

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07C 235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/70, 237/72, 237/73, 237/74, 235/60, 317/24, 312/61, C07D 209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K 31/11, 31/165, 31/19, 31/215, 31/275, 31/34, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505		A1	(11) 国際公開番号 WO97/29079
(21) 国際出願番号 PCT/JP97/00291		(43) 国際公開日 1997年8月14日(14.08.97)	
(22) 国際出願日 1997年2月6日(06.02.97)			
(30) 優先権データ 特願平8/20083 1996年2月6日(06.02.96) 特願平8/94989 1996年4月17日(17.04.96)		JP JP	(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 歐州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(71) 出願人 (米国を除くすべての指定国について) 日本たばこ産業株式会社(JAPAN TOBACCO INC.)[JP/JP] 〒105 東京都港区虎ノ門二丁目2番1号 Tokyo, (JP)			添付公開書類 国際調査報告書 請求の範囲の補正の期限前であり、補正書受領の際には再公開される。
(72) 発明者; および (75) 発明者/出願人 (米国についてのみ) 稻葉隆之(INABA, Takashi)[JP/JP] 嘉屋徹道(KAYA, Tetsudo)[JP/JP] 岩村浩幸(IWAMURA, Hiroyuki)[JP/JP] 〒569-11 大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内 Osaka, (JP)			
(74) 代理人 弁理士 高島 一(TAKASHIMA, Hajime) 〒541 大阪府大阪市中央区平野町三丁目3番9号 (湯木ビル) Osaka, (JP)			

(54)Title: NOVEL COMPOUNDS AND PHARMACEUTICAL USE THEREOF

(54)発明の名称 新規化合物およびその医薬用途

(57) Abstract

Compounds represented by general formula (I) and pharmaceutically acceptable salts thereof: wherein each symbol is as defined in the specification. These compounds and salts act selectively on cannabinoid receptors, especially peripheral receptors, are reduced in the side effects against the central nervous system, and are excellent in immunomodulatory, anti-inflammatory and antiallergic activities and a nephritis curing effect, thus being useful as agonists and antagonists of cannabinoid receptors (especially peripheral cannabinoid receptors), immunomodulator, remedies for autoimmune diseases, anti-inflammatory, antiallergic, and nephritis remedy.

21052
#23

(57) 要約

式(I)

[式中、各記号は明細書中に記載のとおりである]

で表される化合物またはその医薬上許容される塩、およびその医薬用途。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイドレセプター（特に末梢型カンナビノイドレセプター）作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AL	アルバニア	EE	エストニア	LR	リベリア	RU	ロシア連邦
AM	アルメニア	ES	スペイン	LS	レソト	SDE	スードアン
AT	オーストリア	FI	フィンランド	LT	リトアニア	SEE	スウェーデン
AUZ	オーストラリア	FR	フランス	LU	ルクセンブルグ	SGI	シンガポール
BBB	オゼルバイジャン	GA	ガボン	LV	ラトヴィア	SK	スロヴェニア
BBE	バルバドス	GB	イギリス	MC	モナコ	SNK	スロヴァキア共和国
BFG	ベルギー	GE	グルジア	MD	モルドバ	SZ	セネガル
BGG	ブルガリア	GH	ガーナ	MG	マダガスカル	TG	スワジランド
BRJ	ベナン	GN	ギニア	MK	マケドニア旧ユーゴスラ	TG	チャード
BRY	ブラジル	GR	ギリシャ	VI	「VIA」共和国	TJ	タジキスタン
BY	ベラルーシ	HU	ハンガリー	ML	マリ	TM	トルクメニスタン
CAA	カナダ	I	アイルランド	MN	モンゴル	TR	トルコ
CAG	中央アフリカ共和国	IS	アイスランド	MR	モーリタニア	TT	トリニダード・トバゴ
CGH	コンゴー	IT	イタリー	MW	マラウイ	UG	ウクライナ
CH	イスス	J	日本	MX	メキシコ	UGS	ウガンダ
CI	コート・ジボアール	KE	ケニア	NE	ニジニエール	US	米国
CM	カメールーン	KG	キルギスタン	NL	オランダ	UZ	ウズベキスタン共和国
CN	中国	KP	朝鮮民主主義人民共和国	NO	ノルウェー	VN	ヴィエトナム
CZE	チニコ共和国	KR	大韓民国	NZ	ニュージーランド	YU	ユーゴスラビア
DK	ドイツ	KZ	カザフスタン	PL	ポーランド		
	デンマーク	LK	リヒテンシュタイン	PT	ポルトガル		
		LK	スリランカ	RO	ルーマニア		

明細書

新規化合物およびその医薬用途

技術分野

本発明は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用する新規化合物およびその医薬用途に関する。より詳しくは、中枢系の副作用が少なく、免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する新規化合物およびその医薬用途に関する。

背景技術

従来、大麻成分としてカンナビノイドと呼ばれる一連のC、H、Oからなる化合物群が知られていた。このうちテトラヒドロカンナビノール（THC）が幻覚作用の主体とされており、また大麻草中に含有する主成分としては $\Delta 9$ -THCであることが知られている。この $\Delta 9$ -THCによる薬理作用としては、運動失調、被刺激性の増大、制吐、鎮痛、体温低下、呼吸抑制、カタレプシー惹起作用、血管拡張作用、免疫抑制作用等が観察されている。

これら薬理作用のメカニズムとしては、中枢神経系（Devane等, Mol Pharmacol. 1988, 34, 605-613; Hollister等, Pharmacol. Rev., 1986, 38, 1-20; Rev等, Prog. Drug. Exp. Ther., 1991, 36, 71-114）および末梢細胞系（Nye等, J. Pharmacol. Exp. Ther., 1985, 234, 784-791; Flynn等, Mol Pharmacol. 1992, 42, 736-742）に大別され、中枢神経系を介した作用の一部は医療への適用が報告されている。

とりわけ、末梢細胞型レセプター、例えばマクロファージ上のレセプターの発見（Munro等, Nature, 1993, 365, 61-65）によって、免疫反応を調節することにより、抗炎症作用、抗アレルギー作用並びに腎炎治療効果を有し、もとより免疫調節作用を併せ持つ、末梢細胞型レセプターのアゴニストの開発が期待されている。

カンナビノイドレセプターのアゴニストについては、ピラゾール誘導体（特開平6-73014号公報、EP 656354、EP 658546）、THC誘導

体（特開平3-209377号公報）、ベンゾオキサジン誘導体（U.S.5112820）、インドール誘導体（U.S.5081122）、脂肪酸誘導体（WO 94/12466）が公知である。

また、アミド誘導体についても種々報告されている。例えば、特開昭61-54号公報には5-リポキシゲナーゼ阻害剤としてベンゾイルアミノ酸アミドが開示されており、特公平6-49686号公報には中間体としてアリル-エチルベンズアミドが開示されており、特開昭52-85137号公報には血糖低下剤として2-ブトキシフェニル-エチルベンズアミドが開示されており、特開昭51-131846号公報には血糖低下剤として2-ブトキシフェニル-エチルベンズアミド安息香酸が開示されているがこれは安息香酸誘導体であり、特開平5-213877号公報には血小板活性化因子阻害剤としてN-アセチル-3,4-ビス(ヘプチルオキシ)-N-(2-ピリジニルメチル)ベンズアミドが開示されており、特公昭46-31852号公報には局所麻酔剤として1-(N)-メチル-2-(4'-ブトキシ-2',6'-ジメチルベンゾイルアミノ)-メチル-ピペリジンが開示されており、特開昭50-137972号公報には抗結核症剤として4-ブトキシ-N-(3-ピリジル)-ベンズアミドが開示されており、U.S.4743610にはトロンボキサン合成阻害剤としてアミノ-アルコキシ-ピリジニル-アルキルベンズアミドが開示されており、特開平1-85963号公報には血小板活性化因子阻害剤としてアルコキシ-ナフタレニル-ピリジニル-アミドが開示されている。しかし、これら文献には、カンナビノイドレセプターが介在する作用機序に基づく薬理作用については開示されていない。

本発明の目的は、上記問題点がなく、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用する新規化合物、およびその医薬用途を提供することである。

より詳細には、本発明の目的は、カンナビノイドレセプター、特に末梢細胞系に選択的に作用し、中枢神経系への作用（即ち、興奮、幻覚、運動失調、被刺激性の増大、体温低下、呼吸抑制、カタレプシー惹起作用、血圧低下等の副作用）

が少なく、かつ免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を併せ持つ新規化合物、およびその医薬用途を提供することである。

発明の開示

上記目的を達成すべく本発明者らが鋭意研究した結果、本発明の新規化合物が、カンナビノイドレセプター、特に末梢細胞系レセプターに選択的な親和性を有し、従ってカンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域（免疫疾患、各種炎症、アレルギー性疾患、腎炎等）において医薬的効果を示すことを見出した。

即ち、本発明は以下のとおりである。

(1) 式(I)

(式中、XはCHまたはNを示し、

Wは-O-、-S(O)₂-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OOC-（R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す）を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵（R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールア

ルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$
 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、
 アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロア
 リールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または
 R^8 と R^9 が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよ
 い)、または $-(CH_2)_uS(O)_uR^{12}$ (R^{12} は水素原子、アルキル、アル
 ケニルまたはアルキニルを、 u は0, 1, 2を、 u' は0, 1, 2を示す) を示
 し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミ
 ノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキ
 シ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキル
 スルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、
 ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置換
 されていてもよく、

R^4 は水素原子を示すか、または R^4 と R^2 がA環と一緒にになって式(II)

(式中、 $W'R^1'$ 、 R^2' 、 R^3' の置換位置はA環、B環のいずれの位置であって
 もよく、 $W'R^1'$ 、 R^2' 、 R^3' はそれぞれ前記 WR^1 、 R^2 、 R^3 と同義であり
 、B環はベンゼン環、ピリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk^1 は $-CH=CH-$ 、 $-CH_2-CH_2-$ または $-C\equiv C-$ を示し、
 Y は $-CONR^{10}-$ 、 $-NR^{11}CO-$ 、 $-COO-$ 、 $-CH_2NR^{10}-$ または $-$
 $NHCONH-$ (R^{10} 、 R^{11} は同一または異なってそれぞれ水素原子、アルキル
 、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリ

ールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

Alk^2 はアルキレン、アルケニレン、 $-\text{COCH}_2-$ または $-\text{CONH}(\text{CH}_2)$ 、 $-(v\text{は}0, 1, 2\text{を示す})$ を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基; カルボキシル; アルコキシカルボニル; 水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-\text{CONR}^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=1かつq=1のとき、 Alk^1 が $-\text{CH}=\text{CH}-$ を示し、かつYが $-\text{CONR}^{10}-$ を示し、かつ R^3 が R^{10} と一緒にになって $-\text{NHCO}-$ を示し、A環と縮合環を形成してもよく、

p=0かつq=1のとき、Yが $-\text{CONR}^{10}-$ または $-\text{CH}_2\text{NR}^{10}-$ を示し、かつ R^3 が R^{10} と一緒にになって $-\text{CH}=\text{CH}-$ 、 $-\text{CH}_2\text{CHR}^{21}-$ 、 $-\text{CH}_2-$ 、 $-\text{S}-$ 、 $-\text{CHOH}-$ 、 $-\text{CO}-$ 、 $-\text{CH}_2\text{CO}-$ 、 $-\text{NHCR}^{28}(\text{CH}_2)$ 、 $-\text{NHCR}^{29}\text{R}^{30}-$ または $-\text{N=CR}^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、v'は0または1を示す)

を示し、A環と縮合環を形成してもよく、

$r = 0$ かつ $q = 1$ のとき、Yが $-CONR^{10}$ または $-CH_2NR^{10}$ を示し、かつRと R^{10} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよく、

$p = q = r = 0$ の時、Rは式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシリル、アシリルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。】

で表される化合物（以下、化合物(I)ともいう）またはその医薬上許容される塩を有効成分として含有してなるカンナビノイドレセプター作動薬または拮抗薬。

(2) 式(I)

〔式中、XはCHまたはNを示し、

Wは $-O-$ 、 $-S(O)$ 、 $-$ 、 $-CR^5R^6-$ 、 $-NR^7-$ 、 $-NR^7CO-$ または $-CONR^7-$ （ R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、tは0、1、2を示す）を示し、 R^1 はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^1 における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R^2 は水素原子、アルキル、 $-OR^{15}$ （ R^{15} は水素原子、アルキル、アルケニル、

アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$
 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または $-(CH_2)_uS(O)_vR^{12}$ (R^{12} はアルキルを、 u は0, 1, 2を、 v は0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、 R^3 は水素原子、アルコキシ、アルキル、アルコキシカルボニル、ハロゲン原子またはニトロ基を示し、当該アルキルは水酸基で置換されていてもよく、 R^4 は水素原子を示すか、または R^4 と R^2 がA環と一緒にになって式(II)

(式中、 W' R^1' 、 R^2' 、 R^3' の置換位置はA環、B環のいずれの位置であってもよく、 W' R^1' 、 R^2' 、 R^3' はそれぞれ前記 WR^1 、 R^2 、 R^3 と同義であり、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk^1 は $-CH=CH-$ または $-CH_2-CH_2-$ を示し、

Y は $-CONR^{10}-$ 、 $-NR^{11}CO-$ 、 $-COO-$ 、 $-CH_2NR^{10}-$ または $-NHCONH-$ (R^{10} 、 R^{11} は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は0, 1, 2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)

で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシリオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシル、アシリアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが-CO NR¹⁰-または-CH₂NR¹⁰-を示し、かつR³がR¹⁰と一緒にになって-CH=CH-、-CH₂CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹-（R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す）を示し、A環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが-CO NR¹⁰-または-CH₂NR¹⁰-を示し、かつRとR¹⁰が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。] で表される化合物またはその医薬上許容される塩を有効成分として含有してなる上記(1)記載のカンナビノイドレセプター作動薬または拮抗薬。

(3) 式(Ia)

[式中、Wは-O-、-S(O)、-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹ (R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または-(CH₂)_uS(O)_uR¹² (R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキル

スルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{102} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい) で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=O で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

r は 0 または 1 を示す。

なお、 $r = 0$ のとき、 R と R^{102} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい。]

で表される化合物（以下、化合物(Ia)ともいう）またはその医薬上許容される塩。

(4) 式 (Ia)

[式中、Wは-O-、-S(O)₂、-、-CR⁵R⁶-または-NR⁷-（R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す）を示し、R¹はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、R²は水素原子、アルキル、-OR¹⁵（R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す）、-NR⁸R⁹（R⁸、R⁹は同一または異なってそれぞれ水素原子またはアルキルを示す）、または-(CH₂)_uS(O)_uR¹²（R¹²はアルキルを、uは0、1、2を、u'は0、1、2を示す）を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、R³は水素原子またはアルコキシを示し、R^{10a}は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、Alk²はアルキレンを示し、当該アルキレンはアルコキシカルボニル；水酸基で置換されていてもよいアルキル；-CONR¹³R¹⁴（R¹³、R¹⁴は同一または異なるてそれぞれ水素原子またはアルキルを示す）で置換されていてもよく、Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアル

キルは水酸基、アルコキシで置換されていてもよく、
 r は0または1を示す。

なお、 $r = 0$ のとき、Rと R^{10a} が隣接する窒素原子と一緒にになってモルホリノ
 またはイミダゾリルを形成してもよい。】

で表される上記(3)記載の化合物またはその医薬上許容される塩。

(5) R³が水素原子、R²が-OR¹⁵、-NR⁸R⁹または-(CH₂)_nS(O)_mR¹²であり、ベンゼン環上の-CH=CH-CO-NR^{10a}-(Alk²)-Rの結合位置に対して、R²の置換位置がパラ位、-WR¹の置換位置がメタ位である上記(4)記載の化合物またはその医薬上許容される塩。

(6) R¹が炭素数4～6のアルキルである上記(5)記載の化合物またはその医薬上許容される塩。

(7) Alk²がエチレンである上記(6)記載の化合物またはその医薬上許容される塩。

(8) r=0のとき、RとR^{10a}が隣接する窒素原子と一緒にになってモルホリノを形成する上記(4)記載の化合物またはその医薬上許容される塩。

(9) (E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ペンチルオキシフェニル)アクリルアミド、

3-(4-エトキシ-3-ペンチルオキシフェニル)-(E)-N-[2-(4-ヒドロキシフェニル)エチル]アクリルアミド、

3-(3,4-ジペンチルオキシフェニル)-(E)-N-[2-(4-ヒドロキシフェニル)エチル]アクリルアミド、

(E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ブチルオキシフェニル)アクリルアミド、

(E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ヘキシリオキシフェニル)アクリルアミド、

(E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ヘプチルオキシフェニル)アクリルアミド、

(E) -N- [2 - (3-ヒドロキシフェニル) エチル] -3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (2-ヒドロキシフェニル) エチル] -3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシクロヘキシル) エチル] -3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] -N-メチル-3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] -3 - (3-イソペニチルオキシ-4-メトキシフェニル) アクリルアミド、

3 - [3 - (2-エチルブチルオキシ) -4-メトキシフェニル] - (E) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) -N- [2 - (4-ヒドロキシ-3-メトキシフェニル) エチル] -3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

3 - [3 - (1, 1-ジメチルヘプチル) -4-メトキシフェニル] - (E) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) -N- [2 - (3, 4-ジヒドロキシフェニル) エチル] -3 - [3 - (1, 1-ジメチルヘプチル) -4-メトキシフェニル] アクリルアミド、

3 - (3-ヘキシル-4-メトキシフェニル) - (E) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) -N- (4-アミノ-3-ペンチルオキシフェニル) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) -N- (4-アミノ-3-ペンチルオキシフェニル) -N- [2 - (4-ニトロフェニル) エチル] アクリルアミド、

3 - (4-メトキシ-3-ペンチルオキシフェニル) - (E) -N- [2 - (4-ペンチルオキシフェニル) エチル] アクリルアミド、

(E) -N- [2 - (4-メトキシフェニル) エチル] -3 - (4-メトキシ-

– 3 – ペンチルオキシフェニル) アクリルアミド、
3 – (4 – メトキシ – 3 – ペンチルオキシフェニル) – (E) – N – (2 – モルホリノエチル) アクリルアミド、
(E) – N – [2 – (3, 4 – ジヒドロキシフェニル) エチル] – 3 – (4 – メトキシ – 3 – ペンチルオキシフェニル) アクリルアミド、
2 – [2 – {3 – (3 – ペンチルオキシ – 4 – メトキシフェニル) アクリロイルアミノ} エチル] ピリジン – N – オキシド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (4 – メトキシ – 3 – ペンチルアミノフェニル) アクリルアミド、
3 – [3 – (N', N' – ジペンチルアミノ) – 4 – メトキシフェニル] – (E) – N – [2 – (4 – ヒドロキシフェニル) エチル] アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (3 – ペンチルアミノ – 4 – ペンチルオキシフェニル) アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – [3 – (N' – メチル – N' – ペンチルアミノ) – 4 – メトキシフェニル] アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (4 – メトキシ – 3 – ペンチルチオフェニル) アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (4 – ペンチルオキシ – 3 – ペンチルチオフェニル) アクリルアミド、
(E) – N – [2 – (4 – アミノフェニル) エチル] – 3 – (4 – メトキシ – 3 – ペンチルオキシフェニル) アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (3 – ペンチルオキシ – 4 – ペンチルチオフェニル) アクリルアミド、
(E) – N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – (3 – ペンチルオキシ – 4 – メチルチオフェニル) アクリルアミド、
(E) – N – [2 – (4 – アミノフェニル) エチル] – 3 – (4 – メトキシ – 3 – ペンチルチオフェニル) アクリルアミド、

- (E) -N- [2 - (4 - ニトロフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
- (E) -N- [2 - (イミダゾール - 4 - イル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
- (E) -N- [2 - (4 - ニトロフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド、
- (E) -N- [2 - (イミダゾール - 4 - イル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド、
- (E) -N- [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (4 - メチルアミノ - 3 - ペンチルオキシフェニル) アクリルアミド、
- (E) -N- [2 - (4 - アミノフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド、
- (E) -N- [2 - (4 - ニトロフェニル) エチル] - 3 - (4 - メチルアミノ - 3 - ペンチルオキシフェニル) アクリルアミド、
- 3 - (4 - メトキシ - 3 - ペンチルオキシフェニル) - (E) -N- [2 - (4 - チオフェン - 2 - イル) エチル] アクリルアミド、
- (E) -N- [2 - (4 - ヒドロキシフェニル) エチル] - 3 - [(N' - メチル - N' - ペンチルアミノ) - 4 - ペンチルオキシフェニル] アクリルアミド、
- (E) -N- [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (4 - ペンチルアミノ - 3 - ペンチルオキシフェニル) アクリルアミド、
- (E) -N- [2 - (4 - シアノフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルオキシフェニル) アクリルアミド、および
- (E) -N- [2 - (4 - カルバモイルフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルオキシフェニル) アクリルアミド
から選ばれる上記(7)記載の化合物またはその医薬上許容される塩。
- (10) 式(Ib)

[式中、Wは-O-、-S(O)₂-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO-（R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す）を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵（R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す）、-NR⁸R⁹（R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい）、または-(CH₂)_uS(O)_uR¹²（R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0、1、2を、u'は0、1、2を示す）を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{100} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されてもよく、当該アルケニルはフェニルチオで置換されてもよく、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)^v-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい) で置換されてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されてもよく、当該シクロアルキルは水酸基、アルコキシ、=O で置換されてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されてもよく、

r は 0 または 1 を示す。

なお、 $r = 0$ のとき、 R と R^{100} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい。]

で表される化合物（以下、化合物(Ib)ともいう）またはその医薬上許容される塩。
(11) 式 (Ib)

(式中、Wは-O-、-S(O)、-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、R¹はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、R²は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹ (R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または-(CH₂)_uS(O)_uR¹² (R¹²はアルキルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、R³は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、R^{10b}は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、Alk²はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル；-CONR¹³R¹⁴ (R¹³、R¹⁴は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、RとR^{10b}が隣接する窒素原子と一緒にになってモルホリノ、イミダゾリルを形成してもよい。]

で表される上記(10)記載の化合物またはその医薬上許容される塩。

(12) R³が水素原子、R²が-OR¹⁵、-NR⁸R⁹または-(CH₂)_nS(O)_mR¹²であり、ベンゼン環上の-CO-NR^{10b}- (Alk²)、-Rの結合位置に対して、R²の置換位置がパラ位、-WR¹の置換位置がメタ位である上記(11)記載の化合物またはその医薬上許容される塩。

(13) R¹が炭素数4~6のアルキルである上記(12)記載の化合物またはその医薬上許容される塩。

(14) Alk²がエチレンである上記(13)記載の化合物またはその医薬上許容される塩。

(15) N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

4-エトキシ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド、

4-ジメチルアミノ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルアミノ-4-

メトキシベンズアミド、

3-ブチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-ヘキシルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-ヘプチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(3-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(2-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシシクロヘキシル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-N-メチル-4-メトキシ-3-ペンチルオキシベンズアミド、

3-イソペンチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-(2-エチルブチルオキシ)-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(4-ヒドロキシ-3-メトキシフェニル)エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシ-N-メチル-3-ペンチルオキシベンズアミド、

3-(1,1-ジメチルヘプタン)-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N - [2 - (3, 4-ジヒドロキシフェニル) エチル] - 3 - (1, 1-ジメチルヘプタン) - 4 - メトキシベンズアミド、

3 - (1, 1-ジメチルヘプタン) - N - [2 - (4-ヒドロキシ-3-メトキシフェニル) エチル] - 4 - メトキシベンズアミド、

3 - (1, 1-ジメチルヘプタン) - N - [2 - (4-ヒドロキシフェニル) エチル] - 4 - ヒドロキシベンズアミド、

N - [2 - (3, 4-ジヒドロキシフェニル) エチル] - 3 - (1, 1-ジメチルヘプタン) - 4 - ヒドロキシベンズアミド、

3 - ヘキシリ-N - [2 - (4-ヒドロキシフェニル) エチル] - 4 - メトキシベンズアミド、

N - [2 - (4-アミノフェニル) エチル] - 3, 4 - ジペンチルオキシベンズアミド、

3, 4 - ジヘキシリオキシ-N - [2 - (4-ヒドロキシフェニル) エチル] ベンズアミド、

4 - メトキシ-N - [2 - (4-ペンチルオキシフェニル) エチル] - 3 - ペンチルオキシベンズアミド、

4 - メトキシ-N - (2 - モルホリノエチル) - 3 - ペンチルオキシベンズアミド、

4 - メトキシ-N - [2 - (4-プロパン-2-イルオキシフェニル) エチル] - 3 - ペンチルオキシベンズアミド、

N - [2 - (4-ヒドロキシフェニル) エチル] - 4 - メトキシ-N - [2 - (フェニルスルフィニル) エチル] - 3 - ペンチルオキシベンズアミド、

N - [2 - (3, 4-ジヒドロキシフェニル) エチル] - 4 - メトキシ-3 - ペンチルオキシベンズアミド、

N - [2 - (4-アセトキシフェニル) エチル] - 4 - メトキシ-3 - ペンチルオキシ-N - (E) - フェニルチオビニルベンズアミド、

N - [2 - (4-アセトキシフェニル) エチル] - N - エチル-4 - メトキシ

– 3 – ペンチルオキシベンズアミド、
4 – [2 – {N – (4 – メトキシー – 3 – ペンチルオキシベンゾイル) アミノ} エチル] ピリジン – N – オキシド、
3 – [2 – {N – (4 – メトキシー – 3 – ペンチルオキシベンゾイル) アミノ} エチル] ピリジン – N – オキシド、
3 – ジペンチルアミノ – N – [2 – (4 – ヒドロキシフェニル) エチル] – 4 – メトキシベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – イソヘキシル – 4 – メトキシベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 4 – メトキシー – 3 – (N’ – メチル – N’ – ペンチルアミノ) ベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – ペンチルアミノ – 4 – ペンチルオキシベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 4 – ペンチルアミノ – 3 – ペンチルオキシベンズアミド、
3, 4 – ジペンチルオキシー – N – [2 – (4 – スルファモイルフェニル) エチル] ベンズアミド、
3, 4 – ジペンチルオキシー – N – [2 – (イミダゾール – 4 – イル) エチル] ベンズアミド、
3, 4 – ジペンチルオキシー – N – [2 – (4 – ニトロフェニル) エチル] ベンズアミド、
3, 4 – ジペンチルオキシー – N – [2 – (4 – フルオロフェニル) エチル] ベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 3 – ペンチルオキシー – 4 – プロペニ – 2 – イルベンズアミド、
N – [2 – (4 – ヒドロキシフェニル) エチル] – 4 – プロピルオキシー – 3 – ペンチルオキシベンズアミド、

3, 4-ジブチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド、

3, 4-ジヘプチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メチルアミノ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3, 4-ジペンチルアミノベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-(N'-メチル-N'-ペンチルアミノ)-4-ペンチルオキシベンズアミド、

4-アミノ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(2-チエニル)エチル]ベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(5-ヒドロキシンドール-3-イル)エチル]ベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(4-メチルアミノフェニル)エチル]ベンズアミド、

N-[2-(4-ジメチルアミノフェニル)エチル]-3, 4-ジペンチルオキシベンズアミド、

4-ブチリルアミノ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ホルミルアミノ-3-

ペンチルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メチルチオ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシ-4-ペンチルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-ヒドロキシブチルオキシ)-4-メトキシベンズアミド、

N-[2-(4-アミノフェニル)エチル]-4-メトキシ-3-ペンチルチオベンズアミド、

4-メトキシ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルチオベンズアミド、

N-[2-(イミダゾール-4-イル)エチル]-4-メトキシ-3-ペンチルチオベンズアミド、

N-[2-(4-アミノフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド、

N-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド、および

N-[2-(イミダゾール-4-イル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド

から選ばれる上記(14)記載の化合物またはその医薬上許容される塩。

(16)式(Ic)

(式中、Wは-O-、-S(O)₂-、-CR⁵ R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO- (R⁵、R⁶は同一また

は異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵(R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹(R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または-(CH₂)_uS(O)_uR¹²(R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

Zは-CH₂-または-CO-を示し、

Qは-CH=CH-、-CH₂CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹- (R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す)を示し、

Alk^2 はアルキレン、アルケニレン、 $-\text{COCH}_2-$ または $-\text{CONH}(\text{CH}_2)$ 、 $-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-\text{CONR}^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい) で置換されていてもよく、

R' はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=O で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

r は 0 または 1 を示す。)

で表される化合物（以下、化合物(Ic)ともいう）またはその医薬上許容される塩。

(17) 式 (Ic)

[式中、W は $-\text{O}-$ 、 $-\text{S}(\text{O})_2-$ 、 $-\text{CR}^5\text{R}^6-$ 、 $-\text{NR}^7-$ または $-\text{NR}^7\text{CO}-$ (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、 t は 0, 1, 2 を示す) を示し、 R' はアルキルを示し、

R^2 は水素原子、アルキル、 $-\text{OR}^{15}$ (R^{15} は水素原子またはアルキルを示す)、

Zは-CH₂-または-CO-を示し、

Qは-CH=CH-、-CH₂CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹-（R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す）を示し、

Alk²はアルキレン、-COCH₂-または-CONH(CH₂)_v-（vは0, 1, 2を示す）を示し、

R'はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換されていてもよく、当該シクロアルキルは=Oで置換されていてもよく、rは0または1を示す。】

で表される上記(16)記載の化合物またはその医薬上許容される塩。

(18) Zが-CO-であり、Qが-CH₂-である上記(17)記載の化合物またはその医薬上許容される塩。

(19) R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である上記(18)記載の化合物またはその医薬上許容される塩。

(20) R¹が炭素数4~6のアルキルである上記(19)記載の化合物またはその医薬上許容される塩。

(21) 2-[2-(4-ヒドロキシフェニル)エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、

2-[2-(4-ベンジルオキシフェニル)エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、

5-メトキシ-2-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、

2 - [2 - (4 - メチルフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 4, 5 - ジペンチルオキシ - 2 - [2 - (イミダゾール - 4 - イル) エチル] - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - ベンジルオキシフェニル) エチル] - 4, 5 - ジペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 4, 5 - ジペンチルオキシ - 2 - [2 - (4 - ニトロフェニル) エチル] - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - アミノフェニル) エチル] - 4, 5 - ジペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 4, 5 - ジペンチルオキシ - 2 - [2 - (4 - ヒドロキシフェニル) エチル] - 2, 3 - ジヒドロイソインドール - 1 - オン、
 4, 5 - ジペンチルオキシ - 2 - [2 - (4 - メチルアミノフェニル) エチル] - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - ジメチルアミノフェニル) エチル] - 4, 5 - ジペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - アミノフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - ヒドロキシフェニル) エチル] - 5 - メトキシ - 4 - ペンチルアミノ - 2, 3 - ジヒドロイソインドール - 1 - オン、
 5 - メトキシ - 4 - ペンチルオキシ - 2 - [2 - (4 - ピリジン) エチル] - 2, 3 - ジヒドロイソインドール - 1 - オン、
 2 - [2 - (4 - ジメチルアミノフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン、および
 5 - メトキシ - 2 - [2 - (4 - メチルアミノフェニル) エチル] - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン
 から選ばれる上記 (20) 記載の化合物またはその医薬上許容される塩。

(22) Zが-CO-であり、Qが-CH=CH-である上記(17)記載の化合物またはその医薬上許容される塩。

(23) R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である上記(22)記載の化合物またはその医薬上許容される塩。

(24) R¹が炭素数4~6のアルキルである上記(23)記載の化合物またはその医薬上許容される塩。

(25) 2-[2-(4-ベンジルオキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-ピリジル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-1H-イソキノリン-2-イル)エチル]フェニルアセテート、

6-メトキシ-2-[2-(4-ニトロフェニル)エチル]-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-メチルフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシ-5-ペンチルオキシ-2-(2-フェニルエチル)-2H-イソキノリン-1-オン、

2-[2-(4-アセチルアミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

5, 6-ジペンチルオキシ-2-[2-(4-ヒドロキシフェニル)エチル]-2H-イソキノリン-1-オン、

2-[2-(4-アミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-アミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン塩酸塩、

2-[2-(4-ジメチルアミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-メチルアミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシ-2-[2-(4-ピペリジノフェニル)エチル]-5-ペンチルオキシ-2H-イソキノリン-1-オン、および

6-メトキシ-2-[2-(4-ピリジル)エチル]-5-ペンチルオキシ-2H-イソキノリン-1-オン塩酸塩

から選ばれる上記(24)記載の化合物またはその医薬上許容される塩。

(26) Zが-CO-であり、Qが-CH₂CHR²⁷-であり、R²⁷が水素原子である上記(17)記載の化合物またはその医薬上許容される塩。

(27) R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である上記(26)記載の化合物またはその医薬上許容される塩。

(28) R¹が炭素数4~6のアルキルである上記(27)記載の化合物またはその医薬上許容される塩。

(29) 6-メトキシ-2-[2-(4-オキソシクロヘキシル)エチル]-5-ペンチルオキシ-3,4-ジヒドロ-2H-イソキノリン-1-オン、

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-3,4-ジヒドロ-1H-イソキノリン-2-イル)エチル]フェニルアセテート、

2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3,4-ジヒドロ-2H-イソキノリン-1-オン、

2-(2-フェニルエチル)-6-メトキシ-5-ペンチルオキシ-3,4-ジヒドロ-2H-イソキノリン-1-オン、

2-[2-(4-アセチルアミノフェニル)エチル]-6-メトキシ-5-ペ

ンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 6-ヒドロキシ-2-[2-(4-ヒドロキシフェニル)エチル]-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 2-[2-(4-メチルフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 2-[2-(4-アミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 6-メトキシ-5-ペンチルオキシ-2-[2-(4-ピリジル)エチル]-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸 N-(4-アミノフェニル)アミド、
 6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸 N-[(4-アミノフェニル)メチル]アミド、および
 6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸 N-(4-ニトロフェニル)アミド
 から選ばれる上記(28)記載の化合物またはその医薬上許容される塩。
 (30) Zが-CO-であり、Qが-NHCR²⁸(CH₂)_v-であり、R²⁸が
 酸素原子であり、v'が0である上記(17)記載の化合物またはその医薬上許容される塩。
 (31) R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり
 、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である上記(30)記載の化合物またはその医薬上許容される塩。
 (32) R¹が炭素数4~6のアルキルである上記(31)記載の化合物または
 その医薬上許容される塩。
 (33) 7-メトキシ-3-[2-(4-ニトロフェニル)エチル]-8-ペンチルオキシ-(1H, 3H)-キナゾリン-2, 4-ジオン、

7-メトキシ-3-[2-(4-ピリジル)エチル]-8-ペンチルオキシー(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシー(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-ヒドロキシフェニル)エチル]-7-メトキシ-8-ペンチルオキシー(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-メチルアミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシー(1H, 3H)-キナゾリン-2, 4-ジオン、および

3-[2-(4-ジメチルアミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシー(1H, 3H)-キナゾリン-2, 4-ジオン、

から選ばれる上記(32)記載の化合物またはその医薬上許容される塩。

(34)式(Id)

[式中、XはCHまたはNを示し、

W'は-O-、-S(O)₂-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、

R'はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R'における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

$R^{2\dagger}$ は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なるてそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または $- (CH_2)_u S (O)_v R^{12}$ (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 u は 0, 1, 2 を、 v は 0, 1, 2 を示す) を示し、当該 $R^{2\dagger}$ における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

$R^{3\dagger}$ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

$W' R^{1\dagger} \cdot R^{2\dagger} \cdot R^{3\dagger}$ の置換位置は A 環、B 環のいずれの位置であってもよく、B 環はベンゼン環、ピリジン環またはフラン環を示し、

Alk^1 は $-CH=CH-$ 、 $-CH_2-CH_2-$ または $-C\equiv C-$ を示し、

$R^{10\dagger}$ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なるてそれぞれ水素原子またはアルキルを示す

か、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシリオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p 、 r はそれぞれ独立して0または1を示す。

なお、 $r = 0$ のとき、 R と R^{10d} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい。]

で表される化合物(以下、化合物(Id)ともいう)またはその医薬上許容される塩。

(35) 式 (Id)

[式中、XはCHまたはNを示し、

W' は $-O-$ 、 $-S(O)$ 、 $-$ 、 $-CR^5R^6-$ 、 $-NR^7-$ または $-NR^7C(O-$ (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、 t は0、1、2を示す)を示し、

R^{13} はアルキルを示し、

R^{22} は水素原子、アルキルまたは $-OR^{15}$ (R^{15} は水素原子、アルキルを示す)を示し、

R^{33} は水素原子またはハロゲン原子を示し、

$W' R^1'$ 、 R^{22} 、 R^{33} の置換位置はA環、B環のいずれの位置であってもよく、

B環はベンゼン環またはフラン環を示し、

Alk¹ は -CH=CH- または -CH₂-CH₂- を示し、

R¹⁰⁴ は水素原子を示し、

Alk² はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。]

で表される上記(34)記載の化合物またはその医薬上許容される塩。

(36) XがNである上記(35)記載の化合物またはその医薬上許容される塩。

(37) R^{3'}が水素原子、R^{2'}が-OR¹⁵であり、Wが-O-である上記(36)記載の化合物またはその医薬上許容される塩。

(38) R¹¹が炭素数4～6のアルキルである上記(37)記載の化合物またはその医薬上許容される塩。

(39) 7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-ピリジル)エチル]アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-ヒドロキシフェニル)エチル]アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-アミノフェニル)エチル]アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-ニトロフェニル)エチル]アミド、および

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(イミダゾール-4-イル)エチル]アミド。

から選ばれる上記(38)記載の化合物またはその医薬上許容される塩。

(40) 式(Ie)

(式中、Wは-O-、-S(O)_t、-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO-（R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す）を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵（R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す）、-NR⁸R⁹（R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい）、または-(CH₂)_uS(O)_uR¹²（R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0、1、2を、u'は0、1、2を示す）を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^e は式 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシリルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。】

で表される化合物（以下、化合物(Ie)ともいう）またはその医薬上許容される塩。

(41) 式 (Ie)

〔式中、Wは $-O-$ または $-S(O)_t-$ を、 t は0, 1, 2を示す〕を示し、 R^1 はアルキルを示し、

R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子またはアルキルを示す)、または $-(CH_2)^u-S(O)_uR^{12}$ (R^{12} はアルキルを、 u は0, 1, 2を、 u' は0, 1, 2を示す)を示し、

R^3 は水素原子、アルコキシ、アルキル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R^e は式 (i)

(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。]

で表される上記(40)記載の化合物またはその医薬上許容される塩。

(42) R^2 が $-OR^{15}$ または $-(CH_2)_nS(O)_mR^{12}$ であり、ベンゼン環上の $-R^6$ の結合位置に対して、 R^2 の置換位置がパラ位、 $-WR^1$ の置換位置がメタ位である上記(41)記載の化合物またはその医薬上許容される塩。

(43) R^1' が炭素数4～6のアルキルである上記(42)記載の化合物またはその医薬上許容される塩。

(44) 2-(4-メトキシ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(4-メトキシ-3-ペンチルチオフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(3,4-ジペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(4-メチルチオ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(3-ペンチルオキシ-4-ペンチルチオフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(4-ペンチルオキシ-3-ペンチルチオフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、および

2-(4-メトキシ-3-ペンチルオキシフェニル)-5-(2-ピリジル)-4,5-ジヒドロオキサゾール

から選ばれる上記(43)記載の化合物またはその医薬上許容される塩。

(45) 上記(3)～(44)のいずれかに記載の化合物またはその医薬上許容される塩を有効成分として含有してなる医薬組成物。

(46) カンナビノイドセプターが末梢型カンナビノイドセプターである上記(1)または(2)記載のカンナビノイドセプター作動薬または拮抗薬。

(47) 免疫調節剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドセプター作動薬または拮抗薬。

(48) 自己免疫疾患治療剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドセプター作動薬または拮抗薬。

(49) 抗炎症剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドセプター作動薬または拮抗薬。

(50) 抗アレルギー剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドセプター作動薬または拮抗薬。

(51) 腎炎治療剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドセプター作動薬または拮抗薬。

本明細書中で使用されている各基について以下に説明する。

アルキルとしては、直鎖状でも分枝鎖状でもよく、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、*s*-ブチル、*t*-ブチル、ペンチル、イソペンチル、ネオペンチル、*t*-ペンチル、ヘキシル、イソヘキシル、ネオヘキシル、ヘプチル等が挙げられる。 R^2 、 $R^{2'}$ 、 R^3 、 $R^{3'}$ 、 R^7 、 R^8 、 R^9 、 R^{12} 、 R^{15} 、 R^{29} 、 R^{30} 、 R^{31} においては、好ましくは炭素数1～7のものが挙げられる。 R^{29} 、 R^{30} 、 R^{31} においては、より好ましくは炭素数1～2のものが挙げられる。 R^2 、 $R^{2'}$ においては、より好ましくは炭素数1または5のものが挙げられる。 R^5 、 R^6 、 R^{10} 、 R^{10a} 、 R^{10b} 、 R^{10d} 、 R^{11} 、 R^{13} 、 R^{14} においては、好ましくは炭素数1～4のものが挙げられる。 R^1 、 R^1' においては、好ましくは炭素数4～6のものが挙げられる。

アルケニルとしては、直鎖状でも分枝鎖状でもよく、具体的には、ビニル、アリル、クロチル、2-ペンテニル、3-ペンテニル、2-ヘキセニル、3-ヘキセニル、ヘプテニル等が挙げられる。 R^8 、 R^9 、 R^{12} 、 R^{15} においては、好ましくは炭素数2～7のものが挙げられる。 R^{10} 、 R^{10a} 、 R^{10b} 、 R^{10d} 、 R^{11}

においては、好ましくは炭素数2～4のものが挙げられる。R¹、R^{1'}においては、好ましくは炭素数4～7のものが挙げられる。

アルキニルとしては、直鎖状でも分枝鎖状でもよく、具体的には、エチニル、プロピニル、ブチニル、2-ペンチニル、3-ペンチニル、2-ヘキシニル、3-ヘキシニル、ヘプチニル等が挙げられる。R⁸、R⁹、R¹²、R¹⁵においては、好ましくは炭素数2～7のものが挙げられる。R¹、R^{1'}においては、好ましくは炭素数4～7のものが挙げられる。

AIk²におけるアルキレンとしては、好ましくは炭素数1～4であり、直鎖状でも分枝鎖状でもよく、具体的には、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。より好ましくは炭素数2のものである。

AIk²におけるアルケニレンとしては、好ましくは炭素数2～4であり、直鎖状でも分枝鎖状でもよく、具体的には、ビニレン、プロペニレン、ブテニレン等が挙げられる。

R³、R^{3'}におけるアルコキシとしては、好ましくは炭素数1～7であり、直鎖状でも分枝鎖状でもよく、具体的には、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ等が挙げられる。

R³、R^{3'}におけるアルコキカルボニルとしては、好ましくは炭素数2～5であり、上記アルコキシのうち炭素数1～4のものにカルボニルがついたものが挙げられる。具体的には、メトキカルボニル、エトキカルボニル、プロポキカルボニル、ブトキカルボニル等が挙げられる。

R⁸、R⁹におけるアシルとしては、好ましくは炭素数1～5であり、具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル等が挙げられる。

シクロアルキルとしては、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等が挙げられる。R¹、R^{1'}、R⁸、

R^9 、 R^{15} においては、好ましくは炭素数3～6のものが挙げられる。 R においては、好ましくは炭素数3～7のものが挙げられる。より好ましくは炭素数6のものが挙げられる。

R^1 、 R^{11} 、 R^8 、 R^9 、 R^{15} におけるシクロアルキルアルキルとしては、そのシクロアルキル部は前述のうち炭素数3～6のものが挙げられ、アルキル部は前述のうち炭素数1～4のものが挙げられる。具体的には、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロプロピルエチル、シクロプロピルプロピル、シクロプロピルブチル等が挙げられる。

R^1 、 R^{11} 、 R^8 、 R^9 、 R^{15} 、 R におけるアリールとしては、具体的には、フェニル、ナフチル、ビフェニル等が挙げられ、好ましくはフェニルである。

R^1 、 R^{11} 、 R^8 、 R^9 、 R^{15} におけるアリールアルキルとしては、そのアリール部は前述と同様のものが挙げられ、そのアルキル部は前述のうち炭素数1～4のものが挙げられる。具体的には、ベンジル、フェネチル、フェニルプロピル、フェニルブチル、ナフチルメチル、ビフェニルメチル等が挙げられ、好ましくはベンジルである。

R^1 、 R^{11} 、 R^8 、 R^9 、 R^{15} 、 R におけるヘテロアリールとしては、水素原子で飽和されていてもよく、具体的には、ピリミジル、ピラジニル、ピリダジニル、ピラゾリル、イミダゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、テトラゾリル、チアジアゾリル、オキサジアゾリル、トリアジニル、トリアゾリル、チエニル、ピロリル、ピロリニル、フリル、アゼピニル、ベンゾピラニル、ベンゾチエニル、ベンゾトリアゾリル、インドリル、イソインドリル、キノリル、イソキノリル、シンノリニル、フタラジニル、キナゾリニル、キノキサリニル、1, 8-ナフチリジル、1, 7-ナフチリジル、1, 6-ナフチリジル、1, 5-ナフチリジル、ビリド[2, 3-d]ピリミジル、チエノ[2, 3-b]ピリジル、ピロリジニル、イミダゾリジニル、ピペリジル、ピペリジノ、ピペラジニル、モルホリノ、ヒドロアゼピニル、ヒドロインドリル、

ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好ましくはチエニル、イミダゾリル、モルホリノである。

R' におけるヘテロアリールとしては、上記ヘテロアリールで例示されたもの以外にさらにピリジルが挙げられ、好ましくはピリジル、チエニル、イミダゾリル、モルホリノである。

R^8 と R^9 が隣接する窒素原子と一緒にになって形成するヘテロアリール、 R^{13} と R^{14} が隣接する窒素原子と一緒にになって形成するヘテロアリール、 R と R^{10} (R^{10a} 、 R^{10b} 、 R^{10d})が隣接する窒素原子と一緒にになって形成するヘテロアリールとしては、前述のヘテロアリールのうち、1つ以上の窒素原子を有するヘテロアリールが挙げられる。具体的には、ピロリジニル、イミダゾリジニル、ピペリジノ、ピペラジニル、モルホリノ、ピラゾリル、イミダゾリル、テトラゾリル、トリアゾリル、ピロリル、ピロリニル、インドリル、ヒドロアゼピニル、ヒドロインドリル、ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好ましくはモルホリノ、ピペリジノ、ピロリジニル、イミダゾリルである。

R^1 、 R^{11} 、 R^8 、 R^9 、 R^{15} におけるヘテロアリールアルキルとしては、そのヘテロアリール部は前述と同様のものが挙げられ、そのアルキル部は前述のうち炭素数1~4のものが挙げられる。具体的には、2-チエニルメチル、3-フリルメチル、4-ピリジルメチル、2-キノリルメチル、3-イソキノリルメチル等が挙げられ、好ましくは4-ピリジルメチルである。

R におけるベンゼン縮合シクロアルキルとしては、具体的には、テトラヒドロナフタレン、インダン等が挙げられ、好ましくはテトラヒドロナフタレンである。

R^3 、 $R^{3'}$ におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。

R^{10} 、 R^{10a} 、 R^{10b} 、 R^{10d} 、 R^{11} におけるアミノ保護基としては、具体的には、ベンジリデン、4-クロロベンジリデン、4-ニトロベンジリデン、サリチリデン、 α -ナフチリデン、 β -ナフチリデン等の置換されていてもよいアラ

ルキリデン；

ベンジル、4-メトキシベンジル、3, 4-ジメトキシベンジル、2-ニトロベンジル、4-ニトロベンジル、ベンズヒドリル、ビス(4-メトキシフェニル)メチル、トリチル等の置換されていてもよいアルキル；

ホルミル、アセチル、プロピオニル、ブチリル、ピバロイル、2-クロロアセチル、2-ブロモアセチル、2-ヨードアセチル、2, 2-ジクロロアセチル、2, 2, 2-トリクロロアセチル、2, 2, 2-トリフルオロアセチル、フェニルアセチル、フェノキシアセチル、ベンゾイル、4-クロロベンゾイル、4-メトキシベンゾイル、4-ニトロベンゾイル、ナフチルカルボニル、アダマンチルカルボニル等の置換されていてもよいアシル；

メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、t-ブトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、シクロヘキシルオキシカルボニル、2-クロロエトキシカルボニル、2-ヨードエトキシカルボニル、2, 2, 2-トリクロロエトキシカルボニル、2, 2, 2-トリクロロ-t-ブトキシカルボニル、ベンズヒドリルオキシカルボニル、ビス-(4-メトキシフェニル)メトキシカルボニル、フェナシルオキシカルボニル、2-トリメチルシリルエトキシカルボニル、2-トリフェニルシリルエトキシカルボニル、フルオレニル-9-メトキシカルボニル等の置換されていてもよいアルコキシカルボニル；

ビニルオキシカルボニル、2-プロペニルオキシカルボニル、2-クロロ-2-プロペニルオキシカルボニル、3-メトキシカルボニル-2-プロペニルオキシカルボニル、2-ブテニルオキシカルボニル、シンナミルオキシカルボニル等の置換されていてもよいアルケニルオキシカルボニル；

フェノキシカルボニル；

ベンジルオキシカルボニル、4-ブロモベンジルオキシカルボニル、2-クロロベンジルオキシカルボニル、3-クロロベンジルオキシカルボニル、3, 5-ジ

メトキシベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニル、2-ニトロ-4-, 5-ジメトキシベンジルオキシカルボニル、3, 4, 5-トリメトキシベンジルオキシカルボニル、フェネチルオキシカルボニル等の置換されていてもよいアラルキルオキシカルボニル；

トリメチルシリル、*t*-ブチルジメチルシリル等の置換されていてもよい低級アルキルシリル；

メチルチオカルボニル、エチルチオカルボニル、ブチルチオカルボニル、*t*-ブチルチオカルボニル等の置換されていてもよいアルキルチオカルボニル；

ベンジルチオカルボニル等の置換されていてもよいアラルキルチオカルボニル；ジシクロヘキシルホスホリル、ジフェニルホスホリル、ジベンジルホスホリル、ジ-（4-ニトロベンジル）ホスホリル、フェノキシフェニルホスホリル等の置換されていてもよいホスホリル；

ジエチルホスフィニル、ジフェニルホスフィニル等の置換されていてもよいホスフィニル等が挙げられる。また、場合によってはフタロイル等であってもよい。好ましくはアラルキルオキシカルボニルであり、より好ましくはベンジルオキシカルボニルである。

また、置換されていてもよい各基は、1個以上の置換基で置換されていてもよい。当該置換基として使用される基について以下に説明する。

アルキルとしては、前述のうち炭素数1～4のものが挙げられる。

アルコキシとしては、前述のうち炭素数1～4のものが挙げられる。

アルコキシカルボニル、ハロゲン原子は、それぞれ前述と同様のものが挙げられる。

ヘテロアリールは、前述のR' と同様のものが挙げられる。

アルキルアミノとしては、そのアルキル部が前述の炭素数1～4のアルキルであるものが挙げられる。具体的には、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノ等が挙げられる。

アルキルチオとしては、そのアルキル部が前述の炭素数1～4のアルキルであるものが挙げられる。具体的には、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ等が挙げられる。

アルキルスルフィニルとしては、そのアルキル部が前述の炭素数1～4のアルキルであるものが挙げられる。具体的には、メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、ブチルスルフィニル等が挙げられる。

アルキルスルホニルとしては、そのアルキル部が前述の炭素数1～4のアルキルであるものが挙げられる。具体的には、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル等が挙げられる。

アルケニルオキシとしては、そのアルケニル部が前述の炭素数2～4のアルケニルであるものが挙げられる。具体的には、エテニルオキシ、プロペニルオキシ、ブテニルオキシ等が挙げられる。

アシルとしては、前述のうち炭素数1～4のものが挙げられる。

アシルオキシとしては、そのアシル部が前述の炭素数1～4のアシルであるものが挙げられる。具体的には、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ等が挙げられ、好ましくはアセチルオキシである。

アシルチオとしては、そのアシル部が前述の炭素数1～4のアシルであるものが挙げられる。具体的には、ホルミルチオ、アセチルチオ、プロピオニルチオ、ブチリルチオ、イソブチリルチオ等が挙げられ、好ましくはアセチルチオである。

アシルアミノとしては、そのアシル部が前述の炭素数1～4のアシルであるものが挙げられる。具体的には、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ等が挙げられ、好ましくはアセチルアミノである。

アルコキカルボニルとしては、そのアルコキシ部が前述の炭素数1～4のアルコキシであるものが挙げられる。具体的には、メトキカルボニル、エトキカルボニル、プロポキカルボニル、ブトキカルボニル等が挙げられ、好ましくはエトキカルボニルである。

アリールスルフィニルとしては、そのアリール部が前述と同様のものが挙げられる。具体的には、フェニルスルフィニル、ナフチルスルフィニル、ビフェニルスルフィニル等が挙げられる。

アラルキルオキシとしては、そのアリールアルキル部が前述と同様のものが挙げられる。具体的には、ベンジルオキシ、フェネチルオキシ、フェニルプロピルオキシ、フェニルブチルオキシ、ナフチルメチルオキシ、ビフェニルメチルオキシ等が挙げられる。

医薬上許容される塩としては、具体的には、ナトリウム塩、カリウム塩、セシウム塩等のアルカリ金属塩；カルシウム塩、マグネシウム塩等のアルカリ土類金属塩；トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、トリエタノールアミン塩、ジシクロヘキシルアミン塩、N, N'-ジベンジルエチレンジアミン塩等の有機アミン塩；塩酸塩、臭化水素酸塩、硫酸塩、磷酸塩等の無機酸塩；蟻酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩等の有機酸塩；メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩；アルギニン塩、アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられるが、これらに限定されるものではない。

なお、本発明においては、各化合物の各種異性体、プロドラッグ等も包含される。

また、本発明において、化合物(Ia)、(Ib)、(Ic)、(Id)、(Ie)は化合物(I)に包含されるものである。よって、以下、これら化合物を化合物(I)でまとめて説明する。

化合物(I)は、例えば以下のようにして製造することができるが、これらに限定されるものではない。

製法1：式(I)において $q = 1$, $Y = -CONR^{10}-$ の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(12)と反応させることにより、化合物(I-2)を得るものである。

(11)

(1-2)

(式中、各記号は前記と同義である。)

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物；カルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)ハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル；カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常0～100℃であり、好ましくは0～30℃である。反応時間は、通常15分間～24時間であり、好ましくは1～12時間である。

製法2：式(I)において $q = 1$, $Y = -NR^{11}CO-$ の場合

本方法は、化合物(14)を活性化されたカルボン酸誘導体とし、化合物(13)と、適當な溶媒中、適當な塩基の存在下、反応させることにより、化合物(I-3)を得るものである。

[式中、各記号は前記と同義である。]

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度、反応時間等の各条件は製法1の場合と同様である。

製法3：式(I)において $q = 1$, $Y = -C\bullet O\bullet O-$ の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(15)と反応させることにより、化合物(I-4)を得るものである。

(11)

(15)

(I-4)

[式中、各記号は前記と同義である。]

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物；カルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル；カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤として得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミンが挙げられ、好ましくはピリジンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ

ル、アセトン等の極性溶媒等が挙げられる。好ましくは上記塩基を溶媒として兼ねる。

反応温度は、通常0～100°Cであり、好ましくは0～30°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～12時間である。

また、本方法の他に、化合物(I-1)と化合物(I-5)を酸触媒下、脱水縮合することによっても化合物(I-4)を得ることができる。

酸触媒としては、例えば、塩酸、硫酸、硝酸等の鉄酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられる。

製法4：式(I)においてq=1, Y=-CH₂NR¹⁰-の場合

本方法は、製法1で得られた化合物(I-2)を適当な溶媒中、適当な還元剤を用いて還元することにより、化合物(I-5)を得るものである。

↓ 還元

[式中、各記号は前記と同義である。]

還元剤としては、例えば、LiAlH₄、LiBH₄、NaBH₄、ジイソブチルアルミニウムヒドリド(DIBAL)、還元アルミニウム(RED-A1)等が挙げられ、好ましくはLiAlH₄である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常-30～100°Cであり、好ましくは0～50°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

製法5：式(I)において $q=1$, $Y=-\text{NHCONH}-$ の場合

本方法は、化合物(11)を、酸アジドを経てクルティウス転移させ、生じたイソシアネートに化合物(25)を反応させることにより、化合物(I-6)を得るものである。

[式中、各記号は前記と同義である。]

なお、クルティウス転移は、アシルアジドの熱転移によりイソシアネートへ変換させる反応である。

アシルアジドの合成としては、①カルボン酸に塩基の存在下、ジフェニルリン酸アジドを作用させる方法、②カルボン酸をエステル経由でヒドラジドに導き、これに亜硝酸またはそのアルキルエステルを反応させる方法、③カルボン酸を酸塩化物に導き、これにアジ化ナトリウムを作用させる方法、④混合酸無水物にアジ化ナトリウムを作用させる方法等がある。

塩基としては、例えば、トリエチルアミン、ピリジン、水素化カリウム、水素化ナトリウム、N-メチルモルホリン等が挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム、ジオキサン等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒、より好ましくはジオキサンである。

反応温度は、通常0～150°Cであり、好ましくは0～80°Cである。反応時間は、通常15分間～6時間であり、好ましくは1～3時間である。

製法6：式(I)において $p = q = r = 0$ 、Rが式(i)で表される基（1個以上の置換基で置換されていてもよい）の場合

ここでは、Rが4,4-ジメチル-4,5-ジヒドロオキサゾリニル基である場合について例示する。

[式中、各記号は前記と同義である。]

(1) 本方法においては、まず、化合物(21)とチオニルハライドを反応させて酸ハライドとした後、これを2-アミノ-2-メチルプロパノールと反応させることにより、化合物(22)を得る。

チオニルハライドとしては、チオニルクロリド、チオニルブロミド等が挙げら

れる。

また、本工程は、酸ハライド等に導く以外に、適当な縮合剤を用いることによっても実施可能である。

縮合剤としては、例えば、DCC、WSCハイドロクロライド、ビバロイルクロリド、エトキシカルボニルクロリド等が挙げられる。また、反応助剤として、ヒドロキシベンゾトリアゾール(HOB T)、N-ヒドロキシスクシンイミド(NBS)、ピリジン、トリエチルアミン等を適宜選択して用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはハロゲン系溶媒であり、より好ましくはジクロロメタンである。

反応温度は、通常0～100°Cであり、好ましくは0～40°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(2) 次に、(1)で得られた化合物(22)を適当な脱水剤と反応させることにより、化合物(I-7)を得る。

脱水剤としては、例えば、塩化チオニル、POCl₃、五塩化リン、五酸化二リン、無水酢酸、塩化亜鉛、四塩化チタン等が挙げられ、好ましくは塩化チオニルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられるが、好ましくは無溶媒である。

反応温度は、通常0～100℃であり、好ましくは10～50℃である。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(3) さらに、(2)で得られた化合物(I-7)を適当な塩基で処理した後、エチレンオキシドと反応させることにより、化合物(I-8)を得る。

塩基としては、例えば、リチウムジイソプロピルアミド(LDA)、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムヘキサメチルジシラザン(LiHMDS)、ナトリウムヘキサメチルジシラザン(NaHMDS)、カリウムヘキサメチルジシラザン(KHMDS)、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr)₂NMgBr等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常-100～100℃であり、好ましくは-100～0℃である。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(4) また、(2)で得られた化合物(I-7)を適当な塩基で処理した後、適当な炭酸エステルと反応させることにより、化合物(I-9)を得る。

塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDS、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr)₂NMgBr等が挙げられ、好ましくはn-ブチルリチウムである。

炭酸エステルとしては、クロロ炭酸エチル、炭酸ジエチル等が挙げられ、好ましくはクロロ炭酸エチルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常-100～100°Cであり、好ましくは-78～30°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(5) さらに、(4)で得られた化合物(I-9)を適当な還元剤と反応させることにより、化合物(I-10)を得る。

還元剤としては、例えば、LiAlH₄、LiBH₄、NaBH₄、DIBAL、Red-Al等が挙げられ、好ましくはLiAlH₄である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常-30～100°Cであり、好ましくは0～50°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

製法7：式(I)においてp=0, q=1かつY=-CONR¹⁰-または-CH₂NR¹⁰-で、R³とR¹⁰が一緒になってA環と縮合環を形成する場合

ここでは、さらに以下の製法7-1～7-6に分けて説明する。

製法7-1：式(I)において、p=0, q=1かつY=-CONR¹⁰-かつR³とR¹⁰が一緒になって-CH₂CH₂-、-CH₂-、-CH=CH-、-CHOH-または-CH₂CHOH-を形成する場合

[式中、nは1または2を示し、他の各記号は前記と同義である。]

(1) 本方法においては、まず、化合物(23)のカルボキシル基と結合した炭素に隣接した炭素をアルキル化し、化合物(24)に導く。

また、カルボン酸をオキサゾリン(I-7)とした後に、適当な塩基で処理し、エチレンオキシドでアルキル化することにより、化合物(I-8)とし、これを常法により加水分解することによっても化合物(24)(n=2)を得ることができる。

さらに、化合物(I-7)を、塩基にひきつづき、クロロ炭酸エチルでアルキル化して化合物(I-9)とし、これを適当な還元剤で処理した場合には、化合物(I-10)を得ることができる。化合物(I-10)は、常法により加水分解することにより、化合物(24)(n=1)に誘導される。

なお、反応条件は製法6の(3)、(4)および(5)と同じである。

(2) 次に、化合物(24)を活性化されたカルボン酸誘導体とし、所望の化合物(25')と縮合させ、化合物(I-11)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リソ、五塩化リソ、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物；所望のカルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル；所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常0～100°Cであり、好ましくは0～30°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～12時間である。

(3) さらに、化合物(I-11)は、脱水することによって化合物(I-12)に導くことができる。

脱水は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸；塩酸、硫酸、硝酸等の鉱酸；トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられ、好ましくはp-トルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常0～200°Cであり、好ましくは60～120°Cである。反応時間は、通常3～48時間であり、好ましくは6～12時間である。

(3') なお、上記の酸触媒での脱水反応が円滑に進行しない場合には、化合物(I-11)における2位のアルキル基の水酸基を酸化し、アミナール(I-11')(n=1のとき)またはアミナール(I-11'')(n=2のとき)を経て、これを適当な還元剤で還元することによっても、化合物(I-12)を得ることができる。

酸化反応のための親電子剤としては、例えば、無水酢酸、トリフルオロ無水酢

酸、三酸化硫黄-ピリジン複合体 ($\text{SO}_3 - \text{Py}$)、五酸化ニリン、(COCl)₂等が挙げられ、好ましくは $\text{SO}_3 - \text{Py}$ である。

また、反応補助剤として、ジメチルスルホキシド、トリエチルアミン等を用いることができる。また、ピリジニウムクロロクロメート (PCC)、ピリジニウムジクロメート (PDC) 等のクロム酸化剤を用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルスルホキシドである。

反応温度は、通常 $-78 \sim 30^\circ\text{C}$ であり、好ましくは $10 \sim 20^\circ\text{C}$ である。反応時間は、通常 15 分間～24 時間であり、好ましくは 1～3 時間である。

還元剤としては、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、リチウムホウ素ナトリウム、トリエチルシラン、トリメチルシラン、ジフェニルシラン、フェニルシラン、トリクロロシラン、トリメチルシラン等が挙げられ、好ましくは、トリエチルシランである。

なお、還元反応は、適当な酸の存在下、進行する。酸としては、トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等であり、好ましくはトリフルオロ酢酸である。

反応温度は、通常 $-10 \sim 100^\circ\text{C}$ であり、好ましくは $0 \sim 30^\circ\text{C}$ である。反応時間は、通常 15 分間～48 時間であり、好ましくは 30 分間～3 時間である。

この還元反応は、接触水素添加による還元反応を用いることによっても行うことができる。

(3") なお、上記 $n = 2$ の場合、アミナール(I-11") を溶媒中、酸で処理し、脱水することにより目的化合物の一つである化合物 (I-11'') を得ることができ

る。引き続き化合物(I-11")を適当な溶媒中、還元することにより、n=2である化合物(I-12)を得ることができる。

上記脱水反応で用いる酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸；塩酸、硫酸、硝酸等の鉱酸；トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常0～200°Cであり、好ましくは60～120°Cである。反応時間は、通常3～48時間であり、好ましくは6～12時間である。

上記還元反応で用いる還元触媒としては、例えば、パラジウム-炭素、水酸化パラジウム-炭素、ラネーニーケル等が挙げられ、好ましくはパラジウム-炭素である。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール等のアルコール系溶媒；塩酸、酢酸等の酸等が挙げられ、好ましくは酢酸である。

反応は水素気流中、高圧条件下で行い、通常1～4kgf/cm²、好ましくは3kgf/cm²である。

反応温度は、通常0～100°Cであり、好ましくは50～60°Cである。反応時間は、通常1～48時間であり、好ましくは1～20時間である。

製法7-2：式(I)において、 $p = 0$ 、 $q = 1$ かつ $Y = -CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-CO-$ を示しA環と縮合環を形成する場合

[式中、各記号は前記と同義である。]

(1) まず、製法7-1と同様にして、化合物(23)のカルボキシル基と結合した炭素に隣接した炭素をアシリ化し、化合物(26)に導く。

アシル化剤としては、例えば、クロロ炭酸エチル、二酸化炭素等が挙げられ、好ましくはクロロ炭酸エチルである。

なお、化合物(23)において、カルボン酸等価体として、オキサゾリンを用いた場合には、アシル化反応終了後、一般的な手法によってカルボン酸を復活させることができる。(2)(1)で得られた化合物(26)を、一般的な手法により化合物(27)に導くことができる。

(3) (2)で得られた化合物(27)を化合物(25')と加熱脱水縮合反応させることにより、化合物(I-13)を得る。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常0～200°Cであり、好ましくは100～130°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

製法7-3：式(I)において、 $p = 0$ 、 $q = 1$ かつ $Y = -CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-S-$ を示しA環と縮合環を形成する場合

[式中、各記号は前記と同義である。]

(1) 本方法においては、まず、所望の化合物(23)のカルボキシル基に隣接した炭素をメチルチオ化し、化合物(50)に導く。

この際、例えばカルボン酸をオキサゾリン(I-7)とした後に、適当な塩基で処理し、ジアルキルスルフィドと反応させた場合には、化合物(50)が得られる。なお、カルボン酸等価体として、オキサゾリンを用いた場合には、メチルチオ化反応終了後、一般的な手法によってカルボン酸を復活させることができる。

用いられる塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDs、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr)₂NMgBr等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

(2) 次に、化合物(50)を活性化されたカルボン酸誘導体とし、所望の化合物(25')と縮合させ、化合物(I-15)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物；所望のカルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル；所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等の

エステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常0～100°Cであり、好ましくは0～30°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～12時間である。

(3) さらに、化合物(I-15)は、N-クロロスクシンイミドの存在下に環化することによって、化合物(I-16)に導くことができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはジクロロメタンである。

反応温度は、通常0～200°Cであり、好ましくは0～30°Cである。反応時間は、通常3～48時間であり、好ましくは6～12時間である。

製法7-4：式(I)において、 $p = 0$ 、 $q = 1$ かつ $Y = -CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-NHCR^{28}-$ 、 $-NHCR^{29}R^{30}-$ または $-N=CR^{31}-$ を示しA環と縮合環を形成する場合

[式中、各記号は前記と同義である。]

(1) 活性化されたカルボン酸誘導体(51)を、化合物(25')と縮合させ、化合物(I-17)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物；所望のカルボン酸を、N-ヒドロキシベンゾト

リアゾール、N-ヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル；所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常0～100°Cであり、好ましくは0～30°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～12時間である。

(2) 次に、化合物(I-17)は、酸の存在下、炭素ユニット化合物を縮合することによって化合物(I-18)、(I-19)、(I-20)にそれぞれ導くことができる。

炭素ユニット化合物としては、例えば、化合物(I-18)におけるR²⁸が酸素原子の場合はトリホスゲンであり、R²⁸がイオウ原子の場合は、二硫化炭素である。化合物(I-19)におけるR²⁹、R³⁰が共にメチル基の場合はアセトンである。化合物(I-20)におけるR³¹が水素原子の場合は、ジメチルホルムアミドジメチルアセタールであり、R³¹がメチル基の場合はアセチルアセトンである。

酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸；塩

酸、硫酸、硝酸等の鉱酸；トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常0～200°Cであり、好ましくは室温～100°Cである。反応時間は、通常3～48時間であり、好ましくは6～12時間である。

製法7-5：式(I)において、 $p = 0$ 、 $q = 1$ かつ $Y = -CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-CH_2CO-$ または $-CH=CH-$ を示しA環と縮合環を形成する場合

(式中、H_a1はハロゲン原子を、R³²、R³³は同一または異なってそれぞれ炭素数1～6のアルキルまたはベンジルを示し、他の各記号は前記と同義である。)

(1) 化合物(52)を、適当な溶媒中、金属触媒の存在下、活性化されたエステル化合物と反応させることにより、化合物(53)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒等が挙げられ、好ましくはトルエンである。

金属触媒としては、例えばハロゲン化銅等が挙げられ、好ましくは臭化銅である。

活性化されたエステル化合物とは、アルキルマロン酸エステル等を適当な塩基と混合することによって形成することができる。

この場合の適当な塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

反応温度は、通常-10～200°Cであり、好ましくは0～100°Cである。反応時間は、通常15分間～48時間であり、好ましくは30分間～3時間である。

(2) 化合物(53)を適当な溶媒中、塩の存在下、脱炭酸反応することにより化合物(54)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好ましくは極性溶媒であり、より好ましくは水とジメチルスルホキシドの混合溶媒であ

る。

塩としては、塩化ナトリウム、シアン化ナトリウム、フッ化リチウム、塩化リチウム、ヨウ化リチウム、炭酸リチウム、臭化カリウム、塩化カリウム、ヨウ化カリウム、シアン化カリウム、塩化マグネシウム等である。

反応温度は、通常0～300°Cであり、好ましくは100～200°Cである。反応時間は、通常15分間～24時間であり、好ましくは30分間～3時間である。

(3) 化合物(54)と化合物(25')を用いて、製法7-1の(2)と同様にしてアミド縮合することにより、化合物(55)を得ることができる。

(4) 化合物(55)を適当な溶媒中、塩基の存在下で環化し、化合物(I-21)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはアルコール系溶媒であり、より好ましくはエタノールである。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カリウム、水酸化リチウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等が挙げられ、好ましくはナトリウムエトキシドである。

反応温度は、通常0～200°Cであり、好ましくは0～150°Cである。反応時間は、通常15分間～24時間であり、好ましくは30分間～3時間である。

(5) なお、化合物(I-21)を還元後、脱水することにより、化合物(I-11")を得ることができる。

還元剤としては、例えば、LiAlH₄、LiBH₄、NaBH₄、DIBAL、Red-Al等が挙げられ、好ましくはLiAlH₄である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常-30～100°Cであり、好ましくは0～50°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

製法7-6：式(I)において、 $p = 0$ 、 $q = 1$ かつ $Y = -CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-NHCOCH_2-$ を形成する場合

[式中、各記号は前記と同義である。]

- (1) 化合物(56)および化合物(25')を用いて、製法7-1の(2)と同様にしてアミド縮合することにより、化合物(57)を得ることができる。
- (2) 化合物(57)を塩基の存在下、プロモ酢酸エチル等のハロ酢酸エチルでアミド基をアルキル化することにより、化合物(58)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはテトラヒドロフランである。

反応温度は、通常-10～200°Cであり、好ましくは0～100°Cである。
反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(3) 化合物(58)を用い、常法によるニトロ基の還元反応の後、環化反応を行うことにより化合物(I-22)を得ることができる。

環化は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸；塩酸、硫酸、硝酸等の鉱酸；トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられ、好ましくはp-トルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常0～200°Cであり、好ましくは60～120°Cである。反

応時間は、通常3～48時間であり、好ましくは6～12時間である。

製法8：式(I)において $r=0$, $q=1$ かつ $Y=-CONR^{10}$ —または $-CH_2NR^{10}$ —で、 R と R^{10} が隣接する窒素原子と一緒にになってヘテロアリールを形成する場合

ここでは、式(I)において、 $r=0$, $q=1$ かつ $Y=-CONR^{10}$ —かつ R と R^{10} が隣接する窒素原子と一緒にになってモルホリンを形成する場合について例示する。

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、適当な溶媒中、適当な塩基の存在下、モルホリンと反応させることにより、化合物(I-14)を得るものである。

(11)

(I-14)

[式中、各記号は前記と同義である。]

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度、反応時間等の各条件は製法1の場合と同様である。

なお、 R と R^{10} が隣接する窒素原子と一緒にになって他のヘテロアリールを形成する場合の化合物は、原料化合物としてのモルホリンの代わりに、所望のヘテロアリール環を用いる以外は、上記と同様にして合成することができる。

また、 $Y=-CH_2NR^{10}$ —の場合の化合物は、 $Y=-CONR^{10}$ —の場合の

化合物を、製法 4 に準じて還元することにより合成することができる。

以上、製法 1 ~ 8 について説明したが、上記製法において、 R^2 と R^1 が A 環と一緒にになって式 (II) で表される縮合環を形成する場合の化合物は、原料化合物として縮合環を有するものを用いる以外は、上記製法と同様にして合成することができる。

ここで、製法 1 において原料として用いられる化合物(11)は、例えば以下の製法 1 - A ~ 1 - F のようにして得ることができる。

製法 1 - A

[式中、 R^{21} 、 R^{22} はそれぞれ R^1 で示したものと同様の基を示し、Tはハロゲン原子を示し、m、yはそれぞれ1、2または3を示し、 $m - y \geq 0$ である。]

(1) まず、化合物(31)を原料とし、塩基の存在下、化合物(29)で水酸基をエーテル化することにより、化合物(32)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10～200°Cであり、好ましくは0～60°Cである。反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(2) 次に、(1)で得られた化合物(32)を酸化反応させることにより、化合物(33)を得る。

用いる酸化剤としては、例えば、 NaClO_2 、 CrO_3 、 $\text{K}_2\text{Cr}_2\text{O}_7$ 、 KMnO_4 等が挙げられる。

また、反応助剤として、例えば、 NaHPO_4 、 KHPO_4 、アミレン等を適宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはt-ブタノールである。

(3) さらに、(2)で得られた化合物(33)を、塩基の存在下、化合物(30)でエーテル化することにより、化合物(34)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10～200°Cであり、好ましくは0～60°Cである。反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(4) さらに、(3)で得られた化合物(34)を塩基の存在下、加水分解することにより、化合物(35)を得る。

製法 1 - B

[式中、 R^{25} は炭素数1～6のアルキルを示し、他の各記号は前記と同義である。]

(1) まず、製法1-A(1)で得られた化合物(32)をウィッティッヒ反応させることにより、化合物(36)を得る。

ウィッティッヒ試薬としては、例えば、メチル(トリフェニルホスホラニリデン)アセテート、エチル(トリフェニルホスホラニリデン)アセテート等が挙げられ、好ましくはメチル(トリフェニルホスホラニリデン)アセテートである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常0～100°Cであり、好ましくは0～70°Cである。反応時間は、通常15分間～12時間であり、好ましくは30分間～3時間である。

(2) 次に、(1)で得られた化合物(36)を塩基の存在下、加水分解することにより、化合物(37)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

(3) さらに、(2)で得られた化合物(37)を製法1-A(3)、(4)と同様にして反応させ、化合物(38)を得る。

製法1-C

[式中、R²³、R²⁴はそれぞれR¹で示したものと同様の基を示し、他の各記号は前記と同義である。]

まず、化合物(39)を化合物(46)と反応させ、化合物(40)を得る。次に、化合物(40)を常法により還元し、化合物(41)を得る。さらに、化合物(41)を化合物(47)と反応させ、化合物(42)および化合物(43)を得る。次いで、化合物(42)および化合物(43)を加水分解し、化合物(44)および化合物(45)を得る。

上記反応で用いる試薬、条件等は、製法1-Aで用いたものと同様のものが挙げられる。

製法 1 - D

[式中、 R^{34} 、 R^{35} はそれぞれ R^1 で示したものと同様の基を示し、他の各記号は前記と同義である。]

(1) 化合物(59)を原料とし、塩基の存在下、化合物(60)で水酸基をエーテル化することにより化合物(61)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10～200°Cであり、好ましくは0～60°Cである。反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(2) 化合物(61)を濃硫酸の存在下、発煙硝酸を反応させることにより化合物(62)を得ることができる。

溶媒としては、例えば、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒；酢酸、無水酢酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常-50～200°Cであり、好ましくは-10～60°Cである。反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(3) 化合物(62)を塩基の存在下、化合物(63)で水酸基をエーテル化することにより化合物(64)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10～200°Cであり、好ましくは0～60°Cである。反応時間は、通常15分間～48時間であり、好ましくは1～8時間である。

(4) 化合物(64)を酸化することにより化合物(56')を得ることができる。

用いる酸化剤としては、例えば、NaClO₂、CrO₃、K₂Cr₂O₇、KMnO₄等が挙げられる。

また、反応助剤として、例えば、NaHPO₄、KHPO₄、アミレン等を適宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-

ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、*t*-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはイソプロピルアルコールまたは*t*-ブタノールである。

反応温度は、通常0～100°Cであり、好ましくは0～30°Cである。反応時間は、通常10分間～6時間であり、好ましくは15分間～3時間である。

(5) 化合物(56')から化合物(51')への還元は、常法により行われる。

製法1-E

[式中、各記号は前記と同義である。]

(1) 製法1-A～1-Dの方法により得られた化合物(65)を適当な溶媒中、または混合溶媒中、ハロゲン化剤と反応させることにより化合物(66)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム、ジオキサン等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好ましくはハロゲン系溶媒、またはジオキサンと水との混合溶媒である。

ハロゲン化剤としては、N-ブロモスクシンイミド、臭素等が挙げられる。

反応温度は、通常0～200°Cであり、好ましくは0～60°Cである。反応時間は、通常15分間～24時間であり、好ましくは30分間～3時間である。

(2) 化合物(66)を適当な溶媒中、通常行われる酸化反応を行うことにより化合物(52)を得ることができる。

用いる酸化剤としては、例えば、NaClO₂、CrO₃、K₂Cr₂O₇、KMnO₄等が挙げられる。

また、反応助剤として、例えば、NaHPO₄、KHPO₄、アミレン等を適宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒；メタノール、エタノール、イソプロピルアルコール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはt-ブタノールである。

反応温度は、通常-30～100°Cであり、好ましくは0～30°Cである。反応時間は、通常10分間～12時間であり、好ましくは30分間～3時間である。

製法 1 - F

[式中、 R^{36} は水酸基または水素原子であり、 R^{37} は R^1 と同じであり、 R^{38} は R^2 と同じである。]

本方法において、カルボニル化合物(67)の置換基OHに隣接した炭素をアルキ

ルチオ化し、化合物(71)または化合物(72)に導くことができる。

この際、置換基OHと結合した炭素に隣接した炭素の反応性を向上させるためにハロゲン化された化合物(68)とし、これを適当な塩基と適当な硫黄化剤を用いることによりチオール体(71)を得ることができる。

なお、アルキルチオ化の際に、化合物(67)のカルボキシル基あるいはカルボニル基は、それぞれオキサゾリジン、イミダゾリジン等で常法により保護される場合もある。これら保護基は反応後、常法によりカルボキシル基あるいはカルボニル基にもどすことが可能である。

(1) 化合物(67)を、適当な溶媒中、ハロゲン化剤と反応させることにより、化合物(68)を得ることができる。

ハロゲン化剤としては、例えば、臭素、N-ブロモスクシンイミド、臭化水素、臭化水素酸、臭化銅等が挙げられる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、水等の極性溶媒；酢酸、塩酸、硫酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常0～200°Cであり、好ましくは0～60°Cである。反応時間は、通常10分間～18時間であり、好ましくは30分間～3時間である。

(2) 化合物(68)と化合物(69)を用いて、製法1-Aの(1)と同様にして化合物(70)を得ることができる。

(3) 化合物(70)を適当な溶媒中、塩基の存在下、硫黄化剤を用いてアルキルチオ化合物(71)を得ることができる。

用いられる塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDs、水

素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr)₂NMgBr等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

硫黄化剤としては、例えば、n-アルキルジスルフィド等が挙げられる。これを用いて、所望のn-アルキル（炭素数1～7）チオ化を行うことができる。

反応温度は、通常-100～50℃であり、好ましくは-78～30℃である。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(4) 化合物(71)がアルデヒド誘導体（R³⁶が水素原子）の場合は、製法1-Bと同様にして化合物(72)を得ることができる。

このように上記製法1-A～1-Fに準じて、任意の置換基を有する化合物(11)を得ることができる。

製法1-G

製法1において原料として用いられる化合物(12)は、例えば以下のようにして得ることができる。

[式中、 Alk^2 は Alk^2 より炭素数が1つ少ないものを示し、他の各記号は前記と同義である。]

(1) まず、化合物(48)を適当な還元剤を用いて還元し、化合物(25)を得る。

還元剤としては、例えば、 BH_3 、 $\text{BH}_3 \cdot \text{SMe}_2$ 、 LiBH_4 、 NaBH_4 、 KBH_4 、 NaBH_3OH 、 LiAlH_4 等が挙げられ、好ましくは LiAlH_4 である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常-30～100°Cであり、好ましくは0～80°Cである。反応時間は、通常15分間～24時間であり、好ましくは1～6時間である。

(2) さらに、(1)で得られた化合物(25)と、化合物(49)を塩基の存在下、反応させることにより、化合物(12)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒；ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒；ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒；酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒；ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒；メタノール、エタノール、イソプロパノール、t-ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミ

ドである。

反応温度は、通常0～150°Cであり、好ましくは20～100°Cである。反応時間は、通常1～48時間であり、好ましくは3～24時間である。

上記のようにして製造された化合物（I）は、例えば、濃縮、減圧濃縮、溶媒抽出、晶析、再結晶、クロマトグラフィー等の公知の手段により、分離精製することができる。

また、化合物（I）の医薬上許容される塩、および化合物（I）の各種異性体は、従来公知の方法により製造することができる。

化合物（I）およびその医薬上許容される塩は、哺乳動物に対し、カンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域（免疫疾患、各種炎症、アレルギー性疾患、腎炎等）において医薬的効果を示す。

つまり、化合物（I）およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用、腎炎治療効果を有する。

よって、化合物（I）およびその医薬上許容される塩は、カンナビノイドレセプター（特に末梢型カンナビノイドレセプター）作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤、腎炎治療剤として有用である。

化合物（I）またはその医薬上許容される塩を医薬製剤として用いる場合には、通常、それ自体公知の薬理学的に許容される担体、賦形剤、希釈剤、增量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤、その他の添加剤、具体的には水、植物油、エタノールまたはベンジルアルコールのようなアルコール、ポリエチレングリコール、グリセロールトリアセテート、ゼラチン、ラクトース、デンプン等のような炭水化物、ステアリン酸マグネシウム、タルク、ラノリン、ワセリン等と混合して、常法により錠剤、丸剤、散剤、顆粒剤、坐剤、注射剤、点眼剤、液剤、カプセル剤、トロ

ーチ剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロップ剤等の形態となすことにより、経口または非経口的に投与することができる。

投与量は、疾患の種類および程度、投与する化合物並びに投与経路、患者の年齢、性別、体重等により変わり得る。経口投与の場合、通常、成人1日当たり化合物(I) 0.1~1000mg、好ましくは1~300mgを、1~数回にわけて投与する。

以下、実施例により本発明を具体的に述べるが、本発明はこれらによって限定されるものではない。

参考例1

4-メトキシトルエン(100ml、0.793mol)と塩化メチレン(300ml)を混合し、この溶液を0℃まで冷却した後に塩化アルミニウム(190.3g、1.44mol)を加えた。この溶液にヘプタノイルクロリド(123ml、0.8mol)を2時間かけて滴下した後に反応溶液を室温まで昇温、そのまま2時間攪拌した。この反応溶液を水(400g)に向かって注いで反応を停止し、水層をクロロホルム(300ml)で抽出した。有機層を合わせて水、飽和炭酸水素ナトリウム水溶液、飽和食塩水(各100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を蒸留(120pa、125~140℃)して精製することにより1-(2-ヒドロキシ-5-メチルフェニル)ヘプタン-1-オン(127.8g、77%)を無色油状物質として得た。

¹H-NMR(CDCI₃) δ: 12.2(1H, s), 7.53(1H, s), 7.26(1H, d, J=8.47Hz), 6.88(1H, d, J=8.47Hz), 2.96(2H, t, J=7.31Hz), 1.79-1.67(2H, m), 1.47-1.25(6H, m), 0.90(3H, t, J=6.90Hz).

