Les anneaux $\mathbb{Z}/n\mathbb{Z}$

25.1 Congruences dans \mathbb{Z} . Anneaux $\mathbb{Z}/n\mathbb{Z}$

On rappelle que si n est un entier naturel et a, b deux entiers relatifs, on dit que a et b sont congrus modulo n, si b-a est un multiple de n, ce qui se note $a \equiv b$ (n) (voir le paragraphe 23.2).

Cette relation de congruence modulo n est une relation d'équivalence sur $\mathbb Z$ et pour tout entier relatif a, on note :

$$\overline{a} = \{ b \in \mathbb{Z} \mid b \equiv a \ (n) \} = \{ b \in \mathbb{Z} \mid n \text{ divise } b - a \}$$
$$= \{ b = a + qn \mid q \in \mathbb{Z} \} = a + n\mathbb{Z}$$

sa classe d'équivalence modulo n.

L'ensemble de toutes ces classes d'équivalence modulo n est noté $\frac{\mathbb{Z}}{n\mathbb{Z}}$. C'est l'ensemble quotient de \mathbb{Z} par le sous-groupe $n\mathbb{Z}$. On dit aussi que c'est l'ensemble des classes résiduelles modulo n

Pour simplifier, on note:

$$\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}} = \{ \overline{a} \mid a \in \mathbb{Z} \} .$$

Dans le cas particulier où n=0, la congruence modulo 0 est tout simplement la relation d'égalité et pour tout entier relatif a, on a :

$$\overline{a} = a + 0\mathbb{Z} = \{a\}$$

de sorte que :

$$\mathbb{Z}_0 = \{ \{a\} \mid a \in \mathbb{Z} \}$$

est en bijection avec \mathbb{Z} . On identifie alors \mathbb{Z}_0 à \mathbb{Z} .

Dans le cas particulier où n=1, deux entiers relatifs quelconques sont toujours congrus modulo 1 et pour tout entier relatif a, on a :

$$\overline{a} = a + \mathbb{Z} = \mathbb{Z}$$

de sorte que :

$$\mathbb{Z}_0 = \{\mathbb{Z}\} = \{\overline{0}\}$$

est identifié à $\{0\}$.

Théorème 25.1 Pour tout entier naturel non nul n, on a :

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}.$$

Cet ensemble est donc de cardinal égal à n et il est en bijection avec l'ensemble de tous les restes modulo n.

Démonstration. Le théorème de division euclidienne nous permet d'écrire tout entier relatif a sous la forme a=qn+r avec $0 \le r \le n-1$, ce qui entraı̂ne que $\overline{a}=\overline{r}$. On a donc $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$. Pour montrer que cet ensemble est de cardinal égal à n, il nous reste à montrer que tous ses éléments sont distincts. Si $\overline{r}=\overline{s}$ avec r et s compris entre 0 et n-1, on a alors s-r=qn avec $q \in \mathbb{Z}$ et l'encadrement $0 \le |s-r|=|q|$ $n \le n-1$ dans \mathbb{N} impose q=0, ce qui équivaut à r=s.

Considérant qu'un anneau a au moins deux éléments et que $\mathbb{Z}_1 = \{\overline{0}\}$, on suppose dans ce qui suit que $n \geq 2$.

La compatibilité de la relation de congruence modulo n avec l'addition et la multiplication sur \mathbb{Z} (voir le paragraphe 23.2) va nous permettre de transporter la structure d'anneau de \mathbb{Z} à \mathbb{Z}_n , un tel prolongement étant unique.

On désigne par π_n la surjection canonique de \mathbb{Z} sur \mathbb{Z}_n , c'est l'application qui associe à tout entier relatif sa classe modulo n.

Tout antécédent par π_n d'un élément x de \mathbb{Z}_n est appelé un représentant de x.

Théorème 25.2 Il existe une unique structure d'anneau commutatif unitaire sur \mathbb{Z}_n telle que la surjection canonique π_n soit un morphisme d'anneaux.

