

**Bridesburg Neighbor** 

September 12, 2023

Subject:

COMMUNITY REPORT FOR 2022 GROUNDWATER SAMPLING EVENT ROHM

AND HAAS CHEMICALS LLC - PHILADELPHIA PLANT

Dear Bridesburg Neighbor:

Please find the enclosed copy of the "Update on Philadelphia Plant Groundwater Report – 2022".

If you no longer wish to receive a copy of this annual report or have changes to the name/address this report has been sent to, please contact me at (989) 636-8395 or Rebecca Hensel with Arcadis at (315) 671-9296.

Very truly yours,

Amy Lee

Rohm and Haas Chemicals LLC

Remediation Leader

Aug L. Lee

Cc: Rebecca Hensel/Arcadis Site Manager

|     |  | * |
|-----|--|---|
|     |  | , |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
|     |  |   |
| g 4 |  |   |



The Trusted Integrator for Sustainable Solutions

28 August 2023

Bridesburg Neighbors c/o Rohm and Haas Chemicals LLC A Subsidiary of The Dow Chemical Co. 5000 Richmond Street Philadelphia, PA 19137

**RE:** Review of the April 2023 Update on Philadelphia Plant Groundwater Report on the 2022 Annual Groundwater Sampling – Rohm and Haas Chemicals LLC

#### Dear Bridesburg Neighbor:

At the request of Rohm and Haas, Weston Solutions, Inc. (WESTON) has conducted an independent review and assessment of the results provided in the 2022 Annual Update Report (dated April 2023) for the groundwater plume present at the Rohm and Haas Philadelphia Plant located on Bridge Street. This work was conducted as a continuation of our neighborhood assistance program, started in September 1997. WESTON conducted this review in two steps:

- In the first step, Zack Bentley of WESTON visited the site on Wednesday, 28 September 2022 and observed portions of the groundwater sampling activities conducted by Rohm and Haas' consultant, Arcadis on that day. This included observing the purging and sampling conducted at 5 monitoring wells (TW-1S, TW-2S, MW-1, LA-5 and MW-2) located in the Bridesburg neighborhood. The entire annual sampling event at the site occurred during the month of September 2022.
- The second step involved a review of both the groundwater level information and the two groundwater sampling results summary tables for the onsite and offsite wells (**Tables 1** and **2**). This activity included reviewing and verifying the information provided on **Figures 1**, **2**, and **3** and the Appendices included with the 2022 Update Report (dated April 2023). This also included reviewing the text of the Update Report and evaluating the report's conclusions.

Based on both WESTON's review of these materials and observations from the on-site sampling activities on 28 September 2022, we have reached the following conclusions:

• The groundwater sampling activities observed on 28 September 2022 were conducted by Arcadis personnel in accordance with the approved work plan procedures for the site (i.e., low-flow purging and sampling methods). Sampling



#### **Bridesburg Neighbors**

-2-

28 August 2023

at each well was performed following stabilization of general water quality parameters (i.e. dissolved oxygen, pH, oxidation/reduction potential, specific conductance). In addition, the pump housings and water level probes were fully decontaminated with soap and water between wells, and new gloves and dedicated pump tubing and pump bladders were utilized at each well to prevent cross-contamination between wells.

- Laboratory testing results for the September 2022 sampling event (provided as **Tables 1** and **2**) indicate that only a very small area in the vicinity of on-site well MW-3 was the only area of the site with Total Volatile Organic Compounds (TVOCs) concentrations above 1 ppm. All of the off-site monitoring well locations were below the total VOC clean up goal of 1 ppm, therefore satisfying Rohm and Haas's commitment to the community. Previously, in 2021, off-site well Off-18 had been the only remaining off-site well in the Bridesburg neighborhood with TVOC concentrations above 1 ppm. However, the sampling results in well Off-18 in September 2022 were now only 0.172 ppm, well below the clean up goal of 1 ppm. This contrast significantly with the areal extent of the plume that was originally depicted for the site in 1994 as depicted on **Figure 1** in the 2022 Update Report.
- The concentrations of chemicals present in the groundwater plume have generally declined since WESTON's last review of the data from 2021. We have reviewed the chemical data for the group of 21 wells that were sampled by Arcadis in 2022 as part of the monitoring program. These 21 wells included 11 off-site wells (wells located south of Bridge Street, within the neighborhood) and 10 nearby onsite wells (wells located north of Bridge Street, on Rohm and Haas' property in proximity to the neighborhood).
- The data from the 21 wells sampled in September 2022 were compared to the groundwater data from these wells when last sampled in September 2021. These data indicate that 2 of the 21 wells showed a decrease in the concentrations of TVOCs, while 6 of the 21 wells showed a slight increase in concentrations from the 2021 annual sampling event. Thirteen of the 21 wells contained concentrations that were unchanged (± 25 μg/L) since the previous annual sampling round in 2021. These data indicate that a slow but consistent reduction in the concentration of organic chemicals in the groundwater plume is occurring.
- Overall, the contaminant plume size and concentration has declined significantly since September 1994, as depicted on both the groundwater plume map (Figure 1) and the graph of historical concentrations (Figure 3). This effect has been





most pronounced along Bridge Street, in the area closest to the Rohm and Haas groundwater recovery trench. During the September 2021 sampling event, there was only 1 off-site well with TVOC concentrations exceeding 1 ppm. Off-site well Off-18 contained 7.72 ppm at that time, however, during the September 2022 sampling event, TVOC concentrations in off-site well Off-18 contained only 0.172 ppm, which is well below the clean up goal of 1 ppm. TVOC concentrations in September 2022 throughout the on-site portion of the plume indicated that only well MW-3 contained TVOC concentrations above the clean up goal of 1 ppm, with a concentration of 3.36 ppm, as shown on the plume map (**Figure 1**) and the graph of historical results from 1994 to 2022 (**Figure 3**).

-3-

- In June 2019, the groundwater recovery trench was shut down after discussions with the Pennsylvania Department of Environmental Protection (PADEP) and the U.S. Environmental Protection Agency (USEPA) to do so. Subsequently the recovery trench was restarted in May 2020 and operated throughout April 2021. The recovery trench was shutdown in April 2021 and Rohm and Haas implemented a bioremediation program to target TVOC concentrations above 1 ppm as an alternate remedial measure to operating the recovery trench. Based upon performance results to date, the recovery trench will remain shutdown indefinitely. Rohm and Haas will continue to monitor groundwater quality at the site in accordance with PADEP Act 2 requirements. Based upon the overall continued improvements in groundwater quality observed at the site in recent years, it is anticipated that the focused bioremediation program, along with the natural biodegradation processes at the site will also continue to attenuate/reduce the TVOCs in the site groundwater.
- The September 2022 water level data presented on **Figure 2** of the Arcadis report depicts the groundwater surface at the site on 26 September 2022, prior to the initiation of the groundwater sampling program. As shown on **Figure 2**, the natural groundwater flow direction at the site continues to be towards the west-southwest and west-northwest.

In summary, based on our review of the 2022 groundwater data, WESTON confirms that the conclusion contained in the comprehensive study report (WESTON, June 1998), that the continued cleanup activities associated with the groundwater contaminant plume by Rohm and Haas is not affecting the homes in the Bridesburg neighborhood, continues to be true.

WESTON is pleased to continue our involvement on this important project by reviewing the 2022 Update Report. Based on the 2022 sampling results from the site, all off-site



#### **Bridesburg Neighbors**

-4-

28 August 2023

monitoring well locations were shown to have TVOC concentrations below the agreed to clean up goal of 1 ppm, therefore satisfying Rohm and Haas's commitment to the community. As a result, this report will be the last community groundwater report. Rohm and Haas will continue to monitor both the on-site and off-site groundwater quality and report these results to the PADEP in accordance with the Act 2 requirements.

As always, if you observe any unusual physical changes in the neighborhood homes or have questions or comments about this letter or any other aspects of the groundwater remediation activities, please contact me by e-mail at P.Landry@westonsolutions.com, or by phone at 610-701-3798.

Very truly yours,

WESTON SOLUTIONS, INC.

Paul G. Landry, PG

Senior Technical Manager

Cc: A. Lee (R&H)

R. Hensel (Arcadis)

E. Hicks (Weston)

B. Bolt (Weston)



Update on Philadelphia Plant Groundwater Report

Rohm and Haas Chemicals LLC

**April 2023** 

|  |  | 14 |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |



### TABLE OF CONTENTS

| EXECUTIVE   | SUMMARY Page i                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| 1.0 HISTOR  | CICAL REVIEWPage 1                                                                                                |
| 2.0 2022 GR | OUNDWATER SAMPLE RESULTS Page 3                                                                                   |
| 3.0 OPERA   | FIONAL NOTESPage 3                                                                                                |
| 4.0 ECONO   | MIC PROTECTION PLAN (EPP)Page 5                                                                                   |
| 5.0 COMME   | ENTSPage 5                                                                                                        |
|             |                                                                                                                   |
| LIST OF FIG | RURES                                                                                                             |
| FIGURE 1    | Extent of Groundwater Plume > 1 ppm in<br>1994 and Groundwater Management System<br>Performance Monitoring – 2022 |
| FIGURE 2    | Groundwater Flow Direction Groundwater<br>Management System Performance<br>Monitoring – 2022                      |
| FIGURE 3    | Total Volatile Organic Compounds<br>Comparison 1994 and 2022                                                      |
| I ICT OF AD | DENDICEC                                                                                                          |

#### LIST OF APPENDICES

APPENDIX A Chronology of Groundwater Study and Cleanup

APPENDIX B Historical Groundwater Quality Data

Table 1 – Analytical Results for On-Site Wells

Table 2 – Analytical Results for Off-Site Wells

|  |  | * |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |



### UPDATE ON PHILADELPHIA PLANT GROUNDWATER REPORT – SEPTEMBER -2022

#### EXECUTIVE SUMMARY

The following report provides an update to the community on the status of groundwater conditions in the area. The purpose of the annual sampling is to monitor the reduction of volatile organic compounds (VOC) in the groundwater.

Prior to 2009, the report was generated twice a year following sampling events conducted in the spring and late summer by Rohm and Haas Chemicals LLC (Rohm and Haas). In 2009, after evaluating the sampling program, Rohm and Haas revised the program to be conducted on an annual (once yearly) basis, with the sampling event to occur in the late summer. Based on 2022 sampling results, off-site monitoring locations are below the total VOCs clean up goal of 1ppm, therefore satisfying Rohm and Haas's commitment to the community. This report will be the last community groundwater report. Rohm and Haas will continue to monitor the off-site groundwater quality and report these results in accordance with the Pennsylvania Department of Environmental Protection Act 2 requirements.

The previous report was distributed in January 2022, based on the September 2021 sampling event. Information obtained since the previous report includes the following:

- Groundwater samples were most recently collected from 21 wells (10 on-site and 11 off-site) in September 2022.
- The historic location of the groundwater plume with total VOC concentrations greater than 1 part per million (ppm) is shown on Figure 1. Over time, due to cleanup measures implemented by Rohm and Haas and natural biodegradation processes, the plume has continued to decrease significantly in size and concentration since 1994. All off-site monitoring locations were below the 1 ppm total VOCs criteria in 2022.
- The groundwater movement relative to recent sampling events is generally unchanged (Figure 2), with the west-northwesterly groundwater flow direction.

The information presented above is discussed in more detail in the following pages.

**General Business** 

|  |  | *  |
|--|--|----|
|  |  | ē. |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |



### UPDATE ON PHILADELPHIA PLANT GROUNDWATER REPORT – SEPTEMBER 2022

#### 1.0 HISTORICAL REVIEW

In 1994, Rohm and Haas discovered and reported to the community that chemicals, called volatile organic compounds, present in the groundwater beneath the facility had moved with the groundwater across Bridge Street and under neighboring homes. The chemical plume migrated beneath the block bounded by the 2600 block of Bridge Street, the 4800 block of Thompson Street, a portion of the odd-numbered properties on the 2700 block of Pratt Street, and the 4800 block of Salmon Street (as shown in Figure 1).

A residential air sampling program to evaluate safety in the neighborhood was conducted in October 1994. Rohm and Haas reported the results of the residential air sampling program in a booklet entitled "Philadelphia Groundwater Report" that concluded that the air was found to be safe. The same booklet also included the plan of action for removing the VOCs in the groundwater and for protecting the property values in the neighborhood during the remediation period.

A working group of neighbors was formed in 1997 to list and address their concerns with Rohm and Haas; facilitated by Weston Solutions, Inc. (Weston), environmental consultants. As a result of the group's questions, Weston conducted a second robust air sampling and soil vapor testing program which confirmed that indoor air in houses overlying the VOC plume were not affected by the groundwater and, therefore, were safe. In addition, Weston found that groundwater remediation activities had no effects on home structures and confirmed the interpretation of data obtained by URS Corporation (URS), consultants to Rohm and Haas.

A system of groundwater extraction wells was installed in 1994 which was later augmented with a 250-foot groundwater recovery trench in 1998 to increase the rate of groundwater recovery. A soil vapor extraction (SVE) system was also activated on the plant site in 1996 to remove VOCs above the water table.

While there has been substantial progress in recovering VOCs from the groundwater, in March 2001, Rohm and Haas recognized it would not meet its target date for achieving the goal of 1 ppm of total VOCs in groundwater in the neighborhood. Rohm and Haas then informed all neighbors of this conclusion by letter and in a meeting with the former groundwater working group and the plant's Community Advisory Committee (CAC). In March 2001, Rohm and Haas began conducting



additional studies to evaluate options to accelerate the removal of the remaining chemicals. The studies included sampling of the soils in the neighborhood, computer modeling and an engineering feasibility evaluation which concluded the following:

- The chemicals in the groundwater were reduced by a naturally occurring process called biodegradation.
- The chemicals bound in the soil are less available to this biodegradation process, thus, slowing down the cleanup time.

Rohm and Haas met with the former neighborhood working group on July 18, 2001, provided a summary of the findings of the studies, and listened to their comments.

Additional soil samples were collected from on-site locations in April 2002, and Rohm and Haas conducted tests on these samples to evaluate whether the removal of VOCs could be accelerated by introducing surfactants (detergents) to the affected saturated soil. The evaluation included controlled testing of the soil samples in a university environmental engineering laboratory to determine how effective detergent compounds would be in releasing the chemicals from the soil. This study was completed in 2003, and Rohm and Haas met with the CAC on November 3, 2003, and the former groundwater working group on December 9, 2003, to discuss the results. The study concluded the following:

- A 2-year pilot test of the experiment at the Rohm and Haas facility would be required to predict the actual performance of the proposed cleanup method safely and more accurately.
- Full-scale application of the detergents would require installation of a large number of dosing wells in the community, which would be invasive to the neighbors.
- Application of the detergents from the installed wells would be required for approximately 5 years.
- Under ideal conditions, the surfactant cleanup method could possibly achieve the 1 ppm goal in 8 years. However, under realistic conditions, the predicted elapsed cleanup time using the surfactants was estimated to be approximately 13 years, versus 17 years for the current system.

The results of the surfactant study have been discussed with all stakeholders. Based on the study's findings, Rohm and Haas has recommended that, since the groundwater plume poses no health or property risk to residents and the trench operations do not affect home foundations, the most prudent path forward consists of continuing the current trench collection and monitoring operations until the cleanup goal is met, as well as continue to investigate feasible options to speed up the cleanup. This was agreed to by members of the neighborhood



former groundwater working group; the members of the plant's CAC; and Weston, consultant to the former groundwater working group.

A complete chronology of groundwater study and cleanup events is presented in Appendix A.

## 2.0 SEPTEMBER 2022 GROUNDWATER SAMPLE RESULTS

The Groundwater samples were scheduled to be collected from 22 wells (10 on-site; 12 off-site) in 2022 to evaluate ongoing cleanup progress. Monitoring well OFF-17 was unable to be sampled due to access issues. As a result, a total of 21 wells (10 on-site and 11 off-site) were sampled during the 2022 sampling event. Appendix B presents groundwater data collected from 2008 to the present, including detailed analytical results by well from the most recent round of sampling. A complete set of historical groundwater data (beginning in 1995) can be provided by Rohm and Haas upon request.

Figure 1 shows the location of the plume in 2022 with green shading illustrating areas cleaned up to below 1 ppm of total VOCs, and the pink area which contains total VOCs above 1 ppm. Figure 2 illustrates the direction of groundwater movement in September 2022, which is generally towards the west-northwesterly. Figure 3 depicts graphically the decrease in VOC concentrations for key wells in the Bridge Street plume area since August 1994.

In 2022, all sampled off-site monitoring locations were below the 1 ppm total VOCs goal, therefore Rohm and Haas has satisfied its commitment to the community.

#### 3.0 OPERATIONAL NOTES

The groundwater management system currently consists of a 250-foot groundwater recovery trench and, prior to March 2004, included nine recovery wells. No separate phase (or non-soluble) organic compounds have been detected since the August 2006 sampling event and no separate phase materials have been recovered by the groundwater operations since March 2000. Prior operations recovered 2,045 gallons of organic materials from the groundwater.

In October 2005, Rohm and Haas completed modifications to the groundwater management system. The modifications included discontinuation of pumping by the recovery wells in March 2004 because modeling had shown that the groundwater movement can be controlled by the operation of the groundwater recovery trench.

3



Twenty-two sampling events between 2004 and 2022 have been conducted since the shutoff of the recovery wells in March 2004. Data collected during these events indicated that the recovery trench was adequately managing groundwater movement during that period. In June 2019 the recovery trench was shut down after discussion with the Pennsylvania Department of Environmental Protection (PADEP) and Environmental Protection Agency to do so. Subsequently the recovery trench was restarted in May 2020 and operated throughout April 2021. In April 2021, the recovery trench was shut down and Rohm and Haas implemented bioremediation to target TVOC concentrations above 1 ppm as an alternate remedial measure to the recovery trench. Based upon performance results, the trench will remain shut down. Rohm and Haas will continue to monitor in accordance with the Pennsylvania Department of Environmental Protection Act 2 requirements. Figure 2 illustrates the direction of groundwater movement in September 2022.

Due to improvements in groundwater quality in the area, the SVE system (first activated in 1996) was shut down in July 2004. For the operation of the SVE system to provide benefit to cleanup, concentrations of VOCs above those currently detected at the Site would be required.

In 2009, Rohm and Haas evaluated the sampling program conducted to date, which began in 1994, and revised the program to be conducted on an annual (once yearly) basis, with the sampling event to be conducted in the second half of the year. The change in the sampling program was communicated to, and agreed upon, by the PADEP and communicated to all stakeholders.

In 2012, Rohm and Haas evaluated the sampling program and determined that several wells were no longer needed to monitor the changes in the groundwater quality or groundwater flow direction. Therefore, wells OFF-1, OFF-7, OFF-8, OFF-9, TW-32S(R), TW-34S, and TW-43S were plugged and abandoned and removed from the sampling program. In June 2022, on-site wells MW-7, MW-9, MW-10, TW-33S, TW-35S(R), TW-37S were plugged and abandoned.

No sampling was performed in 2014 while an access agreement was being developed between Rohm and Haas and the Pennsylvania Department of Transportation.

As anticipated, the natural biodegradation processes continued to reduce the TVOC concentrations in the site groundwater. Based on 2022 sampling results, off-site monitoring locations are below the total VOCs clean up goal of 1 ppm, therefore, satisfying Rohm and Haas's commitment to the community. This report will be the last community groundwater report. Rohm and Haas will continue to monitor the off-site groundwater quality and report these results in accordance with the

**General Business** 



Pennsylvania Department of Environmental Protection Act 2 requirements.

## 4.0 ECONOMIC PROTECTION PLAN (EPP)

An Economic Protection Plan (EPP) was designed in 1994 to protect homeowners by ensuring that affected houses would not lose value due to the groundwater situation. All properties acquired by Rohm and Haas under this program have been resold or demolished.

At the request of homeowners in the groundwater area and the former neighborhood working group, the original EPP was revised and expanded to include those homeowners who wished to stay in their homes. Eligible homeowners included those living in the 2600 and 2700 blocks of Pratt Street, the 4800 block of Almond Street, the 4800 block of Thompson Street, the 2600 block of Bridge Street, and the 4900 block of Salmon Street. The revised plan offered compensation to homeowners for the effect of groundwater on property values and was based on the homeowner's proximity to the plume and the number of years of home ownership. The plan became operational in 1998.

#### 5.0 COMMENTS

Please direct comments or questions regarding this report to Amy Lee at 989.636.8395 or ALLee@dow.com.

5

|  |  | * |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

## **Figures**

|     |  | .5 |
|-----|--|----|
|     |  | ,  |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
|     |  |    |
| .00 |  |    |
|     |  |    |

## **Appendix A**

|  |  | 186 |
|--|--|-----|
|  |  | į.  |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |

| October 1993   | Residential Air Sampling Program conducted at homes on Brill Street repeating January 1987 testing and the results communicated to the neighbors                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fall 1993      | Rohm and Haas installs monitoring wells in the neighborhood and monitors water levels to assess whether site groundwater was migrating across Bridge Street                                                    |
| April 1994     | Preliminary groundwater samples are collected from wells in the neighborhood                                                                                                                                   |
| May 1994       | Presentation of flow results to neighbors                                                                                                                                                                      |
| June 1994      | Rohm and Haas reports to the neighbors the findings of preliminary sampling and their plans for further investigation                                                                                          |
| JulAug. 1994   | Residential Air Sampling Program conducted at homes in the affected area on Bridge, Thompson, Pratt, Salmon, and Brill Streets                                                                                 |
| AugDec. 1994   | Installation of additional monitoring wells and groundwater sampling                                                                                                                                           |
| October 1994   | Rohm and Haas reports to the neighbors the results of the Residential Air Sampling Program and Groundwater Study Basement Ventilation Program and Economic Protection Plan (EPP) communicated to the neighbors |
| Fall 1994      | Rohm and Haas constructs Groundwater Management System                                                                                                                                                         |
| November 1994  | Installation of 40 basement ventilation systems begins                                                                                                                                                         |
| February 1995  | Groundwater Management System becomes operational                                                                                                                                                              |
| September 1995 | Groundwater samples collected in neighborhood                                                                                                                                                                  |
| October 1995   | Pilot tests for soil vapor extraction (SVE) conducted in neighborhood                                                                                                                                          |
| February 1996  | Meeting with neighbors on 1995 cleanup progress                                                                                                                                                                |
| March 1996     | Groundwater samples collected in the neighborhood                                                                                                                                                              |
| June 1996      | Progress letter mailed to neighbors in affected area                                                                                                                                                           |
| August 1996    | Groundwater samples collected in the neighborhood                                                                                                                                                              |
| September 1996 | Rohm and Haas installs and operates an SVE system at an on-Site location                                                                                                                                       |

| November 1996  | Progress of cleanup programs communicated to neighbors at Community<br>Groundwater Open House    |
|----------------|--------------------------------------------------------------------------------------------------|
| March 1997     | Groundwater samples collected in the neighborhood                                                |
| May 1997       | CAC agrees to help facilitate neighborhood groundwater concerns                                  |
| July 1997      | Eight wells added to SVE system at on-Site locations                                             |
| August 1997    | Progress of cleanup programs reported to the neighbors                                           |
| September 1997 | Groundwater samples collected in the neighborhood                                                |
| September 1997 | Neighborhood work group formed to resolve groundwater issues                                     |
| December 1997  | Progress of cleanup programs reported to the neighbors                                           |
| January 1998   | Groundwater samples collected in the neighborhood                                                |
| May 1998       | Progress of cleanup programs reported to the neighbors                                           |
| June 1998      | Weston report provided to the neighborhood                                                       |
| August 1998    | Groundwater recovery trench becomes operational                                                  |
| October 1998   | Groundwater samples collected in the neighborhood                                                |
| December 1998  | New EPP Plan offered to eligible homeowners                                                      |
| March 1999     | Groundwater samples collected in neighborhood                                                    |
| April 1999     | Progress of cleanup reported to neighbors                                                        |
| August 1999    | Progress of cleanup reported to neighbors                                                        |
| Sept/Oct 1999  | Groundwater samples collected in the neighborhood                                                |
| January 2000   | Progress of cleanup reported to neighbors                                                        |
| March 2000     | Groundwater samples collected in neighborhood                                                    |
| June 2000      | Progress of cleanup reported to neighbors                                                        |
| August 2000    | Groundwater samples collected in neighborhood                                                    |
| November 2000  | Progress of cleanup reported to neighbors                                                        |
| March 2001     | Groundwater samples collected in neighborhood On-Site and off-Site soils investigation conducted |

Progress of cleanup reported to neighbors

July 2001

July 2001 Rohm and Haas discusses results of additional studies with the community work group

August 2001 Groundwater samples collected in neighborhood

December 2001 Progress of cleanup reported to neighbors

March 2002 Groundwater samples collected in neighborhood

April 2002 On-Site soils investigation conducted for Surfactant Study

July 2002 Progress of cleanup reported to neighbors

Aug.-Sept. 2002 Groundwater samples collected in neighborhood

November 2002 Progress of cleanup reported to neighbors

March 2003 Groundwater samples collected in neighborhood

May 2003 Progress of cleanup reported to neighbors

August 2003 Groundwater samples collected in neighborhood

December 2003 Completion of Surfactant Study and presentation of results to neighbors

Progress of cleanup reported to neighbors

March 2004 Groundwater samples collected in neighborhood

Following groundwater sampling, seven recovery wells shut off as part of evaluation and implementation of modifications to the groundwater

management system.

July 2004 Progress of cleanup reported to neighbors

SVE system shut down.

September 2004 Groundwater samples collected in neighborhood

December 2004 Progress of cleanup reported to neighbors

March 2005 Groundwater samples collected in neighborhood

June 2005 Groundwater recovery trench shut down for improvements and

maintenance

July 2005 Progress of cleanup reported to neighbors

August 2005 Groundwater samples collected in neighborhood

October 2005 Improvements to groundwater recovery trench completed and trench

reactivated

| November 2005  | Data required to evaluate groundwater flow direction collected in neighborhood.                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| February 2006  | Progress of cleanup reported to neighbors                                                                                                    |
| March 2006     | Groundwater samples collected in neighborhood Groundwater recovery trench shut down for maintenance                                          |
| June 2006      | Progress of cleanup reported to neighbors                                                                                                    |
| August 2006    | Groundwater samples collected in neighborhood                                                                                                |
| November 2006  | Groundwater recovery trench reactivated following maintenance Data required to evaluate groundwater flow direction collected in neighborhood |
| March 2007     | Progress of cleanup reported to neighbors Groundwater samples collected in neighborhood                                                      |
| August 2007    | Groundwater samples collected in neighborhood                                                                                                |
| October 2007   | Progress of cleanup reported to neighbors (March 2007 event)                                                                                 |
| January 2008   | Progress of cleanup reported to neighbors (August 2007 event)                                                                                |
| March 2008     | Groundwater samples collected in neighborhood                                                                                                |
| September 2008 | Progress of cleanup reported to neighbors (March 2008 event)                                                                                 |
| AugSept. 2008  | Groundwater samples collected in neighborhood                                                                                                |
| February 2009  | Progress of cleanup reported to neighbors (August 2008 event)                                                                                |
| February 2009  | Rohm and Haas revises sampling program from semi-annual (twice yearly) to annual (once yearly). Spring (March) events discontinued.          |
| August 2009    | Groundwater samples collected in neighborhood                                                                                                |
| December 2009  | Progress of cleanup reported to neighbors (August 2009 event)                                                                                |
| AugSept. 2010  | Groundwater samples collected in neighborhood                                                                                                |
| February 2011  | Progress of cleanup reported to neighbors (August-September 2010 event)                                                                      |
| June 2011      | Groundwater samples collected in neighborhood                                                                                                |
| December 2011  | Progress of cleanup reported to neighbors (June 2011 event)                                                                                  |
| AugSept. 2012  | Groundwater samples collected in neighborhood                                                                                                |
| October 2012   | Wells TW-32S(R), TW-34S, and TW-43S were plugged and abandoned                                                                               |

| December 2012     | Well maintenance activities conducted to gain access to wells in Bridge St. following street paving Wells OFF-1, OFF-7, OFF-8, and OFF-9 were plugged and abandoned Additional groundwater samples collected in neighborhood |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2013      | Progress of cleanup reported to neighbors (August-September December 2012 event)                                                                                                                                             |
| June 2013         | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| October 2013      | Progress of cleanup reported to neighbors (June 2013 event)                                                                                                                                                                  |
| June - July 2015  | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| November 2015     | Progress of cleanup reported to neighbors (June/July 2015 event)                                                                                                                                                             |
| September 2016    | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| November 2016     | Wells IW-101, IW-102, IW-103, IW-105, IW-106, IW-107, MRW-108, and MRW-109 were plugged and abandoned                                                                                                                        |
| December 2016     | Progress of cleanup reported to neighbors (September 2016 event)                                                                                                                                                             |
| July 2017         | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| December 2017     | Progress of cleanup reported to neighbors (July 2017 event)                                                                                                                                                                  |
| October 2018      | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| January 2019      | Progress of cleanup reported to neighbors (October 2018 event)                                                                                                                                                               |
| March 2019        | Pennsylvania Department of Environmental Protection and Environmental Protection Agency approve plan to shut down recovery trench                                                                                            |
| June 2019         | Well LA-5 was repaired and sampled; IW-104 recovery pump shut down                                                                                                                                                           |
| September 2019    | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| January 2020      | Progress of cleanup reported to neighbors (September 2019 event)                                                                                                                                                             |
| May 2020          | IW-104 recovery pump restarted                                                                                                                                                                                               |
| September 2020    | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| January 2021      | Progress of cleanup reported to neighbors (September 2020 event)                                                                                                                                                             |
| May 2021          | IW-104 recovery trench pump shut down                                                                                                                                                                                        |
| Sept. – Oct. 2021 | Groundwater samples collected in neighborhood                                                                                                                                                                                |
| January 2022      | Progress of cleanup reported to neighbors (September 2021 event)                                                                                                                                                             |

June 2022 Wells MW-7, MW-9, MW-10, TW-33S, TW-35S(R) and TW-37S were

plugged and abandoned.

September 2022 Groundwater samples collected in neighborhood

April 2023 Final Progress of cleanup reported to neighbors (September 2022 event),

results satisfy the requirements of the agreement with the community for total VOCs in offsite groundwater samples to be below 1 ppm. Rohm and Haas will continue to monitor the off-site groundwater quality and report these results in accordance with the Pennsylvania Department of

Environmental Protection Act 2 requirements.

# **Appendix B**

|  | , |  |
|--|---|--|
|  |   |  |

## TABLE I ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (her page 19 for notes)

| PARAMETER                   | CNIT  |          |          |          |         |         |             | IW      | 104     |           |            |           |           |           |            |        | 1.77     |        |         | [%-[    | 87 (Abund | losed)  |          |          |          |          |
|-----------------------------|-------|----------|----------|----------|---------|---------|-------------|---------|---------|-----------|------------|-----------|-----------|-----------|------------|--------|----------|--------|---------|---------|-----------|---------|----------|----------|----------|----------|
|                             | 1.541 | Ang-88   | Aug-99   | Sep-10   | Jun-11  | Sep-12  | Jee-13      | Jun-15  | Sep-16  | Jul-17    | Nov-18     | Sep-19    | Sep-20    | Sep-21    | Sep-22     | M±r-07 | Aug#7    | Mar-88 | Aug-81  | Aug-89  | Sep-10    | Jan-II. | Sep-12   | Jan-IJ   | Jun-15   | Sep-16   |
| VOLATILES                   | 1     | 0.014    |          |          | 475.37  | 15.5    | 5.72        | 3-13-2  | 0.46    | 1.5       |            | -         | 15.2      | 15.4      |            | 1000   | 44.7     | 100    | 14533   | 1,01    | 2.5       | 15000   | 260      | 255      | 455.7    | 18       |
| 1,1,1-Trichlororthane       | bbur  | -        | -        | -        | -       | 440     | -           | -       | -       | -         | 177        | -         | -         | -         | -          | -      |          | - 100  | 100     |         | 764       | 1.000   | 100      | 260      | 160      | 100.0    |
| 1,1,2,2-Tetrachioroethane   | ppen  | -        |          | -        | 177     |         | -           | -       |         | -         | 5.00       | 41        | -         | -         |            |        | 200      |        | 140     | - 65    | - 44      | -01     | 104      | 44       | 1.00     | 100      |
| 1,1-Oschloroethane          | ppm   | 1991     |          |          | -       | pas -   | -           |         | - '     | -         |            |           | -         | -         | -          | -      | 7        |        | -       | -       | 444       | 1.664   | 44       | -0.0     | 800      | 116      |
| 1,2,4-Trichlorobenzene      | ppes  | 710      | 249      | +~4      | 144     | ***     | ***         |         | ***     | ***       |            | -         |           | -         | - 1        | NA     | -        | NA.    |         | -       | -         | 144     | -0.0     | 200      | 1 days   |          |
| 1.2-cis-Dichloroethylene    | ppm   | 700      | BMD(1    | 0-0015   | BMD(, J | BMDL J  | 0+4         | BMDL J  |         | 0.00039.1 | 0.00022.5  |           | # 00027 J | 1560000   | ! -        | -      | 8MDL I   | 200    |         |         | 0.0014    | 1-      |          | 444      | 140      | 84       |
| 1.2-Dichlorobenzene         | ppm   | -        | 100      | ***      | 100     | BMDL J  | ***         | BMDL I  | BMDL J  |           | 0 000046 J | -         | 0.000583  | 0.000361  | 0-00097J   | NA.    | -        | NA.    |         | -       |           | 7.7     | BWIDE I  | BAIDL J  | BMDL J   | BWDF 1   |
| 1,2-Dichloroethane          | ppen  | ( inc. ) | -        | 100      | 1       | _       |             |         | ***     | 100       | 7.00       | ***       |           | ***       | ***        |        |          | -      | -       | -       | -         | C-100   | -        |          |          | -        |
| 1.2-trans-Dichloroethylene  | ppea  |          | -        | -        | -       |         |             | 1000    |         |           | NA         | 200       |           | ***       | ***        | +**    |          | -      | -       | -       | -         | -       |          | -        | -        | -        |
| 1,3-Dichlorobenzene         | ppen  | 146      | -        | 1000     | 100     |         | 100         | April.  | -       | 100       |            | 100       |           | tel       |            | NA .   | -        | NA     | -       |         | -         | -       | -        | -        | -        | -        |
| 1.4-Dichlorobenzene         | ppos  | -        | 100      | 1000     | -       | -       | and.        |         |         |           |            | 100       |           | .00       | 8 000041 J | NA.    | -        | NA.    |         | -       |           | -       | -        | -        | -        | -        |
| 1.4-Dioxine                 | ppm   | SA       | NA.      | 14.4     | NA      | NA      | 1           | 11000   | -       | 0.00041   | NA NA      | NA.       | 0.000337  | 70        |            | NA     | NA.      | NA     | 5A      | NA NA   | NA.       | NA NA   | NA .     |          | -        | -        |
| 2-Hexanone                  | ppm   | -        | 100      |          | BMOLI   | -       | 244         | -       | _       | - 1       | -          | -         | - 1       | 146       | -          | ***    | .01      | ***    |         |         | -         | -       | -        | -        | BAIDLI   | -        |
| Acetone                     | ppm   | -        | _        |          | 0.082   |         |             |         | 8012    | 0.021     | 0.015      | E 0066    | 0.0063    | -         | 0.0095     | 100    | BMDL J   | ***    | BMDL 2  | BMDL J  |           | 1 JORNA | # 0061   | BMDL J   | BADLI    | 0.024    |
| Bearene                     | ppm   | -        | BNDLJ    | 8.0011   | BMDLI   | BMDLI   | 144         | BMDLE   | BMOL J  | 0 000223  | 100        | -         | 0 00052 J | -         |            | -      | 110      | C160   | 100     | 746     | 0.0013    |         |          |          | 3.00     |          |
| Bromoform                   | ppm   | 0.00     |          |          |         |         |             | ***     |         | 101       | 100        | -         |           | in.       | 0          | 100    | -        | 120    | 1       | 27      | 100       | 0.000   |          | 1.00     | 100      |          |
| Carbon Disulfide            | ppm   |          |          |          | -       | 771     | 10 may 20 m | let .   |         |           |            |           |           | 100       | -          | 100    | 100      | 100    | 100     | 121     |           | 100     | -        | BAIDLI   | 100      |          |
| Chlorobenzene               | ppm   | BMDL I   | 0.0063   | 0.011    | 0 007   | 0.0024  | 0.00%       | 0.0007  | 0 0044  | 8 0048    | 0.0077     | 0.011     | 0.0065    | 0.044     | 0.049      |        | 100      | Ten.   |         | -       | 0.041     | BMDt I  | 1 JOHA   | BMDL 1   | Sec      | BMDL I   |
| Chlorobromomethane          | ppm   | - NA     | NA       | NA.      | NA.     | NA.     | 400.00      |         |         |           |            |           |           | - 10      | 200        | NA.    | N/A      | NA     | NA.     | NA.     | NA        | NA      | Brinds & | printer, | 100      | 0        |
| Chloroethane                |       |          | 77.5     | .*^      | 3.4     | 110     |             | -       | BWDL I  |           | 0.000002   |           | -         | 100       |            | 100    | ,01      |        | .***    |         | 1979      |         | 100      | 100      | -        |          |
| Chloroform                  | ppm   |          |          | A0000    |         | -       |             |         | mmor.   |           | 0000401    | F-632     | 270       | - 12      | 44         | -      | 100      | 15.0   | 100     |         | -         |         |          | 15       | -        |          |
| Chloromethane               | bbm   |          |          | -        | 12      | 1 -     |             | 150     | BMDLI   | 100       | 0 00061 )  | _         | 77        | 44        | -          | -      |          | -      |         |         | -         |         | 2        | -        | -        | - 70     |
| Cyclobexane                 | ppm   |          |          |          | SA      |         | _           |         | BWDLI   | - 5       | 00001)     | 12.00     | - 73      | 2005      |            | NA     | NA       | SA.    | NA.     | NA.     | NA.       | NA.     | 2        | 122      | 120      | - 33     |
| Dichlorobromomethane        | ppm   | NA NA    | NA       | NA.      |         |         |             | BMDL I  | -       | -         | 175        | -         | 775       |           | 0.75       | 304    | NA.      | - 58   | -50     | 5.0     | 10.0      | - ""    | -        |          |          |          |
|                             | ppm   |          | 75       | - T      | -       |         |             |         |         |           |            | L         |           |           |            |        |          | 0.0044 |         |         | 0.02      |         |          | BMDL J   | BMDL J   |          |
| Ethy Ibenzene               | ppm   | 0 56     | 0.75     | 0.19     | 626     | #01     | 0.016       | 0.12    | 0.0081  | 0.036     | 6-0087     | 0 00053 J | 0.000961  | 0 00056 J |            |        |          |        | ***     |         |           |         | 0011     | BMDLI    |          | A        |
| Isograpylbetizene           | ppm   | NA       | NA.      | SA       | SA      | # 826   | 0.019       | 0 026   | 0.02    | 0.011     | 1          | 0.02      | 0 0079    | 0.021     | 9-921      | NA     | NA.      | NA.    | N.4     | NA.     | NA        | NA .    |          |          | 1900 0   | 0 002    |
| Methyl ethyl ketone         | ppos  | ***      | ***      | 5.00     | 0.041   | 101     | ***         | 1.7     | 8VIDL J | 0 00281   | 0 0091     | -         | 0.00381   | . –       | 6 QQ55     | _      |          |        | -       |         | 444       | B/4DL J |          | BMDL J   | 0.0072   | 0 0063   |
| Methyl tertiory butyl etker | bbon  |          | NA       | myrbf 1  | 111     |         |             | 1 ++1 : | ***     | 1         | NA.        | 1         |           | <u> </u>  | -          | _      |          |        |         | NA.     | BMDL J    |         |          | ART      | 344      |          |
| Methylcyclohexane           | bbu   | NA       | NA.      | NA.      | NA.     | 0 001 6 |             | 0 0023  | 0.0017  | 0 00077 J | 0 0026     | 0 0015    | 0.0013    | 0.0022    |            | NA     | NA       | NA.    | NA      | NA.     | NA .      | NA      |          | B/IDE1   | 1.146    | BAIDL J  |
| Methylene chloride          | bbor  |          | -        |          | ***     |         |             |         | ***     |           | +44        |           | 0.00052.1 | -         | _          | _      | _        | -      | -       |         |           | -       | - 6      |          | 100      | ***      |
| Methyl-iso-butyt kesone     | bbur  | -        | -        | 100      | 0-911   | ***     |             | BMOLI   | BMDL J  | @ 00078 J | ***        | +44       | ***       | -         | _          | _      | -        | 100    | -       | -       | -         | -       | -        | 1.00     | BMDL J   | BMDL I   |
| Styrene                     | ppm   | -        | -        | -        |         |         | ***         | BMDL1   |         | ****      | ***        | ***       | 7.00      |           |            | _      |          | -      | -       | -       |           | ***     |          |          |          |          |
| Tetrachloroethene           | ppm   | 100      | -        |          |         | -       |             | 300     |         | 901       | 100        | 1.00      | 100       | v#4       | 114        | 144    | ***      | -      | -       | -       |           |         | 1 -      |          | 100      |          |
| Toluene                     | ppp   | 914      | 01)      | BAIDL J  | 0.0096  | 0.006   | 0.01        | 0 078   | 10 0035 | 1)00      | 0.0011     | - 47      |           | .09       |            | ***    | ***      | BMDC1  | -       |         | BMDL I    | -       | -        | BMDL /   |          |          |
| Total Xylenes               | ppm   | 3.4      | 1.2      | 0.01     | 1.0     | 0039    | 9 t2        | 04      | 0.023   | 0.013     | 0.434      | 9.0068    | # 00264 5 | 0.012     | 0.0024     | BMDL J |          | BMDL J | -       |         | 0.015     | BMDL I  | -        | BMDL I   | BMDL J   | -        |
| Trichloroeth www            | ppm   | 100      |          |          |         | - 1     | -           | 100     | 194     | 160       | 1.00       | 200       | 100       | 100       | ters       | +44    | PM.      | - 1    |         | -       | ***       |         | -        |          | -        |          |
| Vinyl chloride              | ppm   | -        | - 1      | 1 100    | -       |         |             | BAIDLE  | -       | 301       | 100        | 1100      | 1-0       | -         |            | 101    | 244      |        | _       | -       |           | 1000    |          | -        | -        |          |
| TOTAL VOLATILES             | ppon  | J.I      | 1.7      | 13       | 3.440 J | 0.006.2 | 9/104       | 8.637   | 9,878   | 0.173     | 0.10053 J  | 8.64643 J | 0.03532 J | 0.034613  | 0.05418 J  | FINIT  | 8.0002 J | 9.84   | 0.017.3 | 0.0000# | 422       | 0.001.5 | 0.02 J   | 6949.1   | 6.833    | 9,8942   |
| 2-Octanol                   | ppm   | BMDL     | BMDL 2   | 100      | NA.     | 346     | 94.6        | NA.     | NA.     | NA.       | NA .       | NA.       | NA.       | NA NA     | NA.        | NA     | 100      | HA     | NA.     | _       | N.A.      |         | NA       | 26       | NA       | SA       |
| 2-Octmone                   | ppm   | +42      | 0.45     | 1 100    | NA      | NA.     | NA          | NA.     | NA .    | NA.       | NA.        | NA NA     | NA.       | NA NA     | NA.        | NA     | 100      | MA     | NA.     |         | NA        |         | NA.      | NA       | NA<br>NA | NA<br>SA |
| TOTAL OCTANOLOCTANONE       | ppm   | 9,47     | 8.62     | -        | SA      | NA.     | NA.         | NA.     | 5A      | 5.4       | NA.        | NA.       | NA        | NA.       | NA.        | NA.    | -        | NA     | NA.     |         | NA        | 100     | NA.      | 34       | 3.4      | 34       |
| ACID EXTRACTABLES           | I     | 100      | 1        |          |         | 1       | 255         | l       | l       |           |            | l         | l         | l         |            | 1      | 3.5      | 1000   | 192     | l       |           | I       | NA.      | 40       | 200      | 100      |
| 2,4,5-Trichlorophenol       | bben  | 0.5      | 200      |          |         | ***     | NA          | NA      | NA NA   | -         | Nh         | NA        | NA.       | NA        | Nil.       | NA     | 3/81     | 168    | 77.     | ***     |           |         |          | 368      | NA.      | SA       |
| 2.4-Dimeds/lphenol          | ppm   | 6.013    | BVDL/    | SMEET    | -       | ***     | NA          | NA.     | NA NA   | -         | N/A        | NA NA     | 5A        | NA.       | NA.        | NA     | 96       | MA     | 111     | 210     | BMDL J    |         | NA.      | NA -     | NA.      | - SA     |
| 2-Methylphenol              | ppm   | -        |          | -        |         | ***     | NA          | NA.     | NA.     | -         | NA         | NA NA     | NA        | Nili      | NA.        | N/A    | 100      | NA     | 66.0    | ***     | ***       | 144     | NA.      | 3-A      | NA.      | 364      |
| 4-kfethylphenol             | ppen  | -        |          | -        | -       |         | NA.         | NA NA   | N/A     | 764       | NA         | NA.       | NA        | NI.       | Nil        | 36.4   | 75       | KA     | 100     | 0.0     |           |         | NA NA    | 24       | NA.      | 34A      |
| Pentachiorophenol           | ppm   | -        | -        | -        |         |         | NA.         | NA NA   | NA      | .00       | 94         | NA NA     | NA.       | NA.       | Nii.       | NA.    |          | NA.    | -       | 111     |           |         | NA.      | 5A       | NA.      | 3/4      |
| Phenol                      | ppm   | -        | -        | -        | -       |         | SA          | NA      | N/r     | Jan       | 34         | NA.       | 5A        | NA.       | 84         | - NA   | -        | NA.    | 100     | 100     | Test 1    |         | NA.      | Six      | NA.      | NA.      |
| TOTAL ACID EXTRACTABLES     | ppm   | 0.013    | 6.0079 J | 0.9940.7 | -       | -       | NA.         | NA.     | 5.4     | . 100     | NA.        | NA        | 3.4       | 34        | NA.        | N.A    | 0.00     | NA.    |         |         | Buttle J  |         | NA.      | 54       | NA       | *4       |

TABLE I
ANALYTICAL RESULTS FOR ON-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(see page 19 for month)

| PARAMETER                                                                                                                                                 | UNIT                     |         |              |        |        |        |                | IW-            | 184            |           |                |                |             |        |                |          |          |                |          | (W-)   | 07 (Aband | loned)             |                |                |                |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--------------|--------|--------|--------|----------------|----------------|----------------|-----------|----------------|----------------|-------------|--------|----------------|----------|----------|----------------|----------|--------|-----------|--------------------|----------------|----------------|----------------|----------------|
| No.                                                                                                                                                       | 7.512                    | Aug-88  | Aug-09       | Sep-18 | Jun-II | Sep-12 | Jun-13         | Jun-15         | Sep-16         | Jul-17    | Nov-18         | 5cp-19         | Sep-20      | Sep-21 | Sep-22         | Mar-07   | Aug-97   | Mar-98         | Aug-98   | Aug-89 | Sep-18    | Jun-11             | Sep-12         | Jun-13         | Jun-15         | Sep-I          |
| ASÉNEUTRALS                                                                                                                                               | _                        |         |              |        |        |        |                |                |                |           |                |                |             |        |                |          |          |                |          |        |           | 1                  | I              |                |                |                |
| Methylmaphthalene                                                                                                                                         | bhes                     | BAIDL J | 84DF1        |        | -      |        | NA             | NA.            | NA.            | 0.00121   | NA.            | NA.            |             | NA     | NA             | NA       | -        | NA.            | -        | -      |           | ***                | NA.            | NA.            | NA :           | NA.            |
| cesaphthese                                                                                                                                               | ppm                      | B/4DF1  |              | - !    | 1      | - 1    | SA             | NA             | NA             | 0.00113   | SA             | SA             |             | NA     | NA             | SA       | BMDL J   | NA.            | BAIDE J  |        | 100       | 1 100              | NA.            | -NA            | NA -           | NA.            |
| Acenaphthylese                                                                                                                                            | ppm                      | -       |              |        | - 1    | _      | NA.            | NA.            | NA NA          |           | NA.            | NA.            |             | NA.    | NA NA          | NA.      | _        | NA.            |          | 100    | -         | 707                | NA.            | NA.            | NA             | NA.            |
| Anthracene                                                                                                                                                | ppm                      | ***     |              |        | - 1    |        | 84             | SA             | NA             |           | NA             | SA.            |             | NA.    | SA             | 58       | BMDLJ    | NA             | BADE J   | 122    |           | 100                | NA.            | M              | NA.            | NA.            |
| Benzo(a)Asithracene                                                                                                                                       | ppm                      | ***     | LIGNS        |        | _      |        | 5.a            | NA.            | NA.            |           | NA.            | 5A             | 0 0000034 3 | NA.    | NA             | N4       |          | NA.            |          | 5.5    | 100       | in the contract of | SA             | NA             | NA.            | NA.            |
| Benzo(a)Pyrene                                                                                                                                            | ppm                      | ***     |              | l I    | - 1    |        | NA.            | NA             | NA.            |           | NA             | NA.            | 0 0000028 1 | NA     | NA.            | NA.      |          | NA.            | - 22     | 000    | 100       |                    | NA.            | m              | NA .           | NA.            |
| Benzo(b)Fluoranthene                                                                                                                                      | ppus                     |         |              | l      |        | - 1    | SA.            | NA.            | NA.            |           | NA.            | SA             | 0 0000044 1 | NA     | SA.            | NA.      |          | NA.            | - 22     | 15     | 100       | 9.276              | SA S           | NA NA          | NA.            | NA.            |
| Benzo(g,h,ı)Perylene                                                                                                                                      | ppm                      | _ :     |              |        |        |        | NA.            | NA.            | NA.            |           | NA.            | 5A             |             | NA     | NA NA          | NA.      | _        | NA.            | 20       | 521    | 190       | 100                | NA.            | NA NA          | NA.            | NA.            |
| Benro(k)Fluoranthene                                                                                                                                      | ppm                      | ***     | 1 _          |        |        |        | 58             | NA.            | NA.            |           | NA.            | SA             |             | NA.    | SA SA          |          |          | SA             | - 29     | 2      | 7.75      | 100                |                |                |                |                |
| nst2-Chloroethoxylmethane                                                                                                                                 | ppm                      | ***     |              |        |        |        | NA.            | NA NA          |                |           |                |                |             |        |                | 54       |          |                | 1.08     | 408    | -         |                    | -NA            | NA NA          | NA.            | NA.            |
| bis(2-Chloroethy) jether                                                                                                                                  |                          | BMDf 1  | 00)5         | 0 0072 |        |        |                |                | NA .           |           | NA.            | NA.            | ***         | NA     | NA NA          | NA.      | _        | NA.            | 77.5     | 100    | 100       | -                  | NA             | NA             | NA.            | NA.            |
| bist 2-Chlorossopropy liether                                                                                                                             | ppm                      |         | 0.017        |        | - 1    |        | N4             | NA .           | NA .           | 0 0039    | NA.            | NA NA          | 0.013       | NA.    | SA             | NA       |          | NA.            | 77.      | 175    | 0.0075    | 100                | NA.            | SA             | SA             | NA.            |
|                                                                                                                                                           | bbar                     |         | _            |        | - 1    |        | NA.            | NA NA          | NA NA          |           | NA.            | NA.            |             | NA.    | NA NA          | 5A       |          | NA.            |          | 290    | 100       | 465                | NA.            | NA             | NA.            | NA.            |
| bis(2-Ethylhexyliphthalate                                                                                                                                | tbe:                     |         | - 1          | -      | -      |        | NA .           | NA NA          | NA NA          | :         | NA.            | - NA           | 0.0022      | NA     | NA             | NA.      |          | NA.            | 71       | 790    |           | 100                | SA             | NA NA          | NA NA          | NA.            |
| Butyl benzyl phthalate                                                                                                                                    | ppm                      | -       | ***          |        | -      | -      | NA             | NA NA          | NA.            | !         | NA .           | NA.            | 0 021 B     | NA.    | SA             | NA .     | -        | NA             | -        | -      | ++        | 1170               | NA.            | NA.            | NA.            | NA.            |
| Carbazole                                                                                                                                                 | ppm                      | 1.JQI/8 | -            | - 1    | - 1    |        | NA             | NA NA          | NA.            | 1         | NA             | NA.            |             | NA     | NA NA          | SA       |          | NA.            |          | 100    | 196       | 000                | S/A            | NA             | NA.            | NA.            |
| Chrysene                                                                                                                                                  | ppm                      | ***     | -            | -      | - 1    |        | NA             | NA NA          | NA.            | !         | NA.            | NA.            |             | NA.    | NA NA          | NA.      |          | NA.            | ***      | 175    | -         | -                  | SA             | NA             | NA.            | NA.            |
| Dibenz(s.h)anthracene                                                                                                                                     | ppen                     |         | -            | -      |        |        | NA NA          | NA NA          | NA.            |           | NA.            | NA             |             | NA     | NA             | SA       |          | NA.            | ***      | 199    | -         | -                  | SA.            | NA             | NA.            | NA.            |
| Dibenzofuran                                                                                                                                              | ppm                      | 8 MDL I | -            | - 1    | - 1    | ***    | NA             | NA NA          | NA NA          | - 1       | NA.            | NA.            |             | SA     | NA             | SA       | BARDE J  | No.            | BADLI    | 100    | 3-11      | 11.00              | SA             | NA             | NA.            | NA.            |
| Diethyl phthalate                                                                                                                                         | ppm                      |         | - 1          |        |        | ***    | NA             | NA             | NA.            |           | NA.            | NA NA          | _           | NA.    | NA.            | NA.      |          | NA.            |          | 170    | -         | -                  | NA.            | NA             | N4             | 5A             |
| Dimethyl phthalase                                                                                                                                        | ppm                      | _       | - 1          | l I    |        |        | NA             | NA .           | NA.            |           | NA.            | NA.            | _           | SA     | NA NA          | NA.      |          | NA.            |          | 327    | 12        | 100                | NA NA          | SA             | SA             | SA             |
| Dr-n-burylphdialare                                                                                                                                       | ppm                      | ***     |              | l      |        |        | NA.            | NA.            | NA.            | 6 00113   | NA.            | NA.            |             | NA     | 5A             | NA.      |          | SA.            |          |        | -         | I -                | NA             | SA I           | NA.            | NA<br>NA       |
| Dt-n-octy lphthalate                                                                                                                                      | ppm                      |         |              |        |        |        | NA.            | NA NA          | NA NA          |           | NA.            | NA.            |             | NA.    | SA SA          |          |          |                |          | ***    |           |                    |                |                |                |                |
| Fluoranthene                                                                                                                                              | ppm                      |         |              |        |        |        | NA.            | NA NA          | NA NA          |           | NA<br>NA       | NA.            |             | NA.    | NA NA          | SA       |          | NA ·           | 144      |        | -         |                    | NA             | NA             | NA.            | NA.            |
| Phorene                                                                                                                                                   |                          | BMDL J  |              |        |        | _      | NA.            |                |                | 900131    |                |                |             |        |                | 5A       | BMOLJ    | NA .           | ***      | ***    |           | -                  | SA             | NA             | NA.            | NA.            |
| Heyachlorobenzene                                                                                                                                         | bbar                     |         | _            |        |        |        |                | NA             | NA.            |           | NA .           | NA.            |             | SA     | NA NA          | NA.      | B/@EL1   | NA             | B/IDL3   | _      | -         |                    | NA NA          | NA NA          | NA             | NA.            |
| Indenot 1.2,3-cd/Pyrene                                                                                                                                   | ppm                      | -       | _            |        | 144    |        | NA NA          | NA NA          | NA NA          |           | NA NA          | NA.            | 0.000026    | NA     | NA             |          |          | NA.            | -        |        | -         | SA.                | SA             | NA             | NA.            | NA.            |
|                                                                                                                                                           | ppm                      | -       | _            |        |        |        | SA             | NA.            | NA NA          | ***       | NA NA          | NA NA          |             | SA     | NA NA          | NA       | ***      | NA.            |          | _      | _         |                    | NA.            | NA NA          | NA .           | NA.            |
| Isophorone                                                                                                                                                | ppm                      |         |              | 1      |        | - 1    | SA             | NA.            | NA .           | ***       | NA             | NA.            | -           | NA     | NA NA          | NA       | ***      | NA.            | -        | -      | -         | I                  | NA.            | NA NA          | NA             | NA.            |
| Nuphthalene                                                                                                                                               | ppm                      | 0.076   | <b>#</b> 057 | 0.014  | 0.014  | ***    | 0.0072         | 0 024          | 0.002          | 9 012     | 0 0056         | 0.0027         |             | NA     | NA NA          | NA.      | BARDE 1  | NA.            | BAIDE F  | ***    | 0.014     |                    | NA.            | -              |                | -              |
| Nitrobenzene                                                                                                                                              | ppm                      | ~       | -            |        |        | ***    | NA             | NA NA          | NA.            |           | NA.            | NA NA          |             | NA     | NA NA          | 5.4      |          | NA.            |          |        | - 1       | -                  | SA             | NA             | NA             | NA.            |
| Phenanthrene                                                                                                                                              | ppm                      | B/IDL J | -            | - 1    |        | ₩.     | NA NA          | NA NA          | NA .           | 0 00069 J | NA.            | NA.            |             | NA.    | NA.            | NA.      | BMOL I   | NA.            | BAIDL F  | ***    |           | 1                  | SA             | NA NA          | NA.            | NA.            |
| Pytene                                                                                                                                                    | ppm                      | -       | -            | - 1    |        | •••    | NA NA          | NA             | NA.            | !         | NA NA          | NA.            |             | NA.    | NA NA          | SA       | BMDL1    | NA.            |          |        | l – i     | 1                  | SA             | l sa l         | NA             | NA.            |
| 1.4-Dioxane                                                                                                                                               | ppm                      | NA.     | NA.          | NA NA  | NA.    | NA :   | NA.            | NA.            | NA.            | NA !      | NA             | NA.            | NA          | SA     | NA NA          | NA.      | NA       | NA.            | NA.      | NA NA  | NA .      | NA NA              | NA             | NA             | NA             | NA.            |
| TOTAL BASE/NEUTRALS                                                                                                                                       | ppm                      | 6.1     | 0.00         | 0.023  | 4.014  |        | 8.9972         | 0.025          | 0.002          | 0.071     | 6.0054         | 6.0027         | 0.03534.3   | - NA   | NA.            | 54       | 0.0000 1 | NA .           | 9.0844 J |        | 0.027     |                    | 6.000479.2     | 6.00653 J      | 8,6097.3       | 8.8953         |
| PESTICIDES                                                                                                                                                |                          |         |              |        |        |        |                |                |                |           |                |                |             |        |                |          |          |                |          |        |           | 1                  |                | 1 1            |                |                |
| (4-DDD                                                                                                                                                    | ррь                      | _       | _            | _      |        |        | NA             | NA             | NA.            |           | NA.            | NA.            |             | _      | NA             | SA       | BMDL J   | NA.            |          |        |           | l                  | NA             |                |                |                |
| 4.4-DDE                                                                                                                                                   | ppb                      | _       | _            |        |        |        | NA NA          | NA NA          | NA.            |           | NA.            | NA.            |             |        | NA<br>NA       |          | BANDE 1  |                | ***      |        | -         | -                  |                | NA<br>NA       | NA<br>NA       | NA<br>NA       |
| k4-DDT                                                                                                                                                    | ppb                      | _       |              |        |        |        | SA.            | NA NA          | SA.            | "         | NA .           | 5A             |             | _      | NA NA          | NA<br>NA | l l      | NA.            |          | -      |           | -                  | NA<br>NA       | NA NA          | NA.            | - NA           |
| Beta-BHC                                                                                                                                                  | ppb                      | _       |              |        | ***    |        | NA<br>NA       | NA NA          | NA<br>NA       |           |                |                |             |        |                |          |          | NA.            | -        | -      | - 1       | ] -                | NA             | NA NA          | NA             | NA.            |
| Delta-BHC                                                                                                                                                 |                          | _       | - 1          |        |        |        | NA<br>NA       |                |                |           | NA .           | NA.            | -           | -      | NA.            | NA.      |          | NA.            |          | -      | - :       | - 1                | NA NA          | NA             | NA NA          | NA.            |
| Dieldrin                                                                                                                                                  | bbp                      |         |              |        | ""     | - i    |                | NA.            | SA             | ***       | NA.            | SA             | -           | -      | NA             | NA.      |          | NA.            | - 1      | -      |           | - 1                | SA             | NA             | NA.            | NA             |
|                                                                                                                                                           | bbp                      | -       |              |        | _      | - 1    | NA.            | NA NA          | NA NA          |           | NA NA          | N4             | -           | ***    | NA NA          | NA NA    |          | NA.            | -        | -      |           | -                  | NA NA          | NA             | NA             | NA.            |
|                                                                                                                                                           | ppb                      | ***     |              |        |        | -      | NA NA          | 54             | NA.            |           | NA NA          | SA             | -           | ***    | NA NA          | NA.      |          | NA.            | -        | -      | - :       | -                  | NA.            | NA             | NA.            | NA.            |
|                                                                                                                                                           | ppb                      | -       | _            |        | ***    |        | NA NA          | NA NA          | NA.            |           | NA             | NA NA          | -           | -      | NA             | NA       | ***      | NA.            |          | -      | - :       |                    | NA NA          | NA NA          | NA.            | NA.            |
| Endosulfan sulfate                                                                                                                                        |                          | -       | -            |        | ***    |        | NA NA          | NA.            | NA.            | ***       | NA .           | NA .           | -           |        | NA NA          | 84       | ***      | NA.            |          |        | - 1       | 1 -                | NA NA          | NA NA          | NA.            | NA.            |
| indosulfan sulfate<br>indren                                                                                                                              | ppb                      |         |              | 111    |        |        | NA NA          | NA 1           | NA.            | ***       | NA.            | SA.            | -           |        | NA.            | NA.      | ***      | NA -           | -        | _      | - 1       |                    | SA             | NA             | NA             | NA.            |
| Endosulfan sulfate<br>Endrun<br>Endrin aldehyde                                                                                                           | ppb                      | -       |              |        |        |        |                |                |                |           | NA NA          | NA.            | _ 1         |        | NA             | NA.      | ***      | NA.            |          | _      | _         | 1                  | SA             |                | NA.            | NA.            |
| ndosulfan sulfate<br>ndrun<br>ndrin aldebyde<br>ndrin ketone                                                                                              |                          | _       | _            |        |        |        | NA NA          | NA             | NA NA          | ***       |                | 34             |             |        |                |          |          |                |          |        |           |                    |                | NA I           |                |                |
| indosalfan sulfste<br>indirin<br>Indirin aldebyde<br>Indirin ketone<br>Ganssus-BHC                                                                        | ppb                      |         | _            | •••    |        |        | NA<br>NA       | NA .           | NA<br>NA       |           | NA NA          | NA<br>NA       | -           |        | N4             | NA       | ***      | NA.            | _        |        |           |                    | SA S           | NA NA          | SA.            | SA             |
| indosalfan sulfste<br>indirin<br>Indirin aldebyde<br>Indirin ketone<br>Ganssus-BHC                                                                        | ppb<br>ppb               | -       |              |        | -      |        |                |                |                |           |                |                |             |        | N4             | NA<br>NA |          | NA             | _        | _      |           | =                  | SA             | N4             | NA.            | SA             |
| indosalfan sulfate<br>indira<br>Indira ildebyde<br>indira ketone<br>Jamus-BHC<br>Epischlor                                                                | ppb<br>ppb<br>ppb        | _       | 1111         |        |        |        | NA<br>NA       | NA<br>NA       | NA<br>NA       |           | NA<br>NA       | NA<br>NA       | -           | ***    | NA<br>NA       | NA.      |          | NA<br>NA       | =        | =      | _         | 1                  | NA<br>NA       | NA<br>NA       | NA<br>NA       | SA<br>SA       |
| Endosalfan I Endosalfan sulfate Endrum Endrum Endrum Endrum Alebyde Endrim Alebyde Endrim Netones Gammas-BHC Heptaschlor Heptaschlor epovale Methovschlor | ppb<br>ppb<br>ppb        | -       | 11111        | ***    |        |        | NA<br>NA<br>NA | NA<br>NA<br>NA | NA<br>NA<br>NA |           | NA<br>NA<br>NA | NA<br>NA<br>NA | -           |        | NA<br>NA<br>NA |          |          | NA<br>NA<br>NA | =        | -      | _         |                    | NA<br>NA<br>NA | NA<br>NA<br>NA | NA<br>NA<br>NA | NA<br>NA<br>NA |
| Endosulfan sulfate<br>Endrun<br>Endrin aldehyde<br>Endrin hetone<br>Gammus-BHC<br>Heptachbor<br>Heptachbor<br>Heptachbor epoxsde                          | ppb<br>ppb<br>ppb<br>ppb | -       | 11111        | -      |        |        | NA<br>NA       | NA<br>NA       | NA<br>NA       |           | NA<br>NA       | NA<br>NA       | =           | ***    | NA<br>NA       | NA<br>NA |          | NA<br>NA       | -        | -      | _         | 1                  | NA<br>NA       | NA<br>NA       | NA<br>NA       | NA<br>NA       |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (HC PIGE 15 for motion)

