

INDEX

- Introduction
- Oata Structure
- **✓** Data Processing
- Transformation
- Approaches
- Challenges & Solutions
- Analysis results
- Insights
- Future Work

Introduction

- To classify if an individual earns more than \$50k accurately
- To request optimum donation amounts from individuals based on their income
- Identify attributes of those whore are most likely to donate

Data Structure

Dataset
"Adult" dataset
found on
UCI ML Repo

Columns:

- Age
- Workclass
- Education
- Education-num
- Marital-status
- Occupation
- Relationship
- Race
- Sex
- Capital-gain
- Capital-loss
- Hours-per-week
- Native-country
- Income

Data Preprocessing:

Dealing with missing values

Transformations on highly skewed features like capital gains/losses

Scaling numeric features and one-hot encoding of categoricals

Income Distribution

Transformation

- Skewness in pre-transformed capital gains and loss features

- We slightly increment the value and take a logarithmic transformation to spread the data.
- We constrict the data between (0,1)
 for improving model performance

Transformation: OHE

- Before training the model, we have to convert categorical variables to One-Hot Encoded variables
- This is done so the model interprets categorical variables as a vector of numeric values

Approaches - General Structure

- Models chosen: Logistic Regression,
 Random Forest, XGBoost
 - Step 1: Generate base model using static hyperparameters
 - Step 2: Use hyperparameter tuning to improve model
 - Step 3: Compare tuned model to base model
 - Step 4: Compare models based on following metrics:
 - Precision, Recall, F1 Score,AUC
 - Step 5: Use best model to generate customer insights

Approaches - Architecture

Approaches - Logistic Regression

- Used Sagemaker Linear-Learner and a binary_classifier predictor type
- Challenge: Limited hyperparameters, complicate to extract feature weights
- Best model:
 - L1 = 0.0627
 - Learning_rate = 0.0117
 - Positive Sample Wght = 30.727

Approaches - RandomForest

- Implemented using Sklearn RandomForestClassifier
- Script fed as entry point to SageMaker
- Training job parameters:Num_estimators = 100Min_samples_leaf = 2
- Hyperparameter Tuning: Num_estimators = 191 Min_samples_leaf = 5

Approaches - Tuned RandomForest

Approaches - XGBoost

- EC2 instance training image is fed into model
- Best model job
 parameters:
 eta= 0.2,
 gamma = 3,
 max_depth=5,
 min_child_weight=6

Challenges and Solutions

- Random Forest deployed model endpoint does not allow for predicted probabilities.
 Solution: Extracted saved model using joblib
- Poor model performance initially Solution: Used Minmaxscaler to scale numeric features
- Relatively poor logistic regression performance
 Solution: Logistic regression was excluded from the final model decision

Analysis Results - Model Comparison

Analysis Results - Model Comparison

Insights

Insights

Future Work

 Implementing a recommender engine to match an individual to a donation request in a more granular fashion

- Appending more data points and features to the existing model
- Donation amounts provided by individuals could be incorporated into the model to optimise donation requests

THANK YOU!

