

JianYan Testing Group Shenzhen Co., Ltd.

Report No:

SPECTRUM REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court, Bells Yew Green,

Tunbridge Wells TN3 9BJ

Equipment Under Test (EUT)

Product Name: Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor

Hotspot Miner

Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G, HNTIN-433-G,

HNTIN-470, HNTIN-868, HNTIN-915, HNTIN-433

Applicable standards: ETSI EN 300 328 V2.2.2 (2019-07)

Date of sample receipt: 12 Mar., 2021

Date of Test: 13 Mar., to 19 Apr., 2021

Date of report issue: 23 Apr., 2021

Test Result: PASS*

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 Apr., 2021	Original

3 Contents

			Fage
1	COVE	ER PAGE	1
2	VERS	SION	2
3	CONT	TENTS	а
		SUMMARY	
4			
5	GENE	ERAL INFORMATION	5
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T.	
		TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	RADI	O TECHNICAL SPECIFICATION IN ETSI EN 300 328	8
	6.1	JUSTIFICATION	8
		TEST CONFIGURATION OF EUT	
		TEST SETUP BLOCK	
	6.4	TEST RESULTS	9
	6.4.1	Test Result Summary	g
	6.4.2	Transmitter unwanted emissions in the spurious domain	10
	6.4.3		
	6.4.4	3	
7	TEST	SETUP PHOTO	12
В	EUT 4	CONSTRUCTIONAL DETAILS	13
_			
A A	INIEV AF	ADI ICATION FORM FOR TECTINO	4.4

4 Test Summary

Test Items	Test Requirement	Test method	Limit/Severity	Result
	Radio Spectrum	Matter (RSM) Part of	Tx	
RF Output Power	Clause 4.3.1.2	Clause 5.4.2.2.1.2	Clause 4.3.1.2.3	PASS
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.1.3	Clause 5.4.2.2.1.3	Clause 4.3.1.3.3	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Clause 4.3.1.4	Clause 5.4.4.2	Clause 4.3.1.4.3	PASS*
Hopping Frequency Separation	Clause 4.3.1.5	Clause 5.4.5.2	Clause 4.3.1.5.3	PASS*
Medium Utilisation (MU) factor	Clause 4.3.1.6	C lause 5.4.2.2.1.4	Clause 4.3.1.6.3	N/A
Adaptivity (Adaptive Frequency Hopping)	Clause 4.3.1.7	Clause 5.4.6.2	Clause 4.3.1.7	N/A
Occupied Channel Bandwidth	Clause 4.3.1.8	Clause 5.4.7.2	Clause 4.3.1.8.3	PASS*
Transmitter unwanted emissions in the out-of-band domain	Clause 4.3.1.9	Clause 5.4.8.2	Clause 4.3.1.9.3	PASS*
Transmitter unwanted emissions in the spurious domain	Clause 4.3.1.10	Clause 5.4.9.2	Clause 4.3.1.10.3	PASS*
	Radio Spectrum	Matter (RSM) Part of	Rx	
Receiver spurious emissions	Clause 4.3.1.11	Clause 5.4.10.2	Clause 4.3.1.11.3	PASS*
Receiver Blocking	Clause 4.3.1.12	Clause 5.4.11.2	Clause 4.3.1.12.4	PASS

Remark:

- 1. Tx: In this whole report Tx (or tx) means Transmitter.
- 2. Rx: In this whole report Rx (or rx) means Receiver.
- 3. Pass: Meet the requirement.
- 4. N/A: Not Applicable.
- 5. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).
- 6. Pass*: Refer to the Report No.: AGC00405170601EE04.

