Optimal placement of inertia and primary control a matrix perturbation theory approach

Laurent Pagnier

September 25, 2019

Power system dynamics: grid frequency and power imbalance

Swing equation:

$$M \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathrm{sys}} = P_{\mathrm{gen}} - P_{\mathrm{cons}}$$

M: system inertia

 $\omega_{\mathrm{sys}} \equiv 2\pi f_{\mathrm{sys}}$: system frequency

 P_{gen} : generation

 $P_{\rm cons}$: consumption

Power system dynamics: grid frequency and power imbalance

Swing equation:

$$M\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathrm{sys}} = P_{\mathrm{gen}} - P_{\mathrm{cons}}$$

M: system inertia

 $\omega_{\mathrm{sys}} \equiv 2\pi f_{\mathrm{sys}}$: system frequency

 P_{gen} : generation

 $P_{\rm cons}$: consumption

Power system dynamics: grid frequency and power imbalance

Swing equation:

$$M \frac{\mathrm{d}}{\mathrm{d}t} \omega_{\mathrm{sys}} + D \omega_{\mathrm{sys}} = P_{\mathrm{gen}} - P_{\mathrm{cons}}$$

frequency deviation: $\omega_{\rm sys} - \omega_0 \rightarrow \omega_{\rm sys}$

M: system inertia

 $\omega_{\mathrm{sys}} \equiv 2\pi f_{\mathrm{sys}}$: system frequency

 $P_{\rm gen}$: generation

 $P_{\rm cons}$: consumption

Scope of validity of the swing equation

Simple scheme of the frequency control:

Source: adapted from Swissgrid.

Scope of validity of the swing equation

Simple scheme of the frequency control:

up to 20-30s after the fault.

New renewable sources:

- Distributed generation
- Non-dispatchable & fluctuating
- Negligible marginal cost
- Power inverters

Conventional sources:

- Power plants
- Dispatchable (in most cases)
- Fuel cost
- Rotating generators

New renewable sources:

- Distributed generation
- Non-dispatchable & fluctuating
- Negligible marginal cost
- Power inverters

Conventional sources:

- Power plants
- Dispatchable (in most cases)
- Fuel cost
- Rotating generators

New renewable sources:

- Distributed generation
- Non-dispatchable & fluctuating
- Negligible marginal cost
- Power inverters

Conventional sources:

- Power plants
- Dispatchable (in most cases)
- Fuel cost
- Rotating generators

New renewable sources have no rotational inertia.

RoCoF: rate of change of frequency

RoCoF: rate of change of frequency

 $\mathsf{Analytical} \Rightarrow \mathsf{Numerical}$

 $\mathsf{Approximations} \boldsymbol{\rightleftharpoons} \text{ ``TSO friendly'' parameters}$

 $\mbox{Approximations} \ \rightleftharpoons \ \mbox{"TSO friendly" parameters} \\ \mbox{Disturbance causes:}$

- line fault/tripping
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

 $Approximations \Rightarrow \text{``TSO friendly'' parameters} \\ Disturbance causes:$

- line fault/tripping → Robin's talk
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

$Analytical \Rightarrow Numerical$

 $Approximations \Rightarrow \text{``TSO friendly'' parameters} \\ Disturbance causes:$

- line fault/tripping → Robin's talk
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

$\mathsf{Analytical} \mathrel{\rightleftharpoons} \mathsf{Numerical}$

 $\mbox{Approximations} \ \rightleftharpoons \ \mbox{"TSO friendly" parameters} \\ \mbox{Disturbance causes:}$

- line fault/tripping → Robin's talk
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

→ Tyloo, Pagnier, Jacquod, in press (Science Advances)

Analytical \rightleftharpoons Numerical

 $\mbox{Approximations} \ \rightleftharpoons \ \mbox{"TSO friendly" parameters} \\ \mbox{Disturbance causes:}$

- line fault/tripping → Robin's talk
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

Disturbance measures:

- Rate of change of frequency (RoCoF)
- Frequency nadir/overshoot
- Performance measures based on θ_i and $\omega_i \equiv \dot{\theta}_i$

Analytical \rightleftharpoons Numerical

Approximations ⇒ "TSO friendly" parameters Disturbance causes:

