ECON 6356 International Finance and Macroeconomics

Lecture 3 (part 1): the Small Open Economy Real Business Cycle model

Camilo Granados
University of Texas at Dallas
Fall 2023

slides
chapter 4
the open economy
real-business-cycle model

Princeton University Press, 2017

These slides are an adjusted version of the materials for Chapter 4 of the OEM book provided by the authors

Motivation:

Previously, we built a model of the small open economy (with capital) driven by productivity shocks and argued that it can capture the observed countercyclicality of the trade balance.

We also established that two features of the model are important for making this prediction possible. First, productivity shocks must be sufficiently persistent. Second, capital adjustment costs must not be too strong.

Now, we explore the ability of that model to explain observed business cycles: We ask whether it can explain the sign and magnitude of business-cycle indicators, such as the standard deviation, serial correlation, and cyclicality of output, consumption, investment, the trade balance, and the current account.

The Small Open Economy RBC Model

To make the models studied in chapters 2 and 3 more empirically realistic and to give them a better chance to account for observed business-cycle regularities add:

- 1. endogenous labor supply and demand
- 2. uncertainty in the technology shock process
- 3. capital depreciation.

The resulting theoretical framework is known as the Small Open Economy Real-Business-Cycle model, or, succinctly, the SOE-RBC model.

The Household's Maximization Problem

$$E_0 \sum_{t=0}^{\infty} \beta^t U(c_t, h_t) \tag{4.1}$$

subject to

$$c_t + i_t + \Phi(k_{t+1} - k_t) + (1 + r_{t-1})d_{t-1} = y_t + d_t$$
 (4.2)

$$y_t = A_t F(k_t, h_t) (4.3)$$

$$k_{t+1} = (1 - \delta)k_t + i_t \tag{4.4}$$

$$\lim_{j \to \infty} E_t \frac{d_{t+j}}{\prod_{s=0}^j (1+r_s)} \le 0 \tag{4.5}$$

Capital adjustment cost, $\Phi(0) = \Phi'(0) = 0$; $\Phi''(0) > 0$

Notice the additions relative to the previous model (of Chapter 3 in SGU17):

- ullet endogenous labor supply, $U(c_t, h_t)$
- endogenous labor demand, $F(k_t, h_t)$
- ullet uncertainty, A_t is stochastic
- the interest rate is no longer constant, $r_t \neq r$
- \bullet depreciation, δ no longer 0

With this setup the model becomes the SOE-RBC model as in Mendoza (1991)

Household's Optimality Conditions

$$c_t + k_{t+1} - (1 - \delta)k_t + \Phi(k_{t+1} - k_t) + (1 + r_{t-1})d_{t-1} = A_t F(k_t, h_t) + d_t$$
 (4.6)

$$\lambda_t = \beta(1+r_t)E_t\lambda_{t+1} \tag{4.7}$$

$$U_c(c_t, h_t) = \lambda_t \tag{4.8}$$

$$-U_h(c_t, h_t) = \lambda_t A_t F_h(k_t, h_t) \tag{4.9}$$

$$1 + \Phi'(k_{t+1} - k_t) = \beta E_t \frac{\lambda_{t+1}}{\lambda_t} \left[A_{t+1} F_k(k_{t+1}, h_{t+1}) + 1 - \delta + \Phi'(k_{t+2} - k_{t+1}) \right]$$
(4.10)

Remember: here the choice or decision variables are λ_t , d_t , c_t , h_t , k_{t+1} (these are the variables we have to take FOCs with respect to)

Inducing Stationarity: External debt-Elastic Interest Rate (EDEIR)

$$r_t = r^* + p(\tilde{d}_t) \tag{4.14}$$

 $r^* = {
m constant}$ world interest rate $p(\tilde{d}_t) = {
m country}$ interest-rate premium $\tilde{d}_t = {
m cross-sectional}$ average of debt

In equilibrium cross-sectional average of debt must equal individual debt

$$\tilde{d}_t = d_t \tag{4.15}$$

Evolution of Total Factor Productivity, AR(1) process

$$\ln A_{t+1} = \rho \ln A_t + \tilde{\eta} \epsilon_{t+1} \tag{4.12}$$

The Trade Balance

$$tb_t = y_t - c_t - i_t - \Phi(k_{t+1} - k_t)$$
 (4.20)

