Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики

Лабораторная работа №4 по дисциплине «Численные методы»

Решение систем нелинейных уравнений методом Ньютона

Факультет: ПМИ

Группа: ПМ-63

Студент: Шепрут И.И.

Вариант: Все

Преподаватель: Задорожный А.Г.

1 Цель работы

Разработать программу решения системы нелинейных уравнений (СНУ) методом Ньютона. Провести исследования метода для нескольких систем размерности от 2 до 10.

2 Исследования

Описание визуализации: невязка в каждой точке рисуется после приведения СНУ к квадратному виду, сделано это для большей наглядности, потому что норма невязки от всех m>n уравнений не настолько точно показывает куда будет двигаться метод. Так же, из-за того, что изображение получалось слишком светлым возле точки решения, невязка нормируется и возводится в квадрат, поэтому изображения стали более темными.

Для всех запусков заданые следующие значения: максимальное количество итераций — 30, минимальная невязка — 10^{-10} ,

2.1 Одна окружность

Вариант приведения к квадратному виду: 1

2.2 Две окружности

2.2.1 Не пересекаются

Вариант приведения к квадратному виду: —

Аналитическое вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$7.3 \cdot 10^{-1}$	-0.12625000	1.63750000
2	1	$1.9 \cdot 10^{-1}$	0.29097075	1.04147036
3	1	$5.3 \cdot 10^{-2}$	0.51210419	0.72556544
4	1	$2.2 \cdot 10^{-2}$	0.65387654	0.52303351
5	$1.3 \cdot 10^{-1}$	$2.1 \cdot 10^{-2}$	0.69481257	0.46455347
6	$1.6 \cdot 10^{-2}$	$2.1 \cdot 10^{-2}$	0.68012890	0.48553014
7	$3.9 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$	0.68857468	0.47346474
8	$2.0 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$	0.68390632	0.48013382
9	$6.1 \cdot 10^{-5}$	$2.1 \cdot 10^{-2}$	0.68479563	0.47886339
10	$7.6 \cdot 10^{-6}$	$2.1 \cdot 10^{-2}$	0.68448045	0.47931364
11	$9.5 \cdot 10^{-7}$	$2.1 \cdot 10^{-2}$	0.68459010	0.47915700
12	$1.2 \cdot 10^{-7}$	$2.1 \cdot 10^{-2}$	0.68454676	0.47921892
13	$6.0 \cdot 10^{-8}$	$2.1 \cdot 10^{-2}$	0.68458033	0.47917095
14	$3.0 \cdot 10^{-8}$	$2.1 \cdot 10^{-2}$	0.68456311	0.47919556
15	$5.8 \cdot 10^{-11}$	$2.1 \cdot 10^{-2}$	0.68456397	0.47919433

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$7.3 \cdot 10^{-1}$	-0.12625007	1.63749991
2	1	$1.9 \cdot 10^{-1}$	0.29097138	1.04147030
3	1	$5.3 \cdot 10^{-2}$	0.51210433	0.72556522
4	1	$2.2 \cdot 10^{-2}$	0.65387666	0.52303330
5	$1.3 \cdot 10^{-1}$	$2.1 \cdot 10^{-2}$	0.69481287	0.46455301
6	$1.6 \cdot 10^{-2}$	$2.1 \cdot 10^{-2}$	0.68012964	0.48552904
7	$3.9 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$	0.68857685	0.47346160
8	$2.0 \cdot 10^{-3}$	$2.1 \cdot 10^{-2}$	0.68391104	0.48012705
9	$6.1 \cdot 10^{-5}$	$2.1 \cdot 10^{-2}$	0.68480681	0.47884737
10	$7.6 \cdot 10^{-6}$	$2.1 \cdot 10^{-2}$	0.68450617	0.47927686
11	$4.8 \cdot 10^{-7}$	$2.1 \cdot 10^{-2}$	0.68458553	0.47916350
12	$6.0 \cdot 10^{-8}$	$2.1 \cdot 10^{-2}$	0.68455933	0.47920092
13	$3.7 \cdot 10^{-9}$	$2.1 \cdot 10^{-2}$	0.68456743	0.47918935
14	$1.9 \cdot 10^{-9}$	$2.1 \cdot 10^{-2}$	0.68456258	0.47919627
15	$2.3 \cdot 10^{-10}$	$2.1 \cdot 10^{-2}$	0.68456451	0.47919352
16	$1.2 \cdot 10^{-10}$	$2.1 \cdot 10^{-2}$	0.68456306	0.47919559
17	$5.8 \cdot 10^{-11}$	$2.1 \cdot 10^{-2}$	0.68456388	0.47919441

2.2.2 Пересекаются в одной точке

2.2.2.1 Начальное приближение лежит на оси симметрии Вариант приведения к квадратному виду: —

2.2.2.2 Начальное приближение лежит на оси, соединяющей центры окружностей *Комментарий:* добавлено немного смещения, потому что на этой оси метод не сходится.

Вариант приведения к квадратному виду: —

Аналитическое вычисление матрицы Якоби Численное вычисление матрицы Якоби $\frac{||f(\mathbf{x}_k)||}{f(\mathbf{x}_0)}$ $\frac{||f(\mathbf{x}_k)||}{f(\mathbf{x}_0)}$ kβ β x1 $1.5 \cdot 10^{-5}$ -1.42013466-1.398232191 $1.5 \cdot 10^{-5}$ -1.42013487-1.39823199 $6.1\cdot10^{-5}$ $6.1 \cdot 10^{-5}$ 2 -1.43088214-1.38724364-1.43088224-1.387243543 $2.4\cdot 10^{-4}$ -1.45221430-1.364947253 $2.4 \cdot 10^{-4}$ -1.45221533-1.36494619 $9.8\cdot 10^{-4}$ $1.0 \cdot 10^{0}$ -1.49388254 $9.8 \cdot 10^{-4}$ $1.0 \cdot 10^0$ -1.31942302-1.49388220-1.319423354 4 $3.9\cdot 10^{-3}$ $3.9\cdot 10^{-3}$ $1.0 \cdot 10^{0}$ -1.57310973-1.22478694 $1.0 \cdot 10^0$ -1.57310819-1.224788675 $1.6\cdot 10^{-2}$ $9.9\cdot 10^{-1}$ $9.9 \cdot 10^{-1}$ 6 -1.71419326-1.02230861 $1.6 \cdot 10^{-2}$ -1.71419400-1.02230790 $6.3 \cdot 10^{-2}$ $9.6 \cdot 10^{-1}$ $6.3\cdot 10^{-2}$ $9.6\cdot10^{-1}$ -1.92036679-0.57439303-1.92036738-0.57439211 $2.5 \cdot 10^{-1}$ 8 $8.6 \cdot 10^{-1}$ -1.99353987 $2.5 \cdot 10^{-1}$ $8.6 \cdot 10^{-1}$ -1.993540200.405314650.40531272 $5.6\cdot 10^{-1}$ $5.6 \cdot 10^{-1}$ -0.804835121.93620626 1.93620597 -0.804834209 1 $1.4 \cdot 10^{-1}$ $1.4 \cdot 10^{-1}$ 10 -0.119574851.25094570 10 -0.119574601.25094544 $3.5\cdot 10^{-2}$ $3.5\cdot 10^{-2}$ 0.223055290.90831556 0.223055700.9083155311 11 1 $8.7\cdot 10^{-3}$ $8.7\cdot10^{-3}$ 12 0.39437036 0.7370004912 0.394370460.73700036 $2.2\cdot 10^{-3}$ $2.2\cdot 10^{-3}$ 0.480027890.65134296 0.480027950.65134290 13 13 $5.5\cdot 10^{-4}$ $5.5\cdot 10^{-4}$ 0.5228566914 0.522856660.6085141914 0.60851416 $1.4\cdot 10^{-4}$ $1.4\cdot 10^{-4}$ 0.544271040.58709981 15 0.544271060.5870997915 16 $3.4 \cdot 10^{-5}$ 0.554978230.5763926216 $3.4 \cdot 10^{-5}$ 0.554978240.57639261 $8.5\cdot 10^{-6}$ $8.5\cdot 10^{-6}$ 17 0.56033183 0.5710390217 0.56033183 0.57103902 $2.1\cdot 10^{-6}$ $2.1 \cdot 10^{-6}$ 0.563008630.568362220.563008620.5683622318 18 $5.3\cdot 10^{-7}$ $5.3 \cdot 10^{-7}$ 0.56702382 0.56434702 0.56702383 0.56434703 19 1 19 1 $1.3\cdot 10^{-7}$ $1.3 \cdot 10^{-7}$ 20 0.565016230.5663546220 0.565016230.56635462 $3.3 \cdot 10^{-8}$ $3.3\cdot 10^{-8}$ 21 0.565350830.5660200221 0.565350830.566020021 $8.3\cdot 10^{-9}$ $8.3 \cdot 10^{-9}$ 0.56585272 22 0.565518130.5658527222 0.56551813 $2.1\cdot 10^{-9}$ $2.1 \cdot 10^{-9}$ 23 0.565601780.56576907 23 0.565601770.56576908 $5.2 \cdot 10^{-10}$ $5.2 \cdot 10^{-10}$ 24 0.565643600.5657272524 0.565643600.56572725 $1.3\cdot 10^{-10}$ $\overline{1.3\cdot 10^{-10}}$ 25 0.565664510.5657063425 1 0.565664520.56570633 $3.3 \cdot 10^{-11}$ $3.2\cdot 10^{-11}$ 26 0.56567497 0.5656958826 0.565674970.56569588

2.2.2.3 Начальное приближение лежит в центре одной из окружностей

Комментарий: добавлено немного смещения, потому что на этой оси метод не сходится.

