UNDERSTAND THE PROBLEM STATEMENT/GOAL

- This dataset contains weekly sales from 99 departments belonging to 45 different stores.
- Our aim is to forecast weekly sales from a particular department.
- The objective of this case study is to forecast weekly retail store sales based on historical data.
- The data contains holidays and promotional markdowns offered by various stores and several departments throughout the year.
- Markdowns are crucial to promote sales especially before key events such as Super Bowl, Christmas and Thanksgiving.
- Developing accurate model will enable make informed decisions and make recommendations to improve business processes in the future.

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
```

In [2]:

```
# import the csv files using pandas
feature = pd.read_csv('Features_data_set.csv')
sales = pd.read_csv('sales_data_set.csv')
stores = pd.read_csv('stores_data_set.csv')
```

In [3]:

```
# Let's explore the 3 dataframes
# "stores" dataframe contains information related to the 45 stores such as type and size
of store.
stores
```

Out[3]:

	Store	Туре	Size
0	1	Α	151315
1	2	Α	202307
2	3	В	37392
3	4	Α	205863
4	5	В	34875
5	6	Α	202505
6	7	В	70713
7	8	Α	155078
8	9	В	125833
9	10	В	126512
10	11	Α	207499
11	12	В	112238
12	13	Α	219622
13	14	Α	200898
14	15	В	123737
15	16	В	57197

16	Store	Туре	93 <mark>188</mark>
17	18	В	120653
18	19	Α	203819
19	20	Α	203742
20	21	В	140167
21	22	В	119557
22	23	В	114533
23	24	Α	203819
24	25	В	128107
25	26	Α	152513
26	27	Α	204184
27	28	Α	206302
28	29	В	93638
29	30	С	42988
30	31	Α	203750
31	32	Α	203007
32	33	Α	39690
33	34	Α	158114
34	35	В	103681
35	36	Α	39910
36	37	С	39910
37	38	С	39690
38	39	Α	184109
39	40	Α	155083
40	41	Α	196321
41	42	С	39690
42	43	С	41062
43	44	С	39910
44	45	В	118221

In [4]:

```
# Let's explore the "feature" dataframe
# Features dataframe contains additional data related to the store, department, and regio
nal activity for the given dates.
# Store: store number
# Date: week
# Temperature: average temperature in the region
# Fuel_Price: cost of fuel in the region
# MarkDown1-5: anonymized data related to promotional markdowns.
# CPI: consumer price index
# Unemployment: unemployment rate
# IsHoliday: whether the week is a special holiday week or not
feature
```

Out[4]:

	Store	Date	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	CF
0	1	05/02/2010	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.09635
1	1	12/02/2010	38.51	2.548	NaN	NaN	NaN	NaN	NaN	211.24217
2	1	19/02/2010	39.93	2.514	NaN	NaN	NaN	NaN	NaN	211.28914

Temperature Fuel_Price MarkDown1 MarkDown3 MarkDown4 Store 26/02/2010 1 05/03/2010 46.50 NaN 211.35014 4 2.625 NaN NaN NaN NaN ... ------8185 45 28/06/2013 76.05 3.639 4842.29 975.03 3.00 2449.97 3169.69 Nal 8186 45 05/07/2013 77.50 3.614 9090.48 2268.58 582.74 5797.47 1514.93 Nal 8187 45 12/07/2013 79.37 3.614 3789.94 1827.31 85.72 744.84 2150.36 Nal 204.19 1059.46 8188 82.84 363.00 45 19/07/2013 3.737 2961.49 1047.07 Nal 45 26/07/2013 8189 76.06 3.804 212.02 851.73 2.06 10.88 1864.57 Nal

8190 rows × 12 columns

```
In [5]:
```

```
# Let's explore the "sales" dataframe
# "Sales" dataframe contains historical sales data, which covers 2010-02-05 to 2012-11-01
.
# Store: store number
# Dept: department number
# Date: the week
# Weekly_Sales: sales for the given department in the given store
# IsHoliday: whether the week is a special holiday week
sales
```

Out[5]:

	Store	Dept	Date	Weekly_Sales	IsHoliday
0	1	1	05/02/2010	24924.50	False
1	1	1	12/02/2010	46039.49	True
2	1	1	19/02/2010	41595.55	False
3	1	1	26/02/2010	19403.54	False
4	1	1	05/03/2010	21827.90	False
421565	45	98	28/09/2012	508.37	False
421566	45	98	05/10/2012	628.10	False
421567	45	98	12/10/2012	1061.02	False
421568	45	98	19/10/2012	760.01	False
421569	45	98	26/10/2012	1076.80	False

421570 rows × 5 columns

