Verified Lifting of Stencil Computations

Shoaib Kamil (Adobe), Alvin Cheung (UWashington), Shachar Itzhaky (MIT), Armando Solar-Lezama (MIT)

Presented by Alexa VanHattum

adobe.com/products/photoshop

Support Home

Forums Home

News

Product -

Explore -

Sign

7 Replies

Latest reply on Sep 1, 2017 1:12 AM by Trevor.Dennis

tomaugerdotcom Jun 3, 2013 7:41 AM

Why is Blur Gallery so slow?

This question is **Not Answered**.

I have a Windows 7 beast with 16Gb RAM and 8 Processors and a kickass GPU as well. Generally Photoshop smokes through just about anything. But I just ran Blur Gallery and the thing crawled. 20 seconds between UI updates - I'm not even talking applying the filter!

```
do ib=istart,iend,2*ibsize
    do i=ib, min(ib+ibsize,iend)
        do j=jstart,jend,2
        b(i,j) = a(i,j) + 0.25*(a(i+1,j+a(i-1,j+a(i,j+1)+a(i,j-1)))
        b(i,(j+1)) = a(i,(j+1)) +
            0.25*(a(i+1,(j+1))+a(i-1,(j+1))+a(i,(j+1)+1)+a(i,(j+1)-1))
        enddo
    do i=ib+ibsize, min(ib+2*ibsize,iend)
        do j=jstart,jend,2
        b(i,j) = a(i,j) + 0.25*(a(i+1,j+a(i-1,j+a(i,j+1)+a(i,j-1)))
        b(i,(j+1)) = a(i,(j+1)) +
            0.25*(a(i+1,(j+1))+a(i-1,(j+1))+a(i,(j+1)+1)+a(i,(j+1)-1))
        enddo
    enddo
enddo
enddo
enddo
```


Fortran

```
do ib=istart,iend,2*ibsize
    do i=ib, min(ib+ibsize,iend)
    do j=jstart,jend,2
        b(i,j) = a(i,j) + 0.25*(a(i+1,j+a(i-1,j+a(i,j+1)+a(i,j-1)))
        b(i,(j+1)) = a(i,(j+1)) +
            0.25*(a(i+1,(j+1))+a(i-1,(j+1))+a(i,(j+1)+1)+a(i,(j+1)-1))
    enddo
    do i=ib+ibsize, min(ib+2*ibsize,iend)
        do j=jstart,jend,2
        b(i,j) = a(i,j) + 0.25*(a(i+1,j+a(i-1,j+a(i,j+1)+a(i,j-1)))
        b(i,(j+1)) = a(i,(j+1)) +
        0.25*(a(i+1,(j+1))+a(i-1,(j+1))+a(i,(j+1)+1)+a(i,(j+1)-1))
    enddo
    enddo
enddo
enddo
enddo
```

"Every value in the output array should be the value in the input plus the weighted sum of its neighbors.

$a_{0,1}$ $a_{1,0}$ $a_{1,1}$ $a_{1,2}$

DSLs to the rescue?

Halide

: image & tensor processing DSL embedded in C++

```
ImageParam b(type_of<double>(),2);
Func func;
Var i, j;
func(i,j) = b(i,j) + 0.25*(b(i+1,j+b(i-1,j+b(i,j+1)+b(i,j-1)))
func.compile_to_file("ex1", b);
```

 $a_{i,i} + 0.25*(\Sigma neighbors)$

// ... schedule elided

Halide

Verified lifting:

Given a stencil computation, find a high-level summary that fully captures the algorithm

Solution goals:

- Extracts algorithm from optimization
- Fully automated
- Verified soundness

"STNG"

Generate "glue code" +

Synthesize Hoare-style verification conditions

Verify lifted summary

Identify stencil computations

```
integer imin,imax,jmin,jmax,i,j,q,t
real (kind=4), dimension(imin:imax,jmin:jmax) :: a
real (kind=4), dimension(imin:imax,jmin:jmax) :: b
do j = jmin,jmax
    t = a(imin, j)
    do i = imin + 1,imax
        q = a(i,j)
        b(i,j) = q + t
        t = q
    enddo
enddo
```

