Fisica 3 Corso del prof. Sozzi Marco

Francesco Sorce

Università di Pisa Dipartimento di Matematica A.A. 2023/24

Indice

Ι	Te	rmodinamica	4
1	Equ	uilibrio e Calore	5
	1.1	Prime definizioni	5
	1.2	Principio 0, Equilibrio e Temperatura empirica	6
		1.2.1 Tipi di equilibrio	6
		1.2.2 Processi quasistatici	7
		1.2.3 Temperatura empirica	7
	1.3	Primo principio e Definizione di calore	7
2	Sec	ondo principio e cicli	9
	2.1	Enunciati di Kelvin e Clausius	9
	2.2	Cicli e temperatura assoluta	10
		2.2.1 Processo ciclico	10
		2.2.2 Ciclo di Carnot	11
		2.2.3 Temperatura assoluta	12
	2.3	Entropia	13
		2.3.1 Teorema di Clausius e definizione	13
		2.3.2 Entropia globale aumenta	15
		2.3.3 Sistema, Ambiente ed Entropia	17
	2.4	Terzo principio	18
3	Intr	roduzione al Calore	19
	3.1	Modalità di trasferimento di calore	19
		3.1.1 Conduzione	19
		3.1.2 Convezione	20
		3.1.3 Irraggiamento	20
4	Sist	semi idrostatici	21
	4.1	Differenziale di volume	21
	4.2	Lavoro per sistema idrostatico	23
	4.3	Capacità termica	23
		4.3.1 Processi politropici	25
	4.4	Potenziali termodinamici	25
		4.4.1 Energia interna ed entropia	25
		4.4.2 Entalpia	27
		4.4.3 Energia libera di Helmholtz e Gibbs	27
		4.4.4 Riassunto	29
	4.5		30

5	Gas	e Gas ideali	31					
	5.1	Definizioni e legge dei gas perfetti	31					
	5.2							
	5.3	Capacità termica	32					
	5.4	Energia interna, lavoro e calore	34					
		5.4.1 Isobara	35					
		5.4.2 Isocora	35					
		5.4.3 Isoterma	35					
		5.4.4 Adiabatica	36					
	5.5	Ciclo di Carnot per Gas ideali	37					
	5.6	Potenziali termodinamici	38					
	5.7	Equazione di stato dei gas reali	39					
6	Trai	nsizione di fase	40					
	6.1	Transizione tra due fasi	40					
		6.1.1 Contenitore chiuso	41					
	6.2	Caso generale	41					
			43					
			43					
	6.3	1	44					
7	Teo	ria cinetica dei gas	46					
	7.1		46					
	7.2		48					
	7.3		51					
		•	51					
		0	52					
		1	53					
	7.4		53					
			55					
	-		_					
II	R	elatività speciale 5	57					
8	Tras	sformazioni di Lorenz	58					
	8.1	Relatività galileiana e parentesi storica	58					
		8.1.1 Il problema delle equazioni di Maxwell e l'etere	59					
	8.2	Trasformazioni di Lorenz	62					
		8.2.1 Dilatazione dei tempi e contrazione delle lunghezze	64					
	8.3		65					
9	Cine	ematica e dinamica relativistica	67					
	9.1		67					
			68					
			69					
		•	71					
			72.					

10	Dinamica relativistica	74
	10.1 Leggi di Newton relativistiche	74
	10.1.1 Secondo principio della dinamica	74
	10.1.2 Terzo principio della dinamica	77
	10.2 Effetto Doppler	77
	10.2.1 Versione classica	78
	10.2.2 Versione relativistica	78
	10.3 Particelle	79
	10.4 Elettro-Magnetismo	79
II	I Appendice	81
A	Richiami matematici	82
	A.1 Derivate parziali e Jacobiane	82
	A.2 Differenziali esatti	83
	A.3 Trasformazione di Legendre	84
	A.4 Regole di Prostaferesi per funzioni trigonometriche iperboliche	84

$\begin{array}{c} \text{Parte I} \\ \\ \text{Termodinamica} \end{array}$

Capitolo 1

Equilibrio e Calore

La termodinamica è lo studio di sistemi dal punto di vista macroscopico. Le massime fondamentali della termodinamica sono

- L'energia dell'universo è costante
- L'entropia dell'universo tende ad aumentare.

1.1 Prime definizioni

Definizione 1.1 (Sistema termodinamico).

Un sistema termodinamico è un sistema omogeneo composto da "molti" elementi. Lo stato di un sistema termodinamico è univocamente determinato da un numero contenuto di parametri¹ detti funzioni di stato.

Il numero di funzioni di stato necessarie per specificare lo stato è detto **numero di** gradi di libertà.

Osservazione 1.2.

Le funzioni di stato di un sistema non dipendono da come esso è venuto ad esistere; se due procedimenti portano da un particolare stato ad un altro, le differenze nelle funzioni di stato dipendono univocamente dallo stato iniziale e quello finale.

Osservazione 1.3 (Sistema ambiente).

Spesso torna comodo considerare una coppia di sistemi, uno detto semplicemente sistema e l'altro **ambiente**.

Definizione 1.4 (Variabili estensive e intensive).

Dato un sistema termodinamico, delle variabili ad esso inerenti si dicono **estensive** se sono proporzionali alla quantità di materia contenuta nel sistema e **intensive** altrimenti.

Esempio 1.5.

Il volume e l'energia sono grandezze estensive mentre la pressione e la temperatura sono intensive.

Osservazione 1.6.

Il lavoro meccanico è dato da $W=\int \vec{F}\cdot \vec{d\ell}$. È un fatto generale che il lavoro ha la forma

 \int (intensiva)d(estensiva).

¹Per esempio temperatura, pressione o volume.

Definizione 1.7 (Sistemi isolati, chiusi e aperti).

Un sistema termodinamico si dice

- isolato se non ammette scambio con l'ambiente,
- chiuso se non ammette scambio di materia con l'ambiente,
- aperto se ammette scambi con l'ambiente.

Per considerare più sistemi termodinamici dobbiamo considerarli come separati da una *parete*.

Definizione 1.8 (Tipi di parete).

Una parete tra due sistemi è

- adiabatica se non permette scambi,
- diatermica se non ammette scambi di materia,
- semipermeabile se fa passare alcuni tipi di materia.
- permeabile² se permette ogni tipo di scambio.

1.2 Principio 0, Equilibrio e Temperatura empirica

1.2.1 Tipi di equilibrio

Definizione 1.9 (Equilibrio).

Un sistema è in **equilibrio** se le sue funzioni di stato restano "costanti" (per molto tempo rispetto alla scala temporale rilevante).

Un sistema è in **equilibrio termico** se non ci sono differenze di temperatura³.

Un sistema è in **equilibrio termodinamico** se è in equilibrio meccanico, termico e chimico.

Osservazione 1.10.

I sistemi tendono spontaneamente ed irreversibilmente all'equilibrio termodinamico.

Fatto 1.11 (0-esimo principio della termodinamica).

Due sistemi in equilibrio termico con un terzo sono in equilibrio tra loro.

Definizione 1.12 (Equazione di stato).

Se quando un sistema è in equilibrio vale una equazione tra le funzioni di stato, queste si dicono **equazioni di stato**.

Osservazione 1.13 (Segno degli scambi di energia).

NOTA BENE: Affermiamo per convenzione che uno scambio di energia ha segno positivo se il sistema acquista energia dall'ambiente.

²una parete permeabile è come se non ci fosse

³definiremo la temperatura in seguito.

1.2.2 Processi quasistatici

Definizione 1.14 (Processi quasistatici).

Un sistema è **quasi in equilibrio** se è così vicino all'equilibrio che le equazioni di stato si possono considerare valide.

Un **processo quasistatico** è un processo tale per cui il sistema è quasi in equilibrio in ogni istante.

Se non sono presenti "attriti", un processo quasistatico è detto reversibile.

Un processo è detto **totalmente reversibile** se è reversibile e la sua interazione con l'ambiente è reversibile.

Osservazione 1.15.

Un processo quasi statico va pensato come un processo molto lento; così lento da poter pensare al sistema come "sempre in equilibrio".

1.2.3 Temperatura empirica

Proposizione 1.16 (Temperatura empirica).

Ogni sistema termodinamico ammette una funzione che è costante in stato di equilibrio. La costante è detta **temperatura empirica**.

Dimostrazione.

Consideriamo tre sistemi, con funzioni di stato (x_1, y_1) , (x_2, y_2) e (x_3, y_3) in equilibrio tra loro. Esistono dunque equazioni di stato della forma

$$\begin{cases} x_3 = f(x_1, y_1, y_3) \\ x_3 = g(x_2, y_2, y_3) \end{cases}$$

poiché i sistemi 1 e 2 sono in equilibrio, se eguagliamo le due equazioni sappiamo che ciò che otteniamo non dipende da y_3 , quindi

$$\begin{cases} f(x_1, y_1, y_3) = \phi_1(x_1, y_1)\zeta(y_3) + \eta(y_3) \\ g(x_2, y_2, y_3) = \phi_2(x_2, y_2)\zeta(y_3) + \eta(y_3) \end{cases}$$

dunque se 1 e 2 sono in equilibrio si ha che

$$\phi_1(x_1, y_1) = \phi_2(x_2, y_2),$$

ma i due membri dipendono da insiemi di variabili disgiunti, quindi esiste θ_0 tale che entrambe queste espressioni eguagliano θ_0 se sono in equilibrio. Il valore θ_0 è detto la temperatura empirica dei sistemi, i quali sono in equilibrio solo se hanno la stessa temperatura empirica.

Definizione 1.17 (Isoterme).

Dato un sistema termodinamico e un valore θ_0 di temperatura empirica, chiamiamo isoterma a livello θ_0 l'insieme degli stati del sistema la cui temperatura è θ_0 .

1.3 Primo principio e Definizione di calore

Fatto 1.18 (Primo principio della termodinamica).

L'energia interna di un sistema isolato si conserva.

Definizione 1.19 (Calore).

Il **calore** è la differenza tra la variazione di energia interna e il lavoro compiuto su un sistema termodinamico, esplicitamente

$$\Delta U = Q + W$$

 $Osservazione \ 1.20.$

Il calore e il lavoro non sono funzioni di stato, ma la loro somma sì.

Osservazione 1.21 (Primo principio in forma differenziale). Scrivendo il primo principio in termini di infinitesimi troviamo

$$dU = \delta Q + \delta W,$$

in particolare per i gas ideali vale

$$dU = \delta Q - pdV.$$

 $Osservazione\ 1.22.$

In una trasformazione adiabatica, il lavoro è dato dalla differenza di energia interna.

Esempio 1.23 (Coppia di sistemi dentro un contenitore adiabatico).

Consideriamo due sistemi A e B dentro un contenitore adiabatico. Per il primo principio

$$0 = \Delta U = \Delta U_A + \Delta U_B = Q_A + Q_B + \underbrace{W_A + W_B}_{=W}.$$

I trasferimenti di calore possono avvenire solo tra A e B, quindi $Q_A + Q_B = 0$ e W = 0. Quanto scritto è una "legge di conservazione del calore" in questo tipo di sistema.

Capitolo 2

Secondo principio e cicli

2.1 Enunciati di Kelvin e Clausius

Fatto 2.1 (Secondo principio della termodinamica, formulazione di Kelvin). Non esiste un processo che traformi interamente calore in lavoro.

Fatto 2.2 (Secondo principio della termodinamica, formulazione di Clausius). Non esiste un processo il cui <u>unico risulato</u> sia trasferire calore da una sorgente più fredda ad una più calda.

Proposizione 2.3.

Le due formulazioni del secondo principio sono equivalenti.

Dimostrazione.

Mostrimo che le loro negazioni sono equivalenti:

 $\neg K \implies \neg C$ | Consideriamo il diagramma

Notiamo che $|Q'| + |W| > \max\{|Q'|, |W|\} = \max\{|Q'|, |Q|\}$. Considerando ora il sistema di due macchine come un insieme troviamo una macchina che trasferisce un calore |Q'| dala sorgente fredda alla sorgente calda, negando Clausius.

 $\neg C \implies \neg K \mid \text{Procediamo analogamente a prima}$

e leggendo questo diagramma come un insieme la macchina avrebbe preso del calore |Q| - |Q'| dalla sorgente θ_L e lo ha trasformato interamente in lavoro, negando Kelvin.

2.2 Cicli e temperatura assoluta

2.2.1 Processo ciclico

Definizione 2.4 (Processo ciclico).

Un processo è **ciclico** se lo stato iniziale e finale sono lo stesso. Se qualcosa realizza un processo ciclico è detto **motore**.

Osservazione 2.5 (Diagramma di una macchina a due sorgenti). Spesso torna comodo fare diagrammi come in figura

Osservazione 2.6.

Per un processo ciclico, $\Delta U = 0$, dunque Q = -W.

$$-W = Q = Q_H + Q_L$$

dove Q_H è il calore che il sistema acquista da una sorgente calda e Q_L è il calore che acquista da una sorgente fredda¹. Notiamo che

$$|W| = |Q_H| - |Q_L|.$$

Definizione 2.7 (Efficienza).

L'efficienza di un processo ciclico è data da²

$$\eta = \frac{|W|}{|Q_H|} = 1 - \frac{|Q_L|}{|Q_H|}.$$

Definizione 2.8 (Frigorifero e coefficiente di prestazione).

Un **frigorifero** è un motore che trasferisce calore da una sorgente fredda ad una calda. Il suo **coefficiente di prestazione** è dato da

$$COP = \frac{|Q_L|}{|W|} = \frac{1 - \eta}{\eta}.$$

Definizione 2.9 (Pompa di calore).

Una **pompa di calore** è una macchina volta a trasformare lavoro in calore verso la sorgente calda. La sua efficienza è quindi l'inversa di quella di un motore standard:

$$\frac{|Q_H|}{|W|} = \frac{1}{\eta}.$$

 $^{{}^{1}}Q_{H}$ è positivo e Q_{L} è negativo.

²Intuitivamente l'efficienza è una misura di quanto lavoro riesco a realizzare in proporzione a quanto calore abbiamo dovuto inserire nel sistema. L'altra forma ci dice che l'efficienza è una coversione perfetta eccetto per il calore che viene disperso senza diventare lavoro (Q_L) .

Teorema 2.10 (di Carnot).

Un ciclo reversibile è il più efficiente che lavori tra due sorgenti θ_H e θ_L .

Dimostrazione.

Consideriamo due cicli S ed S' di cui S reversibile. Per il primo principio $-W=|Q_H|-|Q_L|$ e $-W'=|Q_H'|-|Q_L'|$.

Con precisione arbitraria, siano N ed N' interi positivi tali che

$$\frac{|Q_H|}{|Q_H'|} \approx \frac{N'}{N}.$$

Facendo fare N' cicli a S' ed N cicli reversibili al contrario³ a S troviamo

$$-W_{tot} = N'(-W') - N(-W) = N'(|Q'_H| - |Q'_L|) - N(|Q_H| - |Q_L|)$$
$$Q_{H,tot} = N'|Q'_H| - N|Q_H|$$
$$-Q_{L,tot} = N'|Q'_L| - N|Q_L|.$$

Per il primo principio, facendo lavorare in parallelo le due macchine

$$-W_{tot} = Q_{H,tot} + Q_{L,tot}.$$

Scegliendo N ed N' arbitrariamente grandi possiamo approssimare $Q_{H,tot} \approx 0$, e quindi

$$-W_{tot} \approx Q_{L,tot}$$
.

Per la formulazione di Kelvin del secondo principio si ha che $-W_{tot} \leq 0^4$, quindi $Q_{L,tot} \leq 0$, cioè

$$N'|Q'_L| - N|Q_L| \ge 0 \Longleftrightarrow \frac{N'}{N} \ge \frac{|Q_L|}{|Q'_L|}.$$

Passando al limite negli N e N' si ha che

$$\frac{|Q_L|}{|Q_H|} \leq \frac{|Q_L'|}{|Q_H'|} \implies \eta = 1 - \frac{|Q_L|}{|Q_H|} \geq 1 - \frac{|Q_L'|}{|Q_H'|} = \eta'.$$

Corollario 2.11 (I cicli reversibili hanno la stessa efficienza).

Tutti i cicli reversibili hanno la stessa efficienza.

Dimostrazione.

Applicando il teorema abbiamo le due disuguaglianze scambiando i ruoli tra i due cicli. $\hfill\Box$

2.2.2 Ciclo di Carnot

Definiamo esplicitamente un ciclo reversibile:

Definizione 2.12 (Ciclo di Carnot).

Il ciclo di Carnot è composto dalle seguenti trasformazioni quasistatiche reversibili:

³quì usiamo la reversibilità. Se prima il sistema trasformava calore in lavoro con qualche perdita di calore ora il sistema riceve lavoro e un po' di calore per fornire calore alla sorgente calda

⁴se così non fosse la macchina composta starebbe convertendo il calore $|Q_{L,tot}|$ in lavoro sull'esterno $|W_{tot}|$, contraddicendo il secondo principio.

- 1. isoterma a temperatura θ_H ,
- 2. adiabatica da θ_H a θ_L ,
- 3. isoterma a temperatura θ_L ,
- 4. adiabatica da θ_L a θ_H .

Osservazione 2.13.

Gli unici scambi di calore avvengono lungo l'isoterma, che ha senso solo a regime quasistatico (dato che il calore è uno scambio derivante da una differenza di energia).

Fatto 2.14.

Il ciclo di Carnot è l'unico ciclo che effettua scambi in modo reversibile tra due sorgenti.

2.2.3 Temperatura assoluta

Il teorema di Carnot (2.10) ci suggerisce un modo per ridefinire la temperatura in termini della temperatura empirica senza bisogno di ricorrere ai gas:

Per il teorema di Carnot esiste f tale che dopo un ciclo reversibile

$$\frac{|Q_H|}{|Q_L|} = f(\theta_L, \theta_H).$$

Collegando due tali processi facendo sì che il calore rilasciato dal primo sia quello assorbito dal secondo ricaviamo le equazioni

$$\frac{|Q_3|}{|Q_2|} = f(\theta_2, \theta_3), \quad \frac{|Q_2|}{|Q_1|} = f(\theta_1, \theta_2), \quad \frac{|Q_3|}{|Q_1|} = f(\theta_1, \theta_3),$$

dove $\theta_1 \leq \theta_2 \leq \theta_3$.

Segue dunque l'identità

$$f(\theta_1, \theta_2) = \frac{f(\theta_1, \theta_3)}{f(\theta_2, \theta_3)}.$$

Derivando rispetto a θ_3 ricaviamo

$$\begin{split} 0 &= \frac{1}{f(\theta_2,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3) - \frac{f(\theta_1,\theta_3)}{(f(\theta_2,\theta_3))^2} \frac{\partial f}{\partial \theta_3}(\theta_2,\theta_3) \\ &\frac{1}{f(\theta_1,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3) = \frac{1}{f(\theta_2,\theta_3)} \frac{\partial f}{\partial \theta_3}(\theta_2,\theta_3). \end{split}$$

Abbiamo dunque mostrato che $\frac{1}{f(\theta_1,\theta_3)}\frac{\partial f}{\partial \theta_3}(\theta_1,\theta_3)$ non dipende da θ_1 , cioè

$$\frac{\partial}{\partial \theta_3}(\log(f(\theta_1, \theta_3))) = A(\theta_3)$$
$$\log(f(\theta_1, \theta_3)) = B(\theta_3) + C(\theta_1),$$

dove $B(\theta_3)$ è una primitiva di $A(\theta_3)$.

Notiamo ora che $f(\theta,\theta)=1$ in quanto tanto calore viene rilasciato quanto viene assorbito se le sorgenti sono alla stessa temperatura.

Segue che $\log(f(\theta, \theta)) = 0$, cioè $B(\theta) = -C(\theta)$.

$$\log(f(\theta_1, \theta_3)) = B(\theta_3) - B(\theta_1) \implies f(\theta_1, \theta_3) \stackrel{g(\theta) = e^{B(\theta)}}{=} \frac{g(\theta_3)}{g(\theta_1)}.$$

Possiamo dunque definire la temperatura assoluta come

$$T = g(\theta)$$
.

Tutto ciò che abbiamo detto fin'ora in termini della temperatura definita tramite gas continua ad essere valido per la temperatura assoluta.

2.3 Entropia

2.3.1 Teorema di Clausius e definizione

Lemma 2.15 (Isoterme fibrano).

Due isoterme non si incrociano

Dimostrazione.

È un altro modo di esprimere lo 0-esimo principio.

Lemma 2.16 (Adiabatiche fibrano).

Due curve adiabatiche non si incrociano.

Dimostrazione.

Per assurdo supponiamo che due adiabatiche si incrocino. Trasformandole in un ciclo tramite una isoterma avremmo costruito una macchina che trasforma calore in lavoro senza effetti secondari, contraddicendo il secondo principio.

Osservazione 2.17 (Clausius per cicli di Carnot).

In un ciclo di Carnot si ha che

$$\oint \frac{\delta Q}{T} = 0.$$

Dimostrazione.

Dal teorema di Carnot (2.10) e dalla definizione di temperatura empirica sappiamo che

$$\frac{|Q_H|}{T_H} = \frac{|Q_L|}{T_L},$$

cioè

$$0 = \frac{Q_H}{T_H} + \frac{Q_L}{T_L} = \int_A^B \frac{\delta Q}{T} + \int_C^D \frac{\delta Q}{T} \stackrel{BC \text{ e } DA \text{ adiabatiche}}{=} \oint \frac{\delta Q}{T}.$$

Teorema 2.18 (Teorema di Clausius).

