# Cálculo Numérico Material Complementar do Método da Bissecção

### $Prof^{\underline{a}}$ . $Dr^{\underline{a}}$ Jussara Maria Marins

### 1 Método da Bissecção: Exemplo 1

A idéia desse método parte da antiga estratégia de guerra de "*Dividir para Conquistar*". O gato Garfield repete uma jocosa variação dessa estratégia, frequentemente, com seu dono.<sup>1</sup>



Figura 1: Se você não pode convencê-los, confunda-os (divida-os). "

O método divide o intervalo ao meio, **sem confundir**, e se analisa o sinal da função. No intervalo inicial deve haver uma variação do sinal positivo para negativo ou vice-versa.

Havendo uma variação de sinal, se a função for contínua, então haverá um ou um número ímpar de zeros da função.<sup>2</sup>

Para fazer o gráfico da função manualmente, fazemos primeiro uma tabela com um intervalo para x e um determinado incremento.

Vamos acompanhar, com um exemplo da função polinomial:  $p(x) = f(x) = 3x^3 - 7x^2 + 3$  no intervalo [-5,5]. Fazendo os cálculos, para x = -5, temos na função  $3 * (-5)^3 - 7(-5)^2 + 3 = -547$ , e depois os demais valores até x = 5, temos a seguinte tabela:

| Tabela1 |                          |  |  |  |  |  |
|---------|--------------------------|--|--|--|--|--|
| X       | $f(x) = 3x^3 - 7x^2 + 3$ |  |  |  |  |  |
| -5.00   | -547.0000                |  |  |  |  |  |
| -3.00   | -141.0000                |  |  |  |  |  |
| -1.00   | -7.0000                  |  |  |  |  |  |
| 1.00    | -1.0000                  |  |  |  |  |  |
| 3.00    | 21.0000                  |  |  |  |  |  |
| 5.00    | 203.0000                 |  |  |  |  |  |

Observamos que de x=-5 até x=5 a função passou de um valor negativo para positivo e, portanto, podemos dizer que a função valeu zero e cortou o eixo x, em pelo menos **um** ou **três** lugares. Nesse

<sup>&</sup>lt;sup>1</sup>A frase é de atribuída a Harry Truman.

<sup>&</sup>lt;sup>2</sup>Teorema do Cálculo.

caso, só pode ser até 3 lugares, pois sabemos de antemão, que, por ser um polinômio de grau 3, então temos 3 zeros. Eles podem ser todos diferentes, ou iguais ou ainda complexos. Se o polinômio tem grau n ele tem n zeros<sup>3</sup>. Quando a função não é polinomial, não podemos afirmar algo sobre o número de zeros, à priori. Com os dados da tabela 1 podemos fazer um esboço gráfico do polinômio, conforme a figura a seguir.



Figura 2: Esboço 1 incompleto de  $p(x) = 3x^3 - 7x^2 + 3$ 

Para detalhar mais, ou dar um "zoom", temos a seguinte tabela:

| Tabela 2 |                          |  |  |  |  |  |
|----------|--------------------------|--|--|--|--|--|
| X        | $f(x) = 3x^3 - 7x^2 + 3$ |  |  |  |  |  |
| -5.00    | -547.0000                |  |  |  |  |  |
| -4.00    | -301.0000                |  |  |  |  |  |
| -3.00    | -141.0000                |  |  |  |  |  |
| -2.00    | -49.0000                 |  |  |  |  |  |
| -1.00    | -7.0000                  |  |  |  |  |  |
| 0.00     | 3.0000                   |  |  |  |  |  |
| 1.00     | -1.0000                  |  |  |  |  |  |
| 2.00     | -1.0000                  |  |  |  |  |  |
| 3.00     | 21.0000                  |  |  |  |  |  |
| 4.00     | 83.0000                  |  |  |  |  |  |
| 5.00     | 203.0000                 |  |  |  |  |  |

Agora vemos que há mais lugares com variação de sinal. De x=-1 até x=0, no subintervalo [-1,0] a função trocou de sinal, passou de negativo: -7 para positivo: 3, logo, neste subintervalo, deve haver um lugar, onde ela fica nula. De x=0 até x=1, no subintervalo [0,1], houve outra variação de sinal, passou de positivo para negativo. Podemos fazer um segundo esboço do gráfico, conforme a figura 2, usando os pontos (-2, -49), (-1, -7), (0, 3), (1, -1), (2, -1).

<sup>&</sup>lt;sup>3</sup>Teorema Fundamental da Álgebra.



Figura 3: Esboço 2 de  $p(x) = 3x^3 - 7x^2 + 3$ 

Contudo esse esboço ainda não está completo. De x=2 para x=3, em [2,3] houve outra variação de sinal, e portanto a função cruza o eixo x, que não apareceu nesse esboço.

