computer science pandas

dataframes

- The primary pandas data
- Two-dimensional, size-mutable, potentially heterogeneous tabular data.
- Data structure also contains labeled axes (rows and columns).
- Arithmetic operations align on both row and column labels.
- Can be thought of as a dictionary-like container for Series objects.

dataframes 2

- tidy data
 - each variable is saved in its own column
 - each observation is saved in its own row

... might seem not to compact ... easy to manipulate

dataframes 3

generic way to store information

it is necessary to identify classifying elements & values elements:

- n
- type of test: TTT/OTD
- •alpha: 0.05. 0.01

Critical Values of the Wilcoxon Signed Ranks Test

	Two-Tai	iled Test	One-Tailed Test		
n	$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$	
5			0		
6	0		2		
7	2		3	0	
8	3	0	5	1	
9	5	1	8	3	
10	8	3	10	5	
11	10	5	13	7	
12	13	7	17	9	
13	17	9	21	12	
14	21	12	25	15	
15	25	15	30	19	
16	29	19	35	23	
17	34	23	4 1	27	

get data from csv file

read_csv(csvfilename): returns a dataframe from with the data from the csvfilename

```
pd.read_csv("SBP.csv")
```

= pa.	redd_csv(SBP.CSV	J
SBP_before 125	_		

7	0	125	118	
	1	132	134	
	2	138	130	
	3	120	124	
	4	125	105	
	5	127	130	
	6	136	130	
	7	139	132	
	8	131	123	
	9	132	128	
	10	135	126	
	11	136	140	
	12	128	135	
	13	127	126	7 (10)
	14	130	132	len(df)

```
SBP_before,SBP_after
125,118
132,134
138,130
120,124
125,105
127,130
136,130
139,132
131,123
132,128
135,126
136,140
128,135
127,126
130,132
```

returns the number of row in the dataframe

get data from other file types

```
read_excel('myfile.xlsx',sheet_name='Sheet1',
                        index_col=None, na_values=['NA'])
read_stata('myfile.dta')
read_sas('myfile.sas7bdat')
read_hdf('myfile.h5','df')
```

dataframe data types

Pandas Type	Native Python Type	Description
object	string	The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).
int64	int	Numeric characters. 64 refers to the memory allocated to hold this character.
float64	float	Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.
datetime64, timedelta[ns]	N/A (but see the <u>datetime</u> module in Python's standard library)	Values meant to hold time data. Look into these for time series experiments.

tidy data ...

Critical Values of the Wilcoxon Signed Ranks Test

n	Two-Ta	iled Test	One-Tailed Test		
n	$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$	
5			0		
6	0		2		
7	2		3	0	
8	3	0	5	1	
9	5	1	8	3	
10	8	3	10	5	
11	10	5	13	7	
12	13	7	17	9	
13	17	9	21	12	
14	21	12	25	15	
15	25	15	30	19	
16	29	19	35	23	
17	34	23	4 1	27	

n	type	alpha	value
5	OTT	0.01	
5	TTT	0.01	
5	OTT	0.05	0
5	TTT	0.05	
6	OTT	0.01	
6	TTT	0.01	
6	OTT	0.05	2
6	TTT	0.05	0
7	OTT	0.01	0

preparing dataframes

reorganize information ...

```
n, type, alpha, value
5,TTT,0.05,NaN
5,TTT,0.01,NaN
5,0TT,0.05,0
5,0TT,0.01,NaN
6,TTT,0.05,0
6,TTT,0.01,NaN
6,0TT,0.05,2
6,0TT,0.01,NaN
7,TTT,0.05,2
7,TTT,0.01,NaN
7,0TT,0.05,3
7,0TT,0.01,0
8,TTT,0.05,3
8,TTT,0.01,0
8,0TT,0.05,5
```


fillna(_value_)

handling missing data

```
[>>> df=df.fillna(0.0)
```

[>>>	df	
	SBP_before	SBP_after
0	125	118.0
1	132	134.0
2	138	130.0
3	120	124.0
4	125	105.0
5	127	130.0
6	136	130.0
7	139	132.0
8	131	123.0

