

# $1^{\mathrm{st}}$ North African Olympiad in Informatics 2025

## **Tiles**

Time limit: 2 seconds Memory limit: 256 MB

You are given a rectangular board of  $n \times m$  cells, where  $1 \le n \le 2$ . Some of the cells are blocked, and all the other ones are free. You can place a domino (rectangle of size  $1 \times 2$  or  $2 \times 1$ ) on two neighboring cells that are both free. Once you place a domino on the board, the two cells it occupies become blocked. We call a set of dominoes **good** for a given board if after we place all of the dominoes from the set on the board it is not possible to place any more dominoes on it.

Given a board, how many good sets of dominoes exist? Count modulo  $10^9 + 7$ . We consider two dominoes to be different if one of them occupies a cell that the other does not. We consider two sets of dominoes to be different if there is a domino in one set that does not exist in the other set or vice versa.

#### Input

The first line contains two integers n and m  $(1 \le n \le 2, 1 \le m \le 10^5)$ .

The following n lines contain m characters each, each character is either '.' or '#'.

The j-th character in the i-th of these lines is '.' if the cell (i, j) is free, and '#' if the cell (i, j) is blocked.

#### Output

Print one integer - the number of good sets of dominoes modulo  $10^9 + 7$ 

#### Constraints

- $1 \le n \le 2$
- $1 \le m \le 10^5$

#### Subtasks

| Subtask | Score | Constraints                                                                                                                          |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 6     | $m \leq 2$                                                                                                                           |
| 2       | 14    | n = 1                                                                                                                                |
| 3       | 12    | $m \le 7$                                                                                                                            |
| 4       | 8     | $3 \mid m, \text{ for } j = 3k  (k \text{ ranges from 1 to } \frac{m}{3})$ cells $(1, j - 2), (1, j - 1)$ and $(2, j - 2)$ are free, |
| 1       |       | all other cells are blocked                                                                                                          |
| 5       | 12    | All cells free                                                                                                                       |
| 6       | 18    | $n \le 10^3$                                                                                                                         |
| 7       | 30    | No additional constraints                                                                                                            |

# Examples

## Input 1

2 2 .. ..

### Output 1

2

### Input 2

2 3 ##. #.#

# Output 2

1

# Input 3

1 8 ....#...

# Output 3

4

# Explanation

- In the first example, there are two possible good sets: one contains two vertical dominoes and the other contains two horizontal dominoes.
- In the second example, the only good set is the empty set.