EXHIBIT E

3GPP TS 36.213 V8.3.0 (2008-05)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

Release 8

2

3GPP TS 36.213 V8.3.0 (2008-05)

Keywords

UMTS, radio, layer 1

3GPP

Postal address

3GPP support office address

650 Route des Lucioles – Sophia Antipolis Valbonne – France Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Int<u>ernet</u>

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

@ 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved.

Contents

TOICWC	ord	5
1 5	Scope	<i>6</i>
2 I	References	<i>6</i>
3 I	Definitions, symbols, and abbreviations	<i>€</i>
3.1	Symbols	
3.2	Abbreviations	
_		
	Synchronisation procedures	
4.1	Cell search	
4.2	Timing synchronisation	
4.2.1	Radio link monitoring	
4.2.3	Inter-cell synchronisation	
4.2.4	Transmission timing adjustments	?
5 I	Power control	8
5.1	Uplink power control	8
5.1.1	Physical uplink shared channel	
5.1.1.1	UE behaviour	
5.1.1.2	Power headroom	
5.1.2	Physical uplink control channel	
5.1.2.1	UE behaviour	
5.1.3	Sounding Reference Symbol	
5.1.3.1	UE behaviour	
5.2	Downlink power allocation	
5.2.1	eNodeB Relative Narrowband TX Power restrictions	. 13
6 I	Random access procedure	. 13
6.1	Physical non-synchronized random access procedure	
6.1.1	Timing	
6.1.1.1	Synchronized	
6.1.1.2	Ünsynchronized	. 14
7 I	Physical downlink shared channel related procedures	14
7.1	UE procedure for receiving the physical downlink shared channel	
7.1.1	Single-antenna port	
7.1.2	Transmit diversity	
7.1.3	Open-loop spatial multiplexing	
7.1.4	Closed-loop spatial multiplexing	
7.1.5	Void	. 15
7.1.6	Resource allocation	. 15
7.1.6.1	Resource allocation type 0	
7.1.6.2	Resource allocation type 1	
7.1.6.3	Resource allocation type 2	
7.1.7	Modulation order and transport block size determination	
7.1.7.1	Modulation order determination.	
7.1.7.2	Transport block size determination	
7.1.7.2.		
7.1.7.2.		. 23
7.2	UE procedure for reporting channel quality indication (CQI), precoding matrix indicator (PMI) and rank	2
7 2 1	indication (RI)	
7.2.1 7.2.2	Aperiodic CQI/PMI/RI Reporting using PUSCH	
7.2.2	Periodic CQI/PMI/RI Reporting using PUCCH	
7.2.3 7.2.4	Precoding Matrix Indicator (PMI) definition	
7.2.4	UE procedure for reporting ACK/NACK	3-

Case 6:20-cv-00541-ADA Document 46-10 Filed 03/05/21 Page 5 of 46

Kelea	se 8 4	3GPP 15 36.213 V8.3.0 (2008-05)
8	Physical uplink shared channel related procedures	34
8.1	Resource Allocation for PDCCH DCI Format 0	
8.2	UE sounding procedure	
8.2.1	Sounding definition	
8.3	UE ACK/NACK procedure	
8.4	UE PUSCH Hopping procedure	
8.4.1	Type 1 PUSCH Hopping	
8.4.2	Type 2 PUSCH Hopping	
8.5	UE Reference Symbol procedure	
8.6	Modulation order, redundancy version and transport block size determinatio	
8.6.1	Modulation order and redundancy version determination	
8.6.2	Transport block size determination	
8.7	UE Transmit Antenna Selection	40
9	Physical downlink control channel procedures	40
9.1	UE procedure for determining physical downlink control channel assignment	
9.1.1	PDCCH Assignment Procedure	
9.1.2	PHICH Assignment Procedure	41
10	Physical uplink control channel procedures	42
10.1	UE procedure for determining physical uplink control channel assignment	
10.2	Uplink ACK/NACK timing	
Anne	ox A (informative). Change history	45

Release 8

5

3GPP TS 36.213 V8.3.0 (2008-05)

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies and establishes the characteristics of the physicals layer procedures in the FDD and TDD modes of E-UTRA.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications" [2] 3GPP TS 36.201: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer -General Description" [3] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation" [4] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding" 3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer – [5] Measurements" [6] 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception" [7] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception"

3 Definitions, symbols, and abbreviations

3.1 Symbols

For the purposes of the present document, the following symbols apply:

$N_{ m RB}^{ m DL}$	Downlink bandwidth configuration, expressed in units of N_{sc}^{RB} as defined in [3]
$N_{ m RB}^{ m UL}$	Uplink bandwidth configuration, expressed in units of $N_{\rm sc}^{\rm RB}$ as defined in [3]
$N_{ m symb}^{ m UL}$	Number of SC-FDMA symbols in an uplink slot as defined in [3]
$N_{\rm sc}^{ m RB}$	Resource block size in the frequency domain, expressed as a number of subcarriers as defined in
	[3]
T_s	Basic time unit as defined in [3]

Release 8

7

3GPP TS 36.213 V8.3.0 (2008-05)

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply.

ACK Acknowledgement
BCH Broadcast Channel
CCE Control Channel Element
CQI Channel Quality Indicator
CRC Cyclic Redundancy Check
DAI Downlink Assignment Index

DL Downlink

DTX Discontinuous Transmission
EPRE Energy Per Resource Element
MCS Modulation and Coding Scheme
NACK Negative Acknowledgement
PBCH Physical Broadcast Channel

PCFICH Physical Control Format Indicator Channel
PDCCH Physical Downlink Control Channel
PDSCH Physical Downlink Shared Channel
PHICH Physical Hybrid ARQ Indicator Channel
PRACH Physical Random Access Channel

PRB Physical Resource Block

PUCCH Physical Uplink Control Channel PUSCH Physical Uplink Shared Channel

QoS Quality of Service
RBG Resource Block Group
RE Resource Element
RPF Repetition Factor
RS Reference Signal

SIR Signal-to-Interference Ratio

SINR Signal to Interference plus Noise Ratio

SRS Sounding Reference Symbol

TA Time alignment

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UL-SCH Uplink Shared Channel VRB Virtual Resource Block

4 Synchronisation procedures

4.1 Cell search

Cell search is the procedure by which a UE acquires time and frequency synchronization with a cell and detects the physical layer Cell ID of that cell. E-UTRA cell search supports a scalable overall transmission bandwidth corresponding to 6 resource blocks and upwards.

The following signals are transmitted in the downlink to facilitate cell search: the primary and secondary synchronization signals.

4.2 Timing synchronisation

4.2.1 Radio link monitoring

The downlink radio link quality of the serving cell shall be monitored by the UE for the purpose of indicating radio problem detection status to higher layers. The radio problem detection may be based on cell-specific reference signals.

In non-DRX mode operations, the physical layer in the UE shall every radio frame check the quality, measured over the previous [200ms] period, against thresholds (Qout and Qin) defined implicitly by relevant tests in [6].

The UE shall indicate radio problem detection to higher layers when the quality is worse than the threshold Qout and continue until the quality is better than the threshold Qin.

The start and stop of the radio problem detection monitoring are triggered by higher layers.

4.2.3 Inter-cell synchronisation

[For example, for cell sites with a multicast physical channel]

4.2.4 Transmission timing adjustments

Upon reception of a timing advance command, the UE shall adjust its uplink transmission timing. The timing advance command is expressed in multiples of $16 T_s$ and is relative to the current uplink timing.

For a timing advance command received on subframe n, the corresponding adjustment of the timing shall apply from the beginning of subframe n+6.

5 Power control

Downlink power control determines the energy per resource element (EPRE). The term resource element energy denotes the energy prior to CP insertion. The term resource element energy also denotes the average energy taken over all constellation points for the modulation scheme applied. Uplink power control determines the average power over a DFT-SOFDM symbol in which the physical channel is transmitted.

5.1 Uplink power control

Uplink power control controls the transmit power of the different uplink physical channels.

A cell wide overload indicator (OI) is exchanged over X2 for inter-cell power control. An indication X also exchanged over X2 indicates PRBs that an eNodeB scheduler allocates to cell edge UEs and that will be most sensitive to inter-cell interference.

[Note: Above lines regarding OI, X and X2 to be moved to an appropriate RAN3 spec when it becomes available]

5.1.1 Physical uplink shared channel

5.1.1.1 UE behaviour

The setting of the UE Transmit power P_{PUSCH} for the physical uplink shared channel (PUSCH) transmission in subframe i is defined by

$$P_{\text{PUSCH}}(i) = \min\{P_{\text{MAX}}, 10\log_{10}(M_{\text{PUSCH}}(i)) + P_{\text{O PUSCH}}(j) + \alpha \cdot PL + \Delta_{\text{TF}}(i) + f(i)\} \text{ [dBm]}$$

where,

- P_{MAX} is the maximum allowed power that depends on the UE power class
- M_{PUSCH}(i) is the size of the PUSCH resource assignment expressed in number of resource blocks valid for subframe i.
- P_{O_PUSCH}(j) is a parameter composed of the sum of a 8-bit cell specific nominal component
 P_{O_PUSCH}(j) signalled from higher layers for j=0 and l in the range of [-126,24] dBm with 1dB resolution and a 4-bit UE specific component P_{O_UE_PUSCH}(j) configured by RRC for j=0 and l in the range of [-8, 7] dB with 1dB resolution. For PUSCH (re)transmissions corresponding to a configured scheduling grant then j=0 and for PUSCH (re)transmissions corresponding to a received PDCCH with DCI format 0 associated with a new packet transmission then j=1.
- $\alpha \in \{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$ is a 3-bit cell specific parameter provided by higher layers
- PL is the downlink pathloss estimate calculated in the UE
- $\Delta_{TF}(i) = 10 \log_{10}(2^{MPR(i) \cdot K_S} 1)$ for $K_S = 1.25$ and 0 for $K_S = 0$ where K_S is a cell specific parameter given by RRC
 - o $MPR(i) = TBS(i) / N_{RE}(i)$ where TBS(i) is the Transport Block Size for subframe i and $N_{RE}(i)$ is the number of resource elements determined as $N_{RE}(i) = 2M_{PUSCH}(i) \cdot N_{sc}^{RB} \cdot N_{symb}^{UL}$ for subframe i
- δ_{PUSCH} is a UE specific correction value, also referred to as a TPC command and is included in PDCCH with DCI format 0 or jointly coded with other TPC commands in PDCCH with DCI format 3/3A. The current PUSCH power control adjustment state is given by f(i) which is defined by:
 - $f(i) = f(i-1) + \delta_{PUSCH}(i K_{PUSCH})$ if f(*) represents accumulation
 - where f(0) = 0
 - The value of K_{PUSCH} is
 - For FDD, $K_{PUSCH} = 4$
 - For TDD UL/DL configurations 1-6, K_{PUSCH} is given in Table 5.1-1
 - For TDD UL/DL configuration 0
 - o If the PUSCH transmission in subframe 2 or 7 is scheduled with a PDCCH of DCI format 0 in which the second bit of the UL index is set, $K_{PUSCH} = 7$
 - For all other PUSCH transmissions, K_{PUSCH} is given in Table 5.1-1. The UE attempts to decode a PDCCH of DCI format 0 and a PDCCH of DCI format 3/3A in every subframe except when in DRX
 - $\delta_{\text{PUSCH}} = 0$ dB for a subframe where no TPC command is decoded or where DRX occurs or i is not an uplink subframe in TDD.
 - The δ_{PUSCH} dB accumulated values signalled on PDCCH with DCI format 0 are [-1, 0, 1, 3].
 - The δ_{PUSCH} dB accumulated values signalled on PDCCH with DCI format 3/3A are one of [-1, 1] or [-1, 0, 1, 3] as semi-statically configured by higher layers.
 - If UE has reached maximum power, positive TPC commands shall not be accumulated
 - If UE has reached minimum power, negative TPC commands shall not be accumulated
 - UE shall reset accumulation
 - · at cell-change
 - when entering/leaving RRC active state

- when an absolute TPC command is received
- when $P_{O \text{ UE PUSCH}}(j)$ is received
- when the UE (re)synchronizes
- o $f(i) = \delta_{PUSCH}(i K_{PUSCH})$ if f(*) represents current absolute value
 - where $\delta_{PUSCH}(i K_{PUSCH})$ was signalled on PDCCH with DCI format 0 on subframe $i K_{PUSCH}$
 - The value of $K_{PUSCH} = 4$ is
 - For FDD, $K_{PUSCH} = 4$
 - \bullet For TDD UL/DL configurations 1-6, $\,K_{\it PUSCH}\,$ is given in Table 5.1-1
 - For TDD UL/DL configuration 0
 - o If the PUSCH transmission in subframe 2 or 7 is scheduled with a PDCCHof DCI format 0 in which the second bit of the UL index is set, $K_{PUSCH} = 7$
 - o For all other PUSCH transmissions, K_{PUSCH} is given in Table 5.1-1.
 - The δ_{PUSCH} dB absolute values signalled on PDCCH with DCI format 0 are [-4,-1, 1, 4].
 - f(i) = f(i-1) for a subframe where no PDCCH with DCI format 0 is decoded or where DRX occurs or i is not an uplink subframe in TDD.
- f(*) type (accumulation or current absolute) is a UE specific parameter that is given by RRC.

TDD UL/DL subframe number i Configuration 0 8 1 2 3 9 0 6 4 6 7 1 6 4 6 2 4 3 4 4 4 4 4 4 5 4

5

Table 5.1-1 $K_{\it PUSCH}$ for TDD configuration 0-6

5.1.1.2 Power headroom

The UE power headroom PH valid for subframe i is defined by

6

$$PH(i) = P_{\text{MAX}} - \left\{ 10 \log_{10}(M_{\text{PUSCH}}(i)) + P_{\text{O PUSCH}}(j) + \alpha \cdot PL + \Delta_{\text{TF}}(TF(i)) + f(i) \right\} [\text{dB}]$$

where, P_{MAX} , $M_{\text{PUSCH}}(i)$, $P_{\text{O PUSCH}}(j)$, α , PL, $\Delta_{\text{TF}}(TF(i))$ and f(i) are defined in section 5.1.1.1.

3GPP TS 36.213 V8.3.0 (2008-05)

The power headroom shall be rounded to the closest value in the range [40; -23] dB with steps of 1 dB and is delivered by the physical layer to higher layers.

5.1.2 Physical uplink control channel

5.1.2.1 UE behaviour

The setting of the UE Transmit power P_{PUCCH} for the physical uplink control channel (PUCCH) transmission in subframe i is defined by

$$P_{\text{PUCCH}}(i) = \min\{P_{\text{MAX}}, P_{\text{O PUCCH}} + PL + \Delta_{\text{F PUCCH}}(F) + g(i)\} \text{ [dBm]}$$

where

- Δ_{F_PUCCH}(F) table entries for each PUCCH transport format (TF) defined in Table 5.4-1 in [3] are given by RRC
 - Each signalled $\Delta_{F \text{ PUCCH}}(F)$ 2-bit value corresponds to a PUCCH (TF) relative to PUCCH format 0.
- P_{O_PUCCH} is a parameter composed of the sum of a 5-bit cell specific parameter P_{O_NOMINAL_PUCCH} provided
 by higher layers with 1 dB resolution in the range of [-127, -96] dBm and a UE specific component
 P_{O_UE_PUCCH} configured by RRC in the range of [-8, 7] dB with 1 dB resolution.
- δ_{PUCCH} is a UE specific correction value, also referred to as a TPC command, included in a PDCCH with DCI format 1A/1/2 or sent jointly coded with other UE specific PUCCH correction values on a PDCCH with DCI format 3/3A.
 - The UE attempts to decode a PDCCH with DCI format 3/3A and one or several PDCCHs with DCI format 1A/1/2 on every subframe except when in DRX.
 - o If the UE decodes a PDCCH with DCI format 1A/1/2 and the corresponding detected RNTI equals the C-RNTI of the UE, the UE shall use the δ_{PUCCH} provided in that PDCCH.

else

• if the UE decodes a PDCCH with DCI format 3/3A, the UE shall use the δ_{PUCCH} provided in that PDCCH

else the UE shall set $\delta_{PUCCH} = 0$ dB.

