

BANK

WITH ANSWER KEY

& STRUCTURED EXPLANATION

CLASS 11
PHYSICS

Comprehensive Coverage

Includes detailed question banks for Class 11 & 12 subjects PCMB

Skill-based Learning

Develops critical thinking and problem-solving skills essential for cracking tough exams.

Score Boosting

Helps to score maximum marks in CBSE exams and increases competitive exam success potential..

Answer Key & Structured Explanations

Clear, well-structured explanations and step-by-step solutions to enhance understanding.

Exam Pattern Aligned

Questions modeled after the latest exam patterns to ensure students are well-prepared.

Competitive Exam Focus

Specially designed to help students excel in IIT, NEET, JEE, CUET, and other competitive exams.

NCERT Integration

Questions and answers are based on the NCERT syllabus, ensuring relevance for both CBSE board exams and entrance tests.

ARTHAM RESOURCES

Class: 11 Physics

Competency-based Question Bank with Answer Key & Structured Explanation

The decrease in the potential energy of a ball of mass 20 kg which falls from a height of 50 cm is

WORK ENERGY AND POWER

	a) 968 <i>J</i>	b) 98 <i>J</i>	c) 1980 <i>J</i>	d) None of these		
2.	The potential energy of	of a certain spring when stret	ched through a distance	'S' is 10 <i>joule</i> . The amount of		
	work (in joule) that m	ust be done on this spring to	stretch it through an add	ditional distance 'S' will be		
	a) 30	b) 40	c) 10	d) 20		
3.	One man takes 1 minu	ite to raise a box to a height o	of 1 m and another man ta	akes $\frac{1}{2}$ minute to do so. The		
	energy of the two is			2		
	a) Different		b) Same			
	c) Energy of the first i	s more	d) Energy of the secon	nd is more		
4.		function for the force between	, 0,			
		$\frac{b}{x^6}$, where a and b are constant				
		The molecule is $D = [U(x =$				
		h^2	h^2	0		
	a) $\frac{b^2}{6a}$	b) $\frac{b^2}{2a}$	c) $\frac{b^2}{12a}$	$d)\frac{b^2}{4a}$		
5.		f a body is increased 2 times		4a		
J.	a) Half	b) Remain unchanged	c) Be doubled	d) increase $\sqrt{2}$ times		
6.		,		·		
0.	A steel ball of radius 2 cm is at rest on a frictionless surface. Another ball of radius 4 cm moving at a velocity of 81 cm/sec collides elastically with first ball. After collision the smaller ball moves with speed of					
	a) 81 cm/sec	b) 63 cm/sec	c) 144 cm/sec	d) None of these		
7.		,		along three different paths 1, 2		
<i>/</i> .		shown) in the gravitational				
	between W_1 , W_2 and V		neid of a point mass m, m	nd the correct relation		
	B	' 3				
	1 m 2					
	/ /3					
	A					
	a) $W_1 > W_2 > W_3$	b) $W_1 = W_2 = W_3$	c) $W_1 < W_2 < W_3$	d) $W_2 > W_1 > W_3$		
8.	Two putty balls of equ	ial mass moving with equal v	elocity in mutually perpe	endicular directions, stick		
	together after collision. If the balls were initially moving with a velocity of $45\sqrt{2}\ ms^{-1}$ each, the velocity of					
	their combined after o	collision is				
	a) $45\sqrt{2} \ ms^{-1}$	b) $45 ms^{-1}$	c) $90 \ ms^{-1}$	d) $22.5\sqrt{2} \ ms^{-1}$		
9.	A man does a given an	nount of work in 10 s. Anothe	er man does the same am	ount of work in 20 s. The ratio		
		f first man to the second man				
	a) 1	b) $\frac{1}{2}$	c) $\frac{2}{1}$	d) None of these		
		L	1			
10.			er wire is $2k$. When both t	the wires are stretched through		
	same distance, then the					
	a) $W_2 = 2W_1^2$			d) $W_2 = 0.5W_1$		
11.	The potential energy of	of a particle in a force field is	$U = \frac{A}{r^2} - \frac{B}{r}$, where A and	$\it B$ are positive constants and $\it r$		

12. Consider the following statements. A and B and identify the correct answer given below.

Body initially at rest is acted upon by a constant force. The rate of change of its kinetic energy varies linearly with time.

is the distance of particle from the centre of the field. For stable equilibrium, the distance of the particle is

II. When a body is at rest, it must be in equilibrium.

b) 2A/B

	c) A is correct and B is wrong	d) A is wrong an	id B is correct
13.	A body at rest breaks into two pieces with unequ	al mass	
	a) Both of them have equal speeds		
	b) Both of them move along a same line with une	qual speeds	
	c) Sum of their momentum is non zero		
	d) They move along different lines with different	speeds	
14.	A mass of 50 kg is raised through a certain heigh	-	e efficiency is 90%, the energy is
	5000 J. If the mass is now released, its KE on hitti	=	
	a) 5000 J b) 4500 J	c) 4000 J	d) 5500 J
15	A body of mass $2 kg$ is projected at $20 m/s$ at an		
13.	to the gravitational force at its highest point is	angle of oo above th	e nortzontal. I ower on the block due
	a) $200 W$ b) $100\sqrt{3} W$	c) 50 W	d) Zero
1.0		,	•
16.		=	
	2 m/s. The mass per unit length of water in the p	= = :	_
4.	a) 800 W b) 400 W	c) 200 W	d) 100 W
17.	A particle free to move along the x -axis has poter		
	$x \le +\infty$, where k is a positive constant of approp		
	a) At point away from the origin, the particle is in	=	
	b) For any finite non-zero value of x , there is a for	-	
	c) If its total mechanical energy is $k/2$, it has its r		
	d) For small displacements from $x = 0$, the motion	=	
18.	The relation between the displacement <i>X</i> of an ob-	·	
	represented by a graph shown in the figure. If the		displacement from $X = 0.5 m$ to $X =$
	2.5 <i>m</i> the work done will be approximately equal	l to	
	18		
	14		
	(E) 12 10 10 10 10 10 10 10 10 10 10 10 10 10		
	8 10 10 10 10 10 10 10 10 10 10 10 10 10		
	6		
	4 2		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	a) 16 <i>J</i> b) 32 <i>J</i>	c) 1.6 <i>J</i>	d) 8 <i>J</i>
19.	Two rectangular blocks A and B of masses 2kg ar	nd 3 kg respectively a	re connected by spring of spring
	constant 10.8 Nm ⁻¹ and are placed on a frictionle	ess horizontal surface	. The block A was given an initial
	velocity of $0.15 \ ms^{-1}$ in the direction shown in t	the figure. The maxin	num compression of the spring
	during the motion is		
	0.15 ms ⁻¹		
	A		
	a) 0.01 m b) 0.02 m	c) 0.05 m	d) 0.03 m
20	A force of 5 <i>N</i> , making an angle θ with the horizon	,	
20.	horizontal direction. If the object gains kinetic en	= :	
	a) 1.5 N b) 2.5 N	c) 3.5 <i>N</i>	d) $4.5 N$
21		,	
21.	0 0 11	gently from the top (or a tower. At a point 20 cm from the
	ground, both the bodies will have the same	-2 17 -111	1) Total
22	a) Momentum b) Kinetic energy	c) Velocity	d) Total energy
<i>22</i> .	A 10 H. P. motor pumps out water from a well of	-	
	at a height of 10 <i>m</i> from the ground. The running	time of the motor to	THE time empty water tank is $(a =$
		, 01 010 1110 001 00	in the empty water tank is (g
	$10ms^{-2})$, 0 0 0 0 00	in the empty water tank is (g

b) A and B are wrong

a) A and B are correct

	a) 5 minutes	b) 10 minutes	c) 15 minutes	d) 20 minutes
23.	Power of water pur	np is $2 kW$. If $g = 10 m/sec$	² , the amount of water it ca	an raise in one minute to a height
	of 10 <i>m</i> is			
	a) 2000 <i>litre</i>	b) 1000 <i>litre</i>	c) 100 litre	d) 1200 <i>litre</i>
24.	A rubber ball is dro	pped from a height of 5 m or	n a planet where the accele	eration due to gravity is not
	known. On bouncin	g, it rises to $1.8 m$. The ball lo	oses its velocity on bouncin	ng by a factor of
	a) 16/25	b) 2/5	c) 3/5	d) 9/25
25.		aises a load of 80 kg in 2 s fr	om the ground to his head	and then walks a distance of 40
	m in another 2 s. Th	ne power developed by the c	oolie is $[g = 10 \text{ ms}^{-2}]$	
	a) 0.2 kW	b) 0.4 kW	c) 0.6 kW	d) 0.8 kW
26.	A bomb at rest expl	odes into 3 parts of the sam	e mass.	
	The momentum of t	the 2 parts is $-2p\hat{I}$ and $p\hat{j}$. The stands \hat{I}	he momentum of the third	part will have a magnitude of
	a) <i>p</i>	b) $\sqrt{3p}$	c) $p\sqrt{5}$	d) zero
27.		• -	- 1	e s is 10 J. The amount of work
27.	-	be done on this spring to st	-	
	a) 30	b) 40	c) 10	d) 20
28.	•	,	,	igure. If $m \ll M$ than for one
	-	collision, the speed of lighte	·	_
	$u_1 = 6 m/s$	$u_2 = 4 \text{ m/s}$	partition arter combion w	
	(m)	$M \longrightarrow M$		
	a) $2m/sec$ in origin	al direction	b) 2 <i>m/sec</i> opposite	to the original direction
	c) 4m/sec opposite	e to the original direction	d) $4m/sec$ in original	al direction
29.	Consider elastic col	lision of a particle of mass m	n moving with a velocity u	with another particle of the same
	mass at rest. After t	he collision the projectile an	nd the stuck particle move	in directions making angles
	θ_1 and θ_2 respective	ly with the initial direction o	of motion.	
	The sum of the angl	es $\theta_1 + \theta_2$		
	a) 45°	b) 90°	c) 135°	d) 180°
30.	A car weighing 140	0 kg is moving at a speed of	$54 \mathrm{kmh^{-1}}$ up a hill when the	ne motor stops. If it is just able to
		_	-	e work done against friction
	(negative of the wo	rk done by the friction) is [T		
	a) 10 kJ	b) 15 kJ	c) 17.5 kJ	d) 25 kJ
31.	-		•	ents of masses $1g$ and $3g$. The
		gments is 6.4×10^4 <i>J</i> . What i		
	a) $2.5 \times 10^4 J$	b) $3.5 \times 10^4 J$	c) $4.8 \times 10^4 J$	d) $5.2 \times 10^4 J$
32.	-	1 cc of blood in 1 s under pr	-	
	a) 0.02 W	b) 400 W	c) $5 \times 10^{-10} \text{W}$	d) 0.2 W
33.	=		0 m/s to $20 m/s$ is how ma	ny times the energy required to
	accelerate the car fr	•		
	a) Equal	b) 4 times	c) 2 times	d) 3 times
34.				third of its length is hanging
			s acceleration due to gravi	ty, the work required to pull the
	hanging part on to t			
	a) MgL	b) <i>MgL</i> /3	c) <i>MgL</i> /9	d) <i>MgL</i> /18
35.	_			g stretches by 2 <i>cm</i> . The mass is
			mes 60 <i>cm</i> . What is the am	ount of elastic energy stored in
		ondition, if $g = 10 \ m/s^2$		
	a) 1.5 joule	b) 2.0 joule	c) 2.5 joule	d) 3.0 <i>joule</i>
36.				a vertical circular path with the
	=		the minimum velocity of n	nass at the bottom of the circle,
	so that the mass con	mplete the circle?		

	a) $\sqrt{4gl}$	b) $\sqrt{3gl}$	c) $\sqrt{5gl}$	d) \sqrt{gl}			
37.				final velocity of the system is			
	a) $\frac{c}{a+b}$. b	b) $\frac{a}{a+c}$. b	c) $\frac{a+b}{c}$. a	d) $\frac{a+c}{a}$. b			
38.		-	=	m_2 . The total energy released in			
	the explosion is <i>E</i> . If <i>E</i> which of the following		energies carried by masses	m_1 and m_2 respectively, then			
	a) $E_1 = \frac{m_2}{M}E$	$b) E_1 = \frac{m_1}{m_2} E$	c) $E_1 = \frac{m_1}{M}E$	$\mathrm{d})E_1 = \frac{m_2}{m_1}E$			
39.		-	-	u with another particle of the same			
				we in directions making angles θ_1			
	and θ_2 respectively w a) 45°	b) 90°	of motion. The sum of the an c) 135°	d) 180°			
40.	•	,	•	re. What is the work done by the			
	force on the particle in	force on the particle in the $1^{\rm st}$ meter of the trajectory					
	$ \begin{array}{c c} 5 \\ F \\ (in N) \end{array} $ $ \begin{array}{c c} B \\ A \\ x(in m) \end{array} $						
	a) 5 J	b) 10 J	c) 15 J	- , - ,			
41.				the same distance x . If their			
	elastic energies are E_1	$\frac{1}{1}$ and E_2 , then $\frac{E_1}{E_2}$ is equal					
	a) $k_1: k_2$		-	d) k_1^2 : k_2^2			
42.				dy of mass $2 kg$ and displaces it			
		. The work done in <i>joul</i> d		J) 12F			
43	a) 70 An automobile weight	b) 270 ing 1200 kg climbs un a	c) 35 hill that rises 1 m in 20 s N	d) 135 Jeglecting frictional effects. The			
10.	An automobile weighing 1200 kg climbs up a hill that rises 1 m in 20 s. Neglecting frictional effects. The minimum power developed by the engine is 9000 W . If $g = 10 \text{ms}^{-2}$, then the velocity of the automobile is						
	a) 36 km h ⁻¹	b) 54 km h ⁻¹	c) 72 km h ⁻¹	d) 90 km h ⁻¹			
44.	• •	•	_	at is required to displace it until			
	the string makes an a	ngle of 45 ⁰ with the init					
	a) $Mg(\sqrt{2} + 1)$	b) $Mg\sqrt{2}$	c) $\frac{Mg}{\sqrt{2}}$	d) $Mg(\sqrt{2}-1)$			
45.	•	•		ce of 10 N in forward direction. If			
		=	done by force of fiction for	-			
46	a) -20 J The pointer reading 13	b) 10 J	c) 20 J ng halance is as given in the	d) -5 J e figure. The spring constant is			
TU.	1 ne pointer reautilg v	ys wau graph ior a spir	ing balance is as given ill till	. figure. The spring constant is			

a) $0.1 \, kg/cm$

b) 5 *kg cm*

c) 0.3 kg/cm

d) 1 kg/cm

47. A ball dropped from a height of 2m rebounds to a height of 1.5 m after hitting the ground. Then the percentage of energy lost is

a) 25

b) 30

c) 50

d) 100

48. Two particles having position vectors $\vec{r_1} = (3\hat{\imath} + 5\hat{\jmath})$ metres and $\vec{r_2} = (-5\hat{\imath} - 3\hat{\jmath})$ metres are moving with velocities $\vec{v_1} = (4\hat{\imath} + 3\hat{\jmath})m/s$ and $\vec{v_2} = (\alpha\hat{\imath} + 7\hat{\jmath})m/s$. If they collide after 2 seconds, the value of ' α ' is

-)	-
aı	_

b) 4

c) 6

d) 8

- 49. Which of the following statements is wrong?
 - a) KE of a body is independent of the direction of motion
 - b) In an elastic collision of two bodies ,the momentum and energy of each body is conserved
 - c) If two protons are brought towards each other the PE of the system decreases.
 - d) A body cannot have energy without momentum.
- **50**. Which of the following graphs show variation of potential energy (U) with position x.

- **51.** A ball is released from certain height. It loses 50% of its kinetic energy on striking the ground. It will attain a height again equal to
 - a) One fourth the initial height

b) Half the initial height

c) Three fourth initial height

- d) None of these
- **52**. A rope ladder with a length *l* carrying a man with a mass *m* at its end is attached to the basket of balloon with a mass *M*. The entire system is in equilibrium in the air. As the man climbs up the ladder into the balloon, the balloon descends by a height *h*. Then the potential energy of the man
 - a) Increase by mg(l-h)

b) Increase by mgl

c) Increases by mgh

- d) Increases by mg(2l h)
- 53. A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is
 - a) *K*

b) Zero

c) $\frac{K}{4}$

- d) $\frac{K}{2}$
- 54. A 10 kg object collides with stationary 5 kg object and after collision they stick together and move forward with velocity 4 ms⁻¹.what is the velocity with which the 10 kg object hit the second one?
 - a) 4 ms^{-1}
- b) 6 ms^{-1}
- c) 10 ms^{-1}
- d) 12 ms^{-1}
- 55. A force $F = Ay^2 + By + C$ acts on a body in the *y*-direction. The work done by this force during a displacement from y = -a to y = a is
 - a) $\frac{2Aa^3}{3}$

- b) $\frac{2Aa^3}{3} + 2Ca$
- c) $\frac{2Aa^3}{3} + \frac{Ba^2}{2} + Ca$
- d) None of these
- 56. The kinetic energy possessed by a body of mass m moving with a velocity v is equal to $1/2 mv^2$, provided
 - a) The body moves with velocities comparable to that of light
 - b) The body moves with velocities negligible compared to the speed of light
 - c) The body moves with velocities greater than that of light
 - d) None of the above statement is corrects
- 57. Which of the following graphs is correct between kinetic energy (E), potential energy (U) and height (h) from the ground of the particle

- 66. A body of mass 50 kg is projected vertically upwards with velocity of 100 m/sec. 5 seconds after this body breaks into 20 kg and 30 kg. If 20 kg piece travels upwards with 150 m/sec, then the velocity of the block will be
 - a) 15 *m/sec* downwards

b) $15 \, m/sec$ upwards

c) 51 *m/sec* downwards

d) 51 *m/sec* upwards

67. A man, by working a hand pump fixed to a well, pumps out 10 m^3 water in 1 s. If the water in the well is 10 m below the ground level, then the work done by the man is $(g = 10 \text{ms}^{-2})$

a) 10^{3} J

b) 10⁴J

c) 10^5 J

d) 10⁶J

68. A body of mass m_1 is moving with a velocity V. It collides with another stationary body of mass m_2 . They get embedded. At the point of collision, the velocity of the system

	a) Increases		b) Decreases but does no	t become zero			
	c) Remains same		d) Become zero				
69.	An intense stream of water of cross	-sectional area A	strikes a wall at an angle $ heta$	with the normal to the wall			
	and returns back elastically. If the d	ensity of water is	ρ and its velocity is v , then	the force exerted in the			
	wall will be						
	0						
	a) $2Av\rho\cos\theta$ b) $2Av^2\mu$	$o\cos\theta$	c) $2Av^2\rho$	d) $2Av\rho$			
70.	Two solid rubber balls A and B havi	ing masses 200 ar	nd $400~g$ respectively are $\mathfrak r$	noving in opposite			
	directions with velocity of A equal t	to $0.3 m/s$. After c	ollision the two balls come	e to rest, then the velocity of			
	B is						
	a) 0.15 <i>m/sec</i> b) 1.5 <i>m</i>	/sec	c) $-0.15 m/sec$	d) None of the above			
71.	A space craft of mass M and moving	g with velocity v s	uddenly breaks in two pied	ces of same mass m. After			
	the explosion one of the mass m bed	comes stationary.					
	a) $\frac{Mv}{M-m}$ b) V		c) $\frac{Mv}{m}$	d) $\frac{M-m}{m}v$			
				III			
72.		A force $\mathbf{F} = -K(y\mathbf{i} + x\mathbf{j})$ (where K is a positive constant) acts on a particle moving in the xy -plane.					
	Starting from the origin, the particle	_	=	· · ·			
	to the y-axis to the point (a, a) . The	total work done					
	a) $-2 Ka^2$ b) $2Ka^2$		c) $-Ka^2$	d) Ka^2			
73.	A spherical ball of mass $20 kg$ is sta		-				
		surface to the ground, then climbs up another hill of height $30 m$ and finally slides down to a horizontal					
	base at a height of 20 m above the g						
	a) $10 \ m/s$ b) $10\sqrt{30}$	•	c) 40 <i>m/s</i>	d) 20 <i>m/s</i>			
74.	Adjacent figure shows the force-dis	placement graph	of a moving body, the wor	k done in displacing body			
	from $x = 0$ to $x = 35 m$ is equal to						
	S 15						
	(V) 9 10						
	<u>s</u>						
	0 5 10 15 20 25 30 35 40						
	Displacement (m)		.) 207 f I	1) 200 I			
75	a) 50 J b) 25 J	nt It and donler	c) 287.5 J	d) 200 <i>J</i>			
75.	A bomb is kept stationary at a point	=	_	s of masses 1g and 3g. The			
	total KE of the fragments is 6.4×10^{4} a) 2.5×10^{4} b) 3.5×10^{4}			d) 5.2×10^4 J			
76	a) 2.5×10^4 J b) $3.5 \times$ What is the velocity of the bob of a s	•	c) 4.8×10^4 J	,			
/ U.	vinat is the velocity of the bob of a s	simple pelluululli	at its inean position, if it is	anie to lise to vei titai			

76. height of 10 cm (Take $g = 9.8 m/s^2$)

a) 0.6 *m/s*

b) 1.4 *m/s*

c) 1.8 m/s

d) 2.2 *m/s*

77. Which of the following statements are incorrect?

(i) If there were no friction, Work need to be done to move a body up an inclined plane is zero.

(ii) If there were no friction, moving vehicles could not be stopped even by locking the brakes.

	a) <i>v</i>	b) 2 <i>v</i>	c) $\frac{3}{4}v$	d) $\frac{4}{3} v$
91.	A light and a heavy body h	ave equal kinetic energy.W	/hich one has a greater mor	nentum
	a) The light body		b) The heavy body	
	c) Both have equal momen	ntum	d) It is not possible to say	anything without
			additional information	, ,
92.	Two bodies A and B have	masses 20 kg and 5 kg resr	pectively .Each one is acted	upon by a force of 4 kg-wt.
·		netic energy in times t_A and		apon by a force of Ting Wei
		inetic energy in times t _A and	ta t _B , then the ration	
	$\frac{t_A}{t_B}is$			
			2	5
	a) $\frac{1}{2}$	b) 2	c) $\frac{2}{r}$	d) $\frac{5}{6}$
93.	A homb of mass 30 kg at r.	est evnlodes into two niece	es of masses 18 kg and 12kg	The velocity of 18 kg
<i>) J</i> .	mass is $6 ms^{-1}$. The kinetic	-		Giffic velocity of 10 kg
				4) 224 1
0.4	a) 256 J	b) 486 J	c) 524 J	d) 324 J
94.	The graph between \sqrt{E} an	d 1/p is $(E = kinetic energ)$	y and $p = momentum$)	
	\sqrt{E} \uparrow	\sqrt{E}	\sqrt{E} \uparrow \downarrow	\sqrt{E} \uparrow
	a) /	b)	c) \	d) //
				L
	1/p	1/p	1/p	1/p
95.	-, ,	= .	mass m) comes horizontall	y with velocity v and gets
		the combined (bag + bull		
	a) Momentum is $\frac{mvM}{M+m}$		b) Kinetic energy is $\frac{mv^2}{2}$	
	c) Momentum is $\frac{mv(M+m)}{M}$		d) Kinetic energy is $\frac{m^2v^2}{2(M+m)}$	<u>_</u>
96.	The kinetic energy k of a r	article moving along a circ	tle of radius R depends upo	n the distance sas $k = as^2$.
	The force acting on the pa		are or running it moperate upo	
	a) $2a \frac{s^2}{R}$	b) $2as \left[1 + \frac{s^2}{R^2}\right]^{1/2}$	c) 2 <i>as</i>	d) 2 <i>a</i>
97.	If the linear momentum is	increased by 50%, then ki	netic energy will be increas	ed by
	a) 50%	b) 20%	c) 125%	d) None of these
98.	A shell of mass $200 \ gm$ is	ejected from a gun of mass	4 kg by an explosion that g	generates $1.05~kg$ of
	energy. The initial velocity	of the shell is		
	a) $40 \ ms^{-1}$	b) $120 m^{-1}$	c) $100 \ ms^{-1}$	d) $80 \ ms^{-1}$
99.	A block(<i>B</i>) is attached to t	wo unstretched springs S ₁	and S ₂ with springs constai	nts k and $4k$, representively
	(see Fig. I)The other ends	are attached to identical su	upports M_1 and M_2 not atta	ched to the walls. The
			no friction anywhere. The b	
			ed. The block returns and m	-
	=	, = ,	ed with respect to the equili	
	B The ratio $\frac{y}{x}$ is		a ion i copoco to the equin	2110111 p 00101011 01 0110 01001
	X	L.		
	2 M ₂ S ₂ B S ₁ M ₁	I		
	2 M ₂ S ₂ B S ₁ M ₁	1 П		
	a) 4	b) 2	. 1	1
	w, :	~, <u>~</u>	c) $\frac{1}{2}$	d) $\frac{1}{4}$
100.	A body of mass <i>m</i> moving	with velocity v collides hea	d on another body of mass	2m which is initially at

rest. The ratio of KE of colliding body before and after collision body before and after collision will be

a) 1:1	b) 2:1	c) 4:1	d) 9:1
101. A ball moving with veloc	ity $2 m/s$. collides head on	with another stationary ba	ll of double the mass. If the
_		(in m/s) after collision will	
a) 0,2	b) 0, 1	c) 1, 1	d) 1, 0.5
102. A block of mass $5kg$ is re	esting on a smooth surface.	At what angle a force of 20	N be acted on the body so
=	netic energy of 40 <i>J</i> after mo	-	•
a) 30°	b) 45°	c) 60°	d) 120°
103. A 50g bullet moving with	n a velocity of 10 ms ⁻¹ gets	embeded into a 950g statio	onary body. The loss in KE of
the system will be	_	_	
a) 95%	b) 100%	c) 5%	d) 50%
104. A long spring, when stre	tched by x cm has a potenti	al energy <i>U</i> . On increasing	the length of spring by
	potential energy stored in t	==	
a) $\frac{U}{n}$	b) <i>nU</i>	c) n^2U	d) $\frac{U}{n^2}$
	-	,	1ι
105. When a force is applied of		n is retarded. Then the wor	
a) Positive	b) Negative	c) Zero	d) Positive and negative
106. If a body of mass 3 kg is	dropped from the top of a t	ower of height 25 m, then it	ts kinetic energy after 3 s
will be			
a) 1126 J	b) 1048 J	c) 735 J	d) 1296 J
107 . A spring of force constar	it $800 N/m$ has an extensio	n of $5cm$. The work done in	extending it from 5 cm to
15 <i>cm</i> is			
a) 16 <i>J</i>	b) 8 <i>J</i>	c) 32 <i>J</i>	d) 24 <i>J</i>
108. A body moving with a ve		equal parts. One of the part	t retraces back with
velocity v .Then, the velo	•		
a) v , in forward direction		b) 3 v in forward direction	
c) v , in backward directi		d) 3 v in backward direct	
109. Four particles given, hav			
a) Proton	b) Electron	c) Deutron	d) α - particles
110. If reaction is R and coeff	cient of friction is μ , what i	s work done against friction	n in moving a body by
distance d?			
<u></u>			
и м			
. · · · · · · · · · · · · · · · · · · ·			
a) $\frac{\mu Rd}{4}$	b) 2 <i>μRd</i>	c) μRd	d) $\frac{\mu Rd}{2}$
$\frac{4}{4}$	υ) Ζμκα	ι) μκα	<u>2</u>
111. The block of mass M mov	ving on the frictionless hori	zontal surface collides with	the spring of spring
constant k and compress	ses it by length L. The maxir	num momentum of the blo	ck after collides is
M -000000			
	- 2		2
a) \sqrt{MkL}	b) $\frac{kL^2}{2M}$	c) Zero	d) $\frac{ML^2}{L}$
•	ZIVI		k
112. In which case does the p	••	13.0	
a) On compressing a spr	_	b) On stretching a spring	
c) On moving a body aga		d) On the rising of an air	
113. Two bodies A and B have			upon by a force of 4 kg wt.
If they acquire the same	kinetic energy in times t_{A} a	nd t_B , then the ratio $\frac{t_A}{t_B}$ is	
a) $\frac{1}{2}$	b) 2	c) $\frac{2}{5}$	d) $\frac{5}{6}$
L		J	6
114 If a lighter hody (Mass N	I_1 and velocity V_1) and a hear	avier body (mass M_2 and ve	elocity V_2) have the same

	starts at zero and gradual	ly increases until the string	g makes an angel θ with the	e vertical. Work done by the
	force <i>F</i> is			
	A			
		b) <i>mgL</i>	c) $mgL(1 - \cos \theta)$	
118.	A spring with spring cons		$= 0$ to $x = x_1$. The work don	ne will be
	a) kx_1^2	b) $\frac{1}{2}kx_1^2$	c) $2kx_1^2$	d) $2kx_1$
119.	A ball of mass <i>m</i> falls vert momentum of the ball on		height h_1 and rebound to a	a height h_2 . The change in
	a) $mg(h_1 - h_2)$	0 0	b) $mg(\sqrt{2gh_1} + \sqrt{2gh_2})$	
	c) $m\sqrt{2g(h_1 + h_2)}$		$d) m\sqrt{2g}(h_1 + h_2)$	
120.	A body of mass M_1 collide	s elastically with another i	mass M_2 at rest. There is mass	aximum transfer of energy
	when			
	a) $M_1 > M_2$		b) $M_1 < M_2$	
	c) $M_1 = M_2$		d) Same for all values of l	_
121.			strikes a pendulum bob of r	
	stick together. The maxim		system now is $(g = 10 m/s)$	s^2)
	a) Zero	b) 5 <i>cm</i>	c) 2.5 <i>cm</i>	d) 1.25 <i>cm</i>
122.		ooden block along an incli		ertically, principally because
	a) The friction is reduced		b) The mass becomes sm	aller
400		ht has to be overcome		
123.				from the point $\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$
		he total work done by the		
	a) 20	b) 40	c) 50	d) 30
124.	The power of a water punheight of 10 m is	np is 200 kW. If $g = 10 \text{ms}^{-1}$	⁻² , then the amount of wate	er it can raise in 1 min to a
	a) 2000 L	b) 1000 L	c) 100 L	d) 1200 L
125.			u hits another stationary s	sphere of the same mass. If e
	is the coefficient of restitu	ition, then the ratio of the	velocity of two spheres afte	er collision will be
	a) $\frac{1-e}{1+e}$	b) $\frac{1+e}{1-e}$	c) $\frac{e+1}{e-1}$	d) $\frac{e-1}{e+1}t^2$
	1 1 0	1 6	t 1	CII
126.			lock of mass M at rest and $\mathfrak g$	gets embedded into it. The
	kinetic energy of the comp	posite block will be		
	a) $\frac{1}{2}mv^2 \times \frac{m}{(m+M)}$	b) $\frac{1}{2}mv^2 \times \frac{M}{(m+M)}$	c) $\frac{1}{2}mv^2 \times \frac{(M+m)}{(M)}$	$d)\frac{1}{2}Mv^2 \times \frac{m}{(m+M)}$
127.	An α -particle of mass m su	ıffers one dimensional elas	stic collision with a nucleus	of unknown mass. After the

kinetic energy, then

a) $M_2V_2 < M_1V_1$

a) 75⁰

a) $2.5 \, m/s$

b) $M_2V_2 = M_1V_1$

angle between the force and direction of motion of the body will be

and comes to rest. The velocity of the second body due to collision is b) 5 m/s

b) 60°

c) $M_2V_1 = M_1V_2$

c) 45°

c) $7.5 \, m/s$

115. A body moves a distance of 10 m along a straight line under action of 5 N force. If work done is 25 J, then

116. A body of mass 5 kg moving with a velocity 10 m/s collides with another body of the mass 20 kg at, rest

117. An object of mass *m* is tied to a string of length *L* and a variable horizontal force is applied on it which

d) $M_2V_2 > M_1V_1$

 $d) 30^{0}$

d) $10 \, m/s$

	collision the α -particle is nucleus is	scattered directly backward	d losing 75% of its kinetic	energy .then the mass of the
	a) m	b) 2 m	c) 3 m	d) $\frac{3}{2}m$
128.	A spring gun of spring corpulled, the velocity of the	nstant 90 <i>Ncm</i> ⁻¹ is compres ball is	ssed 12 cm by a ball of mas	s 16 g. If the trigger is
	a) 50 ms^{-1}	b) 9 ms^{-1}	c) 40 ms ⁻¹	d) 90ms ⁻¹
129.	If momentum is increased	l by 20%, then kinetic ener	gy increases by	
	a) 48%	b) 44%	c) 40%	d) 36%
130.	A particle falls from a heig	ght h upon a fixed horizonta	al plane and rebounds. If e	is the coefficient of
	restitution, the total dista	nce travelled before rebour	nding has stopped is	
	a) $h\left(\frac{1+e^2}{1-e^2}\right)$	$b) h\left(\frac{1-e^2}{1+e^2}\right)$	$c) \frac{h}{2} \left(\frac{1 - e^2}{1 + e^2} \right)$	$d)\frac{h}{2}\left(\frac{1+e^2}{1-e^2}\right)$
131.	Statement ITwoparticles in	noving in the same direction	on do not lose all their ener	gy in a completely
	inelasticcollision.			
	Statement IIPrinciple of co	onservationof momentum l	nolds true for all kinds of co	ollisions.
	a) Statement I is true, stat	ement II is true, statement	b) Statement I is true Stat	ement II is true, Statement
	II is the correct explana	ation of statement I.	II is not correct explana	ation of statement I.
	c) Statement I is false, Sta	tement II is true.	d) Statement I is true, Sta	tement II is false.
132.	A ball is dropped from a h	eight h . If the coefficient of	restitution be e, then to w	hat height will it rise after
	jumping twice from the gr	ound		
	a) <i>eh</i> /2	b) 2 <i>eh</i>	c) eh	d) e^4h
133.	The work done in draggin	g a stone of mass 100 kg uj	o an inclined plane 1 in 100	through a distance of 10
	m is (take $g = 9.8 \text{ ms}^{-2}$)			
	a) Zero	b) 980 J	c) 9800 J	d) 98 J
134.		equal mass at rest are free		
	•	y of 0.4 ms^{-1} . It collides he		elastically, the second one
		nd so on. The velocity of the		
	a) 0.4ms ⁻¹	b) 0.2ms ⁻¹	c) 0.1ms^{-1}	d) 0.05ms ⁻¹
135.	is 200 N and that $\sin\theta~=$	$1/20$ where, θ is the angel		time that the frictional force ontal. The $g = 10 \text{ ms}^{-2}$. Find
	the power developed by t	_	c) 10 kW	d) 28 kW
126	a) 14 kW	b) 4 kW	,	,
130.				W_B represent the work done the work done when these
		ces, then which of the follo		e the work done when these
	a) $W_A > W_B$ and $W'_A = W$		b) $W_A > W_B$ and $W'_A < W$	7'_
	c) $W_A > W_B$ and $W'_A > W$		d) $W_A > W_B$ and $W_A < W$	=
137	,	rts moving in a straight lin	,	2
157.		nen rate of change of kinetic	•	2 ms at a constant
	a) Is four times the veloci	•	cenergy	
	b) Is two times the displace	•		
	_	f change of velocity at any r	noment	
	d) Is constant through out			
138.	,	rom a height of 5 m on a pl	anet, where the acceleratio	on due to gravity is not
100.	= =	es to 1.8 m. The ball loses i		-
	_			
	a) $\frac{16}{25}$	b) $\frac{2}{5}$	c) $\frac{3}{5}$	d) $\frac{9}{25}$
139.		lls from a height 200 $\it m$ and $\it arth$ surface, then what is t		=

