

## **NATIONAL SCHOOL OF BUSINESS MANAGEMENT**

## B.Sc. in Computer Science 1<sup>st</sup> Year 1<sup>st</sup> Semester Examination-Special Repeat 22-September-2020 CS106.3 – Data Structures and Algorithms

## **Instructions to Candidates**

- 1) This paper consists of 2 sections. Answer <u>ALL</u> questions.
- 2) Time allocated for the examination is three and half (3.5) hours.
- 3) Total number of pages Seven (07) including the MCQ marking grid.
- 4) If a page or a part of this question paper is not printed, please inform the Supervisor immediately.
- 5) Write your index number in all pages of answer script.

Refer to below code snippets and answer question 1 to 3.

```
//TYPE A

void A(int a){
		if(a>0){
		printf("%d", a);
		A(a-1);
	}

}

void main(){
		int x=4;
		A(x);
}
```

```
//TYPE B

void A(int a){
		if(a>0){
			A(a-1);
			printf("%d", a);
		}
}

void main(){
			int x=4;
			A(x);
}
```

- 1. What is the programming concept below codes represents?
  - a) Backtracking
  - c) Recursion

- b) Divide and Conquer
- d) Iterative

- 2. What is the output of TYPE A?
  - a) 1,2,3,4
  - c) 4,3,2,1

- b) 1,2,3
- d) 3,2,1

- 3. What is the output of TYPE B?
  - a) 1,2,3,4
  - c) 4,3,2,1

- b) 1,2,3
- d) 3,2,1
- **4.** Identify the data structure/algorithm below diagrams represents:









- a) Queue, Stack, Tree, linear Search
- c) Queue, Tree, Stack, linear Search
- b) Queue, Stack, Tree, insertion sort
- d) Queue, Tree, Stack, insertion sort
- **5.** Perfect binary tree is a full binary tree and every full binary tree is also a perfect binary tree. This statement is:
  - a) True

b) False

Consider the following graph representation and related Breadth First Search (BFS) and Depth First Search (DFS) algorithms to answer questions from 6 to 9. Starting point is "A" and this follows alphabetical order.



| 6. | What | data | structure | is | used | to | derive | <b>BFS</b> | output |
|----|------|------|-----------|----|------|----|--------|------------|--------|
|----|------|------|-----------|----|------|----|--------|------------|--------|

c) Tree

b) Stack

d) Array

7. What data structure is used to derive DFS output

- a) Queue
- c) Tree

- b) Stack
- d) Array

**8.** What is the output of BFS?

- a) A, B, C, D, E, F
- c) A, C, E, F, B, D

- b) A, B, D, C, E, F
- d) None of the G

**9.** What is the output of DFS?

- a) A, B, C, D, E, F
- c) A, C, E, F, B, D

- b) A, B, D, C, E, F
- d) None of the

10. The number of interchanges required to sort 5, 1, 6, 2, 4 in ascending order using Bubble Sort

is

a) 5

c) 8

b) 7

d) 6

11. Show the first pass/round output of bubble sort on an unsorted array: [11, 15, 2, 13, 6]

a) 11 2 13 6 15

b) 11 2 15 13 6

c) 11 2 6 13 15

d) 2 6 11 13 15

**12.** What is the data structure you can use to evaluate postfix expressions?

a) Queue

b) Stack

c) Tree

d) Array

|                               |                                   | ve structure<br>2 3 1 *  |                | e below expr  | essior            | n consisting of tokens what would be                                 |
|-------------------------------|-----------------------------------|--------------------------|----------------|---------------|-------------------|----------------------------------------------------------------------|
|                               | a) 4<br>c) -4                     |                          |                |               | b) -<br>d) 2      |                                                                      |
| <b>14.</b> In a respect       |                                   | e initial value          | es of front po | ointer f rear | oointe            | er r should be and                                                   |
| ı                             | a. 0 and<br>c. <mark>0 and</mark> |                          |                |               |                   | 1 and 0<br>-1 and 0                                                  |
| <b>15.</b> Let the data       | ne following                      | g circular qu            | ieue can acc   | ommodate n    | naxim             | um six elements with the following                                   |
|                               |                                   | front = 2<br>queue = _   | ;              | re<br>L,      |                   |                                                                      |
| Wh                            | at will happ                      | en after AD              | D O operatio   | on takes plac | e?                |                                                                      |
|                               |                                   | = 2 rear =<br>= 3 rear = |                |               |                   | front = 2 rear = 4<br>front = 3 rear = 4                             |
| <b>16.</b> Using              | ; 512 nodes                       | you can cre              | eate a perfec  | t binary tree |                   |                                                                      |
|                               | a) True                           |                          |                |               | b) <mark>F</mark> | False                                                                |
| <b>17.</b> Given element is f |                                   |                          |                | ey = 88; How  | man'              | y iterations are done until the                                      |
| a)<br>c)                      | <b>1</b><br>2                     |                          |                | b)<br>d)      |                   |                                                                      |
|                               |                                   |                          |                |               |                   | ry costly. Which of the following ignment operations is minimized in |
| a)                            | Insertion                         |                          |                | b)            |                   | ction Sort                                                           |
| c)                            | Bubble So                         | ort                      |                | d)            | Non               | e of the given                                                       |
|                               |                                   |                          |                |               | n                 | nerge sort                                                           |

