-	-
\mathcal{L}	2
Ε	5
=	_
.:	
(С
	7
_	_
(τ
7	_
7	1
7	
-	
7	-
2	Ξ
	_
9	_
	_
Š	Ξ
(1
+	Ξ
-3	_
_	_
7	ĭ
ì	-
.;	Š
Š	_
(1
	Š
(Ē
-	
-	_
G	3

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro	20/00/2024	
Computadores	Nombre: Deisy Jimena	20/09/2024	

Laboratorio #1: simulador de circuitos digitales.

Tecnología de computadores

Preparación del laboratorio

Se puede utilizar un simulador en línea para realizar circuitos de compuertas lógicas.

Se recomienda uno de estos dos

http://163.10.22.82/OAS/compuertas logicas/Simulacion/editor simple.html https://logic.ly/demo/

Descripción del laboratorio

Este laboratorio consiste en implementar la simulación de ciertos circuitos digitales a través del simulador. El laboratorio consiste en simular un sistema sin simplificar, posteriormente simplificar el sistema por las diferentes técnicas analizadas en la teoría y volver a simular el sistema simplificado comparando los resultados.

a)
$$f = [x \cdot y \cdot (z + w)]$$

b) $g = (x + y + z \cdot w \cdot u) + y \cdot z \cdot w$
c) $h = (x + y) + z \cdot w$
d) $i = (x + z \cdot w)$
e) $j = x \cdot y \cdot (z + y)$

Entrega del laboratorio

Una vez acabado el laboratorio, adjunta los archivos generados por el simulador y un informe con una breve explicación del proceso realizado donde se incluirán los siguientes apartados:

- ▶ Simulación del sistema inicial analizando la salida. (captura de imagen)
- Breve explicación de la simplificación del sistema.

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	20/00/2024
Computadores	Nombre: Deisy Jimena	20/09/2024

- Simulación del sistema simplificado analizando la salida. (captura de imagen)
 Comparación de los sistemas y comentarios de su funcionamiento.

Los archivos de soporte se agruparán y se entregarán en un .ZIP de nombre de los autores.

Χ	Υ	Z	W	01
false	false	false	false	true
false	false	false	true	true
false	false	true	false	true
false	false	true	true	true
false	true	false	false	true
false	true	false	true	true
false	true	true	false	true
false	true	true	true	true
true	false	false	false	true
true	false	false	true	true
true	false	true	false	true
true	false	true	true	true
true	true	false	false	true
true	true	false	true	false
true	true	true	false	false
true	true	true	true	false

(Y	
	2	
	=	
	2	
0	7	
	n	
	2	
	5	
	pternacional	
	1	
	_	
	7	
-	000	
	CLC	
	7	
	N/Or	
	_	

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro	20/00/2024	
Computadores	Nombre: Deisy Jimena	20/09/2024	

Primero aplicamos la ley de Morgan a toda la expresión:

$$f = \overline{x * y * (z + w)} = \overline{x} + \overline{y} + \overline{(z + w)}$$

Ahora aplicamos ley de Morgan a esta parte $\overline{(z+w)}$:

$$\overline{(z+w)} = \bar{z} * \bar{w}$$

Lo sustituimos en la expresión

$$f = \bar{x} + \bar{y} + (\bar{z} * \bar{w})$$

Y finalmente tenemos la ecuación simplificada:

$$f = \bar{x} + \bar{y} + \bar{z} + \bar{w}$$

Χ	Υ	Z	W	01
false	false	false	false	true
false	false	false	true	true
false	false	true	false	true
false	false	true	true	true
false	true	false	false	true
false	true	false	true	true
false	true	true	false	true
false	true	true	true	true
true	false	false	false	true
true	false	false	true	true
true	false	true	false	true
true	false	true	true	true
true	true	false	false	true
true	true	false	true	false
true	true	true	false	false
true	true	true	true	false

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	20/00/2024
Computadores	Nombre: Deisy Jimena	20/09/2024

Conclusión: La simplificación de la ecuación original a una forma más compacta permite una implementación más eficiente del circuito. La ley de Morgan fue clave para transformar la expresión, mostrando cómo se pueden reducir las operaciones lógicas sin perder la funcionalidad del circuito.

