

by Chris Patuzzo Ember London, 2017-01-12 @cpatuzzo

Firstly,

What is Sentient?

			_					
6	_	\perp	\perp	2	2			9
	1		3		7		5	$\overline{}$
		3				1		
	9					T	2	50 O
2			8	7	5	T		3
		5		1		4		
	7			8		Г	9	
		1		4		8		
			2	5	9			

Most languages

6				2				9
	1		3		7		5	
		3				1	. 3	
	9				A		2	
2			8	7	5			3
		5		1		4		
	7			8			9	
		1		4		8		
			2	5	9		3	

Some algorithm

For each empty square

Try a number that fits

If no numbers fit

Backtrack

Sentient

An example

1) The **rows** must sum to the same target

2) The columns must sum to the same target

3) The diagonals must sum to the same target

Here's how to check a magic square

Now go find some!


```
array3<array3<int>> magic_square;
int target;
magic_square.each(function^ (row) {
  invariant row.sum == target;
  invariant row.all?(*positive?);
});
magic_square.transpose.each(function^ (column) {
  invariant column.sum == target;
});
left_diagonal = magic_square.map(function (row, index) {
  return row[index];
});
right_diagonal = magic_square.map(function (row, index) {
  return row.reverse[index];
});
invariant left_diagonal.sum == target;
invariant right_diagonal.sum == target;
expose magic_square, target;
```

```
array3<array3<int>> magic_square;
int target;
magic_square.each(function^ (row) {
  invariant row.sum == target;
  invariant row.all?(*positive?);
});
magic_square.transpose.each(function^ (column) {
  invariant column.sum == target;
});
left_diagonal = magic_square.map(function (row, index) {
  return row[index];
                                                                 diagonals
});
right_diagonal = magic_square.map(function (row, index) {
  return row.reverse[index];
});
invariant left_diagonal.sum == target;
invariant right_diagonal.sum == target;
expose magic_square, target;
```

rows

columns

```
array3<array3<int>> magic_square;
int target;
```

```
array3<array3<int>> magic_square;
int target;
```

magic_square

int	int	int
int	int	int
int	int	int

target

int

```
array3<array3<int>> magic_square;
int target;
magic_square.each(function^ (row) {
  invariant row.sum == target;
  invariant row.all?(*positive?);
});
```



```
magic_square.transpose.each(function^ (column) {
   invariant column.sum == target;
});
```



```
left_diagonal = magic_square.map(function (row, index) {
  return row[index];
});
right_diagonal = magic_square.map(function (row, index) {
  return row.reverse[index];
});
                                           magic_square
```

invariant left_diagonal.sum == target; invariant right_diagonal.sum == target;

expose magic_square, target;

input ---> Program ---> output

chris:~ chris\$

Ţ

Advertising Business About Privacy Terms Settings

How does it work?

^{*} This process is called a "Tseitin" transform which is how "Sentient" gets its name

$$(a \parallel b) \&\& (!a \parallel !c) \&\& (a \parallel !d) \&\& (b \parallel c) \&\& (c \parallel !d) == true$$

- 1) a=true, b=true, c=false, d=false
- 2) a=false, b=true, c=true, d=false

•

magic_square | Till |

target

$$(a \parallel b) \&\& (!a \parallel !c) \&\& (a \parallel !d) \&\& (b \parallel c) \&\& (c \parallel !d) == true$$

