

FIG.1A

FIG.1B

FIG.1C

FIG.3

FIG.4A

FIG.4B

FIG.4C

0979582656 0108612

1ST CODING NUCLEOTIDE OF DT-A 5-CAGGGAGCACCAAGGATGGAGATGTTCCAG-GCCCTGATGATGTTGTT EXON 1 OF AHOGE

GATTCTTCTTAAATCTTTTGTGATGGAAAACTTTTCTTCGTACCACGGGACTA

AACCTGGTTATGTAGATTCCATTCAAAAA-3'

Cis-spliced products

= NORMAL cis-SPLICING (277bp)

= Exon SKIPPING (110bp)

Trans- spliced products

E1 DT-A = 1st EVENT, 196bp. Trans-Splicing between 5' ss of target & 3' ss of PTM.

= 2nd EVENT, 161bp. Trans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B

FIG.9

FIG. 10B

FIG.11B

Do Not Enter Figure 11B

FIG.11C

FIG.12A

1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp):

BioLac-TR1

GOGGTTTGGCTAAATACTGGCAGGCCTTTGGTCAGTATCCCCCGTTTACAG/GGCGCCTTCGTCTAATAATG Splice junction

GCACTGGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTT

TGGCGATACGCCCAACCATCGCCAGTTCTGTATGAACGCTCTGGTCTTTGCCCACCCCACCCCACCAC

2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp)

BioLac-TR1

GGCTTTCGCTACCTGGAGAGACGCCCCCTGATCCTTTGCGAATACGCCCACGCGATGCGTAACAGTCTTGG

COGTITICSCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCCGTTTACAG/GGCGTGCTGCTGTTGCTGCTGCT Splice junction

GAGCATGGGCGGCATGCGCATCCAAGGAGCCCACTTCGGCCCACGGTGCCG

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

FIG.13

FIG.14

320 CACAAAGGATACTACTTATATCTATGTCTTCGCAGTAGTTTCGTACGTTGATCTTCTCGTAGTAGTAGTAGTAATC

GTGTTTCCTATGATGATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGCATCATCATCATCATTAG

240 GCTAGCGITTAAACGGGCCGACCATCATTAGGTCATTATCGGGGAACATTATTATAACGTTGCTCGAGTACTAAC 80 TAAGCACAGTGGAAGAATTTCATTGTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATC<mark>TTT</mark>G | ACCATGGAGAAGAAAAAAAGGACGTC|TGAAGATTACTACTAATACCCTCTTGACCTCGGAAGTCTCCCATTTTA ATTCGTGTCACCTTCTTAAAGTAAGACAAGAGTCAAAAGGACCTAATACGGACCGTGGTAATTTCTTTTATAGTAGAAAC CGATCCCAAATTIGCCCGGGIGGGIAGTAATAATCCAGTAATAGGCGCCTTGTAATAATATTGCAACGAGCTCATGATTG Sca Positions of Restriction Endonucleases sites (unique sites underlined) GCTAGCGTTTAA ... TGCCACTCCCAC linear BINDING DOMAIN Sph I INTRON 9 BD Dde I 190 102 DNA sequence 500 b.p. Hae III Sau96 I Sauge 1 Ban II Apa Xmn Nhe I Dra I

FIG. 15A

	111 Dra 1 TAACTT 400 ATTCAA 399	PRESENT IN PTM 3' UT BUT NOT TARGET CCTTCCTTGACC 480 GGAAGGAACTGG			11
1	Kpn I CGGTACCAACCTTAA GCCATGGTTCGAATT 384 390	378 PRESENT IN PTM 3 378 BUT NOT TARGETOCCCTCCCCTCCCTCCCTCCTTCACC 480 ACGGGGGGGCGCACGGAACTGG		Sca 1 Sma 1 Sma 1 Sph 1	- Stu
Sac	Sau3A I Dpn 1 BamH I LL BamH I ACTAGTGGATCCCAGCT IGATCACCTAGGCTCGA CF28 II 373 373	378 378 378 TTGTTTGCCCCTCC	•	Restriction Endonucleases site usage EcoR I 1 Nde I - EcoR V 1 Nhe I 1 1 Hae II - Not I 1 1 Hae III 2 Pf IM I - HinC II - Pst I 2 HinD III 1 Pvu I -	- II nva
	ACCACACTGGACT, TGGTGTGACCTGA TGGTGACCTGA	TECCAGCCATCTG	•	riction Endonucl EcoR I 1 EcoR V 1 Hae II – Hae III 2 HinC II – HinD III 1	
	Pst I V EcoR I ICTGCACATTCC ACACCTCTTAAGG I 349	IGTGCCTTCTAGT ACACGGAAGATCA	CF27 • 000	Restrict 1 EcoR 1 Hae Hae Hae Hae Hae Hae	ו ו
	Hae III Pst I Dpn I HinD III Not I BamH I Kpn I Dra I BamH I Kpn I Dra I Dra I BamH I Kpn I Dra	Sau3a I Sau3a I Sau3a I Dpn I TAAACCGCTGATCAGCTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTT	410 CF 410 CTGCAAGGTGCCACTCCCAC 500 GACCTTCCAGGTGAGGGTG	Acc I Apa I Apa I Avr II BamH I Ban II	חמם

