Multiple Regression Analysis of Robbery Trends in Toronto

Name: Zarraf Afnan

Student ID: 100880521

Introduction

Crime analysis is an essential aspect of urban planning and law enforcement strategies. This study investigates robbery trends in Toronto by examining factors influencing the frequency of reported robberies across different locations. The dataset for this analysis was obtained from Kaggle, particularly from a collection of reported robbery incidents in Toronto spanning from 2014 to around mid-2022. The primary objective of this analysis is to determine how different environmental factors (e.g., crime-prone areas, premises type) influence robbery frequency. The dependent variable in this study is Robbery_Count, representing the number of robbery incidents. Independent variables include:

- High_Crime_Zone: Whether the incident took place in a historically high-crime region (Binary Form: 1= Yes, 0= No).
- Premises Type: The type of location where the robbery occurred (Apartment, Commercial, or Outside).

A multiple regression model was chosen as the statistical method to analyze the relationship between these predictors and robbery counts.

Methods

A multiple linear regression model was selected for this study as it allows for the simultaneous examination of multiple independent variables and their impact on robbery incidents. The following steps were performed using SAS software:

- 1. Data Cleaning & Preparation
- The dataset was imported into SAS, and categorical variables were converted into dummy variables.
- The dataset was aggregated by year and month to analyze temporal trends.

2. Model Selection

- Initially, all predictors were included in the model (YEAR, MONTH, High_Crime_Zone, Premises_Type).
- Insignificant predictors (YEAR, MONTH) were removed to improve model efficiency.
- The final model included High_Crime_Zone, Premises_Type (Apartment, Commercial,

Outside).

3. Model Evaluation & Assumption Checks

- Checking for Similar Variables: The model was tested to see if any independent variables were too similar to each other. The results showed no major issue indicating that each variable provides new information to the model.
- -Checking for Normal Distribution: The model was tested to see if the errors (i.e. the differences between predicted and actual values) followed a normal pattern. The tests showed that the errors were not normally distributed, but this is not a major issue for multiple regression, so the results were still considered valid.

Results

Model Fit & Significance:

- R-Square: 0.6404

Adjusted R-Square: 0.6387F-statistic: 371.32 (p < 0.0001)

- Root Mean Square Error (RMSE): 17.85

These results indicate that 64.04% of the variance in robbery counts is explained by the model, suggesting a strong fit.

Key Predictor Variables

Variable	Coefficient (β)	p-value	Interpretation
Intercept	18.835	< 0.0001	Expected robbery count when all variables are 0.
High_Crime_Zone	-3.803	0.0021	Negative effect: Fewer robberies in high-crime zones.
Prem_Apartment	-4.637	0.0083	Negative effect: Fewer robberies in apartments.
Prem_Commercial	19.819	< 0.0001	Positive effect: More robberies in commercial areas.
Prem_Outside	55.224	< 0.0001	Largest effect: Most robberies occur outside.

Discussion & Conclusion

This study applied multiple regression analysis to explore factors influencing robbery trends in Toronto. The results indicate that the type of location significantly impacts the number of reported robberies. Robberies were most frequent in outdoor and commercial areas, whereas apartment buildings had significantly lower incidents. This suggests that open spaces and businesses may be more vulnerable due to increased accessibility and the presence of valuable goods. Another interesting and surprising result was that certain high-crime areas reported fewer robberies. This could be due to a stronger police presence as a hindrance for criminal activities or differences in how crimes are reported in such areas. Understanding such patterns can help city officials and law enforcement develop more effective crime prevention strategies and eventually improve public safety.

Strengths of the Study:

- Robust Model Fit: The model explains 64% of the variation in robbery counts, making it a reliable tool for understanding robbery patterns.
- Meaningful Insights: Findings align with expectations regarding urban crime patterns.
- Statistically Significant Results: All key predictors (location types and high-crime zones) were statistically significant, meaning they have a real impact on robbery rates.

Limitations & Future Improvements:

- Residuals are non-normal
- Potential Reporting Bias: Official reports may not capture unreported crimes.
- Additional Variables: Future studies could include socio-economic factors, time of day, or police response times to get a more complete picture of the robbery trends.

Final Thoughts

This study indicates that the number of robbery incidents is strongly affected by location, with outdoor and commercial areas being at the highest risk. These results suggest that law enforcement officers may need to prioritize increasing patrols, monitoring high-risk areas, and improving security measures to reduce crime. Business owners and city planners can also use this information to make informed decisions about where to enhance safety measures like better lighting, surveillance cameras or public awareness campaigns. While this analysis certainly offers useful insights, future research can also explore additional factors to develop more effective crime prevention strategies and improve urban safety.

