Diffusion Probabilistic Models and Fast Inference by Estimating the Optimal Reverse Covariance

Chongxuan Li

ML Group @ RUC

Gaoling School of Al, Renmin University of China

Real or fake?

Both images are generated by deep generative models!

Generative modeling

$$x_i \sim_{iid} p_D(x), \qquad i = 1,2,3 \dots$$

where $p_D(x)$ is the underlying distribution of the data.

Generative modeling: representation, learning and inference

 $x_i \sim_{iid} p_D(x), \qquad i = 1,2,3 \dots$

A generative model is a joint distribution $p_{\theta}(x)$. Goal of generative modeling: $p_{\theta}(x) \approx p_{D}(x)$.

Roadmap of Diffusion Probabilistic Models

Score matching for EBMs

SM (Hyvärinen & Dayan, JMLR 2005)

DSM (Vincent, Neural Computation 2011)

Score-based models

NCSN (Song & Ermon, NeurlPS 2019)

Score representation of variance in DPMs

Analytic-DPM (Bao et al., ICLR 2022)
Analytic-DPM++ (Bao et al., ICML 2022)

Diffusion Probabilistic Models

Score representation of the mean in DPMs

DPM (Sohl-Dickstein et al., ICML 2015)

DDPM (Ho et al., NeurIPS 2020)
DPM via SDE (Song et al., ICLR 2001)

Diffusion Probabilistic Models

Score matching for EBMs

SM (Hyvärinen & Dayan, JMLR 2005)

DSM (Vincent Neural Computation 20

Score-based models

NCSN (Song & Ermon, NeurIPS 2019)

Score representation of variance in DPM

Analytic-DPM (Bao et al., ICLR 2022)
Analytic-DPM++ (Bao et al., ICML 2022)

Diffusion Probabilistic Models

DPM (Sohl-Dickstein et al., ICML 2015)

Score representation of the mean in DPMs

DDPM (Ho et al., NeurIPS 2020)
DPM via SDE (Song et al., ICLR 2001)

Diffusion in Physics

Diffusion destroy structures along time

Diffusion in Physics

Diffusion destroy structures along time

What if we can reverse time?

Diffusion probabilistic models

Sohl-Dickstein et al, ICML 2015

Forward diffusion: a Markov chain with Gaussian kernel

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(T)}\right) \approx \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Decay towards origin Add small noise

Data distribution Gaussian noise

Image credit: Sohl-Dickstein

Diffusion probabilistic models

Sohl-Dickstein et al, ICML 2015

Consider continuous diffusion

- We can get noise from any data distribution
- The forward process is reversible
- The backward process has the same functional form

Core idea: learn to map noise to data by reversing the time

Data distribution

Gaussian noise

Diffusion probabilistic models

Sohl-Dickstein et al, ICML 2015

Backward diffusion: a Markov chain with Gaussian kernel

$$p\left(\mathbf{x}^{(0)}\right) \approx q\left(\mathbf{x}^{(0)}\right)$$

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Learned drift and covariance functions

Data distribution

Gaussian noise

Image credit: Sohl-Dickstein

Sohl-Dickstein et al, ICML 2015

$$\min_{\theta} KL(p_D(x_0)||p_{\theta}(x_0)) \Leftrightarrow \max_{\theta} E_{p_D(x_0)}[\log p_{\theta}(x_0)]$$

KL divergence minimization Maximum likelihood

Sohl-Dickstein et al, ICML 2015

$$\min_{\theta} KL(p_D(x_0)||p_{\theta}(x_0)) \Leftrightarrow \max_{\theta} E_{p_D(x_0)}[\log p_{\theta}(x_0)]$$

$$\mathbf{E}_{q(x_0)}[\log p_{\theta}(x_0)] = \mathbf{E}_{q(x_0)}[\log \int p_{\theta}(x_{0:T}) dx_{1:T}] \ge \mathbf{E}_{q(x_0)} \mathbf{E}_{q(x_{1:T}|x_0)} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)}$$

Jensen's inequality: equality holds when $q(x_{1:T}|x_0) = p(x_{1:T}|x_0)$

Remember that The backward process has the same functional form as the forward one.

DPM can be understood as a hierarchical VAE with tractable posterior.

