Scilab Textbook Companion for Antenna and Wave Propagation by S. Wali¹

Created by
Rajkumar
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
Vinesh Saini
Cross-Checked by
Prathan Mehta

May 31, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Antenna and Wave Propagation

Author: S. Wali

Publisher: Tech-max Publications, Pune

Edition: 1

Year: 2012

ISBN: 978-93-5077-069-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Review of Electromagnetics and Transmission Lines	5
3	Fundamental parameters of Antenna	6
4	Linear Wire Antennas	15
6	Antenna Arrays	21
7	Loop Antenna	29
8	Slot Antenna	34
9	Horn Antenna	35
10	Broadband and frequency independent antenna	37
11	Microstrip Antennas	46
12	Reflector Antennas	47
13	Antenna Measurement	49
14	Ground Wave Propagation	51
15	Ionospheric Propagation	56

List of Scilab Codes

Exa 1	1.1.1	Find the wavelengths $\dots \dots \dots$
Exa 3	3.3.1	$Half\ Power\ Beam\ Width\ \dots \ \dots \ \qquad 6$
Exa 3	3.3.2	HPBW and FNBW 6
Exa 3	3.3.3	Half Power Beam width
Exa 3	3.8.1	Exact and Approximate Directivity
Exa 3	3.10.1	Power radiated
Exa 3	3.11.1	Gain in dB
Exa 3	3.11.2	Directivity in dB $\dots \dots \dots$
		Radiation Resistance
Exa 3	3.13.2	Current Drawn
Exa 3	3.13.3	Maximum Effective Aperture
		Effective length
		Polarization Loss factor
Exa 3	3.16.1	Maximum effective aperture and power
Exa 3	3.16.2	Directivity of Antenna
Exa 3	3.17.1	Find the power delivered
Exa 3	3.17.2	Calculate the power
Exa 3	3.17.3	Power delivered to load
Exa 4	4.2.1	Er Etheta and Hfi
Exa 4	4.5.1	Effective area
Exa 4	4.6.1	Current required
Exa 4	4.9.1	Power radiated
Exa 4	4.9.2	Radiation resistance and power
Exa 4	4.9.3	Power radiated and efficiency
Exa 4	4.9.4	Radiation Resistance
Exa 4	4.9.5	Radiation Resistance
Exa 6	6.2.1	Relative field pattern
Eva 6	3 2 2	Radiation patern 21

Exa	6.2.3	Field pattern
Exa	6.6.1	Location of first null
Exa	6.6.2	Various parameters of isotropic array
Exa	6.8.1	Ordinary endfire array
Exa	6.8.2	Half Power Beam Width
Exa	6.10.1	Find the Directivity
Exa	6.10.2	Design ordinary endfire array
		Four Element broadside array
		Input Voltage
Exa	7.10.2	Voltage induced in lop
		Find the field strength
		Radiation Resistance
Exa	7.10.5	Radiation Efficiency
		Directivity
Exa	8.3.1	Input Impedence
	9.6.1	Capture Area
Exa	9.6.2	Various parameters of horn
Exa	10.5.1	Five turn helical antenna
Exa	10.5.2	Five turn helical antenna
Exa	10.5.3	Various parameters of helix array
Exa	10.5.4	Input Impedence HPBW and Axial ratio 41
Exa	10.8.1	Symmetrical two wire spiral
Exa	10.8.2	Design Equiangular spiral Antena
Exa	10.10.1	Elements length and spacing
Exa	10.10.2	Design a log periodic dipole
		Determine physical dimensions
		First null beam width and power gain 47
Exa	12.9.2	Diameter of mouth and HPBW 47
Exa	12.9.3	Gain Beamwidth and capture area 48
		Gains of Antennas
		Loss and power received 51
Exa	14.6.2	Open circuit voltage
Exa	14.10.1	Calculate the range
Exa	14.10.2	Radio horizon
Exa	14.10.3	BMaximum covered distance
		Required height of antenna
		Kadio horizon distance
		Find Distance and field strength 54

Exa 15.8.1 Maxi	mum electron de	ensi	ty							
Exa 15.8.2 Critic	cal Frequency .									
Exa 15.8.3 Calcu	late frequency									
Exa 15.9.1 Find	the virtual heig	ht.								
Exa 15.12.1Calcu	ılate MUF									
Exa 15.13.1Calcu	late the range									

Chapter 1

Review of Electromagnetics and Transmission Lines

Scilab code Exa 1.1.1 Find the wavelengths

```
1 //Example No. 1.1.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 f1=100; //kHz
8 f2=1; //MHz
9 f3=10; //MHz
10 c=3*10^8; //m/s
11 lambda1=c/(f1*10^3); //m
12 lambda2=c/(f2*10^6); //m
13 lambda3=c/(f3*10^6); //m
14 disp(lambda1/1000, "At 100kHz, wavelength(km): ");
15 disp(lambda3, "At 1MHz, wavelength(m): ");
16 disp(lambda3, "At 10MHz, wavelength(m): ");
```

Chapter 3

Fundamental parameters of Antenna

Scilab code Exa 3.3.1 Half Power Beam Width

```
//Example No. 3.3.1
clc;
clc;
clear;
close;
format('v',7);
E_theta=1/sqrt(2);//Electric Field at half power
//theta=thetaHP/2;//E(thetaHP/2)=cosd(thetaHP/2)
thetaHP=2*acosd(E_theta);//degree(Half power beam width)
disp(thetaHP,"Half power beam width(degree):");
```

Scilab code Exa 3.3.2 HPBW and FNBW

```
1 //Example No. 3.3.2
2 clc;
3 clear;
```

Scilab code Exa 3.3.3 Half Power Beam width

Scilab code Exa 3.8.1 Exact and Approximate Directivity

```
1 //Example No. 3.8.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 theta1=0; theta2=%pi/2; //radian(Angles)
```

```
fil=0;fi2=2*%pi;//radian(Angles)
//Prad=integrate('integrate('U', 'thheta', theta1, theta2)', 'fi', fil, fi2);
Prad_BY_Um=%pi*(1/2)*(cos(2*theta1)-cos(2*theta2));
//(Power radiated/Max intensity)
Do=4*%pi/Prad_BY_Um;//Exact Directivity
disp(Do, "Exact Directivity: ");
//Um*Cosd(thetaHP/2)=0.5*Um
thetaHP=2*acosd(0.5);//degree(HPBW)
fiHP=thetaHP;//degree(HPBW)
Do=41253/(thetaHP*fiHP);//Approximate Directivity
disp(Do, "Approximate Directivity: ");
```

Scilab code Exa 3.10.1 Power radiated

```
//Example No. 3.10.1
clc;
clear;
close;
format('v',6);

K=90;//%//radiation efficiency
Pin=10;//W
Prad=(K/100)*Pin;//W
disp(Prad,"Radiated power in Watts:");
```

Scilab code Exa 3.11.1 Gain in dB

```
1 //Example No. 3.11.1
2 clc;
3 clear;
4 close;
5 format('v',6);
```

```
6
7 D=20; // Directivity
8 K=90; //%// radiation efficiency
9 G=(K/100)*D; // Gain
10 GdB=10*log10(G); // dB
11 disp(GdB, "Gain in dB: ");
12 // Answer is not calculated in the book.
```

Scilab code Exa 3.11.2 Directivity in dB

```
1 //Example No. 3.11.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 Rr=72;//
7 RL=8;//
8 G=16;//Gain
9 K=Rr/(Rr+RL)*100;//%//radiation efficiency
10 D=G/(K/100);//Directivity
11 DdB=10*log10(D);//dB
12 disp(DdB,"Directivity in dB:");
```