Appendices

The following pages provide the SAS code and its output.

```
/* Generated Code (IMPORT) */
/* Source File: Robbery.xlsx */
/* Source Path: /home/u63700025/assignment */
/* Code generated on: 3/21/25, 1:31 PM */
%web drop table(WORK.IMPORT);
/* Importing the Excel File */
PROC IMPORT DATAFILE="/home/u63700025/assignment/Robbery.xlsx"
  OUT=WORK.ROB_DATA
  DBMS=XLSX
  REPLACE;
  GETNAMES=YES;
RUN;
/* Data Preparation */
DATA WORK.ROB CLEAN;
  SET WORK.ROB DATA;
  /* Converting Date Variables */
  OCC DATE = INPUT(SCAN(occurrencedate, 1, 'T'), YYMMDD10.);
  FORMAT OCC DATE DATE9.;
  YEAR = YEAR(OCC DATE);
  MONTH = MONTH(OCC DATE);
  /* Creating Binary High Crime Zone Variable */
  IF Division IN ('D14', 'D51', 'D52', 'D11', 'D41', 'D31', 'D23') THEN High Crime Zone = 1;
  ELSE High Crime Zone = 0;
  /* Creating Dummy Variables for Premises Type */
  Prem Apartment = (premises type = 'Apartment');
  Prem Commercial = (premises type = 'Commercial');
  Prem Outside = (premises type = 'Outside');
 /*Educational or other premises types(Reference Category) */
RUN;
/* Aggregating Data for Regression */
PROC SQL;
  CREATE TABLE WORK.ROB MODEL AS
  SELECT
    YEAR, MONTH, High Crime Zone,
    Prem Apartment, Prem Commercial, Prem Outside,
    COUNT(*) AS Robbery Count
  FROM WORK.ROB CLEAN
  GROUP BY YEAR, MONTH, High Crime Zone,
      Prem Apartment, Prem Commercial, Prem Outside;
QUIT;
/* Checking for VIF Values */
PROC REG DATA=WORK.ROB MODEL;
  MODEL Robbery Count =
    YEAR MONTH
```

```
High Crime Zone
    Prem Apartment Prem Commercial Prem Outside / VIF;
  TITLE "Multicollinearity Check (VIF Values)";
RUN:
QUIT;
/* Running Multiple Regression Analysis */
PROC REG DATA=WORK.ROB MODEL;
  MODEL Robbery Count =
    YEAR MONTH
    High Crime Zone
    Prem Apartment Prem Commercial Prem Outside;
  TITLE "Multiple Regression Model for Robbery Trends in Toronto";
RUN;
QUIT;
/* Scatterplot to check linearity */
PROC SGSCATTER DATA=WORK.ROB MODEL;
  PLOT Robbery Count*(YEAR MONTH);
  TITLE "Scatterplots of Robbery Count vs Year and Month";
RUN;
/* Normality of Residuals */
PROC UNIVARIATE DATA=WORK.ROB_MODEL NORMAL;
  VAR Robbery Count;
  HISTOGRAM Robbery Count / NORMAL;
  TITLE "Distribution of Robbery Count";
RUN;
PROC REG DATA=WORK.ROB MODEL;
  MODEL Robbery Count = High Crime Zone Prem Apartment Prem Commercial Prem Outside;
  TITLE "Refined Multiple Regression Model (Only Significant Predictors)";
RUN;
QUIT;
%web open table(WORK.IMPORT);
```

Multicollinearity Check (VIF Values)

The REG Procedure Model: MODEL1 Dependent Variable: Robbery_Count

Number of Observations Read	839
Number of Observations Used	839

Analysis of Variance							
Source Sum of Mean Squares Square F Value Pr > F							
Model	6	473998	79000	248.14	<.0001		
Error	832	264881	318.36671				
Corrected Total	838	738879					

Root MSE	17.84283	R-Square	0.6415
Dependent Mean	34.83909	Adj R-Sq	0.6389
Coeff Var	51.21498		

Parameter Estimates							
Variable DF Estimate Standard Value Pr > t							
Intercept	1	429.91041	416.26832	1.03	0.3020	0	
YEAR	1	-0.20441	0.20628	-0.99	0.3220	1.00734	
MONTH	1	0.21014	0.17815	1.18	0.2385	1.00593	
High_Crime_Zone	1	-3.79872	1.23230	-3.08	0.0021	1.00047	
Prem_Apartment	1	-4.61656	1.75184	-2.64	0.0086	1.49820	
Prem_Commercial	1	19.77498	1.74406	11.34	<.0001	1.50419	
Prem_Outside	1	55.22090	1.73540	31.82	<.0001	1.50800	

Multicollinearity Check (VIF Values)

Multiple Regression Model for Robbery Trends in Toronto

Number of Observations Read	839
Number of Observations Used	839

Analysis of Variance							
Source Sum of Mean Squares Square F Value Pr > F							
Model	6	473998	79000	248.14	<.0001		
Error	832	264881	318.36671				
Corrected Total	838	738879					

