YAMAHA'L SI

YMF288

(OPN3-L) FM + Rhythm + SSG Synthesizer

■概要

YMF288は、YM2608BとFM音源部、リズム音源部、SSG音源部とのレジスタの互換性を保ちながら、ADPCM音源部、I/Oポート、SSG音源用D/Aコンバータを削除して端子数を削減し、CMOSプロセス化した音源LSIです。

スタンバイモード機能、低電圧動作を新たにサポートし、パッケージタイプとしては28ピンSOP、64ピンSQFPを用意しています。

これにより、YM2608Bと比べ低消費電力、小スペース化を実現しているため、ノートパソコン等で 使用しやすくなっています。

■特徴

- □FM音源部 (YM2608B互換)
 - 4オペレータ・6音同時発音
 - FM演算用に8種のアルゴリズムを用意
 - 振幅・周波数変調用にLFO機能内蔵
 - ステレオ出力
- □リズム音源部 (YM2608B互換)
 - 最大同時発音数6音

(バス・ドラム, スネア・ドラム, リム・ショット, タム, シンバル, ハイ・ハットの6音色各1音)

- 音色データ (ADPCM方式) ROM内蔵
- ステレオ出力
- □SSG音源部 (YM2608B互換)
 - 同時発音数は、矩形波3音、ノイズ1音
 - エンベロープ8種

□その他

- 2つのプログラマプルタイマー内蔵
- 音声データは、ステレオ16ビット、2'sコンプリメント、 MSBファースト出力
- 全レジスタをリード可能
- 低消費電力モード (スタンバイモード) サポート
- 動作電源電圧は+5Vまたは+3.3V
- 28ピンプラスチックSOP (YMF288-M)、64ピンプラスチックSQFP (YMF288-S)

■端子配置図

YMF288-M

YMF288-S

64 pin SQFP Top View

■端子機能説明

N	lo	Name	I/O	機能
1	57	VSS	-	グランド
2	59	D0	I/O	CPUインターフェース データ0
3	60	D1	I/O	CPUインターフェース データ1
4	61	D2	I/O	CPUインターフェース データ2
5	3	D3	I/O	CPUインターフェース データ3
6	5	D4	I/O	CPUインターフェース データ4
7	7	D5	I/O	CPUインターフェース データ5
8	10	D6	I/O	CPUインターフェース データ6
9	12	D7	I/O	CPUインターフェース データ7
10	14	/TEST1	I+	LSIテスト端子1 (必ず、無接続でご使用下さい)
11	20	/IC	I+	イニシャルクリア入力端子
12	21	5V/3V	I	電源電圧切換端子 ("H": 5V、"L": 3.3V)
13	22	/TEST2	I+	LSIテスト端子2 (必ず、無接続でご使用下さい)
14	24	VSS	-	グランド
15	25	/IRQ	OD	CPUインターフェース 割り込み信号
16	26	/COM	I	YM2608/YMF288モード切換 ("H": YM2608、"L": YMF288)
17	27	/CS	I+	CPUインターフェース チップセレクト
18	28	/WR	I	CPUインターフェース ライトイネープル
19	35	/RD	I	CPUインターフェース リードイネープル
20	37	A0	I	CPUインターフェース アドレス0
21	39	A1	I	CPUインターフェース アドレス1
22	42	/STBY	Ο	スタンバイモード出力 ("H": 通常動作、"L": スタンバイモード)
23	44	ВСО	О	DACインターフェース ビットクロック
24	46	DO	Ο	DACインターフェース シリアルデータ
25	52	WCO	Ο	DACインターフェース ワードクロック
26	54	LRO	О	DACインターフェース L/Rクロック
27	55	VDD	-	+5V (または+3.3V) 電源
28	56	MCLK	I	マスタークロック入力 (7.9872MHz)

上記以外は、N.C. 端子です。無接続でご使用下さい。

注)

I+: プルアップ内蔵入力端子 OD: オープンドレイン出力端子

■ブロック図

■各ブロック機能説明

1. タイミ ング・ジェネレータ部

各機能ブロックに必要なクロックおよびタイミング信号を生成します。

2. CPUインターフェース部

YMF288をコントロールするCPUとのインターフェースをします。

3. SSG音源部

SSGは、Software controlled Sound Generatorの略で、14本のレジスタ、3系列の矩形波発生器、および、1系列のノイズ発生器から構成されています。