FABMS(m/z): 235[M⁺ H⁺] (10), 221(100), 202(40).

IR(Neat, cm⁻¹): 3500-3100, 1642.

参考例2

1-(2-ヒドロキシ-5-メチルフェニル)ヘプタン-1-オン(127g、

0. 61 mol)、2. 5 N 水酸化ナトリウム水溶液 (250 ml) およびエタノール (250 ml) を混合し、この溶液を 0 °Cまで冷却した後にジメチル硫酸 (60 ml) を加えて 2 時間加熱還流した。さらに、ジメチル硫酸 (40 ml) および 2. 5 N 水酸化ナトリウム水溶液 (170 ml) を加えて 2 時間加熱還流した後に反応溶液を減圧濃縮した。得られた残渣をエーテル (200 ml) で 2 回抽出した後、有機層を合わせて 2. 5 N 水酸化ナトリウム水溶液、飽和食塩水 (各 100 ml) で 2 回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー (n-ヘキサン / 酢酸エチル = 95 / 5) を用いて精製することにより 1-(2-メトキシ-5-メチルフェニル)ヘプタン-1-オン (82 g、57%) を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.42(1H, s), 7.22(1H, d, J=8.42Hz), 6.83(1H, d, J=8.42Hz), 3.84(3H, s), 2.93(2H, t, J=7.56Hz), 2.28(3H, s), 1.70-1.59(2H, m), 1.45-1.20(6H, m), 0.87(3H, t, J=6.2Hz).

参考例 3

1-(2-メトキシ-5-メチルフェニル)ヘプタン-1-オン (81.6 g、0.348 mol)、クロロ酢酸エチル (64 g、0.522 mol) およびベンゼン (100 ml) を混合し、この溶液を 0 °Cまで冷却した後にカリウム-t-ブトキシド (58.6 g、0.522 mol) を加えて室温で 0.5 時間攪拌した。再びこの溶液を 0 °Cまで冷却した後にクロロ酢酸エチル (32 g、0.261 mol) およびカリウム-t-ブトキシド (29.3 g、0.261 mol) を加えて室温で 0.5 時間攪拌した後に反応溶液を水 (200 g) に向かって注ぐことにより反応を停止した。水層をトルエン (120 ml) で 3 回抽出した後、有機層を水、酢酸水溶液 (水 / 酢酸 = 50 / 1) および水 (各 100 ml) で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にエタノール (90 ml) および、あらかじめナトリウム (13.1 g、0.567 mol) とエタノール (260 ml) から調製したナトリウ

ムエトキシドを加えて室温で1.5時間攪拌した。この反応溶液に水(17ml)を加えて0.5時間攪拌した後、エタノールを減圧留去し、水(350ml)および濃塩酸(63ml)を加えて1.5時間加熱還流した。水層をエーテル(200ml)で3回抽出した後、有機層を合わせて水、飽和炭酸水素ナトリウム水溶液および飽和食塩水(各100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を減圧蒸留(450pa、155~160°C)することにより2-(2-メトキシ-5-メチルフェニル)オクタナール(64.5g、74.6%)を無色油状物質として得た。

¹H-NMR(CDCl₃) δ: 9.65(1H, s), 7.06(1H, d, J=8.32Hz), 6.88(1H, s), 6.80(1H, d, J=8.32Hz), 3.79(3H, s), 3.74(2H, t, J=8.46Hz), 2.29(3H, s), 2.17-2.00(1H, m), 1.75-1.60(1H, m), 1.45-1.20(8H, m), 0.87(3H, t, J=6.78Hz).

FABMS(m/z): 249[M⁺ H⁺] (80), 219(60).

参考例4

2-(2-メトキシ-5-メチルフェニル)オクタナール(63.8g、0.257mol)、ヨウ化メチル(160ml、2.57mol)およびベンゼン(300ml)を混合し、この溶液を-5°Cまで冷却した後にカリウム-t-ブトキシド(31.3g、0.279mol)を反応溶液が0°Cを越えないように加えて-2°Cで0.5時間攪拌した。この反応溶液を氷水(200ml)に向かって注ぐことにより反応を停止し、水層をエーテル(150ml)で2回抽出した後、有機層を飽和食塩水(100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にメタノール(400ml)、セミカルバジド塩酸塩(28.6g、0.257mol)の水溶液(110ml)およびピリジン(20.4ml、0.257mol)を加えて室温で0.75時間攪拌した。析出した結晶を濾過し、ヘキサンで洗浄し、この結晶を乾燥することにより2-(2-メトキシ-5-メチルフェニル)オクタナールセミカルバジド(64.7g、79%)を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.97(1H, s), 7.32(1H, s), 7.00(1H, s), 6.96(1H, d, J=8.22Hz), 6.73(1H, d, J=8.22Hz), 5.10(2H, bs), 3.71(3H, s), 2.26(3H, s), 2.08-1.93(1H, m), 1.84-1.72(1H, m), 1.42(3H, s), 1.28-0.9(8H, m), 0.82(3H, t, J=6.66Hz).

参考例 5

2-(2-メトキシ-5-メチルフェニル)オクタナールセミカルバジド (64.7g, 0.203mol)、カリウム-t-ブトキシド (47.8g, 0.43mol) およびキシレン (600ml) を混合し、この溶液を2.5時間加熱還流した。この反応溶液を氷水 (200ml) に向かって注ぐことにより反応を停止し、水層をトルエン (120ml) で3回抽出した後、有機層を飽和食塩水 (100ml) で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー (クロロホルム) を用いて精製することにより 2-(1,1-ジメチルヘプチル)-1-メトキシ-4-メチルベンゼンをキシレンとの混合物として得た (51g, overweight)。これをこのまま次の反応に用いた。

¹H-NMR (CDCl₃) δ : 6.99(1H, s), 6.97(1H, d, J=8.03Hz), 6.75(1H, d, J=8.03Hz), 3.78(3H, s), 2.28(3H, s), 1.82-1.73(2H, m), 1.31(6H, s), 1.25-1.13(6H, m), 1.05-0.91(2H, m), 0.84(3H, t, J=5.68Hz).

参考例 6

2-(1,1-ジメチルヘプチル)-1-メトキシ-4-メチルベンゼン (キシレンとの混合物: 51g, 0.203mol として計算)、N-プロモスクシンイミド (38.4g, 0.215mol)、ベンゾイルペルオキシド (0.97g, 4mmol) および四塩化炭素 (500ml) を混合し、この溶液を3.5時間加熱還流した。さらにN-プロモスクシンイミド (2.1g, 12mmol) を加えて0.5時間加熱還流した後、N-プロモスクシンイミド (36g, 0.2mol) を加えてこの反応溶液を2時間加熱還流した。結晶を濾過して得られた母液を飽和食塩水 (100ml) で2回洗浄し、無水硫酸マグネシウムで

乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル=20/1）を用いて精製することにより3-(1,1-ジメチルヘプチル)-4-メトキシベンズアルデヒド(33.4g, 2 steps 50%)を淡黄色油状物質として得た。

¹H-NMR(CDC13) δ: 9.87(1H, s), 7.77(1H, s),
7.74(1H, d, J=8.32Hz), 6.96(1H, d, J=8.32Hz), 3.91(3H, s),
1.83-1.70(2H, m), 1.37(6H, s), 1.35-1.06(6H, m), 1.04-0.85(2H, m),
0.83(3H, t, J=6.74Hz).

FABMS(m/z): 263[M⁺ H⁺] (100), 247(95), 163(50).

参考例7

3-(1,1-ジメチルヘプチル)-4-メトキシベンズアルデヒド(13g、49.5mmol)、t-ブタノール(65ml)および2-メチル-2-ブテン(35.2ml、332mmol)を混合し、この溶液に亜塩素酸ナトリウム(7.37g、64.4mmol)、リン酸二水素ナトリウム(7.73g、64.4mmol)および水(50ml)を混合して調製した溶液を滴下し、室温で12時間攪拌した。1N水酸化ナトリウム溶液(100ml)を加えてt-ブタノールを減圧留去した後に濃塩酸を加えて酸性にし、水層を酢酸エチル(150ml)で3回抽出した。有機層を合わせて飽和食塩水(100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(n-ヘキサン／酢酸エチル=5/1~2/1)を用いて精製することにより3-(1,1-ジメチルヘプチル)-4-メトキシ-安息香酸(10.7g、77%)を無色結晶として得た。

¹H-NMR(CDC13) δ: 7.98(1H, d, J=2.15Hz),
7.97(1H, dd, J=9.12, 2.15Hz), 6.89(1H, d, J=9.12Hz), 3.89(3H, s),
1.83-1.74(2H, m), 1.36(6H, s), 1.24-1.10(6H, m), 1.00-0.94(2H, m),
0.83(3H, t, J=6.49Hz).

FABMS(m/z): 279[M⁺ H⁺] (65), 261(70), 193(100).

参考例 8

3 - (1, 1-ジメチルヘプチル) - 4 - メトキシベンズアルデヒド (1. 5 g、5. 39 mmol)、メタノール (25 ml)、メチル (トリフェニルホスホラニリデン) アセタート (3. 24 g、9. 7 mmol) を混合し、この溶液を 7 時間加熱還流した。飽和食塩水を加えて反応を停止、水層を酢酸エチル (10 ml) で 3 回抽出した。有機層を合わせて、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 20/1 ~ 10/1) を用いて精製することにより 3 - [3 - (1, 1-ジメチルヘプチル) - 4 - メトキシフェニル] 桂皮酸メチルエステル (0. 80 g、47%) を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.65(1H, d, J=16Hz), 7.39(1H, s), 7.37(1H, d, J=9.0Hz), 6.85(1H, d, J=9.0Hz), 6.30(1H, d, J=16Hz), 3.85(3H, s), 3.79(3H, s), 1.84-1.73(2H, m), 1.34(6H, s), 1.28-1.12(6H, m), 1.01-0.85(2H, m), 0.83(3H, t, J=6.45Hz).

FABMS (m/z) : 319[M⁺ H⁺] (55), 287(65), 233(100).

参考例 9

3 - [3 - (1, 1-ジメチルヘプチル) - 4 - メトキシフェニル] 桂皮酸メチルエステル (334. 5 mg、1. 05 mmol)、メタノール (4 ml)、1 N 水酸化ナトリウム水溶液 (1. 2 ml、1. 2 mmol) を混合し、この溶液を 1 時間加熱還流した。メタノールを減圧留去した後、濃塩酸 0. 3 ml および飽和食塩水 (5 ml) を加え、水層を酢酸エチル (5 ml) で 4 回抽出した。有機層を合わせて飽和食塩水 (5 ml) で 2 回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後減圧濃縮して、得られた結晶をヘキサンで洗浄することにより 3 - [3 - (1, 1-ジメチルヘプチル) - 4 - メトキシフェニル] 桂皮酸 (0. 33 g、quant.) を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.75(1H, d, J=15.9Hz), 7.44-7.38(2H, m), 6.86(1H, d, J=6.45Hz), 6.32(1H, d, J=15.9Hz), 3.86(3H, s),

1.82-1.73(2H, m), 1.34(6H, s), 1.27-1.10(6H, m), 1.00-0.87(2H, m),
0.84(3H, t, J=6.45Hz).

参考例 10

窒素置換した反応容器に 3 - [3 - (1, 1-ジメチルヘプチル) - 4 - メトキシフェニル] 桂皮酸 (600 mg、2.16 mmol)、塩化メチレン (6 ml) を混合し、この溶液を 0 °Cまで冷却した。この溶液に三臭化ホウ素 (0.82 ml、8.64 mmol) の塩化メチレン溶液 (4 ml) を滴下し、室温で 20 時間攪拌した。さらに三臭化ホウ素 (0.82 ml、8.64 mmol) の塩化メチレン溶液 (5 ml) を滴下し、室温で 18 時間攪拌した。この反応溶液を水 (20 ml) に向かって注いで反応停止、エーテル (20 ml) を加えて有機層を 1 N 水酸化ナトリウム水溶液 (20 ml) で 3 回抽出、濃塩酸を加えて酸性にした水層を酢酸エチル (40 ml) で 3 回抽出した。有機層を合わせて飽和食塩水 (20 ml) で 2 回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー (ヘキサン/酢酸エチル = 6/1 ~ 1/2) を用いて精製することにより 3 - (1, 1-ジメチルヘプチル) - 4 H - ヒドロキシ安息香酸 (457 mg、80%) を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 8.00(1H, s), 7.86(1H, d, J=8.4Hz),
6.72(1H, d, J=8.4Hz), 5.85-5.28(1H, bs), 1.87-1.77(2H, m), 1.40(6H, s),
1.30-1.14(6H, m), 1.07-0.93(2H, m), 0.83(3H, t, J=6.8Hz).

FABMS (m/z) : 265[M⁺ H⁺] (100), 247(40), 179(60).

参考例 11

クロム酸 (105.4 mg、1.05 mmol、1.2 eq) を酢酸 (2 ml) に溶解し、氷冷下、3 - (1, 1-ジメチルヘプチル) ベンズアルデヒド (205 mg、0.878 mmol) の酢酸 (2 ml) 溶液を加えて 2 分間攪拌した。更に室温で 30 分間攪拌させた後に濃硫酸を 2 滴加え、3 時間攪拌した。この反応溶液に水 (10 ml) を加え、酢酸エチル (10 ml) で 2 回抽出した。有

機層をあわせて飽和食塩水(20ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル=2/1)を用いて精製することにより、3-(1,1-ジメチルヘプチル)安息香酸(205mg、99.0%)を得た。

¹H-NMR(DMSO-d₆) δ: 8.08(1H, s), 7.92(1H, d, J=7.7Hz), 7.58(1H, d, J=7.7Hz), 7.39(1H, t, J=7.7Hz), 1.7-1.5(2H, m), 1.33(3H, s), 1.4-1.1(6H, m), 1.1-1.0(2H, m), 7.58(3H, t, J=6.7Hz).

FABMS(m/z): 249[M⁺ H⁺] (100), 163(80).

IR(Neat, cm⁻¹): 2927, 1689.

参考例 1 2

アルゴン置換した反応容器に2-メチル-[1,4]-ナフトキノン(5g、29mmol)、エーテル(200ml)を混合し、この溶液を-10℃まで冷却した。この溶液に水素化リチウムアルミニウム(LAH)(1.0g、26.3mmol)とエーテルの懸濁液(40ml)を40分かけて滴下し、室温で0.5時間攪拌した。この反応溶液に1N塩酸(100ml)を滴下することにより反応停止、水層を酢酸エチル(100ml)で2回抽出し、有機層をあわせて飽和食塩水(50ml)で2回、飽和炭酸水素ナトリウム水溶液(30ml)で3回、飽和食塩水(5.0ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣に水(10ml)および濃塩酸(10ml)を加えて2時間加熱還流した。この反応溶液に水(50ml)を加えた後、水層をエーテル(50ml)で2回抽出、有機層を水(30ml)、飽和炭酸水素ナトリウム水溶液(30ml)で2回、飽和食塩水(30ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1~10/1)を用いて精製することにより3-メチルナフタレン-1-オールを構造未確認の化合物を含む混合物として得た。このものをこれ以上精製することなく次の反応に用いた。

参考例 1 3

アルゴン置換した反応容器に3-メチルナフタレン-1-オールの粗生成物、ジメチルホルムアミド(DMF)(20ml)、炭酸カリウム(3g、21.7mmol)およびペンチルブロミド(4.0ml、32.3mmol)を混合し、この溶液を90°Cで3時間攪拌した。DMFを減圧留去した後、水(20ml)を加えて水層を酢酸エチル(20ml)で3回抽出、有機層を飽和食塩水(20ml)で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=100/0~50/1)を用いて精製することにより3-メチル-1-ペンチルオキシナフタレン(82.7mg、3 steps 12%)を無色油状物質として得た。

¹H-NMR(CDC1₃) δ: 8.23(1H, d, J=8.07Hz),
7.69(1H, d, J=8.07Hz), 7.48-7.36(2H, m), 7.19(1H, s), 6.65(1H, s),
4.13(2H, t, J=6.42Hz), 2.49(3H, s), 1.98-1.87(2H, m), 1.53-1.37(4H, m),
0.98(3H, t, J=7.19Hz).

参考例 1 4

3-メチル-1-ペンチルオキシナフタレンの粗生成物、四塩化炭素(15ml)およびN-ブロモスクシンイミド(2.11g、11.9mmol)を混合し、ベンゾイルペルオキシド(72.7mg、0.3mmol)の四塩化炭素溶液(3ml)を加えた後、この溶液を100°Cで4時間攪拌した。結晶を濾別後、母液を飽和食塩水(20ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=25/1)を用いて精製することにより1-ブロモ-2-ジブロモメチル-4-ペンチルオキシナフタレン(1.16g、69%)を無色結晶として得た。

¹H-NMR(CDC1₃) δ: 8.35-8.25(2H, m), 7.73-7.57(2H, m),
7.55(1H, s), 7.42(1H, s), 4.31(2H, t, J=6.41Hz), 2.10-1.97(2H, m),
1.82-1.45(4H, m), 1.04(3H, t, J=7.19Hz).

FABMS (m/z) : 466 [$M^+ H^+$] (20), 385 (100), 315 (40).

参考例 1 5

1-ブロモ-2-ジブロモメチル-4-ペンチルオキシナフタレン (1. 13 g、2. 43 mmol)、酢酸 (8 ml) および酢酸ナトリウム (0. 8 g、9. 72 mmol) を混合し、この溶液を 4 時間加熱還流した。酢酸を減圧留去した後、水 (5 ml) を加えて水層を酢酸エチル (20 ml) で 2 回抽出し、有機層を合わせて飽和食塩水 (10 ml)、飽和炭酸水素ナトリウム水溶液 (10 ml)、飽和食塩水 (10 ml) で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー (ヘキサン/酢酸エチル = 25/1) を用いて精製することにより 1-ブロモ-4-ペンチルオキシナフタレン-2-カルボアルデヒド (0. 647 g、8.3%) を無色結晶として得た。

1H -NMR (CDCl₃) δ : 10.64 (1H, s), 8.50-8.42 (1H, m), 8.38-8.30 (1H, m), 7.75-7.62 (2H, m), 7.27 (1H, s), 4.20 (2H, t, J=6.5 Hz), 2.00-1.88 (2H, m), 1.60-1.36 (4H, m), 0.97 (3H, t, J=7.2 Hz).

FABMS (m/z) : 322 [$M^+ H^+$] (100), 251 (65), 144 (40).

参考例 1 6

1-ブロモ-4-ペンチルオキシナフタレン-2-カルボアルデヒド (0. 77 g、2. 4 mmol)、t-ブタノール (4. 8 ml)、2-メチル-2-ブテン (1. 71 ml、16. 1 mmol) を混合し、この溶液に亜塩素酸ナトリウム (360 mg、3. 12 mmol)、リン酸二水素ナトリウム (374 mg、3. 12 mmol) および水 (2. 4 ml) を混合して調製した溶液を滴下し、室温で 16. 5 時間攪拌した。1 N 水酸化ナトリウム水溶液 (5 ml) を加えて t-ブタノールを減圧留去した後に、濃塩酸を加えて酸性にし、飽和食塩水 (5 ml) を加えた後に水層を酢酸エチル (10 ml) で 3 回抽出した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルから再結晶することにより 1-ブロモ-4-ペンチルオキシナフタ

レン-2-カルボン酸（619mg、76%）を淡黄色結晶として得た。

¹H-NMR (CDCl₃) δ : 8.47(1H, d, J=8.4Hz),
8.33(1H, d, J=8.4Hz), 7.72-7.58(2H, m), 7.24(1H, s),
4.18(2H, t, J=6.48Hz), 1.62-1.37(6H, m), 0.97(3H, t, J=7.2Hz).
FABMS (m/z) : 338[M⁺ H⁺] (90), 339(70), 268(50).

参考例17

アルゴン置換した反応容器に1-ブロモ-4-ペンチルオキシナフタレン-2-カルボン酸（400mg、1.19mmol）とテトラヒドロフラン（THF）（3ml）を混合し、この溶液を-78°Cに冷却した後、n-ブチルリチウムのヘキサン溶液（1.6M）を1.63ml（2.61mmol）加え1時間攪拌した。水（0.5ml）および飽和食塩水（2ml）を加えた後に水層を酢酸エチル（5ml）で4回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン/酢酸エチル=3/1～1/2）を用いて精製することにより、4-ペンチルオキシナフタレン-2-カルボン酸（149.6mg、49%）を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 8.32(1H, d, J=7.47Hz), 8.31(1H, s),
7.93(1H, d, J=7.47Hz), 7.68-7.52(2H, m), 7.42(1H, s),
4.23(2H, t, J=6.48Hz), 2.04-1.90(2H, m), 1.65-1.39(4H, m),
0.98(3H, t, J=7.2Hz).

FABMS (m/z) : 259[M⁺ H⁺] (50), 258(100), 188(70).

参考例18

1-ブロモ-4-ペンチルオキシナフタレン-2-カルボアルデヒド（0.644g、2.0mmol）、THF（5ml）およびメチル（トリフェニルホスホラニリデン）アセタート（1.0g、3.0mmol）を混合し、この溶液を4時間加熱還流した。THFを減圧留去して得られた残渣をカラムクロマトグラフィー（ヘキサン/酢酸エチル=25/1）を用いて精製することにより3-（

1-ブロモ-4-ペンチルオキシナフタレン-2-イル) 桂皮酸メチルエステル (592mg、78%) を淡黄色結晶として得た。

¹H-NMR (CDCl₃) δ : 8.38(1H, d, J=15.9Hz),
8.34(1H, d, J=8.0Hz), 8.27(1H, d, J=8.0Hz), 7.67-7.52(2H, m),
6.94(1H, s), 6.45(1H, d, J=15.9Hz), 4.15(2H, t, J=6.44Hz), 3.86(3H, s),
2.03-1.90(2H, m), 1.64-1.30(4H, m), 0.97(3H, t, J=7.17Hz).
FABMS (m/z) : 378[M⁺ H⁺] (100), 379(60), 226(60).

参考例 19

3-(1-ブロモ-4-ペンチルオキシナフタレン-2-イル) 桂皮酸メチルエステル (588mg、1.56mmol)、エタノール (4ml) および1N水酸化ナトリウム水溶液 (4ml) を混合し、この溶液を1時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にした。THF (5ml) および酢酸エチル (20ml) を加えて析出した結晶を溶解させて有機層を分離した後、水層を酢酸エチル (20ml) で2回抽出、有機層を合わせて飽和食塩水 (20ml) で3回洗浄した。無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をヘキサンで洗浄して精製することにより3-(1-ブロモ-4-ペンチルオキシナフタレン-2-イル) 桂皮酸 (540mg、95%) を淡黄色結晶として得た。

¹H-NMR (DMSO-d₆) δ : 12.6(1H, bs), 8.26(1H, d, J=7.76Hz),
8.22(1H, d, J=7.76Hz), 7.03(2H, d, J=8.4Hz), 8.15(1H, d, J=15.8Hz),
7.75-7.60(2H, m), 7.34(1H, s), 6.84(1H, d, J=15.8Hz),
4.27(2H, t, J=6.41Hz), 1.93-1.80(2H, m), 1.59-1.33(4H, m),
0.93(3H, t, J=7.15Hz).

FABMS (m/z) : 364[M⁺ H⁺] (20), 169(100).

参考例 20

アルゴン置換した反応容器に3-(1-ブロモ-4-ペンチルオキシナフタレン-2-イル) 桂皮酸 (100mg、0.275mmol) とTHF (2ml)

を混合し、この溶液を-78°Cに冷却した後、n-ブチルリチウムのヘキサン溶液(1.6M)を0.38ml(0.6mmol)加え1時間攪拌した。水(1ml)および濃塩酸を加え、この溶液を酸性(pH=1)にした後、水層を酢酸エチル(5ml)で4回抽出した。有機層を合わせて飽和食塩水(5ml)で3回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、3-(4-ペンチルオキシナフタレン-2-イル)桂皮酸(4.6.2mg、59%)を無色結晶として得た。

¹H-NMR(DMSO-d₆) δ: 12.4(1H, bs), 8.16-8.10(1H, m), 7.91-7.86(1H, m), 7.71(1H, s), 7.69(1H, d, J=15.9Hz), 7.59-7.50(2H, m), 7.28(1H, s), 6.70(1H, d, J=15.9Hz), 4.23(2H, t, J=6.42Hz), 1.94-1.8(2H, m), 1.60-1.35(4H, m), 0.93(3H, t, J=7.16Hz).

FABMS(m/z): 285[M⁺ H⁺] (10), 284(300), 169(100).

参考例21

2-ヒドロキシ-3-メトキシ安息香酸(15.66g、93mmol)、DMF(200ml)、炭酸カリウム(51.4g、372mmol)およびペンチルプロミド(29ml、233mmol)を混合し、この溶液を90°Cで1時間攪拌した。DMFを減圧留去した後、水(100ml)を加えて水層を酢酸エチル(150ml)で3回抽出、有機層を合わせて飽和食塩水(70ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣に1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて1時間加熱還流した。さらに1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル(100ml)で3回抽出、有機層を合わせて飽和食塩水(100ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1~1/1)を

用いて精製することにより 3-メトキシ-2-ペンチルオキシ安息香酸 (20.5 g、97%) を淡黄色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.22(1H, d, J=7.35Hz), 7.20-7.09(2H, m), 4.26(2H, t, J=6.96Hz), 3.91(3H, s), 1.90-1.79(2H, m), 1.50-1.30(4H, m), 0.92(3H, t, J=7.0Hz).

参考例 2 2

3-メトキシ-2-ペンチルオキシ安息香酸 (1.5 g、6.3 mmol)、メタノール (10 ml) および濃硫酸 1 滴を混合し、この溶液を 7 時間加熱還流した。メタノールを減圧留去した後、飽和炭酸水素ナトリウム水溶液 (3 ml) を加えて水層を酢酸エチル (20 ml) で 2 回抽出、有機層を合わせて飽和炭酸水素ナトリウム水溶液 (5 ml) で 2 回、飽和食塩水 (5 ml) で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣にアルゴン気流下 THF (15 ml) を加えて 0°C に冷却し、この溶液に LAH (0.49 g、13 mmol) を加えて 1 時間攪拌した。この反応溶液に水 (0.4 ml)、1N 水酸化ナトリウム水溶液 (0.4 ml) および水 (1.2 ml) を順次滴下し、エーテル (60 ml) を加えて 1 時間激しく攪拌した後、無機塩を濾別後減圧濃縮することにより (3-メトキシ-2-ペンチルオキシフェニル) メタノールの粗生成物を得た。このものを精製することなく次の反応に用いた。

参考例 2 3

(3-メトキシ-2-ペンチルオキシフェニル) メタノールの粗生成物 (1.2 g)、ジメチルスルホキシド (DMSO) (25 ml) およびトリエチルアミン (6.72 ml、48.2 mmol) を混合し、この溶液を 0°C に冷却した後、三酸化硫黄-ピリジン複合体 (2.56 g、16.1 mmol) を加えた。室温で 1 時間攪拌した後、反応溶液を水に注いで反応停止、水層を酢酸エチル (30 ml) で 3 回抽出した。有機層を合わせて 2N 塩酸 (30 ml)、水 (30 ml) および飽和食塩水 (30 ml) で洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー

(ヘキサン／酢酸エチル=15/1~10/1)を用いて精製することにより3-メトキシ-2-ペンチルオキシベンズアルデヒド(1.16g、3 steps 83%)を無色油状物質として得た。

¹H-NMR(CDC13) δ: 7.42(1H, d, J=6.69Hz),
7.20-7.09(3H, m, involving a singlet at 7.13), 4.12(2H, t, J=6.73Hz),
3.89(3H, s), 1.90-1.75(2H, m), 1.52-1.32(4H, m), 0.93(3H, t, J=7.08Hz).
FABMS(m/z): 223[M⁺ H⁺] (60), 164(20).

参考例24

3-メトキシ-2-ペンチルオキシベンズアルデヒド(1.15g、5.17mmol)、THF(20ml)およびメチル(トリフェニルホスホラニリデン)アセタート(3.34g、10mmol)を混合し、この溶液を4時間加熱還流した。THFを減圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン／酢酸エチル=3/1)を用いて精製することにより3-(3-メトキシ-2-ペンチルオキシフェニル)桂皮酸メチルエステル(1.48g、over weight)を無色油状物質として得た。

¹H-NMR(CDC13) δ: 7.35(1H, d, J=2.0Hz),
7.15(1H, dd, J=8.3, 2.0Hz), 7.03(2H, d, J=8.4Hz),
6.80(2H, d, J=8.4Hz), 6.80(1H, d, J=8.3Hz), 6.62(1H, bs),
6.19(1H, t, J=12.9Hz), 3.98(2H, t, J=6.9Hz), 3.86(3H, s),
3.64(2H, q, J=6.9Hz), 2.82(2H, t, J=6.9Hz), 1.9-1.7(2H, m),
1.5-1.3(4H, m), 0.90(3H, t, J=7.0Hz).
FABMS(m/z): 358[M⁺ H⁺] (100), 221(80), 154(60).

参考例25

3-(3-メトキシ-2-ペンチルオキシフェニル)桂皮酸メチルエステル(1.47g、5.28mmol)、エタノール(10ml)および1N水酸化ナトリウム水溶液(10ml)を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後に濃塩酸を加えて酸性(pH=1)にすることにより

析出した結晶を酢酸エチル(20ml)で3回抽出、有機層を合わせて飽和食塩水(20ml)で3回洗浄した後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をエタノールから再結晶して精製することにより3-(3-メトキシ-2-ペンチルオキシフェニル)桂皮酸(1.09g、78%)を無色結晶として得た。

¹H-NMR(CDC13) δ : 8.16(1H, d, J=16.2Hz),
7.19(1H, d, J=7.99Hz), 7.06(1H, d, J=7.99Hz), 6.95(1H, d, J=7.99Hz),
6.48(1H, d, J=16.2Hz), 3.99(2H, t, J=6.88Hz), 3.87(3H, s),
1.89-1.75(2H, m), 1.57-1.35(4H, m), 0.94(3H, t, J=7.14Hz).
FABMS(m/z) : 265[M⁺ H⁺] (40), 264(70), 177(100).

参考例26

アルゴン置換した反応容器に2-ヒドロキシ-3-メトキシ安息香酸(7.15g、30mmol)、トルエン(60ml)、トリエチルアミン(4.6ml、33mmol)およびアジ化ジフェニルホスホリル(7.11ml、33mmol)を混合し、この溶液を室温で1時間攪拌した後に、45°Cから100°Cまで昇温しながら2.5時間攪拌した。ベンジルアルコール(3.41ml、33mmol)を加えて2時間加熱還流した後、この反応溶液に氷水(60ml)を加えて反応停止、水層を酢酸エチル(50ml)で3回抽出、有機層を合わせて飽和食塩水(50ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)を用いて精製することにより、(3-メトキシ-2-ペンチルオキシフェニル)カルバミン酸ベンジルエステル(8.41g、82%)を淡黄色油状物質として得た。

¹H-NMR(CDC13) δ : 7.73(1H, d, J=8.1Hz), 7.42-7.31(6H, m),
7.01(1H, t, J=8.4Hz), 7.01(1H, d, J=8.4Hz), 5.21(2H, s),
3.99(2H, t, J=6.8Hz), 3.84(3H, s), 1.80-1.67(2H, m), 1.5-1.3(4H, m),
0.90(3H, t, J=7.1Hz).

FABMS (m/z) : 344 [$M^+ H^+$] (45), 343(100), 300(65).

参考例 27

(3-メトキシ-2-ペンチルオキシフェニル)カルバミン酸ベンジルエステル (2 g、5.82 mmol)、エタノール (50 ml) および 10% パラジウム-炭素触媒 (160 mg) を混合し、この溶液を水素気流下室温で 4.5 時間攪拌した。パラジウム-炭素触媒を濾別した後エタノールを減圧留去し、得られた残渣にエタノール (10 ml) およびエトキシメチレンマロン酸ジエチル (1.29 ml、6.4 mmol) を加えてこの溶液を 2 時間加熱還流した。エタノールを減圧留去した後、得られた残渣に流動パラフィン (10 ml) を加え、250 °C で 1 時間攪拌し、室温まで冷却した後に褐色油状物質を流動パラフィンと分離し、この褐色油状物質に酢酸エチル (3 ml) およびヘキサン (10 ml) を加えて攪拌することにより得られる結晶をヘキサン、エーテルで洗浄して精製することにより、7-メトキシ-4-オキソ-8-ペンチルオキシ-1,4-ジヒドロキノリン-3-カルボン酸エチルエステル (589 mg、3 steps 30%) を淡茶色結晶として得た。

¹H-NMR (CDCl₃) δ : 9.15(1H, bs), 8.55(1H, s), 8.12(1H, d, J=9.1 Hz), 7.03(1H, d, J=9.1 Hz), 4.36(2H, q, J=7.1 Hz), 4.17(2H, t, J=6.9 Hz), 3.96(3H, s), 1.85-1.69(2H, m), 1.50-1.32(7H, m), 0.91(3H, t, J=7.0 Hz).

FABMS (m/z) : 334 [$M^+ H^+$] (100), 288(30), 218(20).

参考例 28

7-メトキシ-4-オキソ-8-ペンチルオキシ-1,4-ジヒドロキノリン-3-カルボン酸エチルエステル (580 mg、1.74 mmol) とオキシ塩化リソ (3 ml) を混合し、この溶液を 1 時間加熱還流した。この反応溶液を氷 (30 g) に向かって注いで反応を停止し、30% 水酸化ナトリウム水溶液 (20 ml) を氷冷下ゆっくりと滴下した。水層をエーテル (20 ml) で 4 回抽出し、有機層を合わせて飽和食塩水 (10 ml) で 2 回洗浄した後、この溶液を無

水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル＝2／1）を用いて精製することにより、4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸エチルエステル（561mg、92%）を淡黄色結晶として得た。

¹H-NMR (CDCl₃) δ : 9.21(1H, s), 8.16(1H, d, J=9.0Hz), 7.47(1H, d, J=9.0Hz), 4.48(2H, q, J=7.2Hz), 4.26(2H, t, J=7.1Hz), 4.05(3H, s), 1.94-1.74(2H, m), 1.51-1.30(7H, m), 0.92(3H, t, J=7.1Hz). FABMS (m/z) : 352[M⁺ H⁺] (100), 294(60).

参考例 29

4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸エチルエステル（311mg、0.84mmol）、エタノール（3ml）および1N水酸化ナトリウム水溶液（3ml）を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にし、THF（10ml）と酢酸エチル（10ml）を加えて析出した結晶を溶解させて有機層を分離した後、有機層を飽和食塩水（10ml）で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をエタノールから再結晶して4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸（229mg、80%）を淡黄色結晶として得た。

¹H-NMR (DMSO-d₆) δ : 13.8(1H, bs), 9.07(1H, s), 8.10(1H, d, J=9.6Hz), 7.75(1H, d, J=9.6Hz), 4.13(2H, t, J=6.5Hz), 3.99(3H, s), 1.78-1.67(2H, m), 1.50-1.28(4H, m), 0.88(3H, t, J=7.4Hz). FABMS (m/z) : 324[M⁺ H⁺] (85), 307(25), 266(25).

参考例 30

4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸（101mg、0.312mmol）とメタノール（10ml）を混合し、この溶液に10%パラジウム-炭素触媒（30mg）を加えて水素気流下室温で5時

間攪拌した。パラジウム－炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル＝10／1～6／4）を用いて精製することにより、7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸（7.4. 6 mg、83%）を黄色結晶として得た。

¹H-NMR (DMSO-d₆) δ : 9.32(1H, s), 8.70(1H, s), 7.80(1H, d, J=4.52Hz), 7.54(1H, d, J=4.52Hz), 4.16(2H, t, J=6.53Hz), 3.95(3H, s), 1.83-1.68(2H, m), 1.57-1.30(4H, m), 0.90(3H, t, J=7.18Hz).
FABMS (m/z) : 290[M⁺ H⁺] (100), 258(35), 220(60).

参考例 3 1

3-ブロモ-4-メトキシベンズアルデヒド（1.5 g、7.0 mmol）、t-ブタノール（140 ml）、2-メチル-2-ブテン（50 ml、46.9 mmol）を混合し、この溶液に亜塩素酸ナトリウム（1.0. 4.2 g、9.1 mmol）、リン酸二水素ナトリウム二水和物（1.4. 2 g、9.1 mmol）および水（70 ml）を混合して調製した溶液を滴下し、室温で16時間攪拌した。1N水酸化ナトリウム水溶液（50 ml）を加えてt-ブタノールを減圧留去した後に、濃塩酸を加えて酸性にし、析出した結晶を濾取しヘキサンで洗浄した。得られた結晶を酢酸エチル（200 ml）に溶かし、この溶液を、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより3-ブロモ-4-メトキシ安息香酸（1.0. 5 g、65%）を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 12.9(1H, bs), 8.06(1H, s), 7.94(1H, d, J=8.5Hz), 7.20(1H, d, J=8.5Hz), 3.93(3H, s).
FABMS (m/z) : 232[M⁺ H⁺] (800), 233(90), 231(100).

参考例 3 2

3-ブロモ-4-メトキシ安息香酸（8. 75 g、37. 9 mmol）、トルエン（80 ml）、酢酸エチル（20 ml）、塩化メチレン（20 ml）およびDMF 1滴を混合し、この溶液に塩化チオニル（6. 5 ml、9.0 mmol）を加えて70℃で0. 5時間攪拌した。反応溶液を減圧濃縮した後にトルエンを加

え、さらに減圧濃縮して得られた残渣に塩化メチレン（160ml）を加えてこの溶液を0°Cに冷却した。2-アミノ-2-メチル-1-プロパノール（7.64ml、80mmol）を滴下し、室温で14時間攪拌した後、析出した結晶を濾別後、減圧濃縮して得られた残渣を酢酸エチル（200ml）を加えて希釈し、この溶液を1N塩酸（50ml）で洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣と塩化メチレン（150ml）を混合し、氷冷下塩化チオニル（10.9ml、150mmol）を加えて室温で2時間攪拌した。この反応溶液に、水（13ml）および50%水酸化ナトリウム水溶液（40ml）を氷冷下順次加え水層を酢酸エチル（100ml）で3回抽出した。有機層を合わせて飽和食塩水（100ml）で2回洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル=2/1～1/2）を用いて精製することにより、2-(3-ブロモ-4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール（7.10g、66%）を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 8.15(1H, s), 7.85(1H, d, J=8.5Hz), 6.90(1H, d, J=8.5Hz), 4.09(2H, s), 3.93(3H, s), 1.37(6H, s).
FABMS (m/z) : 285[M⁺ H⁺] (200), 286(90), 284(100).

参考例3 3

2-(3-ブロモ-4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール（2.1g、7.4mmol）とTHF（15ml）を混合し、この溶液を-78°Cに冷却した後、n-ブチルリチウムのヘキサン溶液（1.6M）を4.75ml（7.6mmol）加え2時間攪拌した。DMF（1.16ml、15mmol）を加えて20分間攪拌した後、水（20ml）を加えて反応停止、水層を酢酸エチル（20ml）で2回抽出、有機層を合わせて飽和食塩水（30ml）で洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサ

ン／酢酸エチル=3／1～1／3)を用いて精製することにより、5-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-2-メトキシベンズアルデヒド(0.71g、41%)を無色透明結晶として得た。

¹H-NMR(CDC1₃) δ: 8.36(1H, d, J=2.3Hz), 8.15(1H, dd, J=8.8, 2.3Hz), 7.01(1H, d, J=8.8Hz), 4.09(2H, s), 3.97(3H, s), 1.37(6H, s).

参考例3 4

ペンチルトリフェニルホスホニウムブロミド(1.17g、2.83mmol)とエーテル(5ml)を混合し、この溶液にn-ブチルリチウムのヘキサン溶液(1.6M)を1.77ml(2.83mmol)加え室温で2時間攪拌した。この溶液に5-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-2-メトキシベンズアルデヒド(600.8mg、2.58mmol)のTHF溶液(3ml)を加えて1.5時間攪拌した後、水(5ml)を加えて反応停止、水層を酢酸エチル(5ml)で3回抽出、有機層を合わせて飽和食塩水(20ml)で2回洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン／酢酸エチル=2／1)を用いて精製することにより、2-[3-(1-ヘキセニル)-4-メトキシフェニル]-4,4-ジメチル-4,5-ジヒドロオキサゾール(583.3mg、79%)を幾何異性体比1：1の混合物(無色油状物質)として得た。

¹H-NMR(CDC1₃)

E-isomer

δ: 7.99(1H, s), 7.75(1H, d, J=8.4Hz), 6.87(1H, d, J=8.4Hz), 6.66(1H, d, J=15.9Hz), 6.32(1H, dt, J=15.9, 6.9Hz), 4.08(2H, s), 3.87(3H, s), 2.28-2.18(2H, m), 1.51-1.26(10H, m, involving a singlet at 1.37), 0.87(3H, t, J=7.2Hz).

Z-isomer

δ : 7.83(1H, d, J=8.4Hz), 7.77(1H, s), 6.84(1H, d, J=8.4Hz),
 6.44(1H, d, J=11.7Hz), 5.75(1H, dt, J=11.7, 7.26Hz), 4.08(2H, s),
 3.86(3H, s), 2.30-2.21(2H, m), 1.51-1.30(4H, m), 0.92(3H, t, J=7.5Hz).

参考例 3 5

2 - [3 - (1 - ヘキセニル) - 4 - メトキシフェニル] - 4, 4 - ジメチル - 4, 5 - ジヒドロオキサゾール (583mg、2.03mmol) に 6N 塩酸 (20ml) を加え 4 時間加熱還流した。この溶液に飽和食塩水 (30ml) を加えて水層を酢酸エチル (50ml) で 3 回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー (ヘキサン／酢酸エチル = 2 / 1) を用いて精製することにより、3 - (1 - ヘキセニル) - 4 - メトキシ安息香酸 (164.3mg、35%) を幾何異性体比 1 : 1 の混合物 (無色結晶) として得た。

¹H-NMR (CDC13)

E-isomer

δ : 8.17(1H, d, J=2.13Hz), 7.95(1H, dd, J=8.31, 2.13Hz),
 6.92(1H, d, J=8.31Hz), 6.67(1H, d, J=16.0Hz),
 6.32(1H, dt, J=16.0, 6.95Hz), 3.92(3H, s), 2.30-2.21(2H, m),
 1.51-1.30(4H, m), 0.89(3H, t, J=7.18Hz).

Z-isomer

δ : 8.02(1H, dd, J=8.66, 2.18Hz), 8.00(1H, d, J=2.13Hz),
 6.89(1H, d, J=8.66Hz), 6.47(1H, d, J=11.6Hz),
 5.79(1H, dt, J=11.6, 7.36Hz), 3.91(3H, s), 2.30-2.21(2H, m),
 1.51-1.30(4H, m), 0.93(3H, t, J=7.28Hz).

参考例 3 6

3 - (1 - ヘキセニル) - 4 - メトキシ安息香酸 (160mg、0.683mmol) とエタノール (7ml) を混合し、この溶液に 10% パラジウム - 炭素触媒 (30mg) を加えて水素気流下室温で 3 時間攪拌した。パラジウム - 炭素

触媒を濾別後、減圧濃縮して得られた残渣をヘキサンで洗浄して精製することにより、3-ヘキシル-4-メトキシ安息香酸（116mg、72%）を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.97(1H, d, J=8.63Hz), 7.88(1H, s), 6.88(1H, d, J=8.63Hz), 3.89(3H, s), 2.63(2H, t, J=7.72Hz), 1.67-1.50(2H, m), 1.42-1.21(6H, m), 0.89(3H, t, J=6.88Hz).

FABMS (m/z) : 237[M⁺ H⁺] (100), 236(90), 219(80).

参考例3 7

3-ヘキシル-4-メトキシ安息香酸の粗生成物とメタノール（4ml）を混合し、この溶液に濃硫酸2滴を加えて20時間加熱還流した。水（10ml）を加えてメタノールを減圧留去した後に水層を酢酸エチル（20ml）で3回抽出、有機層を合わせて飽和食塩水（20ml）で3回洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル=10/1）を用いて精製することにより、3-ヘキシル-4-メトキシ安息香酸メチルエステル（9.6. 2g）を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.88(1H, dd, J=8.55, 2.20Hz), 7.82(1H, d, J=2.20Hz), 6.84(1H, d, J=8.55Hz), 3.90(3H, s), 3.87(3H, s), 2.61(2H, t, J=7.74Hz), 1.65-1.50(2H, m), 1.42-1.24(4H, m), 0.88(3H, t, J=6.89Hz).

FABMS (m/z) : 251[M⁺ H⁺] (100), 219(45), 179(45).

参考例3 8

アルゴン気流下3-ヘキシル-4-メトキシ安息香酸メチルエステル（9.3. 2mg、0.372mmol）とTHF（2ml）を混合し、この溶液に氷冷下LAH（1.9mg、0.5mmol）を加えて1時間攪拌した。この反応溶液に水（0.019ml）、1N水酸化ナトリウム水溶液（0.019ml）および水（0.06ml）を順次滴下し、エーテル（20ml）を加えて1時間激しく

攪拌した後、無機塩を濾別後減圧濃縮することにより(3-ヘキシル-4-メトキシフェニル)メタノールの粗生成物を得た。このものを精製することなく次の反応に用いた。

参考例 3 9

アルゴン気流下(3-ヘキシル-4-メトキシフェニル)メタノールの粗生成物とDMSO(1.5m1)およびトリエチルアミン(0.46m1, 3.3mmol)を混合し、この溶液に氷冷下、三酸化硫黄-ピリジン複合体(159mg, 1mmol)を加えた後室温で1時間攪拌した。この反応溶液を水(20m1)に注いで反応を停止し、水層を酢酸エチル(20m1)で3回抽出した。有機層を2N塩酸(20m1)、水(20m1)および飽和食塩水(30m1)で順次洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)を用いて精製することにより、3-ヘキシル-4-メトキシベンズアルデヒド(75.4mg, 2 steps 92%)を無色油状物質として得た。

¹H-NMR(CDC13) δ : 9.87(1H, s), 7.72(1H, d, J=8.1Hz),
7.69(1H, s), 6.94(1H, d, J=8.1Hz), 3.91(3H, s), 2.64(2H, t, J=7.7Hz),
1.70-1.46(2H, m), 1.42-1.23(6H, m), 0.89(3H, t, J=6.9Hz).

FABMS(m/z) : 221[M⁺ H⁺] (100), 149(30).

参考例 4 0

3-ヘキシル-4-メトキシベンズアルデヒド(70mg, 0.318mmol)、THF(1.5m1)およびメチル(トリフェニルホスホラニリデン)アセタート(201mg, 0.6mmol)を混合し、この溶液を5時間加熱還流した。THFを減圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)を用いて精製することにより3-(3-ヘキシル-4-メトキシフェニル)桂皮酸メチルエステル(84mg, 96%)を無色結晶として得た。

¹H-NMR(CDC13) δ : 7.64(1H, d, J=15.6Hz),

7.34(1H, d, J=8.4Hz), 7.32(1H, s), 6.93(1H, d, J=8.4Hz),
 6.30(1H, d, J=15.6Hz), 3.85(3H, s), 3.79(3H, s), 2.59(2H, t, J=7.7Hz),
 1.64-1.50(2H, m), 1.42-1.21(6H, m), 0.97-0.83(3H, m).

FABMS (m/z) : 277[M+ H⁺] (60), 276(100), 245(60).

参考例 4 1

3-(3-ヘキシル-4-メトキシフェニル)桂皮酸メチルエステル(8.0mg、0.29mmol)、エタノール(1ml)および1N水酸化ナトリウム水溶液(1ml)を混合し、この溶液を1.5時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて溶液を酸性にし、酢酸エチル(5ml)を加えて析出した結晶を溶解させて有機層を分離した後、水層を酢酸エチル(5ml)で2回抽出、有機層を合わせて飽和食塩水(8ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルから再結晶して3-(3-ヘキシル-4-メトキシフェニル)桂皮酸(5.8mg、76%)を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.73(1H, d, J=15.9Hz),
 7.37(1H, d, J=8.1Hz), 7.35(1H, s), 6.84(1H, d, J=8.1Hz),
 6.56(1H, d, J=15.9Hz), 2.60(2H, t, J=8.0Hz), 1.73-1.50(2H, m),
 1.43-1.22(6H, m), 0.89(3H, t, J=6.6Hz).

FABMS (m/z) : 263[M+ H⁺] (60), 262(100), 191(40).

参考例 4 2

プロモアセチルブロミド(7.73g、0.0383mol、1.0eq)を二硫化炭素(35ml)に溶解し、冰塩で冷却した後に無水塩化アルミニウム(10.2g、0.077mol、2.0eq)、2-ペンチルオキシフェノール(6.9g、0.0383mol、1.0eq)を順次加え、1時間攪拌した。更に室温で4時間攪拌した後に氷冷下、水(10ml)、希塩酸(10ml)を注意深く加えた。この反応溶液をエーテル(10ml)で2回抽出した後、有機層をあわせて飽和食塩水(30ml)で洗浄し、無水硫酸ナトリウムで乾燥した。

乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー（n-ヘキサン／酢酸エチル=5/1）を用いて精製することにより、1-(4-ヒドロキシ-3-ペンチルオキシフェニル)-2-ブロモエタノン(6.58g、57.0%)を得た。

¹H-NMR(CDC1₃) δ: 7.55(1H, d, J=8.1Hz), 7.54(1H, s), 6.97(2H, d, J=8.1Hz), 6.19(1H, s), 4.40(2H, s), 4.12(2H, t, J=6.6Hz), 1.9-1.8(2H, m), 1.5-1.4(4H, m), 0.94(3H, t, J=7.0Hz).

FABMS(m/z): 302[M⁺ H⁺] (80), 301(85).

参考例4 3

水酸化ナトリウム(680mg)、水(2ml)、アンチホルミン(34ml)の溶液を55℃まで昇温し、1-(4-ヒドロキシ-3-ペンチルオキシフェニル)-2-ブロモエタノン(3.01g、0.01mol、1.0eq)を加え、60℃～70℃で40分間攪拌した。これにチオ硫酸ナトリウム(1.2g)の水溶液(10ml)を加え、室温まで冷却した後に濃塩酸(5ml)を加えてpHを5～6にした。この反応溶液に、水(50ml)を加え、酢酸エチル(100ml)で2回抽出した後、有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン／酢酸エチル／酢酸=2/1/0.01)を用いて精製することにより、4-ヒドロキシ-3-ペンチルオキシ安息香酸(1.24g、55.3%)を得た。

¹H-NMR(CDC1₃) δ: 8.0-6.8(3H, m), 6.3(1H, bs), 4.2-4.0(2H, m), 2.0-1.8(2H, m), 1.6-1.4(4H, m), 0.9(3H, t, J=7.5Hz).
FABMS(m/z): 225[M⁺ H⁺] (80), 207(50).

参考例4 4

3-ヒドロキシ-4-メトキシ安息香酸(9.6g、0.057mol)をDMF(90ml)に溶解し、この溶液に1-ブロモペンタン(25.9g、0.17mol、3.0eq)と無水炭酸カリウム(47.4g、0.34mol、

6. 0 eq) を順次加えた後、90°Cで3時間加熱攪拌した。この反応溶液を室温まで冷却し、無水炭酸カリウムを濾別した後、濾液に水(200ml)を加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(300ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル=15/1~10/1)を用いて精製することにより、ペンチル 4-メトキシ-3-ペンチルオキシベンゾエート(17.4g, 98.8%)を無色油状物質として得た。

¹H-NMR(CDC13) δ : 7.7(1H, dd, J=9, 3Hz),
7.6(1H, d, J=3Hz), 6.9(1H, d, J=9Hz), 4.3(2H, t, J=9Hz),
4.1(2H, t, J=8Hz), 3.9(3H, s), 2.0-1.7(4H, m), 1.5-1.3(8H, m),
0.9(6H, t, J=8.0Hz).

FABMS(m/z) : 309[M⁺ H⁺] (80), 308(100), 239(42).

IR(Neat, cm⁻¹) : 2956, 1712.

元素分析: C₁₈H₂₈O₄

理論値 C 70.10, H 9.15

分析値 C 70.19, H 9.25

参考例45

ペンチル 4-メトキシ-3-ペンチルオキシベンゾエート(17.4g, 0.056mol)をメタノール(85ml)に溶解し、1N水酸化ナトリウム水溶液(85ml, 0.085mol, 1.5eq)を加え、1.5時間加熱還流した。この反応溶液を室温まで冷却した後n-ヘキサン(100ml)で洗浄し、水層に氷冷下10%塩酸水溶液(約120ml)を加え酸性にした。これを酢酸エチル(220ml)で2回抽出し、有機層をあわせて飽和食塩水(400ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシ-3-ペンチルオキシ安息香酸(10.7g, 79.6%)を無色結晶として得た。

融点：124.6～125.0℃

¹H-NMR (CDCl₃) δ : 7.76(1H, d, J=2.1Hz),
7.60(1H, dd, J=8.6, 2.1Hz), 6.92(1H, d, J=8.6Hz), 4.08(2H, t, J=7.0Hz),
4.05(3H, s), 2.1-1.8(2H, m), 1.6-1.3(4H, m), 0.94(3H, t, J=7.2Hz).

FABMS (m/z) : 239[M⁺ H⁺] (80), 238(100), 168(57).

IR (KBr, cm⁻¹) : 3432, 2951, 1678.

元素分析 : C₁₃H₁₈O₄

理論値 C 65.53, H 7.61

分析値 C 65.65, H 7.74

参考例 4 6

3-ヒドロキシ-4-メトキシ桂皮酸 (9.7 g、0.050 mol、1.0 eq) をDMF (90 ml) に溶解し、この溶液に1-ブロモペンタン (22.7 g、0.150 mol、3.0 eq) と無水炭酸カリウム (41.5 g、0.30 mol、6.0 eq) を順次加えた後、90℃で3時間加熱攪拌した。この反応溶液を室温まで冷却し、無水炭酸カリウムを濾別した後、濾液に水 (200 ml) を加え、酢酸エチル (200 ml) で2回抽出した。有機層をあわせて飽和食塩水 (300 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 15/1 ~ 10/1) を用いて精製することにより、ペンチル4-メトキシ-3-ペンチルオキシシンナメート (18.2 g、100%) を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.62(1H, d, J=15.0Hz),
7.08(1H, dd, J=10.3, 1.9Hz), 7.06(1H, d, J=1.9Hz),
6.86(1H, d, J=10.3Hz), 6.30(1H, d, J=15.0Hz), 4.19(2H, t, J=9.0Hz),
4.03(2H, t, J=6.0Hz), 3.89(3H, s), 1.9-1.6(4H, m), 1.5-1.3(8H, m),
1.0-0.9(6H, m).

FABMS (m/z) : 335[M⁺ H⁺] (55), 334(100), 247(62).

I R (Neat, cm^{-1}) : 2954, 1710.

元素分析: $\text{C}_{20}\text{H}_{30}\text{O}_4$

理論値 C 71.82, H 9.04

分析値 C 71.99, H 9.28

参考例 4 7

ペンチル 4-メトキシ-3-ペンチルオキシシンナメート (18.0 g, 0.050 mol) をメタノール (75 ml) に溶解し、1 N 水酸化ナトリウム水溶液 (75 ml, 0.075 mol, 1.5 eq) を加え、1 時間加熱還流した。この反応溶液を室温まで冷却した後、氷冷下、10% 塩酸水溶液 (約 100 ml) を加え酸性にした。これを酢酸エチル (150 ml) で 2 回抽出し、有機層をあわせて飽和食塩水 (300 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシ-3-ペンチルオキシ桂皮酸 (12.2 g, 93%) を無色結晶として得た。

融点: 150.0 ~ 150.3 °C

$^1\text{H-NMR}$ (CDCl_3) δ : 7.73(1H, d, $J=16.0\text{Hz}$),
7.13(1H, dd, $J=8.1, 1.9\text{Hz}$), 7.09(1H, d, $J=1.9\text{Hz}$), 6.88(1H, d, $J=8.1\text{Hz}$),
6.31(1H, d, $J=16.0\text{Hz}$), 4.04(2H, t, $J=6.8\text{Hz}$), 3.91(3H, s),
2.1-1.8(2H, m), 1.5-1.3(4H, m), 0.94(3H, t, $J=7.0\text{Hz}$).

FABMS (m/z): 265 [$\text{M}^+ \text{H}^+$] (62), 264 (100), 247 (40).

I R (KBr, cm^{-1}) : 2934, 1679.

元素分析: $\text{C}_{15}\text{H}_{20}\text{O}_4$

理論値 C 68.16, H 7.63

分析値 C 68.20, H 7.78

参考例 4 8

3, 4-ジヒドロキシ安息香酸 (462 mg, 3 mmol) を DMF (10 ml) に溶解し、この溶液に炭酸カリウム (3.73 g, 27 mmol, 9 eq)

と1-ブロモペンタン(1.70ml、13.5mmol、4.5eq)を順次室温下で加え、110°Cで24時間攪拌した。この反応混合物を濾過し残渣の炭酸カリウムを酢酸エチル(50ml)で洗浄した。濾液を水(15ml×3)および飽和食塩水(15ml)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(ヘキサン/酢酸エチル=95/5)を用いて精製することにより、3,4-ジペンチルオキシ安息香酸ベンチル(912mg、83%)を得た。

¹H-NMR(CDC1₃, 300MHz) δ: 7.66(1H, d, J=8.4, 1.9Hz), 7.57(1H, d, J=1.9Hz), 6.89(1H, d, J=8.4Hz), 4.31(2H, t, J=6.7Hz), 4.07(4H, 2t, J=6.6Hz), 1.90-1.76(6H, m), 1.52-1.38(12H, m), 0.98-0.94(9H, m).

FABMS (+) (m/z) : 465[M + 1] (61),

364[M](100), 295(45), 276(42).

参考例4 9

3,4-ジペンチルオキシ安息香酸ベンチル(911mg、2.50mmol)をメタノール(15.0ml)に溶解し、この溶液に1N水酸化カリウム水溶液(7.5ml、7.5mmol、3eq)を加え、5時間還流攪拌した。この反応混合物に3N塩酸水溶液を加え酸性(pH<2)とした後、クロロホルム(20ml×3)で抽出し、有機層を飽和食塩水(20ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して無色固体を得た。このものを酢酸エチル-ヘキサンから再結晶し3,4-ジペンチルオキシ安息香酸(512mg、70%)を無色結晶として得た。

¹H-NMR(CDC1₃, 300MHz) δ: 7.71(1H, dd, J=8.4, 2.0Hz), 7.58(1H, d, J=2.0Hz), 6.88(1H, d, J=8.4Hz), 4.06(2H, t, J=6.6Hz), 4.04(2H, t, J=6.6Hz), 1.87-1.79(4H, m), 1.49-1.35(8H, m), 0.95-0.90(6H, m).

FABMS (+) (m/z) : 295[M + 1] (52),

294[M](80), 277(29), 224(32).

参考例 5 0

3-ヒドロキシ-4-ニトロ安息香酸（5 g、27.4 mmol）、DMF（40 ml）、炭酸カリウム（13.8 g、100 mmol）およびペンチルプロミド（8.7 ml、70 mmol）を混合し、この溶液を100°Cで1.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去した。得られた残渣に酢酸エチル（100 ml）を加えて飽和食塩水（30 ml）で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣にエタノール（150 ml）および10%パラジウム-炭素触媒（0.5 g）を加えて水素気流下室温で5.5時間攪拌した。パラジウム-炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン/酢酸エチル=5/1）を用いて精製することにより4-アミノ-3-ペンチルオキシ安息香酸ペンチルエステル（5.72 g、2 steps 70%）を淡黄色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.53(1H, dd, J=8.2, 1.7Hz), 7.44(1H, d, J=1.7Hz), 6.66(1H, d, J=8.2Hz), 4.26(2H, t, J=6.7Hz), 4.20(2H, bs), 4.05(2H, t, J=6.5Hz), 1.86-1.65(4H, m), 1.50-1.30(8H, m), 1.0-0.85(6H, m).

FABMS (m/z) : 294[M+ H⁺] (80), 224(50), 206(50).

参考例 5 1

4-アミノ-3-ペンチルオキシ安息香酸ペンチルエステル（1 g、3.41 mmol）、アセトン（5 ml）、炭酸カリウム（0.83 g、6 mmol）およびヨウ化メチル（4 ml）を混合し、この溶液を9時間加熱還流した。反応溶液を濾過して無機塩を濾別し、アセトンを減圧留去して得られた残渣にエタノール（10 ml）および1N水酸化ナトリウム水溶液（10 ml）を加えて2.5時間加熱還流した後エタノールを減圧留去した。濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル（20 ml）で3回抽出、有機層を合わせて飽和食

塩水（20ml）で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル=1/1）を用いて精製することにより4-ジメチルアミノ-3-ペンチルオキシ安息香酸（146mg、2 steps 17%）を淡黄色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.68(1H, dd, J=8.1, 1.5Hz),
7.53(1H, d, J=1.8Hz), 6.85(1H, d, J=8.1Hz), 4.06(2H, t, J=6.8Hz),
2.93(6H, s), 1.93-1.80(2H, m), 1.50-1.30(4H, m), 0.94(3H, t, J=7.2Hz).
FABMS (m/z) : 252[M⁺ H⁺] (100), 181(30).

参考例 5 2

4-メトキシ-3-ニトロ安息香酸（5g、25.4mmol）、DMF（30ml）、炭酸カリウム（5.53g、40mmol）およびペンチルブロミド（4ml、32.3mmol）を混合し、この溶液を100°Cで1.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去した。得られた残渣に酢酸エチル（100ml）を加えて飽和食塩水（30ml）で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣にエタノール（150ml）および10%パラジウム-炭素触媒（0.5g）を加えて水素気流下室温で5.5時間攪拌した。パラジウム-炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー（ヘキサン／酢酸エチル=3/1）を用いて精製することにより3-アミノ-4-メトキシ安息香酸（5.98g、2 steps 99%）を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.48(1H, dd, J=8.3, 1.9Hz),
7.38(1H, d, J=2.1Hz), 6.79(1H, d, J=8.3Hz), 4.26(2H, t, J=6.7Hz),
4.09(3H, s), 3.86(2H, bs), 1.78-1.66(2H, m), 1.47-1.29(4H, m),
0.93(3H, t, J=7.1Hz).

FABMS (m/z) : 238[M⁺ H⁺] (60), 237(100).

参考例 5 3

3-アミノ-4-メトキシ安息香酸（1.53g、6.45mmol）、DM

F(1.5 ml)、炭酸カリウム(2.07 g、1.5 mmol)およびペンチルブロミド(1.86 ml、1.5 mmol)を混合し、この溶液を100°Cで10.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)を用いて精製することにより4-メトキシ-3-ペンチルアミノ安息香酸ペンチルエステル(1.32 g、67%)および3-ジメチルアミノ-4-メトキシ安息香酸ペンチルエステル(334 mg、14%)をそれぞれ無色油状物質として得た。

4-メトキシ-3-ペンチルアミノ安息香酸ペンチルエステル

¹H-NMR(CDCl₃) δ: 7.41(1H, dd, J=8.1, 2.1Hz), 7.24(1H, d, J=2.1Hz), 6.75(1H, d, J=8.1Hz), 4.27(2H, t, J=6.6Hz), 4.20(1H, bs), 3.90(3H, s), 3.17(2H, t, J=7.2Hz), 1.82-1.62(4H, m), 1.5-1.3(8H, m), 0.93(3H, t, J=7.2Hz).

FABMS(m/z): 308[M⁺ H⁺] (50), 307(100), 250(50).

3-ジメチルアミノ-4-メトキシ安息香酸ペンチルエステル

¹H-NMR(CDCl₃) δ: 7.67(1H, dd, J=8.5, 2.1Hz), 7.66(1H, d, J=2.0Hz), 6.84(1H, d, J=8.5Hz), 4.28(2H, t, J=6.7Hz), 3.89(3H, s), 3.08(4H, t, J=7.7Hz), 1.80-1.70(2H, m), 1.5-1.18(16H, m), 0.93(3H, t, J=7.1Hz), 0.86(3H, t, J=7.0Hz).