The Current Account

$$ca_t = tb_t - r_{t-1}d_{t-1} (4.21)$$

Equilibrium Conditions

$$-\frac{U_h(c_t, h_t)}{U_c(c_t, h_t)} = A_t F_h(k_t, h_t)$$
 (4.11)

$$c_t + k_{t+1} - (1 - \delta)k_t + \Phi(k_{t+1} - k_t) + [1 + r^* + p(d_{t-1})]d_{t-1} = A_t F(k_t, h_t) + d_t$$
 (4.16)

$$U_c(c_t, h_t) = \beta(1 + r^* + p(d_t))E_tU_c(c_{t+1}, h_{t+1})$$
(4.17)

$$1 = \beta E_t \left\{ \frac{U_c(c_{t+1}, h_{t+1})}{U_c(c_t, h_t)} \frac{[A_{t+1}F_k(k_{t+1}, h_{t+1}) + 1 - \delta + \Phi'(k_{t+2} - k_{t+1})]}{1 + \Phi'(k_{t+1} - k_t)} \right\}$$
(4.18)

This is a system of non-linear stochastic difference equations. It does not have a closed form solution. We will use numerical techniques to find a first-order accurate approximate solution around the nonstochastic steady state. This is a local approximation.

[For capital, the system is a second-order difference equation as it features k_t , k_{t+1} and k_{t+2} . We would like to have a system of first-order difference equations. To this end, introduce the auxiliary variable k_t^f and impose

$$k_t^f = k_{t+1}$$

Note that k_t^f is in the information set of period t.

This equation together with the four above equations forms a system of stochastic first-order difference equations in the 5 unknowns: c_t , h_t , d_{t-1} , k_t , and k_t^f .]

First-order accurate approximation of equilibrium dynamics around the non-stochastic steady state

Solution codes:

From SGU17 website (manual Matlab procedure using the Symbolic toolbox):

```
edeir_ss.m
edeir_model.m
edeir_run.m
```

Alternative (Dynare):

```
mend_91.mod
Main_Mend.m
```

[detour] Derivation of a first-order accurate approximation

Based on Schmitt-Grohé and Uribe JEDC 2004.

The EDEIR model developed above gives rise to equilibrium conditions of the form

$$E_t f(y_{t+1}, y_t, x_{t+1}, x_t) = 0 (1)$$

where

 $x_t = n_x \times 1$ vector of predetermined (or state) variables $y_t = n_y \times 1$ vector of nonpredetermined (or control) variables x_0 is an $n_x \times 1$ vector of initial conditions

Terminal condition:
$$\lim_{j\to\infty} E_t \begin{bmatrix} x_{t+j} & y_{t+j} \end{bmatrix}' \to \begin{bmatrix} \bar{x} & \bar{y} \end{bmatrix}'$$

Let: $n = n_x + n_y$

Then we have that,

$$f: R^{n_y} \times R^{n_y} \times R^{n_x} \times R^{n_x} \to R^n$$

A large class of dynamic stochastic general equilibrium models can be written in the form given in (1). And most studies in real and monetary business cycle analysis use models belonging to this class. Of course, there are also many types of models that do not fit into that class. For example, models with occasionally binding constraints.

Partition state vector x_t

$$x_t = \left[\begin{array}{c} x_t^1 \\ x_t^2 \end{array} \right]$$

 x_t^1 = vector of endogenous predetermined state variables x_t^2 = vector of exogenous state variables

We assume that the exogenous state evolves as:

$$x_{t+1}^2 = \tilde{h}(x_t^2, \sigma) + \sigma \tilde{\eta} \epsilon_{t+1}, \tag{2}$$

 σ = parameter scaling the amount of uncertainty. (σ = 0 is perfect foresight.)

Solution to models that are described by (1) and (2) can then be expressed as:

$$y_t = \hat{g}(x_t) \tag{3}$$

$$x_{t+1} = \hat{h}(x_t) + \sigma \eta \epsilon_{t+1} \tag{4}$$

where

$$\eta = \left[egin{array}{c} \emptyset \ \widetilde{\eta} \end{array}
ight].$$

The shape of the functions \hat{h} and \hat{g} will in general depend on the amount of uncertainty in the economy.

Key idea of perturbation: parameterize the amount of uncertainty as follows

$$\hat{g}(x_t) = g(x_t, \sigma)$$
 where $g: R^{n_x} \times R^+ \to R^{n_y}$

$$\hat{h}(x_t) = h(x_t, \sigma)$$
 where $h: R^{n_x} \times R^+ \to R^{n_x}$

Then we can write the solution to the model described by (1) and (2) as

$$y_t = g(x_t, \sigma) \tag{5}$$

$$x_{t+1} = h(x_t, \sigma) + \sigma \eta \epsilon_{t+1}$$
 (6)

Perturbation methods perform a *local* approximation of $g(x, \sigma)$ and $h(x, \sigma)$ around a particular point $(\bar{x}, \bar{\sigma})$

