1 Úvod

Poznámka (Domluva)

 $\mathbb N$ jsou přirozená čísla s 0. n značí přirozené číslo.

Dále se probírali základy značení a teorie množin.

Definice 1.1 (Základy)

Základem výrokové logiky je 5 symbolů (2 hodnoty + 3 logické spojky): $\top \bot \neg \land \lor = \text{pravda}$, lež, negace, a, nebo.

Dále jsou to výrokové atomy z nějaké abecedy. Libovolný výrok je pak konečným aplikováním logických spojek.

Definice 1.2 (Pravdivostní ohodnocení)

Pravděpodobnostní ohodnocení je zobrazení t z prvovýroků do $\{0,1\}$. Toto zobrazení lze jednoznačně rozšířit na t' na všechny výroky:

$$t'(\top) = 1, t'(\bot) = 0, t'(\neg a) = 1 - t'(a), t'(a \lor b) = \max\{t'(a), t'(b)\}, t'(a \land b) = \min\{t'(a), t'(b)\}$$

Definice 1.3

Pomocí pravdivostního ohodnocení můžeme zavést implikaci (spojka mezi premisou (antecedent) a závěrem (konsekvent)).

Definice 1.4 (Tautologie)

p je tautologie (notace $\models p) \equiv t(p)=1$ pro všechna $t:A \to \{0,1\}.$ p je splnitelné \equiv existuje $t:A \to \{0,1\}$ takové, že t(p)=1.

Lemma, 1 de (Zákony inempotence, komutativity, asociativity, distributivity, asociativity, distributivity,

Viz skripta.

Definice 1.5 (Model)

Model (koho, čeho) Σ (výrokové teorie) je každé pravděpodobnostní ohodnocení t, které přiřazuje 1 všem výrokům ze Σ . Říkáme, že p je tautologický důsledek Σ (píšeme $\Sigma \models p$, říkáme p vyplývá ze Σ) $\equiv t(p) = 1$ pro všechny modely t (koho čeho) Σ .

Poznámka

 $\models p$ je totéž, co $\emptyset \models p$.

Lemma 1.2

 $Vlastnosti \models . Viz skripta.$

Definice 1.6 (Arita)

Mějme množinu symbolů F a zobrazení $a:F\to\mathbb{N}.$ Říkáme, že symbol $f\in F$ má aritu $n\equiv a(f)=n.$

Řekněme, že slovo je přijatelné \equiv TODO.

Definice 1.7 (Arita logických symbolů)

Aritu symbolů ar definujeme pro $F = A \cup \{\top, \bot, \neq, \lor, \land\}$ jako $ar(x) = 0, x \in A \cup \{\top, \bot\}, ar(\neq) = 1, ar(\lor, \land) = 2.$

Lemma 1.3

Buďte t_1, \ldots, t_m a u_1, \ldots, u_n jsou přijatelná slova a w libovolné slovo tak, že $t_1 \ldots t_m w = u_1 - u_n$. Potom $m \leq n$, $t_i = u_i$ pro $i \in [m]$ a $w = u_{m+1} \ldots u_n$.

 $D\mathring{u}kaz$

Indukcí podle velikosti $u_1 \dots u_n$.

Definice 1.8 (Modus Ponens (= MP = odvozovací pravidla))

 $Z p a p \implies q$, odvodíme q.

Definice 1.9 (Důkaz)

Formální důkaz (či důkaz) $p \ge \Sigma$ je sekvence p_1, \ldots, p_n , kde $n \ge 1$ a $p_n = p$ tak, že $\forall k \in [n]$: buď $p_k \in Sigma$, nebo p_k je výrokový axiom (viz skripta), nebo $\exists i, j \in [k-1]$ tak, že p_k lze odvodit pravidlem MP z p_i a p_j .

Ríkáme, že p je dokazatelné ze $\Sigma,$ a značíme $\Sigma \vdash p$

Tvrzení 1.4

 $Pokud \Sigma \vdash p, pak \Sigma \models p.$

 $D\mathring{u}kaz$

Jednoduchý.

