This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EP-17780@

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10012856

PUBLICATION DATE

16-01-98

APPLICATION DATE

27-06-96

APPLICATION NUMBER

08185364

APPLICANT: OLYMPUS OPTICAL CO LTD;

INVENTOR: SHIMIZU ETSURO;

INT.CL.

H01L 27/146 G01B 11/00 H01L 27/14

H01L 31/16

TITLE

POSITION SENSOR

112b

111

112a

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a position sensor which can detect the position of a spot light even when it is mixed with a background light.

SOLUTION: p⁺ type diffusion layers 106 and polysilicon electrodes 107 divided as islands are arranged on the front surface of a substrate 101 consisting of an n⁻ layer 102, an n layer 103 and an n⁻ layer 104 so as to form a light reception part 105, and a p type diffusion layer 111 is provided on the rear surface of the substrate 101 in a manner that it is symmetrical with respect to the part 105 and is about the same in size as it, thereby forming a position detection part. Thus a position sensor can be obtained.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-12856

(43)公開日 平成10年(1998)1月16日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI			技術表示箇所	
H01L 27	7/146			H01L	27/14	-	A	
G01B 11	1/00			G 0 1 B	11/00		E	
H01L 27/14				H01L	31/16]	В	
31/16					27/14		K	
				審査請求	永請求	崩求項の数4	FD (全 7 頁)	
(21)出願番号		特願平8-185364		(71)出願人	0000003	000000376 オリンパス光学工業株式会社		
					オリンハ			
(22)山願日		平成8年(1996)6月27日			東京都透	6谷区幡ヶ谷2]	「目43番2号	
				(72)発明者	清水 化	说朗		
					東京都沙	6谷区幡ケ谷2円	「目43番2号 オリ	
					ンパスサ	化学工業株式会社	土内	
				(74)代理人	、弁理士	最上 健治		
				i				

(54) 【発明の名称】 位置検知センサ

(57)【要約】

【課題】 背景光が混じってもスポット光の位置検知の 可能な位置検知センサを提供する。

【解決手段】 n- 層102 と n層103 と n- 層104 とか らなる基板101の表側表面に、島状に分割されたp」型 拡散層106 とポリシリコン電極107 とを配設して受光部 105 を形成し、基板101 の裏側表面には、p型拡散層11 1 を基板表面側の受光部105 と表裏対称となる位置に、 受光部105 とほぼ同じ大きさで設けて、位置検知部を形 成し、位置検知センサを構成する。

【特許請求の範囲】

【請求項1】 第1導電型の半導体基板と浮遊電位にある第2導電型拡散層と該第2導電型拡散層の分離領域とから成る侵光部と、第1導電型の半導体基板と複数の電極を有する第2導電型拡散層とから成る位置検知部と、前記受光部に接するように形成され前記受光部に蓄積された電荷をリセットするための領域とを有し、前記受光部と位置検知部とがボテンシャル障壁を経て接するように構成されていることを特徴とする位置検知センサ。

【請求項2】 前記受光部に蓄積された電荷をリセットするための領域は、前記半導体基板と絶縁膜と導電材料から成るスイッチ部と前記第2導電型拡散層とで構成されていることを特徴とする請求項1記載の位置検知センサ。

【請求項3】 前記受光部は前記第1導電型の半導体基板の一主面に形成され、前記位置検知部は前記第1導電型の半導体基板の他の主面に形成され、且つ前記受光部と位置検知部とは、前記半導体基板中に形成された第1導電型の低濃度層と第1導電型の高濃度層と第1導電型の低濃度層を介して接するように構成されていることを特徴とする請求項1記載の位置検知センサ。

【請求項4】 前記受光部と位置検知部は、前記第1導電型の半導体基板の同一主面に形成され、且つ前記受光部と位置検知部とは第1導電型の拡散層を介して接するように構成されていることを特徴とする請求項1記載の位置検知センサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、スポット状に入 射した光の位置を検知する位置検知センサに係わり、特 に、背景光が混じってもスポット光の位置検知を可能に した位置検知センサに関する。

[0002]

【従来の技術】従来、スポット状に入射した光の位置を 検知する位置検知センサとしては、例えば特開平5-5

> La $\angle L = La \angle \angle (La + Lb) = Ib \angle (Ia + Ib)$ Lb $\angle L = Lb \angle (La + Lb) = Ia \angle (Ia + Ib) \cdot \cdot \cdot \cdot (2)$

したがって、出力電流値Ia 、Ib を測定することにより、受光部へのスポット光の入射位置La LあるいはLb Lを求めることができる。

[0005]