First-order Taylor series expansion of g and h around $(x, \sigma) = (\bar{x}, \bar{\sigma})$

$$g(x,\sigma) = g(\bar{x},\bar{\sigma}) + g_x(\bar{x},\bar{\sigma})(x-\bar{x}) + g_\sigma(\bar{x},\bar{\sigma})(\sigma-\bar{\sigma}) + h.o.t.$$

$$h(x,\sigma) = h(\bar{x},\bar{\sigma}) + h_x(\bar{x},\bar{\sigma})(x-\bar{x}) + h_\sigma(\bar{x},\bar{\sigma})(\sigma-\bar{\sigma}) + h.o.t.$$

h.o.t. = higher order terms

Unknowns: $g(\bar{x}, \bar{\sigma}), g_x(\bar{x}, \bar{\sigma}), g_{\sigma}(\bar{x}, \bar{\sigma}), h(\bar{x}, \bar{\sigma}), h_x(\bar{x}, \bar{\sigma}), h_{\sigma}(\bar{x}, \bar{\sigma})$

To identify these terms, substitute the proposed solution given by equations (5) and (6) into equation (1), and define

$$F(x,\sigma) \equiv E_t f(g(h(x,\sigma) + \eta \sigma \epsilon', \sigma), g(x,\sigma), h(x,\sigma) + \eta \sigma \epsilon', x)$$

$$= 0.$$
(7)

Here we are dropping time subscripts, and use a prime to indicate variables dated in period t+1.

Because $F(x, \sigma)$ must be equal to zero for any possible values of x and σ , it must be the case that the derivatives of any order of F must also be equal to zero. Formally,

$$F_{x^k \sigma^j}(x, \sigma) = 0 \quad \forall x, \sigma, j, k, \tag{8}$$

where $F_{x^k\sigma^j}(x,\sigma)$ denotes the derivative of F with respect to x taken k times and with respect to σ taken j times.

What point to approximate around?

We need to evaluate the derivatives of $F(x,\sigma)$, $F_{x^k\sigma^j}(x,\sigma)$, at the point we are approximating the equilibrium around. In general this is difficult if not impossible. But there are some points for which evaluation of those derivatives is possible.

One such point is the non-stochastic steady state, $(x, \sigma) = (\bar{x}, 0)$, where \bar{x} denotes the non-stochastic steady state value of x_t . For this point we know: $y_t = \bar{y}$, $y_{t+1} = \bar{y}$, and $x_{t+1} = \bar{x}$, where \bar{y} denotes the non-stochastic steady state of y_t .

For the remainder of this chapter we will focus on approximation around the non-stochastic steady state $(x, \sigma) = (\bar{x}, 0)$.

Another point one can evaluate the derivatives of $F(x, \sigma)$ at is $x_t \neq \bar{x}$ and $\sigma = 0$. This works in cases in which one can find the exact deterministic solution of a model. In that case one can find y_t , y_{t+1} and x_{t+1} for $(x_t, \sigma) = (x_t, 0)$ but needs to resort to approximation techniques to characterize the solution to the stochastic version of the economy.

Let's write again the first-order Taylor series expansion of g and h but this time around the non-stochastic steady state, $(x, \sigma) = (\bar{x}, 0)$

$$g(x,\sigma) = g(\bar{x},0) + g_x(\bar{x},0)(x-\bar{x}) + g_\sigma(\bar{x},0)(\sigma-0)$$

$$h(x,\sigma) = h(\bar{x},0) + h_x(\bar{x},0)(x-\bar{x}) + h_\sigma(\bar{x},0)(\sigma-0)$$

We wish to find:

 $g(\bar{x},0)$

 $g_x(\bar{x},0)$

 $g_{\sigma}(\bar{x},0)$

 $h(\bar{x},0)$

 $h_x(\bar{x},0)$

 $h_{\sigma}(\bar{x},0)$

Find $g(\bar{x},0)$ and $h(\bar{x},0)$

From (5)

$$g(\bar{x},0) = \bar{y}$$

From (6)

$$h(\bar{x},0) = \bar{x}$$

Find h_{σ} and g_{σ}

Recall (7)

$$0 = F(x,\sigma)$$

= $E_t f(g(h(x,\sigma) + \eta \sigma \epsilon', \sigma), g(x,\sigma), h(x,\sigma) + \eta \sigma \epsilon', x)$