5	1	9
9	5	1
1	9	5

- 1) a=true, b=true, c=false, d=false
- 2) a=false, b=true, c=true, d=false

•

```
(!x49) && (!x33) && (!x17) && (!x73) && (!x65) && (!x1) && (!x41) && (!x57) && (!x9) && (!x9) && (x8 || x16 || x81) && (x8 || x16 || !x81) && (!x81) && (!x8
(x6 || !x14 || x86) && (x6 || x14 || !x86) && (!x6 || !x14 || !x86) && (!x6 || x14 || x86) && (!x6 || x14 || x86) && (!x85 || x86 || x87) && (x85 || x86 || !x87) && (!x85 || !x86 || !x87) && (x85 || !x86 || x87) && (x5 || !x13 || x89) && (x5 || x13 || x89) && (x5 || x14 || x86) && (x5 || x14 ||
&& (!x4 || x12 || x92) && (!x91 || x93) && (x91 || x93) && (x91 || x93) && (!x91 || x93) && (x91 || x93) && (x91 || x94) && (x94 || x95) && (x
&& (!x2 || !x10) && (!x24 || x80 || x81) && (x24 || !x80 || x81) && (!x24 || !x80 || x81) && (x24 || x80 || x81) && (x24 || x80 || x81) && (x24 || x80 || x81) && (x24 || x81)
x101) && (!x23 || !x84 || !x101) && (x23 || !x84 || x101) && (x79 || !x100 || x101) && (!x79 || x100 || x101) && (!x79 || x100 || !x101) && (x79 || x100 || x101) && (!x22 || x87 || x103) && (x22 || x87 || x23) && (x22 || x
x22 || !x87 || !x103) && (x22 || !x87 || x103) && (x78 || x103) && (!x78 || x103) && (!x78 || x103) && (!x78 || x103) && (x78 || x103) && (x78
&& (x20 || !x93 || x107) && (x76 || !x106 || x107) && (!x76 || x106 || x107) && (!x76 || !x106 || !x107) && (x76 || x106 || x107) && (x76 || x
x96 || x109) && (x75 || !x108 || x109) && (!x75 || x108 || x109) && (!x75 || x108 || !x109) && (x75 || x108 || !x109) && (x108 || x110) && (x109 || x110) && (x109 || x110) && (x108 || x110) && (x108 || x111) && (x111) && (x111) && (x111) && (x111) && (x111) && (x1111) && (x11111) && (x1111) && (x11111) && (x11111) && (x11111) && (x11111) && (x11111) && (x1111) && (x11111)
x99 || !x111) && (!x99 || x111) && (x74 || !x111) && (!x18 || !x99) && (x32 || !x40 || x112) && (!x32 || !x40 || !x112) && (!x32 || x40 || x112) && (!x32 || x40 || x112) && (!x32 || x40 || x112) && (|x32 || x40 || x113) && (|x32 || |x40 || x113) && (|x32 || |x40 || |x113) && (|x32 || |x40 
(x40 || !x113) && (x31 || !x39 || x114) && (x31 || x39 || !x114) && (!x31 || !x39 || !x114) && (!x31 || x39 || x114) && (!x113 || x114 || x115) && (x113 || x114 || x115) && (!x113 || x114 || x115) && (|x113 || 
x115) && (x30 || !x38 || x117) && (x30 || x38 || !x117) && (!x30 || !x38 || !x117) && (!x30 || x38 || x117) && (!x116 || x117 || x118) && (x116 || x117 || x118) && (!x116 || x117 || x118) && (|x116 || x117 || x118) && (|x116 || x117 || x118) && (|x117 || x118)
&& (x29 || !x37 || x120) && (x29 || x37 || !x120) && (!x29 || !x37 || !x120) && (!x29 || x37 || x120) && (!x119 || x121) && (x119 || x121) && (x1119 || x121) && (x1119 || x121) && (x1119 || x121) && (x1119 || x121) && (x11119 
(x28 || !x36 || x123) && (x28 || x36 || !x123) && (!x28 || !x36 || !x123) && (!x28 || x36 || x123) && (!x122 || x123 || x124) && (!x122 || x123 || x124) && (!x122 || x123 || x124) && (|x122 || x123 || x124) && 
x35 || x128) && (x27 || !x128) && (x35 || !x128) && (!x34 || x129) && (x26 || x34 || x129) && (!x26 || x129) && (!x129 || x130) && (!x26 || !x34) && (!x48 || x80 || x112) && (x48 || x80 || x80
x112) && (x48 || x80 || !x112) && (!x48 || !x112 || x131) && (x112 || x131) && (x48 || !x131) && (x48 || x131) && (x48 || x131) && (x48 || x131) && (x48 || x132) && (x47 || x132) && (!x47 || x132) && (!x47 || x132) && (x47 || x132) && (x48 || x
| | x132| && (!x79 | x131 | x132) && (!x79 | !x131 | !x132) && (x79 | x131 | !x132) && (!x46 | x118 | x134) && (x46 | x118 | x134) && (!x46 | x118 | x134) && (|x46 | x118 | x134) && (|x46 | x118 | x134) && (|x46 | x134) && (|x4
x134) && (!x78 || x133 || x134) && (!x78 || !x133 || !x134) && (x78 || x134) && (!x45 || x134) && (!x45 || x136) && (!x45 || x136) && (!x45 || x136) && (!x45 || x136) && (|x45 || x136) && (|x4
&& (!x77 || x135 || x136) && (!x77 || !x135 || !x136) && (x77 || x135 || !x136) && (!x44 || x124 || x138) && (x44 || x138) && (x44 || x138) && (x44 || x138) && (x76 || x137 || x138) && (x76 || x138) && (
