INIA Uruguay 33

Taller de Big Data de arroz

Everett Wetchler

Misión: avanzar causas sociales con datos, algoritmos, y software.

- ONG, fundado en 2014 en San Francisco, California
- Ingenieros de sistema, estadísticos, y cientifícos de datos.
- Trabajamos con otros ONGs, gobiernos, y científicos, como consultorio o colegos.
- Nos enfoquecemos en problemes con gran impacto para seres humano.

Objetivos

- Mostrar metodos y herramientas mas de hacer modelos de machine learning.
- Python vs R
- Metodos de limpieza y exploracion de datos
- Correlaciones basicos
- Hacer un poco de "feature engineering" -- la ingenería de variables

iPython Notebook

- Editor interactivo de browser, originalmente para ciencia de datos de python
- Incluye codigos y graficos en linea
- Naturalmente documenta su trabajo, como tranformo los datos, cuales codigos hicieron los graficos que estamos viendo, etc.
- Organizacion del projecto, documenta pasos.
- Se puede usar con R!

Error in if (args[[1]]\$name == "C_title" && !is.null(args[[2]])) {: missing value where TRUE/FALSE needed 2.5 type **a** 0.0 -

xmin=-xabsmax, xmax=xabsmax, ymin=-yabsmax, ymax=yabsmax, shape=type, color=type) +

In [7]:

ggplot(df) + aes(x = a, y = b,

-2.5 -

geom_point(size=2, alpha=0.5)

Limpieza de datos

- No cambio los datos originales!
- Ver visualmente los datos en Excel... pero quiero data frame
- Codigos para la limpeza
 - o input: datos originales (csv, excel, ...)
 - output: csv limpio
- Codigos que automaticamenta hacen histograms y bars para explorar todos los columnos visualmente
- Proceso iterativo: Encontrar problema con datos -> crear codigos para limpiarlos -> averiguar que mejore el problema -> encontrar otro problema....
- Ejemplo vivo

	AM	AN	AO	
	Fenologia_Emerg-Cosecha_Dias	Factor_Rend_%Hcosecha	Rendimiento_seco_kg/ha	
	0	41	0	
	136	21%	7877.25	
	131	23%	8597.19	
	131	18%	8503.07	
	138	19%	7815.19	
	139	19%	8945.95	
	132	18%	8503.07	
	148	14%	4953.83	
	148	14%	5073.54	
	147	14%	4834.69	
	120	20%	7063.19	
	147	14%	4444.51	
	127	21%	6236.61	
	127	21%	6241.53	
	143	1650.0%	7524.60	
	143		7524.60	
	143	1500.0%	8178.81	
	143		8178.81	
	142	1550.0%	7205.30	
	141	1550.0%	7205.30	
	141	1500.0%	7314.24	
	121	2050.0%	8386.82	
	121		8386.82	
	120	2400.0%	7973.65	
	131	2580.0%	10905 34	

Limpieza

Correlaciones basicos

- Ya estan bastante limpios los datos
- DataFrame.corr() -- todos los correlaciones lineales entre variables (Pearson o qualquiera)
- Bar para visualizarlos
- Mira: siempre incluyo mediciones de datos vacios
- El paquete "seaborn" hace graficos guapos, similar a ggplot.
 Viene de estudiante PhD de Stanford.
- seaborn.jointplot()
- "numpy" (otro paquete) para hacer lineas y cuervas de fit

Ejemplo

Ingeneria de variables

- El mejor variable que ya tenemos explica unos ~30% de la variabilidad.
- No incluye datos de clima.
- Cuales variables climas debemos hacer? "Dias con Tmax < 35"? < 34? Tavg > 20?
- Teoria: hay un alcance critica que predice el exito del arroz. Mas dias durante el cutivo entre este alcance, mejor rienda.
 - o 20-30? 20-32? 18-35?
 - Buscamos el mejor alcance

Solucion

- Probar todos posibilidades ([0,1], [0,2], ...,)
- Por cada alcance, calcula, para cada chacra, la porcentaje de los dias cultivas cuando la clima se mantenaba entre ellos todo el dia.
 - e.g. [20,30], % dais con tmax < 30 y tmin > 20
- Medir cuanta variabilidad explicaria un variable asi (R^2)
- Resultado:

Otra vista

Efecto de alcances críticas de temperatura (16°C-36°C)

Mejor explicador

<- Antes

Despues ->