Podemos aumentar a tabela e fazermos mais subdivisões.

| Tabela 3 |                          |  |  |  |  |  |
|----------|--------------------------|--|--|--|--|--|
| X        | $f(x) = 3x^3 - 7x^2 + 3$ |  |  |  |  |  |
| -2.00    | -49.0000                 |  |  |  |  |  |
| -1.50    | -22.8750                 |  |  |  |  |  |
| -1.00    | -7.0000                  |  |  |  |  |  |
| -0.50    | 0.8750                   |  |  |  |  |  |
| 0.00     | 3.0000                   |  |  |  |  |  |
| 0.50     | 1.6250                   |  |  |  |  |  |
| 1.00     | -1.0000                  |  |  |  |  |  |
| 1.50     | -2.6250                  |  |  |  |  |  |
| 2.00     | -1.0000                  |  |  |  |  |  |
| 2.50     | 6.1250                   |  |  |  |  |  |
| 3.00     | 21.0000                  |  |  |  |  |  |

Essa tabela mostra que realmente **esse polinômio possui 3 raízes reais e diferentes entre si**. Logo, para a equação  $3x^3 - 7x^2 + 3 = 0$ , temos uma raiz negativa em [-1,-0.5] e duas raízes positivas, sendo uma delas no intervalo [0.5,1] e outra no intervalo [2,2.5]. <sup>4</sup>

Usando programas com mais recursos,<sup>5</sup> temos a seguinte figura com os gráficos da mesma função em intervalos diferentes, tanto, para o eixo x como para o eixo y, sendo que no segundo, que está numa visão mais ampliada, vemos claramente que temos 3 raízes de p(x) = 0.

<sup>&</sup>lt;sup>4</sup>Existe um estudo, mais completo para separar as raízes de uma equação polinomial, que não é nosso assunto, agora.

<sup>&</sup>lt;sup>5</sup>Gnuplot, Geogebra ou outros.



Figura 4: Esboço 2 - incompleto de  $p(x) = 3x^3 - 7x^2 + 3$ 

Vimos que, no método da Bissecção, temos que determinar  ${\bf o}$  ponto médio do intervalo [a,b] calculado por

$$\overline{x_m} = \frac{a+b}{2}$$
 Método da Bissecção

e verificar o sinal da função neste ponto. De acordo com a variação de sinal entre os valores de

$$f(a), f(\overline{x_m}), f(b)$$

escolhemos outro intervalo para continuar o processo de bissecção. Como a função pode ir de sinal positivo para negativo ou de negativo para positivo, um critério simples e automático <sup>6</sup> é observarmos a seguinte regra:

$$Sef(a)*f(x_m) < 0$$
 então 
$$(I) \left\{ \begin{array}{l} \text{a extremidade $a$ permanece} \\ b \leftarrow x_m \\ f(b) \leftarrow f(x_m) \end{array} \right.$$
 caso contrário 
$$(II) \left\{ \begin{array}{l} a \leftarrow x_m \\ f(a) \leftarrow f(x_m) \\ \text{a extremidade $b$ permanece} \end{array} \right.$$

Visualmente, basta olharmos o sinal de  $f(x_m)$  e comparar com o sinal das extremidades (a, f(a)) e (b, f(b)) e escolhermos adequadamente o próximo intervalo.

Vamos nos deter no intervalo [0.5,1] onde há uma variação de sinal e uma raiz e aplicar o método da Bissecção.

Vamos seguir os seguintes passos, uma vez que já sabemos qual é o intervalo: [0.5,1.0] e que f(a) = f(0.5) = 0.1625 e f(b) = f(1.0) = -1.0.

1. cálculo de  $x_m$ 

$$x_m = \frac{0.5 + 1}{2} = 0.75$$

2. cálculo de  $f(x_m)$  $f(x_m) = f(0.75) = +0.3281250$ 



Figura 5: Bissecção do intervalo no ponto médio de [0.5,1]

3. aplicar o critério, ou um esboço gráfico:

Como  $f(a) * f(x_m) > 0$ ,(caso II) temos que  $a \leftarrow x_m = 0.75$  e a extremidade b permanece no lugar.

- 4. determinar o novo intervalo [a, b].
- 5. calcular o erro no valor de x,  $|x_m x_{m-1}|$  ou de |f(x)|, conforme especificado, pelo problema.
- 6. se atingiu o erro desejado, então parar, senão voltar ao item 1.

Podemos continuar e colocar os valores na seguinte tabela:

|   | Tabela 3 |        |          |           |          |           |          |  |
|---|----------|--------|----------|-----------|----------|-----------|----------|--|
|   | a        | b      | f(a)     | f(b)      | $x_m$    | $f(x_m)$  | erro     |  |
| 1 | 0.5      | 1.0    | 1.625000 | -1.0      | 0.75     | 0.328125  | 0.250000 |  |
| 2 | 0.75     | 1.0    | 0.328125 | -1.0      | 0.875    | -0.349609 | 0.125    |  |
| 3 | 0.75     | 0.875  | 0.328125 | -0.349609 | 0.8125   | -0.011963 | -0.0625  |  |
| 4 | 0.75     | 0.8125 | 0.328125 | -0.011963 | 0.78125  | 0.158051  | -0.03125 |  |
| 5 | 0.78125  | 0.8125 | 0.158051 | -0.011963 | 0.796875 | 0.073002  | 0.015625 |  |
| 6 | 0.796875 | 0.8125 | 0.073002 | -0.011963 | 0.804688 | 0.030505  | 0.007813 |  |
| 7 | 0.804688 | 0.8125 | 0.030505 | -0.011963 | 0.808594 | 0.009267  | 0.003906 |  |

