Dhaka International University

Faculty of Science and Engineering
Department of Computer Science and Engineering
Semester Final Examination (Spring- 2018)
Batch: 36+37 (Day)
Semester No.: 9th

Course Title: Operating Systems Course Code: CSE-309

Total Time: 2.3 hours Total Marks: 50

Group A

Ans	wer	any two from the following questions 12.5	* 2=25
1.	(a)	List the essential properties of the following types of Operating Systems: I. Open Source II. Cloud Based III. Real time	3
	(b) (c)	What are the Operating System Services that are helpful to the user? Categorize the directory structure of a File System and illustrate it with appropriate diagram.	4 5.5
2.	(a) (b) (c)	What is a Process? Describe the mechanism of IPC. Draw the diagram of Process state and describe each of the state. Classify the types of Multithreading model.	4.5 4 4
3.	(a)	Define Critical Section Problem? Identify the requirements to solve a Critical Section Problem?	4
	(b)	The hardware-based solutions to the Critical-Section Problem are complicated for application programmers to use. To overcome this difficulty, how a Synchronization tool called a Semaphore could be useful?	3.5
	(c)	Assume the following set of Processes, with the length of the CPU burst given in milliseconds:	5

	0
P_2	29
P_3	3
P_4	7
P ₅	2

- I. Draw Gantt charts that illustrate the execution of these process using the following scheduling algorithm:SJF, Round Robin (quantum=10 milliseconds)
- II. Calculate average waiting time and turnaround time.

				Gro	up B					
An	iswer	any one from the following	que	stions	5				12.5 * 1	=12.5
4.	(a)	resource-allocation graph.								4.5
	(b) (c)	110 W We can prevent the coestation of the coestation								
5.	respectively. Also have 5 processes Po through P4.								7 instances	6
		Process	A	llocati	on		Max		1	
		Po	A 2	B 2	C 1	A 7	B 4			
			2 1	1 1 0	1 0 1	3 3 2	1 2 1	2 3 2		
		P ₄ Find the Available resource Banker's Algorithm. Is the criteria? If there has any safe	ere	a safe	sequ	ience	that s	satisfies	the safety	
	(b) (c)	Explain the Producer Consumer problem. Define Segmentation and Paging.								4 2.5
				0010						
				Grou	p C					
Ans	wer t	the following question							12.5 * 1=	=12.5
6.	(a) Analyze the following page reference string: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6 How many page faults would occur for the following replacement algorithms, assuming four frames? Remember that all frames are initially empty, so your first unique pages will cost one fault each.									8.5
		I. LRU replacement II. FIFO replacement								

Define Virtual Memory? List the benefits of using Virtual Memory.

III.

. .

(b)

Optimal replacement

.