Per un qualsiasi ciclo reversibile si ha che

$$\oint \frac{\delta Q}{T} = 0.$$

Dimostrazione.

Approssimiamo il ciclo con tanti cicli di Carnot: per i lemma (2.15) e (2.16) evitiamo problemi di double counting, per costruire l'approssimazione basta scegliere due punti sul ciclo e sostituire il tratto del ciclo che li collega con la giunzione di una adiabatica, una isoterma e poi nuovamente una adiabatica, dove le adiabatiche sono determinate dagli stati in esame e l'isoterma è scelta in modo che il lavoro compiuto non cambi⁵.

Figura 2.1: Come viene sostituito un singolo tratto in modo da non cambiare il lavoro

Figura 2.2: L'approssimazione del ciclo con tanti cicli di Carnot

Corollario 2.19. La quantità $\int_A^B \frac{\delta Q}{T}\Big|_{rev}$ è una funzione di stato.

Dimostrazione.

Siano α e β sono due processi reversibili da A a B. In quanto reversibili, è ben definito $\gamma = \overline{\beta}$ processo inverso di β . Per il teorema di Clausius (2.18) si ha che

$$0 = \int_{\alpha} \frac{\delta Q}{T} + \int_{\gamma} \frac{\delta Q}{T} = \int_{\alpha} \frac{\delta Q}{T} - \int_{\beta} \frac{\delta Q}{T},$$

come volevasi dimostrare.

In luce di questo corollario è ben posta la seguente definizione:

⁵poiché l'energia interna è una funzione di stato, garantire lo stesso lavoro automaticamente fornisce anche uguaglianze tra i calori

Definizione 2.20 (Entropia).

Definiamo la **differenza di entropia** tra due stati $A \in B$ come⁶

$$\left. \int_{A}^{B} \frac{\delta Q}{T} \right|_{rev} = S_B - S_A.$$

In forma differenziale

$$dS = \frac{\delta Q}{T}_{rev}$$

 $Osservazione\ 2.21.$

Se γ è un processo che porta il sistema dallo stato A allo stato B in modo **non reversibile** allora è possibile che

$$\int_{A}^{B} \frac{\delta Q}{T} \neq S_{B} - S_{A}.$$

La differenza di entropia tra i due stati è comunque ben definita, basta scegliere un secondo cammino reversibile da A a B e calcolare l'integrale lungo quel cammino.

Osservazione~2.22.

Se A e B sono stati sulla stessa adiabatica

$$\int_{A}^{B} \frac{\delta Q}{T} = 0.$$

Se l'adiabatica in questione è reversibile allora $S_A = S_B$.

Se l'adiabatica non è reversibile l'entropia potrebbe cambiare.

Osservazione 2.23.

Per un qualsiasi ciclo (anche irreversibile), $\Delta S = 0$, in quanto è una funzione di stato.

2.3.2 Entropia globale aumenta

Proposizione 2.24 (Disuguaglianza di Clausius).

Sia Σ un ciclo che acquista una quantità di calore δQ da una sorgente a temperatura T_s e che produce una quantità di lavoro W, allora

$$\oint \frac{\delta Q}{T} \le 0,$$

dove T è la temperatura a cui lavora Σ .

Dimostrazione.

Studiamo gli effetti secondari di Σ ⁷. Consideriamo il sistema composto da Σ e una macchina di Carnot Σ' definito come segue:

 Σ' assorbe un calore δQ_s dalla sorgente T_s , produce del lavoro W' e rilascia ad una temperatura T il calore δQ che riceve Σ .

Calcolando la variazione di entropia per Σ' ricaviamo che

$$0 = \Delta S = \oint \frac{\delta Q_s}{T_s} + \oint -\frac{\delta Q}{T} \Longleftrightarrow \frac{1}{T_s} \oint \delta Q_s = \oint \frac{\delta Q}{T}.$$

 $^{^6}$ la notazione significa che per calcolare l'integrale scegliamo un qualsiasi processo reversibile che porta A in B.

⁷che necessariamente ci sono per il secondo principio.

Consideriamo ora le due macchine insieme e calcoliamo l'energia:

$$Q_s = \oint \delta Q_s = -(W + W').$$

Per il secondo principio si ha che la quantità sopra non è positiva⁸, dunque, sfruttando il fatto che $T_s>0$, si ha che

$$0 \ge \frac{1}{T_s} \oint \delta Q_s = \oint \frac{\delta Q}{T}.$$

Teorema 2.25 (Variazione di entropia supera integrale sul percorso).

 $Sia \ \gamma \ un \ processo \ che \ porta \ lo \ stato \ A \ nello \ stato \ B, \ potenzialmente \ in \ modo \ irreversibile, \ allora$

$$\Delta S \ge \int_A^B \frac{\delta Q}{T}.$$

Dimostrazione.

Sia α un processo reversibile che porta da A a B e sia β il suo processo inverso. Per la disuguaglianza di Clausius (2.24) si ha che

$$\underbrace{\int_{\beta} \frac{\delta Q}{T}}_{=-\Delta S} + \int_{\gamma} \frac{\delta Q}{T} \leq 0 \implies \Delta S \geq \int_{A}^{B} \frac{\delta Q}{T}.$$

Proposizione 2.26 (Secondo principio con entropia).

L'affermazione " $\Delta S \geq 0$ per sistemi isolati" è equivalente al secondo principio della termodinamica.

Dimostrazione.

Mostriamo le due implicazioni:

Assumendo il secondo principio abbiamo visto che vale il teorema (2.25). Se un sistema è isolato, $\delta Q=0$, quindi

$$\Delta S \ge \int \frac{\delta Q}{T} = 0.$$

Consideriamo per assurdo un processo che trasforma calore in lavoro senza altri effetti 9 . La variazione di entropia del sistema sarebbe 10

$$\Delta S = \oint \frac{\delta Q}{T} = -\frac{|Q|}{T} < 0,$$

assurdo per ipotesi.

⁸non possiamo convertire calore in lavoro senza altri effetti, ma possiamo convertire lavoro in calore senza problemi.

⁹Neghiamo la formulazione di Kelvin.

 $^{^{10}}$ il sistema perde calore per trasformarlo in lavoro, quindi il segno è negativo

Differenziale dell'entropia

Osservazione 2.27 (Differenziale dell'entropia). Poiché U è una funzione di stato

$$dU = \delta Q + \delta W = \delta Q_{rev} + \delta W_{rev},$$

dunque

$$\boxed{dS = \left. \frac{\delta Q}{T} \right|_{rev} = \frac{\delta Q}{T} + \frac{\delta W - \delta W_{rev}}{T}}$$

Per il teorema (2.25) si ha che $dS \geq \delta Q/T$, quindi per la forma sopra

$$\delta W \geq \delta W_{rev}$$
,

che è una riformulazione del teorema di Carnot (2.10) se stiamo attenti ai segni.

Osservazione 2.28.

Scriviamo le forme $\delta Q = \sum_i A_i dx_i$ e $\delta W = \sum_i X_i dx_i$.

Sappiamo che questi non sono differenziali esatti, ma possiamo moltiplicare δQ per 1/T e rendere quel differenziale esatto ($\delta Q/T=dS$). Questa è una manifestazione della proposizione (A.3).

Ricalcando l'osservazione (A.5) segue un'altra riformulazione del secondo principio:

Proposizione 2.29 (Secondo principio, formulazione di Caratheodory).

Vicino ad ogni punto di equilibrio esistono infiniti punti non raggiungibili con adiabatiche reversibili.

Dimostrazione.

NON DATA

Osservazione 2.30.

Se consideriamo una adiabatica reversibile $\delta Q=0$, gli stati vegono divisi in due regioni. In una regione troviamo punti raggiungibili tramite adiabatiche irreversibili, nell'altra troviamo punti irraggiungibili da qualsiasi adiabatica.

2.3.3 Sistema, Ambiente ed Entropia

Osservazione 2.31.

Un processo è reversibile se e solo se $\Delta S_{globale} = 0$.

L'entropia può variare per due motivi:

- 1. scambio di calore tra temperature diverse (causa esterna)
- 2. sono presenti attriti (causa interna)

Esempio 2.32 (Sistema e sorgente).

Consideriamo un universo formato unicamente da una sorgente a temperatura T_s e un sistema che assorbe un un calore Q.

1. Supponiamo che il sistema non contenga attriti, cioè $\Delta S_{sist}^{(int)}=0$. Per definizione di sorgente $\Delta S_{sorg}=-Q/T_s$, mentre

$$\Delta S_{sist}^{(ext)} \ge \int \frac{\delta Q}{T} \overset{T_s \ge T}{\ge} \frac{Q}{T_s}.$$

2. Supponiamo che il sistema compia solo scambi di calore reversibili (cioè $\Delta S_{sorg}+\Delta S_{sist}^{(ext)}=0$), allora

$$\Delta S_{sorg} = \frac{Q}{T_s}, \quad \Delta S_{sist}^{(ext)} = -\frac{Q}{T_s}, \quad \Delta S_{sist}^{(int)} \geq 0.$$

Osservazione 2.33 (Cicli irreversibili).

Se un sistema fa un ciclo in modo irreversibile allora l'ambiente NON PUÒ aver fatto un ciclo in quanto altrimenti l'entropia non sarebbe aumentata.

2.4 Terzo principio

Fatto 2.34 (Terzo principio della termodinamica). In un processo reversibile isotermo $\lim_{T\to 0} \Delta S = 0$.

 $Osservazione\ 2.35.$

Stiamo dicendo che le isoterme per T vicino a 0 si avvicinano ad essere adiabatiche.

Osservazione 2.36.

Moralmente il principio dice che è difficile raffreddare verso temperature vicine allo 0 assoluto.

Osservazione 2.37.

Possiamo riformulare il principio affermando che ogni sistema ha la stessa entropia allo zero assoluto.

Capitolo 3

Introduzione al Calore

3.1 Modalità di trasferimento di calore

Il trasperimento di calore, cioè di energia derivante da una differenza di temperatura, avviene in tre modi: conduzione, covezione ed irraggiamento.

3.1.1 Conduzione

Parliamo di **conduzione** quando il tresferimento di calore avviene per contatto ma senza scambio di materia (attraverso una parete diatermica).

Empiricamente riscontriamo

Fatto 3.1 (Legge di Fourier).

 $Vale\ la\ relazione$

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = -\kappa \frac{\Delta T}{\Delta X},$$

dove T è la temperatura, X è la distanza tra i punti tra cui stiamo calcolando la differenza di temperatura, A è l'area ortogonale alla direzione lungo la quale si propaga il calore e κ è una costante detta **conducibilità termica**.

L'unità di misura della conducibilità termica è

$$[\kappa] = \frac{W}{mK} \approx \begin{cases} 10^2 & \text{metalli} \\ 0.1 & \text{gas} \end{cases}.$$

Possiamo precisare la legge di Fourier introducendo la corrente di calore \vec{J}_Q . La legge assume la forma

$$\vec{J}_Q = -\kappa \vec{\nabla} T.$$

Concentrandosi su uno dei sistemi possiamo scrivere

$$\delta Q = cm\delta T$$

dove m è la massa e c è il calore specifico.

Possiamo calcolare il calore totale che entra dentro una superficie per unità di tempo come

$$\int_{V} c \frac{\partial T}{\partial t} \rho dV = \frac{1}{\Delta t} \int_{\partial V} \delta Q = - \int_{\partial V} \vec{J}_{Q} \cdot \vec{d\Sigma} \stackrel{\mathrm{T.Div.}}{=} - \int_{V} \nabla \cdot \vec{J}_{Q} dV = \int_{V} \kappa \nabla^{2} T dV.$$

Ricaviamo dunque

$$\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c} \nabla^2 T$$

Questa è la famosa equazione del calore.

3.1.2 Convezione

Parliamo di **convezione** quando il trasferimento di calore avviene tramite lo spostamento di materia.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = h\Delta T,$$

dove h è il **coefficiente convettivo**.

3.1.3 Irraggiamento

Parliamo di **irraggiamento** quando un corpo semplicemente emette energia come radiazione.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = \varepsilon \sigma (T^4 - T_0^4),$$

dove T_0 è la temperatura dell'ambiente, σ è una costante uguale per tutti i materiali e ε dipende dai materiali.

Capitolo 4

Sistemi idrostatici

Definiamo informalmente un sistema idrostatico come un sistema termodinamico determinato da pressione, volume e temperatura.

Definizione 4.1 (Principali processi quasistatici per sistemi idrostatici). Un processo si dice

- **isotermo** se T resta costante,
- **isobaro** se p resta costante,
- \bullet isocore se V resta costante o
- adiabatico se non avviene scambio di calore.

4.1 Differenziale di volume

Definizione 4.2 (Coefficiente di espansione volumetrica). Definiamo il coefficiente di espansione volumetrica come

$$\alpha = \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_p = -\frac{m}{V} \frac{1}{\rho^2} \left. \frac{\partial \rho}{\partial T} \right|_p = -\frac{1}{\rho} \left. \frac{\partial \rho}{\partial T} \right|_p.$$

L'unità di misura è $[\alpha] = K^{-1}$.

Definizione 4.3 (Compressibilità isoterma). Definiamo la **compressibilità isoterma** come

$$\beta_T = -\frac{1}{V} \left. \frac{\partial V}{\partial p} \right|_T.$$

L'unità di misura è $[\beta_T] = Pa^{-1}$.

L'inversa $k_T = 1/\beta_T$ è detta modulo di compressibilità isoterma.

Riportiamo alcuni valori di α e β_T per dare una intuizione sui valori tipici 1

 $^{^{1}}$ il Sitall è materiale fatto apposta per avere coefficiente di espansione volumetrica piccolo

Materiale	$\alpha [\mathrm{K}^{-1}]$	$\beta_T [\mathrm{Pa}^{-1}]$
Acqua	$0.2 \cdot 10^{-3}$	$4.6 \cdot 10^{-10}$
Diamante	$3 \cdot 10^{-6}$?
Sitall	$\leq 10^{-7}$?
Sabbia	?	$\sim 10^{-8}$
Mercurio	$1.8 \cdot 10^{-4}$	$4 \cdot 10^{-11}$
Rame	?	$7.2 \cdot 10^{-12}$

Osservazione 4.4.

Non è necessario battezzare $\frac{\partial p}{\partial T}\Big|_{V}$ in quanto per la proprietà ciclica (A.1)

$$\left.\frac{\partial p}{\partial T}\right|_{V} = -\left.\frac{\partial p}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{p} = \frac{\alpha}{\beta_{T}}.$$

Osservazione 4.5 (Relazione differenziale tra α e β_T).

Per il teorema di Schwarz si ha che

$$\frac{\partial^2 V}{\partial p \partial T} = \left. \frac{\partial \alpha}{\partial p} \right|_T = -\left. \frac{\partial \beta_T}{\partial T} \right|_p.$$

Osservazione 4.6 (Differenziale del volume).

Dalle definizioni date segue che

$$dV = \alpha V dT - \beta_T V dp.$$

Proposizione 4.7 (Differenziale della pressione).

Si ha che

$$dp = \frac{\alpha}{\beta_T} dT - \frac{1}{\beta_T V} dV.$$

Dimostrazione.

Osserviamo che

$$\left.\frac{\partial p}{\partial T}\right|_{V}\stackrel{(\text{A.1})}{=}-\frac{\partial p}{\partial V}\right|_{T}\frac{\partial V}{\partial T}\bigg|_{p}=\frac{\alpha}{\beta_{T}},$$

dunque ricaviamo

$$dp = \left. \frac{\partial p}{\partial T} \right|_{V} dT + \left. \frac{\partial p}{\partial V} \right|_{T} = \frac{\alpha}{\beta_T} dT - \frac{1}{\beta_T V} dV.$$

Corollario 4.8.

In una trasformazione isocora $\Delta p = \frac{\alpha}{\beta_T} \Delta T$.

Osservazione~4.9 (Differenziale logaritmico nel volume).

Spesso tornerà comodo ricordare il seguente sviluppo differenziale

$$d\log V = \frac{1}{V}dV = \alpha dT - \beta_T dp$$

Dimostrazione.

Segue calcolando:

$$\frac{1}{V}dV = \frac{1}{V} \left(\frac{\partial V}{\partial T} \Big|_{p} dT + \frac{\partial V}{\partial p} \Big|_{T} dp \right) = \alpha dT - \beta_{T} dp$$

4.2 Lavoro per sistema idrostatico

Immaginiamo di comprimere un sistema idrostatico come in figura

Se spingiamo molto lentamente possiamo con buona approssimazione supporre che il processo sia quasistatico, dunque F=pA. Segue che

$$\delta W = Fdx = pAdx$$

Se il sistema in questione è un gas ideale allora

$$\delta W = p(-dV) = -pdV$$

Il lavoro totale per passare da uno stato A ad uno stato B diventa

$$W = -\int_{A}^{B} p(V, T)dV,$$

ma p come cambia al variare di V? Dipende dal tipo di processo.

Questo mostra in particolare che il lavoro non è una funzione di stato.

4.3 Capacità termica

Definizione 4.10 (Capacità termica). Definiamo la **capacità termica** come²

$$C = \lim_{\delta T \to 0} \frac{\delta Q}{\delta T}.$$

L'unità di misura è [C] = J/K.

La capacità termica molare è data da c = C/n.

Il calore specifico è dato da C/m.

 $^{^2}$ Nota che NON è una derivata in quanto Q non è una funzione di stato, quindi in particolare non è una funzione di ${\cal T}$

Definizione 4.11 (Caloria).

Una **caloria** è la quantità di calore necessaria per far variare la temperatura di un grammo di acqua da 14.5° C a 15.5° C.

In Joule si ha che

$$1 \text{ cal} = 4.186 \text{ J}$$

Osservazione~4.12.

Il calore specifico dell'acqua per temperature ragionevoli è

$$c_{\text{acqua}} = 4.186 \frac{\text{J}}{^{\circ}\text{C g}} = 4186 \frac{\text{J}}{\text{K kg}}$$

Definizione 4.13 (Termometro e Termostato).

Un **termostato** è un oggetto ideale con capacità termica infinita³.

Un **termometro** è un oggetto ideale con capacità termica nulla⁴.

Osservazione 4.14.

Possiamo scrivere la capacità termica in termini di U, V, $p \in T$ come segue:

$$C = \frac{\delta Q}{\delta T} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) \frac{dV}{dT}$$

Dimostrazione.

Sviluppando dU troviamo

$$dU = \left. \frac{\partial U}{\partial T} \right|_{V} dT + \left. \frac{\partial U}{\partial V} \right|_{T} dV,$$

da cui

$$\delta Q = dU + p dV = \left. \frac{\partial U}{\partial T} \right|_V dT + \left(\left. \frac{\partial U}{\partial V} \right|_T + p \right) dV.$$

Ora possiamo "dividere" per dT e trovare la tesi.

Definizione 4.15 (Capacità termica a volume/pressione costante).

Definiamo la **capacità termica a volume** (risp. **pressione**) **costante** come le due seguenti quantità

$$\begin{split} C_{V} &= \frac{\delta Q}{\delta T} \bigg|_{V} = \left. \frac{\partial U}{\partial T} \right|_{V} \\ C_{p} &= \left. \frac{\delta Q}{\delta T} \right|_{p} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) \left. \frac{\partial V}{\partial T} \right|_{p} = \left. \frac{\partial U}{\partial T} \right|_{V} + \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) V \alpha \end{split}$$

Osservazione 4.16 (Disuguaglianza tra capacità termiche). Vale sempre $C_p > C_V$.

Osservazione 4.17.

In un gas generale

$$\left[\left. \frac{\partial U}{\partial V} \right|_T = \frac{C_p - C_V}{V\alpha} - p \right]$$

 $[\]overline{}^3$ intuitivamente è un sistema grande a sufficienza in modo che anche se viene aggiunto calore, la temperatura non cambia.

⁴intuitivamente è un sistema piccolo a sufficienza in modo da poter trascurare gli scambi di calore.

4.3.1 Processi politropici

Possiamo generalizzare i quattro tipi di processi principali come segue:

Definizione 4.18 (Processo politropico).

Un processo è **politropico** se la capacità termica è costante.

Proposizione 4.19 (Curve per processi politropici).

Considerando un processo politropico relativo ad un gas ideale e definiamo

$$\delta = \frac{C_p - C}{C_V - C},$$

allora seguendo questo processo si ha che $pV^{\delta} = cost..$

Dimostrazione.

Poiché $\delta Q = CdT = C_V dT + p dV = C_p dT - V dp$ ricaviamo che

$$-\frac{V}{C-C_p}dp=dT=\frac{p}{C-C_V}dV,$$

da cui

$$-\frac{V}{p}\frac{dp}{dV} = \frac{C_p - C}{C_V - C} = \delta.$$

Questa espressione restituisce una equazione differenziale

$$-\frac{dp}{p} = \delta \frac{dV}{V},$$

la cui soluzioni hanno la forma voluta.

Possiamo interpretare processi isocori, isobari, isotermi e adiabatici come processi politropici:

Processo	Isocoro	Isobaro	Isotermo	Adiabatico
δ	∞	0	1	$\gamma = \frac{c_p}{c_V}$

4.4 Potenziali termodinamici

4.4.1 Energia interna ed entropia

Osservazione 4.20 (Differenziali).

