Aula 8: Grafos: Algoritmos de Dijkstra e Tarjan

Disciplina: Maratona de Programação 1

Profs. Edmilson Marmo e Luiz Olmes

edmarmo@unifei.edu.br, olmes@unifei.edu.br

Nas aulas anteriores...

- **O QUE JÁ ESTUDAMOS?**
- Introdução à Maratona
- Problemas ad hoc
- Standard Template Library (STL)
- Grafos: DFS e BFS

- **OBJETIVOS:**
- ▶ Single-Source Shortest Path:
 - O problema do Caminho Mínimo
 - Algoritmo de Dijkstra
- Componentes Fortemente Conexas:
 - Algoritmo de Tarjan

- Uma das primeiras intuições que temos em relação a caminhos mínimos é em relação à distâncias físicas.
 - Aplicativo de navegação: minimização de distâncias.

Uma das primeiras intuições que temos em relação a caminhos mínimos é em relação à distâncias físicas.

Uma das primeiras intuições que temos em relação a caminhos mínimos é em relação à distâncias físicas.

▶ Entretanto, um caminho em um grafo pode representar outros aspectos:

- ▶ Entretanto, um caminho em um grafo pode representar outros aspectos:
 - ▶ Tempo de vôo

- ▶ Entretanto, um caminho em um grafo pode representar outros aspectos:
 - ▶ Tempo de vôo

- ▶ Entretanto, um caminho em um grafo pode representar outros aspectos:
 - Preço da passagem

- ▶ Entretanto, um caminho em um grafo pode representar outros aspectos:
 - Preço da passagem

Definição: dado um grafo, o problema do caminho mínimo consiste em encontrar uma rota de um vértice de origem *S* (*source*) até um vértice de destino *T* (*target*) tal que nenhuma outra rota de *S* para *T* tenha custo menor que aquela encontrada.

Este problema se aplica a grafos não ponderados e a grafos ponderados.

- Este problema se aplica a grafos não ponderados e a grafos ponderados.
- ▶ Grafos não ponderados: neste caso, é suficiente usar uma BFS (Busca em Largura *aula passada*), ao custo de O(V + A), para encontrar um caminho mínimo entre dois vértices.
 - ▶ Problema: Duende Perdido (Beecrowd: 2294)

- Este problema se aplica a grafos não ponderados e a grafos ponderados.
- ▶ Grafos não ponderados: neste caso, é suficiente usar uma BFS (Busca em Largura *aula passada*), ao custo de O(V + A), para encontrar um caminho mínimo entre dois vértices.
 - ▶ Problema: Duende Perdido (Beecrowd: 2294)

- Este problema se aplica a grafos não ponderados e a grafos ponderados.
- ▶ Grafos não ponderados: neste caso, é suficiente usar uma BFS (Busca em Largura *aula passada*), ao custo de O(V + A), para encontrar um caminho mínimo entre dois vértices.
 - ▶ Problema: Duende Perdido (Beecrowd: 2294)
- Grafos ponderados: quando as arestas possuem pesos, uma BFS não executa corretamente. Para grafos ponderados, tem-se as duas seguintes variantes do problema:
 - ▶ Single-Source Shortest Path
 - All-Pairs Shortest Path.

- Single-Source Shortest Path (SSSP): caminho mínimo de um vértice de origem S...
 - ... para um vértice de destino T (S \rightarrow T), ou...
 - ... para todos os outros vértices do grafo $(S \rightarrow A, S \rightarrow B, S \rightarrow C, S \rightarrow D, etc.)$.
 - De problema do SSSP pode ser resolvido através de algoritmos como Dijkstra e Bellman-Ford.

- Single-Source Shortest Path (SSSP): caminho mínimo de um vértice de origem S...
 - ... para um vértice de destino T (S \rightarrow T), ou...
 - ... para todos os outros vértices do grafo $(S \rightarrow A, S \rightarrow B, S \rightarrow C, S \rightarrow D, etc.)$.
 - O problema do SSSP pode ser resolvido através de algoritmos como Dijkstra e Bellman-Ford.
- All-Pairs Shortest Path (APSP): caminhos mínimos de todos os vértices para todos os outros vértices:
 - $A \rightarrow B, A \rightarrow C, A \rightarrow D, ..., B \rightarrow A, B \rightarrow C, B \rightarrow D, etc.$
 - O problema do APSP é resolvido através do algoritmo de Floyd-Warshall.

