

8 BIT SIPO SHIFT REGISTER

- HIGH SPEED : $f_{MAX} = 62MHz$ (TYP.) at $V_{CC} = 6V$
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 164

The M74HC164 is an high speed CMOS 8 BIT SIPO SHIFT REGISTER fabricated with silicon gate C^2 MOS technology.

The M74HC164 is an 8 bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B), either of these inputs can be used as an active high enable for data entry through the other input. An unused input must be high, or both inputs connected together. Each low-to-high

ORDER CODES

PACKAGE	TUBE	T&R		
DIP	M74HC164B1R			
SOP	M74HC164M1R	M74HC164RM13TR		
TSSOP		M74HC164TTR		

transition on the clock inputs shifts data one place to the right and ente<u>rs into</u> QA the logic NAND of the two data inputs (A x B), the data that existed before the rising clock edge. A low level on the clear input overrides all other inputs and clears the register asynchronously, forcing all Q outputs low. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 2003 1/13

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION			
1,2	A, B	Data Inputs			
3, 4, 5, 6, 10, 11, 12, 13	QA to QH	Outputs			
8	CLOCK	Clock Input (LOW to HIGH, Edge Triggered			
9	CLEAR	Master Reset Input			
7	GND	Ground (0V)			
14	Vcc	Positive Supply Voltage			

TRUTH TABLE

	INPUTS				OUTPUTS				
CLEAR	CLOCK	SERI	AL IN	QA	OB		QH		
CLEAR	CLOCK	Α	В	QA .	QB	•••••	QП		
L	Х	Х	Х	L	L		L		
Н	Z	Х	Х		NO CF	IANGE			
Н		L	Х	L	QAn		QGn		
Н	J	Х	L	L	QAn		QGn		
Н	J	Н	Н	Н	QAn		QGn		

X : Don't Care
QAn - QGn : The level of QA - QG, respectively. before the most-recent transition of the clock

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied (*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t_r , t_f		V _{CC} = 4.5V	0 to 500	ns
		V _{CC} = 6.0V	0 to 400	ns

DC SPECIFICATIONS

		1	est Condition				Value				
Symbol	Parameter	v _{cc}		Т	$T_A = 25^{\circ}C$		-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH} High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9			
	Voltage	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		T	est Condition				Value				
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0			30	75		95		110	
	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH} t _{PHL}	Propagation Delay	2.0			57	160		200		240	
	Time (CLOCK - Q)	4.5			19	32		40		48	ns
		6.0			16	27		34		41	
t _{PLH} t _{PHL}	Propagation Delay	2.0			60	175		220		265	
	Time (CLEAR - Q)	4.5			20	35		44		53	ns
		6.0			17	30		37		45	
f _{MAX}	f _{MAX} Maximum Clock Frequency	2.0		6.2	18		5.0		4.2		
		4.5		31	53		25		21		MHz
	6.0		37	62		30		25			
t _{W(H)}	Minimum Pulse	2.0			24	75		95		110	ns
t _{W(L)}	Width (CLOCK)	4.5			6	15		19		22	
, ,		6.0			5	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			40	75		95		110	
(-)	Width (CLEAR)	4.5			10	15		19		22	ns
		6.0			9	13		16		19	
t _s	Set-up Time (A, B -	2.0		50			65		75		
	CK)	4.5		10			13		15		ns
		6.0		9			11		13		
t _h	Hold Time (A, B -	2.0		5			5		5		
••	CK)	4.5		5			5		5		ns
		6.0		5			5		5		
t _{REM}	t _{REM} Minimum Removal Time	2.0				5		5		5	
		4.5				5		5		5	ns
		6.0				5		5		5	

CAPACITIVE CHARACTERISTICS

		1	est Condition	Value							
Symbol Parameter	V _{CC}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit		
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			99						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1: MINIMUM PULSE WIDTH (CLEAR), MINIMUM REMOVAL TIME (CLEAR TO CLOCK) (f=1MHz; 50% duty cycle)

WAVEFORM 2: PROPAGATION DELAY TIMES, MINIMUM PULSE WIDTH (CLOCK), SETUP AND HOLD TIME (A,B TO CLOCK) (f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

SO-14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S		1	' '8 (r	max.)	1	1

TSSOP14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
K	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Tape & Reel SO-14 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.4		6.6	0.252		0.260	
Во	9		9.2	0.354		0.362	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

