

160	165	170	
ctc tgc gcc atc cag gtg gtc aat ggc ctc ctg ggg acc ctc tgt ggg Leu Cys Ala Ile Gln Val Val Asn Gly Leu Leu Gly Thr Leu Cys Gly			579
175	180	185	
gac tgc cag tgt tgt ggc tgc tgt ggg gga gat gga ccc gtt taaa Asp Cys Gln Cys Cys Gly Cys Cys Gly Gly Asp Gly Pro Val			625
190	195	200	
 <210> 2			
<211> 202			
<212> PRT			
<213> Homo sapiens			
 <400> 2			
Met Cys Thr Gly Gly Cys Ala Arg Cys Leu Gly Gly Thr Leu Ile Pro 1 5 10 15			
Leu Ala Phe Phe Gly Phe Leu Ala Asn Ile Leu Leu Phe Phe Pro Gly 20 25 30			
Gly Lys Val Ile Asp Asp Asn Asp His Leu Ser Gln Glu Ile Trp Phe 35 40 45			
Phe Gly Gly Ile Leu Gly Ser Gly Val Leu Met Ile Phe Pro Ala Leu 50 55 60			
Val Phe Leu Gly Leu Lys Asn Asn Asp Cys Cys Gly Cys Gly Asn 65 70 75 80			
Glu Gly Cys Gly Lys Arg Phe Ala Met Phe Thr Ser Thr Ile Phe Ala 85 90 95			
Val Val Gly Phe Leu Gly Ala Gly Tyr Ser Phe Ile Ile Ser Ala Ile 100 105 110			
Ser Ile Asn Lys Gly Pro Lys Cys Leu Met Ala Asn Ser Thr Trp Gly 115 120 125			
Tyr Pro Phe His Asp Gly Asp Tyr Leu Asn Asp Glu Ala Leu Trp Asn 130 135 140			
Lys Cys Arg Glu Pro Leu Asn Val Val Pro Trp Asn Leu Thr Leu Phe 145 150 155 160			
Ser Ile Leu Leu Val Val Gly Gly Ile Gln Met Val Leu Cys Ala Ile 165 170 175			
Gln Val Val Asn Gly Leu Leu Gly Thr Leu Cys Gly Asp Cys Gln Cys 180 185 190			
Cys Gly Cys Cys Gly Gly Asp Gly Pro Val 195 200			

```

<210> 3
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> primer

<400> 3
gtcgtaccac cccagaatgt                                20

<210> 4
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> primer

<400> 4
tttaaacggg tccatctccc                                20

<210> 5
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(25)
<223> primer

<400> 5
catatgggga agcgatttgc gatgt                                25

<210> 6
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(24)
<223> primer

<400> 6
ctcgaggacc agcaggatgg agaa                                24

<210> 7
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(20)

```

<223> primer

<400> 7
accacagtcc atgccatcac

20

<210> 8
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> primer

<400> 8
tccaccaccc tggcgctgtta

20

<210> 9
<211> 21
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<223> double-stranded small RNA

<400> 9
ggaaggcggug ucuugauaugau c

21

<210> 10
<211> 21
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<223> double-stranded small RNA

<400> 10
gggaaggcgau uugcgauguu c

21

<210> 11
<211> 21
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<223> double-stranded small RNA

<400> 11
ggaacaagug ccgagagccu c

21

<210> 12
<211> 21
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<223> double-stranded small RNA

<400> 12
gggugcugcg gcaacgaggg c

21

<210> 13
<211> 21
<212> RNA
<213> Artificial sequence

<220>
<221> misc_feature
<223> double-stranded small RNA

<400> 13
guuuuaaccu ccgagaugag c

21