Performance Modeling Of Computer Systems And Networks

Relazione Progetto 2017/18

Simone Falvo smvfal@gmail.com

Scaletta

Modello Concettuale

Modello di Specifica

Modello Computazionale

Modello Analitico

Risultati

Distribuzione Throughput Cloudlet

Modello Concettuale

Modello di Specifica: Variabili dello stato

```
\begin{array}{c|c} n_1^{clet}(t) & \text{numero di job di classe 1 nel cloudlet al tempo } t \\ n_2^{clet}(t) & \text{numero di job di classe 2 nel cloudlet al tempo } t \\ n_1^{cloud}(t) & \text{numero di job di classe 1 nel cloud al tempo } t \\ n_2^{cloud}(t) & \text{numero di job di classe 2 nel cloud al tempo } t \\ n_{setup}(t) & \text{numero di job in fase di setup al tempo } t \end{array}
```

Modello di Specifica: Variabili

 $s_{1,i}^{clet}$ tempo di servizio dell'i-esimo job di classe 1 eseguito nel cloudlet $s_{2,i}^{clet}$ $s_{1,i}^{cloud}$ $s_{2}^{cloud,i}$ tempo di servizio dell'i-esimo job di classe 2 eseguito nel cloudlet tempo di servizio dell'i-esimo job di classe 1 eseguito nel cloud tempo di servizio dell'i-esimo job di classe 2 eseguito nel cloud sclet intr.i tempo di servizio nel cloudlet dell'i-esimo job interrotto scloud intr.i tempo di servizio nel cloud dell'i-esimo job interrotto s;setúp tempo di setup dell'i-esimo job interrotto $c_1^{clet}(t)$ numero di job di classe 1 completati nel cloudlet al tempo t $c_2^{clet}(t)$ numero di job di classe 2 completati nel cloudlet al tempo t $c_1^{cloud}(t)$ numero di job di classe 1 completati nel cloud al tempo t $c_2^{cloud}(t)$ numero di job di classe 2 completati nel cloud al tempo t $n_{intr}(t)$ numero di job interrotti al tempo t

Modello di Specifica: Tempi di risposta

$$s_{j}^{clet} = \sum_{i=1}^{c_{j}^{clet}(t_{stop})} s_{j,i}^{clet}$$
 $j = 1, 2$

$$s_j^{cloud} = \sum_{i=1}^{c_j^{cloud}(t_{stop})} s_{j,i}^{cloud}$$
 $j = 1, 2$

$$s_{intr} = \sum_{i=1}^{n_{intr}(t_{stop})} (s_{intr,i}^{clet} + s_{intr,i}^{cloud} + s_{i}^{setup})$$

Modello di Specifica: Tempi di risposta

$$E[T_j^{clet}] = E[S_j^{clet}] = \frac{s_j^{clet}}{c_j^{clet}(t_{stop})}$$
 $j = 1, 2$

$$E[T_j^{cloud}] = E[S_j^{cloud}] = \frac{s_j^{cloud}}{c_j^{cloud}(t_{stop})}$$
 $j = 1, 2$

$$E[T_{intr}] = E[S_{intr}] = \frac{S_{intr}}{n_{intr}(t_{stop})}$$

Modello di Specifica: Tempi di risposta

$$E[T_1] = E[S_1] = \frac{s_1^{clet} + s_1^{cloud}}{c_1^{clet}(t_{stop}) + c_1^{cloud}(t_{stop})}$$

$$E[T_2] = E[S_2] = \frac{s_1^{clet} + s_1^{cloud} + s_{intr}}{c_2^{clet}(t_{stop}) + c_2^{cloud}(t_{stop})}$$

$$E[T] = E[S] = \frac{s_1^{clet} + s_1^{cloud} + s_2^{clet} + s_2^{cloud} + s_{intr}}{c_1^{clet}(t_{stop}) + c_1^{cloud}(t_{stop}) + c_2^{clet}(t_{stop}) + c_2^{cloud}(t_{stop})}$$

Modello di Specifica: Popolazione media

$$E[N_j^{clet}] = rac{1}{t_{stop} - t_{start}} \int_{t_{start}}^{t_{stop}} n_j^{clet}(t) dt$$
 $j = 1, 2$

$$E[N_j^{cloud}] = \frac{1}{t_{stop} - t_{start}} \int_{t_{start}}^{t_{stop}} n_j^{cloud}(t) dt$$
 $j = 1, 2$

$$E[N_{setup}] = \frac{1}{t_{stop} - t_{start}} \int_{t_{start}}^{t_{stop}} n_{setup}(t) dt$$

