Homework 4 due Wed, Sept 29th by 11am in Gradescope

Name: Sean Eva GTID: 903466156 Collaborators:

Outside resources:

INSERT a "pagebreak" command between each problem (integer numbers). Problem subparts (letter numbered) can be on the same page.

REMOVE all comments (within "textit{}" commands) before submitting solutions.

DO NOT include any identifying information (name, GTID) except on the first/cover page.

- 1. Let G be a group with subgroup H and $N \triangleleft G$. Let $HN = \{hn \mid h \in H, n \in N\}$. Prove that:
 - (a) $H \cap N \triangleleft H$

Let assumptions be as above. Consider $a \in N \cap H$, and $h \in H$, we need to show that $h^{-1}ah \in N \cap H$ which is the same as $h^{-1}ah \in H$ and $h^{-1}ah \in N$. It is trivial to see that $h^{-1}ah \in H$ because each H is a subgroup and is therefore closed under the operation. Alternatively, since $N \triangleleft G$ that means that any conjugation of an element in N with an element of G is still an element of N. Therefore, since H is a subgroup of G, then $h^{-1}ah \in N$. Since $h^{-1}ah \in N$ and $h^{-1}ah \in H$ then $h^{-1}ah \in H \cap N$ and $H \cap N \triangleleft H$.

(b) HN is a subgroup of G

Let assumptions be as above. Since H and N are subgroups of G, then $e \in H$ and $e \in N$, and therefore, $ee = e \in HN$ which means that HN is nonempty. Consider $x, y \in HN$ such that $x = h_1n_1$ and $y = h_2n_2$. Then, $xy^{-1} = h_1n_1(h_2n_2)^{-1} = h_1n_1n_2^{-1}h_2^{-1}$. Since $N \triangleleft G$, then $n_1n_2^{-1} \in N$ and then $h_1(n_1n_2^{-1})h_2^{-1} \in h_1Nh_2^{-1}$ and $h_1Nh_2^{-1} = h_1h_2^{-1}N$. Since $h_1h_2^{-1} \in H$ then $h_1h_2^{-1} \in HN$ and $xy^{-1} \in HN$ and so HN is a subgroup of G.

(c) $N \subseteq HN$ and $N \triangleleft HN$

Let assumptions be as above. Since H and N are subsets of G we know that $e \in H$. Therefore, if we consider $hn \in HN$ where $h \in H$ and $n \in N$, and if we consider h = e then $hn = en = n \in N$ which would mean that any $n \in N$ is also an element of HN. Therefore, $N \subseteq HN$. Since HN is a subgroup of G we know that all $hn \in HN$ are also in G and since N is normal in G, we know that $(hn)^{-1}n(hn) \in N$ and since this apply to all $hn \in HN$, we know that $N \triangleleft HN$.

(d) $(HN)/N \simeq H/(H \cap N)$

Since $N \triangleleft G$, $N \subseteq HN$, and $N \triangleleft HN$ we know that HN/N is a group under right coset multiplication. Let us define $\phi: H \to HN/N$ by $\phi(h) = Nh$. It is easy to see that $\phi(ab) = Nab = NaNb = \phi(a)\phi(b)$ so ϕ is a homomorphism. then, let $y \in HN/N$, that is to say that y = Nhn for some $h \in H$ and $n \in N$. Since $N \triangleleft HN$ then all left cosets is also a right coset. This means that we can rewrite y = Nhn = hnN and since nN = N we can rewrite $y = hN = \phi(h)$. Finally, $\ker \phi = \{h \in H : \phi(h) = N\} = \{h \in H : h \in N\} = H \cap N$. Therefore, $H/(H \cap N) \simeq HN/N$ by the first homomorphism theorem.

