

DUT-NLP-CH @ NTCIR-12 Temporalia Task

Chinese Temporal Query Disambiguation

Jiahuan Pei*, Degen Huang, Jianjun Ma, Dingxin Song, Leyuan Sang

Dalian University of Technology

Introduction

- Motivation
 Extension of TQIC task
- Main Challenges
 - 1. Lack of explicit temporal information
 - 2. No query log available
 - 3. Temporal intent may change over time
 - 4. Temporal intent ambiguities

Datasets

- Training Data
 - 1. 52 dry run quires released by NTCIR-12
 - 2. 300 formal run quires from NTCIR-11 TQIC subtask
 - 3. 503 queries extracted from SogouQ log data
- Testing data

300 testing queries from NTCIR-12 TID subtask

Past	Recency	Future	Atemporal	Total
0.13	0.16	0.07	0.64	1

Table 1. Average distribution of four temporal intent classes

Approach

Overview

- 1. A classification problem with probability output since each query has a distributional tagging vector of four temporal classes.
- 2. Our overall method relies on well-designed features and well-established classifiers.

Basic Steps

- Chinese Segmentation, POS tagging, Name Entity Recognizer and Parser by Stanford Corenlp tookit, Temporal Expression Recgnition by HeidelTime
- 2. Feature selection based on preprocessed results
- 3. Classification provided by sklearn, a machine learning module in Python

- Explicit Time Gaps
- Word-based Probability Distribution
- Temporal Trigger Word Features
- Others Explicit Textual Features
- Implicit time Gaps from Google Trends

Explicit Features

Implicit Features

- Explicit Time Gaps
 - Why?
 - Indicating the user's temporal information directly
 - How?
 - 1. HeidelTime to recognize the temporal expression (TE)
 - 2. Designing Rules to map TE value to time gap features
 - Examples
 - <TE value='FUTURE_REF'> 近期 </TE> 油价 上涨 → FUTURE_REF
 - <TE value='2012-04'> 4月</TE> 工作汇报 → PAST_REF

- Word-based Probability Distribution
 - Why?
 - Difficulty in selecting trigger words manually
 - Trigger word temporal intents diversity
 - How?
 - Vector representation $\vec{v} = (P_{past}, P_{recency}, P_{future}, P_{atemporal})$
 - Conditional probability for the ith class

$$P\left(C_{i}|Q\right) = \frac{P\left(C_{i}\right)\prod_{w_{j} \in dict} P(w_{j} \mid C_{i})^{TF\left(w_{j},Q\right)}}{\sum_{k=1}^{N} P\left(C_{k}\right)\prod_{w_{j} \in dict} P(w_{j} \mid C_{k})^{TF\left(w_{j},Q\right)}}$$
 where
$$P\left(w_{j}|C_{i}\right) = \frac{1 + TF\left(w_{j},C_{i}\right)}{\left|dict\right| + \sum_{t \in Query} TF\left(w_{t},C_{i}\right)}$$

- Temporal Trigger Word Features
 - Why?
 - Typical temporal trigger words rather than conjugations of verbs that refer to temporal information
 - How?
 - Constructing trigger candidate T from training words if $P(w_j|C_i) > thres$ (following eq. same as previous page)

$$P(w_{j}|C_{i}) = \frac{1 + TF(w_{j}, C_{i})}{\left| dict \right| + \sum_{t \in Ouerv} TF(w_{t}, C_{i})}$$

- Manually selecting basic trigger sets T' from T
- Extending T' to T" via word vector clustering
- Manually filtering T" again

- Others Explicit Textual Features
 - centerWord
 - posOfCenterWord
 - validQueryLength
 - numOfNER
 - numOfNotChWords
 - isNounFreg

- Implicit Time Gap Features
 - Why?
 - Explicit temporal information is absolutely rare
 - How?
 - Preprocessing
 - Downloading & resampling Google Trends data
 - Implicit time gap extraction
 - Time-series prediction → ARMA model
 - Classification via Rens' model $\rightarrow P_{QoT}$, P_{OQ} , $P_{AMQ} \& P_{PMQ}$
 - QoT: Query without Time Intent
 - OQ: Query with One Time Interval Intent
 - AMQ: Query with Aperiodic Time Intervals Intent
 - PMQ: Query with Periodic Time Intervals Intent

- Implicit Time Gap Features
 - Classification Mapping function →

Formal Run Results

- C-SVC
 C-Support Vector Classification with a linear kernel function and a default C-value
- LR
 Logistic Regression model with l1 penalty
- RF
 Random Forest model with balanced class weights

Run	Model	AvgCosin	AvgAbsLoss
1	C-SVC	0.8135	0.1728
2	LR	0.8066	0.1854
3	RF	0.8116	0.1710

Table 2. Formal run results based on C-SVC, LR and RF model

Models Comparison

Model		AvgCosin	AvgAbsLoss	
SVC	linear	0.8639 ± 0.0011	0.1640 ± 0.0003	
	rbf	0.8658 ± 0.0016	0.1637 ± 0.0005	
	poly	0.6657 ± 0.0043	0.2543 ± 0.0013	
NuSVC	linear	0.8692 ± 0.0008	0.1635 ± 0.0005	
	rbf	0.8724 ± 0.0020	0.1611 ± 0.0006	
	poly	0.8280 ± 0.0056	0.1875 ± 0.0028	
RF	balanced	0.8544 ± 0.0062	0.1700 ± 0.0038	
	unbalanced	0.8862 ± 0.0019	0.1262 ± 0.0014	
LR	<i>l</i> 1	0.8623	0.1674	
	<i>l</i> 2	0.8453	0.1782	
GNB		0.8433	0.1606	
MNB		0.7416	0.2145	
LDA		0.8812	0.1380	
DT		0.8517	0.1702	

Table 3. Comparison among different models based on time gap features and temporal trigger word features

Feature Selection

Run	Composition	AvgCosin	AvgAbsLoss
4	baseline	0.8812	0.1380
5	baseline+f7	0.8825	0.1343
6	baseline+f7+f20	0.8831	0.1339
7	baseline+f7+f14	0.8841	0.1335
8	baseline+f7+f14+f13	0.8886	0.1286

Table 4. Feature Selection based on LDA model

15

Conclusion

- Summary
 - Two types of features
 - Three models for formal run
 - Further comparison among models & features
- Our best run
 - LDA model
 - Features
 - Time gap
 - Word-based probability distribution vector
 - Temporal trigger word
 - Google Trends' time gap
 - Center word and its Part-of-speech.
- Future work
 - More features based time-series
 - Features from retrieval documents
 - Query embedding

Thanks for attention!