```
In [6]:
```

```
# Change the datatype of 'date' column

feature['Date'] = pd.to_datetime(feature['Date'])
sales['Date'] = pd.to_datetime(sales['Date'])
```

In [7]:

feature

Out[7]:

	Store	Date	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	CPI U	r
0	1	2010- 05-02	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	

	Store	2016e	Temperature 38.51	Fuel_Price 2.548	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	CPI 211.242170	
	'	12-02	00.01	2.040	Naiv	Naiv	Naiv	IVAIV	Naiv	Z11.Z7Z110	
2	1	2010- 02-19	39.93	2.514	NaN	NaN	NaN	NaN	NaN	211.289143	
3	1	2010- 02-26	46.63	2.561	NaN	NaN	NaN	NaN	NaN	211.319643	
4	1	2010- 05-03	46.50	2.625	NaN	NaN	NaN	NaN	NaN	211.350143	
8185	45	2013- 06-28	76.05	3.639	4842.29	975.03	3.00	2449.97	3169.69	NaN	
8186	45	2013- 05-07	77.50	3.614	9090.48	2268.58	582.74	5797.47	1514.93	NaN	
8187	45	2013- 12-07	79.37	3.614	3789.94	1827.31	85.72	744.84	2150.36	NaN	
8188	45	2013- 07-19	82.84	3.737	2961.49	1047.07	204.19	363.00	1059.46	NaN	
8189	45	2013- 07-26	76.06	3.804	212.02	851.73	2.06	10.88	1864.57	NaN	

8190 rows × 12 columns

In [8]:

sales

Out[8]:

	Store	Dept	Date	Weekly_Sales	IsHoliday
0	1	1	2010-05-02	24924.50	False
1	1	1	2010-12-02	46039.49	True
2	1	1	2010-02-19	41595.55	False
3	1	1	2010-02-26	19403.54	False
4	1	1	2010-05-03	21827.90	False
421565	45	98	2012-09-28	508.37	False
421566	45	98	2012-05-10	628.10	False
421567	45	98	2012-12-10	1061.02	False
421568	45	98	2012-10-19	760.01	False
421569	45	98	2012-10-26	1076.80	False

421570 rows \times 5 columns

MERGE DATASET INTO ONE DATAFRAME

In [9]:

sales.head()

Out[9]:

	Store	Dept	Date	Weekly_Sales	IsHoliday
0	1	1	2010-05-02	24924.50	False
1	1	1	2010-12-02	46039.49	True

2	Store	Depţ	2010-0 2219	Weekly 588188	IsHqliday
3	1	1	2010-02-26	19403.54	False
4	1	1	2010-05-03	21827.90	False

In [10]:

feature.head()

Out[10]:

	Store	Date	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	MarkDown5	СРІ	Unem
0	1	2010- 05-02	42.31	2.572	NaN	NaN	NaN	NaN	NaN	211.096358	
1	1	2010- 12-02	38.51	2.548	NaN	NaN	NaN	NaN	NaN	211.242170	
2	1	2010- 02-19	39.93	2.514	NaN	NaN	NaN	NaN	NaN	211.289143	
3	1	2010- 02-26	46.63	2.561	NaN	NaN	NaN	NaN	NaN	211.319643	
4	1	2010- 05-03	46.50	2.625	NaN	NaN	NaN	NaN	NaN	211.350143	
4											···· Þ

In [11]:

df = pd.merge(sales, feature, on = ['Store', 'Date', 'IsHoliday'])

In [12]:

df

Out[12]:

	Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDo
0	1	1	2010- 05-02	24924.50	False	42.31	2.572	NaN	NaN	NaN	
1	1	2	2010- 05-02	50605.27	False	42.31	2.572	NaN	NaN	NaN	
2	1	3	2010- 05-02	13740.12	False	42.31	2.572	NaN	NaN	NaN	
3	1	4	2010- 05-02	39954.04	False	42.31	2.572	NaN	NaN	NaN	
4	1	5	2010- 05-02	32229.38	False	42.31	2.572	NaN	NaN	NaN	
•••											
421565	45	93	2012- 10-26	2487.80	False	58.85	3.882	4018.91	58.08	100.0	2 [.]
421566	45	94	2012- 10-26	5203.31	False	58.85	3.882	4018.91	58.08	100.0	2 .
421567	45	95	2012- 10-26	56017.47	False	58.85	3.882	4018.91	58.08	100.0	2 .
421568	45	97	2012- 10-26	6817.48	False	58.85	3.882	4018.91	58.08	100.0	2 .
421569	45	98	2012- 10-26	1076.80	False	58.85	3.882	4018.91	58.08	100.0	2 .

421570 rows × 14 columns

4

In [13]: df.head()

Out[13]:

	Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4
0	1	1	2010- 05-02	24924.50	False	42.31	2.572	NaN	NaN	NaN	NaN
1	1	2	2010- 05-02	50605.27	False	42.31	2.572	NaN	NaN	NaN	NaN
2	1	3	2010- 05-02	13740.12	False	42.31	2.572	NaN	NaN	NaN	NaN
3	1	4	2010- 05-02	39954.04	False	42.31	2.572	NaN	NaN	NaN	NaN
4	1	5	2010- 05-02	32229.38	False	42.31	2.572	NaN	NaN	NaN	NaN
4											Þ

In [14]:

stores.head()

Out[14]:

	Store	Туре	Size
0	1	Α	151315
1	2	Α	202307
2	3	В	37392
3	4	Α	205863
4	5	В	34875

In [15]:

```
df = pd.merge(df, stores, on = ['Store'], how = 'left')
```

In [16]:

df.head()

Out[16]:

	Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4
0	1	1	2010- 05-02	24924.50	False	42.31	2.572	NaN	NaN	NaN	NaN
1	1	2	2010- 05-02	50605.27	False	42.31	2.572	NaN	NaN	NaN	NaN
2	1	3	2010- 05-02	13740.12	False	42.31	2.572	NaN	NaN	NaN	NaN
3	1	4	2010- 05-02	39954.04	False	42.31	2.572	NaN	NaN	NaN	NaN
4	1	5	2010- 05-02	32229.38	False	42.31	2.572	NaN	NaN	NaN	NaN
4											P

In [17]:

```
x = '2010-05-02'

str(x).split('-')
```

Out[17]:

EXPLORE MERGED DATASET

```
In [18]:
```

```
sns.heatmap(df.isnull(), cbar = False)
```

Out[18]:

<AxesSubplot:>

In [19]:

check the number of non-null values in the dataframe
df.isnull().sum()

Out[19]:

Store 0 Dept 0 Date Weekly Sales 0 IsHoliday 0 0 Temperature Fuel Price 0 MarkDown1 270889 MarkDown2 310322 MarkDown3 284479 286603 MarkDown4 MarkDown5 270138 CPI 0 0 Unemployment 0 Type 0 Size dtype: int64

In [20]:

