Decibels

Comparison of power and reference power: $P_{dB} = 10 log_{10} \frac{P}{P_r}$

Comparison of 2 amplitudes of rms values: $P_{dB} = 10log_{10}(\frac{A}{A_r})^2 = 20log_{10}\frac{A}{A_r}$

Signal energy and power

Instantaneous power: $P(t) = x^2(t)$

Energy: $E = \int_0^T x^2(t)dt$

Average power: $P = \frac{1}{T} \int_0^T x^2(t) dt$

Periodic signals

 $\forall x(t+T) = x(t) \ T > 0$ is a period

Fourier Transform

$$X(f) = F[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Inverse Fourier Transform

$$x(t) = F^{-1}[X(f)] = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

Shift theorem

$$F[x(t - t_0)] = e^{-2\pi f t_0} X(f)$$

Inv Fourier Transform Calculation

 $X(f) = rect_{2B}(f)$

$$x(t) = F^{-1}[X(f)] = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df = 2B\frac{\sin(2\pi Bt)}{2\pi Bt}$$

Z transform

A series of samples $\{xn\}$, ideal sampling: $x_s(t) = \sum_n x_n \delta(t - nT)$

$$X_s(f) = \sum x_n F[\delta(t - nT)] = \sum x_n e^{-j2\pi f nT}$$

substitute $z=e^{j2\pi fT}$

$$\begin{array}{c|cccc} \hline f & z \\ \hline 0 & 1 \\ \frac{1}{4T} & j \\ \frac{1}{2T} & -1 \\ \frac{3}{4T} & -j \\ \frac{1}{T} & 1 \\ \hline \end{array}$$

Z Transform: $X(z) = Z[\{x_n\}] = \sum_n x_n z^{-n}$ defined for any complex variable z.

Properties

$$Z[\{ax_n + by_n\}] = aX(z) + bY(z)$$

$$Z[\{x_{n+k}\}] = z^k X(z)$$

$$F[x(t)*y(t)] = F[x(t)]F[y(t)] = X(f)Y(f)\ F^{-1}[x(t)y(t)] = X(f)*Y(f)$$