

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

CJOPROO - PROGRAMAÇÃO ORIENTADA A OBJETOS Professor: Paulo

Desenvolvimento de um Jogo de Ping Pong com a Biblioteca raylib em C++

Wedyner Rodrigo Maciel - CJ3019462

Campos do Jordão 2025

Sumário

Desenvolvimento de um Jogo de Ping Pong com a Biblioteca raylib em C++	1		
Sumário	2		
Resumo	3		
		4. Conclusão4.	
		5. Referências Bibliográficas	

Resumo

O presente trabalho descreve o processo de desenvolvimento de um jogo digital do tipo "Ping Pong", elaborado com a linguagem de programação C++ e utilizando a biblioteca gráfica raylib, voltada à criação de aplicações multimídia e jogos 2D. O projeto foi idealizado com o intuito de explorar, de forma prática e didática, conceitos fundamentais da programação orientada a objetos, bem como proporcionar uma introdução acessível ao desenvolvimento de jogos com manipulação de gráficos em tempo real.

A estruturação do jogo foi baseada em classes específicas que representam os principais componentes da dinâmica do jogo: as raquetes, controladas pelos jogadores, e a bola, elemento central da interação. Cada classe foi projetada com métodos responsáveis por desenhar os objetos na tela, movimentá-los de acordo com as entradas do teclado e aplicar as regras de colisão e pontuação.

Durante o processo de desenvolvimento, foram implementadas rotinas de controle de colisão entre a bola e as raquetes, além da verificação de limites de tela, garantindo que a movimentação dos elementos fosse consistente com as regras do jogo. Também foi incorporado um sistema de pontuação simples, que reinicia a posição da bola ao final de cada jogada, mantendo o jogo dinâmico e contínuo.

Os testes realizados comprovaram a estabilidade da aplicação e a responsividade dos controles, permitindo uma experiência fluida e interativa para dois jogadores. A simplicidade da interface não comprometeu a funcionalidade, demonstrando que jogos eficazes podem ser desenvolvidos com poucos recursos gráficos, desde que a lógica e a estrutura do código estejam bem definidas.

Dessa forma, o projeto se mostrou eficaz tanto como uma ferramenta didática, aplicável em disciplinas de lógica de programação e computação gráfica, quanto como base para o desenvolvimento de jogos mais complexos e completos. A modularidade do código e a utilização de uma biblioteca de fácil manuseio como a raylib possibilitam futuras expansões, como a introdução de sons, interfaces gráficas mais ricas ou modos de jogo adicionais. O resultado final evidencia que o uso de tecnologias acessíveis pode viabilizar a criação de experiências digitais envolventes e educacionais.

1. Introdução

O desenvolvimento de jogos digitais tem se consolidado como uma das áreas mais dinâmicas e atrativas da ciência da computação, despertando o interesse de estudantes, profissionais e pesquisadores por envolver uma combinação rica de criatividade, lógica e domínio técnico. Além do entretenimento, os jogos oferecem um ambiente ideal para o aprendizado prático de diversos conceitos fundamentais da computação, como estruturas de dados, lógica de programação, algoritmos, orientação a objetos e manipulação gráfica. Ao criar jogos, os desenvolvedores são desafiados a pensar em tempo real, reagir a eventos do usuário, tratar colisões e aplicar estratégias para otimizar desempenho e tornar a experiência do usuário fluida e envolvente.

Neste contexto, este trabalho tem como objetivo principal o desenvolvimento de uma versão digital do clássico jogo "Ping Pong", também conhecido como "Pong", utilizando a linguagem de programação C++ e a biblioteca gráfica raylib. A escolha do jogo baseia-se em sua simplicidade estrutural e valor histórico, pois trata-se de um dos primeiros jogos eletrônicos da história, sendo frequentemente utilizado como ponto de partida no ensino de desenvolvimento de jogos. Sua lógica é direta e intuitiva, mas ao mesmo tempo proporciona um rico campo de aplicação de técnicas fundamentais da programação.

