Model Summary and Agenda

Mitchell Valdes-Bobes

1 Agenda

Discuss the model with updated bargaining.
Discuss aglomerations effects.
$\hfill\Box$ Computation of equilibrium.

2 Model Summary

2.1 Model Setup

2.1.1 Demographics

- There is a discrete and finite set of locations $\mathcal{J} = \{1, \dots, |\mathcal{J}|\}$ locations indexed by $j \in \mathcal{J}$.
- Continuum of workers indexed by their ability $x \in \mathcal{X}$.
 - The total measure is normalized to 1.
 - Exogenous distribution $\ell(x)$
 - Endogenous distribution in each location $\ell^{j}(x)$
 - Denote ζ_j the total population in location j.
- Continuum of firms indexed by technology $y \in \mathcal{Y}$.
 - Total measure is normalized to 1.
 - Uniformly distributed.

2.1.2 Technology

• There is exogenous cost of posting v job opportunities in location j is

$$c_j(v) \ge 0$$

assume it is increasing, convex, and independent of the firm type y (but potentially dependent on location).

- Workers and firms discount the future at the rate β .
- Workers can move across locations:
 - Workers choose a mixed strategy to search:

$$\phi_i^j(x) = \{\phi_i^j(x, j')\}_{j' \in \mathcal{J}}$$

where $\phi_i^j(x,j')$ is the probability that a type x worker from location j search in location j' and $i \in \{u,s\}$ refers to the employment status of the worker.

- Each strategy has an associated cost $c_s(\phi_i^{\jmath}(x))$:

$$c_s(\phi_i^j(x)) = c \sum_{j' \in \mathcal{I}} \phi_i^j(x,j') \log \left(J \phi_j^i(x,j')\right)$$

- When a worker move they must pay a cost $F^{j\to j'} \geq 0$ (with $F^{j\to j}=0$).
- Unemployed workers instant utility in each location is b(x, j).
- Firms have access to a production technology, defined at the match level and depending on the location f(x, y, j).

Both unemployed and employed workers search, denote s the search intensity of an employed worker and 1 is the (normalized) search intensity of an unemployed worker. The total search intensity in location j is

$$L^j = \sum_{j' \in \mathcal{J}} \left[\int \phi_u^{j'}(x,j) u^{j'}(x) dx + s \int \int \phi_s^{j'}(x,j) h^{j'}(x,y) dx dy \right]$$

Let $v^{j}(y)$ be the number of job opportunities posted by a firm y in location j.

• $V^{j} = \int v^{j}(y)dy$ is the total number of job opportunities posted location j.

Let $M^j = M(L^j, V^j)$ be the number of job matches in the location j then:

• The probability that an unemployed worker contacts a vacancy in the location j is

$$p^j = \frac{M^j}{L^j}$$

 $-sp^{j}$ is the probability that an employed worker contacts a vacancy.

• The probability that a firm contacts any searching worker

$$q^j = \frac{M^j}{V^j}$$

• Let $\theta^j = V^j/L^j$ be the market tightness in location j.

2.1.3 Dynamic Programming Problem

- $U^{j}(x)$ is the value of being unemployed in location j with type x.
- $J^{j}(x,y)$ is the match value in location j with type x and firm y.
- $W_0^{j \to j'}(x, y)$ is the value of a worker in location j when matched with firm y in location j'.
- $W_1^{j\to j'}(x,y\to y')$ is the value of a worker in location j when matched with firm y in location j' and then matched with firm y' in location j'.

