Qüestions: Bé: 1p, Mal: -0.25p Blanc: 0p

Maig de 2017

1. Donat el circuit de la figura, realitzat amb portes TTL amb eixida en col.lector obert, indique l'expressió correcta de F en funció de les entrades.

[A]
$$F = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

$$[B] F = \overline{(A+B+C+D)}$$

[C]
$$F = \overline{(A \cdot B \cdot C \cdot D)}$$

[D] No poden connectar-se les eixides entre sí, es pot produir un conflicte lògic en F.

F = AND-cablada de les eixides F = A. B.C.D = A+B+C+D

 En les taules adjuntes s'indiquen algunes característiques elèctriques de dos famílies, A i B. Indique el fan-out B → A (eixida de B i entrades de A)

4	Familia A			
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}	
2 V	0.8 V	2.7 V	0.5 V	
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	
20μΑ	-0.36mA	-400μA	8 mA	

CELUTED T	Fam	ilia B	
V _{IHmin}	V _{ILmax}	V _{OHmin}	V_{OLmax}
2.0 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
40μA	-1.6 mA	-400μA	16 mA

- [A] 44 entrades
- [B] 20 entrades
- [C] 5 entrades
- [D] 10 entrades

far-out H=	1 T-11: 20 = 20)	20
fan-onth =	1 I sula 20 1 I och 8 = 16 = 44.44 > 44	1	20
	17-1 02/		

- 3. A partir de les taules de la pregunta anterior, indique el valor del marge de soroll de la família A i B
- [A] NM(A): 0.4V; NM(B): 0.3V
- [B] NM(A): 0.3V; NM(B): 0.4V
- [C] NM(A): 0.7V; NM(B): 0.4V
- [D] NM(A): 0.3V; NM(B): 0.7V
- A NMH = 2.7-2:0.7 > 0.3 NML = 0.8-0.5=0.3

NM4 = 2.4-2=0.4 } > 0.4

- La figura adjunta mostra el retard que pateix el senyal d'entrada IN en un buffer. El senyal d'eixida és OUT. Indique l'afirmació correcta:
- [A] El tpHL és 10 ns. (Veure fyura)
- [B] El tp_{LH} és 6 ns.
- [C] El tpd és 20 ns
- [D] El tf (fall time) de l'eixida és 5 ns aproximadament.

tpd = 1 (tph+ +pm) = 1000s

Qüestions: Bé: 1p, Mal: -0.25p Blanc: 0p

Maig de 2017

5. Es pretén connectar l'eixida d'una porta de la família A alimentada a 9V, amb una entrada de la família B alimentada a 5V. A partir de les especificacions de les famílies A i B, i sabent que la porta A té eixida estàndard, es pot afirmar que:

	Fa	milia A (cm	05)
V_{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}
6.3 V	2.7 V	8.9 V	0.1 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
20pA	-20pA	-0.5 mA	0.5 mA

Família B (7774)			
V _{IHmin}	V_{ILmax}	V_{OHmin}	V _{OLmax}
2.0 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
40μΑ	-1.6 mA	-400μΑ	16 mA

[A] Es poden connectar directament.

[B] Es necessita una resistència de pull-up connectada entre l'eixida i 9V.

[C] Es necessita una resistència de pull-up connectada entre l'eixida i 5V.

[D] Es necessita intercal.lar un buffer drenador obert de la família A amb una resistència de pull-up connectada entre l'eixida del buffer i 5V.

6. Es vol connectar dos eixides TTL en col·lector obert, amb dos entrades CMOS alimentada a 15V. Indicar el rang de valors vàlids per a la resistència de pull-up requerida.

Familia A (TTL colector abierto)				
V_{OLmax}	V _{OLmax} I _{OHmax (fuites)} I _{OLmax}			
0.4 V	100 μΑ	24 mA		

Familia B (CMOS +15V)			
V _{IHmin}	V _{ILmax}	I _{IHmax}	I _{ILmax}
11 V	4 V	0.1 μΑ	-0.1 μΑ

[A] $0.63 \text{ K}\Omega \leq \text{Rpu} \leq 75 \text{ K}\Omega$

[B]. $0.61 \text{ K}\Omega \leq \text{Rpu} \leq 20 \text{ K}\Omega$

[C]. $0.2 \text{ K}\Omega \leq \text{Rpu} \leq 25 \text{ K}\Omega$

[D]. $0.25 \text{ K}\Omega \leq \text{Rpu} \leq 30 \text{ K}\Omega$

15-VOL

. 1

4 Rpn 4

15- VIH

2x IOH + 2x JIH

4157 $\frac{15-0.4}{24-0.0002} \leq Rpu \leq \frac{15-11}{0.2+0.0002}$

Qüestions: BÉ: 1p, Mal: -0.25p Blanc: 0p

Maig de 2017

 En les taules adjuntes s'indiquen algunes de les característiques elèctriques de dos famílies lògiques genèriques A i B. A partir d'elles, indique la resposta FALSA (la notació X→Y indica eixida X connectada a entrada Y):