| PARAMETER                   | UNIT      |        |          |        |                |        |         |                | MW-J    |         |            |           |           |           |           |          |          |          |           |             |          |          |           |          | MW-I   |          |          |        |              |          |           |               |        |
|-----------------------------|-----------|--------|----------|--------|----------------|--------|---------|----------------|---------|---------|------------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-------------|----------|----------|-----------|----------|--------|----------|----------|--------|--------------|----------|-----------|---------------|--------|
|                             |           | Mar-68 | A 10g-81 | Aug-09 | Sep-10         | Jun-11 | Sep-12  | Jun-13         | Jul-15  | Sep-16  | Jul-17     | Oct-II    | Sep-19    | Sep-20    | Sep-21    | Sep-22   | Mor-07   | Aug-07   | Mar-88    | Aug-93      | A mg-89  | Aug-10   | Jon-11    | Aug-12   | Jun-13 | Jun-15   | Sep-16   | Jul-17 | Oct-16       | Sep-19   | Sep-20    | Sep-21        | Sep-1  |
| VOLATILES                   | 1         |        |          |        |                |        |         | ]              |         |         |            |           |           |           |           |          |          |          |           |             |          |          |           |          |        |          |          |        |              |          |           |               |        |
| 1,1,1-Trichloroethane       | ppm       |        |          |        |                |        | 100     |                |         | 1.00    | 0.046      | 6441      | 200       |           | -         | -        |          | -        |           | 1000        | Carrie   | 980      | 1.00      | 10000    | 100    | 7000     |          | 100    | 1,000        | 1000     | 10 mm     | 596           | -      |
| ,1,2.2-Tetrachloroethane    | ppm       | -      | -        | -      | in the same of | 170    | 141     | -              | 100     | 14      | 440        | -         | 5         | -         | -         | _        | -        | -        |           | -           |          | 100      | 117       |          | -      | 1-       |          | -      | - 00         | 1        | 33.25     |               | -      |
| , I - Dichloroethane        | ppm       |        | -        | -      | 100            |        | 100     |                | 100     | 100     |            | -         | -         |           | -         | -        |          | -        | -         | ***         | ***      | 170      | 10        | 100      | 100    | -        | 100      | 100    | 44           | -        |           | -             | -      |
| ,2,4-Trichlorobenzene       | ppm       | NA.    | -        | +**    | 100            | - 1    | -       | -              |         |         | _          | -         | 5-        | -         | -         | -        | NA .     | -        | NA NA     | 100         | 101      | 100      | 911       | -        |        | 44       | -        | -      |              | -        | 5.25      | 1-1           | -      |
| 1,2-cis-Dichloroethylene    | ppm       |        | 140      | ***    | BMDL J         | BMDL J | BAIDLI  | BAIDL I        | BAIDL J | BMDL J  | 0 0007 J   | 0.00050.) | _         | 0.000383  | 0000357   | 100      | BMDL J   | BAIDL J  | -         | BMDL #      | BMOL J   | BMDL J   |           | BMDL1    | -      | -        |          | -      |              | -        | _         |               | 4      |
| I_2-Dichlorobenzene         | ppm       | NA.    | BMDL#    | ***    | BMDL )         | 100    | 0.0025  | 0.0029         | 0.012   | 0 0079  | 0.0098     | #-00E4    | 0.0018    | 0.0013    | # 001B    | # 0076 J | NA       | 200      | NA.       | 100         | -        | -        | 100       | -        | 100    |          | -        | 100    |              | 27.0     | -         | -             | 1 =    |
| 1,2-Dichloroethane          | ppm       | 100    | One      | _      | 1 -            |        |         |                | BMDL J  | _       | 0.000331.1 |           | _         |           | 22%       | 177      | BMDL J   | BAIDL J  | -         |             | BMDLI    | - 2      |           | BMDL J   | 100    | BMDLI    | 100      |        | -            | 42.4     | 3.0       |               | 4 =    |
| 1,2-trans-Dichloroethylene  | ppm       |        | -        | 1.00   | -              | -      |         |                |         | 7.47    | -          | 5A        |           | Starts.   |           | -        |          | 0        | -         | 120         |          | - 20     | _         |          | 100    | B-1854.7 | 100      |        | NA           | 321C     | 2.22      | - 0           | 1 =    |
| 3-Dichlorobenzene           | ppm       | NA     | -        | -      | -              | - 40   | who who | 440            |         | 100     | 100        | _         | 21        |           |           | 120      | SA       | -        | NA.       | 123         |          | -        |           | -        | 100    | 5.5      |          |        | 155          | -500     |           |               | 1 =    |
| 1.4-Dichlorobenzene         | ppm       | NA.    | 100      |        | -              | ***    | BMDL I  | -              | BMDL /  | BMDt J  | 0.000677   | 2         | 0 9007 3  | 0:0011    | 0 0017    | - 0      | NA.      | -        | NA.       |             |          | -        |           |          |        | 100      | 1        | 257    | - 2          | 7.5      |           | - 12          | 1 =    |
| 1.4-Dioune                  | ppm       | NA     | NA       | NA     | NA             | 34     | NA.     | _              | 0 0035  | 0.004   | -          | NA.       | NA.       | 6         |           | - 8      | NA.      | NA       | NA.       | NA          | NA       | NA       | NA.       | NA.      | @ 0027 | 0 0053   | 0 0029   | 0-0091 | NA           | NA.      | NA        | -             | -      |
| 2-Hexmone                   | ppm       |        |          | 1      | -              | 411    |         | -              | -       | 4000    |            |           |           |           |           | - 2      | -10      | 3.4      | -30       | 75.05       | 3.5      | 34       | 100       |          | - 0021 | 00055    | 9.00,9   | 0.0041 | 3.4          | NA.      | NA.       | - 7           | -      |
| Accione                     | ppen ppen | -      | 1        | _      |                | ***    | -       | _              | _       |         | 0012       | 0015      | 0.0046.7  | 0.0(4     | - 100     | -        |          |          |           | 1           |          | 100      | -         | 1.00     | -      | 9        |          |        | 177          | 17.0     | 171       | 100           |        |
| Benzene                     | bbm       | -      | -        |        | BMDL J         | 0.0021 | BMDLI   | BNIDLI         | BASDL I | BV6DL J | 0 0003333  | 0015      | 000663    |           | - 21      |          | 1        |          |           | 100         | 3.75     | 100      | 5.5       | 3577.5   | -      |          |          | 3.7    |              | 1.5      | 1911      | .73           | 9 005  |
| Bromoform                   |           |        | - 10     | 1      |                |        | BALLI   |                | I       |         |            | 7.4       | -         |           |           |          | 100      |          | 100       | 140         |          | 140      | - 2       |          | -      | -        | -        |        | 57           | 255      | _         | 177           | -      |
| Carbon Disulfide            | bban      | 0      |          | ***    | - 51           | 3      |         |                | ***     | -       |            | 5.7       | -         |           |           |          | 100      |          | 140       | _           | -        |          | -         |          | -      | -        | -        |        | ***          | 177      | -         | (10)          | -      |
| Chlorobenzene               | bbar      | BADL   | 252      | 0.017  | 0.012          | 0.016  | man i   | Secret Control | ***     | -       |            | -         | 10        |           |           | (88)     | -        | 53       |           | 1           | 7.7      |          | 177       | 17.      | -      | 7.5      | -        | **     | -            | 100      | -         |               | -      |
| Chlorobromomethane          | bber      |        |          |        |                |        | 0.001   | 0.013          | 0.018   | 0.014   | 0.016      | 0.045     | 0.038     | 0.077     | 0.059     | 9 654    | BAIDL J  | BMDL 1   | BWOF 1    | BMDL 1      | BMDL II  | BMDL J   | BMDL J    | BAIDL #  | _      | 100      | -        |        | -            |          | -         | 316           | -      |
| Chloroethane                | ppm       | NA:    | SA       | NA.    | 5.6            | 7.4    | -       | 494            |         | 710     | -          | 77.       |           | -         | 100       |          | NA NA    | N.A.     | SA        | NA          | NA       | NA       | NA.       | 1.7      | -      |          | -        |        | 100          | -        | 100       | -             | -      |
|                             | bbe       |        | -        | -      | -              | 100    | -       | (100           | 10.0    | 100     | 100        | 0.00085   | - 100     | -         |           | 100      | -        | -        | 1-5       |             |          | 77.5     | 1.7       | 77.00    | 100    |          | -        | 1997   |              | 100      | 100       | 446           | 1 -    |
| Thioroform                  | ppm       | 177    | 15.      | -      | -              |        | ****    |                | 100     |         | -          | -         |           | -         | 940       | -        | -        | -        | -         | _           |          | -        | -         |          |        |          |          |        | _            | _        |           | 144           | 1 -    |
| Thloromethane               | ppm       | -      |          | -      | -              | ***    |         | 177            | .000    | -       | -          | 0 00060 J |           | **        | -         |          | 1000     |          | -         |             | -        | 100      | -         |          | P**    |          |          |        | -            | I – I    |           | -             | ( -    |
| Cyclohexane                 | ppen      | N.A    | NA       | NA.    | N#             | NA.    |         | 100            | NA.     | -       | -          | -         |           | **        |           | -        | SA       | NA.      | NA.       | NA.         | NA       | NA.      | NA.       | -        | 1++    |          | -        | l      | -            |          |           |               | 1 -    |
| Dichlorobromomethane        | ppm       | -      | -        |        | -              | ↔      |         | 100            | 100     | -       | -          |           |           |           |           |          | -        | -        | -         | -           |          | -        | 1000      |          | Prov.  |          |          | l      | -            | l – I    |           | 5-2           | 1 -    |
| Ethythenzene                | ppm       | 34     | 2.4      | 0.57   | 93             | 3-7 D  | 0.0078  | 0.065          | 0.0011  | BMDL J  | 0 0000417  | 1 (1000 0 | 0000323   | 0.00090.8 | # 40001 J | # 93     | -        | 100      |           |             | -        |          | -         | ***      |        | -        | _        | I –    | _            | _        |           | -             | -      |
| Isopropylbenzene            | ppm       | NA.    | NA.      | NA.    | NA             | NA     | 0.025   | 0 936          | 0 057   | @ 03.2  | 0 651      | 0 036     | 9019      | 0.05      | 0.054     | 9.652    | NA.      | NA.      | NA.       | NA          | 246      | NA       | NA.       | 100      |        |          |          | I -    | _            | i        |           | -             | 1 -    |
| Methyl ethyl ketone         | ppes      | -      | 1.00     | 199    |                |        |         | 100            | BAIDL J |         | 0.00447    | 0.0064    |           | 0-0067    |           |          | 1.00     |          |           | (10 mm - 1) |          |          | . 100     |          |        | l l      |          | I –    | _            |          | ,,,       | _             | 1 -    |
| Methyl tertiary butyl other | ppm:      | -      | -        | NA.    |                | l –    | -       | 100            | 900     | IM      |            | NA        | - 1       |           | 1         | -        | -        | -        |           | SMOL I      |          | 100      | 200       |          |        | I _      | _        | I –    | NA.          |          | <b></b> . | 2.0           |        |
| Methyleyelohexane           | ppus      | NA.    | NA.      | NA.    | NA             | NA.    | 0 0026  | 0.013          | 0.0074  | ₫ 0037  | 8-0046     | 00061     | 0:0024    | 0.0078    | II-0091   | -        | NA       | NA       | NA        | N#          | NA.      | N/A      | NA.       | -        |        | 1 _      |          | I _    |              | l        |           | 2.5           | 1      |
| Methylene chlonde           | pps       | 92     | 244      | 1.00   | 1              | l –    | -       | 100            | 100     |         | _          | '- '      |           | 2 - 1     |           | _        | -        | -        |           | 198         |          | 700      | 100       |          | _      | I _ I    | l _      | I _    | l            | I        |           | 20            | 1      |
| Methyl-iso-butyl Letone     | ppe       |        | 0.00     | 198    | -              | l –    | The S   | 94             | 140     |         | _          | _         | _ :       | 1.00      |           | 1-1      | -        |          |           |             | 100      | 100      |           |          | _      | - 1      | l _      | l      |              | !        |           | 100           | ( )    |
| Styrene                     | PP-       | BMDL ) | 100      | -      | -              | l –    | 100     | 1964           |         | _       | _          | _         |           | -         | 2.5       |          | 12.5     |          | 100       |             | 5        | - 22     | 111       |          |        | 1 _      | · _      |        |              |          |           | - 22          | 1      |
| Tetrachloroethene           | ppm       | 100    | 100      | -      | -              |        | ***     |                |         | _       | _          | _         |           |           |           |          | 100      |          | 100       | -           | -        | - 23     | 100       | 1000     |        | 1        |          | I      | "            |          |           |               | 1      |
| Toluene                     | ppm       |        | 44       | 0.0011 | BNDLF          | BMDL / | BAIDL J | BMDLJ          | BAIDLE  | BNIDL ) | _          |           | 1.0       | 100       |           | 9.071    | 100      |          | - 3       |             |          | - 23     |           | 1        |        | 1 -      | "        |        |              |          |           |               | ( -    |
| Total Xylenes               | ppen      | 15     | 10       | 36     | 16             | II D   | 0.4412  | 0643           | 0.2     | 4018    | 0 0029     |           | 8-0091    | 0.041813  | 0.00738.2 | 23       | 100      |          | - 5       | 1           | 3.57     |          |           | 385      |        |          |          | "      |              | - 1      |           |               | ( =    |
| Trichloroethylene           | ppm       |        | -        | - 20   | 100            |        |         |                |         |         | -          | 0 0 3 7   |           |           |           |          | -        |          | 9         |             |          | -        |           |          |        |          | l ""     | "      |              |          |           | 555           | ( -    |
| Vinst chloride              | DOGS      | - 0    | -        | - 00   | 200            |        | 1       | 1              | 0.0     |         | 0 00092 1  |           | 17        |           |           |          | 100      |          | - 5       | BAIDL J     |          | 3.       | 1.00      |          |        | "        |          | "      |              |          |           | ***           | ( =    |
| TOTAL VOLATILES             | ppm       | 10     | 12       | 4.2    | 1.9            | 15.7.3 | 6.492 J | 6.79 J         | 8,299   | 9.00    | 6,887      | 0.19992.4 | 0.07392 J | 0.17299.5 | 0.13373.3 | 3,3648.J | 6.6936 J | 6.0631 J | 0.00070.2 | 9,8826.J    | 0.0011 J | 0.0006.2 | 8,80917.3 | 0.000.1  | 0.0027 | 0.0057   | 0.063    | 0.009  | <del>-</del> |          |           | -             | 6,0054 |
| 2-Octanol                   | ppm       |        | 7.00     | 1.00   | 140            | NA.    | NA.     | NA.            | NA.     | NA.     | NA.        | NA.       | NA        | NA        | NA.       | NA.      | NA       | NA       | NA.       | NA.         | NA.      | NA       | NA.       | NA.      | NA.    | 5A       | NA       | NA NA  | NA.          |          |           | $\overline{}$ |        |
| 2-Octanone                  | ppm       |        | -        | -      |                | NA.    | NA.     | NA.            | NA      | NA NA   | NA.        | NA.       | NA.       | NA.       | NA NA     | NA NA    | NA NA    | NA.      | NA.       | NA.         | NA.      | NA.      | NA.       | NA       | NA.    | NA NA    | NA<br>NA | NA NA  | NA NA        | NA<br>NA | NA<br>NA  | NA.           | NA     |
| TOTAL OCTANOL/OCTANONE      |           |        |          | -      | -              | NA.    | NA.     | NA.            | NA.     | NA.     | NA.        | 58        | NA NA     | 34        | 34        | NA.      | NA.      | NA NA    | DA.       | 34          | NA<br>NA | NA.      | NA NA     | NA<br>NA | NA.    | NA<br>NA | 74       | 54     | NA<br>NA     | NA<br>NA |           | NA.           | NA.    |
| ACID EXTRACTABLES           | PP        |        | 1        | 1      | 1              | 1      | 7.500   | .50            | .54     | .04     | iec        | .1.4      | .500      | .04       | .124      | -34      | PA       | .505     | .7A       | - 34        | - AA     | - CA     |           | NA.      | NO.    | - 54     | - 34     | 34     | 56           | - NA     | NA.       | NA            | NA     |
| 2.4.3-Tricklomphenel        | l         | NA.    |          |        |                |        | NA.     |                | l       | 1       |            |           | l         |           |           |          | l        |          | l         |             |          |          |           |          |        | I        |          | I      |              |          |           |               | í      |
| 1.4-Directly lobenel        | ppm       |        |          |        |                |        |         | NA NA          | NA      | NA.     | _          | NA NA     | NA        | NA.       | NA:       | NA       | NA .     | ***      | NA        | and .       |          | - 100    | 3.00      | 22-      | NA     | NA.      | NA NA    |        | NA NA        | NA       | NA.       | NA            | NA.    |
| -Methylphenol               | ppm       | NA.    | BVIDE 1  | -      | BAIDL          | -      | NA      | NA NA          | NA.     | NA.     |            | NA        | NA NA     | NA.       | NA.       | NA.      | NA NA    | **       | NA.       |             | -        | 7.7      | -         | 3.73     | NA.    | NA NA    | NA.      |        | NA           | NA NA    | NA.       | NA            | N.     |
| A death of all and all      | bben      | NA.    | - "      | -      | -              | 077    | N4      | NA NA          | NA.     | NA.     | _          | NA NA     | NA NA     | NA        | NA NA     | NA .     | NA NA    | 44       | NA.       | -           | -        | -        |           | 7-       | NA.    | NA NA    | NA NA    |        | NA           | NA NA    | NA.       | NA            | N      |
| -Methylphenol               | bba       | NA     | -        | 3.7    | 7.0            | 177    | NA      | NA             | NA.     | NA NA   | _          | NA.       | NA NA     | NA        | NA NA     | NA NA    | NA.      |          | NA.       | -           |          | -        |           | 60-      | NA.    | NA.      | NA.      |        | NA           | NA NA    | NA.       | NA            | N      |
| restachlorophesol           | bben      | NA     | _        |        |                | -      | NA.     | NA.            | NA.     | HA      | _          | NA        | NA NA     | NA.       | NA.       | NA .     | NA NA    |          | NA        | ***         | 0.00015  | -        | -         | - 1      | NA.    | NA NA    | NA NA    |        | NA           | NA NA    | NA NA     | NA.           | N/     |
| henol                       | ppm       | NA.    | -        |        |                | -      | NA.     | NA.            | NA      | NA      | _          | NA NA     | NA        | NA.       | NA.       | NA.      | NA       | 100      | 5.A       | -           | -        | 1000     | 9.4       | 7.4      | NA.    | NA.      | NA.      |        | NA           | NA.      | NA .      | . NA          | N4     |
| TOTAL ACID EXTRACTABLES     | ppm       | NA     | 0.0070 3 | -      | 6,8976.3       |        | NA.     | NA.            | NA.     | NA.     | B.800.     | 5.4       | *A        | 24        | NA NA     | NA.      | NA.      | 100      | NA.       | -           | 8,84635  | -        | -         | 94.      | 4.4    | NA.      | %.8      | _      | NA.          | 54       | NA        | 24            | NA.    |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (114 page 15 for sects)

|                             | _     |          |        |              |          |         |          |          | 51W-3      |             |             |              |        |             |        |        |          |          |        |        |          |        |        |        |        |        |        |        |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|-----------------------------|-------|----------|--------|--------------|----------|---------|----------|----------|------------|-------------|-------------|--------------|--------|-------------|--------|--------|----------|----------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PARAMETER                   | UNIT  | Mac OR   | 1 1 42 | T a00        | I 645-10 | Jun-11  | T 6 12   | Jun 17 1 |            | P 16        | E-4 49      | #3 #A        | f 10   | I c 20      | 004    | 4      | 24 -0    |          |        |        |          |        | 1      |        | MW-4   |        |        |        |        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| BASENEUTRALS                |       | .4141-00 | A 100  | A 102-47     | 30010    | 3/00-11 | 74F-12   | 388-13   | 1m-12      | 24D-10      | 300:17      | C/(1-18      | Nep-19 | Sep-28      | Nep-21 | 54p-22 | VIIII-47 | A 992-97 | Mer-03 | Aug-88 | λ tag-89 | Aug-18 | Jun-11 | Aug-12 | Jue-13 | Jee-15 | Sep-16 | Jul-17 | Oct-18 | Sep-19 | Sep-20 | Sep-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sep-22  |
| 2-Methy haphthalene         | ppen  | NA.      | 0.032  | BADL I       | BMDL J   | ***     | NA.      | NA.      | NA NA      | NA.         | 0.00581     | NA .         | NA.    |             | NA.    | NA.    | NA .     | _        | NA.    |        |          | 1-1    |        |        | NA.    | NA.    | NA NA  |        | NA.    | 54     | NA.    | hA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Acenaphthene                | ppm   | NA.      | BMDLE  | _            |          | l       | NA.      | 5A       | NA         | NA.         | 0.0044.3    | NA           | NA.    | 0 0030-1    | NA.    | NA.    | SA.      |          | NA.    |        | "        |        |        | "      | NA.    | NA.    | NA     |        | SA.    | SA     | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA.     |
| Acenaphthylene              | ppm   | NA.      | 1 -    |              |          | l       | NA.      | NA       | NA I       | NA.         |             | NA.          | NA     | **          | NA.    | NA.    | NA.      | l _ I    | NA.    | i      |          |        |        |        | NA.    | NA.    | NA     |        | NA.    | SA     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Anthracene                  | ppm   | 5A       | BMDLI  |              |          | ·       | SA       | 5A       | NA NA      | NA.         | 0.000951    | NA.          | NA.    |             | NA.    | SA     | SA.      | I I      | NA.    |        | "        |        |        |        | NA.    | NA.    | NA I   |        | SA.    | NA NA  | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| BenzotsiAnthracene          | ppm   | 5A       |        | ***          |          |         | NA.      | NA.      | NA         | NA.         | 0 0000054   | NA.          | NA     | 0 600041 J  | NA.    | NA.    | NA       | l I      | NA.    |        |          |        |        |        | NA.    | NA.    | NA I   |        | NA.    | SA     | SA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Benzo(a)Pyrene              | ppm   | NA.      | -      |              | -        | l       | SA       | SA.      | SA         | NA.         | 0 0000353   | NA.          | NA     |             | NA     | NA.    | NA.      |          | NA.    |        | _        | _      | -      |        | NA.    | NA.    | NA     |        | NA.    | 5A     | NA NA  | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| Benzo(b)Fluoranthene        | ppm   | NA.      | -      |              | - m      |         | NA NA    | NA.      | NA         | NA          | 0 0000035 # | NA NA        | NA.    |             | NA     | NA.    | SA       | l I      | SA     | l      | l l      |        |        |        | NA.    | NA.    | NA     |        | NA NA  | SA.    | NA NA  | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Benzo(g,b,i)Perylene        | ppm   | SA       |        |              |          |         | NA.      | SA       | NA         | NA          | 0 6000032 # | NA.          | NA.    |             | NA NA  | NA.    | SA       | !        | NA.    |        |          |        |        | l l    | NA.    | NA.    | NA     |        | NA.    | SA     | NA.    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DA.     |
| Benzo(k)Fluoranthene        | ppm   | 5A       | -      | - 1          | 100      | -       | NA.      | NA.      | NA NA      | NA          |             | NA.          | NA.    | -           | NA.    | SA     | 53       | - 1      | NA.    |        |          |        |        | _      | NA.    | NA.    | NA     |        | NA.    | SA.    | NA     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA.     |
| bis(2-Chloroethoxy)methane  | ppm   | NA.      |        |              |          |         | SA       | SA       | NA N       | NA          | -           | NA           | NA.    | 0,000003    | NA     | NA     | NA NA    |          | NA.    |        | -        |        |        | _      | NA.    | 84     | NA.    |        | NA.    | NA.    | NA.    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| bss(2-Chloroethyl)ether     | ppm   | NA       | -      | B++          |          | 1       | SA       | NA NA    | NA         | NA          | 9 00 16     | NA.          | SA     | 0 00086     | SA.    | NA NA  | SA       | 0.042    | SA     | 0-037  | 0.034    | 0019   | 8 0048 | 0.02   | NA.    | NA.    | 0 6027 | 0.010  | 5A     | 34     | NA.    | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0002    |
| bis(2-Chloroisopropy1)ether | ppm   | NA.      |        |              |          | -       | NA.      | NA.      | NA NA      | NA.         | - 1         | NA NA        | NA     | -           | NA.    | SA     | NA       |          | NA     |        |          |        | _      | _      | NA.    | NA.    | NA.    | ***    | NA.    | NA.    | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA      |
| bis(2-Eth)thexytyphthalate  | ppm   | SA       |        |              |          | 1       | SA       | NA.      | SA         | SA.         | - 1         | NA NA        | NA.    | -           | NA.    | NA.    | SA       | - I      | NA.    |        |          | -      | _      |        | NA.    | NA.    | BMDLJ  |        | NA.    | NA.    | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Butyl benzyl phthalate      | ррш   | NA.      | -      | -            | ***      | 1       | SA       | 5A       | NA         | NA          |             | NA.          | NA.    |             | NA.    | NA     | NA.      | - I      | NA.    |        |          | ***    |        |        | NA     | NA .   | NA     |        | NA NA  | NA.    | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Carbazole                   | ppm   | NA.      | BMDC J |              |          | -       | SA       | NA NA    | NA NA      | SA          |             | NA.          | NA.    | -           | NA.    | NA.    | NA       | -        | NA.    |        |          |        |        | -      | NA.    | NA.    | NA     |        | NA     | 5A     | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Chrysene                    | ppm   | NA.      |        |              |          | i       | NA.      | NA.      | NA NA      | NA          | 18400000    | NA.          | NA.    | -           | NA     | NA     | NA NA    |          | NA     |        | -        | -      |        | _      | NA.    | NA.    | NA     |        | NA.    | 5A     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Dibenz(a,h jamhracene       | ppes  | NA       |        | h            |          | -       | NA NA    | NA NA    | NA NA      | NA          | -           | NA.          | NA.    |             | NA.    | NA.    | NA.      |          | NA     |        | -        | -      | -      | -      | NA.    | NA.    | NA.    |        | NA     | NA.    | NA.    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| Osbenzo faran               | ppm : | NA.      | BMDL J |              |          | -       | NA.      | NA NA    | NA         | NA          | #4023 J     | NA.          | NA.    | 0.00[6.]    | NA     | NA.    | NA NA    |          | NA.    |        | _        | -      |        | -      | NA.    | NA .   | NA     |        | NA.    | NA NA  | NA     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA      |
| Diethyl phthalate           | blue  | NA.      | ***    |              |          | l -     | NA NA    | NA NA    | NA NA      | NA          |             | NA           | NA.    |             | NA .   | NA     | NA.      |          | NA.    |        |          |        | _      | -      | NA.    | NA.    | NA     |        | NA     | NA NA  | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Dimethyl phtholate          | ppm   | NA       | +**    |              |          |         | NA.      | NA NA    | SA         | NA.         |             | NA.          | NA.    | -           | NA .   | NA     | NA NA    | 177      | NA     | 100    | - 1      |        | -      | - 1    | NA     | NA.    | NA .   |        | SA     | SA     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| D1-m-buty (placka) and      | ppm   | NA       | ***    |              |          | l -     | NA.      | NA NA    | NA         | NA          |             | NA.          | NA     | **          | NA NA  | NA.    | NA.      | -        | NA     | 100    |          |        |        |        | NA.    | NA.    | NA 3   |        | . NA   | 5A     | NA NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| Dr-m-octylphthalate         | ppos  | 84       |        |              |          |         | 3.4      | NA       | NA         | NA.         | -           | NA NA        | SA     |             | NA.    | NA.    | SA       | -        | NA.    | 197    |          |        | -      |        | NA.    | SA     | NA :   |        | NA NA  | 54     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Fluoranthene                | ppm   | NA       | -      |              |          | -       | NA.      | NA NA    | NA         | NA.         | 0 COOM8 J   | NA.          | NA.    | **          | NA     | NA NA  | NA.      | 100      | NA.    | 100    |          |        |        |        | NA.    | NA NA  | NA .   |        | NA NA  | SA.    | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Fluorene                    | bhm   | NA.      | BMDLJ  |              |          | -       | NA.      | NA NA    | SA         | SA :        | 0-0021 J    | NA.          | NA.    | 0.001#1     | SA     | NA NA  | NA NA    | 175      | SA     | 100    | -        | -      |        | -      | NA.    | NA.    | NA -   |        | NA NA  | NA NA  | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA      |
| Hexachlorobenzene           | blow  | NA       | ***    |              | -        | NA.     | NA NA    | N.5      | NA         | NA.         |             | NA.          | NA.    | -           | NA NA  | NA NA  |          | 12       | NA     | 100    | -        | -      | -      |        | NA.    | NA.    |        | ***    | NA     | - NA   | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.6     |
| Indeno(1.2.3-cdiPyrene      | bbur  | NA.      | ***    | -            |          |         | NA NA    | NA       | NA         | NA :        |             | NA.          | NA.    |             | NA NA  | NA     | NA NA    | P.0      | NA     | prop   | -,-      | -      |        |        | NA .   | NA NA  | NA NA  | ***    | NA     | NA NA  | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Isophorone<br>Nanhshalene   | ppm   | NA.      | ***    |              |          |         | NA.      | SA       | NA NA      | NA          | -           | NA.          | NA.    |             | NA NA  | NA NA  | NA.      | 100      | NA     | 100    | -        | -      | -      |        | NA     | NA     | NA NA  | b++    | NA     | NA.    | NA.    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA.     |
| Nitrobenzese                | ppes  | NA       | 014    | BMDL J       | 0.047    |         | NA.      | 0.04     | 0-043      | 0.0039      |             | 0 00064 J    |        |             | -      | NA.    | NA       | -        | NA.    | 1.00   | - 1      | (100)  | -      |        | -      | l -    |        |        | -      | in.    | _      | in the same of the | -       |
| Phenanthrese                | ppm   | NA.      | BMDL J |              |          | -       | NA.      | NA       | NA         | NA          |             | NA NA        | NA.    |             | NA     | NA NA  | NA       | - 1      | NA NA  | PRE    |          |        | -      | -      | SA     | SA     | NA NA  | -      | NA NA  | NA NA  | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Pyrene                      | ppm   | NA<br>NA | BADE I |              |          | -       | NA NA    | NA .     | NA         | NA          | 0.0024.1    | NA.          | NA     | 0.0030.1    | NA .   | NA NA  | NA NA    | -        | NA     | 100    | 10       |        | -      | -      | NA     | NA.    | NA.    |        | NA     | NA NA  | NA NA  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| 1,4-Dioxane                 | bbur  | NA<br>NA | NA.    |              |          | SA.     | NA<br>NA | NA<br>NA | NA         | SA          |             | SA           | NA.    | - 1         | SA.    | NA NA  | 5A       | - 1      | SA.    | 100    | 100      | -      | -      |        | NA     | SA     | NA.    | -      | NA NA  | 5a     | SA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| TOTAL BASENEUTRALS          | ppm   | NA.      | 8.2    | 9.0664J      | 9.863 J  | - SA    | 6,003 J  | 8.6429   | NA<br>#456 | NA<br>0.012 | 8.032       | NA 0.00064.2 | NA.    | 0.009201 II | NA     | NA.    | NA.      | NA NA    | NA     | NA     | NA.      | NA     | NA.    | SA     | NA.    | NA NA  | NA NA  | NA.    | NA NA  | NA.    | NA NA  | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | @ 0000W |
| TO THE BASE NECTROLES       | Мин   |          |        | Total 2      | 9.4607   | +-      | 1 86902  | 40427    | 91970      | 4.912       | 8007        | ELEVENI 2    |        | E-max261 %  |        | N4     | 54       | 0.042    | - 14   | 6.637  | 8.936    | 0.019  | 8,9048 | 0.02   |        | ***    | 0.004  | 4.619  |        |        | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.6030  |
| PESTICIDES                  |       |          |        | 1            |          | 1       | 1        |          |            |             |             |              |        |             |        |        |          |          |        |        |          |        |        |        |        | l      | l      |        |        | i      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
| 4,4'-DDD                    | ppb   | NA.      |        |              |          | l –     | NA       | NA       | NA NA      | NA          | _           | NA.          | NA     | NA.         | NA     | NA     | NA.      | _        | NA     | 100    |          |        |        |        | NA.    | SA.    | NA NA  | l      | NA.    | NA     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l sa    |
| 4,4500E                     | ppb   | NA       | ***    |              |          | l –     | NA.      | NA       | NA NA      | NA.         | _           | NA.          | SA     | NA.         | NA.    | NA NA  | NA.      | _        | NA.    | Par.   | -        | _      |        | _      | SA.    | NA.    | NA NA  |        | NA.    | NA.    | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| 4.4'-DDT                    | ppb   | NA       | ***    | -            |          | l –     | NA NA    | NA NA    | NA NA      | SA          |             | NA.          | NA.    | NA          | SA     | NA     | NA.      |          | NA.    | 1 100  | 200      |        |        | -      | NA.    | SA.    | NA.    |        | NA NA  | 88     | SA     | SA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52      |
| Beta-BHC                    | ppb   | NA       | ***    | -            |          | l –     | NA.      | NA.      | NA NA      | NA          |             | NA.          | NA     | NA.         | NA     | NA.    | NA.      |          | NA     | 100    | 100      |        |        | _      | SA     | NA.    | NA.    |        | NA.    | 54     | NA.    | N4 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA.     |
| Delta-BHC                   | ppb   | NA.      | +      | -            | -        |         | NA .     | NA       | NA NA      | NA          | - 1         | 5A           | NA     | NA          | NA.    | NA     | NA.      |          | SA     | 100    | -        |        |        | _      | NA.    | NA.    | NA.    |        | NA.    | - Si   | SA     | DA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Dicidirus                   | ppb   | NA       |        | -            |          |         | NA       | NA.      | NA NA      | NA          | ***         | NA           | NA.    | NA.         | NA.    | NA.    | NA.      |          | SA     | -      | -        |        |        |        | NA.    | NA.    | NA.    |        | NA.    | SA.    | NA.    | -NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Endoselfan i                | ppb   | NA.      |        | -            |          |         | SA       | SA.      | NA         | NA          |             | NA.          | NA.    | NA.         | NA.    | NA.    | NA.      | 400      | NA.    | 100    | 100      |        |        |        | N4     | NA     | Sa     |        | SA     | - 54   | NA.    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54      |
| Endoseifan sulfasc          | ppb   | NA.      | ***    | -            |          | l –     | NA.      | NA       | NA.        | NA          | - 1         | NA.          | NA.    | NA.         | NA.    | NA     | NA NA    |          | NA     | 100    | 100      |        |        | _      | NA.    | NA.    | NA.    |        | NA.    | NA.    | S/A    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| Endrin                      | ppb   | NA.      |        | -            |          |         | NA       | NA       | NA         | NA.         |             | SA           | 5.A    | NA.         | NA.    | NA.    | NA.      |          | NA.    | 100    | -        | l –    |        | _      | NA.    | 88     | NA.    |        | NA.    | 58     | SA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Endrua aldehyde             | ppb   | NA.      |        | -            |          |         | NA       | NA       | NA :       | NA.         | -           | NA.          | N4.    | NA          | NA.    | NA.    | NA.      | P++      | NA.    | T tree | -        | -      | _      | _      | NA.    | NA.    | NA.    |        | NA.    | SA.    | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Endrin Letone               | ppb   | NA.      | -      | -            |          |         | NA NA    | NA NA    | NA :       | NA .        | -           | SA           | NA.    | NA.         | NA.    | NA.    | NA.      | <b></b>  | NA.    | 100    | -        | -      | _      |        | NA.    | NA.    | NA.    |        | NA.    | NA.    | NA.    | 5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| Gamma-BHC                   | ppb   | NA.      | -      | -            |          |         | NA NA    | NA NA    | NA.        | NA          |             | NA.          | N4.    | NA.         | NA.    | NA.    | NA.      | 144      | NA.    | 100    | -        | -      | _      |        | NA     | NA.    | NA.    |        | 54     | NA.    | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.     |
| Eleptachlor                 | ppb   | NA.      | -      |              |          |         | NA       | NA NA    | NA .       | NA          |             | NA           | NA.    | NA.         | NA.    | NA.    | NA.      | 60       | NA     | 100    | -        | l –    |        |        | NA.    | NA.    | NA.    |        | NA.    | SA     | NA.    | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54      |
| Heptachlor epoxide          | ppb   | NA.      | i -    |              |          |         | - NA     | NA       | 5A         | NA          |             | NA.          | NA.    | NA.         | NA.    | NA.    | NA       |          | NA.    | 100    | -        | -      |        |        | NA     | NA.    | NA.    |        | NA.    | 5A     | NA     | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA      |
| Methoxychlor                | ppb   | NA       |        | <del> </del> |          |         | NA NA    | NA       | NA.        | NA.         |             | NA           | NA.    | NA.         | NA.    | NA.    | . NA     |          | SA     | 100    | 190      |        |        | _      | NA.    | . NA   | NA .   |        | NA.    | 5a     | NA     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.     |
| TOTAL DBX                   | ppb   | 20%      | -      | - "          | I        |         | 54       | 5A       | 3A         | NA          |             | NA           | NA.    | NA.         | NA     | 54     | NA.      |          | NA.    |        | 100      |        |        |        | NA.    | NA     | NA     |        | 14     | NA.    | NA.    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54      |
| TOTAL PESTICIDES            | ppb   | NA.      |        |              | ***      |         | NA.      | N4       | 54         | NA          |             | A.F          | 5.4    | NA.         | NA.    | NA.    | NA.      | <b>-</b> | NA.    | -      |          | - 1    |        |        | 5A     | 54     | NA     | l –    | 54     | L 54   | NA.    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 54    |

TABLE 1
ANALYTICAL RESULTS FOR ON-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(rec page 19 for motes)

| PARAMETER                   | UNIT |          |         |        |         |          |          |             | 391      | N-5    |          |            |           |            |             |             |           |          |          |          |          |          |          |          | MW-4     |          |           |          |            |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|-----------------------------|------|----------|---------|--------|---------|----------|----------|-------------|----------|--------|----------|------------|-----------|------------|-------------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                             | CANT | Aug-87   | Mar-68  | Aug-68 | Aug-89  | Sep-18   | Jon-II   | Aug-12      | Jun-13   | Jun-15 | Sep-16   | Jul-17     | Oct-18    | Sep-19     | Sep-20      | Sep-21      | Sep-21    | Mar-00   | Aug-08   | Aug-89   | Aug-10   | Jun-II   | Aug-12   | Jun-13   |          | Sep-16   | Jul-17    | Oct-18   | Sep-19     | Sep-20       | Sep-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sep-2    |
| VOLATILES                   |      |          |         |        |         |          |          |             |          |        |          |            |           |            |             |             |           |          |          |          |          |          | 1.00     |          |          |          | 111       |          | 74,000     |              | orp at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAD.     |
| I_I,I-Trichloroethane       | ppm  | -        | ***     | 1,00   | 100     |          | 1.00     | -           | -        | 100    | -        | 77         | 197       | 100        | -           | 000         | ***       |          |          | -        |          | 44       | 199      | 100      | - 100    | -        | 100       | and .    | 40.0       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _        |
| 1.1.2.2-Tetrachloroethane   | ppm  | -        | ***     |        | -01     | 100      | 1,000    | 3-          | -        |        | -        | 71         | ,000      | 100        | -           | hat to      | 4.00      | 7        |          | 5-1      | -        | -        | 100      | -        | -        | -        | -         | -        | 4.1        | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| I,1-Dichloroethane          | ppm  |          |         | 100    | 100     | 8.00     | 100      | - 1         | -        | 100    |          |            | 107       | 100        | -           |             | ***       | -        |          | _        | -        | -1       | 787      | 100      | -        | -        |           | -        |            | -            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1.2.4-Trichlorobenzene      | ppm  | ***      | NA.     | 100    |         |          | 101      |             | -        |        | ***      |            |           | _          |             | ***         | ***       | NA.      |          |          |          |          | 100      | -        | 440      |          | 2.2       | -        | -          | -            | 1 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0      |
| 1,2-cis-Dichlomethylene     | ppm  | BMDL J   | SMDL /  | 100    | 704     | 0 0011   | BMDL )   | BWDf 1      | BMDL J   | BMDLJ  | 1 JUNE   | 0 000056 J | 0.00036.0 | _          | 0.00058.1   | 0 00005F J  | 000042 J  |          | 140      | -        | 1,100.08 | -        | 100      | -        | ter.     | _        | 100       |          | -          |              | to the same of the |          |
| 1.2-Dichlorobenzene         | ppes | e6-      | NA.     | 100    | - 100   |          |          | 8MDL J      | I – I    | 0.0014 | BMDL /   | 0 000093 J | 0-00086 J | 0 00086 J  | 0.00083 1   | 0.00061.J   | 0000617   | N4       |          | -        | _        | 1 407    | BALDLE   | -        | BMDL F   | BHOLE    | 0.00006.7 | -        | - 21       | diduction in | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-00036  |
| 1,2-Dichloroethane          | ppm  | ~        | -       | -      | 100     | 100      | -        | 1 -         |          | ***    |          |            | 544       | ***        | 44          |             |           |          | 77.      | - 100    | -        | -        | -0.00    |          |          |          | -         | - 100    | 20         |              | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000   |
| 1,2-trans-Dickloroethylene  | ppm. | 000      | 100     |        |         |          |          |             |          | ***    | and it   | 200        | 5.4       | 88.0       |             | -           | 2.0       |          |          | 20       | -        |          | 1771     |          |          | -        | 522       | NA.      |            | -            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 1,3-Dichlorobenzene         | ppm  | 100      | NA      | 3.00   | 100     |          | -        | -           |          |        | l –      | 100        | 100       | ***        | -           | _           |           | NA.      | 125      | 100      | 400      | 100      | 689      | -        | -        | 200      | 12        | 1000     |            | 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| 1,4-Dicklorobenzene         | ppm  | -        | NA.     |        | 100     |          | -        | -           | 144      |        | - 1      | _          | 10.       | 100        |             | _           | -         | NA.      | 60       | -        | -        | -        | 227      |          |          | - 2      | 100       | -2-      | -          | (E)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51       |
| 1,4-Diosane                 | ppm  | HA       | NA.     | 5A     | NA.     | NA       | NA NA    | NA          |          |        | BMDL J   |            | NA        | NA         | 0.00026.1   | _           |           | NA.      | NA.      | 24.      | 24       | NA       | NA       | - 3      |          | 2        |           | 265      | 34         | 0.000031     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |
| 2-He unone                  | ppm  | _        | _       | 100    |         | 100      | -        |             |          |        | 6-6      |            | Sec.      |            | _           |             |           |          |          |          | 4.5      | 700      | 444      |          | -        | -        | 1.50      | - 44     |            | 0.000033     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |
| Acetone                     | ppen | 9 016    |         | 8MOL I |         | 200      | -5.5     | 0.007       |          | _      |          | 0.0062     | 0.0062    | 0 0049 J   | 0.0051      | 0.015       | 0.0075    |          | -        | -        | 100      | - 1      | - 14     |          | 1.7      | 100      |           | 0.01     | -50        |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |
| Венгене                     | ppm  | 0.0036   | 1 JOIAN | 0.0013 | BAIDL J | 0.0039   | 0.0044   | 0 0011      | 0.0018   | 9.003  | 0 0026   | 0 0032     | 9 0034    | E 00086 )  | 00018       | 00014       | 00011     | 200      |          |          |          | 100      | 0.0      |          |          | 77       | 0.00341   | 0.61     |            | 0.0040       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| Bromoform                   | ppm  |          | _       |        |         |          |          |             |          | ****   | 44010    | 0 0021     | *****     | - 00040 /  | 0.0010      | 90014       | 00011     |          |          |          | 2.5      | 1150     | 93       | -        | -        | 177      |           | -        | 100        | 65           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| Carbon Disulfide            | ppm  |          |         |        | _       |          |          |             |          | -      |          |            | 2         |            |             |             |           | 100      | -        | - 2      | 170      | 5.50     | - 53     | -        | -        | -        | 1         | -        | 55.3       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1411     |
| Chlorobenzene               | ppm  | BNEDL #  | BMDL J  | BMDL / | 0.0018  | 0 0081   | 0011     | 0 0095      | 0 0095   | 00 4   | # 02     | 0 019      | 9.941     | 0.015      | 0 02 F I    |             |           | 700      |          |          |          |          |          | -        |          |          | 1         | 1.7      | 140        |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lev      |
| Chlorobromomethane          | ppen | NA       | SIA     | NA.    | NA.     | SA       | NA.      | 0 0099      | 0 0000   | 0.014  | +02      |            | 9911      | 0.000      | 0.02 F [    | 0.62        | 0.028     | - 200    | - 5      |          | 170      |          | BMDL 7   | -        | BAIDL J  | BUIDE L  | 0.001     | 1987     | ***        | 0.000001     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00056  |
| Chloroethane                | ppm  |          |         | 15.4   | 34      |          | 38       | 1.00        | 1000     | - 5    | -        |            | 7.0       | _          | ***         |             | =         | NI.      | 14       | NA.      | 5.6      | 56       | 0.000    | -        | 1.00     | -        | -         | 101      | PHI        |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***      |
| Chlorufonn                  |      |          | _       |        | 100     | A 8-9    |          | -           |          | 100    | -        | -          | 7.7       |            | -           | 0 0000 37 ( |           | -        | 100      | .00      |          |          | -        | -        | 440      | -        |           | 100      | 100        |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Chloromethane               | ppon | 244      |         | 17     |         | 77       |          |             |          | 1,000  |          |            | 70        | -          |             |             | _         |          |          | ***      | 1 -      | - 1      | -        | -        | - 1      | -        |           |          |            | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Cycloheame                  | ppm  | NA.      | SA.     | NA.    | NA.     | NA<br>NA |          | -           |          |        |          | _          | - 1       |            | ***         |             | _         |          |          | hvv      | -        | - 1      |          |          |          | -        |           |          |            | 1 - 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| Dichlorobromomethane        | bbes | l        |         | NA.    |         |          | NA.      | -           |          | ***    |          | - 1        | - 1       |            |             |             | -         | NA.      | NA NA    | NA       | NA NA    | NA.      | _        |          | -        | -        |           |          |            | I - I        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Ethylbenzene                | ppm  |          | 0 34    | _      | BAIDL J | ***      |          |             |          | ***    | ***      |            | _         |            | ***         | -           | _         |          |          |          | -        |          |          | ***      | -        | -        |           |          | -          | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
|                             | ppm  | 0.02     |         |        |         | 0 001F   | 0.016    | 0.007       |          | 840.0  | 0.001    | 0.0067     |           |            | 0 00033 J   | -           | ***       | 1.5      | 0.79     | 0.23     | 0.25     | 011      | 014      | BMDL F   | 0 16     | 9 972    | 0 075     | 0.0089   | 0.0079     | 0917         | 0-0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0024   |
| Isopropy/beazene            | ppm  | NA.      | NA.     | NA.    | NA.     | NA NA    | NA.      | 0017        | 0 @   0  | 0.024  | 0:023    | 0.016      | 0.012     | 0.012      | 0 02 F1     | 0.012       | 0.012     | NA NA    | NA       | NA.      | NA.      | NA NA    | 0.012    | BMDL F   | 0 024    | 0.024    | 0 023     | 0.011    | 0 0025     | 0 817        | 8-0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø 0061   |
| Methyl ethyl ketone         | bbm  |          |         |        | -       | - 1      |          | , m-        |          | _      |          |            | ***       |            | _           |             | ***       |          |          | _        | I – I    |          | ***      | i –      | - 1      | ***      |           | Ø-0046 J | 1 -        | j            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Methyl tertiary butyl other | ppen | BMDL I   |         |        | - 1     | BYEDE I  |          | +           |          | -      | -        |            | NA        |            | -           |             |           |          |          | _        | NA NA    | ]        |          |          |          | ***      | !         | NA.      | l –        | I I          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |
| Methylcyclohexane           | bhes | NA.      | NA      | NA.    | . NA    | NA.      | NA.      | 0.0037      | 0.011    | 0 0013 | 0 0077   | 8 0045     | 0 0039    | 0.0021     | 0.0039      | 0.0051      | 0.0066    | NA NA    | NA.      | NA.      | NA NA    | NA NA    | 0.0015   |          | BMDL 1   | 0 0033   | 0 000)1   | 0 0017   | # 000056 J | 0 0025       | 0.00094 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Methylene chlonde           | ppen | -        | 144     | -      | - 1     | -        | -        |             | -        | -      |          |            |           |            |             |             | 1++       | -        |          | -        | -        |          |          | J _      | _        |          | _         |          |            | 0 00037 /    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l        |
| Methyl-iso-butyl ketone     | ppm  | ***      | ***     | _      | - 1     | -        |          |             | -        | _      |          | PH4        | -         | -          | -           | ***         | ***       |          | _        |          |          |          | ***      | - 1      |          |          | _         | l        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l        |
| Styrene                     | blus |          | leer    | _      | - 1     | -        |          |             | -        | -      |          |            | _         |            | -           | ***         |           |          | _        |          |          |          |          | _        |          |          | l _       | l        | l          |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Tetrachloroethene           | ppm  | Pro-     | -       | _      | - 1     | ***      |          | -           |          |        |          |            | _         |            | +**         | ***         | ***       | l – I    |          | PP4      | I - I    |          |          | l        |          |          | l _       | l        |            | "            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Toluene                     | ppm  | BMDf 1   | BMDL J  | _      | -       | 0.0011   | BMDL J   | 9 003-L     | 8NDL J   | 0.021  | 0-0017   | 0.013      | _         | _          |             |             |           | BMDLJ    |          |          | 1        | _        | 1 JUMB   |          | ter      | _        |           |          |            | 1 - 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "        |
| Total Xylenes               | ppm  | 016      | 1 1     | 0.14   | 0.21    | 0.013    | 0 17     | 0.028       | 0 0036 / | 0.36   | 0.013    | 0 0 3 5    | 0-013     | 0.000/98.1 | 80M43 F1 I  | 1311000     | 0.0013    | 5        | 13       | 0.78     | 09       | 0.22     | 0.34     | BMDLJ    | 0.4      | 0 19     | 0.21      | 0011     | 0.011      | 0-027        | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0033   |
| Trichloroethylene           | ppm  |          | J –     | _      |         |          | -        | l – i       |          | pa.,   |          | _          | _         |            |             | _           |           | 1 - 1    |          |          | - 1      |          | 471      |          |          | V.1.     | \         | 0011     |            | 0427         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Vinyl chloride              | ppm  |          | BMDL J  | _      |         |          | BMDLJ    | BAIDL J     |          | BMDL J | BMOLE    | 0.00029.1  | 9 00034 1 |            | 0 0000413   | 0.000243    | 6 00017 J | l i      | l l      | _        | 1 - 1    |          |          | l        |          | -        | -         |          | -          | I - I        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 -      |
| TOTAL VOLATILES             | ppm  | 1021     | 1.4     | 0.15   | 0.71    | 9.629    | 0.205 J  | 0.075 J     | 0.0463   | 8,397  | 8.979    | 9,105      | 0.05236.2 | 8,83493.1  | GOVERN FILE | 0.05993 J   | 9.0309 J  | 4.5      | 1.6      | 1.0      | 1,2      | 6,33     | 0.4% J   | 0.199.5  | 0.5877   | 0,290    | 0.315     | 9,0485.J | 0.03196.7  | 0.07071.3    | 0.0144.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00000  |
| 2-Octanol                   | ppm  | NA.      | NA      | NA.    | NA.     | NA.      | NA       | NA          | NA       | NA     | NA.      | NA.        | NA        | NA         | NA          | NA.         | NA.       | NA.      | NA       | NA.      | NA.      | NA NA    | NA.      |          |          |          |           |          |            |              | 0.01464 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.011% J |
| 2-Octanone                  | ppm  | NA.      | NA      | NA     | NA      | NA.      | NA.      | NA.         | NA NA    | NA.    | NA.      | NA.        | NA.       | NA.        | NA.         | NA.         | NA<br>NA  | NA NA    | NA NA    | NA<br>NA | NA NA    | NA<br>NA | NA.      | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA.      | NA<br>NA   | HA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56A      |
| TOTAL OCTANOL/OCTANONE      | ppm  | NA       | 3A      | NA.    | NA.     | NA.      | NA       | NA.         | 5A       | NA.    | NA.      | 3A         | NA.       | NA.        | NA.         | NA          | hà.       | NA<br>NA | NA<br>NA | 34       | 34       | NA<br>NA | NA<br>NA |          |          |          |           | NA NA    | NA.        | NA NA        | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.      |
| ACID EXTRACTABLES           | 1    |          |         |        |         |          | <u> </u> | <del></del> |          | - 220  |          |            |           |            | .135        | ,406        | 1-4       |          | .1A      | -44      | :54      | .74      | NA.      | NA.      | NA.      | NA.      | NA.       | NA.      | NA.        | NA.          | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA       |
| 2,4,5-Trichlorophenol       | pp.  |          | NA NA   |        | _       | l _      | l        |             | NA       | NA.    | SA.      | l          | SA        | NA.        | NA          | NA          | NA.       | NA       |          |          |          |          |          | l i      | 1        |          | 1         |          |            | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| 2,4-Dimethylphenol          | ppm  | BMOL J   | NA.     |        | =       | =        |          |             | NA<br>NA |        |          | 4000       |           |            | 1-7         | 1444        |           |          |          | _        |          | ***      |          | NA NA    | NA NA    | NA       | -         | NA       | NA NA      | NA           | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA.      |
| 2-Methy lphenol             | ppe  | BMDL J   | NA.     |        |         | l        |          |             | NA<br>NA | NA.    | NA<br>NA | 0-0043 J   | NA.       | NA         | NA .        | NA.         | NA.       | NA       | BYIDE 1  | _        | BMOL 1   |          | ****     | NA.      | NA NA    | NA       | -         | NA.      | NA.        | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.      |
| f-Methy iphenol             |      | SARDE 1  |         | _      | -       | -        |          |             |          | NA.    | NA<br>NA | ***        | NA.       | NA         | NA NA       | NA          | NA.       | NA       | 1        | _        |          | ***      | -        | NA.      | NA       | NA.      | ***       | NA.      | NA.        | NA NA        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.      |
| Pentachloronbenoi           | ppm  |          | NA.     | _      | 1       | -        |          |             | NA       | NA.    | NA.      | ***        | NA.       | NA.        | NA          | N.A.        | NA.       | NA NA    | 1        | -        |          | -        | ***      | SA       | NA.      | NA.      |           | NA.      | NA.        | NA NA        | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.      |
| Phenol                      | ppes |          | NA      | -      | 0 00039 |          |          | -           | NA       | NA.    | NA NA    |            | NA        | NA NA      | NA NA       | NA          | NA.       | NA NA    | -        |          | +44      |          |          | NA NA    | NA.      | NA.      |           | NA.      | NA.        | NA NA        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.      |
|                             | ppm  |          | NA.     |        |         |          |          |             | NA .     | NA     | NA.      |            | NA.       | NA NA      | NA          | Na          | NA        | NA.      | l I      |          |          |          |          | NA.      | NA .     | NA.      |           | . NA     | NA.        | NA           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA.      |
| TOTAL ACID EXTRACTABLES     | ppm  | 6.8075 J | NA.     |        | 9,00039 |          |          | 1 -         | 5.6      | NA.    |          | 0.0043 J   | 54        | 24.6       | NA.         | NA.         | NA        | NA.      | 6.8633 J | _        | 0.0039.3 |          | _        | 34       | NA .     | NA.      | _         | NA.      | 9.5        | 54           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA       |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM

| (500 | DOS | e l | 9 | for | meter | 1 |
|------|-----|-----|---|-----|-------|---|
|      |     |     |   |     |       |   |

|                              |      |         |          |         |          |         |                |         | M        | N - S     |          |            |          |          |            |          | _        |          |         |        |        |         |         |          | MW-6     |          |           |          |          |           |          |          |
|------------------------------|------|---------|----------|---------|----------|---------|----------------|---------|----------|-----------|----------|------------|----------|----------|------------|----------|----------|----------|---------|--------|--------|---------|---------|----------|----------|----------|-----------|----------|----------|-----------|----------|----------|
| PARAMETER                    | UNIT | Aut-07  | Vian-68  | And-SE  | Amr.49   | Sep-10  | Jun-11         | Acr.12  |          |           | 5co-16   | Jul. 17    | Oct.48   | 5m-15    | Sep.30     | Sep.21   | Sep. 32  | Mar-68   | Aug.81  | Aug-09 | App.10 | Jun 14  | Aug. 12 | 144-12   |          | Sep-16   | Jul 17    | Oct-18   | Sep-19   | Sep-29    | Sep.21   | 3en-32   |
| BASE/NEUTRALS                |      |         |          | -       | -        |         |                |         |          |           |          |            |          |          | -          |          |          |          |         |        |        |         |         |          |          | -        | -         |          |          |           |          |          |
| 2-Methylvaphthalene          | ppm  | D 014   | NA.      | BMDL J  |          | BNOLL   | BNEDL 7        |         | NA       | SA        | NA.      |            | NA.      | NA       |            | NA       | NA       | NA.      | BMDL J  |        | _      | _       |         | NA       | NA.      | NA.      |           | NA.      | NA       |           | NA.      | NA       |
| Acenaphthene                 | ppm  | BMOLI   | NA       | BMDL 2  | 1 - I    | _       | ***            | - 1     | NA.      | NA        | NA.      | 000113     | NA.      | SA.      | 000143     | NA       | NA.      | NA.      | BMDL J  |        | - 1    | - 1     |         | NA.      | NA       | NA       |           | NA.      | NA.      |           | NA I     | 55.5     |
| Acenaphthy lene              | pput |         | NA.      |         | - 0      |         |                |         | NA.      | SA        | NA       |            | NA.      | NA.      |            | NA.      | NA.      | NA.      |         | l      |        | - 1     | _       | NA .     | NA       | NA .     | P         | NA       | NA.      | l         | 55       | NA       |
| Anthracene                   | ppen | BAIDE J | 5A       | BMDL I  |          |         |                | _       | NA.      | SA.       | NA.      |            | SA.      | NA.      |            | NA.      | NA.      | NA.      |         |        |        |         |         | NA -     | NA       | NA.      |           | NA.      | NA.      |           | NA .     | BA       |
| Benzo(s)Anthracene           | ppen |         | 5A       |         | l        | BVDL3   | BMDL J         | BMDLI   | NA.      | SA        | NA       | 0.00028    | NA.      | SA       | @ 000034 J | NA.      | NA.      | SA.      |         |        |        |         | _       | NA NA    | NA       | NA.      | l         | NA       | SA       | 0.0000261 | NA       | 554      |
| Benzo(s)P) rene              | ppm  | _       | NA.      | I -     | l _      |         | D. CHILD C. P. |         | NA.      | N         | NA.      | 000032     | NA.      | NA.      | 1 000032 J | NA.      | NA       | NA.      |         |        |        |         |         | NA.      | NA       | NA.      |           | NA.      | NA.      |           | NA I     | 50       |
| Benzoth)Fluoranthene         | ppes |         | SA.      |         | _        | 200     | 923            | -       | NA NA    | NA.       | NA.      | 9 00035 F  | SA.      | NA.      | 000037     | SA       | SA.      | NA.      | 423     | 1 -    |        |         | _       | NA NA    | NA NA    | NA.      | Ø000017 # | NA.      | NA.      | l l       | SA       | 5.5      |
| Benzo(g.b.) Perylene         | bber |         | NA.      | I =     |          | -       | 0.00           | 1.00    | NA.      | NA        | NA.      | 0.00022    | NA I     | NA.      |            | NA.      | SA.      | NA.      |         | 1 =    |        | =       |         | SA.      | NA NA    | NA.      |           | NA.      | NA NA    |           | 55       | NA.      |
| Benzo(k)Fluoranthene         | bbre |         | NA.      | I =     |          | -       | - 12           | -       | SA       | SA.       | NA.      | *******    |          | NA       |            | SA       | SA       | NA.      |         | 1 =    |        |         |         | 5A       | SA       | SA       | 1         | NA.      | NA       | 3         | SA I     | 555      |
| bist 2-Chloroethoxy methane  | ppm  | 0 21    | NA.      | 1 = 1   |          |         |                |         | NA.      | NA.       | NA.      |            | 500      | VA       |            | NA.      | NA.      | NA.      | _       |        |        | =       |         | SA       | NA NA    | NA.      | 1 :       | NA.      | NA.      |           | SA I     | 54       |
| bis(2-Chloroethyl)ether      |      | 01579   | NA.      | 1       |          | 0 0045  | 6 000          | 0.010   | 568      | NA        | NA.      | 0 0092     | - SA     | NA.      | E 0074     | SA       | £ 00099  | 3.4      |         |        |        | 1       |         | NA.      | NA NA    | NA .     |           | NA.      | NA.      |           | SA       | 54       |
| bis(2-Chloroisopropy) ether  | ppes | 0.000   |          |         |          | - 0047  | - 004          | 2012    |          |           |          | 0 0092     | 3/4      | NA<br>NA | 20074      |          | NA.      | NA.      |         |        |        | - 1     | _       | NA.      |          | NA.      | I -       | NA NA    | NA.      |           | NA I     | NA.      |
| bes(2-Film then y1)phthalate | ppes |         | NA.      | 1       |          | 100     | 5.77           | -       | NA :     | NA.       | NA<br>NA | 0.019      | 34       |          | 1.8100.0   | NA.      | SA SA    | NA<br>NA |         |        |        | 1       | (a) T   |          | NA<br>NA | NA NA    |           | NA NA    | NA.      | ""        | 😘        | NA.      |
| Butyl benzyl phthalate       | ppm  |         | NA<br>NA | 1       | ***      | 770     | 177            | 700     | NA .     | SA.       | NA<br>NA | 0.014      | NA<br>NA | NA<br>NA | 20018.7    | NA<br>NA | ``       | NA<br>NA |         |        |        | - 1     |         | NA<br>NA | NA<br>NA | NA<br>NA | 10.5      | NA<br>NA | NA<br>NA | 0 018 B   | SA I     | NA<br>NA |
| Carbazole                    | ppe  | -       |          |         |          | - 75    |                |         | 54       | NA<br>NA  |          | - 1        | NA I     | NA<br>NA |            | NA<br>NA | NA<br>NA | NA.      | _       |        | -      | -       |         |          |          | NA<br>NA |           |          | NA<br>NA | 0.019.0   | NA I     |          |
|                              | ppes |         | NA.      | -       |          | 770     | 710            | **      | NA.      | NA        | NA.      |            | NA III   | 1.574    | 3.77       | ,4       | NA<br>SA | NA.      |         |        | -      | _       |         | NA NA    | NA NA    |          | -         | NA<br>NA | NA<br>NA |           | NA SA    | NA<br>NA |
| Chrysene                     | ppm  |         | NA.      | -       |          |         | 540            |         | NA.      | NA NA     | NA NA    | 0 00036    | SA       | SA       |            | SA       | SA.      | NA.      |         |        | -      | -       |         | NA.      | NA .     | NA.      |           |          |          |           |          |          |
| Dibenz(a,h)anthracene        | ppm  |         | NA.      |         | 144      | - ""    | 2.00           | 111     | NA       | NA        | NA.      | 0 000006   | NA       | NA NA    | 111        | NA.      | NA       | NA.      | ***     |        |        | I - I   |         | NA.      | NA !     | NA.      | -         | NA.      | NA.      | ***       | NA NA    | NA.      |
| Dibenzofusan                 | ppm  | 1 JOIMS | NA.      |         |          |         |                |         | NA.      | NA NA     | NA       |            | NA NA    | NA       | -          | NA       | SA.      | N4       | BMDL1   | ***    |        |         |         | NA.      | NA.      | NA.      |           | NA .     | NA.      |           | 54       | NA       |
| Diethyl phthalate            | ppm  | ***     | NA.      |         | ***      | 775     | 191            | -       | NA       | NA NA     | NA       | -          | NA NA    | NA NA    |            | VA       | NA       | NA       | 140     |        | ***    |         | _       | NA.      | NA.      | NA.      |           | NA NA    | NA.      |           | NA NA    | NA       |
| Dimethyl phthalate           | ppe  |         | SA       |         |          | ***     |                | -       | NA.      | SA        | NA.      |            | NA       | NA       |            | NA NA    | SA.      | NA.      |         | ***    |        |         |         | NA.      | NA NA    | NA.      | -         | NA NA    | NA.      |           | NA NA    | NA.      |
| Ds-n-butylphthalate          | ppm  |         | NA.      | _       |          |         |                |         | NA.      | NA NA     | NA.      |            | NA NA    | NA .     | -          | NA       | NA NA    | NA.      | _       |        | - 2    | - 1     | _       | NA NA    | NA.      | NA       |           | NA .     | NA       |           | NA .     | SA       |
| Dt-n-octylphthalate          | ppm  | 47      | NA.      | _       |          |         |                |         | SA       | NA.       | NA .     |            | NA NA    | NA -     |            | NA .     | NA NA    | NA.      |         | ***    | - 0    |         | -       | NA .     | NA.      | NA.      |           | NA NA    | NA NA    |           | 84       | NA.      |
| Fluoranthene                 | ppm  | BAIDE 3 | NA.      | -       |          | - 1     |                |         | SA       | NA NA     | SA       | 0.0013.1   | NA NA    | NA .     |            | NA .     | NA.      | NA.      |         |        | - 0    | - 1     |         | NA NA    | NA NA    | NA.      |           | NA NA    | NA.      |           | 84       | NA       |
| Fluorene                     | ppm  | Bompt 3 | NA NA    | B/(DL ) |          |         |                |         | NA       | NA NA     | NA .     | 00017      | NA NA    | NA.      | 1 (6000-0  | NA.      | SA       | NA.      | B/(DL.) | ***    | ***    |         |         | NA .     | NA NA    | NA.      | -         | NA NA    | SA       |           | NA NA    | NA.      |
| Hexachlorobenzene            | bbes |         | NA NA    | ***     |          |         |                |         | NA       | SA        | NA .     | ~          | NA.      | NA.      |            | NA       | NA       | NA       |         |        | ***    |         | -       | NA NA    | NA NA    | NA NA    | -         | NA NA    | SA       |           | NA NA    | NA.      |
| Indeno(1,2,3-cd)Pyrene       | ppm  | 111     | NA       |         |          |         | ***            |         | NA.      | NA.       | NA.      |            | NA.      | NA.      |            | NA .     | NA NA    | NA.      |         | ***    | 1.0    |         |         | NA       | NA.      | NA.      |           | NA       | SA       |           | NA .     | NA.      |
| Esophorone                   | ppm  | her .   | NA       |         |          |         | -              |         | NA.      | NA.       | NA NA    | -          | NA.      | NA.      |            | NA.      | NA NA    | NA.      |         | 144    |        |         |         | NA NA    | NA NA    | NA NA    | 1 - 1     | SA       | SA       |           | 84       | NA NA    |
| Naphthalene                  | ppun | 9.013   | NA       | BAIDL J | BMDL 3   | B/IDL J | BVDL )         |         | 0.003    | 0.0073    | 0 0013   |            | 0.0011   |          | 0 0077     | -        | 0 00027  | NA .     | 0.013   | 0 017  | 0.013  | BALDL J | 0.011   | BMDL J   | 0.011    | 0 0006   | 0 0014 J  | 0 0013   | 0 0013   | 0 00173   | NA NA    | NA.      |
| Nitrobenzene                 | ppm  |         | NA NA    | _       | -        |         |                |         | NA       | NA NA     | NA NA    |            | SA       | SA       |            | NA       | NA I     | NA .     | -       | -      |        | - 1     | -       | SA       | NA       | NA.      | -         | NA.      | NA.      |           | NA NA    | NA.      |
| Phenanthrene                 | ppm  | BMDL J  | NA NA    | B/4DL J |          |         |                |         | NA.      | NA.       | NA.      | 0 000066 J | NA.      | NA.      | 0 00069 1  | NA.      | NA       | NA .     | BMDL J  | 1      |        | - 1     |         | NA       | NA .     | NA NA    |           | NA NA    | NA.      | 0 00070 3 | SA       | 88       |
| Pyrene                       | ppm  | ***     | NA.      |         |          |         | 144            | I       | NA .     | NA.       | NA.      | 0 0021 J   | NA.      | NA.      | P-4        | NA.      | NA NA    | 5A       |         | -      |        | -       |         | NA.      | SA       | NA.      |           | NA.      | NA.      | ***       | NA NA    | NA.      |
| I,4-Dioxane                  | ppm  | N4.     | NA.      | NA:     | NA .     | NA      | NA.            | NA      | NA .     | NA.       | SA       | NA         | NA       | NA       | NA         | NA       | 146      | NA       | NA      | NA.    | NA.    | NA.     | 34.     | 3.4      | 1 3/4    | 34       | 5%        | N.A      | NA       | NA.       | NA.      | NA.      |
| TOTAL BASENEUTRALS           | ppm  | 0.034   | NA.      | EMIJ    | 6,0091 J | 0.018   | £025 J         | 0.011.7 | 0.003    | 0.009     | 0.894    | 0.037      | 6.001    | -        | 0.02002 /  | _        | 0.00126  | NA.      | 0.06/3  | 0.017  | 0.015  | 8.864J  | 0.614   | 0.0041 # | 6,0113   | 9,607    | 0.963     | 0.00[3   | 6.6013   | 6.400 U J | - 54     | Ns.      |
| PESTICIPES                   | 1    | - 8     |          |         |          |         |                |         |          | 1         |          |            |          | 1        |            |          |          |          |         |        |        |         |         |          |          |          |           |          |          | 1         | SA<br>NA | NA<br>NA |
| 4,4'-DDD                     |      | 415     | SA.      |         |          |         |                |         |          | I         |          |            |          |          |            |          |          | 101      |         |        | l      |         | l       | NA.      | L        | NA.      | 77        | l va     | NA.      | NA        | SA I     | NA.      |
| 4,4°-DDE                     | ppb  | 0.12    | NA<br>NA |         |          |         |                |         | NA<br>NA | 5A        | NA<br>NA | I "        | 34       | 34       | NA<br>NA   | NA<br>NA | SA SA    | NA.      |         |        | 1      | -       |         |          | NA NA    | SA       |           | NA NA    | NA<br>NA | NA NA     | 34       | NA.      |
| 4.4°-DDE                     | ppb  |         | NA<br>NA |         |          |         |                |         |          | NA<br>ISI |          |            | NA<br>NA | NA<br>V  |            |          |          |          |         |        | -      | -       | _       | NA<br>NA |          |          |           | NA.      | SA<br>SA | NA<br>NA  |          |          |
| Beta-BHC                     | ppb  |         |          |         |          |         |                |         | NA<br>NA | SA        | NA<br>NA |            | NA       | NA<br>NA | NA.        | NA<br>NA | SA.      | NA<br>NA |         |        | -      | ~       | _       | NA<br>NA | NA<br>VA | SA       | -         | NA.      | NA<br>NA |           | NA NA    | NA<br>NA |
|                              | ppb  |         | NA.      |         |          |         | ***            |         | NA NA    | NA        | NA.      | '''        | NA<br>NA | NA.      | NA         | NA.      | NA.      | NA       |         |        | -      | -       | - 1     | NA .     | NA.      | SA       | -         | 25       | NA<br>NA | NA<br>NA  | NA I     | 22       |
| Delta-BHC                    | ppb  |         | NA NA    |         |          | ***     |                |         | SA.      | NA        | NA.      |            | NA       | SA.      | NA.        | NA.      | NA.      | NA .     |         |        |        | -       |         | NA<br>NA | I M      | SA       | -         | 23.5     | NA<br>NA | NA<br>NA  |          | NA.      |
| Dieldrin<br>Co Assistant     | ppb  |         | NA       |         | -        |         |                | -       | NA       | NA        | NA       |            | NA<br>   | SA       | NA.        | NA       | NA NA    | NA .     | -       | 777    |        |         | _       | NA<br>NA | NA.      | SA       |           | 24       | 1000     | NA<br>NA  | NA I     | NA.      |
| Endoselfan I                 | ppb  | -       | NA.      |         |          | BMDL J  | S -            | -       | NA       | NA<br>NA  | NA.      | -          | NA<br>NA | NA NA    | NA I       | NA<br>M  | NA .     | NA =     | -       |        |        |         |         | NA .     | NA       | NA<br>NA |           | NA.      | NA<br>NA | NA<br>PO  | 35       | NA<br>NA |
| Endossifan sulfate           | ppb  |         | NA       |         | ***      |         | - m            |         | NA       | SA.       | NA       | 100        | SA       | NA       | NA         | NA.      | NA NA    | NA       |         |        | -      | -0      | -       | NA .     | NA       | SA       |           | SA       | NA<br>NA | NA<br>NA  | l NA l   | NA.      |
| Endrio                       | ppb  | ***     | NA.      | 7.44    |          |         |                |         | NA I     | NA .      | NA.      |            | NA NA    | NA NA    | NA         | NA.      | NA       | NA       | ***     |        |        |         |         | NA .     | NA NA    | -53      |           | 58       | NA.      | NA NA     | NA I     | NA.      |
| Endrin aldeliy de            | ppb  |         | SA       | 191     |          | ""      | -              |         | NA .     | NA.       | NA.      |            | SA       | NA       | NA .       | NA       | NA.      | NA .     |         |        |        |         | -       | NA       | 1 NA     | SA       | 1 - 3     | 34       | NA<br>NA | NA W      | NA I     | NA.      |
| Endrin Letone                | ppb  | ***     | NA.      | ***     |          | ""      |                | - 1     | NA .     | NA NA     | NA.      |            | NA.      | NA .     | NA         | NA.      | NA.      | NA.      | ***     |        |        | -       | -       | NA NA    | NA .     | NA.      | h = 1     | NA NA    | NA.      | NA.       | NA I     | SA.      |
| Gamma-IIIIC                  | ppb  |         | NA.      |         |          |         |                |         | NA .     | NA.       | NA.      |            | SA       | 8.8      | NA         | SA       | NA       | 14       | ***     |        |        | -       | -       | NA NA    | NA .     | NA.      | -         | 5A       | 5.5      | NA        | NA       | NA.      |
| 1 leptachlor                 | ppb  |         | NA.      | 100     |          |         |                |         | NA       | NA NA     | NA.      | -          | NA       | NA.      | NA         | NA.      | NA NA    | NA.      | ***     |        |        |         | _       | NA .     | NA NA    | NA.      | j         | NA.      | NA.      | NA.       | NA       | NA.      |
| Heptachlor epoxide           | bbp  |         | NA.      | -       | -        |         | -              | - 1     | SA       | NA.       | SA       |            | NA       | 5A       | NA NA      | NA.      | NA       | NA .     |         |        |        | ***     |         | NA NA    | NA NA    | NA.      | 1 - 1     | SA       | 54       | NA NA     | NA       | NA.      |
| Methoxychlor                 | ppb  | - 144   | NA       |         | - 111    | ***     | 140            | ***     | NA.      | NA.       | NA.      | ***        | NA.      | NA.      | NA         | SA       | NA .     | SA       |         | -      |        | -       | -       | NA.      | NA.      | NA.      |           | NA.      | NA.      | NA.       | NA .     | NA       |
| TOTAL DDX                    | ppb  | 0.12    | NA.      | 144     | - 3      | - 1     | -              | - 1     | NA.      | NA        | NA.      | -          | 2.5      | 34       | NA NA      | 5A       | NA.      | NA.      |         | ***    | -      | -       | -       | NA NA    | NA.      | NA.      | -         | NA.      | NA.      | 5A        | 53       | 34       |
| TOTAL PESTICIDES             | P00  | #12     | NA.      | -       | -        | 0.0(6.) |                |         | 54       | -NA       | - 3A     |            | NA.      | - 54     | M          | 24       | NA.      | NA       |         |        |        | 311     |         | - NA     | NA.      | NA -     |           | NA       | - NA     | N4        | NA I     | 34       |