Osserviamo che

$$TdS = \delta Q|_{rev} = dU - \delta W|_{rev} = dU + pdV,$$

dunque

$$dU = TdS - pdV$$

Osservazione 4.21.

<u>NOTA BENE:</u> Questo sembra un altro modo di scrivere il primo principio $dU = \delta Q + \delta W$, ma se il processo non è reversibile allora non è detto che $pdV = \delta W$.

Proposizione 4.22 (Equazione di Helmholtz).

Vale la seguente identità

$$\boxed{ \left. \frac{\partial U}{\partial V} \right|_T = T \left. \frac{\partial p}{\partial T} \right|_V - p} = T^2 \left. \frac{\partial (p/T)}{\partial T} \right|_V }$$

Dimostrazione.

Sviluppiamo il differenziale dell'entropia

$$dS = \frac{dU}{T} + \frac{pdV}{T} = \frac{1}{T} \left(\frac{\partial U}{\partial T} \bigg|_{V} dT + \frac{\partial U}{\partial V} \bigg|_{T} dV \right) + \frac{p}{T} dV.$$

Poiché dS è un differenziale esatto, le derivate incrociate devono coincidere:

$$\begin{split} \frac{\partial}{\partial V} \left(\frac{1}{T} \frac{\partial U}{\partial T} \bigg|_{V} \right) &= \left. \frac{\partial}{\partial T} \left(\frac{1}{T} \left(\frac{\partial U}{\partial V} \bigg|_{T} + p \right) \right) \right|_{V} \\ \frac{1}{\mathcal{Z}} \frac{\partial^{2} \mathcal{W}}{\partial V \partial T} &= -\frac{1}{T^{2}} \left(\left. \frac{\partial U}{\partial V} \right|_{T} + p \right) + \frac{1}{\mathcal{Z}} \frac{\partial^{2} \mathcal{W}}{\partial V \partial T} + \frac{1}{T} \frac{\partial p}{\partial T} \bigg|_{V} \\ \frac{\partial U}{\partial V} \bigg|_{T} &= T \left. \frac{\partial p}{\partial T} \right|_{V} - p. \end{split}$$

Osservazione 4.23.

Osserviamo che

$$dU = \underbrace{\frac{\partial U}{\partial T}\Big|_{V}}_{=C_{V}} dT + \left. \frac{\partial U}{\partial V} \right|_{T} dV,$$

quindi la formula di Helmholtz misura "quanto un gas non è ideale" (ricordiamo (4.17))

Osservazione~4.24.

Se dU = 0 allora

$$dT = -\frac{\frac{\partial U}{\partial V}\big|_T}{\frac{\partial U}{\partial T}\big|_V}dV = \left.\frac{\partial T}{\partial V}\right|_U dV \stackrel{\text{(4.22)}}{=} \frac{1}{C_V} \left(p - T\frac{\partial p}{\partial T}\Big|_V\right) dV.$$

Questa identità può essere interpretata come test per Gas ideali, basta capire se $T \left. \frac{\partial T}{\partial p} \right|_V$ coincide con $\left. \frac{nRT}{V} \right|_V$.

Osservazione~4.25.

Valgono le seguenti identità

$$C_V = T \frac{\partial S}{\partial T} \Big|_V$$
, $C_p = T \frac{\partial S}{\partial T} \Big|_p$, $\gamma = \frac{\frac{\partial p}{\partial V} \Big|_S}{\frac{\partial p}{\partial V} \Big|_p} = \frac{\beta_T}{\beta_S}$

Dimostrazione.

ESERCIZIO

4.4.2 Entalpia

Definizione 4.26 (Entalpia).

L'**entalpia** in un gas è definita da⁵

$$H = U + pV$$
.

Osservazione 4.27.

L'entalpia è ottenuta da U come trasformazione di Legendre:

Consideriamo U(S,V) e cambiamo la coordinata V in $-p = \frac{\partial U}{\partial V}\big|_{S}$, che possiamo fare ponendo H(S,p) = U - (-pV) = U + pV.

Osservazione 4.28 (Differenziale dell'entalpia).

Il differenziale di H è dato da

$$dH = dU + pdV + Vdp = TdS + Vdp$$
 se reversibile $\delta Q + Vdp$

oppure da

$$dH = dU + p(\alpha V dT - \beta_T V dp) + V dp = dU + p\alpha V dT + V(1 - \beta_T p) dp.$$

Corollario 4.29.

Valgono le seguenti identità

$$\left. \frac{\partial H}{\partial S} \right|_p = T, \quad \left. \frac{\partial H}{\partial p} \right|_S = V, \quad \left. \frac{\partial H}{\partial T} \right|_p = C_p.$$

Dimostrazione.

Le prime due seguono immediatamente da dH = TdS + Vdp, mentre l'ultima segue sviluppando la definizione di C_p :

$$C_p = \left. \frac{\delta Q}{\delta T} \right|_p = \left. \frac{\partial U}{\partial T} \right|_p + p \left. \frac{\partial V}{\partial T} \right|_p = \left. \frac{\partial}{\partial T} (U + pV) \right|_p = \left. \frac{\partial H}{\partial T} \right|_p.$$

Definizione 4.30 (Coefficiente di Joule-Thomson).

Definiamo il coefficiente di Joule-Thomson come

$$\mu_{JT} = \left. \frac{\partial T}{\partial p} \right|_{H}.$$

Fatto 4.31.

Per ogni gas esiste una temperatura, detta **temperatura di inversione**, tale che sotto questa temperatura $\mu_{JT} > 0$

4.4.3 Energia libera di Helmholtz e Gibbs

Diamo un nome alle rimanenti trasformazioni di Legendre di U:

Definizione 4.32 (Energia libera di Helmholtz).

Dall'energia interna cambiamo S in $\frac{\partial U}{\partial S}\big|_V=T$, definendo F=U-TS, detta **energia** libera di Helmholtz. Osserviamo che

$$dF = -SdT - pdV.$$

 $^{^5}$ cio
è l'energia interna sommata al "lavoro necessario per portare il volume d
a0aVa pressione costante".

Osservazione 4.33.

L'energia libera di Helmholtz ci permette di ricavare il "massimo lavoro estraibile tra due stati".

Dimostrazione.

Per il secondo principio $Q/T \leq \Delta S$, dunque

$$W = \Delta U - Q > \Delta U - T\Delta S = \Delta F$$

cioè il lavoro che può fare il sistema (-W) è al massimo $-\Delta F$.

Osservazione 4.34.

Si ha che

$$\left. \frac{\partial F}{\partial T} \right|_{V} = -S, \quad \left. \frac{\partial F}{\partial V} \right|_{T} = -p.$$

Definizione 4.35 (Energia libera di Gibbs).

Dall'entalpia cambiamo S in $\frac{\partial H}{\partial S}\big|_p = T$, definendo G = H - TS = U + pdV - TS = F + pV, detta **energia libera di Gibbs**. Osserviamo che

$$dG = -SdT - Vdp$$
.

Osservazione 4.36.

Si ha che

$$\left. \frac{\partial G}{\partial p} \right|_T = V, \quad \left. \frac{\partial G}{\partial T} \right|_p = -S.$$

Proposizione 4.37 (Secondo principio per energia libera di Gibbs).

Se T e p sono costanti l'energia libera di Gibbs tende a diminuire.

Dimostrazione.

Per il secondo principio $TdS - \delta Q \ge 0$. Sviluppando δQ troviamo

$$TdS - dU - pdV \ge 0.$$

Se p è costante allora dH = dU + pdV, quindi in tal caso

$$TdS - dH \ge 0$$

Se ora T resta costante si ha che dG = dH - TdS, cioè

$$dG \leq 0$$
.

Segue dunque che se T e p sono costanti, G tende a diminuire.

Proposizione 4.38 (Relazioni di Maxwell).

Valgono anche le equazioni

$$\left.\frac{\partial T}{\partial V}\right|_{S} = -\left.\frac{\partial p}{\partial S}\right|_{V}, \quad \left.\frac{\partial T}{\partial p}\right|_{S} = \left.\frac{\partial V}{\partial S}\right|_{p}, \quad \left.\frac{\partial S}{\partial V}\right|_{T} = \left.\frac{\partial p}{\partial T}\right|_{V}, \quad \left.\frac{\partial S}{\partial p}\right|_{T} = -\left.\frac{\partial V}{\partial T}\right|_{p}.$$

Dimostrazione.

Derivano dall'eguagliare derivate seconde delle energie che abbiamo definito. In ordine le quattro equazioni sono uguali a

$$\frac{\partial^2 U}{\partial V \partial S}, \quad \frac{\partial^2 H}{\partial p \partial S}, \quad -\frac{\partial^2 F}{\partial V \partial T}, \quad \frac{\partial^2 G}{\partial p \partial T}.$$

Osservazione 4.39 (Jacobiano p, V - T, S).

Possiamo derivare le relazioni di Maxwell anche constatando che

$$\frac{\partial(T,S)}{\partial(p,V)} = 1.$$

Dimostrazione.

Mostriamo che l'identità vale e poi ricaviamo le relazioni da essa.

dPdV = dTdS Per il primo principio

$$dU = TdS - PdV \leadsto 0 = d^2U = dTdS - dPdV,$$

segue dunque per unicità della scrittura in base che lo Jacobiano in esame vale 1.

Relazioni | Ricaviamo la prima, le altre seguono in modo analogo

$$\left.\frac{\partial T}{\partial V}\right|_{S} = \frac{\partial (T,S)}{\partial (V,S)} = \left(\frac{\partial (T,S)}{\partial (p,V)}\right)^{-1} \frac{\partial (T,S)}{\partial (V,S)} = \frac{\partial (p,V)}{\partial (V,S)} = -\frac{\partial (p,V)}{\partial (S,V)} = -\frac{\partial p}{\partial S}\bigg|_{V}.$$

4.4.4 Riassunto

Riassumiamo il comportamento di queste quantità nella seguente tabella:

Energia	Definizione	Differenziale	Rel. Maxwell
Interna	$\Delta U = Q + W$	$+TdS - p \ dV$	$\left \frac{\partial T}{\partial V} \right _S = -\left. \frac{\partial p}{\partial S} \right _V$
Entalpia	H = U + pV	+TdS + Vdp	$\left \frac{\partial T}{\partial p} \right _S = \left \frac{\partial V}{\partial S} \right _p$
Helmholtz	F = U - TS	$-SdT - p \ dV$	$\left \frac{\partial S}{\partial V} \right _T = \left \frac{\partial p}{\partial T} \right _V$
Gibbs	G = U + pV - TS	-SdT + Vdp	$\left -\frac{\partial S}{\partial p} \right _T = \left. \frac{\partial V}{\partial T} \right _p$

Mettendo a confronto energia interna ed entalpia troviamo ulteriori similitudini:

Argomento	Energia interna	Entalpia
Espansione	libera di Joule	di Joule-Thompson
Quanto non ideale?	$\mu_J = \left. \frac{\partial T}{\partial V} \right _U$	$\mu_{JT} = \left. \frac{\partial T}{\partial p} \right _{H}$
Differenziale reversibile	$dU = \delta Q - pdV$	$dH = \delta Q + Vdp$
C. di Esp. Termica	$C_V = \left. \frac{\partial U}{\partial T} \right _V$	$C_p = \left. \frac{\partial H}{\partial T} \right _p$
Su isocora	$\Delta U = Q$	$\Delta H = Q$
Su adiabatica	$\Delta U = -\int pdV$	$\Delta H = \int V dp$
In gas ideale	$\Delta U = \int c_V dT$	$\Delta H = \int c_p dT$

Per ricordare le varie derivate parziali può essere utile il diagramma di Konis-Born

$$T \xrightarrow{F} V$$

$$G \bigvee_{H} \bigvee_{S} V$$

$$S$$

I due vertici di uno stesso lato contengono le variabili che appaiono nei differenziali mentre le diagonali indicano il valore della derivata dell'energia di un dato lato per la variabile del vertice. Il verso delle diagonali indica il segno di queste derivata, quindi per esempio per il lato destro ricaviamo

$$\left. \frac{\partial U}{\partial S} \right|_V = T, \quad \left. \frac{\partial U}{\partial V} \right|_S = -p.$$

Le due coppie di lati opposti corrispondono ognuna a due relazioni di Maxwell. Per capire i segni basta considerare i due triangoli che si formano scegliendo uno degli altri lati e completando con le due diagonali, per esempio la relazione

$$\left. \frac{\partial T}{\partial V} \right|_{S} = -\left. \frac{\partial p}{\partial S} \right|_{V}$$

si può leggere associando al membro di sinistra il triangolo TVS e a quello di destra il triangolo pSV.

4.5 Sistemi aperti di gas

Per sistemi di gas aperto

$$\Delta U = Q + W + \Delta U_{materia}$$

o in forma differenziale

$$dU = TdS - pdV + \mu dn$$

dove μ è il **potenziale chimico**.

Osservazione~4.40.

Valgono le identità differenziali

$$\left.\frac{\partial U}{\partial S}\right|_{V,n} = T, \qquad \left.\frac{\partial U}{\partial V}\right|_{S,n} = -p, \qquad \left.\frac{\partial U}{\partial n}\right|_{S,V} = \mu.$$

Capitolo 5

Gas e Gas ideali

5.1 Definizioni e legge dei gas perfetti

Definizione 5.1 (Mole).

Una mole di una sostanza corrisponde a $6.02 \cdot 10^{23}$ particelle di quella sostanza. La costante è detta numero di Avogadro e la indichiamo con N_a .

Definizione 5.2 (Densità).

Definiamo la densità come

$$\rho = \frac{m}{V}.$$

Osservazione 5.3.

Il differenziale della densità è

$$d\rho = -\frac{m}{V^2}dV.$$

Definizione 5.4 (Condizioni standard).

Un gas è in **condizioni standard** (STP) se è alla temperatura di 0° C e alla pressione di 1 atm = 101.3245 kPa.

Per i gas ideali valgono le seguenti leggi:

Fatto 5.5 (Legge di Boyle).

 $Se\ T\ \grave{e}\ costante$

$$V \propto \frac{1}{p}$$

Fatto 5.6 (Legge di Charles).

Se p è costante

$$V \propto (1 + \alpha T)$$

Fatto 5.7 (Legge di Gay-Lussac).

Se V è costante

$$p \propto T$$

Fatto 5.8 (Legge di Avogadro).

Se p e T sono fissate, tutti i gas occupano lo stesso volume se consistono della stessa quantità di materia, in particolare

$$V \propto n$$
.

Una mole di gas in condizioni standard occupa un volume di 22.4ℓ (litri).

Combinando le leggi appena citate arriviamo alla legge dei Gas perfetti

$$pV = nRT$$

dove p è la pressione, V è il volume, n è il numero di moli, T è la temperatura e R è la **costante fondamentale dei gas** e vale $8.314 \frac{\text{J}}{\text{K mol}}$.

Definizione 5.9 (Costante di Boltzmann).

Definiamo la **costante di Boltzmann** k_b in modo tale che

$$R = N_a k_b$$
.

5.2 Coefficiente di espansione volumetrica e compressibilità isoterma

Proposizione 5.10 (α e β_T per gas ideali).

Se il sistema in esame è un gas ideale valgono le seguenti identità:

$$\alpha = \frac{1}{T}, \qquad \beta_T = \frac{1}{p}.$$

Dimostrazione.

Segue calcolando:

$$\begin{split} \alpha = & \frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial T} \right|_p = \frac{nR}{pV} = \frac{1}{T}, \\ \beta_T = & -\frac{1}{V} \left. \frac{\partial (nRT/p)}{\partial p} \right|_T = \frac{1}{V} nRT \frac{1}{p^2} = \frac{1}{p}. \end{split}$$

5.3 Capacità termica

Definizione 5.11 (Coefficiente di Joule). Definiamo il **coefficiente di Joule** come

$$\mu_J = \left. \frac{\partial T}{\partial V} \right|_U$$

Fatto 5.12 (In gas ideale l'energia interna dipende solo dalla temperatura). In un gas ideale U dipende solo da T.

Esperimento: Espansione libera adiabatica di Joule.

Consideriamo un contenitore adiabatico separato internamente da una parete adiabatica. In uno dei due volumi si trova un gas ideale, il secondo è vuoto.

Improvvisamente eliminiamo la parete interna e lasciamo che il gas si espanda¹.

Chiaramente Q=W=0 in quanto il vuoto non subisce/effettua lavoro e non scambia calore, dunque $\Delta U=0$.

Segue che $\mu_J = \frac{\partial T}{\partial V}\big|_U = \frac{dT}{dV}$ e Joule ha misurato che in queste circostanze la seconda è nulla, dunque

$$0 = \left. \frac{\partial T}{\partial V} \right|_{U} \stackrel{\text{(A.1)}}{=} - \left(\left. \frac{\partial V}{\partial U} \right|_{T} \right)^{-1} \left(\left. \frac{\partial U}{\partial T} \right|_{V} \right)^{-1} = - \left. \frac{\partial U}{\partial V} \right|_{T} \frac{1}{C_{V}},$$

in particolare $\left. \frac{\partial U}{\partial V} \right|_T = 0.$

Poiché in un gas ideale p è determinata da V e T, U = U(V,T). Per quanto appena detto U non dipende da V, quindi dipende solo da T.

Corollario 5.13.

In un gas ideale, a prescindere dal tipo di processo,

$$dU = C_V dT$$

Dimostrazione.

Ricordiamo che

$$C_V = \left. \frac{\partial U}{\partial T} \right|_V,$$

ma poiché U non dipende da V possiamo scrivere

$$C_V = \frac{dU}{dT},$$

che è la tesi. \Box

Proposizione 5.14 (Relazione di Mayer).

Per gas ideali si ha che $c_p - c_V = R$, o equivalentemente $C_p - C_V = nR$.

Dimostrazione.

Ricordiamo (5.10) che per gas ideali $\alpha = T^{-1}$. Poiché U dipende solo da T si ha che

$$0 = \frac{\partial U}{\partial V} \bigg|_{T} \stackrel{\text{(4.17)}}{=} \frac{C_p - C_V}{V\alpha} - p,$$

da cui

$$C_p - C_V = pV\alpha = \frac{nRT}{T} = nR.$$

Notazione 5.15.

Denotiamo il rapporto $\frac{C_p}{C_V} = \frac{c_p}{c_V}$ con γ .

Fatto 5.16 (Calore specifico a volume costante in funzione dei gradi di libertà). In un gas ideale

$$C_V = \frac{\nu}{2} nR$$

dove ν è il numero di gradi di libertà.

 $^{^{1}}$ notiamo che questo NON è una processo quasistatico.

Osservazione 5.17.

Per un gas ideale monoatomico $\nu=3,$ mentre per un gas biatomico $\nu=5.$ Segue che

$$c_V^{mono} = \frac{3}{2}R \approx 12.47 \frac{\mathrm{J}}{\mathrm{K} \ \mathrm{mol}}, \qquad c_V^{bi} = \frac{5}{2}R \approx 20.74 \frac{\mathrm{J}}{\mathrm{K} \ \mathrm{mol}}.$$

Da queste scritture segue anche che

$$c_p^{mono} = \frac{5}{2}R, \quad \gamma^{mono} = \frac{5}{3}, \qquad \quad c_p^{bi} = \frac{7}{2}R, \quad \gamma^{bi} = \frac{7}{5}.$$

Osservazione 5.18 (L'aria è un gas ideale biatomico).

L'aria è composta principalmente da particelle biatomiche $(O_2$ e $N_2)$.

Proposizione 5.19 (Calore infinitesimale con capacità).

Per gas ideali valgono le seguenti equazioni

1.
$$\delta Q = C_V dT + p dV$$

2.
$$\delta Q = C_p dT - V dp$$
.

Dimostrazione.

Mostriamo i due punti:

1 Ricordiamo la relazione

$$\delta Q = \underbrace{\frac{\partial U}{\partial T}\Big|_{V}}_{=G_{V}} dT + \left(\frac{\partial U}{\partial V}\Big|_{T} + p\right) dV,$$

da cui, usando il fatto che $\frac{\partial U}{\partial V}\big|_T=0$, troviamo che $\delta Q=C_VdT+pdV$.

2 Osserviamo che il differenziale di pV = nRT è

$$nRdT = pdV + Vdp$$

da cui sfruttando la relazione precedente

$$\delta Q = C_V dT + p dV = (C_V + nR)dT - V dp \stackrel{(5.14)}{=} C_p dT - V dp.$$

 $Osservazione\ 5.20.$

Osservando la prima equazione ricaviamo nuovamente che δQ non è un differenziale, infatti se lo fosse avremmo il seguente assurdo:

$$0 = \left. \frac{\partial C_V}{\partial V} \right|_T = \left. \frac{\partial p}{\partial T} \right|_V = \frac{nR}{V} \neq 0.$$

5.4 Energia interna, lavoro e calore

In questa sezione calcoliamo lavoro, calore e variazione di energia interna per i tipi principali di processi quasistatici.

Notiamo che $\Delta U = nc_V \Delta T$ in ogni circostanza in quanto U non dipende da V.

5.4.1 Isobara

Proposizione 5.21 (Energie per isobara).

Per una trasformazione isobara valgono le seguenti identità:

$$W = -nR\Delta T$$
, $Q = nc_p\Delta T$, $\Delta U = nc_V\Delta T$.

Dimostrazione.