- Proposto pelo cientista da computação holandês Edsger Wybe Dijkstra, em 1959.
 - Pronúncia aproximada em português: déikstra
- È um dos algoritmos para cálculo de caminho mínimo.
- Aplicável a grafos direcionados e não direcionados.
- Algoritmo restrito a grafos ponderados, com arestas de pesos não-negativos.

☆ 11/05/1930廿 06/08/2002

- De algoritmo de Dijkstra inicia o processamento com a condição padrão de todo algoritmo SSSP:
 - Dado um vértice de origem S, a distância até S é zero: dist[s] = 0
 - A distância para todos os outros vértices U do grafo é infinita: ∀u, dist[u] = ∞
- A estrutura de fila de prioridade é usada para armazenar cada vértice e a sua distância no caminho: (dist[u], u)
 - Útil para manter uma ordenação por distâncias.
 - Em C++: a estrutura priority_queue devolve o elemento de maior valor. Como queremos a menor distância, basta inseri-la negativa na fila.
- A cada iteração, o algoritmo processa o vértice inserido na fila de prioridade que possui o menor valor de distância: u

Dado o vértice u, que no início corresponde ao vértice de origem, pois este possui a menor distância (dist[s] = 0), para cada vértice v vizinho de u, o algoritmo aplica a chamada condição de relaxamento do vértice:

```
b dist[v] = min( dist[v], dist[u] + w<sub>uv</sub> )
```

- Que pode ser interpretada como: "A distância da origem até o vértice v é o mínimo entre..."
 - O próprio valor da distância até v.
 - A distância da origem até v, passando por u.
- Esta atualização permite encontrar as menores distâncias no caminho.
 - As informações na fila de prioridades são atualizadas.
 - O predecessor do vértice também é atualizado.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0		
1		
2		
3		
4		
5		
6		
7		
8		

Fila Prio d[u] (u)

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	inf	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u)

Inicialização do algoritmo: as distâncias para todos os vértices são marcadas como infinitas. Os predecessores de todos de todos os vértices são inexistentes.

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio
d[u] (u)
0 (0)

Definição da origem: a distância do vértice de origem é marcada como zero.

O vértice de origem e sua distância são inseridos na fila de prioridade (prioridade = menor distância).

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u) 0 (0)

Loop do algoritmo: enquanto a fila não estiver vazia, remove um elemento, marca ele como visitado e processa os seus vizinhos ainda não visitados.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u)

Loop do algoritmo: remove da fila o vértice 0, com distância 0, e o marca como visitado. (visitado = vermelho na tabela)

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u)

Análise dos vizinhos: para cada vizinho de 0, verifica a condição de relaxamento.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u)

Análise dos vizinhos: para o vértice 1: dist[0] + dist[0][1] < dist[1]? 0 + 4 < inf?

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	inf	-1
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u)

Análise dos vizinhos: para o vértice 1: dist[0] + dist[0][1] < dist[1]?

0 + 4 < inf? Sim! Recalcula a distância para 1 e o insere na fila.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio
d[u] (u)
4(1)

```
Análise dos vizinhos: para o vértice 1: dist[1] = min(dist[1], dist[0] + dist[0][1])

dist[1] = min(inf, 0 + 4)

dist[1] = 4
```

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio d[u] (u) 4 (1)

Análise dos vizinhos: para o vértice 6: dist[0] + dist[0][6] < dist[6]? 0 + 7 < inf?

Exemplo: computar o menor caminho de 0 a 5.

	-	_
Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	inf	-1
7	inf	-1
8	inf	-1

Fila Prio
d[u] (u)
4(1)

Análise dos vizinhos: para o vértice 6: dist[0] + dist[0][6] < dist[6]?

0 + 7 < inf? Sim! Recalcula a distância para 6 e o insere na fila.

