Product : MM002-xx-EU

Doc : Datasheet

Reference: datasheet_MM002-xx-EU

History : V0.1

Table of contents

Disclaimer	3
Document history	4
References	4
Purpose	4
Module features	5
General description	6
Module pins diagram	7
Design recommendations	8
Antenna path	8
Embedded software	9
Module pinning description	9
Default pinning configuration (modem controlled by AT command)	. 10
UART	. 10
Power saving mode	. 10
Electrical characteristics	. 11
Absolute maximum rating	. 11
Operating range	. 11
Recommended voltage operation	. 11
Current consumption	. 12
Available Pin configuration	12

Disclaimer

- This document is provided for reference purposes only so that Nemeus customers may select the
 appropriate products for their use. Nemeus neither makes warranties or representation with respect to
 the accuracy or completeness of the information contained in this document, nor grants any license to any
 intellectual property rights or any other rights of Nemeus or any third party with respect to the
 information in this document.
- 2. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 3. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Nemeus products listed in this document, please confirm the latest product information with Nemeus company.
- 4. Nemeus has used reasonable care in compiling the information included in this document, but Nemeus assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 5. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Nemeus makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Nemeus products.
- 6. Nemeus products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. Use of Nemeus products for such application is under customer responsibility.
- 7. You should use the products described herein within the range specified by Nemeus, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Nemeus shall have no liability for malfunctions or damages arising out of the use of Nemeus products beyond such specified ranges.
- 8. In case Nemeus products listed in this document are detached from the products to which the Nemeus products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Nemeus products may not be easily detached from your products. Nemeus shall have no liability for damages arising out of such detachment.
- 9. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Nemeus.
- 10. Please contact Nemeus company (contact@nemeus.fr) if you have any questions regarding the information contained in this document.

Document history

Version	Date	Author	Comments
V0.1	22/09/2015	Gilles Ronco	Initial / Draft

Table 1 : Document versions

References

[1] Semtech – Datasheet SX1272

Purpose

This document is dedicated to Nemeus MM002-xx-EU radio module description.

Module features

The MM002-xx-EU is a family of long-range and low power wireless modules operating in 868MHz unlicensed band. With interferers' robustness and low power consumption, it is the best solution for applications requiring long range, maximum battery lifetime and secure radio link. This module integrates a SX1272 LoRaTM transceiver from Semtech and a low power ARM Cortex M3 controller.

Key product features

- ✓ Size 14,4mm x 26,4mm x 2,5mm
- ✓ Modulation : LoRa[™] / SIGFOX[™]/ FSK
- ✓ Maximum output power +14 dBm (+20dBm as option)
- √ Good buildings penetration
- ✓ Long Range protocol stack software (SIGFOX™ / LoRa WAN 1.0 EU Class A & C)
- ✓ Soldered like a SMD component
- Usable as Modem companion or with embedded customer application software (option)
- ✓ RoHS conform / Pre-Certified EN 300-220
- ✓ Shield ready (option)

Applications

- ✓ Automated Meter Reading
- ✓ Home and Building Automation
- ✓ Industrial Monitoring and Control
- ✓ IoT (Internet of Things)
- ✓ Smart Cities

Module software content

The module software is based on Contiki OS.

Versions

3 versions are available with same external form factor and pinning.

MM002-L-EU	A LoRa™ WAN 1.0 EU Class									
	A & C bidirectional protocol									
	stack version									
MM002-S-EU	A SIGFOX™ bidirectional									
	protocol stack version									
MM002-LS-EU	A Full bimode bidirectional									
	LoRa™/SIGFOX™ protocol									
	stack version									

All LoRa[™] versions give possibility to skip LoRa WAN protocol stack and access directly LoRa[™] and FSK physical layers.

Extra-protocol or application software can be developed on request.

Interoperability

MM002-xx-EU module interoperability has been confirmed with:

- **SIGFOX™** Network
- Bouygues Telecom LoRa Network
- Orange LoRa Network
- Actility Network server solutions
- Orbiwise Network server solutions

General description

The Nemeus-MM002 is a long range, high-performance, pre-certified (EN 300-220) module for wireless bi-directional communication using patented LoRa™ technology from Semtech company. It operates in the license free ISM 868 MHz frequency band and includes all necessary components for an easy integration in existing systems. With high interference robustness, a max sensitivity of -137dBm, a low consumption (less than 2uA in idle mode with RTC), and this module is the best solution for low throughput application requiring a long battery lifetime and a secured radio link. Integration of this module eases fast-time to market.