Scilab code Exa 3.13.1 Radiation Resistance

```
1 //Example No. 3.13.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Irms=15; //A(Current Drawn)
7 Prad=5; //kW(Radiated Power)
8 Rr=Prad*10^3/Irms^2; // (Radiation Resistance)
```

```
9 disp(Rr, "Radiation resistance in : ");
```

Scilab code Exa 3.13.2 Current Drawn

```
//Example No. 3.13.2
clc;
clc;
clear;
close;
format('v',4);
Prad=1000;//W(Radiated Power)
Rr=300;// (Radiation Resistance)
Irms=sqrt(Prad/Rr);//A(Current Drawn)
disp(Irms, "Current drawn in A: ");
```

Scilab code Exa 3.13.3 Maximum Effective Aperture

```
//Example No. 3.13.3
clc;
clear;
close;
format('v',5);
Rr=73;// (Radiation Resistance)
Z=120*%pi;// (For free space)
//le=lambda/%pi
AemBYlambda_sqr=(1/%pi)^2*Z/(4*Rr);
disp("Maximum effective aperture in m is "+string(AemBYlambda_sqr)+"*lambda ");
```

Scilab code Exa 3.13.4 Effective length

```
1 //Example No. 3.13.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 Rr=73;//
8 Z=120*%pi;// (For free space)
9 //Aem=0.13*lambda
10 AemBylambda_sqr=0.13;
11 leBYlambda=2*sqrt(AemBylambda_sqr*Rr)/sqrt(Z);
12 disp("Effective length in meter is "+string( leBYlambda)+"*lambda");
```

Scilab code Exa 3.15.1 Polarization Loss factor

```
//Example No. 3.15.1
clc;
clc;
clear;
close;
format('v',4);

cos_si_p=1/sqrt(2);
PLF=cos_si_p^2;//Polarization Loss factor
PLFdB=10*log10(PLF);//dB
disp(PLFdB,"Power loss factor in dB: ");
```

Scilab code Exa 3.16.1 Maximum effective aperture and power

```
1 //Example No. 3.16.1
2 clc;
3 clear;
4 close;
```

```
5 format('v',9);
6
7 Do_dB=20; //dB
8 f=10; //GHz
9 Wi=2*10^-3; //W/ m
10 c=3*10^8; //m/s
11 lambda=c/(f*10^9); //m
12 Do=10^(Do_dB/10); // unitless
13 Aem=lambda^2/(4*%pi)*Do; // m
14 disp(Aem, "Maximum effective aperture in m : ");
15 Pr=Aem*Wi; //W
16 disp(Pr*10^6, "Maximum received power in W : ");
```

Scilab code Exa 3.16.2 Directivity of Antenna

```
1 //Example No. 3.16.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 ecd=1; //for lossless antenna
7 Aem=2.147; // m (Maximum Effective aperture)
8 Zin=75;// (Input impedence)
9 Zo=50; // (Output impedence)
10 f=100; //MHz(Operating frequency)
11 c=3*10^8; //m/s (speed f light)
12 aw_aa=1; //For no polarization loss
13 lambda=c/(f*10^6); //m(Wavelength)
14 Tau=(Zin-Zo)/(Zin+Zo);//(Reflection Coefficient)
15 Do=Aem/(ecd*(1-Tau^2)*lambda^2/(4*%pi)/aw_aa^2); //
      unitless (Directivity)
16 disp(Do, "Directivity of antenna: ");
```

Scilab code Exa 3.17.1 Find the power delivered

```
1 //Example No. 3.17.1
2 clc;
3 clear;
4 close;
5 format('v',11);
6 PT=15; //W(Transmitted Power)
7 AeT=0.2; // m (Effective aperture)
8 AeR=0.5; // m (Effective aperture)
9 f=5; //GHz(frequency)
10 r=15; //km(line of sight distance)
11 c=3*10^8; //m/s (Speed of light)
12 lambda=c/(f*10^9); //m(Wavelength)
13 PR=PT*AeT*AeR/((r*1000)^2*lambda^2); //Watts(Power)
     delivered to reciever)
14 disp(PR, "Power delivered to receiver in Watts: ");
15 //Answer is wrong in the book. lambda is 0.6 instead
      of 0.06 and lambda^2 is 0.06 instead of 0.0036
```

Scilab code Exa 3.17.2 Calculate the power

```
//Example No. 3.17.2
clc;
clear;
close;
format('v',6);
DT=20;//dB(Transmitter Directivity)
R=20;//dB(Reciever Directivity)
PT=10;//W(Transmitted Power)
ecdT=1;ecdR=1;//(For lossless antenna)
aT_aR=1;//(For polarization match)
DT=10^(DT/10);//unitless(Transmitter Directivity)
DR=10^(DR/10);//unitless(Reciever Directivity)
Tau_T=0; Tau_R=0;//(Reflection coefficient)
```

Scilab code Exa 3.17.3 Power delivered to load

```
1 //Example No. 3.17.3
2 clc;
3 clear;
4 close;
5 format('v',9);
6 	ext{ f=3; } //GHz
7 c=3*10^8; //m/s (Speed of light)
8 lambda=c/(f*10^9); //m(wavelength)
9 r=500; //m(distance)
10 PT=100; //W(Transmitted Power)
11 GT=25; //dB(Transmitter Gain)
12 GR=20; //dB(Reciever Gain)
13 GT=10^(GT/10); // unitless (Transmitter Gain)
14 GR=10^(GR/10); // unitless (Reciever Gain)
15 PLF=1; aT_aR=1; // (For polarization match)
16 PR=PT*(lambda/4/\%pi/r)^2*GT*GR*aT_aR^2; //Watts(Power)
       delivered to reciever)
17 disp(PR, "Power delivered to load in Watts: ");
```

Chapter 4

Linear Wire Antennas

Scilab code Exa 4.2.1 Er Etheta and Hfi

```
1 //Example No. 4.2.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 l=5; //cm(length of antenna)
7 f=100; //MHz(operating frequency)
8 Io=120; //mA(Terminal current)
9 t=1;//s(time)
10 theta=45; //degree (Angle)
11 r=3; //m(radius)
12 c=3*10^8; //m/s///Speed of light
13 omega=2*\%pi*f*10^6; //rad/sec(rotation)
14 k=omega/c; //rad/m(Phase constant)
15 kr=2*%pi*r/3; //degree(Phase constant)
16 Er=Io*10^-3*1*10^-2/(2*\%pi*r^2)*cosd(theta)*120*\%pi
      *[1+1/(%i*kr)]*exp(-%i*kr+%i*omega*t);//V/m(
      Electric field)
17 Er=Er*1000; //\text{mV/m}(Electric field)
18 Er_mag=abs(Er); //mV/m(magnitude of Er)
19 Er_angle=atand(imag(Er), real(Er)); // degree(angle of
```

```
Er)
20 disp(Er_angle, Er_mag, "Value of Er: magnitude(mV/m)
     and angle in degree : ");
21 Etheta=Io*10^-3*1*10^-2/(4*\%pi*r)*sind(theta)*120*
     \pi^{*} %pi*%i*k*[1+1/(%i*kr)+1/(%i*kr)^2]*exp(-%i*kr+%i*
     omega*t); //V/m(Electric field)
22 Etheta_mag=abs(Etheta); //V/m(magnitude of Etheta)
23 Etheta_angle=atand(imag(Etheta),real(Etheta));//
      degree (angle of Etheta)
  disp(Etheta_angle, Etheta_mag, "Value of Etheta :
     magnitude (V/m) and angle in degree : ");
25 Hfi=Io*10^-3*1*10^-2/(4*%pi*r)*sind(theta)*%i*k
     *[1+1/(\%i*kr)]*exp(-\%i*kr+\%i*omega*t);//A/m(
     Magnetic field)
26 Hfi_mag=abs(Hfi); //A/m(magnitude of Hfi)
27 Hfi_angle=atand(imag(Hfi),real(Hfi));//degree(angle
      of Hfi)
28 disp(Hfi_angle, Hfi_mag, "Value of H : magnitude(A/m
     ) and angle in degree : ");
29 //Answer is not accurate in the book.
```

