Metoda Milne'a

Hubert Błonowski, 333181, grupa 2a, środa 16:15, projekt 2, zadanie 39

Metoda Milne'a dla liniowych równań różniczkowych drugiego rzędu. Wartości początkowe y1, y2, y3 należy obliczyć metodą Rungego-Kutty rzędu 4-go (wzór "3/8").

17 stycznia 2025

Spis treści

- 1. Opis zastosowanych metod numerycznych
- 2. Testy poprawności
- 3. Testy numeryczne
- 4. Wnioski

Opis zastosowanych metod numerycznych

Metoda Milne'a

Metoda Milne'a to wielokrokowa metoda numeryczna czwartego rzędu do przybliżonego rozwiązywania równań różniczkowych zwyczajnych. Należy do rodziny metod typu predykator-korektor.

W przeciwieństwie do metod jednokrokowych (np. metoda Rungego-Kutty), metoda Milne'a wykorzystuje kilka wcześniej obliczonych punktów. Dzięki temu jest bardziej wydajna obliczeniowo, ponieważ wymaga mniej obliczeń funkcji, ale jednocześnie jest bardziej wrażliwa na nagromadzenie się błędów z poprzednich kroków.

Metoda Milne'a

Metoda Milne'a wykorzystuje mechanizm predykator-korektor.

Predykator przybliża wartość funkcji $y(x_{n+1})$ za pomocą wzoru interpolacyjnego czwartego rzędu.

Predykator Milne'a

$$y_{n+1}^{pred} = y_{n-3} + \frac{4h}{3} (2f_{n-2} - f_{n-1} + 2f_n)$$

gdzie f_n to wartość funkcji pochodnej w punkcie $x_n = x_0 + nh$

Korektor oblicza lepsze przybliżenie na podstawie wyniku predykatora.

Korektor Milne'a

$$y_{n+1}^{corr} = y_{n-1} + \frac{h}{3} \left(f_{n-1} - 4f_n + f_{n+1}^{pred} \right)$$

Metoda RK4 "3/8" do obliczenia y_1, y_2, y_3

Metoda Milne'a jest metodą wielokrokową i do policzenia każdego kroku wymaga wartości w czterech poprzedzających punktach. Do obliczenia brakujących wartości początkowych wykorzystana została metoda Rungego-Kutty czwartego rzędu ze wzorem "3/8". Współczynniki bierzemy z tabeli Butchera.

Wzory RK4 "3/8"

$$k_{1} = f(x_{n}, y_{n})$$

$$k_{2} = f\left(x_{n} + \frac{h}{3}, y_{n} + \frac{h}{3}k_{1}\right)$$

$$k_{3} = f\left(x_{n} + \frac{2h}{3}, y_{n} - \frac{h}{3}k_{1} + hk_{2}\right)$$

$$k_{4} = f(x_{n} + h, y_{n} + hk_{1} - hk_{2} + hk_{3})$$

$$y_{n+1} = y_{n} + \frac{h}{8}(k_{1} + 3k_{2} + 3k_{3} + k_{4})$$

Zero-stabilność (z ang. Zero-stability)

Zero-stabilność

Metoda wielokrokowa jest zero-stabilna dla danego równania różniczkowego na określonym przedziale czasowym, jeśli zakłócenie wartości początkowych o wielkości ϵ powoduje zmianę rozwiązania numerycznego na tym przedziale nie większą niż $K\epsilon$, gdzie K jest stałą niezależną od długości kroku h.

Twierdzenie o zero-stabilności

Jeśli pierwiastki wielomianu charakterystycznego ρ mają moduł mniejszy lub równy 1, a pierwiastki o modułach równych 1 mają krotność równą 1, mówimy, że warunek pierwiastkowy jest spełniony. Metoda wielokrokowa jest zero-stabilna wtedy i tylko wtedy, gdy warunek pierwiastkowy jest spełniony.

Zero-stabilność (z ang. Zero-stability)

Wielomian charakterystyczny pozyskujemy, przyjmując $\frac{dy}{dx} = 0$. Wtedy:

$$y_{n+1} - y_{n-1} = 0$$

$$\rho(z)=z^2-1$$

Pierwiastki tego wielomianu charakterystycznego wynoszą $z=\pm 1$. Zgodnie z twierdzeniem, metoda Milne'a nie jest zero-stabilna. Brak zero-stabilności w przypadku metody wielokrokowej powoduje, że błąd globalny może zachowywać się nieprzewidywalnie, nawet jeśli błąd lokalny jest formalnie niski, oraz powoduje propagację i amplifikację błędów numerycznych.

Testy poprawności

Test poprawności zaimplementowanej metody

Test poprawności polegał na sprawdzeniu, czy zaimplementowana metoda poprawnie przybliża rozwiązanie równania różniczkowego drugiego stopnia oraz czy błąd przybliżenia zgadza się z rzędem użytej metody. Dla metody czwartego rzędu błąd globalny powinien zbiegać z $O(h^4)$.

Użyta definicja błędu globalnego

$$E = \max_{0 < =k < =n} |y_k - y(x_k)|$$

gdzie $y(x_k)$ jest dokładną wartością rozwiązania, a y_k obliczoną numerycznie.

