3 反発係数(はねかえり係数)1)

3.1 衝突の一般論

衝突のとき,

衝突は瞬間的に起こる

⇒ 外力の力積は無視できる.

よって, 運動量は保存する:

では,

衝突の前後で、運動エネルギー 2)は保存するだろうか? $\implies _2________$

衝突前後の運動エネルギーの差を ΔK とすると,

- $|\Delta K|=0$ のとき, $_{3-----}^{3)}$
- $|\Delta K| > 0$ のとき, $_{4------}^{4)}$
 - 特に, $|\Delta K| = |\Delta K_{\rm max}|$ のとき, $_{5------}^{5)}$

とよばれる.

衝突前後で運動エネルギーが変わるということは,

⇒ この現象を詳しくみてゆきましょう.

¹⁾ coefficient of restitution

 $^{^{2)}}$ kinetic energy

³⁾ elastic collision

 $^{^{4)}}$ inelastic collision

 $^{^{5)}}$ perfectly inelastic collision

3.2 1次元の衝突

① 床や壁(面)との衝突

衝突の前後で、速度が、逆向きにe倍になったと考えると、

 $7 \iff 8$

と表される. ここで, e は $_{9-----}$ といわれる. また,

- ullet $_{10}$ のとき $,\ |\Delta K|=0$ で、(完全)弾性衝突
- ullet $_{11}$ のとき $,\ |\Delta K|>0$ で、非弾性衝突
 - 特に, $_{12}$ のとき, $|\Delta K|=|\Delta K_{
 m max}|$ で, 完全非弾性衝突

となる.

①′バウンドの高さと反発係数

力学的エネルギー保存則から,

よって,

$$e = -\frac{v'}{v} = {}_{17} \qquad \qquad \therefore \qquad {}_{18} \qquad \qquad .$$

 $+\alpha$

n回バウンドしたときの高さ

バウンドが 2 回繰り返されたときのバウンドの高さ h_2 は, $h_2=e^2h'=e^2\cdot e^2h$ で,バウンドが n 回繰り返されたときのバウンドの高さ h_n は,

$$h_n = \underbrace{e^2 \cdot \dots \cdot e^2}_{n \, \square} h = e^{2n} h$$

となる. 0 < e < 1 のとき, $n \to \infty$ で,

$$h_n = e^{2n}h \longrightarrow 0$$

となる (バウンドしなくなる).

• バウンドの所用時間と反発係数

ボールを落下させてから次に最高点に到達するまで(1回のバウンド)にかかる時間 t_1 は、

$$t_1 = \frac{v}{g} + \frac{v'}{g} = (1+e)\frac{v}{g}$$

となるので、次のバウンドにかかる時間 t_2 は、

$$t_2 = \frac{v'}{g} + \frac{v''}{g} = e(1+e)\frac{v}{g} = et_1$$
.

よって、バウンドにかかる時間は、バウンド毎にe 倍になる.

② 2 物体の衝突

2 物体 A, B の衝突も,B から A をみる $^{6)}$ と,「(B を面だと思って) 面との衝突」と同じように考えられる.B ともに動く観測者には,

- Bは $_{21}$ _____みえる.
- ▲ は(相対)速度

【(衝突前)_{22____} 【 (衝突後)_{23____}で運動しているようにみえる.

よって、①で $v \rightarrow v_1 - v_2$ 、 $v' \rightarrow v_1' - v_2'$ と置き換えると、

 \longleftrightarrow 25

となる. これは,

B からみると,**A** は _{26_____} ことを表している.

⁶⁾ A から B をみてもよい.

3.3 2次元の衝突

③ なめらかな床との斜めの衝突

なめらかな床に物体が斜めに衝突するとき,

物体には $_{27_____}$ 方向にしか $_{28______}$ ので,

速度の29_____方向成分だけが変化する(速度の水平方向成分は変化しない).

よって,

$$\begin{cases} v_x' = {}_{30----} \\ v_y' = {}_{31----} \end{cases}$$

※ 摩擦のある床との衝突を考えるときは、運動量の水平方向成分が摩擦力の力積によって変化する.

3.4 衝突と力学的エネルギー

簡単なモデルで「Newton 振り子」の原理を考えてみる.

e=1 のとき (完全弾性衝突のとき),

 ${v_1}'={}_{7----}$, ${v_2}'={}_{8----}$ \implies ${}_{9------}$ が起こっている(運動エネルギーの変化 $|\Delta K|$ はゼロ).

※ これは、「Newton 振り子」の原理を説明している!

一般に.	エネルギーの変化量 ΔK	は.

$$\Delta K = _{10}$$

: 運動エネルギーは 11_ _ _ _ _ .

これより、e=0のとき(完全非弾性衝突のとき)の運動エネルギーの変化は、

$$|\Delta K| = {}_{12} - - - - - - -$$
 : ${}_{13} - - - - -$

となる.

力学的エネルギーの観点から以上をまとめると,

- $\underline{e=1}$ のとき, $\Delta K=0$ で、力学的エネルギーは $_{14______}$.
- $0 \le e < 1$ のとき, $\Delta K < 0$ で,力学的エネルギーは $_{15-----}$.
 - 特に, $\underline{e=0}$ のとき, $|\Delta K|=|\Delta K_{\max}|$ で, 力学的エネルギーの変化は $_{16-----}$.