Věta 1.5 (O úplnosti (1. znění))

$$\Sigma \vdash p \Leftrightarrow \Sigma \models p$$
.

Věta 1.6 (Kompaktnost logiky)

Pokud $\Sigma \models p$, pak existuje konečná podmnožina $\Sigma_0 \subseteq \Sigma$ tak, že $\Sigma_0 \models p$.

Důkaz

Vyplývá z předchozí věty

Definice 1.10 (Konzistentnost)

Říkáme, že Σ je nekonzistentní, pokud $\Sigma \vdash \bot$, jinak (pokud $\Sigma \nvdash \bot$) je konzistentní.

Věta 1.7 (O úplnosti (2. znění))

 Σ je konzistentní právě tehdy, když má model.

Důsledek

 Σ má model \Leftrightarrow každá konečná podmnožina Σ má model.

Lemma 1.8 (Dedukce)

 $P\check{r}edpokl\acute{a}dejme\ \Sigma \cup \{p\} \vdash q.\ Potom\ \Sigma \vdash p \implies q.$

Důkaz (Indukcí)

Pokud je q výrokový axiom, pak $\Sigma \vdash q$ a jelikož $q \Longrightarrow (p \Longrightarrow q)$ je výrokový axiom, MP říká $\Sigma \vdash p \Longrightarrow q$. Pokud $q \in \Sigma \cup \{p\}$, pak buď TODO

Důsledek

 $\Sigma \vdash p$ tehdy a pouze tehdy, když $\Sigma \cup \{\neg\}$ je nekonzistentní.

 $D\mathring{u}kaz$

 \Longrightarrow : Předpokládejme, že $\Sigma \vdash p$. Jelikož $p \implies (\neg p \implies \bot)$ je výrokový axiom, můžeme 2krát použít MP a získat $\Sigma \cup \{p\}$ TODO

Důsledek

Z druhého znění věty o úplnosti vyplývá první znění.

Definice 1.11

Říkáme, že Σ je kompletní (úplná, ale s větou o úplnosti nemá nic společného), pokud Σ je konzistentní a pro všechna p je buď $\Sigma \vdash p$ nebo $\Sigma \vdash \neg p$.

Lemma 1.9 (Lindenbaum)

Nechť Σ je konzistentní. Pak existuje kompletní Σ' tak, že $\Sigma \subseteq \Sigma'$.

Důkaz

Zornovo lemma. TODO. Pokud je axiomů konečně, tak můžeme udělat důkaz bez Zornova lemmatu. $\hfill\Box$

Definice 1.12 (Pravdivostní ohodnocení v závislosti na Σ)

 $t_{\Sigma}: A \to \{0,1\}, t_{\Sigma}(a) = 1$, pokud $\Sigma \vdash a$, jinak $t_{\Sigma}(a) = 0$.

Lemma 1.10

Předpokládejme, že Σ je kompletní, potom pro každé p máme

$$\Sigma \vdash p \Leftrightarrow t_{\Sigma}(p) = 1.$$

Nevoli t_{Σ} je model Σ .

 $D\mathring{u}kaz$

Indukcí podle počtu spojek. TODO.

2 Predikátorová logika

Definice 2.1 (Jazyk)

Jazyk (L) je disjoin sjednocení množiny relací (L^r) (každé relaci $R \in L^r$ přiřadíme aritu $a(R) \in \mathbb{N}$) a množiny funkčních symbolů (L^f) $(F \in L^f)$ má aritu $a(F) \in \mathbb{N}$).

Definice 2.2 (Struktura)

Struktura \mathcal{A} pro L je trojice $(A, (R^{\mathcal{A}})_{R \in L^r}, (F^{\mathcal{A}}_{F \in L^f}))$ sestávající z množiny A (tzv. nosič), pro každou m-ární relaci $R \in L^r$ máme její vyjádření $R_A \in A^m$.

