(())}

20.8-2020

MATHS TUTORIAL - 1

1 Show that:
$$L \int sin h^5 t = 51$$

 $(s^2-1)(s^2-9)(s^2-25)$

2 Find
$$L \{f(t)\}$$
 $f(t) = \begin{cases} 1 & 0 \le t \le 1 \end{cases}$ $\begin{cases} e^{t} & 1 \le t \le 4 \end{cases}$

$$s$$
 Find $L \int e^{2t} \sin 3t \cdot \sinh t$

1331
14641
15 10 10 5 1

ANS 1 L
$$\left\{ \sinh^{5}t \right\} = L \left(f(t) \right)$$

$$f(t) = \left(e^{t} - e^{t} \right)^{5}$$

$$= 1 \left[e^{5t} + 5e^{3t} + 10c^{t} + 10e^{t} + 5e^{3t} + e^{5t} \right]$$

$$= 1 \left[e^{5t} - e^{5t} - 5e^{3t} - 5e^{3t} + 10 \left(e^{t} - e^{t} \right) \right]$$

$$= 1 \left[\sinh 5t - 5 \sinh 2t + 10 \sinh 4t \right]$$

$$= 1 \left[\sinh 5t - 5 \sinh 2t + 10 \sinh 4t \right]$$

$$= 1 \left[\ln 5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[5 - 15 + 10 \right] \left[L \left(\sinh 2t \right) = \alpha \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right] \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[L \left(\ln 2t \right) + 10 \right]$$

$$= 1 \left[$$

ANS 2	Find L(f(t)) where $f(t) = \int_{0}^{1} 0 \le t \le 1$ $\begin{cases} e^{t} & 1 \le t \le 4 \end{cases}$
	0 4/4 t
	$L(f(t)) = \int_{0}^{\infty} e^{st} \cdot f(t) dt$
	o o
	= est (1) dt + est et dt + est (0) dt
	(- S+1) t
	= \[\int_{\text{e}}^{\text{st}} \dt \] \[\text{e}^{\text{c-s+1}} \text{t} \]
	·
	$= -\frac{1}{5} \left[e^{-St} \right]_{0} + \frac{1}{1-5} \left[e^{(-S+1)t} \right]_{1}^{4}$
-	S 1-5
	$= -1 \left[e^{-s} - 1 \right] + 1 \left[e^{(1-s)} - e^{(1-s)} \right]$
	1=e + e + e
	5 //
(Sundaram)	FOR EDUCATIONAL USE

ANS 3	$L \int t e^{2t} \cos 3t \cdot \sin 2t \int dt dt$
	sin2t.cos3t = 1 [sin5t - sint]
	2
	$L\left(\sin 2t \cdot \cos 3t\right) = L\left[\frac{1}{2}\left(\sin 5t - \sin t\right)\right]$
	$2 \left[s^2 + 25 \right] s^2 + 1$
	$=\overline{f}(s)$
	$L(\bar{e}^{2t}, \bar{f}(s)) = \bar{f}(s+2) = \frac{1}{2} \begin{bmatrix} 5 & -1 \\ (s+2)^2 + 25 & (s+2)^2 + 1 \end{bmatrix}$
	$\frac{2\left[(3+2)^{2}+25\right]}{\left[(3+2)^{2}+1\right]}$
	g(s)
	$L(t\bar{g}(s)) = (-1)^{1} d \left[1 \left(\frac{5}{(5+2)^{2}+25} - \frac{1}{(3+2)^{2}+1} \right) \right]$
	as[2((s+2)+2s)(s+2)+1]
	$= -1 \left[-5 \times 2(S+2) - (-1 \times 2(S+2)) \right]$ $= -1 \left[((S+2)^2 + 2S)^2 - ((S+2)^2 + 1)^2 \right]$
	2 ((s+2) +25) ((s+2) +1)
	= (c+2) = c+2
	$\frac{-5(5+2)}{((5+2)^2+25)^2} = \frac{5+2}{((5+2)^2+1)^2}$
	((S+2)+1)

ANS 4 L [cos6t - cosut ? t

$$L(\cos Ct - \cos yt) = \overline{f(s)} = \underline{s} - \underline{s}$$

 $\underline{s^2 + 36} = \underline{s^2 + 16}$

$$\frac{L(f(t))}{t} = \int L(f(t)) dS$$

$$= \int \frac{2S}{4} = \frac{2S}{5} = \frac{2S}{5$$

$$= \frac{1}{2} \left[\log(s^2 + 3c) - \log(s^2 + 16) \right]_{s}^{co}$$

$$\frac{1}{2} \left[\log \left(\frac{s^2 + 36}{s^2 + 16} \right) \right]^{\frac{1}{5}}$$

$$= \frac{1}{2} \left[\log \left(\frac{1 + \frac{36}{5^2}}{1 + \frac{16}{5^2}} \right) \right]_{5}^{\infty}$$