- 2. Let S be a nonempty set and consider the group A(S). Let i denote the identity function so that i(s) = s for all $s \in S$. Let $f \in A(S)$. Let p be a prime.
 - Let $s \in S$. Define the orbit of s (under f) as $O(s) = \{f^j(s) \mid j \in \mathbb{Z}\}.$
 - (a) For $s,t\in S$, prove that either $O(s)\cap O(t)=\emptyset$ or O(s)=O(t). Let assumptions be as above. Let $O(s)=\{s,f^1(s),...,f^n(s)\},O(t)=\{t,f^1(t),...,f^m(t)\}$ where $n,m\in\mathbb{Z}$ such that $f^{n+1}(s)=s,f^{m+1}(t)=t$. If s=t then it is trivial to see that O(s)=O(t). So suppose that $s\neq t$ and let it be that $f^j(s)\neq t$. Then it would suffice then that $O(s)\neq O(t)$ and that $O(s)\cap O(t)=\emptyset$. However, consider that for some $j\in Z, f^j(s)=t$, which implies that $O(t)\subset O(s)$. Then it would follow that for some $b\in\mathbb{Z}$ that $f^{j+b}(s)=s$ as we could say that n+1=j+b such as we defined O(s). This then implies that $s\in O(t)$ which would then imply that $O(s)\subset O(t)$ which therefore means that O(s)=O(t).
 - (b) If $f^3 = i$, show that the orbit of any element of S has one or three elements. Let assumptions be as above. If $f^3 = i$ then we know that $f^3(s) = s$ which then means that $O(s) = \{s, f^1(s), f^2(s)\}$. Suppose that $s = f^1(s)$ this would then imply also that $f^2(s) = s$ and then O(s) would only have one element. Otherwise, if $s \neq f^1(s)$ and since that $f^3 = i$ we know then that $f^1(s)f^2(s) = f^3(s) = s$. We know f^1 cannot be it's own inverse because then that would imply that $f^1(s)f^1(s) = s = f^2(s)$ which would then imply that $f^1(s)f^2(s) = f^3(s) = f^1(s) = s$ which would contradict that $f^1(s) \neq s$ and then show that O(s) has three elements.
 - (c) Suppose $f^p = i$ but $f \neq i$. If $f^j(s) = s$ for some $s \in S$ and $1 \leq j < p$, prove f(s) = s. Let assumptions be as above. Consider that $f^p(s) = s = f^j(s)$ for $s \in S$ and $1 \leq j < p$. Since $p \nmid j$ we can say that ap + bj = 1 for some $a, b \in \mathbb{Z}$. Therefore $f^1(s) = f^{ap+bj}(s) = f^{ap}(f^{bj}(s)) = f^{ap}(s) = s$ which therefore implies that $f^1(s) = s$.
 - (d) Suppose f has order p. Prove that for every $s \in S$, O(s) has either one or p elements. Let assumptions be as above. We want to show that $O(s) = \{s, f^1(s), f^2(s), ..., f^{p-1}(s)\}$ has either p elements or only one element. Suppose that s = f(s) then that would imply that $s = f(s) = ... = (f^{p-1})$ which would mean that O(s) has only one element. Suppose then $s \neq f(s)$ and we claim that these p elements are distinct. If not then that is to say that for some $f^i(s)$ it is equal to $f^j(s)$ for $0 \leq i < j \leq p-1$. This would then imply that $f^{j-i}(s) = s$. Let m = j-i, then $0 < m \leq p-1$ and $f^m(s) = s$. However, since $p \nmid m$, we can say that ap + bm = 1 some some $a, b \in \mathbb{Z}$. Therefore, $f^1(s) = f^{ap+bm}(s) = f^{ap}(f^{bm}(s)) = f^{ap}(s) = s$, since $f^m(s) = f^p(s) = s$. This contradicts that $f(s) \neq s$. Therefore, O(s) consists of p elements.

