COMPLETED: Mutual Information Calculation of <u>B_theta and M_smithii</u> KBase Data Public Narrative Links at KBase Data:

https://narrative.kbase.us/narrative/ws.14662.obj.2 https://narrative.kbase.us/narrative/ws.14663.obj.1

INTRACELLULAR CALCULATIONS – STAGE I

MI Calculation Fig13 plotvalues.py file : only for 7 input compound calculation

B theta MI Calculation (Stage I - Intracellular) - When all 7 compounds present

DetailsofDup	licateRows =
--------------	--------------

	DetailsoiDuplicateNows -			
			Total Duplicates	Real Duplicates
1)	1,34,41,60,79,105,134,154,184,189,191,0,0,0,0,0,0		11	10
2)	2,178,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
3)	4,57,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
4)	5,15,17,32,74,78,95,108,111,112,130,135,164,167,171,195,198		17	16
5)	7,91,172,208,0,0,0,0,0,0,0,0,0,0,0		4	3
6)	10,56,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
7)	11,52,55,131,175,0,0,0,0,0,0,0,0,0,0		5	4
8)	12,72,143,0,0,0,0,0,0,0,0,0,0,0,0		3	2
9)	18,144,152,0,0,0,0,0,0,0,0,0,0,0,0		3	2
,			2	1
,	21,125,163,0,0,0,0,0,0,0,0,0,0,0,0,0		3	2
	23,201,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
,	25,179,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
,	26,36,102,149,0,0,0,0,0,0,0,0,0,0,0,0		4	3
	27,113,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	29,151,187,193,197,0,0,0,0,0,0,0,0,0,0		5	4
	35,51,210,0,0,0,0,0,0,0,0,0,0,0,0		3	2
,	38,59,0,0,0,0,0,0,0,0,0,0,0,0,0,0		2	_ 1
	40,99,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
,	42,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	44,70,81,0,0,0,0,0,0,0,0,0,0,0,0,0		3	2
	47,71,109,136,0,0,0,0,0,0,0,0,0,0,0,0		4	3
	48,50,127,0,0,0,0,0,0,0,0,0,0,0,0		3	2
	58,94,119,138,169,0,0,0,0,0,0,0,0,0,0,0		5	4
	65,86,196,0,0,0,0,0,0,0,0,0,0,0,0		3	2
,	66,96,157,0,0,0,0,0,0,0,0,0,0,0,0,0		3	2
	69,93,133,0,0,0,0,0,0,0,0,0,0,0,0,0		3	2
	73,140,0,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	84,110,0,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	88,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
			6	5
	98,100,126,147,158,182,0,0,0,0,0,0,0,0,0		5	4
	116,132,148,153,159,0,0,0,0,0,0,0,0,0,0		2	4 1
	121,212,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	122,162,0,0,0,0,0,0,0,0,0,0,0,0,0			1
	150,173,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	156,209,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	180,181,185,192,0,0,0,0,0,0,0,0,0,0,0		4	3
,	183,188,0,0,0,0,0,0,0,0,0,0,0,0,0		2	1
	199,205,206,0,0,0,0,0,0,0,0,0,0,0		3	2
40)		_	3	2
	•	Sum	139	99

Unique Reactions = 113 (212-99)

Reactions 113

DetailsofDuplicateColumns =

	Total	Duplicates	Real	Duplicates
1)	1,4,17,42,55,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		{6}	{5}
2)	2,5,7,18,20,22,24,38,43,45,52,56,58,62,74,76,78,80,91,93,95,96,98,111,113,115,126,128,0,0,0,0		{28}	{27}
3)	3,10,48,53,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{5}	{4}
4)	6,19,23,75,85,97,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{7}	{6 }
5)	8,12,25,64,99,103,116,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{7}	{6}
6)	9,11,13,14,16,27,29,31,33,34,36,47,49,51,54,65,67,69,71,82,84,87,89,100,102,104,106,117,118,120,122,1	24	{32}	{31}
7)	15,28,32,35,66,70,83,88,101,105,119,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{11}	{10}
8)	21,59,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{3}	{2}
9)	26,30,46,50,68,81,86,107,121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{9}	{8}
10)	37,77,90,112,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		{4}	{3}
11)	39,44,61,79,110,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		{5}	{4}
12)	40,60,73,109,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{4}	{3}
13)	41,57,92,127,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{4}	{3}
14)	63,72,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		{3}	{2}
		Sum	128	114

NumDuplicateColumns = 114 (128-14)

Unique FRAs = 14 (128-114)

