数字集成电路基础

——时序逻辑电路

张悦

微电子学院

费尔北京研究院/自旋电子交叉学科中心

目 录

- 6.1 基本概念
- 6.2 时序逻辑电路的分析方法
- 6.3 时序逻辑电路的设计方法
- 6.4 常用时序逻辑电路

基本概念

时序逻辑电路的结构及特点

• 特点: 电路任何一个时刻的输出状态不仅取决 于当时的输入信号,还与电路的原状态有关。

• 例: 串行加法器

组合逻辑电路和时序逻辑电路的区别

组合逻辑电路: T时刻输出仅与T时刻输入有关,

与T以前的状态无关。

- 电路结构:
 - 由组合逻辑电路和存储电路两部分组成;
 - 存储器件的<mark>状态</mark>必须 反馈到输入端;
 - 当前的反馈状态与输入信号共同决定输出。

- 普遍形式
 - 状态方程

$$Q^{n+1} = H[Z, Q^n]$$

• 驱动方程(激励方程)

$$Z = G[X, Q^n]$$

• 输出方程 $Y = F[X, Q^n]$

时序逻辑电路结构框图

2、时序电路的分类

- •按照电路状态转换情况(存储电路中触发器的动作特点)不同,时序电路分为:
 - ❖同步时序电路
 - ❖异步时序电路(仍然有时钟,不等于"异步电路")

	同步时序电路	异步时序电路
エ	存储电路里所有触发器	存储电路中各F-F的
作状况	的状态变化都在同一个	状态变化有先有后。
况	控制脉冲CP作用下发生	
结	各F-F时钟脉冲端同接	各F-F时钟脉冲输入端
构	一个时钟脉冲源CP。	不一定都有CP,有些
		电路可以无CP。

- 按照电路中输出变量是否和输入变量直接相关,时序电路 又被分为 米利(Mealy)型 电路和 穆尔(Moore)型:
 - ❖ Mealy型电路的外部输出 Y 既与触发器的状态 Q^n 有 关,又与外部输入 X 有关;

$$Y = F(X, Q)$$

❖ Moore型电路的外部输出 Y 仅与触发器的状态 Q^n 有 关,而与外部输入 X 无关。

$$Y = F(Q)$$

时序电路的典型电路有:寄存器,移位寄存器,计数器等

6.2 时序电路分析方法

- 6.2.1 时序逻辑电路的分析步骤
- 6.2.2 同步时序逻辑电路的分析
- 6.2.3 异步时序逻辑电路的分析

6.2.1 时序逻辑电路的分析步骤 实际上就是指<mark>触发器本身的</mark> 状态方程。

- 1. 根据给定的时序电路图写出各逻辑方程式
 - 1.1 驱动方程
 - 1.2 状态方程(驱动方程代入触发器的特性方程)
 - 1.3 输出方程
- 2. 根据状态方程和输出方程,列出时序电路的<u>状态转</u> <u>换表</u>,画出<u>状态转换图</u>或<u>时序图</u>;
- 3. 根据电路的状态转换表、状态转换图或时序图,说明给定时序逻辑电路的逻辑功能。

6.2.2 同步时序逻辑电路的分析

• 同步时序逻辑电路的分析 例1:

原状态Qn上的角标。

例1:

▶ 根据给定的时序电路图写出各逻辑方程式

1.1. 列出驱动方程

$$\begin{cases} J_1 = \overline{Q_2 \cdot Q_3} & K_1 = 1 \\ J_2 = Q_1 & K_2 = \overline{Q_1 \cdot \overline{Q_3}} \\ J_3 = Q_1 \cdot Q_2 & K_3 = Q_2 \end{cases}$$

1.2. 将驱动方程代入触发器特性方程,列出状态方程

由
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$
 , 有:

$$\begin{cases} J_{1} = \overline{Q_{2} \cdot Q_{3}} & K_{1} = 1 \\ J_{2} = Q_{1} & K_{2} = \overline{\overline{Q_{1}} \cdot \overline{Q_{3}}} & Q_{1}^{n+1} = \overline{Q_{2} \cdot Q_{3}} \cdot \overline{Q_{1}} \\ J_{3} = Q_{1} \cdot Q_{2} & K_{3} = Q_{2} & Q_{3}^{n+1} = Q_{1} \cdot \overline{Q_{2}} \cdot \overline{Q_{3}} + \overline{Q_{2}} \cdot \overline{Q_{3}} \\ \end{cases}$$