Sohl-Dickstein et al, ICML 2015

$$E_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_{0})} = E_{q} \left[L_{T} + L_{0} - \sum KL(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t})) \right]$$

ELBO

Decomposition for efficiency

Sohl-Dickstein et al, ICML 2015

$$E_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_{0})} = E_{q} \left[L_{T} + L_{0} - \sum_{t} KL(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t})) \right]$$

$$q(x_{t-1}|x_{t},x_{0}) = N(\tilde{\mu}_{t}(x_{0},x_{t}),\tilde{\beta}_{t}I) \qquad p_{\theta}(x_{t-1}|x_{t}) = N\left(f_{\mu}(x_{t},t),f_{\Sigma}(x_{t},t)\right)$$

Closed-form solution

 $q(x_{t-1}|x_t)$ is more natural while it is non Gaussian!

$$f_{\mu}\left(\mathbf{x}^{(t)},t
ight)$$
 Mean image Temporal coefficients

Convolution 1x1 kernel

Dense Multi-scale convolution

Dense Multi-scale convolution

Input --(t)

Results for DPM

Sohl-Dickstein et al, ICML 2015

Samples from DRAW [Gregor et al, 2015]

Samples from diffusion model

Diffusion Probabilistic Models

Score matching for EBMs

SM (Hyvärinen & Dayan, JMLR 2005)

DSM (Vincent, Neural Computation 2011)

NCSN (Song & Ermon, NeurIPS 2019)

Score representation of variance in DPM

Analytic-DPM (Bao et al., ICLR 2022)

Analytic-DPM++ (Bao et al., ICML 2022)

Diffusion Probabilistic Models

Score representation of the mean in DPMs

DPM (Sohl-Dickstein et al., ICML 2015)

DDPM (Ho et al., NeurIPS 2020)
DPM via SDE (Song et al., ICLR 2001)

 $\|\mu_{\theta}(x_t,t) - \tilde{\mu}_t(x_0,x_t)\|^2$

Denoising diffusion probabilistic models

Jonathon et al., NeurIPS 2021

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \ge \mathbb{E}_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

Regress mean with fixed variance

Denoising diffusion probabilistic models

Jonathon et al., NeurIPS 2021

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \ge \mathbb{E}_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\begin{split} \mu_{\theta}(x^{(t)}, t) \to & \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} x^{(0)} + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x^{(t)} \\ &= \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \frac{1}{\sqrt{\bar{\alpha}_t}} (x^{(t)} - \sqrt{1 - \bar{\alpha}_t}\epsilon_t) + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x^{(t)} \\ &= \frac{1}{\sqrt{\alpha_t}} (\frac{\beta_t}{1 - \bar{\alpha}_t} x^{(t)} + \frac{\alpha_t(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x^{(t)} - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t) \\ &= \frac{1}{\sqrt{\alpha_t}} (\frac{\beta_t + \alpha_t - \bar{\alpha}_t}{1 - \bar{\alpha}_t} x^{(t)} - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t) = \frac{1}{\sqrt{\alpha_t}} (x^{(t)} - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t) \end{split}$$

Regress mean with fixed variance

$$\|\mu_{\theta}(x_t,t) - \tilde{\mu}_t(x_0,x_t)\|^2$$

Reparameterization: $x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \; \epsilon$

Regress Gaussian noise

$$\|\epsilon_{\theta}(x_t,t) - \epsilon\|^2$$

Denoising diffusion probabilistic models

Jonathon et al., NeurIPS 2021

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \ge \mathbb{E}_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

Regress mean with fixed variance

$$\|\mu_{\theta}(x_t, t) - \tilde{\mu}_t(x_0, x_t)\|^2$$

Reparameterization:
$$x_t = \sqrt{\alpha_t}x_0 + \sqrt{1-\bar{\alpha}_t} \ \epsilon$$

Regress Gaussian noise

$$\|\epsilon_{\theta}(x_t,t) - \epsilon\|^2$$

Equivalent to DSM (Vincent, 2011)

$$||s_{\theta}(x_t, t) - \nabla \log q_t(x_t)||^2$$

Denoising diffusion probabilistic models

Jonathon et al., NeurIPS 2021

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_{0:T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_0,T)} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_0,T)} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_0,T)} \log \frac{p_{\theta}(x_0,T)}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_t,T) - \tilde{\mu}_t(x_t,T)) \right]$$

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \geq \mathbb{E}_{q(x_0,T)} \log \frac{p_{\theta}(x_0,T)}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_t,T) - \tilde{\mu}_t(x_t,T) - \tilde{\mu}_t(x_t,T) \right]$$

$$\mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] \geq \mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_t,T),T) - \tilde{\mu}_t(x_t,T) - \tilde{\mu}_t(x_t,T) - \tilde{\mu}_t(x_t,T) \right]$$

$$\mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] \geq \mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_t,T),T) - \tilde{\mu}_t(x_t,T) - \tilde{\mu}_t(x_t,T) \right]$$

$$\mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] \geq \mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_t,T),T) - \tilde{\mu}_t(x_t,T) - \tilde{\mu}_t(x_t,T) \right]$$

$$\mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] \geq \mathbb{E}_{q(x_0,T)}[\log p_{\theta}(x_0,T)] = \mathbb{E}_q \left[L_T + L_0 - \sum L_0 + L_0 - \sum L$$

Predicting the Gaussian noise is numerically stable and the residual is easier to learn.

