1. Group Algebras

Fix k to be a unital commutative ring 4 Ga group.

def The group algebra kg is the nk-algebra with G as a band and with multiplication induced by the group multiplication.

 $kG = \begin{cases} \sum_{g \in G} \lambda_g g & | \lambda_g \neq 0 \end{cases}$ for finitely many terms, $g \in G_g$

sum is defined welfigent-wise

Multiplication:
$$\left(\frac{\sum_{g \in G} \lambda_g g}{g \in G}\right) \left(\frac{\sum_{h \in G} \mu_h h}{\sum_{h \in G} \mu_h h}\right) = \frac{\sum_{g \mid h \in G} \lambda_g \mu_h gh}{g \mid h \in G}$$

$$= \sum_{z \in G} \left(\sum_{gh=Z} \lambda_g \mu_h \right) z$$

With that, the $l_{kq} = l \cdot e_q$, e_q is the group identity.

 $k \longrightarrow kq$ $k \longmapsto 1.eq$

so kg is a k-algebra, nive nieg E Z(kG).

(I) Idempstents

- * An idempotent in an algebra A_i is a non-zero element i st $i^2=i$ * i,j as idempotents are called orthogonal if ij=0=ji. If this happens, i+j is also an idempotent.
- * If i is an idempotent st $i \neq 1$, then 1-i is also an idempotent. And i and 1-i are orthogonal.

- * An idempotent i is called primitive if it CANNOT be written as a sum of two orthogonal idempotents.
- * a (primitive) decomposition of an idempotent e in A is a finite set I

 of purvoise of thogonal, idempotents in A st e = 2 i .

 (primitive)

Prop Let $H \leq G$, H in finite, then if IHI is invertible in k, then $e_{H} = \coprod_{|H|} \sum_{y \in H} y$

is an idempotent in kg. Further, if HQG, then $e_H \in Z(kg)$.

Proof To show $e_{H}^{2} = e_{H}$.

$$\left(\sum_{j\in H}y\right)^2 = \sum_{j\in H}y\cdot\sum_{x\in H}x = \sum_{j\in H}\sum_{x\in H}x = \sum_{x\in H}\sum_{x\in H}x$$

Divide by $|H|^2$, giving us $e_H^2 = e_H$.

Using the fact that $Z(kq)=\{a\in kq\mid gag^{-1}=a, \forall g\in q\}$, we note

 $ge_{H}g^{-1} = \prod_{|H|} \sum_{y \in H} gyg^{-1} = \prod_{|H|} \sum_{z \in g^{-1}H} z = \sum_{z \in H} z = e_{H}$

Hema $e_H \in Z(kg)$

(II) Resurring KG

Prop° G, H be groups and let φ: G → H be a group homomorphism. Then there exists a unique k-algebra morphism $\alpha: kG \longrightarrow kH$ st $\alpha(\lambda) = \phi(\lambda)$, for every $\lambda \in G$.

Proof: Extend & K-linearly to get a. a is multiplicative since of is a grp hough.

So, we have a functor k(-): Grp -> k Algebras.

* Related functor:
$$(-)^{\times}:_{K} Algebras \longrightarrow Grp$$

$$A \longmapsto_{A} A^{\times}$$

$$(f; A \longrightarrow B) \longmapsto_{A} (f|_{A^{\times}}: A^{\times} \longrightarrow B^{\times})$$

Fact: $k(-) \rightarrow (-)^{\times}$

- * A k-algebra A is called a division ring if $A^* = A \setminus \{0\}$.

 Commutative division rings are fields.
- * Every module over a division ring is free, proof is similar to showing modules over a field are free.

Fact: The tensor product of two k-algebras A and B: $A\otimes_k B$ is also a k-algebra.

 J_h^m : Let G_1H be groups. Then there's a unique algebra isomorphism $k(G_1 \times H) \cong kG \otimes_K kH$ $J_h^m : Let <math>G_1H$ be groups. Then there's a unique algebra isomorphism $k(G_1 \times H) \cong kG \otimes_K kH$

Proof $\phi: G \times H \longrightarrow kG \otimes_{K} kH$ $(\pi, y) \longmapsto \pi \otimes y$ entend to a k-algebra map $\alpha: k(G \times H) \longrightarrow kG \otimes_{K} kH$ $(\pi, y) \longmapsto \pi \otimes y$

mapping basis to basis, so an isomorphism.

Comment: the direct product of group algebras is NOT a group algebra Jake k to be a field of char 2, and consider $kC_2 \times kC_2$ If this was a group algebra, then either $kC_2 \times kC_2 \cong kC_4$ or $\cong kV_4$.

(1.11.5)

But we can directly see that $kC_4 \notin kV_4$ don't have non-trivial idempotents but $kC_2 \times kC_2$ does have non-trivial idempotents: (1,0) and (0,1).

