Binary Image Analysis (III)

---- Morphological Operators

Ying Wu

Dept. Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

http://www.ece.northwestern.edu/~yingwu yingwu@ece.northwestern.edu

What we've learnt ...

- Calculate region area and centroid
- Calculate region orientation
- Connected component labeling
- Simple region boundary → not good (WHY?)

Questions

- Better boundary algorithms?
- What if the segmentation is noisy, i.e, the segments contain pepper noise, gaps, breaks?
 - A segment is not a solid segment
 - CCL will not work well
 - Examples:

■ Objective: a tool for noisy binary images

Preliminaries

 $A \cap B$

intersection

 $A \cup B$

union

complement

difference:

$$A - B = \{ w \mid w \in A, w \notin B \} = A \cap B^c$$

reflection: $\hat{\mathbf{B}} = \{ w \mid w \in -b, \forall b \in B \}$

translation: $A_z = \{c \mid c = a + z, \forall a \in A\}$

Dilation

$$A \oplus B = \{z \mid (\hat{B})_z \cap A \neq \emptyset\} = \bigcup_{a_i \in A} B_{a_i}$$

Structuring element, SE

Example: use of dilation for bridging gaps

Erosion

$$A\Theta B = \{z \mid B_z \subseteq A\}$$

Question: $(A\Theta B) \subseteq A$???

Dual

■ Theorem: Dilation and erosion are duals

$$(A\Theta B)^c = A^c \oplus \hat{B}$$

■ Proof:

$$(A\Theta B)^{c} = \{z \mid B_{z} \subseteq A\}^{c}$$

$$= \{z \mid B_{z} \cap A^{c} = \emptyset\}^{c}$$

$$= \{z \mid B_{z} \cap A^{c} \neq \emptyset\}$$

$$= A^{c} \oplus \hat{B}$$

Opening and Closing

- Opening $A \circ B = (A \Theta B) \oplus B$
- Closing $A \bullet B = (A \oplus B)\Theta B$

Concepts

- Dilation
 - Expand an image
- Erosion
 - Shrink an image
- Opening
 - Smooth contour, break narrow isthmuses, eliminate thin protrusion
- Closing
 - Smooth contour, fuses narrow breaks and long thin gulfs, eliminate small holes, fill in gaps on contours

Geometric Explanation

■ Opening: SE B rolling along the inner boundary of A

■ Closing: SE B rolling on the outer boundary of A

Properties

- Opening
- 1. $(A \circ B) \subseteq A$
- 2. if $C \subseteq D$ then $C \circ B \subseteq D \circ B$
- 3. $(A \circ B) \circ B = A \circ B$

- Closing
- 1. $(A \bullet B) \supseteq A$
- 2. if $C \subseteq D$ then $C \bullet B \subseteq D \bullet B$
- 3. $(A \bullet B) \bullet B = A \bullet B$

Hit-or-Miss transformation

■ It is a basic tool for shape detection that finds the location of a particular shape, say X

Application

- Optical Character Recognition (OCR)
 - Assume the characters are of the same font & size
- Model construction
 - 1. Extract the character to be recognized
 - 2. Using opening and closing to fill holes and cavities
 - 3. Shrink the character image to remove unwanted region to reduce the size, s.t., it fits inside an instance of the character

Issues

■ Boundary extraction

$$\beta(A) = A - (A\Theta B)$$

■ Computational issue

if
$$B = B_1 \oplus B_2 \oplus \cdots \oplus B_k$$

then
$$A \oplus B = \{(A \oplus B_1) \oplus B_2 \oplus \cdots \oplus B_k\}$$

Question: why can this decomposition save computation?