2.1.4 Worker

$$U^{j}(x) = \underbrace{b(x,j)}_{\text{instant utility}} + \beta \max_{\phi_{u}^{j}(x)} \left\{ \underbrace{-c(\phi_{u}^{j}(x))}_{\text{cost of search strategy}} + \underbrace{\sum_{j' \in \mathcal{J}} \underbrace{\phi_{u}^{j}(x,j')}_{\text{weight by probability of search in} j'} \begin{bmatrix} \text{no offer, stays unemployed now in} j' \\ \hline (1-p^{j'})U^{j'}(x) \end{bmatrix} + p^{j'} \underbrace{\int \max \left\{ U^{j'}(x), W_{0}^{j \to j'}(x,y) \right\} \frac{v^{j'}(y)}{V^{j'}} dy}_{\text{if offer, pays cost, moves to } j \text{ and then is matched randomly with some firm} \end{bmatrix}}$$

2.2 Value of a match

$$J^{j}(x,y) = \underbrace{f(x,y,j)}_{\text{match value added}} + \beta \underbrace{\left(1-\lambda^{j}(x,y)\right)}_{\text{worker gets unemployment value}} + \underbrace{U^{j}(x)}_{\text{worker gets unemployment value}} + \underbrace{\left(\lambda^{j}(x,y) \max_{\phi_{s}^{j}(x)} \left\{-c(\phi_{s}^{j}(x)) + \sum_{j' \in \mathcal{J}} \phi_{s}^{j}(x,j') \left[\overbrace{(1-sp^{j'})}_{\text{stays with same firm}} \right] \right\}}_{\text{stays with same firm}} + \underbrace{Sp^{j'}}_{\text{volve, solve gents, page of each firm}} \underbrace{\int \max\{J^{j}(x,y), W_{1}^{j \to j'}(x,y',y)\} \frac{v^{j'}(x)}{V^{j'}} dy'}_{V^{j'}}$$

2.3 Surplus of a Match

$$S^{j\to j'}(x,y) = J^{j'}(x,y) - \left[U^j(x) + F^{j\to j'}\right]$$

2.4 Bargaining

I use the same bargaining as in (Cahuc, Postel-Vinay, and Robin 2006) this have the following implications for the value that a worker gets from a match:

• Unemployed worker in location j when matched with firm y in location j' gets:

$$W_0^{j \to j'}(x,y) = (1 - \mu)U^{j'}(x) + \mu[J^{j'}(x,y) - F^{j' \to j}] = U^j(x) + \mu\left(J^{j'}(x,y) - [U^j(x) + F^{j' \to j}]\right)$$

• Worker employed in location j by firm y when matched with firm y' in location j' gets:

$$W_1^{j \to j'}(x,y \to y') = (1 - \mu)J^j(x,y) + \mu[J^{j'}(x,y') - F^{j' \to j}] = J^j(x,y) + \mu\left(J^{j'}(x,y') - J^j(x,y) - F^{j' \to j}\right)$$

Plugging this into the Bellman equations we get:

2.4.1 Worker

$$\begin{split} U^{j}(x) &= b(x,j) + \beta \max_{\phi_{u}^{j}(x)} \left\{ -c(\phi_{u}^{j}(x)) + \sum_{j' \in \mathcal{J}} \phi_{u}^{j}(x,j') \left[(1-p^{j'})U^{j'}(x) \right. \right. \\ &\left. + p^{j'} \int \max \left\{ U^{j'}(x), U^{j}(x) + \mu \left(J^{j'}(x,y) - \left[U^{j}(x) + F^{j' \to j} \right] \right) \right\} \frac{v^{j'}(y)}{V^{j'}} dy \right] \right\} \\ &= b(x,j) + \beta \max_{\phi_{u}^{j}(x)} \left\{ -c(\phi_{u}^{j}(x)) + \sum_{j' \in \mathcal{J}} \phi_{u}^{j}(x,j') \left[(1-p^{j'})U^{j'}(x) + p^{j'}U^{j'}(x) \right. \\ &\left. + p^{j'} \mu \int \max \left\{ 0, J^{j'}(x,y) - \left[U^{j}(x) + F^{j' \to j} \right] \right\} \frac{v^{j'}(y)}{V^{j'}} dy \right] \right\} \\ &= b(x,j) + \beta \left[U^{j}(x) \right] + \beta \left(\sum_{j' \in \mathcal{J}} \phi_{u}^{j}(x,j') \left[p^{j'} \mu \int \max \left\{ 0, J^{j'}(x,y) - \left[U^{j}(x) + F^{j' \to j} \right] \right\} \frac{v^{j'}(y)}{V^{j'}} dy \right] \\ &- c \left(\phi_{u}^{j}(x) \right) \right) \end{split}$$

