指数·対数関数

2023.05.22

復習 (三角関数)

振幅周期位相

課題 0522-1 問題のアプリを動かして問いに答えよ.

指数関数

● a は正の定数, x は変数

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$										

- aは正の定数, xは変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2									

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oxed{y}$	2	4								

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8							

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16						

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32					

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

							8	9	10
$oldsymbol{y}$	2	4	8	16	32	64			

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

							7	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128		

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

									10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

									9	
$oxed{y}$	2	4	8	16	32	64	128	256	512	

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

										10
$oxed{y}$	2	4	8	16	32	64	128	256	512	1024

- a は正の定数, x は変数
- aを底, xを(べき)指数という.

$$(例) y = 2^x$$

							7			
y	2	4	8	16	32	64	128	256	512	1024

ullet x が正の整数以外の場合でも a^x の値を定める

 $oldsymbol{\circ}$ 元になるのは,指数の性質(指数法則) a^3a^2

• 元になるのは,指数の性質(指数法則) $a^3a^2=(aaa)(aa)$

$$a^3a^2 = (aaa)(aa) = a^5 = a^{3+2}$$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算)

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算)

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算) $(ab)^3$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算) $(ab)^3=(ab)(ab)(ab)$

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算) $(ab)^3=(ab)(ab)(ab)(ab)=a^3b^3$

• 元になるのは、指数の性質(指数法則)

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算) $(ab)^3=(ab)(ab)(ab)=a^3b^3$

$$(1) \quad a^p a^q = a^{p+q}$$

$$(2) \quad (a^p)^q = a^{pq}$$

$$(3) (ab)^p = a^p b^p$$

(指数法則)

● 元になるのは、指数の性質(指数法則)

$$a^3a^2=(aaa)(aa)=a^5=a^{3+2}$$
 (指数の足し算) $(a^3)^2=(aaa)(aaa)=a^6=a^{3 imes 2}$ (指数の掛け算) $(ab)^3=(ab)(ab)(ab)=a^3b^3$

$$(1) \quad a^p a^q = a^{p+q}$$

$$(2) \ \ (a^p)^q = a^{pq}$$

$$(3) (ab)^p = a^p b^p$$

(指数法則)

課題 0522-2 指数法則の具体例を書け

• 指数法則が成り立つように正の整数以外の指数を定める

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q}$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad p=1, \; q=0$ とすると

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $egin{aligned} ullet a^p a^q &= a^{p+q} & p = 1, \ q = 0 ext{ とすると} \ a^1 a^0 &= a^{1+0} \end{aligned}$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ $a\ a^0=a$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ れ $a^0=a$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ な $a^0=a$
 - aは0でないから,両辺をaで割って

$$a^{0} = 1$$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^p a^q = a^{p+q}$ $p=1,\ q=0$ とすると $a^1 a^0 = a^{1+0}$ $a a^0 = a$

$$a^0 = 1$$

(例)
$$2^0 = , 3^0 = , 10^0 =$$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ な $a^0=a$

$$a^0 = 1$$

(例)
$$2^0 = 1$$
, $3^0 = 10^0 = 10^0$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ な $a^0=a$

$$a^0 = 1$$

(例)
$$2^0 = 1$$
, $3^0 = 1$, $10^0 =$

- 指数法則が成り立つように正の整数以外の指数を定める
- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ $p=1,\ q=0$ とすると $a^1a^0=a^{1+0}$ な $a^0=a$

a は 0 でないから,両辺を a で割って $a^0=1$

$$a = 1$$

(例)
$$2^0 = 1$$
, $3^0 = 1$, $10^0 = 1$

• $a \neq 0$ とする.

