AULA 15

REDES DE DISTRIBUIÇÃO DE ÁGUA

Critérios para o Dimensionamento Hidráulico;

Diâmetros Mínimos;

Verificação ao Incêndio;

Procedimentos para a construção do Modelo;

AULA 16

Procedimentos para o Cálculo Hidráulico;

Órgãos e Acessórios

Redes de Distribuição / Dimensionamento Hidráulico

Decreto Regulamentar nº 23/95 – Artigo 21º / Critérios de velocidade

- 1 -No dimensionamento hidráulico deve ter-se em conta a minimização dos custos, que deve ser conseguida através de uma combinação criteriosa de diâmetros, observando-se as seguintes regras:
 - a) A velocidade de escoamento para o caudal de ponta no horizonte de projecto não deve exceder o valor calculado pela expressão:

$$V = 0.127 D^{0.4}$$

- onde V é a velocidade limite (m/s) e D o diâmetro interno da tubagem (mm);
- b) A velocidade de escoamento para o caudal de ponta no ano de início de exploração do sistema não deve ser inferior a 0,30 m/s e nas condutas onde não seja possível verificar este limite devem prever-se dispositivos adequados para descarga periódica;

Redes de Distribuição / Dimensionamento Hidráulico

Decreto Regulamentar nº 23/95 – Artigo 21º / Critérios de pressões

- c) A pressão máxima, estática ou de serviço, em qualquer ponto de utilização não deve ultrapassar os 600 kPa medida ao nível do solo;
- d) Não é aceitável grande flutuação de pressões em cada nó do sistema, impondo-se uma variação máxima ao longo do dia de 300 kPa;
- e) A pressão de serviço em qualquer dispositivo de utilização predial para o caudal de ponta não deve ser, em regra, inferior a 100 kPa o que, na rede pública e ao nível do arruamento, corresponde aproximadamente a:

$$H = 100 + 40 \text{ n}$$

onde H é a pressão mínima (kPa) e n o número de pisos acima do solo, incluindo o piso térreo; em casos especiais, é aceitável uma redução daquela pressão mínima, a definir, caso a caso, em função das características do equipamento.

Redes de Distribuição / Dimensionamento Hidráulico

Decreto Regulamentar nº 23/95 – Artigo 23º / Diâmetros mínimos

- 1 Os diâmetros nominais mínimos das condutas de distribuição são os seguintes:
 - a) 60 mm em aglomerados com menos de 20 000 habitantes;
 - b) 80 mm em aglomerados com mais de 20 000 habitantes.
- 2 Quando o serviço de combate a incêndios tenha de ser assegurado pela mesma rede pública, os diâmetros nominais mínimos das condutas são em função do risco da zona e devem ser:

```
a) 80 mm - grau 1;
```

b) 90 mm - grau 2;

c) 100 mm - grau 3;

d) 125 mm - grau 4;

e) ≥ 150 mm - grau 5.

Redes de Distribuição / Dimensionamento Hidráulico

Decreto Regulamentar nº 23/95 – Artigo 22º / Situações de incêndio

Nas situações de incêndio:

- não é exigível qualquer limitação de velocidades nas condutas e
- admitem-se alturas piezométricas inferiores a 100 kPa.

Decreto Regulamentar nº 23/95 – Artigo 18º / Volumes de água incêndio

2 - O caudal instantâneo a garantir para combate a incêndios, em função do grau de risco, é de:

a) 15 L/s - grau 1;

b) 22,5 L/s - grau 2;

c) 30 L/s - grau 3;

d) 45 L/s - grau 4;

e) a definir... - grau 5.

Construção do Modelo EPANET – configurações iniciais Alternativa 1: Traçado em CAD e importação para EPANET

- Abertura do Ficheiro .NET criado a partir do DXF
 - Ficheiro → Importar → rede → "Nome.net"
- Configuração do projecto
 - Hidráulica
 - unidades de caudal (l/s)
 - Formula de perda de carga (H-W)
 - Factor de consumo = fp 40 * fperdas

Ver → Opções... (verificar todos os valores por defeito)

