Orders of groups and elements

1. Orders of groups and elements

Order of an element Order of a group

Order of an element

Definition 1

Let G denote a group with $g \in G$.

- (a) g has infinite order means all the non-negative powers of g are distinct.
- (b) g has order d means d is the smallest positive integer such that $g^d = g^0 = 1$. We say g has finite order.

We write |g| or ord(g) to denote the order of g.

Question (cf. Problem 54)

What is the order of each element in \mathbb{Z}_{12} ?

Exercise 1 (cf. Problem 53)

In $G = (GL(2, \mathbb{R}), \cdot)$ find the order of each of the following elements:

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 $h = \begin{pmatrix} 3 & 5 \\ 4 & 7 \end{pmatrix}$ $j = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$

Exercise 2 (cf. Problem 55)

Find the order of each element in the sandpile group $S(\Gamma)$ corresponding to the graph in Figure ??.

Order of a group

Definition 2

The **order** of a group G is its cardinality as a set, |G|.

Caution: The *dihedral group* D_n *of order* n has group order not n, but 2n.

Exercise 3

Find the order of the symmetric group of order n, S_n (it's not n).

Theorem 1 (Lagrange's Theorem)

Given a finite (order) group G, the order of every subgroup of G divides |G|.

Question

Verify Lagrange's Theorem for \mathbb{Z}_{12} .