Vibrations and Waves by George C. King Notes

Chris Doble

April 2022

Contents

1	Simple Harmonic Motion	1
2	The Damped Harmonic Oscillator	2
3	Forced Oscillations	4
4	Coupled Oscillators	7

1 Simple Harmonic Motion

• The equation of motion for a simple harmonic oscillator is

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

where

$$\omega^2 = \frac{k}{m}$$

• The general solution of the equation of motion for a simple harmonic oscillator is

$$x = A\cos(\omega t + \phi)$$

or equivalently

$$x = a\cos\omega t + b\sin\omega t$$

- The angular frequency ω is determined entirely by properties of the oscillator, e.g. its mass and spring coefficient
- The total energy of a harmonic oscillator is

$$E = \frac{1}{2}kA^2$$

• Nearly all potential wells have a shape that is parabolic when sufficiently close to the equilibrium position, so most oscillating systems will oscillate with SHM when the amplitude of oscillation is small

• The vibrations of nuclei in a molecule can be modeled by SHM, but only a discrete set of vibrational energies is possible, namely

$$\frac{1}{2}\hbar\omega, \frac{3}{2}\hbar\omega, \frac{5}{2}\hbar\omega, \dots$$

where \hbar is Planck's constant divided by 2π

• The total energy of a system undergoing SHM is always given by an expression of the form

$$E = \frac{1}{2}\alpha v^2 + \frac{1}{2}\beta x^2$$

where α and β are physical constants — if we obtain this equation during the analysis of a system we know we have SHM

• The equation of motion for a system described by the energy equation above is

$$\frac{d^2x}{dt^2} = -\frac{\beta}{\alpha}x$$

2 The Damped Harmonic Oscillator

• The equation of motion of a damped harmonic oscillator is

$$F = ma = -kx - bv$$

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$$

$$\frac{d^2x}{dt^2} + \gamma\frac{dx}{dt} + \omega_0^2x = 0$$

where $\gamma = b/m$ and $\omega_0^2 = k/m$

- ω_0 is known as the **natural frequency of oscillation**, i.e. the oscillation frequency if there were no damping
- Light damping / underdamped
 - The motion is still oscillatory but the amplitude decreases expontentially
 - This occurs when $\gamma^2/4 < \omega_0^2$
 - The general solution is

$$x = A_0 e^{-\gamma t/2} \cos(\omega t + \phi)$$

where A_0 is the initial amplitude

- Successive maxima decrease by the same fractional amount

$$\frac{A_n}{A_{n+1}} = e^{\gamma T/2}$$

– The natural logarithm of A_n/A_{n+1} is called the **logarithmic decrement**

$$\ln\left(\frac{A_n}{A_{n+1}}\right) = \frac{\gamma T}{2}$$

• Heavy damping / overdamped

- The motion is not oscillatory and returns sluggishly to the equilibrium position
- This occurs when $\gamma^2/4 > \omega_0^2$
- The general solution is

$$x = e^{-\gamma t/2} [Ae^{\alpha t} + Be^{-\alpha t}]$$
$$= Ae^{(\alpha - \gamma/2)t} + Be^{-(\alpha + \gamma/2)t}$$

where
$$\alpha = \sqrt{\gamma^2/4 - \omega_0^2}$$

• Critical damping

- The motion is not oscillatory and returns as quickly as possible to the equilibrium position
- This occurs when $\gamma^2/4 = \omega_0^2$
- The general solution is

$$x = Ae^{-\gamma t/2} + Bte^{-\gamma t/2}$$

• The total energy of an underdamped system decreases over time

$$E = E_0 e^{-\gamma t}$$

where E_0 is the initial energy of the system

- The decay time or time constant of the system $\tau = 1/\gamma$ is the time it takes for its energy to decrease by a factor of e
- The quality factor of a harmonic oscillator is a dimensionless value that gives a measure of the degree of damping

$$Q = \frac{\omega_0}{\gamma}$$

where large values indicate little damping and small values indicate more damping

