

Convolutional Neural Networks

Andrey Sozykin @urfu.ru

Fully Connected Neural Networks

Fully Connected Neural Networks

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 800)	628000
dense_7 (Dense)	(None, 10)	8010

Total params: 636,010

Trainable params: 636,010

Convolutional Neural Network Principals

- Local perception
- Shared weights
- Dimensionality Reduction

Local Perception

Convolution

Kernel

-1	0	1
-2	0	2
-1	0	1

Convolutional Kernels

Blurring

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Edge Detection

0	-1	0
-1	4	-1
0	-1	0

Sharpening

0	-1	0
-1	5	-1
0	-1	0

Convolutional Kernels

Blurring

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Edge Detection

0	-1	0
-1	4	-1
0	-1	0

Sharpening

0	-1	0
-1	5	-1
0	-1	0

In convolutional neural network kernels are learned during training.

Shared weights

Dimensionality Reduction

- Recognition of objects with various sizes
- Presence of some feature is more important than the position of the feature in the image
- Subsampling layer:
 - Average
 - Max Pooling

Architecture of CNN

Kunihiko Fukushima. Neocognitron

Lenet-5

Back-Propagation Applied to Handwritten Zip Code Recognition / Y. LeCun, B. Boser, J. S. Denker et al. 1989

How layers of CNN work

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks (2011)

CIFAR-10 Dataset

airplane

dog

automobile

frog

bird

horse

cat

ship

1

deer

truck

CIFAR-10 Dataset

- Open dataset
 - https://www.cs.toronto.edu/~kriz/cifar.html
 - Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009.
- Images in CIFAR-10
 - Size 32x32
 - Color (RGB)
 - Training dataset 50 000 images (5 000 for each class)
 - Test dataset 10 000 images
 - Every image has only one object
 - Object belongs to only one class

CNN for CIFAR-10

Dropout in Keras

```
Input Dense Layer
model.add(Dense(800, input dim=784,
                activation="relu"))
# Dropout
model.add(Dropout(0.5))
# Output Dense layer
model.add(Dense(10,
                activation="softmax"))
```


Dimensionality Reduction

- A paper with the full description of Dropout:
 - Dropout: A Simple Way to Prevent Neural Networks from Overfitting. http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
- How to prevent overfitting:
 - 3 datasets: training, validation, testing
 - Dropout
 - Regularization
 - BatchNormalization

Thank you!