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q}$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると

- $a \neq 0$ とする.
- $egin{aligned} ullet a^p a^q &= a^{p+q} \quad q = -p$ とすると $a^p a^{-p} &= a^{p+(-p)} \end{aligned}$

- $a \neq 0$ とする.
- $egin{aligned} ullet a^p a^q &= a^{p+q} & q = -p$ とすると $a^p a^{-p} &= a^{p+(-p)} &= a^0 = 1 \end{aligned}$

- $a \neq 0$ とする.
- $a^pa^q=a^{p+q}$ q=-pとすると $a^pa^{-p}=a^{p+(-p)}=a^0=1$ $a^pa^{-q}=1$

- $a \neq 0$ とする.
- $egin{aligned} ullet a^p a^q &= a^{p+q} & q = -p$ とすると $a^p a^{-p} &= a^{p+(-p)} = a^0 = 1 \ a^p a^{-q} &= 1 \end{aligned}$

両辺を a^p で割って

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q} = 1$

両辺を a^p で割って $a^{-p} = \frac{1}{n}$

$$a^{-p}=rac{1}{a^p}$$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q}=1$

両辺を a^p で割って $a^{-p} = \frac{1}{p}$

$$a^{-p}=rac{1}{a^p}$$

(例)
$$2^{-1} = 3^{-2} = =$$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q}=1$

両辺を a^p で割って $a^{-p} = \frac{1}{a^p}$

$$a^{-p}=rac{1}{a^p}$$

(例)
$$2^{-1} = \frac{1}{2}$$
, $3^{-2} = =$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q}=1$

両辺を a^p で割って $a^{-p} = \frac{1}{a^p}$

$$a^{-p} = rac{1}{a^p}$$

(例)
$$2^{-1} = \frac{1}{2}$$
, $3^{-2} = \frac{1}{3^2} =$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q}=1$

両辺を a^p で割って $a^{-p} = \frac{1}{a^p}$

$$a^{-p} = rac{1}{a^p}$$

(例)
$$2^{-1} = \frac{1}{2}$$
, $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

- $a \neq 0$ とする.
- $ullet a^p a^q = a^{p+q} \quad q = -p$ とすると $a^p a^{-p} = a^{p+(-p)} = a^0 = 1$ $a^{p}a^{-q}=1$

両辺を
$$a^p$$
で割って $a^{-p}=rac{1}{a^p}$

(例)
$$2^{-1} = \frac{1}{2}$$
, $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

課題 0522-3 $5^0, 4^{-1}, 2^{-2}, 3^{-3}$ の値を求めよ.

x	1	2	3	4	15	6	7	8	9	10
$oldsymbol{y}$										

$oxed{x}$	-10	-9	-8	7	-6	-5	-4	-3	-2	-1	0
$oldsymbol{y}$											

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

$oldsymbol{x}$	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
$oldsymbol{y}$											

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
$oxed{y}$											1

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

$oxed{x}$	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
y										1 2	1

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
71									1	1	1
$\mid g \mid$									4	2	_

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

\boldsymbol{x}	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
71								1	1	1	1
$\mid \boldsymbol{g} \mid$								8	$\overline{4}$	2	

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	- 5	-4	-3	-2	-1	0
71							1	1	1	1	1
$\mid \boldsymbol{g} \mid$							16	8	4	2	1

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
71						1	1	1	1	1	1
$\mid \boldsymbol{g} \mid$						32	16	8	$\overline{4}$	2	

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
71					1	1	1	1	1	1	1
$\mid \boldsymbol{g} \mid$					64	32	16	8	4	2	

x	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	5	-4	-3	-2	-1	0
71				1	1	1	1	1	1	1	1
$\mid g \mid$				128	64	32	16	8	4	2	1

x	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	- 5	-4	-3	-2	-1	0
71			1	1	1	1	1	1	1	1	1
$\mid \boldsymbol{g} \mid$			256	128	64	32	16	8	4	2	

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10										
71		1	1	_1_	1	1	1	1	1	1	1
$\mid g \mid$		512	256	128	64	32	16	8	4	2	┸

$oxed{x}$	1	2	3	4	5	6	7	8	9	10
$oldsymbol{y}$	2	4	8	16	32	64	128	256	512	1024

x	-10	-9	-8	-7	-6	- 5	-4	-3	-2	-1	0
$oldsymbol{y}$	1	1	1	1	1	1	1	1	1	1	1
	1024	512	256	128	64	32	16	8	4	2	

指数関数のグラフ

- アプリ「指数関数のグラフ」を用いる
 - (1) 下にある点を $y=2^x$ の上に動かそう.
 - (2) $y=2^x$ のグラフをかこう.

