

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:	QUÍMICA I	Nº Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2022		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).

Leia o texto com atenção e responda às questões que se seguem

constante de equilíbrio é:

B. 0.66

C. 0,75

A. 0,53

	vertice work and a trapportion and discourse days on ordinary
1.	Alguns factores podem alterar a rapidez das reacções químicas. A seguir destacam-se três exemplos no contexto da preparação e da conservação de alimentos:
	1. A maioria dos produtos alimentícios se conserva por muito mais tempo quando submetidos à refrigeração. Esse procedimento diminui a rapidez das reacções que contribuem para a degradação de certos alimentos.
	2. Um procedimento muito comum utilizado em práticas de culinária é o corte dos alimentos para acelerar o seu cozimento, caso não se tenha uma panela de pressão.
	3. Na preparação de iogurtes, adicionam-se ao leite bactérias produtoras de enzimas que aceleram as reações envolvendo açúcares e proteínas lácteas.
	Com base no texto, quais são os factores que influenciam a rapidez das transformações químicas relacionadas na ordem 1,2,3.
	 A. Temperatura, superfície de contacto e concentração. C. Temperatura, superfície de contacto e catalisadores. E. Temperatura, concentração e catalisadores. B. Concentração, superfície de contacto e catalisadores. D. Superfície de contato, temperatura e concentração.
2.	A equação X + Y → XY2 representa uma reacção cuja expressão da lei de velocidade é V=K[X][Y]. Qual será o valor da constante de velocidade, sabendo que a concentração de X é 1 M e a de Y 2 M, a uma velocidade de 3 M min ⁻¹ ?
	A. 3,0 M ⁻¹ min ⁻¹ B. 1,5 M min ⁻¹ C. 1,0 M ⁻¹ min ⁻¹ D. 3,0 M min ⁻¹ E. 1,5 M ⁻¹ min ⁻¹
3.	Considere a reacção:
	$M(g) + N(g) \rightarrow O(g)$
	Observa-se experimentalmente que, duplicando-se a concentração de N, a velocidade de formação de O quadruplica; e, duplicando-se a concentração de M, a velocidade da reacção não é afectada. A equação da velocidade V dessa reacção é:
	A. $V = k[M]^2$ B. $k[N]^2$ C. $V = k[M]$ D. $V = k[M][N]$ E. $V = k[M][N]^2$
4.	A reacção de decomposição de amoníaco gasoso foi realizada num recipiente fechado é $2 NH_3 \rightarrow N_2 + 3 H_2$
	A tabela abaixo indica a variação na concentração de reagente em função do tempo.
	Concentração de NH ₃ em mol L ⁻¹ $8,0$ $6,0$ $4,0$ $1,0$
	Tempo em horas 0 1 2 3
	Oual á a valacidada mádia da consuma da reagante nos duas nrimeiras haras da reagaña?
	Qual é a velocidade média de consumo do reagente nas duas primeiras horas de reacção? A. 4,0 mol L ⁻¹ h ⁻¹ B. 2,0 mol L ⁻¹ h ⁻¹ C. 10,0 mol L ⁻¹ h ⁻¹
	D. 1,0 mol L ⁻¹ h ⁻¹ E. 2,3 mol L-1h-1
5.	Um equilíbrio envolvido na formação da chuva ácida está representado pela equação $2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g)$
٠.	5.11 54.11.11 511.11.11 111 1111 111 1111 1
	Em um recipiente de um litro, foram misturados 6 moles de dióxido de envotre e 5 moles de oxigênio. Depois de algum

tempo, o sistema atingiu o equilíbrio, e o número de moles de trióxido de enxofre medido foi 4. O valor aproximado da