132

135

136

128

127

130

134

128.0

126.0

140.0

135.0

126.0

132.0

0.0

9

10

11

12

13

14

15

replace NaN with a value

	SBP_before	SBP_after
0	125	118.0
1	132	134.0
2	138	130.0
3	120	124.0
4	125	105.0
5	127	130.0
6	136	130.0
7	139	132.0
8	131	123.0
9	132	128.0
10	135	126.0
11	136	140.0
12	128	135.0
13	127	126.0
14	130	132.0
15	134	NaN

dropna()

```
[>>> df = df.dropna()
[>>> df
     SBP_before SBP_after
             125
                       118.0
0
             132
                       134.0
                       130.0
             138
             120
                       124.0
                       105.0
             125
                       130.0
             127
                       130.0
             136
             139
                       132.0
                       123.0
8
             131
9
             132
                       128.0
10
             135
                       126.0
                       140.0
             136
             128
                       135.0
13
                       126.0
             127
             130
                       132.0
```

remove when incomplete I

hands on ...

- Find how many records there are in a dataframe
- How many elements are there?
- What are the column names?
- What types of columns are there in a dataframe?

"quick" data analysis

```
describe() applies basic statistical evaluations (count, quantiles, ...)
min() max() minimum and maximum values
mean() median() mode() arithmetic average, median and mode
var() std() variance and standard deviation
sem() standard error mean
skew() sample skewness
kurt() kurtosis
```

"quick" data analysis 2

describe()

applies basic statistical evaluations (count, quantiles, ...)

>>	> df						
	student	mathematics	science	[>>> df	.describe()	
0	1	20	21	,,,,	student	mathematics	science
1	2	13	13	count	10.00000	10.000000	10.000000
2	3	30	36		5.50000	20.200000	21.700000
3	4	14	19	mean		6.795423	7.288499
4	5	16	20	std	3.02765		
5	6	12	15	min	1.00000	12.000000	13.000000
6	7	25	23	25%	3.25000	14.500000	16.000000
7	8	29	27	50%	5.50000	18.500000	20.500000
8	9	17	14	75%	7.75000	25.750000	26.000000
9	10	26	29	max	10.00000	30.000000	36.000000

"quick" data analysis 3

```
[>>> df.min()
student 1
mathematics 12
science 13
dtype: int64
```

```
[>>> df.std()
student 3.027650
mathematics 6.795423
science 7.288499
dtype: float64
```

```
[>>> df.mean()
student 5.5
mathematics 20.2
science 21.7
dtype: float64
```

selecting rows (subset observation)

• by position
 df.iloc[fromrow:torow]


```
[>>> dfw.iloc[1:5]
    n type alpha value
1 5 TTT 0.01 NaN
2 5 OTT 0.05 0.0
3 5 OTT 0.01 NaN
4 6 TTT 0.05 0.0
```

```
[>>> dfw = pd.read_csv("./WSRTdf.csv")
[>>> dfw
               alpha value
      n type
                0.05
                        NaN
                         NaN
                0.01
                0.05
                         0.0
                0.01
                         NaN
                0.05
                         0.0
                0.01
         OTT
                      110.0
                0.05
                      137.0
100
101
                0.01
                      109.0
     30
         TTT
102
                0.05
                      151.0
                      120.0
103
     30
         OTT
                0.01
[104 rows x 4 columns]
```