指数関数のグラフ

- アプリ「指数関数のグラフ」を用いる
 - (1) 下にある点を $y=2^x$ の上に動かそう.
 - (2) $y=2^x$ のグラフをかこう.

課題 0522-4 2^{-2} , 2^{-1} , 2^{0} , 2^{1} , 2^{2} , 2^{3} の値を書け

xが整数でない場合 (グラフから)

xが整数でない場合 (グラフから)

xが整数でない場合 (グラフから)

課題 0522-5 $2^{0.5}, 2^{1.5}, 2^{2.5}$ はどうなりそうか

x が整数でない場合 (グラフから)

課題 0522-5 $2^{0.5}, 2^{1.5}, 2^{2.5}$ はどうなりそうか

$$2^{0.5} = \sqrt{2}$$

$$2^{1.5} = 2\sqrt{2}$$

$$2^{2.5}=4\sqrt{2}$$

$$ullet$$
 $(a^p)^q=a^{pq}$ で, $p=0.5,\;q=2$ とする $(2^{0.5})^2$

$$ullet$$
 $(a^p)^q=a^{pq}$ で, $p=0.5,\;q=2$ とする $(2^{0.5})^2=a^{0.5 imes 2}$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $ullet (a^p)^q = a^{pq}$ で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は 2 乗すると 2 になる数だから,

 $ullet (a^p)^q = a^{pq}$ で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm\sqrt{2}$ のどちらか

 $ullet (a^p)^q = a^{pq}$ で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm \sqrt{2}$ のどちらか $2^{0.5}>0$ と決めると

 $ullet (a^p)^q = a^{pq}$ で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は 2 乗すると 2 になる数だから, $\pm \sqrt{2}$ のどちらか $2^{0.5}>0$ と決めると

$$2^{0.5}=\sqrt{2}$$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm \sqrt{2}$ のどちらか $2^{0.5}>0$ と決めると

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は 2 乗すると 2 になる数だから, $\pm \sqrt{2}$ のどちらか $2^{0.5}>0$ と決めると

• $2^{1.5}$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm\sqrt{2}$ のどちらか

$$2^{0.5} > 0$$
 と決めると

$$egin{array}{c|c} \mathbf{2^{0.5}} = \sqrt{2} &$$
または $\mathbf{2^{rac{1}{2}}} = \sqrt{2} \end{array}$

 \bullet $2^{1.5} = 2^{1+0.5}$

$$ullet (a^p)^q=a^{pq}$$
で, $p=0.5,\;q=2$ とする $(2^{0.5})^2=a^{0.5 imes 2}=2^1=2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm\sqrt{2}$ のどちらか

$$2^{0.5} > 0$$
 と決めると

$$\left| oldsymbol{2^{0.5}} = \sqrt{2}
ight|$$
 または $\left| oldsymbol{2^{rac{1}{2}}} = \sqrt{2}
ight|$

$$\bullet \ 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5}$$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm \sqrt{2}$ のどちらか

$$2^{0.5}>0$$
と決めると

$$oxed{2^{0.5}=\sqrt{2}}$$
 または $oxed{2^{rac{1}{2}}=\sqrt{2}}$

$$\bullet \ 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5} = 2\sqrt{2}$$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm \sqrt{2}$ のどちらか

$$2^{0.5} > 0$$
 と決めると

$$ullet 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5} = 2\sqrt{2}$$

•
$$2^{2.5}$$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm\sqrt{2}$ のどちらか

