Física

SÈRIE 1

P1)

a) Direcció horitzontal: moviment uniforme $\Rightarrow vt = L$ Direcció vertical: moviment uniformement accelerat $\Rightarrow \frac{1}{2}at^2 = \frac{D}{2}$ [0.5] \Rightarrow

$$a = \frac{F}{m} = \frac{qE}{m}$$

$$\frac{1}{2}at^2 = \frac{D}{2} \implies t^2 = \frac{D}{a} = \frac{Dm}{qE} \implies t = \sqrt{\frac{Dm}{qE}} \ [\mathbf{0.25}]$$

$$v = \frac{L}{t} = \sqrt{\frac{L^2qE}{Dm}} = 3,98 \times 10^7 m/s \ [\mathbf{0.25}]$$

b) 1 Moviment uniforme en una direcció i moviment uniformement accelerat en la direcció perpendicular
 ⇒ trajectòria parabòlica [0.5]

$$2 W = \frac{FD}{2} = \frac{qED}{2} = 8.01 \times 10^{-17} J[0.5]$$

P2)

a) $K_{\text{Venus}} = 1,00142 \sim 1,00 \frac{\text{anys}^2}{\text{UA}^3}$ $K = \frac{T^2}{R^3} \Rightarrow K_{\text{Júpiter}} = 1,00037 \sim 1,00 \frac{\text{anys}^2}{\text{UA}^3} \quad [\textbf{0.75}]$ $K_{\text{Saturn}} = 0,99891 \sim 1,00 \frac{\text{anys}^2}{\text{UA}^3}$ $\overline{K} = \frac{K_{\text{Venus}} + K_{\text{Júpiter}} + K_{\text{Saturn}}}{3} = 1,0002 \sim 1,00 \frac{\text{anys}^2}{\text{UA}^3} \quad [\textbf{0.25}]$

b)
$$G\frac{M_{\rm Sol}M_{\rm Terra}}{R_{\rm Terra-Sol}^2} = M_{\rm Terra}R_{\rm Terra-Sol}\left(\frac{2\pi}{T_{\rm Període~orbital~Terra}}\right)^2~[{\bf 0.25}]$$

$$M_{\rm Sol} = \frac{R_{\rm Terra-Sol}^34\pi^2}{GT_{\rm Període~orbital~Terra}^2} = 1,99\times 10^{30}kg~[{\bf 0.25}]$$

$$g_{\mbox{Mart}} = G \frac{M_{\mbox{Mart}}}{R_{\mbox{Mart}}^2} = 6,67 \times 10^{-11} \frac{0,107 \times 5,974 \times 10^{24}}{(0,532 \times 6,378 \times 10^6)^2} = \ 3,70 \ m/s^2 \ [{\bf 0.5}]$$

OPCIÓ A P3)

a) El primer hàrmonic correspon a la freqüència fonamenatal: $\nu = 235Hz$. Per aquest estat vibracional la longitud total és igual a la meitat de la longitud d'ona: $L = \frac{\lambda}{2}$ [0.5].

Per altre banda:

$$\nu = \frac{v_{so}}{\lambda} \Rightarrow L = \frac{v_{so}}{2\nu} = \frac{340m/s}{2 \times 235Hz} = 0,72m \ [0.5]$$

b) El nivell d'intensitat β mesurat en decibels (dB) es defineix com:

$$\beta(I) = 10 \log \frac{I}{I_0}(dB), I_0$$
: llindar de referència, $I_0 = 10^{-12} W/m^2$ [0.2]
 $116 = 10 \log \frac{I}{10^{-12}} \Rightarrow 11, 6 = \log(I) - \log(10^{-12}) = \log(I) + 12$
 $\log(I) = 11, 6 - 12 = -0, 4 \Rightarrow I = 10^{-0.4} \sim 0, 4W/m^2$ [0.2]

L'intensitat del so és inversament proporcional al quadrat de la distancia: [0.2]

$$I' d'^2 = I d^2 \Rightarrow I' = \frac{I d^2}{d'^2} = \frac{0.41}{50^2} = 1,6 \times 10^{-4} W/m^2 [0.2]$$