selecting rows (subset observation) 2 filtering

• by value in one ...
df[(df[colname] == val)]

```
[>>> dfw[(dfw['alpha'] == ALPHA05)]
              alpha value
      n type
                0.05
         TTT
                        NaN
         OTT
              0.05
                        0.0
                        0.0
      6 TTT
               0.05
                0.05
                        2.0
      6 OTT
                        2.0
         TTT
                0.05
                        3.0
         OTT
                0.05
      8 TTT
                0.05
                        3.0
14
      8 OTT
                0.05
                        5.0
                        5.0
         TTT
                0.05
         \cap TT
                a a5
```

```
[>>> dfw = pd.read_csv("./WSRTdf.csv")
[>>> dfw
               alpha value
      n type
                0.05
0
                         NaN
                0.01
                         NaN
         OTT
                         0.0
                0.05
          OTT
                0.01
                         NaN
                0.05
                         0.0
          OTT
                0.01
                       110.0
100
     30
          TTT
                0.05
                       137.0
101
     30
          TTT
                0.01
                       109.0
102
     30
          OTT
                0.05
                       151.0
     30
                       120.0
103
         OTT
                0.01
[104 rows x 4 columns]
```

selecting rows (subset observation) 3 filtering

... or more columns

```
[>>> dfw[(dfw['alpha'] == ALPHA05) &
         (dfw['type'] == TWOTAILED)]
               alpha
                      value
       n type
          TTT
                0.05
                         NaN
          TTT
                0.05
                         0.0
         TTT
                0.05
                         2.0
12
         TTT
                0.05
                         3.0
         TTT
                0.05
                         5.0
20
          TTT
                0.05
                         8.0
     10
24
     11
         TTT
                0.05
                        10.0
          TTT
                0.05
                        13.0
     12
32
     13
          TTT
                        17.0
                0.05
```

```
[>>> dfw = pd.read_csv("./WSRTdf.csv")
[>>> dfw
               alpha value
      n type
                0.05
                         NaN
                         NaN
                0.01
                0.05
                         0.0
         OTT
                0.01
                         NaN
                         0.0
         TTT
                0.05
99
     29
         OTT
                0.01
                      110.0
100
     30
         TTT
                0.05
                      137.0
101
         TTT
                0.01
                      109.0
     30
102
                0.05
                      151.0
         OTT
103
                      120.0
         OTT
                0.01
[104 rows x 4 columns]
```

selecting values

select row within the dataframe by using index

[>>> df.iloc[0]
SBP_before 127.0
SBP_after 126.0
Difference 1.0
AbsDiff 1.0

Ranks 1.0 R+ 1.0

Name: 13, dtype: float64

[>>> df.ilo	oc[2]
SBP_before	130.0
SBP_after	132.0
Difference	-2.0
AbsDiff	2.0
Ranks	2.5
R+	0.0
Name: 14,	dtype: float64

[>>>	df					
	SBP_before	SBP_after	Difference	AbsDiff	Ranks	R+
13	127	126	1	1	1.0	1.0
1	132	134	-2	2	2.5	0.0
14	130	132	-2	2	2.5	0.0
5	127	130	-3	3	4.0	0.0
3	120	124	-4	4	6.0	0.0
11	136	140	-4	4	6.0	0.0
9	132	128	4	4	6.0	6.0
6	136	130	6	6	8.0	8.0
12	128	135	-7	7	10.0	0.0
0	125	118	7	7	10.0	10.0
7	139	132	7	7	10.0	10.0
2	138	130	8	8	12.5	12.5
8	131	123	8	8	12.5	12.5
10	135	126	9	9	14.0	14.0
4	125	105	20	20	15.0	15.0

selecting values 2

1. specify row and column uncommon, based on a position ...

```
|>>> df.iloc[2].SBP_after
| 132.0
|>>> df.SBP_after.iloc[2]
| 132
row, column
|>>> df.iloc[2,1]
| 132
```

```
>>> df
                               Difference
    SBP before
                  SBP_after
                                            AbsDiff
13
            127
                         126
            132
                         134
                                                                0.0
            130
                         132
                                                         2.5
                                                                0.0
                         130
            127
                                                                0.0
            120
                         124
                                                                0.0
                                                         6.0
11
            136
                         140
                                                                0.0
            132
                         128
                                                                6.0
            136
                         130
                                                                8.0
            128
                         135
                                                        10.0
                                                                0.0
            125
                         118
                                                        10.0
                                                               10.0
            139
                         132
                                                               10.0
            138
                         130
                                                               12.5
            131
                         123
10
            135
                         126
                                                        14.0
                                                               14.0
            125
                                                        15.0
                                                               15.0
                         105
```