- 3. Let G be a group of order 42.
 - (a) Prove that G has a normal subgroup of order 7. Let assumptions be as above. Consider the prime factorization of 42, that is $42 = 7^1 * 3^1 * 2^1$. This means that for some element $a \in G$ it is true that o(a) = 7 by Cauchy's Theorem. Additionally, since 7 > 3 > 2, it is true that $(a) \triangleleft G$.
 - (b) Now prove that G has a normal subgroup of order 21. Let assumptions be as above. Since we know that G has a normal subgroup of order 7, and that G has a subgroup of order 3 we know that. Let us say that $A \triangleleft G$ such that |A| = 7 and let us say that H is a subgroup of G such that |H| = 3. We know that all left cosets of A are also right cosets of A. Then if we used the group AH, since (7,3) = 1 and we know ah = ha since all A is normal in G. We know from homework 2 number 1 part b that AH is a subgroup of G order 3 * 7 = 21.

- 4. Problem #24 in Section 2.5 on page 75.
 - (a) Prove that G is a group.

Let assumptions be as above. In order to show that G is a group, we need to show that it is nonempty, contains an identity, contains inverses, is closed under the operation, and is associative. Let $(a_1,b_1) \in G$. The identity element of G would be (e_1,e_2) where $e_1 \in G_1$ is the identity element in G_1 and $e_2 \in G_2$ is the identity element in G_2 . This means that $(a_1,b_1)(e_1,e_2)=(a_1e_1,b_1e_2)=(a_1,b_1)$. Since G has this element (e_1,e_2) then G is nonempty. Let $(a_1,b_1) \in G$ where $a_1 \in G_1, b_1 \in G_2$, since G_1, G_2 are groups, then we know that $a_1^{-1} \in G_1$ and $b_1^{-1} \in G_2$, and then $(a_1^{-1},b_1^{-1}) \in G$. Therefore, $(a_1,b_1)(a_1^{-1},b_1^{-1})=(a_1a_1^{-1},b_1b_1^{-1})=(e_1,e_2)$ which is the identity element of G. Since G_1,G_2 are groups, we know that they are are closed under their operations, that is to say that for some $a_1a_2=a_3\in G_1,b_1b_2=b_3\in G_2$. This implies that $(a_1,b_1),(a_2,b_2)\in G$ then that $(a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2)=(a_3,b_3)\in G$ which means that G is closed under the operation. Lastly, let $(a_1,b_1),(a_2,b_2),(a_3,b_3)\in G$ then $(a_1,b_1)[(a_2,b_2)(a_3,b_3)]=(a_1,b_1)(a_2a_3,b_2b_3)=(a_1a_2a_3,b_1b_2b_3)=(a_1a_2,b_1b_2)(a_3,b_3)=[(a_1,b_1)(a_2,b_2)](a_3,b_3)$ which means that G is associative under the operation. Therefore, G meets all conditions and is thus a group.