FABMS(m/z): 378[M⁺ H⁺] (100), 320(100), 264(40).

参考例 5 4

4-メトキシ-3-ペンチルアミノ安息香酸ペンチルエステル(500 mg、1.63 mmol)にエタノール(3 ml)および1N水酸化ナトリウム水溶液(3 ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を中和した後、水層を酢酸エチル(5 ml)で3回抽出、有機層を合わせて飽和食塩水(5 ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた粗結晶をヘキサンで洗浄して精製するこ

とにより 4-メトキシ-3-ペンチルアミノ安息香酸 (35.6 mg、71%) を無色結晶として得た。

¹H-NMR (CDCl₃) δ : 7.51(1H, dd, J=8.1, 2.1Hz), 7.29(1H, d, J=2.1Hz), 6.78(1H, d, J=8.1Hz), 3.92(3H, s), 3.18(2H, t, J=7.2Hz), 1.75-1.6(2H, m), 1.5-1.3(4H, m), 0.93(3H, t, J=6.5Hz).

FABMS (m/z) : 238[M⁺ H⁺] (80), 180(70).

参考例 5 5

(4-ヒドロキシフェニル) アセトニトリル (12.6 g、0.094 mol、1eq) をDMF (60 ml) に溶解し、この溶液にベンジルブロミド (12.4 ml、0.104 mol、1.1 eq) と無水炭酸カリウム (19.6 g、0.14 mol、1.5 eq) を順次加えた後、90°Cで1.5時間加熱攪拌した。この反応溶液を室温まで冷却し、水 (200 ml) を加え、エチルエーテル (400 ml) で2回抽出した。有機層をあわせて飽和食塩水 (800 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、エチルエーテルより再結晶し、4-ベンジルオキシフェニルアセトニトリル (11.1 g、52.7%) を無色針状晶として得た。

融点: 67.9 ~ 68.2°C

¹H-NMR (CDCl₃) δ : 7.5-7.3(5H, m), 7.23(2H, d, J=8.7Hz), 6.97(2H, d, J=8.7Hz), 5.06(2H, s), 3.67(2H, s).

FABMS (m/z) : 223[M⁺ H⁺] (40).

IR (KBr, cm⁻¹) : 3438, 2247, 1615, 1514, 1247, 1014.

元素分析: C₁₅H₁₃NO₄

理論値 C 80.69, H 5.87, N 6.27

分析値 C 80.48, H 5.83, N 6.33

参考例 5 6

LAH (2.82 g、0.15 mol、1.5 eq) をTHF (50 ml) に

溶解し、この溶液に氷冷下で、4-ベンジルオキシフェニルアセトニトリル(1.1g、0.05mol、1.0eq)のTHF溶液(50ml)を滴下した。滴下終了後、1.5時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液(約40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1)を用いて精製することにより、2-(4-ベンジルオキシフェニル)エチルアミン(2.02g、17.9%)を無色針状晶として得た。融点：58.7～59.6°C

¹H-NMR(CDCl₃) δ: 7.5-7.3(5H, m), 7.11(2H, d, J=8.6Hz), 6.92(2H, d, J=8.6Hz), 5.04(2H, s), 2.93(2H, t, J=6.8Hz), 2.69(2H, t, J=6.8Hz), 1.57(2H, bs).

FABMS(m/z) : 228[M⁺ H⁺] (40).

IR(KBr, cm⁻¹) : 3360, 2864, 1611, 1513, 1248.

参考例5 7

3-ヒドロキシフェニルアセトニトリル(834mg、6.26mmol)をDMF(10ml)に溶解し、この溶液にベンジルブロミド(0.82ml、6.89mmol、1.1eq)と無水炭酸カリウム(1.30g、9.40mmol、1.5eq)を順次加えた後、9.0°Cで1.5時間加熱攪拌した。この反応溶液を室温まで冷却し、水(20ml)を加え、酢酸エチル(40ml)で2回抽出した。有機層をあわせて飽和食塩水(80ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)を用いて精製することにより、(3-ベンジルオキシフェニル)アセトニトリル(1.21g、86.8%)を得た。

¹H-NMR(CDCl₃) δ: 7.5-7.3(6H, m), 7.0-6.9(3H, m), 5.09(2H, s), 3.72(2H, s).

参考例5 8

L A H (0. 615 g、0. 0162 mol、3. 0 eq) を THF (20 ml) に溶解し、この溶液に氷冷下で、(3-ベンジルオキシフェニル)アセトニトリル (1. 2 g、0. 0054 mol、1. 0 eq) の THF 溶液 (20 ml) を滴下した。滴下終了後、3時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液 (約 30 ~ 40 ml) を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー (クロロホルム/メタノール = 10/1) を用いて精製することにより、2-(3-ベンジルオキシフェニル)エチルアミン (0. 434 g、35. 3%) を淡黄色アモルファスとして得た。

¹H-NMR (CDCl₃) δ : 7.5-7.2(6H, m), 6.8-6.7(3H, m), 5.09(2H, s), 2.95(2H, t, J=7.0Hz), 2.70(2H, t, J=7.0Hz), 2.01(2H, bs).
FABMS (m/z) : 228[M⁺ H⁺] (90).

参考例 5 9

2-(3-ベンジルオキシフェニル)エチルアミン (434 mg、1. 91 mol、1. 0 eq) の THF (10 ml) 溶液に 10% パラジウム-炭素触媒 (水分含量 50%) (86 mg) を加えた後、水素気流下、3時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(3-ヒドロキシフェニル)エチルアミン (250 mg、95. 5%) を得た。

¹H-NMR (CDCl₃) δ : 8.26(1H, bs), 7.1-6.9(1H, m), 6.7-6.6(1H, m), 6.6-6.4(2H, m), 2.7-2.6(2H, m), 2.6-2.5(2H, m), 3.5(2H, bs).

FABMS (m/z) : 138[M⁺ H⁺] (30).

参考例 6 0

(2-ヒドロキシフェニル)アセトニトリル (1. 01 g、0. 0076 mol) を DMF (10 ml) に溶解し、この溶液にベンジルブロミド (0. 90 ml、0. 0076 mol、1. 0 eq) と無水炭酸カリウム (2. 1 g、0. 015 mol、3. 0 eq) を順次加えた後、90°Cで 1. 5 時間加熱攪拌した。

この反応溶液を室温まで冷却し、水（10ml）を加え、酢酸エチル（30ml）で2回抽出した。有機層をあわせて飽和食塩水（60ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、（2-ベンジルオキシフェニル）アセトニトリル（2.04g、100%）を無色固体として得た。

参考例6 1

LAH（1.04g、0.0273mol、3.0eq）をTHF（25ml）に溶解し、この溶液に氷冷下で、（2-ベンジルオキシフェニル）アセトニトリル（2.04g、0.0091mol、1.0eq）のTHF溶液（25ml）を滴下した。滴下終了後、室温で15分攪拌後、2時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液（約30~40ml）を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー（クロロホルム/メタノール=5/1）を用いて精製することにより、2-(2-ベンジルオキシフェニル)エチルアミン（0.415g、20.0%）を淡黄色アモルファスとして得た。

FABMS (m/z) : 228[M⁺ H⁺] (100).

参考例6 2

2-(2-ベンジルオキシフェニル)エチルアミン（415mg、1.826mmol、1.0eq）のTHF（10ml）溶液に10%パラジウム-炭素触媒（水分含量50%）（42mg）を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(2-ヒドロキシフェニル)エチルアミン（230mg、91.8%）を得た。

参考例6 3

3-(4-ヒドロキシフェニル)プロピオニトリル（1.47g、0.01mol）をDMF（24ml）に溶解し、この溶液にベンジルブロミド（1.31ml、0.011mol、1.1eq）と無水炭酸カリウム（4.15g、0.030mol、3.0eq）を順次加えた後、90°Cで3時間加熱攪拌した。この反応溶液を室温まで冷却し、水（100ml）を加え、酢酸エチル（100ml）

1)で2回抽出した。有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-(4-ベンジルオキシフェニル)プロピオニトリル(2.39g、100%)を無色固体として得た。

参考例 6 4

LAH(570mg、0.015mol、1.5eq)をTHF(30ml)に溶解し、この溶液に氷冷下で、3-(4-ベンジルオキシフェニル)プロピオニトリル(2.37g、0.01mol、1.0eq)のTHF溶液(50ml)を滴下した。滴下終了後、室温で2時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1~5/1)を用いて精製することにより、3-(4-ベンジルオキシフェニル)プロピルアミン(1.2g、49.7%)を淡黄色アモルファスとして得た。

¹H-NMR(CDC13) δ: 7.4-7.3(5H, m), 7.10(2H, d, J=8.6Hz), 6.90(2H, d, J=8.6Hz), 5.04(2H, s), 3.48(2H, s), 2.72(2H, d, J=7.1Hz), 2.60(2H, t, J=7.7Hz), 1.8-1.7(2H, m).

FABMS(m/z): 242[M⁺ H⁺] (100).

参考例 6 5

3-(4-ベンジルオキシフェニル)プロピルアミン(620mg、2.57mmol、1.0eq)のTHF(10ml)溶液に10%パラジウム-炭素触媒(水分含量50%) (120mg)を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、3-(4-ヒドロキシフェニル)プロピルアミン(354mg、91.1%)を得た。

¹H-NMR(CDC13) δ: 7.0(2H, d, J=9Hz), 6.7(2H, d, J=9Hz), 3.0(3H, bs), 2.7(2H, t, J=7.5Hz), 2.6(2H, t, J=7.5Hz), 1.8-1.7(2H, m).

FABMS(m/z): 152[M⁺ H⁺] (100).

参考例 6 6

LAH (570 mg、0.015 mol、1.5 eq) を THF (30 ml) に溶解し、この溶液に氷冷下で、4-ベンジルオキシベンゾニトリル (2.09 g、0.01 mol、1.0 eq) の THF 溶液 (30 ml) を滴下した。滴下終了後、室温まで昇温させた後、3時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液 (約 30 ~ 40 ml) を加え、セライト濾過の後、濾液を減圧濃縮して 4-ベンジルオキシベンジルアミン (2.03 g、95.1%) を淡黄色アモルファスとして得た。

¹H-NMR (CDCl₃) δ : 7.4-7.3(5H, m), 7.22(2H, d, J=8.6Hz), 6.94(2H, d, J=8.6Hz), 5.05(2H, s), 3.80(2H, s), 1.50(2H, s).
FABMS (m/z) : 214[M⁺ H⁺] (60), 197(100).

参考例 6 7

4-ベンジルオキシベンジルアミン (530 mg、2.485 mmol、1.0 eq) の THF (10 ml) 溶液に 10% パラジウム-炭素触媒 (水分含量 50%) (50 mg) を加えた後、水素気流下、3時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 1/1) を用いて精製することにより、4-ヒドロキシベンジルアミン (260 mg、85.0%) を得た。

¹H-NMR (CDCl₃) δ : 7.1(2H, d, J=9Hz), 6.77(2H, d, J=9Hz), 3.8(2H, s), 2.9(3H, bs).

FABMS (m/z) : 124[M⁺ H⁺] (80).

参考例 6 8

2-(4-ヒドロキシフェニル)エチルアミン (1.37 g、10.0 mmol、1.0 eq) を酢酸 (10 ml) に溶解し、二酸化白金触媒 (137 mg) を加えた後、水素気流下、3 kgf/cm²、70°Cで5時間攪拌した。反応溶液をセライト濾過し、触媒をトルエンで洗浄した後、濾液を減圧濃縮して、2-(4-ヒドロキシシクロヘキシル)エチルアミン (1.8 g) を得た。

¹H-NMR (CDCl₃) δ : 8.76(1H, bs), 3.9(0.5H, bs),
3.6-3.5(0.5H, m), 3.0-2.8(4H, m), 2.2-0.8(9H, m).

FABMS (m/z) : 144[M⁺ H⁺] (20), 128(100).

参考例 6 9

LAH (1. 90 g、50 mmol) をジエチルエーテル (150 ml) に懸濁し、室温下3-ピリジルアセトニトリル (5. 91 g、50 mmol、1. 0 eq) のジエチルエーテル (150 ml) 溶液を加えた。室温で14時間攪拌後、この反応溶液に水 (1. 9 ml)、15%水酸化ナトリウム水溶液 (1. 9 ml) および水 (5. 7 ml) を順次加えた。生じた沈殿をセライト滤過しジエチルエーテルで洗浄した後滤液を減圧濃縮した。得られた残渣を、カラムクロマトグラフィー (クロロホルム/メタノール=30/1～クロロホルム/メタノール/トリエチルアミン=8/2/0.1) に付し、2-(3-ピリジル)エチルアミン (2. 39 g、39%) を無色油状物質として得た。

¹H-NMR (CDCl₃, 300 MHz) δ :
8.48-8.46(2H, m), 7.55-7.52(1H, m), 7.25-7.16(1H, m),
2.99(2H, t, J=7.5Hz), 2.76(2H, t, J=7.5Hz).

FABMS (+) (m/z) : 123[M + 1] (100).

参考例 7 0

4-ビニルピリジン (5. 26 ml、50 mmol) と塩化アンモニウム (5. 35 g、100 mmol、2. 0 eq) をメタノール (2. 5 ml) および水 (1. 5 ml) に溶解し、23時間還流攪拌した。この反応溶液を氷水にあけ、1.5%水酸化ナトリウム水溶液で強塩基とした後クロロホルム (50 ml) で3回抽出した。有機層をあわせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を滤別後、減圧濃縮して、得られた残渣を、減圧蒸留することにより、2-(4-ピリジル)エチルアミン (①) (1. 80 g、30%; 87°C/6 mmHg) を無色油状物質として得た。また、蒸留残渣をカラムクロマト (クロロホルム/メタノール=30/1～9/1) に付し、ビス [2-(4-ピリジル)

エチル] アミン (②) (1. 11 g、 20%) を淡黄色油状物質として得た。

①: $^1\text{H-NMR}$ (CDCl₃, 300 MHz) δ :

8.53-8.51(2H, m), 7.15-7.13(2H, m), 3.04-2.98(2H, m),
2.75(2H, t, J=8.4Hz).

FABMS (+) (m/z) : 123[M + 1] (100).

②: $^1\text{H-NMR}$ (CDCl₃, 300 MHz) δ :

8.47-8.42(4H, m), 7.11-7.09(4H, m), 2.95-2.90(4H, m),
2.77(4H, t, J=7.1Hz).

FABMS (+) (m/z) : 228[M + 1] (100).

参考例 7 1

2-ビニルピリジン (5. 26 g、 50 mmol) と塩化アンモニウム (1.34 g、 25.0 mmol、 5.0 eq) をメタノール (2. 5 ml) および水 (1.5 ml) に溶解し、 7時間還流攪拌した。この反応溶液を氷水にあけ、 1.5% 水酸化ナトリウム水溶液で強塩基とした後クロロホルム (5.0 ml) で3回抽出した。有機層をあわせて飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、 減圧濃縮して、 得られた残渣を、 減圧蒸留することにより、 2-(2-ピリジン) エチルアミン (①) (2. 55 g、 42%; 77~78°C/6 mmHg) を無色油状物質として得た。また、 蒸留残渣をカラムクロマト (クロロホルム/メタノール=10/1) に付し、 ピス [2-(2-ピリジル) エチル] アミン (②) (2. 04 g、 36%) を淡黄色油状物質として得た。

①: $^1\text{H-NMR}$ (CDCl₃, 300 MHz) δ :

8.56-8.52(4H, m), 7.60(1H, td, J=7.60, 1.80Hz), 7.17(1H, d, J=7.6Hz),
7.16-7.09(1H, m), 3.12(2H, t, J=6.7Hz), 2.93(2H, t, J=6.7Hz).

FABMS (+) (m/z) : 123[M + 1] (100), 106(45).

②: $^1\text{H-NMR}$ (CDCl₃, 300 MHz) δ :

8.48(2H, d, J=4.8Hz), 7.57(2H, td, J=7.6, 1.7Hz), 7.14(2H, d, J=7.6Hz),
7.12-7.08(2H, m), 3.10-2.96(8H, m), 2.41(1H, brs).

FABMS (+) (m/z) : 228[M + 1] (100), 135(80).

参考例 7 2

2-(4-ヒドロキシフェニル)エチルアミン (5.0 g, 0.0364 mol, 1 eq) を亜酸 (7.7 ml, 2.04 mol, 5.6 eq) に溶解し、この溶液に無水酢酸 (25.4 ml, 0.27 mol, 7.4 eq) を5~15°Cで加えた。室温で3時間攪拌後、この反応溶液に氷冷水 (30 ml) を加え減圧濃縮した。残渣に水 (50 ml) を加え、酢酸エチル (50 ml) で2回抽出した。有機層をあわせて飽和食塩水 (100 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して2-(4-ヒドロキシフェニル)エチル-N-ホルムアミド (6.6 g, 100%) を油状性物質として得た。

$^1\text{H-NMR}$ (CDCl₃) δ : 8.69(1H, s), 8.09(1H, s), 7.41(2H, d, J=8.7 Hz), 6.60(2H, d, J=8.7 Hz), 3.83(2H, t, J=4.9 Hz), 3.51(2H, t, J=4.9 Hz).

FABMS (m/z) : 166(100).

参考例 7 3

LAH (2.14 g, 0.056 mol, 3 eq) をTHF (30 ml) に溶解し、この溶液に氷冷下で、2-(4-ヒドロキシフェニル)エチル-N-ホルムアミド (3.1 g, 0.0188 mol, 1 eq) のTHF溶液 (30 ml) を滴下した。滴下終了後、室温まで昇温させた後、5時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液 (約10~20 ml) を加え、セライト濾過の後、濾液を減圧濃縮して2-(4-ヒドロキシフェニル)エチル-N-メチルアミン (2.81 g, 99.0%) を得た。

$^1\text{H-NMR}$ (CDCl₃) δ : 7.1-6.9(2H, m), 6.7-6.6(2H, m), 4.0(1H, bs), 2.9-2.7(2H, m), 2.7-2.6(2H, m), 2.31(3H, m).

FABMS (m/z) : 152(60), 121(80).

参考例 7 4

(1) 4-メトキシベンズアルデヒド (2 g, 14.7 mmol) にベンゼン (

20 ml) および N, N' -ジメチルエチレンジアミン (1. 56 ml, 1.4. 7 mmol) を加えて、水を除きながら 5 時間加熱還流した後に、ベンゼンを減圧留去することにより 2-(4-メトキシフェニル)-1, 3-ジメチルイミダゾリジンの粗生成物を得た。

(2) 上記粗生成物 (0. 5 g, 2. 42 mmol)、THF (6 ml) および テトラメチルエチレンジアミン (0. 73 ml, 4. 84 mmol) を混合し、この溶液を -78 °C に冷却した後に、n-ブチルリチウム (1. 6 M ヘキサン溶液、3 ml, 4. 84 mmol) を加え、0 °C で 2 時間攪拌した。この溶液を -78 °C に冷却した後、ジ-n-アミルジスルフィド (1. 07 ml, 4. 84 mmol) を加え、室温で 11.5 時間攪拌した。水 (5 ml) を加え、水層を酢酸エチル (5 ml) で 3 回抽出した。有機層を合わせて飽和食塩水 (5 ml) で洗浄した。減圧濃縮して、得られた残渣に 10 % 硫酸水溶液を加えて、2 日間攪拌した。水層を酢酸エチル (10 ml) で 4 回抽出し、有機層を合わせて飽和食塩水 (5 ml) で 2 回洗浄した。減圧濃縮して、得られた残渣をカラムクロマトグラフィー (ヘキサン/酢酸エチル = 20/1 ~ 10/1) を用いて精製することにより 4-メトキシ-3-ペンチルチオベンズアルデヒド (437 mg, 76 %) を淡黄色油状物質として得た。

¹H-NMR (CDCl₃, 300 MHz) δ : 9.87(1H, s), 7.74(1H, d, J=2.1 Hz), 7.66(1H, dd, J=8.1, 1.8 Hz), 6.95(1H, d, J=8.1 Hz), 3.98(3H, s), 2.95(2H, t, J=7.4 Hz), 1.62-1.80(2H, m), 1.20-1.55(4H, m), 0.91(3H, t, J=7.2 Hz).

FABMS (m/z) : 289[M⁺ H⁺] (100), 237(70).

参考例 7 6

イソバニリン (200 g, 1. 314 mol)、酢酸 (700 ml) および濃硫酸 (0. 2 ml) の懸濁液を 0 °C まで冷却した後に、発煙硝酸 (57. 2 ml, 1. 38 mol) の酢酸溶液 (200 ml) を 30 分かけて滴下した。40 分間攪拌後、水 (400 ml) を加え、結晶を濾取することにより 3-ヒドロキシ

-4-メトキシ-2-ニトロベンズアルデヒドと3-ヒドロキシ-4-メトキシ-6-ニトロベンズアルデヒドの混合物(156.4g、60.4%)を得た。

¹H-NMR(CDC1₃, 300MHz) δ: 10.1(1H, s), 7.46(1H, d, J=8.4Hz), 7.12(1H, d, J=8.4Hz), 4.03(3H, s).

参考例7 7

3-ヒドロキシ-4-メトキシ-2-ニトロベンズアルデヒドと3-ヒドロキシ-4-メトキシ-6-ニトロベンズアルデヒドの混合物、およびDMF(700ml)を混合し、この溶液に炭酸カリウム(136.7g、98.9mmol)およびブロモペンタン(122.7ml、98.9mmol)を順次加えた。100°Cで4時間攪拌した後、反応溶液を濾過し、濾液に水(600ml)およびヘキサン-酢酸エチル(1:1、600ml)を加えて分液した。水層をヘキサン-酢酸エチル(1:1、600ml)で抽出した後に、有機層を合わせて無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を濾取することにより4-メトキシ-6-ニトロ-3-ペンチルオキシベンズアルデヒド(②)(90.1g、44%)を黄色結晶として得た。また、上記結晶を濾取した後の濾液をさらに濃縮することにより4-メトキシ-2-ニトロ-3-ペンチルオキシベンズアルデヒド(①)(117g、58%)を赤色油状物質として得た。

①: ¹H-NMR(CDC1₃, 300MHz) δ: 9.80(1H, s), 7.64(1H, d, J=8.6Hz), 7.09(1H, d, J=8.6Hz), 4.11(2H, t, J=6.6Hz), 3.99(3H, s), 1.60-1.80(2H, m), 1.28-1.47(4H, m), 0.92(3H, t, J=7.1Hz).
FABMS(m/z): 268[M⁺ H⁺](80), 198(100).

②: ¹H-NMR(CDC1₃, 300MHz) δ: 10.4(1H, s), 7.61(1H, s), 7.39(1H, s), 4.16(2H, t, J=6.8Hz), 1.82-1.95(2H, m), 1.30-1.50(4H, m), 0.94(3H, t, J=7.2Hz).

参考例7 8

4-メトキシ-2-ニトロ-3-ペンチルオキシベンズアルデヒド(70g、

261. 9 mmol)、アミド硫酸(76. 3 g, 785. 7 mmol)およびイソプロパノール(210 ml)を混合し、この溶液を水浴で冷却しながら亜塩素酸ナトリウム(38. 5 g, 340. 5 mmol)水溶液(350 ml)を滴下した。20分間攪拌後、酢酸エチル(300 ml)を加えて、有機層を分離した。水層を酢酸エチル(200 ml)で抽出した。有機層を合わせて飽和食塩水(150 ml)で洗浄した。この溶液を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を濾取することにより4-メトキシ-2-ニトロ-3-ペンチルオキシ安息香酸(59. 02 g, 80%)を淡黄色結晶として得た。

¹H-NMR(CDC1₃, 300 MHz) δ: 7.85(1H, d, J=8.8Hz), 7.02(1H, d, J=8.8Hz), 4.08(2H, t, J=6.7Hz), 3.98(3H, s), 1.95-1.80(2H, m), 1.30-1.45(4H, m), 0.93(3H, t, J=7.0Hz).
FABMS(m/z): 284[M⁺ H⁺](30), 266(30), 196(100).

参考例 7 9

4-メトキシ-2-ニトロ-3-ペンチルオキシ安息香酸(26. 8 g, 94. 6 mmol)とエタノール(350 ml)を混合し、この溶液に10%パラジウム-炭素触媒(2. 6 g)を加えた。水素気流下(3 kgf/cm²)、室温で7. 5時間攪拌した後に、反応溶液を濾過し、濾液を減圧濃縮した。析出した結晶を濾取することにより2-アミノ-4-メトキシ-3-ペンチルオキシ安息香酸(22. 7 g, 95%)を灰色結晶として得た。

¹H-NMR(CDC1₃, 300 MHz) δ: 7.87(1H, d, J=9.0Hz), 6.31(1H, d, J=9.0Hz), 3.94(2H, t, J=6.8Hz), 3.89(3H, s), 1.70-1.88(2H, m), 1.30-1.54(4H, m), 0.94(3H, t, J=7.1Hz).

参考例 8 0

3-アミノ-4-メトキシ安息香酸ペンチルエステル(0. 744 g, 4. 45 mmol)、塩化メチレン(15 ml)およびジメチルスルフィド(0. 33 ml, 4. 50 mmol)を混合し、この溶液を-30℃まで冷却した後に、N

ークロロスクシンイミド(601mg、4.5mmol)を加えた。1時間攪拌後、トリエチルアミン(0.627ml、4.5mmol)を加えて、0.5時間加熱還流した。飽和食塩水(0.5ml)を加えて反応を停止した後、反応液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)を用いて精製することにより3-アミノ-4-メトキシ-2-メチルチオメチル安息香酸ペンチルエステル(0.83g、82%)を褐色油状物質として得た。

¹H-NMR(CDC1₃, 300MHz) δ: 7.40(1H, d, J=8.6Hz), 6.74(1H, d, J=8.6Hz), 4.40(2H, bs), 4.26(2H, t, J=6.7Hz), 4.22(2H, s), 3.90(3H, s), 2.05(3H, s), 1.65-1.80(2H, m), 1.30-1.50(4H, m), 0.93(3H, t, J=7.1Hz).

FABMS(m/z): 298[M⁺ H⁺](10), 297(50), 250(50).

参考例8 1

3-アミノ-4-メトキシ-2-メチルチオメチル安息香酸ペンチルエステル(830mg、2.79mmol)とDMF(4.0ml)を混合し、この溶液にカリウムt-ブトキシド(470mg、4.19mmol)およびプロモベンタン(0.62ml、5.0mmol)を順次加えた。100°Cで1時間攪拌した後、濾過、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=15/1)を用いて精製することにより4-メトキシ-2-メチルチオメチル-3-ペニチルアミノ安息香酸ペンチルエステル(178mg、17%)を淡黄色油状物質として得た。

¹H-NMR(CDC1₃, 300MHz) δ: 7.54(1H, d, J=8.7Hz), 6.75(1H, d, J=8.7Hz), 4.27(2H, t, J=6.7Hz), 4.23(2H, s), 3.88(3H, s), 3.73(1H, bs), 3.05(2H, t, J=7.1Hz), 2.02(3H, s), 1.70-1.85(2H, m), 1.30-1.50(10H, m), 0.83-0.97(6H, m).

参考例8 2

4-メトキシ-2-メチルチオメチル-3-ペニチルアミノ安息香酸ペンチル

エステル（173mg、0.47mmol）を用い、参考例45と同様にしてエステル加水分解を行うことにより4-メトキシ-2-メチルチオメチル-3-ペンチルアミノ安息香酸（93mg、66%）を無色結晶として得た。

¹H-NMR (CDCl₃, 300MHz) δ : 7.74(1H, d, J=8.6Hz), 6.80(1H, d, J=8.6Hz), 4.31(2H, s), 3.92(3H, s), 3.09(2H, t, J=7.1Hz), 2.08(3H, s), 1.50-1.65(2H, m), 1.30-1.45(4H, m), 0.94(3H, t, 7.0Hz). FABMS (m/z) : 298[M⁺ H⁺](50), 250(50), 185(85).

参考例83

2-(4-メトキシ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール（500mg、1.76mmol）とDMF（8ml）を混合し、この溶液を-60°Cに冷却した後に、n-ブチルリチウム（1.6Mヘキサン溶液、2.42ml、3.87mmol）を加えて1時間攪拌した。この溶液にジメチルジスルフィド（0.35ml、3.87mmol）を加え、室温で1時間攪拌した後、水（5ml）を加えて、水層を酢酸エチル（10ml）で3回抽出した。有機層を合わせて減圧濃縮して、得られた残渣に3N塩酸（4ml）を加えて、3時間加熱還流した。10N水酸化ナトリウム水溶液（4ml）を加えて、2時間加熱還流した。濃塩酸（3ml）を加えて反応溶液を酸性にした後、水層を酢酸エチル（20ml）で4回抽出した。有機層を合わせて飽和食塩水（10ml）で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶をヘキサンで洗浄して精製することにより4-メトキシ-2-メチルチオ-3-ペンチルオキシ安息香酸（370mg、74%）を淡茶色結晶として得た。

¹H-NMR (CDCl₃, 300MHz) δ : 8.10(1H, d, J=8.9Hz), 6.99(1H, d, J=8.9Hz), 4.02(2H, t, J=6.6Hz), 3.93(3H, s), 2.50(3H, s), 1.75-1.90(2H, m), 1.30-1.58(4H, m), 0.95(3H, t, 7.1Hz). FABMS (m/z) : 285[M⁺ H⁺](40), 267(100).

参考例84

4-アミノ-3-ペンチルオキシ安息香酸(200mg、0.90mmol)、塩化メチレン(5ml)およびピリジン(0.081ml、1.0mmol)を混合し、この溶液に塩化バレリル(0.11ml、0.90mmol)を加えて、室温で0.5時間攪拌した。反応溶液に水を加えて、水層を酢酸エチル(5ml)で3回抽出した。有機層を合わせて飽和食塩水(10ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶をヘキサンで洗浄することにより4-ペンタノイルアミノ-3-ペンチルオキシ安息香酸(109.5mg、40%)を無色結晶として得た。

¹H-NMR(CDC1₃, 300MHz) δ: 8.50(1H, d, J=8.4Hz), 7.98(1H, s), 7.73(1H, d, J=8.4Hz), 7.55(1H, s), 4.11(2H, t, J=6.6Hz), 2.43(2H, t, J=7.5Hz), 1.80-1.95(2H, m), 1.35-1.55(6H, m), 0.96(6H, t, 7.2Hz).

FABMS(m/z): 308[M⁺ H⁺](40), 206(100).

参考例85

(1) 2-ヒドロキシ-3-メトキシベンズアルデヒド(3.00g、19.7mmol)とDMF(25ml)を混合し、この溶液に炭酸カリウム(3.00g、22.0mmol)およびプロモペンタン(2.73ml、22.0mmol)を順次加えた。100℃で2時間攪拌した後、反応溶液を濾過し、水(20ml)および酢酸エチル(50ml)を加えて分液した。水層を酢酸エチル(25ml)で2回抽出した。有機層を合わせて飽和食塩水(20ml)で2回洗浄した後、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより3-メトキシ-2-ペンチルオキシベンズアルデヒドの粗生成物を得た。

(2) 上記粗生成物にTHF(30ml)およびメチル(トリフェニルホスホラニリデン)アセタート(7.36g、22.0mmol)を加えて、5.5時間加熱還流した。THFを減圧留去して、得られた残渣にヘキサン(100ml)を加え、析出した結晶を濾別した。濾液を減圧濃縮して、得られた残渣にエタノール(40ml)および1N水酸化ナトリウム水溶液(40ml)を加えて1時

間加熱還流した。エタノールを減圧留去した後、水層を濃塩酸で酸性にした。水層を酢酸エチル（70ml）で2回抽出した。有機層を合わせて飽和食塩水（40ml）で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶を酢酸エチルから再結晶することにより3-(3-メトキシ-2-ペンチルオキシフェニル)桂皮酸（3.82g、3 steps 73%）を無色針状結晶として得た。

¹H-NMR (CDCl₃, 300MHz) δ : 8.17(1H, d, J=16.2Hz), 7.18(1H, d, J=7.8Hz), 7.06(1H, t, J=7.8Hz), 6.95(1H, d, J=7.8Hz), 6.48(1H, d, J=16.2Hz), 3.99(2H, t, J=6.7Hz), 3.86(3H, s), 1.75-1.85(2H, m), 1.37-1.49(4H, m), 0.94(3H, t, 7.2Hz).

FABMS (m/z) : 265[M⁺ H⁺] (20), 177(100).

参考例 8 6

3-(3-メトキシ-2-ペンチルオキシフェニル)桂皮酸（3.80g、14.4mmol）をエタノール（100ml）に溶解し、この溶液に10%パラジウム-炭素触媒（0.38g）を加えた。水素気流下、1時間攪拌した後、反応液を濾過し、濾液を減圧濃縮することにより3-(3-メトキシ-2-ペンチルオキシフェニル)プロピオン酸（3.42g、89%）を灰色結晶として得た。

¹H-NMR (CDCl₃, 300MHz) δ : 6.96(1H, t, J=7.9Hz), 6.98(2H, d, J=7.9Hz), 3.95(2H, t, J=6.7Hz), 3.83(3H, s), 2.95(2H, t, J=7.9Hz), 2.66(2H, t, J=7.9Hz), 1.70-1.85(2H, m), 1.35-1.50(4H, m), 0.92(3H, t, 7.0Hz).

FABMS (m/z) : 267[M⁺ H⁺] (20), 179(100).

参考例 8 7

3-(3-メトキシ-2-ペンチルオキシフェニル)プロピオン酸（1.00g、3.75mmol）、塩化チオニル（0.72ml、10mmol）およびDMF 1滴を混合し、室温で15分間攪拌した。トルエン（10ml）を加えて、濾液を減圧濃縮した。得られた残渣にアセトン（5ml）およびアジ化ナトリ

ウム (0.33 g、5.0 mmol) の水 (0.5 ml) 溶液を加え、室温で20分間攪拌した。水 (5 ml) を加え、水層をトルエン (20 ml) で2回抽出した。有機層を合わせて飽和食塩水 (10 ml) で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にトルエン (10 ml) を加えて2.5時間加熱還流した。トルエンを減圧留去して、得られた残渣にポリリン酸 (3 ml) を加えて40分間攪拌した。水 (20 ml) および酢酸エチル (50 ml) を加えて、有機層を分離した。有機層を水 (10 ml) 、飽和食塩水 (10 ml) で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮した。得られた残渣にヘキサン (10 ml) を加えて、析出した結晶を濾取することにより6-メトキシ-5-ペンチルオキシー-3,4-ジヒドロ-2H-イソキノリン-1-オン (829 mg、84%) を無色針状結晶として得た。

¹H-NMR (CDCl₃, 300 MHz) δ : 7.84(1H, d, J=8.4 Hz), 6.88(1H, d, J=8.4 Hz), 6.04(1H, bs), 3.93(2H, t, J=6.9 Hz), 3.90(3H, s), 3.49-3.55(2H, m), 3.02(2H, t, J=6.6 Hz), 1.70-1.81(2H, m), 1.30-1.50(4H, m), 0.94(3H, t, 7.2 Hz).

FABMS (m/z) : 264[M⁺ H⁺] (100).

参考例 8 8

3-ヒドロキシ-4-メトキシベンズアルデヒド (200 g、1.31 mol) 、ジオキサン (1000 ml) および水 (400 ml) を混合し、この溶液にN-ブロモスクシンイミド (245.7 g、1.38 mol) を10分かけて加えた。60分後および70分後にN-ブロモスクシンイミドをそれぞれ16.4 g (92.1 mmol) および7.02 g (39.4 mmol) 加えて、さらに30分間攪拌した。水 (1600 ml) を加えて、生成した結晶を濾取した。この結晶を水 (1000 ml) で洗浄することにより2-ブロモ-3-ヒドロキシ-4-メトキシベンズアルデヒド (227.1 g、74.8%) を淡赤色結晶として得た。

¹H-NMR (DMSO-d₆, 300 MHz) δ : 10.1(1H, s), 9.59(1H, s), 7.40(1H, d, J=8.4Hz), 7.14(1H, d, J=8.4Hz), 3.92(3H, s). FABMS (m/z) : 232[M⁺ H⁺](20), 185(100).

参考例 8 9

(1) 2-ブロモ-3-ヒドロキシ-4-メトキシベンズアルデヒド (225.2 g, 975 mmol) と DMF (660 ml) を混合し、この溶液に炭酸カリウム (148.2 g, 1.07 mol) およびプロモペンタン (133 ml, 1.07 mol) を順次加えた。90°Cで1.5時間攪拌後、反応液を室温まで冷却し、水 (800 ml) を加えて反応を停止した。水層をジエチルエーテル (1000 ml, 500 ml) および酢酸エチル (500 ml) で抽出した。有機層を合わせて水 (200 ml) および飽和食塩水 (200 ml) で洗浄した後、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、濾液を減圧濃縮することにより2-ブロモ-4-メトキシ-3-ペンチルオキシベンズアルデヒドの粗生成物を得た。

(2) 上記粗生成物、イソプロパノール (440 ml) およびアミド硫酸 (283.9 g, 2.92 mol) を混合し、この反応液に氷冷下、亜塩素酸ナトリウム (純度80%、143.3 g, 1.27 mol) の水溶液 (1320 ml) を滴下した。内温40°Cで30分間攪拌した後、水 (1000 ml) を加えた。生成した結晶を濾取し、水 (2000 ml) で洗浄することにより2-ブロモ-4-メトキシ-3-ペンチルオキシ安息香酸 (238.98 g, 77%) を無色結晶として得た。

¹H-NMR (CDCl₃, 300 MHz) δ : 7.83(1H, d, J=8.7Hz), 6.90(1H, d, J=8.7Hz), 3.98(2H, t, J=6.7Hz), 3.92(3H, s), 1.82-1.90(2H, m), 1.30-1.53(4H, m), 0.94(3H, t, 7.2Hz).

FABMS (m/z) : 318[M⁺ H⁺](10), 185(100).

参考例 9 0

(1) 2-ブロモ-4-メトキシ-3-ペンチルオキシ安息香酸 (80.1 g,

253mmol)、トルエン(480ml)、臭化銅(I)(3.62g、2.53mmol)およびマロン酸ジエチル(153.4ml、1.01mol)を混合し、この懸濁液に水素化ナトリウム(60%ディスパージョン、30.3g、758mmol)を加え、内温78°C~83°Cで1時間攪拌した。同様の操作で2-ブロモ-4-メトキシ-3-ペンチルオキシ安息香酸(49.43g、156mmol)を反応させた反応液を上記反応液と合わせ、この反応液を水(1000ml、500ml)で抽出した。水層をヘキサン(500ml)で洗浄した後、濃塩酸を加えて酸性にした。酢酸エチル(1000ml、500ml)で抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、濾液を減圧濃縮することにより2-(6-カルボキシ-3-メトキシ-2-ペンチルオキシフェニル)マロン酸ジエチルエステルの粗生成物を得た。

(2) 上記粗生成物、塩化リチウム(51.93g、1.23mol)、水(7.35ml、408mmol)およびDMSO(405ml)を混合し、140°Cで1時間攪拌した。反応液に水(600ml)および酢酸エチル(800ml)を加えて、有機層を分離した。有機層を水(300ml)で2回洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、濾液を減圧濃縮して、得られた残渣にヘキサン(250ml)を加えた。生成した結晶を濾取し、ヘキサン(150ml)で洗浄することにより2-エトキシカルボニルメチル-4-メトキシ-3-ペンチルオキシ安息香酸(99.93g、2 steps 75.3%)を淡茶色結晶として得た。

¹H-NMR(CDC13, 300MHz) δ: 7.93(1H, d, J=8.7Hz),
6.88(1H, d, J=8.7Hz), 4.12-4.22(4H, m), 3.93(2H, t, J=6.6Hz),
3.93(3H, s), 1.70-1.88(2H, m), 1.35-1.55(4H, m), 1.26(3H, t, 7.2Hz),
0.93(3H, t, 6.9Hz).

FABMS(m/z) : 323[M⁺ H⁺](70), 277(90).

参考例91~131

上記参考例1~90と同様にして、参考例91~131に示す化合物を得た。

当該化合物の物性を表1～14に示す。

実施例1-1

4-メトキシ-3-ペンチルオキシ桂皮酸(5.29g、0.02mol、1.0eq)と1-ヒドロキシベンゾトリアゾール水和物(2.7g、0.024mol、1.0eq)をDMF(50ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(4.1g、0.03mol、1.5eq)と1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)塩酸塩(4.6g、0.024mol、1.2eq)を順次氷冷下で加えた。室温で12時間攪拌後、この反応溶液に氷水(50ml)、飽和炭酸水素ナトリウム水溶液(50ml)を順次加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=5/1～2/1)を用いて精製することにより、(E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ペンチルオキシフェニル)アクリルアミド(8.61g、100%)を無色固体として得た。このものを酢酸エチルから再結晶することにより再精製し、無色結晶(6.28g、81.9%)とした。

当該化合物の物性を表15に示す。

実施例1-2～1-33

上記実施例1-1と同様にして、表15～25に示す化合物を得た。

実施例1-34

参考例103で得られた3-(4-メトキシ-3-ペンチルチオフェニル)桂皮酸(100mg、0.357mmol)を用い、実施例1-1と同様にしてN-[2-(4-ヒドロキシフェニル)エチル]-3-(4-メトキシ-3-ペンチルチオフェニル)アクリルアミド(118mg、83%)を無色結晶として得た。

実施例1-35

参考例 9 7 で得られた 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) 桂皮酸 (1 0 0 m g、0. 3 8 0 m m o l) を用い、実施例 1 - 1 と同様にして N - [2 - (4 - アミノフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド (3 1. 1 m g、2 1 %) を淡黄色結晶として得た。

上記実施例 1 - 3 4、3 5 で得られた化合物の物性を表 2 6 に示す。

実施例 1 - 3 6 ~ 1 - 9 2

上記実施例 1 - 1 ~ 1 - 3 5 と同様にして、実施例 1 - 3 6 ~ 1 - 9 2 に示す化合物を得た。当該化合物の物性を表 2 6 ~ 4 5 に示す。

実施例 2 - 1

4 - メトキシ - 3 - ペンチルオキシ安息香酸 (4. 7 7 g、0. 0 2 m o l、1 e q) と 1 - ヒドロキシベンゾトリアゾール水和物 (2. 7 g、0. 0 2 4 m o l、1. 0 e q) を DMF (5 0 m l) に溶解し、この溶液に 2 - (4 - ヒドロキシフェニル) エチルアミン (4. 1 g、0. 0 3 m o l、1. 5 e q) と W S C 塩酸塩 (4. 6 g、0. 0 2 4 m o l、1. 2 e q) を順次氷冷下で加え、実施例 1 - 1 と同様にして、N - [2 - (4 - ヒドロキシフェニル) エチル] - (4 - メトキシ - 3 - ペンチルオキシ) ベンズアミド (5. 6 g、7 9 %) を無色結晶として得た。

当該化合物の物性を表 4 6 に示す。

実施例 2 - 2 ~ 2 - 4 3

上記実施例 2 - 1 と同様にして、表 4 6 ~ 6 0 に示す化合物を得た。

実施例 2 - 4 4

3, 4 - ジペンチルオキシー [2 - (4 - ニトロフェニル) エチル] ベンズアミド (1 1 0 m g、0. 2 5 m m o l、1. 0 e q) をメタノール (1 1 m l) に溶解し、1 0 % パラジウム - 炭素触媒 (1 0 m g、水分含量 5 0 %) を加えた後、水素気流下、2 時間攪拌した。反応溶液を室温まで冷却した後、セライト濾過し、濾液を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィ

ー（酢酸エチル／ヘキサン＝1／1）を用いて精製することにより、[2-(4-アミノフェニル)エチル]-3,4-ジペンチルオキシベンズアミド(94.1mg、91.7%)を無色結晶として得た。

実施例2-45

3,4-ジヘキシルオキシ安息香酸(161mg、0.5mmol)と1-ヒドロキシベンゾトリアゾール水和物(45.9mg、0.3mmol、0.6eq)をDMF(5ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(82mg、0.6mmol、1.2eq)とWSC塩酸塩(114mg、0.6mmol、1.2eq)を順次室温下で加えた。室温で15時間攪拌後、この反応溶液を酢酸エチル(75ml)にあけ、水(5ml×3)および飽和食塩水(15ml)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=50/1)を用いて精製することにより、3,4-ジヘキシルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド(230mg)を得た。得られた固体を酢酸エチル-ヘキサンから再結晶することにより、無色結晶の3,4-ジヘキシルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド(194mg、88%)を得た。

実施例2-46

参考例79で得られた2-アミノ-4-メトキシ-3-ペンチルオキシ安息香酸(45.0g、177.6mmol)を用い、実施例2-1と同様にして2-アミノ-4-メトキシ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルオキシベンズアミド(67.85g、95%)を淡黄色結晶として得た。

実施例2-47

参考例78で得られた4-メトキシ-2-ニトロ-3-ペンチルオキシ安息香酸(500mg、1.76mmol)を用い、実施例2-1と同様にして4-メトキシ-2-ニトロ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルオキシベンズアミド(738mg、97%)を無色結晶として得た。

実施例 2-48

実施例 2-47 で得られた 4-メトキシ-2-ニトロ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルオキシベンズアミド (200 mg、0.464 mmol)、THF (1 ml) および水素化ナトリウム (13.3 mg、0.556 mmol) を混合し、5 分間攪拌した。プロモ酢酸エチル (0.0617 ml、0.556 mmol) を加えて、90 °C で 5.5 時間攪拌した。さらに水素化ナトリウム (6.7 mg、0.278 mmol) およびプロモ酢酸エチル (6.7 mg、0.278 mmol) を加えて、90 °C で 6.5 時間攪拌した。水 (3 ml) を加えて反応を停止し、有機層を酢酸エチル (5 ml) で 3 回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 4/1 ~ 2/3) を用いて精製することにより [(4-メトキシ-2-ニトロ-3-ペンチルオキシベンゾイル)-[2-(4-ニトロフェニル)エチル]アミノ] 酢酸エチルエステル (0.137 g、68%) を淡黄色油状物質として得た。

実施例 2-49

参考例 8-2 で得られた 4-メトキシ-2-メチルチオメチル-3-ペンチルアミノ安息香酸 (90 mg、0.30 mmol) を用い、実施例 2-1 と同様にして N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-2-メチルチオメチル-3-ペンチルアミノベンズアミド (113 mg、90%) を無色結晶として得た。

実施例 2-50

参考例 8-3 で得られた 4-メトキシ-2-メチルチオ-3-ペンチルオキシ安息香酸を用い、実施例 2-1 と同様にして N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-2-メチルチオ-3-ペンチルオキシベンズアミドを無色結晶として得た。

実施例 2-51

参考例 9 0 で得られた 2 - エトキシカルボニルメチル - 4 - メトキシ - 3 - ペンチルオキシ安息香酸 (45.01 g、138.8 mmol) を用い、実施例 2 - 1 と同様にして [3 - メトキシ - 2 - ペンチルオキシ - 6 - (2 - ピリジン - 4 - イルエチルカルバモイル) フェニル] 酢酸エチルエステルの粗生成物を得た。このものをそのまま次の反応に用いた。

実施例 2 - 5 2

参考例 1 1 2 で得られた 4 - ペンチルオキシ - 3 - ペンチルチオ安息香酸を用い、実施例 2 - 1 と同様にして N - [2 - (4 - アミノフェニル) エチル] - 4 - ペンチルオキシ - 3 - ペンチルチオベンズアミドを無色結晶として得た。

上記実施例 2 - 4 4 ~ 2 - 5 2 で得られた化合物の物性を表 6 0 ~ 6 3 に示す。

実施例 2 - 5 3 ~ 2 - 1 6 1

上記実施例 2 - 1 ~ 2 - 5 2 と同様にして、実施例 2 - 5 3 ~ 2 - 1 6 1 に示す化合物を得た。当該化合物の物性を表 6 3 ~ 9 9 に示す。

実施例 3 - 1

4 - メトキシ - 3 - ペンチルオキシ桂皮酸 (529 mg、2.0 mmol、1 eq) をピリジン (10 ml) に溶解し、この溶液に 2 - (4 - ヒドロキシフェニル) エチルアルコール (484 mg、3.5 mmol、1.5 eq) と WSC 塩酸塩 (460 mg、2.4 mmol、1.2 eq) を順次氷冷下で加え、実施例 1 - 1 と同様にして、2 - (4 - ヒドロキシフェニル) エチル - 3 - (4 - メトキシ - 3 - ペンチルオキシ) シンナメート (61 mg、7.9%) を無色結晶として得た。

当該化合物の物性を表 1 0 0 に示す。

実施例 3 - 2 ~ 3 - 3

上記実施例 3 - 1 と同様にして、実施例 3 - 2 及び 3 - 3 に示す化合物を得た。当該化合物の物性を表 1 0 0 に示す。

実施例 4 - 1

3 - (1 - ブロモ - 4 - ペンチルオキシナフタレン - 2 - イル) 桂皮酸 (51

2 mg、0. 141 mmol) と 1-ヒドロキシベンゾトリアゾール水和物 (19. 1 mg、0. 141 mmol) を DMF (1 ml) に溶解し、この溶液に 2-(4-ヒドロキシフェニル)エチルアミン (23. 2 mg、0. 169 mmol) と WSC 塩酸塩 (32. 4 mg、0. 169 mmol) を順次氷冷下で加え、実施例 1-1 と同様にして、(E)-3-(1-ブロモ-4-ペンチルオキシナフタレン-2-イル)-N-[2-(4-ヒドロキシフェニル)エチル]アクリルアミド (52. 3 mg、77%) を無色結晶として得た。

当該化合物の物性を表 101 に示す。

実施例 4-2 ~ 4-4

上記実施例 4-1 と同様にして、表 101 ~ 102 に示す化合物を得た。

実施例 5-1

7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸 (24 mg、0. 083 mmol) とクロロホルム (1. 0 ml) および DMF (0. 3 ml) を混合し、この溶液に 2-(4-ピリジニル)エチルアミン (12. 2 mg、0. 1 mmol) の DMF 溶液 (0. 1 ml) と WSC 塩酸塩 (19. 2 mg、0. 1 mmol) およびジメチルアミノピリジン (1 mg、0. 0082 mmol) を順次加え、実施例 1-1 と同様にして、7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸 (2-ピリジン-4-イルエチル) アミド (11. 4 mg、35%) を無色結晶として得た。

当該化合物の物性を表 103 に示す。

実施例 5-2 ~ 5-9

上記実施例 5-1 と同様にして、実施例 5-2 ~ 5-9 に示す化合物を得た。

当該化合物の物性を表 103 ~ 105 に示す。

実施例 6-1

(1) 塩化チオニル (7. 3 ml、0. 100 mol、4 eq) に 4-メトキシ-3-ペンチルオキシ安息香酸 (5. 96 g、0. 025 mol、1 eq) を溶解し、室温で 24 時間攪拌した。反応溶液を減圧下、過剰の塩化チオニルを留去

した。残渣に、ジクロロメタン(10ml)を加え、氷冷下2-アミノ-2-メチルプロパノール(5.01ml、0.053mol、2.1eq)を加え、室温で2時間攪拌した。この反応溶液に水(200ml)を加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(400ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1~1/1)を用いて精製することにより、N-(2-ヒドロキシ-1,1-ジメチルエチル)-4-メトキシ-3-ペンチルオキシベンズアミド(5.75g、74.4%)を無色油状物質として得た。

¹H-NMR(CDCI₃) δ : 7.38(1H, d, J=2.1Hz),
7.20(1H, dd, J=8.3, 2.1Hz), 6.84(1H, d, J=8.3Hz), 6.13(1H, bs),
4.79(1H, t, J=6.1Hz), 4.06(2H, t, J=6.9Hz), 3.90(3H, s),
3.69(2H, d, J=6.1Hz), 2.0-1.8(2H, m), 1.5-1.3(4H, m), 1.41(3H, s),
1.41(3H, s), 0.93(3H, t, J=7.1Hz).

FABMS(m/z) : 310[M⁺ H⁺] (100), 221(100), 238(50).

IR(Neat, cm⁻¹) : 3385, 2955, 1638, 1505.

(2) N-(2-ヒドロキシ-1,1-ジメチルエチル)-4-メトキシ-3-ペンチルオキシベンズアミド(5.498g、0.0178mol、1eq)を塩化チオニル(4.29ml、0.0214mol、3.3eq)に溶解し、室温で1時間攪拌した。反応溶液をジエチルエーテル(40ml)に移し、得られた塩酸塩を濾取し、過剰の塩化チオニルを除去した。この塩酸塩に氷冷下1N水酸化ナトリウム水溶液(約20ml)を加え、pH1.0のアルカリ溶液にした後にジエチルエーテル(30ml)で2回抽出した。有機層をあわせて飽和食塩水(60ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、2-(4-メトキシ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(4.46g、86%)を無色結晶として得た。

実施例 6 - 2

2-(4-メトキシ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(373mg、1.28mmol、1eq)をジメトキシエタン(7ml)に溶解し、-60°Cに冷却し、n-ブチルリチウム(1.6Mヘキサン溶液)(1.76ml、2.82mmol、2.2eq)を滴下した。この温度で1.5時間攪拌した後、エチレンオキサイドを滴下し、1.0時間攪拌した。更に室温まで昇温し、2時間攪拌した。反応溶液に水(50ml)を加え、酢酸エチル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1~2/1)を用いて精製することにより、[6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシフェニル]エタノール(164mg、38.2%)を油状物質として得た。

実施例 6 - 3

2-(4-メトキシ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(0.74g、2.54mmol、1eq)をジメトキシエタン(7ml)に溶解し、-60°Cに冷却し、n-ブチルリチウム(1.6Mヘキサン溶液)(3.5ml、5.59mmol、2.2eq)を滴下した。この温度で1.5時間攪拌した後、クロロ炭酸エチルを滴下し、1.0時間攪拌した。更に室温まで昇温し、2時間攪拌した。反応溶液に水(50ml)を加え、酢酸エチル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1)を用いて精製することにより、エチル 6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシベンゾエート(814mg、88.2%)を油状物質として得た。

実施例 6-4

LAH (255 mg、6.72 mol、3.0 eq) をTHF (30 ml) に溶解し、この溶液に氷冷下で、エチル 6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシベンゾエート (814 mg、2.24 mmol、1.0 eq) のTHF溶液 (50 ml) を滴下した。滴下終了後、室温で1.5時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液 (約20 ml) を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル=3/1) を用いて精製することにより、[6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシフェニル]メタノール (677 mg、94.1%)を得た。

実施例 6-5

2-[2-(4-メトキシ-3-ペンチルオキシベンゾイルアミノ)エチル]ピリジン N-オキシド (200 mg、0.558 mmol) を無水酢酸 (2 ml) に溶解し、100°Cで30分間攪拌した。この反応溶液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル=1/1) に付し、2-[2-(4-メトキシ-3-ペンチルオキシフェニル)-4,5-ジヒドロオキサゾール-5-イル]ピリジン (①) (14.8 mg) および、N-(2-アセトキシ-2-ピリジン-2-イルエチル)-4-メトキシ-3-ペンチルオキシベンズアミド (②) と N-(2-(5-アセトキシピリジン-2-イル)エチル)-4-メトキシ-3-ペンチルオキシベンズアミド (③) の混合物 (163.5 mg) を得た。①は更に分取用薄層クロマトグラフィーに付し精製した (11.6 mg、6.1%、無色油状)。②と③の混合物は分取用HPLC (酢酸エチル only, recycle) に付し分離精製した [② 95.7 mg、42.7%、③ 12.4 mg、5.5%]。

②: $^1\text{H-NMR}$ (CDCl_3 , 300 MHz) δ :

8.64-8.59(1H, m), 7.73(1H, td, J=7.7, 1.8Hz), 7.45-7.40(2H, m),
 7.30-7.23(2H, m), 6.96(1H, t), 6.87(1H, d, J=8.5Hz),
 6.03(1H, t, J=5.7Hz), 4.16-4.02(4H, m), 3.90(3H, s), 2.15(3H, s),
 1.91-1.82(2H, m), 1.50-1.36(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (+) (m/z) : 402[M + 1] (26), 401(93), 341(67), 221(100).

③: $^1\text{H-NMR}$ (CDCl₃, 300 MHz) δ :

8.40-8.32(1H, m), 7.43-7.40(2H, m), 7.27-7.22(2H, m),
 6.85(1H, d, J=8.4Hz), 4.06(2H, t, J=7.8Hz), 3.89(3H, s),
 3.84(2H, q, J=5.9Hz), 3.10(2H, t, J=6.3Hz), 2.34(3H, s),
 1.91-1.80(2H, m), 1.49-1.33(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (+) (m/z) : 401[M + 1] (82), 221(73), 154(100).

実施例 6 - 6

実施例 6 - 1 と同様にして得られた 2-(3-ブロモ-4-メトキシフェニル)-4-ジメチル-4,5-ジヒドロオキサゾール (400 mg, 1.41 mmol) と THF (4 ml) を混合し、この溶液を -60°C に冷却した後に、n-ブチルリチウム (1.6 M ヘキサン溶液、1.94 ml, 3.1 mmol) を加え、1.5 時間攪拌した。この溶液にジ-n-アミルジスルフィド (0.69 ml, 3.1 mmol) を加え、室温で 4 時間攪拌した。1 N 塩酸 (2 ml) を加え、水層を酢酸エチル (5 ml) で 3 回抽出した。有機層を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 4/1) を用いて精製することにより 2-(4-メトキシ-3-ペンチルチオフェニル)-4-ジメチル-4,5-ジヒドロオキサゾール (422 mg, 97%) を無色油状物質として得た。

上記実施例 6 - 1 ~ 6 - 6 で得られた化合物の物性を表 106 ~ 107 に示す。

実施例 6 - 7 ~ 6 - 13

上記実施例 6 - 1 ~ 6 - 6 と同様にして、実施例 6 - 7 ~ 6 - 13 に示す化合物を得た。当該化合物の物性を表 108 ~ 110 に示す。

実施例 7-1

3-ニトロ無水フタル酸（1. 93 g、0. 01 mol、1 eq）と2-(4-ヒドロキシフェニル)エチルアミン（2. 06 g、0. 015 mol、1. 5 eq）をトルエン（20 ml）中3時間加熱還流した。反応溶液を室温まで冷却し、この反応溶液に酢酸エチル（100 ml）を加えた後、希塩酸水溶液（30 ml）で2回有機層を洗浄し、更に飽和食塩水（100 ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー（n-ヘキサン／酢酸エチル=1/1）を用いて精製することにより、N-[2-(4-ヒドロキシフェニル)エチル]-3-ニトロフタルイミド（2. 92 g、92. 8%）を無色固体として得た。このものをメタノールから再結晶することにより再精製し、無色結晶（1. 9 g、60. 8%）とした。

実施例 7-2

N-[2-(4-ヒドロキシフェニル)エチル]-3-ニトロフタルイミド（1. 67 g、0. 0053 mol、1 eq）のメタノール（20 ml）-エタノール（50 ml）-酢酸（20 ml）の混合溶液に10%パラジウム-炭素触媒（水分含量50%）（200 mg）を加えた後、水素気流下、3時間室温攪拌した。反応溶液をセライト濾過し濾液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー（クロロホルム／メタノール=50/1）を用いて精製することにより、3-アミノ-N-[2-(4-ヒドロキシフェニル)エチル]フタルイミド（360 mg、24. 1%）を無色固体として得た。

実施例 7-3

3-アミノ-N-[2-(4-ヒドロキシフェニル)エチル]フタルイミド（110 mg、0. 390 mol、1 eq）をアセトン（30 ml）に溶解し、この溶液に1-クロロ-1-ペンタノン（70. 5 mg、0. 585 mmol、1. 5 eq）とトリエチルアミン（0. 081 ml、0. 585 mol、1. 5 eq）を順次加えた後、30分間加熱還流した。この反応溶液を室温まで冷却し、

氷水（10ml）、クエン酸（10ml）を加え、酢酸エチル（20ml）で2回抽出した。有機層をあわせて飽和食塩水（30ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー（n-ヘキサン／酢酸エチル=5/1）を用いて精製することにより、4-[2-(1,3-ジオキソ-4-ペントノイルアミノ-1,3-ジヒドロイソインドール-2-イル)エチル]フェニルペントノエート（80.2mg、56.2%）を無色結晶として得た。

実施例7-4

(1) エチル 6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシベンゾエート（20.0mg、0.55mmol、1eq）を3N塩酸水溶液（20ml）に溶解し、11時間加熱還流した。反応終了後室温まで冷却し、酢酸エチル（20ml）で2回抽出した。有機層をあわせて飽和食塩水（40ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、1N水酸化カリウム水溶液（10ml）に溶解し、1.5時間室温で攪拌した。反応溶液に氷水と3N塩酸水溶液（30ml）を加えて酸性にし、酢酸エチル（20ml）で2回抽出した。有機層をあわせて飽和食塩水（40ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-メトキシ-3-ペンチルオキシフタル酸（178mg、100%）を得た。

(2) 2-メトキシ-3-ペンチルオキシフタル酸（155mg、0.55mmol、1eq）、2-(4-ヒドロキシフェニル)エチルアミン（101.6mg、0.74mmol、1.4eq）を酢酸（10ml）に溶解し、2時間加熱還流した後、室温まで冷却し、酢酸エチル（40ml）で2回抽出した。有機層をあわせて1N塩酸水溶液（40ml）で、更に飽和食塩水（40ml）で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、シリカゲルカラムクロマトグラフィー（n-ヘキサン／酢酸エチル=4/1）を用いて精製することにより、2-[2-(4-ヒドロキシフェニル)エチル]-5-メト

キシ-4-ペンチルオキシソインドール-1,3-ジオン (6.7 mg、31.8 %)を得た。

実施例 7-5

[6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシフェニル]メタノール (344 mg、1.07 mmol、1.0 eq)をDMSO (4 ml)に溶解し、この溶液にトリエチルアミン (1.4 ml、9.63 mmol、9.0 eq)を加え、冷水で冷却した。これに三酸化硫黄-ピリジン複合体 (511 mg、3.21 mmol、3.0 eq)を加え、室温で1.5時間攪拌させた。この反応溶液に水 (5 ml)を加え、酢酸エチル (20 ml)で2回抽出した。有機層をあわせて飽和食塩水 (20.0 ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮した。得られた残渣を、メタノール (16 ml)に溶解し、2-(4-ヒドロキシフェニル)エチルアミン (146.8 mg、1.07 mmol、1.0 eq)、シアノボロヒドリド (67.3 mg、1.07 mmol、1.0 eq)を加えて室温で10時間攪拌した。反応液を減圧濃縮した後にシリカゲルカラムクロマトグラフィー (*n*-ヘキサン/酢酸エチル=5/1)を用いて精製することにより、2-[2-(4-ヒドロキシフェニル)エチル]-5-メトキシ-4-ペンチルオキシ-2,3-ジヒドロイソインドール-1-オン (6.7 mg、1.7 %)を得た。

実施例 7-6

3-ヒドロキシ無水フタル酸 (1.0 g、6.6 mmol)をメタノール (20 ml)に溶解し、この溶液に触媒量のp-トルエンスルホン酸を加えた。加熱還流温度で5時間攪拌後、減圧にて濃縮し、3-ヒドロキシフタル酸ジメチルの粗生成物を得た。3-ヒドロキシフタル酸ジメチルの粗生成物をDMF (20 ml)に溶解し、この溶液に炭酸カリウム (6 g、43 mmol)とn-アミルブロミド (3 ml、24 mmol)を加えた。90°Cで1.5時間攪拌後、セライト濾過にて固体物を除去し、減圧にて濃縮し、3-ペンチルオキシフタル酸ジメ

チルの粗生成物を得た。3-ペンチルオキシフタル酸ジメチルの粗生成物をメタノール(10ml)に溶解し、この溶液に1N水酸化ナトリウム水溶液(20ml)を加えた。90°Cで2時間攪拌後、この反応溶液に3N塩酸水溶液(15ml)を加えた。酢酸エチル(30ml×3)にて抽出後、飽和食塩水(20ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-ペンチルオキシフタル酸の粗生成物を得た。3-ペンチルオキシフタル酸の粗生成物を酢酸(20ml)に溶解し、これにチラミン塩酸塩(1.0g、7.3mmol)を加えた。90°Cにて2時間攪拌後、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-3-ペンチルオキシフタルイミド(0.8g、2.3mmol、35%)を無色結晶として得た。

実施例7-7

N-2-(4-ヒドロキシフェニル)エチル-3-ペンチルオキシフタルイミド(412mg、1.17mmol)をTHF(1ml)に溶解し、この溶液にBH₃·THFの1.0M THF溶液(4ml、4.0mmol)を加えた。加熱還流下8時間攪拌後、この反応溶液に3N塩酸水溶液(10ml)を加え、更に0.5時間同じ温度にて攪拌後、水を20ml加えた。酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20ml)と飽和食塩水(30ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-7-ペンチルオキシソインドール-1-オン(232mg、0.68mmol、59%)を無色結晶として得た。

実施例7-8

N-2-(4-ヒドロキシフェニル)エチル-3-ペンチルオキシフタルイミド(351mg、0.99mmol)をTHF(1ml)に溶解した溶液をLA

H (7.4 mg、2 mmol) の THF (1 ml) 懸濁液に 0 °C にて加えた。室温で 5 時間攪拌後、この反応溶液を 3 N 塩酸水溶液 (20 ml) にあけ、酢酸エチル (20 ml × 3) にて抽出後、飽和炭酸水素ナトリウム水溶液 (20 ml) と 饱和食塩水 (30 ml) で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 2/1) を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-3-ペンチルオキシソインドリン (13.0 mg、40%) を無色結晶として得た。

実施例 7-9

(1) 4-ヒドロキシフタル酸ジメチル (10.0 g、47 mmol) を DMF (100 ml) に溶解し、この溶液に炭酸カリウム (30 g、217 mmol) と n-アミルブロミド (10 ml、80 mmol) を加えた。90 °C で 2 時間攪拌後、セライト濾過にて固体物を除去し、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 4/1) を用いて精製することにより、4-ペンチルオキシフタル酸ジメチル (12.7 g、45.4 mmol、97%) を無色油状物として得た。

¹H-NMR (CDCl₃, 300 MHz) δ : 7.80(1H, d, J=8.40Hz),
7.05(1H, d, J=2.70Hz), 6.97(1H, dd, J=8.40, 2.70Hz),
4.00(2H, t, J=6.90Hz), 3.91(3H, s), 3.87(3H, s),
1.80(2H, quint, J=6.98Hz), 1.47-1.34(4H, m), 0.93(3H, t, J=7.20Hz).
FABMS (+) (m/z) : 281[M + 1] (42), 249(100), 179(78).

(2) 4-ペンチルオキシフタル酸ジメチル (3.0 g、10.7 mmol) を メタノール (20 ml) に溶解し、この溶液に 1 N 水酸化ナトリウム水溶液 (25 ml) を加えた。室温で 6.5 時間攪拌後、この反応溶液に 3 N 塩酸水溶液 (20 ml) を加えた。酢酸エチル (40 ml × 3) にて抽出後、飽和食塩水 (30 ml) で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-ペンチルオキシフタル酸の粗生成物を得た。この粗生成物

は精製することなく次の反応に用いた。

4-ペンチルオキシフタル酸の粗生成物を酢酸(20ml)に溶解し、これにチラミン塩酸塩(2.74g、20mmol)を加えた、96°Cにて4時間攪拌後、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=6/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-4-ペンチルオキシフタルイミド(2.6g、9.4mmol、88%)を無色結晶として得た。

実施例7-10

N-2-(4-ヒドロキシフェニル)エチル-4-ペンチルオキシフタルイミド(330mg、0.93mmol)をTHF(1ml)に溶解し、この溶液にBH₃・THFの1.0M THF溶液(1.5ml、1.5mmol)を加えた。加熱還流下1.5時間攪拌後、この反応溶液に3N塩酸水溶液(2ml)を加え、更に0.5時間同じ温度にて攪拌後、水を20ml加えた。酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20ml)と飽和食塩水(30ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-4-ペンチルオキシソインドール-1-オン(①)(139mg、0.41mmol、44%、無色結晶)とN-2-(4-ヒドロキシフェニル)エチル-5-ペンチルオキシソインドール-1-オン(②)(111mg、0.33mmol、35%、無色結晶)を得た。

実施例7-11

N-2-(4-ヒドロキシフェニル)エチル-4-ペンチルオキシフタルイミド(208mg、0.59mmol)をTHF(1ml)に溶解した溶液をLAH(40mg、1.1mmol)のTHF(1ml)懸濁液に0°Cにて加えた。室温で3.5時間攪拌後、この反応溶液を3N塩酸水溶液(20ml)にあけ、酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20

m l) と飽和食塩水 (30 m l) で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (クロロホルム/メタノール = 30 / 1) を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-4-ペンチルオキシソインドリン (181 mg, 94%) を無色結晶として得た。

実施例 7-12

(1) [6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシフェニル]メタノール (4.69 g, 0.014 mmol, 1 eq) を 3 N 塩酸 (50 m l) に溶解し、3 時間加熱攪拌した。反応終了後、室温まで冷却した後ジエチルエーテル (50 m l) で 2 回抽出した。有機層をあわせて飽和食塩水 (100 m l) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 2 / 1) を用いて精製することにより、5-メトキシ-4-ペンチルオキシ-3H-イソベンゾフラン-1-オン (3.4 g, 82.4%) を無色油状物質として得た。

¹H-NMR (CDCl₃) δ : 7.61(1H, d, J=8.3Hz),
7.07(1H, d, J=8.3Hz), 5.28(2H, s), 4.09(2H, t, J=6.6Hz), 3.95(3H, s),
1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.93(3H, t, J=6.9Hz).

FABMS (m/z) : 251[M⁺ H⁺] (100).

(2) 2-(4-ベンジルオキシフェニル)エチルアミン (377 mg, 1.66 mmol, 2 eq) をジクロロメタン (3 m l) に溶解し、トリメチルアルミニウム (15%ヘキサン溶液、0.88 m l, 1.825 mmol, 2.2 eq) を加えて 30 分間攪拌した。これに 5-メトキシ-4-ペンチルオキシ-3H-イソベンゾフラン-1-オン (207.6 mg, 0.83 mmol, 1 eq) のジクロロメタン溶液 (3 m l) を滴下し、24 時間攪拌した。この溶液に、3 N 塩酸 (20 m l) を加えてクロロホルム (10 m l) で 3 回抽出した。有機層をあわせて飽和食塩水 (50 m l) で洗浄し、無水硫酸ナトリウムで乾燥した。

乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー（n-ヘキサン／酢酸エチル=2/1～1/1）を用いて精製することにより、2-(2-ヒドロキシメチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル]ベンズアミド(204mg、51.5%)を無色結晶として得た。

¹H-NMR(CDC13) δ: 7.5-7.3(5H, m), 7.15(2H, d, J=8.5Hz), 7.11(1H, d, J=8.5Hz), 6.93(2H, d, J=8.5Hz), 6.79(1H, d, J=8.5Hz), 6.20(1H, t, J=6.7Hz), 5.05(2H, s), 4.65(2H, d, J=6.7Hz), 4.20(1H, t, J=6.7Hz), 3.97(2H, t, J=6.7Hz), 3.85(3H, s), 3.67(2H, q, J=6.8Hz), 2.88(2H, t, J=6.8Hz), 1.9-1.7(2H, m), 1.5-1.3(4H, m), 0.93(3H, t, J=7.1Hz).

FABMS(m/z): 478[M⁺ H⁺] (30), 460(100).

IR(KBr, cm⁻¹): 3333, 2937, 1623, 1510, 1268, 1216, 1014.

元素分析: C₂₉H₃₅NO₅

理論値 C 72.93, H 7.39, N 2.93

分析値 C 73.06, H 7.50, N 2.79

実施例7-13

2-(2-ヒドロキシメチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル]ベンズアミド(219.1mg、0.459mmol、1.0eq)をDMSO(3ml)に溶解し、水冷下、トリエチルアミン(0.59ml、4.13mmol、9eq)、三酸化硫黄-ピリジン複合体(219mg、1.38mmol、3eq)を加えた。室温で4時間攪拌後、この反応溶液に飽和炭酸水素ナトリウム水溶液(10ml)を加え、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(30ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=3/1)を用いて精製することにより、2-[2-(4-ベンジルオキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシ-N-(2-ヒドロキシメチル)ベンズアミド(160.5mg、45.5%)を得た。

エニル) エチル] - 3 - ヒドロキシ - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン (163 mg、74.7%) を無色油状物質として得た。

実施例 7 - 1 4

2 - [2 - (4 - ベンジルオキシフェニル) エチル] - 3 - ヒドロキシ - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン (142 mg、0.30 mmol、1.0 eq) をジクロロメタン (3 ml) に溶解し、トリエチルシラン (0.095 ml、0.60 mmol、2.0 eq) を加え 10 分間室温攪拌した。これにトリフルオロ酢酸を加え、更に 4 時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液 (30 ml) を加え、酢酸エチル (30 ml) で 2 回抽出した。有機層をあわせて飽和食塩水 (60 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、2 - [2 - (4 - ベンジルオキシフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン (136 mg、99.8%) を無色油状物質として得た。

実施例 7 - 1 5

2 - [2 - (4 - ベンジルオキシフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン (125.9 mg、0.274 mmol、1.0 eq) を酢酸エチル (10 ml) に溶解し、10% パラジウム - 炭素触媒 (80 mg、水分含量 50%) を加えた後、水素気流下、3 時間攪拌した。反応終了後セライト濾過し、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー (酢酸エチル / ヘキサン = 1 / 1) を用いて精製することにより、2 - [2 - (4 - ヒドロキシフェニル) エチル] - 5 - メトキシ - 4 - ペンチルオキシ - 2, 3 - ジヒドロイソインドール - 1 - オン (75 mg、74.1%) を無色結晶として得た。

なお、当該化合物は実施例 7 - 5 と同じ化合物であり、その物性等も実施例 7 - 5 と同じである。

実施例 7-16

(1) [6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシ-2-ペンチルオキシフェニル]エタノール(4.69g、0.014mmol、1eq)を3N塩酸(50ml)に溶解し、1.5時間加熱攪拌した。これを室温まで冷却した後、氷冷下水酸化ナトリウム水溶液を加えてアルカリ性水溶液(pH=13~14)にし、1時間室温攪拌した。この溶液に塩酸を加えて酸性溶液(pH=1~2)にして、ジエチルエーテル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=2/1)を用いて精製することにより、6-メトキシ-5-ペンチルオキシ-3,4-ジヒドロイソクマリン(3.36g、90.2%)を無色油状物質として得た。

¹H-NMR(CDC13) δ: 7.86(1H, d, J=8.6Hz),
6.92(1H, d, J=8.6Hz), 4.48(2H, t, J=6.0Hz), 3.95(2H, t, J=6.8Hz),
3.92(3H, s), 3.06(2H, t, J=6.0Hz), 1.8-1.7(2H, m), 1.5-1.3(4H, m),
0.93(3H, t, J=7.1Hz).