The first derivative of $F(x,\sigma)$ with respect to σ evaluated at $(x,\sigma)=(\bar x,0)$

$$0 = F_{\sigma}(\bar{x}, 0)$$

$$= f_{y'}(\bar{y}, \bar{y}, \bar{x}, \bar{x}) \left[g_{x}(\bar{x}, 0) h_{\sigma}(\bar{x}, 0) + g_{\sigma}(\bar{x}, 0) \right]$$

$$+ f_{y}(\bar{y}, \bar{y}, \bar{x}, \bar{x}) g_{\sigma}(\bar{x}, 0)$$

$$+ f_{x'}(\bar{y}, \bar{y}, \bar{x}, \bar{x}) h_{\sigma}(\bar{x}, 0)$$

Let
$$f_i \equiv f_i(\bar{y}, \bar{y}, \bar{x}, \bar{x})$$
 for $i = y', y, x', x$

Note that we can evaluate f_i because we know the function f and we know the steady state (\bar{y}, \bar{x})

Rearrange to obtain

$$\left[\begin{array}{cc} f_{y'}g_x + f_{x'} & f_{y'} + f_y \end{array}\right] \left[\begin{array}{c} h_{\sigma} \\ g_{\sigma} \end{array}\right] = 0$$

This is a linear homogenous equation in n unknowns. For it to have a unique solution it must be that

$$\begin{bmatrix} h_{\sigma} \\ g_{\sigma} \end{bmatrix} = \begin{bmatrix} \emptyset \\ \emptyset \end{bmatrix} \tag{9}$$

This is an important result. It says that up to first-order accuracy one need not correct the constant term or the slope term of the approximation for the presence of uncertainty. The policy function is the same as under perfect foresight but for the additive stochastic error term. (the solution displays the certainty equivalence principle)

Up to first order accuracy the solution is:

$$y_t = \bar{y} + g_x(\bar{x}, 0)(x - \bar{x})$$

 $x_{t+1} = \bar{x} + h_x(\bar{x}, 0)(x - \bar{x}) + \sigma \eta \epsilon_{t+1}$

Consider the unconditional expectations of x_t of the first-order accurate approximation:

$$E(x_t) = E\{\bar{x} + h_x(\bar{x}, 0)(x_t - \bar{x}) + h_\sigma(\bar{x}, 0)(\sigma - 0)\}$$

= $\bar{x} + h_x(\bar{x}, 0)(E(x_t) - \bar{x}) + 0$

It follows that up to first order accuracy:

$$Ex_t = \bar{x}$$
 and $Ey_t = \bar{y}$

or in words the unconditional expectation is the same as the mean. Hence first-order accurate approximations will not be helpful to approximate average risk premia (they would all be zero) or the average welfare associated with different monetary or fiscal policy that all give rise to the same nonstochastic steady state (all policies give the same welfare in the steady state).

Find $h_x(\bar{x},0)$ and $g_x(\bar{x},0)$

Start again from (7)

$$0 = F(x,\sigma)$$

= $E_t f(g(h(x,\sigma) + \eta \sigma \epsilon', \sigma), g(x,\sigma), h(x,\sigma) + \eta \sigma \epsilon', x)$

The first derivative of $F(x,\sigma)$ with respect to x evaluated at $(x,\sigma)=(\bar x,0)$

$$0 = F_x(\bar{x}, 0)$$

= $f_{y'}g_x h_x + f_y g_x + f_{x'}h_x + f_x$

Rearrange to

$$\left[\begin{array}{cc} f_{x'} & f_{y'} \end{array}\right] \left[\begin{array}{c} I \\ g_x \end{array}\right] h_x = -\left[\begin{array}{cc} f_x & f_y \end{array}\right] \left[\begin{array}{c} I \\ g_x \end{array}\right]$$

To solve this expression for h_x and g_x use a Schur decomposition. We describe this in detail in Appendix 4.14 of the Chapter. The Matlab program $gx_hx.m$ posted on our website with the materials for Chapter 4 performs this step.

Taking stock:

Thus far we have presented a first-order accurate approximation technique.

Now we can discuss how to implement this in the case of the EDEIR model.

It should be clear that an important element of the implementation is finding numerical values for the derivatives of the function $f(\cdot)$ at the non-stochastic steady state.

Our approach is to use the Symbolic Math Toolbox of Matlab to do most of the work. This has several advantages. One is that the room for error is much smaller and the other is that it eliminates any tedious linearization by hand.

To allow a Symbolic Math toolbox to implement the linearization it is convenient to specify functional forms for the utility, production, country premium, and adjustment cost functions. What will matter, given that we perform a first-order approximation to the equilibrium conditions, is at most the first and second derivatives of those functions.

