

My R Packages

- IsoGene
- IsoGeneGUI
- nea
- neaGUI
- biclustGUI
- OCRME
- More detail: http://setiopramono.wordpress.com/rprogramming/

Infobox Data Data Deprivation Data Deprivation Deprivation Deprivation Data Deprivation D

R Packages by STIS

Name	Title	Brief Description	Author	Repository
spatialClust	Spatial Clustering	Clustering analysis with pay attentation on	Imam Habib Pamungkas, Setia	CRAN
		membership via spatial effects	Pramana	
advclust	S4 Object Oriented for	Advance on clustering with fuzzy clustering for	Achmad Fauzi Bagus F, Setia	CRAN
	Advanced Clustering(overlapping cluster and objects on gray area.	Pramana	
	Fuzzy Clustering and	Cluster Ensemble performs combining several		
	Cluster Ensemble)	result as one robust and stable result.		
RcmdrPlugin.Fuzzy	R commander plugin	Graphical User interface via Rcmdr Plugin for	Achmad Fauzi Bagus F, Setia	CRAN
Clust	for fuzzy clustering	fuzzy clustering analysis	pramana	
MetaheuristicFPA	Metaheuristic with	Optimization of function objectives to get	Amanda Pratama Putra, Margaretha	CRAN
	Flower Pollinantion	global optimum of parameter by using Flower	Ari Anggorowati	
	Algorithm	Pollination Algorithm		
Multiplier	Social Accounting	Graphical User Interface for performing SAM	Tiara Ratna Dewi, Aisyah Fitri	R-Forge
	Matrix and Finansial	(Social Accounting Matrix) and FSAM (Financial	Yuniarshi	
	Social Accounting	Social Accounting Matrix)		
	Matrix			
RcmdrPlugin.PCAR	Robust PCA plugin for	Graphical User Interface for Robust Principal	Monalisa Sipahutar, Setia Pramana	CRAN
obust	Rcmdr	Component Analysis (PCA) with Hubert		
		Algorithm for Dimension Reduction		

R Packages by STIS

GEOGRAPHICALLY WEIGTHED CLUSTERING-GRAVITATIONAL

spatialClust

An R Package for Cluster Spatial Data

Available on CRAN:

September 3rd 2016

"spatialClust" - an R package

by Imam Habib Pamungkas, S.S.T and Setia Pramana, Ph.D

R Based Applications by STIS

- Kalingga
- Muria

ASGARD is a statistics software used to perform geographically weighted regression (GWR). This software was made in 2016 and currently contains some basic GWR functions like GWR, Geographically Weighted Poisson Regression (GWPR), Geographically Weighted Logistic Regression (GWLR), Geographically Weighted Negative-Binomial Regression (GWNBR) and some Assumption Test related to GWR. In addition, ASGARD is also integrated with the map that make it easier for users to performs analysis.

MAIN FEATURES

Spreadsheet

Fairly complete functions

- · GWR
- · GWPR
- · GWLR
- · GWNBR
- · Variance Inflation Factor
- · Breusch-Pagan Test

Map Visualization
Map Visualization can help
users to understand the
circumstances of the
observation area.

FAST

RGUI using C#: Wires

- Developed by STIS students
- For Spatial Data Analysis
- Still developing...

WIRES - [New Project : "Unsaved"]

RGUI using C#: W Etle Thematic Analysis Tools Data View Variable View Map View Result View Exploratory Spatial Data Analysis In

Exploratory Spatial Data Analysis	Provide calculation of spatial autocorrelation based on Moran's I, Gearcy's C, Local Indicators of Spatial Association (LISA)	
Spatial Weight Matrix	Spatial interactions among observations	
Spatial Clustering	Clustering observation with spatial attributes	
Spatial Regression	Regression analysis with spatial depedency	
Regional Inequality	Inequality analysis especially on poverty subjects	
Spatial Shift Share	Comparing growing rate of several sector based on spatial	
Kriging	Imputation on missing data with spatial attributes	

