Universidad Nacional Autónoma de Honduras

Geometría II

Ejercicios de Repaso para el Parcial II

Profesor: Dr. Fredy Vides

- 1. Sean (X, x_0) y (Y, y_0) EP. Probar que $\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- 2. Sea $f: X \to A$ y sea $x_0 \in A$. Sea $i: A \hookrightarrow X$ el mapa de inclusión. Probar lo siguiente:
 - (a) $i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ es uno-a-uno.
 - (b) $f_*: \pi_1(X, x_0) \to \pi_1(A, x_0)$ es sobre.
 - (c) Si X es SC, entonces A es SC.
- 3. Probar que el producto cartesiano de espacios SC es SC.
- 4. Probar que ser SC es una propiedad topológica.
- 5. Para m entero, sea α_m un bucle en S^1 definido por

$$\alpha_m(s) = e^{2\pi i m s}, 0 \le s \le 1.$$

Probar que cada bucle en S^1 con base 1 es homotópico con puntos extremos fijos a precisamente uno de los bucles α_m .

6. Probar que el mapa exponencial $p: \mathbb{R}^n \to \mathbb{T}^n$, definido en clase, es un mapa de cubrimiento de \mathbb{R}^n sobre el *n*-toro \mathbb{T}^n . Probar que

$$\pi_1(\mathbb{T}^n) \simeq \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \ (n \text{ sumandos}).$$

Para cada n-tupla $(m_1, \ldots, m_n) \in \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$, defina de forma explícita un bucle en \mathbb{T}^n basado en $(1, \ldots, 1)$ en la clase de homotopía correspondiente.

7. Probar que el mapa $p: \mathbb{C} \to \mathbb{C} \setminus \{0\}$, definido por

$$p(z) = e^z, z \in \mathbb{C},$$

es un mapa de cubrimiento. Calcular $\pi_1(\mathbb{C}\setminus\{0\})$.

- 8. Probar que la restricción del mapa p del Ejercicio 6 a la franja horizontal $E = \{x + iy | c < y < d\}$ es un mapa de cubrimiento de E sobre el anillo abierto $A_E = \{w | e^c < |w| < e^d\}$. Calcular $\pi_1(A_E)$ y $\pi_1(\overline{A_E})$.
- 9. Se dice que un ET X tiene la propiedad de punto fijo (PPF) si cada mapa $f: X \to X$ tiene un punto fijo. Propiedad que la PPF es una propiedad topológica.
- 10. Probar en detalle que la relación de ser homotópicamente equivalente es transitiva.
- 11. Probar que si Y es contractible, entonces $X \times Y$ es homotópicamente equivalente X.
- 12. Probar que cualquier anillo en \mathbb{R}^2 es homotópicamente equivalente a S^1 .

- 13. Probar que cualquier bola abierta perforada (con su centro removido) con respecto a la métrica Euclidiana en \mathbb{R}^2 es homotópicamente equivalente a S^1 .
- 14. Probar que $\mathbb{R}^{n+1}\setminus\{0\}$ es homotópicamente equivalente a S^n .
- 15. Probar que el plano doblemente perforado (con dos puntos removidos) es homotópicamente equivalente a la figura ocho $S^1 \vee S^1$.
- 16. Probar que si Y es contractible, entonces dos mapas cualesquiera de X a Y son homotópicos.
- 17. Sea (X, b) un EP, sean α_0 y α_1 bucles en X basados en b, y sean $f_j(e^{2\pi is}) = \alpha_j(s), 0 \le s \le 1$, los correspondientes mapas de S^1 en X. Probar que f_0 es homotópico a f_1 ssi existe un bucle β en X basado en b tal que

$$[\alpha_1] = [\beta]^{-1}[\alpha_0][\beta].$$

- 18. Sea X compacto y sea $f: X \to \mathbb{C} \setminus \{0\}$ un exponencial. Probar que existe $\varepsilon > 0$ tal que todo mapa $g: X \to \mathbb{C} \setminus \{0\}$ que satisface $|f(x) g(x)| < \varepsilon$, $x \in X$, es un exponencial.
- 19. Dado un mapa $f: S^1 \to \mathbb{C} \setminus \{0\}$. Probar que existe $\varepsilon > 0$ tal que cualquier mapa $g: S^1 \to \mathbb{C} \setminus \{0\}$ que satisface $|g(z) f(z)| < \varepsilon, z \in S^1$, tiene el mismo índice que f.
- 20. Clasificar las clases de homotopía de los mapas de la figura ocho a $\mathbb{C}\setminus\{0\}$.