ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

► We recall:

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ► We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ This is commonly known as $\epsilon - \delta$ form of continuity.

- ▶ We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- ► We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

▶ This is known as sequential form of continuity.

- ► We recall:
- ▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- ▶ This is commonly known as $\epsilon \delta$ form of continuity.
- ▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty} f(x_n) = f(c).$$

- ▶ This is known as sequential form of continuity.
- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

Now we focus on the study of continuous functions on intervals.

- Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].

- Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then it is bounded.

- Now we focus on the study of continuous functions on intervals.
- ▶ In the following a, b are real numbers with a < b and we look at continuous functions on [a, b].
- ▶ Theorem 24.4: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then it is bounded.
- ▶ Theorem 24.5: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists c,d in [a,b] such that

$$f(c) = \sup\{f(x) : x \in [a, b]\};$$

$$f(d) = \inf\{f(x) : x \in [a, b]\}.$$

▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.

- ▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- Proof: Take $a_1 = a$ and $b_1 = b$ and $l_1 = [a_1, b_1]$.

- ▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- Proof: Take $a_1 = a$ and $b_1 = b$ and $l_1 = [a_1, b_1]$.
- ► Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.

- ▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- Proof: Take $a_1 = a$ and $b_1 = b$ and $l_1 = [a_1, b_1]$.
- ► Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f(\frac{a_1+b_1}{2}) = 0$, we can take $c = \frac{a_1+b_1}{2}$, and we are done.

- ▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- Proof: Take $a_1 = a$ and $b_1 = b$ and $l_1 = [a_1, b_1]$.
- ► Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f(\frac{a_1+b_1}{2})=0$, we can take $c=\frac{a_1+b_1}{2}$, and we are done.
- ▶ If $f(\frac{a_1+b_1}{2}) > 0$, take $a_2 = a_1$ and $b_2 = \frac{a_1+b_1}{2}$.

- ▶ Theorem 25.1: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- Proof: Take $a_1 = a$ and $b_1 = b$ and $l_1 = [a_1, b_1]$.
- ► Consider the value of f at the mid-point $\frac{a_1+b_1}{2}$.
- ▶ If $f(\frac{a_1+b_1}{2})=0$, we can take $c=\frac{a_1+b_1}{2}$, and we are done.
- ▶ If $f(\frac{a_1+b_1}{2}) > 0$, take $a_2 = a_1$ and $b_2 = \frac{a_1+b_1}{2}$.
- ▶ On the other hand, if $f(\frac{a_1+b_1}{2}) < 0$, take $a_2 = \frac{a_1+b_1}{2}$ and $b_2 = b_1$.

▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $I_2 = [a_2, b_2]$, $I_1 \supset I_2$.

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2]$, $l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.

- In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2]$, $l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2]$, $l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f(\frac{a_2+b_2}{2}) = 0$, we can take $c = \frac{a_2+b_2}{2}$, and we are done.

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2]$, $l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f(\frac{a_2+b_2}{2})=0$, we can take $c=\frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f(\frac{a_2+b_2}{2}) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2], l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f(\frac{a_2+b_2}{2})=0$, we can take $c=\frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f(\frac{a_2+b_2}{2}) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.
- ▶ On the other hand, if $f(\frac{a_2+b_2}{2}) < 0$, take $a_3 = \frac{a_2+b_2}{2}$ and $b_3 = b_2$.

- ▶ In either case, we have $f(a_2) < 0 < f(b_2)$ and with $l_2 = [a_2, b_2]$, $l_1 \supset l_2$.
- Now consider the value of f at $\frac{a_2+b_2}{2}$.
- ▶ If $f(\frac{a_2+b_2}{2})=0$, we can take $c=\frac{a_2+b_2}{2}$, and we are done.
- ▶ If $f(\frac{a_2+b_2}{2}) > 0$, take $a_3 = a_2$ and $b_3 = \frac{a_2+b_2}{2}$.
- ▶ On the other hand, if $f(\frac{a_2+b_2}{2}) < 0$, take $a_3 = \frac{a_2+b_2}{2}$ and $b_3 = b_2$.
- ▶ In either case, we have $f(a_3) < 0 < f(b_3)$ and with $I_3 = [a_3, b_3], I_1 \supset I_2 \supset I_3$.

Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} - a_{n+1}) = \frac{1}{2}(b_n - a_n)$.

- Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} a_{n+1}) = \frac{1}{2}(b_n a_n)$.
- Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1 \supset I_2 \supset I_3 \supset \cdots$$

- Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} a_{n+1}) = \frac{1}{2}(b_n a_n)$.
- Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1\supset I_2\supset I_3\supset\cdots$$

• where for every n, $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.

- Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} a_{n+1}) = \frac{1}{2}(b_n a_n)$.
- Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1\supset I_2\supset I_3\supset\cdots$$

- where for every n, $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n\in\mathbb{N}}I_n$ is non-empty. In fact, as $\inf\{b_n-a_n:n\in\mathbb{N}\}=\inf\{\frac{b-a}{2^{n-1}}:n\in\mathbb{N}\}=0$, this intersection is a singleton.

- Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} a_{n+1}) = \frac{1}{2}(b_n a_n)$.
- Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1\supset I_2\supset I_3\supset\cdots$$

- where for every n, $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n \in \mathbb{N}} I_n$ is non-empty. In fact, as $\inf\{b_n a_n : n \in \mathbb{N}\} = \inf\{\frac{b-a}{2^{n-1}} : n \in \mathbb{N}\} = 0$, this intersection is a singleton.
- ▶ Suppose $\{c\} = \bigcap_{n \in \mathbb{N}} I_n$.

- Continuing this way, after choosing $I_n = [a_n, b_n]$, either $f(\frac{a_n+b_n}{2}) = 0$ or we have $I_{n+1} = [a_{n+1}, b_{n+1}]$, in such a way that $I_n \supset I_{n+1}$ with $(b_{n+1} a_{n+1}) = \frac{1}{2}(b_n a_n)$.
- Assuming that, this inductive process has not terminated after finite number of steps, we have a nested sequence of intervals

$$I_1\supset I_2\supset I_3\supset\cdots$$

- where for every n, $I_n = [a_n, b_n]$, $f(a_n) < 0 < f(b_n)$.
- ▶ By nested intervals property $\bigcap_{n\in\mathbb{N}}I_n$ is non-empty. In fact, as $\inf\{b_n-a_n:n\in\mathbb{N}\}=\inf\{\frac{b-a}{2^{n-1}}:n\in\mathbb{N}\}=0$, this intersection is a singleton.
- ► Suppose $\{c\} = \bigcap_{n \in \mathbb{N}} I_n$.
- ▶ We clearly have $\lim_{n\to\infty} a_n = c = \lim_{n\to\infty} b_n$.

▶ Then by continuity of f, $f(c) = \lim_{n\to\infty} f(a_n)$. As $f(a_n) < 0$ for every n, we get $f(c) \le 0$.

- ▶ Then by continuity of f, $f(c) = \lim_{n\to\infty} f(a_n)$. As $f(a_n) < 0$ for every n, we get $f(c) \le 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n, we get $f(c) \ge 0$.

- ▶ Then by continuity of f, $f(c) = \lim_{n\to\infty} f(a_n)$. As $f(a_n) < 0$ for every n, we get $f(c) \le 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n, we get $f(c) \ge 0$.
- Combining the last two statements we have f(c) = 0 and this completes the proof.

- ▶ Then by continuity of f, $f(c) = \lim_{n\to\infty} f(a_n)$. As $f(a_n) < 0$ for every n, we get $f(c) \le 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n, we get $f(c) \ge 0$.
- Combining the last two statements we have f(c) = 0 and this completes the proof.
- ▶ Remark: Any point x such that f(x) = 0 is some times, especially when f is a polynomial, is called a root of f or zero of f.

- ▶ Then by continuity of f, $f(c) = \lim_{n\to\infty} f(a_n)$. As $f(a_n) < 0$ for every n, we get $f(c) \le 0$.
- ▶ Similarly as $f(b_n) > 0$ for every n, we get $f(c) \ge 0$.
- Combining the last two statements we have f(c) = 0 and this completes the proof.
- ▶ Remark: Any point x such that f(x) = 0 is some times, especially when f is a polynomial, is called a root of f or zero of f.
- ▶ In this proof we have seen a way of locating the root by successively bisecting the interval.

Intermediate value theorem

► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.

- ► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.
- ▶ Proof: Suppose f(a) < z < f(b). Define $g : [a, b] \to \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.
- ▶ Proof: Suppose f(a) < z < f(b). Define $g : [a, b] \to \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

▶ Then clearly g is continuous and g(a) < 0 < g(b).

- ► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.
- ▶ Proof: Suppose f(a) < z < f(b). Define $g : [a, b] \to \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and g(a) < 0 < g(b).
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that g(c) = 0.

- ► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.
- ▶ Proof: Suppose f(a) < z < f(b). Define $g : [a, b] \to \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and g(a) < 0 < g(b).
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that g(c) = 0.
- ▶ That is, f(c) z = 0 or f(c) = z.

