CONSTRUISEZ UN MODELE DE SCORING

Présentation "Projet 4" chez "OPENCLASSROOM" Jaoid KRAIRI (Septembre 2021)

SOMMAIRE

Compréhension de la problématique métier

Description du jeu de données

Transformation du jeu de données (nettoyage et feature engineering)

Comparaison et synthèse des résultats pour les modèles utilisés

Interprétabilité du modèle

Conclusion

Remerciements

COMPREHENSION DE LA PROBLEMATIQUE METIER : 1/Contexte

Rappel du contexte

Aide à la décision de crédit accordé ou non??

COMPREHENSION DE LA PROBLEMATIQUE METIER : 2/Problématique

Organisme de crédit « Prêt à dépenser »

Crédits à la consommation: Personnes ayant peu d'historique de prêt

Besoin

Modèle de Scoring: Probabilité de défaut de paiement du client

Objectif

Tableau de bord interactif: Destiné aux chargés de relation client

COMPREHENSION DE LA PROBLEMATIQUE METIER : 3/Impact sur le marché

DESCRIPTION DU JEU DE DONNEES : 1/ Le schéma du jeu de donnée

DESCRIPTION DU JEU DE DONNEES : 2/ Description des données de manière rapide

	Rows	Columns	%NaN	%Duplicate	object_dtype	float_dtype	int_dtype	bool_dtype	MB_Memory
./data/application_test.csv	48744	121	23.81	0.0	16	65	40	0	44.998
./data/POS_CASH_balance.csv	10001358	8	0.07	0.0	1	2	5	0	610.435
./data/credit_card_balance.csv	3840312	23	6.65	0.0	1	15	7	0	673.883
./data/installments_payments.csv	13605401	8	0.01	0.0	0	5	3	0	830.408
./data/application_train.csv	307511	122	24.40	0.0	16	65	41	0	286.227
./data/bureau.csv	1716428	17	13.50	0.0	3	8	6	0	222.620
./data/previous_application.csv	1670214	37	17.98	0.0	16	1 5	6	0	471.481
./data/bureau_balance.csv	27299925	3	0.00	0.0	1	0	2	0	624.846
./data/sample_submission.csv	48744	2	0.00	0.0	0	1	1	0	0.744

DESCRIPTION DU JEU DE DONNEES : 3/ Analyse exploratoire des données

DESCRIPTION DU JEU DE DONNEES:

4/ Analyse graphique données d'apprentissage 1/ Analyse des valeurs manquantes

DESCRIPTION DU JEU DE DONNEES:

4/ Analyse graphique données d'apprentissage 2/ Analyse des outliers (aberrantes, atypique) 1/ Âge client

DESCRIPTION DU JEU DE DONNEES:

4/ Analyse graphique données d'apprentissage 2/ Analyse des outliers (aberrantes, atypique) 2/ Salaire annuel client

DESCRIPTION DU JEU DE DONNEES : 4/ Analyse graphique données d'apprentissage 2/ Analyse des outliers (aberrantes, atypique) 3/ Nombre de jours d'emploi

TRANSFORMATION DU JEU DE DONNEES : 1/ Fusion et agrégations (assemblage) des données plus de nouvelles variables

Enrichissement de l'échantillon de travail :

Combinaison des 7 jeux de données. Avant 122 variables - Après 193 variables.

Dont 3 variables fonctionnelles extraites:

PREVIOUS_LOANS_COUNT de bureau.csv: Nombre total des précédents crédits pris par chaque client MONTHS_BALANCE_MEAN de bureau_balance.csv: Solde moyen mensuel des précédents crédits PREVIOUS_APPLICATION_COUNT de previous_application.csv: Nombre de demandes antérieures des clients au crédit immobilier

Dont 4 nouvelles variables métiers:

PREVIOUS_LOANS_COUNT de bureau.csv: Nombre total des précédents crédits pris par chaque client MONTHS_BALANCE_MEAN de bureau_balance.csv: Solde moyen mensuel des précédents crédits PREVIOUS_APPLICATION_COUNT de previous_application.csv: Nombre de demandes antérieures des clients au crédit immobilier

TRANSFORMATION DU JEU DE DONNEES : 2/ Encodage des variables catégoriques par étiquette

Avant		Apr	ès
float64	137	float64	137
int64	39	int64	40
object	16	object	13
bool	1	int32	3

TRANSFORMATION DU JEU DE DONNEES : 3/ Encodage des variables catégoriques à chaud

Ava	ant	Ap	près	
float64	137	float64	137	
int64	40	uint8	132	
object	13	int64	40	
int32	3	int32	3	

TRANSFORMATION DU JEU DE DONNEES : 4/ Vérification de mon jeu de données « Data »

Avant

356255 Echantillons 193 Variables **Après**

356255 Echantillons, 312 Variables

TRANSFORMATION DU JEU DE DONNEES : 5/ Imputation des valeurs manquantes

TRANSFORMATION DU JEU DE DONNEES : 6/ Standardisation des données

<i>[</i>	Avant
NT_CHILDREN	AMT_INCOME_TOTAL
0.0	202500.0
0.0	270000.0
0.0	67500.0
0.0	135000.0
0.0	121500.0
0.0	99000.0
1.0	171000.0
0.0	360000.0
0.0	112500.0
0.0	135000.0

TRANSFORMATION DU JEU DE DONNEES : 7/ Equilibrage de la variable TARGET SMOTE

TRANSFORMATION DU JEU DE DONNEES : 8/ Vérifier les corrélations du jeu de données en fonction de la TARGET

Corrélations les plus positives:

Corrélations les plus négatives:

