

Escola de Engenharia

Development of a User-Friendly Graphical Platform for Molecular Characterization of Macroscopic Parasites in Fish

https://github.com/JohnnyFarians24/Project_Bioinformatics

Conteúdos

Importância dos Parasitas em Sistemas Biológicos

- Parasitas são organismos omnipresentes e representam uma parte significativa da biodiversidade global.
- Encontram-se entre as formas de vida mais bemsucedidas, estando presentes em vários filos.
- Em ambientes aquáticos, destacam-se pela sua prevalência e sucesso evolutivo, especialmente nas interações com peixes.

Fig.1- Exemplo de um isópode (*Isopoda*). https://wildlife.ca.gov/Conservation/Marine/Parasites

Impacto dos Parasitas na Ecologia dos Peixes

- Parasitas são capazes de alterar fatores ecológicos e parâmetros usados como marcadores de saúde ou reprodução dos peixes.
- As mudanças induzidas no comportamento do hospedeiro afetam:
 - O Distribuição e escolha de habitat
 - O Composição da dieta
 - O Comportamento sexual
- Essas alterações impactam a ecologia dos peixes, os seus predadores e presas.

Fig.2- Corvo-Marinho (*Phalacrocorax carbo*) a pescar. https://www.pexels.com/pt-br/foto/corvo-marinho-capturando-peixes-em-aguas-oceanicas-30920841/

Metabarcoding e NGS: Revolução na Identificação de Parasitas Aquáticos

- Métodos precisos de identificação são cruciais para compreender o impacto dos parasitas.
- Metabarcoding tornou-se popular na última década para:
 - Deteção de parasitas.
 - Amostragem não invasiva, rápida e exaustiva da composição das comunidades de parasitas.

- NGS permite obter milhões de leituras simultaneamente, facilitando:
 - Mapeamento de espécies
 - Biomonitorização
 - Análise de conteúdo intestinal
 - Genómica populacional
- Metabarcoding de DNA permite a deteção simultânea de múltiplas espécies, mesmo em quantidades vestigiais.
- Método é rentável, não invasivo e reduz dependência de identificação morfológica.

- Necessidade de **bibliotecas de referência de alta qualidade** e atualizadas (ex: GenBank, BOLD).
- Dados erróneos nas bibliotecas podem causar erros de identificação.
- Curadoria manual é difícil em ambientes marinhos devido à grande diversidade.
- Ferramentas bioinformáticas especializadas são essenciais para a deteção eficiente de parasitas de peixes.

- Metabarcoding de eDNA tornouse comum no estudo de peixes marinhos.
- Monitorização de pescarias com eDNA depende de conjuntos de dados exaustivos.
- Iniciadores universais (COI) podem amplificar espécies não alvo; iniciadores específicos para peixes, como MiFish, foram desenvolvidos para maior precisão.

Limitações:

- O **Requer ambiente Linux**, dificultando o uso para diversos pesquisadores.
- O Gestão de grandes volumes de dados de sequenciação é complexa.
- O Curadoria de bases de dados de referência (ex: parasitas de peixes) é trabalhosa.
- O Integração de múltiplos módulos bioinformáticos em sistemas unificados ainda é um desafio.

rogotoh/PMiFish

Fig.3- Ferramenta PMiFish criada pelo usuário rogotoh. https://github.com/rogotoh/PMiFish

- Desenvolver uma **interface gráfica multiplataforma**, intuitiva e fácil de usar **para análise de dados de metabarcoding**.
- Simplificar processos como:
 - Construção de árvores filogenéticas
 - Identificação de espécies de peixes e parasitas
 - Catalogação e fusão de amostras
- Permitir que não especialistas realizem análises moleculares complexas.
- Enriquecer a biblioteca de referência com sequências de parasitas de peixes.
- Melhorar o pipeline PMiFish com uma interface amigável.
- Minimizar resíduos alimentares de peixes, aprimorando a deteção e controlo de parasitas.
- Utilizar técnicas avançadas de bioinformática e NGS para análise rápida e precisa de grandes volumes de dados.

