

REGIONALE PROEVENVERZAMELING BESCHRIJVING PARAMETERS

Waterschap Rivierenland

4 FEBRUARI 2016

Arcadis Nederland B.V.

Postbus 173 1620 AD Hoorn Nederland +31 (0)88 4261 261

www.arcadis.com

Projectnummer: C03011.000387.0100

Onze referentie: 078693217 B

Contactpersonen

LEO KWAKMAN Senior Specialist

T +31650736387
E leo.kwakman@arcadis.com

Arcadis Nederland B.V. Postbus 173 1620 AD Hoorn Nederland

Inhoudsopgave

1 INLEIDING	7
1.1 Aanleiding	7
1.2 Onderwerpen / leeswijzer	7
2 OPBOUW SPREADSHEET EN DATABASE	8
2.1 Opbouw spreadsheet	8
2.2 Opbouw werkblad database	8
2.3 Opbouw werkbladen bepaling sterkteparameters	10
3 BESCHRIJVING ANALYSE PARAMETERS	11
3.1 Algemeen	11
3.2 Controle benodigde data per monster compleet	11
3.3 Bepalen overconsolidatiegraad (OCR) van het monster	11
3.3.1 Tussenstappen bepaling OCR	11
3.3.2 Resultaten bepaling OCR	12
3.4 Triaxiaalproeven	13
3.4.1 Triaxiaalproeven consolidatiespanningen	13
3.4.2 Triaxiaalproeven - (deviator) spanningen en schuifsterktes	13
3.4.3 Triaxiaalproeven - schuifsterkteratio's	14
3.4.4 Triaxiaalproeven - correlatie met sonderingen	14
3.4.5 Triaxiaalproeven - analyse afwijkingen	14
3.4.6 Triaxiaalproeven - State boundary surface parameters	15
3.5 DSS-proeven	15
3.5.1 DSS-proeven - schuifsterkteratio's	15
3.5.2 DSS-proeven - correlatie met sonderingen	16
3.5.3 DSS-proeven - analyse afwijkingen	17
3.6 Samendrukkingsparameters	17
4 BESCHRIJVING PARAMETERS PROEVENVERZAMELING	18
4.1 Algemeen	18
4.2 Indeling in proevenverzameling	18
4.3 Effectieve schuifsterkteparameters	18

4.4 Ongedraineerde schuifsterkteparameters	19
4.5 Correlatie netto conusweerstand - ongedraineerde schuifsterkte	20
4.6 Overige kenmerkende geotechnische eigenschappen	20
5 UITWERKING PARAMETERS PROEVENVERZAMELING	21
5.1 Algemeen	21
5.2 Keuze proevenverzameling	21
5.3 Effectieve schuifsterkteparameters	21
5.4 Ongedraineerde schuifsterkteparameters	23
5.5 Bepaling conusfactor Nkt	24
BIJLAGE 1 - STATISTIEK SCHUIFSTERKTEPARAMETERS	(DELTARES) 26
BIJLAGE 2 - FORMULES DATABASE	27
B2.1 Algemeen	27
B2.2 Controle benodigde data per monster compleet	27
B2.3 Bepalen overconsolidatiegraad (OCR) van het monster	28
B2.3.1 Tussenstappen bepaling OCR	28
B2.3.2 Resultaten bepaling OCR	30
B2.4 Triaxiaalproeven	32
B2.4.1 Triaxiaalproeven consolidatiespanningen	32
B2.4.2 Triaxiaalproeven - (deviator) spanningen en schuifsterktes	34
B2.4.3 Triaxiaalproeven - schuifsterkteratio's	35
B2.4.4 Triaxiaalproeven - correlatie met sonderingen	37
B2.4.5 Triaxiaalproeven - analyse afwijkingen	38
B2.4.5 Triaxiaalproeven - State boundary surface parameters	39
B2.5 DSS-proeven	40
B2.5.1 DSS-proeven - schuifsterkteratio's	40
B2.5.2 DSS-proeven - correlatie met sonderingen	45
B2.5.3 DSS-proeven - analyse afwijkingen	45
B2.6 Samendrukkingsparameters	46
B2.7 Berekening (gecorrigeerde) cohesie en hoek van inwendige wrijvin	g 47
BIJLAGE 3 – RESULTATEN TESTSET	49
B3.1 Resultaten testset triaxiaalproeven	50
B3.2 Resultaten testset DSS-proeven	51

1 INLEIDING

1.1 Aanleiding

De dijkverbetering Gorinchem – Waardenburg (GOWA) is in de verkenningsfase. Binnen het project wordt geotechnisch grond- en laboratoriumonderzoek uitgevoerd, onder andere naar de sterkte eigenschappen van de ondergrond. De resultaten van dit onderzoek moeten leiden tot een proevenverzameling op basis van (on)gedraineerde schuifsterkte eigenschappen.

Door HHNK en Delfland is de STOWA database proevenverzameling ontwikkeld voor het uitwisselen van het grond en laboratoriumonderzoek. Voor de analyse van het laboratoriumonderzoek om de schuifsterkte eigenschappen te bepalen is door HHNK en Delfland een Excel-sheet ontwikkeld.

In de oorspronkelijke opzet van de Excel-sheet zijn de uitgevoerde analyses verborgen en moeilijk te verifiëren. Bovendien werd de Excel-sheet (die oorspronkelijk alleen bedoeld was voor het bepalen van de effectieve schuifsterkteparameters) te zwaar voor praktisch gebruik in de productieomgeving bij de waterschappen. Voor toepassing binnen het project GOWA is ervoor gekozen om de Excel-sheet opnieuw op te bouwen, waarmee ook een bijdrage wordt geleverd aan de verdere ontwikkeling van de database

In de nieuwe opzet zijn alle uitgevoerde analyses en berekeningen zo veel als mogelijk zichtbaar gemaakt en logisch geordend.

Voorliggend document beschrijft alle uitgevoerde analyses op het laboratoriumonderzoek om tot de (on)gedraineerde schuifsterkte eigenschappen te komen. Hiermee is ook de werkwijze vastgelegd om de schuifsterkte te bepalen.

1.2 Onderwerpen / leeswijzer

Dit document gaat in op:

- Opzet spreadsheet "Proevenverzameling_tool.xlsm" (hoofdstuk 2)
- Beschrijving analyse parameters per monster (hoofdstuk 3)
- Beschrijving parameters proevenverzameling (hoofdstuk 4)
- Uitwerking parameters proevenverzameling (hoofdstuk 5)
- Statistiek schuifsterkteparameters Deltares (bijlage 1)
- Formules in de database uitgeschreven (bijlage 2)
- Resultaten testset triaxiaalproeven en DSS-proeven (bijlage 3)

2 OPBOUW SPREADSHEET EN DATABASE

2.1 Opbouw spreadsheet

De database en spreadsheet "<u>Database proevenverzamelingxlsm</u>" bevat de volgende tabbladen. In de volgende paragrafen is nader ingegaan op deze werkbladen.

Werkblad	Functie	Toelichting	
Dbase2	Dataopslag	geotechnische data uit diverse laboratoriumonderzoeken analyse parameters berekend uit de geotechnische data indeling in proevenverzameling geotechnische eigenschappen per onderscheiden grondsoort	
Dbase_velden_versie4_2	Beschrijving Dbase	Beschrijving van alle database velden in werkblad "Dbase2"	
DSS_proeven	Bepaling sterkteparameters	Statische analyse en bepaling geotechnische	
TXT_proeven		sterkteparameters uit DSS-proeven en Triaxiaalproeven	
Versiebeheer	-	Versiebeheer nieuwe data en aanpassingen spreadsheets	

Tabel 1: Opbouw spreadsheet

Alle data wordt opgeslagen in de database (werkblad: Dbase2). De sheets voor bepaling van de sterkteparameters lezen alle data uit de database. De berekende sterkteparameters en eigenschappen worden vervolgens weer weggeschreven in de database. In de sheets voor de bepaling van sterkteparameters wordt dus zelf geen data opgeslagen.

2.2 Opbouw werkblad database

Indeling

In het werkblad [Dbase2] worden de (belangrijkste) onderzoeksresultaten van de laboratoriumproeven opgenomen. De eerste veertien categorieën (ALG t/m CEL) betreffen de laboratoriumresultaten zelf. De laatste twee categorieën betreffen de analyseparameters (ANA) berekend op basis van de data laboratoriumresultaten en de indeling van de laboratoriumproeven in de proevenverzameling (PV) en de bijbehorende geotechnische eigenschappen. In

Tabel 2 zijn de verschillende categorieën benoemd.

Afkorting	Туре	Toelichting
ALG	Data	Algemene kenmerken
BORING	Data	Kenmerken van de boring
MONSTER	Data	Kenmerken van het monster
CLAS	Data	Classificatieproeven
CLAS_AT	Data	Atterbergsche grenzen
CLAS_VN	Data	Veenclassificatie
KV	Data	Korrelverdeling zeefproef en fractieverdeling

Afkorting	Туре	Toelichting
CPT	Data	Kenmerken van de sondering
CRS	Data	CRS proef
SD	Data	Samendrukkingsproef
DSS	Data	DSS proef
TXT_SS	Data	Triaxiaalproeven single stage (CU SS)
TXT_MS	Data	Triaxiaalproeven multistage (CU-MS)
CEL	Data	Celproef
ANA	Berekend op basis van de Data	Analyseparameters
PV	Berekend in [TXT_proeven_SS] en [DSS_proeven]	Proevenverzameling

Tabel 2: Categorieën in database

ledere regel in de database beschrijft de resultaten van de laboratoriumonderzoeken die uitgevoerd zijn op één specifiek monster. Iedere regel heeft een unieke naam, de unieke naamgeving is opgebouwd uit:

- 1. BORING NUMMER
- 2. MONSTER ID¹

In Tabel 3 is de principeopbouw van de database weergegeven. Voor ieder monster waar een triaxiaalproef (TXT_SS) of DSS-proef (DSS) is uitgevoerd moet in dezelfde regel ook het resultaat van de bijbehorende Samendrukkingsproef (SD) of Constant rate of strain (CRS) proef worden opgenomen.

Tabel 3: Principe opbouw database

Elke categorie bevat diverse kolommen, iedere kolom heeft ook een unieke code (naamgeving) gekregen. Op basis van deze unieke code wordt de data in de database uitgewisseld, uitgelezen of weggeschreven.

Voorbeeld van de naamgeving van de kolommen is: BORING_NUMMER (naamgeving van de boring) en BORING_XID (X-coördinaat behorende bij de boring) etc. Voor een compleet overzicht van de naamgeving

¹ Als op een steekbus meerdere schuifsterkteproeven (Triaxiaal en/of DSS-proeven) zijn uitgevoerd moeten deze altijd voorzien zijn van een uniek MONSTER_ID en in aparte regels worden opgenomen. Als een steekbus meerdere grondsoorten (bijv. klei en veen) bevat moet het oorspronkelijke monster worden opgedeeld in meerdere regels met elk een uniek MONSTER_ID.

per kolom zie tabblad [Dbase_velden_versie4_2]. Op dit tabblad is per parameter een toelichting opgenomen.

Opbouw werkblad

De unieke code (NAAM_DBASE) in het werkblad [Dbase2] is opgenomen in regel 48. De data wordt ingevoerd in cellen vanaf regel 49.

2.3 Opbouw werkbladen bepaling sterkteparameters

Indeling

In de werkbladen [DSS_proeven], [TXT_proeven_SS] worden de sterkteparameters en eigenschappen bepaald van de verschillende proevenverzamelingen. In deze werkbladen zijn daarnaast analysetools opgenomen om de proevenverzamelingen op te stellen en aan te passen.

De indeling van deze twee werkbladen is nagenoeg hetzelfde. In Figuur 1 is een overzicht opgenomen van het gehele werkblad. In de werkbladen is onderscheid te maken in vier onderdelen:

- 1. Keuze proevenverzameling, statistische analyse en resultaten sterkteparameters en bijbehorende eigenschappen. Er kunnen 2 proevenverzamelingen naast elkaar worden getoond.
- 2. Mutaties op de proevenverzameling (toevoegen of verwijderen van proefresultaten uit een verzameling, mogelijkheid om opmerkingen toe te voegen)
- 3. Grafische weergave van de proevenverzameling
 - a. grafiek effectieve spanning schuifsterkte
 - b. grafiek relatie OCR Su-ratio
 - c. keuze grafiek (verschillende voorgeprogrammeerde grafieken)
 - d. state boundary surface parameters (alleen voor triaxiaalproeven)
 - e. macht uit samendrukkingsparameters volumegewicht
 - f. ongedraineerde schuifsterkte gnet
 - g. kaart met onderzoekslocaties
- 4. Data proevenverzameling, locatie en diverse (berekende) eigenschappen per monster

Invoer data

Alleen in onderdeel 1 en 2 kan data worden ingevoerd of gewijzigd in de licht grijs gearceerde cellen (zie rood omcirkelde gebieden). In alle overige niet verborgen cellen worden data en resultaten gepresenteerd.

Figuur 1: Indeling werkbladen bepaling sterkteparameters

3 BESCHRIJVING ANALYSE PARAMETERS

3.1 Algemeen

Per monster worden diverse parameters afgeleid die benodigd zijn voor het berekenen van onder andere de gedraineerde en ongedraineerde schuifsterkte parameters. Deze berekeningen worden per monster (regel) in de database uitgevoerd. In dit hoofdstuk is een beknopte beschrijving gegeven van de analyse parameters. De achterliggende formules zijn beschreven in bijlage 2. De parameters van de proevenverzamelingen zijn toegelicht in hoofdstuk 4.

De analyse parameters zijn ingedeeld in de volgende categorieën:

- · benodigde data per monster compleet;
- bepalen OCR monster;
- triaxiaalproeven;
- DSS-proeven;
- samendrukkingsproeven.

3.2 Controle benodigde data per monster compleet

Doel: controleren of data compleet is. Voor ieder monster met een triaxiaal of DSS-proef moeten grensspanning en samendrukkingsparameters worden opgegeven, ingeschat of gebaseerd op samendrukkingsproeven of CRS-proeven.

DSS-proeven en Triaxiaalproeven mogen niet in dezelfde regel staan.

Naam database	Leesbare naam	Eenheid
ANA_TXT_DATA_COMPLEET	Data compleet: Triaxiaal + CRS of samendrukkings-proef beschikbaar	[-]
ANA_DSS_DATA_COMPLEET	Data compleet: DSS + CRS of samendrukkings-proef beschikbaar	[-]
ANA_CHECK_DATA_TXT_OF_DSS	Data check: zijn TXT en DSS-proeven in aparte regels opgenomen?	[-]

Tabel 4: Overzicht controle parameters data per monster compleet

3.3 Bepalen overconsolidatiegraad (OCR) van het monster

Doel: berekenen van de OCR van het monster. Het goed inschatting van de overconsolidatiegraad van het monster is noodzakelijk omdat via de OCR de normaal geconsolideerde schuifsterkteratio S en de sterkte toename exponent m wordt afgeleid. Bij het toepassen van de NORWEGIAN style procedure is de OCR altijd een schatting. Bij gebruik van de SHANSEP methode wordt de OCR opgelegd en is dit geen onzekere parameter.

3.3.1 Tussenstappen bepaling OCR

De grensspanning van een monster, en daarmee de OCR, is onzeker. Daarnaast zijn meestal niet op alle monsters samendrukkingsproeven of CRS-proeven uitgevoerd. Voor de bepaling van OCR kan handmatig een grensspanning worden opgegeven in [ANA_GRENSSPANNING_HANDMATIG], geschat op basis van in de buurt genomen proeven. Daarnaast wordt via de Pre Overburden Pressure (POP) bij veldcondities gecontroleerd of er geen uitschieters zijn in de grensspanning uit de samendrukkings- en CRS proeven. Indien nodig kan handmatig de grensspanning en daarmee de OCR per monster gecorrigeerd worden. Dit kan zowel door een correctie in te voeren in het veld [ANA_GRENSSPANNING_CORRECTIE] of door de absolute waarde te wijzigen in het veld [ANA_GRENSSPANNING_HANDMATIG]. Deze stappen zijn alleen van toepassing bij de NORWEGIAN style procedure. Bij gebruik van de SHANSEP methode is de OCR exact bekend.