El nombre de dB percebuts llavors serà:

$$\beta = 10 \log \left(\frac{1.6 \times 10^{-4}}{10^{-12}} \right) = 82 \,\mathrm{dB} \, [\mathbf{0.2}]$$

P4)

a) L'energia mecànica en un moviment hàrmonic és constant i ve donada per: $E_M = \frac{1}{2}k$ A^2 , per tant el pendent de la recta és: $\frac{E_M}{A^2} = \frac{1}{2} k$ $[\mathbf{0.25}]$ $\Rightarrow \frac{1}{2} k = \frac{8-2}{0.04-0.01} = 200 J/m^2 = 200 N/m \Rightarrow k = 400 N/m$ $[\mathbf{0.25}]$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{10\sqrt{2}}{\pi} = 4.5Hz \ [\mathbf{0.5}]$$

b) La velocitat en un moviment hàrmonic simple es escriure com: $v = A \omega \cos(\omega t)$ [0.5] Per tant la velocitat màxima serà: $v_{max} = A\omega = A2\pi\nu$ [0.25] $v_{max} = 4m/s$ [0.25]

P5)

a) Es produirà corrent elèctric quan es produeixi una variació en el flux del camp magnètic a través de l'espira. Per tant els intervals on tindrem corrent elèctric són: $0 \le t \le 10$ i $40 \le t \le 50$ [0.5]

El corrent induit és de sentit contrari al que generaria el camp que el produeix. [0.25]

En l'interval $0 \le t \le 10$, la derivada del flux respecte el temps és positiva, per tant el corrent generat serà en sentit antihorari. En l'interval $40 \le t \le 50$ la derivada del flux respecte del temps serà negativa, per tant el corrent serà en sentit horari. [0.25]

b)
$$0 \le t \le 10 \Rightarrow \varepsilon = -\frac{d\Phi}{dt} = -\pi r^2 \frac{dB}{dt} = -\pi 0.25^2 \frac{2-0}{10-0} = -3.93 \times 10^{-2} V$$
 [0.25]

$$40 \le t \le 50 \Rightarrow \varepsilon = -\frac{d\Phi}{dt} = -\pi r^2 \frac{dB}{dt} = -\pi 0.25^2 \frac{0-2}{50-40} = 3.93 \times 10^{-2} V$$
 [0.25]

En tots dos casos el valor absolut del corrent serà:

$$|I| = \frac{|\varepsilon|}{R} = \frac{3.93 \times 10^{-2}}{5} = 7.85 \times 10^{-3} A$$
 [0.5]

PAU 2011

Pautes de correcció Física

OPCIÓ B P3)

a) A partir de la primera reacció nuclear:

El triti té 2 neutrons i un protó $\Rightarrow z = 3$ [0.2]

per tant: $14+x=12+3 \rightarrow x=1$; $7+y=6+1 \rightarrow y=0$ per tant la partícula incognita és un neutró. [0.4]

A partir de la segona reacció nuclear tindrem:

$$j+1=4+3 \rightarrow j=6; k+0=2+1 \rightarrow k=3$$
 [0.4]

b) La llei de desintegració de la massa i/o nombre d'atoms d'un determinat radioisótop, en funció de període τ de semidesintegració és:

 $M = M_0 e^{-\frac{t}{\tau} \ln 2} [0.5]$

[0.5]

P4)

a)

Energia emesa per un fotó: $E_{\nu} = h\nu = 6.62 \times 10^{-34} \times 900 \times 10^6 = 5,96 \times 10^{-25} J$ [0.5]

Energia total emesa per l'antena durant 1 minut: $E=W\times t=240J$ Nombre total de fotons emesos: $n=\frac{E}{E}=4,03\times 10^{26}$ fotons [0.5]

b) Llindar d'energia per que es produeixi efecte fotoelèctric: $4.1\,eV\frac{1.602\times10^{-19}J}{1eV}=6,57\times10^{-19}J>5.96\times10^{-25}J\Rightarrow$ no hi haurà efecte fotoelèctric. [0.5]

Si l'antena emet amb una potència de 8 W, hi haurien més fotons, però tots ells amb la mateixa energia, per tant tampoc hi hauria efecte fotoelèctric. [0.5]

