东南大学电工电子实验中心 实验报告

课程名称:	模拟电子电路实验

第 3 次实验

头粒名称:	<u>2.10 二极官风</u>	<u> 大电路基</u>	<u>* 本性能</u>	的测量
院 (系):	自动化	专	业: _	自动化
姓 名:	陈鲲龙	学	号:_	08022311
实验室:	105	_实验组	别:	11
同组人员:	实	验时间:	2024 年	E 4 月 24 日
评定成绩:	审阅	教师: _		

一、实验目的

- (1)掌握单级三极管放大电路的工作原理、电路设计、安装和调试;
- (2)了解三极管各项基本参数的意义、选择器件的注意事项:
- (3) 理解三极管偏置电路的基本概念,掌握静态工作点的调试和测量方法;
- (4)掌握三极管放大电路输入阻抗、输出阻抗、增益等的基本概念以及测量方法。

二、实验原理

1、基本概念

三极管放大电路是利用双极型器件或场效应器件的控制特性,将输入小信号线性 放大到所需数值的电路。双极型器件有三种基本组态: 共发射极电路、共基极电路和 共集电极电路,场效应管也有三种基本组态: 共源极电路、共栅极电路以及共漏极电路。

三极管放大电路一般需要研究分析两种特性:静态特性和动态特性。静态特性是指 三极管放大电路为了正常工作而构建的静态工作点,包括三极管各电极之间的电压、电极中流过的电流。工作点设置是否合适,将影响到放大电路的动态性能指标,甚至会导致放 大电路不能工作。动态特性一般包括放大电路的放大倍数、输入电阻、输出电阻、动态范 围、频带宽度等,这些特性是衡量一个放大电路性能好坏的重要指标。

双极型三极管有多种分类方式,按制作的材质可以分为: 硅管、锗管;按结构可分为: NPN 管、PNP 管;按三极管的功能可以分为;开关管、功率管、达林顿管、光敏管等;按三极 管的功率大小可以分为:小功率管、中功率管、大功率管;按照三极管的工作频率可以分为:低频管、高频管、超频管;按三极管的结构工艺可以分为:合金管、平面管;按照其封装 方式可以分为:插件三极管、贴片三极管。

不同的三极管有着各自不同的特性及其应用场合,选择合适的三极管是放大电路实 现所需要功能的保证,通过查阅对应型号的器件数据手册可以获得所用器件的性能。如本实验选用的 9013 三极管,是以硅材料制作的 NPN 型小功率三极管,其部分参数如 表 2-10-1 所示。

表 2-10-1 三极管 9013 器件部分数据表			
参数符号	测量条件	参数值	参数意义及设计时应该如何考虑
BV_{CBO}	$I_{\rm C} = 100 \mu {\rm A}, I_{\rm E} = 0$	40 V	
BV_{CEO}	$I_{\rm C}=1~{\rm mA}, I_{\rm B}=0$	20 V	击穿电压,超过这个电压三极管就可 能被击穿
BV_{EBO}	$I_{\rm E} = 100 \mu \rm A, I_{\rm C} = 0$	5 V	
I_{CBO}	$U_{\rm CB} = 25 \text{ V}, I_{\rm E} = 0$	100 nA	集电结反向电流
I_{EBO}	$U_{\rm EB}$ =3 V, $I_{\rm C}$ =0	100 nA	发射结反向电流
$h_{ ext{FE}}$	$U_{\text{CE}} = 1 \text{ V}, I_{\text{C}} = 50 \text{ mA}$	典型值 120 倍	直流电流增益
$V_{\mathrm{CE}}(\mathrm{sat})$	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	典型值 0.16 V 最大值 0.6 V	集电极一发射极饱和压降
V _{BE} (sat)	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	典型值 0.91 V 最大值 1.2 V	基极一发射极饱和压降
$V_{\mathtt{BE}}(\mathtt{on})$	$U_{\text{CE}} = 1 \text{ V}, I_{\text{C}} = 10 \text{ mA}$	最小值 0.6 V 典型值 0.67 V 最大值 0.7 V	基极一发射极导通电压

2、分压式偏置共发射极放大电路工作原理

以 9013 为核心的分压式偏置共发射极放大电路如图 2-10-1 所示。

其中:由 Rw 和 R1'串联构成的电阻 R1 称为"上偏置电阻",R2 称为"下偏置电阻",R1 和 R2 构成分压式偏置方式,为三极管 T 提供静态偏置,R 为发射极电阻,和发射极旁路电容 CE 一起用于稳定电路的静态工作点。信号源电压 u。经过信号源内阻 R,(由于信号源内阻非常小,为了测试输入电阻而特地加入 Rs,模拟信号源内阻,其余情况这个电阻 R,一概省略)后成为放大电路的输入信号 ui,由输入耦合电容 C1 将该信号传递给三极管输入 端进行放大,由集电极电阻 Rc 将变化的集电极电流转换成变化的电压,通过输出耦合电 容 C2 ,再将变化的电压输出到负载 RL 上,完成了信号由输入到输出的放大,其中放大的实现是由三极管的控制作用完成的。

即:

$$u_s \xrightarrow{R_s} u_i \xrightarrow{C_1} u_{be} \rightarrow i_b \rightarrow i_c(\beta i_b) \rightarrow i_c R'_L \rightarrow u_c \xrightarrow{C_2} u_o$$

三、实验内容

1. 实验要求:

以图 2-10-1 电路为例,完成静态工作点的测量、动态参数的测量、三极管放大电路输入和输出电阻的测量。

(1) 静态工作点的测量:

静态也叫直流工作状态,是指电路在没有外加交流信号,仅有直流电源供的电状态下三极管的电压和电流。一般指三极管的集电极电流 Ic,集电极一发射极电压 Uce,基极电流 Ib 和基极一发射极电压 Ube。在实际应用时,一般以测量 Ic 和 Uce 两个参数为主。

