## FAST NATIONAL UNIVERSITY School of Computing Spring 2021

Course Title: Computer Organization and Assembly Language

Task: Assignment #5
Due Date: 16<sup>th</sup> May, 2021

Weightage: 3%

**Q1.** In this assignment, you have to implement the s-boxes which are an essential part of the Data Encryption Standard (DES). Each s-box is a lookup table that maps a 6-bit input to a 4-bit output. An example of how to convert the input to output is as follows:

The S-box input  $b = (100101)_2$  indicates the row  $11_2 = 3$  (i.e., fourth row, numbering starts with  $00_2$ ) and the column  $0010_2 = 2$  (i.e., the third column). If the input b is fed into S-box 1, the output is  $S_1(37 = 100101_2) = 8 = 1000_2$ .



Example of the decoding of the input 1001012 by S-box 1

All of these s-boxes are listed in tables below.



## FAST NATIONAL UNIVERSITY School of Computing **Spring 2021**

| $S_4$          | 0    | 1   | 2   | 3   | 4   | 5  | 6   | 7  | 8  | 9   | 10 | 11 | 12   | 13  | 14 |
|----------------|------|-----|-----|-----|-----|----|-----|----|----|-----|----|----|------|-----|----|
| 0              | 07   | 13  | 14  | 03  | 00  | 06 | 09  | 10 | 01 | 02  | 08 | 05 | 11   | 12  | 04 |
| 1              | 13   | 08  | 11  | 05  | 06  | 15 | 00  | 03 | 04 | 07  | 02 | 12 | 01   | 10  | 14 |
| 2              |      | 06  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 3              |      | 15  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| S <sub>5</sub> |      |     |     |     |     |    |     |    |    |     |    |    |      |     |    |
| Ie.            | n    | 1   | 2   | 3   | 4   | 5  | 6   | 7  | 8  | 9   | 10 | 11 | 12   | 13  | 14 |
| 0.5            | 02   | 12  | 04  |     | 07  |    |     |    | -  |     |    | 15 |      | 00  | -  |
| 1              | 1.4  | 11  |     |     |     |    |     |    |    |     |    |    |      | -   |    |
| 2              |      | 02  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 3              |      | 08  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| .5             | 11   | UO  | 12  | U/  | VI  | 14 | 02  | 13 | 00 | 1.5 | w  | US | 10   | U++ | U. |
| $S_6$          |      |     |     |     |     |    |     |    |    |     |    |    |      |     |    |
| $S_6$          | 0    | 1   | 2   | 3   | 4   | 5  | 6   | 7  | 8  | 9   | 10 |    |      | 13  | -  |
| 0              | ~~   | 01  | 10  |     | 09  |    |     |    |    |     |    |    |      |     |    |
| 1              |      | 15  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 2              |      | 14  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 3              | 04   | 03  | 02  | 12  | 09  | 05 | 15  | 10 | 11 | 14  | 01 | 07 | 06   | 00  | 08 |
| S <sub>7</sub> | 9.53 |     |     |     |     |    |     |    |    |     |    |    |      |     |    |
| $S_7$          | 0    | 1   | 2   | 3   |     | 5  |     | 7  | 8  | 9   | 10 | 11 | 12   | 13  | -  |
| 0              | 04   |     | 02  |     | 15  |    |     |    |    |     |    |    |      |     |    |
| 1              |      | 00  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 2              |      | 04  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 3              | 06   | 11  | 13  | 08  | 01  | 04 | 10  | 07 | 09 | 05  | 00 | 15 | 14   | 02  | 03 |
| S <sub>8</sub> |      |     |     |     |     |    |     |    |    |     |    |    | -031 |     |    |
| $S_8$          | 0    | 1   | 2   | 3   | 4   | 5  | 6   | 7  | 8  | 9   | 10 | 11 | 12   | 13  | 14 |
| 0              | 13   | 02  | 08  |     |     |    |     |    |    | 09  |    |    |      |     | 13 |
| 1              |      | 15  |     |     | 10  |    |     |    |    |     |    |    |      |     |    |
| 2              |      | 11  |     |     |     |    |     |    |    |     |    |    |      |     |    |
| 12             | Log  | 0.1 | 1.4 | 0/2 | 0.4 | 10 | ne. | 13 | 15 | 12  | 09 | 00 | 03   | 05  | n  |

In this assignment, your task is to implement these s-boxes in Assembly language as a subroutine and share its code.