P5)

- a) Variació de massa: $\Delta m = 10m_0 m_0 = 9m_0$ [0.2] Variació de la seva energia cinètica: $\Delta E_c = \Delta mc^2 = 7,38 \times 10^{-13} J$ [0.4] $\times \frac{1eV}{1,60 \times 10^{-19} J} = 4,61 \times 10^6 eV \times \frac{1MeV}{10^6 eV} = 4,61 MeV$ [0.4]
- b) Electró + positró \Rightarrow 2 fotons o bé:

$$e^- + e^+ \to 2\gamma \ [0.5]$$

Per la llei de conservació de l'energia, cada fotó ha de ser igual a la meitat de l'energia total dissipada en la reacció, per tant l'energia del fotó serà igual a l'energia corresponent a l'electró abans de xocar:

$$E = mc^2 = 10 \times 9, 11 \times 10^{-31} kg \times (3 \times 10^8 m/s)^2 = 8, 20 \times 10^{-13} J$$
 [0.25]

Freqüència:

$$\nu = \frac{E}{h} = 1,24 \times 10^{21} Hz \ [\mathbf{0.25}]$$

Pautes de correcció

Física

Sèrie 4

P1)

a) Els punts on la velocitat és zero corresponen als punts on es produeixen: la màxima compressió i el màxim estirament de la molla, la distacia entre aquests dos punts serà igual a dues vegades l'amplitud: $2 A = 0.5 m \Rightarrow A = 0.25 m$ [0.2]

En un moviment oscilatori hàrmonic:

$$x(t) = A\cos(\omega t + \phi_0)$$
$$v(t) = \frac{dx}{dt} = -A\omega\sin(\omega t + \phi_0)$$

per tant la màxima velocitat serà: $v_{maxima} = A \omega$ [0.2]

$$E_{c_{m \dot{\alpha} x i m a}} = \frac{1}{2} m v_{m \dot{\alpha} x i m a}^{2} = \frac{1}{2} m (A \omega)^{2}$$

$$\omega = \sqrt{\frac{2 E_{c_{m \dot{\alpha} x i m a}}}{m A^{2}}} = 40 \ rad/s \ [\mathbf{0,2}]$$

$$\nu = \frac{\omega}{2\pi} = 6,37 Hz, T = \frac{1}{\nu} = 0,157s \ [\mathbf{0,2}]$$

No tenim fregament, per tant l'energia mecànica es conserva $\Rightarrow E_{Total} = E_{c_{màxima}} = \frac{1}{2}K A^2 \Rightarrow K = \frac{2 E_{c_{màxima}}}{A^2} = 480 N/m [\mathbf{0}, \mathbf{2}]$

b) Si recordem les expressions:

$$x(t) = A\cos(\omega t + \phi_0)$$
$$v(t) = \frac{dx}{dt} = -A\omega\sin(\omega t + \phi_0)$$

Tindrem $E_{c_{maxima}}$, quan $v(t=0)=\pm v_{maxima}$ i per tant $\phi_0=\pm \frac{\pi}{2}$ i com a conseqüència

$$x(t) = A\cos(\omega t + \phi_0) = \pm A\sin(\omega t)$$
$$v(t) = \frac{\mathrm{d}x}{\mathrm{d}t} = \pm A\omega \cos(\omega t)$$
$$a(t) = \frac{\mathrm{d}v}{\mathrm{d}t} = \mp A\omega^2 \sin(\omega t) \ [\mathbf{0.5}]$$

Per t = 3s, tindrem: $x(3s) = \pm 0,145 m$; $v(3s) = \pm 8,14 m/s$; $a(3s) = \mp 232 m/s^2$ [0.5]

P2)

a) La direcció és perpendicular a les plaques i el sentit és tal que va de la placa positiva a la negativa. [0.5] El modul val:

$$E = \frac{\Delta V}{d} = \frac{60 \times 10^3 \ V}{0.04 \ m} = 1.5 \times 10^6 \ N/C \ [0.5]$$

$$\Delta E_p = q_{e^-} \Delta V = -1.6 \times 10^{-19} \ C \ 6 \times 10^4 \ V = -9.6 \times 10^{-15} J$$

$$\Delta E_c = W_{total} = -\Delta E_p = 9.6 \times 10^{-15} J \ [\mathbf{0.5}]$$

