실험 3-1. Digital Output 실험

3-1-1. Analog Data & Digital Data

디지털 데이터를 입/출력(OUTPUT)은 0~13핀 사용, 명령어 Setting은 다음과 같음

Digaital Input

	함수	설정 값
용도 설정	pinMode()	INPUT
데이터 설정	digitalRead()	LOW 또는 HIGH

** INPUT 상수 명려어는 Arduino.h 에 선언이 되어 있음


```
[ EX_Digital_Input 디지털 데이터 입력 코드 ]
                                 // 입력 받을 핀 번호 전역변수
01
     int pinNo = 9;
02
 03
     void setup() {
04
       pinMode(pinNo , INPUT); // 9번 핀을 입력 핀으로 설정
05
06
07
     void loop() { in
 80
       t readVal=0;
 09
       readVal = digitalRead(pinNo); // 9번 핀에서 입력된 값 읽기
 10
```

Digital Output

	함수	설정 값
용도 설정	pinMode()	OUTPUT
데이터 설정	digitalWrite()	LOW 또는 HIGH

```
[ EX_Digital_Output 디지털 데이터 출력 코드]
                                   // 출력용 핀 번호 전역변수
      int pinNo = 13;
 01
 02
     void setup() {
 03
       pinMode(pinNo , OUTPUT); // 13번 핀을 출력 핀으로 설정
 04
     }
 05
 06
      void loop() {
 07
 80
       digitalWrite(pinNo, HIGH);
                                 // 13번 핀으로 HIGH 신호 출력
 09
       delay(1000);
 10
 11
       digitalWrite(pinNo, LOW);
 12
                                  // 13번 핀으로 LOW 신호 출력
       delay(1000);
 13
      }
 14
```

3-1-2. LED를 이용한 Digital Output 실험

회로구성

- 브레드보드에 330옴 저항과 빨간색LED를 연결
- LED의 (+) 부분은 저항과 직렬 연결 후 Arduino의 13번핀에 연결
- LED의 (-) 부분은 GND에 연결해줌
- LED 연결시 (+), (-) 극성에 유의해서 연결한다.
- 회로를 연결할 때는 반드시 USB 케이블을 제거하여 아두이노 보드에 전원이 들어가지 않도록 한 후 결선이 다 끝나면 케이블을 연결한다. 케이블을 연결한 상태에서 회로를 결선하면 Short등으로 컴퓨터, 아두이노 보드 등이 파손될 우려가 있으니 반드시 지켜 줄 것.

Arduino Program 작성(Sketch 이용)

실험 결과

회로구성과 프로그램을 정확하게 구성했다면 LED가 점등된다.

Challenge 3-1)

LED를 1초 간격으로 On과 Off가 반복되도록 프로그램을 작성한다.

Challenge 3-2)

LED가 1초, 2초, 3초 간격으로 On과 Off가 반복되도록 프로 그램을 작성한다.

GoldenBell 3-1)

LED 2개를 이용하여 2개의 LED가 교차하면서 깜박이도록 회로를 구성하고 프로그램을 작성한다.

- 아두이노 출력 핀은 11, 12번 핀을 이용한다.
- LED 2개와 330Ω 2개의 저항을 이용하여 회로를 구성한다.

회로 구성이 끝나면 USB 케이블을 연결하기 전에 교수님께 반드시 검사를 받는다. 회로를 잘못 연결하여 파손 등의 우 려 때문임.

- 프로그램을 작성하여 동작 결과를 검사 받는다.

실험 3-2. Digital Input 실험

3-2-1. Push Button 을 이용한 Digital Input

- Push Button 구조

- 푸시 버튼은 4개의 다리가 달려 있고 2개씩 연결되어 있다. 전원 인가 시 4개의 다리에 전류가 다 흐르게 된다.

- Push Button 연결

풀업(Pull Up) 방식				
연	저 항	전원 5V와 입력 핀		
결	푸시버튼	접지 GND		
동	입력 O	LOW(OFF)		
작	입력 X	HIGH(ON)		

풀다운(Pull Down) 방식				
연	저 항	접지 GND와 입력 핀		
결	푸시버튼	전원 5V		
동	입력 O	HIGH(ON)		
작	입력 X	LOW(OFF)		

3-2-2. Digital Input/Output 예제

- Arduino 13 번 핀에 LED 가 연결됨
- 푸시 버튼은 풀다운 방식 연결됨(15 쪽 회로도보고 결선 방법 연구) 결선 참고: GND -> 저항-> 저항 반대쪽 ->스위치 한쪽과 7 번 동시연결 스위치 다른 한쪽 -> Vcc
- Push Button 으로 LED On Off 하기: 누르면 On, 놓으면 Off


```
#define PUSH_PIN 7
#define LED_PIN 13

void setup() {
  pinMode(PUSH_PIN , INPUT);
  pinMode(LED_PIN, OUTPUT);
}

void loop() {
  int readVal=0;
  readVal = digitalRead(PUSH_PIN);
  digitalWrite(LED_PIN, readVal);
}
```


3-2-3. LED/Push Button을 이용한 Digital Input/Output 실험

- 회로구성: 12번을 입력, 13번을 출력으로 사용
- 스위치를 누르면 LED가 On 되고 안누르면 Off 됨

*스위치에 반드시 풀다운(full-down)저항을 연결해주어야한다.

** 회로 구성시 (+), (-)에 주의하며 연결한다.

** 스위치에 1kΩ짜리 풀다운 저항 처리 이유:

스위치가 open 인 상태에서는 HIGH와 LOW 사이의 애매한 상태에 머무르게 되는데 이를 플로팅(Floating)상태라 한다. 이 현상을 방지하고 HIGH와 LOW의 상태를 명확하게 하기 위하여 PULL-DOWN저항을 이용한다. 스위치가 떨어져 있을때 $1k\Omega$ 정도의 저항을 추가하여 LOW 상태를 유지하도록 하며 저항의 위치는 입출력 단자와 접지 사이에 연결한다.

[디지털 입출력 프로그램 예제]

위와 같이 프로그램 작성 후 아두이노 보드에 업로드를 해보자. 스위치를 누를 때마다 LED가 점등이 되는지 확인을 한다.

회로구성과 프로그램이 정확하다면 스위치를 누를 시 LED에 불빛이 나올 것이다.

Challenge 3-3)

스위치를 누르지 않았을 때 LED가 켜지고, 눌렀을 때 LED가 꺼지도록 프로그램을 수정하기

Challenge 3-4)

스위치를 누르고 있으면 LED가 1초 간격으로 On Off를 반복하고, 스위치를 누르지 않으면 LED가 Off되는 상태의 프로그램을 작성한다.

Challenge 3-5)

스위치를 누르고 있으면 LED가 1초 간격으로 On Off를 반복하고, 스위치를 누르지 않으면 2초 간격으로 LED가 On Off를 반복하는 프로그램을 작성한다.

GoldenBell 3-2)

LED 2개, 스위치 2개를 사용하여 회로를 구성한 후, 첫번째 스위치를 누르면 LED 2개가 1초 간격으로 교대로 On Off를 반복하고, 두번째 스위치를 누르면 LED 2개가 동시에 On Off를 반복하며, 두 스위치를 동시에 누르면 모든 LED가 OFF되는 프로그램을 작성한다. 입출력 핀은 어떠한 핀을 사용해도 관계없다.

•