• The quality factor can also be used as a measure of fraction of energy lost (i.e. $\Delta E/E$) per cycle $2\pi/Q$ or per radian 1/Q

3 Forced Oscillations

• The equation of motion for an undamped forced harmonic oscillator is

$$m\frac{d^2x}{dt^2} + kx = F_0\cos\omega t$$

the general solution of which is

$$x = A(\omega)\cos(\omega t - \delta)$$

where

$$A(\omega) = \frac{F_0}{k(1 - \omega^2/\omega_0^2)} \text{ and } \delta = 0$$

for $\omega < \omega_0$ and

$$A(\omega) = -\frac{F_0}{k(1-\omega^2/\omega_0^2)}$$
 and $\delta = \pi$

for $\omega > \omega_0$

• From the above it can be seen that:

$$-A(\omega) \to F_0/k \text{ as } \omega \to 0$$

$$-A(\omega) \to \infty \text{ as } \omega \to \omega_0$$

$$-A(\omega) \to 0 \text{ as } \omega \to \infty$$

• The equation of motion for a damped forced harmonic oscillator is

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t$$

where $\gamma = b/m$ and $\omega_0^2 = k/m$ the general solution of which is

$$x = A(\omega)\cos(\omega t - \delta)$$

where

$$A(\omega) = \frac{F_0}{m[(\omega_0^2-\omega^2)^2+\omega^2\gamma^2]^{1/2}}$$

and

$$\delta = \arctan \frac{\omega \gamma}{\omega_0^2 - \omega^2}$$

• From the above it can be seen that:

$$-A(\omega) \to F_0/k \text{ as } \omega \to 0$$

$$-A(\omega) \to F_0 \omega_0 / k \gamma$$
 as $\omega \to \omega_0$

$$-A(\omega) \to 0 \text{ as } \omega \to \infty$$

• $A(\omega)$ is maximised when its denominator is minimised, leading to

$$\omega_{\text{max}} = \omega_0 (1 - \gamma^2 / 2\omega_0^2)^{1/2}$$

and thus

$$A_{\text{max}} = \frac{F_0 \omega_0 / \gamma}{k(1 - \gamma^2 / 4\omega_0^2)^{1/2}}$$

• The power absorbed by a damped oscillator to sustain its motion is exactly equal to the rate at which the energy is dissipated, i.e.

$$P(t) = bv(t) \times v(t)$$

$$= b[v(t)]^{2}$$

$$= v[v_{0}(t)]^{2} \sin^{2}(\omega t - \delta)$$

• The average power absorbed over one cycle is

$$\overline{P}(\omega) = \frac{b[v_0(\omega)]^2}{2} = \frac{\omega^2 F_0^2 \gamma}{2m[(\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2]}$$

• From the above it can be seen that:

$$-\overline{P}(\omega) \to 0 \text{ as } \omega \to 0$$

$$-\overline{P}(\omega) \to F_0^2/2m\gamma \text{ as } \omega \to \omega_0$$

$$-\overline{P}(\omega) \to 0 \text{ as } \omega \to \infty$$

- The **power resonance curve** of an oscillating system graphs the average power absorbed by the system over a cycle to the driving frequency
- The full width at half height of a power resonance curve is the width of the curve at height $P_{\text{max}}/2$, is a measure of the sharpness of the system's response to an applied force, and is equal to $\omega_{\text{fwhh}} = \gamma = \omega_0/Q$
- From the above it can be seen that

$$Q = \frac{\omega_0}{\gamma} = \frac{\omega_0}{\omega_{\text{fwhh}}}$$

- A resonance circuit can be used to amplify AC signals around a particular frequency by the Q-factor of the circuit — this makes them useful in radio receivers to tune a specific frequency
- When a driving force is first applied to a system, the system will be inclined to oscillate at its natural frequency ω_0 . The behaviour of the system is described by the sum of two oscillations, one at frequency ω_0 and the other at ω . Eventually the ω_0 oscillations die out leaving the system in its **steady state** condition. The initial behaviour is reffered to as its **transient response**.