Modello di Specifica: Popolazione media

$$E[N_1] = E[N_1^{clet}] + E[N_1^{cloud}]$$

$$E[N_2] = E[N_2^{clet}] + E[N_2^{cloud}] + E[N_{setup}]$$

$$E[N_{clet}] = E[N_1^{clet}] + E[N_2^{clet}]$$

$$E[N_{cloud}] = E[N_1^{cloud}] + E[N_2^{cloud}]$$

$$E[N] = E[N_{cloud}] + E[N_{clet}] + E[N_{setup}]$$

$$= E[N_1] + E[N_2]$$

Modello di Specifica: Throughput

$$X_j^{clet} = rac{c_j^{clet}(t_{stop})}{t_{stop} - t_{start}}$$
 $j = 1, 2$
 $X_j^{cloud} = rac{c_j^{cloud}(t_{stop})}{t_{stop} - t_{start}}$ $j = 1, 2$
 $X_j = X_j^{clet} + X_j^{cloud}$ $j = 1, 2$
 $X_{clet} = X_1^{clet} + X_2^{cloud}$ $j = 1, 2$
 $X_{clet} = X_1^{clet} + X_2^{clet}$
 $X_{cloud} = X_1^{cloud} + X_2^{cloud}$
 $X = X_1 + X_2 = X_{clet} + X_{cloud}$

Modello di specifica: Interruzioni

$$P_{intr} = \frac{n_{intr}(t_{stop})}{c_2^{clet}(t_{stop}) + c_2^{cloud}(t_{stop})}$$

$$P_{intr}^{clet} = \frac{n_{intr}(t_{stop})}{n_{intr}(t_{stop}) + c_2^{clet}(t_{stop})}$$

Modello di Specifica: Eventi

```
Arrivo di un job i di classe 1:
if n_1^{clet}(t) = N then
   esecuzione su cloud
   s_1^{cloud} \leftarrow s_1^{cloud} + s_1^{cloud}
   n_1^{cloud}(t') \leftarrow n_1^{cloud}(t) + 1
else if n_1^{clet}(t) + n_2^{clet}(t) < S then
   esecuzione su cloudlet
   s_1^{clet} \leftarrow s_1^{clet} + s_1^{clet}
   n_1^{clet}(t') \leftarrow n_1^{clet}(t) + 1
else if n_2^{clet}(t) > 0 then
   interruzione e setup iob k di classe 2
   esecuzione su cloudlet job i di classe 1
   s_1^{clet} \leftarrow s_1^{clet} + s_1^{clet}
   s_2^{clet} \leftarrow s_2^{clet} - s_2^{clet,k}
   S_{intr} \leftarrow S_{intr} + S_{intr,k}
   s_{setup} \leftarrow s_{setup} + s_{setup,k}
   n_{setup}(t') \leftarrow n_{setup}(t) + 1
   n_1^{clet}(t') \leftarrow n_1^{clet}(t) + 1
   n_2^{clet}(t') \leftarrow n_2^{clet}(t) - 1
else
   esecuzione su cloudlet
   s_1^{clet} \leftarrow s_1^{clet} + s_1^{clet}
   n_1^{clet}(t') \leftarrow n_1^{clet}(t) + 1
end if
```

Modello di Specifica: Eventi

```
Arrivo di un job i di classe 2:
if n_1^{clet}(t) + n_2^{clet}(t) > S then
   esecuzione su cloud
   s_2^{cloud} \leftarrow s_2^{cloud} + s_2^{cloud,i}
   n_2^{cloud}(t') \leftarrow n_2^{cloud}(t) + 1
else
   esecuzione su cloudlet
   s_2^{clet} \leftarrow s_2^{clet} + s_2^{clet}
   n_2^{clet}(t') \leftarrow n_2^{clet}(t) + 1
end if
Partenza di un job di classe j dal cloudlet:
c_i^{clet}(t') \leftarrow c_i^{clet}(t) + 1
n_i^{clet}(t') \leftarrow n_i^{clet}(t) - 1
Partenza di un job di classe i dal cloud:
c_i^{cloud}(t') \leftarrow c_i^{cloud}(t) + 1
n_i^{cloud}(t') \leftarrow n_i^{cloud}(t) - 1
Setup:
esecuzione su cloud
s_2^{cloud} \leftarrow s_2^{cloud} + s_2^{cloud,i}
n_{setup}(t') \leftarrow n_{setup}(t) - 1
n_2^{cloud}(t') \leftarrow n_2^{cloud}(t) + 1
```

