Balancing Selection and Inbreeding

- Higher selection intensities make bigger gain
- Fewer animals are selected, so also more inbreeding
- This trend is more evident with higher rates of fecundity
- Effect of new reproductive technologies
- Genetic evaluation (BLUP) favors selection of related animals

 rationalization of selection make inbreeding restriction methods a necessity

How to restrict inbreeding?

- Mating policies mostly affect
 - progeny inbreeding (short term)
 - but not *long term* rate of inbreeding ΔF
 - The long term inbreeding rate depends on effective population size

 Long term inbreeding is restricted by restricting the average co-ancestry among selected parents

Effective Population Size: Ne

Accounting for unequal sex ratio

 Effective pop'n size (Ne) reduces towards sex with fewer breeding individuals

$$Ne = \frac{4.N_m.N_f}{N_m + N_f}$$

Males / generation	2	2	2	5	20	1
Females / generation	2	20	200	200	200	99999
N	4	22	202	205	220	100,000
Ne	4	7.3	7.9	19.5	72.7	4

With selection, this formula underpredicts inbreeding (2x) But it shows that usually, it is controlled by using enough sires

A feature of BLUP

 BLUP uses family information (and more so at lower heritabilities)

 Selection on BLUP EBVs can thus results in higher inbreeding than selection on phenotypes alone

- Best strategy: Balance merit and genetic diversity
 - Start selecting from top, but leave an animal out if sibs have been selected already

Example of BLUP selection

Terminals - Top 1	Terminals - Top 150 Analysis Date Friday, 15 June 2001													
Sires										Inbreedin	g 8 A	ccuracies	<u> </u>	g Breeding and Erwhalian
ID	Stud of breeding	Wwt	Powt	Ywt	Pfat	Pemd	C	rcase +	Progeny	Coeff W	leight	Carcase	Sire	Sire of Dam
161972-1999-99 <mark>0196</mark>	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62		226.64	38	0.133	83	70	1619721998980093	1630001993930134
162368-1998-98 <mark>0211</mark>	KURRALEA	6.60	12.39	12.69	-0.89	2.50		215.20	1148		97	96	1623681994940260	8600401992920175
162204-1999-99 <mark>0453</mark>	BETHELREI	8.52	13.38	15.87	-1.18	1.11		211.75	224		93	89	8601221993930205	1619721995950289
161972-1998-98 <mark>0093</mark>	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25		207.51	12		80	74	1630001993930134	1603361992920349
161972-1998-98 <mark>0527</mark>	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47		204.10	25		85	76	1619721996960091	1630001993930134
860122-1993-93 <mark>0205</mark>	OHIO OHIO	6.95	11.94	13.72	-1.60	0.49		203.76	1522		98	85	860122199292020	8601221987870073
161143-1999-99 <mark>0204</mark>	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19		203.60	38		82	76	1623681998980211	1640001993930411
160060-1996-96 <mark>0004</mark>	anna villa	8.56	14.90	16.18	-0.48	0.24		200.47	151		93	87	1632801992929816	1623541990900584
161143-1999-99 <mark>0201</mark>	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83		199.83	39		83	77	1623681998980211	1613151995950042
230034-1997-97 <mark>0904</mark>	BURWOOD	4.98	11.01	8.82	-2.27	-0.55		198.82	380	0.003	96	92	2300091994940171	2300341994940314
163677-2000-00 <mark>0140</mark>	FELIX	6.69	13.56	13.36	-0.59	0.61		197.98	56		70	63	1619721995950289	1600341994940020
160060-1997-97 <mark>0115</mark>	anna villa	6.30	14.47	11.69	-0.42	0.24		196.90	118		90	83	1600601996960004	160060 1992920057
162204-1999-99 <mark>0394</mark>	BETHELREI	7.42	12.97	14.27	-1.03	0.14		196.85	24		82	74	8601221993930205	1622041996960579
161143-1999-99 <mark>0064</mark>	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60		196.01	18		80	74	1623681998980211	1640001994940317
161972-1996-960020	HILLGROFT FARMS	5.32	12.96	10.66	-0.80	0.36		195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63		194.57	101		90	83	1630001993930134	1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50		194.54	34		87	79	1700991993930002	1612351991910691
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47		192.45	54		83	74	8601221993930205	1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59		192.11	68		69	62	1623681998980211	1630001993930160
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94		191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99		190.92	12		71	60	1623681994940260	8600371992920165
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08		190.69	178		88	83	1640001993930411	8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04		190.41	17	0.003	78	70	1621001998980130	1600341994940171
161437-1999-990006	WARRURN	5 41	10.97	10.93	-1 21	0.37		190 26	14		73	65	1604621994940012	1640001993930411