FABMS(m/z): 265[M⁺ H⁺] (100).

(2) 2-(4-ベンジルオキシフェニル)エチルアミン(1.15g、5.1mmol、1eq)のジクロロメタン溶液(2ml)をジクロロメタン(30ml)に溶解し、トリメチルアルミニウム(15%ヘキサン溶液、4.9ml、10.2mmol、2eq)を滴下し、室温で30分間攪拌した。この溶液に、6-メトキシ-5-ペンチルオキシ-3,4-ジヒドロイソクマリン(1.36g、5.1mol、1eq)のジクロロメタン溶液(30ml)を滴下し、室温で12時間攪拌した。この溶液に3N塩酸(20ml)を加えてジクロロメタン(20ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1

／1～酢酸エチル)を用いて精製することにより、2-(2-ヒドロキシエチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル]ベンズアミド(1.35g、53.7%)を無色結晶として得た。融点：93.4～93.7°C

¹H-NMR(CDC13) δ: 7.5-7.3(5H, m), 7.15(2H, d, J=8.6Hz), 7.05(1H, d, J=8.5Hz), 6.93(2H, d, J=8.6Hz), 6.75(1H, d, J=8.5Hz), 6.40(1H, bs), 5.05(2H, s), 3.96(1H, bs), 3.94(2H, t, J=6.7Hz), 3.86(2H, q, J=5.7Hz), 3.84(3H, s), 3.65(2H, q, J=6.8Hz), 2.94(2H, t, J=5.7Hz), 2.86(2H, t, J=6.8Hz), 1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.92(3H, t, J=7.1Hz).

FABMS(m/z) : 492[M⁺ H⁺] (100), 210(60).

IR(KBr, cm⁻¹) : 3291, 2932, 1614, 1512, 1243.

元素分析: C₃₀H₃₇N₁O₅

理論値 C 73.29, H 7.59, N 2.85

分析値 C 73.51, H 7.72, N 2.80

実施例7-17

2-(2-ヒドロキシエチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル]ベンズアミド(1.33g、2.7mmol、1.0eq)をDMSO(26ml)に溶解し、水冷下、トリエチルアミン(3.49ml、24.3mmol、9eq)、三酸化硫黄-ピリジン複合体(1.29g、8.1mmol、3eq)を順次加えた。室温で2時間攪拌後、この反応溶液に3N塩酸(35ml)を加え、室温で30分攪拌した後、酢酸エチル(40ml)で2回抽出した。有機層をあわせて飽和炭酸ナトリウム水溶液(4.0ml)、飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/1)を用いて精製することにより、2-[2-(4-ベンジルオキシフェニル)エチル]-6-メトキシ-

5-ペンチルオキシ-2H-イソキノリン-1-オン (1. 275 g, 100%) を無色結晶として得た。

実施例 7-18

2-[2-(4-ペンジルオキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン (1. 18 g, 2. 5 mmol, 1. 0 eq) を酢酸 (20 ml) に 10% 水酸化パラジウム-炭素触媒 (300 mg、水分含量 50%) を加えた後、水素気流下、60~70°C、3 kgf/cm² の条件下で 4 時間加熱攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (酢酸エチル/ヘキサン = 4/1) を用いて精製することにより、6-メトキシ-2-[2-(4-オキソシクロヘキシル)エチル]-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン (800 mg, 82.6%) を淡黄色油状物質として得た。

実施例 7-19

2-(2-ヒドロキシエチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド (121.9 mg, 0.304 mmol, 1.0 eq) を DMSO (6 ml) に溶解し、水冷下、トリエチルアミン (0.39 ml, 2.7 mmol, 9 eq)、三酸化硫黄-ピリジン複合体 (145 mg, 0.91 mmol, 3 eq) を順次加えた。室温で 2 時間攪拌後、この反応溶液に水 (20 ml)、飽和炭酸水素ナトリウム水溶液 (10 ml) を順次加え、酢酸エチル (20 ml) で 2 回抽出した。有機層をあわせて飽和塩化アンモニウム水溶液 (40 ml)、飽和食塩水 (40 ml) で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (酢酸エチル/ヘキサン = 3/1) を用いて精製することにより、2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン (①) (59 mg, 20.3%) を無色結晶として、3-ヒドロキシ-2-[2-(4-

－ヒドロキシフェニル)エチル]－6－メトキシ－5－ペンチルオキシ－3, 4
－ジヒドロ－2H－イソキノリン－1－オン(②)(103. 1mg、82. 5
%)を無色油状物質として得た。

②: $^1\text{H-NMR}$ (CDCl₃) δ : 7.85(1H, d, J=8.7Hz),
7.09(2H, d, J=8.5Hz), 6.89(1H, d, J=8.7Hz), 6.77(2H, d, J=8.5Hz),
5.50(1H, bs), 4.82(1H, m), 4.1-4.0(1H, m), 4.0-3.9(2H, m), 3.88(3H, s),
3.7-3.5(1H, m), 3.3-3.2(1H, m), 3.0-2.8(3H, m), 2.3-2.2(1H, bs),
1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.92(3H, t, J=7.1Hz).

FABMS (m/z) : 400[M⁺ H⁺] (80), 382(60).

IR (Neat, cm⁻¹) : 3304, 2934, 1631, 1597, 1468, 1281.

実施例7-2.0

2-(2-ヒドロキシエチル)-4-メトキシ-3-ペンチルオキシ-N-(
2-ピリジン-4-イルエチル)ベンズアミド(90mg、233mmol、1
.0eq)をDMSO(2ml)に溶解し、水冷下、トリエチルアミン(0.3
ml、2.10mmol、9eq)、三酸化硫黄-ピリジン複合体(111.2
mg、0.70mmol、3eq)を順次加えた。室温で4時間攪拌後、この反
応溶液に3N塩酸(1.5ml)を加え、室温で1時間攪拌した後、水酸化ナトリ
ウムを加えてアルカリ性の溶液にした後に、酢酸エチル(2.0ml)で2回抽出
した。有機層をあわせて飽和食塩水(4.0ml)で洗浄し、無水硫酸ナトリウム
で乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラ
ムクロマトグラフィー(酢酸エチル)を用いて精製し、酢酸エチルより再結晶す
ることにより、2-[2-(4-ピリジル)エチル]-6-メトキシ-5-ペ
ンチルオキシ-2H-イソキノリン-1-オン(40.2mg、47.1%)を無
色結晶として得た。

実施例7-2.1

2-[2-(4-ベンジルオキシフェニル)エチル]-6-メトキシ-5-ペ
ンチルオキシ-2H-イソキノリン-1-オン(1.21g、2.6mmol、

1. 0 eq) を酢酸エチル (12 ml) に溶解し、10%パラジウム-炭素触媒 (300 mg、水分含量 50%) を加えた後、水素気流下、4時間攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (酢酸エチル/ヘキサン = 1/1 ~ 酢酸エチル) を用いて精製することにより、2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン (681.8 mg, 68.7%) を無色結晶として得た。

なお、当該化合物は実施例 7-19①と同じ化合物であり、その物性等も実施例 7-19①と同じである。

実施例 7-22

2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン (681.8 mg, 1.79 mmol, 1.0 eq) をジクロロメタン (7 ml) に溶解し、水冷下、2,6-ルチジン (575 mg, 5.36 mmol, 3 eq)、無水酢酸 (1.13 g, 5.36 mmol, 3 eq) を順次加えた。室温で12時間攪拌後、3時間加熱還流した。反応溶液を室温まで冷却した後、水 (10 ml)、10%塩酸水溶液 (10 ml) を順次加え、ジクロロメタン (30 ml) で2回抽出した。有機層をあわせて飽和食塩水 (40 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (酢酸エチル/ヘキサン = 1/1) を用いて精製することにより、4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-1H-イソキノリン-2-イル)エチル]フェニルアセテート (734 mg, 97.0%) を無色結晶として得た。

実施例 7-23

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-1H-イソキノリン-2-イル)エチル]フェニルアセテート (5.65 g, 13.0 mmol, 1.0 eq) を酢酸 (60 ml) に溶解し、10%パラジウム-炭素触媒 (

5. 6 g、水分含量 5.0 %) を加えた後、水素気流下、8 時間、60～70 °C、
3 kgf/cm² の圧力下で加熱攪拌した。反応溶液を室温まで冷却した後セラ
イト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマト
グラフィー（酢酸エチル／ヘキサン = 1/1）を用いて精製することにより、4
-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ
-1H-イソキノリン-2-イル)エチル]フェニルアセテート (4.067 g
、73.5%) を無色結晶として得た。

実施例 7-24

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒ
ドロ-1H-イソキノリン-2-イル)エチル]フェニルアセテート (720 m
g、1.69 mmol、1 eq) をメタノール (10 ml) に溶解し、アンモニ
ア水 (10 ml) を加えた後、2 時間室温攪拌した。反応溶液を減圧濃縮して、
残渣に水 (20 ml) を加え、酢酸エチル (30 ml) で 2 回抽出した。有機層
をあわせて 1 N 塩酸水溶液 (10 ml)、飽和食塩水 (50 ml) で洗浄し、無
水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を
シリカゲルカラムクロマトグラフィー（酢酸エチル／ヘキサン = 1/1）を用
いて精製することにより、2-[2-(4-ヒドロキシフェニル)エチル]-6
-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1
-オン (396 mg、61.0%) を無色結晶として得た。

実施例 7-25

4-[2-(6-メトキシ-1-オキソ-7-ペンチルオキシ-3, 4-ジヒ
ドロ-1H-イソキノリン-2-イル)エチル]フェニルアセテート (25 mg
、0.0588 mmol、1.0 eq) をメタノール (1 ml) に溶解し、アン
モニア水 (3 滴) を加えた後、1 時間室温攪拌した。反応溶液を減圧濃縮して、
無色固体 (21 mg、93.1%) を得た。これを酢酸エチルとメタノールの混
合液より再結晶精製することにより、2-[2-(4-ヒドロキシフェニル)エ
チル]-6-メトキシ-7-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキ

ノリン-1-オン (15 mg、66.5%) を無色針状晶として得た。

実施例 7-26

4-[2-[(2-アセトキシ-2-ベンゼンスルファニルエチル)-(4-メトキシ-3-ペンチルオキシベンゾイルアミノ)]エチル]フェニルアセテート (1.575 g、0.0027 mmol、1 eq) をベンゼン (15 ml) に溶解し、トリクロロ酢酸 (3.65 g) を加えて2時間加熱還流した。反応溶液を3N塩酸水溶液 (40 ml) で酸性水溶液にした後、ジクロロメタン (70 ml) で2回抽出した。有機層をあわせて飽和食塩水 (140 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (*n*-ヘキサン/酢酸エチル=1/1) を用いて精製することにより、2-[2-(4-アセチルオキシフェニル)エチル]-[6-メトキシ-7-ペンチルオキシ]-2H-イソキノリン-1-オン (500 mg、43.7%) を無色固体として得た。

実施例 7-27

4-[2-[(2-アセトキシ-2-ベンゼンスルファニルエチル)-(4-メトキシ-3-ペンチルオキシベンゾイルアミノ)]エチル]フェニルアセテート (5.65 mg、1.02 mmol) をトルエン (12 ml) に溶解し、パラトルエンスルフォン酸1水和物 (3.90 mg、2.05 mol、2 eq) を加え、1時間加熱還流した。この反応溶液に氷冷下、1N水酸化カリウム水溶液 (20 ml) を加え、室温で30分間攪拌させ、実施例7-26と同様にして、2-[2-(4-ヒドロキシフェニル)エチル]-[6-メトキシ-7-ペンチルオキシ]-2H-イソキノリン-1-オン (2.87 mg、74%) を無色結晶として得た。

実施例 7-28

4-[2-[(2-アセトキシ-2-ベンゼンスルファニルエチル)-(3-メトキシ-4-ペンチルオキシベンゾイルアミノ)]エチル]フェニルアセテートを用い、実施例7-27と同様にして、2-[2-(4-ヒドロキシフェニル

) エチル] - (7-メトキシ-6-ペンチルオキシ) - 2H-イソキノリン-1-オン (31 mg、7.9%) を無色結晶として得た。

実施例 7-29

2-[2-(4-アセチルオキシフェニル)エチル]-[6-メトキシ-7-ペンチルオキシ]-2H-イソキノリン-1-オン (300 mg、0.708 mmol、1.0 eq) を酢酸 (5 ml) 溶液に 10% パラジウム-炭素触媒 (水分含量 50%) (100 mg) を加えた後、水素気流下、室温、3 kgf/cm² の圧力下で 16 時間攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、4-[2-(6-メトキシ-1-オキソ-7-ペンチルオキシ)-3,4-ジヒドロ-2H-イソキノリン-2-イル]エチル]フェニルアセテート (90 mg、47.7%) を無色結晶として得た。

実施例 7-30

4,5-ジペンチルオキシ-3-ヒドロキシ-2-[2-(4-ニトロフェニル)エチル]-2,3-ジヒドロイソインドール-1-オン (1.04 g、2.2 mmol、1.0 eq) をジクロロメタン (20 ml) に溶解し、トリエチルシラン (0.70 ml、4.4 mmol、2.0 eq) を加え、10 分間室温で攪拌した。これにトリフルオロ酢酸 (2.2 ml) を加え、さらに 4 時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液 (40 ml) を加え、酢酸エチル (30 ml) で 3 回抽出した。有機層をあわせて飽和食塩水 (100 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4,5-ジペンチルオキシ-2-[2-(4-ニトロフェニル)エチル]-2,3-ジヒドロイソインドール-1-オン (868 mg、86.8%) を淡黄色結晶として得た。

実施例 7-31

実施例 2-49 で得られた N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-2-メチルチオメチル-3-ペンチルアミノベンズアミド (93 mg、0.223 mmol)、塩化メチレン (1 ml) およびモレキュラーシー

ブ4A (100mg) を混合し、0°Cまで冷却した。N-クロロスクシンイミド (44.7mg、0.33mmol) を加えて、室温で24時間攪拌した。飽和食塩水 (0.5ml) を加えて、水層を酢酸エチル (5ml) で5回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィーで2回 (クロロホルム/メタノール = 50/1 ~ 10/1、ヘキサン/酢酸エチル = 1/2) 精製することにより 2-[2-(4-ヒドロキシフェニル)エチル]-5-メトキシ-4-ペンチルアミノ-2,3-ジヒドロイソインドール-1-オン (12.4mg、15%) を無色結晶として得た。

実施例 7-32

実施例 2-50 で得られた N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-2-メチルチオ-3-ペンチルオキシベンズアミド (85mg、0.21mmol)、モレキュラーシーブ4A (200mg) および塩化メチレン (1ml) を混合し、この溶液を0°Cに冷却した。N-クロロスクシンイミド (29.4mg、0.22mmol) を加えて、室温で5時間攪拌した。反応溶液を濾過し、濾液に酢酸エチル (20ml) を加えて、飽和食塩水 (5ml) で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル = 1/1) を用いて精製することにより淡黄色油状物質を得た。残った原料を反応させるため、さらにこの油状物質にモレキュラーシーブ4A (200mg) および塩化メチレン (1ml) を混合し、この溶液を0°Cに冷却した後、N-クロロスクシンイミド (17.4mg、0.13mmol) を加えて室温で2時間攪拌した。反応溶液を濾過し、濾液に酢酸エチル (20ml) を加えて、飽和食塩水 (5ml) で1回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を薄層クロマトグラフィー (クロロホルム/メタノール = 20/1) を用いて精製することにより 2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-7-ペンチルオキシベンゾ[d]イソチアゾ

ールー 3-オン (3.4 mg、4.2%) を無色結晶として得た。

実施例 7-33

実施例 2-120 で得られた 2-(2-ヒドロキシメチル)-3,4-ビスベンチルオキシ-N-[2-(4-ニトロフェニル)エチル]ベンズアミド (1.9. 83 g、42.0 mmol、1.0 eq) を DMSO (200 ml) に溶解し、冷水で冷やしながら、三酸化硫黄-ピリジン複合体 (20.1 g、12.6 mmol、3 eq)、トリエチルアミン (52.7 mg、37.8 mmol、9 eq) を順次加えた。反応溶液を室温まで昇温した後、この温度で 2 時間攪拌した。この反応液に飽和炭酸水素ナトリウム水溶液 (300 ml) を加え、酢酸エチル (400 ml) で抽出した。有機層を飽和食塩水 (300 ml) で順次洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより 3-ヒドロキシ-2-[2-(4-ニトロフェニル)エチル]-4,5-ビスベンチルオキシ-2,3-ジヒドロイソインドール-1-オン (32.2 g、over weight) を黄色油状物質として得た。

実施例 7-34

実施例 7-30 で得られた 4,5-ジペンチルオキシ-2-[2-(4-ニトロフェニル)エチル]-2,3-ジヒドロイソインドール-1-オン (19.69 g、43.3 mmol、1.0 eq) をエタノール (200 ml) に溶解し、5% パラジウム-炭素触媒 (3.8 g、水分含量 50%) を加えた後、水素気流下、2.5 時間、3 kgf/cm² の圧力下で室温で攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル/クロロホルム = 1/2) を用いて精製することにより 2-[2-(4-アミノフェニル)エチル]-4,5-ビスベンチルオキシ-2,3-ジヒドロイソインドール-1-オン (17.19 g、93.5%) を淡黄色結晶として得た。

実施例 7-35

実施例 7-34 で得られた 2-[2-(4-アミノフェニル)エチル]-4,

5-ビスペンチルオキシー-2, 3-ジヒドロイソインドール-1-オン (22.37 g, 52.7 mmol, 1.0 eq) をメタノール (100 ml) に溶解し、この溶液に 10% HCl-メタノール溶液 (86.0 g, 236 mmol, 4.4 eq) を加え、30 分間室温で攪拌した。溶媒を減圧濃縮した後、得られた残渣をヘキサンで洗浄し、エタノールに加熱溶解した。1 時間室温冷却の後、氷冷下攪拌し、晶析した結晶を濾取し、冷エタノールで洗浄した。一昼夜 40°C で真空乾燥することにより 2-[2-(4-アミノフェニル)エチル]-4,5-ビスペンチルオキシー-2, 3-ジヒドロイソインドール-1-オン 塩酸塩 (17.451 g, 72%) を無色針状晶として得た。

実施例 7-36

実施例 7-33 と同様にして得られた 3-ヒドロキシ-5-メトキシ-2-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシー-2, 3-ジヒドロイソインドール-1-オンを用いて、実施例 7-30 と同様にして 5-メトキシ-2-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシー-2, 3-ジヒドロイソインドール-1-オンを淡黄色固体として得た。

実施例 7-37

実施例 7-36 で得られた 5-メトキシ-2-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシー-2, 3-ジヒドロイソインドール-1-オンを用いて、実施例 7-34 と同様にして 2-[2-(4-アミノフェニル)エチル]-5-メトキシ-4-ペンチルオキシー-2, 3-ジヒドロイソインドール-1-オンを無色結晶として得た。

実施例 7-38

実施例 7-23 と同様にして得られた 2-[2-(4-アセトアニリニル)エチル]-7-メトキシ-8-ペンチルオキシー-3, 4-ジヒドロ-2H-イソキノリン-1-オン (239.4 mg, 3.88 mmol, 1.0 eq) をエタノール (20 ml) に溶解し、この溶液に 3N 塩酸 (20 ml) を加えて、加熱還流した。反応溶液を減圧濃縮した後、得られた残渣を、エタノール-エチルエー

テルで再結晶精製することにより 2-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ-3,4-ジヒドロ-2H-イソキノリン-1-オン 塩酸塩 (165 mg、70.0%) を無色結晶として得た。

実施例 7-39

実施例 2-46 で得られた 2-アミノ-4-メトキシ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルオキシベンズアミド (15.0 g, 37.4 mmol)、トリエチルアミン (5.30 ml, 38.0 mmol) およびクロロホルム (200 ml) を混合し、この溶液にトリホスゲン (4.75 g, 16.0 mmol) のクロロホルム溶液 (10 ml) を滴下した。50°Cで11.5時間攪拌した後、エタノール (20 ml) を加えて反応を停止し、飽和炭酸水素ナトリウム水溶液 (100 ml, 50 ml) および水 (100 ml, 50 ml) で有機層を洗浄した。この溶液を無水硫酸マグネシウムで乾燥、乾燥剤を濾別後、減圧濃縮し、生成した結晶にヘキサン-クロロホルム溶液 (10:1, 110 ml) を加えて攪拌洗浄することにより 7-メトキシ-3-[2-(4-ニトロフェニル)エチル]-8-ペンチルオキシ-1H-キナゾリン-2,4-ジオン (12.56 g, 79%) を淡黄色結晶として得た。

実施例 7-40

実施例 7-39 で得られた 7-メトキシ-3-[2-(4-ニトロフェニル)エチル]-8-ペンチルオキシ-1H-キナゾリン-2,4-ジオン (45.0 g, 105 mmol)、エタノール (1300 ml) およびジオキサン (700 ml) を混合し、この溶液に 10% パラジウム-炭素触媒 (4.5 g) を加えた。水素気流下室温で 16.5 時間攪拌した後に反応溶液を濾過し、濾液に活性炭 (2.6 g) を加え、50°Cで 1 時間攪拌した。この反応溶液を濾過して、溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/酢酸エチル = 3/1) に付し、析出した粗結晶をエタノール-ヘキサンから再結晶することにより 3-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ-1H-キナゾリン-2,4-ジオン (33.82 g,

81%) を淡黄色結晶として得た。

実施例 7-4-1

実施例 7-4-0 で得られた 3-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ-1H-キナゾリン-2, 4-ジオン (28.0 g, 70.4 mmol) とエタノール (500 ml) を混合し、結晶が完全に溶解するまで加熱還流した。この溶液に濃塩酸 (5.93 ml, 70.4 mmol) を滴下し、さらにエタノール (200 ml) を加えて室温まで冷却した。生成した結晶を濾過することにより 3-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ-1H-キナゾリン-2, 4-ジオン 塩酸塩 (28.24 g, 92%) を無色結晶として得た。

実施例 7-4-2

実施例 2-4-8 で得られた { (4-メトキシ-2-ニトロ-3-ペンチルオキシベンゾイル) - [2-(4-ニトロフェニル)エチル] アミノ} 酢酸エチルエステル (70.0 mg, 0.135 mmol) とエタノール (2 ml) を混合し、10% パラジウム-炭素触媒 (30 mg) を加えた。水素気流下室温で 10.5 時間攪拌した後に反応溶液を濾過し、溶媒を減圧濃縮した。析出した粗結晶にトルエン (10 ml) および p-トルエンスルホン酸一水和物 (1 mg, 0.0053 mmol) を加えて 3.5 時間加熱還流した。この反応溶液に酢酸エチル (20 ml) を加え、有機層を飽和重曹水 (5 ml)、飽和食塩水 (5 ml) で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール = 10/1) を用いて精製することにより 4-[2-(4-アミノフェニル)エチル]-8-メトキシ-9-ペンチルオキシ-3, 4-ジヒドロ-1H-ヘンゾ[e] [1, 4] ジアゼピン-2, 5-ジオン (35 mg, 2 steps 63%) を無色結晶として得た。

実施例 7-4-3

実施例 2-4-6 で得られた 2-アミノ-4-メトキシ-N-[2-(4-ニト

ロフェニル)エチル] - 3 - ペンチルオキシベンズアミド (300 mg、0.747 mmol)、アセトン (3 ml) および酢酸 (1.5 ml) を混合し、10°Cで2時間攪拌した。酢酸エチル (30 ml) と水 (25 ml) を加えて、有機層を分離した。有機層を飽和食塩水 (20 ml) で2回、飽和重曹水 (20 ml)、飽和食塩水 (20 ml) で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮することにより 7-メトキシ-2, 2-ジメチル-3-[2-(4-ニトロフェニル)エチル]-9-ペンチルオキシ-2, 3-ジヒドロ-1H-キナゾリン-4-オンの粗生成物を得た。

実施例 7-4-4

実施例 2-4-6 で得られた 2-アミノ-4-メトキシ-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルオキシベンズアミド (200 mg、0.498 mmol)、エタノール (3 ml) およびアセチルアセトン (0.13 ml、1.25 mmol) を混合し、この溶液に濃塩酸 1 滴を加えて 2.5 時間加熱還流した。酢酸エチル (30 ml) と飽和食塩水 (30 ml) を加えて、有機層を分離し、この有機層を飽和重曹水 (20 ml) および飽和食塩水 (20 ml) で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮することにより 7-メトキシ-2-メチル-3-[2-(4-ニトロフェニル)エチル]-8-ペンチルオキシ-3H-キナゾリン-4-オンの粗生成物を得た。

実施例 7-4-5

実施例 2-6-1 で得られた 2-アミノ-4-メトキシ-3-ペンチルオキシ-N-(2-ピリジン-4-イルエチル)ベンズアミド (100 mg、0.280 mmol) を用い、実施例 7-3-9 と同様の方法により 7-メトキシ-8-ペンチルオキシ-3-[2-(ピリジン-4-イルエチル)-1H-キナゾリン-2, 4-ジオン (103 mg、96%) を無色結晶として得た。

実施例 7-4-6

実施例 2-6-1 で得られた 2-アミノ-4-メトキシ-3-ペンチルオキシ-

N-(2-ピリジン-4-イルエチル)ベンズアミド(200mg、0.560mmol)、二硫化炭素(0.6ml)、1,8-ジアザビシクロ[5.4.0]−7-ウンデセン(0.0837ml、0.56mmol)およびDMF(1.0ml)を混合し、この溶液を4時間加熱還流した。この反応溶液に酢酸エチル(4ml)および水(5ml)を加え、有機層を飽和重曹水(5ml)、飽和食塩水(5ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)に付し、酢酸エチルから再結晶することにより、7-メトキシ-8-ペンチルオキシ-3-(2-ピリジン-4-イルエチル)-2-チオキソ-2,3-ジヒドロ-1H-キナゾリン-4-オン(24mg、11%)を無色結晶として得た。

実施例7-4:7

実施例2-6:1で得られた2-アミノ-4-メトキシ-3-ペンチルオキシ-N-(2-ピリジン-4-イルエチル)ベンズアミド(100mg、0.280mmol)、ジメチルホルムアミドジメチルアセタール(0.19ml、1.4mmol)およびDMF(0.5ml)を混合し、この溶液にp-トルエンスルホン酸一水和物(2mg、0.011mmol)を加えて、130°Cで5時間攪拌した。酢酸エチル(15ml)と飽和重曹水(15ml)を加えて、有機層を分離した後、有機層を飽和食塩水(15ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=25/1)を用いて精製することにより7-メトキシ-8-ペンチルオキシ-3-(2-ピリジン-4-イルエチル)-3H-キナゾリン-4-オン(57mg、55%)を淡黄色油状物質として得た。

実施例7-4:8

実施例2-5:1で得られた[3-メトキシ-2-ペンチルオキシ-6-(2-ピリジン-4-イルエチルカルバモイル)フェニル]酢酸エチルエステルの粗生

成物、エタノール（400ml）およびナトリウムエトキシド（1.98g、2.9.1mmol）を混合し、90°Cで30分間攪拌した。溶媒を減圧濃縮した後、1N塩酸（100ml）、水（100ml）およびヘキサン-酢酸エチル溶液（2:1溶液、150ml）を加えて、水層を分離した。有機層を水（100ml）と1N塩酸（100ml）の溶液で抽出した後、水層を合わせてヘキサン-酢酸エチル溶液（2:1溶液、150ml）で洗浄した。氷冷下水層に炭酸ナトリウムを加えて溶液を塩基性にした後、水層を酢酸エチル（300ml）で2回抽出し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、溶媒を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー（ヘキサン/酢酸エチル=1/4）を用いて精製することにより6-メトキシ-5-ペンチルオキシ-6-(2-ピリジン-4-イルエチル)-4H-イソキノリン-1,3-ジオン（31.51g、2 steps 67.5%）を淡黄色結晶として得た。

実施例7-49

実施例7-48で得られた6-メトキシ-5-ペンチルオキシ-2-(2-ピリジン-4-イルエチル)-4H-イソキノリン-1,3-ジオン（30.97g、80.98mmol）、塩化メチレン（150ml）およびメタノール（150ml）を混合し、この溶液に氷冷下水素化ホウ素ナトリウム（6.127g、16.2mmol）をゆっくりと加えた。室温で2時間攪拌した後、氷冷下濃塩酸をpH=1になるまで加え、室温で30分間攪拌した。飽和炭酸水素ナトリウム水溶液を加えて溶液を塩基性にし、水層をクロロホルム（500ml）で抽出した。無水硫酸マグネシウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー（酢酸エチル）を用いて精製した。このものに4N塩酸-ジオキサン溶液（40ml）を加え、さらに酢酸エチル（200ml）およびヘキサン（100ml）を加え生成した結晶を濾取した。この結晶を酢酸エチルで2回加熱洗浄することにより6-メトキシ-5-ペンチルオキシ-2-(2-ピリジン-4-イルエチル)-2H-イソキノリン-1-オン塩酸塩（22.412g、68.7%）を無色結晶として得た。

実施例 7-50

6-メトキシ-5-ペンチルオキシー-1, 2, 3, 4-テトラヒドロイソキノリン(116 mg、0.465 mmol)、(4-ニトロフェニル)酢酸(101.1 mg、0.558 mmol)および1-ヒドロキシベンゾトリアゾール水和物(81.7 mg、0.605 mmol)をDMF(2 ml)に溶解し、この溶液にWSC塩酸塩(125 mg、0.651 mmol)を氷冷下で加えた。室温で3時間攪拌後、この反応溶液に酢酸エチル(3 ml)と飽和炭酸水素ナトリウム水溶液(3 ml)を加えて、有機層を分離した。有機層を無水硫酸ナトリウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮することにより1-(6-メトキシ-5-ペンチルオキシー-3, 4-ジヒドロ-1H-イソキノリン-2-イル)-2-(4-ニトロフェニル)エタノンの粗生成物を得た。このものをそのまま次の反応に用いた。

実施例 7-51

実施例 7-50で得られた1-(6-メトキシ-5-ペンチルオキシー-3, 4-ジヒドロ-1H-イソキノリン-2-イル)-2-(4-ニトロフェニル)エタノンの粗生成物をエタノール(4 ml)に溶解し、この溶液に10%パラジウム-炭素触媒(38 mg)を加えた。水素気流下3時間攪拌した後、反応液を濾過、溶媒を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)を用いて精製することにより2-(4-アミノフェニル)-1-(6-メトキシ-5-ペンチルオキシー-3, 4-ジヒドロ-1H-イソキノリン-2-イル)エタノン(159 mg、2 steps 89%)を無色油状物質として得た。

上記実施例 7-1~7-51で得られた化合物の物性を表111~127に示す。

実施例 7-52~7-102

上記実施例 7-1~7-51と同様にして、実施例 7-52~7-102に示す化合物を得た。当該化合物の物性を表127~144に示す。

実施例 8 - 1

7-メトキシクマリン (300 mg、2.78 mmol) をモルホリン (3 ml) に溶解し、2時間加熱還流した。この反応溶液を室温まで冷却した後に水 (10 ml)、飽和クエン酸 (50 ml) を加え、酢酸エチル (50 ml) で2回抽出した。有機層をあわせて飽和食塩水 (100 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (*n*-ヘキサン/酢酸エチル = 4/1 ~ 1/2) を用いて精製することにより、(E)-[3-(6-ヒドロキシ-4-メトキシフェニル)-1-オキソ-2-プロペニル]-4-モルホリン (37 mg、12.0%) を無色結晶として得た。

実施例 8 - 2

(E)-[3-(6-ヒドロキシ-4-メトキシフェニル)-1-オキソ-2-プロペニル]-4-モルホリン (27 mg、0.103 mmol) をDMF (3 ml) に溶解し、この溶液に1-ブロモペンタン (20 mg、0.132 mmol、1.3 eq) と無水炭酸カリウム (40 mg、0.29 mmol、2.8 eq) を順次加えた後、90°Cで1時間加熱攪拌した。この反応溶液を室温まで冷却し、水 (30 ml) を加え、酢酸エチル (30 ml) で2回抽出した。有機層をあわせて飽和食塩水 (30 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (*n*-ヘキサン/酢酸エチル = 20/1) を用いて精製することにより、(E)-[3-(4-メトキシ-2-ベンチルオキシフェニル)-1-オキソ-2-プロペニル]-4-モルホリン (31 mg、90.7%) を無色油状物質として得た。

実施例 8 - 3

4-メトキシ-3-ベンチルオキシ桂皮酸 (500 mg、2.62 mmol、1 eq) と1-ヒドロキシベンゾトリアゾール水和物 (371 mg、2.75 mmol、1.05 eq) をDMF (5 ml) に溶解し、この溶液にモルホリン (

684 mg、7.85 mmol、3.0 eq) と WSC 塩酸塩 (526 mg、2.75 mmol、1.05 eq) を順次氷冷下で加えた。室温で12時間攪拌後、この反応溶液に氷水 (5 ml)、飽和炭酸水素ナトリウム水溶液 (5 ml) を順次加え、酢酸エチル (20 ml) で2回抽出した。有機層をあわせて飽和食塩水 (40 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 1/2) を用いて精製することにより、(E)-3-(3-ペンチルオキシ-4-メトキシフェニル)-1-モルホリン-4-イル-プロブ-2-エン-1-オン (343 mg、49.8%) を無色固体として得た。

実施例 8-4

窒素気流下、4-メトキシ-3-ペンチルオキシ安息香酸 (250 mg、1.05 mmol、1 eq) を塩化チオニル (1.05 ml) に溶解し、70°Cで5時間攪拌した。これを室温まで冷却した後減圧下、過剰の塩化チオニルを留去した。残渣を、氷冷下モルホリン (274 mg、3.15 mol、3.0 eq) の DMF (3 ml) 溶液に加えた。氷冷下で30分間攪拌した後、更に室温で1.5時間攪拌した。この反応溶液に水 (30 ml) を加え、酢酸エチル (50 ml) で2回抽出した。有機層をあわせて飽和食塩水 (50 ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル = 2/1) を用いて精製することにより、4-メトキシ-3-ペンチルオキシフェニル) モルホリン-4-イル-メタノン (219 mg、67.9%) を油状性物質として得た。

上記実施例 8-1～8-4 で得られた化合物の物性を表 145～146 に示す。

実施例 8-5～8-7

上記実施例 8-1～8-4 と同様にして、実施例 8-5～8-7 に示す化合物を得た。当該化合物の物性を表 146～147 に示す。

表 1

参考例	構造式	1H NMR (δ) ppm	MS
91	 無色結晶	CDCl ₃ , 300MHz 10.72(1H, bs), 8.14(1H, d, J = 8.8 Hz), 6.64(1H, dd, J = 8.8, 2.3 Hz), 6.51(1H, d, J = 2.3 Hz), 4.21(2H, t, J = 6.6 Hz), 3.87(3H, s), 1.83-1.95(2H, m), 1.33-1.50(4H, m), 0.95(3H, t, J = 7.0 Hz).	FAB+ 239[M+H ⁺] (70), 221(30).
92	 無色結晶	CDCl ₃ , 300MHz 7.51(1H, dd, J = 8.1, 2.1 Hz), 7.29(1H, d, J = 2.1 Hz), 6.78(1H, d, J = 8.1 Hz), 3.92(3H, s), 3.18(2H, t, J = 7.2 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.93(3H, t, J = 6.5 Hz).	
93	 無色結晶	CDCl ₃ , 300MHz 7.32(2H, s), 4.0-4.1(6H, m), 1.7-1.9(6H, m), 1.30-1.55(12H, m), 0.85-0.95(9H, m).	FAB+ 381[M+H ⁺] (100), 310 (60).

表 2

参考例	構造式	1H NMR (δ) ppm	MS
94	 無色結晶	CDCl ₃ , 300MHz 8.65(1H, bs), 8.22(1H, d, J = 9.0 Hz), 7.14(1H, d, J = 9.0 Hz), 4.06(3H, s), 3.54(4H, bt), 1.8-2.1(1H, m), 1.0-1.4(11H, m), 0.81(6H, bt).	FAB+ 308[M+H ⁺] (100), 250(30).
95	 無色結晶	CDCl ₃ , 300MHz 7.67(1H, d, J = 16 Hz), 7.75(2H, s), 6.31(1H, d, J = 16 Hz), 3.9-4.1(6H, m), 1.7-1.9(6H, m), 1.30-1.55(12H, m), 0.87-1.0(9H, m).	FAB+ 407[M+H ⁺] (90), 336(60).
96	 無色結晶	CDCl ₃ , 300MHz 7.47(1H, dd, J = 8.4, 2.1 Hz), 7.28(1H, d, J = 2.0 Hz), 6.76(1H, d, J = 8.4 Hz), 4.06(2H, t, J = 6.6 Hz), 3.18(2H, t, J = 7.1 Hz), 1.78-1.92(2H, m), 1.62-1.74(2H, m), 1.30-1.53(8H, m), 0.94(3H, t, J = 7.0 Hz), 0.93(3H, t, J = 7.0 Hz).	FAB+ 294[M+H ⁺] (50), 277(60), 185(100).

表 3

参考例	構造式	^1H NMR (δ) ppm	MS
97	 黄色結晶	CDCl ₃ , 300MHz 7.71(1H, d, J = 16 Hz), 6.86(1H, dd, J = 8.2, 2.0 Hz), 6.77(1H, s), 6.74(1H, d, J = 8.2 Hz), 6.29(1H, d, J = 16 Hz), 3.88(3H, s), 3.14(2H, t, J = 7.1 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.94(3H, t, J = 7.0 Hz).	FAB+ 264[M+H ⁺] (50), 237(100), 206(40).
98	 黄色結晶	CDCl ₃ , 300MHz 7.72(1H, d, J = 16 Hz), 7.18(1H, dd, J = 8.4, 2.0 Hz), 7.12(1H, d, J = 2.0 Hz), 6.85(1H, d, J = 8.4 Hz), 6.30(1H, d, J = 16 Hz), 3.88(3H, s), 3.08(4H, t, J = 7.7 Hz), 1.37-1.54(4H, m), 0.25-1.36(8H, m), 0.87(6H, t, J = 6.9 Hz).	FAB+ 334[M+H ⁺] (100), 276(30).
99	 淡黄色油状	CDCl ₃ , 300MHz 7.77(1H, dd, J = 8.5, 2.1 Hz), 7.66(1H, d, J = 2.0 Hz), 6.88(1H, d, J = 8.5 Hz), 3.94(3H, s), 3.04(2H, t, J = 7.8 Hz), 2.82(3H, s), 1.45-1.60(2H, m), 1.2-1.4(4H, m), 0.89(3H, t, J = 6.9 Hz).	FAB+ 252[M+H ⁺] (100), 194(50).

表 4

参考例	構造式	1H NMR (δ) ppm	MS
100	 無色結晶	$\text{CDCl}_3, 300\text{MHz}$ 7.72(1H, d, $J = 16$ Hz), 6.84(1H, dd, $J = 8.1, 1.8$ Hz), 6.77(1H, d, $J = 2.4$ Hz), 6.72(1H, d, $J = 8.1$ Hz), 6.30(1H, d, $J = 16$ Hz), 4.03(2H, t, $J = 6.3$ Hz), 3.15(2H, t, $J = 7.1$ Hz), 1.75-1.90(2H, m), 1.60-1.73(2H, m), 1.30-1.50(8H, m), 0.94(6H, t, $J = 6.9$ Hz).	FAB+ 320[M+H $^+$] (70), 262(20).
101	 無色結晶	$\text{CDCl}_3, 300\text{MHz}$ 7.69(1H, dd, $J = 8.1, 1.5$ Hz), 7.41(1H, d, $J = 1.8$ Hz), 6.54(1H, d, $J = 8.1$ Hz), 4.05(2H, t, $J = 6.5$ Hz), 3.20(2H, t, $J = 7.1$ Hz), 1.75-1.90(2H, m), 1.60-1.75(2H, m), 1.30-1.50(8H, m), 0.85-1.2(6H, m).	FAB+ 294[M+H $^+$] (50), 293(100), 236(20).
102	 淡黃色結晶	$\text{CDCl}_3, 300\text{MHz}$ 7.72(1H, d, $J = 16$ Hz), 7.17(1H, bs), 6.88(1H, bs), 6.33(1H, s, $J = 16$ Hz), 3.92(3H, s), 3.07(2H, bs), 2.82(3H, bs), 1.4-1.6(2H, m), 1.2-1.4(4H, m), 0.88(3H, t, $J = 6.8$ Hz).	FAB+ 278[M+H $^+$] (100), 220(30).

表 5

参考例	構造式	1H NMR (δ) ppm	MS
103	 無色結晶	CDCl ₃ , 300MHz 7.72(1H, d, J = 16 Hz), 7.42(1H, d, J = 2.1 Hz), 7.36(1H, dd, J = 8.5, 2.1 Hz), 6.85(1H, d, J = 8.5 Hz), 6.33(1H, d, J = 16 Hz), 3.93(3H, s), 2.91(2H, t, J = 7.4 Hz), 1.60-1.75(2H, m), 1.30-1.50(4H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 281[M+H ⁺] (60), 280(100).
104	 無色結晶	CDCl ₃ , 300MHz 7.73(1H, d, J = 8.4 Hz), 7.43(1H, s), 6.54(1H, d, J = 8.4 Hz), 4.05(2H, t, J = 6.3 Hz), 2.94(3H, s), 1.73-1.90(2H, m), 1.30-1.55(4H, m), 0.94(3H, t, J = 6.9 Hz).	FAB+ 238[M+H ⁺] (80), 220(60), 169(100).
105	 無色結晶	CDCl ₃ , 300MHz 7.67(1H, dd, J = 8.4, 1.8 Hz), 7.41(1H, d, J = 1.8 Hz), 6.61(1H, d, J = 8.4 Hz), 3.18(2H, t, J = 8.3 Hz), 3.12(2H, t, J = 8.3 Hz), 1.6-1.8(4H, m), 1.30-1.50(8H, m), 0.94(6H, t, J = 6.9 Hz).	293[M+H ⁺] (40), 292(100).

表 6

参考例	構造式	1H NMR (δ) ppm	MS
106	 無色結晶	CDCl ₃ , 300MHz 7.71(1H, dd, J = 8.4, 2.1 Hz), 7.62(1H, d, J = 2.1 Hz), 6.86(1H, d, J = 8.4 Hz), 4.06(2H, t, J = 6.6 Hz), 3.05(2H, t, J = 7.7 Hz), 2.83(3H, s), 1.80-1.95(2H, m), 1.20-1.65(10H, m), 0.94(6H, t, J = 7.0 Hz), 0.89(6H, t, J = 7.0 Hz).	FAB+ 308[M+H ⁺] (20), 185(100).
107	 淡黄色油状	CDCl ₃ , 300MHz 9.85(1H, s), 7.72(1H, d, J = 2.1 Hz), 7.63(1H, dd, J = 8.4, 1.8 Hz), 6.91(1H, d, J = 8.4 Hz), 2.94(2H, t, J = 7.4 Hz), 1.80-1.93(2H, m), 1.6-1.78(2H, m), 1.20-1.60(8H, m), 0.94(3H, t, J = 7.2 Hz), 0.92(3H, t, J = 7.2 Hz).	FAB+ 295[M+H ⁺] (80), 294(100), 225(40).
108	 無色結晶	CDCl ₃ , 300MHz 8.29(1H, d, J = 2.1 Hz), 8.02(1H, dd, J = 9.0, 2.4 Hz), 6.91(1H, d, J = 9.0 Hz), 4.10(2H, t, J = 6.5 Hz), 1.80-1.95(2H, m), 1.30-1.60(4H, m), 0.95(3H, t, J = 7.2 Hz).	FAB+ 288[M+H ⁺] (30), 218(30).

表 7

参考例	構造式	^1H NMR (δ) ppm	MS
109	 無色結晶	CDCl ₃ , 300MHz 7.71(1H, d, J = 16 Hz), 7.41(1H, d, J = 2.4 Hz), 7.33(1H, dd, J = 8.7, 1.8 Hz), 6.83(1H, d, J = 8.7 Hz), 6.31(1H, d, J = 16 Hz), 4.06(2H, t, J = 6.5 Hz), 2.90(2H, t, J = 7.4 Hz), 1.80-1.95(2H, m), 1.60-1.77(2H, m), 1.30-1.56(8H, m), 0.94(3H, t, J = 8.0 Hz), 0.91(3H, t, J = 8.0 Hz).	FAB+ 337[M+H ⁺] (50), 266(50).
111	 無色結晶	CDCl ₃ , 300MHz 7.95(1H, s), 7.93(1H, d, J = 8.4 Hz), 6.88(1H, d, J = 8.4 Hz), 3.97(3H, s), 2.95(2H, t, J = 7.4 Hz), 1.65-1.80(2H, m), 1.30-1.55(4H, m), 0.91(3H, t, J = 7.2 Hz).	FAB+ 255[M+H ⁺] (30), 254(40).
112	 無色結晶	CDCl ₃ , 300MHz 7.94(1H, d, J = 2.0 Hz), 7.89(1H, dd, J = 8.5, 2.0 Hz), 6.85(1H, d, J = 2.0 Hz), 4.10(2H, t, J = 6.6 Hz), 2.94(2H, t, J = 7.4 Hz), 1.77-1.95(2H, m), 1.60-1.75(2H, m), 1.3-1.5(8H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 311[M+H ⁺] (50), 310(100), 240(40).

表 8

参考例	構造式	^1H NMR (δ) ppm	MS
113	 無色結晶		
114	 無色結晶		
115	 無色結晶		

表 9

参考例	構造式	^1H NMR (δ) ppm	MS
116	 茶色結晶	DMSO-d6,300MHz 7.39(1H,d,J=8.8Hz) 6.48(1H,d,J=8.8Hz) 3.80(3H,s) 3.32(2H,t,J=6.9Hz) 1.35-1.50(2H,m) 1.20-1.33(4H,m) 0.85(3H,t,J=7.0Hz)	
117	 淡黄色結晶	CDCl3,300MHz 7.87(1H,d,J=15.6Hz) 7.17(1H,d,J=8.7Hz) 6.39(1H,d,J=8.7Hz) 6.27(1H,d,J=15.6Hz) 3.96(2H,t,J=6.8Hz) 3.86(3H,s) 1.70-1.85(2H,m) 1.30-1.50(4H,m) 0.94(3H,t,J=7.1Hz)	
118	 灰色結晶	CDCl3,300MHz 7.37(1H,s) 6.13(1H,s) 3.94(2H,t,J=6.8Hz) 3.86(3H,s) 1.75-1.85(2H,m) 1.35-1.50(4H,m) 0.93(3H,t,J=7.2Hz)	

表 10

参考例	構造式	1H NMR (δ) ppm	MS
119	 無色結晶	CDCl ₃ , 300MHz 7.86(1H, d, J=8.8Hz) 6.84(1H, d, J=8.8Hz) 4.26(2H, s) 3.97(2H, t, J=6.7Hz) 3.91(3H, s) 2.09(3H, s) 1.75-1.90(2H, m) 1.30-1.50(4H, m) 0.95(3H, t, J=7.1Hz)	FAB+ 299[M+H ⁺] (50) 289(60)
120	 無色結晶	CDCl ₃ , 300MHz 8.29(1H, d, J=2.1 Hz) 8.02(1H, dd, J=9.0, 2.4 Hz) 6.91(1H, d, J=9.0 Hz) 4.10(2H, t, J=6.5 Hz) 1.80-1.95(2H, m) 1.30-1.60(4H, m) 0.95(3H, t, J=7.2 Hz)	288[M+H ⁺] (30) 218(30)
121	 無色結晶	CDCl ₃ , 300MHz 7.66(1H, d, J=9.0Hz) 7.47(1H, s) 7.19(1H, d, J=9.0Hz) 4.09(2H, t, J=6.6Hz) 2.93(2H, t, J=7.4Hz) 1.30-1.90(12H, m) 0.94(3H, t, J=7.5Hz) 0.92(3H, t, J=7.5Hz)	FAB+ 311[M+H ⁺] (50) 310(100) 240(40)

表 1 1

参考例	構造式	1H NMR (δ) ppm	MS
122	 無色結晶	CDCl ₃ , 300MHz 7.71(1H,d,J=8.2Hz) 7.48(1H,s) 7.14(1H,d,J=8.2Hz) 4.11(2H,t,J=6.5Hz) 2.47(3H,s) 1.80-1.90(2H,m) 1.30-1.55(4H,m) 0.95(3H,t,J=7.2Hz)	FAB+ 255[M+H ⁺] (30) 254(50)
123	 無色結晶	CDCl ₃ , 300MHz 7.71(1H,d,J=16.2Hz) 7.08-7.19(2H,m) 6.97(1H,s) 6.38(1H,d,J=16.2Hz) 4.06(2H,t,J=6.5Hz) 2.912(2H,t,J=7.5Hz) 1.30-1.95(12H,m) 0.87-0.98(6H,m)	FAB+ 337[M+H ⁺] (40) 336(100)
124	 無色結晶	CDCl ₃ , 300MHz 7.72(1H,d,J=15.9Hz) 7.08-7.15(2H,m) 6.96(1H,s) 6.39(1H,d,J=15.9Hz) 4.06(2H,t,J=6.5Hz) 2.45(3H,s) 1.80-1.90(2H,m) 1.35-1.60(4H,m) 0.95(3H,t,J=7.4Hz)	FAB+ 281[M+H ⁺] (20) 280(40)

表 1 2

参考例	構造式	^1H NMR (δ) ppm	MS
125	 無色結晶	CDCl ₃ , 300MHz 7.72(1H, d, J=15.9Hz) 7.11(1H, d, J=8.2Hz) 7.10(1H, s) 6.82(1H, d, J=8.2Hz) 6.30(1H, d, J=15.9Hz) 4.05(2H, t, J=6.6Hz) 3.05(2H, t, J=7.8Hz) 2.81(3H, s) 1.80-1.95(2H, m) 1.20-1.65(10H, m) 0.94(3H, t, J=7.1Hz) 0.89(3H, t, J=7.1Hz)	
126	 無色結晶	CDCl ₃ , 300MHz 9.04(1H, bs) 7.82(1H, d, J=8.7Hz) 7.72(1H, bs) 6.90(1H, d, J=8.7Hz) 4.11(2H, t, J=6.6Hz) 2.42(2H, t, J=7.5Hz) 1.63-1.94(4H, m) 1.33-1.53(6H, m) 0.96(6H, t, J=7.4Hz)	
127	 無色結晶		FAB+ 321[M+H ⁺] (60) 219(100)

表 13

参考例	構造式	1H NMR (δ) ppm	MS
128	 無色結晶	$\text{CDCl}_3, 300\text{MHz}$ 9.05(1H,bs) 7.83(1H,d, $J=8.7\text{Hz}$) 6.91(1H,d, $J=8.7\text{Hz}$) 3.95(3H,s) 2.41(2H,t, $J=7.5\text{Hz}$) 1.65-1.80(2H,m) 1.35-1.48(2H,m) 0.95(3H,t, $J=7.3\text{Hz}$)	FAB+ 252[M+H+] (70) 185(100)
129	 無色結晶	$\text{DMSO-d}_6, 300\text{MHz}$ 12.8(1H,s) 9.71(1H,s) 8.40(1H,s) 8.32(1H,d, $J=8.4\text{Hz}$) 7.52(1H,d, $J=8.4\text{Hz}$) 7.59(1H,s) 4.07(2H,t, $J=6.6\text{Hz}$) 1.75-1.83(2H,m) 1.30-1.50(4H,m) 0.90(3H,t, $J=7.1\text{Hz}$)	FAB+ 252[M+H+] (100) 182(100)
130	 淡黃色結晶		

表 1 4

参考例	構造式	^1H NMR (δ) ppm	MS
131	 淡黄色結晶	DMSO-d6.300MHz 7.26(1H,d,J=15.7Hz) 7.03(1H,s) 6.89(1H,d,J=8.2Hz) 6.59(1H,d,J=8.2Hz) 6.19(1H,d,J=15.7Hz) 5.08(2H,bs) 3.98(2H,t,J=6.5Hz) 1.68-1.80(2H,m) 1.27-1.50(4H,m) 0.90(3H,t,J=7.1Hz)	FAB+ 250[M+H+] (60) 249(100)

表 15

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
1-1		106.5~107.3 °C	CDCl ₃ , 300MHz 7.54(1H, d, J=15.5, 15.3 Hz) 7.05(2H, d, J=8.4 Hz) 7.05(1H, dd, J=8.2, 1.9 Hz) 7.00(1H, d, J=1.9 Hz) 6.83(1H, d, J=8.2 Hz) 6.81(2H, d, J=8.4 Hz) 6.18(1H, d, J=15.5 Hz) 6.09(1H, bs) 5.6~5.7(1H, m) 4.00(2H, t, J=6.8 Hz) 3.87(3H, s) 3.61(2H, q, J=6.8 Hz)	2.80(2H, t, J=6.8 Hz) 1.7~1.9(2H, m) 1.3~1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	KBr 3231 1646 1516	FAB+ 384 (M ⁺ H ⁺) ⁽⁵⁰⁾ 136(100)	C ₁₀ H ₁₁ N ₁ C: 72.04% H: 7.62% N: 3.65% 分析值 C: 72.04% H: 7.81% N: 3.64%
1-2		126~127 °C	(DMSO-d6, 300MHz) 9.14(1H, s) 7.97(1H, t) 7.31(1H, d, J=15.8 Hz) 6.93~7.12(5H, m) 6.67(2H, d, J=8.4 Hz) 6.46(1H, d, J=15.8 Hz) 4.04(2H, t, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.26~3.37(2H, m) 2.63(2H, t, J=6.5 Hz) 1.66~1.77(2H, m) 1.26~1.46(7H, m)	0.89(3H, t, J=7.2 Hz)	FAB+ 398 (M ⁺ H ⁺) ⁽⁵²⁾ 276(23) 261(100) 190(85) 162(86)		
1-3		126~127 °C	(DMSO-d6, 300MHz) 9.15(1H, s) 7.97(1H, t) 7.32(1H, d, J=15.7 Hz) 6.94~7.13(5H, m) 6.68(2H, d, J=8.4 Hz) 6.47(1H, d, J=15.7 Hz) 3.95~4.00(4H, m) 3.25~3.38(2H, m) 2.65(2H, t, J=7.5 Hz) 1.64~1.78(4H, m) 1.27~1.47(8H, m) 0.81~0.94(6H, m)	FAB+ 440 (M ⁺ H ⁺) ⁽⁵⁰⁾ 318(14) 303(44) 232(32) 162(100)			

表 1 6

実施例	構造式	融点	1H NMR (δ) ppm	IR cm ⁻¹	MS	元素分析	
1-4		123~125°C 無色結晶	(DMSO-d6, 300MHz) 9.15(1H, s) 7.98(1H, t, J=5.5 Hz) 7.33(1H, d, J=15.7 Hz) 7.13(1H, d, J=2.0 Hz) 7.09(1H, dd, 8.4, 2.0 Hz) 7.01(2H, , J=8.4 Hz) 6.97(1H, d, J=8.3 Hz) 6.68(2H, d, J=8.4 Hz) 6.48(1H, d, J=15.8 Hz) 3.98(2H, d, J=6.5 Hz) 3.78(3H, s)	3.33(2H, m) 2.64(2H, t, J=7.5) 1.71(2H, m) 1.44(2H, m) 0.94(3H, t, J=7.4 Hz)	KBr 3484 3305 1644 1589 1549 1516 1260 1241 1140 1018	FAB+ [M+H ⁺](100) 248(31) 233(58) 176(76)	C ₂₂ H ₂₃ NO ₂
1-5		117~118°C 無色結晶	(DMSO-d6, 300MHz) 9.14(1H, s) 7.97(1H, t, J=5.6 Hz) 7.32(1H, d, J=15.7 Hz) 7.12(1H, d, J=2.0 Hz) 7.09(1H, dd, 8.3, 2.0 Hz) 7.01(2H, d, J=8.4 Hz) 6.96(1H, d, J=8.3 Hz) 6.68(2H, d, J=8.3 Hz) 6.47(1H, d, J=15.8 Hz) 3.97(2H, t, J=6.6 Hz) 3.78(3H, s)	2.64(2H, t, J=7.5 Hz) 1.72(2H, m) 1.41(2H, m) 1.37-1.25(4H, m) 0.88(3H, t, J=6.9 Hz)	KBr 3456 2952 1652 1614 1594 1548 1514 1342 1259 1243	FAB+ [M+H ⁺](33) 397(M)(32) 276(25) 261(36) 176(69) 153(100)	C ₂₂ H ₂₃ NO ₂
1-6		123~124°C 無色結晶	(DMSO-d6, 300MHz) 9.14(1H, s) 7.97(1H, t, J=5.6 Hz) 7.32(1H, d, J=15.9 Hz) 7.12(1H, d, J=2.0 Hz) 7.08(1H, dd, 8.3, 2.0 Hz) 7.00(2H, d, J=8.4 Hz) 6.95(1H, d, J=8.3 Hz) 6.68(2H, d, J=8.3 Hz) 6.47(1H, d, J=15.8 Hz) 3.96(2H, t, J=6.6 Hz) 3.78(3H, s)	2.64(2H, t, J=7.5 Hz) 1.70(2H, m) 1.40(2H, m) 1.37-1.22(6H, m) 0.84(3H, t, J=6.9 Hz)	KBr 3280 2933 1650 1614 1598 1538 1516 1259 1237 1138	FAB+ [M+H ⁺](66) 290(22) 275(28) 176(52) 168(100)	C ₂₂ H ₂₃ NO ₂

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
1-7		176.6~177.2°C	(CDMSO-d6, 300MHz) 9.8(1H, s) 9.2(1H, s) 7.5(2H, d, J=9 Hz) 7.4(1H, d, J=18 Hz) 7.2(1H, s) 7.1(1H, d, J=6 Hz) 7.0(1H, d, J=6 Hz) 6.7(2H, d, J=9 Hz) 6.6(1H, d, J=18 Hz) 4.0(2H, t, J=7.5 Hz) 3.8(3H, s) 1.7-1.8(2H, m)	1.3-1.5(4H, m) 0.9(3H, t, J=7.5 Hz)	KBr 3280 2934 1654 1619 1511	FAB+ 356 [M ⁺ H] ⁺ (20) 169(100)	C ₂₁ H ₂₃ NO ₄ 理論値 C: 70.96% H: 7.09% N: 3.94% 分析値 C: 70.66% H: 7.23% N: 4.08%
1-8			(CDCl ₃ , 300MHz) 7.6(1H, d, J=15 Hz) 7.1(2H, d, J=9 Hz) 7.0(1H, d, J=9 Hz) 7.0(1H, s) 6.8(2H, d, J=9 Hz) 6.6(1H, bs) 6.3(1H, d, J=15 Hz) 6.0(1H, bs) 4.5(2H, d, J=3 Hz) 4.0(2H, t, J=7.5 Hz) 3.9(3H, s) 1.8-1.9(2H, m)	1.3-1.5(4H, m) 0.9(3H, t, J=7.5 Hz)	KBr 3221 1513 1264	FAB+ 370 [M ⁺ H] ⁺ (40)	C ₂₂ H ₂₅ NO ₄ 理論値 C: 71.52% H: 7.37% N: 3.79% 分析値 C: 71.64% H: 7.48% N: 3.82%
1-9			(CDCl ₃ , 300MHz) 7.51(1H, d, J=15.5 Hz) 7.04(1H, dd, J=8.4, 2.4 Hz) 7.00(1H, d, J=2.4 Hz) 7.00(2H, d, J=8.3 Hz) 6.82(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.3 Hz) 6.51(1H, bs) 6.21(1H, d, J=15.5 Hz) 5.73(1H, bs) 4.00(2H, t, J=6.8 Hz) 3.86(3H, s) 3.38(2H, q, J=6.7 Hz)	2.59(2H, t, J=7.4 Hz) 1.7-1.9(2H, m) 1.3-1.5 (4H, m) 0.92(3H, t, J=7.0 Hz)	Neat 3300 2932 1652 1594 1514 1260	FAB+ 398 [M ⁺ H] ⁺ (95) 247(50) 177(100)	

表 1 8

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
1-10		CDCl ₃ , 300MHz	7.52(1H, d, J=15.5 Hz) 7.27(1H, bs) 7.16(1H, t, J=7.6 Hz) 7.01(1H, dd, J=8.3, 1.8 Hz) 6.97(1H, d, J=1.8 Hz) 6.80 (1H, d, J=8.3 Hz) 6.77 (1H, d, J=7.6 Hz) 6.76 (1H, s) 6.71(1H, t, J=7.6 Hz) 6.19(1H, d, J=15.5 Hz) 5.82(1H, bs) 3.97(2H, t, J=6.8 Hz)	3.85(3H, s) 3.61(2H, q, J=6.8 Hz) 2.79(2H, t, J=6.8 Hz) 1.7-1.9(2H, m) 1.3-1.9(4H, m) 0.91(3H, t, J=7.1 Hz)	Neat 3280 [M ⁺ H] ⁺ (40) 2933 HRFAB(m/z) 理論値 1656 C ₂₁ H ₃₄ NO ₄ 1586 C ₂₁ H ₃₄ NO ₄ 1573 384.5006 分析値 1260 384.2166	C ₂₁ H ₃₄ NO ₄	
1-11		CDCl ₃ , 300MHz	7.82(1H, bs) 7.60(1H, d, J=15.5 Hz) 7.14(1H, t, J=7.9 Hz) 7.06(1H, d, J=8.5 Hz) 7.06(1H, d, J=7.9 Hz) 7.01(1H, s) 6.92(1H, d, J=7.9 Hz) 6.83(1H, d, J=8.5 Hz) 6.81(1H, d, J=7.9Hz) 6.24(1H, d, J=15.5 Hz) 6.17(1H, bs) 4.01(2H, t, J=6.8 Hz)	3.88(3H, s) 3.52(2H, q, J=7.0 Hz) 2.93(2H, t, J=7.0 Hz) 1.8-1.9(2H, m) 1.2-1.5(4H, m) 0.94(3H, t, J=7.0 Hz)	Neat 3280 [M ⁺ H] ⁺ (100) 1655 384 [M ⁺ H] ⁺ 1594 1.513 1260	FAB+ 3280 384 [M ⁺ H] ⁺ 1655 1.594 1594 1.513 1260	
1-12		CDCl ₃ , 300MHz	7.54(1H, d, J=15.5 Hz) 7.07(1H, dd, J=8.3, 1.9 Hz) 7.02(1H, d, J=1.9 Hz) 6.85(1H, d, J=8.3 Hz) 6.23(1H, d, J=15.5 Hz) 5.52(1H, br) 4.02 (2H, t, J=6.9 Hz) 3.88(3H, s) 3.9-4.1(0.5H, m) 3.5-3.7(0.5H, m) 3.3-3.5(2H, m) 1.9-2.1(2H, m)	1.8-1.9(4H, m) 1.2-1.8(10H, m) 1.0-1.1(2H, m) 0.94(3H, t, J=7.1 Hz)	Neat 3288 [M ⁺ H] ⁺ (40) 2927 247(35) 1513 1260 HRFAB(m/z) 理論値 C ₂₁ H ₃₄ NO ₄ 390.5486 分析値 390.2638	FAB+ 3288 [M ⁺ H] ⁺ (40) 2927 247(35) 1513 1260 HRFAB(m/z) 理論値 C ₂₁ H ₃₄ NO ₄ 390.5486 分析値 390.2638	C ₂₁ H ₃₄ NO ₄

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IR cm^{-1}	MS	元素分析	
						FAB+	[M $^{\bullet}$ H $^{\bullet}$] (100)
1-13		125~126°C	CDCl ₃ , 300MHz 8.53-8.55(2H, m) 7.56(1H, d, J=15.7 Hz) 7.16-7.18(2H, m) 7.06(1H, dd, J=8.0, 2.1 Hz) 6.85(1H, d, J=8.0 Hz) 6.19(1H, d, J=15.7 Hz) 5.01(1H, t) 4.06(2H, t, J=7.2 Hz) 3.88(3H, s) 3.68(2H, q, J=6.9 Hz) 2.91(2H, t, J=6.9 Hz)	1.80-1.90(2H, m) 1.32-1.51(4H, m) 0.93(3H, t, J=6.9 Hz)	Neat 3301 1615 1263	369 [M $^{\bullet}$ H $^{\bullet}$] (100)	C ₂₂ H ₂₄ N ₂ O ₃ C: 71.71% H: 7.66% N: 7.60%
1-14		91~93°C	CDCl ₃ , 300MHz 8.53-8.60(1H, m) 7.63(1H, td, J=7.7, 1.8 Hz) 7.53(1H, d, J=15.6 Hz) 7.03-7.22(4H, m) 6.84(1H, d, J=8.3 Hz) 6.63(1H, br s) 6.25(1H, d, J=15.6 Hz) 4.03(2H, t, J=6.9 Hz) 3.88(3H, s) 3.81(2H, q, J=6.2 Hz) 3.07(2H, t, J=6.2 Hz) 1.81-1.89(2H, m)	1.36-1.49(4H, m) 0.94(3H, t, J=7.0 Hz)	Neat 3249 2951 1654 1592 1513 1258 1134	369 [M $^{\bullet}$ H $^{\bullet}$] (100) 289(23) 247(59) 177(72)	C ₂₂ H ₂₄ N ₂ O ₃ C: 71.71% H: 7.66% N: 7.60%
1-15		淡黄色油状	CDCl ₃ , 300MHz 8.43-8.59(2H, m) 7.50-7.64(2H, m) 7.50(1H, d, J=15.3 Hz) 7.02-7.16(5H, m) 7.01(1H, d, J=1.9 Hz) 6.84(1H, d, J=8.3 Hz) 6.61(1H, d, J=15.3 Hz) 4.05(2H, t, J=6.8 Hz) 3.89(3H, s) 3.73-3.86(4H, m) 2.98-3.20(4H, m) 1.77-1.95(2H, m)	1.31-1.53(4H, m) 0.93(3H, t, J=7.1 Hz)	Neat 1645 1592 1434 1261 1139	474 [M $^{\bullet}$ H $^{\bullet}$] (100) 247(81) 177(99)	

表 20

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-16		114~116°C 無色結晶	CDCl ₃ , 300MHz 8.52-8.54(4H, m) 7.61(1H, d, J=15.0 Hz) 7.05-7.20(4H, m) 7.05(1H, d, J=8.8, 1.9 Hz) 6.93(1H, d, J=1.9 Hz) 6.87(1H, d, J=8.8 Hz) 6.42(1H, d, J=1.5Hz) 4.01(2H, t, J=6.7 Hz) 3.90 (3H, s) 3.50-3.67(4H, m) 2.80-2.99(4H, m) 1.83-1.94(2H, m)	1.34-1.54(4H, m) 0.94(3H, t, J=7.3 Hz)	Neat FAB+ 2953 1642 1596 1510 1260 106(100)	C ₂₁ H ₃₁ N ₃ O ₃ 理論値 C: 73.54% H: 7.45% N: 8.87% 分析値 C: 73.65% H: 7.62% N: 8.88 %
1-17		7.44(1H, d, J=15.4 Hz) 7.00(2H, d, J=8.3 Hz) 6.7-7.1(4H, m) 6.77(2H, d, J=8.3 Hz) 6.31(1H, d, J=15.4 Hz) 4.02(2H, t, J=6.7 Hz) 3.87(3H, s) 3.6-3.7(2H, m) 2.99 (3H, s) **2.8-2.9(2H, l) 1.8-1.9(2H, m) 1.3-1.5(4H, m)	CDCl ₃ , 300MHz 0.93(3H, t, J=7.1 Hz)	3220 2931 1643 1584 1514	Neat FAB+ 3220 2931 1643 247(100) 177(80)	398 [M ⁺ H ⁺] (70) 177(80)
1-18		9.14(1H, s) 7.98(1H, d) 7.32(1H, d, 15.8 Hz) 6.94-7.15(5H, m) 6.67(2H, d, J=8.4 Hz) 6.47(1H, d, J=15.8 Hz) 3.99(2H, t, J=6.7 Hz) 3.77(3H, s) 3.29-3.36(2H, m) 2.64(2H, t, J=7.5 Hz) 1.70-1.85(1H, m) 1.61(2H, q, J=6.7 Hz)	DMSO-d6, 300MHz 0.92(6H, t, J=6.6 Hz)	384 [M ⁺ H ⁺] (70) 247(44) 176(100)	FAB+ 384 [M ⁺ H ⁺] (70) 247(44) 176(100)	無色結晶

表 2 1

実施例	構造式	融点	^1H NMR (δ) ppm	IR cm^{-1}	MS	元素分析
1-19		DMSO-d6,300MHz 9.15(1H, s) 7.98(1H, l) 7.31(1H, d, J=15.8 Hz) 6.94-7.15(5H, m) 6.68(2H, d, J=8.4 Hz) 6.47(1H, d, J=15.8 Hz) 3.86(2H, d, J=5.8 Hz) 3.78(3H, s)	0.90(6H, t, J=7.4 Hz)	FAB+ 398 [M ⁺ H ⁺] (24) 261(14) 176(100)		
1-20		DMSO-d6,300MHz 9.14(1H, s) 7.97(1H, t, J=5.7 Hz) 7.30(1H, d, J=15.6 Hz) 6.94-7.09(5H, m) 6.67(2H, d, J= 8.4 Hz) 6.46(1H, d, J=15.6 Hz) 3.81(2H, d, J= 6.9 Hz) 3.78(3H, s)	0.28-0.32(2H, m)	FAB+ 368 [M ⁺ H ⁺] (37) 231(36) 176(100)		
1-21		CDCl ₃ ,300MHz 7.56(1H, d, J=15.6 Hz) 7.17(2H, d, J=8.51 Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, s)	3.89(1H, s) 3.15(1H, dd, J=13.8, 5.68 Hz) 3.03(1H, dd, J=13.8, 7.96 Hz) 1.80-1.4(2H, m)	KBr 3600-427 [M ⁺ H ⁺] (20) 1652 247(50) 1612 136(70)	$\text{C}_{22}\text{H}_{32}\text{N}_2\text{O}_2$ C: 67.59% H: 7.09% N: 6.57% 分析值 C: 67.30% H: 7.17% N: 6.55%	

表 2 2

实施例	構造式	熔点	^1H NMR (δ) ppm	$\text{IR}(\text{cm}^{-1})$	MS	元素分析
1-22		CDCl ₃ , 300MHz 7.55(1H, d, J=15.6 Hz) 7.04(1H, d, J=8.3 Hz) 7.01(1H, s) 6.96(2H, d, J=8.4 Hz) 6.83(1H, d, J=8.3 Hz) 6.75(2H, d, J=8.4 Hz) 6.26(1H, d, J=15.6 Hz) 6.20(1H, bs) 6.13(1H, bd) 4.9-5.1(1H, m) 4.01(2H, t, J=6.8 Hz) 3.88(3H, s)	3.74(3H, s) 3.0-3.2(2H, m) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	Neat 3283 1747 1658 1514 1261	442 [M ⁺ H ⁺] (60) 247(100) HRFAB(m/z) $C_{25}\text{H}_{32}\text{NO}_6$ 442.5370 分析值 442.2238	$C_{25}\text{H}_{32}\text{NO}_3$
1-23		DMSO-d6, 300MHz 8.55(2H, s) 7.95(1H, d, J=8.0 Hz) 7.34(1H, d, J=16.0 Hz) 7.14(1H, d, J=2.0 Hz) 7.09(1H, dd, 8.2, 2.0 Hz) 6.97(1H, d, J=8.2 Hz) 6.54(1H, d, J=16.0 Hz) 6.44(1H, s) 6.41(1H, s) 3.93-4.05(3H, m) 3.78(3H, s) 2.80(1H, dd, J=16.3, 5.2 Hz)	2.65(2H, t) 2.46 (1H, dd, J=13.6, 9.4 Hz) 1.28-1.96(8H, m) 0.90 (3H, t, J=6.9 Hz)	Neat 3347 2941 1518 1257	FAB+ 426 [M ⁺ H ⁺] (34) 154(100)	$C_{24}\text{H}_{31}\text{NO}_3$ 理論値 C: 70.57% H: 7.34% N: 3.29% 分析値 C: 70.17% H: 7.43% N: 3.23 %
1-24		CDCl ₃ , 300MHz 7.45(1H, d, J=15.7 Hz) 7.05(1H, dd, J=8.5, 2.2 Hz) 7.01(1H, d, J=2.2 Hz) 6.87(1H, d, J=8.5 Hz) 6.84(1H, d, J=8.5 Hz) 6.70-6.73(2H, m) 6.18 (1H, d, J=15.7 Hz) 5.54-5.61(2H, m) 4.01(2H, t, J=6.7 Hz) 3.88(3H, s) 3.87(3H, s) 3.63(2H, q, J=6.7 Hz)	2.82(2H, t, J=6.7 Hz) 1.80-1.90 (2H, m) 1.33-1.5 (4H, m) 0.93(3H, t, J=6.7 Hz)	Neat 3244 2930 1516 1258 177(100)	FAB+ 414 [M ⁺ H ⁺] (69) 263(58) 247(80) 177(100)	$C_{24}\text{H}_{31}\text{NO}_3$ 理論値 C: 69.71% H: 7.56% N: 3.39% 分析値 C: 69.73% H: 7.71% N: 3.36 %

