Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1805 CALIBRATION DATE: 19-Jun-18 SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
` ,	,	` ,	, ,	` ,	` ,
22.0000	0.0000	0.00000	2654.35	0.00000	0.00000
1.0000	34.8276	2.97684	5325.98	2.97685	0.00001
4.5000	34.8082	3.28404	5527.80	3.28402	-0.00001
15.0000	34.7661	4.26611	6127.54	4.26609	-0.00001
18.5000	34.7573	4.61139	6324.52	4.61139	0.00001
24.0000	34.7475	5.16952	6630.16	5.16953	0.00001
29.0000	34.7424	5.69158	6903.35	5.69157	-0.00000
32.5001	34.7391	6.06406	7091.59	6.06406	-0.00000

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

