Como caracterizar os aerossóis?

- Tamanho:
 - Monodisperso: todas as partículas possuem o mesmo tamanho
 - Polidisperso: Partículas com mais de um tamanho
- Concentração:
 - Concentração em número
 - Concentração em massa

Exemplo: Partículas no ar interno:

$$N = 10^4 \text{ #/cc}$$

 $M = 5.236 \times 10^{-6} \text{ g/cc}$
 $d_n = 10^{-3} \text{ cm} = 10 \text{ }\mu\text{m}$

Distribuição de Tamanho das partículas

Referência: Hinds, Cap. 4

Dados típicos de medida

Size Range	Count	Fracti on	Percent (%)	Cumulative	Fraction/size
<u>(μm)</u>	(#)			Percent (%)	<u>(μm⁻¹)</u>
0-4	104	0.104	10.4	10.4	0.026
4-6	160	0.16	16.0	26.4	0.08
6-8	161	0.161	16.1	42.5	0.0805
8-9	75	0.075	7.5	50.0	0.075
9-10	67	0.067	6.7	56.7	0.067
10-14	186	0.186	18.6	75.3	0.465
14-16	61	0.61	6.1	81.4	0.0305
16-20	79	0.79	7.9	89.3	0.0197
20-35	103	0.103	10.3	99.6	0.0034
35-50	4	0.004	0.4	100.0	0.0001
> 50	0	0	0	100.0	0
Total	1000		100.0		

Histograma de frequencia (contagem) versus tamanho da partícula

Size Rang	ge Count (#)	200					
0-4 4-6	104 160	t 150 -					
6-8 8-9 9-10	161 75 67	Frequency/Count]	
10-14 14-16	186 61	Eredu	\ <u> </u>				
16-20 20-35	79 103	30					
35-50 > 50	4 0	۔ ل	10	20	30	40	 50
Total	1000	d _{pi} (μm)					

Q: Em que intervalo de tamanho encontramos a maioria das partículas?

Frequencia/ Δd_p (função distribuição) vs tamanho da partícula

Size Range	$Count/\Delta d_{pi}$
(µm)	(#/µm)
0-4	26
4-6	80
6-8	80.5
8-9	75
9-10	67
10-14	46.5
14-16	30.5
16-20	19.25
20-35	6.87
35-50	0.27
> 50	0

$$n_i = \frac{Count_i}{\Delta d_{pi}}$$

Frequencia Padronizada/ Δd_p vs tamanho da partícula

Size Range	Fraction/size			
(µm)	(1/µm)			
0-4	0.026			
4-6	0.08			
6-8	0.0805			
8-9	0.075			
9-10	0.067			
10-14	0.465			
14-16	0.0305			
16-20	0.0197			
20-35	0.0034			
35-50	0.0001			
> 50	0			

$$f_i = \frac{n_i}{N}$$

Distribuição de tamanho da partícula

$$q(d_p) = \frac{\Delta f_i}{\Delta d_{pi}} \bigg|_{\Delta \to 0} = \frac{df}{dd_p}$$

 $\mathit{q}(\mathit{d_p})\!\!: \mathit{q}$ como função de $\mathit{d_p}$

Distribuição Cumulativa

- Definição:
 - A fração que é menor que um tamanho específico

$$F(a) = \int_0^a q(d_p) dd_p$$

♦ Média (média aritmética):

A soma de todas as partículas nos intervalos dividida pelo total de partículas.

$$\overline{d_p} = \frac{\sum d_p}{N} = \frac{\sum n_i d_{pi}}{\sum n_i} = \int_0^\infty d_p q(d_p) dd_p$$

Mediana:

♦ O diâmetro no qual 50% do total são menores e 50% são maiores, o diâmetro corresponde a uma fração cumulativa de 50%

Moda:

- ◆ Tamanho mais frequente.
- Para uma distribuição simétrica, a média, a mediana e a moda têm o mesmo valor.

$$z = \frac{x - \overline{x}}{\sigma}$$

MEDIA GEOMÉTRICA:

A N-ÉSIMA RAIZ DO PRODUTO DE N VALORES

$$d_{pg} = \left(d_{p1}^{n_1}d_{p2}^{n_2}d_{p3}^{n_3}...\right)^{1/N} = \left(\prod d_{pi}^{n(d_{pi})}\right)^{1/N}$$

