```
In [5]: #import Libraries
    import pandas as pd
    import numpy as np
    import warplotlib.pyplot as plt
    import warnings
    #We do not want to see warnings
    warnings.filterwarnings("ignore")

In [6]: #import data
    data = pd.read_csv("uber.csv")

In [7]: #Create a data copy
    df = data.copy()
In [8]: #Print data
df.head
```

```
Out[8]: <bound method NDFrame.head of Unnamed: 0
                                                                                  key f
        are_amount \
                  24238194 2015-05-07 19:52:06.0000003
                                                                7.5
        1
                  27835199 2009-07-17 20:04:56.0000002
                                                                7.7
        2
                  44984355 2009-08-24 21:45:00.00000061
                                                                12.9
        3
                  25894730 2009-06-26 08:22:21.0000001
                                                                5.3
                  17610152 2014-08-28 17:47:00.000000188
        4
                                                                16.0
                                                                 . . .
        . . .
        199995 42598914 2012-10-28 10:49:00.00000053
                                                                3.0
        199996 16382965 2014-03-14 01:09:00.0000008
                                                                7.5
        199997 27804658 2009-06-29 00:42:00.00000078
                                                                30.9
        199998 20259894 2015-05-20 14:56:25.0000004
                                                                14.5
        199999 11951496
                            2010-05-15 04:08:00.00000076
                                                                14.1
                        pickup_datetime pickup_longitude pickup_latitude \
                2015-05-07 19:52:06 UTC
        0
                                              -73.999817
                                                               40.738354
                2009-07-17 20:04:56 UTC
                                                               40.728225
        1
                                             -73.994355
        2
                2009-08-24 21:45:00 UTC
                                              -74.005043
                                                               40.740770
                2009-06-26 08:22:21 UTC
        3
                                              -73.976124
                                                               40.790844
                2014-08-28 17:47:00 UTC
        4
                                              -73.925023
                                                               40.744085
        199995 2012-10-28 10:49:00 UTC
                                              -73.987042
                                                               40.739367
        199996 2014-03-14 01:09:00 UTC
                                              -73.984722
                                                               40.736837
        199997 2009-06-29 00:42:00 UTC
                                              -73.986017
                                                               40.756487
        199998 2015-05-20 14:56:25 UTC
                                              -73.997124
                                                               40.725452
        199999 2010-05-15 04:08:00 UTC
                                              -73.984395
                                                               40.720077
                dropoff_longitude dropoff_latitude passenger_count
        0
                       -73.999512
                                         40.723217
        1
                       -73.994710
                                         40.750325
        2
                                                                 1
                       -73.962565
                                         40.772647
        3
                                                                 3
                       -73.965316
                                         40.803349
        4
                       -73.973082
                                         40.761247
                                                                 5
                                               . . .
                              . . .
        199995
                       -73.986525
                                         40.740297
                                                                 1
        199996
                       -74.006672
                                         40.739620
                                                                 2
        199997
                       -73.858957
                                         40.692588
        199998
                                         40.695415
                                                                 1
                       -73.983215
        199999
                       -73.985508
                                        40.768793
                                                                 1
```

[200000 rows x 9 columns]>

In [9]: #Get Info

df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200000 entries, 0 to 199999
       Data columns (total 9 columns):
        # Column
                             Non-Null Count
                                             Dtype
       --- -----
                             -----
                                             _ _ _ _
           Unnamed: 0
        0
                            200000 non-null int64
        1
            key
                            200000 non-null object
           fare_amount 200000 non-null float64
        2
            pickup datetime 200000 non-null object
        3
        4
           pickup_longitude 200000 non-null float64
        5
            pickup_latitude 200000 non-null float64
           dropoff_longitude 199999 non-null float64
        6
        7
            dropoff_latitude 199999 non-null float64
            passenger_count 200000 non-null int64
       dtypes: float64(5), int64(2), object(2)
       memory usage: 13.7+ MB
In [10]: #pickup_datetime is not in required data format
        df["pickup_datetime"] = pd.to_datetime(df["pickup_datetime"])
In [11]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200000 entries, 0 to 199999
       Data columns (total 9 columns):
        # Column
                             Non-Null Count
                                             Dtype
       --- -----
                             -----
        0
            Unnamed: 0
                             200000 non-null int64
        1
                            200000 non-null object
           key
                           200000 non-null float64
           fare_amount
        2
           pickup_datetime 200000 non-null datetime64[ns, UTC]
        3
        4 pickup_longitude 200000 non-null float64
        5
            pickup_latitude
                             200000 non-null float64
           dropoff_longitude 199999 non-null float64
        7
            dropoff_latitude
                             199999 non-null float64
            passenger_count
                             200000 non-null int64
       dtypes: datetime64[ns, UTC](1), float64(5), int64(2), object(1)
       memory usage: 13.7+ MB
In [12]: #Statistics of data
        df.describe()
```

Out[12]:		Unnamed:	O fare_aı	mount picku _l	_longitude	pickup_latitude	dropoff_long	jitude
	count	2.000000e+0	5 200000.0	000000 200	0000.00000	200000.000000	199999.0	00000
	mean	2.771250e+0	7 11.3	359955	-72.527638	39.935885	-72.5	25292
	std	1.601382e+0	7 9.9	01776	11.437787	7.720539	13.1	17408
	min	1.000000e+0	0 -52.0	000000 -	1340.648410	-74.015515	-3356.6	66300
	25%	1.382535e+0	7 6.0	00000	-73.992065	40.734796	-73.9	91407
	50%	2.774550e+0	7 8.5	500000	-73.981823	40.752592	-73.9	80093
	75%	4.155530e+0	7 12.5	500000	-73.967154	40.767158	-73.9	63658
	max	5.542357e+0	7 499.0	000000	57.418457	1644.421482	1153.5	72603
In [13]:		r of missingull().sum()	y values					
Out[13]:	pickup pickup dropod dropod passer dtype	amount o_datetime o_longitude o_latitude ef_longitude ff_latitude nger_count int64	0 0 0 0 0 0 1 1					
In [14]:	#Corredf.cor	lation r()						
Out[14]:			Unnamed: 0	fare_amount	pickup_lon	gitude pickup_l	atitude drop	off_lon
	-	Unnamed: 0	1.000000	0.000589	0.	000230 -0	.000341	0.0
	f	are amount	0.000589	1.000000	0.	010457 -0	.008481	0.0

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_lonឲ្
Unnamed: 0	1.000000	0.000589	0.000230	-0.000341	0.0
fare_amount	0.000589	1.000000	0.010457	-0.008481	0.0
pickup_longitude	0.000230	0.010457	1.000000	-0.816461	8.0
pickup_latitude	-0.000341	-0.008481	-0.816461	1.000000	-0.7
dropoff_longitude	0.000270	0.008986	0.833026	-0.774787	1.0
dropoff_latitude	0.000271	-0.011014	-0.846324	0.702367	-0.9
passenger_count	0.002257	0.010150	-0.000414	-0.001560	0.0

In [16]: plt.boxplot(df['fare_amount'])

In [15]: #Drop the rows with missing values
 df.dropna(inplace=True)

