Towards human-centered AutoML

Multi-Objective AutoML

Florian Pfisterer, Stefan Coors, Janek Thomas, Bernd Bischl

LMU Munich

2019/07/02

A short intro to AutoML

- Automatically obtain an "optimal" model for a dataset
- The system performs model selection, tuning, ...
- Many different flavours exist!

Why?

- Many steps of the typical ML pipeline can be easily automized!
- Computers are efficient in trying out many possibilities.
- Efficient search strategies exist!
- Humans are single-threaded and have little RAM!

Multi-Objective AutoML - Why?

- Current AutoML approaches are very good at optimizing predictive performance!
- Many applications require models that are *good* with respect to multiple objectives.
- **But:** Current AutoML approaches do not really incorporate this!

Problem:

To narrow focus on a single measure for predictive performance!

Users either use AutoML without considering other objectives, or do analysis manually!

Interesting Objectives:

Fairness

... usually means that our model f_{θ} trained on a dataset X and target y does not discriminate between a set of protected attributes A, such as ethnicity and gender.

There are many (often conflicting) definitions of fairness, to give two examples:

• Equalized Odds (Hardt, 2016)

$$Pr\{\hat{Y}=1|A=0,Y=y\}=Pr\{\hat{Y}=1|A=1,Y=y\},y\in\{0,1\}$$

• Equal Opportunity (Hardt, 2016)

$$Pr\{\hat{Y}=1|A=0,Y=1\}=Pr\{\hat{Y}=1|A=1,Y=1\}$$

• Further desiderata: Calibration

Interesting Objectives II:

Interpretability

Many post-hoc interpretability methods allow us to understand what our model learns. But: They mostly rely on **local** and **linear** explanations.

- Main Effect Complexity (Molnar, 2019)
 - \rightarrow How well can main effects be approximated by linear segments?
- Interaction Strength (Molnar, 2019)
 - → How much of a model's prediction can **not** be explained by main effects?
- Sparsity

Even simple models with 1000's of predictors are hard to grasp

Interesting Objectives III:

Robustness

• Robustness to adversarial examples, perturbations, distribution shift, ...

Memory and Inference Time

• Deploying on mobile devices, scoring http requests

•••

AutoXgboostMC

 We propose a simplified AutoML system in order to explore the setting

Horse Race with

- Uses XGboost models, and a limited amount of preprocessing steps
- Optimize using Multi-Objective Bayesian Optimization
- Human-in-the-loop:
 - User can stop and restart the process, adjust parameters.
 - User specifies area, the optimization algorithm should focus in.

parEgo (Knowles,) uses random projections in order to explore the pareto front. We can limit the range of random projections in order to focus on certain areas.

Workflow

Pareto Front

Pareto front for Fairness and MMCE after 20, 70 and 120 iterations.

- Limit the range of random projections (weights for the measures) in order to focus on specific areas.
- Grey line contains Pareto optimal points
- Blue segment: Pareto optimal for weights from [0.1; 0.9] to [0.9; 0.1].

Open Challenges

- Awareness for other objectives is often lacking. If they are not easily accessible users might just neglect them.
- Fairness measures are often not well-defined and highly depend on context
- Measures for robustness do not really exist and require more research.
- Research into interpretability measures has just started!
- New pre- and post-processing methods might be required.

- Several tools for multi-criteria optimization already exist, further research might be beneficial.
- Tools to increase transparency and trust in AutoML systems are important! Human-in-theloop approaches can help here!

Thank you for your attention!

Check out the progress:

https://github.com/pfistfl/autoxgboostMC

Suggestions, Interesting applications?

florian.pfisterer@stat.uni-muenchen.de

References

- Hardt, M., Price, E., Srebro, N., et al. (2016). Equality of opportunity in supervised learning. In Advances in neural information processing systems
- Molnar, C., Casalicchio, G., and Bischl, B. (2019). Quantifying interpretability of arbitrary machine learning models through functional decomposition. arXiv preprintarXiv:1904.03867.
- Thomas, J., Coors, S., and Bischl, B. (2018). Automatic gradient boosting. International Workshop on Automatic Machine Learning at ICML.
- Knowles, J. (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation (Volume: 10, Issue: 1, Feb. 2006)