Problem	Answer	Solution
1	-1	$\underbrace{(-1) \times (-1)^2 \dots \times (-1)^{30}}_{} = (-1)^{31 \times 15} = -1.$
2	4	$\pi < x < 2\pi \Longrightarrow 3 < \pi < x < 2\pi < 7 \Longrightarrow$
		x-3 + x-7 = (x-3) - (x-7) = 4.
3	82,9(54)	$0.3(68) = 0.3 + 0.0(68) = \frac{3}{10} + \frac{0.68}{10} =$
		10 10
		$\frac{3}{10} + \frac{68}{990} = \frac{365}{990} = \frac{A}{225} \Longrightarrow A = 82,9(54).$
4	47	$1209 = 3.403 = 3.13.31 \Rightarrow$ търсеният сбор е $3 + 13 + 31 = 47$.
		Записваме:
	84	135791113151719212325899193
5		Броят на нечетните числа от 1 до 89 са 45. За записването им се използват
		5 + 2.40 = 85 цифри. Тогава са записани 84 цифри, защото не броим цифрата
		9 в числото 89.
	141	Търсените числа са от вида НОК $(4, 5, 14).N + 1 = 140N + 1.$
6		Най-малкото число е 1, следващото е 141.
		Търсеното число е 141.
	8	Нека за определеност цената на стоката на борсата да е 100 лева.
7		Първоначалната цена е била $100 + 20 \%$ от $100 = 120$.
7		След това обаче стоката е намалена и цената й вече е $120-10 \% \text{ от } 120=108. \text{ Тогава реализираната печалба е 8 лева при цена на}$
		стоката 100 лева – т.е печалбата е 8 %.
		Числата, които се делят на 3 са 67, а числата, които се делят на 5 са 40. Сред
	107	тях обаче има такива, които се делят и на 5, и на 3 - това са всички числа,
8		които се делят на 15 – броят им е 13.
		Неизтрите числа са $201 - (67 + 40 - 13) = 81$.
	9	222 + 222 + ···+ 222 + 22= 2020 9 събираеми
9		
		Общо събираемите са 10, а използваните плюсове са 9.
	6	$\frac{a}{21-a} \Rightarrow a = 1,2,3,4,5,6,7,8,9,10 \implies a = 1,2,4,5,8,10 \implies 6$
10		
11	10	Най-голямото цяло число, което дели и 18, и 45 е 9.

		Тогава броят на квадратите ще е $(18:9).(45:9) = 2.5 = 10.$
		Лицето на четириъгълника е равно на сбора от лицата на триъгълниците
12	40	ACD и ABD . Височините на тези триъгълници към общата им страна AC са
		по 4 см. Тогава лицата им са равни на 20 кв. см. Лицето на четириъгълника е
		40 кв. см.
13	152	Всичките кубчета от вида $1 \times 1 \times 1$ са $6 \times 6 \times 6 = 216$. Премахваме кубчетата
		1×1×1 с поне една боядисана стена – остава куб с ръб 4.
		Броят на небоядисаните кубчета е 4×4×4 =64.
		Тогава кубчетата с поне една боядисана стена са 216 - 64 = 152.
14	4	Възможностите са две: C е между A и B , или A е между B и C . При първата
		възможност разстоянието между средите на посочените отсечки е 2 см, а
		при втората – 4 c_M . Тогава дължината на отсечката BC е 4 c_M .
15	7	Възможностите са: (5; 5; 6), (6; 6; 4), (7; 7; 2). Търсената стойност е 7 см.
		Едноцифрените и двуцифрени точни квадрати са 0, 1, 4, 9, 16, 25, 36, 49, 64
		и 81.
	11	Тогава търсените трицифрени числа са от вида
		*00, *01, *04, *09, *16, *25, *36, *49, *64, *81.
		Ако в тях зачеркнем последната цифра ще получим двуцифрените числа
		*0, *0, *0, *0, *1, *2, *3, *4, *6, *8.
16		Но числата завършващи на 0, 2, 4, 6 или 8, са съставни, а ние търсим прости
		числа. Затова разглеждаме само числата *1 и *3 и съответстващите на тях
		трицифрени числа *16, *36.
		Прости са числата 11, 31, 41, 61, 71, 13, 23, 43, 53, 73, 83.
		Така достигаме до търсените числа
		116, 136, 316, 416, 616, 716, 236, 436, 536, 736, 836.
		Броят им е 11.
	12	Числото трябва да се дели и на 9, и на 8. За да се дели на 8, то трябва да
17		завършва на три нули, а броят на единиците трябва да е кратен на 9. Търсим
1.		най-малкото такова число и то е 111111111000.
		То се записва с 12 цифри.
	12	За всяка точка отбелязваме броя на пътищата, по които може да се стигне до
18		нея.
		За всяка точка, без точка A , числото записано в кръгчето съответства на
		сбора от числата в съседните й точки, от които се стига до нея.

19	32	Момичетата , които не могат да плуват са 10 и този брой е $\frac{5}{7}$ от всички момичета. Получаваме, че момичетата са 14. От тях само 4 плуват. $\frac{1}{9}$ от всички плувци са 4, тогава децата които умеят да плуват са 36. От тях $36-4=32$ са момчета.
20	0	45!, $46!$, $47!$, $48!$, $49!$ завършват на точно 10 нули, а $50!$ завършва на 12 нули. Няма такова число n .