- ► Theorem 25.2: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Suppose f(a) < z < f(b) or f(a) > z > f(b), then there exists $c \in (a,b)$ such that f(c) = z.
- ▶ Proof: Suppose f(a) < z < f(b). Define $g : [a, b] \to \mathbb{R}$ by

$$g(x) = f(x) - z, \quad x \in [a, b].$$

- ▶ Then clearly g is continuous and g(a) < 0 < g(b).
- ▶ By the previous theorem, there exists $c \in (a, b)$ such that g(c) = 0.
- ▶ That is, f(c) z = 0 or f(c) = z.
- ▶ If f(a) > z > f(b), consider g defined by

$$g(x) = z - f(x), \quad x \in [a, b]$$

and similar proof works.

► The intermediate value theorem is a very important theorem and has many applications. We see a few.

- ► The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ► Theorem 25.3 (Existence of n^{th} roots): Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.

- ► The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ Theorem 25.3 (Existence of n^{th} roots): Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.

- ► The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ► Theorem 25.3 (Existence of n^{th} roots): Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- **Proof**: Consider the function $p:[0,\infty)\to[0,\infty)$ defined by

$$p(x) = x^n, \ \forall x \in [0, \infty).$$

- ► The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ Theorem 25.3 (Existence of n^{th} roots): Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- ▶ Proof: Consider the function $p:[0,\infty)\to [0,\infty)$ defined by

$$p(x) = x^n, \ \forall x \in [0, \infty).$$

Clearly, p is continuous and is unbounded.

- ► The intermediate value theorem is a very important theorem and has many applications. We see a few.
- ▶ Theorem 25.3 (Existence of n^{th} roots): Let t be a positive real number and suppose $n \in \mathbb{N}$. Then there exists unique positive real number s such that $s^n = t$.
- We call the s of previous theorem as n^{th} root of t and denote it by $t^{\frac{1}{n}}$.
- ▶ Proof: Consider the function $p:[0,\infty) \to [0,\infty)$ defined by

$$p(x) = x^n, \ \forall x \in [0, \infty).$$

- ► Clearly, *p* is continuous and is unbounded.
- ▶ Therefore, we can get a b such that t < p(b). (Exercise: We may take b = t + 1.)

▶ Let $f:[0,b] \to \mathbb{R}$ be the function,

$$f(x) = x^n, \forall x \in [0, b].$$

▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \forall x \in [0, b].$$

▶ Clearly f is continuous. We have f(0) < t < f(b).

▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have f(0) < t < f(b).
- Then by intermediate value theorem there exists $s \in (0, b)$ such that f(s) = t, or $s^n = t$.

▶ Let $f : [0, b] \rightarrow \mathbb{R}$ be the function,

$$f(x) = x^n, \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have f(0) < t < f(b).
- Then by intermediate value theorem there exists $s \in (0, b)$ such that f(s) = t, or $s^n = t$.
- ▶ For 0 < c < d,

$$d^{n}-c^{n} = (d-c)(d^{n-1}+cd^{n-2}+c^{2}d^{n-s}+\cdots+c^{n-1})$$
$$= (d-c)(\sum_{j=0}^{n-1}c^{j}d^{n-1-j}))>0.$$

▶ Let $f:[0,b] \to \mathbb{R}$ be the function,

$$f(x) = x^n, \forall x \in [0, b].$$

- ▶ Clearly f is continuous. We have f(0) < t < f(b).
- Then by intermediate value theorem there exists $s \in (0, b)$ such that f(s) = t, or $s^n = t$.
- ▶ For 0 < c < d,

$$d^{n} - c^{n} = (d - c)(d^{n-1} + cd^{n-2} + c^{2}d^{n-s} + \dots + c^{n-1})$$
$$= (d - c)(\sum_{j=0}^{n-1} c^{j}d^{n-1-j})) > 0.$$

▶ In other words if 0 < c < d, we have $c^n < d^n$ and so we can't have $c^n = d^n$.. This shows the uniqueness of positive n^{th} root of t.

Roots of polynomials

Example 25.4: Consider the polynomial $p(x) = x^3 - 2x^2 - 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.

Roots of polynomials

- Example 25.4: Consider the polynomial $p(x) = x^3 2x^2 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.
- ▶ Proof: Any polynomial is a continuous function. Now p(0) = -1 < 0 and p(3) = 27 18 1 = 8 > 0. Hence the result follows from the intermediate value theorem.

Roots of polynomials

- Example 25.4: Consider the polynomial $p(x) = x^3 2x^2 1$. Show that there exists a real number λ such that $0 < \lambda < 3$ and $p(\lambda) = 0$.
- ▶ Proof: Any polynomial is a continuous function. Now p(0) = -1 < 0 and p(3) = 27 18 1 = 8 > 0. Hence the result follows from the intermediate value theorem.
- Exercise 25.5: Suppose p is an odd degree real polynomial. Show that there exists a real number λ such that $p(\lambda) = 0$.

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

where

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

- Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.
- ▶ Proof: From the definitions of s, t it is clear that for every $x \in [a, b], s \le f(x) \le t$.

