

「FPGAでパワエレ制御をするために知っておくべきこと」

~PWM生成ロジックの実際と、 設計プロセスの基礎とシステム設計~

> 2019年4月24日 Mywayプラス株式会社 松野 知愛

Myway it's a passion way

目次

- 1. <背景>デジタルデバイス Meets パワエレ
- 2. FPGAのキホン
- 3. FPGAによるシステム設計の勘所
- 4. PWM制御の実装 (演習1:基本操作)
- 5. 安定動作の為の勘所
- 6. FPGAプラットフォームと事例紹介 (FPGA モデルベース開発環境デモ)

(演習2:シミュレーションとデバッグ)

(演習3:デッドタイムロジック)

背景 デジタルデバイス Meets パワエレ

DSP, GPU, FPGA特徴など

Digital Rich!

様々な演算デバイス

性能•並列度

ストリーム処理(専用処理)

専用回路

(hard wired logic)

柔軟性

シーケンス処理(汎用処理)

パッケージング

パワエレ

小型化• 低消費電力

(特定用途)

モバイル コンシューマ

> Qualcomm Nvidia Mediatech

> > Intel

Core

AMP 非対称 多数コア SIP システムin パッケージ

SoC

システムon

チップ

PC サーバ

性能向上

SMP

同一数コア

多数コア

4

(汎用)

特定用途

マスマーケット (IPM)

パワー+制御

三菱・富士電機・ サンケン

陳腐化

Xillinx Zynq 最先端

設計自由度

特殊•少量

FPGA+DSP

パワエレに必要なスペック

- 演算速度
 - -動作周波数,コア数,専用命令(FP、積和、sin,cos)

vs. 価格·入手性·熱·電圧

- ・レイテンシ
 - 割り込み遅延, 内部バス

vs. スループット・パイプライン

- ・インターフェース
 - 周辺回路(AD, GPIO)、専用回路(PWM)、外部バス

vs. システムコスト・サイズ

パワエレ制御~演算デバイス比較~

	マイコン	DSP	FPGA	ASIC	アナログ
演算能力	Δ	0	0	0	0
レイテンシ	Δ	0	0	©	0
インターフェース	Δ	Δ	0	0	0
汎用性(適用アルゴリ ズム柔軟性)	O	(a)	©	©	×
開発工数	0	0	Δ→Ο	×	0
部品単価	0	0	∆→O	0	0
パワエレ用途	0	0	>◎	-	0

× ←不利 有利→◎

高速処理・多ゲート制御の利点を活かせる 先端アルゴリズムに最適

FPGAのキホン

設計フローと必要スキル

設計で注意するポイント

- クロック (同期設計、クロックソース)
- リセット(起動シーケンス)
- 電源 (起動シーケンス、ノイズ、安定動作)
- I/O (バンク設定、初期値、同期設計、ノイズ)
- RAM (ブロックメモリ・IP、使用率、チップスコープ)
- JTAG/デバッグ(Flash選定、システム構成)
- 機能 (タイミングチャート、ステートマシン)

全てFPGA設計仕様書でカバーすべき項目

FPGAの設計フロー

FPGA設計に必要なスキル

HW回路設計 TTL/CMOS、電源、インターフェース

ロジック設計 論理回路、真理値表

C言語 プログラミングの基礎

FPGAによるシステム設計の勘所

システム設計の勘所

- FPGAが必要か?
 - 制御周期(キャリア割り込みルーチン許容時間)
 - 高速・精密・特殊ゲート制御(特殊トポロジ)
 - 高速システム同期制御(ユニット間高速通信)
- どう切り出すか?
 - 性能→トップダウン:ソフトウエアでアルゴリズム記述→プロファイリング(性能評価)→FPGA仕様設計→専用関数(API)設計
 - 機能→ボトムアップ: FPGA仕様設計→専用関数(API) 設計→アルゴ リズム記述

開発期間・費用 デバッグ、メンテナンス性 信頼性

使い方・作り方次第!