表 2 3

実施例	構造式	融点	1H NMR (δ) ppm	IR cm ⁻¹	MS	元素分析
1-25		DMSO-d6,300MHz 9.34(1H, s) 9.36(1H, s) 8.30(1H, br) 7.23(1H, d, J=15.8 Hz) 7.00(2H, d, J=8.4 Hz) 6.67(2H, d, J=8.4 Hz) 6.50(1H, d, J=15.8 Hz) 6.50(2H, s) 6.31(1H, s) 3.8-4.0(2H, m) 3.2-3.3(4H, m) 2.5-2.7(2H, m)	1.2-1.4(4H, m) 0.88(3H, t, J=7.0 Hz)	KBr 3377 370 2954 [M ⁺ H ⁺] (40) 1655 1586	FAB+ 384 [M ⁺ H ⁺] (30)	C ₁₉ H ₂₉ NO ₄ 理論値 C; 72.04% H; 7.62% N; 3.65% 分析値 C; 71.64% H; 7.74% N; 3.54%
1-26		DMSO-d6,300MHz 9.5(1H, s) 9.2(1H, bs) 7.3(1H, d, J=15 Hz) 7.0(1H, d, J=9 Hz) 6.6(1H, d, J=9 Hz) 6.2-6.9(3H, s) 6.0(1H, d, J=15 Hz) 3.9(3H, t, J=7.5 Hz) 3.8-3.9(1H, m) 3.6-3.7(1H, m) 3.4-3.5(1H, m) 3.2-3.4(1H, m)	2.8-3.6(3H, m) 2.6-2.8(2H, m) 1.6-1.8(2H, m) 1.2-1.5(4H, m) 0.89(3H, t, J=7.5 Hz)	Neat 3330 2933 2360 2341 1590	FAB+ 384 [M ⁺ H ⁺] (30)	C ₂₀ H ₃₁ NO ₄ 理論値 C; 72.04% H; 7.62% N; 3.65% 分析値 C; 71.64% H; 7.74% N; 3.54%
1-27		CDCl ₃ ,300MHz 7.89(1H, d, J=16 Hz) 6.97-7.10(4H, m) 6.89(1H, dd, J=8.1, 1.8 Hz) 6.80(2H, dd, J=6.6, 1.8 Hz) 6.39(1H, d, J=16 Hz) 5.09-5.15(1H, m) 5.53(1H, s) 3.94(2H, t, J=6.8 Hz) 3.85(3H, s) 3.6(2H, q, J=6.6 Hz) 2.81(2H, t, J=6.9 Hz) 1.70-1.85(2H, m)	1.30-1.50(4H, m) 0.91(3H, t, J=6.9 Hz)	FAB+ 384[M ⁺ H ⁺] (100) 177(90)		

表 2 4

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-28		CDCl ₃ , 300MHz	2.66(1H, d, J=5.5 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.90(3H, t, J=5.3 Hz)	KBr 3340 2932 [M ⁺ H ⁺] (40) 1646 1583	FAB+ 370 233(35)	C ₂₂ H ₂₃ NO ₄ 理論値 C: 71.52% H: 7.37% N: 3.79% 分析値 C: 71.06% H: 7.50% N: 3.74 %
1-29		CDCl ₃ , 300MHz	1.11-1.25(6H, m) 0.84-0.99(2H, m) 0.83(3H, t, J=6.7 Hz)	KBr 3389 3162 [M ⁺ H ⁺] (100) 1654 1611	FAB+ 424 287(57) 161(53)	C ₂₇ H ₃₁ NO ₄ 理論値 C: 76.56% H: 8.80% N: 3.31% 分析値 C: 76.80% H: 9.18% N: 3.48 %
1-30		CDCl ₃ , 300MHz	1.33(6H, s) 1.08-1.28(6H, m) 0.85-1.02(2H, m) 0.84(3H, t, J=6.72 Hz)	Neat 3270 1655 [M ⁺ H ⁺] (30) 1618 1600	FAB+ 409 106(100)	

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-31		CDCl ₃ , 300MHz 7.50-7.88(1H, bs) 7.55(1H, d, J=15.5 Hz) 7.25-7.34(2H, m) 6.55-6.60(1H, m) 6.21(1H, d, J=15.5 Hz) 5.90(1H, bs) 3.81(3H, s) 3.72(2H, t, J=6.9 Hz) 3.50-3.62(2H, m) 1.72-1.80(2H, m) 1.31(6H, s) 1.08-1.23(6H, m)	0.83-0.99 (2H, m) 0.82(3H, t, J=6.7 Hz)	KBr 3650- 440 3000 [M ⁺ H ⁺] (90) 1651 1598 161(77)	FAB+ 382 [M ⁺ H ⁺] (80) 260(20) 245(50)	
1-32		CDCl ₃ , 300MHz 7.55(1H, d, J=16 Hz) 7.28(1H, d, J=9.6 Hz) 7.27(1H, s) 7.07(2H, d, J=8.4 Hz) 6.81(2H, d, J=8.4 Hz) 6.80(1H, d, J=9.6 Hz) 6.18(1H, d, J=16 Hz) 5.50-5.60(2H, m, involving a singlet at 5.55) 3.83(3H, s) 3.61(2H, q, J=6.6 Hz) 2.81(2H, t, J=6.8 Hz)	2.58(2H, t, J=7.7 Hz) 1.48-1.64(2H, m) 1.20-1.40(6H, m) 0.88(3H, t, J=6.9 Hz)	FAB+ 382 [M ⁺ H ⁺] (80) 260(20) 245(50)		
1-33		CDCl ₃ , 300MHz 8.34(2H, d, J=6.0 Hz) 7.57(1H, d, J=15 Hz) 7.29(1H, d, J=8.7 Hz) 7.28(1H, s)	1.47-1.70(2H, m) 1.23-1.40(6H, m) 0.89(3H, t, J=6.9 Hz)	FAB+ 367 [M ⁺ H ⁺] (90) 245(20)		

表 2 6

実施例	構造式	融点	1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
1-34		107.3~108.5 °C	CDCl ₃ , 300MHz 7.55(1H, d, J=15.4Hz) 7.36(1H, d, J=1.8Hz) 7.29(1H, dd, J=1.8, 8.4Hz) 7.08(1H, d, J=8.4Hz) 6.78-6.84(3H, m) 6.19(1H, d, J=15.4Hz) 3.91(3H, s) 3.62(2H, q, J=6.5Hz) 2.89(2H, t, J=7.2Hz) 2.81(2H, t, J=6.8Hz) 1.58-1.73(2H, m) 1.25-1.50(4H, m)	0.90(3H, t, J=7.1Hz)	FAB+ 400(M+H ⁺) (100)	C ₂₃ H ₂₉ NO ₃ S
1-35		143.1~144.9 °C	CDCl ₃ , 300MHz 7.52(1H, d, J=15 Hz) 7.02(2H, d, J=8.1 Hz) 6.79(1H, d, J=8.1 Hz) 6.71(1H, d, J=8.1 Hz) 6.70(1H, s) 6.66(2H, d, J=8.1 Hz) 6.16(1H, d, J=15 Hz) 5.50(1H, br) 4.18(1H, bs) 3.86(3H, s) 3.61(2H, bs) 3.60(2H, q, J=6.5 Hz)	3.12(2H, ms) 2.77(2H, t, J=6.6 Hz) 1.6-1.75(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6.9 Hz)	FAB+ 382 [M ⁺ H ⁺] (50) 246(20)	
1-36			DMSO-d ₆ , 300MHz 8.0 (1H, br) 7.5 (2H, d, J=9 Hz) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 6.9 (2H, d, J=9 Hz) 6.8 (2H, d, J=9 Hz) 6.4 (1H, d, J=15 Hz) 4.0 (2H, t, J=4 Hz) 3.9 (2H, t, J=4 Hz) 3.3 (2H, t, J=4 Hz) 2.7 (2H, t, J=4 Hz) 1.6-1.8 (4H, m)	1.3-1.4 (8H, m) 0.8-0.9 (6H, m)	Neat FAB+ 3298 424(M+H ⁺) (100) 2332 1651 1606 1543 1513 1256	

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-37			DMSO-d6,300MHz 8.0 (1H, bt) 7.3 (1H, d, J=15 Hz) 7.1 (1H, s) 7.1 (2H, d, J=9 Hz) 7.1 (1H, d, J=9 Hz) 6.9 (1H, d, J=9 Hz) 6.8 (2H, d, J=9 Hz) 6.5 (1H, d, J=15 Hz) 3.8-4.0 (4H, m) 3.8 (3H, s) 3.2-3.3 (2H, m) 2.7 (2H, t, J=4 Hz)	Neat 3303 2955 2870 1652 1619 1515 1258	FAB+ 454(M+H+) (100)	C ₂₂ H ₂₇ NO ₃
1-38			DMSO-d6,300MHz 9.2 (1H, s) 8.0 (1H, bt) 7.5 (2H, d, J=9 Hz) 7.3 (1H, d, J=15 Hz) 7.0 (2H, d, J=9 Hz) 6.9 (2H, d, J=9 Hz) 6.7 (2H, d, J=9 Hz) 6.4 (1H, d, J=15 Hz) 4.0 (2H, t, J=4 Hz) 3.3 (2H, t, J=4 Hz) 2.6 (2H, t, J=4 Hz) 1.6-1.8 (2H, m)	Neat 3300 2933 2359 1652 1602 1513 1227	FAB+ 354(M+H+) (100)	C ₂₂ H ₂₇ NO ₃
1-39			DMSO-d6,300MHz 8.0 (1H, bt) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 7.0-7.1 (2H, m) 7.0 (1H, d, J=6 Hz) 6.8 (2H, d, J=9 Hz) 6.5 (1H, d, J=15 Hz) 3.8-4.0 (4H, m) 3.8 (3H, s) 3.3-3.5 (2H, m) 2.7 (2H, t, J=4 Hz) 1.6-1.8 (4H, m)	NaCl 3305 2933 1652 1619 1514 1257	FAB+ 454 [M+H+] (50)	C ₂₂ H ₂₉ NO ₃

实验例	構造式	触点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
1-40		DMSO-d6,300MHz	9.1 (1H, s) 7.9 (1H, bs) 7.3 (1H, d, J = 15 Hz) 7.1 (1H, s) 7.0 (2H, d, J = 4 Hz) 7.0 (1H, d, J = 6 Hz) 6.7 (2H, d, J = 4 Hz) 6.5 (1H, d, J = 15 Hz) 4.0 (2H, t, J = 6 Hz) 3.8 (3H, s) 3.3 (2H, m)	2.7 (2H, t, J = 4 Hz) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.9 (3H, t, J = 9 Hz)	Neat 3462 3312 2938 1648 1600 1540 1512 1263 1138	FAB+ 384 [M+H+] (30)	C ₂₃ H ₂₉ NO ₄ 理验值 C: 72.04% H: 7.62% N: 3.65%
1-41		CDCl ₃ ,300MHz	6.92 (2H, d, J = 8.5 Hz) 6.77 (1H, d, J = 8.1 Hz) 6.76 (2H, d, J = 8.5 Hz) 6.71 (1H, d, J = 1.9 Hz) 6.68 (2H, dd, J = 8.0, 1.9 Hz) 73.8~ 74.1°C	2.65 (2H, t, J = 6.9 Hz) 2.40 (2H, t, J = 7.5 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.91 (3H, t, J = 7.1 Hz)	Neat 3354 2933 1644 1515	FAB+ 386 [M+H+] (95) 137(100)	C ₂₃ H ₃₁ NO ₄ 理验值 C: 71.66% H: 8.11% N: 3.63%
1-42		CDCl ₃ ,300MHz	6.50 (1H, s) 5.43 (1H, bs) 3.95 (2H, t, J = 6.9 Hz) 3.82 (3H, s) 3.43 (2H, q, J = 6.9 Hz) 2.86 (2H, t, J = 7.5 Hz)	5.43 (1H, bs) 3.95 (2H, t, J = 6.9 Hz) 3.82 (3H, s) 3.43 (2H, q, J = 6.9 Hz) 2.86 (2H, t, J = 7.5 Hz)	KBr 3293 2934 1650 1614 1511	FAB+ 398 [M+H+] (70) 262(60) 177(100)	C ₂₄ H ₃₁ NO ₄ 理验值 C: 72.52% H: 7.86% N: 3.52%

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
						FAB+	C ₂₃ H ₂₉ NO ₄
1-43		140-142°C	CDCl ₃ , 300MHz 7.8 (1H, d, J=15 Hz) 7.4 (1H, d, J=6 Hz) 7.4 (1H, d, J=6 Hz) 7.1 (1H, d, J=8 Hz) 6.8 (1H, d, J=8 Hz) 6.5 (1H, d, J=6 Hz) 6.4 (1H, s) 6.4 (1H, d, J=15 Hz) 5.5 (1H, br) 5.2 (1H, bs) 4.0 (2H, t, 6 Hz) 3.8 (3H, s)	3.6 (2H, q, 6 Hz) 2.8 (2H, t, 6 Hz) 1.8-1.9 (2H, m) 1.2-1.5 (4H, m) 0.9 (3H, t, 8 Hz)	Neat 3278 2933 177(100) 1649 1602 1602 1514	[M+H] ⁺ (60) 177(100)	理論値 C: 72.04% H: 7.62% N: 3.65% 分析値 C: 72.21% H: 7.81% N: 3.60%
1-44		140-142°C	CDCl ₃ , 300MHz	3.6 (2H, q, 6 Hz) 2.8 (2H, t, 6 Hz) 1.8-1.9 (2H, m) 1.2-1.5 (4H, m) 0.9 (3H, t, 8 Hz)	Neat 3278 2933 177(100) 1649 1602 1602 1514	[M+H] ⁺ (60) 177(100)	理論値 C: 72.04% H: 7.62% N: 3.65% 分析値 C: 72.21% H: 7.81% N: 3.60%
1-45		140-142°C	CDCl ₃ , 300MHz	3.6 (2H, q, 6 Hz) 2.8 (2H, t, 6 Hz) 1.8-1.9 (2H, m) 1.2-1.5 (4H, m) 0.9 (3H, t, 8 Hz)	Neat 3278 2933 177(100) 1649 1602 1602 1514	[M+H] ⁺ (60) 177(100)	理論値 C: 72.04% H: 7.62% N: 3.65% 分析値 C: 72.21% H: 7.81% N: 3.60%

表 30

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-46		170.1~171.2°C	CDCl ₃ , 300MHz 8.3 (1H, b) 7.5 (1H, d, J=18 Hz) 7.0 (2H, d, J=9 Hz) 7.0 (1H, s) 6.8 (1H, d, J=9 Hz) 6.4 (1H, d, J=18 Hz) 4.0-4.2 (4H, m) 4.0 (2H, t, J=7.5 Hz) 3.9-4.0 (2H, m) 3.9 (3H, s) 3.5-3.8 (2H, m) 3.3-3.4 (2H, m)	KBr 3.0-3.2 (2H, m) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.9 (3H, t, J=7.5 Hz)	FAB+ 3276 [M+H ⁺] 2956 [M+H ⁺] (100) 1666 1627 1514	C ₂₁ H ₃₂ N ₂ O ₄ 理論値 C: 66.99% H: 8.57% N: 7.44% 分析値 C: 66.94% H: 8.80% N: 7.43%
1-47			DMSO-d ₆ , 300MHz	6.46 (1H, dd, J=9.0, 2.0 Hz) 6.46 (1H, s) 8.73 (1H, s) 8.62 (1H, s) 7.97 (1H, t, J=5.9 Hz) 7.33 (1H, d, J=16.5 Hz) 7.13 (1H, d, J=2.0 Hz) 7.09 (1H, dd, J=9.0, 2.0 Hz)	FAB+ 3340 [M+H ⁺] 3155 [M+H ⁺] 307(14) 1239 1140 247(71) 177(80) 154(100)	400
1-48		150~153°C	DMSO-d ₆ , 300MHz	6.46 (1H, dd, J=9.0, 2.0 Hz) 6.46 (1H, s) 8.73 (1H, s) 8.62 (1H, s) 7.97 (1H, t, J=5.9 Hz) 7.33 (1H, d, J=16.5 Hz) 7.13 (1H, d, J=2.0 Hz) 7.09 (1H, dd, J=9.0, 2.0 Hz)	FAB+ 3340 [M+H ⁺] 3155 [M+H ⁺] 307(14) 1239 1140 247(71) 177(80) 154(100)	400

無色結晶

表 3 1

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
1-49		CDCl ₃ , 300MHz 8.79 (2H, d, J=6.9 Hz) 8.16 (1H, br) 7.88 (2H, d, J=6.9 Hz) 7.32 (1H, d, J=15.8 Hz) 7.07-7.12 (2H, m) 6.97 (1H, d, J=8.3 Hz) 6.44 (1H, d, J=15.8 Hz) 3.96 (2H, t, J=6.6 Hz) 3.78 (3H, s) 3.56 (2H, q, J=6.5 Hz) 3.06 (2H, t, J=6.5 Hz) 1.66-1.79 (2H, m)	1.27-1.45 (4H, m) 0.90 (3H, t, J=7.3 Hz)	3250 2933 2528 1261 1136 1023		
1-50		CDCl ₃ , 300MHz 8.28 (1H, d, J=6.3 Hz) 7.72-7.79 (1H, m) 7.50 (1H, d, J=15.4 Hz) 7.19-7.38 (3H, m) 7.02-7.09 (2H, m) 6.84 (1H, d, J=8.1 Hz) 6.26 (1H, d, J=15.4 Hz) 4.03 (2H, t, J=6.8 Hz) 3.88 (3H, s) 3.72-3.82 (1H, m) 3.28 (2H, t, J=6.3 Hz) 1.80-1.92 (2H, m)	1.33-1.52 (4H, m) 0.94 (3H, t, J=7.0 Hz)	1512 (100) 1262 247(89) 177(75)	384[M+H ⁺] (100) 247(89) 177(75)	
1-51		CDCl ₃ , 300MHz 8.47-8.54 (2H, m) 7.51-7.62 (2H, m) 7.24-7.28 (1H, m) 6.59-7.09 (1H, m) 6.85 (1H, d, J=8.5 Hz) 6.19 (1H, d, J=18.2 Hz) 5.51-5.70 (1H, m) 4.02 (2H, t, J=7.3 Hz) 3.89 (1H, s) 3.66 (2H, q, J=6.9 Hz) 2.91 (2H, t, J=6.9 Hz) 1.80-1.92 (2H, m)	1.33-1.52 (4H, m) 0.93 (3H, t, J=6.9 Hz)	FAB ⁺ 3245 (100) 1596 1263 1140 247(14) 177(29)	369[M+H ⁺] (100) 311(21) 247(14) 177(29)	

表 3 2

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-52					FAB ⁺ 383 [M ⁺ H] ⁺ (50) 246(60)	
1-53				CDCl ₃ , 300MHz 7.53(1H, d, J=15 Hz) 7.31(2H, d, J=8.7 Hz) 6.75-6.85(3H, m) 162.7~ 163.5 C 6.70(1H, s) 6.17(1H, d, J=15 Hz) 5.58(1H, bs) 5.58(1H, br) 4.2(1H, bs) 3.86(3H, s) 3.61(2H, q, J=6.4 Hz) 3.12(2H, t, J=7.2 Hz)		
1-54		黄色結晶				

表 3 3

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
1-55		CDCl ₃ , 300MHz 7.54(1H, d, J=16 Hz) 7.03-7.12(4H, m) 6.81(1H, d, J=8.4 Hz) 6.80(2H, d, J=8.1 Hz) 6.17(1H, d, J=16 Hz) 5.56(1H, br) 3.86(3H, s) 3.61(2H, q, J=6.3 Hz) 3.06(4H, t, J=7.7 Hz) 2.81(2H, t, J=6.8 Hz) 1.38-1.5(4H, m) 1.07-1.35(8H, m)	0.86(6H, t, J=7.1 Hz)	FAB+ 453 [M ⁺ H ⁺] (100) 395(80)		
1-56		CDCl ₃ , 300MHz 7.50(1H, d, J=15 Hz) 7.08(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.67(2H, s) 6.19(1H, d, J=15 Hz) 5.58(1H, br) 5.49(1H, s) 3.97(6H, t, J=6.5 Hz) 3.62(2H, q, J=6.5 Hz) 2.81(2H, q, J=6.8 Hz) 1.7-1.85(6H, m) 1.3-1.5(12H, m)	0.86-0.97(9H, m)	FAB+ 526 [M ⁺ H ⁺] (30) 389(40)		
1-57		CDCl ₃ , 300MHz 7.54(1H, d, J=16 Hz) 7.07(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.77(1H, dd, J=8.7, 2.1 Hz) 6.70 (1H, s) 6.69(1H, d, J=8.7 Hz) 6.17(1H, dd, J=16 Hz) 5.8(1H, bs)	2.80(2H, t, J=6.8 Hz) 1.75-1.85(2H, m) 1.6-1.7(2H, m) 1.3-1.5(8H, m) 0.9-0.97(6H, m)	FAB+ 439 [M ⁺ H ⁺] (50) 302(100)		

表 34

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
1-58		104.8~106.4°C 無色結晶	CDCl ₃ , 300MHz 7.55 (1H, d, J=16 Hz) 7.02-7.12 (4H, m) 6.77-6.85 (3H, m) 6.17 (1H, d, J=16 Hz), 5.58 (1H, br) 3.88 (3H, s) 3.61 (2H, q, J=6.5 Hz) 3.02 (2H, t, J=8.0 Hz) 2.81 (2H, t, J=6.9 Hz) 2.78 (3H, s) 1.5-1.65 (2H, m) 1.22-1.48 (4H, m)	0.88 (3H, t, J=6.9 Hz)	FAB+ 397 [M $^+$ H $^+$] (100) 39 (80)	C ₂₄ H ₂₇ NO ₄ 理論値 C: 73.26% H: 6.92% N: 3.56% 分析値 C: 73.25% H: 6.96% N: 3.56%
1-59		無色結晶	CDCl ₃ , 300MHz 7.67 (1H, d, J=15.4 Hz) 7.62 (1H, d, J=2.2 Hz) 7.30 (1H, d, J=1.5 Hz) 7.06-7.09 (2H, m) 6.92 (1H, d, J=1.5 Hz) 6.81-6.84 (2H, m) 6.73 (1H, d, J=2.2 Hz) 6.27 (1H, d, J=15.4 Hz) 5.95 (1H, s) 5.67 (1H, brt) 4.17 (2H, t, J=6.6 Hz) 3.63 (2H, q, J=6.6 Hz)	2.81 (2H, t, J=6.6 Hz) 1.84-1.93 (2H, m) 1.35-1.54 (4H, m) 0.94 (3H, t, J=7.2 Hz) 1.516 1.339 1.150	FAB+ 394 [M $^+$ H $^+$] (73) 1656 187 (100)	C ₂₄ H ₂₇ NO ₄ 理論値 C: 73.26% H: 6.92% N: 3.56% 分析値 C: 73.25% H: 6.96% N: 3.56%
1-60		無色結晶	CDCl ₃ , 300MHz 161~162°C	7.26-7.52 (6H, m) 7.03-7.08 (4H, m) 6.79-6.88 (3H, m) 6.10 (1H, d, J=15.4) 5.49-5.60 (2H, m) 5.14 (2H, s) 3.90 (3H, s) 3.60 (2H, q, J=6.6 Hz) 2.80 (2H, t, J=6.8 Hz)	FAB+ 404 [M $^+$ H $^+$] (32) 154 (100)	

表 35

実験例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	$^1\text{Rcm}^{-1}$	MS	元素分析
1-61						FAB+ 410[M+H ⁺] (100) 288(25) 273(55)
1-62						CDCl ₃ , 300MHz 7.53 (1H, d, J=15.5 Hz) 6.99-7.06 (4H, m) 6.79-6.84 (3H, m) 6.31 (1H, s) 6.18 (1H, d, J=15.5 Hz) 5.99-6.11 (1H, m) 5.68 (1H, brt) 5.25-5.44 (2H, m) 4.59 (2H, m) 3.99 (2H, t, J=6.7 Hz) 3.60 (2H, q, J=6.7 Hz) 2.79 (2H, t, J=6.7 Hz)
1-63			^{13}C 132~133			無色結晶

表 3 6

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
1-64		119~120 °C 無色結晶	CDCl ₃ , 300MHz 7.52 (1H, d, $J=15.4$ Hz) 7.02-7.09 (4H, m) 6.79-6.86 (3H, m) 6.15 (1H, d, $J=15.4$ Hz) 6.01-6.12 (1H, m) 5.55 (1H, brt) 5.34 (1H, s) 5.26-5.45 (2H, m) 4.58-4.61 (2H, m) 4.02 (2H, t, $J=6.9$ Hz) 3.61 (2H, q, $J=6.7$ Hz) 2.81 (1H, t, $J=6.7$ Hz)	1.79-1.86 (2H, m) 1.38-1.48 (4H, m) 0.93 (3H, t, $J=7.0$ Hz)	FAB+ 410 [M+H ⁺] (77) 273(36) 154(100)	C ₂₂ H ₂₈ N ₂ O ₄ 456[M+H ⁺] (100) 319(50)
1-65		109.5~110.4 °C 無色結晶	CDCl ₃ , 300MHz 7.53 (1H, d, $J=15.5$ Hz) 7.36 (1H, d, $J=2.1$ Hz) 7.26 (1H, dd, $J=2.1, 8.4$ Hz) 7.08 (2H, d, $J=8.5$ Hz) 6.80 (2H, d, $J=8.5$ Hz) 6.79 (1H, d, $J=8.4$ Hz) 6.17 (1H, d, $J=15.5$ Hz) 5.54 (1H, brt) 5.14 (1H, s) 4.03 (2H, t, $J=6.6$ Hz) 3.61 (2H, t, $J=6.6$ Hz) 2.88 (2H, t, $J=7.4$ Hz)	2.81 (2H, t, $J=6.9$ Hz) 1.80-1.90 (2H, m) 1.60-1.70 (2H, m) 1.25-1.55 (8H, m) 0.93 (3H, t, $J=7.1$ Hz) 0.90 (3H, t, $J=7.1$ Hz)	FAB+ 456[M+H ⁺] (100) 319(50)	C ₂₂ H ₂₇ NO ₃ S 456[M+H ⁺] (100) 319(50)
1-66		221~222 °C 黄色結晶	DMSO-d ₆ , 300MHz 8.97 (2H, bs) 8.63 (1H, bs) 8.05 (1H, t, $J=5.7$ Hz) 7.31 (1H, d, $J=15.6$ Hz) 7.15 (1H, d, $J=1.8$ Hz) 7.12 (1H, dd, $J=8.4, 1.8$ Hz) 6.99 (2H, d, $J=8.4$ Hz) 6.99 (1H, d, $J=8.4$ Hz) 6.67 (2H, d, $J=8.4$ Hz) 6.52 (1H, d, $J=15.6$ Hz) 4.08 (2H, t, $J=6.6$ Hz) 3.78 (3H, s)	3.31 (2H, q, $J=6.6$ Hz) 2.9-3.1 (2H, m) 2.63 (2H, t, $J=7.5$ Hz) 2.55 (3H, t, $J=6.0$ Hz) 2.0-2.2 (2H, m)	KBr 3215 [M+H ⁺] (80), 1653 (80), 1617 (100), 1516 (80), 136(80).	C ₂₂ H ₂₈ N ₂ O ₄ ·HCl 理論値 C: 62.77% H: 6.70% N: 6.65% 分析値 C: 57.75% H: 6.75% N: 6.05%

表 3 7

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm $^{-1}$	MS	元素分析
					FAB+	
1-68		139.7~142.3°C	7.53(1H, d, J=16 Hz) 7.05(1H, d, J=8.4 Hz) 7.02(2H, d, J=8.4 Hz) 7.00(1H, s) 6.84(1H, d, J=8.4 Hz) 6.66(2H, d, J=8.4 Hz) 6.16(1H, d, J=16 Hz) 5.50(1H, b) 4.02(2H, t, J=6.8 Hz) 3.88(3H, s)	2.77(2H, t, J=6.8 Hz) 1.8-1.93(2H, m) 1.3-1.55(4H, m) 0.94(3H, t, J=7.2 Hz)	383 [M ⁺ H ⁺](40) 247(80)	
1-69		115.2~116.3°C	7.53(1H, d, J=16 Hz) 7.37(1H, d, J=2.1 Hz) 7.27(1H, d, J=8.5 Hz) 7.01(2H, d, J=8.3 Hz) 6.81(1H, d, J=8.5 Hz) 6.68(2H, d, J=8.3 Hz) 6.17(1H, d, J=16 Hz) 5.53(1H, b) 3.91(3H, s)	2.77(2H, t, J=6.8 Hz) 1.6-1.73(2H, m) 1.3-1.55(4H, m) 0.90(3H, t, J=7.2 Hz)	399 [M ⁺ H ⁺](50) 263(40)	

表 3 8

実施例	構造式	融点	¹ H NMR (δ) ppm	¹³ C NMR (ppm)	MS	元素分析
1-70		114.1~114.6°C 淡黄色結晶	CDCl ₃ , 300MHz 8.20(2H, d, J=8.7 Hz) 7.58(1H, d, J=16 Hz) 7.41(2H, d, J=8.7 Hz) 7.39(1H, d, J=2.4 Hz) 7.31(1H, dd, J=2.1, 8.4 Hz) 6.84(1H, d, J=16 Hz) 5.64(1H, br) 3.93(3H, s) 3.70(2H, q, J=6.9 Hz) 3.04(2H, t, J=7.0 Hz) 2.90(2H, t, J=7.4 Hz) 1.58-1.75(2H, m)	1.25-1.50(4H, m) 0.91(3H, t, J=7.1 Hz)	FAB+ 429 [M ⁺ H] ⁺ (20) 307(20)	
1-71		119.2~120.4°C 無色結晶	CDCl ₃ , 300MHz 7.60(1H, s) 7.54(1H, d, J=16 Hz) 7.38(1H, d, J=2.1 Hz) 7.30(1H, dd, J=2.1, 8.5 Hz) 6.85(1H, s) 6.82(1H, d, J=8.5 Hz) 6.56(1H, br) 6.28(1H, d, J=16 Hz) 3.91(3H, s) 3.69(2H, q, J=6.9 Hz) 2.83-2.92(4H, m) 1.6-1.73(2H, m)	1.3-1.5(4H, m) 0.90(3H, t, J=7.1 Hz)	FAB+ 374 [M ⁺ H] ⁺ (100) 263(30)	
1-72		122.1~122.7°C 無色結晶	CDCl ₃ , 300MHz 8.18(2H, d, J=8.6 Hz) 7.54(1H, d, J=15 Hz) 7.39(2H, d, J=8.6 Hz) 6.80(1H, d, J=8.2 Hz) 6.71(1H, d, J=8.2 Hz) 6.70(1H, s) 6.17(1H, d, J=15 Hz) 5.35(1H, br) 4.20(1H, br) 3.87(3H, s) 3.68(2H, q, J=6.7 Hz) 3.12(2H, q, J=5.7 Hz)	3.02(2H, t, J=6.9 Hz) 1.6-1.73(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)	FAB+ 412 [M ⁺ H] ⁺ (30) 246(30)	

表 3 9

実施例	構造式	融点	1H NMR (δ) ppm	^{13}C NMR (δ) ppm	MS	元素分析
1-73		150.7~151.6°C	CDCl ₃ , 300MHz 7.55(1H, s) 7.48(1H, d, J=15 Hz) 6.80(1H, s) 6.67(1H, s) 6.32(1H, s) 6.19(1H, d, J=15 Hz) 4.12(1H, bs) 3.81(3H, s) 3.63(2H, q, J=6.1 Hz) 3.08(2H, br) 2.83(2H, t, J=6.3 Hz)	1.55-1.70(2H, m) 1.3-1.43(4H, m) 0.88(3H, t, J=7.1 Hz)	FAB+ 357 [M'+H'] ⁺ (50) 246(30)	C21H27NO3S 理論値 C: 67.53% H: 7.29% N: 3.75% 分析値 C: 67.51% H: 7.47% N: 3.77%
1-74		100.6~101.2°C	CDCl ₃ , 300MHz 7.55 (1H, d, J = 16.0 Hz) 7.18 (1H, dd, J = 5.1, 1.1 Hz) 7.06 (1H, dd, J = 8.2, 1.9 Hz) 7.01 (1H, d, J = 1.9 Hz) 6.96 (1H, dd, J = 5.1, 3.5 Hz) 6.86 (1H, dd, J = 3.5, 1.5 Hz) 6.84 (1H, d, J = 8.3 Hz) 6.20 (1H, d, J = 16.0 Hz) 5.70 (1H, br) 4.01 (2H, t, J = 6.9 Hz) 3.88 (3H, s) 3.67 (2H, q, J = 6.4 Hz)	3.11 (2H, t, J = 6.4 Hz) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J = 7.0 Hz)	FAB+ 374[M+H] ⁺ (100)	C21H27NO3S 理論値 C: 67.53% H: 7.29% N: 3.75% 分析値 C: 67.51% H: 7.47% N: 3.77%
1-75		69.8~70.2°C	CDCl ₃ , 300MHz 7.60 (2H, d, J = 8.4 Hz) 7.55 (1H, d, J = 15.6 Hz) 7.34 (2H, d, J = 8.4 Hz) 7.06 (1H, dd, J = 8.1, 2.1 Hz) 7.00 (1H, d, J = 2.1 Hz) 6.84 (1H, d, J = 8.1 Hz) 6.19 (1H, d, J = 15.6 Hz) 5.64 (1H, br) 4.00 (2H, t, J = 6.6 Hz) 3.88 (3H, s) 3.65 (2H, q, J = 6.9 Hz)	1.8-2.0 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J = 6.9 Hz)	KBr FAB+ 393[M+H] ⁺ (100)	C21H27NO3S 2380 2936 2856 2229 1651 1609 1518 1262

淡黄色鱗べん状晶

表 40

実施例	構造式	融点	1H NMR (δ) ppm	IR cm ⁻¹	MS	元素分析
1-76		DMSO-d6,300MHz 9.0(1H,bs) 8.04(1H,br) 7.87(2H,d,J=8.1Hz) 7.36(2H,d,J=8.1Hz) 7.30(1H,d,J=15.7Hz) 7.13(1H,d,J=1.7Hz) 7.08(1H,dd,J=8.3,1.7Hz) 6.46(1H,d,J=15.7Hz) 3.97(2H,t,J=6.6Hz) 3.78(3H,s) 3.44(2H,q,J=6.9Hz) 2.85(2H,t,J=6.9Hz)	1.6-1.8(2H,m) 1.3-1.5(4H,m) 0.90(3H,t,J=7.1Hz)	KBr 3422 2938 1610 1518 1262	FAB+ 412[M+H+] (100)	
1-77		CDCl3,300MHz 7.89(1H,d,J=15.3Hz) 7.13(2H,d,J=8.4Hz) 7.00(1H,dd,J=2.1,7.2Hz) 6.75-6.85(2H,m) 6.66(2H,d,J=8.4Hz) 6.28(1H,d,J=15.3Hz) 5.71(1H,br) 4.45(2H,d,J=5.4Hz) 3.84(3H,s) 3.65(1H,bs) 3.08(2H,t,J=6.9Hz) 1.45-1.60(2H,m)	1.20-1.40(4H,m) 0.88(3H,t,J=7.1Hz)	C22H29N3O2		
1-78		CDCl3,300MHz 7.84(1H,d,J=15.3Hz) 6.97-7.04(3H,m) 6.75-6.85(2H,m) 6.66(2H,d,J=8.4Hz) 6.22(1H,d,J=15.3Hz) 5.56(1H,br) 3.84(3H,s) 3.63(1H,bs) 3.60(2H,q,J=6.6Hz) 3.07(2H,t,J=7.1Hz) 2.77(2H,t,J=6.8Hz) 1.45-1.60(2H,m)	1.20-1.38(4H,m) 0.88(3H,t,J=7.1Hz)	C23H31N3O2		

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
1-79		125.5~126.2°C	CDCl ₃ , 300MHz 8.04 (1H, br) 7.91 (1H, d, J =15.9 Hz) 7.75 (2H, d, J =8.4 Hz) 7.34 (1H, s) 7.28 (2H, d, J =8.4 Hz) 7.06 (1H, d, J =8.4 Hz) 6.95 (1H, d, J =8.4 Hz) 6.46 (1H, d, J =15.9 Hz) 6.00 (2H, bs) 3.96 (2H, t, J =6.9 Hz) 3.98 (3H, s) 3.4-3.5 (2H, m)	KBr 3440 1684 1214 1138	FAB+ 411[M+H ⁺] (100)		
1-80		130.0~131.6°C	CDCl ₃ , 300MHz 7.69 (1H, d, J =15.3Hz) 7.06 (1H, d, J =8.8Hz) 7.01 (2H, d, J =8.4Hz) 6.66 (2H, d, J =8.4Hz) 6.35 (1H, d, J =8.8Hz) 6.13 (1H, d, J =15.3Hz) 5.49 (1H, br) 4.21 (2H, bs) 3.94 (2H, t, J =6.8Hz) 3.84 (3H, s) 3.61 (2H, bs) 3.59 (2H, q, J =6.5Hz)	KBr 2.77 (2H, t, J =6.8Hz) 1.70-1.90 (2H, m) 1.30-1.50 (4H, m) 0.93 (3H, t, J =7.1Hz)	FAB+ 3292 2931 1649 1611 1516 1293 1235 1097	C23H31N3O3 (M+H ⁺) (35) 262(40)	
1-81		105.8~106.9°C	CDCl ₃ , 300MHz 8.53 (2H, d, J =6.0Hz) 7.70 (1H, d, J =15.3Hz) 7.16 (2H, d, J =6.0Hz) 7.07 (1H, d, J =8.8Hz) 6.35 (1H, d, J =8.8Hz) 6.16 (1H, d, J =15.3Hz) 5.60 (1H, br) 4.20 (2H, bs) 3.94 (2H, t, J =6.8Hz) 3.84 (3H, s) 3.67 (2H, q, J =6.6Hz) 2.90 (2H, t, J =6.9Hz)	KBr 1.70-1.85 (2H, m) 1.30-1.50 (4H, m) 0.93 (3H, t, J =7.0Hz)	FAB+ 3337 2952 1657 1608 1519 1458 1096	C22H29N3O3 (M+H ⁺) (100)	

表 4 2

実施例	構造式	融点	1H NMR (δ) ppm	$\nu_{\text{cm}^{-1}}$	MS	元素分析	
1-82		CDCl ₃ , 300MHz	7.75(1H, d, $J=15.5$ Hz) 7.09(1H, d, $J=8.8$ Hz) 7.01(2H, d, $J=8.3$ Hz) 6.66(2H, d, $J=8.3$ Hz) 6.45(1H, d, $J=8.8$ Hz) 6.14(1H, d, $J=15.5$ Hz) 5.51(1H, bs) 3.92(2H, t, $J=6.7$ Hz) 3.84(3H, s) 3.62(2H, bs) 3.59(2H, q, $J=6.5$ Hz) 3.08(2H, t, $J=7.1$ Hz)	2.76(2H, t, $J=6.8$ Hz) 1.70-1.85(2H, m) 1.25-1.65(10H, m) 0.94(3H, t, $J=7.1$ Hz) 0.88(3H, t, $J=7.0$ Hz)	KBr 3290 2992 1645 1602 1515 1292 1231	FAB+ 468 [M+H+] (20) 332(20) 262(60)	C28H41N3O3
1-83		CDCl ₃ , 300MHz	8.53(2H, d, $J=5.7$ Hz) 7.78(1H, d, $J=15.9$ Hz) 7.16(2H, d, $J=5.7$ Hz) 7.09(1H, d, $J=8.7$ Hz) 6.46(1H, d, $J=8.7$ Hz) 6.16(1H, d, $J=15.9$ Hz) 5.60(1H, bs) 3.92(2H, t, $J=6.8$ Hz) 3.84(3H, s) 3.66(2H, q, $J=6.7$ Hz) 3.08(2H, t, $J=7.1$ Hz) 2.90(2H, t, $J=7.1$ Hz)	1.70-1.85(2H, m) 1.20-1.60(10H, m) 0.8-1.0(6H, m)	KBr 3294 2936 1648 1604 1550 1292 1232 1106	FAB+ 454 [M+H+] (100)	C27H39N3O3
1-84		CDCl ₃ , 300MHz	7.54(1H, d, $J=15$ Hz) 7.14(1H, d, $J=8.1$ Hz) 7.08(2H, d, $J=8.3$ Hz) 7.03(1H, d, $J=8.1$ Hz) 6.90(1H, s) 6.80(2H, d, $J=8.3$ Hz) 6.24(1H, d, $J=15$ Hz) 5.55(1H, bs) 5.00(1H, bs) 4.02(2H, t, $J=6.6$ Hz) 3.62(2H, q, $J=6.1$ Hz) 2.89(2H, t, $J=7.4$ Hz)	2.81(2H, t, $J=6.9$ Hz) 1.78-1.90(2H, m) 1.6-1.74(2H, m) 1.28-1.55(8H, m) 0.94(3H, t, $J=7.1$ Hz) 0.90(3H, t, $J=7.2$ Hz)	KBr 456 [M+H+] (100) 319(60)	FAB+ 456	無色結晶

表 4 3

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
1-85		140.3~140.9 °C 無色結晶	CDCl ₃ ,300MHz 7.55(1H,d,J=16Hz) 7.06-7.13(4H,m) 6.90(1H,s) 6.80(2H,d,J=8.5Hz) 6.24(1H,d,J=16Hz) 5.54(1H,bs) 4.97(1H,bs) 4.03(2H,t,J=6.5Hz) 3.62(2H,q,J=6.1Hz) 2.81(2H,t,J=6.9Hz) 2.43(3H,s) 1.8-1.9(2H,m)	1.35-1.57(4H,m) 0.94(3H,t,J=7.1Hz) [M'H'] (40) 307(100)	FAB+ 400	C ₂₈ H ₄₀ N ₂ O ₃
1-86		113.9-111.4.5 無色結晶	CDCl ₃ ,300MHz 7.54(1H,d,J=15.5Hz) 7.08(2H,d,J=8.5Hz) 7.07(1H,d,J=8.45Hz) 7.03(1H,s) 6.80(2H,d,J=8.5Hz) 6.79(1H,d,J=8.4Hz) 6.17(1H,d,J=15.5H) 5.53(1H,bs) 5.17(1H,s) 4.01(2H,t,J=5.6Hz) 3.61(2H,q,J=6.6Hz) 3.04(2H,t,J=7.8Hz)	2.81(2H,t,J=6.8Hz) 2.79(3H,s) 1.8-1.9(2H,m) 1.2-1.6(10H,m) 0.94(3H,t,J=7.1Hz) 0.89(3H,t,J=7.1Hz)	FAB+ 453[M+H+] (100) 395(90) 316(50)	C ₂₈ H ₄₀ N ₂ O ₃
1-87		9.14(1H,s) 7.84(1H,t,J=5.7Hz) 7.23(1H,d,J=15.6Hz) 6.99(1H,d,J=8.4Hz) 6.94(1H,s) 6.87(1H,d,J=8.1Hz) 6.66(2H,d,J=8.4Hz) 6.60(1H,d,J=8.1Hz) 6.19(1H,d,J=15.6Hz) 5.11(2H,bs) 3.95(2H,t,J=6.6Hz) 3.25-3.34(5H,m) 無色結晶	DMSO-d ₆ ,300MHz 9.14(1H,s) 7.84(1H,t,J=5.7Hz) 7.23(1H,d,J=15.6Hz) 6.99(1H,d,J=8.4Hz) 6.94(1H,s) 6.87(1H,d,J=8.1Hz) 6.66(2H,d,J=8.4Hz) 6.60(1H,d,J=8.1Hz) 6.19(1H,d,J=15.6Hz) 5.11(2H,bs) 3.95(2H,t,J=6.6Hz) 3.25-3.34(5H,m)	2.62(2H,t,J=7.4Hz) 1.60-1.80(2H,m) 1.15-1.50(4H,m) 0.90(3H,t,J=6.9Hz)	FAB+ 369 [M+H+] (80) 368(80)	C ₂₈ H ₄₀ N ₂ O ₃

表 4 4

实施例	構造式	熔点	¹ H NMR (δ) ppm	IR cm ⁻¹	MS	元素分析
1-88		213.7~214.7 °C	CDCl ₃ , 300MHz 7.52(1H, d, J=15 Hz) 7.09(2H, d, J=8.5 Hz) 7.03(1H, d, J=8.1 Hz) 6.87(1H, s) 6.79(2H, d, J=8.5 Hz) 6.51(1H, d, J=8.1 Hz) 6.08(1H, d, J=15 Hz) 5.47(1H, br) 4.98(1H, s) 4.51(1H, bs) 3.99(2H, t, J=6.5 Hz) 3.61(2H, q, J=6.2 Hz)	2.89(3H, bs) 2.81(2H, t, J=6.9 Hz) 1.76-1.9(2H, m) 1.33-1.5(4H, m) 0.94(3H, t, J=7.1 Hz)	FAB+ 357 [M+H ⁺] (50) 246(30)	C23H30N2O3
1-89		淡黄色结晶	CDCl ₃ , 300MHz 7.51(1H, d, J=15.4 Hz) 7.08(2H, d, J=8.4 Hz) 7.01(1H, d, J=8.2 Hz) 6.87(1H, s) 6.79(2H, d, J=8.4 Hz) 6.51(1H, d, J=8.2 Hz) 6.06(1H, d, J=15.4 Hz) 5.45(1H, br) 4.99(1H, s) 4.49(1H, bs) 3.99(2H, t, J=6.5 Hz) 3.60(2H, q, J=6.5 Hz)	3.15(2H, bs) 2.80(2H, t, J=6.9 Hz) 1.75-1.9(2H, m) 1.3-1.7(2(10H, m) 0.85-1.0(6H, m)	FAB+ 438 [M+H ⁺] (30) 302(30)	C27H28N2O3
1-90		無色结晶	CDCl ₃ , 300MHz 7.52(1H, d, J=15.5 Hz) 7.02(2H, d, J=8.3 Hz) 6.63-6.8(5H, m) 6.16(1H, d, J=15.5 Hz) 5.53(1H, br) 3.66-3.75(2H, m) 3.59(2H, q, J=6.5 Hz) 3.13(2H, br) 2.77(2H, t, J=6.8 Hz) 1.60-1.75(2H, m) 1.30-1.50(4H, m) 0.93(3H, t, J=7.1 Hz)			

附 45

实施例	结构式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析	
1-91		136.5-137.0°C	CDCl ₃ , 300MHz 8.17(2H, d, J=8.7 Hz) 7.52(1H, d, J=15 Hz) 7.38(2H, d, J=8.7 Hz) 7.03(1H, d, J=8.2 Hz) 6.86(1H, s) 6.50(1H, d, J=8.2 Hz) 6.07(1H, d, J=15 Hz) 5.47(1H, bs) 4.55(1H, bs) 3.98(2H, t, J=6.5 Hz) 3.66(2H, q, J=6.6 Hz) 3.00(2H, t, J=6.9 Hz)	2.89(3H, d, J=5.0 Hz) 1.75-1.87(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)	FAB+ 412 [M+H ⁺] (20) 246(30)	C23H29N3O4	
1-92		淡橙色结晶	CDCl ₃ , 300MHz	7.10(2H, d, J = 8.5 Hz) 7.00(2H, d, J = 8.5 Hz) 6.93(2H, t, J = 7.9 Hz) 6.77(1H, d, J = 7.9 Hz) 6.63(1H, d, J = 7.9 Hz) 5.80(1H, bs) 3.91(2H, t, J = 6.7 Hz) 3.84(3H, s)	1.7-1.8(2H, m) 1.4-1.5(4H, m) 0.92(3H, t, J = 7.0 Hz)	FAB+ 414[M+H ⁺] (100)	

表 4 6

实施例	構造式	融点	1H NMR (δ) ppm	$R_{\text{f}}^{\text{cm}^{-1}}$	MS	元素分析	
2-1		114.3~115.6°C	CDCl ₃ 300MHz 7.35(1H, d, J=2.0 Hz) 7.15(1H, dd, J=8.3, 2.0 Hz) 7.03(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.3 Hz) 6.62(1H, bs) 6.19(1H, br) 3.98(2H, t, J=6.9 Hz) 3.86(3H, s) 3.64(2H, q, J=6.9 Hz) 2.82(2H, t, J=6.9 Hz) 1.74(9CH, m)	1.3-1.5(4H, m) 0.90(3H, t, J=7.0 Hz)	KBr 3322 1633 [M ⁺ H ⁺] (100) 221(100)	FAB+ 358 [M ⁺ H ⁺] (100) 221(100)	C ₂₁ H ₂₇ NO ₄ 理論値 C: 70.56% H: 7.61% N: 3.92% 分析値 C: 70.58% H: 7.79% N: 3.89 %
2-2		116~117°C	DMSO-d6 300MHz 9.14(1H, s) 8.33(1H, t) 7.39-7.41(2H, m) 6.96-7.02(3H, m) 6.66(2H, d, J=8.4 Hz) 4.05(2H, q, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.32-3.43(2H, m) 2.69(2H, t, J=7.5 Hz) 1.66-1.78(2H, m) 1.28-1.47(7H, m) 0.89(3H, t, J=7.2 Hz)	1.16-1.17(2H, m) 6.66(2H, d, J=8.4 Hz) 4.05(2H, q, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.32-3.43(2H, m) 2.69(2H, t, J=7.5 Hz) 1.66-1.78(2H, m) 1.28-1.47(7H, m) 0.89(3H, t, J=7.2 Hz)	FAB+ 372 [M ⁺ H ⁺] (55) 235(100) 208(24) 164(23)		
2-3		無色結晶	DMSO-d6 300MHz 9.14(1H, s) 8.33(1H, t, J=5.4 Hz) 7.40-7.42(2H, m) 6.97-7.03(3H, m) 6.68(2H, d, J=8.4 Hz) 3.96-4.0(4H, m) 3.32-3.45(2H, m) 2.70(2H, t, J=7.4 Hz) 1.64-1.78(4H, m) 1.26-1.49(8H, m) 0.83-0.94(6H, m)	134~136°C 無色結晶	FAB+ 414 [M ⁺ H ⁺] (100) 277(58) 207(59) 170(75) 136(85)		

表 4-7

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
2-4		93.6~94.2°C	CDCl ₃ , 300MHz 7.09(2H, d, J=8.4 Hz) 6.86(2H, s) 6.79(2H, dd, J=8.4, 2.1 Hz) 6.0(1H, b)	FAB+ 500 [M ⁺ H ⁺] (70) 293(65)		
2-5		95.3~96.4°C	CDCl ₃ , 300MHz 7.33(1H, s) 7.09(2H, d, J=8.4 Hz) 7.08(1H, d, J=8.1 Hz) 6.8(1H, d, J=8.1 Hz) 6.79(2H, d, J=8.4 Hz) 6.05(1H, b)	FAB+ 371 [M ⁺ H ⁺] (100) 234(50)		
2-6		145.9~146.5°C	CDCl ₃ , 300MHz 7.09(2H, d, J=8.4 Hz) 6.98(1H, d, J=1.8 Hz) 6.91(1H, dd, J=7.8, 2.1 Hz) 6.79(2H, d, J=8.4 Hz) 6.70(1H, d, J=7.8 Hz) 6.04(1H, b)	FAB+ 357 [M ⁺ H ⁺] (100) 220(80)		

表 48

実施例	構造式	融点	1H NMR (δ) ppm	IR cm^{-1}	MS	元素分析	
2-7		116~117°C	DMSO-d6,300MHz 9.14(1H, s) 8.34(1H, t, J=5.5 Hz) 7.43(1H, dd, J=8.4, 1.8 Hz) 7.40(1H, d, J=1.8 Hz) 7.02(2H, d, J=8.3 Hz) 7.00(1H, d, J=8.2 Hz) 6.67(2H, d, J=8.3 Hz) 3.98(2H, t, J=6.5 Hz) 3.80(3H, s) 3.36(2H, m) 2.70(2H, t, J=7.5 Hz) 1.72(2H, m)	1.45(2H, m) 0.94(3H, t, J=7.4 Hz)	KBr 3310 1613 1549 1514 1272 1238 1135	FAB+ [M+H'](100) 237(27) 223(35) 207(61) 168(60) 153(86)	$\text{C}_{12}\text{H}_{14}\text{NO}_4$
2-8		134~135°C	DMSO-d6,300MHz 9.14(1H, s) 8.34(1H, t, J=5.5 Hz) 7.41(1H, br d, J=8.4 Hz) 7.39(1H, br s) 7.00(2H, d, J=8.3 Hz) 6.98(1H, d, J=8.2 Hz) 6.66(2H, d, J=8.3 Hz) 3.96(2H, t, J=6.5 Hz) 3.79(3H, s) 3.36(2H, m) 2.69(2H, t, J=7.5 Hz) 1.71(2H, m)	1.41(2H, m) 1.23-1.35(4H, m) 0.87(3H, t, J=7.4 Hz)	KBr 3445 3256 2940 1641 1556 1509 1323 1267 1224 1188	FAB+ [M+H'](100) 251(30) 235(61)	$\text{C}_{21}\text{H}_{24}\text{NO}_4$
2-9		125~126°C	DMSO-d6,300MHz 9.13(1H, s) 8.33(1H, t, J=5.5 Hz) 7.40(1H, dd, J=8.4, 1.9 Hz) 7.37(1H, d, J=1.9 Hz) 7.69(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.2 Hz) 6.65(2H, d, J=8.3 Hz) 3.95(2H, t, J=6.5 Hz) 3.78(3H, s) 3.36(2H, m) 2.68(2H, t, J=7.5 Hz) 1.70(2H, m)	1.23-1.42(8H, m) 0.85(3H, t, J=7.4 Hz)	KBr 3452 3263 2921 1642 1615 1549 1510 1442 1318 1269	FAB+ [M+H'](100) 265(15) 249(73) 170(32) 151(40)	$\text{C}_{21}\text{H}_{24}\text{NO}_4$

实施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-10		162.7~163.2°C 9.80(1H, s) 9.19(1H, s) 7.57(1H, dd, J=8.4, 1.8 Hz) 7.51(1H, d, J=1.8 Hz) 7.48(2H, d, J=8.8 Hz) 7.05(1H, d, J=8.4 Hz) 6.73(2H, d, J=8.8 Hz) 4.02(2H, t, J=6.5 Hz) 3.83(3H, s) 1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.9(3H, t, J=7.9 Hz),	(CD ₃) ₂ NCD ₂ O, 300MHz)	KBr 3295 1642 1514 154(75)	FAB+ 330 [M ⁺ H] ⁺ (100) 221(70) 154(75)	C ₁₉ H ₂₃ NO ₄ 理論値 C: 69.28% H: 7.04% N: 4.25% 分析値 C: 68.84% H: 7.24% N: 4.25%
2-11		7.43(1H, d, J=2.1 Hz) 7.26(1H, dd, J=8.3, 2.1 Hz) 7.20(2H, d, J=8.5 Hz) 6.84(1H, d, J=8.3 Hz) 6.81(1H, d, J=8.5 Hz) 6.32(1H, br) 5.80(1H, bs) 4.55(2H, d, J=5.6 Hz) 4.04(2H, t, J=6.9 Hz) 3.89(3H, s) 1.7-1.9(2H, m) 1.3-1.5(4H, m)	CDCl ₃ , 300MHz	KBr 3320 2955 1510 238(45) 221(70)	FAB+ 344 [M ⁺ H] ⁺ (100) 238(45) 221(70)	C ₂₀ H ₂₅ NO ₄ 理論値 C: 69.95% H: 7.34% N: 4.08% 分析値 C: 70.05% H: 7.42% N: 4.14%
2-12		7.37(1H, d, J=2.0 Hz) 7.12(1H, dd, J=8.4, 2.0 Hz) 7.06(2H, d, J=8.4 Hz) 6.83(1H, d, J=8.4 Hz) 6.77(2H, d, J=8.4 Hz) 6.02(1H, br) 5.60(1H, bs) 4.04(2H, t, J=6.9 Hz) 3.89(3H, s) 3.47(2H, q, J=6.2 Hz) 2.65(2H, t, J=6.2 Hz) 1.8-1.9(2H, m)	CDCl ₃ , 300MHz	KBr 3319 372 2933 1513 1267	FAB+ 372 [M ⁺ H] ⁺ (42) 2933 1513 1267	

表 50

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析	
2-13		CDCl ₃ , 300MHz	7.34(1H, d, J=2.0 Hz) 7.17(1H, dd, J=8.3, 2.0 Hz) 7.1-7.2(1H, m) 7.00(1H, bs) 6.80(1H, d, J=8.3 Hz) 6.7-6.8(3H, m) 6.22(1H, bs) 3.99(2H, t, J=6.9 Hz) 3.86(3H, s) 3.65(2H, q, J=6.8 Hz) 2.83(2H, t, J=6.8 Hz) 1.8-1.9(2H, m)	1.3-1.5(4H, m) 0.91(3H, t, J=7.0 Hz)	KBr 3319 2954 1581 1505 1268	FAB+ [M ⁺ H ⁺] (40) 221(50) HRFAB(m/z) $\text{C}_{21}\text{H}_{24}\text{NO}_4$ 358.4622 分析値 358.2008	
2-14		CDCl ₃ , 300MHz	7.96(1H, bs) 7.41(1H, d, J=1.9 Hz) 7.26(1H, dd, J=8.3, 1.9 Hz) 7.10(1H, t, J=8.0 Hz) 7.08(2H, d, J=8.0 Hz) 6.92(1H, d, J=8.0 Hz) 6.7-6.9(3H, m) 4.00(2H, t, J=6.8 Hz) 3.86(3H, s) 3.59(2H, q, J=7.0 Hz) 2.96(2H, t, J=7.0 Hz) 1.8-1.9(2H, m)	1.3-1.5(4H, m) 0.91(3H, t, J=7.0 Hz)	Neat 3347 2951 1620 1578 1514	FAB+ [M ⁺ H ⁺] (90) 221(100) HRFAB(m/z) $\text{C}_{21}\text{H}_{24}\text{NO}_4$ 358 分析値 C; 70.56% H; 7.61% N; 3.92%	理論値 C; 70.56% H; 7.61% N; 3.92% 分析値 C; 70.59% H; 7.77% N; 3.87 %
2-15		CDCl ₃ , 300MHz	7.39(1H, d, J=1.9 Hz) 7.21(1H, dd, J=8.3, 1.9 Hz) 6.83(1H, d, J=8.3 Hz) 6.03(1H, bs) 4.04(2H, t, J=6.9 Hz) 3.9-4.0(2H, m) 3.88(3H, s) 3.2-3.6(4H, m) 1.0-2.1(15H, m) 0.91(3H, t, J=7.1 Hz)		Neat 3316 2927 1633 1504 1267	FAB+ [M ⁺ H ⁺] (50) 221(100) HRFAB(m/z) $\text{C}_{21}\text{H}_{24}\text{NO}_4$ 364.5102 分析値 364.2481	

表 5-1

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-16		96~98°C	CDCl ₃ , 300MHz 8.52-8.54(2H, m) 7.38(1H, d, J=2.0 Hz) 7.16-7.18(2H, m) 7.15(1H, dd, J=8.5, 2.1 Hz) 6.84(1H, d, J=8.5 Hz) 6.12(1H, br s) 4.05(2H, t, J=7.0 Hz) 3.89(3H, s) 3.72(2H, q, J=7.0 Hz) 2.95(2H, t, J=7.0 Hz) 1.81-1.90(2H, m) 1.35-1.47(4H, m)	0.93(3H, t, J=7.2 Hz)	Neat 3309 2947 1634 1513 1269	FAB+ 343 [M ⁺ H] ⁺ (100) 285(27) 221(48)	C ₂₂ H ₂₄ N ₂ O ₃ 理論値 C: 70.15% H: 7.65% N: 8.18% 分析値 C: 70.14% H: 7.81% N: 8.12%
2-17		82~83°C	CDCl ₃ , 300MHz 8.55-8.57(1H, m) 7.63(1H, td, J=7.6, 1.8 Hz) 7.42(1H, d, J=2.0 Hz) 7.27(1H, dd, J=8.3, 2.0 Hz) 7.15-7.22(2H, m) 6.85(1H, d, J=8.3 Hz) 4.07(2H, t, J=6.9 Hz) 3.90(3H, s) 3.84(2H, q, J=6.0 Hz) 3.10(2H, t, J=6.0 Hz) 1.80-1.90(2H, m) 1.30-1.50(4H, m)	0.93(3H, t, J=7.0 Hz)	Neat 3242 1630 1508 1272	FAB+ 343 [M ⁺ H] ⁺ (100) 221(52) 154(74)	C ₂₂ H ₂₄ N ₂ O ₃ 理論値 C: 70.15% H: 7.65% N: 8.18% 分析値 C: 70.22% H: 7.86% N: 8.15%
2-18		淡黄色油状	CDCl ₃ , 300MHz 8.38-8.58(2H, m) 7.49-7.64(2H, m) 7.27(1H, d) 7.02-7.19(3H, m) 6.70-6.32(3H, m) 3.95(2H, t, J=6.9 Hz) 3.86(3H, s) 3.55-3.90(4H, m) 2.81-3.33(4H, m) 1.78-1.91(2H, m) 1.30-1.50(4H, m)	0.93(3H, t, J=7.0 Hz)	Neat 2953 1628 1433 1261	FAB+ 448 [M ⁺ H] ⁺ (83) 354(29) 434(35) 221(100)	C ₂₂ H ₃₂ N ₂ O ₃ 理論値 C: 72.46% H: 7.43% N: 9.39% 分析値 C: 71.57% H: 7.66% N: 9.12%

表 5 2

实施例	構造式	融点	1H NMR (δ) ppm	$\nu_{\text{cm}^{-1}}$	MS	元素分析
2-19		CDCl ₃ , 300MHz 8.50(4H, br s) 7.03(4H, br s) 6.86-6.70(2H, m) 3.94(2H, t, J=6.5 Hz) 3.88(3H, s) 3.44-3.73(4H, m) 2.70-3.00(4H, m) 1.79-1.90(2H, m) 1.31-1.50(4H, m) 0.93(3H, t, J=7.3 Hz)	Neat 2933 1628 1601 1261	FAB+ 448 [M ⁺ +H ⁺] (55) 390(14) 343(29) 221(100)	C ₂₂ H ₃₁ NO ₄	
2-20		CDCl ₃ , 300MHz 7.1(1H, bs) 6.8-7.0(6H, m) 6.3(1H, bs) 3.9(2H, d, J=7.5 Hz) 3.9(3H, s) 3.6-3.8(2H, m) 2.6-3.0(2H, m) 2.8(3H, bs) 1.7-1.9(2H, m) 1.3-1.5(4H, m) 0.9(3H, t, J=7.5 Hz)	KBr 3300 2932 2362 1606 1516	FAB+ 372 [M ⁺ +H ⁺] (35) 221(40)	C ₂₂ H ₃₁ NO ₄	理論値 C: 71.13% H: 7.87% N: 3.77% 分析値 C: 71.41% H: 8.07% N: 3.88 %
2-21		DMSO-d ₆ , 300MHz 9.14(1H, s) 8.34(1H, t) 129°C 128~	FAB+ 358 [M ⁺ +H ⁺] (65) 221(99) 150(100)			

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析	
						[M $^{\bullet}$ H $^{\bullet}$] (55) 235(71) 150(100)	
2-22		97~98°C	9.14(1H, s) 8.34(1H, t) 7.41-7.44(2H, m) 6.98-7.03(2H, m) 6.67(2H, d, J=8.4 Hz) 3.86(2H, d, J=5.8 Hz) 3.80(3H, s) 3.27-3.94(2H, m) 2.70(2H, t, J=7.3 Hz) 1.58-1.70(1H, m) 1.33-1.54(4H, m) 0.90(6H, t, J=7.4 Hz)	DMSO-d6,300MHz	FAB+	372 [M $^{\bullet}$ H $^{\bullet}$] (55) 235(71) 150(100)	
2-23		168~169°C	9.14(1H, s) 8.33(1H, t, J=5.4 Hz) 7.37-7.45(2H, m) 6.97-7.02(3H, m) 6.67(2H, d, J=8.3 Hz) 3.80-3.82(5H, m) 3.24-3.44(2H, m) 2.70(2H, t, J=7.4 Hz) 1.13-1.30(1H, m) 0.50-0.63(2H, m) 0.26-0.37(2H, m)	DMSO-d6,300MHz	FAB+	342 [M $^{\bullet}$ H $^{\bullet}$] (100) 205(42) 185(38) 150(50)	
2-24		199.3~200.9°C	9.10(1H, s) 8.22(1H, d, J=8.5 Hz) 7.42(1H, bs) 7.40(1H, d, J=8.48 Hz) 7.35(1H, s) 7.10(2H, d, J=8.41 Hz) 7.01 (2H, bs) 6.78(1H, d, J=8.48 Hz) 6.60(2H, d, J =8.41 Hz) 4.45-4.57(1H, m) 3.92-4.00(2H, m) 3.79(3H, s)	DMSO-d6,300MHz	KBr	[M $^{\bullet}$ H $^{\bullet}$] (35) 384(40) 1652 221(100)	C ₂₁ H ₂₂ N ₂ O ₄ , C: 65.98% H: 7.05% N: 6.99% 分析值 C: 66.02% H: 7.10% N: 6.91 %

表 5 4

实施例	構造式	點	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
2-25		CDCl ₃ , 300MHz 7.4(1H, d, J=3 Hz) 7.2(1H, dd, J=9, 3 Hz) 7.0(2H, d, J=9 Hz) 6.8(1H, d, J=9 Hz) 6.7(2H, d, J=9 Hz) 6.5(1H, m) 5.9(1H, bs) 5.0(1H, m) 4.0(2H, t, J=9 Hz) 3.9(3H, s) 3.8(3H, s) 3.2(2H, m)	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.9(3H, t, J=4 Hz)	Neat 3331 1743 1506 237(30) 221(100)	FAB+ 416 [M ⁺ H ⁺](30)	C ₂₁ H ₂₄ NO ₄ 理論値 C: 69.15% H: 7.32% N: 3.51%
2-26		CDCl ₃ , 300MHz 7.39(1H, d, J=2.0 Hz) 7.21(1H, dd, J=8.1, 2.0 Hz) 6.84(1H, d, J=8.1 Hz) 6.62(1H, s) 6.57(1H, s) 6.17(1H, d, J=7.7 Hz) 4.29-4.42 (1H, m) 4.04(2H, t, J=7.2 Hz) 3.89(3H, s) 3.05 (1H, dd, J=16.1, 5.2 Hz) 2.75(2H, t, J=6.9 Hz) 2.60(1H, dd, J=16.1, 8.5 Hz)	1.30-2.12(10H, m) 0.92(3H, t, J=7.0 Hz)	Neat 3456 1503 1270 238(66) 221(100)	FAB+ 400 [M ⁺ H ⁺](83)	C ₂₁ H ₂₄ NO ₄ 理論値 C: 68.97% H: 7.39% N: 3.43 %
2-27		CDCl ₃ , 300MHz 7.36(1H, d, J=2.0 Hz) 7.13(dd, J=8.3, 2.0 Hz) 6.30-5.91(4H, m) 5.99-6.08(1H, m) 5.52(1H, s) 4.04(2H, t, J=6.9 Hz) 3.89(3H, s) 3.85(3H, s) 3.66(2H, q, J=6.9 Hz) 2.86(2H, t, J=6.9 Hz) 1.80-1.91(2H, m) 1.33-1.50(4H, m)	0.93(3H, t, J=7.0 Hz)	Neat 3280 1508 1274 221(100)	FAB+ 388 [M ⁺ H ⁺](72)	C ₂₁ H ₂₄ NO ₄ 理論値 C: 68.20% H: 7.54% N: 3.61% 分析値 C: 78.23% H: 7.69% N: 3.60 %

表 5 5

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
2-28		CDCl ₃ , 300MHz 8.16-8.26(1H, m) 7.70(1H, d, J=8.0 Hz) 7.04-7.16(3H, m) 7.01(1H, d, J=8.0 Hz) 6.79(2H, d, J=8.5 Hz) 6.00(1H, s) 3.85(3H, s) 3.91(2H, t, J=6.9 Hz) 3.85(3H, s) 3.69(2H, q, J=6.68 Hz) 2.85(2H, t, J=7.2 Hz) 1.50-1.65(2H, m)	1.22-1.40(4H, m) 0.91(3H, t, J=6.8 Hz)	FAB+ 358 [M ⁺ H ⁺] (100) 221(40) 150.9(70)		
2-29		DMSO-d6, 300MHz 9.76(1H, d, J=4.4 Hz) 9.13(1H, s) 8.39(1H, d, bs) 76.2~ 77.0°C 7.36(1H, dd, J=8.8, 1.8 Hz) 7.59(1H, d, J=1.8 Hz) 7.45(1H, d, J=1.8 Hz) 6.99(2H, d, J=8.4 Hz) 6.65(2H, d, J=8.4 Hz) 4.02(2H, t, J=6.6 Hz) 3.2-3.4(2H, m) 2.67(2H, t, J=7.5 Hz) 1.7-1.8(2H, m)	1.3-1.5(4H, m) 0.88(3H, t, J=7.2 Hz)	KBr 3242 2931 1637 1515 1496	FAB+ 358 [M ⁺ H ⁺] (20)	
2-30		DMSO-d6, 300MHz 9.48(1H, bs) 9.20(1H, s) 6.5-7.2(7H, m) 3.9-4.0(2H, m) 3.3-3.5(2H, m) 2.7-3.0(3H, m) 2.6-2.7(2H, m) 1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.87(3H, t, J=7.0 Hz)				

表 5 6

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-31		77.5~77.8°C	DMSO-d6,300MHz 9.84(1H, s) 9.80(1H, d, J=8.1 Hz) 9.22(1H, s) 7.76(1H, dd, J=8.1, 2.0 Hz) 7.49(1H, s) 7.47(2H, d, J=8.8 Hz) 7.42(1H, d, J=8.1 Hz) 6.72(2H, d, J=8.8 Hz) 4.07(2H, t, J=6.6 Hz) 1.71-1.8(2H, m) 1.3-1.4(4H, m) 0.90(3H, t, J=7.2 Hz)	Neat 3383 2955 [M+H ⁺] (25) 1646 1602 1513	FAB+ 316 [M+H ⁺] (25)	
2-32			CDCl ₃ ,300MHz 7.58(1H, s) 7.49(1H, d, J=8.44 Hz) 7.09(2H, d, J=8.36 Hz) 6.81(1H, d, J=8.44 Hz) 6.78(2H, d, J=8.36 Hz) 5.96-6.03(1H, m) 5.18(1H, s) 3.83(3H, s) 3.65(2H, q, J=6.53 Hz) 2.82-2.86(2H, m) 1.73-1.78(2H, m) 1.32(6H, s)	1.10-1.26(6H, m) 0.85-0.95(2H, m) 0.82(3H, t, J=6.82 Hz)	Neat 3500- 2970 1634 [M+H ⁺] (90) 261(100) 121(42)	FAB+ 398 [M+H ⁺] (90)
2-33			CDCl ₃ ,300MHz 8.52(2H, d, J=5.99 Hz) 7.60(1H, s) 7.49(1H, d, J=8.49 Hz) 7.17(2H, d, J=5.99 Hz) 6.84(1H, d, J=8.49 Hz) 6.0-6.1(6H, m) 3.85(3H, s) 3.71(2H, q, J=6.66 Hz) 2.95(2H, t, J=6.96 Hz) 1.73-1.83(2H, m) 1.33(6H, s) 1.10-1.27(6H, m)	0.84-1.00(2H, m) 0.83(3H, d, J=6.7 Hz)	Neat 3300 1633 [M ⁺ H ⁺] (70) 261(60)	FAB+ 383 [M ⁺ H ⁺] (70)

表 57

実施例	構造式	融点	¹ H NMR (δ) ppm	IR cm ⁻¹	MS	元素分析	
2-37		188.9~189.5 °C	DMSO- δ 6,300MHz 8.53(2H, bs) 8.15(1H, d, J=7.63 Hz) 7.74(1H, d, J=8.61 Hz) 7.66(1H, s) 7.00(1H, d, J=8.61 Hz) 6.65(1H, s) 6.43(1H, s) 3.95-4.12(1H, m) 3.84(3H, s) 2.59-2.85(4H, m) 1.90-2.03(1H, m) 1.60-1.83(3H, m)	1.32(6H, s) 1.08-1.23(6H, m) 0.82-0.96(2H, m) 0.81(3H, t, J=6.67 Hz)	KBr 3282 2416 1599 1531	FAB+ 440 [M ⁺ H] ⁺ (100) 278(60) 261(90)	C ₂₁ H ₃₁ NO ₄ 理論値 C: 73.77% H: 8.48% N: 3.19% 分析値 C: 73.61% H: 8.72% N: 3.22%
2-38		149.7~150.2 °C	DMSO- δ 6,300MHz 9.76(1H, s) 9.13(1H, s) 8.20(1H, t, J=5.49 Hz) 7.58(1H, s) 7.50(1H, d, J=8.36 Hz) 7.01(2H, d, J=8.42 Hz) 6.76(1H, d, J=8.36 Hz) 6.67(2H, d, J=8.42 Hz) 3.27-3.40(5H, m, involving a singlet at 3.06) 2.69(2H, t, J=7.5 Hz) 1.73-1.87(2H, m)	1.31(6H, s) 1.06-1.23(6H, m) 0.83-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)	KBr 3450- 3000 1698 1622 1574	FAB+ 384 [M ⁺ H] ⁺ (100) 264(30) 247(60)	C ₂₁ H ₃₁ NO ₄ 理論値 C: 75.16% H: 8.67% N: 3.65% 分析値 C: 74.91% H: 8.85% N: 3.62%
2-39		159.3~160.0 °C	DMSO- δ 6,300MHz	2.56-2.68(2H, m) 1.74-1.86(2H, m) 1.31(6H, s) 1.10-1.27(6H, m) 0.85-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)	KBr 3700- 3050 1629 1602	FAB+ 400 [M ⁺ H] ⁺ (55) 264(35) 247(100)	C ₂₁ H ₃₁ NO ₄ 理論値 C: 72.15% H: 8.33% N: 3.66% 分析値 C: 71.95% H: 8.56% N: 3.52%

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-40		179.9~180.5°C	CDCl ₃ , 300MHz 9.78(1H, s) 8.45(2H, d, J=5.68 Hz) 8.23-8.29(1H, m) 7.56(1H, s) 7.25(2H, d, J=5.68 Hz) 6.75(1H, d, J=8.3 Hz) 3.42-3.51(2H, m) 3.30(3H, s) 2.80-2.88(2H, m) 1.74-1.83(2H, m) 1.30(6H, s) 1.08-1.20(6H, s)	0.84-0.98(2H, m) 0.80(3H, t, J=6.57 Hz)	KBr 3450 2950 1632 1602 1575	FAB+ [M ⁺ H ⁺] (100) 369 247(20) 169(40)	C ₁₃ H ₂₂ N ₂ O ₂ C: 74.96% H: 8.75% N: 7.60% 分析値 C: 74.46% H: 8.90% N: 7.69 %
2-41			CDCl ₃ , 300MHz 7.72(1H, s) 7.45(1H, d, J=7.6 Hz) 7.42(2H, d, J=7.6 Hz) 7.31(1H, t, J=7.6 Hz) 7.06(2H, d, J=8.2 Hz) 7.07(1H, s) 7.01(2H, d, J=8.2 Hz) 6.27(1H, t, J=5.5 Hz) 3.67(2H, q, J=6.7 Hz) 2.84(2H, t, J=6.9 Hz) 1.5-1.6(2H, m) 1.28(3H, s)	1.28(3H, s) 1.0-1.3(6H, m) 0.9-1.0(2H, m) 0.83(3H, t, J=6.7 Hz)	FAB+ [M ⁺ H ⁺] (100) 368 231(80)		
2-42		102.4°C	CDCl ₃ , 300MHz 7.52(1H, d, J=10.3 Hz) 7.49(1H, s) 7.09(2H, d, J=8.46 Hz) 6.81(1H, d, J=10.3 Hz) 6.80(2H, d, J=8.46 Hz) 5.98-6.10(1H, m) 5.32(1H, s) 3.84(3H, s)	1.22-1.40(4H, m) 0.88(3H, t, J=6.68 Hz)	FAB+ [M ⁺ H ⁺] (100) 356.1 236(30) 219(80)		

