

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	WPI	SUJE ZDAJĄCY	Miejsce
graficzny ©	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2014

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1_1P-142

Zadanie 1. (4 pkt)

Dana jest funkcja f określona wzorem $f(x) = \frac{|x+3| + |x-3|}{x}$ dla każdej liczby rzeczywistej $x \neq 0$. Wyznacz zbiór wartości tej funkcji.

	Nr zadania	1.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 2. (6 pkt) Wyznacz wszystkie wartości parametru m, dla których funkcja kwadratowa $f(x) = x^2 - (2m+2)x + 2m+5$ ma dwa różne pierwiastki x_1 , x_2 takie, że suma kwadratów odległości punktów $A = (x_1, 0)$ i $B = (x_2, 0)$ od prostej o równaniu x + y + 1 = 0 jest równa 6.

	Nr zadania	2.
agzaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 3. (4 pkt)

Rozwiąż równanie $\sqrt{3} \cdot \cos x = 1 + \sin x$ w przedziale $\langle 0, 2\pi \rangle$.

Odpowiedź:

Zadanie 4. (3 pkt) Udowodnij, że dla każdych dwóch liczb rzeczywistych dodatnich x, y prawdziwa jest nierówność $(x+1)\frac{x}{y} + (y+1)\frac{y}{x} > 2$.

	Nr zadania	3.	4.
Wypełnia egzaminator	Maks. liczba pkt	4	3
	Uzyskana liczba pkt		

Zadanie 5. (5 pkt)

Dane są trzy okręgi o środkach A, B, C i promieniach równych odpowiednio r, 2r, 3r. Każde dwa z tych okręgów są zewnętrznie styczne: pierwszy z drugim w punkcie K, drugi z trzecim w punkcie L i trzeci z pierwszym w punkcie M. Oblicz stosunek pola trójkąta KLM do pola trójkąta ABC.

Odpowiedź:

	Nr zadania	5.
aggaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 6. (3 pkt)

Trójkąt ABC jest wpisany w okrąg o środku S. Kąty wewnętrzne CAB, ABC i BCA tego trójkąta są równe, odpowiednio, α , 2α i 4α . Wykaż, że trójkąt ABC jest rozwartokątny, i udowodnij, że miary wypukłych kątów środkowych ASB, ASC i BSC tworzą w podanej kolejności ciąg arytmetyczny.

	Nr zadania	6.
agzaminator	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 7. *(6 pkt)*

Ciąg geometryczny (a_n) ma 100 wyrazów i są one liczbami dodatnimi. Suma wszystkich wyrazów o numerach nieparzystych jest sto razy większa od sumy wszystkich wyrazów o numerach parzystych oraz $\log a_1 + \log a_2 + \log a_3 + \ldots + \log a_{100} = 100$. Oblicz a_1 .

Odpowiedź:

Zadanie 8. (4 pkt)

Punkty A, B, C, D, E, F są kolejnymi wierzchołkami sześciokąta foremnego, przy czym $A = (0, 2\sqrt{3})$, B = (2, 0), a C leży na osi Ox. Wyznacz równanie stycznej do okręgu opisanego na tym sześciokącie przechodzącej przez wierzchołek E.

	Nr zadania	7.	8.
aggaminatan	Maks. liczba pkt	6	4
	Uzyskana liczba pkt		

Zadanie 9. *(6 pkt)*Oblicz objętość ostrosłupa trójkątnego *ABCS*, którego siatkę przedstawiono na rysunku.

	Nr zadania	9.
agzaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 10. (5 pkt)
Wyznacz wszystkie całkowite wartości parametru m, dla których równanie $(x^3 + 2x^2 + 2x + 1)[x^2 - (2m+1)x + m^2 + m] = 0$ ma trzy, parami różne, pierwiastki rzeczywiste, takie że jeden z nich jest średnią arytmetyczną dwóch pozostałych.

	Nr zadania	10.
agzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 11. *(4 pkt)*

Z urny zawierającej 10 kul ponumerowanych kolejnymi liczbami od 1 do 10 losujemy jednocześnie trzy kule. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że numer jednej z wylosowanych kul jest równy sumie numerów dwóch pozostałych kul.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	4
agzaminator	Uzyskana liczba pkt	

BRUDNOPIS