Study guide for qualifying exams

Cody L. Petrie

July 15, 2015

Classical Mechanics Equations 1

Newtonian Mechanics

Newton's Laws:

- 1. An object will maintain it's current motion unless acted upon by an external force.
- 2. $\vec{F} = m\vec{a}$
- 3. All forces occur in equal but directionally opposite pairs.

Second Law: $\vec{F} = m\vec{a} = \dot{\vec{p}}$

Angular Position/Velocity/Acceleration: $\theta = s/r$, $\omega = v/r$, $\alpha = a/r$

Angular Momentum: $\vec{L} = \vec{r} \times \vec{p}$

Torque: $\vec{\tau} = \vec{r} \times \vec{F} = \vec{L}$

Centripital Acceleration: $a_c = v^2/r$

Centrifugal/Coriolis Forces: $\vec{F}_{cent} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r'}), \ \vec{F}_{cor} = -2m\vec{\omega} \times \dot{\vec{r'}}$

Work to go from positions \vec{a} to \vec{b} : $W_{ab} = \int_{\vec{a}}^{b} \vec{F} \cdot d\vec{s}$

Conservative Force Field (2 eq): W_{ab} is the same regardless of path so $\oint \vec{F} \cdot d\vec{s} = 0$, and thus we can write the force as $\vec{F} = -\nabla V(\vec{r})$.

Lagrangian Formalism

Functional Derivative: $\frac{\delta F}{\delta u}[x_0] = \lim_{\epsilon \to 0} \frac{F[x_0 + \epsilon u] - F[x_0]}{\epsilon} \to \frac{\delta F}{\delta x(t)}[x(t')] = \lim_{\epsilon \to 0} \frac{F[x(t') + \epsilon \delta(t' - t)] - F[x(t')]}{\epsilon}$ Principle of Least Action: $\delta S = 0$, where $S = \int_{t_i}^{t_f} L(\vec{q}, \dot{\vec{q}}, t) dt$

Lagranges Equation: $\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$ Holonomic Constraints: $f_{\alpha}(x^A, t) = 0$, $L' = L(x^A, \dot{x}^A) + \lambda_{\alpha} f_{\alpha}(x^A, t) \rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^A} - \frac{\partial L}{\partial x^A} = 0$

Noether's Theorem: A continuous symmetry in the Action (and thus Lagrangian) result in a conserved quantity.

Moment of Inertia Tensor: $\vec{L} = \overleftrightarrow{T} \vec{\omega}, T = \frac{1}{2} \omega_a I_{ab} \omega_b, I_{ab} = \sum_i m_i ((\vec{r}_i \cdot \vec{r}_i) \delta_{ab} - (\vec{r}_i)_a (\vec{r}_i)_b$

Euler's Equations: Only look at rotation, not translation. Conservation of Angular Momentum gives $I_i\dot{\omega}_i + \omega_j\omega_k(I_k - I_j) = 0$, for i,j,k being cyclic permutations of 1,2,3.

Hamiltonian Formalism

Generalized Momenta: $p_i = \frac{\partial L}{\partial \dot{q}_i}, \ \dot{p}_i = \frac{\partial L}{\partial q_i}$

Hamiltonian: $H(q_i, p_i, t) = \sum_{i=1}^n p_i \dot{q}_i - L(q_i, \dot{q}_i, t)$

Hamilton's Equations:

1.
$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

2.
$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

3.
$$-\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$$

Cyclic/Ignorable Coordinates: q is ignorable if $\frac{\partial L}{\partial q} = 0$, i.e. if q does not appear in L.

Thus $p = \frac{\partial L}{\partial \dot{q}}$ is conserved. **Liousille's Theorem:** A volume of a region of phase space remains the same, even when the refion changes. $V = dq_1 \dots dq_n dp_1 \dots dp_n$. Poisson Bracket: $\{f, g\} = \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}$.

Constant of Motion from Poisson Bracket: $\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}$. If I, H = 0, then I is a constant of motion.

