Data Science Project Training Report

on

Machine Learning Domain Projects for Regression, Classification and Clustering using Various Datasets

BACHELOR OF TECHNOLOGY

Session 2021-22 in

Information Technology

By Harshit Kumar Rai 2000321540028

SANJAY SINGH ASSISTANT PROFESSOR

DEPARTMENT OF INFORMATION TECHNOLOGY ABES ENGINEERING COLLEGE, GHAZIABAD

AFFILIATED TO
DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, U.P., LUCKNOW
(Formerly UPTU)

Student's Declaration

I / We hereby declare that the work being presented in this report

"Machine Learning Domain **Projects** entitled for

Regression, Classification and Clustering using Various

Datasets" is an authentic record of my / our own work carried out

under the supervision of Dr. /Mr. /Ms. Sanjay Singh, Assistant

Professor, Information Technology.

Date: 30/06/2022

Signature of student

Name: Harshit Kumar Rai (Roll No.: 2000321540028)

Department: CSE(DS)

This is to certify that the above statement made by the candidate(s) is correct to

the best of my knowledge.

Signature of HOD

Dr. Amit Sinha

Information Technology

Signature of Teacher

Sanjay Singh

Assistant Professor

Information Technology

Date:.....

Table of Contents

S. No.	Contents	Page No.
	Student's Declaration	2
Chapter 1:	Regression	4
1.1:	Introduction	4
1.2:	Purpose Methodology	5
1.3:	Result	11
1.4:	Conclusion	11
1.5:	Reference(if any)	11
Chapter 2:	Classification	12
2.1:	Introduction	12
2.2:	Purpose Methodology	13
2.3:	Result	17
2.4:	Conclusion	17
2.5:	Reference(if any)	17
Chapter 3:	Clustering	18
3.1:	Introduction	18
3.2:	Purpose Methodology	19
3.3:	Result	25
3.4:	Conclusion	25
3.5:	Reference(if any)	25

Chapter 1- (Regression)

1) Introduction:

Data Taken: Adult Censous Income(Regression)

This data was extracted from the <u>1994 Census bureau database</u> by Ronny Kohavi and Barry Becker (Data Mining and Visualization, Silicon Graphics). A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1) && (HRSWK>0)).

Breakdown of the Problem Statement:

The prediction task is to determine whether a person makes over \$50K a year.

• Regression:

- Regression is a technique for investigating the relationship between independent variables or features and a dependent variable or outcome. It's used as a method for predictive modelling in machine learning, in which an algorithm is used to predict continuous outcomes.
- Solving regression problems is one of the most common applications for machine learning models, especially in supervised machine learning. Algorithms are trained to understand the relationship between independent variables and an outcome or dependent variable. The model can then be leveraged to predict the outcome of new and unseen input data, or to fill a gap in missing data.
- Regression analysis is an integral part of any forecasting or predictive model, so is a common method found in machine learning powered predictive analytics. Alongside classification, regression is a common use for supervised machine learning models. This approach to training models required labelled input and output training data. Machine learning regression models need to understand the relationship between features and outcome variables, so accurately labelled training data is vital.

2) Purpose Methodology:

- 2.1) Loading Dataset2.2) Preprocessing2.3) Exploratory Data Analysis2.4) Model Training2.5) Test On Testing Data

> 2.1) Loading the Datasets

Python Command is used to Load the data.

- ->Import pandas as pd
- ->Dataset name="train.csv"
- ->head(): Used to show First Five Rows

In [1]:	1 2 3 4 5	impo impo impo	rt seabo	/ as np lotlib. orn as	pyplot as											
In [2]:	1 2		rt warni ings.fil		nings(' <mark>ig</mark>	nore')										
In [3]:	1 2	<pre>df = pd.read_csv('adultcensousincome.csv') df.head(10)</pre>														
Out[3]:		age w	orkclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.co	
	0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female	0	4356	40	United-	
	1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female	0	4356	18	United-	
	2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female	0	4356	40	United-	
	3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-	
	4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-	

> 2.2) Preprocessing

In [16]:		df df df	occupat:	ss'] = : ion'] =	df['workc df['occu	lass'].replac pation'].repl native.countr	.ace('?', 'Pr	of-specia		')					
Out[16]:		age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.co
	0	90	Private	77053	HS-grad	9	Widowed	Prof- specialty	Not-in-family	White	Female	0	4356	40	United-
	1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female	0	4356	18	United-
	2	66	Private	186061	Some- college	10	Widowed	Prof- specialty	Unmarried	Black	Female	0	4356	40	United-
	3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-
	4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-
	5	34	Private	216864	HS-grad	9	Divorced	Other- service	Unmarried	White	Female	0	3770	45	United-
	6	38	Private	150601	10th	6	Separated	Adm- clerical	Unmarried	White	Male	0	3770	40	United-
	7	74	State-gov	88638	Doctorate	16	Never-married	Prof- specialty	Other- relative	White	Female	0	3683	20	United-

> 2.3) Exploratory Data Analysis

We can see that high school males are maximum and higher female are maximum.