$$2^{0.5} > 0$$
 と決めると

$$oxed{2^{0.5}=\sqrt{2}}$$
 または $oxed{2^{rac{1}{2}}=\sqrt{2}}$

$$ullet 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5} = 2\sqrt{2}$$

$$\bullet$$
 $2^{2.5} = 2^{2+0.5}$

$$ullet (a^p)^q=a^{pq}$$
で, $p=0.5,\;q=2$ とする $(2^{0.5})^2=a^{0.5 imes 2}=2^1=2$

 $2^{0.5}$ は2乗すると2になる数だから, $\pm\sqrt{2}$ のどちらか

$$2^{0.5}>0$$
と決めると

$$oxed{2^{0.5}=\sqrt{2}}$$
 または $oxed{2^{rac{1}{2}}=\sqrt{2}}$

$$ullet 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5} = 2\sqrt{2}$$

$$\bullet \ 2^{2.5} = 2^{2+0.5} = 2^2 \cdot 2^{0.5}$$

$$ullet (a^p)^q = a^{pq}$$
で, $p=0.5,\; q=2$ とする $(2^{0.5})^2 = a^{0.5 imes 2} = 2^1 = 2$

 $2^{0.5}$ は 2 乗すると 2 になる数だから, $\pm \sqrt{2}$ のどちらか

$$2^{0.5} > 0$$
 と決めると

$$oxed{2^{0.5}=\sqrt{2}}$$
 または $oxed{2^{rac{1}{2}}=\sqrt{2}}$

$$ullet \ 2^{1.5} = 2^{1+0.5} = 2^1 \cdot 2^{0.5} = 2\sqrt{2}$$

$$ullet 2^{2.5} = 2^{2+0.5} = 2^2 \cdot 2^{0.5} = 4\sqrt{2}$$

$$(1) \quad a^p a^q = a^{p+q}$$

$$(2) (a^p)^q = a^{pq}$$

$$egin{aligned} (1) & a^p a^q = a^{p+q} \ (2) & (a^p)^q = a^{pq} \ (3) & (ab)^p = a^p b^p \end{aligned} \ \ (a>0,\ b>0)$$

$$(1) \quad a^p a^q = a^{p+q}$$

$$egin{aligned} (1) & a^p a^q = a^{p+q} \ (2) & (a^p)^q = a^{pq} \ (3) & (ab)^p = a^p b^p \end{aligned} \ \ (a>0,\ b>0)$$

$$(3) \quad (ab)^p = a^p b^p$$

 $\bullet a^{\frac{1}{3}}$ は3乗するとaになる正の数

$$(1) \ \ a^p a^q = a^{p+q}$$

- $egin{aligned} (1) & a^p a^q = a^{p+q} \ (2) & (a^p)^q = a^{pq} \ (3) & (ab)^p = a^p b^p \end{aligned} \ \ (a>0,\ b>0)$

ullet $a^{\frac{1}{3}}$ は3乗するとaになる正の数

これを $\sqrt[3]{a}$ と書く(3乗根)

$$(1) \quad a^p a^q = a^{p+q}$$

- $egin{aligned} (1) & a^p a^q = a^{p+q} \ (2) & (a^p)^q = a^{pq} \ (3) & (ab)^p = a^p b^p \end{aligned} \ \ (a>0,\ b>0)$

 $\bullet \ a^{\frac{1}{3}}$ は3乗するとaになる正の数

これを $\sqrt[3]{a}$ と書く(3乗根)

$$2^{\frac{1}{3}} = \sqrt[3]{2}$$

$$a^pa^q=a^{p+q}$$

- $egin{aligned} (1) & a^p a^q = a^{p+q} \ (2) & (a^p)^q = a^{pq} \ (3) & (ab)^p = a^p b^p \end{aligned} \ \ (a>0,\ b>0)$

 $\bullet \ a^{\frac{1}{3}}$ は3乗するとaになる正の数

これを ∛ a と書く (3 乗根)

$$2^{rac{1}{3}}=\sqrt[3]{2}$$

課題 0522-6 $3^{\frac{1}{2}}$, $5^{\frac{1}{2}}$, $4^{\frac{1}{3}}$, $8^{\frac{1}{3}}$ を求めよ