- line fault/tripping → Robin's talk
- abrupt power loss (e.g. loss of a plant)
- fluctuation/noise in power generation or load

☐ Tyloo, Pagnier, Jacquod, in press (Science Advances)
Disturbance measures:

- Rate of change of frequency (RoCoF)
- Frequency nadir/overshoot
- Performance measures based on $heta_i$ and $\omega_i \equiv \dot{ heta}_i$

Generic expression:

$$\mathcal{M} = \int_{0}^{\infty} \left[\boldsymbol{\theta}^{\top} \boldsymbol{N} \boldsymbol{\theta} + \boldsymbol{\omega}^{\top} \boldsymbol{S} \boldsymbol{\omega} \right] \mathrm{d}t$$

Bamieh, Jovanovic, Mitra, Patterson (2012)
Bamieh and Gayme (2013)
Siami and Motee (2014)
Grunberg and Gayme (2016)
Poolla, Bolognani, Dörfler (2017)
Paganini and Mallada (2017)
Tyloo, Coletta, Jacquod (2018)
Coletta, Bamieh, Jacquod (2018)

Power system dynamics:

$$m_i \dot{\omega}_i + d_i \omega_i = P_i(t) - \sum_j b_{ij} \sin(\theta_i - \theta_j)$$

Before a disturbance, a power systems is in a stable steady-state solution.

Power system dynamics:

$$m_i \dot{\omega}_i + d_i \omega_i = P_i(t) - \sum_j b_{ij} \sin(\theta_i - \theta_j)$$

Before a disturbance, a power systems is in a stable steady-state solution.

Power flow equations:

$$\begin{split} P_i &= \sum_j V_i V_j \Big[B_{ij} \sin \left(\theta_i - \theta_j \right) + G_{ij} \cos \left(\theta_i - \theta_j \right) \Big] \,, \\ Q_i &= \sum_j V_i V_j \Big[G_{ij} \sin \left(\theta_i - \theta_j \right) - B_{ij} \cos \left(\theta_i - \theta_j \right) \Big] \,. \end{split}$$

 P_i : active power injections

 Q_i : reactive power injections

 V_i : voltage magnitudes

 θ_i : voltage phases

 B_{ij} : susceptances

 G_{ij} : conductances

 $\omega \equiv \dot{\theta}_i$: phase frequencies

ower injections power injections magnitudes phases ances tances

se frequencies

Power system dynamics:

$$m_i \dot{\omega}_i + d_i \omega_i = P_i(t) - \sum_j b_{ij} \sin(\theta_i - \theta_j)$$

Before a disturbance, a power systems is in a stable steady-state solution.

Power flow equations:

$$P_{i} = \sum_{j} V_{i} V_{j} \Big[B_{ij} \sin \left(\theta_{i} - \theta_{j} \right) + G_{ij} \cos \left(\theta_{i} - \theta_{j} \right) \Big],$$

$$Q_{i} = \sum_{j} V_{i} V_{j} \Big[G_{ij} \sin \left(\theta_{i} - \theta_{j} \right) - B_{ij} \cos \left(\theta_{i} - \theta_{j} \right) \Big].$$

 P_i : active power injections

 Q_i : reactive power injections

 V_i : voltage magnitudes

 θ_i : voltage phases

 B_{ij} : susceptances

 G_{ij} : conductances

 $\omega \equiv \dot{\theta}_i$: phase frequencies

In transmission grids, $B_{ij} \gg G_{ij}$. In the lossless line approximation ($G_{ij}=0$ and $V_i=V_i^{\rm R}$)

$$P_i = \sum_j b_{ij} \sin \left(heta_i - heta_j
ight),$$
 with $b_{ij} = V_i^{
m R} V_j^{
m R} B_{ij}.$

Diagonalization of the network Laplacian:

$$oldsymbol{L} = oldsymbol{U}^{(0) op}oldsymbol{\Lambda}^{(0)}oldsymbol{U}^{(0)}$$
 $oldsymbol{L}_{ij} = egin{dcases} \sum\limits_k b_{ik}\cos(heta_i^{(0)} - heta_k^{(0)}), ext{ if } i=j, \ -b_{ij}\cos(heta_i^{(0)} - heta_i^{(0)}), ext{ otherwise.} \end{cases}$

