Minimum Spanning Tree

Greedy Strategy

e.g., 找硬币问题

贪心策略即一步步扩展局部解,每一步选择必须满足

• feasible: 必须满足问题本身的限制

• locally optimal: 选择是当前局部可选项内最优的

• irrevocable: 在之后步骤中不可撤销选择

但是贪心问题一般得不到正确的解

Minimum Spanning Tree

图 G 的生成树 T 是其子图,满足

- T包含 G 中所有顶点
- T 是连诵无环图,即树

定义一颗生成树的权为其所有边的权,即可定义 G 的最小生成树

定义 10.1 最小生成树的直接定义

如果 T 是 G 的生成树,且图中不存在任何其他权比 T 小的生成树,则称 T 为图 G 的最小生成树

最小生成树不能通过简单的图遍历完成

Prim Algorithm

Strategy

构建一颗生成树:从某个结点出发,不断发现新节点,过程类似图遍历

保证生成树权值最小:对当前候选节点,选择边权值最小的一条,将与其相连的节点加入 MST

即与当前已生成局部最小生成树相连的节点 (fringe) 中贪心选择权最小的

Correctness

Prim 算法的执行过程可以分为 n 个阶段,初始情况生成树中只有一个节点,记为 $T^{(1)}$,之后 贪心选择一个节点加入 MST,记为 $T^{(2)}$,以此类推

最终局部生成树中有 n 个节点,即是全图的生成树。证明 Prim 算法的正确性只需对上述过程进行归纳,归纳不变量:**局部生成树是局部最小生成树**

为此,需要先将最小生成树的定义**"算法化"**,将全局最小权生成树的性质等价转换为一种更局部的性质。这一思想类似之前课程中对于割点和桥的直接定义 → 基于路径的定义 → 基于 DFS 的定义。

基于最小生成树性质 (MST property) 得到最小生成树的间接定义

定义 10.2 最小生成树的间接定义

给定图 G 的生成树 T,定义 T 是图 G 的最小生成树,如果它满足"最小生成树性质":对任意不在 T 中的边 e,T \cup $\{e\}$ 含有一个环,且 e 是环中最大权值的边(可能不唯一)

MST 直接定义和间接定义等价件不是显然的, 需要证明

引理 10.1 所有满足 MST property 的生成树 T 有相同的权值

证明:基于数学归纳法证明,设生成树 T_1, T_2 均满足 MST 属性,对 T_1 和 T_2 之间**边的差 异数目** k 归纳,即 T_1, T_2 均有 n-1 条边,其中有 k 条边不相同

Basis. k=0 时显然 T_1, T_2 有相同的权值

I.H. 对任意 $0 \le j < k$,如果 T_1 和 T_2 边差异数为 j ,则 T_1, T_2 权值相同

Ind.Step. 考虑 T_1, T_2 中不同的边中权值最小的 uv ,不失一般性,设其在 T_2 中,则 T_1 中在 u 与 v 之间存在一条路径,且路径上至少有一条边不在 T_2 中(否则 T_2 中会有环),设其为 w_iw_{i+1} ,则可得

- $uv \leqslant w_i w_{i+1}$: 这两条边都是 T_1, T_2 之间不同的边,根据定义,uv 是其中最小的边
- $uv \geqslant w_i w_{i+1}: T_1 \cup \{uv\}$ 形成环,且 $w_i w_{i+1}$ 在环上,由于 T_1 的 MST property,uv 是环上最大权边

由此,有 $uv=w_iw_{i+1}$,将 T_1 中的 w_iw_{i+1} 删去,加入 uv 得到另一颗生成树 T_3 ,显然 $T_1=T_3$,又易得 T_2,T_3 之间不同的边只有 k-1 条,根据 I.H. , $T_2=T_3=T_1$