Modello Computazionale

Modello Computazionale: Next Event Simulation

```
typedef struct {
    double current;
    double next;
} clock;

struct job_t {
    unsigned long id;
    unsigned int class;
    unsigned int node;
    double service [5];
};

struct event {
    double time;
    struct job_t job;
    unsigned int type;
};
```

- prossimo arrivo di un job
- ▶ al più N completamenti di job nel cloudlet
- 0 o più completamenti di job nel cloud
- 0 o più completamenti di fase di setup dei job interrotti

Modello Computazionale: Flusso principale

```
/* initialize data structures */
/* .... */
while (queue.head != NULL) {
    e = dequeue_event(&queue);
    t.next = e->time:
    for (i = 0: i < 5: i++)
    t.current = t.next:
    switch (e->type) {
    case F ARRIVI .
        /* process an arrival */
        /* .... */
    case E SETUP:
        /* process an setup phase */
        /* .... */
    case E DEPART:
        /* process a departure */
        /* .... */
        /* write data to outfile */
        /* .... */
    default:
        handle_error("unknown event type");
```

```
-1 195534 117496 79 186891 72968
                                             0 1.416729 0.000000 0.000000 0.000000 0.000000
                                            1 0.000000 (3.156181) 0.000000 (9.557601) (2.238222
                                            2 0.000000 1.377074 0.000000 0.000000 0.000000
area[i] += (t.next - t.current) * n[i3 0.000000 (4.429047) 0.000000 (8.041242) (1.146876)
                                             4 0.000000 7.618982 0.000000 0.156040 1.184683
                                             5 0.000000 1.205712 0.000000 0.000000 0.000000
                                             6 0.174604 0.000000 0.000000 0.000000 0.000000
                                             7 0.000000 4.121710 0.000000 0.341923 0.913647
                                             8 0.000000 2.224049 0.000000 12.047245 1.172166
                                             9 1.834970 0.000000 0.000000 0.000000 0.000000
                                             10 0.000000 2.160139 0.000000 0.000000 0.000000
                                             11 0.000000 2.597631 0.000000 0.000000 0.000000
                                             12 0.000000 3.464442 0.000000 4.141120 0.686988
                                            13 1.700777 0.000000 0.000000 0.000000 0.000000
                                            14 0.000000 1.602881 0.000000 9.238383 0.855053
                                             15 2.839319 0.000000 0.000000 0.000000 0.000000
                                             16 0.000000 2.736957 0.000000 6.867536 0.652533
                                             17 0.000000 1.461287 0.000000 4.197081 0.301347
                                            18 0.000000 1.364863 0.000000 5.189565 2.463572
                                             19 0.000000 0.137472 0.000000 0.000000 0.000000
                                             20 4.589725 0.000000 0.000000 0.000000 0.000000
```

Modello Computazionale: Batch Means

```
// compute batch sizes
b = (c1\_clet + c2\_clet + c1\_cloud + c2\_cloud) / K:
b1 = (c1\_clet + c1\_cloud) / K;
b2 = (c2\_clet + c2\_cloud) / K;
b_clet = (c1_clet + c2_clet) / K;
b1\_clet = c1\_clet / K;
b2\_clet = c2\_clet / K;
b_{cloud} = (c1_{cloud} + c2_{cloud}) / K:
b1_cloud = c1_cloud / K:
b2\_cloud = c2\_cloud / K;
b_{intr} = c_{setup} / K:
// get data
while (fscanf(file, "%ld %lf %lf %lf %lf %lf\n", &id,
        &s1_clet . &s2_clet . &s1_cloud . &s2_cloud . &setup) != EOF) {
    s[id / b] += s1\_clet + s2\_clet + s1\_cloud + s2\_cloud + setup;
    if (s1_clet || s1_cloud) {
        s1[n1 / b1] += s1\_clet + s1\_cloud;
        n1++:
    if (s2_clet || s2_cloud) {
        s2[n2 / b2] += s2\_clet + s2\_cloud + setup;
        n2++
    if (s1_clet) {
        s1clet[n1_clet / b1_clet] += s1_clet:
        sclet[(n1\_clet + n2\_clet) / b\_clet] += s1\_clet;
        n1 clet++:
```