Вариант приведения к квадратному виду: -

Аналитическое вычисление матрицы Якоби

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	$3.1 \cdot 10^{-2}$	$9.9 \cdot 10^{-1}$	0.63561170	0.77945053
2	1	$2.3 \cdot 10^{-1}$	0.38984555	0.74152530
3	1	$5.8 \cdot 10^{-2}$	0.47776549	0.65360536
4	1	$1.5 \cdot 10^{-2}$	0.52172546	0.60964539
5	1	$3.6 \cdot 10^{-3}$	0.54370544	0.58766541
6	1	$9.1 \cdot 10^{-4}$	0.55469543	0.57667542
7	1	$2.3 \cdot 10^{-4}$	0.56019043	0.57118042
8	1	$5.7 \cdot 10^{-5}$	0.56293793	0.56843292
9	1	$1.4 \cdot 10^{-5}$	0.56431168	0.56705917
10	1	$3.6 \cdot 10^{-6}$	0.56499855	0.56637230
11	1	$8.9 \cdot 10^{-7}$	0.56534199	0.56602886
12	1	$2.2 \cdot 10^{-7}$	0.56551371	0.56585714
13	1	$5.5 \cdot 10^{-8}$	0.56559957	0.56577128
14	1	$1.4 \cdot 10^{-8}$	0.56564250	0.56572835
15	1	$3.5 \cdot 10^{-9}$	0.56566396	0.56570689
16	1	$8.7 \cdot 10^{-10}$	0.56567469	0.56569616
17	1	$2.2 \cdot 10^{-10}$	0.56568006	0.56569079
18	1	$5.4 \cdot 10^{-11}$	0.56568274	0.56568811

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y	
1	$3.1 \cdot 10^{-2}$	$9.9 \cdot 10^{-1}$	0.63561166	0.77945055	
2	1	$2.3 \cdot 10^{-1}$	0.38984560	0.74152523	
3	1	$5.8 \cdot 10^{-2}$	0.47776552	0.65360534	
4	1	$1.5 \cdot 10^{-2}$	0.52172547	0.60964538	
5	1	$3.6 \cdot 10^{-3}$	0.54370545	0.58766540	
6	1	$9.1 \cdot 10^{-4}$	0.55469543	0.57667542	
7	1	$2.3 \cdot 10^{-4}$	0.56019043	0.57118042	
8	1	$5.7 \cdot 10^{-5}$	0.56293793	0.56843292	
9	1	$1.4 \cdot 10^{-5}$	0.56431168	0.56705917	
10	1	$3.6 \cdot 10^{-6}$	0.56499855	0.56637230	
11	1	$8.9 \cdot 10^{-7}$	0.56534199	0.56602886	
12	1	$2.2 \cdot 10^{-7}$	0.56551371	0.56585714	
13	1	$5.5 \cdot 10^{-8}$	0.56559957	0.56577128	
14	1	$1.4 \cdot 10^{-8}$	0.56564250	0.56572835	
15	1	$3.5 \cdot 10^{-9}$	0.56566396	0.56570689	
16	1	$8.7 \cdot 10^{-10}$	0.56567469	0.56569616	
17	1	$2.2 \cdot 10^{-10}$	0.56568006	0.56569079	
18	1	$5.5 \cdot 10^{-11}$	0.56568274	0.56568811	

2.2.3 Добавлена ещё прямая

Вариант приведения к квадратному виду: 2

Аналитическое вычисление матрицы Якоби

Численное вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$3.1 \cdot 10^{-1}$	-0.12336484	0.31673012
2	$5.0 \cdot 10^{-1}$	$3.1 \cdot 10^{-1}$	-0.08375629	0.74612436
3	1	$1.4 \cdot 10^{-1}$	0.27323391	0.46002208
4	$5.0 \cdot 10^{-1}$	$1.1 \cdot 10^{-1}$	0.29004484	0.64226857
5	1	$4.3 \cdot 10^{-2}$	0.64406414	0.59400382
6	$5.0 \cdot 10^{-1}$	$3.5 \cdot 10^{-2}$	0.63955871	0.54516069
7	1	$1.8 \cdot 10^{-3}$	0.56919908	0.56695492
8	$5.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-3}$	0.56899710	0.56476532
9	1	$4.0 \cdot 10^{-6}$	0.56569307	0.56568819
10	$5.0 \cdot 10^{-1}$	$3.3 \cdot 10^{-6}$	0.56569263	0.56568342
11	1	$1.9 \cdot 10^{-11}$	0.56568543	0.56568543

-		$ f(x_k) $		
k	β	$\frac{f(\mathbf{x}_0)}{f(\mathbf{x}_0)}$	x	y
1	1	$3.1 \cdot 10^{-1}$	-0.12336491	0.31673017
2	$5.0 \cdot 10^{-1}$	$3.1 \cdot 10^{-1}$	-0.08375628	0.74612442
3	1	$1.4 \cdot 10^{-1}$	0.27323425	0.46002225
4	$5.0 \cdot 10^{-1}$	$1.1 \cdot 10^{-1}$	0.29004521	0.64226847
5	1	$4.3 \cdot 10^{-2}$	0.64406392	0.59400373
6	$5.0 \cdot 10^{-1}$	$3.5 \cdot 10^{-2}$	0.63955850	0.54516075
7	1	$1.8 \cdot 10^{-3}$	0.56919906	0.56695490
8	$5.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-3}$	0.56899709	0.56476532
9	1	$4.0 \cdot 10^{-6}$	0.56569307	0.56568819
10	$5.0 \cdot 10^{-1}$	$3.3 \cdot 10^{-6}$	0.56569264	0.56568341
11	1	$1.9 \cdot 10^{-11}$	0.56568543	0.56568543

Вариант приведения к квадратному виду: 3

Аналитическое вычисление матрицы Якоби

Численное вычисление матрицы Якоби

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$4.1 \cdot 10^{-1}$	-0.19374305	0.89683239
2	1	$3.4 \cdot 10^{-1}$	-0.23892040	0.27497965
3	$5.0 \cdot 10^{-1}$	$2.3 \cdot 10^{-1}$	-0.11725999	0.61129566
4	1	$9.3 \cdot 10^{-2}$	0.28698224	0.51878350
5	1	$9.3 \cdot 10^{-2}$	0.47006887	0.69556211
6	1	$2.6 \cdot 10^{-2}$	0.61640145	0.58400923
7	$5.0 \cdot 10^{-1}$	$2.5 \cdot 10^{-2}$	0.56051701	0.60831170
8	1	$7.4 \cdot 10^{-3}$	0.58066384	0.57109716
9	$6.3 \cdot 10^{-2}$	$7.0 \cdot 10^{-3}$	0.57328317	0.57732528
10	1	$2.8 \cdot 10^{-3}$	0.56218743	0.56932626
11	1	$3.7 \cdot 10^{-5}$	0.56576048	0.56571254
12	$2.4 \cdot 10^{-4}$	$3.7 \cdot 10^{-5}$	0.56573105	0.56574195
13	1	$1.3 \cdot 10^{-5}$	0.56566827	0.56570258
14	1	$1.0 \cdot 10^{-9}$	0.56568543	0.56568543
15	$4.8 \cdot 10^{-7}$	$1.0 \cdot 10^{-9}$	0.56568543	0.56568543
16	1	$4.5 \cdot 10^{-10}$	0.56568542	0.56568543
17	1	$2.3 \cdot 10^{-17}$	0.56568542	0.56568542

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$4.1 \cdot 10^{-1}$	-0.19374310	0.89683235
2	1	$3.4 \cdot 10^{-1}$	-0.23892037	0.27497963
3	$5.0 \cdot 10^{-1}$	$2.3 \cdot 10^{-1}$	-0.11725985	0.61129543
4	1	$9.3 \cdot 10^{-2}$	0.28698234	0.51878318
5	1	$9.3 \cdot 10^{-2}$	0.47006835	0.69556248
6	1	$2.6 \cdot 10^{-2}$	0.61640183	0.58400938
7	$5.0 \cdot 10^{-1}$	$2.5 \cdot 10^{-2}$	0.56051859	0.60831034
8	1	$7.4 \cdot 10^{-3}$	0.58066380	0.57109714
9	$6.3 \cdot 10^{-2}$	$7.0 \cdot 10^{-3}$	0.57328259	0.57732580
10	1	$2.8 \cdot 10^{-3}$	0.56218719	0.56932650
11	1	$3.7 \cdot 10^{-5}$	0.56576049	0.56571255
12	$2.4 \cdot 10^{-4}$	$3.7 \cdot 10^{-5}$	0.56572310	0.56574991
13	1	$1.6 \cdot 10^{-5}$	0.56566481	0.56570604
14	1	$1.1 \cdot 10^{-9}$	0.56568543	0.56568543
15	$3.9 \cdot 10^{-3}$	$1.1 \cdot 10^{-9}$	0.56568543	0.56568543
16	1	$3.9 \cdot 10^{-10}$	0.56568542	0.56568543
17	1	$1.4 \cdot 10^{-16}$	0.56568542	0.56568542

Вариант приведения к квадратному виду: 4

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$1.7 \cdot 10^{-1}$	-0.26143900	0.57036552
2	1	$4.7 \cdot 10^{-2}$	0.19508724	0.59905160
3	1	$1.1 \cdot 10^{-2}$	0.51796311	0.59063602
4	1	$2.9 \cdot 10^{-4}$	0.56679698	0.56624218
5	1	$1.6 \cdot 10^{-7}$	0.56568614	0.56568568
6	1	$5.8 \cdot 10^{-14}$	0.56568542	0.56568542

Численное вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$1.7 \cdot 10^{-1}$	-0.26143906	0.57036549
2	1	$4.7 \cdot 10^{-2}$	0.19508720	0.59905164
3	1	$1.1 \cdot 10^{-2}$	0.51796311	0.59063601
4	1	$2.9 \cdot 10^{-4}$	0.56679698	0.56624218
5	1	$1.6 \cdot 10^{-7}$	0.56568614	0.56568568
6	1	$6.1 \cdot 10^{-14}$	0.56568542	0.56568542

2.2.4 Пересекаются в двух точках

Вариант приведения к квадратному виду: —

Аналитическое вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$5.9 \cdot 10^{-1}$	-0.43750000	1.37500000
2	1	$8.4 \cdot 10^{-2}$	-0.21224442	1.05320632
3	1	$3.3 \cdot 10^{-3}$	-0.16730937	0.98901338
4	1	$6.2 \cdot 10^{-6}$	-0.16536659	0.98623799
5	1	$2.2 \cdot 10^{-11}$	-0.16536295	0.98623278

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$5.9 \cdot 10^{-1}$	-0.43750005	1.37499993
2	1	$8.4 \cdot 10^{-2}$	-0.21224451	1.05320633
3	1	$3.3 \cdot 10^{-3}$	-0.16730936	0.98901339
4	1	$6.2 \cdot 10^{-6}$	-0.16536659	0.98623799
5	1	$2.2 \cdot 10^{-11}$	-0.16536295	0.98623278

2.3 Три попарно пересекающиеся прямые

2.3.1 Невзвешенный вариант

Вариант приведения к квадратному виду: 2

Аналитическое вычисление матрицы Якоби

Численное вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
2	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
3	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
4	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
5	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
6	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
7	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
8	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
9	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
10	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
11	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
12	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
13	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
14	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
15	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
16	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
17	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
18	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
19	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
20	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
21	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
22	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
23	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
24	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
25	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
26	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
27	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
28	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
29	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000
30	1	$3.4 \cdot 10^{-1}$	0.00000000	0.00000000
31	1	$3.4 \cdot 10^{-1}$	3.00000000	1.00000000

