Business Analytics

Session 6a. Causal Inference and Potential Outcomes Model

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

• (T/F) To perform clustering, we need to specify the outcome variable Y.

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?
 - They matter a lot, because we need to calculate the distances between points and clusters.

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?
 - They matter a lot, because we need to calculate the distances between points and clusters.
- What are the advantages of hierarchical clustering?

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?
 - They matter a lot, because we need to calculate the distances between points and clusters.
- What are the advantages of hierarchical clustering?
 - Intuitive; no need to specify the number of clusters.

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?
 - They matter a lot, because we need to calculate the distances between points and clusters.
- What are the advantages of hierarchical clustering?
 - Intuitive; no need to specify the number of clusters.
- What are the advantages of k—means clustering?

- (T/F) To perform clustering, we need to specify the outcome variable Y.
 - False. We just need to have the covariates X.
- Do the magnitudes/units of different independent variables matter?
 - They matter a lot, because we need to calculate the distances between points and clusters.
- What are the advantages of hierarchical clustering?
 - Intuitive; no need to specify the number of clusters.
- What are the advantages of k—means clustering?
 - Works well with a large data set; minimizes the squared errors.

Why Should We Care About Causal Inference?

Causality

Recall our regression/classification model:

$$Y\approx f(X)$$

- Goal: To identify that changes in X cause changes in Y.
 - To understand the cause of a problem.
 - To understand the effect/consequence of a change.
 - To inform what changes should be made to improve the status quo.
- Questions of interest:
 - Are human activities causing climate changes?
 - Will more education lead to higher incomes?
 - Will inventory information change customers' purchasing decisions?
 - How much more time will you use Kuaishou per day if a more interactive UI is available?

Causation vs. Association

Does hospitalization lead to better health?

• Data from National Health Interview Survey:

Group	Sample Size	Mean Health Status	Std Error
Hospital	7774	3.21	0.014
No hospital	90049	3.93	0.003

^{* 1} refers to poor health; 5 refers to excellent health.

- Hospitalization is associated with poorer health.
 - Can we say that hospitalization leads to poorer health?
- Another example: WeChat promotion.

Group	Converted	Not Converted
Promotion	20	230
No promotion	23	227

- The two groups of customers seem to have very similar (i.e., statistically the same) conversion rates.
 - Can we say that WeChat promotion has little (or even negative) value?

Causation vs. Association

- Key issue: We are unable to observe what would have happened to each individual if the alternative action had been applied.
- People who are seriously ill are more likely to be admitted into a hospital in the first place, but we are unable to see:
 - What happens to a seriously sick person if not admitted into a hospital?
 - What happens to a slightly sick person if admitted into a hospital?
- Only those people who are unlikely to convert received the WeChat promotion. We are unable to see:
 - What happens to a likely-to-convert customer if receiving the promotion?
 - What happens to an unlikely-to-convert customer if not receiving the promotion?

Potential Outcomes Model

Counterfactuals and Potential Outcomes

- We call the unseen information about each individual the counterfactual.
 - Without reasoning about counterfactuals, we cannot draw causal inferences.

- Two possible actions applied to an individual:
 - 1 or "treatment"
 - O or "control"

- For each individual, two associated potential outcomes:
 - Y(1): Outcome if treatment applied
 - Y(0): Outcome if control applied

Causal Effect

 Causal effect: The difference between the outcome if they are assigned treatment or control.

Causal effect =
$$Y(1) - Y(0)$$

- Fundamental problem in causal inference: For each individual, we either observe Y(1) or Y(0), but not both.
 - Causal inference is a problem of missing data.

Question: How can we resolve this issue?

Assignment

- Assignment mechanism (W): W = 1 (resp. 0) if an individual is assigned to treatment (resp. control).
- In the hospital example, individuals are partially self-assigned, and partially assigned by doctors.
- In the promotion example, the firm assigns the customers to treatment or control, but there may be some biases in the assignment.
- Randomized assignment: Assigned to treatment or control at random.

WeChat Promotion Revisited

- ullet W = 1 means promotion received; Y = 1 means individual converted.
- The stared entries (*) are what we observe.

Individual	Wi	$\mathbf{y_i}(1)$	$\mathbf{y_i}(0)$	Causal Effect
1	0	1	0 (*)	1
2	0	1	0 (*)	1
3	0	1	0 (*)	1
4	0	1	1(*)	0
5	0	1	1(*)	0
6	0	1	1(*)	0
7	1	1(*)	0	1
8	1	1(*)	0	1
9	1	1(*)	0	1
10	1	0(*)	0	0
11	1	0(*)	0	0
12	1	0(*)	0	0

• The average conversion rate is the same for treatment and control groups (50%). Can we say anything about the causal effect of WeChat promotions?