- o $g(i) = g(i-1) + \Delta_{PUCCH}(i-K_{PUCCH})$ where g(i) is the current PUCCH power control adjustment state with initial condition g(0) = 0.
 - The δ_{PUCCH} dB values signalled on PDCCH with DCI format 1A/1/2 are [-1, 0, 1, 3].
 - The δ_{PUCCH} dB values signalled on PDCCH with DCI format 3/3A are [-1,1] or [-1,0,1,3] as semi-statically configured by higher layers.
 - If UE has reached maximum power, positive TPC commands shall not be accumulated
 - If UE has reached minimum power, negative TPC commands shall not be accumulated
 - UE shall reset accumulation
 - at cell-change
 - when entering/leaving RRC active state
 - when $P_{O \text{ UE PUCCH}}(j)$ is received
 - when the UE (re)synchronizes

5.1.3 Sounding Reference Symbol

5.1.3.1 UE behaviour

The setting of the UE Transmit power P_{SRS} for the Sounding Reference Symbol transmitted on subframe i is defined by

$$P_{SRS}(i) = \min\{P_{MAX}, P_{SRS OFFSET} + 10\log_{10}(M_{SRS}) + P_{O PUSCH}(j) + \alpha \cdot PL + f(i)\} \text{ [dBm]}$$

where

- For $K_S = 1.25$, $P_{\text{SRS_OFFSET}}$ is a 4-bit UE specific parameter semi-statically configured by higher layers with 1dB step size in the range [-3, 12] dB.
- For $K_S = 0$, $P_{\text{SRS_OFFSET}}$ is a 4-bit UE specific parameter semi-statically configured by higher layers with 1.5 dB step size in the range [-10.5,12] dB
- M_{SRS} is the bandwidth of the SRS transmission in subframe i expressed in number of resource blocks.
- f(i) is the current power control adjustment state for the PUSCH, see Section 5.1.1.1.
- $P_{\text{O PUSCH}}(j)$ is a parameter as defined in Section 5.1.1.1.

5.2 Downlink power allocation

The eNodeB determines the downlink transmit energy per resource element.

A UE may assume downlink reference symbol EPRE is constant across the downlink system bandwidth and constant across all subframes until different RS power information is received.

For each UE, the PDSCH-to-RS EPRE ratio among PDSCH REs in all the OFDM symbols not containing RS is equal and is denoted by ρ_A .

The UE may assume that for 16 QAM or 64 QAM or RI>1 spatial multiplexing ρ_A is equal to P_A which is a UE specific semi-static parameter signalled in dB by higher layers in the range of [3, 2, 1, 0, -1, -2, -3, -6] using 3-bits.

For each UE, the PDSCH-to-RS EPRE ratio among PDSCH REs in all the OFDM symbols containing RS is equal and is denoted by ρ_B .

The cell-specific ratio ρ_B/ρ_A is given by Table 5.2-1 according to cell-specific parameter P_B signalled by higher layers and the number of configured eNodeB cell specific antenna ports.

Table 5.2-1: Ratio of PDSCH-to-RS EPRE in symbols with and without reference symbols for 1, 2, or 4 cell specific antenna ports

P_{B}		$ ho_B$ / $ ho_A$
В	One Antenna Port	Two and Four Antenna Ports
0	1	5/4
1	4/5	1
2	3/5	3/4
3	2/5	1/2

For PMCH with 16QAM or 64QAM, the UE may assume that the PMCH-to-RS EPRE ratio is equal to 0 dB.

5.2.1 eNodeB Relative Narrowband TX Power restrictions

The determination of reported Relative Narrowband TX Power indication $RNTP(n_{PRB})$ is defined as follows:

$$RNTP(n_{PRB}) = \begin{cases} 0 & \text{if } \frac{E_A(n_{PRB})}{E_{\text{max_nom}}^{(p)}} \le RNTP_{threshold} \\ 1 & \text{if no promise about the upper limit of } \frac{E_A(n_{PRB})}{E_{\text{max_nom}}^{(p)}} \text{ is made} \end{cases}$$

where $E_A(n_{PRB})$ is the maximum intended EPRE of UE-specific PDSCH REs in OFDM symbols not containing RS in this physical resource block on antenna port p in the considered future time interval; n_{PRB} is the physical resource block number $n_{PRB} = 0, ..., N_{RB}^{DL} - 1$; $RNTP_{threshold}$ takes on one of the following values $RNTP_{threshold} \in \{-\infty, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3\}$ [dB] and

$$E_{\text{max_nom}}^{(p)} = \frac{P_{\text{max}}^{(p)} \cdot \frac{1}{\Delta f}}{N_{RB}^{DL} \cdot N_{SC}^{RB}}$$

where $P_{\max}^{(p)}$ is the base station maximum output power described in [7], and Δf , N_{RB}^{DL} and N_{SC}^{RB} are defined in [3].

6 Random access procedure

Prior to initiation of the non-synchronized physical random access procedure, Layer 1 shall receive the following information from the higher layers:

- 1. Random access channel parameters (PRACH configuration, frequency position and preamble format)
- 2. Parameters for determining the root sequences and their cyclic shifts in the preamble sequence set for the cell (index to root sequence table, cyclic shift ($N_{\rm CS}$), and set type (unrestricted or restricted set))

6.1 Physical non-synchronized random access procedure

From the physical layer perspective, the L1 random access procedure encompasses the transmission of random access preamble and random access response. The remaining messages are scheduled for transmission by the higher layer on the shared data channel and are not considered part of the L1 random access procedure. A random access channel occupies 6 resource blocks in a subframe or set of consecutive subframes reserved for random access preamble transmissions. The eNodeB is not prohibited from scheduling data in the resource blocks reserved for random access channel preamble transmission.

The following steps are required for the L1 random access procedure:

- 1. Layer 1 procedure is triggered upon request of a preamble transmission by higher layers.
- 2. A preamble index, preamble transmission power (PREAMBLE_TRANSMISSION_POWER), associated RARNTI, random access window ([RA_WINDOW_BEGIN—RA_WINDOW_END]) and PRACH resource are indicated by higher layers as part of the request.
- 3. A preamble sequence is then selected from the preamble sequence set using the preamble index.
- A single preamble transmission then occurs using the selected preamble sequence with transmission power PREAMBLE TRANSMISSION POWER on the indicated PRACH resource.

- 5. If an associated PDCCH with RA-RNTI is detected within the random access response window then the corresponding DL-SCH transport block is passed to higher layers.
- 6. If the random access response window has past then the physical random access procedure is exited.

6.1.1 Timing

- 6.1.1.1 Synchronized
- 6.1.1.2 Unsynchronized

7 Physical downlink shared channel related procedures

7.1 UE procedure for receiving the physical downlink shared channel

A UE shall receive PDSCH broadcast control transmissions, [namely Paging, RACH Response, and BCCH] associated with DCI formats 1A or 1C signalled by a PDCCH in the common search spaces. Additionally, the UE is semi-statically configured via higher layer signalling to receive PDSCH data transmissions signalled via PDCCH UE specific search spaces, based on one of the following transmission modes:

- 1. Single-antenna port; port 0
- 2. Transmit diversity
- 3. Open-loop spatial multiplexing
- 4. Closed-loop spatial multiplexing
- 5. Multi-user MIMO
- 6. Closed-loop Rank=1 precoding
- 7. Single-antenna port; port 5

A UE not configured to receive PDSCH data transmissions based on one of the transmission modes may receive PDSCH data transmissions with DCI format 1A signalled by a PDCCH in its UE specific search spaces or the common search spaces.

A UE semi-statically configured with a transmission mode shall receive PDSCH data transmissions associated with a reference DCI format signalled by a PDCCH in its UE specific search spaces based on Table 7.1-1. In the case of transmission modes 1, 2, and 7 a UE shall receive PDSCH data transmissions associated with reference DCI formats 1 or 1A in its UE specific search spaces or DCI format 1A in the common search spaces. A UE with reference DCI format 1B or 2 may also receive PDSCH data transmissions associated with DCI format 1A signalled by a PDCCH in its UE specific search spaces or the common search spaces. A UE shall be configured to use the PUCCH or PUSCH feedback mode corresponding to its reference DCI format.

Table 7.1-1: Reference DCI Format(s) supported by each Transmission Mode

Transmission Mode	Reference DCI Format
1	1, 1A
2	1, 1A
3	2
4	2
5	TBD
6	1B
7	1, 1A

7.1.1 Single-antenna port

For the single-antenna port mode, the UE may assume that an eNB transmission on the PDSCH would be performed according to Section 6.3.4.1 of [3]

7.1.2 Transmit diversity

For the transmit diversity mode, the UE may assume that an eNB transmission on the PDSCH would be performed according to Section 6.3.4.3 of [3]

7.1.3 Open-loop spatial multiplexing

For the open-loop spatial multiplexing transmission mode, the UE may assume, based on the rank indication (RI) obtained from an associated DCI as determined from the number of assigned transmission layers, that an eNB transmission on the physical PDSCH would be performed according to the following:

• RI = 1 : transmit diversity as defined in Section 6.3.4.3 of [3]

■ RI > 1 : large delay CDD as defined in Section 6.3.4.2.2 of [3]

For RI>1, the operation of large delay CDD is further defined as follows:

- For 2 antenna ports, the precoder for data resource element index i, denoted by W(i) is selected according to $W(i) = C_1$ where C_1 denotes the precoding matrix corresponding to precoder index 0 in Table 6.3.4.2.3-1 of [3].
- For 4 antenna ports, the UE may assume that the eNB cyclically assigns different precoders to different data resource elements on the physical downlink shared channel as follows. A different precoder is used every v data resource elements, where v denotes the number of transmission layers in the case of spatial multiplexing. In particular, the precoder for data resource element index i, denoted by W(i) in Section 6.3.4.2.2 of [3] is selected according to $W(i) = C_k$, where k is the precoder index given by

$$k = \text{mod}\left(\left[\frac{i+1}{\nu}\right] - 1,4\right) + 1 = \text{mod}\left(\left[\frac{i}{\nu}\right] - 1,4\right) + 1$$
, where $k = 1,2,...4$, and C_1, C_2, C_3, C_4 denote

precoder matrices corresponding to precoder indices 12,13,14 and 15, respectively, in Table 6.3.4.2.3-2 of [3].

7.1.4 Closed-loop spatial multiplexing

For the closed-loop spatial multiplexing transmission mode, the UE may assume that an eNB transmission on the PDSCH would be performed according to the applicable number of transmission layers as defined in Section 6.3.4.2.1 of [3].

7.1.5 Void

7.1.6 Resource allocation

The UE shall interpret the resource allocation field depending on the PDCCH DCI format detected. A resource allocation field in each PDCCH includes two parts, a type field and information consisting of the actual resource allocation. PDCCH with type 0 and type 1 resource allocation have the same format and are distinguished from each other via the single bit type field. For system bandwidth less than or equal to 10 PRBs the resource allocation field in each PDCCH contains only information of the actual resource allocation. PDCCH with DCI format 0 or 1A have a type 2 resource allocations while PDCCH with DCI format 1 or 2 have type 0 or type 1 resource allocations. PDCCH with a type 2 resource allocation do not have a type field.

7.1.6.1 Resource allocation type 0

In resource allocations of type 0, a bitmap indicates the resource block groups (RBGs) that are allocated to the scheduled UE where a RBG is a set of consecutive physical resource blocks (PRBs). Resource block group size (P) is a function of the system bandwidth as shown in Table 7.1.6.1-1. The total number of RBGs ($N_{\rm RBG}$) for downlink system bandwidth of $N_{\rm RB}^{\rm DL}$ PRBs is given by $N_{RBG} = \left \lceil N_{\rm RB}^{\rm DL}/P \right \rceil$ where $\left \lfloor N_{\rm RB}^{\rm DL}/P \right \rfloor$ of the RBGs are of size P and if $\left \lceil N_{\rm RB}^{\rm DL}/P \right \rceil - \left \lfloor N_{\rm RB}^{\rm DL}/P \right \rfloor > 0$ then one of the RBGs is of size $N_{\rm RB}^{\rm DL} - P \cdot \left \lfloor N_{\rm RB}^{\rm DL}/P \right \rfloor$. The bitmap is of size $N_{\rm RBG}$ bits with one bitmap bit per RBG such that each RBG is addressable.

Table 7.1.6.1-1: Type 0 Resource Allocation RBG Size vs. Downlink System Bandwidth

System Bandwidth	RBG Size
$N_{ m RB}^{ m DL}$	(<i>P</i>)
≤10	1
11 – 26	2
27 – 63	3
64 – 110	4

7.1.6.2 Resource allocation type 1

In resource allocations of type 1, a bitmap of size $\lceil N_{\rm RB}^{\rm DL}/P \rceil$ indicates to a scheduled UE the PRBs from the set of PRBs from one of P resource block group subsets. Also P is the resource block group size associated with the system bandwidth as shown in Table 7.1.6.1-1. The portion of the bitmap used to address PRBs in a selected RBG subset has size $N_{\rm RB}^{\rm TYPE1}$ and is defined as

$$N_{\text{RB}}^{\text{TYPE1}} = \left[N_{\text{RB}}^{\text{DL}} / P \right] - \left[\log_2(P) \right] - 1$$

where $\left\lceil N_{\mathrm{RB}}^{\mathrm{DL}}/P \right\rceil$ is the overall bitmap size and $\left\lceil \log_2(P) \right\rceil$ is the minimum number of bits needed to select one of the P RBG subsets and one additional bit is used to indicate whether the addressable PRBs of a selected RBG subset is left justified or is right justified (right shifted) where the shift is needed for full resource block granular addressability of all PRBs in a carrier since the number of PRBs in a RBG subset is larger than the PRB addressing portion of the bitmap as indicated by $N_{\mathrm{RB}}^{\mathrm{TYPE1}} < \left\lceil N_{\mathrm{RB}}^{\mathrm{DL}}/P \right\rceil$. Each bit in the PRB addressing portion of the bitmap addresses a single addressable PRB in the selected RBG subset starting at the left most addressable PRB.

7.1.6.3 Resource allocation type 2

In resource allocations of type 2, the resource allocation information indicates to a scheduled UE a set of contiguously allocated localized virtual resource blocks or distributed virtual resource blocks depending on the setting of a 1-bit flag carried on the associated PDCCH. Localized VRB allocations for a UE vary from a single VRB up to a maximum number of VRBs spanning the system bandwidth. Distributed VRB allocations for a UE vary from a single VRB up to $N_{\rm VRB}^{\rm DL}$ is 6-49 and vary from a single VRB up to 16 if $N_{\rm RB}^{\rm DL}$ is 50-110, where $N_{\rm VRB}^{\rm DL}$ is defined in [3].

