Continuous optimization PGE305

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Institut Polytechnique de Paris November 2021

Exercise 7

Parameters.

n	number of cereals	
Т	number of time steps	
Smin	minimal volume	
Smax	maximal volume	
Si	initial volume	
Sf	minimal final volume	
Amax	available area	
Q	incoming flow	$t \in \{1,, 12\}$
В	unitary revenue	$i \in \{1,, 4\}$
d	need for water	$i \in \{1,, 4\}, t \in \{1,, 12\}$

Exercise 7

Variables.

Х	area	$i \in \{1,, n\}$
R	withdrawn volume	$t \in \{1,, T\}$
D	allocated volume	$t \in \{1,, T\}$
S	volume in the reservoir	$t \in \{0,, T\}$

Costs.

$$\max \sum_{i=1}^n B[i]x[i].$$

Exercise 7

Constraints.

$S[t] \geq Smin$	$t \in \{1,,T\}$	Lower bound of reservoir
$S[t] \leq Smax$	$t \in \{1,,T\}$	Upper bound of reservoir
$x[i] \geq 0$	$i \in \{1,,n\}$	Non-negativity
$\sum_{i=1}^{n} x[i] \leq A max$		Available area
$\sum_{i=1}^{n} d[i,t] \times [i] = 0.5D[t]$	$t \in \{1,,T\}$	Need for water
S[0] = Si		Initial volume in reservoir
S[t-1] + Q[t] - R[t] = S[t]	$t \in \{1,,T\}$	Evolution of reservoir
$D[t] \leq R[t]$	$t \in \{1,,T\}$	Allocated vs. withdrawn water
$S[T] \geq Sf$		Final bound of reservoir