κ	β	$\frac{f(\mathbf{x}_0)}{f(\mathbf{x}_0)}$	x	y
1	1	$3.4 \cdot 10^{-1}$	2.99999933	0.99999976
2	1	$2.3 \cdot 10^{-1}$	1.00000020	2.00000003
3	$5.0 \cdot 10^{-1}$	$2.1 \cdot 10^{-1}$	0.50000017	1.00000013
4	$5.0 \cdot 10^{-1}$	$1.9 \cdot 10^{-1}$	1.74999975	0.99999984
5	$5.0 \cdot 10^{-1}$	$1.7 \cdot 10^{-1}$	1.37499987	1.49999980
6	$2.5 \cdot 10^{-1}$	$1.6 \cdot 10^{-1}$	1.03124993	1.12499992
7	$1.3 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$	1.27734363	1.10937495
8	$1.3 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$	1.24267568	1.22070307
9	$1.6 \cdot 10^{-2}$	$1.4 \cdot 10^{-1}$	1.27013387	1.21725459
10	$7.8 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26021094	1.20774479
11	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26700699	1.20693328
12	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26205775	1.20221870
13	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26884659	1.20142878
14	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26389015	1.19673570
15	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27067183	1.19596720
16	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26570827	1.19129546
17	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27248285	1.19054821
18	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26751221	1.18589763
19	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27427974	1.18517147
20	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.26930209	1.18054189
21	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27606263	1.17983665
22	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27107801	1.17522791
23	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27783161	1.17454343
24	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27284008	1.16995537
25	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27958680	1.16929148
26	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27458841	1.16472393
27	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.28132830	1.16408048
28	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.27632311	1.15953329
29	$3.9 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.28305623	1.15891011
30	$2.0 \cdot 10^{-3}$	$1.4 \cdot 10^{-1}$	1.28055026	1.15664662
31	$4.9 \cdot 10^{-4}$	$1.4 \cdot 10^{-1}$	1.28138983	1.15657013

Вариант приведения к квадратному виду: 3

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y	k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	$3.9 \cdot 10^{-3}$	$1.0 \cdot 10^{0}$	-3.10546875	-2.91992188	1	$3.9 \cdot 10^{-3}$	$1.0 \cdot 10^{0}$	-3.10546871	-2.91992190
2	$3.1 \cdot 10^{-2}$	$1.0 \cdot 10^{0}$	-3.38021506	-2.56465321	2	$3.1 \cdot 10^{-2}$	$1.0 \cdot 10^{0}$	-3.38021499	-2.56465331
3	$1.3 \cdot 10^{-1}$	$9.3 \cdot 10^{-1}$	-3.32693889	-1.74694621	3	$1.3 \cdot 10^{-1}$	$9.3 \cdot 10^{-1}$	-3.32693878	-1.74694605
4	1	$5.8 \cdot 10^{-1}$	-0.68686359	2.84343180	4	1	$5.8 \cdot 10^{-1}$	-0.68686422	2.84343073
5	1	$4.0 \cdot 10^{-1}$	-1.26514770	-0.42171590	5	1	$4.0 \cdot 10^{-1}$	-1.26514509	-0.42171483
6	1	$2.2 \cdot 10^{-1}$	0.57828410	2.21085795	6	1	$2.2 \cdot 10^{-1}$	0.57828515	2.21085830
7	$5.0 \cdot 10^{-1}$	$1.9 \cdot 10^{-1}$	0.13099859	1.05271449	7	$5.0 \cdot 10^{-1}$	$1.9 \cdot 10^{-1}$	0.13099663	1.05271370
8	1	$1.5 \cdot 10^{-1}$	1.81980880	1.59009560	8	1	$1.5 \cdot 10^{-1}$	1.81980515	1.59009501
9	$5.0 \cdot 10^{-1}$	$1.3 \cdot 10^{-1}$	1.05742830	1.09009560	9	$5.0 \cdot 10^{-1}$	$1.3 \cdot 10^{-1}$	1.05742535	1.09009293
10	$4.9 \cdot 10^{-4}$	$1.3 \cdot 10^{-1}$	1.04176218	1.09835893	10	$4.9 \cdot 10^{-4}$	$1.3 \cdot 10^{-1}$	1.04175894	1.09835640
11	$6.1 \cdot 10^{-5}$	$1.3 \cdot 10^{-1}$	1.04684040	1.09587357	11	$6.1 \cdot 10^{-5}$	$1.3 \cdot 10^{-1}$	1.04683655	1.09587135
12	$9.5 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04616630	1.09621147	12	$9.5 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04616094	1.09621000
13	$1.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04646869	1.09606038	13	$1.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04645801	1.09606157
14	$1.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04618208	1.09620378	14	$1.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04615594	1.09621271
15	$6.0 \cdot 10^{-8}$	$1.3 \cdot 10^{-1}$	1.04635127	1.09611924	15	$1.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-1}$	1.04644307	1.09606925
16	$7.5 \cdot 10^{-9}$	$1.3 \cdot 10^{-1}$	1.04627744	1.09615616	16	$6.0 \cdot 10^{-8}$	$1.3 \cdot 10^{-1}$	1.04627477	1.09615345
17	$3.7 \cdot 10^{-9}$	$1.3 \cdot 10^{-1}$	1.04631587	1.09613695	17	$3.7 \cdot 10^{-9}$	$1.3 \cdot 10^{-1}$	1.04631312	1.09613428
18	$1.5 \cdot 10^{-11}$	$1.3 \cdot 10^{-1}$	1.04631345	1.09613816	18	$1.5 \cdot 10^{-11}$	$1.3 \cdot 10^{-1}$	1.04631055	1.09613557

Вариант приведения к квадратному виду: 4

Аналитическое вычисление матрицы Якоби

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$2.6 \cdot 10^{-16}$	1.23529412	1.29411765

Численное вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$4.8 \cdot 10^{-8}$	1.23529397	1.29411743
2	1	$5.7 \cdot 10^{-9}$	1.23529412	1.29411765
3	1	$4.7 \cdot 10^{-16}$	1.23529408	1.29411764

2.3.2 Взвешенный вариант

Вариант приведения к квадратному виду: 3

Аналитическое вычисление матрицы Якоби

Численное вычисление матрицы Якоби

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$6.2 \cdot 10^{-2}$	1.31672598	-0.86120996
2	$2.5 \cdot 10^{-1}$	$5.9 \cdot 10^{-2}$	1.25489324	-0.49243772
3	1	$1.5 \cdot 10^{-2}$	0.53048450	0.50609690
4	$6.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-2}$	0.43635344	0.66120373
5	$7.8 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$	0.39827532	0.69290388
6	$4.9 \cdot 10^{-4}$	$1.4 \cdot 10^{-2}$	0.40454734	0.69055301
7	$1.9 \cdot 10^{-9}$	$1.4 \cdot 10^{-2}$	0.40453532	0.69055902
8	$1.2 \cdot 10^{-10}$	$1.4 \cdot 10^{-2}$	0.40453123	0.69056107
9	$2.9 \cdot 10^{-11}$	$1.4 \cdot 10^{-2}$	0.40453320	0.69056008

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$6.2 \cdot 10^{-2}$	1.31672652	-0.86121005
2	$2.5 \cdot 10^{-1}$	$5.9 \cdot 10^{-2}$	1.25490123	-0.49243625
3	1	$1.5 \cdot 10^{-2}$	0.53049098	0.50609800
4	$6.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-2}$	0.43636001	0.66120445
5	$7.8 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$	0.39829292	0.69289907
6	$4.9 \cdot 10^{-4}$	$1.4 \cdot 10^{-2}$	0.40458552	0.69053791
7	$3.0 \cdot 10^{-8}$	$1.4 \cdot 10^{-2}$	0.40453458	0.69056343
8	$2.3 \cdot 10^{-10}$	$1.4 \cdot 10^{-2}$	0.40452981	0.69056582
9	$2.3 \cdot 10^{-13}$	$1.4 \cdot 10^{-2}$	0.40452995	0.69056574

2.4 Прямая и синусоида

Вариант приведения к квадратному виду: —

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$2.2 \cdot 10^{-2}$	-0.65514507	-0.65514507
2	1	$6.4 \cdot 10^{-3}$	-0.43359037	-0.43359037
3	1	$1.9 \cdot 10^{-3}$	-0.28814840	-0.28814840
4	1	$5.6 \cdot 10^{-4}$	-0.19183231	-0.19183231
5	1	$1.7 \cdot 10^{-4}$	-0.12780967	-0.12780967
6	1	$4.9 \cdot 10^{-5}$	-0.08518323	-0.08518323
7	1	$1.5 \cdot 10^{-5}$	-0.05678195	-0.05678195
8	1	$4.3 \cdot 10^{-6}$	-0.03785260	-0.03785260
9	1	$1.3 \cdot 10^{-6}$	-0.02523446	-0.02523446
10	1	$3.8 \cdot 10^{-7}$	-0.01682280	-0.01682280
11	1	$1.1 \cdot 10^{-7}$	-0.01121515	-0.01121515
12	1	$3.3 \cdot 10^{-8}$	-0.00747675	-0.00747675
13	1	$9.9 \cdot 10^{-9}$	-0.00498449	-0.00498449
14	1	$2.9 \cdot 10^{-9}$	-0.00332299	-0.00332299
15	1	$8.7 \cdot 10^{-10}$	-0.00221533	-0.00221533
16	1	$2.6 \cdot 10^{-10}$	-0.00147689	-0.00147689
17	1	$7.6 \cdot 10^{-11}$	-0.00098459	-0.00098459

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$2.2 \cdot 10^{-2}$	-0.65514518	-0.65514501
2	1	$6.4 \cdot 10^{-3}$	-0.43359046	-0.43359048
3	1	$1.9 \cdot 10^{-3}$	-0.28814855	-0.28814857
4	1	$5.6 \cdot 10^{-4}$	-0.19183240	-0.19183240
5	1	$1.7 \cdot 10^{-4}$	-0.12780984	-0.12780984
6	1	$4.9 \cdot 10^{-5}$	-0.08518376	-0.08518376
7	1	$1.5 \cdot 10^{-5}$	-0.05678290	-0.05678290
8	1	$4.3 \cdot 10^{-6}$	-0.03785306	-0.03785306
9	1	$1.3 \cdot 10^{-6}$	-0.02523546	-0.02523546
10	1	$3.8 \cdot 10^{-7}$	-0.01682381	-0.01682381
11	1	$1.1 \cdot 10^{-7}$	-0.01121390	-0.01121390
12	1	$3.3 \cdot 10^{-8}$	-0.00747179	-0.00747179
13	1	$9.9 \cdot 10^{-9}$	-0.00498678	-0.00498678
14	1	$2.9 \cdot 10^{-9}$	-0.00331311	-0.00331311
15	1	$8.6 \cdot 10^{-10}$	-0.00221063	-0.00221063
16	1	$2.4 \cdot 10^{-10}$	-0.00144581	-0.00144581
17	1	$7.2 \cdot 10^{-11}$	-0.00096602	-0.00096602

2.5 Влияние размера шага при численном вычислении производной на сходимость метода

Тест производится на системе из двух окружностей с прямой, вариант преобразования к квадратному виду: 3, вычисление матрицы Якоби: численное.

