

BCT4717

4.0Ω, 300MHz Bandwidth, Dual SPDT Analog Switch

GENERAL DESCRIPTION

The BCT4717 is a dual, bidirectional, single-pole/double- throw (SPDT) CMOS analog switches designed to operate from a single +1.8V to +5.5V supply. It features high-bandwidth (300MHz) and low ON-resistance (4.0 Ω typ), Targeted applications for audio switching.

BCT4717 features guaranteed on-resistance matching (0.3 Ω max) between switches and guaranteed on-resistance flatness over the signal range (2.3 Ω TYP). This ensures excellent linearity and low distortion when switching audio signals.

The BCT4717 is a committed dual single-pole/double -throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

BCT4717 is available in WQFN-10 package.

FEATURES

- Voltage Operation: 1.8 V to 5.5 V
- On-Resistance: 4.0Ω (typ) at 5.0V
- High Bandwidth: 300 MHz
- Fast Switching Time
 - ton 25 ns
 - toff 25 ns
- High Off-Isolation: 57dB at 10MHz
- Low Crosstalk: 99dB at 10MHz
- Rail-to-Rail Operation
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Extended Industrial Temperature Range:
 - **−40°C** to 85°C
- WQFN-10 Packages

APPLICATIONS

Portable Instrumentation Battery-Operated Equipment Computer Peripherals Cell Phones PDAs MP3s

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown For Logic "0" Input

PIN CONFIGURATIONS (TOP VIEW)

+150°C

4.0Ω, 300MHz Bandwidth, Dual SPDT Analog Switch

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
BCT4717ETB	WQFN-10	- 40°C to +85°C	BCT4717ETB	ALX	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

V ₊ , IN to GND	0.3V to +6V
Analog, Digital voltage range(1)	$-0.3V$ to $(V_+ + 0.3V)$
Continuous Current NO, NC, or COM	±200mA
Peak Current NO, NC, or COM	±300mA
Operating Temperature Range	40°C to +85°C

	150 C
Junction Temperature	to +150°C
Storage Temperature	- 65°C····+260°C
Storage TemperatureLead Temperature (söldering, 10s)	2000V
ESD(HBM)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

PIN DESCRIPTION

NAME	FUNCTION
V_{+}	Power supply
GND	ground
IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
COM1, COM2	Common terminal
NO1, NO2	Normally-open terminal
NC1, NC2	Normally-closed terminal

Note: NO, NC and COM terminal may be an input or output.