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	inf	-1
8	inf	-1

Fila Prio
d[u] (u)
4 (1)
7 (6)

```
Análise dos vizinhos: para o vértice 6: dist[6] = min(dist[6], dist[0] + dist[0][6])

dist[6] = min(inf, 0 + 7)

dist[6] = 7
```

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	inf	-1
8	inf	-1

Fila Prio d[u] (u) 4 (1) 7 (6)

Loop do algoritmo: enquanto a fila não estiver vazia, remove um elemento, marca ele como visitado e processa os seus vizinhos ainda não visitados.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	inf	-1
8	inf	-1

Fila Prio d[u] (u) 7 (6)

Loop do algoritmo: remove da fila o vértice 1, com distância 4, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 1, verifica a condição de relaxamento. No caso, apenas 2, 6 e 7, pois 0 já foi visitado.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	inf	-1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	inf	-1
8	inf	-1

Fila Prio d[u] (u) 7 (6)

Análise dos vizinhos: para o vértice 2: dist[1] + dist[1][2] < dist[2]? 4 + 9 < inf?

Exemplo: computar o menor caminho de 0 a 5.

Ιó	Dist	Pred
)	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
5	7	0
7	inf	-1
8	inf	-1
	Nó D 1 2 3 4 5 6 7	0 0 1 4 2 13 3 inf 4 inf 5 inf 6 7 7 inf

_	
	Fila Prio
	d[u] (u)
	7 (6)
ſ	13 (2)

```
Análise dos vizinhos: para o vértice 2: dist[2] = min(dist[2], dist[1] + dist[1][2])
dist[2] = min(inf, 4 + 9)
dist[2] = 13
```

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	inf	-1
8	inf	-1

Fila Prio
d[u] (u)
7 (6)
13 (2)

Análise dos vizinhos: para o vértice 6: dist[1] + dist[1][6] < dist[6]?

4 + 11 < 7? Não! Não atualiza distância e não insere na fila.

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	24	1
8	inf	-1

Fila Prio
d[u] (u)
7 (6)
13 (2)
24 (7)

Análise dos vizinhos: para o vértice 7: dist[1] + dist[1][7] < dist[7]?

4 + 20 < inf? Sim! Atualiza e insere na fila.

dist[7] = 24

Exemplo: computar o menor caminho de 0 a 5.

	-	
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	24	1
8	inf	-1

Fila Prio
d[u] (u)
13 (2)
24 (7)

Loop do algoritmo: remove da fila o vértice 6, com distância 7, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 6, verifica a condição de relaxamento. No caso, apenas 7, pois 0 e 1 já foram visitados.

Exemplo: computar o menor caminho de 0 a 5.

	-	
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	24	1
8	inf	-1

Fila Prio
du
13 (2)
24 (7)

Análise dos vizinhos: para o vértice 7: dist[6] + dist[6][7] < dist[7]? 7 + 1 < 24? Sim!

Exemplo: computar o menor caminho de 0 a 5.

		r
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	24	1
8	inf	-1

Fila Prio
d[u] (u)
13 (2)
24 (7)

Análise dos vizinhos: para o vértice 7: dist[6] + dist[6][7] < dist[7]? 7 + 1 < 24? Sim!

Isso significa que a distância da origem até 7, passando por 6, é menor! Atualiza a distância e a fila.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	8	6
8	inf	-1

Fila Prio d[u] (u) 13 (2) 8 (7)

Análise dos vizinhos: para o vértice 7: dist[6] + dist[6][7] < dist[7]? 7 + 1 < 24? Sim! dist[7] = 8

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	8	6
8	inf	-1

Fila Prio d[u] (u) 13 (2)

Loop do algoritmo: remove da fila o vértice 7, com distância 8, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 7, verifica a condição de relaxamento. No caso, apenas 4 e 8, pois 1 e 6 já foram visitados.

Exemplo: computar o menor caminho de 0 a 5.

		_
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	inf	-1
5	inf	-1
6	7	0
7	8	6
8	inf	-1

Fila Prio d[u] (u) 13 (2)

Para o vértice 4:

Para o vértice 8:

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	9	7
5	inf	-1
6	7	0
7	8	6
8	11	7

```
Fila Prio
d[u] (u)
13 (2)
9 (4)
11 (8)
```

Para o vértice 4:

Para o vértice 8:

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
4	9	7
5	inf	-1
6	7	0
7	8	6
8	11	7
	·	

Fila Prio d[u] (u) 13 (2) 11 (8)

Loop do algoritmo: remove da fila o vértice 4, com distância 9, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 4, verifica a condição de relaxamento. No caso, apenas 2, 3, 5 e 8, pois 7 já foi visitado.

Exemplo: computar o menor caminho de 0 a 5.