```
Out[16]: {'whiskers': [<matplotlib.lines.Line2D at 0x1be07575f10>,
            <matplotlib.lines.Line2D at 0x1be075931f0>],
           'caps': [<matplotlib.lines.Line2D at 0x1be07593490>,
           <matplotlib.lines.Line2D at 0x1be07593730>],
           'boxes': [<matplotlib.lines.Line2D at 0x1be07575c70>],
           'medians': [<matplotlib.lines.Line2D at 0x1be075939d0>],
           'fliers': [<matplotlib.lines.Line2D at 0x1be07593c70>],
           'means': []}
        500
                                                0
         400
                                                0
        300
        200
         100
           0
In [17]: #Remove Outliers
         q_low = df["fare_amount"].quantile(0.01)
         q_hi = df["fare_amount"].quantile(0.99)
         df = df[(df["fare_amount"] < q_hi) & (df["fare_amount"] > q_low)]
In [18]: #Check the missing values now
         df.isnull().sum()
Out[18]: Unnamed: 0
                               0
          key
                               0
          fare_amount
                               0
          pickup_datetime
          pickup_longitude
                               0
          pickup_latitude
                               0
          dropoff_longitude
                               0
          dropoff_latitude
                               0
          passenger_count
                               0
          dtype: int64
In [19]: #Time to apply learning models
         from sklearn.model_selection import train_test_split
```

```
ModuleNotFoundError
                                                 Traceback (most recent call last)
       Cell In[19], line 2
             1 #Time to apply learning models
       ----> 2 from sklearn.model_selection import train_test_split
       ModuleNotFoundError: No module named 'sklearn'
In [ ]: #Take x as predictor variable
        x = df.drop("fare_amount", axis = 1)
        #And y as target variable
        y = df['fare_amount']
In [ ]: #Necessary to apply model
        x['pickup_datetime'] = pd.to_numeric(pd.to_datetime(x['pickup_datetime']))
        x = x.loc[:, x.columns.str.contains('^Unnamed')]
In [ ]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_s
In [ ]: from sklearn.linear_model import LinearRegression
In [ ]: lrmodel = LinearRegression()
        lrmodel.fit(x_train, y_train)
In [ ]: #Prediction
        predict = lrmodel.predict(x_test)
In [ ]: #Check Error
        from sklearn.metrics import mean_squared_error
        lrmodelrmse = np.sqrt(mean_squared_error(predict, y_test))
        print("RMSE error for the model is ", lrmodelrmse)
In [ ]: #Let's Apply Random Forest Regressor
        from sklearn.ensemble import RandomForestRegressor
        rfrmodel = RandomForestRegressor(n_estimators = 100, random_state = 101)
In [ ]: #Fit the Forest
        rfrmodel.fit(x_train, y_train)
        rfrmodel_pred = rfrmodel.predict(x_test)
In [ ]: #Errors for the forest
        rfrmodel_rmse = np.sqrt(mean_squared_error(rfrmodel_pred, y_test))
        print("RMSE value for Random Forest is:",rfrmodel_rmse)
In [ ]:
In [ ]:
```

```
In [1]: import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score
         from sklearn.neighbors import KNeighborsClassifier
In [2]: df = pd.read_csv("./emails.csv")
In [3]: df.head()
Out[3]:
            Email
                  the to ect and for of
                                               a you hou ... connevey jay valued lay infra
             No.
            Email
                        0
                                       0
                                               2
                                                    0
                                                          0
                                                                            0
                                                                                    0
                                                                                        0
                             1
                                  0
                                          0
               1
            Email
                      13
                            24
                                  6
                                       6
                                          2 102
                                                    1
                                                         27 ...
                                                                        0
                                                                                        0
            Email
                        0
                             1
                                  0
                                       0
                                          0
                                               8
                                                    0
                                                                        0
                                                                            0
                                                                                    0
                                                                                        0
                                                          0
            Email
                            22
                                       5
                                              51
                                                    2
                                                         10
            Email
                        6
                           17
                                  1
                                       5
                                          2
                                              57
                                                    0
                                                          9 ...
                                                                        0
                                                                            0
                                                                                    0
                                                                                        0
        5 rows × 3002 columns
In [4]: df.isnull().sum()
Out[4]: Email No.
                       0
         the
                       0
                       0
         to
         ect
                       0
         and
                       0
         military
                       0
         allowing
                       0
         ff
                       0
         dry
                       0
         Prediction
         Length: 3002, dtype: int64
In [5]: X = df.iloc[:,1:3001]
```

Χ

