The Combinatorics of Rigged Horse Racing and a New Recurrence for The Ordered Bell Numbers

Benjamin Schreyer

University of Maryland, College Park, Maryland June 22nd 2024

ABSTRACT

The Horse Numbers, Fubini Numbers, or Ordered Bell numbers H(n) count the weak orderings (<,=) on a set of elements. If the finite set is $\{d,e,a,b,c\dots\}$, then some constraint may be applied when counting weak orderings of this set, such as $a < d < e \dots$, or $(c = d) < a \dots$. Let $B_k(n)$ be the number of ways to order x_1, x_2, \dots, x_n such that $x_1 < x_2 < \dots < x_k$. The case $B_2(n)$ is given a short expression in terms of the Horse Numbers $B_2(n) = \frac{H(n) - H(n-1)}{2}$. Then $B_k(n)$ is expressed as a linear sum of $H(k), k \le N$ by counting that yields the form of The Stirling Numbers of the First Kind. $B_k(n) = \frac{1}{k!} \sum_{j=0}^k s(k,k-j)H(n-j)$ where s(l,m) are the signed Stirling numbers of the first kind. Thus M constrained Horse Numbers may be computed in MlogM operations given already computed Horse Numbers, by applying a Fourier domain convolution. Considering the case of full ordered constraint $B_n(n)$, H(n) is given a recurrent definition relative to the number of strong orderings n!, $H(n) = n! - \sum_{j=1}^k s(k,k-j)H(n-j)$. Additionally, cardinality for unions and intersections of conditions with =, < on subsets of the elements x_1, x_2, \dots, x_n are given.

 $Correspondence \ E-mail: \ benontheplanet@gmail.com$

0.1 Theorem

$$B_2(n) = \frac{H(n) - H(n-1)}{2} \tag{1}$$

Proof The expression $[x_1 < x_2] \lor [x_1 > x_2] \lor [x_1 = x_2]$ is a Tautology on over any set $x_1, x_2 ... x_n$ that is weakly ordered, so long as $n \ge 2$. The three conditions are mutually exclusive, so their union has cardinality that may be expressed as a sum of each of the three relation's cardinalities. Consider each case:

- Count for $x_1 < x_2$, this is $B_2(n)$.
- Count for $x_1 = x_2$, this is H(n-1).
- Count for $x_1 > x_2$, this is $B_2(n)$ again by symmetry.

The sum of these counts is H(n) because the expression as a whole is a tautology.

$$H(n) = 2B_2(n) + H(n-1)$$
(2)

Finally as was to be shown:

$$B_2(n) = \frac{H(n) - H(n-1)}{2} \tag{3}$$

0.2 Theorem

$$B_k(n) = \frac{1}{k!} \sum_{j=0}^k s(k, k-j) H(n-j)$$
(4)

Proof The proof is presented in a combinatoric setting, by first counting the number of weak orderings such that the set $x_1, x_2 \dots x_k$ is a strongly ordered subset, denoted. Next translation operators are used to formally show the result can be expressed using s(l, m), The Stirling Numbers of the First Kind. Finally the count is divided by k!, since $x_1 < x_2 < \dots < x_k$ is only one of k! strong orderings of the subset x_1, x_2, \dots, x_k .

- Remove or ignore the counting of k-1 elements x_2, x_3, \ldots, x_k , this is H(n-k+1)
- Reintroduce the element x_2 by increasing the argument to H(n-k+2), then subtract any case where $x_1 = x, x \in \{x_1\}$. The total is H(n-k+2) H(n-k+1)
- Reintroduce the element x_3 by increasing the argument to H(n-k+3)-H(n-k+2), then subtract any case where $x_3 = x, x \in \{x_1, x_2\}$. The total is H(n-k+3)-H(n-k+2)-2[H(n-k+2)-H(n-k+1)].
- ..
- Reintroduce the element x_k by increasing the argument P(j+1), where P(j) is the expression for the previous step's count, then subtract any case where $x_k = x, x \in \{x_1, x_2, \dots, x_{k-1}\}$. The total is P(j+1) (k-1)[P(j)].

The number of weak orderings of x_1, x_2, \ldots, x_n where the subset x_1, x_2, \ldots, x_k is strongly ordered has been counted. Consider expressing the counting in terms of the translation operators $e^{\pm \frac{d}{dn}}$, where $e^{\pm \frac{d}{dn}}f(n) = f(n\pm 1)$.