E. 2,33

D. 1,33

6.	Dadas as seguintes afirmações:
	 I. Durante o equilíbrio químico a velocidade da reacção directa é igual a da reacção inversa II. Antes de se atingir o equilíbrio químico a concentração dos reagentes diminui e a dos produtos aumenta.
	III. Atingido o equilíbrio, a concentração das substâncias intervenientes na reacção permanece constante.
	IV. Um exemplo de uma reacção de equilíbrio é a que ocorre entre o H _{2 (g)} e I _{2(g)} na formação do HI _(g)
	A (s) afirmação correcta (s) é (são):
7.	A. Somente I e III B. Somente III e IV C. Somente I e II D. Somente I, II e IV E. Todas A concentração [H ⁺] de uma solução 6×10 ⁻⁷ mol/L do ácido H ₂ S, com uma constante de ionização do primeiro estágio
/.	de dissociação Ki1 de 10 ⁻⁷ , é igual a:
0	A. $5,1\times10^{-7} \text{ mol/L}$ B. $6,0\times10^{-7} \text{ mol/L}$ C. $3,0\times10^{-6} \text{ mol/L}$ D. $2,4\times10^{-7} \text{ mol/L}$ E. $4,3\times10^{-7} \text{ mol/L}$
8.	Considere uma solução saturada de cloreto de prata contendo resíduo no fundo. Adicionando pequena quantidade de cloreto de sódio sólido, qual é a modificação observada no resíduo contido?
	cioreto de sodio sondo, quar e a modificação observada no residuo contido.
	A. Aumentará. B. diminuirá. C. permanecerá constante.
0	D. diminuirá e depois aumentará. E. aumentará e depois diminuirá.
9.	"Quando um factor externo age sobre um sistema em equilíbrio, este se desloca, procurando minimizar a acção do factor aplicado" - H. L. Le Chatelier, 1888.
	apheudo II. E. Le Chatcher, 1000.
	De acordo com este princípio, numa reacção exotérmica, em que os reagentes estão no estado sólido e os produtos no
	estado gasoso A. aumentando-se a pressão, o equilíbrio é deslocado no sentido dos produtos.
	B. aumentando-se a temperatura, o equilíbrio é deslocado no sentido dos produtos.
	C. aumentando-se a concentração dos reagentes, o equilíbrio é deslocado no sentido dos mesmos.
	D. adicionando catalisador, o equilíbrio é deslocado no sentido dos produtos.
10.	E. aumentando-se a concentração dos produtos, o equilíbrio desloca-se no sentido dos reagentes. Que alteração de pH, sofrem 10 L de água se lhe forem adicionados 10 ⁻² mol de NaOH?
10.	Que alteração de pri, sofrem 10 L de agua se me forem adicionados 10 moi de NaOri:
	A. Aumenta em duas unidades
	B. Aumenta em três unidades
	C. Aumenta em quatro unidades D. Reduz-se em quatro unidades
	E. Reduz-se em três unidades
11.	Nas reacções de neutralização total, o número de equivalentes-grama de ácido sulfúrico existente em 300 mL de
	solução 0,5 normal é igual a:
12	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75
12.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o
	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1%
12.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em:
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões
	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3)
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo.
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica:
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC ₃ H ₅ O ₃) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³
13.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC ₃ H ₅ O ₃) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCℓ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH?
13. 14.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC ₃ H ₅ O ₃) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCℓ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH?
13. 14. 15.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCℓ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E.1000 mL Sabendo que a solubilidade do PbBr2 a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é:
13. 14.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o
13. 14. 15.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é:
13. 14. 15.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³⁰ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol)
13. 14. 15.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ⁻³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é:
13. 14. 15. 16.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10-3% D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização dessa ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 -12. Uma suspensão dessa base em água é conhecida comercialmente como "leite de
13. 14. 15. 16.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ^{3%} D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 -12. Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH) ₂ , numa