```
Out[5]:
               the to ect and for of
                                            a you hou in ... enhancements connevey jay v
            0
                 0
                     0
                         1
                               0
                                   0
                                       0
                                            2
                                                 0
                                                       0
                                                          0
                                                                                            0
                 8
                   13
                        24
                               6
                                   6
                                       2
                                          102
                                                      27
                                                        18
                                                                             0
                                                                                       0
                                                                                            0
            2
                 0
                     0
                         1
                               0
                                   0
                                       0
                                            8
                                                 0
                                                       0
                                                           4
                                                                             0
                                                                                       0
                                                                                            0
            3
                     5
                        22
                               0
                                           51
                                                      10
                                                           1
                                                                             0
                                                                                            0
            4
                        17
                               1
                                   5
                                       2
                                           57
                                                 0
                                                       9
                                                           3
                                                                             0
                                                                                       0
                                                                                            0
         5167
                         2
                                                           5 ...
                                                                             0
                                                                                       0
                                                                                            0
                 2
                     2
                               3
                                   0
                                       0
                                           32
                                                 0
                                                       0
                                                       3 23 ...
         5168
                35
                    27
                        11
                               2
                                       5 151
                                                                             0
                                                                                            0
         5169
                                                          1 ...
                                                                             0
                                                                                            0
                 0
                     0
                         1
                               1
                                   0
                                       0
                                           11
                                                 0
                                                      0
                                                                                       0
         5170
                    7
                               0
                                   2
                                           28
                                                           8
                                                                                            0
         5171
                22 24
                         5
                               1
                                   6
                                       5 148
                                                 8
                                                       2 23 ...
                                                                             0
                                                                                       0
                                                                                            0
        5172 \text{ rows} \times 3000 \text{ columns}
In [6]: Y = df.iloc[:,-1].values
Out[6]: array([0, 0, 0, ..., 1, 1, 0], dtype=int64)
In [7]: train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size = 0.25)
In [ ]: svc = SVC(C=1.0,kernel='rbf',gamma='auto')
        # C here is the regularization parameter. Here, L2 penalty is used(default). It is
        # As C increases, model overfits.
        # Kernel here is the radial basis function kernel.
        # gamma (only used for rbf kernel) : As gamma increases, model overfits.
         svc.fit(train_x,train_y)
        y_pred2 = svc.predict(test_x)
        print("Accuracy Score for SVC : ", accuracy_score(y_pred2,test_y))
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random s
In [ ]: knn = KNeighborsClassifier(n_neighbors=7)
```

In []: knn.fit(X_train, y_train)

print(knn.predict(X_test))

In []: print(knn.score(X_test, y_test))

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
        import seaborn as sns
        sns.set()
In [2]: dataset = pd.read_csv('/content/Churn_Modelling.csv', index_col = 'RowNumber')
        dataset.head()
Out[2]:
                     Customerld Surname CreditScore Geography Gender Age Tenure
                                                                                          Bala
         RowNumber
                   1
                        15634602 Hargrave
                                                  619
                                                            France
                                                                   Female
                                                                             42
                                                                                     2
                   2
                                       Hill
                                                  608
                                                                                         83807
                        15647311
                                                            Spain
                                                                   Female
                                                                             41
                        15619304
                                     Onio
                                                  502
                                                            France Female
                                                                             42
                                                                                       159660
                       15701354
                                      Boni
                                                  699
                                                            France Female
                                                                             39
                   5
                        15737888
                                   Mitchell
                                                  850
                                                            Spain Female
                                                                                      2 12551(
                                                                             43
In [3]: #Customer ID and Surname would not be relevant as features
        X_columns = dataset.columns.tolist()[2:12]
        Y_columns = dataset.columns.tolist()[-1:]
        print(X_columns)
        print(Y_columns)
       ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts',
       'HasCrCard', 'IsActiveMember', 'EstimatedSalary']
       ['Exited']
In [4]: X = dataset[X_columns].values
        Y = dataset[Y_columns].values
In [5]: #We need to encode categorical variables such as geography and gender
        from sklearn.preprocessing import LabelEncoder
        X_column_transformer = LabelEncoder()
        X[:, 1] = X_column_transformer.fit_transform(X[:, 1])
In [6]: #Lets Encode gender now
        X[:, 2] = X_column_transformer.fit_transform(X[:, 2])
        We are treating countries with ordinal values (0 < 1 < 2) but they are incomparable. To solve
        this we can use one hot encoding. We will perform some standardization
In [7]: from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.compose import ColumnTransformer
        from sklearn.pipeline import Pipeline
```

pipeline = Pipeline(

```
('Categorizer', ColumnTransformer(
                         ("Gender Label Encoder", OneHotEncoder(categories = 'auto', drop =
                         ("Geography Label Encoder", OneHotEncoder(categories = 'auto', drop
                     ],
                     remainder = 'passthrough', n_jobs = 1)),
                 ('Normalizer', StandardScaler())
             ]
In [8]: #Standardize the features
         X = pipeline.fit_transform(X)
In [9]: #Spilt the data
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_s
In [10]: #Let us create the Neural Network
         from keras.models import Sequential
         from keras.layers import Dense, Dropout
In [11]: #Initialize ANN
         classifier = Sequential()
In [12]: #Add input layer and hidden layer
         classifier.add(Dense(6, activation = 'relu', input_shape = (X_train.shape[1], )))
         classifier.add(Dropout(rate = 0.1))
In [13]: #Add second Layer
         classifier.add(Dense(6, activation = 'relu'))
         classifier.add(Dropout(rate = 0.1))
In [14]: #Add output layer
         classifier.add(Dense(1, activation = 'sigmoid'))
In [15]: #Let us take a look at our network
         classifier.summary()
```

_	Layer (type)	Output Shape	Param #	
=	dense (Dense)	(None, 6)	72	
	dropout (Dropout)	(None, 6)	0	
	dense_1 (Dense)	(None, 6)	42	
	dropout_1 (Dropout)	(None, 6)	0	
	dense_2 (Dense)	(None, 1)	7	
T T	otal params: 121 rainable params: 121 lon-trainable params: 0			
In [16]:	<pre>#Optimize the weights classifier.compile(optimize</pre>	r = 'adam', loss = 'b	oinary_crossentro	py', metrics = ['ac
In []:	<pre>#Fitting the Neural Network history = classifier.fit(X_</pre>	train, y_train, batch	n_size = 32, epoc	hs = 200, validatio
In [19]:	<pre>y_pred = classifier.predict print(y_pred[:5])</pre>	(X_test)		
	3/63 [====================================	======] - Øs 1ms/s	tep	
In [20]:	<pre>#Let us use confusion matri y_pred = (y_pred > 0.5).ast print(y_pred[:5])</pre>		os 0.5	
[[0] [0] [0] [0]]			
In [21]:	<pre>#Making the Matrix from sklearn.metrics import cm = confusion_matrix(y_tes print(cm)</pre>			
[[1569 26] [293 112]]			
In [22]:	#Accuracy of our NN print(((cm[0][0] + cm[1][1])* 100) / len(y_test)	, '% of data was	classified correct

