

Model Optimization and Tuning Phase Template

Date	15 June 2025
Team ID	SWTID1750006853
Project Title	ASL- Alphabet Image Recognition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
	Learning Rate: Adjusted from 0.01 to 0.001 for more stable convergence. Batch Size: Experimented with 32, 64, and 128 — settled on 64 for memory-performance balance. Number of Conv Layers: Tried 2–4 layers, found 3-layer configuration gave optimal balance of speed and performance.
Model 1: Custom CNN	<pre>x = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs) x = MaxPooling2D((2, 2))(x) x = Conv2D(64, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2))(x) x = Flatten()(x) x = Dense(256, activation='relu')(x) x = Dense(256, activation='relu')(x) y = Dropout(0.5)(x) outputs = Dense(29, activation='softmax')(x) custom_cnn_model = Model(inputs, outputs) custom_cnn_model.summary()</pre>

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
VGG16 (Transfer Learning)	VGG16 was selected as the final model due to its superior classification performance on the ASL alphabet dataset. It achieved high accuracy on both training and validation sets, converged quickly due to pretrained weights, and benefited from strong feature extraction capabilities. Dropout layers reduced overfitting, and the model architecture was easily extendable for future enhancements (e.g., fine-tuning or more classes). Its performance exceeded that of a custom CNN and other lighter models like MobileNetV2, justifying its use as the production model.