Transformation $(q_i \rightarrow Q_i(q, p), p_i \rightarrow P_i(q, p))$ that leaves Canonical Transformation: Hamilton's equations invariant.

2 Statistical Mechanics Equations

2.1Thermodynamics

Laws of Thermodynamics:

- 1. Energy conservation. dE = dQ pdV. dQ just means that the heat is an inexact differential and the integral depends on the path.
- 2. $\Delta S \geq \int \frac{dQ}{T}$, where equality is for a process that is reversible (never leaves equilibrium).
- 3. Entropy at zero temperature is zero. In stat mech this means that the ground state is nondegenerate and $S \propto \ln(W)$, where W is the number of available states.

Intensive vs Extensive Variables: Intensive variables do NOT scale with system size (T, p, μ) , while extensive do scale (E, S, V, N).

Thermodynamic Potentials:

• Internal Energy: U(S, V, N)

• Helmholtz Free Energy: F(T, V, N) = U - TS

• Enthalpy: H(S, p, N) = U + pV

• Gibbs Free Energy: G(T, p, N) = U - TS + pV

• Landau(Grand) Potential: $\Omega(T, V, \mu) = U - TS - \mu_i N_i$

Thermodynamic Ensembles:

- 1. Microcanonical: Does not exchange energy or particles with environment. Fixed E, N
- 2. Canonical: Does not exchange particles, but can exchange energy (heat bath). Fixed N, T
- 3. Grand canonical: Can exchange energy and particles with environment. Fixed T, μ .

Maxwell's Relations (4 main):

• $\frac{\partial^2 U}{\partial S \partial V} = -\left(\frac{\partial p}{\partial S}\right)_V = \left(\frac{\partial T}{\partial V}\right)_S$

• $\frac{\partial^2 F}{\partial T \partial V} = \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$

• $\frac{\partial^2 H}{\partial S \partial p} = \left(\frac{\partial V}{\partial S}\right)_p = \left(\frac{\partial T}{\partial p}\right)_S$

• $\frac{\partial^2 G}{\partial T \partial p} = \left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$

Engine Efficience: $\eta = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{T_{out}}{T_{in}}$ Isobaric Thermal Expansion Coefficient: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$, How much the volume changes with a change in termperature.

Isothermal Compressibility: $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$, How much the volume changes when the pressure changes.

Isentropic (Adiabatic) Compressibility: $\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$, Same as above. Specific Heat at Constant V: $C_V = \left(\frac{\partial Q}{\partial T} \right)_V = \left(\frac{\partial U}{\partial T} \right)_V$, Amount of heat per unit mass to raise the temp by 1 degree.

Specific Heat at Constant p: $C_p = \left(\frac{\partial Q}{\partial T}\right)_p = \left(\frac{\partial H}{\partial T}\right)_p$, Same as above.

Fermi Energy/Temperature: Chemical potential at T=0. $\epsilon_F=\mu(T=0)$

2.2Statistical Mechanics

Number of microstates in a mactostate (ways to get n heads): $\Omega = \frac{N!}{\prod_i n_i!}$

Stirling's Approximation: $\ln n! = n \ln n - n$

How many order important ways to order n things: n!

How many order important waus to order n things r at a time: $\frac{n!}{(n-r)!}$

How many NOT order important ways to order n things r at a time: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ Microcanonical (Classical) Partition Function: $Z_m = \sum_s g_s e^{-\beta E_s}$

Canonical Partition Function: $Z_c = \operatorname{tr}\left(e^{-\beta \hat{H}}\right)$

Grand Canonical Partition Function: $Z_{gc} = \operatorname{tr}\left(e^{-\beta(\hat{H}-\mu\hat{N})}\right)$

Geometric Series: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$

Classical limit of the trace of an operator: $\operatorname{tr}(\mathcal{O}) = \frac{1}{N!(2\pi\hbar)^{3N}} \int d^3r_1 \dots d^3r_N \int d^3p_1 \dots d^3p_N \mathcal{O},$ N! is for identical particles.