 $\theta_i^{(0)}$: a stable solution

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top} \boldsymbol{\Lambda}^{(0)} \boldsymbol{U}^{(0)}$$

$$L_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Properties:

$$\lambda_1^{(0)} = 0 < \lambda_2^{(0)} \leqslant \dots \leqslant \lambda_N^{(0)}$$

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top} \boldsymbol{\Lambda}^{(0)} \boldsymbol{U}^{(0)}$$

$$L_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Eigenvalues:

Pagnier and Jacquod in PLOS-ONE (2019)

Properties:

$$\lambda_1^{(0)} = 0 < \lambda_2^{(0)} \leqslant \dots \leqslant \lambda_N^{(0)}$$

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top} \boldsymbol{\Lambda}^{(0)} \boldsymbol{U}^{(0)}$$

$$L_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Properties:

$$\lambda_1^{(0)} = 0 < \lambda_2^{(0)} \leqslant \dots \leqslant \lambda_N^{(0)}$$

Eigenvalues:

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top} \boldsymbol{\Lambda}^{(0)} \boldsymbol{U}^{(0)}$$

$$L_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Properties:

$$\lambda_{1}^{(0)} = 0 < \lambda_{2}^{(0)} \leqslant \dots \leqslant \lambda_{N}^{(0)}$$

$$u_{\alpha i}^{(0)2} = 1, \ \forall \alpha$$

$$u_{1i}^{(0)} = \frac{1}{\sqrt{N}}, \ \forall i$$

$$\sum_{i} u_{\alpha i}^{(0)} = 0, \ \alpha > 1$$

Eigenvalues:

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top} \boldsymbol{\Lambda}^{(0)} \boldsymbol{U}^{(0)}$$

$$L_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Eigenvalues:

Properties:

$$\begin{split} \lambda_1^{(0)} &= 0 < \lambda_2^{(0)} \leqslant \dots \leqslant \lambda_N^{(0)} \\ u_{\alpha i}^{(0)2} &= 1, \, \forall \alpha \\ u_{1i}^{(0)} &= \frac{1}{\sqrt{N}}, \, \forall i \end{split}$$

$$\rightarrow \sum_i u_{\alpha i}^{(0)} = 0$$
, $\alpha > 1$

Slowest eigenmodes:

Pagnier and Jacquod to appear in IEEE-Access

Diagonalization of the network Laplacian:

$$\boldsymbol{L} = \boldsymbol{U}^{(0)\top}\boldsymbol{\Lambda}^{(0)}\boldsymbol{U}^{(0)}$$

$$\boldsymbol{L}_{ij} = \begin{cases} \sum_{k} b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

 $\theta_i^{(0)}$: a stable solution

Properties:

$$\begin{split} \lambda_{1}^{(0)} &= 0 < \lambda_{2}^{(0)} \leqslant \cdots \leqslant \lambda_{N}^{(0)} \\ u_{\alpha i}^{(0)2} &= 1, \ \forall \alpha \\ u_{1i}^{(0)} &= \frac{1}{\sqrt{N}}, \ \forall i \end{split}$$

$$\rightarrow \sum_{i} u_{\alpha i}^{(0)} = 0$$
, $\alpha > 1$

Eigenvalues:

Slowest eigenmodes:

located mostly in the periphery of the grid

Scheme:

- 1) quantify the disturbance \Rightarrow introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

Scheme:

- 1) quantify the disturbance \Rightarrow introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

We limit our investigations to abrupt power losses $\delta P(t) = \delta P\Theta(t)$.

Heaviside function:
$$\Theta(t) = \begin{cases} 0, & \text{if } t < 0, \\ 1, & \text{if } t \ge 0 \end{cases}$$

Scheme:

- 1) quantify the disturbance ⇒ introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

We limit our investigations to abrupt power losses $\delta {m P}(t) = \delta {m P}\Theta(t).$

Our measure:
$$\boxed{ \mathcal{M} = \int_0^\infty \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right)^\top \boldsymbol{M} \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right) \mathrm{d}t, } \quad \text{where} \quad \bar{\omega}_i = \sum_k m_k \omega_k / \sum_k m_k / \sum_k m_k \omega_k / \sum_k m_k \omega_k / \sum_k m_k \omega_k / \sum_k m_k \omega_k / \sum_k m_$$

Scheme:

- 1) quantify the disturbance \Rightarrow introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

We limit our investigations to abrupt power losses $\delta P(t) = \delta P\Theta(t)$.