システム例:PM同期モータ ベクトル制御

システム例:PM同期モータ ベクトル制御

② マイナーループ演算部のFPGA化の例

遅延計算

(logic) 4+20+20+6+8+16+6+20+20+5 = 125 cycle x 5 (ns @200MHz) =~650ns するものではありません

注意:性能・動作を保証

PWM制御の実装

VHDLコードの実装例

PM同期モータ ベクトル制御ブロック図

PWMゲートパルス生成部の仕様

FPGA 一般的な回路構成

PWMゲートパルス生成部ブロック図

FPGAは簡単に使いこなせる

ブロック図

ステートマシーンデーターフロー

コーディング

VHDL ブロック設計

FPGAによるパワエレ制御は 手順をふんで安定動作

演習 1 基本操作およびシミュレーション

安定動作のための勘所

「センスの良い」設計

こんなことありませんか?

コンパイルの度に動作が変わる

昨日は動いたのに、今朝は動かない

設計変更したら別の機能がおかしくなった

たまーに動かない事がある

個体差で動作にばらつきがある

原因はこれかも・・・ 非同期設計

メタステーブル、ラッチ、レーシング、ヒゲ

勘所① 同期設計

単一クロック推奨、非同期は丁寧に乗せ換え 外部入出力はレジスタ受け・出し

勘所② 合成結果の回路を常に意識

合成結果の回路をイメージして「バランス設計」 「最悪値」(クリティカルパス)が全てを台無し

勘所③ プライオリティエンコーダは要注意

Case文を活用しよう

条件成立が排他

Case ABC is when A when B when C when others

ステートマシンの基本形

勘所④ さらにより高度な設計へ

- IP活用、構造化設計
 - 再利用性、IPツール活用、パワエレ専用IP(Myway)
- 多様・高速なゲートパターン生成
 - 大規模高速カウンタ(分散・並列化)・テーブル活用
- 最後は物理設計
 - PAR(Place & Route)で高速回路(500MHz超 PWM)
- SoC (System on Chip)
 - DSP+FPGA バスを自在に
- 高位合成ツール?

高位合成ツール (参考)

- Mathworks社
 - HDL Coder:SimuLinkアルゴリズム設計→汎用HDL
- Xilinx社
 - System Generator: 信号処理マクロ+ブロックセット
 - Vivado HLS: C言語によるIP作成

ツールの限界 ≠ 自分の限界 開発の効率化 ≠ 習得の効率化 効率化の対象、開発フェーズ、費用対効果で活用

FPGAプラットフォームと事例紹介

FPGAプラットフォーム PE-Exert4

製品事例:FPGAによる高調波重畳機能

各種アプリケーション事例 (MMC, DAB, SRM)

FPGAプラットフォームと事例紹介

FPGAプラットフォーム PE-Exert4

製品事例: FPGAによる高調波重畳機能 各種アプリケーション事例(MMC, DAB, SRM)

パワエレFPGAプラットフォーム

PE-Expert4 FPGAボード

パワエレ専用FPGAサンプル回路(IP)と、ソフトウエアの柔軟性と、 FPGAの高速フィードバック制御

システム構成

豊富なインターフェースを、高性能DSP、FPGAにより自在に制御

DSPボード

- •制御処理演算(1.25GHz)
- •リアルタイムデバッグ (Dual Core) (TI TMS320C6657)

- ・PEVボード PWM制御
- ・ADCボード: AD変換
- ・DACボード:DA変換
- ・PIOボード: デジタルインターフェース
- FPGAボード: Xillinx FPGA搭載

38

リアルタイムデバッグ

制御演算とリアルタイムデバッグを、デュアルコアで 独立・不干渉で実現

- 両方のコアから同時アクセスできる
- ・両方のコアは独立実行できる

FPGAプラットフォームと事例紹介

FPGAプラットフォーム PE-Exert4

製品事例:FPGAによる高調波重畳機能

各種アプリケーション事例 (MMC, DAB, SRM)