Expresso em termos de ln(d_n)

$$\ln d_{pg} = \frac{\sum n_i \cdot \ln d_{pi}}{N}$$

$$d_{pg} = \exp\left[\frac{\sum n_i \cdot \ln d_{pi}}{N}\right] = \exp\left[\frac{\int n(d_p) \cdot \ln d_p \cdot dd_p}{\int n(d_p) \cdot \ln d_p \cdot dd_p}\right]$$

- Para um aerossol monodisperso, $\overline{d_p} = d_{pg}$ senão, $\overline{d_p} > d_{pg}$
- Muito usado porque o sistema aerossol tipicamente cobre intervalos de tamanho de 0.001 a 1000 μm

Log-normal distribution

→ Log-normal size distribution is given by

$$f(x) = \frac{1}{x \ln \sigma_g \sqrt{2\pi}} \exp \left[-\frac{\left(\ln x - \ln x_g\right)^2}{2 \ln^2 \sigma} \right]$$

 $\chi_{_{g}}$ geometric mean

 $\sigma_{\rm g}$ geometric standard deviation.

→ The parameters are obtained when we draw cumulative undersize results on log-probability paper we should get a straight line

Log-normal distribution

- ⇒ geometric mean is obtained for 50%
- geometric standard deviation from

$$\sigma_g = \frac{x_{84}}{x_{50}} = \frac{x_{50}}{x_{16}}$$

→ When you fit the line most weight on the points between 20% and 80%

Distribuição Lognormal

- Distribuição Normal: não adequada para aerossóis
 - A maior parte dos aerossóis possui uma distribuição skewed

$$df = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{\left(d_p - \overline{d_p}\right)^2}{2\sigma^2} \right] dd_p$$

Função frequencia

$$\sigma = \left[\frac{\sum n_i \left(d_p - \overline{d_p}\right)^2}{N - 1}\right]^{/2}$$

Desvio Padrão

Por que usar a Log-Normal?

• Substituir d_p por $\ln d_p$.

$$\ln d_{pg} = \frac{\sum n_i \ln d_{pi}}{N}$$
 Diâmetro geometrico médio

$$\ln \sigma_{g} = \sqrt{\frac{\sum n_{i} (\ln d_{pi} - \ln d_{pg})^{2}}{N - 1}} \quad \text{Desvio padrão geometrico}$$

$$df = \frac{1}{\sqrt{2\pi} \ln \sigma_g} \exp \left[-\frac{\left(\ln d_p - \ln d_{pg} \right)^2}{2(\ln \sigma_g)^2} \right] d \ln d_p \quad \text{Função frequencia}$$

Convertendo
$$d \ln d_p$$
 to $d d_p$
 $d \ln d_p = d d_p / d_p$

$$df = \frac{1}{\sqrt{2\pi}d_p \ln \sigma_g} \exp \left[-\frac{\left(\ln d_p - \ln d_{pg}\right)^2}{2(\ln \sigma_g)^2} \right] dd_p$$

$$df = \frac{1}{3\sqrt{2\pi}v_p \ln \sigma_g} \exp \left[-\frac{\ln^2(v_p/v_{pg})}{18\ln^2 \sigma_g} \right] dv_p$$

Função para volume da partícula Características da Distribuição Lognormal

$$\ln \sigma_{g} = \ln d_{84\%} - \ln d_{50\%} \qquad 2\ln \sigma_{g} = \ln(d_{97.7\%} / d_{50\%})$$
$$= \ln(d_{84\%} / d_{50\%})$$

Para uma determinada distribuição, σ_g permanece constante (nondimensional) para todas as distribuições ponderadas

Gráfico log-Probabilidade

Medidas de um Impactador em Cascata

Size range (µm)	0-2	2-5	5-9	9-15	15-25	>25	
Mass (mg)	4.5	179.5	368	276	73.5	18.5	
Size range (µm) Mass fraction (m _i) Cumulativ			ulative	percent			
0-2	0.0049		0.5				
2-5	0.195		20.0				
5-9	0.4			60.0			
9-15	0.3		90.0				
15-25	0.08		98.0				
>25	0.02		100				

