

Séries Temporais Parte II - Modelos Preditivos

Média Móvel

 A Média Móvel (vista antes para atenuar a tendência de uma série) também pode ser usada para gerar predições

• Neste caso, dado o período corrente t, a predição no período t+1 irá corresponder à média das últimas h observações

$$f_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-h+1}}{h}$$

Exercício - Média Móvel

Considerando a série temporal apresentada abaixo e h=3, calcule a previsão do valor no tempo t_6 considerando o algoritmo da Média Móvel

Tempo	Valor
t_{1}	5
t_2	10
t_3	15
t_{4}	25
<i>t</i> ₅	20
<i>t</i> ₆	???

- A Suavização Exponencial Simples (Simple Exponencial Smoothing - SME) é baseado na estimativa da variável s_t
- Possui um parâmetro $\alpha \in [0,1]$ que regula a importância dos mais recentes valores y_t
- A SME é dada pela seguinte expressão recursiva

$$s_t = \alpha y_t + (1 - \alpha) s_{t-1}$$

$$s_1 = y_1$$

• A previsão do período t+1 é obtida por

$$f_{t+1} = s_t$$

• Se $\alpha \simeq$ 0: o modelo tem grande "inércia" \to peso constante às observações passadas

• Se $\alpha \simeq 1$: atribui mais peso às observações mais recentes

 \bullet O parâmetro α é escolhido de forma a minimizar o erro quadrático médio

Figure 9.11 Simple exponential smoothing model with parameter $\alpha=0.5$ for the time series of electricity consumption

Figure 9.12 Simple exponential smoothing model with parameter $\alpha=1.0$ for the time series of electricity consumption

Exercício - Suavização Exponencial Simples

Considerando a série temporal apresentada abaixo e $\alpha=0.5$, calcule a previsão do valor no tempo t_6 considerando o algoritmo da Suavização Exponencial Simples

Tempo	Valor
t_{1}	5
t_2	10
t_3	15
$t_{_{4}}$	25
<i>t</i> ₅	20
t_6	???

Suavização Exponencial com Ajuste de Tendências

- A SME tende a falhar ao prever valor em séries temporais com tendência → efeito de "lag"
- É possível estender o SME incluindo um componente de tendência
- Um componente de tendência suavizado linear m_t é incluído na formulação

$$s_t = \alpha y_t + (1 - \alpha)(s_{t-1} + m_{t-1})$$

na qual m_t também é obtido por meio de uma função recursiva

$$m_t = \beta(s_t - s_{t-1}) + (1 - \beta)m_{t-1}$$

na qual $\beta \in [0,1]$ tem a mesma função e comportamento de α

Suavização Exponencial com Ajuste de Tendências

• A predição para o período t+1 é dada por

$$f_{t+1} = s_t + m_t$$

Figure 9.13 Holt exponential smoothing model with parameters $\alpha=1.0$ and $\beta=0.099$ for the time series of electricity consumption

Exercício - Suavização Exponencial com Ajuste de Tendência

Considerando a série temporal apresentada abaixo, e $\alpha=0.5$ e $\beta=0.5$, calcule a previsão do valor no tempo t_6 considerando o algoritmo da Suavização Exponencial Simples com Ajuste de Tendência

Tempo	Valor
t_1	5
t_2	10
t_3	15
$t_{_{4}}$	25
t_{5}	20
<i>t</i> ₆	???

Suavização Exponencial com Tendência e Sazonalidade

- Pode-se também incluir um componente de sazonalidade para estender os modelos anteriores
- Assumindo que cada modelo sazonal é composto por L períodos, temos

$$s_{t} = \alpha \frac{y_{t}}{q_{t-L}} + (1 - \alpha)(s_{t-1} + m_{t-1})$$

$$m_{t} = \beta(s_{t} - s_{t-1}) + (1 - \beta)m_{t-1}$$

$$q_{t} = \gamma \frac{y_{t}}{s_{t}} + (1 - \gamma)q_{t-L}$$

na qual $\gamma \in [0,1]$

• A previsão é dada por: $f_{t+1} = (s_t + m_t)q_{t-L+1}$

Suavização Exponencial com Tendência e Sazonalidade

Figure 9.14 Winters exponential smoothing model with parameters $\alpha = 0.8256$, $\beta = 0.0167$ and $\gamma = 1.0$ for the time series of electricity consumption

 O objetivo deste método é identificar em todo o histórico subsérie(s) de comportamento(s) próximo(s) ao comportamento atual

 Com isso, podemos nos basear nos valores posteriores das subséries para prever o valor atual

 Precisamos então definir o tamanho da subsérie atual para procurar no passado por subséries próximas

- Consequências do tamanho da subsérie
 - Valores muito pequenos podem fazer com que qualquer subsérie seja parecida
 - Valores muito grandes podem fazer com que nenhuma subsérie seja parecida

- Precisamo também definir como considerar que uma subsérie é parecida ou próxima a outra subsérie
- Para isso, podemos considerar as medidas tradicionais de proximidade
 - Euclidiana
 - Manhatan
 - Cosseno
 - Correlação de Pearson
 - Correlação de Spearman

 A tradicional medida de distância Euclidiana é uma boa escolha?