 $10 \ m/s^2$)

a) 200 I	b) 400 I	a) (00 I	4) 000 1	
a) 200 <i>J</i>	b) 400 <i>J</i>	c) 600 <i>J</i>	d) 900 <i>J</i>	
140. A machine which is 75 percent efficient, uses 12 joules of energy in lifting up a 1 kg mass through a certain				
	hen allowed to fall through	that distance. The velocity	at the end of its fall is (in	
ms^{-1})				
a) √ 24	b) $\sqrt{32}$	c) $\sqrt{18}$	d) √9	
141. Two spherical bodies of	of the same mass M are mo	ving with velocities v_1 and	v_2 . These collide perfectly	
inelastically , then the l		5		
-		1		
a) $\frac{1}{2}M(v_1-v_2)$	b) $\frac{1}{M}(v_1^2 - v_2^2)$	c) $\frac{1}{4}M(v_1-v_2)^2$	d) $2M(v_1^2 - v_2^2)$	
$2^{M(v_1-v_2)}$	2 2 2	-, .	(-1 2)	
142. A position-dependent	Force $F = 3x^2 - 2x + 7$ acts	s on a body of mass 7 kg an	d displaces it from $x = 0$ m to	
			in SI units, the value of x' is	
a) 135	b) 235	c) 335	d) 935	
		,		
143. A bullet is fired from a				
a) Less than that of the		b) More than that of th		
c) Same as that of the b		d) Equal or less than th	at of the bullet	
144. In an inelastic collision	, what is conserved			
a) Kinetic energy	b) Momentum	c) Both (a) and (b)	d) Neither (a) nor (b)	
145. A 2.0 kg block is dropp	ed from a height of 40 cm o	nto a spring of spring cons	stant $k = 1960 \text{ Nm}^{-1}$. Find the	
maximum distance the	spring is compressed			
a) 0.080 m	b) 0.20 m	c) 0.40 m	d) 0.10 m	
•	•	,	ill be the height attained after	
first bounce?	neight 20 mm in coemerciae	restruction is 6.5, what w	in be the height attained after	
	h) 16 2 m	a) 10 m	d) 14 m	
a) 1.62 m	b) 16.2 m	,	d) 14 m	
147. A car is moving with a				
a) 0.367 <i>M</i> J	b) 3.67 J	c) 3.67 <i>M</i> J	d) 367 J	
148 . A body of mass 2 <i>kg</i> m	oving with a velocity of 3 \emph{m}	<i>l/sec</i> collides head on with	a body of mass $1 kg$ moving	
in opposite direction w	with a velocity of 4 m/sec. A	fter collision, two bodies s	tick together and move with a	
common velocity which	h in <i>m/sec</i> is equal to			
a) 1/4	b) 1/3	c) 2/3	d) 3/4	
149. A particle is moving un			- ·	
_	nergy (in joules) gained by	_		
a) 2.5 <i>k</i>	b) 3.5 <i>k</i>	c) 4.5 <i>k</i>	d) 9 <i>k</i>	
150. If a man speeds up by 2			,	
a) 1	b) 2 	c) 5	d) 4	
151. The energy which an <i>e</i>	-	• •		
a) 1 Joule	b) 1 <i>eV</i>	c) 1 <i>Erg</i>	d) 1 Watt	
152. A ball is projected vert	• •	•		
projected at an angle o	f 60° with the vertical with	the same initial speed. At l	nighest points of their journey,	
the ratio of their poten	tial energies will be			
a) 1:1	b) 2: 1	c) 3:2	d) 4: 1	
153 . If the <i>K</i> . <i>E</i> . of a body is	increased by 300%, its mor	nentum will increase by		
a) 100%	b) 150%	c) $\sqrt{300}$ %	d) 175%	
154. A ball is projected vert	•	• • • • • • • • • • • • • • • • • • • •	•	
• ,	ses 50% of its energy and r	•		
-	ses 50% of its energy and i	ebounds to the same neigh	t. The initial velocity of its	
projection is	1345 -1) 40 =1	D. F1	
a) $20 \ ms^{-1}$	b) 15 ms ⁻¹	c) 10 ms^{-1}	d) $5 ms^{-1}$	
= = = = = = = = = = = = = = = = = = =		n a horizontal surface with	constant velocity of 20 ms ⁻¹ .	
The force involved in the	he problem is			
a) 375 N	b) 400 N	c) 500 N	d) 600 N	

a) $250\sqrt{3} N$ to right	b) 250 <i>N</i> to right	c) $250\sqrt{3} N$ to left	d) 250 N to left
170. A bullet of mass $0.02 kg$	travelling horizontally with	velocity 250 ms^{-1} strikes	a block of wood of mass
0.23~kg which rests on a	rough horizontal surface. A	after the impact, the block a	and bullet move together
and come to rest after tra	avelling a distance of 40m.	The coefficient of sliding fr	iction of the rough surface is
$(g = 9.8 ms^{-2})$			
a) 0.75	b) 0.61	c) 0.51	d) 0.30
171. An engine develops 10 kl	W of power. How much tim	e will it take to lift a mass o	of 200 kg to a height of 40 m
$(g=10 m/sec^2)$			
•	b) 5 sec	c) 8 sec	d) 10 sec
172. A neutron having mass of	_	_	
	eutron is $3.34 \times 10^{-27} \ kg$ th		
a) $2.56 \times 10^3 \ m/s$		c) $3.33 \times 10^7 \ m/s$	· ·
173. A ball of mass 2kg and ar of 30 feet each towards	earth, their respective kine		
a) $\sqrt{2}:1$	b) 1:4	c) 1:2	d) 1 : $\sqrt{2}$
174. 10 L of water per second	is lifted from well through $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right) $	20 m and delivered with a	velocity of $10ms^{-1}$, then the
power of the motor is			
a) 1.5 Kw175. A bucket tied to a string it	b) 2.5 Kw	c) 3.5 Kw	d) 4.5 Kw
175. A bucket tied to a string i	s lowered at a constant acc	eleration of $\frac{g}{4}$. If the mass o	of the bucket is m and is
=	the work done by the string		
a) $\frac{mgd}{4}$	b) $-\frac{3}{4}mgd$	$\begin{pmatrix} 4 \\ c \end{pmatrix} = m\sigma d$	d) $\frac{4}{3}mgd$
<u> </u>	1	J	3
176. A 20 kg ball moving with			t rest .if both of them
	ity of the combined mass is		J) 2 4 = 1
a) $6 ms^{-1}$			d) $2.4ms^{-1}$
177. A body of mass 3 kg acted			en by relationS = $\frac{1}{3}$ t², where
	by the force in 2 seconds is	_	2
a) $\frac{8}{3}$ J	b) [5] J	c) $\frac{5}{19}$ J	d) $\frac{3}{8}$ J
$\frac{3}{178}$. The blocks of mass m each	5 ch are connected to a spring		O
maximum displacement i		5 or spring constant it as sir	own in figure. The
		2	7
a) $\sqrt{\frac{2mv^2}{k}}$	b) $\frac{mv^2}{k}$	c) $2\sqrt{\frac{mv^2}{k}}$	d) $2\sqrt{\frac{k}{mv^2}}$
V	V	V	$\sqrt{mv^2}$
179. In an elastic collision of t			
a) Momentum of each pa		b) Speed of each particle	
c) Kinetic energy of each	_	d) Total kinetic energy of	-
180. A rod AB of mass 10 kg a	-		
= = =		=	the rod is 100 J, the height
a) 1.5 m	sed vertically above the flo b) 2.0 m	c) 1.0 m	d) 2.5 m
181. A body moves from a pos		-	=
	$F_1 = (2t-3)-4\mathbf{k}$) in to a $F_1 = (2t-3)-4\mathbf{k}$) in to a $F_1 = (2t-3)-4\mathbf{k}$) N. The work done		in unuer the influence of a
constant force $\mathbf{F} = (4\mathbf{i} - 4\mathbf{i})$	rj – okjin. Hie work done i	by the force is	
			4) 60 1
182. The relationship between	b) 58 J	c) 59 J	d) 60 J

a) 30 J	b) 15 J	c) 25 J	d) 20 J

194. A block C of mass m is moving with velocity v_0 and collides elastically with block A of mass m and connected to another block Bof mass 2m through spring constant k. What is k if x_0 is compression of spring when velocity of A and B is same?

$C \longrightarrow V_0$ A 700000	б — В		
a) $\frac{mv_0^2}{X_0^2}$	b) $\frac{mv_0^2}{2x_0^2}$	c) $\frac{3}{2} \frac{mv_0^2}{x_0^2}$	d) $\frac{2}{3} \frac{m v_0^2}{x_0^2}$

- 195. A canon ball is fired with a velocity $200 \ m/sec$ at an angle of 60° with the horizontal. At the highest point of its flight it explodes into 3 equal fragments, one going vertically upwards with a velocity $100 \, m/sec$, the second one falling vertically downwards with a velocity $100 \, m/sec$. The third fragment will be moving with a velocity
 - a) $100 \, m/s$ in the horizontal direction
 - b) $300 \, m/s$ in the horizontal direction
 - c) $300 \, m/\sin a$ direction making an angle of 60° with the horizontal
 - d) $200 \, m/s$ in a direction making an angle of 60° with the horizontal
- 196. If w_1 , w_2 and w_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively(as shown)in the gravitational field of a point mass m. Find the correct relation between w_1 , w_2 and w_3

a)
$$w_1 > w_2 > w_3$$

b)
$$w_1 = w_2 = w_3$$

c)
$$w_1 < w_2 < w_3$$

b)
$$w_1 = w_2 = w_3$$
 c) $w_1 < w_2 < w_3$ d) $w_2 > w_1 > w_3$

197. A ball of mass 0.2 kg rests on a vertical post of height 5 m. A bullet of mass 0.01 kg, travelling with a velocity V m/s in a horizontal direction, hits the centre of the ball. After the collision, the ball and bullet travel independently. The ball hits the ground at a distance of 20 mand the bullet at a distance of 100 *m* from the foot of the post. The initial velocity *V* of the bullet is

- a) $250 \, m/s$
- b) $250\sqrt{2} \ m/s$
- c) 400 m/s
- d) $500 \, m/s$
- 198. A gun of mass 20 kg has bullet of mass 0.1 kg in it. The gun is free to recoil 804 J of recoil energy are released on firing the gun. The speed of bullet (ms⁻¹) is
 - a) $\sqrt{804} \times 2010$

- d) $\sqrt{804 \times 4 \times 10^3}$
- 199. A particle is placed at the origin and a force F = kx is acting on it (where k is positive constant). If U(0) = kx0, the graph of U(x) versus x will be (where U is the potential energy function)

200. A wire of length L suspended vertically from a rigid support is made to suffer extension l in its length by applying a force F. The work is

	a) $\frac{Fl}{2}$	b) Fl	c) 2Fl	d) Fl
	4	equal mass at rest are free	to move along a straight li	ne without friction. The
201.		-	d on with the second elastic	
	similarly with the third an	nd so on. The velocity of the	e last ball is	
	a) 0.4 <i>m/s</i>	b) 0.2 <i>m/s</i>	c) 0.1 <i>m/s</i>	d) 0.05 m/s
202.	-	on e for a perfectly inelasti	•	,
	a) 1	b) 0	c) ∞	d) -1
203.	•	,	plock of mass 950 g at rest	•
	The loss in kinetic energy		g	0
	a) 100%	b) 95%	c) 5%	d) 50%
204		•	0.6 from a height of 1 <i>m</i> . Th	•
201.	height of	reconnected of restriction (no irom a neight or 1 mi. rn	en the body rebounds to a
	a) 0.6 m	b) 0.4 m	c) 1 m	d) 0.36 m
205	A man pushes a wall and f		c) I III	u) 0.30 m
203.	a) Negative work	ans to displace it. He does	h) Docitive but not mayim	um work
			b) Positive but not maxim	uiii woi k
206	c) No work at all	ll- 4 D d Cl d	d) Maximum work	
206.			on a table as shown in the f	igure along a straight line.
	B and C are at rest initially	y		
	$(A) \longrightarrow (B)$ (C)			
	The ball <i>A</i> and <i>B</i> head on v	with a speed of $10ms^{-1}$. Th	nen after all collisions (assu	med to be elastic) A and B
	are brought to rest and <i>C</i>	_	(
	a) $5 m s^{-1}$	b) 10 m s^{-1}	c) $2.5 m s^{-1}$	d) $7.5 m s^{-1}$
207	•	,	ugh 1 cm the potential ener	,
207.	4 cm ,the potential energy		ugn I em the potential ener	gy is o.ii it is stretched by
	a) 4U	b) 8U	c) 16U	d) 2U
200	•	,	e first figure. The force acti	•
200.	represented by	system is represented in th	e mst ngure. The force acti	ing on the system win be
	U(x)			
	↑ ↑			
	o a x			
	a) $F(x)$	b) <i>F</i> (<i>x</i>) ↑	C) $F(x)$	d) F(x)
	а	a	a	
	X	X	\downarrow	$a \xrightarrow{\chi}$
200	A nartials is released from	l La baight bh At a gartain bai	 aht: ita VE ia truo timoa ita	l notontial anamay Haight
209.			ight; its KE is two times its	potential ellergy. Height
	and speed of the particle a	it that instant are		
	$h \mid 2gh$	h h g gh	$_{\rm cl}$ 2h 2gh	d) $\frac{h}{3}$, $\sqrt{2gh}$
	a) $\frac{h}{3}$, $\sqrt{\frac{2gh}{3}}$	b) $\frac{h}{3}$, 2 $\sqrt{\frac{gh}{3}}$	c) $\frac{2h}{3}\sqrt{\frac{2gh}{3}}$	$\frac{1}{3}$, $\sqrt{2gn}$
	V	V	$t^2 - 2t + 1)W$, where t is i	n second. Find the change
41 0.	in its kinetic energy betw		L LL I I JVV , WITELE LIST	ii secona, rina tile tilalige
			c) 61 I	d) 102 I
	a) 32 J	b) 46 J	c) 61 J	d) 102 J

a) $v \propto t$ b) $v \propto \frac{1}{t}$ c) $v \propto \sqrt{t}$ d) $v \propto \frac{1}{\sqrt{t}}$

211. A constant power p is applied to a car starting from rest. If v is the velocity of the car at time t, then

212. A space craft of mass 'M' and moving with velocity 'v' suddenly breaks in two pieces of same mass m. After the explosion one of the mass 'm' becomes stationary. What is the velocity of the other part of craft

	a) $\frac{Mv}{M-m}$	b) <i>v</i>	c) $\frac{Mv}{m}$	d) $\frac{M-m}{m}v$
		oving with velocity $10 m/s$		111
213.		north collides with former a		
	velocity is	for the confides with for the c	and coulesces and moves to	wards north cast. its
	a) 10 <i>m/s</i>	b) 5 <i>m/s</i>	c) 2.5 <i>m/s</i>	d) $5\sqrt{2} \ m/s$
214.	•	ess inclined table without s		•
	ball is			
	a) Positive	b) Negative	c) Zero	d) None of these
215.		on of a very heavy body mo	oving at v with a light body	at rest, velocity of heavy
	body after collision is		c) Zero	v
	a) <i>v</i>	b) 2 <i>v</i>	c) Zeio	d) $\frac{v}{2}$
216.		the help of a string by a dis	stance h at a constant accel	eration g/2. The work done
	by the string will be	Mah	2Mah	2Mah
	a) $\frac{Mgh}{2}$	b) $\frac{-Mgh}{2}$	c) $\frac{3Mgh}{2}$	d) $\frac{-3Mgh}{2}$
	4	E ends in a circular loop of	radius R. A body slides dov	wn the track from point A
	which is it a height $h = 5$	cm. Maximum value of R for	or the body to successfully	complete the loop is
	A D			
	h 2R)c		
	E	<u>/</u>		
	В			
	a) 5 <i>cm</i>	b) $\frac{15}{4}$ cm	c) $\frac{10}{3}$ cm	d) 2 <i>cm</i>
218.	A particle is dropped from	т	3	the particle. Taking g to be
	constant every where, kin	etic energy E of the particle	$e\ w.r.t.$ time t is correctly	shown in
	a) _E ↑ /	b) _E ↑	c) E	d) _E ↑ \
		$\stackrel{\longleftarrow}{t}$	<u> </u>	$\stackrel{\longleftarrow}{t}$
219.	Two bodies of masses m_4	and m_2 have equal kinetic	energies. If n_1 and n_2 are t	heir respective momentum,
	then ratio p_1 : p_2 is equal to		F1 F2	,
	a) m_1 : m_2	b) m_2 : m_1	c) $\sqrt{m_1}:\sqrt{m_2}$	d) m_1^2 : m_2^2
220.	A metal ball of mass 2 kg	moving with a velocity of 3	6 km/h has an head on col	lision with a stationary ball
				ic energy due to collision is
221	a) 40 <i>J</i>	b) 60 J	c) 100 J	d) 140 J
221.	maximum height attained	ng with velocity V_0 strikes	a simple pendulum of mass	s m and strikes to it. The
	-		17	172
	a) $h = \frac{v_0^2}{8a}$	b) $\sqrt{V_0 g}$	c) $2\sqrt{\frac{V_0}{g}}$	d) $\frac{V_0^2}{4a}$
	<i>59</i>		V	- 9
<i>LLL</i> .		the of mass 2 kg varies with 0 is $v = 0$, the velocity of parts.		ere t is in second. If
	a) 1 ms^{-1}	b) 4 ms ⁻¹	c) 2 ms^{-1}	d) $2\sqrt{2} \text{ ms}^{-1}$
223.		nergy displacement curve o	,	w) 4 V 4 1113
	a) Equal to the acceleration		b) Inversely proportional	to the acceleration

d) None of the above

c) Directly proportional to the acceleration $% \left(1\right) =\left(1\right) \left(1\right) \left$

235. The block of mass *M* moving on the frictionless horizontal surface collides with the spring of spring constant *K* and compresses it by length *L*. The maximum momentum of the block after collision is

247.	In an inelastic collision			
	a) Only momentum is con	served	b) Only kinetic energy is o	conserved
	c) Neither momentum not conserved	r kinetic energy is	d) Both momentum and k	inetic energy are
248.	An object of mass m is atta	ached to light string which		ibe. The object is set into
	•		=	radius to r_2 ,the ratio of new
	kinetic energy to the origi	-	9 - F	Σ,
			r_1	r_2
	a) $\left(\frac{r_2}{r_1}\right)^2$	b) $\left(\frac{r_1}{r_2}\right)^2$	c) $\frac{r_1}{r_2}$	$d)\frac{r_2}{r_1}$
249.	A light inextensible string	that goes over a smooth fix	xed pulley as shown in the	figure connects two blocks
	of masses 0.36 kg and 0.72	$2 kg$. Taking $g = 10 m/s^2$,	find the work done (in joul	les) by the string on the
	block of mass 0.36 kg dur	ing the first second after th	ne system is released from	rest
	a) 6 Joule	b) 5 Joule	c) 8 Joule	d) 2 Joule
250.	An object of mass 3 <i>m</i> split		, ,	, ,
	velocity of the third fragment is			
	_			d) $\frac{v(\hat{\imath}+\hat{\jmath})}{\sqrt{2}}$
	a) $v(\hat{\jmath} - \hat{\imath})$	b) $v(i-j)$	c) $-v(\hat{\imath}+\hat{\jmath})$	d) $\frac{1}{\sqrt{2}}$
251.	A ball dropped from a heig percentage of energy lost	_	eight of 1.5 m after hitting t	he ground. Then the
	a) 25	b) 30	c) 50	d) 100
252.	A bomb of mass 3.0 kg exp	plodes in air into two piece	es of masses 2.0 kg and 1.0	kg. The smaller mass goes
	at a speed of $80 m/s$. The	total energy imparted to th	ne two fragments is	
	a) 1.07 <i>kJ</i>	b) 2.14 <i>kJ</i>	c) 2.4 <i>kJ</i>	d) 4.8 <i>kJ</i>
253.	•			t of 8.0 m. A vertical ladder
	=		limbs up the ladder to the t	-
	-	-	the slide is three-tenth of h	is weight. The work done
	by the slide on the boy as	he comes down is		
	a) Zero	b) +600 J	c) -600 J	d) +1600 J
254	An athlete in the Olympic	,	,	•
234.	the range	covers a distance of 100 m	iii 10 s. iiis kiiietic eliergy	can be estimated to be in
	a) 200 J-500 J	b) $2 \times 10^5 \text{ J} - 3 \times 10^5 \text{ J}$	c) 20000 I—50000 I	d) 2000 J — 5000 J
255	A uniform chain of length			
200.	-	-	ain is μ . The work done by	-
	period the chain slips off t		and to pit the work done by	and michon during the
			4	, 6
	a) $-\frac{1}{4}\mu MgL$	b) $-\frac{2}{9}\mu MgL$	c) $-\frac{4}{9}\mu MgL$	$\mathrm{d}) - \frac{6}{7} \mu M \mathrm{g} L$

256. A force F acting on an object varies with distance x as shown here. The force is in *newton* and x in *metre*. The work done by the force in moving the object from x = 0 to x = 6m is

	orce of 5 <i>N</i> is required to mainta The work done by this force in		a block of $10\ kg$ mass sliding over a
a) 600 <i>J</i>	b) 60 <i>J</i>	c) 6 <i>J</i>	d) 6000 <i>J</i>
267. A body of mas	, ,	, ,	nother body of mass m $(M >> m)$ at
a) v	b) 2v	c) v/2	d) zero
268. The work don initial distance		as shown in the graph. Th	ne total work done in covering an
7 20 15 15 15 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10			
5 10 S	15 20 25 30 ′(in m) →		
a) 225 <i>J</i>	b) 200 <i>J</i>	c) 400 J	d) 175 <i>J</i>
269. Consider the f	ollowing statements \emph{A} and \emph{B} ar	nd identify the correct ans	swer
			ther of same mass at rest, the first
=	es to rest while the other starts	-	
	es of equal mass suffering a hea		_
a) Both A and		b) Both A and B a	
c) A is true an		d) A is false but F	
= =			pe. To obtain twice as much water
	pipe in the same time, power o		
a) 16 times	b) 4 times	c) 8 times	d) 2 times
	ss $30,000 \ kg$ moves up an inclir (Given $g = 10 \ ms^{-2}$)	ed plane of slope 1 in 100	at a speed of 30 <i>kmph</i> . The power
a) 25 <i>kW</i>	b) 10 <i>kW</i>	c) 5 <i>kW</i>	d) 2.5 <i>kW</i>
	orce and the direction of motion		vork is performed, then the angle
a) 0°	b) 90°	c) 30°	d) 60°
through which		=	here is a small hole in the bucket ork done in pulling the bucket up
a) 600 J	b) 400 J	c) 100 J	d) 500 J
274. The work don	e by force acting on a body is as	s shown in the graph. The	total work done in covering an
initial distance		.	Ü
H20			
↑ <i>M</i> 15			
F(N) 10-			
	/		
(m) 5			
<u>/</u> xo	N5 010 15 20 25 E30 s(m) →		
a) 225J	b) 200J	c) 400J	d) 175J

275. Natural length of a spring is 60 cm, and its spring constant is 4000 N/m. A mass of 20 kg is hung from it. The extension produced in the spring is, (Take $g=9.8\,m/s^2$)

	a) 4.9 <i>cm</i>	b) 0.49 <i>cm</i>	c) 9.4 <i>cm</i>	d) 0.94 <i>cm</i>
276.	A uniform chain of length	2 m is kept on a table such	that a length of 60 cm han	gs freely from the edge of
	•	•	•	he entire chain on the table?
	a) 7.2 J	b) 3.6 J	c) 120 J	d) 1200 J
277.	•	•		equal. What is the value of v
	a) 2 m/s	b) $\sqrt{2} m/s$		
278.	•	-		, ,
2,0			time as $P = \frac{3t^2}{2}$ watt. Here	
			article at time $t = 2$ s will h	
	a) 1 ms^{-1}	b) 4 ms ⁻¹	•	
279.	When a spring is extended	d by 2 cm energy stored is	100 J. When extended by fu	ırther 2 cm, the energy
	increases by			
	a) 400 J	b) 300 J	c) 200 J	d) 100 J
280.				nt 19.5 m. It penetrates sand
	by 50 cm. The change in n	nechanical energy will be ($g = 10 \text{ms}^{-2})$	
	a) 1 J	b) 1.25 J	c) 1.5 J	d) 1.75 J
281.	Two springs of spring con	stants $1500 N/m$ and 300	0 N/m respectively are stro	etched with the same force.
	They will have potential e	nergy in the ratio		
	a) 4:1	-	c) 2:1	d) 1 : 2
282.			$^{-1}$ If the density of the wate	er is
	1.2 g/cc , then the kinetic ϵ	energy of each cubic metre	e of water is	
	a) 2.4 J	b) 24 J	c) 2.4 KJ	d) 4.8 KJ
283.		on elastic collision with a st	tationary deuteron. The fra	ctional energy loss of the
	neutron in the collision is			
	a) 16/81	b) 8/9	c) 8/27	d) 2/3
284.		= =	rds each other with the velo	
		-) sec the combined mass tr	
	a) 120 m	b) 0.12 m	c) 12 m	d) 1.2 m
285.		dy is increased by 300%. V	What is the percentage incr	ease in the momentum of
	the body?	12.40004	> 4 = 00/	12.0004
206	a) 50%			d) 200%
286.		on-displacement curve of a		
	a) Impulse		b) Change in momentum	
207	c) Change in <i>KE</i> per unit		d) Total change in energy	
287.			ides perfectly elastically he	
			tal energy retained by neut	
	a) $\left(\frac{A-1}{A+1}\right)$	b) $\left(\frac{A+1}{A-1}\right)$	c) $\left(\frac{A-1}{A}\right)^2$	d) $\left(\frac{A+1}{A}\right)$
200	(n + 1)	(A-1)	A / mother body at rest and co	\ Л /
200.	•		ed. The mass of the second l	
	the first body is	e fourth of its of ightar spee	eu. The mass of the second	body which comdes with
	a) $2 kg$	b) 1.2 <i>kg</i>	c) 3 <i>kg</i>	d) 1.5 <i>kg</i>
280	-	, 0	, ,	, 0
20).				$V(x) = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)$ J. The total
	mechanical energy of part	ticle is 2 J. Then, the maxim	num speed (in ms ⁻¹) is	
	a) $3/\sqrt{2}$	b) $\sqrt{2}$	c) $1/\sqrt{2}$	d) 2
290.	A running man has half th	e kinetic energy of that of	a boy of half of his mass. Th	he man speeds up by $1m/s$
	so as to have same <i>K</i> . <i>E</i> . as	s that of the boy. The origin	nal speed of the man will be	9
	$3)\sqrt{2}m/c$	h) $(\sqrt{2} - 1) m / 2$	c) $\frac{1}{(\sqrt{2}-1)} m/s$	$\frac{1}{m}m/s$
	a) $\sqrt{2} m/s$	υ) (ν2 – 1) III/S	$(\sqrt{2}-1)^{m/3}$	$\sqrt{2}^{m/s}$
201	The notential energy of a		ag in the way as plane is give	$\sum_{i=1}^{n} h_{i} \cdot I = (-7a_{i} + 24a_{i}) \cdot I_{i} \cdot a_{i}$

