

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

Measure Theory

Author: Adam J. Gray Student Number: 3329798

1

1.1

Define

$$\ell_n = \sum_{k=1}^{N_n} \alpha_k \chi_{C_k}$$
$$u_n = \sum_{k=1}^{N_n} \beta_k \chi_{C_k}$$

where $\alpha_k := \inf\{f(x) : x \in C_k\}$ and $\beta_k := \sup\{f(x) : x \in C_k\}$ and $C_k \in \mathcal{P}_n$ where \mathcal{P} is defined in the question. We wish to show that

$$\lim_{n \to \infty} |\ell - f| = 0 = \lim_{n \to \infty} |f - u_n|$$

 λ a.e.

It is obvious that $\ell \leq f \leq u_n$ and so proving

$$\lim_{n \to \infty} |u_n - \ell_n| = 0$$

is sufficient. Define

$$\phi_n := u_n - \ell_n = \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k}.$$

Firstly we must show $\lim_{n\longrightarrow\infty}\phi_n$ exists λ a.e. This follows from the fact that ℓ_n (u_n) is a non-decreasing (non-increasing) sequence which is bounded above (below) by f which is also bounded.

We now wish to establish that $\lim_{n\to\infty} \phi_n = 0$. Note that

$$\phi_n \le \sup\{f(x) - f(y) : x, y \in S\} \le K\chi_S$$

for some K because f is bounded. Now because S is bounded in \mathbb{R}^d we have that $K\chi_S \in \mathcal{L}^1(S)$. The dominated convergence theorem therefore allows us to write

$$\int \lim_{n \to \infty} \underbrace{\sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k}}_{=\phi_n} d\lambda = \lim_{n \to \infty} \int \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k} d\lambda$$

$$= \lim_{n \to \infty} \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \lambda(C_k) \text{ because } \phi_n \text{ is a simple function}$$

$$= 0 \text{ because } f \text{ is Riemann integrable }.$$

This means that $\lim_{n\to\infty} \phi_n = 0$, λ a.e. and hence $\lim_{n\to\infty} \ell_n = f = \lim_{n\to\infty} \ell_n$, λ a.e.

We now show that the Riemann integral and the Lebesgue integral coincide. We have that

$$|\ell_n| < M\chi_S$$

for some M because f is bounded. By the same argument as above $M\chi_S \in \mathcal{L}^1(S)$. $\lim_{n \to \infty} \ell_n$ exists and equals f (this was established above), so by the dominated convergence theorem,

$$\underbrace{\lim_{n \to \infty} \int \ell_n d\lambda}_{\int_S f(x) dx} = \int \underbrace{\lim_{n \to \infty} \ell_n}_{\circledast} d\lambda$$

$$= \underbrace{\int f d\lambda}_{\text{Lebesque integral}}$$

1.2

Let $N = \{x : \lim_{n \to \infty} \ell_n(x) \neq \lim_{n \to \infty} u_n(x)\}$ and let $X = S/(\partial S \cup N)$. We wish to show that for all $x \in X$ and $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\sup\{f(x_1) - f(x_2) : ||x - x_1|| < \delta, ||x - x_2|| < \delta\} < \varepsilon.$$

Fix x and ε . As $\lim_{n\to\infty}(u_n-\ell_n)=0$ there exists an L such that n>L implies $u_n-\ell_n<\varepsilon$ which is to say that

$$\sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k} < \varepsilon$$

which implies that

$$(\beta_k - \alpha_k) < \varepsilon$$

where $x \in C_k$. Therefore chosing $\delta = \inf\{||y - x|| : y \notin C_k\}$ guarentees $\{y : ||y - x|| < \delta\} \subseteq C_k$ and hence

$$\sup\{f(x_1) - f(x_2) : ||x - x_1|| < \delta, ||x - x_2|| < \delta\} < \varepsilon.$$

We now need to prove that $\delta > 0$. To do this we show that there exits a partitioning of S such that

$$\inf\{||x_1 - x|| : x_1 \notin C_k\} > 0$$

for all $x \in X$ so long as $x \in C_k/(\partial C_k)$. We then show that there always exists a partitioning of X such that $x \notin \partial C_k$ and the result will follow.

A partitioning of S such that \circledast holds for all n is given by

$$C_k = \left(\frac{k(b_1 - a_1)}{q^n}, \frac{(k+1)(b_1 - a_1)}{q^n}\right] \times \dots \times \left(\frac{k(b_d - a_d)}{q^n}, \frac{(k+1)(b_d - a_d)}{q^n}\right]$$
(1)

where q=2. Now suppose that $x \in \partial C_k$ then the \circledast would still hold when q=3 but $x \notin \partial C_k$.

