Credit Risk Prediction

Belle Pandya . Kate Weber

Introduction

Banks determine whether to lend money to a customer based on many factors, including the customer's age, home ownership status, annual income, and credit rating. These factors are intended to be used to predict whether the customer will pay back the loan or defect, in which case, the bank would not lend money to them.

Dataset Description (Before and After)

Size (n)	~30,000 rows	
Number of Predictors	8	
Responding Variable	1, Loan_status (Binary)	
Continuous Variables	5, (age, emp_length, loan_amount, int_rate,annual_income)	
Categorical Variables	2, grade (A to G), home_ownership(own, mortgage, rent, others)	

Sample distribution	Train = 23274; Test = 5818	
Number of Predictors	After spatial sign transformation and scaling = 12	
Responding Variable	1, Loan_status (Binary)	
Continuous Variables	11, (age, emp_length, loan_amount, int_rate,annual_income, grade (1-5), homeownership (mortgage,own,rent)	
Categorical Variables	Converted into dummy variables	

Pre- Processing steps

Outliers

- Exploratory Data Analysis
- Spatial Sign Transformation

Skewness

- Centered
- Scaled
- BoxCox

Missing Values

kNN Imputation

Linear Classification (E) Models

Logistic Regression

Linear Discriminant Analysis

Accuracy: 58.6%

Accuracy: 58.5%

Kappa: 0.096

Kappa: 0.092

(no tuning parameters)

(tuning parameter dimen held at constant of 1)

Partial Least Squares Discriminant Analysis

Components = 2

Accuracy = 59.3%

Penalized Models

Alpha = 0 (mixing percentage)

Lambda = 0.0311 (regularization)

Accuracy = 57.9%

Nearest Shrunken Centroids

Threshold = 0.4

Accuracy = 54.3%

Nonlinear Classification Models

Mixture Discriminant Analysis

Subclasses = 2

Accuracy = 58.8%

Flexible Discriminant Analysis

Degree = 1

of Terms = 6

Accuracy: 0.5840083

Kappa: 0.09504791

K-Nearest Neighbors

Accuracy: 0.5563286

Kappa: 0.06197283

k = 47.

Neural Network

Accuracy: 0.560086

Kappa: 0.091

Naive Bayes

Accuracy: 0.6188

Kappa: 0.084

(no tuning parameters)

Top two models

	Accuracy	Карра	Tuning Parameter
Partial least square discriminant analysis	59.04%	0.096	- # of comp= 2
Logistic Regression	57.7%	0.1008	none

Thanks!