製品事例

大容量バッテリ充放電システム

MWCDS-060-040A1/MWCDS-075-04

選べる2つのモデル

Design Method of DC Power Supply for Superposing 20kHz/100A Peak to Peak Sinusoidal Current with Several Hundred DC Current to Analyze Battery AC Impedance

10.1109/ECCE.2018.8558032

電流リップル重畳機能により電池評価機能が向上

MWCDS-060-040A1

600V版

(600V/±400A/±100kW)

電流リップル重畳機能(600Vモデルのみ)

FPGAプラットフォームと事例紹介

FPGAプラットフォーム PE-Exert4

製品事例:FPGAによる高調波重畳機能

各種アプリケーション事例(MMC, DAB, SRM)

専用C関数からFPGAを制御

高精度位相制御 DAB

マルチレベルインバータ

SWインターフェース

関数機能: マルチレベルPWM生成機能の初期化

INT32 MLPWM_ inverter_init (INT32 bdn, INT32 fc, INT32 level, INT32 dt);

関数機能: 三角波キャリア比較変調の指令値設定

INT32 MLPWM_ inverter_set_uvw (INT32 bdn, FLOAT32 u, FLOAT32 v, FLOAT32 w);

り分け(適材適所)

パワーメータ機能の概要(計測項目)

事例紹介

計測項目	記号	単位
電力系計測項目	마스	丰位
有効電力	Р	W
無効電力	Q	var
皮相電力	S	VA
位相角	φ	deg.
力率	λ	ueg.
電圧実効値	Urms	V
電流実効値	Irms	A
電圧平均値整流実効値換算	Umn	V
電流平均値整流実効値換算	Imn	A
電圧直流成分	Udc	V
電圧交流成分	Uac	V
電流直流成分	Idc	A
電流交流成分	lac	A
周波数	f	Hz
電圧ピーク+	Upk+	V
電圧ピーク-	Upk-	V
電流ピーク+	lpk+	Α
電流ピーク-	lpk-	Α
電圧瞬時値	Ú	V
電流瞬時値	I	Α
効率	η1~η4	%
高調波解析計測項目		
高調波電圧値	_	V
電圧高調波含有率	_	%(for Fud)
高調波電流値	_	Α
電流高調波含有率	_	%(for Fud)
高調波有効電力	_	W
総合高調波電圧歪率	THD	%
総合高調波電流歪率	THD	%
機械系 既存の計測機	2000年	美の
画 気行の計測機	זנייו 🗅 אמ	スマノ
	奜	
	T.K	
温度	гетр	<u> </u>

パワーメータ機能の概要(システム構成)

モデルベース開発 FPGA開発環境デモ

インバータモデルベース開発

Typhoon HILの特徴

- 20nsPWMオーバーサンプリング
- 500nsシミュレーションタイムステップ
- ・ パワエレに特化
 - パワーエレクトロニクス専用SoC
 - スタックでマイクログリッドも対応
- 簡単(1人で立ち上げ)
 - サードパーティのツール不要
 - ワンクリックでコンパイル・実行
 - 動作中のモデルの操作(SCADA)

「手軽なパワー回路模擬」から「大規模システム検証」まで

HIL開発環境

演習2 シミュレーションとデバッグ

演習3 デッドタイムロジック

ご清聴ありがとうございました

アンケートのご記入をよろしくお願いいたします

講演についてのご質問・資料ダウンロード

「日本パワエレ協会」「PWEL」で検索 →「コミュニティ」をクリック

~次回予告~

(計画中のテーマ) 高速電流フィードバック制御FPGA設計

IPブロックでVHDLレスのFPGA設計 DSPとFPGAの双方のシステム設計とプログラミング その他

※表題および内容は変更される場合がございます 適時ご案内いたします