CODE_GENDER_M	0.094901	EXT_SOURCE_2	-0.290872
PREV_BUR_MEAN_DAYS_ENDDATE_FACT	0.095990	EXT_SOURCE_3	-0.273895
DAYS_ID_PUBLISH	0.097661	EXT_SOURCE_1	-0.184212
PREV_APPL_MEAN_DAYS_DECISION	0.102629	DAYS_EMPLOYED_PERCENT	-0.131517
FLAG_DOCUMENT_3	0.107680	NAME_EDUCATION_TYPE_Higher education	-0.131309
REGION_RATING_CLIENT	0.123151	EMERGENCYSTATE_MODE_No	-0.099327
DAYS_LAST_PHONE_CHANGE	0.124920	ELEVATORS_AVG	-0.095889
NAME_INCOME_TYPE_Working	0.125965	ELEVATORS_MEDI	-0.095111
REGION_RATING_CLIENT_W_CITY	0.128619	FLOORSMAX_AVG	-0.095092
PREV_BUR_MEAN_DAYS_CREDIT_UPDATE	0.130468	CODE_GENDER_F	-0.094888
NAME_EDUCATION_TYPE_Secondary / secondary special	0.132558	FLOORSMAX_MEDI	-0.094508
DAYS_EMPLOYED	0.146549	FLOORSMAX_MODE	-0.091909
DAYS_BIRTH	0.149723	ELEVATORS_MODE	-0.091589
PREV_BUR_MEAN_DAYS_CREDIT	0.168499	NAME_INCOME_TYPE_Pensioner	-0.090801
TARGET	1.000000	HOUSETYPE_MODE_block of flats	-0.090660
			20

TRANSFORMATION DU JEU DE DONNEES : 10/ Réduire mon nombre de variables importantes

Très forte corrélation:

DAYS_EMPLOYED=DAYS_EMPLOYED_PERCENT
NAME_EDUCATION_TYPE_Secondary / secondary special=
NAME_EDUCATION_TYPE_Higher education
REGION_RATING_CLIENT_W_CITY=REGION_RATING_CLIENT
CODE_GENDER_M=CODE_GENDER_F
ELEVATORS_MEDI=ELEVATORS_AVG

-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,95
-0,

Légende en valeur absolu:

- √ 00 à 0.19 "très faible",
- ✓ 0.20 à 0.39 "faible",
- √ 0.40 à 0.59 "modéré",
- ✓ 0.60 à 0.79 "fort",
- √ 0.80 à 1.0 "très fort"

Nouveau jeu de données: Var_imp comportant 25 variables

COMPARAISON ET SYNTHESE DES RESULTATS POUR LES MODELES UTILISES:

1/ Entrée en matière modélisation

CHOIX ENTRE DEUX BASELINES FIXEES PAR REGRESSION LOGISTIQUE ET ARBRE DE DECISION

Elaboration d'un modèle, Optimisation et Compréhension

COMPARAISON ET SYNTHESE DES RESULTATS POUR LES MODELES UTILISES: 2/ Baseline Régression Logistique

COMPARAISON ET SYNTHESE DES RESULTATS POUR LES MODELES UTILISES: 3/ Arbre de décision

COMPARAISON ET SYNTHESE DES RESULTATS POUR LES MODELES UTILISES: 4/ Gradient Boosting

Le Gradient Boosting:

- Algorithme d'apprentissage supervisé, Combine les résultats d'un ensemble de modèle simple,
- Principe d'auto amélioration séquentielle.

	Model	AUC	Accuracy	Precision	Recall	F1	Time	fp
0	CatBoostClassifier	0.947878	0.88006	0.907442	0.846659	0.875998	9.69813	0.0432117
1	LGBMClassifier	0.947481	0.878999	0.909931	0.841474	0.874364	11.0713	0.041678
2	XGBClassifier	0.917335	0.8362	0.844973	0.823786	0.834245	2.25495	0.0756268

INTERPRETABILITE DU MODELE: 1/ Réglage d'hyperparamètres

INTERPRETABILITE DU MODELE: 2/ Modèle LGBMClassifier Optimisé

INTERPRETABILITE DU MODELE: 3/ Importance des variables

INTERPRETABILITE DU MODELE: 4/ La fonction coût

<u>Faux Positif</u>: Perte d'opportunité si le crédit client est refusé à tort, alors qu'il aurait été en mesure d'être remboursé. <u>Faux Négatif</u>: Perte réelle si le crédit client accepté se transforme en défaut de paiement.

$$ext{Precision} = rac{tp}{tp + fp}$$
 $ext{Recall} = rac{tp}{tp + fn}$

Défaut de paiement 30% du montant du crédit en pertes et autres frais de recouvrement. 10% de chance d'obtenir un crédit pour un client lambda qui souhaite emprunter.

Hypothèse d'un Beta = 3

Formule: fscore = (1+beta)*(tp / ((1+3)*tp + beta*fn + fp))

```
tp , tn , fp , fn

test_0 = [500,300,10 ,30]

test_1 = [500,300,30 ,10]

test_2 = [400,300,70 ,50]

test_3 = [400,300,50 ,70]

test_4 = [350,250,80 ,120]

test_5 = [350,250,180,90]
```

Résultats

CONCLUSION

- ✓ Ré-équilibrer mon jeu de données,
- ✓ Réduire mon jeu de données à 25 variables,
- ✓ Entrainer mon jeu de données sur ces 25 variables,
- ✓ Réaliser une baseline optimisée faite sur deux algorithmes simple,
- ✓ Réaliser modèlé de 3 algorithmes plus complexes de gradient boosting implémentés par LightGbm vs CatBoost vs XGBoost,
- ✓ Mon choix de modèle c'est porté sur le LGBMClassifier Optimisé,
- ✓ Détection des erreurs de prédiction.

REMERCIEMENT

Merci de m'avoir écouter

REPONDRE AUX QUESTIONS