At the time, Nexon was normalizing relations with China. I figured that if he could normalize relations then so could I. "E.T. Codd [1]

Teoria della Normalizzazione

Raffaella Gentilini

www. dbo-orode.com/orocle_tips_cold_obit.htm [1]

Raffaella Gentilini

Introduzione

Motivationi

Concetti Fondamentali

Dipendenze Funzionali Chiusura Insieme Dipendenze Funzionali Copertura Minimale

Forme Normai basate su Dipendenze Funzionali

Forma Normale di Boyce-Codd (BCNF) Terza Forma Normale (3NF)

Obbiettivi

Sviluppare una metodologia che permetta di:

- 1. Decidere se uno schema di relazione e' uno schema di relazione ben definito
- 2. Qualora uno schma di relazione R non soddisfi i criteri di bonta', decomporlo in $\{R_1, \ldots, R_n\}$, dove :
 - ogni R_i sia uno schema di relazione ben definito
 - non vi sia perdita di informazione

Il nostro approccio e' basato sui concetti di:

• dipendenze funzionali

Dipendenze Funzionali

Dipendenze Funzionali

- Generalizzazione del concetto di chiave
- Esprimono vincoli sulla ammissibilita' delle istanze di relazione
- Stabiliscono vincoli di dipendenza tra attributi:
 - I valori di alcuni attributi determinino i valori di altri attributi nelle tuple

Dipendenze Funzionali

Definition (Dipendenze Funzionali)

Dato lo schema di relazione R sull'insieme di attributi X, si considerino $\alpha \subseteq X$ e $\beta \subseteq X$.

La dipendenza funzionale $\alpha \rightarrow \beta$ vale su R

Per ogni istanza di r di R:

• Ogni coppia di ennuple t_1, t_2 di r avente gli stessi valori per gli attributi in α , ha gli stessi valori per gli attributi in β .

Formalmente:

Dipendenze Funzionali

Definition (Dipendenze Funzionali)

Dato lo schema di relazione R sull'insieme di attributi X, si considerino $\alpha \subseteq X \in \beta \subseteq X$.

La dipendenza funzionale $\alpha \to \beta$ vale su R

Per ogni istanza di r di R:

• Ogni coppia di ennuple t_1, t_2 di r avente gli stessi valori per gli attributi in α , ha gli stessi valori per gli attributi in β .

Formalmente:

Si consideri la seguente istanza di R dello schema R(A, B):

Α	В
3	4
1	5
3	7

• Si osservi che $A \rightarrow B$ non vale

Dipendenze Funzionali e Chiavi

- K e' superchiave per R(X) sse $K \to X$.
- K e' chiave candidata per R(X) sse:
 - \bullet $K \to X$
 - non esiste $K' \subset K$ tale che $K' \to X$
- dipendenze funzionali permettono di esprimere vincoli non esprimibili tramite nozione di chiave:

Vendita(nomeCliente, codiceMerce, nomeProduttore, costo)

Dato lo schema sopra, desideriamo valgano le dipendenze:

- codiceMerce → costo
- codiceMerce → produttore

ma non desideriamo che valga:

codiceMerce → nomeCliente

Chiusura Insieme Dipendenze Funzionali

- Dato un insieme *F* di dipendenze funzionali, vi possono essere altre dipendenze funzionali logicamente implicate da *F*.
 - Ad esempio, se valgono $A \rightarrow B$ e $B \rightarrow C$, possimao infereire che vale $A \rightarrow C$
- L'insieme di dipendenze funzionali logicamente implicate da F, denotato F⁺, e' detto chiusura di F
- Possiamo determinare F^+ applicando gli assiomi di Armstrong
- Assiomi Armstrong sono insieme regole inferenza corretto (generano solo DF valide) e completo (generano tutte le DF in F^+)