Thermodynamic Limit: $T \to \infty, V \to \infty, N/V = const$

Expectation value for pure/mixed: $\left\langle \mathcal{O} \right\rangle_p = \left\langle \psi \right| \mathcal{O} \left| \psi \right\rangle, \left\langle \mathcal{O} \right\rangle_m = \sum_i P_i \left\langle \psi_i \right| \mathcal{O} \left| \psi_i \right\rangle$

Density Matrix (ex. Canonical Ensemble): $\rho = \sum_{n} P_{n} |\psi_{n}\rangle \langle \psi_{n}|, \rho_{c} = \frac{e^{-\beta \hat{H}}}{\operatorname{tr}e^{-\beta \hat{H}}}$

Expectation value with Density Matrix: $\langle \mathcal{O} \rangle = \operatorname{tr}(\mathcal{O}\rho)$

Trace of Density matrix: $tr(\rho) = 1$

Time evolution of density matrix: $\frac{\partial}{\partial t} \rho = \frac{1}{i\hbar} |\hat{H}, \hat{\rho}|$

 Z_{gc} for an ideal gas: $Z_{gc}=rac{V^N(2mT\pi)^{3N/2}}{N!(2\pi\hbar)^{3N}}e^{\beta\mu}$

 Z_{gc} for ideal fermi gas: $Z_{gc} = \prod_{i=1}^{n} (1 + e^{-\beta(\epsilon_k - \mu)})$

 Z_{gc} for ideal bose gas: $Z_{gc} = \prod_{k}^{k} \frac{1}{\left(1 - e^{-\beta(\epsilon_k - \mu)}\right)}$

Stuff here for black-body and phonons and bose condensates.

Explain Bose-Condensates with Bose statistics: $\lim_{T\to 0} n(p) = \lim_{\beta\to\infty} \frac{1}{1-e^{\beta(\epsilon-\mu)}} \to 0$ un-

less $\epsilon \to \mu$, which happens at the ground state.

What is cluster expansion used for?: Systems of interacting particles.

3 Quantum Mechanics Equations

Properties of a vector space:

- Sum $|V\rangle + |W\rangle$
- Scalar product with properties
 - 1. closure: results in another vector in the space.
 - 2. distributive: $a(|V\rangle + |W\rangle = a|V\rangle + a|W\rangle$, $(a+b)|V\rangle = a|V\rangle + b|V\rangle$
 - 3. associative: $a(b|V\rangle) = ab|V\rangle, |V\rangle + (|W\rangle + |Z\rangle) = (|V\rangle + |W\rangle) + |Z\rangle$
 - 4. commutative: $|V\rangle + |W\rangle = |W\rangle + |V\rangle$
 - 5. addative inverse: $|V\rangle + |-V\rangle = |0\rangle$
 - 6. null vector: $|V\rangle + |0\rangle = |V\rangle$

Hilbert space: Vector space with defined inner product.

Expand in orthonormal basis: $|V\rangle = \sum vi \, |i\rangle$

Hermitian operator: $\mathcal{O}^{\dagger} = \mathcal{O}$

Anti-Hermitian operator: $\mathcal{O}^{\dagger} = \mathcal{O}$

Unitary operator: $UU^{\dagger} = \mathbb{I}$ Orthogonality: $\langle i|j \rangle = \delta_{ij}$ Completeness: $\sum i = \mathbb{I}$

Postulates of QM:

- 1. The state of a physical system, at some fixed time, is given by a normalized ray in a Hilbert space over the complex numbers. (ray is vector whose norm doesn't matter)
- 2. The ray evolves deterministically in time according to Schrödingers equation.
- 3. Observables correspond to self-adjoint (hermitian) operators.
- 4. If a particle is in the state $|\psi\rangle$ then a measurement of \mathcal{O} will yield one of the eigenvalues of \mathcal{O} , ω . The state of the system changes to an eigenstate of \mathcal{O} , $|\omega\rangle$.

