ASD - ćwiczenia VIII

Wyważone drzewa przeszukiwań binarnych – typu AVL

• własność wyważenia drzew AVL

gdzie dla każdej trójki wierzchołków drzewa BST (X,Y,Z) różnica wysokości poddrzew wierzchołka Y jest następująca $h(X) - h(Z) \in \{-1,0,1\}$,

• definicja wskaźnikowa struktury typu węzeł drzewa AVL w pseudokodzie

typedef struct AVLTreeNode AVLTree;

```
struct AVLTreeNode {
  element elem;
  int h_left, h_right;
  struct AVLTreeNode left, right, parent;
};
```

- podstawowe operacje dla drzewa binarnego typu AVL:
 - o $EMPTY: \mathcal{T} \rightarrow \{TURE, FALSE\}$, sprawdzenie czy struktura jest pusta,
 - o $INSERT: \mathcal{T} \times E \rightarrow \mathcal{T}$, wstawienie elementu do struktury,
 - o $DELETE: \mathcal{T} \times E \rightarrow \mathcal{T}$, usunięcie elementu ze struktury,
 - o $MEMBER: \mathcal{T} \times E \to \{TURE, FALSE\}$, sprawdzenie, czy dany element jest przechowywany w strukturze,

gdzie $\mathcal T$ jest przestrzenią drzew typu AVL, E zbiorem etykiet wierzchołków drzewa typu AVL,

• złożoność czasowa podstawowych operacji n-elementowego drzewa typu BST:

```
 \begin{array}{l} \circ \ A \left( \mathtt{EMPTY}(), n \right) = O \left( 1 \right), \ W \left( \mathtt{EMPTY}(), n \right) = O \left( 1 \right), \\ \circ \ A \left( \mathtt{INSERT}(), n \right) = O \left( \log \left( n \right) \right), \ W \left( \mathtt{INSERT}(), n \right) = O \left( \log \left( n \right) \right), \\ \circ \ A \left( \mathtt{DELETE}(), n \right) = O \left( \log \left( n \right) \right), \ W \left( \mathtt{DELETE}(), n \right) = O \left( \log \left( n \right) \right), \\ \circ \ A \left( \mathtt{MEMBER}(), n \right) = O \left( \log \left( n \right) \right), \ W \left( \mathtt{MEMBER}(), n \right) = O \left( \log \left( n \right) \right), \end{array}
```

• operacji rotacji pojedynczej w prawo (rotacja w lewo jest przypadkiem symetrycznym)

• operacja rotacji podwójnej w prawo (rotacja w lewo jest przypadkiem symetrycznym)

Zadania

- Przedstaw schemat rotacji pojedynczej w lewo z uwzględnieniem wag w węzłach drzewa AVL. Na przykładowym drzewie AVL przeprowadź operację wstawienia elementu, która wymusiłaby taką rotację (tj. drzewo wejściowe → wstawienie elementu → drzewo po rotacji).
- Przedstaw schemat rotacji podwójnej w prawo z uwzględnieniem wag w węzłach drzewa AVL. Na przykładowym drzewie AVL przeprowadź operacje usunięcia elementu, która wymusiłaby taką rotację (tj. drzewo wejściowe → usunięcie elementu → drzewo po rotacji).
- 3. Ile maksymalnie operacji rotacji należy wykonać aby wstawić dany element do drzewa AVL o wysokości h i 2^h-1 wierzchołkach? Zakładamy, że wstawiany element nie występuje w rozważanej strukturze.
- 4. Które z podanych poniżej stwierdzeń jest prawdziwe, odpowiedź uzasadnij:
 - (a) średni koszt wstawienia m elementów do losowego drzewa BST zawierającego już n elementów to $\Theta(\log^m(n))$, gdzie $m = \Theta(n)$,
 - (b) pesymistyczny koszt wstawienia m elementów do losowego drzewa AVL zawierającego już n elementów to $\Theta(n^2)$, gdzie $m = \Theta(n^2)$,
 - (c) niech $leaf_{BST}(h)$ oraz $leaf_{AVL}(h)$ oznaczają kolejno minimalną liczbę liści w drzewie BST i drzewie AVL wysokości h, wtedy $leaf_{AVL}(h) = O\left(leaf_{BST}(h)\right)$,
 - (d) istnieje liniowy algorytm konstruowania drzewa BST dla dowolnego wejściowego n-elementowego ciąg liczb naturalnych.
- 5. Załóżmy, że wierzchołki pewnego drzewa binarnego T są etykietowane liczbami całkowitymi. Napisz funkcję rekurencyjną

int IS_AVL(Tree T),

która:

- \bullet je
żeli drzewoTjest drzewem typu AVL, wyznaczy jego wysokość,
- jeżeli drzewo T nie jest drzewem typu AVL, zwróci wartość (-1).
- 6. Czy prawdziwe są poniższe stwierdzenia:
 - (a) każde drzewo AVL jest idealnym drzewem BST¹,
 - (b) każde idealne drzewo BST jest drzewem AVL.

¹Drzewo binarne nazywamy idealnym, jeżeli dla każdego jego wierzchołka v prawdziwa jest zależność $l(v) - r(v) \in \{-1, 0, 1\}$, gdzie l(v), r(v) to odpowiednio liczba wierzchołków w lewym i prawym poddrzewie wierzchołka v. Jeżeli dodatkowo drzewo to jest drzewem BST to nazywamy je idealnym drzewem BST.