$11a_{173} \ (K11a_{173})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -14767307395u^{27} + 20235323073u^{26} + \dots + 98330713818b + 33355375098, \\ &32428293291u^{27} - 21218621420u^{26} + \dots + 196661427636a + 204360671755, \\ &u^{28} - 2u^{27} + \dots - 3u - 4 \rangle \\ I_2^u &= \langle -u^4a - u^3a + 14u^4 - 2u^2a - 5u^3 - 4au - 10u^2 + 19b + 9a - u + 26, \\ &5u^4a - 2u^3a + 16u^4 - u^2a - 8u^3 + a^2 - au - 5u^2 + 9a - 3u + 30, \ u^5 - u^4 + 2u - 1 \rangle \\ I_3^u &= \langle 19u^{15}a + 23u^{15} + \dots + 20a + 27, \ 2u^{15}a + 6u^{15} + \dots + a^2 - 4, \\ &u^{16} - u^{15} - 2u^{14} + 3u^{13} + 4u^{12} - 7u^{11} - 3u^{10} + 10u^9 - 9u^7 + 3u^6 + 5u^5 - 4u^4 + 2u^2 - 2u + 1 \rangle \\ I_4^u &= \langle b - 1, \ 2a - 2u + 1, \ u^3 + u^2 - 1 \rangle \\ I_5^u &= \langle b - a - 1, \ a^2 + a + 2, \ u + 1 \rangle \\ I_6^u &= \langle 2b - a + 1, \ a^2 - 2a + 5, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 77 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.48 \times 10^{10} u^{27} + 2.02 \times 10^{10} u^{26} + \dots + 9.83 \times 10^{10} b + 3.34 \times 10^{10}, \ 3.24 \times 10^{10} u^{27} - 2.12 \times 10^{10} u^{26} + \dots + 1.97 \times 10^{11} a + 2.04 \times 10^{11}, \ u^{28} - 2u^{27} + \dots - 3u - 4 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ 0.164894u^{27} + 0.107894u^{26} + \cdots - 2.21519u - 1.03915 \\ 0.150180u^{27} - 0.205788u^{26} + \cdots + 0.595130u - 0.339216 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ 0.166699u^{27} + 0.110297u^{26} + \cdots - 2.13491u - 1.03465 \\ 0.227707u^{27} - 0.221295u^{26} + \cdots + 0.789310u - 0.0177292 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 0.206489u^{27} - 0.182794u^{26} + \cdots + 1.38239u + 1.44504 \\ -0.198851u^{27} + 0.240301u^{26} + \cdots + 0.0000310478u + 0.278301 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ 0.312509u^{27} + 0.216909u^{26} + \cdots - 2.81796u - 1.93782 \\ 0.373802u^{27} - 0.449982u^{26} + \cdots + 0.400981u - 0.382402 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 0.137090u^{27} - 0.0589378u^{26} + \cdots + 1.47329u + 1.50912 \\ -0.199975u^{27} + 0.238265u^{26} + \cdots - 0.339747u + 0.201391 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 0.137090u^{27} - 0.0589378u^{26} + \cdots + 1.47329u + 1.50912 \\ -0.199975u^{27} + 0.238265u^{26} + \cdots - 0.339747u + 0.201391 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= -\frac{138939169865}{196661427636}u^{27} - \frac{31573928977}{196661427636}u^{26} + \dots - \frac{326662110881}{16388452303}u - \frac{420010681258}{49165356909}u^{26} + \dots + \frac{326662110881}{16388452303}u - \frac{420010681258}{16388452303}u^{26} + \dots + \frac{326662110881}{16388452303}u - \frac{420010681258}{16388452303}u^{26} + \dots + \frac{326662110881}{16388452303}u^{26} + \dots + \frac{3$

