



### ADDIS ABABA UNIVERSITY

# **DEPARTMENT OF MATHEMATICS**

Thursday, January **15, 2008**Time allowed **3** hours

## APPLIED MATHEMATICS I (MATH 231B)

### MID EXAM

| Name:       |          |  |  |
|-------------|----------|--|--|
| ID:         |          |  |  |
| Instructor' | 's Name: |  |  |

MAKE SURE THAT THERE ARE 10 PROBLEMS IN PART I, 6 PROBLEMS IN PART II A AND 7 PAGES INCLUDING THIS COVER PAGE.

DO **NOT** USE A CALCULATOR AND **NOT** USE YOUR OWN ROUGH PAPERS, WE WILL PROVIDE ENOUGH PAPERS.

#### FOR INSTRUCTORS' USE

| PARTI |   | TOTAL |   |   |   |   |  |
|-------|---|-------|---|---|---|---|--|
|       | 1 | 2     | 3 | 4 | 5 | 6 |  |
|       |   |       |   |   |   |   |  |
|       |   |       |   |   |   |   |  |
|       |   |       |   |   |   |   |  |

#### PART I. WRITE YOUR SHORT AND SIMPLIFIED ANSWER ON THE SPACE PROVIDED. (1.5 points each)

1. If A = (1, -2, 3) and B = (3, 1, 2) are vectors in  $\mathbb{R}^3$ , then find scalars x and y such that  $\mathbf{C} = x\mathbf{A} + y\mathbf{B}$  is a non-zero vector with  $\mathbf{C} \cdot \mathbf{B} = 0$ .

- **2.** Suppose the angle between two vectors **A** and **B** in  $\mathbb{R}^3$  be  $\frac{\pi}{3}$  and  $\|\mathbf{A}\| = 2$ ,  $\|\mathbf{B}\| = 1$ . If  $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ , then  $\|\mathbf{A} + \mathbf{B} - \mathbf{C}\| =$
- 3. Let A be an  $n \times n$  matrix such that  $A^2 = A$  and  $A \neq I_n$ . Then det(A) =
- **4.** Find the value(s) of  $\lambda$  for which  $\mathbf{A} = \begin{pmatrix} \lambda 3 & 0 & 3 \\ 0 & \lambda + 2 & 0 \\ -5 & 0 & \lambda + 5 \end{pmatrix}$  is invertible.
- 5. If  $f(x) = \begin{cases} 2 & , & x \le -1 \\ ax + b & , -1 < x < 3 \text{ is continuous on } \mathbf{R}, \text{ then } a = \underline{\hspace{1cm}} \text{ and } b = \underline{\hspace{1cm}}$ 6.  $\lim_{x \to \infty} \sqrt{x^2 3x + 2} \sqrt{x^2 + 1} = \underline{\hspace{1cm}}$
- 7.  $\lim_{x \to 0^{-}} (\sqrt{9-x} [x+1])$
- 8. Find the distance from the point (3,-2,-1) to the line x=2-3t, y=4+2t, z=3-5t t  $\in \mathbb{R}$ .
- **9.** Find the area of the triangle with vertices  $P_1(2,-2,1)$ ,  $P_2(-1,0,3)$  and  $P_3(5,-3,4)$
- **10.** Let  $f(x) = \frac{\sqrt{x+c^2}-c}{x}$  for c > 0. Find f(0) so that f is continuous on  $\mathbf{R}$ .

#### PART II. SHOW ALL THE NECESSARY STEPS IN THE FOLLOWING WORKOUT PROBLEMS.

1. Discuss the consistency or inconsistency and if the system is consistent find the solution set.

$$x + 2y - 3z = 4$$
  
 $2x + 4y - 6z = 8$  (5 points)  
 $3x + 6y - 9z = 12$ 

2. Find all the eigenvalues and corresponding eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 6 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

O, ATERERA

(5 points)

3. Prove Using the  $(\varepsilon - \delta)$  definition of limit that  $\lim_{x \to 2} 7x + 3 = 17$ . (4 points)



**5.** Find the equation of the plane containing the point P(0,4,-7) and the line with parametric equation x = 1 + t, y = -3 + 2t, z = -2 - t. (4 points)

**6.** Find the inverse of the matrix 
$$\mathbf{A} = \begin{pmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{pmatrix}$$
. (4 **points**)