Forchon zela globale.

1

I) Produit resteint

def: Soit J=7v] ens. d'indices, Jos sous-ens finificé de J.

4 v on est donné Gu groupe loc opt

4 v & Jos sous-groupe opt overt liv de Gv.

Produit direct ristrict de GV par rapport aux NV

G:= T'GV = {(xv): xv ∈ GV , xv ∈ NV pour bours south nb finide V}

VES

Topologne sur G: base de vois de l'identité ens de la forme TTNV NV wis de 1 dans GV et NV=HV pour lous sauf nb. fini de V. (# lopo product).

Soit S finie D J & , Gs = TT Gs x TT HV

prdt fini spe cpt loc cpt

= Gs cpt dans topo produit

Et topo produit sur GS = topo modult par celle définie avant Comme tout $x \in G$ appartent à eur slg de cette fame alors G est loc cett.

demme: $\chi \in \text{Nom}_{\text{cont}}(G, C^*)$ - Alon χ hinial sur hours sawf no fini de Mv. Ainsi, $y \in G$. $\chi(yv) = 1$ pour hours sawf sawf no fini de v et $\chi(y) = \pi \chi(yv)$.

Domo: Soit U wis de 1 dans C* / U re conhenne aucun sig de C* outre que 213. Soit N= TTNV wis de 1 dans G / X(N) CU aucc Nv=Nv pour bus v & S frie. Alos

TT HV GN => X(TT HV) GU V&S V&S SIS de C* Donc X(TINV)= 313 ex X(11V) = 313 VV &S

Soit y E G , y=4,42 43.

91 pret fini des projects & Nv Vv.

yz: prolifini des projects ∈ Hv v ∈ S

y3: ∈Nv, v € S -> X(yv)=1.

demme: $\forall v$ soit $\chi v \in \text{Hom cont}(Gv, C^*)$ et supposons $\chi v \mid_{Hv} = 1$ pour vous sauf rb fini de v.

Also $\chi = T \chi_v \in \text{Hom cont}(G, C^*)$.

Prop: Soit & produit restent & par rapport NV.
Soit dg, mesure de Naar (à sauche) sur &v.
kille que \int_1 dg,=1.

Alors 3! mesur de Novar de sur G top $\forall S \supset J \infty$ la notrichon de de de de à GS soit la mesure produit.

Idée preux: On prend S, dgs = produit des mesures dgr On unfre que clestaine mesure de lavor sur Gs.

Si SET dgs = dgrlGs.

Glocopt => mesire de llacer qui se resteint en mesire de llacer sur Gs. On prind S > Joo, on definit une mesire de llacer dg sur G qui est la mesire de lacer qui se ristreent à des sur Gs. Indép de S.

def: K corps global (ext-fine de a ou k(+) auc k fini)

Kv complète en place v , alors (Kv,+) gre addety loc cpt

Ov sig cpt overt. Product direct restreint des Kv via Ov

est appelé le groupe des adèles de K noté Ax.

On considere aussi (Kv*,.) gre multi loc cpt, aucc Ox

en obhent le groupe des idèles de K noté Tx.

0

II) Fonction zela globale

3

def: Coract de Necko: morphisme de sp continue $\chi: I_{K}|_{K^*} \longrightarrow I_{K}$. Precimpo $K_{V}^{\times} \longrightarrow I_{K}$ donne χ_{V} coract de K_{V}^{\times} , non ramifié $(\chi \text{ continu}) \text{ pr}_{V}$. $\chi_{V}(\partial_{V}^{\times}) = 1$.

Rq: $x = (xv)v \in \mathbb{I}_K$, on definit so norms d'idèle $|x| := \mathbb{Z}_L \times \mathbb{I}_{|x|} \times \mathbb{I}_{|x|}$

Idex preux: On a que I_K/K^{\times} cpt où $I_K'=\{x\in I_K \mid |x|=1\}$ donc ses caracters sont unlaites (image dans S')

Les caract de $|I_K|$ sont de la forma $E \mapsto E^{\lambda}$, $E \in E$ Donc $X = \mu \cdot 1 \cdot 1^{\lambda}$ et $T_X = 3e(\lambda)$.

def: Fonctions de Schwartz, K verps global $J(A_K) := 8^{1} J(K_V)$ où le produit knoamel no treint

des espaces de Schwartz-Bretat $J(K_V)$ consiste

in les fonctions de la formes $J = 8 J_V$, $J_V \in J(K_V)$ in les fonctions de la formes $J = 8 J_V$, $J_V \in J(K_V)$ V_V et $J_V = J_{VV}$ P_V . On d'int $J(X_V) = T_V J(X_V)$ $V_V = J(X_V)_V \in J(X_V)$

Fixono d* 2 mesure de haar sur II k de la forme (6) d* 2 v où d* 2 v mesure de haar ser Kv* 19

Lok d* 2 v = 1 pp. V X valur dours C*, sur I k mind sur K'

Si f E g(AF), X caract · Necke, intégrale ze le glabale:

Z(J, X) := fre) X(x) d* 2

Prop: & Tx>1, l'intigrale 2(f, L) est abs CV.

Demo: $f = \emptyset$ so vir $f_v \in \mathcal{J}(K_v)$ et $f = \mathcal{J}_{v_v} \vee \mathcal{L}_{v_v}$ S fini S so quitte S agrandir S, on peut supposer X_v non-ramifié et $\int_{\mathcal{R}_v} d^*x = 1 \quad v \notin S$

On a que l'int. zeta locale $\int_{K_v^{\times}} f_v(x_v) \chi_v(x_v) d^*x_v \stackrel{\text{col}}{=} 0$ des W cor $f_{\chi_v} = f_{\chi_v} > 1 > 0$.

Il suffit de unfer et abs de

TT | 191(20) x, 620) | d* 20 = TT | x, (20) | d*20.

Or $\frac{1}{100} = \frac{1}{100} = \frac$

Or $\sqrt{4}$ S $1-9\sqrt{7}$ est abs CV pour $\sqrt{x} > 1$.

S: $F = \Omega$ $\frac{1}{1-p^{-4}} - 1 = \frac{p^{-4}}{1-p^{-4}} \le 2p^{-4}$

If $\sum_{p}^{\infty} p^{-p} < \infty$ pour T > 1.