

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco Curso de Bacharelado Engenharia da Computação

SISTEMA DE FECHADURA DE PORTAS BASEADO EM RECONHECIMENTO FACIAL

DANIEL AUGUSTO MULLER GABRIEL PRANDO VITOR OLIVEIRA DOS SANTOS

PATO BRANCO

- 1 Introdução
- 2 Objetivos
- 3 Metodologia
 - 3.1 Captura da Imagem
 - 3.2 Reconhecimento Facial
 - 3.3 Modelo Proposto
- 4 Discussão
- 5 Conclusão
- 6 Referências
- 7 Apêndice

1 - Introdução

A automação residencial tem se tornado cada vez mais presente nos nossos dias, podemos acionar o sistema de ar condicionado de uma casa remotamente, fechar cortinas e janelas, regar plantas e alimentar animais a distância. Visto isso, é necessário que existam maiores cuidados com a segurança da casa. Atualmente existem diversos sistemas de fechadura para porta podendo variar desde a tradicional chave, tags, reconhecimento de digitais e mais recentemente, o reconhecimento facial. Por meio do reconhecimento facial, podemos eliminar a necessidade de uma chave física e também ter uma segurança maior ao registrar possíveis tentativas de entradas a um ambiente. Um fator importante para essa solução é a integração com serviços em nuvem, estes disponibilizam servidores, serviços de inteligência artificial e diversos outros serviços que fazem com que a solução se torne mais simples de ser implementada.

2 - Objetivos

O objetivo geral deste trabalho é a implementação de um sistema de trava de porta com reconhecimento facial.

Os objetivos específicos são:

- Implementar uma arquitetura em nuvem capaz de armazenar e reconhecer usuários;
- Implementar um sistema de notificações via Telegram ao proprietário do imóvel;
- Implementar o processo de captura, envio e recebimento de imagens para a nuvem, utilizando o ESP-EYE (modelo de microcontrolador com chip ESP32);

3 - Metodologia

A metodologia empregada para a captura de imagem, reconhecimento facial e integração com a Alexa são descritos a seguir:

3.1 - Captura da Imagem

O ESP-EYE captura uma imagem quando o botão ligado a ESP for acionado, indicando que alguém está tentando abrir a porta. A resolução da imagem para envio à AWS foi definida para 320 pixels de largura por 240 pixels de altura em RGB565.

Um exemplo de imagem sem pré-processamento recebida pelo banco AWS pode ser vista na figura abaixo:

Fonte: Autoria própria

Como pode ser observado, a imagem tem cerca de 33% do seu conteúdo cortado e com ruídos que podem atrapalhar ou impossibilitar o treinamento na rede. Por isso, uma etapa adicional de pré-processamento, através de um função em Python, foi realizada para retirar as imperfeições. Resultando na imagem de tamanho 160x320 a seguir:

Fonte: Autoria própria

3.2 - Reconhecimento Facial

Com a foto da pessoa que está na porta registrada, ela então é enviada via requisições HTTP para o responsável pelo sistema via Telegram e ao mesmo tempo para os serviços em nuvem da Amazon Web Service (AWS). Por meio de funções AWS Lambdas uma requisição é enviada para o serviço AWS Rekognition, que possui uma rede neural treinada para tarefas com imagens, com o auxílio de um dataset de imagens cadastradas em um bucket do S3 storage será feito um correspondência entre rostos e nomes cadastrados com a foto tirada pelo módulo ESP-EYE. Nesse projeto, foram utilizadas 100 imagens de cada um dos integrantes do grupo, variando em luz e ângulo.

3.3 - Modelo Proposto

Fonte: Autoria própria

4 - Discussão

Devido a limitações de tempo, o projeto sofreu alteração em sua proposta original. Além disso, atrasos ocorreram por falhas de hardware que deixavam a imagem capturada pelo

microcontrolador em tom verde fazendo com que fosse quase impossível o reconhecimento do conteúdo da imagem. Outro ponto notado é que, a depender de onde o projeto seria utilizado, seria necessário utilizar uma implementação diferente para fazer a conexão com a rede, este problema poderia ser resolvido criando uma macro de pré-compilação, contudo o grupo optou por desenvolver o projeto somente em ambiente de laboratório a fim de focar na validação da arquitetura.

Com o atraso no desenvolvimento do projeto não foi possível criar uma base de dados que tivesse grande número de imagens nem com grande variedade, o que levou a rede neural criada pelo AWS Rekognition apresentar *overfitting*. Por último, devido às restrições da AWS, foi necessário fazer a conversão do arquivo de imagem para que pudéssemos fazer o envio ao *entrypoint*.

5 - Conclusão

De acordo com os testes realizados foi possível validar a arquitetura contudo ainda há diversos pontos a serem melhorados, como os citados na seção anterior. Para trabalhos futuros, é necessário a refatoração do código e otimização das funções, além da criação de uma base de dados maior com fotos tiradas diretamente pelo microcontrolador, a implementação de um sistema de switchover para casos em que há alguma falha como falta de conexão com wi-fi ou energia elétrica é de relevante importância e também a implementação das *Skills* da Alexa, utilizada para recepcionar as pessoas bem como a abertura da porta por comando de voz caso o morador deseje.

6 - Referências

Intelligent Door Lock (Alexa & Face Recognition). **HACKADAY.IO**, 2021. Disponível em: https://hackaday.io/project/181086-intelligent-door-lock-alexa-face-recognition. Acesso em: 02 de Março de 2022.

7 - Apêndice

O código para o projeto pode ser obtido em: github.com/vitor-o-s/UTFPR/tree/main/Projeto Oficina

O vídeo da apresentação está disponível em: youtube.com/watch?v=KGwqGOvJaTQ