Теоретическая информатика IV

Практика 15 марта 2021

Задачи 6, 7, 8 — теоретический материал, который входит в программу курса.

- 1. Изменим определение главной универсальной функции и будем требовать существования вычислимой функции s лишь для универсальных вычислимых функций V (а не для любых, как раньше). Покажите, что новое определение эквивалентно старому.
- 2. Пусть U главная универсальная функция. Покажите, что для всякой всюду определенной вычислимой функции h существует бесконечное множество неподвижных точек.
- 3. Пусть U главная универсальная функция. Является ли разрешимым множество $\{n \mid U(n,x) = n \text{ для всех } x\}$? Применима ли теорема Успенского-Райса?
- 4. Пусть U(n,x) главная вычислимая универсальная функция для класса вычислимых функций одного аргумента. Пусть V(n,x) произвольная вычислимая функция. Покажите, что функции U и V совпадают на некотором сечении: найдётся такое p, что $U_p = V_p$, то есть U(p,n) = V(p,n) для любого n.
- 5. Докажите, что множество номеров функций (в главной нумерации), определенных в нуле, является m-полным. Докажите, что множество номеров функций, определенных в каком-нибудь числе, является m-полным.
- 6. Главные универсальные множества.

Перечислимое множество $W\subseteq \mathbb{N}^{k+1}$ называется главным универсальным перечислимым множеством для класса всех перечислимых подмножеств \mathbb{N}^k , если для любого другого перечислимого множества $V\subseteq \mathbb{N}^{k+1}$ найдется такая всюду определенная вычислимая функция $s:\mathbb{N}\to\mathbb{N}$ что

$$(n, x_1, \dots, x_k) \in V \Leftrightarrow (s(n), x_1, \dots, x_k) \in W.$$

(a) Показать, что существует главное универсальное перечислимое множество $W\subset \mathbb{N}^{k+1}.$

Два способа доказательства:

- через области определения главных универсальных функций;
- можно построить главное универсальное множество непосредственно, используя универсальное подмножество $W \subseteq \mathbb{N}^{k+2}$ (по аналогии с построением главной универсальной функции из лекций).
- (b) Пусть $W\subseteq \mathbb{N}^2$ главное универсальное перечислимое множество. Покажите, что по W-номерам двух перечислимых множеств можно алгоритмически построить номер их объединения: существует такая вычислимая всюду определённая функция двух аргументов s, что $W_{s(m,n)}=W_m\cup W_n$ для любых m и n.

- 7. Сформулируйте и докажите теорему о неподвижной точке для главных универсальных множеств.
- 8^* Доказать, что двуместная функция $U \in \mathcal{F}^2$ является главной универсальной функцией для класса вычислимый функций \mathcal{F}^1 тогда и только тогда, когда существует такая всюду определенная функция $f \in \mathcal{F}^2_*$, что $U_p \circ U_q = U_{f(p,q)}$, т.е. U(f(p,q),x) = U(p,U(q,x)) для всех p,q,x.