Schrödinger equation: $i\hbar \frac{\partial}{\partial t}\Psi = \hat{H}\Psi$

Free particle ψ_p and E_p : $\psi_p = Ae^{ikx} + Be^{-ikx}$, $k^2 = \frac{2mE_n}{\hbar^2}$, $E_p = \frac{p^2}{2m}$

Particle in a box ψ_n and E_n : $\psi_n = \sqrt{\frac{2}{L}} \sin(k_n x)$, $k_n = \frac{n\pi}{L}$, $E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$

Harmonic Oscillator \hat{H} , ψ_n and E_n : $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$, $\psi_n = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{2^n n!} H_n(x) e^{-x^2/2}$, $E_n = (n + \frac{1}{2})\hbar\omega$

Raising and lowering operators and how to affect $|n\rangle$ (3-2):

•
$$a = \left(\frac{m\omega}{2\hbar}\right)^{1/2} \left(\hat{x} + \frac{i}{m\omega}\hat{p}\right), \ a|n\rangle = \sqrt{n}|n-1\rangle, \ a|0\rangle = 0$$

•
$$a^{\dagger} = \left(\frac{m\omega}{2\hbar}\right)^{1/2} \left(\hat{x} - \frac{i}{m\omega}\hat{p}\right), \ a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

 \hat{H} in terms of a and a^{\dagger} : $\hat{H} = \hbar\omega(a^{\dagger}a + 1/2)$ Commutation relations for \hat{H} , a, a^{\dagger} :

- $[\hat{H}, a] = -a$
- $[\hat{H}, a^{\dagger}] = a^{\dagger}$
- $[a, a^{\dagger}] = 1$

 J^2 and J_z on the angular momentum state $|jm_j\rangle$:

- $\mathbf{J}^2 \mid = \rangle j(j+1)\hbar^2 \mid jm_j \rangle$
- $J_z |jm_j\rangle = m_j \hbar |jm_j\rangle$

Commutation relations for J_i and J_j and for J^2 and J_i :

- $[J_i, J_j] = i\hbar J_k$
- $\bullet \ [\mathbf{J}^2, J_i] = 0$

 J_z and J^2 in position basis:

•
$$J_z = -i\hbar \frac{\partial}{\partial t}$$

•
$$\mathbf{J}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

Raising and Lowering Angular Momentum Operators on $|j,m\rangle$:

$$J_{\pm} |j,m\rangle = \hbar [j(j+1) - m(m \pm 1)]^{1}/2 |j,m \pm 1\rangle$$

$$J_x$$
 and J_y in terms of J_+ and J_- : $J_x = \frac{1}{2}(J_+ + J_-), J_y = \frac{1}{2i}(J_+ - J_i)$
Momentum eigenstate, $\langle x|p\rangle$: $\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}$

Hydrogen Atom V(r), ψ_n , $E_n(\mathbf{x4})$: $V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r}$, $\psi_n = stuff * L_{n-l-1}^{2l+1}(\rho) Y_l^m(\theta, \phi)$ (Laguerre)

$$E_n = -\frac{1}{2n^2} \left(\frac{Ze^2}{4\pi\epsilon_0 \hbar} \right)^2 m_e = -\frac{1}{2n^2} \alpha^2 m_e c^2 = -\frac{1}{n^2} 13.6 eV = -\frac{1}{2n^2} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{a_0} \right),$$

 $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c}, \ a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2}$ Pauli matricies and commutation relations:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$[\sigma_a \sigma_b] = 2i\epsilon_{abc} \sigma_c$$

Non-Deg Time-Ind Perturbation, $E_n^{(1)}$, $|n^{(1)}\rangle$, $E_n^{(2)}$:

$$E_n^{(1)} = H'_{nn} = \langle n^{(0)} | H' | n^{(0)} \rangle$$

$$\begin{split} E_{n}^{(1)} &= H_{nn}' = \left< n^{(0)} \right| H' \left| n^{(0)} \right> \\ \left| n^{(1)} \right> &= \sum_{m \neq n} \frac{\left< n^{(0)} \right| H' \left| n^{(0)} \right>}{\left(E_{n}^{(0)} - E_{m}^{(0)} \right)} \left| m^{(0)} \right> \end{split}$$

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle n^{(0)} \middle| H' \middle| n^{(0)} \right\rangle \right|^2}{(E_n^{(0)} - E_n^{(0)})}$$

Deg Time-Ind Perturbation, $E_n^{(1)}$: Diagonalize the perturbation hamiltonian in the degenerate subspace.

