

Test Report No.	17020575-FCC-R1
Page	31 of 85

Test Plots GESK Mode:

Test Report No.	17020575-FCC-R1
Page	32 of 85

Test Report No.	17020575-FCC-R1
Page	33 of 85

GFSK-Hopping-Horizontal

					or create	ing rionzo	iitai				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.37	peak	31.53	52.55	4.02	43.37	74.00	-30.63	100	39
2	2400.000	67.26	peak	31.54	52.56	4.01	50.25	74.00	-23.75	100	146
3	2483.500	56.47	peak	31.59	52.63	4.06	39.49	74.00	-34.51	200	273

Test Report No.	17020575-FCC-R1
Page	34 of 85

OO 2500.0 MHz

GFSK-Hopping-Vertical

					Or Ortriop	ping volue	, u.				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	61.19	peak	31.53	52.55	4.02	44.19	74.00	-29.81	200	241
2	2400.000	61.46	peak	31.54	52.56	4.01	44.45	74.00	-29.55	200	158
3	2483.500	55.96	peak	31.59	52.63	4.06	38.98	74.00	-35.02	300	305

Test Report No.	17020575-FCC-R1
Page	35 of 85

π/4 DQPSK Mode:

Test Report No.	17020575-FCC-R1
Page	36 of 85

Test Report No.	17020575-FCC-R1						
Page	37 of 85						

π/4 DQPSK -Hopping-Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.69	peak	31.53	52.55	4.02	43.69	74.00	-30.31	100	150
2	2400.000	62.45	peak	31.54	52.56	4.01	45.44	74.00	-28.56	100	263
3	2483 500	55 85	neak	31 59	52 63	4 06	38 87	74 00	-35 13	200	147

Test Report No.	17020575-FCC-R1						
Page	38 of 85						

 $\pi/4$ DQPSK -Hopping-Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.17	peak	31.53	52.55	4.02	43.17	74.00	-30.83	200	203
2	2400.000	67.49	peak	31.54	52.56	4.01	50.48	74.00	-23.52	200	208
3	2483.500	56.55	peak	31.59	52.63	4.06	39.57	74.00	-34.43	100	250

Test Report No.	17020575-FCC-R1
Page	39 of 85

8-DPSK Mode:

Test Report No.	17020575-FCC-R1
Page	40 of 85

Test Report No.	17020575-FCC-R1
Page	41 of 85

8-DPSK -Hopping-Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	60.82	peak	31.53	52.55	4.02	43.82	74.00	-30.18	100	25
2	2400.000	69.13	peak	31.54	52.56	4.01	52.12	74.00	-21.88	200	168
3	2483 500	56 75	neak	31 59	52 63	4 06	39 77	74 00	-34 23	100	320

Test Report No.	17020575-FCC-R1
Page	42 of 85

000 2500.0 MHz 8-DPSK -Hopping-Vertical

				0	DI OIL III	pping voit	.1001				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2390.000	59.76	peak	31.53	52.55	4.02	42.76	74.00	-31.24	200	32
2	2400.000	66.18	peak	31.54	52.56	4.01	49.17	74.00	-24.83	100	291
3	2483.500	57.19	peak	31.59	52.63	4.06	40.21	74.00	-33.79	164	0

Test Report No.	17020575-FCC-R1
Page	43 of 85

6.8 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	59%
Atmospheric Pressure	1017mbar
Test date :	June 09,2017
Tested By:	Trety Lu

Requirement(s):

Spec	Item	Requirement			Applicable		
		For Low-power radio-freque public utility (AC) power line onto the AC power line on a to 30 MHz, shall not exceed 50 [mu]H/50 ohms line impeapplies at the boundary between the state of th					
47CFR§15.20		Frequency ranges					
7, RSS210	a)	(MHz)	Limit (QP	Average			
(A8.1)	ω,	0.15 ~ 0.5	79	66			
(7.0.1)		0.5 ~ 30	73	60			
			Class B Limit				
		Frequency ranges	Limit (
		(MHz)	QP	Average			
		0.15 ~ 0.5	66 – 56	56 – 46			
		0.5 ~ 5 5 ~ 30	56 60	46 50			
Test Setup		2.Both of L from othe	nits were connected to se ISNs (AMN) are 80cm from r units and other metal pla	EUT and at least 80cm nes support units.			
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50 [mu]H/50 EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. All other supporting equipment were powered separately from another main supply. The EUT was switched on and allowed to warm up to its normal operating condition. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power). 						
Remark	We test	3 modulations, only sho	w GFSK test data in the	e report.			