【発明が解決しようとする課題】上記従来の位置検知センサは、スポット光の位置検知を行うには簡単な構造で且つ、実用上十分な性能を有するものであるが、スポット光に背景光が混じった場合には、位置検知能力が著しく劣化するという問題点があった。図7は、この劣化のメカニズムを説明するための図であり、センサ受光部に入射する光強度分布を示している。図7において、しはセンサ受光部の長さを示し、入射スポット光を1101で、また背景光を1102で示している。このような光強度分布

619号に開示されている図6に示すような構成のものが知られている。図6において、1001はn型Si基板で、その表面にはp型拡散層1002が形成されている。このp型拡散層1002の両端1002a、1002bには、それぞれに対応してAI電極1003a、1003bが形成され、Lで示されるAI電極1003aと1003bの間の領域が、このセンサの受光部となっている。1004は絶縁膜で、AI電極1003a、1003bのボンディング領域を抜くようにパターン形成されている。1005は基板1001の裏面に形成された基板電極である。

【0003】次に、このように構成されている位置検知センサにスポット光を照射した場合の動作について説明する。まず、基板電極1005には0 Vあるいは正の電圧を印加し、A1 電極1003a、1003bには0 Vを印加する。この時、中型拡散層1002より n型基板1001に向かって空乏層1006が生じる。今、矢印1007で示すようにスポット光が入射したとする。この場合、線1008に沿って正孔と電子が発生し、そのうち正孔は空乏層1006中の電界によって中型拡散層1002中の位置1009へドリフト移動し、電子は基板1001側へと逃げる。中型拡散層1002に到達した正孔は、A1 電極1003aあるいは1003bから外部に出力されるわけであるが、この時のA1 電極1003a、1003bから出力される電流値1a、1bは、次式(1)で表される。

I a = V/Ra = WV/ρ La Ib = V/Rb = WV/ρ Lb ······(1) ここで、Vは基板電極1005に印加した電圧、Ra, Rb はそれぞれ、ドリフト移動した正孔が到達したp型拡散 層1002の位置1009からAI 電極1003a、1003bまでのp 型拡散層1002中の抵抗値、Wはp型拡散層1002の幅(図 示なし)、ρはp型拡散層1002のシート抵抗、La, L b は位置1009からAI 電極1003a、1003bまでの距離である。

【0004】上記(1)式より次式(2)が得られる。

では、受光部全面にわたって入射した弱い強度の背景光 1102の全光量が、部分的に強く入射したスポット光1101の全光量と同等量以上になれば、受光部両端に配設されたA1 端子からの出力電流は、もはやスポット光1101の位置には依存せず、両端で等しい値を示すことになる。つまり、スポット光1101の強度が大きくても背景光1102の総量に埋もれてしまい、位置検知能力が著しく劣化してしまう。

【0006】本発明は、従来の位置検知センサにおける 上記問題点を解消するためになされたもので、背景光が 混じってもスポット光の位置検知を可能にした位置検知 センサを提供することを目的とする。

[0007]

【課題を解決するための手段】上記問題点を解決するため、木発明は、第1導電型の半導体基板と浮遊電位にある第2導電型拡散層と該第2導電型拡散層の分離領域とから成る受光部と、第1導電型の半導体基板と複数の電極を有する第2導電型拡散層とから成る位置検知部と、前記受光部に接するように形成され前記受光部に蓄積された電荷をリセットするための領域とを有し、前記受光部と位置検知部とがポテンシャル障壁を経て接するように位置検知センサを構成するものである。

【0008】このように構成された位置検知センサにおいては、受光部において背景光によって生じたキャリアは浮遊電位にある第2導電型拡散層の電位を上昇させるが、背景光の光強度は弱いため、その電位の上昇は小さく受光部から漏れ出さない。一方、スポット光によって生じたキャリアは、光照射位置で受光部より位置検知部へと漏れ出す。そして、この漏れ出したキャリアを出力信号として取り扱うことにより、背景光が混じってもスポット光の位置検知が可能となる。

[0009]

