EE2023 Signals & Systems Quiz Semester 2 AY2018/19

Date: 7 March 2019 Time Allowed: 1.5 hours

Instructions:

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz. However, you are allowed to bring a help sheet comprising one single sheet of paper of A4 size.
- 3. Tables of formulas are given on Pages 15 and 16.
- 4. Programmable and/or graphic calculators are not allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :	 	
Matric #:		
Group:		
1 —	 	

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q1. The signal x(t) is shown in Figure Q1(a).

(a) Determine the Fourier transform, X(f), of x(t).

(4 marks)

(b) The periodic signal, $x_p(t)$, can be obtained by replicating x(t) at a period of 10 seconds as shown in Figure Q1(b). Obtain an expression for $x_p(t)$ in terms of x(t) and the Dirac δ -function. (1 marks)

(c) Determine the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$.

(4 marks)

(d) Determine the Fourier series coefficients, $X_{p,k}$, of the periodic signal $x_p(t)$.

(1 marks)

Q1. ANSWER

Q1. ANSWER ~ continued

- Q2. A lowpass audio signal, x(t), with a bandwidth of 10 kHz, is modulated to obtain the signal $x_m(t) = x(t)\cos(2000000\pi t)$. This modulated signal, $x_m(t)$, is then sampled at a frequency of f_s Hz to give the sampled signal $x_s(t)$.
 - (a) What is the Nyquist frequency?

(1 mark)

(b) Determine the Fourier transform of the sampled signal, $X_s(f)$.

(4 marks)

- (c) If the sampling frequency is 1 MHz
 - i. Sketch the magnitude spectrum of the sampled signal $|X_s(f)|$.

(3 marks)

ii. Can the signal $x_m(t)$ be recovered from the sampled signal $x_s(t)$, and if so explain how.

(2 marks)

Q2. ANSWER

Q2. ANSWER ~ continued

Q3. The Fourier Series expansion of a signal, x(t), that is produced when two keys on a piano are pressed simultaneously is

$$x(t) = 3e^{-j\left(880\pi t + \frac{\pi}{6}\right)} - 2.5 je^{-j(830\pi t)} + 2.5 je^{j830\pi t} + 3e^{j\left(880\pi t + \frac{\pi}{6}\right)}.$$

(a) What is the fundamental period of x(t)?

(2 marks)

(b) Draw the magnitude and phase spectrum of x(t). Use the Fourier Series index to label the x-axis of the graphs.

(5 marks)

(c) Determine the average power of x(t).

(2 marks)

(d) The fundamental frequencies in hertz of notes generated by a theoretically ideal piano obey the following equation

$$440\times2^{\frac{n}{12}}$$

where n is an integer. Which frequency component in x(t) is not in tune?

(1 mark)

Q3. ANSWER

Q3. ANSWER ~ continued

Q4. Consider the signal, x(t), with its Fourier Transform given by:

$$X(f) = \begin{cases} 4\cos 2\pi f & -0.25 \le f \le 0.25\\ 0 & \text{elsewhere} \end{cases}$$
 (4.1)

(a) Sketch X(f) and find x(t). (Hint: Write X(f) in terms of an appropriate rect(.) function.)

(5 marks)

(b) Suppose Y(f) is another signal given by :

$$Y(f) = X(f - f_0) + X(f + f_0).$$

X(f) is given in eqn. (4.1). Y(f) is then convolved with a carrier signal $c(t) = \cos 2\pi f_c t$ and subsequently low pass filtered (LPF) to output $\tilde{z}(t)$, as shown in Figure Q4-1 below.

Figure Q4-1: Signal Processing with an ideal LPF.

Z(f) = Y(f) * C(f), where * represents convolution.

i. Sketch Y(f) for $f_0 = 1$ Hz.

(1 mark)

ii. Find C(f).

(1 mark)

iii. Sketch Z(f) for $f_c = f_0 = 1$ Hz. Hence determine a suitable f_1 for which $\tilde{z}(t) = x(t)$.

(3 marks)

Q4. ANSWER

Q4. ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$
Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS				
	x(t)	X(f)		
Constant	K	$K\delta(f)$		
Unit Impulse	$\delta(t)$	1		
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$		
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$		
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$		
Triangle	$\operatorname{tri}\!\left(\frac{t}{T}\right)$	$T\operatorname{sinc}^2(fT)$		
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$		
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$		
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \left[\delta (f - f_o) + \delta (f + f_o) \right]$		
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta (f - f_o) - \delta (f + f_o) \Big]$		
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$		
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \mathcal{S}\left(f - \frac{k}{T}\right)$		

FOURIER TRANSFORM PROPERTIES				
	Time-domain	Frequency-domain		
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$		
Time scaling	$x(\beta t)$	$\frac{1}{ \beta } X \left(\frac{f}{\beta} \right)$		
Duality	X(t)	x(-f)		
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi f t_o)$		
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$		
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$		
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$		
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$		
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$		

Trigonometric Identities	
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$
$\cos(\theta) = 0.5 \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
$\sin(\theta) = -0.5j \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
$\sin^2(\theta) + \cos^2(\theta) = 1$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5\left[\cos(\alpha - \beta) + \cos(\alpha + \beta)\right]$
$\sin^2(\theta) = 0.5 [1 - \cos(2\theta)]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$
$\cos^2(\theta) = 0.5 [1 + \cos(2\theta)]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos[\theta + \tan^{-1}(S/C)]$

Complex Unit
$$(j)$$
 \rightarrow $(j = \sqrt{-1} = e^{j\pi/2} = e^{j90^{\circ}})$ $(-j = \frac{1}{j} = e^{-j\pi/2} = e^{-j90^{\circ}})$ $(j^2 = -1)$

Definitions of Basic Functions

Rectangle:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & \text{elsewhere} \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin(\pi t/T)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ -1; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$