		_
Nó	Dist	Pred
0	0	-1
1	4	0
2	13	1
3	inf	-1
5	9	7
5	inf	-1
6	7	0
7	8	6
8	11	7

Fila Prio			
d[u] (u)			
13 (2)			
11 (8)			

Para o vértice 2:

9 + 2 < 13? Sim!

Para o vértice 3:

 $dist[4] + dist[4][2] < dist[2] \quad dist[4] + dist[4][3] < dist[3] \quad dist[4] + dist[4][5] < dist[5] \quad dist[4] + dist[4][8] < dist[8]$ $9 + 10 < \inf? Sim!$

Para o vértice 5:

 $9 + 15 < \inf?$ Sim!

Para o vértice 8:

9 + 5 < 11? Não!

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	19	4
4	9	7
5	24	4
6	7	0
7	8	6
8	11	7

Fila Prio
d[u] (u)
11 (2)
11 (8)
19 (3)
24 (5)

Para o vértice 2:

9 + 2 < 13? Sim!

dist[2] = 11

Para o vértice 3:

 $dist[4] + dist[4][2] < dist[2] \quad dist[4] + dist[4][3] < dist[3] \quad dist[4] + dist[4][5] < dist[5] \quad dist[4] + dist[4][8] < dist[8]$

 $9 + 10 < \inf? Sim!$

dist[3] = 19

Para o vértice 5:

 $9 + 15 < \inf?$ Sim! dist[5] = 24

Para o vértice 8:

9 + 5 < 11? Não!

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	19	4
4	9	7
5	24	4
6	7	0
7	8	6
8	11	7

Fila Prio
d[u] (u)
11 (8)
19 (3)
24 (5)

Loop do algoritmo: remove da fila o vértice 2, com distância 11, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 2, verifica a condição de relaxamento. No caso, apenas 3, pois 1 e 4 já foram visitados.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	19	4
4	9	7
5	24	4
6	7	0
7	8	6
8	11	7

Fila Prio
d[u] (u)
11 (8)
19 (3)
24 (5)

Para o vértice 3:

dist[2] + dist[2][3] < dist[3]?

11 + 6 < 19? Sim!

Exemplo: computar o menor caminho de 0 a 5.

Dist	Pred
0	-1
4	0
11	4
17	2
9	7
24	4
7	0
8	6
11	7
	0 4 11 17 9 24 7 8

```
Fila Prio
d[u] (u)
11 (8)
17 (3)
24 (5)
```

```
Para o vértice 3:
```

```
dist[2] + dist[2][3] < dist[3]?
11 + 6 < 19? Sim!
dist[3] = 17</pre>
```

Exemplo: computar o menor caminho de 0 a 5.

	•	•
Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	24	4
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u) 17 (3) 24 (5)

Loop do algoritmo: remove da fila o vértice 8, com distância 11, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 8, verifica a condição de relaxamento. No caso, apenas 5, pois 5 e 7 já foram visitados.

Exemplo: computar o menor caminho de 0 a 5.

	-	_
Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	24	4
6	7	0
7	8	6
8	11	7

Fila Prio
d[u] (u)
17 (3)
24 (5)

Para o vértice 5:

dist[8] + dist[8][5] < dist[5]?

11 + 12 < 24? Sim!

Exemplo: computar o menor caminho de 0 a 5.

	ı	
Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	23	8
6	7	0
7	8	6
8	11	7

```
Fila Prio
d[u] (u)
17 (3)
23 (5)
```

Para o vértice 5:

```
dist[8] + dist[8][5] < dist[5]?
11 + 12 < 24? Sim!
dist[5] = 23</pre>
```

Exemplo: computar o menor caminho de 0 a 5.

	_	
Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	23	8
6	7	0
7	8	6
8	11	7
	-	

Fila Prio d[u] (u) 23 (5)

Loop do algoritmo: remove da fila o vértice 3, com distância 17, e o marca como visitado. Análise dos vizinhos: para cada vizinho de 3, verifica a condição de relaxamento. No caso, apenas 5, pois 2 e 4 já foram visitados.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	23	8
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u) 23 (5)

Para o vértice 5:

dist[3] + dist[3][5] < dist[5]?

17 + 5 < 24? Sim!