Chiusura Insieme Dipendenze Funzionali

- Dato un insieme F di dipendenze funzionali, vi possono essere altre dipendenze funzionali logicamente implicate da F.
 - Ad esempio, se valgono $A \to B$ e $B \to C$, possimao infereire che vale $A \rightarrow C$
- L'insieme di dipendenze funzionali logicamente implicate da F, denotato F^+ , e' detto chiusura di F
- Possiamo determinare F⁺ applicando gli assiomi di Armstrong
- Assiomi Armstrong sono insieme regole inferenza corretto (generano solo DF valide) e completo (generano tutte le DF in F^+)

Assiomi di Armstrong

- **1.** se $\beta \subseteq \alpha$, allora $\alpha \to \beta$ (riflessivita')
- **2.** se $\alpha \to \beta$, allora $\gamma \alpha \to \gamma \beta$ (arrichimento)
- **3.** se $\alpha \to \beta$ e $\beta \to \gamma$, allora $\alpha \to \gamma$ (transitivita')

- R = (A, B, C, G, H, I) $F = \{A \to B, A \to C, CG \to H, CG \to I, B \to H\}$
- Alcuni membri di F⁺ sono:
 - \bullet $A \rightarrow H$
 - $AG \rightarrow I$

• $CG \rightarrow HI$

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$ • Alcuni membri di F^+ sono:
- - \bullet $A \rightarrow H$
 - per transitivita' da $A \rightarrow B$ e $B \rightarrow H$
 - $AG \rightarrow I$

• $CG \rightarrow HI$

- R = (A, B, C, G, H, I) $F = \{A \to B, A \to C, CG \to H, CG \to I, B \to H\}$
- Alcuni membri di F⁺ sono:
 - \bullet $A \rightarrow H$
 - per transitivita' da $A \rightarrow B$ e $B \rightarrow H$
 - $AG \rightarrow I$
 - arricchendo $A \to C$ con G e poi utilizzando la transitivita' con $CG \to I$
 - $CG \rightarrow HI$
 - arricchimento di CG → I con CG per ottenere CG → CGI, arricchimento di CG → H con I per ottenere CGI → HI, ed infine applicazione della transitivita'.

Calcolo di F^+

Algoritmo per il calcolo della chiusura di un insieme di dipendenze funzionali F

```
F^+ \leftarrow F
repeat
   for each dipendenza funzionale f \in F^+ do
       applica riflessivita' ed arrichimento ad f
       aggiungi ad F^+ le dipendenze ottenute
   end for
    for each coppia di dipendenze funzionali f_1, f_2 \in F^+ do
       if f_1 ed f_2 possono essere combinate usando la transitivita then
           aggiungi ad F^+ le dipendenze ottenute
       end if
   end for
until F^+ non cambia
```

Calcolo di F^+

Possiamo velocizzare/semplificare il calcolo della chiusura di F^+ utilizzando ulteriori regole di inferenza:

- Unione Se valgono $\alpha \to \beta$ e $\alpha \to \gamma$, allora vale $\alpha \to \beta \gamma$
- Decomposizione Se vale $\alpha \to \beta \gamma$, allora valgono $\alpha \to \beta$ ed $\alpha \to \gamma$
- Pseudotransitivita' Se valgono $\alpha \to \gamma$ e $\gamma\beta \to \delta$, allora vale anche $\alpha\beta \to \delta$

Calcolo di F^+

Possiamo velocizzare/semplificare il calcolo della chiusura di F^+ utilizzando ulteriori regole di inferenza:

- Unione Se valgono $\alpha \to \beta$ e $\alpha \to \gamma$, allora vale $\alpha \to \beta \gamma$
- Decomposizione Se vale $\alpha \to \beta \gamma$, allora valgono $\alpha \to \beta$ ed $\alpha \to \gamma$
- Pseudotransitivita' Se valgono $\alpha \to \gamma$ e $\gamma\beta \to \delta$, allora vale anche $\alpha\beta \to \delta$

Esercizio: Ricavare le precedenti regole a partire dagli assiomi di Armstrong.

Chiusura di un Insieme di Attributi

Dato un insieme di attributi α , la chiusura di α rispetto ad F (denotato α^+) e' l'insieme di attributi determinati funzionalmente da attributi in α utilizzando le dipendenze in F.

