Name: Atul Kumar Roll No: RD2110B79

Reg. No: 12102801 Course Code: CAP-446

Instructor: Dr. Geeda Sharma Assignment: 02

Q1. Prepare a FP growth tree for the following transactions. Given Minimum oupport = 2

, the	,
Transaction ID	List of Items
T1	BIAIT
T2	A,C
T3	AIS
T4	BIAIC
15	G,S
T6	AIS
17	BIS
T8	B, A, S, T
T9	B,A,S

30l: First we have to calculate the support of all the given items:

Item	Support
A	7
В	6
C	2
S	6
T	2

Now cerrange the items in decreasing order means repose item have highest frequency comes first in the list of items.

	,	
Transaction ID	List of Items	
T1	AIBIT	
†2	AIC	
Т3	AIS	
T4	A,B,C	
T 5	Bis	
T6	AIS	
77	B,S	
18	A, B, S, T	
T9	AIBIS	

→ Now construct the FP growth for all the TIDs. All the tree start wells NULL.

B2: For the following given transaction dataset, generate rules using Apriori algorithm. Consider values as support 30%.

TID	PRODUCTS			
1	Milk	E88	Bread	Butter
2	Milk.	Butter	E99	Ketchup
3	Bread	Butler	Ketchup	1,
4	Milk	Bread	Butter	
5	Bread	Butter	Cookies	
6	Milk	Bread	Butter	Cookies
7	Milk	Cookies		
8	Milk	Bread	Butter	
9	Bread	Butter	E89	Cookies
10	MILK	Butler	Bread	
11	Milk	Bread	Butter	1
12	Milk	Bread	cookies	Ketchup
	^			

sol": First we have to calculate the support

Support = No. of purchases item

where n = total no. of transaction

@ Milk - 9 x100 = 75%.

(3) $E99 - \frac{3}{12} \times 100 = 25\%$

- 3 Bread $\frac{10}{12}$ x 100 = 83.3%
- 9 Butter 10 x 100 = 83.3%.
- (5) Ketchup 3 x 100 = 25%.
- (6) Cookies $-\frac{5}{12} \times 100 = 41.6\%$
 - → Delete those product alpose pupport is less ithan 30%. Now we have:-

Products	Support
Milk	15%
Bread	83.3%
Butter	83.3%
Cookies	41.6%

- Now make pair from the above given products and calculate its support.
- @ Milk, Bread 7x100 = 58%
- @ Milk, Butler 72 x 100 = 58%.
- 3 Milk, Cookies 3 x 100 = 25%.
- @ Bread, Butter 9 x 100 = 75%.
- (5) Bread, cookies 4 x 100 = 33.3%.
- 6) Butler, Cookier 3x100 = 25%.

Page:06

→ Again delete those pais of products refose support its cless than 30%. Now we have:-

Product	Support
Milk, Bread	58%
Milk, Butler	58%
Bread, Butter	75%
Bread, Coockies	33.3%.

- Now we have four product Milk, Bread, Butter, cookies. Make group of three items from the given products and calculate its support.
- @ Milk, Bread, Butler 6 x100 = 50%.
- (2) Milk, Bread, Cookies 2 x 100 = 16.6%.
- 3 Milk, Butler, cookies 1 × 100 = 8.3%.
- 4 Bread, Butles, Cookies 3 x 100 = 25%.
 - Again delete those group of items whose support its dess than 30%.
 Now we have only left with one group.

Product	Support
Milk, Bread, Butter	50%

Page:07

Frequent 3- item set: {Milk, Bread, Butles}

$$= \frac{6}{12} = \frac{6}{12} \times \frac{12}{9} = \frac{6}{9} \times 100 = \frac{66.6\%}{9}$$

$$=\frac{6}{10} = \frac{6}{12} \times \frac{12}{10} = \frac{6}{10} \times 100 = \frac{60\%}{10}$$

$$= \frac{6}{12} = \frac{6}{12} \times \frac{12}{10} = \frac{6}{10} \times 100 = \frac{60\%}{10}$$

(4)
$$SMilk$$
, $Bread$ => $Butler$
 $Support = \frac{6}{12}$
 $Confidence = Support(Milk, Bread, Butler)$
 $Support(Milk, Bread)$
 $= \frac{6}{12} = \frac{6}{12} \times \frac{17}{7} = \frac{6}{7} \times 100 = 85.7\%$

(6) SMilk, Butter? -> Bread

Support = 6/12

confidence = Support (Milk, Breach, Butter)

Support (Milk, Butter)

$$= \frac{6}{12} = \frac{6}{12} \times \frac{12}{7} = \frac{6}{7} \times 100 = 85.7\%$$

(6) SBread, Butler] -> Mill Support = 6/12 confidence = Support (Milk, Bread, Butler) Support (Bread, Butler)

$$= \frac{6}{9} = \frac{6}{12} \times \frac{12}{9} = \frac{6}{9} \times 100 = \frac{66.6\%}{12}$$

→ Mese all the six combinations satisfies the condition given in the question confidence = 60%.

Page: 09