Test Report No.	17020575-FCC-R1
Page	44 of 85

|--|--|

Test Data ⊠Yes □N/A

Test Plot ⊠Yes (See below) □N/A

Data sample

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dB _µ V)		(dB)	(dB)	(dB)	(dB _µ V)	(dB _µ V)	(dB)

Frequency (MHz) = Emission frequency in MHz

Reading ($dB\mu V$) = Receiver Reading Value

Detector=Quasi Peak Detector or Average Detector

Lisn/ISN= Insertion loss of LISN

Ps_Lmt= Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Cab_L= cable loss

Result ($dB\mu V$) = Reading Value + Corrected Value

Limit (dB μ V) = Limit stated in standard

Calculation Formula:

Margin (dB) = Result (dB μ V) – limit (dB μ V)

Test Report No.	17020575-FCC-R1
Page	45 of 85

|--|

Phase Line Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	39.78	QP	0.12	-10.00	0.21	50.11	56.44	-6.33
2	0.4740	31.74	AVG	0.12	-10.00	0.21	42.07	46.44	-4.37
3	0.8220	34.95	QP	0.13	-10.00	0.20	45.28	56.00	-10.72
4	0.8220	25.66	AVG	0.13	-10.00	0.20	35.99	46.00	-10.01
5	1.1420	33.01	QP	0.14	-10.00	0.20	43.35	56.00	-12.65
6	1.1420	23.77	AVG	0.14	-10.00	0.20	34.11	46.00	-11.89
7	1.4500	30.59	QP	0.15	-10.00	0.20	40.94	56.00	-15.06
8	1.4500	21.34	AVG	0.15	-10.00	0.20	31.69	46.00	-14.31
9	1.9780	29.21	QP	0.16	-10.00	0.18	39.55	56.00	-16.45
10	1.9780	21.03	AVG	0.16	-10.00	0.18	31.37	46.00	-14.63
11	2.5540	27.30	QP	0.18	-10.00	0.23	37.71	56.00	-18.29
12	2.5540	17.52	AVG	0.18	-10.00	0.23	27.93	46.00	-18.07

Test Report No.	17020575-FCC-R1
Page	46 of 85

|--|

Phase Neutral Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	41.54	QP	0.11	-10.00	0.21	51.86	56.44	-4.58
2	0.4740	32.93	AVG	0.11	-10.00	0.21	43.25	46.44	-3.19
3	0.7980	36.52	QP	0.12	-10.00	0.20	46.84	56.00	-9.16
4	0.7980	27.15	AVG	0.12	-10.00	0.20	37.47	46.00	-8.53
5	1.1100	34.38	QP	0.13	-10.00	0.20	44.71	56.00	-11.29
6	1.1100	24.39	AVG	0.13	-10.00	0.20	34.72	46.00	-11.28
7	1.4620	30.42	QP	0.15	-10.00	0.20	40.77	56.00	-15.23
8	1.4620	20.10	AVG	0.15	-10.00	0.20	30.45	46.00	-15.55
9	1.8340	29.39	QP	0.16	-10.00	0.20	39.75	56.00	-16.25
10	1.8340	19.71	AVG	0.16	-10.00	0.20	30.07	46.00	-15.93
11	2.1740	29.55	QP	0.18	-10.00	0.21	39.94	56.00	-16.06
12	2.1740	20.13	AVG	0.18	-10.00	0.21	30.52	46.00	-15.48