291. The potential energy of a particle of mass 5 kg moving in the x-y plane is given by U=(-7x+24y) J, x=(-7x+24y) J, y=(-7x+24y) J,

		ally at $t = 0$ the particle is de of force on the particle i	- , , -	with a velocity of $(2.4\hat{i} +$
	a) 25 units	b) 24 units	c) 7 units	d) None of these
292.		non with velocity $v m/sec$	-	-
		• •	•	eces retraces its path to the
		n/sec of the other piece im	mediately after the explosi	on is
	a) $3v\cos\theta$	b) $2v\cos\theta$	c) $\frac{3}{2}v\cos\theta$	Z
293.		ng with a velocity $ec{V}$ makes . The velocity of first partic		
	a) \vec{V}	b) $-\vec{V}$	c) $-2\vec{V}$	d) Zero
294.	A cubical vessel of height 2^{-3} vessel? (Take $g=10ms^{-2}$)	1 m is full of water. what is	the amount of work done i	in pumping water out of the
	a) 1250 J	b) 5000 J	c) 1000 J	d) 2500 J
295.	,	on a body of mass 20 kg ald	•	, ,
	() 0	, ,	O I	
	Work done by the force is			
	a) 20 J	b) 48 J	c) 68 J	d) 86 J
296.	A simple pendulum is rele	ased from A as shown. If m	and l represent the mass	of the bob and length of the
	pendulum, the gain in kine	etic energy at B is		
	A			
	300			
	30			
	D D			
	O B			
	a) $\frac{mgl}{2}$	b) $\frac{mgl}{\sqrt{2}}$	c) $\frac{\sqrt{3}}{2}mgl$	d) $\frac{\sqrt{2}}{2}mgl$
	a) — 2	$\sqrt{2}$	$\frac{c}{2}mgl$	$\frac{a}{3}mgl$
297.	A long spring is stretched	by 2 cm and its potential en	nergy is U. If the spring is s	tretched by 10 cm; its
	potential energy will be			
	a) U/5	b) U/25	c) 5 U	d) 25 U
298.	If the heart pushes 1 cc of	blocked in one second und	er pressure 20000 <i>N/m</i> ² t	he power of heart is
	a) 0.02 W	b) 400 W	c) $5 \times 10^{-10} W$	d) 0.2 W
299.	Two balls of masses 2 g an	nd 6 g are moving with KE i	n the ratio of 3:1. What is t	he ratio of their linear
	momenta?			
	a) 1:1	b) 2:1	c) 1:2	d) None of these
300.		elocity v collides with a stat	•	=
	the collision is	•		•
	3v	3v	2v	2v
	a) $-\frac{3v}{5}$	b) $\frac{3v}{5}$	c) 	d) $-\frac{2v}{5}$
301.	A particle moves along the	$e x - axis from x = x_1 to x =$	x_2 under the action of a fo	orce given by $F=2x$. Then
	the work done in the proc	ess is		
	a) Zero	b) $x_2^2 - x_1^2$	c) $2x_2(x_2-x_1)$	d) $2x_1(x_1 - x_2)$
302.	A 1: -1-+:	. tlt		Commente to the land of the same
	A light inextensible string	that goes over a smooth fi	xed pulley as shown in the	figure connects two blocks
		that goes over a smooth fi kg.Taking g=10ms ⁻² ,find		_

	a) 8 J	b) 9 J	c) 7 J	d) 0.48 J
303.	. A box is moved along a str	aight line by a machine de	livering constant power. Th	ne distance moved by the
	body in time t is proportion	onal to		
	a) $1^{1/2}$	b) $t^{3/4}$	c) $t^{3/2}$	d) t^2
304.	In elastic collision			
	a) Both momentum and k	inetic energies are conserv	red	
	=	inetic energies are not con		
	c) Only energy is conserve	-		
	d) Only mechanical energy	y is conserved		
305.	From a waterfall, water is	falling down at the rate of	100 kg/s on the blades of	turbine. If the height of the
	ball is 100 <i>m</i> , then the pov	wer delivered to the turbin	e is approximately equal to)
	a) 100 <i>kW</i>	b) 10 <i>kW</i>	c) 1 <i>kW</i>	d) 1000 <i>kW</i>
306.	A 2 kg ball moving at 24m	as^{-1} undergoes inelastic he	ad-on collision with a 4 kg	ball moving in opposite
			s 2/3,their velocities in <i>ms</i>	
	a) -56, -8	b) -28, -4	-	d) -7, -1
307.	The displacement x in me	_	kg moving in one dimensio	n under the action of a
			on $t = \sqrt{x} + 3$, the work do	
	first six seconds is	J 1	, ,	, , ,
	a) 18 m	b) Zero	c) 9 m/2	d) 36 m
308.	•	•	Face. A bullet of mass m more	•
			ned system covers a distan	=
	-		is μ , the speed of the bullet	
	block is (where <i>m</i> is mass			G
		·	(M+m)	2
	a) $\sqrt{\frac{2Mg}{\mu m}}$	b) $\left \frac{2\mu mg}{M} \right $	c) $\sqrt{2\mu gx} \left(\frac{M+m}{m} \right)$	d) $\frac{2\mu mx}{1}$
	$\sqrt{\mu m}$	\sqrt{Mx}	$m \rightarrow m$	$\sqrt{M+m}$
309.	. An engine pumps up 100k	g of water through a heigh	t of 10 m in 5 s. Given that	the efficiency of engine is
	60%.			
	If $g=10ms^{-2}$, the power of	•		
	a) 3.3 KW	b) 0.33 KW	c) 0.033KW	d) 33KW
310.	. A $60 kg$ man runs up a sta	aircase in 12 seconds while	a 50 kg man runs up the s	ame staircase in 11
	seconds. The ratio of the r	-		
	a) 6:5	b) 12:11	c) 11:10	d) 10:11
311.			ollides with another body of	f mass 6 kg at rest. If two
	-		kinetic energy of system is	
	a) Zero	b) 288 <i>J</i>	c) 172.8 <i>J</i>	d) 144 <i>J</i>
312.	=	-	earth (assumed smooth) an	d reaches diagonally
	opposite point. What is th	=		
	a) Zero	b) Positive	c) Negative	d) Nothing can be done
313.		-	opposite directions from a	=
	-		ho, respectively, as shown in	-
	-	-	After making how many ela	stic collisions, other than
	_	les will again reach the poi	nt A	
	A 2 <i>v</i>			
	V			
	a) 4	b) 3	c) 2	d) 1
21/	=		ion is first stratched by a l	•

314. A spring, which is initially in its unstretched condition, is first stretched by a length x and then again by a further length x. The work done in the first case is w_1 , and in the second case is w_2 . Then

a) $W_2 = W_1$	b) $W_2 = 2W_1$	c) $w_2 = 3w_1$	d) $w_2 = 4w_1$		
315. From a building	ng two balls A to B are thrown su	ch that A is thrown upwards a	and B downwards (both		
vertically). If a	v_A and v_B are their respective vel	ocities on reaching the ground	d, then		
a) $v_B > v_A$		b) $v_B = v_A$			
c) $v_A > v_B$		d) Their velocities dep	ends on their masses		
	nust a sprinter, weighing 80 kg, d				
10 ms^{-1} to his		•	1		
a) 1 kW	b) 2 kW	c) 3 kW	d) 4 kW		
•	neavy body have equal momenta.	•	•		
a) The light bo	•	c) The K.E. are equal	d) Data is incomplete		
, ,	alls are linked in a straight groov	•	•		
happen	similar balls each moving with a velocity v collide elastically with the row of 6 balls from left. What will				
παρρεπ →					
a) One ball fro	om the right rolls out with a speed	12v and the remaining balls v	vill remain at rest		
b) Two balls from the right roll out with speed v each and the remaining balls will remain stationary					
c) All the six b	c) All the six balls in the row will roll out with speed $v/6$ each and the two colliding balls will come to rest				
	ng balls will come to rest and no b				
319. A body of mas	es m_1 , moving with a velocity 3 m	s^{-1} collides with another bod	y at rest of mass m_2 . After		
	elocities of the two bodies are 2 n				
of m_1 The rati		1			
	11 2				
	b) 5	, 1	, 12		
a) $\frac{5}{12}$	b) 5	c) $\frac{1}{5}$	d) $\frac{12}{5}$		
a) $\frac{5}{12}$	b) 5 floor and rebounds after inelastic	3	d) $\frac{12}{5}$		
a) $\frac{5}{12}$ 320. A ball hits the		c collision. In this case	3		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen	floor and rebounds after inelastic	c collision. In this case sion is the same as that just b	3		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan	floor and rebounds after inelastic ntum of the ball just after the colli	c collision. In this case sion is the same as that just b ne same in the collision	3		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m	floor and rebounds after inelastic ntum of the ball just after the colli nical energy of the ball remains th	c collision. In this case sion is the same as that just b ne same in the collision h is conserved	3		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er	floor and rebounds after inelastic ntum of the ball just after the collinical energy of the ball remains the comentum of the ball and the eart	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved	efore the collision		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is constant	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved	efore the collision		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er 321. If a body loose	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is constant	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved	efore the collision		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is constant of its velocity on penetrating	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved as cm in a wooden block, the c) $3 \ cm$	efore the collision en how much will it penetrate d) 4 cm		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the activation of the control of the c	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is constant es half of its velocity on penetrating oming to rest b) 2 cm ton of a force F=Cx, the position of	c collision. In this case is ion is the same as that just be ne same in the collision h is conserved conserved as a cm in a wooden block, the c) 3 cm	efore the collision en how much will it penetrate d) 4 cm The work done is		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$	floor and rebounds after inelastic atum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is desired as half of its velocity on penetrating oming to rest b) 2 cm ion of a force F=Cx, the position of b) Cx^2	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved as a cm in a wooden block, the c) 3 cm of a body changes from 0 to x.' c) Cx	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass	floor and rebounds after inelastic atum of the ball just after the colli- inical energy of the ball remains the comentum of the ball and the earth hergy of the ball and the earth is often eshalf of its velocity on penetration oming to rest b) 2 cm it is on of a force $F=Cx$, the position often b) Cx^2 as m at the end of the string is who	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved as a cm in a wooden block, the c) 3 cm of a body changes from 0 to x.' c) Cx	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the	floor and rebounds after inelastic atum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is desired as half of its velocity on penetrating oming to rest b) 2 cm ion of a force F=Cx, the position of b) Cx^2	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved as a cm in a wooden block, the c) 3 cm of a body changes from 0 to x.' c) Cx	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total er 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is desired as half of its velocity on penetrating oming to rest b) 2 cm ion of a force F=Cx, the position of b) Cx^2 as m at the end of the string is where top of the swing is	c collision. In this case is ion is the same as that just be ne same in the collision has conserved conserved as a cm in a wooden block, the c) 3 cm of a body changes from 0 to x. c) Cx irled round a vertical circle of	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$ Fradius r. The critical speed of		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass	floor and rebounds after inelastic atum of the ball just after the colli- inical energy of the ball remains the comentum of the ball and the earth hergy of the ball and the earth is often eshalf of its velocity on penetration oming to rest b) 2 cm it is on of a force $F=Cx$, the position often b) Cx^2 as m at the end of the string is who	c collision. In this case sion is the same as that just be same in the collision h is conserved conserved as a cm in a wooden block, the c) 3 cm of a body changes from 0 to x.' c) Cx	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the a) $\left(\frac{r}{g}\right)^{1/2}$	floor and rebounds after inelastic ntum of the ball just after the colli- nical energy of the ball remains the comentum of the ball and the earth nergy of the ball and the earth is desired as half of its velocity on penetrating oming to rest b) 2 cm ion of a force F=Cx, the position of b) Cx^2 as m at the end of the string is where top of the swing is	c collision. In this case is collision. In this case is in is the same as that just be not same in the collision has conserved conserved in a wooden block, the c) $3 cm$ of a body changes from 0 to x . c) Cx irled round a vertical circle of $\frac{m}{rg}$	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$ Fradius r. The critical speed of d) $(rg)^{1/2}$		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the a) $\left(\frac{r}{g}\right)^{1/2}$ 324. A man running	floor and rebounds after inelasticatum of the ball just after the collinical energy of the ball remains the comentum of the ball and the earth are good of the ball and the earth is cased half of its velocity on penetration of a force $F = Cx$, the position of Cx^2 as meant the end of the string is where top of the swing is $b) \frac{g}{r}$	c collision. In this case is collision. In this case is in the same as that just be ne same in the collision has conserved conserved in a wooden block, the collision of a body changes from 0 to x . The collision of $\frac{m}{rg}$ coop of half his mass. The man	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2}Cx$ Tradius r. The critical speed of d) $(rg)^{1/2}$ speeds up by 1 ms^{-1} and then		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the a) $\left(\frac{r}{g}\right)^{1/2}$ 324. A man running	floor and rebounds after inelasticatum of the ball just after the collinical energy of the ball remains the comentum of the ball and the earth are good of the ball and the earth is described by a composition of a force $F = Cx$, the position of a force $F = Cx$, the position of the swing is $b) \frac{g}{r}$ g has half the kinetic energy of a late of the boy. What were the origin	c collision. In this case is collision. In this case is in the same as that just be ne same in the collision has conserved conserved in a wooden block, the collision of a body changes from 0 to x . The collision of $\frac{m}{rg}$ coop of half his mass. The man	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$ Fradius r. The critical speed of d) $(rg)^{1/2}$ speeds up by 1ms^{-1} and then		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) 1 cm 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the a) $\left(\frac{r}{g}\right)^{1/2}$ 324. A man runnin has KE as that a) $\sqrt{2}$ ms ⁻¹ ; 2v	floor and rebounds after inelastication of the ball just after the collinical energy of the ball remains the comentum of the ball and the earth is described by the ball and	c collision. In this case is ion is the same as that just be not same in the collision has conserved conserved in a wooden block, the c) $3 cm$ of a body changes from 0 to x . c) Cx irled round a vertical circle of $\frac{m}{rg}$ boy of half his mass. The man all speeds of man and the boy?	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$ Fradius r. The critical speed of d) $(rg)^{1/2}$ speeds up by 1ms^{-1} and then		
a) $\frac{5}{12}$ 320. A ball hits the a) The momen b) The mechan c) The total m d) The total en 321. If a body loose more before c a) $1 cm$ 322. Under the action a) $\frac{1}{2}Cx^2$ 323. A block of mass the block at the a) $\left(\frac{r}{g}\right)^{1/2}$ 324. A man runnin has KE as that a) $\sqrt{2}$ ms ⁻¹ ; 2x c) $(\sqrt{2} + 1)$ m	floor and rebounds after inelasticatum of the ball just after the collinical energy of the ball remains the comentum of the ball and the earth are good of the ball and the earth is described by a composition of a force $F = Cx$, the position of a force $F = Cx$, the position of the swing is $b) \frac{g}{r}$ g has half the kinetic energy of a late of the boy. What were the origin	c collision. In this case is collision. In this case is in the same as that just be ne same in the collision has conserved conserved in a wooden block, the collision of a body changes from 0 to x . Color of $\frac{m}{rg}$ coy of half his mass. The man all speeds of man and the boy $(\sqrt{2} - 1) \text{ms}^{-1}$, $2(\sqrt{2} + 1) \text{ms}^{-1}$,	efore the collision en how much will it penetrate d) $4 cm$ The work done is d) $\frac{1}{2} Cx$ Fradius r. The critical speed of d) $(rg)^{1/2}$ speeds up by 1 ms^{-1} and then $(rg)^{1/2}$		

326. A rifle bullet loses 1/20th of its velocity in passing through a plank. The least number of such planks

b) $m \ll M$

c) m = M

d) $m=\frac{1}{2}M$

happen only when

a) m >> M

	The recoil speed of the res			
	a) $\frac{4u}{238}$	b) $-\frac{4u}{234}$	c) $\frac{4u}{234}$	d) $-\frac{4u}{238}$
		201	-0.	distance r. Which diagram
	corresponds to stable mol	= ==		
	a) <i>U</i>	b) "	c) <i>u</i>	d) <i>u</i>
329.	A body of mass 1 kg is thr	rown upwards with a veloc	ity $20 m/s$. It momentarily	comes to rest after
		. How much energy is lost o		
	a) 20 <i>J</i>	b) 30 <i>J</i>	c) 40 J	d) 10 <i>J</i>
330.	A bullet when fired at a ta	rget with velocity of 100 m	s^{-1} penetrates 1 m into it.	If the bullet is fired at a
	similar target with a thick	mess 0.5m, then it will eme	rge from it with a velocity o	of
	a) $50\sqrt{2} \text{ m/s}$	b) $\frac{50}{\sqrt{2}}$ m/s	c) 50 m/s	d) 10 m/s
		$\sqrt{2}$ 5 kg body initially at rest. T		during the first second of
331.	motion of the body is		ne work done by the force	during the mist second of
	a) 5 <i>J</i>	b) $\frac{5}{6}$ <i>J</i>	c) 6 <i>J</i>	d) 75 <i>J</i>
332.	The velocity of 2 kg body	6 is changed from (4î + 3ĵ) n	ns^{-1} . The work done on the	e body is
	a) 9 J	b) 11 J	c) 1 J	d) Zero
333.	A body at rest explodes in	, ,	·, ,	.,
	b) They move with difference of they move with same of they move with same of the A particle of mass m is more action action of the action	speed in opposite direction oving in a circular path of costs $a_c = k^2 r t^2$. the power is	n ${ m s}$ onstant radius r such that i	ts centripctal acceleration
	a) $2\pi mk^2r^2t$	b) mk^2r^2t	c) $\frac{mk^4r^2t^5}{3}$	d) Zero
335.	A particle is released from	n a height <i>S</i> .At certain heigh The particle at that instant a	nt its kinetic energy is three	e times its potential energy
	a) $\frac{S}{4}$, $\frac{3gS}{2}$	b) $\frac{S}{4}$, $\frac{\sqrt{3gS}}{2}$	c) $\frac{S}{2}$, $\frac{\sqrt{3gS}}{2}$	d) $\frac{S}{4}$, $\sqrt{\frac{3gS}{2}}$
336.		nt 5×10^3 Nm ⁻¹ is stretched tch it further by another 5 of b) 18.75 N-m		unstretched position. Then d) 6.25 N-m
337		•	•	is shown in figure. What is
557.	-	on the brick by the force cau	-	-
	to $x = 8.0$ m?	in the brion by the force cae	some the deceleration as th	
	20 15 10 5 0 1 2 3 4 5 6 7	8		
	a) 4 J	b) 8 J	c) 2 J	d) 1 J

c) 11

d) 20

required just to stop the bullet is

a) 5

b) 10

327. When U^{238} nucleus originally at rest, decays by emitting an alpha particle having a speed u

350. A particle of mass 100 g is thrown vertically upwards with a speed of $5ms^{-1}$. The work done by the force

	of gravity during the time,	the particle goes up is		
	a) −0.5 J	b) -1.25 J	c) 1.25 J	d) 0.5 J
351.	Two springs have their for	rce constants as k_1 and k_2 (k_2	$(k_1 > k_2)$, when they are str	etched by the same force
	a) No work is done in case	e of both the springs	b) Equal work is done in o	ase of both the springs
	c) More work is done in ca	ase of second spring	d) More work done in cas	e of first spring
352.	When two bodies collide e	elastically, then		
	a) Kinetic energy of the sy	stem alone is conserved		
	b) Only momentum is con	served		
	c) Both energy and mome	ntum are conserved		
	d) Neither energy nor mor	mentum is conserved		
353.	-	ng with a velocity of 3 ms^{-1}		
	opposite direction with a	velocity of 4ms ⁻¹ .After coll	lision two bodies stick toge	ther and move with a
	common velocity which in			
	a) $\frac{1}{4}$	b) $\frac{1}{3}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
	1	J	3	4
354.	9	ime, if the momentum, is in	creased by 100%, the perc	entage increase in kinetic
	energy is	1.) 200	-) 200	1) 400
255	a) 100	b) 200	c) 300	d) 400
355.		the 2-dimensional vector \vec{F}		
		What is the change in the k		e as it moves from the
		3) to $(3,0)$ (The coordinate		1) + 40 7
256	a) $-7J$	b) Zero	c) $+7J$	d) +19 <i>J</i>
356.				inetic energy of the body is
257	a) 10 J	b) 40 J	c) 20 J	d) None of these
337.		g constant k is hung from t eased with the spring initia	=	
	spring is	eased with the spring mitta	any unstretched. Then the	maximum extension in the
		2 <i>M</i> g	Мα	Мα
	a) $\frac{4Mg}{k}$	b) $\frac{2Mg}{k}$	c) $\frac{8}{k}$	d) $\frac{Mg}{2k}$
358.	Two springs A and B are s	tretched by applying forces	s of equal magnitudes at th	e four ends. If spring
	constant of A is 2 times gr	eater than that of spring B ,	and the energy stored in A	l is E , that in B is
	a) $\frac{E}{2}$	b) 2 <i>E</i>	c) <i>E</i>	d) $\frac{E}{4}$
	_			•
359.			ugh 1 <i>cm,</i> the potential ene	ergy is U . If it is stretched by
	4 <i>cm</i> . The potential energy		2.4617	D our
260	a) 4 <i>U</i>	b) 8 <i>U</i>	c) 16 <i>U</i>	d) 2 <i>U</i>
360.	-	tch a spring varies with the		igure. If the experiment is
	performed with above spr	ring of half length, the line (JA WIII	
	$O \xrightarrow{\chi}$			
	a) Shift towards F-axis		b) Shift towards X-axis	
	c) Remain as it is		d) Become double in length	th
361.	Two balls at same temper	ature collide. What is conse	erved	
	a) Temperature	b) Velocity	c) Kinetic energy	d) Momentum
362.	A rod AB of mass M , lengt	h <i>L</i> is lying on a horizontal f	frictionless surface. A parti	cle of mass m travelling
	-	end A of the rod with a velo	ocity v_0 in a direction perpe	ndicular to AB.The
		stic. After the collision ,the		
	Particle comes to rest. The	e ratio $\frac{m}{M}$ Is		

	(1) ² I ²	042	c) $\frac{9v_0}{\omega L}$	ωL	
	a) $\frac{\omega^2 L^2}{9v_0^2}$	b) $\frac{9v_0^2}{\omega^2 L^2}$	c) $\overline{\omega L}$	d) $\frac{\omega L}{9v_0}$	
262	50 W L				
	3. A body moving with velocity v has momentum and kinetic energy numerically equal. What is the v v?			qual. What is the value of	
		b) $\sqrt{2}ms^{-1}$	c) $1ms^{-1}$	d) $0.2ms^{-1}$	
364.	The force constant of a we	eightless spring is $16 N/m$.	A body of mass 1.0 <i>kg</i> susp	ended from it is pulled	
	down through 5 cm and th	nen released. The maximun	n kinetic energy of the syste	em (spring + body) will be	
	a) $2 \times 10^{-2} J$	b) $4 \times 10^{-2} J$	c) $8 \times 10^{-2} J$	d) $16 \times 10^{-2} J$	
365.	floor and breadth perpend	dicular to the floor. The wo	lying on a horizontal floor v rk done to erect it on its br		
	a) $mg\left[\frac{b}{2}\right]$	b) $mg\left[a+\frac{b}{2}\right]$	c) $mg\left[\frac{b-a}{2}\right]$	d) $mg\left[\frac{b+a}{2}\right]$	
366.	A 16 kg block moving on a	n frictionless horizontal su	rface with a velocity of 4 m	/s compresses an ideal	
	spring and comes to rest.	If the force constant of the	spring be 100 N/m, then th	e spring is compressed	
	by				
0.4	a) 1.6 m	b) 4 m	c) 6.1 m	d) 3.2 m	
367.	-	-	ody of mass m_2 at rest .If the	e velocity of m_1 after	
	a) 1:5	es its initial velocity, the ra b) 5:1	c) 5:2	d) 2:5	
368.		•	t the work done is zero. Fro	•	
	a) $\vec{\mathbf{f}}$ and $\vec{\mathbf{s}}$ are in same dire		b) $\vec{\mathbf{f}}$ and $\vec{\mathbf{s}}$ are in opposite of		
	c) $\vec{\mathbf{f}}$ and $\vec{\mathbf{s}}$ are at right ang		d) $\vec{\mathbf{F}} > \vec{\mathbf{s}}$		
369.			apacity $9m^3$ kept at a heigh	nt of 10 m above the	
	ground .If the pump takes 5 min to fill the tank by consuming 10 KW .power the efficiency of the pump				
	should be (Take g=10 ms	⁻²)			
	a) 60 %	b) 40 %	c) 20 %	d) 30 %	
	A nucleus at rest splits into two nuclear parts having same density and radii in the ratio 1:2. Their velocities are in the ratio				
	a) 2:1	~,	c) 6: 1	,	
371.			f radius r with velocity v is		
272	a) Zero	b) $500 \pi r^2 v^2$	c) $500 \pi r^2 v^3$	d) $\pi r^4 v$	
		mpulse imparted to each b	directions with speed 4 m/	s confue and rebound with	
	a) 0.48 kg-m/s	b) 0.24 <i>kg-m/s</i>	c) 0.81 kg-m/s	d) Zero	
373.	, ,		of 0.5×10^5 N through a dis	•	
	were originally at rest and	l water-resistance is neglig	ibly small, then the ship wi	ll acquire a speed of	
	a) 0.1 ms^{-1}	b) 1 ms ⁻¹	c) 1.5 ms^{-1}	d) 12 ms ⁻¹	
374.		acts on a body for 4 second	, produces s displacement o	of $(3\hat{\imath} + 4\hat{\jmath} + 5\hat{k})m$. The	
	power used is				
275	a) 9.5 <i>W</i>	b) 7.5 <i>W</i>	c) 6.5 W	d) 4.5 W	
375.		If by a distance x , it exerts a spring is stretched from 0.1	force, given by $F = (-5x - 1)$	$16x^3$)N	
	a) 8.7×10^{-2} J	b) 12.2×10^{-2} J	c) 8.7×10^{-1} J	d) 12.2×10^{-1} J	
376	•		g in the $x - y$ plane is given	•	
		_	rom origin then speed of pa		
	a) 5 ms ⁻¹	b) 01 ms ⁻¹	c) 17.5 ms ⁻¹	d) 10 ms ⁻¹	
	A one kilowatt motor is us second is nearly	sed to pump water from a v	vell 10 m deep. The quantit	y of water pumped out per	

a) 1 kg	b) 10 kg	c) 100 kg	d) 1000 kg		
378. Two small particles of equ	ual masses start moving in	opposite directions from a	point A in a horizontal		
circular orbit. Their tange	ential velocities are v and 2	2v respectively, as shown in	n the figure. Between		
-	-	After making how many ela	astic collisions, other than		
that at A ,these two partic	cles will again reach The po	oint A?			
v A					
2v					
(
a) 4	b) 3	c) 2	d) 1		
379. The potential energy of a	,	•	,		
a) Upon the system by a c	=	b) Upon the system by a	non-conservative force		
c) By the system against a	a conservative force	d) By the system against	a non-conservative force		
380. A force $(4\hat{i} + \hat{j} - 2\hat{k})N$ ac	ting on a body maintains it	es velocity at $(2\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$	$)ms^{-1}$. The power exerted is		
a) 4 W	b) 5 W	c) 2 W	d) 8 W		
381. Figure shows the F - x grap	oh. Where F is the force approximately	plied and x is the distance α	covered		
10 🕇 🦳 🦳					
5					
0					
_5					
_10					
By the body along a straig	ght line path. Given that F i	s in <i>newton</i> and x in <i>metre</i>	e, what is the work done?		
a) 10 <i>J</i>	b) 20 <i>J</i>	c) 30 <i>J</i>	d) 40 <i>J</i>		
382. If a skater of weight 3 kg	has initial speed $32 m/s$ and	nd second one of weight 4 <i>l</i>	kghas 5 m/s . After collision,		
	5 m/s. Then the loss in K.I				
a) 48 <i>J</i>	b) 96 <i>J</i>	c) Zero	d) None of these		
383. The area under the displa	_				
a) Distance travelled	b) Total force	c) Momentum	d) Work done		
384. A body of mass 2 kg slide		-			
surfaces are incumiess. I	i the body starts from rest	, its speed at the bottom of	the track is		
□					
1 <i>m</i>					
a) 4.43 <i>m/sec</i>	b) 2 <i>m/sec</i>	c) 0.5 <i>m/sec</i>	d) 19.6 <i>m/sec</i>		
385. The work done against gr	avity in taking $10~kg$ mass	at 1m height in 1 sec will l	pe		
a) 49 <i>J</i>	b) 98 <i>J</i>	c) 196 <i>J</i>	d) None of these		
386. A vertical spring with force	ce constant K is fixed on a \mathfrak{t}	table. A ball of mass \emph{m} at a l	neight h above the free		
	upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d . The				
net work done in the process is					

of the man is

a)
$$2(\sqrt{2}-1) \text{ ms}^{-1}$$

b)
$$2(\sqrt{2}+1) \text{ ms}^{-1}$$

c)
$$4.5 \text{ ms}^{-1}$$

d) None of these

404. Two particles of masses m_1 and m_2 in projectile motion have velocities \vec{v}_1 and \vec{v}_2 respectively at time t=0. They collide at time t_0 . Their velocities becomes \vec{v}_1 and \vec{v}_2 at time $2t_0$ while still moving in air. The value of $\left|\left(m_1\overrightarrow{v_1}'+m_2\overrightarrow{v_2}'\right)\right|-\left(m_1\overrightarrow{v_1}+m_2\overrightarrow{v_2}\right)$ is

a) Zero

b)
$$(m_1 + m_2)gt_0$$

c)
$$2(m_1 + m_2)gt_0$$

d)
$$\frac{1}{2}(m_1 + m_2)gt_0$$

405. A spring of 40 mm long is stretched by the application of a force. If 10 N force required to stretch the spring through 1 mm, then work done in stretching the spring through 40 mm

a) 84 *J*

WORK ENERGY AND POWER

$$\Delta U = mgh = 20 \times 9.8 \times 0.5 = 98 J$$
2 (a)

$$\frac{1}{2}kS^2 = 10 J \text{ [Given in the problem]}$$

$$\frac{1}{2}k[(2S)^2 - (S)^2] = 3 \times \frac{1}{2}kS^2 = 3 \times 10 = 30J$$

Energy required = mgh

In both cases, h is the same. Hence, energy given by both is same. [It is worth noting here that powers of two men will be different as power is the energy expense per unit time and times are different]

$$U = \frac{a}{x^{12}} - \frac{b}{x^6}$$

$$F = -\frac{dU}{dx} = +12\frac{a}{x^{13}} - \frac{6b}{x^7} = 0 \Rightarrow x = \left(\frac{2a}{b}\right)^{1/6}$$

$$U(x=\infty)=0$$

$$U_{\text{equilibrium}} = \frac{a}{\left(\frac{2a}{b}\right)^2} - \frac{b}{\left(\frac{2a}{b}\right)} = \frac{b^2}{4a}$$

$$\therefore U(x = \infty) - U_{\text{equilibrium}} = 0 - \left(-\frac{b^2}{4a}\right) = \frac{b^2}{4a}$$

5

Kinetic energy of particle $k = \frac{p_1^2}{2m}$

$$p_1^2 = 2mk'$$

When kinetic energy = 2k

$$p_2^2 = 2m \times 2k, p_2^2 = 2p_1^2, p_2 = \sqrt{2p_1}$$

Radio in radius of steel balls = 1/2

So, ratio in the masses $=\frac{1}{8} \left[\text{As } M \propto V \propto r^3 \right]$

Let $m_1 = 8m$ and $m_2 = m$

$$v_2 = \frac{2m_1u_1}{m_1 + m_2} = \frac{2 \times 8m \times 81}{8m + m} = 144 \text{ cm/s}$$

7 (b)

Gravitational force is a conservative force and work done against it is a point function *i.e.* does not depend on the path

8 (b)

Initial momentum

$$\vec{P} = m45\sqrt{2}\hat{\imath} + m45\sqrt{2}\hat{\jmath}$$

$$\Rightarrow |\vec{P}| = m \times 90$$

Final momentum $2m \times V$

By conservation of momentum

$$2m \times V = m \times 90$$

$$\therefore V = 45 \, m/s$$

(c)

Given
$$t_1 = 10s$$
, $t_2 = 20$, $w_1 = w_2$

$$power = \frac{\textit{work done}}{\textit{time}}$$

or
$$\frac{p_1}{p_2} = \frac{w_1/t}{w_2/t}$$

$$\therefore \frac{p_1}{p_2} = \frac{t_2}{t_1} = \frac{2}{1}$$

10

$$W = \frac{1}{2}kx^2$$

If both wires are stretched through same distance

$$W \propto k$$
. As $k_2 = 2k_1$ so $W_2 = 2W_1$

11 **(b)**

For equilibrium

$$\frac{dU}{dr} = 0 \Rightarrow \frac{-2A}{r^3} + \frac{B}{r^2} = 0$$
$$r = \frac{2A}{B}$$

For stable equilibrium

 $\frac{d^2 U}{dr^2}$ should be positive for the value of r

Here
$$\frac{d^2U}{dr^2} = \frac{6A}{r^4} - \frac{2B}{r^3}$$
 is +ve value for $r = \frac{2A}{R}$

12 **(c)**

$$KE = \frac{1}{2}mv^2 = \frac{1}{2}m(at)^2 = \frac{1}{2}ma^2t^2$$

Rate of change of KE.

$$\frac{dk}{dt} = \frac{d}{dt} \left(\frac{1}{2} m a^2 t^2 \right) = m a^2 t$$

$$\therefore \frac{dk}{dt} \propto t$$

So, statement Ais correct.