FIG. 16

FIG. 19

(1) 3' BD (120 BP): CATTCACTTGCTCCAATTATCATCCTAAGCAGAAGTGTATATTCTTATTTGTAAAGATTCTATTAACTCATTTGATTC AAAATATTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACGTIGCTCGAA

3'ss LacZ mini (3) Branch point, pyrimidine tract and acceptor splice site: IACIAAC I GGTACC ICTICTITTITTIT GATATC CIGCAC GGC GGC

spacer sequence: | [IGA ACC] CIAACI GITAICACCCAIAIGIGICIAACCIGAIICGGCCTICGAIACG CTAAGATCCACCGG LacZ mini 5°ss exon (4) 5' donor site and 2^{nd}

ACACCCAATGATTTTTTTTTCTCCATTTCTGCTGCATAATCCTGGAAAACTGATAACAATGAAATTCTTCCACTGTGCTTAA AAAAACCCTCTGAATTCTCCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATTATTAACTCA TTATCAAATCACGC (2) 2,

FIG.21

FIG.23A

၁၁၁ TITGGCGATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTGCTTTGCAC LacZ 3' Exon ACCURACY OF DOUBLE TRANS-SPLICING REACTION Splice Junction 2

FIG.23B

Figure 24

FIG.25

FIG. 26

FIG.27

SPECIFICITY OF DOUBLE TRANS-SPLICING REACTION

FIG.29

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini—gene target

A<u>CCAGCT</u>TGCTCATGATGATGATGGGCGGGTTAGAACCAAGTGAAGGCAAGATCAAACATTCCG G<u>CC</u>GCAT<u>CAGC</u>TT<u>I</u>TG<u>CAGC</u>CA<u>A</u>TT<u>CAGTI</u>GGATCATGCCCCGGTACCATCAAGGAGAACATAAT <u>Ç 7 TCCCCCTCAGTI ACCACCAGTACCCCTA ICCCTCC</u>CTGAT<u>I</u> AAGCCCTG<u>TCAGTTG</u>CACGAC MCU in exon 10 of PTM 88 OF 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

FIG. 3

Sequence of a double *Trans*—spliced product

FIG.32

Target Poly(A) 11 - 24CF—TR Repair: 5' Exon—Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini—gene target Poly(A) Repaired full length CFTR mRNA 11-24 Mini-intron 9 AF508 Mini-intron 10 FIG.33 3,88 Spacer) TRANS 11 - 245'ss Cis. F508 윱 10 1-10 5,88 3,88 **AF508** F508 2 5,88 1-10 1-9 1-9 ATG PTM

FIG.34A

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini—gene target.

FIG.34C

MCU in exon 10 of PTM 88 of 192 (46%) bases in PTM exon 10 are not complemetary to its binding domain.

<u>C77CGCCGTCAGTI</u>ACCACCAGTACCCTAICGCTCGGTIAAGGCCCTGICAGTTGCAGGAG ACCAGCTTGCTCATGATCATGGCCCAGTTAGAACCAAGTGAAGGCGAAGATCAAACATTCCG G<u>CCGC</u>AT<u>CAGC</u>TTTTG<u>CAGC</u>CA<u>A</u>TT<u>CAGTT</u>GGAT<u>C</u>ATGCCCCGGGTACCATCAAGGAGAACAT<u>A</u>AT

FIG. 5.