A type 2 resource allocation field consists of a resource indication value (RIV) corresponding to a starting resource block (RB_{start}) and a length in terms of contiguously allocated resource blocks (L_{CRBs}). The resource indication value is defined by

if
$$(L_{CRBs}-1) \le \lfloor N_{RB}^{DL}/2 \rfloor$$
 then
$$RIV = N_{RB}^{DL}(L_{CRBs}-1) + RB_{start}$$

else

$$RIV = N_{RB}^{DL}(N_{RB}^{DL} - L_{CRBs} + 1) + (N_{RB}^{DL} - 1 - RB_{start})$$

7.1.7 Modulation order and transport block size determination

To determine the modulation order and transport block size(s) in the physical downlink shared channel, the UE shall first

- read the 5-bit "modulation and coding scheme" field ($I_{\rm MCS}$) in the DCI, and
- compute the total number of allocated PRBs (N_{PRB}) based on the procedure defined in Section 7.1.6.

The UE may skip decoding a transport block in an initial transmission if the effective channel code rate is higher than 0.92, where the effective channel code rate is defined as the number of downlink information bits (including CRC bits) divided by the number of physical channel bits on PDSCH.

7.1.7.1 Modulation order determination

The UE shall use I_{MCS} and Table 7.1.7.1-1 to determine the modulation order (Q_m) used in the physical downlink shared channel.

Table 7.1.7.1-1: Modulation and TBS index table for PDSCH

MCS Index	Modulation Order	TBS Index
$I_{ m MCS}$	$Q_{\scriptscriptstyle m}$	I_{TBS}
0	2	
1	2 2 2 2 2 2 2 2	0
2	2	2
3	2	3
4	2	4
5	2	5
6		6
7	2 2 2 4	7
8	2	8
9	2	9
10		9
11	4	10
12	4	11
13	4	12
14	4	13
13 14 15 16	4	13 14 15
16	4	15
17	6	15
18	6	16
19	6	17
20	6	18
20 21 22	6	19
22	6	20
23	6	21
24	6	22
25	6	23
26	6	24
27	6	25
28	6	26
29	2	
30	4	reserved
31	6	

3GPP TS 36.213 V8.3.0 (2008-05)

7.1.7.2 Transport block size determination

For $0 \le I_{\rm MCS} \le 28$, the UE shall first determine the TBS index ($I_{\rm TBS}$) using $I_{\rm MCS}$ and Table 7.1.7.1-1. For a transport block that is not mapped to two-layer spatial multiplexing, the TBS is determined by the procedure in Section 7.1.7.2.1. For a transport block that is mapped to two-layer spatial multiplexing, the TBS is determined by the procedure in Section 7.1.7.2.2.

For $29 \le I_{\rm MCS} \le 31$, the TBS is assumed to be as determined from DCI transported in the latest PDCCH for the same transport block using $0 \le I_{\rm MCS} \le 28$.

7.1.7.2.1 Transport blocks not mapped to two-layer spatial multiplexing

For $1 \le N_{\rm PRB} \le 110$, the TBS is given by the ($I_{\rm TBS}$, $N_{\rm PRB}$) entry of Table 7.1.7.2.1-1.

Table 7.1.7.2.1-1: Transport block size table (dimension 27×110)

	T									
I					N_1	PRB				
I_{TBS}	1	2	3	4	5	6	7	8	9	10
0	16	32	56	88	120	152	176	200	232	248
1	24	48	88	120	160	200	232	272	304	344
2	32	72	120	160	200	248	296	336	376	424
3	40	104	152	208	272	320	392	440	504	568
4	48	120	200	264	320	408	488	552	632	696
5	72	152	232	320	424	504	600	680	776	872
6	320	176	288	392	504	600	712	808	936	1032
7	104	232	320	472	584	712	840	968	1096	1224
8	120	248	392	536	680	808	968	1096	1256	1384
9	136	296	456	616	776	936	1096	1256	1416	1544
10	152	320	504	680	872	1032	1224	1384	1544	1736
11	176	376	584	776	1000	1192	1384	1608	1800	2024
12	208	440	680	904	1128	1352	1608	1800	2024	2280
13	232	488	744	1000	1256	1544	1800	2024	2280	2536
14	264	552	840	1128	1416	1736	1992	2280	2600	2856
15	280	600	904	1224	1544	1800	2152	2472	2728	3112
16	320	632	968	1288	1608	1928	2280	2600	2984	3240
17	336	696	1064	1416	1800	2152	2536	2856	3240	3624
18	376	776	1160	1544	1992	2344	2792	3112	3624	4008
19	408	840	1288	1736	2152	2600	2984	3496	3880	4264
20	440	904	1384	1864	2344	2792	3240	3752	4136	4584
21	488	1000	1480	1992	2472	2984	3496	4008	4584	4968
22	520	1064	1608	2152	2664	3240	3752	4264	4776	5352
23	552	1128	1736	2280	2856	3496	4008	4584	5160	5736
24	584	1192	1800	2408	2984	3624	4264	4968	5544	5992
25	616	1256	1864	2536	3112	3752	4392	5160	5736	6200
26	648	1320	1992	2664	3368	4008	4584	5352	5992	6712
					N	PRB				
I_{TBS}	11	12	13	14	15	16	17	18	19	20
0	288	304	344	376	392	424	456	488	504	536
1	376	424	456	488	520	568	600	632	680	712
2	472	520	568	616	648	696	744	776	840	872
3	616	680	744	808	872	904	968	1032	1096	1160
4	776	840	904	1000	1064	1128	1192	1288	1352	1416
5	968	1032	1128	1224	1320	1384	1480	1544	1672	1736
6	1128	1224	1352	1480	1544	1672	1736	1864	1992	2088
7	1320	1480	1608	1672	1800	1928	2088	2216	2344	2472
8	1544	1672	1800	1928	2088	2216	2344	2536	2664	2792
J	1277	10/2	1000	1/40	2000	2210	<i>∠</i> ∪⊤⊤	2000	2007	2172

	1			1		1	1	1		
9	1736	1864	2024	2216	2344	2536	2664	2856	2984	3112
10	1928	2088	2280	2472	2664	2792	2984	3112	3368	3496
11	2216	2408	2600	2792	2984	3240	3496	3624	3880	4008
12	2472	2728	2984	3240	3368	3624	3880	4136	4392	4584
13	2856	3112	3368	3624	3880	4136	4392	4584	4968	5160
14	3112	3496	3752	4008	4264	4584	4968	5160	5544	5736
15	3368	3624	4008	4264	4584	4968	5160	5544	5736	6200
16	3624	3880	4264	4584	4968	5160	5544	5992	6200	6456
17	4008	4392	4776	5160	5352	5736	6200	6456	6712	7224
18	4392	4776	5160	5544	5992	6200	6712	7224	7480	7992
			5544							
19	4776	5160		5992	6456	6968	7224	7736	8248	8504
20	5160	5544	5992	6456	6968	7480	7992	8248	8760	9144
21	5544	5992	6456	6968	7480	7992	8504	9144	9528	9912
22	5992	6456	6968	7480	7992	8504	9144	9528	10296	10680
23	6200	6968	7480	7992	8504	9144	9912	10296	11064	11448
24	6712	7224	7992	8504	9144	9912	10296	11064	11448	12216
									12216	
25	6968	7480	8248	8760	9528	10296	10680	11448		12576
26	7224	7992	8504	9144	9912	10680	11448	11832	12576	12960
7					N_{I}	DD B				
I_{TBS}	21	22	23	24	25	26	27	28	29	30
0	568	600	616	648	680	712	744	776	776	808
1	744	776	808	872	904	936	968	1000	1032	1064
2	936	968	1000	1064	1096	1160	1192	1256	1288	1320
3	1224	1256	1320	1384	1416	1480	1544	1608	1672	1736
4	1480	1544	1608	1736	1800	1864	1928	1992	2088	2152
5	1864	1928	2024	2088	2216	2280	2344	2472	2536	2664
6	2216	2280	2408	2472	2600	2728	2792	2984	2984	3112
7	2536	2664	2792	2984	3112	3240	3368	3368	3496	3624
8	2984	3112	3240	3368	3496	3624	3752	3880	4008	4264
9	3368	3496	3624	3752	4008	4136	4264	4392	4584	4776
10	3752	3880	4008	4264	4392	4584	4776	4968	5160	5352
-										
11	4264	4392	4584	4776	4968	5352	5544	5736	5992	5992
12	4776	4968	5352	5544	5736	5992	6200	6456	6712	6712
13	5352	5736	5992	6200	6456	6712	6968	7224	7480	7736
14	5992	6200	6456	6968	7224	7480	7736	7992	8248	8504
15	6456	6712	6968	7224	7736	7992	8248	8504	8760	9144
16	6712	7224	7480	7736	7992	8504	8760	9144	9528	9912
17	7480	7992	8248	8760	9144	9528	9912	10296	10296	10680
18	00.40	0=60	0111	0.500	0010	10006	10680	11061	11448	11000
19	8248	8760	9144	9528	10680	10296		11064		11832
	9144	9528	9912	10296		11064	11448	12216	12576	12960
20	9912	10296	10680	11064	11448	12216	12576	12960	13536	14112
21	10680	11064	11448	12216	12576	12960	13536	14112	14688	15264
22	11448	11832	12576	12960	13536	14112	14688	15264	15840	16416
23	12216	12576	12960	13536	14112	14688	15264	15840	16416	16992
24	12960	13536	14112	14688	15264	15840	16416	16992	17568	18336
25	13536	14112	14688	15264	15840	16416	16992	17568	18336	19080
26	14112	14688	15264	15840	16416	16992	17568	18336	19080	19848
I_{TBS}				•	N_{I}		•	•		
1113	31	32	33	34	35	36	37	38	39	40
0	840	872	904	936	968	1000	1032	1032	1064	1096
1	1128	1160	1192	1224	1256	1288	1352	1384	1416	1416
2	1384	1416	1480	1544	1544	1608	1672	1672	1736	1800
3	1800	1864	1928	1992	2024	2088	2152	2216	2280	2344
4	2216	2280	2344	2408	2472	2600	2664	2728	2792	2856
5			2856							
	2728	2792		2984	3112	3112	3240	3368	3496	3496
6	3240	3368	3496	3496	3624	3752	3880	4008	4136	4136
7	3752	3880	4008	4136	4264	4392	4584	4584	4776	4968

0	4202	4504	4504	1776	4070	4070	5160	5252	5511	5511
8	4392	4584	4584	4776	4968	4968	5160	5352	5544	5544
	4968	5160	5160	5352	5544	5736	5736	5992	6200	6200
10	5544	5736	5736	5992	6200	6200	6456	6712	6712	6968
11	6200	6456	6712	6968	6968	7224	7480	7736	7736	7992
12	6968	7224	7480	7736	7992	8248	8504	8760	8760	9144
13	7992	8248	8504	8760	9144	9144	9528	9912	9912	10296
14	8760	9144	9528	9912	9912	10296	10680	11064	11064	11448
15	9528	9912	10296	10296	10680	11064	11448	11832	11832	12216
16	9912	10296	10680	11064	11448	11832	12216	12216	12576	12960
17	11064	11448	11832	12216	12576	12960	13536	13536	14112	14688
18	12216	12576	12960	13536	14112	14112	14688	15264	15264	15840
19	13536	13536	14112	14688	15264	15264	15840	16416	16992	16992
20	14688	14688	15264	15840	16416	16992	16992	17568	18336	18336
21	15840	15840	16416	16992	17568	18336	18336	19080	19848	19848
22	16992	16992	17568	18336	19080	19080	19848	20616	21384	21384
23	17568	18336	19080	19848	19848	20616	21384	22152	22152	22920
24	19080	19848	19848	20616	21384	22152	22920	22920	23688	24496
25	19848	20616	20616	21384	22152	22920	23688	24496	24496	25456
26	20616	21384	22152	22920	22920	23688	24496	25456	25456	26416
7					$N_{\rm I}$	DD B				
I_{TBS}	41	42	43	44	45	46	47	48	49	50
0	1128	1160	1192	1224	1256	1256	1288	1320	1352	1384
1	1480	1544	1544	1608	1608	1672	1736	1736	1800	1800
2	1800	1864	1928	1992	2024	2088	2088	2152	2216	2216
3	2408	2472	2536	2536	2600	2664	2728	2792	2856	2856
4	2984	2984	3112	3112	3240	3240	3368	3496	3496	3624
5	3624	3752	3752	3880	4008	4008	4136	4264	4392	4392
6	4264	4392	4584	4584	4776	4776	4968	4968	5160	5160
7	4968	5160	5352	5352	5544	5736	5736	5992	5992	6200
8	5736	5992	5992	6200	6200	6456	6456	6712	6968	6968
9	6456	6712	6712	6968	6968	7224	7480	7480	7736	7992
10	7224	7480	7480	7736	7992	7992	8248	8504	8504	8760
11	8248	8504	8760	8760	9144	9144	9528	9528	9912	9912
12	9528	9528	9912	9912	10296	10680	10680	11064	11064	11448
13	10680	10680	11064	11448	11448	11832	12216	12216	12576	12960
14	11832	12216	12216	12576	12960	12960	13536	13536	14112	14112
15	12576	12960	12960	13536	13536	14112	14688	14688	15264	15264
16	13536	13536	14112	14112	14688	14688	15264	15840	15840	16416
17	14688	15264	15264	15840	16416	16416	16992	17568	17568	18336
18	16416	16416	16992	17568	17568	18336	18336	19080	19080	19848
19	17568	18336	18336	19080	19080	19848	20616	20616	21384	21384
20	19080	19848	19848	20616	20616	21384	22152	22152	22920	22920
21	20616	21384	21384	22152	22920	22920	23688	24496	24496	25456
22	22152	22920	22920	23688	24496	24496	25456	25456	26416	27376
23	23688	24496	24496	25456	25456	26416	27376	27376	28336	28336
24	25456	25456	26416	26416	27376	28336	28336	29296	29296	30576
25	26416	26416	27376	28336	28336	29296	29296	30576	31704	31704
26	27376	27376	28336	29296	29296	30576	31704	31704	32856	32856
					N_{I}					
I_{TBS}	51	52	53	54	55	56	57	58	59	60
0										
1	1416 1864	1416 1864	1480 1928	1480 1992	1544 1992	1544 2024	1608 2088	1608 2088	1608 2152	1672 2152
2	2280	2344	2344	2408	2472	2536	2536	2600	2664	2664
3	2984	2984	3112	3112	3240	3240	3368	3368	3496	3496
4	3624	3752	3752	3880	4008	4008	4136	4136	4264	4264
5	4584	4584	4776	4776	4776	4968	4968	5160	5160	5352
6	5352	5352	5544	5736	5736	5992	5992	5992	6200	6200

