Subhobrata Chatterjee

sbhchatterjee@ucdavis.edu • https://www.subhophy.com

Citizenship: India

Research interests

Quantization of manifolds/supermanifolds, geometric quantization, deformation quantization, quantum Darboux theorems

Education

2019 – Present University of California – Davis, California

PhD in Physics

Advisor: Andrew Waldron.

2014 – 2019 National Institute of Science Education and Research – Jatni, Odisha

Integrated Masters (BSc+MSc) in Physics

Advisor: Loganayagam R.

Honors and scholarships

- 2022 Departmental fellowship during the summer (UC Davis)
- 2019 Best thesis award for master's thesis (NISER, India)

 Computed and characterized novel non-local divergences arising in renormalization of non-unitary open quantum field theories.
- S N Bhatt Fellow (International Center for Theoretical Sciences, Bengaluru)

 Worked on triangle loops in open quantum field theory under the guidance of Dr. Loganayagam R.
- 2017 Indian Academy of Sciences Student Research Fellow (Delhi University, India)

 Worked on supersymmetric quantum mechanics under the guidance of Dr. Debajyoti

 Choudhury
- Finished in top 1% at the national level of National Graduate Physics Examination, India
- Awarded Certificate of Merit for outstanding academic performance in the first semester of undergrad at NISER
- 2014-2019 INSPIRE fellow throughout undergrad (NISER, India)

Research projects

Feb 2022 - Classical measurement theory and discrete systems

Present Mentor: Andrew Waldron (UC Davis).

The goal of is to develop a geometric description of classical measurements for discrete systems like bits on a computer or spin chains. While supermanifolds encode discrete degrees of freedom, the data of a bundle connection on a representative vector bundle associated to the supermanifold allows one to define positive definite inner product on the space of superfunctions.

June 2021 - **Exact quantization: beyond formality**

Present Mentor: Andrew Waldron (UC Davis).

In this project, we want to characterize sufficient conditions for exact solvability of an abelian (Fedosov) connection on the Hilbert bundle/Weyl algebra bundle. Fedosov's deformation quantization procedure only guarantees a formal solution to the quantization problem. There are examples where we can go beyond formality. Lie groups admit Maurer-Cartan frames with Lie algebra structure constants and more generally parallelizable manifolds admit global frames with structure functions. Thus such manifolds most readily admit Maurer-Cartan forms (bonafide connection). We want to investigate this phenomenon for more general class of manifolds.

June 2018 - Renormalization of open quantum field theories

Aug 2019 Mentor: Loganayagam R (ICTS)

Non-unitary open quantum field theories seem to be plagued with novel non-local divergences that do not allow usual Wilsonian renormalization. The goal of this project was to compute and characterize all non-local divergences arising in open scalar field theories. We found interesting geometric interpretations of these divergences reminiscent of the amplitudehedron program.

Teaching experience

Summer 2022, Instructor, PHY 7A: Introduction to Physics

Winter 2023 Lecturing and conducting exams on different forms of energy, energy conservation, heat, work and thermodynamics.

Spring 2022 Teaching assistant, PHY 110B: Electricity and Magnetism

Held office hours and graded homework and exams

Winter 2022	Teaching assistant, PHY 104B: Computational Methods in Physics Held office hours and graded homework and exams
Winter 2022	Teaching assistant, PHY 155: General Relativity (undergrad) Held office hours and graded homework and exams
Fall 2021	Teaching assistant, PHY 260: Introduction to General Relativity (grad) Held office hours and graded homework and exams
Spring 2021	Teaching assistant, PHY 115A: Foundations of Quantum Mechanics Held office hours and graded homework and exams
Winter 2020, Spring 2020, Summer 2020, Fall 2020, Fall 2022	Teaching assistant, PHY 7A: Introduction to Physics Held discussion labs, office hours and graded homework and exams
Fall 2019, Winter 2021, Summer 2021	Teaching assistant, PHY 7B: Introduction to Physics Held discussion labs, office hours and graded homework and exams
	Talks and Seminars
Jan 11, 2023 2021-2022	Talked about Quantization and Geometry at the Student-Run Research Seminar Talked about a variety of topics in the internal research group seminar like Fedosov quantization, classical BRST, Sasakian geometry, Batchelor's theorem etc
	Mentorship
Oct 2021 – Feb 2022	Directed Reading Program (DRP) Mentor Guided an undergraduate student in a reading project on differential geometry