Example of Proof by Induction using a Graph

1. Claim: A tree with n vertices has n-1 edges.

Another way of writing this claim is: For any tree T, |E(T)|=|V(T)|-1.

Yet another way is: For any tree T, m = n - 1

Proof. (By Induction)

Base Case (n=1)

When n = 1 the graph has just a single vertex and no edges. So n = 1 and m = 0. Hence, the number of edges is one less than the number of vertices. In other words,

$$m = n - 1$$

Inductive Hypothesis

Assume for any $j \leq k$, T_j has j-1 edges.

Induction step (n = k + 1)

Show that a tree with k+1 vertices has k edges.

Let T be a tree with k+1 vertices. Select an arbitrary edge $\{u,v\}$ in T and consider the subtree rooted at u and the subtree rooted at v. Call these subtrees T_u and T_v . These two subtrees can be drawn as follows

Let n_u and m_u be the number of vertices and edges in tree T_u . Let n_v and m_v be the number of vertices and edges in tree T_v .

Since $v \notin T_u$ $n_u \le k$

Since $u \notin T_v$ $n_v \leq k$

So by the Inductive Hypotheses

$$m_u = n_u - 1$$

$$m_v = n_v - 1$$

Notice that $V(T) = V(T_u) \cup V(T_v)$

Which means $|V(T)| = n_u + n_v = k + 1$

Also notice that $E(T) = E(T_u) \cup E(T_v) \cup \{\{u,v\}\}\$ Which means

$$|E(T)| = m_u + m_v + 1$$

$$= (n_u - 1) + (n_v - 1) + 1$$

$$= n_u - 1 + n_v - 1 + 1$$

$$= n_u + n_v - 1$$

$$= (n_u + n_v) - 1$$

$$= (k + 1) - 1$$

$$= k$$

 \therefore A tree with *n* vertices has n-1 edges.