7	6200	6456	6456	6712	6712	6712	6968	6968	7224	7224			
8	7224	7224	7480	7480	7736	7736	7992	7992	8248	8504			
9	7992	8248	8248	8504	8760	8760	9144	9144	9144	9528			
10	9144	9144	9144	9528	9528	9912	9912	10296	10296	10680			
11		10680	10680	11064	11064	11448	11448	11832	11832	12216			
	10296												
12	11832	11832	12216	12216	12576	12576	12960	12960	13536	13536			
13	12960	13536	13536	14112	14112	14688	14688	14688	15264	15264			
14	14688	14688	15264	15264	15840	15840	16416	16416	16992	16992			
15	15840	15840	16416	16416	16992	16992	17568	17568	18336	18336			
16	16416	16992	16992	17568	17568	18336	18336	19080	19080	19848			
17	18336	19080	19080	19848	19848	20616	20616	20616	21384	21384			
18	19848	20616	21384	21384	22152	22152	22920	22920	23688	23688			
19	22152	22152	22920	22920	23688	24496	24496	25456	25456	25456			
20	23688	24496	24496	25456	25456	26416	26416	27376	27376	28336			
21	25456	26416	26416	27376	27376	28336	28336	29296	29296	30576			
22	27376	28336	28336	29296	29296	30576	30576	31704	31704	32856			
23	29296	29296	30576	30576	31704	31704	32856	32856	34008	34008			
24	31704	31704	32856	32856	34008	34008	35160	35160	36696	36696			
25	32856	32856	34008	34008	35160	35160	36696	36696	37888	37888			
26	34008	34008	35160	35160	36696	36696	37888	37888	39232	39232			
					•				•				
I_{TBS}	$N_{ m PRB}$												
- 188	61	62	63	64	65	66	67	68	69	70			
0	1672	1736	1736	1800	1800	1800	1864	1864	1928	1928			
1	2216	2280	2280	2344	2344	2408	2472	2472	2536	2536			
2	2728	2792	2856	2856	2856	2984	2984	3112	3112	3112			
3	3624	3624	3624	3752	3752	3880	3880	4008	4008	4136			
4	4392	4392	4584	4584	4584	4776	4776	4968	4968	4968			
5	5352	5544	5544	5736	5736	5736	5992	5992	5992	6200			
6	6456	6456	6456	6712	6712	6968	6968	6968	7224	7224			
7	7480	7480	7736	7736	7992	7992	8248	8248	8504	8504			
8	8504	8760	8760	9144	9144	9144	9528	9528	9528	9912			
9	9528	9912	9912	10296	10296	10296	10680	10680	11064	11064			
10	10680	11064	11064	11448	11448	11448	11832	11832	12216	12216			
11	12216	12576	12576	12960	12960	13536	13536	13536	14112	14112			
12	14112	14112	14112	14688	14688	15264	15264	15264	15840	15840			
13	15840	15840	16416	16416	16992	16992	16992	17568	17568	18336			
14	17568	17568	18336	18336	18336	19080	19080	19848	19848	19848			
15	18336	19080	19080	19848	19848	20616	20616	20616	21384	21384			
1.6	10040	19848		20616	21384	21384	22152	22152	22152	22020			
16	22152	22152	20616 22920	20616	23688	23688	24496	24496	24496	25456			
18			24496										
19	24496 26416	24496 26416	27376	25456 27376	25456 28336	26416 28336	26416 29296	27376 29296	27376 29296	27376 30576			
20	28336	29296	29296	29296	30576	30576	31704	31704	31704	32856			
21			31704		32856				35160	35160			
	30576	31704		31704		32856	34008	34008					
22	32856	34008	34008	34008	35160	35160	36696	36696	36696	37888			
23	35160	35160	36696	36696	37888	37888	37888	39232	39232	40576			
24	36696	37888	37888	39232	39232	40576	40576	42368	42368	42368			
25	39232	39232	40576	40576	40576	42368	42368	43816	43816	43816			
26	40576	40576	42368	42368	43816	43816	43816	45352	45352	46888			
-					N_{I}	nn n							
I_{TBS}	71	72	73	74	75	76	77	78	79	80			
0	1992	1992	2024	2088	2088	2088	2152	2152	2216	2216			
		1274	202 4		2728	2792	2792	2856	2856	2856			
1 1		2600	2664	7779			//7/			70.10			
1	2600	2600	2664	2728									
2	2600 3240	3240	3240	3368	3368	3368	3496	3496	3496	3624			
3	2600 3240 4136	3240 4264	3240 4264	3368 4392	3368 4392	3368 4392	3496 4584	3496 4584	3496 4584	3624 4776			
2	2600 3240	3240	3240	3368	3368	3368	3496	3496	3496	3624			

	7400	7400	7726	7726	7726	7002	7002	0240	0240	9249
6	7480	7480	7736	7736	7736	7992	7992	8248	8248	8248
7	8760	8760	8760	9144	9144	9144	9528	9528	9528	9912
8	9912	9912	10296	10296	10680	10680	10680	11064	11064	11064
9	11064	11448	11448	11832	11832	11832	12216	12216	12576	12576
10	12576	12576	12960	12960	12960	13536	13536	13536	14112	14112
11	14112	14688	14688	14688	15264	15264	15840	15840	15840	16416
12	16416	16416	16416	16992	16992	17568	17568	17568	18336	18336
13	18336	18336	19080	19080	19080	19848	19848	19848	20616	20616
14	20616	20616	20616	21384	21384	22152	22152	22152	22920	22920
15	22152	22152	22152	22920	22920	23688	23688	23688	24496	24496
16	22920	23688	23688	24496	24496	24496	25456	25456	25456	26416
17	25456	26416	26416	26416	27376	27376	27376	28336	28336	29296
18	28336	28336	29296	29296	29296	30576	30576	30576	31704	31704
19	30576	30576	31704	31704	32856	32856	32856	34008	34008	34008
20	32856	34008	34008	34008	35160	35160	35160	36696	36696	36696
21	35160	36696	36696	36696	37888	37888	39232	39232	39232	40576
22	37888	39232	39232	40576	40576	40576	42368	42368	42368	43816
23	40576	40576	42368	42368	43816	43816	43816	45352	45352	45352
24	43816	43816	45352	45352	45352	46888	46888	46888	48936	48936
25	45352	45352	46888	46888	46888	48936	48936	48936	51024	51024
26	46888	46888	48936	48936	48936	51024	51024	51024	52752	52752
==	.0000	.0000	.0,00	.0,00	.0,00	0102.	0102.	0102.	02/02	02/02
,					N_{I}	PRB				
I_{TBS}	81	82	83	84	85	86	87	88	89	90
0	2280	2280	2280	2344	2344	2408	2408	2472	2472	2536
1	2984	2984	2984	3112	3112	3112	3240	3240	3240	3240
2	3624	3624	3752	3752	3880	3880	3880	4008	4008	4008
3	4776	4776	4776	4968	4968	4968	5160	5160	5160	5352
4	5736	5992	5992	5992	5992	6200	6200	6200	6456	6456
5	7224	7224	7224	7480	7480	7480	7736	7736	7736	7992
6	8504	8504	8760	8760	8760	9144	9144	9144	9144	9528
7	9912	9912	10296	10296	10296	10680	10680	10680	11064	11064
8	11448	11448	11448	11832	11832	12216	12216	12216	12576	12576
9	12960	12960	12960	13536	13536	13536	13536	14112	14112	14112
10	14112	14688	14688	14688	14688	15264	15264	15264	15840	15840
11	16416	16416	16992	16992	16992	17568	17568	17568	18336	18336
12	18336	19080	19080	19080	19080	19848	19848	19848	20616	20616
13	20616	21384	21384	21384	22152	22152	22152	22920	22920	22920
14	22920	23688	23688	24496	24496	24496	25456	25456	25456	25456
15	24496	25456	25456	25456	26416	26416	26416	27376	27376	27376
16	26416	26416	27376	27376	27376	28336	28336	28336	29296	29296
17	29296	29296	30576	30576	30576	30576	31704	31704	31704	32856
18	31704	32856	32856	32856	34008	34008	34008	35160	35160	35160
19	35160	35160	35160	36696	36696	36696	37888	37888	37888	39232
20	37888	37888	39232	39232	39232	40576	40576	40576	42368	42368
21	40576	40576	42368	42368	42368	43816	43816	43816	45352	45352
22	43816	43816	45352	45352	45352	46888	46888	46888	48936	48936
23	46888	46888	46888	48936	48936	48936	51024	51024	51024	51024
24	48936	51024	51024	51024	52752	52752	52752	52752	55056	55056
25	51024	52752	52752	52752	55056	55056	55056	55056	57336	57336
26	52752	55056	55056	55056	57336	57336	57336	59256	59256	59256
20	JZ13Z	22020	22020	22020	2/330	2/330	2/330	J9430	J94JU	J743U
ı					$N_{ m I}$	PRB				
I_{TBS}			02	94	95	96	97	98	99	100
	91	92	9.5							
0	91 2536	92 2536	93 2600	_	2664	2664	2728	2728	2728	2792
0	2536	2536	2600	2600	2664 3496	2664 3496	2728 3496	2728 3624	2728 3624	2792 3624
1	2536 3368	2536 3368	2600 3368	2600 3496	3496	3496	3496	3624	3624	3624
1 2	2536 3368 4136	2536 3368 4136	2600 3368 4136	2600 3496 4264	3496 4264	3496 4264	3496 4392	3624 4392	3624 4392	3624 4584
1	2536 3368	2536 3368	2600 3368	2600 3496	3496	3496	3496	3624	3624	3624

5	7992	7992	8248	8248	8248	8504	8504	8760	8760	8760
6	9528	9528	9528	9912	9912	9912	10296	10296	10296	10296
7	11064	11448	11448	11448	11448	11832	11832	11832	12216	12216
8	12576	12960	12960	12960	13536	13536	13536	13536	14112	14112
9	14112	14688	14688	14688	15264	15264	15264	15264	15840	15840
10	15840	16416	16416	16416	16992	16992	16992	16992	17568	17568
11	18336	18336	19080	19080	19080	19080	19848	19848	19848	19848
12	20616	21384	21384	21384	21384	22152	22152	22152	22920	22920
13	23688	23688	23688	24496	24496	24496	25456	25456	25456	25456
14	26416	26416	26416	27376	27376	27376	28336	28336	28336	28336
15	28336	28336	28336	29296	29296	29296	29296	30576	30576	30576
16	29296	30576	30576	30576	30576	31704	31704	31704	31704	32856
17	32856	32856	34008	34008	34008	35160	35160	35160	35160	36696
18	36696	36696	36696	37888	37888	37888	37888	39232	39232	39232
19	39232	39232	40576	40576	40576	40576	42368	42368	42368	43816
20	42368	42368	43816	43816	43816	45352	45352	45352	46888	46888
21	45352	46888	46888	46888	46888	48936	48936	48936	48936	51024
22	48936	48936	51024	51024	51024	51024	52752	52752	52752	55056
23	52752	52752	52752	55056	55056	55056	55056	57336	57336	57336
24	55056	57336	57336	57336	57336	59256	59256	59256	61664	61664
25	57336	59256	59256	59256	61664	61664	61664	61664	63776	63776
26	59256	61664	61664	61664	63776	63776	63776	63776	66592	75376
					M					
I_{TBS}	101	102	102	104	N _F		107	100	100	110
0	101	102	103	104	105	106	107	108	109	110
0	2792	2856	2856	2856	2984	2984	2984	2984	2984	3112
1	3752	3752	3752	3752	3880	3880	3880	4008	4008	4008
3	4584	4584	4584	4584	4776	4776	4776	4776	4968	4968
4	5992 7224	5992 7224	5992	5992	6200	6200	6200	6200	6456	6456 7992
5	8760	9144	7480 9144	7480 9144	7480 9144	7480 9528	7736 9528	7736 9528	7736 9528	9528
6	10680	10680	10680	10680	11064	11064	11064	11448	11448	11448
7	12216	12576	12576	12576	12960	12960	12960	12960	13536	13536
8	14112	14112	14688		12700	12/00				13330
9	15840	11112		146XX	14688					
10		16416		14688	14688	14688	15264	15264	15264	15264
10		16416 18336	16416	16416	16416	14688 16992	15264 16992	15264 16992	15264 16992	15264 17568
11	17568	18336	16416 18336	16416 18336	16416 18336	14688 16992 18336	15264 16992 19080	15264 16992 19080	15264 16992 19080	15264 17568 19080
11	17568 20616	18336 20616	16416 18336 20616	16416 18336 21384	16416 18336 21384	14688 16992 18336 21384	15264 16992 19080 21384	15264 16992 19080 22152	15264 16992 19080 22152	15264 17568 19080 22152
12	17568 20616 22920	18336 20616 23688	16416 18336 20616 23688	16416 18336 21384 23688	16416 18336 21384 23688	14688 16992 18336 21384 24496	15264 16992 19080 21384 24496	15264 16992 19080 22152 24496	15264 16992 19080 22152 24496	15264 17568 19080 22152 25456
12 13	17568 20616 22920 26416	18336 20616 23688 26416	16416 18336 20616 23688 26416	16416 18336 21384 23688 26416	16416 18336 21384 23688 27376	14688 16992 18336 21384 24496 27376	15264 16992 19080 21384 24496 27376	15264 16992 19080 22152 24496 27376	15264 16992 19080 22152 24496 28336	15264 17568 19080 22152 25456 28336
12	17568 20616 22920	18336 20616 23688	16416 18336 20616 23688	16416 18336 21384 23688	16416 18336 21384 23688	14688 16992 18336 21384 24496	15264 16992 19080 21384 24496	15264 16992 19080 22152 24496	15264 16992 19080 22152 24496	15264 17568 19080 22152 25456
12 13 14 15	17568 20616 22920 26416 29296 30576	18336 20616 23688 26416 29296 31704	16416 18336 20616 23688 26416 29296 31704	16416 18336 21384 23688 26416 29296 31704	16416 18336 21384 23688 27376 30576 31704	14688 16992 18336 21384 24496 27376 30576 32856	15264 16992 19080 21384 24496 27376 30576 32856	15264 16992 19080 22152 24496 27376 30576	15264 16992 19080 22152 24496 28336 31704	15264 17568 19080 22152 25456 28336 31704 34008
12 13 14	17568 20616 22920 26416 29296	18336 20616 23688 26416 29296	16416 18336 20616 23688 26416 29296	16416 18336 21384 23688 26416 29296	16416 18336 21384 23688 27376 30576	14688 16992 18336 21384 24496 27376 30576	15264 16992 19080 21384 24496 27376 30576	15264 16992 19080 22152 24496 27376 30576 32856	15264 16992 19080 22152 24496 28336 31704 34008	15264 17568 19080 22152 25456 28336 31704
12 13 14 15 16	17568 20616 22920 26416 29296 30576 32856	18336 20616 23688 26416 29296 31704 32856	16416 18336 20616 23688 26416 29296 31704 34008	16416 18336 21384 23688 26416 29296 31704 34008	16416 18336 21384 23688 27376 30576 31704 34008	14688 16992 18336 21384 24496 27376 30576 32856 34008	15264 16992 19080 21384 24496 27376 30576 32856 35160	15264 16992 19080 22152 24496 27376 30576 32856 35160	15264 16992 19080 22152 24496 28336 31704 34008 35160	15264 17568 19080 22152 25456 28336 31704 34008 35160
12 13 14 15 16 17	17568 20616 22920 26416 29296 30576 32856 36696	18336 20616 23688 26416 29296 31704 32856 36696	16416 18336 20616 23688 26416 29296 31704 34008 36696	16416 18336 21384 23688 26416 29296 31704 34008 37888	16416 18336 21384 23688 27376 30576 31704 34008 37888	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232
12 13 14 15 16 17 18	17568 20616 22920 26416 29296 30576 32856 36696 40576	18336 20616 23688 26416 29296 31704 32856 36696 40576	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816
12 13 14 15 16 17 18	17568 20616 22920 26416 29296 30576 32856 36696 40576 43816	18336 20616 23688 26416 29296 31704 32856 36696 40576 43816	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576 43816	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576 45352	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368 45352	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368 45352	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368 46888	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368 46888	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816 46888	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816 46888
12 13 14 15 16 17 18 19 20	17568 20616 22920 26416 29296 30576 32856 36696 40576 43816 46888	18336 20616 23688 26416 29296 31704 32856 36696 40576 43816 46888	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576 43816 48936	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576 45352 48936	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368 45352 48936	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368 45352 48936	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368 46888 48936	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368 46888 51024	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816 46888 51024	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816 46888 51024
12 13 14 15 16 17 18 19 20 21	17568 20616 22920 26416 29296 30576 32856 36696 40576 43816 46888 51024	18336 20616 23688 26416 29296 31704 32856 36696 40576 43816 46888 51024	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576 43816 48936 51024	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576 45352 48936 52752	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368 45352 48936 52752	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368 45352 48936 52752	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368 46888 48936 52752	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368 46888 51024 55056	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816 46888 51024 55056	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816 46888 51024 55056
12 13 14 15 16 17 18 19 20 21 22	17568 20616 22920 26416 29296 30576 32856 36696 40576 43816 46888 51024 55056	18336 20616 23688 26416 29296 31704 32856 36696 40576 43816 46888 51024 55056	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576 43816 48936 51024 55056	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576 45352 48936 52752 57336 59256 63776	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368 45352 48936 52752 57336	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368 45352 48936 52752 57336	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368 46888 48936 52752 57336	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368 46888 51024 55056 59256	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816 46888 51024 55056 59256	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816 46888 51024 55056 59256
12 13 14 15 16 17 18 19 20 21 22 23	17568 20616 22920 26416 29296 30576 32856 36696 40576 43816 46888 51024 55056 57336	18336 20616 23688 26416 29296 31704 32856 36696 40576 43816 46888 51024 55056 59256	16416 18336 20616 23688 26416 29296 31704 34008 36696 40576 43816 48936 51024 55056 59256	16416 18336 21384 23688 26416 29296 31704 34008 37888 40576 45352 48936 52752 57336 59256	16416 18336 21384 23688 27376 30576 31704 34008 37888 42368 45352 48936 52752 57336 59256	14688 16992 18336 21384 24496 27376 30576 32856 34008 37888 42368 45352 48936 52752 57336 61664	15264 16992 19080 21384 24496 27376 30576 32856 35160 39232 42368 46888 48936 52752 57336 61664	15264 16992 19080 22152 24496 27376 30576 32856 35160 39232 42368 46888 51024 55056 59256 61664	15264 16992 19080 22152 24496 28336 31704 34008 35160 39232 43816 46888 51024 55056 59256 61664	15264 17568 19080 22152 25456 28336 31704 34008 35160 39232 43816 46888 51024 55056 59256 63776