```
# Fill up NaN elements with zeros
df = df.fillna(0)
```

In [21]:

df

Out[21]:

0	Store	Dept	2010- Date 05-02	Week21 <u>9</u> 924158	IsHoliday	Temperatuse	Fuel_Pr572	MarkDo@@0	MarkDo@@2	MarkDown9	MarkDo
1	1	2	2010- 05-02	50605.27	False	42.31	2.572	0.00	0.00	0.0	
2	1	3	2010- 05-02	13740.12	False	42.31	2.572	0.00	0.00	0.0	
3	1	4	2010- 05-02	39954.04	False	42.31	2.572	0.00	0.00	0.0	
4	1	5	2010- 05-02	32229.38	False	42.31	2.572	0.00	0.00	0.0	
				•••							
421565	45	93	2012- 10-26	2487.80	False	58.85	3.882	4018.91	58.08	100.0	2.
421566	45	94	2012- 10-26	5203.31	False	58.85	3.882	4018.91	58.08	100.0	2 .
421567	45	95	2012- 10-26	56017.47	False	58.85	3.882	4018.91	58.08	100.0	2.
421568	45	97	2012- 10-26	6817.48	False	58.85	3.882	4018.91	58.08	100.0	2 [.]
421569	45	98	2012-	1076.80	False	58.85	3.882	4018.91	58.08	100.0	2.

421570 rows × 16 columns

4

In [22]:

Statistical summary of the combined dataframe
df.describe()

Out[22]:

	Store	Dept	Weekly_Sales	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDo
count	421570.000000	421570.000000	421570.000000	421570.000000	421570.000000	421570.000000	421570.000000	421570.000
mean	22.200546	44.260317	15981.258123	60.090059	3.361027	2590.074819	879.974298	468.087
std	12.785297	30.492054	22711.183519	18.447931	0.458515	6052.385934	5084.538801	5528.873
min	1.000000	1.000000	-4988.940000	-2.060000	2.472000	0.000000	-265.760000	-29.100
25%	11.000000	18.000000	2079.650000	46.680000	2.933000	0.000000	0.000000	0.000
50%	22.000000	37.000000	7612.030000	62.090000	3.452000	0.000000	0.000000	0.000
75%	33.000000	74.000000	20205.852500	74.280000	3.738000	2809.050000	2.200000	4.540
max	45.000000	99.000000	693099.360000	100.140000	4.468000	88646.760000	104519.540000	141630.610
4								Þ

In [23]:

check the number of duplicated entries in the dataframe
df.duplicated().sum()

Out[23]:

Λ

In [24]:

```
df['Type'].value_counts()
```

Out[24]:

A 215478 B 163495 C 42597

Mama: Tima dtima: int6/

wame: Type, utype: THEO4

PERFORM EXPLORATORY DATA ANALYSIS

```
In [25]:
```

In [26]:

result

Out[26]:

	Туре	A	В	С															
Store	Dept																		
1	1	20094.19	NaN	NaN															
	2	45829.02	NaN	NaN															
	3	9775.17	NaN	NaN															
	4	34912.45	NaN	NaN															
	5	23381.38	NaN	NaN															
•••																			
45	93	NaN	2644.24	NaN															
	94	NaN	4041.28	NaN															
																95	NaN	49334.77	NaN
														97	NaN	6463.32	NaN		
	98	NaN	1061.02	NaN															
		1 1 2 3 4 5 45 93 94 95 97	Store Dept 1	Store Dept 1															

421570 rows × 3 columns

In [27]:

```
result.describe()
# It can be seen that Type A stores have much higher sales than Type B and Type C
```

Out[27]:

Туре	A	В	С
count	215478.000000	163495.000000	42597.000000
mean	20099.568043	12237.075977	9519.532538
std	26423.457227	17203.668989	15985.351612
min	-4988.940000	-3924.000000	-379.000000
25%	3315.090000	1927.055000	131.990000
50%	10105.170000	6187.870000	1149.670000
75%	26357.180000	15353.740000	12695.010000
max	474330.100000	693099.360000	112152.350000

In [28]:

```
np.mean, 'MarkDown4' : np.mean, 'MarkDown5' : np.mean})
```

In [29]:

result md

Out[29]:

			MarkDov	wn1	MarkD	own2	MarkD	own3	MarkDo	own4	MarkDown5																		
		IsHoliday	False	True	False	True	False	True	False	True	False	True																	
Date	Store	Dept																											
2010-01-10	1	1	0.00	NaN	0.0	NaN	0.00	NaN	0.00	NaN	0.00	NaN																	
		2	0.00	NaN	0.0	NaN	0.00	NaN	0.00	NaN	0.00	NaN																	
		3	0.00	NaN	0.0	NaN	0.00	NaN	0.00	NaN	0.00	NaN																	
		4	0.00	NaN	0.0	NaN	0.00	NaN	0.00	NaN	0.00	NaN																	
		5	0.00	NaN	0.0	NaN	0.00	NaN	0.00	NaN	0.00	NaN																	
2012-12-10	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	93	1956.28	NaN	0.0	NaN	7.89	NaN	599.32	NaN	3990.54	NaN
																				94	1956.28	NaN	0.0	NaN	7.89	NaN	599.32	NaN	3990.54
																95	1956.28	NaN	0.0	NaN	7.89	NaN	599.32	NaN	3990.54	NaN			
				97	1956.28	NaN	0.0	NaN	7.89	NaN	599.32	NaN	3990.54	NaN															
		98	1956.28	NaN	0.0	NaN	7.89	NaN	599.32	NaN	3990.54	NaN																	

421570 rows × 10 columns

In [30]:

result md.sum()

Out[30]:

	IsHoliday	
MarkDown1	False	1.017371e+09
	True	7.452684e+07
MarkDown2	False	2.310619e+08
	True	1.399088e+08
MarkDown3	False	2.460332e+07
	True	1.727284e+08
MarkDown4	False	4.196331e+08
	True	3.698298e+07
MarkDown5	False	6.585670e+08
	True	4.240793e+07
d+ + + + 1 0	2+61	

dtype: float64

In [31]:

result md.describe()

we can conclude that MarkDown2 and MarkDown3 have higher volume on holidays compared to that of regular days

while other MarkDowns don't show significant changes relating to holiday.

Out[31]:

		MarkDown1		MarkDown2		MarkDown3	MarkDown4		
ls	Holiday	False	True	False	True	False	True	False	
	count	391909.000000	29661.000000	391909.000000	29661.000000	391909.000000	29661.000000	391909.000000	29661.00
	mean	2595.936803	2512.620778	589.580546	4716.929394	62.778142	5823.417900	1070.741151	1246.85
	std	6123.402037	5020.047408	2984.163111	15295.329993	630.704594	19959.302249	3921.553070	3513.99
	min	0.000000	0.000000	-265.760000	-9.980000	-29.100000	0.000000	0.000000	0.00
	OEN/	0 000000	0 000000	0 000000	0 000000	0 000000	0 000000	0 000000	0.00

25%	0.000000 MarkDown1	บ.บบบบบบ	0.000000 MarkDown2	0.000000	ບ.ບບບບບ MarkDown3	0.000000	ບ.ບບບບບ MarkDown4	0.00
50% IsHoliday	0.000000 False	0.000000 True	0.000000 False	0.000000 True	0.000000 False	0.000000 True	0.000000 False	0.00
75%	2826.570000	2463.160000	0.500000	65.000000	3.840000	66.080000	442.390000	319.19
max	88646.760000	36778.650000	45971.430000	104519.540000	25959.980000	141630.610000	67474.850000	29483.81
4								<u> </u>

In [32]:

```
corr_matrix = df.drop(columns = ['Store']).corr()
```

In [33]:

```
plt.figure(figsize = (16,16))
sns.heatmap(corr_matrix, annot = True)
plt.show()
```


PERFORM DATA VISUALIZATION

TH [94]:

df

Out[34]:

)

228 229

	Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDo
0	1	1	2010- 05-02	24924.50	False	42.31	2.572	0.00	0.00	0.0	
1	1	2	2010- 05-02	50605.27	False	42.31	2.572	0.00	0.00	0.0	
2	1	3	2010- 05-02	13740.12	False	42.31	2.572	0.00	0.00	0.0	
3	1	4	2010- 05-02	39954.04	False	42.31	2.572	0.00	0.00	0.0	
4	1	5	2010- 05-02	32229.38	False	42.31	2.572	0.00	0.00	0.0	

421565	45	93	2012- 10-26	2487.80	False	58.85	3.882	4018.91	58.08	100.0	2 .
421566	45	94	2012- 10-26	5203.31	False	58.85	3.882	4018.91	58.08	100.0	2 [.]
421567	45	95	2012- 10-26	56017.47	False	58.85	3.882	4018.91	58.08	100.0	2
421568	45	97	2012- 10-26	6817.48	False	58.85	3.882	4018.91	58.08	100.0	2 [.]
421569	45	98	2012- 10-26	1076.80	False	58.85	3.882	4018.91	58.08	100.0	2.
421570 rows × 16 columns In [35]: df.hist(bins = 30, figsize = (20,20), color = 'r')											
<strin< td=""><td>g>:6:</td><td></td><td></td><td>arning: Con</td><td></td><td></td><td></td><td>class '</td><td>numpy.uin</td><td>t8'> for c</td><td>ompa</td></strin<>	g>:6:			arning: Con				class '	numpy.uin	t8'> for c	ompa
<pre>tibility. </pre>											
KeyErr	or: <	clas	s 'nuı	mpy.bool_'>							
During	hand	ling	of t	he above ex	ception	, another	exceptior	n occurred	:		
<pre>TypeError</pre>											
<pre>~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/plotting/_core.py in hist_fra me(data, column, by, grid, xlabelsize, xrot, ylabelsize, yrot, ax, sharex, sharey, figsiz e, layout, bins, backend, legend, **kwargs)</pre>											

~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/plotting/_matplotlib/hist.py in hist_frame(data, column, by, grid, xlabelsize, xrot, ylabelsize, yrot, ax, sharex, sha

```
rey, figsize, layout, bins, legend, **kwds)
    432
                if legend and can set label:
    433
                    kwds["label"] = col
--> 434
                ax.hist(data[col].dropna().values, bins=bins, **kwds)
    435
                ax.set title(col)
    436
                ax.grid(grid)
~/anaconda3/envs/python3/lib/python3.6/site-packages/matplotlib/ init .py in inner(ax,
data, *args, **kwargs)
   1445
            def inner(ax, *args, data=None, **kwargs):
   1446
                if data is None:
  1447
                    return func(ax, *map(sanitize sequence, args), **kwargs)
   1448
   1449
                bound = new sig.bind(ax, *args, **kwargs)
~/anaconda3/envs/python3/lib/python3.6/site-packages/matplotlib/axes/ axes.py in hist(sel
f, x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rw
idth, log, color, label, stacked, **kwargs)
                    # this will automatically overwrite bins,
   6649
   6650
                    # so that each histogram uses the same bins
-> 6651
                    m, bins = np.histogram(x[i], bins, weights=w[i], **hist kwargs)
   6652
                    tops.append(m)
   6653
                tops = np.array(tops, float) # causes problems later if it's an int
< array function internals> in histogram(*args, **kwargs)
~/anaconda3/envs/python3/lib/python3.6/site-packages/numpy/lib/histograms.py in histogram
(a, bins, range, normed, weights, density)
    820
    821
                # Pre-compute histogram scaling factor
 -> 822
                norm = n_equal_bins / _unsigned_subtract(last_edge, first_edge)
    823
    824
                # We iterate over blocks here for two reasons: the first is that for
~/anaconda3/envs/python3/lib/python3.6/site-packages/numpy/lib/histograms.py in unsigned
subtract(a, b)
                dt = signed to unsigned[dt.type]
    351
    352
            except KeyError:
 -> 353
                return np.subtract(a, b, dtype=dt)
    354
            else:
    355
                # we know the inputs are integers, and we are deliberately casting
TypeError: numpy boolean subtract, the `-` operator, is not supported, use the bitwise xo
          operator, or the logical xor function instead.
                                                       Weekly_Sales
                                                                      1.0
```



```
0.4
 0.2
                         0.2
                                                 0.2
                                                                        0.2
 0.0
                         0.0
                                                 0.0
                                                                        0.0
                      1.0
                                                                     1.0
 0.8
                         0.8
 0.6
                         0.6
 0.2
                         0.2
                         0.0 +
 0.0 +
In [36]:
# visualizing the relationship using pairplots
# there is a relationship between markdown #1 and Markdown #4
# holiday and sales
# Weekly sales and markdown #3
sns.pairplot(df[["Weekly Sales","IsHoliday","MarkDown1","MarkDown2","MarkDown3","MarkDown
4", "MarkDown5", "Type", "month"]], diag kind = "kde")
KeyError
                                            Traceback (most recent call last)
<ipython-input-36-70643fe14f11> in <module>
      3 # holiday and sales
      4 # Weekly sales and markdown #3
---> 5 sns.pairplot(df[["Weekly Sales","IsHoliday","MarkDown1","MarkDown2","MarkDown3","
MarkDown4", "MarkDown5", "Type", "month"]], diag kind = "kde")
~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/core/frame.py in getitem (
self, key)
   2910
                     if is iterator(key):
   2911
                         key = list(key)
-> 2912
                     indexer = self.loc. get listlike indexer(key, axis=1, raise missing=
True) [1]
   2913
   2914
                 # take() does not accept boolean indexers
~/anaconda3/envs/python3/lib/python3.6/site-packages/pandas/core/indexing.py in get list
like indexer(self, key, axis, raise missing)
   1252
                     keyarr, indexer, new indexer = ax. reindex non unique(keyarr)
   1253
-> 1254
                 self. validate read indexer(keyarr, indexer, axis, raise missing=raise mi
ssing)
   1255
                 return keyarr, indexer
   1256
```