- Notação: Mostrar ID dos nós e troços
- Símbolos

- Criação de um novo projecto
 - Ficheiro → Novo
- Configuração do projecto
 - Projecto → Valores por defeito
 - Rótulos do elementos
 - Propriedades:
 - Diâmetros e rugosidade das tubagens
 - Hidráulica
 - unidades de caudal (l/s)
 - · Formula de perda de carga
 - Factor de consumo (fp_40 * fperdas)
- Vizualização dos rótulos e símbolos
 - Ver → Opções...(verificar todos os valores por defeito)
 - Notação: Mostrar ID dos nós e troços
 - Símbolos

Notas sobre introdução de dados

- No Autocad o programa DXF2EPA converte:
 - polylines em Condutas
 - As extremidades das polylines em nós (início e fim)
 - Portanto, começar as polylines onde pretendemos ter nós
- O programa DXF2EPA cria ficheiros .NET (e não .INP)
- No traçado da rede deve-se ter em atenção, os desníveis topográficos.
 - De desníveis na zona edificada superiores a 50 m e reservatório localizado dentro desta zona, dividir a rede em duas zonas (ou mais) independentes, interligadas, mas cada uma com um único ponto de alimentação.
 - Na transição entre zonas colocar Válvulas Redutoras de Pressão

Construção do Modelo Elementos do modelo do sistema hidráulico

(i) Componentes físicos

- Traçado
- Nós
 - Junções (elemento nó)
 - · Reservatórios de nível fixo RNF
 - Reservatórios de nível variável RNV
- Trechos (troços)
 - Condutas
 - Bombas
 - Válvulas

(ii)Componentes não físicos

- Parâmetros operacionais do sistema
 - Curvas
 - Padrões Temporais
 - Controlos

(iii) Solicitações do sistema (consumos e caudais)

- Consumos médios nos nós
- Padrões de consumo

Construção do Modelo

Componentes físicos

Traçado do sistema e características dos elementos

- Mostrar a barra de ferramentas (se não visível)
 - Ver → Barra de Ferramentas → Mapa → Principal e Mapa
 - da esquerda para a direita

Traçado

- Comece pelos Reservatórios de nível fixo RNF e/ou de nível variável RNV (equivalem a nós)
- Adicione o(s) **nó(s)** que delimitam as condutas
- Adicione as **condutas** (trechos rectos entre nós ou "polylines")
- (Adicione as **bombas** e as **válvulas**)
- Definição das características de cada elemento
 - Clicar no botão seleccionar objecto
 - Clicar duas vezes em cima de cada objecto e definir as características uma a uma
 - k

- · Para todos os elementos acima introduzidos
- Os campos com * são obrigatórios

RNF (p.65)

Construção do Modelo

Componentes físicos (do tipo nó) Nó de junção

Nó

Construção do Modelo

Componentes físicos (do tipo trecho) Tubagem

Tubagem

Fórmula da Perda de Carga

Hazen-Williams:

$$\Delta H = 4.727*(Q/C)^{1.852} / D^{4.841*} L$$

• Darcy-Weisbach:

$$\Delta H = f * V^2/2gD * L$$

• Chezy_Manning:

$$\Delta H = 4.66*(nQ)^2 / D^{5.33*} L$$

Rugosidades (Guia Técnico no.5 ou ManualPT, p.26)

- Hazen-Williams: $C = 110 150 \text{ m}^{0.37}\text{s}^{-1}$
- Darcy-Weisbach: $\varepsilon = 0,001 3$ mm
- Chezy_Manning: $n = 1/Ks (m^{-1/3} s)$

* Não podem ser ligadas em série, nem ligadas a reservatório (usar uma tubagem curta para os separar, p.30 §3)

Válvulas (p.69)

Tipos

(VRP) *PRV Pressure Reducing Valve (V.Red.PressãoJus.) *PSV (VA) Pressure Sustaining Valve (V. de alívio) **PBV** (VPCF) Pressure Breaker Valve (V.Perda de Carga Fixa) (VRC) *FCV Flow Control Valve (V.Reg.Caudal) **TCV** (VB) **Throttle Control Valve (V. de Borboleta) GPV** (VG) **General Purpose Valve (V.Genérica)**

Parâmetro de Controlo

• Parâmetro necessário para descrever as condições de operação da válvula.