Recall that the surplus of a match is defined as

$$S^{j\to j'}(x,y) = J^{j'}(x,y) - [U^j(x) + F^{j\to j'}]$$

We can rewrite the Bellman equation of the unemployed worker as:

$$U^{j}(x) = b(x,j) + \beta \left[U^{j}(x) \right] + \beta \left(\sum_{j' \in \mathcal{J}} \phi_{u}^{j}(x,j') \left[p^{j'} \mu \int \max \left\{ 0, S^{j \to j'}(x,y) \right\} \frac{v^{j'}(y)}{V^{j'}} dy \right] - c \left(\phi_{u}^{j}(x) \right) \right)$$

We can derive the optimal strategy for each worker as:

$$\phi_u^j(x,j') = \frac{\exp\left(\left[p^{j'}\mu\int\max\left\{0,S^{j\to j'}(x,y)\right\}\frac{v^{j'}(y)}{V^{j'}}dy\right]/c\right)}{\sum_{\tilde{j}\in\mathcal{J}}\exp\left(\left[p^{\tilde{j}}\mu\int\max\left\{0,S^{j\to \tilde{j}}(x,y)\right\}\frac{v^{\tilde{j}}(y)}{V^{\tilde{j}}}dy\right]/c\right)}$$

Plug back into the value function to get:

$$U^{j}(x) = b(x,j) + \beta \left[\left[U^{j}(x) \right] + c \log \left(\sum_{\tilde{j} \in \mathcal{J}} \exp \left(\left[p^{j'} \mu \int \max \left\{ 0, S^{j \to j'}(x,y) \right\} \frac{v^{j'}(y)}{V^{j'}} dy \right] / c \right) + c \log(\mid \mathcal{J} \mid) \right) \right]$$

2.4.2 Value of a match

Note that if the match survives the employed worker chooses their optimal search strategy $\phi_s^j(x)$ search in each of the locations j' with the specified probability $\phi_s^j(x,j')$.

$$\begin{split} \max_{\phi_s^j(x)} \left\{ & \sum_{j' \in \mathcal{J}} \phi_s^j(x,j') \left[(1-sp^{j'}) J^j(x,y) \right. \\ & \left. + sp^j \int \max\{J^j(x,y), J^j(x,y) + \mu \left(J^{j'}(x,y') - J^j(x,y) - F^{j' \to j} \right) \} \frac{v^{j'}(x)}{V^{j'}} dy' \right] \right\} \end{split}$$

Wich can be rewritten as:

$$J^{j}(x,y) + \max_{\phi_{s}^{j}(x)} \left\{ \sum_{j' \in \mathcal{I}} \phi_{s}^{j}(x,j') \left[sp^{j} \int \max\{0, \mu\left(J^{j'}(x,y') - J^{j}(x,y) - F^{j' \rightarrow j}\right)\} \frac{v^{j'}(x)}{V^{j'}} dy' \right] \right\}$$

Since

$$S^{j\to j'}(x,y') = J^{j'}(x,y') - \left[U^j(x) + F^{j\to j'}\right]$$

then

$$S^{j\rightarrow j'}(x,y')-S^{j\rightarrow j}(x,y)=J^{j'}(x,y')-J^{j}(x,y)-F^{j'\rightarrow j}(x,y')$$

Then we can rewrite the previous equation as:

$$J^j(x,y) + \max_{\phi_s^j(x)} \left\{ \sum_{j' \in \mathcal{J}} \phi_s^j(x,j') \left\lceil sp^j \int \max\{0,S^{j \to j'}(x,y') - S^{j \to j}(x,y)\} \frac{v^{j'}(x)}{V^{j'}} dy' \right\rceil \right\}$$