84.05 % of data was classified correctly

Implement K-Nearest Neighbors algorithm on diabetes.csv dataset. Compute confusion matrix, accuracy, error rate, precision and recall on the given dataset

```
In [1]:
             import numpy as np
             import pandas as pd
In [2]: data = pd.read_csv('./diabetes.csv')
        data.head()
Out[2]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI
                                                                           Pedigree
                                                                                     Age Outc
         0
                     6
                            148
                                            72
                                                          35
                                                                      33.6
                                                                               0.627
                                                                                       50
         1
                             85
                                                          29
                                                                   0 26.6
                                                                               0.351
                                            66
                                                                                       31
         2
                     8
                            183
                                            64
                                                                      23.3
                                                                               0.672
                                                                                       32
         3
                                                          23
                                                                  94 28.1
                                                                               0.167
                                                                                       21
                             89
                                            66
         4
                     0
                            137
                                            40
                                                          35
                                                                 168 43.1
                                                                               2.288
                                                                                       33
In [4]: #Check for null or missing values
         data.isnull().sum()
Out[4]: Pregnancies
                          0
         Glucose
         BloodPressure
         SkinThickness
         Insulin
                          0
         BMI
                          0
         Pedigree
         Age
         Outcome
         dtype: int64
In [6]: #Replace zero values with mean values
        for column in data.columns[1:-3]:
             data[column].replace(0, np.NaN, inplace = True)
             data[column].fillna(round(data[column].mean(skipna=True)), inplace = True)
         data.head(10)
```

Out[6]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Outc	
	0 6	148.0	72.0	35.0	156.0	33.6	0.627	50		
	1 1	85.0	66.0	29.0	156.0	26.6	0.351	31		
	2 8	183.0	64.0	29.0	156.0	23.3	0.672	32		
	3 1	89.0	66.0	23.0	94.0	28.1	0.167	21		
	4 0	137.0	40.0	35.0	168.0	43.1	2.288	33		
	5 5	116.0	74.0	29.0	156.0	25.6	0.201	30		
	6 3	78.0	50.0	32.0	88.0	31.0	0.248	26		
	7 10	115.0	72.0	29.0	156.0	35.3	0.134	29		
	8 2	197.0	70.0	45.0	543.0	30.5	0.158	53		
	9 8	125.0	96.0	29.0	156.0	32.0	0.232	54		
In [7]: In [22]: In [23]:	<pre>Y = data.iloc[:, 8:] #Predictor #Perform Spliting from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_sta)</pre>									
In [24]:	<pre>from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_sco print("Confusion Matrix") print(confusion_matrix(Y_test, knn_pred)) print("Accuracy Score:", accuracy_score(Y_test, knn_pred)) print("Reacal Score:", recall_score(Y_test, knn_pred)) print("F1 Score:", f1_score(Y_test, knn_pred)) print("Precision Score:",precision_score(Y_test, knn_pred))</pre>									
, 1	Confusion Matrix [[88 19] [19 28]] Accuracy Score: Reacal Score: 0.5957 Precision Score	0.753246 .59574468 744680851	08510638 0638							

In []:

Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset. Determine thenumber of clusters using the elbow method.

```
In [4]: import pandas as pd
import numpy as np

In [5]: df = pd.read_csv('./sales_data_sample.csv', encoding='unicode_escape')
In [6]: df.head
```

Out[6]:		d method NC UMBER SA	Frame.he	ad of		ORDE	RNUMBER	QU	ANTITYOR	DERE) PR	ICEEACH	ORDER
	0	1016			30		95.70			2	2871	. 00	
	1	1012			34		81.35			5	2765		
	2	1013			41		94.74			2	3884		
	3	1014			45		83.26			6	3746		
	4	1015			49		00.00			14	5205		
	•••												
	2818	1035		•	20	1	90.00			 15	2244	40	
	2819	1037			29		00.00			1	3978		
	2820	1038			43		00.00			4	5417		
	2821	1039			34		62.24			1	2116		
	2822	1041			47		65.52			9	3079		
	2022	1041			7,	,	03.32			,	5075	•	
		ORDE	RDATE	STATUS	QΤ	R_ID	MONTH_I	[D '	YEAR_ID		\		
	0	2/24/2003	0:00	Shipped		1		2	2003				
	1	5/7/2003	0:00	Shipped		2		5	2003				
	2	7/1/2003	0:00	Shipped		3		7	2003				
	3	8/25/2003	0:00	Shipped		3		8	2003				
	4	10/10/2003	0:00	Shipped		4	1	L0	2003				
			• • •										
	2818	12/2/2004	0:00	Shipped		4	1	L2	2004				
	2819	1/31/2005	0:00	Shipped		1		1	2005				
	2820	3/1/2005	0:00 R	Resolved		1		3	2005				
	2821	3/28/2005	0:00	Shipped		1		3	2005				
	2822	5/6/2005	0:00	On Hold		2		5	2005				
			_										
		207		ADDRESSLI			RESSLINE				/ STA		
	0	897	Long Air	•			Na			NYO		NY	
	1	27		de l'Abb	-		Na			Reims		aN	
	2	27 rue du					Na			Paris		aN	
	3			Hillside			Na			adena		CA	
	4		//34	Strong	St.		Na	aN :	San Fran	C1SC)	CA	
	2818		C/ Mora	ılzarzal,	86	;	 Na		N	 ladrio		 aN	
	2819			Torikatı			Na		'	Oul		aN	
	2820			ılzarzal,			Na		N	ladrio		aN	
	2821	1	rue Alsa				Na			louse		aN	
	2822	_		innaker			Na			ostor		MA	
	2022		0010 Jp	, I I I I I I I I I I I I I I I I I I I	ы.		Na	41 V	_	03 (01			
		POSTALCODE	COUNTRY	' TERRITO	DRY	CONTA	CTLASTNA	AME (CONTACTE	IRST	NAME	DEALSIZ	E
	0	10022	USA	\ N	NaN			Yu		ŀ	(wai	Smal:	1
	1	51100	France	e EN	1ΕA		Henri	iot		F	Paul	Smal:	1
	2	75508	France	e EN	1EA		Da Cun	nha			niel	Mediu	m
	3	90003	USA	\ N	NaN		You	ıng			ulie	Mediu	m
	4	NaN	USA		NaN		Bro	_			ulie	Mediu	
	2818	28034	Spain		1EA		Frey			Di	iego	Smal:	
	2819	90110	Finland		1EA		Koskita				rkko	Mediu	
	2820	28034	Spain		1EA		Frey				iego	Mediu	
	2821	31000	France		1EA		Roul			Anne	_	Smal:	
	2822	51003	USA		NaN		Yoshi				Juri	Mediu	