When the body is at rest then it may be or may not be in equilibrium, so statement *B* is wrong.

14

Because the efficiency of machine is 90%, hence,

potential energy gained by the mass

$$=\frac{90}{100} \times \text{energy spend} = \frac{90}{100} \times 5000 = 4500 \text{ J}$$

When the mass is released now, gain in KE on hitting the ground

Loss of potential energy4500 J

15 **(d)**

$$P = v \cos \theta = mg v \cos 90^{\circ} = 0$$

16 **(a)**

Power =
$$Fv = v\left(\frac{m}{t}\right)v = v^2(\rho Av)$$

= $\rho Av^3 = (100)(2)^3 = 800 W$

17 (d)

Potential energy of the particle $U = k(1 - e^{-x^2})$ Force on particle $F = \frac{-dU}{dx} = -k[-e^{-x^2} \times (-2x)]$

$$F = -2kxe^{-x^2} = -2kx\left[1 - x^2 + \frac{x^4}{2!} - \cdots\right]$$

For small displacement F = -2kx

 \Rightarrow $F \propto -xi$. e. motion is simple harmonic motion

18 **(a)**

Work done = Area under curve and displacement axis

= Area of trapezium

$$=\frac{1}{2}\times$$
 (sum of two parallel lines)

× distance between them

$$= \frac{1}{2}(10+4) \times (2.5-0.5) = \frac{1}{2}14 \times 2 = 14J$$

As the area actually is not trapezium so work done will be more than 14 *Ji. e.* approximately 16 *J*

19 **(c)**

As the block A moves with velocity with velocity $0.15\ ms^{-1}$, it compresses the spring Which pushes B towards right. A goes on compressing the spring till the velocity acquired by B becomes equal to the velocity of A, i.e. $0.15\ ms^{-1}$. Let this velocity be v. Now, spring is in a state of maximum compression. Let x be the maximum compression at this stage.

0.15 ms⁻¹

A — 3000000 — B

According to the law of conservation of linear momentum, we get

$$m_A u = (m_A + m_B)v$$

Or
$$v = \frac{m_A u}{m_A + m_B}$$

$$\frac{2 \times 0.15}{2+3} = 0.06 ms^{-1}$$

According to the law of conservation of energy

$$\begin{split} &\frac{1}{2}m_Au^2 = \frac{1}{2}(m_A + m_B)V^2 + \frac{1}{2}kx^2 \\ &\frac{1}{2}m_Au^2 - \frac{1}{2}(m_A + m_B)v^2 = \frac{1}{2}kx^2 \\ &\frac{1}{2} \times 2 \times (0.15)^2 - \frac{1}{2}(2+3)(0.06)^2 = \frac{1}{2}kx^2 \\ &0.0225 - 0.009 = \frac{1}{2}kx^2 \\ ∨\ 0.0135 = \frac{1}{2}kx^2 \\ ∨\ x = \sqrt{\frac{0.0027}{k}} = \sqrt{\frac{0.0027}{10.8}} = 0.05m \end{split}$$

20 **(b)**

Work done on the body = K.E. gained by the body $Fs \cos \theta = 1 \Rightarrow F \cos \theta = \frac{1}{s} = \frac{1}{0.4} = 2.5N$

21 (c

Velocity of fall is independent of the mass of the falling body

22 **(a**

Volume of water to raise = $22380 l = 22380 \times 10^{-3} m^3$

$$P = \frac{mgh}{t} = \frac{V \rho gh}{t} \Rightarrow t = \frac{V \rho gh}{P}$$
$$t = \frac{22380 \times 10^{-3} \times 10^3 \times 10 \times 10}{10 \times 746} = 5 \min$$

23 (d)

$$P = \frac{mgh}{t} \Rightarrow m = \frac{p \times t}{gh} = \frac{2 \times 10^3 \times 60}{10 \times 10}$$
$$= 1200 \text{ kg}$$

As volume = $\frac{\text{mass}}{\text{density}} \Rightarrow v = \frac{1200kg}{10^3 kg/m^3} = 1.2m^3$

Volume = $1.2m^3 = 1.2 \times 10^3 \ litre = 1200 \ litre$

24 **(b)**

If ball falls from height h_1 and bounces back up to height h_2 then $e = \sqrt{\frac{h_2}{h_1}}$

Similarly if the velocity of ball before and after collision are v_1 and v_2 respectively then $e = \frac{v_2}{v_1}$

So
$$\frac{v_2}{v_1} = \sqrt{\frac{h_2}{h_1}} = \sqrt{\frac{1.8}{5}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$$

i.e. fractional loss in velocity = $1 - \frac{v_2}{v_1} = 1 - \frac{3}{5} = \frac{2}{5}$

25 **(c)** $P = \frac{mgh}{t} = \frac{80 \times 10 \times 1.5}{2}$

$$= 600 \text{ W} = 0.6 \text{ kW}$$

Momentum of the third part will be equal to the resultant of momentum of two parts.

$$p_3 = \sqrt{p_1^2 + p_2^2}$$

$$p_3 = \sqrt{(-2p)^2 + p^2}$$

$$p_3 = p\sqrt{5}$$

27 **(a)**

$$U = \frac{1}{2}ks^{2} = 10 \text{ J}$$

$$U' = \frac{1}{2}k(s+s)^{2} = 4\left(\frac{1}{2}ks^{2}\right) = 40 \text{ J}$$

$$W = U' - U = 40 - 10 = 30 \text{ J}$$

28 (a)

$$v_{1} = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right)u_{1} + \frac{2m_{2}u_{2}}{m_{1} + m_{2}}$$

Substituting $m_1 = 0$, $v_1 = -u_1 + 2u_2$ $\Rightarrow v_1 = -6 + 2(4) = 2 m/s$

i.e. the lighter particle will move in original direction with the speed of 2 m/s

29 **(b)**

Let particle with mass *m*, move with velocity u,and v_1 and v_2 be velocity after collision. Since, elastic collision is one in which the momentum is conserved, we have

 $mu = mv_1 \cos \theta_1 + mv_2 \cos \theta_2$(i) In perpendicular direction $0 = mv_1 \sin \theta_2 - mv_2 \sin \theta_2$ Also elastic collision occurs only if there is no conversion of kinetic energy into other from,

$$\begin{split} &\frac{1}{2}mu^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 \\ &u_2 = v_1^2 + v_2^2 \qquad \text{(iii)} \\ &\text{Squaring Esq.(i)and (ii)and adding we get} \\ &m^2u^2 = m^2(v_1\cos\theta_1 + v_2\cos\theta_2)^2 \\ &+ m^2(v_1\sin\theta_1 - v_2\sin\theta_2)^2 \\ &u^2 = v_1^2 + v_2^2 + 2v_1v_2\cos\theta_1\cos\theta_2 \\ &\qquad \qquad -2v_1v_2\sin\theta_1\sin\theta_2 \\ &u^2 = v_1^2 + v_2^2 + 2v_1v_2\cos(\theta_1 + \theta_2) \\ &\text{Using Eq.(iii),we get} \end{split}$$

$$2v_1v_2\cos(\theta_1 + \theta_2) = 0$$
since $v_1v_2 \neq 0$
Hence $\cos(\theta_1 + \theta_2) = 0$
Or $\theta_1 + \theta_2 = 90^\circ$

When two identical particles collide elastically and obliquely,

One being at rest, then they fly off in mutually perpendicular directions.

30 (c) $1400 \times 10 \times 10 + W = \frac{1}{2} \times 15 \times 15$ or $W = 700 \times 15 \times 15 - 1400 \times 10 \times 10$ or W = 700(225 - 200) J or $W = 700 \times 25 \text{ J} = 75.5 \text{ kJ}$

31 (c)

As the momentum of both fragments are equal

$$\frac{E_1}{E_2} = \frac{m_2}{m_1} = \frac{3}{1}i. e., E_1 = 3E_2$$
 ...(i)
According to problem $E_1 + E_2 = 6.4 \times 10^4 J$

By solving equation (i) and (ii), we get $E_1 = 4.8 \times 10^4 J$ and $E_2 = 1.6 \times 10^4 J$

32 **(a)**

Given, pressure= $20000Nm^{-2}$

Volume= $1cc = 10^{-6}m^3$

::Power=pressure×volume per second

: $Power = 20000 \times 10^{-6}$ p = 0.02 w

33 **(d)**

Kinetic energy for first condition

$$= \frac{1}{2}m(v_2^2 - v_1^2) = \frac{1}{2}m(20^2 - 10^2) = 150 \, mJ$$

K.E. for second condition = $\frac{1}{2}m(10^2 - 0^2)$ =

50ml

$$\therefore \frac{(K.E.)I}{(K.E.)II} = \frac{150m}{50m} = 3$$

34 (d)

$$W = \frac{MgL}{2n^2} = \frac{MgL}{2(3)^2} = \frac{MgL}{18} [n = 3 \text{ Given }]$$

35 **(b)**

Force constant of a spring

$$k = \frac{F}{x} = \frac{mg}{x} = \frac{1 \times 10}{2 \times 10^{-2}} \Rightarrow k = 500 \text{ N/m}$$

Increment in the length = 60 - 50 = 10 cm

$$U = \frac{1}{2}kx^2 = \frac{1}{2}500(10 \times 10^{-2})^2 = 2.5 J$$

When a particle is moved in a circle under the action of a torque then such motion is non-uniform circular motion.

Applying principle of conservation of energy, total mechanical energy at L

=total mechanical energy at H

$$\therefore \frac{1}{2}mv_L^2 = \frac{1}{2}mv_H^2 + MG(2l)$$

But
$$v_H^2 = gl$$

$$\therefore \frac{1}{2}mv_L^2 = \frac{1}{2}m(gl) + 2mgl$$

Or
$$v_L^2 = 5gl$$

Or
$$v_L = \sqrt{5gl}$$

Hence for looping the vertical loop, the minimum velocity at the lowest point L IS $\sqrt{5gl}$.

37 **(b)**

Initially bullet moves with velocity *b* and after collision bullet get embedded in block and both move together with common velocity

By the conservation of momentum

$$\Rightarrow a \times b + 0 = (a + c)V \Rightarrow V = \frac{ab}{a + c}$$

39 **(b**

If the masses are equal and target is at rest and after collision both masses moves in different direction. Then angle between direction of velocity will be 90°, if collision is elastic

40 (d)

Work done (*W*) = Area under curve of *F-x* graph = Area of triangle $OAB = \frac{1}{2} \times 5 \times 1 = 2.5 \text{ J}$

41 (a)

$$E = \frac{1}{2}kx^2$$

 $\therefore E \propto k$

$$\therefore \ \frac{E_1}{E_2} = \frac{k_1}{k_2}$$

42 (6

$$W = \int_0^5 F dx = \int_0^5 (7 - 2x + 3x^2) dx$$
$$= [7x - x^2 + x^3]_0^5$$
$$= 35 - 25 + 125 = 135 I$$

43 **(b**

Minimum force $mg \sin \theta$, so, minimum power is given by

$$P = mg \sin \theta \ v \text{ or } v = \frac{P}{mg \sin \theta}$$
or $v = \frac{9000 \times 2}{1200 \times 10 \times 1} \text{ms}^{-1} = 15 \text{ms}^{-1}$

$$= 15 \times \frac{18}{5} = 54 \text{ kmh}^{-1}$$

44 **(d)**

Here, the constant horizontal force required to take the body from position 1 to position 2 can be calculated by using work energy theorem. Let us assume that body taken slowly so that its speed doesn't change, then $\Delta K=0$

$$= W_F + W_{Mg} + W_{\text{tension}}$$

(symbols have their usual meanings)

$$W_F = F \times l \sin 45^\circ$$
,

$$W_{Mg} = Mg(l - l\cos 45^\circ), W_{\text{tension}} = 0$$

$$F = Mg(\sqrt{2} - 1)$$

45 (a)

Since body moves with constant velocity, so. Net force on the body is zero.

Here,
$$N = mg$$
, $F = f$

$$\therefore W = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}} = fs \cos 180''$$

$$= fs = -10 \times 2 = -20 \text{ J}$$

46 **(a)**

Spring constant $k = \frac{F}{x}$ = Slope of curve $k = \frac{4-1}{30} = \frac{3}{30} = 0.1 \, kg/cm$

47 (a)

$$U_1 = mgh_1$$
 and $U_2 = mgh_2$
% energy lost $= \frac{U_1 - U_2}{U_1} \times 100$

$$= \frac{mgh_1 - mgh_2}{mgh_1} 100 = \left(\frac{h_1 - h_2}{h_1}\right) \times 100$$
$$= \frac{2 - 1.5}{2} \times 100 = 25\%$$

It is clear from figure that the displacement vector $\Delta \vec{r}$ between particles p_1 and p_2 is $\Delta \vec{r} = \overrightarrow{r_2} - \overrightarrow{r_1} = -8\hat{\imath} - 8\hat{\jmath}$

$$|\Delta \vec{r}| = \sqrt{(-8)^2 + (-8)^2} = 8\sqrt{2}$$
(i)

Now, as the particles are moving in same direction

 $(\because \overrightarrow{v_1} \text{ and } \overrightarrow{v_2} \text{ are } + ve)$, the relative velocity is given by

$$\vec{v}_{rel} = \vec{v}_2 - \vec{v}_1 = (\alpha - 4)\hat{\imath} + 4\hat{\jmath}$$
$$|\vec{v}_{rel}| = \sqrt{(\alpha - 4)^2 + 16} \quad \dots (ii)$$

Now, we know $|\vec{v}_{rel}| = \frac{|\Delta \vec{r}|}{t}$

Substituting the values of \vec{v}_{rel} and $|\Delta \vec{r}|$ from equation (i) and (ii) and t=2s, then on solving we get $\alpha=8$

49 **(c)**

If momentum is Zero ie, if p=0,then kinetic energy

$$K = \frac{p^2}{2m} = 0$$

But potential energy cannot be zero, thus a body can have energy without momentum.

50 **(c)**

The variation of potential energy(U) With distance(x)is

$$U = \frac{1}{2}kx^2$$

Hence, parabolic graph is obtained.

51 **(b)**

Because 50% loss in kinetic energy will affect its potential energy and due to this ball will attain only half of the initial height

52 **(a**)

Effective height through which man moves up = 1 - h

53 **(c)**

Kinetic energy at highest point

$$(KE)_{H} = \frac{1}{2}mv^{2}\cos 2\theta$$
$$= K\cos^{2}\theta$$

 $= K(\cos 60^\circ)^2$

$$= \frac{1}{4}$$

54 **(b)**

$$m_1 u_1 + m_2 u_2 = (m_1 + m_2)v$$

 $\therefore 10 \times u_1 + 5 \times 0 = (10 + 5) \times 4$
Or $u_1 = \frac{15 \times 4}{10} = 6ms^{-1}$

55 **(b**

$$W = \int_{-a}^{+a} F dy$$

$$= \int_{-a}^{+a} (Ay^2 + By + C) dy$$

$$= \left[\frac{Ay^3}{3} + \frac{By^2}{2} + Cy \right]_{-a}^{+a}$$

$$= \left[\frac{Aa^3}{3} + \frac{Ba^2}{2} + Ca \right] - \left[-\frac{Aa^3}{3} + \frac{Ba^2}{2} - Ca \right]$$

$$= \frac{2Aa^3}{3} + 2Ca$$

56 **(b)**

Due to theory of relativity

57 **(a)**

Potential energy increases and kinetic energy decreases when the height of the particle increases it is clear from the graph (a)

58 **(a**

$$\frac{1}{2}mv^{2} - f_{k}x = \frac{1}{2}kx^{2}$$

$$\frac{1}{2} \times 2 \times 16 - 15x = \frac{1}{2} \times 10^{4} \times x^{2}$$

$$\therefore x = 5.5 \ cm$$

60 **(b)**

Work done is given by $F \cdot s = (2\hat{\imath} + 4\hat{\jmath}) \cdot (3\hat{\jmath} + 5\hat{k})$ = 12j $\text{Now, power} = \frac{work}{time} = \frac{12}{2} = 6w$

62 **(c)**

Useful work =
$$\frac{75}{100} \times 12 \text{ J} = 9\text{J}$$

Now, $\frac{1}{2} \times 1 \times v^2 = 9 \text{ or } v = \sqrt{18} \text{ms}^{-1}$

63 **(b)**

$$a = \frac{10 - 0}{5} \text{ms}^{-2} = 2 \text{ms}^{-2};$$

 $F = ma \text{ or } F = 1000 \times 2 \text{ N} = 2000 \text{ N}$
Average velocity $= \frac{0 + 10}{2} \text{ms}^{-1} = 5 \text{ms}^{-1}$
Average power $= 2000 \times 5 \text{ W} = 10^4 \text{ W}$

Required horse power is $\frac{10^4}{746}$

64 **(b**)

When target is very light and at rest then after head on elastic collision it moves with double speed of projectile *i. e.* the velocity of body of

mass m will be 2v

65 **(d)**

Work done = change in kinetic energy $W = \frac{1}{2}mv^2$

 $\therefore W \propto v^2$ graph will be parabolic in nature

66 **(a)**

Velocity of 50 kg mass after 5 sec of projection $v = u - gt = 100 - 9.8 \times 5 = 51 \, m/s$

At this instant momentum of body is an upward direction

$$P_{\text{initial}} = 50 \times 51 = 2550 \ kg - m/s$$

After breaking 20 kg piece travels upwards with 150 m/s let the speed of 30 kg mass is V $P_{\rm final} = 20 \times 150 + 30 \times V$

By the law of conservation of momentum

$$P_{\rm initial} = P_{\rm final}$$

$$\Rightarrow 2550 = 20 \times 150 + 30 \times V \Rightarrow V = -15 \, m/s$$

i.e. it moves in downward direction

67 **(d)**

Mass to be lifted = 10×10^2 kg [: density of water = 10^3 kgm⁻³] Height, h = 10 m

Work done = $10^4 \times 10 \times 10 = 10^6$ J

68 **(b)**

By momentum conservation before and after collision

$$m_1V + m_2 \times 0 = (m_1 + m_2)v \Rightarrow v = \frac{m_1}{m_1 + m_2}V$$

i.e. Velocity of system is less than V

69 **(b)**

Linear momentum of water striking per second to the wall $P_1=mv=Av\rho\ v=Av^2\ \rho$, similarly linear momentum of reflected water per second $P_r=Av^2\rho$

Now making components of momentum along *x*-axes and *y*-axes. Change in momentum of water per second

$$= P_i \cos \theta + P_r \cos \theta$$

$$=2Av^2 \rho \cos \theta$$

By definition of force, force exerted on the Wall = $2Av^2 \rho \cos \theta$

70 **(c)**

Initial linear momentum of system = $m_A \vec{v}_A + m_B \vec{v}_B$

$$= 0.2 \times 0.3 + 0.4 \times v_B$$

Finally both balls come to rest

 \therefore final linear momentum = 0

By the law of conservation of linear momentum $0.2 \times 0.3 + 0.4 \times v_B = 0$

$$v_B = -\frac{0.2 \times 0.3}{0.4} = -0.15 \, m/s$$

71 **(c**

Let velocity of masses after explosion be v_1 and v_2 , then from law of conservation of momentum, we have

Momentum before explosion = Momentum after explosion

$$\begin{split} MV &= m_1 v_1 + m_2 v_2 \\ Given \ m_1 &= m_2 = m, v_2 = 0 \,, \end{split}$$

$$\therefore Mv = mv_1 + m \times 0$$

$$\Rightarrow v_1 = \frac{Mv}{m}.$$

72 **(c)**

While moving from (0,0) to (a,0)

Along positive *x*-axis, y = 0 $\therefore \vec{F} = -kx\hat{j}$ *i. e.*, force is in negative *y*- direction while

displacement is in positive x-direction

$$\therefore W_1 = 0$$

Because force is perpendicular to displacement Then particle moves from (a, 0) to (a. a) along a line parallel to y-axis (x = +a) during this $\vec{F} = -k(y\hat{\imath} + a\hat{\jmath})$

The first component of force, $-ky\hat{\imath}$ will not contribute any work because this component is along negative x-direction $(-\hat{\imath})$ while displacement is in positive y-direction (a,0)to (a,a). The second component of force $i.e.-ka\hat{\jmath}$ will perform negative work

$$W_2 = (-ka\hat{\jmath})(a\hat{\jmath}) = (-ka)(a) = -ka^2$$

So net work done on the particle
$$W = W_1 + W_2$$

= $0 + (-ka^2) = -ka^2$

73 **(c)**

Ball starts from the top of a hill which is 100 m high and finally rolls down to a horizontal base which is 20 m above the ground so from the conservation of energy $mg(h_1 - h_2) = \frac{1}{2}mv^2$

Work done = (Shaded area under the graph between

$$x = 0$$
to $x = 35 m$) = 287.5 J

75 **(c)**

Let m_1, m_2 be the masses of first and second fragments respectively and v_1 , v_2 be their velocities after explosion.

From conservation of momentum

$$Mv = m_1, m_2 + m_2 v_2$$

Where, M is mass of bomb before explosion and vits velocity.

Since, bomb is stationary, hence v=0

Given
$$m_1 = 1g = 1 \times 10^{-3} kg = 0.001 kg$$
 $m_2 = 3g = 3 \times 10^{-3} kg = 0.003 kg$ and $E_k = 6.4 \times 10^4 J$

$$\therefore 0 = m_1 v_1 + m_2 v_2$$

or
$$0 = 0.001v_1 + 0.003v_2$$

Or
$$v_2 = -\frac{v_1}{3}$$
(i)

Total kinetic energy is

$$E_K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$

$$E_k = \frac{1}{2} \times (0.001)v_1^2 + \frac{1}{2} \times (0.003)v_2^2 ...(ii)$$

$$\therefore E_k = \frac{1}{2} \times (0.001)v_1^2 + \frac{1}{2}(0.003) \times \left(-\frac{v_1^2}{3}\right)^2$$

$$E_k = \frac{1}{2} \times (0.001) \left(v_1^2 + 3 \times \frac{v_1^2}{9} \right)$$

$$E_k = \frac{1}{2} \times (0.001) \times \frac{4v_1^2}{3} = \frac{(0.002)v_1^2}{3} \quad \dots (iii)$$

$$\therefore \qquad 6.4 \times 10^4 = \frac{(0.002)v_1^2}{3}$$

Or
$$v_1^2 = \frac{3 \times 6.4 \times 10^4}{0.002}$$

Or
$$v_1^2 = \frac{3 \times 6.4 \times 10^4}{0.002}$$

Or
$$v_1^2 = \frac{3 \times 6.4 \times 10^4}{0.002}$$

 $orv_1^2 = 96 \times 10^6 = 9.6 \times 10^7 ms^{-1}$

Hence, kinetic energy of smaller fragment is

$$E'_{K} = \frac{1}{2}m_{1}v_{1}^{2}$$

$$E'_{k} = \frac{1}{2} \times (0.001) \times 9.6 \times 10^{7}$$

$$E'_{k} = 4.8 \times 10^{4} \text{J}.$$

76 **(b)**

$$v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 0.1} = \sqrt{1.96} = 1.4 \text{ m/s}$$

77 **(c)**

The explanation are given below

- (i) If a body is moved up in inclined plane, then the work done against friction force is zero as there is no friction. But a work has to be done against the gravity. So, this statement is incorrect.
- (ii) If there were no friction, moving vehicles could not be stopped by locking the brakes. Vehicles are stopped by air friction only.

So, This Statement is correct.

(iii) In this situation the normal reaction is given

$$R = mg \cos \alpha \quad \dots (i)$$

If α increase then the value of $\cos \alpha$ also decreases. So, this Statement is incorrect.

(iv)When the duster is rubbing upward then an external force is applied and its value is

$$F' = 0.5g + \mu R$$

$$F' = 0.5g + 0.5 \times 11$$

Or
$$F' = (0.5 \times 10 + 5.5)N$$
 (Here R=11 N)

$$Or F' = 10.5N$$

Hence, work done in rubbing the duster through a distance of 10 cm.

$$W = F' \times d$$

$$\Rightarrow W = 10.5 \times \frac{10}{100} \text{J}$$

Or
$$F' = 10.5$$
J

78

Initially ²³⁸*U*nucleus was at rest and after decay its part moves in opposite direction

According to conservation of momentum

$$4v + 234V = 238 \times 0 \Rightarrow V = -\frac{4v}{234}$$

79

$$W = FS \cos \theta = 10 \times 4 \times \cos 60^{\circ} = 20$$
 Joule

80

Potential energy $V = \frac{x^4}{4} - \frac{x^2}{2}$

For maximum kinetic energy, potential energy of a particle should be minimum

For minimum value of V, $\frac{dV}{dx} = 0$ and $\frac{d^2V}{dx^2} > 0$

Force
$$F = -\left(\frac{dV}{dx}\right) = \frac{4x^3}{4} - \frac{2x}{2} = 0 \Rightarrow x^3 - x = 0$$

 $\Rightarrow x(x^2 - 1) = 0$

i. e. at x = 0, x = +1 and x = -1 for on the particle will be zero

$$Now \frac{d^2V}{dx^2} = 3x^2 - 1$$

For
$$x = +1$$
 and $x = -1 \frac{d^2 V}{dx^2} > 1$

It means the potential energy of the particle will be minimum at x = 1 and x = -1

Now substituting these values in expression of potential energy

Energy
$$V_{\min} = \left[\frac{(1)^4}{4} - \frac{(1)^2}{2}\right]J = \left[\frac{1}{4} - \frac{1}{2}\right]J = -\frac{1}{4}J$$

(Kinetic energy)_{max}

= Total energy
- (potential energy)_{min}
=
$$2 - \left(-\frac{1}{4}\right)$$

$$\frac{1}{2} m v_{\text{max}}^2 = \frac{9}{4} \Rightarrow v_{\text{max}}^2 = \frac{9}{2} \Rightarrow v_{\text{max}} = \frac{3}{\sqrt{2}} m/\text{sec}$$

81 **(a)**

Work = Force \times Displacement (length) If unit of force and length be increased by four times then the unit of energy will increase by 16 times

82 **(b)**

In elastic head on collision velocities gets interchanged

83 **(d)**

According to law of conservation of energy

$$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mgh$$

$$490 = 245 + 5 \times 9.8 \times h$$

$$h = \frac{245}{49} = 5m$$

84 (d)

If there is no air drag then maximum height

$$H = \frac{u^2}{2g} = \frac{14 \times 14}{2 \times 9.8} = 10 \ m$$

But due to air drag ball reaches up to height 8m only. So loss in energy

$$= mg(10 - 8) = 0.5 \times 9.8 \times 2 = 9.8 J$$

85 (d)

Velocity at *B* when dropped from *A*

where
$$AC = s$$

$$v^2 = u^2 + 2g(s - x)$$
(i)

$$v^2 = 2g(s - x)$$
(ii)

Potential energy at B = mgx

 \therefore Kinetic energy = $3 \times$ potential energy

$$\frac{1}{2}m \times 2g(s-x) = 3 \times mgx$$

or
$$(s - x) = 3x$$

or
$$s = 4x$$
 or $x = \frac{s}{4}$

From Eq. (i)

$$v^2 = 2g(s - x)$$

$$=2g\left(s-\frac{s}{4}\right)$$

$$=\frac{2g\times 3s}{4}=\frac{3gs}{2}$$

$$\therefore x = \frac{s}{4} \text{ and } v = \sqrt{\frac{3gs}{2}}$$

86 **(c)**

Kinetic energy = $\frac{1}{2}mv^2$

As both balls are falling through same height, therefore they possess same velocity.

$$\therefore \quad \frac{(\text{KE})_1}{(\text{KE})_2} = \frac{m_1}{m_2} = \frac{2}{4} = \frac{1}{2}$$

87 **(c)**

$$100 = \frac{1}{2}kx^2$$
 [Given]

$$W = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}k[(2x)^2 - x^2]$$

$$= 3 \times \left(\frac{1}{2}kx^2\right) = 3 \times 100 = 300 J$$

88 (a)

Given, m=2kg, v= $20ms^{-1}$, $\theta = 60^{\circ}$

Power(P)is given as

$$P = F \cdot v = Fv \cos \theta$$

$$P = mgv \cos \theta$$

$$\therefore P = 2 \times 20 \times 10 \times \cos 60^{\circ}$$

$$P = 2 \times 20 \times 10 \times \frac{1}{2}$$

$$\Rightarrow P = 200 \text{ W}$$

89 (a)

Work done = Area covered in between force displacement curve and displacement axis = Mass ×Area covered in between acceleration-

displacement curve and displacement axis

$$= 10 \times \frac{1}{2} (8 \times 10^{-2} \times 20 \times 10^{-2}) = 8 \times 10^{-2} J$$

Before explosion

After explosion

According to conservation of momentum

$$mv = \left(\frac{m}{4}\right)v_1 + \left(\frac{3m}{4}\right)v_2 \Rightarrow \frac{4}{3}v$$

91 **(b)**

 $P = \sqrt{2mE}$ if E are equal then $P \propto \sqrt{m}$

i.e., heavier body will possess greater momentum

92 **(b)**

$$a_A = \frac{F}{m_A} = \frac{4 \times 10}{20} = 2ms^{-2}$$

$$a_B = \frac{F}{m_B} = \frac{4 \times 10}{5} = 8ms^{-2}$$

Given that,
$$K_A = K_B$$

Given that,
$$K_A = K_B$$

i.e., $\frac{1}{2}m_A v_A^2 = \frac{1}{2}m_B v_B^2$

Or
$$m_A(u + a_A t_A)^2 = m_B(u + a_B t_B)^2$$
 (: $v = u + at$)

Or
$$m_A a_A^2 t_A^2 = m_B a_B^2 t_B^2$$
 (: $u = 0$)

Or
$$\frac{t_A}{t_B} = \sqrt{\frac{m_B}{m_A} \times \frac{a_B^2}{a_A^2}}$$

= $\sqrt{\frac{5}{20} \times \frac{(8)^2}{(2)^2}} = \sqrt{\frac{5 \times 64}{20 \times 4}} = 2$

93

The linear momentum of exploding part will remain conserved.