表 60

实施例	構造式	融点	^1H NMR (δ) ppm	$\text{IR}-\text{cm}^{-1}$	MS	元素分析
2-43		88.6~89.4°C	8.53(1H, d, J=5.97 Hz) 7.52(1H, d, J=8.7 Hz) 7.50(1H, s) 7.18(2H, d, J=5.97 Hz) 6.82(1H, d, J=8.7 Hz) 6.00-6.13(1H, m) 3.85(3H, s) 3.72(2H, q, J=6.67 Hz) 2.95(2H, t, J=6.96 Hz) 2.60(2H, t, J=7.74 Hz) 1.49-1.60(2H, m) 1.25-1.40(4H, m)	0.88(3H, t, J=6.86 Hz) 0.93(3H, t, J=7.0 Hz) 0.93(3H, t, J=7.0 Hz)	FAB+ 341 [M ⁺ H ⁺](100) 219(40) 105.9(87)	C ₁₉ H ₂₂ N ₂ O ₃
2-44		116.6~116.9°C	7.34(1H, d, J=2.1 Hz) 7.12(1H, dd, J=8.4, 2.1 Hz) 7.02(2H, d, J=8.3 Hz) 6.83(1H, d, J=8.4 Hz) 6.65(2H, d, J=8.3 Hz) 6.01(1H, br) 4.02(2H, t, J=6.6 Hz) 4.01(2H, t, J=6.6 Hz) 3.63(2H, q, J=6.8 Hz) 3.60(2H, bs) 2.80(2H, t, J=6.8 Hz) 1.8-1.9(4H, m)	1.3-1.5(8H, m) 1.3-1.5(8H, m) 1.3-1.5(8H, m)	KBr 3327 2934 1626 1513 1270 1226	C ₃₁ H ₃₄ N ₂ O ₄
2-45		127~128°C	7.34(1H, d, J=2.0 Hz) 7.08-7.26(3H, m) 6.78-6.83(3H, m) 6.04(1H, m) 5.21(1H, s) 3.99-4.04(4H, m) 3.65(2H, q, J=7.0 Hz) 2.85(2H, t, J=7.0 Hz) 1.77-1.86(4H, m) 1.31-1.57(12H, m) 0.88-0.92(6H, m)	FAB+ 442[M ⁺ H ⁺] (100)		

表 6 1

表实例	構造式	融点	^{13}C NMR (ppm)	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-46		CDCl ₃ ,300MHz 8.18(2H,d,J=8.4Hz) 7.40(2H,d,J=8.4Hz) 6.91(1H,d,J=8.9Hz) 6.20(1H,d,J=8.9Hz) 5.97(1H,b)	0.93(3H,t,J=7.1Hz)				
2-47		CDCl ₃ ,300MHz 8.15(2H,d,J=8.1Hz) 7.39(2H,d,J=8.1Hz) 7.18(1H,d,J=8.7Hz) 6.94(1H,d,J=8.7Hz) 6.11(1H,b)	4.08(2H,t,J=6.6Hz) 3.91(3H,s) 3.64(2H,q,J=6.6Hz) 3.00(2H,t,J=7.1Hz) 1.65-1.77(2H,m) 1.30-1.50(4H,m) 0.94(3H,t,J=7.1Hz)				
2-48		CDCl ₃ ,300MHz 8.19(2H,d,J=8.5Hz) 7.47(2H,d,J=8.5Hz) 7.23(1H,d,J=8.4Hz) 7.00(1H,d,J=8.4Hz) 4.13-4.40(6H,m) 3.92(3H,s) 3.73(2H,b)	3.08(2H,b)	1.70-1.83(2H,m) 1.20-1.45(7H,m) 0.93(3H,t,J=7.0Hz)			

表 6 2

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-49		93.2~94.1°C	CDCl ₃ , 300MHz 7.12(2H, d, J=8.5 Hz) 6.98(1H, d, J=8.3 Hz) 6.77(2H, d, J=8.5 Hz) 6.71(1H, d, J=8.3 Hz) 6.35(1H, br) 4.90(1H, bs) 3.94(2H, s) 3.83(3H, s) 3.66(2H, q, J=6.6 Hz) 3.11(2H, t, J=7.1 Hz) 2.87(2H, t, J=7.0 Hz) 2.05(3H, s)	1.5-1.6(2H, m) 1.3-1.4(4H, m) 0.91(3H, t, J=6.9 Hz)	FAB+ 417 [M ⁺ H] ⁺ (10) 369(100)	
2-50			CDCl ₃ , 300MHz 7.57(1H, d, J=9.0 Hz) 7.52(1H, br) 7.12(2H, d, J=8.4 Hz) 6.87(1H, d, J=9.0 Hz) 6.78(2H, d, J=8.4 Hz) 5.35(1H, bs) 3.96(2H, t, J=6.8 Hz) 3.86(3H, s) 3.71(2H, q, J=6.6 Hz) 2.88(2H, t, J=7.1 Hz) 2.30(3H, s)	1.3-1.55(4H, m) 0.94(3H, t, J=7.2 Hz)	FAB+ 404 [M ⁺ H] ⁺ (50) 267(100)	
2-51						

表 6 3

実験例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-52		101.1~102.6 °C	CDCl ₃ , 300MHz 7.62(1H, d, J=3.0 Hz) 7.40(1H, dd, J=2, 1.8, 4Hz) 7.02(2H, d, J=8.4 Hz) 6.78(1H, d, J=8.4 Hz) 6.66(2H, d, J=8.4 Hz) 5.99(1H, b)	1.62-1.73(2H, m) 1.28-1.34(8H, m) 0.94(3H, t, J=7.2 Hz) 0.90(3H, t, J=7.1 Hz)	FAB+ 429 [M'+H ⁺] (50) 293(100)	
2-53		淡黄色結晶	CDCl ₃ , 300MHz 7.04(2H,d,J=8.4Hz) 6.92(1H,d,J=8.7Hz) 6.78(2H,d,J=8.4Hz) 6.20(1H,d,J=8.7Hz) 6.04(1H,b) 5.71(2H,bs) 3.92(2H,t,J=6.8Hz) 3.82(3H,s) 3.59(2H,q,J=6.6Hz) 2.80(2H,t,J=6.9Hz) 1.70-1.85(2H,m) 1.30-1.50(4H,m)	0.92(3H,t,J=7.1Hz) 1.33-1.55(4H,m) 0.92(3H, t, J=7.2 Hz)	FAB+ 407 [M'+H ⁺] (20) 271(20)	
2-54		無色結晶	CDCl ₃ , 300MHz 7.51(1H, d, J=8.1 Hz) 7.34(1H, d, J=1.9 Hz) 7.09(2H, d, J=8.5 Hz) 6.96(1H, dd, J=1.9, 8.1 Hz) 6.70(2H, d, J=8.5 Hz) 6.08(1H, b)	1.33-1.55(4H,m) 0.92(3H, t, J=7.2 Hz) 1.33(2H, q, J=6.6 Hz) 3.13(2H, t, J=7.1 Hz) 2.85(2H, t, J=6.9 Hz) 1.6-1.75(2H,m)	FAB+ 407 [M'+H ⁺] (20) 271(20)	

表 6 4

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-55		148.2~149.3°C	CDCl ₃ , 300MHz 7.27(1H, d, J=1.5 Hz) 7.04-7.13(4H, m) 6.80(2H, d, J=8.4 Hz) 6.06(1H, br) 4.95(1H, s) 4.07(2H, t, J=6.5 Hz) 3.67(2H, q, J=6.5 Hz) 2.86(2H, t, J=7.7 Hz) 2.43(3H, s) 1.78-1.92(2H, m) 1.37-1.6(4H, m) 0.94(3H, t, J=7.1 Hz)	374 [M ⁺ H ⁺] (30) 307(20)	FAB+	
2-56		80.8~82.7°C	CDCl ₃ , 300MHz 7.53(1H, d, J=8.7 Hz) 7.35(1H, br) 7.02(2H, d, J=8.3 Hz) 6.87(1H, d, J=8.7 Hz) 6.63(2H, d, J=8.3 Hz) 3.95(2H, t, J=6.7 Hz) 3.85(3H, s) 3.69(2H, q, J=5.7 Hz) 3.57(2H, bs) 2.83(2H, t, J=6.9 Hz) 2.31(3H, s) 1.75-1.88(2H, m) 0.94(3H, t, J=7.1 Hz)	403 [M ⁺ H ⁺] (50) 267(100)	FAB+	
2-57		98.6~99.3°C	CDCl ₃ , 300MHz 7.62(1H, br) 7.56(1H, s) 7.48(1H, d, J=8.7 Hz) 6.87(1H, d, J=8.7 Hz) 6.87(1H, s) 3.97(2H, t, J=6.6 Hz) 3.86(3H, s) 3.78(2H, q, J=6.3 Hz) 2.97(2H, t, J=6.5 Hz) 2.36(3H, s) 1.75-1.88(2H, m) 1.3-1.55(4H, m)	378 [M ⁺ H ⁺] (100) 267(50)	FAB+	

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-58		CDCl ₃ , 300MHz 7.20(1H, d, J=5 Hz) 7.12(2H, d, J=8.5 Hz) 6.79(1H, d, J=8.5 Hz) 6.78(2H, d, J=8.6 Hz) 6.70(1H, br) 5.06(1H, s) 3.95(2H, t, J=6.7 Hz) 3.91(2H, s) 3.85(3H, s)	1.3-1.53(4H, m) 0.94(3H, t, J=7.1 Hz)	FAB+ 418 [M $^+$ H $^+$] (30) 281(100)		
2-59		CDCl ₃ , 300MHz 8.18(2H, d, J=8.7 Hz) 7.63(1H, br) 7.60(1H, d, J=8.6 Hz) 7.45(2H, d, J=8.7 Hz) 6.90(1H, d, J=8.6 Hz) 3.96(2H, t, J=6.7 Hz) 3.87(3H, s)	3.67(2H, q, J=6.6 Hz) 2.88(2H, t, J=7.0 Hz) 1.75-1.87(2H, m)	FAB+ 433 [M $^+$ H $^+$] (40) 267(100)		
2-60		CDCl ₃ , 300MHz 7.02(2H, d, J=7.8Hz) 6.91(1H, d, J=8.7Hz) 6.66(2H, d, J=7.8Hz) 6.19(1H, d, J=8.7Hz) 5.92(1H, bs) 5.77(2H, bs) 3.92(2H, t, J=6.8Hz) 3.83(3H, s)	1.3-1.5(4H, m) 0.93(3H, t, J=7.2Hz)	KBr 3455 3311 2936 1621 1535 1287	C21H29N3O3 372 [M $^+$ H $^+$] (20) 236(50)	

表 6 6

実施例	構造式	融点	1H NMR (δ) ppm		IRcm ⁻¹	MS	元素分析
			CDCl ₃ 300MHz	KBr			
2-61		86.5~87.6°C 無色結晶	8.53(2H,d,J=6.0Hz) 7.16(2H,d,J=6.0Hz) 6.91(1H,d,J=8.9Hz) 6.19(1H,d,J=8.9Hz) 5.96(1H,bs) 5.78(1H,bs) 3.92(2H,t,J=6.8Hz) 3.83(3H,s) 3.66(2H,q,J=6.6Hz) 2.91(2H,t,J=6.9Hz) 1.70-1.83(2H,m) 1.30-1.50(4H,m)	0.92(3H,t,J=7.1Hz)	3345 1626 1530 1282	FAB+ [M+H ⁺] (60) 236(70)	C20H27N3O3
2-62		116.8~117.6°C 淡紫色結晶	8.77(1H,b) 8.52(2H,d,J=6.1Hz) 7.50(1H,d,J=8.8Hz) 7.23(2H,d,J=6.1Hz) 6.64(1H,d,J=8.8Hz) 3.91(3H,s) 3.73(2H,q,J=6.2Hz) 2.96(2H,t,J=7.1Hz) 2.87(2H,t,J=7.2Hz) 1.40-1.58(2H,m) 1.20-1.40(4H,m) 0.88(3H,t,J=6.8Hz)	0.92(3H,t,J=7.1Hz)	3330 2955 1630 1529 1289	FAB+ [M+H ⁺] (50) 307(20)	C20H27N3O3
2-63		128.7~129.4°C 無色結晶	8.53(2H,d,J=6.0Hz) 7.18(2H,d,J=6.0Hz) 6.73(1H,s) 6.18(1H,s) 5.99(1H,bs) 5.35(2H,bs) 3.85(2H,t,J=6.6Hz) 3.83(3H,s) 3.67(2H,q,J=6.7Hz) 2.93(2H,t,J=7.1Hz) 1.70-1.80(2H,m) 1.30-1.50(4H,m)	0.92(3H,t,J=7.1Hz)	3332 2930 1632 1598 1542 1239 1214	FAB+ [M+H ⁺] (40) 236(100)	C20H27N3O3

表 6 7

实施例	操作式	融点	¹ H NMR (δ) ppm	IR cm^{-1}	MS	元素分析
2-64	 橙色结晶	125.7~127.2 °C	CDCl ₃ , 300MHz 7.59(1H, s) 7.03(2H, d, $J=8.4\text{Hz}$) 6.77(1H, s) 6.63(2H, d, $J=8.4\text{Hz}$) 5.64(1H, br) 4.05(2H, t, $J=6.8\text{Hz}$) 3.93(3H, s) 3.68(2H, q, $J=6.5\text{Hz}$) 3.60(2H, bs) 2.85(2H, t, $J=6.8\text{Hz}$) 1.80~1.90(2H, m) 1.30~1.45(4H, m)	KBr 3258 2934 1650 1514 1336 1272 1220	FAB+ 402 [M+H+] (20) 266(20)	C21H29N3O3
2-65	 黄色油状		CDCl ₃ , 300MHz 7.59(1H, s) 7.03(2H, d, $J=8.4\text{Hz}$) 6.77(1H, s) 6.63(2H, d, $J=8.4\text{Hz}$) 5.64(1H, br) 4.05(2H, t, $J=6.8\text{Hz}$) 3.93(3H, s) 3.68(2H, q, $J=6.5\text{Hz}$) 3.60(2H, bs) 2.85(2H, t, $J=6.8\text{Hz}$) 1.80~1.90(2H, m) 1.30~1.45(4H, m)	Neat 3258 2934 1650 1514 1336 1272 1221	FAB+ 402 [M+H+] (20) 266(20)	C21H27N3O5
2-66	 黄色油状		CDCl ₃ , 300MHz 8.50(4H, br s) 7.03(4H, br s) 6.81(1H, d, $J=9.0\text{ Hz}$) 6.66~6.70(2H, m) 3.94(2H, t, $J=6.5\text{ Hz}$) 3.88(3H, s) 3.44~3.73(4H, m) 2.70~3.00(4H, m) 1.79~1.90(2H, m) 1.31~1.50(4H, m) 0.93(3H, t, $J=7.3\text{ Hz}$)	Neat 2933 1628 1601 1261 221(100)	FAB+ 448 [M+H+] (55) 390(14) 343(29) 221(100)	

表 6 8

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-67		黄色油状	CDCl ₃ , 300MHz 7.1-7.5 (3H, m) 7.08 (2H, d, J= 8.4 Hz) 6.86 (2H, d, J= 8.4 Hz) 6.80 (1H, bs) 5.91 (1H, bs) 3.99 (2H, bs) 3.87 (3H, s) 3.64 (2H, q, J= 6.3 Hz) 3.42 (2H, t, J= 6.6 Hz) 2.87 (3H, s) 2.84 (2H, t, J= 6.6 Hz) 2.0-2.1 (2H, m)	1.46 (9H, s)	FAB+ 459 [M+H ⁺](50).	
2-68		淡黄色结晶	CDCl ₃ , 300MHz 7.18 (1H, d, J=4.8 Hz) 7.18 (1H, dd, J=4.8, 3.3 Hz) 6.96 (1H, dd, J=4.8, 3.3 Hz) 6.88 (1H, d, J=3.3 Hz) 6.81 (1H, d, J=8.4 Hz) 6.35 (1H, bs) 4.67 (2H, d, J=6.9 Hz) 4.14 (1H, t, J=6.9 Hz) 3.97 (2H, t, J=6.6 Hz) 3.86 (3H, s) 3.72 (2H, q, J=6.3 Hz) 3.16 (2H, t, J=6.3 Hz)	1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J=6.9 Hz)	FAB+ 378 [M+H ⁺](30), 360(100).	
2-69		無色结晶	CDCl ₃ , 300MHz 7.11 (4H, s) 7.10 (1H, d, J=8.4 Hz), 6.78 (1H, d, J=8.4 Hz), 6.20 (1H, bs) 4.63 (2H, d, J=6.9 Hz), 4.20 (1H, t, J=6.6 Hz), 3.96 (2H, t, J=6.6 Hz), 3.84 (3H, s), 3.67 (2H, q, J=6.6 Hz), 2.88 (2H, t, J=6.6 Hz) 2.32 (3H, s)	1.3-1.5 (4H, m) 0.91 (3H, t, J=6.9 Hz)	FAB+ 386 [M+H ⁺](30) 368(100)	

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-70		CDCl ₃ , 300MHz 8.18(2H, d, J=8.4 Hz), 7.42(2H, d, J=8.4 Hz), 7.09(1H, d, J=8.4 Hz), 6.78(1H, d, J=8.4 Hz), 6.75(1H, bs) 3.94(2H, t, J=6.9 Hz) 3.90(2H, q, J=5.4 Hz) 3.85(3H, s) 3.72(2H, q, J=6.9 Hz) 3.60(1H, t, J=4.8 Hz) 3.08(2H, t, J=6.9 Hz) 2.92(2H, t, J=5.7 Hz).	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)	FAB+ 431[M+H $^+$] (100), 413 (80).		
2-71		CDCl ₃ , 300MHz 7.13(4H, s) 7.03(1H, d, J=8.4 Hz), 6.75(1H, d, J=8.4 Hz), 6.36(1H, bs) 4.03(1H, t, J=4.8 Hz) 3.94(2H, t, J=6.9 Hz) 3.87(2H, t, J=5.4 Hz) 3.84(3H, s) 3.67(2H, q, J=6.6 Hz) 2.94(2H, q, J=5.4 Hz) 2.88(2H, t, J=5.4 Hz) 2.33(3H, s)	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)	FAB+ 400[M+H $^+$] (100), 382 (30).		
2-72		CDCl ₃ , 300MHz 7.2-7.4(5H, m) 7.04(1H, d, J=8.4 Hz), 6.75(1H, d, J=8.4 Hz), 6.46(1H, bs) 3.98(1H, t, J=5.0 Hz) 3.94(2H, t, J=6.6 Hz) 3.86(2H, t, J=5.1 Hz) 3.83(3H, s) 3.69(2H, q, J=6.6 Hz) 2.9-3.0(4H, m) 1.75(2H, t, J=7.1 Hz) 1.3-1.5(4H, m)	0.92(3H, t, J=6.9 Hz)	FAB+ 386[M+H $^+$] (100)		

表 70

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
2-73		无色结晶	CDCl ₃ , 300MHz 7.16(1H, dd, J=4.7, 1.0 Hz) 7.10(1H, d, J=8.5 Hz), 6.95(1H, dd, J=4.7, 3.3 Hz), 6.87(1H, dd, J=3.3, 1.0 Hz) 6.73(1H, d, J= 8.5 Hz) 6.62(1H, bs) 3.94(2H, t, J=6.6 Hz) 3.9-4.0(3H, m) 3.84(3H, s)	1.75(2H, t, J=7.0 Hz) 1.4-1.5(4H, m) 0.92(3H, t, J=7.0 Hz)	FAB+ 392(M+H ⁺) (100), 374(25)	
2-74		黄色结晶	CDCl ₃ , 300MHz 8.18(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz) 7.16(1H, d, J=8.4 Hz) 6.82(1H, d, J=8.4 Hz) 6.40(1H, bs) 4.65(2H, t, J=6.6 Hz), 3.97(2H, t, J=6.6 Hz), 3.92(1H, t, J=6.6 Hz), 3.86(3H, s)	1.3-1.5(4H, m) 0.93(3H, t, J=6.9 Hz)	FAB+ 417 [M+H ⁺](20), 399(100)	
2-75						

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-76		CDCl ₃ , 300MHz	7.28 (1H, s) 7.23 (1H, t, J=8.0 Hz) 7.15 (1H, d, J=8.0 Hz) 7.08 (1H, s) 7.02 (2H, d, J=8.4 Hz) 6.98 (1H, d, J=8.0 Hz) 6.83 (2H, d, J=8.4 Hz) 6.32 (1H, br) 3.93 (2H, t, J=7.6 Hz) 3.64 (2H, q, J=7.0 Hz) 2.81 (2H, t, J=7.0 Hz) 1.7-1.8 (2H, m)	1.3-1.4 (4H, m) 0.91 (3H, t, J=7.0 Hz)	NaCl 3314 2922 1638 1580 1515	FAB+ 328(M+H ⁺) (100) 191(75)	
2-77		113.5~114.2°C	7.43 (1H, d, J=2.0 Hz) 7.26 (2H, dd, J=8.4, 2.0 Hz) 6.85 (1H, d, J=8.4Hz) 6.76 (1H, br) 4.06 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.73 (4H, t, J=4.6 Hz) 3.55 (2H, q, J=5.7 Hz) 2.62 (2H, t, J=5.7 Hz) 2.53 (4H, t, J=4.6 Hz) 1.8-1.9 (2H, m)	1.3-1.5 (4H, m) 0.93 (3H, t, J=7.0 Hz)	KBr 3286 2945 1654 1617 1515	FAB+ 351(M+H ⁺) (100) 221(80) 264(60)	C ₁₉ H ₃₀ N ₂ O ₄
2-78							

表 7 2

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
2-79		CDCl ₃ 300MHz 7.4-7.7 (5H, m) 7.2-7.4 (1H, m) 6.6-6.9 (7H, m) 3.92 (2H, t, J=6.8 Hz) 3.87 (3H, s) 3.6-4.0 (2H, m) 3.5-3.7 (2H, m) 3.3-3.5 (1H, m) 3.0-3.2 (1H, m) 2.6-2.8 (2H, m) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	0.90 (3H, t, J=7.0 Hz)	Neat 3234 1609 1516	FAB+ 510 [M+H+] (65) 384(45) 221(100)	C ₂₂ H ₂₉ NO ₅
2-80		89.2~ 90.4°C CDCl ₃ 300MHz 7.3 (1H, d, J=3 Hz) 7.2 (1H, dd, J=9, 3 Hz) 7.0 (2H, d, J=9 Hz) 6.8 (1H, d, J=9 Hz) 6.6 (1H, bs) 6.4 (1H, br) 4.3-4.4 (1H, m) 4.0 (2H, t, J=7.5 Hz) 3.9 (3H, s) 3.4-3.8 (2H, m) 3.2 (1H, m) 2.8-2.9 (2H, m)	1.7-1.9 (2H, m) 1.2-1.5 (4H, m) 0.91 (3H, t, J=7.5 Hz)	KBr 3324 2954 1616 1515 1264	FAB+ 388 [M+H+] (45) 221(100)	C ₂₂ H ₂₉ NO ₅
2-81		DMSO-d ₆ 300MHz 12.50 (1H, bs) 9.14 (1H, s) 8.43 (1H, d, J=8.2 Hz) 7.42 (2H, bd, J=8.5 Hz) 7.35 (1H, bs) 7.10 (2H, d, J=8.3 Hz) 7.00 (1H, d, J=8.5 Hz) 6.63 (2H, d, J=8.3 Hz) 4.4-4.6 (1H, m) 3.97 (2H, t, J=6.4 Hz) 3.80 (3H, s) 2.9-3.0 (2H, m)	1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.91 (3H, t, J=6.9 Hz)	KBr 3431 3303 1740 1641 1509	FAB+ 402 [M+H+] (60) 221(100) 237(42)	C ₂₂ H ₂₇ NO ₆

添 7 3

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-82			DMSO-d ₆ 300MHz 8.55-8.80 (2H, m) 8.35 (1H, t) 7.38-7.47 (2H, m) 7.00 (1H, d, J=8.5 Hz) 6.64 (1H, d, J=8.5 Hz) 6.62 (1H, d, J=2.2 Hz) 6.46 (1H, dd, J=8.5, 2.2 Hz) 3.98 (2H, t, J=6.7 Hz) 3.80 (3H, s) 3.29-3.41 (2H, m) 2.63 (2H, t, J=8.3 Hz)	FAB+ 3435 374 3253 [M+H ⁺] (37) 1561 307(19) 1508 238(45) 1275 169(57) 154(100)	C ₂₁ H ₂₇ NO ₅	
2-83		無色結晶	DMSO-d ₆ 300MHz 8.74 (2H, d, J=6.0 Hz) 8.50 (1H, brs) 7.81 (2H, d, J=6.0 Hz) 7.38-7.42 (2H, m) 6.99 (1H, d, J=8.0 Hz) 3.96 (2H, t, J=6.8 Hz) 3.80 (3H, s) 3.60 (2H, q, J=6.5 Hz) 3.10 (2H, t, J=6.5 Hz) 1.66-1.78 (2H, m) 1.27-1.46 (4H, m) 0.90 (3H, t, J=6.5 Hz)	FAB+ 2934 343 1638 [M+H ⁺ -HCl] (100) 1505 1268		
2-84		淡黄色アモルファス				

表 7 4

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-85		CDCl ₃ 300MHz	7.1-7.3 (5H, m) 7.27 (1H, d, J=8.2 Hz) 7.22 (2H, d, J=8.5 Hz) 7.04 (2H, d, J=8.5 Hz) 6.9-7.1 (2H, m) 6.87 (1H, d, J=8.2 Hz) 5.68 (1H, d, J=13.6 Hz) 4.11 (2H, t, J=7.8 Hz) 3.98 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.03 (2H, t, J=7.8 Hz) 2.29 (3H, s)	1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 0.92 (3H, t, J=7.1 Hz)	2932 1760 1659 1600	Neat	
2-86		CDCl ₃ 300MHz	6.8-7.3 (7H, m) 3.99 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.2-3.8 (4H, m) 2.8-3.0 (2H, m) 2.28 (3H, s) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 1.0-1.2 (3H, m) 0.92 (3H, t, J=7.1 Hz)	2933 1762 221(100) 1628	FAB+ 248 [M+H ⁺] (25)		
2-87		CDCl ₃ 300MHz	8.07 (2H, brd) 7.41 (1H, d, J=1.7 Hz) 7.20 (1H, brd, J=8.3 Hz) 7.13 (2H, d, J=6.5 Hz) 6.84 (1H, d, J = 8.3 Hz) 6.44-6.65 (1H, m) 4.05 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.69 (2H, q, J=6.7 Hz) 2.96 (2H, t, J=6.7 Hz) 1.78-1.90 (2H, m) 1.30-1.50 (4H, m)	0.92 (3H, t, J=7.0 Hz)	359 [M+H ⁺] (95) 221(55) 151(53) 122(100)	FAB+ [M+H ⁺] (95)	

表 75

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析
2-88		110~112 °C 無色結晶	CDCl ₃ , 300MHz 8.54-8.56 (1H, m) 7.73 (1H, td, J=7.7, 1.9 Hz) 7.48 (1H, d, J=7.9 Hz) 7.36 (1H, d, J=1.9 Hz) 7.22-7.27 (2H, m) 6.85 (1H, d, J=8.4 Hz) 6.59-6.69 (1H, m) 5.00 (2H, m) 3.99-4.09 (3H, m) 3.90 (3H, s) 3.60-3.69 (1H, m)	1.81-1.91 (2H, m) 1.36-1.50 (4H, m) 0.93 (3H, t, J=7.0 Hz) 3310 1637 1510 1269 1230	FAB+ [M+H+] (51) 307(27) 221(36) 154(100)	C ₂₀ H ₂₆ N ₂ O ₄ 理論値 C: 67.02% H: 7.31% N: 7.82% 分析値 C: 67.11% H: 7.43% N: 7.78%
2-89		117~118 °C 無色結晶	CDCl ₃ , 300MHz 8.18 (1H, d, J=2.9 Hz) 7.39 (1H, d, J=1.8 Hz) 7.05 (1H, dd, J=8.3, 1.8 Hz) 7.17-7.25 (1H, m) 7.14 (1H, dd, J=8.2, 2.9 Hz) 7.08 (1H, d, J=8.2 Hz) 6.85 (1H, d, J=8.3 Hz) 4.04 (2H, t, J=6.7 Hz) 3.89 (3H, s) 3.79 (2H, q, J=6.4 Hz)	1.77-1.90 (2H, m) 1.32-1.49 (4H, m) 0.92 (3H, t, J=7.0 Hz) 359 221(29) 154(100)	FAB+ [M+H+] (35)	C ₂₀ H ₂₆ N ₂ O ₃ 理論値 C: 70.15% H: 7.65% N: 8.18% 分析値 C: 70.18% H: 7.85% N: 8.12%
2-90		93~94 °C 無色結晶	CDCl ₃ , 300MHz 8.46-8.52 (2H, m) 7.54-7.60 (1H, m) 7.36 (1H, d, J=2.0 Hz) 7.22-7.28 (1H, m) 7.14 (1H, dd, J=8.3, 2.0 Hz) 6.82 (1H, d, J=8.3 Hz) 6.00-6.11 (1H, m) 4.04 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.69 (2H, q, J=6.8 Hz) 2.95 (2H, t, J=6.8 Hz)	1.77-1.89 (2H, m) 1.28-1.48 (4H, m) 0.92 (3H, t, J=7.1 Hz) 3316 1521 1272 1231	FAB+ [M+H+] (51)	C ₂₀ H ₂₆ N ₂ O ₃ 理論値 C: 70.15% H: 7.65% N: 8.18% 分析値 C: 70.18% H: 7.85% N: 8.12%

表 7 6

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-91		無色結晶	DMSO-d6,300MHz 8.83(2H,d,J=6.4Hz) 8.47(1H,bs) 7.98(2H,d,J=6.4Hz) 7.65(1H,d,J=8.5Hz) 7.59(1H,s) 6.98(1H,d,J=8.5Hz) 5.05(1H,bs) 3.82(3H,s) 3.62(2H,q,J=6.0Hz) 3.16(2H,t,J=6.5Hz) 1.70-1.80(2H,m) 1.29(6H,s)	1.03-1.25(6H,m) 0.75-0.92(5H,m)	FAB- 418 [M-H ⁺](20) 417(100) 381(90)	C24H35N2O2Cl
2-92		無色結晶	DMSO-d6,300MHz 9.85(1H,s) 8.77(2H,d,J=6.4Hz) 8.36(1H,bs) 7.87(2H,d,J=6.4Hz) 7.54(1H,s) 7.45(1H,d,J=8.3Hz) 6.76(1H,d,J=8.3Hz) 3.53-3.63(2H,m) 3.03-3.14(2H,m) 1.72-1.82(2H,m) 1.27(6H,s) 1.10-1.23(6H,m)	0.75-0.93(5H,m)	FAB- 403 [M-H ⁺](10) 367(100)	C23H33ClN2O2
2-93						

表 7 7

实施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
2-94			CDCl ₃ , 300MHz 8.03-8.11 (2H, m) 7.40 (1H, d, J=2.0 Hz) 7.16-7.26 (3H, m) 6.82 (1H, d, J=8.4 Hz) 6.58-6.70 (1H, m) 4.04 (2H, t, J=6.9 Hz) 3.89 (3H, s) 3.67 (2H, q, J=6.8 Hz) 2.92 (2H, t, J=6.8 Hz) 1.71-1.90 (2H, m) 1.30-1.50 (4H, m) 0.92 (3H, t, J=7.0 Hz)	FAB+ 3318 [M+H] 1631 (100) 1512 30(16) 1265 221(21)		
2-95		104~106 °C	CDCl ₃ , 300MHz 7.37 (1H, d, J=2.0 Hz) 7.22 (1H, dd, J=8.4, 2.0 Hz) 7.07 (2H, d, J=8.3 Hz) 7.01 (1H, bs) 6.83 (2H, q, J=8.4 Hz) 6.78 (1H, d, J=8.3 Hz) 6.47 (1H, bs) 4.3-4.5 (1H, m) 4.02 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.41 (2H, d, J=3.6 Hz)	FAB+ 3300 [M+H] 2933 (60) 1632 221(80) 1504 1266	Neat	C ₂₃ H ₃₂ NO ₅
2-96			CDCl ₃ , 300MHz 7.37 (3H, s) 2.7-3.0 (2H, m) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.91 (3H, t, J=7.1 Hz)	FAB+ 3300 402 2933 [M+H] 1632 221(80) 1504 1266		

表 7 8

实施例	構造式	熔点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析	
2-97		CDCl ₃ , 300MHz 7.36 (1H, d, J=2.0 Hz) 7.18 (1H, dd, J=8.3, 2.0 Hz) 7.09 (2H, d, J=8.3 Hz) 6.84 (1H, d, J=8.3 Hz) 6.77 (2H, d, J=8.3 Hz) 6.23 (1H, bd, J=6.9 Hz) 6.0 (1H, bs) 4.4-4.6 (1H, m) 4.00 (2H, t, J = 6.8 Hz) 3.89 (3H, s)	2.94 (2H, dd, J= 6.9, 2.1 Hz) 2.71 (2H, d, J=5.8 Hz) 2.15 (3H, s) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.92 (3H, t, J=7.0 Hz).	Neat 3500 2926 1631 1512 1267	FAB+ 418 [M+H ⁺] (20) 221 (40) 151 (30)	C ₂₃ H ₃₁ NO ₅ 理論値 C: 68.81% H: 7.78% N: 3.49%	
2-98		CDCl ₃ , 300MHz 122.5~ 128.5°C	7.05 (1H, d, J=8.4 Hz) 7.02 (2H, d, J=8.5 Hz) 6.75 (2H, d, J=8.5 Hz) 6.74 (1H, d, J=8.4 Hz) 6.46 (1H, bs) 6.30 (1H, bs) 4.50 (1H, bs) 3.94 (2H, t, J=6.7 Hz) 3.89 (2H, q, J=5.6 Hz) 3.83 (3H, s) 3.64 (2H, q, J=6.9 Hz) 2.95 (2H, t, J=5.6 Hz)	2.84 (2H, t, J=6.9 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.92 (3H, t, J=7.0 Hz)	3152 1943 1623 1543 1489 1279	FAB+ 402 [M+H ⁺] (100)	C ₂₃ H ₃₁ NO ₅ 分析値 C: 68.34% H: 7.70% N: 3.53%
2-99		CDCl ₃ , 300MHz	7.17 (2H, d, J=5.7 Hz) 7.11 (2H, d, J=8.5 Hz) 6.92 (1H, bs) 6.78 (2H, d, J=8.5 Hz) 3.93 (2H, t, J=6.7 Hz) 3.89 (2H, q, J=5.7 Hz) 3.84 (3H, s) 3.71 (2H, q, J=6.7 Hz) 2.95 (2H, t, J=6.7 Hz) 2.92 (2H, t, J=5.7 Hz) 1.7-1.8 (2H, m) 1.70 (1H, bs)	1.3-1.5 (4H, m) 0.92 (3H, t, J=7.1 Hz)	3247 2935 1631 1596 1558 1488 1278 1086	FAB+ 387 [M+H ⁺] (90) 106 (100)	C ₂₂ H ₃₀ NO ₄ 理論値 C: 68.37% H: 7.82% N: 7.25% 分析値 C: 68.37% H: 7.75% N: 7.39%

表 7 9

実施例	構造式	融点	^1H NMR (δ) ppm	^{13}C NMR (ppm)	MS	元素分析
2-100		96.6~97.2°C	CDCl ₃ , 300MHz 8.19(1H, d, J=8.7 Hz) 8.02(1H, br) 7.07(2H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 6.58(1H, dd, J=8.7, 2.1 Hz) 7.08(2H, d, J=8.0 Hz) 6.92(1H, d, J=8.0 Hz) 6.43(1H, d, J=2.1 Hz) 5.72(1H, s) 3.99(2H, t, J=6.6 Hz) 3.83(3H, s) 3.69(2H, q, J=6.7 Hz)	2.83(2H, t, J=6.9 Hz) 1.6-1.75(2H, m) 1.3-1.42(4H, m) 0.92(3H, t, J=7.1Hz)	FAB+ 358 [M ⁺ H ⁺] (100) 221(20)	
2-101			CDCl ₃ , 300MHz 7.39(1H, d, J=2.4 Hz) 7.22(1H, dd, J=8.4, 2.4 Hz) 7.05(2H, d, J=8.4 Hz) 6.81(2H, d, J=8.4 Hz) 6.79(1H, d, J=8.4 Hz) 6.17(1H, br) 3.85(3H, s) 3.65(2H, q, J=6.6 Hz) 3.06(4H, t, J=7.8 Hz) 2.83(2H, t, J=7.1 Hz) 1.13-1.50(12H, m) 0.84(6H, t, J=6.8 Hz)	427 [M ⁺ H ⁺] (90) 369(100)	FAB+ Neat	C ₂₂ H ₂₃ NO ₄ 理論値 C: 71.52% H: 7.37% N: 3.79% 分析値 C: 71.82% H: 7.43% N: 3.90%
2-102			CDCl ₃ , 300MHz 7.35(1H, d, J=2.0 Hz) 7.16(1H, dd, J=8.1, 2.0 Hz) 7.07(2H, d, J=8.5 Hz) 6.83(2H, d, J=8.5 Hz) 6.80(1H, d, J=8.4 Hz) 6.08(1H, br) 5.83(1H, bs) 5.1-5.2(1H, m) 4.00(2H, t, J=7.4 Hz) 3.89(3H, s) 3.66(2H, q, J=6.9 Hz) 2.84(2H, t, J=6.9 Hz)	2.54(2H, q, J=7.4 Hz) 1.73(3H, s) 1.65(3H, s)	FAB+ 370 [M ⁺ H ⁺] (100) 1510 1266	

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-103		131.9~132.1°C 無色結晶	CDCl ₃ , 300MHz 7.36(1H, d, J=2.0 Hz) 7.13(1H, dd, J=8.4, 2.0 Hz) 7.06(2H, d, J=8.5 Hz) 6.81(1H, d, J=8.4 Hz) 6.79(1H, d, J=8.5 Hz) 6.00(1H, bs) 6.09(1H, br) 3.99(2H, t, J=7.0 Hz) 3.87(3H, s) 3.64(2H, q, J=6.9 Hz) 2.83(2H, t, J=6.9 Hz) 1.7-1.9(2H, m)	1.5-1.7(1H, m) 1.2-1.4(2H, m) 0.91(3H, s) 0.89(3H, s)	KBr 3380 2954 (100) 1509 235(60) 1267 1228	FAB+ 372[M ⁺ H] (100)	C ₂₂ H ₂₃ NO ₄ 理論値 C: 71.13% H: 7.87% N: 3.77 % 分析値 C: 71.41% H: 7.93% N: 3.87%
2-104		115.3~116.0°C 無色結晶	CDCl ₃ , 300MHz 7.36(1H, d, J=2.1 Hz) 7.21(1H, dd, J=8.4, 2.1 Hz) 7.10(2H, d, J=8.4 Hz) 6.8(2H, dd, J=8.4, 1.5 Hz) 6.05(1H, br) 5.48(1H, s) 3.88(3H, s) 3.66(2H, q, J=6.6 Hz) 3.03(2H, t, J=7.7 Hz) 2.85(2H, t, J=7.1 Hz) 2.79(3H, s)	1.08-1.18(4H, m) 0.88(3H, t, J=6.9 Hz)	371 [M ⁺ H] (100) 313(70)	FAB+ 412	[M ⁺ H] (100) 276(40)
2-105		115.5~116.1°C 無色結晶	CDCl ₃ , 300MHz 7.09(2H, d, J=8.4 Hz) 6.98(1H, d, J=1.8 Hz) 6.89(1H, dd, J=8.1, 1.8 Hz) 6.79(2H, d, J=8.4 Hz) 6.68(1H, d, J=8.1 Hz) 6.06(1H, br)	1.75-1.88(2H, m) 1.6-1.73(2H, m) 1.3-1.5(8H, m) 0.94(3H, t, J=6.8 Hz) 0.92(3H, t, J=7.1 Hz)	FAB+ 412	[M ⁺ H] (100) 276(40)	

表 8 1

実験例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-106		102.2~103.5 °C	CDCl ₃ , 300MHz 7.25(1H, s) 7.07(2H, d, J=8.4 Hz) 7.07(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.4 Hz) 6.46(1H, d, J=8.4 Hz) 5.98(1H, br) 5.31(1H, bs) 4.53(1H, bs) 4.01(2H, t, J=6.6 Hz) 3.63(2H, q, J=6.6 Hz) 3.14(2H, t, J=7.1 Hz) 2.82(2H, t, J=6.8 Hz)	1.75-1.85(2H, m) 1.58-1.7(2H, m) 1.3-1.5(8H, m) 0.85-0.97(6H, m)	FAB+ 413 [M'+H'] ⁺ (70) 276(100)	
2-107			CDCl ₃ , 300MHz 7.64 (1H, d, J=2.2 Hz) 7.42 (1H, d, J=1.5 Hz) 7.26 (1H, d, J=1.5 Hz) 7.05-7.08 (2H, m) 6.80-6.83 (2H, m) 6.73-6.74 (1H, d, J=2.2 Hz) 6.52 (1H, brs) 6.29 (1H, brt) 4.16 (2H, t, J=6.8 Hz) 3.68 (2H, q, J=6.8 Hz) 2.85 (2H, t, J=6.8 Hz)	1.82-2.05 (2H, m) 1.35-1.51 (4H, m) 0.93 (3H, t, J=7.2 Hz)	FAB+ 2932 368(M+H ⁺) 1595 (100) 231(90)	C ₂₂ H ₂₅ NO ₄ 理論値 C: 71.91% H: 6.86% N: 3.81% 分析値 C: 71.00% H: 6.92% N: 3.54%
2-108		187.0~187.5 °C	DMSO-d6, 300MHz 8.40(1H, brs) 7.74(2H, d, J=8.3 Hz) 7.42(2H, d, J=8.3 Hz) 7.3-7.5(2H, m) 7.26(2H, s)	0.91(3H, t, J=7.0 Hz) 0.90(3H, t, J=7.1 Hz)	KBr 3399 477 [M'+H'] ⁺ (100)	C ₂₂ H ₂₄ N ₂ O ₅ 理論値 C: 63.00% H: 7.61% N: 5.88% 分析値 C: 63.28% H: 7.60% N: 5.80%

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
2-109		163.5~163.7°C	CDCl ₃ , 300MHz 7.58(1H, d, J=0.9 Hz) 7.43(1H, d, J=2.0 Hz) 7.29(1H, dd, J=8.3, 2.0 Hz) 7.30(1H, bs) 6.85(1H, d, J=8.3 Hz) 6.85(1H, d, J=0.9 Hz) 4.04.1(4H, m) 3.71(2H, q, J=6.3 Hz) 2.90(2H, t, J=6.3 Hz) 1.7-1.9(4H, m) 1.3-1.5(8H, m) 0.93(3H, t, J=7.0 Hz)	0.92(3H, t, J=7.1 Hz) 0.92(3H, t, J=7.1 Hz) 0.92(3H, t, J=7.1 Hz)	KBr 3201 2933 1632 1514 1268 1222	FAB+ 388 [M ⁺ H ⁺](100)	C ₂₂ H ₃₁ N ₃ O ₅ 理論値 C: 68.20% H: 8.58% N: 10.84 % 分析値 C: 68.23% H: 8.61% N: 10.66%
2-110		118.3~118.4°C	CDCl ₃ , 300MHz 8.17(2H, d, J=8.7 Hz) 7.40(2H, d, J=8.7 Hz) 7.35(1H, d, J=2.1 Hz) 7.13(1H, dd, J=8.4, 2.1 Hz) 6.83(1H, d, J=8.4 Hz) 6.10(1H, bs) 4.03(2H, t, J=6.6 Hz) 4.02(2H, t, J=6.6 Hz) 3.72(2H, q, J=7.0 Hz) 3.05(2H, t, J=7.0 Hz) 1.8-1.9(4H, m) 1.3-1.5(8H, m)	0.93(3H, t, J=7.1 Hz) 0.92(3H, t, J=7.1 Hz) 0.92(3H, t, J=7.1 Hz)	KBr 3497 3286 1750 1627 1522	FAB+ 443 [M ⁺ H ⁺](100)	C ₂₂ H ₃₁ N ₃ O ₅ 理論値 C: 67.85% H: 7.74% N: 6.33 % 分析値 C: 68.05% H: 7.87% N: 6.32%
2-111		105.8~106.4°C	CDCl ₃ , 300MHz 7.34(1H, d, J=2.1 Hz) 7.20(1H, d, J=8.7 Hz) 7.18(1H, d, J=8.7 Hz) 7.13(1H, dd, J=8.3, 2.1 Hz) 7.02(1H, d, J=8.7 Hz) 6.99(2H, d, J=8.6 Hz) 6.82(1H, d, J=8.3 Hz) 6.00(1H, bs) 4.02(2H, t, J=6.7 Hz) 4.01(2H, t, J=6.6 Hz) 3.66(2H, q, J=6.8 Hz) 2.89(2H, t, J=6.9 Hz)	1.8-1.9(4H, m) 1.3-1.5(8H, m) 1.44-1.6(2H, m) 0.93(3H, t, J=7.1 Hz) 0.93(3H, t, J=7.1 Hz)	KBr 3279 2931 1628 1510 1227	FAB+ 416 [M ⁺ H ⁺](100)	C ₂₂ H ₃₁ FNO ₃ ·1/2H ₂ O 理論値 C: 70.73% H: 8.31% N: 3.30 % 分析値 C: 70.70% H: 8.26% N: 3.26%

表 8 3

実施例	構造式	融点 ℃	$^1\text{H NMR}$ (δ) ppm CDCl ₃ , 300MHz	IRcm ⁻¹	MS FAB+ [M+H ⁺] (27) 154(100)	元素分析	
						C	H
2-112		132~133	7.30-7.45 (6H, m) 7.18 (1H, dd, J=8.4, 2.2 Hz) 7.06-7.09 (2H, m) 6.84 (1H, d, J=8.4 Hz) 6.78-6.81 (2H, m) 5.99 (1H, brt) 5.32 (1H, s) 5.15 (2H, s) 3.90 (3H, s) 3.63 (2H, q, J=6.6 Hz) 2.83 (2H, t, J=6.6 Hz)				
2-113							
2-114							

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-115		114~116 °C	CDCl ₃ , 300MHz 7.36 (1H, d, J=2.0 Hz) 7.06-7.12 (3H, m) 6.78-6.84 (3H, m) 6.00-6.10 (2H, m) 5.60 (1H, s) 5.26-5.44 (2H, m) 4.60-4.63 (3H, m) 4.02 (2H, t, J=6.8 Hz) 3.65 (2H, q, J=6.8 Hz) 2.84 (2H, t, J=6.8 Hz) 1.79-1.88 (2H, m) 1.30-1.50 (4H, m)	0.92 (3H, t, J=7.1 Hz) FAB+ 384[M+H ⁺] (100) 263(29) 247(62)		
2-116		139~139 °C	CDCl ₃ , 300MHz 7.34 (1H, d, J=2.0 Hz) 7.16 (1H, dd, J=8.4, 2.0 Hz) 1.37-1.45 (4H, m) 0.92 (3H, t, J=7.1 Hz)	1.37-1.45 (4H, m) FAB+ 384[M+H ⁺] (100) 263(31) 247(48)		
2-117						

表 85

実験例	構造式	融点	1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
2-118			CDCl ₃ , 300MHz 7.3-7.5(5H, m) 7.16(2H, d, J=8.5 Hz) 7.09(1H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.77(1H, d, J=8.5 Hz) 6.26(1H, br)	KBr 1.7-1.9(4H, m) 1.3-1.6(8H, m) 0.94(3H, t, J=7.0 Hz) 0.94(3H, t, J=7.0 Hz) 5.03(2H, s) 4.66(2H, d, J=6.9 Hz) 4.17(1H, t, J=6.9 Hz) 3.98(4H, t, J=6.7 Hz) 3.70(2H, q, J=6.2 Hz) 2.88(2H, t, J=6.2 Hz)	FAB+ 3358 [M ⁺ H ⁺] (20) 2953 516(100) 1631 1511 1236	C ₁₃ H ₁₄ NO ₃ C: 74.27% H: 8.12% N: 2.62% 分析值 C: 74.54% H: 8.15% N: 2.67%
2-119		121.2~ 121.6°C 無色鮮べん状晶	CDCl ₃ , 300MHz 117.7- 118.7°C	KBr 1.3-1.5(8H, m) 0.94(3H, t, J=7.1 Hz) 0.93(3H, t, J=7.2 Hz)	FAB+ 3281 473 [M ⁺ H ⁺] (10) 2958 455(100) 1628 1522 1348	C ₂₆ H ₃₆ N ₂ O ₆ C: 66.08% H: 7.68% N: 5.93% 分析値 C: 66.38% H: 7.73% N: 5.88%
2-120		黄色柱晶	CDCl ₃ , 300MHz	KBr 8.17(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz), 7.14(1H, d, J=8.5 Hz), 6.80(1H, d, J=8.5 Hz) 6.53(1H, br)	FAB+ 3281 473 [M ⁺ H ⁺] (10) 2958 455(100) 1628 1522 1348	C ₂₆ H ₃₆ N ₂ O ₆ C: 66.38% H: 7.73% N: 5.88%

表 8 6

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-121		128.4~128.8 °C 無色結晶	CDCl ₃ , 300MHz 7.60(1H, s) 7.48(1H, bs) 7.33(1H, d, J=8.5 Hz) 6.90(1H, s) 6.88(1H, d, J=8.5 Hz) 4.77(2H, s) 4.70(1H, bs) 4.05(2H, t, J=6.6 Hz) 4.05(2H, t, J=6.6 Hz) 3.75(2H, q, J=6.0 Hz) 2.96(2H, t, J=6.0 Hz)	1.8-2.0(4H, m) 1.4-1.6(8H, m) 1.00(3H, t, J=7.1 Hz) 0.99(3H, t, J=7.0 Hz)	KBr 3205 [M $^+$ H $^+$](30) 2932 400(M+H $^+$)(100) 1618 1569 1276	FAB+ 418 理論値 C: 66.16% H: 8.45% N: 10.06 % 分析値 C: 66.36% H: 8.52% N: 9.81%
2-122		133~134 °C 無色結晶	CDCl ₃ , 300MHz 7.34 (1H, d, J=1.8 Hz) 7.12 (1H, dd, J=8.2, 1.8 Hz)	0.95-1.00 (6H, m)	FAB+ 386(M+H $^+$)(100)	
2-123		124~125 °C 無色結晶	CDCl ₃ , 300MHz 7.34 (1H, d, J=2.2 Hz) 7.07-7.26 (3H, m) 6.78-6.83 (3H, m) 6.06 (1H, t, J=6.6 Hz) 5.53 (1H, s) 4.01 (4H, t, J=6.6 Hz) 3.65 (2H, q, J=6.6 Hz) 2.84 (2H, t, J=6.6 Hz) 1.74-1.88 (4H, m) 1.22-1.52 (16H, m) 0.89 (6H, t, J=7.0 Hz)	FAB+ 470(M+H $^+$)(100)		

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
					FAB+	
2-124		215.1~215.7°C 無色結晶	DMSO-d6,300MHz 9.12(1H, s) 8.09(1H, br) 7.35(1H, d, J=8.4 Hz) 7.24(1H, d, J=1.5 Hz) 7.0(2H, d, J=8.1 Hz) 6.65(2H, d, J=8.1 Hz) 6.43(1H, d, J=8.4 Hz) 5.34(1H, q, J=2.7 Hz) 3.96(2H, t, J=6.6 Hz) 3.34(2H, q, J=7.8 Hz) 2.74(3H, d, J=2.7 Hz) 2.67(2H, t, J=7.5 Hz)	1.7-1.8(2H, m) 1.25-1.5(4H, m) 0.96(3H, t, J=7.1 Hz)	357 (M ⁺ H ⁺) (70) 220(100)	
2-125		85.3~86.3°C 無色結晶	CDCl ₃ ,300MHz 7.14(1H, d, J=1.8 Hz) 7.08(2H, d, J=8.4 Hz) 7.06(1H, dd, J=7.8, 1.8 Hz) 6.78(2H, d, J=8.4 Hz) 6.56(1H, d, J=7.8 Hz) 6.03(1H, br) 3.65(2H, q, J=6.6 Hz) 3.11(2H, t, J=6.8 Hz) 3.10(2H, t, J=6.8 Hz) 1.6-1.8(4H, m) 1.3-1.5(8H, m) 0.93(6H, t, J=7.1 Hz)	412 (M ⁺ H ⁺) (40) 185(100)		
2-126		109.4~110.4°C 無色結晶	CDCl ₃ ,300MHz 7.33(1H, d, J=2.4 Hz) 7.16(1H, dd, J=8.4 Hz) 7.09(2H, d, J=8.4 Hz) 6.75-6.82(3H, m) 6.04(1H, br) 5.49(1H, br) 4.00(2H, t, J=6.6 Hz) 3.65(2H, q, J=6.6 Hz) 3.04(2H, t, J=7.8 Hz) 2.84(2H, t, J=6.9 Hz) 2.80(3H, s) 1.8-1.95(2H, m)	1.2-1.65(8H, m) 0.93(3H, t, J=7.5 Hz) 0.88(3H, t, J=7.5 Hz)	427 (M ⁺ H ⁺) (100) 369(50)	

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-127		138.5~139.5°C 無色結晶	CDCl ₃ , 300MHz 7.29(1H, d, J=1.8 Hz) 7.08(2H, d, J=8.5 Hz) 7.00(1H, dd, J=8.1, 1.8 Hz) 6.79(2H, d, J=8.5 Hz) 6.61(1H, d, J=8.1 Hz) 6.0(1H, br) 5.4(1H, bs) 4.09(2H, bs) 4.02(2H, t, J=6.6 Hz) 3.64(2H, q, J=6.6 Hz) 2.83(2H, t, J=6.9 Hz) 1.75-1.9(2H, m)	1.3-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)	FAB+ 343 [M $^+$ H] ⁺ (50) 185(100)	
2-128		124.1~124.9°C 無色結晶	CDCl ₃ , 300MHz 7.63(1H, d, J=2.1 Hz) 7.43(1H, dd, J=8.4, 2.1 Hz) 7.1(2H, d, J=8.4 Hz) 6.8(1H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 6.04(1H, br) 5.25(1H, s) 3.92(3H, s) 3.66(2H, q, J=6.5 Hz) 2.91(2H, t, J=7.4 Hz) 2.86(2H, t, J=6.9 Hz)	1.25-1.5(4H, m) 0.9(3H, t, J=7.2 Hz)	FAB+ 374 [M $^+$ H] ⁺ (100) 237(60)	
2-129		116.3~116.9°C 無色結晶	CDCl ₃ , 300MHz 7.62(1H, d, J=2.4 Hz) 7.41(1H, dd, J=8.7, 2.4 Hz) 7.09(2H, d, J=8.4 Hz) 6.8(2H, d, J=8.4 Hz) 6.78(1H, d, J=8.7 Hz) 6.02(1H, br)	1.6-1.75(2H, m) 1.3-1.5(8H, m) 0.94(3H, t, J=6.9 Hz) 0.90(3H, t, J=7.2 Hz)	FAB+ 430 [M $^+$ H] ⁺ (100) 309(50)	

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析
2-130		CDCl ₃ , 300MHz	7.35(1H, d, J=2.2 Hz) 7.16(1H, dd, J=8.3, 2.2 Hz) 7.17(1H, dd, J=5.1, 1.0 Hz) 6.95(1H, dd, J=5.1, 3.5 Hz) 6.85(1H, dd, J=3.5, 1.0 Hz) 6.15(1H, bs) 4.02(2H, t, J=6.7 Hz) 4.01(2H, t, J=6.6 Hz) 3.71(2H, q, J=6.5 Hz) 3.14(2H, t, J=6.5 Hz) 1.8-1.9(4H, m) 1.3-1.5(8H, m)	0.92(3H, t, J=7.0 Hz) 0.92(3H, t, J=7.0 Hz)	FAB+ 453 (M+H ⁺)(30) 159(100) 277(80)	C ₂₀ H ₂₈ N ₂ O ₃ C: 73.20% H: 8.96% N: 6.57% 分析値 C: 73.28% H: 9.37% N: 6.55%
2-131		CDCl ₃ , 300MHz	7.95(1H, s) 7.33(1H, d, J=2.1 Hz) 7.22(1H, d, J=8.7 Hz) 7.14(1H, dd, J=8.3, 2.1 Hz) 7.0-7.1(2H, m) 6.81(1H, dd, J=8.7, 2.5 Hz) 6.79(1H, d, J=8.7 Hz) 6.22(1H, bs) 5.50(1H, bs) 3.99(2H, t, J=6.6 Hz) 3.96(2H, t, J=6.3 Hz) 3.71(2H, q, J=6.5 Hz)	2.97(2H, t, J=6.5 Hz) 1.7-1.9(4H, m) 1.3-1.5(8H, m) 0.92(3H, t, J=6.9 Hz) 0.91(3H, t, J=7.0 Hz)	FAB+ 453 (M+H ⁺)(30) 159(100) 277(80)	C ₂₁ H ₃₀ N ₂ O ₃ C: 73.20% H: 8.96% N: 6.57% 分析値 C: 73.28% H: 9.37% N: 6.55%
2-132		CDCl ₃ , 300MHz	7.34 (1H, d, J = 2.1 Hz) 7.13 (1H, dd, J = 8.4, 2.1 Hz) 7.06 (2H, d, J = 8.5 Hz) 6.81 (1H, d, J = 8.4 Hz) 6.59 (2H, d, J = 8.5 Hz) 6.00 (1H, bs) 4.02 (2H, t, J = 6.6 Hz) 4.00 (1H, bs) 4.01 (2H, t, J = 6.6 Hz) 3.64 (2H, q, J = 6.7 Hz) 2.83 (3H, s) 2.81 (2H, t, J = 6.7 Hz)	1.7-1.9 (4H, m) 1.3-1.5 (8H, m) 0.93 (3H, t, J = 7.1 Hz) 0.93 (3H, t, J = 7.1 Hz) 1.580 1.523 1.275 1.225	KBr 3370 427 (M+H ⁺)(50) 2956 1624 277(100), C: 73.20% H: 8.96% N: 6.57% 分析値 C: 73.28% H: 9.37% N: 6.55%	C ₂₆ H ₃₈ N ₂ O ₃

表 90

实验例	构造式	融点	$^1\text{H NMR}$ (δ) ppm	$^{13}\text{C NMR}$ (δ) ppm	MS	元素分析
2-133		118.5~118.7°C	CDCl ₃ , 300MHz 7.34 (1H, d, $J=2.1$ Hz) 7.14 (1H, dd, $J=8.4, 2.1$ Hz) 7.11 (2H, d, $J=8.7$ Hz) 6.82 (1H, d, $J=8.4$ Hz) 6.71 (2H, d, $J=8.7$ Hz) 6.00 (1H, b)	1.3-1.5 (8H, m) 0.93 (3H, t, $J=7.1$ Hz) 0.93 (3H, t, $J=7.1$ Hz) 0.93 (3H, t, $J=7.1$ Hz)	KBr 3302 2956 [M+H ⁺](50), 277(100), 1630 1511 1269 1226	
2-134		無色結晶	CDCl ₃ , 300MHz 8.40 (1H, d, $J=8.4$ Hz) 7.90 (1H, s) 7.44 (1H, d, $J=1.8$ Hz) 6.80 (2H, d, $J=8.1$ Hz) 7.1 (2H, d, $J=8.1$ Hz) 7.07 (1H, d, $J=8.4$ Hz) 6.12 (1H, b)	1.64-1.9 (4H, m) 1.35-1.5 (6H, m) 0.96 (3H, t, $J=7.4$ Hz) 0.95 (3H, t, $J=6.9$ Hz)	FAB+ 427 [M ⁺ H ⁺](100) 290(65)	
2-135		無色結晶	CDCl ₃ , 300MHz 4.10 (2H, t, $J=6.6$ Hz) 3.66 (2H, q, $J=6.6$ Hz) 2.85 (2H, t, $J=7.1$ Hz) 2.42 (2H, t, $J=7.5$ Hz) 5.15 (1H, s)	0.94 (3H, t, $J=7.1$ Hz)	FAB+ 362 [M ⁺ H ⁺](60) 225(30)	

表 9 1

实施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析
2-136		177.9~178.2°C	CDCl ₃ , 300MHz 9.62(1H, bs) 9.15(1H, s) 8.43(1H, bs) 8.37(1H, bs) 8.24(1H, d, J=8.4 Hz) 7.45(1H, bs) 7.40(1H, d, J=8.4 Hz) 7.01(2H, d, J=8.1 Hz) 6.67(2H, d, J=8.1 Hz) 4.07(2H, t, J=6.6 Hz) 3.38(2H, q, J=8.1 Hz) 2.70(2H, t, J=7.1 Hz)	FAB+ 371 [M ⁺ H ⁺] (30) 238(20)		
2-137		179.0~179.8°C	DMSO-d ₆ , 300MHz 9.39(1H, bs) 9.33(1H, bs) 9.13(1H, bs) 8.45(1H, bs) 7.91(1H, bs) 7.67(1H, d, J=8.4 Hz) 7.59(1H, d, J=8.4 Hz) 7.0(2H, d, J=8.7 Hz) 6.67(2H, d, J=8.7 Hz) 3.38(2H, qq) 2.69(2H, t, J=7.4 Hz) 2.34(4H, t, J=7.4 Hz)	FAB+ 440 [M ⁺ H ⁺] (50) 356(70)		
2-138		126.9~127.6°C	CDCl ₃ , 300MHz 8.66(1H, s) 7.77(1H, bs) 7.69(1H, dd, J=2.2, 8.5 Hz) 7.08(2H, d, J=8.4 Hz) 6.92(1H, d, J=8.5 Hz) 7.68(2H, d, J=8.4 Hz) 6.37(1H, bs) 5.55(1H, s) 3.93(3H, s) 3.61(2H, q, J=6.7 Hz) 2.83(2H, t, J=7.1 Hz) 2.42(2H, t, J=7.5 Hz)	FAB+ 371 [M ⁺ H ⁺] (60) 234(100)		

表 9 2

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm		MS	元素分析
			CDCl ₃ , 300MHz	CDCl ₃ , 300MHz		
2-139		164.1~164.8 °C 無色結晶	8.64(1H, d, J=2.1 Hz) 7.80(1H, bs) 7.67(1H, dd, J=2.4, 9.0 Hz) 6.91(1H, d, J=9.0 Hz) 6.78(2H, d, J=8.4 Hz) 6.36(1H, br) 5.59(1H, bs) 4.08(2H, t, J=6.6 Hz) 3.61(2H, q, J=6.7 Hz) 2.83(2H, t, J=6.9 Hz) 2.42(2H, t, J=7.5 Hz)	1.68-1.92(4H, m) 1.35-1.52(6H, m) 0.97(3H, t, J=7.1 Hz) 0.95(3H, t, J=6.9 Hz)	FAB+ 427 [M+H] ⁺ (40) 195(100)	
2-140		130.3~131.4 °C 無色結晶	7.26(1H, d, J=1.8 Hz) 7.03-7.15(4H, m) 6.80(2H, d, J=8.4 Hz) 6.05(1H, bs) 4.81(1H, s) 4.06(2H, t, J=6.6 Hz) 3.66(2H, q, J=6.6 Hz) 2.89(2H, t, J=7.4 Hz) 2.86(2H, t, J=6.8 Hz) 1.63-1.8(4H, m) 1.3-1.55(8H, m) 0.94(3H, t, J=6.9 Hz)	0.90(3H, t, J=7.2Hz)	FAB+ 430 [M+H] ⁺ (100) 293(50)	
2-141		167.0~167.9 °C 淡赤色結晶	8.36(1H, t, J = 5.4 Hz) 7.41(1H, dd, J = 8.4, 2.1 Hz) 7.40(1H, d, J = 2.1 Hz) 7.00(2H, d, J = 8.4 Hz) 6.98(1H, d, J = 8.4 Hz) 6.66(2H, d, J = 8.4 Hz) 4.02(2H, t, J = 6.6 Hz) 3.78(3H, s) 3.37(2H, q, J = 6.6 Hz) 2.69(2H, t, J = 6.6 Hz) 2.58(2H, t, J = 6.6 Hz) 2.26(3H, s)	1.84(2H, qui, J = 6.6 Hz)	KBr 3325 1510 FAB+ 359(M+H) ⁺ (100).	C20H25NO5 理論値 C: 66.83% H: 7.01% N: 3.89% 分析値 C: 66.68% H: 7.10% N: 3.80%

表 9 3

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-142		169.0~170.0°C	DMSO- d_6 ,300MHz 8.36(1H, ^t ,J=5.4Hz) 7.41(1H,dd,J=8.4,2.1Hz) 7.40(1H,d,J=2.1Hz) 7.00(2H,d,J=8.4Hz) 6.98(1H,d,J=8.4Hz) 6.66(2H,d,J=8.4Hz) 4.02(2H,t,J=6.6Hz) 3.78(3H,s) 3.37(2H,q,J=6.6Hz) 2.69(2H,t,J=6.6Hz) 2.58(2H,t,J=6.6Hz) 2.26(3H,s)	KBr 3500 1635 1516	FAB+ 359(M+H ⁺)(100), C22H26N2O4	理論値 C: 67.01% H: 7.31% N: 7.81% 分析値 C: 62.45% H: 6.99% N: 7.23%
2-143		140.1°C	CDCl ₃ ,300MHz 7.62(1H,d,J=2.2Hz) 7.42(1H,dd,J=2.3,8.5Hz) 7.01(2H,d,J=8.3Hz) 6.79(1H,d,J=8.5Hz) 6.64(2H,d,J=8.3Hz) 5.98(1H,b)	FAB+ 373 [M ⁺ H ⁺](30) 237(50)	[M ⁺ H ⁺](30) 237(50)	
2-144		106.9~107.9°C	CDCl ₃ ,300MHz 8.19(2H,d,J=9.0Hz) 8.65(1H,d,J=2.1Hz) 7.44(1H,dd,J=2.1,8.4Hz) 7.41(2H,d,J=9.0Hz) 6.82(1H,d,J=8.4Hz) 6.05(1H,b)	FAB+ 403 [M ⁺ H ⁺](30) 307(20)	[M ⁺ H ⁺](30) 307(20)	

表 9 4

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
2-145		132.2~132.6°C 無色結晶	CDCl ₃ , 300MHz 7.75(1H, d, J=2.1 Hz) 7.60(1H, s) 7.59(1H, d, J=8.4 Hz) 7.38(1H, bs) 6.87(1H, s) 6.84(1H, d, J=8.4 Hz) 3.93(3H, s) 3.73(2H, q, J=6.0 Hz) 2.86-3.0(4H, m) 1.63-1.75(2H, m) 1.3-1.5(4H, m) 0.89(3H, t, J=7.2 Hz)		FAB+ 348 [M ⁺ H ⁺] (80) 237(30)	
2-146		106.4~107.2°C 無色結晶	CDCl ₃ , 300MHz 8.19(2H, d, J=9.0 Hz) 7.64(1H, d, J=2.4 Hz) 7.42(1H, dd, J=2.7, 8.7 Hz) 7.41(2H, d, J=9.0 Hz) 6.80(1H, d, J=8.7 Hz) 6.04(1H, br) 4.06(2H, t, J=6.5 Hz) 3.73(2H, q, J=6.6 Hz) 3.06(2H, t, J=6.9 Hz) 2.91(2H, t, J=7.4 Hz) 1.82-1.92(2H, m) 1.63-1.73(2H, m)		FAB+ 459 [M ⁺ H ⁺] (90) 293(40)	
2-147		133.2~134.1°C 無色結晶	CDCl ₃ , 300MHz 7.72(1H, d, J=2.2 Hz) 7.59(1H, s) 7.55(1H, dd, J=2.2, 8.5 Hz) 7.31(1H, bs) 6.85(1H, s) 6.80(1H, d, J=8.5 Hz) 4.04(2H, t, J=6.6 Hz) 3.71(2H, q, J=5.9 Hz) 2.92(2H, t, J=7.3 Hz) 2.90(2H, t, J=6.5 Hz) 1.78-1.88(2H, m) 1.62-1.73(2H, m)		FAB+ 404 [M ⁺ H ⁺] (100) 293(40)	

2 7 9
2 9 5

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm $^{-1}$	MS	元素分析
2-148			CDCl ₃ , 300MHz 0.95 (3H, t, J=7.00 Hz) 1.30 - 1.50 (4H, m) 1.79 (2H, q, J=7.12 Hz) 2.38 (2H, t, J=7.61 Hz) 2.84 (2H, t, J=7.67 Hz) 3.24 (3H, s) 3.92 (2H, t, J=6.59 Hz) 5.66 (1H, s) 6.58 - 6.63 (2H, m) 6.72 (2H, d, J=8.34 Hz) 6.85 (1H, dd, J=2.21, 8.41 Hz)	FAB+ 3287 (100) 342(M+H+) 2933 282(13) 2871 1633 1588 1516	C ₂₀ H ₂₅ NO ₃	
2-149		83.9~84.2°C	CDCl ₃ , 300MHz 0.92 (3H, t, J=7.5 Hz) 1.32 - 1.45 (4H, m) 1.76 (2H, q, J=7.5 Hz) 2.60 (2H, t, J=7.5 Hz) 2.96 (2H, t, J=7.5 Hz) 3.92 (2H, t, J=6.0 Hz) 5.42 (1H, br) 6.65 (1H, d, J=6.0 Hz) 6.75 (2H, d, J=6.0 Hz) 6.85 (1H, d, J=6.0 Hz) 7.07 (2H, d, J=6.0 Hz) 7.13-7.26 (1H, m)	FAB+ 3092 (100) 328(M+H+) 2935 (100) 2867 282(13) 1654 258(12) 1620 1597	C ₂₀ H ₂₅ NO ₃	
2-150		無色結晶				理論値 C: 73.37% H: 7.70% N: 4.28% 分析値 C: 73.22% H: 7.94% N: 4.30%

2 7 9

九 6

実施例	構造式	融点	1H NMR (δ) ppm	$\nu_{\text{cm}^{-1}}$	MS	元素分析
2-151		100.2~100.6°C 無色結晶	CDCl ₃ 300MHz 0.92 (3H, t, J=7.08 Hz) 1.30 - 1.50 (4H, m) 1.75-1.88 (2H, m) 2.35 (2H, t, J=7.61 Hz) 2.81 (2H, t, J=7.67 Hz) 3.21 (2H, s) 3.86 (3H, s) 3.92 (2H, t, J=6.83 Hz) 6.33 (1H, br) 6.52-6.56 (2H, m) 6.72 (2H, d, J=8.46 Hz) 6.80 (1H, d, J=8.34 Hz)	3272 2933 2870 1630 1593 1514	FAB+ C ₂₀ H ₂₃ NO ₃ 326(M+H ⁺) (100) 2954 1661 1603 1544	理論値 C: 73.82% H: 7.12% N: 4.30% 分析値 C: 73.16% H: 7.28% N: 4.53%
2-152		無色結晶	CDCl ₃ 300MHz 0.93 (3H, t, J=7.02 Hz) 1.27-1.48 (4H, m) 1.78 (2H, q, J=7.17 Hz) 3.97 (2H, t, J=6.59 Hz) 5.43 (1H, s) 6.39 (1H, d, J=15.43Hz) 6.68 (1H,dd, J=1.90, 7.81 Hz) 6.85 (2H, d, J=8.61 Hz) 6.96-7.04 (1H, m) 7.18-7.26 (2H, m) 7.41-7.45 (3H, m)	3302 2954 1661 180(29) 1544	FAB+ C ₂₀ H ₂₃ NO ₃ 340(M+H ⁺) (100) 2935 2871 1644 1581	理論値 C: 73.82% H: 7.12% N: 4.30% 分析値 C: 73.16% H: 7.28% N: 4.53%
2-153		無色結晶	CDCl ₃ 500MHz 0.91 (3H, t, J=7.3 Hz) 1.34-1.47 (4H, m) 1.79 (2H, q, J=7.0 Hz) 3.39 (3H, s) 3.96 (2H, t, J=6.5 Hz) 6.26 (1H, d, J=15.5 Hz) 6.36 (1H, br) 6.76-6.80 (4H, m) 6.89 (1H, d, J=8.5 Hz) 7.21 (2H, d, J=8.0 Hz) 7.31 (1H, t, J=6.3 Hz) 7.61 (1H, d, J=15.5 Hz)	3168 2935 2871 1644 1581	FAB+ C ₂₁ H ₂₅ NO ₃ 340(M+H ⁺) (100) 233(34) 193(17)	理論値 C: 74.31% H: 7.17% N: 4.13% 分析値 C: 74.54% H: 7.54% N: 6.82%

