JEE Main 2020 Paper - 4th September 2020 — Shift 1 (Maths)

EE24BTECH11016-Mokshith

1) If
$$A = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix}$$
, $(\theta = \frac{\pi}{24})$ and $A^5 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $i = \sqrt{-1}$, then which one of the following is not true?

a)
$$a^2 - d^2 = 0$$

b)
$$a^2 - c^2 = 1$$

c)
$$0 \le a^2 + b^2 \le 1$$

d)
$$a^2 - b^2 = \frac{1}{2}$$

- 2) Let $\lfloor t \rfloor$ denote the greatest integer $\leq t$. Then the equation in $x, \lfloor x \rfloor^2 + 2 \lfloor x + 2 \rfloor 7 = 0$ has:
 - a) exactly four integral solutions
 - b) infinitely many solutions
 - c) no integral solution
 - d) exactly two solutions
- 3) Let α and β be the roots of $x^2 3x + p = 0$ and γ and δ be the roots of $x^2 6x + q = 0$. If $\alpha, \beta, \gamma, \delta$ form a geometric progression. Then ratio (2q + p) : (2q - p) is:
 - a) 33:31
 - b) 9:7
 - c) 3:1
 - d) 5:3
- 4) Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) be a given ellipse, the length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, $\phi(t) = \frac{5}{12} + t t^2$, then $a^2 + b^2$ is equal to
 - a) 135
 - b) 116
 - c) 126
 - d) 145
- 5) A triangle *ABC* lying in the first quadrant has two vertices as **A**(1,2) and **B**(3,1). If $\angle BAC = 90^{\circ}$, and $\operatorname{ar}(\triangle ABC)$ is $5\sqrt{5}$ s units, then the abscissa of the vertex **C** is:
 - a) $1 + \sqrt{5}$
 - b) $1 + 2\sqrt{5}$
 - c) $2\sqrt{5} 1$
 - d) $2 + \sqrt{5}$
- 6) Let f(x) = |x 2| and $g(x) = f(f(x)), x \in [0, 4]$. Then $\int_0^3 (g(x) f(x)) dx$ is equal to:
 - a) $\frac{1}{2}$

- b) 0
- c) 1
- d) $\frac{3}{2}$
- 7) Given the following two statements:
 - $(S_1): (q \vee p) \to (p \leftrightarrow \sim q)$ is a tautology.
 - $(S_2) :\sim q \land (\sim p \leftrightarrow q)$ is a fallacy.

Then:

- a) only (S_1) is correct.
- b) both (S_1) and (S_2) are correct.
- c) both (S_1) and (S_2) are not correct.
- d) only (S_2) is correct.
- 8) Let $\mathbf{P}(3,3)$ be a point on the hyperbola, $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. If the normal to it at \mathbf{P} intersects the x-axis at (9,0) and e is its eccentricity, then the ordered pair (a^2, e^2) is equal to:
 - a) (9,3)
 - b) $(\frac{9}{2}, 2)$ c) $(\frac{9}{2}, 3)$ d) $(\frac{3}{2}, 2)$
- 9) Let $f(x) = \int \frac{\sqrt{x}}{(1+x)^2} dx$. Then f(3) f(1) is equal to:
 - a) $-\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{4}$ b) $\frac{\pi}{6} + \frac{1}{2} \frac{\sqrt{3}}{4}$

 - c) $-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$ d) $\frac{\pi}{12} + \frac{1}{2} \frac{\sqrt{3}}{4}$
- 10) A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be:
 - a) 65
 - b) 37
 - c) 29
 - d) 55
- 11) Let $u = \frac{2z+i}{z-ki}$, z = x + iy and k > 0. If the curve represented by Re(u) + Im(u) = 1intersects the y-axis at the points **P** and **Q** where PQ = 5, then the value of k is:
 - a) 4
 - b) $\frac{1}{2}$ c) 2

 - d) $\frac{3}{2}$
- 12) Let x_0 be the point of local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, where $\vec{d} = x\hat{i} + 2\hat{j} + 3\hat{k}, \vec{b} = x\hat{i} + 2\hat{j} + 3\hat{k}$ $-2\hat{i} + x\hat{j} - \hat{k}$, and $\overrightarrow{c} = 7\hat{i} - 2\hat{j} + x\hat{k}$. Then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ at $x = x_0$ is:
 - a) -22

- b) -4
- c) -30
- d) 14
- 13) Two vertical poles AB = 15 m and CD = 10 m are standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of BC and AD, then the height of **P** (in m) above the line AC is :
 - a) $\frac{20}{3}$ b) 5

 - c) $\frac{10}{3}$
 - d) 6
- 14) The mean and variance of 8 observations are 10 and 13.5, respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is:
 - a) 7
 - b) 3
 - c) 5
 - d) 9
- 15) The integral $\int \left(\frac{x}{x \sin x + \cos x}\right)^2 dx$ is equal to (where *C* is a constant of integration):

 - a) $\tan x \frac{x \sec x}{x \sin x + \cos x} + C$ b) $\sec x + \frac{x \tan x}{x \sin x + \cos x} + C$

 - c) $\sec x \frac{x \sin x + \cos x}{x \tan x} + C$ d) $\tan x + \frac{x \sec x}{x \sin x + \cos x} + C$