 $(1) 8^{\frac{2}{3}}$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{rac{1}{2}})^{rac{1}{3}}$$

$$(1) 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}}$$

$$(1) 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}} = 2^1 = 2^1$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}} = 2^1 = 2$$

$$(3) (8^{\frac{1}{6}})^{-2}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}} = 2^1 = 2$$

$$(3) (8^{\frac{1}{6}})^{-2} = ((2^3)^{\frac{1}{6}})^{-2}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}} = 2^1 = 2^1$$

$$(3) (8^{\frac{1}{6}})^{-2} = ((2^3)^{\frac{1}{6}})^{-2} = 2^{3 \times \frac{1}{6} \times (-2)}$$

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{rac{1}{2}})^{rac{1}{3}} = ((2^6)^{rac{1}{2}})^{rac{1}{3}} = 2^{6 imes rac{1}{2} imes rac{1}{3}} = 2^1 = 2$$

$$(3) \ (8^{\frac{1}{6}})^{-2} = ((2^3)^{\frac{1}{6}})^{-2} = 2^{3 \times \frac{1}{6} \times (-2)} = 2^{-1}$$

指数の計算 (TextP188)

$$(1) 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{rac{1}{2}})^{rac{1}{3}} = ((2^6)^{rac{1}{2}})^{rac{1}{3}} = 2^{6 imes rac{1}{2} imes rac{1}{3}} = 2^1 = 2^1$$

$$(3) \ (8^{\frac{1}{6}})^{-2} = ((2^3)^{\frac{1}{6}})^{-2} = 2^{3 imes \frac{1}{6} imes (-2)} = 2^{-1} = rac{1}{2}$$

指数の計算 (TextP188)

$$(1) \ 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4$$

$$(2) \ (64^{\frac{1}{2}})^{\frac{1}{3}} = ((2^6)^{\frac{1}{2}})^{\frac{1}{3}} = 2^{6 imes \frac{1}{2} imes \frac{1}{3}} = 2^1 = 2$$

$$(3) \ (8^{\frac{1}{6}})^{-2} = ((2^3)^{\frac{1}{6}})^{-2} = 2^{3 imes \frac{1}{6} imes (-2)} = 2^{-1} = rac{1}{2}$$

課題 0522-7 計算せよ

TextP188

$$[1]\ 32^{rac{2}{5}}$$

$$[3] (\sqrt[2]{4})^{\frac{1}{2}}$$

$$[2] \sqrt[3]{27}$$

$$[4] (\sqrt[2]{4})^{-\frac{1}{2}}$$

指数関数のグラフの特徴

課題 0522-8 $y=2^x,\ y=3^x,\ y=(\frac{1}{2})^x,\ y=1^x$ のグラフをかき、() に当てはまる言葉を入れよ.

ullet 指数関数 $y=a^x$ の特徴

- [1] y の値はいつでも (
- [2] a > 1 のとき,グラフは右()
- [3] 0 < a < 1 のとき,グラフは右 ()
- $[4] \ a = 1$ のとき,グラフは ()

$$(1) 16^x = 8$$

$$(2) 8^x = 2^{x+1}$$

$$(1) 16^x = 8$$
$$(2^4)^x = 2^3$$

$$(2) \ 8^x = 2^{x+1}$$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$(2) \ 8^x = 2^{x+1}$$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$4x = 3$$

(2)
$$8^x = 2^{x+1}$$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$4x=3$$

よって $x=rac{3}{4}$

(2)
$$8^x = 2^{x+1}$$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$4x=3$$

よって $x=rac{3}{4}$

$$(2) 8^x = 2^{x+1}$$
$$(2^3)^x = 2^{x+1}$$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$4x=3$$

よって $x=rac{3}{4}$

(2)
$$8^x = 2^{x+1}$$

 $(2^3)^x = 2^{x+1}$
 $2^{3x} = 2^{x+1}$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

$$4x=3$$

よって $x=rac{3}{4}$

$$(2) \ 8^x = 2^{x+1}$$
 $(2^3)^x = 2^{x+1}$ $2^{3x} = 2^{x+1}$ 指数を等しいとおいて $3x = x+1$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