Hence 14 Groups in BT

$$I(\left\{c_{i}\right\}_{i=1}^{N};\left\{r_{i}^{*}\right\}_{i=1}^{M}) = H(\left\{c_{i}\right\}_{i=1}^{N}) - H(\left\{c_{i}\right\}_{i=1}^{N} | \left\{r_{i}^{*}\right\}_{i=1}^{M}) \tag{1}$$

$$\hat{H}(\{c_i\}_{i=1}^N)$$
 = $\log_2(128)$ = 7 bits

$$H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y)$$

$$= -\sum_{\substack{i=1\\No.Groups}}^{14} \frac{No.repetition\:i}{total\:combination} \times \sum_{\substack{No.repetition\\each\:group\:i}} \frac{1}{No.repetition\:i} log_2\left(\frac{1}{No.repetition\:i}\right)$$

$$= -\left[\left(\frac{6}{128} \times \left(\frac{1}{6}log_{2}\left(\frac{1}{6}\right) + \frac{1}{6}log_{2}\left(\frac{1}{6}\right) + \frac{1}{6}$$

$$\frac{1}{3}log_{2}\left(\frac{1}{3}\right)\right)\right)+\left(\frac{9}{128}\times\left(\frac{1}{9}log_{2}\left(\frac{1}{9}\right)+\frac{1}{9}log_{2}\left(\frac{1}{9}\right)+\frac{1}{9}log_{2}\left(\frac{1}{9}\right)+\cdots\times9times\right)\right)+\left(3\times\left(\frac{4}{128}\times\left(\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)\right)\right)\right)\right]$$

$$\left(\frac{6}{128} \times \left(\frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right) + \frac{1}{6}\log_2\left(\frac{1}{6}\right)\right)\right) = -0.1212$$

$$\left(\frac{28}{128} \times \left(\frac{1}{28}log_2\left(\frac{1}{28}\right) + \frac{1}{28}log_2\left(\frac{1}{28}\right) + \frac{1}{28}log_2\left(\frac{1}{28}\right) + \dots \times 28times\right)\right) = -1.0516$$

$$\left(2 \times \left(\frac{5}{128} \times \left(\frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \cdots \times 5times\right)\right)\right) = -0.1814$$

$$\left(2 \times \left(\frac{7}{128} \times \left(\frac{1}{7} log_2\left(\frac{1}{7}\right) + \frac{1}{7} log_2\left(\frac{1}{7}\right) + \frac{1}{7} log_2\left(\frac{1}{7}\right) + \cdots \times 7 times\right)\right)\right) = -0.3071$$

$$\left(\frac{32}{128} \times \left(\frac{1}{32} log_2\left(\frac{1}{32}\right) + \frac{1}{32} log_2\left(\frac{1}{32}\right) + \frac{1}{32} log_2\left(\frac{1}{32}\right) + \cdots \times 32 times\right)\right) = -1.2500$$

$$\left(\frac{11}{128} \times \left(\frac{1}{11} log_2\left(\frac{1}{11}\right) + \frac{1}{11} log_2\left(\frac{1}{11}\right) + \frac{1}{11} log_2\left(\frac{1}{11}\right) + \cdots \times 11 times\right)\right) = -0.2973$$

$$\left(2 \times \left(\frac{3}{128} \times \left(\frac{1}{3} log_2\left(\frac{1}{3}\right) + \frac{1}{3} log_2\left(\frac{1}{3}\right) + \frac{1}{3} log_2\left(\frac{1}{3}\right)\right)\right)\right) = -0.0743$$

$$\left(\frac{9}{128} \times \left(\frac{1}{9} log_2\left(\frac{1}{9}\right) + \frac{1}{9} log_2\left(\frac{1}{9}\right) + \frac{1}{9} log_2\left(\frac{1}{9}\right) + \cdots \times 9 times\right)\right) = -0.2229$$

$$\left(3\times\left(\frac{4}{128}\times\left(\frac{1}{4}\log_2\left(\frac{1}{4}\right)+\frac{1}{4}\log_2\left(\frac{1}{4}\right)+\frac{1}{4}\log_2\left(\frac{1}{4}\right)+\frac{1}{4}\log_2\left(\frac{1}{4}\right)\right)\right)\right)= \ -0.1875$$

$$H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y)$$

 $H(\{c_{gl}, c_{lac}\}|\{r_i^*\}_{i=1}^M = -[-0.1212 - 1.0516 - 0.1814 - 0.3071 - 1.2500 - 0.2973 - 0.0743 - 0.2229 - 0.1875] = 3.6933$ bits Implement the values to equation (1),

$$I(\left\{c_{i}\right\}_{i=1}^{N};\left\{r_{i}^{*}\right\}_{i=1}^{M}) = H(\left\{c_{i}\right\}_{i=1}^{N}) - H(\left\{c_{i}\right\}_{i=1}^{N}|\left\{r_{i}^{*}\right\}_{i=1}^{M})$$

