Step 1 : Generate a permutation σ of the dataset

σ	$y(avg_power_comb)$	intensity	avg_speed	type		
2	253	0.7	42	mixed		
4	258	0.83	35.7	sprinter		
1	265	0.84	44.8	sprinter		
3	228	0.62	26.1	climber		
5	242	0.68	33	mixed		

Step 2 : Sort the dataset in order of (\sigma\) and calculate the models M_i^{t-1} using only $1,\dots,i$ observations of the dataset

σ	$y(avg_power_comb)$	intensity	avg_speed	type
1	265	0.84	44.8	sprinter
2	253	0.7	42	mixed
3	228	0.62	26.1	climber
4	258	0.83	35.7	sprinter
5	242	0.68	33	mixed

$$\longrightarrow M_4^{t-1}$$
 Note 1

Step 4 : Calculate the residuals of the i-th observation using the only the knowledge of model M_{i-1}^{t-1} for the prediction of \hat{y}_i $\rightarrow r^t(\mathbf{x}_5,y_5) = y_5 - M_4^{t-1}(\mathbf{x}_5)$

$$ightharpoonup r^t(\mathbf{x}_5,y_5) = y_5 - M_4^{t-1}(\mathbf{x}_5)$$