- Remove or ignore the counting of k-1 elements $x_2, x_3, \ldots, x_k, (e^{-\frac{d}{dn}})^{k-1}H(n)$.
- Reintroduce the element x_2 by increasing the argument to H(n-k+2), then subtract any case where $x_1 = x, x \in \{x_1\}$. That is $(e^{\frac{d}{dn}} 1)e^{(1-k)\frac{d}{dn}}H(n)$

- Reintroduce the element x_3 by increasing the argument, then subtract any case where $x_1 = x, x \in \{x_1\}$. That is $(e^{\frac{d}{dn}} - 2)(e^{\frac{d}{dn}} - 1)e^{(1-k)\frac{d}{dn}}H(n)$
- ...
- Reintroduce the element x_k by increasing the argument, then subtract any case where $x_k = x, x \in \{x_1, x_2, \dots, x_{k-1}\}$. The total is $(e^{\frac{d}{dn}} k + 1) \dots (e^{\frac{d}{dn}} 2)(e^{\frac{d}{dn}} 1)e^{(1-k)\frac{d}{dn}}H(n)$.

The falling factorial appears with argument $e^{\frac{d}{dn}}$ and k terms, this is made obvious by separating $e^{(1-k)\frac{d}{dn}}$.

$$[(e^{\frac{d}{dn}} - k + 1)\dots(e^{\frac{d}{dn}} - 2)(e^{\frac{d}{dn}} - 1)e^{\frac{d}{dn}}]e^{(-k)\frac{d}{dn}}H(n)$$
(5)

So the count is $e^{-k\frac{d}{dn}}(e^{\frac{d}{dn}})_kH(n)$ where $(x)_n$ is the falling factorial of x with n terms. The Signed Stirling Numbers of the First Kind s(l,m) give the coefficient on x^m for $(x)_l$, or $(x)_l = \sum_{m=0}^l s(l,m)x^m$. The count is now expressed as follows:

$$e^{-k\frac{d}{dn}} \left[\sum_{j=0}^{k} s(k,j) e^{j\frac{d}{dn}} \right] H(n)$$
 (6)

The effect of the translation operators is now trivial upon H(n).

$$\sum_{j=0}^{k} s(k,j)H(n-k+j) \tag{7}$$

By reindexing the sum.

$$\sum_{j=0}^{k} s(k, k-j) H(n-j)$$
 (8)

The number of arrangements of x_1, x_2, \ldots, x_n where x_1, x_2, \ldots, x_k are strongly ordered have been counted. It is now straightforward to count the arrangements where $x_1 < x_2 < \cdots < x_k$ or B_k by dividing by k!.

$$B_k(n) = \frac{1}{k!} \sum_{j=0}^k s(k, k-j) H(n-j)$$
(9)

0.3 Theorem

$$H(n) = n! - \sum_{j=1}^{n} s(n, n-j)H(n-j)$$
(10)

Proof $B_n(n) = 1$, if the set is $x_1, x_2 \dots x_n$, and $x_1 < x_2 < \dots < x_n$ the number of arrangements is 1. It follows from the second theorem:

$$1 = \frac{1}{n!} \sum_{j=0}^{n} s(n, n-j) H(n-j)$$
 (11)

Which may be rearranged to the result.

$$H(n) = n! - \sum_{j=1}^{n} s(n, n-j)H(n-j)$$
(12)

0.4 Theorem

The cardinality of weakly ordered arrangements of the elements x_1, x_2, \ldots, x_n where $[x_{a_1} < x_{a_1+1} < \cdots < x_{a_1+A_1-1}] \wedge [x_{a_2} < x_{a_2+1} < \cdots < x_{a_2+A_2-1}] \wedge \cdots \wedge [x_{a_N} < x_{a_N+1} < \cdots < x_{a_N+A_N-1}]$ where $x_{a_j}, x_{a_j+1}, \ldots, x_{a_j+A_j-1}$ is disjoint from $x_{a_i}, x_{a_i+1}, \ldots, x_{a_i+A_i-1}$ for all i, j:

$$\frac{1}{A_1!A_2!\dots A_N!}[(e^{\frac{d}{dn}}-A_1+1)\dots(e^{\frac{d}{dn}}-2)(e^{\frac{d}{dn}}-1)e^{\frac{d}{dn}}]\dots[(e^{\frac{d}{dn}}-A_N+1)\dots(e^{\frac{d}{dn}}-2)(e^{\frac{d}{dn}}-1)e^{\frac{d}{dn}}]e^{-(\sum_{j=1}^N A_j)\frac{d}{dn}}H(n)$$
(13)

Proof The procedure of the second theorem may be repeated for any amount of disjoint subsets which are strongly ordered, because counting only required knowing the number of elements from the subset already reintroduced, and the total count. The subsets being disjoint allows this to remain trivial.

Note The cardinality for union of conditions immediately follows by the inclusion-exclusion principle.

The first theorem exemplified that dealing with conditions $x_a = x_b$ is a simple reduction in the effective number of elements being ordered. The caveat must be included that there are cases where a condition $x_a = x_b$ has no effect on the count. For example $[x_1 = x_2 \land x_2 = x_3 \land x_3 = x_1] \equiv [x_1 = x_2 \land x_2 = x_3]$, because of transitivity of equality.