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{28} + 2u^{27} + \dots + 3u - 4$
c_2, c_4	$u^{28} + 10u^{27} + \dots + 97u + 16$
<i>C</i> 3	$u^{28} + 3u^{27} + \dots + 736u + 128$
c_6, c_8, c_9 c_{11}	$u^{28} - 3u^{27} + \dots - 5u - 1$
c_7, c_{10}	$8(8u^{28} - 12u^{27} + \dots + 4u + 2)$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{28} - 10y^{27} + \dots - 97y + 16$
c_2, c_4	$y^{28} + 18y^{27} + \dots + 8543y + 256$
<i>c</i> ₃	$y^{28} - 5y^{27} + \dots - 238592y + 16384$
c_6, c_8, c_9 c_{11}	$y^{28} + 11y^{27} + \dots - 51y + 1$
c_7, c_{10}	$64(64y^{28} + 176y^{27} + \dots + 40y + 4)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.566116 + 0.813544I		
a = 0.534639 - 0.137883I	1.74883 - 2.81556I	-1.14300 + 4.42775I
b = -0.471357 + 0.915613I		
u = -0.566116 - 0.813544I		
a = 0.534639 + 0.137883I	1.74883 + 2.81556I	-1.14300 - 4.42775I
b = -0.471357 - 0.915613I		
u = 0.805429 + 0.748611I		
a = 1.99187 + 0.34421I	4.99503 - 1.79073I	-1.05075 - 2.61493I
b = -1.193820 + 0.462931I		
u = 0.805429 - 0.748611I		
a = 1.99187 - 0.34421I	4.99503 + 1.79073I	-1.05075 + 2.61493I
b = -1.193820 - 0.462931I		
u = 0.679059 + 0.893968I		
a = -0.932511 - 0.786849I	-0.89815 + 10.64770I	-3.82752 - 5.52190I
b = 0.600465 + 1.265070I		
u = 0.679059 - 0.893968I		
a = -0.932511 + 0.786849I	-0.89815 - 10.64770I	-3.82752 + 5.52190I
b = 0.600465 - 1.265070I		
u = 0.167815 + 0.852338I		
a = -0.800362 + 0.593310I	-3.88792 - 6.82425I	-4.62158 + 6.71855I
b = 0.442426 - 1.154500I		
u = 0.167815 - 0.852338I		
a = -0.800362 - 0.593310I	-3.88792 + 6.82425I	-4.62158 - 6.71855I
b = 0.442426 + 1.154500I		
u = -0.838400		
a = -0.287249	0.271501	-23.7360
b = -1.20069		
u = -1.156720 + 0.209637I		
a = -0.79174 + 1.21845I	-8.43358 + 10.19260I	-10.18832 - 7.63922I
b = 0.465804 + 1.280600I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.156720 - 0.209637I		
a = -0.79174 - 1.21845I	-8.43358 - 10.19260I	-10.18832 + 7.63922I
b = 0.465804 - 1.280600I		
u = 0.928400 + 0.721425I		
a = 1.19972 + 1.35918I	4.61539 - 3.79849I	-3.70384 + 8.50950I
b = -1.278550 - 0.388894I		
u = 0.928400 - 0.721425I		
a = 1.19972 - 1.35918I	4.61539 + 3.79849I	-3.70384 - 8.50950I
b = -1.278550 + 0.388894I		
u = -0.878060 + 0.825409I		
a = -0.366900 + 0.450231I	3.34352 + 1.62496I	-2.45048 + 1.41829I
b = 0.338313 - 0.571686I		
u = -0.878060 - 0.825409I		
a = -0.366900 - 0.450231I	3.34352 - 1.62496I	-2.45048 - 1.41829I
b = 0.338313 + 0.571686I		
u = 1.214650 + 0.097151I		
a = -0.222900 - 0.987308I	-4.05629 + 0.93128I	-2.23485 - 6.88947I
b = -0.155309 - 0.849372I		
u = 1.214650 - 0.097151I		
a = -0.222900 + 0.987308I	-4.05629 - 0.93128I	-2.23485 + 6.88947I
b = -0.155309 + 0.849372I		
u = -0.903785 + 0.845201I		
a = -1.078650 - 0.117582I	3.28350 + 4.57627I	-2.13594 - 7.47854I
b = 0.379054 + 0.705257I		
u = -0.903785 - 0.845201I		
a = -1.078650 + 0.117582I	3.28350 - 4.57627I	-2.13594 + 7.47854I
b = 0.379054 - 0.705257I		
u = 1.168360 + 0.434244I		
a = 0.627774 + 0.344147I	-7.10420 + 2.17526I	-9.93897 - 4.23335I
b = 0.309881 + 1.145950I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.168360 - 0.434244I		
a = 0.627774 - 0.344147I	-7.10420 - 2.17526I	-9.93897 + 4.23335I
b = 0.309881 - 1.145950I		
u = -1.074080 + 0.691225I		
a = 1.41798 - 0.69280I	0.23866 + 8.48658I	-4.72348 - 9.14479I
b = -0.422318 - 1.038380I		
u = -1.074080 - 0.691225I		
a = 1.41798 + 0.69280I	0.23866 - 8.48658I	-4.72348 + 9.14479I
b = -0.422318 + 1.038380I		
u = 1.050060 + 0.753206I		
a = -2.17570 - 0.35594I	-2.0462 - 16.7456I	-5.37386 + 9.80445I
b = 0.60850 - 1.30717I		
u = 1.050060 - 0.753206I		
a = -2.17570 + 0.35594I	-2.0462 + 16.7456I	-5.37386 - 9.80445I
b = 0.60850 + 1.30717I		
u = 0.682847		
a = -0.725706	-0.926639	-11.5880
b = 0.129567		
u = -0.357231 + 0.322552I		
a = 0.478268 - 0.914294I	1.12674 + 1.01957I	4.42993 - 4.67672I
b = -0.587531 - 0.365743I		
u = -0.357231 - 0.322552I		
a = 0.478268 + 0.914294I	1.12674 - 1.01957I	4.42993 + 4.67672I
b = -0.587531 + 0.365743I		

