

	部门名称	密级
化头牡子去四八三	Hyper Stack	内部公开
华为技术有限公司	项目名称	页数
	ARM64 性能分析工具开发	共 39 页

Malluma V2.0 Performance Analysis User's Guide

Prepared by	Date
拟制	日期
Reviewed by	Date
评审人	日期
Approved by	Date
批准	日期
Authorized by	Date
签发	日期

Huawei Technologies Co., Ltd.

华为技术有限公司

All rights reserved 版权所有 侵权必究

Revision Record 修订记录

Date 日期	Revision Version	Sec No. 修改章节	Change Description 修改描述	Author 作者
	修订版本			
2018-05-15	V1.0	All	1.完成大纲	
			2.1616 环境支持 7 种采集分析	
2018-10-10	V2.0	2、5.1.8、	1.新增系统登录账号说明	
		5.4.15、	2.1620 环境新增支持所有 1616 环境采	
		5.1.8、	集分析	
		5.4.1、	3.1620环境新增支持False Sharing采集	
		5.4.12、	、 分析	
		5.4.15、7、	4. 仅针对 Hisilicon CPU Hisilicon 1620	
		7.1、7.2	环境 ge 和 ld 采集分析支持勾选	
			Profiling LLC and DDR 之后可选性设	
			置 Sampling interval(ms)值	
			5. sch 采集新增支持 Time Consumption	
			分析	
			6.新增 Malluma 使用 FAQ 说明	

目录

	Rev	ision Reco	ord 修订记录	2
1	分机	斤系统启动	h	5
2	用户	卢管理		5
3	工程	呈管理		6
4	分机	斤选择		8
	4.1	新建分	↑析	8
	4.2	导入分	· 析结果	8
5	开好	台分析		8
	5.1	分析类	^{美型选择}	8
		5.1.1	General Exploration 分析	9
		5.1.2	Scheduling 分析	9
		5.1.3	Disk IO 分析	9
		5.1.4	Locks and Waits 分析	. 10
		5.1.5	LLC&DDR 分析	. 10
		5.1.6	Java Mixed-Mode 分析	. 10
		5.1.7	Network Input and Output 分析	. 11
		5.1.8	False Sharing 分析	. 12
	5.2	分析对	†象选择及参数配置	. 12
		5.2.1	Launch Application	. 12
		5.2.2	Attach to Process	. 13
		5.2.3	Profile System	. 14
		5.2.4	命令行脚本展示	
	5.3	分析启	3动及状态反馈	. 15
		5.3.1	启动分析	. 15
		5.3.2	状态反馈	. 16
	5.4	分析结	5果查看	
		5.4.1	Summary 分析	
		5.4.2	Function 分析	
		5.4.3	Timechart 分析	
		5.4.4	Zoomview 分析	. 22
		5.4.5	Code 分析	
		5.4.6	Resource 分析	
		5.4.7	Control Flow 分析	. 26
		5.4.8	Latency 分析	
		5.4.9	Disk IO 分析	
		5.4.10	Locks and Waits 分析	
		5.4.11	Locks and Waits Code 分析	
		5.4.12	LLC&DDR 分析	
		5.4.13	Flame Graph 分析	
		5.4.14	Network Input and Output 分析	
		5.4.15	False Sharing 分析	
6	命令	> 行界面支	₹持	. 34

7.2

7.3

1 分析系统启动

完成 Malluma 分析系统安装、配置之后(参考 Install_Guide_Malluma_linux.docx),在 Web 地址栏输入 Server IP 地址启动分析系统。用户登陆后(如图 1.1),自动加载 Sever中的已有工程及结果到工程导航栏 Project Navigator(如图 1.2)。

图 1.1

图 1.2

2 用户管理

管理员账号(admin/Admin12#\$)登陆 Malluma 系统平台,支持用户管理,点击"User management"(如图 2.1),弹出对话框添加/删除/更新用户(如图 2.2),可以添加管理员用户或普通用户:

图 2.2

权限说明:

- (1) admin 管理员为超级管理员,可以对所有用户的节点、工程、采集分析有浏览、修改、删除权限。
- (2) guest 用户,只支持浏览,无法新建分析。
- (3) user 用户(普通用户),支持新建节点、工程、采集分析,且可对自建的节点、工程、采集分析进行修改、删除操作;对 admin 管理员新建的节点、工程、采集分析,只支持浏览不支持其他修改、删除操作;不同普通用户之间只有浏览权限,无其他操作权限(修改或删除节点、工程、采集分析权限)。

3 工程管理

创建工程,选择 Project 菜单中 New Project (如图 3.1),弹出对话框输入工程名 (如图 3.2)。

图 3.1

图 3.2

双击选中工程,展开工程下的采集结果,此时可以新建分析。双击已有的采集分析结果,加载分析结果到 Summary 等分析界面(如图 3.3)。

图 3.3

可重命名或删除工程名和结果名(如图 3.4),重命名直接在结果名称上进行编辑(如图 3.5),删除弹出确认对话框(如图 3.6)。

project1

图 3.6

4 分析选择

4.1 新建分析

新建分析结果,选择 Analysis 菜单中 New Analysis (如图 4.1),显示可选择的分析类型和对象选择页面,可进行相应的设置。注意:先选中任一工程名。

图 4.1

4.2 导入分析结果

导入分析结果,选择 Analysis 菜单中 Import Results 弹出导入对话框(如图 4.2),从 后台选择已有的采集结果文件夹输入到 Path 中,执行导入时会加载采集分析到指定的工程目录下。

图 4.2

5 开始分析

5.1 分析类型选择

选择分析类型,从哪些维度来分析应用的性能瓶颈,比如微架构级 top-down 模型、算法级锁与等待、平台级 Disk I/O 分析等。

5.1.1 General Exploration 分析

General Exploration 分析,即微架构 top-down 模型分析方法,详见 Tuning Methodology 介绍。可选中分析方法 General-exploration,如图 5.1.1。

5.1.2 Scheduling 分析

Scheduling 分析,即调度轨迹分析方法,可选中分析方法 Scheduling,如图 5.1.2。

图 5.1.2

5.1.3 Disk IO 分析

Disk IO 分析,即磁盘输入输出分析方法,可选中分析方法 Disk Input and Output,如图 5.1.3。

图 5.1.3

5.1.4 Locks and Waits 分析

Locks and Waits 分析,即 glibc 锁和等待分析方法,包括 sleep、usleep、mutex、cond、spinlock、rwlock、semophore 接口调用引起的并发性能分析,可选中分析方法 Locks and Waits,如图 5.1.4。