• The equation of motion for damped forced oscillations is the second-order nonhomogeneous linear differential equation

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = \frac{F_0}{m} \cos \omega t.$$

The oscillations at frequency ω_0 present only during the transient response are described by the complementary function of this equation, i.e. a fundamental set of solutions of the associated homogeneous differential equation, and the oscillations at frequency ω are described by a particular solution of this equation.

- If z = x + yi, the **complex conjugate** of z is $z^* = x yi$
- The product of a complex number with its conjugate is $zz^* = z^2 + y^2$
- The **modulus** of a complex number is defined as $|z| = \sqrt{zz^*} = \sqrt{x^2 + y^2}$
- Division of complex numbers can be performed like so

$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{x_2^2 + y_2^2} = \frac{(x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)}{x_2^2 + y_2^2}$$

- An **Argand diagram** is two-dimensional graph where the *x*-axis is used as the real axis and the *y*-axis is used as the imaginary axis
- Using Euler's formula

$$e^{ix} = \cos x + i\sin x$$

a complex number can be represented as

$$z = x + iy = r(\cos\theta + i\sin\theta) = ze^{i\theta}$$

where r is the modulus |z| and θ is the angle of z from the positive x-axis known as its **argument**

• Multiplication of complex numbers is equivalent to rotation and scaling in the complex plane

$$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$$

- Phasor diagrams can be represented on the complex plane with phasors as complex numbers $z=Ae^{i(\omega t+\phi)}$ and their projection onto the x-axis as their real components
- Differentiation with respect to time of a complex phasor is equivalent to multiplication by $i\omega$

4 Coupled Oscillators

- Systems of two or more coupled oscillators can oscillate in multiple ways called **normal modes**, each with its own frequency called the **normal frequency**
- In a normal mode, each oscillator oscillates at the same frequency
- Without damping, once a system is in a normal mode it stays there
- The equations of motion of a system of coupled oscillators are a system
 of differential equations and thus the movements of the oscillators are
 described by a linear combination of the solutions of that system
- Those equations of motion are often intertwined and involve multiple variables, e.g. the positions of two pendulums x_1 and x_2 . It's possible to introduce new variables called **normal coordinates** that result in independent solutions in one variable, e.g. $q_1 = x_a + x_b$ and $q_2 = x_a x_b$
- Energy never flows from one normal mode to another
- In general it's difficult to determine the normal modes of the system a priori. A more general approach is to take advantage of the knowledge that in a normal mode all oscillators will oscillate at the same frequency and:
 - 1. assume solutions of the form $A\cos\omega t$, $B\cos\omega t$, etc.,
 - 2. subtitute them into the equations of motion, and
 - 3. rearrange to remove the constants A, B, etc. and solve for ω
- There are as many normal modes as there are degrees of freedom in the system, e.g. two coupled oscillators moving in one dimension have 2 normal modes, three coupled oscillators moving on two dimensions have 6 normal modes, etc.
- Coupled oscillators experience large amplitude oscillations when the driving frequency is close to the normal frequency
- The motion of driven coupled oscillators may be solved in a similar fashion to their free moving counterparts:
 - 1. Determine the equations of motion for the oscillators
 - 2. Combine the equations in such a way that the normal coordinates are evident
 - 3. Conver the equations to use normal coordinates
 - 4. Solve the resulting second-order nonhomogeneous linear differential equations by assuming solutions of the form $C_1 \cos \omega_1 t$, etc.

- 5. Convert the solutions back from normal coordinates
- Oscillations that occur along the line connecting oscillators are called **lon-gitudinal oscillations**
- \bullet Oscillations that occur perpendicular to the line connecting oscillators are called ${\bf transverse}$ oscillations