14本のレジスタの操作により、出力波形の周波数、エンベロープ、レベルをコントロールすることで、同時に矩形波3音、ノイズ1音の発音が可能です。

4. リズム音源部

リズム音源部は、ADPCM方式を用いて圧縮した6音色のリズム音を再生します。

発音やレベルをコントロールするための8本のレジスタ、音色ROM、および、リアル・タイムに音色 ROM中のデータの伸張を行なう演算部から構成されています。

音色ROMには、バス・ドラム、スネア・ドラム、リム・ショット、タム、シンバル、ハイ・ハットの6音色が格納されており、6音同時発音が可能です。

5. FM音源部

FM音源部は、FM音源をコントロールするレジスタ群、フェイズ・ジェネレータ (PG)、エンベロープ・ジェネレータ (EG)、および、FM演算を行なうオペレータ (OP) などから構成されています。

これらのブロックは、それぞれ24スロットで時分割処理され、4スロット単位で一つの発音チャンネルを 形成します。従って、最大同時発音数は6音となります。

6. アキュムレータ部

SSG、リズムおよびFMの各音源から出力された信号をL/Rに振り分け(SSG音は除く)、それぞれミキシングおよびアキュムレートし、2チャンネルのシリアル・データを出力します。

■機能説明

1. CPUインターフェース

YMF288のFM音、SSG音及びリズム音の発音等の制御は、"2. レジスタマップ" に示される各データレジスタにデータを書き込むことで制御されます。レジスタへのデータの書き込みやレジスタからのデータの読み出しはD0~D7のデータバスを介して行います。データバスは、A0~A1のアドレス信号と/CS、/WR、/RDの各コントロール信号で制御され、以下のようなモードに設定されます。

/CS	/RD	/WR	A1	A0	アドレス範囲	モード
L	Н	L	L	L	00 – 2CH	アドレスライト (SSG、タイマーリズム等)
					30 – B6H	アドレスライト (FM 1~3チャンネル)
L	Н	L	L	Н	00 – 2CH	データライト (SSG、タイマーリズム等)
					30 – B6H	データライト (FM 1~3チャンネル)
L	Н	L	Н	L	10 – B6H	アドレスライト (FM 4~6チャンネル)
L	Н	L	Н	Н	10 – B6H	データライト (FM 4~6チャンネル)
L	L	Н	L	L	ххH	ステータス0リード
L	L	Н	L	Н	00 – B6H	データリード
					FFH	ステータス2リード (デバイス識別コード)
L	L	Н	Н	L	xxH	ステータス1リード
L	L	Н	Н	Н	xxH	インアクティプ
Н	X	X	X	X	xxH	

x: Don't care

1. インアクティプモード

D0~D7のデータバスは、ハイインピーダンス状態になります。

2. アドレスライトモード

データを書き込むレジスタのアドレスを設定します。データバス上にセットされたデータがレジスタのアドレスとしてラッチされます。データバス上のデータがレジスタのアドレスとしてラッチされるまでにマスタークロックで15サイクル必要です(詳細は、15ページ "5-5-2. レジスタアクセス時のウェイト時間の短縮"の項を参照)。この間はデータバス上のデータを変更しないで下さい。

3. データライトモード

アドレスライトモードで設定されたレジスタにデータを書き込むモードです。データバスには書き込むべきデータをセットして下さい。データバス上のデータがレジスタのデータとして確定するまでにマスタークロックで15サイクル必要です(詳細は、15ページ "5-5-2. レジスタアクセス時のウェイト時間の短縮"の項を参照)。この間はデータバス上のデータを変更しないで下さい。

4. データリードモード

アドレスライトモードで設定されたレジスタからデータを読み出すモードです。データバスにはレジスタの内容が出力されます。

※YMF288モードとYM2608互換モードでは読み出せるレジスタが異なります。詳細は "5-1-1. データレジスタリード機能" の項を参照して下さい。

5. ステータスリードモード

デバイスのステータスを読み出すモードです。データバスにはデバイスのステータス情報(タイマーフラグ、識別コード等)が出力されます。

2. レジスタマップ

YM288では、FM音、SSG音およびリズム音の制御等のために以下のレジスタが用意されています。

Address	A1="0" の時	A1="1" の時					
00H	SSG						
0DH							
10H		10H	Flag Control				
	Rhythm						
1DH							
20H 2CH	FM共通部 タイマー Key-On/Off						
30H		30H					
	FMパラメータ		FMパラメータ				
	チャンネル1 - 3		チャンネル4 - 6.				
В6Н		B6H					

