МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича (СПбГУТ)»

СПб ГУТ)))

Звуковое вещание

ЛАБОРАТОРНАЯ РАБОТА № 4

Исследование характеристик кодера MP3 Lame в режимах работы CBR, ABR и VBR

Выполнил:

Балан К. А.

Студент группы:

РЦТ-22

Преподаватель:

Ишутина О. Ю.

Санкт-Петербург

1. Исследование частотных характеристик кодека MP3 "Lame 3.98.4" в режиме CBR при разных скоростях цифрового потока

- 1. Сгенерируем сигнал белого шума длительностью 60 секунд, с уровнем -6 дБ, частотой дискретизации 48 кГц и с числом разрядов 16 в программе Ocenaudio.
 - 2. Сохраним его в формате Wave.
- 3. С помощью программы Lame сконвентируем сигнал в формат MP3 со скоростями цифрового потока 32, 64, 128 и 256 кбит/с.
- 4. С помощью программы Ocenaudio получим спектрограммы полученных сигналов. Занесем спектрограммы в отчет.

Рисунок 1 – Спектрограмма сигнала с уровнем -6 дБ и скоростью цифрового потока 32.

Рисунок 2 – Спектрограмма сигнала с уровнем -6 дБ и скоростью цифрового потока 64.

Рисунок 3 – Спектрограмма сигнала с уровнем -6 дБ и скоростью цифрового потока 128.

Рисунок 4 – Спектрограмма сигнала с уровнем -6 дБ и скоростью цифрового потока 256.

2. Исследование частотных характеристик кодека MP3 "Lame 3.98.4" в режиме CBR при разных уровнях тестовых сигналов

- 1. Сгенерируем сигналы белого шума длительностью 60 секунд, с уровнями -40, -60 и -80 дБ, частотой дискретизации 48 кГц и с числом разрядов 16.
 - 2. Сохраним их в формате Wave.
- 3. С помощью программы Lame сконвентируем сигналы в формат MP3 со скоростью цифрового потока 256 кбит/с.
- 4. С помощью программы Ocenaudio получим спектрограммы полученных сигналов. Занесем спектрограммы в отчет.
 - 5. Заполним таблицу 1.

Рисунок 5 – Спектрограмма сигнала с уровнем -40 дБ и скоростью цифрового потока 256.

Рисунок 6 – Спектрограмма сигнала с уровнем -60 дБ и скоростью цифрового потока 256.

Рисунок 7 — Спектрограмма сигнала с уровнем -80 дБ и скоростью цифрового потока 256. Таблица 1 — Характеристики кодека MP3 в режиме CBR.

Файл	Уровень сигнала, дБ	Полоса частот, кГц	Скорость, кбит/с	f _s , кГц	K
6CBR256	-6	20300	256	48	3
6CBR128	-6	20300	128	48	6
6CBR64	-6	16700	64	48	12
6CBR32	-6	8500	32	22,05	24
40CBR256	-40	20500	256	48	3
60CBR256	-60	20300	256	48	3
80CBR256	-80	0	256	48	3

3. Исследование кодека MP3 в режимах работы CBR, ABR и VBR

- 1. Сгенерируем сигнал белого шума длительностью 60 секунд, с уровнем -20 дБ, частотой дискретизации 48 кГц и с числом разрядов 16.
- 2. С помощью программы Lame сконвентируем сигнал в четыре новых в формате MP3 в режимах CBR, ABR, VBR0 и VBR9 со скоростью цифрового потока 128 кбит/с.
 - 3. Заполним таблицу 2.

Таблица 2 – Характеристики кодека MP3 в режимах CBR, ABR, VBR0 и VBR9.

Файл	Уровень сигнала, дБ	Размер, кбайт	Скорость, кбит/с	f _{s,} кГц	K
20CBR128	-20	960768	125,1	48	6
20ABR128	-20	889728	115,85	48	6,47
20VBR0	-20	853440	111,13	48	6,74
20VBR9	-20	247340	32,2	22,05	23,29

4. Контрольные вопросы

- Какие скорости цифровых потоков возможны в формате MP3?
 Допустимы следующие скорости передачи данных: 32, 40, 48, 56, 64, 80,
 96, 112, 128, 160, 192, 224, 256 и 320 Кбит/с.
- 2. Какие частоты дискретизации допустимы на входе и выходе кодера MP3?

Допустимые частоты дискретизации для кодера MP3 составляют 32 kHz, 44.1 kHz и 48.

- 3. В каких пределах может осуществляться компрессирование? В рамках опыта максимальное компрессирование достигло 24.
- 4. Как зависит коэффициент компрессирования CBR, ABR, VBR, какой из них обеспечивает больший коэффициент компрессирования?

Коэффициент компрессирования соответственно увеличивается. VBR9 обеспечивает наибольший коэффициент компрессирования.

5. В каких пределах может изменяться коэффициент компрессирования в режиме VBR?

От 64 до 320 кбит/с.

- 6. Как рассчитывается коэффициент компрессирования? Необходимо разделить исходную скорость цифрового потока на полученную.
- 7. Как меняется частотная характеристика кодека MP3 в зависимости от скорости цифрового потока?

при более низких битрейтах частотные диапазоны могут терять качество, и высокие частоты сжимаются сильнее.

- 8. Зависит ли частотная характеристика кодека MP3 от уровня сигнала? Да
- 9. Как и почему меняется частота дискретизации выходного сигнала кодера MP3 при изменении скорости цифрового потока?

Частота дискретизации уменьшается в пользу сжатия веса дорожки.