$$d(\mathbf{y}_1, \mathbf{y}_2) = \sqrt{\sum_{i=1}^h (y_{1_i} - y_{2_i})^2}$$

 Lembrando que na distância Euclidiana, quanto mais próximo de 0 seu valor, mais parecidos são as duas subséries

	Série 1	Série 2	d	d ²	
Jan-01-2011	5	15	-10	100	40
Fev-01-2011	10	25	-19	225	
Mar-01-2011	2,5	10	-7,	56,25	30-
Abr-01-2011	4,8	11	-6,3	38,44	
Mai-01-2011	14	30	-16	256	
Jun-01-2011	12,5	28	-15,	240,25	20-
Jul-01-2011	6	17	-13	121	
Ago-01-2011	4	14	-10	100	10-
Set-01-2011	13	28,5	-15,	240,25	
Out-01-2011	18	38	-20	400	
Nov-01-2011	8		-19	361	
Dez-01-2011	6,5	22	-15,	240,25	01/01/2011 01/03/2011 01/05/2011 01/07/2011 01/09/2011 01/11/2011
	Distância Euclideana			48,76925	

	Série 1	Série	2		d	d ²
Jan-01-2011	15	5	20		-5	25
Fev-01-2011	20)	16		4	16
Mar-01-2011	2	L	14		7	49
Abr-01-2011	25	5	10		15	225
Mai-01-2011	10)	25		-15	225
Jun-01-2011	1		26		-15	225
Jul-01-2011	35	5	9		26	676
Ago-01-2011	36	5	8		28	784
Set-01-2011	26	5	16		10	100
Out-01-2011	24	1	17		7	49
Nov-01-2011	19	9	26		-7	49
Dez-01-2011	18	3	27		-9	81
		Distâ	ncia	Euclide	ana	50,03998

Calcula a distância Euclidiana para as duas séries apresentadas abaixo

Tempo	Valores Série 1	Valores Série 2	8 7 6
t_{1}	1	2	5
t_2	5	1	Valores Série 1 Valores Série 2
t ₃	3	7	2
$t_{_{4}}$	4	5	1 2 3 4

Correlação de Pearson é uma boa escolha?

$$\rho(\mathbf{y}_1, \mathbf{y}_2) = \frac{\sum_{i=1}^t (y_{1_i} - \overline{\mathbf{y}_1})(y_{2_i} - \overline{\mathbf{y}_2})}{\sqrt{\sum_{i=1}^t (y_{1_i} - \overline{\mathbf{y}_1})} \sqrt{\sum_{i=1}^t (y_{2_i} - \overline{\mathbf{y}_2})}}$$

- Utilizando a Correlação de Pearson
 - Quanto mais próximo de 1, mais correlacionadas (mais similares) são as subséries
 - Quanto mais próxima de -1, mais descorrelacionadas (mais dissimilares) são as subséries

Calcula a Correlação de Pearson para as duas séries apresentadas abaixo

Tempo	Valores Série 1	Valores Série 2
$t_{_1}$	1	2
t_2	5	10
t_3	3	6
t_{4}	4	5

- Como medida de similaridade (proximidade), vamos adotar a Correlação de Spearman
- A correlação de Spearman é dada por:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

na qual d_i é a diferença do ranking dos valores das duas subséries na i-ésima observação

Calcula a Correlação de Spearman para as duas séries apresentadas abaixo

Tempo	Valores Série 1	Valores Série 2
t_{1}	1	2
t_2	5	10
t_3	2	6
$t_{_{4}}$	3	9

 Agora que já sabemos quais são as k subséries mais similares, devemos definir como iremos utilizar essas subséries para realizar a predição

- Para isso podemos considerar:
 - A média dos próximos pontos de cada uma das k subséries mais próximas
 - Acrescentar a média das diferenças entre os próximos pontos de cada uma das k subséries mais próximas e os últimos pontos das mesmas, e acrescentar essa variação em y_t
 - Acrescentar a média das variações relativas entre os próximos pontos de cada uma das k subséries mais próximas e os últimos pontos da mesma, e acrescentar essa variação em y_t

Exercício - Subsequências Mais Próximas

Calcule o próximo valor da série apresentada abaixo utilizando as duas subsequências mais próximas, uma subsérie de consulta de tamanho 2 e as três abordagens apresentadas no slide anterior para previsão de valores.

Tempo	Valores
$t_{_{1}}$	1
t_2	5
t_3	2
$t_{\scriptscriptstyle 4}$	1
t_{5}	6
t_{6}	2
t ₇	5

Material Complementar

• Predição de séries temporais por similaridade

http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112016-150659/pt-br.php

Distância Euclidiana

https://pt.wikipedia.org/wiki/Dist%C3%A2ncia_euclidiana

Material Complementar

 Uma comparação dos métodos de correlação de Pearson e Spearman

```
https://support.minitab.com/pt-br/minitab/18/help-and-how-to/statistics/
basic-statistics/supporting-topics/correlation-and-covariance/
a-comparison-of-the-pearson-and-spearman-correlation-methods/
```

 Descrição de Modelos Estatísticos e de Aprendizado de Máquina para Predição de Séries Temporais

http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_158_RT_412.pdf

Imagem do Dia