selecting values 3

unless we have a selected row ... and we want a value

```
[>>> dfw[(dfw['type'] == TWOTAILED) & (dfw['alpha'] == ALPHA05) & (dfw['n'] == number_of_samples)]
    n type alpha value
40 15 TTT 0.05 25.0
    this column
```



```
[>>> dfw[(dfw['type'] == TWOTAILED) & (dfw['alpha'] == ALPHA05) & (dfw['n'] == number_of_samples)
['value'].
iloc[0]
25.0
```


slicing

- secting a subset of rows/columns
 - by name
 - by position

	Α	В	С		Α	В	С
0				1			
1				2			
2							
3							
4							

df[2:3]

slicing 2

	A	В	С
0			
1			
2			
3			
4			
5			
6			

	Α	В
1		
2		
3		
4		

df.loc[2:6,['A', 'B']]

creating new data

df['NewColumnName'] = df.ExistingColumn operator variable


```
[>>> df['Difference'] = df.SBP_before - df.SBP_after
>>> df
    SBP_before SBP_after Difference
           125
                       118
           132
                       134
           138
                       130
           120
3
                       124
           125
                       105
                                     20
           127
                       130
           136
                       130
           139
                       132
           131
                       123
           132
                       128
           135
                       126
10
11
           136
                       140
12
           128
                       135
13
           127
                       126
14
           130
                       132
```

df['Difference'] = df.SBP_before - df.SBP_after

creating new data 2

[>>> df['AbsDiff'] = abs(df.Difference)

df['NewColumnName'] = df.ExistingColumn operator variable

df['AbsDiff'] = abs(df.Difference)

```
[>>> df
    SBP_before SBP_after Difference AbsDiff
            125
                        118
0
            132
                        134
            138
                        130
            120
                        124
            125
                        105
            127
                        130
            136
                        130
            139
                        132
            131
                        123
            132
                        128
            135
                        126
11
            136
                        140
            128
                        135
13
            127
                        126
14
            130
                        132
```

creating new data, selectively

```
df['R+'] = df['Ranks']*(df['Difference'] > 0)
```

```
[>>> df['R+'] = df['Ranks']*(df['Difference'] > 0)
[>>> df
     SBP_before SBP_after Difference AbsDiff
                                                    Ranks
                                                              R+
13
            127
                        126
                                                      1.0
                                                             1.0
                        134
                                                 2
                                                      2.5
            132
                                                             0.0
                                                      2.5
14
                        132
                                                             0.0
            130
                                                      4.0
            127
                        130
                                                             0.0
                                                      6.0
            120
                        124
                                                             0.0
11
            136
                        140
                                                      6.0
                                                             0.0
            132
                        128
                                                             6.0
            136
                        130
                                                      8.0
                                                             8.0
12
            128
                        135
                                                     10.0
                                                             0.0
                        118
                                                     10.0
                                                            10.0
            125
            139
                        132
                                                     10.0
                                                           10.0
            138
                        130
                                                           12.5
            131
                        123
                                                     12.5
                                                           12.5
10
            135
                        126
                                                     14.0
                                                           14.0
            125
                        105
                                      20
                                                     15.0 15.0
```