-		
h	_	-1

k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$5.5 \cdot 10^{-1}$	-0.33111565	0.91372015
2	$5.0 \cdot 10^{-1}$	$5.1 \cdot 10^{-1}$	-0.54566562	0.50017738
3	1	$2.0 \cdot 10^{-1}$	-0.03233864	0.43078527
4	1	$1.3 \cdot 10^{-1}$	0.33028297	0.71906106
5	$5.0 \cdot 10^{-1}$	$8.1 \cdot 10^{-2}$	0.26029889	0.57456215
6	1	$4.4 \cdot 10^{-2}$	0.48266435	0.61429001
7	1	$5.2 \cdot 10^{-3}$	0.55501826	0.56183136
8	$1.6 \cdot 10^{-2}$	$5.1 \cdot 10^{-3}$	0.55933821	0.55771490
9	1	$1.7 \cdot 10^{-3}$	0.56352198	0.56313848
10	1	$5.6 \cdot 10^{-4}$	0.56490990	0.56489747
11	1	$1.9 \cdot 10^{-4}$	0.56538403	0.56546638
12	1	$6.3 \cdot 10^{-5}$	0.56554456	0.56565289
13	1	$2.2 \cdot 10^{-5}$	0.56567215	0.56564091
14	1	$1.3 \cdot 10^{-5}$	0.56565867	0.56567576
15	$3.1 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	0.56566725	0.56566717
16	1	$4.4 \cdot 10^{-6}$	0.56567831	0.56568040
17	1	$1.5 \cdot 10^{-6}$	0.56568203	0.56568477
18	1	$4.9 \cdot 10^{-7}$	0.56568486	0.56568465
19	1	$1.6 \cdot 10^{-7}$	0.56568524	0.56568516
20	1	$5.4 \cdot 10^{-8}$	0.56568536	0.56568534
21	1	$1.8 \cdot 10^{-8}$	0.56568540	0.56568540
22	1	$6.0 \cdot 10^{-9}$	0.56568542	0.56568542
23	1	$2.0 \cdot 10^{-9}$	0.56568542	0.56568542
24	1	$6.7 \cdot 10^{-10}$	0.56568542	0.56568542
25	1	$2.3 \cdot 10^{-10}$	0.56568542	0.56568542
26	1	$1.4 \cdot 10^{-10}$	0.56568542	0.56568542
27	$1.2 \cdot 10^{-7}$	$1.4 \cdot 10^{-10}$	0.56568542	0.56568542
28	1	$4.7 \cdot 10^{-11}$	0.56568542	0.56568542

$h = 2^{-1}$

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$4.8 \cdot 10^{-1}$	-0.27179090	0.90642712
2	$5.0 \cdot 10^{-1}$	$4.0 \cdot 10^{-1}$	-0.39294723	0.54099126
3	1	$1.5 \cdot 10^{-1}$	0.11002810	0.41613209
4	$5.0 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	0.15015298	0.62407259
5	1	$6.5 \cdot 10^{-2}$	0.41714732	0.51201830
6	1	$4.0 \cdot 10^{-2}$	0.49234304	0.60998834
7	1	$4.3 \cdot 10^{-3}$	0.55690853	0.56251432
8	$3.1 \cdot 10^{-2}$	$4.2 \cdot 10^{-3}$	0.56058385	0.55917407
9	1	$1.1 \cdot 10^{-3}$	0.56546801	0.56362717
10	1	$4.7 \cdot 10^{-4}$	0.56472699	0.56533914
11	$3.9 \cdot 10^{-3}$	$4.7 \cdot 10^{-4}$	0.56519669	0.56487402
12	1	$1.6 \cdot 10^{-4}$	0.56570307	0.56540832
13	1	$5.4 \cdot 10^{-5}$	0.56557589	0.56564585
14	$4.9 \cdot 10^{-4}$	$5.4 \cdot 10^{-5}$	0.56563474	0.56558706
15	1	$2.1 \cdot 10^{-5}$	0.56569033	0.56565072
16	1	$6.2 \cdot 10^{-6}$	0.56567284	0.56568088
17	$6.1 \cdot 10^{-5}$	$6.2 \cdot 10^{-6}$	0.56568020	0.56567352
18	1	$2.6 \cdot 10^{-6}$	0.56568631	0.56568111
19	1	$7.1 \cdot 10^{-7}$	0.56568398	0.56568490
20	$7.6 \cdot 10^{-6}$	$7.1 \cdot 10^{-7}$	0.56568490	0.56568398
21	1	$3.3 \cdot 10^{-7}$	0.56568557	0.56568489
22	1	$8.2 \cdot 10^{-8}$	0.56568526	0.56568536
23	$4.8 \cdot 10^{-7}$	$8.2 \cdot 10^{-8}$	0.56568532	0.56568531
24	1	$1.7 \cdot 10^{-8}$	0.56568541	0.56568539
25	1	$9.4 \cdot 10^{-9}$	0.56568541	0.56568542
26	$1.2 \cdot 10^{-7}$	$9.4 \cdot 10^{-9}$	0.56568542	0.56568541
27	1	$3.2 \cdot 10^{-9}$	0.56568543	0.56568542
28	1	$1.1 \cdot 10^{-9}$	0.56568542	0.56568542
29	$1.2 \cdot 10^{-7}$	$1.1 \cdot 10^{-9}$	0.56568542	0.56568542
30	1	$3.7 \cdot 10^{-10}$	0.56568543	0.56568542
31	1	$1.2 \cdot 10^{-10}$	0.56568542	0.56568542

$h = 2^{-2}$

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y
1	1	$4.4 \cdot 10^{-1}$	-0.23562082	0.90198059
2	1	$4.4 \cdot 10^{-1}$	-0.37948764	0.22419242
3	$5.0 \cdot 10^{-1}$	$3.2 \cdot 10^{-1}$	-0.25187015	0.66111384
4	1	$9.6 \cdot 10^{-2}$	0.19002880	0.57399703
5	1	$9.2 \cdot 10^{-2}$	0.46914539	0.69407201
6	1	$2.7 \cdot 10^{-2}$	0.61770022	0.58447848
7	$2.5 \cdot 10^{-1}$	$2.1 \cdot 10^{-2}$	0.62458817	0.56138841
8	1	$6.8 \cdot 10^{-3}$	0.58032312	0.55896536
9	1	$1.6 \cdot 10^{-3}$	0.56900194	0.56688369
10	$6.3 \cdot 10^{-2}$	$1.5 \cdot 10^{-3}$	0.56989335	0.56573805
11	1	$4.0 \cdot 10^{-4}$	0.56656292	0.56529223
12	1	$9.5 \cdot 10^{-5}$	0.56587832	0.56575512
13	$7.8 \cdot 10^{-3}$	$9.4 \cdot 10^{-5}$	0.56598337	0.56564822
14	1	$4.0 \cdot 10^{-5}$	0.56575944	0.56564043
15	1	$5.7 \cdot 10^{-6}$	0.56569695	0.56568959
16	$4.9 \cdot 10^{-4}$	$5.7 \cdot 10^{-6}$	0.56570350	0.56568304
17	1	$2.5 \cdot 10^{-6}$	0.56568995	0.56568264
18	1	$3.4 \cdot 10^{-7}$	0.56568612	0.56568568
19	$3.1 \cdot 10^{-5}$	$3.4 \cdot 10^{-7}$	0.56568653	0.56568527
20	1	$1.6 \cdot 10^{-7}$	0.56568570	0.56568525
21	1	$2.0 \cdot 10^{-8}$	0.56568547	0.56568544
22	$1.9 \cdot 10^{-6}$	$2.0 \cdot 10^{-8}$	0.56568549	0.56568541
23	1	$9.8 \cdot 10^{-9}$	0.56568544	0.56568541
24	1	$1.2 \cdot 10^{-9}$	0.56568543	0.56568543
25	$1.2 \cdot 10^{-7}$	$1.2 \cdot 10^{-9}$	0.56568543	0.56568543
26	1	$4.1 \cdot 10^{-10}$	0.56568542	0.56568543
27	1	$7.4 \cdot 10^{-11}$	0.56568543	0.56568543

$h = 2^{-3}$

k	β	$\frac{ f(\mathbf{x}_k) }{f(\mathbf{x}_0)}$	x	y	
1	1	$4.2 \cdot 10^{-1}$	-0.21547663	0.89950419	
2	1	$3.9 \cdot 10^{-1}$	-0.30981685	0.24936462	
3	$5.0 \cdot 10^{-1}$	$2.7 \cdot 10^{-1}$	-0.18342983	0.63371268	
4	1	$9.5 \cdot 10^{-2}$	0.24043521	0.54179583	
5	1	$8.6 \cdot 10^{-2}$	0.47869789	0.68677241	
6	1	$2.2 \cdot 10^{-2}$	0.60989461	0.58165830	
7	1	$1.9 \cdot 10^{-3}$	0.57015594	0.56645191	
8	1	$3.2 \cdot 10^{-4}$	0.56634502	0.56534838	
9	1	$6.1 \cdot 10^{-5}$	0.56580925	0.56573016	
10	$9.8 \cdot 10^{-4}$	$6.1 \cdot 10^{-5}$	0.56576079	0.56577847	
11	1	$2.0 \cdot 10^{-5}$	0.56566687	0.56571390	
12	1	$1.9 \cdot 10^{-6}$	0.56568922	0.56568680	
13	$3.1 \cdot 10^{-5}$	$1.9 \cdot 10^{-6}$	0.56568771	0.56568831	
14	1	$6.2 \cdot 10^{-7}$	0.56568484	0.56568631	
15	1	$5.7 \cdot 10^{-8}$	0.56568554	0.56568547	
16	$9.5 \cdot 10^{-7}$	$5.7 \cdot 10^{-8}$	0.56568549	0.56568551	
17	1	$1.9 \cdot 10^{-8}$	0.56568541	0.56568545	
18	1	$1.8 \cdot 10^{-9}$	0.56568543	0.56568543	
19	$2.4 \cdot 10^{-7}$	$1.8 \cdot 10^{-9}$	0.56568543	0.56568542	
20	1	$5.4 \cdot 10^{-10}$	0.56568543	0.56568542	
21	1	$5.4 \cdot 10^{-11}$	0.56568543	0.56568543	

