Topics: self-adjointness, Laplace operator, Hermite's operator

Review from Week 11:

• Boundary value problems: motivated by the vibrating wire, our goal is to set up a mathematical framework that deals with eigenvalue problems in infinite dimensions of the form:

$$\begin{cases} y'' = \lambda y \\ y(0) = y(L) = 0. \end{cases}$$

- Compatibility: If we want to define a differential operator $\ell(y) = ay'' + by' + cy$ on some $L^2(I; dx)$ space, we need at least to make sure that $\ell(y) \in L^2(I; dx)$. A function $y \in L^2(I; dx)$ such that $\ell(y) \in L^2(I; dx)$ is called *compatible* with ℓ .
- Regularity: Functions $y \in L^2(I; dx)$ need not be regular (differentiable) in the usual sense. To make nevertheless sense of expressions like y', y'', etc., one can introduce the notion of weak derivatives. We say that $\zeta \in L^2(I; dx)$ is the weak derivative of y if and only if

$$y(x) = y(x_0) + \int_{x_0}^{x} \zeta(s) ds.$$

If y has such a weak derivative, we write symbolically $\zeta \equiv y'$. The space of functions with weak derivatives in the $L^2(I;dx)$ sense is denoted by $H^1(I;dx)$, the Sobolev space of first order. If $y \in H^1(I;dx)$ such that also $y' \in H^1(I;dx)$, we write $y \in H^2(I;dx)$, etc. Having introduced Sobolev functions, it makes sense to define $\ell(y) = -y''$ on $H^2(I;dx)$, which is a strictly bigger set of functions than, for instance, $C^2(I)$.

- Integration by parts in H^1 : If $\phi, \psi \in H^1(I; dx)$, then also $\phi \psi \in H^1(I; dx)$ and the weak derivative is given by $(\phi \psi)' = \phi' \psi + \psi' \phi$. In particular, we can integrate by parts as usual.
- Eigenvalues and Spectrum: If $T: D_T \to \mathcal{H}$ is a linear operator with domain $D_T \subset \mathcal{H}$ we say that $0 \neq \phi \in D_T$ is an eigenvector of T with eigenvalues $\lambda \in \mathbb{C}$ if and only if $T\phi = \lambda \phi$. Notice that there are two subtle details in this definition: $\phi \neq 0$ is not the zero vector and $\phi \in D_T$ must be in the domain of T. The spectrum $\sigma(T)$ is defined as

$$\sigma(T) = \{ \lambda \in \mathbb{C} : \lambda \text{ is an eigenvalue of T } \} \subset \mathbb{C}.$$

• Symmetric operators: An operator $T: D_T \to \mathcal{H}$ is called symmetric if and only if

$$\langle \psi, T\phi \rangle_{\mathcal{H}} = \langle T\psi, \phi \rangle_{\mathcal{H}} \qquad \forall \ \psi, \phi \in D_T.$$

Symmetric operators have real eigenvalues and eigenvectors to different eigenvalues are orthogonal. In finite dimensions, symmetric operators admit an orthonormal basis of eigenvectors. This is called the *spectral theorem for symmetric matrices*. One of our next goals is to generalize this to infinite dimensions.

- **1. Boundary Conditions.** Consider the operator $\ell = i\partial_x$ with domains $D_\alpha \subset H^1([0;1];dx)$ and $D_1 \subset H^1([0;1];dx)$ defined below. Prove the following.
 - (a) $D_{\alpha} = \{ \psi \in H^1([0;1]; dx) : \psi(0) = \alpha \psi(1) \}$ where $\alpha \in \mathbb{C}$ denotes a constant with the property that $|\alpha| = 1$. Show that ℓ is symmetric on D_1 .

