

Enabling Exploration: NASA's Technology Needs

Carol W. Carroll
Deputy Director of Science
NASA Ames Research Center

University of Oregon
January 27, 2012

SPACE EXPLORATION: THE NEXT STEPS

The end of an era July 21, 2011:
30 years of Space Shuttle Exploration

NASA is changing its approach to Space Exploration

Strategy:

- ✧ Use the International Space Station as a research lab and test bed for new technologies
- ✧ Foster a commercial industry to take us to and from low Earth orbit
- ✧ Develop technologies to take humans to an asteroid and eventually to Mars

International Space Station

1998

2011

An incredible orbiting research lab

1.5 billion statute miles +

16 nations

202 astronauts

74 Russian vehicles, 37 space shuttles, two European and two Japanese vehicles

Foster U.S. Industry to Carry People and Cargo to/from Low Earth Orbit

Sierra Nevada
Dream Chaser

Boeing
CST-100

Space-X
Falcon 9 and Dragon

Blue Origin

Space Tourism: non-NASA Ventures

Virgin Galactic

XCOR Aerospace

NASA is Building the Capability to Go Further

Tomorrow's missions are demanding more ...

More places

More data processing

More autonomy

WHAT TECHNOLOGIES ARE NEEDED?

14 Technology Areas

TA01	TA01	• Launch Propulsion Systems	TA08	TA08	• Science Instruments, Observatories & Sensor Systems
TA02	TA02	• In-Space Propulsion Technologies	TA09	TA09	• Entry, Descent & Landing Systems
TA03	TA03	• Space Power & Energy Storage	TA10	TA10	• Nanotechnology
TA04	TA04	• Robotics, Tele-robotics & Autonomous Systems	TA11	TA11	• Modeling, Simulation, Information Technology & Processing
TA05	TA05	• Communication & Navigation	TA12	TA12	• Materials, Structures, Mechanical Systems & Manufacturing
TA06	TA06	• Human Health, Life Support & Habitation Systems	TA13	TA13	• Ground & Launch Systems Processing
TA07	TA07	• Human Exploration Destination Systems	TA14	TA14	• Thermal Management Systems

What new capabilities can be created?

Technology Developments

Robotic Precursor Missions Pave the Way for Future Human Exploration Missions

Orion Multi-Purpose Crew Vehicle and Space Launch System

Solar Electric Propulsion

In-Space Habitation

Planetary Transportation System

NASA Ames Overview

Technical Scope::

- **Science (Earth-Life-Space)**
- **Astrobiology**
- **Science Missions**
- **Intelligent Systems**
- **High End Computing**
- **Human System Integration**
- **Small Satellites**
- **Aviation and Aeronautics**
- **Innovative Collaborations**

- **2400 Employees**
- **\$700+ M Annual Budgett**

Questions?

Thermal Protection Systems Research

- **State of the art low density carbon ablators are used for current mission but have challenges**
 - Low strain to failure
 - Brittle char
 - Needs strain isolation pads and gap fillers in tiled configurations

Orion Heat Shield
(5 m diameter)

MSL Heat Shield
(4.5 m diameter)

Thermal Protection Materials Research at Ames

Rigid Ablators

Advanced PICA
-like ablators

Graded Ablators

Conformable Ablators

Conformable PICA

Flexible Ablators

Flexible PICA

Flexible SIRCA

Woven TPS

Mid density TPS

Carbon phenolic replacement

SCIENCE HIGHLIGHTS

Water on the Moon - LCROSS

Changed our understanding of the moon

Destination Mars: Gale Crater

New Landing System: Mars Sky Crane

Curiosity – The Next Mars Rover

Kepler Mission

*The determination of the frequency of Earth-size & larger planets
in and near the habitable zone of solar-like stars*

Kepler uses light curves to detect new planets

Locations of Kepler Planet Candidates

As of December 5, 2011

● Earth-size

● Super-Earth size
1.25 - 2.0 Earth-size

● Neptune-size
2.0 - 6.0 Earth-size

● Giant-planet size
6.0 - 22 Earth-size

Real Life Tatooine?

First Planet with Two Suns:

Kepler 16-b

Another View of the “Tatooine” Planet: Kepler 16-b

Out of this world Solar System orbiting Kepler 11

Looking Towards the Future

- ISS will be the centerpiece of human spaceflight activities until at least 2020
- Research and technology breakthroughs aboard ISS will facilitate travel to destinations beyond low Earth orbit
- Destinations for human exploration remain ambitious: the Moon, asteroids and Mars
- Continue to undertake world-class science missions to observe our planet, reach destinations throughout the solar system and peer even deeper into the universe
- Advance aeronautics research to create a safer, more environmentally friendly and efficient air travel network for the Next Generation Air Transportation System
- Continue to inspire the next generation of scientists, engineers and astronauts by focusing on STEM education initiatives

Student Opportunities: Many student internship, fellowship, and post-doc opportunities across NASA

<http://intern.nasa.gov>

<http://eap.usra.edu>

<http://nasa.orau.org/postdoc>

Questions?