In [7]: df.info

Out[7]:		nd method Da WENUMBER	taFrame SALES			OR	DERNUMBER	QUANTITY	ORDE!	RED	PRICEEACH	OR
	0	1010		,	30		95.70		2	2871	1.00	
	1	1012			34		81.35		5		5.90	
	2	1013			41		94.74		2		1.34	
	3	1013			45		83.26			3746		
	4	1015			49	1	00.00		14	520:	5.27	
	• • •			•	• • •		•••		• • •			
	2818	1035			20		00.00		15	2244		
	2819	1037			29		00.00		1		3.51	
	2820	1038			43		00.00		4		7.57	
	2821	1039	7		34		62.24		1	2116	5.16	
	2822	1041	4		47		65.52		9	3079	9.44	
		OPDE	RDATE	CTATHS	ОТ	חד ם	MONTH_ID	VEAR IN		\		
	0				Ųı					\		
	0	2/24/2003		Shipped		1	2	2003	• • •			
	1	5/7/2003		Shipped		2	5	2003	• • •			
	2	7/1/2003		Shipped		3	7	2003	• • •			
	3	8/25/2003		Shipped		3	8	2003	• • •			
	4	10/10/2003	0:00	Shipped		4	10	2003	• • •			
	• • •		• • •	• • •				• • •	• • •			
	2818	12/2/2004	0:00	Shipped		4	12	2004	• • •			
	2819	1/31/2005	0:00	Shipped		1	1	2005				
	2820	3/1/2005	0:00	Resolved		1	3	2005				
	2821	3/28/2005	0:00	Shipped		1	3	2005				
	2822	5/6/2005	0:00	On Hold		2	5	2005				
				ADDRESSLI	NE1	ADD	RESSLINE2		CIT	Y STA	ATE \	
	0	897	Long Ai	rport Ave	enue	<u>.</u>	NaN		NYO	_	NY	
	1		_	de l'Abb			NaN		Reims	5 N	NaN	
	2	27 rue du			-		NaN		Paris		NaN	
	3			Hillside			NaN	Pas	adena		CA	
	4			34 Strong			NaN	San Fran			CA	
	• • •		,,,				• • •	34			• • •	
	2818		C/ Mor	alzarzal,	86	,	NaN	N	ladrio		NaN	
	2819		•	Torikati			NaN		Oul		NaN	
	2820		C/ Mor	alzarzal			NaN	N	ladrio		NaN	
	2821	1		ace-Lorra			NaN		ılouse		NaN	
	2822	_		Spinnaker			NaN		Bostor		MA	
	2022		8010 2	ртппакст	ы.		IVAIN		03 (0)	'	rie.	
		POSTALCODE	COUNTR	RY TERRITO	DRY	CONTA	CTLASTNAME	CONTACTE	IRST	NAME	DEALSIZE	
	0	10022	US	SA N	laN		Yu		ŀ	Kwai	Small	
	1	51100	Franc	e EN	1EA		Henriot		F	Paul	Small	
	2	75508	Franc	e EN	1EA		Da Cunha		Dar	niel	Medium	
	3	90003	US		laN		Young			ulie		
	4	NaN	US		laN		Brown			ılie	Medium	
			•						3(
	2818	28034	Spai		1EA		Freyre		D-	··· iego	Small	
	2819		Finlar				Koskitalo			rkko	Medium	
		90110			1EA							
	2820	28034	Spai		1EA		Freyre			iego	Medium	
	2821	31000	Franc		1EA		Roulet		Anne		Small	
	2822	51003	US	SA N	laN		Yoshido			Juri	Medium	

```
In [8]: #Columns to Remove
        to_drop = ['ADDRESSLINE1', 'ADDRESSLINE2', 'STATE', 'POSTALCODE', 'PHONE']
        df = df.drop(to_drop, axis=1)
In [9]: #Check for null values
        df.isnull().sum()
                              0
Out[9]: ORDERNUMBER
         QUANTITYORDERED
                              0
         PRICEEACH
                              0
         ORDERLINENUMBER
                              0
         SALES
         ORDERDATE
                            0
         STATUS
                             0
         QTR_ID
                              0
         MONTH_ID
         YEAR_ID
                             0
         PRODUCTLINE
         MSRP
                             0
         PRODUCTCODE
                              0
         CUSTOMERNAME
                            0
         CITY
         COUNTRY
                             0
                         1074
         TERRITORY
         CONTACTLASTNAME
                            0
         CONTACTFIRSTNAME
                              0
         DEALSIZE
                              0
         dtype: int64
In [10]: #Bhai bhai look at territory
        #But territory does not have significant impact on analysis, let it be
In [11]: df.dtypes
Out[11]: ORDERNUMBER
                             int64
                            int64
         QUANTITYORDERED
                         float64
         PRICEEACH
        ORDERLINENUMBER int64
SALES float64
ORDERDATE object
                           object
         STATUS
                            int64
         QTR_ID
                            int64
         MONTH_ID
                            int64
         YEAR_ID
        PRODUCTLINE object
         MSRP
                            int64
         PRODUCTCODE
                            object
        CUSTOMERNAME
                            object
         CITY
                            object
         COUNTRY
                            object
         TERRITORY
                            object
         CONTACTLASTNAME
        CONTACTE ASTNAME
                            object
                            object
                            object
         DEALSIZE
         dtype: object
```

```
In [12]: #ORDERDATE Should be in date time
         df['ORDERDATE'] = pd.to_datetime(df['ORDERDATE'])
In [13]: #We need to create some features in order to create cluseters
         #Recency: Number of days between customer's latest order and today's date
         #Frequency: Number of purchases by the customers
         #MonetaryValue : Revenue generated by the customers
         import datetime as dt
         snapshot_date = df['ORDERDATE'].max() + dt.timedelta(days = 1)
         df_RFM = df.groupby(['CUSTOMERNAME']).agg({
             'ORDERDATE' : lambda x : (snapshot_date - x.max()).days,
             'ORDERNUMBER' : 'count',
             'SALES' : 'sum'
         })
         #Rename the columns
         df_RFM.rename(columns = {
             'ORDERDATE' : 'Recency',
             'ORDERNUMBER' : 'Frequency',
             'SALES' : 'MonetaryValue'
         }, inplace=True)
In [14]: df_RFM.head()
```