Scilab code Exa 4.5.1 Effective area

```
//Example No. 4.5.1
clc;
clear;
close;
format('v',6);
f=500;//MHz(Operating Frequency)
Do=1.643;//for half wave dipole
c=3*10^8;//m/s///Speed of light
lambda=c/(f*10^6);//m(Wavelength)
Aem=lambda^2/(4*%pi)*Do;// m (Effective area)
disp(Aem, "Effective area in m : ");
```

Scilab code Exa 4.6.1 Current required

```
1 //Example No. 4.6.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 1=1; //m
8 Prad=4; /W
9 f = 1.5; //MHz
10 c=3*10^8; //m/s///Speed of light
11 lambda=c/(f*10^6);//m
12 //here l/lambda<1/50 tells us it is a Hertzian
     monopole antenna
13 h=1; //m
14 Rr=40*%pi^2*(h/lambda)^2;//m
15 Io=sqrt(2*Prad/Rr);/A
16 disp(Io, "Current required in A: ");
```

Scilab code Exa 4.9.1 Power radiated

```
1 //Example No. 4.9.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 le=100;//m
8 Irms=450;//A
9 f=40000;//Hz
10 c=3*10^8;//m/s///Speed of light
```

```
11 lambda=c/f; //m
12 P=160*%pi^2*(le/lambda)^2*Irms^2; //mW
13 Rr=160*%pi^2*(le/lambda)^2; //
14 disp(P*10^-3, "Power radiated in W: ");
15 disp(Rr, "Radiation resistance in : ");
16 //Answer wrong for radiation resistance in the book.
```

Scilab code Exa 4.9.2 Radiation resistance and power

```
1 //Example No. 4.9.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6
7 le=61.4; //m
8 Irms=50; //A
9 lambda=625; //m
10 P=160*%pi^2*(le/lambda)^2*Irms^2; //kW
11 Rr=160*%pi^2*(le/lambda)^2; //
12 disp(P*10^-3, "Power radiated in kW : ");
13 disp(Rr, "Radiation resistance in : ");
```

Scilab code Exa 4.9.3 Power radiated and efficiency

```
1 //Example No. 4.9.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 le=10;//m(effective length)
7 Irms=450;//A(rms current)
8 Rl=1.5;// (resistance)
```

Scilab code Exa 4.9.4 Radiation Resistance

```
1 //Example No. 4.9.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //l=lambda/8
7 lBYlambda=1/8;//(length/Wavelength)
8 Rr=80*%pi^2*(lBYlambda)^2;// (Radiation resistance)
9 disp(Rr, "Radiation resistance in : ");
```

Scilab code Exa 4.9.5 Radiation Resistance

```
//Example No. 4.9.5
clc;
clc;
clear;
close;
format('v',6);
L=1;//m(Length of element)
f=10;//MHz(Operating frequency)
c=3*10^8;//m/s///Speed of light
lambda=c/(f*10^6);//m(Wavelength)
```

```
10 Rr=80*%pi^2*(L/lambda)^2;// (Radiation resistance)
11 disp(Rr, "Radiation resistance in : ");
```

Chapter 6

Antenna Arrays

Scilab code Exa 6.2.1 Relative field pattern

```
1 //Example No. 6.2.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 n=2;//(No. of point source)
7 //E=E0*\{\exp(\%i*\%pi/2)-\exp(-\%i*si/2)\} where \exp(-\%i*
      si = -1
8 // si = Beta*d*cosd(fi) = 2*\%pi*cosd(fi)
9 //E=2*%i*E0*sind(%pi*cosd(fi)); But 2*%i*E0=1
10 fi=[0 30 60 90 120 150 180 210 240 270 300 330];//
      degree (angle)
11 En=sin(%pi*cosd(fi));//Normalized field
12 disp("Different values of fi:");
13 disp(string(fi));
14 disp("Corresponding normalized field is: ");
15 disp(string(abs(En)));
```

Scilab code Exa 6.2.2 Radiation patern

```
1 //Example No. 6.2.2
2 clc;
3 clear;
4 close;
5 format('v',5);
6 n=2; // (No. of point source)
7 //E=E0*\{\exp(\%i*(\%pi/4+si/2))-\exp(-\%i*(\%pi/4+si/2))\}
      as \exp(\%i*theta)+\exp(-\%i*theta)=2*\cos(theta)
8 //E=2*E0*cos(\%pi/4+si/2);
9 // si = Beta*d*cosd(fi) = 2*\%pi*cosd(fi)
10 / \text{En} = \cos(\% \text{pi}/4 + \text{Beta} * d * \cos d(\% \text{pi}/4)); \text{ But } 2*E0=1
11 fi=[0 30 60 90 120 150 180 210 240 270 300 330];//
      degree (angle)
12 En=cos(%pi/4+%pi/4*cosd(fi));//Normalized field
13 disp("Different values of fi: ");
14 disp(string(fi));
15 disp("Corresponding normalized field is: ");
16 disp(string(abs(En)));
```

Scilab code Exa 6.2.3 Field pattern

```
1 //Example No. 6.2.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //E=cos(fi)+sin(fi)<si;
7 //En=cos(%pi/4+%pi*cosd(fi)) as 2*E0=1
8 fi=[0 30 60 90 120 150 180 210 240 270 300 330];//degree(Angle)
9 si=%pi/2*(cosd(fi)+1);//(Phase)
10 En=cos(%pi/4+%pi*cosd(fi));//Normalized field
11 disp("Different values of fi:");
12 disp(string(fi));
13 disp("Corresponding normalized field is:");</pre>
```

```
14 disp(string(abs(En)));
15 // Answer in the book is wrong.
```

Scilab code Exa 6.6.1 Location of first null

```
//Example No. 6.6.1
clc;
clear;
close;
format('v',5);
n=80;//(no. of elements)
N=1;//for first null
//d=lambda/2;(spacing)
dBYlambda=1/2;//(spacing/wavelength)
fi01=acosd(N/n/dBYlambda);//degree(Angle)
Null_1st=(%pi/2*180/%pi)-fi01;//degree(First Null)
disp(Null_1st,"Location of 1st null from maxima in degree : ");
```

Scilab code Exa 6.6.2 Various parameters of isotropic array

```
//Example 6.6.2
clc;
clear;
close;
n=4;//(No. of elements)
//d=lambda/2;(Spacing)
dBYlambda=1/2;//(Spacing/wavelength)
alfa=0;//degree(angle)
N=1;//(For first null)
disp("Part (i)");
theta01=[acosd(+N/2) acosd(-N/2)];//degree(Angle)
N=2;//(For second null)
```

```
13 theta02=[acosd(+N/2) acosd(-N/2)]; // degree(angle)
14 / N=3;//not possible as N/2 is greater than 1
15 disp(theta01,"Null directions for N=1 : theta01(
      degree) ");
16 disp(theta02," Null directions for N=2: theta02(
      degree) ");
17 disp("Part (ii)");
18 m=0; // for maxima
19 theta_m=acosd(m/dBYlambda);//degree(angle)
20 disp(theta_m, "Direction of maxima: theta_m(degree)
     ");
21 disp("Part (iii)");
22 S=1; // for side lobe maxima
23 / S = 2 \& onwards not possible
24 theta_S=[acosd((2*S+1)/2/n/dBYlambda) acosd(-(2*S+1)
     /2/n/dBYlambda)];//degree(angle for side lobe)
25 disp(theta_S, "Side lobe maxima : theta_S(degree)");
26 disp("Part (iv)");
27 HPBW=2*[90-acosd(1.391/\%pi/n/dBYlambda)];//degree(
     HPBW)
28 disp(HPBW,"HPBW(degree)");
29 disp("Part (v)");
30 FNBW=2*[90-acosd(1/n/dBYlambda)]; //degree(FNBW)
31 disp(FNBW, "FNBW(degree)");
32 disp("Part (vi)");
33 SLL=-13.46; //dB////for isotropic sources array (Side
     lobe level)
34 disp(SLL, "Side lobe level(dB)");
```