$$I_2^u = \langle -u^4a + 14u^4 + \dots + 9a + 26, \ 5u^4a + 16u^4 + \dots + 9a + 30, \ u^5 - u^4 + 2u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - u^{3} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0526316au^{4} - 0.736842u^{4} + \dots - 0.473684a - 1.36842 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.368421au^{4} - 0.157895u^{4} + \dots + 0.684211a + 0.421053 \\ -u^{4} - au + u^{2} + u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.736842au^{4} + 5.68421u^{4} + \dots + 1.36842a + 10.8421 \\ 0.210526au^{4} - 0.947368u^{4} + \dots + 0.105263a - 1.47368 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{3} - u^{2} - u + 2 \\ -u^{4} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.473684au^{4} + 4.36842u^{4} + \dots + 0.736842a + 7.68421 \\ -0.105263au^{4} - 1.52632u^{4} + \dots - 0.0526316a - 2.26316 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.473684au^{4} + 4.36842u^{4} + \dots + 0.736842a + 7.68421 \\ -0.105263au^{4} - 1.52632u^{4} + \dots - 0.0526316a - 2.26316 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^3 + 4u^2 10$

Crossings	u-Polynomials at each crossing		
c_1, c_5	$(u^5 + u^4 + 2u + 1)^2$		
c_2, c_4	$(u^5 + u^4 + 4u^3 + 2u^2 + 4u + 1)^2$		
<i>c</i> ₃	$(u^5 - u^4 + 2u - 1)^2$		
c_6, c_8, c_9 c_{11}	$u^{10} + u^9 + 2u^8 + 4u^7 + 4u^6 + 5u^5 + 3u^4 + u^3 + u^2 + 1$		
c_7, c_{10}	$u^{10} + 4u^9 + 8u^8 + 6u^7 + 6u^6 + 7u^5 + 25u^4 + 43u^3 + 56u^2 + 36u + 8$		

Crossings	Riley Polynomials at each crossing		
c_1, c_3, c_5	$(y^5 - y^4 + 4y^3 - 2y^2 + 4y - 1)^2$		
c_2,c_4	$(y^5 + 7y^4 + 20y^3 + 26y^2 + 12y - 1)^2$		
c_6, c_8, c_9 c_{11}	$y^{10} + 3y^9 + 4y^8 - 4y^7 - 12y^6 - 3y^5 + 11y^4 + 13y^3 + 7y^2 + 2y + 1$		
c_7, c_{10}	$y^{10} + 28y^8 + \dots - 400y + 64$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.760506 + 0.815892I		
a = -0.686158 + 0.302307I	3.01208 + 1.13825I	0.09602 - 2.34058I
b = 0.386464 - 0.809421I		
u = -0.760506 + 0.815892I		
a = 0.658201 - 0.065826I	3.01208 + 1.13825I	0.09602 - 2.34058I
b = -0.473774 - 0.431559I		
u = -0.760506 - 0.815892I		
a = -0.686158 - 0.302307I	3.01208 - 1.13825I	0.09602 + 2.34058I
b = 0.386464 + 0.809421I		
u = -0.760506 - 0.815892I		
a = 0.658201 + 0.065826I	3.01208 - 1.13825I	0.09602 + 2.34058I
b = -0.473774 + 0.431559I		
u = 1.001870 + 0.741764I		
a = -1.06668 - 1.09068I	1.49357 - 10.61130I	-2.76481 + 7.85454I
b = 1.129990 + 0.183434I		
u = 1.001870 + 0.741764I		
a = 2.24279 + 0.22903I	1.49357 - 10.61130I	-2.76481 + 7.85454I
b = -0.67647 + 1.30286I		
u = 1.001870 - 0.741764I		
a = -1.06668 + 1.09068I	1.49357 + 10.61130I	-2.76481 - 7.85454I
b = 1.129990 - 0.183434I		
u = 1.001870 - 0.741764I		
a = 2.24279 - 0.22903I	1.49357 + 10.61130I	-2.76481 - 7.85454I
b = -0.67647 - 1.30286I		
u = 0.517281		
a = -4.14815 + 3.15299I	-4.07650	-8.66240
b = 0.133790 - 1.026500I		
u = 0.517281		
a = -4.14815 - 3.15299I	-4.07650	-8.66240
b = 0.133790 + 1.026500I		