[end of detour]

Functional Forms

Period utility function

$$U(c,h) = \frac{\left(c - \omega^{-1}h^{\omega}\right)^{1-\sigma} - 1}{1-\sigma}; \quad \omega > 1; \sigma > 0$$

Debt-elastic interest rate

$$p(d) = \psi \left(e^{d-\overline{d}} - 1 \right); \quad \psi > 0$$

Production function

$$F(k,h) = k^{\alpha} h^{1-\alpha}; \quad \alpha \in (0,1)$$

Adjustment cost function

$$\Phi(x) = \frac{\phi}{2}x^2; \quad \phi > 0$$

6 structural parameters: σ , ω , ψ , \bar{d} , α , ϕ

Characterizing the Deterministic Steady State

The steady state is the quadruple (d, k, c, h) satisfying

$$-\frac{U_h(c,h)}{U_c(c,h)} = AF_h(k,h)$$
 (4.11')

$$c + \delta k + (r^* + p(d))d = AF(k, h)$$
 (4.16')

$$1 = \beta(1 + r^* + p(d)) \tag{4.17'}$$

$$1 = \beta \left[AF_k(k,h) + 1 - \delta \right] \tag{4.18'}$$

Using the assumed functional forms the steady state becomes

$$h^{\omega - 1} = A(1 - \alpha)(k/h)^{\alpha}$$
 (4.11")

$$c + \delta k + (r^* + \psi(e^{d-\bar{d}}))d = A(k/h)^{\alpha}h$$
 (4.16")

$$1 = \beta(1 + r^* + \psi(e^{d - \bar{d}} - 1)) \tag{4.17}$$

$$1 = \beta \left[A\alpha(k/h)^{\alpha - 1} + 1 - \delta \right] \tag{4.18"}$$

This is a system of 4 equations in 4 unknown endogenous variables, (c, d, h, k) and 7 unknown parameters, $\omega, \alpha, \delta, r^*, \psi, \bar{d}, \beta$. (From (4.12), we know that in steady state A=1).

The model has 4 additional structural parameters, σ , ϕ , ρ , $\tilde{\eta}$, which do not enter the steady state but which also need to be assigned values to. In sum, there are 11 structural parameters to be calibrated. They are:

We assume that the time unit is one year and calibrate the model to the Canadian economy. This is (almost) the same calibration as Mendoza (1991).

σ	$1 + r^* = 1/\beta$	δ	α	ω	ϕ	ρ	σ_ϵ	$ar{d}$
2	1.04	0.1	0.32	1.455	0.028	0.42	0.0129	0.7442

Comment: Mendoza's model uses a different stationarity inducing device (an internal discount factor (IDF) model, which we discuss in detail in section 4.10.4) and hence that calibration does not assign a value to ψ . As in Schmitt-Grohé and Uribe (2003), we set ψ to ensure that the EDEIR model predicts the same volatility of the current-account-to-output ratio as the IDF model. The value that achieves that is

$$\psi = 0.000742$$

Given values for the structural parameters, the steady state can be computed using the Matlab program edeir_ss.m available on the book's Website. This yields

c	d	h	k
1.1170	0.7442	1.0074	3.3977

The Calibration Strategy

To obtain the values of the structural parameters shown in the previous slide (and Table 4.1 in the book), three types of restrictions were imposed:

Category a: restrictions using sources unrelated to the data that the model aims to explain, **4** parameters: $\sigma = 2$, $\delta = 0.1$, $r^* = 0.04$, $\beta = 1/(1 + r^*)$.

Category b: restrictions to match first moments of the data that the model aims to explain, **2** parameters: α , \overline{d}

labor share =0.68

trade-balance-to-output ratio =0.02

Category c: restrictions to match second moments of the data that the model aims to explain, **5** parameters: ω , ϕ , ψ , ρ , $\tilde{\eta}$. The second moments to be matched are: σ_y , σ_h , σ_i , $\sigma_{tb/y}$, corr(ln y_t , ln y_{t-1})

How to implement this calibration strategy? The restrictions in category a translate immediately into values for structural parameters. To go from the restrictions in categories b and c to the values of the structural parameters shown in Table 4.1, one proceeds as follows:

The labor share, s_h , is defined as

$$s_h = \frac{wh}{y}$$

In the decentralized economy we have

$$A_t F_2(k_t, h_t) = w_t$$

Thus, in the steady state:

$$s_h = \frac{AF_2(k,h)h}{AF(k,h)}$$

Using the assumed functional form for $F(\cdot)$ yields

$$s_h = (1 - \alpha)$$

Hence we have that $\alpha = 1 - s_h = 1 - 0.68$, that is,

$$\alpha = 0.32$$

Let θ denote the vector of structural parameters we still need to assign numerical values to, that is, let

$$heta \equiv \left[egin{array}{ccccc} \omega & ar{d} & \phi & \psi &
ho & ar{\eta} \end{array}
ight]$$

The calibration strategy described on the previous slide consists of the following steps:

Step 1: guess a value for each element of θ

Step 2: Given the guess for ω find h using (4.18")

$$\frac{k}{h} = \left(\frac{r^* + \delta}{A\alpha}\right)^{\frac{1}{\alpha - 1}}$$

in (4.11")

$$h = ((1 - \alpha)A(k/h)^{\alpha})^{1/(\omega - 1)}$$

With h in hand, find k and y, as k = (k/h)h and $y = A(k/h)^{\alpha}h$, respectively.