【発明の実施の形態】次に実施の形態について説明す る。図1は、本発明に係る位置検知センサの第1の実施 の形態を示す図で、図1の(A)は表面レイアウト図、 図1の(B)は図1の(A)及び(C)のA-A′線に 沿った断面図、図1の(C)は裏面レイアウト図であ る。図1において、101 はSi 基板で、n 層102 , n 層103 、及び n = 層104 で構成されている。 n = 層102 、104 の濃度は1×10¹*cm**程度で、厚みは10μmを 超えない程度である。n層103 の濃度はおおよそ 1×10 14cmt®~1×1016cmt®で、5μmを超えない程度の厚み である。この Si 基板101 の表側表面には、島状に分割 されたp゚型拡散層106 とボリシリコン電極107 とが配 設されており、合わせて受光部105 を形成している。図 1において、一列に配設されたp゚型拡散層106 群のう ち最も外側の層は、A1 電極108a, 108bに接続され、ま た、全てのポリシリコン電極107 がA1 電極109 に共通 に接続されている。110 はn層103 に電圧を印加するた めのA1 電極であり、このA1 電極110 と n層103 とは nt 拡散層等の導電層を介するか、あるいはn- 層102 をエッチングした後にA1 電極110 を n 層103 上に形成 して接続されている。

【0010】Si基板101の裏側表面には、p型拡散層 111が基板表側の受光部と表裏対称となる位置に、受光 部105とほぼ同じ大きさで形成されている。このp型拡散層111の濃度は1×10¹⁶ cm⁻⁸~1×10¹⁸ cm⁻⁸程度である。そして、このp型拡散層111の両端にはAI電極112a、112bが形成されている。このように形成されたp型拡散層111と n ー層104と AI電極112a、112bの構造部分は、従来の位置検知センサと同じ構造となっている。なお、113は AI電極領域を開口するように形成された絶縁膜であり、表側表面の p ・型拡散層106とボリシリ

コン電極107 を除く領域には、n+型拡散層114 が拡散 形成されている。

【0011】次に、このように構成された位置検知センサに、スポット光が入射した場合の動作を図2を用いて説明する。図2は、図1の(B)に示した位置検知センサの断面図に、動作説明用の表示を書き入れたものである。n層103 に0 Vあるいは正の電圧を印加した場合、このn層103 と電気的に浮遊状態にあるp¹型拡散層106 との間に空乏層115 が拡がる。また、n層103 とp型拡散層111 との間にも空乏層116 が拡がる。空乏層115 はp¹型拡散層106 ごとに拡がり、隣接した空乏層間ではポテンシャル障壁ができる。

【0012】この状態で、スポット光117がp・型拡散 層106xに入射し、位置118において正孔-電子対が発生した場合、正孔はその位置の空乏層115x内の電界により、p・型拡散層106xへとドリフト移動する。また、電子はn層103へ移動し、この層に接続された電極110より外部に逃げる。p・型拡散層106xへ移動した正孔は、浮遊電位にあるp・型拡散層106xの電位を上昇させる。そして、この電位がn層103と同電位になった時にn層103を超え、空乏層116へ正孔が漏れ出すという現象が起きる。n・層104とp型拡散層111とは、従来の位置検知センサ構造を形成しているため、空乏層116に漏れ込んだ正孔は、空乏層116内でp型拡散層111へとドリフト移動した後に、電極112a、112bにより取り出され、前述の(2)式に従って、スポット光117の位置検知が行われる。

【0013】一方、このように構成された位置検知セン サの受光部105 に、均一に背景光が入射した場合、受光 部下の n- 層102 内で均一に正孔と電子が発生し、各正 孔は各発生位置に拡がる空乏層115 内の電界により各p * 型拡散層106 ヘとドリフト移動する。また、電子は n **層103 へ移動し、電極110 を介して外部に逃げる。各p** * 型拡散層106 へ移動した正孔は、そのp* 型拡散層10 6 の電位を上昇させるものの、その電位は、光強度が弱 いためにn層103 の電位にまで上昇が進まず、正孔は空 乏層116 へ漏れ出さない。このため、AI 電極112a、11 2bから出力される位置信号に影響を与えることがない。 【0014】このような動作により、第1の実施の形態 においては、光強度の大きいスポット光のみを位置検知 出力として取り出し、光強度の小さい背景光を位置検知 出力に混じらないようにできるので、スポット光に背景 光が混じっても、スポット光の位置検知が可能である。 【0015】なお、p・型拡散層106 に蓄積された正孔 をリセットするには、ボリシリコン電極107 に負の電圧 を印加して、各p*型拡散層106 間のn=層102 と絶縁 膜113 の界面に、正孔でできた反転層を形成する。こう することにより、n- 層102と絶縁膜113 とポリシリコ ン電極107 からなるスイッチ部を介して、各p*型拡散