MI = 7 bits - 3.6933 bits

MI = 3.3068 bits

MI Calculation Fig14 plotvalues.py file: only for 7 input compound calculation

M smithii GROUP MI Calculation (Stage I)- When all 7 compounds present

NumDuplicateRows = 420

Unique Reactions = 136 (556-420)

P.S = Matrix information is excluded, because the size of the matrix is large to fit on a page

Total Duplicates

Real Duplicates

DetailsofDuplicateColumns =

1)	1,108,0,0,0,0,0,0,0,0,0,0,0		2	1
2)	2,38,0,0,0,0,0,0,0,0,0,0,0		2	1
3)	4,21,59,63,77,112,0,0,0,0,0,0,0		6	5
4)	5,22,74,0,0,0,0,0,0,0,0,0		3	2
5)	6,44,79,85,97,114,0,0,0,0,0,0,0		6	5
6)	7,24,60,78,98,0,0,0,0,0,0,0,0		5	4
7)	8,26,46,81,99,107,116,0,0,0,0,0,0		7	6
8)	9,47,65,100,117,118,0,0,0,0,0,0,0		6	5
9)	10,28,48,66,83,101,119,0,0,0,0,0,0		7	6
10)	11,14,29,49,67,84,102,120,0,0,0,0,0		8	7
11)	12,25,50,68,86,103,121,0,0,0,0,0,0		7	6
12)	13,16,33,34,36,51,69,104,0,0,0,0,0		8	7
13)	15,32,35,53,70,88,105,123,0,0,0,0,0		8	7
14)	17,37,55,72,125,0,0,0,0,0,0,0,0		5	4
15)	18,20,40,52,56,58,73,76,91,93,109,111,126,128		14	13
16)	27,82,0,0,0,0,0,0,0,0,0,0		2	1
17)	31,54,71,87,89,106,122,124,0,0,0,0,0,0		8	7
18)	39,41,57,75,92,110,127,0,0,0,0,0,0		7	6
19)	42,94,0,0,0,0,0,0,0,0,0,0		2	1
20)	43,113,0,0,0,0,0,0,0,0,0,0,0		2	1
21)	45,62,80,0,0,0,0,0,0,0,0,0,0		3	2
		Sum	118	97
NI.	D - 1' - 1 - 0 - 1 0.7 (440 04)			—

NumDuplicateColumns = 97 (118-21)

Unique FBAs = 31 (128-97)

Hence 31 Groups in MS

$$\hat{H}(\left\{c_i\right\}_{i=1}^N)$$
 = log₂(128) = 7 bits

$$= - \sum_{\substack{l=1\\No.Groups}}^{31} \frac{\textit{No.repetition i}}{\textit{total combination}} \times \sum_{\substack{\textit{No.repetition}\\each group \ i}} \frac{1}{\textit{No.repetition i}} log_2 \left(\frac{1}{\textit{No.repetition i}}\right)$$

No.of.Members in each group

No. Groups

$$=-\left[10\times\left(\frac{1}{128}\times\left(\frac{1}{1}log_{2}\left(\frac{1}{3}\right)\right)+5\times\left(\frac{2}{128}\times\left(\frac{1}{2}log_{2}\left(\frac{1}{2}\right)+\frac{1}{2}log_{2}\left(\frac{1}{2}\right)\right)+\left(2\times\left(\frac{3}{128}\times\left(\frac{1}{3}log_{2}\left(\frac{1}{3}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)\right)\right)\right)+\left(2\times\left(\frac{5}{128}\times\left(\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)\right)\right)\right)+\left(2\times\left(\frac{5}{128}\times\left(\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)\right)\right)\right)+\left(2\times\left(\frac{5}{128}\times\left(\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{3}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{6}log_{2}\left$$

