Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский Политехнический университет Петра Великого Физико-Механический институт

Лабораторная 3

Выполнил студент гр. 5030102/20101:	Бугайцев М.В.	
Преподаватель:	Баженов А. Н.	
Работа принята:	Дата	

Содержание

1	Введение				
2	Пра	актиче	еская часть	3	
	2.1	Норма	альное распределение	3	
		2.1.1	Графики	3	
		2.1.2	Результаты	6	
	2.2	Смесь	распределений	7	
		2.2.1	Графики	7	
			Результаты		
3	Зак	лючен	ние	9	

1 Введение

- 1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.
- 2. Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.
- 3. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадратного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9 N(x, y, 0, 0, 1, 1, 0.9) + 0.1 N(x, y, 0, 0, 10, 10, -0.9).$$

4. Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2 Практическая часть

2.1 Нормальное распределение

2.1.1 Графики

Рис. 1: Примеры выборок для n=20

Рис. 2: Примеры выборок для n=60

Рис. 3: Примеры выборок для n=100

2.1.2 Результаты

Размер	ρ	Пирсон		Спирмен		Квадратичный	
		Среднее	Дисперсия	Среднее	Дисперсия	Среднее	Дисперсия
20	0	0	0.05	0	0.05	0.052	0.005
20	0.5	0.49	0.03	0.46	0.04	0.27	0.03
20	0.9	0.897	0.002	0.868	0.004	0.806	0.006
60	0	0	0.02	0	0.02	0.0170	0.0006
60	0.5	0.495	0.01	0.47	0.01	0.255	0.009
60	0.9	0.8980	0.0007	0.882	0.001	0.807	0.002
100	0	0	0.01	0	0.01	0.0103	0.0002
100	0.5	0.496	0.006	0.475	0.006	0.251	0.005
100	0.9	0.8980	0.0004	0.8850	0.0006	0.807	0.001

2.2 Смесь распределений

2.2.1 Графики

Рис. 4: Примеры выборок для распределения смеси

2.2.2 Результаты

Размер	Пи	рсон	Спирмен		Квадратичный	
	Среднее	Дисперсия	Среднее	Дисперсия	Среднее	Дисперсия
20	0	0.3	0.53	0.07	0.33	0.09
60	0	0.1	0.53	0.02	0.13	0.02
100	0	0.08	0.53	0.01	0.08	0.01

3 Заключение

В ходе проведённых исследований были сгенерированы двумерные выборки различного размера из нормального распределения с заданными значениями коэффициента корреляции, а также выборки из смеси нормальных распределений. Проведённые вычисления позволили получить оценку средних значений, средних значений квадратов и дисперсий коэффициентов корреляции Пирсона, Спирмена и квадратного коэффициента корреляции.

Дополнительно были построены графические представления выборок, позволяющие наглядно оценить их структуру, а также соответствующие эллипсы равновероятности. Эти визуализации подтвердили теоретические ожидания относительно взаимосвязи между коэффициентами корреляции и геометрической формой облака точек.