層106 同士が導通状態になり、A1 電極108a、108bより 正孔が外部に捨てられるので、リセットできる。

【0016】また、p*型拡散層106に蓄積した正孔が n*層104に漏れ出す時に、隣り合ったp*型拡散層106の空乏層にも漏れ出すのを防ぐために、スポット光が 照射されている間に、ポリシリコン電極107に正の電圧 を印加して、n*層102と絶縁膜113の界面を電子蓄積 状態とする。このようにした場合、各p*型拡散層106間の電位障壁が高くなるので、隣接拡散層への正孔の漏れを小さくすることができる。

【0017】次に第2の実施の形態について説明する。 上記第1の実施の形態で示した位置検知センサにおいて は、p * 型拡散層に蓄積した正孔がn * 層に漏れ出す時 に、隣り合ったp*型拡散層の空乏層への正孔の漏れ出 しを十分に抑制できない。第2の実施の形態は、この欠 点を解決するようにしたもので、各p゚型拡散層間にボ リシリコン電極の代わりにn+型拡散層を形成するよう にしたものである。図3は、この第2の実施の形態に係 る位置検知センサを示すもので、図3の(A)は表側レ イアウト図を、図3の(B)は図3の(A)及び(C) のB-B~線における断面図を、図3の(C)は裏側レ イアウト図を示している。図 3 において、201 はSi 基 板であり、n- 層202 、n層203 、及び n- 層204 で構 成されている点は、第1の実施の形態と同じである。こ のSi 基板201 の表側表面には、島状に分割されたp* 型拡散層206 と、それを3方向から取り囲むようにレイ アウトされた n * 型拡散層207 が配設されており、合わ せて受光部205 を形成している。

【0018】また、ポリシリコン電極208 がp⁺ 型拡散 層206 に接するように配置され、更にこのポリシリコン 電極208 に接するようにp* 型拡散層209 が形成されて いる。そして、このポリシリコン電極208 はA1 電極21 6 に、またp・型拡散層209はAI 電極210 に接続され ている。211 はn層203 に電圧を印加するためのA1電 極であり、このAI 電極211 と n 層203 とは n * 拡散層 等の導電層を介するか、あるいはm~層202 をエッチン グした上でA1 電極をn層203 に直付けして接続されて いる。Si 基板201 の裏側表面には、p型拡散層212 ... AI 電極213a、213bが第1の実施の形態と同じように形 成され、11 層204 とで従来の位置検知センサ構造を構 成している。なお、214 は電極領域を開口するように形 成された絶縁膜であり、表側表面のp゚型拡散層206と | ポリシリコン電極208||を除く領域には、n+ 型拡散層21| 5 が拡散形成されている。

【0019】このように構成された位置検知センサに、スポット光及び背景光が入射した場合の動作は、第1の実施の形態と同じであるので説明を省略するが、第1の実施の形態のポリシリコン電極に代わる n⁺型拡散層207がp⁺型拡散層206との間に高いポテンシャル障壁を形成するので、隣接拡散層への正孔の漏れを小さくする

ことができる。なお、p・型拡散層206 に蓄積された正孔をリセットするには、ポリシリコン電極208 に負の電圧を印加して、p・型拡散層206 とp・型拡散層209 の間のn・層202 と絶縁膜214 の界面に正孔でできた反転層を形成する。こうすることにより、各p・型拡散層206 とp・型拡散層209 が導通状態になり、A1 電極210より正孔が外部に捨てられるので、リセットを行うことができる。

【0020】次に第3の実施の形態について説明する。図4は第3の実施の形態に係る位置検知センサを示すもので、図4の(A)は表側レイアウト図を、図4の(B)は図4の(A)のC-C 線における断面図を示す。図4において、301 はn型Si 基板であり、その濃度は1~10¹⁴cm⁻³程度である。このSi 基板301 の表面には島状に分割された p 型拡散層302 と、その p 型拡散層302 を分離するための n 型拡散層303 とが配設されており、合わせて受光部304 を形成している。また、ポリシリコン電極305 が p 型拡散層302 に接するように p 型拡散層306 が形成されている。そして、この p 型拡散層306 は AI 電極307 に接続されている。

【0021】308 はn*型拡散層303 よりも低濃度のn型拡散層であり、このn型拡散層308 を挟んで、p型拡散層309 が形成されている。p型拡散層309 には、その両端にA1 電極310a、310bが形成されており、n型Si基板301 及びp型拡散層309とで従来の位置検知センサ構造を構成している。なお、311 はポリシリコン電極305 に接続されたA1 電極であり、312 は電極領域を開口するように形成されり絶縁膜、313 は基板301 の裏面電極、314 はp*型拡散層302 とn*型拡散層303 とポリシリコン電極305 とp*型拡散層306 とn型拡散層308とp型拡散層309 とを除く領域に拡散形成されたn*型拡散層である。

