Remark 3.7 Notice that, in clauses 9–13 above, the future includes the present. This means that, when we say 'in all future states,' we are including the present state as a future state. It is a matter of convention whether we do this, or not. As an exercise, you may consider developing a version of LTL in which the future excludes the present. A consequence of adopting the convention that the future shall include the present is that the formulas $G p \to p$, $p \to q U p$ and $p \to F p$ are true in every state of every model.

Definition 3.8 Suppose $\mathcal{M} = (S, \to, L)$ is a model, $s \in S$, and ϕ an LTL formula. We write $\mathcal{M}, s \models \phi$ if, for every execution path π of \mathcal{M} starting at s, we have $\pi \models \phi$.

If \mathcal{M} is clear from the context, we may abbreviate $\mathcal{M}, s \models \phi$ by $s \models \phi$.

Here are some examples of LTL formulas:

- $(((\mathbf{F}\,p) \wedge (\mathbf{G}\,q)) \to (p\ \mathbf{W}\ r))$
- $(F(p \to (Gr)) \lor ((\neg q) \cup p))$, the parse tree of this formula is illustrated in Figure 3.1.
- (p W (q W r))
- $((G(Fp)) \rightarrow (F(q \lor s))).$

Convention 3.2 The unary connectives (consisting of \neg and the temporal connectives X, F and G) bind most tightly. Next in the order come U, R and W; then come \land and \lor ; and after that comes \rightarrow .

$$\left(\left(\operatorname{F} p \right) \wedge \left(\operatorname{G} q \right) \rightarrow \left(p \operatorname{W} r \right) \right)$$

- $p \le (q \le r)$
- GF $p \rightarrow F(q \lor s)$.

The following are *not* well-formed formulas:

- U r since U is binary, not unary
 p G q since G is unary, not binary.

Figure 3.1. The parse tree of $(F(p \to Gr) \lor ((\neg q) \lor p))$.

Definition 3.3 A subformula of an LTL formula ϕ is any formula ψ whose parse tree is a subtree of ϕ 's parse tree.

The subformulas of $p \le (q \le r)$, e.g., are $p, q, r, q \le r$ and $p \le (q \le r)$.

Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of all computation paths beginning in a particular state.

of s_0 : $\pi \vDash p \land q$ holds since the atomic symbols p and q are contained in the node of s_0 : $\pi \vDash p \land q$ for every path π beginning in s_0 .

- 2. $\mathcal{M}, s_0 \vDash \neg r$ holds since the atomic symbol r is not contained in node s_0 .
- 3. $\mathcal{M}, s_0 \vDash \top$ holds by definition.
- 4. $\mathcal{M}, s_0 \models Xr$ holds since all paths from s_0 have either s_1 or s_2 as their next state, and each of those states satisfies r.
- 5. $\mathcal{M}, s_0 \models X (q \land r)$ does not hold since we have the rightmost computation path $s_0 \to s_2 \to s_2 \to s_2 \to \ldots$ in Figure 3.5, whose second node s_2 contains r, but not q.
- 6. $\mathcal{M}, s_0 \models G \neg (p \land r)$ holds since all computation paths beginning in s_0 satisfy $G \neg (p \land r)$, i.e. they satisfy $\neg (p \land r)$ in each state along the path. Notice that $G \phi$ holds in a state if, and only if, ϕ holds in all states reachable from the given state.
- 7. For similar reasons, $\mathcal{M}, s_2 \models Gr$ holds (note the s_2 instead of s_0).
- 8. For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F(\neg q \land r) \to FGr$. This says that if any path π beginning in s gets to a state satisfying $(\neg q \land r)$, then the path π satisfies FGr. Indeed this is true, since if the path has a state satisfying $(\neg q \land r)$ then (since that state must be s_2) the path does satisfy FGr. Notice what FGr says about a path: eventually, you have continuously r.

- 9. The formula G F p expresses that p occurs along the path in question infinitely often. Intuitively, it's saying: no matter how far along the path you go (that's the G part) you will find you still have a p in front of you (that's the F part). For example, the path $s_0 \to s_1 \to s_0 \to s_1 \to \ldots$ satisfies G F p. But the path $s_0 \to s_2 \to s_2 \to s_2 \to \ldots$ doesn't.
- 10. In our model, if a path from s_0 has infinitely many ps on it then it must be the path $s_0 \to s_1 \to s_0 \to s_1 \to \ldots$, and in that case it also has infinitely many rs on it. So, $\mathcal{M}, s_0 \models G F p \to G F r$. But it is not the case the other way around! It is not the case that $\mathcal{M}, s_0 \models G F r \to G F p$, because we can find a path from s_0 which has infinitely many rs but only one p.

Definition 3.9 We say that two LTL formulas ϕ and ψ are semantically equivalent, or simply equivalent, writing $\phi \equiv \psi$, if for all models \mathcal{M} and all paths π in \mathcal{M} : $\pi \models \phi$ iff $\pi \models \psi$.

In propositional logic, we saw that \land and \lor are duals of each other, ing that if you push a \neg past a \land , it becomes a \lor , and vice versa:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi.$$

Similarly, F and G are duals of each other, and X is dual with itself:

$$\neg G \phi \equiv F \neg \phi \qquad \neg F \phi \equiv G \neg \phi \qquad \neg X \phi \equiv X \neg \phi.$$

Also U and R are duals of each other:

$$\neg(\phi \cup \psi) \equiv \neg\phi \cup \neg\psi \qquad \neg(\phi \cup \psi) \equiv \neg\phi \cup \neg\psi.$$