ONLINE Final Project (Part 1)

CS 3410 Systems Programming

Due Date: Tuesday Mar 24, 2020 at 11:50 PM

Project: Simulated Signal Analyzer

Background Information

You will build a simulated sensing device that will be capable of running some basic analytics on the (simulated) information. There will be three main parts to this system:

- 1. data collection, pre-processing, and communication;
- 2. data processing and storage;
- 3. data analysis.

You will use the following hardware setup:

- One Arduino
- One Computer with (real or virtual) Ubuntu OS.
- Serial connection between the two.

Your Arduino will send sensor readings to a host program (written in C) running on a UNIX-like system. The two programs will communicate over the Arduino's serial connection. The host program will store a histogram-like structure of readings which can be easily queried and outlier readings can be found. In addition, you will build a database of relevant information for possible data analysis.

We will build this system in parts over the remainder of the semester.

Specification (Part 1)

You will be given an array of simulated sensor readings that you will send in a loop from the Arduino to the host computer through Serial. These should be sent at a rate of one sensor reading every second. Whenever the Arduino is done sending the reading, you should light an LED (and turn it off otherwise).

You will also write a C program to run on a UNIX host that communicates with the Arduino. This program should print the fake sensor reading that was sent from the Arduino (once per second), and a menu of options for the user to input. The command prompt should support the following commands:

- blink <X>: Cause the onboard LED for the arduino to blink X times during a second.
- pause: Pause the Arduino sensing program and keep the LED on.
- resume: Cause the Arduino to send a fake sensor reading to the host, print it on the terminal, and blink the LED once a second after the reading is sent. Blinking once a second should be the default mode of the system
- exit: Exits the host program

Deliverables and Grading

- Push your code to GitHub (a link will be posted on Blackboard) before the deadline. The following things should be in a directory named part1:
 - One Arduino sketch
 - The C source code (and appropriate header files) of your host program. Be sure to include a Makefile so the grader can build your code. Do not forget, your code MUST compile with the following gcc flags: -std=c99 -Wall -pedantic -Werror (this might be updated later on). You will lose credit if your code compiles, but only without those extra flags.
- You must create a one page Write-Up explaining how your protocol works in a way that is easily followed by a casual reader. You may use state-diagrams or flowcharts to illustrate the steps followed.
- Be sure to write clear and concise commit messages outlining what has been done.
- Write clean and simple code, using comments to explain what is not intuitive. If the grader cannot understand your code, you will lose credit on the assignment.
- Be sure your code compiles! If your sketches do not compile, you will receive **no credit**. It is better to submit a working sketch that only does a subset of the requirements than a broken one that attempts to do them all.

Table	1.	Grading	R_{11}	bric
Table	т.	Grading	1 tu	σ_{LL}

Category	Percentage
Demo	70%
Compilation with -Wall -pedantic -Werror	10%
Code Quality (including Makefile)	10%
$\overline{ ext{W}}$ rite- $\overline{ ext{Up}}$	10%

An example sequence of command output is shown in figure 1:

```
pfrank@ubuntu: ~/cs3410/s-20/onlineProject/part1
File Edit View Search Terminal Help
[1]+ Done
pfrank@ubuntu:~/cs3410/s-20/onlineProject/part1$ gcc -std=c99 -Wall
-pedantic -Werror -o hostComms hostComms.c
pfrank@ubuntu:~/cs3410/s-20/onlineProject/part1$ ./hostComms
->resume
USER INPUT: resume
Resuming...
ARDUINO RESPONSE: 0.953
>pause
USER INPUT: pause
Pausing...
No data returned
->blink 4
USER INPUT: blink 4
Blinking ...
No data returned
->resume
USER INPUT: resume
Resuming.
ARDUINO RESPONSE: 0.819
USER INPUT: resume
Resuming...
ARDUINO RESPONSE: 0.500
>exit
USER INPUT: exit
Now exiting...
pfrank@ubuntu:~/cs3410/s-20/onlineProject/part1$
```

Figure 1: Figure 1: Example output in the host terminal