$$\begin{split} &= 10 \times \left(\frac{1}{128} \times \left(\frac{1}{1} \log_2\left(\frac{1}{1}\right)\right) = 0 \\ &= -\left[5 \times \left(\frac{2}{128} \times \left(\frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{2} \log_2\left(\frac{1}{2}\right)\right) + \left(2 \times \left(\frac{3}{128} \times \left(\frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right)\right)\right)\right) = -0.0781 \\ &= \left(2 \times \left(\frac{3}{128} \times \left(\frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right)\right)\right)\right) = -0.0743 \\ &= \left(2 \times \left(\frac{5}{128} \times \left(\frac{1}{5} \log_2\left(\frac{1}{5}\right) + \frac{1}{5} \log_2\left(\frac{1}{5}\right) + \frac{1}{5} \log_2\left(\frac{1}{5}\right) + \cdots \times 5 times\right)\right)\right) = -0.1814 \end{split}$$

$$=3\times\left(\frac{6}{128}\times\left(\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)+\frac{1}{6}\log_2\left(\frac{1}{6}\right)\right)\right)=-0.3635$$

$$= \left(4 \times \left(\frac{7}{128} \times \left(\frac{1}{7} log_2\left(\frac{1}{7}\right) + \frac{1}{7} log_2\left(\frac{1}{7}\right) + \frac{1}{7} log_2\left(\frac{1}{7}\right) + \cdots \times 7 times\right)\right)\right) = -0.6141$$

$$=4\times\left(\frac{8}{128}\times\left(\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\cdots\times 8times\right)\right)=-0.7500$$

$$=\frac{14}{128} \times \left(\frac{1}{14} log_2\left(\frac{1}{14}\right) + \frac{1}{14} log_2\left(\frac{1}{14}\right) + \frac{1}{14} log_2\left(\frac{1}{14}\right) + \cdots \times 14 times\right) = -0.4164$$

$$H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y)$$

$$H(\{c_{gl}, c_{lac}\} | \{r_i^*\}_{i=1}^M = -[-0.0781 - 0.0743 - 0.1814 - 0.3635 - 0.6141 - 0.7500 - 0.4164] = -[-2.4778] = 2.4778$$

Implement the values to equation (1),

$$I(\left\{c_{i}\right\}_{i=1}^{N};\left\{r_{i}^{*}\right\}_{i=1}^{M}) = H(\left\{c_{i}\right\}_{i=1}^{N}) - H(\left\{c_{i}\right\}_{i=1}^{N} | \left\{r_{i}^{*}\right\}_{i=1}^{M})$$

MI = 7 bits - 2.4778 bits

STAGE II: Figure 17, Upper bounds of the steady-state mutual information for all the different combinations of seven compounds (extracellular) in E2E in B. theta with respect to Biomass only

B theta MI between 7 most influential factors and Biomass (Stage II) - zero values for all 14 groups for compound is eliminated

FB/	AGroups	Value	No.of.FBAs	Number of groups
1)	C,G	0.202862	C=4,G=5→9	2 (index: 4,8)
2)	L	0.203778	L=11→ 11	1 (index: 13)
3)	I	0.205694	l=7 → 7	1 (index: 10)
4)	F	0.206636	F=5→ 5	1 (index: 7)
5)	E,M	0.396393	E=4,M=28→32	2 (index: 6,14)
6)	N	0.398741	N=32→ 32	1 (index: 15)
7)	A,B,D,H	0.87827	A=3,B=3,D=4,H=6→16	4 (index: 2,3,5,9)
8)	JK	0.883073	.I=7 K=9→16	2 (index: 11 12)

$$5 + 7 + 9 + 11 + 2 \times 16 + 2 \times 32 = 128 FBA$$

$$\hat{H}(\left\{c_i\right\}_{i=1}^N)$$
 = $\log_2(128)$ = 7 bits

$$H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{i=1}^{Y} P_{Y} \sum_{j=1}^{X_{y}} P(x|y) \log_{2} P(x|y)$$

No.of.Members in each group

$$\sum_{\substack{i=1\\\text{No.Groups}}}^{8} \frac{\text{No. members i}}{\text{total combination}} \times \sum_{\substack{\text{No. members i}\\\text{eachgroup i}}} \frac{1}{\text{No. members i}} \log_2 \left(\frac{1}{\text{No. members i}}\right)$$

$$=-\left[\left(\frac{5}{128}\times\left(\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)+\frac{1}{5}log_{2}\left(\frac{1}{5}\right)\right)+\left(\frac{7}{128}\times\left(\frac{1}{7}log_{2}\left(\frac{1}{7}\right)+\frac{1}{7}l$$

$$= \left(\frac{5}{128} \times \left(\frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right)\right) = -0.0907$$

$$= \left(\frac{7}{128} \times \left(\frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right)$$