1.3. 输出方程

$$Y = Q_2 \cdot Q_3$$

▶ 根据状态方程和输出方程,列出时序电路的状态转换表, 画出状态转换图或时序图。

2.1. 状态转换表

$$Q_1^{n+1} = \overline{Q_2 \cdot Q_3} \cdot \overline{Q_1}$$

$$Q_2^{n+1} = Q_1 \cdot \overline{Q_2} + \overline{Q_1} \cdot \overline{Q_3} \cdot Q_2$$

$$Q_3^{n+1} = Q_1 \cdot Q_2 \cdot \overline{Q_3} + \overline{Q_2} \cdot Q_3$$

$$Y = Q_2 \cdot Q_3$$

Q_3	Q_2	Q_1	Q_3^{n+1}	\mathcal{Q}_2^{M+1}	Q_1^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

 $\mathbf{0}$

 $\mathbf{0}$

0

0

0

0

0

 \mathbf{Q}_1

 \mathbf{Q}_2

 $\mathbf{0}$

 $\mathbf{0}$

 $\mathbf{0}$

 $\mathbf{0}$

2.2. 状态转换图

例题中电路无输入变量,次态和输出只取决于电路的初态,设 初态为Q₃Q₂Q₁=000,代入其状态方程及输出方程,得:

$$\begin{array}{c} \widehat{\mathbb{A}} \lambda / Y \\ 000 \longrightarrow 001 \end{array} \left\{ \begin{array}{c} Q_1^{n+1} = 0 \bullet 0 \bullet 0 = 1 \bullet 1 = 1 \\ Q_2^{n+1} = 0 \bullet 0 + 0 \bullet 0 = 0 \end{array} \right. Y = 0 \bullet 0 = 0 \\ Q_3^{n+1} = 0 \bullet 0 \bullet 0 + 0 \bullet 0 = 0 \end{array} \right.$$

依次得到010,011,100,101,110,000又返回最初设定的初 态,列出其状态转换表。

若电路初态为111,代入 方程得:

$$Q_3Q_2Q_1=000, Y=1$$

 $\mathbf{0}$

CP

 Q_3

 $\mathbf{0}$

 $\mathbf{0}$

每经过七个时钟触发脉冲以后输出端Y从高电平跳变为低电平,且电路的状态循环一次。 所以此电路具有对时钟信号进行计数的功能,且计数容量等于七,称为七进制计数器。

2.3. 时序图 (波型图)

Q_3	Q_2	Q_1	Q_3^{n+1}	\mathcal{Q}_2^{x+1}	$Q_1^{\kappa+1}$	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

例2(Mealy型电路):

- 1.2. 状态方程
- 1.3. 输出方程

$$D_2 = A \oplus Q_1 \oplus Q_2$$

$$Q_1^{n+1} = D_1 = \overline{Q}_1$$

$$Q_2^{n+1} = D_2 = A \oplus Q_1 \oplus Q_2$$

 $Y = \overline{\overline{\overline{A}Q_1Q_2} \cdot \overline{A}\overline{\overline{Q_1}}\overline{\overline{Q_2}}} = \overline{A}Q_1Q_2 + A\overline{Q_1}\overline{Q_2}$

2.1. 状态转化表

时序逻辑分析的时候, 并不建议列这种"卡诺图"型 的状态转换表,这时 普通真值表型的不容易出错! 然而,在设计的时候,建议用 "卡诺图"型的状态转换表。

Q_2Q_1 A	00	01	11	10
0	01/0	10/0	00/1	11/0
1	11/1	00/0	10/0	01/0

$$\mathcal{Q}_2^{\mathsf{N}+1}\mathcal{Q}_1^{\mathsf{N}+1}/Y$$

2.2. 状态装换图

》 判定逻辑功能:

✓ 四进制加减计数器

6.2.3 异步时序逻辑电路的分析

例3:

驱动方程	状态方程
$\begin{cases} J_1 = 1 \\ K_1 = 1 \end{cases} cp_0 = CP \downarrow$	$Q_0^{n+1} = \overline{Q_0} _{CP} \downarrow$
$\begin{cases} J_2 = \overline{\overline{Q_2} \cdot \overline{Q_3}} \\ K_2 = 1 \end{cases} cp_1 = \overline{Q_0} \downarrow$	$Q_1^{n+1} = (Q_2 + Q_3)\overline{Q_1}\Big _{cp_1\downarrow}$ $= Q_2\overline{Q_1} + Q_3\overline{Q_1}\Big _{\overline{Q_0}\downarrow}$
$\begin{cases} J_2 = 1 & cp_2 = \overline{Q_1} \downarrow \\ K_2 = 1 & \end{cases}$	$Q_2^{n+1} = \overline{Q_2}\Big _{\overline{Q_1}}\downarrow$
$\begin{cases} J_2 = \overline{Q_1} \cdot \overline{Q_2} & cp_3 = \overline{Q_0} \downarrow \\ K_2 = 1 \end{cases}$	$Q_3^{n+1} = (\overline{Q_1} \cdot \overline{Q_2}) \overline{Q_3} \Big _{cp_3 \downarrow}$ $= \overline{Q_1} \cdot \overline{Q_2} \cdot \overline{Q_3} \Big _{\overline{Q_0} \downarrow}$
输出方程 Y =	$=\overline{Q_0}\cdot\overline{Q_1}\cdot\overline{Q_2}\cdot\overline{Q_3}$

			Q_3^{n+1}	$= \cancel{Q_1^{n+1}} \cdot \cancel{Q_2^{}}$	$Q_{\overline{Q_3}} + Q_{\overline{Q_0}}$	$Q_3\overline{Q_1}\Big _{\overline{Q_0}}\downarrow$ ($Q_2^{n+1} = \overline{Q_2}\Big _{\overline{Q_1}}$	$cp_3 =$	$=\overline{Q_0}\downarrow$	cp_2	$=\overline{Q_1}\downarrow$	_	$cp_1 =$	$=\overline{Q_0}\downarrow$
Q_3	Q_2	Q_1	Q_0	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	cp_3	cp_2	cp_1	cp_0		Y	_
		0			0	0		↓	保持	↓	↓		1	_
		0	_		0	0		保持	保持	保持	₩			
		1	_		0	0		↓	保持	↓	₩			_
		1	_		0	1		保持	保持	保持	₩			
		0			- 0	(1)			$ \downarrow$ $-$	(\downarrow)	ļ			_
		0	_		1	0		保持	保持	保持	₩			_
		1			1	0		↓	保持	↓	Ů V			_
		1			1	1		保持	保持	保持	Ů V		全	_
		(0)	_		-1-	(1)	_	_						
		0			0	0		保持	保持	保持	₩		0	_
		1			0	0		↓	保持	←	\			
		1			0	1		保持	保持	保持	\			_
		(0)			-0-	(1)		_ +			+			_
		0			1	0		保持	保持	保持	\			_
		1			1	0		↓	保持	↓	\			_
		1			1	1		保持	保持	保持	¥			_ _

	原壮	犬态			次礼	犬态		时钟触发条件				输出
Q_3	Q_2	Q_1	Q_0	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	cp_3	cp_2	cp_1	cp_0	Y
0	0	0	0 -	1	0	0	1	ļ		¥	ļ	1
0	0	0	1	0	0	0	0				¥	0
0	0	1	0	0	0	0	1	ļ		¥	Į.	0
0	0	1	1	0	0	1	0				Į.	0
0	1	0	0	0	0	1	1	ļ	ļ	ţ	ţ	0
0	1	0	1	0	1	0	0				↓	0
0	1	1	0	0	1	0	1	ļ		ļ	ļ	0
0	1	1	1	0	1	1	0				ļ	0
1	0	0	0	0	1	1	1	ļ	ļ	ţ	ţ	0
1	0	0	1	1	0	0	0				ļ	0
1	0	1	0	0	0	0	1	ļ		ļ	1	0
1	0	1	1	1	0	1	0	3			Į.	0
1	1	0	0	0	0	1	1	ļ	↓	¥	ļ	0
1	1	0	1	1	1	0	0				ļ	0
1	1	1	0	0	1	0	1	ļ		Į.	ļ	0
1	1	1	1	1	1	1	0			3	Į.	0

2.2. 状态装换图

第六版

• 6.5;