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	22	3
6	7	0
7	8	6
8	11	7

```
Fila Prio
d[u] (u)
22 (5)
```

```
Para o vértice 5:
```

```
dist[3] + dist[3][5] < dist[5]?
17 + 5 < 24? Sim!
dist[5] = 22</pre>
```

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	22	3
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u)

Loop do algoritmo: remove da fila o vértice 5, com distância 22, e o marca como visitado.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	22	3
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u)

Encerramento: ao remover o vértice de destino, o algoritmo pode ser encerrado, pois o menor caminho até este vértice já foi encontrado.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	22	3
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u)

Caminho mínimo: o caminho mínimo de 0 até 5 tem custo 22.

Exemplo: computar o menor caminho de 0 a 5.

Nó	Dist	Pred
0	0	-1
1	4	0
2	11	4
3	17	2
4	9	7
5	22	3
6	7	0
7	8	6
8	11	7

Fila Prio d[u] (u)

Rota: a partir de 5 (destino), basta verificar os predecessores, até chegar em 0 (origem). 5-3-2-4-7-6-0.

Dijkstra: implementação com lista de adjacência

ightharpoonup Complexidade: $O(A + V \log V)$

```
1. // Definicoes gerais
2. #define INF 0x3f3f3f3f // infinito
3.
4. int N = 9; // numero de vertices do grafo
5.
6. vector<int> dist(N, INF); // vetor de distancias
7. vector<int> pred(N, -1); // vetor de predecessores
8. vector<int> visitado(N, 0); // marca se o vertice foi visitado
9. priority queue<pair<int, int>> q; // fila: (distancia, vertice)
10.
11.// prototipo da funcao
12.void dijkstra(int s); // a funcao recebe o vertice de origem
13.
```

Dijkstra: implementação com lista de adjacência

```
14.void dijkstra(int s)
                                        28.
                                                    for(auto u : adj[a])
15.{
                                        29.
      dist[s] = 0;
16.
                                        30.
                                                        int b = u.first;
17.
      q.push( {0, s} );
                                        31.
                                                        int w = u.second;
18.
                                        32.
19.
                                        33.
       while(!q.empty())
                                                        if(dist[a] + w < dist[b])</pre>
20.
                                        34.
21.
           int a = q.top().second;
                                        35.
                                                            dist[b] = dist[a] + w;
22.
                                        36.
                                                            pred[b] = a;
           q.pop();
23.
                                        37.
                                                            q.push( {-dist[b], b} );
                                        38.
24.
           if(visitado[a]) continue;
25.
                                        39.
                                                    } // for
26.
           visitado[a] = 1;
                                        40.
                                               } // while
27.
                                        41.} // dijkstra
```

- De problema da conectividade está relacionado à passagem de um vértice do grafo a outro vértice, de acordo com as ligações existentes.
- ▶ Esta passagem diz respeito à atingibilidade.
- Exemplos práticos:
 - Em uma rede de computadores, um servidor é capaz de enviar mensagens de dados para um cliente específico?
 - É possível ir de carro da cidade X para a cidade Y?
- Estes problemas são resolvidos de forma similar ao percurso em grafos.

- O algoritmo de Busca em Profundidade pode ser empregado como base para a identificação de Componentes Fortemente Conexas (Strongly Connected Components) em grafos.
- Para grafos não direcionados, a DFS permite obter facilmente Componentes Conexas. Entretanto, quando o grafo é direcionado, sua identificação nem sempre é trivial:

• O algoritmo de Busca em Profundidade pode ser empregado como base para a identificação de Componentes Fortemente Conexas (*Strongly Connected Components*) em grafos.

Para grafos não direcionados, a DFS permite obter facilmente Componentes Conexas. Entretanto, quando o grafo é direcionado, sua identificação nem sempre é trivial:

Parece ter 1 componente conexa: dfs(0) alcança todos os vértices.

• O algoritmo de Busca em Profundidade pode ser empregado como base para a identificação de Componentes Fortemente Conexas (*Strongly Connected Components*) em grafos.

Para grafos não direcionados, a DFS permite obter facilmente Componentes Conexas. Entretanto, quando o grafo é direcionado, sua identificação nem sempre é trivial:

Parece ter 1 componente conexa: dfs(0) alcança todos os vértices.

Não é uma SCC: dfs(1) não alcança o vértice 0.