測 97

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
2-154		DMSO-d6,300MHz 177.7~178.0°C	0.89 (3H, t, J=7.5 Hz) 1.25-1.44 (4H, m) 1.72 (2H, q, J=6.0 Hz) 3.71 (3H, s) 3.90 (2H, t, J=7.5 Hz) 6.55 (1H, d, J=18.0 Hz) 6.81 (2H, d, J=6.0 Hz) 6.89 (1H, d, J=6.0 Hz) 7.16 (1H, d, J=6.0 Hz) 7.28-7.50 (4H, m) 9.88 (1H, s) 9.90 (1H, s)	FAB+ 3392 [M+H+] (58) 2956 314(100) 1654 209(69) 1605 1584 1510	C ₂₁ H ₂₅ NO ₄ C: 70.96% H: 7.09% N: 3.94% 分析値 C: 70.54% H: 7.04% N: 4.18%	
2-155		CDCl ₃ ,300MHz 169.1~169.4°C	0.89 (3H, t, J=7.5 Hz) 1.28-1.46 (4H, m) 1.81 (2H, q, J=5.3 Hz) 3.37 (3H, s) 3.91 (3H, s) 3.97 (2H, t, J=7.5 Hz) 6.23 (1H, d, J=15.0 Hz) 6.73-6.90 (5H, m) 7.19 (2H, d, J= 9.0 Hz) 7.60 (1H, d, J=15.0 Hz) 7.74 (1H, s)	FAB+ 3074 [M+H+] (74) 2933 223(46) 1642 147(100) 1578 1509	C ₂₂ H ₂₇ NO ₄ C: 71.52% H: 7.37% N: 3.79% 分析値 C: 71.32% H: 7.38% N: 3.70%	
2-156		CDCl ₃ ,300MHz 152.7~152.9°C	0.92 (3H, t, J=7.07 Hz) 1.31-1.42 (4H, m) 1.71 (2H, q, J=6.89 Hz) 3.46, (3H, s) 3.82 (2H, t, J=6.60 Hz) 6.53-6.75 (5H, m) 7.11-7.17 (3H, m) 7.45 (1H, s)	FAB+ 3127 [M+H+] (100) 2937 220(10) 1575 193(27) 1518	C ₂₃ H ₂₉ NO ₄ C: 72.82% H: 7.40% N: 4.34% 分析値 C: 72.15% H: 7.40% N: 4.44%	

表 9 8

実施例	構造式	融点	$^1\text{H NMR} (\delta) \text{ ppm}$	IRcm ⁻¹	MS	元素分析
2-157		125.8~126.1°C 無色結晶	CDCl ₃ 300MHz 0.91 (3H, t, J=7.5 Hz) 1.27-1.44 (4H, m) 1.82 (2H, q, J=7.5 Hz) 2.59 (2H, d, J=7.5 Hz) 2.97 (2H, d, J=7.5 Hz) 3.82 (3H, s) 3.98 (2H, t, J=7.5 Hz) 5.28 (1H, s) 6.73-6.78 (4H, m) 6.97 (1H, br) 7.08 (2H, d, J=7.5 Hz) 7.23 (1H, br)	3406 3240 3145 3085 2930 2865 1649 1613 1553 1512	FAB+ 358 [M+H+] (83) 357(100) 288(13) 209(23) 2865 1649 1613 1553 1512	C ₂₁ H ₂₇ NO ₄ 理論値 C: 70.56% H: 7.61% N: 3.92% 分析値 C: 70.57% H: 7.88% N: 3.96%
2-158		137.7~138.0°C 無色結晶	CDCl ₃ 500MHz 0.90 (3H, t, J=7.0 Hz) 1.30-1.43 (4H, m) 1.73 (2H, q, J=6.9 Hz) 3.73 (3H, s) 3.91 (2H, t, J=6.5 Hz) 6.84 (2H, d, J=7.5 Hz) 6.89 (1H, d, J=9.0 Hz) 7.29 (1H, d, J=9.0 Hz) 7.44 (1H, br) 7.83 (2H, d, J=7.5 Hz) 9.80 (1H, br) 10.05 (1H, br)	3314 3123 2957 2868 1643 1608 1585 1550 1514	FAB+ 364 [M+H+] (80) 329(100) 260(17) 209(36)	C ₁₉ H ₂₃ NO ₄ 理論値 C: 69.28% H: 7.04% N: 4.25% 分析値 C: 69.03% H: 7.14% N: 5.56%
2-159		138.7~138.9°C 無色結晶	CDCl ₃ 500MHz 0.91 (3H, t, J=7.0 Hz) 1.34-1.40 (4H, m) 1.67-1.74 (2H, m) 3.44 (3H, s) 3.78-3.95 (5H, m) 6.52-6.72 (5H, m) 7.13-7.16 (3H, m)	3154 2933 1615 1589 1571 1507	FAB+ 344[M+H+] (100) 343(99) 223(35)	C ₂₀ H ₂₅ NO ₄ 理論値 C: 69.95% H: 7.34% N: 4.08% 分析値 C: 69.09% H: 7.42% N: 5.73%

表 9 9

実施例	構造式	融点	^1H NMR (δ) ppm	^1H NMR (δ) ppm	MS	元素分析
2-160.	 CH_2OH OCH_3	257.1~ 258.2°C	CDCl ₃ , 300MHz 6.7-6.9 (7H, m) 4.70 (1H, bs) 3.94 (2H, t, J=6.8 Hz) 3.9-4.0 (2H, m) 3.80 (3H, s) 3.6-3.7 (2H, m) 3.4-3.5 (1H, m) 3.0-3.1 (2H, bs) 2.6-2.9 (2H, m) 1.7-1.8 (2H, m) 1.2-1.5 (4H, m) 0.88 (3H, t, J=7.0 Hz)	3288 2936 1515 1264 374 [M+H ⁺] (30) 330 (100)	Neat FAB+	C ₁₈ H ₂₁ NO ₃
2-161	 OCH_3	101.6~ 101.8°C	CDCl ₃ , 300MHz 0.98 (3H, t, J=6.98 Hz) 1.38-1.52 (4H, m) 1.83 (2H, q, J=6.68 Hz) 4.01 (2H, t, J= 6.51 Hz) 6.75 (1H, dd, J=2.21, 8.09 Hz) 6.93 (2H, d, J=8.61 Hz) 7.12 (1H, d, J=7.70 Hz) 7.28 (1H, t, J=8.04 Hz) 7.41-7.73 (2H, m) 7.76 (1H, d, J=8.54 Hz) 7.97 (1H, br)	3299 2938 2868 1640 1542 1508 2938 C: 72.22% H: 7.07% N: 4.68% 1640 C: 72.17% H: 7.15% N: 4.67%	無色結晶	理論値 C: 72.22% H: 7.07% N: 4.68% 分析値 C: 72.17% H: 7.15% N: 4.67%

附 100

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
3-1		102.1~102.3°C	CDCl ₃ , 300MHz 7.61(1H, d, J=15.9 Hz) 7.11(2H, d, J=8.5 Hz) 7.08(1H, dd, J=8.2, 1.9 Hz) 7.04(1H, d, J=1.9 Hz) 6.85(1H, d, J=8.2 Hz) 6.79(2H, d, J=8.5 Hz) 6.28 (1H, d, J=15.9 Hz) 5.20(1H, bs) 4.37(2H, t, J=7.1 Hz) 4.02(2H, t, J=6.9 Hz) 3.89(3H, s) 2.94(2H, t, J=7.1 Hz)	KBr 1.8-1.9(2H, m) 1.4-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	FAB+ 3449 [M ⁺ H ⁺] (80) 1514 [M ⁺ H ⁺] (80) 1260 384(100)	C ₂₁ H ₂₄ O ₃ 理論値 C: 71.85% H: 7.34%
3-2		104.1~104.3°C	CDCl ₃ , 300MHz 7.63(1H, dd, J=8.4, 2.0 Hz) 7.51(1H, d, J=2.0 Hz) 7.14(2H, d, J=8.5 Hz) 6.87(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.5 Hz) 6.50(1H, bs) 4.45(2H, t, J=7.0 Hz) 4.04(2H, t, J=6.9 Hz) 3.91(3H, s) 2.99(2H, t, J=6.9 Hz) 1.8-1.9(2H, m) 1.3-1.5(4H, m)	KBr 0.93(3H, t, J=7.0 Hz)	FAB+ 3377 [M ⁺ H ⁺] (30) 2941 [M ⁺ H ⁺] (30) 1687 [M ⁺ H ⁺] (90) 1273 238(90) 221(95)	C ₂₁ H ₂₄ O ₃ 理論値 C: 70.37% H: 7.31%
3-3		170.1~171.2°C	CDCl ₃ , 300MHz 8.1 (1H, d, J=9 Hz) 8.0 (1H, d, J=15 Hz) 7.4-8.0 (3H, m) 7.2 (1H, d, J=9 Hz) 7.2 (1H, s) 6.9 (1H, d, J=9 Hz) 6.6 (1H, d, J=15 Hz) 4.1 (2H, t, J=4 Hz) 4.0 (3H, s) 1.8-2.0 (2H, m) 1.4-1.6 (4H, m) 1.0 (3H, t, J=7.5 Hz)	KBr 3448 [M ⁺ H ⁺] (20) 2929 [M ⁺ H ⁺] (20) 1777 247(100) 1621 1595 1508 1260 1260 1083	FAB+ 382 [M ⁺ H ⁺] (20) 2929 [M ⁺ H ⁺] (20) 1777 247(100) 1621 1595 1508 1260 1260 1083	C ₂₉ H ₃₂ N ₃ O ₄ 理論値 C: 66.13% H: 6.08% N: 11.02% 分析値 C: 66.21% H: 6.09% N: 11.00%

表 101

实验例	构造式	熔点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
4-1		205.4~206.0 °C	DMSO-d ₆ ,300MHz 9.15(1H, s) 8.17-8.30(3H, m) 7.98(1H, d, J=15.6 Hz) 7.72(1H, t, J=6.98 Hz) 7.64(1H, t, J=6.98 Hz) 7.15(1H, s) 7.14(2H, d, J=8.94 Hz) 6.80(1H, d, J=15.6 Hz) 6.69(2H, d, J=8.94 Hz) 4.23(2H, t, J=6.39 Hz) 3.39(2H, q, J=6.56 Hz) 2.69(2H, t, J=7.35 Hz)	1.85-1.98(2H, m) 1.35-1.60(4H, m) 0.94(3H, t, J=7.13 Hz)	FAB+ 483 [M ⁺ H ⁺](55) 485(30) 482(100)	
4-2		148.2~148.8 °C	DMSO-d ₆ ,300MHz 8.49(2H, d, J=5.97 Hz) 8.20-8.34(3H, m) 8.00(1H, d, J=15.6 Hz) 7.74(1H, t, J=7.70 Hz) 7.65(1H, t, J=7.70 Hz) 7.29(2H, d, J=5.97 Hz) 7.15(1H, s) 6.79(1H, d, J=15.6 Hz) 4.23(2H, t, J=6.42 Hz) 3.50(2H, q, J=6.34 Hz) 2.85(2H, t, J=7.0 Hz) 1.85-1.98(2H, m)	1.35-1.60(4H, m) 0.94(3H, t, J=7.16 Hz)	FAB+ 468 [M ⁺ H ⁺](20) 469(40) 467(45)	
4-3		148.3~149.5 °C	CDCl ₃ ,300MHz 8.76-8.82(1H, m) 8.55(2H, dd, J=4.2, 1.2 Hz) 8.22-8.37(1H, m) 7.74(1H, d, J=15.3 Hz) 7.45-7.54(3H, m) 7.26(1H, s) 7.18(2H, d, J=6.0 Hz) 6.89(1H, s)	2.93(2H, t, J=6.9 Hz) 1.90-2.00 (2H, m) 1.39-1.70(4H, m) 0.97(3H, t, J=7.4 Hz)	FAB+ 389 [M ⁺ H ⁺](60) 307(30) 197(30)	

表 1 0 2

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
4-4		DMSO-d6,300MHz 9.15(1H, s) 8.06-8.14(2H, m) 7.84-7.90(1H, m) 175.5~ 176.1°C	1.83-1.95(2H, m) 1.35-1.58(4H, m) 0.93(3H, t, J=7.2 Hz) 7.61(1H, s) 7.47-7.56(4H, m) 7.09(1H, s) 7.02(2H, d, J=8.4 Hz) 6.74(1H, d, J=15.6 Hz) 6.67(2H, d, J=8.4 Hz) 4.22(2H, t, J=6.45 Hz) 3.38(2H, q, J=6.8 Hz) 2.66(2H, t, J=7.35 Hz)	FAB+ 404 (M+H ⁺)(60) 197(45)		

表 103

实施例	構造式	融点	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
5-1		CDCl ₃ , 300MHz	9.15(1H, s) 8.51(1H, s) 8.50(2H, d, J=4.66 Hz) 7.61(1H, d, J=9.02 Hz) 7.40(1H, d, J=9.02 Hz) 7.17(2H, d, J=4.66 Hz) 6.64-6.75(1H, m) 4.26(2H, t, J=7.01 Hz) 4.03(3H, s) 3.80(2H, q, J=6.51 Hz) 2.99(2H, t, J=6.85 Hz) 1.80-1.95(2H, m)	1.26-1.53(4H, m)	FAB+ 394 [M ⁺ H ⁺](100) 336(25)	
5-2		CDCl ₃ , 300MHz	8.25-8.30(1H, m) 7.76-7.83(1H, m) 7.61(1H, s) 7.47-7.58(2H, m) 7.19(1H, s) 7.13(2H, d, J=8.3 Hz) 6.81(2H, d, J=8.3 Hz) 6.20-6.35(1H, m) 5.23(1H, s) 4.18(2H, t, J=6.44 Hz) 3.72(2H, q, J=6.56 Hz) 2.90(2H, t, J=6.92 Hz)	1.85-2.00(2H, m) 1.35-1.62(4H, m) 0.96(3H, t, J=7.14 Hz)	FAB+ 378 [M ⁺ H ⁺](80) 257(35) 241(50)	
5-3		CDCl ₃ , 300MHz	8.55(1H, d, J=6.0 Hz) 8.22-8.31(1H, m) 7.77-7.83(1H, m) 7.63(1H, s) 7.50-7.57(2H, m) 7.21(1H, s) 7.20(2H, d, J=6.0 Hz) 6.30-6.45(1H, m) 4.19(2H, t, J=6.44 Hz) 3.78(2H, q, J=6.66 Hz) 3.00(2H, t, J=6.98 Hz) 1.89-2.00(2H, m)	1.37-1.60(4H, m) 0.96(3H, t, J=7.17 Hz)	FAB+ 363 [M ⁺ H ⁺](100) 305(15) 241(20)	

表 104

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
5-4		135.2~135.8°C	CDCl ₃ , 300MHz 8.28(1H, t, J=8.13 Hz) 8.25(1H, t, J=8.13 Hz) 7.64(1H, t, J=8.13 Hz) 7.55(1H, t, J=8.13 Hz) 7.15(2H, d, J=8.51 Hz) 6.80(1H, s) 6.78(2H, d, J=8.51 Hz) 5.92-6.03(1H, m) 4.89(1H, s) 4.11(2H, t, J=6.43 Hz) 3.76(2H, q, J=6.61 Hz) 2.93(2H, t, J=6.95 Hz)	1.85-1.99(2H, m) 1.37-1.59(4H, m) 0.88(3H, t, J=6.75 Hz)	FAB+ 457 [M ⁺ H ⁺](50) 458(90) 456(100)	
5-5		131.9~132.6°C	CDCl ₃ , 300MHz 8.54(2H, d, J=5.96 Hz) 8.28(1H, d, J=6.98 Hz) 8.23(1H, d, J=6.98 Hz) 7.65(1H, d, J=6.98 Hz) 7.55(1H, d, J=6.98 Hz) 7.23(2H, d, J=5.96 Hz) 6.80(1H, s) 6.02-6.16(1H, m) 4.11(2H, t, J= 6.42 Hz) 3.82(2H, q, J=6.71 Hz) 3.03(2H, t, J=7.03 Hz) 1.87-2.00(2H, m)	1.36-1.62(4H, m) 0.94(3H, t, J=7.16 Hz)	FAB+ 442 [M ⁺ H ⁺](40) 443(80) 441(100)	
5-6		141.2~142.6°C	DMSO-d6, 300MHz 9.13(1H, d, J=2.4 Hz) 8.62(1H, d, J=2.4 Hz) 7.78(1H, d, J=9.9 Hz) 7.60(1H, d, J=9.9 Hz) 7.1(2H, d, J=8.7 Hz) 6.73(2H, d, J=8.7 Hz) 4.18(2H, t, J=6.8 Hz) 4.04(3H, s)	0.94(3H, t, J=7.2 Hz)	FAB+ 409 [M ⁺ H ⁺](100) 339(50)	
						無色結晶
						3.60(2H, t, J=7.4 Hz) 2.86(2H, t, J=7.4 Hz) 1.77-1.9(2H, m) 1.3-1.5(4H, m)

表 105

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
5-7		109.8~110.6°C	CDCl ₃ , 300MHz 9.12(1H, d, J=2.1 Hz) 8.50(1H, d, J=2.1 Hz) 8.20(2H, d, J=9.0 Hz) 7.64(1H, d, J=9.0 Hz) 7.43(2H, d, J=9.0 Hz) 7.42(1H, d, J=9.0 Hz) 6.29(1H, br) 4.27(2H, t, J=6.9 Hz) 4.04(3H, s) 3.83(2H, q, J=6.7 Hz) 3.12(2H, t, J=7.1 Hz) 1.83-1.95(2H, m)	1.3-1.6(4H, m) 0.92(3H, t, J=7.2 Hz) [M ⁺ H ⁺] (30) 307(20)	FAB+ 438	
5-8		106.2~107.7°C	CDCl ₃ , 300MHz 9.11(1H, d, J=2.2 Hz) 8.51(1H, d, J=2.2 Hz) 7.65(1H, d, J=9.1 Hz) 7.42(1H, d, J=9.1 Hz) 7.07(2H, d, J=9.1 Hz) 6.70(2H, d, J=9.1 Hz) 6.22(1H, br) 4.29(2H, t, J=7.1 Hz) 4.05(3H, s) 3.75(2H, q, J=6.2 Hz) 3.65(2H, bs) 2.88(2H, t, J=6.6 Hz)	1.8-1.95(2H, m) 1.3-1.6(4H, m) 0.94(3H, t, J=7.1 Hz) [M ⁺ H ⁺] (70) 307(20)	FAB+ 408	
5-9		73.2~74.7°C	CDCl ₃ , 300MHz 9.34(1H, d, J=2.2 Hz) 8.67(1H, d, J=2.1 Hz) 8.30(1H, bs) 7.75(1H, s) 7.68(1H, d, J=9.1 Hz) 7.41(1H, d, J=9.1 Hz) 6.92(1H, s) 4.29(2H, t, J=7.1 Hz) 4.05(3H, s) 3.75-3.86(2H, m) 2.85-2.95(2H, m) 1.8-1.95(2H, m)	383 [M ⁺ H ⁺] (70) 307(20)	FAB+ 383	

表 106

実施例	構造式	融点	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
6-1		62.0~63.2°C	CDCl ₃ , 300MHz 7.51(1H, dd, J=8.4, 1.8 Hz) 7.46(1H, d, J=1.8 Hz) 6.85(1H, d, J=8.4 Hz) 4.07(2H, s) 4.05(2H, t, J=6.9 Hz) 3.89(3H, s) 1.8-2.0(2H, m) 1.3-1.5(4H, m) 1.37(6H, s) 0.93(3H, t, J=7.0 Hz)	Neat 2959 [M ⁺ H ⁺] (100) 1648 291(80) 1513 276(75)	FAB+ 292 [M ⁺ H ⁺] (100) 1648 C: 70.07 % 276(75) H: 8.65 % N: 4.81 % 分析值 C: 69.86 % H: 8.70 % N: 5.01 %	C ₁₇ H ₂₃ NO ₃
6-2			CDCl ₃ , 300MHz 7.50(1H, d, J=9.0 Hz) 6.89(1H, d, J=9.0 Hz) 6.2(1H, bs) 4.1(2H, s) 4.02(2H, t, J=7.5 Hz) 4.02(2H, t, J=4.5 Hz) 3.9(3H, s) 3.3(2H, t, J=4.5 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m) 1.4(6H, s) 0.93(3H, t, J=7.5 Hz)	Neat 3264 [M ⁺ H ⁺] (100) 2960 1640	FAB+ 336 [M ⁺ H ⁺] (100) HRFAB(m/z) C: 68.03 % 336.2189 H: 8.71 % N: 4.18 % 分析值 C ₁₉ H ₂₉ NO ₄ 336.4558 C: 67.66 % 分析值 336.2189 H: 9.01 % N: 4.28 %	C ₁₉ H ₂₉ NO ₄
6-3			CDCl ₃ , 300MHz 7.63(1H, dd, J=8.7 Hz) 6.90(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.02(2H, s) 4.00(2H, t, J=6.7 Hz) 3.88(3H, s) 1.6-1.8(2H, m) 1.37(2H, t, J=7.2 Hz) 1.32(6H, s) 1.3-1.5(4H, m) 0.92(3H, t, J=7.0 Hz)	Neat 2961 1737(12) 364 318(70) 176(30)	FAB+ 2961 [M ⁺ H ⁺] (100) 1737(12) 318(70) 176(30)	

表 107

实施例	構造式	融点	^1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
6-4		CDCl ₃ , 300MHz	7.59(1H, d, J=8.7 Hz) 6.84(1H, d, J=8.7 Hz) 6.66(1H, bs) 4.80(2H, s) 4.09(2H, s) 3.95(2H, t, J=6.7 Hz) 3.88(3H, s) 1.7-1.9(2H, m) 1.39(6H, s) 1.3-1.6(4H, m) 0.94(3H, t, J=7.1 Hz)	Neat 3300 2960 [M ⁺ H] ⁺ (100) 1635 1273 HRFAB(m/z) C ₂₅ H ₃₁ NO ₅ 322.4286 分析值 322.2027	FAB+	
6-5-1		CDCl ₃ , 300MHz	8.06-8.13(1H, m) 7.70(1H, dd, J=7.8, 1.7 Hz) 7.61(1H, dd, J=8.4, 1.9 Hz) 7.56(1H, d, J=1.9 Hz) 7.42(1H, d, J=7.8 Hz) 7.21-7.25(1H, m) 6.90(1H, d, J=8.4 Hz) 5.75(1H, dd, J=10.2, 7.2 Hz) 4.13(1H, dd, J=14.8, 7.2 Hz) 4.07(2H, t, J=6.9 Hz) 3.92(3H, s) 1.82-1.92(2H, m)	1.37-1.47(4H, m) 0.92(3H, t, J=7.1 Hz) 341 [M ⁺ H] ⁺ (100) 221 (60)	FAB+	
6-6				7.80(1H, d, J=2.0 Hz), 7.60(1H, dd, J=8.5, 2.0 Hz), 6.83(1H, d, J=8.5 Hz), 4.08(2H, s), 3.93(3H, s), 2.93(2H, t, J=7.3 Hz), 1.3-1.5(10H, m, involving a singlet at 1.37), 0.90(3H, t, J=7.2 Hz),	FAB+	308[M ⁺ H] ⁺ (100), 292(20).

表 108

实施例	構造式	融点	1H NMR (δ) ppm		IR cm^{-1}	MS	元素分析
			CDCl ₃ 300MHz	FAB+ 341[M+H] (100) 340(100)			
6-7		7.55(1H, d, J=8.1Hz) 7.44(1H, s) 7.37(1H, d, J=8.1Hz) 4.13(2H, s) 4.08(2H, t, J=6.6Hz) 1.80-1.93(2H, m) 1.33-1.60(4H, m) 1.38(6H, s) 0.94(3H, t, J=7.1Hz)					
6-8			CDCl ₃ 300MHz 7.48(1H, dd, J=8.4, 2.2 Hz) 7.45(2H, d, J=2.2 Hz) 6.85(1H, d, J=8.4 Hz) 4.07(2H, s) 4.0-4.1(4H, m) 1.7-1.9(4H, m) 1.37(6H, m) 1.3-1.6(8H, m) 0.93(3H, t, J=7.1 Hz) 0.93(3H, t, J=7.1 Hz)	Neat 2958 348[M+H] (100) 1648 1512			
6-9			CDCl ₃ 300MHz 7.60(1H, d, J=8.7 Hz) 6.88(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.01(2H, s) 3.9-4.1(4H, m) 1.6-2.0(4H, m) 1.38(3H, t, J=7.2 Hz) 1.32(6H, s) 1.3-1.5(8H, m) 0.8-1.0(6H, m)	Neat 2958 420[M+H] (100) 1739 1652 1276			

表 109

实施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析
6-10		CDCl ₃ , 300MHz 7.56(1H, d, J=8.7 Hz) 6.81(1H, d, J=8.7 Hz) 6.64(1H, bs) 4.80(2H, s) 4.07(2H, s) 4.00(2H, t, J=6.5 Hz) 3.95(2H, t, J=6.7 Hz) 1.7-1.9(4H, m) 1.3-1.5(8H, m) 1.38(6H, s)	CDCl ₃ , 300MHz 7.50(1H,d,J=8.1Hz) 7.36(1H,s) 7.08(1H,d,J=8.1Hz) 4.08(2H,t,J=6.5Hz) 4.08(2H,s) 2.43(3H,s) 1.80-1.90(2H,m) 1.35-1.50(4H,m) 1.37(6H,s) 0.93(3H,t,J=7.1 Hz)	Neat 3317 2957 [M $^+$ H $^+$] (100) 360(80) 1635 1301 1273 1010	FAB+ 378 2957 [M $^+$ H $^+$] (100) 360(80) 1635 1301 1273 1010	
6-11		无色油状	CDCl ₃ , 300MHz 7.50(1H,d,J=8.1Hz) 7.36(1H,s) 7.08(1H,d,J=8.1Hz) 4.08(2H,t,J=6.5Hz) 4.08(2H,s) 2.43(3H,s) 1.80-1.90(2H,m) 1.35-1.50(4H,m) 1.37(6H,s) 0.93(3H,t,J=7.2Hz)	CDCl ₃ , 300MHz 7.47(1H, d, J =8.1Hz), 7.36(1H, s), 7.16(1H, d, J =8.1Hz), 4.08(2H, s), 4.07(2H, t, J =6.5 Hz), 2.90(2H, t, J =7.4 Hz), 1.80-1.90(2H, m), 1.60-1.75(2H, m), 1.33-1.55(8H, m), 1.37(6H, s)	FAB+ 308[M+H $^+$] (100)	
6-12		淡黄色油状	CDCl ₃ , 300MHz 7.47(1H, d, J =8.1Hz), 7.36(1H, s), 7.16(1H, d, J =8.1Hz), 4.08(2H, s), 4.07(2H, t, J =6.5 Hz), 2.90(2H, t, J =7.4 Hz), 1.80-1.90(2H, m), 1.60-1.75(2H, m), 1.33-1.55(8H, m), 1.37(6H, s) 0.93(3H, t, J =6.9 Hz), 0.90(3H, t, J =6.9 Hz)	CDCl ₃ , 300MHz 7.47(1H, d, J =8.1Hz), 7.36(1H, s), 7.16(1H, d, J =8.1Hz), 4.08(2H, s), 4.07(2H, t, J =6.5 Hz), 2.90(2H, t, J =7.4 Hz), 1.80-1.90(2H, m), 1.60-1.75(2H, m), 1.33-1.55(8H, m), 1.37(6H, s) 0.93(3H, t, J =6.9 Hz), 0.90(3H, t, J =6.9 Hz)	FAB+ 364[M+H $^+$] (100)	

表 1 1 0

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
6-13	 <chem>CN(C)C(=O)c1ccc(cc1)Sc2ccccc2C</chem>	CDCl ₃ , 300MHz 7.78(1H, d, J = 2.4 Hz), 7.73(1H, dd, J = 8.4, 1.8 Hz), 6.81(1H, d, J = 8.4 Hz), 4.07(2H, s), 4.06(2H, t, J = 6.5 Hz), 2.92(2H, t, J = 7.4 Hz), 1.80-1.90(2H, m), 1.60-1.75(2H, m), 1.33-1.55(14H, m, involving a singlet at 1.37), 0.94(3H, t, J = 6.9 Hz), 0.90(3H, t, J = 6.9 Hz).		FAB+ 364[M+H ⁺] (100), 294(20),		

表 1 1 1

実施例	構造式	融点	¹ H NMR (δ) ppm DMSO-d6,300MHz	IRcm ⁻¹ KBr	MS FAB+ [M \cdot H $^+$] (20)	元素分析
7-1		108.2~109.2°C	9.19(1H, s) 8.26(1H, d, J=7.7 Hz) 8.13(1H, d, J=7.7 Hz) 8.03(1H, d, J=7.7 Hz) 6.99(1H, d, J=8.4 Hz) 6.68(2H, d, J=8.4 Hz) 3.72(2H, t, J=7.5 Hz) 2.78(2H, t, J=7.5 Hz)	3366 1777 1710	313 [M \cdot H $^+$] (20)	
7-2		210.0~211.0°C	9.16(1H, s) 7.39(1H, dd, J=7.0 Hz) 6.39(2H, d, J=8.4 Hz) 6.94(1H, d, J=8.3 Hz) 6.91(1H, d, J=8.3 Hz) 6.63(2H, d, J=8.4 Hz) 6.40(2H, bs) 3.65(2H, t, J=7.3 Hz) 2.75(2H, t, J=7.3 Hz)	3382 3254 2942 1744 1673	283 [M \cdot H $^+$] (40)	
7-3		119.0~120.2°C	CDCl ₃ ,300MHz 9.5(1H, s) 8.8(1H, d, J=6 Hz) 7.6(1H, t, J=6 Hz) 7.5(2H, d, J=6 Hz) 7.2(2H, d, J=9 Hz) 7.0(2H, d, J=9 Hz) 3.9(2H, t, J=7.5 Hz) 3.0(2H, t, J=7.5 Hz) 2.5(2H, t, J=7.5 Hz) 2.5(2H, t, J=7.5 Hz) 1.6-1.8(4H, m) 1.4-1.6(4H, m)	3479 3372 1739 1692 1633	451 [M \cdot H $^+$] (30) 367(20)	

表 112

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-4		DMSO-d ₆ ,300MHz 7.50(1H, d, J=8.0 Hz) 7.09(2H, d, J=8.3 Hz) 7.07(1H, d, J=8.0 Hz) 6.74(2H, d, J=8.3 Hz) 5.40(1H, bs) 4.26(2H, t, J=6.8 Hz) 3.92(3H, s) 3.83(2H, t, J=7.7 Hz) 2.89(2H, t, J=7.7 Hz) 1.7-1.9(2H, m) 1.3-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)	CDCl ₃ ,300MHz 7.52(1H, d, J=8.3 Hz) 7.06(2H, d, J=8.4 Hz) 6.75(1H, d, J=8.3 Hz) 6.75(2H, d, J=8.4 Hz) 6.40(1H, bs) 4.24(2H, s) 4.03(2H, t, J=6.7 Hz) 3.89(3H, s) 3.82(2H, t, J=7.2 Hz) 2.91(2H, t, J=7.2 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m)	KBr FAB+ 3129 2956 1659 1273	370 [M] ⁺ H ⁺ (100) 262(40)	C ₂₂ H ₂₁ NO ₄ 理論値 C: 71.52% H: 7.37% N: 3.79%
7-5		146.3~ 146.9°C	CDCl ₃ ,300MHz 7.61(1H, t, J=7.33 Hz) 7.38(1H, d, J=7.22 Hz) 7.16(1H, d, J=8.43 Hz) 7.11(2H, d, J=8.30 Hz) 6.75(2H, d, J=8.33 Hz) 4.5-4.8(1H, br) 4.16(2H, t, J=6.64 Hz) 3.84(2H, t, J=7.69 Hz) 2.90(2H, t, J=7.68 Hz) 1.84-1.92(2H, m) 1.35-1.52(4H, m) 0.94(3H, t, J=7.04 Hz)	KBr FAB+ 3129 2956 1659 1273	370 [M] ⁺ H ⁺ (100) 262(40)	C ₂₂ H ₂₁ NO ₄ 理論値 C: 71.50% H: 7.39% N: 3.87%
7-6		Neat	CDCl ₃ ,300MHz 7.61(1H, t, J=7.33 Hz) 7.38(1H, d, J=7.22 Hz) 7.16(1H, d, J=8.43 Hz) 7.11(2H, d, J=8.30 Hz) 6.75(2H, d, J=8.33 Hz) 4.5-4.8(1H, br) 4.16(2H, t, J=6.64 Hz) 3.84(2H, t, J=7.69 Hz) 2.90(2H, t, J=7.68 Hz) 1.84-1.92(2H, m) 1.35-1.52(4H, m) 0.94(3H, t, J=7.04 Hz)	3422 3021 2955 2871 1766 1704 1614 1516	C ₂₂ H ₂₁ NO ₄ 理論値 C: 71.52% H: 7.37% N: 3.79%	

表 1 1 3

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-7		161.3~161.6 °C	CDCl ₃ , 300MHz 7.39(1H, t, J=7.90 Hz) 7.04(2H, d, J=7.50 Hz) 6.89(1H, d, J=7.40 Hz) 6.85(1H, d, J=8.10 Hz) 6.80(2H, d, J=8.50 Hz) 4.14(2H, s) 4.07(2H, t, J=6.75 Hz) 3.76(2H, t, J=7.15 Hz) 2.87(2H, t, J=7.15 Hz) 1.88(2H, quin, J=7.15 Hz) 1.30-1.51(4H, m) 0.90(3H, t, J=7.15 Hz)	Neat 3163, 340, [M ⁺ H] ⁺ (100) 2868, 326(60) 1662, 270(18) 1612 1596	FAB+	C ₂₁ H ₃₁ NO ₂ , 理論値 C: 71.37% H: 6.56% N: 3.96% 分析値 C: 71.39% H: 6.62% N: 3.99%
7-8		107.8~108.1 °C	CDCl ₃ , 300MHz 7.26(1H, t, J=7.76 Hz) 7.07(2H, d, J=8.47 Hz) 6.79(1H, d, J=7.44 Hz) 6.69(1H, d, J=8.07 Hz) 6.67(2H, d, J=8.45 Hz) 4.02(4H, s) 3.97(2H, t, J=6.54 Hz) 2.80-3.00(4H, m) 1.70-1.85(2H, m) 1.30-1.45(4H, m) 0.93(3H, t, J=7.01 Hz)	Neat 3400, 326, [M ⁺ H] ⁺ (100) 2943, 2870, 218(62) 2806, 121(20)	FAB+	
7-9		114.7~115.1 °C	CDCl ₃ , 300MHz 7.69(1H, d, J=8.25 Hz) 7.26(1H, d, J=2.19 Hz) 7.05-1.12(3H, m) 6.73(2H, d, J=8.46 Hz) 5.83(1H, s) 4.03(2H, t, J=6.54 Hz) 3.85(2H, t, J=7.52 Hz) 2.89(2H, t, J=7.49 Hz) 1.73-1.84(2H, m) 1.32-1.47(4H, m) 0.93(3H, t, J=7.01 Hz)	Neat 3435, 354, [M ⁺ H] ⁺ (100) 2934, 1765, 289(16) 1696, 246(20) 1613, 1515	FAB+	C ₂₁ H ₃₁ NO ₄ , 理論値 C: 71.37% H: 6.56% N: 3.96% 分析値 C: 71.39% H: 6.62% N: 3.99%

表 114

实验例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	$^{13}\text{C NMR}$ (δ) ppm	MS	元素分析
7-10-1		138.5~138.8°C	CDCl ₃ , 300MHz 7.72(1H, d, J=8.42 Hz) 7.04(2H, dd, J=8.44, 2.17 Hz) 6.93(1H, dd, J=8.44, 2.17 Hz) 6.85(1H, d, J=1.73 Hz) 6.76(2H, d, J=6.48 Hz) 3.98(2H, t, J=6.53 Hz) 3.83(2H, t, J=7.09 Hz) 2.90(2H, t, J=7.07 Hz) 1.77-1.82(2H, m) 1.37-1.45(4H, m) 0.93(3H, t, J=7.06 Hz)	Neat FAB+ 3132 340 3012 [M ⁺ H ⁺] (100) 2953 324(28) 2867 232(33) 1738		
7-10-2		137.5~137.8°C	CDCl ₃ , 300MHz 7.31(1H, d, J=2.33 Hz) 7.24(1H, d, J=7.89 Hz) 7.03-7.08(3H, m) 6.76(2H, d, J=8.48 Hz) 6.24(1H, br.) 3.97(2H, t, J=6.59 Hz) 3.84(2H, t, J=7.19 Hz) 2.91(2H, t, J=7.16 Hz) 1.75-1.81(2H, m) 1.38-1.42(4H, m) 0.93(3H, t, J=7.03 Hz)	Neat FAB+ 3103 340 2934 [M ⁺ H ⁺] (100) 1654 324(25) 1618 232(32) 1594		
7-11		120.5~120.7°C	CDCl ₃ , 300MHz 7.04-7.09(3H, m) 6.64-6.75(4H, m) 3.90-3.95(6H, m) 2.80-2.97(4H, m) 1.74-1.79(2H, m) 1.36-1.44(4H, m) 0.93(3H, t, J=7.04 Hz)	Neat FAB+ 2941 326 2873 [M ⁺ H ⁺] (97) 2807 218(100) 1612 191(26) 1590 121(78)	C ₂₁ H ₂₂ NO ₂	理論值 C: 77.50% H: 8.36% N: 4.30% 分析值 C: 77.29% H: 8.56% N: 4.29%

1 1 5

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析	
7-13		CDCl ₃ , 300MHz	7.38(1H, d, J=8.4 Hz) 7.3-7.5(5H, m) 7.13(2H, d, J=8.6 Hz) 6.91(1H, d, J=8.4 Hz) 6.88(2H, d, J=8.6 Hz) 5.64(1H, d, J=9.8 Hz) 5.01(2H, s) 4.0-4.2(2H, m) 3.86(3H, s) 3.7-3.8(1H, m) 3.5-3.6(1H, m) 2.97(2H, d, J=9.8 Hz)	2.8-3.0(2H, m) 1.7-1.8(2H, m) 1.3-1.5 (4H, m) 0.92(3H, t, J=7.1 Hz)	Neat 3300 2933 [M $^{\bullet}$ H $^{\bullet}$](50) 1670 1268	FAB+ 476 458(60)	C ₂₀ H ₂₁ NO ₃ C: 73.24% H: 6.99% N: 2.95%
7-14		CDCl ₃ , 300MHz	7.53(1H, d, J=8.2 Hz) 7.3-7.5(5H, m) 7.15 (2H, d, J=8.6 Hz) 6.99(1H, d, J=8.2 Hz) 6.90(2H, d, J=8.6 Hz) 5.02(2H, s) 4.20(2H, s) 4.03(2H, d, J=6.7 Hz) 3.90(3H, s)	1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6.8 Hz)	FAB+ 460 [M $^{\bullet}$ H $^{\bullet}$](100) 262(50)		
7-17		CDCl ₃ , 300MHz	8.20(1H, d, J=9.1 Hz) 7.3-7.5(5H, m) 7.13 (1H, d, J=9.1 Hz) 6.90(2H, d, J=8.6 Hz) 6.77(1H, d, J=7.7 Hz) 6.65 (1H, d, J=7.7 Hz) 5.04(2H, s)	1.7-1.9(2H, m) 1.3-1.6(4H, m) 0.94(3H, t, J=7.1 Hz)	KBr 3438 2950 [M $^{\bullet}$ H $^{\bullet}$](100) 1652	FAB+ 472	C ₂₀ H ₂₁ NO ₃ C: 76.41% H: 7.05% N: 2.97%

表 116

实施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-18		CDCl ₃ , 300MHz 7.83(1H, d, J=8.5 Hz) 6.88(1H, d, J=8.5 Hz) 3.93(2H, t, J=6.6 Hz) 3.89(3H, s) 3.63(2H, t, J=7.4 Hz) 3.54(2H, t, J=6.6 Hz) 3.02(2H, t, J=6.6 Hz) 2.3-2.4 (4H, m) 2.1-2.2(2H, m) 1.5-1.9(5H, m) 1.3-1.5 (6H, m) 0.94(3H, t, J=7.2 Hz)	Neat 2954 1714 1644 1279	FAB+ 388[M+H+] (100)	C ₂₁ H ₂₇ NO ₄	理论值 C: 72.42% H: 7.13% N: 3.66% 分析值 C: 72.30% H: 7.21% N: 3.58%
7-19-1		130.3~ 131.1°C 7.08(1H, bs) 7.02(2H, d, J=8.2 Hz) 6.85(1H, d, J=7.5 Hz) 6.82(2H, d, J=8.2 Hz) 6.72(1H, d, J=7.5 Hz) 4.15(2H, t, J=7.5 Hz) 4.01(2H, t, J=6.7 Hz) 3.95(3H, s) 2.98(2H, t, J=7.5 Hz) 1.7-1.9(2H, m)	1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	Neat 3250 2959 1642 1586 1514 1283	FAB+ 381 [M+H ⁺](100) 261(40) 191(40)	C ₂₂ H ₂₇ NO ₄
7-19-2						

三 117

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-20		90.2~90.3°C	CDCl ₃ , 300MHz 8.51(2H, d, J=5.9 Hz) 8.19(1H, d, J=8.9 Hz) 7.14(1H, d, J=8.9 Hz) 7.14(2H, d, J=5.9 Hz) 6.76(1H, d, J=7.6 Hz) 6.67(1H, d, J=7.6 Hz) 4.19(2H, t, J=7.3 Hz) 4.01(2H, t, J=6.7 Hz) 3.97(3H, s) 3.09(2H, t, J=7.3 Hz) 1.7-1.9(2H, m) 1.3-1.5(4H, m)	Neat 3.478 2936. [M ⁺ H ⁺] (50) 1650 1625 1596 1484 1284	FAB+ 367 [M ⁺ H ⁺] (50) C ₂₂ H ₂₄ N ₂ O ₃ 理論値 C: 72.1% H: 7.15% N: 7.64% 分析値 C: 72.03% H: 7.25% N: 7.54%	C ₂₂ H ₂₄ N ₂ O ₃
7-22			CDCl ₃ , 300MHz 8.20(1H, d, J=8.9 Hz) 7.22(2H, d, J=8.5 Hz) 7.14(1H, d, J=8.9 Hz) 7.01(2H, d, J=8.5 Hz) 6.80(1H, d, J=7.6 Hz) 6.67(1H, d, J=7.6 Hz) 4.15(2H, t, J=7.5 Hz) 4.01(2H, t, J=6.7 Hz) 3.96(3H, s) 3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m)	KBr 3438 2957 [M ⁺ H ⁺] (50) 1762 1654 1627 1283	FAB+ 424 [M ⁺ H ⁺] (50) C ₂₂ H ₂₄ N ₂ O ₅ 理論値 C: 70.90% H: 6.90% N: 3.31% 分析値 C: 71.10% H: 6.99% N: 3.22%	C ₂₂ H ₂₄ N ₂ O ₅
7-23			CDCl ₃ , 300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.4 Hz) 6.87(1H, d, J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 3.38(2H, t, J=6.6 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)	KBr 2936 [M ⁺ H ⁺] (100) 1756 1646 276(50) 1219	FAB+ 426 [M ⁺ H ⁺] (100) C ₂₂ H ₂₄ N ₂ O ₅	

表 118

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-24		CDCl ₃ , 300MHz 143.6~144.4°C	7.82(1H, d, J=8.6 Hz) 7.08(2H, d, J=8.4 Hz) 6.85(1H, d, J=8.6 Hz) 6.79(2H, d, J=8.4 Hz) 6.35(1H, s) 3.90(2H, t, J=6.7 Hz) 3.87(3H, s) 3.73(2H, t, J=7.1 Hz) 3.39(2H, t, J=6.6 Hz) 2.90(2H, t, J=6.6 Hz) 2.86(2H, t, J=7.1 Hz) 1.6-1.8(2H, m)	1.3-1.5(4H, m) 0.92(3H, t, J=7.1 Hz)	FAB+ [M ⁺ H] ⁺ (100) 276(60) 264(40)	C ₂₁ H ₂₃ NO ₄ C: 72.04% H: 7.63% N: 3.65% 分析値 C: 72.04% H: 7.79% N: 3.55 %
7-25		CDCl ₃ , 300MHz 170.6~171.4°C	7.59(1H, s) 7.10(2H, d, J=8.5 Hz) 7.00(1H, bs) 6.77(2H, d, J=8.5 Hz) 6.58(1H, s) 4.02(2H, t, J=6.9 Hz) 3.88(3H, s) 3.73(2H, t, J=7.3 Hz) 3.39(2H, t, J=6.7 Hz) 2.87(2H, t, J=7.3 Hz) 2.77(2H, t, J=6.7 Hz) 1.8-1.9(2H, m)	1.3-1.5 (4H, m) 0.93(3H, t, J=7.1 Hz)	Neat FAB+ [M ⁺ H] ⁺ (40) 2934 2361 1600 1516 1280	C ₂₁ H ₂₃ NO ₄ C: 72.04% H: 7.62% N: 3.65% 分析値 C: 71.93% H: 7.65% N: 1113.62
7-26		CDCl ₃ , 300MHz	7.82(1H, s) 7.21(2H, d, J=8.5 Hz) 7.00(2H, d, J=8.5 Hz) 6.83(1H, s) 6.74(1H, d, J=7.3 Hz) 6.74(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.19(2H, t, J=7.3 Hz) 4.10(2H, t, J=6.9 Hz) 4.00(3H, s) 3.08(2H, t, J=7.3 Hz) 2.29(3H, s) 1.8-2.0(2H, m)	1.3-1.5(4H, m) 0.95(3H, t, J=7.1 Hz)	FAB+ [M ⁺ H] ⁺ (100) 424 261(70)	

表 119

実施例	構造式	融点	DMSO-d6,300MHz 1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-27		209.4~210.7°C	9.2(1H, bs) 7.6(1H, s) 7.2(1H, d, J=6 Hz) 7.1(1H, s) 7.0(2H, d, J=9 Hz) 6.6(2H, d, J=9 Hz) 6.4(1H, d, J=6 Hz) 4.0-4.1(2H, m) 4.0(2H, t, J=6 Hz) 3.9(3H, s) 2.8(2H, t, J=8 Hz) 2.8(2H, t, J=8 Hz) 1.7-1.8(2H, m)	1.3-1.5(4H, m) 0.90(3H, t, J=8 Hz)	KBr 3441 2953 1565 1516	FAB+ [M ⁺ H] ⁽¹⁰⁰⁾ 261(50)
7-28		147.2~148.3°C	9.2(1H, bs) 7.6(1H, s) 7.2(1H, d, J=6 Hz) 7.1(1H, s) 7.0(2H, d, J=9 Hz) 6.6(2H, d, J=9 Hz) 6.4(1H, d, J=6 Hz) 4.0-4.1(2H, m) 4.0(2H, t, J=6 Hz) 3.9(3H, s) 2.8(2H, t, J=8 Hz) 2.8(2H, t, J=8 Hz) 1.7-1.8(2H, m)	1.3-1.5(4H, m) 0.90(3H, t, J=8 Hz)	KBr 3441 2953 1565 1516	FAB+ [M ⁺ H] ⁽¹⁰⁰⁾ 261(50)
7-29		93.2~94.1°C	7.60(1H, s) 7.27(2H, d, J=8.5 Hz) 7.01(2H, d, J=8.5 Hz) 6.59(1H, s) 4.02(2H, t, J=6.9 Hz) 3.90(3H, s) 3.75(2H, t, J=7.3 Hz) 3.38(2H, t, J=6.7 Hz) 2.95(2H, t, J=7.3 Hz) 2.77(2H, t, J=6.7 Hz) 2.28(3H, s) 1.8-1.9(2H, m)	1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	Neat 426 276(55)	C ₁₃ H ₁₄ NO, [M ⁺ H] ⁽⁶⁰⁾ HRFAB(m/z) C ₁₃ H ₁₂ NO ₃ , 426, 5380 分析値 426, 2277 C: 70.57% H: 7.34% N: 3.29% C: 70.19% H: 7.36% N: 3.24%

表 120

実施例	構造式	融点	¹ H NMR (δ) ppm	[IRcm ⁻¹	MS	元素分析
7-30		96.2-96.7°C	CDCl ₃ , 300MHz 8.15(2H, d, J=8.7 Hz) 7.49(1H, d, J=8.3 Hz) 7.42(2H, d, J=7.7 Hz), 6.99(1H, d, J=8.3 Hz) 4.22(2H, t, J=6.7 Hz) 4.06(2H, t, J=6.7 Hz) 4.04(2H, t, J=6.5 Hz) 3.88(2H, t, J=7.2 Hz) 3.11(2H, t, J=7.2 Hz) 1.8-1.9(2H, m) 1.7-1.8(2H, m) 1.3-1.5(8H, m)	KBr 0.94(3H, t, J=7.1 Hz) 0.93(3H, t, J=7.1 Hz) 15.16 [M+H ⁺] 1344 (100), 318 (100)	FAB+ 2933 455 1687 C26H34N2O5	理論値 C: 68.70% H: 7.54% N: 6.16% 分析値 C: 68.92% H: 7.54% N: 6.05%
7-31		115.0~116.5°C	CDCl ₃ , 300MHz 7.27(1H, d, J=8.2 Hz) 7.10(2H, d, J=8.4 Hz) 6.84(1H, d, J=8.2 Hz) 6.69(2H, d, J=8.4 Hz) 5.38(2H, s) 3.88(3H, s) 3.70(2H, t, J=7.7 Hz) 3.14(2H, t, J=7.1 Hz) 2.89(2H, t, J=7.7 Hz) 1.5-1.63(2H, m) 1.3-1.4(4H, m) 0.91(3H, t, J=8.0 Hz)	KBr 7.04(2H, d, J=8.4 Hz) 7.00(1H, d, J=8.4 Hz) 6.76(2H, d, J=8.1 Hz) 4.13(2H, t, J=6.6 Hz) 4.07(2H, t, J=7.4 Hz) 3.93(3H, s) 2.97(2H, t, J=7.4 Hz) 1.65-1.8(2H, m) 1.3-1.5(4H, m) 0.94(3H, t, J=7.1 Hz)	FAB+ 2932 369 1676 [M ⁺ H ⁺] 1515 (100), 1261 (50)	C21H25NO4S
7-32		110.0~111.0°C	CDCl ₃ , 300MHz 7.71(1H, d, J=8.4 Hz) 7.39(1H, bs) 7.05(2H, d, J=8.1 Hz) 7.00(1H, d, J=8.4 Hz) 6.76(2H, d, J=8.1 Hz) 4.13(2H, t, J=6.6 Hz) 4.07(2H, t, J=7.4 Hz) 3.93(3H, s) 2.97(2H, t, J=7.4 Hz) 1.65-1.8(2H, m) 1.3-1.5(4H, m) 0.94(3H, t, J=7.1 Hz)	FAB+ 388[M+H ⁺] (100), 267(50)	C21H25NO4S	

1 2 1

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm $^{-1}$	MS	元素分析	
7-33		CDCl ₃ , 300MHz	8.12(2H, d, J=8.6 Hz) 7.90(1H, d, J=8.6 Hz) 7.31(1H, d, J=8.2 Hz) 6.89(1H, d, J=8.2 Hz) 5.69(2H, d, J=9.6 Hz) 4.04-2(2H, m) 3.98(2H, t, J=6.5 Hz) 3.7-3.9(1H, m) 3.6-3.8(1H, m) 3.2-3.3(1H, m) 3.08(2H, q, J=7.0 Hz) 1.7-1.9(4H, m)	1.3-1.5(8H, m) 0.9-1.0(6H, m)	Neat FAB+ 3300 2960 1673 1520 1345 1269	[M+H+](20), 453(60), 165(100),	
7-34		CDCl ₃ , 300MHz	7.46(1H, d, J=8.2 Hz) 7.02(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.2 Hz) 6.61(2H, d, J=8.3 Hz) 4.20 (2H, s)	1.3-1.6(8H, m) 0.94(3H, t, J=7.0 Hz) 0.94(3H, t, J=7.0 Hz)	Neat FAB+ 3346 2931 1681 1620 1272	[M+H+](65), 120(100)	C26H36N2O3· C; 73.55% H; 8.55% N; 6.60%
7-35		DMSO-d ₆ , 300MHz	10.19 (3H, bs) 7.34 (1H, d, J = 8.4 Hz) 7.28 (2H, d, J = 8.4 Hz) 7.26 (2H, d, J = 8.4 Hz) 7.06 (1H, d, J = 8.4 Hz) 4.40 (2H, s) 4.03 (4H, t, J = 6.6 Hz) 3.70 (2H, t, J = 7.2 Hz) 2.93 (2H, t, J = 7.2 Hz) 1.6-1.8 (4H, m) 1.2-1.5 (8H, m) 0.89 (6H, t, J = 7.2 Hz)	KBr FAB+ 425[M+H+] (100)	C26H36N2O3· HCl C; 50.00% H; 10.00% N; 5.00%		

表 1 2 2

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
7-36		CDCl ₃ , 300MHz	8.15(2H, d, J=8.4 Hz) 7.52(1H, d, J=8.4 Hz) 7.41(2H, d, J=8.4 Hz), 7.00(1H, d, J=8.4 Hz) 4.23(2H, s), 4.04(2H, t, J=6.6 Hz) 3.90(3H, s) 3.88(2H, t, J=7.5 Hz) 3.11(2H, t, J=7.5 Hz) 1.7-1.8(2H, m) 1.3-1.5(8H, m) 0.92(3H, t, J=6.9 Hz)		FAB+	399[M+H ⁺] (100), 262(80)
7-37		64-67°C	7.52 (1H, d, J = 8.4 Hz) 7.02 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.61 (2H, d, J = 8.4 Hz) 4.20 (2H, s) 4.02 (2H, t, J = 6.6 Hz) 3.90 (3H, s) 3.76 (2H, t, J = 6.9 Hz) 3.30 (2H, bs) 2.86 (1H, d, J = 6.9 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	KBr 3.348 2.931 1.682 1.621 1.518 1.272	FAB+	3.69[M+H ⁺] (100)
7-38		CDCl ₃ , 300MHz C(decs.)	10.46 (3H, bs) 7.71 (1H, d, J = 8.4 Hz) 7.49 (2H, d, J = 8.4 Hz) 7.26 (2H, d, J = 8.4 Hz) 6.82 (1H, d, J = 6.0 Hz) 3.89 (2H, d, J = 6.6 Hz) 3.85 (3H, s) 3.71 (2H, t, J = 7.5 Hz) 3.44 (2H, t, J = 6.0 Hz) 2.92 (4H, qu, J = 6.6 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	0.91 (3H, t, J = 6.9 Hz) FAB+ 383 [M+H ⁺]C ₅₀ , 120 (100),		

表 1 2 3

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm $^{-1}$	MS	元素分析	
7-39		DMSO-d6,300MHz 10.7(1H,s) 8.14(2H,d,J=8.4Hz) 7.66(1H,d,J=8.7Hz) 7.50(2H,d,J=8.4Hz) 6.97(1H,d,J=8.7Hz) 4.15(2H,t,J=7.4Hz) 3.91(2H,t,J=6.9Hz) 3.88(3H,s) 3.03(2H,t,J=7.1Hz) 1.70-1.80(2H,m) 1.30-1.45(4H,m) 0.88(3H,t,J=7.1Hz)			FAB+ KBr 8.05(1H,s) 7.83(1H,d,J=9.0Hz) 7.12(2H,d,J=7.8Hz) 6.80(1H,d,J=9.0Hz) 6.64(2H,d,J=7.8Hz) 4.18(2H,t,J=8.0Hz) 4.08(2H,t,J=7.1Hz) 3.95(3H,s) 3.58(2H,bs)	2954 398 [M+H+] (30) 1708 1654 1618 2954 1708 1654 1618	
7-40		DMSO-d6,300MHz 154.9~ 155.7°C			FAB+ KBr 2.86(2H,t,J=8.1Hz) 1.73-1.85(2H,m) 1.30-1.50(4H,m)	2953 396(20) C22H28ClN3O4 2542 326(20) 1705 1665 1621 1412	
7-41		DMSO-d6,300MHz 10.73(1H,s) 10.17(2H,bs) 7.66(1H,d,J=8.7Hz) 7.32(2H,d,J=8.7Hz) 7.28(2H,d,J=8.7Hz) 6.96(1H,d,J=8.7Hz) (decomp) 4.08(2H,t,J=7.5Hz) 3.91(2H,t,J=7.4Hz) 3.88(3H,s) 3.44(2H,bs) 2.88(2H,t,J=7.5Hz) 1.66-1.80(2H,m)			FAB- KBr 1.25-1.45(4H,m) 0.881(3H,t,J=7.2Hz)	396(20) C22H28ClN3O4 2542 326(20) 1705 1665 1621 1412 C; 60.89% H; 6.50% N; 9.68% 分析値 C; 60.95% H; 6.56% N; 9.63%	

表 12·4

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
7-42		161.0~164.0°C	DMSO-d ₆ ,300MHz 9.43(1H,s) 7.46(1H,d,J=9.0Hz) 6.97(2H,d,J=9.0Hz) 6.88(3H,t,J=6.9Hz) 4.87(2H,s) 3.90(2H,t,J=6.6Hz) 3.84(3H,s) 3.78(2H,bs) 3.62(2H,t,J=7.7Hz) 2.64(2H,t,J=7.7Hz) 1.60-1.75(2H,m)	1.25-1.45(4H,m) 0.88(3H,t,J=6.9Hz)	KBr 3455 3360 2935 1694 1634 1465 1290	FAB+ [M+H ⁺] (50)	C23H29N3O4
7-43							
7-44							

表 125

实验例	構造式	融点	1H NMR (δ) ppm	^{13}C NMR (δ) ppm	MS	元素分析
7-45		DMSO-d6,300MHz 10.81(1H,s) 8.78(2H,d,J=6.5Hz) 7.89(2H,d,J=6.5Hz) 7.65(1H,d,J=8.9Hz) 6.98(1H,d,J=8.9Hz) 4.24(2H,t,J=6.9Hz) 3.91(2H,t,J=6.2Hz) 3.89(3H,s) 3.18(2H,t,J=6.9Hz) 1.70-1.80(2H,m) 0.89(3H,t,J=7.04Hz)	KBr 2933 1714 1672 1616 1370 1296	FAB+ 384[M+H ⁺] (100) 238(20)	C21H25N3O4	
7-46		CDCl3,300MHz 9.51(1H,s) 8.54(2H,d,J=6.0Hz) 7.82(1H,d,J=9.0Hz) 7.32(2H,d,J=6.0Hz) 6.91(1H,d,J=9.0Hz) 4.71(2H,t,J=8.3Hz) 4.14(2H,t,J=7.1Hz) 3.97(3H,s) 3.10(2H,t,J=8.1Hz) 1.75-1.90(2H,m) 1.30-1.50(4H,m) 0.96(3H,t,J=7.1Hz)	KBr 3415 2952 2363 1687 1620 1488 1144 1094	FAB+ 400 [M+H ⁺](20)	C21H25N3O3S	
7-47		CDCl3,300MHz 8.54(2H,d,J=5.9Hz) 8.08(1H,d,J=9.0Hz) 7.75(1H,s) 7.18(1H,d,J=9.0Hz) 7.14(2H,d,J=5.9Hz) 4.21(2H,t,J=7.2Hz) 4.14(2H,t,J=7.0Hz) 3.99(3H,s) 3.12(2H,t,J=7.3Hz) 1.75-1.90(2H,m) 1.30-1.50(4H,m) 0.92(3H,t,J=7.1Hz)	KBr 3415 2952 2363 1687 1620 1488 1144 1094	FAB+ 400 [M+H ⁺](20)	C21H25N3O4	

表 126

实施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-48			DMSO-d6,300MHz 8.79(2H,d,J=6.0Hz) 7.95(2H,d,J=6.0Hz) 7.76(1H,d,J=8.7Hz) 7.18(1H,d,J=8.7Hz) 4.18(2H,J,J=6.9Hz) 3.91(2H,J,J=7.7Hz) 3.91(2H,s) 3.88(3H,s) 3.14(2H,J,J=6.8Hz) 1.60-1.78(2H,m) 1.25-1.50(4H,m) 0.90(3H,J,J=7.1Hz)	KBr 3436 2389 1655 1630 1285 1087	C22H27ClN2O3	理論値 C: 65.58% H: 6.75% N: 6.95% 分析値 C: 65.34% H: 6.89% N: 6.98%
7-49		152.8~ 153.3℃	DMSO-d6,300MHz 8.81(2H,d,J=6.0Hz) 7.95(1H,d,J=9.0Hz) 7.92(2H,d,J=6.0Hz) 7.38(1H,d,J=7.5Hz) 7.30(1H,d,J=9.0Hz) 6.61(1H,d,J=7.5Hz) 4.30(2H,J,J=6.9Hz) 3.95(2H,J,J=6.6Hz) 3.91(3H,J) 3.31(2H,J,J=7.2Hz) 1.65-1.77(2H,m) 1.28-1.49(4H,m)	KBr 3436 2389 1655 1630 1285 1087		
7-50						

表 127

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm^{-1}	MS	元素分析
7-51		DMSO- d_6 , 200MHz 6.77-6.93(4H, m) 6.51(2H, d, $J=8.4$ Hz) 4.52(2H, s) 4.51(2H, bs) 3.88(2H, t, $J=6.5$ Hz) 3.75(3H, s) 3.63(2H, t, $J=6.0$ Hz) 3.56(2H, s) 2.68(2H, t, $J=5.9$ Hz) 1.60-1.73(2H, m) 1.30-1.50(4H, m) 0.89(3H, t, $J=7.2$ Hz)	FAB+ [M+H+] (80) 289(50)	C23H30N2O3		
7-52		無色油状	CDCl ₃ , 300MHz 7.61(1H, t, $J=7.83$ Hz) 7.38(1H, d, $J=7.22$ Hz) 7.16(1H, d, $J=8.43$ Hz) 7.11(2H, d, $J=8.30$ Hz) 6.75(2H, d, $J=8.33$ Hz) 4.5-4.8(1H, br) 4.16(2H, t, $J=6.64$ Hz) 3.84(2H, t, $J=7.69$ Hz) 2.90 (2H, t, $J=7.68$ Hz) 1.84-1.92(2H, m) 1.35-1.52(4H, m) 0.94(3H, t, $J=7.04$ Hz)	Neat	3422 3021 2955 2871 1766 1704 1614 1516	

表 128

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-54		淡黄色结晶	CDCl ₃ , 300MHz 8.12(2H, d, J=8.7 Hz) 7.39(2H, d, J=8.7 Hz) 7.33(1H, d, J=8.1 Hz) 6.90(1H, d, J=8.1 Hz) 5.69(2H, d, J=9.4 Hz) 4.0-4.2(2H, m) 3.85(3H, s) 3.7-3.9(1H, m) 3.6-3.7(1H, m) 3.15(1H, d, J=9.4 Hz) 3.08(2H, q, J=6.6 Hz) 1.7-1.8(2H, m)	1.2-1.5(4H, m) 0.92(3H, t, J=6.9 Hz)	FAB+ 415 (M+H ⁺)(60), 397(80), 179(100).	
7-55		無色结晶	CDCl ₃ , 300MHz 7.37(1H, d, J=8.4 Hz) 7.11(1H, dd, J=5.1, 1.2 Hz) 6.92(1H, d, J=8.4 Hz) 6.89(1H, dd, J=5.1, 3.3 Hz) 6.83(1H, dd, J=3.3, 1.2 Hz) 5.65(1H, d, J=9.9 Hz) 4.0-4.1(2H, m) 3.87(3H, s) 3.80(1H, q, J=6.9 Hz) 3.61(1H, qui, J=6.9 Hz) 3.47(1H, d, J=4.5 Hz) 3.17(2H, t, J=7.2 Hz)	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.2 Hz)	KBr 3312 (M+H ⁺)(50), 1672 358(100), 1267	FAB+ 376
7-56		無色结晶	CDCl ₃ , 300MHz 7.40(1H, d, J=8.1 Hz) 7.12(1H, d, J=8.1 Hz) 7.07(2H, d, J=8.1 Hz) 6.94(1H, d, J=8.1 Hz) 5.61(1H, d, J=9.5 Hz) 4.0-4.2(2H, m) 3.87(3H, s) 3.80(1H, q, J=6.9 Hz) 3.60(2H, q, J=6.9 Hz) 2.93(2H, t, J=7.2 Hz) 2.68(1H, d, J=9.8 Hz) 2.30(3H, s)	1.7-1.8(2H, m) 1.2-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)	FAB+ 384(M+H ⁺) (100), 366(100).	

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IR cm^{-1}	MS	元素分析	
7-57		57.4-58.5 °C	CDCl ₃ , 300MHz 7.52 (1H, d, $J=8.1$ Hz) 7.13 (2H, d, $J=8.1$ Hz) 7.08 (2H, d, $J=8.1$ Hz) 6.98 (1H, d, $J=8.1$ Hz) 4.17 (2H, s) 4.01 (2H, t, $J=6.9$ Hz) 3.90 (3H, s) 3.80 (2H, t, $J=7.2$ Hz) 2.99 (2H, t, $J=7.2$ Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, $J=7.2$ Hz)		FAB+ 368[M+H ⁺] (100)		
7-58					Neat 3500 2956 1769 1274	FAB+ 416 [M ⁺ H ⁺] (10) 398(100)	
7-59		108.2-108.4 °C	CDCl ₃ , 300MHz 7.3-7.5 (5H, m) 7.39 (1H, d, $J=8.6$ Hz) 7.14 (2H, d, $J=8.6$ Hz) 6.91 (1H, d, $J=8.6$ Hz) 6.88 (2H, d, $J=8.6$ Hz) 5.65 (1H, d, $J=9.8$ Hz) 5.02 (2H, s) 4.0-4.2 (2H, m) 3.99 (2H, t, $J=6.5$ Hz) 3.7-3.9 (1H, m) 3.5-3.6 (1H, m) 2.91 (2H, t, $J=6.8$ Hz)		KBr 3252 2951 1659 1271	$\text{C}_{21}\text{H}_{24}\text{NO}_3$, [M ⁺ H ⁺] (20) 514(80) 165(100)	理論値 C: 74.55% H: 7.77% N: 2.63% 分析値 C: 74.82% H: 7.77% N: 2.67%

表 130

实施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	MS	元素分析
7-60		CDCl ₃ , 300MHz 114.2~114.6°C	7.61(1H, s) 7.45(1H, d, J=8.3 Hz) 6.97(1H, d, J=8.3 Hz) 6.86(1H, s) 4.60(1H, bs) 4.31(2H, s) 4.07(2H, t, J=6.6 Hz) 4.04(2H, t, J=6.5 Hz) 3.91(2H, t, J=6.8 Hz) 3.04(2H, t, J=6.8 Hz) 1.8-1.9(2H, m) 1.7-1.8(2H, m)	IRcm ⁻¹ Neat FAB+ 3238 400 2926 [M ⁺ H ⁺](100) 1660 1464 1268	C ₃₃ H ₄₁ NO ₄ 理論値 C: 76.86% H: 8.01% N: 2.72% 分析値 C: 76.26% H: 8.17% N: 2.43%
7-61		CDCl ₃ , 300MHz	7.50(1H, d, J=8.2 Hz) 7.3-7.5(5H, m) 7.16(2H, d, J=8.6 Hz) 6.97(1H, d, J=8.2 Hz) 6.90(2H, d, J=8.6 Hz) 5.03(2H, s) 4.19(2H, s) 4.05(2H, t, J=6.6 Hz) 4.04(2H, t, J=6.5 Hz) 3.80(2H, t, J=7.6 Hz) 2.93(2H, t, J=7.6 Hz) 1.8-1.9(2H, m)	IRcm ⁻¹ Neat FAB+ 2931 516 1687 [M ⁺ H ⁺](100) 1618 318(50). 1511 1271	C ₃₃ H ₄₁ NO ₄ 理論値 C: 76.86% H: 8.01% N: 2.72% 分析値 C: 76.26% H: 8.17% N: 2.43%
7-62		CDCl ₃ , 300MHz 122.2~122.6°C	7.49(1H, d, J=8.3 Hz) 7.06(2H, d, J=8.5 Hz) 6.95(1H, d, J=8.3 Hz) 6.75(2H, d, J=8.5 Hz) 6.72(1H, bs) 4.24(2H, s) 4.06(2H, t, J=6.7 Hz) 4.02(2H, t, J=6.5 Hz) 3.83(2H, t, J=7.2 Hz) 2.91(2H, t, J=7.2 Hz) 1.8-1.9(2H, m) 1.7-1.8(2H, m)	IRcm ⁻¹ KBr 3156 426 2932 [M ⁺ H ⁺](100) 1657 1464 1273	C ₃₃ H ₄₁ NO ₄ 理論値 C: 73.38% H: 8.22% N: 3.29% 分析値 C: 73.60% H: 8.30% N: 3.29%

表 1 3.1

実施例	構造式	融点	¹ H NMR (δ) ppm	¹³ C NMR (ppm)	MS	元素分析
7-63		78.3~78.6°C	CDCl ₃ ,300MHz 7.08 (2H, d, J = 8.5 Hz) 6.82 (1H, d, J = 8.1 Hz) 6.75 (1H, d, J = 8.1 Hz) 6.68 (2H, d, J = 8.5 Hz) 3.94-4.1 (8H, m) 2.9-3.0 (2H, m) 2.9-2.9 (2H, m) 1.7-1.9 (4H, m) 1.3-1.5 (8H, m) 0.93 (3H, t, J = 7.0 Hz) 0.92 (3H, t, J = 7.0 Hz)	KBr 3500 2932 (100) 1613 1515 1490 1263	FAB+ 412[M+H ⁺] (100)	
7-64		91.7~92.0°C	CDCl ₃ ,300MHz 7.50 (1H, d, J = 8.2 Hz) 7.06 (2H, d, J = 8.4 Hz) 6.97 (1H, d, J = 8.2 Hz) 6.54 (2H, d, J = 8.4 Hz) 4.19 (2H, s) 4.05 (2H, t, J = 6.6 Hz) 4.04 (2H, t, J = 6.6 Hz) 3.76 (2H, t, J = 7.1 Hz) 3.60 (1H, bs) 2.86 (2H, t, J = 7.1 Hz) 2.81 (3H, s) 1.8-1.9 (2H, m)	C27H38N2O3 1.6-1.8 (2H, m) 1.3-1.5 (8H, m) 0.94 (3H, t, J = 7.1 Hz) 0.93 (3H, t, J = 7.1 Hz)	FAB+ 439[M+H ⁺] (100)	C: 73.94% H: 8.73% N: 6.39% 理論値 分析値 C: 73.89% H: 9.10% N: 6.41%
7-65		無色油状	CDCl ₃ ,300MHz 7.50 (1H, d, J = 8.2 Hz) 7.10 (2H, d, J = 8.7 Hz) 6.98 (1H, d, J = 8.2 Hz) 6.68 (2H, d, J = 8.7 Hz) 4.20 (2H, s) 4.03 (4H, t, J = 6.6 Hz) 3.78 (2H, t, J = 7.1 Hz) 2.90 (6H, s)	Neat 0.94 (3H, t, J = 7.0 Hz) 0.93 (3H, t, J = 7.0 Hz)	FAB+ 453[M+H ⁺] (100)	

表 132

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
7-66		CDCl ₃ 300MHz 8.51 (2H, d, J = 6.0 Hz) 7.53 (1H, d, J = 8.4 Hz) 7.19 (2H, d, J = 6.0 Hz) 7.00 (1H, d, J = 8.4 Hz) 4.23 (2H, s) 4.04 (2H, t, J = 6.6 Hz) 3.91 (3H, s) 3.87 (2H, t, J = 7.2 Hz) 3.00 (2H, t, J = 7.2 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	0.94 (3H, t, J = 7.1 Hz)	FAB+ 355(M+H ⁺) (100).			
7-67		CDCl ₃ 300MHz 7.53 (1H, d, J = 8.1 Hz) 7.11 (2H, d, J = 8.4 Hz) 6.99 (1H, d, J = 8.1 Hz) 6.68 (2H, d, J = 8.4 Hz) 4.20 (2H, s) 4.01 (2H, t, J = 6.9 Hz) 3.90 (3H, s) 3.78 (2H, t, J = 7.2 Hz) 2.91 (6H, s) 2.88 (1H, d, J = 6.9 Hz) 1.5-1.8 (2H, m) 1.3-1.5 (4H, m)	0.93 (3H, t, J = 6.9 Hz)	Neat 2926 1682 1615 1522 1494 1270 1076	FAB+ 397 (M+H ⁺)(30). 147(100).		
7-68		CDCl ₃ 300MHz 7.52 (1H, d, J = 8.1 Hz) 7.05 (2H, d, J = 8.4 Hz) 6.99 (1H, d, J = 8.1 Hz) 6.54 (2H, d, J = 8.4 Hz) 4.36 (1H, s) 4.21 (2H, s) 4.02 (2H, t, J = 6.6 Hz) 3.90 (3H, s) 3.77 (2H, t, J = 7.2 Hz) 2.87 (1H, t, J = 7.2 Hz) 2.81 (3H, s) 1.6-1.8 (2H, m)	1.3-1.5 (4H, m) 0.94 (3H, t, J = 7.2 Hz)	Neat 2931 1650 1622 1595 1524 1484 1282	FAB+ 383(M+H ⁺) (100).		

表 133

実施例	構造式	融点	CDCl ₃ ,300MHz 8.17 (1H, d, <i>J</i> = 8.8 Hz) 8.14 (1H, d, <i>J</i> = 8.8 Hz) 7.36 (2H, d, <i>J</i> = 8.8 Hz) 7.14 (1H, d, <i>J</i> = 7.5 Hz) 6.75 (1H, d, <i>J</i> = 7.5 Hz) 6.67 (1H, d, <i>J</i> = 7.5 Hz) 4.20 (2H, t, <i>J</i> = 7.2 Hz) 4.01 (2H, d, <i>J</i> = 6.8 Hz) 3.96 (3H, s) 3.20 (2H, t, <i>J</i> = 7.2 Hz) 1.7-1.9 (2H, m) 1.4-1.6 (4H, m)	1H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-69			CDCl ₃ ,300MHz 8.19 (1H, d, <i>J</i> = 8.8 Hz) 7.12 (1H, d, <i>J</i> = 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, <i>J</i> = 7.5 Hz) 6.65 (1H, d, <i>J</i> = 7.5 Hz) 4.14 (2H, t, <i>J</i> = 7.2 Hz) 4.01 (2H, d, <i>J</i> = 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, <i>J</i> = 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	0.93 (3H, t, <i>J</i> = 7.1 Hz)	FAB+ 380[M+H ⁺] (100), 119 (50).		
7-70			CDCl ₃ ,300MHz 8.20 (1H, d, <i>J</i> = 9.0 Hz) 7.2-7.4 (5H, m) 7.13 (1H, d, <i>J</i> = 9.0 Hz) 6.76 (1H, d, <i>J</i> = 7.5 Hz) 6.64 (1H, d, <i>J</i> = 7.5 Hz) 4.17 (2H, t, <i>J</i> = 7.5 Hz) 4.00 (2H, d, <i>J</i> = 6.6 Hz) 3.96 (3H, s) 3.07 (2H, t, <i>J</i> = 7.5 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	0.93 (3H, t, <i>J</i> = 7.5 Hz)	FAB+ 366[M+H ⁺] (100), 261 (50).		
7-71			CDCl ₃ ,300MHz 8.19 (1H, d, <i>J</i> = 8.8 Hz) 7.12 (1H, d, <i>J</i> = 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, <i>J</i> = 7.5 Hz) 6.65 (1H, d, <i>J</i> = 7.5 Hz) 4.14 (2H, t, <i>J</i> = 7.2 Hz) 4.01 (2H, d, <i>J</i> = 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, <i>J</i> = 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	0.93 (3H, t, <i>J</i> = 7.5 Hz)	FAB+ 366[M+H ⁺] (100), 261 (50).		