Calcoliamo:

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{isobara}}{=} -p\Delta V \stackrel{\text{gas ideale}}{=} -nR\Delta T$$

$$Q \stackrel{\text{isobara}}{=} \int_{T_i}^{T_f} nc_p dT = nc_p\Delta T$$

$$\Delta U = Q + W = n(c_p - R)\Delta T = nc_V\Delta T.$$

5.4.2 Isocora

Proposizione 5.22 (Energie per isocora).

Per una trasformazione isocora valgono le seguenti identità:

$$W = 0$$
, $Q = nc_v \Delta T$, $\Delta U = nc_V \Delta T$.

Dimostrazione.

Calcoliamo:

$$W = -\int_{V_i}^{V_f} p dV \stackrel{V_i = V_f}{=} 0$$

$$Q \stackrel{\text{isocora}}{=} \int_{T_i}^{T_f} n c_V dT = n c_V \Delta T$$

$$\Delta U = Q + W = n c_V \Delta T.$$

5.4.3 Isoterma

Proposizione 5.23 (Energie per isoterma).

Per una trasformazione isoterma valgono le seguenti identità:

$$W = -nRT\log\left(\frac{V_f}{V_i}\right), \quad Q = nRT\log\left(\frac{V_f}{V_i}\right), \quad \Delta U = 0.$$

Dimostrazione.

Poiché stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T \stackrel{\text{isoterma}}{=} 0.$$

Per il primo principio si ha Q=-W, quindi per concludere basta calcolare il lavoro.

$$W = -\int_{V_i}^{V_f} p dV \stackrel{\text{gas ideale}}{=} -nRT \int_{V_i}^{V_f} \frac{1}{V} dV = -nRT \log \left(\frac{V_f}{V_i}\right).$$

5.4.4 Adiabatica

Proposizione 5.24 (Equazione di stato per adiabatica).

Poniamo $\gamma = c_p/c_V$. Si ha che pV^{γ} è costante seguendo un processo adiabatico.

Dimostrazione.

Poiché il sistema in esame è un gas ideale valgono le seguenti uguaglianze

$$0 \stackrel{\text{adiabatica}}{=} \delta Q = dU - \delta W \stackrel{\text{gas ideale}}{=} nc_V dT + pdV = \frac{nc_V}{nR} d(pV) + pdV.$$

Segue che

$$-\frac{c_V V}{\cancel{K}} dp = \left(\frac{pc_V + pR}{\cancel{K}}\right) dV \stackrel{\text{(5.14)}}{=} \frac{pc_p}{\cancel{K}} dV,$$

da cui

$$-\frac{dp}{p} = \gamma \frac{dV}{V}.$$

Integrando troviamo

$$-\log p + Const. = \gamma \log V \iff \log pV^{\gamma} = Const. \iff pV^{\gamma} = e^{Const.}$$

 \Box

che è quello che volevamo mostrare.

Osservazione 5.25.

Si ha che

$$c_v = \frac{R}{\gamma - 1}.$$

Dimostrazione.

Per definizione di γ

$$c_v = \frac{c_p}{\gamma} \stackrel{\text{(5.14)}}{=} \frac{R + c_v}{\gamma},$$

dunque

$$\gamma c_v = c_v + R$$

e la tesi segue.

Proposizione 5.26 (Energie per adiabatica).

Per una trasformazione adiabatica valgono le seguenti identità:

$$W = \frac{p_f V_f - p_i V_i}{\gamma - 1}, \quad Q = 0, \quad \Delta U = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

Dimostrazione.

Poiché il processo è adiabatico, Q=0. Segue per il primo principio che $\Delta U=W.$ Dato che stiamo considerando un gas ideale

$$\Delta U = nc_V \Delta T = n \frac{R}{\gamma - 1} \Delta T = \frac{1}{\gamma - 1} \Delta (pV) = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

 $Osservazione\ 5.27.$

Potevamo ricavare energia e lavoro anche sfruttando la relazione

$$pV^{\gamma} = p_i V_i^{\gamma} = p_f V_f^{\gamma},$$

ma avendola ricavata come sopra sappiamo che l'espressione è valida anche per processi adiabatici NON quasistatici.

5.5 Ciclo di Carnot per Gas ideali

Proposizione 5.28 (Efficienza del ciclo di Carnot).

L'efficienza di un ciclo di Carnot per gas ideali tra le temperature T_H e T_L è data da

$$\eta = 1 - \frac{T_L}{T_H}.$$

Dimostrazione.

Calcoliamo che quantità coinvolte:

$$\begin{split} |Q_H| &= Q_{AB} \overset{\text{isoterma.}}{=} -W_{AB} = \int_A^B p dV = nRT_H \log \left(\frac{V_B}{V_A}\right) > 0 \\ |Q_L| &= -Q_{CD} \overset{\text{isoterma.}}{=} W_{CD} = -\int_C^D p dV = nRT_L \log \left(\frac{V_C}{V_D}\right), \\ \eta &= 1 - \frac{|Q_L|}{|Q_H|} = 1 - \frac{T_L \log(V_C/V_D)}{T_H \log(V_B/V_A)} = 1 - \frac{T_L}{T_H}, \end{split}$$

dove nell'ultimo conto abbiamo usato le equazioni per le adiabatiche:

$$\left(\frac{V_B}{V_C}\right)^{\gamma-1} = \frac{T_L}{T_H}, \quad \left(\frac{V_D}{V_A}\right)^{\gamma-1} = \frac{T_H}{T_L} \implies \frac{V_B}{V_A} = \frac{V_C}{V_D}.$$

Osservazione 5.29 (Efficienza massima).

Poiché il ciclo di Carnot è reversibile, per il teorema di Carnot (2.10) il valore

$$1 - \frac{T_L}{T_H}$$

è la massima efficienza possibile per un qualsiasi ciclo reversibile che agisce tra due sorgenti alle tempersture indicate.

Osservazione 5.30 (Coefficiente di prestazione massimo per gas ideale). Per quanto detto il coefficiente di prestazione massimo è

$$\frac{1 - \eta_{Carnot}}{\eta_{Carnot}} = \frac{T_L}{T_H - T_L}.$$

Se $T_L=4$ °C e $T_H=20$ °C (caso tipico del frigorifero casalingo) allora $COP_{max}\approx 17.3$. Tipicamente $COP\approx 4$.

Osservazione 5.31 (Massima efficienza di una pompa di calore realizzata con gas ideale).

Per una pompa di calore, la massima efficienza è data da

$$\frac{T_H}{T_H - T_L}.$$

5.6 Potenziali termodinamici

Il calore scambiato per trasformazioni reversibili nei gas ideali si può sviluppare in

$$\delta Q|_{rev} = dU + pdV = C_V dT + \frac{nRT}{V} dV,$$

da cui

$$dS = \frac{\delta Q}{T} = \frac{C_V}{T}dT + \frac{nR}{V}dV.$$

Proposizione 5.32 (Entropia per gas ideali).

Valgono le seguenti espressioni:

$$\begin{split} S_B - S_A = & C_V \log \left(\frac{T_B}{T_A} \right) + nR \log \left(\frac{V_B}{V_A} \right) \\ = & C_V \log \left(\frac{p_B V_B^{\gamma}}{p_A V_A^{\gamma}} \right) \\ = & nc_p \log \left(\frac{T_B}{T_A} \right) - nR \log \left(\frac{p_B}{p_A} \right) \end{split}$$

Dimostrazione.

Ricaviamo le tre formulazioni:

- Integrando $dS = \frac{C_V}{T} dT + \frac{nR}{V} dV$ troviamo la prima espressione.
- Sfruttando la proporzionalità $\frac{T_B}{T_A} = \frac{p_B V_B}{p_A V_A}$ possiamo rielaborare la prima forma come segue

$$\begin{split} S_B - S_A = & C_V \log \left(\frac{p_B}{p_A} \right) + (C_V + nR) \log \left(\frac{V_B}{V_A} \right) = \\ = & C_V \log \left(\frac{p_B}{p_A} \right) + C_p \log \left(\frac{V_B}{V_A} \right) = \\ = & C_V \left(\log \left(\frac{p_B}{p_A} \right) + \log \left(\left(\frac{V_B}{V_A} \right)^{\gamma} \right) \right) = \\ = & C_V \log \left(\frac{p_B V_B^{\gamma}}{p_A V_A^{\gamma}} \right), \end{split}$$

ricavando la seconda espressione.

• Ricordiamo che $\delta Q = nc_p dT - V dp$. Dividendo per T e poi integrando² ricaviamo

$$S_B - S_A = nc_p \log \left(\frac{T_B}{T_A}\right) - nR \log \left(\frac{p_B}{p_A}\right).$$

 $Osservazione\ 5.33.$

Se ci spostiamo lungo una adiabatica reversibile, dalla seconda formula ricaviamo $\Delta S=0$ come ci aspettiamo.

Proposizione 5.34 (Entropia in gas ideali per processi standard). *Valgono le seguenti espressioni:*

²stiamo usando che -V/T = -nR/p.

$$\boxed{Isocora} \ \Delta S = nc_V \log \left(\frac{T_B}{T_A} \right) \leadsto dS = nc_V \frac{dT}{T},$$

$$\boxed{\textit{Isobara}} \ \Delta S = nc_p \log \left(\frac{T_B}{T_A} \right) \leadsto dS = nc_p \frac{dT}{T}.$$

$$\boxed{Isoterma} \ \Delta S = nR \log \left(\frac{V_B}{V_A} \right) = -nR \log \left(\frac{p_B}{p_A} \right).$$

Dimostrazione.

Basta applicare le espressioni trovate (5.32).

 $Osservazione\ 5.35.$

Si ha che

$$dH = dU + pdV + Vdp = C_V dT + d(pV) = n(c_V + R)dT = nc_p dT.$$

 $Osservazione\ 5.36.$

Poiché nei gas ideali U dipende solo da T e pV=nRT, si ha che anche H dipende solo da T per gas ideali. Segue che possiamo testare se un gas è ideale verificando se $\mu_{JT}=0$ o meno.

5.7 Equazione di stato dei gas reali

Cosa può contribuire a negare l'approssimazione di gas ideale?

• Interazione attrattiva tra particelle: Una particella vicino al bordo è attratta dalle particelle più interne, dunque la pressione interna al gas è più grande di quella misurata

$$p_{real} = p + a \frac{n^2}{V^2}.$$

• Volume occupato dalle particelle: Le particelle in genere occupano un volume

$$V_{real} = V - bn$$

Fatto 5.37 (Legge di Van der Waals).

In prima approssimazione l'equazione di Van del Waals

$$\left(p + a\frac{n^2}{V^2}\right)(V - bn) = nRT.$$

Osservazione 5.38.

Di solito a si aggira tra 10^{-2} e $10 \frac{\ell^2 \text{atm}}{\text{mol}^2}$, mentre b si aggira tra 10^{-2} e $10^{-1} \ell/\text{mol}$.

Sotto una temperatura critica, le isoterme secondo l'equazione di Van der Waals diventano cubiche con un picco e una valle, in realtà quello che succederebbe nella realtà è che raggiungiamo le condizioni per transizioni di fase.

Capitolo 6

Transizione di fase

Generalmente transizioni di stato avvengono per p e T costanti, quindi la forma di energia più utile da considerare è l'energia libera di Gibbs

$$\Delta G = \Delta H - T \Delta S.$$

Poiché dG = -SdT - Vdp, si ha che se p e T restano costanti allora $\Delta G = 0$, cioè

$$T\Delta S = \Delta H$$
.

6.1 Transizione tra due fasi

Chiamiamo le due fasi "liquido" e "vapore".

Notazione 6.1.

Siano n_L le moli di liquido e n_V le moli di vapore.

Osservazione 6.2 (Energia libera di Gibbs molare). Si ha che¹

$$G = G_L(p_L, T_L, n_L) + G_V(p_V, T_V, n_V) = n_L g_L(p_L, T_L) + n_V g_V(p_V, T_V)$$

dove g è l'energia libera di Gibbs molare.

Osservazione 6.3 (Proporzione tra le fasi).

Per conservazione della materia $n_L + n_V = n$ è costante. Chiamiamo α la proporzione di liquido, cioè $n_L = \alpha n$ e $n_V = (1 - \alpha)n$.

Possiamo riscrivere l'energia libera di Gibbs in termini di n ed α :

$$G = n\alpha g_L(p_L, T_L) + n(1 - \alpha)g_V(p_V, T_V).$$

Poiché consideriamo tutto in regime di quasi-equilibrio, $T_L=T_V$ e $p_L=p_V^2$. Abbiamo dunque ricavato che G dipende solo da $p,\ T$ e α .

Proposizione 6.4 (Condizione di equilibrio tra due fasi).

All'equilibrio si ha che

$$g_L = g_V$$
.

¹nell'ultima uguaglianza abbiamo usato il fatto che l'energia è una grandezza estensiva.

²le pressioni sono le stesse perché c'è equilibrio meccanico.

Dimostrazione.

Per peTcostanti sappiamo (4.37) che $\Delta G \leq 0$, quindi siamo all'equilibrio solo se $G(\alpha)$ è minima, cioè³

$$0 = \frac{\partial G}{\partial \alpha} = ng_L + 0 - ng_V \implies g_L = g_V.$$

6.1.1 Contenitore chiuso

Modelliamo una contenitore chiuso (U = cost, V = cost).

Notazione 6.5 (Volume, energia interna ed entropia molari). Scriviamo

$$V = n\alpha v_L + n(1 - \alpha)v_V$$

$$U = n\alpha u_L + n(1 - \alpha)u_V$$

$$S = n\alpha s_L + n(1 - \alpha)s_V$$

Proposizione 6.6 (Condizione di equilibrio tra due fasi).

All'equilibrio si ha che

$$g_L = g_V$$
.

Dimostrazione.

All'equilibrio 0 = dV = dU = dS = dn, quindi (ricordando che $p \in T$ sono costanti)

$$\begin{split} 0 = &dU + pdV - TdS = \\ = &d(n\alpha u_L + n(1-\alpha)u_V) + pd(n\alpha v_L + n(1-\alpha)v_V) - Td(n\alpha s_L + n(1-\alpha)s_V) = \\ = &n\alpha(du_L + pdv_L - Tds_L) + n(1-\alpha)(du_V + pdv_V - Tds_V) + \\ &+ nd\alpha(u_L + pv_L - Ts_L) - nd\alpha(u_V + pv_V - Ts_V). \end{split}$$

All'equilibrio si ha che $du_L + pdv_L - Tds_L = 0$ e similmente per il vapore, dunque

$$u_L + pv_L - Ts_L = u_V + pv_V - Ts_V.$$

Evidenziando le moli in questa equazione si ha

$$\underbrace{\frac{U_L}{n_L} + p \frac{V_L}{n_L} - T \frac{S_L}{n_L}}_{=\frac{G_L}{n_L}} = \underbrace{\frac{U_V}{n_V} + p \frac{V_V}{n_V} - T \frac{S_V}{n_V}}_{=\frac{G_V}{n_V}},$$

ovvero $g_L = g_V$ come volevasi dimostrare.

6.2 Caso generale

Consideriamo N componenti⁴ e F fasi. Sia $n_k^{(i)}$ il numero di moli della componente i nella fase k.

Osserviamo che

$$G = \sum_{k \in \{1, \cdots, F\}} G_k(T, p, (n_k^{(i)})_{i \in \{1, \cdots, N\}}),$$

cioè a priori G dipende da NF + 2 variabili.

 $^{^3 \}mathrm{Per}~p$ eTcostantiG dipende solo da $\alpha.$

 $^{^4}$ moralmente N è il numero di sostanze diverse

Proposizione 6.7 (Regola delle fasi di Gibbs).

Il numero di gradi di libertà è

$$\nu = 2 + N - F$$

Questa è la regola delle fasi (di Gibbs).

Dimostrazione.

Consideriamo due fasi (a e b) e la transizione dalla fase a alla fase b:

$$\begin{cases} n_a^{(i)} \to n_a^{(i)} - \delta n^{(i)} \\ n_b^{(i)} \to n_b^{(i)} + \delta n^{(i)} \end{cases}$$

Si ha che all'equilibrio

$$0 = dG = dG_a + dG_b = \frac{\partial G_a}{\partial n_a^{(i)}} (-\delta n^{(i)}) + \frac{\partial G_a}{\partial n_b^{(i)}} (\delta n^{(i)}),$$

ma l'energia libera di Gibbs è una grandezza estensiva, quindi vale la dipendenza lineare

$$\frac{\partial G_k}{\partial n_k^{(i)}} = \frac{G_k}{n_k^{(i)}},$$

segue dunque che

$$g_a^{(i)} = \frac{G_a}{n_a^{(i)}} = \frac{G_b}{n_b^{(i)}} = g_b^{(i)}.$$

Queste sono F-1 condizioni indipendenti per ogni componente.

Osserviamo inoltre che per ogni fase possiamo eliminare un grado di libertà considerando i rapporti tra le moli di componenti in quella fase.

Tirando le somme si ha che i gradi di libertà sono

$$NF + 2 - (N(F - 1) + F) = 2 + N - F.$$

Esempio 6.8.

Studiamo i valori di N, F e ν per alcuni sistemi

- Fluido omogeneo: $N=1,\,F=1,\,\nu=2$
- Fluido omogeneo dato da due gas: $N=2,\,F=1,\,\nu=3$
- Acqua e vapore: $N=1,\,F=2,\,\nu=1$
- Acqua, vapore e ghiaccio: $N=1, F=3, \nu=0.$

Definizione 6.9 (Punto triplo).

Considerando come sistema termodinamico l'acqua, esiste una precisa combinazione di temperatura e pressione tale per cui essa risulta in trasizione tra gli stati solido liquido e gassoso simultaneamente.

Questo stato si chiama **punto triplo** e i valori in questione sono una temperatura di 0.01°C e una pressione di 0.006 atm.

6.2.1 Grafici delle transizioni di fase

Inseriamo qualche grafico che mostra come e quando le transizioni di stato avvengono:

6.2.2 Definizione di temperatura tramite gas

L'esistenza del punto triplo ci permette di definire la temperatura in termini di una grandezza che possiamo misurare direttamente.

A bassa pressione i gas tendono al regime di Gas ideale.

Se fissiamo il volume e le moli di gas possiamo definire θ in modo tale che $p = p_0(1 + \alpha\theta)$, cioè poniamo

$$\theta = \frac{1}{\alpha} \frac{p - p_0}{p_0}.$$

Se imponiamo che l'acqua congeli per $\theta=0$ e evapori per $\theta=100$ allora ricaviamo $1/\alpha=273.15$. Notiamo inoltre⁵

$$\frac{p_2}{p_1} = \frac{\alpha^{-1} + \theta_2}{\alpha^{-1} + \theta_1} = \frac{\theta_2'}{\theta_1'}.$$

Possiamo dunque definire la temperatura (in Kelvin) come

$$T = \lim_{p^{(PT)} \to 0} 273.16 \frac{p}{p^{(PT)}}$$

 $^{^5}$ l'addizione di α^{-1} corrisponde alla traslazione che trasforma gradi Celsius in gradi Kelvin.

dove $p^{(PT)}$ è la pressione del gas nel termometro quando questo sistema è in equilibrio con il sistema di punto triplo con l'acqua. Il limite corrisponde a prendere gas sempre più rarefatti, cioè a lavorare nel limite dei gas perfetti dove vale la proporzionalità sopra.

Sfruttando questa definizione possiamo costruire un termometro a gas come in figura

Quando il gas è alla temperatura che vogliamo misurare, misuriamo la differenza di altezza tra il livello a contatto con il gas e il livello di controllo posto a pressione atmosferica. Questa differenza è proporzionale alla differenza di pressione e questo ci permette di ricavare la temperatura se la fissiamo per quando è nel punto critico.

6.3 Calore latente

Consideriamo nuovamente il caso di due fasi (liquido e vapore). Osserviamo che fissata una temperatura, la pressione alla quale avviene la transizione di fase ne è una funzione. Segue che anche V è una funzione di T.

Osservazione~6.10.

Osserviamo che $dn_L = -dn_V$, quindi

$$\left. \frac{\partial U}{\partial V} \right|_T = \frac{u_V - u_L}{v_V - v_L}.$$

Dimostrazione.

Segue ricordando che $V=n_Lv_L(T)+n_Vv_V(T)$ (e similmente per U) e che per le transizioni di fase T è costante.

Per il primo principio

$$\delta Q = dU + pdV = dn_V(u_L - u_L + p(v_V - v_L)),$$

questo motiva la seguente

Definizione 6.11 (Calore latente).

Definiamo il calore latente (molare) di vaporizzazione come

$$\lambda = \frac{\delta Q}{dn_V} = u_V - u_L + p(v_V - v_L).$$

Proposizione 6.12 (Equazione di Clapeyron).

 $Sulla\ transizione\ di\ fase$

$$\frac{dp}{dT} = \frac{\lambda}{T(v_V - v_L)}$$

Dimostrazione.