- Definição: em uma SCC, para qualquer par de vértices *u* e *v*, existe um caminho de *u* para *v* e vice-versa.
- ▶ Por exemplo, o grafo anterior possui 3 Componentes Fortemente Conexas:

- Definição: em uma SCC, para qualquer par de vértices *u* e *v*, existe um caminho de *u* para *v* e vice-versa.
- ▶ Por exemplo, o grafo anterior possui 3 Componentes Fortemente Conexas:

- Existem, ao menos, dois algoritmos conhecidos para encontrar Componentes Fortemente Conexas em grafos direcionados.
- ▶ O Algoritmo de Kosaraju executa duas DFS sobre o grafo:
 - A primeira execução constrói a lista de nós, de acordo com a ordem em que a DFS os visita. A segunda DFS identifica as SCC no grafo.
- De Algoritmo de Tarjan execute uma DFS sobre os vértices de modo que as subárvores dos Componentes Fortemente Conectados são removidas assim que forem encontradas.
- Ambos possuem complexidade temporal proporcional a O(V + A), porém, os fatores constantes de Tarjan são bem menores do que os de Kosaraju.

Algoritmo de Tarjan

- Marca todos os vértices do grafo como não-visitados.
- Inicia a DFS. Ao visitar um nó, atribui a ele um valor numérico (num) e um valor mínimo de ligação (*low-link*). Marca os nós como visitados e os adiciona em uma pilha.
 - num: valor sequencial, a partir de 0, com a ordem em que os nós foram visitados.
- No retorno da chamada da DFS, se o nó anterior estiver na pilha, então o seu *low-link* é o mínimo entre si e o *low-link* do último nó.
 - Permite que um *low-link* se propague através de um ciclo.
- Depois de visitar todos os vizinhos, se o nó atual iniciou um SCC, retire os nós da pilha até que o nó atual seja alcançado.
 - ▶ Um nó inicia uma SCC quando seu valor numérico é igual ao seu *low-link*.

Algoritmo de Tarjan

Exemplo: encontrar as SCC do grafo.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 0 UNVISITED: -1

UNVISITED: – 1		
num	low	
-1	0	
-1	0	
-1	0	
-1	0	
-1	0	
-1	0	
-1	0	
-1	0	
	num -1 -1 -1 -1 -1 -1 -1	

Pilha

Inicialização do algoritmo: todos os vértices são marcados com num = -1 (UNVISITED). O low-link de todos os vértices é zero. A pilha está vazia.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 0 UNVISITED: – 1

UNVISITED: – I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	-1	0
5	-1	0
6	-1	0
7	-1	0
	1	U

Pilha

Execução da DFS: inicia a DFS a partir de um vértice u qualquer, desde que num[u] = UNVISITED.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 1

UNVISITED: – 1		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	-1	0
5	-1	0
6	-1	0
7	0	0

Pilha 7

Execução da DFS: inicia a DFS a partir de um vértice u qualquer, desde que num[u] = UNVISITED. Iniciando de 7. Adiciona 7 na pilha. Seta num[7] = 0 e low[7] = 0 (sequencial). Seta Nó[7] como visitado. Incrementa o valor SEQUENCIAL.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 2	,
UNVISITED: – 1	

UNVISITED: – I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	-1	0
5	-1	0
6	1	1
7	0	0

Pilha
6
7

DFS a partir de 7: vai para o nó 6. Adiciona 6 na pilha. Seta num[6] = 1 e low[6] = 1 (sequencial). Marca Nó[6] como visitado. Incrementa o valor SEQUENCIAL.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 3

UNVISITED: – 1		
num	low	
-1	0	
-1	0	
-1	0	
-1	0	
2	2	
-1	0	
1	1	
0	0	
	num -1 -1 -1 -1 -1 1 1	

Pilha
4
6
7

DFS a partir de 6: vai para o nó 4. Adiciona 4 na pilha. Seta num[4] = 2 e low[4] = 2 (sequencial). Marca Nó[4] como visitado. Incrementa o valor SEQUENCIAL.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4
UNVISITED: – 1

UNVISITED: — I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	2	2
5	3	3
6	1	1
7	0	0

Pilha
5
4
6
7

DFS a partir de 4: vai para o nó 5. Adiciona 5 na pilha. Seta num[5] = 3 e low[5] = 3 (sequencial). Marca Nó[5] como visitado. Incrementa o valor SEQUENCIAL.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4 UNVISITED: – 1

	UNVISITED: – I		
N	ó	num	low
()	-1	0
1		-1	0
	2	-1	0
3	3	-1	0
4	1	2	2
4	5	3	0
6	5	1	1
	7	0	0

Pilha
5
4
6
7

DFS a partir de 5: o único vizinho (7) já foi visitado na DFS. O algoritmo irá retroceder da recursão. Como 7 está na pilha, atualiza low[5] com o mínimo entre low[5] e low[7].