Applying conservation of linear momentum, We write.

$$m_1u_1=m_2u_2$$

Here,
$$m_1 = 18$$
kg, $m_2 = 12$ kg

$$u_1 = 6ms^{-1}, u_2 = ?$$

$$\therefore 18 \times 6 = 12 u_2$$

$$\Rightarrow u_2 = \frac{18 \times 6}{12} 9ms^{-1}$$

Thus, kinetic energy of 12 kg mass

$$k_2 = \frac{1}{2}m_2u_2^2$$
=\frac{1}{2} \times 12 \times (9)^2
=6 \times 81
=486 J

94 (c)

 $P = \sqrt{2mE}$ it is clear that $P \propto \sqrt{E}$

So the graph between P and \sqrt{E} will be straight

But graph between $\frac{1}{p}$ and \sqrt{E} will be hyperbola

95 **(d)**

Initial momentum = mv

Final momentum = (m + M)V

By conservation of momentum mv = (m + M)V

∴Velocity of (bag + bullet) system
$$V = \frac{mv}{M+m}$$

$$\therefore \text{ Kinetic energy} = \frac{1}{2}(m+M)V^2$$

$$= \frac{1}{2}(m+M)\left(\frac{mv}{M+m}\right)^2 = \frac{1}{2}\frac{m^2v^2}{M+m}$$

96 **(b)**

Here
$$k = \frac{1}{2}mv^2 = as^2$$

$$mv^2 = 2as^2$$

Differentiating w.r.t. time t

$$2mv\frac{dv}{dt} = 4as\frac{ds}{dt} = 4asv, m\frac{dv}{dt} = 2as$$

This is the tangential force, $F_t = 2as$

Centripetal force
$$F_c = \frac{mv^2}{R} = \frac{2as^2}{R}$$

∴ Force acting on the particle

$$F = \sqrt{F_t^2 + F_c^2} = \sqrt{(2as)^2 + \left(\frac{2as}{R}\right)^2}$$
$$= 2as\sqrt{1 + s^2/R^2}$$

97 (c)

The relation between linear momentum and kinetic energy is

$$p^2 = 2mk$$
(i)

But linear momentum is increased by 50%, then

$$p' = \frac{150}{100}p$$

$$p' = \frac{3}{2}p$$

Hence, $p'^2 = 2mk'$

Or
$$\left(\frac{3}{2}p\right)^2 = 2mk'$$

Or
$$\frac{9}{4}p^2 = 2mk'$$
(ii)

On putting the value of p^2 from Eq. (i) in Eq. (ii)

$$\frac{9}{4} \times 2mk = 2mk'$$

Or
$$K' = \frac{9}{4}k$$

So, the increase in kinetic energy is

$$\Delta K = \frac{9}{4}k - k = \frac{5}{4}k$$

Hence, percent increase in kinetic energy

$$=\frac{(5/4)K}{K}\times 100\%$$

$$= \frac{5}{4} \times 100\% = 125\%$$

Mass of the shell = $m_1 = 0.2 \ kg$

Mass of the gun = $m_2 = 4kg$

Let energy of shell = E_1 , energy of gun = E_2

Total energy liberated

$$= E_1 + E_2 = 1050 \, Joule \dots (i)$$

As
$$E = \frac{P^2}{2m}$$

$$\therefore \frac{E_1}{E_2} = \frac{m_2}{m_1} = \frac{4}{0.2} = 20 \Rightarrow E_2 = \frac{E_1}{20} \quad ...(ii)$$

From equation (i) and (ii) we get $E_1 = 1000$ *Joule*

 \therefore Kinetic energy of the shell $=\frac{1}{2}m_1v_1^2=1000$

$$\Rightarrow \frac{1}{2}(0.2)v_1^2 = 1000 \Rightarrow v_1 = \sqrt{10000} = 100 \, m/s$$

99 **(c)**

From energy conservation,

$$\frac{1}{2}kx^2 = \frac{1}{2}(4k)y^2$$

$$\frac{y}{x} = \frac{1}{2}$$

100 (d)

KE of colliding body before collision= $\frac{1}{2}mv^2$

After collision its velocity becomes

$$V' = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v = \frac{m}{3m} v = \frac{v}{3}$$

KE after collision= $\frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{v}{3}\right)^2$

$$=\frac{1}{2}\frac{mv^2}{9}$$

Ratio of kinetic energy= $\frac{KE_{before}}{KE_{after}}$

$$=\frac{\frac{1}{2}mv^2}{\frac{1}{2}\frac{mv^2}{2}}=\frac{9}{1}$$

101 **(b)**

Initial condition

Final condition

By conservation of linear momentum

$$2m = mv_1 + 2mv_2 \Rightarrow v_1 + 2v_2 = 2$$

By definition of
$$e$$
, $e = \frac{1}{2} = \frac{v_2 - v_1}{2 - 0}$

$$\Rightarrow v_2 - v_1 = 1 \Rightarrow v_1 = 0 \text{ and } v_2 = 1ms^{-1}$$

102 (c)

According to work-energy theorem

W =Change in kinetic energy

$$FS\cos\theta = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

Substituting the given values, we get

$$20 \times 4 \times \cos \theta = 40 - 0$$
 [: $u = 0$]

$$\cos\theta = \frac{40}{80} = \frac{1}{2}$$

$$\theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ}$$

103 (a)

Applying principle of conservation of linear momentum, velocity of the system (v) is

$$m_1 v_1 = (m_1 + m_2)V, \Rightarrow V = \frac{m_1 v_1}{m_1 + m_2}$$

$$=\frac{50\times10}{(50+950)}=\frac{1}{2}\text{ms}^{-1}$$

Initial KE,
$$E_1 = \frac{1}{2}m_1v_1^2 = \frac{1}{2} \times \left(\frac{50}{1000}\right) \times 10^2 = 2.5 \text{ J}$$

Final KE,
$$E^2 = \frac{1}{2}(m^1 + m^2)v^2$$

$$= \frac{1}{2} \frac{(50 + 950)}{1000} \times \frac{1}{2} = 0125 \text{ J}$$

Percentage loss is KE

$$\frac{E_1 - E_2}{E_1} \times 100 = \frac{2.5 - 0.125}{2.5} = 95\%$$

104 (c)

Initially potential energy = $\frac{1}{2}kx^2$

$$\Rightarrow U = \frac{1}{2}kx^2$$

or
$$2U = kx^2 \Rightarrow k = \frac{2U}{x^2}$$

When it is stretched to nx cm, then

PE =
$$\frac{1}{2}kx_1^2 = \frac{1}{2} \times \frac{2U}{x^2} \times n^2x^2 = n^2U$$

∴ Potential energy stored in the spring = n^2U

105 (b)

The angle between the displacement and the applied retarded force is 180°

::Work done=
$$Fs \cos 180^{\circ} - Fs$$

= -Ve

107 **(b)**

$$W = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2} \times 800 \times (15^2 - 5^2) \times 10^{-4}$$
$$= 8I$$

108 **(b)**

Let *M* be the mass of body moving with velocity v and m be mass of each broken part, velocity of one part which retraces back is v and that of second part is v'.

Momentum before breaking=momentum after breaking

$$M_{11} - m(-11) + m_{11}$$

$$Mv = m(-v) + mv'$$

Or $v' = \frac{Mv + mv}{m}$

Since, M=2m,therefore

$$v' = \frac{(2m+m)v}{m} = 3v$$

109 (b)

$$E = \frac{P^2}{2m} : E \propto \frac{1}{m} [\text{If } P = \text{constant}]$$

i.e., the lightest particle will possess maximum kinetic energy and in the given option mass of electron is minimum

As shown a block of mass *M* is lying over rough horizontal surface. Let μ be the coefficient of kinetic friction between the two surfaces in contact. The force Of friction between the block and horizontal surface is given by

$$F = \mu R = \mu Mg$$
 $(\because R = Mg)$

To move the block without acceleration, the force (P)required will be just equal to the force of friction, ie,

$$P = F = \mu R$$

If d is the distance moved, then work done is given by

$$W = P \times d = \mu R d$$

111 (a)

Momentum would be maximum when KE would be maximum and this is the case when total elastic PE is converted KE.

According to conservation of energy

$$\frac{1}{2}kL^2 = \frac{1}{2}Mv^2$$

$$\operatorname{Or} kL^2 = \frac{(Mv)^2}{M}$$

$$MKL^2 = p^2(p = Mv)$$

$$\therefore p = L\sqrt{MK}$$

112 (d)

In compression or extension of a spring work is done against restoring force

In moving a body against gravity work is done against gravitational force of attraction

It means in all three cases potential energy of the system increases

But when the bubble rises in the direction of upthrust force then system works so the potential energy of the system decreases

113 **(b)**

According to question, $\frac{1}{2}m_A v_A^2 = \frac{1}{2}m_B v_B^2$

$$\Rightarrow \frac{v_A}{v_B} = \sqrt{\frac{m_B}{m_A}} = \sqrt{\frac{5}{20}} = \frac{1}{2}$$

Using Impulse Momentum

$$\frac{F\Delta t_A}{F\Delta t_B} = \frac{m_A \Delta v_A}{m_B \Delta v_B} \Rightarrow \frac{\Delta t_A}{\Delta t_B} = \frac{20}{5} \times \frac{1}{2} = 2$$

 $P = \sqrt{2ME}$. If kinetic energy are equal then $P \propto$

i.e., heavier body posses large momentum As $M_1 < M_2$ therefore $M_1V_1 < M_2V_2$

115 **(b)**

Given $W = 25 \text{ J}, F = 5 \text{ N}, \Delta s = 10 \text{m}$

Work=Force× displacement

$$W = (F\cos\theta) \times \Delta s$$

Or
$$\cos \theta = \frac{W}{F \cdot \Delta}$$

Or
$$\cos \theta = \frac{W}{F \cdot \Delta s}$$

Or $\cos \theta = \frac{25}{5 \times 10} = \frac{1}{2} \text{ or } \theta = \cos^{-1} \left(\frac{1}{2}\right) = 60^{\circ}$

Hence, angle between force and direction of body is 60°.

116 (a)

Momentum conservation

$$5 \times 10 + 20 \times 0 = 5 \times 0 + 20 \times v \Rightarrow v = 2.5 \, m/s$$

117 (c)

$$W = \Delta K$$
 or $W_T + W_g + W_F = 0$

(Since, change in kinetic energy is zero)

Here, W_T = work done by tension = 0

 $W_{\rm g} =$ work done by fore of gravity

$$=-mgh$$

$$=-mgL(1-\cos\theta)$$

$$\therefore W_F = -W_g = mgL(1 - \cos\theta)$$

119 **(b)**

When ball falls vertically downward from height h_1 its velocity $\vec{v}_1 = \sqrt{2gh_1}$

And its velocity after collision $\vec{v}_2 = \sqrt{2gh_2}$

Change in momentum

$$\Delta \vec{P} = m(\vec{v}_2 - \vec{v}_1) = m(\sqrt{2gh_1} + \sqrt{2gh_2})$$

[Because \vec{v}_1 and \vec{v}_2 are opposite in direction]

121 (d)

Initially mass 10 gm moves with velocity $100 \, cm/s$

:Initial momentum = $10 \times 100 = 1000 \frac{gm \times cm}{sec}$

After collision system moves with velocity v_{sys} .

Final momentum = $(10 + 10) \times v_{\text{sys.}}$

By applying in conservation of momentum

$$1000 = 20 \times v_{\text{sys.}}$$

$$\Rightarrow v_{\text{sys.}} = 50 \text{ cm/s}$$

If system rises upto height *h* then

$$h = \frac{v_{\text{sys.}}^2}{2g} = \frac{50 \times 50}{2 \times 1000} = \frac{2.5}{2} = 1.25 \text{ cm}$$

Opposing force in vertical pulling = mg

But opposing force on an inclined plane is $mg \sin \theta$, which is less than mg

123 **(b)**

Work done,
$$W = F \cdot ds = (F_1 + F_2) \cdot (s_2 - s_1)$$

= $\{(4\hat{\imath} + \hat{\jmath} - 3\hat{k}) + (3\hat{\imath} + \hat{\jmath} - \hat{k})\}$
 $\{(5\hat{\imath} + 4\hat{\jmath} + \hat{k}) - (\hat{\imath} + 2\hat{\jmath} + 3\hat{k})\}$
= $(7\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) \cdot (4\hat{\imath} + 2\hat{\jmath} - 2\hat{k})$
= $28 + 4 + 8 = 40$ J

124 (d)

$$P = \frac{mgh}{t}$$

$$m = \frac{Pt}{gh} = \frac{200 \times 60}{10 \times 10} = 1200 \text{ L}$$

126 (a)

By conservation of momentum, $mv + M \times 0 = (m + M)V$

Velocity of composite block $V = \left(\frac{m}{m+M}\right)v$

K.E. of composite block = $\frac{1}{2}(M+m)V^2$

$$= \frac{1}{2}(M+m) \left(\frac{m}{M+m}\right)^2 v^2 = \frac{1}{2} m v^2 \left(\frac{m}{m+M}\right)$$

127 (c)

$$\frac{1}{2}m_1u_1^2 - \frac{1}{2}m_1v_1^2 = \frac{75}{100} \times \frac{1}{2}m_1u_1^2$$
Or
$$u_1^2 - v_1^2 = \frac{3}{4}u_1^2$$
or
$$v_1 = \frac{1}{2}u_1$$
(i)

Now
$$v_1 = \frac{(m_2 - m_1)u_1}{(m_1 + m_2)} \dots (ii)$$

Thus,
$$\frac{1}{2}u_1 = \frac{(m_2 - m_1)u_1}{(m_1 + m_2)}$$

or
$$m_2 = 3m_1 = 3m_1$$

128 (d)

Kinetic energy of ball=potential energy of spring

i.e.,
$$B \frac{1}{2}mv^2 = \frac{1}{2}kx^2$$

$$\therefore 16 \times 10^{-3} \times v^2 = \frac{90}{10^{-2}} \times (12 \times 10^{-2})^2$$
Or
$$v^2 = \frac{90 \times 144 \times 10^{-4}}{10^{-2} \times 16 \times 10^{-3}}$$
Or
$$v = 90ms^{-1}$$

129 **(b)**

Kinetic energy, $K = \frac{P^2}{2m}$

Where P is the momentum and m is the mass. When momentum is increased by 20%, then

$$\rho' = P + \frac{20}{100}P = 1.2P$$

$$\therefore K' = \frac{(1.2P)^2}{2m} = \frac{1.44P^2}{2m} = 1.44K$$

$$K' = K + 0.44K \implies \frac{K' - K}{K} = 0.44$$

Percentage increase in kinetic energy is

$$\frac{K' - K}{K} \times 100 = 0.44 \times 100 = 44\%$$

130 (a)

Particlefalls from height h then formula for height covered by it in nth rebound is given by

$$h_n = he^{2n}$$

Where e = coefficient of restitution, n = No. of rebound

Total distance travelled by particle before rebounding has stopped

$$\begin{split} H &= h + 2h_1 + 2h_2 + 2h_3 + 2h_4 + \cdots \\ &= h + 2he^2 + 2he^4 + 2he^6 + 2he^8 + \cdots \\ &= h + 2h(e^2 + e^4 + e^6 + e^8 + \cdots) \\ &= h + 2h\left[\frac{E^2}{1 - e^2}\right] = h\left[1 + \frac{2e^2}{1 - e^2}\right] = h\left(\frac{1 + e^2}{1 - e^2}\right) \end{split}$$

131 (d)

If it is a completely inelastic collision then

$$\begin{array}{ccc} m_1 v_1 + m_2 v_2 = m_1 v + m_2 v \\ v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} & \stackrel{m_1}{\longrightarrow} & \stackrel{m_2}{\longrightarrow} \\ v_1 & & v_2 \end{array}$$

$$KE = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2}$$

As $p_1 and p_2$ both simultaneously cannot be zero therefore total KE cannot lost.

132 (d)

$$h_n = he^{2n}$$
, if $n = 2$ then $h_2 = he^4$

133 (d)

Slope of inclined plane, $\sin \theta = 1/100$ Component o weight down the inclined plane $F = mg \sin \theta = 100 \times 9.8 \times 1/100 = 9.8 \text{ N}$ s = distance moved = 10 m $W = F s = 9.8 \times 10 = 98 \text{ J}$

134 (a)

If after the collision of two bodies, the total kinetic energy of the bodies remains the same as it was before the collision, and also momentum remains same, then it is a case of perfectly elastic collision. Momentum before collision= Momentum after collision

Kinetic energy before collision =Kinetic energy after collision

Also,
$$u_1 - u_2 = -(v_1 - v_2)$$

Where (u_1-u_2) is the relative velocity before the collision and (v_1-v_2) is the relative velocity after the collision. Thus, in a perfectly elastic collision the relative velocity remains unchanged in magnitude, but is reserved in direction. Hence,

velocity of the last ball is $-0.4 \, ms^{-1}$.

$$P = (mg \sin \theta + F)v$$

= $\left(1000 \times 10 \times \frac{1}{20} + 200\right) \times 20$
= 1400 W = 14 kW

136 **(b)**

 $k_A > k_B$, x is the same

$$\therefore \frac{1}{2}k_A x^2 > \frac{1}{2}k_B x^2 \Rightarrow W_A > W_B$$

Forces are the same

$$k_A x_A = k_B x_B, \text{As} k_A > k_B, x_A < x_B$$

 $W'_A = \frac{1}{2} (k_A x_A) x_A \text{ and } W'_B = \frac{1}{2} (k_B x_B) x_B$
 $\therefore W'_A < W'_B; \therefore W_A > W_B \text{ but } W'_A < W'_B$

137 (a)

$$K = \frac{1}{2}mv^{2}$$

$$\frac{dK}{dt} = mv.\frac{dv}{dt}$$

$$= \left(m\frac{dv}{dt}\right)v = (ma \ v = 4v)$$

As $m = 2 \text{ kg and } a = 2 \text{ ms}^{-2}$

138 **(b)**

Potential energy=Kinetic energy

Ie,
$$mgh = \frac{1}{2}mv^2$$

Or $v = \sqrt{2gh}$

If h_1 and h_2 are initial and final heights, then

$$v_1 = \sqrt{2gh_1}, \ v_2 = \sqrt{2gh_2}$$

Loss in velocity

$$\Delta v = v_1 - v_2 = \sqrt{2gh_1} - \sqrt{2gh_2}$$

 $\therefore \text{Fractional loss in velocity} = \frac{\Delta v}{v_1}$

$$= \frac{\sqrt{2gh_1} \, - \sqrt{2gh_2}}{\sqrt{2gh_1}}$$

$$\frac{\Delta v}{v_1} = 1 - \sqrt{\frac{h_2}{h_1}}$$
$$= 1 - \sqrt{\frac{1.8}{5}}$$

$$= 1 - \sqrt{0.36} = 1 - 0.6 = 0.4 = \frac{2}{5}$$

139 **(b)**

$$\Delta U = mgh = 0.2 \times 10 \times 200 = 400J$$

 \therefore Gain in K.E. = decrease in P.E. = 400 J

140 (c)

Potential energy of a body = 75% of 12 J

$$mgh = 9 J \Rightarrow h = \frac{9}{1 \times 10} = 0.9 m$$

Now when this mass allow to fall then it acquire velocity

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 0.9} = \sqrt{18} \, m/s$$

141 (c)

Loss of kinetic energy
$$= \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (v_1 - v_2)^2$$

$$= \frac{1}{2} \times \frac{M \times M}{M + M} (V_1 - V_2)^2$$

$$= \frac{M \cdot M}{2(2M)} (V_1 - V_2)^2$$

$$= \frac{M}{4} (V_1 - V_2)$$

142 **(a)**

This is the case of work done by a variable force

$$W = \int_{0}^{5} (3x^{2} - 2x + 7)dx$$

$$W = |x^{3} + x^{2} + 7x|_{0}^{5}$$
or $W = (5 \times 5 \times 5 - 5 \times 5 + 7 \times 5)$
or $W = (125 - 25 + 35) = 135$

143 **(a**

$$E = \frac{p^2}{2m}$$
. If $P = \text{constant then } E \propto \frac{1}{m}$

i. e., kinetic energy of heavier body will be less. As the mass of gun is more than bullet therefore it possess less kinetic energy

145 (d)

Let m be the mass of the block, h the height from which it is dropped, and x the compression of the spring. Since, energy is conserved, so

Final gravitational potential energy

= final spring potential energy

or
$$mg(h + x) = \frac{1}{2}kx^2$$

or $mg(h + x) + \frac{1}{2}kx^2 = 0$
or $kx^2 - 2mg(h + x) = 0$
 $kx^2 - 2mgx - 2mgh = 0$

This is a quadratic equation for x. Its solution is

$$x = \frac{mg \pm \sqrt{(mg)^2 + 2mghk}}{k}$$
Now, $mg = 2 \times 9.8 = 19.6 \text{ N}$
and $hk = 0.40 \times 1960 = 784 \text{ N}$
 $19.6 \pm \sqrt{(19.6)^2 + 2(19.6)(784)}$

$$\therefore \quad x = \frac{19.6 \pm \sqrt{(19.6)^2 + 2(19.6)(784)}}{1960}$$

= 0.10 m or -0.080 m

Since, x must be positive (a compression) we accept the positive solution and reject the negative solution. Hence, x = 0.10 m

146 **(b)**

If a body falls from height h, then from equation of motion we know that it will hit the ground with a velocity say $\mathbf{u} = \sqrt{2gh}$ which is also the velocity of approach here. Now, if after collision it gains a height h_1 then again by equation of motion v =

 $\sqrt{2gh}$, which is also the velocity of separation .so, by definition of e,

$$e = \sqrt{\frac{2gh_1}{2gh}} or \ h_1 = e^2 h$$

Given h=20 m, e=0.9

∴ height attained after first bounce

$$h_1 = (0.9)^2 \times 20$$

= $0.9 \times 0.9 \times 20$
= 16.2

147 (a)

Kinetic energy,
$$=\frac{1}{2} \times 950 \times \left(100 \times \frac{5}{18}\right)^2$$
 J $= 0.3665 \times 10^6$ J $= 0.367$ MJ

148 (c)

$$m_1v_1 - m_2v_2 = (m_1 + m_2)v$$

 $\Rightarrow 2 \times 3 - 1 \times 4 = (2+1)v$
 $\Rightarrow v = \frac{2}{3} m/s$

149 (c)

$$U = \frac{1}{2}K(x_2^2 - x_1^2) \Rightarrow U = \frac{1}{2}K(3^2 - 0) \Rightarrow U$$

= 4.5 K

150 (c)

$$E_1 = \frac{1}{2}mv^2$$

$$E_2 = \frac{1}{2}m(v+1)^2$$

$$\frac{(E_2 - E_1)}{E_1} = \frac{\frac{1}{2}m[(v+1)^2 - v^2]}{\frac{1}{2}mv^2} = \frac{44}{100}$$

On solving, we get $v = 5 \text{ms}^{-1}$

152 (d)

For first ball, $mgh_1 = \frac{1}{2}mu^2$

$$i.e., h_1 = \frac{u^2}{2g}$$

For second ball

$$mgh_2 = mg \frac{u^2 \cos^2 \theta}{2g} = \frac{1}{2}mu^2 \cos^2 \theta$$
$$= \frac{1}{2}mu^2 \cos^2 60^\circ$$
$$= \frac{1}{2}mu^2 \left(\frac{1}{2}\right)^2 = \frac{1}{2}mu^2 \left(\frac{1}{4}\right)$$

$$u\cos 60$$
 $u\cos 60$
 $u\sin 60$

$$\Rightarrow h_2 = \frac{u^2}{8g}$$

$$\therefore \frac{h_1}{h_2} = \frac{u^2}{2g} \times \frac{8g}{u^2} \Rightarrow \frac{h_1}{h_2} = \frac{4}{1}$$

153 (a

Let initial kinetic energy, $E_1 = E$ Final kinetic energy, $E_2 = E + 300\%$ of E = 4E

As
$$P \propto \sqrt{E} \Rightarrow \frac{P_2}{P_1} = \sqrt{\frac{E_2}{E_1}} = \sqrt{\frac{4E}{E}} = 2 \Rightarrow P_2 = 2P_1$$

 $\Rightarrow P_2 = P_1 + 100\% \text{ of } P_1$

i.e., Momentum will increase by 100%

154 (a)

Let ball is projected vertically downward with velocity v from height h

Total energy at point $A = \frac{1}{2}mv^2 + mgh$

During collision loss of energy is 50% and the ball rises up to same height. It means it possess only potential energy at same level

$$50\% \left(\frac{1}{2}mv^2 + mgh\right) = mgh$$

$$\frac{1}{2}\left(\frac{1}{2}mv^2 + mgh\right) = mgh$$

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20}$$

$$\therefore v = 20 \, m/s$$

155 (a)

Power = 7500, W = 7500 Js⁻¹, velocity $v = 20 \text{ ms}^{-1}$

$$P = Fv \text{ or } F = \frac{P}{v} = \frac{7500 \text{ Js}^{-1}}{20 \text{ ms}^{-1}} = 375 \text{ N}$$

156 (a)

If a body has momentum, it must have kinetic energy also, (a) is the wrong statement
If the energy is totally potential, it need not have momentum (b) is correct (c) and (d) are also correct

158 **(b)**

Potential energy at the required height $= \frac{490}{2} = 245 \text{ J}$

Again, $245=2 \times 10 \times h$ or $h = \frac{245}{20}$ m = 12.25 m

159 (c)

The energy gained by the particle

$$U = \frac{1}{2}k(x_2^2 - x_1^2)$$
$$= \frac{1}{2}k(3^2 - 0^2) = \frac{9}{2}k4.5k$$

160 **(b)**

Kinetic energy acquired by the body
= Force applied on it × distance covered by the body

$$K.E. = F \times d$$

If *F* and *d* both are same then K. E. acquired by the body will be same

161 **(b)**

In case of elastic collision , coefficient of restitution e=1

or

Relative speed of approach = relative speed of separation.

∴ Option (b)is correct.

162 (a)

$$v = \frac{dx}{dt} = 3 - 8t + 3t^2$$

 $\therefore v_0 = 3 \ m/\text{s} \text{and} \ v_4 = 19 \ m/\text{s}$

 $W=rac{1}{2}m(v_4^2-v_0^2)$ [According to work energy

theorem

$$= \frac{1}{2} \times 0.03 \times (19^2 - 3^2) = 5.28 J$$

163 (c)

When the ball is released from the top of tower then ratio of distances covered by the ball in first, second and third second

 $h_I: h_{II}: h_{III} = 1:3:5$: [Because $h_n \propto (2n-1)$] \therefore Ratio of work done $mgh_I: mgh_{II}: mgh_{III} = 1:3:5$

164 **(b)**

Work done $W = \int_{x_0}^{x_1} F \cdot dx$ = $\int_{x_0}^{x_1} kx \, dx$

$$= k \left[\frac{x^2}{2} \right]_0^{x_1} = \frac{1}{2} k x_1^2$$

165 (c)

$$v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2 + \frac{2m_1u_1}{m_1 + m_2} = \frac{2mu}{M + m} = \frac{2u}{1 + \frac{m}{M}}$$

$$W = mg \sin \theta \times s$$

= 2 \times 10³ \times \sin 15° \times 10
= 5.17 kJ

168 **(c)**

Work done on the wire to strain it will be stored as energy which is converted to heat. Therefore the temperature increases

169 (c)

Force = Rate of change of momentum Initial momentum $\vec{P}_1 = mv \sin\theta \ \hat{\imath} + mv \cos\theta \ \hat{\jmath}$ Final momentum $\vec{P}_2 = -mv \sin\theta \ \hat{\imath} + mv \cos\theta \ \hat{\jmath}$

$$\therefore \vec{F} = \frac{\Delta \vec{P}}{\Delta t} = \frac{-2mv \sin \theta}{2 \times 10^{-3}}$$

Substituting m=0.1~kg, v=5~m/s, $\theta=60^\circ$ Force on the ball $\vec{F}=-250\sqrt{3}N$

Negative sign indicates direction of the force

170 (c)

After impact the mass and block move together and come to rest after a distance of 40 *m* By conservation of momentum,

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

 $0.02 \times 250 + 0.23 \times 0 = 0.02v + 0.23v$
 $5 + 0 = v(0.25)$

$$\frac{500}{25} = v = 20ms^{-1}$$

Now, by conservation of energy,

$$\frac{1}{2}Mv^2 = \mu R. d$$

$$\frac{1}{2} \times 0.25 \times 400 = \mu \times 0.25 \times 9.8 \times 40 \Rightarrow \mu = 0.51$$

171 (c)

$$P = \frac{mgh}{t} = 10 \times 10^{3} \Rightarrow t = \frac{200 \times 40 \times 10}{10 \times 10^{3}}$$
$$= 8 \sec c$$

172 (c)

According to law of conservation of momentum Momentum of neutron = Momentum of combination

$$\Rightarrow 1.67 \times 10^{-27} \times 10^{8}$$

$$= (1.67 \times 10^{-27} + 3.34 \times 10^{-27})v$$

$$\therefore v = 3.33 \times 10^7 \ m/s$$

173 (c)

Kinetic energy = $\frac{1}{2}mv^2$

As both balls are falling through same height therefore the possess same velocity

But
$$KE \propto m$$
 [If $v = \text{constant}$]

$$\therefore \frac{(KE)_1}{(KE)_2} = \frac{m_1}{m_2} = \frac{2}{4} = \frac{1}{2}$$

174 **(b)**

Power,
$$p = \frac{\text{Total Energy}}{t} = \frac{\text{mgh} + \frac{1}{2}\text{mv}^2}{t}$$

$$\frac{10 \times 10 \times 20 + \frac{1}{2} + 10 \times 10 \times 10}{1}$$
=2000+500=2500 W=2.5 KW

175 **(b)**

From force diagram as shown in figure

$$mg - T = ma$$

$$T = mg - ma = mg - \frac{mg}{4} = \frac{3mg}{4}$$

 $\therefore W_T = \text{work done by tension}$

$$= \vec{\mathbf{T}} \cdot \vec{\mathbf{s}} = Ts \cos 180^{\circ} = -\frac{3mgd}{4}$$

176 (d)

From conservation of momentum.