2-1. ステータスレジスタ

Address (Hex)	ステ-	ータスト	レジス:	タ(R)			Comment		
	D7	D6	D5	D4	D3	D2	D1	D0	Comment
xxH	Busy						FI: TI-B	ag TI-A	ステータス0
xxH	Busy		"0"	"0"	"0"	"0"	Fla TI-B	ag TI-A	ステータス1
FFH				ID-	No.				ステータス2

7

2-2. SSGデータ レジスタ

Address	SSG	部レジ	スタ(R,	/W)					Comment
(Hex)	D7	D6	D5	D4	D3	D2	D1	D0	Comment
00H				Fine	Tune				
01H	Coarse Tune							Aチャンネル周波数設定	
02H	Fine Tune								Bチャンネル周波数設定
03H						Coarse	e Tune		Dデヤノイル同波数設定
04H	Fine Tune								Cチャンネル周波数設定
05H						Coarse	e Tune		(5) (7) 对"707间"(X gX dX AC
06H					Peri	od Cor	ntrol		ノイズ周波数設定
07H	IN/0 IOB	OUT IOA	C	/Noise B	Α	С	/Tone B	А	ミキサー設定
08H				М		Le	vel		Aチャンネル音量設定
09H				М		Le	vel		Bチャンネル音量設定
0AH				M Level					Cチャンネル音量設定
0BH	Fine Tune								エンベロープ周期設定
0CH	Coarse Tune								
0DH					С	ATT	ALT	HLD	エンベロープ形状設定

2-3. フラグコン トロールレジスタ

Address (Hex)	フラ:	グコン	トロー	ルレジ	スタ(F		Comment		
	D7	D6	D5	D4	D3	D2	D1	D0	Comment
10H	IRQ RST						Ma TI-B	sk TI-A	フラグコン トロール

2-4. FMデータ レジスタ

Address	FM部	レジス	タ(R/V	N)					Commant
(Hex)	D7	D6	D5	D4	D3	D2	D1	D0	Comment
20H							NEW	STBY	スタンバイモード、YM288 /YM2608B互換モード切替
21H				Te	est		LSIのテストレジスタ		
22H	LF0								LFOの周波数制御
24H				Tim	er-A				Timer-Aプリセットデータ設定
25H							Tim	er-A	Timer-Aノリセットナータ設定
26H				Tim	er-B				Timer-Bプリセットデータ設定
27H		Mode	Re B	set A	Ena B	able A	Lo B	ad A	Timer-AB制御、3CHのモード
28H	Slot CH							Key On/Off	
29H	SCH IRQ Enable						割り込み制御、 発音チャンネル数の設定		
2AH	Test								LSIのテストレジスタ
2BH	Test								LSIのテストレジスタ
2CH				Te	est				LSIのテストレジスタ
30-3EH			DT			M	ulti		Detune, Multiple
40-4EH					TL				Total Level
50-5EH	K	S				AR			Key Scale, Attack Rate
60-6EH	AM					DR			AM ON, Decay Rate
70-7EH						SR			Sustain Rate
80-8EH		S	L			F	RR		Sustain Level, Release Rate
90-9EH						SSC	G-EG		SSGタイプエンベロープ制御
A0-A2H				F-n	um.1				F-Number, Block
A4-A6H	Block F-num.2						2	r-Number, block	
A8-AAH	3ch* F-num.1								20H 20lot E Number Plack
AC-AEH			30	:h* Blo	ck	3cł	n* F-nu	m.2	3CH-3Slot F-Number, Block
B0-B2H				FB			Conne	t	Self-Feedback, アルゴリズム
B4-B6H	L	R	AN	ЛS			PMS		出力選択、AM/PM Sense

※30H - 9EHのレジスタはスロットとチャンネルに以下のように対応します。

Slot No.	S1	S2	S3	S4
CH1, CH4	х0Н	х8Н	х4Н	xCH
CH2, CH5	x1H	х9Н	x5H	xDH
CH3, CH6	x2H	xAH	x6H	xEH