Our measure:
$$\boxed{ \mathcal{M} = \int_0^\infty \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right)^\top \boldsymbol{M} \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right) \mathrm{d}t, } \quad \text{where} \quad \bar{\omega}_i = \sum_k m_k \omega_k / \sum_k m_k$$
 and $\boldsymbol{M} = \mathrm{diag}(\{m_i\})$

- every bus has inertia and primary control

$$m_i \dot{\omega}_i + d_i \omega_i = P_i(t) - \sum_j b_{ij} \sin(\theta_i - \theta_j)$$

Optimization of dynamical resources

Scheme:

- 1) quantify the disturbance \Rightarrow introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

We limit our investigations to abrupt power losses $\delta P(t) = \delta P\Theta(t)$.

Our measure:
$$\mathcal{M} = \int_0^\infty \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right)^\top \boldsymbol{M} \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right) \mathrm{d}t,$$
 where $\bar{\omega}_i = \sum_k m_k \omega_k / \sum_k m_k$

and
$$M = \operatorname{diag}(\{m_i\})$$

- every bus has inertia and primary control
- linearized dynamics $[\theta_i(t) = \theta_i^{(0)} + \delta\theta_i(t)]$

$$m_i \delta \dot{\omega}_i + d_i \delta \omega_i = \delta P_i(t) - \sum_j b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}) (\delta \theta_i - \delta \theta_j)$$

$$P_i(t) = P_i^{(0)} + \delta P_i(t)$$
, where $P_i^{(0)} = \sum_j \, b_{ij} \sin(heta_i^{(0)} - heta_j^{(0)})$

Optimization of dynamical resources

Scheme:

- 1) quantify the disturbance ⇒ introduction of a measure
- 2) resolve of the system dynamics for an abrupt power loss
- 3) evaluate our performance measure
- 4) minimize it by optimally distributing inertia and primary control

We limit our investigations to abrupt power losses $\delta P(t) = \delta P\Theta(t)$.

Our measure:
$$\mathcal{M} = \int_0^\infty \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right)^\top M \left(\boldsymbol{\omega} - \bar{\boldsymbol{\omega}} \right) \mathrm{d}t,$$
 where $\bar{\omega}_i = \sum_k m_k \omega_k / \sum_k m_k$

- every bus has inertia and primary control
- linearized dynamics $[\theta_i(t) = \theta_i^{(0)} + \delta\theta_i(t)]$

$$m{M}\dot{m{\omega}} + m{D}m{\omega} = \deltam{P}(t) - m{L}m{ heta}$$

$$M = \operatorname{diag}(\{m_i\}), D = \operatorname{diag}(\{d_i\}) \text{ and } L_{ij} = \begin{cases} \sum_k b_{ik} \cos(\theta_i^{(0)} - \theta_k^{(0)}), & \text{if } i = j, \\ -b_{ij} \cos(\theta_i^{(0)} - \theta_j^{(0)}), & \text{otherwise.} \end{cases}$$

$$M\dot{\omega} + D\omega = \delta P(t) - L\theta$$

$$\dot{\boldsymbol{\omega}} + \boldsymbol{\Gamma} \boldsymbol{\omega} = \boldsymbol{M}^{-1} \delta \boldsymbol{P}(t) - \boldsymbol{M}^{-1} \boldsymbol{L} \boldsymbol{\theta}$$

1)
$$\Gamma \equiv {m M}^{-1}{m D} = \gamma \mathbb{1}_N$$
 (assumption)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\begin{array}{c} \boldsymbol{\theta} \\ \boldsymbol{\omega} \end{array} \right] = \left[\begin{array}{cc} \mathbb{O}_{N \times N} & \mathbb{1}_{N} \\ -\boldsymbol{M}^{-1}\boldsymbol{L} & -\boldsymbol{\Gamma} \end{array} \right] \left[\begin{array}{c} \boldsymbol{\theta} \\ \boldsymbol{\omega} \end{array} \right] + \left[\begin{array}{c} \mathbb{O} \\ \boldsymbol{M}^{-1}\boldsymbol{\delta}\boldsymbol{P} \end{array} \right],$$