Root MSE	17.84283	R-Square	0.6415
Dependent Mean	34.83909	Adj R-Sq	0.6389
Coeff Var	51.21498		

Parameter Estimates					
Variable DF Estimate Error t Value Pr > t					
Intercept	1	429.91041	416.26832	1.03	0.3020

Parameter Estimates						
Variable DF Parameter Standard Error t Value Pr > t						
YEAR	1	-0.20441	0.20628	-0.99	0.3220	
MONTH	1	0.21014	0.17815	1.18	0.2385	
High_Crime_Zone	1	-3.79872	1.23230	-3.08	0.0021	
Prem_Apartment	1	-4.61656	1.75184	-2.64	0.0086	
Prem_Commercial	1	19.77498	1.74406	11.34	<.0001	
Prem_Outside	1	55.22090	1.73540	31.82	<.0001	

Multiple Regression Model for Robbery Trends in Toronto

Distribution of Robbery Count

The UNIVARIATE Procedure Variable: Robbery_Count

Moments						
N	839	839 Sum Weights				
Mean	34.8390942	Sum Observations	29230			
Std Deviation	29.6937285	Variance	881.717515			
Skewness	1.30930868	Kurtosis	1.05187573			
Uncorrected SS	1757226	Corrected SS	738879.278			
Coeff Variation	85.231058	Std Error Mean	1.02514135			

Basic Statistical Measures					
Location Variability					
Mean	34.83909	Std Deviation	29.69373		
Median	24.00000	Variance	881.71752		
Mode	12.00000	Range	155.00000		
		Interquartile Range	35.00000		

Tests for Location: Mu0=0					
Test		p Value			
Student's t	t	33.98467	Pr > t	<.0001	
Sign	M	419.5	Pr >= M	<.0001	

Tests for Location: Mu0=0				
Test	Statistic		p Va	lue
Signed Rank	S	176190	Pr >= S	<.0001

Tests for Normality					
Test	p Val	p Value			
Shapiro-Wilk	w	0.852744	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.166743	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	7.64482	Pr > W-Sq	<0.0050	
Anderson-Darling	A-Sq	43.14222	Pr > A-Sq	<0.0050	

Quantiles (Definition 5)				
Level	Quantile			
100% Max	156			
99%	123			
95%	98			
90%	84			
75% Q3	48			
50% Median	24			
25% Q1	13			
10%	8			
5%	5			
1%	1			
0% Min	1			

Extreme Observations						
Low	est	High	est			
Value	Obs	Value	Obs			
1	643	128	89			
1	22	130	353			
1	21	140	97			
1	20	148	577			
1	19	156	101			

Distribution of Robbery Count

The UNIVARIATE Procedure

Distribution of Robbery Count

The UNIVARIATE Procedure Fitted Normal Distribution for Robbery_Count

Parameters for Normal Distribution				
Parameter	Symbol	Estimate		
Mean	Mu	34.83909		
Std Dev	Sigma	29.69373		

Goodness-of-Fit Tests for Normal Distribution					
Test Statistic p Value					
Kolmogorov-Smirnov	D	0.1667431	Pr > D	<0.010	
Cramer-von Mises	W-Sq	7.6448203	Pr > W-Sq	<0.005	
Anderson-Darling	A-Sq	43.1422168	Pr > A-Sq	<0.005	

Quantiles for Normal Distribution					
	Quantile				
Percent	Observed Estimate				
1.0	1.00000	-34.23885			
5.0	5.00000	-14.00274			
10.0	8.00000	-3.21495			
25.0	13.00000	14.81098			
50.0	24.00000	34.83909			
75.0	48.00000	54.86721			
90.0	84.00000	72.89314			

Quantiles for Normal Distribut					
		Quantile			
	Percent	Observed	Estimated		
	95.0	98.00000	83.68093		
	99.0	123.00000	103.91704		

Refined Multiple Regression Model (Only Significant Predictors)

The REG Procedure
Model: MODEL1
Dependent Variable: Robbery_Count

Number of Observations Read	
Number of Observations Used	839

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	473182	118295	371.32	<.0001
Error	834	265698	318.58224		
Corrected Total	838	738879			

Root MSE	17.84887	R-Square	0.6404
Dependent Mean	34.83909	Adj R-Sq	0.6387
Coeff Var	51.23231		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	18.83501	1.37856	13.66	<.0001
High_Crime_Zone	1	-3.80306	1.23244	-3.09	0.0021
Prem_Apartment	1	-4.63737	1.75238	-2.65	0.0083
Prem_Commercial	1	19.81890	1.74396	11.36	<.0001
Prem_Outside	1	55.22447	1.73583	31.81	<.0001

Refined Multiple Regression Model (Only Significant Predictors)

