3/31/2018 HackerRank

Library Fine **■**

Problem Submissions Leaderboard Discussions Editorial €

Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows:

- 1. If the book is returned on or before the expected return date, no fine will be charged (i.e.: fine = 0).
- 2. If the book is returned after the expected return *day* but still within the same calendar month and year as the expected return date, *fine* = 15 Hackos × (the number of days late).
- 3. If the book is returned after the expected return *month* but still within the same calendar year as the expected return date, the *fine* = 500 Hackos × (the number of months late).
- 4. If the book is returned after the calendar year in which it was expected, there is a fixed fine of 10000 Hackos.

Charges are based only on the least precise measure of lateness. For example, whether a book is due January 1, 2017 or December 31, 2017, if it is returned January 1, 2018, that is a year late and the fine would be **10,000 Hackos**.

Input Format

The first line contains **3** space-separated integers denoting the respective *day*, *month*, and *year* on which the book was returned.

The second line contains **3** space-separated integers denoting the respective *day*, *month*, and *year* on which the book was due to be returned.

Constraints

- $1 \le D \le 31$
- $1 \le M \le 12$
- $1 \le Y \le 3000$
- It is guaranteed that the dates will be valid Gregorian calendar dates.

Output Format

Print a single integer denoting the library fine for the book received as input.

Sample Input

9 6 2015

6 6 2015

Sample Output

45

Explanation

Given the following return dates:

Actual:
$$D_a=9, M_a=6, Y_a=2015$$

Expected: $D_e=6, M_e=6, Y_e=2015$

3/31/2018 HackerRank

Because $Y_e \equiv Y_a$, we know it is less than a year late.

Because $M_e \equiv M_a$, we know it's less than a month late.

Because $D_e < D_a$, we know that it was returned late (but still within the same month and year).

Per the library's fee structure, we know that our fine will be $15~\text{Hackos}~\times~(\#~\text{days late})$. We then print the result of $15\times(D_a-D_e)=15\times(9-6)=45$ as our output.

<u>Upload Code as File</u> Test against custom input

return 0;

std::cout << "0" << std::endl;

22

23 24 25

26 } 27

Run Code Submit Code

Line: 27 Col: 1

Submitted 62788 times

3/31/2018 HackerRank

✓ Test Case #0	✓ Test Case #1	✓ Test Case #2
✓ Test Case #3	✓ Test Case #4	✓ Test Case #5
✓ Test Case #6	✓ Test Case #7	✓ Test Case #8
✓ Test Case #9	✓ Test Case #10	✓ Test Case #11
✓ Test Case #12	✓ Test Case #13	✓ Test Case #14
✓ Test Case #15	✓ Test Case #16	

 $Contest\ Calendar |Blog|Scoring|Environment|FAQ|About\ Us|Support|Careers|Terms\ Of\ Service|Privacy\ Policy|Request\ a\ Feature$