Université Ibn Zohr Faculté Polydisciplinaire de Ouarzazate

SE 2020/21.

Module d'analyse des données

Travaux Dirigés (Serie 1) IGE S4

Exercice 1. On considère le tableau X des données suivant

$$X = \begin{pmatrix} 4 & 5 \\ 6 & 7 \\ 8 & 0 \end{pmatrix}$$

- 1) Donner le tableau des données centrée reduites.
- 2) Déterminer la matrice de corrèlation R et assurer vous que c'est une matrice carrée, symmetrique.
- 3) Calculer les valeurs propres λ_i de R et donner la matrice diagonale D semblable à R et la matrice de passage P.
- 4) Déterminer les axes factoriels F_i . Donner le vecteur unitaire u_i de chaque axe F_i . Verifier qur ces axes sont perpondiculaires.
- 5) Ecrire la matrice diagonale des valeurs propres D et calculer sa trace Tr(D) et vérifer que Tr(D) = Tr(R)

Exercice 2. On considére la matrice X des données suivante

$$X = \begin{pmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 1 \end{pmatrix}$$

- 1) Donner la matrice des donnée centrée et reduite.
- 2) Déterminer la matrice de corrèlation R et assurer vous que c'est une matrice carrée, symmetrique.
- 2) Calculer les valeurs propres λ_i de R et déterminer les axes factoriels F_i . Donner la matrice diagonale D semblable à R et la matrice de passage P.
- 3) Donner la qualité d'analyse

Exercice 3.

Au cours d'une enquête sur un échantillon de taille 60, on a obtenu le tableau de contingence suivant:

	M_1	M_2
M_1	10	10
M_2	5	15
M_3	15	5

- 1) Donner le tableau des probabilité relatives et le tableau marginal
- 2) Dans l'espace \mathbb{R}^2 , on considére un nuage $\mathcal{B}(I)$ des points P_i , avec $i \in I$.
 - a) Donner les points P_i du nuage $\mathcal{B}(I)$.
 - b) Calculer la distance χ^2 entre les les differents points de $\mathcal{B}(I)$.
- 3) a) Déterminer la matrice des variance co-variance W ou la matrice R.
 - b) Déterminer les valeurs propres de la matrice W.
 - c) En deduire la variabilité totale du nuage $\mathcal{B}(I)$
- 4) On projette, maintenant, le nuage $\mathcal{B}(I)$ orthogonalement sur un axe, et on note C(I) le nuage projeté. Donner la variabilité totale de nuage projeté C(I).
- 5) Calculer la variabilité expliquée par la projection du nuage $\mathcal{B}(I)$.