TABLE 1
ANALYTICAL RESULTS FOR ON-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(see page 19 for noces)

| PARAMETER                   | UNIT       |          |        |        |        |        | MW        | -7 (Abende | med)   |        |        |        |         |          |          |          |           |         |           |         | _                | MW-21A   | bandoned) |          |          |           |           |           |           |           |
|-----------------------------|------------|----------|--------|--------|--------|--------|-----------|------------|--------|--------|--------|--------|---------|----------|----------|----------|-----------|---------|-----------|---------|------------------|----------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|
|                             | 13311      | Aug-88   | Aug-99 | Aug-10 | Jun-11 | Aug-12 | Jun-13    | Jun-15     | Sep-16 | Jul-17 | Oct-16 | Sep-19 | Sep-20  | Sep-21   | Mar-87   | Aug-07   | Mar-68    | Amr-60  | Aug-89    | Sep-19  | I Junel I        | Aug-13   |           |          | Sen-16   | Jol-17    | Oct-18    | Sep-19    | Sep-20    | Sep-21    |
| VOLATILES                   |            |          |        |        |        |        |           |            |        |        |        |        |         |          |          |          |           |         |           | -10-11  | 1                |          |           |          | 54,514   | 000 11    | 041-18    | CHEPTE    | 04 p- 84  | _Sep-at   |
| 1,1,1-Trichloroethane       | ppm        | - 1      | -      | ***    | -      |        |           | _          | ~      | ***    | -      |        | ***     | ***      |          | - 1      | _         |         | 100       |         | I -              |          |           | 1        | l _      |           |           |           | _         | ,         |
| 1,1,2,2-Tetrachloroethane   | ppus       | - 1      |        |        |        | 1      | _         |            |        |        | _      | -      |         |          | !        |          | _         |         |           | _       | 1 =              |          |           |          | ! =      |           |           |           |           |           |
| 1,1-Dichloroethane          | ppm        | _        |        | ***    |        |        |           |            |        |        | 1 _    |        |         |          |          | _        | -         |         | her .     | _       | 1 =              | I        |           |          | ; =      |           |           |           | _         |           |
| 1,2,4-Trichlorobenzene      | ppe        | - 1      | ***    | ***    | - 1    | - 1    |           |            |        |        | _      |        | pa.     |          | NA.      |          | NA.       | l       |           |         |                  |          |           |          |          |           |           |           |           | ""        |
| 1,2-cis-Dichloroethylene    | ppm        | _        | 700    |        |        | - 1    |           | p++        | l      |        | _      |        |         |          |          | 8MDL J   |           | 1       |           | _       | BMDLJ            |          |           | 1 = 1    | =        |           |           | _         | _         |           |
| 1,2-Dichlorobenzene         | 77         | -        |        |        | - 1    | _      |           |            |        |        | _      | ***    |         | _        | NA.      |          | 2.4       |         |           | _       | D.M.D.C. J       | BMDLJ    |           | BMDL)    | BARDE 1  | 0.00044.7 | -         | _         |           | -         |
| 1.2-Dichloroetkane          | ppm        | 100      |        | l –    |        |        |           |            | _      |        |        |        |         |          |          |          |           |         | -         |         |                  | month, 1 |           | BAUL /   | BANDE 1  |           |           | _         | 0.00034.3 | 8 00032 J |
| 1.2-trans-Dichloroethylene  | ppm        |          |        | _      |        |        |           |            | _      |        | NA     |        | _       | _        |          |          | _         | -       | l = i     |         |                  |          |           | _        | "        |           |           | -         |           | _         |
| 1.3-Dichlorobenzene         | ppm        |          | _      | _      |        | 1      |           |            | l _    |        |        |        |         | ! =      | SA       |          | SA        | 1 =     | _         |         | -                | - 1      | -         |          |          |           | NA        |           | ***       | -         |
| 1.4-Dichlorobenzene         | ppm        |          | _      | ***    |        |        |           |            | _      |        |        |        |         | _        | NA NA    |          | NA.       |         | 1         |         | -                |          | -         |          |          |           |           | _         | ***       | _         |
| 1,4-Dioxane                 | ppm        | NA       | NA.    | NA.    | 5A     | NA.    |           |            | _      |        | N3     | NA.    | #-0005E |          | NA<br>NA | NA NA    |           | NA.     |           |         |                  | BMIDE    | -         |          |          |           |           |           | ****      |           |
| 2-Hexapone                  | ppm        |          |        |        |        |        |           |            |        |        |        |        | *****   |          |          | 1 -3A    | NA        | -54     | NA.       | NA      | NA NA            | NA.      |           | 0.0019   | 0 0044   | 0 0065    | 5A        | NA.       | 0.0018    | _         |
| Acriane                     | ppm        |          | _      |        |        |        |           |            |        |        | 84059  |        |         |          |          | 004)     | -         |         | BMDL J    | -       |                  |          |           |          |          |           |           |           | _         | -         |
| Веплеве                     | ppm        | _        |        | 110    |        |        |           |            |        |        |        |        |         | h        |          | 0,047    |           | BMDL3   |           |         | 0.01             | 0.019    |           |          |          | 0.035     | 0.021     | 0 0049    | 0.0098    | 0 0060    |
| Bromoform                   | ppm<br>ppm |          |        |        |        |        |           |            |        |        |        | _      |         | ***      |          | -        |           |         | BMDL J    | B/IDF1  | BMDL I           | B/4DL I  |           | BMDL I   | B/40t J  |           | ***       |           | - 1       | ***       |
| Carbon Disulfide            | 770        |          |        | _      |        |        |           |            |        |        | -      |        |         |          | _        |          | ***       |         | -         | _       | -                |          | ***       |          | -        |           |           |           | - :       | ***       |
| Chlorobenzene               | ppm        |          | ***    |        |        |        |           |            |        |        | _      |        | ***     | _        | BMDL J   | 9 021    | BMDL I    |         |           |         |                  | ~~       |           |          |          | ***       |           | l         | - 1       | 444       |
| Chlorobromomethane          | ppen       | NA       | NA.    | NA.    | NA     | _      |           | ***        | 1 - 1  |        |        |        |         |          | NA NA    | NA NA    | NA.       | 0.077   | 0 035     | 9611    | 0.022            | 0.024    | BMDL J    | 0.011    | 0.0086   | 8 0049    | 0.0032    | 0 9072    | 9 0074    | 0.0059    |
| Chloroethane                | ppm        | 1.74     |        |        |        |        |           | ***        | -      | _      |        |        |         |          |          |          |           | NA.     | NA NA     | NA.     | NA.              |          |           | - 1      |          |           | -         | l i       |           |           |
| Chloroform                  | bbar       | BMDL1    | 8 0016 | 90014  | 0 0013 | 9 0015 | BMDLI     | 0.0027     | 0 (0)5 | 0 003E |        | #00L7  | 0 (001) | 0-0032   | -        |          | ***       | -       | -         | -       | heer             | ***      |           |          |          |           |           | -         |           | ***       |
| Chloromethane               | ppm        | bed.     | -      | ****** | 40017  | 40017  | months, a | 0 002,7    | V (03) | 40036  | - 1    | 400L7  | 60011   | - 0032   |          |          |           | 1 -     | -         | -       |                  | -        | -         |          |          | ~         |           | -         | ***       | _         |
| Cyclohexane                 | ppm        | NA       | NA.    | NA.    | NA     |        |           |            |        | _      | "      |        | _       |          | NA       | NA NA    |           |         | 1 1       |         |                  | - :      |           |          | ***      |           | -         |           | 200       |           |
| Dichlorobromomethane        | ppm        |          | _      |        |        |        |           |            | -      |        |        | _      | _       | _        | 5A       | NA       | NA        | NA.     | NA NA     | NA.     | NA.              | -        | -         |          |          | -         | -         |           | ***       |           |
| Ethylbenzene                | ppm        |          |        |        |        |        |           |            |        |        | "      |        | _       | _        | 0 15     | BAIDLI   | 4.11      |         | DA 1004 A |         |                  | l i      |           |          |          | i – I     | -         |           | 100       | _         |
| Isopropyfbenzene            | ppm        | SIA      | NA.    | NA.    | NA.    |        |           |            |        |        | "      | _      | _       |          | NA NA    | NA NA    | 032<br>NA | B/IDL J | BMDL J    | 0 00(1  | 0 0057           | BMDL J   | BVIDT 1   | ***      | BVIDL I  | -         |           |           |           | _         |
| Methyl ethyl Letone         | ppm        | _        |        |        |        |        |           |            |        |        |        | _      |         |          |          | BMDL J   |           | NA      | BAIDL J   | NA<br>m | NA.              | 0014     | 8/4DL I   | 001      | 0.013    | 0.0064    | 0 0056    | 00014     | 0 0030    | #10037    |
| Methyl tertiary buryl ether | ppm        | _        |        | NA.    |        |        | <u> </u>  |            |        |        | SA.    |        |         |          |          | BMDL J   | _         |         | BALLE 7   |         | BMDLI            |          |           |          | -        | 0.00341   |           |           | @ C023.9  | _         |
| Methylcyclobevane           | ppm        | 56       | NA.    | NA.    | NA.    |        | _ i       |            | ***    | _      |        |        | -       |          | 5A       | NA.      | NA.       | NA.     | NA NA     |         | NA.              |          |           |          |          |           | NA.       | ·         | -         |           |
| Methylene chlonde           | ppus       |          |        |        |        | =      | !         |            |        |        |        |        |         |          | -34      |          | 2.0       | 75/8    | 5.4       | NA.     | NA.              | 0 0058   | BWDF 1    | BAIDL J  | 0 017    | 0 0076    | 0 0061    | 0 00055 [ | -         | 0.0035    |
| Methyl-iso-butyl ketone     | ppm        |          | ***    |        |        |        |           |            |        |        |        |        |         |          |          |          |           |         | -         | _       | -                | -        | ***       |          | -        |           |           | -         |           | -         |
| Styrene                     | ppes       |          |        |        |        |        |           |            |        | _      | E - I  | _      |         |          |          |          |           | ***     | -         | _       | -                |          |           |          | -        |           | 101       | -         | -         | -         |
| Tetrachloroethene           | ppm        | ***      |        | l _    |        |        |           |            |        |        |        |        |         |          |          |          | ***       |         | - 1       | _       | -                |          |           |          | -        |           |           |           | -         | ***       |
| Toluene                     | ppes       |          |        | -      |        |        |           |            |        | _      |        |        |         | _        | BAIDL J  | BMDL J   | BNDL J    | _       | 1 - 1     |         |                  |          |           | -        | -        | h         |           | -         |           | ***       |
| Total Xylenes               | pper       | 100      | _      | - 1    |        |        | 440       |            |        |        |        |        |         |          | 091      | 013      | 24        | 0 20    | BMDLJ     | 0.089   | BAEDL J<br>9 077 | 0 0001   | BMDL J    | 1 -      | 4 8 3 4  | 4         |           | -         |           | ter       |
| Trichloroethy lene          | ppm        |          | _      | _      |        | i      |           | _          | _      |        |        |        |         |          |          | ***      |           | V.20    | B-4DC )   | 9.96*   |                  | 0 0001   | BANKET 1  | 0-0      | 9928     | 0.000413  | 0 00076 J |           |           | tred      |
| Vinyl chloride              | ppm        |          | _      | - 1    |        |        |           |            |        |        |        |        |         | I = :    |          |          |           | _       | -         | ***     |                  |          | - 1       | -        |          |           | _         | -         | ***       | ***       |
| TOTAL VOLATILES             | ppm,       | 6.0010 J | 0.0011 | 0.0014 | 0.0013 | 0.0015 | 0.00073 J | 0.063      | 0.004  | 0.003  | 8,8659 | 0.0017 | 0.00110 | 0.0032   | Lt.      | 6.22     | 2.0       | 0.29    | 0.11      | 0.12    | @116.J           | 4.004.3  | 6,290 J   | 6.64     | 0.07)    | 0.001     | 0.03714.3 | 0.01605 J | 6.62461.3 | 0.01942.3 |
| 2-Octanol                   | pper       | NA I     | NA     | NA.    | NA.    | NA     | NA.       | NA         | NA.    | NA     | SA     | NA -   | NA      | NA       | NA :     | NA NA    | NA        | NA.     | NA.       | NA.     | NA               | NA.      | NA NA     | NA NA    | SA :     |           |           |           |           |           |
| 2-Octamone                  | ppm        | NA.      | NA.    | NA.    | NA.    | NA NA  | NA.       | NA.        | NA.    | NA.    | NA     | NA.    | NA      | NA       | NA.      | NA.      | NA.       | NA NA   | NA NA     | NA.     | NA.              | NA NA    | NA NA     | NA NA    | NA<br>NA | NA<br>NA  | NA.       | NA<br>NA  | NA        | NA.       |
| TOTAL OCTANOL/OCTANONE      |            | NA.      | NA.    | NA.    | NA     | NA.    | NA.       | NA.        | 54     | NA.    | NA     | 34     | 5A      | NA.      | NA       | NA NA    | 54        | 54      | NA NA     | NA.     | NA.              | NA.      | NA.       | 5A       | NA I     | NA<br>NA  | NA<br>NA  | NA<br>NA  | NA<br>NA  | NA<br>NA  |
| ACID EXTRACTABLES           |            |          |        |        | 1      |        |           |            |        |        |        |        |         |          |          |          |           | 1-16    | 100       | 100     |                  | 104      |           |          |          | -34       | ***       | NA.       | 7.4       | 34        |
| 2,4,5-Trichlorophenol       | ppm        | -        |        |        | _      | _      | NA.       | NA         | NA     |        | NA.    | NA.    | NA NA   | NA.      | NA       | _        | NA        |         | l I       | _       | _                | NA       | NA        | NA       | NA       | _         | NA        | NA        |           |           |
| 2,4-Dimethylphenol          | ppm        |          |        | ***    | _      | _      | NA.       | NA         | NA I   |        | NA.    | NA.    | NA.     | NA.      | NA       | <u> </u> | NA        |         | I I       |         |                  | NA.      | NA NA     | NA NA    | NA NA    | -         |           |           | NA.       | NA.       |
| 2-Methylphenol              | ppm        |          |        |        | _      | _      | NA        | NA.        | NA.    | _      | NA     | 5A     | NA NA   | NA.      | NA NA    |          | NA        |         |           | _       |                  | NA NA    | NA NA     |          |          |           | NA<br>NA  | NA I      | NA.       | NA        |
| 4-Methylphenol              | ppm        |          | ***    |        |        |        | NA.       | NA         | NA     | _      | NA     | 5.4    | NA NA   | NA NA    | NA.      |          | NA.       | ,       | <u> </u>  | _       |                  | NA<br>NA |           | NA I     | NA NA    |           | NA.       | NA.       | SA        | NA.       |
| Pentachlorophenol           | ppm        |          | ***    |        | _      |        | NA.       | NA         | NA     | _      | SA     | NA NA  | NA NA   | NA NA    | NA NA    | _        | NA.       |         | 0.0027    |         |                  | NA<br>NA | NA<br>NA  | NA<br>NA | NA<br>NA |           | NA.       | NA.       | NA.       | NA.       |
| Phenol                      | ppm        |          | ***    | I -    |        |        | NA NA     | NA.        | NA     | _      | SA     | SA.    | NA NA   | NA<br>NA | NA NA    |          | NA<br>NA  |         | 90021     |         |                  | NA<br>NA | NA<br>NA  | NA<br>NA | NA<br>NA |           | NA        | NA<br>NA  | NA        | NA        |
|                             | ppm        | _        | _      |        | -      | ***    | NA        | NA         | NA NA  |        | NA.    | 34     | NA.     | NA NA    | NA.      | -        | 34        |         | 0.8927    |         | -                | 5.4      | NA.       | NA NA    | NA<br>NA |           | NA<br>NA  | 100       | NA NA     | NA.       |
|                             |            |          |        |        |        |        |           |            |        |        |        | 177    | -7-7    | 17.79    | 7.0      |          | 7/1       |         | 0.0001    | ***     |                  | 1 23     | 7.4       | 3.4      | 3.4      |           | 76.4      | NA.       | 3.4       | NA.       |

### TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for soles)

|                             | _    | _            |              |        |              |              | ADW          | -7 (Abando | med)     |        |          |          |          |        |        |            |          |           |         |         |              | 31W-2 (A) | handoned) |        |          |             |          |              |          |          |
|-----------------------------|------|--------------|--------------|--------|--------------|--------------|--------------|------------|----------|--------|----------|----------|----------|--------|--------|------------|----------|-----------|---------|---------|--------------|-----------|-----------|--------|----------|-------------|----------|--------------|----------|----------|
| PARAMETER                   | UNIT | Aug-08       | Aug-89       | Ang-10 | Jua-11       | Aug-12       |              |            |          | Jul-17 | Oct-18   | Sep-19   | Sep-20   | 5ep-21 | Mar-07 | Aug-07     | Mar-88   | Aug-01    | Aug-09  | Sep-10  | Jun-11       |           |           | Jun-15 | Sep-16   | Jol-17      | Oct-18   | Sep-19       | Sep-20   | Sep-21   |
| BASE/NEUTRALS               |      |              |              |        |              |              |              |            |          |        |          |          |          |        |        |            |          |           |         |         |              |           |           |        |          | ľ           | I        |              |          |          |
| 2-Methylnaphthalene         | ppas | 944          |              | ***    | ***          |              | NA NA        | NA.        | NA.      |        | NA.      | NA NA    | NA.      | NA.    | NA.    |            | N.A      | 063       | 0.041   | 002     |              | NA NA     | NA.       | NA.    | NA       | 0 0095 J    | NA.      | 5A           | - 100    | NA.      |
| Acenaphthene                | ppm  | 1            |              |        |              |              | NA           | 58         | NA       |        | SA.      | NA       | NA.      | NA.    | NA     | BAIDE J    | N4       | BMDLJ     |         | ***     | 1            | NA        | NA.       | NA     | NA.      | 0.00191     | NA.      | 5A           | 787      | SA.      |
| Acenaphthylene              | ppm  |              | ***          | ***    |              |              | NA.          | NA.        | NA       |        | NA.      | NA       | NA.      | NA.    | NA NA  | BANDLI     | NA.      |           |         | ***     | ***          | NA        | NA.       | NA.    | NA NA    | -           | NA.      | NA NA        | 100      | NA.      |
| Anthracene                  | ppm  |              |              | l _    | l _          | l            | NA.          | NA         | NA       |        | SA       | NA       | NA.      | NA.    | NA.    | BANDET     | NA.      | BVDL/     | I I     |         |              | NA        | NA.       | NA .   | NA.      | 1 30000 0   | NA.      | NA.          | 100      | SA       |
| BenzotalAnthracene          | ppm  |              |              |        |              |              | NA.          | 54         | NA.      |        | 5A       | NA NA    | NA.      | NA.    | NA     | _          | NA.      | L         | l       | BYIDL 1 |              | NA        | NA        | NA.    | NA.      | 0 0.0019    | NA.      | NA.          | 1.00     | 5A       |
| Benzo(#IP) rene             | ppm  | ***          |              |        |              |              | NA.          | NA.        | NA.      |        | NA.      | NA.      | NA.      | SA     | NA.    | -          | NA.      |           | 100     | 100     | -            | NA.       | NA.       | NA.    | NA.      |             | NA.      | NA.          | 549      | NA.      |
| Bengo(b)Fluoranthene        | ppm  |              |              | l _    | I            |              | NA.          | NA.        | NA.      |        | SA       | NA.      | NA       | NA.    | SA     |            | NA.      |           | - 20    | ***     |              | SA I      | NA.       | NA.    | SA       | 0 0000013 1 | NA.      | N4           | 100      | 8.4      |
| Benzo(g,h,1)Perylene        | ppm  |              |              |        |              |              | NA           | NA.        | NA NA    |        | NA.      | SA       | NA.      | NA.    | NA.    |            | NA.      |           |         |         |              | NA        | NA        | NA.    | NA.      | ***         | NA.      | NA.          |          | - NA     |
| Benzotk)Fluorambene         | ppm  |              | 1            |        |              |              | SA           | NA.        | NA       | -      | SA       | SA       | NA.      | NA.    | SA     |            | NA.      |           | 700     | 200     | l            | SA        | SA        | SA     | NA.      | 0.0000251   | Sa       | 3.5          | Sec.     | NA.      |
| bis(2-Chloroethox) methane  |      |              |              | "      | 1            | I            | NA NA        | NA.        | NA NA    |        | NA.      | NA.      | NA.      | NA.    | NA.    |            | NA.      |           |         | tet     |              | SA        | NA.       | NA.    | NA.      |             | NA.      | NA.          | 100      | NA.      |
|                             | ppm  |              |              | _      |              |              |              | NA.        |          |        | SA       | SA S     | NA.      | NA.    | SA.    | 0 18       | NA NA    | 0-056     | 012     | 0.14    |              | 88        | Na        | NA.    | NA.      | 013         | NA.      | NA.          | 9.066    | NA.      |
| bist2-Chloroethyl)ether     | bbes |              |              |        |              |              | NA           | ı          | NA       |        |          |          |          |        |        |            |          | 4000      | 1 "     |         |              | SA.       | NA NA     | SA.    | NA.      | \ \'''      | NA.      | NA.          |          | NA.      |
| bist2-Chloroisopropyl)ether | ppm  | ***          |              |        | -            |              | NA .         | NA .       | NA.      | ***    | NA.      | SA       | NA.      | NA.    | NA.    | _          | NA.      | 1 -       |         | ***     |              | NA NA     | SA.       | NA.    | NA.      |             | SA.      | NA.          |          | l sa     |
| bis(2-Ethylhexyl)phthalme   | ppm  |              |              |        | -            |              | NA           | NA SA      | NA.      | ***    | NA       | NA .     | NA       | NA.    | NA.    | -          | NA       | 1 -       |         | ***     |              | NA NA     | hA.       | NA.    | hA.      | 1 =         | NA<br>NA | NA<br>NA     | 000101B  | SA       |
| Butyl benzył phthalate      | ppm  |              | _            |        | -            |              | NA NA        | NA.        | NA.      | -      | NA.      | NA       | NA .     | NA.    | NA.    |            | NA.      |           |         |         |              |           |           |        |          | 1           |          |              | #401# AB |          |
| Carbazole                   | ppm  | ***          | ***          | tw+    |              | +-4          | NA NA        | NA NA      | SA       |        | NA.      | NA .     | SA       | NA.    | NA NA  | BMDL J     | NA.      | BVIDE     | 197     | ***     |              | NA.       | NA.       | NA.    | NA.      | 100         | NA       | NA .         |          | SA       |
| Chrysene                    | ppm  | ***          | ***          |        |              |              | NA.          | NA.        | NA.      |        | NA NA    | NA NA    | SA       | NA.    | NA NA  | -          | NA NA    |           |         | ***     | ***          | NA NA     | NA.       | NA.    | NA.      | 9 003047 1  | NA       | NA.          | 1,100    | 83       |
| Dibenzi s.h isnthracene     | ppm  | ***          |              |        |              | ***          | NA.          | NA.        | NA.      |        | NA NA    | NA NA    | NA.      | NA.    | NA NA  | -          | NA.      |           |         |         | 744          | NA        | NA.       | NA NA  | NA.      |             | NA.      | NA NA        | -        | NA.      |
| Dibenzo furan               | ppm  |              | -            |        |              |              | NA.          | NA NA      | NA       |        | NA.      | N4       | NA.      | NA.    | NA NA  | BNIDL J    | NA NA    | BVIDL1    |         | 187     | ***          | NA        | NA.       | NA NA  | NA.      | 0 0014 J    | NA.      | NA.          | 100      | 58       |
| Diethyl phthalate           | ppm  |              |              |        |              |              | NA.          | SA         | NA       | ***    | NA.      | NA.      | NA.      | NA.    | NA     |            | NA       |           | -       |         | 244          | NA NA     | NA.       | NA.    | NA.      |             | NA.      | NA.          | Ani,     | SA       |
| Dunethyl phthalase          | ppm  |              | l –          | -      |              | -            | SA           | SA         | SA       |        | NA.      | Sa.      | NA.      | NA.    | NA.    |            | SA       | 99.       | -       |         | -            | NA NA     | NA.       | NA.    | NA.      | -           | NA.      | NA.          |          | 5A       |
| Di-n-butylphthalate         | ppm  |              | ***          | ***    | ***          |              | NA.          | NA NA      | NA NA    | 100    | NA.      | N/L      | NA.      | NA.    | NA     |            | NA.      | 91        | ***     |         | I -          | NA NA     | NA.       | NA.    | NA NA    |             | NA.      | NA.          | 1        | NA.      |
| Dr-n-octylphthalate         | ppm  | 1++          | 144          |        |              | ,            | NA           | NA.        | SA S     | -0.0   | SA       | NA       | NA.      | NA.    | NA .   |            | NA.      | 200       |         |         |              | NA        | NA.       | NA.    | SA       |             | SA.      | NA.          |          | NA.      |
| Fluoranthene                | ppm  |              |              | ***    |              | 7~           | NA           | NA.        | 5A       | -      | NA.      | NA.      | N/4      | NA.    | NA.    | BMDL I     | NA.      | 79.       |         |         | -            | NA NA     | NA.       | NA.    | NA.      | 0 001 1     | NA.      | NA.          | -        | NA.      |
| Fluorene                    | ppm  |              | _            | l      | l            |              | NA.          | NA.        | SA       | 100    | SA.      | NA       | NA       | SA     | SA     | BMDL J     | NA.      | BMOL      | 100     |         |              | NA        | NA        | NA     | SA       | 0.00111     | SA       | NA.          |          | NA.      |
| Hexachlorobenzene           | ppm  | l            | I _          | l _    | l _          | l            | NA.          | NA.        | NA.      | 44     | NA       | NA       | NA.      | NA.    |        |            | 54       | -         | -       |         | NA.          | NA        | NA.       | NA.    | NA       | 0.00000993  | NA SA    | NA.          |          | NA.      |
| Indeno(1.2.3-cd)Pyrene      | ppm  | -            | _            | I _    | _            |              | NA.          | NA.        | SA       | 140    | 5A       | NA.      | NA.      | NA.    | NA NA  |            | NA.      |           | -       |         | ***          | NA        | NA.       | NA.    | NA.      |             | NA.      | l NA         |          | NA.      |
| Isophorone                  | ppm  |              | 1 =          | 1 =    | 1 =          |              | NA.          | NA.        | NA.      | -      | NA.      | NA       | NA.      | NA.    | NA.    |            | NA.      |           | -       |         | l            | NA.       | M         | NA.    | SA       | l           | NA .     | NA           |          | NA.      |
| Naphthalene                 | ppm  |              |              |        |              |              |              | 10.4       | -        | 250    | 1474     |          |          |        | NA.    | 0.049      | NA.      | 0.055     | E 016   | 0.024   |              | NA.       | BMDL      | 900    | 9 021    | I           | 000041   | _            | I – I    |          |
| Nigobenzene                 | ppon |              |              |        | I            |              | SA           | SA         | NA.      |        | NA.      | SA       | NA       | NA.    | NA.    | 1          | SA       | -         | 200     |         | l            | NA.       | NA.       | NA     | NA.      |             | NA.      | SA           | I - I    | NA.      |
| Phenantheene                | ppos |              |              | 1 "    | "            |              | NA NA        | 54         | NA.      | 160    | NA.      | NA.      | NA       | NA.    | NA.    | BMDL /     | NA.      | BARLI     | 174     |         |              | NA.       | NA.       | NA.    | NA.      | 0.0018.3    | NA.      | NA.          | I _      | SA       |
| Pyrene                      |      | 1            |              |        |              |              | NA NA        | SA.        | NA NA    | -      | - 22     | SA.      | NA.      | NA.    | NA.    | Lawrence / | SA.      | B. Ing. 1 | 100     |         |              | NA.       | NA.       | NA.    | NA.      |             | NA.      | SA           | I I      | SA       |
| 1.4-Doune                   | ppm  | - SA         | NA.          | NA.    | 1            | NA NA        |              | SA.        | NA<br>NA |        | 200      | NA.      | NA<br>NA |        | NA.    | NA.        | L        |           | NA.     | NA.     | I            | NA.       |           | 100    | NA.      | NA.         | NA.      | NA.          |          | NA.      |
| TOTAL BASENELTRALS          | ppm  | - 3A         | - NA         |        |              | - AA         | NA -         | NA .       | - 20     | NA.    | NA .     | - 54     |          |        | 54     | 0.24       | - SA     | 614       | 8.31    | 8.18    |              | 4,0009.3  | 0.022 J   | 0.00   | 0.022    | 814         | 9,000 J  | -            | 0.009 JB | -        |
| TOTAL BASE/SETTRALS         | ppm  | <del>-</del> | <del>-</del> | +-     | <del>-</del> | <del>-</del> | <del>-</del> | -          |          | -      |          | _        | -        |        | .14    | 4.14       |          | 1 411     |         |         | <del>-</del> |           | 0.0021.0  |        | 4.424    |             |          |              |          | -        |
| PESTICIDES                  | 1    |              | l            |        | ı            |              | l            | l          |          |        | l        | 390      | 80000    | ŀ      | l      |            | l        | 400       |         | l       | 1            | i         |           | 1350   |          |             |          | 1            |          |          |
| 14.45000                    | ppb  | red.         |              |        |              |              | NA           | NA         | NA       | 1,000  | NA.      | NA       | 5.6      | NA .   | NA.    |            | NA.      | (m)       | ber     |         |              | NA NA     | NA.       | NA.    | NA       | 0 013 JP    | NA.      | NA.          | NA.      | NA.      |
| 4.4'-DDE                    | ppb  |              | _            |        |              |              | NA.          | NA NA      | NA.      | 100    | NA       | NA       | NA.      | NA.    | NA NA  | -          | NA.      | Ann.      |         |         |              | NA.       | NA.       | NA.    | NA.      |             | NA .     | NA NA        | NA NA    | NA.      |
| 4.4-DDT                     | ppb  |              | _            | -      |              |              | NA           | NA         | 5A       | -      | NA       | NA.      | 8.8      | NA     | NA.    |            | NA.      | 100       |         |         |              | NA.       | NA.       | NA.    | SA       |             | SA.      | NA.          | NA.      | NA.      |
| Beu-BHC                     | ppb  |              | _            |        |              |              | NA.          | NA NA      | NA.      | -      | NA.      | NA.      | NA       | NA.    | NA.    | -          | NA.      | 861       |         |         |              | NA.       | NA NA     | NA.    | NA.      |             | NA.      | NA.          | NA.      | NA.      |
| Delta-BHC                   | ppb  |              | I -          |        | -            |              | NA.          | NA.        | SA       | 100    | NA.      | NA       | NA       | NA.    | NA.    |            | NA.      | - 1       | -       |         |              | NA NA     | NA.       | NA.    | NA.      |             | SA       | NA.          | NA.      | NA.      |
| Dieldrin                    | ppb  |              | l _          | l _    | l            |              | NA           | SA.        | NA       | -      | NA.      | NA       | 8.4      | NA.    | NA.    |            | NA.      | let .     | _       |         | ***          | NA.       | NA.       | NA.    | NA       |             | NA.      | NA.          | NA.      | NA.      |
| Endosul (an I               | ppb  | _            | _            | _      |              | l            | 3.4          | NA.        | SA       | -      | NA.      | NA.      | 164      | NA.    | N4     |            | NA.      | 100       | l –     | _       |              | N#        | NA.       | NA     | SA       |             | NA.      | NA.          | NA.      | SA       |
| Endosul fan selfate         | ppb  |              |              | I      | I            | I            | NA.          | NA.        | 1 53     | -      | NA.      | NA.      | NA.      | NA.    | NA.    |            | NA.      | 460       |         |         |              | NA        | NA        | SA     | NA.      |             | NA.      | NA.          | NA.      | NA.      |
| Endrin                      | ppb  |              |              |        |              | I            | NA.          | NA.        | NA.      | 100    | NA.      | NA.      | NA       | NA.    | SA     | _          | NA.      | 100       | -       |         |              | SA.       | SA        | SA     | NA.      |             | NA.      | NA.          | SA       | NA.      |
| Endrin aldehyde             | ppb  |              | =            |        |              |              | NA<br>NA     | 1 %        | NA.      | 100    | NA.      | NA.      | NA.      | NA.    | SA.    |            | NA<br>NA | 0         | I       |         |              | SA.       | NA.       | NA.    | NA.      |             | NA.      | NA.          | SA       | NA.      |
| Endrin kelone               |      |              | -            | _      |              | l "          | NA<br>NA     | NA.        | SA       |        | NA<br>NA | NA.      | NA.      | SA.    | SA.    |            | NA NA    |           |         |         |              | NA.       | NA.       | NA.    | NA.      | 1           | l SA     | 8.4          | SA       | NA.      |
|                             | ppb  |              | _            | I -    | -            | l            |              |            |          | 100    | SA<br>SA |          | NA.      |        | SA     |            | NA<br>NA | 85        | I       |         | i :::        | NA.       | SA.       | NA.    | NA.      | L           | NA.      | 5.4          | SA.      | 84       |
| Gamma-BHC                   | ppb  |              | _            | I -    | -            |              | NA .         | NA.        | SA.      | -      | NA<br>NA | NA<br>NA | NA.      | 5.4    |        |            |          | - 22      | BAICET  | #MDL J  |              | NA.       | . SA      | NA.    | NA.      |             | NA NA    | SA.          | NA NA    | NA.      |
| Heptachlor                  | ppb  |              | _            |        | _            | -            | NA NA        | NA.        | NA       |        | 1.000    | 200      | 100      | NA.    | SA     | -          | NA.      | 100       | D-9/9/  |         |              |           | NA.       | 54     | NA<br>NA | "           | NA<br>NA | NA.          | NA NA    | NA<br>NA |
| Heptachlor epoxide          | ppb  |              |              | I -    |              | -            | NA NA        | SA.        | SA       | -      | NA.      | No.      | 5.4      | S.a.   | SA     | -          | NA<br>NA | 223       | I -     |         |              | NA<br>NA  | NA.       | No.    | NA<br>NA | 1           | NA<br>NA | 1 3          | NA<br>NA | NA<br>NA |
| Methanschlor                | ppb  |              |              |        | _ m          | 1            | NA NA        | NA.        | NA NA    | - 15   | NA.      | NA.      | NA.      | NA.    | NA.    |            | NA NA    | 111       | ***     | ***     |              | 14/4      |           | NA.    |          |             |          | 197.9        |          | N4       |
| TOTAL DOX                   | ppb  |              | -            | l -    | -            | -            | . 54         | NA.        | 54       |        | 5A       | NA.      | N4       | 5.6    | NA.    | -          | NA.      | - 77      | I       |         |              | NA.       | NA.       | NA.    | NA.      | 6.013       | NA       | - 54<br>- 54 | NA<br>NA | NA.      |
| TOTAL PESTICIDES            | dqq  | 1 -          | I -          | -      | -            | I -          | NA NA        | NA.        | NA.      | 100    | NA.      | NA.      | 10       | NA.    | 54     | _          | NA.      | -         | 9.921 J | 40(1)   | -            | 24.5      | 5-8       | 5A     | NA.      | [ 0.013     | - 34     | NA.          | 1 34     | E 28     |

### TABLE I ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (set page 19 for seets)

| PARAMETER                   | END    |        |        |        |          |        | MW-         | III (Aboud | oned)   |        |           |           |            |            |           |         |          |         |         |            |         | TW-IS    |         |          |         |          |         |        |          |
|-----------------------------|--------|--------|--------|--------|----------|--------|-------------|------------|---------|--------|-----------|-----------|------------|------------|-----------|---------|----------|---------|---------|------------|---------|----------|---------|----------|---------|----------|---------|--------|----------|
|                             | ENII   | Mar-08 | Aug-68 | Aug-09 | Sep-10   | Jan-11 | Sep-12      | Jun-13     | Jun-15  | Sep-16 | Oct-14    | Sep-19    | Sep-20     | Sep-21     | Mar-08    | Aug-68  | Sep-09   | Aug-10  | Jun-11  | Sep-12     | Jun-13  | Jun-15   | Sep-16  | Jul-17   | Oct-18  | Sep-19   | Sep-20  | Sep-21 | Sep-2    |
| VOLATILES                   | $\neg$ | -51-5  |        | 1      |          | 1      |             |            |         |        |           |           |            |            |           | -       |          | 11      |         |            |         |          |         | 10.7     |         |          | 017.11  | orp at | 54,510   |
| 1.1.1-Trichloroethane       | 1 Spen | -      | -      |        | ***      |        |             | ***        |         | 370    | 944       | -         | 100        | -          | Any       | 100     | 444      | 167     | ***     | -          |         |          |         |          | r       | NA NA    |         |        |          |
| 1.1.2.2-Tetrachloroethane   | - ppm  | -      | -      |        | ***      | ***    | ***         | 100        |         | -      | 100       |           | in the     | -          | . 20      | 104     | 244      | 146     | -       | 92.5       | -       | _        | _       | _        | -       | NA       |         | in.    | 100      |
| 1.1-Dichloroethane          | PPP    | -      | -      |        | ++4      | +++    |             |            | 100     | 100    | 100       | -         | -          | -          | 846       | BMDL)   |          | 140     | -       | 1000       | -       | 7.2      |         | - 100    |         | NA       | -       | 100    | 170      |
| 1.2.4-Trichlorobenzene      | ppm    | NA.    |        | ***    | ***      |        |             |            | -       | _      | _         | Care      | 100        | 1          | NA.       | 100     |          | -       | -       | 323        | _       | -        | 4       |          | 1       | 1 NA     |         | -      |          |
| 1.2-cis-Dichloroethylene    | ppm    | -      |        | BMDL I | BMDL J   | BMOL J | BMDLJ       | _          | BMDt. J | BMDL J | 0-00040 J |           | @-00023-J  | 0.000363   | - 24      | 1 JONS  |          | BMDLI   |         |            | -       | -        | _       | -        | -       | NA.      |         | -      | 100      |
| 1.2-Dichlorobenzeue         | ppm    | NA.    |        | ***    |          |        | BMDL J      | 100        | BMDLJ   |        |           | -         | 0 000040 J | 0 6000191  | NA        |         | -        | 200     | -       | -          |         |          |         |          |         | NA NA    |         | -      |          |
| 1.2-Dichloroethane          | ppm    | 100000 | 100    | 100    | 1000     | 100    |             |            |         | ***    | ***       |           | -          | 1          | 1,1440    | BMDL /  | (4)      | -       | _       | -          | 0.4     |          |         | 0-000393 | ***     | NA       | -       | -      | 23       |
| 1,2-trans-Dichloroethylene  | ppm    | 100    | 199    | -      | 100      | 0.0    |             | 1000       | ***     |        | NA        |           | -          | -          |           | 647     | -        | -       | -       | -          | 8.20    |          |         |          | NA.     | NA.      | -       | 100    | 160      |
| 1,3-Dichlorobenzene         | ppm    | NA.    | 644    | 100    | 0.0      |        | -           | 444        | 100     | ***    | ***       |           | -          | 1 -        | NA.       | 200     | -        | _       | -       |            | -       | -        |         |          |         | NA       | -       | 100    | 100      |
| 1.4-Dichlorobenzene         | ppm    | NA.    | 100    | 100    | 1000     |        | BMDL I      |            |         |        |           |           | 0 000013 J | 0.00051    | NA.       | 200     |          | _       | _       | -          |         | 100      | 100     |          | l       | NA       |         | AAU    | 440      |
| 1,4-Dioxane                 | ppm    | SA     | 266    | NA     | NA.      | NA     | 5A          | ***        | -       | 0.0078 | NA.       | NA.       | _          | NA         | NA.       | NA.     | N.A.     | NA.     | NA      | 0.913      | 0.0046  | 0.000    | (80006) | 0.0095   | NA.     | NA.      | 6 00072 | 196    |          |
| 2-Hexanone                  | ppm    | 100    |        | -      | 44       |        |             | ***        |         | -      |           |           | _          |            | -         | BMDL J  | 100      | 0       |         |            |         |          |         | 1        |         | NA I     | -       | 84     | 130      |
| Aortone                     | ppm    | 1      | -      |        | - 40     | ***    | 0.0001      |            | -5      | 2      | 0.024     | # 0099    | 0.027      | 0.0077     | -         | BAGOL J | BMDL J   | BMDLI   | BMDL)   | 0.011      |         | _        |         | 0017     | 0 0059  | NA NA    | 0.0061  | 0.0099 | 8 0054   |
| Benzene                     | ppm    |        | -      |        | +44      |        |             |            | -       | _      | ****      | 1         | 1          | 1          |           |         | -        | BADL I  | BAIDL J | BMDL J     | 200     | BNIDLJ   |         | 1        | I ****/ | NA I     | 4000    | 4000   | -00,94   |
| Brome form                  | ppm    | 100    | -      |        | 27.      |        | 1           | -          |         | _      | 100       |           |            |            | ***       |         | 100      |         | and a   | manufact 1 |         | DOMENT / |         | 1        |         | NA NA    | S       | -      |          |
| Carbon Disulfide            | ppm    | 100    | 794    |        | 1000     |        |             | 100        | 0.00    | 200    | -         | 111111    | l          | -          | BMDL)     | 100     | - 5      | BNDL)   | -       | 12.        | 120     |          | -       | 100      | 0.50    | NA NA    |         | -      | -        |
| Chlorobenzene               | ppm    | 100    | 100    | 67011  | 0.007F   | 9424   | 9 0057      | BNDL       | #01     | 0.00%  | 0.013     | 0.016     | 0-011      | 0.023      | O.Made. ) | BMDLI   |          | BMDE J  | BMDL I  | BNIDL      |         |          | -       | 100      |         | NA<br>NA | 607     |        | - 33     |
| Chlorobromomethane          | ppm    | NA     | NA     | NA     | NA .     | NA.    | -007.       | D. NEDE II | 701     |        | 0917      | 2010      | ř .        | 1          | NA.       | NA.     | NA.      | NA.     | NA      | BridDL F   | - 201   |          | 100     | 100      | - 57    | NA NA    |         | -      |          |
| Chloroethane                |        | - AA   | 200    | 3.4    | -        | - 5.4  |             | 5.757      | -       |        | 0.0015    |           |            | 700        | NA.       | AA.     | IN.A.    | 34      | 300     |            | -       | -        | - 0     | 100      |         | NA<br>NA |         | 100    | - 5      |
| Chloroform                  | ppm    | 2.00   |        | -      | 7.365    |        | -           | 2-23-      | 5700    |        |           | "         |            |            | -         | - 20    | 157      | 100     |         |            |         | 11.00    | 4.75    | -        | -5      |          | - 0     | -7     | 170      |
| Chloromethane               | ppm    | 100    |        | 1.7    |          |        |             | 1          |         | ***    | 0 0011    |           | 0 000591   | 1          | 17 E3 11  |         | 100      | 150     | -       | - 3        | 1 = 0   | -17      | 200     | 144      | -       | NA.      | -       |        | -        |
| Cyclohexme                  | ppm    | S4     | 244    | NA.    | NA.      | SA.    | BASDL J     | ***        |         | BMDLI  | 0 0011    |           | 0 000397   | 1 -        | NA.       | NA.     | 344      | SA      | 266     |            |         | 144      | 1-4     |          | 3.43    | NA NA    | 175     | -      | -        |
| Dicklorobromomethane        | ppm    |        |        |        | -        |        | D. VALUE, 7 |            |         |        |           | 100       |            | -          |           | 100     | 200      | 71.50   | 1000    | 100        | -       | - 44     | 144     | 35.0     | -       | NA.      | -       | - 1.7  | -        |
| Eihylbenzene                | ppm    | 041    | 938    | 932    | 0.16     | 110    | 023         | BMDL /     | 9.027   | 0016   | 0.037     |           |            |            | 100       | 101     | -        | -       | -       | - 2        |         |          |         | 1        | -       | NA       | 175     |        |          |
| Esoprops/benzene            | bbm    | NA.    | 3/4    | 314    | NA.      | NA.    | 8044        | BMDL)      | 9068    | 0.018  | 0.044     | -         | 0.016      | 0 00027 J  |           |         | 1.0      | 100     | NA.     | BMDL1      |         | 25       |         |          |         | NA.      |         |        | 100      |
| Methyl ethyl kerone         |        |        |        |        | 47.50    | 1      |             |            |         |        |           | 0 025     | 0.063      | 0.045      | NA        | NA .    | N/I      | NA.     |         | BMDL1      | BADLI   |          | 77.     |          | 7       | NA .     | 77      | 146    |          |
| Methyl tertiary buryl ether | bhm    |        |        | _      | ***      | ***    | B/4DL1      |            |         | -      | 0.011     | 0.0030 1  | 0.012      | -          | 100       | BAIDL # | 44       | BADE I  | BADL I  | BADET      | -       | -        | -       | 0.0004.1 |         | NA.      | .00     | 100    | 0 0044 J |
| Methylcyclohexane           | bhm    | N4     | 264    |        | ***      | ***    |             |            |         |        | NA        |           |            |            | 1.7       | 100     | NA.      | -       | 3.5     |            |         |          |         | -        | SA      | NA       | - 75    | , mil  | 100      |
| Methylene chloride          | bbm    | - NA   | 200    | NA.    | NA.      | 5.6    | 0 0014      |            | 0 0037  | 0 004  | 0.0026    | 0 000571  | 0 0028     | 0 0022 J   | NA.       | NA.     | 264      | 54      | NA.     |            | :       | BOADE A  | - 53    | 177      | -       | NA.      | 200     | 100    | 100      |
| Methyl-iso-butyl ketone     | bha    | 1      |        |        | ***      | ****   |             | 1          |         | 100    | 100       |           |            |            | 14        | 7.5     | -        |         | _       | 100        | -       |          |         | 1.7      | -       | NA NA    | 75      | 100    | 10.      |
|                             | bhm    | 25.00  | -      | ***    | ***      |        |             |            | -       | -      | MA.       | ***       | 000333     |            |           | inc.    | -        | 2.00    | -       | -          |         | -        | -       | -        | -       | NA NA    | - 11    |        | 100      |
| Styrene                     | bba    | 100    | 100    | _      |          | 100    |             | -          | 100     | -      | 1 100     | 100       |            | 1          | 44        | BMDL#   | -        | -       |         |            |         | -        | ***     |          | -       | NA NA    | 75      | -      | 300      |
| Tetrachloroethene           | ppm    | 100    | 797    |        | 96       | 101    |             | 100        | ***     |        | 144       | here      | 7          | -          | 440       | 77      |          | -       | _       |            | -       |          | 744     | 100      | -       | NA NA    | -       | -      | 10       |
| Tolutine                    | bbm    | 114    | 9.11   | 0.96   | 0.043    | 0.014  | 9 926       | BADL       | BMDL J  | BMDL J | tere      | 8518      | -          | 0 0002 /   | 100       | 71.5    | 177      | -       | BMDL F  | BALDL J    |         |          | 100     | 311      |         | NA NA    | 0.00    | 1100   |          |
| Total Xylenes               | ppm    | 19     | 3.5    | 0.10   | 664      | 120    | 078         | BAIDL J    | 0.12    | 0 029  | 0.086     |           | 0.03L      | 1 99000 (1 | -         | BADE    | 7        |         | BARDE 1 | BADL J     |         | -        | 795     | 700      | 701     | NA NA    |         | 100    | 500.     |
| Trichloroethylene           | bbtm   | 100    | 799    | -      | 1986     | 100    |             | 1111       | 101     | 144    | ***       | ***       |            | -          |           |         | 3-5      | -       | _       |            | 100     | 1**      | *111    | (4)      | 91      | NA NA    | 200     | 140    | .460     |
| Vmyt chloride               | ppm    | 11.000 | -      | -      | 1.00     | 1011   |             | ***        | 104     | BMDL I | ***       |           |            |            | -         | 100     |          |         |         | BMDL J     | 144     | 114      | ***     | -        | 100     | NA       | Section | 100    | 400      |
| TOTAL VOLATILES             | ppm    | 3.8    | 2.3    | 0.02   | 6.84     | 17.1   | 1.113       | 0.73 J     | 0.229   | (1,844 | 0.334 /   | 9,85447.3 | 0.19768-3  | 0.07978 8  | 6.8912 J  | 9.016 J | 6.0066 J | 8.846 J | 0.0113  | 8.029.3    | 0.012.5 | 8.6      | 0.001   | 9.029    | 0.005   | NA.      | 6.889   | 0.8019 | 0.0096 1 |
| 2-Octanol                   | ppm    |        | 100    | -      | -        | NA.    | MA          | NA         | NA      | N.A.   | NA.       | NA.       | NA NA      | NA.        | NA.       | SA      | HA       | NA      | NA      | NA         | NA.     | NA       | NA.     | NA NA    | NA.     | NA       | SA      | NA.    | NA.      |
| 2-Octanone                  | ppns   | 1 100  | -      | -      | -        | NA     | NA          | N.A.       | NA:     | N.A.   | NA.       | NA.       | NA.        | NA.        | NA        | NA.     | N.A.     | NA.     | NA.     | NA.        | N/A     | NA.      | NA.     | NA.      | NA.     | NA .     | NA.     | NA.    | NA.      |
| TOTAL OCTANOL/OCTANON       | Е рроі | -      | _      | 177    | 199      | NA.    | NA.         | 5A         | NA      | 34     | NA        | 54        | NA.        | NA NA      | NA.       | NA.     | NA.      | 34      | NA.     | NA.        | 5A      | N/A      | NA.     | NA.      | NA      | NA .     | NA.     | NA     | NA.      |
| ACID EXTRACTABLES           |        | 100    | 1.0    | -11    |          | 1      | 40%         |            |         |        |           | 1027      | 1          |            |           |         |          |         |         |            |         |          |         |          |         | - 41     |         |        |          |
| 2.4.5-Trichlorophenol       | Permi  | N5.    | -      | 1004   | ***      |        | 'NA         | NA.        | NA.     | NA.    | NA.       | SA.       | NA .       | NA NA      | NA.       | 750     | . 72     | 1.55    | b++     | NA         | NA.     | NA.      | NA.     | 1,740    | NA.     | 5.6      | SA      | NA     | NA.      |
| 2,4-Dimethylphenol          | ppm    | N/L    | 100    | ***    | 874DL J  | ***    | NA          | NA.        | NA.     | NA NA  | NA.       | h.t.      | NA NA      | NA NA      | NA        | 171     | ***      | 100     |         | NA.        | NA .    | NA.      | NA.     | 490      | NA .    | NA.      | NA.     | NA.    | NA.      |
| Z-Methy ipikenol            | ppm    | N4     |        | 100    |          | ***    | NA          | NA.        | NA.     | NA.    | SA        | NA.       | NA .       | NA NA      | NA        | 101     | ***      | re.     | 100     | NA         | NA      | NA       | NA.     |          | NA      | NA       | NA.     | NA     | SA       |
| 4-Methylphenol              | ppm    | 88.    | -      | BMDL1  |          |        | NA          | NA         | NA.     | NA.    | 5A        | NA.       | NA .       | NA .       | NA        | 101     | 777      | per C   | 100     | 5A         | NA.     | NA       | 5A      | 100      | NA      | 84.      | NA.     | NA     | MA.      |
| Pencachlorophenol           | ppu    | N.     | 164    | 0.0004 |          | -      | NA          | NA.        | NA.     | NA .   | 5A        | NA.       | NA.        | NA.        | NA.       | 10.0    | 100      | 790     | -       | Na         | NA      | NA.      | NA.     | _        | NA      | NA.      | NA.     | NA     | NA.      |
| Phenol                      | ppm    | Sit    |        | 240    | ~        |        | NA          | NA         | NA.     | NA     | SA        | h.s.      | NA.        | NA.        | NA.       | 100     | -        | in the  | -       | NA         | NA.     | NA.      | NA      | 100      | NA.     | NA:      | NA.     | NA     | NA       |
| TOTAL ACID EXTRACTABLE      | S ppm  | NA.    | 100    | 0.0654 | 0.0040 J | _      | NA.         | NA         | 44      | NA.    | 34        | 54        | NA.        | 54         | 54        | -       | -        |         |         | NA.        | NA      | 54       | 14      |          | NA      | NA.      | 54      | NA.    | 5A       |

## TABLE I ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (1000 page 19 for andrs)

| PARAMETER                           | lesi  |          |         |          |         |        | MW-     | 19 (Aband | oued)  |          |          |          |            |          |          |         |         |        |        |          |                | TW-1S    |        |            |          |          |        |        |          |
|-------------------------------------|-------|----------|---------|----------|---------|--------|---------|-----------|--------|----------|----------|----------|------------|----------|----------|---------|---------|--------|--------|----------|----------------|----------|--------|------------|----------|----------|--------|--------|----------|
|                                     | 1331  | Mar-08   | Aug-08  | Apg-09   | Sep-10  | Jun-11 | Sep-12  | Jua-13    | Jun-15 | Sep-16   | Oct-18   | Sep-19   | Sep-20     | 5cp-21   | Mar-98   | Aug-88  | Sep-89  | Aug-10 | Jun-11 | Sep-12   | Jun-13         | Jun-15   | Sep-16 | Jul-17     | Oct-18   | Sep-19   | Sep-20 | Sep-21 | Sep-2    |
| BASE/NEUTRALS                       |       |          |         |          |         |        |         |           |        |          |          |          |            |          |          |         |         |        |        |          |                |          |        | II         |          |          |        |        |          |
| 2-Methylnaphthalene                 | ppm   |          | BMDL 3  |          |         |        | SA .    | NA NA     | NA NA  | NA.      | NA       | NA .     | 161        | NA.      | NA.      | 300.    | 1001    | 7.00   | 100    | No.      | 5A             | NA.      | NA.    | 0 60471    | NA       | NA       | ***    | 5A     | NA.      |
| Acenaphthene                        | ) ppa | NA.      | BMDL J  |          |         | -      | NA      | NA NA     | NA     | NA.      | NA       | NA.      | 0.00111    | 5A       | SA       | B/EDF1  | 100     | 164    | 50     | NA.      | NA             | NA       | NA.    |            | NA NA    | NA       | :      | NA     | NA.      |
| Acenaphthylene                      | ] ppn | NA.      |         |          |         |        | NA 5    | NA NA     | NA NA  | NA.      | NA       | NA.      | 200        | NA.      | 5A       | 4.0     | - had   | . 10.  | 116    | NA.      | NA.            | NA.      | NA.    |            | NA NA    | NA.      |        | NA.    | NA.      |
| Anthracene                          | ] ppm | NA.      | BMDL #  |          |         |        | NA      | 54        | NA     | NA NA    | NA.      | NA.      | . 101      | SA       | 5A       | 800     | 164     | 1.00   | 34     | NA       | NA.            | SA .     | N#     |            | SA       | NA.      |        | NA.    | NA.      |
| Benzo(a)Anthiacene                  | ppe   | NA.      |         |          | 1 JOI/6 |        | NA      | 8.4       | NA     | NA NA    | NA.      | NA.      | 0 0000248  | SA       | NA.      | 446     | 100.0   | - 41   | 127    | SA       | NA             | NA.      | Sa     | l I        | SA       | NA.      | l '    | NA     | NA.      |
| Benzo(a)Pyrene                      | ppo   | NA.      |         | I -      |         | ***    | NA      | NA        | NA     | 54       | NA.      | NA.      | 100        | 5A       | NA       | 446-    | -0.4    | 44     | -      | NA.      | SA             | NA.      | NA.    | l I        | NA.      | NA       | l      | NA.    | NA.      |
| Beuzo(b)Fhioranthene                | ppm   | NA.      |         | I -      |         |        | NA .    | NA NA     | NA     | NA.      | NA.      | NA       | 100        | NA.      | 5A       | 416     | - 100   | - 44   | 146    | NA       | NA.            | SA       | NA.    | 0.000027.1 | NA       | NA.      | l      | NA     | NA.      |
| Benzo(g.h,i)Perylene                | ррп   | NA.      |         | l –      |         |        | NA      | NA NA     | NA     | NA.      | NA.      | NA       | 100        | NA.      | SA       | See .   | Tank .  | 100    | 140    | NA.      | NA.            | SA       | NA.    | 0 000032 J | NA NA    | NA.      |        | NA     | NA.      |
| Beuro(L)Fluoranthene                | ppn   | NA.      |         | I -      |         |        | NA      | NA        | SA     | NA.      | NA.      | N4       | 22         | 5A       | 5.4      | 100     | 100     | 400    | 140    | NA.      | SE             | SA       | - 86   | 0.000023.J | SA       | NA.      |        | NA.    | SA       |
| bis(2-Chloroethox) Imethane         | ppm   |          |         | I -      |         |        | NA .    | NA        | NA     | NA.      | NA.      | NA.      |            | NA.      | NA       | 516     | 400     |        | - 10   | NA.      | NA             | NA       | NA.    |            | NA.      | NA.      |        | NA.    | NA.      |
| busi 2-Clalocoethy laether          | ppa   |          | 1 -     | I -      |         |        | NA.     | NA        | SA     | NA       | NA.      | NA.      | 100        | 5A       | NA.      | 9 086   | 9.11    | 0.16   | 0.089  | SA       | NA             | NA.      | NA     | 9567       | SA       | NA.      | 0016   | NA     | NA.      |
| bis(2-Chlorosopropyl)ether          | pper  |          |         | I -      |         |        | NA.     | NA NA     | NA     | NA.      | NA       | NA.      | 100        | 5A       | 5A       | 100     | 475     | - 44   |        | NA.      | NA             | SA       | N.     | "          | NA NA    | NA.      | ***    | NA NA  | NA<br>NA |
| bis(2-Ethylhexyl)phthalate          | ppe   |          |         | I _      |         |        | NA.     | NA NA     | SA     | NA.      | NA.      | NA.      | 100        | 58       | NA.      |         | -       |        |        | NA.      | NA I           | NA.      | NA.    |            | SA       | NA.      |        | NA NA  | SA       |
| Butyl benzyl phthalate              | pper  |          | l       | I _      |         |        | NA.     | NA        | NA     | NA.      | NA.      | NA.      | -          | NA NA    | NA.      | -       |         |        |        | NA.      | NA             | NA.      | NA.    |            | NA.      | NA.      |        | NA NA  | NA<br>NA |
| Carbasole                           | ppn   |          | :-      | 1 =      |         |        | NA NA   | NA NA     | SA     | NA.      | NA<br>NA | NA<br>NA | -          | SA SA    | NA<br>NA |         | - 2     | 46     | 74     | NA<br>NA | NA I           | SA       | NA.    | "          |          | NA.      | l      | NA NA  | NA<br>NA |
| Chrysene                            | ppn   |          | :-      | 1 =      |         |        |         | NA NA     | NA NA  | 5A       | NA<br>NA | NA<br>NA | -          | NA NA    |          | 0.00    | -       |        | 100    | NA<br>NA |                |          |        | "          | NA<br>NA | NA<br>NA |        |        |          |
| Dibenz(a h)anthracene               | ppn   | NA.      | 1 :     | I =      |         |        | NA NA   | NA<br>NA  | NA     | NA<br>NA |          |          | 0          |          | NA.      | 100     |         |        | 170    |          | SA             | SA       | NA.    | ~          |          |          |        | NA     | NA       |
| Dibeazofuran                        |       |          | BMDLJ   | 1 -      |         |        | NA I    |           | NA NA  |          | NA       | NA       |            | SA       | NA       |         |         |        | -      | NA.      | NA I           | NA.      | NA.    | ! I        | NA       | NA.      | -      | NA .   | NA.      |
| Diethyl phthalate                   | ppn   | - SA     | 1       |          |         |        | L 25.5  | NA        |        | NA.      | NA.      | NA       | 70         | NA .     | SA       | -       |         | -      | - 3    | 3A       | SA             | SA       | NA.    | -          | SA       | NA.      |        | N4     | SA       |
| Dimethyl phthalate                  | pper  |          | -       |          | ***     |        | NA      | NA        | NA     | NA.      | NA       | NA.      | 100        | NA.      | NA       | ***     | -       | ***    | 72     | NA.      | NA             | NA       | NA.    | 1 - 1      | NA       | NA.      | _      | NA     | SA       |
| Di-m-buty lphthalate                | ppe   |          | -       |          | 1++     |        | NA .    | NA .      | SA     | SA       | NA       | NA       | 100        | 84       | NA.      |         |         | ***    | 1 -    | NA NA    | NA .           | SA .     | NA.    | w65        | SA       | NA .     | -      | NA NA  | SA       |
|                                     | ppm   |          |         | _        |         |        | NA.     | NA NA     | NA NA  | NA       | NA       | NA       | 100        | NA NA    | NA       |         |         | ***    | ***    | NA.      | NA NA          | NA.      | NA.    | @ 001 I    | NA NA    | NA.      | ***    | SA     | NA       |
| Dr-n-octylphthalate<br>Fluoranthane | ppn   |          |         |          | -       |        | NA.     | NA.       | NA.    | NA       | NA       | NA       |            | 5.4      | NA       | ***     |         | ***    | 1++    | NA NA    | NA NA          | NA .     | NA.    |            | NA NA    | SA       |        | NA     | SA       |
|                                     | ppm   | NA.      |         | -        |         |        | NA.     | NA        | NA NA  | NA       | M        | NA.      | -          | 5A       | NA.      |         | ***     | ***    | ***    | NA NA    | NA             | NA       | NA.    |            | NA NA    | SA       |        | NA     | NA.      |
| Fhorene                             | ppo   |          | IMDL F  | _        | ***     |        | NA NA   | NA .      | NA NA  | NA.      | NA       | NA.      | 0.00121    | NA NA    | NA       | 144     | ***     |        | -      | NA.      | NA             | NA       | NA.    | -          | NA NA    | NA.      |        | NA     | NA.      |
| Hexachlorobenzene                   | ) bbm | NA.      |         | -        | 100     | NA     | NA NA   | SA        | SA     | NA.      | NA       | NA       | 166        | NA       | NA       | ***     | ***     |        |        | NA.      | NA             | NA.      | NA.    | I - I      | NA.      | NA       | i -    | NA NA  | NA.      |
| Indeno(1,2,3-cd)Pyrene              | ) bba |          |         | 7.75     | 100     |        | NA NA   | NA        | NA NA  | 5A       | N/A      | NA       | 100        | NA       | SA       | 100     | ***     | ***    |        | NA.      | NA             | NA       | NA.    | I - I      | NA.      | NA.      | - 1    | NA NA  | NA.      |
| Isophorone                          | bber  |          | -       | -        | ***     |        | NA NA   | NA.:      | - SA   | NA.      | N/A      | NA       | 100        | SA.      | NA       | 1++     |         |        | -      | NA.      | NA NA          | NA.      | 1.4    |            | NA.      | NA.      | - 1    | NA.    | NA.      |
| Naphthalene                         | bbe   |          | 9807    | BADE I   | 0.014   |        | NA.     | BAIDET    | 0.0071 | 0 004)   | 0.0013   | _        | 0.611      | 100      | NA.      | 30404.3 |         | ***    | ***    | NA       | BMDL J         | BMDL J   | 160    | 0.000053   | ***      | N5       |        | 140    | NA       |
| Nitrobenzene                        | ] ppm |          |         | -        |         | -      | NA.     | NA.       | NA.    | NA       | SA       | 5A       | -          | NA       | NA.      |         |         |        |        | SA.      | NA             | NA.      | SA     | ·          | NA.      | NA.      |        | NA     | SA       |
| Phenantkrene                        | ppm   |          | B/4DL F | -        |         |        | NA.     | NA.       | N#     | NA.      | NA.      | SA       | 0.00501    | NA NA    | NA.      | _       |         |        | ***    | NA.      | NA             | NA       | NA NA  |            | NA.      | NA.      |        | NA     | NA.      |
| Pyrene                              | 1 ppn | NA.      | ***     | -        |         |        | NA      | NA.       | N#     | NA.      | SA       | SA       | -          | NA       | NA       |         |         |        | ***    | NA.      | NA             | NA.      | SA     |            | NA NA    | SA       |        | NA I   | NA.      |
| 1.4-Dioxane                         | ppn   | NA.      | 5/A     | NA.      | NA.     | NA     | NA.     | NA.       | NA.    | NA.      | NA       | NA.      | NA.        | NA       | N/8      | NA.     | NA.     | NA.    | NA     | NA.      | NA             | NA.      | NA     | NA         | NA.      | NA.      | NA.    | NA.    | NA.      |
| TOTAL BASE/NEUTRALS                 | ppe   | NA.      | 9.424   | 8.0972 J | 0.014   |        | 6.80) J | 0.02 J    | 0.000  | 8.804    | 0.0013   | 54       | 9.015424.2 | 54       | NA.      | 9,000   | 0.11    | 4.16   | 8,009  |          | 0.0077 J       | 0.0027.J | 100    | 8.894      |          | 54       | 9.016  | -      | -        |
| PESTICIDES                          | 1     |          |         |          |         |        |         |           |        |          |          |          |            |          |          |         |         |        |        | 1        |                |          |        |            |          |          | l      |        |          |
| 4,4-000                             | ppb   | NA.      | 5.5     | -        | l       |        | SA      | NA.       | NA.    | NA.      | NA       | NA.      | NA.        | NA       | NA.      | l       |         |        |        | NA.      | <sub>No.</sub> | NA.      | l sa   | l !        | NA.      | NA.      | NA NA  | NA 1   | 1 .NA    |
| 4.4-DDE                             | bbp   | NA.      |         | - 12     |         |        | NA NA   | NA.       | NA NA  | NA<br>NA | NA.      |          |            |          |          |         |         |        | ı      | 1        | NA NA          |          |        | "          |          |          |        |        |          |
| 4.4-00T                             | ppb   |          |         |          |         |        |         |           |        |          | NA NA    | NA.      | NA.        | NA<br>NA | N/I      |         | ***     |        | ***    | NA.      | NA             | NA.      | NA NA  |            | NA       | NA<br>NA | NA.    | NA.    | NA<br>NA |
| Beta-BHC                            |       |          |         |          |         |        | NA      | NA.       | NA.    | NA.      |          | NA.      | SA.        |          | NA.      |         |         | H++    |        | NA.      | NA .           | NA       | NA.    | "          | NA       |          | NA.    | NA     | SA       |
| Delta-BHC                           | ppb   | NA.      |         |          | ***     | ***    | NA NA   | NA.       | NA.    | NA.      | NA       | NA.      | SA         | NA       | NA.      |         | BACK J  | ***    | ***    | NA.      | NA             | NA.      | NA.    |            | NA .     | NA NA    | N/A    | NA.    | NA.      |
|                                     | ppb   | NA<br>NA |         | - 27     |         |        | NA.     | M         | SA     | NA.      | NA       | NA.      | NA.        | NA NA    | NA       |         |         |        |        | NA.      | NA             | NA.      | NA     | 1          | NA       | 54       | NA.    | NA     | N/A      |
| Dieldrin                            | bbp   | NA.      | - 1     | -        |         | -      | NA      | NA        | NA.    | NA.      | N/A      | NA.      | NA         | NA       | NA       |         | ***     |        | _      | NA.      | NA             | NA.      | NA NA  |            | NA.      | SA       | NA.    | SA     | NA.      |
| Endosulfan I                        | bbp   | SA       | ***     | -        |         | -      | NA NA   | NA NA     | SA     | SA       | NA       | NA       | NA NA      | NA       | NA.      | -       |         | BMDL J | -      | - NA     | SA             | SA       | NA NA  | 1 - 1      | NA.      | SA       | NA.    | SA     | N/A      |
| Endosulfan sulfase                  | ppb   |          | -       |          |         | ***    | NA.     | N4        | 5.4    | NA       | NA       | NA.      | 5A         | NA       | NA.      |         |         | 200    | ***    | SA.      | NA.            | NA.      | NA .   | ]          | 5A       | N/i      | NA.    | NA     | NA.      |
| Endria                              | bbp   | NA.      | ***     | -        | ***     |        | NA      | NA.       | NA.    | NA       | NA.      | NA.      | NA.        | NA NA    | NA.      |         | ***     | ***    |        | NA.      | NA.            | NA.      | N/A    |            | SA       | NA.      | NA     | NA.    | NA.      |
| Endrin aldehy de                    | ppb   | NA.      |         | -        | ***     |        | NA .    | - NA      | 880    | NA.      | NA.      | NA       | NA.        | 5.A      | NA.      |         | ***     | 144    |        | NA.      | NA.            | NA.      | NA NA  |            | NA       | NA.      | NA.    | NA.    | 5.4      |
| Endrin ketone                       | ppb   |          | ***     | -        | 100     |        | NA NA   | NA.       | NA NA  | 5.4      | N/A      | NA.      | NA NA      | NA       | NA.      | ***     | her     |        |        | NA.      | NA.            | NA.      | SA     |            | NA.      | NA.      | NA.    | NA     | 57       |
| Gamma-BHC                           | bbp   | 5A       | -       | -        | ***     |        | NA      | NA.       | NA.    | 5.A      | N/4      | NA       | NA.        | NA.      | NA.      | ***     | hert.   | BNIDL3 |        | - NA     | NA.            | NA.      | SA     |            | NA       | SA       | NA.    | NA.    | 5/       |
| Reptachlor                          | bbp   |          |         | -        | ***     | -      | NA NA   | NA.       | 54     | NA.      | M        | ···NA    | NA .       | NA.      | NA.      | ***     | ***     |        |        | NA.      | NA.            | 5A       | NA.    |            | NA.      | NA.      | NA .   | NA.    | 82       |
| Heptachlor eposide                  | ppb   |          | 77      | 77       |         | -      | NA      | 5.4       | Sile   | SA       | NA.      | SA       | NA.        | NA       | SA       |         | ***     | BMDLJ  | _      | NA.      | SA             | . SA     | SA:    | ***        | NA.      | SA       | NA.    | SA     | 8.4      |
| Methosychlor                        | ppb   | NA.      |         | -        |         | ***    | NA.     | NA.       | NA.    | NA.      | NA       | NA       | NA.        | NA.      | NA       | 549     | ***     | ***    | tre    | NA.      | NA.            | NA.      | NA.    | 3100m      | NA       | NA.      | NA.    | SA.    | NA.      |
| TOTAL DDX                           | bbp   |          | -       | 0.00     | **-     | -      | NA.     | 54        | 5A     | 54       | NA       | NA:      | NA.        | 54       | NA.      | 540     |         | 45-    | _      | NA.      | 54             | NA.      | NA.    | 77         | NA.      | 54       | NA.    | NA.    | 54       |
| TOTAL PESTICIDES                    | 990   | NA.      | 244     | -        | L       | _      | 5.4     | 54        | 5.4    | 5.4      | NA.      | NA.      | - 54       | 5a       | NA.      | _       | 0.030 J | #18.8  | l –    | 54       | 54             | NA.      | NA .   |            | NA.      | 54       | 5A     | 34     | N/       |

#### TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 19 for users)

| PARAMETER                  | UNIT  |        |          |          |          |          |          |          | TW-25    |          |           |           |          |            |           |           |        |          |         |          |         |         |               | TW-26S |          |           |            |                |           |             |          |
|----------------------------|-------|--------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|------------|-----------|-----------|--------|----------|---------|----------|---------|---------|---------------|--------|----------|-----------|------------|----------------|-----------|-------------|----------|
|                            | 6.811 | Mar-88 | Ang-88   | Aug-89   | Sep-18   | Jun-11   | 5ep-12   | Jee-13   | Jul-15   | Sep-16   | Jul-17    | Oct-18    | Sep-19   | Sep-20     | Sep-21    | Sep-22    | Mar-88 | Aug-88   | Aug-49  | Sep-18   | Jun-II  | Aug-12  | Jun-13        | Jun-15 | Sep-16   | Jul-17    | Oct-18     | Sep-19         | Sep-20    | Sep-21      | Sep-22   |
| VOLATILES                  |       |        |          |          | 1        |          |          |          |          |          |           |           |          |            | -         |           |        |          |         |          |         |         |               |        |          |           |            |                |           |             |          |
| 1,1.1-Trichloroethane      | ppm   | ***    | -        | -        | -        | 1 -      |          | ALA      | ***      | ***      |           | l –       | - 1      | -          | -         |           |        | -        | ***     | ***      | ***     |         |               | -      | -        |           | -          | 940            | -         |             | -        |
| 1,1.2,2-Tetrackloroethane  | ppea  |        | -        | -        |          |          |          | +        |          |          |           | -         |          | -          | -         |           |        |          |         | Her      |         |         | ]             | -      |          | -         | -          | 440            |           |             |          |
| 1,1-Dichloroethane         | ppm   |        | _        | l –      | -        |          | ~~1      | ***      | ***      | -        | _         | l –       | l –      | -          | -         | -         |        | -        | ***     | ***      | ***     |         | -             | -      | 100      | 100       | 44         | 440            | -         |             | -        |
| 1,2,4-Trichlorobenzene     | ppm   | NA.    |          |          |          | -        |          |          | ***      |          |           | _         | -        |            | _         |           | SA     | -        |         |          |         |         | -             | -      | -        |           |            |                | 120       | 1           |          |
| 1,2-cis-Dickloroethylene   | ppm   |        | _        | BNOL J   | BMDL J   | 8 0019   | ****     | BMDL J   | BMDL J   | - 1      | _         |           | l –      | -          | -         |           |        | -        | BMDL J  | ***      |         | _       | _             | -      | -        |           |            | -              | 12.5      |             |          |
| 1,2-Dichlorobenzene        | ppm   | NA.    | _        |          |          |          | 0.0015   | BMDLI    | 0.004    | 0.0012   | 0.00068.3 | 0.0013    | - 1      | 0 00037 J  | 0 000911  | 0 00094 F | NA.    | 100      |         | _        | 1 _     | BMOL J  | BAIDL         | BMDLJ  | BAIDL J  | □ 00056 J | E 00005E F | - 2            | 0.00062.F | 0:00U38 II. |          |
| 1,2-Dichloroethane         | ppm   | _      |          |          | ***      | 0 001    | _        |          | _        |          | _         |           |          |            | -         | 100       | _      | 100      | l _     | _        |         |         |               |        |          | -         |            | 12             | ******    | - 000761    | 100      |
| 1.2-trans-Dichloroethylene | ppp   | _      |          |          |          | -        | l I      | _        | _        | _        | ***       | NA NA     |          |            |           | -         |        | 100      |         |          |         |         |               |        |          | 11.       | NA         | 122            | -         |             |          |
| 1,3-Dichlorobenzene        | ppe   | NA.    |          |          |          | - 1      | _        | _        |          |          |           |           |          |            | - 1       | 100       | NA.    |          | I =     | _        |         |         | -             | 100    | -        | -         | - "        |                |           |             |          |
| 1.4-Dichlorobenzene        | ppe   | NA.    | hr.      |          |          | 1 =      | -        | 8MDL J   |          |          |           |           | j        |            |           | 120       | NA NA  | 12       | _       | l .      |         |         | 1 1 1 1 1 1 1 | 0.00   | -2       | 10//10    | _          | 177            | 7         | 140         | -        |
| 1.4-Dioxane                |       | NA.    | NA.      | NA.      | NA.      | NA.      |          | EARL)    |          | 0.0014   | ***       | 1         | 1 V      | 0 00054    | 177       |           |        |          | 1 .5    |          |         |         |               | -      |          | -         | -          | -              |           |             |          |
| 2-Hexanone                 | bber  |        |          | 1 34     | 104      |          |          |          |          |          | ***       | NA NA     | - PA     | 000054     | 275       | -         | NA     | NA       | NA      | NA.      | NA      | ***     | -             | - T    | 0.00074  | 1         | NA.        | NA.            | 9 000241  | -           |          |
|                            | ppes  | ***    |          | - Name : |          | -        |          |          |          | BAIDL J  |           | 1         |          | 44         | 200       |           | 100    | 100      |         |          | ***     | 144     | -             | _      | 1.7.     | -         | -          | -              | 111       |             | -        |
| Acetome                    | Mon   | 144    |          | BV/Df 1  | _        |          |          |          | BMDt. J  | 0.013    | 6 0019 LB | 006       | 0.0065   | ++19       | 0.04      |           | 100    | 100      | -       |          |         | ~       | -             | .77    | 0-013    | € 0039 JB | 0013       | =              | (1006)    | -           |          |
| Benzene                    | ppes  |        | -        | -        | _        | 0.0047   | ***      | 444      | 100      |          |           | i         | -        | 100        |           | 10.       | 77.0   | , Aid    | ***     | ***      | ***     |         | 0.750         | -      | 1 -      | -         | 7.7        |                | 271       | 100         | ,644.    |
| Bromoform                  | ppes  | - 1    | -        | -        |          | pa.      |          | -        | -        | -        | _         | -         |          |            | 100       | 144       |        | -        |         | _        |         |         | -             | -      | -        | -         | 99         | 765            |           | 100         | 144      |
| Carbon Disulfide           | ppm   | - 1    | -        | l –      | -        | ***      |          | -        | -        | -        | _         |           |          | -          | 464       | 144       |        | -        |         |          | -       | -       |               | -      | -        | -         |            | 100            | - 100     |             | 44       |
| Chlorobeazene              | ppes  | - 1    |          | BAIDL J  | 0.0017   | 1 JOHNII | 0.0013   | BNDLI    |          | 8:00H2   | 4 00037 J | ***       |          | 164        | 9 0015    | 0-0009i J |        | 1-1      | 1 JOINS | _        | BNDL J  | BMDL I  | BAIDLI        | BAIDLE | BMOLI    | @ 00045 J | 697        | 100            | -         | -           |          |
| Chlorobromomethane         | рунны | NA     | NA.      | NA.      | NA.      | NA.      | -        |          |          |          | _         |           |          | 994        | 44        | See S     | NA     | NA.      | NA.     | NA.      | NA.     | -       | 1 1           | -      | -        |           | 44         |                | -         | 4.0         | -        |
| Chloroethane               | ppds  | -      |          |          |          |          |          | _        | _        | - 1      |           |           |          |            | 0.000463  | -         | _      |          |         |          | _       |         |               | -      | BMDLI    | -         | 0.00096.0  |                | -         | -           | 21       |
| Chloroform                 | ppm   |        | ***      |          |          |          | ł I      | _        | _        | l – I    |           | l         | l        |            | -         | -         | _      |          | l _     | _        |         |         | 1             |        | 1        | -         | -          | -              |           |             | 100      |
| Chloromethane              | ppes  |        | ,,,      |          | l _      | l        | 1 – 1    |          | _        |          |           |           |          | - 33       | 122       | -         |        |          |         |          |         | 110001  |               | ***    | BACK I   | 100       | 0.000683   | 12             |           | - 11        | 200      |
| Cyclohexane                | ppus  | NA.    | NA.      | NA.      | NA.      | NA.      | _        |          |          |          | ***       | l         |          |            |           | -         | NA.    | NA.      | NA.     | NA       | NA      | -0.00   |               |        | Credit 1 | 200       | + 4        |                | -         |             |          |
| Dichlorobromomethane       | bber  |        |          |          |          |          | 1 - 1    |          |          |          |           |           | j        |            | 100       | 120       |        | 10.0     |         |          | 000     | 10.00   |               | (7)    | -        |           | 21         | 100            | 11000     | -           | - 7      |
| Ethyfbenzene               | ppes  |        | 1.6      | 0.36     | 0.62     |          | 0.38     | BMDL J   | BMDLJ    | #0082    | 0.0022    | 0 0023    | _        | l          |           | 0-00055 J | 39     | 11.      | 0.93    | BADL     | BMER I  | 0 0016  |               |        |          |           | 70         |                | - 44      | -           | _        |
| Isoprum ibenzene           |       | NA     |          | NA.      | NA.      | NA.      | 0 0 34   | BMDL J   | 0.0047   |          |           |           |          |            |           |           |        | 0.29     |         |          |         |         | BMDL          | BMDL   | 444      | 0.00341   | 100        | 254            | 100       |             |          |
| Methyl ethyl ketone        | ppm   |        | NA.      |          | - MA     |          | 1 1      |          | 0 0047   | 0 013    | 0.029     | 0.025     | 0-012    | 0.036      | 0.036     | 0.022     | NA NA  | NA.      | NA.     | N#       | NA      | 6:036   | BMOL J        | 0.021  | 0.036    | 0.019     | 0.091      | 6011           | 9 027     | 0:023       | 0 00 57  |
|                            | ppm   | - 1    | -        | BMDL I   | _        | By4Df 1  |          | BAIDLJ   |          | 0.0087   |           | -         | 1 -      | 0.0093     | 0.0098    |           |        | 77       | 100     | 100      | 344     | 10,000  | -             | -      | BMDEJ    |           | 0.0012     |                | 0.00411   | _           | 0 0027 J |
| Methyl tertany butyl ether | ppm   | - 1    |          | SA       | _        | ***      | · · ·    | -        |          | -        | _         | NA NA     | -        |            |           |           | ***    | 7.75     | 1700    | -        | 100     | 100     | -             | -      | -        | -         | NA.        |                |           | -           | -        |
| Methylcyclohexane          | ppm   | HA     | NA.      | NA       | NA NA    | NA       | Ø 001h   | BMDL J   | BMDLI    | BNDL J   |           | 1 68000 0 | -        | 0 000083 J | 1,08000 0 | 100       | NA     | NA       | NA.     | NA.      | NA.     | 0 0015  |               | 0 0032 | 0 0043   |           | 0.0013     | 0 0015         | 0.0034    | 0 0023      | ***      |
| Methylene chloride         | ppm   | - 1    | -        | -        |          | ***      | l ~ l    | -        |          | -        |           | - 1       |          | -          | 100       | 141       |        | 1,000    | 100     | -        | 100     | 1.000   |               |        | _        |           | 994        |                | 0.000353  | -           |          |
| Methyl-iso-butyl ketone    | ppm   | - 1    | -        | _        |          | 4+0      | i I      | -        | -        | # DQ\$t  | _         |           |          |            | ***       | less      |        | 111      | 100     | -        | 500     | -       | -             | -      | BMDL J   |           |            |                | -         |             | ***      |
| Styrene                    | ppm   | - 1    | ***      | -        | ***      |          | !        | _        | -        | -        |           |           |          | 771        | 710       | per.      | 100    | 0.00     | - I     | 100      | .64     | -       | -             |        |          |           | 220        | -              |           | -           | ***      |
| Tetrachioroethene          | ppm   |        | ***      |          |          |          | I – I    | _        |          |          |           | 141       |          | 707        | 99        | - 10      | -      | 100      | 100     | -        | -       | 190     |               | 100    | 44       | 100       | - 22       | _              | _         | -           | -        |
| Toluene                    | ppm   | 0 37   | BMDL I   | 0.024    | 9 0066   | BMDL J   | BMDL J   | BMDL /   |          |          |           |           | -        | -          |           | -         | BMDL J | 1        | -       | -        | BMDL J  | 140     | BAKKLI        | 440    |          | -         | _          |                | 9239      |             | 100      |
| Total Xylenes              | ppm   |        | 6.5      | 13       | 2.5      | BMDL J   | 0.859    | BMDL J   | BAIDL J  | 6 0 l e  | 0-0017 J  | 1 860000  |          | 100        | 0.0013    | 0.000407  | 11     | 9.23     | 0.002   | BAIDL J  | BMDL )  | -       | BMDL J        | -      |          | -         |            | 2              | 3523      | -           | -        |
| Trichloroethylene          | ppm   |        | ***      | -        | BMDL J   | BMDL J   |          |          |          |          | ***       |           | l _      | -          | -         | -         |        | -        | 100     | -        |         | 140     | -             | -      | 100      | 72        | 75         |                | 1.50      | 100         |          |
| Vinst chloride             | ppm   | , I    |          | _        |          | BMDL J   | _        |          | BMOLI    |          |           | I         | 1 =      | -          | 100       | -         |        | 100      |         |          | 100     | 140     | -             | -      |          | 23        | 0          | 1              | 3.33      |             |          |
| TOTAL VOLATILES            | ppm   | 10     | 8.7      | 1.2      | 3.1      | 0.014.3  | 131.1    | 8,399.3  | 0.000    | 0.001    | 0.039     | 4.000) J  | 0.011    | 9,06663.7  | 6.05761.3 | 9.8248 J  | 15     | 0,52     | 8.4     | 4,0010.3 | 4.002.J | 100.1   | 6.433.3       | 6,626  | 0.062    | 0.024     | 0.05543.3  | 0.020          | 0.04301.3 | 6.02568.2   | 0.0004.4 |
| 2-Octanol                  | bba.  | NA.    | NA.      | NA.      | NA.      | NA.      | NA NA    | NA.      | NA       | NA NA    | NA.       | NA NA     | NA.      |            | NA.       | NA NA     | NA.    | NA<br>NA | NA NA   | NA       |         |         | 1             |        | _        |           |            | _              |           |             |          |
| 2-Octatione                | (spen | NA NA  | NA<br>NA | NA.      | NA.      | NA.      | NA I     | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA  | NA<br>NA | NA<br>NA   |           |           |        |          |         |          | NA      | NA.     | NA            | NA     | NA.      | NA        | NA NA      | NA.            | NA NA     | NA.         | NA.      |
| TOTAL OCTANOL/OCTANONE     | ppm   | NA.    | NA<br>NA | NA NA    | NA.      | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA  |          | NA<br>NA   | NA.       | NA NA     | NA.    | NA.      | NA NA   | NA.      | NA NA   | NA.     | NA .          | NA     | NA.      | NA NA     | NA         | NA NA          | NA.       | NA.         | HA       |
| ACID EXTRACTABLES          | ppost | 1770   | -74      | 170      | - 74     | 746      | .14      | .74      | ла       | .3.4     | 34        | P-A       | NA NA    | - 54       | NA.       | NA NA     | NA.    | NA.      | NA.     | NA.      | NA.     | NA.     | NA            | NA.    | NA.      | NA.       | 5A         | NA NA          | 34        | NA          | NA.      |
| 2,4,5-Trichlorophenol      |       | l l    |          |          |          | 1        |          |          |          |          |           | l         |          | l          |           |           |        | 6%       | A       | 1111111  | 975     | 2755,77 |               | ]      |          | 88.5%     |            | l              | -54       |             |          |
|                            | ppm   | NA NA  |          |          |          | ***      | NA       | NA.      | NA.      | NA NA    | _         | NA.       | NA NA    | NA NA      | NA.       | NA        | NA NA  | -        |         |          | -       | _       | NA :          | NA NA  | NA.      | -         | NA.        | NA.            | NA:       | NA.         | NA.      |
| 2,4-Denethylphenol         | ppm   | NA.    | BMDLJ    | 8MDL J   | SVIDE 1  | 144      | SA       | NA       | NA       | NA NA    | _         | NA.       | NA NA    | NA NA      | NA NA     | NA NA     | NA     | -        | -       | -        |         | -       | NA .          | NA NA  | NA.      | -         | SA         | S.L.           | NA.       | SA          | NA.      |
| 2-Methylphenol             | ррип  | NA     | _        |          | ***      |          | NA       | NA       | NA.      | NA NA    | _         | NA.       | NA NA    | NA.        | NA.       | NA        | NA NA  | 2-5      | -       |          | -       | -       | NA ·          | NA NA  | NA.      | . +       | NA         | N <sup>R</sup> | PA        | Rid.        | NA.      |
| 4-Methylphenol             | ppm   | NA NA  | 9.041    | -        |          |          | SA.      | NA.      | NA.      | NA       | _         | NA.       | NA       | NA         | NA.       | SA        | 5/A    | -        | -       |          | -       | -       | NA NA         | NA NA  | NA NA    |           | Sit        | 244.           | NA.       | MA          | NA.      |
| Pentachlorophenol          | ppen  | NA     |          |          |          |          | NA.      | NA       | NA       | NA.      |           | NA.       | NA.      | NA         | NA.       | NA        | 400    | -        | -       |          | -       | -       | NA I          | NA     | NA.      | -         | SW         | 344            | - NA      | BA          | Niti     |
| Phenol                     | ppin  | NA.    | BMDL J   |          |          | -        | NA       | NA.      | . NA     | NA .     |           | SA        | NA       | NA         | NA.       | NA        | NA     | -        | -       | -        | -       | -       | NA            | NA.    | NA.      | -         | NA         | SA             | NA.       | BA          | N#       |
| TOTAL ACID EXTRACTABLES    | ppm   | 24.4   | 8.852    | 8.6933 3 | 8.8942 J | _        | 34       | 54       | N4       | 54       | _         | 54        | NA.      | NA.        | NA.       | 34        | 5.4    | -        | _       | _        | _       | 140     | NA            | 14     | NA.      |           | 54         | M              | NA.       | 34          | 24       |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (140 page 19 for moles)

| PARAMETER                   | CSIT   |        |         |          |          |            |               |           | TW-2S  |        |             |           |        |             |        |        |        |         |          |          |              |          |          | TW-265   |        |           |           |        |            |        |      |
|-----------------------------|--------|--------|---------|----------|----------|------------|---------------|-----------|--------|--------|-------------|-----------|--------|-------------|--------|--------|--------|---------|----------|----------|--------------|----------|----------|----------|--------|-----------|-----------|--------|------------|--------|------|
|                             | radia. | Mar-84 | Aug-88  | Aug-89   | Sep-10   | Jue-11     | Sep-12        | Jun-13    | Jul-15 | Sep-16 | Jul-17      | Oct-18    | Sep-19 | Sep-20      | Sep-21 | Sep-22 | Mar-68 | Ang-08  | Aug-89   | Sep-10   | Jun-11       | Aug-12   | Jun-13   | Jun-15   | Sep-16 | Jul-17    | Oct-18    | Sep-19 | Sep-20     | Sep-21 | Sep  |
| ASE/NEUTRALS                | +      |        |         |          |          |            | $\overline{}$ |           |        |        |             |           |        |             |        |        |        |         |          |          |              |          | $\vdash$ |          |        |           | $\vdash$  |        |            |        | ←    |
| -Methy inaphthalene         | bbm    | NA.    | B/IDL I | ***      |          |            | NA NA         | NA.       | NA NA  | NA     |             | NA NA     | NA.    | -           | NA     | NA NA  | NA NA  | 0.015   | 0.016    | ***      |              |          | NA       | NA NA    | NA.    | l -       | NA        | NA     |            | NA.    | No.  |
| oenaphthene                 | ppm    | NA.    | 8/dDL1  | ***      |          |            | SA            | NA.       | NA     | NA     | Q:001E J    | NA NA     | SA     | 0.00[1.]    | NA     | NA.    | NA.    | BAIDLE  |          |          |              | ***      | NA       | NA.      | NA.    | -         | NA        | NA.    |            | NA     | S.   |
| cenaplithy lene             | ppm    | NA.    |         |          |          |            | NA            | NA.       | NA NA  | NA.    |             | NA NA     | 8.4    |             | NA     | N/A    | SA     | -       | - 1      |          |              | ***      | NA       | NA.      | SA     | - 1       | NA        | NA     |            | NA.    | N.   |
| nthracene                   | ppm    | NA.    | BMDL 3  |          |          |            | NA NA         | NA.       | NA     | NA     | -           | NA.       | SA     | -           | NA     | SA     | SA     |         | - 1      | -        |              |          | NA       | NA.      | SA     | ] -       | NA        | NA     | I          | NA NA  | S.   |
| lenzo(*)Anthracese          | ppm    | NA.    | -       | 9.00016  | 0.000068 | 0.00021    | NA NA         | NA NA     | NA NA  | NA     | 0.000086    | NA NA     | N.A    | 0.00011     | NA NA  | NA.    | NA.    | -       |          |          | - 1          | ***      | NA.      | NA 1     | NA .   | 1 -       | NA        | NA     | 0 000021 J | NA NA  | N.   |
| ienzo(a)Pyrene              | ppm    | NA .   |         | 0.000065 |          | ***        | NA NA         | NA        | SA     | NA .   |             | SA .      | NA     | 0 000045    | NA     | SA     | SA     |         |          | ***      | ***          |          | NA.      | NA NA    | 5A     | -         | NA        | NA     | l          | SA     | - 50 |
| len.ro(b)Fluoranthene       | ppm    | NA     |         | 0.000091 | -        |            | NA NA         | NA.       | NA     | NA     | 0.0000012.3 | NA :      | NA     | 0.000057    | NA     | NA.    | NA     | -       |          | ***      | ***          | ***      | NA.      | NA.      | SA     | -         | NA        | NA.    | I          | NA.    | S.   |
| Benzo(g,b,s)Perylene        | ppes   | NA.    |         |          |          | _          | SA            | NA.       | NA     | SA     |             | SA .      | NA.    | @ 000036 II | NA NA  | SA     | 34     | - 1     | - 1      | -        |              |          | SA       | NA:      | 5A     |           | NA        | NA     | I -        | SA     | N.   |
| Ben.ro(k)Fluoranthene       | ppm    | NA.    |         |          |          | l –        | SA.           | NA.       | NA     | NA.    |             | 5A        | NA.    | -           | NA     | 5.4    | NA.    | - 1     | - 1      |          | -            |          | NA       | NA.      | NA .   | -         | l SA I    | NA.    | I –        | 5A     | N.   |
| bis(2-Chloroethoxy)methane  | ppm    | NA NA  |         |          |          |            | SA            | NA.       | NA.    | NA     |             | 5A        | NA.    |             | NA     | NA     | SA     |         | -        | - 1      | -            | _        | NA       | NA       | NA.    | -         | NA        | NA.    | I -        | NA NA  | l S  |
| bis(2-Chloroethy1tether     | ppm    | 5.4    |         | -        | -        | 0.0011     | NA NA         | NA.       | NA NA  | NA     | -           | NA NA     | 5.4    | -           | -NA    | NA NA  | SA:    | - 1     | -        | - 1      | - 1          | _        | NA       | \A       | NA.    |           | SA        | NA.    |            | NA     | N    |
| bis(2-Chlororsopropyliether | ppm    | SA     |         |          |          |            | SA.           | NA .      | NA NA  | NA.    | ***         | NA.       | NA.    | -           | NA NA  | SA     | SA     | - 1     | - !      | - 1      | - 1          | _        | NA       | NA       | NA .   | ***       | SA        | NA     |            | SA     | N    |
| bis(2-Ethylhexyl)phthalase  | ppm.   | NA.    |         |          |          | ***        | NA.           | NA .      | NA.    | NA.    |             | 5A        | NA     | -           | NA     | NA.    | NA.    |         | 1        |          |              | ***      | NA       | NA.      | NA.    | -         | NA NA     | SA     |            | NA.    | N.   |
| Butyl benzyl phthalate      | ppm    | NA.    |         |          | -        | -          | NA NA         | NA.       | NA.    | SA     |             | NA.       | NA     | -           | NA     | NA.    | NA.    |         | 1        |          | 1            | ***      | NA.      | NA.      | NA     | -         | NA        | SA     |            | NA.    | S.   |
| Carbazole                   | ppm    | 84     | BV:DL J | -        | - 1      |            | NA.           | NA.       | SA     | NA.    | _           | SA .      | NA.    | -           | .NA    | SA     | NA NA  | l –     | i – I    | _        | -            |          | NA .     | NA       | NA.    | -         | [ SA ]    | NA.    | -          | NA.    | N    |
| Chrysene                    | ppm    | NA.    |         |          | I -      |            | NA            | NA.       | NA.    | NA.    | 0.000085    | SA        | NA     | -           | NA NA  | SA :   | NA.    | - 1     | - 1      | _        | l – I        | -        | NA.      | NA       | NA NA  | -         | NA ]      | SA     | l –        | NA.    | No.  |
| Dibenz(a.h)anthracene       | ppm    | NA     |         | l –      | I -      | l –        | SA.           | NA.       | NA     | NA.    | _           | 5A        | NA     | -           | SA     | SA.    | NA.    | l –     | - 1      | _        | l – I        |          | NA 1     | NA       | NA.    | l ~       | NA        | SA     |            | NA.    | N.   |
| Dibenzofuran                | ppm    | NA     | BMDL J  |          | 1 -      | l –        | NA            | NA.       | NA     | NA     | 1 68200 0   | SA        | NA     |             | NA     | SA     | SA     |         |          | _        |              | -        | NA 1     | NA.      | NA     |           | NA        | NA     | l –        | 5A     | N/   |
| Dicthyl phthalate           | ppm    | 54     |         | l –      | 1 -      | l –        | SA            | NA.       | SA     | NA.    |             | 5/A       | NA.    | -           | l sa l | SA     | SA.    |         |          |          | l – I        |          | l Na l   | NA       | NA.    |           | NA        | SA     | l          | NA.    | 1 ×  |
| Dimethyl phthalate          | ppm    | NA.    | 10.00   | -        | -        |            | NA            | NA.       | NA     | NA     | 44          | NA        | 88.1   | ***         | NA I   | NA.    | NA     | 200     | Care Co. |          | l – I        | _        | NA       | NA       | NA.    | 7.0       | I NA I    | NA     | Take 1.1   | NA.    | ] N. |
| Di-n-buty lphthalase        | ppm    | 54     | -       |          | _        | l –        | SA            | NA.       | NA .   | . 83.  |             | SA        | 3.4    |             | NA     | NA.    | NA.    | 2       | -        |          |              |          | NA       | SA       | NA     | 0 00094 J | NA        | NA     | 100        | NA.    | S.   |
| Dr-m-octylphthalate         | ppm    | NA.    |         | -        | _        | i –        | NA            | NA.       | NA     | NA     | -           | NA.       | NA     |             | NA     | NA.    | NA     | -       |          |          | l – I        |          | NA I     | NA NA    | NA.    | 100       | NA        | NA     | 100        | NA NA  | N.   |
| Fluoranthene                | ppm    | NA.    | B14DE J | -        | _        | BMDL J     | NA            | SA        | NA     | SA     | 0.00141     | NA.       | NA     | 0.00147     | NA     | NA.    | NA.    | - 2     |          | _        | l – I        |          | l sa l   | l sa i   | NA NA  | -         | NA        | 5A     | 700        | NA     | 352  |
| Fluorene                    | ppm    | NA.    | BAIDL   | _        |          |            | NA.           | NA.       | NA.    | NA     | -           | NA.       | NA     | # 6013 J    | NA NA  | NA.    | NA.    | BAIDL I | -        | _        | 1            | _        | NA       | NA       | NA.    |           | l NA I    | NA     | 440        | NA     | 1 80 |
| Herachlorobenzene           | PPRO   | NA.    | -       | -        | -        |            | NA.           | NA.       | NA.    | NA     | 42          | NA.       | NA     |             | NA.    | NA.    | NA     | _       | -        |          | NA           |          | NA       | NA -     | NA.    | 1         | NA.       | NA     | 100        | NA.    | 87   |
| Indepot (2.3-cd)Pyrene      | ppm    | 5A     | -       | -        |          | l          | NA.           | NA.       | NA.    | NA     |             | NA.       | NA     |             | NA.    | NA.    | 3.4    | 2.00    |          |          |              | _        | NA       | NA       | 5A     |           | NA        | NA.    | 100        | NA     | 5.7  |
| Isophorone                  | ppm    | NA.    |         |          |          | l          | NA.           | NA.       | NA.    | NA.    |             | NA.       | NA.    |             | NA NA  | NA.    | NA NA  | -       |          | i        | I _          | _        | NA       | NA.      | NA.    |           | NA.       | NA.    | ber .      | NA.    | 5.   |
| Naphthalene                 | ppin   | NA.    | 9-924   | 0.047    | 0.071    | l          | NA.           | -         |        | 0.0037 | 9 00017     | E-0005E3  |        |             |        | NA.    | NA.    | 0.048   | II 064   | _        | I _ I        | 8MOL J   | BMDL J   | BMDLI    | 0.0046 |           | 0.000643  | 200    |            | _      | N.   |
| Narobenzene                 | ppm    | NA.    |         |          |          | _          | NA NA         | SA        | NA.    | NA.    |             | NA.       | SA     |             | NA.    | NA.    | NA NA  |         |          |          |              |          | NA       | NA.      | NA.    | l _       | NA        | SA     | -          | SA     | N.   |
| Phenawhrene                 | ppm    | NA.    | BUDL    | _        | 10.5     | _          | NA            | SA        | NA.    | NA.    | 0 60067.1   | N4        | SA     | ₩ 0016 J    | 5A     | NA.    | DA .   | BNDL J  |          | _        |              |          | SA       | NA.      | NA.    |           | SA        | NA     | 1-         | SA     | 5.   |
| Pyrene                      | ppm    | NA.    | SVDL    | 233      |          |            | NA            | NA        | NA .   | NA     | 1 0009 1    | NA.       | 3.4    |             | NA NA  | NA NA  | NA.    | 1       | -        |          |              |          | NA       | NA.      | NA     |           | NA        | NA.    |            | NA.    | N/   |
| 1.4-Dioxane                 | DDB    | - C    | NA      |          | SA       | 83         | NA NA         | NA        | NA.    | NA.    | N.5.        | 3.4       | NA     | NA.         | NA.    | NA.    | NA.    | SA.     | NA.      | NA.      | N4           | 84       |          | NA.      | SA.    | NA.       | NA.       | SA     | 5.4        | NA.    | N/   |
| TOTAL BASENEUTRALS          | ppm    | 54     | 8,835   | 9,817    | 8.634    | 8,006.3    | 0.0015        | 8,807.3.4 | -      | 0.182  | 8,067       | 4,00000 J | bell.  | 0.00565 J   | ***    |        | 5.4    | 0.061   | 0.004    |          | -            | 0.0072.3 | 0.022.0  | 0.0000 J | 0.0051 | 0.002     | 0.00068.2 | Tree   | 0.0000Z J  |        |      |
|                             | 177    |        |         |          |          |            |               |           |        |        |             |           |        |             |        |        |        | -       |          |          |              |          |          |          |        | 1         |           |        |            |        |      |
| PESTICIDES                  | 1      | ĺ      |         |          |          | 1          |               |           |        |        | 1           | 1 1       |        |             |        |        |        |         |          |          | 1            |          | 1 1      |          | l      | l l       | 1 1       |        |            |        | 1    |
| 4.4'-DDD                    | ppb    | NA.    | -       |          | J        | I -        | NA            | 5A        | NA .   | NA     | 100         | NA .      | 5A     | NA NA       | SA     | NA     | NA.    | -       | 4-5      | -        | -            |          | NA.      | NA       | NA.    | i –       | NA        | SA     | NA.        | NA     | S.   |
| 4.4'-DDE                    | ppb    | NA     | -       |          |          | _          | NA NA         | NA.       | NA     | NA.    |             | NA .      | NA.    | NA NA       | NA NA  | NA     | NA.    |         | -        | _        |              | _        | NA.      | NA NA    | NA.    | - 1       | NA        | NA.    | NA.        | NA     | 8    |
| 4,4°-DDT                    | ppb    | NA.    | -       | -        | 7-       | l –        | NA NA         | NA.       | NA.    | NA.    |             | -NA       | NA.    | NA NA       | SA     | NA     | - 5A   | -       | -        | _        | -            | -        | NA       | NA       | NA     |           | NA NA     | NA.    | NA.        | NA '   | ] s  |
| Beta-BHC                    | ppb    | NA     | -       | -        | -        |            | NA.           | NA.       | N4     | . NA.  |             | NA.       | NA.    | NA NA       | NA     | NA NA  | NA     | 1-      | -        | _        | -            | -        | NA.      | NA NA    | NA.    |           | NA NA     | NA.    | NA.        | NA.    | N.   |
| Delta-BHC                   | ppb    | SA     | -       |          | -        |            | NA.           | 5A        | NA     | NA     |             | NA.       | SA     | NA NA       | NA NA  | SA .   | NA     | -       | -        | _        | -            | - 1      | NA       | NA       | NA     |           | NA.       | NA     | NA.        | NA NA  | 5    |
| Dieldrin                    | ppb    | - NA   |         | -        | 144      | ***        | NA.           | NA.       | NA.    | NA     | 177         | NA.       | NA     | NA.         | NA     | NA.    | NA.    | -       | 100      |          | -            | -        | NA.      | NA       | NA     |           | NA NA     | N/A    | NA.        | NA .   | N    |
| Endosulfan I                | ppb    | 84     | -       | +        | -        | l –        | NA.           | NA.       | NA.    | NA.    |             | NA        | NA.    | NA .        | NA     | NA.    | SA.    | -       | -        | _        | _            | _        | NA       | NA NA    | NA.    | l -       | NA NA     | NA.    | NA.        | NA .   | N    |
| indosulfan sulfate          | ppb    | SA     |         | -        | -        | l –        | NA.           | NA.       | NA     | NA     |             | SA        | NA     | NA.         | NA NA  | 5A     | SA.    | -       | -        |          | _            | -        | NA       | NA       | NA .   |           | NA NA     | NA.    | NA.        | NA.    | ×    |
| indrin                      | ppb    | SA     | -       |          |          |            | NA NA         | NA.       | NA.    | 2A     |             | 24        | NA:    | NA.         | NA.    | NA.    | NA.    | -       | -        | _        | _            | _        | NA       | NA .     | SA     |           | NA NA     | NA.    | NA.        | NA.    |      |
| Endrin aldehyde             | ppb    | 5A     | 11-     |          | 144      |            | NA.           | 5A        | 34     | NA     | ***         | NA        | NA     | NA.         | SA     | 5A     | SA     |         |          |          | _            | _        | NA       | NA.      | NA.    |           | NA        | NA NA  | 5A         | NA.    | ١,   |
| Endrin Letone               | ppb    | SA.    | -       | 100      | ***      | ***        | NA.           | NA        | 545    | NA     | 100         | NA        | NA.    | NA.         | NA.    | SA     | NA.    | -       |          |          | _            | _        | NA NA    | 84       | NA.    | . 14      | NA.       | NA.    | NA.        | NA.    |      |
| Gamma-BHC                   | ppb    | 58     | -       |          |          | BMDL J     | NA.           | SA.       | NA.    | NA.    | -           | 34        | NA.    | SA.         | 85     | SA     | Si     | -       | _        |          | _            |          | NA       | SA.      | NA.    | 140       | NA        | NA.    | SA         | 54     | 1 3  |
| leptachlor                  | ppb    | NA.    | -       | -        |          | 011007     | NA.           | NA.       | NA.    | NA     | 100         | 34        | NA     | NA.         | NA .   | NA.    | 5A     |         | -        |          |              | _        | NA       | NA.      | NA.    | 1.00      | NA NA     | NA.    | NA.        | 54     |      |
| leptachlor epoxide          | ppb    | 5.8    |         | -        | 1        |            | NA.           | SA.       | NA.    | NA.    |             | NA.       | SA     | 83          | SA.    | SA     | SA     | -       |          |          |              |          | NA       | 54       | NA.    | -         | NA.       | NA.    | NA.        | 5.8    | 1 3  |
| Methoxychior                | ppb    | NA     |         | 20       | 0.2      |            | SA.           | NA.       | NA.    | N/8    |             | NA.       | NA.    | SA.         | NA.    | NA.    | NA.    | - 3     | 5420     | I _      |              | I -      | SA.      | NA.      | NA.    |           | SA        | NA.    | 5.A        | NA.    | 1.3  |
| TOTAL DBX                   | ppb    | NA.    | -       | -        | 117      | 177        | 34            | 5A        | 34     | NA.    | - in-       | 54        | 5A     | 34          | 5A     | 54     | 5A     |         | -        | <u> </u> | <del>-</del> | =        | NA NA    | NA.      | 54     | -         | 35        | 54     | 54         | 54     |      |
| TOTAL PESTICIDES            | pob    | 1 %    | -       | - 2      | - 1      | 8,000029.2 | 1 33          |           | NA     |        | 12          |           | 54     | 1 33        | 1 33   | 1      | 1 37   | 2       | -        |          | 1 1          | I =      | 1 SA     | 1 54     | 1 1    | I         | 1 3 1     | NA.    | 3.4        | 34     |      |
|                             |        |        |         |          |          |            |               |           |        |        |             |           |        |             |        |        |        |         |          |          |              |          |          |          |        |           |           |        |            |        |      |

TABLE I
ANALYTICAL RESULTS FOR ON-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(see page 19 for modes)

| PARAMETER                  | UNIT       |          |        |          |          |         |         |         | TW-30    |          |           |          |           |            |          |           |        |          |         |         |         | _      |         | TW       | -315   | _         |           |              |           | _         |           |           |
|----------------------------|------------|----------|--------|----------|----------|---------|---------|---------|----------|----------|-----------|----------|-----------|------------|----------|-----------|--------|----------|---------|---------|---------|--------|---------|----------|--------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|
|                            | 4.54       | Mar-88   | Aug-83 | Aug-89   | Aug-10   | Jun-11  | Aug-12  | Jun-13  | Jun-15   | 5ep-16   | Jul-17    | Oct-18   | Sep-19    | Sep-29     | Sep-21   | Sep-22    | Aug-07 | Mar-08   | Aug-98  | Aug-09  | Sep-10  | Jos-II | Sep-12  |          |        | Sep-16    | Jul-17    | Ort-18       | Sep. 19   | Sen 18    | Oct-21    | 5ep-22    |
| VOLATILES                  |            |          |        |          |          |         |         |         | i –      |          |           |          |           |            |          |           |        |          |         |         |         |        |         |          |        | 110       | 7         |              |           | VAP AV    | 4741-41   | 200.00    |
| 1,1,1-Trichloroethane      | ppm        |          | ***    | -        | -        |         |         |         | - 1      | _        | ***       | -        | _         | -          | 100      |           | -      | -        | 1       | -       | 0.00    |        | 100     | 594      | _      | _         | l         | I 1          | -         |           | (2.1      | 0.5%      |
| 1.1.2.2-Tetrachloroethane  | ppm        |          |        | -        |          |         |         | -       | l –      | -        |           | l –      | _         | _          | Miles    | 14.       | _ [    | 14       | 100     | -       | 12      | -      | 12.00   | 200      |        |           | l         |              |           |           | 100       |           |
| 1.1-Dichloroethane         | ppm        | ***      |        | l –      | l –      |         |         |         | l –      |          | ***       |          | _         |            | 660      | - 2       | -      | -        | -       | 2.5     | 12      | -      |         | 1941     | _      | _         |           |              | 1.5       |           | - 55      |           |
| 1.2.4-Trichlorobenzeue     | ppm        | NA.      | _      | I – I    | l –      |         | 1       | _       | l –      |          |           | l _      | _ '       | 1          | - 1      | -         | 22     | NA       |         |         |         |        |         | 77.      | _      |           |           | 177          | -         |           | 7         | -         |
| 1.2-cis-Dichloroethylene   | ppm        | BMDL J   | BMDL J | BMDL J   | BAIDL /  | BMDLI   | 1 JOMB  | l _     | l –      | BMDLI    | 0-0003 J  | 0.00054  | _ :       | 0 000030 3 | 0 000211 | @ g0046 J | 221    |          | 375.0   | BAIDLI  | 12      | BMDL F |         | - 2      |        | l         | 000011    | 1.00         |           | -         | -         |           |
| 1.2-Dichlorobenzene        | ppes       | NA.      | _      | _        |          | ***     | BMDL /  | BMDLJ   | J        | 1 JOMS   | 0.00027.1 | -        |           | 8 000027 # | + *****  | 3,500     | 32.1   | NA       | 1000    | BNILL I | -       | BALL   | name a  |          |        |           |           | <del>-</del> |           |           | ***       | -         |
| 1.2-Dichloroethane         | ppm        | _        | _      |          | l _      | l       |         |         | i        | BMDL J   | _         | 0 00051  |           | ******     | 0.0      | - D       | - 50   | 79/5     | 1.00    | - 5     | - 72    |        | BAIDL J | 000 3    | BMDL J | BMDL J    | 1 72000 0 | 6 C0077 J    | 0 00063 1 | 0.000553  | 9 60048 3 | 00052     |
| 1.2-trans-Dichloroethylene | ppm        | _        | _      |          |          |         |         |         |          | Briot.   | 1 =       | NA.      |           | _          |          | - 21      | 35     | 377      | 100     |         | - 65    | 150    | 17.00   | 700      | _      | ***       | I -       |              |           | F5.0      | 1-        | -         |
| 1.3-Dichlorobenzene        | ppus       | NA       |        |          | I =      | 1 =     |         |         |          | _        | I -       |          |           | _          | - 7      | - 5       | - 1    |          |         |         | - 275   | -      | -       |          |        |           | I -       | NA NA        | 44        | -         | -         |           |
| 1,4-Dichlorobenzene        | ppm        | NA.      |        |          | _        | _       |         |         |          | _        |           |          |           |            | _        | 5.0       | 77.    | NA.      | -       |         | 100     | -      |         |          | ***    |           | -         |              | - 14      | -         | -         | - 105     |
| L4-Dioxage                 | pper       | NA NA    | NA.    | NA.      | NA.      | NA.     | 0.0039  |         | - 1      |          |           | 944      |           |            | -        | 17.5      |        | NA.      |         | 96,5    |         | -      | -       | 8700F 1  | \$44   | -         | I -       |              | 100       | -         |           | 00020     |
| 2-blexanone                | ppm        |          | BMDL J | I        |          | ***     | 0000    |         | - 1      | BAIDL J  |           | NA.      | NA        | 0.0013     |          | 110       | NA     | NA.      | NA      | NA NA   | NA NA   | NA.    | -       | -        | 140    | -         | I -       |              | NA.       | -         | NA        | NA.       |
| Accione                    |            |          | BADL J |          | -        |         |         |         | - 1      |          |           | ***      | _         |            |          | 140       | -      | -        | 100     | 100     | -       | -      | -       | -        | ***    | -         | I -       | NA.          |           |           |           | 100       |
| Benzene                    | ppm        |          |        | -        | -        | 0.043   |         |         | [ - I    | BMDL J   | 0 007     |          | - 1       | 9018       | III 0069 | # 0068 #  | -      | 1        | 5,000   | 66.5    | - 1     | 200    | -       |          |        | 0 036     | 0.003     | 0.0077       | 0 0052    | 0.0081    | 100       | # 0026 J  |
|                            | ppm        | ***      |        | -        | - 1      |         |         |         | -        | -        | 781       | -        | _         | -          | -        | 100       |        | .00      | 100     | -       | BMDL II | 6 0015 | -       | BAIDL    | BMDL J | -         | I -       | 8 00065 J    | 0.000273  | -         | # 000b2   | # 00036 J |
| Bromoform                  | ppen       |          | _      | - 1      |          |         |         | -       | -        |          |           | -        | -         | ***        | 100      |           |        | 8.6      | -       | -       | -       | -      | -       |          | -      |           |           |              | 1000      | -         | 100       | 1000      |
| Carbon Disulfide           | ppm        | BMDL J   | _      | - 1      |          | -       |         | -       |          | ***      |           | -        | - 1       | ***        |          |           |        | 84       | -       | -       |         | -      |         |          |        |           | -         |              |           | -         | 100       | -         |
| Chlorobenzene              | ppm        | BMDL J   | 0.0052 | 0 0035   | 0.0074   | 0.0042  | 9 001+  | 84DL J  | BMDL J   | 0.0032   | 0.003     | 0.0037   | 0-00068 J | 0.0014     | 0 60 3   | 0029      | -      | 200      |         | 0.0025  | 10062   | 0.01   | BMDL #  | 461      | 0.0047 | 0.004     | 0 005     | 0 0054       | 0.0051    | 00015     | 0.01      | 0.014     |
| Chlorobromomethane         | ppm        | NA NA    | NA.    | NA.      | NA.      | NA NA   | l –     | -       | 244      |          |           | l –      | -         |            | 100      | - 1       |        | NA.      | NA      | NA      | NA      | SA     | 100     | -        | _      |           | h.        | 200          | -         |           | 727       |           |
| Chloroethane               | ppes       |          | _      |          |          |         |         |         |          | -        |           | -        | ***       |            | 100      | -         | 44.    |          | -       | -       |         |        | -       |          | 100    | BMDLJ     | l         | 1            | 1         | 222       | - 2       | 100       |
| Chloroform                 | ppm        | -        | -      | ***      | - 1      | -       |         |         |          |          |           |          |           |            | 100      | -         | 945    | -        | -       |         | -       |        | _       |          | _      |           |           | _            | _         |           |           |           |
| Chloromethase              | ppin       |          |        | 1.4      |          | l –     |         |         |          | _        |           | -        |           |            |          |           |        | 2.00     | 200     |         |         |        |         | _        |        | BMDL J    |           |              | _         | -         | _         |           |
| Cyclobesane                | ppm        | NA NA    | NA NA  | NA.      | NA NA    | NA.     | l - :   |         |          |          | l         |          |           |            | _        |           | NA     | NA       | NA.     | NA      | NA      | NA     |         | 0.004    | BMDL 1 | BADL I    | 0.000381  |              | _         | "         | _         |           |
| Dichlorobromomethane       | ppm        |          |        |          | i –      |         |         |         |          | _        |           |          |           |            |          |           | -      |          |         |         |         |        |         |          | BAUL I | Bylibit 1 |           | 1 1          |           |           | _         |           |
| Ethylbenzene               | ppen       | ***      |        | I - I    | - 1      |         | l i     |         | _        |          |           |          | _         |            |          |           | 1 7 1  | 0.65     | 0.29    | 4011    | BMDL /  | 074 D  | 0.93    | 0 000    | 0.011  |           | l         |              |           |           |           |           |
| Isopropy lbenzene          | ppm        | NA       | NA.    | NA       | NA.      | NA.     | BMOLI   | BMDLJ   | BMDLJ    | 0 0021   | 0 00033 J | 9 0013   |           | 900037 J   | -        |           | 34     | NA       | NA.     | NA NA   | NA NA   |        |         |          |        | 01        | 0 0013    | 0.0033       | 0.000051  | 0-001)    | 1 1000 0  | 0.00037.) |
| Methyl ethyl ketone        | ppm        | _        | BMDL/  | _        |          | , ma    |         |         | D-12007  |          |           | 400,7    |           | 0.00261    |          |           | 1      |          |         | 34      |         | NA NA  | 0.024   | 0.059    | 0.035  | 0.027     | 0.03      | 0-023        | 0 026     | 0.031     | 9 022     | 0.011     |
| Methyl terrary buryl ether | ppm        |          |        | ! _      |          |         |         |         | _        | _        |           | NA.      |           |            | I        |           | -      | _        | ***     |         | 1 - 1   | - 1    | -       | ~~       | ***    | BMDL /    | 0.00111   |              |           | 0 0052 3  | ***       |           |
| Methylcyclohexane          | ppm<br>ppm | NA.      | NA.    | SA       | NA.      | NA.     | BMDL1   | "       | BVER J   | BMDL J   | -         | 0-00047  | _         | -          |          |           | I I    |          | 144     |         | ! -     | - 1    |         | ***      | _      | -         | -         | NA I         |           | F - I     |           | 1 -       |
| Methyleue chloride         | ppm<br>ppm |          |        |          |          | 1       |         | -       | BARNET.  | BMD/L J  | -         | 0-00012  |           | ***        |          | -         | 3.4    | NA       | NA      | NA NA   | NA      | NA.    | BMDL 1  | 0.0083   | 0 0054 | 0.0043    | 0.0048    | 0 0043       | 0 0033    | 610019    | 0 0044 1  | 0 00491   |
| Methyl-iso-butyl ketone    |            |          | BMDL J |          | 1        |         | -       |         |          |          | -         | -        | _         | ***        |          |           | I - I  |          | leve    |         | i – I   |        |         | hen .    | -      | #0016     | -         |              |           |           | ***       | f -       |
| Street                     | bbas       |          |        | -        |          | ***     | -       | -       |          |          | _         | -        | _         | ***        | ***      |           | I ~ I  | ***      | ***     | -       | -       |        | ***     |          | -      | BATOF 1   |           |              |           | 0.0013.1  | ***       |           |
| Tetrachloroethene          | bban       |          | _      | -        |          |         | -       |         |          |          | -         | - 1      |           | ***        |          |           | I - I  | ***      |         | -       | - 1     | - 1    | ***     |          | -      | _         |           |              |           | -         | and .     | I -       |
| Toluene                    | Phen       |          |        |          |          |         |         |         |          | -        | -         |          | 244       |            |          |           |        | m        | _       | -       | - 1     | ***    | ***     | - 1      | -      |           |           | l I          | _         |           | _         |           |
|                            | ppm        |          | ***    | -        | BMDL J   |         | -       | ™       |          | -        | -         |          | ***       | -          | -        |           | 0.2%   | 39       |         | BMEDL I | BAIDLI  | BMD( J | BMDL J  | BMDt J   | BMDL J | BMDL J    | 1 140000  | 9 00057 J    | 0 000641  | 0.0010    | 0.00024   | 0 00033 J |
| Total Xylenes              | ppm        | BAIDL J  | 0.014  | BMDLJ    | B.VIDL J | -       |         |         |          | -        |           |          | ***       | _          | _        |           | 10     | 3        | 1.3     | 0-034   | 0.00    | 210    | 2 3 7 3 | 03413    | 0.007  | 013       | 0.0044    | 001          | 6 0061    | 00107     | 0 0039 1  | 0-0079 J  |
| Trickloroethylene          | bban       |          | 100    | -        | -        |         |         |         | -        | _        |           | ***      |           | _          |          |           | I - I  | - :      | _       | ]       |         |        | -       | _        |        | ***       | I - I     | _            | ***       |           | _         | ***       |
| Viny1 chlonde              | bhin       |          | 144    |          |          |         |         |         |          |          |           |          |           |            |          |           | -      | - 1      |         |         |         |        | _       |          |        |           | I - I     | l _ l        |           | l I       | _         | l         |
| TOTAL VOLATILES            | ppm        | 8.0045.3 | 0.07   | 0.0065   | 0.0006   | 4.648.1 | 0.007.3 | 0.0043J | 0.002    | 8.826    | 0.01      | 8.90452  | 0.00000 J | 9.80.474.1 | 8.00645. | F00004-3  | 12:    | 7.8      | 8.15    | 0.045   | 8.017   | 151    | 3,34.2  | 0.505 J  | 8.063  | 0.302     | 0.059     | 6.05769.4    | 0.04794.3 | 0.05675.3 | 0.64260 J | 0.04518 J |
| 2-Octanol                  | ppm        | NA.      | NA.    | NA.      | NA.      | NA.     | NA      | NA .    | NA       | SA       | NA.       | NA.      | NA        | NA         | . 19.6   | . NA      | NA.    | NA.      | NA      | NA      | NA      | NA NA  | NA      | NA.      | NA     | NA        | NA.       | NA NA        | NA        | NA.       | NA        | NA        |
| 2-Octanone                 | ppm        | NA.      | NA.    | NA       | , NA     | NA.     | NA      | NA .    | NA       | NA.      | NA.       | NA.      | NA.       | NA         | - NA     | NA        | NA     | NA       | NA      | NA      | NA      | NA.    | NA      | NA.      | NA     | N.A       | NA.       | NA NA        | NA        | NA        | NA 1      | NA.       |
| TOTAL OCTANOLOCTANONE      | ppm        | NA.      | NA.    | NA       | 54       | NA.     | NA      | NA -    | NA       | NA.      | 744       | NA       | - NA      | NA         | NA:      | NA        | SA .   | 34       | NA      | 34      | NA.     | NA NA  | NA.     | NA.      | NA     | NA.       | NA.       | NA.          | 54        | NA NA     | NA NA     | NA<br>NA  |
| ACID EXTRACTABLES          |            |          |        |          |          |         |         |         |          |          |           |          |           |            |          |           |        |          |         |         | -       |        | - /-    |          |        |           | ,         |              |           |           | A         |           |
| 2,4,5-Tricklorophenol      | ppm        | NA.      | _      | -        |          |         | _       | NA I    | NA.      | 5A       |           | SA       | NA.       | NA.        | NA       | NA        | _      | SA       |         | I _     | _       |        |         | NA.      | NA.    | NA.       | l         | SA           |           |           |           | 1         |
| 2,4-Dunctly lphenol        | ppm        | NA.      |        |          |          | 1       | _       | NA I    | NA NA    | NA.      |           | NA       | NA.       | NA.        | NA       | 24        | I _ [  | NA NA    | BAIDL J |         |         |        | BMDL I  | NA<br>NA |        | 1000      |           |              | NA        | NA NA     | NA        | NA.       |
| 2-Methylphenol             | ppm        | NA       | _      |          |          |         | _       | NA      | NA NA    | NA.      | 1         | 54       | NA.       | NA.        | NA       | NA.       |        | NA<br>NA |         | -       |         | -      |         |          | NA.    | N/A       |           | NA           | NA -      | SA        | NA        | NA        |
| f-Methylphenol             | рран       | NA.      |        |          |          |         |         | NA NA   | NA NA    | NA.      |           | NA.      | NA NA     | NA.        | 24       | 75.4      | ~      | NA<br>NA |         |         | -       |        |         | NA.      | NA.    | NA NA     |           | NA           | NA .      | NA        | NA        | NA.       |
| Pentachiorophenol          | ppm        | NA.      |        | 9 00026  |          | 1 =     |         | NA NA   | NA<br>NA | NA<br>NA | I         | NA<br>NA |           |            |          |           |        |          |         |         | -       |        | ***     | NA.      | NA     | NA        |           | NA.          | NA NA     | NA NA     | NA        | NA        |
| Phenol                     | Pom        | 314      |        | 9 000.50 |          | -       |         | NA NA   |          |          |           |          | NA .      | NA.        | 746      | NA.       | l      | NA.      |         | 0.00028 |         |        | ***     | NA NA    | NA.    | NA.       | 0 00029   | NA NA        | NA NA     | NA NA     | NA.       | NA        |
| TOTAL ACID EXTRACTABLES    | ppm        | - 54     |        | 0.00036  | -        |         | _       |         | NA<br>NA | NA       |           | NA NA    | NA.       | NA.        | NA       | N-A       |        | NA.      |         |         |         |        | dev     | NA       | NA     | NA.       | 7++       | NA.          | NA.       | NA NA     | NA        | NA        |
| COLUMN TATION (ABLES       | Photo      | - 70     |        | Terrente |          | ,       | ***     | NA.     | NA.      | NA :     | ***       | NA       | NA .      | NA.        | NA.      | 56        | 1 – 1  | 5.4      | _       | 0.00026 | 1       | - 1    | Name 3  | 366      | 9.6    | 5A        | 0.00039   | NA.          | 5.4       | 54        | NA.       | 5.4       |

### TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (HC page 15 for soles)

|                            |      |          |           |        |         |            |          |          | TW-30    | <u> </u> |             |          |          |            |        |          | E .       |          |          |         |                 |         |         | TW       | -315        |          |            |          |          |            |           | $\overline{}$ |
|----------------------------|------|----------|-----------|--------|---------|------------|----------|----------|----------|----------|-------------|----------|----------|------------|--------|----------|-----------|----------|----------|---------|-----------------|---------|---------|----------|-------------|----------|------------|----------|----------|------------|-----------|---------------|
| PARAMETER                  | UNIT | Mor-98   | Aug-05    | Aug-89 | Aug-1   | 9   Jan-11 | Aug-12   | Jon-13   |          |          | Jul-17      | Oct-18   | Sep-19   | Sep-20     | Sep-21 | Sep-22   | Aug-97    | Mar-00   | Acc-08   | Aug-09  | Sep-10          | Jun-11  | Sep-12  | Jun-13   | Jul-15      | Sep-16   | Jul-17     | Oct-18   | Sep-19   | 5ep-20     | Oct-21    | Sep-22        |
| BASENEUTRALS               |      |          | 1100      | 1100   | 11      |            | 1111     |          |          | 0.0      |             | 51110    |          |            |        |          | 110,01    |          | 11       |         |                 |         |         |          |             | -        |            |          |          |            |           |               |
| 2-Methylnaphthalcue        | ppm  | NA.      | -         | -      | 100.0   | 764        | 1.00     | NA NA    | SA       | NA       | ***         | NA       | NA.      | 100        | NA.    | NA.      | BMDL1     | NA.      | BMDL J   | -       | -               | BMDL /  | #011    | NA.      | NA          | NA.      | 777        | NA.      | NA.      |            | NA.       | NA.           |
| Accuaphthene               | ppm  | NA.      | BMDL J    | line 1 | 164     | 764        | 44       | NA       | NA       | NA       |             | 9A       | NA.      | - 100      | NA.    | 5A       | 1 JOHNB   | 5A       | BVIDLI   | -       | -               | -       | -       |          | SA          | NA.      | #0012      | NA.      | NA NA    | I – I      | 54        | NA.           |
| Aceuaphthylene             | ppm  | NA.      | 100       | -      | line.   | 100        | 444      | NA I     | NA       | NA.      | ***         | NA NA    | NA.      | and the    | NA.    | NA.      | 197       | NA.      |          | 100     | 100             | 100     | -       | NA.      | NA.         | NA.      | -          | NA.      | NA.      | -          | NA.       | 5.4           |
| Anthracene                 | ppm  | NA.      | BMDL 1    | 1.000  | 100     | -          |          | NA.      | NA NA    | SA       |             | NA .     | NA       | 100        | NA     | NA.      | 144       | NA.      | 100      |         | 400             | 400     | -       | NA.      | NA.         | - 58     | 717        | NA NA    | NA .     |            | 5A        | SA            |
| Benzo(a)Anthracene         | ppm  | NA       | 1964      | BMDL J | # ccccs | 1 B/IDL1   | @ 000056 | NA.      | NA       | 5A       |             | NA       | NA.      | @4000023 J | NA     | NA.      | 144       | NA.      | 144      | ⊕ 00063 | @ 600064        | -       | BMDL J  | NA.      | NA          | NA.      | ₽ 000097   | NA       | NA.      | ® 000027 J | 5.6       | - 54          |
| Benzo(a)Pyrene             | ppm  | NA.      |           | -      |         | 769        |          | NA.      | NA NA    | NA       |             | NA.      | NA.      | 100        | NA.    | NA.      | -         | NA.      | 100      | E 00043 |                 | 100     |         | NA.      | NA .        | NA.      | @ 0000053  | NA.      | NA.      | -          | 5A        | NA            |
| Benzo(b)Fluoranthene       | ppm  | NA.      | 100       | -      | 54      | 364        |          | SA       | NA       | NA       | 0.00000181  | NA       | NA.      | 140        | NA.    | NA NA    | 164       | NA.      | 140      | F 90049 | 100             | 100     | BAIDL   | NA.      | NA.         | - NA     | 0.0012     | NA NA    | NA.      | -          | 5A        | SA            |
| Benzo(g.h.s)Perylene       | ppm  | NA.      | -         | 100    | 40      | 44         | 1.00     | NA.      | NA NA    | NA.      | 0 0000074 J | NA       | NA.      | 100        | NA.    | NA.      | 800       | NA.      | 100      |         |                 |         | -       | NA.      | NA.         | NA.      | # 00013    | NA NA    | SA.      | -          | NA NA     | SA            |
| Benzo(k)Fluoranthene       | ppm  | NA.      | 1988      | -      | 44.0    | -00        |          | 5.4      | SA       | 5.4      |             | 8.4      | NA.      | 200        | NA.    | NA.      | 100       | 54       | -1400    | BAIDL I | .004            | 1000    | -       | NA NA    | NA.         | NA.      | 0 00011    | NA NA    | NA.      | - i        | 5.8       | 5.4           |
| bis(2-Chloroethoxy)methane | ppm  | NA.      | 941       | 100    | 44      |            |          | NA       | NA NA    | SA       |             | NA.      | NA.      |            | NA.    | NA NA    | 641       | NA NA    | 140      | 100     | 764             | 0.0     | -       | NA.      | NA.         | NA.      | 910        | SA       | NA.      |            | NA.       | SA.           |
| bis(2-Chloroethyl)ether    | ppm  | NA.      | 0.0042    | # 0029 | 9 0009  | 0 0013     | ∉ 0058   | SA.      | SA.      | NA.      | 0.0015      | SA       | NA.      | # 0024     | NA.    | 9 0039   |           | 5.A      | 166      | 100     | BMDLI           | E 0091  | -       | NA.      | NA.         | NA.      |            | NA       | SA .     | 900017     | NA NA     | 00011         |
| bis(2-Chlorosopropyl)ether | ppm  | NA.      | 44        | 5.00   | 200     |            |          | NA       | NA NA    | NA.      |             | NA.      | NA.      | -          | NA NA  | NA.      |           | NA       | 440      | -       | 100             | 100     | 10.0    | NA NA    | NA.         | NA.      | 1000       | NA.      | NA NA    |            | NA.       | 5.4           |
| bis(2-Ethylhexyliphthalate | ppm  | NA.      | Cont      | -61    | -       | 5.4        | -        | NA       | NA NA    | NA       |             | N.A.     | NA.      | -          | NA.    | SA       | 53.       | NA.      | 140      | 1.300kB | 100             | 440     | 80.0    | SA       | NA          | NA.      | .00        | NA.      | SA       | -          | NA        | 84            |
| Butyl benzyl phthalate     | ppm  | NA       | 100       | 101    | lan:    | 244        |          | NA NA    | NA       | NA       | 144         | NA.      | NA       | 1.65       | NA.    | NA.      | 184       | NA       | 100      | See     | 444             | 100     |         | 5A       | NA.         | NA.      | -          | NA.      | NA NA    | -          | NA NA     | NA.           |
| Carbazole                  | ppm  | NA.      | 444       | - 101  | -       | -          |          | NA       | NA       | NA       |             | NA.      | NA       | -          | NA.    | NA NA    | BNDLJ     | NA.      | 100      | 8.6     | 100             | -       |         | NA.      | NA.         | NA.      | 200        | 5.A      | NA       | -          | NA.       | NA.           |
| Chry sene                  | ppen | NA.      | 44        |        | -       | -          |          | NA       | NA NA    | NA       |             | NA.      | NA.      | -          | NA.    | NA.      |           | NA       | -        | 100     | 101             | -       | 100     | NA.      | NA.         | NA.      | Ø 60013    | NA.      | NA.      | -          | NA NA     | 5.4           |
| Debenzta, hianthracene     | ppez | NA.      | 44        | -      | 1 -     | -          | l        | NA       | NA       | NA       | -           | NA.      | NA.      | -          | NA.    | SA.      | 223       | NA.      | 100      | 100     | 44              | -       | 966     | NA.      | NA.         | NA NA    | Ø 00018    | NA.      | NA.      |            | NA.       | NA.           |
| Dibeazofuran               | ppes | NA.      | BAIDE     | -      | -       |            |          | NA       | NA       | NA       |             | NA.      | NA.      |            | NA.    | NA.      | BMDLI     | NA.      | BMDLE    | 60.     | 44              | 100     | 100     | NA.      | NA.         | NA.      | -          | NA.      | 5.8      |            | NA.       | NA.           |
| Diethyl phthalate          | ppm  | NA.      | -         | -      | -       |            |          | NA.      | NA       | NA       | -           | NA.      | NA.      |            | NA.    | NA       | -         | NA.      | -        | -       | 24              | 100     | 1966    | NA.      | NA.         | NA.      | 100        | NA.      | - NA     |            | N4        | NA.           |
| Dunethyl phthalate         | ppm  | NA       | _         | _      |         | 100        | l        | NA.      | SA.      | NA       | l –         | NA.      | NA.      | -          | 54     | 1/5/A    |           | NA.      |          |         |                 | 140     |         | NA       | NA.         | NA.      | 100        | NA.      | NA.      | 100        | NA :      | 54            |
| Dr-n-buty iphthalate       | ppm  | NA.      | 44        |        |         |            |          | NA.      | NA       | NA       |             | NA.      | NA.      |            | NA.    | NA       |           | NA.      |          | 100     | Ast             | -       | -       | SA       | NA.         | NA.      | 750        | NA.      | NA.      | -          | SA.       | -NA           |
| On-m-octylphthalate        | ppes | NA.      | 44        | 44     |         | l          | i        | SA       | NA       | SA       | - 1         | NA.      | NA.      |            | 88     | NA       | h         | NA.      | I        | 100     | 44              | -       | - 1     | NA.      | NA.         | SA       | 700        | NA.      | NA.      | -          | NA.       | NA.           |
| Elworanthene               | ppes | NA.      | 44        |        |         | l          |          | NA.      | NA.      | NA       |             | NA.      | NA.      |            | NA     | NA       | 1         | NA.      |          | No.     | 100             |         | _       | NA.      | NA.         | NA.      | le:        | NA.      | NA.      | 4.0        | NA.       | NA            |
| Fluorene                   | ppes | NA.      | BASDL     | _      |         |            |          | SA       | NA.      | SA       |             | NA.      | SA       | -          | NA.    | NA.      | 1         | NA.      | BMDLJ    | 4       | 44              | 140     |         | NA.      | SA          | SA       | Ø 000081 F | SA       | NA.      | 100        | NA.       | NL            |
| Hexachlorobenzene          | ppm  | NA.      |           | -      | l       | l          | l –      | NA.      | NA.      | NA.      | _           | NA.      | SA       | -          | NA.    | NA.      |           | NA.      | 1        | 200     |                 | 441     |         | NA       | SA          | NA.      | -          | NA       | NA.      | 100        | NA.       | NA            |
| Indeno(1,2,3-cd)Pyrene     | ppm  | NA.      | -         | -      |         | l          | I =      | NA.      | NA.      | NA.      |             | NA.      | SA       | -          | NA.    | SA.      | l         | N4       | 1 _      | BMDL II | -               | 441     |         | NA.      | SA.         | SA       | 100        | SA       | NA.      |            | NA.       | 14            |
| Isopherone                 | ppen | NA       |           | _      | l       | l          | l –      | NA       | NA.      | NA       |             | NA.      | NA       |            | NA.    | NA.      | l         | NA.      | 1 _      | -       | 1,00            | 5 -44   |         | NA.      | SA          | NA.      | -          | - M      | NA.      | 100        | NA.       | NA.           |
| Naphthalese                | ppm  | NA.      | 44        | -      |         |            | _        |          | ~        |          | _           |          |          | -          | -      |          | 011       | NA.      | 0.045    | 160     | 200             | 011     | #15     | 0.072    | 0.0021      | 0 0055   |            | 0 602    | 0 0025   | _          | 0.00064.1 | # 6006E       |
| Nitrobenzene               | ppm  | NA.      | 44        | -      |         |            | -        | NA       | NA       | NA       |             | SA       | NA.      | 120        | S.A.   | NA       | '         | NA.      |          | ME      | the contract of | 400     |         | NA       | NA.         | NA.      | -          | 5A       | SA       |            | NA.       | No.           |
| Phenanthrene               | ppea | NA.      | BMDLF     |        |         | "          | I =      | NA.      | NA.      | NA.      |             | NA.      | NA.      | -          | S.A.   | NA.      | BMDL /    | 5A       | BMDL I   | 100     | 140             | 100     |         | NA       | NA.         | NA.      | 0.0053     | SA       | 5A       | 0 00(3)    | NA.       | 54            |
| Pyrene                     | ppea | NA.      | D. Harris | 3.3    | -       | 1 :        | 1 =      | NA.      | NA.      | NA.      |             | SA       | NA.      |            | SA     | NA.      | BMDLI     | Su.      | D. Halle | No.     | 146             | - 100   | 1 =     | 54       | NA.         | NA NA    | 100        | NA.      | NA.      |            | N5        | 58            |
| 1.4-Dioxane                | ppm  | NA.      | NA.       | NA.    | NA.     | NA.        | NA.      | NA.      | NA.      | 5.4      | NA.         | NA NA    | NA.      | N.A.       | NA.    | 0 00048  | NA NA     | VA       | NA       | NA.     | 84              | NA      | NA      | NA.      | NA.         | NA.      | NA.        | NA.      | NA.      | NA.        | NA.       | 0.0001        |
| TOTAL BASENELTRALS         | ppes | 54       | 8,0095    |        | 0.007   |            |          | 8.006) J | -        | 6,0004.4 | 6,003       | NA.      |          | 0.00241.J  | - 10   | 0.00436  | 1.13      | NA.      | 6.011 J  | 8.011   | 6,6607          | 0.129.4 | 6.161.3 |          | 0.00297     | 0,006    | 9,804      | 6.002    | 0.0025   | 0.00149.4  | 0.000643  | 6.00198       |
|                            | Fr   |          |           |        | -       |            | -        |          |          |          |             | 1.00     |          |            |        |          |           | -        |          |         |                 |         |         |          |             | -        | 1          |          |          |            |           |               |
| PESTICIDES                 |      |          |           |        | 1       | - 1        | 1        | l        |          |          |             | l .      |          |            | l      |          | l         | l        | 1        |         |                 |         |         | 3911     |             | l .      | 1          |          | 1        | 1          | 0.80      | 1             |
| 4.4'-DDD                   | ppb  | NA.      | 2.000     |        | I       | l          | I _      | NA.      | NA NA    | NA       |             | SA       | NA.      | NA.        | NA .   | NA.      | BMDL /    | NA NA    | 100000   | 16000   | 100             | 100     |         | 26.5     | NA.         | NA NA    |            | NA.      | NA.      | SA.        | NA.       | NA.           |
| 4.4'-DDE                   | ppb  | NA.      |           | -      | I -     | l –        | l _      | NA.      | NA.      | NA       |             | SA       | NA.      | NA.        | SA     | NA.      |           | SA       | -        | 144     | - 661           | 10.0    |         | 54       | NA.         | NA.      | 200        | NA.      | NA.      | NA.        | NA.       | NA .          |
| 4.4'-DDT                   | ppb  | NA       | -         | _      | I -     | l _        | l _      | NA.      | NA.      | NA.      |             | SA       | NA.      | NA.        | SA     | NA       | l         | SA       | _        |         | -44             | 164     |         | 5.6      | NA          | NA.      | 142        | SA       | NA       | NA.        | DA.       | NA.           |
| Beta-BHC                   | ppb  | NA.      | -         | _      | I -     | _          | _        | NA SA    | NA.      | NA.      |             | NA.      | NA.      | NA.        | NA.    | NA.      |           | SA       | -        |         | -               | See .   | ***     | NA       | NA.         | NA.      | CHIC       | NA.      | NA.      | NA         | NA.       | NA.           |
| Delta-BHC                  | ppb  | NA.      | -         | -      | I -     | _          |          | NA NA    | NA.      | NA       |             | NA.      | NA.      | NA.        | NA.    | NA.      | l _       | SA       |          |         | -               |         |         | NA       | SA          | NA       | 1-         | NA.      | NA.      | NA NA      | NA I      | NA.           |
| Dieldrin                   | ppb  | NA.      | 0.00      |        |         |            |          | NA.      | NA.      | SA       |             | NA.      | NA.      | NA.        | N/A    | NA       |           | NA.      | 1 -      | 22.0    |                 | -       |         | 54       | NA.         | NA.      | _          | SA       | NA.      | NA.        | NA.       | NA.           |
| Endosetfan I               | ppb  | NA.      | 100       |        | 1 =     | _          | 1 =      | SA       | SiA      | NA       | I           | NA.      | N4       | NA.        | NA.    | SA       | 1 -       | SA       | 1        |         |                 | -       |         | MA       | 5.A         | SA       | l          | SA.      | 54       | l SA       | 34        | 8.6           |
| Endoselfen sulfate         | ppb  | NA.      | 1         | 1 -    | 1 =     | -          | _        | SA.      | NA.      | NA.      | :-          | NA.      | NA.      | NA.        | SA.    | NA.      | I = 1     | NA.      |          |         | 144             | -       |         | NA       | NA.         | NA.      |            | NA.      | - NA     | NA.        | SA.       | - 8.5         |
| Endrin                     | ppb  | NA<br>NA | 0.00      | 1 -    | 1 =     | -          | 1 -      | NA NA    | SA       | NA.      | I ::        | SA.      | NA<br>NA | NA<br>NA   | NA.    | NA.      | I [ ]     | NA.      | =        | -       |                 | 44      |         | NA.      | SA.         | NA.      |            | 83       | NA.      | NA NA      | SA        | 55            |
| Endrus aldehy de           | ppb  | NA<br>NA | 2         | 1      | 1 =     | _          | 1 ~      | SA SA    | NA<br>NA | NA<br>NA |             | NA<br>NA | NA<br>NA | NA.        | NA.    | SA       |           | NA.      | 1 [      | 3.5     | 2               | -       |         | NA.      | NA.         | NA.      | 1          | 1 34     | NA.      | NA.        | NA.       | 5.5           |
| Endran ketone              | ppb  | SA.      |           | _      | _       | -          |          | SA       | 54       | - SA     |             | 58       | NA<br>NA | NA.        | 84     | 5A       | I =       | SA.      | 1 =      |         | 9.5             |         |         | NA.      | NA.         | NA.      | Part .     | - SA     | 54       | NA.        | 54        | 55            |
| Gagnina-BHC                |      | NA<br>NA | -         | 1      |         | _          | 1        | NA.      | 5.4      | NA.      |             | NA.      | NA<br>NA | NA<br>NA   | 55     | SA<br>SA | 1 =       | NA<br>NA | 1 -      |         | 100             |         |         | NA       | NA.         | NA.      | 1 -        | NA.      | NA.      | NA.        | SA.       | - 53          |
| Heptachlor                 | bbp  |          | 0.000     | I      |         | - 1        | -        |          | NA<br>NA |          |             |          | NA<br>NA | NA.        | 54     | NA<br>NA | I -       | NA<br>NA | I -      | - 25    | 1               | 100     |         | NA.      | NA.         | SA.      | 1 (5)      | NA.      | 1 5      | NA.        | 33        | 55            |
| Heptachlor epoyade         | ppb  | NA.      |           | I      |         |            |          | NA .     |          | NA.      |             | NA.      |          |            |        |          |           |          | -        | 75      | 100             | -       |         | NA.      |             | NA NA    | 1.2        | NA<br>NA | M        | 1 20       | NA.       | 10            |
| Methoxychlor               | ppb  | NA<br>NA |           |        |         |            |          | NA.      | NA       | NA       |             | NA.      | NA.      | NA         | SA.    | NA NA    |           | SA<br>SA | 1 -      | - 7     |                 |         |         | NA<br>NA | NA<br>NA    | NA NA    | 1.7        | NA.      | NA<br>NA | NA.        | N5        | 54            |
|                            | ppb  | 1/1      | -         | -      | +       | +          | +-       | NA NA    | SA.      | NA.      |             | NA.      | NA NA    | NA.        |        | NA.      | 8         | 1415     | +        |         |                 |         |         |          | <del></del> | NA<br>NA | 100        | 34       | _        | NA NA      | 54        | 34            |
| TOTAL DDX                  | ppb  | NA<br>NA |           | -      | -       | -          | -        | 5A       | NA       | NA.      | -           | 5A       | NA<br>NA | NA.        | 5.4    | NA.      | 6.697 J   | hA<br>NA | -        | 7       |                 | -       | ***     | 34       | NA<br>NA    | NA<br>NA |            | NA<br>NA | NA.      | NA<br>NA   | 34        | 1 34          |
| TOTAL PESTICIDES           | ppb  | 24       | 100       |        | ***     | ***        | 1 100    | 5.4      | NA       | **       | 1           | 2.4      | 34       | 1 34       | 75.8   | NA NA    | E - 077 J | 1 34     | _        |         |                 |         | _       | 1 72     | 3.0         | 3.4      |            | 3.4      | 1 .74    | 3.9        | 1 77      | 2 77          |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 19 for anotes)