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.943396au^{15} + 0.73585u^{15} + \cdots + 0.150943a - 1.39623 \\ -0.811321au^{15} - 1.24528u^{15} + \cdots + 0.169811a + 0.320755 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.433962au^{15} + 2.73585u^{15} + \cdots + 0.509434a + 1.03774 \\ -0.339623au^{15} - 0.358491u^{15} + \cdots - 0.0943396a - 1.37736 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{14} + u^{13} + \cdots - u + 2 \\ u^{15} - 2u^{14} + \cdots + 2u - 2 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -0.377358au^{15} + 1.49057u^{15} + \cdots + 1.33962a + 0.358491 \\ 0.509434au^{15} - 0.962264u^{15} + \cdots - 0.358491a - 0.433962 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.377358au^{15} + 1.49057u^{15} + \cdots + 1.33962a + 0.358491 \\ 0.509434au^{15} - 0.962264u^{15} + \cdots - 0.358491a - 0.433962 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{12} 8u^{10} + 16u^8 4u^7 16u^6 + 8u^5 + 12u^4 8u^3 4u^2 + 4u 6u^4 + 16u^4 + 16u^$

Crossings	u-Polynomials at each crossing
c_1,c_5	$(u^{16} + u^{15} + \dots + 2u + 1)^2$
c_2, c_4	$(u^{16} + 5u^{15} + \dots - 4u^2 + 1)^2$
<i>c</i> ₃	$(u^{16} - u^{15} + \dots - 2u + 1)^2$
c_6, c_8, c_9 c_{11}	$u^{32} + 5u^{31} + \dots + 8u + 1$
c_7, c_{10}	$u^{32} + u^{31} + \dots - 402u + 73$