Scilab code Exa 6.8.1 Ordinary endfire array

```
1 //Example No. 6.8.1
2 clc;
3 clear;
4 close;
```

```
5 format('v',5);
6 n=4; // (No. of elements)
7 //d = lambda / 2; (spacing)
8 dBYlambda=1/2; //(spacing/wavelength)
9 theta=0; //degree(angle)
10 / \text{Beta} = 2*\% \text{pi/lambda}
11 disp("Part (i)");
12 Beta_into_lambda=2*%pi; //(Coefficient)
13 / alfa = -Beta*d
14 alfa=-Beta_into_lambda*dBYlambda; //radian(
      Progressive phase shift)
15 alfa=alfa*180/%pi;//degree(Progressive phase shift)
16 disp(alfa, "Progressive phase shift(degree)");
17 disp("Part (ii)");
18 N=1:3; //as N=4 is not allowed
19 theta01=acosd(1-N(1)/n/dBYlambda); // degree (angle)
theta02=acosd(1-N(2)/n/dBYlambda); // degree (angle)
theta03=acosd(1-N(3)/n/dBYlambda); // degree (angle)
22 disp(theta03,theta02,theta01,"Null directions,
      theta01, theta02 & theta03 in degree are: ");
23 disp("Part (iii)");
24 m=0:1; //as m=2 \& onwards is not allowed
25 theta0=acosd(1-m(1)/dBYlambda); //degree(angle)
26 theta1=acosd(1-m(2)/dBYlambda); //degree(angle)
27 disp(theta1, theta0, "Maxima directions, theta0,
      thetal in degree are: ");
28 disp("Part (iv)");
29 FNBW=2*acosd(1-1/n/dBYlambda); // degree (FNBW)
30 disp(FNBW, "FNBW in degree : ");
31 disp("Part (v)");
32 HPBW=2*acosd(1-1.391/n/%pi/dBYlambda); // degree (HPBW)
33 disp(HPBW,"HPBW in degree : ");
```

Scilab code Exa 6.8.2 Half Power Beam Width

```
//Example No. 6.8.2
clc;
clear;
close;
format('v',6);
n=16;//no. of point source
//d=lambda/4;(spacing)
BdBYlambda=1/4;//(Spacing/wavelength)
HPBW=2*acosd(1-1.391/n/%pi/dBYlambda);//degree(HPBW)
disp(HPBW,"HPBW in degree : ");
```

Scilab code Exa 6.10.1 Find the Directivity

```
1 //Example No. 6.10.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 n=10;//no. of elements
7 //d = lambda / 4; (spacing)
8 dBYlambda=1/4; ///(Spacing/wavelength)
9 //Broadside array
10 D=2*n*dBYlambda; // unitless (Directivity)
11 D=10*\log 10(D);//dB(Directivity)
12 disp(D, "Directivity for broadside array in dB: ");
13 //Endfire array
14 D=4*n*dBYlambda; // unitless (Directivity)
15 D=10*log10(D); //dB(Directivity)
16 disp(D," Directivity for Ordinary endfire array in dB
      : ");
```

Scilab code Exa 6.10.2 Design ordinary endfire array

```
1 //Example No. 6.10.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 D=20; //dB(Directivity)
7 //d = lambda / 4; (spacing)
8 dBYlambda=1/4; //(spacing/wavelength)
9 D=10^(D/10); // unitless (Directivity)
10 n=D/4/dBYlambda; //no. of elements
11 disp(n,"(i) No. of elements: ");
12 LBYlambda=(n-1)*dBYlambda; //(length/wavelength)
13 disp("(ii) Length of the array is "+string(LBYlambda
      ) +" *lambda");
14 HPBW=2*acosd(1-1.391/%pi/n/dBYlambda); // degree (HPBW)
15 disp(HPBW,"(iii) HPBW in degree : ");
16 SLL=-13.46; //dB (Side lobe level)
17 disp(SLL,"(iv) SLL in dB : ");
18 Beta_into_lambda=2*%pi; //(temorary calculatuion)
19 // alfa = -Beta*d; // for theta = 0
20 // alfa=Beta*d;//for theta=180
21 alfa1=-Beta_into_lambda*dBYlambda; // \operatorname{radian} / / // \operatorname{for}
      theta=0
22 alfa1=alfa1*180/\%pi;//degree(angle)
23 alfa2=Beta_into_lambda*dBYlambda; // \operatorname{radian} / / / \operatorname{for}
      theta=180
24 alfa2=alfa2*180/\%pi;//degree(angle)
25 disp(alfa2,alfa1,"(v) Progressive phase shift,
      for theta equals to 0 & 180
                                         are : ");
```

Scilab code Exa 6.14.1 Four Element broadside array

```
1 //Example No. 6.14.1
2 clc;
3 clear;
```

```
4 close;
5 format('v',6);
6 SLL=19.1; //dB(Side Lobe Level)
7 //d = lambda / 2; (spacing)
8 dBYlambda=1/2; //(Spacing/wavelength)
9 n=4; // (no. of elements)
10 r=round(10^(SLL/20));//(ratio of main lobe to side
      lobe)
11 m=n-1; // (degree )
12 / T3(x0) = r = 4 \times x0^3 - 3 \times x0;
13 x0=roots([4 0 -3 -r]);//(Coefficient)
14 x0=x0(1); //taking real value (Coefficient)
15 //E4(z)=T3(x)=4*x^3-3*x=4*a1*z^3-3*a1*z+a0*z
16 //4*a1*z^3=4*x^3 where z^3=(x/x0)^3
17 a1=4*x0^3/4; //(Coefficient)
18 / a0*z-3*z*a1=-3*x
19 a0 = (3/x0*a1-3)*x0; //(Coefficient)
20 disp(a0,a1," Coefficients of array polynomial a1 & a0
       are : ");
21 disp(a0/a1,a1/a1," Relative current amplitudes are :"
      );
```

Chapter 7

Loop Antenna

Scilab code Exa 7.10.1 Input Voltage

```
1 //Example No. 7.10.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 \text{ A=1;} // \text{m} \text{ (Area of loop)}
7 N=400; //no. of turns
8 Q=100; // Quality factor
9 theta=60; // degree(angle)
10 Erms=10; // V /m(field strength)
11 f=1; //MHz(tuned frequency)
12 c=3*10^8; //m/s///Speed of light
13 lambda=c/(f*10^6); //m(Wavelength)
14 Vr=Q*2*\%pi*A*N*cosd(theta)*Erms*10^-6/lambda; //V(
      reciever input voltage)
15 disp(Vr*1000, "Input voltage to the receiver in mV:
      ");
```

Scilab code Exa 7.10.2 Voltage induced in lop

```
1 //Example No. 7.10.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 N=12;//no. of turns
7 A=1;// m (Area of loop)
8 Erms=100;// V/m(field strength)
9 f=10;//MHz(tuned frequency)
10 theta=0;//degree(angle)
11 c=3*10^8;//m/s///Speed of light
12 lambda=c/(f*10^6);//m(Wavelength)
13 Vr=2*%pi*A*N*cosd(theta)*Erms*10^-6/lambda;//V(
    reciever input voltage)
14 disp(Vr*10^6,"Voltage induced in loop in V/m:");
```