Momentum before collision = Momentum after collision

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$
$$20 \times 6 + 30 \times 0 = 20v + 30v$$

$$\therefore 20 \times 6 = 50v$$

Or
$$v = \frac{120}{50} = 2.4 ms^{-1}$$

177 (a)

Given that, $S = \frac{1}{3}t^2$

$$v = \frac{dS}{dt} = \frac{2}{3}t$$
; $a = \frac{d^2S}{dt^2} = \frac{2}{3}$

$$F = ma = 3 \times \frac{2}{3} = 2N$$
; Work = $2 \times \frac{1}{3}t^2$

At *t*=2

Work =
$$2 \times \frac{1}{3} \times 2 \times 2 = \frac{8}{3}$$
 J

178 (a)

$$\frac{1}{2}kx^{2} = \frac{1}{2}mv^{2} + \frac{1}{2}mv^{2} = mv^{2}$$

$$x = \sqrt{\frac{2mv^{2}}{k}}$$

180 **(b)**

Work done=
$$\frac{mgh}{2}$$

$$\therefore 100 = \frac{10 \times 10 \times h}{2}$$

Or
$$h = 2.0m$$

181 (a)

$$Given, r_1 = 2\hat{\imath} - 3\hat{\jmath} - 4\hat{k}$$

And
$$r_2 = 3\hat{i} - 4\hat{j} + 5\hat{k}$$

Now,
$$r_2 - r_1 = \hat{i} - \hat{j} + 9\hat{k}$$

And
$$F = 4\hat{i} + \hat{j} + 6\hat{k}$$

$$\therefore$$
 work done = F.r

$$W = (4\hat{i} + \hat{j} + 6\hat{k}).(\hat{i} - \hat{j} + 9\hat{k})$$

$$= 4 - 1 + 54 = 57 J$$

182 (a)

Work done = area between the graph and position axis

$$W = 10 \times 1 + 20 \times 1 - 20 \times 1 + 10 \times 1 = 20 erg$$

183 (d)

All the central forces are conservative

184 (d)

Elastic force in string is conservative in nature $W = -\Delta V_1$ where W = work done by elastic force of string

$$W = -(V_f - V_i) = V_i - V_f$$
 or $W = \frac{1}{2}kx^2 - \frac{1}{2}kx^2$

$$\frac{1}{2}k(x+y)^2$$

or
$$W = \frac{1}{2}kx^2 - \frac{1}{2}k(x^2 + y^2 + 2xy)$$

$$= \frac{1}{2}kx^{2} - \frac{1}{2}kx^{2} - \frac{1}{2}ky^{2} - \frac{1}{2}k(2xy)$$
$$= -kxy - \frac{1}{2}ky^{2}$$

$$=\frac{1}{2}ky(-2x-y)$$

The work done against elastic force is

$$W_{\text{ext}} = -W = \frac{ky}{2}(2x + y)$$

Total distance travelled by the ball before its second hit is

$$H = h + 2h_1$$

= $h[1 + 2e^2]$ (: $h_1 = he^2$)

186 (a)

The ratio of masses=1:3

Therefore, $m_1 = xkg$, $m_2 = 3x kg$

Applying law of conservation of momentum

$$m_1v_1 + m_2v_2 = 0$$

 $\Rightarrow x \times v_1 + 3x \times 4 = 0$
Or $v_1 = -12ms^{-1}$

Therefore, velocity of lighter mass is opposite to that of heavier mass.

187 **(c)**

$$W = \frac{1}{2}k(x_2^2 - x_1^2)$$

$$= \frac{1}{2} \times 5 \times 10^3 (10^2 - 5^2) \times 10^{-4}$$

$$= 18.75 J$$

188 (d)

By the conservation of momentum $40 \times 10 + (40) \times (-7) = 80 \times v$ $\Rightarrow v = 1.5 \, m/s$

189 **(c)**

Here, $m = 0.25 \ kg$, $u_1 = 3ms^{-1}$, $u_2 = -1ms^{-1}$

It is an inelastic collision

According to conservation of momentum

$$mu_1 + mu_2 = (m+m)v$$

$$\Rightarrow v = \frac{mu_1 + mu_2}{2m} = \frac{u_1 + u_2}{2} = \frac{3-1}{2} = 1ms^{-1}$$

190 (a)

KE left,
$$\frac{1}{2}mv^2 = \frac{1}{2}(\frac{1}{2}mu^2)$$

: velocity left, $v = \frac{u}{\sqrt{2}} = \frac{10^4}{\sqrt{2}} = 7071.06 \text{ ms}^{-1}$

191 (c)

From the law of conservation of momentum $3 \times 16 + 6 \times v = 9 \times 0$

Or
$$v = -8 ms^{-1}$$

 $\Rightarrow v = 8ms^{-1}$ (numerically)

Therefore, its kinetic energy

$$k = \frac{1}{2} \times 6 \times (8)^2 = 192J$$

192 (d)

Change in momentum = $m\vec{v}_2 - m\vec{v}_1 = -mv$ mv = -2mv

193 **(b)**

Work done=area enclosed by F - xgraph =area of ABNM + area of CDEN - area of EFGH + area of HII

=1 × 10 + 1 × 5 - 1 × 5 +
$$\frac{1}{2}$$
 × 1 × 10
= 10 + 5 - 5 + 5 = 15 J

194 (d)

Using conservation of linear momentum, we have $mv_0 = mv + 2mv$

Or
$$v = \frac{v_0}{3}$$

Using conservation of energy, we have

$$\frac{1}{2}mv_0^2 = \frac{1}{2}kx_0^2 + \frac{1}{2}(3m)v^2$$

Where x_0 =compression in the spring,

$$\therefore mv_0^2 = kx_0^2 + (3m)\frac{v_0^2}{9}$$

Or
$$kx_0^2 = mv_0^2 - \frac{mv_0^2}{3}$$

Or
$$kx_0^2 = \frac{2mv_0^2}{3}$$

Or
$$kx_0^2 = \frac{2mv_0^2}{3}$$

 $\therefore k = \frac{2mv_0^2}{3x_0^2}$

195 **(b)**

Momentum of ball (mass m) before explosion at the highest point = $mv\hat{\imath} = mu \cos 60 \, ^{\circ}\hat{\imath}$

$$= m \times 200 \times \frac{1}{2} \hat{i} = 100 \, m\hat{i} \, kgms^{-1}$$

Let the velocity of third part after explosion is VAfter explosion momentum of system = $\vec{P}_1 + \vec{P}_2 + \vec{P}_3$ m m m

$$= \frac{m}{3} \times 100\hat{j} - \frac{m}{3} \times 100\hat{j} + \frac{m}{3} \times V\hat{i}$$

By comparing momentum of system before and after the explosion

$$\frac{m}{3} \times 100\hat{j} - \frac{m}{3} \times 100\hat{j} + \frac{m}{3}V\hat{i} = 100mi \Rightarrow V$$
$$= 300m/s$$

196 **(b)**

Gravitational field is a conservative force field. In a conservative force field work done is path independent.

$$\therefore W_1 = W_2 = W_3$$

197 (d)

$$R = u\sqrt{\frac{2h}{g}} \Rightarrow 20 = V_1\sqrt{\frac{2\times 5}{10}} \text{ and } 100 = V_2\sqrt{\frac{2\times 5}{10}}$$

 $\Rightarrow V_1 = 20 \text{ m/s}, V_2 = 100 \text{ m/s}$

Applying momentum conservation just before and just after the collision (0.01)(V) = (0.2)(20) + (0.01)(100)

$$V = 500 \, m/s$$

198 (d)

Here, $m_1 = 20 \text{ kg}$,

$$m_2 = 0.1 \, \text{kg}$$

 v_1 = velocity of recoil of gun,

 v_2 = velocity of bullet

As
$$m_1 v_1 = m_2 v_2$$

 m_2 0.1

$$v_1 = \frac{m_2}{m_1} v_2 = \frac{0.1}{20} v_2 = \frac{v_2}{200}$$

Recoil energy of gun= $\frac{1}{2}m_1v_1^2$

$$=\frac{1}{2}\times20\left(\frac{v_2}{200}\right)^2$$

$$804 = \frac{10v_2^2}{4 \times 10^4} = \frac{v_2^2}{4 \times 10^3}$$

$$v_2 = \sqrt{804 \times 4 \times 10^3} \,\mathrm{ms}^{-1}$$

199 (a)

$$U = -\int F dx = -\int kx \, dx = -k \frac{x^2}{2}$$

This is the equation of parabola symmetric to U axis in negative direction

200 (a)

$$dW = Fdl$$

$$W = \int_{0}^{l} F \, dl \quad Y = \frac{FL}{dl}$$

or
$$W = \int_0^l \frac{Y \, al}{L} \, dl$$
 or $F = \frac{Y \, al}{L}$

or
$$W = \frac{Ya}{L} \int_0^l dl$$
 or $W = \frac{Ya}{L} \left(\frac{l^2}{2}\right)$

or
$$W = \frac{1}{2} \frac{Y \, al}{L} l = \frac{1}{2} F l$$

201 (a)

In head on elastic collision velocity get interchanged (if masses of particle are equal) i.e. the last ball will move with the velocity of first ball $i.e. 0.4 \ m/s$

203 **(b)**

$$m_B \stackrel{V_B}{\longrightarrow} M$$

Initial K.E. of system = K.E. of the bullet = $\frac{1}{2}m_Bv_B^2$ By the law of conservation of linear momentum

$$m_B v_B + 0 = m_{\text{sys.}} \times v_{\text{sys.}}$$

$$\Rightarrow v_{\text{sys.}} = \frac{m_B v_B}{m_{\text{sys.}}} = \frac{50 \times 10}{50 + 950} = 0.5 \text{ m/s}$$

Fractional loss in K.E. =
$$\frac{\frac{1}{2}m_Bv_B^2 - \frac{1}{2}m_{\rm Sys.}v_{\rm Sys.}^2}{\frac{1}{2}m_Bv_B^2}$$

By substituting $m_B = 50 \times 10^{-3} kg$, $v_B = 10 m/s$ $m_{\text{sys.}} = 1kg$, $v_S = 0.5 m/s$ we get

Fractional loss =
$$\frac{95}{100}$$
 : Percentage loss = 95%

204 (d)

$$h_n = he^{2n} = 1 \times e^{2 \times 1} = 1 \times (0.6)^2 = 0.36 m$$

205 (c)

There is no displacement

207 (c)

Potential energy $U = \frac{1}{2}kx^2$

$$\therefore \frac{U_1}{U_2} = \left(\frac{x_1}{x_2}\right)^2$$

$$\operatorname{Or}\frac{U}{U_2} = \left(\frac{1}{4}\right)^2$$

$$Or U^2 = 16 U$$

208 **(c)**

As slope of problem graph is positive and constant upto certain distance and then it becomes zero

So from $F = \frac{-dU}{dx}$, up to distance a,

F =constant (negative) and becomes zero suddenly

209 **(b)**

Total mechanical energy= mgh

As,
$$\frac{\text{KE}}{\text{PE}} = \frac{2}{1}$$

$$\text{KE} = \frac{2}{3} \text{mgh}$$

and
$$PE = \frac{1}{3}mgh$$

Height from the ground at this instant,

$$h' = \frac{h}{3}$$
 and speed of particle at this instant,

$$v = \sqrt{2g(h - h')}$$

$$= \sqrt{2g\left(\frac{2h}{3}\right)}$$

$$=2\sqrt{\frac{gh}{3}}$$

210 **(b)**

The instantaneous power is the limiting value of the average power as the time interval Δt approaches zero.

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t}$$

$$\therefore W = \int P dt$$

Given $P = 3t^2 - 2t + 1$

$$\therefore W = \int_{2}^{4} (3t^2 - 2t + 1) \, dt$$

$$W = [t^3 - t^2 + t]_2^4 = 56 - 12 + 2$$

$$\Rightarrow W = 46 I$$

211 **(c)**

Power,

$$p = m \times a \times v$$

$$p = m \times \frac{v^2}{t}$$

If p is constant, then for a given body $v^2 \propto \sqrt{t}$ Or $v \propto \sqrt{t}$

212 (a)

By the particle of conservation of linear momentum,

$$Mv = mv_1 + mv_2 \Rightarrow Mv = 0 + (M - m)v_2 \Rightarrow v_2$$

= $\frac{Mv}{M - m}$

213 (d)

Initial momentum = $\vec{P} = mv\hat{\imath} + mv\hat{\jmath}$

$$|\vec{P}| = \sqrt{2}mv$$

Final momentum = $2m \times V$

By the law of conservation of momentum

$$2m \times V = \sqrt{2} \ mv \Rightarrow V = \frac{v}{\sqrt{2}}$$

In the problem $v = 10 \ m/s$ [Given] $\therefore V = \frac{10}{\sqrt{2}} = 5\sqrt{2} \ m/s$

214 (c)

Work done on the ball by the table surface is the work done by the frictional force. Since a ball moves on a frictionless inclined table (or smooth

surface), therefore frictional force is zero. Hence the work done on the ball by the table surface is zero

215 (a)

In a perfectly elastic collision the relative velocity remains unchanged in magnitude but reserved in direction. Therefore, velocity of heavy body after collision is v.

216 **(b)**

Tension in the string

$$T = M(g - a) = M\left(g - \frac{g}{2}\right) = \frac{Mg}{2}$$

 $W = Force \times displacement$

$$=-\frac{Mgh}{2}$$

217 (d)

Condition for vertical looping

$$h = \frac{5}{2}r = 5cm : r = 2 cm$$

218 (a)

As particle is projected with some velocity therefore its initial kinetic energy will not be zero As it moves downward under gravity then its velocity increases with time K. E. $\propto v^2 \propto t^2$ [As $v \propto t$]

So the graph between kinetic energy and time will be parabolic in nature

219 (c)

$$P = \sqrt{2mE} : P \propto \sqrt{m} \text{ (if } E = \text{const)} : \frac{P_1}{P_2} = \sqrt{\frac{m_1}{m_2}}$$

220 **(b)**

$$v = 36 \, km/h = 10 \, m/s$$

By law of conservation of momentum

$$2 \times 10 = (2+3)V \Rightarrow V = 4 m/s$$

Loss on K.E. =
$$\frac{1}{2} \times 2 \times (10)^2 - \frac{1}{2} \times 5 \times (4)^2 = 60 J$$

221 (a)

Initial momentum of particle $= mV_0$

Final momentum of system (particle +pendulum)

=2mv

By the law of conservation of momentum

$$\Rightarrow mV_0 = 2mv \Rightarrow$$
 Initial velocity of system $v = \frac{V_0}{2}$

 \therefore Initial K.E. of the system = $\frac{1}{2}(2m)v^2$ =

$$\frac{1}{2}(2m)\left(\frac{V_0}{2}\right)^2$$

If the system rises up to height h then P.E. = 2mgh

By the law of conservation of energy

$$\frac{1}{2}(2m)\left(\frac{V_0}{2}\right)^2 = 2mgh \Rightarrow h = \frac{V_0^2}{8g}$$

222 (c)

From work energy theorem, Δ KE = $W_{\rm net}$

$$K_f - K_i = \int P \, dt$$

$$\frac{1}{2}mv^2 - 0 = \int_0^2 \left(\frac{3}{2}t^2\right)dt \text{ or } \frac{1}{2}(2)v^2 = \frac{3}{2}\left[\frac{t^3}{3}\right]_0^2 = 4$$

$$v = 2 \text{ ms}^{-1}$$

223 **(c)**

$$E = \frac{1}{2}mv^2$$
. Differentiating w. r. t. x, we get

$$\frac{dE}{dx} = \frac{1}{2}m \times 2v \frac{dv}{dx} = mv \times \frac{dv}{dt} \times \frac{dt}{dx} = mv \times \frac{a}{v}$$

$$= ma$$

224 **(b)**

Initial velocity of particle, $v_i = 20 \text{ ms}^{-1}$

Final velocity of the particle, $v_f=0$

According to work-energy theorem,

$$W_{\text{net}} = \Delta KE = K_f - K_i$$

$$= \frac{1}{2}m(v_f^2 - v_i^2)$$
$$= \frac{1}{2} \times 2(0^2 - 20^2)$$

$$= -400 \text{ J}$$

225 (a)

Motor makes 600 revolution per minute

$$\therefore n = 600 \frac{\text{revolution}}{\text{minute}} = 10 \frac{\text{rev}}{\text{sec}}$$

 \therefore Time required for one revolution $=\frac{1}{10}$ sec

Energy required for one revolution = power ×time

$$=\frac{1}{4} \times 746 \times \frac{1}{10} = \frac{746}{40} J$$

But work done = 40% of input

$$=40\% \times \frac{746}{40} = \frac{40}{100} \times \frac{746}{40} = 7.46 J$$

226 (a)

 $Power of gun = \frac{\tiny Total \ K.E. of \ fired \ bullet}{\tiny time}$

$$= \frac{n \times \frac{1}{2} m v^2}{t} = \frac{360}{60} \times \frac{1}{2} \times 2 \times 10^{-2} \times (100)^2$$

227 (c)

$$p = \sqrt{2ME} : \frac{p_1}{p_2} = \sqrt{\frac{m_1}{m_2} \frac{E_1}{E_2}} = \sqrt{\frac{2}{1} \times \frac{8}{1}} = \frac{4}{1}$$

228 (d)

Velocity at *B* when dropped from *A* where AC = S $v^2 = 0 + 2g(S - x)$

Or
$$v^2 = 2g(S - x)$$
 ...(i)

Potential energy at B = mgx ...(ii)

$$S-x$$

$$X$$

$$B$$

$$KE=3PE$$

$$C$$

: Kinetic energy = $3 \times \text{potential energy}$

$$\therefore \frac{1}{2} m \times 2g(S - x) = 3 \times mgx$$

$$\Rightarrow S - x = 3x \text{ or } S = 4x \text{ or } x = S/4$$

From (i),

$$v^{2} = 2g(S - x) = 2g\left(S - \frac{S}{4}\right) = \frac{2g \times 3S}{4} = \frac{3gS}{2}$$

$$\Rightarrow v = \sqrt{\frac{3gS}{2}} : x = \frac{S}{4} \text{ and } v = \sqrt{\frac{3gS}{2}}$$

229 **(c)**

Kinetic energy = $\frac{1}{2}mv^2$

∴ K. E.
$$\propto v^2$$

If velocity is doubled then kinetic energy will become four times

230 (c)

When the block moves vertically downward with acceleration $\frac{g}{4}$ then tension in the cord

$$T = M\left(g - \frac{g}{4}\right) = \frac{3}{4}Mg$$

Work done by the cord $\vec{F} \cdot \vec{S} = FS \cos \theta$

 $= Td \cos 180^{\circ}$

$$= \left(-\frac{3}{4} Mg\right) \times d = -3Mg\frac{d}{4}$$

231 **(b)**

Power delivered to body

$$P=F\cdot v$$

$$=mav$$

$$=ma(0+gt)$$
 (: $u=o$)

= magt

Or
$$P \propto t$$

232 **(b)**

Power delivered to the body

$$P = F \cdot v = mav$$

Since, body undergoes one dimensional motion and is initially at rest, so

$$v = 0 + at$$

$$\therefore P = ma^2 t \text{ or } P \propto t$$

234 (d)

Work done in raising water = mgh

$$\therefore W = (\text{volume} \times \text{density}) gh = (9 \times 1000) \times$$

$$10 \times 10$$

$$\Rightarrow W = 9 \times 10^5 \, J$$

∴ Useful power =
$$\frac{\text{work}}{\text{time}} = \frac{9 \times 10^5}{5 \times 60} = 3kW$$

$$\therefore$$
 Efficiency = $\frac{3}{10}$ = 30%

When block of mass M collides with the spring its kinetic energy gets converted into elastic potential energy of the spring From the law of conservation of energy

$$\frac{1}{2}Mv^2 = \frac{1}{2}KL^2 : v = \sqrt{\frac{K}{M}}L$$

Where v is the velocity of block by which it collides with spring. So, its maximum momentum

$$P = Mv = M\sqrt{\frac{K}{M}}L = \sqrt{MK}L$$

After collision the block will rebound with same linear momentum

236 **(d)**

In an inelastic collision, the particles do not regain their shape and size completely after collision. Some fraction of mechanical energy is retained by the colliding particles in the form of deformation potential energy .Thus the kinetic energy of particles no longer remains conserved .However, in the absence of external forces, law of conservation of linear momentum still holds good.

237 (a)

Let mass A moves with velocity v and collides inelastically with mass B, which is at rest

According to problem mass A moves in a perpendicular direction and let the mass B moves at angle θ with the horizontal with velocity v Initial horizontal momentum of system (before collision) = mv(i) Final horizontal momentum of system (after collision) = $mV\cos\theta$ (ii) From the conservation of horizontal linear momentum

$$mv = mV \cos \theta \Rightarrow v = V \cos \theta$$
 ...(iii)
Initial vertical momentum of system (before collision) is zero

Final vertical momentum of system $\frac{mv}{\sqrt{3}} - mV \sin \theta$

From the conservation of vertical linear momentum

$$\frac{mv}{\sqrt{3}} - mV \sin \theta = 0 \Rightarrow \frac{v}{\sqrt{3}} = V \sin \theta$$
 ...(iv)

By solving (iii) and (iv)

$$v^2 + \frac{v^2}{3} = V^2(\sin^2\theta + \cos^2\theta)$$

$$\Rightarrow \frac{4v^2}{3} = V^2 \Rightarrow V = \frac{2}{\sqrt{3}}v$$

238 **(d)**

$$s = \frac{u^2}{2\mu g} = \frac{10 \times 10}{2 \times 0.5 \times 10} = 10m$$

239 **(c)**

$$E = \frac{1}{2}mg^2t^2$$

$$\frac{E_1}{E_2} = \frac{\frac{1}{2}mg^2 \times 3^2}{\frac{1}{2}mg^2(6^2 - 3^2)} = \frac{9}{9 \times 3} = \frac{1}{3}$$

241 **(c**)

P.E. of bob at point A = mgl

This amount of energy will be converted into kinetic energy

 \therefore K.E. of bob at point B = mgl

And as the collision between bob and block (of same mass) is elastic so after collision bob will come to rest and total Kinetic energy will be transferred to block. So kinetic energy of block = mgl

242 **(b)**

Momentum of third part will be equal to the resultant of momenta of two part

$$P_3^2 = P_1^2 + P_2^2$$
Or $p_3 = \sqrt{P_1^2 + P_2^2}$
Or $3mv_3 = \sqrt{(m \times 30)^2 + (m \times 30)^2}$
Or $v_3 = \frac{30\sqrt{2}}{2} 10\sqrt{2}ms^{-1}$

243 (a)

Initial KE of the system is zero, as both bullet and solid block are at rest .Final KE of the system increases.

Hence, in this process only momentum is conserved.

244 **(d)**

$$P = \frac{mgh}{t}$$

 $\frac{M}{t}$ = mass of water fall per second

$$= \frac{P}{gh} = \frac{1 \times 10^6}{10 \times 10} = 10^4 \text{kg s}^{-1}$$

245 (d)

$$W = \int_0^2 F \, ds = \int_0^2 Ma \, ds = \int_0^2 M \frac{d^2s}{dt^2} ds$$

$$= \int_0^2 M \frac{d^2s}{dt^2} \cdot \frac{ds}{dt} dt$$

$$= \int_0^2 3 \left(\frac{2}{3}\right) \cdot \left(\frac{2}{3}t\right) dt$$

$$= \frac{4}{3} \left[\frac{t^2}{2}\right]_0^2$$

$$W = \frac{4}{3} \times \frac{4}{2} = \frac{8}{3} = 2.6 \, \text{J}$$

246 **(b)**

Let v_M is velocity of man, v_B of boy, then kinetic energy according to question,

$$ieK = \frac{1}{2}Mv_M^2 = \frac{1}{2}.\frac{M}{2}.v_B^2$$

Or $v_M^2 = \frac{v_B^2}{2}$

Or
$$\sqrt{2}v_M = v_B$$

When man speeds up $2 ms^{-1}$ and boy changes his speed by xms^{-1} . Then,

$$\frac{1}{2}M(v_M + 2)^2 = \frac{1}{2} \cdot \frac{M}{2} \cdot (v_B + x)^2$$

$$Or (v_M + 2)^2 = \frac{(v_B + x)^2}{2}$$

$$2(v_M + 2)^2 = (\sqrt{2}v_M + x)^2 (\because v_B = \sqrt{2}v_m)$$

$$Or \sqrt{2}(v_M + 2) = \sqrt{2}v_M + x$$

$$Or + 2\sqrt{2} = x$$

247 (a)

In an inelastic collision, only momentum is conserved whereas in elastic collision both momentum and kinetic energy are conserved

248 **(b)**

Kinetic energy $K = \frac{1}{2}mr^2\omega^2$

The ratio of new kinetic energy to the original KE is given

$$\frac{K_2}{K_1} = \left(\frac{r_2}{r_1}\right)^2$$

249 (c)

In the given condition tension in the string

And acceleration of each block

$$a = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)g = \left(\frac{0.72 - 0.36}{0.72 + 0.36}\right)g = \frac{10}{3} \ m/s^2$$

Let 'S' is the distance covered by block of mass $0.36 \ kg$ in first sec

$$S = ut + \frac{1}{2} at^2 \Rightarrow S = 0 + \frac{1}{2} \left(\frac{10}{3}\right) \times 1^2$$
$$= \frac{10}{6} meter$$

∴ Work done by the string $W = TS = 4.8 \times \frac{10}{6}$ ⇒ W = 8 Joule

250 **(c)**

Initial momentum of 3m mass = 0 ...(i) Due to explosion this mass splits into three fragments of equal masses

Final momentum of system = $m\vec{V} + mv\hat{\imath} + mv\hat{\jmath}$...(ii)

By the law of conservation of linear momentum $m\vec{V} + mv\hat{\imath} + mv\hat{\jmath} = 0 \Rightarrow \vec{V} = -v(\hat{\imath} + \hat{\jmath})$

251 (a)

Percentage of energy loss $= \frac{mg(2-1.5)}{mgh} \times 100$ $= \frac{mg(0.5)}{mg \times 2} \times 100$

=25%

252 (d)

Both fragments will possess the equal linear momentum

$$m_1 v_1 = m_2 v_2 \Rightarrow 1 \times 80 = 2 \times v_2 \Rightarrow v_2 = 40 \text{ m/s}$$

 \therefore Total energy of system $= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2$
 $= \frac{1}{2} \times 1 \times (80)^2 + \frac{1}{2} \times 2 \times (40)^2 = 4800 \text{ J}$
 $= 4.8 \text{ kJ}$

$$F = \frac{3}{10}mg$$

$$W = -F s \text{ or } W = -\frac{3}{10}mgs$$
or $W = -\frac{3}{10} \times 200 \times 10 \text{ J} = -600 \text{ J}$

254 (d)

Question is somewhat based on approximations. Let mass of athlete is 65 kg.

Approx velocity is 10 ms⁻¹

So, KE =
$$\frac{65 \times 100}{2}$$
 = 3750 *J*

So, option(d) is most probable answer.

255 **(b)**

$$dW = -\mu \left[\frac{M}{L}\right] gl \ dl$$

$$W = \int_{0}^{\frac{2L}{3}} -\frac{\mu Mg}{L} l \ dl$$
or
$$W = -\frac{\mu Mg}{L} \left|\frac{l^{2}}{2}\right|_{0}^{\frac{2L}{3}}$$
or
$$W = -\frac{\mu Mg}{L} \left|\frac{4L^{2}}{9} - 0\right|$$
or
$$W = -\frac{2}{9} \mu MgL$$

256 **(b)**

Work done = Area enclosed by F - x graph = $\frac{1}{2} \times (3 + 6) \times 3 = 13.5 J$

257 **(c)**

Initial momentum of the system = mv - mv = 0As body sticks together ::final momentum = 2mVBy conservation of momentum 2mV = 0 : V = 0

258 **(b)**

$$K = \frac{\text{mass}}{\text{length}} = \frac{dm}{dt}$$

$$KE = \frac{1}{2}mv^2 \Rightarrow \frac{d}{dt}(KE) = \frac{1}{2}\left(\frac{dm}{dt}\right)v^2$$

$$= \frac{1}{2}\left(\frac{dm}{dx} \times \frac{dx}{dt}\right)v^2$$

$$= \frac{1}{2}kvv^2 = \frac{1}{2}kv^3$$

259 **(b)**

$$K = \frac{1}{2}mv^{2}$$

$$v^{2} = \frac{98 \times 2}{2} = 98$$

$$h = \frac{v^{2}}{2g} = \frac{98}{2 \times 9.8} = 5$$

$$K_{1} = \frac{1}{2}mv^{2} = \frac{1}{2}m \times 2gh$$

$$\therefore \frac{K_{2}}{K_{1}} = \frac{h_{2}}{h_{1}}$$
Given $K_{2} = \frac{K_{1}}{2}$

$$\therefore = \frac{K_1}{2K_1} = \frac{h_2}{5}$$

 $h_2 = 2.5 \text{ m}$

260 **(c)**

Between two collisions direction of velocity of ball get reserved at the highest point

261 **(a)**

Both part will have numerically equal momentum and lighter part will have more velocity

262 **(c)**

Stopping distance = $\frac{\text{kinetic energy}}{\text{retarding force}} \Rightarrow s = \frac{1}{2} \frac{mu^2}{F}$

If lorry and car both possess same kinetic energy and retarding force is also equal then both come to rest in the same distance

263 **(b)**

Force $F = (2\hat{l} + 15\hat{j} + 6\hat{k})N$ Displacement $s = 10\hat{j}m$ $W = F \cdot s = (2\hat{l} + 15\hat{j} + 6\hat{k}) \cdot (10\hat{j}) = 150J$

264 (a)

From Newton's second law,

$$F = \frac{dp}{dt}$$
If F=0,then $\frac{dp}{dt} = 0$

$$\Rightarrow p = constant$$

Thus, if total external force acting on the system is zero, then linear momentum of the system remains conserved.

265 (a)

$$\vec{\mathbf{F}} \cdot d\vec{\mathbf{F}} = (x\hat{\mathbf{i}} + y\hat{\mathbf{j}}) \cdot (dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}})$$
$$= xdx + ydy$$

266 (a)

$$W = F \times s = F \times v \times t = 5 \times 2 \times 60 = 600 J$$

267 **(b)**

Total initial momentum=Total final momentum

ie
$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

 $\therefore M \times v + m \times 0 = Mv_1 + mv_2$
or $Mv = Mv_1 + Mv_2$
Or $M(v - v_1) = mv_2$ (i)

Again kinetic energy is also conserved.

$$\begin{split} &\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 \\ &\therefore \quad Mv^2 + m \times 0 = Mv_1^2 + mv_2^2 \\ &\text{or} \quad Mv^2 = Mv_1^2 + mv_2^2 \\ &\text{Or} \quad M(v^2 - v_1^2) = mv_2^2 \quad \dots \dots (ii) \\ &\text{Dividing Eq.(ii)by Eq.(i), we get} \end{split}$$

$$\frac{M(v^2 - v_1^2)}{M(v - v_1)} = \frac{mv_2^2}{mv_2}$$

Or
$$v + v_1 = v_2$$

As
$$M >> m$$
, so $v_1 = v$

268 **(b)**

Work done W = area under F - S graph= area of trapezium ABCD + area of trapezium CEFD

$$= \frac{1}{2} \times (10 + 15) \times 10 + \frac{1}{2} \times (10 + 20) \times 5$$
$$= 125 + 75 = 200 J$$

269 (a)

Both statements *A* and *B* given in the system are true.

270 **(c)**

Power of a pump = $\frac{1}{2} \rho A v^3$

To get twice amount of water from same pipe \boldsymbol{v} has to be made twice. So power is to be made 8 times

271 (a)

As truck is moving on an incline plane therefore only component of weight $(mg \sin \theta)$ will oppose the upward motion

Power = force × velocity = $mg \sin \theta \times v$ = $30000 \times 10 \times \left(\frac{1}{100}\right) \times \frac{30 \times 5}{18} = 25 \text{ kW}$

272 (d)

$$s = 10\text{m}, F = 5 \text{ N}, W = 25 \text{ J}, \theta = ?$$

 $\cos \theta = \frac{W}{Fs} = \frac{25}{5 \times 10} = \frac{1}{2} \quad \therefore \theta = 60^{\circ}$

273 (a)

The weight of bucket when it has been pulled up a distance x is (5-0.2x).

