

Helicity Asymmetry E for $\gamma p \rightarrow \pi^0 p$ in the Resonance Region

Chan Kim

The George Washington University

Dissertation Defense Nov. 23, 2021

Overview

- 1 Motivation
- CLAS g9a/FROST Experiment
- 3 Event Selection
- 4 Application of Machine Learning
- 5 Helicity Asymmetry E
- 6 Result

Motivation

Baryon Spectroscopy

• Baryon Spectroscopy is the study of excited nucleon states.

- Most existing data from $N\pi$
- Current $N\gamma$ data only up to 1.7 GeV
- Missing resonance problem above 1.7 GeV

Theoretical Predictions

- ullet CQMs fairly comparable to experimental results in W < 1.7 GeV
- CQMs have different effective degrees of freedom → different predictions of resonances
 - One Gluon Exchange model, Goldstone boson exchange model, quark-diquark model, instanton exchange model, etc.

- \bullet LQCD N^* resonance spectrum calculated using unphysical π^0 mass of 396 MeV
 - Quantitatively incomparable to experimental results or CQM results.

Photoproduction Amplitudes: Helicity

• Eight possible helicity states $(2 \times 2 \times 2)$: two helicity states from each photon (λ_k) , initial proton (λ_1) , and recoiling proton (λ_2) .

$$\lambda_k \in \left\{ \pm 1 \right\}, \qquad \lambda_1 \in \left\{ \pm \frac{1}{2} \right\},$$

$$\lambda_q \in \left\{ 0 \right\}, \qquad \lambda_2 \in \left\{ \pm \frac{1}{2} \right\}.$$

ullet The total initial helicity states $\lambda_i=\lambda_k-\lambda_1$ and final helicity states $\lambda_f=\lambda_q-\lambda_2$.

$$\lambda_i \in \left\{ \pm \frac{1}{2}, \pm \frac{3}{2} \right\}, \qquad \lambda_f \in \left\{ \pm \frac{1}{2} \right\}$$

• From *T Matrix* to *Helicity Amplitudes* of $\vec{\gamma}\vec{p} \to \pi^0 p$:

$$\langle \mathbf{q} \ m_{s'} | \ T \ | \mathbf{k} \ m_s \ \lambda \rangle = \left[\langle m_{s'} | \mathbf{J} | m_s \rangle \right] \cdot \epsilon_{\lambda}(\mathbf{k})$$

$$H_i(\theta) \equiv \langle \lambda_2 | \mathbf{J} | \lambda_1 \rangle$$

4 Complex Helicity Amplitudes:

$$H_{1}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| +\frac{1}{2} \right\rangle$$

$$H_{2}(\theta) = \left\langle +\frac{1}{2} \middle| \mathbf{J} \middle| +\frac{1}{2} \right\rangle$$

$$H_{3}(\theta) = \left\langle +\frac{3}{2} \middle| \mathbf{J} \middle| -\frac{1}{2} \right\rangle$$

$$H_{4}(\theta) = \left\langle +\frac{1}{2} \middle| \mathbf{J} \middle| -\frac{1}{2} \right\rangle$$

Polarization Observables

- 1^{st} : s-channel with the intermediate resonance state (N^* or Δ^*) 2nd: u-channel with a resonance
- 3rd: t-channel where a vector meson is exchanged 4th & 5th: Born terms - exchanged particle is a nucleon
- 8 helicity states \rightarrow 8 complex helicity amplitudes \rightarrow 16 measurable observables
 - a real part and a phase for each complex helicity amplitude

Photon	Target				Recoil			Target + Recoil			
	-	-	-	-	x'	y'	z'	x'	x'	z'	z'
	-	X	У	Z	-	-	-	X	Z	X	Z
unpolarized	σ_0		T			Р		$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
linearly pol. circular pol.	-Σ	H F	(<i>-P</i>)	− <i>G</i> − <i>E</i>	$O_{x'} - C_{x'}$	(-T)	$O_{z'} - C_{z'}$	$(-L_{z'})$	$(T_{z'})$	$(-L_{x'})$	(-T)

Helicity Asymmetry E

Double polarization observable E is the helicity asymmetry of the cross section:

$$E=rac{\sigma_{1/2}-\sigma_{3/2}}{\sigma_{1/2}+\sigma_{3/2}}$$
 for $rac{1}{2}$ & $rac{3}{2}$ are total helicity states

• $\frac{d\sigma}{d\Omega}$ of polarized beam & polarized target for E (theo. & exp.):

$$\left(\frac{d\sigma}{d\Omega}\right)_{\frac{1}{2},\frac{3}{2}} = \frac{d\sigma_0}{d\Omega}(1\mp (P_zP_\lambda)_{\frac{1}{2},\frac{3}{2}}E) \qquad \qquad \left(\frac{d\sigma}{d\Omega}\right)_{\frac{1}{2},\frac{3}{2}} = \frac{N_{\frac{1}{2},\frac{3}{2}}}{A\cdot F\cdot \rho\cdot \Delta x_i}$$

E is measured via:

$$E = \left[rac{1}{D_f}
ight] \left[rac{1}{P_z P_\lambda}
ight] \left[rac{N_{rac{1}{2}}-N_{rac{3}{2}}}{N_{rac{1}{2}}+N_{rac{3}{2}}}
ight]$$

 $D_f = \text{dilution factor}$ $P_z = \text{Polarization of target in } \hat{z}$ $P_{\lambda} = \text{Polarization of beam}$ $N_{\frac{3}{2},\frac{1}{2}}=\#$ of events

Experiment

JLab Continuous e⁻ Beam Accelerator (6 Gev, before upgrade to 12 GeV)

Electron Beam Energy (GeV)	Photon Beam Polarization	# of Events (M)	Observable
1.645	Circular	~ 1000	E
2.478	Circular	~ 2000	E
2.751	Linear	\sim 1000	G
3.538	Linear	~2000	G
4.599	Linear	~3000	G

