Corrigé du TD Nº1 - Exercices 11 a 13

Exercise 11:

1)
$$\frac{1+2}{1-2}$$
 circ $\Rightarrow \frac{1+2}{1-2} + (\frac{1+2}{1-2}) = 0$ $\Rightarrow \frac{1+2}{1-2} + (\frac{1+2}{1-2}) = 0$
 $\Rightarrow \frac{(1+2)(1-2) + (1+2)(1-2)}{(1-2)(1-2)} = 0$
 $\Rightarrow (1+2)(1-2) + (1+2)(1-2) = 0$
 $\Rightarrow (1-2+2-22) + (1-2+2-22) = 0$
 $\Rightarrow 2-22=0$
 $\Rightarrow 2-22=0$

(=)
$$(z)^2 = 1$$

(=) $|z| = 1$ (con(z) ≥ 0)

2)a)
$$Z \in \mathbb{R} \implies Z - \overline{Z} = 0 \implies \frac{z + \lambda i}{z - \lambda i} - \frac{\overline{z + \lambda i}}{\overline{z - \lambda i}} = 0$$

$$(=) \frac{2+2i}{2-2i} - \frac{2-2i}{2+2i} = 0$$

$$(=) \frac{(z+2i)(\overline{z}+2i)-(\overline{z}-2i)(z-2i)}{(z-2i)(\overline{z}+2i)}=0$$

$$(=) \frac{z+li}{z-li} + \frac{\overline{z}-li}{\overline{z}+li} = 0$$

$$(z+2i)(z+2i)+(z-2i)(z-2i)=0$$

$$(z-2i)(z+2i)$$

$$(=)$$
 $|z|^2 = 4$

$$(=)$$
 $|2|=2$ $(con |2| \ge 0)$

(=) [M est sur le cercle de centre 0 et de rayon l]

c)
$$|2| = 1$$
 (=) $|2|^2 = 1$ (=) $2\overline{2} = 1$
(=) $\frac{2+2i}{2-2i} \times \frac{\overline{2}-2i}{\overline{2}+2i} = 1$
(=) $\frac{2+2i}{2-2i} \times \frac{\overline{2}-2i}{\overline{2}+2i} = 1$
(=) $(2+2i)(\overline{2}-2i) = 1$
(=) $(2+2i)(\overline{2}-2i) = (2-2i)(\overline{2}+2i)$
(=) $(2+2i)(\overline{2}-2i) = (2-2i)(\overline{2}+2i)$
(=) $(2+2i)(\overline{2}-2i) = 1$
(=) $(2+2i)(\overline{$

d)
$$|2| = 3 \longrightarrow |2|^2 = 9 \longrightarrow 2\overline{2} = 9$$

$$(3) \left(\frac{z+2i}{z-2i}\right) \times \left(\frac{\overline{z+2i}}{z-2i}\right) = 9$$

$$(3) \frac{z+2i}{z-2i} \times \frac{\overline{z}-2i}{\overline{z}+2i} = 9$$

$$(3) (2+2i)(\overline{z}-2i) = 9(z-2i)(\overline{z}+2i)$$

$$(4) (2-2i)(\overline{z}-2i) = 9(z\overline{z}+2i)(\overline{z}+2i)$$

$$(5) (2-2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(6) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(7) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(8) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(9) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(1) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(3) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(4) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(5) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(7) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(8) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(9) (2-2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)(\overline{z}+2i)$$

$$(9) (2-2i)(\overline{z}+2i)(\overline{$$

Exercice 12:

1) Calcul du discrimenant A:

$$\Delta = (-(1+3i))^{2} - 4(3i-4) = (1+3i)^{2} - 4(3i-4)$$

$$= 1 + 6i - 9 - 12i + 16$$

$$= 8 - 6i \neq 0$$

racines carrées de D

$$S^{2} = \Delta (\Rightarrow) \begin{cases} x^{2} - y^{2} = 8 & (1) \\ x^{2} + y^{2} = |8 - 6x| = 10 & (2) \\ 2xy = -6 & (3) \end{cases} \Rightarrow \begin{cases} 2x^{2} = 18 & (2) + (1) \\ 2y^{2} = 2 & (2) - (1) \\ xy = -3 & (3) \end{cases}$$

Solutions de l'équation;

$$Z = \frac{(1+3i)-(3-i)}{2}$$
 ou $Z = \frac{(1+3i)+(3-i)}{2}$
= -1+2i = 2+i

Conclusion!

$$S = 1 - 1 + 2i, 2 + i$$

- 2) Posons Z, = 2+i er Z2 = -1+2i. Sovenir M, (Z,) er M2(Z2)
 - . On a: $|OM_1 = |Z_1 O| = |Z_1| = |2ti| = \sqrt{5}$ $|OM_2 = |Z_2 - O| = |Z_2| = |-1t2i| = \sqrt{5}$

Donc OM, = OM&, Par consequent;

Le ruiangle (OM, Me) est isocèle

• on a:
$$M_1M_2 = |2_2-2_1| = |(-1+2i)-(2+i)| = |-3+i| = \sqrt{10}$$

Donc:
$$M_10^2 + OM_2^2 = (\sqrt{5})^2 + (\sqrt{5})^2 = 5 + 5 = 10 = (\sqrt{10})^2 = M_1 M_2^2$$

Par conséquent, d'après la réciproque du 19 de Pythagne:

le Triangle (OMIMA) est rectangle en o

on:
$$\overrightarrow{OM}_1(z_1)$$
, $\overrightarrow{OM}_2(z_2)$ er $\overrightarrow{OM}_3(z_3)$

Donc
$$z_3 = z_1 + z_2$$

= $(2+i) + (-1 + 2i)$

Donc: 23 = 1 +3i

Exercice 13.

1)
$$OM_1 = |z_1 - O| = |z_1| = |\sqrt{3} - x| = 2$$

 $OM_2 = |z_2 - O| = |z_2| = |\sqrt{3} + x| = 2$
 $OM_3 = |z_3 - x| = |z_3| = |z_1| = 2$

On a OM, = OM2 = OM3.

Donc MI, M2 et M3 sont sur le cercle de centre 0 et de rayon 2

2) Z2-Z1= li er Z2-Z3= \(\bar{3} - \bar{1}\)

. Or $\overrightarrow{H_1}\overrightarrow{H_2}$ (z_2-z_1) er $\overrightarrow{OH_3}$ (z_3) ; denc $\overrightarrow{H_1}\overrightarrow{H_2}=\overrightarrow{OH_3}$

Par conséquent (OM, M2 M3) est un parallélogramme.

· OM, = |211 = 2 et M, M2 = |22-21 = |2i = 2.

Done OMI = MIM2

On en déduit que le parallélogramme (OMIM2M3) à 2 côtés consécutifs de même langueur.

Par conséquent : (OMIM2M3) est un losange.