An Interactive Approach to Formal Languages and Automata with JFLAP

NSF Grant DUE CCLI-EMD 0442513

Susan H. Rodger

Duke University

rodger@cs.duke.edu

SIGCSE 2011 AlgoViz Workshop March 9, 2011

Formal Languages and Automata Theory

- Traditionally taught
 - Pencil and paper exercises
 - No immediate feedback
- Different
 - More mathematical than most CS courses
 - Less hands-on than most CS courses
 - Programming is in most of their CS courses, not here

Why Develop Tools for Automata?

Textual	$(\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ $\delta = \{(q_0, b, q_0), (q_0, a, q_1), (q_1, a, q_0), (q_1, b, q_2), (q_2, a, q_1)\}$
Tabular	$egin{array}{c c c} & a & b \\ \hline q_0 & q_1 & q_0 \\ \hline q_1 & q_2 \\ \hline q_2 & & \end{array}$
Visual	do a do
Interactive	a q1 b q2

Overview of JFLAP

- Java Formal Languages and Automata
 Package
- Instructional tool to learn concepts of Formal Languages and Automata Theory
- Topics:
 - Regular Languages
 - Context-Free Languages
 - Recursively Enumerable Languages
 - Lsystems
- With JFLAP your creations come to life!

JFLAP – Regular Languages

Create

- DFA and NFA
- Moore and Mealy
- regular grammar
- regular expression

Conversions

- NFA to DFA to minimal DFA
- NFA $\leftarrow \rightarrow$ regular expression
- $-NFA \leftarrow \rightarrow$ regular grammar

JFLAP – Regular languages (more)

- Simulate DFA and NFA
 - Step with Closure or Step by State
 - Fast Run
 - Multiple Run
- Combine two DFA
- Compare Equivalence
- Brute Force Parser
- Pumping Lemma

JFLAP – Context-free Languages

Create

- Nondeterministic PDA
- Context-free grammar
- Pumping Lemma

Transform

- $-PDA \rightarrow CFG$
- CFG → PDA (LL & SLR parser)
- $-CFG \rightarrow CNF$
- CFG → Parse table (LL and SLR)
- CFG → Brute Force Parser

JFLAP – Recursively Enumerable Languages

Create

- Turing Machine (1-Tape)
- Turing Machine (multi-tape)
- Building Blocks
- Unrestricted grammar

Parsing

 Unrestricted grammar with brute force parser

JFLAP - L-Systems

 This L-System renders as a tree that grows larger with each successive derivation step.

Students love L-Systems

JFLAP's Use Around the World

- JFLAP web page has over 300,000 hits since 1996
- Google Search
 - JFLAP appears on over 9830 web pages
 - Note: search only public web pages
- JFLAP been downloaded in over 160 countries

Two-year JFLAP Study

Fourteen
Faculty Adopter
Participants

- -small, large
- public, private
- includes minority institutions

- Duke
- UNC-Chapel Hill
- Emory
- Winston-Salem State University
- United States Naval Academy
- Rensselaer Polytechnic Institute
- UC Davis
- Virginia State University
- Norfolk State University
- University of Houston
- Fayetteville State University
- University of Richmond
- San Jose State University
- Rochester Institute of Technology

Key Findings

- All the faculty used JFLAP in their courses
 - They used it mostly for homework, some used it for class demonstrations.
- Students had a high opinion of JFLAP
- Four-fifths of the students thought JFLAP was easy to use to draw automata, simulate and interpret the results.
- The majority of students felt that having access to JFLAP made learning course concepts easier, made them feel more engaged in the course and made the course more enjoyable.
- Over half of the students used JFLAP to study for exams, and thought that the time and effort spent using JFLAP helped them get a better grade in the course.
- There was a control group in the second year, but the difference in knowledge between the control group and the JFLAP group was not statistically significant.