	$h = 2^{-4}$				$h = 2^{-5}$				
k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y					
1	1	$4.2 \cdot 10^{-1}$	-0.20482004	0.89819413	k	β	$\frac{ f(x_k) }{ f(y_k) }$	x	y
2	1	$3.7 \cdot 10^{-1}$	-0.27450182	0.26212401	1		f(x ₀)	0.10022564	
3	$5.0 \cdot 10^{-1}$	$2.5 \cdot 10^{-1}$	-0.15000629	0.62183222	1	1	$4.1 \cdot 10^{-1}$	-0.19933564	0.89751991
4	1	$9.4 \cdot 10^{-2}$	0.26431759	0.52907491	2	$\frac{1}{5.0 \cdot 10^{-1}}$	$3.5 \cdot 10^{-1}$ $2.4 \cdot 10^{-1}$	-0.25674166	0.26854079
5	1	$8.7 \cdot 10^{-2}$	0.47734798	0.68860447	3		$9.4 \cdot 10^{-2}$	-0.13354110	0.61638957 0.52361758
6	1	$2.3 \cdot 10^{-2}$	0.61073123	0.58196057	4	1	$8.9 \cdot 10^{-2}$	0.27581888	0.52301758 0.69135130
7	$5.0 \cdot 10^{-1}$	$1.3 \cdot 10^{-2}$	0.57319801	0.59149384	5	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.47456209 0.61277894	
8	1	$6.4 \cdot 10^{-3}$	0.57851535	0.57032090	$\frac{6}{7}$	$\frac{1}{5.0 \cdot 10^{-1}}$	$1.9 \cdot 10^{-2}$		0.58270041 0.60003123
9	$6.3 \cdot 10^{-2}$	$6.0 \cdot 10^{-3}$	0.57341708	0.57443263			$6.8 \cdot 10^{-3}$	0.56615606 0.57931550	0.57061000
10	1	$1.9 \cdot 10^{-3}$	0.56369716	0.56828415	8 9	$\frac{1}{6.3 \cdot 10^{-2}}$	$6.4 \cdot 10^{-3}$	0.57951550	0.57578562
11	1	$1.2 \cdot 10^{-4}$	0.56592259	0.56577111		1	$2.3 \cdot 10^{-3}$	0.56296496	0.56879608
12	$9.8 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	0.56584057	0.56585285	10		$7.8 \cdot 10^{-5}$		
13	1	$3.6 \cdot 10^{-5}$	0.56564563	0.56573504	$\begin{array}{ c c }\hline 11\\12\\ \end{array}$	$\frac{1}{9.8 \cdot 10^{-4}}$	$7.8 \cdot 10^{-5}$	0.56584339	0.56574250
14	1	$1.8 \cdot 10^{-6}$	0.56568911	0.56568676			$4.0 \cdot 10^{-5}$	0.56574378	0.56584191
15	$1.5 \cdot 10^{-5}$	$1.8 \cdot 10^{-6}$	0.56568783	0.56568804	13	1		0.56563543	0.56573874
16	1	$5.6 \cdot 10^{-7}$	0.56568480	0.56568620	14	1	$6.1 \cdot 10^{-7}$	0.56568666	0.56568587
17	1	$2.8 \cdot 10^{-8}$	0.56568548	0.56568545	15	$7.6 \cdot 10^{-6}$	$6.1 \cdot 10^{-7}$	0.56568588	0.56568665
18	$2.4 \cdot 10^{-7}$	$2.8 \cdot 10^{-8}$	0.56568546	0.56568547	16	1	$3.2 \cdot 10^{-7}$	0.56568503	0.56568584
19	1	$9.0 \cdot 10^{-9}$	0.56568542	0.56568544	17	1	$4.7 \cdot 10^{-9}$	0.56568543	0.56568543
20	1	$4.3 \cdot 10^{-10}$	0.56568543	0.56568543	18	$1.2 \cdot 10^{-7}$	$4.7 \cdot 10^{-9}$	0.56568543	0.56568543
21	$3.7 \cdot 10^{-9}$	$4.3 \cdot 10^{-10}$	0.56568543	0.56568542	19	1	$2.0 \cdot 10^{-9}$	0.56568542	0.56568543
22	1	$1.6 \cdot 10^{-10}$	0.56568543	0.56568542	20	1	$3.7 \cdot 10^{-11}$	0.56568543	0.56568543
23	1	$6.7 \cdot 10^{-12}$	0.56568543	0.56568543					
20		0.1 10	0.00000010	0.00000010					
		h = 2) -6		$h = 2^{-7}$				
k	β	$\frac{r_{\ell}-2}{ f(x_k) }$	$\frac{1}{x}$	21				_	
		$f(x_0)$		<i>y</i>	k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$4.1 \cdot 10^{-1}$	-0.19655306	0.89717784	1	1	$4.1 \cdot 10^{-1}$	-0.19515151	0.89700554
2	1	$3.5 \cdot 10^{-1}$	-0.24783831	0.27175759	2	1	$3.5 \cdot 10^{-1}$	-0.24338113	0.27336798
3	$5.0 \cdot 10^{-1}$	$2.4 \cdot 10^{-1}$	-0.12537658	0.61379821	3	$5.0 \cdot 10^{-1}$	$2.4 \cdot 10^{-1}$	-0.12131217	0.61253573
4	1	$9.3 \cdot 10^{-2}$	0.28144493	0.52112169	4	1	$9.3 \cdot 10^{-2}$	0.28422495	0.51993276
5	1	$9.1 \cdot 10^{-2}$	0.47254462	0.69326079	5	1	$9.2 \cdot 10^{-2}$	0.47136608	0.69436077
6	1	$2.5 \cdot 10^{-2}$	0.61435845	0.58327109	6	1	$2.5 \cdot 10^{-2}$	0.61531660	0.58361727
7	$5.0 \cdot 10^{-1}$	$2.2 \cdot 10^{-2}$	0.56312569	0.60421397	7	$5.0 \cdot 10^{-1}$	$2.4 \cdot 10^{-2}$	0.56176310	0.60627512
8	1	$7.1 \cdot 10^{-3}$	0.57991697	0.57082731	8	1	$7.2 \cdot 10^{-3}$	0.58027164	0.57095545
9	$6.3 \cdot 10^{-2}$	$6.7 \cdot 10^{-3}$	0.57311868	0.57653079	9	$6.3 \cdot 10^{-2}$	$6.8 \cdot 10^{-3}$	0.57318318	0.57692168
10	1	$2.5 \cdot 10^{-3}$	0.56258367	0.56905894	10	1	$2.7 \cdot 10^{-3}$	0.56238767	0.56919204
11	1	$5.8 \cdot 10^{-5}$	0.56580244	0.56572770	11	1	$4.7 \cdot 10^{-5}$	0.56578143	0.56572011
12	$4.9 \cdot 10^{-4}$	$5.7 \cdot 10^{-5}$	0.56574814	0.56578193	12	$4.9 \cdot 10^{-4}$	$4.7 \cdot 10^{-5}$	0.56572486	0.56577663
13	1	$2.3 \cdot 10^{-5}$	0.56565624	0.56571585	13	1	$2.3 \cdot 10^{-5}$	0.56565554	0.56571583
14	1 10-6	$2.3 \cdot 10^{-7}$	0.56568589	0.56568559	14	1	$9.4 \cdot 10^{-8}$	0.56568562	0.56568549
15	$1.9 \cdot 10^{-6}$	$2.3 \cdot 10^{-7}$	0.56568567	0.56568580	15	$9.5 \cdot 10^{-7}$	$9.4 \cdot 10^{-8}$	0.56568550	0.56568560
16	1	$9.1 \cdot 10^{-8}$	0.56568531	0.56568554	16	1	$4.6 \cdot 10^{-8}$	0.56568537	0.56568548
17	1	$8.8 \cdot 10^{-10}$	0.56568543	0.56568543	17	1	$1.8 \cdot 10^{-10}$	0.56568543	0.56568543
18	$9.5 \cdot 10^{-7}$	$8.8 \cdot 10^{-10}$	0.56568543	0.56568542	18	$1.9 \cdot 10^{-6}$	$1.8 \cdot 10^{-10}$	0.56568543	0.56568543
19	1	$4.6 \cdot 10^{-10}$	0.56568543	0.56568542	19	1	$7.0 \cdot 10^{-11}$	0.56568542	0.56568543
20	1	$3.4 \cdot 10^{-12}$	0.56568543	0.56568543					
		h = 2	n-8				h = 2	n-9	
	I		2 ~					2 ~	
k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y	k	β	$\frac{ f(x_k) }{f(x_0)}$	x	y
1	1	$4.1 \cdot 10^{-1}$	-0.19444815	0.89691907	1	1	$4.1 \cdot 10^{-1}$	-0.19409581	0.89687576
2	1	$3.4 \cdot 10^{-1}$	-0.24115120	0.27417366	2	1	$3.4 \cdot 10^{-1}$	-0.24003591	0.27457662
3	$5.0 \cdot 10^{-1}$	$2.3 \cdot 10^{-1}$	-0.11928454	0.61191288	3	$5.0 \cdot 10^{-1}$	$2.3 \cdot 10^{-1}$	-0.11827188	0.61160356
4	1	$9.3 \cdot 10^{-2}$	0.28560647	0.51935316	4	1	$9.3 \cdot 10^{-2}$	0.28629508	0.51906709
4			0.45050055		5	1	$9.2 \cdot 10^{-2}$	0.47040453	0.69525208
5	1	$9.2 \cdot 10^{-2}$	0.47073257	0.69494855	- 0	1	0.2 10	0.41040400	0.03525200
	1	$9.2 \cdot 10^{-2}$ $2.6 \cdot 10^{-2}$	0.47073257	0.58380726	6	1	$2.6 \cdot 10^{-2}$	0.61611769	0.58390671
5									