Modello Computazionale: Batch Means

```
if (s2_clet && !setup) {
        s2clet[n2_clet / b2_clet] += s2_clet;
        sclet [(n1_clet + n2_clet) / b_clet] += s2_clet;
        n2 clet++
    if (s1_cloud) {
        s1cloud[n1\_cloud / b1\_cloud] += s1\_cloud:
        scloud[(n1\_cloud + n2\_cloud) / b\_cloud] += s1\_cloud;
        n1_cloud++:
    if (s2_cloud) {
        s2cloud[n2_cloud / b2_cloud] += s2_cloud;
        scloud[(n1\_cloud + n2\_cloud) / b\_cloud] += s2\_cloud;
        n2_cloud++:
    }
if (setup) {
        sintr[n_intr / b_intr] += s2_clet + s2_cloud + setup:
        n_intr++:
// compute batch means
for (i = 0; i < K; i++) {
    s[i] /= b;
    s1[i] /= b1:
    s2[i] /= b2;
    s1clet[i] /= b1_clet;
    s2clet[i] /= b2_clet;
    sclet[i] /= b_clet;
    s1cloud[i] /= b1_cloud;
    s2cloud[i] /= b2_cloud;
    scloud[i] /= b_cloud;
    sintr[i] /= b_intr;
```

Modello Analitico: Catena di Markov

Modello Analitico: Probabilità Preliminari

Probabilità di Accettazione

$$\Pi_A = \sum_{\substack{n_1, n_2:\\n_1 + n_2 < S}} \pi_{(n_1, n_2)}$$

Probabilità di Soglia

$$\Pi_{S} = \sum_{\substack{n_1, n_2:\\n_1 + n_2 \ge S}} \pi_{(n_1, n_2)}$$

Probabilità di Blocco

$$\Pi_B = \sum_{\substack{n_1, n_2:\\ n_1 + n_2 = N}} \pi_{(n_1, n_2)}$$

Probabilità di Interruzione

$$\Pi_I = \sum_{\substack{n_1, n_2:\\n_1 + n_2 = N\\n_2 > 0}} \pi_{(n_1, n_2)}$$

 Probabilità di Interruzione a seguito di Accettazione

$$P_{intr}^{clet} = \frac{\lambda_1 \; \Pi_I}{\lambda_2 \; \Pi_A}$$

Probabilità di Interruzione di un job di classe 2

$$P_{intr} = \Pi_A P_{intr}^{clet}$$

Modello Analitico: Throughput

$$\lambda_1^{cloud} = \Pi_B \ \lambda_1$$
 $\lambda_2^{cloud} = \lambda_{setup} = (\Pi_S + P_{intr}) \ \lambda_2$

$$X_{j}^{cloud} = \lambda_{j}^{cloud}$$
 $j = 1, 2$
 $X_{cloud} = \lambda_{1}^{cloud} + \lambda_{2}^{cloud}$
 $X^{setup} = \lambda_{setup}$
 $X_{j} = \lambda_{j}$ $j = 1, 2$
 $X = \lambda$
 $X_{j}^{clet} = X_{j} - X_{j}^{cloud}$ $j = 1, 2$
 $X_{clet} = X - X_{cloud}$

Modello Analitico: Tempo di Risposta Locale

$$\begin{split} E[S_1^{cloud}] &= \frac{1}{\mu_1^{cloud}} \qquad E[S_2^{cloud}] = \frac{1}{\mu_2^{cloud}} \\ E[S_{cloud}] &= \frac{\lambda_1^{cloud}}{\lambda_1^{cloud} + \lambda_2^{cloud}} \ E[S_1^{cloud}] + \frac{\lambda_2^{cloud}}{\lambda_1^{cloud} + \lambda_2^{cloud}} \ E[S_2^{cloud}] \\ E[S_1^{clet}] &= \frac{1}{\mu_1^{clet}} \\ E[S_2^{clet}] &= \frac{1}{\mu_2^{clet}} - E[S_r] = \frac{1}{\mu_2^{clet}} - \frac{1}{\mu_2^{clet}} P_{intr}^{clet} = \frac{1}{\mu_2^{clet}} (1 - P_{intr}^{clet}) \\ E[S_{clet}] &= \frac{X_1^{clet}}{X_1^{clet} + X_2^{clet}} \ E[S_1^{clet}] + \frac{X_2^{clet}}{X_1^{clet} + X_2^{clet}} \ E[S_2^{clet}] \end{split}$$