Naam database	Leesbare naam	Eenheid
ANA_TERREINSPANNING	σν0' terrein-spanning	[kPa]
ANA_GRENSSPANNING	σp' grens-spanning	[kPa]
ANA_GRENSSPANNING_HANDMATIG	Grensspanning handmatig opgeven bij ontbreken CRS- of samendrukkingsproef	[kPa]
ANA_GRENSSPANNING_BRON	Bron grensspanning	[-]
ANA_POP_VELD	POP veld bij monstername	[kPa]
ANA_POP_VELD_GEMIDDELD	Gemiddelde POP veld van boring	[kPa]
ANA_POP_AFWIJKING_GEMIDDELDE_BORING	Afwijking gemiddelde POP ten opzichte van POP veld	[kPa]
ANA_GRENSSPANNING_CORRECTIE	Grensspanning-correctie gebaseerd op gemiddelde afwijking POP	[kPa]
ANA_GRENSSPANNING_INCL_CORRECTIE	σp;correctie' = grensspanning inclusief grensspanning-correctie of grensspanning handmatig	[kPa]
ANA_MAX_VERTICALE_SPANNING	σv;max' Maximale ondervonden effectieve verticale spanning monster	[kPa]
ANA_MAX_VERTICALE_SPANNING_BRON	Bron maximale ondervonden effectieve verticale spanning monster.	[-]

Tabel 5: Overzicht analyse parameters benodigd voor het berekenen van de OCR van het monster

3.3.2 Resultaten bepaling OCR

Dit betreft de berekende OCR en natuurlijk logaritme (LN) van de OCR per monster. Er wordt aangegeven of het een normaal of overgeconsolideerd monster betreft. Resultaten van Triaxiaal (TXT) en direct simple shear proeven (DSS) worden apart weergegeven.

In paragraaf 3.4.5 en 3.5.3 wordt op basis van het verloop van het spanningspad nog aanvullend gecontroleerd of de OCR en type consolidatieproef (normaal of overgeconsolideerd) met elkaar overeenkomen.

Naam database	Leesbare naam	Eenheid
ANA_OCR_TXT_MONSTER	OCR Monster triaxiaalproef	[-]
ANA_LN_OCR_TXT_MONSTER	LN OCR monster triaxiaalproef	[-]
ANA_OCR_DSS_MONSTER	OCR Monster DSS-proef	[-]
ANA_LN_OCR_DSS_MONSTER	LN OCR monster DSS	[-]
ANA_TXT_CONSOLIDATIE_TYPE	Consolidatie triaxiaalproef, normaal (NC) of overgeconsolideerd (OC)	[-]
ANA_DSS_CONSOLIDATIE_TYPE	Consolidatie DSS-proef, normaal (NC) of overgeconsolideerd (OC)	[-]

Tabel 6: Berekende OCR van het monster

3.4 Triaxiaalproeven

Doel: berekenen van de parameters benodigd voor de bepaling de ongedraineerde en gedraineerde sterkte van het monster. Daarnaast worden parameters bepaald voor het verder analyseren van de proefresultaten.

3.4.1 Triaxiaalproeven consolidatiespanningen

Het gaat hier om het berekenen van de horizontale spanning $\sigma'vh$;, verticale spanning $\sigma'vc$, gemiddelde spanning p' en deviatorspanning bij de consolidatie van het monster. De s' en t waarden zijn opgenomen in de database en vormen de invoer.

Naam database	Leesbare naam	Eenheid
ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING	σ'vc;max maximale verticale consolidatiespanning triaxiaalproeven	[kPa]
ANA_TXT_MAX_HORIZONTALE_CONSOLIDATIE_SPANNING	σ'vh;max maximale horizontale consolidatiespanning triaxiaalproeven	[kPa]
ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING	σ'vc;eind verticale consolidatiespanning triaxiaalproeven	[kPa]
ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_SPANNING	σ'hc;eind horizontale consolidatiespanning triaxiaalproeven	[kPa]
ANA_P0_MAX_CONSOLIDATIE	p0';max maximale consolidatiespanning	[kPa]
ANA_P_EIND_CONSOLIDATIE	p';eind consolidatiespanning	[kPa]
ANA_Q_MAX_CONSOLIDATIE	q;max maximale consolidatiespanning	[kPa]
ANA_Q_0_EIND_CONSOLIDATIE	Q0;eind consolidatiespanning	[kPa]

Tabel 7: Berekende consolidatiespanningen

3.4.2 Triaxiaalproeven - (deviator) spanningen en schuifsterktes

Het gaat hier om het berekenen van de horizontale spanning s'3, verticale spanning s'1, gemiddelde spanning p' en deviatorspanning bij de maximale deviatorspanning (pieksterkte) en bij de maximale rek (eindsterkte).

Naam database	Leesbare naam	Eenheid
ANA_TXT_S'1_BIJ_T_PIEK	o'1 verticale effectieve spanning bij de maximale schuifspanning	[kPa]
ANA_TXT_S'3_BIJ_T_PIEK	σ'3 horizontale effectieve spanning bij de maximale schuifspanning	[kPa]
ANA_TXT_S'1_BIJ_T_EIND	o'1 verticale effectieve spanning bij de eind schuifspanning (eindrek)	[kPa]
ANA_TXT_S'3_BIJ_T_EIND	σ'3 horizontale effectieve spanning bij de eind schuifspanning (eindrek)	[kPa]
ANA_P_PIEK	p' Piek	[kPa]
ANA_Q_PIEK	q Piek	[kPa]
ANA_P_EIND	p' Eind	[kPa]
ANA_Q_EIND	q Eind	[kPa]

Tabel 8: Berekende consolidatiespanningen

3.4.3 Triaxiaalproeven - schuifsterkteratio's

Berekenen van de normaal en overgeconsolideerde schuifsterkteratio bij de maximale deviatorspanning (pieksterkte) en bij de maximale rek (eindsterkte). Berekenen van de gemiddelde normaal geconsolideerde schuifsterkteratio van de gehele proevenverzameling. Berekenen van de LN van de normaal en overgeconsolideerde schuifsterkteratio om later de fit op uit te voeren.

Naam database	Leesbare naam	Eenheid
ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK	Su;piek / o'vc Overgeconsolideerde schuifsterkte ratio piek	[-]
ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND	Su;eind / σ'vc Overgeconsolideerde schuifsterkte ratio eind	[-]
ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK	S;NC;piek Normaal geconsolideerde schuifsterkte ratio piek	[-]
ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND	S;NC;eind Normaal geconsolideerde schuifsterkte ratio eind	[-]
ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK	S;NC;piek;gem Gemiddelde norm. gecons. schuifsterkte ratio piek proevenverzameling	[-]
ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND	S;NC;eind;gem Gemiddelde norm. gecons. schuifsterkte ratio eind proevenverzameling	[-]
ANA_TXT_LN_OC_SCHUIFSTERKTE_RATIO_PIEK	Ln OC Schuifsterkte Ratio Piek	[-]
ANA_TXT_LN_OC_SCHUIFSTERKTE_RATIO_EIND	Ln OC Schuifsterkte Ratio Eind	[-]
ANA_TXT_S_NC_VERHOUDING_PIEK_EIND	S NC Verhouding Piek / Eind	[-]

Tabel 9: Berekende schuifsterkteratio's

3.4.4 Triaxiaalproeven - correlatie met sonderingen

Berekenen van de conusfactor Nkt voor triaxiaalproeven uitgevoerd bij terreinspanning

Naam database	Leesbare naam	Eenheid
ANA_TXT_NKT	Conusfactor Nkt uit qnet;sondering / Su;eind	[-]
ANA_TXT_NBALL	Conusfactor Nball uit qc;bolsondering / Su;eind	[-]

Tabel 10: Correlatie met sonderingen

3.4.5 Triaxiaalproeven - analyse afwijkingen

In dit deel worden parameters gedefinieerd om afwijkende proefresultaten aan te wijzen met als doel om uitschieters uit de verzameling te halen. Hiermee wordt de spreiding in de proevenverzameling gereduceerd. Dit betreft de:

- verhouding tussen de normaal geconsolideerde piek en eindsterkte.
- afwijking van de normaal geconsolideerd schuifsterkteratio's per monster ten opzichte van de gemiddelde schuifsterkteratio's van de gedefinieerde proevenverzameling.
- analyse van het spanningspad per monster, is er sprake van normaal over overgeconsolideerd gedrag en is er sprake van een discrepantie tussen waargenomen gedrag (normaal of overgeconsolideerd) en de berekende OCR.

NB. Het is van belang dat als afwijkende proefresultaten worden gesignaleerd en verwijderd een goede onderbouwing gegeven wordt!

Naam database	Leesbare naam	Eenheid
ANA_TXT_S_NC_PIEK_AFWIJKING_GEMIDDELDE_PROEF_V ERZAMELING	S NC;piek afwijking gemiddelde proevenverzameling	[-]
ANA_TXT_S_NC_EIND_AFWIJKING_GEMIDDELDE_PROEF_V ERZAMELING	S NC;eind afwijking gemiddelde proevenverzameling	[-]
ANA_VERHOUDING_TXT_S'_EIND_TXT_S'_EIND_CONSOLIDA TIE	$\sigma^\prime eind$ / $\sigma^\prime c$ verhouding spanning bij eindrek / consolidatiespanning.	[-]
ANA_TXT_NC_OC_GEDRAG	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag	[-]
ANA_TXT_NC_OC_DISCREPANTIE	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR	[-]

Tabel 11: Berekende parameters analyse afwijkingen

3.4.6 Triaxiaalproeven - State boundary surface parameters

Uit de resultaten van de triaxiaalproef worden de state boundary surface parameters berekend.

Naam database	Leesbare naam	Eenheid
ANA_VERHOUDING_P_PIEK_P_0	Verhouding p' piek p'0	[-]
ANA_VERHOUDING_Q_PIEK_P_0	Verhouding q piek p'0	[-]
ANA_VERHOUDING_P_EIND_P_0	Verhouding p' eind p'0	[-]
ANA_VERHOUDING_Q_EIND_P_0	Verhouding q eind p'0	[-]
ANA_VERHOUDING_P_CONS_P_0	Verhouding p' cons p'0	[-]
ANA_VERHOUDING_Q_CONS_P_0	Verhouding q cons p'0	[-]
ANA_VERHOUDING_SU_PIEK_P_0	Verhouding Su piek p'0	[-]
ANA_VERHOUDING_SU_EIND_P_0	Verhouding Su eind p'0	[-]
ANA_VERHOUDING_Q_P_EIND	M verhouding q p' eind	[-]

Tabel 12: Berekende state boundary surface parameters

3.5 DSS-proeven

Doel: berekenen van de parameters benodigd voor de bepaling de ongedraineerde en gedraineerde sterkte van het monster. Daarnaast worden parameters bepaald voor het verder analyseren van de proefresultaten.

3.5.1 DSS-proeven - schuifsterkteratio's

In dit deel van de analyse worden de volgende parameters berekend:

- de hoek van inwendige wrijving bij de maximale rek (eindsterkte) per monster en het gemiddelde van de verzameling;
- de normaal en overgeconsolideerde schuifsterkteratio bij de maximale sterkte (pieksterkte) en bij de maximale rek (eindsterkte);
- de gemiddelde normaal geconsolideerde schuifsterkteratio van de gehele proevenverzameling;
- de normaal, overgeconsolideerde en gemiddelde schuifsterkteratio gedeeld door de cosinus van hoek van inwendige wrijving bij de maximale rek;

• de natuurlijke logaritme (LN) van de verschillende overgeconsolideerde schuifsterkteratio's om later een fit op uit te voeren.

Naam database	Leesbare naam	Eenheid
ANA_DSS_MAX_CONSOLIDATIE_SPANNING	σ'vc;max maximale verticale consolidatiespanning DSS-proeven	[kPa]
ANA_DSS_NC_PHI_EIND	φ'_eind hoek van inwendige wrijving bij maximale rek	[0]
ANA_DSS_NC_GEMIDDELDE_PHI_EIND	$\phi^\prime_\text{eind}; \text{gem Gemiddelde hoek van inwendige wrijving bij maximale rek van alle DSS-proeven}$	[0]
ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK	Su;piek / o'vc Overgeconsolideerde schuifsterkte ratio piek	[-]
ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND	Su;eind / o'vc Overgeconsolideerde schuifsterkte ratio eind	[-]
ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK	S;NC;piek Normaal geconsolideerde schuifsterkte ratio_piek	[-]
ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND	S;NC;eind Normaal geconsolideerde schuifsterkte ratio_eind	[-]
ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_ PIEK	S;NC;piek;gem Gemiddelde norm. gecons. schuifsterkte ratio_piek proevenverzameling	[-]
ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_ EIND	S;NC;eind;gem Gemiddelde norm. gecons. schuifsterkte ratio_eind proevenverzameling	[-]
ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI	S;OC;piek;cosφ Schuifsterkte ratio piek / cos φ'	[-]
ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI	S;OC;eind;cosφ Schuifsterkte ratio eind / cos φ'	[-]
ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI	S;NC;piek;cosφ Normaal geconsolideerde schuifsterkte ratio_piek / cos φ'	[-]
ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI	S;NC;eind;cosφ Normaal geconsolideerde schuifsterkte ratio_eind / cos φ'	[-]
ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_ PIEK_COSPHI	S;NC;piek;cosφ;gem Gemiddelde norm. gecons. schuifsterkte ratio_piek proevenverz. / cos φ'	[-]
ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_ EIND_COSPHI	S;NC;eind;cos ϕ ;gem Gemiddelde norm. gecons. schuifsterkte ratio_eind proevenverz. / cos ϕ'	[-]
ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_PIEK	Ln OC Schuifsterkte Ratio Piek	[-]
ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_EIND	Ln OC Schuifsterkte Ratio Eind	[-]
ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI	Ln OC Schuifsterkte Ratio Piek / cos φ'	[-]
ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI	Ln OC Schuifsterkte Ratio Eind / cos φ'	[-]

Tabel 13: Berekende normaal en overgeconsolideerde schuifsterkteratio's

3.5.2 DSS-proeven - correlatie met sonderingen

Berekenen van de conusfactor Nkt voor DSS-proeven uitgevoerd bij terreinspanning

Naam database	Leesbare naam	Eenheid
ANA_DSS_NKT	Conusfactor Nkt uit qnet;sondering / Su;eind	[-]
ANA_DSS_NBALL	Conusfactor Nball uit qc;bolsondering / Su;eind	[-]

Tabel 14: Correlatie met sonderingen

3.5.3 DSS-proeven - analyse afwijkingen

Dit deel berekent de parameters om afwijkende resultaten aan te wijzen met als doel het reduceren van de spreiding in de proevenverzameling. Dit betreft de:

- verhouding tussen de normaal geconsolideerde piek en eindsterkte;
- afwijking van de normaal geconsolideerd schuifsterkteratio's per monster ten opzichte van de gemiddelde schuifsterkteratio's van de gedefinieerde proevenverzameling;
- analyse van het spanningspad per monster, is er sprake van normaal over overgeconsolideerd gedrag en is er sprake van een discrepantie tussen waargenomen gedrag (normaal of overgeconsolideerd) en de berekende OCR.

NB. Het is van belang dat als afwijkende proefresultaten worden gesignaleerd en verwijderd een goede onderbouwing gegeven wordt!

Naam database	Leesbare naam	Eenheid
ANA_DSS_S_NC_VERHOUDING_PIEK_EIND	S NC Verhouding Piek / Eind	[-]
ANA_DSS_S_NC_PIEK_AFWIJKING_GEMIDDELDE_P ROEF_VERZAMELING	S NC;piek afwijking gemiddelde proevenverzameling	[-]
ANA_DSS_S_NC_EIND_AFWIJKING_GEMIDDELDE_P ROEF_VERZAMELING	S NC;eind afwijking gemiddelde proevenverzameling	[-]
ANA_VERHOUDING_DSS_S'_EIND_DSS_S'_EIND_CO NSOLIDATIE	s'eind / s'c;eind verhouding spanning bij eindrek / consolidatiespanning.	[kPa]
ANA_DSS_NC_OC_GEDRAG	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag	[-]
ANA_DSS_NC_OC_DISCREPANTIE	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR	[-]

Tabel 15: Berekende parameters analyse afwijkingen

3.6 Samendrukkingsparameters

Doel: berekening van de sterkte toename exponent (m) op basis van de Isotachen parameters. Daarnaast worden de helling van de ontlasttrap kappa en Lambda als parameters gedefinieerd.

Naam database	Leesbare naam	Eenheid
ANA_INSCHATTING_M_CRS_ISOTACHEN	Inschatting m CRS Isotachen	[-]
ANA_INSCHATTING_M_SD_ISOTACHEN	Inschatting m SD Isotachen	[-]
ANA_HELLING_ONTLASTTRAP_KAPPA	Helling Ontlasttrap Kappa	[-]
ANA_HELLING_MAAGDELIJKE_SAM_LAMBDA	Helling Maagdelijke Sam Lambda	[-]

Tabel 16: Berekende parameters uit samendrukkingsproeven

4 BESCHRIJVING PARAMETERS PROEVENVERZAMELING

4.1 Algemeen

Monsters waarop een triaxiaalproef of DSS-proef is uitgevoerd worden ingedeeld in een proevenverzameling. Per verzameling worden de gedraineerde en ongedraineerde sterktes en andere kenmerkende eigenschappen berekend in de tabbladen TXT_proeven_SS en DSS_proeven. De resultaten worden weggeschreven in het tabblad DBase2.

