Neural Network Solvers for Combinatorial Optimization

Graph 11. Other CO Solvers (LLMs)

1

Outline of the CO Lectures

- Introduction to ML for Combinatorial Optimization (CO)
- Autoregressive (AR) CO Solvers
 - o Reinforcement learning with RNN-based networks [Bello*, Pham*, et al., ICLR 2017]
 - o Reinforcement learning with Transformer-based networks [W Kool et al., ICLR 2019]
- Non-autoregressive (NAR) CO Solvers
 - o Reinforcement learning with DIMES [R Qiu*, Z Sun* & Y Yang, NearIPS 2022]
 - o Supervised learning with DIFUSCO [Z Sun & Y Yang, NearIPS 2023]
- Pre-trained Large Language Models [C Yang et al., ICLR 2024]

4/4/2024

@Yiming Yang, 11-741 S24 Graph11 Other CO Solvers (LLMs)

2

Large Language Models as Optimizers,

(Google DeepMind: C Yang*, C Chen*, et al., ICLR 2024)

Key Idea

- Proposing OPRO (Optimization by Prompting) as a generic optimizer for solving any problems (e.g., regression or TSP) described in natural language;
- Each prompt contains a task description and a few solution/score pairs for previously solved problem instances;
- Using a LLM (with the prompt) to generate solutions for each new problem instance;
- Evaluate each new solution and adding the new solution/score pair to the prompt;
- o Repeating the above steps until a termination condition is met.

4/4/2024

@Yiming Yang, 11-741 S24 Graph11 Other CO Solvers (LLMs)

2

3

Learn to Solve Problems with OPRO

Yang, Chengrun, et al. "Large language models as optimizers." arXiv preprint arXiv:2309.03409 (2023).

Showcase of OPRO in Solving TSP

Yang, Chengrun, et al. "Large language models as optimizers." arXiv preprint arXiv:2309.03409 (2023).

5

Evaluation Results

\overline{n}	optimality gap (%)				# steps (# successes)			
	NN	FI	text-bison	gpt-3.5-turbo	gpt-4	text-bison	gpt-3.5-turbo	gpt-4
10	13.0 ± 1.3	3.2 ± 1.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	40.4 ± 5.6 (5)	46.8 ± 9.3 (5)	9.6 ± 3.0 (5)
15	9.4 ± 3.7	1.2 ± 0.6	4.4 ± 1.3	1.2 ± 1.1	0.2 ± 0.2	N/A (0)	202.0 ± 41.1 (4)	$58.5 \pm 29.0 (4)$
20	16.0 ± 3.9	0.2 ± 0.1	30.4 ± 10.6	4.4 ± 2.5	1.4 ± 0.6	N/A (0)	$438.0 \pm 0.0 \ (1)$	195.5 ± 127.6 (2)
50	19.7 ± 3.1	$\textbf{9.8} \pm 1.5$	$219.8 \pm \text{13.7}$	133.0 ± 6.8	$11.0 \pm \text{2.6}$	N/A (0)	N/A (0)	N/A (0)

- Baseline NN (Nearest Neighbor Heuristic)
 - At each step, select the closest node from the current partial solution
- Baseline FI (Farthest Insertion)
 - o At each step, add a new node that maximize the minimal insertion cost which is defined as

$$c(k) = \min_{i,j} d(i,k) + d(k,j) - d(i,j)$$

4/4/2024

@Yiming Yang, 11-741 S24 Graph11 Other CO Solvers (LLMs)

0

Concluding Remarks

Concept proving

 ORPO shows that LLMs with prompts in a loop can learn to optimize (mimicking gradient descent?)

Main limitations

 It cannot scale to large graphs due to the limited input length; similarly, it cannot handle a large training set of <solution, value> pairs.

Strong baselines are missing

- o Comparison with DIMES and DIFUSCO on graphs with n=10000 nodes?
- o Comparison with classic exact solvers?
- o Comparison with LLMs for code generation?

4/4/2024

@Yiming Yang, 11-741 S24 Graph11 Other CO Solvers (LLMs)

- 1