Tipo de '	Válvula	Parâmetro de Controlo	
PRV	(VRP)	Pressão (m ou psi)	
PSV	(VA)	Pressão (m ou psi)	
PBV	(VPCF)	Pressão (m ou psi)	
FCV	(VRC)	Caudal (unidades de caudal)	
TCV	(VB)	Coef. de Perda Carga Singular (adim.)	
GPV	(VG)	ID da curva de perda de carga	

Coef. de perda de carga singular

• Coeficiente de perda de carga singular quando a válvula está completamente aberta.

- Executar a simulação
- Resultados Gráfico
 - Série temporal

Resultados - Tabela (tem filtros)
e exportação para Excel

Isolinhas

III Tabela da Rede - Nós às 0:00 Horas							
ID do Nó	Consumo LPS	Carga Hidráulica m	Pressão m	Qualidade			
Nó 2	0.00	99.22	37.72	0.00			
Nó 3	0.37	99.20	37.30	0.00			
Nó 4	0.18	99.10	36.80	0.00			
Nó 5	0.00	99.05	36.45	0.00			
Nó 6	0.34	99.05	36.35	0.00			
Nó 7	0.20	98.92	34.72	0.00			
Nó 8	0.00	98.92	34.62	0.00			
Nó 9	0.19	98.92	34.82	0.00			
Nó 10	0.10	98.92	33.42	0.00			
Nó 11	0.25	98.92	33.32	0.00			
Nó 12	0.25	98.92	30.32	0.00			
Nó 13	0.13	98.92	30.32	0.00			
Nó 14	0.19	98.92	29.02	0.00			
Nó 15	0.04	98.92	28.32	0.00			

Dimensionamento Hidráulico de Redes

Nota: Recomendações para o Trabalho Prático

Procedimento para o cálculo hidráulico de redes de distribuição

- afectação dos consumos domésticos aos troços/nós do sistema de distribuição de água;
- 2) localização e afectação, a nós de cálculo, dos consumos que não foram incorporados nos consumos domésticos (escolas, centros comerciais,...);
- 3) Executar o EPANET e configurar os valores por defeito Hidráulica;
 - a. Unidades de caudal = LPS;
 - b. Fórmula de Perda de carga = C-M;
 - c. Factor de Consumo = Factor de Ponta Instantâneo para Q dimensionamento ou 1,0 para verificação do Q Incêndio;
- 4) Configurar os valores por defeito Propriedades;
 - a. Auto-comprimento = ON;
 - b. Diâmetro da tubagem = D interior mínimo;
 - c. Rugosidade da tubagem = n = 1/Ks (Manning-Strickler);
 - d. Guardar valores por defeito para novos projectos;

- 5) Entrar no EPANET e importar o ficheiro INP Ficheiro>Importar>Rede... ficheiro INP;
- 6) Sempre que pretenda introduzir novas tubagens verifique no canto inferior esquerdo se o auto-comprimento está ON ou OFF e altere para o valor pretendido em Valores por defeito> Propriedades;
- 7) Introduzir os dados dos nós (carregar em cada nó);
 - a. Cota = Cota do Terreno;
 - b. Consumo base = Qmédio do nó;
- 8) Introduzir os Elementos Hidráulicos em falta (não esquecer de os ligar), nomeadamente;
 - a. RNF (Reservatórios) ; (Introduzir Nível de água); um RNF é um nó com determinadas características onde deve terminar, pelo menos, uma conduta;
 - b. PRV (Válvula Redutoras de Pressão) (introduzir dados da PRV); uma PRV é introduzida em série com o tubo e só permite escoamento do nó Inicial para o nó final; o procedimento mais adequado é criar um novo nó auxiliar no local onde pretende instalar a PRV; deve fazer terminar a tubagem nesse nó auxiliar e iniciar a PRV nesse mesmo nó; o parâmetro de controlo é a pressão pretendida a jusante;

- 9) Executar a simulação e ver o relatório com os erros da simulação;
- 10) Para ter uma visão global de determinadas características nos nós, e nos trechos é útil utilizar as Legendas, com cor; por exemplo Introduzir na Janela>Procura>Mapa e Ver>Legendas; os valores da Legenda podem ser alteradas para o valor pretendido carregando com botão do rato direito sobre a legenda;
- 11) Para visualizar os resultados é útil, quando ainda está toda a rede com Dmin, a legenda nos troços;
 - a. de caudal (útil quando toda a rede está com Dmin para introduzir novos Diâmetros em cada troço utilizando uma tabela auxiliar de EXCEL que tem o caudal máximo admissível por cada diâmetro comercial de acordo com o regulamento (Vmáx=0,127D^0,4));
- 12) As legendas são particularmente úteis para visualizar resultados nos nós;
 - a. de pressões,
 - b. cotas piezométricas,

