Ω: mannl. Rosenheimer Studenten E: raucht Zigarette F: raucht Zigarette

Insgesamt rauchen 28% aller männlichen Rosenheimer Studenten Zigaretten, 7% rauchen Zigarren, und 5% rauchen Zigarren und Zigaretten. Wie viel Prozent aller männlichen Rosenheimer Studenten rauchen weder Zigarre noch Zigarette?

Geg.:
$$P(E) = 28\%$$
, $P(F) = 7\%$, $P(E \cap F) = 5\%$
Ges.: $P(\overline{E} \cup \overline{F}) = P(\overline{E} \cap \overline{F})$
 $P(E \cup \overline{F}) = P(F) + P(E) - P(E \cap \overline{F}) = 0.3$

A. 65%

B. 70%

Nehmen Sie an, eine große Studie hat folgende Fakten ermittelt:

- 50% aller Maler fahren Opel. P(OIM) 0: fahrt Opel
- 10% aller Beamten fahren Opel. 7(0/3)

 M: *ist Maler*
- 5% aller Menschen sind Maler. P(M)

 8: " ist Beamter"
- 30% aller Menschen sind Beamte. 7(8)

Was wissen Sie, wenn Sie einen Opel sehen?

$$P(0 \cap M) = P(0 \mid M) \cdot P(M) = 25\%$$
 $P(0 \cap B) = P(0 \mid B) \cdot P(B) = 3\%$

- A. Die Wahrscheinlichkeit, dass der Fahrer ein Maler ist, beträgt 25%.
- B. Die Wahrscheinlichkeit, dass der Fahrer ein Maler ist, ist höher als die Wahrscheinlichkeit, dass der Fahrer ein Beamter ist.
- ✓ C. Die Wahrscheinlichkeit, dass der Fahrer ein Beamter ist, ist höher als die Wahrscheinlichkeit, dass der Fahrer ein Maler ist.
- **† D.** Die Wahrscheinlichkeit, dass der Fahrer ein Maler ist, ist gleich groß wie die Wahrscheinlichkeit, dass der Fahrer ein Beamter ist.
 - **E.** Es kann keine der Aussagen A-D getroffen werden.