Hall B g9a/FROST run from $12/2007 \sim 2/2008$

Circularly Polarized Photon Beam

Linearly Polarized Electron Beam

Circularly Polarized Photon Beam

Polarization transfer:

$$P(\gamma) = P(e) \frac{4x - x^2}{4 - 4x + 3x^2}$$

$$x = \frac{k}{E_0} = \frac{\text{photon energy}}{\text{incident electron energy}}$$

FROzen Spin Target (FROST) system

(A) Primary head exchanger, (B) 1 K heat shield, (C) Holding coil, (D) 20 K heat shield, (E) Outer vacuum cup, (F) Polyethylene target, (G) Carbon target, (H) Butanol target, (J) Target insert, (K) Mixing chamber, (L) Microwave waveguide, and (M) Kapton cold seal

• Dynamic Nuclear Polarization technique:

$$P = \tanh\left(\frac{\vec{\mu} \cdot \vec{B}}{kT}\right)$$

• Polarization: +82% & -85%

• Temperature: 28∼30 mk

• Spin relaxation time: 1600 hrs for +Pol. 2800 hrs for -Pol

1800 hrs for -Pol

Butanol & Carbon Targets

- \circ Butanol target (C_4H_9OH) consists of polarized hydrogen (free-nucleons) & unpolarized carbon and oxygen (bound-nucleons)
- o Fermi motion of bound-nucleons ightarrow broader missing mass M_{π^0} distribution
- Carbon target consists of unpolarized bound-nucleon
- Scale carbon target events & subtract from butanol target events

Event Selection

Butanol z-vertex selection range

- Butanol selection range z = [-3, 3] cm
- Butanol target thickness 5.28 cm
- ullet Raw helicity asymmetry E starts to diverge from the expected value at z=-3,3 cm
 - $-E_{\gamma} \in [0.84, \ 1.27] \ {
 m GeV}$
 - $-\cos\theta_{cm} \in [-0.97, 0.0]$
 - -E expected to be negative by PWA pred.
 - -absence of free nucleon outside $z=-3,3\ \mathrm{cm}$
- \bullet M_X^2 mean starts to shift from $M_{\pi^0}^2$ at $z=-3,3~{\rm cm}$

E. = [0.35, 0.40] B = [4.4, 22.2]

Carbon z-vertex selection range

- Carbon selection range z = [5, 8] cm
- Carbon target thickness 0.12 cm

- Poor tracking in forward angles
 - ightarrow dispersed carbon events in z = [5, 8] cm
- Hydrogen contamination
 - \rightarrow sharp peak in M_X^2 distribution
 - \rightarrow potential ice formation in z = [6, 7.5] cm

- Could have tighter selection range
 - → poor fitting results

 $E_v = [0.35, 0.401]$ $\theta = [30.8, 39.31]$

Binning

- • Separate binning for $E_e=1.6$ GeV & $E_e=2.4$ GeV data sets -different π^0 concentrations
- \bullet Subset of events (red vertical lines) used for determining bins –to ensure evenly spaced π^0 events throughout bins
- Each bin contains approx. the same number of events.

ullet $E_e=1.6~{
m GeV}$ data $_{
m -Higher}$ π^0 vs background ratio

- $E_e = 2.4$ GeV data
 - -Lower π^0 vs background ratio
 - $-\pi^0$ only 5% of total
 - -Tighter selection range

- Select a subset of events w/ the highest ratio of free nucleon events / bound nucleon events.
- Only this subset of events is used for the final computation of E.
- Different free nucleon selection range for each bin.

⁻determined during scale factor calculations

Other Event Selection steps

- Inactive CLAS regions
- Energy Loss and Momentum Corrections
- Low Momentum Selection
- Inefficient Time-of-Flight paddles
- Particle ID: Proton selection
- Photon identification
- Transverse event vertex selection

Application of Machine Learning

Target classification

- Randomly select events with z-vertex positions in close proximity of known target location
- Ratio of butanol/carbon training data = Ratio of butanol/carbon testing data
 - Butanol ∈ [-3.3, 3.3]cm
 - Carbon \in [5.5, 7.0]cm
 - Polythene ∈ [15.5, 17.0]cm
- Classified carbon events from butanol in z-vertex ∈ [2.5, 4.5]cm
- Some carbon events in polythene regions & Polythene events in the butanol region.

Hydrogen Contamination

- ullet Tight selection on carbon $M_{\pi_0}^2$ as ice
 - -Bound-nucleon (fermi p) \rightarrow broader m^2 distribution
 - -Sharper peaks from free-nucleon (ice) & Broad background from bound-nucleon (carbon)
- Randomly select carbon train data within:
 - -Classified as carbon events in previous target classification distribution
 - -Missing mass squared $\not\in [-\sigma,\sigma]$
 - -Z-vertex position \notin [6.5, 7.5]

Final Result of ML: ICE vs CARBON

[Result from USC for $\gamma p
ightarrow \pi^+ n$]

- ullet Classified ice events from Carbon target in z-vertex \in [6.0, 7.5]cm
- It is likely that ice was formed in the 20 K heat shield in between carbon and polythene targets.