	Score Component 1	Lag Score Component 1	Score Component 2	Lag Score Component 2	Inequality =	^
▶ SELAPARANG		-1.1572	6.9862	1.4920	5.6697	
SUMBAWA	-1.1325	0.8284	4.2860	-0.0731	4.7798	
DOMPU	-3.0534	0.1945	1.3361	-0.1566	3.5745	
WOJA	-3.4202	-0.1159	0.5342	0.0115	3.3454	
PRAYA	-5.7190	-2.5356	0.5513	-0.0462	3.2390	
AIKMEL	-3.2690	-0.2523	-0.5785	-0.6618	3.0178	
MOYO UTARA	1.6801	-0.3151	-0.1405	2.1151	3.0114	
RHEE	1.9859	0.8254	1.7949	-0.3738	2.4597	Ш
SUKAMULIA	0.9716	-0.9446	-1.5866	-0.1341	2.4045	Ш
SELONG	-2.0031	-0.1675	0.8245	-0.6772	2.3716	Ш
SEMBALUN	1.3885	-0.8893	-0.1614	-0.7276	2.3471	Ш
TAMBORA	1.4137	0.4499	-2.1472	-0.0816	2.2794	Ш
KURIPAN	0.6826	-1.5507	-0.0123	-0.2446	2.2453	Ш
SOROMANDI	1.2874	-0.8441	-0.3371	0.2568	2.2127	Ш
PUJUT	-4.2471	-2.3220	-0.8469	-0.2324	2.0208	Ш
RABA	0.2869	0.8763	1.9864	0.0585	2.0160	Ш
MATARAM	-0.8592	-0.9215	0.6684	2.6770	2.0096	Ш
ALAS	0.4113	1.3838	1.3021	-0.4249	1.9820	Ш
GERUNG	-2.0509	-0.0880	-0.1390	-0.3074	1.9701	
GUNUNG SARI	-1.7310	-0.6951	-0.0028	1.6604	1.9594	Ш
KAYANGAN	0.9773	-0.9436	-0.2941	-0.3153	1.9210	
TARANO	1.2161	-0.5865	-0.2837	-0.0498	1.8177	
TALIWANG	-0.0186	1.6467	0.5946	-0.0904	1.8007	V

KABKOTA_NO	Before	After
	0	0
)3	0	0
06	0	0
07	0	0
08	0	0
10	0	0
12	0	0
14	0	0
74	0	0
79	0	0
01	0	0
)2	0	0
03	0	0
04	0	0
05	0	0
06	0	0
07	0	0
08	0	0

A St.

Kehadiran R software yang telah menjadi "state of the art" dalam melakukan pengolahan dan analisa data sangat membantu seorang data scientist dalam perannya diberbagai tahapan analisis mulal deri perencanaan hingga pengambilan keputusan. Khusus untuk para statistisi, software R ini cepat mengadopsi perkembangan metodologi statistika dibandingkan software lainnya, seperti SPSS, SAS, atau Eviews. Besanrya kebutuhan keahlian akan software R dan kurangnya buku yang membahas penggunaan R menjadi salah satu kendala saat ini. Kehadiran buku ini menjawab hal tersebut sehingga buku akan menjadi acuan utama bagi kalangan awam, praktisi, profesional dan akademisi untuk memahami implementasi statistika dengan menggunakan software R. Keunggulan buku ini membenikan dasar statistika beserta contoh serta implementasinya dengan menggunakan software R mulai manajemen data, penyajian hingga analisa data, menjadikan buku ini wajib dimiliki jike ingin menguasai statistika dan R secara simultan.

Dr. Hamonangan Ritonga, M.Sc

Ketua Sekolah Tinggi Ilmu Statistik

"Selamat atas terbitnya buku statistika yang baru ini. Buku yang ringkas, tetapi padat ini, tidak hanya memperkenalkan software R. tetapi juga menjelaskan bagamana menggunakannya dalam analaisis data dengan statistika. Dengan demikian, buku ini unik sehingga pantas dibaca dan amat bermanfaat!"

