The Effects of Experimental Lake Fertilization on Condition and Diet of Slimy Sculpin (*Cottus cognatus*) in Oligotrophic Arctic Lakes, North Slope, AK

Jamie Goethlich¹, Stephen Klobucar², Derek H. Ogle¹, and Phaedra Budy³

¹Northland College

²Department of Watershed Sciences, Utah State University
³US Geological Survey-UCFWRU

Study Area

Arctic LTER: Toolik Field Station

- 150 miles north of the Arctic Circle
- Terrestrial ecosystems dominated by mosses, lichens, and small shrubs

Lakes:

- Small glacially formed kettle lakes
- Low species diversity
- Most lakes are closed systems
- Ice free period of ~100 days
 - Predicted to increase with climate warming

Background

- Mean annual air temperature has increased by 2.1°C in the last 30 years
- Mean annual or summer water temperature has not increased

- Rising temperatures predicted to increase:
 - External nutrient levels
 - Allochthonous nutrient inputs into lakes
 - Lake productivity

Lake Fertilization Experiment

 Lake E5 was fertilized from 2001-2013 at 2X the natural nutrient loading rate

Objectives

- 1) Compare Slimy Sculpin diet between fertilized and control lakes
- Compare Sculpin relative condition (lengthweight relationship) between fertilized and control lakes
- 3) Use diet information to help understand the role of Slimy Sculpins in food webs and nutrient cycling

Methods

Field

- 95 Slimy Sculpin were collected from the littoral zone of each by beach seine
- Sacrificed upon capture
- Recorded total length and weight

Methods

Laboratory

- Stomachs were removed, weighed, and preserved
- Contents were identified to genus if possible
- Wet weight and average length of each prey group was recorded

Results -- Condition

Sculpins in the fertilized lake weigh less at all lengths

Diet

Collector chironomids were consumed most frequently in all lakes

Summary

Conclusions:

 Sculpins of equal length were generally heavier in the Fog lakes than E5

Sculpin diets consisted of mainly larval chironomids

Discussion:

 Nutrient inputs due to climate change might negatively affect condition of Slimy Sculpins

 Increased productivity could lead to a slight diet shift

Future Plans

 Analyze littoral dredges of the three study lakes to determine prey selectivity

 Process YOY char diets to see if there is interspecific competition

Acknowledgements

Toolik Field Station Staff

The Effects of Experimental Lake Fertilization on Condition and Diet of Slimy Sculpin (*Cottus cognatus*) in Oligotrophic Arctic Lakes, North Slope, AK

Jamie Goethlich¹, Stephen Klobucar², Derek H. Ogle¹, and Phaedra Budy³

¹Northland College

²Department of Watershed Sciences, Utah State University
³US Geological Survey-UCFWRU