1 when true

0 when false

list of columns

sorting

sort_values(by,ascending):

sorts with respect to values in columns, in ascending (default) or descending order

it is not "in place"

df = df.sort_values("AbsDiff")

```
df = df.sort_values("AbsDiff")
 [>>> df = df.sort_values("AbsDiff")
[>>> df
     SBP_before SBP_after Difference
                                        AbsDiff
 13
            127
                       126
            132
 1
                       134
 14
            130
                       132
            127
                       130
            120
                       124
            132
                       128
 11
            136
                       140
                       130
            136
            125
                       118
            139
                       132
            128
                       135
            138
                       130
            131
                       123
            135
                       126
                                     20
                                              20
            125
                       105
```

sorting 2

```
[>>> df = df.sort_values("Difference")
[>>> df
     SBP_before SBP_after Difference
                                          AbsDiff
12
            128
                        135
            120
                        124
            136
                        140
            127
                        130
            132
                        134
            130
                        132
13
            127
                        126
            132
                        128
            136
                        130
            125
                        118
            139
                        132
            138
                        130
            131
                        123
10
            135
                        126
            125
                        105
                                      20
                                                20
```

df = df.sort_values("Difference")

sorting 3

sort by this then by this

df = df.sort_values(["AbsDiff", "Difference"])

>>>	df = df.sor	t_values(["	AbsDiff", "	Difference"])
[>>>	df				
	SBP_before	SBP_after	Difference	AbsDiff	
13	127	126	1	. 1	
1	132	134	-2	2	
14	130	132	-2	2	
5	127	130	3	3	_
3	120	124	-4	4	
11	136	140	-4	4	
9	132	128	4	4	
6	136	130	6	6	
12	128	135	-7	7	
0	125	118	7	7	
7	139	132	7	7	
2	138	130	8	8	
8	131	123	8	8	
10	135	126	9	9	
4	125	105	26	20	

groupby(colnames).aggr()

- organize data into groups based on criteria
- perform computation on grouped data (eg. minimum with respect to grouped information)
- similar to dplyr() function in R

groupby(colnames).aggr()

[>>>	df					
	SBP_before	SBP_after	Difference	AbsDiff	Ranks	R+
13	127	126	1	1	1.0	1.0
1	132	134	-2	2	2.5	0.0
14	130	132	-2	2	2.5	0.0
5	127	130	-3	3	4.0	0.0
3	120	124	-4	4	6.0	0.0
11	136	140	-4	4	6.0	0.0
9	132	128	4	4	6.0	6.0
6	136	130	6	6	8.0	8.0
12	128	135	-7	7	10.0	0.0
0	125	118	7	7	10.0	10.0
7	139	132	7	7	10.0	10.0
2	138	130	8	8	12.5	12.5
8	131	123	8	8	12.5	12.5
10	135	126	9	9	14.0	14.0
4	_ 125	105	20	20	15.0	15.0

groupby(colnames).aggr()

[>>> df.groupby('AbsDiff')[['SBP_before','SBP_after']].mean()

	SBP_before	SBP_after		[>>>	df					
AbsDiff					SBP before	SBP_after	Difference	AbsDiff	Ranks	R+
1	127.000000	126.000000		13	127	126	1	1	1.0	1.0
2	131.000000	133.000000		1	132	134	-2	2	2.5	0.0
3	127.000000	130.000000	4	14	130	132	-2	2	2.5	0.0
4	129.333333	130.666667		5	127	130	-3	3	4.0	0.0
6	136.000000	130.000000		3	120	124	-4	4	6.0	0.0
7	130.666667	128.333333		11	136	140	-4	4	6.0	0.0
8	134.500000	126.500000		9	132	128	4	4	6.0	6.0
9	135.000000	126.000000		6	136	130	6	6	8.0	8.0
20	125.000000	105.000000		12	128	135	-7	7	10.0	0.0
				0	125	118	7	7	10.0	10.0
				7	139	132	7	7	10.0	10.0
				2	138	130	8	8	12.5	12.5
				8	131	123	8	8	12.5	12.5
				10	135	126	9	9	14.0	14.0
_				4	125	105	20	20	15.0	15.0

groupby(colnames).aggr()