$\mathbf{2}$

2.1

Note that for $E \in \mathcal{B}$

$$(f^{-1}(E))^{c} = (\{x \in X : f(x) \in E\})^{c}$$

$$= \{x \in X : f(x) \notin E\}$$

$$= \{x \in X : f(x) \in E^{c}\}$$

$$= f^{-1}(E^{c}).$$

So if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$.

Also note that for E_1, E_2, \ldots we have that

$$\bigcup_{i} f^{-1}(E_{i}) = \bigcup_{i} \{x \in X : f(x) \in E_{i}\}$$

$$= \left\{x \in X : f(x) \in \bigcup_{i} E_{i}\right\}$$

$$= f^{-1}\left(\bigcup_{i} E_{i}\right).$$

which means that if F_1, F_2, \ldots is some countable collection of sets in \mathcal{A} then their union is also in \mathcal{A} .

Finnally note that $f^{-1}(Y) = X$. Therefore $\mathcal{A} := \{f^{-1}(B) : B \in \mathcal{B}\}$ is a σ -algebra.

Clearly if we remove any set from \mathcal{A} then f would not be \mathcal{A} measurable because there would exist a set $B \in \mathcal{B}$ such that $f^{-1}(B) \notin \mathcal{A}$.

2.2

Define

$$g: Y \longrightarrow Z$$

 $g:=a_n \mathbb{1}_{B_n}$

Now suppose $E \in \mathcal{C}$ and note that

$$h^{-1}E = f \circ h^{-1}E$$
$$= f \bigcup_{n \in I} \underbrace{h^{-1}a_n}_{\scriptsize{\textcircled{\tiny \$}}}$$

where $I = \{n : a_n \in E\}.$

 \circledast is because if $E \in \mathcal{C}$ then if $U := \{a_n : n \in I, I \subseteq \mathbb{Z}\} \subseteq E$ then

$$h^{-1}E = h^{-1}(U \cup (E \setminus U)) = h^{-1} \bigcup_{n \in I} a_n = \bigcup_{n \in I} h^{-1}a_n.$$

Now because h is measurable then

$$D := \bigcup_{n \in I} h^{-1} a_n$$

is the countable union of measurable sets, hence measurable. Then we just have to argue that

$$fD \in Y$$

This is clear because $D = f^{-1}E$ for some $E \in \mathcal{B}$ and therefore $fD = ff^{-1}E = E \in \mathcal{B}$.

3

3.1

 $i \Longrightarrow ii$:

Obvious. (By definition)

 $ii \Longrightarrow iii$:

$$\lim_{n}\inf\chi_{A_{n}}(x)=1$$

$$\Longrightarrow\lim_{N\longrightarrow\infty}\inf_{n\geq N}\chi_{A_{n}}(x)=1$$

$$\Longrightarrow\chi_{A_{n}}(x)=0 \text{ for finitely many } n$$

$$\Longrightarrow x\not\in A_{n} \text{ for finitely many } n$$

 $iii \Longrightarrow i$:

$$x \notin A_n$$
 for finitely many n

$$\implies \exists N \text{ such that } n \ge N \implies x \in A_n$$

$$\implies n \ge N \implies x \in \bigcap_{k \ge n} A_n$$

$$\implies x \in \bigcup_n \bigcap_{k \ge n} A_k$$

3.2

$$x\in\limsup_n A_n$$

$$\limsup_n \chi_{A_n}(x)=1$$

$$x\in A_n \text{ for infinitely many } n$$

Clearly the third condition here is less restrictive than the third contion in 3.1

4

4.1

Clearly

$$\emptyset \in \mathcal{A} \Longrightarrow \emptyset \in \mathcal{A}_c$$

also if we let $A \in \mathcal{A}_c$

$$A^c := A^c \cap C$$

and $A^c \cap C \in \mathcal{A}_c$ because $A^c \in \mathcal{A}$.

Now let $\{A_n\}_n \subseteq \mathcal{A}_c$ where $A_n = A'_n \cap C$ with $A'_n \in \mathcal{A}$ then

$$\bigcup_{n} A_{n} = \bigcup_{n} (A'_{n} \cap C)$$

$$= \bigcup_{n} (A'_{n} \cap C)$$

$$= C \cap \bigcup_{n} (A'_{n})$$

$$\in A$$

and thus

$$\bigcup_n A_n \in \mathcal{A}_c.$$