$$=\left(\frac{9}{128} \times \left(\frac{1}{9}log_2\left(\frac{1}{9}\right) + \frac{1}{9}log_2\left(\frac{1}{9}\right) + \frac{1}{9}log_2\left(\frac{1}{9}\right) + \cdots total\ 9\ times\right) = -0.2229$$

$$\begin{split} &=\left(\frac{11}{128}\times\left(\frac{1}{11}log_2\left(\frac{1}{11}\right)+\frac{1}{11}log_2\left(\frac{1}{11}\right)+\frac{1}{11}log_2\left(\frac{1}{11}\right)+\cdots total\ 11\ times\right)=\ -0.2973\\ &=2\times\left(\frac{16}{128}\times\left(\frac{1}{16}log_2\left(\frac{1}{16}\right)+\frac{1}{16}log_2\left(\frac{1}{16}\right)+\frac{1}{16}log_2\left(\frac{1}{16}\right)+\cdots total\ 16\ times\right)=\ -1\\ &=2\times\left(\frac{32}{128}\times\left(\frac{1}{32}log_2\left(\frac{1}{32}\right)+\frac{1}{32}log_2\left(\frac{1}{32}\right)+\frac{1}{32}log_2\left(\frac{1}{32}\right)+\cdots total\ 32\ times\right)=-2.5000\\ &=-\left[-0.0907-0.1535-0.2229-0.2973-1-2.5000\right]\\ &=4.2644\\ &I(\{c_i\}_{i=1}^N\ ; \{r_i^*\}_{i=1}^M)=H(\{c_i\}_{i=1}^N)-H(\{c_i\}_{i=1}^N\ | \{r_i^*\}_{i=1}^M) \end{split}$$

MI = 7 bits - 4.2644 bits

MI = 2.7356 bits

B theta ONLY BIOMASS (Stage II) - with respect to intracellular metabolism as inputs and only biomass out put14 groups

FBAGroups		<u>Value</u>	Number of groups
1)	C,G	0.202862	2 (index: 4,8)
2)	L	0.203778	1 (index: 13)
3)	I	0.205694	1 (index: 10)
4)	F	0.206636	1 (index: 7)
5)	E,M	0.396393	2 (index: 6,14)
6)	N	0.398741	1 (index: 15)
7)	A,B,D,H	0.87827	4 (index: 2,3,5,9)
8)	J,K	0.883073	2 (index: 11,12)

$$\begin{split} \widehat{H}(\left\{c_{i}\right\}_{i=1}^{N}) &= \log_{2}(14) = 3.8074 \text{ bits} \\ H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) &= -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y) \\ &= -\sum_{No.Groups}^{8} \frac{No.members \ i}{total \ combination} \times \sum_{\substack{No.members \ eachgroup \ i}} \frac{1}{No.members \ i} \log_{2} \left(\frac{1}{No. \ members \ i}\right) \end{split}$$

No.of.Members in each group

2 | 3

$$1 \times 4 + 2 \times 3 + 1 \times 4 = 14$$
 FBAgroups

$$= -\left[4 \times \left(\frac{1}{14} \times \left(\frac{1}{1}\log_2\left(\frac{1}{1}\right)\right) + 3 \times \left(\frac{2}{14} \times \left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) + 1 \times \left(\frac{4}{14} \times \left(\frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right)\right)\right] \\ = 4 \times \left(\frac{1}{14} \times \left(\frac{1}{1}\log_2\left(\frac{1}{1}\right)\right) = 0$$

$$=3 \times \left(\frac{2}{14} \times \left(\frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{2} \log_2\left(\frac{1}{2}\right)\right) = -0.4286$$

$$=1\times\left(\frac{_{4}}{_{14}}\times\left(\frac{_{1}}{_{4}}log_{2}\left(\frac{_{1}}{_{4}}\right)+\frac{_{1}}{_{4}}log_{2}\left(\frac{_{1}}{_{4}}\right)+\frac{_{1}}{_{4}}log_{2}\left(\frac{_{1}}{_{4}}\right)+\frac{_{1}}{_{4}}log_{2}\left(\frac{_{1}}{_{4}}\right)\right)\right)=-0.5714$$

$$= -[0 - 0.4286 - 0.5714]$$

= 1.0000

No. Groups

$$I(\lbrace c_i \rbrace_{i=1}^N; \lbrace r_i^* \rbrace_{i=1}^M) = H(\lbrace c_i \rbrace_{i=1}^N) - H(\lbrace c_i \rbrace_{i=1}^N | \lbrace r_i^* \rbrace_{i=1}^M)$$