Figure 1. Simplified block diagram

Module pins diagram

The following figure gives the top view of the MM002-xx-EU module.

Pad size on MM002: 0.8x1mm

Footprint recommendations:

TOP VIEW

Footprint for all pads: 0.9x1.2mm

Design recommendations

With 4 layers PCB design, it is recommended to keep the 1st layer under the module without any layout and have a full ground plane on the 2nd layer (at least under the right part of the module : under RF transceiver part).

Figure 1: 4 layer PCB design

All ground pads must be connected to ground.

In case of ground planes on different layers, these one must be connected together through via.

Antenna path

The following figure gives an overview of a design with SMA connector for Antenna.

Figure 2: Antenna path design

The antenna path must be designed with a 50 ohms line inserted into ground plane for better performance. 1st and 2nd layer ground planes must be connected with via.

Antenna must be kept away from any metal part like batteries, etc ... for better performances.

Embedded software

By default, the module is provided with AT command software version allowing to control it from an external micro-controller through an UART interface. This AT command software version give possibility to switch from one protocol stack to another at any time between LoRa™ WAN protocol stack, SIGFOX™ protocol stack, LoRa™ and FsK physical layer stack (based on module option)

AT command specification can be requested to Nemeus company.

Specific software, like embedded application software, can be developed on request by Nemeus team to exploit full pins configuration possibilities and embed application software inside Module to save BOM and consumption.

Module pinning description

Module pins functions can be configured by specific software. Description of possible configurations is provided at the end of this specification for reference.

Whatever the pins configuration made by embedded software, some of them have unique functionality.

Functions class	PAD name	Function	Comment
JTAG ¹	8	NJTRST / (GPIO)	JTAG Reset
	9	JTDO / (GPIO)	JTAG Data Output
	10	JTDI / (GPIO)	JTAG Data Input
	11	JTCK-SWCLK / (GPIO)	JTAG Clock
	12	JTMS-SWDAT / (GPIO)	JTAG Mode Select
PWR-UP / BOOT	2	/NRST	must be set to GND before Module PWR-UP and released after
	5	воото	Must-be pull-down to GND (for future use)
Ground	1	GND	Ground
	15	GND	Ground
	16	GND	Ground
	18	GND	Ground
	28	GND	Ground
Power supply	27	VCC	Power supply of the board (3v)
Antenna	17	ANT	RF antenna port matched to 50Ω No DC capacitor required

Table 2 : Modem pins with unique functionnality

¹ Can be used also as GPIO

_

Default pinning configuration (modem controlled by AT command)

With AT command modem software, only few pins are configured and used. Other ones have no specific functions and are not driven by embedded software. These extra pins must be kept Unconnected.

Default modem software manages UART2 to communicate with application processor or similar. In this configuration following pins are configured.

Functions class	PAD name	Function	Comment
UART	23	USART2_RX	
	24	USART2_TX	
	25	Wake-up	Used in power saving mode to wake-
			up the module for UART
			communication

UART

The UART configuration for Modem connection is following:

Baud Rate: 38400Data: 8 bitsParity: NoneStop: 1 bit

Flow control : NoneEnd line character : LF

Power saving mode

With embedded software using power saving mode, the Wake-up pin must be used to wake-up the module before any communication through UART. Find below the chronogram for this wake-up pin use.

T1: 1ms minimum
T2: 10ms minimum

Electrical characteristics

Absolute maximum rating

Symbol	Description	Min	Max	Unit
VCC	Module power supply	2.4 (TBC)	3.6	V
Temperature		-40	+70	°C
PwIN	RF input power	-	+10	dBm

Operating range

Symbol	Description	Min	Тур	Max	Unit
VCC	Module power supply	2.7	3,3v	3.6	V
Temperature		-20	20	+55	°C
PwIN	RF input power	-	-	+10	dBm

Recommended voltage operation

please use a low noise voltage regulator for VCC, in order to have a voltage ripple less than 10mV and a voltage drop less than 80mV when the TX mode is activated, at +14dBm.