Avremo che:

• $\alpha\beta \in F$ sse $\beta \subseteq \alpha^+$

```
Calcolo di \alpha^+ rispetto ad F
\alpha^+ \leftarrow \alpha
while ci sono cambiamenti in \alpha^+ do
for each \beta \rightarrow \gamma \in F do
if \beta \subseteq \alpha^+ then
\alpha^+ \leftarrow \alpha^+ \cup \gamma
end if
end for
end while
```

- R(X) = (A, B, C, G, H, I), ovvero X = ABCGHI
- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, B \rightarrow H\}$
- Calcolo di *CG*⁺ rispetto ad *F*:
 - 1. $AG^+ \leftarrow AG$
 - **2.** $AG^+ \leftarrow ABCG \text{ (da } A \rightarrow C \text{ e } A \rightarrow B)$
 - 3. $AG^+ \leftarrow ABCGH$ (da $CG \rightarrow H$ e $CG \subseteq ABCG$)
 - **4.** $AG^+ \leftarrow ABCGHI$ (da $CG \rightarrow I$ e $CG \subseteq ABCGH$)

Usare la chiusura di attributi ...

Viene sfruttata in diversi contesti:

- per verificare se un insieme di attributi e' una superchiave.
 - $\alpha \subseteq X$ e' superchiave per R sse α^+ contiene tutti gli attributi di R(X).
- per verificare se vale una dipendenza funzionale.
 - per verificare se vale $\alpha \to \beta$ (ovvero se $\alpha \to \beta$ appartiene ad F^+) basta verificare se $\beta \subseteq \alpha^+$.
- calcolo della chiusura di F.
 - per ogni $\gamma \subseteq X$, si calcola la chiusura γ^+ e per ogni $Y \subseteq \gamma^+$ si genera la DF $\gamma \to Y$.

- Un insieme F di dipendenze funzionale puo' contenere dipendenze ridondanti, ovvero che possono essere ottenute dalle altre dipendenze di F
 - Esempio: $A \rightarrow C$ e' ridondante in $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
- Anche degliattributi di una dipendenza funzionale potrebbero essere ridondanti:
 - A destra: $\{A \to B, B \to C, A \to CD\}$ puo' essere semplificata in $\{A \to B, B \to C, A \to D\}$
 - A sinistra: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ puo' essere semplificata in $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitivamente, una copertura minimale di F e' un insieme minimale di dipendenze funzionali equivalenti ad F, privo di dipendenze e attributi ridondanti.

Piu' formalmente, un insieme F di dipendenze funzionali e' minimale sse:

- 1. Ogni dipendenza funzionale in F ha come parte destra un solo attributo
- 2. Non e' possibile sostituire una dipendenza funzionale $\alpha \to A$ di F con una dipendenza funzionale $\beta \to A$ dove $\beta \subset \alpha$, ed avere ancora un insieme di dipendenze funzionali equivalente ad F.
- **3.** Non e' possibile rimuovere una dipendenza funzionale da *F* e avere ancora un insieme di dipendenze funzionali equivalente ad *F*.

Una copertura minimale di un insieme di dipendenze funzionali F e' un insieme minimale di dipendenze funzionali E equivalente ad F.

Calcolo di una copertura minimale E per un insieme di DF F.

- 1. Si imposti E := F
- **2.** Si sostituisca ogni DF $X \to A_1 \dots A_n$ in E con le n DF $X \to A_1, \dots, X \to A_n$.
- 3. Per ogni DF $X \to A$ in E, per ogni attributo B in X: Se B e' ridondante nella DF $X \to A$, ovvero se E e' equivalente a $(E \setminus \{X \to A\}) \cup \{(X \setminus \{B\} \to A\}$, allora si sostituisca $X \to A$ con $X \setminus \{B\} \to A$ in E
- **4.** Per ogni DF rimanente $X \to A$: Se $E \setminus \{X \to A\}$ e' equivalente ad E, allora si rimuova $X \to A$ da E.

