Übungen zu Einführung in die Algebra

Jendrik Stelzner

9. Oktober 2016

Inhaltsverzeichnis

1	Gruppentheorie	2
2	Lösungen	3

1 Gruppentheorie

Übung 1. Ein Kriterium für maximale Untergruppen

Es sei G ein Gruppe und $H\subseteq G$ eine Untergruppe, so dass [G:H] endlich und prim ist. Zeigen Sie, dass H eine maximale echte Untergruppe von G ist. Entscheiden Sie, ob H notwendigerweise normal in G ist.

2 Lösungen

Lösung 1.

Es sei $p\coloneqq [G:H]$. Da p eine Primzahl ist gilt inbesondere $p\ne 1$, weshalb H eine echte Untergruppe von G ist. Ist $K\subsetneq G$ eine echte Untergruppe von G mit $H\subseteq K$, so gilt wegen der Multiplikativität des Index', dass

$$p = [G:H] = [G:K][K:H].$$

Da p eine Primzahl ist, gilt entweder [G:K]=p und [K:H]=1, oder [G:K]=1 und [K:H]=p. Es gilt [G:K]>1, da K eine echte Untergruppe von G ist, und somit [K:H]=1. Also ist K=H, und somit H eine maximale echte Untergruppe.

H ist nicht notwendigerweise normal in G: Für $G=S_3$ und $H=\langle (1\,2)\rangle=\{\mathrm{id},(1\,2)\}$ ist H zwar nicht normal in G, aber [G:H]=|G|/|H|=6/2=3 ist prim.