指数を等しいとおいて

$$4x=3$$

よって $x=rac{3}{4}$

$$(2) 8^{x} = 2^{x+1}$$

$$(2^{3})^{x} = 2^{x+1}$$

$$2^{3x} = 2^{x+1}$$

$$3x=x+1$$

よって $x=rac{1}{2}$

(1)
$$16^x = 8$$

 $(2^4)^x = 2^3$
 $2^{4x} = 2^3$

指数を等しいとおいて

$$4x=3$$

よって $x=rac{3}{4}$

課題 0522-9 次の方程式を解け

$$[1] \ 8^x = \frac{1}{32}$$

(2)
$$8^x = 2^{x+1}$$

 $(2^3)^x = 2^{x+1}$
 $2^{3x} = 2^{x+1}$

指数を等しいとおいて

$$3x=x+1$$

よって $x=rac{1}{2}$

TextP191

$$[2] 81^x = 3^{3-2x}$$

対数関数

$$ullet y = \log_a x$$

• $y = \log_a x$ aを底,xを真数

• $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\square}=x$ となる \square のこと

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}}=x$ となる \boxed{y} のこと

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}}=x$ となる \boxed{y} のこと

例)
$$y = \log_3 9$$

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}} = x$ となる \boxed{y} のこと
- 例) $y = \log_3 9$ 3 = 9 となる y のこと

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}} = x$ となる \boxed{y} のこと

例)
$$y=\log_3 9$$
 3 $y=9$ となる y のこと $3^2=9$ だから

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}} = x$ となる \boxed{y} のこと

例)
$$y=\log_3 9$$
 3 $y=9$ となる y のこと $3^2=9$ だから $y=\log_3 9=2$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

$$(例) y = \log_2 16$$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

(例)
$$y = \log_2 16 \iff 2^y = 16$$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

(例)
$$y = \log_2 16 \iff 2^y = 16 = 2^4$$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

(例)
$$y = \log_2 16 \Longleftrightarrow 2^y = 16 = 2^4$$
 $y = 4$ となるから $\log_2 16 = 4$

$$ullet | y = \log_a x \Longleftrightarrow a^y = x$$

$$(例) \ y = \log_2 16 \Longleftrightarrow 2^y = 16 = 2^4$$
 $y = 4$ となるから $\log_2 16 = 4$

課題 0522-10 次の値を求めよ.

$$[1] \log_2 8 \qquad [2] \log_3 3 \qquad [3] \log_5 rac{1}{5} \quad [4] \log_2 rac{1}{4}$$

- $(1) \log_a b + \log_a c = \log_a(bc)$
- $(2) \, \log_a b \log_a c = \log_a \frac{b}{c}$
- (3) $\log_a b^p = p \log_a b$

$$(1) \log_a b + \log_a c = \log_a (bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \, \log_a b - \log_a c = \log_a \frac{b}{c}$$

(3)
$$\log_a b^p = p \log_a b$$

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$(2) \, \log_a b - \log_a c = \log_a \frac{b}{c}$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$(2) \, \log_a b - \log_a c = \log_a \frac{b}{c}$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

$$[1]$$
 (1) の例 $[2]$ (2) の例 $[3]$ (3) の例

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

証明 (1)

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

証明 $(1) \log_a b = x, \log_a c = x$ とおくと

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

証明 $(1) \log_a b = x, \log_a c = x$ とおくと $a^x = b, a^y = c$

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

証明 $(1) \log_a b = x, \log_a c = x$ とおくと $a^x = b, a^y = c$ $a^{x+y} = a^x a^y = bc \, \mathcal{L} \, \mathcal{L$

$$(1) \log_a b + \log_a c = \log_a(bc)$$

$$\log_4 2 + \log_4 8 = \log_4 16 = 2$$

$$(2) \log_a b - \log_a c = \log_a \frac{b}{c}$$

$$\log_3 15 - \log_3 5 = \log_3 \frac{15}{5} = 1$$

(3)
$$\log_a b^p = p \log_a b$$

$$\log_2 4^5 = 5 \log_2 2 = 5$$

課題 0522-11 対数法則の具体例を書け

[1] (1) の例 [2] (2) の例 [3] (3) の例

証明 $(1) \log_a b = x, \log_a c = x$ とおくと $a^x = b, a^y = c$ $a^{x+y}=a^xa^y=bc$ となるから $x+y=\log_a bc$

$$(1)\,\log_{10}5 + \log_{10}2$$

$$(1) \log_{10} 5 + \log_{10} 2$$
 与式 $= \log_{10} (5 \times 2)$

$$(1)\,\log_{10}5 + \log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10$$

$$(1)\,\log_{10}5 + \log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

 $(1)\,\log_{10}5 + \log_{10}2$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