5.1.5 LLC&DDR 分析

LLC&DDR 分析,即分析 L3 Cache 和 DDR 内存的缓存命中率及读写的带宽信息,可选中分析方法 LLC and DDR,如图 5.1.5。

国 5.1.0

5.1.6 Java Mixed-Mode 分析

Java Mixed-Mode 分析,即支持分析 java 程序的代码,但称之为 Mixed-Mode,是因为不仅仅能采集到 java 方法,同时还能采集到 native 代码。可选中分析方法 Java Mixed-Mode,如图 5.1.6。

Analysis Type				
26	General-exploration			
26	Scheduling			
26	Disk Input and Output			
26	Locks and Waits			
26	LLC and DDR			
16	Java Mixed-Mode			
	图 5.1.6			

5.1.7 Network Input and Output 分析

Network Input and Output 分析,分析每个网口上的收发包统计信息,包括收发包带宽、收发包个数、收发包错包个数和收发包丢包个数。可选中分析方法 Network Input and Output,如图 5.1.7。

	Analysis Type				
16	General-exploration				
16	Scheduling				
26	Disk Input and Output				
26	Locks and Waits				
16	LLC and DDR				
26	Java Mixed-Mode				
26	Network Input and Output				
	图 5.1.7				

5.1.8 False Sharing 分析

False Sharing 分析,多进程数据共享分析(The analysis of data sharing for multi-threads),该采集分析仅支持 1620 环境。可选中分析方法 False Sharing,如图 5.1.8。

	Analysis Type
26	General-exploration
26	Scheduling
26	Disk Input and Output
26	Locks and Waits
26	LLC and DDR
26	Java Mixed-Mode
26	Network Input and Output
26	False Sharing

图 5.1.8

5.2 分析对象选择及参数配置

主要有三种形式的分析对象,分别为 Launch Application、Attach to Process、Profile system。

5.2.1 Launch Application

Launch Application 即采集启动的时候同时启动 Application(如图 5.2.1),采集时长 受 Application 的执行时间来控制,适用于 Application 运行时间较短的场景。

参数配置:

Application 参数,配置被采集 Application 的绝对路径。

Application Parameters 参数,配置 Application 本身的执行参数。提供 Modify 功能。 Working directory 参数,配置 Application 的运行绝对路径,默认与 Application 的绝对路径一致。

CPU Sampling interval 参数,配置数据采样时间间隔,默认值 1。阈值范围[1,1000]。 Analysis system-wide 参数,勾选之后实现全系统采集。

CPU mask 参数,配置需要关注的 CPU 核。

Modify 功能,即弹出较大的文本编辑框。

Profiling LLC and DDR: 是否采集 LLC and DDR 数据,若需要采集,勾选该选项;若是 Hisilicon CPU Hisilicon 1620 勾选 Profiling LLC and DDR 后同时支持 Sampling

interval(ms) (Sampling interval(ms) 支持 10/50/100/1000 四种选择) (勾选该选项 前需要进行环境预置,具体操作和要求见 5.4.12 章节)。

Launch Application Specify and configure your analysis targe	t: an application or a script to execute.		Binary/Symbol Search(Relative path of the application file)	Modify
Application: Application Parameters:	/home/sampleApp/demo/matrix/linux/n	* Modify	C/C++ Source Search(Relative path of the source file)	Modify
■ Use application directory as worki Working directory:	ng directory /home/sampleApp/demo/matrix/linux	*		
CPU Sampling interval (ms):	1	*		
Analyze system-wide				
CPU mask:				
Code profiling mode	Native			
✓ Profiling LLC and DDR				
Command Line				

图 5.2.1

5.2.2 Attach to Process

Attach to Process 即采集启动的时候 Server 中应用正在运行(如图 5.2.2),采集时长需要配置参数控制,适用于某些应用需要长时间持续运行的场景。

参数配置:

PID 参数,配置被采集应用的 PID 号。

Collection duration 参数,配置采集时长。

CPU Sampling intervel 参数,配置数据采样时间间隔,默认值 1。阈值范围[1,1000]。 Profiling LLC and DDR: 是否采集 LLC and DDR 数据,若需要采集,勾选该选项;若是 Hisilicon CPU Hisilicon 1620 勾选 Profiling LLC and DDR 后同时支持 Sampling interval(ms)(Sampling interval(ms)支持 10/50/100/1000 四种选择)(勾选该选项前需要进行环境预置,具体操作和要求见 5.4.12 章节)。

Attach to Process	rmance data will be collected after attaching to the process.	Binary/Symbol Search(Relative path of the application file)
Specify the process to analyze. Perio	mance data will be collected after attaching to the process.	
PID/TID	*	C/C++ Source Search(Relative path of the source file)
		Modify
Collection duration (s)	30	
CPU Sampling interval (ms)	*	
Code profiling mode	Native	
✓ Profiling LLC and DDR		

图 5.2.2

5.2.3 Profile System

Profile System 即采集整个 Server OS 系统(如图 5.2.3),无需关注系统中有哪些类型的应用在运行,采集时长需要配置参数控制,适用于多业务混合运行和有 Child Process的场景。

参数配置:

Collection duration 参数,配置采集时长。

CPU Sampling intervel 参数,配置数据采样时间间隔,默认值 1。阈值范围[1,1000]。CPU mask 参数,配置需要关注的 CPU 核。

Profiling LLC and DDR: 是否采集 LLC and DDR 数据,若需要采集,勾选该选项;若是 Hisilicon CPU Hisilicon 1620 勾选 Profiling LLC and DDR 后同时支持 Sampling interval(ms)(Sampling interval(ms) 支持 10/50/100/1000 四种选择)(勾选该选项前需要进行环境预置,具体操作和要求见 5.4.12 章节)。

图 5.2.3

5.2.4 命令行脚本展示

根据三种采集方式 Launch Application、Attach to Process、Profile System 的配置参数自动关联生成命令行采集脚本(如图 5.2.4),可以直接复制到命令行执行,支持新建采集和采集结果查看两个功能场景。