```
In [38]:

df_type
```

Out [381:

Store Weekly_Sales IsHoliday Temperature Fuel_Price MarkDown1 MarkDown2 MarkDown3 MarkD Dept **Type** A 21.736419 44.622156 20099.568043 0.070471 60.531945 3.343999 3102.403194 1083.216159 549.644930 1325.89 B 18.450417 43.112273 12237.075977 0.070412 57.562951 3.382523 2553.465968 827.500452 481.215226 1043.93 C 38.942015 46.836350 9519.532538 0.069582 67.554266 3.364654 138.960203 53.274338 5.142226 F

In [39]:

.

```
sns.barplot(x = df['Type'], y = df['Weekly_Sales'], data = df)
```

Out[39]:

<AxesSubplot:xlabel='Type', ylabel='Weekly Sales'>

In [40]:

```
# df_dept = df.drop(columns = ['Store', 'Type', 'IsHoliday', 'Temperature', 'Fuel_Price', 'CPI
', 'Unemployment', 'Size', 'month'])
df_dept = df.groupby('Dept').mean()
df_dept
```

Out[40]:

	Store	Weekly_Sales	IsHoliday	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDown4	Marl
Dept										
1	23.000000	19213.485088	0.069930	60.663782	3.358607	2429.019322	818.872810	429.184037	1008.870435	1581
2	23.000000	43607.020113	0.069930	60.663782	3.358607	2429.019322	818.872810	429.184037	1008.870435	1581
3	23.000000	11793.698516	0.069930	60.663782	3.358607	2429.019322	818.872810	429.184037	1008.870435	1581
4	23.000000	25974.630238	0.069930	60.663782	3.358607	2429.019322	818.872810	429.184037	1008.870435	1581
5	22.757366	21365.583515	0.069797	60.559367	3.365397	2462.697233	830.226332	435.134596	1022.858240	1603
95	23.000000	69824.423080	0.069930	60.663782	3.358607	2429.019322	818.872810	429.184037	1008.870435	1581
96	23.258138	15210.942761	0.069839	61.539285	3.359920	2362.845647	820.762363	397.214137	999.452087	1660
97	23.357439	14255.576919	0.069767	60.490781	3.362418	2463.638764	833.096524	432.439341	1025.957821	1591
98	24.173920	6824.694889	0.071967	60.115942	3.372656	2569.994716	882.483088	467.655716	1074.883525	1678
99	21.438515	415.487065	0.110209	62.813596	3.592702	7741.403376	2164.573063	1734.841903	3897.476369	4526

81 rows × 13 columns

In [41]:

```
fig = plt.figure(figsize = (14,16))
df_dept['Weekly_Sales'].plot(kind = 'barh', color = 'r', width = 0.9)
```

Out[41]:

<AxesSubplot:ylabel='Dept'>

In [42]:

```
fig = plt.figure(figsize = (14,16))
df_dept['MarkDown1'].plot(kind = 'barh', color = 'blue', width = 0.9)
```

Out[42]:

In [43]:

```
fig = plt.figure(figsize = (14,16))

df_dept['MarkDown2'].plot(kind = 'barh', color = 'yellow', width = 0.9)
```

Out[43]:

In [44]:

```
fig = plt.figure(figsize = (14,16))

df_dept['MarkDown3'].plot(kind = 'barh', color = 'black', width = 0.9)
```

Out[44]:

In [45]:

```
fig = plt.figure(figsize = (14,16))

df_dept['MarkDown4'].plot(kind = 'barh', color = 'orange', width = 0.9)
```

Out[45]:

In [46]:

```
fig = plt.figure(figsize = (14,16))

df_dept['MarkDown5'].plot(kind = 'barh', color = 'brown', width = 0.9)
```

Out[46]:

- We can conclude that departments that have poor weekly sales have been assigned high number of markdowns. Let's explore this in more details
- Example: check out store 77 and 99

```
In [47]:
# Sort by weekly sales
df dept sale = df dept.sort values(by = ['Weekly Sales'], ascending = True)
df dept sale['Weekly Sales'][:30]
Out[47]:
Dept
47
        -7.682554
43
        1.193333
78
        7.296638
39
        11.123750
51
        21.931729
       23.211586
45
54
       108.305985
77
       328.961800
      347.370229
60
99
      415.487065
28
      618.085116
59
      694.463564
48
     1344.893576
27
     1583.437727
19
     1654.815030
52
     1928.356252
41
     1965.559998
36
     2022.571061
85
     2264.359407
31
     2339.440287
50
     2658.897010
35
      2921.044946
37
      3111.076193
83
      3383.349838
58
      3702.907419
56
      3833.706211
30
      4118.197208
12
      4175.397021
44
      4651.729658
6
      4747.856188
Name: Weekly_Sales, dtype: float64
```

TASK #8: PREPARE THE DATA BEFORE TRAINING

```
In [48]:
# Drop the date
df_target = df['Weekly_Sales']
df_final = df.drop(columns = ['Weekly_Sales', 'Date'])

In [49]:
df_final = pd.get_dummies(df_final, columns = ['Type', 'Store', 'Dept'], drop_first = Tr
ue)