1

 $6.3\cdot 10^{-2}$

1

1

 $2.4\cdot 10^{-4}$

1

1

 $1.2 \cdot 10^{-7}$

 $7.4\cdot10^{-3}$

 $7.0\cdot 10^{-3}$

 $2.7\cdot 10^{-3}$

 $3.9\cdot 10^{-5}$

 $3.9\cdot 10^{-5}$

 $1.3\cdot 10^{-5}$

 $2.0\cdot10^{-8}$

 $2.0\cdot 10^{-8}$

 $6.4 \cdot 10^{-9}$ $9.9 \cdot 10^{-12}$

0.58056220

0.57325478

0.56223792

0.56576566

0.56573651

0.56566815

0.56568547

0.56568545

0.56568542

0.56568543

0.57106043

0.57722316

0.56929260

0.56571441

0.56574353

0.56570282

0.56568544

0.56568545

0.56568543

0.56568543

8

9

10

11

12

13

14

15

16

17

1

 $6.3\cdot 10^{-2}$

1

 $2.4 \cdot 10^{-4}$

1

 $2.4 \cdot 10^{-7}$

 $7.3\cdot 10^{-3}$

 $6.9\cdot 10^{-3}$

 $2.7 \cdot 10^{-3}$

 $4.2\cdot 10^{-5}$

 $4.2 \cdot 10^{-5}$

 $1.4 \cdot 10^{-5}$

 $4.2 \cdot 10^{-8}$

 $4.2\cdot 10^{-8}$

 $1.4 \cdot 10^{-8} \\ 4.1 \cdot 10^{-11}$

0.58046297

0.57322866

0.56228812

0.56577089

0.56574203

0.56566800

0.56568551

0.56568548

0.56568541

0.56568543

0.57102458

0.57712186

0.56925901

0.56571630

0.56574514

0.56570308

0.56568546

0.56568548

0.56568544

0.56568543

8

9

10

11

12

13

14

15

16

17

3 Выводы

- Метод Ньютона не находит все точки, или всё множество точек, где заданная СНУ равна нулю, он находит лишь одну точку, где невязка минимальна. Это проявляется в варианте с одной окржуностью (там имеется множество решений, а находится лишь точка), в варианте с двумя пересекающимися окружностями (там имеется 2 решения, а находится ближнее к начальной точке), в варианте с тремя прямыми (там нет точки, где невязка равна нулю, но решение сходится к точке с минимальной невязкой).
- 2 вариант приведения к диагональному виду делает итоговую СНУ выглядящей как ломаную, поэтому метод на ней может сходиться не плавно.
- 3 вариант приведения к диагональному виду так же делает итоговую СНУ выглядещей как ломаную, но при этом она более плавная.
- 4 вариант приведения к диагональному виду делает итоговую СНУ очень плавной, и видно, что на всех тестах невязка как будто непрерывна. И даже на тесте с тремя прямыми метод Ньютона сошелся за один шаг. Но на этот метод очень сильно влияет погрешность при вычислении производной, что опять же видно из теста с тремя прямыми (1 шаг против 7).
- Взвешинвание одного из уравнений смещает решение к точкам этого уравнения.
- Вычисление матрицы Якоби при помощи численного дифференцирования работает неплохо по сравнению с аналитическим вычислением. Оно влияет только на скорость сходимости, но на данных тестах незначительно.
- Чем меньше шаг при взятии производной, тем лучше и быстрее сходится метод.

4 Код программы

```
#pragma once
#include ciostream
#include cyctory
#includ
```

```
transpose(a, m);
mol(a, m);
mol(a
```

```
//.
xn_t_calc_wector_function(const fnmw_f& f, const xn_t& x) {
    xn_t result;
    for (const auto& i : f)
        result; push_back(i(x));
    return result;
  //--
sle_f get_sle_function(const jnm f8 j, const fnmv_f8 f) {
    return [j, f] (const xn_t8 x) -> sle_t {
        matrix_t a = j(x);
        xn_t b = calc_vector_function(f, x);
        return (a, b);
 ste_f square_cast_none(const sle_f& s) {
return [s] (const xn_t& x) -> sle_t {
    auto res = s(x);
    myassert(res.first[0].size() == res.first.size());
    myassert(res.first.size() == res.second.size());
    return res;
};
//-
slef square cast_l(const sle f& s) {
    return [s] (const xn t& x) -> sle t {
        // Nony-usem share-them resquen CRAY
        subset of a res.first;
        auto& b = res.second;

                              int count = x.size() - A.size();
                             // Находим номера элементов, для которых vectorcpaircdouble, int>> b_sorted; for (int j = 0; j < A[0] s.ize(); ++j) ( double max1 = fabs(A[0][j]); for (int i = 1; i < A. size(); ++i) max1 = max4 = 
                              sort(b_sorted.begin(), b_sorted.end(), [] (auto a, auto b) -> bool {
   return a.first < b.first;</pre>
                           vector<int> mins;
for (int i = 0; i < count; ++i)
    mins.push_back(b_sorted[i].second);
sort(mins.begIn(), mins.end(), less<int>());
                              int start = mins[0];
                              // Добавляем к вектору нулевые элементи
for (int i = 0; i < mins.size(); ++i)
b.push_back(0);
                             auto make_vec = [] (int size, int where_one) -> vector<double> {
  vector<double> result(size, 0);
  result[where_one] = 1;
  return result;
                             // Добавляем к матрице новые строки
for (auto& i : mins)
A.push_back(make_vec(x.size(), i));
                           return {A, b};
 //-
sle_f square_cast_2(const sle_f& s) {
    return [3] (const xm_t& x) -> sle_t {
        // sle_t res == (x);
        auto& A = res.first;
        auto& b = res.second;
                              myassert(A[0].size() < A.size());</pre>
                              int count = b.size() - x.size();
                             // Находим номера элементов, для которых vectorxpairxdouble, int>> b_sorted; for (int i = 0; i < b.size(); ++i) b_sorted.push_back({fabs(b[i]), i});
                               sort(b_sorted.begin(), b_sorted.end(), [] (auto a, auto b) -> bool {
    return a.first < b.first;</pre>
                           vector<int> mins;
for (int i = 0; i < count; ++i)
    mins.push back(b_sorted[i].second);
sort(mins.begin(), mins.end(), less<int>());
                             int start = mins[0];
                           // Удаляем лишние строки
for (int i = mins.size()-1; i >= 0; --i) {
    A.erase(A.begin() + mins[i]);
    b.erase(b.begin() + mins[i]);
 return {A, b};
}
 //-
sle_f square_cast_3(const sle_f& s) {
    return [s] (const xm_t& x) -> sle_t {
        // Получаем значение текущей СЛАУ
        auto & A = res.first;
        auto& b = res.second;
                              myassert(A[0].size() < A.size());</pre>
                              int count = b.size() - x.size() + 1;
                             // Находим номера элементов, для которых vector<pair<double, int>> b_sorted; for (int i = 0; i < b.size(); ++i) b_sorted.push_back({fabs(b[i]), i});
                               sort(b_sorted.begin(), b_sorted.end(), [] (auto a, auto b) -> bool {
    return a.first < b.first;</pre>
                           vector<int> mins;
for (int i = 0; i < count; ++i)
    mins.push_back(b_sorted[i].second);
sort(mins.begIn(), mins.end(), less<int>());
                              int start = mins[0];
                             // Строим новую матрицу Якоби
for (int j = 0; j < A[start].size(); ++j)
A[start][j] = 2*A[start][j] * Start];
                              // Строим новый вектор правой части b[start] = b[start] * b[start]; for (int i = 1; i < mins.size(); ++i) b[start] += b[mins[i]] * b[mins[i]];
```

```
auto& A = res.first;
auto& b = res.second;
                               myassert(A[0].size() < A.size());</pre>
                               matrix_t AR;
xn_t bR;
mul_t(A, A, AR);
mul_t(A, b, bR);
                               return {AR, bR};
};
 //-
fnm_f get_f(const sle_f& s) {
    return [s](const xn_t& x) -> xn_t {
        return s(x).second;
    }
}
              };
myassert(m.size() == A.size());
myassert(m.size() == b.size());
                                              for (int i = 0; i < A.size(); i++) {
   for (int j = 0; j < A[i].size(); j++) {
        A[i][j] *= m[i];
}</pre>
          return {A, b};
};
 //-
sqr_f composition(const sqr_f& f, const sqr_f& g) {
    return [f, g](const sle_f& t) -> sle_f {
        return f(g(t));
    }
}
 };
//--
solved_t solve(const sle_få s, const xn_tå x_0, int maxiter, double eps, bool is_log) {
    vector.cxn t x x process;
    vector.double> beta_process;
    vector.double> residual_process;
    x_process.push_back(x_0);
    beta_process.push_back(x_0);
    beta_process.push_back(x_0);
    vector.double> residual_process;
    x_process.push_back(x_0);
    vector.double> residual_process;
    x_process.push_back(x_0);
    vector.double> residual_process;
    vector.double> residual_proc
               auto f = get_f(s);
               double f_0 = length(f(x_k));
int it = 0;
while (true) {
   if (it > maxiter) {
      exit type = EXIT_ITER;
      break;
   }
                               if (length(f(x_k)) / f_0 < eps) {
   exit_type = EXIT_RESIDUAL;
   break;</pre>
                                auto sle = s(x_k);
auto& A = sle.first;
auto& b = sle.second;
for (auto& i : b) i = -i; // b = -b
                               #ifdef _DEBUG
int An = A.size();
myassert(An == b.size());
for (auto& i : A)
   myassert(An == i.size());
#endif
                                  solve_gauss(A, b, dx);
                              if (dx.size() == 0) {
    exit_type = EXIT_ERROR;
    break;
                               double beta = 1;
  x kv = x k + beta*dx;
  while (length(f(x_kv)) > length(f(x_k))) {
    beta /= 2.0;
    x_kv = x_k + beta * dx;
                                x_process.push_back(x_k);
beta_process.push_back(beta);
residual_process.push_back(length(f(x_k)) / f_0);
                              ressumes_met
if (is_log) {
    cout << "Iteration: " << setw(5) << it;
    cout << "cientific << setprecision(2);
    cout << ", 8: " << setw(8) << beta;
    cout << ", Residual: " << setw(8) << length(f(x_k)) << end];
</pre>
                               if (length(x_k - x_process[x_process.size() - 2]) < eps) {
    exit_type = EXIT_STEP;
    break;</pre>
                              if (fabs(beta) < eps) {
   exit_type = EXIT_BETA;
   break;</pre>
              } }
```