5 General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Manufacturer:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Factory:	SUNSOAR TECH CO., LIMITED
Address:	4/F, Block E, Fengze Building, Huafeng No.2 Industrial Park, Hangkong Road, XiXiang Town, BaoAn District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner
Model No.:	HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433
Hardware version:	V12-15-2020-1614
Software version:	a98bfc8
Operation Frequency:	2402MHz ~ 2480MHz
Channel number:	79
Channel separation:	1MHz
Modulation type:	Frequency Hopping Spread Spectrum (FHSS)
Equipment Type:	Adaptive equipment
Modulation Technology:	GFSK, π/4 DQ <mark>PSK</mark> , 8DPSK
Max. E.I.R.P Power:	GFSK: 0.35 dBm, ττ/4 DQPSK: -0.95 dBm, 8DPSK: -0.16 dBm
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi (declare by Applicant)
Power supply:	DC 5.0V
AC adapter:	Model: TM-K018VP-01201500PE-Z
	Input: 100-240V~50/60Hz 0.45A Output: 12.0V , 1.5A
Remark:	Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433 has the same internal circuit design, layout, components and internal wiring. The difference is that the ones with the -G suffix have GPS function, while those without the suffix do not. Each model has two appearances, except for the appearance, the interior is exactly the same. In addition, the corresponding frequency of each model of LoRa module is different, as follows: The Nebra HNT Indoor Hotspot is available in 4 variants to support multiple regions. It is available in the following frequency variants: 433 MHz (HNTIN-433) 470 Mhz (HNTIN-470) 888 Mhz (HNTIN-868)

5.3 Test environment and mode, and test samples plans

Operating Environment:						
Temperature:	Normal: 15°C ~ 35°C, Extreme: -20°C ~ +55°C					
Humidity:	20 % ~ 75 % RH					
Atmospheric Pressure:	1008 mbar					
Voltage:	Nominal: 5.0Vdc, Extreme: Low 4.5Vdc, High 5.5Vdc					
Test mode:						
Transmitting mode:	Keep the EUT in continuously transmitting mode with modulation.					
Hopping mode:	Keep the EUT in normal hopping mode.					
Receiving mode:	Keep the EUT in receiving mode.					
We have verified the construction and function in typical operation. All the test modes were carried out with						
the EUT in transmitting oper	ration.					

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Jian Yan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:									
Toot Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date					
Test Equipment	Manufacturer	woder no.		(mm-dd-yy)	(mm-dd-yy)					
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024					
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022					
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021					
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022					
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021					
EMI Test Software	AUDIX	E3	V	ersion: 6.110919t/)					
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022					
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022					
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022					
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022					
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022					
Signal Generator	Rohde & Schwarz	SMR20	1008100050	03-03-2021	03-02-2022					
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022					
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022					
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022					
RF Switch Unit	MWRFTEST	MW 200	N/A	N/A	N/A					
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0						

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW 201020 JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW 200927JYT	N/A	N/A
PDU	MW RF-test	XY-G10	N/A	N/A	N/A
Test Software	MW RF-tes	MTS 8310	١	/ersion: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	09-23-2020	09-22-2021

6 Radio Technical Specification in ETSI EN 300 328

6.1 Justification

The EUT and test equipment were configured for testing according to ETSI EN 300 328 V2.2.2 (2019-07). The EUT was tested in the normal operating mode to represent worst-case results during the final qualification test.

6.2 Test Configuration of EUT

Operation	Operation Frequency each of channel										
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency				
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz				
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz				
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz				
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz				
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz				
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz				
19	2421MHz	39	2441MHz	59	2461MHz						

Remark: The EUT operation in above frequency list, and used test software to control the EUT for staying in continuous transmitting and receiving mode. Channel 0, 39 and 78 of Bluetooth were chosen for testing.

Clause	Tes	t Condit	ions	Te	est Chann	el		Modulation			Test mode	
No.	NVNT	NVLT	NVHT	Low	Middle	High	GFSK	π/4 DQPSK	8DPSK	Tx	Hopping	Rx
4.3.1.2	√	\checkmark	√				√	V	√		\checkmark	
4.3.1.3												
4.3.1.4	√						V	$\sqrt{}$	V		\checkmark	
4.3.1.5	√						1	√	\forall		$\sqrt{}$	
4.3.1.6									•			
4.3.1.7												
4.3.1.8						$\sqrt{}$	V	1	$\sqrt{}$	$\sqrt{}$		
4.3.1.9	V						V	$\sqrt{}$	√		$\sqrt{}$	
4.3.1.10	V			V		$\sqrt{}$	1	V	√	$\sqrt{}$		
4.3.1.11	√			V		√	1	√	√			$\sqrt{}$
4.3.1.12											\checkmark	

Note:

- "√" means that this configuration is chosen for test.
- "NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