1)
$$\Gamma \equiv M^{-1}D = \gamma \mathbb{1}_N$$
 (assumption)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\begin{array}{c} \boldsymbol{\xi} \\ \boldsymbol{\xi} \end{array} \right] = \left[\begin{array}{cc} \mathbb{O}_{N \times N} & \mathbb{1}_{N} \\ -\boldsymbol{\Lambda} & -\gamma \mathbb{1}_{N} \end{array} \right] \left[\begin{array}{c} \boldsymbol{\xi} \\ \boldsymbol{\xi} \end{array} \right] + \left[\begin{array}{c} \mathbb{O} \\ \boldsymbol{\mathcal{P}} \end{array} \right],$$

- 1) $\Gamma \equiv M^{-1}D = \gamma \mathbb{1}_N$ (assumption)
- 2) symmetrization and diagonalization: $L_M \equiv M^{-1/2}LM^{-1/2} = U^{\top}\Lambda U$,
- 3) change of variables: $m{ heta} = m{M}^{-1/2} m{U}^{ op} m{\xi}$ and $m{\mathcal{P}} = m{U} m{M}^{-1} \delta m{P}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\begin{array}{c} \boldsymbol{\xi} \\ \boldsymbol{\dot{\xi}} \end{array} \right] = \left[\begin{array}{cc} \mathbb{O}_{N \times N} & \mathbb{1}_{N} \\ -\boldsymbol{\Lambda} & -\gamma \mathbb{1}_{N} \end{array} \right] \left[\begin{array}{c} \boldsymbol{\xi} \\ \boldsymbol{\dot{\xi}} \end{array} \right] + \left[\begin{array}{c} \mathbb{O} \\ \boldsymbol{\mathcal{P}} \end{array} \right],$$

- 1) $\Gamma \equiv M^{-1}D = \gamma \mathbb{1}_N$ (assumption)
- 2) symmetrization and diagonalization: $m{L}_M \equiv m{M}^{-1/2} m{L} m{M}^{-1/2} = m{U}^{ op} m{\Lambda} m{U}$,
- 3) change of variables: $m{ heta} = m{M}^{-1/2} m{U}^{ op} m{\xi}$ and $m{\mathcal{P}} = m{U} m{M}^{-1} \delta m{P}$

In this basis,
$$\mathcal{M} = \int_0^\infty \sum_{\alpha>1} \dot{\xi}_\alpha^2(t) \mathrm{d}t$$
 and $\ddot{\xi}_\alpha + \gamma \dot{\xi}_\alpha + \lambda_\alpha \xi_\alpha = \mathcal{P}_\alpha$, $\forall \alpha \in \mathcal{P}_\alpha$

$$\boxed{\dot{\xi}_{\alpha}(t) = \frac{2\mathcal{P}_{\alpha}}{f_{\alpha}}e^{-\gamma t/2}\sin\left(\frac{f_{\alpha}}{2}t\right)} \quad \text{where } f_{\alpha} = \sqrt{4\lambda_{\alpha} - \gamma^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\begin{array}{c} \pmb{\xi} \\ \pmb{\dot{\xi}} \end{array} \right] = \left[\begin{array}{cc} \mathbb{O}_{N \times N} & \mathbb{1}_{N} \\ -\pmb{\Lambda} & -\gamma \mathbb{1}_{N} \end{array} \right] \left[\begin{array}{c} \pmb{\xi} \\ \pmb{\dot{\xi}} \end{array} \right] + \left[\begin{array}{c} \mathbb{O} \\ \pmb{\mathcal{P}} \end{array} \right],$$