Verification conditions (VC):

- (1) $\forall s. pre(s) \rightarrow invariant(s)$
- (2) $\forall s. invariant(s) \land cond(s) \rightarrow invariant(body(s))$
- (3) $\forall s. invariant(s) \land \neg cond(s) \rightarrow post(s)$


```
integer imin,imax,jmin,jmax,i,j,q,t
real (kind=4), dimension(imin:imax,jmin:jmax) :: a
real (kind=4), dimension(imin:imax,jmin:jmax) :: b

do j = jmin,jmax
    t = a(imin, j)
    do i = imin + 1,imax
        q = a(i,j)
        b(i,j) = q + t
        t = q
    enddo
enddo
```

Outer loop invariant

$$\forall i, j' \in [imin + 1, imax] \times [jmin, j)$$

 $b(i, j') = a(i - 1, j') + a(i, j')$


```
integer imin,imax,jmin,jmax,i,j,q,t
real (kind=4), dimension(imin:imax,jmin:jmax) :: a
real (kind=4), dimension(imin:imax,jmin:jmax) :: b
do j = jmin,jmax
    t = a(imin, j)
    do i = imin + 1,imax
    q = a(i,j)
    b(i,j) = q + t
    t = q
    enddo
enddo
```

Inner loop invariant

$$\forall i, j' \in [imin + 1, imax] \times [jmin, j)$$

 $b(i, j') = a(i - 1, j') + a(i, j')$
 $\forall i', j' \in [imin + 1, i) \times [j, j)$
 $b(i', j') = a(i' - 1) + a(i', j')$

Postcondition:

$$\forall i, j \in [imin + 1, imax] \times [jmin, jmax]$$
$$b(i, j) = a(i - 1, j) + a(i, j)$$

Postconditions as summaries

Restrictions:

Conjunction (per output matrix) of:

$$\forall \vec{x} \in dom(b). \ b[\vec{x}] = expr_{halide}(\vec{x})$$

Right hand side must include non-output term

Postcondition:

$$\forall i, j \in [imin + 1, imax] \times [jmin, jmax]$$
$$b(i, j) = a(i - 1, j) + a(i, j)$$

Postconditions as summaries

Limitations:

- **X** Conditionals*
- X Boundary conditions
- X Decrementing loops
- X Calls to impure functions
- X In-place input modification

Postcondition:

$$\forall i, j \in [imin + 1, imax] \times [jmin, jmax]$$
$$b(i, j) = a(i - 1, j) + a(i, j)$$

Key idea:

Synthesizing a postcondition is most of the work to lift

Postcondition:

$$\forall i, j \in [imin + 1, imax] \times [jmin, jmax]$$
$$b(i, j) = a(i - 1, j) + a(i, j)$$

High level summary!

VC generation as syntax guided synthesis

Post condition:
$$\forall \vec{x} \in dom(b). \ b[\vec{x}] = expr_{halide}(\vec{x})$$

VC(post, invariant, s):

Verification conditions (VC):

- (1) $\forall s. pre(s) \rightarrow invariant(s)$
- (2) $\forall s. invariant(s) \land cond(s) \rightarrow invariant(body(s))$
- (3) $\forall s. invariant(s) \land \neg cond(s) \rightarrow post(s)$

Synthesis problem: $\exists post, invariant. \ \forall s. \ VC(post, invariant, s)$

Scaling with inductive template generation

```
do j = jmin,jmax
    t = a(imin, j)
    do i = imin + 1,imax
        q = a(i,j)
        b(i,j) = q + t
        t = q
    enddo
enddo
```



```
do j = 1,3
  t = a(1, j)
  do i = 1 + 1,6
   q = a(i,j)
   b(i,j) = q + t
   t = q
  enddo
enddo
```