- (b) Show that there is a monomorphism ϕ_1 of G_1 into G such that $\phi_1(G_1) \triangleleft G$, given by $\phi(a_1) = (a_1, e_2)$, where e_2 is the identity element of G_2 . Let assumptions be as above. Then we first need to show that ϕ_1 is a monomorphism. We will first show that ϕ_1 is one to one, consider $a_1, a_2 \in G_2$ such that $\phi_1(a_1) = \phi_1(a_2)$. That is to say that $(a_1, e_2) = (a_2, e_2)$ that implies that $a_1 = a_2$ and therefore, ϕ_1 is one to one. Now we need to show that ϕ_1 is a homomorphism. Consider $a_1, a_2 \in G_1$, then $\phi_1(a_1)\phi_1(a_2) = (a_1, e_2)(a_2, e_2) = (a_1a_2, e_2) = \phi(a_1a_2)$ which then means that ϕ_1 is a homomorphism and similarly, ϕ_1 is a monomorphism. Next we want to show that $\phi_1(G_1) \triangleleft G$. Consider $(a_1, e_2) \in \phi_1(G_1)$ and $(a_2, b_2), (a_2^{-1}, b_2^{-1}) \in G$. Then, $(a_2^{-1}, b_2^{-1})(a_1, e_2)(a_2, b_2) = (a_2^{-1}a_1a_2, b_2^{-1}e_2b_2) = (a_2^{-1}a_1a_2, e_2)$ and since $a_2^{-1}a_1a_2 \in G_1$ then $(a_2^{-1}a_1a_2, e_2) \in \phi_1(G_1)$ which means that $\phi_1(G_1) \triangleleft G$.
- (c) Find the similar monomorphism ϕ_2 of G_2 into G_2 . Let assumptions be as above. Let $\phi_2(b_1) = (e_1, b_1)$, where e_1 is the identity element of G_1 .
- (d) Using the mappings ϕ_1, ϕ_2 of Parts (b) and (c), prove that $\phi_1(G_1)\phi_2(G_2) = G$ and $\phi_1(G_1) \cap \phi_2(G_2)$ is the identity element of G. Let assumptions be as above. Let $x \in \phi_1(G_1) \cap \phi_2(G_2)$, that is to say that $x \in \phi_1(G_1)$ and $x \in \phi_2(G_2)$. Then $x = (a_1, e_2)$ and $x = (e_1, b_1)$ that then means that $(a_1, e_2) = (e_1, b_1)$ and thus, $a_1 = e_1, b_1 = e_2$ which then means that $x = (e_1, e_2)$. Therefore, $\phi_1(G_1) \cap \phi_2(G_2)$ is the identity element of G. Now, let $x = (a_1, b_1) \in G$. Then $x = (a_1, b_1)(e_1, e_2) = (a_1e_1, b_1e_2) = (a_1, e_2)(e_1, b_1) = \phi_1(a_1)\phi_2(b_1) \in \phi_1(G_1)\phi_2(G_2)$. Since this applies to any element of G, then we know that $\phi_1(G_1)\phi_2(G_2) = G$.
- (e) Prove that $G_1 \times G_2 \simeq G_2 \times G_1$.

Let assumptions be as above. Define a map $\psi: G_1 \times G_2 \to G_2 \times G_1$ such that $\psi(a_1,b_1)=(b_1,a_1)$ for $a_1 \in G_1, b_1 \in G_2$. We will first show that ψ is a homomorphism. Consider $\psi((a_1,b_1)(a_2,b_2))=\psi((a_1a_2,b_1b_2))=(b_1b_2,a_1a_2)=(b_1,a_1)(b_2,a_1)=\psi((a_1,b_1))\psi((a_2,b_2))$ which shows that ψ is a homomorphism. Next we will show that ψ is one to one. Let $\psi((a_1,b_1))=\psi((a_2,b_2))$, then $(b_1,a_1)=(b_2,a_2)$ which then implies

that $b_1=b_2, a_1=a_2$ and therefore, ψ is one to one. Lastly, we will show that ψ is onto. Let $x\in G_2\times G_1$ that is to say that $x=(b_1,a_1)$. Then $\psi((a_1,b_1))=(b_1,a_1)$ for any $x\in G_2\times G_1$. Since ψ is an isomorphism, then $G_1\times G_2\simeq G_2\times G_1$.

- 5. Problem #4 in Section 2.7 on page 87.
 - (a) $N = \{(a, e_2) | a \in G_1\}$, where e_2 is the unit element of G_2 , is a normal subgroup of G. Let assumptions be as above. We want to show that $N \triangleleft G$. Consider $(a_1, e_2) \in N$ and $(a_2, b_2), (a_2^{-1}, b_2^{-1}) \in G$. Then, $(a_2^{-1}, b_2^{-1})(a_1, e_2)(a_2, b_2) = (a_2^{-1}a_1a_2, b_2^{-1}e_2b_2) = (a_2^{-1}a_1a_2, e_2)$ and since $a_2^{-1}a_1a_2 \in G_1$ then $(a_2^{-1}a_1a_2, e_2) \in N$ which means that $N \triangleleft G$.
 - (b) $N \simeq G_1$