Come verificare ridondanza attributi?

- Sia F un insieme di DF. Consideriamo la DF $X \to Y$ in F e l'attributo $B \in X$.
- Per verificare se B ∈ X e' ridondante:
 - Calcoliamo la chiusura $(X \setminus \{B\})^+$ rispetto ad F
 - Verifichiamo se $(X \setminus \{B\})^+$ contiene Y
 - Se si', allora B e' ridondante (e puo' essere eliminato).

- R = (A, B, C)
- $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- Dopo l'esecuzione del passo (2) dell'algoritmo si ha:

$$E = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}$$

- Eseguiamo il passo (3). A e' ridondante in $AB \rightarrow C$?
 - Verifichiamo se la chiusura di B rispetto ad E contiene C
 - Si: Infatti $B^+ = \{B, C\}$. Dunque E diventa $E = \{A \rightarrow B, A \rightarrow C, B \rightarrow C\}$
- Eseguiamo il passo (4):
 - $A \to C$ e' implicata logicamente da $A \to B, B \to C$ (per transitivita'). Dunque E diventa $E = \{A \to B, B \to C\}$.
- Una copertura canonica (o minimale) e':

$$E = \{A \rightarrow B, B \rightarrow C\}$$

Forme Normali basate su Dipendenze Funzionali

- 1NF: Prima Forma Normale
- 2NF: Seconda Forma normale
- 3NF: Terza Forma Normale
- BCNF: Forma Normale di Boyce-Codd

Normalizzare uno schema di relazione R

=

Decomporre (opportunamente) R in schemi che siano in forma normale

Normalizzare sfruttando le Dipendenze Funzionali

Decomponendo uno schema di relazione R sfruttando un insieme di dipendenze funzionali F in un insieme di schemi $R_1 \dots R_n$ vogliamo:

- Minimizzare la ridondanza
- Decomposizione Lossless-join: Senza perdita di informazione
- Conservare le dipendenze: Se F_i e' l'insieme delle dipendenze di F⁺
 che includono solo attributi di R_i, allora:
 - La decomposizione dovrebbe essere dependency preserving, cioe' $(F_1 \cup \cdots \cup F_n)^+ = F^+$
 - altrimenti il controllo delle violazioni delle dipendenze funzionali (dello schema originario) comporterebbe la computazione esplicita di operazioni di join.

- $R = (A, B, C), F = \{A \rightarrow B, B \rightarrow C\}$
 - puo' essere decomposto in due modi diversi:
- 1. $R_1 = (A, B), R_2 = (B, C)$
 - decomposizione senza perdite
 - conserva le dipendenze
- **2.** $R_1 = (A, B), R_2 = A, C$
 - decomposizione senza perdite
 - non conserva le dipendenze (non posso controllare se viene violato il vincolo $B \to C$ senza calcolare $R_1 \bowtie R_2$)

Verificare la Conservazione delle Dipendenze

 Per verificare se la dipendenza α → β e' preservata in una decomposizione di R in R₁...R_n, applichiamo il seguente test (le chiusure di attributi sono fatte rispetto ad F):

```
 \begin{array}{l} \textit{result} \leftarrow \alpha \\ \textbf{while} \ \textit{result} \ \textit{cambia} \ \textbf{do} \\ \textbf{for} \ \ \textbf{each} \ R_i \ \textit{nella} \ \textit{decomposizione} \ \textbf{do} \\ t = (\textit{result} \cap R_i)^+ \cap R_i \\ \textit{result} \leftarrow \textit{result} \cup t \\ \textbf{end} \ \textbf{for} \\ \textbf{end} \ \textbf{while} \\ \end{array}
```

- Se result $\supseteq \beta$, allora la DF $\alpha \to \beta$ e' preservata.
- Applicheremo il test su tutte le dipendenze di F
- Questa procedura e' polinomiale, mentre la computazione di F^+ e $(F_1 \cup \cdots \cup F_n)^+$ richiede un tempo esponenziale.