Helicity Asymmetry E

Initial Scale Factor

 \bullet Bound nucleons \to Fermi momentum \to broader side-bands of M_X^2 distribution than free-nucleon events.

$$egin{aligned} E_{
ho 1, ext{bound}} &= \sqrt{m_p^2 +
ho_{ ext{Fermi}}^2}, \ M_{\pi^0}^2 &= (E_{\gamma} + m_{
ho 1} - E_{
ho 2})^2 - \ & (ec{
ho}_{\gamma} + ec{p}_{ ext{Fermi}} - ec{p}_2)^2. \end{aligned}$$

- \bullet [$\mu-2.0\sigma,~\mu-1.5\sigma$] for $E_e=1.6$ GeV
- ullet [peak $+ 1.0\sigma$, peak $+ 1.5\sigma$] for $\emph{E}_{e} = 2.4$ GeV
- χ^2 minimized to obtain initial scale factor:

$$\chi^{2} = \sum_{i} \frac{(N_{i}^{B} - \alpha N_{i}^{C})^{2}}{N_{i}^{B} + \alpha^{2} N_{i}^{C}},$$

$$N_{i}^{B} = \int_{\mu - 2\sigma}^{\mu - 1.5\sigma} n_{b} dm_{x}^{2},$$

$$N_{i}^{C} = \int_{\mu - 2\sigma}^{\mu - 1.5\sigma} n_{c} dm_{x}^{2},$$

First free proton peak extraction

- ullet Using initial scale factors, butanol M_X^2 distrib. are subtracted by scaled carbon M_X^2 distrib.
- The residuals are fitted with a Gaussian.
- \bullet peak $\pm 3\sigma$ of fitted Gaussian is set as start/end positions of free nucleon peaks

Discarded Bins

Final Scale Factor

- Using extracted free nucleon peak ranges, fitting ranges are determined.
- Both butanol and carbon free nucleon peaks fitted with a Gaussian

$$f(m_X^2) = A_1 \cdot \exp\left(-\frac{(m_{\scriptscriptstyle X}^2 - \mu_{pk})^2}{2\sigma_{pk}^2}\right) + f_{bnd}(m_{\scriptscriptstyle X}^2).$$

- Gaussian or 4th order polyn. to fit background:
- χ^2 minimized to obtain the scale factor:

$$\chi^2 = \sum_{i}^{N} \frac{[B_{bnd}(i) - \alpha \ C_{bnd}(i)]^2}{B_{bnd}(i) - \alpha^2 \ C_{bnd}(i)}$$

- (1) Scaled carbon M_X^2 distribution correctly represent butanol background events.
- (2) Angular dependence, causing discrepancies in M_X^2 distributions for butanol and carbon targets.
- (3,4) strong hydrogen contamination on carbon target where scaled carbon fails to correspond to butanol background events.

Second free proton peak extraction

- Using improved scale factors, butanol M_Y^2 distrib. are subtracted by scaled carbon M_Y^2 distrib.
- The residuals are fitted with a Gaussian.
- $peak \pm 3\sigma$ of fitted Gaussian are set as start/end positions of free nucleon peaks
- Extracted free nucleon ranges are used in the final M_Y^2 selection in event selection process.

Dilution Factor D_f

- D_f computed in the final free nucleon peak extraction regions.
- B_{bnd} obtained by integrating the fitting fn. that describes background of butanol M_X^2 distrib.
- B_{tot} obtained by multiplying the # of counts in each bin by the width of the bin. $D_f\big|_{\text{low lim}} = \frac{\text{free H in butanol}}{\text{total nucleon in butanol}} = \frac{10}{74} \cong 0.135$

$$D_f = \frac{B_{tot} - B_{bnd}}{B_{tot}},$$

Extraction of Helicity Asymmetry E

• Compute E from the events that lie within the extracted free nucleon peak regions:

$$E = \begin{bmatrix} \frac{1}{D_f} \end{bmatrix} \begin{bmatrix} \frac{1}{P_z P_\lambda} \end{bmatrix} \begin{bmatrix} \frac{N_1 - N_3}{\frac{1}{2} - N_3} \\ \frac{N_1 + N_3}{\frac{1}{2} - N_3} \end{bmatrix}$$

 $D_f=$ dilution factor $P_z=$ Polarization of target in \hat{z} $P_\lambda=$ Polarization of beam $N_{\frac{3}{3},\frac{1}{3}}=\#$ of events

 Statistical uncertainty sources: counting stats, target polarization, beam polarization, fitting routines used in scale factor and dilution factors.

$$\begin{split} \sigma_E^2 &= \sigma_{N_{1/2}}^2 \left(\frac{\partial E}{\partial N_{1/2}}\right)^2 + \ \sigma_{N_{3/2}}^2 \left(\frac{\partial E}{\partial N_{3/2}}\right)^2 + \ \sigma_{P_T}^2 \left(\frac{\partial E}{\partial P_T}\right)^2 + \ \sigma_{P_\gamma}^2 \left(\frac{\partial E}{\partial P_\gamma}\right)^2 + \ \sigma_{D_f}^2 \left(\frac{\partial E}{\partial D_f}\right)^2 \\ &= E^2 \left[\left(\frac{\sigma_{D_f}}{D_f}\right)^2 + \ \left(\frac{\sigma_{P_\gamma}}{P_\gamma}\right)^2 + \ \left(\frac{\sigma_{P_T}}{P_T}\right)^2 + \ \frac{4N_{1/2}N_{3/2}}{N_{tot}(N_{3/2} - N_{1/2})^2} \right], \end{split}$$

Results

$E_{\gamma} = [0.35, 1.6] \text{ GeV}$

- CBELSA experimental result $\gamma p \rightarrow \pi^0 p \rightarrow \gamma \gamma p$
- CBELSA data has more statistics in forward angles $\cos \theta_{cm} = [0.5, 1.0]$.
- FROST data has more statistics in $\cos \theta_{cm} = [-0.97, 0.25]$.
- PWA predictions from SAID, BnGa, and MAID.

- ∆(1232) becomes insignificant and more non-resonant terms contribute (u- and t-channel) at $E_{\gamma} \approx 0.5$ GeV.
- Oscillatory behaviors indicate the emergence of more resonances
- MAID only valid under $E_{\gamma} < 1.6 \text{ GeV}.$

$E_{\gamma} = [1.6, 2.4] \text{ GeV}$

- In $E_{\gamma} = [0.35, 1.92]$ GeV, SAID and BnGa show agreements with our results.
- In $E_{\gamma} = [1.92, 2.10]$ GeV, SAID starts to deviate.
- SAID is less model dependent than BnGa and more data-driven.
- Addition of our result into the SAID database will reduce PWA models' discrepancies.