13. 14. 15. 16.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10-3% D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr2 a 25°C é igual a 1,32x10 ² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 ⁻¹² . Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH) ₂ , numa solução dessa base é:
13. 14. 15. 16.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HClO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ^{3%} D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HCt neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E. 1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 -12. Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH) ₂ , numa
13. 14. 15. 16. 17.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HCIO) é tima substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HC£ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E.1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 ⁻¹² . Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH) ₂ , numa solução dessa base é: A. 1x10 ⁻⁴ B. 2x10 ⁻⁴ C. 5 x10 ⁻⁵ D. 1x10 ⁻⁵ E. 2x10 ⁻⁵ Mistura-se 200 mL de uma solução de HIO ₃ a 4x10 ³ M com igual volume da solução de Ba(OH) ₂ a 0,003 M. Sabendo que o Kps de Ba(O3); £ 1.57x10
13. 14. 15. 16. 17.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HCIO) é uma substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,011% B. 3,0% C. 10³% D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço fisico é causada pelo acúmulo do ácido láctico (HC₃H₅O₃) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10⁻¹ B. 1,4 x 10⁻⁴ C. 2,7 x 10⁻² D. 3,7 x 10⁻² E. 3,7 x 10⁻³ Que volume de solução 0,1 mol/L de HCℓ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E.1000 mL Sabendo que a solubilidade do PbBr₂ a 25°C é igual a 1,32x10⁻², o valor do seu produto de solubilidade, Kps, é: A. 6,3x10⁻6 B. 0,92x10⁻4 C. 9,2x10⁻6 D. 4,1x10⁻2 E. 9,1x10⁻5 Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2ºc, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH)₂, é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, pi gual a 4 x 10⁻¹²2. Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH)₂, numa solução dessa base é: A. 1x10⁻⁴ B. 2x10⁻⁴ C. 5x10⁻⁵ Mc om igual volume da solução de Ba(OH)₂ a 0,003 M. Sabendo que o Kps de Ba(IO₃)₂ £ 1.57x10⁻², preveja a formação de precipitado de Ba(Os)₂: B. P ≈Kps e não há precipitação de Ba(Os)₂
13. 14. 15. 16. 17.	A. 0,300 B. 0,150 C. 1,500 D. 0,075 E. 0,75 O ácido hipocloroso (HCIO) é tima substância de larga aplicação no tratamento de água para o consumo. Qual deve ser o grau de dissociação desta substância numa solução 0,1M, sabendo que esta produz na solução um pH=3? A. 0,01% B. 3,0% C. 10 ³ % D. 1,0% E. 0,1% A diferença estrutural entre um ácido e uma base conjugados consiste em: A. Um electrão B. Um neutrão C. Um protão D. Dois electrões E. Dois neutrões A fadiga muscular, comum quando se executa um grande esforço físico é causada pelo acúmulo do ácido láctico (HC3H5O3) nas fibras musculares do nosso organismo. Considerando que, em uma solução aquosa 0,100 M, temos 3,7% do ácido láctico dissociado, determine o valor da constante de acidez (Ka). Dados de massa atómica: H=1; O=16; C=12. A. 1,0 x 10 ⁻¹ B. 1,4 x 10 ⁻⁴ C. 2,7 x 10 ⁻² D. 3,7 x 10 ⁻² E. 3,7 x 10 ⁻³ Que volume de solução 0,1 mol/L de HC£ neutraliza completamente 200 mL de solução 0,5 mol/L de KOH? A. 200 mL B. 400 mL C. 600 mL D. 800 mL E.1000 mL Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32x10 ⁻² , o valor do seu produto de solubilidade, Kps, é: A. 6,3x10 ⁻⁶ B. 0,92x10 ⁻⁴ C. 9,2x10 ⁻⁶ D. 4,1x10 ⁻² E. 9,1x10 ⁻⁵ Adicionou-se água a 1,15 g de ácido metanóico até completar 500 mL de solução. Considerando que nessa concentração o grau de ionização desse ácido é de 2%, então o pOH da solução é: (Dada a massa molar do ácido metanóico = 46 g/mol) A. 2 B. 3 C. 12 D. 10 E. 11 O hidróxido de magnésio, Mg(OH) ₂ , é uma base fraca pouco solúvel em água, apresentando constante de produto de solubilidade, Kp, igual a 4 x 10 ⁻¹² . Uma suspensão dessa base em água é conhecida comercialmente como "leite de magnésia", sendo comumente usada no tratamento de acidez no estômago. Em mol/L, a solubilidade do Mg(OH) ₂ , numa solução dessa base é: A. 1x10 ⁻⁴ B. 2x10 ⁻⁴ C. 5 x10 ⁻⁵ D. 1x10 ⁻⁵ E. 2x10 ⁻⁵ Mistura-se 200 mL de uma solução de HIO ₃ a 4x10 ³ M com igual volume da solução de Ba(OH) ₂ a 0,003 M. Sabendo que o Kps de Ba(O3); £ 1.57x10