Abuzar Asra, Dosen STIS dan penulis beberapa buku statistika

Profesor Riset; M.Sc, University of Michigan, USA; dan Ph.D., Griffith University, Australia

Munculnya BIG DATA beberapa tahun terakhir ini membuat kebutuhan terhadap Data Analytic meningkat tajam. Salah satu software yang digunakan untuk melakukan data analytic ini adalah R. Pemilihan R sebagai alat pengantar menjadi salah satu kekuatan buku ini. R yang bersifat opensource dan saat ini termasuk yang paling banyak digunakan oleh profesional maupun akademisi, memberikan kemudahan bagi pembaca untuk dapat mencoba langsung langkah-langkah yang dipaparkan dengan gamblang. Buku ini menuntun pembacanya secara step by step dengan bahasa yang mudah dipahami dan dicerna, dan juga memberikan banyak ilustrasi sehingga membuat ketertarikan terhadap statistik semakin meningkat. Dengan demikian statistik tidak lagi menjadi sebuah teori yang berat, namun menjadi sesuatu yang dapat dipelajari dan diterapkan oleh siapapun.

Ir. Beno K Pradekso, MScEE.

Praktisi BIG DATA Indonesia

CEO SOLUSI247 - LABS247 (PT. Dua Empat Tujuh)

Co-Founder IDBigData (Komunitas BIG DATA Indonesia)

Buku ini memberikan dasar-dasar penggunaan software R dari mulai instalasi hingga konsep serta analisa statistika tingkat menengah baik dengan command line ataupun dengan R Graphical User Interface. Adapun yang dibahas dalam buku ini:

- Pengenalan RGUI dan RStudio
- Statistik Deskriptif dan Visualisasi Data
- Statistik Inferensia dan Uji Hipotesis
- Analisis Keragaman (Anova)
- Analisis Regresi dan Korelasi Pengenalan Pemrograman dengan R
- Pengenalan RCommander
- Analisa Data dengan RCommander

DASAR-DASAR STATISTIKA Dengan

Software

Z

Konsep dan

Aplikasi

Setia Pramana, Ph.D Ricky Yordani, M.Stat Robert Kurniawan, M.Si Budi Yuniarto, M.Si

DASAR-DASAR

STATISTIKA Dengan Software R

Konsep dan Aplikasi

Setia Pramana

11

"Autor-eiche ins penierintah gencar mendorong penggunian dan pengembangan software berbasis open source. R merupakan suarti software sakaligus bahasis peminopranan yang berside open source, menanyarkan suarti silat yang bersidus malan dan ferkabal untuk melekukan amasan dala statistik. Saya berhatap selatutik salah satatisk, kihasannya dalangun amagisarangan salah salah salah salah salah bahasi batan bagi mereka yang ingin belajar tertang R dari dasar. Dituk cieh penulas yang dalah banya menguasai katu statistik tertang R dari dasar. Dituk cieh penulas yang bakkan penguasai katu statistik tertang R dari dasar, bituk salah lana berkedingang di Godon Plajat Statistik, membuat buku sa modah dipatura olah pembakanyak."

Dr. Suhanyanto, Kepala Badan Pusat Statistis Republik Indonesia

Pengolahan dan anahisi dara tatak bisa dikepaskan dari duna Peneditan. Terlebih lagi pada ora BKS DATA sekarang ini. Sanyak metodologi yang bisa digunukan sertuan sebangga bisa bermaniak bagi danai peneditan. Salah salai bahasa pempograman yang benyak digunukan sebangai Sertuanganan R. Urbuk bisa beradaptan dengan cepat dahutukan sebuah BEST PRACTICE urbuk mempenggal proces belajar Buku ini nerawatikan sebuah selas antak pembasa beraga BEST PRACTICE yang mampu menyalakan pengganaan RJANGUACE secara beragan dan tepat buku ini sangat secak berakan pengganaan RJANGUACE secara beragan dan tepat buku ini sangat secak berakan urbuk secarang pensulai sekalipan. Bisku ini memberakan pengulasan yang komphetiansal sepatar statistik baja tahuta baja tan magan apikasanya pada Penrograman R

- Prof. Dr. Eng. Wisnu Johnsko, Mensjer Rosef Fassitias Isnu Kongular Universitas

