

Diplomski studij

Informacijska i komunikacijska tehnologija Telekomunikacije i informatika

Računarstvo Računarska znanost Programsko inženjerstvo i informacijski sustavi

Raspodijeljeni sustavi

Završni ispit 27. siječnja 2010.

Ak.g. 2009./2010.

Zadatak 1 (1 bod)

Usporedite grozd (*cluster*) i splet (*grid*) računala s obzirom na kategorije i značajke koje su prikazane u tablici. Za svaku od ponuđenih kategorija, u stupac "Splet ili grozd" upišite splet ukoliko ta značajka karakterizira splet računala ili grozd ukoliko ona karakterizira grozd računala.

Kategorija	Značajka	Splet ili grozd
Aplikacije	Izvođenje računalno zahtjevnih aplikacija	
	Dijeljenje raznovrsnih sredstava u globalnoj mreži	
Tehnologija	Primjena vlasničkih i standardiziranih tehnologija	
	Primjena standardiziranih tehnologija	
Geografska raspodijeljenost	Elementi sustava globalno raspodijeljeni	
	Elementi sustava na bliskoj geografskoj udaljenosti	
Upravljanje	Središnje upravljanje sredstvima sustava	
	Više administrativnih domena za upravljanje sustavom	
Povezanost	Labavo povezane strukture	
	Čvrsto povezane strukture	
Prilagodljivost	Zatvorena okolina	
	Otvorena okolina	

Zadatak 2 (3 boda)

Ukratko objasnite razliku između skalarnih i vektorskih oznaka vremena prilikom sinkronizacije procesa u vremenu te navedite prednosti i nedostatke jedne i druge metode. Za slijed razmijenjenih poruka između tri računala prikazan slikom, uspostavite tijek akcija primjenom vektorskih oznaka logičkog vremena.

Zadatak 3 (1 bod)

Navedite i ukratko objasnite vrste usluga weba.

Zadatak 4 (3 boda)

Web poslužitelj opisan je modelom zasnovanim na repovima koji je prikazan na slici. Vjerojatnost usmjeravanja zahtjeva prema korisniku (p) iznosi 0.9. Ako obrada zahtjeva na poslužitelju weba u prosjeku traje 0.01 sekundu, dok obrada zahtjeva na bazi podataka u prosjeku traje 0.1 sekundu. Koliko je vrijeme zadržavanja u sustavu uz ulazni ritam dolazaka zahtjeva u iznosu od 1 zahtjev u sekundi.

Zadatak 5 (3 boda)

U nekoj kolekciji se nalazi 58 dokumenata. Broj dokumenata kolekcije u kojima se pojavljuje 6 izabranih riječi kolekcije (t_1 , t_2 , t_3 , t_4 , t_5 , t_6) prikazan je u sljedećoj tablici:

Riječ	t_1	t ₂	t ₃	t ₄	t ₅	t ₆
Broj dokumenata kolekcije u kojima se pojavljuje	1	0	0	4	3	1
riječ (df _t)						

Navedenu kolekciju proširimo s 2 dokumenta (d_j i d_k) čiji su brojevi pojavljivanja riječi u dokumentu dani sljedećom tablicom:

Riječ	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆
brojevi pojavljivanja riječi dokumentu d _j (tf(i,j))		0	2	6	0	2
brojevi pojavljivanja riječi dokumentu d _k (tf(i,k))		3	0	0	2	1

Pretpostavimo li da se vrijednosti težinskih faktora određuju sljedećom formulom:

$$w_{ij} = tf(i, j) \cdot idf(i) = tf(i, j) \cdot \log\left(\frac{N}{df_i}\right),$$

izračunajte sličnost između dokumenata d_i i d_k u novonastaloj kolekciji.

Zadatak 6 (2 boda)

Opišite značajke raspoređivanja zasnovanog na korištenju *prostorne lokalnosti* i *vremenske lokalnosti.* Skicirajte primjer obje vrste raspoređivanja.

Zadatak 7 (2 boda)

Pretpostavimo da se mreža sastoji od 3 peera i koristi za izgradnju tražilice tekstualnih dokumenata. Globalni indeks dokumenata od 9 (d_1 , d_2 , d_3 , d_4 , d_5 , d_6 , d_7 , d_8 , d_9) dokumenata i 6 riječi (a, b, c, d, e, f) izgleda ovako:

a:{d2,d3,d8}

b:{d1}

c:{d4,d5,d7,d8}

d:{d1,d3,d6}

e:{d5,d6,d9}

f:{d2,d4}

Ukoliko želimo postići podjednako opterećenje svakog peera, skicirajte kako će peerovi podijeliti globalni indeks u a) nestrukturiranoj i b) strukturiranoj P2P mreži?

a)