- 13) São também particularmente úteis para visualizar resultados nos troços as legendas;
 - a. de perdas de carga; (útil para ver quais os D preferenciais a alterar na verificação ao incêndio); recomenda-se que se altere os valores que vêm por defeito para valores mais consentâneos com as unidades que estão a ser utilizadas, (por exemplo alterar para 1 m/km, 3 m/km, 5 m/km e 10m/km) (normalmente valores superiores a 10 m/km correspondem a velocidades excessivas);
 - b. de velocidades;
- 14) Proceder iterativamente, a novas simulações e efectuar alterações no sistema hidráulico até a rede estar convenientemente dimensionada, nomeadamente;
 - a. Alterar Diâmetros comerciais em cada trecho (se o problema forem as perdas de carga excessivas ou, velocidades excessivas de acordo com o regulamento ou, velocidades baixas e o D for maior que o mínimo...);
 - Alterar o nível de água no reservatório (se o problema for a cota no nível de água);
 - c. Introduzir PRV, se houver necessidade de criar vários andares de pressão;

- 15) Verificar pressões máximas; uma forma fácil de utilizar o EPANET para simular uma situação estática de funcionamento para a verificação das pressões máximas (caudal mínimo nocturno) é a utilização de um factor de consumo muito pequeno, por exemplo 0,01 (mas atenção que por questões numéricas do modelo não pode ser zero, nem muito próximo de zero); Projecto> Opções de Simulação>Factor de Consumo = 0,01;
- 16) Após o dimensionamento da rede para o caudal de ponta, verificar a rede para o caudal de incêndio;
 - a. deverão ser efectuadas várias simulações, cada uma a representar um incêndio do grau de risco da zona (adicionar ao consumo do nó do local de incêndio um Qincendio ao consumo base aí existente);
 - atenção não se considera a existência de incêndios em várias zonas em simultâneo; Os sítios mais críticos são em geral os trechos ramificados mais extensos que têm o D mínimo;
 - c. a verificação ao incêndio consegue-se normalmente aumentando os D com maiores perdas de carga; em geral, não se conseguem resultados visíveis aumentando a cota do nível do reservatório e esta alteração tem a desvantagem de por em causa o dimensionamento.

Redes de Distribuição / Órgãos Acessórios

Órgãos acessórios mais correntes em redes de distribuição de água

■ Válvulas de seccionamento;

Válvulas de purga ou de descarga;

Hidrantes (bocas de incêndio ou marcos de água);

Bocas de rega e de lavagem;

Medidores de caudal e contadores domiciliários;

Válvulas de retenção (utilização pouco frequente).

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 40º / Válvulas de seccionamento

1 - As válvulas de seccionamento devem ser instaladas de forma a facilitar a operação do sistema e minimizar os inconvenientes de eventuais interrupções do abastecimento.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 40º / Válvulas de seccionamento

- 2 As válvulas de seccionamento devem ser devidamente protegidas e facilmente manobráveis e localizar-se, nomeadamente:
 - a) Nos ramais de ligação;
 - b) Junto de elementos acessórios ou instalações complementares que possam ter de ser colocados fora de serviço;
 - c) Ao longo da rede de distribuição, por forma a permitir isolar áreas com um máximo de 500 habitantes;
 - d) Ao longo de condutas da rede de distribuição mas sem serviço de percurso, com espaçamentos não superiores a 1 000 m;
 - e) Nos cruzamentos principais, em número de três;
 - f) Nos entroncamentos principais, em número de duas.

... (num nó com N ligações, instalar (N-1) válvulas)

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 47º / Descargas de fundo

- 1 As descargas de fundo destinam-se a permitir o esvaziamento de troços de condutas e de partes de redes de distribuição situados entre válvulas de seccionamento, nomeadamente para proceder a operações de limpeza, desinfecção ou reparação, e devem ser instaladas:
 - a) Nos pontos baixos das condutas;
 - b) Em pontos intermédios de condutas (...), tendo em atenção a necessidade de limitar o tempo de esvaziamento das condutas, e (...) de modo a minimizar o número de consumidores prejudicados por eventuais operações de esvaziamento.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 48º / Lançamento de efluentes das descargas de fundo

(...)

