1. Show the predictive framework you designed.

Hint: What features do you extract? What algorithms do you use in the framework?

Features: Month、DayofMonth、DayofWeek、CRSDepTime、CRSArrTime、UniqueCarrier、FlightNum、CRSElapsedTime、Origin、Dest

在特徵的部分,因為這次作業要預測2005年航班取消情形,所以能使用的特徵必須是在航班取消之前就能知道的資訊,而諸如DepTime、ArrTime、Taxiln、TaxiOut等特徵是若航班被取消則這些欄位會固定顯示零或是NA,也就是要等到航班被取消才能知道這些特徵的數值,所以不能被使用;還有因為在訓練用資料(2000至2004年的航班資料)TailNum這個欄位當它為NA時,有很大的機率那次航班會被取消,然後在測試用資料(2005年航班資料)則當航班被取消時,TailNum欄位會顯示零,所以我認為此欄位跟目標欄位有不合理的過高相依性,所以我也沒加入這個欄位資料;而我也沒加入Year的特徵,以及因為Distance這個欄位的數值是Origin以及Dest的距離所以我也沒加入此特徵;而後面幾個欄位,例如:CarrierDelay是跟飛機延遲有關的欄位,所以我也沒加入這些特徵,所以最後所使用的特徵分別是:Month、DayofMonth、DayofWeek、CRSDepTime、CRSArrTime、UniqueCarrier、FlightNum、CRSElapsedTime、Origin、Dest這10個欄位。

Algorithms:

Preprocess: UnderSampling

Model: Logistic Regression、SVM、Decision Tree、Random Forest

演算法的部分,因為有發現到有被取消的航班及未被取消的航班比例是1:41,所以在訓練模型前,會先將訓練資料做undersampling,讓取消的航班及未取消的航班比是1:1。接著我會將資料分別丟入Logistic Regression、SVM、Decision Tree以及Random Forest這四種模型中分別觀察它們對測試資料(2005年的航班資料)的各自對取消及未被取消的航班精確度。

2. Explain the validation method you use.

Hint: Leave-one-out, Holdout, k-fold, or other methods?

Holdout

在這次的驗證資料方式中,我選用了holdout這個方式,將2000至2004年的訓練用航班資料分成8:2,再將這20%資料作為驗證資料,最後把這些資料分別丟入4個模型中(Logistic Regression、SVM、Decision Tree及Random Forest)以檢測結果。

3. Explain the evaluation metric you use.

Hint: Don't just show the prediction results, you should show the effectiveness of your framework using like confusion matrix.

Confusion matrix

Logistic Regression(maxIter=5)

Accuracy: 0.6683

	Precision	Recall	F-score
Uncancelled	0.6651	0.6891	0.6769

Cancelled	0.6717	0.6471	0.6592
-----------	--------	--------	--------

Validation

[[74984. 33822.] [37750. 69214.]]

TP: 0.68915317170009 FP: 0.6470775214090723

Recall(0): 0.68915317170009 Recall(1): 0.6470775214090723 F-score(0): 0.676934187957028 F-score(1): 0.6591809523809524

Accuracy: 0.6682949436900403

SVM(maxIter=15)

Accuracy: 0.6759

	Precision	Recall	F-score
Uncancelled	0.6749	0.6889	0.6818
Cancelled	0.6769	0.6626	0.6697

Validation

[[74903. 33832.] [36085. 70879.]]

TP: 0.6888582333195383 FP: 0.6626435062263939

Precision(0): 0.6748747612354489 Precision(1): 0.6769011851667924

Recall(0): 0.6888582333195383 Recall(1): 0.6626435062263939 F-score(0): 0.681794805277554 F-score(1): 0.6696964686429668

Accuracy: 0.6758584879855725

Decision Tree Accuracy: 0.5981

	Precision	Recall	F-score
Uncancelled	0.5692	0.8361	0.6773
Cancelled	0.6808	0.3559	0.4674

Validation

[[91036. 17848.] [68894. 38070.]]

