NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lee Yung Hei, Joseph Nah

MA1100 Basics of Mathematics AY 2005/2006 Sem 1

Question 1

(a) If r = 0, then for any $x \in \mathbb{R} - \mathbb{Q}$, we have $rx = 0 \in \mathbb{Q}$.

If $r \neq 0$, we claim that rx is not rational.

Assume on the contrary that we have $r \in \mathbb{Q}$ and $x \in \mathbb{R} - \mathbb{Q}$, such that $rx \in \mathbb{Q}$.

Then, $rx = \frac{a}{b}$ and $r = \frac{c}{d}$ for some $a, b, c, d \in \mathbb{Z}^+ \setminus \{0\}$.

So, $x = rx \div r = \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$, but $\frac{ad}{bc} \in \mathbb{Q}$. We have a contradiction.

Therefore, $rx \notin \mathbb{Q}$.

Question 2

Assume on the contrary that there exists an injective function $f: \mathbb{R} \to \mathbb{Q}$.

Since \mathbb{Q} is countable, there exists a bijective function $g:\mathbb{Q}\to\mathbb{N}$.

This give us $gf: \mathbb{R} \to \mathbb{N}$ to be an injective function, thus $|\mathbb{R}| \leq |\mathbb{N}|$.

This give us \mathbb{R} to be countable, a contradiction.

Therefore such an injective function from \mathbb{R} to \mathbb{Q} does not exists.

Question 3

- (i) 1, 2, 5, 7, 10, 14, 35, 70.
- (ii) 3 of them are prime, i.e. 2,5 and 7.
- (iii) There are 6 positive divisors of 18, i.e. 1, 2, 3, 6, 9 and 18.
- (iv) 2 of them are prime, i.e. 2 and 3.
- (v) Yes. We can see from the list in (i) that 70 has no divisors of the form k^2 , $k \in \mathbb{Z}^+ \setminus \{1\}$.
- (vi) No. Since 9|18 and $9 = 3^2$, 18 is not square free.
- (vii) Let n be a positive square-free integer. This give us n to be a multiple of distinct prime numbers, i.e. $n = p_1 p_2 \dots p_m$, (where $m \in \mathbb{Z}^+$). Let the set of positive divisors of n be D and the set of prime factors of n be $S = \{p_1, p_2, \dots, p_m\}$. Consider the well-defined function $f: D \to S$, such that $f(d) = \{p \text{ is prime } | p|d \}$. If $f(d_1) = f(d_2)$, then $p|d_1$ iff $p|d_2$ for all prime p of n. Since n is positive square-free integer, so is d_1 and d_2 . This give us $d_1 = d_2$. Thus f is injective.

Let $s = \{p_{i_1}, p_{i_2}, \dots p_{i_k}\}$ for some $1 \le i_1 < i_2 < \dots < i_k \le m$. Then we have $d = p_{i_1} p_{i_2} \cdots p_{i_k} \in D$ such that f(d) = s. Thus f is surjective.

Therefore f is bijective, and so $|D| = |\mathcal{P}(S)| = 2^k$ for some $k \in \mathbb{Z}^+$.

Question 4

(i) We notice that gcd(31349, -35351) = gcd(31349, 35351). Using Euclidean algorithm, we have

$$35351 = (31349)(1) + 4002$$

 $31349 = (4002)(7) + 3335$
 $4002 = (3335)(1) + 667$
 $3335 = (667)(5)$.

Therefore, d = 667.

(ii) Using the equations generated in (4i.), we have,

$$d = 4002 - (3335)(1) = 4002 - [31349 - (4002)(7)](1)$$

$$= (31349)(-1) + (4002)(8) = (31349)(-1) + [35351 - (31349)(1)](8)$$

$$= (35351)(8) + (31349)(-9)$$

$$= (31349)(-9) - (35351)(-8).$$

 $\therefore s = -9$ and t = -8 satisfy the condition.