| PARAMETER                   | CNIT   |          | TW-32  | 2S(R) (Aba | ndoned) |        |        |        |        |        |          |         | TW-JJS1  | Abundoned | b        |          |        |        |          |        |          | TW-      | J4S (Aban | doned)   |         |
|-----------------------------|--------|----------|--------|------------|---------|--------|--------|--------|--------|--------|----------|---------|----------|-----------|----------|----------|--------|--------|----------|--------|----------|----------|-----------|----------|---------|
| FARAMETER                   | CSII   | Mar-68   | Aug-88 | Aug-89     | Aug-10  | Jon-11 | Mar-88 | A46-48 | Aug-09 | Aug-10 | Jon-11   |         |          |           |          | Jul-17   | Oct-18 | Sep-19 | Sep-20   | Sep-21 | Mar-44   | Aug-88   |           | Aug-10   | Jun-11  |
| VOLATILES                   |        |          |        |            | 1       |        |        |        |        |        |          |         |          |           |          |          |        |        |          |        |          |          | 1111      | 120 11   |         |
| 1,1,1-Trichtoroethane       | ppm    | 100      | -      | -          | -       | -      |        |        | . 100  | -      | 44.      | 300     |          | 100       | -        | _        | -      |        | -        | -      | 100      | 100      | -         |          | 120     |
| 1.1.2.2-Tetrachloroethane   | ppm    | Sec      | -      | _          | -       | -      |        |        | 100    | -      | -        |         | 444      | 10        | -        |          | 340    |        | 12       | 0.20   | 200      | 100      |           | -        | 100     |
| 1,1-Dichleroethane          | ppm    | San      | - 1    | -          | -       | 100    | re-    | -      | -      | -      |          | 144     | 100      |           | -        | -        |        | -      | _        | -      | 20       |          | 1.2       | 200      | 117     |
| 1.2.4-Trichlorobenzene      | ppm    | 703.     | -      | _          | 1       | -      | NA.    |        | 100    |        | - 2      | 100     | ter.     | -         |          |          | 3 _ 3  | 22     |          | 100    | NA.      |          | 15/4      | -        | -       |
| 1.2-cis-Dichloroethylene    | ppm    | -        | -      | -          | -       | 100    | _      | 100    | -      | _      | 100      | -       | 1525     | 35        | -        | 11000    |        | 23     | -        | -      | - 100    |          | 100       | -        | _       |
| 1,2-Dichlorobenzene         | ppm    | 50.      | _      |            | -       | 100    | 20.0   | 100    | 100    | -      | 100      | - 22    |          |           | 100      | 1        |        | 0.5    | 13       | 100    | 24.5     | -        | 1000      | -        | 100     |
| 1.2-Dichloroethane          | ppos   | _        |        |            | -       | 100    | -      | 200    |        |        |          | 100     | _        | 2.0       | - 2      | 10.00    |        | -      | 100      | in.    | - 23     | -        | va.       | . 20     | _       |
| 1,2-trans-Dichloroethylene  | ppm    | _        |        | -          | -       |        | _      |        |        | - 20   | 700      | 125     | 3.5      |           |          | 150      | 346    | - 20   |          | -      | 100      | - 2      | -         |          | -       |
| 1.3-Dichlorobenzene         | ppea   | 5.4      | -      | 200        | 12      | _      | 84     | -      | 130    | -      | 70       | - 5     |          |           |          |          |        |        | 100      |        | 100      |          | -         |          | -       |
| 1.4-Dichlorobenzene         | ppea   | 5A       | -      | 170        | -       |        | N.     | - 2    | 200    | -      | 1.0      | 12      | 350      | -         |          | 173      | -      | 100    |          |        | N.E.     | - 44     | -         | 100      | - 5     |
| 1,4-Dioxane                 | bhus   | NA.      | Na     | 54.9       | 5.4     | 70.0   | NA.    | NA     | NA.    | NA.    | 54       |         |          | -         | -        | 196      | -      | - 25   | - 77     |        | NA.      |          |           | _        | -       |
| 2-Hexanone                  | ppen   |          |        |            |         |        |        | 100    | 1,000  | 1000   | 34       | 577     |          | 77.0      |          |          | 264    | 546    | -        | -      | N.K      | 364      | NA        | NA.      | NA.     |
| Acetone                     | bben   | 4.50     |        | 25         | - 2     | -      |        | BADE I |        | 100    | - 73     |         | 1        |           | 711      | -        |        | 191    | -        | -      | 50.0     |          |           | -        | -       |
| Benzene                     |        |          | -      |            |         | 100    | 100    |        |        | 3.7    | 77.      | 100     |          |           | ***      |          |        | 110    | 100      | 1.00   | 10.      | 100      | 0.77      | -        | -       |
| Bromoform                   | ppm    | 3.77     |        | -          | 100     | 100    | 35-3   | tel.   | 100    | -      | 7        |         | -        | ***       |          | -        | 100    |        | - 1      | 100    | 146      | 1        | -         | -        | -       |
| Carbon Disulfide            | ppm    |          | 1 100  | -          | 100     | 140    |        | -      | 1      | 0.75   |          | ****    | ***      | ***       | 700      | -        |        | San.   | 165      | 5.445  | -        | -        |           |          |         |
| Chlorobenzene               | ppen   |          | -      | _          | ***     | ***    | -      |        | 7      | 200    | -        | -~      | -        | 100.0     | 100      | -        | 180    | 200-   | 100      | -      | -        | -        |           |          | 717     |
|                             | ppm    | 100      | -      |            |         | ***    | 105    |        | -      |        |          |         |          | 100       | 100      | -        | -      | ***    |          |        | - 1      | -        |           |          | ****    |
| Chlorobromomethane          | ppes   | NI,      | SA     | NA.        | NA      | NA     | NA.    | NA.    | 24     | NA     | SA       |         | 75.      | 100       | 100      | 86       | -      | ***    | 1        |        | NA.      | NA NA    | SA        | NA.      | NA.     |
| Chloroethme                 | ppm    | 3.00     |        |            | 441     | ***    |        | ***    | -      |        | 100      |         |          | -         | 100      | 100      | -      | 1      |          | -      | ! - !    | -        |           | 1        | _       |
| Chloroform                  | ppm    | 0.004    | 9911   | 0.038      | 0.02    | 0.021  | 0.013  | 0.012  | 4 053  | 0.016  | (1) 954  | 0.022   | 0.045    | - II Q4   | 0.031    | 0.036    | 0.043  | 0.019  | 0.036    | 0.056  | 0.0052   | 0.0053   | 0.016     | 001      | 0.0067  |
| Chloromethane               | ppm    | -        | -      |            |         | m      |        |        | _      |        | 164      |         | -        | -         |          | ***      | 200    | ***    |          | l –    | - 1      | _        |           |          | 100     |
| Cyclohevane                 | ppes   | NA.      | NA.    | NA.        | NA.     | NA.    | NA NA  | SA     | NA NA  | NA NA  | NA       | 277     | _        | -         |          |          | 4-0    | 740    | -        | 2.00   | NA.      | NA.      | NA        | NA.      | NA.     |
| Dichlorobromomethane        | ppes   | 0 0013   |        | BMDL J     | ***     | 0 CO22 | 0:0012 |        |        | ***    | BMDL J   | -       | BAIDL J  | BAIDL J   | 110.     | 164      |        |        | -        | -      |          |          |           |          | _       |
| Ethy Shenzene               | ppp    |          |        | I -        | -       | -      | 0 029  | 0.02   | 0 0063 | 0.0041 | 0.0028   | BMDL /  | BAIDL J  | ***       |          | ***      |        | 24     | -        | -      | BASIL I  | BMDLI    | BNDLJ     | -        | 8MDL7   |
| Isopropylbenzene            | ppe    | NA.      | NA.    | NA.        | HA      | NA.    | NA.    | NA.    | NA.    | NA.    | NA .     | BMDL J  | BAIDL J  |           | Acres    | -        |        | -      | 100      | -      | NA.      | NA       | NA.       | NA.      | HA      |
| Methyl ethyl ketone         | ppm    | ***      |        | l –        | -       |        |        | BMDL / |        |        |          |         | 444      | ***       | -        | _        | -      |        | 0.3      | 3-8    | 100      |          | -         | -        |         |
| Methyl tertiary butyl ether | ppe    | ė-       |        | I -        | -       |        |        |        | -      | NA     |          | 344     | 140      | 20        |          | -        | NA     | 120    | -        | 0.20   | 170      | 100      | 1 - 1     | NA.      |         |
| Methylcyclohexane           | ppm    | NA       | NA.    | NA.        | NA.     | NA.    | NA.    | NA.    | NA.    | NA.    | NA       | Sala    | 140      | 25        |          | _        | -      | -      | 100      | 100    | 544      | NA       | 24        | NA.      | NA.     |
| Methylene chloride          | ppes   |          | -      | l –        |         |        |        |        |        |        | 90       | 44      | 100      | -         | -        | -        | -      |        | -        | -      | 10.000   | 123      | 100       |          |         |
| Methyl-iso-butyl ketone     | ppm    | _        | _      | l –        |         |        | l      |        | _      | l      | - 22     | 44      |          | -         | -        | 1        | 18.15  | 2      | 0.3      | -      | 33       | _        |           | -        | 0.0     |
| Some                        | ppm    | _        | _      | I -        |         |        | l I    |        | l _    | l      | 100      | 14      | -        | 7.537     |          | 12%      | -      | - 23   | - 3      | -      |          | 100      | -         | -        |         |
| Tetrachloroethene           | ppen   | _        | _      |            | ***     |        | I _    |        |        |        | 2.0      |         | 1.2      | _         | 2.3      | 100      | 2000   | -      | 100      | 79     |          |          | 160       | 1.101/08 | l       |
| Tolucue                     | ppen   | _        |        |            |         | _      | I _ I  |        |        |        |          |         |          |           | -        | 72.5     | ***    | 120    |          | -      | 1        | - 5      | Mr.       | BVIDL1   | _       |
| Total Xylenes               | pypula | _        |        |            |         |        | 0.074  | 0.047  | 8017   | 0.0045 | BMDLI    | BAIDLE  | -        | 3.0       |          | 100      | 100    | 201    | 122      |        | BMDL 7   |          |           |          |         |
| Trickloroethylene           | ppe    | _        |        | 100        |         | _      |        |        |        |        | (ATTACL) | amen c  | 1.7      | 34.95     |          | 1877     | -      | -      | - 2      |        | GVANT /  | 0 9078   | BAIDL F   |          | BMDL J  |
| Vmvl chloride               | 177    |          |        | 1 -        |         |        | _      |        |        | ""     |          | 700     | 7.7      | 200       |          | 127      | 100    | 100    |          | 1      |          | -0.0     |           |          | 7       |
| TOTAL VOLATILES             | ppm    | 8,817    | 0.019  | 6.639      | 0.02    | 0.029  | 0.12   | 0.005  | 6.854  | 6.627  | 6.06 J   | 0.013 J | 8.844 J  | 6,040     | 0.033    | 0.036    | 8.843  | 0.019  | 0.024    | -      | 9,0072   | 0.015    | 0.02      | 6.011    | N/III J |
| 2-Octanol                   | ppm.   | NA.      | NA     | NA.        | NA      | ****   | NA.    | NA     | NA.    | NA.    | NA NA    | HA      | NA.      | NA        | NA.      | N4.      | NA.    | NA.    | NA<br>NA | 9,856  | NA.      | NA.      | NA.       |          | _       |
| 2-Octanone                  | ppes   | NA.      | NA.    | NA.        | NA.     | _      | NA.    | NA.    | NA.    | NA.    | NA.      | NA NA   | NA<br>NA | NA NA     | NA.      | NA.      | NA     | NA.    | NA<br>NA | NA NA  |          |          |           | NA       | -       |
| TOTAL OCTANOL/OCTANONE      | 900    | 34       | 34     | NA         | - NA    | 170    | NA.    | 34     | 34     | ha     | 5A       | NA NA   | SA.      | SA        | NA<br>NA | NA<br>NA | NA.    | HA     | NA<br>NA |        | NA<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | -       |
| ACID EXTRACTABLES           | 177    |          |        | 1          | 1.44    |        | -100   |        |        | 7175   |          | .501    | -74      | 314       | .74      | - 104    | .04    | /AA    | 754      | 1-14   |          | - 24     | 714       | - 74     | _       |
| 2.4.5-Tricklorophenol       | ррш    | NA.      | l      | l _        | I _     |        | NA.    |        | l _    | _      | 27       | MA      | Na.      | NA        | NA.      |          | NA.    | NA.    | I        | L      | ا ہے ا   |          | 137       | 22.75    | 101     |
| 2,4-Detecthy iphenol        | ppm    | NA.      | =      |            | 1 = 1   | ***    | NA NA  | _      | _      | _      | -        | 168     | NA.      | 54.5      | N.A.     |          |        |        | SA.      | NA NA  | NA.      |          | 7.7       | -50      | -       |
| 2-Methylphenol              | bber   | NA.      |        |            |         | 100    | NA NA  |        | _      | -      |          | NA.     |          |           |          |          | NA.    | NA.    | NA.      | NA     | NA.      | ***      |           | -        | -       |
| 4-Methylphenol              |        |          |        |            |         |        |        |        | -      | -      |          |         | Na.      | NA        | NA.      |          | NA     | SA     | SA       | SA     | NA NA    | -        |           | - 1      | -       |
| Pennachiorophenol           | ppm    | NA<br>NA |        | -          |         | ***    | NA.    | _      | _      | -      | -        | NA.     | 24.1     | SA        | N.A.     | 110      | NA.    | NA.    | NA       | NA NA  | NA NA    | ***      | -         | _        | -       |
| Phonoi                      | bbar   | NA.      |        |            |         | hed    | NA :   | -      | _      |        | -        | NA      | No.      | MA        | 84       | -        | NA     | NA.    | NA.      | NA NA  | NA       |          |           | -        | _       |
| TOTAL ACID EXTRACTABLES     | ppm    | NA<br>NA | _      |            |         |        | NA 1   |        |        |        | 1-       | NA      | 74.      | NA        | NA       |          | NA.    | NA.    | NA.      | NA.    | NA.      | -        | -         | -        |         |
|                             | ODWI   | 3.4      | ***    |            | _       | _      | NA I   | _      | A***   | 444    |          | NA.     | NA.      | NA.       | 5.4      |          | NA I   | NA.    | 5.8      | NA.    | NA "     | _        | her.      | _        |         |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (100 page 19 for moles)

|                             | UNIT   |        | TW-31  | S(R) (Abor | ndoned) |        |        |          |        |          |        |        | TW-335 (A | bandoned | ,      |        |        |        |        |        |          | TW-      | 34S (Aband | leard) |       |
|-----------------------------|--------|--------|--------|------------|---------|--------|--------|----------|--------|----------|--------|--------|-----------|----------|--------|--------|--------|--------|--------|--------|----------|----------|------------|--------|-------|
| PARAMETER                   | USIU   | Mar-88 | Aug-05 | Aug-09     | Aug-10  | Jun-11 | Mar-08 | Aug-45   | Aug-09 | Aug-10   | Jun-11 | Aug-12 | Jun-13    | Jun-15   | Sep-16 | Jul-17 | Oct-18 | Sep-19 | Sep-28 | Sep-21 | Mar-08   | Aug-85   | Aug-09     | Aug-10 | Jun-1 |
| BASE/NEUTRALS               |        |        |        |            |         |        |        |          |        | 11/      |        |        |           |          |        |        |        |        |        |        |          |          |            |        |       |
| 2-Methylmaphthalene         | ppm    | NA     | -      | -          | Ĺ       | -      | NA.    | 8MDL J   | _      |          | -      | NA     | NA.       | NA .     | NA.    |        | NA.    | NA     | NA     | NA.    | NA .     | BADE 1   |            | 100    | -     |
| Acenaphthene                | ppes   | SA     | -      |            | -       | -      | NA     | -        | -      |          | -      | NA     | SA        | N4       | NA NA  | -      | NA.    | NA     | NA.    | NA.    | SA.      | BADLI    | 1.00       | 99     | 1     |
| Acenaphthylene              | ppes   | NA NA  | -      | See .      |         |        | NA     | -        | -      | 200      |        | NA     | NA NA     | NA       | NA.    |        | NA     | NA     | NA.    | NA.    | NA.      | 440      | -          | -      | 1 -   |
| Anthracene                  | ppm    | SA     | 100    | -          | -       | -      | NA.    | _        |        | -        | -      | NA     | NA NA     | NA.      | NA NA  | -      | NA .   | NA.    | NA.    | NA     | S.S.     | 2.00     | 199        | 140    | 1.00  |
| Benzo(a)Antimacene          | ppm    | NA NA  | -      |            | -       | -      | NA NA  | -20      | -      |          | -      | NA     | NA .      | NA       | SA.    |        | NA .   | NA.    | NA.    | NA.    | NA.      | 640      | 100        |        | 100   |
| Benzo(a)Pyrene              | ppm    | NA     | 100    | -          | -       | _      | NA NA  |          | _      | -        |        | SA     | 5A        | NA       | NA     |        | SA     | NA     | NA NA  | SA     | 5A       | 101      | 100        | -      | 100   |
| Benzo(b)Fluoranthene        | ppm    | NA NA  | -      | -          | -       | _      | NA     | _        | _      |          | _ :    | NA     | NA NA     | NA       | NA     |        | NA.    | NA.    | NA.    | NA     | NA.      | 100      | 388        | -      | -     |
| Benzo(g,h,ı)Perylene        | ppm    | SA     | -      | 1 - 3      | -       | -      | NA     | _        | -      |          | -      | NA     | SA        | NA       | NA     | -      | NA.    | NA.    | NA.    | NA.    | NA.      | 100      | -          | 940    | -     |
| Benzotk iFluoranthene       | ppm    | NA     | -      | -          |         | -      | NA.    | 2        | _      | -        | -      | SA     | NA NA     | NA.      | NA     | -      | NA     | NA     | NA.    | NA.    | NA.      | 100      |            | 100    | -     |
| bis(2-Chloroethoxy)methane  | ppm    | SA     | -      | -          | -       | -      | NA     | 420      | _      | - 2      | 2.0    | NA     | NA        | NA.      | NA     |        | NA     | NA .   | NA.    | NA     | NA.      | 144      | -          | 200    | -     |
| bis(2-Chloroethyl)ether     | ppm    | SA.    | _      | -          | _       | -      | NA.    | 2.5      | _      | _        | 25     | SA     | NA.       | NA.      | NA.    |        | NA.    | NA     | NA.    | NA:    | NA       | 2464     | 100        | .00    | -     |
| bis(2-Chloroisopropyl)ether | ppm    | SA     | -      | -          | -       | 1_     | NA.    |          | -      | 12.3     | _      | 54     | SA        | 24       | NA.    |        | NA.    | SA     | NA.    | NA     | NA.      | 44       | and I      | - 100  | -     |
| bis(2-Ethylhexyl)phthalate  | ppm    | NA     |        | 3.2        | 20      | 12.0   | NA.    | 123      | _      |          |        | NA     | NA.       | NA       | NA.    | -      | NA.    | NA.    | NA     | NA     | NA       | -        | -          | -      | -     |
| Buty I benzyl phthalate     | ppm    | NA.    | 25.37  | -          | 223     | 120    | NA.    | 23       | 50     | 100      |        | NA NA  | NA.       | SA       | NA     | 1223   | NA.    | NA.    | NA     | NA.    | NA.      | 100      | -          |        | -     |
| Carbazole                   | ppm    | NA.    | 1023.5 | 00.000     | - T     |        | SA SA  | - E      | 574    | 1000     | 7.1    | SA     | NA NA     | NA.      | NA.    | 000    | NA.    | NA.    | NA.    | NA.    | NA.      | -        |            | -      | -     |
| Chrysene                    |        | NA.    | 3.723  |            | - 3     | 12     | NA NA  | 2        | 7.5    | - 0      |        | NA NA  | SA SA     | NA<br>NA | NA NA  | 1.7    | NA.    | NA.    | NA.    | NA.    | NA NA    | -        | -          | -      |       |
| Dibenzia himthracene        | ррип   |        |        | 100.000    | 77      | 3.53   |        | -000     | (T)    | A 47.5 Y | - 50   |        |           |          |        |        |        | SA.    | NA.    | NA.    | NA<br>NA | -        | -          |        |       |
|                             | PPR    | SA.    | 3.7    | -          | -       | _      | NA.    | -        |        | 7.7      | 7.1    | NA     | 5A        | NA       | NA.    |        | SA.    |        |        |        |          |          |            |        |       |
| Dibenzofuran                | ppm    | NA.    |        | 10.75      | -       | -      | NA NA  | BV4DF 1  | -      |          | 77     | NA NA  | NA NA     | NA       | NA.    |        | NA.    | NA     | NA     | NA     | NA       | B/(DL)   |            |        |       |
| Ovethyl phthalate           | bbu    | 5A     |        | -          | 77.0    |        | NA NA  | -        | 17     | -        | -      | NA I   | NA        | NA.      | NA.    | -      | NA.    | SA     | NA.    | SA     | NA NA    |          |            | 7.5    |       |
| Chemethy I phthalate        | ppm    | NA.    | -      | ***        |         | -      | NA NA  |          | 200    | -        | 100    | NA     | NA        | NA.      | NA     | -      | NA.    | NA.    | NA.    | Y4     | NA NA    | -        | 40-        | 100    |       |
| Di-n-busylphthalate         | 5bm    | NA.    | -      |            | - 1     |        | NA.    | - 77     |        |          | 550    | NA.    | -NA       | NA.      | SA     | -      | NA     | NA.    | NA .   | NA.    | NA NA    | -        | 1.00       | 360    | 1 40  |
| Di-n-octylphthalase         | bbur   | NA .   | -      |            |         | - 1    | NA.    | 570      | -      |          | 77.0   | NA.    | NA        | 5A       | NA.    | -      | NA.    | NA.    | NA     | NA.    | NA NA    |          | 100        | 100    | 1 100 |
| Fluoranthene                | bloss  | NA .   | -      |            | - 1     |        | 5A     | 773      | -      | +        |        | N4     | NA.       | SA       | NA.    | -      | NA.    | NA.    | NA.    | NA.    | 84       |          |            | -      | 1.00  |
| Fluorene                    | ppm    | NA.    |        |            |         |        | NA.    | -        | -      |          |        | NA NA  | NA        | NA.      | SA     |        | NA.    | NA.    | NA.    | NA.    | NA.      | -0.4     | 1.00       | 100    | 1,000 |
| Hexachlorobenzene           | ppos   | NA     | -      |            | NA NA   | NA     | NA.    | -        | -      | 2        | -      | 5A     | SA        | SA       | 5A     | -      | NA     | NA.    | NA.    | NA.    | NA.      | -        | 840        | -      | NA.   |
| Indeno(1,2.3-cd)Pyrene      | ppus   | NA.    |        |            |         |        | NA.    |          | -      |          | 100    | NA     | NA        | NA.      | SA     | -      | NA.    | NA.    | NA.    | NA     | NA.      | -        | 1.00       | 100    | -     |
| Isophorone                  | ppm    | NA     | -      |            |         | ***    | NA.    | -        | 3++    |          | 000    | NA     | NA.       | NA.      | NA.    | -      | NA .   | NA NA  | NA.    | NA .   | NA.      | -        |            | 161    | -     |
| Naphthalene                 | ppm    | NA NA  |        |            | ! -     |        | NA.    | BMDLI    | -      |          | -      | NA.    | 2-0       | -        | 1000   |        | -      |        | NA.    |        | NA.      | - 00     |            | 100    | -     |
| Nitrobenzene                | ppm    | NA .   | -      | 220        | 1 –     |        | NA     | -        |        |          | _      | NA     | NA NA     | NA       | NA     | 1      | NA     | NA.    | NA.    | NA     | NA.      | 100      |            | 100    | -     |
| Phenanthrene                | ppm    | NA     |        |            | 1 –     | _      | NA.    | BMDC J   | -      | -        |        | NA.    | NA        | NA       | NA.    |        | NA.    | NA.    | NA.    | NA     | NA.      | BNEX. J  | 1000       | print. | 100   |
| Pyrene                      | ppen   | NA.    | -      |            | l –     | - 1    | NA.    | _        |        | -        | _      | NA.    | - NA      | NA.      | NA.    |        | NA.    | NA.    | NA.    | NA NA  | NA.      | 100      | 100        | 100    | 100   |
| 1.4-Dioxime                 | ppm    | NA.    | NA.    | NA.        | NA.     | NA.    | NA.    | NA.      | 5A     | 84       | NA.    | NA.    | NA        | NA.      | NA.    | NA NA  | NA.    | NA.    | NA.    | NA NA  | NA.      | SA       | NA.        | NA.    | SA    |
| TOTAL BASE/NEUTRALS         | ppm    | NA     | 100    | ***        | ***     | ***    | NA.    | 8,0069.3 | 144    | 440      | .400   | 410    | 800       | 301      | int    | 100    | -      | -      | _      | _      | NA.      | 0.0057.2 | 100        | 191    | -     |
|                             | $\Box$ |        |        |            |         |        |        |          |        |          |        |        |           |          |        |        |        |        |        |        |          |          |            |        |       |
| PESTICIDES                  | 1 .    | l      |        | I          | 1       |        | l      |          |        |          |        |        |           | l        |        | l      |        |        | l      | l      | I        |          |            |        | 1     |
| 4.4-000                     | bbp    | SA     | 1-3    | -          | I -     | - 1    | NA .   | - 53     | 15     | -        |        | NA NA  | NA.       | NA NA    | NA NA  | -      | NA     | SA     | NA.    | NA.    | NA.      | 1.00     | 1 64       | -      | -     |
| 4.4°-DDE                    | bbp    | NA NA  |        | -          | _       | _      | NA .   | -        |        | -        | -      | NA.    | NA        | NA.      | NA.    | _      | NA.    | NA.    | NA.    | NA.    | NA .     | -        | 100        | 35     | 1     |
| 4,4*-DDT                    | ppb    | NA.    | -      | -          |         | -      | NA .   | -        | -      |          | -      | NA NA  | NA.       | NA NA    | NA NA  | _      | SA     | NA.    | NA.    | NA.    | NA NA    | tan .    | 100        | 300    |       |
| Bets-BHC                    | bbp    | NA     | -      |            | -       |        | NA.    | -        | -      | -        | -      | NA NA  | NA.       | NA       | NA NA  | _      | NA.    | NA.    | NA.    | NA.    | . NA     | 140      |            | -      | -     |
| Delta-BHC                   | ppb    | NA.    |        | -          |         | ***    | NA.    | 70       |        |          | -      | NA     | NA        | NA NA    | NA NA  | -      | NA     | NA.    | NA.    | NA     | NA NA    | Sec.     | Cont Co.   | 100    |       |
| Dieldrin                    | ppb    | NA.    |        |            | ***     | but.   | NA     | PH1.     | 100    |          | 49.    | NA NA  | NA        | NA       | NA NA  |        | 5A     | NA.    | NA.    | NA.    | NA NA    | -        |            | 445    | -     |
| Endoselfan I                | pp.    | SA.    | -      | 1          | _       | _      | NA.    | -        |        |          |        | NA.    | SA        | NA NA    | NA.    | _      | NA.    | NA.    | NA.    | NA     | NA.      | 140      | -          | -      | -     |
| Endosulfan sulfate          | ppb    | 5A     | -      |            |         |        | NA.    | -        | -      |          | -      | NA.    | NA        | NA       | NA.    | _      | NA.    | NA.    | NA.    | NA.    | NA.      | Sale 1   | 1946       | -      | -     |
| Endras                      | ppb    | SA     | -      |            |         |        | NA.    | -        |        |          |        | SA     | 54        | NA       | NA.    |        | NA.    | NA.    | NA.    | NA     | NA NA    | 140      | 504        |        | -     |
| Endrin aldehyde             | ppb    | SA     | -      |            |         |        | NA.    |          | -      |          |        | NA.    | 5A        | N/S      | NA.    | -      | NA.    | NA.    | NA .   | NA.    | 1 SA     | 601      | 900        | 48     | -     |
| Endrin ketone               | ppb    | SA.    |        | ***        | ***     | ***    | 25.5   |          | 777    | -        |        | .NA    | 54        | SA       | NA.    | _      | NA.    | NA.    | NA.    | NA.    | 83       | 1.044    | (a)        | 540    |       |
| Garma-BHC                   | ppb    | SA     |        |            |         |        | NA.    | PRE .    | -      | -        |        | 5.5    | SA        | NA.      | NA.    | -      | NA.    | NA.    | NA.    | NA.    | N3       | 1987     | 100        | 44     | -     |
| Heptachlor                  | ppb    | NA.    | -      |            |         | ***    | NA.    | 100      | - 2    | -        |        | 5.6    | 5A        | NA.      | NA.    |        | NA.    | NA.    | NA.    | NA.    | NA.      | 144      | - 10       | 444    | -     |
| Heptachlor epoxide          | ppb    | NA.    | -      |            |         | -      | Să.    | 200      | -      | Y        | 2.0    | NA.    | NA.       | NA.      | NA.    |        | NA.    | NA.    | NA.    | NA.    | NA.      | -        | - 2        | 44     | 100   |
| Methoxychlor                | ppb    | NA NA  | 1 2 3  |            |         |        | NA.    | -        | -      | -        | -      | NA.    | SA.       | NA.      | SA SA  | 1.5    | NA.    | NA.    | NA.    | NA.    | NA.      | 100      | -          | -      | -     |
|                             | ppb    | 54     | -      | -          |         |        | NA NA  | 790      | -      | 100      | -      | - 5A   | 34        | 34       | NA.    | -      | - SA   | NA.    | 5A     | NA.    | NA NA    | - 100    | -          | -      | -     |
| TOTAL DDX                   |        |        |        |            |         |        |        |          |        |          |        |        |           |          |        |        |        |        |        |        |          |          |            |        |       |

## TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 19 for notes)

| PARAMETER                   | USIT   |          |           |        |          |          | T        | W-355(R) | (Abundone) | l}       |          |           |           |          |             |          |          |          |          |          |          | TW-375 (2 | Absodoped | 1)       |            |           |           |            |          |
|-----------------------------|--------|----------|-----------|--------|----------|----------|----------|----------|------------|----------|----------|-----------|-----------|----------|-------------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|------------|-----------|-----------|------------|----------|
|                             | USII   | Mar-48   | Aug-88    | Aug-89 | Aug-10   | Jun-11   | Sep-12   | _Jon-13  | Jul-15     | Sep-16   | Jul-17   | Oct-16    | Sep-19    | Sep-20   | Sep-21      | Mar-08   | Aug-86   | Aug-07   | Sep-18   | Jun-11   | Sep-12   | Jee-13    | Jul-15    | Sep-16   | Jul-17     | Oct-18    | Sep-19    | Sep-20     | 5ep-21   |
| VOLATILES                   | 1      |          | 100       |        | 1        |          |          | 100.00   |            |          |          |           | 27.0      |          | 100.00      | 100.00   |          | 200.00   | 22.5     | 500      | 1333     | -0.00     | 161       |          |            |           |           |            |          |
| 1,1,1-Trickloroethane       | ppm    | 100      | 793       |        | -        | 100      | 100      |          | 75.5       | 244      | -        |           | -         | 177      |             | -        | 100      | -        | -        | -        | -        | -         | **        | -        | - 10       | -         | _         |            |          |
| 1,1.2,2-Tetrachloroethane   | bbm    | 5.7      | -         | -      | -        | 100      | 200      | 1 (44)   | Θ.         | -        | -        |           | -         | 100      | -           | _        |          | -        | -        |          | 200      | -         | 77        | 100      | -          |           | _         |            | -        |
| 1,1-Dichloroethane          | Shur   | -        | -         | -      | 400      | 100      | 344      | 101      | ***        | -        | -        | -         | -         | -        |             | -        | -        | 1        | -        |          | -        | 1900      | 91        |          | -          |           | _         |            |          |
| 1,2,4-Tricklorobenzene      | bbm    | SA.      | -         | -      | 4.00     | 100.5    | 166      | 1,000    | 40         | -        | -        | -         | - 6       | -        | -           | SA       | 1.5      | -        | -        |          | 27       | -         | 999       | -        | -          | -         | _         | -          |          |
| 1,2-crs-Dichloroethylene    | ppm    | 75       | British I | BNDL I | BVRSC 1  | 100      | 100      | 140      |            | -        | -        | -         | -         | -        |             | -        | BAIDL #  | BMDf 1   | BADE 1   | 8MDL1    | BMDL J   | 199       | BMDL J    | BNIDE J  | 0.00043.8  | ₩ 00037 F | 100       | 0.00040 1  | 0 00039  |
| 1,2-Dichlorobenzene         | ppm    | SA       | -         | 100    | 3.0      | 100      |          | 140      | - 1        | -        | -        |           | -         | -        | -           | 5A       | 1775     | -        | -        |          | BMDL F   | 111       | BMDLJ     | B/4DL /  | 0.00057.8  | 0 00054 J | 11-       | 0 00044 1  | 0.00034  |
| 1,2-Dichloroethane          | hhm    | - 100    | 100       | 2.00   | line 1   |          | ***      |          | -          | -        | -        |           | -         | -        |             | -        | 77       | 100      | 100      | 295      | 100      | -         | 100       | 700      | 100        | -         |           | ***        |          |
| 1.2-trans-Dichloroethylene  | ppm    | -        | 140       | 20.0   | -        | -        | -        |          | -          | -        | 100      | NA        | -         | -        | 77          | i+       | 100      | BMDL     | 200      | lini.    | 700      |           | 100       | 200      | -          | NA.       | ***       |            |          |
| 1.3-Dichlorobenzene         | bban   | NA.      | 1.00      |        | -        | -        | -        |          | -          | -        | ***      | -         |           | 2-7      | 19          | NA.      | 100      | 100      | 100      | 100      | 100      | -         | +11       |          |            | 194       | 294       |            |          |
| 1,4-Dichlorobenzene         | ppm    | Nh       | 140       | 1.00   |          | -        | -        |          |            | -        | -        |           | 140       |          | 100         | NA       | Sec      | 100      | 100      | -        | BMDL /   | -         | 100       | BMDLE    | 0 00034 /  | 1944      |           |            | 0 00035  |
| 1.4-Dioxane                 | ppm    | NA       | N/A       | NA .   | NA.      | 58       | -        |          | -          | -        | -        | 50        | NA.       | 00039    | -           | NA       | NA.      | NA.      | NA.      | NA:      | 0.097    | 1800 ft   | 9 0023    | 9 0035   | 0.0066     | NA.       | NA.       | 0.0020     | l –      |
| 2-Hexanoue                  | ppos   | 104      | 444       | -      | -        | 100      | 100      |          |            | -        | -        | 71        | 740.      | 1,775    | 1.70        | (60)     | 0.00     | 1 -      |          | -        | 100      | -         | 40.       | 400      | 44         |           |           |            | 1 -      |
| Acctone                     | ppm    | 4-       | ***       | -      | -        |          | -        | 0.240    | BARDL J    | Jeri.    | 0 0064 B | 0.0093    | 790       | -        | -           | BMDL J   | 100      | BMDL J   | 15 460   | -        |          |           | BMDL J    | 44       | 0.018      | 0911      | # 017     | 0.023      | 0.018    |
| Benzene                     | ppm    | -        | 200       | -      | -        |          | 6-9675   | -        | -          | 100      | 100      | .01       | -         |          | 100         | 300      | BNIDL )  | # 0017   | # 001L   | 1001     | BMDL J   | BAIDL J   | BAKDL J   | BMOL I   | TF 00068 J | E 00063 F | @ 00043 J | 0 000055 8 | 0 000064 |
| Bromeform                   | ppm    |          | -         | -      | -        |          | ,-,      | 111      | 799        | (m)      | 100      | - 10      | -         | -        | 44.         | 100      | 784      | per .    | 500.     | - 144    | , in     | 44.       |           |          |            |           | (°)       |            |          |
| Carbos Disulfide            | ppm    | -        | -         | -      |          | 100      | 191      | 190      |            | -        | 100      |           | 344       | -        | 48          | 100      | 94       | 100      | A-10     | 140      | bet .    |           |           |          | -          | -         |           |            |          |
| Chlorobenzene               | ppm    |          | -         | -      | -        | i+       | 991      | 1981     | 900        | -        |          | -         | 100       | 300      | 200         | -0.01    | 9.031    | 0.092    | 0 097    | 0037     | 0.054    | 0.076     | 0.010     | 0.034    | 0.025      | 0.014     | 9926      | 0 027      | 9-029    |
| Chlorobromomethane          | ppm    | NA NA    | 266       | NA.    | NA.      | No.      | 264      | NA.      | 100        | -        |          | -         | 340       | 140      | 64          | NA       | NA.      | NA.      | NA.      | NA.      |          | -         | 40.       | ***      | -          | _         | -         |            | ***      |
| Chloroethane                | ppm    | -        | -         | 0.00   | -        | 100      | lend.    | Cert     |            | -        |          | -         | 200       |          | 141         | 100.7    | 344      | 100      | -        | 1        | 1        | -         | 443       | 14       | -          | 40        | -         | 1          |          |
| Chloroform                  | ppm    | -        |           |        | 100      | 100      | 100      |          |            | 100      | -        | 1         |           | 467      | 146         | 140      | -        |          | -        | -        | -        | -         | 2.3       | 200      |            |           | -         | 701        | 1        |
| Chloromethane               | ppm    |          |           |        | 100      | -        | 100      |          | -          | - 1      | _        | -         | ***       |          |             |          |          |          |          |          | -        | _         | 100       |          | 100        | 116000-0  |           |            |          |
| Cyclohexane                 | ppm    | NA NA    | NA.       | NA.    | NA       | NA       | 0.024    |          | _          | _        | ***      | l _       |           |          |             | NA.      | NA.      | NA.      | NA.      | NA.      | _        | l –       | - 1       | I        | l _        |           | ,,,,      |            |          |
| Dicklorobromomethane        | ppm    |          |           |        |          |          | 90       |          | l _ l      |          | ***      |           |           |          |             |          |          |          |          | -        |          | l _       |           |          | _          |           | ***       |            |          |
| Ethylbenzene                | ppm    | 2.8      | 0.01      | 0.31   | 0.022    | -011     | 8MDL 1   | @-0012   | l _ l      |          | ***      |           |           |          | -           | BMDL J   |          | BMDL J   | 0 0023   | 0.0018   | BAIDL I  | _         | _         | BMDL I   | -          |           |           |            | 0 00015  |
| Isopropy lbenzene           | ppm    | NA       | NA.       | NA.    | NA.      | NA       | 0.006    | € 0099   | BMDL J     |          | 0.0014   | 0 0037    | 0.00078.8 | _        | 0 0011      | NA.      | NA.      | NA.      | NA.      | NA.      | 0 012    | 0011      | 0.009     | 0.019    | 0.012      | 0 0095    | 8 007     | 0015       | 0.014    |
| Methyl ethyl ketone         | ppm    |          |           | 1 2    | BAIDL I  | -        | 100      |          |            |          |          |           |           | _        | -           |          | -        |          | -        | BAGDL J  | ****     |           | BMDL J    |          | 0 0038 1   | 0 1034 J  | 0.0034.1  | 0.0068     | 0.0035   |
| Methyl tertiary butyl other | ppm    | _        | _         | _      | NA.      | l ma     | 10.1     | 104      |            |          |          | NA.       |           | -        | 1 -         | I        | -        | SA.      | _        |          |          |           | +-1       |          |            | NA.       | -         | 7000       | 40055    |
| Methylcyclohevane           | ppm    | NA       | NA.       | NA.    | SA       | NA       | 0 0041   | View Co. | BMDLJ      |          | _        | 0 00034   | l =       | I =      | -           | I        | NA NA    | NA<br>NA | NA.      | NA.      | 0 0055   | 0 035     | BAIDLE    | 0 0076   | 0 0098     | 901       | 0 0062    | D-00090    | 6011     |
| Methylene chloride          | ppm    |          |           |        |          | 144      | 0 004)   | 25       | U          | _        |          | ******    | =         | -        |             |          | 7.54     |          | 58       | 200      | 0 0003   | ****      | BUBLI     | 00079    | 0.00%      | 901       | 0 0002    | 0 00047 J  | 4011     |
| Methyl-iso-butyl ketone     | ppm    | I =      | 1 =       | 1 =    | 11.00    | 100      | 100      |          | -          |          | _        |           | =         | =        | _           |          |          |          |          |          |          |           |           |          |            | ! = !     | _         | 0 000473   |          |
| Styrene                     | ppm    | _        | 1 =       |        | 100      | lan.     | 100      | -        | _ [        | _        |          | _         | =         | =        | 1 -         |          |          |          |          |          |          |           | =         |          | =          | 1         |           |            |          |
| Tetrachloroethene           | bbes   | I =      | 1 =       |        | 100      | 200      | - 73     | 1.       |            | = 1      | _        | 45        |           | =        | i –         |          |          |          | 1        |          |          |           | BVIDLI    |          | _          | -         | _         |            | -        |
| Toluene                     | bben   | 1.9      | 0.43      | 0.034  |          |          | BMDL)    | 120      |            |          | _        |           |           |          |             |          | BAIDL J  | B/IDI I  | BAIDL I  | BMDL I   | BMDL /   |           | BNIDL J   | -        | 0.00026.3  | - 1       | _         |            |          |
| Total Xylenes               | bhen   | 19       | 10        | 0 66   | 0036     | # 012    | 8MDL)    | BAIDLI   |            |          | _        |           |           | _        |             | 0.038    |          | 0.04P    | 0.035    | 0.053    |          |           | B/(DL)    | I        |            |           |           |            |          |
| Trichloroethylene           | bhu    | "        | 1         | 000    | 9036     | - 012    | DADL!    | BALLI    |            | _        | _        | _         |           |          | l           | 0008     | 0-12     | 0.046    | 04055    | 005)     | 0 0 )45  | BMDLI     | 91039     | BMDL )   | 0.000343   | 0 00133   |           | 0001001    | 000184   |
| Vinst chloride              | ppm    | I =      |           |        | BMDL J   |          | - 5      |          |            | _        |          | -         |           |          |             |          | BMDL J   | 1 JOMB   | -        | BAIDL F  | _        |           | BNIDLI    |          |            |           | _         |            |          |
| TOTAL VOLATILES             | ppm    | 15       | 4.1       | 1.3    | 8.063    | 0.023    | 0.044.3  | 6.017.J  | 9,002      |          | 0.005    | 0.02154.4 | 0.00070 J | 9,00001  | -           | 0.12     | #.17     | 0.15     | 8.14     | 8/00L3   | 6.165 J  | 9,0997.J  | 9.06216   | BMDLJ    | 9 0005 J   | 0.0050 J  | 649943.3  | 0.00577.3  | 8.87961  |
| 2-Octanol                   | ppm    | NA.      | NA.       | NA.    | NA.      | NA.      | NA NA    | NA :     | NA         | NA NA    | NA       | _         |           |          | 0.0011      | _        |          | _        | -        |          |          |           |           |          |            | _         |           |            |          |
| 2-Octanone                  | ppm    | NA NA    | 1 m       | NA.    | NA<br>NA | NA<br>NA | NA<br>NA | NA.      | NA I       | NA<br>NA | NA.      | NA<br>NA  | NA<br>NA  | NA<br>NA | NA          | NA<br>NA  | NA<br>NA  | NA<br>NA | NA<br>NA   | NA NA     | NA.       | NA<br>NA   | NA<br>NA |
| TOTAL OCTANOL/OCTANONE      | ppm    | NA.      | NA<br>NA  | NA.    | 34       | NA<br>NA | NA NA    | NA NA    | NA NA      | NA<br>NA | NA<br>NA | NA<br>NA  | 94        | NA<br>NA | <del></del> | NA<br>NA  | NA NA     | NA<br>NA | NA<br>NA   | NA<br>NA  | NA<br>NA  | NA.        | NA<br>NA |
| ACID EXTRACTABLES           | +-77   |          | 1/4       |        | ,104     |          | 14/6     |          |            |          |          |           | - 114     |          |             | -44      | .44      | -34      | - 44     | .44      | .4/6     | - AA      | .44       | 144      |            |           | -74       | NA.        | - 55     |
| 2,4,5-Trichlorophenol       |        | NA.      | i _       | l _    | -        |          | N.4      |          |            | I        |          |           | L.,       | l        | ١.,         |          |          |          |          | 1        |          |           |           | l        |            |           |           |            |          |
| 2.4-Dimethylohenol          | ppm    | NA<br>NA | -         |        | -        | - 3      | NA       | NA.      | NA.        | NA .     | -        | NA.       | NA.       | NA<br>NA | NA          | NA NA    | -        | - 1      | -        | _        | NA.      | NA.       | NA.       | NA NA    | Part 1     | NA NA     | N.A.      | NA.        | NA.      |
| 2-Methy lphenol             | ppm    |          | i -       | I -    |          | 7.5      | NA.      | NA       | NA.        | NA.      |          | NA.       | NA.       | NA       | NA .        | NA NA    | -        | _        |          |          | NA       | NA NA     | NA.       | NA.      |            | NA        | NA.       | NA.        | SA       |
|                             | ppm    | NA.      | i –       | -      |          | 7        | NA .     | NA       | NA.        | NA.      |          | NA        | NA.       | NA.      | NA          | NA NA    | - 1      |          | -        |          | NA       | NA.       | NA.       | NA       |            | NA NA     | 54        | NA.        | NA.      |
| 4-Methylphenol              | ppos   | NA .     | -         | I -    | - 1      | 7.0      | NA       | NA       | NA.        | NA       | -        | NA        | NA.       | NA NA    | NA NA       | NA NA    | -        | -        | -        | ***      | NA.      | NA.       | NA.       | NA NA    |            | NA NA     | NA.       | NA.        | SA       |
| Pentachlorophenol           | ppns   | NA NA    | - 1       |        | -        | 57       | NA .     | NA.      | NA.        | NA       |          | NA.       | NA.       | NA.      | NA.         | NA       |          | 0 00067  | -        |          | NA.      | NA.       | NA.       | NA.      | -          | NA NA     | NA.       | NA         | SA.      |
| Phenol                      | ppm    | NA.      |           |        | ***      | 100      | NA       | NA       | NA.        | NA.      |          | NA.       | NA.       | . NA     | NA.         | NA.      |          |          |          |          | NA       | NA.       | NA.       | NA NA    |            | NA.       | NA.       | NA.        | NA.      |
| TOTAL ACID EXTRACTABLES     | DESTRU | 5.6      | 100       | _      | _        | -        | NA.      | NA       | 54         | NA.      |          | NA.       | 34        | 5.4      | 5A          | NA.      |          | 6.00007  | -        | _        | NA.      | NA.       | 5A        | NA       |            | - NA      | 5.4       | 54         | NA.      |

### TABLE 1 ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (INT page 15 for sorth)

|                             | L     | Г.       |         |         |        |        | Т      | W-JSS(R) | (Abandone | dì     |        |            |          |          |          |          |        |          |         |        |          | FW-175 ( | Abandoned |        |          |            |        |            |          |
|-----------------------------|-------|----------|---------|---------|--------|--------|--------|----------|-----------|--------|--------|------------|----------|----------|----------|----------|--------|----------|---------|--------|----------|----------|-----------|--------|----------|------------|--------|------------|----------|
| PARAMETER                   | UNIT  | Mar-88   | Apr-85  | Aug-89  | Aug-10 | Jun-11 | Sep-12 |          |           |        | Jol-17 | Oct-18     | Sen-19   | Sen-20   | Sep-21   | Mar-48   | Aug-03 | Aug-89   | Sep-10  | Jan-11 |          | Jon-15   | Jul-15    |        | Jul-17   | Oct-18     | Sep-19 | Sep-20     | Sep-21   |
| BASE/NEUTRALS               | _     |          |         | 1100 07 | 76.00  |        | OKP-10 | 70.0.10  | 00000     | 149-14 | 00117  | 0.1-10     | 349-17   | 04 P 24  | JA prail | .440     | 700    | Aug-47   | .A.P.IV |        | Japan    | 4911-13  | 0 1.5     | 37,510 | 0.001    | VA1-10     |        | 34714      | S.P.S.   |
| 2-Methylnaphthalene         | ppm   | NA.      | 8MOL J  |         | BMDLI  |        | NA.    | NA .     | NA NA     | NA.    | 100    | NA.        | NA       | NA NA    | NA       | NA.      |        | 0.4405   | 0014    | 0.015  | NA       | NA       | SA        | NA.    |          | NA         | NA.    |            | NA.      |
| Acenaphthene                | ppm   | NA.      |         |         |        |        | NA.    | NA.      | NA NA     | 5A     |        | NA.        | NA.      | NA       | NA       | NA.      | -      | -        |         | BADL J | NA I     | SA       | NA.       | SA     | #0031.1  | SA         | NA     | 200        | NA.      |
| Acenaphthylene              | ppm   | NA.      |         |         |        |        | NA.    | NA.      | NA NA     | SA     | 622    | 50         | NA.      | NA NA    | NA.      | NA NA    | 6.4    | -        |         | B-40.7 | NA       | NA       | NA        |        |          | NA.        | NA.    | - 2:       | NA.      |
| Anthracese                  |       | NA<br>NA |         |         | ::     | 7.0    |        | NA<br>NA | SA S      | SA SA  |        | 2.0        | NA.      | NA NA    |          |          | 201    |          | "       |        |          |          |           | SA     | _        | SA SA      |        | 31         |          |
| Benzo(a)Anthracene          | ppm   |          |         |         |        | -72    | NA.    |          |           |        |        | SA         |          |          | NA       | NA       | 199    |          |         |        | NA       | SA       | NA        | NA     |          |            | 5A     |            | NA.      |
| Benzo(a)Potene              | 66ur  | NA       |         |         |        | 170    | NA .   | NA NA    | NA NA     | NA .   | -      | NA.        | NA.      | NA.      | NA.      | NA NA    | 771    | E 000046 |         |        | NA       | NA       | NA        | SA     | 000057   | NA.        | NA.    | 0.0000741  | NA.      |
| Bearo(b)Fluoranthene        | ppm   | NA<br>   |         |         | ***    | 7.0    | NA.    | NA.      | 5A        | NA     | -      | NA .       | NA.      | NA.      | NA       | NA.      |        | BMDL J   | -       | -      | NA       | NA.      | NA .      | NA     |          | 5A         | NA.    | @000029 J  | NA.      |
|                             | ppm p | NA       | ***     |         | -      | - TS   | NA.    | NA NA    | NA NA     | NA NA  | -      | NA NA      | NA.      | NA.      | NA       | NA NA    | 4.0    | 8MDL J   | ***     |        | NA       | NA       | NA NA     | SA     | 0000237  | NA.        | NA.    | 0 000043 J | NA.      |
| Benzo(g.h,i)Perylene        | ppm   | NA NA    | ***     |         | -      | 77     | NA     | NA       | SA        | NA     | -      | NA NA      | SA       | NA NA    | NA.      | NA NA    | 191    | 100      |         | 411    | NA       | NA       | NA NA     | . SA   | -        | NA NA      | SA     | @000038 J  | NA.      |
| Benzo(k)Fluoranthene        | ppm   | NA.      | ***     | ~~      | -      |        | NA     | NA NA    | SA        | NA NA  |        | NA         | NA.      | NA.      | NA.      | NA NA    | 197    |          |         | ***    | NA       | NA.      | NA .      | . NA   | @0000131 | NA.        | NA.    | 0.000/301  | NA.      |
| bis(2-Chloroethox) Imethane | bbur  | NA NA    | ***     |         |        | 110    | NA .   | NA       | SA        | SA     |        | NA.        | NA.      | NA.      | NA       | NA.      | 100    | i        |         | 2.99   | NA NA    | NA       | NA NA     | 5.8    | -        | NA NA      | SA     | -          | NA.      |
| bis(2-Chloroethyl)ether     | ppm   | NA NA    | ***     |         |        | 7      | NA.    | NA NA    | SA        | NA NA  |        | NA         | NA.      | NA.      | NA       | ] NA     | 399    |          | 911     | Ø13    | NA NA    | NA       | NA NA     | NA.    | 0.096    | NA.        | NA.    | 00%        | NA.      |
| bis(2-Chloroisopropyl)ether | ppon  | NA NA    |         |         |        |        | NA.    | NA.      | NA :      | NA     |        | NA.        | 5A       | NA.      | NA.      | NA.      | 70.0   | 1        |         | 1.00   | NA NA    | NA       | NA NA     | - NA   | -        | NA NA      | NA.    |            | SA       |
| bis(2-Ethythexyt)phthalate  | ppm   | [ NA     |         |         | 1      | -      | NA.    | NA NA    | SA .      | NA NA  | -      | NA.        | NA       | NA.      | NA.      | NA.      | 777    |          | 400     | 7-     | NA.      | NA.      | NA.       | NA     | -        | NA NA      | NA.    | -          | NA       |
| Butyl beuryl phthalate      | ppm   | NA .     | ***     | ***     |        | -      | NA NA  | SA       | NA NA     | NA NA  | -      | NA NA      | NA.      | NA.      | NA.      | NA.      | -      | 25-      | -       | -      | NA.      | NA.      | NA.       | NA     | -        | NA NA      | NA.    |            | SA       |
| Carbazole                   | ppos  | NA NA    |         |         |        | -      | NA     | NA NA    | NA.       | NA NA  | -      | NA.        | NA       | NA.      | NA       | NA.      |        | 144      |         | -      | SA       | NA.      | NA.       | NA.    | -        | NA NA      | NA     |            | SA       |
| Chrysene                    | ppm   | NA NA    |         |         |        | -      | NA     | NA NA    | NA NA     | NA     | -      | NA.        | SA       | NA .     | NA.      | NA.      |        | - Fee    |         | -      | 5A       | NA       | NA.       | NA.    |          | NA NA      | NA.    |            | SA.      |
| Dibenz(a h)anthracene       | ppm   | NA.      | ***     |         |        | -      | NA.    | NA NA    | NA.       | NA NA  | 100    | NA NA      | NA       | NA.      | NA       | NA.      | 199    | 100      |         | 144    | NA.      | NA       | NA.       | NA.    |          | NA.        | NA.    | -          | SA.      |
| Dibenzofuran                | ppm   | 1 NA     |         |         |        |        | NA     | NA       | NA NA     | NA     | 190    | NA.        | NA.      | NA.      | NA       | NA.      | 101    | 10.      |         | 100    | NA NA    | NA.      | NA        | NA.    | 000191   | NA NA      | NA .   | ***        | SA       |
| Diethyl phthalaic           | ppm   | 1 NA     |         |         |        | _      | NA     | NA NA    | SA        | NA     | 700    | NA.        | SA       | NA.      | NA       | NA       | -      | 100      | l       |        | NA       | NA.      | NA.       | NA.    |          | NA '       | NA NA  | -          | SA       |
| Dimethyl phthalate          | ppm   | NA NA    |         |         |        | _      | NA     | NA       | NA NA     | NA     | 700    | No.        | NA.      | NA.      | NA       | NA       | _      |          | ł       |        | NA I     | NA.      | NA.       | NA.    | ***      | NA.        | NA NA  |            | NA.      |
| Di-n-butylphthalate         | ppm   | SA       | hvv     |         | l      | _      | NA.    | 34       | SA.       | SA     | _      | SA         | NA       | SA       | NA.      | SA       |        | l        |         |        | NA.      | NA       | NA.       | SA     |          | NA.        | SA     | 40         | NA.      |
| Di-n-octs lphthalate        | ppen  | NA.      |         |         |        | _      | NA     | NA.      | NA        | NA NA  | _      | NA.        | NA.      | NA       | NA.      | NA.      |        | l        | l       |        | NA.      | NA       | NA.       | NA.    |          | NA.        | NA.    | 200        | NA.      |
| Fluoranthene                | ppen  | SA       |         | l       | l      | l _    | SA     | SA       | NA.       | NA NA  | _      | SA         | NA       | SA       | NA.      | NA.      | I      |          | I       | l      | NA.      | NA       | NA.       | SA     | l _      | SA         | SA.    |            | NA.      |
| Fluorene                    | ppm   | M        |         |         | l _    | l _    | NA.    | NA       | 5A        | NA.    | 1      | NA.        | NA.      | NA       | NA.      | SA.      |        |          | l       |        | NA       | NA.      | NA.       | NA.    | 0 0023 J | NA.        | 5A     | 227        | 5A       |
| Hexachlorobenzene           | ppm   | NA.      |         |         | NA.    | - 54   | NA     | NA.      | SA.       | NA     | 0.024  | NA.        | NA.      | 5A       | NA.      | NA NA    |        |          | I       |        | NA NA    | NA.      | SA.       | NA.    | ******   | NA.        | SA     | 40000163   | SA       |
| Indeno(1,2,3-od)Pyrene      | ppm   | NA.      |         | 1       |        |        | NA.    | NA.      | NA NA     | NA NA  | -      | NA.        | NA.      | NA.      | NA.      | NA NA    | I      |          | l       |        | NA NA    | NA.      | NA.       | hA.    | _        | l SA       | NA.    | 0.000055*  | 54       |
| Isophorone                  | ppen  | NA.      | 1 =     |         |        |        | NA .   | SA       | NA NA     | NA.    | 142    | NA.        | NA.      | NA.      | NA.      | NA.      |        |          |         |        | NA NA    | NA.      | NA.       | NA.    |          | SA         | 5A     |            | NA.      |
| Naphthalepe                 | ppen  | NA.      | 0 0 3 9 | 0054    | 0.028  | -      | NA.    | Ø 0088   | BMDL I    | - 44   | 100    | # 000060 1 |          |          |          | NA.      |        |          | 001)    | 0016   | NA NA    | 0.013    | 0.0011    | 0 0014 | _        | 0 000046 J |        | -250       |          |
| Nitrobenzene                |       | NA.      |         | ***     | ****   | I =    | SA     | SA.      | NA.       | NA     |        | SA         | NA.      | NA.      | NA.      | NA.      |        |          | 0017    | 0010   | NA NA    | NA.      | NA.       | NA.    |          | NA.        | 1 34   | 100        | NA.      |
| Phenanthrene                | ppen  | NA.      |         |         | I -    |        | SA.    | SA.      | NA NA     | 5A     | TO S   | SA<br>NA   | NA<br>NA | SA       | NA<br>NA | NA.      |        | I        |         | I      | NA       | NA.      | NA.       | SA     | 00031    | NA<br>NA   | 1 34   | 100        | NA<br>NA |
| Pyrene                      | ppen  | NA.      |         |         | 1 =    | I =    |        |          |           |        | -54    |            |          |          | NA<br>NA | 1 52     |        |          |         |        |          | NA.      | NA.       |        |          |            | NA NA  |            | NA<br>NA |
| 1.4-Diovane                 | ppen  | NA<br>NA | I       | - Sa    | SA.    | _      | SA.    | NA<br>NA | NA<br>NA  | SA.    |        | NA NA      | NA<br>NA | SA.      |          | 2.2      | ***    | NA.      | NA.     |        | NA NA    |          | SA        | NA.    | NA.      | NA<br>NA   | SA.    |            |          |
| TOTAL BASE/NEUTRALS         | ppm   | NA NA    | 9,011   | 0.054   | 0.031  | NA NA  | NA.    | 0.000E   | NA.       | NA .   | NA     | 0.00060 J  | NA.      | NA NA    | NA       | NA NA    | NA.    |          |         | NA.    | A0005 J  | NA.      |           | SA.    |          | 9.00949 J  |        | 9.07624 J  | NA<br>NA |
| TOTAL BASEARCTIONS          | ppm   | - 34     | 40941   | 4(424   | 0.051  | _      |        | 0.0004   | 0.000     |        |        | COURS )    | _        |          |          | NA.      | -      | 0.00015  | 6.14    | 61631  | 2000.7   | 0.013    | 8,44167   | 8.692  | W 106    | 1,004103   | NA NA  | 4.07/62/13 | - NA     |
| PESTICIDES                  | 1     | 1        | 1       |         | 1      | l      |        |          |           |        |        | 1          |          |          |          | l .      |        |          |         | 1      |          |          | l         | l      | l        | ļ.         | l      | l          | 1        |
| 4.4'-DDD                    | ppb   | NA.      | l _     | l _     | l      | l _    | NA.    | NA.      | NA        | SA     |        | SA.        | NA.      | NA       | NA.      | 84       |        |          | l       | l      | NA       | NA NA    | NA.       | NA.    | l _      | NA NA      | NA .   | l SA       | NA.      |
| 4.4'-DDE                    | ppb   | NA.      |         |         | -      | 1 -    | 84     | NA.      | NA NA     | NA.    | -      | NA NA      | NA.      | NA<br>NA | NA.      | NA NA    | -      |          | I       | I      | NA NA    | NA.      | NA.       | NA.    | I -      | NA.        | NA.    | NA NA      | SA       |
| 4.4-DDT                     | ppb   | SA.      |         | =       | 1 =    | 2      | SA SA  | NA<br>NA | NA NA     | NA NA  | 10000  | NA.        | NA<br>NA | NA<br>NA | NA<br>NA | NA.      |        |          |         | I      | NA<br>NA | NA.      | NA.       | NA NA  |          | NA NA      | NA NA  | NA SA      | 54       |
| Beta-BHC                    |       | NA<br>NA |         |         | I -    | ı -    |        |          |           | NA NA  | 5.7-   |            |          |          |          |          | "      | ı        | "       | I      |          |          |           |        | I -      | NA NA      |        |            | NA<br>NA |
| Delta-BHC                   | ppb   |          |         | _       | I -    |        | NA NA  | NA.      | NA NA     |        | -      | NA         | NA.      | NA NA    | NA.      | NA.      |        |          |         |        | NA       | NA.      | NA.       | NA.    |          |            | NA     | NA.        |          |
| Dieldrin                    | bbp   | NA<br>NA | I -     |         | -      |        | SA     | NA       | NA<br>NA  | SA     |        | NA.        | NA.      | NA.      | NA.      | NA<br>NA |        | 1***     |         |        | NA       | NA NA    | NA.       | NA NA  | I        | NA.        | NA     | NA.        | NA.      |
|                             | bbp   | NA.      | _       | -       |        | - 7    | 8.4    | NA       | NA NA     | SA     | 200    | SA         | NA.      | NA NA    | NA.      | NA.      |        |          |         |        | NA NA    | NA.      | NA.       | NA NA  |          | NA.        | NA.    | NA NA      | NA.      |
| Endosultin I                | bbp   | NA.      | -       | _       | I -    | -      | 5/A    | NA.      | NA NA     | SA     | -      | NA         | NA.      | NA NA    | NA       | NA.      | ~      |          |         |        | NA.      | NA.      | NA.       | NA NA  | I -      | NA.        | NA.    | NA SA      | SA       |
| Endosulfan sulfate          | bbp   | 5A       | -       | _       | -      | i -    | SA     | NA NA    | NA        | 5A     | -      | NA.        | NA.      | NA.      | NA.      | NA.      |        | -        |         |        | SA       | NA.      | NA.       | NA.    | -        | NA NA      | NA.    | NA.        | 5.8      |
| Endne                       | bbp   | NA .     | -       |         | -      | -      | NA.    | NA.      | NA NA     | NA.    | -      | NA:        | NA       | NA NA    | NA.      | SA       |        | -        |         |        | SA       | NA       | SA        | NA.    |          | NA.        | SA     | NA.        | 5.4      |
| Endra aldehyde              | bbp   | NA.      | - 1     |         |        | -      | SA     | NA .     | NA.       | 5A     | -      | NA         | NA.      | NA.      | NA.      | NA.      | ***    |          | ***     | ,      | SA       | NA.      | NA.       | NA.    | -        | NA.        | NA.    | NA.        | NA.      |
| Endra ketone                | bbp   | NA.      | -       |         |        | -      | SA     | NA.      | NA NA     | SA.    | 71.0   | NA.        | NA.      | NA NA    | NA.      | NA.      |        |          | ***     | ,      | NA NA    | NA.      | SA.       | NA.    |          | NA.        | NA.    | NA.        | NA.      |
| Gamma-BHC                   | bbp   | NA       | -       | -       |        | j -    | 5.4    | NA.      | NA NA     | 5A     | -      | NA.        | NA.      | NA.      | NA.      | N.5      |        | ***      |         | p=4    | SA.      | NA.      | SA.       | NA.    | 0-021 P  | SA.        | SA     | NA NA      | 5.4      |
| Heptachlur                  | bbp   | NA.      | -       |         |        | -      | NA.    | NA.      | NA NA     | NA.    | -      | N/A        | NA.      | NA.      | NA.      | NA.      | 1***   | BAIDE I  | ***     | ***    | NA.      | NA .     | NA.       | NA     | -        | NA.        | 5A     | NA.        | 5.8      |
| Heptachlor epoxide          | ppb   | NA.      | -       |         |        |        | NA.    | NA       | NA.       | 5A     | -      | SA         | NA       | 54       | N4       | N4       |        | -        |         |        | NA.      | NA.      | NA        | N4     |          | NA         | 5A     | NA.        | 5.8      |
| Methoxychior                | ppb   | NA.      |         |         | 1 -    |        | NA.    | NA NA    | NA.       | NA NA  |        | NA.        | NA.      | NA.      | NA.      | NA.      |        |          |         |        | NA.      | NA.      | NA.       | NA.    |          | NA NA      | NA.    | NA.        | NA.      |
| TOTAL DDX                   | ppb   | N4       | I -     | T -     | I –    |        | 5.4    | SA       | NA NA     | 54     | . 101  | NA.        | 3.4      | NA       | NA.      | NA.      |        | 144      | 144     |        | 54       | NA.      | 5A        | NA.    |          | NA         | 54     | 34         | N4       |
| TOTAL PESTICIDES            |       |          |         |         |        |        |        |          |           |        |        |            |          |          |          |          |        |          |         |        |          |          |           |        |          |            |        |            |          |

#### TABLE I ANALYTICAL RESULTS FOR ON-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM

#### NOTES:

A complete set of historical groundwater data (beginning in 1995) can be provided upon request.

As of August 2004, interceptor wells IW-101, IW-102, IW-103, IW-105, and IW-106 are no longer in service. The following adjacent monitoring wells are

sampled as replacements: MW-4, TW-30S, MW-5, MW-6, and TW-26S, respectively.

In September 2019 TW-LS was not sampled due to access issues.

In September 2022 OFF-17 was not sampled due to access issues.

The following onsite locations shown on Figure 2, are not sampled as part of the Groundwater Management System Monitoring: IW-101, IW-102, IW-103.

IW-105, IW-106, MW-8, MRW-108, MRW-109, P-2, P-5, P-6, P-8, P-22, P-23, P-26, P-27, P-28, PT-01, TW-75(R), TW-275, TW-365, and TW-385.

This table only lists parameters that were detected at least once in the wells sampled.

Well (W-107 was plugged and abandoned in November 2016.

Wells MW-7, MW-9, MW-10, TW-33S, TW-35S(R), and TW-37S were abandoned in 2022-

Wells TW-32S(R), TW-34S, TW-43S were plugged and abandoned in 2012-

"B\* - Not detected above the level reported in lab or rinsate blanks.

This value was not included in the total concentration.

"BMDL" - Analyte present, but detected below the method detection limit.

"D" - Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

\*F1\* - M5 and/or MSD recovery exceeds control limits.

"J" - Analyte present - reported value may be biased low or high.

"P" - Due to equipment interference, value reported is lowest measured concentration.

NA - Not analyzed

ppm = mg/L, ppb = µg/L

"---" - Parameter was not detected (data validation qualifiers may not be listed).

