江苏师范大学试卷(2016—2017学年度第一学期)

(考试日期:

课程名称:		线性代数			试卷类型:	(<u>开卷或闭卷</u>)
学院			专	业		
班级	学号		姓	名	成丝	责

题 号		<u> </u>	三	四	合分人	核分人
分 值	12	30	46	12		
得 分						

得 分

一、选择题(每小题3分,共12分)

- 1. 设 $A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \end{pmatrix}$,则线性方程组 $Ax = \beta$ 有唯一解的充要条件是〖
 - (A) $\lambda \neq -2$;
- (B) $\lambda \neq 1$:
- (C) $\lambda \neq -2 \perp \lambda \neq 1$;
- (D) $\lambda = -2 \stackrel{?}{\otimes} \lambda = 1$.
- 2. 设 *A*, *B*, *C* 均为 *n* 阶方阵, 则 【
- 〗.
 - (A) AB = BA:

(B) 当 AB = AC 且 $A \neq O$ 时, B = C;

(C) |AB| = |BA|;

- (D) 当 AB = O 时, A = O 或 B = O.
- 3. 设s > 1,则n维向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关的充要条件是〖
 - (A) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{s}$ 中有一向量可由其余向量线性表示;
 - (B) $\alpha_1, \alpha_2, \dots, \alpha_s$ 中每一向量均可由其余向量线性表示;
 - (C) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{s}$ 中存在零向量;
 - (D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s$ 中有两个向量相同.
- 4. 设A,B是两个n阶方阵且A与B相似,则下列结论不正确的是〖
 - (A) R(A) = R(B);
- (B) A, B 有相同的特征值;

(C) |A| = |B|;

(D) A, B有相同的特征向量.

得分 评分人

二、填空题(每小题3分,共30分)

- 2. 排列 52143 的逆序数 τ (52143) = _____.
- 3. 设A是 3 阶方阵, 若|A|=1, 则|2A|=____.

4.
$$\[\mathcal{C}_{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 3 & -1 \\ 0 & -3 & 1 \end{pmatrix}, \ \mathbb{M} \ A = B \ \text{in \mathbb{R} in \mathbb{R} } AB = AB = AB$$

- 5. 已知向量 $\alpha_1 = (1,2,1)', \alpha_2 = (a,4,2)'$ 线性相关,则参数 a =______.
- 6. 设 $\alpha_1, \alpha_2, \alpha_3$ 是矩阵 A 的列向量组, 若 $\beta = 2\alpha_1 \alpha_2 + 3\alpha_3$, 则________是 线性方程组 $Ax = \beta$ 的一个解.
 - 7. 设A是n阶方阵且2E+A不可逆,则 是A的一个特征值.
- 8. 设A是4阶方阵, λ_n 是矩阵A的一个3重特征值, 若A可相似对角化, 则矩 阵 $\lambda_0 E - A$ 的秩 $R(\lambda_0 E - A) = \underline{\hspace{1cm}}$
 - 9. 设A是n阶正交阵且|A|<0,则|A|=_____
- 10. 已知 3 元实二次型 $f(x_1, x_2, x_3) = x'Ax (A' = A)$ 可经正交线性替换化成标准 形 $-2y_1^2 + y_2^2 + 2y_3^2$, 则矩阵 A 的行列式 |A| =______.

得 分 评分人

三、计算题 (5 小题, 共 46 分)

1. (本题 8 分)已知二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 2ax_2x_3 + 9x_3^2$ 是正定二次型, 求参数 a 的取值范围.

2. (本题 10 分)求解矩阵方程 *AX* = 2*X* + *B*, 其中

$$A = \begin{pmatrix} 3 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ -2 & 0 \\ 3 & 1 \end{pmatrix}.$$

3. (本题 8 分) 已知向量组 $\boldsymbol{\alpha}_1 = (3,0,1)', \boldsymbol{\alpha}_2 = (1,5,-1)', \boldsymbol{\alpha}_3 = (a,0,7)'$ 线性相关, 试求参数 a .

4. (本题 8 分) 求向量 β 关于向量组 $\alpha_1, \alpha_2, \alpha_3$ 的线性表示式, 其中 $\alpha_1 = (1,4,0)', \alpha_2 = (2,7,1)', \alpha_3 = (1,3,1)', \beta = (1,1,3)'.$

5. (本题 12 分)用正交线性替换化二次型

为标准形,并写出所作的正交线性替换和得到的标准形.

 $f(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 - 8x_1x_3 - x_2^2 - 4x_2x_3 + 2x_3^2$

得	分			
评分	人			

四、证明题 (每小题 6 分, 共 12 分)

1. 设A是n阶方阵,满足 $A^2+2A-3E=O$,证明A的特征值只能是1或-3.

2. 设 $A \in m \times n$ 矩阵, $\beta \in m$ 维列向量,已知R(A) = m,证明线性方程组 $Ax = \beta$ 有解.