Serbagai laiknya bidang ilmu yang beril dist kepada matematika, statistika tak dapat dipelajan secura menyekutuh dengan mentilansa dan mentahanni sasa. Selelah mentahanni suatu koosep perlu prakhis dan pengalaman langsung dalam membangun hipotenis, mensuk sampling merakod dan mengolah data, modelikis, melakukan leut salaisti untuk hinogali hipotesis, membangun confidens interval, simulasi dan berbagai hal terkasi praktok

statetira.
Promistyrosen yang disebutkan di atas terbedites dari terbilang dengan perkembangan teknologi kompulasi dalam beberapa delaata belekangan mi. Buku mi pengole etalintika poda lingkat pemula tengga interreditate, ditulai dengan bala mengganakan R. sebagai fasilitas pencelong kompulasi. Reunggalan R. sebagai statistikal programming langungan delapang delapan kebasaciaan berbagai pacango statistika yang sisa paksakonsordia dan istoping dengan kelenseksan bertagai, "package" stabilika yang sap palastoriedai dar kamudahan dalam pengolahan data, grafik, dan juga programming santa atlabiya yang oper sooron dan tak bertayar, menjadikan baku ini mengunyai yala tarobah yang bak

- Pengenetan RGUI dan RStudio
 Statistik Deskriptif dan Visuelnusi Data
- Visualisasi dengan ggold2 Statistik Inferensia dan Uji Hipotesis Anahais Keragaman (Anova)

- Analisis Regresi dan Konstani Pemingraman dengan R dan ilipiya
- Analisa Data dengan Ricommande Regresi Logistik

Setia Pramana, Ph.D. Ricky Yordani, M.Stat Robert Kurniawan, M.Si Budi Yuniarto, M.Si

DISTR-DASAR

STATISTIKA Dengan Software R

Konsep dan Aplikasi

EDISI KEDUA

IN MEDIA

Konsep dan Aplikasi

Konsep Serta Implementasi

Kebutuhan akan eksplorasi dan analisisi data semakin meningkat beberapa tahun terakhir. Metode eskplorasi dan analisisi data juga mulai bergeser ke arah penggunaan data mining dan beberapa algoritma machine learning. Hal ini menderong perubahan kurikulum dan materi yang harus disampaikan dan dikuasai mahasiswa khususnya mahasiswa jurusan statistik. Buku ini sangat saya rekomendasikan balik kepada mahasiswa mahun para penggiar karena buku ini tidak hanya memberikan teori namun juga mengajarkan bagaimana mengapilkasikan teori tersebut datam contido-contido praktis. Buku ini juga memberikan keberagaman agilikasi dari data mining dengan tipe data yang berbeda-beda yang dapat diaglikasikan dengan software R.

Dr. Erni Tri Astuti, M.Math - Direktur Politeknik Statistika STIS

R merupakan salah satu alat pengolahan data yang sangat ampuh. Dengan bahasa yang lugas dan "to-the-point", penulis berhasil menyajikan data mining dengan pendekatan praktis menggunakan R. Buku ini merupakan batu pijakan yang sangat berguna buat para aspiring data scientist yang ingin menggeluti bidang data science

Syafri Bahar S.Si., M.Sc., FRM - Vice President of Data Science GOJEK.

Bahasan buku ini mencakup:

- 1. Pengantar Data Mining
- 2. Eksplorasi dan Visualisasi Data
- 3. Regresi Linear dan Logistik
- 4. Analisis Komponen Utama
- 5. Multivariate Anova
- 6. Supervised Learning (KNN, Decision Tree, Random Forest, dll)
- 7. Unsupervised Learning (Cluster Analysis)
- 8. Text Mining
- 9. Analisis Sentimen
- 10. Data Mining dalam Bioinformatika

UMUM ISBN 978-602-646

Harga P. Jawa Rp.

Setia Pramana
Budi Yuniarto
Budi Yuniarto
Siti Mariyah
Ibnu Santoso
Rani Nooraeni

DATA

MINING dengan

DATA
MINING
dengan
R

Konsep Serta Implementasi

_.3

Rook Chanters

Use R!

Dan Lin Ziv Shkedy Daniel Yekutieli Dhammika Amaratunga Luc Bijnens *Editors*

Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R

Order-Restricted Analysis of Microarray Data

Chapman & Hall/CRC Biostatistics Series

Applied Biclustering Methods for Big and High-Dimensional Data Using R

edited by Adetayo Kasim
Ziv Shkedy • Sebastian Kaiser
Sepp Hochreiter • Willem Talloen

Outline

- Intro Bioinformatics
- Bioinformatics pipeline
- R packages for Bioinformatics

What is Bioinformatics?