Sviluppiamo TdS:

$$TdS = \underbrace{T\left.\frac{\partial S}{\partial T}\right|_{V}}_{=nc_{V}} dT + T\left.\frac{\partial S}{\partial V}\right|_{T} dV.$$

Applicando la relazione di Maxwell (4.38) data da $\left.\frac{\partial S}{\partial V}\right|_T=\left.\frac{\partial p}{\partial T}\right|_V$ troviamo

$$TdS = nc_V dT + T \frac{\partial p}{\partial T} \bigg|_V dV.$$

Combinando questo con dU = TdS - pdV ricaviamo

$$dU = nc_V dT + \left(T \left. \frac{\partial p}{\partial T} \right|_V - p \right) dV,$$

cioè

$$\left. \frac{\partial U}{\partial V} \right|_T = T \left. \frac{\partial p}{\partial T} \right|_V - p.$$

Ricordiamo ora che $\left.\frac{\partial U}{\partial V}\right|_T = \frac{u_V - u_L}{v_V - v_L},$ da cui

$$\frac{\lambda}{v_V - v_L} = T \frac{\partial p}{\partial T} \bigg|_V,$$

che è la tesi se osserviamo che $\left.\frac{\partial p}{\partial T}\right|_{V}=\frac{dp}{dT}.$

Osservazione6.13 (Equazione di Clausius-Clapeyron). Se $v_V\gg v_L$ allora per gas ideali

$$\frac{dp}{dT} = \frac{\lambda}{RT^2} p \leadsto p \propto e^{-\lambda/RT}.$$

Capitolo 7

Teoria cinetica dei gas

7.1 Modello dei gas ideali

Nella realtà i gas sono composti da tante particelle. Imponiamo alcune condizioni che ci aspettiamo dai gas:

Isotropo Le velocità delle particelle sono equamente distribuite in ogni direzione.

Omogeneo Le particelle sono equamente distribuite.

Sia dn(v) il numero di particelle con una data velocità.

Osservazione 7.1.

Se N è il numero totale di particelle

$$N = \int dn(v) = \int_0^\infty \frac{dn}{dv} dv$$

dove $\frac{dn}{dv}$ è in un qualche modo la "densità delle particelle di una data velocità".

Definizione 7.2 (Angolo solido).

Definiamo l'angolo solido relativo ad un isieme di vettori $\{\vec{u}\}$ come l'area di S^2 occupata da $\left\{\frac{\vec{u}}{|\vec{u}|}\right\}$. Il differenziale dell'angolo solido è

$$d\Omega = \sin\theta d\theta d\phi$$

Definizione 7.3 (Velocità quadratica media).

Definiamo la velocità quadratica media delle particelle come

$$\langle v^2 \rangle = \int_0^\infty v^2 dn(v)$$

Definizione 7.4 (Energia cinetica media).

Definiamo l'energia cinetica media come

$$\langle E_K \rangle = \frac{1}{2} m N \langle v^2 \rangle.$$

Proposizione 7.5 (Calcolo della pressione).

Sia m la massa di una particella, N il numero di particelle e V il volume che occupano. La pressione collettiva che queste particelle esercitano è

$$p = \frac{1}{3} m \frac{N}{V} \left\langle v^2 \right\rangle.$$

Dimostrazione.

Calcoliamo qualche differenziale utile

$dn(\vec{v})$ Sia \vec{v} una qualche velocità.

$$dn(\vec{v}) \stackrel{\text{isotropia}}{=} dn(v) \frac{d\Omega}{4\pi},$$

dove $d\Omega$ è il differenziale dell'angolo solido occupato dalle possibili velocità.

dn Per omogeneità il numero di particelle in un volumetto è

$$dn = \frac{N}{V}dV = \frac{N}{V}dAvdt\cos\theta.$$

Assumendo impatti elatici, l'impulso trasferito alla parete dall'impatto di una particella è $|\Delta \vec{p}| = 2mv\cos\theta$.

Appurate queste equazioni possiamo scrivere il differenziale della pressione come segue:

$$\begin{split} d^2p = & \frac{dF}{dA} = \frac{|d\vec{p}|/dt}{dA} = \frac{1}{dA} \frac{1}{dt} \left| d\vec{p} \right|_{singola} dndn(\vec{v}) \\ = & \frac{1}{dA} \frac{1}{dt} 2mv \cos\theta - \frac{N}{V} dAvdt \cos\theta - dn(v) \frac{d\Omega}{4\pi} = \\ = & N \frac{2mv^2 \cos^2\theta}{V} dn(v) \frac{d\Omega}{4\pi}. \end{split}$$

Facendo la media su tutte le direzioni troviamo il vero differenziale della pressione:

$$dp = \int_{\Omega} d^2p = \frac{mv^2}{2\pi} \frac{N}{V} dn(v) \int_0^{2\pi} d\phi \int_0^{\pi/2} \cos^2\theta \sin\theta d\theta =$$
$$= \frac{1}{3} mv^2 \frac{N}{V} dn(v).$$

Integrando ora sui possibili moduli delle velocità troviamo la pressione:

$$p = \frac{1}{3} m \frac{N}{V} \left\langle v^2 \right\rangle \int_0^\infty v^2 dn(v) = \frac{1}{3} m \frac{N}{V} \left\langle v^2 \right\rangle.$$

Proposizione 7.6.

Per gas ideali vale la relazione

$$\langle E_K \rangle = \frac{3}{2} k_b T$$

Dimostrazione.

Osserviamo che

$$pV = \frac{1}{3}mN\left\langle v^2\right\rangle,$$

dunque

$$nRT = pV = \frac{1}{3}mN \left\langle v^2 \right\rangle = \frac{2}{3} \left\langle E_K \right\rangle,$$

cioè

$$T = \frac{2}{3} \frac{\langle E_K \rangle}{nR} = \frac{2}{3} N_a \frac{\langle E_K \rangle}{NR} = \frac{2}{3} \frac{\langle E_K \rangle}{Nk_b}$$

In conclusione

$$\langle E_K \rangle = \frac{3}{2} k_b T.$$

Consideriamo ora l'energia interna di questo sistema¹:

$$U = \langle E_K \rangle = \frac{3}{2}nRT = C_V T.$$

In generale $U=E_K+E_P$ per una qualche energia potenziale E_P . Per piccoli spostamenti $E_P=(E_P)_0+\frac{1}{2}kx^2$. Nel caso biatomico per esempio $E_P=\frac{1}{2}I\omega^2$.

Solido 6 gradi di libertà: 3 potenziali (forze elastiche) e 3 cinetiche.

Gas perf. mono.

3 gradi di libertà, tutti cinetici.

Gas perf. bi.

5 gradi di libertà: 3 cinetici e 2 dalla rotazione ³.

Fatto 7.7 (Principio di equipartizione).

Ogni grado di libertà contribuisce un addendo $\frac{1}{2}RT$ al calore specifico a volume costante.

Osservazione 7.8.

Abbiamo ricavato nuovamente l'espressione per c_V che avevamo assunto per gas ideali: Se le particelle hanno ν gradi di libertà allora

$$c_V = \frac{\nu}{2} RT.$$

7.2 Distribuzione di Maxwell-Boltzmann

Consideriamo ora un sistema isolato con temperatura costante. Cerchiamo di capire come è fatta la distribuzione delle velocità.

Decomponiamo le velocità \vec{v} in (v_x, v_y, v_z) . Notiamo che

$$dn(v_x) = Nf(v_x)dv_x,$$

dove f è la densità di probabilità che la componente x sia v_x . Per isotropia si ha che

$$dn(v_y) = Nf(v_y) dv_y, \quad dn(v_z) = Nf(v_z) dv_z,$$

¹affermare che $U = \langle E_K \rangle$ corrisponde ad assumere che il gas sia monoatomico.

²regime ragionevole per il tipo di forze che agisce all'interno di materiali.

 $^{^3}$ la rotazione lungo l'asse che congiunge le particelle è irrilevante

dunque

$$dn(\vec{v}) = Nf(v_x)f(v_y)f(v_z)dv_xdv_ydv_z.$$

Sempre per isotropia, in realtà $f(v_x)f(v_y)f(v_z)$ è una funzione $\phi(v)$ del modulo $v=\sqrt{v_x^2+v_y^2+v_z^2}$, non delle singole componenti.

Segue dunque che

$$\phi(v) = f(v_x)f(v_y)f(v_z) = f(v)f(0)f(0).$$

Dividendo per $f(0)^3$ troviamo

$$\frac{f(v)}{f(0)} = \frac{f(v_x)}{f(0)} \frac{f(v_y)}{f(0)} \frac{f(v_z)}{f(0)}$$

da cui passando ai logaritmi

$$\log \frac{f(v)}{f(0)} = \log \frac{f(v_x)}{f(0)} + \log \frac{f(v_y)}{f(0)} + \log \frac{f(v_z)}{f(0)}.$$

Per semplicità notazionale sia $G(v) = \log \frac{f(v)}{f(0)}$, da cui

$$G(v) = G(v_x) + G(v_y) + G(v_z).$$

Derivando ora per v_i con $i \in \{x, y, z\}$ troviamo

$$\frac{G'(v)v_i}{v} = G'(v_i),$$

da cui

$$\frac{G'(v)}{v} = \frac{G'(v_x)}{v_x} = \frac{G'(v_y)}{v_y} = \frac{G'(v_z)}{v_z} \doteqdot -2\alpha$$

Poiché α non dipende da v_i possiamo integrare l'equazione sopra per trovare

$$G(v_i) = -\alpha v_i^2 + C$$

che ricordando la definizione di G significa che esiste a>0 tale che

$$f(v_i) = ae^{-\alpha v_i^2}.$$

Sostituendo questo nella definizione di ϕ si ha

$$\phi(v) = Ae^{-\alpha(v_x^2 + v_y^2 + v_z^2)} = Ae^{-\alpha v^2}.$$

Poiché ϕ è una densità di probabilità⁴ si ha che $A = \left(\frac{\alpha}{\pi}\right)^{3/2}$, cioè

$$dn(\vec{v}) = N \left(\frac{\alpha}{\pi}\right)^{3/2} e^{-\alpha v^2} dv_x dv_y dv_z.$$

Se ora integriamo sull'angolo solido troviamo il numero di particelle con una data velocità:

$$\begin{split} dn(v) &= \int_{\Omega} dn(\vec{v}) = N \int_{\Omega} \phi(v) dv_x dv_y dv_z = \\ &= N \int_{\Omega} \phi(v) v^2 dv d\Omega = \\ &= 4\pi N \phi(v) v^2 dv = \\ &= 4N \sqrt{\frac{\alpha^3}{\pi}} v^2 e^{-\alpha v^2} dv. \end{split}$$

⁴abbiamo usato il fatto che $\int_{-\infty}^{+\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$

Cerchiamo ora di capire chi è α . Ricordiamo che

$$\frac{3k_bT}{m} = \langle v^2 \rangle = \frac{\int_0^\infty v^2 dn(v)}{\int_0^\infty dn(v)}.$$

Sviluppando il termine di destra tramite identità note sulla funzione Gamma^5 ricaviamo

$$\int_0^\infty 4N \sqrt{\frac{\alpha^3}{\pi}} v^4 e^{-\alpha v^2} dv = 4N \sqrt{\frac{\alpha^3}{\pi}} \frac{\Gamma(5/2)}{2\alpha^{5/2}} = \frac{1}{2} \frac{4N}{\sqrt{\pi}} \frac{3\sqrt{\pi}}{4} \alpha^{\frac{3}{2} - \frac{5}{2}} = N \frac{3}{2} \frac{1}{\alpha},$$

che insieme all'equazione di prima restituisce

$$\frac{3k_bT}{m} = \frac{3}{2}\frac{1}{\alpha} \Longleftrightarrow \alpha = \frac{m}{2k_bT}.$$

Abbiamo dunque ricavato che

$$dn(v) = N4\pi \left(\frac{m}{2\pi k_b T}\right)^{3/2} v^2 \exp\left(-\frac{m}{2k_b T}v^2\right) dv$$

Definizione 7.9 (Distribuzione di Maxwell-Boltzmann). Definiamo Distribuzione di Maxwell-Boltzmann quella data da

$$\frac{dn}{dv} = N4\pi \left(\frac{m}{2\pi k_b T}\right)^{3/2} v^2 \exp\left(-\frac{m}{2k_b T}v^2\right)$$

Figura 7.1: Distribuzione di Maxwell-Boltzmann. La curva verde corrisponde alla distribuzione per una temperatura maggiore rispetto a quella per la curva azzurra.

È possibile misurare se effettivamente la distribuzione è questa: si fa girare una ruota velocemente con un buchino e poi si mettono a contatto la ruota con un tubo da cui esce il gas. Vedendo quante particelle sono arrivate sulle varie parti interne della ruota uno può capire la distribuzione.

$${}^{5}\int_{0}^{\infty} x^{n} e^{-\alpha x^{2}} = \frac{\Gamma((n+1)/2)}{2a^{(n+1)/2}}$$

7.3 Entropia nel modello statistico

Definizione 7.10 (Macro- e Microstati).

Dato un sistema statistico come quello trattato in questo capitolo, un **microstato** è il dato di ogni singola posizione e velocità, un **macrostato** è la classe di microstati con le stesse proprietà globali (per esempio volume, temperatura, pressione).

Fatto 7.11.

Tutti i microstati compatibili con un dato macrostato sono equiprobabili.

Osservazione 7.12.

Consideriamo due sistemi. Uno in un macrostato con probabilità P_1 di verificarsi ed entropia S_1 , il secondo con dati analoghi P_2 e S_2 . Notiamo che l'insieme dei due sistemi ha entropia $S_1 + S_2$ e la probabilità del macrostato di questo insieme è P_1P_2 . Intuitivamente abbiamo notato che

$$S \propto \log P \propto \log \Omega$$
,

dove Ω è il numero di microstati con lo stesso macrostato.

Definizione 7.13 (Entropia di Boltzmann).

Per una qualche costante 6 C definiamo l'entropia di Boltzmann di un sistema come

$$S = C \log \Omega$$

Proviamo a confrontare l'entropia di Boltzmann con quella che abbiamo già definito per alcune trasformazioni di gas ideali.

7.3.1 Mescolamento dello stesso gas

Consideriamo una scatola adiabatica con due compartimenti di volume V/2. Dentro il primo compartimento si trovano r moli di gas e nel secondo 1-r moli, entrambi alla stessa temperatura. Rimuoviamo successivamente la parete e attendiamo l'equilibrio termodinamico.

La variazione di entropia termodinamica è

$$\Delta S = (S_{f_1} - S_{i_1}) + (S_{f_2} - S_{i_2}) =$$

$$= rR \log \left(\frac{rV}{V/2}\right) + (1 - r)R \log \left(\frac{(1 - r)V}{V/2}\right) =$$

$$= R(r \log r + (1 - r) \log(1 - r) + \log 2).$$

⁶che troveremo in seguito

Consideriamo ora l'entropia di Boltzmann:

Nel primo compartimento abbiamo N/2 - x particelle e nel secondo N/2 + x.

$$\Omega(N,x) = \binom{N}{x + N/2},$$

da cui

$$S_i = C(\log(N!) - \log((N/2 - x)!) - \log((N/2 + x)!)).$$

Applicando l'approssimazione di Stirling $\log(N!) \simeq N \log N$ si ha

$$S_i \simeq -NC\left(\left(\frac{1}{2} - \frac{x}{N}\right)\log\left(\frac{1}{2} - \frac{x}{N}\right) + \left(\frac{1}{2} + \frac{x}{N}\right)\log\left(\frac{1}{2} + \frac{x}{N}\right)\right).$$

Riscrivendo questo risultato in termini di moli $r = \frac{1}{N_a} \left(\frac{N_a}{2} - x \right) = \frac{1}{2} - \frac{x}{N_a}$, si ha

$$S_i \simeq -N_a C \left(r \log r + (1-r) \log(1-r)\right)$$

Per quanto riguarda lo stato finale il numero di microstati possibili ora è ogni combinazione di particelle nei due contenitori, 2^{N_a} possibilità in totale, dunque

$$S_f = CN_a \log 2,$$

dunque

$$\Delta S = S_f - S_i = N_a C (r \log r + (1 - r) \log(1 - r) + \log 2).$$

Notiamo che le due espressioni sono la stessa se $C=k_b$, dunque troviamo la definizione di entropia di Boltzmann più conosciuta

$$S = k \log \Omega$$

7.3.2 Espansione isoterma

Fissiamo la temperatura e consideriamo una espansione da V a V+dV. Ci aspettiamo che Ω cambi come segue

$$\frac{\Omega_f}{\Omega_i} = \frac{(V + dV)^N}{V^N} = \left(1 + \frac{dV}{V}\right)^N$$

Poiché stiamo considerando il modello di gas perfetto si ha che $dT=0 \implies dU=0$, dunque

$$dV = \frac{\delta Q}{p},$$

da cui

$$\frac{dV}{V} = \frac{\delta Q}{pV} = \frac{\delta Q}{nRT} = \frac{\delta Q}{Nk_bT}$$

Quindi l'entropia di Boltzmann verifica la definizione di entropia che avevamo dato per trasformazioni reversibili:

$$\Delta S = k_b \log \left(\frac{\Omega_f}{\Omega_i} \right) = k_b N \log \left(1 + \frac{\delta Q}{N k_b T} \right) \approx k_b N \frac{\delta Q}{N k_b T} = \frac{\delta Q}{T}.$$

7.3.3 Isocora

Consideriamo ora una isocora e cambiamo la temperatura. Poiché

$$\langle E_K \rangle = \frac{3}{2} k_b T$$

si ha che in ogni direzione

$$\frac{1}{2}m\left\langle v_{x}^{2}\right\rangle =\frac{1}{2}k_{b}T\implies\left\langle v_{x}^{2}\right\rangle =\frac{k_{b}T}{m},$$

inoltre per isotropia $\langle v_x \rangle$, quindi $\sqrt{\frac{k_b T}{m}}$ è la deviazione standard di v_x . Quindi v per una particella ha una deviazione standard nell'ordine di $\left(\frac{k_b T}{m}\right)^{3/2}$ quindi nell'insieme si ha che $\langle v \rangle \propto T^{3N/2}$.

Tornando alla trasformazione isocora abbiamo trovato che

$$\frac{\Omega_f}{\Omega_i} = \left(1 + \frac{dT}{T}\right)^{3N/2},\,$$

da cui nuovamente

$$\Delta S = \frac{3N}{2} k_b \log \left(1 + \frac{dT}{T} \right) \approx \frac{3N k_b}{2} \frac{dT}{T} = \frac{C_V dT}{T} = \frac{dU}{T} \stackrel{\text{isocora}}{=} \frac{\delta Q}{T}.$$

7.4 Informazione

Definizione 7.14 (Informazione).

Sia X una variabile aleatoria discreta che può assumere N valori x_1, \dots, x_N con densità di probabilità P_i . Definiamo l'**informazione** derivante dal fatto che l'evento x_i sia accaduto come

$$I_i = -\log P_i$$

Vogliamo definire una funzione $\mathcal{H}(\{P_i\})$ che rappresenta "l'informazione che manca per capire l'esito data una distribuzione di probabilità". Imponiamo alcune proprietà:

- \mathcal{H} deve essere continua nelle P_i
- Se per ogni $P_i = \frac{1}{N}$, \mathcal{H} deve essere monotona e crescente⁷ in N.

(Consistenza) • Sia π una partizione di N e per ogni elemento $g \in \pi$ sia $P_g = \sum_{i \in g} P_i$, allora⁸

$$\mathcal{H}(\lbrace P_i \rbrace) = \mathcal{H}(\lbrace P_g \rbrace_{g \in \pi}) + \sum_{g \in \pi} P_g \mathcal{H}(\lbrace P(x_i \mid g) \rbrace)$$

Teorema 7.15 (Entropia di Shannon).

La funzione \mathcal{H} deve assumere la forma

$$\mathcal{H}(\{P_i\}) = -C\sum_i P_i \log(P_i).$$

Questa funzione di dice entropia di Shannon/Gibbs.

$$P(a \mid b) = P(a \land b)/P(b)$$

 $^{^{7}}$ Più esiti possibili corrisponde a più informazione necessaria per identificare l'evento accaduto

 $^{^8}P(a\mid b)$ indica la probabilità che accada adato che accade b, equivalentemente

Dimostrazione.

Consideriamo due casi possibili per la distribuzione di probabilità:

uniforme

Sia $\mathcal{H}(\left\{N^{-1},\cdots,N^{-1}\right\})=F(N)$. Consideriamo ora n collezioni di eventi equiprobabili. Ogni collezione g contiene N/n eventi, quindi $P_g=\frac{1}{n}$ e $P(x_i\mid g)=\frac{n}{N}$. Osserviamo dunque che $\mathcal{H}(\left\{P(x_i\mid g)\right\})=F(N/n)$. Per consistenza

$$F(N) = F(n) + \sum_{n} \frac{1}{n} F(N/n) = F(n) + F(N/n).$$

Siano ora s,t>1 interi positivi e notiamo che esistono α,β interi con β arbitrariamente grande tali che

$$\frac{\alpha}{\beta} \le \frac{\log s}{\log t} < \frac{\alpha + 1}{\beta} \implies t^{\alpha} \le s^{\beta} < t^{\alpha + 1}.$$

Per monotonia di F

$$F(t^{\alpha}) \le F(s^{\beta}) < F(t^{\alpha+1}).$$

Per la proprietà di F mostrata sopra si ha che

$$F(t^{\alpha}) = F(t) + F(t^{\alpha - 1}) = \dots = \alpha F(t)$$

e similmente per gli altri termini, dunque

$$\frac{\alpha}{\beta} \le \frac{F(s)}{F(t)} < \frac{\alpha+1}{\beta}.$$

Questo mostra che

$$\left|\frac{F(s)}{F(t)} - \frac{\log s}{\log t}\right| \le \frac{1}{\beta},$$

e poiché β può essere scelto grande a piacere questo mostra che $F(s) = C \log s$ per una qualche costante C.

generale

Sia $N_g = \#g$. Notiamo che $P_g = \frac{N_g}{N}$ e che $P(x_i \mid g) = \frac{1}{N_g}$. Osserviamo che

$$\mathcal{H}(\{P_i\}) = F(N) = \mathcal{H}(\{P_g\}) + \sum_g P_g F(N_g),$$

da cui

$$\mathcal{H}(\lbrace P_g \rbrace) = F(N) - \sum_g P_g F(N_g) = \sum_g P_g (F(N) - F(N_g)) =$$

$$= C \sum_g P_g \log(N/N_g) =$$

$$= -C \sum_g P_g \log(P_g).$$

Osservazione 7.16

L'entropia è la media pesata del logaritmo delle probabilità nella distribuzione a meno di costante.

