QR Algorithm

[What happens when you run [V,D] = eig(A) in MatLab ?]

Let $A \in \mathbb{F}^{n \times n}$ be nonsingular where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Setting $A_0 = A$, the QR algorithm produces a sequence of matrices A_1, A_2, \ldots by the following process:

for j = 1, 2, ...

- (i) Find a QR decomposition $A_{j-1} = Q_{j-1}R_{j-1}$ of A_{j-1} where R_{j-1} has positive diagonal entries.
- (iii) Set $A_j = R_{j-1}Q_{j-1}$.

Observe that $A_j = Q_{j-1}^* A_{j-1} Q_{j-1}$. Thus *all* the matrices of the sequence $\{A_j\}$ are unitarily (orthogonally if $\mathbb{F} = \mathbb{R}$) similar to A.

Let $A \in \mathbb{F}^{n \times n}$ be nonsingular where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Setting $A_0 = A$, the QR algorithm produces a sequence of matrices A_1, A_2, \ldots by the following process:

for j = 1, 2, ...

(i) Find a QR decomposition $A_{j-1} = Q_{j-1}R_{j-1}$ of A_{j-1} where R_{j-1} has positive diagonal entries.

(iii) Set $A_j = R_{j-1}Q_{j-1}$.

Observe that $A_j = Q_{j-1}^* A_{j-1} Q_{j-1}$. Thus *all* the matrices of the sequence $\{A_j\}$ are unitarily (orthogonally if $\mathbb{F} = \mathbb{R}$) similar to A.

Under suitable conditions, the sequence $\{A_j\}$ converges to a Schur form of A.

Theorem Given any nonsingular matrix $A \in \mathbb{C}^{n \times n}$, let $A = Q_1 R_1$ and $A = Q_2 R_2$ be two QR decompositions of A. If $A_1 = Q_1^* A Q_1$ and $A_2 = Q_2^* A Q_2$, then there exists a unitary diagonal matrix D such that $A_2 = D^* A_1 D$.

Theorem Given any nonsingular matrix $A \in \mathbb{C}^{n \times n}$, let $A = Q_1 R_1$ and $A = Q_2 R_2$ be two QR decompositions of A. If $A_1 = Q_1^* A Q_1$ and $A_2 = Q_2^* A Q_2$, then there exists a unitary diagonal matrix D such that $A_2 = D^* A_1 D$.

Therefore in practice, we do not try to find a QR decomposition with R having positive diagonal entries.

The QR iterations may be carried out as follows:

for
$$j = 1, 2, ...$$

(i) Find reflectors $Q_{j-1}^{(1)}, Q_{j-1}^{(2)}, ..., Q_{j-1}^{(n-1)}$ such that
$$Q_{i-1}^{(n-1)} \cdots Q_{i-1}^{(2)} Q_{i-1}^{(1)} A_{i-1} = R_{i-1}$$

(iii) Set
$$A_i = Q_{i-1}^{(n-1)} \cdots Q_{i-1}^{(2)} Q_{i-1}^{(1)} A_{i-1} Q_{i-1}^{(1)} Q_{i-1}^{(2)} \cdots Q_{i-1}^{(n-1)}$$
.

This costs $O(n^3)$ flops per iteration. But if we find a unitary (orthogonal if $\mathbb{F} = \mathbb{R}$) matrix Q such that $H = Q^*AQ$ is upper Hessenberg and start the QR algorithm on H instead of A then the cost per iteration comes down to $O(n^2)$ flops.

If A is Hermitian or symmetric, then H is tridiagonal and the cost per iteration reduces further to O(n) flops per iteration.

Assume without loss of generality that A is a properly or irreducible upper Hessenberg matrix. Then A_j is of the form

$$A_j = \left[egin{array}{cccc} a_{11}^{(j)} & a_{12}^{(j)} & \cdots & a_{1n}^{(j)} \ a_{21}^{(j)} & a_{22}^{(j)} & \cdots & a_{2n}^{(j)} \ & \ddots & \ddots & dots \ & & a_{n,n-1}^{(j)} & a_{nn}^{(j)} \end{array}
ight].$$

If $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of A ordered such that

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

and $|\lambda_k| > |\lambda_{k+1}|$ for some $k, 1 \le k \le n-1$, then under suitable conditions $|a_{k+1,k}^{(j)}| \to 0$ as $j \to \infty$ linearly at the rate $|\lambda_{k+1}|/|\lambda_k|$.

If k < n-1, then putting $a_{k+1,k}^{(j)}$ to 0 when it becomes very small reduces A_j to the form

$$A_{j} = \left[\begin{array}{cc} A_{11}^{(j)} & A_{12}^{(j)} \\ 0 & A_{22}^{(j)} \end{array} \right]$$

where $A_{11}^{(j)}$ is $k \times k$ and $A_{22}^{(j)}$ is $(n-k) \times (n-k)$ and the remaining QR iterations can proceed on $A_{11}^{(j)}$ and $A_{22}^{(j)}$ respectively.

If k < n-1, then putting $a_{k+1,k}^{(j)}$ to 0 when it becomes very small reduces A_j to the form

$$A_{j} = \left[\begin{array}{cc} A_{11}^{(j)} & A_{12}^{(j)} \\ 0 & A_{22}^{(j)} \end{array} \right]$$

where $A_{11}^{(j)}$ is $k \times k$ and $A_{22}^{(j)}$ is $(n-k) \times (n-k)$ and the remaining QR iterations can proceed on $A_{11}^{(j)}$ and $A_{22}^{(j)}$ respectively.

In particular, if k=n-1, then $|a_{n,n-1}^{(j)}|$ becomes very small for large enough j and consequently $a_{nn}^{(j)}$ approaches an eigenvalue of A. Once $a_{n,n-1}^{(j)}$ is small enough, it is put to zero. The eigenvalue $\lambda_n (\approx a_{nn}^{(j)})$ is extracted and the next QR iterations can occur with A_j replaced by A_j (1:n-1,1:n-1).

If k < n-1, then putting $a_{k+1,k}^{(j)}$ to 0 when it becomes very small reduces A_j to the form

$$A_{j} = \left[\begin{array}{cc} A_{11}^{(j)} & A_{12}^{(j)} \\ 0 & A_{22}^{(j)} \end{array} \right]$$

where $A_{11}^{(j)}$ is $k \times k$ and $A_{22}^{(j)}$ is $(n-k) \times (n-k)$ and the remaining QR iterations can proceed on $A_{11}^{(j)}$ and $A_{22}^{(j)}$ respectively.

In particular, if k=n-1, then $|a_{n,n-1}^{(j)}|$ becomes very small for large enough j and consequently $a_{nn}^{(j)}$ approaches an eigenvalue of A. Once $a_{n,n-1}^{(j)}$ is small enough, it is put to zero. The eigenvalue $\lambda_n (\approx a_{nn}^{(j)})$ is extracted and the next QR iterations can occur with A_j replaced by $A_j(1:n-1,1:n-1)$.

The above processes are called *deflation*.