Languages and Computation (COMP2049/AE2LAC)

Regular Expressions, Nondeterminism, and Kleene's Theorem

Dr. Tianxiang Cui

tianxiang.cui@nottingham.edu.cn

Regular Languages

- Many simple languages can be expressed by a formula involving the operations of union, concatenation and Kleene star.
- Example: $\Sigma = \{a, b\}$
 - Strings ending in aa: $\{a, b\}^* \{aa\}$
 - This is a simplification of $(\{a\} \cup \{b\})^*\{a\}\{a\}$
 - Strings containing the substring ab or the substring bba: $\{a, b\}^*$ $\{ab, bba\}$ $\{a, b\}^*$
- These are called regular languages

Regular Languages

- Definition:
- The set of regular languages R over an alphabet Σ is defined recursively as follows:
- Basis Clause:
 - The empty language \varnothing is the element of R
 - For any symbol $s \in \Sigma$, the language $\{s\}$ is the element of R
- Inductive Clause:
 - For every two languages L_1 and L_2 in \boldsymbol{R} , the three languages $L_1 \cup L_2$, L_1 L_2 , and L_1 * are elements of \boldsymbol{R}

Regular Languages: Example

• The empty language \varnothing is the element of R, so \varnothing^* is also the element of R

- $\Sigma = (a,b)$
- $\{a\}$, $\{b\}$ are the elements of \boldsymbol{R}
 - The language containing only one word of length 1
- $\{a, b\}$ (= $\{a\} \cup \{b\}$) and $\{ab\}$ (= $\{a\}\{b\}$) are the elements of \boldsymbol{R}
- Since $\{a\}$ is the element of R, $\{a\}^*$ is also the element of R
- Σ^* , which is the set of strings consisting of a's and b's, is also the element of \mathbf{R} because $\{a, b\}$ is the element of \mathbf{R}

Regular Expressions

- A regular language has an explicit formula
 - · A regular expression for a language is a slightly more user-friendly formula
- Parentheses () replace curly braces {}, and are used only when needed, and the union symbol is replaced by +

Regular language	Regular Expression
Ø	\varnothing
{ε}	ε
$\{a,b\}^*$	$(a+b)^*$
$\{aab\}^*\{a,ab\}$	$(aab)^*(a+ab)$

Regular Expressions

- Two regular expressions are equal if the languages they describe are equal
- $(a^*b^*)^* = (a+b)^*$
 - Both represent the language of all strings over the alphabet $\{a, b\}$
- $(a+b)^*ab(a+b)^*+b^*a^* = (a+b)^*$
 - The first half of the left-hand expression describes the strings that contain the substring *ab* and the second half describes those that don't
- A regular expression is not unique for a language
 - In general, a regular language, corresponds to more than one regular expressions

Exercises

- Find the shortest string that is not in the language represented by the regular expression $a^*(ab)^*b^*$
- For the two regular expressions given below
 - Find a string corresponding to r_2 but not to r_1
 - Find a string corresponding to both r_1 and r_2

$$r_1 = a^* + b^*$$
 $r_2 = ab^* + ba^* + b^*a + (a^*b)^*$

- Find a regular expression corresponding to the language of all strings over the alphabet $\{a, b\}$ that contain exactly two a's
- Find a regular expression corresponding to the language of all strings over the alphabet $\{a, b\}$ that do not end with ab

Anything Strange Here?

- Kleene's Theorem asserts that regular languages are precisely the languages accepted by **finite automata**
- To prove this, we introduce a more general "device," a **nondeterministic** finite automaton (**NFA**)
- These make it much easier to start with a regular expression and draw a transition diagram for a device that accepts the corresponding language and has an obvious connection to the regular expression
- We will show that allowing nondeterminism doesn't change the languages that can be accepted

- This NFA closely resembles the regular expression $(aa + aab)^*b$
 - The top loop is aa
 - The bottom loop is *aab*
 - By following the links we can generate any string in the language
- This is **not** the transition diagram for a DFA; some nodes have more than one arc leaving them

- For NFA, the next state may be **nothing** or **two** or **more possible next** states for some **current** state and input symbol. In this case, we should not think of an NFA as describing an algorithm for recognizing a language
- Instead, consider it as describing a number of different sequences of steps that might be followed