MI = 3.8074 bits - 1.0000 bits

MI = 2.8074 bits

BT MI of all excreted and up-taken, secreted compounds including Biomass (Stage II) – 14 Groups (with respect to intracellular metabolism as inputs and excreted and up-taken, secreted, and biomass

FBAGroups Page 1		<u>Value</u>	Number of groups
1)	C,G	0.202862	2 (index: 4,8)
2)	L	0.203778	1 (index: 13)
3)	I	0.205694	1 (index: 10)
4)	F	0.206636	1 (index: 7)
5)	E	0.396393	1 (index: 6)
6)	M	0.396393	1 (index: 14)
7)	N	0.398741	1 (index: 15)
8)	Α	0.87827	1 (index: 2)
9)	В	0.87827	1 (index: 3)
10)	D	0.87827	1 (index: 5)
11)	Н	0.87827	1 (index: 2,3,5,9)
12)	J	0.883073	1 (index: 11)
13)	K	0.883073	1 (index: 12)

$$\begin{split} \hat{H}(\left\{c_{i}\right\}_{i=1}^{N}) &= \log_{2}(14) = -3.8074 \text{ bits} \\ &H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y) \\ &= -\sum_{13}^{13} \frac{No.members \, i}{total \, combination} \times \sum_{\substack{No.members \, i \\ each group \, i}} \frac{1}{No.members \, i} \log_{2}\left(\frac{1}{No. \, members \, i}\right) \\ &\text{No.of.Members in each group} & 1 & 2 \\ & | & | & | \\ &\text{No. Groups} & 12 & 1 \\ & & 1 \times 12 + 2 \times 2 = 14 \, FBA groups \\ &= -\left[12 \times \left(\frac{1}{14} \times \left(\frac{1}{1} \log_{2}\left(\frac{1}{1}\right)\right) + 1 \times \left(\frac{2}{14} \times \left(\frac{1}{2} \log_{2}\left(\frac{1}{2}\right) + \frac{1}{2} \log_{2}\left(\frac{1}{2}\right)\right)\right] \\ &= 12 \times \left(\frac{1}{14} \times \left(\frac{1}{1} \log_{2}\left(\frac{1}{1}\right)\right)\right) = 0 \\ &= 1 \times \left(\frac{2}{14} \times \left(\frac{1}{2} \log_{2}\left(\frac{1}{2}\right) + \frac{1}{2} \log_{2}\left(\frac{1}{2}\right)\right)\right) = -0.1429 \\ &= -[0 - 0.1429] \end{split}$$

$$I(\lbrace c_i \rbrace_{i=1}^N; \lbrace r_i^* \rbrace_{i=1}^M) = H(\lbrace c_i \rbrace_{i=1}^N) - H(\lbrace c_i \rbrace_{i=1}^N | \lbrace r_i^* \rbrace_{i=1}^M)$$

MI = 3.8074 bits - 0.1429 bits

MI = 3.6645 bit

P.S.: Exactly same result is obtained as above for MI of all excreted and up-taken compounds excluding Biomass

STAGE II: Figur 18, Upper bounds of the steady-state mutual information for all the different combinations of seven compounds (extracellular) in E2E in M. smithii with respect to Biomass only

