This is an sql file i made holding data on price model and make of 1000 vehicles. Looking at the data the prices are clearly wrong or people were greatly overcharged. The average price of Aston martins sold wouldn't be less than that of volkswagens.

```
In [1]:
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        import mysql.connector
        from mysql.connector import Error
        try:
             connection = mysql.connector.connect(host='localhost',
                                                  database='cars owned',
                                                  user='root',
                                                  password='corvette')
             if connection.is_connected():
                 db_Info = connection.get_server_info()
                 print("Connected to MySQL Server version", db Info)
                 cursor = connection.cursor()
                 cursor.execute("select database();")
                 record = cursor.fetchone()
                 print("You're connected to database: ", record)
        #exception error if problem connecting to the database
        except Error as e:
             print("Error while connecting to MySQL", e)
        #if connection is successful then it will close connection after
        finally:
            if (connection.is connected()):
                 cursor.close()
                 connection.close()
                 print("MySQL connection is closed")
        #tested if it was able to connect to database
```

```
Connected to MySQL Server version 8.0.21
You're connected to database: ('cars_owned',)
MySQL connection is closed
```

```
In [2]: try:
            connection = mysql.connector.connect(host='localhost',
                                                  database='cars owned',
                                                  user='root',
                                                  password='corvette')
            if connection.is_connected():
                db_Info = connection.get_server_info()
                print("Connected to MySQL Server version", db Info)
                #returns a cursor object. Using a cursor object, we can execute SQL quer
                cursor = connection.cursor()
                #table and columns being worked on here sql query input
                cursor.execute("select database();")
                record = cursor.fetchone()
                print("You're connected to database: ", record)
        except Error as e:
            print("Error while connecting to MySQL", e)
        #connect to database without closing so i can work with it
        Connected to MySQL Server version 8.0.21
        You're connected to database: ('cars_owned',)
In [3]:
        cursor = connection.cursor(buffered=True)
        query="select * from car"
        cursor.execute(query)
        fetching size = 2
        #numbers of rows pulled will be equal to fetching size
        rows to get= cursor.fetchmany(fetching size)
        print("Total number of rows is: ", cursor.rowcount)
        print("Printing ", fetching_size, " car record using cursor.fetchmany")
        for row in rows to get:
            print(row)
        #working with 1000 rows of car data
        Total number of rows is: 1000
        Printing 2 car record using cursor.fetchmany
        (1, 'Jaguar', 'S-Type', Decimal('74064.94'))
        (2, 'Oldsmobile', 'Bravada', Decimal('15957.92'))
In [4]: | cars= pd.read_sql(query, connection)
        #set index = to id instead of standard panda index starting at 0
```

cars=cars.set index('id')

In [5]: cars

Out[5]:

	make	model	price
id			
1	Jaguar	S-Type	74064.94
2	Oldsmobile	Bravada	15957.92
3	Lexus	RX	91013.67
4	Dodge	Dakota Club	59080.52
5	Honda	Civic	59582.79
996	Dodge	Sprinter	81171.40
997	Rambler	Classic	39244.33
998	Jaguar	XF	44212.85
999	Nissan	Altima	79086.75
1000	Chevrolet	HHR	50829.11

1000 rows × 3 columns

In [6]:

1 #cars with price over \$80,000. prices are inaccurate civic overpriced

2 cars.loc[cars['price']> 80000]

Out[6]:

	make	model	price
id			
3	Lexus	RX	91013.67
6	Ford	Mustang	82861.26
12	Honda	Civic	97075.02
15	Nissan	Rogue	93827.30
20	Dodge	Ram 2500	94610.72
981	Acura	RL	94353.21
982	Land Rover	Range Rover Classic	99340.81
985	Chevrolet	Impala	93138.12
994	Mercury	Monterey	84291.59
996	Dodge	Sprinter	81171.40

210 rows × 3 columns

In [7]: #Group all cars of the same brand together and find average price
 cars2=cars.groupby(['make']).mean().round(2)
 cars2

Out[7]:

р	rı	ce

make	
Acura	57781.12
Aptera	72048.15
Aston Martin	57779.05
Audi	52213.16
Austin	58452.51
Suzuki	63587.32
Tesla	30800.84
Toyota	50598.33
Volkswagen	58441.04
Volvo	60620.75

62 rows × 1 columns

```
In [8]: cars3= cars2.head(20) # just first 20 results from dataframe
plt.figure(figsize=(20,10))
sns.barplot(x=cars3.index, y=cars3['price'])
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x2c5d67e57c8>

Ferrari, Bentley, and Bugatti brands all under 40k