Hence, the required work is

$$W = \int_{x=20}^{x=0} -(5 - 0.2x) \times 10 \times dx$$
$$= [50x]_{x=0}^{x=20} - \left[2\frac{x^2}{2}\right]_{x=0}^{x=20}$$
$$W = 50 \times 20 - (20)^2 = 600$$

274 **(b)**

Work done W = Area ABCEFDA= Area ABCD + Area CEFD

$$= \frac{1}{2} \times (15 + 10) \times 10 + \frac{1}{2} \times (10 + 20) \times 5$$
$$= 125 + 75 = 200I$$

275 (a)

If *x* is the extension produced in spring

$$F = kx \Rightarrow x = \frac{F}{k} = \frac{mg}{k} = \frac{20 \times 9.8}{4000} = 4.9 \text{ cm}$$

276 **(b)**

Mass per unit length= $\frac{M}{L}$

$$= \frac{4}{2} = 2 \text{kgm}^{-1}$$

The mass of 0.6 m of chain

$$= 0.6 \times 2 = 1.2$$
kg

∴Center of mass of hanging part

$$h = \frac{0.6 + 0}{2} = 0.3$$
m

Hence, work done in pulling the chain on the table =work done against gravity force

$$W = mgh = 1.2 \times 10 \times 0.3 = 3.6 \text{ J}$$

277 (a)

$$P = E \Rightarrow mv = \frac{1}{2} mv^2 \Rightarrow v = 2 m/s$$

278 (c)

From work-energy theorem

$$\Delta KE = W_{\text{net}}$$
or $K_f - K_i = \int Pd$
or $\frac{1}{2}mv^2 = \int_0^2 \left(\frac{3}{2}t^2\right)dt$

$$v^2 = \left[\frac{t^3}{2}\right]_0^2$$

$$v = 2 \text{ ms}^{-1}$$

279 **(b)**

Potential energy stored in the spring is given by

$$U = \frac{1}{2}kx^2$$

$$\therefore \frac{U_1}{U_2} = \left(\frac{x_1}{x_2}\right)^2$$

Or
$$\frac{100}{U_2} = \frac{(2)^2}{(4)^2}$$

Or
$$U_2 = 400J$$

Potential energy increases by 400-100=300J

280 **(b)**

Given
$$m = 5g = 0.005kg$$
, $h = 19.5m$, $x = 50cm = 0.5m$, $v = 10ms^{-1}$, $g = 10ms^{-2}$

The change in mechanical energy

$$\Delta U = mg(h+x) + \frac{1}{2}mv^2$$

$$= 0.005 \times 10(19.5 + 0.5) + \frac{1}{2} \times 0.005 \times (10)^2$$

$$= 0.005 \times 10 \times 20 + \frac{1}{2} \times 0.005 \times 100$$

$$= 1 + 0.25 = 1.25j$$

281 (c)

$$U = \frac{F^2}{2k} \Rightarrow \frac{U_1}{U_2} = \frac{k_2}{k_1} \text{ [If force are same]}$$
$$\therefore \frac{U_1}{U_2} = \frac{3000}{1500} = \frac{2}{1}$$

282 (c)

Given, velocity of river, (v)=2m/sDensity of water $p=1.2 \ gcc^{-1}$

Mass of each cubic metre

$$m = \frac{1.2 \times 10^{-3}}{(10^{-2})^3} = 1.2 \times 10^3 \text{kg}$$

 \therefore kinetic energy= $\frac{1}{2}mv^2$

$$= \frac{1}{2} \times 1.2 \times 10^{3} \times (2)^{2}$$
$$= 2.4 \times 10^{3} \text{ J} = 2.4 \text{ KJ}$$

283 **(b)**

Fractional decrease in kinetic energy of neutron

$$= -\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 \text{ [As } m_1 = 1 \text{ and } m_2 = 2\text{]}$$
$$= 1 - \left(\frac{1 - 2}{1 + 2}\right)^2 = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}$$

Velocity of combined mass, $v = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2}$

$$=\frac{0.1\times1-0.4\times0.1}{0.5}=0.12\ m/s$$

: Distance travelled by combined mass $= v \times t = 0.12 \times 10 = 1.2 m$

285 **(b)**

$$p = \sqrt{2mE_k}$$

 E_k is increased by a factor of 4, p becomes double. So, percentage increase in momentum is 100%

286 (c)

Area of acceleration-displacement curve gives change in KE per unit mass

$$\frac{1}{2}m(v^2 - u^2) = F.S = \frac{mdv}{dt} \times S$$

$$\therefore \frac{\text{change in } KE}{\text{Mass}} = \frac{dv}{dt} \times s$$

287 (a)

$$m_1 = 1$$
 $m_2 = A$

$$\left(\frac{\Delta k}{k}\right)_{\text{retained}} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 = \left(\frac{1 - A}{1 + A}\right)^2$$

288 **(b)**

$$m_1 = 2 \ kg \text{ and } v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 = \frac{u_1}{4} \text{ [Given]}$$

By solving we get $m_2 = 1.2 \, kg$

289 (a)

The potential energy of a particle is given by

$$V(x) = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)$$

For minimum value of $V_{,\frac{dV}{dx}} = 0$

$$\therefore \frac{4x^3}{4} - \frac{2x}{2} = 0 \implies x = 0, x = \pm 1$$

So,
$$V_{MIN}(x = \pm 1) = \frac{1}{4} - \frac{1}{2} = \frac{-1}{4}J$$

 $\therefore K_{MAX} + V_{MIN} = \text{Total mechanical energy}$

$$K_{MAX} = \left(\frac{1}{4}\right) + 2 \Longrightarrow K_{MAX} = \frac{9}{4}$$

$$0r\frac{mv^2}{2} = \frac{9}{4} \Rightarrow v = \frac{3}{\sqrt{2}}ms^{-1}$$

290 (c)

Letm = mass of boy, M = Mass of manv = velocity of boy, V = velocity of man

$$\frac{1}{2}MV^2 = \frac{1}{2} \left[\frac{1}{2} m v^2 \right] \dots (i)$$

$$\frac{1}{2}M(V+1)^2 = 1\left[\frac{1}{2}mv^2\right] ...(ii)$$

Putting $m = \frac{M}{2}$ and solving $V = \frac{1}{\sqrt{2}-1}$

291 (a)

$$\vec{\mathbf{F}} = \frac{\partial U}{\partial x}\hat{\mathbf{i}} - \frac{\partial U}{\partial y}\hat{\mathbf{j}} = 7\hat{\mathbf{i}} - 24\hat{\mathbf{j}}$$

$$|\vec{\mathbf{F}}| = \sqrt{(7)^2 + (-24)^2} = 25 \text{ unit}$$

292 (a)

Shell is fired with velocity v at an angle θ with the horizontal

So its velocity at the highest point

= horizontal component of velocity = $v \cos \theta$

So momentum of shell before explosion = $mv\cos\theta$

When it breaks into two equal pieces one piece retraces its path to the canon, then other part

moves with velocity V

So momentum of two pieces after explosion $= \frac{m}{2}(-v\cos\theta) + \frac{m}{2}V$

By the law of conservation of momentum $mv\cos\theta = \frac{-m}{2}v\cos\theta + \frac{m}{2}V \Rightarrow V = 3v\cos\theta$

293 (d)

In perfectly elastic lead on collision of equal masses velocities gets interchanged

294 **(b)**

$$V = I^3 = 1m^3$$

 $m = 1 \times 1000 = 1000 \text{kg}$
 $W = mah = 1000 \times 10 \times 10^{-3}$

$$W = mgh = 1000 \times 10 \times \frac{1}{2} = 5000 \text{ J}$$

295 (c)

Force F = (5 + 3x)N

Work done $W = \int_{x_1}^{x_2} F \cdot dx = \int_{2}^{6} (5 + 3x) dx$

$$= \left[5x + \frac{3x^2}{2}\right]_2^6 = 68 \text{ J}$$

296 (c)

Vertical height = $h = l \cos 30^{\circ}$ Loss of potential energy = mgh

 $= mgl\cos 30^{\circ} = \frac{\sqrt{3}}{2}mgl$

 $\therefore \text{ Kinetic energy gained} = \frac{\sqrt{3}}{2} mgl$

297 (d)

The potential energy of a stretched spring is $U = \frac{1}{2}kx^2$

Here, k=spring constant, x=elongation in spring. But given that, the elongation is 2 cm.

So
$$U = \frac{1}{2}K(2)^2$$

Or $U = \frac{1}{2}k \times 4$...(i)

If elongation is 10 cm then potential energy

$$U' = \frac{1}{2}k(10)^2$$

Or $U' = \frac{1}{2}k \times 100$...(ii)

On dividing Eq. (ii) by Eq. (i), We have

$$\frac{U'}{U} = \frac{\frac{1}{2}k \times 100}{\frac{1}{2}k \times 4}$$

$$\operatorname{Or} \frac{U'}{U} = 25 \quad \Rightarrow U' = 25U$$

298 (a)

Power =
$$\frac{\text{workdone}}{\text{time}} = \frac{\text{pressure} \times \text{cnahge in volume}}{\text{time}}$$

= $\frac{20000 \times 1 \times 10^{-6}}{1} = 2 \times 10^{-2} = 0.02 \text{ W}$

299 **(a**)

Kinetic energy,
$$k = \frac{1}{2}mv^2$$

$$= \frac{1}{2} \times \frac{m(mv^2)}{m}$$

$$= \frac{(mv^2)}{2m} or k = \frac{p^2}{2m}$$

$$= \frac{k_1}{k_2} = \frac{p_1^2}{2m_1} \times \frac{2m_2}{p_2^2} \frac{3}{1}$$

$$= \frac{p_1^2}{p_2^2} \times \frac{6}{2}$$

$$p_1: p_2 = 1: 1$$

300 **(a)**

$$v' = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v$$

$$\left(\frac{1.008665 - 4.002603}{1.008665 + 4.002603}\right) \approx -\frac{3}{5}v$$

301 (d)

Given F = 2x, Work done $W = \int F dx$

$$\therefore W = \int_{x_1}^{x_2} 2x \, dx = 2 \left[\frac{x^2}{2} \right]_{x_1}^{x_2}$$
$$= (x_2^2 - x_1^2)$$

$$a = \frac{\text{Net pulling force}}{\text{Total mass}}$$

$$= \frac{0.72g - 0.36g}{0.72 + 0.36} = \frac{g}{3}$$
$$s = \frac{1}{2}at^2 = \frac{1}{2}\left(\frac{g}{3}\right)(1)^2 = \frac{g}{6}$$

T-0.36
$$g = 0.36a = 0.36\frac{g}{3}$$

$$\therefore T = 0.48g$$
Now, $w_T = TS \cos 0^{\circ} (on \ 0.36 \ kg \ mass)$

$$= (0.48 \ g) \left(\frac{g}{6}\right) (1) = 0.08(g^2)$$

$$= 0.08(10)^2 = 8J$$

303 (c)
$$P = Fv = m. \frac{dv}{dt} \cdot v$$

$$\int v \, dv = \int \frac{p}{mdt}; \frac{v^2}{2} = \frac{pt}{m}$$

$$v = \sqrt{\frac{2p}{m}} t^{1/2}; \frac{dx}{dt} = \sqrt{\frac{2p}{m}} t^{1/2}$$

$$\int dx = \sqrt{\frac{2p}{m}} \int t^{1/2} dt;$$

$$x = \sqrt{\frac{2p}{3}} \frac{t^{3/2}}{3/2} = \frac{2}{3} \sqrt{\frac{2p}{3}} t^{3/2}$$

$$x \propto t^{3/2}$$

305 **(a)**

$$P = \left(\frac{m}{t}\right)gh = 100 \times 10 \times 100 = 10^5W$$

$$= 100 \, kW$$

307 **(b)** Here $t = \sqrt{x} + 3$ or $x = (t-3)^2 = t^2 - 6t + 9$ $v = \frac{dx}{dt} = 2t - 6$

At t = 0 s, $v = 2 \times 0 - 6 = -6$

At t = 6 s, $v = 2 \times 6 - 6 = +6$

Initial and final KE are same hence no work is

$$W = \frac{1}{2}m(v_1^2 - v_2^2) = 0$$

308 (c)

Let speed of the bullet = vSpeed of the system after the collision = V

By conservation of momentum mv = (m + M)V $\Rightarrow V = \frac{mv}{M+m}$

So the initial K.E. acquired by the system $= \frac{1}{2}(M+m)V^2 = \frac{1}{2}(m+M)\left(\frac{mv}{M+m}\right)^2$

$$= \frac{1}{2}(M+m)V^2 = \frac{1}{2}(m+M)\left(\frac{mv}{M+m}\right)^2$$
$$= \frac{1}{2}\frac{m^2v^2}{(m+M)}$$

This kinetic energy goes against friction work done by friction = $\mu R \times x = \mu(m + M)g \times x$ By the law of conservation of energy

$$\frac{1}{2} \frac{m^2 v^2}{(m+M)} = \mu(m+M)g \times x \Rightarrow v^2$$
$$= 2\mu gx \left(\frac{m+M}{m}\right)^2$$
$$\therefore v = \sqrt{2\mu gx} \left(\frac{m+m}{m}\right)$$

309 (a) Given, m = 100 kg, h = 10m, t = 5s, $g = 10ms^{-2}$ and $\eta = 60\%$ $Power = \frac{work/time}{n} = \frac{100}{60} \times \frac{mgh}{t}$ $=\frac{100}{60} \times \frac{100 \times 10 \times 10}{5}$ $= 3.3 \times 10^{3} \text{W}$ = 3.3kW

310 **(c)**

$$P = \frac{mgh}{t} \Rightarrow \frac{P_1}{P_2} = \frac{m_1}{m_2} \times \frac{t_2}{t_1} \text{ [As } h = \text{constant]}$$

$$\therefore \frac{P_1}{P_2} = \frac{60}{50} \times \frac{11}{12} = \frac{11}{10}$$

311 (c) Loss in K.E. = $\frac{m_1 m_2}{2(m_1 + m_2)} (u_1 - u_2)^2$ $= \frac{4 \times 6}{2 \times 10} \times (12 - 0)^2 = 172.8 J$

312 (a)

As surface is smooth so work done against friction is zero. Also the displacement and force of gravity are perpendicular so work done against gravity is zero

313 (c) Let initially particle *x* is moving in anticlockwise direction and y in clockwise direction As the ratio of velocities of x and y particles are $\frac{v_x}{v_y} = \frac{1}{2}$, therefore ratio of their distance covered will be in the ratio of 2:1. It means they collide at point B

After first collision at B, velocities of particles get interchanged, i.e., x will move with 2v and particle y with v

Second collision will take place at point C. Again at this point velocities get interchanged and third collision take place at point A

So, after two collision these two particles will again reach the point A

314 (c)

The work done in stretching a sprig by a length x,

$$W_1 = \frac{1}{2}kx^2 \qquad ...(i)$$

The work done in stretching the spring by a further length x.

$$W_2 = \frac{1}{2}k(2x)^2 - \frac{1}{2}kx^2$$

Or
$$W_2 = \frac{1}{2}k \times 4x^2 - \frac{1}{2}kx^2$$

Or
$$W_2 = 3 \times \frac{1}{2} kx^2$$
 ...(ii)

From Esq. (i) and (ii)we have

$$W_2 = 3W_1$$

315 **(b)**

From conservation of energy,

Potential energy at height h = kinetic energy at ground

Therefore, at height h, potential energy of ball A PE = $m_A gh$

KE at ground = $\frac{1}{2}m_A v_A^2$

So,
$$m_A gh = \frac{1}{2} m_A v_A^2$$

$$v_A = \sqrt{2gh}$$

Similarly, $v_B = \sqrt{2gh}$

Therefore, $v_A = v_B$

316 (a)

$$P = \frac{mv^2}{2t} = \frac{80 \times 10 \times 10}{2 \times 4} = 1000W$$

317 (a)

$$E = \frac{P^2}{2m}$$
 if $P = \text{constant then } E \propto \frac{1}{m}$

318 **(b)**

Momentum and kinetic energy is conserved only in this case

319 **(b)**

If target is at rest then final velocity of bodies are

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1$$
 ...(i) and $v_2 = \frac{2m_1 u_1}{m_1 + m_2}$...(ii)

From (i) and (ii)
$$\frac{v_1}{v_2} = \frac{m_1 - m_2}{2m_1} = \frac{2}{5} \Rightarrow \frac{m_1}{m_2} = 5$$

320 (c)

By the conservation of momentum in the absence of external force total momentum of the system (ball + earth) remains constant

321 (a)

For first condition

Initial velocity = u, final velocity = u/2, s = 3 cm

From
$$v^2 = u^2 - 2as \Rightarrow \left(\frac{u}{2}\right)^2 = u^2 - 2as \Rightarrow a =$$

$$\frac{3u^2}{8s}$$

Second condition

Initial velocity = u/2, Final velocity = 0

From
$$v^2 = u^2 - 2ax \Rightarrow 0 = \frac{u^2}{4} - 2ax$$

$$\therefore x = \frac{u^2}{4 \times 2a} = \frac{u^2 \times 8s}{4 \times 2 \times 3u^2} = s/3 = 1cm$$

322 **(a)**

Work done $W = \int_0^x F \, dx$

$$= \int_0^x Cx \ dx = C \left(\frac{x^2}{2}\right)_0^x$$

$$=\frac{1}{2}Cx^2$$

323 (d)

The tension in the string at any position is

$$T = \frac{mv^2}{r} + mg\cos\theta$$

For critical position

$$\theta = 180^{\circ}$$

$$v = v_c$$

$$T=0$$

Hence $v_c \sqrt{rg}$

 $mg \sin \theta$ $mg \cos \theta$

324 **(c)**

Let mass of boy be m. Therefore, mass of man = 2 m, as

KE of man =
$$\frac{1}{2}$$
 KE of boy

$$\therefore \frac{1}{2}(2m)u^2 = \frac{1}{2} \times \frac{1}{2}mu'^2$$

$$u^2 = \frac{u'^2}{4}$$
, $u = \frac{u'}{2}$

When man speeds up to 1 ms⁻¹,

KE of man = KE of boy

$$\frac{1}{2}(2m)(u+1)^2 = \frac{1}{2}mu'^2 = \frac{1}{2}m(2u)^2$$
$$(u+1)^2 = 2u^2$$

$$u + 1 = \sqrt{2}u$$

$$u = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)}$$

$$u = (\sqrt{2} + 1) \text{ms}^{-1}$$

$$u' = 2u = 2(\sqrt{2} + 1) \text{ms}^{-1}$$

325 (c)

Velocity exchange takes place when the masses of bodies are equal

326 **(c)**

Let the thickness of one plank be s

If bullet enters with velocity u then it leaves with velocity

$$v = \left(u - \frac{u}{20}\right) = \frac{19}{20}u$$

From $v^2 = u^2 - 2as$

$$\Rightarrow \left(\frac{19}{20}u\right)^2 = u^2 - 2as \Rightarrow \frac{400}{39} = \frac{u^2}{2as}$$

Now if the n planks are arranged just to stop the bullet then again from

$$v^2 = u^2 - 2as$$

$$0 = u^2 - 2ans$$

$$\Rightarrow n = \frac{u^2}{2as} = \frac{400}{39}$$

$$\Rightarrow n = 10.25$$

As the planks are more than 10 so we can consider n = 11

327 (c)

Apply conservation of linear momentum.

$$0 = 4u - 234v$$

$$\Rightarrow v = \frac{4u}{234}$$

The residual nucleus will recoil with a velocity of $\frac{4u}{234}$ unit.

Recoil speed of residual nucleus is $\frac{4u}{234}$

328 **(a)**

When the distance between atoms is large then interatomic force is very weak. When they come closer, force of attraction increases and at a particular distance force becomes zero. When they are further brought closer force becomes repulsive in nature

This can be explained by slope of U - x curve shown in graph(a)

329 (a)

Initial energy of body = $\frac{1}{2}mv^2 = \frac{1}{2} \times 1 \times (20)^2 = 200 I$

A part of this energy consumes in doing work against gravitational force and remaining part consumes in doing work against air friction

i.e.,
$$W_T = W_{grav.} + W_{air\ friction}$$

 $\Rightarrow 200 = 1 \times 10 \times 18 + W_{air} \Rightarrow W_{air} = 20 J$

330 (a)

Let v be the velocity with which the bullet will emerge

Now, change in kinetic energy = work done For first case, $\frac{1}{2}m(100)^2 - \frac{1}{2}m \times 0 = F$

For second case, $\frac{1}{2}m(100)^2 - \frac{1}{2}mv^2 = F \times 0.5$

Dividing eq. (ii) by Eq. (i), we get

$$\frac{(100)^2 - (v)^2}{(100)^2} = \frac{0.5}{1} = \frac{1}{2} \text{ or } v = \frac{100}{\sqrt{2}}$$
$$= 50\sqrt{2} \text{ms}^{-1}$$

331 **(b)**

$$W = Fs = F \times \frac{1}{2}at^{2} \left[\text{from } s = ut + \frac{1}{2}at^{2} \right]$$

$$\Rightarrow W = F \left[\frac{1}{2} \left(\frac{F}{m} \right) t^{2} \right] = \frac{F^{2}t^{2}}{2m} = \frac{25 \times (1)^{2}}{2 \times 15} = \frac{25}{30}$$

$$= \frac{5}{6}J$$

332 **(b)**

$$v_1 = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \text{ ms}^{-1}$$

 $v_2 = 6 \text{ ms}^{-1}$

Work done = Increase in kinetic energy

$$= \frac{1}{2} \times 2[6^2 - 5^2]J$$
$$= (36 - 25)J = 11 J$$

333 (d)

From law of conservation of linear momentum
Total final momentum =Total initial momentum

$$m_1 v_1 + m_2 v_2 = 0$$

Here,
$$m_1 = m_2$$

So,
$$v_1 = -v_2$$

So, both parts will move with same speed in opposite directions.

334 **(b)**

Here
$$a_c = \frac{v^2}{r} = k^2 rt$$
 : $v = krt$

$$v = krt$$

The integral acceleration is $a_t = \frac{dv}{dt} = \frac{d(krt)}{dt} = kr$ The work done by centripetal force will be zero So power is delivered to the particle by only tangential force which acts in the same direction of instantaneous velocity

$$\therefore \text{ Power } = F_y v = ma_t krt = m(kr)(krt)$$
$$= mk^2 r^2 t$$

335 (d)

We can realize the situation as shown .Let at point C distance x from highest point A, the particle's kinetic energy is three times its potential energy. *Velocity at C*,

$$v^2 = 0 + 2gx$$

$$Or \quad v^2 = 2gx \quad(i)$$

Potential energy at $C_i = mg(S - x) \dots (ii)$

At Point C,

Kinetic energy= $3 \times potential \ energy$

ie,
$$\frac{1}{2}m \times 2gx = 3 \times mg(S - x)$$

or
$$x = 3S - 3x$$

or
$$4x = 3S$$

or
$$S = \frac{4}{3}x$$

or
$$x = \frac{3}{4}S$$

Therefore, from Eq.(i)

$$v^2 = 2g \times \frac{3}{4}S$$

Or
$$v^2 = \frac{3}{2}gS$$
 or $v = \sqrt{\frac{3}{2}gS}$

Height of the particle from the ground

$$= S - x = S - \frac{3}{4}S = \frac{s}{4}$$

336 **(b)**

$$W_1 = \frac{1}{2}k \times x_1^2$$

$$= \frac{1}{2} \times 5 \times 10^3 \times (5 \times 10^{-2})^2 = 6.25J$$

$$W_2 = \frac{1}{2}k(x_1 + x_2)^2$$

$$= \frac{1}{2} \times 5 \times 10^3 (5 \times 10^{-2} + 5 \times 10^{-2})^2 = 25 J$$
Net work done = $W_2 - W_1 = 25 - 6.25$

$$= 18.75J = 18.75N - m$$

337 **(b)**

According to the graph the acceleration a varies linearly with the coordinate x. We may write $a = \alpha x$, where α is the slope of the graph.

From the graph

$$\alpha = \frac{20}{8} m g_0 = 2.5 \text{ s}^{-2}$$

The force on the brick is in the positive *x*-direction and according to Newton's second law, its magnitude is given by

$$F = \frac{a}{m} = \frac{\alpha}{m}x$$

If x_f is the final coordinate, the work done by the force is

$$W = \int_{0}^{x_f} F \, dx = \frac{a}{m} \int_{0}^{x_f} x \, dx$$
$$= \frac{\alpha}{2m} x_f^2 = \frac{2.5}{2 \times 10} \times (8)^2$$
$$= 81$$

338 (c)

Average velocity = $\frac{100}{10} = 10 \, m/s$ K. E. = $\frac{1}{2}m \times v^2 = \frac{1}{2}m \times (10)^2$ If $m = 40 \, kg$, then $K.E. = 2000 \, J$. If m = 100 kg, then $K.E. = 5000 \, J$ So range will be 2000J - 5000J

339 **(d)**

Initial K.E. of the body = $\frac{1}{2}mv^2 = \frac{1}{2} \times 25 \times 4 = 50$ *J*

Work done against resistive force = Area between F-xgraph = $\frac{1}{2} \times 4 \times 20 = 40J$

Final K.E. = Initial K.E. - work done against resistive force

$$=50-40=10J$$

$$P = \vec{F} \cdot \vec{v} = Fv \cos \theta$$

Just before hitting θ is zero and both F, v are maximum

341 (a)

Since bodies exchange their velocities , hence their masses are equal so that $\frac{m_A}{m_B}=1$

342 (d)

As $m_1 = m_2$ therefore after elastic collision velocities of masses get interchanged i.e. velocity of mass $m_1 = -5 m/s$ and velocity of mass $m_2 = +3 m/s$

$$P = \frac{dW}{dt} = P\frac{dv}{dt}$$

$$P = h d g = 10 \times 13.6 \times 980$$

$$= 1.3328 \times 10^5 \text{ dyne/cm}^2$$

 $\frac{dv}{dt}$ = Pulse frequency × blood discharged per pulse

$$\frac{dv}{dt} = \frac{72}{60} \times 75 = 90 \text{ cc/sec}$$

 \therefore Power of heart = 1.3328 \times 10⁵ \times 90 erg/sec = 1.19 W

344 **(b)**

Efficiency, $\eta = \frac{\text{output power}}{\text{consuming power}} \times 100\%$

Here, $P_{\text{output}} = 10 \text{kW}$

$$P_{input} = 2 \times 10^3 \text{ calg}^{-1} \times \text{gs}^{-1}$$

$$= 2 \times 10^3 \text{ cals}^{-1}$$

$$= 2 \times 10^3 \times 4.2 \text{ Js}^{-1}$$

8.4kW

As, $P_{output} > P_{input}$, hence it is never possible.

346 (d)

$$S = \frac{t^3}{3} : dS = t^2 dt \Rightarrow a = \frac{d^2 S}{dt^2} = \frac{d^2}{dt^2} \left[\frac{t^3}{3} \right]$$
$$= 2t \, m/s^2$$

Now work done by the force $W = \int_0^2 F \cdot dS =$

$$\int_0^2 ma. dS$$

$$\int_0^2 3 \times 2t \times t^2 dt = \int_0^2 6t^3 dt = \frac{3}{2} [t^4]_0^2 = 24 J$$

347 (d)

$$P = \vec{F} \cdot \vec{v} = ma \times at = ma^2 t \text{ [as } u = 0]$$

= $m \left(\frac{v_1}{t_1}\right)^2 t = \frac{mv_1^2 t}{t_1^2} \text{ [As } a = v_1/t_1\text{]}$

348 **(c)**

Work done by horizontal force

$$W = F \times S = F \times l \sin \theta$$
(i)

Increment in potential energy of mass M is

$$U = Mgh = Mg(l - l\cos\theta) = Mgl(1 - \cos\theta)$$

From equation (i) and (ii)

$$Fl\sin\theta = Mgl(1-\cos\theta)$$

$$\Rightarrow Fl\frac{1}{\sqrt{2}} = Mgl\left(1 - \frac{1}{\sqrt{2}}\right) [As \theta = 45^{\circ}]$$

$$\therefore F = Mg(\sqrt{2} - 1)$$

349 (a)

Power of motor initially = p_0

Let, rate of flow of motor = (x)

Since, power,
$$p_0 = \frac{work}{time} = \frac{mgy}{t} = mg\left(\frac{y}{t}\right)$$

 $\frac{y}{t} = x = \text{rate of flow of water}$

$$= mgx$$
(i)

If rate of flow of water is increased by n times, i.e., (nx)

Increased power, $p_1 = \frac{mgy'}{t} = mg\left(\frac{y'}{t}\right)$,

= nmgx(ii)

The ratio of power

$$\frac{p_1}{p_0} = \frac{n \, mgx}{mgx} = \frac{n}{1} \Rightarrow p_1 \colon p_0 \Rightarrow n \colon 1$$

350 **(b)**

The height (h) traversed by particle while going up is

$$h = \frac{u^2}{2g} = \frac{25}{2 \times 9.8}$$

work done by gravity force=mg.h

$$=0.1\times g\times \frac{25}{2\times 9.8}\cos 180^\circ$$

[angle between force and displacement is 180°]

$$W = -0.1 \times \frac{25}{2} = -1.25 \text{ J}$$

351 **(c)**

$$w = \frac{F^2}{2k}$$

If both springs are stretched by same force then $w \propto \frac{1}{k}$.

As $k_1 > k_2$ therefore, $w_1 < w_2$

I.e., more work is done in case of second spring.

