# **Physical Simulation**



#### Overview

## 1. Equation of Motion

- Examples
- Ordinary Differentiable Equations (ODE)
- Solving ODEs

#### 2. Collision and Reaction Forces

## **Physics**

#### Learning goals:

- Connect your theoretical math knowledge to applications
- Properly simulate object motion and their interaction in your game



## **Basic Particle Simulation (first try)**

How to compute the change in velocity?

$$egin{aligned} d_t &= t_{i+1} - t_i \ ec{v}_{i+1} &= ec{v}_i + \Delta v \ ec{p}_{i+1} &= ec{p}(t_i) + ec{v}_i d_t \end{aligned}$$

## **Particle-Plane Collision**

In direction of normal



Velocity along normal (v projected on normal by the dot product)

#### **Frictionless**

$$\Delta v = 2(\overline{v^- \cdot \widehat{n}})\overline{\widehat{n}}$$

Apply change along normal (magnitude times direction)

$$v^+ = v^- + \Delta v$$

Loss of energy

$$\Delta v = (\mathbf{1} + \boldsymbol{\epsilon})(v^{-} \cdot \widehat{n})\widehat{n}$$

# Particle-Particle Collisions (spherical objects)

#### **Before collision**



#### **After**



#### Response:

$$v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^- 
angle \cdot \langle p_1 - p_2 
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2 
angle$$

$$v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^- 
angle \cdot \langle p_2 - p_1 
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1 
angle$$

- This is in terms of velocity
  - next: derivation via impulse and forces

# From Velocities ( $\Delta v$ ) to Forces (F) and back

#### Force relates to mass and acceleration

$$\mathbf{F} = ma$$

## A change in velocity related to acceleration over time

$$\Delta \mathbf{v} = \Delta t \, a$$

#### In terms of forces

$$\Delta \mathbf{v} = \Delta t \, rac{F_{\mathbf{v}}}{m}$$

## **Basic Particle Simulation (first try)**

How to compute the change in velocity?

$$egin{aligned} d_t &= t_{i+1} - t_i \ ec{v}_{i+1} &= ec{v}_i + \Delta v \ ec{p}_{i+1} &= ec{p}(t_i) + ec{v}_i d_t \end{aligned}$$

# Forces are omnipresent

Gravity

$$F = \begin{bmatrix} 0 \\ -mg \end{bmatrix}$$

Viscous damping

$$F = -bv$$

Spring & dampers

$$F = -kx - bv$$



# **Gravity direction?**

### Assuming a flat earth:

$$F = \begin{bmatrix} 0 \\ -mg \end{bmatrix}$$

## Assuming a spherical earth:

$$F = -mg \begin{bmatrix} a \\ b \end{bmatrix}$$

How to compute the vector (a,b) and g?

Newton's law of universal gravitation

$$F = G \frac{m_1 m_2}{r^2}$$



## Multiple forces?

## Forces add up (and cancel):

$$F = -mg_1 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} - mg_2 \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$$

This holds for all types of forces!

Notation you might see:

$$F = \sum_{i} F_{i} = \sum_{i} F_{i} = \sum_{i} F$$

$$\vec{F} = F$$



## Your game idea does not need forces?

## Are you sure?

- Particle effects
- Fake forces
- Proxy forces
- Simulate crowd behaviour



Take it as a chance to connect dry math with a practical application!

# **Proxy Forces (= fake forces)**

- Behavior forces: ["Boids", Craig Reynolds, SIGGRAPH 1987]
- flocking birds, schooling fish, etc.
- Attract to goal location (like gravity)
  - E.g., waypoint determined by shortest path search
- Repulsion if close
- Align orientation to neighbors
- Center to neighbors

Forces add up!



## **Simulation Basics**

#### Simulation loop...

- 1. Equations of Motion
  - sum forces & torques
  - solve for accelerations:  $\vec{F} = ma$
- 2. Numerical integration
  - update positions, velocities
- 3. Collision detection
- 4. Collision resolution

### What we did so far: Forward Euler

Forces only  $\vec{F} = ma$ 

$$d_t = t_{i+1} - t_i$$
 acceleration  $= \frac{\partial v}{\partial t}$   $\overrightarrow{v}_{i+1} = \overrightarrow{v}_i + (\overrightarrow{F}(t_i)/m)d_t$   $\overrightarrow{p}_{i+1} = \overrightarrow{p}(t_i) + \overrightarrow{v}_{i+1}d_t$ 

get values at time  $t_{i+1}$  from values at time  $t_i$ 

**Issues? Alternatives?** 

How can we discretize this?