Out[14]:

Recency Frequency MonetaryValue

CUSTOMERNAME

AV Stores, Co.	196	51	157807.81
Alpha Cognac	65	20	70488.44
Amica Models & Co.	265	26	94117.26
Anna's Decorations, Ltd	84	46	153996.13
Atelier graphique	188	7	24179.96

```
In [16]: # Divide into segments
# We create 4 quartile ranges

df_RFM['M'] = pd.qcut(df_RFM['MonetaryValue'], q = 4, labels = range(1,5))

df_RFM['R'] = pd.qcut(df_RFM['Recency'], q = 4, labels = list(range(4,0,-1)))

df_RFM['F'] = pd.qcut(df_RFM['Frequency'], q = 4, labels = range(1,5))

df_RFM.head()
```

Out[16]:		Recency	Frequency	MonetaryValue	М	R	F	
	CUSTOMERNAME							
	AV Stores, Co.	196	51	157807.81	4	2	4	
	Alpha Cognac	65	20	70488.44	2	4	2	
	Amica Models & Co.	265	26	94117.26	3	1	2	
	Anna's Decorations, Ltd	84	46	153996.13	4	3	4	
	Atelier graphique	188	7	24179.96	1	2	1	
n [17]:	<pre>#Create another column df_RFM['RFM_Score'] = df_RFM.head()</pre>	-		F']].sum(axis=1	L)			
Out[17]:		Recency	Frequency	MonetaryValue	М	R	F	RFM_Score
	CUSTOMERNAME							
	AV Stores, Co.	196	51	157807.81	4	2	4	10
	Alpha Cognac	65	20	70488.44	2	4	2	8

We create levels for our Customers

RFM Score > 10 : High Value Customers

188

Anna's Decorations, Ltd

Atelier graphique

RFM Score < 10 and RFM Score >= 6: Mid Value Customers

7

153996.13 4 3 4

24179.96 1 2 1

11

4

RFM Score < 6 : Low Value Customers

```
In [20]: def rfm_level(df):
    if bool(df['RFM_Score'] >= 10):
        return 'High Value Customer'

    elif bool(df['RFM_Score'] < 10) and bool(df['RFM_Score'] >= 6):
        return 'Mid Value Customer'
    else:
        return 'Low Value Customer'

df_RFM['RFM_Level'] = df_RFM.apply(rfm_level, axis = 1)
df_RFM.head()
```

Out[20]:	Recency	Frequency	MonetaryValue	М	R	F
	receivey	rrequeries	ivionic tar y varac			

CUSTOMERNAME							
AV Stores, Co.	196	51	157807.81	4	2	4	10 High Value Customer
Alpha Cognac	65	20	70488.44	2	4	2	8 Mid Value Customer
Amica Models & Co.	265	26	94117.26	3	1	2	6 Mid Value Customer
Anna's Decorations, Ltd	84	46	153996.13	4	3	4	11 High Value Customer
Atelier graphique	188	7	24179.96	1	2	1	4 Low Value Customer

RFM_Score RFM_Level

In [21]: # Time to perform KMeans
data = df_RFM[['Recency', 'Frequency', 'MonetaryValue']]
data.head()

Out[21]: Recency Frequency MonetaryValue

CUSTOMERNAME			
AV Stores, Co.	196	51	157807.81
Alpha Cognac	65	20	70488.44
Amica Models & Co.	265	26	94117.26
Anna's Decorations, Ltd	84	46	153996.13
Atelier graphique	188	7	24179.96

In [22]: # Our data is skewed we must remove it by performing log transformation
 data_log = np.log(data)
 data_log.head()

Out[22]: Recency Frequency MonetaryValue

CUSTOMERNAME			
AV Stores, Co.	5.278115	3.931826	11.969133
Alpha Cognac	4.174387	2.995732	11.163204
Amica Models & Co.	5.579730	3.258097	11.452297
Anna's Decorations, Ltd	4.430817	3.828641	11.944683
Atelier graphique	5.236442	1.945910	10.093279

```
In [25]: #Standardization
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaler.fit(data_log)
    data_normalized = scaler.transform(data_log)
    data_normalized = pd.DataFrame(data_normalized, index = data_log.index, columns=dat
    data_normalized.describe().round(2)
```