图 5.2.4

5.3 分析启动及状态反馈

5.3.1 启动分析

完成分析对象和参数配置之后,点击 Start 按钮启动采集(如图 5.3.1.1),执行采集过程进入到 Collection Log 界面。点击 Cancel 按钮取消采集。

图 5.3.1.1

启动采集之前或采集之后,可以点击 Binary/Symbol Search 的 Modify 按钮(如图 5.3.1.2),弹出对话框配置带符号表的 Application 的路径或符号表的路径。配置符号表信息,适用于 Application 运行时不含符号表信息的场景。配置方式如下:

- 1) 用户配置的相对路径下面可以放带 debug 信息的二进制文件。例如,采集时运行的二进制应用文件所在路径为/home/prog1,用户在弹出的对话框配置相对路径为/symbol,则用户需要将带 debug 信息的 prog1 二进制文件放在服务器的/symbol/home/prog1 路径。
- 2)用户配置的相对路径下面可以放不带 debug 信息的二进制文件和与之对应的 debuginfo 文件。例如,采集时运行的二进制文件所在路径为/home/prog1,用户配置相对路径为/symbol,则用户需要将不带 debug 信息的 prog1 二进制文件放在服务器的/symbol/home/prog1 路径,将 debuginfo 文件放在服务器的/symbol/home/debuginfo 路径。
- 3)用户配置符号表相对路径后,代码映射时,所有函数的代码映射都会在配置的路径下进行查找,在采集全系统的情况下,会涉及采集众多的二进制程序,每个二进制程序的函数如需要代码映射,都要在相对路径下进行1)或3)步描述的操作。

启动采集之前或采集之后,可以点击 Source Search 的 Modify 按钮(如图 5.3.1.2),弹出对话框配置 APP 的源码路径。配置源码路径信息,以便查看源代码与 PMU 指标的映射关系。配置方式如下:

用户在配置的相对路径下面放置 C 源代码文件。例如,采集的应用程序编译时源文件 所在路径为/home/prog1.c,用户在弹出的对话框配置相对路径为/Source,则用户需要将 prog1.c 文件放在服务器的/Source/home/prog1.c 路径。

Binary/Symbol Search(Relative path of the application file)	
	Modify
C/C++ Source Search(Relative path of the source file)	
	Modify

图 5.3.1.2

如果新建的分析 Java Mixed-Mode 类型或者在 General Exploration 分析类型里面选择 Code profiling mode 为 Java Mixed-Mode,则会显示 Java Source Search 对话框(如图 5.3.1.3),这个时候要把需要映射源码的.java 文件放到该目录下才能支持代码映射功能:

图 5.3.1.3

5.3.2 状态反馈

基于 Collection Log 功能,直接打印采集日志信息到界面(如图 5.3.2),反馈采集成功的状态和解析的日志信息,以及采集失败或解析失败的报错信息。支持新建采集分析和采集结果查看两种功能场景。

图 5.3.2

5.4 分析结果查看

5.4.1 Summary 分析

采集解析完成之后,生成 Summary 分析报告。

➤ Top-down 整体分析(如图 5.4.1.1) 提供 Top-down 模型的整体值并标识主要性能瓶颈及优化建议。

图 5.4.1.1 对应 General-exploration 分析

➤ Statistics 整体分析(如图 5.4.1.2)

图 5.4.1.2 对应 Scheduling 分析

➤ Time Consumption 整体分析(如图 5.4.1.3)

图 5.4.1.3 对应 Scheduling 分析

▶ Disk IO 整体时延统计分析(如图 5.4.1.4)

图 5.4.1.4 对应 Disk IO 分析

▶ Locks and Waits 统计分析(如图 5.4.1.5)(注: Wait Time 时间是所有线程等待时间的总和,在多线程情况下可能会大于程序执行时间)

图 5.4.1.5 对应 lw 分析

- ➤ 采集 OS 系统基本指标
 - CPU Usage(如图 5.4.2)

提供采集过程中 CPU Usage 的时序数据,以及平均值。

图 5.4.2

▶ 采集平台基本信息(如图 5.4.3)

提供采集执行 OS 系统的 CPU、OS、kernel 等环境信息,以及采集结果时间、结果大小等基本信息。

Collection and Platform Info	
Operating System:	4.1.36-vhulk3.8.1.B800.aarch64 Linux
Computer Name:	server-for-toolsdevlope
Result Size:	1338.258MB
Collection start time:	2017-02-12 13:06:28
Collection end time:	2017-02-12 13:06:58

图 5.4.3

5.4.2 Function 分析

➤ 查看 Function 的 top-down 指标值(如图 5.4.4-5.4.7)

分析不同函数对应 top-down 模型的各指标值,按选定指标排序查看其 TopN 热点函数,可知针对某些 PMU 指标哪些函数是主要瓶颈。(注意: cycles 太小的函数,对应其他指标值可行度低。)

图 5.4.4

图 5.4.5

(Configuration 🗐 Collection Log	Summary	Function	ne					
Grou	rouping: Thread/Function/Calistack								
	Thread/Function/Callstack-	Cycles	Instructions	IPC	Retiring	Miss_Pred_Rate	Miss_Pred_BTB/uBTB_Rate	PC_Write	
1	□ total	1745109198135	8985245010	0.051	0.017	0.005	0.003	0.007	
2	⊞ matrix.gcc(TID:57818)	149310038805 (8.556%)	507149880 (5.644%)	0.034	0.011	0.005	0.003	0.005	
3	⊞ matrix.gcc(TID:57820)	135279134241 (7.752%)	556232538 (6.191%)	0.041	0.014	0.004	0.003	0.006	
4	⊞ matrix.gcc(TID:57813)	133835602590 (7.669%)	520707452 (5.795%)	0.039	0.013	0.005	0.003	0.005	
5	⊞ matrix.gcc(TID:57823)	132417067076 (7.588%)	542531790 (6.038%)	0.041	0.014	0.005	0.003	0.006	
6	⊞ matrix.gcc(TID:57816)	126558355698 (7.252%)	547027263 (6.088%)	0.043	0.014	0.005	0.003	0.006	
7	⊞ matrix.gcc(TID:57814)	126546812522 (7.252%)	543919408 (6.053%)	0.043	0.014	0.004	0.003	0.005	
8	⊞ matrix.gcc(TID:57815)	118956422558 (6.817%)	526253790 (5.857%)	0.044	0.015	0.005	0.003	0.006	
9	⊞ matrix.gcc(TID:57809)	110990144792 (6.36%)	554478737 (6.171%)	0.050	0.017	0.004	0.003	0.006	
10	⊞ matrix.gcc(TID:57810)	102372934519 (5.866%)	577618152 (6.429%)	0.056	0.019	0.004	0.002	0.007	
11	⊞ matrix.gcc(TID:57819)	96272056806 (5.517%)	552041205 (6.144%)	0.057	0.019	0.005	0.003	0.008	
12	⊞ matrix.gcc(TID:57824)	94090411034 (5.392%)	567412309 (6.315%)	0.060	0.020	0.005	0.003	0.008	
13	⊞ matrix.gcc(TID:57821)	88476252536 (5.07%)	561744091 (6.252%)	0.063	0.021	0.006	0.003	0.009	
14	⊞ matrix.gcc(TID:57812)	87527929238 (5.016%)	580885999 (6.465%)	0.066	0.022	0.005	0.003	0.009	
15	⊞ matrix.gcc(TID:57822)	86137424991 (4.936%)	541517588 (6.027%)	0.063	0.021	0.005	0.003	0.009	
16	⊞ matrix.gcc(TID:57817)	77930210343 (4.466%)	547794263 (6.097%)	0.070	0.023	0.005	0.003	0.010	
17	⊞ matrix.gcc(TID:57811)	77916373947 (4.465%)	549749655 (6.118%)	0.071	0.024	0.005	0.003	0.009	
18	⊞ matrix.gcc(TID:57808)	492026439 (0.028%)	208180890 (2.317%)	4.231	1.410	0.006		0	