Time-Dep Perturbation, $P_{i\to f}(t)$: $P_{i\to f}(t) = \frac{1}{\hbar^2} \left| \int_0^t dt' \left\langle f \right| H'(t') \left| i \right\rangle e^{i(E_f - E_i)t'/\hbar} \right|^2$

Fermi's golder rule, and $g(E_f)as\delta$: $R_{i\to f}=\frac{2\pi}{\hbar}\left|\langle f|H'|i\rangle\right|^2g(E_f),\ g(E_f)\approx\delta(E_f^{(0)}-E_f^{($ $\hbar\omega$)

Einstein's Stimulated/Spontaneous emission coefficients:

Stimulated:
$$B_{if} = \frac{\pi e^2}{3\epsilon_0 \hbar^2} |\langle f|\mathbf{r}|i\rangle|^2$$

Stimulated:
$$B_{if} = \frac{\pi e^2}{3\epsilon_0 \hbar^2} \left| \langle f | \mathbf{r} | i \rangle \right|^2$$

Spontaneous: $A_{if} = \frac{e^2 \omega_{21}^3}{3\pi\epsilon_0 \hbar c^3} \left| \langle f | \mathbf{r} | i \rangle \right|^2$
Total $\psi(\mathbf{r})$ in scattering problem:

$$\psi(\mathbf{r}) = \psi_{inc}(\mathbf{r}) + \psi_{s}(\mathbf{r}) = \psi_{inc}(\mathbf{r}) + f(\theta, \phi) \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{r}$$
$$f(\theta, \phi) = -\frac{m}{2\pi\hbar^{2}} \int d^{3}r' e^{-i\mathbf{k}'\cdot\mathbf{r}'} V(\mathbf{r}') \psi(\mathbf{r}')$$

Differential Cross Section: $\frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2$

Born Approximation: In the above integral for $f(\theta, \phi)$ let $\psi \to \psi_{inc}$.

Dirac Equation:

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi = 0$$
$$\gamma^{0} = \beta, \ \gamma^{i} = \beta\alpha_{i}$$

$$\beta = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix}, \ \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}$$

4 Electricity and Magnetism Equations

Maxwell's Equations in Vacuum (SI):

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0, \ \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Maxwell's Equations in Matter (SI), and D and H:

$$\nabla \cdot \mathbf{D} = \rho, \ \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial D}{\partial t}$$
$$\mathbf{D} = \epsilon_0 \mathbf{E}, \mathbf{B} = \mu_0 \mathbf{H}$$

$$\mathbf{D} = \epsilon_0 \mathbf{E}, \ \mathbf{B} = \mu_0 \mathbf{H}$$

Continuity Equation: $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$

Lorentz Force: $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

Coulomb's Law (x2): $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$, F = QE

Gauss' Law: $\oint \mathbf{E} \cdot d\mathbf{A} = q/\epsilon_0$

Electrostatic Potential (x2): $\mathbf{E} = -\nabla \Phi$, $\Phi = \frac{1}{4\pi\epsilon_0} \int d^3r' \frac{\rho(\mathbf{r'})}{|\mathbf{r}-\mathbf{r'}|}$

Laplace's Equation & General Solution(Spherical Coordinates, no ϕ): $\nabla^2 \Phi = 0$

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$$

Poisson's Equation: $\nabla^2 \Phi = -\rho/\epsilon_0$

Explain the Method of Images: Because of the uniqueness theorem you can add charges OUTSIDE of the computational area to meet the same boundary conditions. A solution to this new configuration is also a solution to the initial configuration.

Method of Images (plane, sphere, hem boss):

plane: add one charge below plane.

sphere: 1 test charge inside sphere.

hem boss: 3 test charges.

