Rings and Fields Assignment 6

James Zoryk. Student Number: 2663347.

Question 1.

Part a. Show that $f(x) = x^6 + 3$ is irreducible in $\mathbb{Q}[x]$.

Proof. Consider $f(x) = x^6 + 3$ in $\mathbb{Z}[x]$, applying Eisensetien's criterion with p = 3, observe that 3|0,3 and 3^2 /3, thus f(x) is irreducible in $\mathbb{Z}[x]$. Moreover, since the polynomial f(x) is monic and irreducible over $\mathbb{Z}[x]$, by Gauss's lemma, this implies that f(x) is irreducible in $\mathbb{Q}[x]$, as required.

Now let α be a root \mathbb{C} of f(x), so $\alpha^6 = -3$, and let $F = \mathbb{Q}[x]$.

Part. Prove that $\mathbb{Q}(\sqrt[3]{3}, \rho) \subseteq F$, where $\rho = e^{2\pi i/3}$.

Proof. A polynomial f(x) in $\mathbb{Q}[x]$ has α as a root if and only if $m_{\beta}(x)$ divides f(x) in $\mathbb{Q}[x]$. The minimal polynomial for the element $\sqrt[3]{3}$ is over \mathbb{Q} is $x^3 - 3$ and $\sqrt[3]{3}$ is of degree 3 over \mathbb{Q} . The minimal polynomial for the element ρ over \mathbb{Q} is $x^2 + x + 1$ and then $[\mathbb{Q}(\rho):\mathbb{Q}] = 2$

Part c. Show that $F = \mathbb{Q}(\sqrt[3]{3}, \rho)$.

Proof. this is the text for the proof

Part d. Show that f(x) splits completely in F[x].

Proof. Let α be the root of the polynomial $f(X)=x^3+3$ in $\mathbb{Q}[x]$. Observe that f(x) has 6 complex roots of unity, with the cyclotomic equation we have $r^6e^{6ia}=-3=3e^{i\pi}$. then This gives $r=\sqrt[6]{3}$ and $a=\frac{\pi}{6}+\frac{\pi}{3}k$