A linguagem C++ foi selecionada por sua ampla utilização no mercado de desenvolvimento de sistemas de alto desempenho, incluindo engines gráficas e jogos comerciais, além de sua forte orientação a objetos, que permite uma estruturação mais robusta e reutilizável do código. Por sua vez, a biblioteca raylib destaca-se por sua facilidade de uso, código aberto e foco na simplicidade, sendo especialmente recomendada para iniciantes e para projetos educacionais que envolvem programação gráfica. Com uma API clara e bem documentada, raylib permite a manipulação de gráficos 2D, entrada de usuário, controle de áudio e outros recursos essenciais para a construção de um jogo completo.

A implementação do projeto foi concebida com fins didáticos, oferecendo uma aplicação funcional que pode ser utilizada como material complementar em disciplinas como Lógica de Programação, Estrutura de Dados, Programação Orientada a Objetos e Computação Gráfica. O desenvolvimento do jogo também proporciona uma oportunidade concreta para os alunos compreenderem o ciclo completo de construção de uma aplicação interativa, desde a modelagem dos elementos até a manipulação dos eventos em tempo real.

Além disso, este tipo de projeto serve como estímulo para a criatividade dos estudantes, promovendo o pensamento crítico e o raciocínio lógico ao lidar com problemas

de programação em um contexto lúdico. A prática de desenvolver jogos simples como o Ping Pong prepara o terreno para desafios mais complexos, sendo um primeiro passo relevante rumo ao domínio de técnicas mais avançadas em desenvolvimento de software.

2. Metodologia

A metodologia adotada para o desenvolvimento do jogo "Ping Pong" seguiu uma abordagem incremental e estruturada, composta por etapas bem definidas, desde a escolha das ferramentas até a implementação e os testes finais da aplicação. Essa organização permitiu acompanhar com precisão a evolução do projeto, mantendo a modularidade do código, a clareza nas implementações e a facilidade de manutenção.

O primeiro passo consistiu na definição das ferramentas e tecnologias que seriam utilizadas ao longo do projeto. Optou-se pela linguagem de programação C++, amplamente reconhecida por seu desempenho, suporte robusto à programação orientada a objetos e presença consolidada na indústria de desenvolvimento de jogos. Para a construção da interface gráfica e controle dos elementos visuais, foi escolhida a biblioteca raylib, uma API leve e de fácil aprendizado, ideal para projetos educacionais e protótipos interativos em 2D.

O compilador g++ (GCC) foi utilizado para compilar o código-fonte, sendo uma escolha confiável, compatível com os padrões da linguagem e com ampla documentação disponível. O diferencial neste projeto foi o uso do Notepad++ como ambiente de desenvolvimento, em conjunto com a configuração manual do terminal do sistema operacional para compilar e executar os arquivos. O Notepad++ foi escolhido por ser um editor de texto leve, eficiente e compatível com realce de sintaxe para C++, além de permitir uma edição rápida e organizada do código-fonte. Embora não ofereça recursos avançados como depuração integrada, sua simplicidade foi suficiente para atender às demandas deste projeto, proporcionando um ambiente enxuto e funcional para o desenvolvimento com raylib.

A estruturação do código seguiu os princípios da programação orientada a objetos, com foco em clareza, modularização e reutilização. Foram definidas duas classes principais: Paddle e Ball. A classe Paddle é responsável pela representação das raquetes controladas pelos jogadores, incluindo atributos como posição e velocidade, bem como métodos para movimentação e renderização dos objetos na tela. A classe Ball, por sua vez, encapsula toda a lógica referente à bola do jogo, como deslocamento, detecção de colisões com as

bordas da tela e com as raquetes, reinício da posição após pontuações e controle de sua direção.

A lógica de funcionamento do jogo foi implementada de forma simples e direta, refletindo a dinâmica tradicional do clássico "Ping Pong". O controle das raquetes pelos jogadores é realizado através de teclas específicas: o Jogador 1 utiliza as teclas W e S para mover a raquete para cima e para baixo, respectivamente, enquanto o Jogador 2 utiliza as setas direcionais ↑ e ↓. A bola se desloca em linha reta com velocidade constante e altera sua trajetória ao colidir com as raquetes ou com os limites superior e inferior da janela. Quando a bola ultrapassa o limite esquerdo ou direito da tela, um ponto é atribuído ao jogador adversário e a bola retorna ao centro da tela com nova direção.