(2) 动态参数的测量:

动态也叫交流工作状态,是指三极管在直流工作状态(静态工作点)下,当外加交流信号作用时,测量输出交流信号幅度的大小、输出波形是否出现失真、最大输出幅度等。

(3)输入和输出电阻的测量:

输入电阻反映了一个放大电路对信号源信号的获取能力,针对不同的信号源特性需要设计不同大小的输入电阻。一般而言,针对电压源特性的信号,其等效内阻比较小,所以希望放大

电路的输入电阻尽可能大些;而针对电流源特性的信号,其等效内阻比较大,设计的放大电路输入电阻应尽量小些。

输出电阻反映了一个放大电路带负载能力的大小,当放大电路以电压源形式输出时,希望放大电路的输出电阻尽可能小,放大后的信号电压能更多地输出在负载上;当放大电路以电流源形式输出时,所设计的放大电路的输出电阻就需要尽可能大。

2.仿真实验:

(1) 静态工作点的测量:

测量值	UBQ/V	1.672
	UCQ/V	8.864
	UEQ/V	1.049
计算值	ICQ/mA	1.049
	UBEQ/V	0.623
	UCEQ/V	7.815
	R1/k Ω	50

(2) 放大电路动态参数的测量:

Au=Uo/Ui=-569.817mV/10.223mV=-55.74

Aus=Uo/Us=-569.817mV/13.185mV=-43.217

Ri=Ui*Rs/(Us-Ui)=10.223mV*1k Ω /(13.185mV-10.223mV)=3.4514k Ω

Ro=(Uo'-Uo)*RL/Uo=(1136mV-569.817mV)*3k Ω /569.817mV=2.98k Ω

(3)工作点的改变对电路性能的影响

通过调整上偏置电阻中的 Rw 值,可以得到不同的静态工作点。参照上述类似方式,测量相应的静态工作点的参数以及对应的动态性能指标,分析研究静态工作点对放大电路动态性能的影响。通过调整工作点,并适当加大输入信号值,观察输出波形的失真现象,分析研究工作点如果设置的不合理,会导致放大电路输出波形出现何种类型的失真?要消除失真应该如何调整电路的工作点,以及使输出信号达到最大不失真幅度时对应的工作点应该如何设置。答:Rw 调大会使得 Uce 增大,Ic 减小,Q 点也即静态工作点下移,所以会出现截止失真;Rw 调小会使得 Uce 减小,Ic 增大,Q 点也即静态工作点上移,所以会出现饱和失真。

2. 电路实验

(1)静态工作点变化对放大电路性能的影响

静态工作点电流 ICQ/mA		1	2
输入端接地	UBQ/V	1.63325	2.6610
	UCQ/V	8.694	5.3843
	UEQ/V	1.00746	2.02209
输入信号(5Vrms)	US/mV(Vpp)	17.819	19.8
(示波器实测 Vpp	Uo/V(Vpp)	0.864(图 4)	1.56(图 1)
约为 15mV)	Uo'/V(空载)(Vpp)	1.68(图 3)	3.04(图 2)
计算值	UBEQ	0.62579	0.63891
	UCEQ	7.68654	3.36221
	Au=Uo/Ui	57.6	104
	As=Us/Ui	48.49	78.792
	Ri=Ui*Rs/(Us-Ui) (k Ω)	5.321	3.12566
	Ro=(Uo'-Uo)*RL/Uo (k Ω)	2.833	2.846

图 1

图 2

图 3

图 4

(2)不同静态工作点对输出波形的影响

		截止失真	饱和失真	RW 变化对失真的影响
		(Us=30Vrms)	(Us=20Vrms)	
测量值	UBQ/V	2.08625	2.989	Rw 调大会使得 Uce 增
	UCQ/V	7.2318	4.3278	大, Ic 减小, Q 点也即静
	UEQ/V	1.45435	2.34109	态工作点下移,所以会出
	波形	图 5	图 6	现截止失真;
计算值	ICQ/mA(=UCQ/1k)	7.2318	4.3278	Rw 调小会使得 Uce 减
	UBEQ/V	0.6319	0.64791	小,Ic 增大,Q 点也即静
	UCEQ/V	5.77745	1.98671	态工作点上移,所以会出
	R1/k Ω (=Rw+10)	45.61	18.8348	现饱和失真。

图 5

图 6

(3)最大不失真输出(图 7)

	The state of the s			
测量值	UBQ/V	2.5871		
	UCQ/V	5.6218		
	UEQ/V	1.9503		
	UOPP/V	3.20		
计算值	ICQ/mA	5.6218		
	UBEQ/V	0.6368		
	UCEQ/V	3.6715		

图 7

四、实验总结

这次实验我学到的是三极管放大电路,涉及到仿真、搭接、测量静态工作点、动态放大性能以及观察两种失真,在调整静态工作点时,要一手用万用表表笔测电压,一手调节电位器电阻值,会观察到万用表示数逐渐靠近目标值,即可调整到所需静态工作点;而后在寻找最大不失真输出时,操作顺序是加大输入,然后我是观察到截止失真,然后通过电位器的调节,失真消失,然后我再次加大输入直到看到失真,如此循环几次,到某一时间点会发现用电位器调节失真时,两种失真几乎同时出现,一个刚刚调好不失真了,马上又出现另一个失真,那么此时就是所谓最大不失真输出,记录波形以及用万用表测量静态工作点数据。

五、实验器材

E派实验箱、示波器、信号源、稳压电源等

六、参考文献

《模拟电子电路实验》黄慧春 堵国梁 编著 东南大学出版社