Densify Point Clouds Sprint 3

By Group A2_9: Chris, Risa, and Brian

Sprint 3 Tasks

- Continue researching papers and finding a paper that we can feasibly reproduce
 - Find frameworks that we can utilize from these papers
- Keep working on testing out our development software
 - Test advanced tutorials on torch-3d
 - Install pytorch 3d and PCL locally
 - Install open3d and test tutorials
- Start working on theoretical ML module in pytorch 3d

Accomplishments

- Our Team found an interesting paper that implemented their own deep learning model to classify sparse point clouds into denser objects.
- The paper also had the framework they developed under github called PointSDF

Research Finding - PointSDF

- PointSDF Signed Distance Function
 - Directly regresses signed distance functions from point clouds
 - Providing geometrically rich input and output

Distance Prediction

Implicitly encode geometry by introducing the point cloud embedding from PointSDF
3D Object Reconstruction

Research Finding

Superpixel Method

- Only performs a decent result under certain environmental conditions
- Cannot present all the possible variations in an image, may deliver wrong/missing spots

Markov Random Field(MRF)

- Pixelwise optimization
- Pair up the neighbor points/pixels to compute a certain 3D surface

Semantic Labeling

Mapping elements on the image such as color and texture to a 3D plane normal

Multiple Segmentation Method

Obtaining a higher accuracy by analyze the advantages of each single elements

Set Backs

- We had serious trouble trying to install torch-3d and pytorch 3d using the SCC
 - Our team worked in tandem with IT but we didn't have much luck getting these libraries to function as intended
 - The closest we got was getting pytorch 3d to use CPU
- We also had trouble installing pytorch 3d locally
 - I tried to install Pytorch 3d locally on Linux but it didn't work out due to graphic driver issues
 - Im currently in the process of installing pytorch 3d using a conda environment

Sprint 4 Tasks

- Install PointSDF locally and test their framework
 - Have a demo showcasing the PointSDF framework
- Continue Paper Research
 - Diagram a model for our ideas on how to optimize the frameworks ML component
- Continue trying to get pytorch 3d working
 - Work with Osama to check if the SCC has correctly installed the software and test example
 - Continue trying to install locally
 - (Reach goal) Have a demo showcasing pytorch 3d