

Channel Quantization Design in Multiuser MIMO Systems:

Asymptotic versus Practical Conclusions

Emil Björnson, Konstantinos Ntontin, Björn Ottersten

KTH Royal Institute of Technology ACCESS Linnaeus Center Stockholm, Sweden

Outline

Introduction

- Multiuser MIMO and multiplexing gain
- Impact of channel uncertainty

Channel Information

- Channel Directional Information (CDI)
- Channel Quality Information (CQI)

Tradeoff between CDI and CQI

- How to divide feedback bits between CDI and CQI?
- Impact of spatial correlation and number of users?
- Asymptotic analysis
- Simulations under practical conditions

Multiuser MIMO

Downlink Transmission

- One N_t -antenna transmitter
- K_r single-antenna users $(K_r \ge N_t)$
- Constraint on total power

Serve subset of users

Space-Division Multiple Access (SDMA)

Why SDMA?

- Asymptotic Performance: Multiplexing Gain
 - Sum rate at high SNR: $r \cdot \log_2(SNR) + constant$

Multiplexing Gain

- Slope in SNR [dB] vs. sum rate:
- Improves Multiplexing Gain!
 - r = #interference-free streams
 - SDMA: $r = N_t$
 - Single user: r = 1

Impact of Channel Uncertainty

- Channel State Information (CSI)
 - Estimation, quantization, and limited feedback
 - Practical systems operate under CSI uncertainty
- SDMA Requires Accurate CSI
 - Control co-user interference
 - Multiplexing gain $r \le 1$ under quantized CSI [Jindal'06]
- Sensitivity to Uncertainty
 - Single user: No interference - robust
 - SDMA:

Very sensitive - Interference-limited

Multiuser MIMO: Quantized feedback

- Each channel described by b bits
 - Low SNR: SDMA has negligible impact
 - High SNR: SDMA is interference-limited

- SDMA only useful at medium SNRs
- Increasing b = Increasing useful SNR range

Performance with Quantized CSI

- How to evaluate performance?
 - Actual sum rate: Unknown under quantized CSI
 - Ergodic sum rate: Impossible with short-term scheduling
 - Both appear in literature! Infeasible with block model:

- Exploit available quality information:
 - Select rate supported with high probability
 - ϵ -outage rate $R_{k,out}$: $\Pr\{\log_2(1 + SINR_k) \le R_{k,out}\} \le \epsilon$
 - Proposed Performance Measure:

 ϵ -outage sum rate: $R_{sum,out} = \sum_{k} R_{k,out}$

Channel Quantization Assumptions

- b feedback bits/user use efficiently
 - Maximize ϵ -outage sum rate
- Rayleigh fading channels
 - To user $k: \mathbf{h}_k \sim CN(\mathbf{0}, \mathbf{R}_k)$ (known statistics)
- Two categories of CSI
 - Direction $\mathbf{h}_k/\|\mathbf{h}_k\|$ (CDI): User selection, beamforming
 - Quality $\|\mathbf{h}_k\|^2$ (CQI): User selection, rate adaptation
 - Tradeoff in quantization Often disregarded

How to divide *b* bits between direction and quality information?

Asymptotic Observation 1: Only CDI

ϵ -Outage Sum Rate behaves as $N_t \cdot \log_2(SNR) + const$

- As SNR $\rightarrow \infty$ and for any $\epsilon > 0$
- If perfect CDI is available $(\mathbf{h}_k/\|\mathbf{h}_k\|$ for all users)

Proof idea

- Zero-forcing beamforming (as in [Jindal'06])

- Select *ε*-outage rates using statistics

Same orthogonal space

Indication

- Only directional feedback is essential?
- Does it say anything for practical SNRs?

Asymptotic Observation 2: Only CQI

ϵ -Outage Sum Rate behaves as $N_t \cdot \log_2(SNR) + const$

- As SNR → ∞ and for any $\epsilon > 0$
- If perfect CQI is available (indicator γ_k for all users)
- If number of users K increases s.t. $SNR/\log K \rightarrow c < \infty$

Proof idea

- Select strong users
- Asymptotically channels in dominating eigendirections

Strong User

Indication

- Only quality feedback is essential?
- How many users are required in practice?
- Do we exploit unreasonable tails of the channel distribution?

Weak User

Asymptotic Observation 3: No feedback

ϵ -Outage Sum Rate behaves as $N_t \cdot \log_2(SNR) + const$

- As SNR → ∞ and for any $\epsilon > 0$
- If spatial correlation increases s.t. $\frac{3NR}{\lambda_{k,k}/\lambda_{k,k}} \rightarrow c_k < \infty$

Two largest eigenvalues of \mathbf{R}_k

Proof idea

- High spatial correlation ⇔ Channel directions known

Strong Spatial Correlation

Indication

- No feedback is actually needed?
- How much spatial correlation is required?

Conclusions from Asymptotic Analysis

- Diverse Observations
 - Only CDI feedback is needed
 - Only CQI feedback is needed (many users)
 - No feedback is needed (much spatial correlation)
- What Applies to Practical Scenarios?
 - Illustrated by simulations

Simulations

- Simple SDMA with Quantized Feedback
 - d bits of CDI: Correlated Grassmannian codebook \longrightarrow Separate
 - q bits of CQI: Entropy maximizing codebook
 - Fixed total bits: b = d + q
 - Perfect CSI at receivers
- Resource Allocation
 - $N_t = 4$ transmit antennas
 - Random users on a circle:

- Scheduling algorithm from [Trivellato'07]
- Approximate lower bound on SINR: $\widehat{\text{SINR}}_k$
- Fade-margin α : $\Pr\{\log_2(1 + SINR_k) \le \log_2(1 + \alpha \widehat{SINR}_k)\} \le 0.05$

Simulations: Uncorrelated channels

Varying SNR, 20 users

SNR 10 dB, Varying #users

Observations

- 2 bits/user for CQI, remaining for CDI
- More users → CQI slightly more important

- Agrees with asymptotic observation 1: CDI most important

Simulations: High spatial correlation

SNR 10 dB, 20 users

Observations

- High correlation: More than 2 bits/user on CQI feedback
- Small difference Small range of angular spreads
- Also agrees well with asymptotic observation 1:
 2-3 bits for CQI feedback, remaining for CDI feedback

Summary

- Multiuser MIMO system
 - Excellent performance with perfect channel knowledge
 - Limited in practice by feedback quantization
- How to Quantization the Channel?
 - Tradeoff between quality and directional information
 - What is their relative importance?
- Asymptotic Observations
 - Anything can be shown Handle with care!
- Simulation Observations
 - 2-3 bits/user for quality, remaining for directional feedback
 - Impact of spatial correlation and number of users is small
 - Agrees with one asymptotic observation

Thank You for Listening!

Questions?

Papers and Presentations Available: http://www.ee.kth.se/~emilbjo