Motivation:

- Search space still huge after syntax restrictions
- Leverage mixed concrete-symbolic execution
- Set bounds/indices to small, random values

Scaling with inductive template generation

```
do j = jmin,jmax
    t = a(imin, j)
    do i = imin + 1,imax
        q = a(i,j)
        b(i,j) = q + t
        t = q
    enddo
enddo
```


do j = 1,3 t = a(1, j) do i = 1 + 1,6 q = a(i,j) b(i,j) = q + t t = q enddo enddo

Anti-unification:

Generalizing from concrete instances to general structure

$$\forall e_1, e_2 \in b. \quad \sqcap(e_1, e_2) := \begin{cases} e_1 & e_1 = e_2 \\ leaf(e_1) \end{cases}$$

$$(op \{\sqcap(e_{1i}, e_{2i})\}_i) \quad e_1 = (op \{e_{1i}\}_i) \\ e_2 = (op \{e_{2i}\}_i) \end{cases}$$

$$MakeHole(e_1, e_2) \quad (otherwise)$$

$$b[i,j] = a[hole, hole] + a[hole, hole]$$

$$op := + |-| \times | /$$

Scaling with partial Skolemization

Motivation:

Synthesis is typically a "∃.∀" problem

 $\exists post, invariant. \ \forall s. \ VC(post, invariant, s)$

VCs can introduce negation of invariants

Loop break:

$$\forall s. invariant(s) \land \neg cond(s) \rightarrow post(s)$$

 $\forall s. \ \neg invariant(s) \lor cond(s) \lor post(s)$

$$\forall \mathsf{a}, \mathsf{b}, \mathsf{j}, \mathsf{jmax}. \ \neg I_j(\mathsf{a}, \mathsf{b}, \mathsf{j}) \lor \neg (\mathsf{j} > \mathsf{jmax}) \lor \mathit{post}(\mathsf{a}, \mathsf{b})$$

•∀ in negated invariant becomes an additional ∃: "∃.∀.∃" problem

$$I_{j}(\mathbf{a},\mathbf{b},\mathbf{j}) = egin{array}{l} orall i,j' \in [imin+1,imax] imes [jmin,j) \ a\left(i,j'
ight) = b\left(i-1,j'
ight) + b\left(i,j'
ight) \end{array}$$

Scaling with partial Skolemization

Skolemization:

Producing an equi-satisfiable formula without an existential quantifier

(Full) Skolemization:

$$\exists x. \forall y. \exists z. (...z..)$$

$$\exists x. \forall y. (... f(y)...)$$
 $f \text{ maps } y \text{ to } z$

"Partial" Skolemization:

$$\exists x. \forall y. \exists z. (...z..)$$

$$f = \begin{cases} f_1 & ? \\ f_2 & ? \end{cases}$$
 * note: details not explicated in the paper

$$\exists x. \forall y. (... f_1(y)...) \lor (... f_2(y)...)$$

Evaluation

- Compare Fortran code before and after lifting stencil computations
- Compare CPU-CPU and CPU-GPU
- Halide schedules found with 6 hours of OpenTuner

Evaluation

	Candidates	Success Rate	CPU Speedup	GPU Speedup
StencilMark (hand-ported µ-benchmarks)	4	75%	6.5X - 11.3X	Max 4.5X
NAS MG (solving Poisson equation)	9	33%	5.7X - 17.5X	Max 3.7X
Cloverleaf (hydrodynamic Euler eqs)	45	89%	2.5X - 7.5X	Max 1400X
NFFS-FVM (fluid mechanics simulation)	29	86%	3.0X - 24.1X	Max 16.9X
Challenge (optimized 3D stencils)	5	100%	1.8X - 12.3X	Max 1.1X

Cumulative distribution of synthesis time

Summary

Verified lifting:

Given a stencil computation, find a high-level summary that fully captures the algorithm

Verified lifted summary

Synthesized verification conditions