图 5.4.6

图 5.4.7

提供 4 种不同组合方式来查看,Core/Thread/Module/Function/Callstack 与 top-down 指标的关系(如图 5.4.8)。

- Grouping Function/Callstack
- Grouping Module/Function/Callstack
- Grouping Thread/Function/Callstack
- Grouping Core/Function/Callstack
- 对于采集 java 程序,还支持按照 Grouping class/Method/Callstack

图 5.4.8

- ▶ 辅助功能
 - Grouping 结果可以上下折叠

- 基于选中 PMU 指标排序
- PMU 指标可左右折叠
- 隐藏选中 PMU 指标
- 导出当前界面结果到 EXCEL 文件
- 支持 Function 分页显示, 当前页面数据行数可选

5.4.3 Timechart 分析

➤ 查看 PMU 指标时序图 (如图 5.4.9)

基于选中的 PMU 指标(最多 4 个),显示其时序图。可分析不同指标在整个数据采集过程中的波形走势,同一时刻不同指标的关联影响,以及选定一段时间内的 top-down 整体值、TopN 热点函数列表、波形等数据变化。

图 5.4.9

▶ 辅助功能

● 基于任一 PMU 指标时序图窗口放大(如图 5.4.10),选中标记处鼠标左键在时序图中选中指定时间区域,自动放大此时间区域的时序图。

图 5.4.10

● 基于任一 PMU 指标时序图选择窗口滑动分析(如图 5.4.11),选中标记处鼠标左右拖动。

图 5.4.11

● 波形图可以支持不同的插值步长,默认为 100ms(如图 5.4.12)。

图 5.4.12

5.4.4 Zoomview 分析

▶ 查看圈定时间内的热点函数及指标时序图(如图 5.4.13)

在 Timechart 页签点击如下红圈中的 zoom 按钮,然后在波形图上鼠标左键框选时间段范围,再点击 ZoomView 按钮,会弹出 Zoomview 页签,并生成对应时间段的分析。

图 5.4.13

➤ Zoomview 页签

Zoomview 页签包括左侧的 Zoom List 区域,上部的 Function 区域和下部的 Timechart 区域(如图 5.4.14),其中 Zoom List 区域为选择的时间段对应的分析 名称,如名称"time-0-33413"表示从 0 秒到 33.413 秒这段时间内的分析,Function 区域为选择时间段内的热点函数,Timechart 区域为选择时间段的波形图。

图 5.4.14

可以在 Zoomview 页签生成的波形图上,继续选择时间段生成次一级分析,方法跟 Timechart 页签生成时间段分析相同,此时的次一级分析名称显示在一级分析名称下面(如图 5.4.15)。

图 5.4.15

5.4.5 Code 分析

➤ 查看热点函数的代码映射(如图 5.4.16),通过该功能可以分析热点函数内部的热点指令,热点指令即指函数内 Cycles 事件占比最高的 Top 指令,功能还支持查看热点指令对应的高级语言文件及行号。功能还支持对汇编代码进行控制流分析,通过划分 basic block 并标示出跳转关系及颜色,可以清晰看到各个汇编代码块的"热度"。

在 Function 页签双击函数名称,会跳转到 Code 页签, Code 页签分为几个区域:

- 左侧为 Function List, 是模块名及模块内的函数的列表
- 右侧上部包括: HardWare Event 下拉菜单, 支持显示不同的 HardWare 事件, Total Count 表示该事件的求和值, File Name 表示函数所在的源文件

● 右侧下部包括函数源代码、函数汇编代码和函数汇编代码 basic block 的控制流图。在源代码和汇编代码区域,计算出每行源代码和汇编代码对应的 HardWare 事件计数值及占该事件 Total Count 的百分比(值为空的表示 0),百分比最高的即为函数的热点指令,在控制流图区域,通过图形标示出 basic block 的跳转关系和颜色,可以直观看到函数内的热点及调用关系。

在 Code 页签的源代码区域,包括:

- Source Line:源代码行号
- Source: 改行对应的源代码
- Count(Percent): 该行源代码对应的 PMU 事件计数值及占该事件 Total Count 的百分比
- 过滤框:过滤出包含指定字符串的源码

在 Code 页签的汇编代码区域,包括:

- Address: 汇编指令地址
- Source Line: 汇编指令对应的高级代码行号
- Assembly: 汇编指令
- Count(Percent): 该行汇编代码对应的 PMU 事件计数值及占该事件 Total Count 的百分比
- 过滤框:过滤出包含指定字符串的汇编代码
- 折叠: 通过点击统一打开或者折叠所有 basic block
- 显示/取消显示汇编码的 File: 通过点击统一显示或者取消显示汇编对应 File
- 支持汇编码下载

辅助功能

在源代码、汇编代码或控制流图上任意区域单击,三者可以联动高亮:

图 5.4.16

对于采样类型为 Java Mixed-Mode 采集到的 java 的方法,因为 java 的 jit 编译的限制,当前只有对应的源码,没有汇编和控制流图区域,如图 5.4.16.1:

图 5.4.16.1

对于采集 java 程序,为了使能映射的源码更精确,建议开启-XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints选项。

5.4.6 Resource 分析

- ▶ 查看采样时间后台 CPU 各个核的调度情况(如图 5.4.17)
 - 显示采样时间内各个 CPU 核的运行调度情况,时间精度最小是微妙。将鼠标悬停在图上任意一点,显示当前时刻 CPU 核的运行状态,包括 idle 和 running 这 2 种状态,并显示状态起止时间和持续时间,对于 running 状态显示当前运行的进程名字和进程 id。其中 idle 状态表示 CPU 空闲,running 状态表示 CPU 正在运行程序。
 - Filter 按钮:点击弹出过滤对话框,可以过滤掉不关注的 CPU 核,如图 5.4.18
 - Function 按钮:选中 Function 按钮后,页签下面出来 Function 表格,显示选中的 CPU 在选中时间段内的热点函数
 - reset 按钮: 如图 5.4.17 红圈,时序图放大缩小后,点该按钮恢复原始精度
 - 左/右箭头:沿着选中时间点及选中 CPU 核,向上或下一个状态单步前进
 - 上/下箭头:固定选中时间点,在上或下一个 CPU 核上切换
 - 放大/缩小按钮: 放大/缩小时序图的, 当前最小精度为微妙级

图 5.4.17

图 5.4.18

5.4.7 Control Flow 分析

▶ 查看采样时间后台进程的调度情况(如图 5.4.19)

显示采样时间内各个进程的运行调度情况,时间精度最小是微秒。将鼠标悬停在图上任意一点,显示当前时刻该进程的运行状态,包括 wait_blocked、wait_for_cpu 和 running 这 3 种状态,并显示状态起止时间和持续时间。其中wait_blocked 状态表示进程阻塞无法运行,wait_for_cpu 状态表示进程处于可运行队列中,running 状态表示进程正在运行。

- Filter 按钮:点击弹出过滤对话框,可以过滤掉不关注的进程,如图 5.4.20
- Function 按钮:选中 Function 按钮后,页签下面出来 Function 表格,显示选中的线程在选中时间段内的热点函数
- reset 按钮: 如图 5.4.19 红圈,时序图放大缩小后,点该按钮恢复原始精度
- 左/右箭头:沿着选中时间点及选中进程,向上或下一个状态单步前进
- 上/下箭头:固定选中时间点,在上或下一个进程切换
- 放大/缩小按钮:放大/缩小时序图的,当前最小精度为微妙级

图 5.4.19

图 5.4.20

5.4.8 Latency 分析

▶ 查看采样时间后台进程的调度延迟情况(如图 5.4.21)

调度延迟即进程进入运行队列到获取处理器执行之间的时间差。可以统计采集期间所有进程的切换次数、平均调度延迟、最大调度延迟和最大延迟的时间点。 支持按照 Task 名字进行过滤和导出 excel 格式的数据。

Confi	guration Collection Log	⊚ Summary	nction 📴 Resources 📴	Control Flow Latency	
ask: E	inter search term				
NO.	Task ≑	Switches	Average delay (ms) ÷	Maximum delay (ms) 🕆	Maximum delay at (s) ‡
1	kworker/39:1:1872	5	3.962400	4.002000	1482.335487
2	kworker/56:1:1887	3	3.937000	4.001000	1483.135487
3	kworker/6:1:1934	19	3.780737	4.002000	1490.731486
4	kworker/58:0:10635	22	3.608045	4.000000	1509.107488
5	kworker/5:1:1914	8	3.492750	4.002000	1489.743485
6	kworker/20:2:4311	19	3.365368	4.004000	1485.563488
7	kworker/40:1:1873	23	3.285174	4.002000	1501.323488
8	kworker/21:1:1854	20	3.191800	4.004000	1486.551488
9	kworker/49:1:1880	13	3.074385	4.001000	1513.215488
10	kworker/57:2:4244	15	2.914800	4.000000	1486.119485
11	kworker/22:1:1856	11	2.904909	4.001000	1490.539486
12	kworker/50:1:1882	18	2.873833	4.002000	1497.203487
13	kworker/53:1:1883	17	2.820588	4.000000	1500.167487
14	kworker/42:2:4309	19	2.720368	4.002000	1482.299487
15	kworker/51:1:1881	6	2.651167	3.998000	1492.191485
16	kworker/17:1:1851	23	2.607348	4.001000	1503.599485
17	kworker/1:1:1845	19	2.525842	4.001000	1489.791485
18	kworker/32:2:4245	40	2.400850	4.000000	1497.419487
19	kworker/0:0:4	10	2.399400	4.002000	1497.807489
20	kworker/33:1:1866	37	2.205108	4.001000	1498.407488
) T H	4 Page 1 of 13 M				Displaying 1 to 20 of 259

图 5.4.21

5.4.9 Disk IO 分析

▶ 查看采样时间 disk io 的情况(如图 5.4.22)

Thread: 查看采样时间每个线程的 I/O Wait 和 I/O APIs 时序图

I/O Queue Depth: 查看采样时间每个磁盘的 I/O 请求队列长度变化时序图

I/O Operation: 查看采样时间每个磁盘的 I/O 操作时序图

I/O Transfer: 查看采样时间每个磁盘的 I/O 操作数据大小时序图

图 5.4.22

5.4.10 Locks and Waits 分析

▶ 查看采样时间程序锁和等待的情况(如图 5.4.23)

界面分为 2 部分,上部为表格,下部为时序图。上部的表格对采集到的数据从Function/Callstack 、 SyncObject/Function/Callstack 、 Thread/Function/Callstack 和

Module/Function/Callstack 这 4 个维度进行分组展示,表格的 Wait Time 列表示等待时长,Wait Count 列表示等待次数。通过双击函数名,可以跳转到 Locks and Waits Code 页面。下部为进程/线程时序图,其中黄色表示线程因为调用 glibc 的 sleep、usleep、mutex、cond、spinlock、rwlock 或 semophore 接口导致进入了阻塞状态,通过鼠标悬浮于时序图上,可以看到引起程序阻塞的函数及其调用栈。

