인공지능 (202120HY22687) 기말고사 (2021년 2학기)

담당교수: 정우환

1. 아래 표는 Binary classification모델의 성능을 측정한 confusion matrix이다. 모델 성능을 평가하는 지표인 Precision, recall, F1 score의 수식을 쓰시오. (9점)

		Predicted	
		class	
		True	False
Actual	True	TP	FN
Class	False	FP	TN

(Precision) =

(Recall) =

(F1-score) =

2. 다음과 같은 2차원 데이터들이 주어졌을 때 k = 3인 **K-Means 클러스터링** 알고 리즘을 사용했을 때 어떻게 데이터를 클러스터링하는지 동작 과정과 함께 작성하시오. 단, 클러스터의 Centroid는 평균(mean)을 사용하고, 데이터 간의 거리는 Euclidean Distance로 측정한다. (10점)

페이지 1 / 5

3. 다음과 같은 데이터셋으로 Decision tree classifier를 만들고자 한다. 다음 물음에 답하시오. (단, $\log_2 3 \approx 1.58$)

Label	Safety	Maintenance	Price
negative	Low	high	low
negative	Low	med	high
positive	High	low -	low
positive	high	high	low

- (1) 위 데이터의 Information I(D) 를 구하시오. (5점)
- (2) Safety attribute로 데이터를 나눴을때의 Information $I_{Safety}(D)$ 를 구하시오. (5점)
- (3) Safety attribute로 데이터를 나눴을때의 Information gain을 계산하시오. (5점)
- 4. 아래 그림은 Hidden layer가 하나 있는 Neural Network의 구조를 나타낸 그림이다. 다음 질문에 답하시오.

$$Parameters: \theta = \{W^{[1]}, b^{[1]}, w^{[2]}, b^{[2]}\}$$

Architecture:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \tanh z^{[1]}$$

$$z^{[2]} = w^{[2]^T}a^{[1]} + b^{[2]}$$

$$\hat{y} = a^{[2]} = \sigma(z^{[2]})$$

 $Loss: L(\hat{y}, y)$

Activation functions:
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
, $\tanh x = \frac{1-e^{-x}}{1+e^{-x}}$

- (1) 위 네트워크의 학습에 사용하는 Binary cross entropy loss $L(\hat{y},y)$ 의 정의를 쓰시오. (5점)
- (2) 다음 (partial) derivative를 계산하시오. (15점)

A.
$$\frac{d\sigma(x)}{dx} =$$

B.
$$\frac{\partial L(a^{[2]},y)}{\partial w_i^{[2]}} =$$
C.
$$\frac{\partial L(a^{[2]},y)}{\partial w_i^{[1]}} =$$

- (3) 각 모델파라미터의 Shape을 쓰시오. (8점)
- 5. Support vector machine(이하 SVM)은 서로 다른 두 class에 속한 dataset을 가장 큰 margin으로 분리하는 hyperplane을 찾는 문제이고 아래와 같이 정의할 수 있다.

Data : $\langle x_i, y_i \rangle$ for i = 1, ..., n where $x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}$ Goal : Finding a good separating hyperplane, $w^T x + b = 0$

다음 물음에 답하시오.

- (1) Margin의 길이를 구하시오. (5점)
- (2) 아래는 SVM의 문제를 constrained optimization problem으로 정의한 수식이다. *A, B*에 알맞은 수식을 구하시오. (5점)

$$\min_{w,b} A$$
Subject to B, $i = 1, 2, ..., n$

(3) 문제 (2)의 Optimization problem에 Soft margin을 추가한 버전에 대한 문제 정의를 작성하시오. (5점) 6. 다음 Pytorch Tensor X와 Y에 대하여 물음에 답하여라. (각 3점)

X: tensor([[2, 0], [3, 1]]]

Shape: [2, 2]

Y: tensor([[0, 1], [0, 4]]

Shape: [2, 2]

다음의 명령어를 수행했을 때 out1~out6에 저장된 Tensor를 쓰시오.

>> out1 = X.T

>> out2 = X[:,:-1]

>> out3 = Y.matmul(X)

>> out4 = X.view(1, -1)

>> _, out5 = torch.max(X, 1)

>> out6 = X.sum(0, keepdim=True))

7. Neural network를 이용해 Binary classification과 n-ary classification 문제를 풀때, 빈칸의 (A), (B)에 들어갈 적절한 값이 무엇인지 대답하라. (각 3점)

	Binary classification	n-ary classification
Class의 개수	2	n
Output activation vector의 차원 수	(A)	n
Output activation function	Sigmoid	(B)
Loss function	Binary cross entropy	Cross entropy

8. Q-learning에서 Discounted reward가 필요한 이유를 아래 길찾기 예제를 통해 구체적으로 설명하라. (10점)

s ₀ Start	s_1	s ₂	\$3
S ₄	Wall	\$5	Wall
s ₆	\$7	\$8	Wall
Wall	59	s_{10}	s ₁₁ Finish

업데이트 식: $Q(s,a) = r + \gamma \max_{a'} Q(s',a')$ where γ is a discount factor

Action space: {Up, Down, Left, Right}

- 9. 오른쪽 Transaction database에 대해 Apriori 알고리즘 으로 Frequent itemset을 찾고자 한다. Minimum support가 2일때, 다음 물음에 답하시오. (각 3점)
 - (1) Item하나로 이루어진 1-itemset 중에서 support가 2 이상인 'Freq 1-itemset'을 모두 나열하여라
- (2) Item 2개로 구성된 2-itemset 중에서 실제로 support 를 계산해야하는 itemset은 총 몇 개인가? 그 이유를 답하시오.

Database D

TID .	Items -
10	a, c, d, f
20	b, c, e
30	a, b, c, e,
40	b, e
50	a, f