Algorithm Analysis and Data Structures CS 5343.001: Homework #4

Due on Monday October 10, 2016 at 11:59pm

Professor Greq Ozbirn

Lizhong Zhang (lxz160730)

lxz160730@utdallas.edu

Contents

Problem 1	2
Part (a)	
Part (b)	2
Part (c)	2
Problem 2	2
Problem 3	2
Problem 4	3
Problem 5	3
Problem 6	4
Problem 7	5
Problem 8	7
Problem 9	7
Problem 10	7
Problem 11	7

Part (a)

acedqnrws

Part (b)

qecadrnsw

Part (c)

acdenwsrq

Problem 2

Problem 3

Access 60.

Problem 5

Access 75.

If each key is 4 bytes, and there are M-1 keys, and each of the M pointers takes 4 bytes, then each node uses 4(M-1)+4M=4M bytes. Solving for M gives M=(3096+4)/8=38.75, so M=38. L=3096/36=86

Problem 9

Since each leaf could be half full, 8,600,000 records could take 8600000/(86/2) = 200000 leaves.

Problem 10

In a binary tree, when there is only one node, it has two null pointers. Then add one node in the tree as a child node every time, it will produce two new null pointers. So if a binary tree has N nodes, it will have 2 - (N - 1) + 2(N - 1) = N + 1 null child pointers.

Problem 11

In a perfect binary tree which has N nodes(one filled at every level), when add another level

in the tree, the number of nodes will be 2N + 1.