4 Amostragem e Distribuições Amostrais

Neste capítulo serão dadas algumas noções e resultados teóricos fundamentais em Estatística. O estudo de características populacionais, a partir de amostras, assenta nestes resultados.

4.1 Amostra Aleatória. Estatísticas

Definições

Uma amostra aleatória da v.a. (população) X é um conjunto de n v.a.'s $X_1, X_2, ..., X_n$ independentes e com a mesma distribuição de X (dizem-se independentes e identicamente distribuídas (i.i.d.) com X).

Estatística é uma função da amostra aleatória, e logo uma variável aleatória, cuja expressão não contém parâmetros desconhecidos.

Dada uma amostra aleatória de $X, X_1, X_2, ..., X_n$, podemos definir as seguintes estatísticas:

• A média da amostra ou média amostral

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• A variância da amostra ou variância amostral (corrigida)

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

• O desvio padrão amostral é dado por $S_n = \sqrt{S_n^2}$.

Exercício: Verifique que
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}^2$$
.

A média e a variância amostrais são estatísticas (especiais no nosso estudo) e, logo, variáveis aleatórias, com distribuições próprias, com parâmetros de localização e dispersão, que dependem da população em estudo. As suas distribuições são designadas distribuições amostrais.

31

4.2 Distribuição da Média Amostral

Considere-se uma amostra aleatória $X_1, X_2, ..., X_n$ da população X com parâmetros $E(X) = \mu$ e $V(X) = \sigma^2$.

Usando propriedades da esperança e da variância, verifica-se que:

$$E(\overline{X}) = \mu$$
 e $V(\overline{X}) = \frac{\sigma^2}{n} \Rightarrow \sigma(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Teorema do Limite Central (T.L.C.)

Sejam $X_1, X_2, ..., X_n$ uma amostra aleatória da população X com parâmetros $E(X) = \mu$ e $V(X) = \sigma^2$. Para n suficientemente grande, tem-se

$$\frac{\overline{X} - E(\overline{X})}{\sigma(\overline{X})} = \sqrt{n} \ \frac{\overline{X} - \mu}{\sigma} \stackrel{.}{\sim} \mathcal{N}(0, 1).$$

Notas

- A aproximação à Normal centrada e reduzida pode ser efetuada na prática para n > 30; no entanto, esta será tanto melhor quanto maior for o valor de n.
- Se a população é normal, isto é, $X \sim \mathcal{N}(\mu, \sigma)$ (caso já estudado) então

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \Rightarrow \sqrt{n} \ \frac{\overline{X} - \mu}{\sigma} \sim \mathcal{N}(0, 1) \text{ (distribuição exacta!)}$$

O T.L.C. permite alargar este resultado a qualquer família, desde que se considere uma amostra de tamanho bastante razoável!

Justificação de alguns resultados apresentados anteriormente

• Se $X \sim \mathcal{B}(n,p)$ [E(X) = np e V(X) = np(1-p)], para n sufficientemente grande e $p \in]0.1, 0.9[$,

$$X \sim \mathcal{N}\left(np, \sqrt{np(1-p)}\right) \Leftrightarrow Z = \frac{X - np}{\sqrt{np(1-p)}} \sim \mathcal{N}(0,1)$$

Nota

Neste caso,
$$X = \sum_{i=1}^{n} X_i \text{ com } X_i \sim \mathcal{B}(p) \text{ para } i = 1, ..., n.$$

Exercício: Deduza que

$$Z_n = \sqrt{n} \frac{\overline{X} - p}{\sqrt{p(1-p)}} \sim \mathcal{N}(0,1)$$

Anteriormente, vimos que

se
$$p \leq 0.1$$
 então $X \sim \mathcal{P}(np);$
se $p \geq 0.9$ então $Y = n - X \sim \mathcal{P}(n(1-p))$

• Se $X \sim \mathcal{P}(\lambda)$ $[E(X) = V(X) = \lambda]$, para λ sufficientemente grande,

$$X \sim \mathcal{N}\left(\lambda, \sqrt{\lambda}\right) \Rightarrow Z = \frac{X - \lambda}{\sqrt{\lambda}} \sim \mathcal{N}(0, 1)$$

Nota

Neste caso,
$$X = \sum_{i=1}^{n} X_i \text{ com } X_i \sim \mathcal{P}(\frac{\lambda}{n}) \text{ para } i = 1, ..., n.$$

Distribuições da média amostral \overline{X} :

- Para n suficientemente grande, \sqrt{n} $\frac{\overline{X} \mu}{\sigma} \sim \mathcal{N}(0, 1)$.
- Se $X \sim \mathcal{N}(\mu, \sigma)$,

$$\sqrt{n} \ \frac{\overline{X} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\sqrt{n} \ \frac{\overline{X} - \mu}{S_n} \ \sim \ t_{n-1}$$

4.3 Distribuição da Variância Amostral

• Se
$$X \sim \mathcal{N}(\mu, \sigma)$$
, $\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$