2-5. リズム音制御レジスタ

Address	リズ	ム部レ	ジスタ	(R/W)					Comment
(Hex)	D7	D6	D5	D4	D3	D2	D1	D0	Comment
10H	DM		RIM	ТОМ		(on TC	SD	ダンプ、リズムKey On/Off	
11H					R	TL		リズムトータルボリューム	
12H				Te	est			LSIテストレジスタ	
18H	L	R		IL					出力選択、楽器ボリューム(BD)
19H	L	R				IL			出力選択、楽器ボリューム(SD)
1AH	L	R				IL			出力選択、楽器ボリューム(TC)
1BH	L	R		IL					出力選択、楽器ボリューム(HH)
1CH	L	R			IL				出力選択、楽器ボリューム(TOM)
1DH	L	R			IL				出力選択、楽器ボリューム(RIM)

3. DACインターフェース

YMF288の音声データ (FM音、SSG音、リズム音) は、DO端子より2'sコンプリメントデータとして出力されます。サンプリング周波数 (fs) は55.5kHz (@MCLK=7.9872MHz)、ビットクロックは48fsです。

図1: DACインターフェースタイミング

4. システムリセット

YM288は電源投入時、内部回路をリセットする (/IC="L") 必要があります。リセットには、/ICの立ち下がりのエッジと立ち上がりのエッジが必ず必要です。また、立ち上がりのエッジは、以下に示すタイミングチャート (図2) のようにLRCKの立ち下がりに同期させて下さい。図3にリセットの回路例を示します。

図2: リセット信号タイミング

図3: リセット回路例

5. YM2608からの変更点

以下にYMF288とYM2608B (OPNA) との違いについて説明します。

5-1. 動作モード

YMF288では、YM2608B互換モードと、YMF288モードの2種類のモード選択することができます。モードは/COM端子とNEWビットで選択し、以下のようになります。

/COM端子	NEW	モード
"H"	0	YM2608B互換
"H"	1	YM2608B互換
"L"	0	YM2608B互換
"L"	1	YMF288

YM2608B互換モードとYMF288モードでは以下の点カ異なります。

5-1-1. データレジスタリード機能

YM2608B互換モードでは、SSG部レジスタのみレジスタの内容を読み出すことが可能です。SSG 部以外のレジスタを読み出したときにはデータリードを行う直前にデータバスにセットされたデータが読み出されます。ただし、0E、0FHについては、ハイインピーダンス出力となります。

YMF288モードでは、すべてのレジスタの内容を読み出すことが可能ですが、以下のビットについては、常に"0"が出力されます。

27H Resetビット

10H IRO RSTビット

28H Slot、Chビット

10H DM、RKonビット

12H LSI Testレジスタ

21H LSI Testレジスタ

また、レジスタが存在しないアドレスを読み出した場合には無意味なデータが出力されます。これらのレジスタへのアクセスは禁止して下さい。ただし、0E、0FHについては、ハイインピーダンス出力となります。

5-1-2. スタンバイモード機能

スタンバイモードは、レジスタの内容を保持したまま消費電力を抑える機能です。この機能は YMF288モードでのみ有効です。

スタンバイモードへの移行及び復帰はSTBYビットで制御します。STBY="1" でスタンバイモード へ移行し、STBY="0" でスタンバイモードから復帰します。

スタンバイモードへ移行する前には必ずすべてのチャンネルをキーオフまたはダンプし、完全に発音を停止し、また、アドレス00H~05HのSSG音源部のトーン周波数レジスタは全て"0"に設定して下さい。

スタンバイモード中、各端子は以下の状態になります。

- D0~D7(データバス): 入力
- BCO、WCO、LRO、DO: "L" レベル出力
- /STBY: STBY="1" の期間中 "L" レベルとなり、STBY="0" が設定されると "H" レベルになります。

