Tema 4. Fonaments de Química Orgànica

- 4.1. Introducció a la Química Orgànica
 - 4.1.1. Breu història i justificació de la Química Orgànica
 - 4.1.2. L'àtom de carboni
 - 4.1.3. Classificació dels compostos orgànics
 - 4.1.4. Representació dels compostos orgànics
- 4.2. Propietats generals dels diferents tipus de compostos orgànics
- 4.3. Nucleòfil/electròfil i moviment d'electrons
- 4.4. Isòmers
- 4.5. Introducció a les biomolècules

L'àtom de carboni

Exercici 4.1. Indica la hibridació i la geometria de cada un dels àtoms de carboni del noretinodrel, que en combinació amb el mestranol, formava el principi actiu de la primera píndola anticonceptiva oral que es va comercialitzar.

Noretinodrel

Noretinodrel

- Carbonis amb hibridació sp³
 Geometria tetraèdrica
- Carbonis amb hibridació sp²
 Geometria plana trigonal
- Carbonis amb hibridació sp
 Geometria lineal

L'àtom de carboni

Exercici 4.2. Indica en el tetrahidrocannabinol, principal constituent psicoactiu del cànnabis, els conjunts d'àtoms que estan en un mateix pla.

Nota: cal considerar la geometria dels àtoms depenent de la seva hibridació.

Tetrahidrocannabinol

Carbonis amb hibridació sp²
Geometria plana trigonal

Classificació dels compostos orgànics

Exercici 4.4. Identifica i anomena els grups funcionals presents en l'amoxicilina, substància amb conegudes propietats antibiòtiques.

Representació dels compostos orgànics

Exercici 4.6. Dibuixa en línies i angles i en fórmules estructurals els compostos que es llisten a continuació:

- a) 3-isopropiloctà
- b) 2-cloro-3-metilpentà
- c) cis-2-pentè
- d) dipropil èter
- e) p-bromofenol

Altres exercicis – llibret pdf

Exercici 4.5. Dóna la fórmula molecular del Voriconazol i de totes les molècules dels exercicis anteriors:

Voriconazol C₁₆H₁₄F₃N₅O

Noretinodrel (Ex 4.1) C₂₀H₂₆O₂

Tetrahidrocannabinol (Ex 4.2) C₂₁H₃₀O₂

Ex 4.3: C₁₀H₁₄O₂

Ex 4.4: C₇H₁₀

Amoxicilina (Ex 4.5): $C_{16}H_{19}N_3O_5S$

3-isopropiloctà (Ex 4.6): C₁₁H₁₄

2-cloro-3-metilpentà (Ex 4.6): $C_6H_{13}CI$

Cis-2-pentè (Ex 4.6): C₅H₁₀

Dipropil èter (Ex 4.6): C₆H₁₄O

p-bromofenol (Ex 4.6): C₆H₅BrO

COGNOMS DNI DNI

R2) (10 punts) L'estructura de la rosuvastatina, un fàrmac utilitzat per reduir els nivells de colesterol, es mostra a continuació. En base a l'estructura d'aquest fàrmac, contesteu les preguntes que segueixen:

Rosuvastatina

a) Determineu la fórmula molecular de la rosuvastatina.

$C_{22}H_{28}FN_3O_6S$

b) Indiqueu si l'alquè en la molècula té geometria cis o trans.

L'alquè té geometria trans.

c) Indiqueu en la taula a continuació el tipus d'enllaç i els orbitals que es solapen per formar l'enllaç entre els carbonis 1 i 2, 3 i 4, i 5 i 6.

	Tipus d'enllaç/os	Orbitals que es solapen
Enllaç C1-C2	Enllaç sigma	sp ² (C1) amb un sp ² (C2)
Enllaç C3-C4	Enllaç sigma	sp^2 (C3) amb un sp^3 (C4)
Enllaç C5-C6	Enllaç sigma + enllac pi	Sigma: sp^2 (C5) amb un sp^2 (C6) Pi: p (C5) amb un p (C6)

d) Un dels passos en la síntesi de la rosuvastatina es mostra a continuació. Indiqueu el grau d'oxidació dels carbonis assenyalats amb una fletxa en l'esquema i indiqueu si es tracta d'una reacció de reducció o oxidació.

És una reacció de reducció perquè es redueix el grau d'oxidació d'un dels carbonis.

e) Indiqueu si la rosuvastatina serà o no soluble en aigua. Justifiqueu la vostra resposta.

Sí que serà soluble en aigua perquè té múltiples punts per on pot formar ponts d'hidrogen amb l'aigua.