

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Sistemi Operativi

Strutture RAID

Docente:

Domenico Daniele

Bloisi

Domenico Daniele Bloisi

- Ricercatore RTD B Dipartimento di Matematica, Informatica sensors @GPS La Engine control ed Economia Università degli studi della Basilicata http://web.unibas.it/bloisi
- SPQR Robot Soccer Team Dipartimento di Informatica, Automatica e Gestionale Università degli studi di Roma "La Sapienza" http://spqr.diag.uniroma1.it

Informazioni sul corso

- Home page del corso: <u>http://web.unibas.it/bloisi/corsi/sistemi-operativi.html</u>
- Docente: Domenico Daniele Bloisi
- Periodo: I semestre ottobre 2021 febbraio 2022
 - Lunedì dalle 15:00 alle 17:00 (Aula A18)
 - Martedì dalle 12:30 alle 14:00 (Aula 1)

Ricevimento

- Durante il periodo delle lezioni:
 Martedì dalle 10:00 alle 11:30 → Edificio 3D, Il piano, stanza 15
 Si invitano gli studenti a controllare regolarmente la <u>bacheca degli</u>
 avvisi per eventuali variazioni
- Al di fuori del periodo delle lezioni: da concordare con il docente tramite email

Per prenotare un appuntamento inviare una email a domenico.bloisi@unibas.it

Programma – Sistemi Operativi

- Introduzione ai sistemi operativi
- Gestione dei processi
- Sincronizzazione dei processi
- Gestione della memoria centrale
- Gestione della memoria di massa
- File system
- Sicurezza e protezione

Gestione dell'area di swap

- La memoria virtuale impiega lo spazio su disco come un'estensione della memoria centrale
- L'obiettivo principale nella progettazione e realizzazione dell'area di swap è di fornire la migliore produttività per il sistema di memoria virtuale
- Lo spazio di swap può essere ricavato all'interno del normale file system o, più comunemente, si può trovare in una partizione separata del disco

Area di swap in Linux

- L'area di swap, in Linux, è utilizzata solo per la memoria anonima, ovvero per dati che non corrispondono a file
- Linux permette l'istituzione di una o più aree di avvicendamento, sia in file che in una partizione raw
- Un'area di avvicendamento è formata da una serie di moduli di 4KB, detti slot delle pagine, la cui funzione è quella di conservare le pagine avvicendate

Swap map

Ogni swap area dispone di una mappa di avvicendamento (swap map), un array di contatori interi, ciascuno dei quali corrisponde ad uno slot dell'area

Swap map

- Se un contatore vale 0, la pagina che gli corrisponde è disponibile
- Valori maggiori di 0 indicano che lo slot è occupato da una delle pagine avvicendate
- Il valore del contatore indica il numero di collegamenti alla pagina;
 se, per esempio, vale 3, la pagina fa parte dello spazio degli indirizzi virtuali di tre processi distinti

Connessione dei dispositivi di memoria

I calcolatori accedono alla memoria secondaria in tre modi:

- Tramite un dispositivo collegato alla macchina (host-attached)
- Tramite un dispositivo connesso alla rete (network-attached)
- In cloud

Host-attached storage

Alla memoria secondaria connessa alla macchina si accede dalle porte locali di I/O che sono collegate al bus

- Nei PC, con interfaccia ATA o SATA, due unità (al più) per ciascun bus di I/O
- La tecnologia SCSI è un'interfaccia standard progettata per realizzare il trasferimento di dati, che permette la connessione di un massimo di 16 device
- FC (Fiber Channel) è un'architettura seriale ad alta velocità
 - Può gestire uno spazio d'indirizzi a 24 bit, che è alla base delle storage area network (SAN), nelle quali molti host sono connessi con altrettante unità di memorizzazione

Network-Attached Storage

Un dispositivo di memoria secondaria connessa alla rete (Network-Attached Storage, NAS) è un sistema di memoria specializzato al quale si accede in modo remoto attraverso la rete di trasmissione di dati