スタンバイモード中は、アドレス20H以外のレジスタへのアクセスは禁止します。また、マスタークロックの供給も停止しないで下さい。

スタンバイモードから復帰後、レジスタにアクセスを始めるまでに最低 20μ s以上のウェイト時間をおいて下さい。

5-1-3. デバイス識別コード

デバイス識別コードは、それぞれのモードで以下のように出力されます。

YM2608B互換モード 01H

YMF288モード 02H

5-1-4. BUSYフラグ

YM2608B互換モードと、YMF288モードでは以下のようにBUSYフラグの出力が異なります。

YM2608B互換モード: データライト後のみ24μs (192サイクル@7.9872MHz) の間Busyフラグが

出力されます。

YMF288モード: アドレスライト後、データライト後にBusyフラグが出力され、その期間は

以下のようになります。

アドレスライト後: $1.9\mu s$ (15サイクル@7.9872MHz) データライト後: $1.9\mu s$ (15サイクル@7.9872MHz)

ただし、 10HリズムKey On/Offレジスタ

22μs (180サイクル@7.9872MHz)

28H Slot、CHレジスタ

24μs (192サイクル@7.9872MHz)

※これ以降は、YMF288モード、YM2608B互換モード共通の仕様変更点です。

5-2. SSG音源部

5-2-1. I/0ポートの削除

I/Oポートを削除したため、レジスタ0EH, 0FHは不使用となりました。ただし、互換性を考慮して07HのD7, D6ビットは残されています。

5-2-2. D/Aコンバータの削除

SSG音源部専用のD/Aコンバータを削除しました。従って、SSG音もFM音およびリズム音とディジタル・ミキシングし、DO端子より出力されます。

ミキシング・レベルは、SSG音1チャンネル (Level=15:最大音量) は、FM音1スロット (Total Level=0: 最大音量) の0.25倍です (図4参照)。

図4: YMF288出力レベルミキシング比

5-2-3. トーン周波数設定の変更

Tp=(CoarseTune)*256+(FineTune) とすると、Tpの値により以下のようにトーン周波数を求める式が変わります。

$\square 0 \leq Tp \leq 7$

$$f_{tone} = 0$$
 [Hz]

※このときレベル設定値に対応する直流分が出力されます。ただし、アドレス07Hの /Tone、/Noiseビットをともにディスエープルした状態でレベル設定をすると、イネープルした状態と比べ出力レベルは2倍となります。

\square 8 \leq Tp \leq 4095

$$f_{tone} = \frac{f_{master}}{64 \times Tp}$$
 [Hz]

ftone: 発音周波数

fmaster: マスタークロック周波数 (@7.9872 MHz)

5-3. FM音源部

CSM (複合正弦波合成) 機能の削除

CSM modeを削除したため、レジスタ・アドレス27HのD7は不使用となりました。

5-4. ADPCM音源部

5-4-1. ADPCM音源部の削除

ADPCM音源部を削除したことにより、次に示すレジスタを削除しました。

00H CONTROL1

01H CONTROL2

02H START ADR(L)

03H START ADR(H)

04H STOP ADR(L)

05H STOP ADR(H)

06H PRESCAL(L)

- 07H PRESCAL(H)
- 08H ADPCM-DATA
- 09H DELTA-N(L)
- 0AH DELTA-N(H)
- 0BH EG CTRL
- 0CH LIMIT ADR(L)
- 0DH LIMIT ADR(H)
- 0EH DAC DATA
- 0FH PCM DATA
- 10H FLAG CONTROLのD4, D3, D2ビット
- 29H IRQ ENABLEのD4, D3, D2ビット

5-4-2. ステータス1の変更

ADPCM音源部の削除に伴い、ステータス1のD5, D4, D3, D2の各ビットは、"0" 固定の出力となりました。

5-5. その他

5-5-1. 内部クロック分周比

プリスケーラー機能の削除に伴い、アドレス\$2D, 2E, 2Fのレジスタは削除され、SSG音源部、FM 音源部、および、リズム音源部の分周比はそれぞれ1/8, 1/6, 1/12に固定されます。

5-5-2. レジスタアクセス時のウェイト時間の短縮

アドレス・ライト後、データ・ライト後のウェイト時間がYM2608Bと比べ以下のように短縮されています。

※括弧内の数字はマスタークロック (7.9872MHz)でのサイクル数

		YMF2	288
アドレスライト後の	ウェイト時間		
音源部	アドレス	ウェイト時間	
FM	21~B6H	1.9 μs	(15)
SSG	00~0FH	1.9 μs	(15)
リズム	10~1DH	1.9 μs	(15)
データライト後のウ	ェイト時間		
音源部	アドレス	ウェイト時間	
FM	28H	24 μs	(192)
	20~B6H *1	$1.9 \ \mu s$	(15)
SSG	00~0FH	1.9 μs	(15)
リズム	10H	22 μs	(180)
	11~1DH	1.9 μs	(15)