Com isso ficamos com a aproximação final para a raiz com  $x_7 = 0.808594$  e o erro  $|x_7 - x_6| = 0.003906 < \epsilon = 0.005$ . Logo, se substituirmos  $x_7$  no polinômio  $p(x) = 3x^3 - 7x^2 + 3$  teremos  $p(x) \cong 0$ .

## 2 Raiz negativa em [-1,-0.5]

Determine a raiz negativa da mesma equação  $3x^3-7x^2+3=0$ , partindo de [-1.0,-0.5], com erro em x dado por  $\epsilon=0.001$ .

Temos: f(a) = f(-1.0) = -7 e f(b) = f(-0.5) = 0.875, mostrando que podemos aplicar o método da Bissecção.

<sup>&</sup>lt;sup>6</sup>Serve para ser usado em programas e planilhas.

|   | a        | b         | f(a)      | f(b)     | $x_m$     | $f(x_m)$  | erro      |
|---|----------|-----------|-----------|----------|-----------|-----------|-----------|
| 1 | -1.0     | -0.5      | -7.0      | 0.875    | -0.75     | -2.203125 | 0.25      |
| 2 | -0.75    | -0.5      | -2.203125 | 0.875    | -0.625    | -0.466797 | 0.125     |
| 3 | -0.625   | -0.5      | -0.466797 | 0.875    | -0.5625   | 0.251221  | 0.0625    |
| 4 | -0.625   | -0.5625   | -0.466797 | 0.251221 | -0.593750 | -0.095734 | -0.031250 |
| 5 | -0.59375 | -0.5625   | -0.095734 | 0.251221 | -0.578125 | 0.080723  | 0.015625  |
| 6 | -0.59375 | -0.578125 | -0.095734 | 0.080723 | -0.585938 | -0.006756 | -0.007813 |

Logo a raiz negativa é  $x_6 = -0.585938$ .

### 3 Raiz positiva em [2,3]

Ainda com o mesmo polinômio calcule a terceira raiz, em [2,3], com erro em x dado por  $\epsilon = 0.005$ . Onserve que não podemos partir de [1.2], pois nesse intervalo não há variação de sinal.

|   | a        | b        | f(a)      | f(b)      | $x_m$    | $f(x_m)$  | erro      |
|---|----------|----------|-----------|-----------|----------|-----------|-----------|
| 1 | 2.000000 | 3.000000 | -1.000000 | 21.000000 | 2.500000 | 6.125000  | 0.500000  |
| 2 | 2.000000 | 2.500000 | -1.000000 | 6.125000  | 2.250000 | 1.734375  | -0.250000 |
| 3 | 2.000000 | 2.250000 | -1.000000 | 1.734375  | 2.125000 | 0.177734  | -0.125000 |
| 4 | 2.000000 | 2.125000 | -1.000000 | 0.177734  | 2.062500 | -0.456299 | -0.062500 |
| 5 | 2.062500 | 2.125000 | -0.456299 | 0.177734  | 2.093750 | -0.150848 | 0.031250  |

A Bissecção é um método bem simples e se aplica em várias situações onde temos variação de sinal. Este método tem convergência lenta para a raiz, desde que não tenhamos erros de arredondamento no cálculo do valor da função, o que em certos casos pode acontecer.

Quando queremos um processo mais rápido ou que a função possui um zero, mas não chega a cortar o eixo x, causando variação de sinal, como ocorre nas raízes duplas, quadrúplas, etc., podemos usar o método de **Newton**.

#### 4 Exercício

Calcular uma aproximação das seguintes funções com erro em x e  $\epsilon = 0.005$ . Faça um esboço gráfico e um estudo das funções, antes de determinar os intervalos com raízes.

$$1. \ \sqrt{x} - \sin(3x) = 0$$

**Resposta**:  $x_m = 0.710938$  e erro =0.007813.

Verifique que a função tem outra raiz em [0.1,0.25] e além disso, o valor de x=0 também anula a função. Existem mais raízes nessa função?

2. 
$$p(x) = 4x^3 - 32x^2 + 72x - 49 = 0$$

Este polinômio tem 3 raízes distintas. Encontre-as.

**Resposta**:  $x_m = 0.71875$ 

3.  $p(x) = 4x^3 - 32x^2 + 77x - 49$  Este polinômio tem uma raíz dupla, e portanto não pode ser calculada pela bissecção e uma raiz simples que é muito fácil de ser encontrada.

Dê-nos um retorno, para ver se o esse documento lhe ajudou a esclarecer o assunto e se ficou mais claro!