Department of Electronics & Communication Engineering Indian Institute of Technology Roorkee

ECN 614 – Adaptive Signal Processing Techniques TUTORIAL #1

- 1. Show that the product $p^*[-k]w_k$ is an analytic function of the complex tap weight w_k but $w_k^*p[-k]$ is not an analytic function.
- 2. A second-order autoregressive process is defined by the difference equation

$$x[n] = x[n-1] - 0.6x[n-2] + w[n]$$

where $\{w[n]\}$ is a zero-mean white-noise process with variance σ_w^2 . Determine the autocorrelation function values $r_{xx}(0)$, $r_{xx}(1)$ and $r_{xx}(2)$.

3. Consider a Wiener filtering problem characterized as follows: The correlation matrix of the tap-input vector $\mathbf{x}[n]$ is

$$\mathbf{R}_{xx} = \begin{bmatrix} 1 & 0.5 & 0.25 \\ 0.5 & 1 & 0.5 \\ 0.25 & 0.5 & 1 \end{bmatrix}$$

and the cross-correlation vector between the tap-input vector $\mathbf{x}[n]$ and the desired response d[n] is

$$\mathbf{p} = [0.5 \quad 0.25 \quad 0.125]^T.$$

- (a) Evaluate the tap weights of the Wiener filter.
- (b) What is the minimum mean-square error produced by this Wiener filter?
- (c) Formulate a representation of the Wiener filter in terms of the eigenvalues of the matrix \mathbf{R}_{xx} and associated eigenvalues.
- 4. The tap-input vector of a transversal filter is defined by

$$\mathbf{x}[n] = \alpha[n]\mathbf{s}[\omega] + \mathbf{v}[n],$$

where

$$\mathbf{s}[\omega] = [1 \quad e^{-j\omega} \quad \dots \quad e^{-j\omega(M-1)}]^T$$

and

$$\mathbf{v}[n] = [v[n] \quad v[n-1] \quad \dots \quad v[n-1+M]]^T$$

The complex amplitude $\alpha[n]$ of the sinusoidal vector $\mathbf{s}[\omega]$ is a random variable with zero mean and variance $\sigma_{\alpha}^2 = E\{ |\alpha[n]|^2 \}$.

- (a) Determine the correlation matrix of the tap-input vector $\mathbf{x}[n]$.
- (b) Suppose that the desired response d[n] is uncorrelated with $\mathbf{x}[n]$. What is the value of the tap-weight vector of the corresponding Wiener filter?
- (c) Suppose that the variance σ_{α}^2 is zero and the desired response is defined by $d[n] = \nu[n-k]$, where $0 \le k \le M-1$. What is the new value of the tap-weight vector of the Wiener filter?
- (d) Determine the tap-weight vector of the Wiener filter for a desired response defined by $d[n] = \alpha[n]e^{-j\omega\tau}$, where τ is a prescribed delay.
- 5. Consider a signal x[n] = s[n] + w[n], where s[n] is an autoregressive process that satisfies the difference equation

$$s[n] = 0.8s[n-1] + v[n]$$

where $\{\nu[n]\}$ is a zero-mean white-noise sequence with variance $\sigma_{\nu}^2 = 0.49$ and $\{w[n]\}$ is another zero-mean white-noise sequence with variance $\sigma_{w}^2 = 1$. The processes $\{\nu[n]\}$ and $\{w[n]\}$ are uncorrelated.

- (a) Determine the autocorrelation sequences $\{r_{ss}(m)\}$ and $\{r_{xx}(m)\}$.
- (b) Design a Wiener filter of length M = 2 to estimate $\{s[n]\}$.
- (c) Repeat Part (b) above for M = 3.
- (d) Compare the minimum mean-square errors produced by the filters in Part (b) and Part (c) above and comment on the difference.
- 6. The figure below shows the autoregressive model of the transmitted signal d[n] and the model of a noisy communication channel over which the signal is transmitted. $\{v_1[n]\}$ is a white-noise process of zero-mean with variance $\sigma_1^2 = 0.27$. $\{v_2[n]\}$ is another white-noise source of zero-mean with variance $\sigma_2^2 = 0.1$. The two noise sources $\{v_1[n]\}$ and $\{v_2[n]\}$ are statistically independent.

A Wiener filter of length two is employed at the receiver to estimate the transmitted signal d[n]. Determine the optimum weight vector of the Wiener filter and the minimum mean-square error produced by the filter.