Frank Schweitzer

fschweitzer@ethz.ch

Modellierung komplexer Systeme

Was ist einfach?

Was ist einfach?

Was ist einfach?

Modellierung komplexer Systeme

Was ist komplex?

Was passiert, wenn wir viele einfache Systeme verkoppeln?

Modellierung komplexer Systeme

Was ist komplex?

Was passiert, wenn wir viele einfache Systeme verkoppeln?

• Komplexe Systeme: bestehen aus einer großen Zahl von (heterogenen) Subsystemen (Elementen, Prozessen, Agenten, ...), die stark miteinander wechselwirken

Was ist komplex?

Was passiert, wenn wir viele einfache Systeme verkoppeln?

• Komplexe Systeme: bestehen aus einer großen Zahl von (heterogenen) Subsystemen (Elementen, Prozessen, Agenten, ...), die stark miteinander wechselwirken.

Senioren-Universität Zürich

- physikalisches Beispiel: | Gas | bestehend aus 10²³ Molekülen
 - ▶ Agent (Molekül): Geschwindigkeit v, Masse $m \to \text{Impuls}$, $mv^2 \propto k_B T$
 - ▶ System: Druck p, Temperatur T, Volumen V: $pV = N k_B T$
 - Ursprung der statistischen Physik

13 Mai 2008

Senioren-Universität Zürich

Modellierung komplexer Systeme

Komplexität durch Interaktion

Der Mikro-Makro-Link

In welcher Beziehung stehen die Eigenschaften der Elemente und ihre Interaktion of der "mikroskopischen" Ebene zur Dynamik und den Eigenschaften des Gesamtsystems auf der "makroskopischen" Ebene?

Komplexität durch Interaktion

Senioren-Universität Zürich

Der Mikro-Makro-Link:

In welcher Beziehung stehen die Eigenschaften der Elemente und ihre Interaktion of der "mikroskopischen" Ebene zur Dynamik und den Eigenschaften des Gesamtsystems auf der "makroskopischen" Ebene?

- komplex ≠ kompliziert:
 - ► Systemebene ⇒ einfache Dynamik
 - sehr verschiedene Systeme (Physik, Biologie, Sozio-Okonomie) zeigen ähnliches Verhalten ⇒ Universalität

Spenden Sie?

Modellierung komplexer Systeme

• Agent i: ... manchmal ... 10, 2, 1, 0.5, 20, 50, 100, 1, ...

Spenden Sie?

Modellierung komplexer Systeme

- Agent i: ... manchmal ... 10, 2, 1, 0.5, 20, 50, 100, 1, ...
- Systemlevel: Deutsche Spendenorganisation

Relative Zahl/Tag (rot) und Betrag/Tag (blau) von Spenden 07-12/2004, $N_{\text{tot}} = 3,160, A_{\text{tot}} = 209,928$

Spendenwelle nach dem Tsunamiunglück

01-06/2005: $N_{\text{tot}} = 1,556,626, A_{\text{tot}} = 126,879,803$

F. Schweitzer, R. Mach: The Epidemics of Donations: Logistic Growth and Power Laws, in: PLoS ONE vol. 3, no.1 (2008) e1458

Spenden

Universalität

Modellierung komplexer Systeme

Kumulative Wahrscheinlichkeitsverteilung: $P(x) \sim x^{-\alpha}$

- klares 'power law' über mehrere Größenordnungen
 - skalenfreie Natur der Spenden
- Exponent α ähnlich vor ($\alpha = 1.501 \pm 0.023$) und nach $(\alpha = 1.515 \pm 0.002)$ dem Unglück
 - Ahnlichkeiten mit anderen Spendenorganisationen (CH/D)

F.S., R. Mach (2008)

Spenden

Spenden steckt an: Epidemie-Model

- Anteil y der Gesamtbevölkerung N ist spendenbereit
 - ▶ Schweiz: $y \approx 0.1$, Deutschland: $y \approx 0.08$
- $N_{\rm p} = yN$: Gesamtzahl *möglicher* Spender
- Dynamik tatsächlicher Spender, $N_a(t)$, über der Zeit???

$$P \stackrel{k}{\rightarrow} A$$
; $k = \gamma \kappa N_{\rm a}(t)/N_{\rm p}$

- ▶ nicht-lokale Interaktion über ein 'Feld', das die *Medien* darstellt
- $\triangleright \gamma$: Zahl der Interaktionen per Zeitintervall zwischen P und A
- ▶ $0 \le \kappa \le 1$: Wkt. dass Interaktion zu einer Spende führt

$$\frac{dN_{\rm a}}{dt} = \gamma \kappa f(t) \left[N_{\rm p} - N_{\rm a}(t) \right]$$

• mit $f(t) = N_a(t)/(yN)$ und Zeitskala $\tau^{-1} = \gamma \kappa$

$$rac{df(t)}{dt} = rac{1}{ au}f(t)\left[1 - f(t)
ight]\;;\;\;\;f(t) = rac{1}{1 + e^{-rac{(t-\mu)}{ au}}}$$

 \triangleright μ : Zeit, wo f(t) das Maximum erreicht hat

- Anteil der Gesamtzahl der Spenden (inset: relatives Wachstum des Gesamtbetrags der Spenden)
 - Fit: $\mu = 8.05 \pm 0.07$, $\tau = 1.98 \pm 0.06$

F.S., R. Mach (2008)

Einfluss der Medien

F.S., R. Mach (2008)