Bioinformatics - a definition1

(Molecular) bio — informatics: bioinformatics is conceptualising biology in terms of molecules (in the sense of physical chemistry) and applying "informatics techniques" (derived from disciplines such as applied maths, computer science and statistics) to understand and organise the information associated with these molecules, on a large scale. In short, bioinformatics is a management information system for molecular biology and has many practical applications.

¹ As submitted to the Oxford English Dictionary

What is Bioinformatics?

Bioinformatics is the use of computers for the acquisition, management, and analysis of biological information.

It incorporates elements of molecular biology, computational biology, database computing, and the Internet...

... bioinformatics is clearly a multi-disciplinary field including: computer systems management networking, database design, computer programming, molecular biology

From Using Computers for Molecular Biology, Stuart M. Brown, PhD, RCR, NYU Medical Center

What is Bioinformatics?

Fig 1 Interaction of disciplines that have contributed to the formation of bioinformatics

Bioinformatics is a multifaceted discipline combining many scientific fields including computational biology, statistics, mathematics, molecular biology and genetics (Fenstermacher, 2005, p. 440) a Pramanafrom Bayat (2002), p 10189.

Microarray

Overview of the process of generating high throughput gene expression data using microarrays.

Setia Pramana

Analyze data in the context of other, related experiments. Investigate behavior of expressed genes in other experimental paradigms

Pipeline

- Experiment design → Lab work → Image processing
- Signal summarization (RMA, GCRMA)
- Normalization
- Data Analysis:
 - Differentially Expressed genes
 - Clustering
 - Classification
 - Etc.
- Network / Pathways (GSEA etc..)
- Biological interpretations

Preprocessed data

A A C PA C CCDD C C	a a care	
Genes	C1 C2 C3	T ₁ T ₂ T ₃
G8521	6.89 7.18 6.60	7.40 7.15 7.40
G8522	6.78 6.55 6.37	6.89 6.78 6.92
G8523	6.52 6.61 6.72	6.51 6.59 6.46
G8524	5.67 5.69 5.88	7.43 7.16 7.31
G8525	5.64 5.91 5.61	7.41 7.49 7.41
G8526	4.63 4.85 5.72	5.71 5.47 5.79
G8527	8.28 7.88 7.84	8.12 7.99 7.97
G8528	7.81 7.58 7.24	7.79 7.38 8.60
G8529	4.26 4.20 4.82	3.11 4.94 3.08
G8530	7.36 7.45 7.31	7.46 7.53 7.35
G8531	5.30 5.36 5.70	5.41 5.73 5.77
G8532	5.84 5.48 5.93	5.84 5.73 5.75

Microarray Data Analysis Types

- Gene Selection
 - find genes for therapeutic targets
- Classification (Supervised)
 - identify disease (biomarker study)
 - predict outcome / select best treatment
- Clustering (Unsupervised)
 - find new biological classes / refine existing ones
 - Understanding regulatory relationship/pathway
 - exploration

Gene Selection

- Modified t-test
- Significance Analysis of Microarray (SAM)
- Limma (Linear model for microarrays)
- Random forest
- Lasso (least absolute selection and shrinkage operator)
- Linear Mixed model
- Elastic-net
- Etc,

Visualization

- Dimensionality reduction
- PCA (Principal Component Analysis)
- Biplot
- Multi dimensional scaling
- Etc

Clustering

- Cluster the genes
- Cluster the arrays/conditions
- Cluster both simultaneously
- K-means
- Hierarchical
- Biclustering algorithms

Clustering

- Cluster or Classify genes according to tumors
- Cluster tumors according to genes

Biclustering

- A biclustering method is an unsupervised learning method which looks for sub-matrices in a data matrix with a high similarity of elements.
- Algorithms: Statistical based, AI, machine learning.
- BiclustGUI: A User Friendly Interface for Biclustering Analysis

Bicluster Structure

Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria

Julie Bachmann^{1®}, Florence Burté^{2®}, Setia Pramana³, Ianina Conte², Biobele J. Brown^{4,5,6}, Adebola E. Orimadegun⁴, Wasiu A. Ajetunmobi⁴, Nathaniel K. Afolabi⁴, Francis Akinkunmi⁴, Samuel Omokhodion^{4,6}, Felix O. Akinbami^{4,6}, Wuraola A. Shokunbi^{5,6}, Caroline Kampf⁷, Yudi Pawitan³, Mathias Uhlén¹, Olugbemiro Sodeinde^{2,4,5,6}, Jochen M. Schwenk¹, Mats Wahlgren⁸*, Delmiro Fernandez-Reyes^{2,4,5,6,9}*, Peter Nilsson¹*

