Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 9** 23/01/2025

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

2 Materiais

- $\bullet\,$ 1 capacitor de 100 nF
- $\bullet~1$ resistor de $1\mathrm{k}\Omega$
- National Instruments Elvis II (Elvis)

3 Procedimentos

Primeiro é feita a análise dos componentes usando o multímetro e medidor de impedância do Elvis. Os resultados são dispostos na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R	$1 \mathrm{k}\Omega$	$0.989 \mathrm{k}\Omega$	1.1
С	100nF	107.3nF	7.3

Tabela 1: Valores dos componentes

Em seguida, esses componentes são usados para montar o circuito exposto na Figura 1.

Figura 1: Disposição do Circuito 1

O gerador de funções do Elvis é configurado para gerar uma onda triangular com $2V_{pp}$, offset zero e frequência de 1kHz. Assim, é gerada a onda do Gráfico 1.

Gráfico 1: Onda Triangular

Em seguida, vamos calcular a resposta do sistema para os harmônicos de frequências 1, 3, 5, 7, 9, 11, 13, 15, 17 e 19 kHz.

Agora experimentalmente são medidas as mesmas respostas, que seguem nos Gráficos 2 a

11.

Gráfico 2: Resposta para Frequência 1kHz

Gráfico 3: Resposta para Frequência 3kHz

Gráfico 4: Resposta para Frequência 5kHz

Gráfico 5: Resposta para Frequência 7kHz

Gráfico 6: Resposta para Frequência 9kHz

Gráfico 7: Resposta para Frequência 11kHz

Gráfico 8: Resposta para Frequência 13kHz

Gráfico 9: Resposta para Frequência 15kHz

Gráfico 10: Resposta para Frequência 17kHz

Gráfico 11: Resposta para Frequência 19kHz

4 Conclusão

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.