The Sum of a Series

Another of Zeno's paradoxes, as passed on to us by Aristotle, is the following: "A man standing in a room cannot walk to the wall. In order to do so, he would first have to go half the distance, then half the remaining distance, and then again half of what still remains. This process can always be continued and can never be ended." (See Figure 11.)

Figure 11

Of course, we know that the man can actually reach the wall, so this suggests that perhaps the total distance can be expressed as the sum of infinitely many smaller distances as follows:

$$1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} + \dots$$

Zeno was arguing that it doesn't make sense to add infinitely many numbers together. But there are other situations in which we implicitly use infinite sums. For instance, in decimal notation, the symbol $0.\overline{3} = 0.3333...$ means

$$\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10,000} + \cdots$$

and so, in some sense, it must be true that

$$\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10,000} + \dots = \frac{1}{3}$$

More generally, if d_n denotes the nth digit in the decimal representation of a number, then

$$0. d_1 d_2 d_3 d_4 \dots = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \dots + \frac{d_n}{10^n} + \dots$$

Therefore some infinite sums, or infinite series as they are called, have a meaning. But we must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by s_n the sum of the first n terms of the series. Thus

$$s_{1} = \frac{1}{2} = 0.5$$

$$s_{2} = \frac{1}{2} + \frac{1}{4} = 0.75$$

$$s_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 0.875$$

$$s_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 0.9375$$

$$s_{5} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = 0.96875$$

$$s_{6} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} = 0.984375$$

$$s_{7} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} = 0.9921875$$

$$\vdots$$

$$s_{10} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{1024} \approx 0.99992344$$

$$\vdots$$

$$s_{16} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{216} \approx 0.99998474$$

Observe that as we add more and more terms, the partial sums become closer and closer to 1. In fact, it can be shown that by taking n large enough (that is, by adding sufficiently many terms of the series), we can make the partial sum s_n as close as we please to the number 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to write

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1$$

In other words, the reason the sum of the series is 1 is that

$$\lim_{n\to\infty} s_n = 1$$

In Chapter 11 we will discuss these ideas further. We will then use Newton's idea of combining infinite series with differential and integral calculus.

Chapter: A Preview of Calculus The Sum of a Series Book Title: Calculus: Early Transcendentals Printed By: Troy Jeffery (tradozprime@gmail.com) © 2018 Cengage Learning, Cengage Learning

© 2019 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.