Math Fact: ℓ defined on D_1 is a self-adjoint operator.

see week 11 answers

(b) $D_1 = \{ \psi \in H^1([0;1]; dx) : \psi(0) = \psi(1) = 0 \}$. With the remarks about symmetric and self-adjoint operators from the lecture, argue why ℓ is symmetric, but why it is not self-adjoint on D_2 . As a reality check, explain again why the spectral theorem does not hold true for (ℓ, D_1) .

see week 11 auswers

2. Laplace Operator with Periodic Boundary Conditions. By the Laplace operator we mean the operator that acts in one dimension as $\ell(y) = -y''$ on subspaces of $H^2(I; dx)$. Let's choose I = [0, 1]. The Laplace operator with periodic boundary conditions has the domain

$$D_{\text{pbc}} = \{ \psi \in H^2(I; dx) : \psi(0) = \psi(1) \text{ and } \psi'(0) = \psi'(1). \}$$

(a) Prove that $D_{\rm pbc}$ is a vector space and that ℓ is symmetric on $D_{\rm pbc}$. Math Fact: ℓ defined on $D_{\rm pbc}$ is a self-adjoint operator.

1) we have to check that the boundary wid. are present : وع. (24+19)(ء)=24(ء)+ له لاء) 21)-41 = (24+ [10](1), 2+1 = -4/6/3+46/6 + 24(4)=

(b) Prove that $\ell \geq 0$ is a non-negative operator. What is its lowest eigenvalue?

· by (a):)-4"4= (4.4"= [14"2 >) · since YCXI=1 + X E TO(1) is in Ople al 4 to ~ - 4" = e(41 =0 hace

(c) With the remarks about complete eigenbases from the lecture, argue why ℓ has a complete orthonormal eigenbasis of $L^2(I; dx)$. Compute all eigenvalues and eigenvectors.

we find c(e) = {(zπp) / r ∈ 2 } ad eigenfuntions (p,(x) = e-2xpx

1.00 & 1= 4Th < 12-4Th

<... < Ye = 1/2 65 -> 00

the fact from the lecture rays up : " Gaylete on !

3. Hermite's operator 1. We have defined Hermite's operator ℓ on $L^2(\mathbb{R}; e^{-x^2/2}dx)$ through

$$\ell(y) = -e^{x^2/2} \partial_x \left(e^{-x^2/2} \partial_x y \right).$$

- ue compute $Q(x') = -e^{x^2/2}(-xe^{-\lambda_2^2}(nx^{n-1}))$ (a) Prove that $\mathbb{R} \ni x \mapsto x^n \in D_\ell$, for every $n \in \mathbb{N}$. ز دسر: طور سه س
 - (b) Prove that any polynomial lies in the domain D_{ℓ} . Give an explicit example of a function $\phi: \mathbb{R} \to \mathbb{R}$ which is not compatible with ℓ .
 - of l'is a subspace of

- **4. Hermite's operator 2.** Consider again Hermite's operator $\ell(y) = -e^{x^2/2}\partial_x (e^{-x^2/2}\partial_x y)$.
 - (a) Let $a < b \in \mathbb{R}$. Show that for all $\psi, \phi \in D_{\ell}$, it holds true that

$$\int_{a}^{b} dx \ \ell(\psi)(x)\overline{\phi}(x)e^{-x^{2}/2} = + e^{-a^{2}/2}(\partial_{x}\psi)(s)\overline{\phi}(a) + e^{-b^{2}/2}(\partial_{x}\psi)(b)\overline{\phi}(b) + \int_{a}^{b} dx \ (\partial_{x}\psi)(x)(\overline{\partial_{x}\phi})(x)e^{-x^{2}/2}.$$

integration by perfs:

$$(x) = \int dx - 3x \left(e^{-x^2x} 3x^4\right) = -e^{-x^2} 3x^4 3x^5 = -e^{-x^2} 3x^5 = -e^{-x^2}$$

(b) Using the facts from the lecture, prove that ℓ is a symmetric operator.

(c) Prove that ℓ is a positive semi–definite operator.