Sheet 18: Convergence of Functions

Definition 1 For a < b with $a, b \in \mathbb{R}$ let

$$B[a;b] = \{f : [a;b] \to \mathbb{R} \mid f \text{ is bounded on } [a;b]\}$$

be the set of bounded real functions on [a; b].

Definition 2 We say that f is the pointwise limit of (f_n) , or

$$\lim_{n\to\infty}^{\bullet} f_n = f$$

if for all $x \in [a; b]$ we have

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Definition 3 For $f, g \in B$ let

$$d(f,g) = \sup_{x \in [a;b]} |f(x) - g(x)|.$$

Theorem 4 d is a metric on B.

Proof. Let $f, g, h \in B$. We have $|f(x) - g(x)| \ge 0$ for all $x \in [a; b]$ so then $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = 0$ then |f(x) - g(x)| = 0 for all $x \in [a; b]$ because d(f, g) is an upper bound. But then f(x) = g(x) for $x \in [a; b]$. Conversely suppose that f(x) = g(x) for all $x \in [a; b]$. Then |f(x) - g(x)| = 0 for all $x \in [a; b]$ and so $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = 0$. Also $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = \sup_{x \in [a; b]} |g(x) - f(x)| = d(g, f)$. Finally from the triangle inequality we have $|f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - h(x)|$ for all $x \in [a; b]$ so $|f(x) - g(x)| + |g(x) - h(x)| \ge \sup_{x \in [a; b]} |f(x) - h(x)|$ for all $x \in [a; b]$. But then $d(f, g) + d(g, h) = \sup_{x \in [a; b]} |f(x) - g(x)| + \sup_{x \in [a; b]} |f(x) - h(x)| \ge |f(x) - g(x)| + |g(x) - h(x)| \ge \sup_{x \in [a; b]} |f(x) - h(x)| = d(f, h)$ for all $x \in [a; b]$. □

Definition 5 We say that f is the uniform limit of (f_n) , or

$$\lim_{n \to \infty} f_n = f$$

if $\lim_{n\to\infty} f_n = f$ in the metric d.

Theorem 6 W have $\lim_{n\to\infty} f_n = f$ if and only if for all $\varepsilon > 0$ there exists N such that for all n > N and for all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$.

Proof. Suppose that $\lim_{n\to\infty} f_n = f$. Then $\lim_{n\to\infty} f_n = f$ in the metric d. Thus $\lim_{n\to\infty} d(f,f_n) = 0$ which means $\lim_{n\to\infty} \sup_{x\in[a;b]} |f(x)-f_n(x)| = 0$ (17.1). Then for all $\varepsilon>0$ there exists N such that for all n>N we have $|\sup_{x\in[a;b]} |f(x)-f_n(x)|| < \varepsilon$. But then for all $\varepsilon>0$ there exists N such that for all n>N and for all $x\in[a;b]$ we have $|f(x)-f_n(x)|<\varepsilon$.

Conversely suppose that for all $\varepsilon > 0$ there exists N such that for all n > N and for all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$. Since this is true for all $x \in [a;b]$ then for all $\varepsilon > 0$ there exists N such that for all n > N we have $\sup_{x \in [a;b]} |f(x) - f_n(x)| = |\sup_{x \in [a;b]} |f(x) - f_n(x)| - 0| = |d(f,f_n) - 0| < \varepsilon$. But then $\lim_{n \to \infty} d(f,f_n) = 0$ and so $\lim_{n \to \infty} f_n = f$ (17.1).

Theorem 7 If $\lim_{n\to\infty} f_n = f$ then $\lim_{n\to\infty}^{\bullet} f_n = f$.

Proof. We have $\lim_{n\to\infty} f_n = f$ and so for all $\varepsilon > 0$ there exists N such that for all n > N and all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$. But then for all $x \in [a;b]$ and all $\varepsilon > 0$ there exists N such that for all n > N we have $|f(x) - f_n(x)| < \varepsilon$. Thus $\lim_{n\to\infty}^{\bullet} f_n = f$.

Theorem 8 The sequence $f_n(x) = x^n$ on the interval [0,1] converges pointwise but not uniformly.

Proof. Let

$$f = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

and let $x \in [0; 1)$. Since $0 \le x < 1$ we have $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0 = f(x)$. If x = 1 then $x^n = 1$ for all n and so $\lim_{n \to \infty} x^n = 1 = f(x)$. Thus, (f_n) converges pointwise.

Suppose that (f_n) converges uniformly. Then for all $\varepsilon > 0$ there exists an N such that for all n > N and for all $x \in [0;1]$ we have $|f(x) - f_n(x)| < \varepsilon$. Let $x \in [0;1)$. Note that since $0 \le x < 1$ we have $\lim_{n \to \infty} f_n(x) = 0$ which means $\lim_{n \to \infty} |f(x) - f_n(x)| = |f(x)| < \varepsilon$. Since this is true for arbitrarily small ε , we have f(x) = 0 for $x \in [0;1)$. For x = 1 note that $f_n(x) = 1$ for all n so we have $|f(1) - 1| < \varepsilon$ for arbitrarily small ε which means that f(1) = 1. Thus (f_n) must converge to the function above.

Now let $1 > \varepsilon > 0$. Since f(x) = 0 for $x \in [0; 1)$ we can choose x large enough such that $x^{N+1} \ge \varepsilon < 1$. Thus there exists $\varepsilon > 0$ such that for all N there exists n > N and $x \in [0; 1]$ such that $|f(x) - f_n(x)| \ge \varepsilon$ and so (f_n) doesn't converge uniformly.

Theorem 9 Let (f_n) be a sequence of continuous functions on [a;b] that uniformly converges to f on [a;b]. Then f is continuous on [a;b].

Proof. Let $\varepsilon > 0$ and consider $\varepsilon/3$. We know (f_n) uniformly converges to f so there exists N such that for all n > N and for all $x, y \in [a; b]$ we have $|f(x) - f_n(x)| < \varepsilon/3$ and $|f(y) - f_n(y)| < \varepsilon/3$. Also f_n is continuous for all n so for all n > N and for all $x \in [a; b]$ there exists $\delta_n > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta_n$ we have $|f_n(x) - f_n(y)| < \varepsilon/3$. Consider δ_{N+1} . Then for all $x \in [a; b]$ there exists $\delta_{N+1} > 0$, which may depend on x, such that for all $y \in [a; b]$ with $|x - y| < \delta_{N+1}$ we have $|f_{N+1}(x) + f_{N+1}(y)| < \varepsilon/3$. By the triangle inequality we have $|f(x) - f_{N+1}(y)| \le |f_{N+1}(x) - f_{N+1}(y)| + |f(x) - f_{N+1}(x)| < 2\varepsilon/3$ and then $|f(x) - f(y)| < |f(x) - f_{N+1}(y)| + |f(y) - f_{N+1}(y)| < \varepsilon$. Thus for all $x \in [a; b]$ there exists some $\delta > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$. Therefore f is continuous on [a; b]. \square