Primo Appello Estivo del corso di Fisica del 26.06.2023

Corso di Laurea in Informatica

A.A. 2022-2023

(Prof. Paolo Camarri, Prof. Vincenzo Caracciolo)

Cognome:

Nome:

nome:		
Matrico	ola:	
Anno di	i immat	tricolazione:
	Proble	ma n.1
	rettilin Il punt module	nto materiale avente massa $m=1~{\rm kg}$ si muove all'interno di un mezzo viscoso lungo una traiettoria ea (asse x), con velocità iniziale avente modulo $v_0=5~{\rm m~s^{-1}}$ diretta lungo l'asse x nel verso positivo. o materiale è sottoposto all'azione di una forza di attrito viscoso avente modulo proporzionale al o della velocità istantanea $v_x(t)$ del punto materiale, secondo la legge $F_x(t)=-bv_x(t)$, essendo noto $2~{\rm kg~s^{-1}}$.
	a)	Quale è l'espressione $v_x(t)$ della velocità istantanea del punto materiale in funzione del tempo? A quale istante t_1 risulta $v_x(t_1)=v_0/2$?
		$v_x(t) =$
		$t_1 = =$
	b)	Quale è l'espressione $a_x(t)$ della accelerazione istantanea del punto materiale in funzione del tempo? Quanto vale la componente x della forza agente sul punto materiale all'istante $t=0$?
		$a_{\chi}(t) =$
	. <u></u>	$F_{\chi}(0) = =$
	c)	Quale è l'espressione $x(t)$ della legge oraria del moto del punto materiale per $t \geq 0$ sapendo che $x(0) = 0$? A quale distanza massima d_M dall'origine dell'asse x potrà arrivare il punto materiale per $t \to +\infty$?
		x(t) =
		$d_M = =$

Problema n.2

Un'asta rigida sottile e omogenea, avente massa $M=1~{\rm kg}$ e lunghezza $L=1~{\rm m}$, è imperniata a un suo estremo P, libera di ruotare su un piano verticale attorno a un asse orizzontale passante per l'estremo P. L'asta viene posizionata orizzontalmente e viene lasciata libera da ferma all'istante t=0 (figura a).

a) Si calcoli l'accelerazione angolare di rotazione dell'asta all'istante t=0 .

 $\alpha(0) = =$

b) A partire dalla condizione iniziale descritta sopra, si calcoli la velocità angolare istantanea di rotazione ω_1 dell'asta nell'istante in cui essa, ruotando in senso antiorario, passa per la posizione verticale (figura b).

 $\omega_1 =$

c) Nell'istante considerato al punto b), applicando la prima equazione cardinale al moto del centro di massa dell'asta, si calcoli il modulo R della reazione vincolare esercitata dal perno sull'asta

R =

Problema n.3

Un circuito, costituito da una spira quadrata di lato h e da una resistenza R, è immerso in un campo magnetico \vec{B} uscente il cui modulo varia linearmente nel tempo, $|\vec{B}| = \beta t$ (si veda figura). Si determini:

- a) il flusso $\phi(B)$ del campo magnetico concatenato col circuito e la relativa f.e.m. indotta al variare del tempo;
- b) la corrente *i(t)* che circola nel circuito e il suo verso (orario o antiorario).
- c) la potenza P(t) dissipata dalla resistenza R.

Si riportino le espressioni algebriche in termini dei soli parametri β , t, R, h. Si determinino i valori numerici per $\beta=2\frac{Wb}{s\,m^2}$, $t=10\,s$, R = 10 Ω , h = 10 cm (si trascurino effetti di autoinduzione).

$$\phi(B) = \qquad \qquad \phi(B(10 \text{ s})) =$$

$$f.e.m.(t) = f.e.m.(10 s) =$$

$$i(t) = i(10 s) =$$

Verso di i(t):

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

<u>Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.</u>

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.