Χ	Υ	Z	W	U	01
false	false	false	false	false	true
false	false	false	false	true	true
false	false	false	true	false	false
false	false	false	true	true	true
false	false	true	false	false	true
false	false	true	false	true	true
false	false	true	true	false	true
false	false	true	true	true	true
false	true	false	false	false	false
false	true	false	false	true	false
false	true	false	true	false	false
false	true	false	true	true	false
false	true	true	false	false	false
false	true	true	false	true	false
false	true	true	true	false	false
false	true	true	true	true	false

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro	20/00/2024	
Computadores	Nombre: Deisy Jimena	20/09/2024	

truo	folso	foloo	foloo	foloo	false
true	false	false	false	false	Taise
true	false	false	false	true	false
true	false	false	true	false	false
true	false	false	true	true	false
true	false	true	false	false	true
true	false	true	false	true	true
true	false	true	true	false	false
true	false	true	true	true	false
true	true	false	false	false	false
true	true	false	false	true	false
true	true	false	true	false	false
true	true	false	true	true	false
true	true	true	false	false	false
true	true	true	false	true	false
true	true	true	true	false	false
true	true	true	true	true	false

La primera parte de la ecuación es $(\overline{x+y+\bar{z}+w+\bar{u}})$ aplicamos ley de Morgan a esta parte:

$$\overline{x + y + (\bar{z} * w * \bar{u})} = \bar{x} * \bar{y} * \overline{(\bar{z} * w * \bar{u})}$$

Ahora aplicamos ley de Morgan dentro del paréntesis $\overline{(\overline{z}*w*\overline{u})}$:

$$\overline{(\bar{z}-w-\bar{u})}=z+\bar{w}+u$$

Sustituyendo esto en la ecuación original obtenemos:

$$g = \bar{x} * \bar{y} * (z + \bar{w} + u) + \bar{y} * z * \bar{w}$$

La expresión completa ahora es:

$$g = \bar{x} * \bar{y} * (z + \bar{w} + u) + \bar{y} * z * \bar{w}$$

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro	20/09/2024	
Computadores	Nombre: Deisy Jimena	20/09/2024	

Χ	Υ	Z	W	U	01
false	false	false	false	false	true
false	false	false	false	true	true
false	false	false	true	false	false
false	false	false	true	true	true
false	false	true	false	false	true
false	false	true	false	true	true
false	false	true	true	false	true
false	false	true	true	true	true
false	true	false	false	false	false
false	true	false	false	true	false
false	true	false	true	false	false
false	true	false	true	true	false
false	true	true	false	false	false
false	true	true	false	true	false
false	true	true	true	false	false
false	true	true	true	true	false
true	false	false	false	false	false
true	false	false	false	true	false
true	false	false	true	false	false
true	false	false	true	true	false
true	false	true	false	false	true
true	false	true	false	true	true
true	false	true	true	false	false
true	false	true	true	true	false
true	true	false	false	false	false
true	true	false	false	true	false
true	true	false	true	false	false
true	true	false	true	true	false

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	20/00/2024
Computadores	Nombre: Deisy Jimena	20/09/2024

true	true	true	false	false	false
true	true	true	false	true	false
true	true	true	true	false	false
true	true	true	true	true	false

Conclusión: Este ejercicio demuestra cómo la ley de Morgan puede ser aplicada en múltiples niveles de la expresión. La simplificación resultante mantiene la lógica del circuito, pero reduce la cantidad de compuertas necesarias, lo que es crucial para el diseño de circuitos más complejos.

Χ	Υ	Z	W	01
false	false	false	false	true
false	false	false	true	true
false	false	true	false	true
false	false	true	true	true
false	true	false	false	false
false	true	false	true	true
false	true	true	false	false
false	true	true	true	false
true	false	false	false	false
true	false	false	true	true
true	false	true	false	false

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	20/00/2024
Computadores	Nombre: Deisy Jimena	20/09/2024

true	false	true	true	false
true	true	false	false	false
true	true	false	true	true
true	true	true	false	false
true	true	true	true	false

Aplicamos ley de Morgan a la primera parte de la ecuación $\overline{(x+y)}$.