Test Report No.	17020575-FCC-R1
Page	47 of 85

|--|

Phase Line Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	40.98	QP	0.12	-10.00	0.21	51.31	56.44	-5.13
2	0.4740	31.67	AVG	0.12	-10.00	0.21	42.00	46.44	-4.44
3	0.7180	36.94	QP	0.13	-10.00	0.20	47.27	56.00	-8.73
4	0.7180	27.93	AVG	0.13	-10.00	0.20	38.26	46.00	-7.74
5	1.1820	34.66	QP	0.14	-10.00	0.20	45.00	56.00	-11.00
6	1.1820	25.26	AVG	0.14	-10.00	0.20	35.60	46.00	-10.40
7	1.7900	31.63	QP	0.16	-10.00	0.21	42.00	56.00	-14.00
8	1.7900	23.40	AVG	0.16	-10.00	0.21	33.77	46.00	-12.23
9	9.2060	34.62	QP	0.46	-10.00	0.38	45.46	60.00	-14.54
10	9.2060	26.12	AVG	0.46	-10.00	0.38	36.96	50.00	-13.04
11	10.4700	33.73	QP	0.52	-10.00	0.50	44.75	60.00	-15.25
12	10.4700	23.11	AVG	0.52	-10.00	0.50	34.13	50.00	-15.87

Test Report No.	17020575-FCC-R1
Page	48 of 85

|--|

Phase Neutral Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4780	34.56	QP	0.11	-10.00	0.21	44.88	56.37	-11.49
2	0.4780	24.38	AVG	0.11	-10.00	0.21	34.70	46.37	-11.67
3	0.8180	32.29	QP	0.12	-10.00	0.20	42.61	56.00	-13.39
4	0.8180	20.99	AVG	0.12	-10.00	0.20	31.31	46.00	-14.69
5	1.2140	28.45	QP	0.14	-10.00	0.21	38.80	56.00	-17.20
6	1.2140	17.93	AVG	0.14	-10.00	0.21	28.28	46.00	-17.72
7	1.5780	24.69	QP	0.15	-10.00	0.20	35.04	56.00	-20.96
8	1.5780	13.82	AVG	0.15	-10.00	0.20	24.17	46.00	-21.83
9	7.9980	28.98	QP	0.45	-10.00	0.36	39.79	60.00	-20.21
10	7.9980	21.98	AVG	0.45	-10.00	0.36	32.79	50.00	-17.21
11	9.4500	28.60	QP	0.51	-10.00	0.39	39.50	60.00	-20.50
12	9.4500	21.67	AVG	0.51	-10.00	0.39	32.57	50.00	-17.43

Test Report No.	17020575-FCC-R1
Page	49 of 85

Test Mode: Transmitting BT Mode (Middle Channel)
--

Phase Line Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4780	39.10	QP	0.12	-10.00	0.21	49.43	56.37	-6.94
2	0.4780	30.27	AVG	0.12	-10.00	0.21	40.60	46.37	-5.77
3	0.8540	34.58	QP	0.14	-10.00	0.20	44.92	56.00	-11.08
4	0.8540	25.79	AVG	0.14	-10.00	0.20	36.13	46.00	-9.87
5	1.3500	32.13	QP	0.15	-10.00	0.21	42.49	56.00	-13.51
6	1.3500	22.21	AVG	0.15	-10.00	0.21	32.57	46.00	-13.43
7	1.6900	30.05	QP	0.15	-10.00	0.21	40.41	56.00	-15.59
8	1.6900	21.28	AVG	0.15	-10.00	0.21	31.64	46.00	-14.36
9	2.2980	28.10	QP	0.17	-10.00	0.22	38.49	56.00	-17.51
10	2.2980	19.70	AVG	0.17	-10.00	0.22	30.09	46.00	-15.91
11	9.7420	30.31	QP	0.48	-10.00	0.39	41.18	60.00	-18.82
12	9.7420	22.14	AVG	0.48	-10.00	0.39	33.01	50.00	-16.99

Test Report No.	17020575-FCC-R1
Page	50 of 85

Test Mode: Transmitting BT Mode (Middle Channel)