Exame o	de admissão de Química I DAU Pági	gina 3 o
20.	A concentração molar de uma solução que foi preparada dissolvendo-se 18 g de glicose em água suficiente pa	ara
	produzir 2 litro da solução, é:	
	(Dado: massa molar da glicose = 180 g/mol)	
21.	A. 1,8 B. 10,0 C. 100,0 D. 0,05 E. 0,18 O pH de uma solução 1,0 mol/L de NH4Cl, a 25°C é:	
21.	(Dados: Kb = 1.8×10^{-5} ; log $2.36=0.37$)	
	A. 1,00 B. 4,63 C. 9,38 D. 1,37 E. 2,62	
22.	Em uma solução de CuSO4, de cor azulada, são adicionados fragmentos de ferro metálico. Depois de algum tempo, a solução	
	perde sua cor azulada, e nota-se que os fragmentos de ferro são recobertos de cobre metálico. A respeito desse fato, pode	e-se
	afirmar que o:	
	 A. O ferro sofre oxidação, portanto é o agente oxidante. B. O ferro sofre redução, portanto é o agente reductor. 	
	C. O cobre sofre redução, portanto é o agente oxidante.	
	D. O cobre sofre oxidação, portanto é o agente reductor.	
	E. O ferro é agente oxidante, e o cobre é agente reductor.	
23.	Na obtenção industrial do ácido nítrico é utilizado o processo de Ostwald, no qual a última etapa envolve a reacção:	
	$3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2\text{HNO}_3(aq) + \text{NO}(g)$	
	$3 \text{ NO}_2(g) + \text{H}_2\text{O}(1) \rightarrow 2 \text{HNO}_3(\text{aq}) + \text{NO}(g)$	
	Assinale a alternativa incorreta:	
	A. Esta é uma reacção de oxi-redução	
	B. Nesta reacção, a água é agente oxidante	
	C. O NO ₂ é um óxido ácido	
	D. O ácido nítrico é um monoácidoE. O NO é um óxido neutro.	
24.	Os números de oxidação do Boro, Iodo e Enxofre nas espécies químicas H ₂ BO ₃ -, IO ₄ - e HSO ₄ - são, respectivamente:	
	A. +4, +8, +7	
	B. +3, +7, +8	
	C. +3, +7, +6	
	D. +4, +5, +6 E. +2, +6, +5	
25.	A vida de uma pilha com as duas semi-reacções (Znº/Zn²+ e Cu²+/Cuº) pode ser aumentada usando-se:	
	A. um eléctrodo maior de zinco	
	B. um eléctrodo maior de cobre	
	C. uma solução de sulfato de cobre II mais diluída	
	 D. uma solução de sulfato de cobre II mais concentrada E. uma solução de sulfato de zinco mais concentrada 	
26.	Considere a seguinte equação que representa uma equação de oxi-redução:	
	$2 H2O + 2F2 \rightarrow 4 HF + O2$	
	As substâncies evidede e e reduvido respectivamente cão:	
	As substâncias oxidada e a reduzida, respectivamente, são: A. F ₂ e H ₂ O	
	B. F ₂ e HF	
	C. H_2O e HF	
	$\mathbf{D.} \mathbf{F_2} \in \mathbf{O_2}$	
27.	E. H ₂ O e F ₂	4
21.	Vidros fotocromáticos são utilizados em óculos que escurecem as lentes com a luz solar. Estes vidros contêm nitrato de pre e nitrato de cobre I, que reagem conforme a equação $Ag^+ + Cu^+ = Ag^0 + Cu^{2+}$ A reacção directa ocorre em presença de luz	
	inversa sem a presença de luz.	Cu
	Em relação a essa reacção, é correcto afirmar que:	
	A. Com a luz a prata se oxida	
	B. Com a luz o cobre se reduz	
	C. Com a luz a prata é agente oxidanteD. Sem a luz o cobre se oxida	
	E. Sem a luz o cobre é agente reductor	
28.	A ilustração a seguir mostra a eletrólise de uma solução aquosa de cloreto de cobre (II).	
	Sobre o sistema é correcto dizer que:	
	A. Os iões Cu ²⁺ movimentam-se em direcção ao ânodo, polo negativo, no qual sofrem redução	
	B. A semi-reacção que ocorre no cátodo é: Cu²+(aq) + 2 e- → Cu(s)	
	C A produção de gás cloro ocorre no cátodo, polo positivo da célula	

