LEARNING IN PRACTICE

SUPERVISED TRAINING

SUPERVISED TRAINING

Bicycle

LABELLED DATA

Bicycle

SUPERVISED TRAINING

Bicycle

BLIND TEST

BLIND TEST

????

WEKA — A DATA MINING TOOL

WEKA is developed by the University of Waikato (New Zealand) under the GNU General Public License (GPL).

It is written in the Java™ object-oriented programming language and provides a GUI for interacting with data files and producing visual results.

WEKA — A DATA MINING TOOL

WEKA is developed by the University of Waikato (New Zealand) under the GNU General Public License (GPL).

It is written in the Java™ object-oriented programming language and provides a GUI for interacting with data files and producing visual results.

FOR THE AIM OF THE TUTORIAL WE WILL USE JUST THE "Explorer" TOOL

AGENDA

	Model	Dataset
Classification	Multivariate Linear Regression House Prici	
	Decision Tree	Campaign
Clustering	k-means	Behaviour Analysis
Classification	Neural Network VS. KNN	Breast Cancer

A SIMPLE EXAMPLE OF PREDICTION

The price of the house (the dependent variable) is the result of many independent variables:

- the square footage of the house;
- the size of the lot;
- whether granite is in the kitchen;
- bathrooms are upgraded;
- etc.

We **create a model** based **on other comparable houses** in the neighbourhood and what they sold for, then put the values of our own house into this model **to produce an expected price**.

COLLECTING THE DATA

House size (square feet)	Lot size	Bedrooms	Granite	Upgraded bathroom?	Selling price
3529	9191	6	0	0	205000
3247	10061	5	1	1	224900
4032	10150	5	0	1	197900
2397	14156	4	1	0	189900
2200	9600	4	0	1	195000
3536	19994	6	1	1	325000
2983	9365	5	0	1	230000
3198	9669	5	1	1	????

COLLECTING THE DATA

	House size (square feet)	Lot size	Bedrooms	Granite	Upgraded bathroom?	Selling price
	3529	9191	6	0	0	205000
	3247	10061	5	1	1	224900
	4032	10150	5	0	1	197900
	2397	14156	4	1	0	189900
	2200	9600	4	0	1	195000
	3536	19994	6	1	1	325000
	2983	9365	5	0	1	230000
RAINING DATA		9669	5	1	1	????

COLLECTING THE DATA

House size (square feet)	Lot size	Bedrooms	Granite	Upgraded bathroom?	Selling price
3529	9191	6	0	0	205000
3247	10061	5	1	1	224900
4032	10150	5	0	1	97900
2397	14156	2	1	0	189900
2200	9600	2	0		195000
3536	19994	F	1	1	325000
2983	9365	5	0	1	230000
3198	9669	5	1	1	????

TESTING DATA

PREPROCESS THE DATA WITH WEKA LOAD THE DATASET

Preprocess Tab

PREPROCESS THE DATA WITH WEKA LOAD THE DATASET

- Preprocess Tab
- Open File:
 - CSV format
 - XLS format
 - ARFF format

PREPROCESS THE DATA WITH WEKA LOAD THE DATASET

- Numerical
 variables
 data with value
 representable
 with numbers
- Visualize All shows all graphics at once

Classify Tab

- Classify Tab
- Use trainingset

- Classify Tab;
- Use training set;
- Class = sellingPrice;

- Classify Tab;
- Use training set;
- Class = sellingPrice;
- Startbuilding the model

- Classify Tab;
- Use training set;
- Class = sellingPrice;
- Startbuilding the model

FINAL PREDICTION

sellingPrice =

```
- 26,68 * [houseSize = 3198]
```

$$+7,05 * [lotSize = 9669]$$

$$+43.166,07 * [bedrooms = 5]$$

$$+42.292,09 * [bathroom = 1]$$

ANOTHER EXAMPLE OF CLASSIFICATION CAR DEALERSHIP

The dealership is starting a promotional campaign, whereby it is trying to push a two-year extended warranty to its past customers.

The dealership has done this before and has gathered 4,500 data points from past sales of extended warranties.

The attributes in the data set are:

- Income bracket [0=\$0-\$30k, 1=\$31k-\$40k, 2=\$41k-\$60k, 3=\$61k-\$75k, 4=\$76k-\$100k, 5=\$101k-\$150k, 6=\$151k-\$500k, 7=\$501k+]
- Year/month first car bought
- Year/month most recent car bought
- ▶ Whether they responded or not to the extended warranty offer in the past

PREPROCESS THE DATA WITH WEKA LOAD THE DATASET FOR TRAINING

Nominalvariables –labelled data

PREPROCESS THE DATA WITH WEKA LOAD THE DATASET FOR TRAINING

- Nominalvariables –labelled data
- 1500 instances

CLASSIFY THE DATA WITH WEKA DECISION TREE MODEL TRAINING

- Classify Tab;
- Use training set;
- Class = responded;
- Startbuilding the model

CLASSIFY THE DATA WITH WEKA DECISION TREE MODEL TESTING

Supplied test set;

CLASSIFY THE DATA WITH WEKA DECISION TREE MODEL TESTING

- Supplied test set;
- Start testing the model;

CLASSIFY THE DATA WITH WEKA DECISION TREE MODEL TESTING

- Supplied test set;
- Start testing the model;
- Compare modelsaccuracybetweentrain and test.