In dit hoofdstuk is een beknopte beschrijving gegeven van de parameters die worden weggeschreven in het tabblad DBase2. De achterliggende berekeningen zijn beschreven in hoofdstuk 5 en bijlage 1.

De volgende categorieën zijn onderscheiden:

- Indeling in proevenverzameling;
- Effectieve schuifsterkteparameters;
- · Ongedraineerde schuifsterkteparameters;
- Correlatie netto conusweerstand ongedraineerde schuifsterkte;
- Overige geotechnische eigenschappen zoals het volumegewicht.

4.2 Indeling in proevenverzameling

Doel: Aanduiden of er een complete DSS-proef of Triaxiaalproef beschikbaar is en indeling in proevenverzameling. Betreft het een lokale of regionale proevenverzameling en mogelijkheid om opmerkingen toe te voegen.

Naam database	Leesbare naam	Eenheid
PV_DSS	DSS-proef opnemen in verzameling	[-]
PV_TXT	TXT-proef opnemen in verzameling	[-]
PV_NAAM	Benaming proevenverzameling	[-]
PV_TYPEVERZAMELING	lokaal of regionale proevenverzameling	[-]
PV_OPMERKING	opmerkingen	[-]

Tabel 17: Indeling in proevenverzamelingen

4.3 Effectieve schuifsterkteparameters

Doel: Vastleggen van de effectieve schuifsterkteparameters. Deze worden bepaald in de tabbladen TXT_proeven_SS en DSS_proeven. Dit betreft parameters behorende bij het snijpunt met de top van de cirkel van Mohr, niet de raaklijn.

Naam database	Leesbare naam	Eenheid
PV_A1_COH_GEM	(cohesie) a1 gemiddeld	[kPa]
PV_A2_PHI_GEM	tan (phi) a2 gemiddeld	[tan a2]
PV_A1_COH_KAR	(cohesie) a1 karakteristiek	[kPa]
PV_A2_PHI_KAR	tan (phi) a2 karakteristiek	[tan a2]
PV_PARTPHI	materiaalfactor tan (phi)	[-]
PV_PARTCOH	materiaalfactor cohesie	[-]

Tabel 18: Effectieve schuifsterkteparameters, bepaling a1 en a2 en materiaalfactoren proevenverzamelingen

In [Dbase2] zijn indien het een triaxiaalproef betreft tevens de gecorrigeerde parameters berekend. Dit betreft de correctie van de top van de cirkel van Mohr naar de raaklijn. Tevens is de tangens phi omgerekend naar de hoek van inwendige wrijving in graden.

Naam database	Leesbare naam	Eenheid
PV_COH_GEM_GECORRIGEERD	cohesie' gemiddeld	[kPa]
PV_PHI_GEM_GECORRIGEERD	phi' gemiddeld	[°]
PV_COH_KAR_GECORRIGEERD	cohesie' karakteristiek	[kPa]
PV_PHI_KAR_GECORRIGEERD	phi' karakteristiek	[°]

Tabel 19: Effectieve schuifsterkteparameters, hoek van inwendige wrijving en cohesie proevenverzamelingen

4.4 Ongedraineerde schuifsterkteparameters

Doel: Vastleggen van de ongedraineerde schuifsterkteparameters. Deze worden bepaald in de tabbladen TXT_proeven_SS en DSS_proeven. De normaal geconsolideerde ongedraineerde schuifsterkteratio S bij de eindsterkte wordt bepaald op basis van de relatie tussen de overconsolidatieratio (OCR) met de schuifsterkteratio Su;eind/o'vc met voorkennis van de macht m. Deze werkwijze is nader toegelicht in hoofdstuk 6 en de toelichting van Deltares opgenomen in de bijlagen.

Naam database	Leesbare naam	Eenheid
PV_LN_S_EIND_GEM	Ln verwachtingswaarde schuifsterkteratio S;eind	[-]
PV_LN_S_EIND_SD	Ln SD schuifsterkteratio S;eind	[-]
PV_LN_S_PIEK_GEM ²	Ln verwachtingswaarde schuifsterkteratio S;piek	[-]
PV_LN_S_PIEK_SD ²	Ln SD schuifsterkteratio S;piek	[-]
PV_S_PIEK_GEM	Verwachtingswaarde schuifsterkteratio S (pieksterkte). Alleen bepaald op basis van proeven met OCR=1	[-]
PV_S_PIEK_KAR	Karakteristieke waarde schuifsterkteratio S (pieksterkte). Alleen bepaald op basis van proeven met OCR=1	[-]
PV_S_EIND_GEM	Verwachtingswaarde schuifsterkteratio S (eindsterkte). Bepaald op basis van relatie OCR - Su;eind/o'vc met voorkennis van de macht m.	[-]
PV_S_EIND_KAR	Karakteristieke waarde schuifsterkteratio S (eindsterkte). Bepaald op basis van relatie OCR - Su;eind/o'vc met voorkennis van de macht m.	[-]
PV_MACHT	Macht op basis van voorkennis uit OED of CRS	[-]
PV_MACHT_SD	Standaarddeviatie macht	[-]

Tabel 20: Ongedraineerde schuifsterkteparameters proevenverzamelingen

² niet functioneel in deze versie van de spreadsheet, alleen databaseveld is opgenomen

4.5 Correlatie netto conusweerstand - ongedraineerde schuifsterkte

Doel: vastleggen van de conusfactor Nkt en de variatiecoëfficiënt van Nkt.

Naam database	Leesbare naam	Eenheid
PV_NKT	Conusfactor Nkt verzameling	[-]
PV_VC_NKT	Variatiecoefficient Nkt	[-]

Tabel 21: Conusfactar Nkt proevenverzamelingen

4.6 Overige kenmerkende geotechnische eigenschappen

Doel: Vastleggen van diverse geotechnische eigenschappen. Deze worden berekend in de tabbladen TXT_proeven_SS en DSS_proeven. Het betreft gemiddelde waarden en standaarddeviaties van de proevenverzamelingen. Deze berekeningen zijn niet nader toegelicht in hoofdstuk 6.

Naam database	Leesbare naam	Eenheid
PV_VGWnat_gem	Gemiddelde volumiek gewicht nat (verzadigde grond)	[kN/m3]
PV_VGWnat_SD	Standaarddeviatie volumiek gewicht nat (verzadigde grond)	[kN/m3]
PV_VGWdroog_gem	Gemiddelde volumiek gewicht droog	[kN/m3]
PV_VGWdroog_SD	Standaarddeviatie volumiek gewicht droog	[kN/m3]
PV_watergehalte_gem	Gemiddelde watergehalte	[%]
PV_watergehalte_SD	Standaarddeviatie watergehalte	[%]
PV_plasticiteitsindex_gem	Gemiddelde plasticiteitsindex	[-]
PV_plasticiteitsindex_SD	Standaarddeviatie plasticiteitsindex	[-]
PV_terreinspanning_gem	Gemiddelde verticale terreinspanning	[kPa]
PV_terreinspanning_SD	Standaarddeviatie terreinspanning	[kPa]
PV_torvane_gem	Gemiddelde torvane	[kN/m2]
PV_torvane_SD	Standaarddeviatie torvane	[kN/m2]

Tabel 22: Overige geotechnische eigenschappen proevenverzamelingen

5 UITWERKING PARAMETERS PROEVENVERZAMELING

5.1 Algemeen

Monsters waarop een triaxiaalproef of DSS-proef is uitgevoerd worden ingedeeld in een proevenverzameling. Per verzameling worden de gedraineerde en ongedraineerde sterktes en andere kenmerkende eigenschappen berekend in de tabbladen TXT_proeven_SS en DSS_proeven. Indien de gebruiker daartoe opdracht geeft, worden deze resultaten weggeschreven in het tabblad DBase2.

In dit hoofdstuk is beschreven hoe de effectieve en ongedraineerde schuifsterkteparameters in de proevenverzameling berekend worden en hoe wordt omgegaan met variatie in de proevenverzameling.

5.2 Keuze proevenverzameling

In de tabbladen TXT_proeven_SS en DSS_proeven wordt bij het veld basisverzameling de keuze gemaakt voor een proevenverzameling. Dit betreft de naam van de verzameling opgegeven in het tabblad Dbase2 in de kolom [PV_NAAM]. Om twee verzamelingen te vergelijken kan onder toevoegen verzameling een tweede verzameling worden gekozen. De lichtgrijze velden moeten handmatig worden opgegeven. Donkergrijze velden worden automatisch berekend.

Algemeen		
	basisverzameling	toevoegen verzameling
proevenverzameling naamgeving	TXT_testset_klei	
aantal proeven	18	0

Figuur 2: Keuze proevenverzamelingen

5.3 Effectieve schuifsterkteparameters

In figuur 3 is de afleiding van de effectieve schuifsterkteparameters grafisch weergegeven. In figuur 4 zijn de bijbehorende invoervelden en berekende parameters weergegeven. Het betreft de:

- De gemeten schuifsterktes en bijbehorende effectieve spanningen van alle proeven in de opgegeven verzameling. Er kan gekozen worden om de waarden behorende bij een bepaald rekpercentage, de piek of eindsterkte te tonen.
- De gemiddelde waarden op basis van lineaire regressie op de gemeten schuifsterktes en bijbehorende effectieve spanningen. Hierbij moet het snijpunt met de y-as handmatig worden opgegeven in [PV_A1_COH_GEM]. De verwachtingswaarde voor [PV_A2_PHI_GEM] wordt berekend bij de gegeven waarde voor [PV_A1_COH_GEM]. De opgegeven waarden mogen afwijken van de automatisch berekende waarden indien hier een aanleiding voor is.
- De 5% onder en bovengrens lijnen. Deze worden berekend met een statistische analyse op basis van lineaire regressie op de effectieve spanning en de schuifsterkte. De methode voor het bepalen van de karakteristieke schatting van de verwachtingswaarde van t' bij een gegeven waarde van s' is beschreven in bijlage 1.
- De karakteristieke waarden voor [PV_A1_COH_KAR] en [PV_A2_PHI_KAR] worden handmatig opgegeven. Deze waarden moeten zodanig worden gekozen dat de lijn in de grafiek raakt met de 5% ondergrenslijn in het voor de proevenverzameling relevante spanningsbereik. Bij toepassing van critical state soil model is de waarde voor [PV_A1_COH_KAR] altijd nul.
- De lijn behorende bij de rekenwaarde wordt berekend op basis van de opgegeven partiële materiaalfactoren

Figuur 3: bepaling effectieve schuifsterkteparameters

Opgeven parameters karakteristieke waarden en partiele materiaalfactoren effectieve schuifsterkteparameters			
		phi (a2) [-]	cohesie (a1) [kPa]
gemiddelde waarden (automatisch)		(0.55)	(2.8)
gemiddelde waarden (handmatig snijpunt y-as opgeven)		0.555	2.80
karakteristieke ondergrenswaarden (eerste benaderin	g)	(0.55)	(1.23)
karakteristieke ondergrenswaarden (handmatig)		0.56	0.00
partiële materiaalfactoren γn		1.15	1.20
		α [-]	
type verzameling: lokaal = 1,0; regionaal = 0,75		0.75	
Resultaten effectieve schuifsterkteparameters			
sterkteparameters	tan phi	phi	cohesie
H	[-]	[°]	[kPa]
verwachtingswaarde (gemiddelde)	0.67	33.7	3.36
karakteristieke waarde	0.68	34.1	0.00
rekenwaarde	0.59	30.4	0.00
standaarddeviatie / variatiecoefficient Prostab	-0.002 / 0	-0.1 / nvt	2.21 / 0.66
standaarddeviatie / variatiecoefficient D-geostability -0.001 / 0		-0.06 / nvt	1.22 / nvt
Analyse resultaten			correlatiecoëfficiënt
regressie verwachtingswaarde			0.99
regressie verwachtingswaarde bij snijpunt y-as =2.8			0.99

Figuur 4: bepaling effectieve schuifsterkteparameters, de lichtgrijze velden moeten handmatig worden opgegeven, grijze velden worden berekend.

5.4 Ongedraineerde schuifsterkteparameters

In figuur 5 is de afleiding van de ongedraineerde schuifsterkteparameters bij de eindsterkte grafisch weergegeven. In figuur 6 zijn de bijbehorende invoervelden en berekende parameters weergegeven. Het betreft de:

- De ongedraineerde schuifsterkteratio's bij de eindsterkte uitgezet tegen de (geschatte³) overconsolidatieratio OCR voor alle proeven in de opgegeven verzameling. Eind relatie OCR, betreft de verwachtingswaarde van de normaal geconsolideerde ongedraineerde schuifsterkteratio S en de verwachtingswaarde van de sterktetoename exponent m (macht). Deze worden berekend op basis van lineaire regressie op de Ln van de Su-ratio's en de Ln van de OCR's.
- De 5% onder en bovengrens lijnen. De achterliggende methode is beschreven in bijlage 1.
- Voor de berekening van de karakteristieke waarde [PV_S_EIND_KAR] moet de Ln van het snijpunt met de yas bij OCR =1 handmatig worden opgegeven in [PV_LN_S_EIND_GEM] samen met de macht [PV_MACHT] en standaarddeviatie van de macht [PV_MACHT_SD] op basis van voorkennis uit de samendrukkingsproeven en CRS-proeven. Voor de macht geldt dat dat deze nooit kleiner kan zijn dan 0,6 a 0,7 en nooit groter dan 1,0. De waarde voor standaarddeviatie van de schuifsterkteratio [PV_LN_S_EIND_SD] moet vervolgens zodanig worden gekozen dat de lijn in de grafiek raakt of snijdt met de 5% ondergrenslijn in het voor de proevenverzameling relevante bereik van OCR. De achterliggende methode is nader beschreven in bijlage 1.
- De lijn behorende bij de rekenwaarde wordt berekend op basis van de opgegeven partiële materiaalfactoren.

Figuur 5: bepaling ongedraineerde schuifsterkteparameters

³ Bij toepassen van de NORWEGIAN style procedure is de OCR een schatting. De statistiek voor de bepaling van de 5% ondergrens in deze spreadsheet is toegespitst op de deze methode. Zie verder bijlage 1.

Opgeven parameters voor fitten S, macht o.b.	v. voorkennis uit OED of CRS en	partiele materiaalfactoren	
oarameters	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m
]	[-]	[-]	[-]
emiddelde waarden (automatisch)	(-1.08)	(0.34)	(m >0,6 a 0,7 en <1,0)
erwachtingswaarde (gemiddelde)	-1.08	0.34	0.88
tandaardeviatie	0.03	nvt	0.02
artiële materiaalfactoren γn		1.05	1.05
artiële materiaalfactoren γn		1.05	1.05
artiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparar	neters bij eindsterkte	1.05	1.05
'	neters bij eindsterkte	1.05 Ongedr. schuifsterkteratio S	sterkte toename exponent = m
lesultaten ongedraineerde schuifsterkteparar terkteparameters	neters bij eindsterkte		
esultaten ongedraineerde schuifsterkteparar terkteparameters		Ongedr. schuifsterkteratio S	sterkte toename exponent = m
Resultaten ongedraineerde schuifsterkteparar terkteparameters] erwachtingswaarde S bij OCR=1-4 (eindsterkte)		Ongedr. schuifsterkteratio S [-]	sterkte toename exponent = m in relatie: $S_u/\sigma_{vc}' = S \ OCR^m$
Resultaten ongedraineerde schuifsterkteparar terkteparameters] erwachtingswaarde S bij OCR=1-4 (eindsterkte) arakteristieke waarden met voorkennis (eindster		Ongedr. schuifsterkteratio S [-]	sterkte toename exponent = m in relatie: $S_u/\sigma_{vc}' = S \ OCR^m$
terkteparameters erwachtingswaarde S bij OCR=1-4 (eindsterkte) arakteristieke waarden met voorkennis (eindsterkte)	rkte)	Ongedr. schuifsterkteratio S [-] 0.34 0.31	sterkte toename exponent = m in relatie: S_u/σ_{vc} ' = S OCR ^m 0.88 0.88
Resultaten ongedraineerde schuifsterkteparar	rkte) eindsterkte)	Ongedr. schuifsterkteratio S [-] 0.34 0.31	sterkte toename exponent = m in relatie: S_u/σ_{vc} ' = S OCR ^m 0.88 0.88

Figuur 6: bepaling ongedraineerde schuifsterkteparameters, de lichtgrijze velden moeten handmatig worden opgegeven, grijze velden worden berekend.

