# Learning Background Knowledge through Instruction

#### Shiwali Mohan

shiwali@umich.edu

The Soar Group at University of Michigan

## Outline

- Motivation
- Properties of Instruction
- Semantic Memory and Storage
- Learning from Instruction in Infinite Mario
- Results
- Nuggets and Coal

## Motivation

- □ What is the source of procedural knowledge?
  - Innate
  - Experience with the world
    - Learning to ride a bicycle



Cooking





### Motivation

- Previously,
  - Agent that learn behaviors from experience
    - State-action value function
- Further questions
  - Which behavior is associated with which object?
    - tackle-monster is to be applied when an object 'monster' is nearby
      - Problem of matching the FLO to corresponding object
  - Which parts of the input are important?
    - What features should be learned over?
    - □ Speed, type, relative distance etc...
      - Learning the correct structure of FLO
- Till now knowledge is hand-coded
  - As rules in the Soar Implementation





# Properties of Instruction

- Situation specific
  - instructions are provided for a specific task in a particular situation
- Incremental
  - knowledge is elicited incrementally
  - it directly addresses points where agent's knowledge is lacking
- Knowledge-level interaction
  - objects, features and actions
  - not to lower-level symbols.
- Agent initiated communication

## Semantic Memory

#### Semantic Memory

- Declarative memory
  - General, context-free knowledge of the world
- Organized information
  - Salient properties of an object
    - What it looks like?
    - How it moves?
    - What are its components
- Can be acquired in different ways
  - Can be built up from experiences
  - Through explicit instruction
- Proposed Object-Oriented Representation in Semantic Memory
  - Structures associating FLOs with objects
  - Learn preferences between objects
  - Structures associating features to FLOs



# Two step learning

- Semantic Learning
  - Detect incomplete structures in semantic memory
  - Convert internal representations in to a query
  - On receiving a reply, parse the answer
  - Assimilate
  - Incremental
- Procedural Learning
  - On forming new semantic structures, use generic ways to convert them into procedural knowledge
  - Learn general rules from specific examples



## Learning from Instruction in Infinite Mario

- Semantic learning using Soar-SMem
  - No natural language support
  - Agent communicates using its internal representations
- Procedural Learning
  - Chunking explanation based learning
    - Learn new rules at a state by solving a problem in the substate
- □ Reduced learning problem example
  - Match the FLO with correct object
  - Assume the agent knows symbolic preferences for FLOs
  - Assume the agent posses procedural knowledge to apply FLO
  - Once the correct FLO is selected, the agent knows which features are important
    - □ for tackle-monster, features speed, type, winged, distx, distxy

# Progression



## Results



- Learning algorithm SARSA
- □ Learning rate 0.3
- □ Discount rate 0.9
- □ Exploration policy Epsilon-greedy
- □ Epsilon 0.01
- □ Reduction-rate 0.99
- Performance similar to Agent 2
- □ Converges to a policy in 1600 runs
- Average reward earned by converged policy (last 100 runs) =144.34



# Nuggets and Coal

- Proposed a structure for learning from instruction.
- Proposed object-oriented storage in semantic memory that may aid learning correct procedural structures

Still in initial phases