[>>> df.	>> df.groupby('AbsDiff')[['SBP_before','SBP_after']].describe()															
	SBP_before SBP_after									ter						
	count	mean	std	min	25%	50%	75%	max	count	mean	std	min	25%	50%	75%	max
AbsDiff																7
1	1.0	127.000000	NaN	127.0	127.00	127.0	127.00	127.0	1.0	126.000000	NaN	126.0	126.00	126.0	126.00	126.0
2	2.0	131.000000	1.414214	130.0	130.50	131.0	131.50	132.0	2.0	133.000000	1.414214	132.0	132.50	133.0	133.50	134.0
3	1.0	127.000000	NaN	127.0	127.00	127.0	127.00	127.0	1.0	130.000000	NaN	130.0	130.00	130.0	130.00	130.0
4	3.0	129.333333	8.326664	120.0	126.00	132.0	134.00	136.0	3.0	130.666667	8.326664	124.0	126.00	128.0	134.00	140.0
6	1.0	136.000000	NaN	136.0	136.00	136.0	136.00	136.0	1.0	130.000000	NaN	130.0	130.00	130.0	130.00	130.0
7	3.0	130.666667	7.371115	125.0	126.50	128.0	133.50	139.0	3.0	128.333333	9.073772	118.0	125.00	132.0	133.50	135.0
8	2.0	134.500000	4.949747	131.0	132.75	134.5	136.25	138.0	2.0	126.500000	4.949747	123.0	124.75	126.5	128.25	130.0
9	1.0	135.000000	NaN	135.0	135.00	135.0	135.00	135.0	1.0	126.000000	NaN	126.0	126.00	126.0	126.00	126.0
20	1 0	105 000000	NaN	105 0	105 00	105 0	105 00	105 0	1 0	105 000000	N-N	105 0	105 00	105 0	105 00	105 0

ranking data

rank(method="..."):

returns a rank of every respective index of a series passed.

The rank is returned on the basis of position after sorting there are a few methods available

df["AbsDiff"].rank()

ranking data 2

extra column

df["AbsDiff"].rank()

105

20

20

15.0

df["Ranks"] = df["AbsDiff"].rank()

• • •	. •
MALLEN	COVELNA
VVILII	sorting

125

			9			0	125	118	7	7	10.0
	SBP_before	SBP_after	Difference	AbsDiff	Ranks	1	132	134	-2	2	2.5
13	127	126	1	1	1.0	2	138	130	8	8	12.5
1	132	134	-2	2	2.5	3	120	124	-4	4	6.0
14	130	132	-2	2	2.5	4	125	105	20	20	15.0
5	127	130	-3	3	4.0	5	127	130	-3	3	4.0
3	120	124	-4	4	6.0	6	136	130	6	6	8.0
11	136	140	-4	4	6.0	7	139	132	7	7	10.0
9	132	128	4	4	6.0	8	131	123	8	8	12.5
6	136	130	6	6	8.0	9	132	128	4	4	6.0
12	128	135	-7	7	10.0	10	135	126	9	9	14.0
0	125	118	7	7	10.0	11	136	140	-4	4	6.0
7	139	132	7	7	10.0	12	128	135	-7	7	10.0
2	138	130	8	8	12.5	13	127	126	1	1	1.0
8	131	123	8	8	12.5	14 _	130	132	-2	2	2.5
10	135	126	9	9	14.0						

without sorting

SBP_after Difference AbsDiff

Ranks

to visualization ...

pandas methods

```
dfw = pd.read_csv("./WSRTdf.csv")
boxplot = dfw.boxplot(by='type', column='value')
```



```
[>>> dfw = pd.read_csv("./WSRTdf.csv")
>>> dfw
              alpha value
      n type
               0.05
                       NaN
      5 TTT
               0.01
                       NaN
      5 OTT
               0.05
                     0.0
      5 OTT
               0.01
                       NaN
         TTT
                       0.0
               0.05
         OTT
               0.01
99
                     110.0
         TTT
               0.05
                     137.0
100
101
         TTT
               0.01
                     109.0
102
         OTT
               0.05
                     151.0
         OTT
               0.01
103
     30
                     120.0
[104 rows x 4 columns]
```

to seaborn ...