Step 3: Let s_{tb} denote the trade-balance-to-output ratio. In the steady state,

$$s_{tb} = \frac{r^*d}{y}$$

Solve this expression for *d*

$$d = \frac{s_{tb}y}{r^*}$$

Then use (4.17") and the restriction that $\beta(1+r^*)=1$ to obtain

$$\bar{d} = d$$

Step 4: Find c from (4.16")

$$c = y - \delta k - r^* d$$

Step 5: With the steady state values of (c, k, d, h) and all structural parameters in hand compute the model's predictions for

$$x(\theta) \equiv \left[\begin{array}{cccc} \sigma_y & \sigma_h & \sigma_i & \sigma_{tb/y} & corr(\ln y_t, \ln y_{t-1}) \end{array} \right]$$

Step 6: Find the distance

$$D = |x(\theta) - x^*|$$

where x^* denotes the vector of targeted moments observed in Canadian data

Step 7: Keep adjusting θ until D is less than some threshold D^* .

Comment: In general there does not exist a θ that makes the distance D exactly equal to zero. Hence one has to pick some threshold for the distance, D^* .

Before analyzing to which extend the SOE-RBC model can account for the observed Canadian business cycle, let's first study the predictions of this model regarding the prediction for which we build intuition in Chapters 2 and 3.

In particular, there we showed that

- the more persistent productivity shocks are, the more likely an initial deterioration of the trade balance will be.
- the more pronounced are capital adjustment costs, the smaller will be the initial trade balance deterioration in response to a positive and persistent productivity shock.
- the more persistent the technology shock is, the higher the volatility of consumption relative to output will be.

The next three figures show that these analytical results do indeed hold in the fully-fledged stochastic dynamic open economy real-business-cycle model.

Impact response of the trade balance as a function of the persistence of the technology shock

Notes. The figure shows the impact response of the trade balance in response to a one percent positive innovation in productivity predicted by the EDEIR model presented in Chapter 4. The response of the trade balance is measured in units of steady-state output. All parameters other than ρ take the values shown in Table 4.1. The open circle indicates the baseline value of ρ .

Comments: The figure shows that the more persistent the productivity shock is the smaller the impact response of the trade balance will be. For $\rho > 0.3$, the response of the trade balance is negative, confirming the analytical results of chapters 2 and 3.

Impact response of the trade balance as a function of capital adjustment costs

Notes. The figure shows the impact response of the trade balance in response to a one percent positive innovation in productivity as a function of the size of capital adjustment costs, ϕ , predicted by the EDEIR model presented in Chapter 4. The response of the trade balance is measured in units of steady-state output. All parameters other than ρ take the values shown in Table 4.1. The open circle indicates the baseline ϕ value.

Comments: The figure shows that the higher capital adjustment costs are the larger the impact response of the trade balance will be. For $\phi > 0.06$, the response of the trade balance turns positive, confirming the analytical results of chapters 2 and 3.

Relative volatility of consumption as a function of the persistence of the stationary technology shock

Notes. The relative standard deviation shown is that implied by the EDEIR model presented in Chapter 4. All parameters other than ρ take the values shown in Table 4.1. The open circle indicates the baseline value of ρ .

Comments: The figure shows that the more persistent stationary productivity shocks are, the higher the standard deviation of consumption relative to the standard deviation of output will be, just as derived analytically in the permanent income model of Chapter 2.

SOE RBC model

We now turn an analysis of second moments predicted by the SOE-RBC model and compare them to the Canadian data.

Some Empirical Regularities of the Canadian Economy

Why Canada? Because it is a small open economy and it is the economy studied in Mendoza (1991).

Variable	Canadian Data				
	σ_{x_t}	$\rho_{x_t,x_{t-1}}$	$ ho_{x_t,GDP_t}$		
y	2.8	0.61	1		
c	2.5	0.7	0.59		
i	9.8	0.31	0.64		
h	2	0.54	0.8		
$\frac{tb}{y}$	1.9	0.66	-0.13		

Source: Mendoza AER, 1991. Annual data. Log-quadratically detrended.