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4660	40.75	QP	0.11	-10.00	0.21	51.07	56.58	-5.51
2	0.4660	31.23	AVG	0.11	-10.00	0.21	41.55	46.58	-5.03
3	0.7620	36.85	QP	0.12	-10.00	0.20	47.17	56.00	-8.83
4	0.7620	27.61	AVG	0.12	-10.00	0.20	37.93	46.00	-8.07
5	1.0700	35.19	QP	0.13	-10.00	0.20	45.52	56.00	-10.48
6	1.0700	25.52	AVG	0.13	-10.00	0.20	35.85	46.00	-10.15
7	1.3820	32.40	QP	0.15	-10.00	0.20	42.75	56.00	-13.25
8	1.3820	22.39	AVG	0.15	-10.00	0.20	32.74	46.00	-13.26
9	1.7060	30.28	QP	0.16	-10.00	0.21	40.65	56.00	-15.35
10	1.7060	21.13	AVG	0.16	-10.00	0.21	31.50	46.00	-14.50
11	2.0220	29.45	QP	0.17	-10.00	0.18	39.80	56.00	-16.20
12	2.0220	20.79	AVG	0.17	-10.00	0.18	31.14	46.00	-14.86

Test Report No.	17020575-FCC-R1
Page	51 of 85

Test Mode: Transmitting BT Mode (Middle Channel)
--

Phase Line Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4780	41.01	QP	0.12	-10.00	0.21	51.34	56.37	-5.03
2	0.4780	31.56	AVG	0.12	-10.00	0.21	41.89	46.37	-4.48
3	0.8460	36.94	QP	0.13	-10.00	0.20	47.27	56.00	-8.73
4	0.8460	28.44	AVG	0.13	-10.00	0.20	38.77	46.00	-7.23
5	1.1780	34.08	QP	0.14	-10.00	0.20	44.42	56.00	-11.58
6	1.1780	25.11	AVG	0.14	-10.00	0.20	35.45	46.00	-10.55
7	1.7180	30.68	QP	0.15	-10.00	0.21	41.04	56.00	-14.96
8	1.7180	21.63	AVG	0.15	-10.00	0.21	31.99	46.00	-14.01
9	9.4780	34.81	QP	0.47	-10.00	0.39	45.67	60.00	-14.33
10	9.4780	27.05	AVG	0.47	-10.00	0.39	37.91	50.00	-12.09
11	10.5260	34.20	QP	0.53	-10.00	0.50	45.23	60.00	-14.77
12	10.5260	25.85	AVG	0.53	-10.00	0.50	36.88	50.00	-13.12

Test Report No.	17020575-FCC-R1
Page	52 of 85

Test Mode: Transmitting BT Mode (Middle Channel)
--

Phase Neutral Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4820	34.76	QP	0.11	-10.00	0.21	45.08	56.30	-11.22
2	0.4820	24.73	AVG	0.11	-10.00	0.21	35.05	46.30	-11.25
3	0.8340	32.39	QP	0.12	-10.00	0.20	42.71	56.00	-13.29
4	0.8340	21.13	AVG	0.12	-10.00	0.20	31.45	46.00	-14.55
5	1.1940	28.97	QP	0.14	-10.00	0.21	39.32	56.00	-16.68
6	1.1940	18.43	AVG	0.14	-10.00	0.21	28.78	46.00	-17.22
7	1.5740	24.19	QP	0.15	-10.00	0.20	34.54	56.00	-21.46
8	1.5740	13.67	AVG	0.15	-10.00	0.20	24.02	46.00	-21.98
9	2.0620	23.21	QP	0.17	-10.00	0.19	33.57	56.00	-22.43
10	2.0620	13.88	AVG	0.17	-10.00	0.19	24.24	46.00	-21.76
11	9.7100	28.79	QP	0.52	-10.00	0.39	39.70	60.00	-20.30
12	9.7100	21.29	AVG	0.52	-10.00	0.39	32.20	50.00	-17.80