5.5 Bepaling conustactor Nkt

In figuur 7 is de afleiding van de conusfactor Nkt grafisch weergegeven. In figuur 8 zijn de kenmerkende eigenschappen weergegeven waaronder de eigenschappen van de Nkt. Het betreft de:

- Ongedraineerde schuifsterkte Su uitgezet tegen de bepaalde netto conusweerstand q_{net} voor alle proeven in de opgegeven verzameling.
- De gemiddelde waarde van Nkt bepaald op basis van lineaire regressie door de punten met het snijpunt door de oorsprong.
- De variatiecoëfficiënt van Nkt berekend op basis van de methode beschreven in de "Handreiking voor het bepalen van schuifsterkte parameters, WTI 2017 Toetsregels Stabiliteit"

Figuur 7: bepaling conusfactor Nkt

	volumegewicht nat [kNm²]	volumegewicht droog [kNtm²]	watergehalte [%]
emiddelde waarde	17.30	12.00	41.04
tandaarddeviatie	1.07	1.57	15.28
variatiecoefficient	0.06	0.13	0.37

	plasticiteitsindex	terreinspanning	Nkt	"
[-]	[%]	[kPa]	[-]	8
gerniddelde waarde	0.00	71	10.45	
standaarddeviatie	0,00	18	-	
variatiecoefficient	0.00	0.26	0.18	

Figuur 8: Kenmerkende eigenschappen

BIJLAGE 1 - STATISTIEK SCHUIFSTERKTEPARAMETERS (DELTARES)

BIJLAGE 2 - FORMULES DATABASE

B2.1 Algemeen

In hoofdstuk 3 en 4 is een beknopte beschrijving gegeven van de diverse parameters in de database. In dit hoofdstuk zijn de achterliggende formules in de Excel database beschreven. Per analyseveld zijn de volgende zaken beschreven:

Veld	Toelichting
omschrijving parameter	Omschrijving van de parameter.
formule Excel	De complete formule in Excel inclusief IF statements. IF statements worden uitgevoerd om het ontbreken van data of foutwaarden vast te stellen. Indien data ontbreekt of als de uitkomst van de formule ongeldig is wordt de cel leeggelaten.
formule vereenvoudigd	Vereenvoudigde formule zonder IF statements. De opbouw van de formule is zo eenvoudiger te controleren.
Dbase bronvelden formule	Welke databasevelden worden gebruikt in de formule

De volgende categorieën zijn onderscheiden:

- · Controle benodigde data per monster compleet
- · Bepalen OCR monster
- Triaxiaalproeven
- DSS-proeven
- Samendrukkingsproeven
- · Berekening (gecorrigeerde) cohesie en hoek van inwendige wrijving (proevenverzameling)

B2.2 Controle benodigde data per monster compleet

Doel: controleren of data compleet is. Voor ieder monster met een triaxiaal of DSS-proef is bij voorkeur tevens een samendrukkingsproef of CRS-proef beschikbaar. Indien dit niet het geval is kan in het veld [ANA_GRENSSPANNING_HANDMATIG] een grensspanning worden opgegeven.

DSS-proeven en Triaxiaalproeven mogen niet in dezelfde regel staan.

	ANA_TXT_DATA_COMPLEET	
	Data compleet: Triaxiaal + CRS of samendrukkings-proef beschikbaar [-]	
omschrijving parameter	Data compleet: Triaxiaal [ALGTRIAXIAAL] + CRS [ALGCRS] of samendrukkings-proef [ALGSAMENDRUKKING] beschikbaar	
formule Excel	=EN([@[ALGTRIAXIAAL]];OF([@[ALGCRS]];[@[ALGSAMENDRUKKING]]))	
formule vereenvoudigd	=EN([ALG_TRIAXIAAL];OF([ALG_CRS]];[ALG_SAMENDRUKKING]))	
Dbase bronvelden formule	[ALG_TRIAXIAAL] [ALG_CRS] [ALG_SAMENDRUKKING]	

	ANA_DSS_DATA_COMPLEET
	Data compleet: DSS + CRS of samendrukkings-proef beschikbaar [-]
omschrijving parameter	Data compleet: DSS [ALGDSS] + CRS [ALGCRS]of samendrukkings-proef [ALGSAMENDRUKKING] beschikbaar
formule Excel	=EN([@[ALGDSS]];OF([@[ALGCRS]];[@[ALGSAMENDRUKKING]]))
formule vereenvoudigd	=EN([ALGDSS];OF([ALGCRS];[ALGSAMENDRUKKING]))
Dbase bronvelden formule	[ALG_DSS] [ALG_CRS] [ALG_SAMENDRUKKING]

	ANA_CHECK_DATA_TXT_OF_DSS
	Data check: zijn TXT en DSS-proeven in aparte regels opgenomen? [-]
omschrijving parameter	Data check: zijn TXT en DSS-proeven in aparte regels opgenomen? [ALGDSS] en [ALGTXT] mogen niet beide WAAR zijn.
formule Excel	=EN([@[ALGDSS]];[@[ALGTRIAXIAAL]])
formule vereenvoudigd	=EN([ALGDSS];[ALGTRIAXIAAL])
Dbase bronvelden formule	[ALG_DSS] [ALG_TRIAXIAAL]

B2.3 Bepalen overconsolidatiegraad (OCR) van het monster

Doel: berekenen van de OCR van het monster.

B2.3.1 Tussenstappen bepaling OCR

De grensspanning van een monster, en daarmee de OCR, is onzeker. Daarnaast zijn meestal niet op alle monsters samendrukkingsproeven of CRS-proeven uitgevoerd. Voor de bepaling van OCR kan handmatig een grensspanning worden opgegeven in [ANA_GRENSSPANNING_HANDMATIG], geschat op basis van in de buurt genomen proeven. Daarnaast wordt via de Pre Overburden Pressure (POP) bij veldcondities gecontroleerd of er geen uitschieters zijn in de grensspanning uit de samendrukkings- en CRS proeven. Indien nodig kan handmatig de grensspanning en daarmee de OCR per monster gecorrigeerd worden. Dit kan zowel door een correctie in te voeren in het veld [ANA_GRENSSPANNING_CORRECTIE] of door de absolute waarde te wijzigen in het veld [ANA_GRENSSPANNING_HANDMATIG].

	ANA_TERREINSPANNING
	σν0' terrein-spanning [kPa]
omschrijving parameter	De terreinspanning berekend voor het betreffende monster volgend uit [CRS_TERREINSPANNING], [SD_TERREINSPANNING], [DSS_TERREINSPANNING] of [TXT_SS_TERREINSPANNING]. Indien voor één monster meerdere waarden beschikbaar zijn, wordt de maximale waarde aangehouden. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS(OF(ISGETAL([@[CRS_TERREINSPANNING]]);ISGETAL([@[SD_TERREINSPANNING]]);ISGETAL([@[DSS_TE RREINSPANNING]]);ISGETAL([@[TXT_SS_TERREINSPANNING]]));MAX([@[SD_TERREINSPANNING]];[@[CRS_TE RREINSPANNING]];[@[TXT_SS_TERREINSPANNING]];[@[DSS_TERREINSPANNING]]);"")
formule vereenvoudigd	=MAX([SD_TERREINSPANNING];[CRS_TERREINSPANNING];[TXT_SS_TERREINSPANNING];[DSS_TERREINSPANNING])
Dbase bronvelden formule	[SD_TERREINSPANNING] [CRS_TERREINSPANNING] [TXT_SS_TERREINSPANNING] [DSS_TERREINSPANNING]

	ANA_GRENSSPANNING
	σp' grens-spanning [kPa]
omschrijving parameter	De grensspanning uit de CRS [CRS_GRENSSPANNING_A] of SD-proef [SD_ISOTACHE_GRENSSPANNING_A]. Indien voor één monster beide waarden beschikbaar zijn, wordt de maximale waarde aangehouden. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS(OF(ISGETAL([@[CRS_GRENSSPANNING_A]]);ISGETAL([@[SD_ISOTACHE_GRENSSPANNING_A]]));MAX([@ [SD_ISOTACHE_GRENSSPANNING_A]]);"")
formule vereenvoudigd	=MAX([SD_ISOTACHE_GRENSSPANNING_A];[CRS_GRENSSPANNING_A])
Dbase bronvelden formule	[SD_ISOTACHE_GRENSSPANNING_A] [CRS_GRENSSPANNING_A]

	ANA_GRENSSPANNING_HANDMATIG
	Grensspanning handmatig opgeven bij ontbreken CRS- of samendrukkingsproef [kPa]
omschrijving parameter	Grensspanning handmatig opgeven bij ontbreken van grensspanning uit CRS- of samendrukkingsproef op monsterbus. Grensspanning is vereiste voor bereken van de OCR.
formule Excel	-
formule vereenvoudigd	-

Dbase bronvelden formule

ANA_GRENSSPANNING_BRON
Bron grensspanning [-]
Bron grensspanning. Indien geen CRS [ALGCRS], of samendrukkingsproef [ALGSAMENDRUKKING] is uitgevoerd wordt de cel leeggelaten.
=ALS.FOUT(ALS(OF([@[ALGCRS]];[@[ALGSAMENDRUKKING]];ISGETAL([@[ANA_GRENSSPANNING_HANDM ATIG]]));ALS(ISGETAL([@[ANA_GRENSSPANNING_HANDMATIG]]);D[[#Kopteksten];[ANA_GRENSSPANNING_HAN DMATIG]];ALS([@[ANA_GRENSSPANNING]]=[@[SD_ISOTACHE_GRENSSPANNING_A]];D[[#Kopteksten];[SD_ISOT ACHE_GRENSSPANNING_A]];D[[#Kopteksten];[CRS_GRENSSPANNING_A]]);"");"")
=ALS(ISGETAL([ANA_GRENSSPANNING_HANDMATIG]);[ANA_GRENSSPANNING_HANDMATIG];ALS([ANA_GREN SSPANNING]=[SD_ISOTACHE_GRENSSPANNING_A];[SD_ISOTACHE_GRENSSPANNING_A];[CRS_GRENSSPANNING_A];"")
[ANA_GRENSSPANNING] [ANA_GRENSSPANNING_HANDMATIG] [SD_ISOTACHE_GRENSSPANNING_A] [CRS_GRENSSPANNING_A]
ANA_POP_VELD
POP veld bij monstername [kPa]
Inschatting van de Pre Overbuden Pressure (POP) [ANA_POP_VELD] = Grensspanning [ANA_GRENSSPANNING] - Effectieve verticale terreinspanning [ANA_TERREINSPANNING]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
=ALS.FOUT([@[ANA_GRENSSPANNING]]-[@[ANA_TERREINSPANNING]];"")
=[ANA_GRENSSPANNING_MAX]-[ANA_TERREINSPANNING_MAX]
[ANA_GRENSSPANNING_MAX] [ANA_TERREINSPANNING_MAX]
ANA_POP_VELD_GEMIDDELD
Gemiddelde POP veld van boring [kPa]
Gemiddelde POP veld [ANA_POP_VELD] van de boring [BORING_NUMMER. De aanname hierbij is dat de POP gelijk blijft over de diepte.
=ALS.FOUT(GEMIDDELDE.ALS([BORING_NUMMER];[@[BORING_NUMMER]];[ANA_POP_VELD]);"")
=GEMIDDELDE.ALS([BORING_NUMMER];[@[BORING_NUMMER]];[ANA_POP_VELD])
[BORING_NUMMER] [@[BORING_NUMMER] [ANA_POP_VELD]
ANA_POP_AFWIJKING_GEMIDDELDE_BORING
Afwijking gemiddelde POP ten opzichte van POP veld [kPa]
De afwijking van de gemiddelde POP van de boring [ANA_POP_VELD_GEMIDDELD] ten opzichte van de POP veld [ANA_POP_VELD]. De aanname hierbij is dat de POP gelijk blijft over de diepte. Indien geen waarde beschikbaar is voor [ANA_POP_VELD] wordt de cel leeggelaten.
=ALS.FOUT([@[ANA_POP_VELD]]-[@[ANA_POP_VELD_GEMIDDELD]];"")
=[ANA_POP_VELD]-[ANA_POP_VELD_GEMIDDELD]
=[ANA_POP_VELD]-[ANA_POP_VELD_GEMIDDELD] [ANA_POP_VELD] [ANA_POP_VELD_GEMIDDELD]
,
[ANA_POP_VELD] [ANA_POP_VELD_GEMIDDELD]
[ANA_POP_VELD] [ANA_POP_VELD_GEMIDDELD] ANA_GRENSSPANNING_CORRECTIE
[ANA_POP_VELD] [ANA_POP_VELD_GEMIDDELD] ANA_GRENSSPANNING_CORRECTIE Grensspanning-correctie gebaseerd op gemiddelde afwijking POP [kPa] Een handmatige correctie van de grensspanning op basis van het veld ANA_POP_AFWIJKING_GEMIDDELDE_BORING
[ANA_POP_VELD] [ANA_POP_VELD_GEMIDDELD] ANA_GRENSSPANNING_CORRECTIE Grensspanning-correctie gebaseerd op gemiddelde afwijking POP [kPa] Een handmatige correctie van de grensspanning op basis van het veld ANA_POP_AFWIJKING_GEMIDDELDE_BORING

	ANA_GRENSSPANNING_INCL_CORRECTIE
	σp;correctie' = grensspanning inclusief grensspanning-correctie of grensspanning handmatig [kPa]
omschrijving parameter	Grensspanning handmatig [ANA_GRENSSPANNING_HANDMATIG] of grensspanning [ANA_GRENSSPANNING] inclusief handmatige grensspanning-correctie [ANA_GRENSSPANNING_CORRECTIE]. Indien geen waarde beschikbaar is voor [ANA_GRENSSPANNING] of [ANA_GRENSSPANNING_HANDMATIG] wordt de cel leeggelaten.
formule Excel	=ALS(ISGETAL([@[ANA_GRENSSPANNING_HANDMATIG]]);[@[ANA_GRENSSPANNING_HANDMATIG]];ALS(ISGET AL([@[ANA_GRENSSPANNING]]);[@[ANA_GRENSSPANNING]]);[@[ANA_GRENSSPANNING]]+[@[ANA_GRENSSPANNING_CORRECTIE]];""))
formule vereenvoudigd	=ALS(ISGETAL([ANA_GRENSSPANNING_HANDMATIG]);[ANA_GRENSSPANNING_HANDMATIG];[ANA_GRENSSPANNING]+[ANA_GRENSSPANNING_CORRECTIE])
Dbase bronvelden formule	[ANA_GRENSSPANNING] [ANA_GRENSSPANNING_CORRECTIE] [ANA_GRENSSPANNING_HANDMATIG]
	ANA_MAX_VERTICALE_SPANNING
	σν;max' Maximale ondervonden effectieve verticale spanning monster [kPa]
omschrijving parameter	De maximale effectieve verticale spanning die het monster ooit gehad heeft. Dit betreft het maximum van de grensspanning inclusief correctie [ANA_GRENSSPANNING_INCL_CORRECTIE], de maximale verticale consolidatiespanning bij de triaxiaalproef [ANA_TR_MAX_VERTICALE_CONSOLIDATIE_SPANNING] of de maximale verticale consolidatiespanning bij de DSS-proef [ANA_DSS_MAX_CONSOLIDATIE_SPANNING]. Indien geen CRS [ALGCRS], samendrukkings [ALGSAMENDRUKKING], DSS [@[ALGDSS] of triaxiaalproef [ALGTRIAXIAAL] is uitgevoerd wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS(OF([@[ALG_CRS]];[@[ALG_SAMENDRUKKING]];[@[ALG_DSS]];[@[ALG_TRIAXIAAL]]);MAX([@[ANA_GRENSSPANNING_INCL_CORRECTIE]];[@[ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING]];[@ [ANA_DSS_MAX_CONSOLIDATIE_SPANNING]]);"");"")
formule vereenvoudigd	=MAX([ANA_GRENSSPANNING_INCL_CORRECTIE];[ANA_TR_MAX_VERTICALE_CONSOLIDATIE_SPANNING];[AN A_DSS_MAX_CONSOLIDATIE_SPANNING])
Dbase bronvelden formule	[ANA_GRENSSPANNING_INCL_CORRECTIE] [ANA_TR_MAX_VERTICALE_CONSOLIDATIE_SPANNING] [ANA_DSS_MAX_CONSOLIDATIE_SPANNING]
	ANA_MAX_VERTICALE_SPANNING_BRON
	Bron maximale ondervonden effectieve verticale spanning monster. [-]
omschrijving parameter	Bron maximale ondervonden effectieve verticale spanning monster.
formule Excel	=ALS.FOUT(ALS(OF([@[ALGCRS]];[@[ALGSAMENDRUKKING]];[@[ALGDSS]];[@[ALGTRIAXIAAL]]);ALS([@[ANA_MAX_VERTICALE_SPANNING]]=[@[ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING]];"")&ALS([@[ANA_MAX_VERTICALE_CONSOLIDATIE_SPANNING]];"")&ALS([@[ANA_MAX_VERTICALE_SPANNING]]=[@[ANA_DSS_MAX_CONSOLIDATIE_SPANNING]]=[@[ANA_DSS_MAX_CONSOLIDATIE_SPANNING]];"")&ALS([@[ANA_MAX_VERTICALE_SPANNING]]=[@[ANA_GRENSSPANNING_INCL_CORRECTIE]];D[[#Kopteksten];[ANA_GRENSSPANNING_INCL_CORRECTIE]];D[[#Kopteksten];[ANA_GRENSSPANNING_INCL_CORRECTIE]];"");"");"")
formule vereenvoudigd	=ALS([ANA_MAX_VERTICALE_SPANNING]=[ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING];[ANA_DSS _MAX_CONSOLIDATIE_SPANNING];[ANA_GRENSSPANNING_INCL_CORRECTIE])
Dbase bronvelden formule	[ANA_MAX_VERTICALE_SPANNING] [ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING] [ANA_DSS_MAX_CONSOLIDATIE_SPANNING] [ANA_GRENSSPANNING_INCL_CORRECTIE]

B2.3.2 Resultaten bepaling OCR

Betreft de berekende OCR en LN van de OCR per monster. Er wordt aangegeven of het een normaal of overgeconsolideerd monster betreft. Resultaten van Triaxiaal (TXT) en direct simple shear proeven (DSS) worden apart weergegeven.

