

CO331 – Network and Web Security

8. TLS

Dr Sergio Maffeis Department of Computing

Course web page: http://www.doc.ic.ac.uk/~maffeis/331

Imperial College

TLS in a nutshell

- Transport Layer Security (TLS)
 - A cryptographic protocol to protect network connections
 - Provides both confidentiality and integrity
 - Eavesdropper sees unreadable ciphertexts
 - MITM injection leads to integrity checks failure
 - TLS is an improvement on Secure Socket Layer (SSL)
 - TLS 1.2 is considered secure, TLS 1.0 is deprecated
 - Based on notions of clients, servers and certificates
- Server needs an X.509 certificate stating its identity and public key
 - Certificates have limited validity in time
 - Certificates may identify
 - An explicit domain name: imperial.ac.uk
 - A set of hostnames: *.ic.ac.uk (matches doc.ic.ac.uk, not cate.doc.ic.ac.uk)
 - Most certificates are signed by a Certificate authority (CA) trusted by the client
 - Self-signed certificates are sometimes used but provide limited trust
 - Certificate parameters (including domain name) need to be verified offline
 - Structural weakness: TLS protection is effective only if certificates are trusted
 - Stolen certificates (Sony Hack, 2014)
 - Compromised CAs can sign spoofed certificates (DigiNotar, 2011)

TLS: the main idea

- Asymmetric encryption
 - KeyPair(PK_ASK_A) = public (or *verification*) and secret (or *signing*) key of principal A
 - SK_A is kept secret by A
 - PK_A can be revealed (for example, in a X.509 certificate)
 - ADecrypt(K_1 , AEncrypt(K_2 , msg))=msg if and only if KeyPair(K_1 , K_2) or KeyPair(K_2 , K_1)
 - {"msg"}PK_A denotes asymmetric encryption using the public key PK_A (only A can decrypt)
 - {"msg"}SK_A denotes a **signature** using the secret key SK_A (only A can encrypt)
 - {"msg"}K_L denotes symmetric (= fast) encryption using symmetric K labelled L
- TLS conceptual diagram:

TLS handshake

- TLS should be sent over a "reliable medium"
 - Normally, that is TCP/IP
 - Hence payload data is protected but IP and port are not
- Client and server need to agree on what ciphersuite to use
 - Hash: MD5 vs SHA256; Encryption: AES vs DES; Key exchange: DH vs RSA; ...
- Some choices are insecure, but servers now tend to insist on secure options

TLS security issues

Recent vulnerabilities

- TLS leaks information via traffic analysis
 - BEAST CVE-2011-3389: compromises TLS 1.0 via RC4 leakage
 - CRIME CVE-2012-4929: compromises SPDY via compression ratio
- OpenSSL implementation bugs
 - HEARTBLEED CVE-2014-0160: data disclosure due to buffer overrun.
- Formal analysis of TLS state machine uncovered vulns
 - See https://mitls.org/pages/attacks/SMACK
 - FREAK CVE-2015-0204, CVE-2015-1637: force TLS client to use a weak ciphersuite
- Not getting much better...
 - SLOTH CVE-2015-7575, Sweet32 CVE-2016-2183, CVE-2016-6329, DROWN CVE-2016-0800, ROBOT (8 CVEs in 2017)

• TLS 1.3

- Addresses all recent vulnerabilities
- Disallows: weak crypto suites (RC4, MD5, SHA-1,...), CBC mode, TLS-level compression
- Highly efficient: 1 less roundtrip on handshake, 0-RTT resumed connections
- Already supported by Cloudflare, Chrome 63 and others

Imperial College London

