

Constraining primordial non-Gaussianity with cosmiological observatoin

Yin-Zhe Ma

University of KwaZulu-Natal, South Africa

$$b_{\rm E} = b_{\rm L} + 1$$

See also Dalal et al. 2008

f_NL Constraint:

- Peculiar velocity field data
- (Future) 21-cm intensity mapping
- (Future) Multi-tracer technique

f_NL Constraint:

- Peculiar velocity field data
- (Future) 21-cm intensity mapping
- (Future) Multi-tracer technique

$$cz=H_0r+v$$

Linear perturbation theory: (Peebles 1971)

Linear bias factor:

$$\vec{v}_{\rm g}(\vec{x}) = \frac{H_0 f_0}{4\pi} \int d^3 \vec{x}' \delta_{\rm m}(\vec{x}',t) \frac{(\vec{x}' - \vec{x})}{|\vec{x}' - \vec{x}|^3} \qquad 50$$

$$\delta_{\rm g} = b \delta_{\rm m} \qquad f \equiv \frac{a}{D_1} \frac{dD_1}{da} \qquad 50$$

$$\vec{v}_{\rm g}(\vec{x}) = \frac{H_0 \beta}{4\pi} \int d^3 \vec{x}' \delta_{\rm g}(\vec{x}',t) \frac{(\vec{x}' - \vec{x})}{|\vec{x}' - \vec{x}|^3} \qquad 50$$

$$\beta = \frac{f_0}{b} = \frac{f_0}{(\sigma_8^{gal}/\sigma_8)} \qquad -50$$

$$SGX \text{ [Mpc/h]}$$

$$\beta \sigma_8^{gal} = f_0 \sigma_8$$

$$\mathbf{v}(\mathbf{r}) = \frac{H_0 \beta}{4\pi} \int d^3 \mathbf{r}' \delta_{\mathbf{g}}(\mathbf{r}') \frac{\mathbf{r}' - \mathbf{r}}{|\mathbf{r}' - \mathbf{r}|^3}$$
$$- \frac{iH_0(f/b)}{(2\pi)^3} \int d^3 \mathbf{k} (\Delta b(k)) \delta_{\mathbf{m}}(\mathbf{k}) \frac{\mathbf{k}}{k^2} \exp(i\mathbf{k} \cdot \mathbf{r})$$

Dalal 2008:

$$\Delta b(k) = (b-1)f_{\rm NL}^{\rm local}A(k) \qquad A(k) = \frac{3\delta_{\rm c}(z)\Omega_{\rm m}h^2}{k^2T(k)} \left(\frac{H_0}{c}\right)^2$$

The extra term in the V(r) caused by non-Gaussianity will add more spatial correlation in the covariance matrix.

Data set	Model	β value	$\left f_{\rm NL}^{\rm local}\right $ value	$-\log L_{\min}$
A1SN	eta - $f_{ m NL}^{ m local}$	$0.53^{+0.15}_{-0.04}$	0.0 ± 25.7	681.7
	β -only	$0.65^{+0.07}_{-0.06}$		681.7
SFI++	eta - $f_{ m NL}^{ m local}$	$0.49^{+0.03}_{-0.05}$	26.6 ± 33.0	14159.1
	β -only	$0.49^{+0.04}_{-0.03}$		14159.1

(i) Radio sources from the NRAO VLA Sky Survey (NVSS), the quasar and MegaZ-LRG (DR7) catalogues of the SDSS, and the SDSS LRG redshift survey (Xia et al.(2011) found):

Comparing with others:

$$f_{\rm NL}^{\rm local} = 48 \pm 20 \; (1\sigma {\rm CL}). \tag{8}$$

(ii) Photometric SDSS data (Nikoloudakis et al. (2013)):

$$f_{\rm NL}^{\rm local} < 120 \ (84\%).$$
 (9)

(iii) SDSS-III (BOSS) DR9 (Ross et al. (2013)):

$$-45 < f_{\rm NL}^{\rm local} < 195 \ (2\sigma {\rm CL}).$$
 (10)

(iv) *Planck* CMB (2013):

$$-45 < f_{\rm NL}^{\rm local} = 2.7 \pm 5.8 \; (1\sigma {\rm CL}).$$
 (11)

