Ejemplo sobre corriente eléctrica 1

La intensidad de corriente en un cable de cobre del calibre 10 (sección de 3,309 mm²) es de 4,0 A. Suponiendo que en promedio cada átomo de cobre proporciona 1,2 electrones de conducción, determinar:

- a) La carga que atraviesa la sección del cable en un intervalo de tiempo de 30 s.
- b) La densidad de portadores de carga del cobre.
- c) La velocidad de deriva de los portadores de carga.

Datos: Carga del electrón $e^- = -1,60 \cdot 10^{-19} C$; masa molar del cobre M = 63,5 g/mol; densidad del cobre $d = 8,9 \cdot 10^3 kg/m^3$; Número de Avogadro $N_A = 6,023.10^{23}$ átomos/mol.

Solución

(a) La densidad de corriente es la carga que atraviesa la sección del cable en la unidad de tiempo. En consecuencia, si la intensidad de corriente es de 4,0 A la carga que atraviesa la sección en 1,0 s es de 4,0 C, y en un intervalo de 30 s la carga será :

$$Q = 4.0 A * 30 s = 120 C$$

En el intervalo de 30 s, 120 C de carga atraviesan la sección del cable.

(b) La densidad de portadores de carga del cobre n se puede determinar a partir de la densidad del material, aplicando los siguientes factores de conversión :

$$n = \frac{8.9 \cdot 10^{6} \text{ g}}{m^{3}} \frac{1 \text{mol}}{63.5 \text{ g}} \frac{6.023 \cdot 10^{23} \text{ átomos}}{mol} \frac{1.2 \text{ electrones de conducción}}{\text{átomo}}$$

$$n = 1.01 \cdot 10^{29} \frac{\text{electrones de conducción}}{m^{3}}$$

La densidad de portadores de carga del cobre es de $1,0.10^{29} \frac{e^- conduccion}{m^3}$

(c) La velocidad de desplazamiento o de deriva v_d está relacionada con la intensidad de corriente I mediante la siguiente expresión :

$$I = nqSv_d$$

Siendo n la densidad de portadores de carga, q la carga de los portadores y S la sección del cable. Despejando v_d de la expresión anterior y sustituyendo por los correspondientes valores numéricos queda :

$$v_d = \frac{1}{n q S};$$
 $v_d = \frac{4,0 A}{1,01 \cdot 10^{\frac{29}{9}} \frac{e^{-} conducción}{m} * 1,60 \cdot 10^{\frac{-19}{9}} C * 3,309 \cdot 10^{\frac{-6}{9}} m^2}$

$$v_d = 7,48 \cdot 10^{-5} \, m/s$$

Ejemplo sobre corriente eléctrica 2

Por un cable de cobre del calibre 16 (área de $1,309\,mm^2$) de 2,0 m de longitud circula una intensidad de corriente de 0,50 A. La resistividad del cobre es de $1,7\cdot 10^{-8}\,\Omega\,m$. Determinar la energía disipada en el cable por efecto Joule en 1,5 minutos.

Solución

La resistencia del cable es:

$$R = \rho \frac{\ell}{S}$$

Siendo ρ la resistividad, ℓ y S su longitud y sección, respectivamente. Sustituyendo por los valores numéricos se obtiene que la resistencia de este cable es:

$$R = 1.7 \cdot 10^{-8} \Omega \ m \frac{2.0 \ m}{1.309 \cdot 10^{-6} \ m^2} = 0.0260 \ \Omega$$

La potencia disipada en el cable es:

$$P = I^2 R$$
 $P = (0.50A)^2 * 0.0260 \Omega = 6.50 \cdot 10^{-3} W$

La energía disipada en 1,5 minutos (90 segundos) es:

$$Energia = 6.50 \cdot 10^{-3} W * 90 s = 0.585 J$$

Al cabo de 1,5 minutos se han disipado en forma de calor por efecto Joule 0,59 J

Ejemplo sobre corriente eléctrica 3

Una batería de 8,00 V y resistencia interna 0,500 Ω se conecta a una resistencia de 100 Ω . Determinar:

- a) La intensidad de corriente que atraviesa la batería.
- b) La caída de tensión en bornes de la batería.

Solución

(a) La intensidad de corriente se encontrará aplicando la regla de las mallas. Si se recorre la malla del circuito en sentido horario :

$$\varepsilon - IR - rI = 0$$

Despejando la intensidad y sustituyendo por los valores numéricos queda:

$$I = \frac{\mathcal{E}}{R+r} \qquad I = \frac{8,00V}{100\Omega + 0,500\Omega} = 0,07960A$$

La intensidad de corriente es de 79,6 mA

(b) Para determinar la caída de tensión entre A y B partiremos del punto A que se encuentra a una tensión V_A y avanzaremos hacia B que se encuentra a una tensión V_B pasando por la resistencia R.

$$V_A - I R = V_B$$

La diferencia de tensión en bornes de la batería queda:

$$V_A - V_B = I R$$
 $V_A - V_B = 100 \Omega * 0.07960 A = 7.96 V$