Rząd metody możemy sprawdzić obliczając jej błąd globalny dla różnych długości kroku h, by później wykorzystać wzór:

Rząd metody

$$p = \frac{\log(E_{i-1}/E_i)}{\log(h_{i-1}/h_i)}$$
, gdzie E_i to błąd globalny dla kroku h_i

Wyniki testów poprawności

Tak skonstruowany test przeprowadzony został na dwóch równaniach różniczkowych

Pierwsze równanie wyglądało następująco:

$$\frac{d^2y}{dx^2} + y = \sin(x)$$

$$y(0) = 0, \frac{dy}{dx}(0) = 0$$
, na przedziale: [0, 10]

Jego analityczne rozwiązanie to:

$$y(x) = \frac{1}{2} \left(\sin(x) - x \cos(x) \right)$$

Wyniki testu:

h	Е	р
1	1695.6	0
0.5	109.24	3.9563
0.25	3.6101	4.9193
0.125	0.020881	7.4337
0.0625	0.0075751	1.4628
0.03125	0.00080073	3.2419
0.015625	6.1168e-05	3.7105
0.0078125	4.1855e-06	3.8693
0.0039062	2.732e-07	3.9374
0.0019531	1.7601e-08	3.9563
0.00097656	1.3206e-09	3.7364
0.00048828	9.0949e-11	3.86
0.00024414	5.6025e-10	-2.6229

Wyniki testów poprawności

Drugie równanie wyglądało następująco:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x$$

$$y(0) = 1, \frac{dy}{dx}(0) = 0$$
, na przedziale: [0, 10]

Jego analityczne rozwiązanie to:

$$y(x) = x - \exp(x) + 2$$

Wyniki testu:

h	E	р
1	1.7081	0
0.5	0.040392	5.4022
0.25	0.0012728	4.988
0.125	4.7568e-05	4.7419
0.0625	2.207e-06	4.4298
0.03125	1.2141e-07	4.1842
0.015625	7.2284e-09	4.07
0.0078125	4.4308e-10	4.028
0.0039062	2.7457e-11	4.0123
0.0019531	1.7111e-12	4.0042
0.00097656	1.1724e-13	3.8674
0.00048828	2.1316e-14	2.4594
0.00024414	2.6201e-14	-0.29768

Testy numeryczne

Oscylator harmoniczny

Błyskawiczna lekcja fizyki - oscylator harmoniczny

Z drugiego prawa Newtona:

$$F = ma$$
$$-kx = m\frac{d^2x}{dt^2}$$

Żeby było przyjemniej, przyjmijmy m=1, k=1. Otrzymujemy możliwie najprostsze równanie oscylatora harmonicznego, bez tłumienia ani wymuszenia

$$\frac{d^2x}{dt^2} + x = 0$$

Takie równanie pomimo swojej prostoty pokaże nam kluczową wadę metod wielokrokowych w tym metody Milne'a.

Oscylator harmoniczny

Oscylator harmoniczny

$$\ddot{y} - y = 0$$

Do następnego testu wybrano wciąż proste równanie, którego rozwiązanie nie jest już funkcją oscylującą, celem zweryfikowania wniosków wyciągniętych w poprzednim teście.

Równanie

Równanie oraz jego wartości początkowe wyglądają następująco:

$$\frac{d^2y}{dx^2} - y = 0$$
, gdzie $y(0) = 1$, $\frac{dy}{dx}(0) = -1$

Rozwiązanie analityczne tego problemu:

$$y(x) = \exp(-x)$$

$\ddot{y} - y = 0$

$\ddot{y} - y = 0$

Bardziej skomplikowane równania

Ponieważ użyta implementacja metody Milne'a pozwala nam na rozwiązywanie bardziej skomplikowanych równań, gdzie współczynnikami mogą być funkcje od x, to przetestowano zachowanie tej metody dla takiego problemu.

Równanie

Użyte w tym teście równanie wygląda następująco:

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + -x \cdot \exp(-x^2) \cdot y = \sin(x^2)$$

Warunki początkowe:

$$y(0) = 1, y(0) = 0$$

Ponieważ rozwiązanie takiego problemu analitycznie nie jest łatwe (o ile możliwe), to jako punkt odniesienia wykorzystaliśmy MATLAB-ową funkcję ode45 do rozwiązania tego równania.

Bardziej skomplikowane równania

Wnioski

Brak zero-stabilności w metodzie Milne'a stanowi jej główne ograniczenie, ponieważ sprawia, że nawet niewielkie zmiany w danych początkowych mogą prowadzić do dużych błędów w obliczeniach. Ponadto, metoda ta jest bardzo wrażliwa na długość kroku całkowania, co sprzyja akumulacji błędów. Jako metoda wielokrokowa typu predykator-korektor, charakteryzuje się także złożonością implementacji i wymaga użycia innej metody do wyznaczenia wartości początkowych. W praktyce, konieczność spełnienia dodatkowych warunków stabilności może ograniczać jej efektywność i zakres zastosowań.

Bibliografia

- Https://encyclopediaofmath.org/wiki/Milne_method [Dostęp z 12 stycznia 2025].
- Https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods [Dostęp z 12 stycznia 2025].
- Https://en.wikipedia.org/wiki/Linear_multistep_method [Dostęp z 17 stycznia 2025].
- Https://en.wikipedia.org/wiki/Zero_stability [Dostęp z 17 stycznia 2025].
 - R. Gao, "Milne method for solving uncertain differential equations," 2016.
- E. Süli and D. Mayers, An Introduction to Numerical Analysis. Cambridge University Press, 2003.
- I. Wróbel, 2025, notatki oraz prezentacje wygłoszone w ramach przedmiotu Metody Numeryczne 2 na Politechince Warszawskiej.