Estimating Causal Effects

Average Treatment Effect

- We cannot observe both potential outcomes for each individual.
 Possible approaches:
 - Observe the same individual at different points in time.
 - Observe two individuals who are nearly identical, and give one treatment and the other control.
- Average Treatment Effect:

$$\mathsf{ATE} = \mathbb{E}[\mathsf{Y}(1)] - \mathbb{E}[\mathsf{Y}(0)]$$

- We lose individual information, but get an estimation of both terms in expectation.
- Estimating ATE:

$$\widehat{\text{ATE}} = \frac{1}{\textbf{n}_1} \sum_{\textbf{W} \leftarrow 1} \textbf{Y}_i(1) - \frac{1}{\textbf{n}_0} \sum_{\textbf{W} \leftarrow 0} \textbf{Y}_i(0) \approx \mathbb{E}[\textbf{Y}(1) | \textbf{W} = 1] - \mathbb{E}[\textbf{Y}(0) | \textbf{W} = 0]$$

• Question: When is \widehat{ATE} a good estimate of ATE?

Selection Bias

$$\widehat{\text{ATE}} \approx \underbrace{\mathbb{E}[\textbf{Y}(1) - \textbf{Y}(0) | \textbf{W} = 1]}_{\text{Expected Causal Effect for Treatment}} + \underbrace{\mathbb{E}[\textbf{Y}(0) | \textbf{W} = 1] - \mathbb{E}[\textbf{Y}(0) | \textbf{W} = 0]}_{\text{Selection Bias}}$$

$$\widehat{\text{ATE}} \approx \underbrace{\mathbb{E}[\mathbf{Y}(1) - \mathbf{Y}(0) | \mathbf{W} = 0]}_{\text{Expected Causal Effect for Control}} + \underbrace{\mathbb{E}[\mathbf{Y}(1) | \mathbf{W} = 1] - \mathbb{E}[\mathbf{Y}(1) | \mathbf{W} = 0]}_{\text{Selection Bias}}$$

• Theorem. $\widehat{ATE} \approx ATE$ if there is no selection bias:

$$\mathbb{E}[\mathbf{Y}(0)|\mathbf{W}=1] = \mathbb{E}[\mathbf{Y}(0)|\mathbf{W}=0], \ \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] = \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0]$$

- No selection bias: Assignment to treatment uncorrelated with outcomes.
 - Not satisfied for the cases of hospitalization and WeChat promotion.
- Selection bias is the biggest challenge in causal inference.

Selection Bias: Example

WeChat promotion result:

Individual	Wi	$\mathbf{Y_i}(1)$	$\mathbf{Y}_{i}(0)$	Causal Effect
1	0	1	0 (*)	1
2	0	1	0 (*)	1
3	0	1	0 (*)	1
4	0	1	1(*)	0
5	0	1	1(*)	0
6	0	1	1(*)	0
7	1	1(*)	0	1
8	1	1(*)	0	1
9	1	1(*)	0	1
10	1	0(*)	0	0
11	1	0(*)	0	0
12	1	0(*)	0	0

• ATE =
$$\frac{6}{12} = 0.5$$

•
$$\widehat{ATE} = \frac{3}{6} - \frac{3}{6} = 0$$

• ATE for Treatment: ATT =
$$\mathbb{E}[\mathbf{Y}(1) - \mathbf{Y}(0)|\mathbf{W} = 1] = \frac{3}{6} = 0.5$$

• ATE for Control: ATC =
$$\mathbb{E}[\mathbf{Y}(1) - \mathbf{Y}(0)|\mathbf{W} = 0] = \frac{3}{6} = 0.5$$

Selection biases:

 $\mathbb{E}[\mathbf{Y}(0)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(0)|\mathbf{W}=0] = \frac{0}{6} - \frac{3}{6} = 0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=0] = \frac{3}{6} - \frac{6}{6} = -0.5 \text{ and } \mathbb{E}[\mathbf{Y}(1)|\mathbf{W}=1] - \mathbb{E}$

Randomized Experiment

- Randomized experiment: Subjects are randomly assigned to treatment or control (W is completely random).
 - No selection bias: W and and the outcomes are independent.
 - Randomized experiments are the "gold standard" of causal inference.
 - Other names: Randomized controlled trial; A/B test.

- In a randomized experiment, \widehat{ATE} is a good estimator of ATE.
 - Estimated standard error $\widehat{\mathsf{SE}} = \sqrt{\frac{\hat{\sigma}_1^2}{\mathsf{n}_1} + \frac{\hat{\sigma}_0^2}{\mathsf{n}_0}}$.
 - Easy to compute the t-statistic and the p-value.
 - 95% confidence interval: $[\widehat{\textbf{ATE}} 1.96\widehat{\textbf{SE}}, \widehat{\textbf{ATE}} + 1.96\widehat{\textbf{SE}}].$

Regression Analysis

An alternative approach: Linear regression.

$$\mathbf{Y}_{i} \approx \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{W}_{i}$$
, where $\mathbf{W}_{i} = 0, 1$

- In a randomized experiment:
 - $\hat{\beta}_0$: Average outcome in the control group.
 - $\hat{eta}_0 + \hat{eta}_1$: Average outcome in the treatment group.
 - $\bullet \ \hat{\beta}_1 = \widehat{\mathsf{ATE}}.$
- Let's see an example. Read in the data "RE.csv".
 - ullet Y =life of the patient (in months); W = adoption of a new drug.
 - We flip a coin to determine whether a patient will receive this drug.
 - What are the estimated values for ATE, $\hat{\beta}_0$, and $\hat{\beta}_1$?
 - How do you interpret these estimates?