Démonstration. On vérifie tout d'abord qu'on définit deux opérations internes sur \mathbb{Z}_n avec :

$$\forall (x,y) \in \mathbb{Z}_n^2, \begin{cases} x+y = \overline{a+b} \\ xy = \overline{ab} \end{cases}$$

où $a \in \mathbb{Z}$ est un représentant de x et $b \in \mathbb{Z}$ un représentant de b. En effet, si a' est un autre représentant de a' et b' un représentant de b' on a alors a' et b' et b' modulo b' et a' et b' modulo b' et a' et b' et a' et

On vérifie ensuite facilement que ces deux lois confèrent à \mathbb{Z}_n une structure d'anneau commutatif unitaire et que π_n est bien un morphisme d'anneaux.

Réciproquement s'il existe une structure d'anneau commutatif unitaire sur \mathbb{Z}_n qui fait de π_n un morphisme d'anneaux, on a alors pour tous $x = \pi_n(a)$, $y = \pi_n(b)$ dans \mathbb{Z}_n :

$$\begin{cases} x + y = \pi_n(a) + \pi_n(b) = \pi_n(a+b) = \overline{a+b} \\ xy = \pi_n(a)\pi_n(b) = \pi_n(ab) = \overline{ab} \end{cases}$$

ce qui prouve l'unicité.

25.2 Groupes cycliques

L'entier n est toujours supposé au moins égal à 2.

Si G est un groupe ayant un nombre fini d'éléments son cardinal est appelé l'ordre de G.

On rappelle que si G est un groupe et a un élément de G, on définit alors le sous-groupe de G engendré par a par :

$$\langle a \rangle = \left\{ a^k \mid k \in \mathbb{Z} \right\}$$

Groupes cycliques 449

dans le cas où la loi est notée multiplicativement ou :

$$\langle a \rangle = \{ ka \mid k \in \mathbb{Z} \}$$

dans le cas où la loi est notée additivement.

On dit que a est d'ordre fini dans G si ce groupe $\langle a \rangle$ est fini et l'ordre de a est alors l'ordre de $\langle a \rangle$ (voir le paragraphe 23.5.1).

Définition 25.1 On dit qu'un groupe G est monogène s'il est engendré par l'un de ses éléments, c'est-à-dire s'il existe a dans G tel que $G = \langle a \rangle$. Un groupe monogène fini est dit cyclique.

Remarque 25.1 Un groupe cyclique est nécessairement commutatif.

Remarque 25.2 Un groupe cyclique engendré par un élément $a \neq 1$ (le neutre de G) a au moins deux élément, 1 et a.

Exemple 25.1 Tout élément x de \mathbb{Z}_n s'écrivant :

$$x = \overline{k} = \underbrace{\overline{1} + \dots + \overline{1}}_{k \ fois} = k\overline{1}$$

avec $\overline{k} = \overline{0}$ si, et seulement si, k est multiple de n. Il en résulte que $(\mathbb{Z}_n, +)$ est un groupe cyclique d'ordre (ou de cardinal) n. En fait, à isomorphisme près, c'est le seul.

Exemple 25.2 Le groupe:

$$\left\langle e^{\frac{2i\pi}{n}} \right\rangle = \left\{ e^{\frac{2ik\pi}{n}} \mid 0 \le k \le n-1 \right\}$$

des racines n-ièmes de l'unité est cyclique d'ordre n.

Exemple 25.3 Si θ est un réel tel que $\frac{\theta}{2\pi}$ n'est pas rationnel, alors le groupe :

$$\langle e^{i\theta} \rangle = \{ e^{ik\theta} \mid k \in \mathbb{Z} \}$$

est monogène infini puisque $e^{ik\theta} \neq 1$ pour tout $k \in \mathbb{Z}$.

Théorème 25.3 Tout groupe cyclique d'ordre n est isomorphe à \mathbb{Z}_n .

Démonstration. Soit $G = \langle a \rangle = \{1, a, a^2, \dots, a^{n-1}\}$ un groupe cyclique d'ordre n. L'application $\varphi_a : k \mapsto a^k$ réalise un morphisme surjectif de groupes de $(\mathbb{Z}, +)$ sur (G, \cdot) de noyau $\ker (\varphi_a) = n\mathbb{Z}$ (par définition de l'ordre de a).

Si j,k sont deux entiers relatifs tels que $j \equiv k$ (n) on a alors k-j=qn et $a^k=a^ja^{qn}=a^j$. On peut donc définir l'application $\overline{\varphi_a}$ de \mathbb{Z}_n dans G par $\overline{\varphi_a}: \overline{k} \mapsto a^k$.