7.1.7.2.2 Transport blocks mapped to two-layer spatial multiplexing

For 1 \leq $N_{\rm PRB}$ \leq 55 , the TBS is given by the ($I_{\rm TBS}$, 2 \cdot $N_{\rm PRB}$) entry of Table 7.1.7.2.1-1.

For $56 \le N_{\rm PRB} \le 110$, a baseline TBS_L1 is taken from the ($I_{\rm TBS}$, $N_{\rm PRB}$) entry of Table 7.1.7.2.1-1, which is then translated into TBS_L2 using the mapping rule shown in Table 7.1.7.2.2-1. The TBS is given by TBS_L2.

Table 7.1.7.2.2-1: One-layer to two-layer TBS translation table

TBS_L1	TBS_L2	TBS_L1	TBS_L2	TBS_L1	TBS_L2	TBS_L1	TBS_L2
1544	3112	3752	7480	10296	20616	28336	57336
1608	3240	3880	7736	10680	21384	29296	59256
1672	3368	4008	7992	11064	22152	30576	61664
1736	3496	4136	8248	11448	22920	31704	63776
1800	3624	4264	8504	11832	23688	32856	66592
1864	3752	4392	8760	12216	24496	34008	68808
1928	3880	4584	9144	12576	25456	35160	71112
1992	4008	4776	9528	12960	25456	36696	73712
2024	4008	4968	9912	13536	27376	37888	76208
2088	4136	5160	10296	14112	28336	39232	78704
2152	4264	5352	10680	14688	29296	40576	81176
2216	4392	5544	11064	15264	30576	42368	84760
2280	4584	5736	11448	15840	31704	43816	87936
2344	4776	5992	11832	16416	32856	45352	90816
2408	4776	6200	12576	16992	34008	46888	93800
2472	4968	6456	12960	17568	35160	48936	97896
2536	5160	6712	13536	18336	36696	51024	101840
2600	5160	6968	14112	19080	37888	52752	105528
2664	5352	7224	14688	19848	39232	55056	110136
2728	5544	7480	14688	20616	40576	57336	115040
2792	5544	7736	15264	21384	42368	59256	119816
2856	5736	7992	15840	22152	43816	61664	124464
2984	5992	8248	16416	22920	45352	63776	128496
3112	6200	8504	16992	23688	46888	66592	133208
3240	6456	8760	17568	24496	48936	68808	137792
3368	6712	9144	18336	25456	51024	71112	142248
3496	6968	9528	19080	26416	52752	73712	146856
3624	7224	9912	19848	27376	55056	75376	151376

7.2 UE procedure for reporting channel quality indication (CQI), precoding matrix indicator (PMI) and rank indication (RI)

The time and frequency resources that can be used by the UE to report CQI, PMI, and RI are controlled by the eNB. For spatial multiplexing, as given in [3], the UE shall determine a RI corresponding to the number of useful transmission layers. For transmit diversity as given in [3], RI is equal to one.

CQI, PMI, and RI reporting is periodic or aperiodic. A UE transmits CQI, PMI, and RI reporting on a PUCCH for subframes with no PUSCH allocation. A UE transmits CQI, PMI, and RI reporting on a PUSCH for those subframes with PUSCH allocation for a) scheduled PUSCH transmissions with or without an associated scheduling grant or b) PUSCH transmissions with no UL-SCH. The CQI transmissions on PUCCH and PUSCH for various scheduling modes are summarized in the following table:

Table 7.2-1: Physical Channels for Aperiodic or Periodic CQI reporting

Scheduling Mode	Periodic CQI reporting channels	Aperiodic CQI reporting channel
Frequency non-selective	PUCCH	
Frequency selective	PUCCH	PUSCH

Release 8

In case both periodic and aperiodic reporting would occur in the same subframe, the UE shall only transmit the aperiodic report in that subframe.

When reporting RI the UE reports a single instance of the number of useful transmission layers. For each RI reporting interval during closed-loop spatial multiplexing, a UE shall determine a RI from the supported set of RI values for the corresponding eNodeB and UE antenna configuration and report the number in each RI report. For each RI reporting interval during open-loop spatial multiplexing, a UE shall determine RI for the corresponding eNodeB and UE antenna configuration in each reporting interval and report the detected number in each RI report to support selection between RI=1 transmit diversity and RI>1 large delay CDD open-loop spatial multiplexing.

When reporting PMI the UE reports either a single or a multiple PMI report. The number of RBs represented by a single UE PMI report can be N_{RB}^{DL} or a smaller subset of RBs. The number of RBs represented by a single PMI report is semi-statically configured by higher layer signalling. A UE is restricted to report PMI and RI within a precoder codebook subset specified by a bitmap configured by higher layer signalling. For a specific precoder codebook and associated transmission mode, the bitmap can specify all possible precoder codebook subsets from which the UE can assume the eNB may be using when the UE is configured in the relevant transmission mode.

The set of subbands (S) a UE shall evaluate for CQI reporting spans the entire downlink system bandwidth. A subband is a set of k contiguous PRBs where k is also semi-statically configured by higher layers. Note the last subband in set S may have fewer than k contiguous PRBs depending on $N_{\rm RB}^{\rm DL}$. The number of subbands for system bandwidth given by $N_{\rm RB}^{\rm DL}$ is defined by $N = \left \lceil N_{\rm RB}^{\rm DL} / k \right \rceil$. The term "Wideband CQI" denotes a CQI value obtained over the set S.

- For single-antenna port and transmit diversity, as well as open-loop spatial multiplexing, and closed-loop spatial multiplexing with RI=1 a single 4-bit wideband CQI is reported according to Table 7.2.3-1.
- For RI > 1, closed-loop spatial multiplexing PUSCH based triggered reporting includes reporting a wideband CQI which comprises:
 - A 4-bit wideband COI for codeword 1 according to Table 7.2.3-1
 - A 4-bit wideband CQI for codeword 2 according to Table 7.2.3-1
- For RI > 1, closed-loop spatial multiplexing PUCCH based reporting includes separately reporting a 4-bit wideband CQI for codeword 1 according to Table 7.2.3-1 and a wideband spatial differential CQI each with a distinct reporting period and relative subframe offset. The wideband spatial differential CQI comprises:
 - A 3-bit wideband spatial differential CQI for codeword 2 = wideband CQI index for codeword 1 wideband CQI index for codeword 2. The set of exact offset levels is {-4, -3, -2, -1, 0, +1, +2, +3}

7.2.1 Aperiodic CQI/PMI/RI Reporting using PUSCH

A UE shall perform aperiodic CQI, PMI and RI reporting using the PUSCH upon receiving an indication sent in the scheduling grant.

The aperiodic CQI report size and message format is given by RRC.

The minimum reporting interval for aperiodic reporting of CQI and PMI and RI is 1 subframe. The subband size for CQI shall be the same for transmitter-receiver configurations with and without precoding.

A UE is semi-statically configured by higher layers to feed back CQI and PMI and corresponding RI on the same PUSCH using one of the following reporting modes given in Table 7.2.1-1 and described below:

Table 7.2.1-1: CQI and PMI Feedback Types for PUSCH reporting Modes

	PMI Feedback Type			
	No PMI	Single PMI	Multiple PMI	
> ⊡ ₽ ₽				

Case 6:20-cv-00541-ADA Document 46-10 Filed 03/05/21 Page 27 of 46

Release 8 26 3GPP TS 36.213 V8.3.0 (2008-05)

Wideband (wideband CQI)			Mode 1-2
UE Selected (subband CQI)	Mode 2-0		Mode 2-2
Higher Layer- configured (subband CQI)	Mode 3-0	Mode 3-1	

For each of the transmission modes defined in Section 7.1, the following reporting modes are supported on PUSCH:

Single-antenna port : Modes 2-0, 3-0
 Transmit diversity : Modes 2-0, 3-0
 Open-loop spatial multiplexing : Modes 2-0, 3-0
 Closed-loop spatial multiplexing : Modes 1-2, 2-2, 3-1

The selection of PMI and the calculation of CQI are both dependent on the RI value that the UE selects for the corresponding reporting instance.

RI report on a PUSCH reporting mode is valid only for CQI/PMI report on that PUSCH reporting mode

- Wideband feedback
 - o Mode 1-2 description:
 - For each subband a preferred precoding matrix is selected from the codebook subset assuming transmission only in the subband
 - A UE shall report one wideband CQI value per codeword which is calculated assuming the use of the corresponding selected precoding matrix in each subband and transmission on set S subbands.
 - The UE shall report the selected precoding matrix indicator for each set S subband.
 - Subband size is given by Table 7.2.1-2.
- Higher Layer-configured subband feedback
 - o Mode 3-0 description:
 - A UE shall report a wideband CQI value which is calculated assuming transmission on set S subbands
 - The UE shall also report one subband CQI value for each set *S* subband. The subband CQI value is calculated assuming transmission only in the subband The CQI represents channel quality for the first codeword, even when RI>1.
 - Mode 3-1 description:
 - A single precoding matrix is selected from the codebook subset assuming transmission on set S subbands
 - A UE shall report one subband CQI value per codeword for each set S subband which
 are calculated assuming the use of the single precoding matrix in all subbands
 - A UE shall report a wideband CQI value per codeword which is calculated assuming the use of the single precoding matrix in all subbands and transmission on set S subbands
 - The UE shall report the single selected precoding matrix indicator

- Subband CQI for each codeword are encoded differentially with respect to their respective wideband CQI using 2-bits as defined by
 - Subband differential CQI = subband CQI index wideband CQI index
 - Possible subband differential CQI values are {-2, 0, +1, +2}
- Supported subband size (k) used and number of subbands (M1) in the set of subands S contained in a report include those given in Table 7.2.1-2. In Table 7.2.1-2 the k values and M1 values are semi-statically configured by higher layers as a function of system bandwidth.
- The payload size P2 in bits for closed loop spatial multiplexing feedback modes (3-0, 3-1) is given by
 - Mode 3-0 or Mode 3-1 with RI=1:

$$P2 = R(RI) + 2N + 4 + (2 + T) \cdot C \quad (PMI + CQI)$$

■ Mode 3-1 with RI>1:

$$P2 = R(RI) + 2 \cdot (2N+4) + (2+T) \cdot C(PMI + CQI)$$

• where T=2 if 4 antenna ports for common reference symbols are configured, for 2 antenna ports T=y, while for mode 3-0 then T=0

Editor's note: RAN1 needs to agree on y.

- where C=1 for mode 3-1 and C=0 for mode 3-0
- where R=2 for up to 4-layer spatial multiplexing else R=1 for up to 2-layer spatial multiplexing and R=0 otherwise

Table 7.2.1-2: Subband Size and #Subband CQI in S vs. System Bandwidth

System Bandwidth $N_{ m RB}^{ m DL}$	Subband Size (k)	#Subband CQI in S (M1)
6 - 7	(wideband CQI only)	
8 - 10	4	
11 - 26	4	
27 - 63	6	
64 - 110	8	

- UE-selected subband feedback
 - Mode 2-0 description:
 - The UE shall select a set of M preferred subbands of size k (where k and M are given in Table 7.2.1-3 for each system bandwidth range) within the set of subbands S.
 - The UE shall also report one CQI value reflecting transmission only over the *M* selected subbands determined in the previous step. The CQI represents channel quality across all layers irrespective of computed or reported RI.
 - Additionally, the UE shall also report one wideband CQI value.
 - o Mode 2-2 description:
 - The UE shall perform joint selection of the set of M preferred subbands of size k within the set of subbands S and a preferred single precoding matrix selected from the codebook subset that is preferred to be used for transmission over the M selected subbands.

