⑩日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

 $\Psi 2 - 21346$

®Int. CL. 5 B 62 D 5/22 識別記号

庁内整理番号

200公告 平成2年(1990)6月8日

8609-3D

(全3頁)

図考案の名称

電動パワーステアリング装置

雄

@出

②寒 爾 昭58-129598

❸公 開 昭60-36374

❷昭60(1985)3月13日

四考 案 老 上村 熀

顧 昭58(1983)8月22日

群馬県太田市八幡町39-32

富士重工業株式会社 の出 頭 ٨

東京都新宿区西新宿1丁目7番2号

查 盘 渕 良

❸参考文献 特開 昭55-44013 (JP, A)

1

匈実用新案登録請求の範囲

- (1) ステアリングハンドルの回転操作によって転 舵を行うマニアル系統と、該マニアル系統の転 舵トルクに応じて回転駆動し上記マニアル系統 えたラツクアンドピニオン式電動パワーステア リング装置において、ステアリングギャボック ス内に軸方向にスライド可能に支持されるラッ ク軸を、マニアル系統のピニオンが嚙合うマニ 電動モータ側ビニオンが嚙合う補助用ラツク歯 とをラツク材上の角度の異なる位置に別々に形 成した構造としたことを特徴とする電動パワー ステアリング装置。
- にその歯ピッチを異にした構造となっているこ とを特徴とする実用新案登録請求の範囲第1項 に記載の電動パワーステアリング装置。
- (3) マニアル用ラツク歯と補助用ラツク歯は、そ 構成されていることを特徴とする実用新業登録 請求の範囲第1項又は第2項に配載の電動パワ ーステアリング装置。

考案の詳細な説明

本考案は自動車用電動パワーステアリング装置 25 を参照して説明する。 に関するものである。

ステアリングシヤフトの操舵トルクを検出しそ れに応じた補助操舵力を衝動モータの回転により 2

附与することにより操舵力の軽減をはかるように した電動パワステアリング装置は既に開発されて おり (例えば特公昭46-5168号公報参照)、ラッ クアンドピニオン式のステアリング装置に電動モ の転舵方向に転舵力を補助する電動モータを備 5 ータによる補助操舵力附与機構を組込ませたラツ クアンドピニオン式電動パワーステアリング装置 もまた実開昭57-120164号公報にて既に公開され ている。

従来のラツクアンドピニオン式電動パワーステ アル用ラツク歯と電動モータにより回転される 10 アリング装置は、ステアリングギヤボツクス内に 軸方向にスライド可能に支持されたラツク軸のラ ツク歯にステアリングハンドルの操作によつて回 転するマニアル側のピニオンが嚙合うと共に、該 マニアル側ピニオンが幽合つているラツク歯に電 (2) マニアル用ラツク歯と補助用ラツク歯は、互 15 動モータにより回転する補助のピニオンが嚙合つ た構造となつているので、該補助のビニオンはマ ニアル側ピニオンと平行配置でなければならず、 該補助のピニオンを回転駆動する電動モータ及び 滅速器等の設置位置限定されざるを得ず、配置上 のいずれか一方又は双方がパリアブルレシオに 20 の自由度が極めて少ないと言う問題を有してい

> 本考案は上記のような従来のラックアンドビニ オン式電動パワーステアリング装置の問題に対処 することを主目的とするもので、以下附図実施例

第【図において、1はステアリングハンドル、 2はステアリングシャフト、3は中間シャフト、 4はピニオンであり、ステアリングハンドル1を

(2)

奖公 平 2-21346

3

回転操作するとステアリングシャフト 2、中間シ ヤフト3を介してピニオン4が回転し、ステアリ ングギヤボツクス6内に軸方向にスライド可能な るよう支持されているラック軸5が軸方向に摺動 して転舵が行われるようになつている。

7は電動モータ、8は減速器、9はピニオンで あり、電動モータフは前記ステアリングシャフト 2のトルクを検出するトルクセンサ 10の信号に よつて制御されるようになつており、例えばステ アリングハンドル1を右に回転操作するとその回 10 ことにより、電動モータ側ピニオンの組付け方向 転トルクをトルクセンサ10が検出して電動モー タ7を右方向に回転させ、滅速器 8 を介してビニ オン9が右回転してラツク軸5を転舵方向に摺動 させ、前記ステアリングハンドル1側からのマニ アル操作力を電動モータ7側からの入力によつて 15 著しく緩和されると共に、上述したように両ラッ 補助し、マニアル操作力の軽減をはかるようにな つている。

上記のようなラツクアンドピニオン式電動パワ ーステアリング装置において、本考案では第2図 に示すようにラツク軸を、マニアル側ピニオン4 20 もできる等、数多くのすぐれた効果をもたらし得 と嚙合うマニアル用ラツク菌5bと電動モータ側 のピニオン9と嚙合う補助用ラック像5cとをラ ツク材5 a 上の角度の異なる位置にそれぞれ独立 して別々に設けた構造としたことを特徴とするも

第2図の実施例においては、マニアル用ラツク 歯5 bに対し補助用ラツク歯5 cを180°だけ角度 変位した位置に設けた例を示しているが、第3図 のように5 bと5cとを90°角度変位した位置と しても良く、その他 5 b に対する 5 c の角度変位 30 ル用ラツク館、 5 c ·····・補助用ラツク歯、 6 ····・ 位置は任意に選定することができる。

更にマニアル用ラツク菌 5 bの歯ピツチに対し 補助用ラツク箘5cの歯ピツチを変え、互に異な

るギャ比を有するよう構成して電動モータブの負 荷低減をはかるようにしても良いし、又両ラツク 菌5bと5cのいずれか一方又は双方共パリアブ ルレシオとして大転舵時の負荷低減をはかるよう 5 にしても良い。

以上のように本考案ではマニアル側ピニオンが 咽合うラツク歯と電動モータ側のピニオンが嚙合 う補助用ラツク歯をラツク材上の角度の異なる位 置にそれぞれ独立して別々に形成した構成を採る 及び組付け位置を自由に選定することができ、電 動モータ、滅連器及びピニオン等よりなるパワー アシストアツシーの配置上の自由度が大幅に向上 し、これらを取付けるべき車体の設計上の制約が ク歯を互に異なる歯ピッチに構成して電動モータ の負荷の低減をはかることも容易となり、更に又 マニアル側、電動モータ側のいずれか…方又は双 方を必要に応じバリアブルレシオに構成すること るものである。

図面の簡単な説明

附図は本考案の実施例を示すもので、第1図は 全体外観斜視図、第2図及び第3図はラック軸と 25 ピニオンの嚙合状態を示す正面図でそれぞれ本考 案の実施例を示すものである。

1……ステアリングハンドル、2……ステアリ ングシヤフト、 4……マニアル側ピニオン、 5… …ラツク軸、5 a……ラツク材、5 b……マニア ステアリングギヤボツクス、7……電動モータ、 8……減速器、9……電動モータ側ピニオン、1 0……トルクセンサ。

(3)

実公 平 2-21346