(2) $\log_2 12 - \log_2 3$

(1)
$$\log_{10} 5 + \log_{10} 2$$
 与式 = $\log_{10} (5 \times 2) = \log_{10} 10 = 1$

$$(2) \log_2 12 - \log_2 3$$
 与式 = $\log_2(\frac{12}{3})$

$$(1) \log_{10} 5 + \log_{10} 2$$
 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$

(2)
$$\log_2 12 - \log_2 3$$
 与式 = $\log_2 (\frac{12}{3}) = \log_2 4$

$$(1)\,\log_{10}5 + \log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

$$(2)\,\log_2 12 - \log_2 3$$

与式 =
$$\log_2(\frac{12}{3}) = \log_2 4 = 2$$

- $(1) \log_{10} 5 + \log_{10} 2$ 与式 $= \log_{10} (5 \times 2) = \log_{10} 10 = 1$
- (2) $\log_2 12 \log_2 3$ 与式= $\log_2 (\frac{12}{3}) = \log_2 4 = 2$
- $(3) \ 2 \log_3 4 + \log_3 4 \log_3 8$

- (1) $\log_{10} 5 + \log_{10} 2$ 与式 = $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$
- (3) $2\log_3 4 + \log_3 4 \log_3 8$ 与式= $\log_3 4^2 + \log_3 4 \log_3 8$

- $(1) \log_{10} 5 + \log_{10} 2$ 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$

- $(1) \log_{10} 5 + \log_{10} 2$ 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$

対数の計算 (課題)

課題 0522-12 次の計算をせよ.

TextP192

$$[1] \ 2\log_4 3 - \log_4 36$$

$$[2]\ \log_3\frac{3}{4} + \log_324 - \log_32$$

[3]
$$\log_3 18 + \log_3 8 - 4 \log_3 2$$

$$[4] \log_3 4 + \log_3 18 - 3 \log_3 2$$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1 = 0$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1 = 0$
- $ullet \log_a a$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$

- $y = \log_a x \iff a^y = x$
- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- 底 a の条件は

•
$$y = \log_a x \iff a^y = x$$

- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- ullet 底aの条件は a>0,a+1

•
$$y = \log_a x \iff a^y = x$$

- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- ullet 底a の条件は a>0,a+1
- 真数 x の条件は

•
$$y = \log_a x \iff a^y = x$$

- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- ullet 底a の条件は a>0,a+1
- 真数xの条件は x>0

$$ullet y = \log_a x \Longleftrightarrow a^y = x$$

- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- ullet 底a の条件は a>0,a+1
- ullet 真数xの条件は x>0
- ullet 対数 $y = \log_a x$ の範囲は

$$ullet y = \log_a x \Longleftrightarrow a^y = x$$

- $\bullet \log_a 1 = 0$
- $\bullet \log_a a = 1$
- ullet 底a の条件は a>0, a
 eq 1
- 真数xの条件は x>0
- ullet 対数 $y=\log_a x$ の範囲は 実数全部

対数関数のグラフ

```
ullet y = \log_a xのグラフを「関数のグラフ」でかこう
      y = \log_2 x, \ \log_4 x, \ \log_{\frac{1}{2}} x
    注意:xの範囲が全実数でない x=0.1,10 などとする
課題 0522-13 y = \log_a xのグラフについて( )を埋めよ
    [1] a > 1 のとき,右 (
    oxed{[2]} oxed{[1]}の範囲でoxed{a}を大きくするとoxed{x}軸(
    [3] 0 < a < 1 のとき,右 (
    [4] [2] の範囲でa を大きくするとx軸(
```