Crossings	Riley Polynomials at each crossing		
c_1, c_3, c_5	$(y^{16} - 5y^{15} + \dots - 4y^2 + 1)^2$		
c_2, c_4	$(y^{16} + 11y^{15} + \dots - 8y + 1)^2$		
c_6, c_8, c_9 c_{11}	$y^{32} + 21y^{31} + \dots + 6y + 1$		
c_7, c_{10}	$y^{32} - 15y^{31} + \dots - 89626y + 5329$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.017320 + 0.191091I		
a = 0.77304 - 1.40886I	-4.37117 + 5.29622I	-8.10789 - 6.28296I
b = -0.436018 - 1.310650I		
u = -1.017320 + 0.191091I		
a = -0.080344 + 0.145257I	-4.37117 + 5.29622I	-8.10789 - 6.28296I
b = 0.930500 + 0.053773I		
u = -1.017320 - 0.191091I		
a = 0.77304 + 1.40886I	-4.37117 - 5.29622I	-8.10789 + 6.28296I
b = -0.436018 + 1.310650I		
u = -1.017320 - 0.191091I		
a = -0.080344 - 0.145257I	-4.37117 - 5.29622I	-8.10789 + 6.28296I
b = 0.930500 - 0.053773I		
u = 0.908738 + 0.252477I		
a = 0.160770 - 1.402060I	-3.61825 - 0.25270I	-6.38985 + 0.96511I
b = 0.185966 + 0.248413I		
u = 0.908738 + 0.252477I		
a = -1.69112 - 0.97289I	-3.61825 - 0.25270I	-6.38985 + 0.96511I
b = -0.058000 - 1.114600I		
u = 0.908738 - 0.252477I		
a = 0.160770 + 1.402060I	-3.61825 + 0.25270I	-6.38985 - 0.96511I
b = 0.185966 - 0.248413I		
u = 0.908738 - 0.252477I		
a = -1.69112 + 0.97289I	-3.61825 + 0.25270I	-6.38985 - 0.96511I
b = -0.058000 + 1.114600I		
u = 0.708362 + 0.611401I		
a = -1.56409 + 0.56471I	-3.61825 + 0.25270I	-6.38985 - 0.96511I
b = 0.153564 - 1.382420I		
u = 0.708362 + 0.611401I		
a = -1.17703 - 1.58536I	-3.61825 + 0.25270I	-6.38985 - 0.96511I
b = 0.608496 + 0.923549I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.708362 - 0.611401I		
a = -1.56409 - 0.56471I	-3.61825 - 0.25270I	-6.38985 + 0.96511I
b = 0.153564 + 1.382420I		
u = 0.708362 - 0.611401I		
a = -1.17703 + 1.58536I	-3.61825 - 0.25270I	-6.38985 + 0.96511I
b = 0.608496 - 0.923549I		
u = 0.724199 + 0.826388I		
a = 0.873040 + 1.019050I	2.34449 + 4.73566I	-1.11364 - 2.91588I
b = -0.667529 - 1.233440I		
u = 0.724199 + 0.826388I		
a = -1.62577 - 0.21392I	2.34449 + 4.73566I	-1.11364 - 2.91588I
b = 1.060700 - 0.232760I		
u = 0.724199 - 0.826388I		
a = 0.873040 - 1.019050I	2.34449 - 4.73566I	-1.11364 + 2.91588I
b = -0.667529 + 1.233440I		
u = 0.724199 - 0.826388I		
a = -1.62577 + 0.21392I	2.34449 - 4.73566I	-1.11364 + 2.91588I
b = 1.060700 + 0.232760I		
u = -0.866890 + 0.696274I		
a = 1.92331 + 0.56041I	-0.93480 + 2.67607I	-0.38861 - 3.32415I
b = -0.212635 + 1.014820I		
u = -0.866890 + 0.696274I		
a = 2.69221 - 1.74930I	-0.93480 + 2.67607I	-0.38861 - 3.32415I
b = -0.171716 - 1.089490I		
u = -0.866890 - 0.696274I		
a = 1.92331 - 0.56041I	-0.93480 - 2.67607I	-0.38861 + 3.32415I
b = -0.212635 - 1.014820I		
u = -0.866890 - 0.696274I		
a = 2.69221 + 1.74930I	-0.93480 - 2.67607I	-0.38861 + 3.32415I
b = -0.171716 + 1.089490I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.960503 + 0.654282I		
a = 0.874727 - 0.511465I	-4.37117 - 5.29622I	-8.10789 + 6.28296I
b = 0.27490 + 1.49232I		
u = 0.960503 + 0.654282I		
a = -2.47726 - 0.17457I	-4.37117 - 5.29622I	-8.10789 + 6.28296I
b = 0.723528 - 1.103510I		
u = 0.960503 - 0.654282I		
a = 0.874727 + 0.511465I	-4.37117 + 5.29622I	-8.10789 - 6.28296I
b = 0.27490 - 1.49232I		
u = 0.960503 - 0.654282I		
a = -2.47726 + 0.17457I	-4.37117 + 5.29622I	-8.10789 - 6.28296I
b = 0.723528 + 1.103510I		
u = -0.977539 + 0.749941I		
a = 0.262243 - 0.231216I	2.34449 + 4.73566I	-1.11364 - 2.91588I
b = -0.494890 + 0.256259I		
u = -0.977539 + 0.749941I		
a = -1.72382 + 0.29569I	2.34449 + 4.73566I	-1.11364 - 2.91588I
b = 0.336437 + 0.940681I		
u = -0.977539 - 0.749941I		
a = 0.262243 + 0.231216I	2.34449 - 4.73566I	-1.11364 + 2.91588I
b = -0.494890 - 0.256259I		
u = -0.977539 - 0.749941I		
a = -1.72382 - 0.29569I	2.34449 - 4.73566I	-1.11364 + 2.91588I
b = 0.336437 - 0.940681I		
u = 0.059947 + 0.622852I		
a = 0.467003 - 0.890621I	-0.93480 - 2.67607I	-0.38861 + 3.32415I
b = -0.378599 + 1.075260I		
u = 0.059947 + 0.622852I		
a = -1.186920 + 0.555131I	-0.93480 - 2.67607I	-0.38861 + 3.32415I
b = 0.645301 + 0.131928I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.059947 - 0.622852I		
a = 0.467003 + 0.890621I	-0.93480 + 2.67607I	-0.38861 - 3.32415I
b = -0.378599 - 1.075260I		
u = 0.059947 - 0.622852I		
a = -1.186920 - 0.555131I	-0.93480 + 2.67607I	-0.38861 - 3.32415I
b = 0.645301 - 0.131928I		