图 5.4.23

5.4.11 Locks and Waits Code 分析

▶ 查看采样时间程序锁和等待的情况(如图 5.4.24)

通过在 Locks and Waits 页面双击函数,可以跳转到该页面。该页面可以展示程序中调用了 glibc 的 sleep、usleep、mutex、cond、spinlock、rwlock 或 semophore 接口的函数及其反汇编。如下,左侧源代码区域展示了该函数调用 sleep(1)阻塞的时间和次数,右侧汇编代码区域展示了跳转指令到 sleep 函数的阻塞时间和次数。

图 5.4.24

5.4.12 LLC&DDR 分析

1) Hisilicon CPU Hi1616 环境

注:为了使用 LLC&DDR 分析功能,需要首先编译、安装对应内核版本的内核驱动程序(具体请依据源码中 source/llc-ddr/Hi1616_4P_DFX 目录下的 README 说明)

▶ 查看采样时间 LLC&DDR 的汇总情况(如图 5.4.25)

下图展示了汇总的分析数据,指标包括 CPU 每个 die 的 llc 读写带宽及命中率,及 CPU 的 ddr 内存采集时间的读写带宽。

	Metric	Die0	Die1	Die2	Die3	Total
	Hit Bandwidth (MB/s)	3.316	1.31	2.731	1.537	8.894
l3c_rd	Bandwidth (MB/s)	6.541	2.606	5.276	3.059	17.482
	Hit_Rate	50.703	50.259	51.749	50.229	50.245
l3c_wr	Hit Bandwidth (MB/s)	0.129	0.109	0.006	0.007	0.251
	Bandwidth (MB/s)	0.254	0.215	0.012	0.011	0.492
	Hit_Rate	50.906	50.904	55.501	64.262	63.636
ddr_rd	Bandwidth (MB/s)	0.505	0.446	0.453	0.441	1.845
ddr_wr	Bandwidth (MB/s)	0.426	0.165	0.079	0.089	0.759

图 5.4.25

▶ 查看采样时间 LLC&DDR 的时间分布情况(如图 5.4.26)

下图展示了 CPU 每个 die 的 llc&ddr 的读、写命中率及带宽,左侧主轴表示带宽,单位是 MB/s,右侧副轴表示命中率,单位是百分比。

图 5.4.26

2) Hisilicon CPU Hisilicon 1620 环境

注:为了使用 LLC&DDR 分析功能,需要首先在 1620 环境检查当前内核的 CONFIG_HISI_PMU 开关是否打开(确认开关打开方式请使用 zcat /proc/config.gz|grep HISI_PMU)

针对 Summary (如图 5.4.27) 和 Timeline (如图 5.4.28) 页签额外支持 DieX_Out_Hit(MB/s)、DieX_Out_Total(MB/s)、DieX_Out_Hit_Rate(MB/s)和 HHA; 具体包括三部分如下:

▶ 查看采样时间 LLC&DDR&HHA 的汇总情况(如图 5.4.27)

下图展示每个 Die 上 DDR 和 L3C 的在采样周期内总的读写带宽,以及每个 Die 上的 L3C 的命中率和访问数据的命中带宽,带宽均已 MB/s 为单位;另包含关于 HHA 的 8 个指标,关于本地 HHA 接收的操作数量以及 HHA 接收到来自片外的操作数量等数据。(以上数据均为采样周期内的数据总和)。

LLC and D	DDR statistics					
	Metric	Die1	Die3	Die5	Die7	Total
ddr_rd	Bandwidth (MB/s)	9.008	197.605	6.271	10.494	223.378
ddr_wr	Bandwidth (MB/s)	3.728	35.113	3.642	3.649	46.132
	Hit Bandwidth (MB/s)	1.964	51.215	1.279	2.571	57.029
	Bandwidth (MB/s)	14.494	210.614	11.124	14.88	251.113
10	Hit_Rate	0.136	0.243	0.115	0.173	0.227
l3c_rd	Out_Hit Bandwidth (MB/s)	5.046	27.058	4.627	5.487	42.219
	Out_Bandwidth (MB/s)	14.718	219.612	11.148	15.153	260.63
	Out_Hit_Rate	0.343	0.123	0.415	0.362	0.162
l3c_wr	Hit Bandwidth (MB/s)	0	0	0	0	0
	Bandwidth (MB/s)	0	0	0	0	0
	Hit_Rate	0	0	0	0	0
	Out_Hit Bandwidth (MB/s)	0	0	0	0	0
	Out_Bandwidth (MB/s)	0	0	0	0	0
	Out_Hit_Rate	0	0	0	0	0
	hha_opt_num (counts/s)	192856	5353784	156136	212385	5915161
	hha_out_opt_num (counts/s)	811	2405192	77060	116073	2599136
	hha_die_num (counts/s)	116379	145125	3217	1350	266071
	hha_mediate_num (counts/s)	71951	1054736	34729	44158	1205572
nha	hha_snoop_num (counts/s)	96275	801675	113141	119424	1130515
	hha_out_snoop_num (counts/s)	2216	233560	67343	67245	370364
	hha_s-dir_counter (counts/s)	0	0	0	0	0
	hha_e-dir_counter (counts/s)	0	0	0	0	0

图 5.4.27

▶ 查看采样时间 LLC&DD&DDR 的时间分布情况(如图 5.4.28)

下图上半部分展示了 CPU 每个 die 的 llc&ddr 的读、写命中率及带宽,左侧主轴表示带宽,单位是 MB/s,右侧副轴表示命中率,单位是百分比;下半部分展示了关于 HHA 的 8个指标,在采样周期内的每一时刻的数据数值。

图 5.4.28

5.4.13 Flame Graph 分析

▶ 查看采样时间热点函数的火焰图(如图 5.4.29),帮助用户直观且迅速找到热点代码路径:

图 5.4.29

5.4.14 Network Input and Output 分析

➤ 查看采样时间 Network Input and Output 的汇总情况(如图 5.4.30) 下图展示了汇总的分析数据,指标包括每网口收发包带宽、收发包个数、收发包错包个数和收发包丢包个数。

item	docker0	eth2	eth3	lo	
receive(MB/s)	0	0.01	25.223	0	
receive_packets	0	117	399226	0	
receive_drop_packets	0	0	0	0	
receive_error_packets	0	0	20	0	
send(MB/s)	0	0	1125.129	0	
send_packets	0	0	93396	0	
send_drop_packets	0	0	0	0	
send_error_packets	0	0	0	0	