Boyce-Codd Normal Form (BCNF)

Definizione: Boyce-Codd Normal Form

Uno schema di relazione R(X) e' in BCNF rispetto ad un insieme F di dipendenze funzionali, se per ogni dipendenza in F^+ della forma $\alpha \to \beta$, $\alpha, \beta \subseteq X$, almeno una delle seguenti condizioni e' soddisfatta:

- $\alpha \to \beta$ e' banale (ovvero $\beta \subseteq \alpha$)
- α e' superchiave di R(X)

- $R(X) = (A, B, C), F = \{A \rightarrow B, B \rightarrow C\}$
 - A e' chiave
- R non e' in BCNF
- Decomposizione: $R_1 = (A, B), R_2 = (B, C)$
 - R_1 e R_2 sono in BCNF
 - la decomposizione e' senza perdite
 - e preserva le dipendenze

Algoritmo per la decomposizione in BCNF

```
result \leftarrow \{R\}; done \leftarrow false \mathbf{while} \ not \ done \ \mathbf{do} \mathbf{if} \ \exists S \in result \ \text{non in BCNF then} \mathbf{si} \ determini \ una \ \mathsf{DF} \ \alpha \rightarrow \beta \ \mathsf{su} \ S \ \mathsf{che \ violi \ BCNF} result \leftarrow (result \setminus S) \cup \{(S \setminus \beta)\} \cup \{(\alpha\beta)\} \mathbf{else} done \leftarrow true \mathbf{end \ if} \mathbf{end \ while}
```

Test per BCNF

- Per verificare se DF non banale $\alpha \to \beta$ causa violazione della BCNF:
 - computare α^+ (la chiusura di α), e verificare se include tutti gli attributi di R, cioe' se α^+ e' superchiave di R
- Test semplificato: Per verificare se uno schema R e' in BCNF, e' sufficiente verificare solo che le DF in F non violano la BCNF (invece di controllare tutte le dipendenze di F⁺). Infatti:
 - se nessuna delle DF in F causa una violazione della BCNF,
 allora nessuna delle DF in F⁺ causa una violazione della BCNF
- Tuttavia, utilizzare solo *F* e' scorretto quando si effettua il test su una relazione della decomposizione di *R*.
 - Ad esempio, consideriamo R(A, B, C, D) ed $F = \{A \rightarrow B, B \rightarrow C\}$
 - decomponiamo R in $R_1(A, B)$ e $R_2(A, C, D)$
 - nessuna delle DF in F contiene solo attributi in (A, C, D), tuttavia la DF $A \rightarrow C \in F^+$ mostra che R_2 non e' in BCNF

Test per BCNF

Per verificare se uno schema R_i di una decomposizione di R e' in BCNF si opera come segue:

- o verificare se R_i e' in BCNF rispetto alla restrizione di F^+ su R_i (cioe' tutte le dipendenze funzionali in R^+ che contengono solo attributi di R_i
- oppure effettuare sull'insieme di DF F il seguente test:
 - per ogni insieme di attributi $\alpha \subseteq R_i$, verificare che α^+ o non includa attributi di $R_i \setminus \alpha$, oppure includa tutti gli attributi di R_i
 - se la condizione sopra e' violata da qualche $\alpha \to \beta \in F$, si dimostra che la DF $\alpha \to (\alpha^+ \setminus \alpha) \cap R_i$ certifica che R_i viola BCNF.
 - Le dipendenze di questo tipo saranno usate per decomporre ulteriormente R_i

BCNF e conservazione delle dipendenze

Non e' sempre possibile ottenere una BCNF che conservi le dipendenze:

Example

- $R = (J, K, L), F = \{JK \to L, L \to K\}$
- due chiavi candidate: JK e JL
- R non e' in BCNF
- ogni possibile decomposizione di R non preserva $JK \rightarrow L$.