ÿ objects.h

```
circle a, circle b, circle c,
bool a_in, bool b_in, bool c_in
};

in inine double sqr(double a) (return a*a;}

in inine double sign(double a) (if (a == 0) return 0; else return (ac0)?-1:1; }

double dist(const point& a, const point& b);

double line_f(const line& l, const point& x);

double line_d x(const line& l, const point& x);

double line_d x(const line& l, const point& x);

double circle_d(const circle& a, const circle& x, bool in);

double circles_d(x) (const circle& a, const circle& x, bool in);

double circles_d(x) (const circle& a, const circle& x, bool in);

double circles_d(x) (const circle& a, const circle& x, bool in);

double circles_d(x) (const circle& a, const circle& x, bool in);
```

dobjects.cpp

```
#include "objects.h"
 //----
pair<sle_f, fnmv_f> one_circle(circle a) {
         //----
fn_f f1 = [a] (const xn_t& x) -> double { return circle_f(a, x); };
         fnmv f f = {f1};
         //-
jnm_f j = [a] (const xm_t& x) -> matrix_t {
    matrix_t result(1, xm_t(2));
    result[0][0] = circle_d_x(a, x);
    result[0][1] = circle_d_y(a, x);
      return {get_sle_function(j, f), f};
pair<sle_f, fnmv_f> two_circles(circle a, circle b) {
         //-
fn f f1 = [a] (const xn_t& x) -> double { return circle_f(a, x); };
fn_f f2 = [b] (const xn_t& x) -> double { return circle_f(b, x); };
         fnmv_f f = {f1, f2};
        //-
jmm_f j = [a, b] (const xn t8 x) -> matrix_t {
    matrix t result(2, xn t(2));
    result[0][0] = circle_d_x(a, x);
    result[0][1] = circle_d_y(a, x);
                 result[1][0] = circle_d_x(b, x);
result[1][1] = circle_d_y(b, x);
        return result;
};
       return {get_sle_function(j, f), f};
//--
pair<sle_f, fnmv_f> two_circles_and_line(circle a, circle b, line l) {
         //-

fn_f f1 = [a] (const xn_t& x) -> double { return circle_f(a, x); };

fn_f f2 = [b] (const xn_t& x) -> double { return circle_f(b, x); };

fn_f f3 = [1] (const xn_t& x) -> double { return line_f(1, x); };
         fnmv_f f = {f1, f2, f3};
        //-
jnm_f j = [a, b, 1] (const xn t& x) -> matrix_t {
    matrix_t result(a, xn t(2));
    result(a)[a] = circle_dy(a, x);
    result(a)[a] = circle_dy(a, x);
                 result[1][0] = circle_d_x(b, x);
result[1][1] = circle_d_y(b, x);
                result[2][0] = line_d_x(1, x);
result[2][1] = line_d_y(1, x);
       return {get_sle_function(j, f), f};
pair<sle_f, fnmv_f> three_lines(line a, line b, line c) {
         //-
fn_f f1 = [a] (const xn_t \& x) \rightarrow double \{ return line_f(a, x); \}; \\ fn_f f2 = [b] (const xn_t \& x) \rightarrow double \{ return line_f(b, x); \}; \\ fn_f f3 = [c] (const xn_t \& x) \rightarrow double \{ return line_f(c, x); \}; 
         fnmv_f f = {f1, f2, f3};
        //--
jnm.f j = [a, b, c] (const xn.t& x) -> matrix_t {
matrix_t result(3, xn.t(2));
result[0][0] = line_d_x(a, x);
result[0][1] = line_d_y(a, x);
                result[1][0] = line_d_x(b, x);
result[1][1] = line_d_y(b, x);
                result[2][0] = line_d_x(c, x);
result[2][1] = line_d_y(c, x);
       return result;
};
        return {get_sle_function(j, f), f};
//--
pair<sle_f, fnmv_f> sin_and_line(point b) {
       // line l = {noint(0, 0), b}; fn.ffl = {1} (const xn.t&x) -> double {return line_f(1, x); }; fn.ffl = {1} (const xn.t&x) -> double {return line_f(1, x); }; fn.ffl = {2} = {1} (const xn.t&x) -> double { myasser(x.size() == 2); return x[1]-sin(x[0]); };
         fnmv_f f = {f1, f2};
        //-
jnm_f j = [1] (const xn_t& x) -> matrix_t {
    myassert(x.size() == 2);
    matrix_t result(2, xn_t(2));
    result[0][0] = line_d_x(1, x);
    result[0][1] = line_d_y(1, x);
                result[1][0] = -cos(x[0]);
result[1][1] = 1;
        return result;
};
         return {get_sle_function(j, f), f};
//-
pair<sle_f, fnmv_f> three_circles(circle a, circle b, circle c, bool a_in, bool b_in, bool
       \begin{aligned} & \text{Fose}_{-}, & \dots \\ & \text{c,in} \ ( & \text{ff} \ | \ \{ \text{a, ain} \ | \ \text{const} \ \text{xn}_1 \& x \} \ ) \ \ \text{double} \ \{ \text{ return circles} \ f(\text{a, x, ain}) \ \} \\ & \text{fn}_{-} \ f \ 1 = \{ \text{b, bin} \ | \ \text{const} \ \text{xn}_1 \& x \} \ - \ \text{double} \ \{ \text{ return circles} \ f(\text{b, x, bin}) \ \} \\ & \text{fn}_{-} \ f \ 3 = \{ \text{c, cin} \ | \ \text{cin} \ | \ \text{const} \ \text{xn}_1 \& x \} \ - \ \text{double} \ \{ \text{ return circles} \ f(\text{c, x, cin}) \ \} \\ & \text{for}_{-} \ f \ 3 = \{ \text{c, cin} \ | \ \text{circles} \ f(\text{c, x, cin}) \ \} \end{aligned}
        //-
jnm_f j = [a, b, c, a_in, b_in, c_in] (const xn_t& x) -> matrix_t {
matrix_t result(3, xn_t(3));
result[0][0] = circles d_x(a, x, a_in);
result[0][1] = circles_d_y(a, x, a_in);
result[0][2] = circles_d_r(a, x, a_in);
                 result[1][0] = circles_d_x(b, x, b_in);
```

```
result[1][1] = circles_d_y(b, x, b_in);
result[1][2] = circles_d_r(b, x, b_in);
              result[2][0] = circles_d_x(c, x, c_in);
result[2][1] = circles_d_y(c, x, c_in);
result[2][2] = circles_d_r(c, x, c_in);
     return {get_sle_function(j, f), f};
 //-
// sle_f three_circles_2(circle a, circle b, circle c, bool a_in, bool b_in, bool c_in) {
// }
//--
double dist(const point& a, const point& b) {
    return sqrt(sqr(a.x-b.x) + sqr(a.y-b.y));
}
//-
double line_f(const line& 1, const point& x) {
    const double relative = 1e-10;
    double length = dist(l.a, l.b);
       bool first_zero = fabs(1.b.x-1.a.x)/length < relative;
bool second_zero = fabs(1.b.y-1.a.y)/length < relative;</pre>
       myassert(!(first_zero && second_zero));
       if (first_zero)
    return x.x-l.a.x;
      else
if (second_zero)
return x.y-1.a.y;
       return (x.x-1.a.x)/(1.b.x-1.a.x) - (x.y-1.a.y)/(1.b.y-1.a.y);
//-
double line_d_x(const line& 1, const point& x) {
    const double relative = 1e-10;
    double length = dist(1.a, 1.b);
       bool first_zero = fabs(1.b.x-1.a.x)/length < relative;
bool second_zero = fabs(1.b.y-1.a.y)/length < relative;</pre>
      myassert(!(first_zero && second_zero));
       if (first_zero)
    return 1;
      else
if (second_zero)
return 0;
      return 0,
else
return 1.0/(l.b.x-l.a.x);
//-
double line_d_y(const line& 1, const point& x) {
    const double relative = 1e-10;
    double length = dist(1.a, 1.b);
       bool first_zero = fabs(1.b.x-1.a.x)/length < relative;
bool second_zero = fabs(1.b.y-1.a.y)/length < relative;</pre>
      myassert(!(first_zero && second_zero));
     if (first_zero)
return 0;
      else
if (second_zero)
    return 1;
      else return -1.0/(l.b.y-l.a.y);
//-
double circle f(const circle& a, const point& x) {
    return sqr(a.c.x-x.x) + sqr(a.c.y-x.y) - sqr(a.r);
//--
double circle_d_x(const circle& a, const point& x) {
   return -2*(a.c.x-x.x);
//---
double circle_d_y(const circle& a, const point& x) {
    return -2*(a.c.y-x.y);
//output circles f(const circle8 a, const circle8 x, bool in) {
    double result = sqr(a.c.x-x.c.x) + sqr(a.c.y-x.c.y);
    if (in)
    return result - sqr(a.r.fabs(x.r));
       return result - sqr(a.r+fabs(x.r));
//----double circles_d_x(const circle& a, const circle& x, bool in) {
    return -2*(a.c.x-x.c.x);
//----double circles_d_y(const circle& a, const circle& x, bool in) {
    return -2*(a.c.y-x.c.y);
//-
double circles_d_r(const circle& a, const circle& x, bool in) {
   if (in)
       return -2*(x.r-a.r*sign(x.r));
      else
return -2*(x.r+a.r*sign(x.r));
```

find_borders.h

```
#pragma once

#include 
#include 'vectoro'
#include 'logic.n'
#in
```

