Espaces préhilbertiens réels

Dans tout le chapitre, E est un espace vectoriel sur \mathbb{R} .

I. Généralités

I.1. Produit scalaire

Définition. Une application $\varphi: E \times E \longrightarrow \mathbb{R}$ est appelée un produit scalaire sur E si

 $\circ \varphi$ est bilinéaire : pour tout $(x, y, z) \in E^3$ et tout $(\lambda, \mu) \in \mathbb{R}^2$,

$$\varphi(\lambda x + \mu y, z) = \lambda \varphi(x, z) + \mu \varphi(y, z)$$
 et $\varphi(z, \lambda x + \mu y) = \lambda \varphi(z, x) + \mu \varphi(z, y)$

- $\circ \varphi \ est \ sym \'etrique : \ \forall (x,y) \in E^2 \ \varphi(x,y) = \varphi(y,x);$
- $\circ \ \forall x \in E \quad \varphi(x,x) \geqslant 0$;
- $\circ \ \forall x \in E \quad (\varphi(x, x) = 0 \Longrightarrow x = 0_E).$

Définition. On appelle espace préhilbertien réel tout couple (E, φ) constitué d'un espace réel E et d'un produit scalaire φ sur E; on dit que c'est un espace euclidien si de plus E est de dimension finie.

Dans toute la suite, E est un espace préhilbertien réel; le produit scalaire de deux vecteurs x et y est noté (x|y), et, pour tout $x \in E$, on pose $||x|| = \sqrt{(x|x)}$.

I.2. Propriétés

Proposition I.1. Pour tout $(x,y) \in E^2$, on a

Théorème I.2 (Inégalité de Cauchy-Schwarz). Pour tout couple (x, y) de vecteurs de E, $|(x|y)| \le ||x|| ||y||$ avec égalité si et seulement si (x, y) est liée.

Théorème I.3. Pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$.

Théorème I.4. L'application $\| \|$ définit une norme d'espace vectoriel sur E.

I.3. Expression analytique en dimension finie

Proposition I.5. Soit E un espace euclidien, et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Pour tout $(i,j) \in [1,n]^2$, posons $a_{ij} = (e_i|e_j)$; soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$. Alors, si $x = \sum_{i=1}^n x_i e_i$ et $y = \sum_{i=1}^n y_i e_i$ sont deux vecteurs de E, on a

$$(x|y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j = {}^{t} X A Y$$

I.4. Représentation des formes linéaires

Proposition I.6. Soit E un espace euclidien. Pour toute forme linéaire φ sur E, il existe un et un seul vecteur $a \in E$ tel que $\forall x \in E$ $\varphi(x) = (a|x)$.

II. Produits scalaires usuels

II.1. Produit scalaire canonique sur \mathbb{R}^n

Proposition II.1. L'application $((x_1, \ldots, x_n), (y_1, \ldots, y_n)) \longmapsto \sum_{k=1}^n x_k y_k$ définit un produit scalaire sur \mathbb{R}^n .

 $L'application (A, B) \longmapsto \operatorname{tr}(A^{\top}B)$ définit un produit scalaire sur $\mathcal{M}_{p,q}(\mathbb{R})$.

II.2. L'espace $\ell^2(\mathbb{R})$

Définition. Une suite réelle $x=(x_n)_{\in\mathbb{N}}$ est dite **de carré sommable** si la série $\sum x_n^2$ converge. L'ensemble des suites réelles de carré sommable est noté $\ell^2(\mathbb{R})$.

Proposition II.2. Si $x = (x_n)_{\in \mathbb{N}}$ et $y = (y_n)_{\in \mathbb{N}}$ sont deux suites de $\ell^2(\mathbb{R})$, alors la série $\sum x_n y_n$ converge absolument.

Théorème II.3. L'ensemble $\ell^2(\mathbb{R})$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. L'application $(x,y) \longmapsto \sum_{n=0}^{+\infty} x_n y_n$ définit un produit scalaire sur $\ell^2(\mathbb{R})$.

II.3. L'espace $L^2(I,\mathbb{R})$

Définition. Soit I un intervalle de \mathbb{R} non réduit à un point. Une fonction f de I dans \mathbb{R} est dite **de carré intégrable** si elle est continue par morceaux sur I et si f^2 est intégrable sur I. L'ensemble des fonctions **continues** et de carré intégrable sur I sera noté $L^2(I,\mathbb{R})$.

Proposition II.4. Si f et g sont deux fonctions de $L^2(I,\mathbb{R})$, alors leur produit fg est intégrable sur I.

Théorème II.5. L'ensemble $L^2(I,\mathbb{R})$ est un sous-espace vectoriel de $C^0(I,\mathbb{R})$. L'application $(f,g) \longmapsto \int_I f(t)g(t) dt$ définit un produit scalaire sur $L^2(I,\mathbb{R})$.