Modello Analitico: Tempo di Risposta Globale

$$E[S_1] = (1 - \Pi_B) E[S_1^{clet}] + \Pi_B E[S_1^{cloud}]$$

$$E[S_{intr}] = (1 - \beta P_{intr}^{clet}) \frac{1}{\mu_{c}^{clet}} + E[S_{setup}] + E[S_{cloud}] \qquad \beta = 0.95$$

$$E[S_2] = \Pi_S E[S_2^{cloud}] + \Pi_A (1 - P_{intr}^{clet}) E[S_2^{clet}] + P_{intr} E[S_{intr}]$$

$$E[S] = \frac{\lambda_1}{\lambda_1 + \lambda_2} E[S_1] + \frac{\lambda_2}{\lambda_1 + \lambda_2} E[S_2]$$

Modello Analitico: Tempo di Risposta Globale

$$\begin{split} E[N_{j}^{cloud}] &= \lambda_{j}^{cloud} E[S_{j}^{cloud}] & j = 1, 2 \\ E[N_{cloud}] &= (\lambda_{1}^{cloud} + \lambda_{2}^{cloud}) E[S_{cloud}] \\ E[N_{1}^{clet}] &= \sum_{(n_{1}, n_{2}) \in E} n_{1} \ \pi_{(n_{1}, n_{2})} & E[N_{2}^{clet}] = \sum_{(n_{1}, n_{2}) \in E} n_{2} \ \pi_{(n_{1}, n_{2})} \\ E[N_{clet}] &= \sum_{(n_{1}, n_{2}) \in E} (n_{1} + n_{2}) \ \pi_{(n_{1}, n_{2})} \\ E[N_{j}] &= \lambda_{j} E[S_{j}] & j = 1, 2 \\ E[N] &= (\lambda_{1} + \lambda_{2}) E[S] \end{split}$$

Risultati: Percentuale Interruzioni

Risultati: Percentuale Interruzioni

	<i>S</i> = 20	S = 15	S=10	<i>S</i> = 5
R1	0.2394 ± 0.0003	0.3015 ± 0.0006	0.2153 ± 0.0004	0.0217 ± 0.0002
R2	0.2395 ± 0.0005	0.3004 ± 0.0004	0.2148 ± 0.0005	0.0229 ± 0.0003
R3	0.2381 ± 0.0003	0.2991 ± 0.0003	0.2140 ± 0.0007	0.0204 ± 0.0001
R4	0.2371 ± 0.0002	0.2996 ± 0.0005	0.2186 ± 0.0013	0.0234 ± 0.0003
R5	0.2416 ± 0.0005	0.3021 ± 0.0006	0.2129 ± 0.0005	0.0227 ± 0.0003
R6	0.2388 ± 0.0002	0.2983 ± 0.0003	0.2170 ± 0.0008	0.0222 ± 0.0004
R7	0.2392 ± 0.0008	0.2977 ± 0.0003	0.2130 ± 0.0009	0.0217 ± 0.0003
R8	0.2381 ± 0.0008	0.2991 ± 0.0003	0.2177 ± 0.0005	0.0213 ± 0.0002
R9	0.2376 ± 0.0003	0.2988 ± 0.0003	0.2171 ± 0.0005	0.0233 ± 0.0003
R10	0.2385 ± 0.0004	0.2997 ± 0.0005	0.2202 ± 0.0010	0.0231 ± 0.0003
EST	0.2280	0.2879	0.2108	0.0219
$\varepsilon_{\it max}$	0.0141 (5.8%)	0.0148 (4.9%)	0.0104 (4.7%)	0.0018 (7.6%)