On vérifie facilement que $\overline{\varphi_a}$ est un morphisme de groupes surjectif de $(\mathbb{Z}_n, +)$ sur (G, \cdot) de noyau ker $(\overline{\varphi_a}) = \{\overline{0}\}$. Cette application réalise donc un isomorphisme de groupes de $(\mathbb{Z}_n, +)$ sur (G, \cdot) .

Dans le cas où n est premier, on a le résultat plus précis suivant qui est une conséquence du théorème de Lagrange (théorème 20.9).

Théorème 25.4 Soit p un nombre premier. Tout groupe G d'ordre p est cyclique, donc isomorphe à \mathbb{Z}_p .

Démonstration. Tout élément de $G \setminus \{1\}$ est d'ordre p (puisque son ordre divise p et est différent de 1), il en résulte que G est cyclique d'ordre p, donc isomorphe à \mathbb{Z}_p .

Le résultat qui suit nous dit que les sous groupes d'un groupe cyclique sont cycliques.

Théorème 25.5 Tous les sous groupes de \mathbb{Z}_n sont cycliques d'ordre qui divise n. Réciproquement pour tout diviseur d de n, il existe un unique sous groupe de G d'ordre d, c'est le groupe cyclique engendré par $q = \frac{n}{d}$:

$$H = \langle \overline{q} \rangle = \{ \overline{0}, \overline{q}, \cdots, (d-1) \overline{q} \}.$$

Démonstration. Soit H un sous-groupe de \mathbb{Z}_n . Le théorème de Lagrange nous dit que son ordre d est un diviseur de n. On note $q = \frac{n}{d}$.

Pour tout \overline{a} dans H, on a $d\overline{a} = \overline{0}$, soit da = kn, ou encore a = kq, c'est-à-dire que $\overline{a} = k\overline{q}$ est dans le sous-groupe $\langle \overline{q} \rangle$ de \mathbb{Z}_n engendré par \overline{q} . On a donc $H \subset \langle \overline{q} \rangle$, ce qui entraı̂ne card $(\langle \overline{q} \rangle) \geq d$. Mais $d\overline{q} = \overline{n} = \overline{0}$ nous dit que \overline{q} est d'ordre au plus égal à d. En définitive, $\langle \overline{q} \rangle$ est d'ordre d, donc égal à H. Un sous-groupe d'ordre d de \mathbb{Z}_n , s'il existe, est donc unique.

Réciproquement, soit d un diviseur de n, $q = \frac{n}{d}$ et $H = \langle \overline{q} \rangle$ le sous groupe de \mathbb{Z}_n engendré par \overline{q} . Si δ est l'ordre de H, on a $\delta \overline{q} = \overline{0}$, soit $\delta q = kn = kqd$ et $\delta = kd \geq d$. Mais on a aussi $d\overline{q} = \overline{0}$, ce qui entraı̂ne $\delta \leq d$ et donc $\delta = d$.

Il existe donc un unique sous-groupe d'ordre d de \mathbb{Z}_n , c'est $\langle \overline{q} \rangle$.

25.3 Fonction indicatrice d'Euler

Définition 25.2 On dit qu'un élément \bar{a} de \mathbb{Z}_n est inversible s'il existe \bar{b} dans \mathbb{Z}_n tel que $\bar{a}\bar{b}=\bar{1}$.

On note \mathbb{Z}_n^* l'ensemble des éléments inversibles de \mathbb{Z}_n . C'est un groupe pour la loi multiplicative.

Théorème 25.6 Soit a un entier relatif. Les propriétés suivantes sont équivalentes :

- 1. \overline{a} est inversible dans \mathbb{Z}_n ;
- 2. a est premier avec n;
- 3. \overline{a} est un générateur de $(\mathbb{Z}_n, +)$.

Démonstration. Dire que \overline{a} est inversible dans \mathbb{Z}_n équivaut à dire qu'il existe \overline{b} dans \mathbb{Z}_n tel que $\overline{ab} = \overline{1}$, encore équivalent à dire qu'il existe b, q dans \mathbb{Z} tels que ab + qn = 1, ce qui équivaut à dire que a et n sont premiers entre eux (théorème de Bézout).