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (1902 Puigt 15 for Bolles)

| PARAMETER                               | USIT   |          |        |          |               |          |          |          | LA-1   |          |           |        |          |            |           |           |          |          |                                                  |         |         |         |           | 4-2                                              |          |                |           |            |           |          |
|-----------------------------------------|--------|----------|--------|----------|---------------|----------|----------|----------|--------|----------|-----------|--------|----------|------------|-----------|-----------|----------|----------|--------------------------------------------------|---------|---------|---------|-----------|--------------------------------------------------|----------|----------------|-----------|------------|-----------|----------|
|                                         | 0.411  | Mar-08   | Sep-08 | Aug-09   | Aug-10        | Jun-II   | Sep-12   | Jun-13   | Jun-15 | Sep-16   | Jul-17    | Oct-18 | Sep-19   | Sep-20     | Sep-21    | Sep-22    | Mar-86   | Sep-08   | Aug-09                                           | Aug-18  | Jun-11  | 5ep-12  | Jun-13    | Sep-16                                           | Jul-17   | Oct-18         | Sep-19    | Sep-10     | Oct-21    | Sep-     |
| OLATILES                                |        |          |        |          |               |          |          |          |        |          |           |        |          |            | l         |           |          |          | 1                                                |         |         |         |           |                                                  |          |                |           | 1          |           |          |
| 1,1,1-Trichloroethane                   | ppm    | 300      | 100    |          |               |          | 2364     | 164      | -      | - Dec    | 0.480     | 100    | 46       | 100        | 440       | Line      | 164      | 1        | 100                                              | _       |         | 1000    |           | 100                                              | _        | 100            | 100       | 100        | 104       | -        |
| 1.1.2.2-Tetrachloroethane               | ppm    | -        | -      | -        | -             |          |          | -        | -      | -        |           |        | 400      | -          | 1         | 2         | -        | -        |                                                  | -       | -       | -       |           |                                                  | 1        | 7.00           | ***       |            |           | -        |
| 1,1-Dichloroethene                      | ррт    | 1000     | 100    | 300      | 100           |          | -        | -        |        | 100      | 100       | 1 (10) | 100      | -          | -         | -         | (-)      | -        | 101                                              | -       | 100     |         | 100       | 2.01                                             | .555     | 100            | 101       | -          |           | -        |
| 1,2,4-Trichlorobenzene                  | ppm    | NA       | 140-   | -        | -             | ***      | -        | -        | -      | -        | ***       | -      | -        | -          |           | - 44      | NA.      |          | 144                                              | 40      | 100     | Acres 1 | 100       | 100                                              | 100      | 1.60           | 144       | p==        | 444       |          |
| 1.2-cis-Dichloroethylene                | ppm    | -        |        |          | 946           | ***      | ***      | in.      | 311    | 70.7     | 710       | -      | 275      | ++         |           | -         |          | BMDL J   | BMDL J                                           | 1 JOHAN | BMDL J  | BMDL J  | -         | BMDL F                                           | - 1-     | 1000           | -         | - 1        | 0 00037 / | 0.0003   |
| 1.2-Dibromo-3-chloropropane             | ppm    | -        | -      | 1906     | 680           | - 400    | -0.00    | 100      |        | -01      | 100       | 100    | 440      | 100        | 100       | -         | -        | 11.000   | -                                                |         | 1,000   | 10000   | 100       | 1179                                             | 199      | 760            |           | ]          |           | -        |
| 1,2-Dichlorobenzene                     | ppm    | NA       | -      | -        | -             | -        | _        | -        | -      | -        |           |        |          | -          | 144       |           | NA       | BMDL J   |                                                  |         | 364     | BMDLJ   | BMDL      | BMDL                                             | 104      | 1441           |           | 0.000527   | 0 00067 J | 0.0003   |
| 1.2-trans-Dichloroethylene              | ppm    |          | -      | 200      | 190           | 711      |          | 200      | - 22   | mt.      | 191       | NA.    | -        | 100        | 111       | ****      | 197      | 100      | 523                                              |         | -       |         | 40.0      | -                                                |          | NA.            |           |            |           |          |
| 1.4-Dioxane                             | ppm    | lan-     | 460    | See.     | San .         | 144      | -        | in.      | 44     | 0 coodes | Citi      | NA     | NA.      | 40.0       | 100       | 161       | 904      | 114      | 100                                              | des     | -       | 100     |           | -                                                | -        | NA.            | NA        | 0 00027 J* |           |          |
| 2-Hexanone                              | ppm    | -        | -      | -        | - 2           |          | _        | -        | 1      | -        |           | 8-3    | 12       |            | -         | -         | _        | 200      | 127                                              | -       | -       |         | -         | 1 4                                              | 22       |                | 107       |            | _         |          |
| Acetone                                 | ppm    | -        | 100    | 100      | 2             | 100      | 7.0      |          | -      |          | 0.0005    |        | 0.036    | 100        | 0.0096    | 0.038     | 787      | -        | - 20                                             |         | 4.5     |         | ***       | 0.01                                             | 0.00463  |                |           | -          | 0.0064    | 0.01     |
| Benzene                                 | ppm    |          | 440    | 100      | Total Control | and .    | 764      | 350      | - 22   |          | 144       | 100    | - 101    | 46         | MY        | 7 444 11  | 0.014    | 0.041    | 0.027                                            | 0.024   | 0.004   | 0.914   | 0 0045    | 0.0094                                           | 0039     | 0 0016         | 0 00075 J | 0.00064    | 0.0012    | 0.001    |
| Bromoform                               | ppm    |          | -      | 200      | - 5           |          | 100      |          |        |          |           | 3      |          |            |           | 100       | -        | -        | 1                                                |         |         |         |           |                                                  | -        | + 0010         | - 000177  |            |           | 000      |
| Carbon Disulfide                        | ppm    | -        | -      | 200      |               | -        | 12       | 223      |        | -        | -         | -      | 2.5      | 100        | -         | 200       | =        | -        |                                                  |         | <u></u> | -       |           | -                                                |          | mi             | tors.     | 100        | 1         | 1        |
| Chlorobenzene                           |        |          |        | -        | 120           |          | 17       | 300      | -      |          |           | 100    | 100      |            |           | - 20      |          | 3.770    | -                                                | to.     |         |         |           |                                                  |          | No.            | 400       | 100        | - 22      | 1        |
| Chloroethane                            | ppm    | -        | -      | -        | 1.7           | lere.    | 1.7      | -        |        |          |           |        | -        | -          | -         |           | -        | -        | 100                                              | -       | -       |         |           | BMDL I                                           | 1        | 1              |           | -          | - 3       | 1.5      |
| Chloroform                              | bhu    | ni eni   | l      |          | BMDL J        |          | DIADY I  | BMDL J   | BMDL J |          | 0.000341  | 57.7   | 1172     |            | 77.0      |           | D1 100 1 | 2.0033   | - 77                                             | 3.00    | 100     | 10000   | 0.00      | 6MDC I                                           | 200      | 500.00         | 9.7       | 1000       | 1.000     |          |
| Chloromethane                           | ppm    | BMDL /   |        | BALDL J  |               | BMDL J   | BMDt. J  |          |        | BMDL I   | 0 00025 J |        | 140      | -          | 346       | 1963      | BMDL     | -        | 1                                                | -       | -       | 1 100   | 1961      | 01.004                                           | .000     | 100            |           | 100        | 1-        | _        |
|                                         | ppm    |          |        |          |               | BMDL J   |          | _        | 0.00   | -        | -         | 100    | 177      |            | -         | -         | 375      |          | 177                                              |         |         | int.    | 444       | BMDL                                             | 17.      | 144            | 144       | -          |           |          |
| Cyclohexane                             | bbus   | NA.      | NA.    | NA.      | NA.           | NA.      | -        | 100      |        |          | - 700     | 11366  | 100      | 24         | 1997      |           | NA.      | NA       | NA.                                              | NA      | NA.     | 0 0016  | 9 005     | 0.001                                            | 0 0044   | 0 0035         | D 00095 J | 0.004)     | 0.00096.0 | 0.002    |
| Dibromochloromethane                    | Salara |          |        |          | ***           | 100      |          |          | 100    | -        | M.        | 140    | 360      | -          | 10        | -         | 144      |          | 175                                              | -       | 0.0     | 200     | 100       | 100                                              |          | 100            | -         | -          |           | -        |
| Dichlorobromomethane                    | ppm    | -        |        |          | 100           |          |          |          | -      |          | ****      |        | 1000     | -          |           | -         | -        |          |                                                  |         | ***     |         |           |                                                  | - 44     | to the same of | -         |            |           |          |
| Ethy Benzene                            | ppm    | -        |        |          | -             | -        | -        | -        | -      |          |           | -      |          | 100        | -         |           | 0.0062   | 1100     | BMDL J                                           | 0.0013  | 0.057   | BMDL 1  |           | 0 029                                            | 0 0037   | 0 0022         | _         | 0.000483   | 0.000383  | 0.002    |
| I sopropy Ibenzene                      | ppen   | NA.      | NA.    | NA       | NA.           | NA.      |          | -        |        |          | ***       | ***    |          |            |           | ***       | NA       | NA       | NA                                               | NA.     | NA      | 0.002V  | 0 0 0 1 2 | 0.011                                            | 0061     | # 0055         | 0.0029    | 0 0043     | 0 0035    | 0.005    |
| Methyl othyl ketone                     | ppm    |          |        |          |               | +**      |          |          | 1      | ***      | ***       |        | 0 0074   | -          | ***       | 0 0034 J  |          | -        | 1-                                               | -       |         | -       |           |                                                  |          | ***            | ***       |            |           |          |
| Methyl tertiary butyl ether             | ppm    |          |        |          |               |          |          | -        | -      |          |           | NA     |          | 100        | 100       |           | 1,00     | BMDL J   | NA                                               | NA.     | 100     | 201     | ***       | ***                                              | 100      | NA.            |           |            | 91        | 711      |
| Methylcyclohexane                       | ppm    | NA.      | NA.    | NA.      | NA.           | NA       |          | -        | -      |          |           | _      |          | -          | ***       |           | NA.      | NA.      | NA.                                              | NA.     | 74.6    | 0.006   |           | 0 0072                                           | 0 0037   | 100            | 0.0001017 | -          | 1884      | 0.000    |
| Methylene chloride                      | ppm    |          |        | 144      |               |          |          |          |        |          | ***       |        |          | 100        | 141       |           | -        |          |                                                  | -       |         | -       |           |                                                  | -        |                | -         | -          | -         | -        |
| Methyl-iso-buryl ketone                 | ppun   |          | -      | -        | ***           | ***      |          |          |        |          | ***       |        | 0.0081   | 0.00161    | 100       | 0.005#    | 100      |          | -                                                | -       | 490     | -       | 101       | BMDL 3                                           | .70      | 199            | 1997      | 400        | 0.00      | 100      |
| Styrene                                 | ppm    |          | -      |          | l –           | -        |          |          |        |          |           |        | l –      | -          | -         |           | -        | -        | -                                                |         | 346     | 464     | 144       | 40.7                                             | -        | 484            | 944       | 100        | 364       |          |
| Tetrachloroethene                       | ppm    |          |        |          |               |          |          |          | -      |          | ***       |        |          |            |           | ***       | 244      |          |                                                  | 20.00   | -       | -       | -         |                                                  |          |                | _         | _          | -         |          |
| Toluene                                 | ppun   |          |        |          | ***           |          | ***      |          |        | 1        | ***       | p=+    | 0-0011   | 0 000990 J | 0.000553  | 0 00067 J |          | -        | BACDLI                                           | BMDL J  | 0.0074  | 0.000   | 112       | 0015                                             | 0.0035   | 0.0024         | 0 0004I J | 0 00092 J  | 0.0029    | 0.002    |
| Total Xylenes                           | ppm    |          | l –    | l –      |               |          |          |          |        |          |           |        |          |            | 1-        |           | 0.01     | 0.02     | BMDL J                                           | 0.01    | 0.21    | 0.01    | BMDLJ     | 0.21                                             | 0.02     | 0 0067         | 0.0023    |            | 0 00164 J | 0.004    |
| Trichloroethy lene                      | ppen   |          | l      | _        | I _           |          |          |          | _      |          |           |        |          |            | 44        |           |          |          |                                                  | BMDL I  | BMDL J  |         | _         | 1                                                | 1        |                |           |            |           |          |
| Vinyl chloride                          | ppm    |          |        |          | 1 =           |          |          |          | 1 -    |          |           |        |          |            | 144       | 100       | 100      |          | - 62                                             | BMDLI   | BMDL J  | BMDL J  | 100       | BMDL J                                           | 0.00012  | -              | 200       | 100        | 100       | 0.0000   |
| TOTAL VOLATILES                         | ppm    | 0.0007 J | -      | 6,0005 J | 0.0004 J      | 8,0006.J | 0.0000 J | 0.0005.2 | 0.001  | 8,002    | 0.097     | _      | 0.0526   | 0.0028 J   | 0.01015.3 | 0.06747.3 | 0.832    | 0.004 J  | 0.029                                            | 0.033   | 6.294 J | 0.03 J  | 6.013.3   | 8.306                                            | 8.847    | 0.02367 J      | 0.00784 J | 0.01117 J  | 0.01846.J | 8,65725  |
|                                         | 17.11  |          |        | -        |               | 1        |          |          | -      | -        | -         |        |          | -          |           |           |          | 1        | 1                                                | 1       |         |         |           |                                                  |          |                |           |            |           |          |
| 2-Octanol                               | ppm    | NA.      | NA.    | NA       | NA.           | NA.      | NA.      | NA NA    | NA.    | NA.      | NA.       | NA NA  | I        | 1          | 1         |           | NA.      | NA       | 440                                              | NA.     | NA.     | NA NA   | NA.       | NA NA                                            | NA.      | NA.            | NA.       | NA.        | NA        | H.L      |
| 2-Octanone                              | ppm    | NA.      | NA.    | NA.      | NA.           | NA.      | NA NA    | NA.      | NA.    | NA.      | NA.       | NA NA  | NA.      | 364        | NA.       | NA        | NA.      | NA.      | - 2                                              | NA.     | NA.     | NA.     | NA.       | NA.                                              | NA.      | NA.            | NA.       | NA.        | NA        | NA.      |
| TOTAL OCTANOLOCTANONE                   |        | NA.      | NA.    | NA NA    | 54            | NA.      | NA.      | NA.      | NA.    | NA.      | NA.       | NA.    | NA.      | NA         | NA.       | NA.       | NA.      | NA.      |                                                  | NA      | NA.     | NA.     | NA.       | 54                                               | NA.      | NA             | 24        | NA.        | NA        | SA       |
| TOTAL COMMODULATION                     | I ppen |          |        |          | .575          |          | ,,,,,    | 1        |        | 1.170    |           | 1      |          | 177        | 1 .44     | ,444      |          | - 117    | <del>                                     </del> | F .1.74 | 1124    |         | 1         | <del>                                     </del> | 1.00     |                |           | 1          |           | +        |
| ACID EXTRACTABLES                       | 1      | l .      | I      | 1        |               | 1        |          |          |        | 1        | i         | 1      | I        |            | 1         |           | I        | I        | 1                                                | l .     | 1       | 1       | I         |                                                  | 1        | l .            | 1         | 1          | I         | 1        |
| 2,4-Dimethy lphenol                     |        | D.       | l      |          |               | 1        |          | 1        |        | L        |           | 1      | ١.,      |            | l ba      | Ma        | ν.       | BMDL I   |                                                  |         |         | NA.     | NA.       | NA                                               | NA NA    | NA.            | NA        | l NA       | NA.       | NA.      |
| Z, 4-Dimethy iphenoi<br>2-Methy lphenol | ppm    | NA       | -      | -        |               |          | NA.      | NA       | NA     | NA.      |           | NA.    | NA<br>NA | NA NA      | NA NA     | NA        | NA.      |          |                                                  | 11.00   |         |         | 1         |                                                  | NA<br>NA |                |           |            | NA NA     | NA<br>NA |
|                                         | ppm    | NA<br>NA | -      | -        | _             | -        | NA.      | NA NA    | NA     | NA.      |           | NA.    | NA.      | NA.        | NA        | NA        | NA.      |          | 350                                              | 184     | p       | NA.     | NA.       | NA.                                              |          | NA<br>NA       | NA.       | NA NA      |           |          |
| 4-Methylphenol                          | ppen   | NA       |        |          | -             |          | NA.      | NA       | NA     | NA.      |           | NA.    | NA       | NA         | NA        | NA.       | NA.      |          | 7                                                | -       | 157     | NA.     | NA        | NA.                                              | NA       | NA             | NA        | NA.        | NA NA     | N.A      |
| Pentachlorophenol                       | bbur   | NA       |        | ***      |               | NA       | NA.      | NA.      | NA.    | 144      | 0 00046   | NA.    | NA       | NA         | NA        | NA        | NA.      | 500      | -23                                              | 10.7    | NA      | NA.     | NA.       | NA                                               | NA       | NA.            | NA        | NA.        | NA.       | NA.      |
| Phenol                                  | ppm    | RA       | -      |          | -             |          | NA NA    | NA NA    | NA     | NA.      |           | NA.    | NA NA    | NA         | NA        | NA.       | NA       | -        |                                                  |         |         | NA.     | NA.       | NA.                                              | NA NA    | NA NA          | NA        | NA.        | NA.       | NA.      |
| TOTAL ACID EXTRACTABLES                 | ppm    | NA.      | - 1    | l –      | J -           | I -      | NA.      | NA       | NA.    | NA.      | 0.00046   | NA.    | 5A       | NA.        | NA.       | NA.       | NA.      | 8.0009 J |                                                  |         |         | NA.     | NA.       | NA                                               | NA.      | NA.            | NA.       | NA.        | NA.       | NA.      |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (100 page 15 for notes)

| AMONE FRAME OF THE PARTY OF THE | PARAMETER                  | UNIT |        |        |        |        |        |          |        | LA-I   |        |           |        |          |         |        |        |             |                 |        |           |        |          | LA       | 1-2      |        |           |        |         |        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|--------|--------|--------|--------|--------|----------|--------|--------|--------|-----------|--------|----------|---------|--------|--------|-------------|-----------------|--------|-----------|--------|----------|----------|----------|--------|-----------|--------|---------|--------|---------|
| Melle Supplishalismer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |      | Mar-68 | Sep-88 | Aug-09 | Aug-10 | Jen-II | Sep-12   | Jun-13 | Jun-15 | Sep-16 | Jel-17    | Oct-18 | Sep-19   | Sep-20  | Sep-21 | Sep-22 | Mar-98      | 5ep-88          | Aug-09 | Aug-10    | Jun-11 | Sep-12   | Jun-13   | Sep-16   | Jul-17 | Oct-18    | Sep-19 | Sep-20  | Oct-21 | Sep-22  |
| Symmetries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1    | ı      | 1      |        |        |        | 1        |        |        | 1      |           |        |          |         |        |        |             |                 |        |           |        |          |          |          |        |           |        | 1       |        |         |
| Chemosalisis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | ppm  | NA     |        |        |        |        | NA NA    | NA.    | NA.    | NA.    | 300       | NA.    | NA.      |         | NA     | NA .   | NA.         | BNIDL #         | 191    | 1100      | -      | NA       | NA.      | NA.      | NA.    | NA        | NA     | NA.     | NA     | NA.     |
| Chieseasistic   Prop.   20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Nitroaniline             | ppm  | NA NA  | l      |        |        | !      | NA NA    | NA.    | NA.    | NA.    |           | NA.    | NA.      |         | NA.    | NA     | NA.         | length 1        | 107    | 100       | -      | NA NA    | NA       |          | NA.    |           |        |         |        |         |
| Tempelaterials   Pyme   SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I-Chloroaniline            | ppon | NA.    |        |        |        | 1      | l NA     | NA.    | NA.    | NA.    | G.,       | NA.    | NA       |         | NA     | NA     | NA.         | Total .         |        | WA        | 705    | NA.      |          |          |        |           |        |         |        |         |
| Septembers   99th   30, No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene               |      | NA     | I      | l      | I _ i  | l      |          |        |        |        | 1.0       |        |          |         |        |        |             |                 | -      |           | 1972   | 1.111    |          |          |        |           |        |         |        |         |
| ## Seminary Company No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      |        |        |        | NA.    | 1      |          |        |        |        |           |        |          |         |        |        |             | ***             |        | 1000      |        |          |          |          |        |           |        |         |        |         |
| A PROMESSA STATE OF THE STATE O |                            |      |        |        |        | 1      | 1      |          |        |        |        | 3.7       |        |          | 200     |        |        |             | NA.             | - ^^   | 12.5      |        |          |          |          |        |           |        |         |        |         |
| Intercolling From Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      | ,      |        | 1      |        | ı      |          |        |        |        | - 11      |        |          |         |        |        |             | -               | 100    | 22,23,2   | -      |          |          |          |        |           |        |         |        |         |
| memorbal promothers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |        |        | 1      |        |        |          |        |        |        | 100       |        |          | 9 00013 |        |        |             | -               | 191    | 199       | 910    |          |          |          |        |           |        |         |        |         |
| Transpare Survey State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      |        |        | 1      |        | 1      |          |        |        |        | 1000      |        |          |         |        | NA.    | NA NA       | 100             | 100    | 58.8      | -      | NA       | NA NA    | NA.      | NA     | NA.       | NA NA  | NA.     | NA.    | NA.     |
| ## 2. Characompleted proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      |        | -      |        |        |        |          | NA.    |        |        | 0.0000131 | NA.    | NA.      | @ 00025 | NA NA  | NA     | NA          | 44              |        |           |        | NA NA    | NA       | NA.      | NA.    | NA NA     | NA.    | NA.     | NA NA  | NA.     |
| ## CEMBROOR PROPRIETE    Propriet   Propriet |                            |      |        |        |        |        |        | NA NA    | NA.    | NA.    | NA.    | 307       | NA.    | NA.      | 000018  | NA     | NA I   | NA          | -               | -      |           | ***    | NA.      | NA.      | NA.      | NA     | NA.       | NA.    | NA.     | NA.    | NA.     |
| ## 24-Bit Discriptionshaler   Pgm   MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | ppm  | NA     |        |        | ~~     | l      | NA NA    | NA.    | NA NA  | NA.    |           | NA.    | NA.      |         | NA     | NA.    | NA.         | Desir           | 100    | , inte    | 100    | NA NA    | NA       | NA       |        | NA NA     | NA .   | 4.1     | NA.    | 140     |
| ## 24-2019 (19-12-2019) principal afront and property of the control of the contr |                            | ppm  | NA     | I      |        | ***    |        | NA NA    | NA.    | NA     | NA.    | 710       | NA.    | NA.      |         | N.A.   | NA .   | NA.         | the contract of |        |           | -      | NA.      | NA       | NA.      |        | NA NA     | NA.    | NA.     | NA NA  | NA.     |
| my   my   MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bis(2-Ethylhexyl)phthalate | ppm  | NA NA  | I      |        |        |        | NA.      | NA.    | NA.    | NA.    | 346       | NA NA  | NA.      |         | NA.    | NA I   | NA.         | -               |        |           | 400    | NA.      |          |          | NA.    |           | NA     |         |        | NA.     |
| This print of the part of the  | Buty i berizy i pitthalate | ppm  | NA.    |        |        |        |        | NA       | NA.    | NA.    | NA.    |           | NA.    | NA.      | -       |        |        | NA.         | 100             | -      |           | 440    |          |          |          |        |           |        |         |        |         |
| Professor   Prof   | Carbazole                  | ppm  | NA     |        | ***    |        | l      | NA.      | NA.    | NA     | NA.    |           | NA     | NA       |         |        |        | NA.         |                 | 7.00   | 1000      | -      |          |          |          |        |           |        |         |        |         |
| Demonstram    Prof.   AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chry sene                  |      | NA.    |        |        |        | l      | NA.      |        |        |        |           |        |          |         |        |        |             |                 |        |           | -      |          |          |          |        |           |        |         |        |         |
| ethy piphulatate ppm NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibenzofuran               |      | NA.    | l      | ***    |        | l      |          |        |        |        |           |        |          | 2000    |        |        |             | -               |        | 1 - 5 3 5 | 13000  | F        |          |          |        |           |        |         |        |         |
| memby by habitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diethyl ohthalase          |      | NA     | I      | l      | 1      | ı      |          |        |        |        | 55        |        |          | 35.5    |        |        | 3/4         | - 57            | -      |           |        |          |          |          |        |           |        |         |        |         |
| See    |                            |      |        |        |        | 1 -    | ı      |          |        |        |        | 7.0       |        |          |         |        |        | 144         | 1000            | -      |           | 2337.3 |          |          |          |        |           |        |         |        |         |
| Post   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |      |        |        | 1      | 1      | ı      |          |        |        |        | -         |        |          |         |        |        |             | -               | -      |           | 1000   |          |          |          |        |           |        |         |        |         |
| Define SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      |        |        | 1      | 1      |        |          |        |        |        |           |        |          | 0.00    |        |        | NA.         | -               |        |           |        |          |          |          |        |           |        |         |        |         |
| DOTEST    DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DOTEST   DO |                            |      |        |        | 1      | 1 "    | ı      |          |        |        |        |           |        |          |         |        |        | NA NA       | _               | -      |           | -      |          |          |          |        |           |        |         |        |         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |      |        |        | 1      |        | ı      |          |        |        |        |           |        |          |         |        |        |             | -               | ***    | -11       | ***    |          |          |          |        |           |        |         |        |         |
| pophonome   DDM   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |        |        | 1      |        |        |          |        |        |        |           |        |          | 7.00    |        |        |             | 200             | -      |           |        |          |          |          |        |           |        |         |        | NA      |
| Popular   Popu   |                            |      |        |        | 1      |        |        |          |        |        |        |           |        |          | #1000#  |        |        |             | 900             |        |           | ***    |          |          |          |        |           | NA     | NA NA   | NA     | NA      |
| TOTAL BASENELTRALS   PPM   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |      |        | ***    |        | -      |        |          | NA.    | NA     | NA.    |           | NA.    | NA.      |         | NA NA  |        | NA .        |                 | -      |           |        | NA.      |          | NA       | NA.    | NA NA     | NA.    | NA.     | NA.    | NA.     |
| SPAN      |                            |      |        |        |        |        |        |          | _      |        | I .    |           | 1      |          |         | 1.00   | NA :   | NA          | 0.924           |        | l         |        | NA.      | 9WDL1    | 0.01     | 0 002  | # 00097 F | 100    | 0 00042 | 239    | 900070  |
| Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |        |        |        |        |        | NA       | NA.    | NA     | NA.    |           | NA.    | NA.      |         | NA     | NA NA  | NA.         | 44              | -      | l         |        | NA       | NA :     | NA       | NA     | NA.       | NA.    | NA.     | NA.    | NA NA   |
| ## Libosane   ppm   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |      |        |        |        |        |        | NA.      | NA.    | NA.    | NA.    |           | NA.    | NA.      |         | NA NA  | NA NA  | NA.         | -               |        |           | ***    | NA.      | NA .     | NA       | NA.    | NA NA     | NA     | NA.     | NA.    | NA:     |
| TOTAL BASENETTRALS   0pm   SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Py rene                    | ppm  |        |        |        |        |        | NA NA    | NA.    | NA     | NA.    | i         | NA .   | NA.      |         | NA.    | NA.    | NA          | 100             | 100    |           |        | NA.      | NA       | NA       | NA NA  | NA NA     | NA     | NA.     | NA.    | NA.     |
| ## CDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      |        |        | NA     | NA     | NA     | NA       | NA.    | NA.    | NA.    | NA.       | NA.    | NA.      | NA      | NA     | NA .   | NA          | NA              | NA.    | NA NA     | NA     | NA I     | NA       | NA.      | NA.    | NA NA     | NA.    | NA.     | NA.    | 100     |
| #*DDD*** DPD*** NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL BASE/NEUTRALS        | ppm  | SA.    | -      | ***    | _      |        | <u> </u> | 1-4    | ***    |        | 4.00000[] |        |          | 8.00074 | 100    | 11.00  | NA          | 8.626 J         | -      |           |        | 0.0003 J | 8.0012 J | 4.91966  | 0.002  | 0.00097 J | 5A     | 9.80042 | NA     | 0.00070 |
| #*DDD*** DPD*** NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | POTECINES                  | i i  | ı      | 1      |        | 1      | l      | 1        |        |        |        |           |        |          |         |        |        |             |                 | I      |           |        |          |          |          |        |           |        |         |        |         |
| ## CDDE   96b NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Ι.   | l      | 1      | 1      | 1      | I      | I        | 1      | I      | 1      | 1         |        |          |         |        |        | 1           | 1000            |        | I         | I      |          | 1        |          | 1      |           |        | 1       | 1      | 1       |
| ## CDDT   Ppb   MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |      |        |        | 1      |        |        |          |        |        |        |           |        |          |         |        | NA     | NA          |                 |        |           |        | NA.      | NA.      | NA.      | NA NA  | NA.       | NA.    | NA NA   | 5/5    | NS      |
| 18-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      |        |        | ***    |        | I –    |          |        |        |        |           |        |          | NA.     |        | NA     | NA.         | less.           | 100    | l –       |        | NA.      | NA       | NA       | NA.    | NA.       | NA     | NA.     | 1/5    | NS.     |
| eldrii   ppb   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |      |        | I      |        | 111    |        | NA NA    | NA     |        | NA.    | NA.       | NA.    | NA       | NA      | NA NA  | NA     | NA          | 44              | -      |           |        | NA.      | NA.      | NA       | NA.    | NA.       | NA     | NA.     | NS.    | 53      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |      | NA .   |        | ***    |        | I –    | NA NA    | NA.    | NA.    | NA.    | NA NA     | NA.    | NA.      | NA NA   | NA NA  | NA .   | NA.         |                 | -      | l         |        | NA.      | NA.      | NA.      | NA.    | NA.       | NA     | NA.     | NS     | NS.     |
| March   Marc   |                            | ppb  | NA NA  |        |        | 144    |        | NA       | NA     | NA     | NA.    | NA .      | NA.    | NA.      | NA.     | NA NA  | NA     | NA          | -               | 1071   |           |        | NA.      | NA       | NA.      | NA.    | NA        | NA.    | NA.     | 5.5    | 5/5     |
| Indin Addition delegated by the control of the cont | Endosulfan I               | ppb  | NA.    |        |        |        |        | NA.      | NA.    | NA.    | NA.    | NA.       | NA NA  | NA       | NA.     | NA.    | NA .   | NA          | 200             | .044   |           |        | NA.      | NA.      | NA.      | NA.    | NA.       | NA.    | NA.     | NS     | NS      |
| Addin aldeby de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Endosulfan sulfate         | ppb  | NA.    |        |        | l I    |        | NA.      | NA.    | NA.    | NA.    | NA        | NA.    |          | NA.     |        |        |             |                 | -      |           |        |          |          |          |        |           |        |         |        |         |
| Mini Letone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Endrin aldehy de           | ppb  | NA     |        | 1      |        | I –    | NA       | NA     | NA.    | NA.    | NA NA     | NA.    | NA       | NA.     |        |        |             | 300             | -      | l         |        |          |          |          |        |           |        |         |        | NS      |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Endrin Letone              | ppb  | NA.    |        |        |        |        | NA NA    | NA.    | NA     | NA     | NA.       | NA.    | NA.      | NA      | NA.    | NA.    | NA          | del.            | 194    |           |        |          |          |          |        |           |        |         | 35     | NS      |
| pgeschlor ppb NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gamma-BHC                  |      | NA.    |        | 1      | -      |        | NA.      | NA.    | NA.    |        |           |        |          |         |        |        |             | 1               | 1      | ı         | l      |          |          |          |        |           |        |         |        | 85      |
| ppachtor eposide   ppb NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | leptachlor                 |      |        |        |        |        |        |          |        |        |        |           |        |          |         |        |        |             |                 |        | ı         | l      |          |          |          |        |           |        | 1       |        |         |
| ethosychlor   PPB NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | deptachlor epoxide         |      |        | l      | I      | I      |        |          |        |        |        |           |        |          |         |        |        | NA.         | 100             | - 63   | ı         | l      |          |          |          |        |           |        |         |        |         |
| DTALDBN 990 3A NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methosychior               |      |        |        | 1      |        | _      |          |        |        |        |           |        |          |         |        |        | 1 100<br>NA |                 |        | ı         | l      |          |          |          |        |           |        |         |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL DBX                  |      | NA.    | -      | 1      | 100    |        | NA.      |        |        |        |           | 7.7.4  | 1.11     |         |        |        | - 14/       | -               | -      | _         | _      |          |          |          |        |           |        | +       |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL PESTICIDES           | ppb  | NA.    | 1 -    |        | I      | I      | NA.      | NA.    | NA.    | NA NA  | NA<br>NA  | 34     | NA<br>NA | NA.     | NA NA  | NA NA  | NA.         | -               | 355    |           |        | NA<br>NA | NA NA    | NA<br>NA | NA.    | NA NA     | 54     | NA NA   | 35     | 35      |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for notes)

|                             |      |        |         |        |        |        |          |          | LA-3     |          |           |           |           |           |             |            |        |         |        |           |        |         |          | LA-I    |        |          |        |           |        |           |            |
|-----------------------------|------|--------|---------|--------|--------|--------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-------------|------------|--------|---------|--------|-----------|--------|---------|----------|---------|--------|----------|--------|-----------|--------|-----------|------------|
| PARAMETER                   | USIT | Mur-48 | Sep-03  | Aug-89 | Aug-10 | Jun-11 | Sep-12   | Jon-13   | Jul-15   | Sep-16   | Jul-17    | Oct-18    | Sep-19    | Sep-20    | Sep-21      | Sep-22     | Mar-98 | Sep-08  | Aug-89 | Aug-10    | Jun-II | Sep-12  | Jun-13   | Jen-15  | Sep-16 | Jul-17   | Oct-18 | Sep-19    | Sep-20 | Sep-21    | Sep-22     |
| VOLATILES                   |      | - 3    | effe 2  | 35     | 75011  | 29     | 1.15     | 770      | 25.275   |          |           |           |           | 119       | 2000        | 0.83       | 1000   | 3,      | 50.0   | 77        | 1000   |         | 13.0     | 15-     | AUT TO | 0.00     | 2.74   | 1,750     | 0.5    | 1000      | 165.27     |
| l, l, l+T rickloroethane    | ppm  | -      | -       |        | -      | -      | -        | 7-1      | -        | NS       | -         |           |           | ***       | -           | 164        |        |         | -0.4   | 100       | -      | -       |          | 100     | 100    | 100      | -      | Ant       | 344    |           |            |
| 1.1.2,2-Tetrachloroethane   | ppm  | (400)  | 100     | 1916   | 2.00   | 70     | 100      | 1-       | 1990     | NS       | ***       |           | !         |           | -           |            | -      | -       | - 17   |           |        |         |          |         | -      | -        | 0.00   |           | -      |           | 717        |
| 1,1-Dichloroethene          | ppm  | 440    | 100     | 100    | 100    | 14     | 1.680    | 100      | 100      | NS .     | 460       | ==        | -         | 10.0      | -           |            | .00    | -       | -      |           | 2000   | (44)    | -        | 100     | 100    | 99       | 100    | -         | 100    | 100       | 100        |
| 1,2,4•Trichlorobenzene      | ppm  | RA     | -       | -      | , Team | -      | -        | -        |          | NS       | -         | -         |           |           | -           | -          | NA.    | -       |        |           | •••    |         | 444      | Eq.     | 144    | 884      | 144    |           | -      | -         | -          |
| 1.2-cis-Dichloroethylene    | ppm  | 3-3    | -       |        | 7.00   | 500    | 100      | (m)      | 100      | NS       | 0 00031 1 |           | 0 00013 [ | 101       | 100         | 110        | - 07   |         | -      | -         |        | BMOL J  | -        |         | 100    | - 60     | -      | ***       | -      |           | -          |
| 1.2-Dibromo-3-chloropropane | ppm  | _      | -       |        | 146    | 14.6   | 100      | 920      | 444      | NS       | -144      |           | ***       | ***       | 100         |            |        | -       | -      | -         | -      |         | -        | - 1     | 100    | (4)      | -      |           |        | -         | 184        |
| 1,2-Dichlorobenzene         | ppea | NA     | -       |        |        |        | -        | +        | -        | NS       | 0 000233  |           | -         | @00021 J  | -           | 0 00033 J  | NA     | BMDL J  | -      |           | ***    | 0.0013  | BMDL J   | 8MDL J  |        | -        | -      | -         | 4.00   | -         |            |
| 1,2-trans-Dichloroethylene  | ppm  | -      |         | -      | 100    |        | 1 - 1    | 90       | - 1      | NS       | 111-      | NA.       |           |           | -           |            |        |         | - 171  | ter.      | ***    | ***     | ***      | ***     | ***    | 1-1      | NA .   | ***       | 100    | 100       | 100        |
| 1.4-Dioxane                 | ppm  | -      | -       | -      |        |        | 100      | -        |          | N5       | (max. );  | NA        | NA        | 444.5     | 0.000       | 663        | 44     | 666     |        | 100       | 1 - 1  | 360     | Section  |         | 100    | -        | NA     | NA.       | 100    | ine.      |            |
| 2-Hexapone                  | ppm  | 100    | 100     | -      | 100    | ***    | 100      | 100      | -        | NS.      | 144       |           |           |           |             |            |        | -       |        |           | 1 - 1  |         |          |         | -      | -        |        |           | _      | -         | -          |
| Acetone                     | ppm  |        | BMDL I  |        | 200    | 480    | 100      | 0.0059   | 100      | NS       |           |           | 219.00    | 100       | 0.0052      | 0.0094     | -      | 200     | 100    |           |        | 101     |          | 0.00    | 100    | 100      | 199    | 9-912     | 400    | 100       | -          |
| Benzene                     | ppm  | 0.0019 | 0.008   | ⊕0078  | 0.0067 | 0.003  | -        | 0.0044   | BMDL     | NS       | 0.0018    | 0.000961  | 0.00063.1 | -         | 0 00057 J   | 0-0011     |        |         | -      | BMDL I    | - 44   | 160     | Bodbi, J | BNDL J  | 544    | 104      | in     | 104       | 140    | -+        |            |
| Bromoform                   | ppm  | 10/2   | 200     | -      | 997    | 190    | 100      | and the  | 100      | N5       | - Ter     |           | ***       | 100       |             |            |        |         | -      | - 2       |        | 22      |          | 0.200   | 200    | -        |        | -         | -      |           | 191        |
| Carbon Disutfide            | ppm  | - 2    | -       | **     |        | 1.60   | 444      | 522      | 44       | NS       | 244       |           |           | -         | The Control | - 100      | date   | 110     |        | 44.       | - 100  | 100     | -        | 100     | 100    | 44       | -      | line.     | 100    | Sec.      | 10.0       |
| Chlorobenzene               | ppm  | -      |         |        | ***    | -      | 1        | -        | -        | NS       |           | _         | -         | _         | -           | -          |        | -2      | -      | -         | -      | 220     | -        |         |        | 44       | -0.4   |           | -      |           | -          |
| Chloroethane                | ppm  | 12.5   |         | -      | 100    |        | 100      | 310      | -        | N5       |           | l _       |           | 20        | 0.000573    |            | -      | 200     | -      | 160       |        | -       | -        | -       | -      | 220      | _      | -         | ***    |           | -          |
| Chloroform                  | ppm  | 66.    | 1000    |        | 100    | -      |          |          | 0.22     | NS       | - 100     | l         |           |           | 144         | 133        |        | 100     | 44     | 100       | -      | 100     | Am.      | 100     | 100    | 40       | -      | 100       | -      | -         | 164        |
| Chloromethane               | ppm  | 770    | -       | 4.0    |        |        |          | -        | 1 410    | NS       | 144       |           | -         | 210       | 1           |            |        |         | -      | _         |        | -       |          | - 25    | 3      | 2        |        |           |        | -         | -          |
| Cyclohexane                 | ppm  | NA     | NA      | NA     | NA     | NA     |          | 6.004    | 0.000    | NS.      | :0015     | 0017      | 0.011     | 0.0001    | 6:014       | 0034       | NA     | NA      | NA     | NA.       | NA.    | 001     |          | BADS, J |        |          |        |           | 200    |           | 1          |
| Dibromochlorumethane        | ppm  | 100    |         | (20)   | 1975   | 100    | -        | -        | 4.444    | NS.      | 32.       |           | V 7711    | A 200 P   | 200         |            |        | ,,,,,   | 190    | last.     | 100    | 100     | 100      | 100     | -      | 2        |        |           | 100    | 200       |            |
| Dicklorobromomethane        | bbm  | 153    | 11.00   | 0.00   | - 171  | 10     |          | 2        | 877.6    | NS       |           | -         | ,         | - 21      | -           |            | 1      |         | 1      | _ <u></u> |        |         |          | - 23    |        |          |        |           | 100    |           |            |
| Ethyfbenzene                | ppm  | ***    | BMOL J  | BMDL J | BMDL J | -      | -        | BMDL 3   | 0 0063   | NS       | 0.0025    | 0 00034 1 | l :-:     | 23        | 323         | 0.0003333  | 0.054  | 0.022   | 0.018  | 0.19      | 015    | 016     | 0.076    | 00      | 041    | 0.29     | 013    | 0.0006    | 9038   | 0 00036 J | 0 00083    |
| Isopropy Ibenzene           | ppm  | NA     | NA.     | NA.    | NA.    | NA.    | 0012     | 0 0034   | BMDLI    | NS.      | 0 0043    | 0.0061    | 0.0059    |           | 0.0004      | 9.015      | NA.    | NA      | MA     | NA.       | NA.    | 0.024   | 9.035    | 00      | 0.03   | 0.006    | # 0023 | 0.0042    | 0.0014 |           | 4 4444     |
| Methyl ethyl keione         |      | i      | 2509    |        |        | I      |          |          |          | NS.      |           | 0 0001    | l         | -         |             | 0.00301    | 100    | 500     | 100    | 1001      |        | 4.44    | - 4777   | 1       | 77     |          | -002   | 9 00-2    | 0.001  |           | 1000       |
| Methyl tertiary butyl other | ppm  |        |         |        |        |        | -        | -        | ***      | NS       | ~~        | NA.       |           | -         | 100         |            | 46     | 100     | NA.    | NA        | 200    | - 33    | 2.22     |         | 1      | -        | NA     |           |        | -         |            |
| Methyley clohexane          | ppen | NA.    | NA.     | NA.    | NA.    | NA.    | BMDL1    | 0 0075   | BMDL J   | NS       | 0.0024    | I         | 0 0015    | 0.0011    | 0.0023      | 6-0079     | NA     | NA.     | NA.    | NA        | NA.    | 0.011   | 0019     | 0015    |        | 44       | no.    | -         |        | ***       | 500        |
| Methylene chloride          | pprs |        | NA.     | NA.    |        |        |          | 00075    | BNOL 7   | NS<br>NS |           |           | 00015     | 0.0011    | 297. CO.    | W. A       |        | 1999    | 100    | 200       | ~~     | 4416    | 2019     | 0015    | -      | 200      | -      |           |        | 1         | -          |
|                             | ppm  |        | _       | _      |        |        | -        | -        |          |          |           |           |           |           | 100         | -          | -      | .77     | 1111   |           |        |         |          |         |        |          |        | 2000      | -      |           |            |
| Methyl-iso-butyl Letone     | ppm  |        |         |        | ***    |        |          |          | ***      | N5       | ***       |           | ***       |           |             |            | 1.00   | 100     | 1 100  |           |        |         | -07      | 100     | -      | 72       |        |           | 307    | 7.0       | -          |
| Sty rene                    | ppm  | ***    | ***     | 7+4    | ***    |        |          |          |          | NS.      |           |           |           |           |             |            | 1000   | -       |        | 77.0      |        | 200     | 100      |         |        | ***      | 1.00   | -         |        | -         |            |
| Tetrachloroethene           | bbea |        |         |        |        |        | -        |          | -        | NS       | 0 00034 J |           |           | 100       |             |            |        |         |        | 99        |        |         |          | ****    |        |          |        |           |        |           |            |
| Toluene                     | ppm  | -      | BWDL 1  | BMDL J | 0.0017 |        |          | BMDL J   |          | NS       | 0 00027 J | 0.000481  |           |           | 0.000411.)  | 0-0005# J  | BWDF1  | BMDL J  | BMDL J | BMDt. J   | BMDL J | 0.0029  | 0.003    | 111     | BMDL J | 0.0025 J | 0.012  | 0 00045 J | 0.0026 | l         |            |
| Total Xylenes               | ppm  |        | BWDf 1  | BMOL J | 0.0011 | BMDLJ  |          | BMDL 1   | BMDL J   | NS       | 0 0014 J  | 0 00068 J |           | ***       | 0.00035.1   | 0-00044 J  | 0.061  | 0 0 3 5 | 0.0082 | 0.21      | 0.16   | 0.19    | 0.04     | 0.0     | 2.8    | 12       | 0.68   | 0.024     | 0 195  | 0.0010    | 0 0061     |
| Trichloroethy lese          | blum | ***    |         |        |        |        | ***      |          |          | NS.      | 0 00053 J |           |           | 140       |             |            |        |         | -      |           |        | ***     | 100      | 175     |        | 77       | ***    |           | 4-7    |           | 44         |
| Vinyl chloride              | 3990 |        |         | _      |        |        |          |          |          | NS       |           |           |           |           | 0-000301    | 0 00073.1  | Sec. 1 | 194     | 4.000  | - 6%      | 441    | 300     | 0.000.0  | 90.     | 200    | 100      | 0.000  |           |        |           |            |
| TOTAL VOLATILES             | ppm  | 6.0019 | 0.025 J | 0.011  | 0.013  | 670811 | LOI3 J   | 8.846.3  | 0.011    | N\$      | 0.63      | 0.03756 J | 6.61936.1 | 0.00001 J | 0.03419 J   | 0.07  93.J | 612    | 0.057 J | 0.827  | 8.4       | 0.31 J | 0.384 J | 0.285 J  | 0.1     | 3.243  | 1.5      | 0.6492 | 0.04425.3 | 0.218  | 4.00134 J | 0.006/93 2 |
|                             |      | l      |         |        | l      | 1      |          |          |          | l        |           | l         |           |           | 10.00       |            |        | 500     | 1      | 33.5      | 2.7    | 332     | 100      |         |        |          | l      | 1         | l      | l         |            |
| 2-Octanol                   | ppm  | NA.    | NA.     | NA NA  | NA.    | NA NA  | NA.      | NA       | NA.      | NS       | NA NA     | NA.       | NA        | NA.       | N/A         | 344        | NA NA  | NA.     | -      | 304       | NA.    | BIA.    | NA.      | NA.     | NA.    | NA.      | NA     | NA        | NA NA  | NA.       | NA.        |
| 2-Octanone                  | ppm  | NA.    | NA      | NA     | NA.    | NA.    | NA.      | NA.      | NA.      | NS.      | NA        | NA NA     | NA        | NA.       | NA          | NA         | NA.    | NA.     |        | 344       | NA.    | NA.     | NA.      | NA :    | NA.    | NA NA    | NA NA  | NA        | NA.    | NA NA     | NA NA      |
| TOTAL OCTANOL/OCTANONE      | ppm  | NA.    | NA.     | NA     | NA.    | NA.    | NA.      | NA.      | NA.      | .55      | NA NA     | NA        | NA.       | NA        | NA          | NA         | NA .   | NA NA   | -      | NA.       | NA.    | NA      | NA.      | NA.     | NA     | NA.      | NA.    | NA.       | NA.    | NA        | NA.        |
| ACID EXTRACTABLES           |      |        |         | 1      |        |        |          |          | ļ        |          |           | l         |           |           |             |            |        |         |        |           |        |         |          |         |        | 1        |        |           |        |           | 1          |
| 2.4-Dimethylaborol          | ppm  | NA     |         | l      |        | l _    | NA.      | NA NA    | NA.      | NS       | NA.       | NA NA     | NA.       | NA.       | NA.         | NA.        | NA.    | BMDL I  |        | 123       | 72.77  | NA.     | NA       | NA.     | NA.    | NA.      | NA.    | NA.       | NA.    | NA.       | NA.        |
| 2-Methy lphenol             | ppm  | NA NA  |         |        |        |        | NA NA    | NA NA    | NA.      | NS       | NA NA     | NA.       | NA<br>NA  | NA.       | NA.         | NA.        | NA NA  | BML/L / | -      |           |        | NA.     | NA.      | NA.     | NA NA  | NA NA    | NA NA  | NA.       | NA.    | NA NA     | NA NA      |
| 4-Methy lphenol             |      | NA NA  |         |        |        |        | NA<br>NA | NA<br>NA | NA<br>NA | NS       | NA<br>NA  | NA NA     | NA<br>NA  | NA.       | NA NA       | NA.        | NA.    |         | 10.1   |           |        | NA.     | NA       | NA.     | NA.    | NA.      | NA NA  | NA.       | NA.    | NA NA     | NA NA      |
| Pentachlorophenol           | ppm  | NA.    |         |        | 1      | 1      |          |          |          | NS<br>NS |           | NA.       | NA<br>NA  | NA<br>NA  | NA<br>NA    | NA.        | NA NA  | -       |        |           | NA     | NA.     | NA.      | NA.     | NA NA  | NA NA    | NA NA  | NA NA     | NA.    | NA NA     | NA<br>NA   |
|                             |      | 264    |         | _      |        | NA.    | NA.      | NA NA    | NA NA    | 1 1/2    | NA.       | I NA      | N/s       | nu.       | I NA        | I NA       | I NA   |         | -0.0   |           | INA I  | PA.     | 764      | DIA.    | (AA)   | 700      | I NA   | 1974      | //A    | 1 64      |            |
| Phenol                      | ppm  | NA     |         |        | ,,,,   |        | NA NA    | NA.      | NA       | NS       | NA.       | NA.       | NA NA     | NA.       | NA.         | NA.        | NA NA  | 0.00    | 100000 |           |        | NA.     | NA.      | NA.     | NA.    | NA.      | NA.    | NA.       | . NA   | NA NA     | NA NA      |

TABLE 2

ANALYTICAL RESULTS FOR OFF-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM

(164 page 15 for boles)

| PARAMETER                   | USIT  |         |          |        |        |          | 1.3    |          | LA-3     |          |          |           |          |                 |          |          |          |              |             |             |        |              |                | LA-I       |          |          |          |             |                |          |          |
|-----------------------------|-------|---------|----------|--------|--------|----------|--------|----------|----------|----------|----------|-----------|----------|-----------------|----------|----------|----------|--------------|-------------|-------------|--------|--------------|----------------|------------|----------|----------|----------|-------------|----------------|----------|----------|
|                             |       | Mar-08  | Sep-08   | Aug-89 | Aug-10 | Jun-11   | Sep-12 | Jun-13   | Jul-15   | Sep-16   | Jul-17   | Oct-18    | Sep-19   | Sep-20          | Sep-21   | Sep-22   | Mar-08   | 5ep-88       | Aug-89      | Aug-10      | Jun-11 | Sep-12       | Jun-13         | Jun-15     | Sep-16   | Jul-17   | Oct-18   | Sen-19      | Sep-20         | Sep-21   | Sep-22   |
| BASE/NEUTRALS               | 1     | ı       |          |        | ı      |          |        |          |          |          |          |           |          |                 |          |          |          | 1 225        |             | 137         |        |              |                |            |          |          |          |             |                |          |          |
| 2-Methy inaphthalene        | 5bur  | NA      |          | ***    |        | I        | NA.    | NA NA    | NA.      | N5       | NA.      | NA.       | NA.      | NA              | NA       | NA       | NA.      | 9951         | BMDL J      | 4968        | 1.000  | 14/4         | NA.            | NA.        | NA.      | NA.      | NA       | NA          | NA             | N/I      | NA:      |
| 2-Nitroaniline              | ррm   | NA      |          |        |        |          | NA     | SA       | NA.      | NS.      | NA       | NA.       | NA.      | NA              | NA.      | NA       | NA       | 364          | 10,000      |             | -      | NA           | NA             | NA.        | NA       | NA NA    | NA.      | NA          | NA             | NA       | NA       |
| 4-Chloroaniline             | ppm   | NA NA   |          | ***    | NA     | I        | NA.    | NA.      | NA.      | NS.      | NA.      | NA.       | NA.      | NA              | NA.      | NA.      | NA NA    | ***          | -           | NA          | -      | NA.          | NA.            | NA.        | NA       | NA.      | NA.      | NA.         | NA I           | NA '     | NA       |
| Acenaphthene                | ppm   | NĄ      | 87IDC1   |        |        |          | NA     | NA.      | NA.      | NS.      | NA.      | NA        | NA.      | NA              | NA.      | NA.      | NA       | BMDL J       | ***         | 901         | 40     | NA.          | NA.            | NA         | NA       | NA.      | NA.      | NA.         | NA.            | NA       | NA       |
| Acetophenone                | ppm   | NA.     | NA.      | NA.    | NA.    | NA.      | NA NA  | NA NA    | NA       | NS.      | NA.      | NA NA     | NA.      | NA.             | NA.      | NA.      | NA       | NA           | NA          | NA.         | NA     | NA.          | NA             | NA.        | NA.      | NA.      | NA       | NA          | NA             | NA       | NA       |
| Anthracene                  | ppm   | NA      |          | ***    |        |          | NA     | NA.      | NA.      | NS.      | NA.      | NA.       | NA.      | NA              | NA       | NA       | NA NA    |              | _           | -           | -      | NA.          | NA             | NA.        | NA       | NA.      | NA       | NA          | NA             | NA       | NA       |
| Benzo(a)Anthracene          | ppm   | NA NA   |          |        |        | I –      | NA NA  | NA.      | NA.      | NS       | NA       | NA.       | NA.      | NA              | NA       | NA       | NA       |              | BMDLI       | -           | -      | NA.          | NA.            | NA.        | NA.      | NA.      | NA.      | NA.         | NA NA          | NA:      | NA       |
| Benzo(a)Pyrene              | ppm   | NA NA   | I –      |        |        |          | NA     | NA.      | NA.      | NS.      | NA.      | NA.       | NA.      | NA              | NA.      | NA.      | NA.      | test 1       | 446         |             | 100    | NA.          | NA.            | NA.        | NA.      | NA.      | NA.      | NA.         | NA I           | NA       | NA       |
| Benzo(b)Fluoranthene        | ppm   | NA .    |          |        |        |          | NA     | NA       | NA.      | NS       | NA.      | NA        | NA       | NA.             | NA.      | NA NA    | NA NA    |              | -           | 100         |        | NA.          | NA.            | NA NA      | NA.      | NA NA    | NA.      | NA.         | NA             | NA       | NA.      |
| Benzotg,h.i)Perylene        | ppm   | NA.     | I -      |        |        | l        | NA.    | NA       | NA.      | N5       | NA       | NA        | NA.      | NA              | NA .     | NA.      | NA NA    | 2.33         | 150         | 200         |        | NA.          | NA.            | NA.        | NA.      | NA NA    | NA.      | NA.         | NA             | 104      | NA.      |
| bis(2-Chloroethyl)ether     | ppm   | NA.     | l        | _      |        |          | NA     | NA.      | NA.      | NS       |          | NA.       | NA       | 100             | NA.      | NA NA    | NA NA    | 2.0          | -           |             |        | NA NA        | NA.            | NA.        | NA.      | 120      | NA.      | NA.         |                | NA       | NA:      |
| bis(2-Chloroisopropyl)ether | ppm   | NA.     | l        |        | l      |          | NA.    | NA       | NA.      | NS       |          | NA.       | NA       | NA              | INA I    | NA.      | NA NA    | -            | 1000        | - 60        | -      | NA NA        | NA NA          | NA.        | NA NA    | - 0      | NA.      | NA.         | NA             | 54A      | NA:      |
| bist 2-Ethylhexyl)phthalate | ppm   | NA.     | I -      |        |        | l _      | NA     | NA.      | NA.      | NS       | NA.      | NA.       | NA.      | NA.             | NA .     | NA.      | NA.      | ***          | 250         | 100         | 200    |              |                |            |          |          |          |             |                | NA.      |          |
| Butyl benzyl phthalate      | ppen  | NA.     | l –      | -      |        |          | NA NA  | NA.      | NA.      | NS -     | NA.      | NA.       | NA.      | NA.             | NA<br>NA | NA<br>NA | NA NA    | - 22         | 100         | - 1         |        | NA<br>NA     | NA<br>NA       | NA<br>NA   | NA<br>NA | NA NA    | NA.      | NA<br>NA    | NA.            | NA<br>NA | NA<br>NA |
| Carbazole                   | ppm   | NA.     |          | -      |        |          | NA NA  | NA.      | NA.      | NS       | NA.      | NA.       | NA.      | NA.             | NA.      |          |          |              | 1.00        | 100         |        |              |                |            |          | NA       | NA       |             | NA             | NA       |          |
| Chrysene                    | ppm   | NA.     |          |        |        |          | NA NA  | NA.      | NA NA    | NS       | NA NA    | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA | NA<br>NA |              | -           | 100         | -      | NA NA        | NA NA          | NA         | NA NA    | NA       | NA.      | NA.         | NA             | NA       | NA       |
| Dibenzofuran                | ppm   | NA.     |          | 1      |        |          | NA.    | NA       | NA NA    | NS       | NA NA    | NA.       | NA.      | NA.             | NA<br>NA | NA<br>NA | NA NA    |              | 946         |             | -      | NA           | NA             | NA         | NA.      | NA       | NA.      | NA          | NA             | NA       | NA       |
| Diethy I phthalate          | ppm   | NA      |          |        |        |          | NA.    | NA.      | NA NA    | NS       | NA.      | NA.       | NA.      | NA.             | NA.      |          |          | 557          | 1677        | 100         | -      | NA<br>NA     | NA             | NA.        | NA       | NA       | NA       | NA          | NA             | NA       | NA.      |
| Dimethy I phthalate         | ppm   | NA.     | I        | I      |        |          | NA NA  | NA.      | NA<br>NA | NS       |          |           |          |                 |          | NA NA    | NA NA    |              | 7           | 177         | -      | NA           | NA             | NA         | NA       | NA.      | NA.      | NA          | NA             | NA       | NA       |
| Di-p-but, Iphthalate        | ppm   | NA.     | -        |        |        |          | NA NA  | NA<br>NA | NA NA    | NS       | NA<br>NA | NA<br>NA  | NA<br>NA | NA.             | NA       | NA       | NA       | - 5          |             | .77         |        | NA NA        | NA             | NA         | NA       | NA NA    | NA       | NA          | NA             | NA       | NA       |
| Di-n-octy lphthalate        | ppm   | NA.     | "        | I -    | l      |          | NA NA  | NA<br>NA |          |          | NA.      | NA NA     | NA       | NA.             | NA .     | NA       | NA       | -55          | 100         | 177         |        | NA           | NA.            | NA.        | NA.      | NA       | NA.      | NA.         | NA             | NA       | NA       |
| Fluoranthene                | ppm   | NA.     |          |        |        |          | NA NA  | NA.      | NA<br>NA | NS<br>NS | NA.      | NA<br>nta | NA       | NA.             | NA       | NA       | NA       | -            |             | 100         | -      | NA NA        | NA .           | NA.        | NA.      | NA NA    | NA       | NA.         | NA             | NA.      | NA.      |
| Fluorene                    | ppm   | NA.     |          |        |        |          | NA NA  | NA<br>NA | NA<br>NA | NS<br>NS | NA<br>NA | NA<br>NA  | NA       | NA.             | NA       | NA .     | NA       | ****         |             |             | -      | NA           | NA             | NA.        | NA.      | NA.      | NA.      | NA.         | NA.            | NA       | NA.      |
| Indeno(1,2,3-cd)Pyrene      | ppm   | NA.     | I        |        | 1      |          | NA NA  | NA<br>NA | NA NA    | NS<br>NS |          |           | NA       | NA.             | NA.      | NA.      | NA .     | BMDL I       |             |             |        | NA.          | NA NA          | NA.        | NA.      | NA       | NA       | NA.         | NA             | NA       | NA.      |
| Isophorone                  | ppm   | NA.     |          |        |        |          | NA NA  | NA.      | NA NA    | NS       | NA<br>NA | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA | NA.      | NA NA    |              | -           |             | _      | NA           | NA             | NA.        | NA       | NA NA    | NA NA    | NA NA       | NA             | NA       | NA       |
| Naphthalene                 | ppm   | NA.     | :-       | 1 :    |        |          | NA NA  | -        | BMDLJ    | NS       | 0.0058.7 | 0012      | 9 0042   | 0.00043 *       |          | NA       | NA.      | -            | -           | ***         | -      | NA           | NA.            | NA         | NA.      | NA       | NA.      | NA          | NA             | NA       | NA.      |
| Nitrobenzene                | ppm   | NA.     |          | "      |        |          | NA NA  | NA.      | NA NA    | NS       |          | NA.       |          | 100             | ***      | NA       | NA       | 9 069        | 0017        | 0.065       | **1    | NA           | 0.071          | 001        | 0 13     | 0 0 3 2  | 0.025    | 0.0086      | 0 0079         | -        | NA       |
| Phenanthrene                | ppm   | NA NA   |          |        | ~      |          | NA NA  | NA.      | NA<br>NA | NS<br>NS | NA<br>NA | ,         | NA NA    | NA.             | NA       | NA.      | NA       |              | -           |             | _      | NA NA        | NA.            | NA.        | NA       | NA       | NA.      | NA.         | NA             | NA       | NA.      |
| Pyrene                      | ppm   | NA.     |          | I      |        | 1        | NA.    | NA.      | NA NA    |          |          | NA        | NA       | NA.             | NA       | NA NA    | NA       | BMDL         | 11.75       |             | - 1    | NA NA        | NA             | NA         | NA       | NA NA    | NA       | NA NA       | NA             | NA .     | NA.      |
| 1.4-Dioxane                 | ppm   | NA      | NA.      | NA.    | NA.    | NA<br>NA | NA.    | NA.      | NA<br>NA | NS<br>NA | NA<br>NA | NA<br>NA  | NA<br>NA | NA.             | NA       | NA       | NA .     |              |             | ***         |        | NA.          | NA.            | NA         | NA       | NA.      | NA.      | NA          | NA             | NA       | NA.      |
| TOTAL BASE/NEUTRALS         | ppm   | NA NA   | 0.0002.3 | -      |        |          |        | -        | 8.001 J  | NS.      | 0.006    | 8.012     | 0.0042   | NA<br>8.00043 * | NA       | NA       | NA<br>5A | NA<br>9,12 J | NA<br>0.028 | NA<br>0.003 | NA NA  | NA<br>8,0013 | NA<br>0.072J J | NA<br>0.01 | 8.139    | NA 9,832 | NA .     | NA<br>8.609 | NA<br>0.0079 * | NA.      | NA .     |
|                             | 177   |         |          |        |        |          |        |          | 4.447.5  |          |          | 4412      | 4.4042   | 6.00043         |          |          | 34       | 444.5        | 0.000       | 9.863       | 111    | 40013        | 0.0123.3       | CO I       | 9.130    | 4.637    | 0.025    | 0.009       | 0.0079         |          | _        |
| PESTICIDES                  |       | l       |          |        | l      | 1        |        |          |          |          |          |           | ĺ        |                 |          |          |          |              |             |             |        | l            |                |            |          | 1        |          | l           | l I            |          | i        |
| 4.4°-DDD                    | ppb   | NA      | _        | -      |        |          | NA     | NA       | NA NA    | NS       | NA       | NA        | NA NA    | NA.             | NA       | NA.      | NA       | _            | -           |             | l      | NA.          | NA.            | NA.        | NA.      | NA.      | NA.      | NA.         | NA             | NA       | NA.      |
| 4,41DDE                     | ppb   | NA      |          |        |        |          | NA     | NA.      | NA NA    | NS       | NA.      | NA.       | NA.      | NA.             | NA.      | NA.      | NA NA    |              |             |             |        | NA.          | NA.            | NA.        | NA NA    | NA NA    | NA.      | NA.         | NA I           | NA.      | NA NA    |
| 4,4'-DDT                    | ppb   | NA      |          |        | l      |          | NA     | NA       | NA       | NS       | NA       | NA.       | NA       | NA              | NA.      | NA.      | NA.      |              |             |             |        | NA           | NA NA          | NA.        | NA.      | NA.      | NA.      | NA.         | NA             | NA.      | NA NA    |
| Beta-BHC                    | ppb   | NA      |          |        |        | l        | NA.    | NA.      | NA.      | NS       | NA       | NA.       | NA.      | NA.             | NA.      | NA.      | NA.      | 223          | -           |             | 1      | NA.          | NA NA          | NA.        | NA.      | NA NA    | NA.      | NA NA       | NA             | NA.      | NA.      |
| Dieldrin                    | ppb   | NA      |          |        | l      |          | NA.    | NA.      | NA.      | NS       | NA NA    | NA.       | NA.      | NA              | NA.      | NA NA    | NA.      | - 2          |             |             | 1 -    | NA.          | NA NA          | NA<br>NA   | NA.      | NA NA    | NA.      | NA.         | NA             | NA.      | NA NA    |
| Endosulfan I                | ppb   | NA.     |          |        |        | l        | NA NA  | NA.      | NA       | NS       | NA NA    | NA.       | NA.      | NA.             | NA NA    | NA.      | NA.      | 100          | -           |             | 1      | NA NA        | NA NA          | NA<br>NA   | NA.      | NA.      | NA.      | NA.         | NA             | NA.      | NA NA    |
| Endosulfan sulfate          | ppb   | NA.     | l        |        |        |          | NA NA  | NA.      | NA .     | NS.      | NA NA    | NA NA     | NA.      | NA.             | NA NA    | NA.      | NA NA    | 3            |             |             | 1      | NA.          | NA<br>NA       | NA<br>NA   | NA<br>NA | NA NA    | NA<br>NA | NA<br>NA    |                | NA<br>NA | NA.      |
| Endrin nideby de            | ppb   | NA.     |          |        |        |          | NA     | NA.      | NA       | NS       | NA NA    | NA NA     | NA.      | NA.             | NA NA    | NA.      | NA NA    | 9            |             | I           |        | NA<br>NA     | NA<br>NA       | NA<br>NA   |          |          |          |             | NA<br>NA       | NA<br>NA |          |
| Endrin Lesone               | ppb   | NA.     |          |        |        |          | NA     | NA I     | NA NA    | NS NS    | NA NA    | NA.       | NA NA    | NA<br>NA        | NA<br>NA | NA<br>NA | NA NA    | 140          |             |             | 1 -    |              |                |            | NA       | NA NA    | NA       | NA.         |                |          | NA NA    |
| Gamma-BHC                   | ppb   | NA.     |          |        |        |          | NA I   | NA I     | NA NA    | NS<br>NS | NA NA    | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA |          |          | -            | -           |             | -      | NA<br>NA     | NA.            | NA<br>NA   | NA.      | NA NA    | NA<br>NA | NA NA       | NA I           | NA       | NA.      |
| Heptachlor                  | ppb   | NA NA   |          |        |        |          | NA NA  | NA<br>NA | NA I     | NS       | NA NA    | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA | NA NA    |              |             |             |        | NA .         | NA.            | NA NA      | NA.      | NA       | NA NA    | NA          | NA             | NA       | NA.      |
| Heptachlor epoxide          | ppb   | NA NA   |          |        | -      |          | NA NA  | NA NA    | NA NA    | NS<br>NS | NA<br>NA | NA NA     | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA | NA<br>NA | 197          | -           |             | I -    | NA.          | NA NA          | NA.        | NA NA    | NA<br>VI | NA<br>NA | NA          | NA             | NA       | NA NA    |
| Methoxychlor                | ppb   | NA.     |          |        |        |          | NA     | NA NA    | NA NA    | 745      | NA NA    | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA | NA<br>NA | -            |             |             |        | NA           | NA             | NA NA      | NA.      | NA       | NA       | NA          | NA             | NA       | NA       |
| TOTAL DOX                   | ppb   | NA NA   |          |        | -      | =        | NA NA  | NA NA    | NA NA    | 35       | 101      | (107)     |          |                 |          |          |          | _            |             |             |        | NA NA        | NA NA          | NA.        | NA.      | NA NA    | NA.      | NA NA       | NA NA          | NA.      | NA_      |
| TOTAL PESTICIDES            | ppb   |         |          |        |        | I        | NA     | 54       | NA NA    | NS       | NA<br>NA | NA<br>NA  | NA<br>NA | NA<br>NA        | NA<br>NA | NA<br>NA | NA<br>NA | 773          |             | -           | I -    | NA.          | NA.            | NA<br>NA   | NA<br>NA | NA<br>NA | NA.      | NA.         | NA NA          | **       | NA.      |
|                             | 1 100 | 2 -17/4 | 1        |        |        |          | 1 34   |          | 2.5      | .45      | - 24     | 75.0      | 3.8      | .54             | 3.8      | 7/4      | 2.0      |              | 1000        |             | _      | 5.4          | NA.            | NA.        | NA.      | I NA     | NA NA    | NA.         | NA I           | **       | NA.      |

TABLE 2
ANALYTICAL RESULTS FOR OFF-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(see page 15 for notes)

| PARAMETER                   | UNIT  |         |        |        |         |                |          |            | LA-5    |        |          |        |           |            |           |           |        |          |        |         |          |         |          | OFF-2     |          |           |           |           |            |           |          |
|-----------------------------|-------|---------|--------|--------|---------|----------------|----------|------------|---------|--------|----------|--------|-----------|------------|-----------|-----------|--------|----------|--------|---------|----------|---------|----------|-----------|----------|-----------|-----------|-----------|------------|-----------|----------|
|                             | USID  | Mar-08  | Sep-08 | Aug-89 | Aug-10  | Jun-11         | Sep-12   | Jun-13     | Jul-15  | Sep-16 | Jul-17   | Oct-18 | Sep-19    | Sep-20     | Sep-21    | Sep-22    | Mar-88 | Sep-08   | Aug-09 | Aug-10  | Jun-II   | Dec-12  | Jun-13   | Jun-15    | Sep-16   | Jul-17    | Oct-18    | Sep-19    | Sep-20     | Oct-21    | Sep-     |
| OLATILES                    |       |         |        | 1000   |         |                |          |            |         |        |          |        |           |            |           |           |        |          |        |         | 1.5      |         |          | 5 27 7 75 |          | ****      |           | 100       |            |           |          |
| ,1,1-Trichloroethme         | ppm   | 3-67    | 0-     | ***    | ***     | 100            | 177      | 84         | 1111    | ***    | 345      | NS     | 700       | ***        | 1777      | -         | 100    | -        | -      | 0.00    | 2000     | -       |          |           |          |           | -         |           | 200        | 100       | -        |
| ,1.2,2-Tetrachioroethane    | ppm   | 100     | -      | 1000   | 1000    | 0.00           | ten.     | -          | -       |        | 348      | .\5    | 100       | 400        | 961       | -         | 1,000  |          |        | 100     | 1        | _       |          | 1 000     | 100      | -         | 100       | 100       | -          | 44        | -        |
| .1-Dichloroethene           | ppm   | 22      | 314.0  | -      | -       |                | -        | 42         | - '     |        | 365      | NS     | -         |            | -         | -         | -      | -        | - 1    | _       | 1-       |         |          |           |          | -         |           |           | -          | -         | -        |
| .2.4-Trichlorobenzene       | ppm   | NA.     | 111    | -      | 100     | 100            | 100      | 110        | 100     |        | N\$      | N\$    |           | -          | 101       |           | NA.    |          |        | 101     | 100      | -       | 790      | ****      | ***      | -         | ***       | ***       | 100        |           | 100      |
| ,2-cis-Dichloroethylene     | ppm   | 360     | 100    | 0.0014 | BMOLI   | BMDL I         | BMDL1    | 10.4       | 84401.3 | ***    | 348      | NS     | 140       | @ 00054 E  | 3.00      | 100       | BMDL J | 100      | BMDLJ  | 1004    | 400      | 740     | 440      |           | 4%       | iles      | 0 00079 J | ***       | ***        | -         | -        |
| .2-Dibromo-3-chloropropane  | ppm   |         | -      | -      | -       |                | -        | -          | -       |        | 145      | NS     |           | 8-0        |           | -         |        | -        | l –    | -       | -        |         |          | C         |          | -         | _         |           | -          |           |          |
| 1.2-Dichlorobenzene         | ppm   | NA      | 100    | 100    | -       | 400            | BMDL I   | BMDL I     | SNIDL J |        | 565      | NS     | B-00054 J | # 000080 # | 100       | 0.00047 J | NA.    | -        | l      | 777     | 100      | 0.0017  | DAVIDL J | SMDL /    | 100      | 0.00064   | 0 00056 J | 0.00059 J | 0 000044 J | 0.00053.5 | 0.0005   |
| 2-trans-Dichloroethylene    | ppm   | 101     | 184    | 100    |         |                |          | 250        | -       |        | NS       | NS     | -         | 100 mm     |           |           |        | ***      | 244    |         | 241      | 400     | 140      | 144       | Chia     | -         | NA        |           | l          | ł         | I        |
| 1.4-Dioxane                 | ppm   | 22      | _      | ***    | _       |                | -        |            | -       |        | 165      | 55     | NA        |            |           |           |        |          |        |         | 2        |         | 100      | 0.47      | 12       | -         | NA        | NA.       | 0.00048    |           | l        |
| 2-Hexanone                  | ppm   | 461     | 100    | -      | -       | 446            |          | 44         | 100     |        | NS       | 115    | -         | .000       | -         | -         | 200    | 1 4      | 12     | 100     | 100      |         |          | 400       | 100      | 4.65%     | -         |           | _          | 440       |          |
| Acetone                     | ppm   | 123     |        |        | _       |                | -        |            | MADE I  |        | NS       | NS     | 0.03      | 0.6063-    |           | 0.0007    |        |          |        | _       | -        | 0011    | 144      | ***       |          | 0.0057    | ***       | ***       | 001        |           | 0 007    |
| Benzene                     | ppon  |         | -      |        | -       |                | 100      | 20         | -       | ***    | NS       | NS     | 200       |            | -         | -         | 0.0008 | 0.074    | 0-9027 | 0.0006  | 0.0013   | 0:0015  | BMOL J   | BMDL J    | BMDL J   | 0.00017.1 | 0.0018    | 0 00023 J | 111        |           | 0 0002   |
| Bromoform                   | bbm   | 200     |        | 100    | -       | 100            | 100      | 200        |         | ***    | NS       | 105    | 100       |            |           | -         | 100    |          |        |         |          |         |          | Divide 7  | Divide / | -         | 400.0     |           | 1 1        |           |          |
| Carbon Disutfide            | ppm   | 2       |        |        | 1       | -              | -        | - 5        | 123     |        | NS.      | NS.    | 1         | 10.25      | 13        |           | _      | -        |        | _       | -        |         |          | 300       | -        |           |           |           | - 3        | -         | 1        |
| Chlorobenzene               | ppm   | - 2     |        |        | -       | 100            | 1        | 21         | 727     |        | NS       | NS.    |           | 770        |           |           | 0.0057 |          | 0.0073 | 6 0027  | 0.00010  | 0.0063  | BMDL J   | 0 0092    | 0.0051   | 0.0063    | 0 0042    | 0.0012    | 0.015      | 0.0029    | 0.00     |
| Chloroethane                | ppen  | - 23    |        | 220    |         | 144            | 1000     | 100        |         |        | NS       | 155    | 1         |            |           |           | 0000   |          |        |         |          | 0.0012  | DAME OF  |           |          |           |           | 0 0011    |            | - mag     |          |
| Chloroform                  |       | - 52    | 54.52  | -      |         |                | -        |            | -       |        | NS       | 155    |           |            |           |           |        |          |        |         |          | 0 001.  |          | 1         | _        |           |           | 1 -       |            | 200       | - 2      |
| Chloromethane               | ppm   | - 77    | 1.73   | - 53   |         |                | 200      |            | BACK P  |        | NS       | NS     | 100       | 2.000      |           | 1         |        |          | 1 -    | _       |          | BMDL J  |          |           |          |           |           | _         | 0.00       | 10.00     |          |
| Cycloheume                  | ppm   | NA.     |        | NA     | MA      |                |          | 77         |         | _      |          |        | (5)       | 7.7        | -         |           |        |          |        |         |          | BMDL J  |          | 0.0012    | 0.001    | 0.00010.1 | 0 00044 J |           | 100        |           | 77       |
|                             | bbm   | NA      | NA     | 156    | NA.     | NA             | - 7      | 77         | 100     |        | NS       | N5     | 3.000     |            | -         | ***       | NA     | NA.      | NA.    | NA      | NA       | BAIDL J | 1        | 0.0017    | 0 001    | 0 00039 3 |           | ***       | 100        | 100       | -        |
| Dibromochloromethane        | ppm   | 677     | 277    |        | -       | ***            | S##50    | 7.0        |         | ***    | NS       | NS .   | 1000      | 11.00      |           | 441       |        |          |        |         |          |         | -        |           | - 1      | -         |           | _         | 100        | 17.0      | 100      |
| Dichlorobromomethane        | ppm   |         |        | 688    |         |                |          | 100        | 100     |        | NS       | NS     | ***       |            | -         |           | -      | 100      |        |         |          |         |          |           | -17      |           |           |           | 100        |           |          |
| Ethylbenzene                | ppm.  | 974     | 0.51   | 0.1    | 17      | 2 # D          | 1.5      | 10         | 04      | 1      | NS.      | NS     | 0 023     | 0.062      | 0 00044 J | 0.0014    | 0.045  | 19       | 0.0065 | 0.013   | 0.024    | 0.046   | ***      | 0 0086    | 0 0041   |           |           |           |            |           |          |
| Isopropy Ibenzene           | Бbш   | NA      | NA.    | NA     | NA      | NA.            | 0.01     | 0.044      | 00      | 0.038  | NS       | NS     | 0.01      | 0.025      | 0 0010    | 0.015     | NA     | NA       | NA.    | NA NA   | NA       | 0.031   | BMDL J   | 0.033     | 0.039    | 0.016     | 0015      | 0.0084    | 0.0072     | 0.0093    | 0.017    |
| Methy I ethy I ketone       | bbur  |         | 100    | man.   | 444     | ***            |          | ***        |         | +44    | NS.      | NS.    | 0.0055    | 0 0025 J   |           |           | BMDL J | 1 ~      |        | 0.70    | - 100    | BMDL J  |          |           | 1 =      | -         |           | -         | 0:0045 J   | 0.75      | ***      |
| Methyl terriary butyl ether | bbur  |         | -      | NA     | -       |                | -        |            |         |        | NS       | NS     |           | - 1        |           | _         | _      | - 1      |        |         | _        |         |          |           |          |           | NA        |           |            |           | 100      |
| Methy leye lohexane         | ppm   | NA NA   | NA.    | NA     | NA.     | NA.            | BMDLI    | -          | BMDL J  | _      | NS.      | N'S    | 100       | 0.0015     |           | 0.00079 / | NA     | NA.      | NA.    | NA.     | NA       | 0 0053  | BMDL J   | 0.011     | 0 0091   | 0.0072    | 0 0063    | 111       | 0.0014     |           |          |
| Methylene chloride          | ppm : |         |        |        |         | ***            | 1        |            |         |        | NS.      | NS     | -         | 785        | 140       | Dark .    | e+4    | 200      |        | 444     |          | 11.00   | ***      |           | 100      |           | ***       |           | 0 000321   | 100       | 100      |
| Methyl-iso-butyl Actone     | ppm   | _       | -      |        | -       |                | -        |            |         |        | NS       | NS     | 1000      |            | 100       | -         | -      | -        | -      |         | -        | BMDL J  |          | BMDL J    |          |           | - marine  |           |            | -         |          |
| Styrene                     | ppm   | -       | 100    | 100    |         |                | -        |            | - 1     | ***    | NS       | NS     | -         | 100        | -         | 100       | -      | 100      | 100    | 100     | -        | ***     | 509      |           | ***      |           | ***       | ***       |            | -         | 100      |
| Tetrachloroethene           | ppm   | -       |        | -      |         | 2-1            | l –      | -          | BMDL J  |        | NS.      | NS     | -         |            |           |           | 100    | -        | -      | lerk    | 1        |         |          | 100       | 1.00     |           |           | ***       |            | -         |          |
| Toluene                     | ppm   | BMDL.I  |        | 0.002  | 0.0004  | 0.0002         | BMDL1    |            | 100     | BMDL J | NS       | NS     | 100       | ***        | ***       | ***       | 104    | 244      |        | BMDL /  | BMDL /   | BMDL J  |          | BMDL J    | BMD£ J   |           |           |           | -          |           | 100      |
| Total Xylenes               | ppm   | 1       | 2      | 5.4    | 4       | 73D            | 2 59     | 6.31       | 100     | 3.5    | NS       | NS     | 0.0097    | 0 006      |           | 0 00045 J | 0.082  | 19       | 0.0063 | 0 0 3 3 | 0.05     | 0.013   | BMDL J   | BMDLI     | BARDLI   | 0 (0016.) | 0-00085 J |           | 0 00045 J  | 1 8900010 | 0.00041  |
| Trichloroethy lene          | ppm   | -       | -      | -      |         |                | l –      | . –        | -       | l –    | NS       | NS     | l –       |            | -         | _         |        |          |        |         |          |         | 1111     |           | 440      | ***       | 0.002     |           |            | 200       |          |
| Vinyl chloride              | ppm   | 100     | 1000   | .01    | BMDLI   | -              | -        | ) <u> </u> | BMDL J  | 1-1    | NS.      | NS.    | 7300      |            |           | 1995      |        | 22.0     | 0.000  |         | 1,777    |         | 2.000    |           | 2.000    |           |           |           |            | 111       |          |
| TOTAL VOLATILES             | ppm   | 3.0     | 2.6    | 4.4    | 5.7     | 10.73          | 4.14.3   | 2417       |         | 4.550  | NS       | .\5    | 0.07074.2 | 8,16464.1  | 0.001443  | 8.02781 J | 0.16   | 3.0      | 0.024  | 0.05    | 0.1 J2 J | 0.117 J | 0.05 J   | 0.066     | 0.062    | 0.036     | 0.03704 J | 0.01092 J | 0.03979 J  | 0.01569 J | 0.03934  |
|                             |       |         | 1312   | 17.7   | 112     |                |          |            |         |        |          |        |           |            |           |           |        |          | 7.75   | 12      |          |         | L        | I         | l        | l         |           | l         |            |           |          |
| 2-Octanol                   | ppm   | BMDL    | 100    | .00    | 100     | -              | NA.      | NA         | NA.     | NA.    | N5       | NS     | NA.       | NA.        | NA        | NA.       | -      | lest-    | - 016  | 1911    | ***      | NA.     | NA       | NA NA     | HA       | NA        | NA        | NA.       | NA.        | NA.       | NA.      |
| 2-Octanone                  | ppm   | BMDt.   | 440    | 164    | 844     | ***            | NA.      | NA NA      | NA.     | NA NA  | NS       | NS     | NA.       | NA.        | NA.       | NA.       |        | (60)     | 100    | -       | -        | NA      | NA.      | NA        | NA       | NA        | NA.       | NA        | NA         | NA        | NA.      |
| TOTAL OCTANOL/OCTANONE      | ppm   | 6.841 J | 7      | 100    | 1000    | <del>  -</del> | NA.      | NA         | NA.     | NA     | .55      | N5     | NA.       | NA         | NA NA     | NA.       | -      | -        | -      |         |          | NA      | NA.      | NA        | NA       | NA.       | NA.       | NA        | NA         | NA        | NA       |
| ACID EXTRACTABLES           |       | l       | 1      |        |         | 1              |          |            | [       |        |          |        |           | 1          | l         |           | 1      | l        | l      |         |          |         | 1        | l         |          |           |           | 1         | l          |           | 1        |
| 2.4-Dimethy lphenol         | ppm   | NA      | 2.00   | - 2    | SHOUL F |                | BMDL J   | NA NA      | NA.     | NA.    | NS       | 715    | NA.       | NA NA      | NA.       | NA.       | NA     | BMDL III |        | _       |          | NA.     | NA.      | NA NA     | NA.      | 200       | NA.       | NA        | NA.        | NA.       | NA.      |
| 2-Methylphenol              | bbu   | NA NA   | -      | - 2    | -       | I              |          | NA.        | NA NA   | NA.    | NS       | NS NS  | NA.       | NA.        | NA.       | NA.       | NA.    | -        | 1      |         |          | NA      | NA.      | NA.       | NA.      | 100       | NA.       | NA.       | NA.        | NA.       | NA.      |
| 4-Methylphenot              |       | NA NA   |        | Ξ.     |         |                |          | NA NA      | NA NA   | NA.    | NS<br>NS | NS     | NA<br>NA  | NA NA      | NA<br>NA  | NA.       | NA.    |          | 140    |         |          | NA.     | NA.      | NA.       | NA NA    | -         | NA.       | NA.       | NA NA      | NA.       | NA<br>NA |
| Pentachiorophenol           | ppm   | NA NA   | 1      |        | -       | NA.            | 200      | NA NA      |         | NA.    | NS<br>NS |        |           | NA NA      | NA        | NA.       | NA.    |          | 100    | 200     | NA       | NA.     | NA.      | NA NA     | NA.      |           | NA.       | NA<br>NA  | NA.        | NA NA     | NA<br>NA |
|                             | ppen  |         | V 15   |        |         | 100            |          |            | NA      | )      |          | NS NS  | NA NA     |            |           |           |        | 100      | 3.7    |         |          |         |          | NA<br>NA  |          |           |           |           |            |           | NA<br>NA |
| Phonol                      | ppm   | NA.     | 100    | 1      |         |                | I        | NA.        | NA      | NA.    | NS       | N/S    | NA        | NA         | NA.       | NA        | NA     |          | 100    | -       |          | NA      | NA NA    |           | NA<br>NA |           | NA<br>NA  | NA.       | NA.        | NA NA     | NA<br>NA |
| TOTAL ACID EXTRACTABLES     | ppon  | NA      | -      | -      | RMI3 J  |                | 0.0053 J | 54         | NA.     | NA NA  | NS       | .\\$   | NA.       | 3A         | NA.       | NA.       | NA.    | 8.812.3  | 444    | 104     |          | NA.     | NA.      | NA NA     | NA NA    |           | NA        | NA NA     | NA.        | NA.       | N        |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for noits)