Out[25]: Recency Frequency MonetaryValue

count	92.00	92.00	92.00
mean	0.00	-0.00	0.00
std	1.01	1.01	1.01
min	-3.51	-3.67	-3.82
25%	-0.24	-0.41	-0.39
50%	0.37	0.06	-0.04
75%	0.53	0.45	0.52
max	1.12	4.03	3.92

```
In [28]: #Fit KMeans and use elbow method to choose the number of clusters
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

sse = {}

for k in range(1, 21):
    kmeans = KMeans(n_clusters = k, random_state = 1)
    kmeans.fit(data_normalized)
    sse[k] = kmeans.inertia_
```

```
In [31]: plt.figure(figsize=(10,6))
    plt.title('The Elbow Method')

plt.xlabel('K')
    plt.ylabel('SSE')
    plt.style.use('ggplot')

sns.pointplot(x=list(sse.keys()), y = list(sse.values()))
    plt.text(4.5, 60, "Largest Angle", bbox = dict(facecolor = 'lightgreen', alpha = 0.
    plt.show()
```

The Elbow Method


```
In [32]: # 5 number of clusters seems good
kmeans = KMeans(n_clusters=5, random_state=1)
kmeans.fit(data_normalized)
cluster_labels = kmeans.labels_

data_rfm = data.assign(Cluster = cluster_labels)
data_rfm.head()
```

Out[32]: Recency Frequency MonetaryValue Cluster

CUSTOMERNAME				
AV Stores, Co.	196	51	157807.81	3
Alpha Cognac	65	20	70488.44	0
Amica Models & Co.	265	26	94117.26	0
Anna's Decorations, Ltd	84	46	153996.13	3
Atelier graphique	188	7	24179.96	2

Mini Project

Start here! Predict survival on the Titanic and get familiar with ML basics

In [64]:	<pre>import numpy import pandas</pre>	•										
In [65]:	train_data=pd test=pd.read_				sv")							
In [66]:	<pre>train=train_d train.head()</pre>	lata										
Out[66]:	Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Far											
	0	1 0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500		
	1 2	2 1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833		
	2	3 1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250		
	3 4	4 1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000		
	4	5 0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500		
In [67]:	test.head()											

In [6/]: test.nead(,

Out[67]:		Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	En
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
In [68]:	tr	ain.shape										

In [68]: train.s

Out[68]: (891, 12)

In [69]: test.shape

Out[69]: (418, 11)

In [70]: train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
	63		

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

```
In [71]: ## sum of null values
         train.isnull().sum()
Out[71]: PassengerId
         Survived
                           0
         Pclass
                           0
         Name
                           0
         Sex
                         177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
         Cabin
                         687
         Embarked
                           2
         dtype: int64
```

Filling null values in Training dataset

```
In [72]:
        train['Age'].fillna(train['Age'].mean(),inplace=True)
In [73]: train['Cabin'].fillna(train['Cabin'].mode().values[0],inplace=True)
In [74]: train['Embarked'].fillna(train['Embarked'].mode().values[0],inplace=True)
In [75]: train.isnull().sum()
Out[75]: PassengerId
         Survived
         Pclass
                        0
         Name
                        0
         Sex
                        0
                        0
         Age
         SibSp
         Parch
         Ticket
                        0
         Fare
                        0
         Cabin
                        0
          Embarked
         dtype: int64
```

Filling null values for Test datasets

```
In [76]: test.info()
```

```
RangeIndex: 418 entries, 0 to 417
       Data columns (total 11 columns):
            Column
                        Non-Null Count Dtype
            -----
                        -----
        0
            PassengerId 418 non-null
                                        int64
        1
            Pclass
                        418 non-null int64
        2
            Name
                        418 non-null object
        3
            Sex
                        418 non-null object
        4
                        332 non-null
                                       float64
            Age
        5
                        418 non-null int64
            SibSp
                                        int64
        6
            Parch
                        418 non-null
                        418 non-null
        7
            Ticket
                                        object
            Fare
                        417 non-null float64
        9
            Cabin
                        91 non-null
                                        object
        10 Embarked
                        418 non-null
                                        object
       dtypes: float64(2), int64(4), object(5)
       memory usage: 36.0+ KB
        test.isnull().sum()
In [77]:
Out[77]: PassengerId
                         0
         Pclass
                         0
         Name
                         0
         Sex
                         0
                        86
         Age
                         0
         SibSp
         Parch
                         0
         Ticket
                         0
         Fare
                         1
         Cabin
                       327
         Embarked
                         0
         dtype: int64
In [78]: test['Age'].fillna(test['Age'].mean(),inplace=True)
        test['Fare'].fillna(test['Fare'].mean(),inplace=True)
In [79]:
In [80]: test['Cabin'].fillna(test['Cabin'].mode().values[0],inplace=True)
In [81]: test.isnull().sum()
Out[81]: PassengerId
                       0
         Pclass
                       0
         Name
                       0
         Sex
                       0
         Age
                       0
         SibSp
                       0
         Parch
                       0
         Ticket
                       0
         Fare
                       0
         Cabin
                       0
         Embarked
         dtype: int64
```

<class 'pandas.core.frame.DataFrame'>

In [82]: train.head()

ut[82]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.100C
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
[83]:	tes	t.head()									

In [83]: test.head()

Out[83]:	Passen	gerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	En
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	B57 B59 B63 B66	
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	B57 B59 B63 B66	
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	B57 B59 B63 B66	
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	B57 B59 B63 B66	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	B57 B59 B63 B66	
In [84]:	train=tra	in.dr	op(colum	ns=['Name	e'],axis	=1)						
In [85]:	train=tra	in.dr	op(colum	ns=['Tick	cet'])							
In [86]:	train=tra	in.dr	op(colum	ns=['Cabi	.n'])							
In [87]:	test=test											
In [88]:	test=test											
In [89]:												
In [90]:												
Out[90]:	train.hea		Survivo	d Pclass	Sav	Λαο	SibSp	Darch	Fare	Embarked		
ouc[30].	0	geriu 1		0 3	male		3103p	0	7.2500	S	_	
	1	2			female		1		71.2833	C		
	2	3		1 3	female	26.0	0	0	7.9250	S		
	3	4		1 1	female	35.0	1	0	53.1000	S		
	4	5	(0 3	male	35.0	0	0	8.0500	S		

n [91]:	te	st.head()							
Out[91]:		PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	892	3	male	34.5	0	0	7.8292	Q
	1	893	3	female	47.0	1	0	7.0000	S
	2	894	2	male	62.0	0	0	9.6875	Q
	3	895	3	male	27.0	0	0	8.6625	S
	4	896	3	female	22.0	1	1	12.2875	S