IV.
$$I_4^u = \langle b-1, \ 2a-2u+1, \ u^3+u^2-1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u - \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u \\ 2 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u + \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{17}{4}u^2 + \frac{17}{4}u + \frac{7}{4}$

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 - 1$
c_2	$u^3 + u^2 + 2u + 1$
<i>c</i> ₃	u^3
C_4	$u^3 - u^2 + 2u - 1$
<i>C</i> ₅	$u^3 - u^2 + 1$
c_{6}, c_{8}	$(u+1)^3$
	$8(8u^3 + 4u^2 + 4u + 1)$
c_9,c_{11}	$(u-1)^3$
c_{10}	$8(8u^3 - 4u^2 + 4u - 1)$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^3 - y^2 + 2y - 1$
c_2, c_4	$y^3 + 3y^2 + 2y - 1$
<i>c</i> ₃	y^3
c_6, c_8, c_9 c_{11}	$(y-1)^3$
c_{7}, c_{10}	$64(64y^3 + 48y^2 + 8y - 1)$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -1.37744 + 0.74486I	4.66906 + 2.82812I	-1.06503 - 2.38969I
b = 1.00000		
u = -0.877439 - 0.744862I		
a = -1.37744 - 0.74486I	4.66906 - 2.82812I	-1.06503 + 2.38969I
b = 1.00000		
u = 0.754878		
a = 0.254878	0.531480	7.38010
b = 1.00000		

V.
$$I_5^u = \langle b - a - 1, a^2 + a + 2, u + 1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a+1\\a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ a - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ a \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -14

Crossings	u-Polynomials at each crossing		
c_1, c_5, c_7 c_{10}	$(u-1)^2$		
c_2, c_3, c_4	$(u+1)^2$		
c_6, c_8, c_9 c_{11}	$u^2 + u + 2$		

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_3 \\ c_4, c_5, c_7 \\ c_{10}$	$(y-1)^2$	
c_6, c_8, c_9 c_{11}	$y^2 + 3y + 4$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -0.50000 + 1.32288I	-8.22467	-14.0000
b = 0.50000 + 1.32288I		
u = -1.00000		
a = -0.50000 - 1.32288I	-8.22467	-14.0000
b = 0.50000 - 1.32288I		

VI.
$$I_6^u = \langle 2b - a + 1, \ a^2 - 2a + 5, \ u - 1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}a - \frac{3}{2} \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}a - \frac{3}{2} \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}a - \frac{3}{2} \\ -\frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}a - \frac{3}{2} \\ -\frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u-1)^2$
c_2, c_5	$(u+1)^2$
c_3, c_6, c_8 c_9, c_{11}	$u^2 + 1$
c_7	$u^2 - 2u + 2$
c_{10}	$u^2 + 2u + 2$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_5	$(y-1)^2$		
c_3, c_6, c_8 c_9, c_{11}	$(y+1)^2$		
c_7, c_{10}	$y^2 + 4$		

	Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.00000 + 2.00000I	-4.93480	-12.0000
b =	1.000000I		
u =	1.00000		
a =	1.00000 - 2.00000I	-4.93480	-12.0000
b =	-1.000000I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing		
c_1	$((u-1)^4)(u^3+u^2-1)(u^5+u^4+2u+1)^2(u^{16}+u^{15}+\cdots+2u+1)^2$ $\cdot (u^{28}+2u^{27}+\cdots+3u-4)$		
c_2	$(u+1)^{4}(u^{3}+u^{2}+2u+1)(u^{5}+u^{4}+4u^{3}+2u^{2}+4u+1)^{2}$ $\cdot((u^{16}+5u^{15}+\cdots-4u^{2}+1)^{2})(u^{28}+10u^{27}+\cdots+97u+16)$		
c_3	$u^{3}(u+1)^{2}(u^{2}+1)(u^{5}-u^{4}+2u-1)^{2}(u^{16}-u^{15}+\cdots-2u+1)^{2}$ $\cdot (u^{28}+3u^{27}+\cdots+736u+128)$		
c_4	$(u-1)^{2}(u+1)^{2}(u^{3}-u^{2}+2u-1)(u^{5}+u^{4}+4u^{3}+2u^{2}+4u+1)^{2}$ $\cdot ((u^{16}+5u^{15}+\cdots-4u^{2}+1)^{2})(u^{28}+10u^{27}+\cdots+97u+16)$		
c_5	$(u-1)^{2}(u+1)^{2}(u^{3}-u^{2}+1)(u^{5}+u^{4}+2u+1)^{2}$ $\cdot ((u^{16}+u^{15}+\cdots+2u+1)^{2})(u^{28}+2u^{27}+\cdots+3u-4)$		
c_6, c_8	$(u+1)^{3}(u^{2}+1)(u^{2}+u+2)$ $\cdot (u^{10}+u^{9}+2u^{8}+4u^{7}+4u^{6}+5u^{5}+3u^{4}+u^{3}+u^{2}+1)$ $\cdot (u^{28}-3u^{27}+\cdots-5u-1)(u^{32}+5u^{31}+\cdots+8u+1)$		
c ₇	$64(u-1)^{2}(u^{2}-2u+2)(8u^{3}+4u^{2}+4u+1)$ $\cdot (u^{10}+4u^{9}+8u^{8}+6u^{7}+6u^{6}+7u^{5}+25u^{4}+43u^{3}+56u^{2}+36u+8)$ $\cdot (8u^{28}-12u^{27}+\cdots+4u+2)(u^{32}+u^{31}+\cdots-402u+73)$		
c_9,c_{11}	$(u-1)^{3}(u^{2}+1)(u^{2}+u+2)$ $\cdot (u^{10}+u^{9}+2u^{8}+4u^{7}+4u^{6}+5u^{5}+3u^{4}+u^{3}+u^{2}+1)$ $\cdot (u^{28}-3u^{27}+\cdots-5u-1)(u^{32}+5u^{31}+\cdots+8u+1)$		
c_{10}	$64(u-1)^{2}(u^{2}+2u+2)(8u^{3}-4u^{2}+4u-1)$ $\cdot (u^{10}+4u^{9}+8u^{8}+6u^{7}+6u^{6}+7u^{5}+25u^{4}+43u^{3}+56u^{2}+36u+8)$ $\cdot (8u^{28}-12u^{27}+\cdots+4u+2)(u^{32}+u^{31}+\cdots-402u+73)$		

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y-1)^{4}(y^{3}-y^{2}+2y-1)(y^{5}-y^{4}+4y^{3}-2y^{2}+4y-1)^{2}$ $\cdot ((y^{16}-5y^{15}+\cdots-4y^{2}+1)^{2})(y^{28}-10y^{27}+\cdots-97y+16)$
c_2, c_4	$(y-1)^4(y^3+3y^2+2y-1)(y^5+7y^4+20y^3+26y^2+12y-1)^2$ $\cdot ((y^{16}+11y^{15}+\cdots-8y+1)^2)(y^{28}+18y^{27}+\cdots+8543y+256)$
c_3	$y^{3}(y-1)^{2}(y+1)^{2}(y^{5}-y^{4}+4y^{3}-2y^{2}+4y-1)^{2} \cdot ((y^{16}-5y^{15}+\cdots-4y^{2}+1)^{2})(y^{28}-5y^{27}+\cdots-238592y+16384)$
c_6, c_8, c_9 c_{11}	$(y-1)^{3}(y+1)^{2}(y^{2}+3y+4)$ $\cdot (y^{10}+3y^{9}+4y^{8}-4y^{7}-12y^{6}-3y^{5}+11y^{4}+13y^{3}+7y^{2}+2y+1)$ $\cdot (y^{28}+11y^{27}+\cdots-51y+1)(y^{32}+21y^{31}+\cdots+6y+1)$
c_7,c_{10}	$4096(y-1)^{2}(y^{2}+4)(64y^{3}+48y^{2}+8y-1)$ $\cdot (y^{10}+28y^{8}+\cdots-400y+64)(64y^{28}+176y^{27}+\cdots+40y+4)$ $\cdot (y^{32}-15y^{31}+\cdots-89626y+5329)$