Topic: Tangent lines

Question: Find the equation of the tangent line to the function at (1, -2).

$$g(x) = 3x^2 - 6x + 1$$

Answer choices:

$$A \qquad y = -2$$

$$B \qquad x + y = -2$$

$$C y = 2$$

$$D x - y = 2$$

Solution: A

If we know that the tangent line intersects the curve at (1, -2), we don't need to find g(1), because it's the y-value where the tangent line intersects the curve, so g(1) = -2.

Take the derivative of the function.

$$g'(x) = 6x - 6$$

Find the slope of the tangent line at (1, -2) by evaluating the derivative at that point.

$$g'(1) = 6(1) - 6$$

$$g'(1) = 0$$

The slope of the tangent line at (1, -2) is g'(1) = 0.

Finally, substitute both g(1) and g'(1) into the tangent line formula, along with a=1, since this is the value at which we're finding the equation of the tangent line.

$$y = g(a) + g'(a)(x - a)$$

$$y = -2 + 0(x - 1)$$

$$y = -2$$

Topic: Tangent lines

Question: Find the equation of the tangent line to the function at (1,1/2).

$$f(x) = \frac{1}{x^2 + 1}$$

Answer choices:

$$\mathbf{A} \qquad y = -\frac{1}{2}x + 1$$

$$\mathsf{B} \qquad y = x - 1$$

$$C y = -2x + 2$$

$$D y = \frac{1}{2}x - 1$$

Solution: A

Use quotient rule to take the derivative of the function.

$$f'(x) = \frac{(0)(x^2 + 1) - (1)(2x)}{(x^2 + 1)^2}$$

$$f'(x) = \frac{0 - 2x}{(x^2 + 1)^2}$$

$$f'(x) = -\frac{2x}{(x^2 + 1)^2}$$

Find the slope of the tangent line at (1,1/2) by evaluating the derivative at that point.

$$f'(1) = -\frac{2(1)}{(1^2 + 1)^2}$$

$$f'(1) = -\frac{1}{2}$$

Now we can find the equation of the tangent line by plugging the slope f'(1) = 1/2 and the point (1,1/2) into the formula for the equation of the tangent line.

$$y = f(a) + f'(a)(x - a)$$

$$y = f(1) - \frac{1}{2}(x - 1)$$

$$y = \frac{1}{2} - \frac{1}{2}(x - 1)$$

$$y = \frac{1}{2} - \frac{1}{2}x + \frac{1}{2}$$

$$y = -\frac{1}{2}x + 1$$

Topic: Tangent lines

Question: Where on the interval $-1 \le x \le 1$ does the function have horizontal tangent lines?

$$f(x) = x^3 - x - 3$$

Answer choices:

A At
$$x = 0$$

$$B \qquad \text{At } x = \pm \frac{\sqrt{3}}{3}$$

C At
$$x = \pm \sqrt{3}$$

D At
$$x = \pm 3$$

Solution: B

Take the derivative of the function.

$$f'(x) = 3x^2 - 1$$

Horizontal tangent lines exist when f'(x) = 0, so we'll set the derivative equal to 0.

$$3x^2 - 1 = 0$$

$$3x^2 = 1$$

$$x^2 = \frac{1}{3}$$

$$x = \pm \sqrt{\frac{1}{3}} = \pm \frac{\sqrt{1}}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}} = \pm \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{\sqrt{3}}\right) = \pm \frac{\sqrt{3}}{3}$$

On the interval $-1 \le x \le 1$, the function has two horizontal tangent lines, located at

$$x = \pm \frac{\sqrt{3}}{3}$$