Figure 36

FIG.37A

FIG.37B

Total RNA	# PCK cycles (bp)	100 Trans-spliced
1 1-1	20 25 30	M 13 14 1
Trans-splicing TM-CF14 100 ug 200 ng	20 ~25 30 20 25 30	7 8 9 10 11 12 M 13 14 15
Cis-splicing	30 20 25 30	1 2 3 4 5 6 M 7
4		Cis-spliced (303 bp)

Figure 35 A

		Total RNA	# PCR cycles	i de la companya de l	(dd)	500	200 ← Trans-spliced	(do 667) 201		S
			20 25 30							4
	lacZCF9	50 ng	2	- 1 - 1			量			3
	laci		2			Thurs.				1
Trans-splicing			9	300 C	4111	, gj				12 M 13 14
s-spl		100 ng	22							
Tran			70							01
	,F24	17.1	20 25 30 20 25 30				福命			6
	IM-C	50 ng	25	· Control of						~
	1 + P		82			3775				7 W 3
	18		8		. i.	*				Ų
ing	Cir-spiicing IacZCF9m + PTM-CF24	59 ng	25				東京			
splic			20 25				-			<
Cis-		N N	28							3,0
		25 as					1.			
		1	ន							
				2 V	10 T		1			
						, 7	0 0 0 0 0 0	2 (2	•	
٠						•	s-spiiced			

		25 30 35 25 30 35 25 30 35 35 35 # PCR cycles	Trans-spliced299 bp	
slo	7T-	35		7
Controls	Mock RT-	22		10 11
	4. M	55		G
ì	֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ဓ္က	**************************************	ထ
į	<u> </u>	25		7
	22	35		ဖ
	<u>r</u>	90		ည
	₽Ţ₽	25		4
\vdash	4	35		က
	Š	ဓ္တ		7
	PTM-CF14 PTM-CF22 PIM-CF24	25		-
Marker				Σ
L			(5p) 500 300 100 100	■*

Figure 38.B

 ω

Figure 39

Figure 40A

FIG.41A

ANNED, #

FIG. 41C

Exons

1-10

ATGCAGAGGTCGCCTCTGGAAAACGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG GGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT TIGATITATAAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGGATCGCTCCTTTGCAAGTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG GCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAATGATTGAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT CTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAG CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT AGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGACGAGCTTGCTCATGATGATGATGATGAGGCGAG TTAGAACCAAGTGAAGGCAAGATCAAACATTCCGGCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTA CCATCAAGGAGAACATAATC//CGGCGTCAGTTACGACGAGTACCGCTATCCCTCGGTGATTAAGGCCTGTCAGTTGGA **G**GAG

Trans-splicing domain

<u>GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG</u>

ICAAAAAGTTTICACATAATTICTTACCTCTTCTTGAATTCATGCTTTGATGACCCTTCTGTATCTATATTCATCATTG
GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGT
GCTTAATTTTACCCTCTGAATTCTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATT
ATTAACTCATTATCAAATCACGCT

FIG.42

153 bp PTM24 Binding Domain:

GCTAGC-AATAATGACGAAGCCGCCCTCACGCTCACGATTCACTTGCCTCCAATTATCATCCTAAGCAGAGTGTATA 153 bp BD underlined

TTCTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTCTGCTATGC

Sac II

FIG.43A

Trans-splicing domain

Exons 10-24

ACTICACTICTAATGATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCT GTTCTCAGTTTCCTGGATTATGCCTGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGAGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATITTATGGGACATTITCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAGTTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT CTGATGAGCCTTTAGAGAGAGCCTGTCCTTAGTACCAGATTCTGAGCAGGGAGAGGCGATACTGCCTCGCATCAGCGT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAACAGCATCCACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTITIGIGCTAATTIGGTGCTTAGTAATTITTCTGGCAGAGGTGGCTGCTTCTTTGGTTGTGCTGTGGCTCCTTGGAA ACACTCCTCTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT ATTTGACTTCATCCAGTTGTTATTAATTGTGATTGGAGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCACCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATAGAAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAACGAGAAGAAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACCAAGTCAACCAAACCATACAAGAATGGCCAACTCTCGAAAGTTATGATTATTGAGAATTCACACGTGAAGAAGATG ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TCAGCTTTTTTGAGACTACTGAACACTGAAGGAGAAATCCAGATCGATGGTGTGTCTTGGGATTCAATAACTTTGCAAC TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGACGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTCGATGCCGCTGTGTCCTAAGCCATGCCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA

Histidine tog Stop
TGCTCTGAAAGAGGAGACAGAAGAAGAGGGTGCAAGATACAAGGCTTCATCATCATCATCATCATTAG