图 5.4.30

➤ 查看采样时间的 Network Input and Output 时间分布情况(如图 5.4.31) 下图展示了每个网口收发包带宽、收发包个数、收发包错包个数和收发包丢包个数 随时间的变化情况,左侧主轴表示带宽,单位是 MB/s,右侧副轴表报文个数,单 位是 packet。

图 5.4.31

5.4.15 False Sharing 分析

▶ 多进程共享采集分析,下图展示了分析的所有指标数据(如图 5.4.32)。

图 5.4.32

6 命令行界面支持

6.1 功能介绍

命令行工具 malluma-analyzer 可以直接在命令行进行参数配置执行数据采集和简单分析(如图 6.1),进一步可以导入采集结果到图形界面进行详细分析。适用于无法直接连接 web 的场景。

```
Deletes/Appthus/malluma_vii.2.6_pnyMelluma_pmydecs # milluma_maniyer |
Unappte malluma_maniyer included plantal [[-] emplorations | cargon] |
Unappte |
Unap
```

图 6.1

提供数据采集功能和输出简单 Summary 分析报告功能(如图 6.2),详细采集命令和脚本示例见 6.2、6.3。


```
arm44:/home # python /opt/Malluma/Malluma-analyzer/bin64/Malluma-analyzer.py --collect general-exploration sleep 5
 Top-down total results:
                                                                                                                                           5.09
959467
81076
Elapsed Time(s)
Cycles
Instructions
                                                                                                                                          0.0
0.845
0.282
0.019
 CPU_Active_Ratio
PO_ACTIVE_NATIO
IPC
Retiring
Bad_Speculation
Miss_Pred_Rate
Miss_Pred_BTB_uBTB_Rate
PC_Write
                                                                                                                                            0.048
                                                                                                                                           None
0
0
      Immediate_Branch
     Indirect_Branch
Indirect_BTB_Miss
Branch_Return
rontend_Bound
                                                                                                                                            None
                                                                                                                                          0.904
0.512
0.002
Branch Return
Frontend_Bound
Misprediction_Flush
Exception_Flush
Other_Flush
ICACHE_Miss
ITLB_Miss
Backend_Bound
Core_Bound
Rename_Stall
Rename_Stall_Registers
Dispatch_Stall_Branch
Dispatch_Stall_Branch
Dispatch_Stall_Load_Store
Dispatch_Stall_Multi_Cycle
Dispatch_Stall_Single_Cycle
Dispatch_Stall_Single_Cycle
Dispatch_Stall_Special_Purpose
Dispatch_Stall_Special_Purpose
Dispatch_Stall_Sw_DW
Memory_Bound
Ll_Bound
Ll_Cache_Miss
LlD_TLB_Miss
L2_TLB_Miss
L2_TLB_Miss
L2_Bandwidth(MB/s)
Bus_Bandwidth_RD(MB/s)
                                                                                                                                            0.39
                                                                                                                                           None
None
-0.204
                                                                                                                                           None
None
                                                                                                                                            None
                                                                                                                                            None
                                                                                                                                            0 0 0
           L2_Bandwidth(MB/s)
Bus_Bandwidth_RD(MB/s)
Bus_Bandwidth_WR(MB/s)
arm44:/home #
```


Task	Switches	Average delay ms	Maximum delay ms	Maximum delay at
worker/28:1H:3659	1			max at: 4698748.56961
rker/3:1:17753	1	avg: 0.000009 ms		
orker/17:2:17052	1			max at: 4698744.70886
orker/28:1:4461] 5		max: 0.000017 ms	
rker/20:2:27716			max: 0.000008 ms	
rker/23:2:13329	1	avg: 0.000008 ms		
rf:3884			max: 0.000009 ms	
rker/5:0:9613	4	avg: 0.000007 ms		
orker/6:2:24831			max: 0.000007 ms	
orker/4:0:11829	1		max: 0.000007 ms	max at: 4698744.86486
orker/24:0:29220	1		max: 0.000007 ms	
orker/2:1:16589	1	avg: 0.000007 ms	max: 0.000007 ms	max at: 4698744.88886
orker/21:2:28590	1	avg: 0.000007 ms	max: 0.000007 ms	max at: 4698744.65686
orker/u64:2:1779	6	avg: 0.000007 ms	max: 0.000008 ms	max at: 4698744.52486
orker/16:2:2556	6	avg: 0.000007 ms	max: 0.000008 ms	max at: 4698743.70086
rker/25:0:7889	2	avg: 0.000006 ms	max: 0.000007 ms	max at: 4698744.60886
rker/19:2:14151	1	avg: 0.000006 ms	max: 0.000006 ms	max at: 4698744.68486
gepaged:570	1	avg: 0.000006 ms	max: 0.000006 ms	max at: 4698746.72085
rker/7:1:29364	j 2	avg: 0.000006 ms		max at: 4698745.82886
rker/1:1:5318	j 2	l avg: 0.000005 ms	max: 0.000007 ms	max at: 4698744.90086
rker/8:1:9803	j 5	avg: 0.000005 ms		
rker/0:1:17402	j 2		max: 0.000007 ms	
chdog/15:81	2		max: 0.000005 ms	max at: 4698744.24885
tchdog/5:31	2			max at: 4698744.20885
chdog/2:16	2		max: 0.000006 ms	
ournald:3664	4		max: 0.000006 ms	
chdog/25:131	2	avg: 0.000004 ms	max: 0.000000 ms	
gbalance:5470	1	avg: 0.000004 ms		max at: 4698744.62402
ration/6:37	1 1	avg: 0.000004 ms		max at: 4698743.70002
orker/18:1:27051	1 2	avg: 0.000004 ms	max: 0.000004 ms	max at: 4698745.70002
tchdog/16:86	2	avg: 0.000004 ms	max: 0.000007 ms	max at: 4698744.25285
tchdog/4:26	2	avg: 0.000004 ms	max: 0.000004 ms	max at: 4698744.20485
:hdog/4:20 :hdog/21:111	2		max: 0.000005 ms	
:chdog/21:111 :chdog/24:126	2	avg: 0.000004 ms		
chdog/0:10	2		max: 0.000005 ms	•
	2			
chdog/20:106	1 2	avg: 0.000004 ms		max at: 4698744.26885
chdog/3:21			max: 0.000005 ms	
tchdog/27:141	2		max: 0.000005 ms	
chdog/29:151	2			max at: 4698744.30485
tat:3883	5	avg: 0.000004 ms	max: 0.000004 ms	
rker/22:2:31206	5	avg: 0.000004 ms	max: 0.000005 ms	max at: 4698744.64485
chdog/1:11	2	avg: 0.000004 ms	max: 0.000004 ms	max at: 4698744.19285
chdog/18:96	2	avg: 0.000004 ms	max: 0.000004 ms	max at: 4698744.26085