ELECTRICAL CHARACTERISTICS

 $(V_{+} = +2.7 \text{V to } +3.6 \text{V}, V_{IH} = +1.4 \text{ V}, V_{IL} = +0.5 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ Typical values are at V}_{+} = 3.0 \text{V}, T_{A} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITI	TEMP	MIN	TPY	MAX	UNITS	
ANALOG SWITCH				•				
Analog Signal Range	Vno, Vnc, Vcom			- 40°C to +85°C	0		V_{+}	V
O. D. 14	D	$V_+ = 2.7V$, V_{NO} or V_{NO}	c = 1.5V,	+25°C		8	12	Ω
On-Resistance	Ron	ICOM = -10 mA, Test C		- 40°C to +85°C			11	Ω
On-Resistance Match Between	A.D.	$V_+ = 2.7V$, V_{NO} or V_{NO}	c = 1.5V,	+25°C		0.3	0.6	Ω
Channels	ΔR on	ICOM = -10 mA, Test C		- 40°C to +85°C			0.8	Ω
	-	$V_+ = 2.7V$, V_{NO} or V_{NO}	c = 1.0V, 1.5V,	+25°C		3	4	Ω
On-Resistance Flatness	Rflat(on)	2.0V, ICOM = -10 mA		- 40°C to +85°C		3.3		Ω
Source OFF Leakage current	Inc(off), Ino(off)	$V_{+} = 3.6V$, V_{NO} or V_{NO} $V_{COM} = 0.3V$, $3.3V$,	c=0.3V, 3.3V,	- 40°C to +85°C			1	μΑ
Channel ON Leakage current	Inc(on), Ino(on), Icom(on)	$V_{+} = 3.6V$, $V_{COM} = 0.3V$ V_{NO} or $V_{NC} = 0.3V$, 3.3		- 40°C to +85°C			1	μΑ
DIGITAL INPUTS				_				
Input High Voltage	Vinh			- 40°C to +85°C	1			V
Input Low Voltage	Vinl			- 40°C to +85°C			0.5	V
Input Leakage Current	Iin	$V_{+} = +3.6V$, $V_{IN} = 0$ or	5.5V	- 40°C to +85°C			1	μΑ
DYNAMIC CHARACTERISTI	CS							
Turn-On Time	ton	V_{NO} or V_{NC} = 1.5V, R_L = 300 Ω , C_L = 35pF, V_{IH} = 1.5V, V_{IL} = 0V	Test Circuit 2;	+25°C		23		ns
Turn-Off Time	toff	VNO or VNC = 1.5V, RL = 300Ω , CL = 35 pF, Test Circuit 2; V _{IH} = 1.5 V, V _{IL} = 0 V		+25°C		22		ns
Break-Before-Make Time Delay	to	V_{NO1} or $V_{NC1} = V_{NO2}$ or $R_L = 300\Omega$, $C_L = 35pF$,		+25°C		4		ns
Skew	tskew	RS = 39Ω , $C_L = 50pF$,	Test Circuit 4	+25°C		5		ns
		$R_L = 50\Omega$, $C_L = 5pF$,	f = 10MHz	+25°C		-57		dB
Off Isolation	Oiso	Signal = 0dBm, Test Circuit 5	f = 1MHz	+25°C		-76		dB
		$R_L = 50\Omega$, $C_L = 5pF$,	f = 10MHz	+25°C		-98		dB
Channel-to-Channel Crosstalk	Xtalk	Test Circuit 6	f = 1MHz	+25°C		-103		dB
Bandwidth –3 dB	BW	Signal = 0dBm, R _L = 5 Test Circuit 7	60Ω , $C_L = 5pF$,	+25°C		300		MHz
POWER REQUIREMENTS		•		•				
Power Supply Range	V_{+}			- 40°C to +85°C	1.8		5.5	V
Power Supply Current	I ₊	$V_{+} = +5.5V$, $V_{IN} = 0V$	or V+	- 40°C to +85°C			5	μΑ

