1. Digital Signatures

Digital signatures

Same as MACs are used in symmetric key to prove authentication, in public key cryptography we can **sing** messages to prove authenticity

Idea

- ullet A trusted party can generate a signature on a document D
- · Anyone in the world can verify that signature
- · We use two keys: a signing key and a verifyig key

Algorithm

A signature scheme is a triplet of efficient algorithms (G,S,V) where

- ullet G key generation algoritm $\emph{probabilistic}$ $(k_{pub}, k_{priv}) \stackrel{R}{=} G()$
 - $\circ k_{pub}$ = verification key
 - $\circ k_{priv}$ = Signing key
- ullet S Signing algoritm $extit{probabilistic}
 ightarrow \mathbf{signature} \; \sigma \stackrel{R}{=} S(k_{priv},m)$
- ullet V Verificaition algoritm $extit{deterministic}$ $y{=}V(k_{pub},m,\sigma)$
 - $\circ y = accept/reject$

Corectness property

$$Pr[\ V(k_{pub},m,\ S(k_{priv},\ m))) = accept] = 1$$

Security

For (G, E, D)

- ullet The challenger computes $(k_{pub},k_{priv})\stackrel{R}{=} G()$, and sends k_{pub} to the adversary.
- The adversaries queries the challenger with multiple message queries:
 - \circ for $m_i \in \mathcal{M}$ the challenger computes $\sigma_i \stackrel{R}{=} S(k_{priv}, m_i)$
 - \circ Sends back σ_i
- · The adversary wins if he
 - Computes a pair (m, σ) with $m \notin \{m_1, m_2, ...\}$
 - $\circ \ V(k_{pub},m,\sigma)=accept$

A signature scheme is secure if for all efficient adversaries their advantage is negligible

Note

- The definition does not cover the case where a message can have multiple signatures
 - Therefore an adversary can create a new valid pair (m, σ') (Remember this wasn't allowed in the security definition of a MAC)
 - \circ We can strenghten the definition if we make the pair $(m,\sigma)
 ot\in \{(m_1,\sigma_),(m_2,\sigma_2),...\}$
- The definition does not bind a signature to a person.
 - $\circ~$ a message m'
 eq m might have the same valid signature σ

Duplicate Signature Key selection (DSKS)

An attacker that sees a pair (m, σ) valid to some k_{pub} can generate a new pair (k'_{priv}, k'_{pub}) that can validate the pair (m, σ)

- https://www.agwa.name/blog/post/duplicate signature key selection attack in lets encrypt
- It's easy to escape this unfortunate mistake, just attach the public to the message!

Digital signatures and collision resistant hashing

If we have acces to only a small message space (for example 256b) we can use a collision resistant function like a hash to map arbitrary length messages to our desired message space

Let H be a hash function. Then we have the **hash and sign** paradigm:

- $S'(k_{priv}, m) = S(k_{priv}, H(m))$
- $V'(k_{pub},m,\sigma)=V'(k_{pub},H(m),\sigma)$

Resources

- <u>https://en.wikipedia.org/wiki/Non-repudiation</u>
- https://www.youtube.com/watch?v=s22eJ1eVLTU
- https://www.youtube.com/watch?v=JR4_RBb8A9Q