基于引理 10.1,可证明最小生成树的直接定义与间接定义等价

定理 10.1 T 是最小生成树 \iff T 具有 MST property

- (⇒): 设一颗最小生成树 T 不满足 MST property,则存在一条边 $e \notin T$ 且 $T \cup \{e\}$ 存在环,环中存在边 e' 满足 e' > e ,则将 e' 删去,加入 e ,得到一颗权值更小的生成树,与 T 是最小生成树矛盾
- (\Leftarrow) : 设生成树 T 满足 MST property,假设 T_{min} 是一颗 MST,根据 (\Rightarrow) 的证明, T_{min} 具有 MST property,而根据引理 10.1, T,T_{min} 有相同的权值, T 也是最小生成树

基于最小生成树的性质,可以归纳证明 Prim 算法的正确性

定理 10.2 Prim 算法总能得到图 G 的 MST

证明:对 Prim 算法的执行阶段 k 归纳

Basis. $T^{(1)}$ 显然为最小生成树

I.H. 对任意 $0 \leq j < k$, $T^{(j)}$ 总是最小生成树

Ind.Step. 需要证明 $T^{(k)}$ 具有 MST property,显然 $T^{(k)}$ 由 $T^{(k-1)}$ 新增一个顶点和一条边得到,记新增顶点为 v,新增边为 u_1v 。现在考虑在 $T^{(k)}$ 中加一条边形成环,若加的边两个顶点均在 $T^{(k-1)}$ 中,则由 I.H., $T^{(k-1)}$ 满足 MST property,新加的边是环上权值最大的边。只需考虑新加入的边一个顶点为 v,一个顶点为 $T^{(k-1)}$ 中某顶点 u_i 。

根据 Prim 算法的贪心策略,在所有使 v 和 $T^{(k-1)}$ 相连的边中, u_1v 是权值最小的边。考虑将边 u_iv 加入 $T^{(k)}$ 形成环,假设 u_iv 不是环上权值最大的边,则环中一定存在至少一条严格大于 u_iv 的边,设从 v 出发,沿顺时针方向遇到第一条权值大于 u_iv 的边记为 w_aw_{a+1} ,沿逆时针方向遇到第一条权值大于 u_iv 的边记为 $w_{b-1}w_b$ (仅有一条边权值严格大于 u_iv 时证明类似)。不失一般性,假设 w_a 先被 Prim 算法选中,则根据 Prim 算法的贪心原则,v 一定在 w_b 之前被选中,因为从 w_a 到 w_b 沿环逆时针(逆时针路径上边权包括 u_1v , u_iv 均小于 w_aw_{a+1} ,在这些边加入 MST 之前都不会选中 w_aw_{a+1})一定要经过边 $w_{b-1}w_b$,而 $w_{b-1}w_b$ 大于逆时针路径上所有其他的边,这将使 v 先于 w_b 被选中,与之前的假设矛盾。

Implementation

Prim 算法基于 BFS 的过程构建图的生成树。算法每次从一个调度器取出一节点处理,并将其所有不在调度器中的邻居加入调度器,这一过程保证了算法遍历整张图,并得到一颗生成树

Prim 算法的关键在于贪心选择的过程,在算法运行过程中,图中未被选入当前局部 MST 且与当前局部 MST 有边相连的节点称为 **Fringe** 节点,贪心选择的候选即是 Fringe 节点,可以通过将 Fringe 节点维护成一个 **优先级队列** 实现。这个优先级队列就是 Prim 算法执行的调度器。

每次从优先队列取出节点后,其邻居可分为两类:

- 不在 fringe 的,加入 fringe
- 已在 fringe 的,检查其优先级是否需要更新

算法具体框架如下

```
Initialize all nodes in G as UNSEEN
 2
   Initialize the priority queue queNode as empty
   Initialize edge set MST as empty
4
   Select s to start
   s.candidateEdge := NULL
 5
   queNode.INSERT(s, -INF)
6
 7
   while queNode != empty do
8
       v := queNode.EXTRACT-MIN()
 9
       MST:= MST + v.candidiateEdge
10
       UPDATE-FRINGE(queNode, v)
```