In [50]:
df_final.shape
Out[50]:
(421570, 137)
In [51]:
```

```
Out[51]:
(421570,)
In [52]:
df final
Out[52]:
       IsHoliday Temperature Fuel_Price MarkDown1 MarkDown2 MarkDown3 MarkDown4 MarkDown5
                                                                                                    CPI Une
     0
                                             0.00
                                                        0.00
                                                                              0.00
                                                                                         0.00 211.096358
           False
                       42.31
                                 2.572
                                                                    0.0
     1
           False
                       42.31
                                 2.572
                                             0.00
                                                        0.00
                                                                    0.0
                                                                              0.00
                                                                                         0.00 211.096358
     2
                                             0.00
                                                        0.00
                                                                    0.0
                                                                              0.00
                                                                                         0.00 211.096358
           False
                       42.31
                                 2.572
     3
           False
                       42.31
                                 2.572
                                             0.00
                                                        0.00
                                                                    0.0
                                                                              0.00
                                                                                         0.00 211.096358
                       42.31
                                             0.00
                                                        0.00
                                                                              0.00
                                                                                         0.00 211.096358
     4
           False
                                 2.572
                                                                    0.0
 421565
           False
                       58.85
                                 3.882
                                          4018.91
                                                       58.08
                                                                  100.0
                                                                            211.94
                                                                                        858.33 192.308899
421566
                       58.85
                                 3.882
                                          4018.91
                                                       58.08
                                                                  100.0
                                                                            211.94
                                                                                        858.33 192.308899
           False
421567
                       58.85
                                 3.882
                                          4018.91
                                                       58.08
                                                                  100.0
                                                                            211.94
                                                                                        858.33 192.308899
           False
                       58.85
                                                       58.08
                                                                  100.0
                                                                                       858.33 192.308899
421568
           False
                                 3.882
                                          4018.91
                                                                            211.94
421569
           False
                       58.85
                                 3.882
                                          4018.91
                                                       58.08
                                                                  100.0
                                                                            211.94
                                                                                        858.33 192.308899
421570 rows x 137 columns
In [53]:
X = np.array(df final).astype('float32')
y = np.array(df target).astype('float32')
In [54]:
# reshaping the array from (421570,) to (421570, 1)
y = y.reshape(-1,1)
y.shape
Out[54]:
(421570, 1)
In [55]:
# scaling the data before feeding the model
# from sklearn.preprocessing import StandardScaler, MinMaxScaler
# scaler x = StandardScaler()
# X = scaler_x.fit_transform(X)
# scaler y = StandardScaler()
# y = scaler_y.fit_transform(y)
In [56]:
# spliting the data in to test and train sets
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15)
X test, X val, y test, y val = train test split(X test, y test, test size = 0.5)
In [57]:
```

df target.shape

X train

```
Out [57]:
                                        , 0.
array([[ 0.
           , 91.05 , 3.575, ..., 0.
                                                         ],
      [ 0.
           , 76.91 , 2.784, ...,
                                    0.
                                        , 0.
                                                         ],
                                                    0.
      [ 0.
            , 39. , 3.751, ...,
                                    0.
                                           0.
      . . . ,
                                        , 0.
      [ 0.
           , 85.8 , 3.554, ..., 0.
                                                    0.
                                                         ],
                                                 , 0.
           , 74.36 , 3.827, ..., 0. , 0.
      [ 0.
             , 81.47 , 3.523, ..., 0.
                                         , 0.
     dtype=float32)
TASK #9: TRAIN XGBOOST REGRESSOR IN LOCAL MODE
In [58]:
!pip install xgboost
Collecting xgboost
  Downloading xgboost-1.3.3-py3-none-manylinux2010 x86 64.whl (157.5 MB)
                              | 157.5 MB 24 kB/s s eta 0:00:01
Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3
.6/site-packages (from xgboost) (1.19.5)
Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3
.6/site-packages (from xgboost) (1.5.3)
Installing collected packages: xgboost
Successfully installed xgboost-1.3.3
In [59]:
# Train an XGBoost regressor model
import xgboost as xgb
model = xgb.XGBRegressor(objective = 'reg:squarederror', learning rate = 0.1, max depth =
5, n estimators = 100)
model.fit(X train, y train)
Out[59]:
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
            colsample bynode=1, colsample bytree=1, gamma=0, gpu id=-1,
            importance_type='gain', interaction_constraints='',
            learning rate=0.1, max delta step=0, max depth=5,
            min child weight=1, missing=nan, monotone constraints='()',
            n_estimators=100, n_jobs=2, num_parallel_tree=1, random_state=0,
            reg alpha=0, reg lambda=1, scale pos weight=1, subsample=1,
            tree method='exact', validate parameters=1, verbosity=None)
In [60]:
# predict the score of the trained model using the testing dataset
result = model.score(X test, y test)
print("Accuracy : {}".format(result))
Accuracy: 0.8192406043997631
In [61]:
# make predictions on the test data
y predict = model.predict(X test)
In [62]:
from sklearn.metrics import r2 score, mean squared error, mean absolute error
```

```
from math import sqrt
k = X_{test.shape[1]}
n = len(X test)
RMSE = float(format(np.sqrt(mean_squared_error(y_test, y_predict)),'.3f'))
MSE = mean squared error(y test, y predict)
MAE = mean absolute error(y test, y predict)
r2 = r2 score(y test, y predict)
adj r2 = 1 - (1-r2) * (n-1) / (n-k-1)
print('RMSE =',RMSE, '\nMSE =',MSE, '\nMAE =',MAE, '\nR2 =', r2, '\nAdjusted R2 =', adj r
2)
RMSE = 9779.869
MSE = 95645850.0
MAE = 6435.3916
R2 = 0.8192406043997631
Adjusted R2 = 0.8184539450224686
TRAIN XGBOOST USING SAGEMAKER
```

```
In [63]:
```

```
# Convert the array into dataframe in a way that target variable is set as the first colu
mn and followed by feature columns
# This is because sagemaker built-in algorithm expects the data in this format.

train_data = pd.DataFrame({'Target': y_train[:,0]})
for i in range(X_train.shape[1]):
    train_data[i] = X_train[:,i]
```

In [64]:

```
train_data.head()
```

Out[64]:

	Target	0	1	2	3	4	5	6	7	8	 127	128	12
0	83.400002	0.0	91.050003	3.575	0.000000	0.000000	0.0	0.000000	0.000000	215.013443	 0.0	0.0	0
1	19221.000000	0.0	76.910004	2.784	0.000000	0.000000	0.0	0.000000	0.000000	136.436691	 1.0	0.0	0
2	22466.269531	0.0	39.000000	3.751	10045.030273	7913.379883	0.0	8695.830078	3361.360107	141.300781	 0.0	0.0	0
3	11735.540039	0.0	80.889999	3.786	0.000000	0.000000	0.0	0.000000	0.000000	207.311981	 0.0	0.0	0
4	1358.140015	0.0	85.730003	2.664	0.000000	0.000000	0.0	0.000000	0.000000	210.361755	 0.0	0.0	0

5 rows × 138 columns

