

Time Series
Analysis

PJM Hourly Energy Consumption Data

June - 2025

Nabila Karin | 71478



# About Data

Berisi data konsumsi listrik per jam (dalam satuan megawatt) dari wilayah American Electric Power (AEP) yang merupakan bagian dari jaringan PJM Interconnection di Amerika Serikat.

Variable of Data

#### Date (Hourly)

Start: 01 Oktober 2004 End: 03 Agustus 2018

**Energy Consumption** (MW, Megawatt)

121.273



# About Method

#### **ARIMA**

ARIMA mencoba menangkap pola masa lalu (tren atau fluktuasi) dari data, lalu menggunakannya untuk memprediksi nilai di masa depan.

#### **LSTM**

LSTM adalah model prediksi berbasis deep learning yang menggunakan informasi dari masa lalu untuk memprediksi masa depan, terutama saat pola data panjang dan rumit.





# Tujuan Analisis

ARIMA

LSTM

Membandingkan nilai RMSE dari kedua Metode

#### Transformasi Data

|                     | AEP_MW  |
|---------------------|---------|
| Datetime            |         |
| 2004-10-01 01:00:00 | 12379.0 |
| 2004-10-01 02:00:00 | 11935.0 |
| 2004-10-01 03:00:00 | 11692.0 |
| 2004-10-01 04:00:00 | 11597.0 |
| 2004-10-01 05:00:00 | 11681.0 |
| 2004-10-01 06:00:00 | 12280.0 |
| 2004-10-01 07:00:00 | 13692.0 |
| 2004-10-01 08:00:00 | 14618.0 |
| 2004-10-01 09:00:00 | 14903.0 |
| 2004-10-01 10:00:00 | 15118.0 |

Hourly → Daily

# Mengelompokkan data per hari berdasarkan jumlah konsumsi
df\_daily = df.resample('D').sum()
df\_daily.head(n=10)

|            | AEP_MW   |
|------------|----------|
| Datetime   |          |
| 2004-10-01 | 328544.0 |
| 2004-10-02 | 311997.0 |
| 2004-10-03 | 293450.0 |
| 2004-10-04 | 343417.0 |
| 2004-10-05 | 346553.0 |
| 2004-10-06 | 346195.0 |
| 2004-10-07 | 346786.0 |
| 2004-10-08 | 344408.0 |
| 2004-10-09 | 310429.0 |
| 2004-10-10 | 294249.0 |

# Pattern Data



# Grafik Time Series

**Observed** 

**Trend** 

Seasonal

Residual



# **Train & Testing**



Membagi dataset menjadi training dan testing.

#### ARIMA

```
# Tambahkan kolom tanggal agar bisa digunakan untuk filter
df_daily['Date'] = df_daily.index
# Split data: train < 2014-01, test >= 2014-01
train = df daily[df daily['Date'] < pd.to datetime("2014-01", format='%Y-%m')]
train['train'] = train['AEP_MW']
del train['Date']
del train['AEP_MW']
test = df_daily[df_daily['Date'] >= pd.to_datetime("2014-01", format='%Y-%m')]
test['test'] = test['AEP_MW']
del test['Date']
del test['AEP_MW']
# Plot
plt.figure(figsize=(12, 6))
plt.plot(train.index, train['train'], color="blue", label="Train")
plt.plot(test.index, test['test'], color="red", label="Test")
plt.title("Train/Test Split for AEP Energy Consumption")
plt.ylabel("Energy Consumption (MW)")
plt.xlabel("Tahun-Bulan")
plt.legend()
plt.tight_layout()
plt.show()
```

```
# Prediksi sepanjang test set
forecast = model_fit.forecast(steps=len(test))

# Hitung RMSE

rmse = sqrt(mean_squared_error(test, forecast))
print("RMSE ARIMA:", rmse)
```

### Parameter di LSTM

Neuron: 50

Optimizer: Adam

Neuron: 50

Epoch: 50

**Batch Size: 16** 

```
# Buat data sequence untuk training dan testing
time_steps = 30
X_train, y_train = create_sequences(train_scaled, time_steps)
X_test, y_test = create_sequences(test_scaled, time_steps)
# Timesteps 30 -> melihat data 30 hari sebelumnya untuk memprediksi 1 hari

model = Sequential()
model.add(LSTM(50, return_sequences=False, input_shape=(X_train.shape[1], 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mean_squared_error')
# 50 unit neuron

model.fit(X_train, y_train, epochs=50, batch_size=16, verbose=1)
```





# Evaluasi Nilai RMSE

**ARIMA** 

RMSE ARIMA: 51006.955035930354

Persentase Error: 13.72% dari rata-rata konsumsi harian

**LSTM** 

RMSE LSTM: 19963.98 MW

Persentase Error: 5.59% dari rata-rata konsumsi harian

#### Karena nilai RMSE terbaik adalah LSTM, maka analisis dilanjutkan menggunakan LSTM



#### **Actual**



#### **Predicted**



# Melihat Overfitting

 Nilai training loss dan validation loss cenderung menurun.

 Tidak ada perbedaan signifikan antara kurva training dan validation, yang menunjukkan bahwa model tidak mengalami overfitting.



# Kesimpulan

Dengan stabilitas antara training dan validation loss serta **error prediksi yang rendah**, LSTM terbukti menjadi metode prediktif yang akurat dan andal dalam memodelkan data time series konsumsi energi.

• • • • • •



# Thank You For Your Attention