Foram realizados testes manuais com foco na verificação da estabilidade do sistema, funcionalidade das colisões e fluidez da jogabilidade. Esses testes abrangeram diferentes resoluções de tela e velocidades da bola, de forma a garantir que a experiência do jogo permanecesse consistente em diversos contextos de execução. A resposta aos comandos foi avaliada quanto à precisão e tempo de reação, e o sistema de pontuação foi validado em diferentes cenários de jogo. O resultado dos testes foi satisfatório, demonstrando que a aplicação possui um desempenho estável e responde adequadamente às interações do usuário.

Com isso, a metodologia empregada demonstrou-se eficaz para atingir os objetivos definidos, proporcionando uma implementação bem organizada, funcional e didática. A utilização de ferramentas acessíveis como o Notepad++ em conjunto com raylib provou ser uma solução viável para projetos de pequeno porte, especialmente no contexto educacional, permitindo que estudantes compreendam na prática os fundamentos do desenvolvimento de jogos em C++ com interfaces gráficas simples.

3. Resultados Obtidos

Os resultados obtidos com a implementação do jogo "Ping Pong" utilizando C++ e a biblioteca gráfica raylib demonstraram que o projeto atingiu seus objetivos principais de forma eficaz. Os testes realizados, de natureza manual, evidenciaram que a aplicação

apresenta desempenho satisfatório e estável em diversos contextos de execução. O jogo manteve uma taxa de atualização constante de 60 quadros por segundo (FPS), o que garantiu uma fluidez visual agradável, sem travamentos ou perda de desempenho perceptível durante as partidas.

Um dos principais aspectos avaliados foi a responsividade dos controles. Observou-se que a movimentação das raquetes, controladas por diferentes pares de teclas para os dois jogadores, ocorre de maneira fluida, com resposta imediata aos comandos do teclado. Essa responsividade é essencial para garantir uma boa jogabilidade, especialmente em jogos que exigem reflexos rápidos e precisão nas ações, como é o caso de um jogo de Ping Pong.

A detecção de colisões entre a bola e os demais elementos do jogo — como as raquetes e os limites superior e inferior da janela — funcionou conforme o esperado. A bola altera sua direção de forma precisa ao entrar em contato com esses elementos, simulando corretamente as interações físicas básicas do jogo original. Essa funcionalidade é fundamental para manter a lógica do jogo coerente e proporcionar uma experiência que remeta ao comportamento clássico esperado pelos jogadores.

O sistema de pontuação também foi validado com sucesso. A cada vez que a bola ultrapassa a borda esquerda ou direita da tela, um ponto é corretamente atribuído ao jogador adversário. Imediatamente após o ponto, a bola é reposicionada no centro da tela e reiniciada com uma nova direção, permitindo a continuidade do jogo sem a necessidade de reinicialização manual ou intervenção externa. Essa funcionalidade automatizada proporciona uma dinâmica fluida e contínua durante a execução do jogo.

Embora a interface gráfica seja simples e minimalista, sua funcionalidade foi avaliada positivamente. Ela cumpre bem seu propósito, exibindo os elementos essenciais — como raquetes, bola e pontuação — de forma clara e objetiva. Além disso, o uso de uma estrutura orientada a objetos, com classes específicas para cada elemento do jogo, tornou o código-fonte organizado, modular e extensível. Isso permite que futuras melhorias possam ser facilmente implementadas, como a adição de efeitos sonoros, telas de menu, níveis de dificuldade, placar digital mais elaborado, ou até mesmo inteligência artificial para um modo de jogador único.

Esses resultados indicam que o jogo está apto não apenas para ser utilizado como ferramenta didática no ensino de programação e computação gráfica, mas também como base para projetos mais complexos no contexto do desenvolvimento de jogos. A

combinação entre desempenho, simplicidade e clareza no código mostra que a proposta de utilizar raylib e C++ em um ambiente acessível como o Notepad++ foi plenamente válida, especialmente em ambientes acadêmicos com foco na aprendizagem prática.

4. Conclusão

O desenvolvimento do jogo "Ping Pong" utilizando a linguagem C++ e a biblioteca gráfica raylib proporcionou uma experiência prática enriquecedora no contexto da programação orientada a objetos e do uso de bibliotecas gráficas 2D. A partir da estruturação do código em classes bem definidas, foi possível aplicar de forma concreta os princípios de encapsulamento, modularidade e reutilização, conceitos essenciais para a construção de aplicações robustas e escaláveis.

