(a)
$$\begin{bmatrix} H \\ H - N - H \\ I \\ H \end{bmatrix}$$

0.2 Indicate the charge of the atom marked blue in the following electron-dot structure:

- (a) $\begin{bmatrix} H \overline{C} H \\ H \end{bmatrix}$ (b) $\begin{bmatrix} H \overline{O} H \\ H \end{bmatrix}$

0.3 Indicate the charge of the atom marked blue in the following electron-dot structure that follow the octet rule:

- (a) $|\overline{\underline{O}}|$ $|\overline{\underline{O}}|$
- (b) $|\underline{\overline{Q}} \underline{\overline{Xe}} \underline{\overline{Q}}|$ $|\underline{Q}| |\underline{Q}|$

0.4 Indicate the charge of the atom marked blue in the following electron-dot structure that follow the octet rule:

(b) $|\overline{\underline{O}} - \overline{\underline{C}}| - \overline{\underline{O}}$

0.5 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) HF (b) HCl

0.7 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) CO (b) NO

0.6 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) F_2 (b) O_2

0.8 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) ICl (b) HI

0.9 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) CH_4 (b) CH_3Cl (c) OH_2

0.11 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) $SeCl_2$ (b) CH_2O

 $0.10\,$ Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) HCN (b) CO₂

0.12 Draw electron-dot structures for the following molecules that obey the octet rule, given that the first atom listed is the central atom: (a) NH_3 (b) NCl_3

0.13 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) BeH_2 (b) PCl_5 (c) SF_4 (d) ClF_3

0.15 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) ClF_5 (b) XeF_4

0.14 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) BH₃ (b) BH₂F (c) POCl₃ (d) ClO_4^-

0.16 Draw electron-dot structures for the following molecules given that the first atom listed is the central atom. Some of the atoms might not obey the octet rule. If the species has a charge indicate the location of the charge: (a) I_3^- (b) Br_3^- (c) SF_6

0.17 Given the skeletal structure below, draw the lewis structure of the molecule:

$$\begin{array}{c} H & O \\ H-C-C-C-O-H \\ I \\ \end{array}$$

0.20 Given the skeletal structure below, draw the lewis structure of the molecule:

$$\begin{array}{c} H \\ H - C - N - C - O \\ I \\ H \end{array}$$

0.18

0.19 Given the skeletal structure below, draw the lewis structure of the molecule:

0.25 Indicate the magnetic (paramagnetic or diamagnegtic) configuration of the molecule with MO configuration: $\sigma_{2s}^2 \sigma_{2s}^{2*} \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{2*}$

0.22 Indicate the hybridization of: (a) NH₃ (b) CH₄ (c) H₂O

0.26 Indicate the magnetic (paramagnetic or diamagnegic) configuration of the molecule with MO configuration: $\sigma_{2s}^2 \sigma_{2s}^{2*} \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{3*}$

0.23 Using the MO order provided below

$$\sigma_{2s}\sigma_{2s}^*\pi_{2p}\sigma_{2p}\pi_{2p}^*\sigma_{2p}^*$$

obtain the MO configuration for: (a) O_2 (b) F_2^+

 $\boldsymbol{0.27}$ Identify the molecular shape of the molecules: (a) H_2 (b) $BeCl_2$ (c) BF_3

0.24 Using the MO order provided below

$$\sigma_{2s}\sigma_{2s}^*\pi_{2p}\sigma_{2p}\pi_{2p}^*\sigma_{2p}^*$$

obtain the MO configuration for: (a) B2 (b) C2

 $\boldsymbol{0.28}$ Identify the molecular shape of the molecules: (a) NH_3 (b) CH_4

0.29 Given the following Lewis structures, predict the molecular geometry and angles:

(a) H-B-H

(b) $|\underline{C}|$ $|\underline{C}|$ $|\underline{C}|$

0.30 Given the following Lewis structures, predict the molecular geometry and angles:

0.31 Given the following Lewis structures, predict the molecular geometry and angles:

 $(a) \begin{array}{c|c} |\overline{Cl}| |\overline{Cl}| \\ \hline (a) & |\overline{\underline{Cl}}| - P \\ |\underline{Cl}| \\ |\overline{\underline{Fl}}| \\ \hline (b) & |\overline{\underline{F}} - S - \overline{\underline{F}}| \\ |\underline{F}| \end{array}$

0.32 Given the following Lewis structures, predict the molecular geometry and angles:

0.33 Given the following Lewis structures, predict the molecular geometry and angles:

- $(a) \begin{array}{ccc} & |\overline{F}| & |\overline{F}| \\ & & \\ & & \\ |\underline{F}| & |\underline{F}| & |\underline{F}| \\ & |\overline{F}| & |\overline{F}| \\ & & \\ (b) & |\underline{\overline{F}}| & |\underline{F}| \\ & |\underline{F}| & |\underline{F}| \\ \end{array}$

0.34 Given the following Lewis structures, predict the molecular geometry and angles:

 $\begin{array}{ccc} \text{(a)} & |\underline{F} \vdash \stackrel{\frown}{C} \stackrel{\rightarrow}{I} = |\underline{F}| \\ \text{(b)} & [& |\underline{B}\underline{F}| \stackrel{\frown}{B}\underline{F} - |\underline{B}\underline{F}| &]^{-} \end{array}$

0.35 Identify the name of the following molecular structure:

0.38 Identify the name of the following molecular structure:

0.36 Identify the name of the following molecular structure:

0.39 Identify the name of the following molecular structure:

0.37 Identify the name of the following molecular structure:

0.40 Identify the name of the following molecular structure:

0.22 (a) NH₃ (sp^3) (b) CH₄ (sp^3) (c) H₂O (sp^3) **0.23** (a) O₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{2*}$) (b) F₂⁺ ($\sigma_{2s}^2 \sigma_{2s}^2 \sigma_{2p}^2 \pi_{2p}^4 \pi_{2p}^{3*}$) **0.24** (a) B₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \pi_{2p}^2 \pi_{2p}^2$) (b) C₂ ($\sigma_{2s}^2 \sigma_{2s}^2 \pi_{2p}^2 \pi_{2p}^4$) **0.25** paramagnetic **0.26** paramagnetic **0.27** (a) H₂ (Linear) (b) BeCl₂ (Linear) (c) BF₃ (Trigonal planar) **0.28** (a) NH₃ (Trigonal pyramidal) (b) CH₄ (Tetrahedral) **0.29** (a) ABE₃; planar trigonal; 120° (b) AB₄; tetrahedral; 109.5° **0.30** (a) AB₂E₂; bent; 109° (b) AB₂E₂; bent; 109° ABE₃; planar trigonal; 120° **0.31** (a) AB₅; trigonal bipyramidal; 120° and 90° (b) AB₄E; see-saw; 120° and 90° **0.32** (a) AB₄; tetrahedral; 109.5° (b) AB₂; linear; 180° **0.33** (a) AB₆; octahedral; 180° and 90° (b) AB₅E; square pyramidal; 90° **0.34** (a) AB₃E₂; T-shaped; 180° and 90° (b) AB₂E₃; linear; 180° **0.35** square planar **0.36** Octahedral **0.37** see-saw **0.38** bent **0.39** t-shaped **0.40** square pyramidal **0.41** (a) NH₃ (b) CO₂ **0.42** (a) H₂O (b) HCl (c) H₂