Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 4 "Линейная фильтрация"

по дисциплине Частотные методы

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

1 Задание. Спектральное дифференцирование

1.1 Исходный график

Рассмотрим сигнал $y = \sin(t)$ на промежутке [-100; 100] (рисунок 1).

 $Puc.\ 1.\ Исходный график <math>f = \sin(t).$

Будем также рассматривать часть исходного графика на промежутке [-10;10] (рисунок 2) для большей наглядности.

 $Puc.\ 2.\ Часть\ исходный\ график\ f=\sin(t).$

1.2 Добавление шума

Добавим к исходному графику функции небольшой шум вида

$$a \cdot (rand(size(t)) - 0.5)$$

результат представлен на рисунках 4 и 5.

Рис. 3. Зашумленный график.

Рис. 4. Часть зашумленного графика.

1.3 Численная производная

Найдем *численную производную* от зашумленного сигнала, используя формулу поэлементного дифференцирования

$$\frac{y(k+1) - y(k)}{dt} \tag{1}$$

Puc. 5. Численная производная зашумленного графика функции при a=1 на полном промежутке [-100;100].

Несмотря на то, что исходный график функции можно узнать при добавлении шума с коэффициентом a=1, график численной производной в этом случае практически неузнаваем (рисунки 5-6), но при a=0.1 очертания косинуса хорошо заметны и на графике численной производной (рисунок 7).

 $Puc.\ 6.\ Численная\ производная\ зашумленного\ графика\ функции\ при\ a=1.$

Puc. 7. Численная производная зашумленного графика функции при a=0.1.

1.4 Спектральная производная

Найдем спектральную производную от зашумленного сигнала. Для этого с помощью численного интегрирования (numpy.trapz) найдем Фурьеобраз сигнала и домножим его на ωi , так как $F\{f'(t)\} = \omega i F\{f(t)\}$, для того, чтобы получить Фурье-образ производной.

После чего выполним обратное преобразование Фурье для получения спектральной производной.

График спектральной производной зашумленного сигнала при a=1

 $Puc. \ 8. \ Cne кmpaльная производная зашумленного графика функции <math>npu \ a=1.$

На промежутке [-10;10] графика заметно, что спектральная производная сильнее приближает точную производную $f'(t)=\cos(t)$ (рисунок 10) исходного графика функции по сравнению с численной производной. Причем как в случае a=1, так и a=0.1. Спектральная производная отличается меньщим количеством шумов, чем численная.

Вывод: применение Фурье-преобразования может помочь получить более точную производную функции зашумленного сигнала.

 $Puc.\ 9.\ Cnekmpaльная\ npouseoдная\ зашумленного\ гpaфика\ функции\ npu\ a=0.1.$

Рис. 10. График истинной производной.

 $Puc.\ 11.\ \Gamma paфик\ \Phi ypьe-образа зашумленной функции <math>npu\ a=0.1.$

 $Puc.\ 12.\ \Gamma paфик\ \Phi ypье-образа зашумленной функции <math>npu\ a=1.$

2 Задание. Линейные фильтры.

3 Задание. Сглаживание биржевых линий.

Для визуализации был написан код на языке Python. Код расположен на $\mathbf{Git}\mathbf{Hub}$.