Scilab code Exa 7.10.3 Find the field strength

Scilab code Exa 7.10.4 Radiation Resistance

```
1 //Example No. 7.10.4
2 clc;
3 clear;
4 close;
5 format('v',7);
6 N1=1; //no. of turns in primary
7 N2=8; //no. of turns in secondary
8 //a = lambda / 25;
9 aBYlambda=1/25; // (temporary calculation)
10 //A = \% pi * a^2
11 A_BY_lambda_sqr=%pi*aBYlambda^2; // (temporary
      calculation)
12 Rr1=31200*(N1*A_BY_lambda_sqr)^2;// (Radiation
      resistance for single turn)
13 disp(Rr1, "Radiation resistance for single turn loop
      in
         : ");
14 Rr2=31200*(N2*A_BY_lambda_sqr)^2;// (Radiation
      resistance for 8 turn)
15 disp(Rr2, "Radiation resistance for 8 turn loop in
      : ");
```

Scilab code Exa 7.10.5 Radiation Efficiency

```
1 //Example No. 7.10.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6 f=100;//MHz(Operating frequency)
7 c=3*10^8;//m/s///Speed of light
```

```
8 lambda=c/(f*10^6); //m(Wavelength)
9 a=lambda/25; //m(radius)
10 C=2*%pi*a; //m(Circumference)
11 d=2*10^-4*lambda; //m(Spacing)
12 disp("For single turn: ");
13 N=1; //n. of turns
14 RL_BY_Rr=3430/(C^3*f^(3.5)*N*d); // (temporary
      calculation)
15 K=1/(1+RL_BY_Rr)*100; //\%(Radiation efficiency)
16 disp(K, "Radiation efficiency of single turn in %:"
     );
17 disp("For Eight turn : ");
18 N=8; //no. of turns
19 RL_BY_Rr=3430/(C^3*f^(3.5)*N*d); // (temporary
      calculation)
20 K=1/(1+RL_BY_Rr)*100; //\%(Radiation efficiency)
21 disp(K," Radiation efficiency of eight turn in \%: ")
```

Scilab code Exa 7.10.6 Directivity

```
1 //Example No. 7.10.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 a=0.5; //m(radius)
7 f=0.9; //MHz(OPerating frequency)
8 c=3*10^8; //m/s///Speed of light
9 lambda=c/(f*10^6); //m(wavelength)
10 C=2*%pi*a; //m(Circumference)
11 if C/lambda<1/3 then
12
       D=3/2; // Directivity
13 elseif C/lambda>1/3 then
14
       D=0.682*C/lambda; // Directivity
```

```
15 end
16 disp(D,"Directivity: ");
```

Slot Antenna

Scilab code Exa 8.3.1 Input Impedence

```
1 //Example No. 8.3.1
2 clc;
3 clear;
4 close;
5 \text{ format}('v',7);
6 Zcs=73+%i*42.5;// (Impedence of complementry
     structure)
7 Eta=120*%pi;//(Constant for free space)
8 ZS=Eta^2/4/Zcs;// (Input Impedence)
9 disp(ZS,"Input impedence in
                               : ");
10 //At resonance
11 Zcs=73; // (Impedence of complementry structure)
12 Eta=120*%pi;//(Constant for free space)
13 ZS=Eta^2/4/Zcs;// (Input Impedence)
14 disp(ZS,"At resonance, Input impedence in
                                             : ");
15 disp("ZS can be rounded to 500
```

Horn Antenna

Scilab code Exa 9.6.1 Capture Area

```
1 //Example No. 9.6.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 f=2;//GHz(Frequency)
7 G=12;//dBi(Gain)
8 D=12;//dBi(Gain)
9 D=10^(D/10);//unitless(Directivity)
10 c=3*10^8;//m/s(speed of light)
11 lambda=c/(f*10^9);//m(wavelength)
12 Ap=D*lambda^2/7.5;//m (capture area)
13 disp(Ap, "Required capture area in m : ");
```

Scilab code Exa 9.6.2 Various parameters of horn

```
1 //Example No. 9.6.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',7);
6 aEBYlambda=10; // (Aperture/wavelength)
7 del_EBYlambda=0.2; //in E-plane
8 del_HBYlambda=0.375; //in H-plane
9 LBYlambda=aEBYlambda^2/8/del_EBYlambda; //(Length/
      wavelength)
10 disp("Length of the horn is "+string(LBYlambda)+"*
     lambda");
11 aHBYlambda=sqrt(LBYlambda*8*del_HBYlambda);//(
     Aperture/wavelength)
12 disp("H-plane aperture, aH is "+string(aHBYlambda)+"
     *lambda");
13 theta_E=2*atand(aEBYlambda/2/LBYlambda);//degree(
14 theta_H=2*atand(aHBYlambda/2/LBYlambda);//degree(
     Angle)
15 disp(theta_H,theta_E,"Flare angles theta_E & theta_H
     (in degree) are : ");
16 HPBW_E=56/aEBYlambda; //degree (HPBW for E-plane)
17 disp(HPBW_E,"HPBW(E-plane) in degree : ");
18 HPBW_H=67/aHBYlambda; //degree (HPBW for H-plane)
19 disp(HPBW_H,"HPBW(H-plane) in degree : ");
20 FNBW_E=102/aEBYlambda; //degree (FNBW for E-plane)
21 disp(FNBW_E, "FNBW(E-plane) in degree : ");
22 FNBW_H=172/aHBYlambda; //degree (FNBW for F-plane)
23 disp(FNBW_H, "FNBW(H-plane) in degree : ");
D=10*\log 10 (7.5*aEBYlambda*aHBYlambda); // (Directivity
25 disp(D, "Directivity in dB : ");
```

Broadband and frequency independent antenna

Scilab code Exa 10.5.1 Five turn helical antenna

```
1 //Example No. 10.5.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 N=5; //no. of turns
7 f=400; //MHz(Frequency)
8 c=3*10^8; //m/s (Speed of light)
9 lambda=c/(f*10^6); //m(Wavelength)
10 disp("Part (i)");
11 S=lambda/50; //m(Spacing between turns)
12 S_BY_lambda=1/50; //(Spacing/wavelength)
13 C_BY_lambda=sqrt(2*S_BY_lambda); // (Circumference/
      wavelength)
14 disp("Circumference is "+string(C_BY_lambda)+"*
     lambda");
15 C=sqrt (2*lambda*S); //m(Circumference)
16 disp(C, "Circumference in meter: ");
17 disp("Part (ii)");
```

```
18 Lo_BY_lambda=sqrt(S_BY_lambda^2+C_BY_lambda^2);//(
     Length/wavelength)
19 disp("Length of single turn is "+string(Lo_BY_lambda
     ) + " * lambda");
20 Lo=sqrt(S^2+C^2); //m(Length of single turn)
21 disp(Lo,"Length of single turn in meter: ");
22 disp("Part (iii)");
23 Ln_BY_lambda=N*Lo_BY_lambda;//(Overall length/
     wavelength)
24 disp("Overall Length is "+string(Ln_BY_lambda)+"*
     lambda");
25 Ln=N*Lo; //m(Overall length)
26 disp(Ln,"Overall Length in meter: ");
27 disp("Part (iv)");
28 alfa=atand(S/C);//degree(Pitch angle)
29 disp(alfa,"Pitch angle,
                            in degree : ");
```