We can derive the optimal strategy for each worker as:

$$\phi_u^j(x,y,j') = \frac{\exp\left(\left[p^{j'}\mu\int\max\left\{0,S^{j\to j'}(x,y')-S^{j\to j}(x,y)\right\}\frac{v^{j'}(y')}{V^{j'}}dy'\right]/c\right)}{\sum_{\tilde{j}\in\mathcal{J}}\exp\left(\left[p^{\tilde{j}}\mu\int\max\left\{0,S^{j\to \tilde{j}}(x,y')-S^{j\to j}(x,y)\right\}\frac{v^{\tilde{j}}(y')}{V^{\tilde{j}}}dy'\right]/c\right)}$$

Plug back into the value function:

$$\begin{split} J^{j}(x,y) &= f(x,y,j) + \beta \left[\left[(1-\lambda^{j}(x,y))U^{j}(x) + \lambda^{j}(x,y)J^{j}(x,y) \right] \right. \\ &+ \log \left(\sum_{j' \in \mathcal{J}} \exp \left(\left[p^{j'} \mu \int \max \left\{ 0, S^{j \rightarrow j'}(x,y') - S^{j \rightarrow j}(x,y) \right\} \frac{v^{j'}(y')}{V^{j'}} dy' \right] / c \right) \right) \\ &- c \log(\mid \mathcal{J} \mid) \right] \end{split}$$

2.4.3 Surplus Value

Let $s(x, y, j \to j') = f(x, y, j') - b(x, j)$ I satart by writing the expression for the surpluss of staying in the same location:

$$\begin{split} S^{j\to j}(x,y) &= J^j(x,y) - U^j(x) \\ &= s(x,y,j\to j) + \beta \lambda^j(x,y) \underbrace{\left[J^j(x,y) - U^j(x)\right]}_{S^{j\to j}(x,y)} + \beta c \left[\Lambda^j_1(x,y) - \Lambda^j_0(x)\right] \\ &= s(x,y,j\to j) + \beta \max\{0,S^{j\to j}(x,y)\} + \beta c \left[\Lambda^j_1(x,y) - \Lambda^j_0(x)\right] \end{split}$$

The terms $\Lambda_0(x)$ and $\Lambda_1(x,y)$ come from the Bellmans of the worker and the match respectively and are defined as:

$$\begin{split} &\Lambda_1(x,y) = \log \left(\sum_{j' \in \mathcal{J}} \exp \left(\left[p^{j'} \mu \int \max \left\{ 0, S^{j \to j'}(x,y') - S^{j \to j}(x,y) \right\} \frac{v^{j'}(y')}{V^{j'}} dy' \right] / c \right) \right) \\ &\Lambda_0(x) = \log \left(\sum_{j' \in \mathcal{J}} \exp \left(\left[p^{j'} \mu \int \max \left\{ 0, S^{j \to j'}(x,y') \right\} \frac{v^{j'}(y')}{V^{j'}} dy' \right] / c \right) \right) \end{split}$$

Next note that the surplus of moving to a different location is:

$$\begin{split} S^{j \to j'}(x,y) &= J^{j'}(x,y) - \left[U^j(x) + F^{j \to j'} \right] \\ &= \left[J^{j'}(x,y) - U^{j'}(x) \right] + U^{j'}(x) - \left[U^j(x) + F^{j \to j'} \right] \\ &= S^{j' \to j'}(x,y) - \left[U^j(x) - U^{j'}(x) + F^{j \to j'} \right] \end{split}$$

3 Aglomeration Effects

This section focus on how the distribution of workers (skils) affect both the productivity of matches f(x, y, j) and the instant utility of unemployed workers b(x, j).

Location Productivity

I borrow from (Davis and Dingel 2019) in assuming that the productivity of workers in a location j is a result of idea exchange process within each location.

• Assume that a type x worker in location j has a $\Omega(x, \overline{X}^j)$ where \overline{X}^j is the value of idea exchange in location j. Thus:

$$f(x, y, j) = f\left(\Omega(x, \overline{X}^j), y\right)$$

• Assume that the value of idea exchange in location j is a function of the distribution of skills in location j:

$$\overline{X}^j = \overline{X} \left(\left\{ \ell^j(x) \right\} \right)$$

It's natural to make the following assumptions on $\Omega(x, \overline{X}^j)$ and \overline{X}^j :

• Assumption 1: $\Omega(x, \overline{X}^j)$ should be increasing in x and \overline{X}^j and in the absence of idea exchange, worker productivity is just their type: $\Omega(x, 0) = x$.

