

Sounds and transcriptions

- We are often interested in the meaning of an utterance
- In English, we often transcribe utterances as word tokens
 - We write: <How to recognize speech>
- Is this "what was said?"
 - We might write instead: <How to wreck a nice beach>
 - We can transcribe (or even adopt) foreign words
 - 沙发 = <sofa>, not <sandy hair>
 - We can even transcribe brand new words
 - <skibidi toilet>
- We can instead transcribe "speech sounds"

Phones and phonetics

- Phonetics is the study of speech sounds
- A phone is a unit of speech
 - Denoted with square braces: [t], [th], [u]
 - Language-independent
- Phones which are perceived "similarly" are grouped into phonemes
 - Denoted with slashes: /t/, /u/
 - $[t],[t^h] \mapsto /t/$
 - Language-dependent
- Transcriptions are often in-between:
 - $['t^hu] \mapsto [t^hu] \mapsto [tu] \mapsto /tu/$
- We will be very loose with the distinction

Phonetic transcription

- Often, we assume that a spoken utterance can be partitioned into a sequence of non-overlapping phones.
 - Demarking the periods during which certain phones are being uttered is called phonetic transcription
 - This approach has problems (e.g., when exactly does one phoneme end and another begin?), but it's useful for classification.

Phonetic alphabets

- There are several alphabets that categorize the sounds of speech.
 - The International Phonetic Alphabet (IPA) is popular, but it uses non-ASCII symbols.
 - The TIMIT phonetic alphabet will be used by default in this course.
 - Other popular alphabets include ARPAbet, Worldbet, and OGIbet, usually adding special cases.
 - E.g., [pcl] is the period of silence immediately before a [p].

TIMIT	IPA	e.g.
[iy]	[i ^y]	b <u>ea</u> t
[ih]	[1]	b <u>i</u> t
[eh]	[ε]	b <u>e</u> t
[ae]	[æ]	b <u>a</u> t
[aa]	[a]	B <u>o</u> b
[ah]	$[\Lambda]$	b <u>u</u> t
[ao]	[c]	b <u>ou</u> ght
[uh]	[ʊ]	b <u>oo</u> k
[uw]	[u]	b <u>oo</u> t
[ux]	[u]	s <u>ui</u> t
[ax]	[e]	<u>a</u> bout

TIMITbet (incomplete)

Vowel	e.g.
[iy]	b <u>ea</u> t
[ih]	b <u>i</u> t
[eh]	b <u>e</u> t
[ae]	B <u>a</u> t
[aa]	B <u>o</u> b
[ah]	B <u>u</u> t
[ao]	b <u>ou</u> ght
[uh]	b <u>oo</u> k
[uw]	b <u>oo</u> t
[ux]	s <u>ui</u> t
[ax]	<u>a</u> bout

stop	e.g.
[b]	<u>B</u> il <u>b</u> o
[d]	<u>d</u> a <u>d</u> a
[g]	<u> </u>
[p]	<u>P</u> i <u>pp</u> in
[t]	<u>T</u> oo <u>t</u> s
[k]	<u>k</u> i <u>ck</u>

nasal	e.g.
[m]	<u>M</u> a <u>m</u> a
[n]	<u>n</u> oo <u>n</u>
[ng]	thi <u>ng</u>

fricative	e.g.
[s]	<u>S</u> ea
[f]	<u>F</u> rank
[z]	<u>Z</u> appa
[th]	<u>th</u> is
[sh]	<u>Sh</u> ip
[zh]	a <mark>z</mark> ure
[v]	V ogon
[dh]	then

(Incomplete)

The vocal tract

- Many physical structures are co-ordinated in the production of speech.
- Generally, sound is generated by passing air through the vocal tract.
- Sound is modified by constricting airflow in particular ways.
- We can classify phones by how they are produced

A taxonomy of phones

- Phones fall into two broad categories
- Vowels are
 - Always periodic
 - Produced with relatively unobstructed airflow
 - Use tongue, lips, and jaw to produce resonances in vocal tract, in turn generating formants
- Consonants are
 - Mostly noisy (not nasals, semivowels)
 - Produced by obstructing airflow
 - Classified by the place and manner of primary obstruction, as well as voicing

Voicing and fundamental frequency

- Voiced phones are produced with vibrating vocal folds
 - The space between the folds is the glottis
- All vowels are voiced; consonants can be unvoiced
- F_0 : n. (fundamental frequency), the rate of vibration (Hz)
 - Very indicative of speaker

	Avg F_0 (Hz)	Min F_0 (Hz)	Max F_0 (Hz)
Male	125	80	200
Female	225	150	350
Children	300	200	500

Vowels

- There are approximately 19 vowels in Canadian English, including diphthongs in which the articulators move over time.
- Vowels are distinguished primarily by their formants. (?)

other	e.g.
[er]	B <u>er</u> t
[axr]	b <u>u</u> tter

diphthong	e.g.
[ey]	b <u>ai</u> t
[ow]	b <u>oa</u> t
[ay]	b <u>i</u> te
[oy]	b <u>oy</u>
[aw]	b <u>ou</u> t
[ux]	s <u>ui</u> t

Mono- phthong	e.g.
[iy]	b <u>ea</u> t
[ih]	b <u>i</u> t
[eh]	b <u>e</u> t
[ae]	b <u>a</u> t
[aa]	B <u>o</u> b
[ao]	b <u>ou</u> ght
[ah]	b <u>u</u> t
[uh]	b <u>oo</u> k
[uw]	b <u>oo</u> t
[ax]	<u>a</u> bout
[ix]	ros <u>e</u> s

Uniform tubes

- Formants and resonances can be approximated with tubes
- Many musical instruments are based on the idea of uniform (or, in many cases, bent) tubes.
- Longer tubes produce 'deeper' sounds (lower frequencies).
 - A tube ½ the length of another will be 1 octave higher.