Fluxo de Processamento de Dados de Sequenciação

- Controlo de qualidade:
 - FQC (baseado em FastQC) para análise interativa de dados brutos. Permite verificar:
 - Padrões de abundância de leitura
 - Conteúdo de adaptadores
 - Distribuição de GC
 - Qualidade da sequência por base.
- Corte e limpeza:
 - Trimmomatic remove regiões de baixa qualidade e adaptadores.
- Fusão de leituras:
 - **PEAR** para leituras emparelhadas; FQC e Trimmomatic para leituras únicas.
- Análise paralela:
 - Suporte para dados emparelhados e únicos, garantindo filtragem consistente.

Agrupamento e Denoising de Sequências

- Agrupam sequências com ≥97% de identidade, facilitando a análise de diversidade microbiana.
- Utilização do VSEARCH, ferramenta opensource, rápida e eficiente para clustering de OTUs, que substitui o USEARCH.

 Identificam variantes únicas de sequência, distinguindo diferenças de nucleótidos reais de erros de sequenciação.

Através da implementação do **DADA2** que possui:

- o Maior precisão.
- Mais ASVs comparativamente a outras opções.
- o Melhor sensibilidade na deteção de variantes.

Classificação Taxonómica Direta

Através da integração do Kraken2:

- Utiliza alinhamento de **k-mers** para classificar sequências de forma **rápida e precisa.**
- Suporta análise de amplicons e **metagenómica shotgun**.
- Classificação de rRNA 16S em bases como SILVA, Greengenes e RDP.

Bases de Dados

NCBI GenBank¹

 Maior base de dados de nucleótidos, utilizada para referências cruzadas, mas com possíveis anotações erradas devido à submissão aberta.

BOLD²

Principal fonte para genes
COI, com dados
complementares ao
GenBank; acesso
automatizado via BOLDigger
para contornar limites de
consulta.

SILVA e PR2

 Bases de dados especializadas em rRNA (16S, 18S), de alta qualidade, anotadas e atualizadas regularmente.

Seleção e Integração Inteligente

- Utilizador pode selecionar a base de dados mais adequada para a sua análise.
- Incluindo selecionar a sua própria base de dados e fazer upload da mesma na plataforma.
- Com informações claras sobre características e limitações de cada uma.

Análise Filogenética

Alinhamento de Sequências

Construção de Árvores Filogenéticas

Através da utilização do **MAFFT**:

- Reconhecido pela:
 - Precisão.
 - Rapidez.
 - Alinhamentos de alta qualidade.
- Essenciais para análises filogenéticas robustas.

FastTree 2:

- Topologia inicial da árvore filogenética:
 - Modelo GTR.

RAxML-NG:

- Otimizar o comprimento dos ramos:
 - Árvores mais precisas e informativas.
- O resultado são árvores que ilustram as relações evolutivas entre as espécies identificadas, facilitando a interpretação biológica dos dados.

Desenvolvimento da Interface de Utilizador

- Plataforma desenvolvida com Plotly Dash, que possui:
 - A capacidade da criação de aplicações web interativas e multiplataforma em Python.
 - Uma interface amigável, projetada para simplificar fluxos de trabalho complexos, tornando-os acessíveis a utilizadores não especialistas.
 - Visualização dinâmica dos resultados, incluindo gráficos, tabelas e árvores filogenéticas interativas.
 - A possibilidade da integração de todas as etapas do pipeline, num ambiente unificado e de fácil utilização.

Fig.4- Plotly Dash https://dash.plotly.com/

Diagrama do workflow da plataforma de metabarcoding

Etapas do Desenvolvimento da Plataforma de Metabarcoding

Resultados Esperados

- Desenvolvimento de uma solução de **software de metabarcoding intuitiva, multiplataforma** e melhorada em relação ao PMiFish.
- Maior precisão na classificação de espécies e simplificação de procedimentos bioinformáticos complexos.
- Integração de uma interface fácil de usar com uma **biblioteca de referência de sequências de parasitas de peixes** cuidadosamente selecionada.
- Melhoria na monitorização e controlo de comunidades de parasitas de peixes.
- Proporcionar benefícios para:
 - Investigadores.
 - Reguladores de segurança alimentar.
 - Indústria da aquacultura.

Obrigado

João Carneiro

Teresa Rito

Departamento de Informática, Universidade do Minho

Centro de Biologia Molecular e Ambiental (<u>CBMA</u>), Departamento de Biologia, Universidade do Minho

Instituto de Ciência e Inovação para a Bio-Sustentabilidade (<u>IB-S</u>), Universidade do Minho