Verlangsamung der mittleren-Feld-Interaktion

$$1/\tau = [a + (b/t) + (c/t)^2]$$

- \bullet ($\gamma\kappa$): Zahl der erfolgreichen Wechselwirkungen pro Zeitintervall
 - ▶ frühes Stadium: Leute sind enthusiastisch um Geld zu spenden
 - ► Spätstadium: mehr indifferent
- Abnahme von $\tau \Rightarrow$ Rückgang des öffentlichen Interesses

Brownsche Bewegung

Der Botaniker Robert Brown (1773-1858)

Senioren-Universität Zürich

Fu-Kwun Hwang, http://www.phy.ntnu.edu.tw/ntnujava/

Brownsche Agenten

Prinzip der Kausalität

Wirkungen ← Ursachen Anderungen von u_i deterministische + stochastische Einflüsse $\frac{du_i}{dt} = f_i(\underline{u}, \underline{\sigma}, t) + \sqrt{2\varepsilon_i} \, \xi_i(t)$

- $f_i(u, \sigma, t)$: Berücksichtigung von
 - \triangleright nichtlinearen Wechselwirkungen mit anderen Agenten $j \in N$
 - energetischen Bedingungen, Umweltressourcen
 - Zeitabhängigkeiten (Tag/Nacht, saisonale Zyklen)
- ε_i : zustandsabhängiges (individuelles) Rauschen Berücksichtigung "anderer" Einflüsse (Separation von Zeit/Raumskalen)

F. Schweitzer: Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social Sciences Berlin: Springer 2003, 420 pp. 192 illus. (ISBN 3-540-43938-2)

Schwarmbewegung von Daphnia

Modellierung komplexer Systeme

Schwarmbewegung von Daphnia

Picture courtesy of Stephen Durr

└─ Modellierung └─ Schwarmbewegung von Daphnia

Modellierung komplexer Systeme

Schwarmbewegung von Daphnia

Picture courtesy of Stephen Durr

Eine Daphnia

Viele Daphnia

Videos: Courtesy of Anke Ordemann, Center for Neurodynamics, University of Missouri, St. Louis

Schwarmbewegung von Daphnia

Modellierung komplexer Systeme

$$\frac{d}{dt}\mathbf{v}_{i} = -\gamma_{0}\,\mathbf{v}_{i} - a\mathbf{r}_{i} + d_{2}e(t)\mathbf{v}_{i} + \sum_{i\neq j}\mathbf{f}_{ij} + \sqrt{2S}\xi(t)$$
Reibung Ext. Potential Aktive Bewegung Fluktuationer

• $f_{ij}(\mathbf{r}_{ij},\mathbf{v}_i,\mathbf{v}_j)$ durch asymmetrisches Ausweichpotential

Simulation

F Schweitzer et al., http://intern.sg.ethz.ch/publications/2005/web-ms.html

- Resultat: kollektive Schwarmbewegung als Kompromiß
- Rolle der Fluktuationen: Symmetriebruch bei der Rotationsrichtung

R. Mach, F. Schweitzer: Modeling Vortex Swarming In Daphnia, *Bulletin of Mathematical Biology*, vol. 69 (2007), pp. 539-562

Modellierung komplexer Systeme

Bewegung von Menschenmassen

• Langevin-Dynamik des Brownschen Agenten i

$$rac{d\mathbf{v}_i(t)}{dt} = -rac{1}{ au_i}\mathbf{v}_i(t) + \mathbf{f}_i(t) + \sqrt{rac{2\,arepsilon_i}{ au_i}}\,oldsymbol{\xi}_i(t)$$

"social force" - Modell

$$\mathbf{f}_i(t) = rac{1}{ au_i} \mathbf{v}_i^0 \mathbf{e}_i -
abla_{\mathbf{r}_i} \Big[V_B(|\mathbf{r}_i - \mathbf{r}_B^i|) + V_{\mathrm{int}}(\mathbf{r}_i, t) \Big]$$

Resultat: selbstorganisiertes "Verhalten"

Simulation: Bewegung auf dem Korridor

D. Helbing et al., http://rcswww.urz.tu-dresden.de/~helbing/

Bewegung von Menschenmassen

Modellierung komplexer Systeme

└ Modellierung

Praktische Anwendung:

- Optimierung von Einkaufszentren, Bahn/Flughäfen, ...
- Modellierung von Panik (Helbing, Schreckenberg)
 - ⇒ Evakuierungsszenarien
- Simulation: | Keine Panik

Panik

I. Farkas et al., http://angel.elte.hu/panic/

☐ Selbstorganisation

Modellierung komplexer Systeme

Selbstorganisation

 spontane Entstehung, Höherentwicklung und Ausdifferenzierung von Ordnungsstrukturen

Senioren-Universität Zürich

• kollektive Phänomene, *Emergenz von neuen Systemqualitäten*

Self-Organization is the process by which individual subunits achieve, through their cooperative interactions, states characterized by new, emergent properties transcending the properties of their constitutive parts.

> Biebricher, C. K.; Nicolis, G.; Schuster, P. Self-Organization in the Physico-Chemical and Life Sciences EU Report 16546 (1995)

Zusammenfassung

- komplexe Systeme offenbaren einfache Gesetzmäßigkeiten
 - Beispiel: Spendenverteilung
- Eigendynamik komplexer Systeme: Resultat von Wechselwirkungen vieler (einfacher) Elemente

Senioren-Universität Zürich

- Emergenz von "sinnvollem" Verhalten, Adaptation
- Entstehung "höherer" Ordnung (Strukturen, statistische Gesetze)
- statistische Physik: Methodenspektrum zur Modellierung von komplexen biologischen und sozialen Systemen