JFLAP Materials

JFLAP works well with Linz book

New CD supplement with JFLAP exercises to go with this book

JFLAP book

www.jflap.org

JFLAP online tutorial

JFLAP Examples in Lecture

Example

 Create a DFA that recognizes strings with an even number of a's and an even number of b's

Example

 Create a DFA that recognizes strings with an even number of a's and an even number of b's

Example – DFA for even binary numbers with an even number of ones

Example – DFA for even binary numbers with an even number of ones

Example: Build an NFA for valid integers

• Example:

- Valid integers {-3, 8, 0, 456, 13, 500, ...}
- Not valid: {006, 3-6, 4.5, ...}

NFA for all valid integers

DFA annotated and w/shortcut

Example: NFA run and convert to DFA

Corresponding DFA

Minimize DFA

First add trap state q7

then build tree of distinguished states

Final Minimal State DFA

What next?

- Can convert to a regular expression ...
- Can convert to an NFA...

Using JFLAP during Lecture

- Use JFLAP to build examples of automata or grammars
- Use JFLAP to demo proofs
- Load a JFLAP example and students work in pairs to determine what it does, or fix it if it is not correct.

Example: JFLAP during Lecture

- Ask students to write on paper an NPDA for palindromes of even length
- Build one of their solutions using JFLAP
 - Shows students how to use JFLAP

Example 1: JFLAP during Lecture (cont)

- Run input strings on the NPDA
 - Shows the nondeterminism

Example: JFLAP during Lecture

- Brute Force Parser
 - Give a grammar with a lambdaproduction and unit production
 - Run it in JFLAP, see how long it takes (LONG)
 - Is aabbab in L?
 - Transform the grammar to remove the lambda and unitproductions
 - Run new grammar in JFLAP,
 runs much faster!

S	->	aB
В	\longrightarrow	BB
В	\rightarrow	аВа
В	\longrightarrow	b
В	->	λ

S	\rightarrow	aВ
В	\rightarrow	ВВ
В	\rightarrow	aBa
В	\rightarrow	b
S	\rightarrow	а
В	\rightarrow	В
В	\rightarrow	aa

Example 2 (cont) Parse Tree Results

- First Grammar 1863 nodes generated
- Second Grammar 40 nodes generated
- Parse tree is the same.

With JFLAP, Exploring Concepts too tedious for paper

- Load a Universal Turing Machine and run it
- See the exponential growth in an NFA or NPDA
- Convert an NPDA to a CFG
 - Large grammar with useless rules
 - Run both on the same input and compare
 - Transform grammar (remove useless rules)

NPDA to CFG

JFLAP's use Outside of Class

- Homework problems
 - Turn in JFLAP files
 - OR turn in on paper, check answers in JFLAP
- Recreate examples from class
- Work additional problems
 - Receive immediate feedback

Ordering of Problems in Homework

- Order questions so they are incremental in the usage of JFLAP
 - 1. Load a DFA. What is the language? Students only enter input strings.
 - 2. Load a DFA that is not correct. What is wrong? Fix it.
 - Students only modifying a small part.
 - 3. Build a DFA for a specific language. *Last, students build from scratch.*

Is this a TM for anbncn?

Here is the correct TM for anbnch

Why study finite automata?

- Application: Compiler
- Compiler identifies your syntax errors
- Can write a big DFA to identify all words in a Java program
 - integers, doubles, boolean
 - keywords, variable names
 - arithmetic operators, punctuation symbols
- Example LR Parser...

Lsystems

- Another type of grammar
 - Show a simple L-System
 - Show a tree
 - Show a fractal

Unrestricted Grammar - anbncn

S	\rightarrow	AX
A	\rightarrow	aAbc
A	\rightarrow	aBbc
Bb	\rightarrow	bВ
Вс	\rightarrow	D
De	\rightarrow	сD
Db	\rightarrow	bD
DX	\rightarrow	EXc
BX	\rightarrow	λ
сE	\rightarrow	Ec
bЕ	\rightarrow	Eb
аE	\rightarrow	aВ

Trace aabbcc

Example - Unrestricted Grammar anbmcndm

S	\rightarrow	aAcd
Α	\rightarrow	aAc
Α	\rightarrow	В
В	\rightarrow	bBZ
В	\rightarrow	b
Zc	\rightarrow	cZ
Zd	\rightarrow	dd

Example – Unrestricted Grammar (cont)

There are other ways to get interaction in this course besides software...

Interaction in Class – Props Edible Turing Machine

- TM for f(x)=2x where x is unary
- TM is not correct, can you fix it? Then eat it!
- States are blueberry muffins

Students building DFA with cookies and icing