6.3 Test Setup Block

6.4 Test Results

6.4.1 Test Result Summary

Clause No.	Modulation	Test Condition	Test Data	Verdict
	CECK 8 =/4 DODCK 8	NVNT		
4.3.1.2	GFSK & π/4 DQPSK &	NVLT	Appendix A - BT	Pass
	8DPSK	NVHT		
4.3.1.3	N/A	N/A	N/A	N/A
4.3.1.4	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.5	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.6	N/A	N/A	N/A	N/A
4.3.1.7	N/A	N/A	N/A	N/A
4.3.1.8	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.9	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.10	GFSK & π/4 DQPSK & 8DPSK	NVNT	See Section 6.4.2	Pass
4.3.1.11	GFSK & π/4 DQPSK & 8DPSK	NVNT	See Section 6.4.3	Pass
4.3.1.12	Mormal hopping mode	NVNT	See Section 6.4.4	Pass

Note:

^{2.} During the test, pre-scan all modulation mode, found DH5, 2-DH5 and 3-DH5 modulation mode were worse case mode. so only reflects test data of worst modulation mode.

 [&]quot;NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

6.4.2 Transmitter unwanted emissions in the spurious domain

Refer to the Report No.: AGC00405170601EE04.

6.4.3 Receiver spurious emissions

Refer to the Report No.: AGC00405170601EE04.

6.4.4 Receiver Blocking

Test mode	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	PER measurement level (%)	PER Limit (%)	Results
	2380		5		Pass	
Honning	-69.69	2504	-34	3	10	F a 5 5
Hopping		2300	-34	2	10	Pass
		2584		3		Pa55

NOTE:

- (1) The minimum performance criterion shall be PER less than or equal to 10 %.
- (2) The EUT belongs to receiver category 2 equipment.
- (3) Conducted measurements.

7 Test setup photo

8 EUT Constructional Details

Reference to the test report No.:

ANNEX Application form for testing

In accordance with EN 300 328 V2.2.2, clause 5.4.1, the following information is provided by the supplier.

a)	The type of modulation used by the equipment:
	□ FHSS
	Other forms of modulation
b)	In case of FHSS modulation:
	In case of non-Adaptive Frequency Hopping equipment:
	The number of Hopping Frequencies:
	In case of Adaptive Frequency Hopping Equipment:
	The maximum number of Hopping Frequencies: <u>79</u>
	The minimum number of Hopping Frequencies: 79
	The Dwell Time: 0.309s
c)	Adaptive / non-adaptive equipment:
	Non-adaptive Equipment
	Adaptive Equipment without the possibility to switch to a non-adaptive mode
	Adaptive Equipment which can also operate in a non-adaptive mode
d)	In case of adaptive equipment:
	The Channel Occupancy Time implemented by the equipment: ms
	☐ The equipment has implemented an LBT based DAA mechanism
	 In case of equipment using modulation different from FHSS:
	☐ The equipment is Frame Based equipment
	The equipment is Load Based equipment
	☐ The equipment can switch dynamically between Frame Based and Load Based equipment
	The CCA time implemented by the equipment:us
	The value q as referred to in clause 4.3.2.5.2.2.2:
	The equipment has implemented an non-LBT based DAA mechanism
	☐ The equipment can operate in more than one adaptive mode
e)	In case of non-adaptive Equipment:
	The maximum RF Output Power (e.i.r.p.):dBm
	The maximum (corresponding) Duty Cycle:%
	Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of
t \	duty cycle and corresponding power levels to be declared).
f)	The worst case operational mode for each of the following tests:
	 RF Output Power GFSK Power Spectral Density N/A
	Duty cycle, Tx-Sequence, Tx-gap
	Duty cycle, Tx-Sequence, Tx-gap Dwell time, Hopping Sequence (only for FHSS equipment)
	0.309s, 79 channels
	Hopping Frequency Separation (only for FHSS equipment) GFSK
	Medium Utilisation N/A
	Adaptivity & Receiver Blocking GFSK
	Occupied Channel Bandwidth <u>8DPSK</u>
	 Transmitter unwanted emissions in the OOB domain π/4DQPSK
	Transmitter unwanted emissions in the spurious domain <u>8DPSK</u>
	Receiver spurious emissions <u>GFSK</u>
g)	The different transmit operating modes (tick all that apply):
\boxtimes	Operating mode 1: Single Antenna Equipment
	Equipment with only 1 antenna
	Equipment with 2 diversity antennas but only 1 antenna active at any moment in time
	Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1
	enna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
	Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
	, , , , , , , , , , , , , , , , , , , ,

	Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE: Add more lines if more channel bandwidths are supported.
	Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
	Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE: Add more lines if more channel bandwidths are supported.
h)	In case of Smart Antenna Systems:
•	The number of Receive chains:
	The number of Transmit chains:
	☐ Symmetrical power distribution
	asymmetrical power distribution
	In case of beam forming, the maximum beam forming gain:
	NOTE: Beam forming gain does not include the basic gain of a single antenna.
i)	Operating Frequency Range(s) of the equipment:
,	Operating Frequency Range 1: 2402 MHz to 2480 MHz
	Operating Frequency Range 2: MHz to MHz
	NOTE: Add more lines if more Frequency Ranges are supported.
j)	Occupied Channel Bandwidth(s):
•/	Occupied Channel Bandwidth 1: <u>1.204</u> MHz
	Occupied Channel Bandwidth 2: MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k)	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
•	
\boxtimes	Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)
	Plug-in radio device (Equipment intended for a variety of host systems)
	Other
I)	The extreme operating conditions that apply to the equipment:
	Operating temperature range: -20 ° C to +55 ° C
	Operating voltage range: 4.5 V to 5.5 V AC DC
	Details provided are for the: 🛛 stand-alone equipment
	combined (or host) equipment
	test jig
m)	The intended combination(s) of the radio equipment power settings and one or more antenna
	assemblies and their corres <mark>po</mark> nding e.i.r.p levels:
_	Antenna Type:
	Integral Antenna
	Antenna Gain: 2.0 dBi
_	pplicable, additional beam <mark>formin</mark> g gain (excluding basic antenna gain):dB
	Temporary RF connector provided
	No temporary RF connector provided
	Dedicated Antennas (equipment with antenna connector)
Ш	Single power level with corresponding antenna(s)
	Multiple power settings and corresponding antenna(s) Number of different
	wer Levels:
	wer Level 1:dBm
	wer Level 2:dBm
Pov	wer Level 3:dBm NOTE 1: Add more lines in case the equipment has more power levels

Page 15 of 17

NOTE 2: These power levels are conducted power levels (at antenna connector).

• For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: ____dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

Power Level 2: ____dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

Power Level 3: ____dBm

Number of antenna assemblies provided for this power level:

Assembly#	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

n)	The nominal voltages of the stan	d-alone radio	equ	ripment	or	the	nominal v	oltages o	f the	combined
	(host) equipment or test jig in ca	se of plug-in d	evi	ces:	7					

Details provided are for the: 🛛 🔞	stand-alone equipment
	combined (or host) equipment
□ t	est jig
Supply Voltage 🔲	AC mains State AC voltageV
	DC State DC voltage 5.0 V
In case of DC, indicate the ty	pe of power source
☐ Internal Power Sup	ply
External Power Su	pply or AC/DC adapter
☐ Battery	

o) Describe the test modes available which can facilitate testing:

Hopping mode and continuous transmitting mode control in engineer mode.

p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.):

Bluetooth

☐ Other:_....

Configuration for testing

From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in EN 300 328, this power setting is to be used for testing against the requirements of EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also EN 300 328, clause 5.3.2.3.

Highest overall e.i.r.p. value: 0.35 dBm	
Corresponding Antenna assembly gain: 2.0 dBi	Antenna Assembly #: 1
Corresponding conducted power setting: -1.65 dBm	Listed as Power Setting #: 7
(also the power level to be used for testing)	

Additional information provided by the applicant
Modulation:
ITU Class(es) of emission: FHSS
Can the transmitter operate unmodulated?
Duty Cycle
The transmitter is intended for:
☐ Intermittent duty
☐ Continuous operation possible for testing purposes
About the UUT
☐ The equipment submitted are representative production models
☐ If not, the equipment submitted are pre-production models?
☐ If pre-production equipment are submitted, the final production equipment will be identical in
all respects with the equipment tested
☐ If not, supply full details
☐ The equipment submitted is CE marked
☐ In addition to the CE mark, the Class-II identifier (Alert Sign) is affixed.
Additional items and/or supporting equipment provided
☐ Spare batteries (e.g. for portable equipment)
☐ Battery charging device
☐ Test Jig or interface box
☐ RF test fixture (for equipment with integrated antennas)
☐ Host System Ma <mark>nuf</mark> acturer:
M <mark>ode</mark> l #:
Model name:
Combined equipment Manufacturer:
Model #:
Model name:
□ User Manual
☐ Technical documentation (Handbook and circuit diagrams)
Find of your out
End of report