1 SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden, 2 Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom, 3 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 4 Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria, 5 Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria, 7 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden, 8 Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden, 9 Brighton & Sussex Medical School, Sussex University, Brighton, United Kingdom

Aim: To improve understanding of host protein profiles during disease progression especially in children.

Dose-response Microarray Studies

Monitoring of gene expression with respect to increasing dose of a compound.

No prior info about the dose-response shape. Genes have different shapes.

Many "noisy" genes hence need for initial filtering.

Dose-response Microarray Studies

springer.com

2012, XV, 282 p. 96 illus., 4 illus. in color.

D. Lin, Z. Shkedy, D. Yekutieli, D. Amaratunga, L. Bijnens (Eds.)

Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R

Order-Restricted Analysis of Microarray Data

Series: Use R!

- ► This book focuses on the analysis of microarray data in the doseresponse setting in early drug development experiments in the pharmaceutical industry
- ► Part I discusses the dose-response setting and the problem of estimation of normal means under order restrictions
- ► Part II demonstrates the use of the IsoGene R library and in particular its graphical capacity

This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biଚ ଡିଡିଆଟିs, ନିର୍ମ୍ବ ଓଡ଼େଆଟିs bioinformatics graduate students.

Gene Signature for Prostate Cancer

Bioinformatics R Packages: Bioconductor

- Microarray analysis: expression, copy number, SNPs, methylation, . . .
- Sequencing: RNA-seq, ChIP-seq, called variants, . . .
 - Especially after assembly / alignment
- Annotation: genes, pathways, gene models (exons, transcripts, etc.), . . .
- Epigenetics
- Gene set enrichment analysis
- Network analysis
- Flow cytometry
- Proteomics and metabolomics
- Cheminformatics
- Images and high-content screens

Home

Install

Help

Search:

Developers

About

About Bioconductor

Bioconductor provides tools for the analysis and comprehension of highthroughput genomic data.

Bioconductor uses the R statistical programming language, and is open source and open development. It has two releases each year, and an active user community. Bioconductor is also available as an AMI (Amazon Machine Image) and a series of Docker images.

News

- Bioconductor 3.9 is available.
- Core team job opportunities for scientific programmer / analyst and senior programmer / analyst! contact Martin.Morgan at RoswellPark.org
- Bioconductor <u>F1000 Research Channel</u> available.
- Orchestrating high-throughout genomic

Install »

 Discover <u>1741 software packages</u> available in *Bioconductor* release 3.9.

Get started with Bioconductor

- Install Bioconductor
- Get support
- Latest newsletter
- · Follow us on twitter
- Install R

Learn »

Master Bioconductor tools

- Courses
- Support site
- Package vignettes
- <u>Literature citations</u>
- · Common work flows
- FAQ
- · Community resources
- Videos

Use »

Create bioinformatic solutions with Bioconductor

- Software, Annotation, and Experiment packages
- Amazon Machine Image
- · Latest release annoucement

Develop »

Contribute to Bioconductor

- Developer resources
- Use Bioc 'devel'
- 'Devel' packages
- · Package guidelines
- · New package submission

Great link to start

- https://www.bioconductor.org/help/coursematerials/
- http://manuals.bioinformatics.ucr.edu/home/R BioC ondManual
- http://www.cs.ukzn.ac.za/~hughm/bio/docs/a-littlebook-of-r-for-bioinformatics.pdf

Bioconductor

Release coincides with R release.