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4 UNVISITED: – 1

	UNVISITED: – I		
N	Νó	num	low
	0	-1	0
	1	-1	0
	2	-1	0
	3	-1	0
	4	2	0
	5	3	0
	6	1	1
	7	0	0

Pilha
5
4
6
7

Retrocede para 4 (veio de 5): os vizinhos de 4 já foram visitados na DFS. Como 5 está na pilha, atualiza low[4] com o mínimo entre low[4] e low[5].

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4 UNVISITED: – 1

UNVISITED: – I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	2	0
5	3	0
6	1	0
7	0	0

Pilha
5
4
6
7

Retrocede para 6 (veio de 4): os vizinhos de 6 já foram visitados na DFS. Como 4 está na pilha, atualiza low[6] com o mínimo entre low[6] e low[4].

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4 UNVISITED: – 1

ow
0
0
0
0
0
0
0
0

Pilha
5
4
6
7

Retrocede para 7 (veio de 6): os vizinhos de 7 já foram visitados na DFS. Como 6 está na pilha, atualiza low[7] com o mínimo entre low[7] e low[6].

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4
UNVISITED: – 1

UNVISITED: – I		
num	low	
-1	0	
-1	0	
-1	0	
-1	0	
2	0	
3	0	
1	0	
0	0	
	num -1 -1 -1 -1 2 3 1	

Pilha

Identificação de SCC: os vizinhos de 7 já foram visitados na DFS. Como num[7] = low[7], o algoritmo encontrou uma SCC. Desempilha todos os valores até encontrar o 7.

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4
UNVISITED: – 1

UNVISITED: – I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	2	0
5	3	0
6	1	0
7	0	0

Pilha

Continuação do algoritmo: escolhe outro vértice qualquer marcado com num = -1 (UNVISITED). Repete o processo, até que não haja mais vértices onde num = -1 (UNVISITED).

Exemplo: encontrar as SCC do grafo.

SEQUENCIAL: 4
UNVISITED: – 1

UNVISITED: – I		
Nó	num	low
0	-1	0
1	-1	0
2	-1	0
3	-1	0
4	2	0
5	3	0
6	1	0
7	0	0

Pilha

Finalização: ao completar a execução, o vetor low contém, para cada vértice, a identificação da SCC que ele faz parte.

ightharpoonup Complexidade: O(V + A)

```
1. // Definicoes gerais
2. #define UNVISITED -1
3. int N = 8; // numero de vertices do grafo
4. int dfsNumberCounter = 0, numSCC = 0;
5.
6. vector<int> dfs num(N, UNVISITED); // vetor de id's (nums sequenciais)
7. vector<int> dfs low(N, 0); // vetor de low-links (SCC)
8. vector<int> visited(N, 0); // marca se o vertice foi visitado na DFS
9. stack<int> st; // pilha
10.
11.vector<vector<int>> AL; // lista de adjacencia do grafo
```

```
1. // dentro da funcao principal:
2.
3. for(int u = 0; u < N; u++)
4. {
5.    if(dfs_num[u] == UNVISITED)
6.    {
7.        tarjan(u);
8.    }
9. }</pre>
```

```
1. // Algoritmo de Tarjan
2. void tarjan(int u)
3. {
4.
      dfs low[u] = dfs num[u] = dfsNumberCounter;
5. dfsNumberCounter++;
6. st.push(u);
7.
  visited[u] = 1;
8.
9.
       for(auto v : AL[u])
10.
11.
           if (dfs num[v] == UNVISITED) tarjan(v);
12.
           if (visited[v]) dfs low[u] = min(dfs low[u], dfs low[v]);
13.
14.
```

```
14.
15.
   if(dfs low[u] == dfs num[u])
16.
17.
           ++numSCC;
18.
           while(1)
19.
20.
               int v = st.top(); st.pop(); visited[v] = 0;
               if(u == v) break;
21.
22.
23.
24.}
```

Dúvidas?

Aula 8: Grafos: Algoritmos de Dijkstra e Tarjan

Disciplina: Maratona de Programação 1

Profs. Edmilson Marmo e Luiz Olmes

edmarmo@unifei.edu.br, olmes@unifei.edu.br