Skip connections in the model

Jonathon et al., NeurIPS 2021

Similar architectures have been investigated in Song & Ermon, NeurIPS 2019

Results of DDPM

Jonathon et al., NeurIPS 2021

CIFAR-10 FID = 3.17 (SOTA)

Fast inference in diffusion probabilistic models

SM (Hyvärinen & Dayan, JMLR 2005)

DSM (Vincent, Neural Computation 20

NCSN (Song & Ermon, NeurIPS 2019)

Score representation of variance in DPMs

Analytic-DPM (Bao et al., ICLR 2022)
Analytic-DPM++ (Bao et al., ICML 2022)

Diffusion Probabilistic Models

Score representation of the mean in DPMs

DPM (Sohl-Dickstein et al., ICML 2015)

DDPM (Ho et al., NeurIPS 2020)
DPM via SDE (Song et al., ICLR 2001)

Motivation

DPM

- Learning
 - MLE (tractable posterior) / SM
- Sampling
 - 1000 number of function evaluations
- Performance
 - SOTA generation and likelihood results

GAN, VAE, FLOW

- Learning
 - Adversarial / MLE + traditional VI / det of Jacobian
- Sampling
 - Single function evaluation
- Performance
 - Competitive to SOTA

Motivation

DPM

- Learning
 - MLE (tractable posterior) / SM
- Sampling
 - 1000 number of function evaluations
- Performance
 - SOTA generation and likelihood results

GAN, VAE, FLOW

- Learning
 - Adversarial / MLE + traditional VI / det of Jacobian
- Sampling
 - Single function evaluation
- Performance
 - Competitive to SOTA

The variance matters

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \ge \mathbb{E}_{q(x_{0...T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}|x_t)) \right]$$

The variance of $p_{\theta}(x_{t-1}|x_t)$ are set manually by considering extreme case of $q(x_0)$.

- Standard Gaussian $q(x_0)$ corresponds to β_t
- Single point $q(x_0)$ corresponds to the $\widetilde{\beta}_t$

Can we find the optimal covariance w.r.t. the ELBO with a minimal assumption on data?

Analytic-DPM

Bao et al, ICLR 2022

An equivalent decomposition of the objective

$$\mathbb{E}_{q(x_0)}[\log p_{\theta}(x_0)] \ge \mathbb{E}_{q(x_{0...T})} \log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} = \mathbb{E}_q \left[L_T + L_0 - \sum KL(q(x_{t-1}|x_t)||p_{\theta}(x_{t-1}|x_t)) \right]$$

- Why change the decomposition?
 - $q(x_{t-1}|x_t,x_0)$ uses ground truth data, which is not available for $p_{\theta}(x_{t-1}|x_t)$ (generation)
- Challenge: $q(x_{t-1}|x_t)$ is NOT Gaussian in general and does not have an analytic solution
 - $q(x_{t-1}|x_t) = \int q(x_{t-1}|x_t, x_0)q(x_0)dx_0$

Score representation of the optimal mean and covariance

Bao et al, ICLR 2022

Main Theorem. The optimal mean and covariance w.r.t. the ELBO can be written as:

$$\mu_t^*(x_t) = \frac{1}{\sqrt{1-\beta_t}} (x_t + \beta_t \nabla \log q_t(x_t)), \qquad \sigma_t^{*2} = \frac{\beta_t}{1-\beta_t} (1 - \beta_t E_{q_t(x_t)} \frac{\|\nabla \log q_t(x_t)\|^2}{d}).$$

Key steps in the proof:

- \triangleright Moment matching: $\min_{p \text{ is exponential family}} KL(q||p)$ is equivalent to matching the moments of q to p
- \blacktriangleright Low of total variance: conditional expectation (moments) of $q(x_{t-1}|x_t)$ can be represented conditional expectation of $q(x_0|x_t)$
- \succ The conditional expectation of $q(x_0|x_t)$ can be represented by score of $q_t(x_t)$ if $q(x_t|x_0)$ is Gaussian.