Current: Bioconductor 2.10 (release coincide with R 2.15)

To install use script on Bioconductor Website

```
source("http://www.bioconductor.org/biocLite.R")
biocLite()
```

Packages Overview

BioConductor web site

Bioconductor BiocViews <u>Task view</u>

Software
Annotation Data
Experimental Data

Main types of Annotation Packages

- Gene centric AnnotationDbi packages:
 - Organism: org.Mm.eg.db.
 - Technology/Platform: hgu133plus2.db.
 - GeneSets and Pathway (biology level): GO.db or KEGG.db
 - .db packages can be queried with sql or accessed using annotation package (totable, get, mget)
- Genome centric GenomicFeatures packages:
 - Transriptome level: TxDb.Hsapiens.UCSC.hg19.knownGene
 - Generic features: Can generate via GenomicFeatures
- biomaRt:
 - Query web-based `biomart' resource for genes, sequence, SNPs, and etc.
- See http://www.bioconductor.org/help/course-materials/2011/BioC2011/LabStuff/AnnotationSlidesBioc2011.pdf

nductor resources

- Mailing List (sign up for daily digest)
- Documentation, workshop/course material online
 - Slides from talks, pdf of tutorials, R code
- Help available for each software package
 - Each package MUST contain vignette (howto)
- Other resources <u>ww.Rseek.org www.r-bloggers.com</u>

Vignette

- Tutorials, provide worked example of package
- Required in Bioconductor packages
- Written in Sweave (Leisch, 2002).
 - $\ ^{\square}$ $L^{A}T_{E}X$ dynamic reports in which R code is embedded and executable
 - All R code in vignette is checked (and executed) by R CMD check
 - http://www.bioconductor.org/docs/vignettes.html

```
library("Biobase")
library("GOstats")  # Load package of interest
openVignette()
```

Some common data types

- Microarray
- SNP
- NGS

Reading Affymetrix Data

library(affy) require(affy) # Alternative

affybatch <- ReadAffy(celfile.path="[Location of your data]")

eSet<-justRMA()

Sample Workflow

The following psuedo-code illustrates a typical R / Bioconductor session. It uses RMA from the affy package to pre-process Affymetrix arrays, and the limma package for assessing differential expression.

```
## Load packages
> library(affy) # Affymetrix pre-processing
> library(limma) # two-color pre-processing; differential
                 # expression
## import "phenotype" data, describing the experimental design
> phenoData <- read.AnnotatedDataFrame("sample-description.csv")</p>
## RMA normalization
> eset <- justRMA("/celfile-directory", phenoData=phenoData)</p>
## differential expression
                              # describe model to be fit
> design <-
      model.matrix(~ Disease, pData(eset))
> fit <- lmFit(eset, design) # fit each probeset to model
> efit <- eBayes(fit)
                            # empirical Bayes adjustment
> topTable(efit, coef=2) # table of differentially expressed probesets
```

Other Arrays

- Illumina
 - Lumi package
- 2 color spotted arrays
 - Limma package
- Other arrays
 - http://www.bioconductor.org/help/workflows/oli go-arrays/

Public Microarray Data

ArrayExpress

• 21997 Studies (622,617 profiles,)

GEO

• 22,735 Studies (558,074 profiles)

Gene Expression Omnibus

R Code

> library(GEOquery)

This loads the GEOquery library.

> gds <- getGEO("GDS1")</pre>

- > library("ArrayExpress")
- > sets = queryAE(keywords = "pneumonia", species = "homo
- > mexp1422 = getAE("E-MEXP-1422", type = "full")

More on GEOquery

```
require (GEOquery)
```

Let's try to load the <u>GDS810</u> dataset which contains data on Alzheimer's disease at various stages of severity.

```
GDS810<-getGEO("GDS810")
```

The *getGEO* function returns an object of class *GEOData*. You can get a description of this class like this: help("GEOData-class")

```
Meta(GDS810)
Columns(GDS810)
head(Table(GDS810))
```

ExpressionSet Class in R

```
> library(ALL) # attach the ALL package to the search path
> data(ALL) # load the ALL data into the global work space
```

> ALL # view the ALL instance -- our first ExpressionSet!

exprs(ALL) returns the matrix of expression values (probe sets as rows, samples as columns). In the ALL data, the expression values are pre-processed and log-transformed.

pData(ALL) extracts a data frame describing the sample phenotype data.

annotation(ALL) reports the type of microarray chip used in this experiment.

DownStream Analysis

- Differentially expressed Genes
- Classification
- Clustering
- Pathway analysis
- Etc....

Setia Pramana 50

Thank you for your attention!!! Setia.pramana@stis.ac.id

Setia Pramana 51