Devoir surveillé n°5

Barème

Calculs: 15 questions sur 2 points, total sur 30, ramené sur 5 points

Problème : 32 ou 26 questions sur 4 points, total sur 128 (v1) ou 104 (v2), ramené sur 15 points

Soit $\varphi: x \mapsto \frac{1}{10} \lfloor 10x \rfloor$, c le nombre de points obtenus sur la fiche de calculs et p le nombre de points obtenus sur les exercices, la note sur 20 est le réel $n = \min \left\{ \varphi \left(\frac{5c}{28} + \frac{15p}{\alpha} \right), 20 \right\}$ avec $\alpha = 80$ (v1) ou 76 (v2)

Statistiques

	Calculs	Problème (v1)	Problème (v2)	Précision (v1)	Précision (v2)
Minimum	4	25	27	36%	39%
Q1	10	33	46	54%	65%
Médiane	12	40	49	58%	76%
Q3	18	50	53	67%	81%
Maximum	26	66	64	86%	88%
Moyenne	13.9	41.5	48.9	59.3%	71.5%

Répartition des notes

Remarques générales

Exercice 1

- De nombreuses récurrences erronées ou approximatives.
- Question 1. L'expression de u_n en fonction de n ne doit dépendre que de n, et pas de réels λ et μ encore inconnus. Il fallait traiter la question jusqu'au bout...
- Question 3. Le fait que pour tout $n \in \mathbb{N}$, $u_{n+2} \ge u_{n+1}$ ne suffit pas à justifier que u est croissante; on peut en déduire que pour tout $n \in \mathbb{N}^*$, $u_{n+1} \ge u_n$, et donc que u est croissante à partir du rang 1.
- Question 4. Beaucoup d'erreurs. En procédant par récurrence double, et en obtenant le fait que si $u_n \ge n$ et $u_{n+1} \ge n+1$, alors $u_{n+2} \ge 2n+1$, il fallait remarquer que $2n+1 \ge n+2$ uniquement pour $n \ge 1$; le cas n=0 n'a pas été traité dans l'initialisation, puisque « $u_{n+2} \ge n+2$ »pour n=0, ce n'est pas $u_0 \ge 0$, mais $u_2 \ge 2...$
- Question 5. Il est tout de même dommage de passer à côté du fait que (a_n) est géométrique. Attention, il n'existe pas une seule suite géométrique de raison -1; le fait que pour tout $n \in \mathbb{N}$, $a_{n+1} = -a_n$ n'est pas suffisant pour affirmer que $a_n = (-1)^n$.
- Question 6. Vous pouviez éviter de faire une disjonction de cas suivant la parité de n en multipliant la relation par $(-1)^n$.

Exercice 2

- Question 1a. La loi utilisée ici est l'addition +, il convient donc d'utiliser plutôt les notations additives (et le vocabulaire adapté) : l'inverse d'un élément x pour + est appelé opposé de x et est noté -x. Attention à ne pas confondre les propriétés à vérifier pour montrer qu'il s'agit d'un sous-groupe et les propriétés que doit vérifier un groupe. Il ne s'agit pas ici de montrer que $\mathbb{Z}[\sqrt{7}]$ contient un élément neutre pour +, mais de montrer que 0 appartient à $\mathbb{Z}[\sqrt{7}]$. De même, on ne montre pas que tout élément $x \in \mathbb{Z}[\sqrt{7}]$ est inversible pour + (on le sait déjà : c'est un réel), mais que pour tout $x \in \mathbb{Z}[\sqrt{7}]$, son opposé -x (qu'on sait déjà exprimer) appartient à $\mathbb{Z}[\sqrt{7}]$.
- Question 1b. Le plus simple était de montrer ici que $\mathbb{Z}[\sqrt{7}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$. Si vous souhaitez utiliser la définition d'un anneau, attention à n'oublier aucune des propriétés à vérifier.
- Question 2b. Attention : la négation de (a,b)=(a',b') est $a \neq a'$ ou $b \neq b'$. Pour déduire directement de $(a-a')+(b-b')\sqrt{7}=0$ le fait que a-a'=b-b'=0, il faudrait avoir déjà montré que 0 s'écrit de manière unique sous la forme $c+d\sqrt{7}$ avec $c,d\in\mathbb{Z}$, ce qui n'est pas le cas.
- Question 2c. Ne pas oublier de vérifier que $\varphi(1) = 1$. Il n'est en revanche pas nécessaire de vérifier que $\varphi(0) = 0$, cela découle directement du fait que φ est un endomorphisme du groupe $(\mathbb{Z}[\sqrt{7}], +)$.
- Question 3d. Il ne faut pas oublier de vérifier que G est stable par \times . Par ailleurs, le fait que tout élément de G soit inversible (dans $\mathbb{Z}[\sqrt{7}]$) n'est pas suffisant : il faut vérifier que son inverse est bien un élément de G. Le plus simple ici était de montrer que G est un sous-groupe d'un groupe bien choisi, par exemple (\mathbb{R}^*, \times) ou $(\mathbb{Z}[\sqrt{7}]^\times, \times)$. Attention au fait que $(\mathbb{Z}[\sqrt{7}], \times)$ n'est pas un groupe! Il est encore une fois nécessaire d'utiliser le vocabulaire adapté suivant que vous utilisez la définition d'un groupe ou la notion de sous-groupe (loi de composition interne ou stabilité par la loi du groupe de référence, existence d'un élément neutre ou appartenance de l'élément neutre du groupe de référence, existence d'un
- Question 3e. Montrer que pour tout $(x, y) \in \mathbb{Z}^2$, si $x + y\sqrt{7} \in G$, alors $x^2 7y^2 = 1$, ne suffit pas à répondre à la question : cela prouve que les éléments de G correspondent à **des** solutions de l'équation, pas qu'il y a une équivalence entre la résolution de l'équation et la détermination des éléments de G.

inverse dans \underline{G} ou stabilité par passage à l'inverse) et de ne pas oublier d'évoquer l'associativité si vous utilisez

Exercice 3

la définition.

— Question 1. Attention à la cohérence de ce que vous écrivez : (f * (g * h))(n), ce n'est pas $\underbrace{f * ((g * h))(n)}$, qui n'aurait aucun sens.

Pour cette question, la deuxième écriture était largement plus facile à utiliser :

$$(f*(g*h))(n) = \sum_{a,b \in \mathbb{N}^*} f(a)(g*h)(b) = \sum_{a,b \in \mathbb{N}^*, ab = n} f(a) \sum_{c,d \in \mathbb{N}^*, cd = b} g(c)h(d) = \sum_{a,c,d \in \mathbb{N}^*, acd = n} f(a)g(c)h(d)$$

et de même pour ((f * g) * h)(n).

- Question 6. Le fait que (A, +) est un groupe abélien fait partie du cours, car A n'est rien d'autre que l'ensemble des suites complexes. Inutile donc de le redémontrer. Avec les questions précédentes, il ne restait que la distributivité de * sur + à démontrer, mais vous devez tout de même évoquer explicitement toutes les propriétés d'un anneau (oui, même celles qui ont été démontrées dans les questions précédentes). L'associativité de * et l'existence d'un élément neutre pour * doivent donc figurer dans votre réponse.
- Question 12. On vous demande de prouver l'existence d'un plus petit entier tel que « ... ». Soyez complet, sobre et efficace, et exhibez une partie de N non vide et majorée.

Vous ne pouvez pas vous contenter d'écrire que « $z^n = 1$ donc d'existe » (quel est le lien?).