Terza Forma Normale: Motivazioni

- Ci sono casi in cui:
 - BCNF non preserva le dipendenze, mentre e' necessario avere una procedura efficiente per mantenere le DF
- Soluzione: Definire una forma normale piu' debole (vedremo ora la terza forma normale – 3NF).
 - ammettere della ridondanza (con i conseguenti svantaggi; vedremo esempio) ma
 - garantire che le DF possano essere controllate sulle relazioni decomposte, senza alcun join.
- Proprieta': Esiste sempre una decomposizione in 3NF che conserva le dipendenze.

Terza Forma Normale (3NF)

Definizione: Terza Forma Normale

Uno schema di relazione R(X) e' in terza forma normale rispetto ad un insieme F di dipendenze funzionali, se per ogni dipendenza in F^+ della forma $\alpha \to \beta$, $\alpha, \beta \subseteq X$, almeno una delle seguenti condizioni e' soddisfatta:

- $\alpha \to \beta$ e' banale (ovvero $\beta \subseteq \alpha$)
- α e' superchiave di R(X)
- ogni attributo A in $\beta \setminus \alpha$ e' contenuto in una chiave candidata di R
- Una relazione in BCNF e' anche in 3NF
- La terza condizione e' il rilassamento della BCNF che assicura la conservazione delle dipendenze.

3NF: Esempio

Example

- $R = (J, K, L), F = \{JK \to L, L \to K\}$
- due chiavi candidate: JK e JL
- R e' in 3NF
 - $JK \rightarrow L$: JK e' superchiave
 - $L \rightarrow K$: K e' contenuta in una chiave candidata
- La decomposizione in BCNF ha i due schemi (JL), (LK)
 - verificare il rispetto della DF $JK \rightarrow L$ richiederebbe un join
- nello schema c'e' ridondanza

Algoritmo di Decomposizione in 3NF

- 1. Sia G una copertura canonica di F
- 2. Per ogni parte sinistra X in una DF in G:
 - si definisca schema D con attributi $\{X \cup \{A_1\} \cup \cdots \cup \{A_k\}\}$, dove $X \to A_1, \ldots, X \to A_k$ sono le sole dipendenze di G con X come parte sinistra
 - X sara' la chiave dello schema
- **3.** Se nessuno degli schemi di relazione in *D* contiene una chiave di *R*, si definisca un ulteriore schema di relazione *D* contenente attributi che formano una chiave di *R*
- 4. Si eliminino le relazioni ridondanti (i.e. proiezioni di altre relazioni)

Algoritmo di Decomposizione in 3NF

Si dimostra che l'algoritmo visto e' tale che:

- e' corretto
- ogni schema R_i e' in NF
- la decomposizione conserva le dipendenze ed e' senza perdite.

Decomposizione in 3NF: Esempio

Example

- R(nomeDitta, nomeCliente, nomeImp, numUff)
- nomeImp → nomeDitta numUff nomeCliente nomeDitta → nomeImp
- Il passo 2 inserisce i seguenti schemi nella decomposizione:
 - S(nomeimpiegato, nomeDitta, numUff)
 - T(nomeCliente, nomeDitta, nomeImp)
- Poiche' T contiene una chiave candidata per R abbiamo finito

Comparazione di BCNF e 3NF

- Per ogni dato schema e' sempre possibile calcolare una 3NF:
 - senza perdite
 - che conserva le dipendenze
- Per ogni dato schema e' sempre possibile calcolare una BCNF
 - senza perdite
 - potrebbe non preservare tutte le dipendenze

Comparazione di BCNF e 3NF

- Esempio di problemi dovuti alla ridondanza ammessa dalla 3NF
 - R = (J, K, L)
 - $F = \{JK \rightarrow L, L \rightarrow K\}$

J	L	K
$\overline{j_1}$	I_1	k_1
j_2	I_1	k_1
<i>j</i> 3	I_1	k_1
null	I_2	k_2

Uno schema in 3NF ma non in BCNF comporta:

- ripetizione di informazione (ad esempio, la coppia di dati l_1, k_1)
- impiego di valori nulli (ad esempio, per rappresentare la correlazione tra l_2 e k_2 quando non ci sono corrispondenti valori per J.