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

- Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.
- ▶ Proof: From the definitions of s, t it is clear that for every $x \in [a, b], s \le f(x) \le t$.
- ► Hence $f([a, b]) \subseteq [s, t]$.

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

- Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.
- ▶ Proof: From the definitions of s, t it is clear that for every $x \in [a, b], s \le f(x) \le t$.
- ▶ Hence $f([a,b]) \subseteq [s,t]$.
- ▶ If s = t, f is a constant function and there is nothing to show.

▶ Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \qquad t = \sup\{f(x) : x \in [a, b].$$

- Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.
- ▶ Proof: From the definitions of s, t it is clear that for every $x \in [a, b], s \le f(x) \le t$.
- ▶ Hence $f([a, b]) \subseteq [s, t]$.
- ▶ If s = t, f is a constant function and there is nothing to show.
- If s < t, and s < z < t, we want to show that there exists $e \in [a, b]$ such that f(e) = z.

► Theorem 25.6: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then

$$f([a,b]) = [s,t]$$

$$s = \inf\{f(x) : x \in [a, b]\}, \quad t = \sup\{f(x) : x \in [a, b].$$

- Note: Here if s = t, then [s, t] is to be interpreted as $\{s\}$.
- ▶ Proof: From the definitions of s, t it is clear that for every $x \in [a, b], s \le f(x) \le t$.
- ▶ Hence $f([a,b]) \subseteq [s,t]$.
- ▶ If s = t, f is a constant function and there is nothing to show.
- If s < t, and s < z < t, we want to show that there exists $e \in [a, b]$ such that f(e) = z.
- But this is clear from the inter mediate value theorem as there exist c, d in [a, b] such that f(c) = s and f(d) = t.

▶ In the following consider singleton subsets of \mathbb{R} also as intervals.

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ Theorem 25.7: Suppose $I \subseteq \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is a continuous function. Then f(I) is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty),$ with $a, b \in \mathbb{R}, a < b$.

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ Theorem 25.7: Suppose $I \subseteq \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is a continuous function. Then f(I) is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty),$ with $a, b \in \mathbb{R}, a < b$.
- Exercise 25.8: Show that a non-empty subset S of \mathbb{R} is an interval if and only if $x, y \in S$ with x < y implies $[x, y] \subseteq S$.

- ▶ In the following consider singleton subsets of \mathbb{R} also as intervals.
- ▶ Theorem 25.7: Suppose $I \subseteq \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is a continuous function. Then f(I) is an interval.
- ▶ Recall that intervals are sets of the form $\{a\}, [a, b], [a, b), (a, b], [a, \infty), (a, \infty), (-\infty, b], (-\infty, b), (-\infty, \infty),$ with $a, b \in \mathbb{R}, a < b$.
- Exercise 25.8: Show that a non-empty subset S of \mathbb{R} is an interval if and only if $x, y \in S$ with x < y implies $[x, y] \subseteq S$.
- Now the proof of Theorem 25.7 follows easily from the inter mediate value theorem.

Antipodal points

► Claim: At any time there are two antipodal points on the equator with equal temperature.

Antipodal points

- ► Claim: At any time there are two antipodal points on the equator with equal temperature.
- ► Sketch of proof:

Antipodal points

- ► Claim: At any time there are two antipodal points on the equator with equal temperature.
- ► Sketch of proof:
- ▶ We model the equator by a circle, or by the interval [0,1], where we identify the points 0 and 1.

▶ Suppose f(t) denotes the temperature at point t in [0,1].

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g:[0,\frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ▶ Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ► Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.
- ▶ If g(0) = 0, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ► Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.
- ▶ If g(0) = 0, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ► Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.
- If g(0) = 0, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.
- ▶ This means that $f(c) f(c + \frac{1}{2}) = 0$ or

$$f(c)=f(c+\frac{1}{2}).$$

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ► Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.
- If g(0) = 0, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.
- ▶ This means that $f(c) f(c + \frac{1}{2}) = 0$ or

$$f(c)=f(c+\frac{1}{2}).$$

► This proves the claim (Why?).

- ▶ Suppose f(t) denotes the temperature at point t in [0,1].
- ▶ Define $g : [0, \frac{1}{2}] \to \mathbb{R}$, by $g(t) = f(t) f(t + \frac{1}{2})$.
- ► Then $g(\frac{1}{2}) = -g(0)$. In other words g(0) and $g(\frac{1}{2})$ have opposite signs.
- If g(0) = 0, 0 and $\frac{1}{2}$ are antipodal points with equal temperature. So we may assume $g(0) \neq 0$.
- Assume that g is continuous. Then by intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.
- ▶ This means that $f(c) f(c + \frac{1}{2}) = 0$ or

$$f(c)=f(c+\frac{1}{2}).$$

- ► This proves the claim (Why?).
- ► END OF LECTURE 25.

