Solution Section 1.8 – Set Operations

Exercise

Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets

- a) $A \cap B$
- b) $A \cup B$
- c) A-B
- d) B-A

Solution

- a) The set of students who live one mile of school and walk to classes.
- b) The set of students who live one mile of school or walk to classes.
- c) The set of students who live one mile of school but not walk to class.
- d) The set of students who live more than one mile from school but nevertheless walk to class.

Exercise

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$

- a) $A \cup B$
- b) $A \cap B$
- c) A-B
- d) B-A

Solution

- *a*) {0, 1, 2, 3, 4, 5, 6}
- **b)** {3}
- *c*) (1, 2, 4, 5)
- *d*) {0, 6}

Exercise

Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$

- a) $A \cup B$
- b) $A \cap B$
- c) A-B
- d) B-A

Solution

a) $\{a, b, c, d, e, f, g, h\} = B$

- **b)** $\{a, b, c, d, e\} = A$
- c) \emptyset , since there are no elements in A that are not in B.
- **d)** $\{f, g, h\}$

Prove the domination laws by showing that

- a) $A \bigcup U = U$
- b) $A \cap U = A$
- $c) \quad A \bigcup \varnothing = A$
- d) $A \cap \emptyset = \emptyset$

Solution

- a) $A \cup U = \{x | x \in A \lor x \in U\}$ $= \{x | x \in A \lor T\}$ $= \{x | T\}$ = U
- **b)** $A \cap U = \{x | x \in A \land x \in U\}$ $= \{x | x \in A \land T\}$ $= \{x | x \in A\}$ = A
- c) $A \cup \emptyset = \{x | x \in A \lor x \in \emptyset\}$ $= \{x | x \in A \lor F\}$ $= \{x | x \in A\}$ = A
- d) $A \cap \emptyset = \{x \mid x \in A \land x \in \emptyset\}$ $= \{x \mid x \in A \land F\}$ $= \{x \mid F\}$ $= \emptyset$

Exercise

Prove the complement laws by showing that

- a) $A \cup \overline{A} = U$
- b) $A \cap \overline{A} = \emptyset$

Solution

a)
$$A \cup \overline{A} = \left\{ x \middle| x \in A \lor x \in \overline{A} \right\}$$

 $= \left\{ x \middle| x \in A \lor x \notin A \right\}$
 $= \left\{ x \middle| T \right\}$
 $= U$

b)
$$A \cap \overline{A} = \left\{ x \middle| x \in A \land x \in \overline{A} \right\}$$

= $\left\{ x \middle| x \in A \land x \notin A \right\}$
= $\left\{ x \middle| F \right\}$
= \varnothing

Show that

a)
$$A - \emptyset = A$$

b)
$$\varnothing - A = \varnothing$$

Solution

a)
$$A - \emptyset = \{x | x \in A \land x \notin \emptyset\}$$

 $= \{x | x \in A \land T\}$
 $= \{x | x \in A\}$
 $= A$

b)
$$\varnothing - A = \{x | x \in \varnothing \land x \notin A\}$$

= $\{x | \mathbf{F} \land x \notin A\}$
= $\{x | \mathbf{F}\}$
= \varnothing

Exercise

Prove the absorption law by showing that if A and B are sets, then

$$a) \quad A \cap (A \cup B) = A$$

b)
$$A \cup (A \cap B) = A$$

Solution

a) Suppose $x \in A \cap (A \cup B)$, then $x \in A$ and $x \in A \cup B$ by the definition of intersection. We have $x \in A$ and in the latter case $x \in A$ or $x \in B$ by the definition of union. Since both of these are true, $x \in A \cup B$ by the definition of intersection, and we have shown that the right-hand side is a subset of the left-hand side.

b) Suppose $x \in A \cup (A \cap B) \implies x \in A \text{ or } x \in (A \cap B)$ by definition of union. $x \in A \text{ or } (x \in A \text{ and } x \in B)$

By the definition of the intersection, in any event, $x \in A$. Therefore, $x \in A \cup (A \cap B)$ as well. That proves that the right-hand side is a subset of the left-hand side.

Exercise

Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$

Solution

Suppose $x \in \overline{A \cap B \cap C}$, then $x \notin A \cap B \cap C$, which means that x fails to be in at least one of these three sets. In other words, $x \notin A$ or $x \notin B$ or $x \notin C$. This is equivalent to saying that $x \in \overline{A}$ or $x \in \overline{B}$ or $x \in \overline{C}$. Therefore $x \in \overline{A} \cup \overline{B} \cup \overline{C}$.

Conversely, if $x \in \overline{A} \cup \overline{B} \cup \overline{C}$, then $x \in \overline{A}$ or $x \in \overline{B}$ or $x \in \overline{C}$. This means $x \notin A$ or $x \notin B$ or $x \notin C$, so x cannot be in the intersection of A, B, and C. Since $x \notin A \cap B \cap C$, we conclude that $x \in \overline{A \cap B \cap C}$, as desired.

Or

\boldsymbol{A}	В	C	$A \cap B \cap C$	$\overline{A \cap B \cap C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} \cup \overline{B} \cup \overline{C}$
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	1	0	1
0	0	0	0	1	1	1	1	1

Let A and B be sets. Show that

- a) $(A \cap B) \subseteq A$
- b) $A \subseteq (A \cup B)$
- c) $(A-B)\subseteq A$
- d) $A \cap (B-A) = \emptyset$
- e) $A \cup (B-A) = A \cup B$

Solution

- a) If x is in $A \cap B$, then, by definition of intersection, it is in A.
- **b)** If x is in A, then perforce, by definition of union, it is in $A \cup B$.
- c) If x is in A B, then perforce, by definition of difference, it is in A.
- d) Is $x \in A$ then $x \not\in B A$. Therefore there can be no elements in $A \cap (B A)$, so $A \cap (B A) = \emptyset$.
- e) The left-hand side consists of elements of either A or B or both. This is precisely the definition of the right-hand side.

Exercise

Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

- a) $A \cap (B-C)$
- b) $(A \cap B) \cup (A \cap C)$
- c) $(A \cap \overline{B}) \cup (A \cap \overline{C})$
- d) $\overline{A} \cap \overline{B} \cap \overline{C}$
- e) $(A-B)\cup(A-C)\cup(B-C)$

Solution

Show that $A \oplus B = (A \cup B) - (A \cap B)$

Solution

This is just a restatement of the definition. An element is in $(A \cup B) - (A \cap B)$ if it in the union that in either A or B, but not in the intersection (i.e., not in both A and B)

Exercise

Show that $A \oplus B = (A - B) \cup (B - A)$

Solution

There are two ways that an item can be in either A or B but not both. It can be in A but not B (which is equivalent to saying that it is in A - B), or it can be in B but not A (which is equivalent to saying that it is in B - A).

Thus an element is in $A \oplus B$ if and only if it is in $(A-B) \cup (B-A)$.