In paragraaf 3.4.5 en 3.5.3 wordt op basis van het verloop van het spanningspad nog aanvullend gecontroleerd of de OCR en type consolidatieproef (normaal of overgeconsolideerd) met elkaar overeenkomen.

	ANA_OCR_TXT_MONSTER
	OCR Monster triaxiaalproef [-]
omschrijving parameter	De overconsolidatiegraad (OCR) van het monster bij een Triaxiaalproef-proef. Betreft het maximum van de waarde [TXT_OCR] of [ANA_MAX_VERTICALE_SPANNING] / [TXT_SS_S"_EIND_CONSOLIDATIE] + [TXT_SS_T_EIND_CONSOLIDATIE] of [ANA_MAX_VERTICALE_SPANNING]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(MAX([@[TXT_SS_OCR]];[@[ANA_MAX_VERTICALE_SPANNING]]/([@[TXT_SS_S"_EIND_CONSOLIDAIE]]+[@[TXT_SS_T_EIND_CONSOLIDATIE]]));"")
formule vereenvoudigd	=MAX([TXT_SS_OCR];[ANA_MAX_VERTICALE_SPANNING]/[TXT_SS_S"_EIND_CONSOLIDATIE]+[TXT_SS_T_EIN_CONSOLIDATIE])
Dbase bronvelden formule	[TXT_SS_OCR] [ANA_MAX_VERTICALE_SPANNING] [TXT_SS_S"_EIND_CONSOLIDATIE] [TXT_SS_T_EIND_CONSOLIDATIE]
	ANA_LN_OCR_TXT_MONSTER
	In OCR monster triaxiaalproef [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de OCR [ANA_OCR_TXT_MONSTER]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_OCR_TXT_MONSTER]]);"")
formule vereenvoudigd	=(LN([ANA_OCR_TXT_MONSTER])
Dbase bronvelden formule	[ANA_OCR_TXT_MONSTER]
	ANA_OCR_DSS_MONSTER
	OCR Monster DSS-proef [-]
omschrijving parameter	De overconsolidatiegraad (OCR) van het monster bij een DSS-proef. Betreft het maximum van de waarde [DSS_OCR] ([ANA_MAX_VERTICALE_SPANNING] / [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(AFRONDEN(MAX([@[DSS_OCR]];[@[ANA_MAX_VERTICALE_SPANNING]]/[@[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]]);2);"")
formule vereenvoudigd	De overconsolidatiegraad (OCR) van het monster bij een DSS-proef. Betreft het maximum van de waarde [DSS_OCR] ([ANA_MAX_VERTICALE_SPANNING] / [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
Dbase bronvelden formule	[DSS_OCR] [ANA_MAX_VERTICALE_SPANNING] [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
	ANA LN CCD DES MONETED
	ANA_LN_OCR_DSS_MONSTER
	In OCR monster DSS [-] Bereken de natuurlijke logaritme (In) van de OCR [ANA_OCR_DSS_MONSTER]. Indien geen waarde beschikbaar is
omschrijving parameter	wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_OCR_DSS_MONSTER]]);"")
formule vereenvoudigd	=(LN([ANA_OCR_DSS_MONSTER])
Dbase bronvelden formule	[ANA_OCR_DSS_MONSTER]
	ANA_TXT_CONSOLIDATIE_TYPE
	Consolidatie type triaxiaalproef [-]
omschrijving parameter	Betreft dit een normaal geconsolideerde (NC) of overgeconsolideerde proef (OC)
formule Excel	=ALS.FOUT(ALS(([@[ANA_OCR_TXT_MONSTER]]*1)>1;"OC";"NC");"")
	=[ANA_OCR_TXT_MONSTER]>1
formule vereenvoudigd	-[ANA_OOK_TAT_MONOTER]>T

	ANA_DSS_CONSOLIDATIE_TYPE
	Consolidatie type DSS-proef [-]
omschrijving parameter	NC / OC
formule Excel	=ALS.FOUT(ALS(([@[ANA_OCR_DSS_MONSTER]]*1)>1;"OC";"NC");"")
formule vereenvoudigd	=[ANA_OCR_DSS_MONSTER]>1
Dbase bronvelden formule	[ANA_OCR_DSS_MONSTER]

B2.4 Triaxiaalproeven

Doel: berekenen van de parameters benodigd voor de bepaling de ongedraineerde en gedraineerde sterkte van het monster. Daarnaast worden parameters bepaald voor het verder analyseren van de proefresultaten.

B2.4.1 Triaxiaalproeven consolidatiespanningen

Berekenen van de horizontale spanning s'3, verticale spanning s'1, gemiddelde spanning p' en deviatorspanning bij de consolidatie van het monster.

	,
	ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING
	σ'vc;max maximale verticale consolidatiespanning triaxiaalproeven [kPa]
omschrijving parameter	De maximale verticale consolidatiespanning s'vc;max volgt uit s'+ t bij de maximaal opgetreden consolidatiespanning. Dit betreft het maximum van [MAX_CONSOLIDATIE] en [EIND_CONSOLIDATIE]. Indien geen waarde triaxiaalproef is uitgevoerd [ALGTRIAXIAAL] wordt de cel leeggelaten.
formule Excel	=ALS([@[ALGTRIAXIAAL]];MAX([@[TXT_SS_S"_MAX_CONSOLIDATIE]]+[@[TXT_SS_T_MAX_CONSOLIDATIE]];[@[TXT_SS_S"_EIND_CONSOLIDATIE]]+[@[TXT_SS_T_EIND_CONSOLIDATIE]]);"")
formule vereenvoudigd	=MAX([TXT_SS_S"_MAX_CONSOLIDATIE]+[TXT_SS_T_MAX_CONSOLIDATIE];[TXT_SS_S"_EIND_CONSOLIDATIE]+[TXT_SS_T_EIND_CONSOLIDATIE])
Dbase bronvelden formule	[TXT_SS_S"_MAX_CONSOLIDATIE] [TXT_SS_T_MAX_CONSOLIDATIE] [TXT_SS_S"_EIND_CONSOLIDATIE] [TXT_SS_T_EIND_CONSOLIDATIE]
	ANA_TXT_MAX_HORIZONTALE_CONSOLIDATIE_SPANNING
	σ'vh;max maximale horizontale consolidatiespanning triaxiaalproeven [kPa]
	De maximale horizontale consolidatiespanning s'yh:max volgt uit s'- t bii de maximaal opgetreden consolidatiespanning. Dit

	ANA_TXT_MAX_HORIZONTALE_CONSOLIDATIE_SPANNING
	σ'vh;max maximale horizontale consolidatiespanning triaxiaalproeven [kPa]
omschrijving parameter	De maximale horizontale consolidatiespanning s'vh;max volgt uit s'- t bij de maximaal opgetreden consolidatiespanning. Dit betreft het maximum van [MAX_CONSOLIDATIE] en [EIND_CONSOLIDATIE]. Indien geen triaxiaalproef is uitgevoerd [ALGTRIAXIAAL] wordt de cel leeggelaten.
formule Excel	=ALS([@[ALGTRIAXIAAL]];MAX([@[TXT_SS_S"_MAX_CONSOLIDATIE]]- [@[TXT_SS_T_MAX_CONSOLIDATIE]];[@[TXT_SS_S"_EIND_CONSOLIDATIE]]- [@[TXT_SS_T_EIND_CONSOLIDATIE]]);"")
formule vereenvoudigd	=MAX([TXT_SS_S"_MAX_CONSOLIDATIE]-[TXT_SS_T_MAX_CONSOLIDATIE];[TXT_SS_S"_EIND_CONSOLIDATIE]-[TXT_SS_T_EIND_CONSOLIDATIE])
Dbase bronvelden formule	[TXT_SS_S"_MAX_CONSOLIDATIE] [TXT_SS_T_MAX_CONSOLIDATIE] [TXT_SS_S"_EIND_CONSOLIDATIE] [TXT_SS_T_EIND_CONSOLIDATIE]

	ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING
	σ'vc;eind verticale consolidatiespanning triaxiaalproeven [kPa]
omschrijving parameter	De verticale consolidatiespanning s'vc;eind volgt uit [TXT_SS_S"_EIND_CONSOLIDATIE] + [TXT_SS_T_EIND_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	$= ALS.FOUT(ALS([@[ALGTRIAXIAAL]]; [@[TXT_SS_S"_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_S_T_EIND_CONSOLIDATIE]] + [@[TXT_SS_T_S_T_S_T_S_T_S_T_S_T_S_T_S_T_S_T$
formule vereenvoudigd	=[TXT_SS_S"_EIND_CONSOLIDATIE]+[TXT_SS_T_EIND_CONSOLIDATIE]
Dbase bronvelden formule	[TXT_SS_S"_EIND_CONSOLIDATIE] [TXT_SS_T_EIND_CONSOLIDATIE]

	ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_SPANNING
	σ'hc;eind horizontale consolidatiespanning triaxiaalproeven [kPa]
omschrijving parameter	De horizontale consolidatiespanning s'hc;eind volgt uit [TXT_SS_S"_EIND_CONSOLIDATIE] - [TXT_SS_T_EIND_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_S"_EIND_CONSOLIDATIE]]- [@[TXT_SS_T_EIND_CONSOLIDATIE]];"");"")
formule vereenvoudigd	=[TXT_SS_S"_EIND_CONSOLIDATIE]-[TXT_SS_T_EIND_CONSOLIDATIE]
Dbase bronvelden formule	[TXT_SS_S"_EIND_CONSOLIDATIE] [TXT_SS_T_EIND_CONSOLIDATIE]

	ANA_P0_MAX_CONSOLIDATIE
	p0';max maximale consolidatiespanning [kPa]
omschrijving parameter	De consolidatiespanning P0;max volgt uit de verticale consolidatiespanning [ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING] + 2x de horizontale consolidatiespanning[ANA_TXT_MAX_HORIZONTALE_CONSOLIDATIE_SPANNING] / 3
formule Excel	=ALS.FOUT(MAX(([@[ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING]]+[@[ANA_TXT_MAX_HORIZONTAL E_CONSOLIDATIE_SPANNING]]*2)/3;([@[ANA_MAX_VERTICALE_SPANNING]]+([@[ANA_MAX_VERTICALE_SPANNI NG]]*[@[TXT_SS_SPANNINGSVERHOUDING_STOPCR_K]]*2)/3);"")
formule vereenvoudigd	=MAX(([ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING]+[ANA_TXT_MAX_HORIZONTALE_CONSOLIDATI E_SPANNING]*2)/3;([ANA_MAX_VERTICALE_SPANNING]+([ANA_MAX_VERTICALE_SPANNING]*[TXT_SS_SPANNIN GSVERHOUDING_STOPCR_K]*2))/3)
Dbase bronvelden formule	[ANA_TXT_MAX_VERTICALE_CONSOLIDATIE_SPANNING] [ANA_TXT_MAX_HORIZONTALE_CONSOLIDATIE_SPANNING] [ANA_MAX_VERTICALE_SPANNING] [ANA_MAX_VERTICALE_SPANNING] [TXT_SS_SPANNINGSVERHOUDING_STOPCR_K]

	ANA_P_EIND_CONSOLIDATIE
	p';eind consolidatiespanning [kPa]
omschrijving parameter	De consolidatiespanning P;eind volgt uit de verticale consolidatiespanning [ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING] + 2x de horizontale consolidatiespanning [ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_SPANNING] / 3
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];([@[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]]+[@[ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_SPANNING]]*2)/3;"");"")
formule vereenvoudigd	=([ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]+[ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_S PANNING]*2)/3
Dbase bronvelden formule	[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING] [ANA_TXT_EIND_HORIZONTALE_CONSOLIDATIE_SPANNING]

	ANA_Q_MAX_CONSOLIDATIE
	q;max maximale consolidatiespanning [kPa]
omschrijving parameter	De deviatorspanning Q;max bij de maximale consolidatiespanning volgt uit 2 x [TXT_SS_T_MAX_CONSOLIDATIE]
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_T_MAX_CONSOLIDATIE]]*2;"");"")
formule vereenvoudigd	=[TXT_SS_T_MAX_CONSOLIDATIE]*2
Dbase bronvelden formule	[TXT_SS_T_MAX_CONSOLIDATIE]

	ANA_Q_0_EIND_CONSOLIDATIE
	Q0;eind consolidatiespanning [kPa]
omschrijving parameter	De deviatorspanning Q;max bij de consolidatiespanning volgt uit 2 x [TXT_SS_T_EIND_CONSOLIDATIE]
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_T_EIND_CONSOLIDATIE]]*2;"");"")
formule vereenvoudigd	=[TXT_SS_T_EIND_CONSOLIDATIE]*2
Dbase bronvelden formule	[TXT_SS_T_EIND_CONSOLIDATIE]

Dbase bronvelden formule

B2.4.2 Triaxiaalproeven - (deviator) spanningen en schuifsterktes

Berekenen van de horizontale spanning s'3, verticale spanning s'1, gemiddelde spanning p' en deviatorspanning bij de maximale deviatorspanning (pieksterkte) en bij de maximale rek (eindsterkte).