These are sibs so might not select all of them as flock sire

More theoretical

- BLUP selection leans on family info
- Causing co-selection of relatives

 Reducing weight on family info is like moving from BLUP to mass selection

- Inbreeding rate depends on emphasis on
 - Between vs Within Family selection
 - Family info versus Mendelian Sampling info

Jointly optimizing merit and inbreeding

Wray and Goddard, 1994

 $x'G + \lambda x'Ax$

merit: x'G

 λ = penalty on inbreeding

- x = vector with each animal's contribution to progeny
- G = the vector with merit (EBV's) for each animal

Co-ancestry: x'Ax

- x = vector with each animal's contribution to progeny
- A = Numerator Relationships Matrix

Remember: $\Delta F = x'Ax/2$

 $F_{i} = 0.5 a_{ij}$

Vector x of animal contributions

Note that this does not only determine number of selected sires and dams, but also allows for unequal contributions

How to find an optimal x?

Meuwissen, 1997

- Optimize gain at a fixed rate of inbreeding (C)
- Max(xG | constrain x'Ax=C, sum of x = 0.5 per sex)
- Use a Langrange multipliers to solve for x.

Balancing inbreeding and merit

 Restricting co-ancestry but this slows genetic (short term) progress

How much inbreeding can we afford?

• Often inbreeding is restricted by limiting ΔF to a certain preset value

 This optimal value may depend on your situation (how open is your nucleus?)

How to find an optimal x?

 $x'G + \lambda x'Ax$

Kinghorn, 2000-ish

- Draw a frontier by varying λ
- For given λ Max(x'G + λ x'Ax | constrain sum of x=0.5 per sex)
- Use Differential Evolution multipliers to solve for x
 - Versatile, can easily set other constraints, minuse, maxuse

Balancing inbreeding and merit

inbreeding or co-ancestry

Optimizing genetic contributions

Maximize objective function

$$x'G - \underline{\lambda}x'Ax$$

Question: what is best value for λ ?

Could preset rate of inbreeding (e.g. 1%) and determine λ accordingly (Meuwissen, 1997)

Alternative: look at graph (next slide)

Balancing inbreeding and merit

This graph will look different for each population

merit

inbreeding or co-ancestry

Some expansion

- Account for juvenile matings (last year's)
 - Augment A-matrix

- Various other constrains
 - end up below frontier 'cost of constraint'

Overlapping generations

xGxAx.xls

				_
	X	nmales	nfemales	
Male 1	0.063	4	4	
Male 2	0.076			
Male 3	0.361	Find	optimal	
Male 4	0.000	contr	ibutions	
Female 1	0.208			
Female 2	0.238			
Female 3	0.000			
Female 4	0.055			
		· IO	104 75	Г

		Rolation	or in politi	M CI IX				
127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
		·		•	•			

Relationships Matrix

average merit of progeny	x'G	131.75
Inbreeding weight	λ	-50.0
rage co-acestry of progeny	x'Ax	0.132

138.00 136.00 134.00 index (X'G) 132.00 130.00 128.00 126.00 124.00 122.00 120.00 0.000 0.100 0.200 0.300 0.400 0.500 co-ancestry (x'Ax)