> 2.4) Model Training

Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

lr = LogisticRegression()

model = lr.fit(X_train, y_train)
prediction = model.predict(X_test)

print("Acc on training data: {:,.3f}".format(lr.score(X_train, y_train)))
print("Acc on test data: {:,.3f}".format(lr.score(X_test, y_test)))

Acc on training data: 0.839
Acc on test data: 0.836
```

Accuracy: -83.6

Lasso Regression

Lasso

```
1 import pandas as pd
 2 import numpy as np
 3 from sklearn.linear_model import Lasso
 4 lr=Lasso()
 5 lr.fit(X_train,y_train)
 6 y_pred=lr.predict(X_test)
 7 from sklearn.metrics import accuracy_score,r2_score
 8 mse=np.square(np.subtract(y_test,y_pred)).mean()
 9 r2=r2_score(y_test,y_pred)
10 print('MSE=',mse)
11 print('R2-Score',r2)
12 print(lr.coef_)
13 print(lr.intercept_)
MSE= 0.18338036279642306
R2-Score -1.2934752724236276e-05
[0. 0. -0. 0. 0. -0. 0. -0. 0. 0. 0. 0. 0. 0.]
0.24034749034749034
```

Ridge Model:

Ridge

```
1 from sklearn.linear model import Ridge
 2 lr=Ridge()
3 lr.fit(X train,y train)
 4 y_pred=lr.predict(X_test)
 5 from sklearn.metrics import accuracy_score,r2_score
 6 mse=np.square(np.subtract(y test,y pred)).mean()
 7 r2=r2_score(y_test,y_pred)
8 print('MSE=',mse)
9 print('R2-Score',r2)
10 print(lr.coef_)
11 print(lr.intercept_)
MSE= 0.11813817454957452
R2-Score 0.35576688345414265
[ 0.06941406 -0.01369585  0.00754383  0.00626905  0.10078593 -0.12177695
 0.04774843 -0.00240331]
0.24034293994797912
```

Accuracy: 35.57

• ElasticNet Model:

ElasticNet

```
from sklearn.linear_model import ElasticNet
lr=ElasticNet()
lr.fit(X_train,y_train)
y_pred=lr.predict(X_test)
from sklearn.metrics import accuracy_score,r2_score
mse=np.square(np.subtract(y_test,y_pred)).mean()
r2=r2_score(y_test,y_pred)
print('MSE=',mse)
print('R2-Score',r2)
print(lr.coef_)
print(lr.intercept_)

MSE= 0.18338036279642306
R2-Score -1.2934752724236276e-05
[0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
0.24034749034749034
```

> <u>Accuracy:</u> -1.29