En traduisant le fait que \overline{a} est inversible dans \mathbb{Z}_n par l'existence d'un entier relatif b tel que $\overline{a}\overline{b} = b\overline{a} = \overline{1}$, on déduit que cela équivaut à dire que $\overline{1}$ est dans le groupe engendré par \overline{a} et donc que ce groupe est \mathbb{Z}_n .

Définition 25.3 On appelle fonction indicatrice d'Euler la fonction qui associe à tout entier naturel non nul n, le nombre, noté $\varphi(n)$, d'entiers compris entre 1 et n qui sont premiers avec n.

Le théorème précédent nous dit que pour tout entier $n \geq 2$, $\varphi(n)$ est le nombre de générateurs du groupe cyclique $(\mathbb{Z}_n, +)$ (ou de n'importe quel groupe cyclique d'ordre n) ou encore que c'est le nombre d'éléments inversibles de \mathbb{Z}_n .

Du théorème de Lagrange, on déduit immédiatement le résultat suivant.

Théorème 25.7 (Euler) Pour tout entier relatif a premier avec n, on a $a^{\varphi(n)} \equiv 1$ (n).

Démonstration. Si a est premier avec n, alors \overline{a} appartient à \mathbb{Z}_n^* qui est un groupe d'ordre $\varphi(n)$ et en conséquence son ordre divise $\varphi(n)$ (théorème de Lagrange), ce qui entraı̂ne $\overline{a}^{\varphi(n)} = \overline{1}$, ou encore $a^{\varphi(n)} \equiv 1$ (n).

Si n est premier, alors tout entier compris entre 1 et n-1 est premier avec n, ce qui implique que $\varphi(n) = n-1$ et le théorème d'Euler devient le petit théorème de Fermat.

Théorème 25.8 (Fermat) Soit p un entier naturel premier. Pour tout entier relatif a on a :

$$a^p \equiv a \ (p)$$
.

Démonstration. Le théorème d'Euler nous dit que $a^{p-1} \equiv 1$ (p) si a est premier avec n, c'est-à-dire si a n'est pas multiple de p, ce qui entraı̂ne $a^p \equiv a$ (p). Pour a multiple de p, on a $a^p \equiv a \equiv 0$ (p).

La réciproque de ce théorème est fausse comme nous le montrera l'étude des nombres de Carmichaël au paragraphe ??. Par exemple on a $a^{561} \equiv a$ (561) pour tout entier relatif a avec $561 = 3 \cdot 11 \cdot 17$ non premier.

Le théorème de Fermat peut être utilisé pour calculer des congruences avec des grands nombres. Si p est un nombre premier impair, n,m deux entiers naturels, l'entier n n'étant pas multiple de p, en effectuant les divisions euclidiennes par p et par p-1, on n=qp+r, m=q'(p-1)+s avec $1 \le r \le p-1$, $0 \le s \le p-2$ et :

$$n^m \equiv r^s \ (p)$$

Par exemple on a $2003^{2003} \equiv 4$ (5). En effet $2003 = 5 \cdot 400 + 3$ et $2003 = 4 \cdot 500 + 3$.

Dans le cas où n est premier tous les éléments de $\mathbb{Z}_n \setminus \{\overline{0}\}$ sont inversibles et en conséquence \mathbb{Z}_n est un corps. En fait on a le résultat plus précis suivant.

Théorème 25.9 Pour $n \ge 2$ il y équivalence entre :

- 1. n est premier;
- 2. \mathbb{Z}_n est un corps;
- 3. \mathbb{Z}_n est un intègre.

Démonstration. On vient de voir que pour n premier \mathbb{Z}_n est un corps.

De manière générale, tout corps est intègre.

Supposons \mathbb{Z}_n intègre et soit d un diviseur de n différent de n dans \mathbb{N} . Il existe donc un entier q compris entre 2 et n tel que n = qd et dans \mathbb{Z}_n on a $\overline{q}\overline{d} = \overline{0}$ avec $\overline{d} \neq \overline{0}$, ce qui impose $\overline{q} = \overline{0}$, donc q = n et d = 1. L'entier n est donc premier.