Definice 2.3 (Podstruktura, zúžení)

 \mathcal{X} je podstruktura struktury \mathcal{Y} , značíme $\mathcal{X} \subseteq \mathcal{Y}$, pokud $X \subseteq Y$ a všechny operace jsou uzavřené na relace i funkce. Taktéž říkáme, že \mathcal{Y} je rozšíření \mathcal{A} .

Zúžení funkce F na podstrukturu \mathcal{X} , značené $F|_{\mathcal{X}}$ je, jak bychom čekali.

Definice 2.4 (Homomorfismus)

At \mathcal{A} a a \mathcal{B} jsou struktury (pro tentýž jazyk). Homomorfismus $h: \mathcal{A} \to \mathcal{B}$ je zobrazení $h: \mathcal{A} \to \mathcal{B}$ tak, že $\forall m$ -nární $R \in L^r$ a každé $(a_1, \ldots, a_m) \in A^m$ máme $(a_1, \ldots, a_m) \in R^{\mathcal{A}} \Longrightarrow (ha_1, \ldots, ha_m) \in R^{\mathcal{B}}$. $\forall n$ -nární $F \in L^f$ a každé $(a_1, \ldots, a_n) \in A^n$ je $h(F^{\mathcal{A}}(a_1, \ldots, a_n)) = F^{\mathcal{B}}(ha_1, \ldots, ha_n)$.

Definice 2.5 (Silný homomorfismus)

Pokud nahradíme implikaci v předchozí definici ekvivalencí, dostaneme tzv. silný homomorfismus. Speciálním případem je tzv. vnoření, TODO.

Definice 2.6 (Kongruence)

Kongruence je ekvivalence taková, že pokud jsou v relaci nějaké prvky, tak jsou v relaci i kongruentní prvky. Stejně tak obraz kongruentních prvků je kongruentní prvek k obrazu původních.

Definice 2.7 (Kvocient / faktorstruktura)

Nechť \mathcal{A} je struktura a ~ kongruence. Potom \mathcal{A}/\sim , tzv. faktostruktura, je struktura, kde nosná množina je A/\sim a relace a funkce jsou přepsané tak, aby nové prvky byly v relaci právě tehdy, pokud byly jim odpovídající původní prvky.

2.1 Proměnné a formule

Definice 2.8 (Proměnné)

Proměnné: $Var = \{v_0, v_1, v_2, \ldots\}$ je spočetná (nekonečná) množina.

Poznámka

Většinou by nevadila ani nespočetná. Naopak se spočetná by nám rozbíjela skládání výroků.

Definice 2.9 (Termy)

L-term je slovo na abecedě $L^f \cup Var$ získané jako: každá proměnná je L-term a kdykoliv je $F \in L^f$ n-nární relace a t_1, \ldots, t_n L-termy, pak je $Ft_1 \ldots t_n$ L-term.

Definice 2.10 (Uzavřený term)

Uzavřený term se nazývá ten term, který neobsahuje proměnné.

Definice 2.11 (Generátory)

Mějme strukturu a množinu (oindexovanou) prvků z ní. Pokud tuto množinu uzavřeme na relace a funkce, pak dostaneme podstrukturu, která se nazývá generovaná danou množinou prvků (a ty se nazývají generátory).

Definice 2.12 (Symboly)

V predikátorové logice máme: \top , \bot , \neg , \wedge , \vee , =, \forall , \exists .

Definice 2.13 (Atomická formule)

Atomická L-formule je slovo z abecedy $L \cup Var \cup \{\top, \bot, =\}$, které je tvaru buď \top, \bot , nebo termy jsou v relaci $(Rt_1 \dots t_m, \text{ kde } R \in L^r \text{ je } m\text{-nární relace a } t_1, \dots, t_m \text{ jsou } L\text{-termy}),$ nebo $= t_1t_2$ (kde t_1 a t_2 jsou L-termy).