	ANA_TXT_S'1_BIJ_T_PIEK
	σ'1 verticale effectieve spanning bij de maximale schuifspanning [kPa]
omschrijving parameter	Verticale effectieve spanning bij de maximale schuifspanning (T_PIEK)
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_S"_BIJ_T_PIEK]]+[@[TXT_SS_T_PIEK]];"");"")
formule vereenvoudigd	=[TXT_SS_S"_BIJ_T_PIEK]+[TXT_SS_T_PIEK]
Dbase bronvelden formule	[TXT_SS_S"_BIJ_T_PIEK] [TXT_SS_T_PIEK]
	ANA_TXT_S'3_BIJ_T_PIEK
	σ'3 horizontale effectieve spanning bij de maximale schuifspanning [kPa]
omschrijving parameter	Horizontale effectieve spanning bij de maximale schuifspanning (T_PIEK)
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_S"_BIJ_T_PIEK]]-[@[TXT_SS_T_PIEK]];"");"")
formule vereenvoudigd	=[TXT_SS_S"_BIJ_T_PIEK]-[TXT_SS_T_PIEK]
Dbase bronvelden formule	[TXT_SS_S"_BIJ_T_PIEK] [TXT_SS_T_PIEK]
	ANA_TXT_S'1_BIJ_T_EIND
	σ'1 verticale effectieve spanning bij eind schuifspanning (eindrek) [kPa]
omschrijving parameter	Verticale effectieve spanning bij de eindrek
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_S"_BIJ_T_EIND]]+[@[TXT_SS_T_EIND]];"");"")
formule vereenvoudigd	=[TXT_SS_S"_BIJ_T_EIND]+[TXT_SS_T_EIND]
Dbase bronvelden formule	[TXT_SS_S"_BIJ_T_EIND] [TXT_SS_T_EIND]
	ANA_TXT_S'3_BIJ_T_EIND
	σ'3 horizontale effectieve spanning bij eind schuifspanning (eindrek) [kPa]
omschrijving parameter	Horizontale effectieve spanning bij de eindrek
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_S"_BIJ_T_EIND]]-[@[TXT_SS_T_EIND]];"")
formule vereenvoudigd	=[TXT_SS_S"_BIJ_T_EIND]-[TXT_SS_T_EIND]
Dbase bronvelden formule	[TXT_SS_S"_BIJ_T_EIND] [TXT_SS_T_EIND]
	ANA P. DIEV
	ANA_P_PIEK
	n' niek [kPa]
omschrijving parameter	p' piek [kPa] P;piek volgt uit de verticale spanning [ANA_TXT_S"1_BIJ_T_PIEK] + 2x de horizontale spanning
	P;piek volgt uit de verticale spanning [ANA_TXT_S"1_BIJ_T_PIEK] + 2x de horizontale spanning [ANA_TXT_S"3_BIJ_T_PIEK] / 3
omschrijving parameter formule Excel	P;piek volgt uit de verticale spanning [ANA_TXT_S"1_BIJ_T_PIEK] + 2x de horizontale spanning

[ANA_TXT_S"3_BIJ_T_PIEK] [ANA_TXT_S"1_BIJ_T_PIEK]

	ANA_Q_PIEK
	q piek [kPa]
omschrijving parameter	De deviatorspanning Q;piek volgt uit 2 x [TXT_SS_T_PIEK]
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_T_PIEK]]*2;"");"")
formule vereenvoudigd	=[TXT_SS_T_PIEK]*2
Dbase bronvelden formule	[TXT_SS_T_PIEK]
	ANA_P_EIND
	p' eind [kPa]
omschrijving parameter	P;eind volgt uit de verticale spanning [ANA_TXT_S"1_BIJ_T_EIND] + 2x de horizontale spanning [ANA_TXT_S"3_BIJ_T_EIND] / 3
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];(2*[@[ANA_TXT_S"3_BIJ_T_EIND]]]+[@[ANA_TXT_S"1_BIJ_T_EIND]])/3;"");"")
formule vereenvoudigd	=(2*[ANA_TXT_S"3_BIJ_T_EIND]+[ANA_TXT_S"1_BIJ_T_EIND])/3
Dbase bronvelden formule	[ANA_TXT_S"3_BIJ_T_EIND] [ANA_TXT_S"1_BIJ_T_EIND]
	ANA_Q_EIND
	q eind [kPa]
omschrijving parameter	De deviatorspanning Q;eind volgt uit 2 x [TXT_SS_T_EIND]
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[TXT_SS_T_EIND]]*2;"");"")

B2.4.3 Triaxiaalproeven - schuifsterkteratio's

=[TXT_SS_T_EIND]*2

[TXT_SS_T_EIND]

In dit deel worden de volgende parameters berekend:

formule vereenvoudigd

Dbase bronvelden formule

- de normaal en overgeconsolideerde schuifsterkteratio bij de maximale deviatorspanning (pieksterkte) en bij de maximale rek (eindsterkte);
- de gemiddelde normaal geconsolideerde schuifsterkteratio van de gehele proevenverzameling;
- de natuurlijke logaritme (LN) van de normaal en overgeconsolideerde schuifsterkteratio om later de fit op uit te voeren.

	ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK
	Su;piek / σ'vc Overgeconsolideerde schuifsterkte ratio piek [-]
omschrijving parameter	Schuifsterkte ratio piek. Volgt uit de schuifsterkte mij de maximale deviatorspanning [TXT_SS_T_PIEK] / verticale consolidatiespanning [ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[TXT_SS_T_PIEK]]/([@[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]]);"")
formule vereenvoudigd	=[TXT_SS_T_PIEK]/[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]
Dbase bronvelden formule	[TXT_SS_T_PIEK] [ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]

	ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND
	Su;eind / σ'vc Overgeconsolideerde schuifsterkte ratio eind [-]
omschrijving parameter	Schuifsterkte ratio eind. Volgt uit de schuifsterkte mij de maximale rek [TXT_SS_T_EIND] / verticale consolidatiespanning [ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	$= ALS.FOUT ([@[TXT_SS_T_EIND]]) / ([@[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]]);"") \\$
formule vereenvoudigd	=[TXT_SS_T_EIND]/[ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]
Dbase bronvelden formule	[TXT_SS_T_EIND] [ANA_TXT_EIND_VERTICALE_CONSOLIDATIE_SPANNING]
	ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK
	S;NC;piek Normaal geconsolideerde schuifsterkte ratio piek [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek veronderstelt dat m=0,85. Volgt uit de overgeconsolideerde schuifsterkte ratio [ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK] / overconsolidatieratio van het monster [ANA_OCR_TXT_MONSTER] tot de macht 0,85. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK]]/([@[ANA_OCR_TXT_NONSTER]]^SG\$29);"");"")
formule vereenvoudigd	=[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK]/([ANA_OCR_TXT_MONSTER]^0.85)
Dbase bronvelden formule	[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_OCR_TXT_MONSTER]
	ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND
	S;NC;eind Normaal geconsolideerde schuifsterkte ratio eind [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek veronderstelt dat m=0,85. Volgt uit de overgeconsolideerde schuifsterkte ratio [ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND] / overconsolidatieratio van het monster [ANA_OCR_TXT_MONSTER] tot de macht 0,85. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND]]/([@[ANA_OCR_TXT_NONSTER]]^SH\$29);"");"")
formule vereenvoudigd	=[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND]/([ANA_OCR_TXT_MONSTER]^0.85)
Dbase bronvelden formule	[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND] [ANA_OCR_TXT_MONSTER]
	ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK
	S;NC;piek;gem Gemiddelde norm. gecons. schuifsterkte ratio piek proevenverzameling [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK] van proevenverzameling [PV_NAAM]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]);"");"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]
	ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND
	S;NC;eind;gem Gemiddelde norm. gecons. schuifsterkte ratio eind proevenverzameling [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND] van proevenverzameling [PV_NAAM]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]);"");"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]

	ANA_TXT_LN_OC_SCHUIFSTERKTE_RATIO_PIEK
	Ln OC Schuifsterkte Ratio Piek [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK]]);"")
formule vereenvoudigd	=LN([ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK])
Dbase bronvelden formule	[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_PIEK]

	ANA_TXT_LN_OC_SCHUIFSTERKTE_RATIO_EIND
	Ln OC Schuifsterkte Ratio Eind [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND]]);"")
formule vereenvoudigd	=LN([ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND])
Dbase bronvelden formule	[ANA_TXT_OC_SCHUIFSTERKTE_RATIO_EIND]

	ANA_TXT_S_NC_VERHOUDING_PIEK_EIND
	S NC Verhouding Piek / Eind [-]
omschrijving parameter	Verhouding tussen S piek [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK] en S eind [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]]/[@[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]];"")
formule vereenvoudigd	=[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]/[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]
Dbase bronvelden formule	[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]

B2.4.4 Triaxiaalproeven - correlatie met sonderingen

Berekenen van de conusfactor Nkt voor triaxiaalproeven uitgevoerd bij terreinspanning

	ANA_TXT_NKT
	Conusfactor Nkt uit qnet;sondering / Su;eind [-]
omschrijving parameter	Conusfactor Nkt uit qnet;sondering / Su;eind
formule Excel	=ALS(EN(ISGETAL([@[CPT_QNET]]);ISGETAL([@[ANA_Q_EIND]]));[@[CPT_QNET]]/([@[ANA_Q_EIND]]/2);"")
formule vereenvoudigd	=[CPT_QNET]/([ANA_Q_EIND]/2)
Dbase bronvelden formule	[CPT_QNET] [ANA_Q_EIND]

	ANA_TXT_NBALL
	Conusfactor Nball uit qc;bolsondering / Su;eind [-]
omschrijving parameter	Conusfactor Nball uit qc;bolsondering / Su;eind
formule Excel	=ALS(EN(ISGETAL([@[CPT_QBALL]]);ISGETAL([@[ANA_Q_EIND]]));[@[CPT_QBALL]]/([@[ANA_Q_EIND]]/2);"")
formule vereenvoudigd	=[CPT_QBALL]/([ANA_Q_EIND]/2)
Dbase bronvelden formule	[CPT_QBALL] [ANA_Q_EIND]

B2.4.5 Triaxiaalproeven - analyse afwijkingen

Dit deel definieert parameters met als doel om om afwijkende resultaten aan te wijzen. Dit betreft de:

- verhouding tussen de normaal geconsolideerde piek en eindsterkte;
- afwijking van de normaal geconsolideerd schuifsterkteratio's per monster ten opzichte van de gemiddelde schuifsterkteratio's van de gedefinieerde proevenverzameling;
- analyse van het spanningspad per monster, is er sprake van normaal over overgeconsolideerd gedrag en is er sprake van een discrepantie tussen waargenomen gedrag (normaal of overgeconsolideerd) en de berekende OCR.

	ANA_TXT_S_NC_PIEK_AFWIJKING_GEMIDDELDE_PROEF_VERZAMELING
	S NC;piek afwijking gemiddelde proevenverzameling [-]
omschrijving parameter	Afwijking ten opzichte van S_NC [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK] ten opzichte van gemiddelde [ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK] van proevenverzameling. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]]- [@[ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]];"")
formule vereenvoudigd	=[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK]-[ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]
Dbase bronvelden formule	[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]
	ANA_TXT_S_NC_EIND_AFWIJKING_GEMIDDELDE_PROEF_VERZAMELING
	S NC;eind afwijking gemiddelde proevenverzameling [-]
omschrijving parameter	Afwijking ten opzichte van S_NC [ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND] ten opzichte van gemiddelde [ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND] van proevenverzameling. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGTRIAXIAAL]];[@[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]]- [@[ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND]];"");"")
formule vereenvoudigd	=[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND]-[ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND
Dbase bronvelden formule	[ANA_TXT_NC_SCHUIFSTERKTE_RATIO_EIND] [ANA_TXT_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND]
	ANA_VERHOUDING_TXT_S'_EIND_TXT_S'_EIND_CONSOLIDATIE
	σ'eind / σ'c verhouding spanning bij eindrek / consolidatiespanning. [-]
omschrijving parameter	De verhouding spanning bij eindrek / consolidatiespanning volgt uit [TXT_SS_S"_BIJ_T_EIND] / [TXT_SS_S"_EIND_CONSOLIDATIE]. Een waarde > 1 betekent dat het spanningspad naar rechts loopt (is gevolg van negatieve wateroverspanningen), het monster vertoont dan overgeconsolideerd gedrag. Een waarde < 1 betekent dat het spanningspad naar links loopt (is gevolg van positieve wateroverspanningen), het monster vertoont dan normaal geconsolideerd gedrag. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[TXT_SS_S"_BIJ_T_EIND]]/[@[TXT_SS_S"_EIND_CONSOLIDATIE]];"")
formule vereenvoudigd	=[TXT_SS_S"_BIJ_T_EIND]/[TXT_SS_S"_EIND_CONSOLIDATIE]
Dbase bronvelden formule	[TXT_SS_S"_BIJ_T_EIND] [TXT_SS_S"_EIND_CONSOLIDATIE]
	ANA_TXT_NC_OC_GEDRAG
	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag [-]
omschrijving parameter	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag volgt uit [ANA_VERHOUDING_TXT_S'_EIND_TXT_S'_EIND_CONSOLIDATIE] <1 of >1. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS(ISGETAL([@[ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]]);ALS([@[ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]]<1;"NC gedrag";"OC_gedrag");"")
formule vereenvoudigd	=ALS([ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]<1;"NC gedrag";"OC_gedrag")

[ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]

Dbase bronvelden formule

	ANA_TXT_NC_OC_DISCREPANTIE
	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR [-]
omschrijving parameter	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR volgt uit vergelijking tussen s'eind / s'c;eind [ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE] en de OCR van het monster [ANA_OCR_TXT_MONSTER]. Een waarde WAAR betekent dat er sprake is van een discrepantie. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS(ISGETAL([@[ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]]);NIET(([@[ANA_VERHOUD ING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]]<1)=([@[ANA_OCR_TXT_MONSTER]]=1));"")
formule vereenvoudigd	=NIET(([ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE]<1)=([ANA_OCR_TXT_MONSTER]=1))
Dbase bronvelden formule	[ANA_VERHOUDING_TXT_S"_EIND_TXT_S"_EIND_CONSOLIDATIE] [ANA_OCR_TXT_MONSTER]

B2.4.5 Triaxiaalproeven - State boundary surface parameters

Deze sectie berekent de state boundary surface parameters.

	ANA_VERHOUDING_P_PIEK_P_0
	Verhouding p' piek p'0 [-]
omschrijving parameter	Pmax/P0 (1/OCR)
formule Excel	=ALS.FOUT([@[ANA_P_PIEK]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_P_PIEK]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_P_PIEK] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_Q_PIEK_P_0
	Verhouding q piek p'0 [-]
omschrijving parameter	Qmax/P0
formule Excel	=ALS.FOUT([@[ANA_Q_PIEK]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_Q_PIEK]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_Q_PIEK] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_P_EIND_P_0
	Verhouding p' eind p'0 [-]
omschrijving parameter	Peind/P0 (1/OCR)
formule Excel	=ALS.FOUT([@[ANA_P_EIND]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_P_EIND]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_P_EIND] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_Q_EIND_P_0
	Verhouding q eind p'0 [-]
omschrijving parameter	Qeind/P0
formule Excel	=ALS.FOUT([@[ANA_Q_EIND]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_Q_EIND]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_Q_EIND] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_P_CONS_P_0
	Verhouding p' cons p'0 [-]
omschrijving parameter	Cons/P0 (1/OCR)
formule Excel	=ALS.FOUT([@[ANA_P_EIND_CONSOLIDATIE]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_P_EIND_CONSOLIDATIE]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_P_EIND_CONSOLIDATIE] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_Q_CONS_P_0
	Verhouding q cons p'0 [-]
omschrijving parameter	ConsQ/P0
formule Excel	=ALS.FOUT([@[ANA_Q_0_EIND_CONSOLIDATIE]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[ANA_Q_0_EIND_CONSOLIDATIE]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[ANA_Q_0_EIND_CONSOLIDATIE] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_SU_PIEK_P_0
	Verhouding Su piek p'0 [-]
omschrijving parameter	Su;piek/P0
formule Excel	=ALS.FOUT([@[TXT_SS_T_PIEK]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[TXT_SS_T_PIEK]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[TXT_SS_T_PIEK] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_SU_EIND_P_0
	Verhouding Su eind p'0 [-]
omschrijving parameter	Su;eind/P0
formule Excel	=ALS.FOUT([@[TXT_SS_T_EIND]]/[@[ANA_P0_MAX_CONSOLIDATIE]];"")
formule vereenvoudigd	=[TXT_SS_T_EIND]/[ANA_P0_MAX_CONSOLIDATIE]
Dbase bronvelden formule	[TXT_SS_T_EIND] [ANA_P0_MAX_CONSOLIDATIE]

	ANA_VERHOUDING_Q_P_EIND
	M verhouding q p' eind [-]
omschrijving parameter	Qeind/Peind
formule Excel	=ALS.FOUT([@[ANA_Q_EIND]]/[@[ANA_P_EIND]];"")
formule vereenvoudigd	=[ANA_Q_EIND]/[ANA_P_EIND]
Dbase bronvelden formule	[ANA_Q_EIND] [ANA_P_EIND]

B2.5 DSS-proeven

Doel: berekenen van de parameters benodigd voor de bepaling de ongedraineerde en gedraineerde sterkte van het monster. Daarnaast worden parameters bepaald voor het verder analyseren van de proefresultaten.

B2.5.1 DSS-proeven - schuifsterkteratio's

In dit deel van de analyse worden de volgende parameters berekend:

- de hoek van inwendige wrijving bij de maximale rek (eindsterkte) per monster en het gemiddelde van de verzameling;
- de normaal en overgeconsolideerde schuifsterkteratio bij de maximale sterkte (pieksterkte) en bij de maximale rek (eindsterkte);
- de gemiddelde normaal geconsolideerde schuifsterkteratio van de gehele proevenverzameling;
- de normaal, overgeconsolideerde en gemiddelde schuifsterkteratio gedeeld door de cosinus van hoek van inwendige wrijving bij de maximale rek;
- de natuurlijke logaritme (LN) van de verschillende overgeconsolideerde schuifsterkteratio's om later een fit op uit te voeren.

