Vedere Artificiala Tema 5 Dumitrescu Gabriel

I) Experimente

1) Antrenare

Clasificatorul liniar are acuratetea 0.998 pe datele de train. Am ales parametrii optimi prin cross-validation. Am experimentat si cu un kernel "radial basis", insa gasirea parametriilor optimi a durat 4 ore (fata de cateva secunde la kernel liniar) si acuratetea a fost considerabil mai mica, asa ca am optat sa il nu mai integrez in proiect (scorul si functia de decizie sunt calculate altfel).

2) Detector facial

In implementarea mea, descriptorii hog sunt calculati la fiecare fereastra in parte. Acest lucru incetineste putin antrenarea, asa ca am adaugat parametrul "pas glisare". Un pas de 2 pixeli micsoreaza timpul de rulare de 4 ori, dar nu afecteaza performanta in mod sesizabil.

3) Rezultate (valorile scalingurilor sunt aproximative)

a) Scaling: 0.5, 0.9, 1.25

Treshold: 0 Pas glisare: 1

Treshold-ul fiind 0, exista multe detectii false pozitive.

Imaginea: "Argentina.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)11/11

Partea buna despre tresholdul 0 este recall-ul mai mare.

Imaginea: "aerosmith-double.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)5/5

b) Scaling: 0.2, 0.5, 0.7, 1

Treshold: 0.5 Pas glisare: 2

Scaling-ul de 0.2 prinde chiar si cele mai mari fete.

Imaginea: "ysato.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)1/1

Un efect alt tresholdului foarte mare este un aspect mai placut al detectiilor. In experimentul trecut, aceasta poza era toata rosie, de la detectiile fals pozitive.

 $Imaginea: "aerosmith-double.jpg" \underline{ (verde=detectie\ adevarata,\ rosu=detectie\ falsa,\ galben=ground-truth\ adnotat)} 5/5$

Observam ca in ciuda maririi pasului de glisare, performanta a crescut considerabil.

c) Scaling: 0.1, 0.25, 0.4, 0.5, 0.7, 0.8, 0.95, 1.1

Treshold: 0.5 Pas glisare: 2

Abordarea acestui experiment a fost sa incerc sa gasesc foarte multe detectii, pe care sa le filtrez cu un treshold mare.

Imaginea: "soccer.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)15/15

Imaginea: "trekcolr.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)3/3

II) Rezultatul cel mai bun

Scaling: 0.2, 0.5, 0.7, 1

Treshold: 0 Pas glisare: 2

Acesta incercare este exact experimentul b), doar ca fara treshold. Rezultatul este o performanta marita (suprafata de decizie fiind exact cea gasita de clasificator), cu costul unui aspect mai urat (multe detectii fals pozitive).

Imaginea: "J-L_Picard.Baldy.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)1/1

Imaginea: "board.jpg" (verde=detectie adevarata, rosu=detectie falsa, galben=ground-truth adnotat)9/9

Aceasta configuratie s-a dovedit a avea cel mai bun rezultat.

III) Vizualizari curs

Scaling: 1 Treshold: 0.8 Pas glisare: 1

Pentru acest experiment a fost suficient sa folosesc un singur scale. Un avantaj este ca pot gasi manual un treshold cu rezultate optime.

S-a descurcat surprinzator de bine la poza intunecata si cu fete acoperite.

IV) Imbunatatiri

Am observat ca scorurile mele sunt mai mici decat s-ar putea. Consider ca problema este la implementarea mea de eliminaNonMaximale. Desi 99% din cazuri aceasta functie pare ca isi face treaba, am observat detectii concentrice.