New SAID solution - KI21

- Our result added to SAID database → new SAID prediction (KI21)
- Previous SAID solution (MA19) included CBELSA results.
- ullet Slight changes in SAID prediction starting at $E_{\gamma}=0.84$ GeV.

- Significant improvements starting at $E_{\gamma} \geq 1.79$ GeV.
- Fewer data points, but with lower stat.
 uncertainties than CBELSA
 - -More impacts on SAID predic-
 - tions.
 -Larger angular bin size to reduce
 - Larger angular bin size to reduce stat, uncertainty.

Future Works

- Momentum correction software rewrite for outgoing protons
 - -Possible cause for θ dependence of M_X^2 distributions.
 - -ELOSS assumes γ beams aligned with z-axis and no ϕ dependence.
 - -Momentum correction corrects ϕ dependence.
- Machine learning improvements
 - Extract training data separately in each angle and energy bin.
 - Regularization methods to avoid overfitting.
 - Bayesian Neural Network to quantify uncertainties in training data.

Thank you

BACK UP

Motivation BACK UP

γp channel - resonances overlap

- Most resonances' widths larger than spacing distances between each resonance
- ullet Second and third resonance region $E_{\gamma} pprox [0.5,\ 2.4]$ GeV
- Decay via strong interaction: $\tau \approx 10^{-24}$ sec & $\Gamma \approx 0.1 \sim 0.3$ GeV.

Constituent Quark Models (CQMs)

- Constituent quarks = valence quarks + gluons + sea quarks
- Many different CQMs postulate various forms of short-range interactions
 - One Gluon Exchange model, Goldstone boson exchange model, quark-diquark model, instanton exchange model. etc.
- ullet Fairly comparable to experimental results in $W \leq 1.7~{
 m GeV}$

- Different CQMs have different effective degrees of freedom (dof), causing different predictions of resonance states & parameters of resonances (mass, width, etc).
 - Fewer effective dof predicts lesser number of resonances.
 - Quark-diquark model predicts less, but still larger than experimentally found resonances
 - Experimental results to help configure correct effective dof

Lattice QCD

- Space-time continuum replaced by space-time lattice:
 - valence quarks, sea quarks, and gluons propagate along grids.
 - Quark fields q_n at every lattice site and gluon fields $U_{n\mu}$ at every lattice link.
- Physical quantities computed by path integrals using Monte Carlo simulation in the lattice.
- Quark masses used in LQCD bigger than actual quark masses.
 - Extrapolate to approximate to real values.
- N^* and Δ^* resonance spectrum calculated using unphysical π^0 mass of 396 MeV
 - Quantitatively incomparable to experimental results or CQM results, but qualitatively in some agreement.

Pion photoproduction cont.

	Composition	IG	<i>I</i> ₃	JPC	Mass (MeV)	Lifetime (s)	cτ (m)	Decay Modes	BR(%)
π^+	иā	1-	1	0-	139.57	2.6×10^{-8}	7.80	$\mu^+ + \nu_\mu$	99.9
								$e^+ + \nu_e$ $\pi^0 + e^+ + \nu_e$	1.24×10^{-4} 1.00×10^{-8}
π-	dū	1-	-1	0-	139.57	2.6×10^{-8}	7.80	$\frac{\mu^- + \overline{\nu_\mu}}{\mu^- + \overline{\nu_\mu}}$	99.9
								$e^{-} + \bar{\nu_{e}}$ $\pi^{0} + e^{-} + \bar{\nu_{e}}$	1.24×10^{-4}
π^0	ий or dd	1-	0	0-+	134.97	8.4×10^{-17}	25.1 × 10 ⁻⁹	$\frac{\pi^{\circ} + e^{\circ} + \nu_{e}}{2\gamma}$	1.00 × 10 ⁻⁸ 98.8
								$\gamma + e^- + e^+$	1.17×10^{-2}
								$2e^{-} + 2e^{+}$ $e^{-} + e^{+}$	3.34×10^{-5} 6.46×10^{-8}
								e + e	0.40 × 10

- ullet Long lifetime of charged pions $(2.6 \times 10^-8~s) o$ decay via weak interactions $(10^{-8} \sim 10^{-15}~s)$
- ullet π^0 short lifetime of 8.4 imes 10^{-17} s o electromagnetic decay
- \bullet No direct detections of π^0 in pion photoproduction experiments
- \bullet Two methods of reconstructing π^0
 - Measure 2γ and reconstruct π^0 CBELSA approach
 - Use kinematics of incident $\gamma,$ initial proton and recoiling proton to reconstruct π^0 Our approach

Photoproduction Amplitudes: CGLN

• Chew-Goldberger-Low-Nambu (CGLN) amplitudes:

$$\frac{d\sigma}{d\Omega} = \frac{q}{k} |\langle f | \mathcal{F}_{\lambda} | i \rangle|^2, \tag{1}$$

ullet \mathcal{F}_{λ} decomposed in to current operator ${f J}$ and photon pol. vector ${m \epsilon}_{\lambda_{\gamma}}$

$$\langle m_{s'} | \mathcal{F}_{\lambda} | m_s \rangle = \langle m_{s'} | \mathbf{J} | m_s \rangle \cdot \epsilon_{\lambda}(\mathbf{k}),$$
 (2)

ullet In terms of Pauli-spin matrices $oldsymbol{\sigma}$ and four CGLN amplitudes $\mathcal{F}_1,\ldots,\mathcal{F}_4$

$$\mathbf{J} = i\mathcal{F}_{1}\boldsymbol{\sigma} + \mathcal{F}_{2}\frac{(\boldsymbol{\sigma} \cdot \mathbf{q})(\boldsymbol{\sigma} \times \mathbf{k})}{qk} + i\mathcal{F}_{3}\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{qk}\mathbf{q} + \mathcal{F}_{4}\frac{\boldsymbol{\sigma} \cdot \mathbf{q}}{q^{2}}\mathbf{q},$$