- The UE shall report one CQI value per codeword reflecting transmission only over the selected *M* preferred best subbands and using the same selected single precoding matrix in each of the *M* subbands.
- The UE shall also report the selected single precoding matrix preferred for the M selected subbands.
- A single precoding matrix is selected from the codebook subset assuming transmission on set S subbands
- A UE shall report a wideband CQI value per codeword which is calculated assuming the use of the single precoding matrix in all subbands and transmission on set S subbands
- A UE shall also report the selected single precoding matrix indicator for all set S subbands.
- \circ For all UE-selected subband feedback modes the UE shall report the positions of the M selected subbands using a combinatorial index r defined as

$$r = \sum_{k=0}^{M-1} {N - s_k \choose M - k}$$

- where the set $\{s_k\}_{k=0}^{M-1}$, $(1 \le s_k \le N, s_k < s_{k+1})$ contains the M sorted subband indices
 - and $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} & x \ge y \\ 0 & x < y \end{cases}$ is the extended binomial coefficient, resulting in unique label

$$r \in \left\{0, \dots, \binom{N}{M} - 1\right\}.$$

- The CQI value for the M selected subbands for each codeword is encoded differentially using 2-bits relative to its respective wideband CQI as defined by
 - Differential CQI = best-M average index wideband CQI index
 - Possible differential CQI values are {+1, +2, +3, +4}
- Supported subband size k and M values include those shown in Table 7.2.1-3. In Table 7.2.1-3 the k and M values are a function of system bandwidth.
- The payload size (P3) in bits for closed loop spatial multiplexing feedback modes (2-0, 2-2) is given by
 - Mode 2-0 or Mode 2-2 with RI=1:

$$P3 = R(RI) + 2 + L + 4 + (2 + T) \cdot C \quad (PMI + CQI)$$

■ Mode 2-2 with RI>1:

$$P3 = R(RI) + 2 \cdot (2+4) + L + (2+T) \cdot C \quad (PMI + CQI)$$

• where T=2 if 4 antenna ports for common reference symbols are configured, for 2 antenna ports T=y, while for mode 2-0 then T=0

Editor's note: RAN1 needs to agree on y.

- where C=2 for mode 2-2 and C=0 for mode 2-0
- where $L = \left\lceil \log_2 \binom{N}{M} \right\rceil$

where R=2 for up to 4-layer spatial multiplexing else R=1 for up to 2-layer spatial multiplexing and R=0 otherwise

Table 7.2.1-3: Subband Size (k) and M values vs. Downlink System Bandwidth

System Bandwidth $N_{ m RB}^{ m DL}$	Subband Size k (RBs)	М
6 – 7	(wideband CQI only)	(wideband CQI only)
8 – 10	2	1
11 – 26	2	3
27 – 63	3	5
64 – 110	4	6

7.2.2 Periodic CQI/PMI/RI Reporting using PUCCH

A UE is semi-statically configured by higher layers to periodically feed back different CQI, PMI, and RI on the PUCCH using the reporting modes given in Table 7.2.2-1 and described below.

For the UE-selected subband CQI, a CQI report in a certain subframe describes the channel quality in a particular part or in particular parts of the bandwidth described subsequently as bandwidth part (BP) or parts. The subbands shall be indexed in the order of increasing frequency and non-increasing sizes starting at the lowest frequency.

- There are a total of N subbands for a system bandwidth given by N_{RB}^{DL} where $\left\lfloor N_{RB}^{DL} / k \right\rfloor$ subbands are of size k. If $\left\lceil N_{RB}^{DL} / k \right\rceil \left\lfloor N_{RB}^{DL} / k \right\rfloor > 0$ then one of the subbands is of size $N_{RB}^{DL} k \cdot \left\lfloor N_{RB}^{DL} / k \right\rfloor$.
- A bandwidth part is frequency-consecutive and consists of $N_{\rm J}$ subbands where J bandwidth parts span S or $N_{\rm RB}^{\rm DL}$ as given in Table 7.2.2-2. If J=1 then $N_{\rm J}$ is $\left\lceil N_{\rm RB}^{\rm DL}/k/J \right\rceil$. If J>I then $N_{\rm J}$ is either $\left\lceil N_{\rm RB}^{\rm DL}/k/J \right\rceil$ or $\left\lceil N_{\rm RB}^{\rm DL}/k/J \right\rceil -1$, depending on $N_{\rm RB}^{\rm DL}$, k and J.
- Each bandwidth part j is scanned in sequential order according to increasing frequency as defined by the equation $j = \text{mod}(N_{SF}, J)$, where N_{SF} is a counter that a UE increments after each subband report transmission for the bandwidth part.
- For UE selected subband feedback a single subband out of $N_{\rm J}$ subbands of a bandwidth part is selected along with a corresponding L-bit label where $L = \lceil \log_2 N_J \rceil$.

The CQI and PMI payload sizes of each PUCCH reporting mode are given in Table 7.2.2-3.

Four CQI/PMI and RI reporting types with distinct periods and offsets are supported for each PUCCH reporting mode as given in Table 7.2.2-3:

- Type 1 report supports CQI feedback for the UE selected sub-bands
- Type 2 report supports wideband CQI and PMI feedback.
- Type 3 report supports RI feedback
- Type 4 report supports wideband CQI

In the case where RI and wideband CQI/PMI reporting are configured, RI and wideband CQI/PMI are not reported in the same subframe (reporting instance):

- The reporting interval of the RI reporting is an integer multiple of wideband CQI/PMI period.
- The same or different offsets between RI and wideband CQI/PMI reporting instances can be configured.
- Both the reporting interval and offset are configured by higher layers. In case of collision of RI and wideband CQI/PMI the wideband CQI/PMI is dropped.

In the case where RI and both wideband CQI/PMI and subband CQI reporting are configured:

 The same set of CQI reporting instances, with period P, are used for both wideband CQI/PMI and subband CQI reports

- The wideband CQI/PMI report has period H*P, and is reported on the set of reporting instances indexed by {0, H, 2H,...}.
- The integer H is defined as H=J*K+1, where J is the number of bandwidth parts.
- Between every two consecutive wideband CQI/PMI reports, the remaining J*K reporting instances
 are used in sequence for subband CQI reports on K full cycles of bandwidth parts.
- The reporting interval of RI is M times the wideband CQI/PMI period, and RI is reported on the same PUCCH
 cyclic shift resource as both the wideband CQI/PMI and subband CQI reports.
 - The offset (in subframes) between the RI and wideband CQI/PMI is denoted as O.
 - In case of collision between RI and wideband CQI/PMI or subband CQI, the wideband CQI/PMI or subband CQI is dropped.
 - The parameters P, K, M, O are configured by higher layer such as RRC message in a semi-static manner. The parameter K should be selected from the set {1,2,3,4}, and the parameter O is selected from the set {0, -1, ...,-(P-1), -P}.

The following PUCCH formats are used:

- Format 2 as defined in section 5.4.2 in [3] when CQI/PMI or RI report is not multiplexed with ACK/NAK
- Format 2a/2b as defined in section 5.4.2 in [3] when CQI/PMI or RI report is multiplexed with ACK/NAK for normal CP
- Format 2 as defined in section 5.4.2 in [3] when CQI/PMI or RI report is multiplexed with ACK/NAK for extended CP

Table 7.2.2-1: CQI and PMI Feedback Types for PUCCH reporting Modes

		PMI Feedback Type		
		No PMI	Single PMI	
H CQI ck Type	Wideband (wideband CQI)	Mode 1-0	Mode 1-1	
PUCCH CQI Feedback Typ	UE Selected (subband CQI)	Mode 2-0	Mode 2-1	

For each of the transmission modes defined in Section 7.1, the following reporting modes are supported on PUCCH:

Single-antenna port
 Modes 1-0, 2-0
 Transmit diversity
 Modes 1-0, 2-0
 Open-loop spatial multiplexing
 Modes 1-0, 2-0
 Closed-loop spatial multiplexing
 Modes 1-1, 2-1

RI report in a PUCCH reporting mode is valid only for CQI/PMI report on that PUCCH reporting mode.

- Wideband feedback
 - o Mode 1-0 description:
 - In the subframe where RI is reported (only for open-loop spatial multiplexing):
 - A UE shall determine a RI assuming transmission on set S subbands.
 - The UE shall report a type 3 report consisting of one RI.
 - In the subframe where CQI is reported:

- A UE shall report a type 4 report consisting of one wideband CQI value which is calculated assuming transmission on set S subbands. For open-loop spatial multiplexing the CQI is calculated conditioned on the last reported RI.
- Mode 1-1 description:
 - In the subframe where RI is reported (only for closed-loop spatial multiplexing):
 - A UE shall determine a RI assuming transmission on set S subbands.
 - The UE shall report a type 3 report consisting of one RI
 - In the subframe where CQI/PMI is reported:
 - A single precoding matrix is selected from the codebook subset assuming transmission on set S subbands and conditioned on the last reported RI
 - A UE shall report a type 2 report on each respective successive reporting opportunity consisting of
 - A single wideband CQI value which is calculated assuming the use of a single precoding matrix in all subbands and transmission on set S subbands and conditioned on the last reported RI.
 - o The selected single precoding matrix indicator (wideband PMI)
 - When RI>1, a 3-bit wideband spatial differential CQI.
- UE Selected subband feedback
 - Mode 2-0 description:
 - In the subframe where RI is reported (only for open-loop spatial multiplexing):
 - A UE shall determine a RI assuming transmission on set S subbands.
 - The UE shall report a type 3 report consisting of one RI.
 - In the subframe where wideband CQI is reported:
 - The UE shall report a type 4 report on each respective successive reporting opportunity consisting of one wideband CQI value conditioned on the last reported RI.
 - In the subframe where CQI for the selected subbands is reported:
 - The UE shall select the preferred subband within the set of N subbands in each of the J bandwidth parts where J is given in Table 7.2.2-2. For open-loop spatial multiplexing, the selection is conditioned on the last reported RI.
 - The UE shall report a type 1 report consisting of one CQI value reflecting transmission only over the selected subband of a bandwidth part determined in the previous step along with the corresponding best subband L-bit label. A type 1 report for each bandwidth part will in turn be reported in respective successive reporting opportunities. The CQI represents channel quality across all layers irrespective of the computed or reported RI. For open-loop spatial multiplexing, the selection is conditioned on the last reported RI
 - Mode 2-1 description:
 - In the subframe where RI is reported:
 - A UE shall determine a RI assuming transmission on set S subbands.
 - The UE shall report a type 3 report consisting of one RI.
 - In the subframe where wideband CQI/PMI is reported:
 - A single precoding matrix is selected from the codebook subset assuming transmission on set S subbands and conditioned on the last reported RI.

- A UE shall report a type 2 report on each respective successive reporting opportunity consisting of:
 - A wideband CQI value which is calculated assuming the use of a single precoding matrix in all subbands and transmission on set S subbands and conditioned on the last reported RI.
 - o The selected single precoding matrix indicator (wideband PMI).
 - When RI>1, and additional 3-bit wideband spatial differential CQI.
- In the subframe where CQI for the selected subbands is reported:
 - The UE shall select the preferred subband within the set of N_j subbands in each of the J bandwidth parts where J is given in Table 7.2.2-2 conditioned on the last reported wideband PMI and RI.
 - The UE shall report a type 1 report per bandwidth part on each respective successive reporting opportunity consisting of:
 - A single CQI value 1 reflecting transmission only over the selected subband of a bandwidth part determined in the previous step along with the corresponding best subband L-bit label conditioned on the last reported wideband PMI and RI.
 - o If RI>1, an additional 3-bit spatial differential CQI represents the difference between CQI value 1 for codeword 1 and CQI value 2 for codeword 2 assuming the use of the most recently reported single precoding matrix in all subbands and transmission on set S subbands.

Table 7.2.2-2: Subband Size (k) and Bandwidth Parts (J) vs. Downlink System Bandwidth

System Bandwidth $N_{\mathrm{RB}}^{\mathrm{DL}}$	Subband Size k (RBs)	Bandwidth Parts (<i>J</i>)
6 – 7	(wideband CQI only)	1
8 – 10	4	1
11 – 26	4	2
27 – 64	6	3
65 – 110	8	4

The corresponding periodicity parameters for the different CQI/PMI modes are defined as:

- $N_{\rm P}$ is the periodicity of the sub-frame pattern allocated for the CQI reports in terms of subframes were the minimum reporting interval is $N_{\rm PMIN}$.
- N_{OFFSET} is the subframe offset

A UE with a scheduled PUSCH allocation in the same subframe as its CQI report shall use the same PUCCH-based reporting format when reporting CQI on the PUSCH unless an associated PDCCH with scheduling grant format indicates an aperiodic report is required.

Table 7.2.2-3: PUCCH Report Type Payload size per Reporting Mode

			PUCCH Reporting Modes			
PUCCH Report	Reported	Mode State	Mode 1-1	Mode 2-1	Mode 1-0	Mode 2-0
Type			(bits/BP)	(bits/BP)	(bits/BP)	(bits/BP)

Release 8

33

3GPP TS 36.213 V8.3.0 (2008-05)

1	Sub-band	RI = 1	NA	4+L	NA	4+L
!	CQI	RI > 1	NA	7+L	NA	4+L
		2 TX Antennas RI = 1			NA	NA
2	Wideband	4 TX Antennas RI = 1	8	8	NA	NA
	CQI/PMI	2 TX Antennas RI > 1			NA	NA
		4 TX Antennas RI > 1	11	11	NA	NA
3	0 0	2-layer spatial multiplexing	1	1	1	1
3 RI	4-layer spatial multiplexing	2	2	2	2	
4	Wideband CQI	RI = 1	NA	NA	4	4

7.2.3 Channel quality indicator (CQI) definition

The number of entries in the CQI table for a single TX antenna = 16 as given by Table 7.2.3-1.

A single CQI index corresponds to an index pointing to a value in the CQI table. The CQI index is defined in terms of a channel coding rate value and modulation scheme (QPSK, 16QAM, 64QAM),

Based on an unrestricted observation interval in time and frequency, the UE shall report the highest tabulated CQI index for which a single PDSCH sub-frame with a transport format (modulation and coding rate) and number of REs corresponding to the reported or lower CQI index that could be received in a 2-slot downlink subframe aligned, reference period ending z slots before the start of the first slot in which the reported CQI index is transmitted and for which the transport block error probability would not exceed 0.1.

Editor's note: RAN1 needs to agree on z.

The UE may assume the following in calculating the number of REs for the CQI calculation:

- 3 OFDM symbols for control signaling
- No resources reserved for P/S-SCH and P-BCH
- CP length of the non-MBSFN subframe

In deriving the CQI index, the UE may assume

- the MIMO mode (TxD or spatial multiplexing)
- the nominal measurement offset is a parameter semi-statically configurable by higher layers of the data EPRE with respect to the RS EPRE, from which the actual measurement offset of the data EPRE is derived

Table 7.2.3-1: 4-bit CQI Table

CQI index	modulation	coding rate x 1024	efficiency
0		out of range	•
1	QPSK	78	0.1523
2	QPSK	120	0.2344
3	QPSK	193	0.3770
4	QPSK	308	0.6016
5	QPSK	449	0.8770
6	QPSK	602	1.1758
7	16QAM	378	1.4766
8	16QAM	490	1.9141
9	16QAM	616	2.4063
10	64QAM	466	2.7305
11	64QAM	567	3.3223
12	64QAM	666	3.9023
13	64QAM	772	4.5234
14	64QAM	873	5.1152
15	64QAM	948	5.5547

7.2.4 Precoding Matrix Indicator (PMI) definition

For closed-loop spatial multiplexing transmission, precoding feedback is used for channel dependent codebook based precoding and relies on UEs reporting precoding matrix indicator (PMI). A UE shall report PMI based on the feedback modes described in 7.2.1 and 7.2.2. Each PMI value corresponds to a codebook index given in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [3].