Scilab code Exa 10.5.2 Five turn helical antenna

```
1 //Example No. 10.5.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 N=5; //no. of turns
7 f=300; //MHz(Frequency)
8 c=3*10^8; //m/s (speed of light)
9 disp("Part (i)");
10 lambda=c/(f*10^6); //m(Wavelength)
11 C_BY_lambda=1; // (Circumference/wavelength)
12 disp("Near optimum circumference is "+string(
     C_BY_lambda) + "*lambda");
13 C=lambda; //m(Circumference)
14 disp(C, "Near optimum circumference in meter: ");
15 disp("Part (ii)");
```

```
16 alfa=14; //degree//(Pitch angle)//for near optimum
17 S_BY_lambda=C_BY_lambda*tand(alfa);
18 disp("Spacing is "+string(S_BY_lambda)+"*lambda");
19 S=C*tand(alfa);//m(Spacing)
20 disp(S, "Spacing in meter: ");
21 disp("Part (iii)");
22 Rin=140*C/lambda;//
                       (Input impedence)
23 disp(Rin,"Input impedence in
24 disp("Part (iv)");
25 HPBW=52/(C/lambda*sqrt(N*S/lambda)); //degree (HPBW)
26 disp(HPBW,"HPBW in degree : ");
27 disp("Part (v)");
28 FNBW=115/(C/lambda*sqrt(N*S/lambda));//degree(FNBW)
29 disp(FNBW, "FNBW in degree : ");
30 disp("Part (vi)");
31 Do=15*(C/lambda)^2*N*(S/lambda); // unitless ///
      Directivity
32 disp(Do, "Directivity (unitless): ");
33 Do_dB=10*log10(Do); //dB(Directivity)
34 disp(Do_dB, "Directivity in dB: ");
35 disp("Part (vii)");
36 AR = (2*N+1)/2/N; // axial ratio
37 disp(AR, "Axial ratio : ");
38 disp("Part (viii)");
39 Rin=140*(C/lambda);// (Input impedence)
40 //50
          line
41 Zo=50; // (Output impedence)
42 Tau=(Rin-Zo)/(Rin+Zo);//Scaling factor
43 VSWR = (1+Tau)/(1-Tau); //(VSWR)
                           line : ");
44 disp(VSWR, "VSWR for 50
45 / 75
           line
46 Zo=75; // (Output impedence)
47 Tau=(Rin-Zo)/(Rin+Zo);//Scaling factor
48 VSWR = (1 + Tau) / (1 - Tau); // (VSWR)
49 disp(VSWR,"VSWR for 75
                            line : ");
```

Scilab code Exa 10.5.3 Various parameters of helix array

```
1 //Example No. 10.5.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 HPBW=39; // degree (HPBW)
7 alfa=12.5; //degree (Pitch angle)
8 f=475; //MHz(Frequency)
9 c=3*10^8; //m/s (Speed of light)
10 lambda=c/(f*10^6); //m(Wavelength)
11 C=lambda; //m(Circumference)
12 disp("Part (i)");
13 //it is in axial mode as 3/4*lambda < C < 4/3*lambda
14 S=C*tand(alfa); //meter(Spacing)
15 N=52^2/HPBW^2/(S/lambda)/(C/lambda)^2;//turns
16 disp(round(N), "Number of turns : ");
17 disp("Part (ii)");
18 N = round(N); //turns
19 Do=15*(C/lambda)^2*N*(S/lambda); // unitless (
      Directivity)
20 Do_dB=10*log10(Do); //dB(Directivity)
21 disp(Do_dB, Directivity in decibels : ");
22 disp("Part (iii)");
23 AR = (2*N+1)/2/N; // axial ratio
24 disp(AR, "Axial ratio : ");
25 disp("Part (iv)");
26 //3/4*lambda<C<4/3*lambda
27 \quad lambda1=C/(3/4); //meter(Wavelength)
28 \quad lambda2=C/(4/3); //meter(Wavelength)
29 f1=c/lambda1; //Hz(Frequency)
30 f2=c/lambda2; //Hz(Frequency)
31 disp("Frequency range is "+string(f1/10^6)+" MHz to
```

Scilab code Exa 10.5.4 Input Impedence HPBW and Axial ratio

```
1 //Example No. 10.5.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Do_dB=14; //dB(Directivity)
7 f=2.4; //GHz(Frequency)
8 c=3*10^8; //m/s (Speed of light)
9 lambda=c/(f*10^6); //m(Wavelength)
10 Do=10^(Do_dB/10); // unitless (Directivity)
11 C=lambda; //m///for optimum result (Circumference)
12 alfa=14; //degree; /// for optimum result (Pitch angle)
13 S=C*tand(alfa); //m(Spacing)
14 N=Do/15/(C/lambda)^2/(S/lambda); //turns
15 N = round(N); //turns
16 Rin=140*C/lambda;// (Input impedence)
17 disp(Rin, "Input impedence in is: ");
```

```
18 HPBW=52/(C/lambda*sqrt(N*S/lambda)); // degree
19 disp(HPBW,"HPBW in degree : ");
20 format('v',4);
21 FNBW=115/(C/lambda*sqrt(N*S/lambda)); // degree
22 disp(FNBW,"FNBW in degree : ");
23 AR=(2*N+1)/2/N; // (Axial ratio)
24 disp(AR,"Axial ratio : ");
```

Scilab code Exa 10.8.1 Symmetrical two wire spiral

```
1 //Example No. 10.8.1
2 clc;
3 clear;
4 close;
5 format('v',8);
6 f=10; //MHz(Frequency)
7 c=3*10^8; //m/s (Speed of light)
8 lambda=c/(f*10^6); //m(Wavelength)
9 d0=10^-3*lambda;//m(spacing)
10 Lo=1*lambda; //m(Length)
11 fi=%pi;fi0=0;//radian
12 r0=d0/2; //m
13 disp("Part (i)");
14 / R = r0 * exp(a * fi - a * fi 0); / / m
15 //a = sqrt(1/Lo^2/(R-r0)^2-1); //per adian
16 a=1.166; //rad^-1(by above equation)
17 disp(a,"Rate of spiral in rad^-1:");
18 R_BY_lambda=r0/lambda*\exp(a*2*\%pi); //m(Radius/
      wavelength)
19 disp("Radius of terminal point is "+string(
      R_BY_lambda) + "*lambda");
20 disp("Part (ii)");
21 R=r0*exp(a*2*\%pi); //m(Radius)
22 disp(R, "Radius at terminal point in meter: ");
```

Scilab code Exa 10.8.2 Design Equiangular spiral Antena

```
1 //Example No. 10.8.2
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fU=900; //MHz(Upper frequency)
7 fL=450; //MHz(Lower frequency)
8 c=3*10^8; //m/s (Speed of light)
9 lambdaU=c/(fU*10^6); //m(Upper wavelength)
10 lambdaL=c/(fL*10^6); //m(Lower wavelength)
11 Exp_ratio=4; //expansion ratio
12 a = log(Exp_ratio)/(2*\%pi); //rad^-1///rate of spiral
13 Beta=atand(1/a); // degree
14 r0=lambdaU/4;//meter///minimum radius
15 disp(r0*100, "Minimum radius in cm : ");
16 R=lambdaL/4; //meter///minimum radius
17 disp(R*100, "Maximum radius in cm : ");
18 fi_m = log(R/r0)/a; //radian
19 fi_m=fi_m*180/%pi;//degree
20 disp(fi_m, " m in degree is ");
21 N=1/2; // for m = 180; // degree
22 disp(N," Number of turns, N is
```