	ANA_DSS_MAX_CONSOLIDATIE_SPANNING
	σ'vc;max maximale verticale consolidatiespanning DSS-proeven [kPa]
omschrijving parameter	De maximale verticale consolidatiespanning s'vc;max volgt uit s' bij de maximaal opgetreden consolidatiespanning. Dit betreft het maximum van [MAX_CONSOLIDATIE] en [EIND_CONSOLIDATIE]. Indien geen DSS-proef is uitgevoerd [ALGDSS] wordt de cel leeggelaten.
formule Excel	=ALS([@[ALGDSS]];MAX([@[DSS_MAX_EFF_VERT_SPANNING_CONSOLIDATIE]];[@[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]]);"")
formule vereenvoudigd	=MAX([DSS_MAX_EFF_VERT_SPANNING_CONSOLIDATIE];[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE])
Dbase bronvelden formule	[DSS_MAX_EFF_VERT_SPANNING_CONSOLIDATIE] [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
	ANA DSS NC PHI FIND

	ANA_DSS_NC_PHI_EIND
	φ'_eind hoek van inwendige wrijving bij maximale rek [o]
omschrijving parameter	De hoek van inwendige wrijving bepaald bij de maximale rek [DSS_T_EIND] / [DSS_S_BIJ_T_EIND] voor normaal geconsolideerde proeven [ANA_OCR_DSS_MONSTER] =1. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ANA_OCR_DSS_MONSTER]]=1;GRADEN(BOOGTAN([@[DSS_T_EIND]]/[@[DSS_S_BIJ_T_EIND]]));"");"")
formule vereenvoudigd	=ALS([ANA_OCR_DSS_MONSTER]=1;GRADEN(BOOGTAN([DSS_T_EIND]/[DSS_S_BIJ_T_EIND])))
Dbase bronvelden formule	[ANA_OCR_DSS_MONSTER] [DSS_T_EIND] [DSS_S_BIJ_T_EIND]

	ANA_DSS_NC_GEMIDDELDE_PHI_EIND
	φ'_eind;gem Gemiddelde hoek van inwendige wrijving bij maximale rek van alle DSS-proeven [o]
omschrijving parameter	Gemiddelde hoek van inwendige wrijving [ANA_DSS_NC_PHI_EIND] voor de DSS-proeven [PV_DSS]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(GEMIDDELDE.ALS([PV_DSS];[@[PV_DSS]];[ANA_DSS_NC_PHI_EIND]);"")
formule vereenvoudigd	=(GEMIDDELDE.ALS([PV_DSS];[@[PV_DSS]];[ANA_DSS_NC_PHI_EIND]);"")
Dbase bronvelden formule	[PV_DSS] [@[PV_DSS] [ANA_DSS_NC_PHI_EIND]

	ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK
	Su;piek / σ'vc Overgeconsolideerde schuifsterkte ratio piek [-]
omschrijving parameter	Schuifsterkte ratio piek. Volgt uit de schuifsterkte mij de maximale deviatorspanning [DSS_T_max] / verticale consolidatiespanning [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[DSS_T_MAX]]/([@[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]]);"")
formule vereenvoudigd	=[DSS_T_MAX]/[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
Dbase bronvelden formule	[DSS_T_MAX] [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]

	ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND
	Su;eind / σ'vc Overgeconsolideerde schuifsterkte ratio eind [-]
omschrijving parameter	Schuifsterkte ratio eind. Volgt uit de schuifsterkte mij de maximale rek [DSS_T_EIND] / verticale consolidatiespanning [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[DSS_T_EIND]]/([@[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]]);"")
formule vereenvoudigd	=[DSS_T_EIND]/[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
Dbase bronvelden formule	[DSS_T_EIND] [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
	ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK
	S;NC;piek Normaal geconsolideerde schuifsterkte ratio_piek [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek veronderstelt dat m=0,85. Volgt uit de overgeconsolideerde schuifsterk ratio [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK] / overconsolidatieratio van het monster [ANA_OCR_DSS_MONSTER] tot de macht 0,85. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGDSS]];[@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]]/([@[ANA_OCR_DSS_MONSTR]]^TI\$29);"");"")
formule vereenvoudigd	=[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]/([ANA_OCR_DSS_MONSTER]^0.85)
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_OCR_DSS_MONSTER]
	ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND
	S;NC;eind Normaal geconsolideerde schuifsterkte ratio_eind [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek veronderstelt dat m=0,85. Volgt uit de overgeconsolideerde schuifsterk ratio [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND] / overconsolidatieratio van het monster [ANA_OCR_DSS_MONSTER] tot de macht 0,85. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(ALS([@[ALGDSS]];[@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]]/([@[ANA_OCR_DSS_MONS' R]]^TJ\$29);"");"")
formule vereenvoudigd	=[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]/([ANA_OCR_DSS_MONSTER]^0.85)
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND] [ANA_OCR_DSS_MONSTER]
	ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK
	S;NC;piek;gem Gemiddelde norm. gecons. schuifsterkte ratio_piek proevenverzameling [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] van proevenverzameling [PV_NAAM]
formule Excel	=ALS.FOUT(GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]);"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]
	ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND
	S;NC;eind;gem Gemiddelde norm. gecons. schuifsterkte ratio_eind proevenverzameling [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND] van proevenverzameling [PV_NAAM]
formule Excel	=ALS.FOUT(GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]);"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]

	ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI
	S;OC;piek;cosφ Schuifsterkte ratio piek / cos φ' [-]
omschrijving parameter	Schuifsterkte ratio piek [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK] / gemiddelde cosinus van de hoek van inwendige wrijving op basis van de eindrek [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
formule Excel	=ALS.FOUT([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]]/COS(RADIALEN([@[ANA_DSS_NC_GEMIDDELDE_PHI_EIND]]));"")
formule vereenvoudigd	=[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]/COS(RADIALEN([ANA_DSS_NC_GEMIDDELDE_PHI_EIND]))
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
	ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI
	S;OC;eind;cosφ Schuifsterkte ratio eind / cos φ' [-]
omschrijving parameter	Schuifsterkte ratio eind [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND] / gemiddelde cosinus van de hoek van inwendige wrijving op basis van de eindrek [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
formule Excel	=ALS.FOUT([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]]/COS(RADIALEN([@[ANA_DSS_NC_GEMIDDELDE_PHI_EIND]]));"")
formule vereenvoudigd	=[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]/COS(RADIALEN([ANA_DSS_NC_GEMIDDELDE_PHI_EIND]))
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND] [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
	ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI
	S;NC;piek;cosφ Normaal geconsolideerde schuifsterkte ratio_piek / cos φ' [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] / gemiddelde cosinus van de hoek van inwendige wrijving op basis van de eindrek [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
formule Excel	=ALS.FOUT([@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]]/COS(RADIALEN([@[ANA_DSS_NC_GEMIDDELDE_PHI_EIND]]));"")
formule vereenvoudigd	=[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]/COS(RADIALEN([ANA_DSS_NC_GEMIDDELDE_PHI_EIND]))
Dbase bronvelden formule	[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
	ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI
	S;NC;eind;cos¢ Normaal geconsolideerde schuifsterkte ratio_eind / cos ¢' [-]
omschrijving parameter	Normaal geconsolideerde schuifsterkte ratio_piek [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND] / gemiddelde cosinus van de hoek van inwendige wrijving op basis van de eindrek [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
formule Excel	=ALS.FOUT([@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]]/COS(RADIALEN([@[ANA_DSS_NC_GEMIDDELDE_PHI_EIND]]));"")
formule vereenvoudigd	=[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]/COS(RADIALEN([ANA_DSS_NC_GEMIDDELDE_PHI_EIND]))
Dbase bronvelden formule	[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND] [ANA_DSS_NC_GEMIDDELDE_PHI_EIND]
	ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK_COSPHI
	S;NC;piek;cosφ;gem Gemiddelde norm. gecons. schuifsterkte ratio_piek proevenverz. / cos φ' [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek / cos φ' [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI] van proevenverzameling [PV_NAAM]
formule Excel	=ALS.FOUT(GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPH);"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI]

Dbase bronvelden formule [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI]

	ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND_COSPHI
	S;NC;eind;cosφ;gem Gemiddelde norm. gecons. schuifsterkte ratio_eind proevenverz. / cos φ' [-]
omschrijving parameter	Gemiddelde van norm. gecons. schuifsterkte ratio_piek / cos ф' [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI] van proevenverzameling [PV_NAAM]
formule Excel	=ALS.FOUT(GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI]);"")
formule vereenvoudigd	=GEMIDDELDE.ALS([PV_NAAM];[@[PV_NAAM]];[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI])
Dbase bronvelden formule	[PV_NAAM] [@[PV_NAAM] [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND_COSPHI]
	ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_PIEK
	Ln OC Schuifsterkte Ratio Piek [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK] . Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]]);"")
formule vereenvoudigd	=LN([ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK])
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK]
	ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_EIND
	Ln OC Schuifsterkte Ratio Eind [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND] . Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]]);"")
formule vereenvoudigd	=LN([ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND])
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND]
	ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI
	Ln OC Schuifsterkte Ratio Piek / cos φ' [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI]]);"")
formule vereenvoudigd	=LN([ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI])
Dbase bronvelden formule	[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_PIEK_COSPHI]
	ANA_DSS_LN_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI
	Ln OC Schuifsterkte Ratio Eind / cos φ' [-]
omschrijving parameter	Bereken de natuurlijke logaritme (In) van de [ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI_COSPHI]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT(LN([@[ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI]]);"")
formule vereenvoudigd	=LN([ANA_DSS_OC_SCHUIFSTERKTE_RATIO_EIND_COSPHI])

B2.5.2 DSS-proeven - correlatie met sonderingen

Berekenen van de conusfactor Nkt voor DSS-proeven uitgevoerd bij terreinspanning

	ANA_DSS_NKT
	Conusfactor Nkt uit qnet;sondering / Su;eind [-]
omschrijving parameter	Conusfactor Nkt uit qnet;sondering / Su;eind
formule Excel	$= ALS(EN(ISGETAL([@[CPT_QNET]]);ISGETAL([@[DSS_T_EIND]]));[@[CPT_QNET]]/([@[DSS_T_EIND]]);"") \\$
formule vereenvoudigd	=[CPT_QNET]/[DSS_T_EIND]
Dbase bronvelden formule	[CPT_QNET] [DSS_T_EIND]

	ANA_DSS_NBALL
	Conusfactor Nball uit qc;bolsondering / Su;eind [-]
omschrijving parameter	Conusfactor Nball uit qc;bolsondering / Su;eind
formule Excel	$= ALS(EN(ISGETAL([@[CPT_QBALL]]);ISGETAL([@[DSS_T_EIND]]));[@[CPT_QBALL]]/([@[DSS_T_EIND]]);"") \\$
formule vereenvoudigd	=[CPT_QBALL]/[DSS_T_EIND]
Dbase bronvelden formule	[CPT_QBALL] [DSS_T_EIND]

B2.5.3 DSS-proeven - analyse afwijkingen

Dit deel berekent de parameters om afwijkende resultaten aan te wijzen met als doel het reduceren van de spreiding in de proevenverzameling. Dit betreft de:

- verhouding tussen de normaal geconsolideerde piek en eindsterkte;
- afwijking van de normaal geconsolideerd schuifsterkteratio's per monster ten opzichte van de gemiddelde schuifsterkteratio's van de gedefinieerde proevenverzameling;
- analyse van het spanningspad per monster, is er sprake van normaal over overgeconsolideerd gedrag en is er sprake van een discrepantie tussen waargenomen gedrag (normaal of overgeconsolideerd) en de berekende OCR.

	ANA_DSS_S_NC_VERHOUDING_PIEK_EIND
	S NC Verhouding Piek / Eind [-]
omschrijving parameter	Verhouding tussen S piek [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] en S eind [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]. Indien geen waarde beschikbaar is wordt de cel leeggelaten.
formule Excel	=ALS.FOUT([@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]]/[@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIN D]];"")
formule vereenvoudigd	=[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]/[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]
Dbase bronvelden formule	[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]

	ANA_DSS_S_NC_PIEK_AFWIJKING_GEMIDDELDE_PROEF_VERZAMELING
	S NC;piek afwijking gemiddelde proevenverzameling [-]
omschrijving parameter	Afwijking ten opzichte van S_NC [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] ten opzichte van gemiddelde [ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK] van proevenverzameling
formule Excel	=ALS.FOUT([@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]]- [@[ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]];"")
formule vereenvoudigd	=[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK]-[ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]
Dbase bronvelden formule	[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_PIEK] [ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_PIEK]

	ANA_DSS_S_NC_EIND_AFWIJKING_GEMIDDELDE_PROEF_VERZAMELING
	S NC;eind afwijking gemiddelde proevenverzameling [-]
omschrijving parameter	Afwijking ten opzichte van S_NC [ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND] ten opzichte van gemiddelde [ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND] van proevenverzameling
formule Excel	=ALS.FOUT([@[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]]- [@[ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND]];"")
formule vereenvoudigd	=[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND]-[ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND]
Dbase bronvelden formule	[ANA_DSS_NC_SCHUIFSTERKTE_RATIO_EIND] [ANA_DSS_NC_GEMIDDELDE_SCHUIFSTERKTE_RATIO_EIND]

	ANA_VERHOUDING_DSS_S'_EIND_DSS_S'_EIND_CONSOLIDATIE
	s'eind / s'c;eind verhouding spanning bij eindrek / consolidatiespanning. [kPa]
omschrijving parameter	De verhouding spanning bij eindrek / consolidatiespanning volgt uit [DSS_S_BIJ_T_EIND] / [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE] Een waarde > 1 betekent dat het spanningspad naar rechts loopt (is gevolg van negatieve wateroverspanningen), het monster vertoont dan overgeconsolideerd gedrag. Een waarde < 1 betekent dat het spanningspad naar links loopt (is gevolg van positieve wateroverspanningen), het monster vertoont dan normaal geconsolideerd gedrag.
formule Excel	=ALS.FOUT([@[DSS_S_BIJ_T_EIND]]/[@[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]];"")
formule vereenvoudigd	=[DSS_S_BIJ_T_EIND]/[DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]
Dbase bronvelden formule	[DSS_S_BIJ_T_EIND] [DSS_EFF_VERT_SPANNING_EINDE_CONSOLIDATIE]

	ANA_DSS_NC_OC_GEDRAG
	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag [-]
omschrijving parameter	Analyse spanningspad, normaal geconsolideerd NC of overconsolideerd OC gedrag volgt uit ANA_VERHOUDING_DSS_S'_EIND_DSS_S'_EIND_CONSOLIDATIE <1 of >1
formule Excel	=ALS(ISGETAL([@[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]]);ALS([@[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]]<1;"NC gedrag";"OC_gedrag");"")
formule vereenvoudigd	=ALS([ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]<1;"NC gedrag";"OC_gedrag")
Dbase bronvelden formule	[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]

	ANA_DSS_NC_OC_DISCREPANTIE
	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR [-]
omschrijving parameter	Controle discrepantie waargenomen gedrag OC of NC versus de berekende OCR volgt uit vergelijking tussen s'eind / s'c;eind ANA_VERHOUDING_DSS_S'_EIND_DSS_S'_EIND_CONSOLIDATIE en de OCR van het monster [ANA_OCR_DSS_MONSTER]. Een waarde WAAR betekent dat er sprake is van een discrepantie.
formule Excel	=ALS(ISGETAL([@[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]]);NIET(([@[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]]<1)=([@[ANA_OCR_DSS_MONSTER]]=1));"")
formule vereenvoudigd	=NIET([ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE]<1=[ANA_OCR_DSS_MONSTER]=1)
Dbase bronvelden formule	[ANA_VERHOUDING_DSS_S"_EIND_DSS_S"_EIND_CONSOLIDATIE] [ANA_OCR_DSS_MONSTER]

B2.6 Samendrukkingsparameters

Doel: berekening van de sterkte toename exponent (m) op basis van de Isotachen parameters. Daarnaast worden de helling van de ontlasttrap kappa en Lambda als parameters gedefinieerd.

