Painel / Meus cursos / SC26EL / 11-Alocação de Polos / Questionário sobre Alocação de Polos

Iniciado em	segunda, 2 ago 2021, 13:10
Estado	Finalizada
Concluída em	segunda, 2 ago 2021, 13:11
Tempo	1 minuto 20 segundos
empregado	
Notas	1,0/2,0
Avaliar	5,0 de um máximo de 10,0(50 %)

Questão **1**

Parcialmente correto

Atingiu 0,6 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Observe que esse sistema é instavel, uma vez que seus polos são $s_{1,2}=\pm 2$. Para estabilizar o sistema, utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2}=-2$.

A matriz de controlabilidade tem a forma $M=egin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$. Assim, os elementos da matriz M são:

 $m_{11} = 0$

 \checkmark , $m_{12} =$

~

 $m_{21} =$

 $\checkmark , m_{22} = 0$

V

O posto da matriz de controlabilidade é:

2

~ .

Portanto, o sistema é: Controlável

O polinômio característico desejado para o sistema é: $\phi(s)$

1

 $\checkmark s^2 +$

x s+

×

A matriz $\phi(A)$ tem a forma $\phi(A) = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$. Assim, os elementos da matriz $\phi(A)$ são:

 $\phi_{11} =$ 2

 \star , $\phi_{12}=$

×

 $\phi_{21} =$ 2

 \star , $\phi_{22} =$

×

O vetor de ganhos do controlador é: $K = \begin{bmatrix} 2 & & & \\$

Considere as estruturas das matrizes abaixo:

 $A_{MF}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

 $a_{11} = 0$

 \checkmark , $a_{12} = 1$

 $a_{21} =$

 $m_{22} = m_{22}$

2

X .

 $B_{MF} = \left[egin{array}{cc} b_{11} & b_{21} \end{array}
ight]^T$. Assim, os elementos da matriz B_{MF} são:

 $b_{11} = 0$

 $b_{21}=$

~

 $C_{MF} = [\ c_{11} \ \ c_{12} \]$. Assim, os elementos da matriz C_{MF} são:

 $c_{11} =$ 2

 \checkmark , $c_{12}=$

~ .

Questão **2**

Parcialmente correto

Atingiu 0,4 de 1,0

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2}=-2$ e $s_3=-20$.

Os polos do sistema são: $\emph{s}_{1,2} =$

```
-1
```

A matriz de controlabilidade tem a forma $M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$. Assim, os elementos da matriz M são:

$$m_{11} = 0$$

$$\checkmark$$
 , $m_{12} =$

$$m_{21} = 0$$

$$\checkmark$$
 , $m_{22} =$

$$\checkmark$$
 , $m_{23} =$

$$m_{31} = 1$$

$$\checkmark$$
 , $m_{32} =$

$$mathred{m} m_{33} = 2$$

O posto da matriz de controlabilidade é:

x .

Portanto, o sistema é: Controlável

O polinômio característico desejado para o sistema é: $\phi(s)=$

1

 $\checkmark s^3 +$

x s²+

x s+

×

A matriz $\phi(A)$ tem a forma $\phi(A) = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$. Assim, os elementos da matriz $\phi(A)$ são:

 $\phi_{11} = \frac{1}{2}$

 \star , $\phi_{12}=$

 \star , $\phi_{13}=$

x ,

 $\phi_{21} = \frac{1}{2}$

 \star , $\phi_{22} =$

 \star , $\phi_{23} =$

x ,

 $\phi_{31} =$ 2

 \star , $\phi_{32}=$

 \star , $\phi_{33}=$

x .

O vetor de ganhos do controlador é: $K=\left[
ight.$

2

×

2

2

×

O sistema em malha fechada é representado por:

 $\dot{x} = A_{MF}x + B_{MF}u$, $y = C_{MF}x$.

Considere as estruturas das matrizes abaixo:

 $A_{MF} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assim, os elementos da matriz A_{MF} são:

 $a_{11} = 0$

✓ , a₁₂ =1

✓ , a₁₃ =0

~ ,

 $a_{21} = 0$

✓ , a₂₂ =

0

✓ , a₂₃ =1

~ ,

a₃₁ =

 \mathbf{x} , $\mathbf{a}_{32} = 2$

x , **a**₃₃ =

×

 $B_{MF} = \left[egin{array}{ccc} b_{11} & b_{21} & b_{31} \end{array}
ight]^T$. Assim, os elementos da matriz B_{MF} são:

 $b_{11} = 0$

V,

 $b_{21} = 0$

~

 $b_{31} = 0$

✓.

 $extstyle C_{MF} = [extstyle c_{11} \quad extstyle c_{12} \quad extstyle c_{13}]$. Assim, os elementos da matriz $extstyle C_{MF}$ são:

 $c_{11} =$ 2

 $c_{12} = 0$

 \checkmark , $c_{13} = 0$

~

→ Script Python

Seguir para...

Aula 12 - Projeto de Controladores em Espaço de Estados - Parte 1 ►