Scilab code Exa 10.10.1 Elements length and spacing

```
1 //Example No. 10.10.1
2 clc;
3 clear;
4 close;
5 format('v',7);
```

```
6 Gain=8.5; //dB(Gain)
7 tau=0.822; sigma=0.149; // for given gain
8 alfa=2*atand((1-tau)/4/sigma);//degree
9 fL=54; //MHz(Lower frequency)
10 fU=216; //MHz(Upper frequency)
11 c=3*10^8; //m/s (Speed of light)
12 lambdaU=c/(fU*10^6); //m(Upper wavelength)
13 lambdaL=c/(fL*10^6); //m(Lower wavelength)
14 l1=lambdaU/2; //m(Length of element1)
15 lN=lambdaL/2; //m(Length of longest element)
16 12=11/tau; 13=12/tau; 14=13/tau; 15=14/tau; 16=15/tau; 17
      =16/tau;18=17/tau;19=18/tau;//m(Length of
      elements)
17 d1=2*sigma*11;d2=2*sigma*12;d3=2*sigma*13;d4=2*sigma
      *14; d5=2*sigma*15; d6=2*sigma*16; d7=2*sigma*17; d8
      =2*sigma*18;d9=2*sigma*19;//meter(Spacing between
       elements)
18 d=d1+d2+d3+d4+d5+d6+d7+d8+d9; //meter(total spacing)
19 disp(1N, "Length(m) of longest element: ");
20 disp(11,"Length(m)) of element1 : ");
21 disp(12, "Length(m)) of element2 : ");
22 \quad disp(13," Length(m) \quad of \quad element3 : ");
23 disp(14,"Length(m)) of element4: ");
24 disp(15, "Length(m)) of element5 : ");
25 disp(16, "Length(m)) of element6 : ");
26 disp(17, "Length(m)) of element7: ");
27 \text{ disp}(18," \text{Length}(m) \text{ of element}8 : ");
28 disp(19, "Length(m) of element9: ");
29 disp(d1, "Spacing(m) of element1: ");
30 disp(d2, "Spacing(m) of element2: ");
31 disp(d3, "Spacing(m) of element3: ");
32 disp(d4, "Spacing(m)
                        of element4 : ");
33 disp(d5, "Spacing(m)
                        of element5 : ");
34 disp(d6, "Spacing(m) of element6: ");
35 disp(d7, "Spacing(m)
                        of element7 : ");
36 disp(d8, "Spacing(m) of element8: ");
37 disp(d9, "Spacing(m) of element9: ");
38 disp(d, "Total Spacing length(m): ");
```

Scilab code Exa 10.10.2 Design a log periodic dipole

```
1 //Example No. 10.10.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 tau=0.895; //scale factor
7 sigma=0.166; // (spacing factor)
8 fU=30; //MHz(Upper frequency)
9 fL=10; //MHz(Lower frequency)
10 c=3*10^8; //m/s (Speed of light)
11 lambdaU=c/(fU*10^6); //m(Upper wavelength)
12 lambdaL=c/(fL*10^6); //m(Lower wavelength)
13 l1=lambdaU/2; //m(Length of shortest element)
14 disp(11,"Length of shortest element, 11 in meter is
      : ");
15 12=11/tau; 13=12/tau; 14=13/tau; 14=13/tau; 15=14/tau; 16
      =15/tau;17=16/tau;18=17/tau;19=18/tau;110=19/tau;
     111=110/tau; //m(Length of element)
16 disp(111,110,19,18,17,16,15,14,13,12,"Other elements
      length (m) 12, 13, 14, 15, 16, 17, 18, 19, 110,
      l11 are : ");
17 alfa=17.97; //degree (angle)
18 R1=(11/2)/tand(alfa/2); //m(Spacing between elements)
19 R2=R1/tau; R3=R2/tau; R4=R3/tau; R4=R3/tau; R5=R4/tau; R6
     =R5/tau; R7=R6/tau; R8=R7/tau; R9=R8/tau; R10=R9/tau;
     R11=R10/tau;/m
20 disp(R11,R10,R9,R8,R7,R6,R5,R4,R3,R2,R1,"Spacing
      between elements in meter R1, R2, R3, R4, R5, R6,
      R7, R8, R9, R10, R11 are: ");
21 //Answer is not accurate in the book.
```

Microstrip Antennas

Scilab code Exa 11.9.1 Determine physical dimensions

```
1 //Example No. 11.9.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 fr=10; //GHz(center frequency)
7 fr=fr*10^9; //Hz(center frequency)
8 epsilon_r=10.2; //(constant)
9 h=0.127; //cm(height of sustrate)
10 c=3*10^10; //cm/s (Speed of light)
11 W=c/2/fr*sqrt(2/(epsilon_r+1));//cm(Physical
     dimension)
12 epsilon_reff = (epsilon_r+1)/2+(epsilon_r-1)/2*[1+12*h]
     /W]^{(-1/2)};//(effective constant)
13 delta_L=h*0.412*(epsilon_reff+0.3)*(W/h+0.264)/[(
     epsilon_reff -0.258) *(W/h+0.8)]; //cm(distance)
14 L=c/2/fr/sqrt(epsilon_reff)-2*delta_L;//cm(distance)
15 disp(L,W,"Design values of W & L(in cm) are: ");
```

Reflector Antennas

Scilab code Exa 12.9.1 First null beam width and power gain

```
1 //Example No. 12.9.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 D=2; //m(Diameter)
7 f=6000; //MHz(Frequency)
8 c=3*10^8; //m/s///speed of light
9 lambda=c/(f*10^6); //m(Wavelength)
10 FNBW=140*lambda/D; // degree
11 disp(FNBW, "First null beam width(FNBW in degree): "
     );
12 GP=6*(D/lambda)^2;//unitless(Power gain)
13 GP_dB=10*log10(GP); //dB(Power gain)
14 disp(GP_dB, "Power Gain in dB: ");
15 //Ans in the book is not accurate.
```

Scilab code Exa 12.9.2 Diameter of mouth and HPBW

```
//Example No. 12.9.2
clc;
clear;
close;
format('v',5);
GP=1000;//unitless(Power gain)
lambda=10;//cm(Wavelength)
B=sqrt(GP/6)*(lambda/100);//m(Diameter)
disp(D,"Diameter of mouth in meter: ");
HPBW=58*(lambda/100)/D;//degree(HPBW)
disp(HPBW,"Half power beam width(HPBW in degree): ");
```

Scilab code Exa 12.9.3 Gain Beamwidth and capture area

```
1 //Example No. 12.9.3
2 clc:
3 clear;
4 close;
5 format('v',6);
6 D=6; //meter (Diameter)
7 f=10; //GHz(Frequency)
8 c=3*10^8; //m/s///speed of light
9 lambda=c/(f*10^9); //m(Wavelength)
10 GP=6*(D/lambda)^2; // unitless (Power gain)
11 GP_dB = 10 * log 10 (GP); //dB (Power gain)
12 disp(GP_dB, "Gain in dB: ");
13 FNBW=140*lambda/D; // degree (FNBW)
14 disp(FNBW, "FNBW in degree : ");
15 HPBW=58*lambda/D; // degree (HPBW)
16 disp(HPBW,"HPBW in degree : ");
17 K=0.65; //constant
18 Ao=K*\%pi/4*D^2; //m (Capture area)
19 disp(Ao, "Capture area in m
```