| PARAMETER                   | CNIT   |        |              |        |        |        |        |          | LA-S     |          |        |          |        |            |              |        |        |        |        |              |         |        |          | OFF-3    |          |           |          |          |            |          |                |
|-----------------------------|--------|--------|--------------|--------|--------|--------|--------|----------|----------|----------|--------|----------|--------|------------|--------------|--------|--------|--------|--------|--------------|---------|--------|----------|----------|----------|-----------|----------|----------|------------|----------|----------------|
|                             | V. 144 | Mar-08 | Sep-08       | Aug-09 | Aug-10 | Jun-11 | Sep-12 | Jun-13   | Jel-15   | Sep-16   | Jal-17 | 0rt-18   | Sep-19 | Sep-20     | Sep-21       | Sep-22 | Mac-08 | Sep-88 | Aug-09 | Aug-10       | Jun-11  | Dec-12 | Jun-13   | Jun-15   | Sep-16   | Jul-17    | Oct-18   | Sep-19   | Sep-20     | Oct-21   | Sep-22         |
| BASE/NET TRALS              |        |        |              |        |        |        | 1      |          |          |          |        |          |        | _          |              |        |        |        |        |              |         |        |          |          |          |           |          |          |            |          |                |
| 2-Methy inaphthalene        | ppm    | NA     | 9012         | BMDL J | 0 035  |        | 0 022  | NA       | NA NA    | NA NA    | NS     | NS       | NA.    | 0 00721    | NA NA        | NA     | NA NA  | 0.076  |        |              |         | NA     | NA.      | NA.      | NA       | -         | NA.      | NA.      |            | NA.      | NA.            |
| 2-Nitroaniline              | ppm    | NA     |              |        |        | 1      |        | NA       | NA NA    | NA NA    | NS     | NS       | NA.    | _          | NA.          | NA     | NA     | 100    | 17.66  | 1011         | Charles | NA     | NA.      | NA       | NA.      | ***       | NA.      | NA.      |            | NA.      | NA.            |
| 4-Chloroaniline             | ppm    | NA     | ***          | -      | NA.    |        | -      | NA.      | NA NA    | NA       | NS     | NS.      | NA.    |            | NA NA        | NA     | NA.    | ***    |        | NA NA        |         | NA     | NA       | NA       | NA.      |           | NA.      | NA.      |            | NA.      | NA.            |
| Acenaphthene                | ppm    | NA.    | BNIDL J      |        |        |        | - 65   | NA.      | NA NA    | NA:      | NS     | NS       | NA.    | - 1        | NA NA        | NA     | NA     | BMDL J |        |              |         | NA.    | NA NA    | NA       | NA.      | 0 00143   | NA       | NA       | l          | NA.      | NA.            |
| Acetophenone                | ppm    | NA     | NA           | NA.    | NA.    | NA NA  | -      | NA       | NA       | NA.      | NS     | NS       | NA.    |            | NA NA        | NA     | NA.    | NA.    | NA     | NA NA        | NA      | NA     | NA       | NA.      | NA.      | 000163    | NA.      | NA.      | l          | NA.      | NA.            |
| Anthracene                  | ppm    | NA     |              | 1      | _      |        | 144    | NA       | NA NA    | NA:      | NS     | NS       | NA     |            | NA           | NA     | NA     | BMDL J |        |              |         | NA     | NA NA    | NA       | NA NA    | 0 00074 £ | NA.      | NA.      |            | NA.      | NA.            |
| Benzo(a)Anthracene          | ppm    | NA     |              |        | BMDL J |        |        | NA.      | NA NA    | NA.      | NS     | NS       | NA.    | 0 600017.0 | NA           | NA     | NA     |        |        | BMDLJ        | 1       | NA     | NA NA    | NA NA    | NA NA    | I -       | NA.      | NA       | 0.000029.3 | NA.      | NA.            |
| Benzo(s)P3 rene             | ppm)   | NA     | ***          | ***    | ***    |        | 1 - 1  | NA       | NA       | NA       | NS     | NS       | NA.    | 535_       | NA           | NA     | NA.    | ***    |        |              |         | NA     | NA       | NA       | NA.      | l         | NA       | NA.      | I          | NA.      | NA.            |
| Benzo(b)Fluoranthene        | ppm    | NA     |              |        | -      |        |        | NA.      | NA.      | NA       | 155    | NS       | NA.    |            | NA NA        | NA.    | NA     |        |        |              |         | NA     | NA.      | NA       | NA.      | 0.0000153 | NA.      | NA       |            | NA.      | NA.            |
| Benrotg.h.i)Perylene        | ppm    | NA     | ***          | ***    |        |        | 1 - 1  | NA.      | NA       | NA.      | NS     | NS       | NA.    | _          | NA NA        | NA     | NA.    | ***    | ***    |              | l i     | NA     | NA       | NA       | NA.      |           | NA.      | NA.      | l          | NA.      | NA.            |
| bist 2-Chloroeth) Dether    | ppm    | NA     |              |        | l      |        |        | NA.      | NA.      | NA       | NS     | NS       | NA.    |            | NA NA        | _      | NA.    |        |        | BMDL J       |         | NA     | NA.      | NA.      | NA.      | 0.0015    | NA.      | NA.      | 0 017      | NA.      | 6014           |
| bis(2-Chloroisopropy1)ether | ppm    | NA     |              |        | l _    |        | l , l  | NA       | NA.      | NA       | 33     | NS       | NA.    |            | NA NA        | NA     | NA.    |        |        |              |         | NA     | NA NA    | NA.      | NA.      |           | NA.      | NA.      | 1          | NA.      | NA.            |
| bis(2-Ethylhexyl)phthalate  | ppm    | NA     |              |        |        | l      | -      | NA       | NA       | NA       | 113    | NS       | NA.    |            | NA NA        | NA.    | NA.    |        |        |              |         | NA     | NA NA    | NA.      | NA NA    | :-        | NA.      | NA.      |            | NA.      | NA.            |
| Buty I benzy I phthalate    | ppm    | NA     |              | -      |        |        | -      | NA.      | NA NA    | NA<br>NA | NS     | NS       | NA NA  |            | NA NA        | NA.    | NA.    |        |        | - 1          |         | NA.    | NA NA    | NA.      | NA<br>NA |           | NA<br>NA | NA<br>NA |            | NA<br>NA | NA<br>NA       |
| Carbasole                   | ppm    | NA     | BMOL 3       |        |        |        |        | NA.      | NA.      | NA       | NS     | NS       |        |            | NA NA        | NA.    | NA NA  | BMDL J |        |              |         |        |          |          |          |           |          |          |            |          |                |
| Chrysene                    |        | NA     | BAILUE 7     |        | 1 -    |        | "      | NA.      | NA<br>NA | NA NA    |        |          | NA.    | 140        |              |        |        |        |        |              | -       | NA     | NA       | NA       | NA NA    |           | NA.      | NA.      | "          | NA NA    | NA.            |
| Dibenzofuran                | ppm    | NA.    | BMOLI        |        |        |        |        | NA<br>NA |          |          | 143    | NS<br>NS | NA.    | -          | NA           | NA     | NA     |        |        |              |         | NA     | NA       | NA.      | NA       |           | NA.      | NA       |            | NA NA    | NA.            |
| Dietho I phthalate          | ppm    | NA.    |              |        | 1      |        | ٠٠٠ ا  |          | NA.      | NA       | NS     | NS       | NA     | her        | NA           | NA     | NA NA  | _      |        | i            |         | NA     | NA.      | NA.      | NA       |           | NA.      | NA       |            | NA NA    | NA.            |
| Dimethyl phthalate          | ppm    |        |              |        | -      |        | -      | NA       | NA .     | NA.      | 1/3    | N5       | NA.    |            | NA           | NA     | NA.    |        |        |              |         | NA     | NA NA    | NA       | NA NA    | - 1       | NA NA    | NA       | 1          | NA NA    | NA NA          |
| Di-n-buty lphthalate        | ppm    | NA     |              | ***    | -      |        | - 1    | NA       | NA       | NA.      | NS     | NS       | NA.    | _          | NA NA        | NA     | NA.    |        |        |              |         | NA     | NA.      | NA.      | NA.      |           | NA.      | NA       | ļ          | NA.      | NA.            |
|                             | ppm    | NA     |              |        | 1      |        | - 1    | NA.      | NA NA    | N.A      | NS     | NS       | NA.    |            | NA NA        | NA     | NA NA  |        |        |              |         | NA     | NA NA    | NA NA    | NA NA    |           | NA       | NA       |            | NA.      | NA.            |
| Di-n-octy lphthalate        | bbm    | NA     |              |        | - 1    |        |        | NA       | NA.      | NA       | NS     | NS       | NA.    |            | NA NA        | NA     | NA     | -      |        |              |         | NA     | NA NA    | NA NA    | NA       |           | NA NA    | NA       | 1          | NA NA    | NA.            |
| Fluoranthene                | ърш    | NA     | ***          | ***    |        |        | - 1    | NA       | NA NA    | NA.      | 1/3    | NS       | NA.    | -          | NA NA        | NA     | NA.    | ***    |        |              | I I     | NA     | NA       | NA       | NA NA    | 0000943   | NA.      | NA.      | -          | NA       | NA.            |
| Fluorene                    | ppm    | NA     | BMOLI        |        | -      |        | I      | NA.      | NA NA    | NA NA    | NS     | N5       | NA.    | ***        | NA           | NA     | NA     |        |        | [ ]          |         | NA.    | NA NA    | NA       | NA.      | 869117    | NA NA    | NA.      | 1          | NA NA    | NA.            |
| Indeno(1,2,3-cd)Pyrene      | ppm    | NA     | ***          | ***    | 1      |        | I I    | NA.      | NA.      | NA.      | 3/3    | NS       | NA.    |            | NA NA        | NA     | NA.    | ***    |        |              |         | NA     | NA NA    | NA       | NA       |           | NA.      | NA       |            | NA.      | NA.            |
| Isophorone                  | ppm    | NA     | ***          |        |        |        | f - I  | NA.      | NA NA    | NA.      | N5     | NS.      | NA.    | -          | NA           | NA.    | NA.    |        |        |              |         | NA.    | NA       | NA NA    | NA.      |           | NA NA    | NA.      |            | NA.      | NA.            |
| Naphthalene                 | ppm    | NA     | 0.012        | 0.025  | 0.42   |        | 0.23   | 0.21     | 0.26     | 0.4      | NS     | NS.      | 0.04   | 0.065      | <b>#0084</b> | 0.022  | NA     | 10     | 0.012  | 0.019        |         | NA     | 8MDL1    | 9 12     | 9.065    | -         | 0.0021   |          |            | 100      | 0.0003         |
| Nitrobenzene                | ppm    | NA     |              |        | 1 -    |        |        | NA.      | NA NA    | NA NA    | 1/3    | NS       | NA     | 140        | NA           | NA     | NA.    |        |        |              |         | NA     | NA       | NA       | NA       | -         | NA       | NA.      |            | NA       | NA.            |
| Phenanthrene                | ppm    | NA     | 1.JOMB       |        |        |        | l I    | NA.      | NA NA    | NA.      | 5/5    | NS       | NA.    | - 1        | NA NA        | NA     | NA     | DMDLI  |        | !            |         | NA     | NA       | NA NA    | NA NA    | # 0041 J  | NA       | NA.      |            | NA.      | NA.            |
| Pyrene                      | ppm    | NA     |              |        |        |        |        | NA.      | NA       | NA       | NS     | NS       | NA.    | rie .      | NA           | NA     | NA.    |        |        | - 1          |         | NA     | NA I     | NA.      | NA.      | 100       | NA       | NA       |            | NA.      | NA.            |
| 1.4-Dioxane                 | ppm    | NA     | NA           | NA     | NA.    | NA.    | NA NA  | NA.      | NA NA    | NA       | NA.    | NA .     | NA.    | NA.        | NA           | 1981   | NA.    | NA     | NA.    | NA .         | NA      | NA.    | NA       | NA.      | NA.      | NA.       | NA       | NA       | NA.        | NA.      | <b>₽0004</b> 3 |
| TOTAL BASE/NEUTRALS         | ppm    | NA     | 0.027 J      | 0.633  | 0.56   | ***    | 0.252  | 0.781 J  | 0.26     | 0.4      | NS     | NS       | 0.010  | 4.04333 J  | 0.0014       | 0.033  | SA     | 1.13   | 9.012  | 0.019        |         | 6.0017 | 1.8999.0 | 0.121    | 9.065    | 0.013     | 0.0021   | NA.      | 0.01703 J  | NA.      | 0.6155         |
| teticiper                   | 1 1    |        |              |        |        |        |        |          |          |          |        |          | i      |            |              |        |        |        |        |              |         |        |          |          |          |           |          |          |            |          | П              |
| PESTICIDES                  | l . I  |        |              |        | 1      | ı      | ł I    |          |          |          |        | l        |        |            |              |        | ı      |        | 1      |              |         |        |          |          | ı        | 1         | l .      | 1        | 1          | 1        |                |
| 4.4°-DDD                    | ppo    | NA     | ***          | ***    |        |        | . NA   | NA.      | NA NA    | NA       | NS     | NS       | NA.    | NA.        | NA NA        | NA     | NA NA  |        |        |              |         | NA     | NA.      | NA.      | NA.      | NA NA     | NA       | NA       | NA.        | NA NA    | NA.            |
| 4,4'-DDE                    | ppb    | NA     | -            |        | -      |        | NA.    | NA       | NA NA    | NA NA    | 1/3    | NS       | NA.    | NA.        | NA NA        | NA     | NA     |        |        | I - I        |         | NA     | NA NA    | NA       | NA.      | NA        | NA NA    | NA.      | NA.        | NA.      | NA             |
| 4.4'-DDT                    | ppb    | NA     |              |        |        |        | NA.    | NA       | NA NA    | NA       | NS     | NS       | NA.    | NA.        | NA NA        | NA     | NA NA  | ***    |        |              |         | NA     | NA.      | NA.      | NA.      | NA.       | NA.      | NA.      | NA.        | NA.      | NA:            |
| Beta-BHC                    | ppb    | NA     | -            |        | -      |        | NA.    | NA.      | NA NA    | NA NA    | 1/5    | NS       | NA.    | NA.        | NA NA        | NA.    | NA NA  |        |        | l – I        |         | NA     | NA.      | NA       | NA.      | NA NA     | NA       | NA       | NA.        | NA.      | NA.            |
| Dieldrin                    | ppb    | NA     |              |        | - 1    |        | NA.    | NA       | NA.      | NA.      | พร     | NS       | NA.    | NA.        | NA NA        | NA     | NA.    |        |        |              |         | NA     | NA.      | NA.      | NA.      | NA.       | NA.      | NA.      | NA.        | NA.      | NA.            |
| Endosulfan I                | ppb    | NA     |              | 400    |        |        | NA NA  | NA.      | NA NA    | NA       | NS     | NS       | NA.    | NA.        | NA NA        | NA     | NA     |        |        |              |         | NA     | NA.      | NA.      | NA.      | NA NA     | NA.      | NA.      | NA.        | NA.      | NA.            |
| Endosulfan sulfate          | ppb    | NA     |              |        |        | im.    | NA.    | NA.      | NA NA    | NA NA    | NS     | NS       | NA.    | NA.        | NA NA        | NA     | NA     |        |        | _            |         | NA     | NA.      | NA.      | NA.      | NA NA     | NA       | NA       | NA         | NA.      | NA.            |
| Endrin aldeby de            | ppb    | NA     | l –          |        |        |        | NA.    | NA       | NA.      | NA       | 1/3    | NS       | NA.    | NA.        | NA NA        | NA     | NA     |        |        | -            |         | NA     | NA.      | NA.      | NA.      | NA        | NA       | NA.      | NA.        | NA       | NA.            |
| Endrin kesone               | ppb    | NA     |              |        |        |        | NA.    | NA       | NA NA    | NA NA    | NS.    | NS       | NA.    | NA         | NA NA        | NA     | NA     |        |        |              |         | NA.    | NA.      | NA.      | NA       | NA.       | NA.      | NA       | NA.        | NA.      | NA.            |
| Gamma-BHC                   | ppb    | NA     |              | ***    |        |        | NA NA  | NA       | NA       | NA.      | NS     | NS       | NA.    | NA.        | NA.          | NA     | NA.    |        |        |              |         | NA     | NA.      | NA.      | NA.      | NA.       | NA.      | NA       | NA         | NA.      | NA:            |
| Heptachlor                  | ppb    | NA.    |              |        |        |        | NA.    | NA       | NA.      | NA.      | 33     | NS       | NA     | NA.        | NA           | NA.    | NA.    |        |        |              |         | NA.    | NA.      | NA.      | NA NA    | NA NA     | NA.      | NA.      | NA.        | NA NA    | NA.            |
| Heptachlor epoxide          | ppb    | NA     |              |        |        |        | NA.    | NA       | NA.      | NA.      | NS.    | NS       | NA.    | NA.        | NA           | NA.    | NA.    |        |        |              |         | NA     | NA.      | NA.      | NA.      | NA.       | NA       | NA.      | NA.        | NA.      | NA.            |
| Methoxychlor                | ppb    | NA.    |              |        |        |        | NA NA  | NA.      | NA.      | NA.      | 745    | NS       | NA.    | NA NA      | NA NA        | NA.    | NA NA  |        |        |              |         | NA.    | NA.      | NA<br>NA | NA.      | NA NA     | NA NA    | NA<br>NA | NA NA      | NA.      | NA<br>NA       |
| TOTAL DDX                   | ppb    | 54     | <del>-</del> |        | -      | -      | NA.    | NA.      | NA NA    | NA.      | 35     | NS<br>NS | 5A     | NA NA      | NA.          | 5A     | NA NA  |        |        | <del>-</del> |         | NA.    | NA NA    | NA<br>NA | NA NA    | NA<br>NA  | NA.      | NA<br>NA | NA NA      | DA       | 34             |
|                             |        |        |              |        |        |        |        |          |          |          |        |          |        |            |              |        |        |        |        |              |         |        |          |          |          |           |          |          |            |          |                |

#### TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for notes)

| PARAMETER                   | UNIT |        |          |        |          |         |          |          | OFF-3  |        |          |          |          |          |           |           |            |        |        |        |         |        |        | OFF-4  |           |               |        |            |        |        |        |
|-----------------------------|------|--------|----------|--------|----------|---------|----------|----------|--------|--------|----------|----------|----------|----------|-----------|-----------|------------|--------|--------|--------|---------|--------|--------|--------|-----------|---------------|--------|------------|--------|--------|--------|
| PARASIEJER                  | COL  | Mar-88 | Aug-85   | Aug-89 | Sep-10   | Jun-11  | Aug-12   | Jun-13   | Jun-15 | Sep-16 | Jul-17   | Oct-18   | Sep-19   | Sep-20   | Oct-21    | Sep-22    | Mar-88     | Sep-88 | Aug-09 | Aug-10 | Jun-II_ | Sep-12 | Jun-13 | Jun-15 | Sep-16    | Jul-17        | Oct-18 | Sep-19     | Sep-20 | Sep-21 | Sep-12 |
| VOLATILES                   | 1 1  |        |          |        |          |         |          |          |        | 1      |          | I        |          |          | 2007      |           | 7.5        |        |        |        |         |        |        |        |           |               |        |            |        |        |        |
| 1,1,1-Trichloroethane       | ppm  |        |          |        | -        |         | N'S      | NS       | NS     | 145    | NS       | NS       | NS.      | NS       | -         | - 44      | 200        | 1 (-1) | 444    | 1.00   |         |        | 0.000  | -      |           | 0.000         | 1000   | 170        | 100    | -      | 717    |
| 1.1.2,2-Tetrachloroethane   | ppm  |        |          |        |          |         | N5       | NS       | NS     | NS.    | NS       | NS       | NS       | NS       | Sec       |           | -          |        | _      | -      | 1       |        |        | 5-0-1  | 666       | 140           | 44     | 440        | 844    | 640    | -      |
| 1.1-Dichloroethene          | ppm  |        | ***      | ***    | ***      | ***     | N5       | N\$      | NS.    | NS     | N/S      | NS       | NS       | 1/3      | 201       | -         | -          | 100    | 310    | Com.   |         |        | -      | -      |           | -             | -      | -          |        | 70     | -      |
| 1,2,4-Trichlorobenzene      | ppm  | NA.    | ***      |        |          | 444     | NS       | NS       | NS.    | 1/5    | NS.      | NS       | NS       | 3/5      | -         | -         | NA.        |        | 144    | 100    | 111     | 100    | -      | -      | -         |               |        | -          | 300    | - 100  | 100    |
| 1,2-cis-Dichloroethylene    | ppm  |        | _        |        | _        | BMDL I  | NS       | NS       | NS     | NS.    | NS.      | N5       | NS       | NS       | 1991      |           | -          |        | -      | 5-2    |         |        | -      | -      |           |               | -      |            | 1.00   | -      | -      |
| 1.2-Dibromo-3-chloropropane | ppm  | _      |          |        |          |         | NS.      | NS.      | NS     | NS     | N\$      | NS.      | NS       | NS       | 104       |           | 1.0        |        |        | -      | 100     | 195    | .10    |        | DMDL J    |               | -      | -          | -      | 1 -    | -      |
| 1.2-Dichlorobenzene         | ppm  | NA.    |          | l      |          | 4+4     | NS       | NS NS    | NS NS  | 345    | NS NS    | NS.      | HS       | NS NS    | 4 000 FE  |           | NA.        |        | 344    | in the | 100     | 100    | 100    | 100    | 200       | -             | 100    | the second | 200    | 1 100  | -      |
| 1.2-trans-Dichloroethylene  | ppm  | ,.     |          |        |          |         | NS       | NS.      | หร     | NS     | NS       | NS       | พร       | NS.      | 303       | 440       |            | -      | 244    | -      | 1/2     | 12-1   | -      | -      | 0.00      |               | -      |            |        |        | -      |
| 1.4-Dioxane                 | ppm  | _      | _        |        | l _      |         | N5       | NS       | NS     | NS.    | NS       | NS.      | 355      | NS       | NA.       | NA.       | 100        | -      | 200    | -      |         | 100    | -      | 400    | LAGAGE. I | 700           | ***    | NA         | 200    |        | -      |
| 2-Hexanone                  | ppm  |        |          |        |          |         | NS       | N5       | NS.    | NS     | NS       | NS       | NS.      | NS       |           |           | -          | _      | -      |        | 100     | 140    | -      | riv.   | 1.00      | 400           | -600   | 100        | 544    | 444    | -      |
| Acetone                     | ppm  |        |          |        |          | ,,,     | NS       | 765      | NS     | NS.    | NS       | NS       | NS       | NS.      | 2.00      | 0.0034.7  | 400        | 200    | 100    | ***    | - 52    | _      | -      |        |           | 0.00343       |        | -          | -      |        |        |
| Benzene                     | ppm  |        |          | l      |          | BMDL J  | 7/5      | NS.      | NS     | NS.    | NS       | NS       | NS.      | N5       | -         |           | 40         | and .  | 100    | 900    | -       | les :  |        | 49     | 101       | test.         | -111   | 100        | 773    | int.   | -      |
| Bromeform                   | ppm  | _      | _        | _      | _        |         | NS       | NS       | NS     | NS.    | NS       | NS       | NS.      | NS.      | -         |           |            | -      | 122    | 11.00  | 100     | -      | -      | -      | -         | 100           | 14     | 444        | 141    | -      | -      |
| Carbon Disulfide            | ppm  |        |          |        |          |         | NS       | 155      | 105    | NS NS  | NS       | 85       | NS.      | NS.      |           | _         |            | -      | 2      |        | ***     |        |        | -      |           | _             | 200    |            | 12     |        | ***    |
| Chlorobenzene               | bbur |        |          |        | 0.0012   | 0.0058  | NS       | NS       | NS.    | NS     | NS.      | NS       | NS       | NS       | 0.004     | 0 0039    |            |        |        |        |         |        | 100    |        | 100       |               | 100    | -          | 200    | -      |        |
| Chloroethane                | ppm  |        |          |        |          |         | NS       | NS       | NS.    | NS.    | NS       | NS       | NS       | NS.      |           | P1        |            |        |        |        | ! _     | _      | 220    | -      |           | 1             | 32     |            |        | -      | 100    |
| Chloroform                  | ppm  |        | _        | _      | I =      | l       | NS       | NS.      | NS     | NS     | NS       | NS       | NS       | NS       | -         |           | BMDL J     | 0 0071 | 0.010  | 0.013  | 0.013   | 0.0053 | -      | 0.001  | 0.014     | 0.013         | 0.001  | 0.011      | 0.043  | 0.0067 | 0.007  |
| Chloromethane               | ppm  |        |          |        | I =      |         | NS       | NS.      | 115    | NS     | 355      | NS       | NS       | NS.      | -         | 2000      | Division 7 |        |        | 7 717  |         |        | 340    | -      | 100       | 100           | -      | 200        | 100    |        | 400    |
| Cycloheanne                 |      |        | NA.      | NA.    | NA.      | NA.     | NS       | NS       | NS     | NS     | NS.      | NS       | NS       | NS.      |           | 7         | NA         | NA.    | NA     | NA.    | NA.     | 11 40  | 19.5   | -      | -         | _             | 100    | 7.20       |        |        |        |
| Dibromochloromethane        | 9pm  | NA.    |          | 1      | 1        | I       | NS<br>NS | NS       |        | NS     | NS       | NS       | NS<br>NS | NS       | 1.5       | 141       | 100        | -      |        |        | 100     | 1000   | 12     |        | 122       |               | -      |            |        | 10.22  |        |
| Dichlombromomethane         | bban |        |          | _      | -        |         |          |          | NS     |        | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | -         | 100       | -          |        |        |        |         |        | 100    |        | 100       | 0:000mil      |        |            | 100    |        | - 1    |
|                             | ppm  |        |          |        |          |         | NS       | NS<br>HS | N\$    | N5     | NS<br>NS |          | NS<br>NS | NS<br>NS |           | 0.0052    |            | 300    | 2.27   | -      |         | -      |        |        | 27        |               | 1 2    | -          |        |        | -      |
| Ethy (benzene               | ppm  | 10     | 1.7      | 11     | 0053     | 0.23    | NS.      | N\$      | NS     | 145    | 1.10     | NS<br>NS |          |          | 0 0012    |           |            |        |        | HA     | NA NA   |        |        |        |           | 1             |        |            | 1      | 1      | l      |
| Isopropy Ibenzene           | bbus | NA.    | NA       | NA.    | NA.      | NA.     | NS.      | NS<br>NS | 95     | NS     | N5       | NS       | NS       | NS<br>NS | 1         | 0.024     | NA.        | NA     | NA     |        |         |        | _      | 1      |           |               |        |            |        |        | -      |
| Methy I ethy-I ketone       | bhrn |        |          | l      |          |         | HS.      | NS       | NS     | 743    | NS       | NS       | NS.      | NS       |           |           |            |        |        |        | ***     | -      |        |        |           | ***           |        |            |        |        |        |
| Methyl tertiary butyl ether | bben |        |          |        | ***      |         | NS       | NS       | NS     | NS     | NS       | NS       | NS       | NS       |           |           |            |        |        | NA     |         |        |        | ř .    | -         | -             |        |            | -      |        |        |
| Methy ley clohexane         | ppm  | NA.    | NA.      | NA     | NA.      | NA.     | NS.      | NS       | NS     | 145    | NS       | NS       | NS       | NS       | 0 0012 J  | 0 0027 J  | NA.        | NA     | NA.    | NA NA  | NA NA   | -      |        | -      | ] -       | -             |        |            |        | _      | i -    |
| Methylene chloride          | ppm  |        |          | -      | 444      |         | NS       | NS       | NS     | NS.    | NS       | 165      | NS       | NS       |           |           | 141        |        |        |        | - !     | -      | _      |        |           |               |        |            |        |        |        |
| Methy I-iso-buty I ketone   | ppm  | -      | - 1      |        |          |         | 115      | NS       | NS     | NS.    | N5       | NS       | 145      | NS       |           |           |            | -      | -      | - 1    | !       |        | ***    | ·      | ***       | - 1           |        |            | -      |        | ***    |
| Sry reme                    | bbus |        |          |        | ***      |         | N\$      | NS       | NS     | 74%    | NS       | 24       | NS       | HS.      |           | - 1       |            | -      |        |        |         |        |        |        | -         | -             | -      |            |        |        |        |
| l'etrachioroethene          | ppm  |        | 114      |        |          | ***     | NS       | 145      | 145    | NS     | NS       | NS       | NS.      | NS       |           | ***       | ***        | 100    |        |        |         | _      |        |        |           |               |        |            | ~~     | -      |        |
| Foluene                     | bhu  | BMDL ) |          | -      | -        | BMDLJ   | NS       | NS       | NS     | NS     | NS       | NS.      | N5       | N5       | 1+4       | 0 00079 J | ***        | ***    | -      |        |         |        | -      |        |           |               | ***    | ***        |        | ***    |        |
| Total Xylenes               | ppm  | 3.4    | 71       | 3.1    | 0.38     | 0.62    | NS.      | 145      | N\$    | NS     | NS.      | NS       | NS.      | HS.      |           | 0 0095 J  |            | -      | -      |        |         |        | ]      |        |           | -             |        | -          |        | -      |        |
| Trickloroethy lene          | ррт  | ****   |          |        | 114      | 414     | NS       | NS.      | NS     | NS     | NS       | NS       | NS.      | NS.      |           | -         |            |        |        | ***    |         |        |        | -      |           |               | ***    | _          |        | -      |        |
| Vinyl chloride              | ppm  |        |          | -      |          | BMDt J  | NS       | 145      | NS.    | NS.    | NS       | NS       | N\$      | N3       |           | ***       | +44        |        | -      |        |         |        |        |        |           | 1 2 2 2 2 2 2 | 4++    | 1+1        |        |        |        |
| TOTAL VOLATILES             | ppm  | 7.0    | 1.3      | 4.9    | 0.33     | 0.875 J | NS       | .55      | NS.    | 85     | NS.      | NS.      | 55       | .55      | 8.02158 J | 8.04949.3 | 8.0042 J   | 0.0071 | 8.01   | 0.013  | 0.015   | 0.005  | ***    | 0.018  | 0.014     | 0.016         | 0.021  | 0.011      | 0.013  | 6.907  | 0.017  |
|                             |      |        | 1        |        |          |         | 1        |          |        |        |          |          |          |          | 1         |           |            |        |        |        | 1       |        |        | 1      |           |               |        |            |        |        | 1      |
| 2-Octanol                   | ppm  |        | ***      |        |          |         | NS.      | NS.      | NS     | NS     | NS       | NS.      | N\$      | N5       | NA.       | NA        | NA         | NA.    | NA     | NA.    | NA.     | NA     | NA.    | NA NA  | NA.       | NA.           | NA.    | NA.        | NA.    | NA.    | NA.    |
| 2-Octanone                  | ppm  |        |          |        |          |         | NS       | NS       | NS     | NS.    | NS.      | NS.      | N\$      | NS.      | NA.       | NA.       | NA.        | NA     | NA.    | NA NA  | NA.     | NA.    | NA.    | NA NA  | NA        | NA.           | NA.    | NA         | NA     | NA.    | NA.    |
| TOTAL OCTANOL/OCTANONE      | ppm  | _      |          | _      |          |         | NS.      | 5.5      | h5     | NS     | N5       | NS       | .55      | 155      | NA.       | NA.       | NA.        | NA     | NA     | NA.    | NA.     | NA     | NA     | NA.    | NA NA     | NA.           | NA NA  | NA.        | NA.    | NA     | NA     |
|                             | Γ.   |        |          |        |          |         | 1        |          |        |        |          |          |          |          |           | NA        |            | I      | l      |        | 1       |        |        | 1      |           | 1             | 1      | 1          | ı      | 1      | 1      |
| ACID EXTRACTABLES           | I .  |        |          |        | 1        | 1       |          | l        | 1      | 1      | l        |          | l        | I        | 1         | NA.       | 1          | 1      | I      |        |         |        |        |        | 1         |               |        | l          | I      | l      | i .    |
| 2,4-Dimethy lphenol         | ppm  | NA     | BMDL J   | -      | BMDL J   |         | NS       | NS       | NS.    | NS     | NS.      | NS.      | NS       | NS       | NA NA     | NA.       | NA         | -      | l –    |        |         | NA.    | NA.    | NA.    | NA NA     | NA.           | NA     | MA         | NA     | NA     | NA.    |
| 2-Meshy lphenol             | ppm  | NA     |          |        |          |         | NS       | NS       | NS.    | NS     | NS       | NS       | NS       | NS.      | NA        | NA        | NA.        |        |        |        |         | NA.    | NA.    | NA     | NA.       | NA.           | NA.    | NA.        | NA     | NA     | NA     |
| 4-hiethylphenol             | ppm  | NA     |          | +44    |          | ***     | NS       | NS.      | NS     | NS.    | NS       | NS       | NS       | NS.      | NA.       | NA        | NA.        |        |        |        |         | NA.    | NA.    | NA.    | NA.       | NA.           | NA.    | NA         | NA.    | NA NA  | NA.    |
| Pentachlorophenol           | ppm  | NA     |          | -      |          | NA.     | NS       | NS       | NS     | NS     | NS       | N5       | N\$      | NS.      | NA.       | NA.       | NA.        |        |        | l –    | NA.     | NA.    | NA.    | NA     | NA.       | NA.           | NA.    | NA         | NA.    | NA     | NA     |
| Phenol                      | ppun | NA     |          |        |          |         | NS.      | N\$      | NS     | NS     | NS       | NS       | NS       | 5.5      | NA.       | NA        | NA.        |        |        |        |         | NA.    | NA.    | NA     | NA.       | NA            | NA     | NA         | NA     | NA.    | NA     |
| TOTAL ACID EXTRACTABLES     | ppm  | NA     | 8.0047 J |        | 6.0018 J |         | NS.      | NS       | NS     | 38     | NS       | NS       | NS       | NS       | NA.       | NA.       | NA.        |        |        |        |         | NA.    | NA.    | NA.    | NA.       | NA.           | NA.    | NA.        | NA.    | NA NA  | NA.    |

TABLE 2

ANALYTICAL RESULTS FOR OFF-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(1647 PAGE 15 FOR BOSES)

| PARAMETER                | UNIT       | <u></u>  | _      |           |        |              |                  |          | OFF-3    |          |          |          |          |          |             |            |          |        |        |        |        |          |          | OFF-4    |          |          |          |          |        |          |      |
|--------------------------|------------|----------|--------|-----------|--------|--------------|------------------|----------|----------|----------|----------|----------|----------|----------|-------------|------------|----------|--------|--------|--------|--------|----------|----------|----------|----------|----------|----------|----------|--------|----------|------|
| BASENEUTRALS             | -          | Mar-08   | Aug-08 | Aug-09    | Sep-10 | Jun-II       | Aug-12           | Jun-13   | Jun 15   | Sep-16   | Jul-17   | Oct-18   | Sep-19   | Sep-20   | Oct-21      | Sep-22     | Mar-08   | Sep-88 | Aug-89 | Aug-10 | Jun-11 | Sep-12   | Jun-13   | Jun-15   | Sep-16   | Jul-17   | Oct-18   | Sep-19   | Sep-20 | Sep-21   | Sej  |
| -Methy Inaphthalene      |            | l        |        |           | 1      |              | 1 [              |          | l [      |          |          |          |          |          |             | NA         |          |        |        |        |        |          |          |          |          |          |          |          |        |          |      |
|                          | ppm        | NA       | BMDL   | BMDL #    | 301    | 100          | N5               | NS.      | NS       | NS       | NS.      | NS       | NS       | NS       | NA          | NA         | NA       | -      |        |        | 100    | NA       | NA       | NA I     | NA NA    | NA.      | NA.      | NA.      | NA NA  | NA.      | 1 1  |
| Nitroaniline             | ppm        | NA       | 100    | -         |        | -            | 85               | 188      | NS       | NS       | NS.      | 165      | NS       | N\$      | NA NA       | NA NA      | NA NA    | Test.  | 1      | 101    |        | NA       | NA:      | NA       | NA.      | NA.      | NA.      | NA.      | NA.    | NA       | 1.55 |
| Chloroaniline            | ppm        | NA       | -      | -         | NA     | .777         | NS               | NS       | NS       | NS       | NS       | NS       | NS       | NS       | NA          | NA.        | NA NA    | .000   | -      | NA NA  | -      | NA NA    | NA.      | NA NA    | NA       | NA.      | NA.      | NA       | NA.    | NA       | 1    |
| enaphthene               | ppm        | NA       | -      | 940       | 100.1  | 100          | N5               | NS       | NS       | NS       | NS.      | 88       | NS       | NS.      | NA          | NA.        | NA .     | -      | -      | 195    | 111    | NA.      | NA .     | NA NA    | NA.      | NA.      | NA.      | NA.      | NA.    | NA.      | 1 3  |
| rtophenone               | ppm        | NA.      | NA.    | NA        | NA     | NA           | NS               | NS.      | NS       | NS       | NS.      | NS       | NS       | NS.      | NA          | NA .       | NA       | NA.    | NA     | NA NA  | NA NA  | NA.      | NA.      | NA       | NA.      | NA.      | NA.      | NA       | NA.    | NA.      | 1    |
| racene                   | ppm        | NA       |        | and the   | ***    | Per          | NS               | NS       | NS       | NS.      | NS       | NS       | NS       | NS       | NA          | NA .       | NA       |        | -      | - 1    |        | NA.      | NA.      | NA NA    | NA NA    | NA.      | NA.      | NA.      | NA.    | NA.      |      |
| o(a)Anthracene           | ppm        | NA NA    | 1991   | 200       | 1 600  | 440          | 185              | N5 .     | NS       | N\$      | 55       | NS       | NS       | NS       | NA          | NA.        | NA       |        | 1      | 500    | -      | NA.      | NA.      | NA       | NA.      | NA.      | NA NA    | NA.      | NA I   | NA       | 1    |
| (a)Pyrene                | ppm        | NA       | in its |           | -      | -            | 1/3              | N\$      | NS       | NS       | NS.      | NS       | NS       | NS       | NA          | NA         | NA       | -      | -      | 0.7    |        | NA NA    | NA.      | NA NA    | NA NA    | NA NA    | NA.      | NA.      | NA.    | NA NA    | 1    |
| b)Fluoramhene            | ppm        | NA.      | 0.40   |           | ***    | -            | NS               | NS       | NS       | NS       | NS       | NS       | NS       | NS.      | NA          | NA.        | NA I     | 104    |        | 1 2 1  |        | NA.      | NA NA    | NA I     | NA<br>NA | NA NA    | NA<br>NA | NA<br>NA | NA.    | NA<br>NA | 1    |
| g.h.i)Pery lene          | ppm        | NA.      |        | 99        | 100    | 100          | NS               | NS       | NS.      | NS       | NS.      | NS       | NS.      | N5       | NA          | NA         | NA I     | -      |        |        |        | NA .     | NA NA    | NA NA    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA.    | NA<br>NA |      |
| Chloroethy Dether        | ppm        | NA.      |        | .64       | 444    | -            | NS               | NS.      | NS NS    | NS       | NS       | NS       | NS       | NS<br>NS | NA I        | - N        | NA I     | m      |        | 1 3 1  |        | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA       | NA<br>NA |          | NA.    | NA       | 1    |
| Chloroisopropy Dether    | ppm        | NA       | 0.00   |           |        | 100          | NS I             | 55       | NS I     | NS NS    | NS       | N5       | NS NS    | NS       | NA NA       | NA         | NA       |        |        | 1 3 1  |        |          | 4        |          |          |          |          | NA.      |        |          | 1    |
| Ethy the xy 1) phthalate | ppm        | NA.      |        | -         | 100    |              | NS               | NS       | NS NS    | NS       | NS<br>NS | NS NS    | NS       | NS<br>NS | NA NA       | NA<br>NA   |          | 144    |        | 1 7 1  |        | NA NA    | NA NA    | NA NA    | NA<br>NA | NA NA    | NA.      | NA.      | NA NA  | NA       | 1    |
| enzs i phthalate         | ppm        | NA.      |        |           | -      | -            | 35               | NS       | NS NS    | NS NS    |          |          |          |          |             |            | NA       | 0.75   |        | - 75   | 711    | NA       | NA.      | NA NA    | NA       | NA       | NA       | NA       | NA     | NA NA    | -    |
| ole                      |            | NA<br>NA |        |           | -      | 170          |                  | NS       |          |          | NS.      | NS       | N\$      | NS       | NA          | NA NA      | NA       | 111    | -      |        | 100    | NA       | NA       | NA NA    | NA.      | NA.      | SA       | NA       | NA     | NA.      | П    |
| ne<br>ne                 | ppm        | NA<br>NA |        |           | 100    | 1000         | NS NS            |          | NS<br>NS | NS.      | NS<br>NS | NS       | NS       | NS       | NA          | NA         | NA       | 144    |        | - 5    | -      | NA       | NA.      | NA NA    | NA.      | NA.      | NA.      | NA       | NA NA  | NA       | -    |
| ec<br>oluran             | ppm        |          | -      |           | 1      | 440          | NS I             | NS       | N5       | NS.      | NS.      | NS       | NS       | 145      | NA NA       | NA NA      | NA       | ***    | -      | - 1    |        | NA.      | NA.      | NA       | NA.      | NA.      | NA.      | NA       | NA NA  | NA       | П    |
| phthalate                | ppm        | NA<br>NA |        | ***       | 100    | - 55         | 1/3              | 1/2      | NS.      | NS       | NS       | NS       | NS       | NS       | NA          | NA NA      | NA       | 711    | -      |        | - 11   | NA NA    | NA.      | NA NA    | NA.      | NA.      | NA.      | NA       | NA NA  | NA       | - 1  |
|                          | ppm        | NA<br>   | 144    | 77        |        | ***          | NS               | 143      | NS NS    | NS.      | ₩\$      | NS NS    | NS       | NS       | NA.         | NA NA      | NA       | No.    | 100    | test.  |        | NA       | NA NA    | NA NA    | NA       | NA.      | NA.      | NA.      | NA.    | NA       | - 1  |
| I phthalate              | ppm        | NA       | -      | 44        | 100    | 200          | NS               | NS       | NS       | NS       | NS       | NS       | N\$      | NS.      | NA NA       | NA NA      | NA.      |        | -      | -      |        | NA.      | NA.      | NA       | NA.      | NA NA    | NA.      | NA       | NA     | NA       | П    |
| y lphthalate             | ppm        | NA .     | 100    | 100.      | 440    | -            | 53               | NS       | NS       | N5       | NS       | NS       | N\$      | NS       | NA          | NA NA      | NA       | 111    |        | - 1    | 907    | NA       | NA.      | NA       | NA.      | NA.      | NA.      | NA.      | NA     | NA       | - )  |
| y lphthalate             | ppm        | NA       | 100    | -         | -      | 400          | NS NS            | 145      | NS       | N\$      | NS       | NS I     | NS       | NS       | NA          | NA NA      | NA       | 466    | 104    | 2.0    | 3-4    | NA       | NA.      | NA NA    | NA.      | NA.      | NA.      | NA       | NA     | NA       | -1   |
| thene                    | ppm        | NA       |        | 100       | 11-    | 100          | NS               | NS       | NS       | NS       | N\$      | NS       | NS:      | NS       | NA.         | NA NA      | NA       |        |        |        |        | NA.      | NA.      | NA       | NA.      | NA       | NA.      | NA.      | NA     | NA       | -1   |
| e e                      | ppm        | NA.      | 100    | )=(       | 200    | -            | N\$              | NS       | NS       | NS       | N        | Nh.      | NS.      | NS       | NA          | NA NA      | NA       | ***    |        | -      |        | NA.      | NA.      | NA       | NA NA    | NA.      | NA.      | NA NA    | NA     | NA.      | -    |
| 1.2.3-cd)Pyrene          | ppm        | NA       | 1 to   | _         | -      | -            | NS.              | N\$      | NS       | NS.      | NS       | N3-      | NS.      | NS       | NA.         | NA         | NA       |        | I      |        |        | NA.      | NA NA    | NA       | NA<br>NA | NA.      | NA NA    | NA NA    | NA NA  | NA<br>NA | 1    |
| one                      | ppm        | NA       | -      | -         | 100    | -            | NS.              | NS       | N5       | NS       | NS       | N9.      | NS.      | NS       | NA I        | NA         | NA       |        |        |        | "      | NA.      | NA NA    | NA I     | NA<br>NA | NA NA    | NA NA    | NA<br>NA | NA NA  | NA<br>NA | -1   |
| alene                    | ppm        | NA       | 0.093  | 0.051     | 0.001  |              | NS NS            | NS.      | NS       | NS       | NS       | NS.      | NS.      | NS       | l 🖺 i       | 0.00044    | NA I     |        | _      | 🖫      |        | NA.      | - NA     | - AA     | NA       | NA<br>   | NA.      | NA.      |        | 200      | -    |
| nzene                    | ppm        | NA.      | 100    | 125 27 10 |        | -            | NS               | NS       | NS NS    | NS.      | NS       | NS       | NS.      | NS       | NA          | NA NA      | NA NA    | 101    |        |        |        | NA<br>NA |          |          |          |          |          |          |        |          | - )  |
| derne                    | ppm<br>pym | NA.      | -      | 100       | -      |              | NS.              | NS       | NS       | 15       | NS<br>NS | N5       | NS       | NS<br>NS |             |            |          | 900    |        | "      |        |          | NA.      | NA NA    | NA NA    | NA       | NA.      | NA .     | NA     | NA       | -)   |
|                          | ppm        | NA NA    | 100    | -         | 44     | -            | NS NS            | NS       | NS       | NS NS    |          | NS-      | NS.      |          | NA<br>NA    | NA<br>NA   | NA NA    |        | - 1    |        | "      | NA.      | NA<br>NA | NA NA    | NA       | NA       | NA NA    | NA       | NA     | NA       | - 1  |
| ovene                    | ppm        | NA<br>NA | NA     | NA        | NA     | NA.          | NA NA            | NA<br>NA | NA<br>NA | NS<br>NA | NS<br>NA | NA<br>NA |          | NS       | 1401        | NA .       | NA       | 771    |        |        | 1 7 1  | NA       | NA.      | NA.      | NA.      | NA.      | NA.      | NA       | NA     | NA       | - )  |
| OTAL BASE/NEUTRALS       | ppm        | NA NA    | 6.10 J | 0.056     | 9,011  |              | NA<br>NS         | NA<br>NS | NA<br>NS | NA 55    | 35       | NA<br>NS | NA<br>NS | NA<br>NS | NA<br>—     | 8.000598 J | NA<br>NA | NA     | NA NA  | NA NA  | NA NA  | NA.      | NA.      | NA NA    | NA.      | NA.      | NA NA    | NA NA    | NA     | ΝA       | 4    |
|                          | -11        |          | -      | 1         |        | <del>-</del> | <del>  ~  </del> |          | .7.0     | -7-      | (34)     | . 70     | .75      | .7.9     | <del></del> | NA NA      | - 34     | ***    | 7 mm 1 | -      | -      |          |          |          | ***      | ***      |          | NA NA    | -      | -        | 4    |
| CIDES                    |            | 1        |        | '         |        |              | 1 1              |          |          | - 1      |          |          |          |          | 1 1         | NA NA      | 1 1      | ( )    |        | 1 1    | 1      |          | 1 1      | 1 1      |          |          |          |          | 1 /    | i .      | 1    |
| DD .                     | ppb        | NA       | -      |           |        | 200          | NS               | 3/5      | NS       | NS       | NS.      | NS       | NS       | NS.      | NA          | NA I       | l NA     | 227    |        | l l    |        | No.      | 1 1      | ا ہے ا   | .,,      | ,,       |          |          | 1      |          | - )  |
| Œ                        | ppb        | NA       | 100    | 100       | 198-1  | -            | NS I             | NS.      | NS       | NS NS    | 35       | NS.      | NS       | N5       | NA I        | NA I       | NA ]     | 12.    | -      |        | 1 1    | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA | NA.      | NA NA    | NA NA  | NA<br>NA | - 1  |
| -<br>F                   | ppb        | NA.      | 44     | 2         | 100    |              | NS.              | NS       | NS       | NS       | NS       | N5       | NS       | NS<br>NS | NA I        | NA NA      | NA NA    |        |        | "      |        |          |          | NA NA    | NA NA    | NA.      | NA.      | NA.      | NA NA  | NA       | - 1  |
| HC                       | ppb        | NA.      | -      | 20 1      |        |              | NS               | NS       | NS<br>NS | NS<br>NS | N3<br>N3 | NS<br>NS | NS<br>NS |          | NA NA       |            |          | 100    |        |        | "      | NA.      | NA.      | NA       | NA       | NA NA    | NA.      | NA.      | NA NA  | NA NA    | - 1  |
| -~<br>I                  | ppb        | NA       |        | 1 2 7     | 100    | - 1          | N3               | NS<br>NS | NS NS    | NS NS    | NS NS    |          | NS<br>NS | N5       |             | NA NA      | NA I     | - 1    | -      |        |        | NA.      | NA       | NA NA    | NA NA    | NA       | NA.      | NA       | NA.    | NA       |      |
| i<br>Ifan I              | ppb        | NA.      |        | E :       | _      | 9            | NS NS            | N5<br>NS |          | NS<br>NS |          | NS NS    |          | NS       | NA I        | NA.        | NA NA    |        |        |        |        | NA       | NA.      | NA NA    | NA.      | NA.      | NA.      | NA       | NA.    | NA       |      |
| lfan sulfate             |            | NA.      |        | 1 7       | 100    |              |                  |          | NS<br>NS |          | N8       | NS       | NS<br>NS | NS.      | NA I        | NA NA      | NA NA    | 101    |        |        | -      | NA       | NA NA    | NA       | NA.      | NA NA    | NA.      | NA       | NA     | NA       |      |
| ildebyde                 | ppb        |          | -      | 1 7       |        | -            | NS.              | 1/5      | NS       | NS       | NS       | NS.      | NS.      | NS       | NA NA       | NA NA      | NA       | 444    |        |        | -      | NA.      | NA.      | NA NA    | NA NA    | NA.      | NA.      | NA.      | NA     | NA       |      |
| Hoeny ge<br>Lesone       | ppb        | NA.      | 100    | - 7       | -      | - 10.        | NI-              | 7/3      | NS       | NS       | NS       | 7/2      | NS       | NS       | NA          | NA         | NA NA    | 77     |        |        |        | NA       | NA NA    | NA NA    | NA.      | NA.      | NA       | NA.      | NA     | NA.      | - 1  |
|                          | ppb        | NA.      | 3.7    |           | -      | -            | 88               | N5       | NS.      | NS       | NS       | N5       | NS       | 145      | NA          | NA.        | NA NA    | 900    | 100    | -      | -      | NA.      | NA       | NA       | NA.      | NA.      | NA.      | NA.      | NA NA  | NA       |      |
| i-BHC                    | bbp        | NA .     | -      | -         | 100    | 200          | NS               | NS.      | NS.      | NS NS    | NS       | NS       | NS       | NS.      | NA          | NA .       | NA       | ***    |        | l i    | 1      | NA       | NA NA    | NA NA    | NA       | NA.      | NA NA    | NA       | NA     | NA       |      |
| hlor                     | ppb        | NA NA    | (40)   | 100       | -      | 20           | NS               | NS       | NS       | NS NS    | NS       | NS       | NS       | NS       | NA NA       | NA -       | NA NA    | ***    |        | 1 - 1  |        | NA       | NA.      | NA NA    | NA.      | NA.      | NA.      | NA.      | NA     | NA.      |      |
| thlor epoxide            | bbp        | NA NA    |        | test.     |        |              | 1/3              | NS       | N\$      | NS NS    | NS       | N5       | NS       | NS       | NA          | NA .       | NA NA    | 900    | 200    |        | -      | NA       | NA .     | NA NA    | NA       | NA.      | NA.      | NA       | NA     | NA       |      |
| psychlor                 | ppb        | NA.      | -      |           | 170    |              | NS               | 145      | N\$      | NS.      | NS       | NS       | N5       | N\$      | NA.         | NA         | NA .     | 800    | 44.    |        |        | NA.      | NA.      | NA       | NA       | NA.      | NA.      | NA.      | NA     | NA.      |      |
| AL DDX                   | ppb        | NA.      | ***    | .000      | -      |              | 3.5              | NS       | 58       | NS.      | 55       | NS       | NS       | NS       | NA.         | 54         | NA NA    |        |        |        |        | 5A       | N4       | NA NA    | NA.      | NA.      | NA NA    | NA.      | NA.    | NA.      | •    |
| TOTAL PESTICIDES         | ppb        | 1 😘      | -      | 144       | -      | I - '        | l ss l           | 35       | NS       | 56       | 56       | 35       | 55       | N. C.    | 84          |            | NA 1     | ( = I  |        | i _ I  | i = 1  | **       | 1 37 1   | 1        |          | 200      | 1        | 2.0      | - NA   | 1        |      |

## TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (Het page 15 for notes)

| the management                | 415/45 |        | OFF    | -9 (Aband | oned) |        |          |         |        |           |          |           |           | OFF-15   |         |           |          |           |                 |        |        |
|-------------------------------|--------|--------|--------|-----------|-------|--------|----------|---------|--------|-----------|----------|-----------|-----------|----------|---------|-----------|----------|-----------|-----------------|--------|--------|
| PARAMETER                     | UNIT   | Mac-88 | Sep-88 | Aug-09    |       | Jun-11 | Mar-08   | Sep-08  | Aug-09 | Aug-10    | Jun-11   | Sep-12    | Jan-13    | Jm1-15   | Sep-16  | Jul-17    | Oct-18   | Sep-19    | Sep-20          | Sep-21 | Sep-22 |
| OLATILES                      |        |        |        |           |       |        | 1        |         |        |           |          |           |           |          |         |           |          |           |                 |        |        |
| 1,1-Trichloroethane           | ppm    |        | 66     | -         | 100   | 1991   | 110      | 1.2     | 200    | -         | -        | -         | -         | - 22     | -       | 100       | 400      | 180       | 100             | 100    | 100    |
| 1.2.2-Tetrachloroethane       | рреп   |        | 220    | 44        | 440   | 346    | 100.0    | -       | 100    |           | 1111     | 110       | 111       | 700      | -       | -         | -        | 1000      | -               |        |        |
| I-Dichloroethene              | ppm    | 5-0    | -      |           | 200   | 544    | -        | -       |        | 34        | 444      | 400       | 101       | -        | -       | -         | -        | 100       | 100             | -      | 711    |
| 2.4-Trichlorobenzene          | ppm    | NA .   |        | -         | 100   | 100    | MA       |         | 100    |           |          | 7.00      | -         | -        | -       |           | 440      | ille      | The contract of | 400    | -      |
| 2-cis-Dichloroethylene        | ppm    |        | -      | -         | 44.   | 141    | 100      |         | 100    | 100       | 0.00     | 110       | 911       |          | -       | -         | -        |           | -               | -      | -      |
| 2-Dibromo-3-chloropropane     | ppm    |        | 97     |           |       | -      |          | -       | 40     | 24        |          | 144       | Ties.     | 100      | Tree .  | 100       | -        | 344       | 100             | 100    | ini    |
| 2 Dichlorobenzene             | ppm    | NA     | 192    | - 00      | 100   |        | NA.      | 100     | nic.   | 199       |          | -         |           |          | _       | -         | -        | 100       | 444             | 440    | 121    |
| 2-trans-Dichloroethylene      | ppm    |        |        | 1         |       |        | in the   | - 49    | 140    | 200       | 544      | 100       | 100       | 100      | 198     | 10.0      | NA       |           |                 |        |        |
| 4-Dioxane                     | ppm    | 100    | 100    | 1000      |       |        | -        | _       | 20     | _         | _        | _         |           | 144      | 440     | 100       | NA.      | Na.       | 0.00041         | -      | 1911   |
| Mexanone                      | ppm    | 228    | me C   | 100       | 240   | 100    | 0.00     | 410     | 100    | 100       | 100      |           | -         |          |         |           | -        | 2         | _               |        | 144    |
| celone                        | PP P   | 200    | - 20   | _         | 22    | 120    | -        |         |        | 144       | 11.00    | Mile      | 100       | BOADS, J | -       | 0.000317  | 941      | 275       | 1               |        | -      |
| FREERE                        | ppm    | -      | 44     | 440       | in.   | - 111  | 100      | 2.5     | -      | -         |          | -         | -         | -        | 1       |           | 100      | 100       | 100             | -      | 100    |
| romoform                      | DDus   |        | 50     | -         | 440   | -      | 100      | 1       | -      | -         |          | 100       |           | -        | BAIDL 1 | _         | -        | 12        | 3.23            |        | 5.25   |
| arbon Disulfide               | bbm    | -      | 22     | -         | -     | 100    | 26       |         | -      |           |          | 100       | 100       | 700      | -       | -         | 100      | 1         | -               | 711    | 144    |
| hlorobenzene                  | ppm    | -      |        | 120       | 0     | -      |          |         |        |           |          |           | -0.       | 150      |         |           | 100      | 44        | -               | 107    | 100    |
| hiotoethane                   | ppm    | 4.33   | 2      |           |       |        | 1        | 440     | -      | 100       | 100      |           | 2.0       | Sale     | 177     | 0.00      | -        |           |                 | 12     |        |
| hioroform                     |        | 0 0089 | 0.0074 | 0.0055    | 0.012 | 0.004  | 3040LJ   | BMDL I  | 0.0003 | SMOL /    | DATE L   | BMDL /    | BMDC I    | BIMDS, J | 0.0014  | 0.00034.3 | 1        | 0.00046 F | 100             |        | 0.0027 |
| hioromethane                  | ppm    | 0.0084 | 0.0014 | 0.0011    | 0.012 | 0004   | MONEY.   | SHOUL I | 0.000  | models, 2 | DATE L   | Destruct. | Dodge, 1  | DMDL F   | 4.041   | 4.000     | -        |           | 144             |        |        |
|                               | ppm    |        | NA     | NA.       | NA:   | NA.    | NA.      | NA.     | NA     | NA.       | NA       | -         | -         | and a    | 1       | -         | 1        | -         |                 |        |        |
| clobexane                     | ppm    | NA     |        |           |       | 200    | 4        |         |        | The C     | land.    | -         | -         | 200      |         | - 60      |          | - 22      | 100             | -      |        |
| ibrumochloromethane           | ppm    |        |        | 100       | 241   | **     | 7.5      |         | -      | -         | -        | 2.00      |           | 0.00     | 10000   | 37        | 15       |           | -               | 1.7    |        |
| ichlorobromomethane           | ppm    | -      | 77     | 140       | Mile  | 10.0   | -        | 100     | 198    | -         | -        | 377       | **        |          |         | 7.7       |          | -         | 2000            | _      | -      |
| thy libenzene                 | ppm    | -      |        |           |       |        |          | ***     |        | 244       | 144      |           | 986       | 100      |         | 100       | 191      |           | -               | 100    |        |
| opropy Benzene                | ppm    | NA.    | NA.    | NA.       | NA    | NA.    | NA       | NA .    | NA     | NA        | NA       | _         |           | -        | -       | 340       | 161      | 100       |                 | 396    | -      |
| lethy l ethy l kesone         | 6bw    | -      | -      |           |       | 100    | - 65     | -       | -      | - 1       |          | -         | 100       |          |         | -         | 100      | 175       | - 3             | 270    |        |
| lethy l tertiary buty l ether | Shore  | 20,000 | -      | NA.       |       |        | -        |         | NA.    |           |          | 111       | 100       |          | 1175    | 177       | NA       | - 0.00    | 1.00            | ***    | -      |
| Lethy ley clobexame           | Shur   | NA     | NA     | NA NA     | NA    | NA     | NA.      | NA.     | NA.    | NA        | NA.      | 100       | -         | BADL J   | -       | -         | 444      | 100       | - 101           | 275    | - 10   |
| lethy lene chloride           | ppm    |        |        |           | ***   | ***    | 160      | CHA     |        |           |          | _         | 100       | 77.      | 181     |           |          | -         | -               | -      |        |
| Cethyl-iso-butyl ketone       | ppm    |        |        | 191       | 111   | -      | -        | -       | -      | -         |          | -         |           |          | 100     | 111       | -        | -         |                 |        | . 10   |
| tyrene                        | ppm    | 314    | 200    | 100       |       | 100    |          | -       | 0-0    | 100       | 64.      |           | -         |          | -       |           |          | 200       | 440             | 1964   | 100    |
| etrachloroethene              | ppon   |        | -      |           | -     | 100    | -        |         | +4     | 100       | (800     | -         |           | SMEC     | 101     | 5.891     |          | 200       | -               | -      |        |
| oluene                        | ppm    | -      | 100    | 101       | 1917  | Per    | 77       |         |        | -         |          | -         | -         | 44       | 364     | 100       | 100      |           | -               | 1      | 11.000 |
| otal Xylenes                  | ppm    | -      | And .  | 144       |       | 100    | 940      | (in)    | 0.0    | ter la    | 100      | 100       | 100       | -        | -       | -         |          | -         | -               | -      | 440    |
| richloroethylene              | ppm    |        |        |           | BMDLJ | -      |          |         |        | -         | -        | 1.00      | 111       | -        | -       | 1971      | -10      | 777       | -               |        |        |
| ins I chloride                | ppm    | -      |        | 100       | -     | 100    | - AC     | 101     | -      | -         |          | -         |           | -        | -       | 964       | 100      | 100       | 100             | 100    | - 100  |
| TOTAL VOLATILES               | ppm    | 6.8087 | 8.6676 | 6.0055    | 0.013 | 0.010  | 6.0025 J | 0.00143 | 0.0013 | 6.0007 J  | 0.0006 J | 0.0004 1  | 0.00827.4 | 6.003    | 6.002   | 0.004     | _        | 0.00846 1 | 8'60091 v       | -      | 8.0017 |
| 0. 1                          |        |        |        | 75.00     |       | 1000   |          |         | 63     |           | 340      | 266       | NA        | NA.      | l       |           |          | NA.       | NA.             | NA.    | NA.    |
| -Octanol                      | bbm    | NA     | NA     | -         | NA    | 100    | NA.      | NA.     | 997    | NA        | NA.      |           | NA<br>NA  | NA.      | NA      | NA<br>    | NA<br>NA | NA<br>NA  | NA<br>NA        | NA NA  | NA.    |
| Octanone                      | ppm    | NA.    | NA.    | -         | NA.   | 464    | NA NA    | NA.     | Air    | NA        | NA NA    | NA.       |           |          | NA.     | NA NA     | NA<br>NA | NA NA     | NA<br>SA        | NA NA  | NA.    |
| TOTAL OCTANOL/OCTANONE        | ppm    | NA NA  | NA NA  | 100       | NA.   | _      | NA       | NA      |        | NA        | NA.      | NA.       | NA.       | NA.      | NA.     | NA        | 3.4      | NA.       | 34              | NA.    | 36     |
| CID EXTRACTABLES              | l      | 1      | l      |           |       | l      | 1        |         | l      | l         | ĺ        | l         |           |          |         | 1         |          | 1         | ŀ               | l      |        |
| 4-Dimeshylphenol              | ppm    | NA.    | 711    | -         |       | 100    | NA.      | 3-23    |        | 20400     | 44       | NA NA     | NA.       | NA.      | NA.     | . NA      | NA.      | NA.       | NA.             | NA     | NA.    |
| -Methy lphenol                | ppm    | NA.    | 204    | -         | 100   | -      | NA.      | 200     | 100    | 1         | 100      | NA.       | NA.       | NA.      | NA.     | NA.       | NA.      | NA.       | NA.             | NA.    | NA.    |
| Methy lphenol                 | ppm    | NA.    |        |           |       | 7      | 364      |         | 2      |           |          | NA.       | NA.       | NA.      | NA.     | NA.       | NA.      | NA.       | NA.             | NA     | NA.    |
| entachlorophenol              | ppm    | NA.    |        |           | 100   | NA     | NA.      | -       | - 20   |           | NA       | NA        | NA.       | NA.      | NA.     | NA.       | NA.      | NA.       | NA.             | NA     | NA.    |
| henot                         | ppm    | NA NA  | -      | -         |       | 140    | NA.      | -       | - 3    | -         |          | NA.       | NA        | NA.      | NA.     | NA.       | NA.      | NA.       | NA.             | NA.    | NA     |
| TOTAL ACID EXTRACTABLES       | ppm    | NA.    |        |           |       | 1      | NA.      | -       | 74     | -         |          | NA.       | NA.       | NA.      | NA.     | NA.       | NA.      | NA.       | NA.             | NA.    | NA.    |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for motes)

| Marche   Sept   | PARAMETER            | USIT | .T     | OF            | -9 (Aband | ened)   |             |        |        |        |           |        |        |        | OFF-I3   |          |          |          |          |          |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|--------|---------------|-----------|---------|-------------|--------|--------|--------|-----------|--------|--------|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| ASEANCE PRIVALS  Whethis haspinished privals and a second prival |                      | USIT | Mar-88 |               |           |         | Jun-11      | Mar-08 | Sep-06 | Aug-09 | Aug-10    | Jon-11 | Sep-12 | Jun-13 |          | Sep-16   | Jul-17   | Oct-18   | Sep-19   | Sen. 20  | Sep-21   | Sep. 22  |
| Nimescaline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | T    |        | $\overline{}$ |           |         |             |        |        |        |           |        |        |        |          |          |          |          | .,,,,,,  | 54,5-24  | 30,721   | SAPAL    |
| Section   Sect  |                      | ppm  | NA     | 1007          |           | -       | -           | NA     | 778    | 0.00   |           | 410    | NA.    | NA NA  | NA.      | NA       | NA.      | NA.      | NA.      | NA.      | NA.      | NA.      |
| Chlorogalidice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 19pm | NA     | -             |           | 1017    | 100         | NA NA  | -      | 166    |           |        | NA.    | NA.    |          |          |          |          |          |          |          |          |
| Second publisher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Chloroaniline      | ppm  | NA     | -             | 100       | NA.     | The same of | NA.    | -      | _      | NA        |        |        |        |          |          |          |          |          |          |          |          |
| Searge-frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acensphthene         | ppm  | NA.    | -             | del       | iner.   | To see the  | NA.    | -      | -      |           |        |        |        |          |          |          |          |          |          |          |          |
| Indifference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acetophenone         | ppm  | NA     | NA            | NA        | NA.     | NA          | NA     | NA     | NA.    | NA        | NA     |        |        |          |          |          |          |          |          |          |          |
| Remote   Pipm   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anthracene           |      | NA.    | 100           | -         |         |             |        |        |        |           |        |        |        |          |          |          |          |          |          |          |          |
| Remote   Pyrace   P  | Benzo(a)Anthracene   |      |        | -             | -         | _       | ***         |        |        |        | 100       |        |        |        |          |          |          |          |          |          |          |          |
| Second   S  | Benzo(a)Pyrene       |      | NA.    |               | -         |         | 100         |        | -      |        | 1577      | 200    |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo(h)Fluoranthene |      |        | -             |           |         | 400         |        |        | 67%    |           |        |        |        |          |          |          |          |          |          |          |          |
| Side   Control plate   ppm   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo(g,h.i)Perslene |      |        |               |           | 1.77    |             |        |        | 0.00   |           | -111   |        |        |          |          |          |          |          |          |          |          |
| Mile   Compression properties   Perm   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |        | 22            |           | -       |             |        |        |        | 3.3       | 5.43   |        |        |          |          |          |          |          |          |          |          |
| III   Emily philhalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |      |        |               | 12.5      |         |             |        |        | 1.77   | 10.00     | 2.0    |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |      |        | 132           |           | 77.5    |             |        | -      |        | 200       |        |        |        |          |          |          |          |          |          |          |          |
| Section   Sect  |                      |      |        | 8.3           |           |         |             |        | -      | 5000   | 100       |        |        |        |          |          |          |          |          |          |          |          |
| This sees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |        | 2500          | 0.00      | 200     |             |        |        | 2.00   | 100 00 00 | 22     |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |      |        | 1000          |           |         |             |        | 100    |        | 1.0       |        |        |        |          |          |          |          |          |          |          |          |
| No.   |                      |      |        | 1.11          |           | 50.1    |             |        | -      | (8%    | A         |        |        |        |          |          |          |          |          |          |          |          |
| Simethy lighthalase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |      |        |               | 100000    | 22.2    |             |        | -      | 100    | 196       |        |        |        |          |          | NA       |          |          | NA.      | NA       | NA NA    |
| No.   |                      |      |        |               |           | 700     | 8.6         |        | -      | -      |           |        | NA.    |        | NA.      | NA       | NA .     | NA .     | NA       | NA.      | NA       | NA.      |
| Nicotago   Popular   Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |      |        | =             | 1964      |         | _           | NA NA  | -      | 797    | 100       |        | NA.    | NA     | NA.      | NA.      | NA.      | NA NA    | NA.      | NA       | NA NA    | NA.      |
| Nonembers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |        | -             | -         |         | +++         | NA.    |        | 101    | 44        | -      | NA     | NA.    | N.A      | NA       | NA       | NA.      | NA       | NA.      | NA       | NA       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | ppon |        |               | 100       | 100     | 1994        | NA.    | -      | _      | -         | -      | NA.    | NA NA  | NA.      | NA.      | NA NA    | NA.      | NA NA    | NA.      | NA.      | NA .     |
| Max   |                      | ppm  | NA NA  |               | 54        | -       | _           | NA :   | 177    |        |           | _      | NA.    | NA.    | NA.      | NA.      | NA.      | NA       | NA       | NA.      | NA.      | NA.      |
| September   Sept  | Fluorene             | ppm  |        | 44            | -36       |         | -           | NA     | -      | . – 1  |           | •••    | NA.    | NA     | NA.      | NA       | NA.      | NA       | NA.      | NA.      | NA       | NA       |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | ppm  | NA NA  |               | 107.      | -       | 100         | NA     | -      |        | -         |        | NA     | NA.    | NA       | NA.      | NA NA    | NA NA    | NA       |          |          |          |
| SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | ppm  | NA.    | 100           |           | 444     |             | NA .   | -      |        |           |        | NA .   | NA     | NA.      | NA.      | NA.      | NA.      | NA       | N/A      | NA       |          |
| STADERLENE   DPM   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Naphthalene          | ppm  | NA.    |               | -         |         | ***         | NA .   | - 1    |        |           | ***    |        | 4      |          |          |          |          |          |          |          |          |
| Permander   Perm  | Nitrobenzene         | ppm  | NA NA  |               | 100       | 44.     | -0.0        | NA.    | _      | l _    | _         |        | NA .   | NA.    | NA.      | N.A.     | NA       |          | NA       |          | N/A      | NA       |
| Yene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenanthrene         | ppm  | NA     | 100           | 104       | ***     |             | NA     | 0.00   | l      | i I       | l _ i  |        |        |          |          |          |          |          |          |          |          |
| A-Disease   Dpm   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pyrene               |      | NA.    |               | -         |         | -           | NA.    |        |        |           |        |        |        |          |          |          |          |          |          |          |          |
| ## ESTICIDES ## Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,4-Dioxane          |      | NA     | NA            | NA        | NA.     | Na          | ****   | NA.    |        |           |        |        |        |          |          |          |          |          |          |          |          |
| A'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL BASE/NEUTRALS  |      |        |               |           |         |             |        |        |        |           |        |        |        |          |          |          |          |          |          |          |          |
| A'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DECTIONES            |      |        |               |           |         |             |        |        |        |           |        |        |        |          |          |          |          |          |          |          |          |
| #*DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | Ι.   | I      | 377           | 201,220   | 1995    |             |        | 100.5% |        |           |        | I      |        |          | l        | l        | [        |          | l        |          | ĺ        |
| #*DDT   Ppb NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |        |               | 907,000   | 35.0    | -           |        | 750.00 |        |           |        |        |        |          |          |          |          |          |          |          |          |
| Cate BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |      |        | 100           | 1000000   | 2.0     |             |        | 100    | -      |           |        |        |        |          | NA       | NA.      | NA       | NA.      | NA       | NA       | NA.      |
| Neldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |      |        | 10.00         |           |         |             |        | 0.000  | -      |           |        | NA NA  | NA.    | NA NA    | NA       | NA.      | NA.      | NA.      | NA       | NA       | NA.      |
| Adouslifin I ppb NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |      |        | 200           | 101       |         | 194         |        | -      |        |           |        | NA NA  | NA     | NA       | NA.      | NA.      | NA.      | NA.      | NA       | NA.      | NA.      |
| Max   |                      |      |        | 984           |           | BMDL J  | -           | NA NA  | 199    |        | _         |        | NA.    | NA.    | NA       | NA.      |
| MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |      |        | -             | 1997      | 300     | 100         | NA     | 140    | 144    |           | _      | NA .   | NA .   | NA :     | NA.      | NA.      | NA .     | NA       | NA       | NA       | NA       |
| Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |      |        | 101           | m1        | 700     | -0.0        | NA     | -      |        | ***       |        | NA .   | NA .   | NA       | NA NA    | NA.      | NA       | NA       | NA.      | NA.      |          |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Endrin aldehyde      | ppb  | NA NA  | 10.4          | -         |         | -           | NA NA  | 100    | -      | 1         |        | NA     | NA     |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Endrin ketone        | ppb  | NA     |               | 761       | 900     | 100         | NA NA  | 140    |        |           | _      | NA     | NA     |          |          | NA NA    |          |          |          |          |          |
| Epischlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gamma-BHC            | ppb  | NA     | 101           | . 100     | 444     |             | NA .   | -      | ,,,    |           |        |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | leptachlor           |      | NA     | 40.4          | 240       |         | -           |        | -      |        |           |        |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | leptachlor epoxide   |      |        | -             | -         | ***     | 200         |        | -      | 1 3    |           |        |        |        |          |          |          |          |          |          |          |          |
| OTALDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methosschlor         |      |        | 100           | 1         | 455     | 1127.701    |        | 120    | 1 1    |           |        |        |        |          |          |          |          |          |          |          |          |
| #0144 menutanana   177   278   344   355   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356   356  | TOTAL DOX            |      |        | 200           | 12        |         | _           |        | - 190  |        |           |        |        |        |          |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL PESTICIDES     | ppb  | SA     | 1             | -         | 6.017.2 | -           | NA NA  | -      |        | _         | _      | NA NA  | NA NA  | NA<br>NA | NA<br>NA | NA<br>NA | 5A<br>5A | NA<br>NA | NA<br>NA | NA<br>NA | NA<br>NA |