TP: 0.8360824363542853 FP: 0.3559141393365992

Precision(0): 0.569224035515538 Precision(1): 0.680818341142387 Recall(0): 0.8360824363542853 Recall(1): 0.3559141393365992 F-score(0): 0.6773159136056902 F-score(1): 0.4674549673997127

Accuracy: 0.5981338719839887

Random Forest(numTrees=3)

Accuracy: 0.5404

	Precision	Recall	F-score
Uncancelled	0.5307	0.7750	0.6300
Cancelled	0.5677	0.3013	0.3937

```
Validation
[[84518. 24542.]
[74737. 32227.]]
[TP: 0.7749679075738126 FP: 0.30128828390860474
[Precision(0): 0.5307086119745063 Precision(1): 0.5676865895118814
[Recall(0): 0.7749679075738126 Recall(1): 0.30128828390860474
[F-score(0): 0.6299908689413563 F-score(1): 0.39365308154128975
[Accuracy: 0.5404260637706921
```

4. Show the validation results and give a summary of results.

Result

Logistic Regression(maxIter=5)

Accuracy: 0.6769

	Precision	Recall	F-score
Uncancelled	0.9864	0.6801	0.8051
Cancelled	0.0298	0.5128	0.0564

```
Testting Data
[[4719069. 2220093.]
  [ 64898. 68299.]]
TP: 0.6800632410657079 FP: 0.5127668040571485
Precision(0): 0.9864342709721869 Precision(1): 0.02984584808896378
Recall(0): 0.6800632410657079 Recall(1): 0.5127668040571485
F-score(0): 0.8050869354077738 F-score(1): 0.05640841612676636
Accuracy: 0.6769124700824718
```

SVM(maxIter=15) Accuracy: 0.6793

	Precision	Recall	F-score
Uncancelled	0.9866	0.6825	0.8068
Cancelled	0.0302	0.5160	0.0571

```
Testting Data
[[4736458. 2203596.]
[ 64468. 68736.]]
TP: 0.6824814331415865 FP: 0.516020539923726
Precision(0): 0.9865717571985071 Precision(1): 0.030249100923632637
Recall(0): 0.6824814331415865 Recall(1): 0.516020539923726
F-score(0): 0.8068249839451221 F-score(1): 0.05714817820228007
Accuracy: 0.6793466320612086
```

Decision Tree

Accuracy: 0.8262

	Precision	Recall	F-score
Uncancelled(predicted)	0.9827	0.8376	0.9044
Cancelled(predicted)	0.0268	0.2330	0.0481

Random Forest(numTrees=3)

Accuracy: 0.7854

	Precision	Recall	F-score
Uncancelled(predicted)	0.9818	0.7960	0.8792
Cancelled(predicted)	0.0213	0.2316	0.0391

Summary

在這次的結果中可以發現因為資料不平衡的特性很嚴重,所以造成取消的航班部分精準度都偏低,又這次的航班資料因為能用的特徵資料很有限,且裡面的欄位資料跟航班是否被取消並無過大的相關性,所以即使換了不同的模型預測取消的航班精確度都差不多差,而未被取消的航班則因為數量上的優勢,所以不同的模型出來的結果也都有九成以上的精準度。

在驗證資料中,表現最好的模型是SVM,有67%的精準度;而在預測測試資料中,表現最好的模型是Decision Tree,有82%的精準度

Program workflow:

Execution commands:

hadoop fs -put /home/node/03/Downloads/2000.csv

hadoop fs -put /home/node/03/Downloads/2001.csv

hadoop fs -put /home/node/03/Downloads/2002.csv

hadoop fs -put /home/node/03/Downloads/2003.csv

hadoop fs -put /home/node/03/Downloads/2004.csv

hadoop fs -put /home/node/03/Downloads/2005.csv

hadoop fs -ls hdfs:///user/ubuntu

python3 /home/node03/Desktop/hw4.py