Technical Appendix — Buoyancy Algebra

Definitions, Parameters, Algorithm A, and Worked Gates (4 & 12)

Author: Michael H. Dixon | Contact: michaelharrisondixon@gmail.com | October 2025

1. Overview

This appendix provides the minimal formal machinery behind the one-page concept note. It defines operators and invariants, specifies default parameter ranges, records the finite-step repair procedure (Algorithm A), and gives two worked Gate examples (Gate 4: Proportionality, Gate 12: Emotional Calculus).

(Optional Encoder — Step 0): Encode tokens into glyph/emoji semantics to create compact, auditable features.

2. Operator Set & Invariants

Statements are encoded as symbolic structures subjected to four operators $O = \{R, C, F, \rho\}$.

- R (Re-express): reformulate the claim to reduce ambiguity or conflation.
- C (Contextualize): add scope/evidence; adjust P (provocation) and N (novelty).
- F (Frame): reweight perspectives; clarify trade-offs and alternatives.
- ρ (Mirror): test reflection/symmetry; for auditing we assume ρ^3 = I (threefold mirror returns to identity).

Core invariants and metrics:

- Buoyancy $\beta \in [0,1]$: semantic stability under small operator action.
- Proportionality $\Pi = H / (1 + P)$, with $H \ge 0$ (harm/evidence) and $P \ge 0$ (provocation/scope). Higher $\Pi \Rightarrow$ greater risk of Gate-4 collapse.
- Misalignment $\theta \ge 0$: distance-to-target measure for current statement vs. an audited, proportionate target.
- Torque $\tau = \kappa \cdot I \cdot \theta$ and Stickiness $\sigma = E \cdot N \cdot W$, with E,N,W ≥ 0 .

When $\tau > \sigma$, a small operator step (R/C/F) is guaranteed to reduce θ .

Multimodal note: quantities extend to text and images; E/N/W may be derived from linguistic or visual signals.

3. Parameter Table (Defaults)

Symbol	Meaning	Domain	Default / Notes
β	Buoyancy (semantic stability)	[0,1]	Stable under small R/C/F steps
$\Pi = H/(1+P)$	Proportionality score	≥ 0	Higher ⇒ risk of Gate-4 fail
Н	Harm / evidence weight	≥0	Task-dependent rubric
P	Provocation / agitation	≥0	Default scale 0-10
θ	Misalignment	≥ 0	0 at target
$\tau = \kappa \cdot I \cdot \theta$	Torque (realignment effort)	≥0	Increase via κ or I
$\sigma = E \cdot N \cdot W$	Stickiness (emotional inertia)	≥ 0	E: emotion, N: novelty, W: well depth
к, І	Gain & inertia	≥0	Choose so $\tau > \sigma$ during repair
δ	Convergence threshold	≥0	Stop when $\theta < \delta$

4. Algorithm A — Finite-Step Realignment

- 1. Step 1: Encode the current statement; compute β and Π ; run the Gate checks (at minimum: 4, 6, 7, 12, 15).
- 2. Step 2: Measure misalignment θ; compute $\tau = \kappa \cdot I \cdot \theta$ and $\sigma = E \cdot N \cdot W$.
- 3. Step 3: If $\tau \le \sigma$: adjust κ upward, or apply C/F to reduce E or N or W; recompute τ and σ .
- 4. Step 4: If $\tau > \sigma$: apply a small operator step $\Delta O \subseteq \{\Delta R, \Delta C, \Delta F\}$.
- 5. Step 5: Update θ and re-run required Gates. Repeat until θ < δ and gate set passes.

High-E/N protocol (news/politics): default σ is large; favor $C \to F$ until $\tau > \sigma$, then apply R.

Heuristic operator policies:

- R tends to lower Π by sharpening claims (useful for Gate-4).
- C reduces N by adding context/evidence (helps Gate-7/8 contagion wells).
- F tempers E by reframing and surfacing trade-offs (supports Gate-12).

5. Finite-Step Convergence — Sketch

Let $V(\theta) = \theta$ as a Lyapunov-like measure. Assume throughout the repair trajectory that (i) $\kappa \cdot I \ge \sigma + \epsilon$ for some $\epsilon > 0$, and (ii) each small operator step $\Delta 0$ yields a bounded decrement $\Delta \theta \le -\eta$ whenever $\theta \ge \delta$ (with $\eta > 0$). Then θ decreases monotonically and reaches $\theta < \delta$ in at most ceil($(\theta_0 - \delta)/\eta$) steps. Gate feasibility follows from the operator–gate couplings above.

Intuition: when τ exceeds σ , each edit has enough 'energy' to move the statement out of stickiness wells; small steps guarantee stability of descent.

Note: Gate labels are internal audit names; we compute them from β , Π , θ rather than expecting names in raw text.

6. Worked Gate Examples

6.1 Gate 4 — Proportionality

Question: Is the proposed action commensurate with the evidenced harm?

Metric: $\Pi = H/(1+P)$. Choose a threshold $\theta_4 > 0$; 'collapse' if $\Pi \ge \theta_4$.

Mini-case: A 'zero-tolerance' memo proposes expulsion for first-time, minor infractions. Audit reveals modest harm (H \approx 2) but large scope/provocation (P \approx 7), so $\Pi \approx 2/(1+7) = 0.25$. If $\theta_4 = 0.20$, this scenario collapses (fails Gate 4).

Repair: Apply C to add contextual constraints (graduated responses), then F to surface trade-offs. Recomputation lowers Π below θ_4 ; Gate 4 passes.

6.2 Gate 12 — Emotional Calculus

Question: Are feelings integrated without displacing facts?

Coupling: High E inflates $\sigma = E \cdot N \cdot W$, making repair harder until reframing occurs.

Mini-case: A policy note cites a single vivid incident (high E, high N), drawing sweeping conclusions. Apply F to validate affect while separating narrative from generalization; then C adds broader evidence. σ falls; after one R step the statement passes Gate 12 and Gate 4 concurrently.

7. Measurement & Reporting

- Publish $(\theta_{\text{min}}, \theta_{\text{max}}, \delta)$ and the sampling procedure for θ .
- Log (β, Π) and gate verdicts per step to enable audit trails.
- Rater protocol: two raters; target Krippendorff's $\alpha \ge 0.67$ or ICC ≥ 0.60 .
- Stability checks: verify ρ -mirror residual $r_\rho = ||\rho(H^*) H||$ and commutator residuals $r_R(R,C) = ||R_R(R,C)||$ post-repair.

Convergence Under Repair Interventions

When $\tau = \kappa \cdot I \cdot \theta$ exceeds $\sigma = E \cdot N \cdot W$, each small edit (R/C/F) guarantees a negative $\Delta \theta$ until gates pass and $\theta < \delta$.

Version: v 2.5