Osservazione 7.17.

Se $P_i = 1/N$ allora

$$\mathcal{H}(\{P_i\}) = -C\sum_i \frac{1}{N}\log \frac{1}{N} = -C\log N,$$

che a meno della notazione è l'equivalente di $S = k_b \log \Omega$.

7.4.1 Principio di massima entropia

Fatto 7.18 (Principio di massima entropia).

I sistemi tendono alla distribuzione che massimizza l'entropia compatibile con i vincoli.

Nessun vincolo

Consideriamo un sistema con N stati e nessun vincolo. Sia P_i la probabilità dello stato i. Vogliamo trovare i P_i che massimizzano S sapendo che $\sum_i P_i = 1$: Cerchiamo le soluzioni del sistema di moltiplicatori di Lagrange

$$\begin{cases} \sum_{i} P_{i} = 1 \\ \frac{\partial}{\partial P_{i}} (-k_{b} \sum_{j} P_{j} \log P_{j}) = \lambda \frac{\partial}{\partial P_{i}} (-1 + \sum_{j} P_{j}) \end{cases}$$

$$\begin{cases} \sum_{i} P_{i} = 1 \\ -k_{b} (\log P_{i} + 1) = \lambda \end{cases} \iff \begin{cases} \sum_{i} P_{i} = 1 \\ P_{i} = e^{-\left(\frac{\lambda}{k_{b}} + 1\right)} \end{cases}$$

Poiché $e^{-\left(\frac{\lambda}{k_b}+1\right)}$ non dipende da i, il sistema ha come soluzione $P_i=N^{-1}$ per ogni i, dunque in assenza di vincoli

$$S = -k_b \sum_{i} \frac{1}{N} \log \left(\frac{1}{N} \right) = k \log N.$$

Un vincolo

Consideriamo un vincolo della forma

$$\langle f(x_i) \rangle \doteq \sum_i P_i f(x_i) = c.$$

Applicando nuovamente il sistema dei moltiplicatori di Lagrange ricaviamo⁹

$$\begin{cases} \sum_{j} P_{j} = 1 \\ \sum_{j} P_{j} f(x_{j}) = c \\ -k_{b} (\log P_{i} + 1) = \alpha + \beta f(x_{i}) \end{cases} \iff \begin{cases} \sum_{j} P_{j} = 1 \\ \sum_{j} P_{j} f(x_{j}) = c \\ P_{i} = e^{-1 - \alpha/k_{b}} e^{-(\beta/k_{b}) f(x_{i})} \end{cases}$$

Applicando la prima equazione troviamo

$$e^{-1-\alpha/k_b} \underbrace{\left(\sum_{j} e^{-(\beta/k_b)f(x_j)}\right)}_{\stackrel{\circ}{=} Z} = 1,$$

da cui

$$P_i = \frac{1}{Z}e^{-\frac{\beta}{k_b}f(x_i)}.$$

Inserendo questa scrittura nella formula per l'entropia di Shannon troviamo

$$S = -k_b \sum_{i} \frac{1}{Z} e^{-\frac{\beta}{k_b} f(x_i)} \log \left(\frac{1}{Z} e^{-\frac{\beta}{k_b} f(x_i)} \right) =$$

$$= k_b \log Z - k_b \sum_{i} P_i \log \left(e^{-\frac{\beta}{k_b} f(x_i)} \right) =$$

$$= k_b \log Z + \beta \left\langle f(x_i) \right\rangle$$

⁹ f non dipende dalle probabilità, quindi $\frac{\partial f}{\partial P_i}(x_i) = 0$

Esempio 7.19 (Energia interna costante).

Sia $f(x_i) = E(x_i)$ e supponiamo che $U = \langle E \rangle$ sia costante. L'entropia è della forma

$$S = k_b \log Z + \beta U$$

Poiché Z è costante, $\beta = \frac{\partial S}{\partial U} = \frac{1}{T},$ dunque

$$S = k_b \log Z + \frac{U}{T}.$$

Osserviamo inoltre che per quanto detto

$$P_i = \frac{1}{Z} \exp\left(-\frac{E(x_i)}{k_b T}\right),\,$$

che a meno della costante di normalizzazione Z corrisponde ad un termine che appare nella distribuzione di Maxwell-Boltzmann.

Parte II Relatività speciale

Capitolo 8

Trasformazioni di Lorenz

In questo e il prossimo capitolo considereremo sempre sistemi di riferimento S e S' in moto relativo a velocità uniforme lungo l'asse x tali che per t=0 si abbia O=O'.

Notazione 8.1.

Le quantità misurate nel sistema S' sono indicate con degli apici, assenti da quelle misurate in S. Per esempio, se P è un punto allora le sue coordinate in S sono (x, y, z), mentre quelle in S' sono (x', y', z').

Ricordiamo che la velocià della luce vale circa

$$c = 3 \cdot 10^8 \, \frac{\mathrm{m}}{\mathrm{s}}$$

8.1 Relatività galileiana e parentesi storica

Definizione 8.2 (Sistema di riferimento inerziale).

Un sistema di riferimento è inerziale se valgono le leggi di Newton.

Fatto 8.3 (Principio di Relatività).

Le leggi della fisica sono le stesse in qualsiasi sistema di riferimento in moto rettilineo uniforme.

Definizione 8.4 (Trasformazioni di Galileo).

Le **trasformazioni di Galileo** sono le trasformazioni tra coordinate spaziali e tempi tra i sistemi S ed S' ritenute valide classicamente, ovvero

$$\begin{cases} x' = x - ut \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

Osserviamo che

$$\begin{cases} \frac{\partial}{\partial t} = \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial t} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial t} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial t} \frac{\partial}{\partial z'} = \frac{\partial}{\partial t'} - u \frac{\partial}{\partial x'} \\ \frac{\partial}{\partial x} = \frac{\partial t'}{\partial x} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial x} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial x} \frac{\partial}{\partial z'} = \frac{\partial}{\partial x'} \\ \frac{\partial}{\partial y} = \frac{\partial t'}{\partial y} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial y} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial y} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial y} \frac{\partial}{\partial z'} = \frac{\partial}{\partial y'} \\ \frac{\partial}{\partial z} = \frac{\partial t'}{\partial z} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial z} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial z} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial z} \frac{\partial}{\partial z'} = \frac{\partial}{\partial z'} \end{cases}$$

Osservazione 8.5 (Trasformazioni di Galileo per velocità e accelerazioni). Osserviamo che

$$\frac{dx'}{dt} = \frac{d}{dt}(x - ut) \stackrel{\text{moto rett. unif.}}{=} \frac{dx}{dt} - u,$$

e derivando di nuovo troviamo $\frac{dx'}{dt} = \frac{dx}{dt}$, dunque

$$\begin{cases} v'_x = v_x - u \\ v'_y = v_y \\ v'_z = v_z \end{cases} \begin{cases} a'_x = a_x \\ a'_y = a_y \\ a'_z = a_z \end{cases}$$

Esempio 8.6 (Le leggi della fisica non cambiano). Consideriamo la legge di Hooke

$$m\frac{d^2x}{dt^2} = -k(x - x_0).$$

Cambiando sistema di riferimento x = x' + ut, $x_0 = x'_0 + ut$, dunque

$$m\frac{d^2x'}{dt^2} = m\frac{d^2}{dt^2}(x'+ut) = m\frac{d^2x}{dt^2} = -k(x-x_0) = -k(x'+ut-(x_0'+ut)) = -k(x'-x_0'),$$

cioè la legge continua a valere sostituendo le grandezze di un sistema con le equivalenti nell'altro.

8.1.1 Il problema delle equazioni di Maxwell e l'etere

Ricordiamo le equazioni di Maxwell

Fatto 8.7 (Equazioni di Maxwell).

Valgono le sequenti equazioni

$$div\vec{E} = \frac{\rho}{\varepsilon_0} \qquad div\vec{B} = 0$$

$$rot\vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad rot\vec{B} = \mu_0 \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Essendo leggi della fisica dovrebbero essere invarianti al variare di sistema di riferimento inerziale, eppure

Esempio 8.8.

Le equazioni di Maxwell e la relatività Galileiana non sono compatibili.

Dimostrazione.

Cambiando sistema di riferimento alla prima entrata di $rot\vec{E}=-\dot{\vec{B}}$ troviamo

$$\frac{\partial E_{z'}}{\partial y'} - \frac{\partial E_{y'}}{\partial z'} = -\frac{\partial B_{x'}}{\partial t'} + u \frac{\partial B_{x'}}{\partial x'}$$

ovvero, applicando l'equazione con la divergenza

$$\frac{\partial E_z + uB_y}{\partial y'} - \frac{\partial E_y - uB_z}{\partial z'} = -\frac{\partial B_x}{\partial t'}$$

possiamo dunque ipotizzare

$$\begin{cases} E'_z = E_z + uBy \\ E'_y = E_y - uB_z \\ E'_x = E_x \\ \vec{B}' = \vec{B} \end{cases}$$

Problema, esiste un'altra equazione di Maxwell

$$\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = \frac{1}{c^2} \frac{\partial E_x}{\partial t}$$

che non vale con le sostituzioni sopra.

Michelson e Morley

Ricordiamo che dalle equazioni di Maxwell segue la legge

$$\frac{\partial^2 \vec{E}}{\partial t^2} = c^2 \nabla^2 \vec{E}.$$

Questa equazione sembra quella di un'onda, ma allora la relatività magari funziona se teniamo conto degli stessi effetti che subiscono le onde sotto queste trasformazioni. In particolare ipotizziamo l'esistenza di un mezzo attraverso il quale la luce si propaga: l'etere.

Fatto 8.9 (Esperimento di Michelson-Morley).

L'etere e la terra non sono indipendenti.

 $Descrizione\ dell'esperimento.$

Esperimento con interferometro e specchi. Supponiamo che il vento d'etere sia diretto

lungo BD, cioè la terra si muove in quella direzione rispetto al riferimento dell'etere:

$$t(BD) = t_1$$

$$t(DB) = t_2$$

$$t(BC) = t(CB) = t_3$$

Se L è la lunghezza di BD e di BC, se u è la velocità dell'a terra rispetto all'etere allora

$$t_1 = \frac{L}{c-u} \quad t_2 = \frac{L}{c+u}.$$

Consideriamo ora il sistema di riferimento dove la velocità della luce è c, cioè nel sistema solidale all'etere:

Per quanto riguarda il tratto BD in questo sitema

$$ct_1 = L + ut_1, \quad ct_2 = L - ut_2 \implies t_1 + t_2 = \frac{2Lc}{c^2 - u^2},$$

mentre sul tratto BC si ha

$$(ct_3)^2 = L^2 + (ut_3)^2 \implies t_3 = \frac{L}{\sqrt{c^2 - u^2}}$$

e il tempo che ci interessa è $2t_3$. Si ha dunque

$$2t_3 = \frac{2L}{\sqrt{c^2 - u^2}} \neq \frac{2Lc}{c^2 - u^2} = t_1 + t_2.$$

Ammettiamo allora di aver sbagliato qualche misura in modo tale che le distanze BC e BD non siano identiche. Si può ricavare

$$t_1 + t_2 - 2t_3 \approx \frac{2L_{BD}}{c} \left(1 + \frac{u^2}{c^2} \right) - \frac{2L_{BC}}{c} \left(1 + \frac{u^2}{2c^2} \right).$$

Se ruotiamo l'esperimento, l'effetto è scambiare i valori di L_{BD} e L_{BC} ma in ogni caso non è stata misurata una differenza.

Cosa potrebbe star succedendo?

Fizeau Magari la terra trascina l'etere e la luce. Se n è l'indice di rifrazione tra due mezzi (in questo caso etere ed etere trascinato), la luce va a velocità c nell'etere e ci stiamo muovendo a velocità u rispetto a questo, si ha che la velocità della luce sarebbe

$$\frac{c}{n} + u\left(1 - \frac{1}{n^2}\right).$$

Fitzgerald | Magari le lunghezze parallele parallele alla direzione di modo si contraggono

$$L_{\parallel} = L_0 \sqrt{1 - \frac{u^2}{c^2}}.$$

Con questo cambiamento la differenza dei tempi trovata nell'esperimento di MIchelson-Morley effettivamente si annulla.

Resta ancora una questione: se osserviamo l'esperimento di Michelson-Morley in movimento, il tempo che la luce sembra impiegare per percorrere il tratto perpendicolare alla direzione del moto aumenta

$$\frac{2L}{c} \quad \text{contro} \quad \frac{2L}{c} \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}}.$$

Questo sembra indicare che anche la coordinata temporale cambia cambiando sistema di riferimento.

8.2 Trasformazioni di Lorenz

Definizione 8.10 (Frazione della velocità della luce).

Data una velocità u, essa corrisponde alla **frazione della velocità della luce** data da

 $\beta(u) = \frac{u}{c}$.

Se u è chiara da contesto scriviamo solo β .

Definizione 8.11 (Fattore di Lorenz).

Definiamo il **fattore di Lorenz** relativo alla velocità u come

$$\gamma(u) = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} = \frac{1}{\sqrt{1 - \beta(u)^2}}.$$

Quando u è chiara dal contesto scriviamo solo γ .

Osservazione 8.12.

 $\gamma(u)$ è sempre maggiore o uguale a 1 in quanto $0 \le u \le c$.

Osservazione 8.13.

La correzione di Fitzgerald corrisponde a dire $\gamma L_{\parallel} = L_0$.

Dato che la correzione di Fitzgerald sulle lunghezze funziona, deduciamo per il principio di relatività che

$$x = \frac{x'}{\gamma} + ut, \qquad x' = \frac{x}{\gamma} - ut',$$

da cui ricaviamo le trasformazioni di Lorenz

$$\begin{cases} t' = \gamma \left(t - \frac{ux}{c^2} \right) \\ x' = \gamma (x - ut) \\ y' = y \\ z' = z \end{cases}$$

Osservazione 8.14.

Se $\beta \to 0$ allora $\gamma \to 1$ e quindi ritroviamo le trasformazioni di Galileo.

Possiamo scrivere le trasformazioni di Lorenz in modo equivalente nella forma

$$\begin{cases} ct' = \gamma (ct - \beta x) \\ x' = \gamma (x - \beta ct) \\ y' = y \\ z' = z \end{cases} \iff \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \\ & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

Osserviamo che

$$\begin{cases} \frac{\partial}{\partial t} = \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial t} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial t} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial t} \frac{\partial}{\partial z'} = \gamma \frac{\partial}{\partial t'} - \gamma u \frac{\partial}{\partial x'} \\ \frac{\partial}{\partial x} = \frac{\partial t'}{\partial x} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial x} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial x} \frac{\partial}{\partial z'} = -\gamma \frac{u}{c^2} \frac{\partial}{\partial t'} + \gamma \frac{\partial}{\partial x'} \\ \frac{\partial}{\partial y} = \frac{\partial t'}{\partial y} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial y} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial y} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial y} \frac{\partial}{\partial z'} = \frac{\partial}{\partial y'} \\ \frac{\partial}{\partial z} = \frac{\partial t'}{\partial z} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial z} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial z} \frac{\partial}{\partial y'} + \frac{\partial z'}{\partial z} \frac{\partial}{\partial z'} = \frac{\partial}{\partial z'} \end{cases}$$

Proposizione 8.15 (Trasformazioni di Lorenz per direzioni arbitrarie). Per un moto rettilineo uniforme a velocità \vec{u} si ha

$$\begin{cases} \vec{x}' = \vec{x} + (\gamma - 1) \frac{\vec{x} \cdot \vec{u}}{u^2} \vec{u} - \gamma t \vec{u} \\ t' = \gamma \left(t - \frac{\vec{u} \cdot \vec{x}}{c^2} \right) \end{cases}$$

Dimostrazione.

Basta notare che la componente parallela al moto è

$$\vec{x}_{\parallel} = \frac{\vec{x} \cdot \vec{u}}{u} \frac{\vec{u}}{u}$$

mentre quella perpendicolare è $\vec{x}_{\perp} = \vec{x} - \vec{x}_{\parallel}$.

Definizione 8.16 (Intervallo invariante).

L'intervallo invariante è

$$(ct)^2 - x^2 - y^2 - z^2$$
.

Proposizione 8.17.

L'intervallo invariante è invariante per trasformazioni di Lorenz.

Dimostrazione.

A meno di ruotare gli assi supponiamo che il moto avvenga lungo l'asse del moto relativo tra i sistemi (che supponiamo essere l'asse x). La tesi segue dal seguente calcolo

$$\begin{split} (ct')^2 - (x')^2 - (y')^2 - (z')^2 &= \gamma^2 (ct)^2 + \gamma^2 \beta^2 x^2 - 2 \gamma^2 u t x + \\ &- \gamma^2 x^2 - \gamma^2 \beta^2 (ct)^2 + 2 \gamma^2 u t x - y^2 - z^2 = \\ &= \gamma^2 (1 - \beta^2) (ct)^2 + \gamma^2 (\beta^2 - 1) x^2 - y^2 - z^2 = \\ &= (ct)^2 - x^2 - y^2 - z^2. \end{split}$$

Osservazione 8.18.

Se stiamo misurando della luce allora l'intervallo invariante vale 0.

Esempio 8.19 (Equazione delle onde).

Consideriamo l'equazione

$$\nabla^2 \phi = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}.$$

Si ha che questa equazione è invariante per le trasformazioni di Lorenz.

Dimostrazione.

Segue sfruttando quanto sappiamo sui differenziali per le trasformazioni di Lorenz:

$$\begin{split} -\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} + \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2} &= -\frac{1}{c^2}\left(\gamma^2\frac{\partial^2}{\partial t'^2} - 2\gamma^2u\frac{\partial^2}{\partial t'\partial x'} + \gamma^2u^2\frac{\partial^2}{\partial x'^2}\right)\phi + \\ &\quad + \left(\gamma^2\frac{u^2}{c^4}\frac{\partial^2}{\partial t'^2} - 2\gamma^2\frac{u}{c^2}\frac{\partial^2}{\partial t'\partial x'} + \gamma^2\frac{\partial^2}{\partial x'^2}\right)\phi + \\ &\quad + \frac{\partial^2\phi}{\partial y'^2} + \frac{\partial^2\phi}{\partial z'^2} &= \\ &\quad = -\frac{1}{c^2}\frac{\partial^2\phi}{\partial t'^2} + \frac{\partial^2\phi}{\partial x'^2} + \frac{\partial^2\phi}{\partial y'^2} + \frac{\partial^2\phi}{\partial z'^2}. \end{split}$$

8.2.1 Dilatazione dei tempi e contrazione delle lunghezze

Definizione 8.20 (Intervallo di tempo proprio).

Consideriamo due eventi che nel sistema di riferimento S' hanno la stessa posizione. L'intervallo di tempo misurato da un orologio fermo rispetto a S' tra questi è detto intervallo di tempo proprio tra i due

$$\Delta t' = \Delta t_0$$

Sia $\Delta t'=t_1'-t_2'$ l'intervallo di tempo proprio tra due eventi. Cambiando sistema di riferimento troviamo

$$\Delta t = t_1 - t_2 = \frac{\Delta t' + \Delta x \frac{u}{c^2}}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma \Delta t'$$

dunque l'intervallo di tempo misurato da un sistema in movimento rispetto alla posizione dei due eventi è maggiore rispetto a quello misurato da un sistema che li vede alla stessa posizione.

Questo fenomeno è detto dilatazione dei tempi.

Definizione 8.21 (Lunghezza propria).

Fissiamo un sistema di riferimento S' e consideriamo una distanza $\Delta x'$ tra due punti fermi in questo sistema. Questa è detta la **lunghezza propria**.

Sia $\Delta x'$ la distanza misurata tra due punti fermi rispetto a S' in S'. Cambiando sistema di riferimento troviamo

$$\Delta x = x_1 - x_2 = \frac{\Delta x' + u \Delta t'}{\sqrt{1 - \frac{u^2}{c^2}}}$$

Affinché la misura di questa lunghezza abbia senso in S dovremo avere $\Delta t = 0$ (mentre $\Delta t'$ a priori può essere qualsiasi valore, tanto la distanza in S' non dipende dal tempo). Consideriamo dunque la trasformazione inversa

$$\Delta x' = \frac{\Delta x + u\Delta t}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma \Delta x$$

dunque $\Delta x = \gamma^{-1} \Delta x'$, cioè la lunghezza misurata in S è più piccola rispetto a quella in S'.

Questo fenomeno è detto contrazione delle lunghezze.

Esempio 8.22 (Relatività della simultaneità).