- Suppose we have an input string aaaabaab to process using the left NFA
- We can draw a computation tree to visualize the sequences
 - Each **level** corresponds to a prefix of the input string
 - Each **state** on a level is one the machine **could be** in after processing that prefix
 - There is an accepting path for the input string (as well as other paths that are not accepting)

Computation Tree

• One "correct" way to interpret the input string is aaaabaab

• The path in which the device makes the "correct" choice at each step ends up at the accepting state when all the input symbols have been read

NFA: Formal Definition

- An NFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$ given by
- 1. A finite set of states Q
- 2. A finite set of input symbols (alphabets) Σ
- 3. A transition function $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$
 - The values of δ are not single states, but sets of states, this is different with DFA transition function $\delta: Q \times \Sigma \to Q$
- 4. An initial state $q_0 \in Q$
- 5. A set of accepting (or final) states $F \subseteq Q$
- For every element q of Q and every element s of $(\Sigma \cup \{\epsilon\})$, we interpret $\delta(q,s)$ as the **set of states** to which the NFA can move from state q on input symbol s

- The transition function maps a state and an input symbol to zero or more successor states. Thus an NFA has "choice"; hence "nondeterministic"
- However, nothing ambiguous about the language defined by an NFA. Not the case that some word $w \in L(A)$ sometimes, and $w \notin L(A)$ other times for some NFA A.
 - How? By considering all possible states simultaneously
- Allowing nondeterminism doesn't change the languages that can be accepted

NFA: Extended Transition Function

• Defining δ^* is a little harder than for a DFA, as for the receiving input string x, $\delta^*(q, x)$ is a set of states, and for each state p in this set, $\delta(p, s)$ is also a set. Thus, in order to define $\delta^*(q, x.s)$, we need to include all the possibilities:

$$\cup \{\delta(p,s) \mid p \in \delta^*(q,x)\}$$

- Also, we need to consider ϵ -transitions, which allows the device to change state with **no input**
 - It could potentially occur at any stage

NFA: ε-Closure

• **Definition**: Suppose $A = (Q, \Sigma, \delta, q_0, F)$ is an NFA, and $S \subseteq Q$ is a set of states. The ε -closure of S is the set $\varepsilon(S)$, which can be reachable from any state in S following ε -transitions. $\varepsilon(S)$ can be defined recursively as follows:

$$S \subseteq \varepsilon(S)$$

For every
$$q \in \varepsilon(S)$$
, $\delta(q, \varepsilon) \subseteq \varepsilon(S)$

- Algorithm to calculate $\varepsilon(S)$
 - Initialize T to be S, as in the basis part of the definition
 - Make a sequence of passes, in each pass considering every $q \in T$ and adding every state in $\delta(q, \varepsilon)$ not already there
 - Stop after the first pass in which T does not change
 - The final value of T is $\varepsilon(S)$
- A state is in $\varepsilon(S)$, if it is the element of S, or can be reached from an element of S using one or more ε -transitions

NFA: Extended Transition Function

- **Definition**: Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA
- Define the extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$ as follows:
 - For every $q \in Q$, $\delta^*(q, \varepsilon) = \varepsilon(\{q\})$
 - For every $q \in Q$, every $y \in \Sigma^*$, and every $s \in \Sigma$
 - $\delta^*(q, ys) = \varepsilon(\cup \{\delta(p, s) \mid p \in \delta^*(q, y)\})$
 - A string $x \in \sum^*$ is accepted by A if $\delta^*(q_0, x) \cap F \neq \emptyset$
 - i.e., some sequence of transitions involving the symbols of x and ε 's leads from q_0 to an accepting state
- The language L(A) accepted by A is the set of all strings accepted by A

NFA: Eliminate ε-Transitions

- Two types of nondeterminism have arisen:
 - Different arcs for the same input symbol
 - ε-transitions
 - Both can be eliminated
- For the second type, introduce new transitions so that we no longer need the \varepsilon-transitions
- When there is no s-transition from p to q but the NFA can go from p to q by using one or more ε -transitions as well as s, we introduce the s-transition
- The resulting NFA may have more nondeterminism of the first type, but it will have no ϵ -transitions