```
y_predicted_r=r.predict(x_test)
         y_predicted_r
Out[68]: array([2850.68068344, 1599.18461816, 3427.05687563, ..., 1228.83187078,
                4228.77031002, 1731.62441873])
                Decision Tree Regressor
      In [37]:
                1 from sklearn.tree import DecisionTreeRegressor
                 2 lr=DecisionTreeRegressor()
                 3 lr.fit(X_train,y_train)
                 4 y_pred=lr.predict(X_test)
                 5 from sklearn.metrics import accuracy_score,r2_score
                 6 | mse=np.square(np.subtract(y test,y pred)).mean()
                 7 r2=r2_score(y_test,y_pred)
                 8 print('MSE=',mse)
                 9 print('R2-Score',r2)
               MSE= 0.18783908281297984
               R2-Score -0.02432730310168152
                 1 | from sklearn.metrics import confusion_matrix
      In [38]:
                 2 from sklearn.metrics import classification_report
                 3 print(confusion_matrix(y_test, y_pred))
                [[6482 924]
                 [ 911 1452]]
                 print(classification_report(y_test, y_pred))
      In [39]:
                                                             support
                             precision
                                          recall f1-score
                          0
                                  0.88
                                            0.88
                                                      0.88
                                                                7406
                                  0.61
                                            0.61
                                                      0.61
                                                                2363
                                                                9769
                                                      0.81
                   accuracy
```

0.74

0.81

0.74

0.81

9769

9769

So, Highest Accuracy is of Decision Tree Regressor.

0.74

0.81

macro avg

weighted avg

In [68]: # Predict the sale price On Ridge model

Result:-

Model Accuracy:

Logistic Regression: 84.6

Lasso: 24.3 Ridge: 35.57 Elastic Net: -1.29

Decision Tree: 88

Decision Tree Regressor has Highest Accuracy.

3) Conclusion:

- We train our model on Decision Tree Regressor.
- Now we predict value by fit the testing data in it.

4) Reference(if any)

https://www.kaggle.com/datasets/uciml/adult-census-income

Chapter 2-(Classification)

1) Introduction:

Data Taken: Titanic Dataset(Classification)

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

Classification:

- ➤ In machine learning, classification is a supervised learning concept which basically categorizes a set of data into classes. The most common classification problems are speech recognition, face detection, handwriting recognition, document classification, etc.
- It can be either a binary classification problem or a multi-class problem too. There are a bunch of machine learning algorithms for classification in machine learning. Let us take a look at those classification algorithms in machine learning.

Purpose Methodology:

- Loading Dataset
- Preprocessing
- > Hyper parameter Tuning
- > Cross validation
- Model training
- > Test on testing data

> 2.1) Loading the Datasets

Python Command is used to Load the data.

- ->Import pandas as pd
- ->Dataset name="train.csv"
- ->head(): Used to show First Five Rows

2.2) Preprocessing

Droping NULL Values From the Dataset

Preprocessing

> 2.3) Hyper Parameter Tuning

- It is used to select the best perameters to train the model.
- We use GridSearchCV

```
In [36]:
           1 from sklearn.svm import SVC
           2 from sklearn.ensemble import RandomForestClassifier
           3 from sklearn.naive_bayes import GaussianNB
In [38]:
             model_params={
                  'LogisticRegression':{
                      'model':LogisticRegression(),
           3
                      'params':{
           4
                          'C':[1,10,20],
           5
                           'penalty':['l1','l2']
           6
           7
           8
                  'DecisionTreeClassifier':{
           9
                      'model':DecisionTreeClassifier(),
          10
          11
                      'params':{
                          'criterion':['gini', 'entropy']
          12
          13
          14
          15
                   'random forest classifier':{
          16
                      'model':RandomForestClassifier(),
          17
                      'params':{
                          'n_estimators':[1,10,20]
          18
          19
          20
                   svc':{
          21
                      'model':SVC(),
          22
          23
                      'params':{
                          'kernel':['linear', 'rbf'],
          24
          25
                          'C':[1,5,10]
          26
                  }
          27
          28 }
```

2.4) Model Training

- As SCV gives best result so train the model on SVC.
- And save that model in pickle.

> 2.5) Test Model on Testing data

- Test Model on Testing data.
- Save this result in .csv format.

