Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs

Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 8

Integrarea funcțiilor măsurabile

Fie (X, \mathcal{A}) un spațiu măsurabil și $f: X \to \mathbb{R}$ o funcție simplă și \mathcal{A} -măsurabilă. Fie $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ astfel încât $f(X) = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ și, pentru $i \in \{1, \ldots, n\}, A_i = f^{-1}(\{\alpha_i\}) \in \mathcal{A}$. Atunci

$$f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}. \tag{1}$$

Vom numi scrierea funcției f sub forma (1) reprezentarea standard a lui f.

Etapa 1: Funcții simple, măsurabile, nenegative

Definiția 1. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f: X \to [0, \infty)$ o funcție simplă și \mathcal{A} -măsurabilă având reprezentarea standard $f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$.

Integrala funcției f în raport cu măsura μ se definește prin

$$\int f d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i) \in [0, \infty].$$

Spunem că f este integrabilă dacă $\int f d\mu < \infty$.

Dacă $B \in \mathcal{A}$, atunci integrala funcției f în raport cu măsura μ pe mulțimea B se definește prin

$$\int_{B} f d\mu = \int f \chi_{B} d\mu.$$

Spunem că f este integrabilă pe B dacă $\int_B f d\mu < \infty$.

Observația 1. Vom folosi notația din definiția anterioară.

- (i) Reamintim conventia $0 \cdot \infty = 0$.
- (ii) $\int_X f d\mu = \int f d\mu$.
- (iii) Uneori, dacă se dorește să se specifice variabila de integrare se folosește notația $\int f(x)d\mu(x)$.
- (iv) De fapt, în definiția integralei $\int f d\mu$ de mai sus, se poate considera orice reprezentare a funcției f ca o combinație liniară de funcții caracteristice ale unor mulțimi din \mathcal{A} care sunt disjuncte două câte două.
- (v) Dacă f are reprezentarea standard $f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$, atunci $f\chi_B = \sum_{i=1}^{n} \alpha_i \chi_{A_i \cap B}$, deci $\int_B f d\mu = \int f \chi_B d\mu = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap B)$.
- (vi) Fie $g: B \to [0, \infty)$. Reamintim că g este simplă și \mathcal{A}_B -măsurabilă dacă și numai dacă există o funcție $\widetilde{g}: X \to [0, \infty)$ simplă și \mathcal{A} -măsurabilă astfel încât $\widetilde{g}|_B = g$. Astfel, considerând spațiile cu măsură $(B, \mathcal{A}_B, \mu|_{\mathcal{A}_B})$, respectiv (X, \mathcal{A}, μ) , avem egalitatea:

$$\int g d\mu|_{\mathcal{A}_B} = \int_B \widetilde{g} d\mu \left(= \int \widetilde{g} \chi_B d\mu \right).$$

Propoziția 1. Fie (X, \mathcal{A}, μ) un spațiu cu măsură, $\alpha \in [0, \infty)$ și $f, g: X \to [0, \infty)$ funcții simple și \mathcal{A} -măsurabile. Atunci:

- (i) $\int (\alpha f) d\mu = \alpha \int f d\mu$;
- (ii) $\int (f+g)d\mu = \int fd\mu + \int gd\mu$;
- (iii) dacă $f \leq g$ (adică $\forall x \in X, \ f(x) \leq g(x)$), atunci $\int f d\mu \leq \int g d\mu$.

Lema 1. Fie (X, \mathcal{A}, μ) un spaţiu cu măsură şi $f: X \to [0, \infty)$ simplă şi \mathcal{A} -măsurabilă. Atunci funcţia $\nu: \mathcal{A} \to [0, \infty]$, $\nu(B) = \int_B f d\mu$ este o măsură pe \mathcal{A} .

Etapa 2: Funcții măsurabile, nenegative

Fie (X, \mathcal{A}, μ) un spațiu cu măsură. Pentru $f: X \to [0, \infty]$ \mathcal{A} -măsurabilă, notăm

$$S_f = \{g : X \to [0, \infty) : g \text{ simplă, } A\text{-măsurabilă şi } g \leq f\}.$$

Definiția 2. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f: X \to [0, \infty]$ o funcție \mathcal{A} -măsurabilă. *Integrala* funcției f în raport cu măsura μ se definește prin

$$\int f d\mu = \sup \left\{ \int g d\mu : g \in \mathcal{S}_f \right\}.$$

Spunem că f este integrabilă dacă $\int f d\mu < \infty$.

Dacă $B \in \mathcal{A}$, atunci integrala funcției f în raport cu măsura μ pe multimea B se definește prin

$$\int_{B} f d\mu = \int f \chi_{B} d\mu.$$

Spunem că f este integrabilă pe B dacă $\int_{B} f d\mu < \infty$.

Observația 2. Dacă $f: X \to [0, \infty)$ este simplă și \mathcal{A} -măsurabilă, atunci sup $\left\{ \int g d\mu : g \in \mathcal{S}_f \right\} = \int f d\mu$, unde pentru ultima integrală se folosește Definiția 1, adică $\int f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$, unde $f = \sum_{i=1}^n \alpha_i \chi_{A_i}$ este reprezentarea standard a lui f. (Cu alte cuvinte, Definițiile 1 și 2 coincid pentru funcții simple, măsurabile și nenegative.)

Propoziția 2. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f, g: X \to [0, \infty]$ \mathcal{A} -măsurabile. Atunci:

- (ii) dacă $A, B \in \mathcal{A}$ cu $A \subseteq B$, atunci $\int_A f d\mu \leq \int_B f d\mu$.

Teorema 1 (Teorema convergenței monotone). Fie (X, \mathcal{A}, μ) un spațiu cu măsură şi $(f_n)_{n \in \mathbb{N}}$ un şir crescător de funcții \mathcal{A} -măsurabile, unde $f_n : X \to [0, \infty]$, $n \in \mathbb{N}$. Notăm $f = \lim_{n \to \infty} f_n$. Atunci

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

Propoziția 3. Fie (X, \mathcal{A}, μ) un spațiu cu măsură, $\alpha \in [0, \infty)$ și $f, g: X \to [0, \infty]$ funcții \mathcal{A} -măsurabile. Atunci:

- (i) $\int (\alpha f) d\mu = \alpha \int f d\mu$;
- (ii) $\int (f+g)d\mu = \int fd\mu + \int gd\mu$.

Teorema 2 (Teorema convergenței monotone pentru serii). Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $(f_n)_{n \in \mathbb{N}}$ un șir de funcții \mathcal{A} -măsurabile, unde $f_n : X \to [0, \infty]$, $n \in \mathbb{N}$. Atunci

$$\int \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu.$$

Teorema 3 (Lema lui Fatou). Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $(f_n)_{n \in \mathbb{N}}$ un șir de funcții \mathcal{A} -măsurabile, unde $f_n : X \to [0, \infty], \ n \in \mathbb{N}$. Atunci

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$