353 **(c)**

$$m_1v_1 - m_2v_2 = (m_1 + m_2)v$$

 $\therefore 2 \times 3 - 1 \times 4 = (2 + 1)v$

Or
$$v = \frac{2}{3}ms^{-1}$$

$$E = \frac{p^2}{2m} \text{ or } E \propto p^2$$
or $\frac{E_1}{E_2} = \left(\frac{p_1}{p_2}\right)^2 = \left(\frac{p_1}{2p_2}\right)^2 = \frac{1}{2} \text{ or } E_2 = 4E_1$

355 (c)

$$\vec{F} = 3x^2\hat{\imath} + 4\hat{\jmath}, \vec{r} = x\hat{\imath} + y\hat{\jmath}$$

$$\therefore d\vec{r} = dx\hat{\imath} + dy\hat{\jmath}$$

Work done,
$$W = \int \vec{F} \cdot d\vec{r} = \int_{(2,3)}^{(3,0)} (3x^2 \hat{\imath} + \vec{r}) d\vec{r}$$

$$4\hat{j}). (dx\hat{i} + dy\hat{j})$$

$$= \int_{(2,3)}^{(3,0)} (3x^2 dx + 4dy) = [x^3 + 4y]_{(2,3)}^{(3,0)}$$

$$= 3^3 + 4 \times 0 - (2^3 + 4 \times 3)$$

$$= 27 + 0 - (8 + 12) = 27 - 20 = +7I$$

According to work energy theorem

Change in the kinetic energy = Work done, W =+7J

356 (c)

$$v = \sqrt{(8)^2 + (6)^2} = 10 \text{ms}^{-1}$$

$$KE = \frac{1}{2} m v^2$$

$$= \frac{1}{2} \times 0.4 \times 10 \times 10 = 20 \text{ J}$$

357 **(b)**

Let *x* be the maximum extension of the spring, figure. From conservation of mechanical energy; decreases in gravitational potential energy = increase in elastic potential energy

$$Mg x = \frac{1}{2}k x^2$$
$$x = \frac{2 Mg}{k}$$

359 (c)

Potential energy $U = \frac{1}{2}kx^2$

$$\therefore U \propto x^2 [\text{If } k = \text{constant}]$$

If elongation made 4 times then potential energy will become 16 times

360 (a)

When the length of spring is halved, its spring constant will becomes double

Because
$$k \propto \frac{1}{x} \propto \frac{1}{L} : k \propto \frac{1}{L}$$

Slope of force displacement graph gives the spring constant (k) of spring

If k becomes double then slope of the graph increases i.e. graph shifts towards force-axis

362 (a)

Since, linear momentum is conserved

Before collision After collision

$$mv_0 = Mv_{\text{CM}}$$
 (i)

Angular momentum is also conserved

$$mv_0 \frac{L}{2} = \frac{ML^2}{12} \omega \qquad \dots (ii)$$

Where $\frac{ML^2}{12}$ is the moment of inertia of the rod

about the axis of rotation

Since, collision is completely elastic, kinetic energy is also conserved .Thus,

$$\frac{1}{2}mv_0^2 = \frac{1}{2}M_{v_{CM}} + \frac{1}{2}\left(\frac{ML^2}{12}\right)^2\omega^2$$

From Eqs. (i)and (ii),We get

$$v_{CM} = \frac{1}{6}\omega L$$

Putting this value in Eq. (iii), we get

$$\frac{1}{2}mv_0^2 = \frac{1}{2}M\left(\frac{1}{36}\omega^2L^2\right) + \frac{1}{2}M\left(\frac{1}{12}\omega^2L^2\right)$$

$$\frac{1}{18}M\omega^2L^2$$
OR $\frac{m}{M} = \frac{\omega^2L^2}{9V_0^2}$

363 (a)

Kinetic energy is the energy possessed by a body due to its velocity(v)given by

$$K = \frac{1}{2}mv^2 \qquad \dots (i)$$
Momentum(P)= $m \times v$

 $Momentum(P) = m \times v \dots (ii)$

Given,
$$K = p$$

$$\therefore \frac{1}{2}mv^2 = mv \text{ or } v = 2ms^{-1}$$

364 (a)

Max. K.E. of the system = Max. P.E. of the system

$$\frac{1}{2}kx^2 = \frac{1}{2} \times (16) \times (5 \times 10^{-2})^2 = 2 \times 10^{-2}J$$

365 (c)

Initial height of CG= $\frac{a}{2}$

Final height of CG = $\frac{b}{2}$ Work done = $mg\left[\frac{b}{2} - \frac{a}{2}\right] = mg\left(\frac{b-a}{2}\right)$

366 (a)

Kinetic energy of the block is

$$K = \frac{1}{2}mv^2$$

This kinetic energy is equal to the work done by the block before coming to rest. The work done in compressing the spring through a distance *x* from its normal length is

$$W = \frac{1}{2}kx^{2}$$

$$\therefore \frac{1}{2}mv^{2} = \frac{1}{2}kx^{2}$$

$$\Rightarrow x = v\sqrt{\frac{m}{k}}$$
Given $x = 4m/s, m = 1$

Given,v = 4m/s, m = 16kg, k = 100 N/m

$$\therefore x = 4 \times \sqrt{\frac{16}{100} = 1.6 \, m}$$

367 **(b)**

In elastic collision

$$v_1 = \Big(\frac{m_1 - m_2}{m_1 + m_2}\Big)u_1 + \Big(\frac{2m_2}{m_1 + m_2}\Big)u_2$$

If the second ball is at rest $ieu_2 = 0$, then

$$v_{1} = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right) u_{1}$$

$$\frac{2}{3} u_{1} = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right) u_{1} \left[\because v_{1} = \frac{2}{3} u_{1}\right]$$

$$Or \ 2m_{1} + 2m_{2} = 3m_{1} - 3m_{2}$$

$$Or \ m_{1} = 5m_{2}$$

$$Or \ \frac{m_{1}}{m_{2}} = \frac{5}{1}$$

369 (d)

Work done in raising water=mgh $or W = (volume \times density)gh$ $= (9 \times 1000) \times 10 \times 10$ Or $W = 9 \times 10^5 \text{J}$

$$\therefore \text{ Useful power} = \frac{\text{work}}{\text{t}} = \frac{9 \times 10^5}{5 \times 60} = 3 \text{kW}$$

Hence, efficiency= $\frac{\text{useful power}}{\text{consuming power}}$

$$=\frac{3}{10}=30\%$$

370 (d)

Let a nucleus of mass M splits into two nuclear 376 (d) parts having masses \mathcal{M}_1 and \mathcal{M}_2 and radii \mathcal{R}_1 and R_2 and densities ρ_1 and ρ_2

$$\therefore M_1 = \rho_1 \frac{4}{3} \pi R_1^3 \text{ and } M_2 = \rho_2 \frac{4}{3} \pi R_2^3$$

Given: $\rho_1 = \rho_2$

$$\therefore \frac{M_1}{M_2} = \left(\frac{R_1}{R_2}\right)^3$$

law conservation According to linear momentum,

$$M \times 0 = M_1 v_1 + M_2 v_2 \text{or} \frac{M_1}{M_2} = -\frac{v_2}{v_1}$$

-ve sign show that both the parts are move in opposite direction in order to conserve the linear momentum

$$\therefore \frac{v_1}{v_2} = \frac{M_2}{M_1} \text{ or } \frac{v_1}{v_2} = \left(\frac{R_2}{R_1}\right)^3$$

$$\frac{v_1}{v_2} = \left(\frac{2}{1}\right)^3 = \frac{8}{1} \left[\text{Given } \frac{R_1}{R_2} = \frac{1}{2}\right]$$

Volume= $av = \pi r^2 v$

Mass = $\pi r^2 v \times 1000$ SI units

Power of water jet

$$= \frac{\frac{1}{2}mv^2}{t} = \frac{1}{2} \times \pi r^2 v \times 1000 \times v^2 = 500\pi r^2 v^3$$

372 (a)

Impulse = change in momentum = 2 mv $= 2 \times 0.06 \times 4 = 0.48 \ kg \ m/s$

373 **(a)**

 $m = 0.3 \times 10^8 \text{ kg}, F = 0.5 \times 10^5 \text{ N}, s = 3m, v = ?$ Work done= $F \times s$

This work becomes the kinetic energy of the ship

$$\frac{1}{2}mv^2 = F \times s$$
or $v^2 = \frac{2Fs}{m} = \frac{2 \times 0.5 \times 10^5 \times 3}{0.3 \times 10^8} \text{ or } v = 0.1 \text{ms}^{-1}$

374 (a)

$$P = \frac{\vec{F}.\vec{s}}{t} = \frac{(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}).(3\hat{\imath} + 4\hat{\jmath} + 5\hat{k})}{4} = \frac{38}{4}$$
$$= 9.5 W$$

375 (a)

Given $F = -5x - 16x^3 = -(5 + 16x^2)x = -kx$ where $k = 5 + 16x^2$ is force constant of spring ,Therefore, work done in stretching the spring from position x_1 to position x_2 is

$$w = \frac{1}{2}k_2x_2^2 - \frac{1}{2}k_1x_1^2$$

We have, $x_1 = 0.1 \text{ m and } x_2 = 0.2 \text{ m}$.

$$\therefore W = \frac{1}{2} [5 + 16(0.2)^{2}](0.2)^{2}$$
$$-\frac{1}{2} [5 + 16(0.1)^{2}](0.1)^{2}$$
$$= 2.82 \times 4 \times 10^{-2} - 2.58 \times 10^{-2} = 8.7 \times 10^{-2}]$$

$$F = -\frac{\partial U}{\partial x}\hat{\mathbf{i}} - \frac{\partial U}{\partial y}\hat{\mathbf{j}} = 7\hat{\mathbf{i}} - 24\hat{\mathbf{j}}$$

$$\therefore \quad a_x = \frac{F_x}{m} = \frac{7}{5} = 1.4 \text{ ms}^{-2} \text{ along positive } x\text{-axis}$$

$$a_y = \frac{F_y}{m} = -\frac{24}{5}$$

$$= 4.8 \text{ms}^{-2}$$
 along negativey-axis

$$\therefore v_x = a_x t = 1.4 \times 2$$

$$= 2.8 \text{ ms}^{-2}$$

and
$$v_v = 4.8 \times 2 = 9.6 \text{ ms}^{-1}$$

$$\therefore v = \sqrt{v_x^2 + v_y^2} = 10 \text{ ms}^{-1}$$

$$P = \frac{mgh}{t}$$
 or $\frac{m}{t} = \frac{P}{gh}$

or
$$\frac{m}{t} = \frac{1000}{10 \times 10} \text{kg} = 10 \text{ kg}$$

A s first collision one particle having speed 2v will

 $240^{\circ} \left(or \frac{4\pi}{3}\right)$ while other particle having speed v will rotate

 $120^{\circ} \left(or \frac{2\pi}{3}\right)$. At first collision they will exchange their velocities. Now as shown in figure, after two collisions they will again reach at point A.

379 (c)

By definition

380 (a)

Here, Force,
$$\vec{F} = (4\hat{\imath} + \hat{J} - 2\hat{k})N$$

Velocity,
$$\vec{v} = (2\hat{\imath} + 2\hat{\jmath} + 3\hat{k})ms^{-1}$$

Power,
$$P = \vec{F} \cdot \vec{v} = (4\hat{\imath} + \hat{\jmath} - 2\hat{k}) \cdot (2\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$$

= $(8 + 2 - 6) W = 4W$

Work done = area under curve and displacement

$$= 1 \times 10 - 1 \times 10 + 1 \times 10 = 10 J$$

382 (d)

Loss in K.E. = (initial K.E. - Final K.E.) of system

$$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 - \frac{1}{2}(m_1 + m_2)V^2$$

$$= \frac{1}{2}3 \times (32)^2 + \frac{1}{2} \times 4 \times (5)^2 - \frac{1}{2} \times (3+4)$$

$$\times (5)^2$$

= 1498.5 I

383 (d)

Work done=force× displacement

Hence, displacement-force curve gives work done, 393 **(b)**

By conservation of energy, $mgh = \frac{1}{2}mv^2$

$$\Rightarrow v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 1} = \sqrt{19.6} = 4.43 \text{ m/s}$$

385 **(b)**

Work done = $mgh = 10 \times 9.8 \times 1 = 98 J$

Gravitational potential energy of ball gets converted into elastic potential energy of the spring $mg(h+d) = \frac{1}{2}Kd^2$

Net work done = $mg(h + d) - \frac{1}{2}Kd^2 = 0$

$$F = \frac{dp}{dt} = m\frac{dv}{dt} = \frac{m \times 2v}{1/50} = \frac{2 \times 2 \times 100}{1/50}$$

$$P = \frac{W}{t} = \frac{mgh}{t} = \frac{200 \times 10 \times 50}{10} = 10 \times 10^{3} W$$

389 (a)

Initial momentum = mv

Final momentum = 2mV

By the conservation of momentum, mv = 2mV

$$\Rightarrow V = \frac{v}{2}$$

K.E. of the system after the collision = $\frac{1}{2}(2m)\left(\frac{v}{2}\right)^2$

∴loss in K.E. =
$$\frac{1}{2} mv^2 - \frac{1}{4} mv^2 = \frac{1}{4} mv^2$$

This loss in K.E. will increase the temperature

$$\therefore 2m \times s \times \Delta t = \frac{1}{4}mv^2 \Rightarrow \Delta t = \frac{v^2}{8s}$$

390 (a)

$$W = \int_{A}^{B} F_{x} dx \Rightarrow W = \int_{x=4}^{k=-2} (-6x^{3}) dx$$
$$= -6 \left[\frac{x^{4}}{4} \right]_{x=4}^{x=-2} = \left(\frac{-3}{2} \right) (-240) = 360 J$$

391 (a)

Work done by the net force = change in kinetic energy of the particle

392 (c)

The displacement of body is

$$\overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{r}}_{B} - \overrightarrow{\mathbf{r}}_{A}$$

$$= (3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) - (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$$

$$= \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$$

$$\therefore W = \overrightarrow{\mathbf{f}} \cdot \overrightarrow{\mathbf{AB}} = (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}}) \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

$$= 2 - 4 = -2 \mathbf{J}$$

Loss of KE = force \times distance = (ma)x

As
$$a \propto x$$

∴ Loss of KE $\propto x^2$

394 (b)

$$P = constant$$

$$\Rightarrow Fv = P \ [\because P = \text{force} \times \text{velocity}]$$

$$\Rightarrow Ma \times v = P \ [\because F = Ma]$$

$$\Rightarrow va = \frac{P}{M}$$

$$\Rightarrow v \times \frac{vdv}{ds} = \frac{P}{M} \left[\because a = \frac{vdv}{ds} \right]$$

$$\Rightarrow \int_{0}^{v} v^{2} dv = \int_{0}^{s} \frac{P}{M} ds$$

[Assuming at t = 0 it starts from rest, ie, from s =

$$\Rightarrow \frac{v^3}{3} = \frac{P}{M}s$$

$$\Rightarrow v = \left(\frac{3P}{M}\right)^{1/3} \times s^{1/3}$$

$$\Rightarrow \frac{ds}{dt} = ks^{1/3} \left[k = \left(\frac{3P}{M} \right)^{1/3} \right]$$

$$\Rightarrow \int_{0}^{s} \frac{ds}{s^{1/3}} = \int_{0}^{t} kdt$$

$$\Rightarrow \frac{s^{2/3}}{2/3} = kt$$

$$\therefore s = \left(\frac{2}{3}k\right)^{3/2} \times t^{3/2}$$

$$\Rightarrow s \propto t^{3/2}$$

395 **(b)**

Given ,m=2kg,v=3 ms^{-1} , $K = 144Nm^{-1}$ Let spring is compressed by a length x.

$$ie\frac{1}{2}mv^2 = \frac{1}{2}kx^2$$

$$\therefore \frac{1}{2} \times 2 \times (3)^2 = \frac{1}{2} \times 144 \times x^2$$

Or
$$9 = 72x^2$$

Or
$$x = \sqrt{\frac{9}{72}} = \frac{1}{2\sqrt{2}}m$$

Hence, length of compressed spring

$$=2-\frac{1}{2\sqrt{2}}$$

$$4\sqrt{2}-1$$

$$=\frac{4\sqrt{2}-1}{2\sqrt{2}}=1.5$$
m

Momentum of earth-ball system remains conserved

397 **(b)**

$$P = \frac{\text{total energy}}{t} = \frac{mgh + \frac{1}{2}mv^2}{t}$$
$$= \frac{10 \times 10 \times 20 + \frac{1}{2} \times 10 \times 10 \times 10}{1}$$
$$= 2000 + 500 = 2500 \text{ W}$$

= 2.5 kW

398 (a)

$$p = \frac{mgh}{t} = \frac{200 \times 10 \times 200}{10} = 40 \ kW$$

399 (d)

Total mass = (50 + 20) = 70 kg

Total height = $20 \times 0.25 = 5m$

 \therefore Work done = $mgh = 70 \times 9.8 \times 5 = 3430 J$

400 (a)

Let d_s be the distance travelled by the vehicle before it stops

Here, final velocity v = 0, initial velocity = uUsing equation of motion $v^2 = u^2 + 2aS$

$$\therefore 0^2 = u^2 + 2ad_s$$

Or Stopping distance, $d_s = -\frac{u^2}{2a}$

401 (a)

 $P = \sqrt{2mE} : P \propto \sqrt{E}i.e.$, if kinetic energy becomes four times then new momentum will become twice

402 (a)

Given a=-kx

Given
$$a = -kx$$

$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = -kx$$

$$\operatorname{Or} \frac{vdv}{dx} = -kx$$

$$\operatorname{Or} \frac{v dv}{dx} = -kx$$

Or
$$v dv = -kx dx$$

Let for any displacement from 0 to x, the velocity changes from v_0 to v.

$$\Rightarrow \int_{v0}^{v} v dv = -\int_{0}^{x} k \ x \ dx$$

$$0r \frac{v^2 - v_0^2}{2} = -\frac{kx^2}{2}$$

$$or \ m\left(\frac{v^2-v_0^2}{2}\right) = -\frac{mkx^2}{2}$$

Or $\Delta K \propto x^2 (\Delta K \text{ is loss in } KE)$

403 **(b)**

$$KE = \frac{1}{2}mv^2$$

Given,
$$v_2 = (v_1 + 2)$$

 $\frac{K_1}{K_2} = \left(\frac{v_1}{v_2}\right)^2$

$$\frac{1}{2} = \frac{v_1^2}{(v_1 + 2)^2} \qquad (\because k_2 = 2k_1)$$

$$v_1^2 + 4v_1 + 4 = 2v_1^2$$

$$v_1^2 - 4v_1 - 4 = 0$$

$$v_1 = \frac{4 \pm \sqrt{16 + 16}}{2}$$

$$\frac{1}{2}$$

$$v_1 = \frac{4 + \sqrt{32}}{2} = 2(\sqrt{2} + 1) \text{ms}^{-1}$$

The momentum of the two-particle system, at t=0 is

$$\vec{P}_i = m_1 \vec{v}_1 + m_2 \vec{v}_2$$

Collision between the two does not affect the total momentum of the system

A constant external force $(m_1 + m_2)g$ acts on the system

The impulse given by this force, in time t=0 to $t=2t_0$

is
$$(m_1 + m_2)g \times 2t_0$$

 \div Change in momentum in this interval

$$= |m_1 \vec{v}'_1 + m_2 \vec{v}'_2 - (m_1 \vec{v}_1 + m_2 \vec{v}_2)|$$

= $2(m_1 + m_2)gt_0$

405 **(d**)

Here
$$k = \frac{F}{x} = \frac{10}{1 \times 10^{-3}} = 10^4 N/m$$

 $W = \frac{1}{2}kx^2 = \frac{1}{2} \times 10^4 \times (40 \times 10^{-3})^2 = 8J$

1)	b	2)	a	3)	b	4)	d	205)	c	206)	b	207)	C	208)	c
5)	d	6)	c	7)	b	8)	b	209)	b	210)	b	211)	c	212)	a
9)	c	10)	b	11)	b	12)	c	213)	d	214)	C	215)	a	216)	b
13)	b	14)	b	15)	d	16)	a	217)	d	218)	a	219)	C	220)	b
17)	d	18)	a	19)	c	20)	b	221)	a	222)	C	223)	c	224)	b
21)	c	22)	a	23)	d	24)	b	225)	a	226)	a	227)	c	228)	d
25)	c	26)	c	27)	a	28)	a	229)	c	230)	C	231)	b	232)	b
29)	b	30)	c	31)	c	32)	a	233)	b	234)	d	235)	c	236)	d
33)	d	34)	d	35)	b	36)	c	237)	a	238)	d	239)	c	240)	a
37)	b	38)	a	39)	b	40)	d	241)	c	242)	b	243)	a	244)	d
41)	a	42)	d	43)	b	44)	d	245)	d	246)	b	247)	a	248)	b
45)	a	46)	a	47)	a	48)	d	249)	c	250)	c	251)	a	252)	d
49)	c	50)	c	51)	b	52)	a	253)	c	254)	d	255)	b	256)	b
53)	c	54)	b	55)	b	56)	b	257)	c	258)	b	259)	b	260)	c
57)	a	58)	a	59)	b	60)	b	261)	a	262)	c	263)	b	264)	a
61)	c	62)	c	63)	b	64)	b	265)	a	266)	a	267)	b	268)	b
65)	d	66)	a	67)	d	68)	b	269)	a	270)	c	271)	a	272)	d
69)	b	70)	c	71)	c	72)	c	273)	a	274)	b	275)	a	276)	b
73)	c	74)	c	75)	c	76)	b	277)	a	278)	c	279)	b	280)	b
77)	c	78)	a	79)	d	80)	d	281)	c	282)	c	283)	b	284)	d
81)	a	82)	b	83)	d	84)	d	285)	b	286)	c	287)	a	288)	b
85)	d	86)	c	87)	c	88)	a	289)	a	290)	c	291)	a	292)	a
89)	a	90)	d	91)	b	92)	b	293)	d	294)	b	295)	c	296)	c
93)	b	94)	c	95)	d	96)	b	297)	d	298)	a	299)	a	300)	a
97)	c	98)	c	99)	c	100)	d	301)	d	302)	a	303)	c	304)	a
101)	b	102)	c	103)	a	104)	c	305)	a	306)	a	307)	b	308)	c
105)	b	106)	d	107)	b	108)	b	309)	a	310)	c	311)	c	312)	a
109)	b	110)	c	111)	a	112)	d	313)	c	314)	c	315)	b	316)	a
113)	b	114)	d	115)	b	116)	a	317)	a	318)	b	319)	b	320)	c
117)	c	118)	b	119)	b	120)	c	321)	a	322)	a	323)	d	324)	c
121)	d	122)	c	123)	b	124)	d	325)	c	326)	c	327)	c	328)	a
125)	a	126)	a	127)	c	128)	d	329)	a	330)	a	331)	b	332)	b
129)	b	130)	a	131)	d	132)		333)	d	334)	b	335)	d	336)	b
133)	d	134)	a	135)	a	136)	b	337)	b	338)	c	339)	d	340)	c
137)	a	138)	b	139)	b	140)	c	341)	a	342)	d	343)	b	344)	b
141)	c	142)	a	143)	a	144)	b	345)	c	346)	d	347)	d	348)	c
145)	d	146)	b	147)	a	148)	c	349)	a	350)	b	351)	c	352)	c
149)	c	150)	c	151)	b	152)	d	353)	c	354)	c	355)	c	356)	c
153)	a	154)	a	155)	a	156)	a	357)	b	358)	b	359)	c	360)	a
157)	a	158)	b	159)	c	160)	b	361)	d	362)	a	363)	a	364)	a
161)	b	162)	a	163)	c	164)		365)	c	366)	a	367)	b	368)	c
165)	c	166)	a	167)	b	168)		369)	d	370)	d	371)	c	372)	a
169)	c	170)	С	171)	С	172)		373)	a	374)	a	375)	a	376)	d
173)	c	174)	b	175)	b	176)	d	377)	b	378)	С	379)	c	380)	a
177)	a	178)	a	179)	d	180)		381)	a	382)	d	383)	d	384)	a
181)	a	182)	a	183)	d	184)		385)	b	386)	b	387)	b	388)	a
185)	b	186)	a	187)	c	188)		389)	a	390)	a	391)	a	392)	c
189)	C	190)	a	191)	c	192)		393)	b	394)	b	395)	b	396)	a
193)	b	194)	d	195)	b	196)		397)	b	398)	a	399)	d	400)	a
197)	d	198)	d	199)	a	200)		401)	a	402)	a	403)	b	404)	c
201)	a	202)	b	203)	b	204)		405)	d	- ,				,	
,		,		,		,	l	,							

Click here to Download more Question Bank for Additional Chapters.

Dear Teachers and Students,

Join School of Educators' exclusive WhatsApp, Telegram, and Signal groups for FREE access to a vast range of educational resources designed to help you achieve 100/100 in exams! Separate groups for teachers and students are available, packed with valuable content to boost your performance.

Additionally, benefit from expert tips, practical advice, and study hacks designed to enhance performance in both CBSE exams and competitive entrance tests.

Don't miss out—join today and take the first step toward academic excellence!

Join the Teachers and Students Group by Clicking the Link Below

Learn more about groups www.schoolofeducators.com

JOIN OUR WHATSAPP GROUPS

FOR FREE EDUCATIONAL RESOURCES

JOIN SCHOOL OF EDUCATORS WHATSAPP GROUPS FOR FREE EDUCATIONAL RESOURCES

We are thrilled to introduce the School of Educators WhatsApp Group, a platform designed exclusively for educators to enhance your teaching & Learning experience and learning outcomes. Here are some of the key benefits you can expect from joining our group:

BENEFITS OF SOE WHATSAPP GROUPS

- **Abundance of Content:** Members gain access to an extensive repository of educational materials tailored to their class level. This includes various formats such as PDFs, Word files, PowerPoint presentations, lesson plans, worksheets, practical tips, viva questions, reference books, smart content, curriculum details, syllabus, marking schemes, exam patterns, and blueprints. This rich assortment of resources enhances teaching and learning experiences.
- Immediate Doubt Resolution: The group facilitates quick clarification of doubts.
 Members can seek assistance by sending messages, and experts promptly respond
 to queries. This real-time interaction fosters a supportive learning environment
 where educators and students can exchange knowledge and address concerns
 effectively.
- Access to Previous Years' Question Papers and Topper Answers: The group provides access to previous years' question papers (PYQ) and exemplary answer scripts of toppers. This resource is invaluable for exam preparation, allowing individuals to familiarize themselves with the exam format, gain insights into scoring techniques, and enhance their performance in assessments.

- Free and Unlimited Resources: Members enjoy the benefit of accessing an array of educational resources without any cost restrictions. Whether its study materials, teaching aids, or assessment tools, the group offers an abundance of resources tailored to individual needs. This accessibility ensures that educators and students have ample support in their academic endeavors without financial constraints.
- **Instant Access to Educational Content:** SOE WhatsApp groups are a platform where teachers can access a wide range of educational content instantly. This includes study materials, notes, sample papers, reference materials, and relevant links shared by group members and moderators.
- **Timely Updates and Reminders:** SOE WhatsApp groups serve as a source of timely updates and reminders about important dates, exam schedules, syllabus changes, and academic events. Teachers can stay informed and well-prepared for upcoming assessments and activities.
- Interactive Learning Environment: Teachers can engage in discussions, ask questions, and seek clarifications within the group, creating an interactive learning environment. This fosters collaboration, peer learning, and knowledge sharing among group members, enhancing understanding and retention of concepts.
- Access to Expert Guidance: SOE WhatsApp groups are moderated by subject matter experts, teachers, or experienced educators can benefit from their guidance, expertise, and insights on various academic topics, exam strategies, and study techniques.

Join the School of Educators WhatsApp Group today and unlock a world of resources, support, and collaboration to take your teaching to new heights. To join, simply click on the group links provided below or send a message to +91-95208-77777 expressing your interest.

Together, let's empower ourselves & Our Students and inspire the next generation of learners.

Best Regards,
Team
School of Educators

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Teachers Only)

Kindergarten

Class 12 (Commerce)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Teachers Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Teachers Only)

Other Important Groups (For Teachers & Principal's)

Principal's Group

<u>Teachers Jobs</u>

IIT/NEET

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Students Only)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Students Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Students Only)

Groups Rules & Regulations:

To maximize the benefits of these WhatsApp groups, follow these guidelines:

- 1. Share your valuable resources with the group.
- 2. Help your fellow educators by answering their queries.
- 3. Watch and engage with shared videos in the group.
- 4. Distribute WhatsApp group resources among your students.
- 5. Encourage your colleagues to join these groups.

Additional notes:

- 1. Avoid posting messages between 9 PM and 7 AM.
- 2. After sharing resources with students, consider deleting outdated data if necessary.
- 3. It's a NO Nuisance groups, single nuisance and you will be removed.
 - No introductions.
 - No greetings or wish messages.
 - No personal chats or messages.
 - No spam. Or voice calls
 - Share and seek learning resources only.

Please only share and request learning resources. For assistance, contact the helpline via WhatsApp: +91-95208-77777.

Join Premium WhatsApp Groups Ultimate Educational Resources!!

Join our premium groups and just Rs. 1000 and gain access to all our exclusive materials for the entire academic year. Whether you're a student in Class IX, X, XI, or XII, or a teacher for these grades, Artham Resources provides the ultimate tools to enhance learning. Pay now to delve into a world of premium educational content!

Click here for more details

■ Don't Miss Out! Elevate your academic journey with top-notch study materials and secure your path to top scores! Revolutionize your study routine and reach your academic goals with our comprehensive resources. Join now and set yourself up for success!

Best Wishes,

Team
School of Educators & Artham Resources

SKILL MODULES BEING OFFERED IN **MIDDLE SCHOOL**

Artificial Intelligence

Beauty & Wellness

Design Thinking & Innovation

Financial Literacy

Handicrafts

Information Technology

Marketing/Commercial **Application**

Mass Media - Being Media **Literate**

Travel & Tourism

Coding

Data Science (Class VIII only)

Augmented Reality / Virtual Reality

Digital Citizenship

Life Cycle of Medicine & **Vaccine**

Things you should know about keeping Medicines at home

What to do when Doctor is not around

Humanity & Covid-19

Food Preservation

<u>Baking</u>

<u>Herbal Heritage</u>

<u>Khadi</u>

Mask Making

Mass Media

Making of a Graphic Novel

<u>Embroidery</u>

<u>Embroidery</u>

Rockets

Satellites

<u>Application of</u> <u>Satellites</u>

<u>Photography</u>

SKILL SUBJECTS AT SECONDARY LEVEL (CLASSES IX - X)

Retail

Information Technology

Security

<u>Automotive</u>

Introduction To Financial Markets

Introduction To Tourism

Beauty & Wellness

<u>Agriculture</u>

Food Production

Front Office Operations

Banking & Insurance

Marketing & Sales

Health Care

<u>Apparel</u>

Multi Media

Multi Skill Foundation **Course**

Artificial Intelligence

Physical Activity Trainer

Data Science

Electronics & Hardware (NEW)

Foundation Skills For Sciences (Pharmaceutical & Biotechnology)(NEW)

Design Thinking & Innovation (NEW)

SKILL SUBJECTS AT SR. SEC. LEVEL (CLASSES XI - XII)

Retail

<u>InformationTechnology</u>

Web Application

Automotive

Financial Markets Management

Tourism

Beauty & Wellness

Agriculture

Food Production

Front Office Operations

Banking

Marketing

Insurance

Horticulture

Typography & Comp. **Application**

Geospatial Technology

Electronic Technology

Multi-Media

Taxation

Cost Accounting

Office Procedures & Practices

Shorthand (English)

Shorthand (Hindi)

<u>Air-Conditioning &</u> <u>Refrigeration</u>

Medical Diagnostics

Textile Design

<u>Design</u>

<u>Salesmanship</u>

Business Administration

Food Nutrition & Dietetics

Mass Media Studies

<u>Library & Information</u> Science

Fashion Studies

Applied Mathematics

<u>Yoga</u>

<u>Early Childhood Care &</u> <u>Education</u>

<u>Artificial Intelligence</u>

Data Science

Physical Activity
Trainer(new)

<u>Land Transportation</u> <u>Associate (NEW)</u>

Electronics & Hardware (NEW)

<u>Design Thinking &</u> <u>Innovation (NEW)</u>

Join School of Educators Signal Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class signal Group.

Kindergarten to Class XII

Class 11 (Science)

Class 11 (Humanities)

Class 11 (Commerce)

Class 12 (Science)

Class 12 (Humanities)

Subject Wise Secondary and Senior Secondary Groups IX & X

Secondary Groups (IX & X)

Hindi-A

IT Code-402

English

Senior Secondary Groups XI & XII

Geography

Sociology

Hindi Elective

Hindi Core

Psychology

Click Here to Join

Home Science

Political Science

Painting

Vocal Music

Click Here to Join

Physical Education

Comp. Science

APP. Mathematics

Legal Studies

French

IIT/NEET

Artifical intelligence

CUET

Join School of Educators CBSE Telegram Groups

Join School of Educators ICSE Telegram Groups

www.educatorsresource.in