Improving Lead Conversion at X Education with Logistic Regression

Harsh Bhardwaj

Problem statement

- X Education has a low lead conversion rate (around 30%)
- High volume of leads suggests inefficiency in lead nurturing
- Goal: Increase conversion rate to 80% by identifying "hot leads"

Data and Approach

Dataset: 9,000 leads with various attributes (source, website activity, etc.)

Target Variable: "Converted" (1=converted, 0=not converted)

We used a historical dataset of 9,000 leads provided by X Education. The data contains various attributes about each lead, such as their lead source, time spent on the website, and total visits. The target variable is a simple binary variable indicating whether the lead converted into a paying customer (1) or not (0).

Model Building Process

- Data Cleaning and Preprocessing
 - Address missing values
 - Remove unnecessary and duplicate data
 - Convert categorical features
- Exploratory Data Analysis (EDA)
 - Understand feature distribution
- Feature Engineering and Selection
 - Create dummy variables
 - Use RFE for feature selection
- Model Building and Evaluation
 - Train logistic regression model
 - Address multicollinearity
 - Evaluate model performance (test set)
 - Optimize probability cutoff

Not converted

Model Performance

- On the training set:
 - o Accuracy: 97.2%
 - True Positive (TP): 1321
 - True Negative (TN): 1101
 - False Positive (FP): 39
 - False Negative (FN): 38
 - Sensitivity (Recall): 96.1%
 - o Specificity: 96.6%
 - Precision: 96.17%
- On the test set:
 - Accuracy: 96.1%
 - o True Positive (TP): 623
 - o True Negative (TN): 508
 - False Positive (FP): 24
 - False Negative (FN): 45
 - Sensitivity (Recall): 95.81%
 - Specificity: 95.45%
 - o Precision: 96.67%

- Precession
- Recall