Score representation of the optimal mean and covariance

Bao et al, ICLR 2022

Main Theorem. The optimal mean and covariance w.r.t. the ELBO can be written as:

$$\mu_t^*(x_t) = \frac{1}{\sqrt{1-\beta_t}} (x_t + \beta_t \nabla \log q_t(x_t)), \qquad \sigma_t^{*2} = \frac{\beta_t}{1-\beta_t} (1 - \beta_t E_{q_t(x_t)} \frac{\|\nabla \log q_t(x_t)\|^2}{d}).$$

- > The optimal mean representation coincides with existing work
- > The optimal covariance representation depends on the score as well
- > DSM proves that matching a noisy score is equivalent to matching the noise
 - ightharpoonup The score estimation by the noise perdition network in DDPM $\nabla \log q_t(x_t) \approx -\frac{1}{\sqrt{\overline{\beta_t}}} \epsilon_{\theta}(x_t, t)$
- We can estimate the optimal covariance without additional training

Differences between Analytic-DPM and DDPM

Bao et al, ICLR 2022

Quality-efficiency trade-off: $20 \times$ to $80 \times$ speed up with the same sample quality

Bao et al, ICLR 2022

Original DDPM in 1000 steps

Analytic-DDPM in 50 steps

Quality-efficiency trade-off: $20 \times$ to $80 \times$ speed up with the same sample quality

Bao et al, ICLR 2022

Original DDPM in 1000 steps

Analytic-DDPM in 50 steps

Analytic-DPM++

Bao et al, ICML 2022

- From scalar to full covariance
- Learn a time dependent covariance in an analytical form by predicting the square of noise as well
- Correcting the bias of the score model: the optimal covariance given imperfect mean

$$|\sigma_n^{*2} - \hat{\sigma}_n^2| = \underbrace{\left(\sqrt{\overline{\beta}_n} - \sqrt{\overline{\beta}_{n-1} - \lambda_n^2}\right)^2 \overline{\beta}_n}_{\text{Coefficient}} \underbrace{|\Gamma_n - \mathbb{E}_{q_n(\boldsymbol{x}_n)} \frac{||\nabla_{\boldsymbol{x}_n} \log q_n(\boldsymbol{x}_n)||^2}{d}}_{\text{Approximation error}}$$

Estimate with a model True value with the score

Analytic-DPM++

Bao et al, ICML 2022

• Much better results in 10 steps

	CIFAR10 (VP SDE)					
# TIMESTEPS K	10	25	50	100	200	1000
EULER-MARUYAMA	292.20	170.17	90.79	47.46	21.92	2.55
ANCESTRAL SAMPLING	235.28	129.29	68.52	31.99	12.81	2.72
PROBABILITY FLOW	107.74	21.34	7.78	4.33	3.27	2.82
A-DPM	35.10	11.57	6.54	4.71	3.61	2.98
NPR-DPM	33.70	10.44	5.83	3.97	3.05	3.04
SN-DPM	25.30	7.34	4.46	3.27	2.83	2.71

What's next?

SM (Hyvärinen & Dayan, JMLR 2005)

DSM (Vincent, Neural Computation 2011)

Score-based models

NCSN (Song & Ermon, NeurIPS 2019)

Score representation of variance in DPM

Analytic-DPM (Bao et al., ICLR 2022)
Analytic-DPM++ (Bao et al., ICML 20

Diffusion Probabilistic Models

Score representation of the mean in DPMs

Faster inference

Lu et al, arxiv 2022

- Simple form of the probability ODE by reparameterization and exploiting semi-linearity
- Customized higher-order ODE solver for high quality generation in 10 steps

Controllable generation

Min Zhao et al., 2022

- Using energy functions trained separately
- In the formulation of Product of Experts
- Evaluated in unpaired 121 translation

Large scale diffusion models

DALL·E 2

Method	Zero-shot FID		
DALL∙E	28		
GLIDE	12.24		
DALL·E 2-AR	10.63		
DALL·E 2-Diffusion	10.39		

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

a teddy bear on a skateboard in times square

Imagination of AI: zero shot text to image generation

Summary of the talk

• Diffusion models gradually map a Gaussian to data by a Markov chain

• Score representations of both the mean and variance of diffusion models are effective

• Faster, controllable and larger diffusion models are on the way

Thank you!

Email: <u>chongxuanli@ruc.edu.cn</u>

Homepage: https://zhenxuan00.github.io/

References

- Hyvärinen A, Dayan P. Estimation of non-normalized statistical models by score matching[J]. Journal of Machine Learning Research, 2005, 6(4).
- Vincent P. A connection between score matching and denoising autoencoders[J]. Neural computation, 2011, 23(7): 1661-1674.
- Sohl-Dickstein J, Weiss E, Maheswaranathan N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//International Conference on Machine Learning. PMLR, 2015: 2256-2265.
- Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution[J]. Advances in Neural Information Processing Systems, 2019.
- Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020.
- Song Y, Sohl-Dickstein J, Kingma D P, et al. Score-based generative modeling through stochastic differential equations[J]. ICLR 2021.
- Bao F, Li C, Zhu J, et al. Analytic-dpm: an analytic estimate of the optimal reverse variance in diffusion probabilistic models[J]. ICLR 2022.
- Bao F, Li C, Sun J, et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models[J]. ICML 2022.
- Lu C, et al. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. Arxiv preprint 2022.
- Zhao M, et al. EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. Arxiv preprint 2022.