M Smitti MI between 7 most influential factors and Biomass (Stage II) - zero values for all 31 groups for compound is eliminated

```
No.of.FBAs
    FBAGroups
                                                                                                                                                                                                                                         BiomassValue
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Number of groups
                                                      S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S=5→5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 (index: 20)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          - Data start from row index2, row 1 is title of the compounds)
  2)
                                                    J.Z
                                                                                                                                                                                                                                         0.102111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              J=1.Z=7→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index: 11,27)
                                                  W
                                                                                                                                                                                                                                         0.102548
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              W=8→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 (index: 24)
    4)
                                                  E,K,R
                                                                                                                                                                                                                                         0.129823
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E=1.K=2.R=5→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3 (index: 6,12,19)
  5)
6)
                                                         D,Y
                                                                                                                                                                                                                                         0.154711
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D=1,Y=7→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index:5,26)
                                                                                                                                                                                                                                         0.162135
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C=1→1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 (index:4)
    7)
                                                    M,T
                                                                                                                                                                                                                                         0.170735
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              M=2, T=6→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index:14,21)
                                                      I,U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I=1. U=6→7
                                                                                                                                                                                                                                         0 182998
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index:10,22)
                                                  Ó,V,AB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              O=2,V=6,AB=8→16
                                                                                                                                                                                                                                         0.23574
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3 (index:6,23,29)
    10) L,AE
                                                                                                                                                                                                                                         0.259537
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              L=2,AE=14→16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2(index:13,32)
       11) B, AA
                                                                                                                                                                                                                                         0.289634
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              B=1, AA=7→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index:3,28)
       12) H,X
                                                                                                                                                                                                                                         0.306145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              H=1,X=7→8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index:9,25)
       13) A,N,P,Q
                                                                                                                                                                                                                                         0.417114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A=1,N=2,P=3,Q=3→9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4 (index: 2,15,17,18)

    matlab index(1,14, 16, 17)

       14) AC.AD
                                                                                                                                                                                                                                         0.422201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AC =8. AD=8→16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index: 30.31)
       15) F,G
                                                                                                                                                                                                                                         0.433068
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F=1.G=1→2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 (index: 7,8)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1 + 2 + 5 + 7 + 7 \times 8 + 9 + 16 \times 3 = 128 FBA
                                      H(\{c_i\}_{i=1}^N) = \log_2(128) = 7 \text{ bits}
\begin{split} &H\left(\{c_{gl},c_{lac}\}|\left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y}P_{Y}\sum_{x=1}^{X_{y}}P(x|y)\log_{2}P(x|y)\\ &= -\sum_{i=1}^{15}\frac{No.members\:i}{total\:combination} \times \sum_{\substack{No.members\\eachgroup\:i}}\frac{1}{No.members\:i}\log_{2}\left(\frac{1}{No.\:members\:i}\right) \end{split}
    No.of.Members in each group
    No. Groups
  = -\left[\left(\frac{1}{120} \times \left(\frac{1}{1} \log_2\left(\frac{1}{1}\right)\right) + \left(\frac{2}{120} \times \left(\frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{5} \log_2\left(\frac{1}{5}\right) + \frac{1}{
  \frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{8}\right) + \frac{1}{8}log_2\left(\frac{1}{8}\right) + \frac{1}{8}log_2\left(\frac{
  \left(\frac{1}{9}log_{2}\left(\frac{1}{9}\right) + \frac{1}{9}log_{2}\left(\frac{1}{9}\right) 
  \frac{1}{16}log_2\left(\frac{1}{16}\right) + 
    \frac{1}{16}log_2\left(\frac{1}{16}\right)
    =\left(\frac{1}{100}\times\left(\frac{1}{4}\log_2\left(\frac{1}{4}\right)\right)=0\right)
    =\left(\frac{2}{120}\times\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right)+\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)=-0.0156
    = \left(\frac{5}{200} \times \left(\frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right)\right) = -0.0907
  = \left(\frac{7}{128} \times \left(\frac{1}{7}log_2\left(\frac{1}{7}\right) + \frac{1}{7}log_2\left(\frac{1}{7}\right) 
  =\left(7\times\left(\frac{8}{128}\times\left(\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)+\frac{1}{8}\log_2\left(\frac{1}{8}\right)\right)\right)=-1.3125
  = \left(\frac{9}{120} \times \left(\frac{1}{0}\log_2\left(\frac{1}{0}\right) + \frac{1}{0}\log_2\left(\frac{1}{0}\right) + \frac{1}{0}\log_2
=3\times\left(\frac{16}{128}\times\left(\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_2\left(\frac{1}{16}\right)+\frac{1}{16}\log_
    = -[0 - 0.0156 - 0.0907 - 0.1535 - 1.3125 - 0.2229 - 1.5]
    = 3.2952
         I(\lbrace c_i \rbrace_{i=1}^N; \lbrace r_i^* \rbrace_{i=1}^M) = H(\lbrace c_i \rbrace_{i=1}^N) - H(\lbrace c_i \rbrace_{i=1}^N | \lbrace r_i^* \rbrace_{i=1}^M)
```