AN EXAMPLE OF CLUSTERING CAR DEALERSHIP BEHAVIOUR ANALYSIS

The dealership has **kept track of how people walk through the dealership** and the showroom, what cars they look at, and how often they ultimately make purchases.

They are hoping to mine this data by finding patterns in the data and by using clusters to determine if certain behaviours in their customers emerge.

CLUSTERING THE DATA WITH WEKA K-MEANS BEHAVIOUR ANALYSIS

- Cluster Tab;
- Use training set;
- No Class;
- Start

CLUSTERING THE DATA WITH WEKA K-MEANS BEHAVIOUR ANALYSIS

- Cluster Tab;
- Use training set;
- No Class;
- Start;
- Evaluate patterns.

66

Attribute	Full Data (100.0)	Cluster# 0 (26.0)	1 (27.0)	2 (5.0)	3 (14.0)	(28.0)
Dealership	0.6	0.9615	0.6667	1	0.8571	0
Showroom	0.72	0.6923	0.6667	0	0.5714	1
ComputerSearch	0.43	0.6538	0	1	0.8571	0.3214
M5	0.53	0.4615	0.963	1	0.7143	0
3Series	0.55	0.3846	0.4444	0.8	0.0714	1
Z4	0.45	0.5385	0	0.8	0.5714	0.6786
Financing	0.61	0.4615	0.6296	0.8	1	0.5
Purchase	0.39	0	0.5185	0.4	1	0.3214

Time taken to build model (full training data): 0.01 seconds

=== Model and evaluation on training set ===

Clustered Instances

- 26 (26%)
- 27 (27%)
- 5 (5%)
- 14 (14%)
- 28 (28%)

EXAMPLE CONCLUSION K-MEANS BEHAVIOUR ANALYSIS

- Cluster 0– This group we can call the "Dreamers," as they appear to wander around the dealership, looking at cars parked outside on the lots, but trail off when it comes to coming into the dealership, and worst of all, they don't purchase anything.
- Cluster 1– We'll call this group the "M5 Lovers" because they tend to walk straight to the M5s, ignoring the 3-series cars and the Z4. However, they don't have a high purchase rate only 52 percent. This is a potential problem and could be a focus for improvement for the dealership, perhaps by sending more salespeople to the M5 section.
- Cluster 2– This group is so small we can call them the "Throw-Aways" because they aren't statistically relevent, and we can't draw any good conclusions from their behaviour. (This happens sometimes with clusters and may indicate that you should reduce the number of clusters you've created).
- Cluster 3— This group we'll call the "BMW Babies" because they always end up purchasing a car and always end up financing it. Here's where the data shows us some interesting things: It appears they walk around the lot looking at cars, then turn to the computer search available at the dealership. Ultimately, they tend to buy M5s or Z4s (but never 3-series). This cluster tells the dealership that it should consider making its search computers more prominent around the lots (outdoor search computers?), and perhaps making the M5 or Z4 much more prominent in the search results. Once the customer has made up his mind to purchase the vehicle, he always qualifies for financing and completes the purchase.
- Cluster 4— This group we'll call the "Starting Out With BMW" because they always look at the 3-series and never look at the much more expensive M5. They walk right into the showroom, choosing not to walk around the lot and tend to ignore the computer search terminals. While 50 percent get to the financing stage, only 32 percent ultimately finish the transaction. The dealership could draw the conclusion that these customers looking to buy their first BMWs know exactly what kind of car they want (the 3-series entry-level model) and are hoping to qualify for financing to be able to afford it. The dealership could possibly increase sales to this group by relaxing their financing standards or by reducing the 3-series prices.

NEURAL NETWORKS VS. K-NEAREST NEIGHBOUR BREAST CANCER CLASSIFICATION

Lets **look at the differences** between adopting two classification techniques, one will be the **neural network multilayer perceptron** classification, compared with **k-nearest neighbour model**.

- Dataset: breast-cancer.arff (286 instances)
- Nominal Class: no-recurrence-events | recurrence-events
- Classification with: Multilayer Perceptron | KNN (IBk in Weka)
- Cross Validation Test Options: takes 10% of the dataset for testing in 10 folds, computing the mean.
- Pay attention to the False Positive rate, which are the differences?

EXERCISE

Apply K-nearest neighbour Model (IBk in the choose button) to the problem of car dealership:

- Start parameter KNN = 5;
- Try decreasing KNN.

REFERENCES

- Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA data mining software: an update. [PDF]
- The WEKA software. [LINK]
- Wikipedia Multivariate Linear Regression Model. [LINK]
- Wikipedia Decision Tree. [LINK]
- Wikipedia K-means. [LINK]
- Gary Marcus, "Deep Learning: A Critical Appraisal", arXiv:1801.00631.
- Wikipedia K-nearest neighbour. [LINK]
- Web version of the tutorial by Michael Abernethy, IBM. [LINK]