Current consumption

Three states must be considered for current consumption:

- Modem module in IDLE mode with RTC like function
- Modem module in TX mode
- Modem module in RX mode

Conditions: VCC =3.3V, T=25°C

Symbol	Description	Conditions	Min	Тур.	Max	Unit
ICC_ IDLE			-	< 2uA	-	uA
ICC _TX_7dB	Modem in TX mode	Tx power = +7dBm	-	20 (TBC)	-	mA
ICC_TX_13dB	Modem in TX mode	Tx power = +13dBm	-	33	-	mA
ICC_TX_14dB	Modem in TX mode	Tx power = +14dBm	-	39,5	-	mA
ICC_RX	Modem in RX mode	-	-	11.7	-	mA

Available Pin configuration

Based on STM32L15x uC family, major part of module pins can be configured by embedded software and allow to have up to :

- 2 x UART
- 1 x SPI
- 1 x I2C
- 4 x ADC
- 19 x GPIO
- 1 Wake-up Interrupt

The configuration matrix is given in following table.

Use of such type of interface is done based on development made by Nemeus.

Functions class	1/2 lune PAD name	Functions	Default function (modem only mode)	Name pins MCU	Reset/ Boot Mode	JTAG/SW	USART1	USART2	SPI1	I2C1	ADC	WKUP	GPIO
	12	JTMS-SWDAT	JTMS- SWDAT	PA13									GPIO#1
Modem_JTAG	11	JTCK-SWCLK	JTCK- SWCLK	PA14		WS/							GPIO#2
mepa	10	JTDI	JTDI	PA15		JTAG/SW							GPIO#3
Š	9	JTDO	JTDO	PB3									GPIO#4
	8	NJTRST	NJTRST	PB4									GPIO#5
Modem PWRUP / BOOT	2	NRST	NRST	NRST	NRESET								
Mo PW / BC	5	воото	воото	воото	воото								
	25	WKUP1/RTC_TAMP2/ TIM2_CH1_ETR/TIM5_CH1/ USART2_CTS/ADC_IN0/ COMP1_INP		PA0				USART#2			ADC#1	WKUP#1	GPIO#6
Sensors pins	26	USART2_RTS/ADC_IN1/ TIM2_CH2/LCD_SEG0/ COMP1_INP		PA1				٦			ADC#2		GPIO#7
	24	TIM2_CH3/TIM5_CH3/ TIM9_CH1/USART2_TX/ LCD_SEG1/ADC_IN2/ COMP1_INP/OPAMP1_VINM		PA2				USART#2			ADC#3		GPIO#8

23	TIM2_CH4/TIM5_CH4/ TIM9_CH2/USART2_RX/ LCD_SEG2/ADC_IN3/ COMP1_INP/OPAMP1_VOUT		РАЗ			USART#2			ADC#4	GPIO#9
7		USART1_TX	PB6		USART#1					GPIO#10
6		USART1_RX	PB7		USAI					GPIO#11
4	TIM4_CH3/TIM10_CH1/ I2C1_SCL/LCD_SEG16	I2C1_SCL	PB8					12C#1		GPIO#12
3	TIM4_CH4/TIM11_CH1/ I2C1_SDA/LCD_COM3	I2C1_SDA	PB9					120		GPIO#13
22		SPI1_NSS	PA4							GPIO#14
20		SPI1_SCK	PA5				SPI#1*			GPIO#15
21		SPI_MISO	PA6				SPI			GPIO#16
19		SPI1_MOSI	PA7							GPIO#17
14	USART1_CTS/USB_DM/ SPI1_MISO	USB	PA11		3T#1					GPIO#18
13	USART1_RTS/USB_DP/ SPI1_MOSI	USB	PA12		USART#1					GPIO#19

-	1	GND	Ground					·
	15	GND	Ground					
Ground	16	GND	Ground					
g	18	GND	Ground					
	28	GND	Ground					
Vlddns	27	vcc	Analog and digital supply					
π	17	ANT	RF antenna input/output				·	