C. A produção de gás cloro ocorre no cátodo, polo positivo da célula **D.** A semi-reacção que ocorre no ânodo é: 2 Cl²(aq) + 2 e- \to Cl₂(g)

E. Não existe transferência de electrões no sistema

Exame de	radmissão de Química 1 DAU Pagina 4 C
29.	Na eletrólise, a quantidade de electricidade necessária para libertar um equivalente-grama de uma substância é de: A. 1 Coulomb. B. 1 Faraday. C. 2 Faraday. D. 96500 Faraday. E. 6,02·10 ⁻²³ Faraday.
30.	Uma corrente de 0,965 ampére fluiu durante 10 minutos através de uma solução de CuSO ₄ . A massa em gramas de cobre
	depositada no cátodo é de:
	(massa atómica: Cu- 63,5 g/mol; O-16 g/mol; S-32 g/mol)
	A. 0,190 B. 0,102 C. 3,059 D. 0,380 E. 0,003
31.	
31.	O composto de fórmula CH2=CH-CH2OH pode ser chamado:
	A. Álcool propílico B. Álcool isopropílico C. Álcool alílico. D. Álcool amílico E. Álcool vinílico
32.	No composto H2N-CH2-COOH, as funções presentes são:
	A. Álcool, cetona e amina. B. Álcool, aldeído e amina. C. Nitrilo e ácido.
	D. Amina e ácido. E. Amida e álcool.
33.	A substância de fórmula C ₈ H ₁₆ representa um:
	A. Alcano de cadeia aberta B. Alcino de cadeia fechada C. Alcino de cadeia aberta
	D. Composto aromático E. Alceno de cadeia aberta
34.	Alguns materiais poliméricos não podem ser utilizados para a produção de certos tipos de artefatos, seja por limitações das
·	propriedades mecânicas, seja pela facilidade com que sofrem degradação, gerando subprodutos indesejáveis para aquela
	aplicação. Torna-se importante, então, a fiscalização, para determinar a natureza do polímero utilizado na fabricação do
	artefacto. Um dos métodos possíveis baseia-se na decomposição do polímero para a geração dos monômeros que lhe deram
	origem. A decomposição controlada de um artefacto gerou a diamina H ₂ N(CH ₂) ₆ NH ₂ e o diácido HO ₂ C(CH ₂) ₄ CO ₂ H. Logo ,
	o artefacto era feito de:
	A. Poliéster B. Poliamida C. Polietileno D. Poliacrilato E. Polipropileno
35.	O etanol utilizado como combustível em automóveis, pode ser substituído por metanol. A combustão completa desses dois
	álcoois produz os mesmos compostos. No entanto, as oxidações parciais e a combustão incompleta produzem outros
	compostos. Qual(is) é/são o(s) produto(s) da oxidação do metanol?
	A. monóxido de carbono e dióxido de carbono
	B. carbono e gás carbónico
	C. aldeído acético e ácido acético
	D. metanal
	E. etanal
36.	Pertence à classe das aminas primárias o composto que se obtém pela substituição:
	A. De um dos átomos de hidrogénio do NH ₃ por um radical alquila
	B. De um dos átomos de hidrogénio do NH ₃ por um radical acila
	C. De dois átomos de hidrogénio do NH ₃ por dois radicais arila
	D. De dois átomos de hidrogénio do NH ₃ por um radical alquilidena
	E. De três átomos de hidrogénio do NH ₃ por um radical alquilidina
27	Um composto que apresenta um radical alquila e o grupo amino ligados ao átomo de carbono da carbonila, pertence à
37.	
	função: A. Cetona B. Amida C. Aminoácido D. Amina E. Aldeído
38.	
30.	Ésteres formam-se quando reagem:
	A. álcoois e ácidos inorgânicos B. álcoois e ácidos orgânicos C. fenóis e ácidos orgânicos
20	D. fenóis e álcoois E. ácidos orgânicos e ácidos inorgânicos
39.	O nome mais correcto para a estrutura é:
	A. 2-etil-4-pentanol H ₃ C-CH-CH ₂ -CH-CH ₃
	B. 4-etil-2-pentanol
	C. 4-etil-1-metil-l-butanol CH ₃ -CH ₂ OH
	D. 3-metil-5-hexanol
	E. 4-metil-2-hexanol
40.	Qual das afirmações a seguir sobre funções orgânicas está incorreta?
	A. Todo hidrocarboneto possui apenas carbono e hidrogénio
	B. Os haletos orgânicos são derivados da substituição de um ou mais hidrogénios por átomos de halogénios
	C. Os aldeídos possuem o grupo carbonila entre dois átomos de carbono
	D. Tanto as cetonas quanto os aldeídos possuem o grupo carbonila
	E. As aminas são derivadas da amônia pela substituição de um, dois ou três hidrogênios por cadeias carbónicas.