Se due osservatori sono in moto l'uno rispetto all'altro e uno dei due misura due eventi con posizioni diverse ma allo stesso istante allora il secondo osservatore vede i due eventi come non simultanei. Questo segue immediatamente da

$$\Delta t' = \gamma \left(\Delta t - \frac{u \Delta x}{c^2} \right) = -\frac{\gamma u}{c^2} \Delta x \neq 0.$$

8.3 Trasformazioni di velocità

Proposizione 8.23 (Formula di Boost).

Se un oggetto si muove parrallelo al moto tra due sistemi di riferimento inerziali allora

$$v = \frac{v' + u}{1 + \frac{uv'}{c^2}} = \left(\frac{\beta(v') + \beta(u)}{1 + \beta(v')\beta(u)}\right)c.$$

Dimostrazione.

Consideriamo x'(t') = v't' e portiamo nel sistema S

$$x = \gamma(x' + ut') = \gamma(v' + u)t' = \gamma^2(v' + u)\left(t - \frac{ux}{c^2}\right)$$

dunque

$$x\left(1 + \frac{u}{c^2}\gamma^2(v'+u)\right) = \gamma^2(v'+u)t,$$

da cui

$$x = \frac{v' + u}{1 - \frac{u^2}{c^2} + \frac{u}{c^2}(v' + u)}t = \frac{v' + u}{1 + \frac{uv'}{c^2}}t.$$

Osservazione 8.24.

Considerando i limiti $\beta(u) \to 0$ e $\beta(v') \to 0$ allora ritroviamo il Boost Galileiano.

Osservazione~8.25.

Se v'=c oppure u=c troviamo v=c, che è l'assioma sulla costanza della velocità della luce.

Osservazione 8.26.

Se il moto non è allineato con quello dei sistemi troviamo

$$\begin{cases} v_x = \frac{v_x' + u}{1 + \frac{v_x' u}{c^2}} = \frac{v_x' + u}{1 + \beta(v_x')\beta(u)} \\ v_y = \frac{v_y'}{\gamma \left(1 + \frac{v_x' u}{c^2}\right)} = \frac{v_y'}{\gamma \left(1 + \beta(v_x')\beta(u)\right)} \\ v_z = \frac{v_z'}{\gamma \left(1 + \frac{v_x' u}{c^2}\right)} = \frac{v_z'}{\gamma \left(1 + \beta(v_x')\beta(u)\right)} \end{cases}$$

La formula vettoriale per il boost di Lorenz è

$$\vec{v} = \frac{1}{1 + \frac{\vec{u} \cdot \vec{v}'}{c^2}} \left(\frac{1}{\gamma} \vec{v}' + \vec{u} + \left(1 + \frac{1}{\gamma} \right) \frac{\vec{u} \cdot \vec{v}'}{c^2} \vec{u} \right)$$

o equivalentemente

$$\vec{v} = \frac{1}{1 + \frac{\vec{u} \cdot \vec{v'}}{c^2}} \left(\vec{v'} + \vec{u} + \frac{1}{c^2} \frac{\gamma}{1 + \gamma} \vec{u} \times (\vec{u} \times \vec{v'}) \right)$$

Esempio 8.27 (Formula di Fizeau).

Consideriamo come cambia la velocità della luce entro un mezzo con indice di rifrazione n tra due sistemi in moto relativo a velocità u:

$$v = \frac{c/n + u}{1 + \frac{cu}{nc^2}},$$

da cui la differenza tra le velocità è

$$\Delta v = v - \frac{c}{n} = \frac{u(1 - n^{-2})}{1 + \frac{uc}{n}},$$

che per $u \ll c$ si approssima a $u\left(1 - \frac{1}{n^2}\right)$.

Capitolo 9

Cinematica e dinamica relativistica

9.1 Cinematica relativistica

Definizione 9.1 (Quadrivettore).

Consideriamo lo spazio vettoriale \mathbb{R}^4 con prodotto scalare indotto dal **tensore metrico di Minkovsky**

$$\eta_{\mu
u} = \begin{pmatrix} 1 & & & & \\ & -1 & & & \\ & & -1 & & \\ & & & -1 \end{pmatrix}.$$

Un elemento di questo spazio è detto quadrivettore.

Definizione 9.2 (Quadrivettore posizione).

Definiamo il quadrivettore posizione come

$$x^{\mu} = (ct, x, y, z).$$

In particolare $x^0 = ct$, $x^1 = x$, $x^2 = y$ e $x^3 = z$.

Come notazione scriviamo anche $\vec{x} = (x, y, z)$ e $\tilde{x} = (ct, \vec{x})$.

Notazione 9.3.

Come notazione, se \tilde{x} è un quadrivettore posizione definiamo

$$s^2 = \tilde{x} \cdot \tilde{x} = x^{\mu} \eta_{\mu\nu} x^{\nu} = (ct)^2 - x^2 - y^2 - z^2.$$

Definizione 9.4 (Quadrivettore di tipo tempo/spazio luce).

Affermiamo che un quadrivettore è di tipo

- tempo se $s^2 > 0$
- spazio se $s^2 < 0$
- luce se $s^2 = 0$

Se il quadrivettore è di tipo tempo allora esso appartiene al **futuro** se t > 0 o al **passato** se t < 0.

Osservazione 9.5.

Un quadrivettore ortogonale ad uno di tipo tempo è di tipo spazio, ma un quadrivettore ortogonale ad uno di tipo spazio non necessariamente è di tipo tempo.

Causalità

Proposizione 9.6 (La causalità viene rispettata).

Consideriamo due eventi A e B. Se $\Delta t > 0$ e $\Delta t' < 0$ allora i due eventi non possono essere l'uno la causa dell'altro, cioè il quadrivettore dato dalla loro differenza è di tipo spazio.

Dimostrazione.

Applicando la trasformazione di Lorenz

$$\Delta t' = \gamma \left(\Delta t - \frac{u}{c^2} \Delta x \right)$$

dunque se $\Delta t' < 0$ e $\Delta t > 0$ allora

$$-\gamma \Delta t > -\gamma \frac{u}{c^2} \Delta x \implies \Delta x > \frac{c^2}{u} \Delta t > c \Delta t$$

cioè la distanza tra gli eventi è maggiore rispetto alla distanza che la luce potrebbe percorrere in quell'intervallo di tempo, quindi i due eventi non possono essere l'uno la causa dell'altro.

9.1.1 Derivazione delle trasformazioni di Lorenz

Poiché le trasformazioni di Lorenz rappresentano un cambio di sistema di riferimento esse devono rispettare combinazioni lineari, cioè cerchiamo una trasformazione lineare. Osserviamo che la norma di un quadrivettore posizione è esattamente l'intervallo invariante, quindi vogliamo che le trasformazioni siano isometrie per la metrica di Minkowski, cioè

$$\eta = L^{\top} \eta L.$$

Osservazione 9.7.

Passando ai determinanti segue subito che det $L = \pm 1$.

Consideriamo l'equazione sopra in coordinate:

$$\sum_{\nu} \sum_{\mu} (L^{\top})_{\alpha\mu} \eta_{\mu\nu} L_{\nu\beta} = \eta_{\alpha\beta}$$

nella convezione di Einstein possiamo evitare di scrivere i simboli di somma, dunque

$$L_{\mu\alpha}\eta_{\mu\nu}L_{\nu\beta} = \eta_{\alpha\beta}$$

Osserviamo che queste equazioni non cambiano scambiando α e β .

Come convenzione indici con lettere greche possono assumere valori tra 1 e 4, mentre indici latini solo tra 1 e 3.

Supponiamo che il moto avvenga lungo l'asse x (y' = y, z' = z e x' non dipende da y o z), cioè

$$L_{ij} = 0 \quad \forall i, j \in \{1, 2, 3\}, \ i \neq j$$

Consideriamo ora vari casi:

• Se $\alpha = i$ e $\beta = j$ per $i \neq j$ allora

$$L_{\mu i} \eta_{\mu \nu} L_{\nu j} = \eta_{ij} = 0 \implies L_{02} = L_{03} = 0$$

• Se $\alpha = 0$ e $\beta = j$ allora

$$L_{\mu 0} \eta_{\mu \nu} L_{\nu j} = \eta_{0j} = 0 \implies L_{00} L_{0j} - L_{j0} L_{jj}.$$

Intuitivamente L_{00} e L_{jj} non sono nulli perché altrimenti x' non dipenderebbe da x e similmente per le altre componenti, quindi abbiamo trovato

$$L_{j0} = L_{0j} \frac{L_{00}}{L_{jj}}$$

In particolare $L_{20}=L_{30}=0$ e $L_{10}=L_{01}\frac{L_{00}}{L_{11}}$.

• Se $\alpha = \beta = 0$ allora abbiamo

$$L_{00}^2 - L_{10}^2 = \eta_{00} = 1$$

• Se $\alpha = \beta = i$ allora

$$L_{0i}^2 - L_{ii}^2 = \eta_{ii} = -1,$$

dunque $L_{01}^2 = L_{11}^2 - 1$ e $L_{22}^2 = L_{33}^2 = 1$.

Battezziamo $L_{11} = \gamma > 0$ e notiamo che

$$\begin{cases} L_{10} = L_{01} \frac{L_{00}}{\gamma} \\ L_{01} = \pm \sqrt{\gamma^2 - 1} \\ L_{00}^2 = L_{10}^2 + 1 \end{cases}$$

da cui

$$L_{00}^2 = L_{00}^2 \left(1 - \frac{1}{\gamma^2} \right) + 1 \implies L_{00} = \pm \gamma$$

e
$$L_{10} = \pm L_{01} = \pm \sqrt{\gamma^2 - 1}$$
.

Mettendo tutto insieme (quindi anche det L=1) troviamo la seguente forma per L^1 :

$$L = \begin{pmatrix} \gamma & \pm\sqrt{\gamma^2 - 1} & \\ \pm\sqrt{\gamma^2 - 1} & \gamma & \\ & 1 & \\ & & 1 \end{pmatrix}$$

Queste sono esattamente le trasformazioni di Lorenz, infatti se $\gamma = \left(1 - \frac{u^2}{c^2}\right)^{-\frac{1}{2}}$ allora $\sqrt{\gamma^2 - 1} = \frac{u}{c}\gamma$.

9.1.2 Rapidità

Definizione 9.8 (Rapidità).

Definiamo la **rapidità** di un boost a velocità u come

$$\xi = \operatorname{arctanh}(-\beta(u)).$$

Segue che

$$\gamma(u) = \cosh \xi, \quad -\gamma(u)\beta(u) = \sinh \xi, \quad -\beta(u) = \tanh \xi.$$

 $^{^{1}}$ abbiamo supposto $L_{00}>0$ perché altrimenti futuro e passato si scambierebbero

Osservazione 9.9.

Si ha che

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix},$$

cioè il boost corrisponde ad una rotazione iperbolica.

Osservazione 9.10.

L'identità trigonometrica iperbolica

$$\cosh^2 \xi - \sinh^2 \xi = 1$$

corrisponde a $\gamma^2(1-\beta^2)=1$, che è la definizione di γ .

 $Osservazione\ 9.11.$

Considerando una composizione di velocità

$$u = \frac{u_1 + u_2}{1 + \frac{u_1 u_2}{c^2}}$$

notiamo che le corrispondenti rapidità si sommano², cioè

$$\xi = \xi_1 + \xi_2$$
.

Diagramma di Minkowski

Per semplicità ignoriamo le componenti y e z. Definiamo una base ortonormale dello spazio di Minkowski:

$$\widetilde{e}_0 = \begin{pmatrix} \cosh \xi \\ \sinh \xi \end{pmatrix}, \quad \widetilde{e}_1 = \pm \begin{pmatrix} \sinh \xi \\ \cosh \xi \end{pmatrix}.$$

Poiché $\cosh^2 \xi - \sinh^2 \xi = 1$, per ogni ξ questi sono vettori di norma di Minkowski 1, inoltre sono evidentemente ortogonali.

Se \widetilde{e}_0' e \widetilde{e}_1' sono definiti come sopra ma a partire da una rapidità ξ' allora

$$\begin{aligned} \widetilde{e}_0 \cdot \widetilde{e}'_0 &= + \cosh(\xi - \xi') \\ \widetilde{e}_1 \cdot \widetilde{e}'_0 &= \pm \sinh(\xi - \xi') \\ \widetilde{e}_0 \cdot \widetilde{e}'_1 &= \mp \sinh(\xi - \xi') \\ \widetilde{e}_1 \cdot \widetilde{e}'_1 &= - \cosh(\xi - \xi') \end{aligned}$$

Consideriamo ora un cambio di base

$$\widetilde{a} = x_0 \widetilde{e}_0 + x_1 \widetilde{e}_1 = x_0' \widetilde{e}_0' + x_1' \widetilde{e}_1'$$

Si può verificare che

$$\begin{cases} \widetilde{e}_0 = \cosh(\xi - \xi')\widetilde{e}'_0 + \sinh(\xi - \xi')\widetilde{e}'_1 \\ \widetilde{e}_1 = \sinh(\xi - \xi')\widetilde{e}'_0 + \cosh(\xi - \xi')\widetilde{e}'_1 \end{cases}$$

da cui ricaviamo

$$\begin{cases} x'_0 = x_0 \cosh(\xi - \xi') + x_1 \sinh(\xi - \xi') \\ x'_1 = x_0 \sinh(\xi - \xi') + x_1 \cosh(\xi - \xi') \end{cases}$$

²vedi le formule di prostaferesi per la tangente iperbolica (A.4)

9.1.3 Tempo proprio e quadrivelocità

Poiché il tempo non è invariante per trasformazioni di Lorenz, non avrebbe senso definire una velocità relativistica in termini solo del tempo. La generalizzazione giusta è la seguente

Definizione 9.12 (Tempo proprio).

Definiamo il **tempo proprio** come

$$\tau = \frac{\sqrt{s^2}}{c}.$$

Equivalentemente chiediamo che

$$d\tau^{2} = \frac{ds^{2}}{c^{2}} = dt^{2} - \frac{1}{c^{2}} \left(dx^{2} + dy^{2} + dz^{2} \right)$$

Proposizione 9.13 (Derivata del tempo rispetto al tempo proprio).

Si ha che

$$\frac{dt}{d\tau} = \gamma(v),$$

dove
$$v = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$$
.

Dimostrazione.

Sapendo che $d\tau^2 = dt^2 - \frac{1}{c^2} \left(dx^2 + dy^2 + dz^2 \right)$, ricaviamo che

$$d\tau^2 = dt^2 \left(1 - \frac{v^2}{c^2} \right) = \frac{dt^2}{\gamma(v)^2},$$

cioè

$$\frac{dt}{d\tau} = \gamma(v).$$

П

Grazie al tempo proprio possiamo definire l'analogo relativistico della velocità

Definizione 9.14 (Quadrivelocità).

Definiamo la quadrivelocità come

$$\widetilde{v} = \frac{d\widetilde{x}}{d\tau} = \frac{dt}{d\tau} \frac{d\widetilde{x}}{dt} = \gamma(v) \left(c \frac{dt}{dt}, \frac{d\vec{x}}{dt} \right) = (c\gamma(v), \gamma(v)\vec{v}) = \gamma(v)(c, \vec{v}),$$

dove τ è il tempo proprio e \vec{v} è la velocità in senso non relativistico, cioè $\vec{v} = \frac{d\vec{x}}{dt}$. La quantità $\frac{d\vec{x}}{d\tau} = \gamma(v)\vec{v}$ è detta **velocità propria**, **celerità** o **velocità relativistica**.

 $Osservazione\ 9.15.$

La 4-upla (c, \vec{v}) NON è un quadrivettore perché non è invariante cambiando sistema di riferimento, il fattore $\gamma(v)$ è dunque necessario per questo.

Osservazione~9.16.

Il modulo di Minkovski di una quadrivelocità è

$$\widetilde{v}\cdot\widetilde{v}=c^2\gamma(v)^2-\overrightarrow{v}^2\gamma(v)^2=\gamma(v)^2(c^2-\overrightarrow{v}\cdot\overrightarrow{v})=c^2\gamma(v)^2\left(1-\frac{v^2}{c^2}\right)=c^2.$$

Segue in particolare che ogni quadrivelocità è di tipo tempo.

Se consideriamo un boost di velocità u parallela all'asse x allora³

$$\begin{cases} \widetilde{v}_0' = \gamma(u)(\widetilde{v}_0 - \beta(u)\widetilde{v}_1) \\ \widetilde{v}_1' = \gamma(u)(\widetilde{v}_1 - \beta(u)\widetilde{v}_0) \\ \widetilde{v}_2' = \widetilde{v}_2 \\ \widetilde{v}_3' = \widetilde{v}_3 \end{cases}$$

Proposizione 9.17 (Identità tra i fattori γ).

Vale la seguente identità

$$\gamma(v') = \gamma(u)\gamma(v)\left(1 - \frac{\vec{u} \cdot \vec{v}}{c^2}\right)$$

Dimostrazione.

Osserviamo che

$$c\gamma(v') = \widetilde{v}_0' = \gamma(u)(\widetilde{v}_0 - \beta(u)\widetilde{v}_1) = \gamma(u)(c\gamma(v) - \beta(u)\gamma(v)v_1),$$

dunque

$$\gamma(v') = \gamma(u)\gamma(v)\left(1 - \frac{v_1 u}{c^2}\right),$$

che è la tesi perché supponiamo che \vec{u} abbia la stessa direzione dell'asse x.

9.1.4 Quadriaccelerazione

Definizione 9.18 (Quadriaccelerazione).

Definiamo la quadriaccelerazione come

$$\widetilde{a} = \frac{d\widetilde{v}}{d\tau} = \frac{d\widetilde{v}}{dt}\frac{dt}{d\tau} = \gamma(v)\frac{d}{dt}(c\gamma(v), \vec{v}\gamma(v))$$

Lemma 9.19.

Vale la sequente identità

$$\boxed{\frac{d\gamma(v)}{dt} = \gamma(v)^3 \frac{\vec{v} \cdot \vec{a}}{c^2}}$$

Dimostrazione.

Calcoliamo:

$$\frac{d\gamma}{dt} = \frac{d}{dt}\left(1 - \frac{\vec{v}\cdot\vec{v}}{c^2}\right)^{-\frac{1}{2}} = -\frac{1}{2}\left(1 - \frac{\vec{v}\cdot\vec{v}}{c^2}\right)^{-\frac{3}{2}}\left(-\frac{1}{c^2}2\vec{v}\cdot\frac{d\vec{v}}{dt}\right) = \gamma(v)^3\frac{\vec{v}\cdot\vec{a}}{c^2},$$

in definitiva

$$\frac{d\gamma(v)}{dt} = \gamma(v)^3 \frac{\vec{v} \cdot \vec{a}}{c^2}.$$

Corollario 9.20.

Segue dal lemma che

$$\frac{d}{dt}(\gamma(v)\vec{v}) = \gamma(v)^3 \frac{\vec{v} \cdot \vec{a}}{c^2} \vec{v} + \gamma(v)\vec{a}.$$

 $^{^3\}gamma(u)$ e $\beta(u)$ non dipendono da τ .

Osservazione 9.21.

Per quanto appena detto

$$\widetilde{a} = \left(\gamma(v)^4 \frac{\overrightarrow{v} \cdot \overrightarrow{a}}{c}, \gamma(v)^4 \frac{\overrightarrow{v} \cdot \overrightarrow{a}}{c^2} \overrightarrow{v} + \gamma(v)^2 \overrightarrow{a}\right) = \gamma(v)^4 \left(\frac{\overrightarrow{v} \cdot \overrightarrow{a}}{c}, \overrightarrow{a} + \frac{\overrightarrow{v} \times (\overrightarrow{v} \times \overrightarrow{a})}{c^2}\right)$$

Osservazione 9.22.

Se $\vec{a} = 0$ allora $\tilde{a} = 0$.

Osservazione 9.23 (Accelerazione propria).

Se ci troviamo un un sistema di riferimento a riposo $(\vec{v}=0)$ allora $\gamma(v)=1$ e

$$\widetilde{a} = (0, \vec{a}).$$

In analogia a quanto detto possiamo definire $(0, \vec{a})$ come l'accelerazione propria.

Osservazione~9.24.

Se l'accelerazione avviene lungo la direzione della velocità allora

$$\widetilde{a} = \gamma(v)^4 |\vec{a}| (\beta(v), \widehat{v})$$

Osservazione 9.25.

Calcoliamo il seguente scalare, invariante per trasformazioni di Lorenz

$$\widetilde{a} \cdot \widetilde{v} = \frac{d^2 \widetilde{x}}{d\tau^2} \cdot \frac{d\widetilde{x}}{d\tau} = \frac{1}{2} \frac{d}{d\tau} \left(\frac{d\widetilde{x}}{d\tau} \right)^2 = \frac{1}{2} \frac{d}{d\tau} (\widetilde{v}^2) = \frac{1}{2} \frac{dc}{d\tau} = 0,$$

cioè la quadriaccelerazione e la quadrivelocità sono sempre ortogonali per la metrica di Minkowski.

Osservazione 9.26.

Calcoliamo il modulo della quadrivelocità

$$\widetilde{a}^2 = \dots = -\gamma(v)^4 \vec{a} \cdot \vec{a} - \gamma(v)^6 \frac{(\vec{v} \cdot \vec{a})^2}{c^2}$$

in particolare \widetilde{a} è un quadrivettore di tipo spazio.

