Determinant

A spanning subgraph H of G is an elementary spanning subgraph is each component of H is either K_2 or a cycle.

Theorem: Let G be a labelled graph on n vertices with adjacency matrix A(G). Then,

$$\det(A(G)) = \sum (-1)^{n-c_1(H)-c(H)} 2^{c(H)}$$

Where the summation is over all spanning subgraph H of G and c(H), $c_1(H)$ are the number of components in H which are cycles and K_2 's respectively.

Example: K_4

Observe that K_4 has 3 elementary spanning subgraphs

For
$$H_1, H_2, H_3$$
 $c(H_1) = c(H_2) = c(H_3) = 2, c(H_1) = c(H_2) = c(H_3) = 0$

For
$$H_4$$
, H_5 , H_6 $c(H_4) = c(H_5) = c(H_6) = 0$, $c(H_4) = c(H_5) = c(H_6) = 1$
$$\det(k_4) = 3(-1)^{4-2-0}2^0 + 3(-1)^{4-0-1}2^1 = -3$$

Determinant of P_n : When n is odd, there are no elementary spanning subgraphs possible. Hence $\det(A(P_n)) = 0$

When n is even: there is one elementary spanning subgraphs possible which is union of $\frac{n}{2}$ - K_2 's

Hence, $\det(A(P_n)) = (-1)^{n-\frac{n}{2}}$, which is 1 or -1 depending upon n is a multiple of 4 or not.

$$\det(A(P_n)) = \begin{cases} 0; & n \text{ is odd} \\ 1; & n \text{ is a multiple of 4} \\ -1; & otherwise \end{cases}$$

Determinant of C_n : When n is odd, there is only one elementary spanning subgraph possible which is C_n itself. Hence $\det(A(C_n)) = (-1)^{n-1}2^1 = 2$

When n is even: there are 3 elementary spanning subgraphs possible.

Two are union of $\frac{n}{2}$ - K_2 's

And one is C_n itself.

Hence, $\det(A(C_n)) = 2(-1)^{n-\frac{n}{2}} + (-1)^{n-1}2^1 = 2(-1)^{n-\frac{n}{2}} - 2$, which is 0 or -4 depending upon n is a multiple of 4 or not.

$$\det(A(C_n)) = \begin{cases} 2; & n \text{ is odd} \\ 0; & n \text{ is a multiple of 4} \\ -4; & otherwise \end{cases}$$

Obtain $\det(A(K_{p,q}))$, $p \neq q$.

As there are no elementary spanning subgraphs possible, $\det \left(A \big(K_{p,q} \big) \right) = 0.$

Exercise: 1. Obtain determinant of the following graph by computing all its elementary spanning subgraphs.

2. Obtain determinant of $A(K_{2,2})$

Eigenvalues: Eigenvalues of a graph are the eigenvalues of its adjacency matrix.

The roots of the characteristic equation $|A(G) - \lambda I| = 0$ are the eigenvalues.

The vector $X \neq 0$, satisfying $AX = \lambda X$ is the corresponding eigenvector.

Theorem: If G is regular graph with regularity r, then r is an eigenvalue of A(G) with eigenvector $X = [1, 1, ..., 1]^T$.

Proof: Let $X = [1, 1, ..., 1]^T$.

As A(G)X = rX, implies r is a n eigenvalue of A(G) with eigenvector $X = [1, 1, ..., 1]^T$.

Theorem: The eigenvalues of $A(K_n)$ are (n-1) with multiplicity 1 and (-1) With multiplicity n-1.

Proof:

$$|A(K_n) - \lambda I| = \begin{bmatrix} -\lambda & 1 & 1 & \dots & 1 & 1 \\ 1 & -\lambda & 1 & \dots & \dots & 1 \\ 1 & 1 & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \vdots & \ddots & \dots & \ddots & 1 \\ 1 & 1 & \dots & \dots & 1 & \lambda \end{bmatrix}$$

By performing R_i : $R_i - R_{i+1}$, $1 \le i \le n-1$ we get

$$|A(K_n) - \lambda I| = \begin{vmatrix} -\lambda - 1 & \lambda + 1 & 0 & \dots & 0 & 0 \\ 0 & -\lambda - 1 & \lambda + 1 & \dots & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \ddots & \lambda + 1 & 0 \\ 1 & 1 & \dots & \dots & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$(\lambda + 1)^{n-1} \begin{vmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & 1 & 0 \\ 1 & 1 & \dots & \lambda - 1 & \lambda + 1 \end{vmatrix}$$

From the above its clear that (-1) is a n eigenvalue with multiplicity (n-1).

As trace(A(G))=0=sum of eigenvalues of A(G)

 $\Rightarrow n-1$ is the eigenvalue of A(G).

As G is regular with regularity n-1, we can conclude the result.