This is more than simply moving back from BLUP to mass selection (penalizing family info)

xGxAx.xls

	Х	nmales	nfemales	G		Rela
Male 1	0.000	4	4	127	1.00	0.0
Male 2	0.000			122	0.00	1.0
Male 3	0.500			150	0.25	0.0
Male 4	0.000	contr	ibutions	109	0.00	0.2
Female 1	0.000			120	0.00	0.0
Female 2	0.500			123	0.00	0.0
Female 3	0.000			89	0.50	0.0
Female 4	0.000			113	0.00	0.5
average me	rit of progeny	x'G	136.50			
Inbreeding	weight	λ	0.0			
rage co-acest	ry of progeny	x'Ax	0.250			
	Male 2 Male 3 Male 4 Female 1 Female 2 Female 3 Female 4 average me	Male 1 0.000 Male 2 0.000 Male 3 0.500 Male 4 0.000 Female 1 0.000 Female 2 0.500 Female 3 0.000	Male 1 0.000 4 Male 2 0.000 Find Male 3 0.500 Find Male 4 0.000 contr Female 1 0.000 Female 2 0.500 Female 3 0.000 Female 4 0.000 average merit of progeny x'G Inbreeding weight λ	Male 1 0.000 4 4 Male 2 0.000 Find optimal contributions Male 4 0.000 contributions Female 1 0.000 contributions Female 2 0.500 contributions Female 3 0.000 contributions Female 4 0.000 contributions Temale 3 0.000 contributions Female 4 0.000 contributions	Male 1 0.000 4 4 127 Male 2 0.000 Find optimal contributions 150 Male 4 0.000 109 Female 1 0.000 120 Female 2 0.500 123 Female 3 0.000 89 Female 4 0.000 136.50 Inbreeding weight λ 0.0	Male 1 0.000 4 4 127 1.00 Male 2 0.000 Find optimal contributions 150 0.25 Male 4 0.000 150 0.00 Female 1 0.000 120 0.00 Female 2 0.500 123 0.00 Female 3 0.000 89 0.50 Female 4 0.000 113 0.00 average merit of progeny x'G 136.50 Inbreeding weight λ 0.0

G		Relationships Matrix												
127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00						
122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50						
150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00						
109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25						
120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00						
123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00						
89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00						
113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00						

xGxAx.xls

_	Х	nmales	nfemales	G		Relations	ships M	latrix				
Male 1	0.127	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.108			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.129	Find	optimal	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.136	contr	ributions	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.189			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.177			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.049			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.085			113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
OVOROGO MOS	it of progony	v'C	124.04									

	average merit of progeny	x'G	121.91
	Inbreeding weight	λ	-99999999.0
1	rage co-acestry of progeny	x'Ax	0.093

x'Ax

rage co-acestry of progeny

0.063

xGxAx.xls

	X nmales nfemales			G		Relation	ships M	atrix				
Male 1	0.125	4	4	127	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Male 2	0.125			122	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
Male 3	0.125	Find	optimal	150	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Male 4	0.125	contr	ibutions	109	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
Female 1	0.125			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.125			123	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Female 3	0.125			89	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
Female 4	0.125			113	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
average merit of progeny x'G 119.12				-								
Inbreeding weight λ -9999999.0											3.00	

Genetic Gain vs Inbreeding while using female reproductive technologies

Tom Granleese, 2014

Reproductive technologies

Optimal Contribution Selection with reproductive technologies Granleese 2

Prop females allocated to

	AI/N	MOET	JIVET	TOTAL FEMALES*	Males Used*	Females per male
AI/N + MOET + JIVET (GS)	0.24	0.32	0.44	47	19	2.5
AI/N + MOET + JIVET	0.26	0.35	0.39	57	20	2.9
AI/N + MOET (GS)	0.34	0.66		98	18	5.4
AI/N + MOET	0.34	0.66		100	19	5.3
AI/N (GS)	1.00			276	14	19.7
AI/N	1.00			277	14	19.8

Between versus within family selection

Own information (performance or genotype):

More variation within families

More within-family selection – *less inbreeding*

Advantage of genomic selection

Ultimately, genetic gain is about utilizing Mendelian sampling Variance

Conclusion Optimal Contribution Selection

- OCS is the only sensible selection method
 - Optimality subject to some degree of subjectivity

Hard to deterministically predict response to OCS