TABLE 2
ANALYTICAL RESULTS FOR OFF-SITE WELLS
GROUNDWATER MANAGEMENT SYSTEM
(see page 15 for notes)

| PARAMETER                     | UNIT   |          |        |           |        |         |           |          | OFF-16   |          |          |        |        |          |          |        |          |          |        |          |        |        |        | OFF-17 |        |        |        |        |          |          |          |
|-------------------------------|--------|----------|--------|-----------|--------|---------|-----------|----------|----------|----------|----------|--------|--------|----------|----------|--------|----------|----------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|----------|
|                               | (31)   | Mar-08   | Sep-48 | Aug-09    | Aug-10 | Jun-II  | Sep-12    | Jun-13   | Jul-15   | Sep-16   | Jul-17   | Oct-18 | Sep-19 | Sep-20   | Sep-21   | Sep-22 | Mar-98   | Sep-08   | Aug-09 | Aug-10   | Jun-11 | Sep-12 | Jun-13 | Jun-15 | Sep-16 | Jul-17 | Oct-18 | Sep-19 | Sep-20   | Sep-21   | Sep-22   |
| VOLATILES                     |        |          |        |           |        |         |           |          |          |          |          |        |        |          |          |        |          |          |        |          |        | ĺ      |        |        |        |        |        |        |          |          |          |
| 1,1,1-Trichloroethane         | ppm    | Are:     | 100    | Lat.      | ***    |         |           | 575      | H\$      | NS.      | NS       | NS     | NS     | NS       | NS.      | NS     |          |          | ***    | ***      | ***    |        | ***    |        |        |        | ***    | ***    | NS.      | NS.      | NS       |
| 1,1,2,2-Tetrachloroethane     | ppm    | 1117     | ***    | 100       |        |         |           | NS       | NS.      | NS.      | NS.      | NS.    | NS     | NS       | NS       | ns.    |          |          | -      |          |        |        |        | _      | -      | - 1    | - 1    |        | NS.      | NS       | NS.      |
| 1,1-Dichloroethene            | ppm    | ,69      | 100    | 346       |        |         |           | 1/3      | NS.      | NS.      | NS       | NS.    | NS     | NS       | NS       | NS.    |          | -        |        |          | _      | J      |        |        | -      | -      | l –    |        | NS       | NS       | NS       |
| 1.2.4-Trichlorobenzene        | ppm    | NA       | -      | 223       | _      |         |           | NS.      | N5       | N5       | NS.      | NS.    | NS     | พร       | NS.      | NS     | NA.      | l –      |        |          |        |        |        |        |        |        |        |        | NS       | NS.      | NS.      |
| 1.2-cis-Dichloroethylene      | ppm    |          | 100    | Ten.      | l      |         | 1         | NS       | NS.      | NS       | N5       | NS     | NS     | NS       | .55      | 3-5    |          |          |        |          |        |        |        |        |        |        |        |        | NS       | N5       | NS       |
| 1.2-Dibromo-3-chloropropane   | ppm    | 144      | 100    | 100       |        |         |           | 165      | NS       | NS.      | NS       | NS     | NS     | NS       | NS.      | NS.    |          |          |        |          |        |        |        | _      | _      | _      | - 1    |        | NS.      | NS       | NS.      |
| 1.2-Dichlorobenzene           | ppm    | NA       | -      | -         |        |         |           | NS       | NS       | NS.      | NS       | NS.    | NS     | NS.      | NS       | N5     | NA       | _        | _      |          | l _    |        |        |        |        | 1 _    | l      |        | NS       | NS.      | NS       |
| 1.2-trans-Dichloroethylene    | ppm    | and .    | -      | -         | l _    |         | l !       | NS       | NS       | N5       | NS       | NS     | NS     | NS.      | NS       | NS.    |          | -        | ***    |          |        |        |        | ***    |        | 1      | NA.    |        | NS       | N\$      | NS.      |
| 1.4-Dioxane                   | ppen   |          |        | -         |        |         |           | 195      | NS       | NS       | NS.      | NS     | NS     | NS.      | NS       | NS     |          |          | ***    | ,        |        |        |        | ***    | _      | 1      | NA.    | NA.    | NS       | NS       | NS       |
| 2-Hexanone                    | ppm    |          | 1      | -         |        |         | l         | NS.      | NS.      | NS       | NS.      | NS.    | NS     | NS.      | NS       | NS.    |          | l -      |        | l ~      |        |        | _      | _      | i _    | l _    | _      |        | N\$      | NS       | NS       |
| Acetone                       | ppm    | 200      | -      |           | i      | l       | l _       | NS.      | N5       | NS.      | พร       | NS     | NS     | NS       | NS       | NS.    |          | l _      |        | l _      |        |        |        |        | -      | l      |        |        | NS       | N5       | NS.      |
| Benzene                       | ppm    | 6.0      | 0.392  | 2.72      |        |         |           | N5       | NS       | NS       | NS       | 3/5    | NS     | NS       | NS       | NS     |          |          |        |          |        |        |        |        |        |        |        |        | NS       | NS       | NS.      |
| Bromoform                     |        | - 2      | 1000   |           | 1 =    |         |           | INS      | NS.      | NS       | NS       | N5     | NS     | NS.      | NS       | NS.    |          |          |        |          |        |        |        |        |        |        |        |        | NS.      | NS       | NS       |
| Carbon Disulfide              | ppm    | 25       | 1179   | 100       |        | l       |           | NS       | NS       | NS       | NS       | NS     | NS     | NS       | NS       | NS     |          |          | _      | 1        |        | I -    |        |        |        |        | _      |        | NS       | NS       | NS<br>NS |
| Chlorobenzene                 | ppm    |          |        |           | 1      |         |           | NS       | NS       | NS<br>NS | NS       | NS     | NS     | NS NS    | NS       | NS NS  |          |          | I =    |          |        | I =    |        |        |        |        |        |        | NS       | NS       | NS<br>NS |
| Chloroethane                  | Saban  | 22       | -      |           | 150    | :-      |           | NS       | NS       | NS       | NS       | NS     | NS     | NS       | NS       | NS     |          |          |        |          |        |        |        |        |        |        |        |        | NS       | NS.      | NS       |
| Chloroform                    | ppm    |          | - 40   | Butto I   | de.    | :       |           | NS       | NS       | NS       | NS       | NS     | NS     | NS       | 35       | NS     | BMDL 3   | B34DL1   | 0 0037 | BMDL J   | 0 0022 |        | 0.006  | 0 007  | 0 0034 | 0 0056 | 0 0023 | 0.0015 | NS       | NS       | NS       |
| Chloromethane                 | ppm    | - 55     | -      | Develop 1 | -      | ı       | i .       | NS       | NS       | NS       | NS       | NS     | NS     | NS       | NS NS    | NS     | ı        | 1        |        |          |        | l      |        |        |        | 1      | 1      | 00015  | NS       | NS       | NS       |
| Cycloheuane                   | bbu    | NA.      | 54.6   | NA        | MA     | NA      | -         | NS<br>NS | NS       | NS       | NS       | NS     | NS     | NS.      | NS       | NS     | NA.      | NA.      | NA.    | NA.      | NA NA  | -      |        | ***    | -      |        |        |        | NS NS    | NS       | NS       |
| Dibromochloromethane          | bbu    | PA       | 745    | 1965      | 100    | 1.00    |           | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS     | NS     | NS NS    | NS       | NS     |          | 1        | PIA    |          |        |        |        |        |        |        |        |        | NS.      | 145      | N5       |
|                               | ppm    | 77       |        | (3)       |        |         | l         | NS<br>NS |          |          |          |        | NS.    | NS       |          |        |          |          |        |          |        | ***    |        |        | I .    |        |        | 1      |          |          | NS NS    |
| Dichlorobromomethane          | ppm    |          |        | 0.0034    | 0 07   | BMDLJ   | _         |          | NS       | NS.      | NS<br>NS | 145    |        | NS<br>NS | NS<br>NS | 95     |          | ***      |        |          |        |        | _      |        | 200    | 77     |        |        | NS<br>NS | N5       | NS<br>NS |
| Ethy Ibenzene                 | ppm    | BMDL #   | -03    |           |        |         | -         | NS       | 1/5      | NS       |          | NS     | N5     |          |          | NS     |          |          |        |          |        | -      | -      |        | 10     |        | - 5    |        | NS       | NS<br>H  | NS       |
| I sopropy Renzene             | ppm    | NA       | NA.    | NA        | NA.    | NA      | -         | NS.      | NS       | NS.      | NS.      | NS     | NS     | NS       | . NS     | 145    | NA.      | NA.      | NA.    | NA.      | NA     |        | ***    | ***    | -      | -      | 100    | 144    |          | NS       | NS<br>NS |
| Methyl ethyl ketone           | ppm    | -        | 100    |           |        |         |           | N\$      | NS       | NS       | NS       | NS     | NS     | NS<br>NS | NS NS    | 155    |          | ***      | ***    |          |        |        |        |        | 175    | 500    | ***    |        | NS<br>NS | NS       |          |
| Methy I tertiary buty I ether | ppm    |          | 100    | NA.       | NA.    | 1       |           | NS       | NS       | NS       | NS       | NS     | N5     | NS       | NS       | NS     |          |          |        |          |        | -      | i –    |        | 100    |        | NA.    | -      | NS NS    | NS<br>NS | NS.      |
| Methylcyclohexane             | ppm    | NA NA    | N.A.   | NA.       | NA.    | NA.     |           | NS       | NS       | NS       | NS       | NS     | NS     | NS       | N5       | NS.    | NA.      | NA       | NA.    | NA.      | NA.    |        |        |        | 0.77   | -      |        | -      | NS       | NS.      | NS       |
| Methylene chloride            | ppm    | (5)      | 100    | I -       |        |         | ~         | NS       | NS       | NS       | NS       | N\$    | NS     | NS       | NS       | NS     |          |          |        |          | 100    |        |        |        | -      |        | 17.5   | -      | NS.      | N5       | NS       |
| Methyl-iso-butyl ketone       | ppm    | -        | 140    |           |        | *       |           | N5       | NS       | NS       | NS       | NS.    | NS     | NS       | NS       | HS.    |          | ***      | ***    |          |        |        |        |        | 110    | -      | 100    | 19     | N5       | NS       | NS       |
| Styrene                       | bbus . |          |        |           |        |         | 1         | 143      | NS       | NS       | NS       | NS.    | NS     | NS       | N5       | NS     |          | _        |        |          | - 1    | -      | -      | _      | 355    | = 1    |        |        | NS       | NS       | NS.      |
| Tetrachloroethene             | ppm    | BMDL /   | -      | BMDL J    |        | BMDLJ   | BWDC J    | HS       | N5       | NS       | NS       | NS     | NS.    | NS.      | NS.      | NS.    | -        | -        |        |          | ***    |        |        | ***    | . 100  | 175    |        | 97     | HS       | NS       | NS       |
| Toluene                       | bhu    | BMDL /   | 0.059  | 8MDL J    | 0.0025 | BMDLI   |           | NS       | NS.      | NS       | NS       | 115    | NS     | NS.      | NS       | 155    |          |          | ***    | ***      | 7+4    |        |        |        | 1.60   | 146    | 200    | 84     | NS.      | NS.      | NS       |
| Total Xylenes                 | ppm    | BMDL J   | 13     | 0.012     | 017    | BMDL1   | ***       | 145      | NS       | NS.      | NS       | NS     | NS     | NS       | NS       | NS     |          |          |        |          |        | -      | - 1    |        | 1.7    | 1      |        | -      | NS.      | NS       | NS.      |
| Trickloroethy lene            | ppm    |          | 4.7    |           |        | - 17    |           | NS       | NS       | NS       | NS.      | N5     | NS     | N5       | N3       | NS     |          | -        |        |          |        | -      |        |        | 791    | 110    | 110    | ***    | 175      | NS.      | NS.      |
| Vinyl chloride                | ppm    | -        | -      | -         |        | 7-1     | -         | 105      | NS.      | NS       | พร       | NS     | N5     | NS       | NS       | NS.    |          |          | 911    |          | H-1    |        | 744    |        | 140    | Dis.   | -14:   | 0.000  | NS.      | NS       | NS       |
| TOTAL VOLATILES               | ppm    | 9,0854 J | 1.7    | 0.017     | 0.74   | 8.004 J | 8.80841 J | NS.      | NS       | 55       | NS       | NS     | NS     | N5       | NS.      | .55    | 6.8042 J | 8.0042 J | 8.8037 | 0.0005 J | 0.0022 |        | 8.006  | 0.0    | 6.003  | 8,806  | 8,002  | 0.0015 | NS.      | N5       | NS       |
|                               |        |          |        |           | 12000  | 600     | l         |          |          | 1        |          | l      |        | l        |          |        | I        | l        | l      |          |        | l      |        | l      |        | l      | l      |        |          | l        |          |
| 2-Octanol                     | 50m    | NA       | NA     |           | NA     | NA.     | NA NA     | NS       | NS       | NS       | NS       | NS     | NS     | NS       | NS.      | NS     |          | NA       | NA.    | NA.      | NA.    | NA.    | NA.    | NA     | NA     | NA     | NA     | NA     | NS.      | N5       | 2/4      |
| 2-Octanone                    | ppm    | NA       | NA.    | 111       | NA     | NA.     | NA.       | NS.      | NS.      | N\$      | NS       | NS.    | NS.    | NS       | NS       | NS     |          | NA NA    | NA NA  | NA.      | NA.    | NA NA  | NA NA  | NA     | NA.    | NA NA  | NA.    | NA.    | NS       | NS.      | NS       |
| TOTAL OCTANOL/OCTANONE        | ppm    | NA       | NA.    | **        | NA.    | NA.     | NA        | NS       | NS.      | .55      | NS       | NS     | NS     | NS       | NS       | NS     |          | NA.      | NA NA  | NA NA    | NA NA  | NA     | NA.    | N4     | NA     | NA.    | NA.    | NA NA  | .\5      | 55       | 28       |
|                               | 1      |          | I      |           |        | I       |           |          |          |          | i        | I      | 1      | 1        | 1        | l      | I        | 1        | ĺ      |          | I      | 1      | 1      | l      | 1      |        | 1      | 1      |          |          |          |
| ACID EXTRACTABLES             | 1      |          | l      |           |        | l       |           |          |          |          | l        | l      |        |          |          |        |          |          | 1      |          | l      | l      |        | l      | l      | l      | l      |        | l        |          |          |
| 2,4-Dimethylphenol            | ppm    | NA       | 11.7   | ***       | ****   |         | NA.       | N\$      | NS       | NS       | NS       | NS     | NS     | NS       | NS       | N3     | NA       |          |        |          |        | NA     | NA     | NA     | NA     | NA     | NA.    | NA     | NS       | NS       | N5       |
| 2-Methy iphenol               | ppm    | NA.      | -      |           | -      |         | NA .      | NS       | NS       | NS       | NS       | 145    | NS     | NS       | NS       | NS     | NA .     | -        | -      |          |        | NA     | NA.    | NA     | NA     | NA.    | NA.    | NA.    | 145      | NS       | NS       |
| 4-Methylphenol                | ppm    | NA       | 100    | .000      | 100    | - 25    | NA NA     | NS       | NS       | NS       | N5       | 145    | N5     | NS       | NS       | NS.    | NA       |          | -      |          |        | NA     | NA.    | NA     | NA.    | NA.    | NA.    | NA.    | N5       | NS       | 745      |
| Pentachlorophenol             | ppm    | NA       | -      | -         | -      | MA      | NA        | NS.      | NS       | NS       | NS       | N5     | NS     | NS       | NS       | NS     | NA.      | ***      | ***    | ***      | NA NA  | NA     | NA     | NA     | NA NA  | NA.    | NA.    | NA.    | NS       | N5       | NS.      |
| Phenol                        | ppm    | NA.      | 100    | 276       | -      |         | NA.       | NS       | NS       | NS       | NS.      | 745    | NS     | NS       | NS       | NS     | NA NA    |          | -      |          |        | NA.    | NA     | NA.    | NA.    | NA     | NA     | NA.    | NS       | NS       | NS-      |
| TOTAL ACID EXTRACTABLES       | ppm    | NA.      | -      | -         | -      |         | NA.       | NS       | 55       | NS       | NS.      | 5.5    | - 25   | 5.5      | .4.\$    | 3.5    | NA.      |          |        |          |        | NA.    | NA.    | NA.    | NA.    | NA     | NA.    | NA NA  | NS       | NS.      | 3.8      |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for notes)

| PARAMETER                       | CNIT |          |             |        |            |        |        |        | OFF-16  |          |        |          |          |          |        |        |        |        |        |        |        |        | _      | OFF-17 |          |         |          |        |        |          | Sep. |
|---------------------------------|------|----------|-------------|--------|------------|--------|--------|--------|---------|----------|--------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|----------|--------|--------|----------|------|
| ASE/NEUTRALS                    | (747 | Mar-08   | Sep-88      | Aug-89 | Aug-10     | Jun-11 | Sep-12 | Jun-13 | _dol-15 | 5ep-16   | Jul-17 | Oct-18   | Sep-19   | Sep-20   | Sep-21 | Sep-22 | Mar-98 | Sep-08 | Aug-89 | Aug-10 | Jun-11 | Sep-12 | Jan-13 | Jun-15 | Sep-16   | _Joi-17 | Oct-18   | Sep-19 | Sep-20 | Sep-21   |      |
| Methylnaphthalene               | l    | NA.      |             | 15.5   | 4000000    |        |        | l      |         | 1,62     |        |          |          |          |        |        | l .    |        | 1      |        | [ [    |        |        |        | 1        |         |          |        |        |          | Т    |
| Stemymapomaiene<br>Sitroaniline | ppm  | 1        |             | -      | -          | ***    | NA     | NS     | 5/5     | NS       | NS     | NS       | N\$      | NS       | NS.    | NS     | NA NA  |        |        |        | l I    | NA     | NA     | NA.    | NA NA    | NA.     | NA.      | NA.    | NS     | N5       |      |
|                                 | ppm  | NA.      | -           |        | 771        |        | NA NA  | NS.    | NS      | N5       | NS     | N\$      | NS       | N5       | NS     | NS     | NA.    |        |        |        |        | NA     | NA     | NA.    | NA NA    | NA NA   | NA.      | NA.    | 5/5    | P/2      |      |
| hloroundine                     | ppm. | NA NA    | 100         | -      | NA         | 140    | NA NA  | NS     | NS.     | NS       | NS     | N\$      | NS.      | NS.      | NS.    | NS.    | NA.    |        |        | NA NA  | l – I  | NA     | NA.    | NA     | NA       | NA.     | NA.      | NA.    | NS     | N5       |      |
| rnaphthene                      | ppm  | NA.      | 140         |        |            | -      | NA     | NS.    | 3/5     | NS       | NS.    | NS :     | NS       | NS       | NS     | NS.    | NA.    |        |        |        |        | NA     | NA.    | NA.    | NA.      | NA      | NA.      | NA.    | NS.    | NS       |      |
| tophenone                       | ppm  | NA.      | NA.         | NA     | NA.        | NA.    | NA NA  | NS     | NS.     | NS.      | NS.    | N5       | NS.      | NS       | NS     | NS.    | NA.    | NA     | NA.    | NA.    | NA     | NA     | NA.    | NA     | NA.      | NA.     | NA NA    | NA.    | NS     | NS.      |      |
| htsoene                         | ppm  | NA.      |             |        | 200,004.00 |        | NA     | NS     | NS      | NS.      | NS.    | NS .     | NS       | NS       | NS     | NS     | NA NA  |        | 1      |        | l I    | NA     | NA     | NA.    | NA       | NA.     | NA.      | NA.    | NS     | NS       |      |
| to(a)Anthracene                 | ppm  | NA       |             |        | ***        |        | NA     | NS     | N5      | NS       | NS     | NS.      | NS NS    | NS       | NS     | NS     | NA.    |        |        | _      | l I    | NA     | NA     | NA.    | NA.      | NA.     | NA.      | NA.    | NS.    | N5       |      |
| ro(a)Pyrene                     | ppm  | NA.      | -           | 100    | 100        | 1996   | NA NA  | NS NS  | NS.     | NS       | NS.    | NS .     | NS.      | NS       | NS.    | NS     | NA.    |        |        |        |        | NA     | NA     | NA.    | NA.      | NA.     | NA.      | NA     | NS     | NS       | - 1  |
| o(b)Fluoranthene                | ppm  | NA       | 100         | -      | 100        | 1.00   | NA     | NS.    | NS      | NS.      | NS     | NS.      | NS       | NS       | his    | NS     | NA.    |        |        |        |        | NA     | NA.    | NA.    | NA.      | NA.     | NA.      | NA.    | NS     | :45      | - 1  |
| to(g,h,i)Perylene               | ppm  | NA.      | 440         |        | -          |        | NA.    | NS     | NS.     | NS       | NS     | NS       | NS       | NS       | NS     | NS     | NA.    | ***    |        | ***    |        | NA     | NA.    | NA.    | NA.      | NA.     | NA NA    | NA.    | NS     | NS       |      |
| -Chloroethyl)ether              | ppm  | NA.      | -           |        | 791        | 100    | NA.    | NS     | NS      | NS       | NS     | N5       | NS       | NS       | NS.    | NS     | I RA   |        |        |        |        | NA.    | NA.    | NA.    | NA<br>NA |         | NA<br>NA | NA.    | NS     |          |      |
| -Chloroisopropy l Jether        | ppm  | NA.      | 100         | 122    | 441        |        | NA.    | NS     | NS.     | NS       | NS     | NS.      | NS       | NS       | NS     | N'S    |        |        | 1 -    | 1      |        |        |        |        |          |         |          |        |        | NS<br>NS | - 1  |
| -EthylhesyDohthalare            | ppm  | NA.      |             | 100    |            | -      | NA.    | NS NS  | NS      | NS       | NS.    | NS       | NS       |          |        |        | NA.    |        | 1      | _      |        | NA     | NA     | NA.    | NA.      | NA      | NA       | NA.    | N'S    | NS       | - 1  |
| benzyl phthalate                |      | NA.      |             | 77     | -          |        | NA NA  |        |         |          |        |          |          | NS       | NS.    | NS     | NA.    |        |        |        | l i    | NA     | NA     | NA     | NA NA    | NA NA   | NA       | NA     | NS     | 1 55     | - 1  |
| ezole                           | ppm  | NA NA    | 2.5         | 140    |            | 100    |        | N\$    | NS      | NS       | N5     | NS.      | NS       | NS.      | NS.    | NS     | NA     |        |        | ~1     | "      | NA     | NA     | NA     | NA NA    | NA.     | NA.      | NA.    | NS     | NS       |      |
|                                 | ppm  | NA NA    | -           | 5.62   |            |        | NA NA  | NS.    | NS      | NS       | NS     | NS.      | NS       | NS       | NS     | NS     | NA NA  |        |        | _      | 1      | NA     | NA     | NA NA  | NA       | NA      | NA NA    | NA.    | 155    | N5       | - 1  |
| iche<br>nzofuran                | ppm  |          |             |        |            |        | NA.    | N\$    | NS.     | NS       | NS.    | NS       | NS.      | NS       | NS.    | NS     | . NA   |        |        | ***    | 1 1    | NA.    | NA     | NA.    | NA NA    | NA NA   | NA.      | NA.    | NS NS  | NS.      | - 1  |
|                                 | ppm  | NA.      | -           | =      | 710        |        | NA.    | NS.    | NS      | NS       | NS     | NS :     | NS       | NS       | NS     | NS.    | NA.    |        |        |        | 1      | NA.    | NA     | NA     | NA NA    | NA NA   | NA.      | NA     | .53    | N5       | - 1  |
| l phihalate                     | ppm  | NA.      | 100         | -      | 6.00       | ***    | NA     | NS     | NS.     | NS.      | NS.    | NS.      | N\$      | NS       | NS.    | NS     | NA NA  |        |        |        | ) I    | NA.    | NA     | NA     | NA.      | NA NA   | NA.      | NA     | NS     | 58       | - 1  |
| hy i phthalate                  | ppm  | NA.      |             | -      | -          | -      | NA NA  | N\$    | .55     | NS.      | NS.    | NS.      | NS       | NS       | NS     | NS     | NA NA  |        | ***    |        |        | NA     | NA     | NA.    | NA.      | NA NA   | NA.      | NA     | N\$    | NS       | - 1  |
| uty lphthulate                  | ppm  | NA       |             | PR1    | PH 1       | 100    | NA NA  | NS     | NS.     | NS       | NS     | NS NS    | NS       | NS       | NS     | NS     | NA.    |        |        |        | ]      | NA.    | NA.    | NA.    | NA       | NA NA   | NA.      | NA     | .85    | NS       | - 1  |
| cty lphthalate                  | ppm  | NA       | 440         | 9.60   | 441        |        | NA NA  | NS     | NS      | NS.      | NS.    | NS.      | NS.      | NS.      | NS     | NS     | NA NA  |        |        |        |        | NA     | NA     | NA.    | NA.      | NA.     | NA.      | NA     | 53     | N5       | - 1  |
| nthene                          | ppm  | NA.      | ·-          | l –    |            |        | NA     | NS NS  | NS.     | NS       | 155    | พร       | NS       | NS       | NS.    | NS     | NA.    | l      |        | l      | I I    | NA     | NA     | NA.    | NA.      | NA.     | NA       | NA     | 3/5    | 53       | - 1  |
| ne                              | ppm  | NA       | ***         |        | ·m         |        | NA NA  | NS     | NS      | NS.      | NS     | N5       | NS.      | NS.      | NS     | NS     | NA     | l      |        |        | l l    | NA     | NA     | NA.    | NA.      | NA.     | NA.      | NA.    | 55     | N5       | - 1  |
| o(1,2.3-od)Pyrene               | ppm  | NA.      |             |        | ***        |        | NA     | 55     | NS.     | NS       | NS     | N\$      | NS       | NS       | N5     | NS     | NA.    |        |        |        |        | NA     | NA     | NA.    | NA.      | NA.     | NA       | NA     | 35     | 55       | - 1  |
| prone                           | ppm  | NA.      |             |        |            |        | NA.    | NS     | N5      | N5       | NS     | NS       | NS       | NS       | NS     | NS     | NA.    |        |        |        |        | NA.    | NA.    | NA.    | NA.      | NA.     | NA.      | NA     | N5     | NS       | - 1  |
| halene                          | ppm  | NA       | 0 022       |        |            |        | NA.    | NS.    | 55      | NS       | NS     | NS       | NS       | 5/5      | NS.    | NS     | NA.    |        |        |        |        | NA.    |        | , AA   |          | 1 11    |          | NS.    | 55     | N5       | - 1  |
| enzene                          | ppm  | NA.      |             | l      |            |        | NA.    | NS.    | NS      | NS       | 88     | NS       | NS NS    | NS       | NS     | NS     | NA NA  | 1      |        | ı      |        |        | NA.    |        |          | 1       |          |        |        |          | - 1  |
| athrene                         | ppm  | NA.      |             |        |            |        | NA NA  | NS.    | 5/5     | NS       | NS.    | NS.      |          |          |        |        |        |        | _      |        | -      | NA     |        | NA     | NA       | NA .    | NA       | NA.    | NS     | NS       | - 1  |
| ic .                            | ppm  | NA ·     | 1           |        |            | 1      | NA NA  | NS.    |         |          |        |          | N\$      | NS       | NS.    | NS.    | NA NA  | ***    |        |        |        | NA     | NA     | NA     | NA       | NA NA   | NA.      | NA     | N5     | NS       | - 1  |
| iozane                          |      | NA.      | 1           | NA.    |            |        |        |        | NS      | NS       | NS.    | NS .     | NS       | NS       | NS.    | NS     | NA NA  | -      |        |        |        | NA     | NA NA  | NA NA  | NA NA    | NA NA   | NA.      | NA.    | NS     | 505      | - 1  |
| TOTAL BASE/NEUTRALS             | ppm  | NA<br>NA | NA<br>0.022 |        | NA.        | NA NA  | NA     | NA.    | NA      | NA.      | NA     | NA NA    | NA NA    | NA.      | NA     | NA     | NA.    | NA.    | NA.    | NA.    | NA NA  | NA.    | NA.    | NA.    | ,NA      | NA NA   | NA.      | NA     | NA.    | NA.      | 4    |
| TOTAL BASE SET TRALS            | ppm  | - 54     | 6.627       |        |            | -      |        | 5.5    | NS .    | NS.      | 35     | 3.5      | NS       | NS       | NS     | 55     | NA     |        |        | -      |        | ***    | ***    |        |          | H       | -        | NA.    | NS     | 35       | _    |
| TICIDES                         | 1    |          |             |        |            |        |        | l      |         |          |        |          |          |          |        |        | l l    | l      |        | l      |        |        |        |        |          |         |          |        | l      | l        |      |
| DD                              | ppb  | NA.      |             |        |            |        | NA     | NS.    | 5/5     | NS       | NS     | NS       | NS       | NS       | NS     | NS     | NA.    |        |        |        |        | NA     | NA.    | NA.    | NA NA    | NA.     | NA.      | NA.    | NS.    | NS.      |      |
| DE                              | ppb  | NA       | 1           |        |            |        | NA.    | NS     | NS.     | NS       | NS     | NS       | NS.      | NS       | NS     | NS.    |        |        |        |        |        | NA.    | NA.    | NA.    | NA NA    | NA.     |          | NA.    | NS     | NS       |      |
| DT                              | ppb  | NA.      |             |        | 101        |        | NA NA  | NS     | NS      | NS       | NS     | NS .     | NS       | NS       | NS.    | NS     | NA     |        | ***    |        |        |        |        |        |          |         | NA.      |        |        |          | - 1  |
| BIC                             | ppb  | NA.      |             |        |            |        | NA NA  | NS.    | NS      |          |        |          | NS<br>NS |          |        |        | NA     |        | _      |        | 1 - 1  | NA     | NA     | NA     | NA       | NA.     | NA.      | NA.    | NS.    | 155      |      |
| in                              |      | NA.      | 1           |        |            | 1      | NA NA  |        | NS NS   | NS<br>NS | NS     | NS<br>NS |          | NS<br>NS | NS     | N\$    | NA.    |        |        |        |        | NA     | NA.    | NA NA  | NA       | NA.     | NA.      | NA.    | NS     | 745      |      |
| ulfan i                         | ppb  | NA.      | 1           | I      |            |        |        | NS.    |         | NS       | 185    | N5       | NS.      | 33       | NS     | N'S    | NA     |        |        | BMDL 3 |        | NA     | NA     | NA NA  | NA       | NA.     | NA NA    | NA.    | N\$    | 55       |      |
| alfan sulfate                   | ppb  | NA<br>Na |             | - 1    | ***        |        | NA.    | NS.    | NS      | N'S      | NS     | N\$      | NS.      | NS       | NS.    | NS     | NA NA  |        |        |        |        | NA     | NA.    | NA NA  | NA       | NA.     | NA.      | NA     | NS     | NS       |      |
|                                 | ppb  | 1.77     |             | -      |            |        | NA .   | N\$    | NS      | NS       | NS.    | NS       | NS       | NS       | NS     | NS.    | NA NA  | [      | ***    |        |        | NA     | NA.    | NA.    | NA NA    | NA.     | NA NA    | NA.    | NS     | N\$      |      |
| aldehy de                       | bbp  | NA       |             |        |            |        | NA NA  | NS     | NS      | NS       | 7-5    | N5       | NS       | 1/2      | N'S    | NS     | NA NA  |        |        |        | -      | NA     | NA.    | NA NA  | NA NA    | NA.     | NA.      | NA     | NS     | NS       |      |
| kelone                          | ppb  | NA       |             |        | ***        | ***    | NA NA  | NS     | NS      | NS       | NS.    | NS       | NS       | NS       | NS     | NS     | NA     |        | -      |        | !      | NA     | NA     | NA.    | NA       | NA.     | NA.      | NA.    | NS.    | NS.      |      |
| a-BHC                           | ppb  | NA NA    |             | -      |            |        | NA.    | N\$    | NS.     | NS ·     | NS.    | NS .     | NS.      | N5       | NS     | NS     | NA     |        | ***    |        |        | NA     | NA.    | NA.    | NA.      | NA.     | NA NA    | NA     | NS.    | N5       |      |
| :hlor                           | ppb  | NA       |             |        | ***        | ***    | NA NA  | N5     | NS      | NS       | NS     | NS :     | NS       | NS       | NS     | NS     | NA     |        |        |        |        | NA     | NA     | NA.    | NA.      | NA.     | NA       | NA     | NS.    | NS       |      |
| chlor epoxide                   | ppb  | NA       |             | - 1    |            |        | NA     | NS.    | NS.     | N5       | NS     | พร       | NS       | NS       | NS     | NS     | NA     |        | 0 077  | BMDL7  | l      | NA     | NA.    | NA.    | NA.      | NA.     | NA.      | NA     | NS.    | NS.      |      |
| oxychlor                        | ppb  | NA       |             |        |            | ***    | NA NA  | NS.    | NS      | NS       | NS.    | NS       | NS       | NS       | NS.    | NS     | NA.    |        | ***    |        |        | NA.    | NA.    | NA.    | NA.      | NA.     | NA.      | NA.    | NS.    | NS       |      |
| AL DDX                          | ppb  | NA .     |             | 111    | -          |        | NA     | 55     | 58      | 35       | 35     | 38       | NS       | 3/8      | NS     | NS     | NA.    |        |        |        |        | NA     | NA.    | 5A     | 5A       | NA.     | NA.      | NA.    | 55     | 35       | +    |
|                                 |      |          |             |        |            |        |        |        |         |          |        |          |          |          |        |        |        |        |        |        |        |        |        |        |          |         |          |        |        |          |      |

## TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (See page 15 for notes)

| PARAMETER                     | UNIT   |          |        |        |             |          |         | OFF-18      |           |           |          |           |              |             |          |          |         |          |           |          |          | OFF+19   |          |           |        |        |            |        |          |
|-------------------------------|--------|----------|--------|--------|-------------|----------|---------|-------------|-----------|-----------|----------|-----------|--------------|-------------|----------|----------|---------|----------|-----------|----------|----------|----------|----------|-----------|--------|--------|------------|--------|----------|
|                               | CSII   | Aug-89   | Aug-10 | Jun-11 | Dec-12      | Jun-13   | Jun-15  | Sep-16      | Jul-17    | Oct-18    | Sep-19   | Sep-20    | Oct-21       | Sep-22      | Mar-68   | Sep-68   | Aug-09  | Sep-10   | Jun-11    | Sep-12   | Jun-13   | Jun-15   | Sep-16   | Jal-17    | Oct-18 | Sep-19 | Sep-20     | Oct-21 | Sep-     |
| OLATILES                      |        |          |        |        |             |          | 2.12    |             |           |           |          |           |              |             | W        |          |         |          |           |          | 7        |          |          |           |        |        |            |        |          |
| 1_1-Trichloroethane           | ppm    | -        |        | -      | -           |          | -       |             | ***       |           | 197      |           | 11707        |             | 1997     | 100      | 0.00    | 791      | C Reco    | 100      | 101      | 100      | C No.    | 100       | -      | 0.00   | int        | 16.6   | -        |
| 1,2,2-Tetrachloroethane       | ppm    | 100      | 710    | . 176  | 100         |          | -       | -           | 101       | 100       | last -   | 0.0       | 101          | tion        | 166      | 100      | 146.7   | 100      | No.       | 100      | 666      | 444      | -        | ***       | -      | -      |            | -      | - 1      |
| .1-Dichloroethene             | ppm    | -        | 100    | -      |             |          | -       | -0          |           | -         | -        |           |              | - 4         | -        | -        | -       |          | 12.2      | -        | -        | 100      | -        |           | 200    | 100    | 100        | -      |          |
| ,2,4-Trichlorobenzene         | ppm    | -        |        |        |             |          | 111     | 144         | ***       | ***       | -        |           | ***          |             | NA.      | 100      | 200     | 798      | 100       | 101      | -        | 100      | -        | -         | -      | 764    | - 101      | -      | _        |
| ,2-cis-Dichloroethylene       | ppm    | 100      | 700    | -      | -           | 100      | BMDL J  |             |           | 0.000451  | ***      |           | 444          | 0 000029 \$ | (66)     | ***      | ***     | ***      | 444       | 000      | 444      | 200      | 5.46     |           |        | -      | -          | -      | -        |
| .2-Dibromo-3-chloropropune    | ppm    | Linke 1  | 140    |        | -           | 1        | 200     | l _         | l         |           |          |           |              | Detail      |          | -        |         |          | _         | - C      |          |          | -        | ***       | 111    | 100    | 200        | 22     |          |
| ,2-Dichlorobenzene            | ppm    |          | ***    |        | 100         |          | BMDL J  | BMDLJ       |           | 0 00065 J | 100      | -         | 100          | 0.000423    | NA       |          | -       | 100      | - 101     |          | 100      | 100      | 100      | 200       | -      | 704    | 100        |        | _        |
| ,2-trans-Dichloroethylene     | ppm    | -        | -      | 100    |             |          | 111     |             |           | NA.       |          |           | ***          | -           |          | 107      | -       |          |           |          |          | 0        |          | 2         | NA     | - 2    |            |        | -        |
| .4-Dioxane                    | ppm    | -        |        |        | _           |          | -       |             |           | NA        | NA       | 0 00023 J | NA.          | NA.         |          | ***      |         | -        |           | 200      |          | 100      | 1        | 100       | NA     | NA     | 0 00065    | NA     | NA       |
| -Hexanone                     | ppm    | -        |        | 4.33   | 100         | 100      | 23      | 3200        | 123       |           | _        |           | 4            | 100         | 200      | 11.66    |         | 100      | 101       | 322      | 100      | 760      |          | 440       | .05    | 704    | - 00007    | 1995   |          |
| Acetone                       | ppm    | 100      | 50     | 100    | - 20        | 018      | BMDL J  | 5.00        |           | 0.0075    | 923      | _         | -            | 0.0042.1    |          | BMDL J   | 225     |          |           | -        | 0.000    | -        | 3.2      | @ 0034 J  |        | 0.0051 | -          | 3      | -        |
| Senzene                       | ppm    | BMDL I   | BMDL / | BMDL I | -           |          | BMDL J  | BMDL J      | 0 00057 J | 0 0024    | ***      |           | 777          | 0 000095    |          | Divide 1 | 10.20   | 100      |           | - 222    | 0.2      | 100      |          |           | 100    | - 0031 |            | 100    |          |
| Bromoform                     | ppm    | DALL!    | BALL!  | manut. |             |          | Dear 1  | D. Marker J | 0 000577  | 0.0024    |          |           |              | 000095      |          |          |         | 100      |           | - 177    |          | 100      |          |           | 1133   |        |            | 7.0    | 1 -      |
| Carbon Disulfide              |        |          | ***    |        |             |          | I -     |             |           |           |          | -         |              |             |          | H        |         | <u> </u> | 0.75      | ~        |          | -        |          | - 22      |        |        | 1000       |        | -        |
| Chlorobenzene                 | ppm    |          | BMDL   | BMDL J | day after a | D1401 4  | 0-019   |             |           | - 0003    | -        |           |              | 7.7         | ***      |          |         |          | 0.00      |          |          | 1.7.5    | 17.75    | 177       |        | 1994   | 101        | ***    | -        |
| Chloroethane                  | ppm    | 7.7      |        |        | BMDL J      | 8MDL J   |         | 0.0065      |           | 0.002\$   | 0.00111  | 0.0043.1  | 0.6073       | 0.015       |          |          |         | 1.7      | 1 1       | -        |          | - 7      | -        | -         | -      | 177    | -0.0       | -      | -        |
| hloroform                     | ppm    | 100      | 17     |        | -           | ***      | 0.0016  | ***         | ***       |           |          | ***       | ***          |             |          |          |         | 57       |           | -        |          |          |          |           | -      | -      |            |        | -        |
|                               | ppm    | -        |        |        | ***         |          |         | -           |           | ***       | 3.7      | 7.5       | ***          | -           | 5.74     | 100      |         | -        | -         | -        |          | Bostle J | 100      | ***       | 1911   | 100    | 0.0000003  |        | -        |
| Chloromethane                 | bbm    | -        | 277    | 77     | 100         |          | BWIDT 1 | -           |           | 110       | 100      | -         | 200          | 100         | 1000     | 100      | -       | 1.0      | -         | -        | 100      | 100      | -        | 100       | 44     | 44     |            |        | -        |
| Cyclohexane                   | ppm    | NA.      | N/A    | MA     | 100         | ***      |         | -           |           | -         | -        | ***       | -            | ***         | NA       | NA.      | NA NA   | NA       | NA NA     | -        | -        | 177      | -        | -         |        | -      |            | 77.7   | -        |
| Dibromochloromethane          | ppm    | -50      |        |        | -           |          | -       | -           | 715       | 100       | 199      | 44        | 191          | 101         |          | 0.000    | 100     |          | 0.000     | Cite     | 199      | 197      |          | 100       | -      | -      |            |        | -        |
| Dichlorobromomethane          | ppm    | -        | 999    | 3191   | -           | 100      | -       | 314         | 101       | 100.77    | ( MAC    | 841       | 164          | Table 1     | - 16     | 449      | ***     | 194      | 184       |          | 1964     | 349      | 244      | 181       |        | -      |            | -      |          |
| thy lbenzene                  | ppm    | 2.0      | 3.2    | 2.7    | 1.2         | 1.1      |         | 0.046       | 0.41      | 0.071     | 0.17     | 0.20      | 14           | 0.024       | BMDL J   | -        | BMDL I  | -        | -         | 7 to 100 |          | -        | ***      |           | AAA    | 775    |            |        | 100      |
| зоргору Велгене               | ppm    | NA.      | NA.    | NA.    | 0.006       | 0.03     | 0.009   | 0.0051      | 0.012     | 0.003     | 0:0033   | 0.005     | 0.014        | 0.0000      | NA       | NA       | NA.     | NA.      | NA.       | 0 00 9   | BMDL J   | BMDL I   | BMDL J   | 0 00065 J | -      |        | 94         | relate |          |
| Methy I ethy I ketone         | ppon   | 100      | 4-     | 100    | 100         | int -    | BNDC    | (64)        | 484       | fact of   | 44       | 400       | 144          | a in        | ***      |          | B40     | -        | 104       | 364      | 14.1     | 100      | -        |           |        | -      | -          |        | -        |
| Hethy I tertiary buty I other | ppra   | NA.      |        |        |             |          | -       | -           | -         | NA.       | -        |           |              |             |          |          |         | -        | -         |          |          |          | -        | -         | NA.    | Test.  | 200        | 776    | 200      |
| Vethylcyclohexane             | ppm    | NA.      | NA.    | NA.    | BMDL#       | .01      | BMDL    | BMDLJ       | 141000    | 0.0015    | 199      | 111       | the state of | -           | SAA      | NA       | NA.     | NA:      | NA        | - 10     | 100      | .00      | 100      | -         |        | 1,000  | C 400 C    | 44     | -        |
| Vethylene chloride            | ppm    | -        | 1-     | -      |             | 446      | in .    | -           | 166       | 145       | -        |           | -            | 1           |          |          | -       | -        | -         | 100      | -        | 100      |          | -         | _      | 7-2    | -          | -      |          |
| Vethy I-iso-buty I ketone     | ppm    | 10.4     | 144    |        |             |          | -       |             |           | real -    | 100      | 445       |              | -99         | 100      |          | 100     |          | 2.0       | -        | - 100    | ***      |          | 200       | .01    | -      | -          |        | -        |
| Sty reme                      | ppm    |          | 744    | ++     |             | 100      |         |             |           | 100       |          | -         | 100          | -           | 200      | 100      |         | -        | 100       | -        | 100      |          | -        |           | 1984   | - 10.6 | - 0.1      |        | 140      |
| l'etrachioroethene            | ppm    | -        | 1-1    | 100    | 404         | 144      | BMDL    |             |           |           |          |           |              | 177         |          |          | 25      | _        |           | -        | -        |          | -        | -         | 0.0016 | -      | -          | -      |          |
| Toluene                       | ppm    | 66       | 110    | 12 D   | 42E         | 2.0      | 240     | 0.036       | 0.91      | 0.029     | 0.029    | 0.024     | 1.2          | 0.0022      |          |          | 0.0012  | 100      | - 27      | Tax.     | 1996     | Per      | ris .    | -         | -      | -      | -          | -      | 100      |
| Total Xylenes                 | ppm    | 311      | 12     |        | 1 4         | 40       | 260     | 0.13        | 1.4       | 0.34      | 0.68     | 1 \$59    | 51           | 0.12        | BMDL J   |          | 0.0037  | 100      | BMDL I    | 200      | 1000     | - 50     | 100      | 100       |        | 44     |            | -      | _        |
| Frichleroeths lene            | ppm    | 1        | 460    | 1.00   | lane :      |          | 200     |             | 55        |           | _        |           |              |             |          |          |         | -        | 2 100 Tr. |          |          | 100      | 2.50     |           | -      | 122    | -          | 22     | 1        |
| /im-  chloride                | ppm    |          |        | _      |             |          | BMDL I  |             |           |           |          | _         | _            | 0-000001 J  |          | _        | -       | -        | -         | 130      | -        | 6.00     |          | - 2       | 200    | 100    | 101        |        |          |
| TOTAL VOLATILES               | ppm    | 20       | 26     | 24 J   | 142 J       | 0.15 J   | 5.855   | 8.21        | 2.7       | 0.4873.3  | 8,8834.3 | 1.16253 J | 7.721 J      | 9,17214.2   | 6,0021 3 | 9,0084 J | 0.0054  | 777      | 0.0000 J  | 0.0019   | 0.0003   | 0.005 J  | 6.0007 J | 0.004     | 0.0016 | 8.0051 | 0.00f 45 J |        | 100      |
|                               | PF     |          |        |        | 1           |          |         | 9.27        |           | 0040177   |          | 2102307   |              |             |          |          | 4.002-1 |          |           |          |          | 0.007.0  |          | -         | 20010  |        | 444440     |        |          |
| t-Octanol                     | ppm    | 1 - 11   |        | NA.    | NA.         | NA.      | NA      | . NA        | NA.       | NA.       | NA       | NA        | NA.          | NA.         | NA.      | NA       | NA.     | NA.      | NA.       | NA.      | NA       | NA NA    | NA.      | NA.       | NA.    | NA     | NA         | NS     | NS.      |
| -Octanone                     | ppon   | BMDL)    | 200    | NA.    | NA          | NA.      | MA      | NA.         | NA.       | NA.       | NA       | NA.       | NA           | NA          | NA.      | NA       | MA      | MA       | NA.       | NA.      | NA.      | NA.      | NA.      | NA.       | NA.    | NA.    | NA NA      | NS     | NS.      |
| TOTALOCTANOL/OCTANONE         | ppen   | 0.0038 J | 755    | NA.    | NA.         | NA       | NA      | 5A          | 36        | NA.       | NA       | NA.       | NA.          | NA NA       | NA       | NA       | NA.     | NA       | NA.       | NA.      | NA.      | 36       | NA.      | NA NA     | NA.    | NA.    | NA NA      | N5     | NS       |
|                               | 1 77 - |          |        | 1      | 1           | 7        | 1       | 141         | 17.0      |           | 1-12     | 1.774     | 1774         | 1 1111      | 15.5     | 1-21     |         |          | 1.550     |          |          | 1.44     |          | 1.00      | 1-74   | 14.0   |            | 110    | 144      |
| CID EXTRACTABLES              |        |          | l      |        | 1           | 1        |         | l           |           |           |          |           |              | 1           | l        |          |         | l        |           |          |          |          | I        | 1         |        |        |            |        |          |
| .4-Dimethy loberol            | ppm    | 1        | 0.026  | -      | NA          | NA.      | MA      | NA.         | 5         | NA.       | NA       | NA.       | NA.          | NA NA       | NA.      | 1000     | 2.2     | 2.44     |           | NA.      | NA       | NA.      | NA.      | 100       | NA.    | NA     | NA         | NA     | NA.      |
| -Methylphenol                 | bhu    | BMDL/    | 0.033  |        | NA<br>NA    | NA<br>NA | NA      | NA NA       |           | NA.       | NA.      | NA NA     | NA.          | NA.         | NA.      | -        | 23      | -        | -         | NA NA    | NA.      | NA.      | NA.      |           | NA.    | HA     | NA NA      | NA.    | NA<br>NA |
| -Methylphenol                 |        | BMDL I   | 0038   | 1      |             | NA<br>NA | MA      |             | 0.00451   |           |          |           |              |             |          |          |         | 1        |           |          |          |          |          | 141       |        |        |            |        |          |
| entachlorophenol              | ppm    | BMLK.    | 4434   |        | NA          |          | NA.     | NA<br>NA    |           | NA.       | NA       | NA.       | NA.          | NA          | NA<br>NA | -        |         | -        |           | NA       | NA<br>NA | NA<br>NA | NA<br>NA | - 57      | NA.    | NA NA  | NA NA      | NA     | N.A      |
|                               | ppm    |          | -      | NA.    | NA .        | NA       |         | NA          | 57        | NA.       | NA       | NA.       | NA.          | NA .        | NA.      | 190      | 190     | 200      | NA.       | NA       | NA       | NA       | NA       | 211       | NA.    | NA     | NA         | NA     | NA       |
| henol                         | ppm    |          | ***    |        | NA.         | NA       | NA.     | NA .        | 100       | NA        | NA       | NA        | NA           | NA NA       | NA       | 181      | 100     | 100      | (2)       | NA       | HA       | NA NA    | NA.      | 100       | NA     | NA     | NA.        | NA     | NA.      |
| TOTAL ACID EXTRACTABLES       | ppm    | 0.025.5  | 8,097  |        | NA.         | NA.      | NA.     | NA.         | 8.0045    | NA.       | NA       | NA I      | 3.4          | NA.         | NA.      |          |         |          |           | 2.4      | 74.6     | NA.      | NA.      |           | NA.    | NA.    | NA I       | 5.4    | 1 8      |

# TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see page 15 for notes)

| PARAMETER                  | UNIT |               |        |         |        |        |          | OFF-18  |          |        |        |          |          |          | OFF-19   |          |        |        |        |          |        |          |        |          |          |           |          |          |         |
|----------------------------|------|---------------|--------|---------|--------|--------|----------|---------|----------|--------|--------|----------|----------|----------|----------|----------|--------|--------|--------|----------|--------|----------|--------|----------|----------|-----------|----------|----------|---------|
|                            |      | Aug-09        | Aug-10 | Jun-11  | Dec-12 | Jun-13 | Jun-15   | Sep-16  | Jul-17   | Oct-18 | Sep-19 | Sep-20   | Oct-21   | 5ep-22   | Mor-08   | Sep-08   | Aug-09 | Sep-10 | Jun-I) | Sep-12   | Jun-13 | Jun-15   | Sep-16 | Jul-17   | Oct-18   | Sep-19    | Sep-20   | Oct-21   | Sep     |
| ASE/NEUTRALS               |      | l             |        |         |        | l      |          | l       |          |        |        |          |          |          |          |          |        | [      |        |          |        |          |        |          |          |           |          |          | T       |
| Methy Inaphthalene         | рунп |               | BMDL J |         | NA NA  | NA     | NA       | NA NA   | 0.00111  | NA     | NA.    | 0.00003  | NA.      | NA.      | NA.      | 2-       |        |        | 171    | NA       | NA     | NA       | NA.    | 1 101    | NA.      | NA.       | (944)    | NA       | 1       |
| Nitroaniline               | ppm  |               |        |         | NA     | NA.    | NA NA    | NA NA   | -        | NA NA  | NA     |          | NA.      | NA       | NA.      | 3-       |        |        | (m)    | NA.      | NA .   | NA       | NA     |          | NA.      | NA.       | -        | NA       |         |
| Chloroaniline              | ppm  |               | NA.    |         | NA.    | NA.    | NA       | NA NA   | -        | NA     | NA.    |          | NA.      | NA.      | NA.      | 35-      |        | NA.    | ***    | NA.      | NA     | NA       | NA.    | 100      | NA       | NA.       |          | NA       | 1       |
| cenaphthene                | ppm  | -             |        |         | NA NA  | NA.    | NA       | NA NA   | -        | NA     | NA .   | 1915     | NA.      | NA.      | NA.      |          |        |        |        | NA       | NA     | NA       | NA.    | ind 1    | NA       | NA        |          | NA       | 1       |
| cetophenone                | ppm  | NA.           | NA     | NA.     | NA.    | NA.    | NA.      | NA NA   | 100      | NA NA  | NA.    |          | NA.      | NA .     | NA       | NA       | NA -   | NA     | NA     | NA       | NA     | NA       | NA.    |          | NA.      | NA        | -20      | NA       |         |
| athracene                  | ppm  |               | -      |         | NA     | NA     | NA       | NA      | 164      | NA.    | NA ·   | -        | NA       | NA.      | NA       | 144      |        | ***    | 100    | NA.      | NA     | NA.      | NA.    |          | NA.      | NA.       |          | NA.      | 1       |
| enzo(a)Anthracene          | ppon | BMDL J        | ***    | -       | NA     | NA :   | NA.      | NA NA   |          | NA.    | NA.    |          | NA       | NA.      | NA.      | 100      | _      |        |        | NA.      | NA NA  | NA       | NA NA  | -        | NA.      | NA.       | 0.000024 | NA.      | 1       |
| lenzo(a)P5 rene            | ppm  | l –           |        |         | NA.    | NA     | NA       | NA NA   | -        | NA.    | NA.    |          | NA       | NA.      | NA       |          |        |        | _      | NA       | NA.    | NA.      | NA.    | 3        | 31/4     | NA        | -        | NA.      | 1       |
| enzo(b)Fluoranthene        | ppm  | l             | l      | 1       | NA.    | NA.    | NA       | NA.     |          | NA.    | NA     |          | NA.      | NA.      | NA.      | 200      |        |        |        | NA<br>NA |        |          |        | 40.000   | NA.      | NA.       | 0.1      |          | 1       |
| lenzo(g.h.i)Perylene       | ppm  | l '           | l      |         | NA.    | NA     | NA.      | NA.     | <u> </u> | NA     | NA.    |          |          |          |          | 33750    |        |        | 144    |          | NA     | NA       | NA.    | 3.733    | NA.      | NA        | 000028   | NA       | 1       |
| is(2-Chloroethy I)ether    | ppm  |               | 0 0065 |         | NA.    | NA.    | NA.      | NA NA   |          | NA.    | NA NA  | 0.0004   | NA.      | NA.      | NA       | 0.00     |        |        | -      | NA .     | NA     | NA       | NA.    | 1,000    | NA       | NA        | - 55     | NA       | 1       |
| is(2-Chloraisopropy Lether | ppm  |               | *****  | 1       | NA.    | NA.    |          |         | 100      |        |        |          | NA.      | NA.      | NA       |          |        |        | -      | NA       | NA NA  | NA.      | NA .   | # 00006T | NA.      | NA        | -        | NA       |         |
| is(2-Ethylihexyl)phthalate |      |               | -      | -       |        |        | NA       | NA      | 1000     | NA     | NA.    | 200      | NA.      | NA.      | NA       |          |        |        |        | NA .     | NA     | NA       | NA.    |          | NA.      | NA        |          | NA       | 1       |
| Suty I benzy I phikalate   | ppm  | -             |        |         | NA NA  | NA.    | NA.      | NA .    | 77       | NA.    | NA NA  | 1 900    | NA       | NA NA    | NA NA    |          |        |        | ***    | NA.      | NA     | NA       | NA.    | -        | NA       | NA        | 100      | NA       | 1       |
|                            | ppm  | -             | l      |         | NA.    | NA.    | NA NA    | NA      |          | NA.    | NA     |          | NA.      | NA .     | NA       |          |        |        | _      | NA .     | NA     | NA       | NA.    |          | NA.      | NA:       | -        | NA       | 1       |
| Carbazole                  | ppm  |               | -      |         | NA NA  | NA.    | NA       | NA NA   | 344      | NA.    | NA     | 100      | NA       | NA.      | NA       |          |        | 144    |        | NA :     | NA     | NA       | NA.    |          | NA       | NA        | 110      | NA       | 1       |
| hry sene                   | ppm  |               |        |         | NA     | NA.    | NA.      | NA      | 340      | NA NA  | NA.    | 1917     | NA       | NA.      | NA NA    | 104.00   |        |        | 1-1    | NA :     | NA     | NA       | NA.    | PRO      | NA       | NA        | 100      | NA.      | 1       |
| Dibenzofuran               | ppm  |               |        |         | NA.    | NA,    | NA       | NA      | 701      | NA.    | NA.    | 100      | NA.      | NA.      | NA.      |          |        | 1+4    |        | NA.      | NA     | NA       | NA.    | 640      | NA.      | NA.       | -        | NA       | 1       |
| Diethy I phthulate         | ppm  |               |        |         | NA.    | NA NA  | NA       | NA      | 104      | NA.    | NA.    | -        | NA.      | NA.      | NA.      | 400      |        |        | ***    | NA       | l NA I | NA       | NA     | _        | NA       | NA        | -        | NA       | 1       |
| innethy I phthalate        | ppm  |               |        | ***     | NA.    | NA.    | NA       | NA      | -        | NA.    | NA.    | 100      | NA.      | NA NA    | NA       |          |        |        | _      | NA I     | NA     | NA       | NA.    | PRE      | NA       | NA        | -        | NA       | -1      |
| Pi-n-buty lphthalate       | ppm  |               | l –    |         | NA.    | NA.    | NA       | NA.     | 100      | NA.    | NA     | 140      | NA       | NA.      | NA.      | -        | i I    |        | _      | NA.      | NA.    | NA       | NA     | 140      | NA       | NA        | _        | NA       | 1       |
| i-n-octy lphthalate        | ppm  | ***           |        | l       | NA.    | NA     | NA       | NA .    | 144      | NA.    | NA.    | 1        | NA       | NA i     | NA.      |          |        |        |        | NA NA    | NA     | NA.      | NA.    | -        | NA.      | NA.       |          | NA.      | 1       |
| luoranthene                | ppm  |               |        |         | NA     | NA NA  | NA       | NA.     |          | NA.    | NA     |          | NA       | NA.      | NA.      | -        |        | :      |        | NA.      | NA.    | NA.      | NA.    |          | 22.5     | NA.       |          | NA.      | 1       |
| Inorene                    | ppm. | l – I         | i _    | 1770-77 | NA.    | NA.    | NA       | NA.     |          | NA.    | NA.    | 100      | NA       | NA.      | NA       | 1        |        |        |        | NA.      | NA NA  | NA.      | NA NA  |          | NA<br>NA | NA.       |          | NA<br>NA | 1       |
| ndeno(1,2,3-cd)Pyrene      | ppm  |               |        |         | NA     | NA NA  | NA.      | NA.     |          | NA.    | NA.    |          | NA.      | NA I     | NA.      |          |        |        |        |          |        | NA.      |        | 1        |          |           |          |          |         |
| sophorone                  | ppm  | l I           | ١      |         | NA.    | NA NA  | NA.      | NA.     | I        | NA.    | NA.    |          | NA.      | NA NA    | NA.      | 3536     |        |        |        | NA<br>NA | NA     |          | NA.    |          | NA       | NA        | 1        | NA       |         |
| Vaphthalene                | ppm  | 0.12          | 015    |         | NA.    | 0.004  | 00011    | 0 0052  | 0.059    | 0.019  | 0.031  | 100      | 0.063    | NA<br>NA | NA<br>NA | -        |        |        | _      |          | NA     | NA       | NA.    |          | NA       | NA        | -        | NA       |         |
| vitrobenzene               | ppm  |               | 1      |         | NA.    | NA NA  |          |         |          |        |        | 1000     |          |          |          | 1779     | 1572   | ···    |        | NA.      | 1      |          |        |          | ***      | - Carrier | 77.      |          | -01     |
| Phenantheene               | ppm  |               | "      | 1       | NA.    | NA NA  | NA<br>NA | NA      |          | NA.    | NA.    |          | NA       | NA       | NA.      | -        |        |        | ***    | NA.      | NA     | NA       | NA NA  |          | NA       | NA        | 7        | NA       |         |
| Pyrene                     |      |               | ""     |         |        |        |          | NA.     |          | NA.    | NA.    | . 440    | NA       | NA NA    | NA       | BMDL/    |        | - !    |        | NA NA    | NA     | NA       | NA.    |          | NA       | NA.       | -        | NA       |         |
| 1.4-Dioxane                | ppm  |               |        | ***     | NA.    | NA     | NA.      | NA.     |          | NA.    | NA.    | 144      | NA.      | NA NA    | NA       | 170      | ***    | l le   | _      | NA.      | NA     | NA       | NA.    | 944      | NA       | NA.       | -        | NA       |         |
| TOTAL BASE/NEUTRALS        | ppm  | NA<br>0.12    | 0.17   | NA.     | NA.    | NA     | NA.      | NA      | NA       | NA.    | NA     | NA.      | NA       | NA NA    | NA       | NA.      | NA     | NA NA  | NA     | NA.      | NA.    | NA.      | NA.    | NA.      | NA.      | NA        | NA.      | NA       | 0.00    |
| TOTAL BASE SECTIALS        | ppm  | 6.12          | 0.17   |         | _      | 0.064  | 0.0410   | 0.00551 | 001      | 0.019  | 0.031  | 0.0334.3 | 6.66)    | NA       | NA.      | 0.000J J |        | 2.66   | _      |          |        |          |        | 0.000061 | ***      | ***       | 0.000051 |          | 8.0     |
| ESTICIDES .                |      |               |        |         |        |        |          |         |          |        |        |          |          |          |          |          |        |        |        |          | 1      |          |        |          |          |           |          |          |         |
| 1.4'-DDO                   | ppb  |               |        |         | NA     | NA     | NA.      | NA.     | NA       | NA     | NA.    | NA       | NA       | NA       | NA       | 5280     | 444    | 1.5m   |        | l i      | 1 I    |          | l      |          |          |           | 1        |          |         |
| L4'-ODE                    | ppb  |               | l      |         | NA.    | NA.    | NA.      | NA.     | NA.      | NA.    | NA.    |          |          |          |          |          |        | 200    | -      | NA :     | NA     | NA       | NA.    | NA.      | NA.      | NA        | NA.      | NA.      |         |
| 4-DDT                      | ppb  |               | _      |         | NA.    | NA.    |          |         |          |        |        | NA.      | NA       | NA       | NA       | 27.00    | 2.0    | 279    |        | NA.      | NA     | NA       | NA.    | NA       | NA       | NA        | NA.      | NA NA    |         |
| leta-BHC                   |      |               |        | 1       | NA NA  |        | NA.      | NA      | NA       | NA.    | NA.    | NA       | NA NA    | NA NA    | NA.      |          |        | 100    |        | NA.      | NA     | NA       | NA.    | NA.      | NA NA    | NA        | NA.      | NA       |         |
| Dieldrin                   | ppb  | - 1           | -      |         |        | NA     | NA       | NA.     | NA.      | NA     | NA.    | NA NA    | NA NA    | NA NA    | NA       | -        | 449    | 2354   |        | NA       | NA     | NA       | NA.    | NA.      | NA.      | NA        | NA.      | NA.      |         |
|                            | ppb  |               | -      |         | NA.    | NA.    | NA       | NA      | NA.      | NA     | NA.    | NA.      | NA       | NA NA    | NA       | -        | -      |        | ***    | NA       | NA     | NA       | NA.    | NA.      | NA       | NA        | NA.      | NA       |         |
| ndosulfan I                | ppb  |               |        |         | NA NA  | NA.    | NA       | NA      | NA       | NA NA  | NA.    | NA.      | NA       | NA NA    | NA.      |          | 100    | -      |        | NA       | NA     | NA       | NA.    | NA.      | NA.      | NA.       | NA NA    | NA       |         |
| ndosulfan sulfate          | ppb  |               |        | ***     | NA.    | NA     | NA.      | NA.     | NA       | NA NA  | NA.    | NA.      | NA.      | NA NA    | NA       | and .    | 444    | 200    | _      | NA       | NA     | NA       | NA.    | NA.      | NA.      | NA        | NA.      | NA       |         |
| ndrin aldehyde             | ppb  |               |        |         | NA.    | NA.    | NA       | NA.     | NA NA    | NA.    | NA     | NA       | NA       | NA.      | NA       |          |        | ·      | ***    | NA.      | NA     | NA       | NA     | NA       | NA.      | NA        | NA.      | NA       |         |
| ndrin ketone               | ppb  |               |        |         | NA.    | NA     | NA .     | NA.     | NA NA    | NA NA  | NA.    | NA       | NA       | NA       | NA       | 100      | 100    | 16-    |        | NA.      | NA     | NA.      | NA.    | NA.      | NA.      | NA        | NA.      | NA.      |         |
| атепа-ВНС                  | ppb  |               | 7++    |         | NA NA  | NA     | NA.      | NA      | NA       | NA NA  | NA     | NA       | NA       | NA.      | NA       | mar.     |        |        | _      | NA.      | NA     | NA.      | NA.    | NA.      | NA.      | NA.       | NA.      | NA       |         |
| ptachlor                   | ppb  |               |        |         | NA NA  | NA     | NA       | NA      | NA       | NA NA  | NA.    | NA.      | NA.      | NA NA    | NA.      | 200      | 39     |        |        | NA.      | NA NA  | NA.      | NA.    | NA.      | NA.      | NA.       | NA<br>NA | NA.      |         |
| ptachlor epoxide           | ppb  |               |        |         | NA     | NA.    | NA.      | NA.     | NA       | NA NA  | NA NA  | NA.      | NA.      | NA NA    | NA.      | -        | 900    | -      |        | NA.      | NA NA  |          |        |          |          |           |          |          |         |
| ethoxychlor                | ppb  | _             |        | ,       | NA NA  | NA.    | NA.      | NA.     | NA NA    | NA NA  | NA NA  | NA.      | NA<br>NA | NA NA    | NA<br>NA |          | 900    | 11111  | -      |          |        | NA<br>NA | NA.    | NA.      | NA.      | NA        | NA.      | NA.      |         |
|                            |      | $\overline{}$ | _      |         |        |        |          |         |          |        |        | 7416     |          |          |          |          |        | -      |        | NA.      | NA.    | NA NA    | NA     | NA       | NA       | NA.       | NA.      | NA.      | $\perp$ |
| DTAL DDX                   | ppb  |               |        |         | NA NA  | NA.    | NA I     | NA .    | NA.      | NA NA  | NA 1   | NA       | NA.      | NA NA    | NA.      |          |        | -      |        | NA.      | NA.    | NA       | NA.    | NA.      | NA .     | NA.       | NA.      | NA       |         |

#### TABLE 2 ANALYTICAL RESULTS FOR OFF-SITE WELLS GROUNDWATER MANAGEMENT SYSTEM (see pags 15 for nodes)

#### NOTES:

A complete set of historical groundwater data (beginning in 1995) can be provided upon request

Monitoring well LA-2 was inaccessible (parked over) in July 2015.

Monitoring well LA-3 was inaccessible (parked over) in September 2016.

Monitoring well LA-5 was inaccessible in March 2005, July 2017 and October 2018.

Monitoring well OFF-16; access to this well was not granted by the homeowner in 2013, 2015, 2016, 2017, 2018, 2019, 2020 and 2021; no samples collected.

Monitoring well OFF-17 was inaccessible in 2020, 2021, and 2022.

Monitoring well OFF-18 was inaccessible (parked over) in August 2005; sample was collected on 11/07/2005.

Monitoring well OFF-3 was inaccessible/damaged in August and December 2012 and June 2013, no samples collected in 2012-2020.

The following offsite locations shown on Figure 1, are not sampled as part of the Groundwater Management System Monitoring: LA-6, LA-7, OFF-10, OFF-11, & OFF-16.

This table only lists parameters that were detected at least once in the wells sampled.

Wells OFF-1, OFF-8, and OFF-9 were plugged and abandoned in 2012.

ppm = mg/L, ppb = μg/L

"BMDL" - Analyte present, but detected below the method detection limit.

"E" - Result exceeded calibration range.

"J" - Analyte present - reported value may be biased low on high-

NA - Not analyzed

NS - Not sampled

"--" - Parameter was not detected (data validation qualifiers may not be listed).

"\*\*- Laboratory control sample or Laboratory control sample duplicate is outside acceptance i mits.