Nome:	Matrícula:	1.	
	1ª Prova - MTM1049 - T 10	2.	
	14 de Setembro de 2016	3	1

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. Nesta prova A^t denota sempre a transposta da matriz A.

2.				
3.				
4.				
5.				
\sum				

Questão 1. (1.6pts)

- (a) Quais são os três tipos de *operações elementares sobre as linhas de uma matriz* que foram desenvolvidos em aula? Aproveite e coloque a notação que usará para cada uma delas em sua prova (principalmente se for diferente daquela dada em aula).
- (b) Mostre que toda operação elementar sobre as linhas possui inversa, ou seja, para cada operação elementar sobre as linhas há uma operação elementar que desfaz o que a operação anterior fez.

Questão 2. (2pts) Mostre que se A e B são matrizes $n \times n$ e invertíveis, então AB é invertível. (Sugestão: diga um candidato para a inversa de AB).

Questão 3. (2pts) Resolva os sistemas lineares usando o método de Gauss-Jordan (obtendo a solução após chegar na forma esc. red.) (Sugestão: os dois sistemas podem ser resolvidos simultaneamente)

(a)
$$\begin{cases} x - 2y + z = 1 \\ 2x - 5y + z = -2 \\ 3x - 7y + 2z = -1 \end{cases}$$
 (b)
$$\begin{cases} x - 2y + z = 2 \\ 2x - 5y + z = -1 \\ 3x - 7y + 2z = 2 \end{cases}$$

Questão 4. (2.4pts) Considere a matriz
$$A = \begin{bmatrix} 2 & 0 & 0 & 2 \\ -1 & 0 & 0 & 1 \\ 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- (a) Calcule, usando escalonamento, o determinante de $A + A^t$. Com base nisto, $A + A^t$ é invertível? Caso seja, encontre a inversa de $A + A^t$;
- (b) Volte para a matriz A. Determine os valores reais λ , tais que existe $X^t = \begin{bmatrix} x & y & z & w \end{bmatrix} \neq \bar{0}$ que satisfaz

$$AX=\lambda X;$$

(c) Para cada um dos valores de λ encontrados no item anterior, determinar todos $X^t = \begin{bmatrix} x & y & z & w \end{bmatrix}$ tais que

$$AX = \lambda X$$
.

Questão 5. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa ou contraexemplo:

- i-() Se D é uma matriz diagonal $n \times n$ (as entradas fora da diagonal de D são 0), então DA = AD para toda matriz $n \times n$ A;
- ii-() Se A é uma matriz 2×3 , então o sistema linear AX = B, tem infinitas soluções;

iii-() Se
$$A^3=\bar{0},$$
 então $(Id_n-A)^{-1}=Id_n+A+A^2;$

iv-() O cofator
$$\widetilde{a}_{12}$$
 da matriz $A=\left[\begin{array}{cc}2&3\\4&1\end{array}\right]$ é $-4;$

v-() Se A é uma matriz invertível tal que $A^t = -(A^2)$, então $\det(A) = -1$.