Table: percentuale job di classe 2 interrotti

Risultati: Tempo di Risposta Cloudlet Classe 2

Risultati: Tempo di Risposta Cloudlet Classe 2

	<i>S</i> = 20	S=15	S=10	<i>S</i> = 5
R1	2.4074 ± 0.0153	1.5819 ± 0.0184	0.8151 ± 0.0187	0.4265 ± 0.0976
R2	2.4115 ± 0.0172	1.6057 ± 0.0200	0.8441 ± 0.0228	0.3558 ± 0.0302
R3	2.3949 ± 0.0164	1.5730 ± 0.0195	0.7968 ± 0.0199	0.4156 ± 0.1189
R4	2.4221 ± 0.0175	1.6014 ± 0.0173	0.8314 ± 0.0185	0.5185 ± 0.3093
R5	2.4125 ± 0.0172	1.5697 ± 0.0206	0.8237 ± 0.0203	0.4449 ± 0.2161
R6	2.3891 ± 0.0148	1.6024 ± 0.0186	0.8139 ± 0.0196	0.4307 ± 0.1697
R7	2.3929 ± 0.0173	1.6096 ± 0.0178	0.8136 ± 0.0173	0.4085 ± 0.1162
R8	2.3962 ± 0.0168	1.6057 ± 0.0194	0.8197 ± 0.0186	0.4874 ± 0.3175
R9	2.4046 ± 0.0167	1.6024 ± 0.0165	0.8232 ± 0.0241	0.4984 ± 0.2696
R10	2.4107 ± 0.0168	1.6139 ± 0.0155	0.8296 ± 0.0242	0.5865 ± 0.4225
EST	2.3904	1.6238	0.8425	0.3980
$\varepsilon_{\it max}$	0.0492 (2.0%)	0.0336 (2.1%)	0.0258 (3.2%)	0.6110 (104.2%)

Table: tempo di risposta cloudlet classe 2

Risultati: Tempo di Risposta Job Interrotti

Risultati: Tempo di Risposta Job Interrotti

	<i>S</i> = 20	S = 15	S=10	<i>S</i> = 5
R1	7.9146 ± 0.0437	7.1133 ± 0.0388	6.2006 ± 0.0381	5.7813 ± 0.1190
R2	7.9427 ± 0.0387	7.1144 ± 0.0374	6.2496 ± 0.0401	5.7846 ± 0.1207
R3	7.9467 ± 0.0458	7.1142 ± 0.0319	6.2580 ± 0.0342	5.7998 ± 0.1230
R4	7.8812 ± 0.0312	7.1434 ± 0.0361	6.2358 ± 0.0377	5.7744 ± 0.1065
R5	7.9354 ± 0.0398	7.0969 ± 0.0409	6.2184 ± 0.0373	5.8362 ± 0.1194
R6	7.9536 ± 0.0457	7.1355 ± 0.0343	6.2206 ± 0.0383	5.7372 ± 0.1102
R7	7.9649 ± 0.0358	7.1309 ± 0.0398	6.2275 ± 0.0441	5.7496 ± 0.1381
R8	7.9377 ± 0.0407	7.1149 ± 0.0343	6.1910 ± 0.0386	5.7802 ± 0.1045
R9	7.9410 ± 0.0397	7.1112 ± 0.0319	6.2276 ± 0.0365	5.7562 ± 0.1116
R10	7.9223 ± 0.0443	7.0844 ± 0.0381	6.2215 ± 0.0372	5.7570 ± 0.1319
EST	7.8016	7.0733	6.3310	5.9087
$\varepsilon_{\it max}$	0.1991 (2.5%)	0.1062 (1.5%)	0.1015 (1.6%)	0.0614 (1.1%)

Table: tempo di risposta job interrotti

Risultati: Tempo di Risposta Sistema Classe 2

Risultati: Tempo di Risposta Sistema Classe 2

	<i>S</i> = 20	S = 15	S = 10	<i>S</i> = 5
R1	4.5284 ± 0.0160	4.7433 ± 0.0154	4.7245 ± 0.0188	4.5652 ± 0.0192
R2	4.5307 ± 0.0174	4.7473 ± 0.0170	4.7371 ± 0.0178	4.5771 ± 0.0180
R3	4.5319 ± 0.0199	4.7458 ± 0.0185	4.7381 ± 0.0166	4.5755 ± 0.0149
R4	4.5020 ± 0.0154	4.7448 ± 0.0173	4.7129 ± 0.0150	4.5564 ± 0.0145
R5	4.5242 ± 0.0142	4.7526 ± 0.0181	4.7311 ± 0.0139	4.5737 ± 0.0170
R6	4.5180 ± 0.0176	4.7456 ± 0.0208	4.7295 ± 0.0171	4.5724 ± 0.0171
R7	4.5351 ± 0.0177	4.7340 ± 0.0164	4.7175 ± 0.0185	4.5548 ± 0.0187
R8	4.5303 ± 0.0159	4.7222 ± 0.0151	4.7116 ± 0.0144	4.5697 ± 0.0155
R9	4.5150 ± 0.0157	4.7396 ± 0.0168	4.7271 ± 0.0161	4.5679 ± 0.0180
R10	4.5113 ± 0.0155	4.7181 ± 0.0170	4.7093 ± 0.0148	4.5510 ± 0.0173
EST	4.3935	4.6165	4.6920	4.5644
ε_{max}	0.1593 (3.5%)	0.1542 (3.2%)	0.0629 (1.3%)	0.0307 (0.7%)