Now LabelEncoding

```
In [92]:
         from sklearn.preprocessing import LabelEncoder
In [93]:
         encoder=LabelEncoder()
In [94]:
         train['Sex']=encoder.fit_transform(train['Sex'])
In [95]: train['Embarked']=encoder.fit_transform(train['Embarked'])
In [96]:
         train.head()
Out[96]:
            PassengerId Survived Pclass Sex Age SibSp Parch
                                                                    Fare
                                                                          Embarked
         0
                      1
                               0
                                       3
                                            1
                                              22.0
                                                              0
                                                                   7.2500
                                                                                  2
         1
                      2
                                            0 38.0
                                                                 71.2833
                                                                                  0
         2
                      3
                                1
                                       3
                                            0
                                              26.0
                                                        0
                                                                  7.9250
                                                                                  2
                                                                 53.1000
                                                                                  2
                                            0 35.0
         4
                      5
                               0
                                       3
                                            1 35.0
                                                        0
                                                               0
                                                                  8.0500
                                                                                  2
         test['Sex']=encoder.fit_transform(test['Sex'])
         test['Embarked']=encoder.fit_transform(test['Embarked'])
In [99]:
         test.head()
```

Out[99]:		PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	892	3	1	34.5	0	0	7.8292	1
	1	893	3	0	47.0	1	0	7.0000	2
	2	894	2	1	62.0	0	0	9.6875	1
	3	895	3	1	27.0	0	0	8.6625	2
	4	896	3	0	22.0	1	1	12.2875	2

Data Visualization

```
In [100...
import matplotlib.pyplot as plt
from matplotlib import style
```

```
In [101... plt.figure(figsize=(16,6))
    style.use("ggplot")
    plt.plot(train['Age'],color='r')
    plt.xlabel("No of Person",fontsize=16)
    plt.ylabel("Age",fontsize=16)
    plt.title("Age Group chart",fontsize=30)
    plt.grid(True,color="y")
    plt.show()
```


Feature Selection

```
In [102... train.head()
```

Out[102		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	1	22.0	1	0	7.2500	2
	1	2	1	1	0	38.0	1	0	71.2833	0
	2	3	1	3	0	26.0	0	0	7.9250	2
	3	4	1	1	0	35.0	1	0	53.1000	2
	4	5	0	3	1	35.0	0	0	8.0500	2

In [103...

test.head()

Out[103...

	PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	892	3	1	34.5	0	0	7.8292	1
1	893	3	0	47.0	1	0	7.0000	2
2	894	2	1	62.0	0	0	9.6875	1
3	895	3	1	27.0	0	0	8.6625	2
4	896	3	0	22.0	1	1	12.2875	2

Correlation

In [104...

train.corr()

Out[104...

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch
Passengerld	1.000000	-0.005007	-0.035144	0.042939	0.033207	-0.057527	-0.001652
Survived	-0.005007	1.000000	-0.338481	-0.543351	-0.069809	-0.035322	0.081629
Pclass	-0.035144	-0.338481	1.000000	0.131900	-0.331339	0.083081	0.018443
Sex	0.042939	-0.543351	0.131900	1.000000	0.084153	-0.114631	-0.245489
Age	0.033207	-0.069809	-0.331339	0.084153	1.000000	-0.232625	-0.179191
SibSp	-0.057527	-0.035322	0.083081	-0.114631	-0.232625	1.000000	0.414838
Parch	-0.001652	0.081629	0.018443	-0.245489	-0.179191	0.414838	1.000000
Fare	0.012658	0.257307	-0.549500	-0.182333	0.091566	0.159651	0.216225
Embarked	0.013128	-0.167675	0.162098	0.108262	-0.026749	0.068230	0.039798

In [105...

x=['Pclass','Sex','Age','Fare','Embarked']

In [106...

y=['Survived']

```
In [107...
          x=train[x].values
In [108...
          y=train[y].values
In [109...
          x.shape
Out[109...
           (891, 5)
In [110...
          y.shape
Out[110...
           (891, 1)
In [111...
          x_test=['Pclass','Sex','Age','Fare','Embarked']
           x_test=test[x_test].values
In [112...
In [113...
          x_test.shape
Out[113...
           (418, 5)
  In [ ]:
 In [ ]:
          Deploying on Machine Learning Model
In [114...
          from sklearn.linear_model import LogisticRegression
In [115...
          logr=LogisticRegression()
In [116...
          logr.fit(x,y)
         C:\Users\Dell\anaconda3\lib\site-packages\sklearn\utils\validation.py:1143: DataConv
         ersionWarning: A column-vector y was passed when a 1d array was expected. Please cha
         nge the shape of y to (n_samples, ), for example using ravel().
          y = column_or_1d(y, warn=True)
Out[116...
           ▼ LogisticRegression
          LogisticRegression()
          y_pred=logr.predict(x_test)
In [117...
In [118...
          y_pred
```

```
1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
                 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
                 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
                 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
                 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,
                 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
                 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
                 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
                 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0],
                dtype=int64)
          sample=pd.read_csv("Datasets/gender_submission.csv")
In [119...
In [120...
          sample.shape
Out[120...
           (418, 2)
In [121...
          sample.head()
Out[121...
             PassengerId Survived
          0
                     892
                                0
                     893
          1
                                1
          2
                     894
                                0
          3
                     895
                                0
          4
                     896
                                1
In [122...
          Survived=y_pred
          sample=sample.drop(columns=("Survived"))
In [123...
          sample['Survived']=Survived
In [124...
In [125...
          sample.head()
```

array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,

Out[118...

Out[125		Passengerld	Survived
	0	892	0
	1	893	0
	2	894	0
	3	895	0
	4	896	1

```
In [126... sample.to_csv("logr_03.csv",index=False)
In []:
```