Oficina d'Organització	de Proves	d'Accés a	la Universitat
	PAU 2011		

Pàgina 5 de 9

Pautes de correcció Física

$$\begin{split} E_{fot\acute{o}} \; = \; \Delta E_c \\ E_{fot\acute{o}} \; = \; h \; \nu \\ \nu \; = \; \frac{\Delta E_c}{h} \; = \; 1,45 \times 10^{19} Hz \; [\textbf{0,5}] \end{split}$$

Física

OPCIÓ A P3)

a)

$$g_s = \frac{G M}{R^2}$$

$$g_h = \frac{G M}{(R+h)^2}$$

[0.5]

$$\frac{g_s}{g_h} = \left(\frac{R+h}{R}\right)^2 \Rightarrow$$

$$\sqrt{\frac{g_s}{g_h}} = \frac{R+h}{R} \Rightarrow$$

$$R = \frac{h}{\sqrt{\frac{g_s}{g_h}} - 1} = 5850km$$

[0.5]

b) Si r es l'hipotètic radi de l'òrbita, es verifica:

$$G \frac{M_T m}{r^2} = \frac{m v^2}{r} [\mathbf{0.5}] \Rightarrow$$

$$r = \frac{G M_T}{v^2} \Rightarrow$$

$$r = 3,989 \times 10^6 m = 3989 km [\mathbf{0.25}]$$

Com que $r < R_T$, aquesta òrbita no és possible [0.25]

Pautes de correcció Física

P4)

a) Llei de la refracció:

$$\frac{\sin\phi_1}{\sin\phi_2} = \frac{v_1}{v_2} \left[\mathbf{0}, \mathbf{4} \right]$$

Prenem l'aigua com a medi 1 i l'aire com a medi $2 \Rightarrow \phi_1 = 60^o; v_1 = 1500 m/s; v_2 = 340 m/s$ Anem a trobar amb quin angle sortirà el so de l'aigua:

$$\phi_2 = \arcsin\left(\frac{v_2 \sin \phi_1}{v_1}\right) = 11,32^0 \ [\mathbf{0,4}]$$

Per tant els grills i les llagostes podran sentir el so de les balenes, sempre que siguin molt properes a la costa i dalt d'un penya-segat, ja que el so surt amb un angle molt petit respecte la vertical i per tant amb una trajectòria molt vertical. [0.2]

b) La freqüència no varia al passar d'un medi a un altre. [0.25] La velocitat d'una ona ve donada per l'expressió: $v = \lambda \nu$ [0.25]

Dins de l'aigua:

$$\lambda = \frac{v}{\nu} = \frac{1500}{20} = 75 \ m \ [0,25]$$

A l'aire:

$$\lambda = \frac{v}{\nu} = \frac{340}{20} = 17 \, m$$

que correpon a la longitud d'ona a la que rebran el so. $\boldsymbol{[0.25]}$

P5)

a) Donat que en la reacció que ens plantejen l'ùnica transformació nuclear que té lloc és la transformació d'un neutró en un protó amb l'emissió d'un electró (partícula β), per tant el nombre màsic del Xe serà el mateix que el del I, o sigui 131 [0.25] i el nombre atómic serà una unitat més gran que el del I, o sigui 54 [0.25]. La longitud d'ona associada a les partícules β , d'acord amb la llei d'en De Broglie serà:

$$\lambda_{\beta} = \frac{h}{m_{\beta} v_{\beta}} = \frac{6,62 \times 10^{-34} Js}{9,11 \times 10^{-31} kg \ 2 \times 10^8 m/s} = 3,6 \times 10^{-12} \ m \ [\mathbf{0.5}]$$

b) La llei de desintegració d'un radinucli és:

$$N(t) = N_0 e^{-\frac{t}{\tau} \ln 2} [\mathbf{0.5}]$$

En el nostre cas, $N(t) = 0.125 N_0 \Rightarrow$

$$0,125 N_0 = N_0 e^{-\frac{t}{\tau} \ln 2}$$

prenen logaritmes naturals a cada cantó de l'equació tindrem:

$$\ln(0.125) = -\frac{t}{\tau} \ln 2 \implies t = -\frac{\ln(0.125)}{\ln 2} \tau = 24 \ dies \ [\textbf{0.5}]$$