The uniform tube

 The positions of the tongue, jaw, and lips change the shape and cross-sectional area of the vocal tract.

Vowels as concatenated tubes

 The vocal tract can be modelled as the concatenation of dozens, hundreds, or thousands of tubes.

Waves in concatenated tubes

 Reflections at tube boundaries produce resonances which amplify certain frequencies

Formants and vowels

• Formant: n. A concentration of energy within a frequency band. Ordered from low to high bands (e.g., F_1 , F_2 , F_3).

Tongues, lips, and formants

The vowel trapezoid

Manner of articulation

- Consonants are classified by place and manner of obstruction
- For manner:
 - Fricatives:
 - Stops/plosives:
 - Nasals:
 - Semivowels:
 - Affricates:
 - Taps:

noisy, with air passing through a tight constriction (e.g., '<u>shif</u>t').

complete vocal tract constriction and burst of energy (e.g., 'papa').

air passes through the **nasal** cavity (e.g., 'mama').

similar to vowels, but typically with more constriction (e.g., 'wall').

Alveolar stop followed by fricative.

Quick collision of articulators ('butter')

Place of articulation

• The location of the primary constriction can be:

• **Alveolar**: constriction near the alveolar ridge (e.g., [t])

• Bilabial: touching of the lips together (e.g., [m], [p])

• **Dental**: constriction of/at the teeth (e.g., [th])

Palatal: constriction at the (hard) palate (e.g., [sh])

Labiodental: constriction between lip and teeth (e.g., [f])

• Velar: constriction at or near the velum (e.g., [k]).

Glottal: constriction of the glottis ([q])

Fricatives

 Fricatives are caused by acoustic turbulence at a narrow constriction whose position determines the sound.

Fricatives

- Fricatives have four places of articulation.
- Each place of articulation has a voiced fricative
 (i.e., the folds can be vibrating), and an unvoiced fricative.

	Unvoiced		Voiced	
Labio-dental	[f]	f ee	[v]	<u>V</u> endetta
Dental	[th]	<u>th</u> ief	[dh]	<u>Th</u> ee
Alveolar	[s]	<u>s</u> ee	[z]	<u>Z</u> ardo <u>z</u>
Palatal	[sh]	<u>sh</u> e	[zh]	<u>Zh</u> a- <u>zh</u> a

Unvoiced fricatives

Plosives (3/6)

- Plosives build pressure behind a complete closure in the vocal tract.
- A sudden release of this constriction results in brief noise.

Plosives

Plosives have three places of articulation:

	Unvoiced		Voiced	
Labial	[p] <u>p</u> or <u>p</u> oise		[b]	<u>b</u> a <u>b</u> oon
Alveolar	[t] <u>tort</u>		[<i>d</i>]	<u>d</u> o <u>d</u> o
Velar	[k]	<u>k</u> i <u>ck</u>	[g]	<u>G</u> oo <u>g</u> le

- Voiced stops are usually characterized by a "voice bar" during closure, indicating the vibrating vocal folds.
- Formant transitions are very informative in classification.

Formant transitions in plosives

• Despite a **common** vowel, the **motion** of F_2 and F_3 into (and out of) the vowel helps identify the plosive.

Voicing in plosives

Nasals

- Nasals involve lowering the velum so that air passes through the nasal cavity.
- Closures in the oral cavity (at same positions as plosives) change the resonant characteristics of the nasal sonorant.

Formant transitions among nasals

Nasals often appear as two formants

Semivowels

- Semivowels act as consonants in syllables and involve constriction in the vocal tract, but there is less turbulence.
 - They also involve slower articulatory motion.
- Laterals involve airflow around the sides of the tongue.

Semivowels

 Note the drastic formant transitions which are more typical of semivowels.

Affricates and aspirants

- There are two affricates: [jh] (voiced; e.g., <u>iudge</u>) and [ch] (unvoiced; e.g., <u>church</u>).
 - These involve an alveolar stop followed by a fricative.
 - Voicing in [jh] is normally indicated by voice bars, as with plosives.
- There's only one aspirant in Canadian English: [h] (e.g., hat)
 - This involves turbulence generated at the glottis,
 - In Canadian English, there is no constriction in the vocal tract.

Affricates and aspirants

Other topics in phonetics

- The grouping of phones into syllables
 - Consisting of a vowel (nucleus), and optionally preceding (onset) and succeeding (coda) consonants
 - Only certain sequences are permissible in English
 - Syllables may be made more prominent via pitch, duration, or loudness
- The prosody, or intonation and rhythm, of an utterance
 - Prominence can also indicate phrase boundaries
 - Gradual F0 movement (tune) can indicate a question or statement
- These are especially important to text-to-speech

