INTRODUCTION TO

DATA ANALYSIS

MAIN COURSE MATERIAL

- course website (link also on StudIP)
 - https://michael-franke.github.io/IDA-2019/
 - slides, homework etc. will appear here
- course notes as web-book (link also on StudIP)
 - https://michael-franke.github.io/intro-data-analysis/
 - main reading

LECTURES

- make sure to catch both lectures each week
 - Wednesday, 10:15-11:45 (66/E33)
 - Friday, 12:15-13:45 (32/102)
- prepare reading in advance (see schedule on website)
- reread chapter after lecture

TUTORIALS

- tutorials give extra background and practical exercises (tutors vary w/o notice)
- everybody should catch at least one tutorial per week
- tutorial times and locations (also on StudIP)
 - Monday, 10:15-11:45 (66/E34)
 - Tuesday, 8:15-9:45 (66/E33)
 [this tutorial will not take place on Nov 5]
 - Tuesday, 12:15-13:45 (32/107)

IDA-2019 TEAM

- tutors
 - Tallulah Jansen, Nina Mainusch, Maria Pershina,
 Jona Carmon, Taher Habib, Marc Viladrich
- web-book
 - Florence Bockting, Tobias Anton
- additional support
 - Noa Kallioinen, Ann-Christin Meisener

COURSE REQUIREMENTS

- required for passing:
 - 1. passing grade on homework assignments
 - weekly assignments to be submitted in groups of three
 - 2. passing grade on final exam
 - 4h written, "open-book" (bring hand-written notes)
- see course website for more information https://michael-franke.github.io/IDA-2019/grading/

HOMEWORK

- HW issued on Friday evening (after lecture)
- HW due Friday next week at noon (before lecture)
- submit electronically via StudIP
 - upload to your group's folder
 - as Rmd or PDF (LaTeX, hand-written scan)
- no detailed comments as corrections but sample solution

LEARNING GOALS

- ability to explore data sets in hypothesis-driven manner
- manipulate & visualize data
- understand logic of statistical inference (frequentist vs Bayesian statistics)
- ability & confidence to critically assess DAs in research papers
- ability & confidence to tackle your own DA for an experimental BSc thesis

TECHNICAL SKILLS YOU WILL ACQUIRE IN THIS COURSE

- basics of R & tidyverse
 - write your own DA scripts(manipulation, visualization, statistical analyses)
- reproducible writing in Rmarkdown
- glimpse at probabilistic programming languages (WebPPL, greta)
- first contact with generalized linear models

WHAT YOU SHOULD NOT EXPECT OF THIS COURSE

 details of common algorithm for statistical computation (MCMC, optimization, ...)

emphasis on history and/or philosophy of statistics

reactive practical competence in statistics

- "Our aim is understanding."
- "We do not teach tricks!""We do not share recipes!"

COMPARISON OF RELATED COURSES

- statistics @ Psych
 - focus on frequentist methods
 - SPPS instead of R
- probability theory @ Math
 - focus on theory not applications
 - math not computer science
 - foundational issues

- neuroinformatics @ CogSci
 - more focus on theory & math
 - applications in neuroscience / ML
- intro data analysis @ CogSci
 - focus on computation
 - applications in behavioral psych
 - frequentist & Bayes

SCHEDULE (PRELIMINARY)

week	Content of tutorials	Wednesday lecture	Friday lecture	HW issued
44			Course overview Chapter 1	
45	installing R & packages (Stan, tensorflow)	Intro to R Chapter 2	Data & data handling Chapter 3	HW1
46	using R, data handling / wrangling	Data wrangling Chapter 4	Summary statistics Chapter 5	HW2
47	more R, wrangling, summary stats	NO LECTURE	Data plotting Chapter 6	HW3
48	plotting, more R exercises	Probability basics Chapter 7	Frequentism vs Bayes Chapter 8	HW4
49	probability calculus, Bayes rule	Statistical models Chapter 9	Parameter Inference 1 Chapter 10	HW5
50	simulations on error control, calculations with Bayes rule	NO LECTURE	Parameter Inference 2 Chapter 10	HW6
51	sampling-based approaches using R, WebPPL, greta	Classical testing 1 Chapter 11	Classical testing 2 Chapter 11	HW7

week	Content of tutorials	Wednesday lecture	Friday lecture	HW issued
2	binomial test, t-test, (maybe ANOVA),	Classical testing 3 Chapter 11	Model comparison Chapter 12	HW8
3	model comparison, Bayes factors, LR test, AIC	Bayesian hypothesis testing Chapter 13	Model criticism Chapter 14	HW9
4		Simple linear regression	Generalized regression	HW10
5		Generalized regression	Hierarchical regression	HW11
6		Q&A	Final exam	
7		Cognitive models in data analysis	TBA	

check course website for updated schedule

FLAVORS OF MODERN STATISTICAL ANALYSIS

FREQUENTISM

objective probability :: tests :: p-values :: error control

STATISTICS AS POTTERY

STATISTICAL INFERENCE

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.004718 1283.74 (Intercept) 6.056821 <2e-16 *** -0.337831 <2e-16 *** blockreaction 0.005790 -58.35 blockdiscrimination 0.130195 <2e-16 *** 0.005813

yields

STATISTICAL MODEL

fuels

UNDERSTANDING THROUGH COMPUTATION

- > statistical concepts can be understood in different ways
 - in terms of their motivation (practical or philosophical)
 - as a mathematical concept (elegance matters)
 - through implementation as algorithms
 - by exploring computational simulations

SELF-ANALYSIS

- aspiring analysts should undergo analysis themselves
- running examples based on online experiments
 - whoever wants can participate
 - collected data will be used in exercises and HW

FURTHER STUDY MATERIAL

- appendix chapter A of course material
- top pick on stats books:
 - Ben Lambert (2018) "A Student's Guide to Bayesian Statistics"
 - ▶ Bodo Winter (2019) "Statistics for Linguists: An introduction using R"

CONTACT

please direct all communication to

Tallulah Jansen <taljansen@uni-osnabrueck.de>

HOMEWORK FOR NEXT CLASS

- read Chapter 1 of course notes
- install all necessary software as described in Chapter 1.5
- visit a tutorial next week to get help with installation
 - no tutorial on Tue at 8:15-9:45 on Nov 5
- prepare Chapter 2