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS

 $(V_{+} = +4.5 \text{V to } +5.5 \text{V}, V_{IH} = +2.0 \text{ V}, V_{IL} = +0.8 \text{V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{Typical values are at } V_{+} = 5.0 \text{V}, T_{A} = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TPY	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	VNO, VNC, VCOM			- 40°C to +85°C	0		V_{+}	V
	D	$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 3.5V$,		+25°C		4.5	8	Ω
On-Resistance	Ron	Icom = -10 mA, Test Ci	,	- 40°C to +85°C			8.5	Ω
On-Resistance Match Between	A.D.	$V_{+} = 4.5V$, V_{NO} or V_{NO}	a = 3.5V,	+25°C		0.15	0.3	Ω
Channels	ΔR on	I _{COM} = -10 mA, Test Circuit 1		- 40°C to +85°C			0.8	Ω
	D	$V_+ = 4.5V$, V_{NO} or V_{NO}	a = 1.0V, 2.0V,	+25°C		2.3	3.3	Ω
On-Resistance Flatness	Rflat(on)	3.5V, Iсом = -10 mA, Т		- 40°C to +85°C			3.7	Ω
Source OFF Leakage current	Inc(off), Ino(off)	$V_{+} = 5.5V$, V_{NO} or V_{NO} $V_{COM} = 1.0V$, $4.5V$,	e= 1.0V, 4.5V,	- 40°C to +85°C			1	μΑ
Channel ON Leakage current	Inc(on), Ino(on),	$V_{+} = 5.5V$, $V_{COM} = 1.0V$	7, 4.5V,	- 40°C to +85°C			1	μA
Chariner Orv Leakage Current	Icom(on)	$V_{NO} \text{ or } V_{NC} = 1.0V, 4.5$	V, or floating	10 6 10 103 6			1	μ21
DIGITAL INPUTS		Γ			Т	Т	1	
Input High Voltage	Vinh			- 40°C to +85°C	1.5			V
Input Low Voltage	Vinl			- 40°C to +85°C			0.6	V
Input Leakage Current	Iin	$V_{+} = +5.5V$, $V_{IN} = 0$ or $5.5V$		- 40°C to +85°C			1	μΑ
DYNAMIC CHARACTERISTI	CS							
Turn-On Time	ton	V _{NO} or V _{NC} = 3.0V, R _L = 300 Ω , C _L = 35pF, Test Circuit 2;		+25°C		26		ns
		$V_{IH} = 1.5V, V_{IL} = 0V$						
		V_{NO} or $V_{NC} = 3.0V$,						
Turn-Off Time	toff	$R_L = 300\Omega$, $C_L = 35pF$, $V_{IH} = 1.5V$, $V_{IL} = 0V$	Test Circuit 2;	+25°C		20		ns
Break-Before-Make Time	to	V_{NO1} or $V_{NC1} = V_{NO2}$ or	$V_{NC2} = 3V$,	+25°C		4		ns
Delay	tD.	$R_L = 300\Omega$, $C_L = 35pF$,		123 C		4		115
Skew	tskew	RS = 39Ω , $C_L = 50pF$,		+25°C		5.8		ns
		$R_L = 50\Omega$, $C_L = 5pF$,	f = 10MHz	+25°C		-57		dB
Off Isolation	Oiso	Signal = 0dBm, Test Circuit 5	f = 1MHz	+25°C		-76		dB
		$R_L = 50\Omega$, $C_L = 5pF$,	f = 10MHz	+25°C		-99		dB
Channel-to-Channel Crosstalk	Xtalk	Test Circuit 6	f = 1MHz	+25°C		-110		dB
Total Harmonic Distortion	THD	$V_{COM} = 2V_{P-P}, R_L = 500$	2, C _L = 5pF	+25°C				%
Bandwidth –3 dB	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 7		+25°C		300		MHz
POWER REQUIREMENTS								
Power Supply Range	V_{+}			- 40°C to +85°C	1.8		5.5	V
Power Supply Current	I_+	$V_{+} = +5.5V$, $V_{IN} = 0V$ or V_{+}		- 40°C to +85°C			5	μΑ

Specifications subject to change without notice.

+150°C

$\overline{4.0\Omega}$, 300MHz Bandwidth, Dual SPDT Analog Switch

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
BCT4717ETB	WQFN-10	- 40°C to +85°C	BCT4717ETB	ALX	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS V+, IN to GND.....-0.3V to +6V

Analog, Digital voltage range(1)...... - 0.3V to $(V_+ + 0.3V)$ Continuous Current NO, NC, or COM...... ± 200 mA Peak Current NO, NC, or COM...... ± 300 mA Operating Temperature Range..... - 40° C to +85°C

	130 C
Junction Temperature	to +150°C
Storage Temperature	- 65°C+260°C
Storage Temperature (soldering, 10s)	2000V
ESD(HBM)	••••••

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

PIN DESCRIPTION

NAME	FUNCTION
V_{+}	Power supply
GND	ground
IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
COM1, COM2	Common terminal
NO1, NO2	Normally-open terminal
NC1, NC2	Normally-closed terminal

Note: NO, NC and COM terminal may be an input or output.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Off Isolation, $V_{CC} = 1.65V$

Figure 2. Off Isolation, $V_{CC} = 5.5V$

Figure 3. Crosstalk, V_{CC} = 1.65V

Figure 4. Crosstalk, $V_{CC} = 5.5V$

Figure 5. Bandwidth, V $_{\rm CC}$

4.0Ω , 300MHz Bandwidth, Dual SPDT Analog Switch TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Switching Times

Test Circuit 3. Break-Before-Make Time Delay, to

TEST CIRCUITS (Cont.)

Test Circuit 4. Output Signal Skew

TEST CIRCUITS (Cont.)

Channel To Channel Crosstalk = $-20 \times \log \frac{V_{NO} \text{ or } V_{NC}}{V_{OUT}}$

Test Circuit 6. Channel-to-Channel Crosstalk

Test Circuit 7. Bandwidth

PACKAGE OUTLINE DIMENSIONS

WQFN-10

Note: All linear dimensions are in millimeters.