Multipole Expansion of $\Phi(\mathbf{r})$: $\Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \int d^3r' \frac{P_n(\cos\alpha)}{r^{n+1}} \rho(\mathbf{r}')$

Work and Energy in Electrostatics: The Energy of a system is the work it requires to assemble the system.

7

Atomic Polarizability (α): $\mathbf{p} = \alpha \mathbf{E}$

Polarization: Electric dipole moment per unit volume. $D = \epsilon_0 E + P$

Magnetization: Magnetic dipole moment per unit volume $\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$

Bound Charge: $\rho_b = -\nabla \cdot \mathbf{P}$ Bound Current: $\mathbf{J}_b = \nabla \times \mathbf{M}$

Linear Media x2: $\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$, $\mathbf{M} = \chi_m \mathbf{H}$ Biot-Savart Law: $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\mathbf{J}(\mathbf{r'}) \times |\mathbf{r} - \mathbf{r'}|}{|\mathbf{r} - \mathbf{r'}|}$ Ohm's Law: $\mathbf{J} = \sigma \mathbf{E}$, where σ is the conductivity

Resistivity: $\rho = 1/\sigma$

Boundary Conditions:

$$D_1^{\perp} - D_2^{\perp} = \sigma_f B_1^{\perp} - B_2^{\perp} = 0$$

$$\mathbf{E}_1^\parallel - \mathbf{E}_2^\parallel = \mathbf{0}$$

$$\mathbf{H}_1^{\parallel} - \mathbf{H}_2^{\parallel} = \mathbf{K}_f imes \hat{\mathbf{n}}$$

Poynting's Theorem, units of S: $S = \frac{energy}{time \cdot energy}$

$$\frac{dW}{dt} = -\frac{d}{dt} \int d^3r \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \frac{1}{\mu_0} \oint d\mathbf{a} \cdot (\mathbf{E} \times \mathbf{B}) = -\frac{d}{dt} (W_e + W_m) - \oint d\mathbf{a} \cdot \mathbf{S}$$
Maxwell Stress Tensor and Static Force:

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2 \right)$$

$$\mathbf{F} = \oint d\mathbf{a} \cdot \overleftarrow{T}$$

Index of Refraction: $n = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}}$

What is a Waveguide: A waveguide is a conductor pipe such that $\mathbf{E}^{\parallel} = \mathbf{0}$ and $B^{\perp} = 0$ on the surface. Also the transverse components of the fields (x and y) can be determined from derivatives of the axial components (z).

Transverse electric/magnetic and TEM

TE: $E_z = 0$

TM: $B_z = 0$

TEM: both

E and B in terms of A and Φ : $\mathbf{E} = -\nabla \Phi - \frac{\partial \mathbf{A}}{\partial t}$, $\mathbf{B} = \nabla \times \mathbf{A}$ Coulomb/Lorentz Gauge: $\nabla \cdot \mathbf{A} = 0$, $\nabla \cdot \mathbf{A} = -\mu_0 \epsilon_0 \frac{\partial \Phi}{\partial t}$

Retarted Scalar and Vector Potentials: $\Phi = \frac{1}{4\pi\epsilon_0} \int d^3r' \frac{\rho(\mathbf{r'},t-|\mathbf{r}-\mathbf{r'}|/c)}{|\mathbf{r}-\mathbf{r'}|}$, $\mathbf{A} = \frac{\mu_0}{4\pi} \int d^3r' \frac{\mathbf{J}(\mathbf{r'},t-|\mathbf{r}-\mathbf{r'}|/c)}{|\mathbf{r}-\mathbf{r'}|}$ What are the Liénard-Wiechert Potentials?: Retarted potentials of a point charge with a specific trajectory.