- 1 (...) devem ser lançados em linhas de água naturais, colectores pluviais ou câmaras de armazenamento transitório, salvaguardando-se, em qualquer dos casos, os riscos de contaminação da água da conduta.
- 2 Sempre que necessário, devem prever-se (...) dispositivos de dissipação de energia cinética.

Decreto Regulamentar nº 23/95 – Artigo 49º / Dimensionamento das descargas de fundo

O dimensionamento de uma descarga de fundo consiste na determinação do seu diâmetro de modo a obter-se um tempo de esvaziamento do troço de conduta compatível com o bom funcionamento do sistema, não devendo o seu diâmetro ser inferior a um sexto do diâmetro da conduta onde é instalada, com um mínimo de 50 mm.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 54º / Hidrantes

- 1 Consideram-se hidrantes as bocas de incêndio e os marcos de água.
- 2 As bocas de incêndio podem ser de parede ou de passeio, onde normalmente se encontram incorporadas.
- 3 Os marcos de água são salientes em relação ao nível do pavimento.
- 4 A concepção dos hidrantes deve garantir a sua utilização exclusiva pelas corporações de bombeiros e serviços municipais.

(...)

Decreto Regulamentar nº 23/95 – Artigo 56º / Ramais alimentação hidrantes

- 1 Os diâmetros nominais mínimos dos ramais de alimentação dos hidrantes são de 45 mm para as bocas de incêndio e de 90 mm para os marcos de água.
- 2 Os diâmetros de saída são fixados em 40 mm para as bocas de incêndio e em 60 mm, 75 mm e 90 mm para os marcos de água.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 55º / Localização de hidrantes

A localização dos hidrantes cabe à entidade gestora, ouvidas as corporações de bombeiros locais, devendo atender-se às seguintes regras:

a) As bocas de incêndio tendem a ser substituídas por marcos de água e, onde estes não se instalem, o afastamento daquelas deve ser de 25 m no caso de construções em banda contínua.

b) Os marcos de água devem localizar-se junto do lancil dos passeios que marginam as vias públicas, sempre que possível nos cruzamentos e bifurcações, com os seguintes espaçamentos máximos, em função do grau de risco de incêndio da zona:

c) 200 m - grau 1; 150 m - grau 2; 130 m - grau 3; 100 m - grau 4; A definir caso a caso - grau 5.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 53º / Bocas de rega e lavagem

- 1 A implantação das bocas de rega e lavagem é função da organização urbanística dos aglomerados populacionais, nomeadamente arruamentos e espaços verdes.
- 2 O afastamento entre bocas de rega e lavagem, quando necessárias, não deve ser superior a 50 m.
- 3 O diâmetro nominal mínimo das bocas de rega e lavagem e respectivos ramais de alimentação é de 20 mm.

Redes de Distribuição / Órgãos Acessórios

Decreto Regulamentar nº 23/95 – Artigo 45º / Ventosas

As ventosas devem ser localizadas nos pontos altos, nomeadamente nos extremos de condutas periféricas ascendentes, e nas condutas de extensão superior a 1 000 m sem serviço de percurso.

As ventosas, que podem ser substituídas por bocas de rega e lavagem desde que seja garantida a sua operação periódica, têm por finalidade permitir a admissão e a expulsão de ar nas condutas.

Numa rede de distribuição a entrada e a saída do ar é efectuada, em geral, pelos pontos de consumo não sendo necessárias Ventosas.

SANEAMENTO

Projecto 2: Projecto Base duma Rede de distribuição

Aula Prática da Semana 9:

Preparação Prévia:

- Implantação da rede de distribuição.
- Instalar EPANET nos computadores.
- Descarregar o manual do utilizador do EPANET.
- Aprender a utilizar o EPANET com a ajuda da "Visita Guiada" do capítulo introdutório do Manual.

Objectivos da Semana 9:

- Construir o Modelo.
- Verificar da necessidade de VRP.
- Dimensionar a Rede de distribuição para o caudal de ponta.
- Verificar para o caudal de Incêndio.