Τεχνητή Νοημοσύνη και Μηχανική Μάθηση

Κωνσταντίνος Καραμανής

The University of Texas at Austin & Archimedes/Athena RC

constantine@utexas.edu

https://caramanis.github.io/

Μία απείρως πλούσια οικογένεια αλγορίθμων που εάν σχεδιαστούν σωστά, ταιριάζουν με πολλές εφαρμογές

- Που χρησιμοποιούνται τα νευρωνικά δίκτυα
- Παντού! Μηχανική όραση (computer vision), επεξεργασία φυσικής γλώσσας (natural language processing), γενετική τεχνητή νοημοσύνη (generative AI), ενισχυτική μάθηση (reinforcement learning)
- Alexnet, Resnet, ChatGPT, Claude, Dall-E, Gemini, Bard, Llama, CLIP, AlphaGO...

- Θα μάθουμε πως να τα χτίζουμε
- Πως να τα χρησιμοποιούμε
- Πως να τα εκπαιδεύουμε

- Θα μάθουμε πως να τα χτίζουμε
- Πως να τα χρησιμοποιούμε
- Πως να τα εκπαιδεύουμε

Σε αυτήν την διάλεξη:

- Γραμμικά επίπεδα
- Softmax

x ₁	X ₂	h ₁
-1	2	
2	1	
1	0	

δεδομένα

x ₁	X ₂	h ₁	
-1	2		
2	1		
1	0		
		x_1 .	$w_1 + x_2 \cdot w_2 + c$

x ₁	X ₂	h ₁	
-1	2	9	
2	1	3	
1	0	1	
		x_1 .	$w_1 + x_2 \cdot w_2 + c = -1*-1 + 2*3 + 2 =$

x ₁	X ₂	Х3	X ₄	h ₁
0	2	1	4	
-1	-1	2	-3	
0	3	0	2	

δεδομένα

x ₁	X ₂	X ₃	X ₄	h ₁	
0	2	1	4		
-1	-1	2	-3		
0	3	0	2		
		x_1	· w ₁₁ +	⊦ <i>х</i> ₂ · и	$v_{12} + x_3 \cdot w_{13} + x_4 \cdot w_{14} + c_1$

x ₁	X ₂	x ₃	X ₄	h ₁		
0	2	1	4	-3		
-1	-1	2	-3			
0	3	0	2			
		x_1	$\cdot w_{11}$ -	⊦ <i>х</i> ₂ · и	$y_{12} + x_3 \cdot w_{13} + x_4 \cdot w_{14} + c_1$	
$= 0 \cdot 1 + 2 \cdot -2 + 1 \cdot -1 + 4 \cdot 0 + 2$						
			= -3			

x ₁	X ₂	Х3	X ₄	h ₁
0	2	1	4	-3
-1	-1	2	-3	1
0	3	0	2	-4

δεδομένα

Για παλινδρόμηση/regression έχουμε ένα output Παράδειγμα:

- Sentiment Detection
- Pose estimation

Για ταξινόμηση χρειαζόμαστε 2 ή παραπάνω output

Παράδειγμα:

• Ταξινόμηση καρκίνου μαστού: malignant / benign / normal

Για ταξινόμηση χρειαζόμαστε 2 ή παραπάνω output

Παράδειγμα:

- Ταξινόμηση καρκίνου μαστού: malignant / benign / normal
- $y_1 = 1, y_2 = 0, y_3 = 0$: το **x** ανήκει στην κατηγορία

$$y_1 = 0, y_2 = 1, y_3 = 0$$
: το **x** ανήκει στην κατηγορία

$$y_1 = 0, y_2 = 0, y_3 = 1$$
: το **x** ανήκει στην κατηγορία

Για ταξινόμηση χρειαζόμαστε 2 ή παραπάνω output

Παράδειγμα:

- Ταξινόμηση καρκίνου μαστού: malignant / benign / normal
- $y_1 = 1, y_2 = 0, y_3 = 0$: το **x** ανήκει στην κατηγορία

$$y_1 = 0, y_2 = 1, y_3 = 0$$
: το **x** ανήκει στην κατηγορία 2

$$y_1 = 0, y_2 = 0, y_3 = 1$$
: το **x** ανήκει στην κατηγορία

$$y_1 = 0.94, y_2 = 0.02, y_3 = 0.04$$
:

Για ταξινόμηση χρειαζόμαστε 2 ή παραπάνω output

Παράδειγμα:

- Ταξινόμηση καρκίνου μαστού: malignant / benign / normal
- $y_1 = 1, y_2 = 0, y_3 = 0$: το **x** ανήκει στην κατηγορία 1
- $y_1 = 0$, $y_2 = 1$, $y_3 = 0$: το **x** ανήκει στην κατηγορία 2
- $y_1 = 0, y_2 = 0, y_3 = 1$: το **x** ανήκει στην κατηγορία 3

 $y_1 = 0.94, y_2 = 0.02, y_3 = 0.04$: το **x** ανήκει στην κατηγορία 1 σχεδόν σίγουρα (94%)

Για ταξινόμηση χρειαζόμαστε 2 ή παραπάνω output

 $y_1 = 0.94, y_2 = 0.02, y_3 = 0.04$: το **x** ανήκει στην κατηγορία 1 σχεδόν σίγουρα (94%)

Οπότε απαιτούμε:

$$0 \le y_1 \le 1, 0 \le y_2 \le 1, 0 \le y_3 \le 1$$

 $y_1 + y_2 + y_3 = 1$

Πως θα το πετύχουμε αυτό;

Softmax: Παραδείγματα

$$(z_1, z_2) = (-1, 3)$$
 $(y_1, y_2) = \text{softmax}(z_1, z_2)$:

$$y_1 = \frac{\exp(z_1)}{\exp(z_1) + \exp(z_2)} = 0.018$$

$$y_2 = \frac{\exp(z_2)}{\exp(z_1) + \exp(z_2)} = 0.982$$

$$(z_1, z_2, z_3) = (3, 3, 3, -2)$$
 $(y_1, y_2, y_3) = \text{softmax}(z_1, z_2, z_3)$:

$$y_1 = \frac{\exp(z_1)}{\exp(z_1) + \exp(z_2) + \exp(z_3)} = 0.424$$

$$y_2 = \frac{\exp(z_2)}{\exp(z_1) + \exp(z_2) + \exp(z_3)} = 0.573$$

$$y_3 = \frac{\exp(z_3)}{\exp(z_1) + \exp(z_2) + \exp(z_3)} = 0.0028$$

Fully Connected + Softmax

Fully Connected

Fully Connected + SoftMax

Αρκούν τα Γραμμικά Επίπεδα;