表 134

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	$^1\text{IRcm}^{-1}$	MS	元素分析
7-72		CDCl ₃ /300MHz 7.84 (1H, d, J = 9.0 Hz) 7.2-7.4 (5H, m) 6.86 (1H, d, J = 9.0 Hz) 3.89 (2H, t, J = 6.6 Hz) 3.87 (3H, s) 3.76 (2H, t, J = 7.5 Hz) 3.34 (2H, t, J = 6.6 Hz) 2.95 (2H, t, J = 7.5 Hz) 2.86 (2H, t, J = 6.6 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.92 (3H, t, J = 7.5 Hz)	FAB+ 368[M+H ⁺] (100), 276 (50).			
7-73		CDCl ₃ /300MHz 8.19 (1H, d, J = 9.0 Hz) 7.41 (2H, d, J = 8.4 Hz) 7.15 (2H, d, J = 8.4 Hz) 7.12 (2H, d, J = 8.4 Hz) 6.76 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 4.41 (2H, t, J = 7.5 Hz) 4.00 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.07 (2H, t, J = 7.5 Hz) 2.16 (3H, s) 1.7-1.8 (2H, m)	FAB+ 423[M+H ⁺] (100)			
7-74		CDCl ₃ /300MHz 7.82 (1H, d, J = 8.7 Hz) 7.42 (2H, d, J = 8.4 Hz) 7.19 (2H, d, J = 8.4 Hz) 6.86 (1H, d, J = 8.7 Hz) 3.90 (2H, t, J = 6.9 Hz) 3.88 (3H, s) 3.73 (2H, t, J = 7.2 Hz) 3.36 (2H, t, J = 6.6 Hz) 2.89 (4H, q, J = 6.6 Hz) 2.16 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	FAB+ 425[M+H ⁺] (100), 276(40).			

1 3 5

実施例	構造式	融点	^1H NMR (δ) ppm	IRcm^{-1}	MS	元素分析
7-75		184.5~154.8°C	CDCl ₃ 300MHz 7.74 (1H, d, J=8.5 Hz) 7.03 (2H, d, J=8.0 Hz) 6.5-7.0 (2H, bs) 6.86 (1H, d, J=8.5 Hz) 6.75 (2H, d, J=8.0 Hz) 3.83 (2H, t, J=6.8 Hz) 3.72 (2H, t, J=7.4 Hz) 3.39 (2H, t, J=6.6 Hz) 2.86 (2H, t, J=6.6 Hz) 2.84 (2H, t, J=7.4 Hz) 1.7-1.8 (2H, m) 1.2-1.5 (4H, m)	FAB+ 3295 2957 1595 1306 1244	370 [M+H+] (100)	
7-76		68.3~68.8°C	CDCl ₃ 300MHz 7.84 (1H, d, J=9.0 Hz) 7.15 (2H, d, J=8.1 Hz) 7.09 (2H, d, J=8.1 Hz) 6.86 (1H, d, J=9.0 Hz) 2.90 (2H, t, J=6.6 Hz) 3.88 (3H, s) 3.73 (2H, t, J=7.5 Hz) 2.61 (2H, t, J=6.6 Hz) 2.89 (4H, qu, J=7.2 Hz) 2.31 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	FAB+ 382 [M+H+] (100), 276 (80)	382 [M+H+] (100), 276 (80)	
7-77		無色結晶	CDCl ₃ 300MHz 7.83 (2H, d, J=8.4 Hz) 7.04 (2H, d, J=8.4 Hz) 6.86 (1H, d, J=8.4 Hz) 6.63 (2H, d, J=8.4 Hz) 3.89 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.70 (2H, t, J=6.9 Hz) 3.57 (2H, s)	FAB+ 383 [M+H+] (50), 153 (100), 118.9 (100)	383 [M+H+] (50), 153 (100), 118.9 (100)	淡黄色固体

表 136

実施例	構造式	融点	1H NMR (δ) ppm		IRcm ⁻¹	MS	元素分析	
			DMSO-d6,300MHz					
7-78		111.2~111.7°C	9.17 (1H, s) 7.95 (1H, d, J = 6.6 Hz) 7.26 (1H, d, J = 6.6 Hz) 7.25 (1H, d, J = 5.6 Hz) 7.00 (2H, d, J = 6.2 Hz) 6.66 (2H, d, J = 6.2 Hz) 6.55 (1H, d, J = 5.6 Hz) 4.11 (2H, t, J = 4.7 Hz) 4.05 (2H, t, J = 5.5 Hz) 3.96 (2H, t, J = 4.9 Hz) 2.83 (2H, t, J = 5.5 Hz) 1.7-1.9 (4H, m)	1.3-1.5 (8H, m) 0.91 (3H, t, J = 5.3 Hz) 0.83 (3H, t, J = 5.4 Hz)	KBr 3336 2360 1505	FAB+ 438 [M+] (100).		
7-79			CDCl3,300MHz	8.53 (2H, d, J = 5.3 Hz) 7.83 (1H, d, J = 8.6 Hz) 7.21 (2H, d, J = 5.3 Hz) 6.87 (1H, d, J = 8.6 Hz) 3.89 (3H, s) 4.04 (2H, t, J = 6.6 Hz) 3.79 (2H, t, J = 7.4 Hz) 3.38 (2H, t, J = 6.6 Hz) 2.97 (2H, t, J = 7.4 Hz) 2.90 (2H, t, J = 6.6 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	0.93 (3H, t, J = 7.0 Hz)	Neat 1931 2360 (100).	FAB+ 369 [M+H+]	
7-80		78.6~79.2°C	CDCl3,300MHz	8.20 (1H, d, J = 8.7 Hz) 7.13 (1H, d, J = 8.7 Hz) 6.98 (2H, d, J = 8.4 Hz) 6.77 (1H, d, J = 7.2 Hz) 6.65 (1H, d, J = 7.2 Hz) 6.62 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.56 (2H, bs)	0.1-3-1.5 (4H, m) 0.94 (3H, t, J = 7.2 Hz)	Neat 3347 2934 2358 1650 1622 1594 1518 1281	FAB+ 381 [M+H+] (100).	
				2.95 (2H, t, J = 7.2 Hz) 1.7-1.9 (2H, m)				

表 137

実施例	構造式	融点	¹ H NMR (δ) ppm	¹³ C NMR (δ) ppm	MS	元素分析
7-81		199.3~199.6°C	DMSO-d6,300MHz 9.89 (3H, bs) 7.90 (1H, d, J = 6.7 Hz) 7.25 (1H, d, J = 5.7 Hz) 7.22 (1H, d, J = 6.7 Hz) 7.20 (2H, d, J = 6.2 Hz) 7.18 (2H, d, J = 6.2 Hz) 4.07 (2H, t, J = 6.0 Hz) 3.88 (2H, t, J = 5.0 Hz) 3.84 (3H, s) 2.92 (2H, t, J = 6.0 Hz) 1.6-1.7 (2H, m) 1.2-1.4 (4H, m)	CDCl ₃ ,300MHz 8.20 (1H, d, J = 8.9 Hz) 7.13 (1H, d, J = 8.9 Hz) 7.01 (2H, d, J = 8.4 Hz) 6.81 (1H, d, J = 7.5 Hz) 6.72 (2H, d, J = 8.4 Hz) 6.66 (1H, d, J = 7.5 Hz) 4.13 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.93 (6H, s) 1.7-1.9 (2H, m)	Neat 3448 2936 1644 1582 1287 FAB+ [M+](100). 381	
7-82			CDCl ₃ ,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.03 (2H, d, J = 8.4 Hz) 6.80 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 6.50 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.93 (6H, s) 1.7-1.9 (2H, m)	CDCl ₃ ,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.03 (2H, d, J = 8.4 Hz) 6.80 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 6.50 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.93 (6H, s) 1.7-1.9 (2H, m)	Neat 2925 2360 1652 1282 FAB+ 409(M+H+) (100). 395	
7-83			CDCl ₃ ,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.03 (2H, d, J = 8.4 Hz) 6.80 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 6.50 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.94 (1H, s) 2.82 (3H, s)	CDCl ₃ ,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.03 (2H, d, J = 8.4 Hz) 6.80 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 6.50 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.94 (1H, s) 2.82 (3H, s)	Neat 2931 2359 1681 1671 1524 1270 FAB+ [M+H+](20). 133 (100). 395	

表 138

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
7-84		CDCl ₃ 300MHz 8.20 (1H, d, J = 8.7 Hz) 7.13 (1H, d, J = 8.7 Hz) 7.08 (2H, d, J = 8.4 Hz) 6.87 (2H, d, J = 8.4 Hz) 6.77 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 4.13 (2H, t, J = 7.5 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.1-3.2 (4H, m) 2.98 (2H, d, J = 7.5 Hz) 1.3-2.0 (12H, m)	0.94 (3H, t, J = 7.2 Hz)	Neat 2934 2359 [M+H+] (60), 1650 1624 1595 1281	FAB+ 449 187 (100),	C28H36N2O3
7-85		CDCl ₃ 300MHz 7.93 (1H, d, J = 8.44 Hz) 7.17 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.76 (2H, d, J = 8.4 Hz) 4.75 (1H, s) 4.0-4.2 (6H, m) 3.94 (2H, s) 2.8-2.9 (2H, m) 1.7-1.9 (4H, m) 1.3-1.6 (8H, m) 0.95 (6H, t, J = 6.9 Hz)		KBr 3426 4.54 [M+H+] (100), 2935 1654	FAB+ 3426 4.54 [M+H+] (100),	
7-86		DMSO-d ₆ 300MHz 11.21 (1H, s) 8.49 (2H, bs) 7.32 (2H, d, J = 5.4Hz) 6.66 (1H, s) 196.9 ~ 198.1 °C 4.14 (2H, t, J = 7.5Hz) 3.95 (2H, t, J = 6.6Hz) 3.82 (3H, s) 2.93 (2H, t, J = 7.4Hz) 1.60-1.80 (2H, m) 1.30-1.50 (4H, m) 0.89 (3H, t, J = 6.9Hz)		KBr 2936 2362 1718 1654 1623 1459 1245	FAB+ 384 [M+H+] (60)	C21H25N3O4

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析
7-87		DMSO-d6, 300MHz 107 (1H, s) 9.17 (1H, s) 7.67 (1H, d, J = 8.7Hz) 7.00 (2H, d, J = 7.5Hz) 6.97 (1H, d, J = 8.7Hz) 6.66 (2H, d, J = 7.5Hz) 4.01 (2H, t, J = 7.7Hz) 3.91 (2H, t, J = 7.7Hz) 3.88 (3H, s) 2.72 (2H, t, J = 7.7Hz) 1.70 (2H, m) 1.25-1.45 (4H, m)	0.89 (3H, t, J = 6.9Hz)	KBr 3399 1707 1637 1432 1298	FAB+ [M+H+] (50) 279(40)	C22H26N2O5
7-88		CDCl3, 300MHz 7.97 (1H, d, J = 9.0 Hz) 7.10 (2H, d, J = 8.1 Hz) 7.00 (1H, d, J = 9.0 Hz) 6.63 (2H, d, J = 8.1 Hz) 4.1-4.2 (2H, m) 4.00 (2H, t, J = 6.6 Hz) 3.94 (2H, s) 3.93 (3H, s) 3.59 (2H, s) 2.7-2.9 (2H, m) 1.7-1.9 (2H, m) 1.3-1.6 (4H, m)	0.95 (3H, t, J = 6.9 Hz)	KBr 2925 1666 (100), 1518 1350 1285	FAB+ [M+H+] (100),	383 [M+H+]
7-89		CDCl3, 300MHz 8.53 (2H, d, J = 5.7 Hz) 7.95 (1H, d, J = 9.0 Hz) 7.23 (2H, d, J = 5.7 Hz) 7.00 (1H, d, J = 9.0 Hz) 4.1-4.3 (2H, m) 4.00 (2H, t, J = 6.9 Hz) 3.96 (2H, s) 3.94 (3H, s)		KBr 1708 1662 (100), 1598 1353 1081	FAB+ [M+H+] (100),	383 [M+H+]

表 140

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析	
7-90		172.0~173.0 °C	CDCl ₃ , 300MHz 8.00(1H,s) 7.83(1H,d,J=8.4Hz) 7.16(2H,d,J=8.4Hz) 6.81(1H,d,J=8.4Hz) 6.57(2H,d,J=8.4Hz) 4.18(2H,t,J=8.3Hz) 4.08(2H,t,J=6.9Hz) 3.95(3H,s) 2.86(2H,t,J=8.1Hz) 2.82(3H,s) 1.70-1.85(2H,m) 1.35-1.50(4H,m)	0.95(3H,t,J=7.2Hz)	KBr 3397 1707 1647 1615	FAB+ [M+H ⁺](30)	C23H29N3O4
7-91		127.0~128.5 °C	CDCl ₃ , 300MHz 8.00(1H,s) 7.84(1H,s,J=8.7Hz) 7.22(2H,d,J=8.7Hz) 6.81(1H,d,J=8.7Hz) 6.71(2H,d,J=8.7Hz) 4.19(2H,t,J=8.3Hz) 4.08(2H,t,J=7.1Hz) 3.95(3H,s) 2.92(6H,s) 2.88(2H,t,J=8.3Hz) 1.70-1.85(2H,m) 1.30-1.50(4H,m)	0.95(3H,t,J=7.1Hz)	KBr 2956 1709 1651 1619 1094	FAB+ [M+H ⁺](20)	C24H31N3O4
7-92		83.2~83.8 °C	CDCl ₃ , 300MHz 8.53(2H,d,J=6.0Hz) 7.64(1H,d,J=8.8Hz) 7.22(2H,d,J=6.0Hz) 6.44(1H,d,J=8.8Hz) 4.52(1H,s) 3.96(2H,t,J=6.8Hz) 3.88(3H,s) 3.63(2H,t,J=8.0Hz) 2.96(2H,t,J=8.0Hz) 1.68-1.82(2H,m) 1.53(6H,s) 1.30-1.50(4H,m)	0.94(3H,t,J=7.1Hz)	KBr 3448 3285 2954 1630 1303	FAB+ [M+H ⁺](80) 382(60) 276(40)	C23H31N3O3

表 141

实施例	构造式	融点	$^1\text{H NMR}$ (δ) ppm	$^{13}\text{C}\text{NMR}$ (ppm)	元素分析
7-93		CDCl ₃ /3,300MHz 7.65(1H,d,J=8.7Hz) 7.10(2H,d,J=8.3Hz) 6.66(2H,d,J=8.3Hz) 6.43(1H,d,J=8.7Hz) 4.51(1H,t) 3.97(2H,t,J=6.8Hz) 3.88(3H,s) 3.60(2H,bs) 3.57(2H,t,J=8.2Hz) 2.85(2H,t,J=8.2Hz) 1.70-1.85(2H,m) 1.54(6H,s)	1.35-1.50(4H,m) 0.95(3H,t,J=7.1Hz)	Neat 3345 2956 1632 1301	FAB+ 412 [M+H+](60) 276(100) C24H33N3O3
7-94		CDCl ₃ /3,300MHz 8.02(1H,d,J=8.9Hz) 7.09(1H,d,J=8.9Hz) 7.01(2H,d,J=8.3Hz) 6.63(2H,d,J=8.3Hz) 4.15-4.25(4H,m) 3.96(3H,s) 3.60(2H,bs) 2.92((2H,t,J=7.6Hz) 2.48(3H,s) 1.72-1.90(2H,m) 1.30-1.55(4H,m) 0.92(3H,t,J=7.2Hz)	8.02(1H,d,J=8.9Hz) 7.09(1H,d,J=8.9Hz) 7.01(2H,d,J=8.3Hz) 6.63(2H,d,J=8.3Hz) 4.15-4.25(4H,m) 3.96(3H,s) 3.60(2H,bs) 2.92((2H,t,J=7.6Hz) 2.48(3H,s) 1.72-1.90(2H,m) 1.30-1.55(4H,m) 0.92(3H,t,J=7.2Hz)	KBr 3356 2932 1638 1598 1101	FAB+ 396 [M+H+](20) 307(10) C23H29N3O2
7-95		DMSO-d6,300MHz 8.83(2H,d,J=5.4Hz) 8.28(1H,s) 7.97(2H,d,J=5.4Hz) 145.5~148.3°C 3.90(3H,s)	7.86(1H,d,J=8.7Hz) 7.32(1H,d,J=8.7Hz) 4.32(2H,t,J=6.9Hz) 4.03(2H,t,J=6.5Hz) 3.34(2H,t,J=6.8Hz) 1.60-1.75(2H,m) 1.25-1.50(4H,m) 0.88(3H,t,J=6.9Hz)	KBr 3426 2958 1724 1655 1603 1498 1295	FAB+ 368 [M+H+](30) 263(30) C21H26C1N3O3

表 142

実施例	構造式	融点	¹ H NMR (δ) ppm	¹³ C NMR (δ) ppm	MS	元素分析
7-96			CDCl ₃ , 300MHz 11.5(1H,s) 7.89(1H,d,J=8.4Hz) 7.34(2H,d,J=8.7Hz) 6.93(1H,s,J=8.4Hz) 6.68(2H,d,J=8.7Hz) 4.19(2H,t,J=6.3Hz) 3.95(2H,t,J=6.5Hz) 3.93(3H,s) 3.03(2H,t,J=6.5Hz) 1.70-1.83(2H,m) 1.33-1.52(4H,m) 0.94(3H,t,J=7.2Hz)	KBr 3228 2948 [M+H ⁺] (30) 1703 1593 1543 1395 1286	FAB+ 398 [M+H ⁺] (30) 264(30)	C22H27N3O4
7-97		157.0~ 158.0°C	DMSO-d ₆ , 300MHz 9.74(2H,t,J=5.9Hz) 7.75(1H,d,J=8.7Hz) 7.40(2H,d,J=8.4Hz) 7.25(2H,d,J=8.4Hz) 7.11((1H,d,J=8.7Hz) 4.44(2H,d,J=5.9Hz) 3.99(2H,t,J=6.2Hz) 3.88(2H,t,J=6.3Hz) 3.87(3H,s)	0.90(3H,t,J=7.2Hz)	FAB+ 412(30)	C23H30ClN3O4
7-98		無色結晶	DMSO-d ₆ , 300MHz 9.74(2H,t,J=5.9Hz) 7.75(1H,d,J=8.7Hz) 7.40(2H,d,J=8.4Hz) 7.25(2H,d,J=8.4Hz) 7.11((1H,d,J=8.7Hz) 4.44(2H,d,J=5.9Hz) 3.99(2H,t,J=6.2Hz) 3.88(2H,t,J=6.3Hz) 3.87(3H,s)	0.90(3H,t,J=7.2Hz)	FAB+ 412(30)	C23H30ClN3O4

表 1 4 3

実施例	構造式	融点	$^1\text{H NMR}$ (δ) ppm	$^{13}\text{C NMR}$ (ppm)	MS	元素分析
7-99		-	CDCl ₃ , 300MHz 7.03(2H, d, J=8.3Hz) 6.73(2H, s) 6.64(2H, d, J=8.3Hz) 3.91(2H, t, J=6.7Hz) 3.81(3H, s) 3.63(2H, s) 3.56(2H, bs) 2.65-2.95(8H, m) 1.70-1.83(2H, m) 1.30-1.50(4H, m) 0.93(3H, t, J=7.1Hz)		FAB+ 369 [M+H ⁺] (50) 262(100)	C ₂₃ H ₃₂ N ₂ O ₂
7-100		-	CDCl ₃ , 300MHz 7.14(2H, d, J=9.0Hz) 6.85(1H, d, J=8.4Hz) 6.79(1H, d, J=8.4Hz) 6.64(2H, d, J=9.0Hz) 6.17(1H, bs) 4.57(2H, s) 3.93(2H, t, J=6.6Hz) 3.84(3H, s) 3.65(2H, t, J=5.9Hz) 2.94(2H, t, J=5.9Hz) 1.70-1.82(2H, m) 1.32-1.55(4H, m)	0.94(3H, t, J=7.1Hz)	FAB+ 384 [M+H ⁺] (80) 248(100)	C ₂₂ H ₂₉ N ₃ O ₃
7-101		-	DMSO-d ₆ , 300MHz 9.95(1H, bs) 7.33(2H, d, J=8.7Hz) 7.21(2H, d, J=8.7Hz) 7.19(1H, bs) 6.88(1H, d, J=8.4Hz) 6.82(1H, d, J=8.4Hz) 4.43(2H, s) 4.25(2H, d, J=4.8Hz) 3.85(2H, t, J=6.6Hz) 3.75(3H, s) 3.54(2H, bs)	2.71(2H, t, J=5.7Hz) 1.60-1.72(2H, m) 1.25-1.50(4H, m) 0.90(3H, t, J=6.9Hz)	FAB+ 432 [M+H ⁺] (5) 396(10) 265(40)	C ₂₃ H ₃₂ CIN ₃ O ₃

表 144

实施例	构造式	熔点	$^1\text{H NMR}$ (δ) ppm CDCl ₃ /300MHz	IRcm ⁻¹	元素分析	
					FAB+ 370 [M+H ⁺] (100)	MS
7-102		无色结晶	7.09 (2H, d, $J = 8.5$ Hz) 6.74 (2H, d, $J = 8.5$ Hz) 6.73 (2H, s) 3.92 (2H, d, $J = 6.7$ Hz) 3.91 (1H, bs) 3.64 (2H, s) 2.7-2.9 (8H, m) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, $J = 7.0$ Hz)			

表 145

実施例	構造式	融点	¹ H NMR (δ) ppm	IRcm ⁻¹	MS	元素分析
8-1		185.5~186.5°C	DMSO-d6,300MHz 7.73(1H, d, J=15.4 Hz) 7.58(1H, d, J=8.5 Hz) 7.00(1H, d, J=15.4 Hz) 6.98(1H, bs) 6.44(1H, s) 6.42(1H, d, J=8.5 Hz) 3.73(3H, s) 3.5-3.7(4H, m) 3.2-3.5(4H, m)	KBr 3424 1629 [M ⁺ H ⁺] (85) 1560	FAB+ 264	C ₁₁ H ₁₇ NO ₃ C: 68.44% H: 8.16% N: 4.20% 分析值 C: 68.55% H: 8.43% N: 4.25%
8-2			CDCl ₃ ,300MHz 7.82(1H, d, J=15.5 Hz) 7.38(1H, d, J=8.4 Hz) 6.97(1H, d, J=15.5 Hz) 6.48(1H, dd, J=8.4, 2.4 Hz) 6.45(1H, d, J=2.4 Hz) 4.11(2H, t, J=6.4 Hz) 3.82(3H, s) 3.70(8H, bs) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.94(3H, t, J=7.1 Hz)	Neat 2956 1643 1600 246(30) 177(100)	FAB+ 334 [M ⁺ H ⁺] (70) 1600 246(30) 177(100)	C ₁₄ H ₂₃ NO ₃ C: 63.87% H: 6.51% N: 5.32% 分析值 C: 63.67% H: 6.63% N: 5.35%
8-3			DMSO-d6,300MHz 9.00(1H, s) 7.36(1H, d, J=15.4 Hz) 7.14(1H, d, J=2.2 Hz) 7.09(1H, dd, J=8.4, 2.2 Hz) 6.97(1H, d, J=15.4 Hz) 6.92(1H, d, J=8.4 Hz) 3.79(3H, s) 3.58(8H, bs)	KBr 3426 3200 [M ⁺ H ⁺] (100) 1640 1574	FAB+ 264 177(70)	C ₁₁ H ₁₇ NO ₃ C: 63.87% H: 6.51% N: 5.32% 分析值 C: 63.67% H: 6.63% N: 5.35%

表 146

实施例	构造式	熔点	$^1\text{H NMR}$ (δ) ppm	IRcm ⁻¹	MS	元素分析
8-4		CDCl ₃ , 300MHz 6.99(1H, d, J=1.7 Hz) 6.96(1H, dd, J=8.1, 1.7 Hz) 6.86(1H, d, J=8.1 Hz) 4.02(2H, t, J=6.9 Hz) 3.89(3H, s) 3.69(8H, bs) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	Neat			
8-5		DMSO-d ₆ , 300MHz 9.00 (1H, s) 7.36 (1H, d J = 15.4 Hz) 7.14 (1H, d, J = 2.2 Hz) 7.09 (1H, dd, J = 8.4, 2.2 Hz) 6.97 (1H, d, J = 15.4 Hz) 6.92 (1H, d, J = 8.4 Hz) 3.79 (3H, s) 3.58 (8H, bs)	KBr 3426 3200 1640 1574	FAB+ 264(M+H ⁺) (100) 177(70)	C ₁₄ H ₁₇ NO ₄ 理论值 C: 63.87% H: 6.51% N: 5.32% 分析值 C: 63.67% H: 6.63% N: 5.35%	
8-6		CDCl ₃ , 300MHz 8.33 (1H, s) 8.01 (1H, d, J=11.5 Hz) 7.63 (1H, s) 7.26 (1H, s) 7.25 (1H, dd, J=6.3, 1.5 Hz) 7.15 (1H, d, J=6.3 Hz) 6.93 (1H, d, J=1.5 Hz) 6.89 (1H, d, J=11.5 Hz) 4.07 (2H, t, J=5.1 Hz) 3.93 (3H, s) 1.8-1.9 (2H, m)	2934 1702 1616 1514	FAB+ [M+H ⁺] (20) 247(100)	C ₁₈ H ₂₂ N ₂ O ₃ 理论值 C: 68.77% H: 7.05% N: 8.91% 分析值 C: 68.01% H: 7.04% N: 8.81%	

造 147

実施例	構造式	融点	^{1}H -NMR (δ) ppm CDCl ₃ ,300MHz	IRcm ⁻¹ KBr	MS FAB+ [M+H] ⁺ (40) 221(100)	元素分析 C ₁₆ H ₂₀ N ₂ O ₃ C: 66.65% H: 6.99% N: 9.72%	元素分析	
							I	II
8-7		110.9~111.1°C	8.11 (1H, s) 7.54 (1H, s) 7.40 (1H, dd, J=6.3, 1.5 Hz) 7.16 (1H, s) 6.95 (1H, d, J=6.3 Hz) 4.06 (2H, t, J=5.1 Hz) 3.96 (3H, s) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J=5.3 Hz)	3500 2957 1698	298 221(100)	理論値 C: 66.65% H: 6.99% N: 9.72%	分析値 C: 66.69% H: 7.08% N: 9.23%	

薬理実験

[I] Binding assay (in vitro)

標本は、カンナビノイド中枢型 (CB1) および末梢型 (CB2) レセプターの豊富な組織として、それぞれラット小脳膜画分および脾臓細胞を用いた (雄性 SD ラット、7~9 週齢)。丸底 24 穴プレートに標本 (小脳膜画分: 50 µg / ml、脾臓細胞: 1×10^7 cells / ml)、標識リガンド ($[^3\text{H}]$ Win55212-2、2 nM) および非標識 Win55212-2 または被検物質を加え、小脳膜画分の場合 30 °C で 90 分、脾臓細胞の場合 4 °C で 360 分インキュベーションした。Assay buffer は、小脳膜画分の場合 0.2% BSA を含む 50 mM Tris 溶液、脾臓細胞の場合 0.2% BSA を含む 50 mM Tris-HBSS を用いた。インキュベーション終了後、フィルター (Packard, Unifilter 24 GF/B) で濾過し、乾燥させた後 scintillation solution (Packard, Microsint-20) を加え、サンプルの放射能を測定した (Packard, Top count A9912V)。非特異的結合は過剰量の Win55212-2 (1 µM) を加えることにより得、標識リガンドのみを加えて得た全結合から非特異的結合を差し引くことにより、特異的結合を算出した。被検物質は DMSO に溶解し、DMSO の最終濃度が 0.1 % になるようにした。結合した被検物質の、特異的結合に占める割合から IC₅₀ 値を求め、これと $[^3\text{H}]$ Win55212-2 の Kd 値から被検物質の Ki 値を算出した。

[II] カラゲニン誘発足浮腫モデル (in vivo)

雌性 ddY マウス (6~8 週齢) を用いた。右足の投与前の容積を測定し (Unicom, Prethysumometer TK-101)、2 時間後オリーブオイルに溶解した被検化合物を 10 ml / kg にて経口投与した。投与 1 時間後に生理食塩水に溶解した 1 % カラゲニン 50 µl を右足踵に皮内投与した。その 3 時間後右足の容積を測定し、投与前と比較した。

[III] ヒツジ赤血球 (SRBC) 誘発遲延型過敏症 (DTH) モデル (in vivo)

雌性 ddY マウス (6~8 週齢) を用いた。初日に、マウス左足踵に SRBC

10⁷ 個を皮内投与し (40 μl / foot) 、動物を免疫した。5日後、オリーブオイルに溶解した被検化合物を 10 ml / kg にて経口投与し、その1時間後、右足踵に SRBC 10⁸ 個を皮内投与して反応を惹起した。惹起 24 時間後に両足の容積を測定し、左足容積から右足容積を差し引いた値を浮腫率として算出した。

なお、[II]、[III] とともに被検化合物は DMSO に溶解し、オリーブオイルで希釈して用いた (DMSO の最終濃度は 1 %)。

上記 [I]、[II]、[III] の結果を表 148、149 に示す。

表 148

実施例	Ki 値 (nM)			ED50 (mg/kg : po)	
	中枢型レセプター (C)	末梢型レセプター (S)	C/S	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル
1-1	230	4.8	48	1.00	1.52
1-2	400	1.8	222	>1.00	0.48
1-4	960	7.7	125	0.55	0.71
1-5	450	4.4	102	1.20	2.45
1-13	3700	44.0	84	0.25	9.20
1-22	480	1.4	343	0.14	0.77
1-34	930	1.1	845	0.59	1.95
1-35	160	10	16	0.12	0.063
2-1	1400	2.5	560	0.040	0.14
2-2	1100	1.1	1000	0.51	0.90
2-3	>3300	0.44	>8250	0.17	0.053
2-5	330	3.6	92	0.40	3.25
2-6	500	1.1	455	0.30	0.72
2-7	>2500	9.5	263	2.28	2.35
2-8	1000	3.7	270	0.73	1.45
2-13	5600	6.6	849	3.20	5.60
2-16	>4300	73	>59	1.10	1.95

表 149

実施例	Ki 値 (nM)			ED50 (mg/kg : po)	
	中枢型レセプター (C)	末梢型レセプター (S)	C/S	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル
2-26	>2500	18.0	>139	>10.0	3.75
2-52	>4300	1.9	>2300	1.85	0.58
6-4	650	11.0	59	0.25	10.0
7-4	1000	7.3	137	1.60	1.60
7-5	>2500	11.0	>227	0.014	0.038
7-19-1	200	3.7	54	0.092	0.033
7-20	400	8.4	48	0.195	0.084
7-24	>2500	1.8	>1389	0.028	0.027
7-30	2600	1.8	1440	<0.01	0.021
7-31	11	0.088	125	0.012	0.08
7-34	330	0.11	3000	0.29	0.012
7-37	1300	14	93	0.49	0.058
7-38	220	9.9	22	0.11	0.011
7-40	109	<3.7	>30	0.016	-
8-2	560	8.4	67	0.50	>10.0

[IV] 抗 t h y - 1 抗体誘発腎炎モデル (in vivo)

雄性 W i s t a r ラット (6 週齢) を用い、被検化合物 (プレドニゾロン、実施例7-35化合物) を経口投与し、その 1 時間後に抗 t h y - 1 抗体 (ox-7, 0. 938 mg/ml) を 0. 1 ml/ラットにて尾静脈より投与した。被検化合物は、その後 6 日目まで 1 日 1 回投与した。6 日目に 8 ml の水を強制負荷した後、絶水とし、その後連続 16 時間、尿を採取した。7 日目に採血致死させ、腎臓を取り出し、その重量を測定後、ホルマリンで固定し、組織切片を作成した (P A S 染色)。評価は、尿中タンパク量と腎糸球体内有核細胞数を測定することにより行った。なお、被検化合物は 0. 5 % H P M C にて懸濁液とし、1 回につき 10 ml/kg 投与した。その結果を表 150 に示す。

表 150

実験群	尿中タンパク (mg/16hr)	腎糸球体内有核細胞数 (nuclei/glomerulus)
Sham	2.6 ± 0.3	67.6 ± 0.9
Control	31.9 ± 4.0	90.1 ± 1.4
プレドニゾロン (3 mg/kg)	20.9 ± 2.7	76.9 ± 0.9
実施例7-35化合物 (0.1 mg/kg)	15.2 ± 2.4	84.8 ± 1.2

- Sham : 抗 t h y - 1 抗体を投与せず、水の負荷を行い、溶媒 (H P M C) の経口投与を行ったもの
 Control : 抗 t h y - 1 抗体を投与し、水の負荷を行い、溶媒 (H P M C) の経口投与を行ったもの
 プレドニゾロン : 抗 t h y - 1 抗体を投与し、水の負荷を行い、
 実施例7-35化合物 : 当該被験化合物の経口投与を行ったもの

抗 t h y - 1 抗体投与によって誘発される、尿中タンパク量および腎糸球体内有核細胞数の増加の両方に対して、本発明の実施例7-35化合物は、0. 1 mg/kg の投与量で有意な抑制効果を示した。

以下に製剤例を挙げるが、これに限定されるものではない。

製剤例

(1) 実施例 1 ~ 1 の化合物	10 g
(2) 乳糖	50 g
(3) トウモロコシデンプン	15 g
(4) カルボキシメチルセルロースナトリウム	44 g
(5) ステアリン酸マグネシウム	1 g

(1)、(2)、(3)の全量、および(4)の30 gを水で練合し、真空乾燥後、製粒を行う。この製粒末に14 gの(4)および1 gの(5)を混合し、打錠機で錠剤とすることにより、1錠あたり10 mgの(1)を含有する錠剤1000個を製造する。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイド受容体、特に末梢型受容体に選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイド受容体（特に末梢型カンナビノイド受容体）作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

請求の範囲

1. 式 (I)

〔式中、XはCHまたはNを示し、

Wは-O-、-S(O)-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO-（R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す）を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵（R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す）、-NR⁸R⁹（R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい）、または-(CH₂)_uS(O)_uR¹²（R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0、1、2を、u'は0、1、2を示す）を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルア

ミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシリル、アシリルオキシ、アシリルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^4 は水素原子を示すか、または R^4 と R^2 が A 環と一緒にあって式 (II)

(式中、 W' $R^{1'}$ 、 $R^{2'}$ 、 $R^{3'}$ の置換位置は A 環、B 環のいずれの位置であってもよく、 W' $R^{1'}$ 、 $R^{2'}$ 、 $R^{3'}$ はそれぞれ前記 WR^1 、 R^2 、 R^3 と同義であり、B 環はベンゼン環、ビリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

$A1k^1$ は $-CH=CH-$ 、 $-CH_2-CH_2-$ または $-C\equiv C-$ を示し、

Y は $-CONR^{10}-$ 、 $-NR^{11}CO-$ 、 $-COO-$ 、 $-CH_2-NR^{10}-$ または $-NHCONH-$ (R^{10} 、 R^{11} は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい) を示し、

$A1k^2$ はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は 0, 1, 2 を示す) を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にあってヘテロアリールを形成

してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=1かつq=1のとき、Alk¹が-CH=CH-を示し、かつYが-CO NR¹⁰-を示し、かつR³がR¹⁰と一緒にになって-NHCO-を示し、A環と縮合環を形成してもよく、

p=0かつq=1のとき、Yが-CO NR¹⁰-または-CH₂ NR¹⁰-を示し、かつR³がR¹⁰と一緒にになって-CH=CH-、-CH₂ CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂ CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹- (R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す)を示し、A環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが-CO NR¹⁰-または-CH₂ NR¹⁰-を示し、かつRとR¹⁰が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシリル、アシリルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。]

で表される化合物またはその医薬上許容される塩を有効成分として含有してなるカンナビノイドセプター作動薬または拮抗薬。

2. 式 (I)

[式中、XはCHまたはNを示し、

W は $-O-$ 、 $-S(O)-$ 、 $-CR^5R^6-$ 、 $-NR^7-$ 、 $-NR^7CO-$ または $-CONR^7-$ (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、 t は0、1、2を示す) を示し、 R^1 はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^1 における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシリルを示す)、または $-(CH_2)_uS(O)_vR^{12}$ (R^{12} はアルキルを、 u は0、1、2を、 v は0、1、2を示す) を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、アルコキシカルボニル、ハロゲン原子またはニトロ基を示し、当該アルキルは水酸基で置換されていてもよく、

R' は水素原子を示すか、または R' と R^2 がA環と一緒にになって式 (II)

(式中、 W' R^1' 、 R^2' 、 R^3' の置換位置はA環、B環のいずれの位置であってもよく、 W' R^1' 、 R^2' 、 R^3' はそれぞれ前記 WR^1 、 R^2 、 R^3 と同義であり、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk^1 は $-CH=CH-$ または $-CH_2-CH_2-$ を示し、

Y は $-CONR^{10}-$ 、 $-NR^{11}CO-$ 、 $-COO-$ 、 $-CH_2NR^{10}-$ または $-NHCONH-$ (R^{10} 、 R^{11} は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい) を示し、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシリル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す) で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシリル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、 $=O$ で置換されていてもよく、当該ベンゼン縮合

シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが $-CONR^{10}$ または $-CH_2NR^{10}$ を示し、かつ R^3 が R^{10} と一緒に $-CH=CH-$ 、 $-CH_2CHR^{21}-$ 、 $-CH_2-$ 、 $-S-$ 、 $-CHOH-$ 、 $-CO-$ 、 $-CH_2CO-$ 、 $-NHCR^{28}(CH_2)$ 、 $-NHCR^{29}R^{30}$ または $-N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、v'は0または1を示す)を示し、A環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが $-CONR^{10}$ または $-CH_2NR^{10}$ を示し、かつRと R^{10} が隣接する窒素原子と一緒に ヘテロアリール を形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてよい。]で表される化合物またはその医薬上許容される塩を有効成分として含有してなる請求の範囲1記載のカンナビノイドセプター作動薬または拮抗薬。

3. 式(Ia)

[式中、Wは $-O-$ 、 $-S(O)-$ 、 $-CR^5R^6-$ 、 $-NR^7-$ 、 $-NR^7CO-$ 、 $-CONR^7-$ 、 $-COO-$ または $-OCO-$ (R^5 、 R^6 は同一また

は異なってそれぞれ水素原子またはアルキルを、R⁷ は水素原子またはアルキルを、t は 0, 1, 2 を示す) を示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵ は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹ (R⁸、R⁹ は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R⁸ と R⁹ が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または - (CH₂)_uS(O)_uR¹² (R¹² は水素原子、アルキル、アルケニルまたはアルキニルを、u は 0, 1, 2 を、u' は 0, 1, 2 を示す) を示し、当該 R² における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{10a} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

Alk² はアルキレン、アルケニレン、-COCH₂- または -CONH(CH₂

)_v - (vは0, 1, 2を示す)を示し、当該Alk²におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル；-CONR¹³R¹⁴ (R¹³、R¹⁴は同一または異なってそれぞれ水素原子またはアルキルを示すか、またはR¹³とR¹⁴が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミン、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r = 0のとき、RとR^{10a}が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい。]

で表される化合物またはその医薬上許容される塩。

4. 式 (Ia)

[式中、Wは-O-、-S(O)₂、-、-CR⁵R⁶-または-NR⁷- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、R¹はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルア

ミノで置換されていてもよく、

R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子またはアルキルを示す)、または $- (CH_2)_u S (O)_v R^{12}$ (R^{12} はアルキルを、 u は 0, 1, 2 を、 v は 0, 1, 2 を示す) を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、

R^3 は水素原子またはアルコキシを示し、

R^{10a} は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、

Alk^2 はアルキレンを示し、当該アルキレンはアルコキシカルボニル；水酸基で置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なるてそれぞれ水素原子またはアルキルを示す) で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

r は 0 または 1 を示す。

なお、 $r = 0$ のとき、 R と R^{10a} が隣接する窒素原子と一緒にになってモルホリノまたはイミダゾリルを形成してもよい。]

で表される請求の範囲 3 記載の化合物またはその医薬上許容される塩。

5. R^3 が水素原子、 R^2 が $-OR^{15}$ 、 $-NR^8R^9$ または $- (CH_2)_u S (O)_v R^{12}$ であり、ベンゼン環上の $-CH=CH-CO-NR^{10a}- (Alk^2)$ 、 $-R$ の結合位置に対して、 R^2 の置換位置がパラ位、 $-WR^1$ の置換位置がメタ位である請求の範囲 4 記載の化合物またはその医薬上許容される塩。

6. R^1 が炭素数 4 ~ 6 のアルキルである請求の範囲 5 記載の化合物またはその医薬上許容される塩。

7. Alk^2 がエチレンである請求の範囲 6 記載の化合物またはその医薬上許容される塩。

8. $r = 0$ のとき、 R と R^{10} が隣接する窒素原子と一緒にになってモルホリノを形成する請求の範囲 4 記載の化合物またはその医薬上許容される塩。

9. (E) -N- [2 - (4-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

3 - (4-エトキシ-3-ペンチルオキシフェニル) - (E) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

3 - (3, 4-ジペンチルオキシフェニル) - (E) -N- [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ブチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ヘキシルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ヘプチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (3-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (2-ヒドロキシフェニル) エチル] - 3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシシクロヘキシル) エチル] - 3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] - N-メチル-3 - (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

(E) -N- [2 - (4-ヒドロキシフェニル) エチル] - 3 - (3-イソペ

ンチルオキシ-4-メトキシフェニル) アクリルアミド、

3 - [3 - (2-エチルブチルオキシ)-4-メトキシフェニル] - (E) -

N - [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) - N - [2 - (4-ヒドロキシ-3-メトキシフェニル) エチル] - 3

- (4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

3 - [3 - (1, 1-ジメチルヘプチル)-4-メトキシフェニル] - (E)

- N - [2 - (4-ヒドロキシフェニル) エチル] アクリルアミド、

(E) - N - [2 - (3, 4-ジヒドロキシフェニル) エチル] - 3 - [3 -

(1, 1-ジメチルヘプチル)-4-メトキシフェニル] アクリルアミド、

3 - (3-ヘキシル-4-メトキシフェニル) - (E) - N - [2 - (4-

ヒドロキシフェニル) エチル] アクリルアミド、

(E) - N - (4-アミノ-3-ペンチルオキシフェニル) - N - [2 - (4

- ヒドロキシフェニル) エチル] アクリルアミド、

(E) - N - (4-アミノ-3-ペンチルオキシフェニル) - N - [2 - (4

- ニトロフェニル) エチル] アクリルアミド、

3 - (4-メトキシ-3-ペンチルオキシフェニル) - (E) - N - [2 - (

4-ペンチルオキシフェニル) エチル] アクリルアミド、

(E) - N - [2 - (4-メトキシフェニル) エチル] - 3 - (4-メトキシ

- 3-ペンチルオキシフェニル) アクリルアミド、

3 - (4-メトキシ-3-ペンチルオキシフェニル) - (E) - N - (2-モ

ルホリノエチル) アクリルアミド、

(E) - N - [2 - (3, 4-ジヒドロキシフェニル) エチル] - 3 - (4-

メトキシ-3-ペンチルオキシフェニル) アクリルアミド、

2 - [2 - {3 - (3-ペンチルオキシ-4-メトキシフェニル) アクリロイ

ルアミノ} エチル] ピリジン-N-オキシド、

(E) - N - [2 - (4-ヒドロキシフェニル) エチル] - 3 - (4-メトキ

シ-3-ペンチルアミノフェニル) アクリルアミド、

3 - [3 - (N', N' - ジペンチルアミノ) - 4 - メトキシフェニル] - (E) - N - [2 - (4 - ヒドロキシフェニル) エチル] アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (3 - ペンチルアミノ - 4 - ペンチルオキシフェニル) アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (N' - メチル - N' - ペンチルアミノ) - 4 - メトキシフェニル] アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (4 - ペンチルオキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - アミノフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (3 - ペンチルオキシ - 4 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (3 - ペンチルオキシ - 4 - メチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - アミノフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - ニトロフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (イミダゾール - 4 - イル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルチオフェニル) アクリルアミド、
(E) - N - [2 - (4 - ニトロフェニル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド、
(E) - N - [2 - (イミダゾール - 4 - イル) エチル] - 3 - (4 - メトキシ - 3 - ペンチルアミノフェニル) アクリルアミド、
(E) - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (4 - メチル

アミノ-3-ペンチルオキシフェニル) アクリルアミド、
 (E)-N-[2-(4-アミノフェニル)エチル]-3-(4-メトキシ-
 3-ペンチルアミノフェニル)アクリルアミド、
 (E)-N-[2-(4-ニトロフェニル)エチル]-3-(4-メチルアミ-
 ノ-3-ペンチルオキシフェニル)アクリルアミド、
 3-(4-メトキシ-3-ペンチルオキシフェニル)-(E)-N-[2-(
 4-チオフェン-2-イル)エチル]アクリルアミド、
 (E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-[(N'-メ-
 チル-N'-ペンチルアミノ)-4-ペンチルオキシフェニル]アクリルアミド、
 (E)-N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-ペンチ-
 ルアミノ-3-ペンチルオキシフェニル)アクリルアミド、
 (E)-N-[2-(4-シアノフェニル)エチル]-3-(4-メトキシ-
 3-ペンチルオキシフェニル)アクリルアミド、および
 (E)-N-[2-(4-カルバモイルフェニル)エチル]-3-(4-メト-
 キシ-3-ペンチルオキシフェニル)アクリルアミド

から選ばれる請求の範囲7記載の化合物またはその医薬上許容される塩。

10. 式(Ib)

[式中、Wは-O-、-S(O)_t、-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OCO- (R⁵、R⁶は同一または異なるてそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルア

ルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹ (R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または-(CH₂)_uS(O)_uR¹² (R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{10b} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

Alk² はアルキレン、アルケニレン、-COCH₂-または-CO-NH(CH₂)_v- (vは0, 1, 2を示す)を示し、当該Alk²におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル；-CONR¹³

R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい) で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

r は0または1を示す。

なお、 $r = 0$ のとき、 R と R^{10b} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい。]

で表される化合物またはその医薬上許容される塩。

11. 式 (Ib)

[式中、Wは $-O-$ 、 $-S(O)-$ 、 $-CR^5R^6-$ 、 $-NR^7-$ 、 $-NR^7CO-$ (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、tは0、1、2を示す) を示し、

R^1 はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^1 における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、 $-N$

$R^8 R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または $-(CH_2)_u S(O)_v R^{12}$ (R^{12} はアルキルを、 u は0, 1, 2を、 v は0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R^{10b} は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

Alk^2 はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

r は0または1を示す。

なお、 $r = 0$ のとき、 R と R^{10b} が隣接する窒素原子と一緒にになってモルホリノ、イミダゾリルを形成してもよい。)

で表される請求の範囲10記載の化合物またはその医薬上許容される塩。

12. R^3 が水素原子、 R^2 が $-OR^{15}$ 、 $-NR^8R^9$ または $-(CH_2)_u S(O)_v R^{12}$ であり、ベンゼン環上の $-CO-NR^{10b}-$ (Alk^2)、 $-R$ の結合

位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ位である請求の範囲11記載の化合物またはその医薬上許容される塩。

13. R¹ が炭素数4～6のアルキルである請求の範囲12記載の化合物またはその医薬上許容される塩。

14. Alk² がエチレンである請求の範囲13記載の化合物またはその医薬上許容される塩。

15. N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

4-エトキシ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド、

4-ジメチルアミノ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルアミノ-4-メトキシベンズアミド、

3-ブチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-ヘキシルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-ヘプチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(3-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(2-ヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシクロヘキシル)エチル]-4-メトキシ-3-

ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-N-メチル-4-メトキシ-3-ペンチルオキシベンズアミド、

3-イソペンチルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

3-(2-エチルブチルオキシ)-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(4-ヒドロキシ-3-メトキシフェニル)エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシ-N-メチル-3-ペンチルオキシベンズアミド、

3-(1,1-ジメチルヘプタン)-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(3,4-ジヒドロキシフェニル)エチル]-3-(1,1-ジメチルヘプタン)-4-メトキシベンズアミド、

3-(1,1-ジメチルヘプタン)-N-[2-(4-ヒドロキシ-3-メトキシフェニル)エチル]-4-メトキシベンズアミド、

3-(1,1-ジメチルヘプタン)-N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシベンズアミド、

N-[2-(3,4-ジヒドロキシフェニル)エチル]-3-(1,1-ジメチルヘプタン)-4-ヒドロキシベンズアミド、

3-ヘキシリ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(4-アミノフェニル)エチル]-3,4-ジペンチルオキシベンズアミド、

3, 4-ジヘキシルオキシ-N-[2-(4-ヒドロキシフェニル)エチル]ベンズアミド、

4-メトキシ-N-[2-(4-ペンチルオキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

4-メトキシ-N-(2-モルホリノエチル)-3-ペンチルオキシベンズアミド、

4-メトキシ-N-[2-(4-プロパン-2-イルオキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-N-[2-(フェニルスルフィニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(3, 4-ジヒドロキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-アセトキシフェニル)エチル]-4-メトキシ-3-ペンチルオキシ-N-(E)-フェニルチオビニルベンズアミド、

N-[2-(4-アセトキシフェニル)エチル]-N-エチル-4-メトキシ-3-ペンチルオキシベンズアミド、

4-[2-{N-(4-メトキシ-3-ペンチルオキシベンゾイル)アミノ}エチル]ピリジン-N-オキシド、

3-[2-{N-(4-メトキシ-3-ペンチルオキシベンゾイル)アミノ}エチル]ピリジン-N-オキシド、

3-ジペンチルアミノ-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-イソヘキシル-4-メトキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシ-3-(N'-メチル-N'-ペンチルアミノ)ベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルアミノ-4-

ペンチルオキシベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 4 - ペンチルアミノ - 3 - ペンチルオキシベンズアミド、

3, 4 -ジペンチルオキシ-N - [2 - (4 - スルファモイルフェニル) エチル] ベンズアミド、

3, 4 -ジペンチルオキシ-N - [2 - (イミダゾール-4 -イル) エチル] ベンズアミド、

3, 4 -ジペンチルオキシ-N - [2 - (4 - ニトロフェニル) エチル] ベンズアミド、

3, 4 -ジペンチルオキシ-N - [2 - (4 - フルオロフェニル) エチル] ベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - ペンチルオキシ-4 - プロペニ-2 -イルベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 4 - プロピルオキシ-3 - ペンチルオキシベンズアミド、

3, 4 -ジブチルオキシ-N - [2 - (4 - ヒドロキシフェニル) エチル] ベンズアミド、

3, 4 -ジヘプチルオキシ-N - [2 - (4 - ヒドロキシフェニル) エチル] ベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 4 - メチルアミノ - 3 - ペンチルオキシベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 3, 4 -ジペンチルアミノ ベンズアミド、

N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - (N' - メチル-N' - ペンチルアミノ) - 4 - ペンチルオキシベンズアミド、

4 - アミノ - N - [2 - (4 - ヒドロキシフェニル) エチル] - 3 - ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシー-3-ペンチルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ペンチルオキシー-3-ペンチルチオベンズアミド、

3, 4-ジペンチルオキシー-N-[2-(2-チエニル)エチル]ベンズアミド、

3, 4-ジペンチルオキシー-N-[2-(5-ヒドロキシンドール-3-イル)エチル]ベンズアミド、

3, 4-ジペンチルオキシー-N-[2-(4-メチルアミノフェニル)エチル]ベンズアミド、

N-[2-(4-ジメチルアミノフェニル)エチル]-3, 4-ジペンチルオキシベンズアミド、

4-ブチリルアミノ-N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-ホルミルアミノ-3-ペンチルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-4-メチルチオ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-ペンチルオキシー-4-ペンチルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル)エチル]-3-(4-ヒドロキシブチルオキシ)-4-メトキシベンズアミド、

N-[2-(4-アミノフェニル)エチル]-4-メトキシー-3-ペンチルチオベンズアミド、

4-メトキシー-N-[2-(4-ニトロフェニル)エチル]-3-ペンチルチオベンズアミド、

N-[2-(イミダゾール-4-イル)エチル]-4-メトキシー-3-ペンチ

ルチオベンズアミド、

N-[2-(4-アミノフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド、

N-[2-(4-ニトロフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド、および

N-[2-(イミダゾール-4-イル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミド

から選ばれる請求の範囲1-4記載の化合物またはその医薬上許容される塩。

16. 式(Ic)

[式中、Wは-O-、-S(O)、-、-CR⁵R⁶-、-NR⁷-、-NR⁷CO-、-CONR⁷-、-COO-または-OOC- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R²は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、-NR⁸R⁹ (R⁸、R⁹は同一または異なってそれぞれ水素原子、アルキル、アルケニル、

アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR⁸とR⁹が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または-(CH₂)_uS(O)_vR¹²(R¹²は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該R²における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

Zは-CH₂-または-CO-を示し、

Qは-CH=CH-、-CH₂CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹- (R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す)を示し、

Alk²はアルキレン、アルケニレン、-COCH₂-または-CONH(CH₂)_v- (vは0, 1, 2を示す)を示し、当該Alk²におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル；-CONR¹³R¹⁴(R¹³、R¹⁴は同一または異なってそれぞれ水素原子またはアルキルを示すか、またはR¹³とR¹⁴が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)で置換されていてもよく、

R'はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていて

もよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。】

で表される化合物またはその医薬上許容される塩。

17. 式(Ic)

[式中、Wは-O-、-S(O)、-、-CR⁵R⁶-、-NR'-または-NR⁷CO- (R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す)を示し、R'はアルキルを示し、

R²は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子またはアルキルを示す)

Zは-CH₂-または-CO-を示し、

Qは-CH=CH-、-CH₂CHR²⁷-、-CH₂-、-S-、-CHOH-、-CO-、-CH₂CO-、-NHCR²⁸(CH₂)_v-、-NHCR²⁹R³⁰-または-N=CR³¹- (R²⁷は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v'は0または1を示す)を示し、

Alk²はアルキレン、-COCH₂-または-COONH(CH₂)_v- (vは0、1、2を示す)を示し、

R'はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換さ

れでいてもよく、当該シクロアルキルは=Oで置換されていてもよく、
rは0または1を示す。】

で表される請求の範囲16記載の化合物またはその医薬上許容される塩。

18. Zが-CO-であり、Qが-CH₂-である請求の範囲17記載の化合物
またはその医薬上許容される塩。

19. R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、
R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj
位である請求の範囲18記載の化合物またはその医薬上許容される塩。

20. R¹が炭素数4~6のアルキルである請求の範囲19記載の化合物または
その医薬上許容される塩。

21. 2-[2-(4-ヒドロキシフェニル)エチル]-5-メトキシ-4-ペ
ンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、

2-[2-(4-ベンジルオキシフェニル)エチル]-5-メトキシ-4-ペ
ンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、

5-メトキシ-2-[2-(4-ニトロフェニル)エチル]-4-ペンチルオ
キシ-2, 3-ジヒドロイソインドール-1-オン、

2-[2-(4-メチルフェニル)エチル]-5-メトキシ-4-ペンチルオ
キシ-2, 3-ジヒドロイソインドール-1-オン、

4, 5-ジペンチルオキシ-2-[2-(イミダゾール-4-イル)エチル]
-2, 3-ジヒドロイソインドール-1-オン、

2-[2-(4-ベンジルオキシフェニル)エチル]-4, 5-ジペンチルオ
キシ-2, 3-ジヒドロイソインドール-1-オン、

4, 5-ジペンチルオキシ-2-[2-(4-ニトロフェニル)エチル]-2
, 3-ジヒドロイソインドール-1-オン、

2-[2-(4-アミノフェニル)エチル]-4, 5-ジペンチルオキシ-2
, 3-ジヒドロイソインドール-1-オン、

4, 5-ジペンチルオキシ-2-[2-(4-ヒドロキシフェニル)エチル]

-2, 3-ジヒドロイソインドール-1-オン、
 4, 5-ジペンチルオキシ-2-[2-(4-メチルアミノフェニル)エチル]
]-2, 3-ジヒドロイソインドール-1-オン、
 2-[2-(4-ジメチルアミノフェニル)エチル]-4, 5-ジペンチルオ
 キシ-2, 3-ジヒドロイソインドール-1-オン、
 2-[2-(4-アミノフェニル)エチル]-5-メトキシ-4-ペンチルオ
 キシ-2, 3-ジヒドロイソインドール-1-オン、
 2-[2-(4-ヒドロキシフェニル)エチル]-5-メトキシ-4-ペンチ
 ルアミノ-2, 3-ジヒドロイソインドール-1-オン、
 5-メトキシ-4-ペンチルオキシ-2-[2-(4-ピリジン)エチル]-
 2, 3-ジヒドロイソインドール-1-オン、
 2-[2-(4-ジメチルアミノフェニル)エチル]-5-メトキシ-4-ペ
 ンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、および
 5-メトキシ-2-[2-(4-メチルアミノフェニル)エチル]-4-ペ
 ンチルオキシ-2, 3-ジヒドロイソインドール-1-オン
 から選ばれる請求の範囲20記載の化合物またはその医薬上許容される塩。

22. Zが-CO-であり、Qが-CH=CH-である請求の範囲17記載の化
合物またはその医薬上許容される塩。

23. R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、
R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj
位である請求の範囲22記載の化合物またはその医薬上許容される塩。

24. R¹が炭素数4~6のアルキルである請求の範囲23記載の化合物または
その医薬上許容される塩。

25. 2-[2-(4-ベンジルオキシフェニル)エチル]-6-メトキシ-5
-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチ
ルオキシ-2H-イソキノリン-1-オン、

2 - [2 - (4 - ピリジル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

4 - [2 - (6 - メトキシ - 1 - オキソ - 5 - ペンチルオキシ - 1 H - イソキノリン - 2 - イル) エチル] フェニルアセテート、

6 - メトキシ - 2 - [2 - (4 - ニトロフェニル) エチル] - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

2 - [2 - (4 - メチルフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

6 - メトキシ - 5 - ペンチルオキシ - 2 - (2 - フェニルエチル) - 2 H - イソキノリン - 1 - オン、

2 - [2 - (4 - アセチルアミノフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

5, 6 - ジペンチルオキシ - 2 - [2 - (4 - ヒドロキシフェニル) エチル] - 2 H - イソキノリン - 1 - オン、

2 - [2 - (4 - アミノフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

2 - [2 - (4 - アミノフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン 塩酸塩、

2 - [2 - (4 - ジメチルアミノフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

2 - [2 - (4 - メチルアミノフェニル) エチル] - 6 - メトキシ - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、

6 - メトキシ - 2 - [2 - (4 - ピペリジノフェニル) エチル] - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン、および

6 - メトキシ - 2 - [2 - (4 - ピリジル) エチル] - 5 - ペンチルオキシ - 2 H - イソキノリン - 1 - オン 塩酸塩

から選ばれる請求の範囲 2 4 記載の化合物またはその医薬上許容される塩。

26. Zが-CO-であり、Qが-CH₂CHR²⁷-であり、R²⁷が水素原子である請求の範囲17記載の化合物またはその医薬上許容される塩。

27. R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である請求の範囲26記載の化合物またはその医薬上許容される塩。

28. R¹が炭素数4~6のアルキルである請求の範囲27記載の化合物またはその医薬上許容される塩。

29. 6-メトキシ-2-[2-(4-オキソシクロヘキシル)エチル]-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-イル)エチル]フェニルアセテート、

2-[2-(4-ヒドロキシフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-(2-フェニルエチル)-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-[2-(4-アセチルアミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

6-ヒドロキシ-2-[2-(4-ヒドロキシフェニル)エチル]-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-[2-(4-メチルフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-[2-(4-アミノフェニル)エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

6-メトキシ-5-ペンチルオキシ-2-[2-(4-ピリジル)エチル]-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸N-(4-アミノフェニル)アミド、

6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸 N-[(4-アミノフェニル) メチル] アミド、および

6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-カルボン酸 N-(4-ニトロフェニル) アミドから選ばれる請求の範囲 28 記載の化合物またはその医薬上許容される塩。

30. Zが-CO-であり、Qが-NHC₂²⁸(CH₂)_v-であり、R²⁸が酸素原子であり、v'が0である請求の範囲 17 記載の化合物またはその医薬上許容される塩。

31. R²が-OR¹⁵、Wが-O-、-NR⁷-または-NR⁷CO-であり、R²の置換位置がベンゼン環上のi位、-WR¹の置換位置がベンゼン環上のj位である請求の範囲 30 記載の化合物またはその医薬上許容される塩。

32. R¹が炭素数4~6のアルキルである請求の範囲 31 記載の化合物またはその医薬上許容される塩。

33. 7-メトキシ-3-[2-(4-ニトロフェニル)エチル]-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、

7-メトキシ-3-[2-(4-ピリジル)エチル]-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-アミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-ヒドロキシフェニル)エチル]-7-メトキシ-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、

3-[2-(4-メチルアミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、および

3-[2-(4-ジメチルアミノフェニル)エチル]-7-メトキシ-8-ペンチルオキシ(1H, 3H)-キナゾリン-2, 4-ジオン、

から選ばれる請求の範囲 32 記載の化合物またはその医薬上許容される塩。

34. 式 (Id)

〔式中、XはCHまたはNを示し、

W'は-O-、-S(O)_₂-、-CR^₅R^₆-、-NR^₇-、-NR^₇CO-、-CONR^₇-、-COO-または-OCO-（R^₅、R^₆は同一または異なってそれぞれ水素原子またはアルキルを、R^₇は水素原子またはアルキルを、tは0、1、2を示す）を示し、

R'はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R'における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^₂は水素原子、アルキル、-OR^{₁₅}（R^{₁₅}は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す）、-NR^₈R^₉（R^₈、R^₉は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、またはR^₈とR^₉が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい）、または-（CH_₂）_ₖS(O)_ₘR^{₁₂}（R^{₁₂}は水素原子、アルキル、アルケニルまたはアルキニルを、uは0、1、2を、u'は0、1、2を示す）を示し、当該R^₂における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオ

キシ、アシリチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

W' R^1 、 R^2 、 R^3 の置換位置は A 環、B 環のいずれの位置であってもよく、B 環はベンゼン環、ピリジン環またはフラン環を示し、

Alk^1 は $-CH=CH-$ 、 $-CH_2-CH_2-$ または $-C\equiv C-$ を示し、

R^{10d} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

Alk^2 はアルキレン、アルケニレン、 $-COCH_2-$ または $-CONH(CH_2)_v-$ (v は 0, 1, 2 を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基；カルボキシル；アルコキシカルボニル；水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル； $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい) で置換されていてもよく、

R はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシリオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、 $=O$ で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p 、 r はそれぞれ独立して 0 または 1 を示す。

なお、 $r = 0$ のとき、 R と R^{10d} が隣接する窒素原子と一緒にになってヘテロアリ

ールを形成してもよい。]

で表される化合物またはその医薬上許容される塩。

35. 式 (Id)

[式中、XはCHまたはNを示し、

W'は-O-、-S(O)、-、-CR⁵R⁶-、-NR⁷-または-NR⁷C(O)-(R⁵、R⁶は同一または異なってそれぞれ水素原子またはアルキルを、R⁷は水素原子またはアルキルを、tは0、1、2を示す)を示し、R¹はアルキルを示し、

R²は水素原子、アルキルまたは-OR¹⁵(R¹⁵は水素原子、アルキルを示す)を示し、

R³は水素原子またはハロゲン原子を示し、

W' R¹、R²、R³の置換位置はA環、B環のいずれの位置であってもよく、B環はベンゼン環またはフラン環を示し、

Alk¹は-CH=CH-または-CH₂CH₂-を示し、

R^{10d}は水素原子を示し、

Alk²はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。]

で表される請求の範囲34記載の化合物またはその医薬上許容される塩。

36. XがNである請求の範囲35記載の化合物またはその医薬上許容される塩。

37. R³が水素原子、R²が-OR¹⁵であり、Wが-O-である請求の範囲36記載の化合物またはその医薬上許容される塩。

38. R^1' が炭素数 4 ~ 6 のアルキルである請求の範囲 37 記載の化合物またはその医薬上許容される塩。

39. 7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 $N-[2-(4-\text{ピリジル})\text{エチル}]$ アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 $N-[2-(4-\text{ヒドロキシフェニル})\text{エチル}]$ アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 $N-[2-(4-\text{アミノフェニル})\text{エチル}]$ アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 $N-[2-(4-\text{ニトロフェニル})\text{エチル}]$ アミド、および

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 $N-[2-(\text{イミダゾール}-4-\text{イル})\text{エチル}]$ アミド

から選ばれる請求の範囲 38 記載の化合物またはその医薬上許容される塩。

40. 式 (Ie)

[式中、W は $-\text{O}-$ 、 $-\text{S}(\text{O})_2-$ 、 $-\text{CR}^5\text{R}^6-$ 、 $-\text{NR}^7-$ 、 $-\text{NR}^7\text{CO}-$ 、 $-\text{CONR}^7-$ 、 $-\text{COO}-$ または $-\text{OCO}-$ (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、t は 0、1、2 を示す) を示し、

R^1 はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 R^1 における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスル

ホニルで置換されていてもよく、

R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒にになってヘテロアリールを形成してもよい)、または $- (CH_2)_u S (O)_v R^{12}$ (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 u は 0, 1, 2 を、 v は 0, 1, 2 を示す) を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカブト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^6 は式 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ビリジルで置換されていてもよい。]

で表される化合物またはその医薬上許容される塩。

41. 式 (Ie).

[式中、Wは-O-または-S(O)_u-を、tは0, 1, 2を示す)を示し、R¹はアルキルを示し、

R²は水素原子、アルキル、-OR¹⁵(R¹⁵は水素原子またはアルキルを示す)、または-(CH₂)_uS(O)_uR¹²(R¹²はアルキルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、

R³は水素原子、アルコキシ、アルキル、アルコキカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R⁶は式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。]

で表される請求の範囲4 0記載の化合物またはその医薬上許容される塩。

4 2. R²が-O R¹⁵または-(CH₂)_uS(O)_uR¹²であり、ベンゼン環上の-R⁶の結合位置に対して、R²の置換位置がパラ位、-WR¹の置換位置がメタ位である請求の範囲4 1記載の化合物またはその医薬上許容される塩。

4 3. R^{1'}が炭素数4～6のアルキルである請求の範囲4 2記載の化合物またはその医薬上許容される塩。

4 4. 2-(4-メトキシ-3-ペンチルオキシフェニル)-4, 4-ジメチル-4, 5-ジヒドロオキサゾール、

2-(4-メトキシ-3-ペンチルチオフェニル)-4, 4-ジメチル-4, 5-ジヒドロオキサゾール、

2-(3, 4-ジペンチルオキシフェニル)-4, 4-ジメチル-4, 5-ジ

ヒドロオキサゾール、

2-(4-メチルチオ-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(3-ペンチルオキシ-4-ペンチルチオフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(4-ペンチルオキシ-3-ペンチルチオフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、および

2-(4-メトキシ-3-ペンチルオキシフェニル)-5-(2-ピリジル)-4,5-ジヒドロオキサゾール

から選ばれる請求の範囲43記載の化合物またはその医薬上許容される塩。

45. 請求の範囲3~44のいずれかに記載の化合物またはその医薬上許容される塩を有効成分として含有してなる医薬組成物。

46. カンナビノイドレセプターが末梢型カンナビノイドレセプターである請求の範囲1または2記載のカンナビノイドレセプター作動薬または拮抗薬。

47. 免疫調節剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

48. 自己免疫疾患治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

49. 抗炎症剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

50. 抗アレルギー剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

51. 腎炎治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00291

A. CLASSIFICATION OF SUBJECT MATTER Int. Cl⁶ C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42,
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) Int. Cl⁶ C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 6-211867, A (F. Hoffmann-La Roche AG.), August 2, 1994 (02. 08. 94), Claim; pages 4 to 9 & EP, 597333, A2 & US, 5315015, A & CA, 2108919, A	1 - 51
X	JP, 49-93335, A (Kissei Pharmaceutical Co., Ltd.), September 5, 1974 (05. 09. 74), Claim; pages 4 to 6	3-5, 45
A	& BE, 809935, A & NL, 7400754, A & DE, 2402398, A & FI, 7400145, A & FR, 2214476, A & PT, 61195, A & HU, 10376, T & US, 3940422, A & AT, 7400443, A & GB, 1446141, A & SU, 520041, A & CA, 1029744, A	6 - 9
X	US, 4743610, A (American Cyanamid Co.), May 10, 1988 (10. 05. 88), Claims (Family: none)	10, 11, 45
A	EP, 176333, A2 (Ortho Pharmaceutical Corp.), September 23, 1985 (23. 09. 85),	12 - 15
X		16, 17, 30, 45

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search May 27, 1997 (27. 05. 97)	Date of mailing of the international search report June 3, 1997 (03. 06. 97)
Name and mailing address of the ISA/ Japanese Patent Office Facsimile No.	Authorized officer Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00291

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Claims; examples & AU, 8547698, A & NO, 8503730, A & DK, 8504311, A & PT, 81182, A & FI, 8503639, A & HU, 40087, T & US, 4639518, A & ES, 8701737, A & ZA, 8507302, A & SU, 1409129, A & KR, 9001181, B	31 - 33
X	WO, 91/14677, A1 (Otsuka Pharmaceutical Co., Ltd.), October 3, 1991 (03. 10. 91), Claim 18; example	34 - 36
A		37 - 39
X	JP, 50-89363, A (Hoechst AG.), July 17, 1975 (17. 07. 75), Page 15, example	40 - 42
A	& BE, 823279, A & NL, 7415940, A & DE, 2458176, A & DK, 7406450, A & FR, 2254332, A & US, 3962259, A & GB, 1495286, A & AT, 7409883, A & CA, 1051886, A & IL, 46202, A & CH, 620214, A	43, 44
PA	LIN, J.H., et al. New Poly(amide-Imide)s Synthesis. XVII. Journal of Polymer Science: Part A: Polymer Chemistry, April 1996, Vol. 34, No. 5, p. 747-754	16 - 21
T	Database CA on STN, No. 118:226257 (1997)	16, 17, 22-25

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00291

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18,
263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04,
A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415,
31/42, 31/425, 31/44, 31/47, 31/505

B. (Continuation) FIELDS SEARCHED

C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60,
233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12,
403/06, 409/06, 413/04, A61K31/11, 31/165, 31/19, 31/215, 31/275,
31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl. ' C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04,

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. ' C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04,

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

引用文献の カテゴリ*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	J P, 6-211867, A (エフ・ホフマンーラ ロシュ アーゲー) 2. 8月. 1994 (02. 08. 94) 特許請求の範囲, 第4~9頁 & E P, 597333, A2 & U S, 5315015, A & C A, 2108919, A	1~5 1
X	J P, 49-93335, A (キッセイ薬品工業株式会社) 5. 9月. 1974 (05. 09. 74) 特許請求の範囲, 第4~6頁	3~5, 4 5
A	& B E, 809935, A & N L, 7400754, A & D E, 2402398, A & F I, 7400145, A & F R, 2214476, A & P T, 61195, A & H U, 10376, T & U S, 3940422, A & A T, 7400443, A & G B, 1446141, A & S U, 520041, A & C A, 1029744, A	6~9

 C欄の続きを参考。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

27. 05. 97

国際調査報告の発送日

030697

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

柳 和子

印

4H 9547

電話番号 03-3581-1101 内線 3444

C(続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	U.S. 4 7 4 3 6 1 0, A (American Cyanamid Company) 1 0. 5 月. 1 9 8 8 (1 0. 0 5. 8 8) CLAIMS (ファミリーなし)	1 0, 1 1, 4 5
A		1 2 - 1 5
X	E P, 1 7 6 3 3 3, A 2 (ORTHO PHARMACEUTICAL CORPORATION) 2 3. 9 月. 1 9 8 5 (2 3. 0 9. 8 5) CLAIMS, EXAMPLES	1 6, 1 7, 3 0
A	& AU, 8 5 4 7 6 9 8, A & NO. 8 5 0 3 7 3 0, A & DK, 8 5 0 4 3 1 1, A & PT, 8 1 1 8 2, A & FI, 8 5 0 3 6 3 9, A & HU, 4 0 0 8 7, T & US, 4 6 3 9 5 1 8, A & ES, 8 7 0 1 7 3 7, A & ZA, 8 5 0 7 3 0 2, A & SU, 1 4 0 9 1 2 9, A & KR, 9 0 0 1 1 8 1, B	, 4 5 3 1 - 3 3
X	WO, 9 1 / 1 4 6 7 7, A 1 (大塚製薬株式会社) 3. 1 0 月. 1 9 9 1 (0 3. 1 0. 9 1) 請求の範囲 1 8, 実施例	3 4 - 3 6
A		3 7 - 3 9
X	J P, 5 0 - 8 9 3 6 3, A (ヘキスト・アクチエングゼルシャフト) 1 7. 7 月. 1 9 7 5 (1 7. 0 7. 7 5) 第 1 5 頁, 実施例	4 0 - 4 2
A	& BE, 8 2 3 2 7 9, A & NL, 7 4 1 5 9 4 0, A & DE, 2 4 5 8 1 7 6, A & DK, 7 4 0 6 4 5 0, A & FR, 2 2 5 4 3 3 2, A & US, 3 9 6 2 2 5 9, A & GB, 1 4 9 5 2 8 6, A & AT, 7 4 0 9 8 8 3, A & CA, 1 0 5 1 8 8 6, A & IL, 4 6 2 0 2, A & CH, 6 2 0 2 1 4, A	4 3, 4 4
PA	LIN, J. H., et al. New Poly(amide-Imide)s Synthesis. XVII. Journal of Polymer Science: Part A: Polymer Chemistry, April 1996, Vol. 34, No. 5, p. 747-754	1 6 - 2 1
T	Database CA on STN, No. 118:226257 (1997)	1 6, 1 7, 2 2 - 2 5

第2ページA欄の続き

A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

第2ページB欄の続き

A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

THIS PAGE BLANK (USPTO)