(iii) Since

$$(31349)(-9) - (35351)(-8) = (31349)(-9) - (35351)(-8) + (31349)(35351) - (35351)(31349)$$
$$= (31349)(-9 + 35351) - (35351)(-8 + 31349)$$
$$= (31349)(35342) - (35351)(31341).$$

 $\therefore x = 35342$ and y = 31341 is another pair that satisfy the condition.

Question 5

- (i) $\pm 1, \pm 2, \pm 3$ and ± 6 .
- (ii) 6.
- (iii) Since there exists primes p_i and p_j such that $p_i \neq p_j$, we have $\gcd(p_i, p_j) = 1$. Notice that $\gcd(p_1, p_2, ..., p_n) \mid p_i$ and $\gcd(p_1, p_2, ..., p_n) \mid p_j$, thus $\gcd(p_1, p_2, ..., p_n) \mid \gcd(p_i, p_j) = 1$. This give us $\gcd(p_1, p_2, ..., p_n) = 1$.

Page: 2 of 3

(iv) Let $gcd(c_1, c_2, \dots, c_k, c_{k+1}) = d_1, gcd(c_1, c_2, \dots, c_k) = d_2$, and $gcd(d_2, c_{k+1}) = d_3$.

Since $d_1 \mid c_i$ for all i = 1, 2, ..., k, we have $d_1 \mid \gcd(c_1, c_2, ..., c_k) = d_2$. Also $d_1 \mid c_{k+1}$. Thus $d_1 \mid \gcd(d_2, c_{k+1}) = d_3$.

On the other hand, we also have $d_3 \mid d_2$.

Since $d_2 \mid c_i$ for all i = 1, 2, ..., k, we have $d_3 \mid c_i$ for all i = 1, 2, ..., k.

Together with the fact that $d_3 \mid c_{k+1}$, we have $d_3 \mid \gcd(c_1, c_2, \dots, c_k, c_{k+1}) = d_1$.

(v) We shall prove a stronger claim.

Let P_n be the proposition that there exists integers s_1, s_2, \ldots, s_n such that

$$\gcd(c_1, c_2, \dots, c_n) = s_1c_1 + s_2c_2 + \dots + s_nc_n,$$

for $n \geq 2$.

The existence of $s_1, s_2 \in \mathbb{Z}^+$ for $gcd(c_1, c_2) = s_1c_1 + s_2c_2$ is guaranteed by Euclidean Algorithm. Thus P_2 is true.

Assume P_k is true for some $k \geq 2$, i.e. there exists integers a_1, a_2, \ldots, a_k such that

$$\gcd(c_1, c_2, \dots, c_k) = a_1c_1 + a_2c_2 + \dots + a_nc_k.$$

Consider P_{k+1} .

We have from result of (5iv.),

$$\gcd(c_1, c_2, \dots, c_k, c_{k+1}) = \gcd(\gcd(c_1, c_2, \dots, c_k), c_{k+1})$$

$$= \gcd(a_1c_1 + a_2c_2 + \dots + a_kc_k, c_{k+1}) \quad \text{(from induction hypothesis)}$$

$$= b_1(a_1c_1 + a_2c_2 + \dots + a_kc_k) + b_2c_{k+1} \quad \text{(result of Euclidean Algorithm)}$$

$$= (a_1b_1)c_1 + (a_2b_1)c_2 + \dots + (a_kb_1)c_k + b_2c_{k+1}$$

$$= s_1c_1 + s_2c_2 + \dots + s_kc_k + s_{k+1}c_{k+1}, \quad s_i \in \mathbb{Z}, \ i = 1, 2, \dots, k+1.$$

Thus P_{k+1} is true.

Since P_2 is true, and P_k is true implies that P_{k+1} is true, by Mathematical Induction, P_n is true for all $n \geq 2$. In particular, it is true for all $n \geq 3$, which is what we wanted.

(vi) Notice that gcd(24, -36, 60, 90) = 6 = gcd(24, 90). By trial and error, or the Euclidean Algorithm on 24 and 90, we can get gcd(24, -36, 60, 90) = 24(4) + 36(0) + 60(0) + 90(-1). Thus we have $\{s_1, s_2, s_3, s_4\} = \{4, 0, 0, -1\}$ to be one possible solution.

Page: 3 of 3