- 1) $\Gamma \equiv M^{-1}D = \gamma \mathbb{1}_N$ (assumption)
- 2) symmetrization and diagonalization: $L_M \equiv M^{-1/2}LM^{-1/2} = U^{\top}\Lambda U$,
- 3) change of variables: $\boldsymbol{\theta} = \boldsymbol{M}^{-1/2} \boldsymbol{U}^{\mathsf{T}} \boldsymbol{\xi}$ and $\boldsymbol{\mathcal{P}} = \boldsymbol{U} \boldsymbol{M}^{-1} \delta \boldsymbol{P}$

In this basis,
$$\mathcal{M} = \int_0^\infty \sum_{\alpha \geq 1} \dot{\xi}_{\alpha}^2(t) dt$$
 and $\ddot{\xi}_{\alpha} + \gamma \dot{\xi}_{\alpha} + \lambda_{\alpha} \xi_{\alpha} = \mathcal{P}_{\alpha}$, $\forall \alpha$

$$\boxed{\dot{\xi}_{\alpha}(t) = \frac{2\mathcal{P}_{\alpha}}{f_{\alpha}}e^{-\gamma t/2}\sin\left(\frac{f_{\alpha}}{2}t\right)} \quad \text{where } f_{\alpha} = \sqrt{4\lambda_{\alpha} - \gamma^2}$$

For a fault localized at bus #b, $\delta P_i(t) = \delta P \delta_{ib} \Theta(t)$,

$$\mathcal{M}_b = \frac{\delta P^2}{2\gamma m} \sum_{\alpha > 1} \frac{u_{\alpha b}^2}{\lambda_{\alpha}}$$

Mild inhomogoeneity

Parametrization:

$$\begin{split} m_i &= m(1+\mu r_i)\,,\\ d_i &= m_i \gamma_i = m \gamma (1+\mu r_i) (1+g a_i)\,,\\ r_i, a_i &: \text{ inhomogeneity parameters}\\ \mu, g \ll 1: \text{ small dimensionless}\\ \text{parameters} \end{split}$$

Mild inhomogoeneity

Parametrization:

$$\begin{split} m_i &= m(1+\mu r_i)\,,\\ d_i &= m_i \gamma_i = m \gamma (1+\mu r_i)(1+ga_i)\,,\\ r_i, a_i \colon \text{inhomogeneity parameters}\\ \mu, g \ll 1 \colon \text{small dimensionless}\\ \text{parameters} \end{split}$$

Fixed total resources:

$$\sum_{i} a_i = \sum_{i} r_i = 0,$$

Bounded increases/decreases:

$$-1 < r_i < 1$$

 $-1 < a_i < 1$

Mild inhomogoeneity

Parametrization:

$$\begin{split} m_i &= m(1+\mu r_i)\,,\\ d_i &= m_i \gamma_i = m \gamma (1+\mu r_i) (1+g a_i)\,,\\ r_i, a_i \colon \text{inhomogeneity parameters}\\ \mu, g \ll 1 \colon \text{small dimensionless}\\ \text{parameters} \end{split}$$

Fixed total resources:

$$\sum_{i} a_i = \sum_{i} r_i = 0,$$

Bounded increases/decreases:

$$-1 < r_i < 1 \\
-1 < a_i < 1$$

$$m{L}_{m{M}} = m^{-1} ig[m{L} - \mu (m{L} m{R} + m{R} m{L}) / 2 + \mathcal{O}(\mu^2) ig], \text{ with } m{R} = \mathrm{diag}(\{r_i\})$$

 $\Gamma = \gamma ig[\mathbb{1}_N + g m{U} m{A} m{U}^{\top} ig], \text{ with } m{A} = \mathrm{diag}(\{a_i\})$

Mild inhomogoeneity

Parametrization:

$$\begin{split} m_i &= m(1+\mu r_i)\,,\\ d_i &= m_i \gamma_i = m \gamma (1+\mu r_i)(1+ga_i)\,,\\ r_i, a_i &: \text{ inhomogeneity parameters}\\ \mu, g \ll 1: \text{ small dimensionless}\\ \text{parameters} \end{split}$$

Fixed total resources:

$$\sum_{i} a_i = \sum_{i} r_i = 0,$$

Bounded increases/decreases:

$$-1 < r_i < 1$$

 $-1 < a_i < 1$

$$-1 < a_i < 1$$

$$m{L}_{m{M}} = m^{-1} ig[m{L} - \mu (m{L} m{R} + m{R} m{L}) / 2 + \mathcal{O}(\mu^2) ig], \text{ with } m{R} = \mathrm{diag}(\{r_i\})$$

