1

GATE 2021-CS Q34

EE23BTECH11052 - Abhilash Rapolu

Question 34:

Consider the cyclic redundancy check (CRC) based error detecting scheme having the generator polynomial X^3+X+1 . Suppose the message $m_4m_3m_2m_1m_0=11000$ is to be transmitted. Check bits $c_2c_1c_0$ are appended at the end of the message by the transmitter using the above CRC scheme. The transmitted bit string is denoted by $m_4m_3m_2m_1m_0c_2c_1c_0$. The value of the check bit sequence $c_2c_1c_0$ is

- 1) 101
- 2) 110
- 3) 100
- 4) 111

Solution

Parameter	Description	Value
m_4	message bit	1
m_3	message bit	1
m_2	message bit	0
m_1	message bit	0
m_0	message bit	0
c_2	appended bit	
c_1	appended bit	
c_0	appended bit	
TABLE I		

GIVEN PARAMETERS LIST

Message: $m_4 m_3 m_2 m_1 m_0 = 11000$

Generator polynomial: $g(x) = x^3 + x + 1 = 1101$

Append zeros: 11000000

Divide by g(x) using modulo-2 division:

 $\begin{array}{r}
1101)11000000 \\
-\underline{1101} \\
1110 \\
-\underline{1101} \\
111 \\
-\underline{1101} \\
100
\end{array}$

Check bits: $c_2 c_1 c_0 = 100$