# **Issue: extrapolation**



# Which forces depend on t?

#### Gravity

$$F = \begin{bmatrix} 0 \\ -mg \end{bmatrix}$$





### Viscous damping

$$F = -bv$$

Spring & dampers

$$F = -kx - bv$$



### **Basic Particle Simulation: Small Problem...**

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}_i + (\vec{F}(t_{???})/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_{i+1}d_t$$

Equations of motion describe state (equilibrium)

- Involves quantities and their derivatives
  - -> we need to solve differential equations

### Lets start from scratch

#### Given:

$$\vec{F} = m \; \frac{\partial^2 x}{\partial t^2}$$

Wait!

There is no position x in this equation?! Only contains acceleration a!

How to solve such differential equation?

## Desired: the position x at time t

 $\chi$ 

## Newtonian Physics as First-Order Diff. Eq. (DE)

#### Second-order DE

$$\vec{F} = m \frac{\partial^2 x}{\partial t^2} = \frac{\partial v}{\partial t}$$

Now we have an x!

First-order DE velocity
$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \vec{F}/m \end{bmatrix} = \frac{\partial x}{\partial t}$$

Higher-order DEs can be turned into a first-order DE with additional variables and equations!

## **Newtonian Physics as First-Order DE**

Motion of one particle

#### Second-order DE

$$\vec{F} = m \; \frac{\partial^2 x}{\partial t^2}$$

#### First-order DE

$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F} / m \end{bmatrix}$$

Motion of many particles

$$\frac{\partial}{\partial t} \begin{bmatrix} \overrightarrow{x_1} \\ \overrightarrow{v_1} \\ \overrightarrow{x_2} \\ \overrightarrow{v_2} \\ \vdots \\ \overrightarrow{x_n} \\ \overrightarrow{v_n} \end{bmatrix} = \begin{bmatrix} \overrightarrow{v_1} \\ \overrightarrow{F_1}/m_1 \\ \overrightarrow{v_2} \\ \overrightarrow{F_2}/m_2 \\ \vdots \\ \overrightarrow{v_n} \\ \overrightarrow{F_n}/m_n \end{bmatrix}$$

#### **Overview**

#### Different DE solvers

- Forward Euler (take current accel. to update vel., current vel. to update pos.)
- Midpoint Method & Trapezoid Method (mix current and approximations of future vel. & acc. Estimates)
- Backwards Euler (solve for future pos., vel., and accel. jointly)
  - May require an iterative solver

## **Recap: Forward Euler**

Forces only  $\overrightarrow{F}=ma$   $d_t=t_{i+1}-t_i \qquad \text{acceleration}=\frac{\partial v}{\partial t}$   $\overrightarrow{v}_{i+1}=\overrightarrow{v}_i+(\overrightarrow{F}(t_i)/m)d_t$   $\overrightarrow{p}_{i+1}=\overrightarrow{p}(t_i)+\overrightarrow{v}_{i+1}d_t$ 

get values at time  $t_{i+1}$  from values at time  $t_i$ 

**Issues? Alternatives?** 

### Idea: Backwards Euler

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}_i + (\vec{F}(t_{i+1})/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_{i+1}d_t$$

Viscous damping

$$F = -bv$$

Spring & dampers

$$F = -kx - bv$$

get values at time  $t_{i+1}$  from states at time  $t_i$  and forces at  $t_{i+1}$ 

Issues?

## **Differential Equations**

$$\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$$

Given that  $\vec{X}_0 = \vec{X}(t_0)$ 

Compute  $\vec{X}(t)$  for  $t > t_0$ 

$$\Delta \vec{X}(t) = f(\vec{X}(t), t) \Delta t$$

- Simulation:
  - path through state-space
  - driven by vector field



## **Gravitational field**





# DE Numerical Integration: Explicit (Forward) Euler

$$\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$$

Given that  $\vec{X}_0 = \vec{X}(t_0)$ 

Compute  $\vec{X}(t)$  for  $t > t_0$ 

$$\Delta t = t_i - t_{i-1}$$

$$\Delta \vec{X}(t_{i-1}) = \Delta t f(\vec{X}(t_{i-1}), t_{i-1})$$

$$\vec{X}_i = \vec{X}_{i-1} + \Delta t f(\vec{X}_{i-1}, t_{i-1})$$



## **Explicit Euler Problems**

- Solution spirals out
  - Even with small time steps
  - Although smaller time steps are still better