	ANA_INSCHATTING_M_CRS_ISOTACHEN
	Inschatting m CRS Isotachen [-]
omschrijving parameter	Inschatting sterkte toename exponent m op basis van isotachen parameters m = (b-a)/b uit CRS-proeven
formule Excel	=ALS.FOUT(([@[CRS_ISOTACHE_B]]-[@[CRS_ISOTACHE_A]])/[@[CRS_ISOTACHE_B]];"")
formule vereenvoudigd	=([CRS_ISOTACHE_B]-[CRS_ISOTACHE_A])/[CRS_ISOTACHE_B]
Dbase bronvelden formule	[CRS_ISOTACHE_B] [CRS_ISOTACHE_A]

	ANA_INSCHATTING_M_SD_ISOTACHEN
	Inschatting m SD Isotachen [-]
omschrijving parameter	Inschatting sterkte toename exponent m op basis van isotachen parameters m = (b-a)/b uit samendrukkingsproeven
formule Excel	=ALS.FOUT(([@[SD_ISOTACHE_B]]-[@[SD_ISOTACHE_A]])/[@[SD_ISOTACHE_B]];"")
formule vereenvoudigd	=([SD_ISOTACHE_B]-[SD_ISOTACHE_A])/[SD_ISOTACHE_B]
Dbase bronvelden formule	[SD_ISOTACHE_B] [SD_ISOTACHE_A]

	ANA_HELLING_ONTLASTTRAP_KAPPA
	Helling Ontlasttrap Kappa [-]
omschrijving parameter	Helling Ontlasttrap Kappa
formule Excel	=ALS.FOUT(ALS(OF([@[ALGCRS]];[@[ALGSAMENDRUKKING]]);MAX([@[CRS_ISOTACHE_A]];[@[SD_ISOTACHE_A]])*2;"");"")
formule vereenvoudigd	=MAX([CRS_ISOTACHE_A];[SD_ISOTACHE_A])*2
Dbase bronvelden formule	[CRS_ISOTACHE_A] [SD_ISOTACHE_A]

	ANA_HELLING_MAAGDELIJKE_SAM_LAMBDA
	Helling Maagdelijke Sam Lambda [-]
omschrijving parameter	Helling Maagdelijke Sam Lambda
formule Excel	=ALS.FOUT(ALS(OF([@[ALG_CRS]];[@[ALG_SAMENDRUKKING]]);MAX([@[CRS_ISOTACHE_B]];[@[SD_ISOTACHE_B]]);"");"")
formule vereenvoudigd	=MAX([CRS_ISOTACHE_B];[SD_ISOTACHE_B])
Dbase bronvelden formule	[CRS_ISOTACHE_B] [SD_ISOTACHE_B]

B2.7 Berekening (gecorrigeerde) cohesie en hoek van inwendige wrijving

Doel: berekenen van de cohesie en hoek van inwendige wrijving van de proevenverzamelingen. In de tabbladen TXT_proeven_SS en DSS_proeven zijn de parameters vastgelegd behorende bij het snijpunt met de top van de cirkel van Mohr, niet de raaklijn. Indien het een triaxiaalproef betreft moeten deze nog worden gecorrigeerd van de top van de cirkel van Mohr naar de raaklijn. Daarnaast moet de tangens phi nog worden omgerekend naar de hoek van inwendige wrijving in graden.

	PV_COH_GEM_GECORRIGEERD
	cohesie' gemiddeld [kPa]
omschrijving parameter	verwachtingswaarde cohesie
formule Excel	=ALS([@[PV_TXT]]; [@[PV_A1_COH_GEM]]/WORTEL(1- [@[PV_A2_PHI_GEM]]^2);ALS([@[PV_DSS]];[@[PV_A1_COH_GEM]];""))
formule vereenvoudigd	=ALS((PV_TXT); [PV_A1_COH_GEM]/WORTEL(1-[PV_A2_PHI_GEM]^2);ALS((PV_DSS)];[PV_A1_COH_GEM];""))
Dbase bronvelden formule	[PV_TXT] [PV_A1_COH_GEM] [PV_A2_PHI_GEM] [PV_DSS]

PV_PHI_GEM_GECORRIGEERD			
	phi' gemiddeld [0]		
omschrijving parameter	verwachtingswaarde hoek van inwendige wrijving		
formule Excel	=ALS([@[PV_TXT]];GRADEN(BOOGTAN([@[PV_A2_PHI_GEM]])WORTEL(1- [@[PV_A2_PHI_GEM]]^2)));ALS([@[PV_DSS]];GRADEN(BOOGTAN([@[PV_A2_PHI_GEM]]));""))		
formule vereenvoudigd	=ALS([PV_TXT];GRADEN(BOOGTAN([PV_A2_PHI_GEM]/WORTEL(1-[PV_A2_PHI_GEM]^2)));ALS([PV_DSS];GRADEN(BOOGTAN([PV_A2_PHI_GEM]));""))		
Dbase bronvelden formule	[PV_TXT] [PV_A2_PHI_GEM] [PV_DSS]		

	PV_COH_KAR_GECORRIGEERD
	cohesie' karakteristiek [kPa]
omschrijving parameter	karakteristieke waarde cohesie
formule Excel	=ALS([@[PV_TXT]]; [@[PV_A1_COH_KAR]]/WORTEL(1- [@[PV_A2_PHI_KAR]]^2);ALS([@[PV_DSS]];[@[PV_A1_COH_KAR]];""))
formule vereenvoudigd	$= ALS([PV_TXT]; [PV_A1_COH_KAR]/WORTEL(1-[PV_A2_PHI_KAR]/2); ALS([PV_DSS]; [PV_A1_COH_KAR];""))$
Dbase bronvelden formule	[PV_TXT] [PV_A1_COH_KAR] PV_A2_PHI_KAR [PV_DSS]

	PV_PHI_KAR_GECORRIGEERD
	phi' karakteristiek [0]
omschrijving parameter	karakteristieke waarde hoek van inwendige wrijving
formule Excel	=ALS([@[PV_TXT]];GRADEN(BOOGTAN([@[PV_A2_PHI_KAR]]/WORTEL(1- [@[PV_A2_PHI_KAR]]^2)));ALS([@[PV_DSS]];GRADEN(BOOGTAN([@[PV_A2_PHI_KAR]]));""))
formule vereenvoudigd	=ALS([PV_TXT];GRADEN(BOOGTAN([PV_A2_PHI_KAR]/WORTEL(1- [PV_A2_PHI_KAR]^2)));ALS([PV_DSS];GRADEN(BOOGTAN([PV_A2_PHI_KAR]));""))
Dbase bronvelden formule	[PV_TXT] PV_A2_PHI_KAR [PV_DSS]

BIJLAGE 3 – RESULTATEN TESTSET

Er zijn twee testsets opgenomen in de spreadsheet proevenverzameling. De huidige versie van de spreadsheet is gevalideerd. Doel van deze testsets is het valideren van de resultaten indien in de toekomst wijzigingen worden aangebracht in de spreadsheet.

B3.1 Resultaten testset triaxiaalproeven

		basisverzameling	toevoegen verzameling
proevenverzameling naamgeving		TXT_testset_klei	3
nantal proeven		18	0
pgeven parameters karakteristieke waarden en _l	partiele materiaalfactoren e	fectieve schuifsterktepara	ameters
		phi (a2) [-]	cohesie (a1) [kPa]
gemiddelde waarden (automatisch)		(0.55)	(2.8)
gemiddelde waarden (handmatig snijpunt y-as opgev	ren)	0.555	2.80
karakteristieke ondergrenswaarden (eerste benaderin	ng)	(0.55)	(1.23)
arakteristieke ondergrenswaarden (handmatig)		0.56	0.00
artiële materiaalfactoren γn		1.15	1.20
		α [-]	
ype verzameling: lokaal = 1,0; regionaal = 0,75		0.75	
Resultaten effectieve schuifsterkteparameters			
terkteparameters	tan phi	phi	cohesie
-]	[-]	[°]	[kPa]
verwachtingswaarde (gemiddelde)	0.67	33.7	3.36
karakteristieke waarde	0.68	34.1	0.00
ekenwaarde	0.59	30.4	0.00
tandaarddeviatie / variatiecoefficient Prostab	-0.002 / 0	-0.1 / nvt	2.21 / 0.66
standaarddeviatie / variatiecoefficient D-geostability	-0.001 / 0	-0.06 / nvt	1.22 / nvt
Analyse resultaten			correlatiecoëfficiënt
egressie verwachtingswaarde			0.99
	oorkennis uit OED of CRS e	n partiele materiaalfactore	0.99
Dpgeven parameters voor fitten S, macht o.b.v. voor	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m
Opgeven parameters voor fitten S, macht o.b.v. voorameters -]	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m [-]
Opgeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch)	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m
Opgeven parameters voor fitten S, macht o.b.v. voorameters 	In schuifsterkteratio S;eind [-] (-1.08)	schuifsterkteratio S;eind [-] (0.34)	sterkte toename exponent = m [-] (m >0,6 a 0,7 en <1,0)
Opgeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch) erwachtingswaarde (gemiddelde) standaardeviatie	In schuifsterkteratio S;eind [-] (-1.08) -1.08	schuifsterkteratio S;eind [-] (0.34) 0.34	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorarameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02
Opgeven parameters voor fitten S, macht o.b.v. voorarameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m >0,6 a 0,7 en <1,0) 0.88 0.02 1.05
Popgeven parameters voor fitten S, macht o.b.v. voor arameters] emiddelde waarden (automatisch) enwachtingswaarde (gemiddelde) tandaardeviatie artiële materiaalfactoren γn Resultaten ongedraineerde schulfsterkteparameter	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05	sterkte toename exponent = m [-] (m >0,6 a 0,7 en <1,0) 0.88 0.02 1.05
Degeven parameters voor fitten S, macht o.b.v. voorameters -] -] -] -] -] -] -] -] -] -] -] -] -]	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05
Degeven parameters voor fitten S, macht o.b.v. voorarameters] temiddelde waarden (automatisch) terwachtingswaarde (gemiddelde) tandaardeviatie tartiele materiaalfactoren γn Resultaten ongedraineerde schulfsterkteparameter terkteparameters] terwachtingswaarde bij OCR=1-4 (op basis van regraarakteristieke waarden met voorkennis	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{vc} = S OCR ^m 0.88 0.88
Degeven parameters voor fitten S, macht o.b.v. voorarmeters -] -] -] -] -] -] -] -] -] -] -] -] -]	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34	sterkte toename exponent = m [-] (m >0.6 a 0.7 en <1.0) 0.88 0.02 1.05 to S sterkte toename exponent = m in relatie: S _d /\sigma_{vc}' = S OCR^m 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorarmeters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{vc} = S OCR ^m 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorarmeters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Degeven parameters voor fitten S, macht o.b.v. voorarmeters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie bartiële materiaalfactoren yn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters -] verwachtingswaarde bij OCR=1-4 (op basis van regn carakteristieke waarden met voorkennis ekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 carakteristieke waarde uit proeven met OCR=1 carakteristieke waarde uit proeven met OCR=1	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorameters -] -] -] -] -] -] -] -] -] -] -] -] -]	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m >0.6 a 0.7 en <1.0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /\alpha_{vc}' = S OCR ^m 0.88 0.88 0.83
Opgeven parameters voor fitten S, macht o.b.v. voorameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte essie) volumegewicht nat [kN/m³]	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36 0.02 0.32 volumegewicht droog [kN/m³]	sterkte toename exponent = m [-] (m >0.6 a 0.7 en <1.0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /\(\sigma_{vc}\)' = S OCR ^m 0.88 0.88 0.83 nvt watergehalte [%]
Opgeven parameters voor fitten S, macht o.b.v. voorameters -I gemiddelde waarden (automatisch) gerwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren yn Resultaten ongedraineerde schulfsterkteparameters -I gerwachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -I gerwachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -I gerwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte essie) volumegewicht nat [k\l/m³] 17.30	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36 0.02 0.32 volumegewicht droog [kN/m³] 12.00	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en <1,0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /\sigma_{vc}' = S OCR^m 0.88 0.83 nvt watergehalte [%] 41.04
Degeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch) gerevachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparameters -] gerewachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -] gerewachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -] standaardeviatie uit proeven met OCR=1 standaarddeviatie	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en < 1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{ve} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28
Opgeven parameters voor fitten S, macht o.b.v. voorameters gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie oartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparameters gewerwachtingswaarde bij OCR=1-4 (op basis van regreaterteparameters verwachtingswaarde bij OCR=1-4 (op basis van regreatertesterkeparameters ekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte essie) volumegewicht nat [k\l/m³] 17.30	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36 0.02 0.32 volumegewicht droog [kN/m³] 12.00	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en <1,0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /\sigma_{vc}' = S OCR^m 0.88 0.83 nvt watergehalte [%] 41.04
Degeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch) gerevachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparameters -] gerewachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -] gerewachtingswaarde bij OCR=1-4 (op basis van regreaterkteparameters -] standaardeviatie uit proeven met OCR=1 standaarddeviatie	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en < 1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{ve} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28
Opgeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schulfsterkteparameters -] verwachtingswaarde bij OCR=1-4 (op basis van regnarakteristieke waarden met voorkennis ekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie variatiecoefficient	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte volumegewicht nat [kN/m ⁵] 17.30 1.07 0.06	schuifsterkteratio S;eind -1 (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /σ _{vc} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28 0.37
Pogeven parameters voor fitten S, macht o.b.v. voorarameters Pogeven parameters voor fitten S, macht o.b.v. voorarameters Pogemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schulfsterkteparameters Poverwachtingswaarde bij OCR=1-4 (op basis van regnakarakteristieke waarden met voorkennis rekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 karakteristieke waarde uit proeven met OCR=1 Kenmerkende eigenschappen Pogemiddelde waarde standaarddeviatie variatiecoefficient	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 ers bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07 0.06 plasticiteitsindex	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _o /o _{vc} = S OCR ^m 0.88 0.88 0.83 nvt watergehalte [%] 41.04 15.28 0.37

variatiecoefficient #DEEL/0! 0.26

0.18

Effective stress s' [kPa]

volumegewicht nat [kN/m3]

078365537:0.17

B3.2 Resultaten testset DSS-proeven

Analyse DSS-proeven

Algemeen				
	basisverzameling	toevoegen verzameling		
proevenverzameling naamgeving	DSS_testset_veen			
aantal proeven	16	0		

Opgeven parameters karakteristieke waarden en partiele materiaalfactoren effectieve schuifsterkteparameters			
	phi (a2) [-]	cohesie (a1) [kPa]	
Gemiddelde waarden (automatisch)	(0.49)	(10.36)	
Gemiddelde waarden (handmatig snijpunt y-as opgeven)	0.552	5.50	
Karakteristieke ondergrenswaarden (eerste benadering)	(0.53)	(0.33)	
Karakteristieke ondergrenswaarden (handmatig)	0.53	0.00	
Partiële materiaalfactoren γn	1.15	1.20	
	α [-]		
type verzameling: lokaal = 1,0; regionaal = 0,75	0.75		

Resultaten effectieve schuifsterkteparameters				
sterkteparameters [-]	phi [-]	phi [°]	cohesie [kPa]	
verwachtingswaarde (gemiddelde)	0.55	28.9	5.50	
karakteristieke waarde	0.53	27.9	0.00	
rekenwaarde	0.46	24.7	0.00	
standaarddeviatie / variatiecoefficient Prostab	0.037 / 0.07	2.14 / nvt	5.25 / 0.95	
standaarddeviatie / variatiecoefficient D-geostability	0.021 / 0.04	1.2 / nvt	2.93 / nvt	
Analyse resultaten			correlatiecoëfficiënt	
regressie verwachtingswaarde	0.92			
regressie verwachtingswaarde bij snijpunt y-as =5.5			0.90	

Opgeven parameters voor fitten S, macht o.b.v.			
parameters [-]	In schuifsterkteratio S;eind [-]	schuifsterkteratio S;eind [-]	sterkte toename exponent = m [-]
gemiddelde waarden (automatisch)	(-1.02)	(0.36)	(m >0,6 a 0,7 en <1,0)
verwachtingswaarde (gemiddelde)	-1.02	0.36	0.89
standaardeviatie	0.04	nvt	0.02
partiële materiaalfactoren γn		1.05	1.05

Resultaten ongedraineerde schuifsterkteparameters bij eindsterkte				
sterkteparameters [-]	Ongedr. schuifsterkteratio S [-]	sterkte toename exponent = m in relatie: S_u/σ_{vc} ' = S OCR ^m		
verwachtingswaarde bij OCR=1-4 (op basis van regressie)	0.36	0.91		
karakteristieke waarden met voorkennis	0.32	0.89		
rekenwaarden met voorkennis	0.30	0.84		
verwachtingswaarde S uit proeven met OCR=1	0.38			
standaarddeviatie uit proeven met OCR=1	0.04	nvt		
karakteristieke waarde uit proeven met OCR=1	0.35			

Kenmerkende eigenschappen				
Volumieke gewichten en watergehaltes		volumegewicht droog [kN/m³]	watergehalte [%]	
gemiddelde waarde	10.50	2.61	314.72	
standaarddeviatie	0.41	0.50	75.69	
variatiecoefficient	0.04	0.19	0.24	
[-]		terreinspanning [kPa]	Nkt	
gemiddelde waarde		64	16.47	
standaarddeviatie		26	-	
variatiecoefficient		0.40	0.16	

 $C: work space \verb|| checkout| Proeven verzame ling_tool_v4.2g_078771182 \verb|| Proeven verzame ling_tool_v4.2g.x | sm||DSS_proeven verzame ling_tool_v4.2g.x$

Vertikale spanning σ'n [kPa]

Ongedraineerde schuifsterkte su [kPa]