$$\mathcal{F}_{\lambda} = \mathbf{J} \cdot \boldsymbol{\epsilon}_{\lambda}$$

$$= i\mathcal{F}_{1}\boldsymbol{\sigma} \cdot \hat{\boldsymbol{\epsilon}_{\lambda}} + \mathcal{F}_{2}(\boldsymbol{\sigma} \cdot \hat{\mathbf{q}})\boldsymbol{\sigma} \cdot (\hat{\mathbf{k}} \times \hat{\boldsymbol{\epsilon}_{\lambda}}) + i\mathcal{F}_{3}(\boldsymbol{\sigma} \cdot \hat{\mathbf{k}})(\hat{\mathbf{q}} \cdot \hat{\boldsymbol{\epsilon}_{\lambda}}) + i\mathcal{F}_{4}(\boldsymbol{\sigma} \cdot \hat{\mathbf{q}})(\hat{\mathbf{q}} \cdot \hat{\boldsymbol{\epsilon}_{\lambda}}).$$
(3)

Photoproduction Amplitudes: Multipoles

- CGLN amplitudes expressible in terms of two multipole amplitudes magnetic (M_{l+}) and electric (E_{l+}) amplitudes
 - I is the orbital angular momentum of the final state
- $M_{l\pm}$ and $E_{l\pm}$ as transition amplitudes caused by magnetic and electric multipole radiation.
 - For ex, E_{0+} is the transition amplitude initiated by electric dipole radiation which involves the final πN state to be in s-wave (I = 0).
 - M_{l-} and M_{l+} refers to transitions to the final πN state to be in p-wave (l=1) with the total angular momentum of J = 1/2 or J = 3/2
- Multipole amplitudes classified L and J of γ and πN :

Multipole	L	J	L_{γ}	Parity
E ₀₊	0	1/2	1	-
M_{1-}	1	1/2	1	+
M_{1+}	1	3/2	1	+
E_{1+}	1	3/2	2	+
E2-	2	3/2	2	+

CGLN amplitdues in terms of multipole amplitudes

$$\mathcal{F}_1 = \sum_{l=0}^{\infty} \left[IM_l^+ + E_l^+ \right] P_{l+1}'(x) + \left[(l+1)M_l^- + E_l^- \right] P_{l-1}'(x), \dots$$

• Multiole amplitudes in terms of CGLN amplitudes:

$$M_{l\pm} = \frac{1}{2} {1 \choose {l+1 \choose -\frac{1}{l}}} \int_{-1}^{+1} dx \left[\mathcal{F}_1 P_l(x) - \mathcal{F}_2 P_{l\pm}(x) - \mathcal{F}_3 \frac{P_{l-1}(x) - P_{l+1}(x)}{2l+1} \right], \dots$$

Partial Wave Analysis

ullet For single resonance: S-matrix element $s_l(k)$ to the phase shift δ_l by:

$$s_l(k) = e^{2i\delta_l} = \frac{1+i\tan(\delta_l)}{1-i\tan(\delta_l)} = \frac{E-E_0-i\Gamma/2}{E-E_0+i\Gamma/2}$$

• A resonance (spike in σ) corresponds to a pole position in a complex plane:

$$E=E_0-\frac{i\Gamma}{2}$$
.

• For multiple resonances contribute to a single cross section: K-matrix formalism:

$$S = 1 + iT = \frac{1 + iK}{1 - iK} \tag{4}$$

ullet' The resonances correspond to a sum of pole positions in the K-matrix which causes K-matrix elements to vary abruptly at these poles, leading to significant phase shifts:

$$K_{ij} = \sum_{\alpha}^{n} \frac{g_{\alpha i}(m)g_{\alpha j}(m)}{m_{\alpha}^{2} - m^{2}} + f_{ij}, \tag{5}$$

• $f_i j =$ non-resonant term , $m_{\alpha} =$ mass of resonances, $g_{\alpha i}$ resonance coupling to the initial state i. $g_{-i}^2(m) = m_{\alpha} \Gamma_{\alpha i}(m)$

$$g_{\alpha i}^{2}(m) = m_{\alpha} \Gamma_{\alpha i}(m) \tag{6}$$

$$\Gamma_{\alpha}(m) = \sum_{i} \Gamma_{\alpha i}(m) \tag{7}$$

• Each PWA model differ in parametrizing the resonance and non-resonant terms and fitting the exp. data.

:

- SAID
- MAID
- BnGa
- Dynamical model

:

Pion Photoproduction

- \bullet Feynman diagrams showing contributions to π photoproduction.
 - First s-channel with the intermediate resonance state (N^* or Δ^*)
 - Second u-channel with a resonance
 - Third t-channel where a vector meson is exchanged
 - 4th and 5th Born terms where the exchanged particle is a nucleon
- Some CQMs predict some missing resonances couple strongly to γN , but weakly to πN
- Photon beam polarizable → obtain asymmetries of observables!
- Real photon beam (photoproduction $Q^2 = 0$) or quasi-real photons (electroproduction $Q^>0$)
- ullet Baryon beams (protons, deuterons, & lpha particles) not used for resonance studies:
 - Require higher energy to excite due to higher mass
 - Final state interactions three or more hadrons in final states
- ullet Meson beams long lived mesons $(\pi^+,\pi^-,\,K^+$ and $K^-)$
 - $\textit{isospin} \neq 1 \rightarrow \mathsf{more}$ isospin dof for resonances
 - large branching ratio into other meson reaction channels
 - zero spin ightarrow no polarization observables