Comments

- Volatility ranking: $\sigma_{tb/y} < \sigma_c < \sigma_y < \sigma_i$.
- Consumption, investment, and hours are procyclical.
- The trade-balance-to-output ratios is countercyclical.
- All variables considered are positively serially correlated.
- Similar stylized facts emerge from other small developed countries (see, e.g., chapter 1).

Empirical and Theoretical Second Moments

	Canadian Data								
	1946 to 1985		1960 to 2011			Model			
	$\mid \sigma_{x_t} ho_{x_t, x_{t-1}} ho_{x_t, y_t}$		σ_{x_t}	$\rho_{x_t,x_{t-1}}$	ρ_{x_t,y_t}	σ_{x_t}	$\rho_{x_t,x_{t-1}}$	ρ_{x_t,y_t}	
y	2.8	0.6	1	3.7	0.9	1	3.1	0.6	1
c	2.5	0.7	0.6	2.2	0.7	0.6	2.7	8.0	8.0
i	9.8	0.3	0.6	10.3	0.7	8.0	9.0	0.1	0.7
h	2.0	0.5	8.0	3.6	0.7	8.0	2.1	0.6	1
$\frac{\underline{t}\underline{b}}{\underline{c}\underline{a}}$	1.9	0.7	-0.1	1.7	0.8	0.1	1.8	0.5	-0.04
$\frac{\frac{y}{ca}}{y}$							1.4	0.3	0.05

Comments:

- \bullet σ_h , σ_i , σ_y , $\sigma_{tb/y}$, and $\rho_{y_t,y_{t-1}}$ were targeted by calibration, so no real test here.
- model correctly places σ_c below σ_y and σ_i and above σ_h and $\sigma_{tb/y}$.
- ullet model correctly makes tb/y countercyclical.
- model overestimates the correlations of hours and consumption with output. (this is due to the GHH preferences where in the log-linearized model we get $\omega \hat{h}_t = \hat{y}_t$)

Response to a Positive Technology Shock

Source: Schmitt-Grohé and Uribe (JIE, 2003)

Comments:

- Output, consumption, investment, and hours expand.
- The trade balance deteriorates.

4.9 The Complete Asset Markets (CAM) Model

$$E_{t}q_{t,t+1}b_{t+1} = b_{t} + y_{t} - c_{t} - i_{t} - \Phi(k_{t+1} - k_{t}),$$

$$\lim_{j \to \infty} E_{t}q_{t,t+j}b_{t+j} \ge 0,$$

$$q_{t,t+j} = q_{t,t+1}q_{t+1,t+2} \cdots q_{t+j-1,t+j},$$

$$\lambda_{t}q_{t,t+1} = \beta\lambda_{t+1}.$$

$$\lambda_{t}^{*}q_{t,t+1} = \beta\lambda_{t+1}^{*}.$$

$$\frac{\lambda_{t+1}}{\lambda_{t}} = \frac{\lambda_{t+1}^{*}}{\lambda_{t}^{*}}.$$

$$\lambda_{t} = \xi\lambda_{t}^{*},$$

$$\lambda_{t} = \psi_{\Delta},$$

Calibration: Set ψ_4 so that steady-state consumption equals steady-state consumption in the model with Uzawa preferences.

The SOE-RBC Model With Complete Asset Markets: Predicted Second Moments

	σ_{x_t}		$\overline{ ho_{x_t,x_{t-1}}}$		ρ_{x_t,GDP_t}	
variable	CAM	EDEIR	CAM	EDEIR	CAM	EDĚIR
\overline{y}	3.1	3.1	0.61	0.62	1.00	1.00
c	1.9	2.71	0.61	0.78	1.00	0.84
i	9.1	9.0	0.07	0.07	0.66	0.67
h	2.1	2.1	0.61	0.62	1.00	1.00
$\frac{tb}{u}$	1.6	1.78	0.39	0.51	0.13	-0.04
$\frac{y}{\underline{ca}}$	3.1	1.45	-0.07	0.32	-0.49	0.05

Note. Standard deviations are measured in percentage points. The columns labeled CAM are produced with the Matlab program <code>cam_run.m</code> available at

http://www.columbia.edu/~mu2166/closing.htm.

Impulse Response to a Unit Technology Shock One-Bond Versus Complete Asset Market Models

Dash-diamond, EDEIR model. Dash-dotted, complete-asset-market model.