- Assumption 2: Worker type x and idea exchange environment are complements i.e. $\Omega(x, \overline{X}^j)$ supermodular in (x, \overline{X}^j) .
- Assumption 3: The value of idea exchange in location j is increasing in the number of potential exchange partners μ^j and on the distribution of skills in location $j \ell^j(x)$.
 - With the *FOSD* order of distributions.

I will focus on the following functional forms for $\Omega(x, \overline{X}^j)$ and \overline{X}^j :

$$\Omega(x, \overline{X}^j) = x(1 + A\overline{X}^j x)$$

where A is a parameter that captures the scope of gains from idea exchange.

$$\overline{X}\left(\left\{\ell^{j}(x)\right\}\right) = \left(1 - e^{-\nu\int\ell^{j}(x)dx}\right)\hat{x}^{j} = \left(1 - e^{-\nu\mu^{j}}\right)\hat{x}^{j}$$

The probability of encountering someone during each moment of time seeking is given by $1 - \exp(-\nu \mu^j)$, note that as the number of potential exchange partners (μ^j) increases, the probability of encountering someone also increases, which makes intuitive sense.

The average ability of the individuals you encounter in these exchanges is denoted as \hat{x}^j . This is a weighted average of the abilities of the people you meet

$$\hat{x}^{j} = \frac{1}{\mu^{j}} \int x \ell^{j}(x) dx = \frac{\mathbb{E}^{j}[x]}{\mu^{j}}$$

where $\mathbb{E}^{j}[x]$ is the average ability of workers in location j.

$$f(x, y, j, z_t) = \Omega(x, \overline{X}^j)^{\alpha} y^{1-\alpha} \tag{1}$$

Cost of living

• As in (Davis and Dingel 2019) and (Behrens, Duranton, and Robert-Nicoud 2014) every individual in location j pays the congestion cost:

$$c_j = c(\zeta_j) = \theta \zeta_j^{\gamma}$$

4 Computation of Equilibrium

Right now I'm brute forcing the computation of the equilibrium, I'm using the following algorithm:

Take $\ell(x)$ as a primitive. Make initial guesses for $\ell^j(x)$. Initialize $S^{j\to j'}(x,y)\equiv 0$ for all j,j',x and j.

- 1. Using $S^{j \to j'}(x,y)$ update the distribution of employed and unemployed workers in each location j.
- 2. Compute the value $B^{j}(y)$ of vacancy creation.
- 3. Compute:
 - $v^{j}(y)$ the number of vacancies posted by a firm y in location j.
 - $V^{j} = \int v^{j}(y)dy$ the total number of job opportunities posted location j.
 - L^j the total search intensity in location j.
 - $\theta^j = V^j/L^j$ the market tightness in location j.
- 4. Compute $S^{j\to j'}(x,y)$, and U^j .
 - Obtain wokers optimal strategies $\phi_u^j(x)$ and $\phi_s^j(x)$.
- 5. Update the distribution of workers in each location j.
 - If the distribution of workers in each location j has converged stop, otherwise update worker productivity in each location and cost of living and go back to Step 1.

References

Behrens, Kristian, Gilles Duranton, and Frédéric Robert-Nicoud. 2014. "Productive Cities: Sorting, Selection, and Agglomeration." *Journal of Political Economy* 122 (3): 507–53. https://doi.org/10.1086/675534.

Cahuc, Pierre, Fabien Postel-Vinay, and Jean-Marc Robin. 2006. "Wage Bargaining with On-the-Job Search: Theory and Evidence." *Econometrica* 74 (2): 323–64. https://doi.org/10.1111/j.1468-0262.2006.00665.x.

Davis, Donald R., and Jonathan I. Dingel. 2019. "A Spatial Knowledge Economy." *American Economic Review* 109 (1): 153–70. https://doi.org/10.1257/aer.20130249.