Zero Divisors

Definition

Let R be a ring and $a \in R$ such that $a \neq 0$:

• To say that a is a *left zero divisor* of R means:

$$\exists b \in R, b \neq 0 \text{ and } ab = 0$$

• To say that a is a *right zero divisor* of R means:

$$\exists b \in R, b \neq 0 \text{ and } ba = 0$$

- To say that a is a zero divider of R means that a is a left or a right zero divisor of R.
- To say that a is a two-sided zero divider of R means that a is a left and a right zero divisor
 of R.

Note that for a two-sided zero divisor: ax = ya = 0, where x need not equal y, unless R is commutative.

Example

 \mathbb{Z}_{12}

$\begin{array}{lll} \textbf{0-divisors} & \textbf{units} \\ 2 \cdot 6 = 0 & 1 \cdot 1 = 1 \\ 3 \cdot 4 = 0 & 5 \cdot 5 = 1 \\ 8 \cdot 3 = 0 & 7 \cdot 7 = 1 \\ 9 \cdot 4 = 0 & 11 \cdot 11 = 1 \\ 10 \cdot 6 = 0 & \end{array}$

Theorem

$$z \in \mathbb{Z}_n$$
 is a zero divisor $\iff (z, n) \neq 1$

Proof

$$\Rightarrow \operatorname{Assume}\,(z,n)=1 \qquad \Longleftrightarrow \operatorname{Assume}\,(u,n)\neq 1$$

$$\operatorname{Assume}\,\exists\,s\in\mathbb{Z}_n,zs=0 \qquad \operatorname{Let}\,(z,n)=d>1$$

$$\operatorname{n}\mid zs \qquad d\mid z \text{ and } d\mid n$$

$$\operatorname{But}\,n\nmid z,\operatorname{so}\,n\mid s \qquad z\frac{n}{d}=n\frac{z}{d}=0$$

$$\operatorname{Thus},s=0 \qquad \operatorname{But}\,z,\frac{n}{d}\neq 0$$

$$\therefore z \text{ is not a zero divisor.} \qquad \therefore z \text{ is a zero divisor.}$$

Corollary

 $\forall\,a\in\mathbb{Z}_n,$ exactly one of the following is true:

- 1). a = 0
- 2). a is a unit
- 3). a is a zero divisor

Corollary

p prime $\implies \mathbb{Z}_p$ has no zero divisors.

Theorem

Let R be a ring. The cancellation laws hold in R iff R has no zero divisors.

Proof

 \implies Assume the cancellation laws hold in R

Assume $a, b \in R, ab = 0$

 $\therefore a$ is not a zero divisor. $\therefore b$ is not a zero divisor.

 $\therefore R$ has no zero divisors.

 \iff Assume R has no zero divisors

Assume
$$a,b,c\in R$$
 such that $a\neq 0$ and $ab=ac$ $ab-ac=0$ $a(b-c)=0$ Since $a\neq 0$ and R has no zero divisors, $b-c=0$ $b=c$

 \therefore the left cancellation law holds in R.

Assume
$$a,b,c\in R$$
 such that $a\neq 0$ and $ba=ca$ $ba-ca=0$ $(b-c)a=0$ Since $a\neq 0$ and R has no zero divisors, $b-c=0$ $b=c$

- \therefore the right cancellation law holds in R.
- \therefore the cancellation laws hold in R.

Theorem

Let R be ring with no zero divisors. $\forall a, b \in R$, the equations ax = b and xa = b each have at most one solution.

Proof

Assume $a,b \in R$

Assume ax = b has two solutions: x_1 and x_2

 $ax_1 = ax_2$

But the left cancellation law holds in ${\cal R}$

 $\therefore x_1 = x_2.$

Assume xa = b has two solutions: x_1 and x_2

 $x_1a = x_2a$

But the right cancellation law holds in R

 $\therefore x_1 = x_2.$

Note that when R is a ring with unity $1 \neq 0$ and a is a unit in R then the unique solution to ax = b is given by $x = a^{-1}b$. Likewise, the unique solution to xa = b is $x = ba^{1}$. If R is commutative then these two solutions are the same.

Notation

Let F be a field. $\forall a, b \in F$, since $a^{-1}b = ba^{-1}$, this element in F is denoted by $\frac{b}{a}$.