## Definition: Explicit

- Closed-form/analytic solution
- no iterative solve required



## **Explicit Euler Problems**

Can lead to instabilities



# **Midpoint Method**

- 1. ½ Euler step
- 2. evaluate  $f_m$  at  $\overline{X}_m$
- 3. full step using f<sub>m</sub>



# **Trapezoid Method**

- 1. full Euler step get  $\overline{X}_a$
- 2. evaluate  $f_t$  at  $\vec{X}_a$
- 3. full step using  $f_t$  get  $\overline{X}_b$
- 4. average  $\vec{X}_a$  and  $\vec{X}_b$



## Midpoint & Trapezoid Method

- Not exactly the same
  - But same order of accuracy



# **Explicit Euler: Code**



```
void takeStep(ParticleSystem* ps, float h)
      velocities = ps->getStateVelocities()
      positions = ps->getStatePositions()
      forces = ps->getForces(positions, velocities)
      masses = ps->getMasses()
      accelerations = forces / masses
      newPositions = positions + h*velocities
      newVelocities = velocities + h*accelerations
      ps->setStatePositions(newPositions)
      ps->setStateVelocities(newVelocities)
```

# Midpoint Method: Code



```
void takeStep(ParticleSystem* ps, float h)
      velocities = ps->getStateVelocities()
      positions = ps->getStatePositions()
      forces = ps->getForces(positions, velocities)
      masses = ps->getMasses()
      accelerations = forces / masses
      midPositions = positions + 0.5*h*velocities
      midVelocities = velocities + 0.5*h*accelerations
      midForces = ps->getForces(midPositions, midVelocities)
      midAccelerations = midForces / masses
      newPositions = positions + h*midVelocities
      newVelocities = velocities + h*midAccelerations
      ps->setStatePositions(newPositions)
      ps->setStateVelocities(newVelocities)
```



# Implicit (Backward) Euler:

Use forces at destination

#### Solve system of equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F} / m \end{bmatrix}$$

$$x_{n+1} = x_n + h v_{n+1}$$

$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

- Types of forces:
  - Gravity

$$F = \begin{bmatrix} 0 \\ -mg \end{bmatrix}$$

Viscous damping

$$F = -bv$$

Spring & dampers

$$F = -kx - bv$$

# Implicit (Backward) Euler:

 Use forces at destination + derivative at the destination

#### Solve system of equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$$

$$x_{n+1} = x_n + h v_{n+1}$$

$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

Key idea: use velocity estimated at next step instead of current!

#### **Example: Spring Force**

$$F = -kx$$



$$x_{n+1} = x_n + h v_{n+1}$$

$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

Analytic or iterative solve?

# Rung-Kutta Order 4



dhYedID-yCB7WQoHf-My&index=110

## Forward vs Backward



**Could one apply the Trapezoid Method?** 



#### **Forward Euler**

$$x_{n+1} = x_n + h v_n$$

$$v_{n+1} = v_n + h \left(\frac{-k x_n}{m}\right)$$

#### **Backward Euler**

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

# Particles: Newtonian Physics as First-Order DE

Motion of many particles?

$$\frac{\partial}{\partial t} \begin{bmatrix} \overrightarrow{x_1} \\ \overrightarrow{v_1} \\ \overrightarrow{x_2} \\ \overrightarrow{v_2} \\ \vdots \\ \overrightarrow{x_n} \\ \overrightarrow{v_n} \end{bmatrix} = \begin{bmatrix} \overrightarrow{v_1} \\ \overrightarrow{F_1}/m_1 \\ \overrightarrow{v_2} \\ \overrightarrow{F_2}/m_2 \\ \vdots \\ \overrightarrow{v_n} \\ \overrightarrow{F_n}/m_n \end{bmatrix}$$

Interaction of particles?