Remarque 25.3 L'implication $(3) \Rightarrow (2)$ est aussi conséquence du fait que tout anneau unitaire fini et intègre est un corps (théorème de Wedderburn). Si A est un anneau fini intègre, alors pour tout $a \in A \setminus \{0\}$ l'application $x \mapsto ax$ est injective de A dans A, donc bijective, ce qui entraîne l'existence de $a' \in A$ tel que aa' = e (e est le neutre pour la multiplication).

Ce résultat nous permet de retrouver le petit théorème de Fermat.

On peut également en déduire le théorème de Wilson.

Théorème 25.10 (Wilson) Un entier n est premier si et seulement si $(n-1)! \equiv -1$ (n).

Les anneaux $\mathbb{Z}/n\mathbb{Z}$

Démonstration. Si n est premier alors \mathbb{Z}_n est un corps commutatif et tout élément \overline{k} de \mathbb{Z}_n^* est racine du polynôme $X^{n-1} - \overline{1}$, on a donc $X^{n-1} - \overline{1} = \prod_{k=1}^{n-1} (X - \overline{k})$ dans $\mathbb{Z}_n[X]$ et en évaluant

ce polynôme en $\overline{0}$, il vient $-\overline{1} = \prod_{k=1}^{n-1} \left(-\overline{k}\right) = (-1)^{n-1} \overline{(n-1)!}$. Pour n=2, on a $-\overline{1} = \overline{1}$ et pour $n \geq 2$ premier on a n impair et $-\overline{1} = \overline{(n-1)!}$ dans \mathbb{Z}_n .

Réciproquement si $n \geq 2$ est tel que $\overline{(n-1)!} = -\overline{1}$ dans \mathbb{Z}_n , alors tout diviseur d de n compris entre 1 et n-1 divisant (n-1)! = -1 + kn va diviser -1, ce qui donne d=1 et l'entier n est premier.

Le calcul de $\varphi(n)$ pour $n \geq 2$ peut se faire en utilisant la décomposition de n en facteurs premiers grâce au théorème chinois.

Théorème 25.11 (chinois) Les entiers n et m sont premiers entre eux si, et seulement si, les anneaux \mathbb{Z}_{nm} et $\mathbb{Z}_n \times \mathbb{Z}_m$ sont isomorphes.

Démonstration. Pour tout entier relatif k, on note \overline{k} sa classe modulo nm, k sa classe modulo n et k sa classe modulo m.

Le produit cartésien $\mathbb{Z}_n \times \mathbb{Z}_m$ est naturellement muni d'une structure d'anneau commutatif unitaire avec les lois + et \cdot définies par :

$$\begin{cases} \begin{pmatrix} \stackrel{\cdot}{j},\stackrel{\cdot}{k} \end{pmatrix} + \begin{pmatrix} \stackrel{\cdot}{j'},\stackrel{\cdot}{k'} \end{pmatrix} = \begin{pmatrix} \stackrel{\cdot}{j}+j',k+k' \end{pmatrix} \\ \stackrel{\cdot}{(j,k)} \cdot \begin{pmatrix} \stackrel{\cdot}{j'},\stackrel{\cdot}{k'} \end{pmatrix} = \begin{pmatrix} \stackrel{\cdot}{j}+j',k+k' \end{pmatrix} \end{cases}$$

Supposons n et m premiers entre eux. L'application $\varphi: k \mapsto (k, k)$ est un morphisme d'anneaux de \mathbb{Z} dans $\mathbb{Z}_n \times \mathbb{Z}_m$ et son noyau est formé des entiers divisibles par n et m donc par nm puisque ces entiers sont premiers entre eux, il se factorise donc en un morphisme injectif d'anneaux de \mathbb{Z}_{nm} dans $\mathbb{Z}_n \times \mathbb{Z}_m$ par $\overline{\varphi}: \overline{k} \mapsto (k, k)$. Ces deux anneaux ayant même cardinal, l'application $\overline{\varphi}$ réalise en fait un isomorphisme d'anneaux de \mathbb{Z}_{nm} dans $\mathbb{Z}_n \times \mathbb{Z}_m$.

Si n et m ne sont pas premiers entre eux les groupes additifs \mathbb{Z}_{nm} et $\mathbb{Z}_n \times \mathbb{Z}_m$ ne peuvent être isomorphes puisque $\overline{1}$ est d'ordre nm dans \mathbb{Z}_{nm} et tous les éléments de $\mathbb{Z}_n \times \mathbb{Z}_m$ ont un ordre qui divise le ppcm de n et m qui est strictement inférieur à nm.