【0022】次に、このように構成された位置検知センサに、スポット光が入射した場合の動作を図5を用いて説明する。図5は、図4の(B)に示した位置検知センサの断面図に動作説明用の表示を書き入れたものである。まず、裏面電極313 に 0 Vあるいは正の電圧を印加した場合、電気的に浮遊状態にある p*型拡散層302 より基板301 の深さ方向に向かって空乏層315 が拡がる。また、p型拡散層309 からも基板301 の深さ方向に向かって空乏層316 が拡がる。空乏層315 は p*型拡散層302 が島状に分離されているために、各 p*型拡散層302 ごとに拡がる。隣接した p*型拡散層間は、 n*型拡散層303 の存在により高いボテンシャル障壁が形成されている。

【0023】この状態で、スポット光317がp¹型拡散 層302に入射し、位置318において正孔一電子対が発生 した場合、正孔はその位置の空乏層315内の電界によ り、p型拡散層302 へとドリフト移動する。また、電子 は裏面電極313 へ移動し、外部に逃げる。p・型拡散層 302 へ移動した正孔は、浮遊電位にあるp・型拡散層30 2 の電位を上昇させる。そして、この電位がn型層308 直下の電位と同電位になった時にn型層308 を超え、空 乏層316 へ正孔が漏れ出すという現象が起きる。Si 基 板301 とp型拡散層309 と裏面電極313 とは、従来の位 置検知センサ構造を形成しているため、空乏層316 に漏 れ込んだ正孔は、空乏層316 内でp型拡散層309 へとド リフト移動した後に、電極310a, 310bにより取り出さ れ、前述の(2)式に従って、スポット光の位置検知が 行われる。

【0024】一方、このように構成された位置検知センサの受光部に、均一に背景光が入射した場合は、受光部304内の全てのp・型拡散層302下で均一に正孔と電子が発生し、各正孔は各発生位置に拡がる空泛層315内の電界により、各p・型拡散層302へとドリフト移動する。また、電子は裏面電極313へ移動し、外部に逃げる。各p・型拡散層302へ移動した正孔は、そのp・型拡散層302の電位を上昇させるものの、その電位は、光強度が弱いために面層308直下の電位にまで上昇が進まず、空泛層316へ漏れ出さない。このため、A1電極310a、310bから出力される位置信号に影響を与えることがない。

【0025】このような動作により、第3の実施の形態においては、光強度の大きいスポット光のみを位置検知出力として取り出し、光強度の小さい背景光を位置検知出力に混じらないようにできるので、スポット光に背景光が混じっても、スポット光の位置検知が可能である。なお、p*型拡散層306に蓄積された正孔をリセットするには、ポリシリコン電極305に負の電圧を印加して、各p*型拡散層302とp*型拡散層302とp*型拡散層306が導通状態になり、A1電極307より正孔が外部に捨てられるので、リセットできる。

[0026]

•

【発明の効果】以上実施の形態に基づいて説明したように、木発明によれば、背景光によって生じたキャリアは受光部より位置検知部へは漏れ出さず、スポット光によって生じたキャリアは光照射位置で受光部より位置検知部へ漏れ出すように構成しているので、背景光が混じっていてもスポット光の位置検知を確実に行うことが可能な位置検知センサ実現することができる。

【図面の簡単な説明】

【図1】本発明に係る位置検知センサの第1の実施の形態を示す図である。

【図2】図1に示した第1の実施の形態の動作原理を説明するための図である。

【図3】本発明の第2の実施の形態を示す図である。

【図4】本発明の第3の実施の形態を示す図である。

【図5】図4に示した第3の実施の形態の動作原理を説明するための図である。

【図6】従来の位置検知センサの構成例を示す図である。

【図7】従来の位置検知センサの問題点を説明するための図である。

【符号の説明】

101,201,301 Si 基板

102, 104, 202, 204 n = 層

105,205,304 受光部

106, 206, 209, 302, 306 p+型拡散層

107,208,305 ポリシリコン電極

108a, 108b, 109, 110, 112a, 112b, 210, 211, 213a, 213b, 216.

307,310a,310b,311 A1 電極

111,212,309 p型拡散層

114,207,215,303,314 n'型拡散層

115,116,315,316 空乏層

117,317 スポット光

118.318 位置

308 n型拡散層

313 裏面電極

【図5】

315.316: 空乏層 317: スポット光 318: 位置

【图4】