## Multiple-particle collision

- naïve implementation is likely unstable
  - Objects pushing inside each other

- Further reading:
- https://box2d.org/publications/
  - In particular <u>https://box2d.org/files/ErinCatto\_ModelingAndSolvingConstraints\_GD</u> <u>C2009.pdf</u>

### **Simulation Basics**

#### Simulation loop...

- 1. Equations of Motion
- 2. Numerical integration
- 3. Collision detection
- 4. Collision resolution

### **Collisions**

- Collision detection
  - Broad phase: AABBs, bounding spheres
  - Narrow phase: detailed checks
- Collision response
  - Collision impulses
  - Constraint forces: resting, sliding, hinges, ....

# **Basic Particle Simulation (first try)**

Forces only  $\vec{F} = ma$ 

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}(t_i) + (\vec{F}(t_i)/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}(t_{i+1})d_t$$

## **Particle-Plane Collisions**

- Apply an 'impulse' of magnitude j
  - Inversely proportional to mass of particle
- In direction of normal

Impulse in physics: Integral of F over time In games: an instantaneous step change (not physically possible), i.e., the force applied over one time step of the simulation



$$j=(1+\epsilon)(v^-\circ \widehat{n})m$$
  $\vec{J}=j\,\widehat{n}$  What is the effect of  $\epsilon$  ?  $v^+=rac{\vec{J}}{-}+v^-$ 

## Recap: Particle-Plane Collisions (in terms of vel.)

Change in direction of normal



Velocity along normal (v projected on normal by the dot product)

#### **Frictionless**

$$\Delta v = 2(\overline{v^- \cdot \widehat{n}})\overline{\widehat{n}}$$

Apply change along normal (magnitude times direction)

$$v^+ = v^- + \Delta v$$

Loss of energy

$$\Delta v = (\mathbf{1} + \boldsymbol{\epsilon})(v^{-} \cdot \widehat{n})\widehat{n}$$

# Why use 'Impulse'?

- Integrates with the physics solver
- How to integrate damping?



# Particle-Particle Collisions (radius=0)

Particle-particle frictionless elastic impulse response





Momentum is preserved

$$m_1v_1^- + m_2v_2^- = m_1v_1^+ + m_2v_2^+$$

Kinetic energy is preserved

in tangential direction 
$$t \cdot v_1^- = t \cdot v_1^+$$
,  $t \cdot v_2^- = t \cdot v_2^+$ 

Velocity is preserved

$$\frac{1}{2}m_1v_1^{-2} + \frac{1}{2}m_2v_2^{-2} = \frac{1}{2}m_1v_1^{+2} + \frac{1}{2}m_2v_2^{+2}$$

# Particle-Particle Collisions (radius >0)

- What we know...
  - Particle centers
  - Initial velocities
  - Particle Masses
- What we can calculate...
  - Contact normal
  - Contact tangent



# Particle-Particle Collisions (radius >0)

- Impulse direction reflected across tangent
- Impulse magnitude proportional to mass of other particle



# Particle-Particle Collisions (radius >0)

More formally...

$$v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^- 
angle \cdot \langle p_1 - p_2 
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2 
angle$$

$$v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^- 
angle \cdot \langle p_2 - p_1 
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1 
angle$$

 This is in terms of velocity, what would the corresponding impulse be?

# Rigid Body Dynamics (rotational motion of objects?)

From particles to rigid bodies...



**Particle** 

$$state = \begin{cases} \vec{x} \ position \\ \vec{v} \ velocity \end{cases}$$

 $\mathbb{R}^4$  in 2D  $\mathbb{R}^6$  in 3D



Rigid body

$$state = \begin{cases} \vec{x} \ position \\ \vec{v} \ velocity \\ R \ rotation \ matrix \ 3x3 \\ \vec{w} \ angular \ velocity \end{cases}$$

 $\mathbb{R}^{12}$  in 3D

#### **DEMOS**

- 1. Code on Files for particles and integration methods.

  Objectives: take a look at the code and forces field, comparison between methods
- 2. Unreal Particles level: ContentExamples, level Particles\_intro.

  Objectives: understand how they are simulated, efforts needed for programmers, curves, etc.
- 3. Unreal Physics tutorial

#### Objectives:

- Applyimpulse on drop objects, check PlayerCharacter blueprint
- radial force
- understanding Skeletal Mesh bones and physical asset
- constraints
- thruster (X axis neg force constant applied)
- angular motors on constraints
- show angular, linear limits for constraints