For open-loop spatial multiplexing transmission, PMI reporting is not supported.

7.3 UE procedure for reporting ACK/NACK

When both ACK/NACK and SR are transmitted in the same sub-frame a UE shall transmit the ACK/NACK on its assigned ACK/NACK PUCCH resource for a negative SR transmission and transmit the ACK/NACK on its assigned SR PUCCH resource for a positive SR transmission.

When only an ACK/NACK or only a SR is transmitted a UE shall use PUCCH Format 1a or 1b for the ACK/NACK resource and PUCCH Format 1 for the SR resource as defined in section 5.4.1 in [3].

8 Physical uplink shared channel related procedures

For FDD, there shall be 8 HARQ processes in the uplink. For FDD, the UE shall upon detection of a PDCCH with DCI format 0 and/or a PHICH transmission in subframe n intended for the UE, adjust the corresponding PUSCH transmission in subframe n+4 according to the PDCCH and PHICH information.

For TDD, the number of HARQ processes shall be determined by the DL/UL configuration (Table 4.2-2 of [3]), as indicated in table 8-1.

Table 8-1: Number of synchronous UL HARQ processes for TDD

TDD UL/DL configuration	Number of HARQ processes
0	7
1	4
2	2
3	3
4	2
5	1
6	6

For TDD UL/DL configurations 1-6, the UE shall upon detection of a PDCCH with DCI format 0 and/or a PHICH transmission in subframe n intended for the UE, adjust the corresponding PUSCH transmission in subframe n+k, with k given in Table 8-2, according to the PDCCH and PHICH information

For TDD UL/DL configuration 0 the UE shall upon detection of a PDCCH with DCI format 0 and/or a PHICH transmission in subframe n intended for the UE, adjust the corresponding PUSCH transmission in subframe n+k if the first bit of the UL index in the DCI format 0 is set or PHICH is received in subframe n=0 or 5 in the resource corresponding to $I_{PHICH} = 0$, as defined in Section 9.1.2, with k given in Table 8-2. If, for TDD UL/DL configuration 0, the second bit of the UL index in the DCI format 0 is set in subframe n or a PHICH is received in subframe n=0 or 5 in the resource corresponding to $I_{PHICH} = 1$, as defined in Section 9.1.2, or PHICH is received in subframe n=1 or 6, the UE shall adjust the corresponding PUSCH transmission in subframe n+7.

Table 8-2 k for TDD configurations 0-6

TDD UL/DL Configuration	DL subframe number <i>n</i>									
	0	1	2	3	4	5	6	7	8	9
0	4	6				4	6			
1		6			4		6			4
2				4					4	
3	4								4	4
4									4	4
5									4	
6	7	7				7	7			5

8.1 Resource Allocation for PDCCH DCI Format 0

A resource allocation field in the scheduling grant consists of a resource indication value (RIV) corresponding to a starting resource block (RB_{START}) and a length in terms of contiguously allocated resource blocks (L_{CRBs}). The resource indication value is defined by

if
$$(L_{\rm CRBs}-1) \le \lfloor N_{\rm RB}^{\rm UL}/2 \rfloor$$
 then
$$RIV = N_{\rm RB}^{\rm UL}(L_{\rm CRBs}-1) + RB_{\rm START}$$
 else
$$RIV = N_{\rm RB}^{\rm UL}(N_{\rm RB}^{\rm UL} - L_{\rm CRBs} + 1) + (N_{\rm RB}^{\rm UL} - 1 - RB_{\rm START})$$

For the case where an odd number of resource block pairs have been configured for PUCCH transmissions and a UE's PUSCH resource allocation includes PRBs at a carrier band edge then the PRB of the allocated PUSCH band edge PRB pair occupied by the PUCCH resource slot will not be used for the PUSCH.

8.2 UE sounding procedure

The following Sounding Reference Symbol (SRS) parameters are UE specific semi-statically configurable by higher layers:

- Starting sub-carrier assignment
- Starting physical resource block assignment
- Duration of SRS transmission: single or indefinite (until disabled)
- Periodicity of SRS transmissions: {2, 5, 10, 20, 40, 80, 160, 320} ms
- Frequency hopping (enabled or disabled)
- · Cyclic shift

The SRS transmission bandwidth does not include the PUCCH region. The cell specific SRS transmission bandwidths are configured by higher layers. The allowable values are given in Section 5.5.3.2 of [3].

The cell specific SRS transmission sub-frames are configured by higher layers. The allowable values are given in Section 5.5.3.3 of [3].

In case the UE supports transmit antenna selection, the SRS transmission antenna alternates sequentially between successive SRS transmission sub-frames, both when frequency hopping is enabled or disabled, except when a single SRS transmission is configured for the UE.

For TDD, when one SC-FDMA symbol exists in UpPTS, it can be used for SRS transmission. When two SC-FDMA symbols exist in UpPTS, both can be used for SRS transmission and both can be assigned to the same UE.

A UE shall not transmit SRS whenever SRS and CQI transmissions happen to coincide in the same subframe.

A UE shall not transmit SRS whenever SRS and SR transmissions happen to coincide in the same subframe.

When a UE is configured by higher layers to support both A/N and SRS transmissions in the same subframe, then the UE shall transmit A/N using a shortened PUCCH format where the A/N symbol corresponding to the SRS location is punctured as defined in Section 5.4.1 of [3]. Otherwise, the UE shall only transmit the A/N using the normal PUCCH format 1a or 1b as defined in Section 5.4.1 of [3].

8.2.1 Sounding definition

8.3 UE ACK/NACK procedure

For Frame Structure type 1, an ACK/NACK received on the PHICH assigned to a UE in subframe *i* is associated with the PUSCH transmission in subframe *i*-4.

For Frame Structure type 2, an ACK/NACK received on the PHICH assigned to a UE in subframe *i* is associated with the PUSCH transmission in the subframe indicated by the following table:

[...table to be inserted...]

The physical layer in the UE shall deliver indications to the higher layers as follows:

For downlink subframe i, if a transport block was transmitted in the associated PUSCH subframe then:

- if an Uplink Scheduling Assignment is received in subframe *i* with NDI toggled since the previous subframe corresponding to the same HARQ process, a new transmission shall be indicated to the higher layers;

- else if an Uplink Scheduling Assignment is received in subframe i with NDI not toggled since the previous subframe corresponding to the same HARQ process, a re-transmission shall be indicated to the higher layers.
- else if no Uplink Scheduling Assignment is received in subframe *i*, then:
 - o if ACK is decoded on the PHICH, ACK shall be delivered to the higher layers;
 - o else NACK shall be delivered to the higher layers.

8.4 UE PUSCH Hopping procedure

The UE shall perform PUSCH frequency hopping if the single bit frequency hopping (FH) field in a corresponding PDCCH with DCI format 0 is set otherwise no PUSCH frequency hopping is performed.

A UE performing PUSCH frequency hopping shall determine its PUSCH resource allocation for the first slot of a subframe (SI) including the lowest index PRB ($n_{PRB}^{S1}(n)$) in subframe n from the resource allocation field in a corresponding PDCCH with DCI format 0 received on subframe n-4. For a non-adaptive retransmission of a packet on a dynamically assigned PUSCH resource a UE shall determine its hopping type based on the last received PDCCH with DCI Format 0 associated with the packet. For a PUSCH transmission on a persistently allocated resource on subframe n in the absence of a corresponding PDCCH with a DCI Format 0 in subframe n-4, the UE shall determine its hopping type based on the hopping information in the initial grant that assigned the persistent resource allocation. The initial grant is either a PDCCH with DCI Format 0 or is higher layer signaled.

The resource allocation field in DCI format 0 excludes either 1 or 2 bits used for hopping information as indicated by Table 8.4-1 below where the number of PUSCH resource blocks is defined as $N_{\rm RB}^{\rm PUSCH} = N_{\rm RB}^{\rm PLCH} - \widetilde{N}_{\rm RB}^{\rm PUCCH}$. For type 2 PUSCH hopping, $\widetilde{N}_{\rm RB}^{\rm PUCCH} = N_{\rm RB}^{\rm PUCCH} + 1$ if $N_{\rm RB}^{\rm PUCCH}$ is an odd number where $N_{\rm RB}^{\rm PUCCH}$ defined in [3]. $\widetilde{N}_{\rm RB}^{\rm PUCCH} = N_{\rm RB}^{\rm PUCCH} \quad \text{in other cases.} \quad \text{The size of the resource allocation field in DCI format 0 after excluding either 1 or 2 bits shall be <math>y = \left\lceil \log_2(N_{\rm RB}^{\rm UL}(N_{\rm RB}^{\rm UL} + 1)/2) \right\rceil - k$, where k = 1 or 2 bits and the number of contiguous RBs that can be assigned to a hopping user is limited to $\min\left[2^y/N_{\rm RB}^{\rm UL}\right], \left\lfloor N_{\rm RB}^{\rm PUSCH}/N_{\rm Sb}\right\rfloor$, where the number of sub-bands $N_{\rm sb}$ is given by higher layers.

A UE performing PUSCH frequency hopping shall use one of two possible PUSCH frequency hopping types based on the hopping information. PUSCH hopping type 1 is described in section 8.4.1 and type 2 is described in section 8.4.2.

Table 8.4-1: Max PUSCH BW, and Number of Hopping Bits vs. System Bandwidth

System BW N_{RB}^{UL}	Max BW assigned to a hopping User	#Hopping bits for 2nd slot RA (k)
6-49		1
50-110	$\min(\lfloor 2^y / N_{ m RB}^{ m UL} \rfloor,$	2
	$\lfloor N_{ m RB}^{ m PUSCH} / N_{sb} \rfloor$)	

For either hopping type a single bit signaled by higher layers indicates whether PUSCH frequency hopping is intersubframe only or both intra and inter-subframe.

8.4.1 Type 1 PUSCH Hopping

For PUSCH hopping type 1 the hopping bit or bits indicated in Table 8.4-1 determine $\widetilde{n}_{PRB}(i)$ as defined in Table 8.4-2. The lowest index PRB (n_{PRB}^{S1}) of the 1st slot RA in subframe i is defined as $n_{PRB}^{S1}(i) = \widetilde{n}_{PRB}^{S1}(i) + \left\lceil N_{RB}^{PUCCH}/2 \right\rceil$.

The lowest index PRB ($n_{PRB}(i)$) of the 2nd slot RA in subframe i is defined as $n_{PRB}(i) = \widetilde{n}_{PRB}(i) + \lfloor N_{RB}^{PUCCH} / 2 \rfloor$.

8.4.2 Type 2 PUSCH Hopping

In PUSCH hopping type 2 the set of physical resource blocks to be used for transmission in slot n_s is given by the scheduling grant together with a predefined pattern according to [3] section 5.3.4..

System BW Number of Information in $\widetilde{n}_{PRB}(i)$ N_{RB}^{UL} **Hopping bits** hopping bits $\left[N_{RB}^{PUSCH}/2\right] + \widetilde{n}_{PRB}^{S1}(i) \mod N_{RB}^{PUSCH},$ 0 6 - 491 Type 2 PUSCH Hopping 1 $\left[N_{RB}^{PUSCH}/4\right] + \widetilde{n}_{PRB}^{S1}(i) \mod N_{RB}^{PUSCH}$ 00 $-\left[N_{RB}^{PUSCH}/4\right] + \widetilde{n}_{PRB}^{S1}(i) \mod N_{RB}^{PUSCH}$ 01 2 50 - 110 $\lfloor N_{RB}^{PUSCH} / 2 \rfloor + \widetilde{n}_{PRB}^{S1}(i) \mod N_{RB}^{PUSCH}$ 10 11 Type 2 PUSCH Hopping

Table 8.4-2: PDCCH DCI Format 0 Hopping Bit Definition

8.5 UE Reference Symbol procedure

If UL sequence hopping is configured in the cell, it applies to all reference symbols (SRS, PUSCH and PUCCH RS).

8.6 Modulation order, redundancy version and transport block size determination

To determine the modulation order, redundancy version and transport block size for the physical uplink shared channel, the UE shall first

- read the 5-bit "modulation and coding scheme and redundancy version" field ($I_{
 m MCS}$) in the DCI, and
- check the "CQI request" bit in DCI, and
- compute the total number of allocated PRBs (N_{PRB}) based on the procedure defined in Section 8.1.

8.6.1 Modulation order and redundancy version determination

For $0 \le I_{\text{MCS}} \le 28$, the modulation order (Q_m) is determined as follows:

- If the UE is capable of supporting 64QAM in PUSCH and has not been configured by higher layers to transmit only QPSK and 16QAM, the modulation order is given by Q_m in Table 8.6.1-1.

- If the UE is not capable of supporting 64QAM in PUSCH or has been configured by higher layers to transmit only QPSK and 16QAM, Q_m is first read from Table 8.6.1-1. The modulation order is set to $Q_m = \min(4, Q_m)$.
- If the UE is to transmit the PUSCH in bundled mode and $N_{PRB} \le [?]$ [and $I_{TBS} \le ?$], the modulation order is set to $Q_m = 2$.

For $29 \le I_{\rm MCS} \le 31$, the modulation order is assumed to be as determined from DCI transported in the initial PDCCH for the same transport block using $0 \le I_{\rm MCS} \le 28$ except for the following case. If $I_{\rm MCS} = 29$, the "CQI request" bit in DCI format 0 is set and $N_{\rm PRB} \le [2-4]$, the modulation order is set to $Q_m = [2]$.

The UE shall use I_{MCS} and Table 8.6.1-1 to determine the redundancy version (rv_{idx}) to use in the physical uplink shared channel.

Table 8.6.1-1: Modulation, TBS index and redundancy version table for PUSCH

MCS Index	Modulation	TBS	Redundancy
$I_{ m MCS}$	Order	Index	Version
	$Q_m^{'}$	I_{TBS}	rv_{idx}
0	2	0	0
1	2 2	1	0
2	2	2	0
3	2	3	0
4	2	4	0
5	2	5	0
6	2	6	0
7	2	7	0
8	2	8	0
9	2	9	0
10	2	10	0
11	4	10	0
12	4	11	0
13	4	12	0
14	4	13	0
15	4	14	0
16	4	15	0
17	4	16	0
18	4	17	0
19	4	18	0
20	4	19	0
21	6	19	0
22	6	20	0
23	6	21	0
24	6	22	0
25	5 6 23		0
26	6	24	0
27	6	25	0
28	6	26	0
29			1
30	reserved	i	2
31			3

8.6.2 Transport block size determination

For $0 \le I_{\text{MCS}} \le 28$, the UE shall first determine the TBS index (I_{TBS}) using I_{MCS} and Table 8.6.1-1. The UE shall then follow the procedure in Section 7.1.7.2.1 to determine the transport block size.

Release 8

40

3GPP TS 36.213 V8.3.0 (2008-05)

For $29 \le I_{\rm MCS} \le 31$, the transport block size is assumed to be as determined from DCI transported in the initial PDCCH for the same transport block using $0 \le I_{\rm MCS} \le 28$ except for the following case. If $I_{\rm MCS} = 29$, the "CQI request" bit in DCI format 0 is set and $N_{\rm PRB} \le [2-4]$, then there is no transport block for the UL-SCH and only the control information feedback for the current PUSCH reporting mode is transmitted by the UE.

8.7 UE Transmit Antenna Selection

UE transmit antenna selection when configured is only applicable with DCI Format 0 and FDD.