Table: tempo di risposta sistema classe 2

Risultati: Tempo di Risposta Sistema

Risultati: Tempo di Risposta Sistema

	<i>S</i> = 20	S=15	S=10	<i>S</i> = 5
R1	3.6266 ± 0.0096	3.7575 ± 0.0109	3.7460 ± 0.0129	3.6491 ± 0.0117
R2	3.6269 ± 0.0121	3.7588 ± 0.0110	3.7527 ± 0.0124	3.6548 ± 0.0117
R3	3.6307 ± 0.0133	3.7611 ± 0.0122	3.7564 ± 0.0114	3.6573 ± 0.0113
R4	3.6124 ± 0.0110	3.7579 ± 0.0110	3.7412 ± 0.0105	3.6458 ± 0.0106
R5	3.6218 ± 0.0097	3.7675 ± 0.0126	3.7478 ± 0.0103	3.6521 ± 0.0117
R6	3.6197 ± 0.0125	3.7606 ± 0.0124	3.7509 ± 0.0115	3.6550 ± 0.0107
R7	3.6344 ± 0.0119	3.7539 ± 0.0119	3.7427 ± 0.0120	3.6436 ± 0.0126
R8	3.6318 ± 0.0103	3.7459 ± 0.0095	3.7398 ± 0.0098	3.6555 ± 0.0092
R9	3.6193 ± 0.0109	3.7603 ± 0.0119	3.7530 ± 0.0114	3.6553 ± 0.0117
R10	3.6152 ± 0.0100	3.7426 ± 0.0102	3.7372 ± 0.0103	3.6406 ± 0.0115
EST	3.5465	3.6825	3.7286	3.6508
$\varepsilon_{\it max}$	0.0999 (2.7%)	0.0976 (2.6%)	0.0392 (1.0%)	0.0179 (0.5%)

Table: tempo di risposta sistema

Risultati: Throughput Cloudlet

Risultati: Throughput Cloudlet

	<i>S</i> = 20	S = 15	S=10	<i>S</i> = 5
R1	6.4255 ± 0.0042	5.2144 ± 0.0047	4.3108 ± 0.0047	4.0185 ± 0.0041
R2	6.4255 ± 0.0030	5.2254 ± 0.0028	4.3185 ± 0.0030	4.0179 ± 0.0040
R3	6.4510 ± 0.0057	5.2463 ± 0.0037	4.3204 ± 0.0030	4.0280 ± 0.0026
R4	6.4207 ± 0.0036	5.2228 ± 0.0013	4.2954 ± 0.0033	3.9881 ± 0.0062
R5	6.4219 ± 0.0057	5.2071 ± 0.0028	4.3302 ± 0.0032	4.0373 ± 0.0032
R6	6.4412 ± 0.0043	5.2138 ± 0.0023	4.2997 ± 0.0043	4.0044 ± 0.0066
R7	6.4387 ± 0.0041	5.2242 ± 0.0023	4.3089 ± 0.0064	4.0211 ± 0.0058
R8	6.4193 ± 0.0033	5.2277 ± 0.0019	4.3096 ± 0.0041	4.0186 ± 0.0035
R9	6.4276 ± 0.0050	5.2300 ± 0.0050	4.3028 ± 0.0041	3.9958 ± 0.0051
R10	6.4272 ± 0.0021	5.2336 ± 0.0038	4.3143 ± 0.0022	4.0019 ± 0.0046
EST	6.5922	5.4025	4.3858	4.0144
$\varepsilon_{\it max}$	0.1696 (2.6%)	0.1926 (3.7%)	0.0872 (2.0%)	0.0261 (0.6%)

Table: throughput cloudlet

Distribuzione Throughput Cloudlet