| a)<br>c)                    | Processor and memory Time and space                                                                              |     | Complexity and capacity Data and space                         |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------|
| <b>20.</b> You ca           | n create a binary tree using 217 nodes                                                                           |     |                                                                |
|                             | a) True                                                                                                          |     | b) False                                                       |
| <b>21.</b> The s            | searching technique that takes O (1) time to                                                                     |     |                                                                |
| a)                          | Insertion to unordered array                                                                                     | b)  | Insertion to ordered array                                     |
| c)                          | Deletion in unordered array                                                                                      | d)  | Deletion in ordered array hashing                              |
| <b>22.</b> Link             | ed lists are best suited                                                                                         |     |                                                                |
|                             | a. for relatively permanent                                                                                      |     | b. for the size of the structure and the                       |
|                             | collections of data                                                                                              |     | data in the structure are constantly                           |
|                             | concetions of data                                                                                               |     | changing                                                       |
|                             | c. for fixed size memory                                                                                         |     | d. For all the above situations                                |
|                             | c. Tot fixed size memory                                                                                         |     | d. Tot all the above situations                                |
| <b>23</b> . Each            | node in a linked list has two pairs of  a. Link field and information field  c. Data field and information field | а   | ndb. Link field and Next field d. Address field and link field |
| <b>24</b> .                 | n Big O notation complexity analysis is O(1)                                                                     | bet | ter than O(N).                                                 |
|                             | a) <mark>True</mark>                                                                                             |     | b) False                                                       |
|                             | a, nac                                                                                                           |     | b) Taise                                                       |
| <b>25.</b> The algorithm is | complexity of searching an element from a                                                                        | set | of n elements using Binary search                              |
|                             | a) O(n)                                                                                                          |     | h) 0/107 m)                                                    |
|                             | a) O(n)<br>c) O(n <sup>2</sup> )                                                                                 |     | b) <mark>O(log n)</mark><br>d) O(n log n)                      |
|                             | C) O(11 )                                                                                                        |     |                                                                |

19. Two main measures for the efficiency of an algorithm are

Question 01: Searching algorithms aim to find position of a target value within an array/list.

(5+5+5 = 15 Marks)

- I. Compare and contrast linear and binary search algorithms.
- II. Search for value 65 on the [15,60,45,13,65,75] array using binary search algorithm. Note that the illustrations and labels are mandatory.
- III. Write a function using pseudo or source codes for searching an integer variable called *item* using linear search in an array called *unorderedArray*.

Question 02: Sorting algorithms aim to arrange a data set in an ordered manner (6+4+5 = 15 Marks)

- I. Briefly explain bubble sort and selection sort algorithms?
- II. Diagrammatically perform the bubble sort on the following array.

| I. 29 II. 10 III. 14 IV. 37 V. 13 | l. 29 | II. 10 | III. 14 | IV. 37 | V. 13 |
|-----------------------------------|-------|--------|---------|--------|-------|
|-----------------------------------|-------|--------|---------|--------|-------|

III. Sort the following sequence of keys using merge sort (Diagrammatically show the steps)

```
i. 66, 77, 11, 88, 99, 22, 33, 44, 55
```

Question 03: A tree is a widely used abstract data structure that is also non-linear format storing data in a hierarchical structure. (5 + 5 + 6 + 4 = 20 Marks)

- I. Draw a binary tree by your own and identify the root, siblings, leaves, edges, height and paths of the above tree data structure.
- II. Given a binary search tree (BST) [50, 45, 27, 8, 65, 100, 82, 2, 90] find the sum of all leaf nodes.
- III. Derive the preorder, post order and in order traversal output of the above BST structure.
- IV. Derive the output of the below code. Show steps.

```
#include <stdio.h>
int fun(int n)
{
  if (n == 4)
  return n;
```

```
else return 2*fun(n+1);
}
int main()
{
    printf("%d ", fun(2));
    return 0;
}
```

END OF THE PAPER