 $m{\Gamma} = \gamma ig[\mathbb{1}_N + g m{U} m{A} m{U}^{\top} ig], \text{ with } m{A} = \mathrm{diag}(\{a_i\})$

$$\mathcal{M}_b = \mathcal{M}_b^{(0)} + \sum_i \rho_i r_i + \sum_i \alpha_i a_i + \mathcal{O}(\mu^2, g^2)$$

where
$$\begin{split} \rho_i &= \frac{\partial \mathcal{M}_b}{\partial r_i} = -\frac{\mu \delta P^2}{\gamma N} \sum_{\alpha > 1} \frac{u_{\alpha b}^{(0)} u_{\alpha b}^{(0)}}{\lambda_{\alpha}^{(0)}} \,, \\ \alpha_i &= \frac{\partial \mathcal{M}_b}{\partial a_i} = -\frac{g \delta P^2}{2 \gamma m} \Bigg[\sum_{\alpha > 1} \frac{u_{\alpha i}^{(0)^2} u_{\alpha b}^{(0)^2}}{\lambda_{\alpha}^{(0)}} + \sum_{\substack{\alpha > 1, \\ \beta \neq \alpha}} \frac{u_{\alpha i}^{(0)} u_{\beta i}^{(0)} u_{\alpha b}^{(0)} u_{\beta b}^{(0)}}{(\lambda_{\alpha}^{(0)} - \lambda_{\beta}^{(0)})^2 + 2 \gamma (\lambda_{\alpha}^{(0)} + \lambda_{\beta}^{(0)})} \Bigg] \,. \end{split}$$

There is no certainty on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

There is no certainty on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

With $\eta_b = 1$, $\forall b$

$$\begin{aligned} \frac{\partial \mathcal{V}}{\partial r_i} &= 0\\ \frac{\partial \mathcal{V}}{\partial a_i} &= -\frac{g\delta P^2}{2\gamma m} \sum_{\alpha \geq 1} \frac{u_{\alpha i}^{(0)2}}{\lambda_{\alpha}} \end{aligned}$$

There is no certainty on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

With $\eta_b = 1$, $\forall b$

$$\begin{split} \frac{\partial \mathcal{V}}{\partial r_i} &= 0 \\ \frac{\partial \mathcal{V}}{\partial a_i} &= -\frac{g \delta P^2}{2 \gamma m} \sum_{\alpha \geq 1} \frac{u_{\alpha i}^{(0)2}}{\lambda_{\alpha}} \end{split}$$

There is no certainty on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

With $\eta_b = 1$, $\forall b$

$$\begin{split} \frac{\partial \mathcal{V}}{\partial r_i} &= 0\\ \frac{\partial \mathcal{V}}{\partial a_i} &= -\frac{g\delta P^2}{2\gamma m} \sum_{\alpha \geq 1} \frac{u_{\alpha i}^{(0)2}}{\lambda_{\alpha}} \end{split}$$

uniform, $\eta_b = 1$, max bound

There is no certainty on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

With $\eta_b = 1$, $\forall b$

$$\begin{split} \frac{\partial \mathcal{V}}{\partial r_i} &= 0 \\ \frac{\partial \mathcal{V}}{\partial a_i} &= -\frac{g \delta P^2}{2 \gamma m} \sum_{\alpha \geq 1} \frac{u_{\alpha i}^{(0)2}}{\lambda_{\alpha}} \end{split}$$

uniform, $\eta_b = 1$, max bound

There is $\underline{\text{no certainty}}$ on when and where a fault will occur.