Polarization Observables

- All photoproduction amplitudes are expressible in terms of the other! (CGLN, Multipoles, helicity, . . .)
- ullet 8 helicity states o 8 complex helicity amplitudes o 16 measurable observables a real part and a phase for each complex helicity amplitude
- a set of eight carefully chosen variables suffice to construct four complex helicity amplitudes,
 which in turn can construct CGLN amplitudes and multipole amplitudes.
- Unpolarized $\frac{d\sigma}{d\Omega}$
- Single polar. (beam or target) Σ , T, and P
- ullet Double polar. (Beam add Target) G, H, E, and F
- Double polar. (Beam and Recoil) O_x , O_z , C_x , and C_z
- ullet Double polar. (Target and Recoil) T_x , T_z , L_x , and L_z

Photon	Target			Recoil			Target + Recoil				
	-	-	-	-	x'	y'	z'	x'	x'	z'	z'
	-	X	y	Z	-	-	-	X	Z	X	Z
unpolarized	σ_0		T			Р		$T_{x'}$	$-L_{x'}$	$T_{z'}$	$L_{z'}$
linearly pol.	$-\Sigma$	Н	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(-L_{z'})$	$(T_{z'})$	$(-L_{\times'})$	(-T)
circular pol.		F		- E	$-C_{x'}$		$-C_{z'}$				

• Missing resonance problem - CQM predicts more than experimentally found

- Wrong effective degrees of freedom in CQMs, especially at W > 1.7 GeV.
- More experimental data in $W \geq 1.7$ GeV region can help with determining correct dof.
- Some CQMs argue missing resonances couple weakly to πN elastic scatterings (most of accumulated data), but strongly to γN

• Uncertainties in partial decay widths of resonances

- Some channels simply lack experimental data: ηΝ, ΚΣ, and ωΝ
- Discrepancies between PWA models

TABLE XIII. Breit-W	digner masses We a	md widths F.	in MeV) of J	N and A resonances.
---------------------	--------------------	--------------	--------------	---------------------

Resonance	Our estimate	Our rating	KH	CM	Kent	GWU	BerGa
N _{NT} (1700)	1725±50; 190±110	***	1731±15; 110±30	1675±25; 90±40	1737±44; 250±230		1730±40; 310±60
N _{1/2} -(1710)	1713±12; 220±180	240	1723±9; 120±15	1700±50: 90±30	1717 ± 28; 480 ± 330		1725 ± 25; 200 ± 35
N _{3/2} -(1720)	1730±30; 320±210	****	1710±20; 190±30	1700±50; 125±70	1717±31; 380±180	1750±5; 256±22	1770±100; 650±120
N _{3/2} -(1860)	1850±40; 260±170	44		1880±100: 180±60	1804±55; 450±185		1870±25; 150±40
N _{5/2} (1870)	1880±40; 270±180	-	1882±10; 95±20		1903±87; 490±310	1818; 118	1910±50; 360±80
N _{1/2} -(1880)	1890±50; 210±100	1.0			1885±30; 113±44		1900±30; 300±40
N_{N2} (1900)	1940±50; 340±150	2.5			1879±17; 498±78		1960±30; 185±40
N _{1/2} (1905)	1905±50; 250±150	1.0	1880±20; 95±30		1928±59; 414±157		
N22-(1990)	2020±60: 410±110	44	2005±150; 350±100	1970±50; 350±120	2086 ± 28: 535 ± 120		
N _{3/2} (2080)	2100±55; 310±110	-	2080±20; 265±40	2060±80; 300±100			2160±35; 370±50
N _{1/2} -(2090)				2180±80; 350±100			
N _{1/2} (2100)	2090 ± 100; 230 ± 200	100	2050±20; 200±30	2125±75; 260±100			
Nun-(2200)	2160±85; 350±50	0.0	2228±30; 310±50	2190±80; 400±100			2065±25; 340±40
N ₁₁₇ (2190)	2150±30: 440±110	****	2140±12; 390±30	2200 ± 70; 500 ± 150	2127±9; 550±50	2152±2; 484±13	21.40±40, 270±50
N _{9/21} (2228)	2260±60, 490±115	****	2205 ± 10; 365 ± 30	2230±80; 500±150		2316:23: 633::17	2300±100, 450±150
Nu2-(2250)	.2255±50: 420±150	****	2268±15; 300±40	2250±80; 400±120		2302±6; 628±28	2200±100; 350±100
N ₁₅₂ (2600)	2630±120; 650±250	100	2577±50; 400±100				2700±100; 900±100
Nixa-(2700)	2800±160: 600±300	- min	2612±45: 350±50				3000±100: 900±150

[Klempt et al. 2010]

Experiment BACK UP

- Bremsstrahlung radiation due to slowing of electrons by EM field of radiator
 - Diamond radiator for linearly polarized photon beams
 - Gold foil radiator for circularly polarized photon beams
- ullet Determine incoming photon energy of $ec{\gamma}ec{p} o \pi^0 p$ by $E_{\gamma} = E_0 E_{
 m e}$
- ullet g9a/FROST circularly polarized photons with $E_{\gamma} pprox 0.4 \sim 2.4$ GeV

Event Selection Back up

Data Banks

• The physical quantities derived from raw signals and associated data bank names.

Quantity	Bank	Min/Max	Description
E_{γ} (GeV)	TAGR	[0, 12]	Closest photon energy
PID	GPID	[0, 100]	Particle ID (GEANT)
E (GeV)	GPID	[0, 16]	Energy of outgoing particle
p_{x} (GeV/c)	GPID	[-16, 16]	Momentum in x (lab frame)
p_y (GeV/c)	GPID	[-16, 16]	Momentum in y (lab frame)
p_z (GeV/c)	GPID	[-16, 16]	Momentum in z (lab frame)
β_c	GPID	[-1, 1]	
β_m	GPID	[-1, 1]	Beta from Time-of-Flight detector
mass (GeV)	GPID	[0, 1000]	Mass from Time-of-Flight detector
sc_time (ns)	GPID	[-1000, 1000]	Arrival time at Time-of-Flight detector
sc_len (cm)	GPID	[-1000, 1000]	Distance between event vertex to TOF counter
ntrk	MVRT	[-100, 100]	Number of tracks used to make event vertex
x-vertex (cm)	MVRT	[-1000, 1000]	X position of event vertex
y-vertex (cm)	MVRT	[-1000, 1000]	Y position of event vertex
z-vertex (cm)	MVRT	[-1000, 1000]	Z position of event vertex
ScPdHt	SCPB	[0, 100000]	$10000*$ sector $+$ $100*$ SC_PD_ID $+$ HitID in SCR
TRIGBITS	HEAD	[0, 9999999]	Trigger Latch Word (16 bits)
NRUN	HEAD	[0, 100000]	Run Number
DCstat	EVNT	[0,50]	Pointer to DCPB banks (=0 if drift chamber not involved)
SCstat	EVNT	[0,50]	Pointer to SCPB banks (=0 if TOF not involved)