其中的 UPDATE-FRINGE 为

```
1
  foreach neighbor w of v do
2
       newWeight := vw.weight
       if w is UNSEEN then
3
           w.candidateEdge := vw
4
5
           queNode.INSERT(w, newWeight)
       else
6
7
           if newWeight < w.priorpty then
               w.candidateEdge := vw
8
9
               queNode.DECREASE-KEY(w, newWeight)
```

Analysis

设图 G 中有 n 个顶点,m 条边,在 Prim 算法的执行过程中

- 从节点的角度看,每个节点都要进入优先队列再离开优先队列,故 INSERT 和 EXTRACT-MIN 要执行 n 次
- 从边的角度看,最坏情况要执行 m 次 DECREASE-KEY

故 Prim 算法的代价完全取决于 priority queue 的实现,可以基于堆和数组实现

操作	数组实现	堆实现
INSERT	O(1)	O(log n)
EXTRACT-MIN	O(n)	O(log n)
DECREASE-KEY	O(1)	O(log n)

基于数组实现时时间复杂度为 $O(n^2+m)$, 基于堆实现时间复杂度为 $O((m+n)\log n)$

Kruskal

Strategy

Kruskal 算法的贪心思想同样十分简单,将边权按照从小到大排列,每次选择权最小的边,算法始终保持加入的边不成环,直至最终得到最小生成树

key issue 即是如何保证新加入的边不成环。加入边成环即表示加入边的两个端点在此之前已经连通,而顶点间的连通关系是一种等价关系,判断是否成环即是判断边的两个端点是否连通,此处可以使用之前课程讲过的并查集来判断加入后是否成环

Correctness

类比 Prim 算法,将 Kruskal 算法执行的过程按照已加入的边数分为不同的阶段

在执行过程中选中的边形成的子图不一定连通,算法逐步得到的是一个最小生成森林,逐步加 边直至所有连通片连通,得到图的生成树。

定理 10.3 Kruskal 算法总能得到图 G 的 MST

证明过程对上述过程归纳,归纳不变量:Kruskal 算法得到的局部生成森林总是被某个生成树 T 包含

Basis. 显然对于任何 MST T ,有 $F^{(0)}=\varnothing\in T$

I.H. $F^{(k-1)}$ 包含在某 MST T 中

Ind.Step. 设 $F^{(k)}=F^{(k-1)}\cup\{e\}$,若 $e\in T$,则 $F^{(k)}\in T$,得证。否则 $e\not\in T$,则 $T\cup\{e\}$ 中有环,环上一定有一边 e' 权值等于 e

- T 具有 MST property, 易得 $e' \leq e$
- e 由 Kruskal 贪心选出,则 $T\setminus F^{(k-1)}$ 中的边权值均不小于 e ,有 $e\leqslant e'$

故 e'=e ,可通过调换两条边得到新的 MST $T'=(T\setminus\{e'\})\cup\{e\}$,显然 T'=T,则 T' 也是 MST, $F^{(k)}$ 包含于某个 MST,得证

Implementation

算法框架如下

```
Build a priority queue queNode of edges in G
   Initialize a disjoint set of nodes in G
   Initialize edge set MST as empty
   while queNode != empty do
       vw := queNode.EXTRACT-MIN()
 5
       if FIND(v) != FIND(w) then
 6
 7
            MST := MST + VW
           if MST.size == n-1 then
 8
9
                return
10
           UNION(V, W)
```

使用堆实现优先队列或直接对边按照权值排序均可

Analysis

排序边/维护优先级队列的代价为 $O(m \log m)$

执行过程中会产生 O(m) 条 UNION/FIND 指令,根据之前课程的结论,采用 WEIGHTED-UNION 和 C-FIND 的代价为 O(m+n)

故 Kruskal 算法的代价为 $O(m \log m)$

Prim vs. Kruskal

对于寻找 MST 的算法,由于至少需要检查一遍所有的边,故下界为 $\Omega(m)$

Prim 算法代价为 $O(n^2+m), O((m+n)\log n)$,而 Kruskal 算法代价为 $O(m\log m)$,实 际问题中孰优孰劣一般取决于图的稠密程度。总的来说,Prim 更适用于稠密图,Kruskal 更适用于稀疏图