Test Report No.	17020575-FCC-R1
Page	53 of 85

Phase Line Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	40.00	QP	0.12	-10.00	0.21	50.33	56.44	-6.11
2	0.4740	31.50	AVG	0.12	-10.00	0.21	41.83	46.44	-4.61
3	0.7620	35.19	QP	0.13	-10.00	0.20	45.52	56.00	-10.48
4	0.7620	26.39	AVG	0.13	-10.00	0.20	36.72	46.00	-9.28
5	1.0740	33.93	QP	0.14	-10.00	0.20	44.27	56.00	-11.73
6	1.0740	24.73	AVG	0.14	-10.00	0.20	35.07	46.00	-10.93
7	1.3980	31.62	QP	0.15	-10.00	0.20	41.97	56.00	-14.03
8	1.3980	22.16	AVG	0.15	-10.00	0.20	32.51	46.00	-13.49
9	1.9340	29.37	QP	0.16	-10.00	0.19	39.72	56.00	-16.28
10	1.9340	20.46	AVG	0.16	-10.00	0.19	30.81	46.00	-15.19
11	2.2660	28.43	QP	0.17	-10.00	0.22	38.82	56.00	-17.18
12	2.2660	19.93	AVG	0.17	-10.00	0.22	30.32	46.00	-15.68

Test Report No.	17020575-FCC-R1
Page	54 of 85

Test Mode:	Transmitting BT Mode (High Channel
------------	-------------------------------------

Phase Neutral Plot at 120Vac, 60Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	41.89	QP	0.11	-10.00	0.21	52.21	56.44	-4.23
2	0.4740	33.37	AVG	0.11	-10.00	0.21	43.69	46.44	-2.75
3	0.7540	36.67	QP	0.12	-10.00	0.20	46.99	56.00	-9.01
4	0.7540	27.40	AVG	0.12	-10.00	0.20	37.72	46.00	-8.28
5	1.0660	35.34	QP	0.13	-10.00	0.20	45.67	56.00	-10.33
6	1.0660	25.50	AVG	0.13	-10.00	0.20	35.83	46.00	-10.17
7	1.3980	31.44	QP	0.15	-10.00	0.20	41.79	56.00	-14.21
8	1.3980	21.51	AVG	0.15	-10.00	0.20	31.86	46.00	-14.14
9	2.0020	29.65	QP	0.17	-10.00	0.18	40.00	56.00	-16.00
10	2.0020	21.02	AVG	0.17	-10.00	0.18	31.37	46.00	-14.63
11	9.2180	31.97	QP	0.50	-10.00	0.38	42.85	60.00	-17.15
12	9.2180	23.20	AVG	0.50	-10.00	0.38	34.08	50.00	-15.92

Test Report No.	17020575-FCC-R1
Page	55 of 85

Test Mode: Transmitting BT Mode (High C
--

Phase Line Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4740	41.38	QP	0.12	-10.00	0.21	51.71	56.44	-4.73
2	0.4740	32.01	AVG	0.12	-10.00	0.21	42.34	46.44	-4.10
3	0.8380	37.22	QP	0.13	-10.00	0.20	47.55	56.00	-8.45
4	0.8380	28.38	AVG	0.13	-10.00	0.20	38.71	46.00	-7.29
5	1.1860	34.13	QP	0.14	-10.00	0.20	44.47	56.00	-11.53
6	1.1860	25.02	AVG	0.14	-10.00	0.20	35.36	46.00	-10.64
7	1.8540	31.15	QP	0.16	-10.00	0.20	41.51	56.00	-14.49
8	1.8540	23.12	AVG	0.16	-10.00	0.20	33.48	46.00	-12.52
9	9.1100	35.24	QP	0.46	-10.00	0.37	46.07	60.00	-13.93
10	9.1100	26.66	AVG	0.46	-10.00	0.37	37.49	50.00	-12.51
11	10.1740	33.78	QP	0.50	-10.00	0.44	44.72	60.00	-15.28
12	10.1740	25.26	AVG	0.50	-10.00	0.44	36.20	50.00	-13.80