Initial Reaction Channel Filter

- Initial selection for $\gamma p \to \pi^0 p$ reaction channel among all possible reaction channels:
 - Select events with photon candidates that contain readings from both E- and T- counters of the tagger system.
 - 2. Select events with one positively charged outgoing particles: e^+ , π^+ , K^+ and protons
 - 3. Filter out events from miscalibration and malfunctioning parts of Time of Flight system and Drift chambers.
 - 4. Compute basic kinematics: momentum, energy, angle, etc.

Energy Loss & Momentum Corrections

- The ELOSS computes energy loss of the outgoing particles while traveling inside:
 - The butanol target, target cell wall, mixing chamber, holding coils, start counters, and DC air gap
- The z-vertex dependence of M_X^2 distrib. inside the butanol target region have been remedied.

- ϕ dependence remedied.
- Difference of measured momentum from the DC (p_{dc}) and calculated momentum $(p(\theta_{lab}))$

Energy Loss Correction (ELOSS)

- The ELOSS computes energy loss of the outgoing particles while traveling inside:
 - The butanol target, target cell wall, mixing chamber, holding coils, start counters, and the air gap between DC Region $\bf 1$
- The ELOSS computes the pathlength inside the materials and computes energy loss via Bethe-Block eq.:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta} \left[\frac{1}{2} \ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right],$$

- Most significant changes seen in particles with $p \le 350$ MeV.
- $M_{\pi^0}^2$ peak improved from 0.034 GeV^2 to 0.017 GeV^2 closer to the actual value 0.0182 GeV^2
- ullet The z-vertex dependence of M_X^2 distri. inside the butanol target region have been remedied.

- Momentum correction software for outgoing π^+ in $\gamma p \to \pi^+ n$ [Strauch, 2014] -applied to our protons \to no impact on final result.
- φ dependence remedied.
- Improved $M_{\pi^0}^2$ peak, but induced θ dependence.
- -deflection different for π^+ and proton
- Difference of measured momentum from the DC (p_{dc}) and calculated momentum $(p(\theta_{lab}))$ -under assumption that θ is correct.

$$\Delta p = p(\theta_{lab}) - p_{dc}$$

$$\Delta p = \sum_{n=0}^5 \sum_{m=0}^2 \sum_{l=0}^2 a_{n,m,l}^{n_{\rm sec}} \left(\frac{\theta_{lab}}{180^{\rm o}}\right) \left(\frac{\phi_{lab}^{\rm sec}}{30^{\rm o}}\right)^m \left(\frac{p_{\rm dc}}{2~{\rm GeV}}\right)^l. \label{eq:deltap}$$

Inactive CLAS regions

- $\theta_{lab} < 7^{\circ}$,
- $\phi \in [-155^{\circ}, -145^{\circ}] \cup [-95^{\circ}, -85^{\circ}] \cup [-35^{\circ}, -25^{\circ}] \cup [25^{\circ}, 35^{\circ}] \cup [85^{\circ}, 95^{\circ}] \cup [145^{\circ}, 155^{\circ}].$

- Particles with p < 300 MeV do not reach the drift chambers
- ullet Particles with low velocity under stronger magnetic field will deflect stronger. Too much deflection \longrightarrow Miss TOF panels $8^\circ \le heta \le 142^\circ$
- ullet Holding magnet of 0.5 T in beam axis during the g9a/FROST.
 - $p \le 350~MeV/c$ for $\theta_{lab} \ge 35^{\circ}$, - $p \le 400~MeV/c$ for $\theta_{lab} \le 35^{\circ}$.

Inefficient Time-of-Flight paddles

Sector	Removed TOF Paddle
1	None
2	38, 44
3	23, 35, 44
4	23, 32, 35, 36, 40, 42
5	23
6	44, 46

(a) Run periods 1, 2, 3, 4 & 5

Sector	Removed TOF Paddle
1	17, 24, 26, 36
2	44, 46
3	23, 35
4	23, 42, 49
5	23, 52, 53
6	44, 46

(b) Run periods 6 and 7

Particle ID: Proton Selection

- Measured velocity β_{measured} from TOF and Start counters
- Calculated velocity β_{calc} by assuming outgoing particles as protons and measured p_{dc} from DC.
- $|\Delta \beta| < 0.06$

$$\begin{split} \Delta\beta &= \beta_{meas} - \beta_{calc} \\ \beta_{meas} &= \frac{\text{pathlength between hit positions of SC and TOF}}{\text{flight time between SC and TOF}} \\ \beta_{calc} &= \frac{p}{E} = \frac{p_{dc}}{\sqrt{p_{dc}^2 + m_p^2}} \end{split}$$

Photon Identification

• Select photons that caused our $\gamma p \to \pi^0 p$ reaction by time difference of the arriving photons and recoiling protons at z-vertex positions.

$$\Delta t = t_{v,\gamma} - t_{v,p} = \left(t_{\gamma} + \frac{z}{c}\right) - \left(t_{p,sc} - \frac{I_{sc}}{\beta_{calc}c}\right),$$

 $t_{v,\gamma}$ photon arrival time at event vertex, $t_{v,p}$ reaction time of proton at event vertex t_{γ} photon arrival time at CLAS center $t_{p,sc}$ arrival time of proton at TOF less distance from the event to TOF counter.