Corollaire 25.1 Si n et m sont deux entiers naturels non nuls premiers entre eux, alors $\varphi(nm) = \varphi(n) \varphi(m)$.

Démonstration. On utilise les notations de la démonstration précédente.

La restriction de l'isomorphisme $\overline{\varphi}$ à \mathbb{Z}_{nm}^* réalise un isomorphisme de groupes multiplicatifs de \mathbb{Z}_{nm}^* sur $\mathbb{Z}_n^* \times \mathbb{Z}_m^*$, ce qui entraı̂ne :

$$\varphi\left(nm\right)=\operatorname{card}\left(\mathbb{Z}_{nm}^{*}\right)=\operatorname{card}\left(\mathbb{Z}_{n}^{*}\right)\operatorname{card}\left(\mathbb{Z}_{m}^{*}\right)=\varphi\left(n\right)\varphi\left(m\right).$$

Le calcul de $\varphi(n)$ est alors ramené à celui de $\varphi(p^{\alpha})$ où p est un nombre premier et α un entier naturel non nul.

Lemme 25.1 Soient p un nombre premier et α un entier naturel non nul. On a :

$$\varphi(p^{\alpha}) = (p-1) p^{\alpha-1}.$$

Démonstration. Si p est premier, alors un entier k compris entre 1 et p^{α} n'est pas premier avec p^{α} si et seulement si il est divisible par p, ce qui équivaut à k = mp avec $1 \le m \le p^{\alpha-1}$, il y a donc $p^{\alpha-1}$ possibilités. On en déduit alors que :

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1} = (p - 1) p^{\alpha - 1}.$$

Théorème 25.12 Si $n \ge 1$ a pour décomposition en facteurs premiers $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec $2 \le p_1 < \cdots < p_r$ premiers et les α_i entiers naturels non nuls, alors :

$$\varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right).$$

Démonstration. En utilisant les résultats précédents, on a :

$$\varphi(n) = \prod_{i=1}^{r} \varphi(p_i^{\alpha_i}) = \prod_{i=1}^{r} \varphi(p^{\alpha_i}) = \prod_{i=1}^{r} (p_i - 1) p_i^{\alpha_i - 1} = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right).$$

De ce résultat on déduit que pour tout $n \geq 3$, $\varphi(n)$ est un entier pair. En effet, pour $n = 2^{\alpha}$ avec $\alpha \geq 2$, on a $\varphi(n) = 2^{\alpha-1}$ qui est pair et pour $n = 2^{\alpha} \prod_{i=1}^{r} p_i^{\alpha_i} = p_1^{\alpha_1} m$ avec $\alpha \geq 0$, $r \geq 1$, tous les p_i étant premiers impairs, on a $\varphi(n) = (p_1 - 1) p_i^{\alpha_1 - 1} \varphi(m)$ qui est pair.

On déduit également que $\varphi(n)$ est compris entre 1 et n (ce qui se voit aussi avec la définition). En fait on a le résultat plus précis suivant.

Théorème 25.13 Pour tout entier $n \geq 2$, on a :

$$\forall n \ge 2, \ \sqrt{n} - 1 < \varphi(n) < n.$$

Démonstration. L'inégalité $\varphi(n) < n$ est une conséquence immédiate de la définition.

Pour montrer l'autre inégalité on procède en plusieurs étapes.

On s'intéresse d'abord aux valeurs n comprises entre 2 et 7. Pour ces valeurs, on a $\varphi(2) = 1 > \sqrt{2} - 1$, $\varphi(5) = 4 > \sqrt{5} - 1$ et $\varphi(3) = \varphi(4) = \varphi(6) = 2 > \sqrt{k} - 1$ pour k = 3, 4, 6.

On s'intéresse ensuite aux entiers de la forme $n = \prod_{i=1}^r p_i$ avec $3 \le p_1 < \dots < p_r$ premiers. Dans ce cas, on a :

$$\frac{\varphi\left(n\right)}{\sqrt{n}} = \prod_{i=1}^{r} \frac{p_i - 1}{\sqrt{p_i}}.$$

Pour $p \ge 3$, on a $p(p-3) \ge 0$, soit $p^2 - 3p + 1 > 0$ ou encore $(p-1)^2 p$, c'est-à-dire $p-1 > \sqrt{p}$. On en déduit donc que $\varphi(n) > \sqrt{n}$.