Definice 2.14 (Formule)

L-formule je slovo na abecedě $L \cup Var \cup \{\top, \bot, \neg, \lor, \land, =, \exists, \forall\}$, které je buď atomická formule, nebo $\neg \varphi, \lor \varphi \psi, \land \varphi \psi$, kde φ a ψ jsou L-formule, nebo $\exists x \varphi, \forall x \varphi$, kde φ je formule a x je proměnná.

Definice 2.15 (Podformule)

Podformule je podslovo formule, které je také formule.

Definice 2.16 (Vázaný a volný výskyt)

Pokud se proměnná vyskytuje v podformuli tvaru $\exists x \varphi$ nebo $\forall x \varphi$, pak se nazývá vázaná (má na tomto místě vázaný výskyt), pokud se vyskytuje jinde, pak je volná (volný výskyt).

Definice 2.17 (Sentence (= uzavřená formule))

Sentence je formule, kde všechny výskyty proměnné jsou vázané.

Poznámka

Píšeme $\varphi(x_1,\ldots,x_n)$, abychom zvýraznili, že právě proměnné x_1,\ldots,x_n jsou volné v φ .

Do formule dosazujeme $(\varphi(t_1/x_1,\ldots,t_n/x_n))$ naráz a nahrazujeme všechny volné výskyty dané proměnné.

Místo $\varphi(t_1/x_1,\ldots,t_n/x_n)$ budeme psát $\varphi(t_1,\ldots,t_n)$.

Lemma 2.1

Nechť φ je L-formule, x_1, \ldots, x_n různé proměnné a t_1, \ldots, t_n jsou L-termy. Potom $\varphi(t_1/x_1, \ldots, t_n/x_n)$ je L-formule. Pokud t_1, \ldots, t_n nemají volné proměnné a $\varphi = \varphi(x_1, \ldots, x_n)$, potom $\varphi(t_1, \ldots, t_n)$ je L-sentence.

Definice 2.18

Jazyk rozšiřujeme o tzv. jména, tj. konstantní symboly reprezentující prvky, o kterých se chceme bavit. Tzv. expanze struktury.

Definice 2.19 (Pravdivost (Tarského definice splňování))

 L_A -sentence σ je pravdivá v L-struktuře A (píšeme $A \models \sigma$ a čteme σ je pravdivá / splněna v A) takto:

- $A \models \top a A \not\models \bot$,
- $A \models Rt_1 \dots t_m$ právě tehdy, pokud $(t_1^A, \dots, t_m^A) \in R^A$ pro m-nární relaci $R \in L^r$ a L_A termy bez volných proměnných t_1, \dots, t_m ,
- $A \models t_1 = t_2$ právě tehdy, když $t_1^A = t_2^A$ pro L_A -termy bez volných proměnných t_1, t_2 ,
- $\sigma = \neg \sigma_1$, potom $A \models \sigma$ právě tehdy, pokud $A \not\models \sigma_1$,
- $\sigma = \sigma_1 \vee \sigma_2$, potom $A \models \sigma$ právě tehdy, pokud $A \models \sigma_1$ nebo $A \models \sigma_2$,
- $\sigma = \sigma_1 \wedge \sigma_2$, potom $A \models \sigma$ právě tehdy, pokud $A \models \sigma_1$ a $A \models \sigma_2$,
- $\sigma = \exists x \varphi(x)$, potom $A \models \sigma$ tehdy a jen tehdy, když $A \models \varphi(\underline{a})$ pro nějaké $a \in A$,
- $\sigma = \forall x \varphi(x)$, potom $A \models \sigma$ tehdy a jen tehdy, když $A \models \varphi(\underline{a})$ pro všechna $a \in A$,

Definice 2.20

 $\varphi(x_1,\ldots,x_n)$ definuje množinu $\varphi^A = \{(a_1,\ldots,a_n): A \models \varphi(a_1,\ldots,a_n)\}.$

Pokud existuje formule definující $S\subseteq A^n$, potom říkáme, že formule je 0-definovatelná v A.

Definice 2.21

Formule se nazývá pozitivní, pokud neobsahuje negaci (¬).

TODO

TODO, velké TODO