```
In [65]:
```

```
val_data = pd.DataFrame({'Target':y_val[:,0]})
for i in range(X_val.shape[1]):
    val_data[i] = X_val[:,i]
```

In [66]:

```
val_data.head()
```

Out[66]:

	Target	0	1	2	3	4	5	6	7	8	 127
0	70.000000	0.0	74.690002	2.860	0.000000	0.000000	0.000000	0.000000	0.000000	132.724838	 0.0
1	83.339996	0.0	67.790001	3.524	0.000000	0.000000	0.000000	0.000000	0.000000	206.673309	 0.0
2	5162.040039	1.0	28.139999	2.771	0.000000	0.000000	0.000000	0.000000	0.000000	131.586609	 0.0
3	898.780029	0.0	50.820000	3.583	0.000000	0.000000	0.000000	0.000000	0.000000	210.117065	 0.0

```
5 rows × 138 columns
In [70]:
val data.shape
Out[70]:
(31618, 138)
In [71]:
# save train data and validation data as csv files.
train data.to csv('train.csv', header = False, index = False)
val data.to csv('validation.csv', header = False, index = False)
In [72]:
# Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python
# Boto3 allows Python developer to write software that makes use of services like Amazon
S3 and Amazon EC2
import sagemaker
import boto3
from sagemaker import Session
# Let's create a Sagemaker session
sagemaker session = sagemaker.Session()
bucket = Session().default bucket()
prefix = 'XGBoost-Regressor'
key = 'XGBoost-Regressor'
#Roles give learning and hosting access to the data
#This is specified while opening the sagemakers instance in "Create an IAM role"
role = sagemaker.get execution role()
In [73]:
print(role)
arn:aws:iam::542063182511:role/service-role/AmazonSageMaker-ExecutionRole-20191104T033920
In [74]:
# read the data from csv file and then upload the data to s3 bucket
import os
with open('train.csv','rb') as f:
    # The following code uploads the data into S3 bucket to be accessed later for trainin
   boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train', k
ey)).upload fileobj(f)
# Let's print out the training data location in s3
s3 train data = 's3://{}/{}/train/{}'.format(bucket, prefix, key)
print('uploaded training data location: {}'.format(s3 train data))
uploaded training data location: s3://sagemaker-us-east-2-542063182511/XGBoost-Regressor/
train/XGBoost-Regressor
In [75]:
# read the data from csv file and then upload the data to s3 bucket
with open('validation.csv','rb') as f:
   # The following code uploads the data into S3 bucket to be accessed later for trainin
```

g

```
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'validatio
n', key)).upload_fileobj(f)
# Let's print out the validation data location in s3
s3_validation_data = 's3://{}/{}/validation/{}'.format(bucket, prefix, key)
print('uploaded validation data location: {}'.format(s3_validation_data))
```

uploaded validation data location: s3://sagemaker-us-east-2-542063182511/XGBoost-Regressor/validation/XGBoost-Regressor

In [76]:

```
# creates output placeholder in S3 bucket to store the output

output_location = 's3://{}/{output'.format(bucket, prefix)
print('training artifacts will be uploaded to: {}'.format(output_location))
```

training artifacts will be uploaded to: s3://sagemaker-us-east-2-542063182511/XGBoost-Reg ressor/output

In [77]:

```
# This code is used to get the training container of sagemaker built-in algorithms
# all we have to do is to specify the name of the algorithm, that we want to use

# Let's obtain a reference to the XGBoost container image
# Note that all regression models are named estimators
# You don't have to specify (hardcode) the region, get_image_uri will get the current region name using boto3.Session

from sagemaker.amazon.amazon_estimator import get_image_uri

container = get_image_uri(boto3.Session().region_name, 'xgboost','0.90-2') # Latest version of XGboost

The method get_image_uri has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
```

In [78]:

```
# Specify the type of instance that we would like to use for training
# output path and sagemaker session into the Estimator.
# We can also specify how many instances we would like to use for training
# Recall that XGBoost works by combining an ensemble of weak models to generate accurate/
robust results.
# The weak models are randomized to avoid overfitting
# num round: The number of rounds to run the training.
# Alpha: L1 regularization term on weights. Increasing this value makes models more conse
rvative.
# colsample by tree: fraction of features that will be used to train each tree.
# eta: Step size shrinkage used in updates to prevent overfitting.
# After each boosting step, eta parameter shrinks the feature weights to make the boostin
g process more conservative.
Xgboost regressor1 = sagemaker.estimator.Estimator(container,
                                       role,
                                       train instance count = 1,
                                       train instance type = 'ml.m5.2xlarge',
                                       output path = output location,
                                       sagemaker session = sagemaker session)
#We can tune the hyper-parameters to improve the performance of the model
Xgboost regressor1.set hyperparameters(max depth = 10,
                           objective = 'reg:linear',
                           colsample by tree = 0.3,
```

```
alpha = 10,
                          eta = 0.1,
                          num round = 100
train instance count has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
train instance type has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
In [ ]:
# Creating "train", "validation" channels to feed in the model
# Source: https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-
paths.html
train input = sagemaker.session.s3 input(s3 data = s3 train data, content type='csv',s3
data type = 'S3Prefix')
valid input = sagemaker.session.s3 input(s3 data = s3 validation data, content type='csv
',s3 data type = 'S3Prefix')
data channels = {'train': train input,'validation': valid input}
Xgboost regressor1.fit(data channels)
DEPLOY THE MODEL TO MAKE PREDICTIONS
In [104]:
# Deploy the model to perform inference
Xgboost regressor = Xgboost regressor1.deploy(initial instance count = 1, instance type
= 'ml.m5.2xlarge')
----!
In [105]:
Content type over-rides the data that will be passed to the deployed model, since the dep
loyed model expects data
in text/csv format, we specify this as content -type.
Serializer accepts a single argument, the input data, and returns a sequence of bytes in
the specified content
type
Reference: https://sagemaker.readthedocs.io/en/stable/predictors.html
from sagemaker.predictor import csv serializer, json deserializer
Xgboost regressor.serializer = csv serializer
In [ ]:
X test.shape()
In [107]:
# making prediction
predictions1 = Xgboost regressor.predict(X test[0:10000])
The csv serializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
```

F1 001

