ESc201: Introduction to Electronics

Logic Gates

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Example (recap)

Adding or subtracting numbers with addition operation alone To get a negative number, 2's complement of positive number is taken

2's complement is 0011 = 3

Boolean Algebra (recap)

Algebra on Binary numbers

A variable x can take two values {0,1} 0

Basic operations:

AND:
$$y = x_1 . x_2$$

y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

Basic operations (recap)

OR:
$$y = x_1 + x_2$$

y is 1 if either x_1 or x_2 is 1. y=0 if and only if both variables are zero

X ₁	X_2	У
0	0	0
0	1	1
1	0	1
1	1	1

NOT:
$$y = \overline{x}$$

$$\begin{array}{ccc} x & y \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

How do we get the chocolate?

Design Flow

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

$$\Rightarrow$$
 f = $\overline{x} \cdot \overline{z} + x \cdot z$

Proving Theorems P1.a:
$$x + 0 = x$$

$$0 = x$$

P1.b:
$$x \cdot 1 = x$$

$$X + O = X$$

$$y = x$$

$$x \cdot 1 = x$$

$$a: x + y$$

$$= y + x$$

$$. 1 = X$$

P2.a:
$$x + y = y + x$$

P2.b:
$$x \cdot y = y \cdot x$$

$$x \cdot y = y \cdot x$$

P3.a:
$$x.(y+z) = x.y+x.z$$

P3.b:
$$x+y.z = (x+y).(x+z)$$

P4.a:
$$x + \bar{x} = 1$$

P4.b:
$$x \cdot \bar{x} = 0$$

Prove : x + 1 = 1

$$x + x \cdot y = x$$

$$x + 1 = x + (x + \overline{x})$$

$$= x . 1 + x. y$$

$$=(x+x)+\overline{x}$$

$$= x. (1+ y)$$

$$= x + \overline{x}$$

$$= x \cdot 1$$

$$= 1$$

=X

DeMorgan's Theorem

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1. x_2. x_3....)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

Simplification of Boolean expressions

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$

$$\overline{(x_1, x_2, x_3, ...)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

$$(\overline{x_1}.x_2 + \overline{x_2}.x_3) = ?$$

$$\overline{(x_1.x_2 + x_2.x_3)} = ? = (\overline{x_1.x_2}) \cdot (\overline{x_2} \cdot x_3)$$

$$=(\overline{x}_1 + \overline{x}_2) \cdot (\overline{x}_2 + \overline{x}_3)$$

$$=(x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1. x_2 + \overline{x_2}.x_2 + x_1. \overline{x_3} + \overline{x_2}. \overline{x_3}$$

$$= x_1. x_2 + x_1. x_3 + x_2. x_3$$

Function of Boolean variables

y = 1 when x_1 is 0 and x_2 is 1

$$y = \overline{x_1} \cdot x_2$$

Boolean expression

Obtaining Boolean expressions from truth Table

$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

Obtaining Boolean expressions from truth Table

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$y = \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2}$$

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0

X ₁	X_2	у
0	0	0
0	1	1
1	0	1
1	1	1

$$y = x_1 + x_2$$

$$\mathbf{x}_1 + \mathbf{x}_2$$

$$y = (x_1 + x_2).(x_1 + x_2)$$

$$\overline{x_1} + \overline{x_2}$$

Obtaining Boolean expressions from truth Table

Implementing Boolean expressions

Elementary Gates

AND:
$$y = x_1 . x_2$$

Why call it a gate?

$$x_1$$
 AND $y = 0$ Gate is closed

$$x_1$$
 AND $y = x_1$ Gate is open

OR:
$$y = x_1 + x_2$$

NOT:
$$y = \bar{x}$$

NAND:
$$y = \overline{x_1} \cdot x_2$$
 $x_2 - x_2 = x_1 \cdot x_2 = x_2 - x_2 = x_2$

$$x_1$$
 NAND y

NOR:
$$y = x_1 + x_2$$

$$x_1$$
 NOR y

XOR:
$$y = x_1 \oplus x_2 = x_1 \cdot x_2 + x_1 \cdot x_2$$

y is 1 if only one variable is 1 and the other is zero

$$\begin{array}{c|c} x_1 & \hline & x_1 \overline{x_2} \\ \hline \hline & x_2 & \hline & \\ \hline & x_1 \\ \hline & x_2 & \hline & \\ \hline & x_1 \\ \hline & x_2 & \hline & \\ \hline \end{array}$$

Gates with more than 2 inputs

AND:
$$y = x_1. x_2. x_3...$$

$$x_1$$
 x_2
 x_3
 x_3
 x_3

OR:
$$y = x_1 + x_2 + x_3 + \dots$$

XOR:
$$y = x_1 \oplus x_2 \oplus x_3 = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$

y = 1 only if odd number of inputs is 1

How do we get the chocolate?

Design Flow

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

$$\Rightarrow$$
 f = $\overline{x} \cdot \overline{z} + x \cdot z$

Implementing Boolean expressions using gates

$$S = x.y.z + x.y.z + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$