Let assumptions be as above. In order for $N \simeq G_1$ we need to define an isomorphism $\phi: N \to G_1$. Consider $\phi((a,e_2)) = a$. Consider $(a,e_2), (b,e_2) \in N$, then $\phi((a,e_2)(b,e_2)) = \phi((ab,e_2)) = ab = \phi((a,e_2))\phi((b,e_2))$. Therefore, ϕ is a homomorphism. Now we will show that ϕ is one to one. Consider $(a,e_2), (b,e_2) \in N$ such that $\phi((a,e_2)) = \phi(b,e_2)$. Then that is to say that $\phi((a,e_2)) = a = \phi((b,e_2)) = b$ which implies that ϕ is one to one. Lastly we will show that ϕ is onto. Consider $a \in G_1$, then for $(a,e_2) \in N$ that $\phi((a,e_2)) = a$ which shows that ϕ is onto. Therefore, since ϕ is isomorphic, then we know that $N \simeq G_1$.

(c) $G/N \simeq G_2$

Let assumptions be as above. Then $G/N = \{[a] | a \in G\} = \{Na | a \in G\}$ and we can show that this is isomorphic to G_2 if we can define $\phi : G/N \simeq G_2$. Then define $a \in G/N$ that is to say that $a = (a_1, e_2)(a_2, b_1) = (a_1a_2, b_1)$ and define $\phi(a) = \phi((a_1a_2, b_1)) = b_1$. Consider $\phi((a, b)) = b$. Consider $(a_1, b_1), (a_2, b_2) \in G/N$, then $\phi((a_1, b_1)(a_2, b_2)) = \phi((a_1a_2, b_1b_2)) = b_1b_2 = \phi((a_1, b_1))\phi((a_2, b_2))$. Therefore, ϕ is a homomorphism. Now we will show that ϕ is one to one. Consider $(a_1, b_1), (a_2, b_2) \in G/N$ such that $\phi((a_1, b_1)) = \phi(a_2, b_2)$. Then that is to say that $\phi((a_1, b_1)) = b_1 = \phi((a_2, e_2)) = b_2$ which implies that ϕ is one to one. Lastly we will show that ϕ is onto. Consider $b \in G_2$, then for $(a, b) \in N$ that $\phi((a, b)) = b$ which shows that ϕ is onto. Therefore, since ϕ is isomorphic, then we know that $G/N \simeq G_2$.

- 6. Let $[a]_n$ denote the equivalence class of a in \mathbb{Z}_n . Compute G/N but do NOT submit:
 - (a) $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and N is the cyclic group generated by $([0]_4, [1]_6)$.
 - (b) $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and N is the cyclic group generated by ([2]₄, [3]₆).
 - (c) $G = \mathbb{Z} \times \mathbb{Z}$ and N is the cyclic group generated by (1,1).
- 7. Let $[a]_n$ denote the equivalence class of a in \mathbb{Z}_n . Compute but do NOT submit:
 - (a) Let $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_3$ be the homomorphism with $\phi([1]_{12}) = [2]_3$. Check that all the conditions of the First Homomorphism Theorem apply, and then write down what all the conclusions are.
 - (b) Do the same thing for the Second Homomorphism Theorem and the group \mathbb{Z}_{24} with H = ([4]) and N = ([6]). Be sure to write down the isomorphism between $H/(H \cap N)$ and (HN)/N explicitly.
 - (c) Do the same thing for the Third Homomorphism Theorem and the homomorphism $\phi: \mathbb{Z}_{24} \to \mathbb{Z}_8$ with $\phi([5]_{24}) = [3]_8$ and the subgroup $H = ([4]_{24})$. Be sure to write down the isomorphism between G/H and (G/K)/(H/K) explicitly.