Problem 7.1

Similar to the proof of Fatou's lemma, we define $g_n = \sup_{k \ge n} f_n$ which are measurable due to Proposition 3.13. Moreover, we have that $\limsup_{n \to \infty} f_n = \lim_{n \to \infty} g_n$.

Next we note that $g_n \ge f_\ell$ for all $\ell \ge n$. Thus, by monotonicity of the integral, we have that

$$\int_{\Omega} g_n \, \mathrm{d}\mu \ge \int_{\Omega} f_\ell \, \mathrm{d}\mu,$$

holds for all $\ell \geq n$, which implies that

$$\int_{\Omega} g_n \, \mathrm{d}\mu \ge \sup_{k \ge n} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

In addition, since $g_n < f$ with f being non-negative and integrable we can apply Dominated Convergence to conclude that

$$\int_{\Omega} \lim_{n \to \infty} g_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{\Omega} g_n \, \mathrm{d}\mu.$$

Putting all this together we get

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, \mathrm{d}\mu = \int_{\Omega} \lim_{n \to \infty} g_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{\Omega} g_n \, \mathrm{d}\mu \ge \lim_{n \to \infty} \sup_{k > n} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

Problem 7.2

(a) Let $t_0 \in (a,b)$ be fixed. It suffices to check the continuity result for arbitrary sequences $(t_n)_{n\geq 1}\subset (a,b)$ such that $t_n\to t_0$ as $n\to\infty$. Fix such a sequence and define $g_n(\omega):=f(\omega,t_n)$ for all $\omega\in\Omega$ and $n\geq 1$. Since $\lim_{t\to t_0}f(\omega,t)=f(\omega,t_0)$ for all $\omega\in\Omega$, we deduce that $\lim_{n\to\infty}g_n(\omega)=f(\omega,t_0)$ for every $\omega\in\Omega$. Moreover, by assumption $|g_n|\leq g$ for all $n\geq 1$ and g is integrable. By the Dominated Convergence Theorem

$$\lim_{n\to\infty} \int_{\Omega} g_n(\omega) \, \mu(\mathrm{d}\omega) = \int_{\Omega} f(\omega, t_0) \, \mu(\mathrm{d}\omega).$$

As the chosen sequence was arbitrary, we deduce that $\lim_{t\to t_0} F(t) = F(t_0)$.

(b) If $t \mapsto f(\omega, t)$ is continuous on (a, b) for all $\omega \in \Omega$ then $\lim_{t \to t_0} f(\omega, t) = f(\omega, t_0)$ at every $t_0 \in (a, b)$ for all $\omega \in \Omega$. In particular, (a) applies, showing that $\lim_{t \to t_0} F(t) = F(t_0)$ for every $t_0 \in (a, b)$, i.e., F is continuous on (a, b).