Data set	Model	β value	$\left f_{\rm NL}^{\rm local}\right $ value	$-\log L_{\min}$
A1SN	eta - $f_{ m NL}^{ m local}$	$0.53^{+0.15}_{-0.04}$	0.0 ± 25.7	681.7
	β -only	$0.65^{+0.07}_{-0.06}$		681.7
SFI++	eta - $f_{ m NL}^{ m local}$	$0.49^{+0.03}_{-0.05}$	26.6 ± 33.0	14159.1
	β -only	$0.49^{+0.04}_{-0.03}$		14159.1

f_NL Constraint:

- Peculiar velocity field data
- (Future) 21-cm intensity mapping
- (Future) Multi-tracer technique

No time to mention foreground analysis, see Richard Shaw's talk.

Bias

$$b_{\mathrm{HI}}^{\mathrm{NG}}(z,k) = b_{\mathrm{HI}}(z) + \Delta b_{\mathrm{HI}}(z,k)$$

$$\Delta b_{\mathrm{HI}}(z,k) = \frac{1}{\rho_{\mathrm{HI}}(z)} \int_{M_{\mathrm{min}}}^{M_{\mathrm{max}}} \mathrm{d}M$$

$$\times \frac{\mathrm{d}n}{\mathrm{d}M}(M,z) M_{\mathrm{HI}}(M) \Delta b(M,z,k) M, z),$$

$$\Delta b^{\mathrm{MV}}(M,z,k) = 2f_{\mathrm{NL}} \left(\frac{\delta_{\mathrm{c}}^2(z)}{\sigma_{\mathrm{p}}^2} \right) \frac{\mathcal{F}(k)}{\mathcal{M}_R(k)}$$

$$\mathcal{F}(k) = \frac{1}{16\pi^2 \sigma_R^2} \int \mathrm{d}k_1 k_1^2 \mathcal{M}_R(k_1)$$

$$\times \int_{-1}^1 \mathrm{d}\mu \mathcal{M}_R(k_2) \frac{B_{\phi}(k_1,k_2,k)}{P_{\phi}(k)}$$

- S. Matarrese and L. Verde, 2008
- N. Dalal, et al., 2008
- Y.-C. Li and YZM, 2017, ArXiv: 1701.00221

Yi-Chao Li and YZM, 2017, ArXiv: 1701.00221 C. Fedeli et al., 2011, MNRAS

	FAST	SKA-I	BINGO
$ u_{\min}[\mathrm{MHz}]$	1050	350	960
$\nu_{ m max} [{ m MHz}]$	1350	1050	1260
$\Delta \nu [{ m MHz}]$	10	10	10
$n_ u(n_z)$	30	70	30
$D_{ m dish}[{ m m}]$	300	15	25
$N_{ m ant} imes N_{ m feed}$	1×19	190×1	1×60
$t_{\mathrm{TOT}}[\mathrm{yr}]$	1	1	1
$T_{\rm rec}[{ m K}]$	25	28	50
$S_{\text{survey}}[\text{deg}^2]$	< 24000	< 25000	2500

Yi-Chao Li and YZM, 2017, ArXiv: 1701.00221

		Current Configuration		Extentions			
	Planck 2015	FAST	SKA-I	BINGO	SKA-I 2yr [†]	FAST 2yr ^{††}	FAST low [‡]
Local	5	9.5	0.54	17	0.43	7.4	1.6
Equilateral	43	44	86	100	66	32	53
Orthogonal	21	75	25	128	20	59	39
Enfolded	23-23	94	43	164	36	70	64

[†] SKA-I with two-year observation; †† FAST with two-year observation; ‡ FAST with low frequencies range from 350MHz to 1050MHz

Extended to 2-years, extended to 250 MHz receivers

Conclusion

- Understanding the primordial fluctuation is a crucial way of understanding the initial condition of the Universe
- Besides the CMB measurement on bispectrum, the measurement from cosmic peculiar velocity field, and 21-cm intensity mapping can provide complementary constraints on f NL.
- By using the extra correlation between residual velocity on different directions, we can constrain the local shape of f_NL to be less than 25.7 at 1-sigma CL.
- We forecasted that the future constraints on f_NL from singledish intensity mapping method on large scales can be comparable with Planck satellite, provides a complementary method to access primordial non-Gaussianity.
- Complimentary method (e.g. Multi-tracer) has also been developed to overcome the cosmic variance problem, improving precision of f_NL measurements.