III. Orthogonalité

III.1. Vecteurs orthogonaux

Définition. Dans un espace préhibertien réel, on dit que deux vecteurs x et y sont **orthogonaux** si (x|y) = 0. On dit qu'une famille $(x_i)_{i \in I}$ de vecteurs est **orthogonale** si les vecteurs x_i sont deux à deux orthogonaux; on dit que la famille est **orthonormale** si elle est orthogonale et si, pour tout $i \in I$, $||x_i|| = 1$.

Proposition III.1. Toute famille orthogonale de vecteurs non nuls est libre.

Proposition III.2 (Pythagore). Si la famille finie $(x_1, ..., x_n)$ est orthogonale, alors $\left\|\sum_{i=1}^n x_i\right\|^2 = \sum_{i=1}^n \|x_i\|^2$.

III.2. Bases orthonormales

Théorème III.3 (Orthogonalisation de Schmidt). Soit (x_1, \ldots, x_n) une famille libre de vecteurs de E. Les conditions :

$$y_1 = x_1;$$

$$\forall p \in [2, n] \quad y_p = x_p - \sum_{k=1}^{p-1} \frac{(y_k | x_p)}{\|y_k\|^2} y_k$$

définissent une famille (y_1, \ldots, y_n) orthogonale, vérifiant, pour tout $p \in [1, n]$, $\text{Vect}(y_1, \ldots, y_p) = \text{Vect}(x_1, \ldots, x_p)$. En particulier, si (x_1, \ldots, x_n) est une base de E, alors (y_1, \ldots, y_n) est une base orthogonale.

Le procédé s'étend naturellement pour orthogonaliser une suite $(x_n)_{n\in\mathbb{N}}$ libre.

Théorème III.4. Soit E un espace euclidien. Alors:

- \bullet E admet des bases orthonormales;
- toute famille orthonormale (e_1, \ldots, e_p) de E peut être complétée en une base orthonormale $(e_1, \ldots, e_p, e_{p+1}, \ldots, e_n)$ de E.

Proposition III.5. Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base **orthonormale** de l'espace euclidien E. Alors :

$$\triangleright$$
 si $x \in E$ et $x = \sum_{i=1}^{n} x_i e_i$, on a $x_i = (e_i | x)$ pour tout $i \in [1, n]$;

$$\Rightarrow$$
 si de plus $y = \sum_{i=1}^{n} y_i e_i \in E$, on $a(x|y) = \sum_{i=1}^{n} x_i y_i$ et donc $||x||^2 = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (e_i|x)^2$.

 \triangleright si $f \in \mathcal{L}(E)$ a pour matrice $A = (a_{ij})$ dans la base \mathcal{B} , alors, pour tout $(i, j) \in [1, n]^2$, on a $a_{ij} = (e_i | f(e_j))$; en particulier, $\operatorname{tr} f = \sum_{i=1}^n (e_i | f(e_i))$.

III.3. Sous-espaces orthogonaux

Définition. On dit que deux sous-espaces F et G sont **orthogonaux** si, pour tout $(x,y) \in F \times G$, on a (x|y) = 0.

Proposition III.6. Si les sous-espaces F_1 , F_2 ,..., F_p sont deux à deux orthogonaux, alors leur somme est directe.

Définition. Si A est une partie de E, on appelle **orthogonal de** A l'ensemble $A^{\perp} = \{x \in E \mid \forall y \in A \ (x|y) = 0\}.$

Proposition III.7. Pour toute partie A de E, A^{\perp} est un sous-espace de E. Si F est un sous-espace de E, alors F^{\perp} est un sous-espace orthogonal à F; et un sous-espace G est orthogonal à F si et seulement si $G \subset F^{\perp}$.

III.4. Projections orthogonales

Définition. Soit F un sous-espace de E. Si $F \oplus F^{\perp} = E$, on appelle **projection** orthogonale sur F, la projection sur F de direction F^{\perp} .

Proposition III.8. Si $F \oplus F^{\perp} = E$, et si p est la projection orthogonale sur F, alors, pour tout $x \in E$,

- $\bullet ||p(x)|| \leqslant ||x||;$
- $\forall y \in F \ \|x p(x)\| \le \|x y\|$ et $donc \ \|x p(x)\| = \min\{\|x y\|; y \in F\} = d(x, F).$

Théorème III.9. Dans E préhilbertien réel, soit F un sous-espace de dimension finie, et $\mathcal{B} = (e_1, \dots, e_a)$ une base orthonormale de F. Alors :

- F^{\perp} est un supplémentaire de F dans E;
- soit p la projection orthogonale sur F; on a $p(x) = \sum_{i=1}^{q} (e_i|x) e_i$ pour tout $x \in E$.

Corollaire III.10. Si F est un sous-espace de dimension finie de l'espace E, alors $(F^{\perp})^{\perp} = F$.