```
In [IO8]:
predictions2 = Xgboost regressor.predict(X test[10000:20000])
The csv_serializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
In [109]:
predictions3 = Xgboost regressor.predict(X test[20000:30000])
The csv serializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
In [110]:
predictions4 = Xgboost regressor.predict(X test[30000:31618])
The csv serializer has been renamed in sagemaker>=2.
See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
In [ ]:
predictions4
In [112]:
# custom code to convert the values in bytes format to array
def bytes 2 array(x):
    # makes entire prediction as string and splits based on ','
    l = str(x).split(',')
    # Since the first element contains unwanted characters like (b,',') we remove them
    1[0] = 1[0][2:]
    #same-thing as above remove the unwanted last character (')
    1[-1] = 1[-1][:-1]
    # iterating through the list of strings and converting them into float type
    for i in range(len(1)):
        l[i] = float(l[i])
    # converting the list into array
    1 = np.array(1).astype('float32')
    # reshape one-dimensional array to two-dimensional array
    return 1.reshape(-1,1)
In [113]:
predicted values 1 = bytes 2 array(predictions1)
In [114]:
predicted values 1.shape
Out[114]:
(10000, 1)
In [115]:
predicted values 2 = bytes_2_array(predictions2)
predicted values 2.shape
Out[115]:
(10000, 1)
In [116]:
predicted values 3 = bytes 2 array(predictions3)
```

```
predicted_values_3.shape
Out[116]:
(10000, 1)
In [117]:
predicted values 4 = bytes 2 array(predictions4)
predicted values 4. shape
Out[117]:
(1618, 1)
In [118]:
predicted values = np.concatenate((predicted values 1, predicted values 2, predicted valu
es 3, predicted values 4))
In [119]:
predicted values.shape
Out[119]:
(31618, 1)
In [120]:
from sklearn.metrics import r2 score, mean squared error, mean absolute error
from math import sqrt
k = X \text{ test.shape}[1]
n = len(X test)
RMSE = float(format(np.sqrt(mean squared error(y test, predicted values)),'.3f'))
MSE = mean_squared_error(y_test, predicted_values)
MAE = mean_absolute_error(y_test, predicted_values)
r2 = r2 score(y test, predicted values)
adj r2 = 1-(1-r2)*(n-1)/(n-k-1)
print('RMSE =',RMSE, '\nMSE =',MSE, '\nMAE =',MAE, '\nR2 =', r2, '\nAdjusted R2 =', adj_r
RMSE = 7492.593
MSE = 56138950.0
MAE = 4353.634
R2 = 0.8939039998714412
Adjusted R2 = 0.8934422733143379
In [121]:
# Delete the end-point
```

PERFORM HYPERPARAMETERS OPTIMIZATION

TRAIN THE MODEL WITH BEST PARAMETERS

Xgboost regressor.delete endpoint()

```
train_instance_count=1,
                                       train_instance_type='ml.m4.xlarge',
                                       output path=output location,
                                       sagemaker session=sagemaker session)
# We can tune the hyper-parameters to improve the performance of the model
Xgboost regressor.set hyperparameters(max depth=25,
                           objective='reg:linear',
                           colsample bytree = 0.3913546819101119,
                           alpha = 1.0994354985124635
                           eta = 0.23848185159806115,
                           num_round = 237
                           )
In [ ]:
train input = sagemaker.session.s3 input(s3 data = s3 train data, content type='csv',s3
data type = 'S3Prefix')
valid input = sagemaker.session.s3 input(s3 data = s3 validation data, content type='csv
',s3 data type = 'S3Prefix')
data channels = {'train': train_input,'validation': valid_input}
Xgboost_regressor.fit(data_channels)
In [192]:
# Deploying the model to perform inference
Xgboost regressor = Xgboost regressor.deploy(initial instance count = 1,
                                          instance type = 'ml.m4.xlarge')
----!
In [194]:
from sagemaker.predictor import csv_serializer, json_deserializer
# Xgboost regressor.content type = 'text/csv'
Xgboost regressor.serializer = csv serializer
In [ ]:
# Try to make inference with the entire testing dataset (Crashes!)
predictions = Xgboost regressor.predict(X test)
predicted values = bytes 2 array(predictions)
In [196]:
predictions1 = Xgboost regressor.predict(X test[0:10000])
In [197]:
predicted values 1 = bytes 2 array(predictions1)
predicted values 1.shape
Out[197]:
(10000, 1)
In [198]:
predictions2 = Xgboost regressor.predict(X test[10000:20000])
predicted values 2 = bytes 2 array(predictions2)
predicted_values_2.shape
Out[198]:
(10000, 1)
In [199]:
predictions3 = Xgboost regressor.predict(X test[20000:30000])
```

```
predicted_values_3 = bytes_2_array(predictions3)
predicted values 3.shape
Out[199]:
(10000, 1)
In [200]:
predictions4 = Xgboost_regressor.predict(X test[30000:31618])
predicted values 4 = bytes 2 array(predictions4)
predicted values 4.shape
Out[200]:
(1618, 1)
In [201]:
predicted values = np.concatenate((predicted values 1, predicted values 2, predicted valu
es 3, predicted values 4))
In [202]:
from sklearn.metrics import r2 score, mean squared error, mean absolute error
from math import sqrt
k = X \text{ test.shape}[1]
n = len(X test)
RMSE = float(format(np.sqrt(mean_squared_error(y_test, predicted_values)),'.3f'))
MSE = mean_squared_error(y_test, predicted_values)
MAE = mean_absolute_error(y_test, predicted_values)
r2 = r2 score(y test, predicted values)
adj r2 = 1-(1-r2)*(n-1)/(n-k-1)
print('RMSE =',RMSE, '\nMSE =',MSE, '\nMAE =',MAE, '\nR2 =', r2, '\nAdjusted R2 =', adj_r
2)
RMSE = 4266.012
MSE = 18198860.0
MAE = 1811.6404
R2 = 0.9638345632190437
Adjusted R2 = 0.9636760184661681
In [203]:
# Delete the end-point
Xgboost regressor.delete endpoint()
In [ ]:
feature.info()
feature.describe()
sales.info()
sales.describe()
stores.info()
stores.describe()
In [ ]:
def get month(x):
    return int(str(x).split('-')[1])
df['month'] = df['Date'].apply(get month)
In [ ]:
df['IsHoliday'] = df['IsHoliday'].replace({True : 1, False : 0})
```