^{*1)} アドレス28Hは除きます。

■電気的特性

1. 最大定格

項目	記号	定格	単位	
		最小	最大	
電源電圧	V_{DD}	V _{SS} -0.5	$V_{SS} + 7.0$	V
入力電圧	$V_{\rm I}$	V _{SS} -0.5	$V_{\rm DD}$ +0.5	V
出力電圧	$V_{\rm O}$	V _{SS} -0.5	$V_{\rm DD}$ +0.5	V
動作周囲温度	T_{OP}	0	70	°C
保存温度	T_{STG}	-50	+125	°C
入力端子電流	I_{IP}	-20	+20	mA

2. 推奨動作条件

項目	記号	条件	推 奨 値		Ī	単位
			最小	標準	最大	
電源電圧	V_{DD}	5V/3V="L"	3.00	3.30	3.60	V
		5V/3V="H"	4.75	5.00	5.25	
動作周囲温度	T_{OP}		0	25	70	°C

3. 直流特性

※推奨動作条件下において

						₽.I	227.11.
項目		記号	条件	最小	標準	最大	単位
入力リーク電流	MCLK, /WR, /RD,	I_{LI}	$V_{\rm I} = 0 \sim V_{\rm DD}[V]$	-10		10	μ A
	A0, A1, D0~D7						
出力リーク電流	全出力端子	I_{LO}	$V_{O} = 0 \sim V_{DD}[V]$	-10		10	μ A
入力電圧Lレベル	5V/3V端子	V_{IL}				$0.2V_{\mathrm{DD}}$	V
	5V/3V端子を除く					0.8	
入力電圧Hレベル	5V/3V端子	V_{IH}		$0.7V_{\mathrm{DD}}$			V
	5V/3V端子を除く			2.0			
出力電圧Lレベル	全出力端子	V_{OL}	$I_{OL} = 1.6[mA]$			0.4	V
出力電圧Hレベル	/IRQを除く全出力端子	V_{OH}	$I_{OH} = -80[\muA]$	2.4			V
電源電流		I_{DD}	$V_{\rm DD}=5.25[\mathrm{V}]$			20	mA
			$V_{\rm DD} = 3.60[V]$			10	
			*1			2	
			*2			1	
プルアップ抵抗	/IC, /CS, /TEST	R_{U}		50	100	400	kΩ

*1: スタンバイ時、V_{DD}=5.25 [V]

*2: スタンバイ時、V_{DD}=3.60 [V]

4. 入力クロック特性

※推奨動作条件下において

項目	記号	条件	規格		単位	
			最小	標準	最大	
マスター・クロック周波数	f_{MCLK}	図5	7.7	7.9872	8.3	MHz
入力クロック立ち上がり時間	t_{RC}				30	ns
入力クロック立ち下がり時間	t_{FC}				30	ns
入力クロック・デューティ	D_{MCLK}		40	50	60	%
入力クロック電圧Lレベル	$V_{\rm ILC}$		-0.3		0.8	V
入力クロック電圧Hレベル	V_{IHC}		2.0		V_{DD}	V

入力クロック・デューティ= $t_{HC} \cdot f_{MCLK} \times 100$

5. 端子容量

※推奨動作条件下において

項目	記号	規格		単位	
		最小	基準	最大	
入力端子容量	C_{I}		5	8	pF
クロック入力端子容量	C_{IC}			8	pF
出力端子容量	Co			10	pF
入出力端子容量	C_{IO}			12	pF

測定条件: T_{OP} =25 [$^{\circ}$ C], V_{DD} =5.0 [V] 入力電圧 V_{IH} =2.4 [V]以上, V_{IL} =0.45 [V]以下 V_{IHC} =3.0 [V]以上, V_{ILC} =0.4 [V]以下 入力信号周波数 1.0 [MHz] V_{DD} と測定端子以外は V_{SS} に接続