$$\overline{(x+y)} = \bar{x} * \bar{y}$$

Sustituyendo esto en la ecuación original, obtenemos:

$$h = (\bar{x} * \bar{y}) + (\bar{z} * w)$$

En este punto no podemos simplificar más la ecuación, entonces la ecuación simplificada es:

$$h = \bar{x} * \bar{y} + \bar{z} * w$$

Χ	Υ	Z	W	01
false	false	false	false	true
false	false	false	true	true
false	false	true	false	true
false	false	true	true	true
false	true	false	false	false
false	true	false	true	true
false	true	true	false	false
false	true	true	true	false
true	false	false	false	false
true	false	false	true	true

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	
Computadores	Nombre: Deisy Jimena	20/09/2024

true	false	true	false	false
true	false	true	true	false
true	true	false	false	false
true	true	false	true	true
true	true	true	false	false
true	true	true	true	false

Conclusión: La simplificación de este circuito muestra cómo se puede transformar una expresión que parece compleja en una forma más manejable. La reducción de términos a través de la ley de Morgan no solo facilita la comprensión, sino que también optimiza el diseño del circuito.

$$i = (x + z . w)$$

Х	Z	W	01
false	false	false	true
false	false	true	true
false	true	false	false
false	true	true	true
true	false	false	false
true	false	true	false

	_	
(Y	
-	\geq	
-	É	
;		
	C	
ĺ	Υ	
	π	
	0	
	C	
-	_	
	200	
•	5	
	nternaciona	
	ā	
	\subseteq	
-	_	
	2	
-	7	
	INNERSIGAC	
	ž	
	ď	
٠	\leq	
	7	

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	
Computadores	Nombre: Deisy Jimena	20/09/2024

true	true	false	false
true	true	true	false

Aplicamos la ley de Morgan a la expresión $\overline{x + (z * \overline{w})}$:

$$i = \bar{x} * \overline{(z * \overline{w})}$$

Ahora aplicamos ley de Morgan a $\overline{(z*w)}$:

$$\overline{(z*w)} = \bar{z} + w$$

Sustituyendo esto en la ecuación, obtenemos:

$$i = \bar{x} * (\bar{z} + w)$$

Χ	Z	W	01
false	false	false	true
false	false	true	true
false	true	false	false
false	true	true	true
true	false	false	false
true	false	true	false
true	true	false	false
true	true	true	false

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro	20/00/2024	
Computadores	Nombre: Deisy Jimena	20/09/2024	

Conclusión: Este ejercicio ilustra la capacidad de la ley de Morgan para simplificar expresiones que involucran operaciones de suma y multiplicación. La forma simplificada permite una implementación más directa y menos costosa en términos de recursos lógicos.

Χ	Z	Z	01
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	false
true	true	false	false
true	true	true	true

Asignatura	Datos del alumno	Fecha	
Tecnología de	Apellidos: Simanca Castro		
Computadores	Nombre: Deisy Jimena	20/09/2024	

$$j = x * y * z + x * y * \bar{y}$$

Observamos que $x*y*ar{y}$ siempre será 0, ya que $y*ar{y}=0$ Esto elimina el segundo término:

$$j = x * y * z$$

Х	Z	Z	01
false	false	false	false
false	false	true	false
false	true	false	false
false	true	true	false
true	false	false	false
true	false	true	false
true	true	false	false
true	true	true	true

Conclusión: La comparación entre la ecuación original y la simplificada de este circuito resalta la importancia de aplicar técnicas de simplificación en el diseño de circuitos digitales. La capacidad de transformar una expresión lógica compleja en una forma más manejable es fundamental para el desarrollo de sistemas electrónicos

Asignatura	Datos del alumno	Fecha
Tecnología de	Apellidos: Simanca Castro	20/00/2024
Computadores	Nombre: Deisy Jimena	20/09/2024

eficientes y efectivos. Este ejercicio demuestra cómo la lógica puede ser optimizada sin sacrificar la funcionalidad, lo que es esencial en el diseño moderno de circuitos.

Conclusiones Generales

La aplicación de la ley de Morgan en la simplificación de circuitos digitales ha demostrado ser una herramienta poderosa para optimizar el diseño lógico. Cada ejercicio resalta la importancia de reducir la complejidad de las expresiones, lo que no solo mejora la eficiencia del circuito, sino que también facilita su análisis y comprensión. La comparación entre las ecuaciones originales y simplificadas subraya cómo las técnicas de simplificación pueden llevar a un diseño más efectivo y menos costoso en términos de hardware.