	Famí	ília A	
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2 V	0.8 V	2.7 V	0.5 V
I _{IHmax}	I _{ILmax}	I_{OHmax}	I_{OLmax}
20 μΑ	- 0.36 mA	-400 μΑ	8 mA
	Fami	ília B	
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I_{OHmax}	I_{OLmax}
40 μΑ	- 1.6mA	-400 μA	16 mA

- [A] El marge de soroll A→B és de 0.7 V.
 - [B] El fan-out A→B és de 5.
 - [C] El fan-out B→A és de 20.
 - [D] El marge de soroll B→A és de 0.4V.

$$A \rightarrow B$$
:
 $NMH = 2.7 - 2 = 0.7V$
 $NML = 0.8 - 0.7 = 0.3V$

 El circuit de la figura està compost de portes de la família TTL. Determine quina de les següents respostes és la CORRECTA:

- [A] El circuit no funciona perquè necessita una resistència de pull-up en l'eixida.
- [B] La funció $F = \overline{A.B.C.D}$ ja que la connexió implementa una AND cablada.
- [C] Es poden seleccionar vàries portes al mateix temps, perquè tenen eixida triestat.
- [D] Si l'entrada B = 0V i SEL_B = "0", (amb SEL_A = SEL_C = SEL_D = "1"), l'eixida F haurà de ser un nivell alt.
- 3. Es desitja connectar l'eixida d'una porta TTL estàndard (VCC = 5V), a l'entrada d'una CMOS estàndard, alimentada a 3V. Indique la resposta CORRECTA.

Nota: la porta CMOS inclou circuits de protecció en l'entrada.

Família TTL ($V_{CC} = 5V$)				
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}	
2 V	0.8 V	2.4 V	0.4 V	
I _{IHmax}	I _{ILmax}	I _{OHmax}	I_{OLmax}	
40 μΑ	-1.6 mA	-400 μΑ	16 Man	

Fa	Família CMOS (V _{DD} = 3V)			
V_{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}	
2.1 V	0.9 V	2.9 V	0.1 V	
$\mathbf{I}_{\mathrm{IHmax}}$	I _{ILmax}	I _{OHmax}	I_{OLmax}	
10 pA	-10 pA	-0.5 mA	0.5 mA	

- [A] Es necessita una resistència de pull-up a 3V en l'eixida de la TTL.
- [B] Es necessita intercalar un buffer CMOS, alimentat a 3V, per adaptar els corrents.
- ([C]) Es pot realitzar la connexió directament.
 - [D] Es necessita intercalar un buffer TTL, alimentat a 5V, per adaptar les tensions.

- Considere el circuit adjunt i els paràmetres característics següents. Si es tracta d'eixides en col.lector obert, indique la resposta CORRECTA.
 - [A] El circuit funciona correctament amb una $R_{PU} = 1.2k\Omega$
 - [B] El circuit funciona correctament amb una $R_{PU} = 3k\Omega$
 - [C] El circuit funcionaria correctament si llevem la Rpu
 - [D] El circuit funciona correctament amb una $R_{PU} = 0.5k\Omega$

$$\frac{5 - V_{OLmax}}{T_{OL} - 2x|J_{IL}|} \leq R_{PU} \leq \frac{5 - V_{IHmin}}{9x I_{OH} + 8x I_{IH}}$$

V_{IHmin}	V_{ILmax}	V_{OHmin}	V _{OLmax}
2.5 V	0.8 V	3.0 V	0.5 V
I _{IHmax}	I _{ILmax}	OHmax(fuites)	I _{OLmax}
300 μΑ	-0.36 mA	100 μΑ	7 mA

Per al circuit de la figura, s'ha dibuixat el cronograma de les distintes eixides, sent el senyal A l'entrada al mateix. Cada marca vertical correspon a 5 ns. Es pot afirmar que:

Dades:

 V_{CC} = 5V; I_{CCL} = 12mA e I_{CCH} = 6mA, i el retard de propagació mitjà d'una porta és de 5ns.

- [A] La potència estàtica mitjana consumida per la porta NAND és 40mW. $5 \times \frac{1}{2} (12+6) = 45 \text{ mW}$
- [B] La potència estàtica mitjana consumida per la porta AND és 55mW. 5x (+ 5 × /2) = 55mW
- [C] No es pot calcular la potència estàtica sense saber la frequència de les entrades.
- [D] La potència estàtica mitjana consumida pel conjunt del circuit és 90mW. 45+55= 100 mW
- Indique la freqüència màxima de funcionament del registre de desplaçament de la figura. Els paràmetres dels biestables D són: t_{su}=6ns, t_h=2ns, tp_{LH}=12ns, tp_{HL}=10ns.
- 50 MHz [A].
- [B]. 45 MHz
- [C]. 45.5 MHz
- [D].) 55.6 MHz

Tmin = tpd bersable + tsu

tpdbienable = 12ns (el pitjor cas) Tuin = 12+6= 18 ms

Imax = 1/Tmln = 1000 × 106 = 55. T6 MHZ