x76 || x137 || x138) && (!x76 || !x137 || !x138) && (x76 || x137 || !x138) && (!x43 || x127 || x140) && (!x43 || x127 || !x140) && (!x43 || x127 || x140) && (x43 || x127 || x127 || x140) && (x43 |
x139 || x140) && (!x75 || !x139 || !x140) && (x75 || x139 || !x140) && (!x139 || !x140) && (x141) && (x141) && (x141) && (x141) && (x142) && (x42 || x142) && (x42 || x130 || x142) && (!x130 || x142) && (x74 || x142) && (x74 || x142)
&& (!x42 || !x130) && (x56 || !x64 || x143) && (x56 || x64 || !x143) && (!x56 || !x64 || x143) && (!x56 || x144) && (x56 || x144) && (x56 || x144) && (x56 || x144) && (x56 || x145) && (x55 || x
x63 || !x145) && (!x55 || !x63 || !x145) && (!x55 || x63 || x145) && (!x144 || x145 || x146) && (x144 || x145 || x146) && (x54 || x148) && (
x148) && (!x54 || !x62 || !x148) && (!x54 || x62 || x148) && (!x147 || x148 || x149) && (x147 || x148 || x149) && (x147 || x148 || x149) && (x147 || x148 || x149) && (x53 || x61 || x151) && (x53 || x61 || x151)
&& (!x53 || !x61 || !x151) && (!x53 || x61 || x151) && (!x150 || x151 || x152) && (x150 || x151 || !x152) && (x150 || !x151 || x152) && (x150 || !x151 || x152) && (x52 || x60 || x154) && (x52 || x60 || x54) && (x52 || x60 || x60 || x60) && (x52 || x60 || x60) && (x52 || x60) &
x52 || !x60 || !x154) && (!x52 || x60 || x154) && (!x153 || x154 || x155) && (x153 || x154 || !x155) && (x153 || !x154 || x155) && (x153 || x154 || x155) && (x51 || x59 || x157) && (x51 || x59 || x157) && (!x51 || x157) && (|x51 || x157) && (|x51
x59 || !x157) && (!x51 || x59 || x157) && (!x156 || x157 || x158) && (x156 || x157 || !x158) && (!x156 || !x157 || x158) && (x156 || x157 || x158) && (x156 || x157 || x158) && (x51 || x159) && (x51 || x159) && (x51 || x159) && (x59 || x159) && 
x58 || x160) && (x50 || x58 || !x160) && (!x50 || x160) && (!x160 || x161) && (!x50 || !x58) && (!x72 || x80 || x143) && (x72 || x80 || x143) && (!x72 || x80 || x143) && (|x72 || x80 |
x162) && (x143 || !x162) && (x72 || !x162) && (!x71 || x146 || x163) && (x71 || x146 || !x163) && (!x71 || !x146 || x163) && (x71 || x146 || x163) && (x72 || x162 || x163) && (!x79 || x162 || x163) && (!x79 || x162 || x163) && (!x79 || x163) && (|x79 || x163) && (
x162 || !x163) && (x79 || x162 || !x163) && (!x70 || x149 || x165) && (x70 || x149 || !x165) && (!x70 || !x149 || x165) && (x70 || x149 || x165) && (x70 || x165) && (x70
!x165) && (x78 || x164 || !x165) && (!x69 || x152 || x167) && (x69 || x152 || !x167) && (!x69 || !x152 || !x167) && (x69 || !x152 || x167) && (x77 || !x166 || x167) && (!x77 || x166 || x167) && (!x77 || x166 || x167) && (|x77 ||
&& (x77 || x166 || !x167) && (!x68 || x155 || x169) && (x68 || x155 || !x169) && (!x68 || !x155 || !x169) && (x68 || !x155 || !x169) && (x76 || !x169) && (!x76 || x169) && (|x76 || x169) && (|
(x76 || x168 || !x169) && (!x67 || x158 || x171) && (x67 || x158 || !x171) && (!x67 || !x158 || !x171) && (x75 || x170 || x171) && (!x75 || x170 || x171) && (|x75 || x170 || x171) && (x75 |
 x170 || !x171) && (!x67 || !x158 || x172) && (x158 || !x172) && (x67 || !x172) && (!x66 || x173) && (x66 || x173) && (!x161 || x173) && (x74 || !x173) && (!x66 || !x161) && (x8 || !x32 || x174) && (x8 || x32 || x
x175 || x176 || x177) && (x175 || x176 || !x177) && (!x175 || !x176 || !x177) && (x175 || !x176 || x177) && (x6 || x179) && (x6 || x179) && (!x179) && (!x
x179 || x180) && (x178 || x179 || !x180) && (!x178 || !x179 || !x180) && (x178 || !x179 || x180) && (x5 || x29 || x182) && (!x5 || x182) && (!x
x183) && (x181 || x182 || !x183) && (!x181 || !x182 || !x183) && (x181 || !x182 || x183) && (x4 || x28 || x185) && (!x4 || x28 || !x185) && (!x4 || x28 || x185) && (|x4 || x28 || x28 || x185) && (|x
(x184 || x185 || !x186) && (!x184 || !x185 || !x186) && (x184 || !x185 || x186) && (x3 || x27 || x188) && (!x3 || x27 || !x188) && (!x3 || x27 || x188) && (!x187 || x188) && (|x187 || x188
x188 || !x189) && (!x187 || !x188 || !x189) && (x187 || !x188 || x189) && (!x187 || !x188 || x190) && (x187 || !x190) && (x187 || !x190) && (!x191) && (x191) && (x191
&& (!x2 || !x26) && (!x56 || x80 || x174) && (x56 || !x80 || x174) && (!x56 || !x174) && (x56 || !x174) && (x56 || !x193) && (x56 || |x194) && (x56 || |x194
```