$$= \frac{1}{2} \left[\log(1) - \log(s^2 + 36) \right] + \infty$$

$$= \log \left(\frac{s^2 + 16}{\sqrt{s^2 + 36}} \right) + e$$

ANS 5	$L \int e^{-2t} \sin 3t \cdot \sin ht = L(f(t))$
	$f(t) = \frac{1}{t} e^{-2t} \left(e^{t} - e^{-t} \right) \sin 3t$
	t 2
	$= 1 \left(e^{-t} - e^{-3t} \right) \sin 3t$
	2t 2t
	$= \frac{1}{2t} e^{-t} \sin 3t - \frac{1}{2t} e^{-3t} \sin 3t$
	2t 2t
	$\phi(f(t)) = 1 \left[e^{t} \sin 3t - e^{3t} \sin 3t \right] = g(t)$
	t 2 2 t
	Algebra Astronomic St. St.
	$L(g(t)) = L\left[\frac{e^{t}}{3} - \frac{e^{-3t}}{3}\right]$ $\left[\frac{1}{2} s^{2} + 9\right]$
	$\begin{bmatrix} \frac{1}{2} & 3^2 + 9 & \frac{1}{2} & 3^2 + 9 \end{bmatrix}$
	$= \frac{3}{2} \frac{1}{(5+1)^2+9} - \frac{3}{2} \frac{1}{(5+3)^2+9}$
	$\frac{2}{(5+1)^2+9} = \frac{2}{(5+3)^2+9}$
	$\frac{L\left(\frac{g(t)}{t}\right)}{t} = \int g(t) ds$
	S control of the second of the
	$= \frac{3}{2} \int \frac{1}{(s+1)^2 + 9} ds - \frac{1}{(s+3)^2 + 9}$
	$= \frac{3}{2} \left[\frac{1 \tan^{-1} \left(\frac{s+1}{3} \right) - 1 \tan^{-1} \left(\frac{s+3}{3} \right)}{3} \right]_{s}^{\infty}$
	2 [3 3] 3
	7
	$= \frac{1}{2} \left[\frac{\pi}{2} - \tan^{-1} \left(\frac{s+1}{3} \right) - \frac{\pi}{2} + \tan^{-1} \left(\frac{s+3}{3} \right) \right]$
	2 (3) 2 (3)1
	$= \tan^{-1}\left(\frac{s+3}{3}\right) - \tan^{-1}\left(\frac{s+1}{3}\right)$
	2 //

FOR EDUCATIONAL USE

<u>Sundaram</u>®

ANS 6	Lset set sint dt?
	l Jot J
	· · · · · · · · · · · · · · · · · · ·
	Let $g(t) = \int_{0}^{t} e^{t} \sin t dt$
	t
	L(sint) = 1
	5 ² + 1 11
	L (etsint) = 1
	(s-1) ² +1
	$\frac{L\left(e^{t}\sin t\right)}{t} = \int_{-\infty}^{\infty} \frac{1}{(s-1)^{2}+1} ds$
	3 0 0 1
	= [tan! (s-1)]
	$= \frac{\pi}{10} - \tan^{-1}(s-1)$
	2
	= = cot[(s-1)
	$L \int e^{t} \sin t = 1 \cot^{-1}(s-1)$
	t

$$L\left[\begin{array}{cccc} e^{t} & \sin t \\ 0 & t \end{array}\right] = \frac{1}{s} \cot^{-1}(s-1)$$

$$\left[\begin{array}{cccc} e^{t} & \int e^{t} & \sin t \, dt \\ 0 & t \end{array}\right] = \frac{1}{s} \cot^{-1}(s+1-1)$$

$$S+1$$

$$\frac{1}{s+1} = \frac{\cot^{-1}(s)}{s+1}$$

cot-1(s-1)

ANS 7	L J u cos²u du
71	
	1 (2002) 1 (1 1 2002) 1 1 1 1 1 2002 211)
	$L(\cos^2 u) = L(1+\cos 2u) = 1 L(1+\cos 2u)$
	2 20: 2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2 3 3 4 4 1
	$L[u\cos^{2}u] = -1 d \left[1 + \frac{s}{s} \right]$ $\frac{1}{2} ds \left[s + \frac{s^{2} + u}{s^{2}} \right]$
	2 ds l s s 2+4 J
	$= -\frac{1}{2} \left[\frac{-1}{s^2} + \frac{s^2 + 4 - s(2s)}{(s^2 + 4)^2} \right]$
	$2[S^{2}](S^{2}+4\mu)^{2}$
	$= 1 - \frac{1}{3} \cdot 4 - 5^2$
	$= \frac{1}{2s^2} \frac{1}{2(s^2+4)^2}$
	$L \int u \cos^2 u du = 1 \left[1 + s^2 - 4 \right]$ $S \left[2s^2 + 4 \right]^2$
	$\frac{1}{5}$ $\frac{25^2}{3(5^2+4)^2}$
	- 1 c ² U
	$= \frac{1}{2} + \frac{5^2 - 4}{25(5^2 + 4)^2}$
	25 (5-+4)
	, 7

FOR EDUCATIONAL USE

(Sundaram)