6. 交流直性

※推奨動作条件下において

項目		記号	条件	最小	標準	最大	単位
アドレスセットアップ時間	A0, A1	t_{AS}	図6, 7	10			ns
アドレスホールド時間	A0, A1	$t_{ m AH}$	図6, 7	10			ns
チップ。セレクトライト幅	/CS	t _{CSW}	図6	150			ns
ライトパ゚ルス幅	/WR	t _{ww}	図6	150			ns
ライトデータセットアップ時間	D0~D7	t_{WDS}	図6	0			ns
ライトデータホールド時間	D0~D7	$t_{ m WDH}$	図6	20			ns
チップ゚ セレクトリート゛幅	/CS	t _{CSR}	図7	200			ns
リート゛ハ゜ルス幅	/RD	t_{RW}	図7	200			ns
リート゛デ ータアクセス時間	D0~D7	t_{ACC}	図7			200	ns
リート゛デ ータホールド 時間	D0~D7	$t_{ m RDH}$	図7	10			ns
ライト・リードウェイト時間	/WR, /RD	t_{WRW}	図8	$6/f_{MCLK}$			S
リート・ライトウェイト時間		$t_{ m RWW}$	図9	180			ns
ライトウェイト幅	/WR	t_{WWW}	図10			$15/f_{MCLK}$	S
サンプリング周波数		f_S	図1		$f_{MCLK}/144$		Hz
BCO周波数	ВСО	f_{BC}	図1		48F _S		kHz
LRO周波数	LRO	f_{LR}	図1		F_S		kHz
WCO周波数	WCO	f_{WC}	図1		2F _S		kHz
出力立上がり時間	BCO, LRO, WCO, DO	t_R	図11			30	ns
出力立下がり時間	BCO, LRO, WCO, DO	t_{F}	図11			30	ns
DOセットアップ 時間		$t_{ m DOS}$	図11	60			ns
DOホールド時間		$t_{ m DOH}$	図11	60			ns
LROセットアップ。時間		t_{LRS}	図11	60			ns
LROホールド時間		t_{LRH}	図11	60			ns
WCOホールド時間		t _{WCH}	図11	60			ns
リセットハ゜ルス幅	/IC	t _{ICW}	図12	$192/f_{MCLK}$			S
LRO-/ICセットアップ [®] 時間		t _{ICS}	図12	0		100	ns
LRO-/ICホールド時間		t _{ICH}	図12	0		100	ns

注) 出力端子の負荷容量C_L=50 [pF] とする。

タイミング図の設定は、 $V_H=2.0~[V],\,V_L=0.8~[V]$ を基準とする。

図5: マスタークロックタイミング

注) t_{AH} , t_{CSW} , t_{WW} , t_{WDH} は、/CS, /WRのいずれかが早く "L" レベルを越える時を基準とする。 t_{WDS} は、/CS, /WRのいずれかが遅く "L" レベルになる時を基準とする。

図6: ライトタイミング

注) t_{AH} , t_{CSR} , t_{RW} , t_{RDH} は、/CS, /RDのいずれかが早く "L" レベルを越える時を基準とする。 t_{ACC} は、/CS, /RDのいずれかが遅く "L" レベルになる時を基準とする。

図7: リードタイミング

注) t_{WRW} は、/CS, /WRのいずれかが遅く "H" レベルになる時、および、/CS, /RDのいずれかが早く変化する時を基準とする。

なお、 t_{WRW} は、A0, A1とは無関係である。

図8: ライト・リードタイミング

注) t_{RWW} は、/CS, /RDのいずれかが遅く "H" レベルになる時、および、/CS, /WRのいずれかが早く変化する時を基準とする。

なお、 t_{RWW} はA0, A1とは無関係である。

図9: リード・ライトタイミング

注) t_{www} は、/CS, /WRのいずれかが遅くHighレベルになる時から、/CS, /WRのいずれかが遅く変化する時を表わす。

なお、twwwはA0, A1とは無関係である。

図10: ライト・ウェイトタイミング

図11: DACインターフェースタイミング

図12: リセットタイミング

■パッケージ外形図

YMF288-M

YMF288-S

端子厚さ:0.125±0.05または0.15±0.05 (LEAD THICKNESS)

©1994 All rights reserved to Yamaha Corporation. Originally published in Japanese in the 「Yamaha LSI Data Book 音源編」 Catalog N° 7610002, Issue 1994.10. Scanned PDF files kindly shared by @QuarterDev in Oct/2020. OCR'ed and re-edited by Szk for open-source personal use. Rev 1, Feb/2023.