MATH 695 12/7/2022 Recall that CP = 13U(1) = { cx. lines through the origin in [3] BU(n) = { cx. v. subspace of co of dim m} 8'= universal line hundle on GPOO gr = unico.cx. vector hundle on BU(m) Total pare E(x" |= 1(x, V) e Goox BU(n) | x & V } We cay that a ving spectrum E is complex-oriented if the complex line hundle & is E-oriented.

[Film dass,: Thom isomorphism) Y' (and here every or. small) is E-oriented

Example: HR where Risa commutative ving is w. - oriented (cx. Fruiture determines on orintetion t,...? a la lond (t/, "+1, 71, 121, 12, 12, 12m)) U(2) = SO(22) * K theory is a. - oriented. [8'] \(\) (Ind we mud it indund)

\(\) \(Afryal-Hisserbruch Spectral requence (did not drawn for colomology)

for an as . d. yeree) K CP = Z[x]/x M+1 ilver

Milling-boffler condidion:

Kat (pros = Z([x]) if i even

if i odd.

Details: Spectral regimenes of rings (unally, colorandogral) dr (nv)= d big

= (dru)v + (1) | udu(v)

Independently of even news, if E is a cx. - oriented yestern,
the AMSS for CPM will always have E. term Ex (x)/x "i" where
x is the cr. ordertator (and honce is a permanent yell)
i.

E CPM = E [[x]] = In Algebraic topology, only
consider the homogeneous element

Similarly, Et (.0100 x... x apos) = where is cer-oriented homological degrees should get a - (Ei = E+(+) = E(+))

In fact, E' BU(A) = E, [[C_1,...,C_n]]

C:

This - Starteff. Crown Buhi City (x, , , , , ,) ording dismology CPO has a multiplication (you can make a model which all we need in comme anor, until y to homotopy,

Constantion : (PK = K(Z, 2). $[X,CP^{\infty}] = H^{2}(X;Z)$ $(lb_{\infty} \times (lb_{\infty}) \xrightarrow{\lambda_{1} \otimes \lambda_{2}} (lb_{\infty})$ The multiplication or Cpo represents the &- product of cr. line builder. If E is a ce. - oriented sprotrum, the multiplication on Cros $E_{i}[[x]] = E_{i}(b_{\infty} \xrightarrow{\xi_{i}} E_{i}(b_{\infty} \times cb_{\infty}) = E_{i}[[\lambda^{i} x]]$ conflict in Ever

What are the properties of the power review? (Consequences of & or CI's being communiforation, associative, cented up to ") a power kules $F(y,t) \in R[[y,t])$ Voith these perforter ting

is called a formal group law F(x,0) = F(0,x) = xF(x,y) = F(y,x) F(F(x,y),z) = F(x,F(y,z))

What it the formal group low for the two examples we have, HE, K?

In He, Het cro = 7[x] |x/=2 no offorkensty for homogeneous hun in de kane dogee By the same to ben, F(x,y) can only have kninear terms : F(xy) = x +y (the achtine FGL), He founde for $G_1(\xi \otimes \gamma)$ sinterms of $G_1(\xi)$, $G(\gamma)$ where 5,7 rue line lundlis. Ist Chem hisse of 6's - cir orientation of 80 In 12-theory, c(x) = x-1. $C_1(\xi \otimes M) = \xi M - 1$ in terms of $C_1(\xi)$, $C_1(\eta)$ (\(\xi - 1) \(\gamma - 1) + (\xi - 1) + (\gamma - 1)

F(x,y) = x + y + x y (=(1+x)(1+y)-1)

refressing the roll element to part everything in the same degree.

Example: K* IRP

Consider on the of the continue hade

F-(r')2. Recall the coffends on represent

S(§) -> X -> X

for a vector hundle & on X with Encholsen

metre (S(§) is the unit place hadle).

18pers Cps -> (Tps)(8') By a. ownstation, Thom normarked

In K-theory, we get the Gysm & snener in whousbogs ... + KIRPOS = KICPOS = KICPOS =... $0 = \mathbb{Z}[[x]]/[2+x^2] = \mathbb{Z}[[x]] = 0$ additively $\mathbb{Z} \oplus \mathbb{Z}_2 = \mathbb{Z}[[x]]/[x(x+2)] = \mathbb{Z}[[x]/[x(x+2)] = \mathbb{Z}[[x]/[x(x+2)] = \mathbb{Z}[[x]/[x(x+2)] = \mathbb{Z}[[x]/[x(x+2)] = \mathbb{Z}[[x$

Atigal. Eight completion theorem.