Pautes de correcció Física

OPCIÓ B P3)

a) De forma esquemàtica es mostra a la figura les línies de camp magnètic:

[0.5]

Les línies de camp magnètic entran pel pol Sud i surten pel pol Nord, per tant en la figura que es mostra, l'extrem mes proper serà el pol Sud i l'altre extrem el pol Nord, per tant el pol Sud de l'eletroimà s'acostarà al pol Nord de l'imà, o sigui l'electroimà girarà segons les agulles del rellotge. [0.5]

b) Per la llei de Lenz sabem que la força electromotriu generada en una espira està condicionada a que hi hagi un variació del fluxe magnètic a través de l'espira al llarg del temps:

$$\varepsilon = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t}\,[\mathbf{0.6}]$$

Per tant en la gràfica que es mostra es generarà força electromotriu ens els intervals següents: $10 \le t \le 12$; $18 \le t \le 20$; $40 \le t \le 42$ i $48 \le t \le 50$ tots els intervals en ms. [0.4]

P4)

a)
$$N = N_0 e^{-\lambda t} \implies m = m_0 e^{-\lambda t} [\mathbf{0}, \mathbf{4}] \lambda = \frac{\ln 2}{\tau} [\mathbf{0}, \mathbf{2}]$$

$$m = 1 e^{-\frac{t \ln 2}{\tau}} = 0.957g[\mathbf{0.4}]$$

b)
$$N_{0} = m_{0}(g) \frac{N_{A}(\grave{a}toms)u}{1g} \frac{1}{M_{a}(R_{a})u} [\mathbf{0},\mathbf{1}] = \frac{1 \times 6,02 \times 10^{23}}{226} = 2,66 \times 10^{21} n\acute{u}clis [\mathbf{0},\mathbf{2}]$$

$$A_{0} = \lambda N_{0} [\mathbf{0},\mathbf{1}] = \frac{\ln 2}{1590 \times 365 \times 86400} 2,66 \times 10^{21} = 3,7 \times 10^{10} \mathrm{Bq} [\mathbf{0},\mathbf{2}]$$

$$N_{100\,anys} = m_{100\,anys}(g) \frac{N_{A}(\grave{a}toms)u}{1g} \frac{0,957}{M_{a}(R_{a})u} = \frac{0,957 \times 6,02 \times 10^{23}}{226} = 2,45 \times 10^{21} n\acute{u}clis [\mathbf{0},\mathbf{2}]$$

$$A_{100\,anys} = \lambda N_{100\,anys} = \frac{\ln 2}{1590 \times 365 \times 86400} 2,45 \times 10^{21} = 3,5 \times 10^{10} \mathrm{Bq} [\mathbf{0},\mathbf{2}]$$

Pautes de correcció Física

P5)

a) Es tracta de la difracció [0.25]. Per a que sigui preceptible cal que la mida de l'orifici sigui comparable o menor a la longitud d'ona [0.25].

Exemples:

Un soroll que sentim al darrera d'una porta encara que no veiem a la persona que el fa.

La llum que passa per una petita escletxa ens pot arribar a iluminar lleugerament tota una habitació [0.5]

b)

1 Per a que estigui considerat correcte cal que el fronts d'ona estiguin més separats en el segon medi que en el primer, [0.2] que l'angle d'incidència sigui menor que el de refracció [0.2] i que ambdós siguin mesurats a partir de la normal. [0.1] Canvia la velocitat de propagació (ho diu l'enunciat) i augmenta

la longitud d'ona, però no canvia la freqüència. [0.1]

2 Cal que els fronts d'ona no siguin concèntrics i que la distància entre fronts sigui clarament menor pel costat de l'observador, que ha d'estar indicat d'alguna manera, que pel costat contrari. [0.4]