图 6.2

6.2 命令参数

➤ 数据采集 Collect 相关:

参数	说明		
collect=ANALYSIS_TYPE	Specify analysis type, examplecollect		
	general-exploration orcollect scheduling.		
	Could specify sampling gpu.		
	Example:collect genera- explorationgpu-events		
-r DIRECTORY,	Specify the directory used for creating the data		
result-dir=DIRECTORY	collection results, example ./r000ge or ./r000sch.		
-p PID,target-pid=PID	Specify ID for the process to which data collection		
	should be attached.		
system-wide	Specify system for data collection.		
cpu-mask=STRING	Specify which CPU(s) <string> to collect data on. For</string>		
	example, specify "2-8,10,12-14" to sample only CPUs 2		

	through 8, 10, and 12 through 14.			
-d SECONDS,	Specify duration for the collection in seconds.			
duration=SECONDS				
-I MILLISECONDS,	Specify an interval of data collection (for example,			
interval=MILLISECONDS	sampling) in milliseconds.			
app-working-dir=\$dir	Specify application working dir.			
target-install-dir=\$dir	Specify target installation folder.			
-v,version	Print version information.			

▶ 分析报告 Report 相关:

参数	说明					
report=REPORT	Specify report type, examplereport summary or					
	report scheduling.					
-r DIRECTORY,	Specify the directory used for creating the data					
result-dir=DIRECTORY	collection results, example ./r000ge or ./r000sch.					

6.3 示例

6.3.1 服务器数据采集

Usage: malluma-analyzer [options] [[--] <application> [<args>]]

Example:

1. Colection data and report summary.

```
malluma-analyzer <--collect general-exploration> [-r ./r@@@ge] <a.out> [parm1 parm2 ]

malluma-analyzer <--collect general-exploration> [-r ./r@@@ge] <--p $pid> <-d 30>

malluma-analyzer <--collect general-exploration> [-r ./r@@@ge] <--system-wide> <-d 30>
```

2. Report summary and print top-down total results to the screen.

malluma-analyzer <--report summary> <-r ./r@@@ge>

注: <>必选参数, []可选参数

核心采集脚本样例:								
malluma-analyzer	collect	general-exploration	#采集应用 matrix.gcc					
/home/duyanlin/matrix/linu	x/matrix.gcc		#水来应用 mamx.gcc					
malluma-analyzer -	-collect general-exploratio	n taskset -c 2-20	#采集应用 matrix.gcc,					
/home/duyanlin/matrix/linu	x/matrix.gcc		并绑核 2-20					
malluma-analyzer	collect general-exploration	-r /home/test/r000ge	#采集应用 matrix.gcc,					
/home/duyanlin/matrix/linu	x/matrix.gcc		并指定采集结果路径					

malluma-analyzer --collect general-exploration -r /home/test/r000ge --app-working-dir #采集应用 matrix.gcc, 并指定应用执行路径 /home/test -- /home/duyanlin/matrix/linux/matrix.gcc #采集 PID, 5s malluma-analyzer --collect general-exploration -p \$pid -d 5 #采集 PID, 5s malluma-analyzer --collect general-exploration -p \$pid sleep 5 malluma-analyzer --collect general-exploration --system-wide -d 5 #采集全系统,5s #采集全系统,5s malluma-analyzer --collect general-exploration --system-wide sleep 5 #采集全系统, malluma-analyzer --collect general-exploration --system-wide matrix.gcc 执行结束采 /home/duyanlin/matrix/linux/matrix.gcc 集完成 #采集指定核,5s malluma-analyzer --collect general-exploration --system-wide --cpu-mask 2,5-8 -d 5 malluma-analyzer --collect general-exploration --system-wide --cpu-mask 2,5-8 sleep #采集指定核,5s malluma-analyzer --report summary -r r000ge #输出 summary 报告

7 FAQ

7.1 Websocket 服务中断

若部署 Malluma 环境因各种不同因素导致服务器重启,会出现 websocket 中断,需要手动重启 websock 服务,具体操作如下:

php Malluma/visualization/websocket/bin/mallumawebsocket start

备注: Malluma/visualization/websocket/bin/mallumawebsocket 此内容必须为 Malluma 部署的绝对路径。

7.2 Malluma 采集周期

关于针对全系统采集过程中配置的 Collection duration (s)值与实际采集过程时间的声明: Collection duration (s)仅指采集时间(即 Collection Log 的 Acquisition process 内容),但是采集过程中采集数据成功后还需要进行数据解析和数据入库(即 Collection Log 的 Data analysis 内容)。例如某次采集配置的采集周期为 Collection duration (s)为 30(即采集 30s),但是实际采集过程执行完成耗时为 15 分钟(该 15 分钟包含 30s 采集时间,另外还包含采集数据解析和采集数据入库时间,采集过程执行完成耗时与采集数据量大小有直接关系)。

7.3 Malluma 部署成功但不能访问 Web 端

若部署 Malluma 成功,且所有操作均检查正常,但 Web 端仍无法访问,建议关闭服务器环境的防火墙,并设置 SELinux 为关闭状态(Disabled)。

1.关闭服务器防火墙:

systemctl stop firewalled.service

- 2.SELinux 查看和关闭相关操作如下:
 - (1) 查看 SELinux 状态:

方法一: /usr/sbin/sestatus -v ##如果 SELinux status 参数为 enabled 即为开启状态

SELinux status: enabled

方法二: getenforce ##也可以用这个命令检查

(2) 关闭 SELinux:

方法一: 临时关闭(不用重启机器):

setenforce 0 ##setenforce 1 设置 SELinux 成为 enforcing 模式

方法二: 修改配置文件需要重启机器:

vim /etc/selinux/config 文件

将 SELINUX=enforcing 改为 SELINUX=disabled

重启机器即可