Noetherian-news 4 Artinian-news

Prop of 16120 and k is Noetherian (resp. Artinian), then kG and Z(kG) is Noetherian (resp. Artinian)

Proof FACT from commutative algebra! [g-module over a Noetherian (vop.

Artinan) ring is also Noetherian (verp. Artinian). kg is [g over k.

FACT: 0 -> M'-> M -> M"-> O

Mis N (verp 4) iff M' is N. (verp 4.)]

Therefore KG is N (resp 4.) as a k-module, hence an acceding them of k-submodules of kG becomes stationary.

Consider an ascending chain of left ideals Ii of kG. But every left ideal Ii is a k-submodule, hence the chain becomes stationary rince kG is a Noetherian k-module. Similarly, kG is right-Noetherian as a ring, hence Noetherian. Similarly for Artinian-ness.

Z(kg) is also a k-submodule of kg, and so Noetherian (resp. tritinian) as a module. Similar reasoning as above gives us that Z(kg) is a Noetheriam (resp. Artinian) as a ring.

(VI) Representations

A representation of G over K is a pair (V, p) where V is a k-module and $p: G \longrightarrow GL(V) = Aut_K(V)$, a group homomorphism.

* Morphisms b[w](V,p) and (W,σ) is a linear map $\phi:V\to W$ st $\forall g\in G$ $\phi\circ p(g)=\sigma(g)\circ \phi$.

* If V is a free module w| finite rank, say n, then $GL(V) \cong GL_n(k)$ by choosing a basis of V. Thun $p: G \longrightarrow GL_n(k)$ is our group homomorphism.

 \times (V, p), a representation and define a kG-module structure on V. For any $v \in V$, $g \cdot v = p(g)(v)$

Conversely, given a kg-module V, we define a $p: G \longrightarrow GL(V)$ $g \longmapsto (V \mapsto g.V)$ * kg Nod is an abelian category and has a tensor product

U,V be two KG-modules, and U&XV is a K-module. Thun define the G-action as g (UOV) = gUOgV +gEG, UEU, VEV.

Permutation representation a modulus.

Let M be a G-set.

Let kM be defined as the kG-module, which as a k-module is free who basis M. Concretely, take $\sum \lambda_j g \in KG$ and $\sum \mu_m m$, then $g \in G$

 $\left(\frac{\sum_{g \in G} \lambda_{g g}}{g \in G}\right) \cdot \left(\frac{\sum_{m \in M} \lambda_{m m}}{\sum_{g \in G} \lambda_{g m \in M}}\right) = \sum_{g \in G} \sum_{m \in M} \lambda_{g \mu m} g \cdot m$

- * A kG-module V is called a permutation module if $V \cong KM$ for a G-set M, or equivalently: V is a free k-module and it has a k-bans that is G-stable.
- * If Gats transitively on a k-basis of V, V is a transitive permutation module
- eg * The trivial kg-module k is a permutation module since k= k{*}.
 - * The regular left kG-module is the permutation module obtained by the regular action of G on itself by left-multiplication.
 - \star for any $n\in\mathbb{Z}_+$, then S_n naturally acts on $\Omega=\{1,\ldots,n\}$ and the associated KG- module $K\Omega$ is called the natural permutation module of S_n .

Proph: Let U and V be two permutation modules, so are U DV and U Ox V.

Proof. Let Mbe a G-stable k-basis of U, and N a G-stable k-basis of V.

Then MIIN will be a Stable k-basis of UOV, Making this a permutation module.

Consider the set {mon | (min) \in MxN}, this is a G-stable k-basis of U OxV.

Prop : Let G be finite, and M is a transitive G-set. Let $m \in M$ and let $H = \{x \in G \mid x m = m \}$ stabilizer of m in G. Then the map that sends $x \in G$ to $x \in M$ induces an isomorphism of G-sets $G/H \cong M$ and induces an isomorphism of KG-modules.

Proof: Uses forts we know.

(VIII) Indecomposable Modules

Let A be a k-algebra.

- * U, an A-module, is indecomp. if it CANNUT be written as $U = V \oplus V'$ for some A-modules V and V'.
- \star $\pi \in End_A(u)$ is an idempotent, then $U = \pi(u) \oplus (1_u \pi)(u)$. This says that U is indecomp \Leftrightarrow 1u is the only idempotent in End_A(U).
- * An A-module S is called simple if S = D has no non-zero proper submodules.
- * A simple module is indecomp. but not via versa, in general.
- * A transitive permutation KG-module need not be indecomposable

* Direct summand of a permutation module reed not be a permutation module.

Propⁿ Let G be finite and M a G-set. Then the permutation module kM has a trivial submodule, namely $k\left(\sum_{m\in M}m\right)$. In particular, $i\int_{\infty}^{\infty} |M|\pi/2$, then kM is not simple.

Proof: Action of G permutes elements in M, so fixes $\sum_{M \in M} M$. Hence $K\left(\sum_{M \in M} M\right)$ is a KG- submodule of KM.