MI = 7 bits- 3.2952bits

```
M Smitti ONLY BIOMASS (Stage II) - 31 Groups
 FBAGroups
                                                                                                                                                                Number of groups
                                                                                Value
1)
2)
3)
4)
5)
6)
7)
                                                                                                                                                                1 (index: 20)
                                                                                                                                                                                                                                                                                      - Data start from row index2, row 1 is title of the compounds)
                 J,Z
                                                                                0.102111
                                                                                                                                                                2 (index: 11,27)
                 W
                                                                                0.102548
                                                                                                                                                                1 (index: 24)
                   E,K,R
                                                                                0.129823
                                                                                                                                                                3 (index: 6,12,19)
                   D,Y
                                                                                0.154711
                                                                                                                                                                2 (index:5,26)
                                                                                0.162135
                                                                                                                                                                1 (index:4)
                   M,T
                                                                                0.170735
                                                                                                                                                                2 (index:14,21)
                                                                                0.182998
                                                                                                                                                                2 (index:10,22)
                    O,V,AB
                                                                                0.23574
                                                                                                                                                                3 (index:6,23,29)
 10) L,AE
                                                                                0.259537
                                                                                                                                                                2(index:13,32)
 11) B, AA
                                                                                0.289634
                                                                                                                                                                2 (index:3,28)
                                                                                0.306145
                                                                                                                                                                2 (index:9,25)
  12) H,X
  13) A,N,P,Q
                                                                                0.417114
                                                                                                                                                                4 (index: 2,15,17,18)
                                                                                                                                                                                                                                                                                     - matlab index(1,14, 16, 17)
  14) AC,AD
                                                                                0.422201
                                                                                                                                                                2 (index: 30,31)
 15) F,G
                                                                                0.433068
                                                                                                                                                                2 (index: 7,8)
    \hat{H}(\{c_i\}_{i=1}^N)
                                                                                = \log_2(31) = 4.9542 bits
                                       H\left(\left\{c_{gl}, c_{lac}\right\} \middle| \left\{r_{i}^{*}\right\}_{i=1}^{M}\right) = -\sum_{y=1}^{Y} P_{Y} \sum_{x=1}^{X_{y}} P(x|y) \log_{2} P(x|y)
= -\sum_{\substack{i=1\\No.Groups}}^{15} \frac{No.members\,i}{total\,\,combination} \times \sum_{\substack{No.members\\eachgroup\,\,i}}^{1} \frac{1}{No.members\,i} log_2\left(\frac{1}{No.\,\,members\,\,i}\right)
 No.of.Members in each group 1
 No. Groups
                                                                                                                                                                                                                1 \times 3 + 2 \times 9 + 3 \times 2 + 1 \times 4 = 31 FBAgroups
-\left[3\times\left(\frac{1}{31}\times\left(\frac{1}{1}log_{2}\left(\frac{1}{1}\right)\right)+9\times\left(\frac{2}{31}\times\left(\frac{1}{2}log_{2}\left(\frac{1}{2}\right)+\frac{1}{2}log_{2}\left(\frac{1}{2}\right)\right)+\left(2\times\left(\frac{3}{31}\times\left(\frac{1}{3}log_{2}\left(\frac{1}{3}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)+\frac{1}{3}log_{2}\left(\frac{1}{3}\right)\right)\right)\right)+\left(1\times\left(\frac{4}{31}\times\left(\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac{1}{4}\right)+\frac{1}{4}log_{2}\left(\frac
\frac{1}{4}log_2\left(\frac{1}{4}\right) + \frac{1}{4}log_2\left(\frac{1}{4}\right)\right)
=3 \times \left(\frac{1}{21} \times \left(\frac{1}{1} \log_2\left(\frac{1}{1}\right)\right)\right) = 0
=9 \times \left(\frac{2}{31} \times \left(\frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{2} \log_2\left(\frac{1}{2}\right)\right) = -0.5806
=2 \times \left(\frac{3}{31} \times \left(\frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right) + \frac{1}{3} \log_2\left(\frac{1}{3}\right)\right)\right) = -0.3068
= \left(1 \times \left(\frac{4}{31} \times \left(\frac{1}{4} \log_2\left(\frac{1}{4}\right) + \frac{1}{4} \log_2\left(\frac{1}{4}\right) + \frac{1}{4} \log_2\left(\frac{1}{4}\right) + \frac{1}{4} \log_2\left(\frac{1}{4}\right)\right)\right)\right) = -0.2581
= -[0 - 0.5806 - 0.3068 - 0.2581]
= 1.1455
  I(\lbrace c_i \rbrace_{i=1}^N; \lbrace r_i^* \rbrace_{i=1}^M) = H(\lbrace c_i \rbrace_{i=1}^N) - H(\lbrace c_i \rbrace_{i=1}^N | \lbrace r_i^* \rbrace_{i=1}^M)
```

MI = 4.9542 bits - 1.1455 bits

MI = 3.8087 bit

M Smitti MI of all excreted and up-taken compounds including Biomass (Stage II) - 31 Groups

14 16

Number of groups

-matlab index

FBAGroups

1) A,N,P,Q

MI = 4.9542 bits - 1.0810 bits

MI = 3.8732 bit

P.S.: Exactly same result is obtained as above for MI of all excreted and up-taken compounds excluding Biomass