- I client accedono alla memoria connessa alla rete utilizzando specifici protocolli quali NFS (UNIX) e CIFS (Windows)
- L'implementazione avviene via remote procedure calls (RPCs) tra host e memoria tipicamente usando TCP o UDP su rete IP

Cloud storage

- In maniera simile al NAS, fornisce l'accesso allo storage tramite rete
- A differenza del NAS, l'accesso al data center remoto avviene tramite Internet o WAN
- NAS si presenta come un altro file system, mentre lo storage cloud è basato su API, con programmi che utilizzano le API per fornire l'accesso
- Si impiegano le API a causa delle lunghe latenze e per i numerosi scenari di errore

Cloud storage

Esempi di cloud storage includono

- Dropbox
- Amazon S3
- Microsoft OneDrive
- Apple iCloud
- Google drive

Storage area network

- Reti private (che impiegano protocolli specifici per la memorizzazione) tra server e unità di memoria secondaria
- Flessibilità: si possono connettere alla stessa SAN molti calcolatori e molti storage array

Storage array

Dispositivo costruito appositamente che può includere porte SAN, porte di rete o entrambe.

Contiene

- Unità per la memorizzazione dati
- Controllore (CPU + memoria + software per le funzionalità dell'array)

Strutture RAID

- RAID, Redundant Array of Independent Disks

 i'affidabilità del sistema di memorizzazione viene garantita tramite la ridondanza
- Aumento del tempo medio di guasto
- Spesso affiancati dalla presenza di NVRAM per garantire la consistenza dei dati scritti "contemporaneamente" su dischi multipli e per migliorare le performance
- Inoltre... le tecniche per aumentare la velocità di accesso al disco implicano l'uso di più dischi cooperanti

Il sezionamento del disco o data striping (RAID 0) tratta un gruppo di dischi come un'unica unità di memorizzazione:

- Ogni "blocco" di dati è suddiviso in "sottoblocchi" memorizzati su dischi distinti (es.: i bit di ciascun byte possono essere letti "in parallelo" su 8 dischi)
- Il tempo di trasferimento per rotazioni sincronizzate diminuisce proporzionalmente al numero dei dischi nella batteria

RAID level 0

Sezionamento senza ridondanza

Vantaggi dello Striping

- Aumento del throughput per accessi multipli a pagine in memoria
- Diminuzione del tempo di risposta per l'accesso a grandi quantità di dati

Svantaggi dello Striping

 Non aumenta l'affidabilità → Se il tempo medio di guasto di una unità disco è pari a 100000 ore, allora il tempo medio di guasto per una batteria di dischi con 100 unità sarà 100000/100 = 1000 ore, davvero poco!

Mirroring

- Soluzione al problema dell'affidabilità
- Due copie di ogni blocco di dischi
- Vantaggi:
 - Semplice da implementare
 - Resistente ai guasti
- Svantaggio:
 - Richiede il doppio della capacità rispetto ad un normale sistema

- Gli schemi RAID migliorano prestazioni e affidabilità del sistema memorizzando dati ridondanti
- Il mirroring o shadowing (RAID 1) conserva duplicati di ciascun disco

- Si usa il codice di Hamming per corregere gli errori
- E' necessario sincronizzare i dischi per far sì che la testina di ciascun disco sia nella stessa posizione in ogni disco
- Poiché i moderni HDD hanno sistemi a correzione di errori integrati, RAID2 è considerato obsoleto

- Dati salvati in stripe della lunghezza di 1 byte
- Il byte di parità si determina per ogni riga di dati e viene salvato nel cosiddetto "parity disk"
- RAID-3 è poco usato perché non può eseguire richieste multiple simultaneamente dato che ogni singolo blocco di dati è memorizzato in modo distribuito tra tutti i dischi del RAID

byte level striping with dedicated parity disk

RAID level 3

Parity disk

RAID 4 e RAID 5

RAID level 4

block-level striping with a dedicated parity disk

RAID level 5

distributed parity

Anche noti come RAID 1+0

I dati sono divisi in stripe (come in RAID 0) su coppie di dischi duplicati (RAID 1)

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Sistemi Operativi

Strutture RAID

Docente:

Domenico Daniele

Bloisi