```
In [53]: 1 from sklearn.model_selection import train_test_split
In [54]: 1 x_train,x_test,y_train,y_test=train_test_split(x,y)
In [55]: 1 x_train.shape
Out[55]: (668, 8)
In [56]: 1 x_test.shape
Out[56]: (223, 8)
In [57]: 1 y_predict=model.predict(x_test)
In [68]: 1 model.score(x_test,y_test)
Out[68]: 0.8251121076233184
```

3) Result:-

- 1) We perform classification on Titanic Dataset.
- 2) Model Accuracy:
- Logistic Regression: 79.23
- DecisionTreeClassifier: 79.35
- Random forest classifier: 79.79
- > SVC: 94.65
 - 3) SVC has Highest Accuracy.

4) Conclusion:

- We train our model on SVC.
- Now we predict value by fit the testing data in it.

5) Reference(if any)

https://www.kaggle.com/c/titanic

Chapter 3 - Clustering

1) Introduction:

Data Taken: Turkiye Student Evaluation Data Set (Clustering)

Attributes:

instr: identifier; values taken from Instructor's {1,2,3} class: Course code (descriptor); values taken from {1-13} repeat: Number of times the student is taking this course; values taken from {0,1,2,3,...} attendance: Code of the level of attendance; values from {0, 1, 2, 3, 4} difficulty: Level of difficulty of the course as perceived by the student; values taken from

Q1: The semester course content, teaching method and evaluation system were provided at the start.

Q2: The course aims and objectives were clearly stated at the beginning of the period.

Q3: The course was worth the amount of credit assigned to it

Q4: The course was taught according to the syllabus announced on the first day of class.

Q5: The class discussions, homework assignments, applications and studies were satisfactory.

Q6: The textbook and other courses resources were sufficient and up to date.

Q7: The course allowed field work, applications, laboratory, discussion and other studies.

Q8: The quizzes, assignments, projects and exams contributed to helping the learning.

Q9: I greatly enjoyed the class and was eager to actively participate during the lectures.

.

.

Clustering:

- Clustering or cluster analysis is a machine learning technique, which groups the unlabeled dataset. It can be defined as "A way of grouping the data points into different clusters, consisting of similar data points.
- ➤ The objects with the possible similarities remain in a group that has less or no similarities with another group.

2) Purpose Methodology:

- Loading Dataset
- Preprocessing
- Exploratory Data Analysis
- Co-relation Matrix
- Principal Component Analysis
- Model Building

> 2.1) Loading data set

Python Command is used to Load the data.
Import pandas as pd
Dataset name=" turkiye-student-evaluation_generic.csv" head(): Used to show First Five Rows

Loading the dataset

[1]:	d	•	read_c	as as pd :sv("turki	ye-student	-evaluati	on_g	ener	ic.c	sv")											
[1]:		instr	class	nb.repeat	attendance	difficulty	Q1	Q2	Q3	Q4	Q5	 Q19	Q20	Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q28
	0	1	2	1	0	4	3	3	3	3	3	 3	3	3	3	3	3	3	3	3	3
	1	1	2	1	1	3	3	3	3	3	3	 3	3	3	3	3	3	3	3	3	3
	2	1	2	1	2	4	5	5	5	5	5	 5	5	5	5	5	5	5	5	5	5
	3	1	2	1	1	3	3	3	3	3	3	 3	3	3	3	3	3	3	3	3	3
	4	1	2	1	0	1	1	1	1	1	1	 1	1	1	1	1	1	1	1	1	1

> 2.2) Preprocessing

- There is no NULL Value in the dataset.
- And all the values are in integer type.
- So there is no need for preprocessing.

> 2.3) Exploratory Data Analysis

- Instruction three has taken more courses
- Maximum number of class

Relation Matrix

- Use to Find Co-relation between columns.
- Get useful columns from the data.

> 2.5) Principal of Component Analysis

• To reduce the dimension of the data.

> 2.6) Model Building

• Making elbow to find the best value of K

```
In [85]:
    from sklearn.cluster import KMeans
    distortions=[]
    for i in range(1,11):
        km=KMeans(n_clusters=i,init='k-means++',n_init=10,max_iter=300,random_state=0)
        km.fit(X_pca)
        distortions.append(km.inertia_)
    plt.plot(range(1,11),distortions,marker='o')
    plt.ylabel("K-value")
    plt.ylabel("distorsion")

Out[85]:
    Text(0, 0.5, 'distorsion')

Out[85]:
```

• Train the model k=3

• Plot Graph to show cluster

Plot the Graph to show the Clusters

```
In [95]: plt.scatter(X_pca[y==0,0],X_pca[y==0,1],s=50,c="red",label="cluster 1")
    plt.scatter(X_pca[y==1,0],X_pca[y==1,1],s=50,c="yellow",label="cluster 2")
    plt.scatter(X_pca[y==2,0],X_pca[y==2,1],s=50,c="green",label="cluster 3")
    plt.title("Cluster graph")
    plt.xlabel("PCA 1")
    plt.ylabel("PCA 2")
    plt.legend()
```

Out[95]: <matplotlib.legend.Legend at 0x23bdef40e50>

• Agglomerative clustering

```
In [102...
from sklearn.cluster import AgglomerativeClustering
model=AgglomerativeClustering(n_clusters=2,affinity='euclidean',linkage='ward')
y=model.fit_predict(X_pca)

In [103...
plt.scatter(X_pca[y==0,0],X_pca[y==0,1],s=50,c="red",label="cluster 1")
plt.scatter(X_pca[y==1,0],X_pca[y==1,1],s=50,c="yellow",label="cluster 2")
plt.title("Cluster graph")
plt.xlabel("PCA 1")
plt.ylabel("PCA 2")
plt.legend()
```

Out[103... <matplotlib.legend.Legend at 0x23be1c8b3a0>

3) Result:-

- 1) We perform classification on Turkiye Student Evaluation Data.
- 2) Model:
 - KMeans clustering: k=3
 - Agglomerative clustering: k=2
- 3) Both the Model are predicting and showing great result.

4) Conclusion:

- We train our model on KMeans and Agglomerative.
- Now we divide the data into clusters.

5) Reference(if any):

• http://archive.ics.uci.edu/ml/datasets/turkiye+student+evaluation