≝ find_borders.cpp

≝ vector2.h

draw.cpp

```
#include "logic.h"
#include "objects.h"
#include "find_borders.h"
using namespace twg:
//-
Polygon_d calc_circle(circle a, const FindBorders& brd) {
    vec2 pos = brd.toImg(vec2(a.c.x, a.c.y));
    double r = brd.toImg(a,r);
    return computeEllipse({r, r}).move(Point_d(pos.x, pos.y));
}
//
void draw line(ImageDrawing_aa& img, const FindBorders& brd, vec2 a, vec2 b) {
vec2 start, end;
start = a + (b-a) * (-5);
end = a + (b-a) * (5);
img.drawLine(brd.toImg(start), brd.toImg(end));
}
//----class Picture {
  }
virtual void init brd(FindBorders& brd) const {
    brd, process(vec2(0, 0));
    for (init i 0; i < m_solved.x_process.size(); ++i)
    brd.process(vec2(m_solved.x_process[i][0], m_solved.x_process[i][1]));
}</pre>
         }
virtual double getResidual(vec2 a) const {
   return length(m_f({ a.x, a.y }));
        return lengtn(m_r(t, a.x, e.y, j));
virtual ovid drow(ImageDrawing _aa& ing, const FindBorders& brd) const = 0;
vectorvectorvectorvector(auto& 1: m. solved. x, process)
result, ush_back(vec2(i[0], i[1]));
return result;
}
        xn_t get_x_0(void) const { return m_x_0; }
int get_iterations(void) const { return m_iterations; }
double get_residual(void) const { return m_residual; }
solved_t get_solved(void) const { return m_solved; }
tected:
        solved_t m_solved;
fnm_f m_f;
        xn_t m_x_0;
int m_iterations;
double m_residual;
//---class Picture_two_circles : public Picture
    white: Picture two_circles(circle a, circle b, xn_t x_0, bool is_numeric = false, const sqr_f& \hookrightarrow square_cast = square_cast_none, int iterations = 100, double residual = 1e-10): \hookrightarrow m_a(a), m_b(b) { init_object(bw_circles(m_a, m_b), x_0, is_numeric, square_cast, iterations, residual);
      void init_brd(FindBorders& brd) const {
  brd.process(m_a);
  brd.process(m_b);
  Picture::init_brd(brd);
                 d draw(ImageDrawing_aa& img, const FindBor
img.drawPolyline(calc_circle(m_a, brd));
img.drawPolyline(calc_circle(m_b, brd));
                                                                                                      ndBorders& brd) const {
private:
circle m_a, m_b;
//----class Picture_one_circle : public Picture
```

```
{
    public:
        Picture_one_circle(circle a, xn_t x_0, bool is numeric = false, const sqr_f& square_cast
        → = square_cast_none, int iterations = 100, double residual = 1e-10): m_a(a) {
            init_solve(one_circle(m_a), x_0, is_numeric, square_cast, iterations, residual);
        }
    }
       void init_brd(FindBorders& brd) const {
  brd.process(m_a);
  Picture::init_brd(brd);
}
                d draw(ImageDrawing_aa& img, const FindBorders& brd) const {
  img.setPen(Pen(1, Blue));
  img.drawPolyline(calc_circle(m_a, brd));
private:
circle m_a;
 //----
class Picture_two_circles_and_line : public Picture
class Fiture two circles and line(circle a, circle b, line c, xn t x 0, bool is numeric = 

→ false, const sqr.f8 square_cast = square_cast_none, int iterations = 180, double 
→ residual = le-10]: m_a(a), m_b(b), m_la(c.a.x, c.a.y), m_lb(c.b.x, c.b.y) (

init_aobve(two_circles_and_line(m_a, m_b, c), x_0, is_numeric, square_cast, 

→ iterations, residual);
        void init_brd(FindBorders& brd) const {
  brd.process(m_a);
  brd.process(m_b);
  Picture::init_brd(brd);
                d draw(ImageDrawing_aa& img, const FindBorders& brd) const {
  img.drawPolyline(calc_circle(m a, brd));
  img.drawPolyline(calc_circle(m b, brd));
  draw_line(img, brd, m_la, m_lb);
};
//---class Picture_three_circles : public Picture
   void init_brd(FindBorders& brd) const {
  brd.process(m_a);
  brd.process(m_b);
  brd.process(m_C);
  brd.process(m_C);
  picture::init_brd(brd);
        double getResidual(vec2 a) const {
    double r = fabs(sqrt(sqr(m_a.c.x-a.x)+sqr(m_a.c.y-a.y))-m_a.r);
    return length(m_f({a.x, a.y, r}));
                 | draw(ImageDrawing_aa& img, const FindBorders& brd) const {
    ing.drawPolyline(calc_circle(m_a, brd));
    ing.drawPolyline(calc_circle(m_b, brd));
    ing.drawPolyline(calc_circle(m_c, brd));
                 Pen oldPen = img_getPen();
oldPen.clr = Orange;
ing_setPen(oldPen);
img_drawPolyline(calc_circle(m_res_circle, brd));
 //----class Picture_three_lines : public Picture
   brd.process(m_a);
brd.process(m_b);
brd.process(m_c);
brd.process(m_c);
Picture::init_brd(brd);
        void draw(ImageDrawing aa& img, const FindBorders& brd) const {
  img.setPen(Pen(1, Blue));
                draw_line(img, brd, m_a, m_b);
draw_line(img, brd, m_a, m_c);
draw_line(img, brd, m_b, m_c);
}
private:
vec2 m_a, m_b, m_c;
 //----class Picture_sin_and_line : public Picture
   ublic:

Picture_sin_and_line(vec2 a, xn_t x_0, bool is_numeric = false, const sqr_f& square_cast

→ = square_cast_none, int iterations = 180, double residual = 1e-10) : m_a(a), m_b(0,
inti_solve(sin_and_line(point(a.x, a.y)), x_0, is_numeric, square_cast, iterations,

→ residual);
        void init brd(FindBorders& brd) const {
                brd.process(m_a);
brd.process(m_b);
brd.process(vec2(-3, -3));
Picture::init_brd(brd);
        void draw(ImageDrawing_aa& img, const FindBorders& brd) const {
    draw_line(img, brd, m_a, m_b);
                // Purcyes CHByCOMBy
vec2 last;
for (int i = 0; i < 1800; ++i) {
    double x = (i - 500.0) / 100.0;
    double not sin(x);
    vec2 resin(x);
    vec2 resin(x);
    if i = (n) = (x, y);
    if i = (n) = (x, y);
    last = current;
}
private:
vec2 m_a, m_b;
//-
void draw_picture(const Picture& pic, wstring filename, int pic_size) {
const double step_count = 20;
FindBorders brd(pic_size - 40, 20, true);
pic.init_brd(brd);
brd.finish();
        // Создание изображения
Point_i size(brd.getCalculatedSize().x, brd.getCalculatedSize().y);
ImageDrawing_aa img(size);
        vector<vector<double>> mas(size.x, vector<double>(size.y));
img.clear(white);
       // Заполняем массив невязкой по всем координатам double maxi = .18000000000000; for (int i = 0; i < size, v; i++) { maxif [1] = p; j < size, v; j++) { maxif [1] = pi, getResidual (prd.fromImg(vec2(i, j))); min1 = min(min1, max[i][j1); max1 = max(max1, max[i][j1);
```

```
// Deryon Ec wopmenosament rower us массива for (int $ = 0; < $120.5; int); for (int); for (
                  }
if (ya.x >= 0 && ya.x <= size.x) {
    ya.y = -1;
    yb.y = size.y;
    img.drawLine(ya, yb);
}
                      img.setPen(Pen(2, Blue));
pic.draw(img, brd);
                     // Pucyem_nuhuu поиска решения
auto process = pic.getProcess();
for (int i = 0; i < process.size()-1; i++) {
   auto a = brd.tolmg(process[i]);
   auto b = brd.tolmg(process[i+1]);

                                         img.setPen(Pen(3.5, setAlpha(Green, 100)));
img.drawLine(a, b);
                     // Рисуем точки поиска решения
for (int i = 0; i < process.size(); i++) {
    auto a = brd.toImg(process[i]);</pre>
                                       img.setBrush(Brush(setAlpha(twg::Miku, 200)));
img.drawPolygon(computeEllipse(Point_d(4, 4)).move(a));
                      saveToBmp(&img, filename + L".bmp");
                     // ТОDO добавить сюда вывод в файл процесса ofstream fout(filename + L^{\prime\prime\prime}.dat^{\prime\prime\prime});
                      auto solved = pic.get_solved();
fout << "k\tbeta\tresidual\t";
if (solved.point.size() == 2)
    fout << "x\ty" << endl;</pre>
                fout << setprecision(10) << fixed;
fout << "# x 0 = " << pic.get_x@() << end1;
fout << "# max_iter = " << pic.get_iterations() << end1;
fout << setprecision(2) << scientification << continue << pic.get_residual() << end1;
fout << setprecision(2) << scientification << pic.get_residual() << end1;
                     fout << endl << "# ":
                     swith (solved exit_type) {

case EXIT_FER: four < or "Fait by iterations" < end1; break;

case EXIT_FIRE four < or "Fait by residual" < end1; break;

case EXIT_SIEP: four < "Fait by step" < end1; break;

case EXIT_BETA: four < "Fait by beta" < end1; break;

case EXIT_BETA: four < "Fait by beta" < end1; break;

case EXIT_BETA: four < "Fait by beta" < end1; break;
                     . fout << "# iter = " << pic.get_solved().iterations << endl; fout << setprecision(2) << scientific; fout << "setsidual =" << pic.get_solved().residual << endl; fout << "setsidual =" << pic.get_solved().residual << endl; fout << setprecision(10) << fixed; fout << "mile sesult point = " << pic.get_solved().point << endl; fout << "mile sesult point = " << pic.get_solved().point << endl; fout << "mile sesult point = " << pic.get_solved().point << endl; four << mile sesult point = " << pic.get_solved().point << endl; four << mile sesult point = " << pic.get_solved().point << endl; four << mile sesult point = " << pic.get_solved().point << endl; four << mile sesult point = " << pic.get_solved().point << endl; four << mile sesult point = " << pic.get_solved().point << endl; four << mile sesult </ >
                     fout.close():
      int CALLBACK WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int
                     nCmdShow) {
const double required_residual = 1e-10;
const int maxiter = 30;
#ifdef_DEBUG
int_pic_size = 50;
                     #else
int pic_size = 700;
#endif
                                                                                                                                                           сти метода в зависимости от размера шага при взятии производ
// ##neer variety | ##n
                      auto make_images = [&](bool is_numeric, wstring append) {
   /*{
                                                   {
    circle a(0, 0, 1), b(5, 0, 1), c(10, 5, 5);
    Picture_three_circles pic(a, b, c, false, false, false, { -1, -1, 13 },
    eric, square_cast_none, 100, 1e-10);
    draw_picture(pic, L"img/three_circles_4lab" + append, pic_size);
                                                        o draw_three_lines = [\&](int no, const sqr_f& sq) { vec2 a(0, 0), b(1, 2), c(3, 1); Picture_three_lines_pic(a, b, c, { -3, -3 }, is_numeric, sq, maxiter,

> required_residual);
draw_picture(pic, L"img/three_lines_4lab_" + to_wstring(no) + append, pic_size);
                                         }:
                                                  circle a(0, 0, 1), b(1, 0.7, 1.2); // Пересекаются в двух точках Picture_two_circles pic(a, b, { -1, 0.5 }, is_numeric, square_cast_none, maxiter,
                                                         → required_residual);
draw_picture(pic, L"img/two_circles_1_4lab" + append, pic_size);
                                                   circle a(0, 0, 0.8), b(sqrt(2.0) / 2, sqrt(2.0) / 2, 0.2); // Пересекаются в
                                                                         // Начальное приближение лежит на оси симметрии
Picture_two_circles pic(a, b, { 0.156405, 0.974966 }, is_numeric,
—> square_cast none, maxier, required_residual);
draw_picture(pic, L*img/two_circles_2_i_4lab* + append, pic_size);
```