Considérons le cas de n impair supérieur ou égal à 7. Il s'écrit $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec $3 \leq p_1 < p_1$

 $\cdots < p_r$ premiers et $\alpha_i \ge 1$ pour tout *i* compris entre 1 et *r*. En posant $m = \prod_{i=1}^r p_i$, on a :

$$\varphi(n) = \frac{n}{m} \prod_{i=1}^{r} \varphi(p_i) = \frac{n}{m} \varphi(m)$$

et:

$$\frac{\varphi\left(n\right)}{\sqrt{n}} = \sqrt{\frac{n}{m}} \frac{\varphi\left(m\right)}{\sqrt{m}} \ge \frac{\varphi\left(m\right)}{\sqrt{m}} > 1,$$

ce qui donne $\varphi(n) > \sqrt{n}$.

Pour $n = 2^{\alpha}$ avec $\alpha \geq 3$, on a :

$$\frac{\varphi\left(n\right)}{\sqrt{n}} = 2^{\frac{\alpha}{2} - 1} = \left(\sqrt{2}\right)^{\alpha - 2} > 1$$

et $\varphi(n) > \sqrt{n}$. Pour $n = 2^{\alpha}3^{\beta}$ avec $\alpha \ge 1$, $\beta \ge 1$ et $(\alpha, \beta) \ne (1, 1)$, on a :

$$\frac{\varphi(n)}{\sqrt{n}} = 2^{\frac{\alpha}{2}} 3^{\frac{\beta}{2} - 1} = \left(\sqrt{2}\right)^{\alpha} \left(\sqrt{3}\right)^{\beta - 2} > 1$$

(pour $\beta \geq 2$ il n'y a pas de problème et pour $\beta = 1$ on a $\alpha \geq 2$ et $(\sqrt{2})^{\alpha} (\sqrt{3})^{-1} \geq \frac{2}{\sqrt{3}} > 1$), ce qui donne $\varphi(n) > \sqrt{n}$.

Enfin, si n est pair supérieur ou égal à 7, il s'écrit $n = 2^{\alpha_1} \prod_{i=2}^r p_i^{\alpha_i}$ avec $3 \leq p_2 < \cdots < p_r$ premiers et $\alpha_i \geq 1$ pour tout *i* compris entre 1 et *r*. En posant $m = 2 \prod_{i=2}^{r} p_i$, on a : :

$$\frac{\varphi\left(n\right)}{\sqrt{n}} = \sqrt{\frac{n}{m}} \frac{\varphi\left(m\right)}{\sqrt{m}} \ge \frac{\varphi\left(m\right)}{\sqrt{m}},$$

avec:

$$\frac{\varphi\left(m\right)}{\sqrt{m}} = \frac{1}{\sqrt{2}} \prod_{i=2}^{r} \frac{p_i - 1}{\sqrt{p_i}}.$$

Pour $p \ge 3$, on a $\frac{p-1}{\sqrt{p}} > 1$, donc $\frac{\varphi(m)}{\sqrt{m}} > \frac{p_2 - 1}{\sqrt{2}\sqrt{p_2}}$ et pour $p_2 \ge 5$, on a $\frac{p_2 - 1}{\sqrt{2}\sqrt{p_2}} > 1$. Il reste

à étudier le cas $p_2 = 3$, soit $n = 2^{\alpha_1} 3^{\alpha_2} r$, avec $r = \prod_{i=3}^r p_i^{\alpha_i}$ où $1 \le p_3 < \cdots < p_r$ sont premiers. Dans ce cas, on a:

$$\frac{\varphi\left(n\right)}{\sqrt{n}} = \frac{\varphi\left(2^{\alpha_{1}}3^{\alpha_{2}}\right)}{\sqrt{2^{\alpha_{1}}3^{\alpha_{2}}}} \frac{\varphi\left(r\right)}{\sqrt{r}} > 1$$

d'après ce qui précède.

On a donc ainsi montré que $\varphi(n) > \sqrt{n}$ pour tout $n \geq 7$.