Global "vulnerability" measure:

$$\mathcal{V} = \sum_b \eta_b \mathcal{M}_b$$

 η_b : weights (e.g. failure probability)

With $\eta_b = 1$, $\forall b$

$$\begin{split} \frac{\partial \mathcal{V}}{\partial r_i} &= 0 \\ \frac{\partial \mathcal{V}}{\partial a_i} &= -\frac{g \delta P^2}{2 \gamma m} \sum_{\alpha > 1} \frac{u_{\alpha i}^{(0)2}}{\lambda_{\alpha}} \end{split}$$

Some other choices:

$$\begin{split} & \eta_b = \mathcal{M}_b^{(0)2} \\ & \eta_b = \left\{ \begin{array}{l} 1 \,, \text{ if } \mathcal{M}_b^{(0)} > \mathcal{M}_{\rm thres} \,, \\ 0 \,, \text{ otherwise} \end{array} \right. \end{split}$$

uniform, $\eta_b = 1$, max bound

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{\text{m+}} \delta m_{i}^{+} + c_{i}^{\text{d+}} \delta d_{i}^{+} + c_{i}^{\text{m-}} \delta m_{i}^{-} + c_{i}^{\text{d-}} \delta d_{i}^{-} \right) < B$$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} o m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{m+} \delta m_{i}^{+} + c_{i}^{d+} \delta d_{i}^{+} + c_{i}^{m-} \delta m_{i}^{-} + c_{i}^{d-} \delta d_{i}^{-} \right) < B$$

Inertia:

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{\text{m+}} \delta m_{i}^{+} + c_{i}^{\text{d+}} \delta d_{i}^{+} + c_{i}^{\text{m-}} \delta m_{i}^{-} + c_{i}^{\text{d-}} \delta d_{i}^{-} \right) < B$$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} o m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{m+} \delta m_{i}^{+} + c_{i}^{d+} \delta d_{i}^{+} + c_{i}^{m-} \delta m_{i}^{-} + c_{i}^{d-} \delta d_{i}^{-} \right) < B$$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{m+} \delta m_{i}^{+} + c_{i}^{d+} \delta d_{i}^{+} + c_{i}^{m-} \delta m_{i}^{-} + c_{i}^{d-} \delta d_{i}^{-} \right) < B$$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{\text{m+}} \delta m_{i}^{+} + c_{i}^{\text{d+}} \delta d_{i}^{+} + c_{i}^{\text{m-}} \delta m_{i}^{-} + c_{i}^{\text{d-}} \delta d_{i}^{-} \right) < B$$

Primary control:

For inhomogeneous initial configurations (still with $\Gamma=\gamma\mathbb{1}_N$), our procedure remains valid: $m{L} \to m{L}_M^{(0)} = m{M}_0^{-1/2} m{L} m{M}_0^{-1/2}$

Grid enhancement under a budget constraint:

$$\sum_{i} \left(c_{i}^{\text{m+}} \delta m_{i}^{+} + c_{i}^{\text{d+}} \delta d_{i}^{+} + c_{i}^{\text{m-}} \delta m_{i}^{-} + c_{i}^{\text{d-}} \delta d_{i}^{-} \right) < B$$

Primary control:

Conclusion

We applied perturbation theory to optimally placed inertia and primary control.

In terms of global system vulnerability:

- Primary control is the key element to mitigate disturbances.
- If resources are limited, primary control must first be increased in the periphery of the grid.
- Inertia has a really limited effect compared to primary control.
- Inertia seems to be best placed when uniformly distributed.

Work in progress:

second order perturbation theory \rightarrow quadratic programming

Conclusion

We applied perturbation theory to optimally placed inertia and primary control.

In terms of global system vulnerability:

- Primary control is the key element to mitigate disturbances.
- If resources are limited, primary control must first be increased in the periphery of the grid.
- Inertia has a really limited effect compared to primary control.
- Inertia seems to be best placed when uniformly distributed.

Work in progress:

second order perturbation theory → quadratic programming

Some reading:

- ${\rm L.\ PAGNIER,\ P.\ JACQUOD,\ } \textit{Optimal placement of inertia and primary control: a matrix perturbation theory approach,\ to appear in IEEE-Access}$
- L. PAGNIER, P. JACQUOD, Inertia location and slow network modes determine disturbance propagation in large-scale power grids, PloS-ONE (2019)
- M. TYLOO, L. PAGNIER, P. JACQUOD, The Key Player Problem in Complex Oscillator Networks and Electric Power Grids: Resistance Centralities Identify Local Vulnerabilities, in press (Science Advances)