Osservazione 9.27.

Supponiamo che $\vec{v} \perp \vec{a}$, allora

$$\tilde{a}^2 = -\gamma(v)^4 \vec{a} \cdot \vec{a},$$

che possiamo trovare dall'osservazione precedente o sfruttando l'equazione

$$\widetilde{a} = \left(\gamma(v)^4 \frac{\overrightarrow{v} \cdot \overrightarrow{a}}{c}, \gamma(v)^4 \frac{\overrightarrow{v} \cdot \overrightarrow{a}}{c^2} \overrightarrow{v} + \gamma(v)^2 \overrightarrow{a}\right) = (0, \gamma(v)^2 \overrightarrow{a})$$

Capitolo 10

Dinamica relativistica

10.1 Leggi di Newton relativistiche

Cerchiamo di capire come leggere le leggi di Newton in chiave relativistica. La prima legge è il primo postulato della relatività ma con la seconda legge (F=ma) cominciamo ad avere qualche problema.

10.1.1 Secondo principio della dinamica

Per capire come procedere consideriamo il seguente esperimento

Esempio 10.1 (Urto elastico di due palline identiche).

Fissiamo un sistema S e cosideriamo un sistema S' in moto relativo lungo l'asse x a velocità u. Due osservatori laciano delle palline (1 e 2) lungo la direzione y con la stessa velocità in modo che queste si scontrino.

Formalmente imponiamo

$$\begin{cases} (v_1)_y = v_0 \\ (v_1)_x = 0 \\ (v_2)'_y = -v_0 \\ (v_2)'_x = 0 \end{cases}$$

Considerando le formule di boost troviamo

$$\begin{cases} (v_2)_x = \frac{0+u}{1+0} = u \\ (v_2)_y = \frac{-v_0}{\gamma(u)(1+0)} = -\frac{v_0}{\gamma(u)}. \end{cases}$$

Imponiamo la conservazione degli impulsi (potenzialmente ammettendo che la massa dipenda dalla velocità) lungo l'asse y:

$$2M(v_1)v_0 = 2M(v_2)\frac{v_0}{\gamma(u)},$$

da cui $\gamma(u)M(v_1) = M(v_2)$.

Ricordando¹ che $\gamma(v_2) = \gamma(v_1)\gamma(u)$ osserviamo che

$$\frac{M(v_2)}{\gamma(v_2)} = \frac{M(v_1)}{\gamma(v_1)} = \frac{M(0)}{\gamma(0)} = M(0) = m.$$

Definizione 10.2 (Massa a riposo).

Definiamo la **massa a riposo** m come la massa misurata in un sistema dove il corpo è a riposo.

Definizione 10.3 (Impulso relativistico).

Definiamo l'impulso relativistico come

$$\vec{p} = M(v)\vec{v} = m\gamma(v)\vec{v}.$$

Osservazione 10.4.

Con l'aumentare della velocità, la "massa effettiva" cresce molto fino a diventare "infinita" per una velocità che tende verso la velocità della luce.

Definizione 10.5 (Quadriimpulso).

Definiamo il quadriimpulso come

$$\widetilde{p} = m\widetilde{v} = (M(v)c, \vec{p}) = m\gamma(v)(c, \vec{v}).$$

L'impulso relativistico è la componente spaziale del quadriimpulso.

Osservazione 10.6.

Il modulo del quadriimpulso è

$$\widetilde{p}^2 = m^2 \widetilde{v}^2 = m^2 c^2.$$

In particolare il quadriimpulso è di tipo tempo (o di tipo luce se m=0).

Abbiamo capito chi è la componente spaziale del quadriimpulso, ma la componente temporale?

$$\widetilde{p}_0 c = m\gamma(v)c^2 = m\gamma(v)c^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

per $v \to 0$ possiamo approssimare questa quantità al primo ordine in v^2 come

$$mc^2 - \underbrace{\frac{1}{2}mv^2}_{\text{energia cinetics}}$$

Definizione 10.7 (Energia).

Definiamo l'**energia** come $E = \tilde{p}_0 c$. In particolare se v = 0 allora l'energia vale mc^2 , che chiamiamo **energia di riposo**.

Osservazione 10.8.

L'esistenza dell'energia di riposo significa che se esiste un processo che fa diminuire la massa di un oggetto allora per conservazione dell'energia viene liberata dell'energia. Questi processi esistono e vengono impiegati per l'estrazione di energia atomica. Esistono processi che distruggono interamente la massa, per esempio lo scontro tra una particella e la sua antiparticella.

 $^{^1}$ nota che \vec{u} e \vec{v}_1 sono ortogonali

Osservazione 10.9.

Una volta definita l'energia possiamo riscrivere il quadriimpulso come

$$\widetilde{p} = m\widetilde{v} = (E/c, \vec{p}).$$

Osservazione 10.10.

Se cambiamo sistema di riferimento, l'energia cambia come segue:

$$E' = m\gamma(v')c^2 = m\gamma(v)\gamma(u)(c^2 - uv) = \gamma(u)(E - up_x).$$

Osserviamo che questo è compatibile col fatto che \widetilde{p} è un quadrivettore, cioè rispetta le trasformazioni di Lorenz:

$$p'_{x} = \frac{E'v'}{c^{2}} = \frac{(m\gamma(v)\gamma(u)(c^{2} - uv))\left(\frac{v - u}{c^{2} - uv}c^{2}\right)}{c^{2}} =$$

$$= m\gamma(v)\gamma(u)(v - u) =$$

$$= \gamma(u)\left(p_{x} - u\frac{E}{c^{2}}\right).$$

 $Osservazione\ 10.11.$

Calcoliamo il modulo del quadriimpulso

$$m^2c^2 = \tilde{p}^2 = \left(\frac{E}{c}\right)^2 - (\vec{p})^2,$$

cioè

$$E^2 = (\vec{p})^2 c^2 + m^2 c^4$$

Osservazione10.12. Poiché $v=\frac{|\vec{p}|c^2}{E}$ si ha che $\beta(v)=\frac{|\vec{p}|c}{E}$ e quindi

$$\gamma = \frac{E}{mc^2}$$

ovvero $E = \gamma(v)mc^2$.

Definizione 10.13 (Energia cinetica).

Definiamo l'energia cinetica relativistica come

$$T = E - mc^2 = mc^2(\gamma(v) - 1).$$

Osservazione 10.14. Se v è piccolo $\gamma v \approx 1 + \frac{1}{2} \frac{v^2}{c^2}$, da cui $T \approx mc^2 \frac{1}{2} \frac{v^2}{c^2} = \frac{1}{2} mv^2$.

Consideriamo ora questa domanda: è possibile che la luce sia composta da particelle?

In questo caso $\gamma(v) = \gamma(c) = \infty$, quindi affinché l'energia di questa ipotetica particella abbia senso, m=0. In questo caso avremmo

$$E = |\vec{p}| c$$
.

Queste particelle sono dette fotoni.

10.1.2 Terzo principio della dinamica

Consideriamo adesso la questione delle forze uguali e contrarie. Se queste forze opposte vengono applicate allo stesso punto e allo stesso istante non abbiamo problemi.

Se le forze uguali e contrarie agiscono su punti diversi, la relatività della simultaneità comincia a creare problemi su quando le due forze sono uguali e contrarie.

La soluzione è osservare che quello che vogliamo è che la variazione totale dell'impulso sia nulla. La forza deriva da variazioni di impulsi

$$\vec{F}_A = \frac{d\vec{p}_A}{dt}, \quad \vec{F}_B = \frac{d\vec{p}_B}{dt}, \quad \frac{d}{dt}(\vec{p}_A + \vec{p}_B) = 0.$$

Un altro modo di interpretare la questione della simultaneità è pensare a campi di forze piuttosto che forze generate direttamente da oggetti.

Definizione 10.15 (Quadriforza).

Definiamo la **quadriforza** come

$$\widetilde{F} = \frac{d\widetilde{p}}{d\tau} = m\frac{d\widetilde{v}}{d\tau} = m\widetilde{a}.$$

Una forma equivalente è

$$\widetilde{F} = \frac{d\widetilde{p}}{d\tau} = \gamma(v) \left(\frac{1}{c} \frac{dE}{dt}, \vec{F} \right),$$

dove $\vec{F} = \frac{d\vec{p}}{dt}$.

Osservazione~10.16.

Poiché $\widetilde{v} \cdot \widetilde{a} = 0$ si ha che $\widetilde{v} \cdot \widetilde{F} = 0$. Scrivendo esplicitamente la seconda equazione

$$\vec{F} \cdot \vec{v} = \frac{dE}{dt} = mc^2 \frac{d\gamma}{dt} = m\gamma^3 \vec{v} \cdot \vec{a}.$$

 $Osservazione\ 10.17.$

Troviamo le seguenti identità

$$\widetilde{F} = \gamma(v) \left(\frac{\vec{F} \cdot \vec{v}}{c}, \vec{F} \right)$$

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d}{dt}(m\vec{v}\gamma) = m\gamma\vec{a} + \frac{\vec{F}\cdot\vec{v}}{c^2}\vec{v},$$

in particolare \vec{F} non è allineata con \vec{a} in generale.

Osservazione 10.18.

Osserviamo che

$$\widetilde{F} \cdot \widetilde{v} = \frac{d}{d\tau}(m\widetilde{v}) \cdot \widetilde{v} = \frac{dm}{d\tau}\widetilde{v}^2 + m \underbrace{\widetilde{a} \cdot \widetilde{v}}_{=0} = c^2 \frac{dm}{d\tau}.$$

10.2 Effetto Doppler

Supponiamo che un sistema S' emetta delle onde con frequenza ν' e lunghezza d'onda λ' constanti (quindi i fronti d'onda hanno velocità $\nu' = \lambda' \nu'$ rispetto a S').

10.2.1 Versione classica

Se S' si muove con velocità u osserviamo che

$$\lambda = v\Delta t' - u\Delta t' = (v - u)\Delta t' = \frac{v - u}{\nu'},$$

da cui

$$\nu = \frac{v}{\lambda} = \frac{1}{1 - u/v} \nu',$$

quindi la frequenza dell'onda misurata da S è cambiata di un fattore che dipende dalla velocità relativa tra i sistemi.

Supponendo ora che sia S ad emettere l'onda notiamo con calcoli analoghi che

$$\nu' = \left(1 - \frac{u}{v}\right)\nu,$$

che come notazione è la stessa di prima ma la frequenza ricevuta e quella emessa hanno scambiato i ruoli.

10.2.2 Versione relativistica

Consideriamo il caso di una sorgente in movimento S' che emette l'onda (a velocità v in S') e che si muove verso S.

Fissiamo degli eventi:

- 1. Emissione di un fronte d'onda: In S' questo evento ha coordinate $(t'_e, 0)$.
- 2. Ricezione del fronte d'onda: In S' questo evento ha coordinate (t'_r, x'_r) dove $t'_r = t'_e + \delta t'$ e $x'_r = v \delta t'$. Osserviamo però che x'_r è anche l'origine di S vista in S'. Se x'_0 è la coordinata dell'origine di S al tempo t' = 0 si ha che $x'_r = x'_0 ut'_r$.

Mettendo tutto insieme

$$\delta t' = \frac{x_0' - ut_e'}{u + v}.$$

Consideriamo adesso due emissioni (1 e 2), una a $t_e'=0$ e $t_e'=T$. Chiaramente $\Delta t_e'=T$, mentre

$$\Delta t'_r = (T + \delta t'(T)) - (0 + \delta t'(0)) =$$

$$= T + \frac{x'_0 - uT}{u + v} - \frac{x'_0}{u + v} =$$

$$= T \left(1 - \frac{u}{u + v}\right) =$$

$$= T \frac{v}{u + v}.$$

Applichiamo adesso una trasformazione di Lorenz per passare al sistema S:

$$\Delta t_r' = \gamma (\Delta t_r - u \underbrace{\Delta x_r}_{=0}) = \gamma \Delta t_r,$$

quindi

$$\Delta t_r = \frac{T}{\gamma} \frac{v}{u+v}.$$

Consideriamo ora il caso di onde luminose (v = c)

$$\frac{1}{\Delta t_r} = \nu = \nu' \gamma \frac{u+c}{c} = \sqrt{\frac{1+\beta(u)}{1-\beta(u)}} \nu'.$$

Per il principio di relatività, se S' si stesse allontanando e S fosse la sorgente troviamo

$$\nu' = \sqrt{\frac{1 - \beta(u)}{1 + \beta(u)}} \nu.$$

Possiamo riassumere entrambe le formule in

$$\nu_{\rm ricevuta} = \sqrt{\frac{1+\beta}{1-\beta}}\nu_{\rm emessa}$$

10.3 Particelle

Definizione 10.19 (Elettron-Volt). Definiamo l'elettron-volt come

$$eV = 1.6 \cdot 10^{-19} \text{ J}.$$

Quando lavoriamo in questo sistema possiamo misurare la quantità di moto in eV/c e la massa in eV/c^2 .

Definizione 10.20 (Unità naturali).

Può essere comodo porre c=1 per semplificare le formule. In queste unità di misura

$$[Energia] = [Quantità di moto] = [Massa].$$

10.4 Elettro-Magnetismo

Ricordiamo la Forza di Lorentz

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Esempio 10.21.

Consideriamo un filo entro il quale scorre una corrente I. Vicino al filo abbiamo una carica q<0 che si muove a velocità v_0 parallela al filo e in direzione opposta a I Il campo magnetico vale

$$\vec{B} = \frac{1}{4\pi\varepsilon_0 c^2} \frac{2\vec{I} \times \hat{r}}{r},$$

da cui, se il filo è complessivamente neutro,

$$\vec{F} = q\vec{v}_0 \times \vec{B} = \frac{1}{4\pi\varepsilon_0c^2} \frac{2qIv_0}{r}.$$

Mettiamoci ora in un sistema dove q ha velocità nulla. Abbiamo una forza di Lorentz?

${\bf Parte~III}\\ {\bf Appendice}$

Appendice A

Richiami matematici

A.1 Derivate parziali e Jacobiane

Da una relazione f(x,y,z)=0 possiamo ricavare x=x(y,z) e y=y(x,z). Possiamo dunque sviluppare i differenziali

$$dx = \frac{\partial x}{\partial y} \Big|_{z} dy + \frac{\partial x}{\partial z} \Big|_{y} dz$$
$$dy = \frac{\partial y}{\partial x} \Big|_{z} dx + \frac{\partial y}{\partial z} \Big|_{x} dz.$$

Proposizione A.1 (Proprietà delle derivate parziali).

Valgono le seguenti proprietà, dette dell'inversa e ciclicità rispettivamente:

$$\left. \frac{\partial x}{\partial y} \right|_z = \left(\frac{\partial y}{\partial x} \right|_z \right)^{-1}, \qquad \left. \frac{\partial x}{\partial y} \right|_z \left. \frac{\partial y}{\partial z} \right|_x \left. \frac{\partial z}{\partial x} \right|_y = -1.$$

Dimostrazione.

Considerando le espressioni date sopra e sostituiendo dy dentro lo sviluppo di dx ricaviamo l'equazione

$$\left(1-\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial x}\right|_z\right)dx=\left(\left.\frac{\partial x}{\partial y}\right|_z\frac{\partial y}{\partial z}\right|_x+\left.\frac{\partial x}{\partial z}\right|_y\right)dz.$$

Se fissiamo z il membro di sinistra non cambia, mentre quello di destra risulta nullo (dz = 0). Poiché questo è vero anche per $dx \neq 0$ necessariamente ricaviamo

$$1 = \left. \frac{\partial x}{\partial y} \right|_{z} \left. \frac{\partial y}{\partial x} \right|_{z}$$

che è la proprietà dell'inversa.

Avendo mostrato questo ricaviamo che il membro di sinistra è sempre nullo, anche per $dz \neq 0$, quindi segue l'equazione

$$\frac{\partial x}{\partial y}\Big|_{z}\frac{\partial y}{\partial z}\Big|_{x} + \frac{\partial x}{\partial z}\Big|_{y} = 0,$$

la quale corrisponde alla proprietà di ciclicità.

Consideriamo le seguenti relazioni

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Poniamo

$$\frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

 $Osservazione \ {\rm A.2} \ ({\rm Jacobiane\ notevoli}).$

Si ha che

$$\frac{\partial(x,y)}{\partial(x,y)} = 1, \quad \frac{\partial(x,x)}{\partial(u,v)} = 0, \quad \frac{\partial(x,y)}{\partial(u,v)} = -\frac{\partial(y,x)}{\partial(u,v)} = \frac{\partial(-x,y)}{\partial(u,v)}.$$

Inoltre

$$\frac{\partial(x,y)}{\partial(u,y)} = \left.\frac{\partial x}{\partial u}\right|_{y}, \quad \frac{\partial(x,u)}{\partial(u,v)} = \frac{\partial(x,u)}{\partial(r,s)}\frac{\partial(r,s)}{\partial(u,v)}, \quad \frac{\partial(x,y)}{\partial(u,v)} = \left(\frac{\partial(u,v)}{\partial(x,y)}\right)^{-1}.$$

A.2 Differenziali esatti

Ricordiamo che una forma $\sum A_i dx_i$ è chiusa quando per ogni coppia i, j

$$\frac{\partial A_j}{\partial x_i} = \frac{\partial A_i}{\partial x_j}.$$

Se il dominio è semplicemente connesso allora questa condizione caratterizza anche le forme esatte.

Proposizione A.3 (Esattezza tramite Pfaff).

 $Sia \sum_{i} A_{i} dx_{i}$ una forma. Se l'equazione di Pfaff

$$\sum_{i} A_i dx_i = 0$$

è integrabile¹ allora la forma è chiusa ed esiste $u(x_1, \dots, x_n)$ tale che $\sum uA_i dx_i$ è esatta.

Dimostrazione.

Sia $\{F=0\}$ l'equazione del luogo dove vale l'equazione Pfaff. Segue che

$$dF = \sum_{i} \frac{\partial F}{\partial x_i} dx_i = 0 = \sum_{i} A_i dx_i,$$

esiste dunque u tale che

$$\frac{\partial F}{\partial x_i} = u(x_1, \cdots, x_n) A_i,$$

da cui derivando

$$\frac{\partial}{\partial x_i}(uA_j) = \frac{\partial^2 F}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i}(uA_i),$$

cioè $\sum_{i} u A_{i} dx_{i}$ è chiusa.

¹cioè i punti che la verificano sono descrivibili tramite una equazione $F(x_1, \dots, x_n) = cost$.

Fatto A.4 (Condizione di integrabilità).

Se per ogni terna i, j, k di indici distinti vale

$$A_k \left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j} \right) + A_j \left(\frac{\partial A_i}{\partial x_k} - \frac{\partial A_k}{\partial x_i} \right) + A_i \left(\frac{\partial A_k}{\partial x_j} - \frac{\partial A_j}{\partial x_k} \right) = 0$$

allora $\sum A_i dx_i = 0$ è integrabile.

Osservazione A.5.

Un sistema è integrabile se nell'intorno di un punto P esistono infiniti punti non raggiungibili tramite percorsi su cui vale $\sum_i A_i dx_i = 0$ (ipersuperficie ha dimensione minore dello spazio ambiente).

Segue che se posso raggiungere ogni punto rispettando l'equazione allora non avevamo integrabilità $\,$

Esempio A.6.

Consideriamo l'equazione ydx + dy + dz = 0 e passiamo da (0,0,0) a (a,b,c):

- Variamo solo la x (dy = dz = 0). Poiché y = 0 e non cambia l'equazione è rispettata e passiamo da (0,0,0) a $(x_0,0,0)$ per un qualsiasi x_0 .
- Fissiamo $x = x_0$ (dx = 0) e muoviamoci in modo tale che dy = dz (lungo una diagonale) e così passiamo da $(x_0, 0, 0)$ a $(x_0, b, -b)$.
- Fissiamo y = b (dy = 0) e muoviamoci in modo che dz = -bdx. Passiamo da $(x_0 + (a x_0), b, -b + (a x_0)(-b))$. Se avevamo scelto x_0 in modo tale che $-b + (a x_0)(-b) = c$ allora abbiamo finito.

A.3 Trasformazione di Legendre

Sia F(x,y) con $dF = udx + vdy^2$ e supponiamo di voler riformulare l'espressione in termini di u e y. Definiamo

$$G(u, y) = F - ux$$

e notiamo che

$$dG = dF - udx - xdu = udx + vdy - udx - xdu = vdy - xdu,$$

cioè G effettivamente dipende esplicitamente solo da u e y.

A.4 Regole di Prostaferesi per funzioni trigonometriche iperboliche

Valgono le seguenti identità

$$\sinh(a \pm b) = \sinh a \cosh b \pm \cosh a \sinh b$$

$$\cosh(a \pm b) = \cosh a \cosh b \pm \sinh a \sinh b$$

$$\tanh(a \pm b) = \frac{\tanh a \pm \tanh b}{1 \pm \tanh a \tanh b}$$

 $^{{}^{2}\}operatorname{cioè}\,u=\left.\frac{\partial F}{\partial x}\right|_{y}\,\mathrm{e}\,\,v=\left.\frac{\partial F}{\partial y}\right|_{x}.$

Appendice B

Formulario

A questo link potete trovare un formulario per il corso redatto l'anno scorso (22/23)da Andrea Rocca e Alessio Sgubin:

https://poisson.phc.dm.unipi.it/~rocca/materiali/Fisica3.pdf