Antenna Measurement

Scilab code Exa 13.4.1 Gains of Antennas

```
1 //Example No. 13.4.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 Pr1=0.0297/1000; //W(Recieved power)
7 Pr2=0.0471/1000; //W(Recieved power)
8 Pr3=0.0374/1000; //W(Recieved power)
9 Pt=1; //W(Transmitted power)
10 R=10; //m(Radius)
11 f = 980; //MHz(Frequency)
12 f=f*10^6; //Hz(Frequency)
13 c=3*10^8; //m/s (Speed of light)
14 lambda=c/f; //m(Wavelength)
15 A=20*log10(4*\%pi*R/lambda)+10*log10(Pr1/Pt); // (A=
     G1dB+G2dB)
G1dB+G3dB)
17 C=20*log10(4*\%pi*R/lambda)+10*log10(Pr3/Pt); //(C=
     G2dB+G3dB)
18 G1dB = (A+B-C)/2;
```

```
19  G2dB=(A-B+C)/2;
20  G3dB=(-A+B+C)/2;
21  disp(round(G3dB),round(G2dB),round(G1dB),"Gain of antennas, G1db, G2dB & G3dB(in dB) are: ");
```

Ground Wave Propagation

Scilab code Exa 14.6.1 Loss and power received

```
1 //Example No. 14.6.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 d=36000; //km(height of satellite)
7 f = 4000; //MHz(frequency)
8 GT=20; //dB(Transmitter gain)
9 GR=40; //dB(Reciever gain)
10 PT=200; //W(Transmitted power)
11 PT=10*log10(PT); //dB(Transmitted power)
12 disp("Part (i)");
13 Ls=32.44+20*\log 10(f)+20*\log 10(d);//dB(Free space
      transmission loss)
14 disp(Ls, "Free space transmission loss in dB: ");
15 disp("Part (ii)");
16 PT=200; //W(Transmitted power)
17 PT_dB=10*log10(PT); //dB(Transmitted power)
18 PR_dB=PT_dB+GT+GR-Ls; //dB(Recieved power)
19 PR=10^{(PR_dB/10)}; //W(Recieved power)
20 disp(PR*10^12, "Received power in pW:");
```

Scilab code Exa 14.6.2 Open circuit voltage

```
1 //Example No. 14.6.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 f=150; //MHz(frequency)
7 c=3*10^8; //m/s (speed of light)
8 GT=1.64; //dB(Transmitter gain)
9 PT=20; //W(Transmitted power)
10 d=50; //km(distance)
11 lambda=c/(f*10^6); //m(Wavelength)
12 E = sqrt(30*GT*PT)/(d*1000); //V/m(emf induced)
13 le=lambda/%pi;//m(Effective length)
14 Voc=E*le; //V/m(Open circuit voltage)
15 disp(Voc*10^6, "Open circuit voltage in micro Volt :
     ");
```

Scilab code Exa 14.10.1 Calculate the range

```
1  //Example No. 14.10.1
2  clc;
3  clear;
4  close;
5  format('v',7);
6  ht=100; //m(transmitter height)
7  hr=100; //m(receiver height)
8  d=3.57*[sqrt(ht)+sqrt(hr)]; //km(Range)
9  disp(d,"Range of space wave propagation in km : ");
```

Scilab code Exa 14.10.2 Radio horizon

```
//Example No. 14.10.2
clc;
clear;
close;
format('v',6);
ht=100;//feet(transmitter height)
hr=50;//feet(receiver height)
d=1.4142*[sqrt(ht)+sqrt(hr)];//miles(Range)
disp(d,"Radio horizon in miles:");
```

Scilab code Exa 14.10.3 Maximum covered distance

```
1  //Example No. 14.10.3
2  clc;
3  clear;
4  close;
5  format('v',6);
6  ht=80; //m(transmitter height)
7  hr=50; //m(receiver height)
8  d=4.12*[sqrt(ht)+sqrt(hr)]; //km(Range)
9  disp(d,"Maximum distance in km : ");
```

Scilab code Exa 14.10.4 Required height of antenna

```
1 //Example No. 14.10.4
2 clc;
3 clear;
```

```
4 close;
5 format('v',6);
6 ht=100; //m(transmitter height)
7 d=80; //km(receiver height)
8 hr=(d/4.12-sqrt(ht))^2; //m(range)
9 disp(hr, "Required height of receiving antenna in meter:");
```

Scilab code Exa 14.10.5 Radio horizon distance

```
//Example No. 14.10.5
clc;
clear;
close;
format('v',6);
ht=100;//m(transmitter height)
d=4.12*sqrt(ht);//km(Horizon distance)
disp(d,"Horizon distance in km : ");
```

Scilab code Exa 14.10.6 Find Distance and field strength

```
1 //Example No. 14.10.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 P=35; //W(Transmitter power
7 ht=45; //m(transmitter height)
8 hr=25; //m(receiver height)
9 f=90; //MHz(frequency)
10 c=3*10^8; //m/s(Speed of light)
11 d=4.12*[sqrt(ht)+sqrt(hr)]; //km(line of sight distance)
```

Ionospheric Propagation

Scilab code Exa 15.8.1 Maximum electron density

```
//Example No. 15.8.1
clc;
clc;
clear;
close;
format('v',11);
fc_E=2.5;//MHz(critical frequency of E-layer)
fc_F=8.4;//MHz(critical frequency of F-layer)

disp("For E-layer: ");
Nm=(fc_E*10^6)^2/81;//per m^3(Maximum electron density)
disp(Nm,"Maximum electron density in per m^3: ");
disp("For F-layer: ");
Nm=(fc_F*10^6)^2/81;//per m^3(Maximum electron density)
disp(Nm,"Maximum electron density in per m^3: ");
```

Scilab code Exa 15.8.2 Critical Frequency

```
1 //Example No. 15.8.2
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Nm_D=400; //electron/cm^3(Maximum electron density)
7 Nm_E=5*10^5; //electron/cm^3(Maximum electron density
  Nm_F=2*10^6; //electron/cm^3(Maximum electron density
  fc_D=9*sqrt(Nm_D); //kHz(critical frequency of D-
     layer)
10 disp(fc_D, "Critical frequency for D-layer in kHz:"
     );
11 fc_E=9*sqrt(Nm_E); //kHz(critical frequency of E-
     layer)
12 disp(fc_E/1000, "Critical frequency for E-layer in
     MHz : ");
13 fc_F=9*sqrt(Nm_F);//kHz(critical frequency of F-
14 disp(fc_F/1000, "Critical frequency for F-layer in
     MHz : ");
```

Scilab code Exa 15.8.3 Calculate frequency

```
1  //Example No. 15.8.3
2  clc;
3  clear;
4  close;
5  format('v',7);
6  Eta=0.5; // (refractive index)
7  N=400; //electron/cm^3(Electron density)
8  f=sqrt(81*N/(1-Eta^2)); //kHz(frequency)
9  disp(f,"Frequency in kHz:");
```

Scilab code Exa 15.9.1 Find the virtual height

```
1 //Example No. 15.9.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6 T=5;//milli-seconds(time period)
7 c=3*10^8;//m/s//speed of light
8 H=1/2*c*T*10^-3;//m(Virtual height)
9 disp(H/1000," Virtual height in km : ");
```

Scilab code Exa 15.12.1 Calculate MUF

```
1 //Example No. 15.12.1
2 clc;
3 clear;
4 close;
5 format('v',7);
6
7 d=2000;//km
8 H=200;//km
9 fc=6;//MHz
10 f_MUF=fc*sqrt(1+(d/2/H)^2);//MHz
11 disp(f_MUF,"MUF in MHz:");
```

Scilab code Exa 15.13.1 Calculate the range

```
1 //Example No. 15.13.1
```

```
2 clc;
3 clear;
4 close;
5 format('v',8);
6
7 Eta=0.9;//refractive index
8 f_MUF=10;//MHz
9 H=400;//km
10 Nm=(1-Eta^2)*(f_MUF*10^6)^2/81;//per m^3
11 fc=9*sqrt(Nm);//Hz
12 Dskip=2*H*sqrt((f_MUF*10^6/fc)^2-1);//km
13 disp(Dskip,"Skip distance or range in km : ");
```