Ao longo do projeto, a raylib demonstrou ser uma ferramenta altamente eficiente para o ensino e a prototipação rápida de jogos, graças à sua interface simplificada e ao suporte multiplataforma. A combinação da raylib com um ambiente leve como o Notepad++, mesmo sem recursos avançados de desenvolvimento integrado, revelou-se viável e produtiva, especialmente em contextos educacionais e introdutórios. O uso dessa abordagem permitiu que o foco permanecesse no desenvolvimento da lógica do jogo e na estruturação do código, reduzindo as distrações e dificuldades relacionadas à configuração de ambientes complexos.

A aplicação final apresentou um desempenho sólido, com funcionamento fluido e resposta precisa aos comandos dos usuários. A estrutura implementada atendeu plenamente aos objetivos propostos, simulando de forma fiel a dinâmica do jogo de Ping Pong em sua versão clássica. A simplicidade da interface não comprometeu a experiência do usuário, e a estabilidade do sistema permitiu partidas contínuas sem falhas ou interrupções inesperadas. Além disso, o projeto se mostrou didaticamente eficiente, podendo ser utilizado como base em disciplinas de programação, computação gráfica ou desenvolvimento de jogos.

Outro ponto relevante observado durante o desenvolvimento foi a capacidade de extensão do projeto. A arquitetura orientada a objetos facilita significativamente a adição de novas funcionalidades, o que abre espaço para aprimoramentos e explorações futuras. Dentre as sugestões para trabalhos futuros, destaca-se a inclusão de um menu interativo,

permitindo ao jogador iniciar, pausar ou encerrar a partida de forma intuitiva. A adição de efeitos sonoros e trilha sonora também é uma possibilidade interessante para tornar o jogo mais imersivo e atrativo. Outro aprimoramento relevante seria a implementação de uma inteligência artificial simples, que permitiria ao jogador enfrentar o computador em um modo individual, aumentando a complexidade e o valor de replay do jogo.

Em suma, este projeto cumpriu seu papel de integrar teoria e prática no desenvolvimento de jogos digitais, oferecendo uma base sólida para aplicações mais sofisticadas e servindo como ferramenta de apoio ao ensino de conceitos fundamentais de programação. A clareza na estrutura, o desempenho estável e a possibilidade de evolução indicam que este trabalho não apenas atingiu seus objetivos iniciais, como também estabelece um ponto de partida promissor para novos desafios na área de desenvolvimento de jogos.

5. Referências Bibliográficas

ALVES, R. C.; MOURA, L. R. Desenvolvimento de jogos digitais com C++: conceitos e práticas. São Paulo: Novatec, 2019.

BURGES, David. *Beginning C++ Game Programming*. 2. ed. Birmingham: Packt Publishing, 2021.

DEITEL, Harvey M.; DEITEL, Paul J. *Como programar em C++*. 5. ed. São Paulo: Pearson Prentice Hall, 2005.

DEVMEDIA. *SFML*, *SDL* e *Raylib*: comparação de bibliotecas para jogos. Disponível em: https://www.devmedia.com.br/sfml-sdl-e-raylib-comparacao-de-bibliotecas-para-jogos/40235. Acesso em: 04 abr. 2025.

HABGOOD, J.; OVERMARS, M. *Fundamentos do desenvolvimento de jogos*. São Paulo: Cengage Learning, 2012.

KNUDSEN, M. Mastering Raylib: A Complete Guide to Video Game Programming with Raylib. 1. ed. Independently published, 2022.

RAYLIB. *Raylib:* A simple and easy-to-use library to enjoy videogame programming. Disponível em: https://www.raylib.com. Acesso em: 04 abr. 2025.

SANTOS, Lucas R.; OLIVEIRA, João P. *Introdução ao desenvolvimento de jogos em C++ com Raylib*. Revista Computação Aplicada, v. 15, n. 2, p. 35–48, 2022.

SILVA, F. A.; MENEZES, V. T. *Desenvolvimento de jogos com raylib: um estudo de caso em ambientes acadêmicos*. Anais do Simpósio Brasileiro de Games, 2023.

STRIEGLER, A. C++ Fundamentals for Game Developers. 3. ed. Boston: Apress, 2020.