

教师

函数的微分

一. 埴空题

1.
$$\frac{1}{1+4x^2} dx = \frac{1}{2} \frac{1}{1+(2x)^2} d_{2x} = \frac{1}{2} d_{2x} d_{2x} = \frac{1}{2} d_{2x} d_{2x} d_{2x}$$

2.
$$\frac{1}{\sqrt{1+2x}} dx = \frac{1}{2} \frac{1}{\sqrt{1+2x}} d_{\frac{2}{3}} = d_{\frac{1}{2}} d_{\frac{1}{2}}$$
;

3.
$$\frac{f'(\arctan x)}{1+x^2} dx = f'(\arctan x) dx$$

- 4. $d2^{\arctan^3 x} = 2^{\arctan^3 x} \ln 2d$ Myctan 3
- 二、计算微分.

1.
$$d(x^{2} \ln x + \arcsin 2x)$$
; 2. $d(\arctan e^{\sqrt{x}})$; 3. $d(\frac{2^{x}}{x^{2} + 1})$;
= $\ln x dx^{2} + x^{2} d\ln x + d \arctan x$ = $\frac{1}{1 + e^{2\sqrt{x}}} de^{4\sqrt{x}}$ = $\frac{dx^{3} \cdot (x^{2} + 1) - d(x^{2} + 1) \cdot 2^{3}}{(x^{2} + 1)^{2}}$ = $\frac{e^{\sqrt{x}}}{1 + e^{2\sqrt{x}}} dx$ = $\frac{e^{\sqrt{x}}}{2(1 + e^{2\sqrt{x}}) dx} dx$ = $\frac{(x^{2} + 1) 2^{3} \ln 2 - 2 \pi 2^{3}}{(x^{2} + 1)^{2}} dx$

4.
$$u = u(x), v = v(x)$$
 为可导函数,求 $y = \arctan \frac{u}{v}$ 的微分.

$$d(\operatorname{arctan} \frac{u}{v}) = \frac{1}{1 + \frac{u^2}{V^2}} d(\frac{u}{v})$$

$$= \frac{1}{1 + \frac{u^2}{V^2}} \frac{v du - u dv}{v^2}$$

$$= \frac{v du - u dv}{u^2 + v^2}$$

$$= \frac{v(\pi)u'(\pi) - u(\pi)v'(\pi)}{u'^2(\pi) + v^2(\pi)} d\pi$$

教师

三、求隐函数或参数方程决定函数的导数.

1.
$$y = y(x)$$
 由方程 $x^2y + e^y = \ln x$ 决定,求 $\frac{dy}{dx}$;

$$2\pi y + \pi^2 \frac{dy}{d\pi} + e^{y} \frac{dy}{d\pi} = \frac{1}{\pi}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x^2 + e^y} = \frac{1 - 2x^y}{x^3 + xe^y}$$

2.
$$y = y(x)$$
 由参数方程 $\begin{cases} x = e^{2t} - 2e^{t} + 3, \\ y = 3e^{4t} - 4e^{3t} + 7, \end{cases}$ 确定, $\vec{x} \frac{dy}{dx}, \frac{d^{2}y}{dx^{2}}.$

$$\frac{dy}{dx} = \frac{12e^{4t} - 12e^{3t}}{2e^{2t} - 2e^{t}} = \frac{be^{2t}(e^{t} - 1)}{e^{t} - 1} = be^{2t}$$

$$\frac{dy}{dx^{2}} = \frac{d}{dt} \left(be^{2t} \right) \frac{dt}{dx} = 12e^{2t} - 2e^{t} = \frac{be^{t}}{e^{t} - 1}$$

四、求 arctan1.05 的近似值.

arctan(1.05)
$$\approx$$
 Arctan(1+ $\frac{1}{20}$)
 \approx Arctan(+ $\frac{1}{1+1}$, $\frac{1}{20}$)
 $\approx \frac{11}{4} + \frac{1}{40}$

五、利用微分的近似公式证明: $(1+x)^{\alpha} \approx 1+\alpha x$, 当 |x| 充分小时. 并由此求 $\sqrt[3]{8012}$ 的近

$$\frac{d}{d\pi}(1+\pi)^{d} = d(1+\pi)^{d-1} = d$$

$$\pi=0$$

$$\sqrt[3]{8012} = \sqrt[3]{8000 + 12} = 20\sqrt[3]{1 + \frac{3}{2000}} \propto 20\left(1 + \frac{1}{3} \times \frac{3}{2000}\right) = 20.01$$