- Electron beam bunches separated by 2.004 ns intervals
 Remove photons whose arrival times lie outside of ±1 ns interval
- About 3% of the total $\gamma p \to \pi^0 p$ events have multiple good photon events \to Removed

- Butanol (C_4H_9OH) , carbon (C) and polythene (CH_2) targets
- Z event vertex position reconstructed:
 - -Extrapolated particle trajectory's closest distance to the measured center of the beam axis.

Target	z-vertex min (cm)	z-vertex max (cm)		
Butanol	-3	3		
Carbon	5	8		

Transverse vertex selection

- 1.5 cm diameter target cup
- Outside events photons scattering on ${}^{3}He {}^{4}He$ in the dilution refrigerator.
- 3% of total events lie outside of the target cup
- Selection range: $((x x_{max})^2 + (y y_{max})^2) < (1 \text{ cm})^2$

-slighter larger to account for tracking uncertainty

ullet Maximum scattering angle $heta_{p_r}$ of recoiling protons increases as E_{γ} increases:

$$\cos(\theta_{p_r}) = \frac{E_{\gamma} - \left[(E_{\gamma} + m_{p_1} - E_{p_r})^2 - m_{\pi^0}^2 \right]^{1/2} \cos(\theta_{\pi^0})}{|\vec{p}_{p_r}|},$$

- π^0 peaks become more distinct as E_γ increase

 -Above $E_\gamma \geq 1.6$ GeV, more background contribution from non-resonant terms \to poor statistics overall
- ullet Total angular coverage increases as E_{γ} increases. See $\cos(\theta_{cm})$ vs p 2dim histogram.

Application of Machine Learning BACK UP

- Fully connected neural layers
- Three hidden layers
- AdamOptimizer
- Loss func.: Sparse categorical cross entropy
 - $H_{y'}(y) = -\sum_i y_i' \log(y_i)$,where y_i is the predicted target and y_i' is the true target

ML Objectives: Target Selection & Ice on Carbon

Target Classification

- Events with z-vertex \in [2, 5]cm, uncertain whether γ hit Butanol or Carbon

Ice on Carbon

- Carbon events (bound-nucleon) expected to have broader $m_{\pi_0}^2$ peak due to Fermi motion.
- Sharp peak (free-nucleon) observed in the Carbon target region.

Feature Selection

- Process of selecting parameters used to classify targets.
- No proven rule that guarantees the success of classification.
- Prior knowledge of the parameters

 constraints on specific parameters (E.g., z)
- Guidelines:
 - High number of parameters & insufficient training data → overfit
 - Avoid parameters with significantly low variance → less contrib. to classfication
 - Avoid excessive # of highly correlated parameters → overfit
 -no white/black on correl. matrix
 - Avoid excessive # of uncorrelated parameters → no contrib. to classification

Possible Solutions

- Simulated data as training data.
 - No uncertainty in training data
 - Accuracy of the simulation to real experiments unknown.
 - Detector acceptance, tracking resolution, ELOSS, and momentum correction.
- The g9b/FROST experiment as training data
 - No hydrogen contamination
 - Experimental conditions may differ a lot to g9a/FROST
- Extract ice training data separately in each angle and energy bins
 - Event vertex resolution varies significantly among angular and energy bins
 - Limit training data from $\theta_{lab} \geq 39^{\circ}$
- Regularization methods to avoid overfitting
 - L1 and L2 method suppress weights on certain classifying parameters
 - Drop-out method randomly selects and removes nodes in the hidden layers
 - Early stopping method Stops training when certain testing error reached.
- Bayesian neural network to quantify uncertainties in training data
 - Pass PDFs in between neural net. layers instead of scalar weights.

Helicity Asymmetry E BACK UP

Steps for Scale factors and Dilution factors

$$S_f = rac{\# ext{ of background events in buta.}}{\# ext{ of carbon events}}$$

$$D_f = \frac{\# \text{ of free nucleon events in buta.}}{\text{Total } \# \text{ of events in buta.}}$$

- 1. Initial scale factor calculation direct method
- 2. First free nucleon peak range extraction
- 3. Determination of bins to be discarded according to fit results on free nucleon peaks
- 4. Final Scale Factor calculation
- 5. Second free nucleon peak range extraction
- 6. Dilution factor calculation from fitting results.

Initial Scale Factor cont.

- (1) Scaled carbon M_X^2 distribution correctly represents butanol background events.
- (2) Angular dependence, causing discrepancies in \mathcal{M}_X^2 distributions for butanol and carbon targets.
- (3) Background contribution far exceeds free nucleon signals, but still usable if free nucleon ranges are selected out manually
- (4) Hydrogen contamination on carbon target where free nucleon peak is visible in carbon distribution
- (5) No apparent free nucleon peaks are observed

Discarded Bins cont.

Discarded Bins cont.

Angular dependence on Scaled carbon

Overview of final butanol free nucleon peak ranges

Dilution Factor D_f in $E_{\gamma} \in [1.6, 2.4]$ GeV

Results BACK UP

Reduced discrepancies between PWA models

ullet In $E_{\gamma}=[1.85,2.4]$ GeV, discrepancies between SAID and BnGa predictions improved.

χ^2 per data points in SAID fits

- Normalization constant X for each angular distributions during SAID fitting process.
- χ^2 minimized during the fit:

$$\chi^2 = \sum_{i} \left[\frac{X\theta_i - \theta_i^{\text{expt}}}{\epsilon_i} \right]^2,$$

- θ_i^{expt} is individual measurement, θ_i is corresponding SAID prediction, and ϵ_i is the stat. uncertainty for the measurement.
- Average χ^2 per data point improved:

KI21 (
$$<\chi^2/data>=3.7$$
) and MA19 ($<\chi^2/data>=6.0$)