4.10 Alternative Ways to Induce Stationarity

4.10.1 The Internal Debt-Elastic Interest Rate (IDEIR) Model

$$r_t = r + p(d_t),$$

The Euler equation becomes

$$\lambda_t = \beta [1 + r + p(d_t) + p'(d_t)d_t] E_t \lambda_{t+1}$$
$$p(d) = \psi_2 \left(e^{d-\bar{d}} - 1 \right),$$

Calibration: Same as in the external case. Note that the steady-state value of debt is no longer equal to \bar{d} . Instead, d solves

$$(1+d)e^{d-\bar{d}} = 1 \Rightarrow d = 0.4045212.$$

Internal Debt-Elastic Interest-Rate

Variable	σ_{x_t}	$\overline{\rho_{x_t,x_{t-1}}}$	ρ_{x_t,GDP_t}
\overline{y}	3.1	0.62	1
c	2.5	0.76	0.89
i	9	0.068	0.68
h	2.1	0.62	1
tb/y	1.6	0.43	-0.036
ca/y	1.4	0.31	0.041

Internal Debt-Elastic Interest Rate Premium Response to a Positive Technology Shock

Comment: The economy with internal debt-elastic interest rate premium behaves very simularly to the economies featuring other stationarity inducing devices.

4.10.2 The Portfolio Adjustment Cost (PAC) Model

$$d_t = (1 + r_{t-1})d_{t-1} - y_t + c_t + i_t + \Phi(k_{t+1} - k_t) + \frac{\psi_3}{2}(d_t - \bar{d})^2$$

$$\lambda_t[1 - \psi_3(d_t - \bar{d})] = \beta(1 + r_t)E_t\lambda_{t+1}$$

Calibration

β	$ar{d}$	ψ_{3}	r
0.96	0.7442	0.00074	$eta^{-1}-1$

4.10.3 The External Discount Factor (EDF) Model

$$\theta_{t+1} = \beta(\tilde{c}_t, \tilde{h}_t)\theta_t \qquad t \ge 0,$$

$$\theta_0 = 1,$$

where \tilde{c}_t and \tilde{h}_t denote per capita consumption and hours worked.

$$\lambda_t = \beta(\tilde{c}_t, \tilde{h}_t)(1 + r_t)E_t\lambda_{t+1}$$

$$\lambda_t = U_c(c_t, h_t)$$

$$-U_h(c_t, h_t) = \lambda_t A_t F_h(k_t, h_t)$$

$$\lambda_t [1 + \Phi'_t] = \beta(\tilde{c}_t, \tilde{h}_t)E_t\lambda_{t+1}[A_{t+1}F_k(k_{t+1}, h_{t+1})$$

$$+ 1 - \delta + \Phi'_{t+1}]$$

In Equilibrium

$$c_t = \tilde{c}_t$$
 and $h_t = \tilde{h}_t$

4.12 Inducing Stationarity: Quantitative Comparison of Alternative Methods

Impulse Response to a Unit Technology Shock in Models 1 Through 5

Source: Schmitt-Grohé and Uribe (JIE, 2003). Note. Solid line, endogenous discount factor. Squares, endogenous discount factor without internalization. Dashed line, Debt-elastic interest rate. Dash-dotted line, Portfolio adjustment cost. Dotted line, complete asset markets. Circles, No stationarity inducing elements.

Observed and Implied Second Moments

	Data	Model 1	Model 1a	Model 2	Model 3	Model 4		
Standa	ard Devia	ations						
\overline{y}	2.8	3.1	3.1	3.1	3.1	3.1		
$\overset{o}{c}$	2.5	2.3	2.3	2.7	2.7	1.9		
i	9.8	9.1	9.1	9	9	9.1		
h	2	2.1	2.1	2.1	2.1	2.1		
tb/y	1.9	1.5	1.5	1.8	1.8	1.6		
ca/y		1.5	1.5	1.5	1.5			
	Correlati	ions						
\overline{y}	0.61	0.61	0.61	0.62	0.62	0.61		
$\overset{o}{c}$	0.7	0.7	0.7	0.78	0.78	0.61		
i	0.31	0.07	0.07	0.069	0.069	0.07		
h	0.54	0.61	0.61	0.62	0.62	0.61		
tb/y	0.66	0.33	0.32	0.51	0.5	0.39		
ca/y		0.3	0.3	0.32	0.32			
	Correlations with Output							
\overline{c}	0.59	0.94	0.94	0.84	0.85	1		
i	0.64	0.66	0.66	0.67	0.67	0.66		
h	0.8	1	1	1	1	1		
tb/y	-0.13	-0.012	-0.013	-0.044	-0.043	0.13		
ca/y		0.026	0.025	0.05	0.051			

Source: Schmitt-Grohé and Uribe (JIE, 2003)

Note. Standard deviations are measured in percent per year.