Radiation Estimate $|\mathbf{r}-\mathbf{r}'|$ and $\frac{1}{|\mathbf{r}-\mathbf{r}'|}$: $|\mathbf{r}-\mathbf{r}'|\approx r-\frac{\mathbf{r}\cdot\mathbf{r}'}{r},\,\frac{1}{|\mathbf{r}-\mathbf{r}'|}\approx \frac{1}{r}+\frac{\mathbf{r}\cdot\mathbf{r}'}{r^3}$ Radiation Dipole Approximation $e^{-i\omega\hat{\mathbf{r}}\cdot\mathbf{r}'/c}\approx 1$

Electric Dipole Moment: $\mathbf{p}(\mathbf{r},t) = \int d^3r' \mathbf{r'} \rho(\mathbf{r'},t)$

Larmor Formula: $P = \frac{\mu_0}{6\pi c}q^2a^2$

Helmholtz Theorem: If you know the divergence (D) and the curl (C) of a function F then $\mathbf{F} = -\nabla U + \nabla \times \mathbf{W}$ where

$$U(\mathbf{r}) = \frac{1}{4\pi} \int d^3 r' \frac{D(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$W(\mathbf{r}) = \frac{1}{4\pi} \int d^3 r' \frac{\mathbf{C}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$W(\mathbf{r}) = \frac{1}{4\pi} \int d^3r' \frac{\mathbf{C}(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|}$$

Einstein's Postulates of Special Relativity:

- 1. The laws of physics are the same in all inertial frames of reference.
- 2. The speed of light in free space has the same value c in all inertial frames of reference.

Boost in the x-direction in terms of x_i , γ and β :

$$x_0' = \gamma(x_0 - \beta x_1)$$

$$x_1' = \gamma(x_1 - \beta x_0)$$

$$x_2' = x_2$$

$$x_3' = x_3$$

$$x_3' = x_3$$

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}, \ \beta = \frac{v}{c}$$

Boost in the x-direction in matrix form: $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$, $\Lambda = \begin{pmatrix} \gamma & -\gamma \rho & \sigma & \sigma \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Covariant vs. Contravariant: a_{μ} , contravariant: a^{μ} , $(a_0, a_1, a_2, a_3) = (-a^0, a^1, a^2, a^3)$

Minkowski metric:
$$a_{\mu} = g_{\mu\nu}a^{\nu}, g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Four-(v, p, J, A):

$$v^{\mu} = \frac{dx^{\mu}}{d\tau} = (\gamma c, \gamma v)$$

 $p^{\mu} = mv^{\mu} = (E/c, p)$

$$p^{\mu} = mv^{\mu} = (E/c, \mathbf{p})$$

$$J^{\mu} = (c\rho, \mathbf{J})$$

$$A^{\mu} = (\Phi/c, \mathbf{A})$$

Relativistic Energy x2: $E = \gamma mc^2 = \sqrt{p^2c^2 + m^2c^2}$

Field Tensor and Transformation:
$$F^{\mu\nu} = \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{pmatrix}, F'^{ij} = \Lambda^i_k \Lambda^j_l F^{kl} \rightarrow$$

$$F' = \Lambda F \Lambda^{\mathrm{T}}$$

Maxwell's Equations with d'Alenbertian: $\Box^2 A^{\mu} = -\mu_0 J^{\mu}, \Box^2 = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$

5 Miscellaneous Physics

Taylor Expansion: $f(\vec{x} + \vec{a}) = f(\vec{x}) + a_i \partial_i f(\vec{x}) + \mathcal{O}(\vec{a}^2)$

Gaussian Integral: $\int_{0}^{\infty} dx e^{-ax^2 + bx + c} = \sqrt{\frac{\pi}{a}} e^{b^2/(4a) + c}$

3 types of Boundary Conditions:

Dirichlet: $\Phi(\mathbf{a}) = const$

Neumann: $\frac{\partial \Phi(\hat{\mathbf{a}})}{\partial \mathbf{n}} = \hat{\mathbf{n}} \cdot \nabla \Phi = const$

Robin: Linear combination of the first two

Value of fine structure constant: $\alpha \approx \frac{1}{137}$ Mass of electron in eV: $m_e c^2 = 0.511 eV$

Value of the Bohr radius: $a_0 = 0.529 \text{ Å}$

Wave Equation: $\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$ Diffusion Equation: $\nabla^2 u - \frac{1}{D} \frac{\partial u}{\partial t} = 0$