9 Physical downlink control channel procedures

9.1 UE procedure for determining physical downlink control channel assignment

9.1.1 PDCCH Assignment Procedure

The control region consists of a set of CCEs, numbered from 0 to $N_{\text{CCE},k}$ –1 according to Section 6.8.2 in [3], where $N_{\text{CCE},k}$ is the total number of CCEs in the control region of subframe k. The UE shall monitor a set of PDCCH candidates for control information in every non-DRX subframe, where monitoring implies attempting to decode each of the PDCCHs in the set according to all the monitored DCI formats. The UE is not required to decode control information on a PDCCH if the channel-code rate is larger than 3/4, where channel-code rate is defined as number of downlink control information bits (including RNTI) divided by the number of physical channel bits on the PDCCH.

The set of PDCCH candidates to monitor are defined in terms of search spaces, where a search space $S_k^{(L)}$ at aggregation level $L \in \{1,2,4,8\}$ is defined by a contiguous set of CCEs given by

$$(Z_k^{(L)} + i) \operatorname{mod} N_{CCE} k$$

where $Z_k^{(L)}$ defines the start of the search space, $i = 0,1,...,M^{(L)} \cdot L - 1$ and $M^{(L)}$ is the number of PDCCHs to monitor in the given search space.

The UE shall monitor one common search space at each of the aggregation levels 4 and 8 and one UE-specific search space at each of the aggregation levels 1, 2, 4, 8. The common and UE-specific search spaces may overlap.

The aggregation levels defining the search spaces and the DCI formats that the UE shall monitor the respective search spaces are listed in Table 9.1.1-1. The notation 3/3A implies that the UE shall monitor DCI formats 3 or 3A as determined by the configuration. The DCI formats that the UE shall monitor in the UE specific search spaces is a subset of those listed in Table 9.1.1-1 and depend on the configured transmission mode as defined in Section 7.1.

Table 9.1.1-1: PDCCH candidates monitored by a UE.

	Search space	Number of PDCCH	DCI formats		
Type	Aggregation level L	Size [in CCEs]	candidates $M^{(L)}$		
	1	6	6		
UE-	2	12	6	0 1 10 10 0	
specific	4	8	2	0, 1, 1A,1B, 2	
	8	16	2		
Common	4	16	4	0 14 10 2/24	
Common	8	16	2	0, 1A, 1C, 3/3A	

For the common search spaces, the starting location $Z_k^{(L)}$ is set to 0 for the two aggregation levels L=4 and L=8.

For the UE-specific search space $S_k^{(L)}$ at aggregation level L, the starting location $Z_k^{(L)}$ is defined by

$$Z_k^{(L)} = L \cdot (Y_k \bmod N_{CCE,k} / L)$$
$$Y_k = (A \cdot Y_{k-1}) \bmod D$$

where $Y_{-1} = n_{\text{RNTI}} \neq 0$, A = 39827 and D = 65537.

9.1.2 PHICH Assignment Procedure

For scheduled PUSCH transmissions in subframe n, a UE shall determine the corresponding PHICH resource in subframe $n + k_{PHICH}$, where k_{PHICH} is always 4 for FDD and is given in table 9.1.2-1 for TDD.

TDD UL/DL UL subframe index n Configuration

Table 9.1.2-1: kphich for TDD

The PHICH resource is determined from lowest index PRB of the uplink resource allocation and the 3-bit uplink demodulation reference symbol (DMRS) cyclic shift associated with the PUSCH transmission, both indicated in the PDCCH with DCI format 0 granting the PUSCH transmission.

The PHICH resource is identified by the index pair $(n_{PHICH}^{group}, n_{PHICH}^{seq})$ where n_{PHICH}^{group} is the PHICH group number and n_{PHICH}^{seq} is the orthogonal sequence index within the group as defined by:

$$\begin{split} n_{PHICH}^{group} &= (I_{PRB_RA}^{lowest_index} + n_{DMRS}) \operatorname{mod} N_{PHICH}^{group} + I_{PHICH} N_{PHICH}^{group} \\ n_{PHICH}^{seq} &= \left(\left\lfloor I_{PRB_RA}^{lowest_index} / N_{PHICH}^{group} \right\rfloor + n_{DMRS} \right) \operatorname{mod} 2N_{SF}^{PHICH} \end{split}$$

Release 8

42

3GPP TS 36.213 V8.3.0 (2008-05)

where

- n_{DMRS} is the cyclic shift of the DMRS used in the UL transmission to which the PHICH is related.
- N_{SF}^{PHICH} is the spreading factor size used for PHICH modulation as described in section 6.9.1 in [3].
- $I_{PRB}^{lowest} = \frac{index}{RA}$ is the lowest index PRB of the uplink resource allocation
- N^{group}_{PHICH} is the number of PHICH groups configured by higher layers as described in section 6.9 of [3],
- $I_{PHICH} = \begin{cases} 1 & \text{for TDD UL/DL configuration 0 with PUSCH transmission in subframe } n = 4 \text{ or 9} \\ 0 & \text{otherwise} \end{cases}$

10 Physical uplink control channel procedures

10.1 UE procedure for determining physical uplink control channel assignment

Uplink control information (UCI) in subframe n shall be transmitted

- on PUCCH using format 1/1a/1b or 2/2a/2b if the UE is not transmitting on PUSCH in subframe n
- on PUSCH if the UE is transmitting on PUSCH in subframe n

Throughout this section, subframes are numbered in monotonically increasing order; if the last subframe of a radio frame is denoted k, the first subframe of the next radio frame is denoted k+1.

The following combinations of uplink control information on PUCCH are supported:

- HARQ-ACK using PUCCH format 1a or 1b
- Scheduling request (SR) using PUCCH format 1
- HARQ-ACK and SR using PUCCH format 1a or 1b
- CQI using PUCCH format 2
- CQI and HARQ-ACK using PUCCH format
 - 2a or 2b for normal cyclic prefix
 - 2 for extended cyclic prefix

For FDD, the UE shall use PUCCH resource $n_{\text{PUCCH}}^{(1)}$ for transmission of HARQ-ACK in subframe n, where

- for a dynamically scheduled PDSCH indicated by the detection of a corresponding PDCCH with DCI format 1A/1/2 in subframe n-4, the UE shall use $n_{\rm PUCCH}^{(1)} = n_{\rm CCE} + N_{\rm PUCCH}^{(1)}$, where $n_{\rm CCE}$ is the number of the first CCE used for transmission of the corresponding DCI assignment and $N_{\rm PUCCH}^{(1)}$ is configured by higher layers.
- for a semi-persistently scheduled PDSCH transmission and where there is not a corresponding DCI detected in subframe n-4, the value of $n_{PUCCH}^{(1)}$ is configured by higher layers.

For TDD, the UE shall use PUCCH resource $n_{PUCCH}^{(1)}$ for transmission of HARQ-ACK in subframe n, where

- for dynamically scheduled PDSCH indicated by the detection of corresponding PDCCH(s) with DCI format 1A/1/2 within subframe(s) n-k, where $k \in K$ and K (defined in Table 10.1-1) is a set of M elements $\left\{k_0, k_1, \cdots k_{M-1}\right\}$ depending on the subframe n and the UL-DL configuration (defined in Table 4.2-2 in [3]), $n_{\text{PUCCH}}^{(1)}$ is given by a function of the first CCE index used for transmission of the corresponding DCI format 1A/1/2 in subframe $n-k_m$ and the corresponding m, where k_m is the smallest value in set K such that UE detects a DCI format 1A/1/2 in subframe $n-k_m$.
- for a semi-persistently scheduled PDSCH transmission and where there is not a corresponding DCI detected within subframe(s) n-k, where $k \in K$ and K is defined in Table 10.1-1, the value of $n_{\text{PUCCH}}^{(1)}$ is configured by higher layers.

UL-DL Configuration		Subframe <i>n</i>											
_	0	1	2	3	4	5	6	7	8	9			
0	-	-	6	-	4	-	-	6	-	4			
1	-	-	7, 6	4	-	-	-	7, 6	4	-			
2	-	-	8, 7, 6, 4	-	-	-	-	8, 7, 6, 4	-	-			
3	-	•	11, 7, 6	6, 5	5, 4	•	•	-	-	ı			
4	-	-	12, 11, 8, 7	7, 6, 5, 4	ı	ı	-	-	-	ı			
5	-	-	TBD	-	-	-	-	-	-	-			
6	_	_	7	7	5		-	7	7				

Table 10.1-1: Downlink association set index $K: \{k_0, k_1, \dots k_{M-1}\}$ for TDD

10.2 Uplink ACK/NACK timing

For FDD, the UE shall upon detection of a PDSCH transmission in subframe *n-4* intended for the UE and for which an ACK/NACK shall be provided, transmit the ACK/NACK response in subframe *n*.

For TDD, the UE shall upon detection of a PDSCH transmission within subframe(s) n-k, where $k \in K$ and K is defined in Table 10.1-1 intended for the UE and for which ACK/NACK response shall be provided, transmit the ACK/NACK response in UL subframe n.

For TDD, the UE shall upon detection of a PDSCH transmission in subframe n intended for the UE and for which an ACK/NACK shall be provided, transmit the ACK/NACK response in UL subframe n+k, where k depends on the subframe n according to Table 10.2-1 for the UL-DL configurations defined in Table 4.2-2 in [3].

Table 10.2-1: Uplink ACK/NACK timing index k for TDD

Configuration	Subframe <i>n</i>									
	0	1	2	3	4	5	6	7	8	9
0	4	6	-	-	-	4	6	-	-	-
1	7	6	-	-	4	7	6	-	-	4
2	7	6	-	4	8	7	6	-	4	8
3	4	11	-		-	7	6	6	5	5
4	12	11	-	ı	8	7	7	6	5	4
5	12	11	-	တ	8	7	6	5	4	13
6	7	7	-	-	-	7	7	-	-	5

.

For TDD, the use of a single ACK/NACK response for providing HARQ feedback for multiple PDSCH transmissions is supported by performing logical AND of all the corresponding individual (dynamically and semi-persistently scheduled) PDSCH transmission ACK/NACKs. Downlink Assignment Index (DAI) denotes the minimum number of

Case 6:20-cv-00541-ADA Document 46-10 Filed 03/05/21 Page 45 of 46

Release 8

44

3GPP TS 36.213 V8.3.0 (2008-05)

dynamic downlink assignment(s) transmitted to the corresponding UE within all the subframe(s) n-k, where $k \in K$, and it can be updated from subframe to subframe. If the value of DAI in subframe $n-k_m$, where k_m is the smallest value in set K such that UE detects a DCI format 1A/1/2 in subframe $n-k_m$, does not equal to the number of detected dynamic downlink assignment(s) within the subframe(s) n-k, where $k \in K$, UE shall not transmit ACK/NACK.

Annex A (informative): Change history

					Change history			
		TSG Doc.	CR	Rev	Subject/Comment	Old	New	
2006-09					Draft version created		0.0.0	
2006-10					Endorsed by RAN1	0.0.0	0.1.0	
2007-01					Inclusion of decisions from RAN1#46bis and RAN1#47	0.1.0	0.1.1	
2007-01					Endorsed by RAN1	0.1.1	0.2.0	
2007-02					Inclusion of decisions from RAN1#47bis	0.2.0	0.2.1	
2007-02					Endorsed by RAN1	0.2.1	0.3.0	
2007-02					Editor's version including decisions from RAN1#48 & RAN1#47bis	0.3.0	0.3.1	
2007-03					Updated Editor's version	0.3.1	0.3.2	
2007-03	RAN#35	RP-070171			For information at RAN#35	0.3.2	1.0.0	
2007-03					Random access text modified to better reflect RAN1 scope	1.0.0	1.0.1	
2007-03					Updated Editor's version	1.0.1	1.0.2	
2007-03					Endorsed by RAN1	1.0.2	1.1.0	
2007-05					Updated Editor's version	1.1.0	1.1.1	
2007-05					Updated Editor's version	1.1.1	1.1.2	
2007-05					Endorsed by RAN1	1.1.2	1.2.0	
2007-03		 			Updated Editor's version	1.2.0	1.2.1	
2007-08		 	-		Updated Editor's version – uplink power control from RAN1#49bis	1.2.1	1.2.1	
	1	1				1.2.1		
2007-08		 			Endorsed by RAN1		1.3.0	
2007-09				1	Updated Editor's version reflecting RAN#50 decisions	1.3.0	1.3.1	
					Updated Editor's version reflecting comments	1.3.1	1.3.2	
2007-09					Updated Editor's version reflecting further comments	1.3.2	1.3.3	
2007-09					Updated Editor's version reflecting further comments	1.3.3	1.3.4	
2007-09					Updated Editor's version reflecting further comments	1.3.4	1.3.5	
2007-09	RAN#37	RP-070731			Endorsed by RAN1	1.3.5	2.0.0	
2007-09	RAN#37	RP-070737			For approval at RAN#37	2.0.0	2.1.0	
12/09/07	RAN_37	RP-070737	-	-	Approved version	2.1.0	8.0.0	
28/11/07	RAN_38	RP-070949		2	Update of 36.213	8.0.0	8.1.0	
05/03/08	RAN_39	RP-080145		-	Update of TS36.213 according to changes listed in cover sheet	8.1.0	8.2.0	
28/05/08	RAN_40	RP-080434	0003	1	PUCCH timing and other formatting and typo corrections	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0006	1	PUCCH power control for non-unicast information	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	8000	-	UE ACK/NACK Procedure	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0009	-	UL ACK/NACK timing for TDD	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0010	-	Specification of UL control channel assignment	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0011	-	Precoding Matrix for 2Tx Open-loop SM	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0012	-	Clarifications on UE selected CQI reports	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0013	1	UL HARQ Operation and Timing	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0014	-	SRS power control	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0015	1	Correction of UE PUSCH frequency hopping procedure	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0017	4	Blind PDCCH decoding	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0017	1	Tx Mode vs DCI format is clarified	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0019	-	Resource allocation for distributed VRB	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0020	2	Power Headroom	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0021	-	Clarification for RI reporting in PUCCH and PUSCH reporting	8.2.0	8.3.0	
20/00/00	1\AIN_40	111-000434	0022	-	Imodes	0.2.0	0.3.0	
28/05/08	RAN 40	RP-080434	0025	-	Correction of the description of PUSCH power control for TDD	8.2.0	8.3.0	
00/05/00	D 4 4 1 4 4 6	DD 000404	2222	-				
28/05/08		RP-080434		-	UL ACK/NACK procedure for TDD	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434		-	Indication of radio problem detection	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0028	-	Definition of Relative Narrowband TX Power Indicator	8.2.0	8.3.0	
28/05/08	RAN_40			-	Calculation of Δτ _F (i) for UL-PC	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0030	-	CQI reference and set S definition, CQI mode removal, and Miscellanious	8.2.0	8.3.0	
28/05/08	RAN_40	RP-080434	0031	-	Modulation order and TBS determination for PDSCH and PUSCH	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080434	0032	-	On Sounding RS	8.2.0	8.3.0	
				t	Multiplexing of rank and CQI/PMI reports on PUCCH	8.2.0	8.3.0	
28/05/08	RAN 40	RP-080426	0033	-	Invulible xing of fank and CQI/Pivil reports on PUCCH	10.Z.U	10.5.0	