My favourite puzzle

This pang	gram cor	ntains	a's,	b's,	C'S,
d's,	e's,	f's,	g's, _	h's, _	i'S,
j'S,	k's,	_ l's,	_ m's,	n's,	o's,
p's,	q's,	r's,	s's,	t's,	u's,
V'S,	W'S,	X'S,_	y's a	nd z	'S.

This pang	gram cor	ntains f	our a's, t	wo b's,	one C,
d's,	e's,	f's,	g's,	h's, _	i's,
j's,	k's,	_ l's,	_ m's,	_ n's,	o's,
p's,	q's,	r's,	s's,	t's,	u's,
•	•		y's ar		

40^26 =

This pangram contains ____ a's, ____ b's, ____ c's, ___ d's, ___ e's, ___ f's, ___ g's, ___ h's, ___ i's, ___ j's, ___ k's, ___ l's, ___ m's, ___ n's, ___ o's, ___ p's, ___ q's, ___ r's, ___ s's, ___ t's, ___ u's, ___ v's, ___ w's, ___ x's, ___ y's and ___ z's.

Here's how to check a pangram

Now go find some!

2 minutes

This sentence is dedicated to Ember London and it contains five a's, two b's, four c's, seven d's, thirty-four e's, eight f's, four g's, eight h's, sixteen i's, one j, one k, two l's, two m's, twenty-three n's, eighteen o's, one p, one q, nine r's, thirty s's, twenty-four t's, five u's, seven v's, seven w's, two x's, five y's and one z.

This sentence is dedicated to Ember London and it contains five a's, two b's, four c's, seven d's, thirty-four e's, eight f's, four g's, eight h's, sixteen i's, one j, one k, two l's, two m's, twenty-three n's, eighteen o's, one p, one q, nine r's, thirty s's, twenty-four t's, five u's, seven v's, seven w's, two x's, five y's and one z.

This sentence is dedicated to Ember London and it contains five a's, two b's, four c's, seven d's, thirty-four e's, eight f's, four g's, eight h's, sixteen i's, one j, one k, two l's, two m's, twenty-three n's, eighteen o's, one p, one q, nine r's, thirty s's, twenty-four t's, five u's, seven v's, seven w's, two x's, five y's and one z.

To wrap up

sentient-lang.org

whyarecomputers.com/4

github.com/sentient-lang

Thanks!

by Chris Patuzzo Ember London, 2017-01-12 @cpatuzzo