Test Report No.	17020575-FCC-R1
Page	56 of 85

Test Mode: Transmitting BT Mode (High Channel
--

Phase Neutral Plot at 230Vac, 50Hz

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4780	34.60	QP	0.11	-10.00	0.21	44.92	56.37	-11.45
2	0.4780	24.42	AVG	0.11	-10.00	0.21	34.74	46.37	-11.63
3	0.7180	32.90	QP	0.12	-10.00	0.20	43.22	56.00	-12.78
4	0.7180	22.18	AVG	0.12	-10.00	0.20	32.50	46.00	-13.50
5	1.0260	29.74	QP	0.13	-10.00	0.19	40.06	56.00	-15.94
6	1.0260	19.72	AVG	0.13	-10.00	0.19	30.04	46.00	-15.96
7	1.3380	26.71	QP	0.14	-10.00	0.21	37.06	56.00	-18.94
8	1.3380	16.50	AVG	0.14	-10.00	0.21	26.85	46.00	-19.15
9	8.8740	29.62	QP	0.48	-10.00	0.37	40.47	60.00	-19.53
10	8.8740	22.86	AVG	0.48	-10.00	0.37	33.71	50.00	-16.29
11	10.5820	27.22	QP	0.58	-10.00	0.50	38.30	60.00	-21.70
12	10.5820	19.71	AVG	0.58	-10.00	0.50	30.79	50.00	-19.21

Test Report No.	17020575-FCC-R1
Page	57 of 85

6.9 Radiated Emissions

Temperature	25°C				
Relative Humidity	58%				
Atmospheric Pressure	1016mbar				
Test date :	June 20, 2017				
Tested By:	Trety Lu				

Requirement(s):

Spec	Item	Requirement	Applicable							
		Except higher limit as specified elsewhere low-power radio-frequency devices shall no specified in the following table and the leve exceed the level of the fundamental emissi edges Class A								
		Frequency range (MHz)	Field Strength (µV/m)							
47CFR§15.20		30 – 88	90							
5, §15.209,	2)	88 – 216	150	~						
. •	a)	216 – 960	210							
§15.247(d)		Above 960	300							
		Class B								
		Frequency range (MHz)	Field Strength (µV/m)							
		30 – 88	100							
		88 – 216	150							
		216 – 960	200							
		Above 960	500							
Test Setup Test Setup Ground Plane Test Receiver										
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz 									

Test Report No.	17020575-FCC-R1
Page	58 of 85

	with Peak detection for Average Measurement as below at frequency above 1GHz. 5. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
Remark	We test 3 modulations, only show GFSK test data in the report.
Result	Pass Fail

Test Data

Yes

N/A

Test Plot

Yes (See below)

Data sample

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver Reading Value

Detector= Peak Detector or Quasi Peak Detector

Ant_F=Antenna Factor

PA_G=Pre-Amplifier Gain

Cab_L=Cable Loss

Result ($dB\mu V/m$) = Read ing Value + Corrected Value

Limit ($dB\mu V/m$) = Limit stated in standard

Height (cm) = Height of Receiver antenna

Degree = Turn table degree

Calculation Formula:

Margin (dB) = Result (dB μ V/m) – limit (dB μ V/m)

Test Report No.	17020575-FCC-R1
Page	59 of 85

Test Mode: Transmitting BT Mode (GFSK-Low Channel)

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

					• • • • •		<u> </u>				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	199.9856	69.13	peak	13.39	47.34	2.26	37.44	43.50	-6.06	200	246
2	425.0280	69.83	QP	16.00	49.09	3.31	40.05	46.00	-5.95	200	235
3	651.9417	63.46	QP	21.85	48.15	4.10	41.26	46.00	-4.74	300	241
4	711.6734	58.84	QP	22.47	45.60	4.29	40.00	46.00	-6.00	200	183
5	731.9203	62.05	QP	22.59	45.38	4.34	43.60	46.00	-2.40	200	202
6	750.1083	59.20	QP	22.70	45.02	4.40	41.28	46.00	-4.72	200	205

Test Report No.	17020575-FCC-R1
Page	60 of 85

Test Mode: Transmitting BT Mode (GFSK-Low Channel)

Below 1GHz

Vertical Polarity Plot @3m

	vortiour voicinty i for worm										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	121.9755	61.17	QP	15.94	46.71	1.80	32.20	43.50	-11.30	100	161
2	167.8243	65.60	QP	14.17	46.66	2.09	35.20	43.50	-8.30	100	245
3	188.4125	63.60	QP	12.43	46.64	2.21	31.60	43.50	-11.90	100	206
4	202.1005	64.57	QP	14.85	47.39	2.27	34.30	43.50	-9.20	100	36
5	651.9417	63.08	QP	21.47	48.15	4.10	40.50	46.00	-5.50	100	181
6	731.9203	62.18	QP	22.26	45.38	4.34	43.40	46.00	-2.60	100	322