NFA: Eliminate ε-Transitions

- **Theorem**: For every language $L \subseteq \Sigma^*$ accepted by an NFA $A = (Q, \Sigma, \delta, q_0, F)$, there is an NFA A_1 with no ε -transitions that also accepts L
- Define $A_1 = (Q, \Sigma, \delta_1, q_0, F_1)$, where
 - For every $q \in Q$, $\delta_1(q, \varepsilon) = \emptyset$
 - For every $q \in Q$ and every $s \in \Sigma$, $\delta_1(q, s) = \delta^*(q, s)$
- Define $F_1 = F \cup \{q_0\}$ if $\epsilon \in L$, and $F_1 = F$ otherwise
- We can prove that, by structural induction on x, that for every q and every x with $|x| \ge 1$, $\delta_1^*(q, x) = \delta^*(q, x)$
 - pp 104-106

Eliminate ε-Transitions: Example

• Accepts the language corresponding to the regular expression

$$(a^*ab(ba)^*)^*$$

Eliminate ε-Transitions: Example

\boldsymbol{q}	$\delta(q,a)$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{b})$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{\Lambda})$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	Ø	Ø	{2}	{2, 3}	Ø
2	{2, 3}	Ø	Ø	{2, 3}	Ø
3	Ø	{4 }	Ø	Ø	$\{1, 2, 4\}$
4	Ø	{5}	{1}	{2, 3}	{5}
5	{4}	Ø	Ø	{1, 2, 4}	Ø

• Where $\delta^*(q,s)$ shows all the states that can be reached from q using either one s-transition or the **combination** of **one** s-transition and (**possibly more than one**) ε -transitions

Eliminate ε-Transitions: Example

\boldsymbol{q}	$\delta(q,a)$	$\delta(q,b)$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{\Lambda})$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	Ø	Ø	{2}	{2, 3}	Ø
2	{2, 3}	Ø	Ø	{2, 3}	Ø
3	Ø	{4 }	Ø	Ø	$\{1, 2, 4\}$
4	Ø	{5}	{1}	{2, 3}	{5}
5	{4}	Ø	Ø	{1, 2, 4}	Ø

• Draw the new transitions using the information in $\delta^*(q,s)$

NFA: Observations

- An NFA can be in one of a **set** of states
- When reading an input symbol, the machine enters one of a **new set** of states
- Each set is a subset of Q, so the set of possible states is (at most) P(Q)
 - Q is **finite**. Thus P(Q) is **finite** too
- There may be lots of states as $|P(Q)| = 2^{|Q|}$, but the number of states is finite
- We can thus convert an NFA into a DFA by considering each possible set of NFA states as a **single** DFA state
 - Known as subset construction

NFA: Subset Construction

- **Theorem**: For every language $L \subseteq \Sigma^*$ accepted by an NFA $A = (Q, \Sigma, \delta, q_0, F)$, there is a DFA $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ that also accepts L
- Subset construction: we can assume A has no ε -transitions. Let $Q_1 = 2^Q$ (i.e. the set of all possible states of A), $q_1 = \{q_0\}$
 - For every $q \in Q_1$ and every $s \in \Sigma$, $\delta_1(q, s) = \bigcup \{\delta(p, s) \mid p \in q\}$
 - $F_1 = \{q \in Q_1 \mid q \cap F \neq \emptyset\}$
- A_1 is clearly a DFA
 - It accepts the same language as A because for every $x \in \sum^*$, $\delta_1^*(q_1, x) = \delta^*(q_0, x)$

• Accepts the language corresponding to the regular expression

$$(aa + aab)^*b$$

- If an NFA has n states, the equivalent DFA may have at most 2^n states
 - However, many are typically unreachable
 - Save work by only considering reachable states

• We may only consider the reachable states

q	$\delta(q,a)$	$\delta(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\delta(q,a)$	$\delta(q,b)$
0	$\{1,2\}$	{4}
$\{1,2\}$	$\{0,3\}$	Ø
{4}	Ø	Ø
$\{0,3\}$	$\{1,2\}$	$\{0,4\}$
Ø	Ø	Ø
$\{0,4\}$	$\{1,2\}$	<i>{</i> 4 <i>}</i>

• We may only consider the reachable states

q	$\delta(q,a)$	$\delta(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

$oldsymbol{q}$	$\delta(q,a)$	$\delta(q,b)$
$\rightarrow 0$	$\{1,2\}$	{4}
$\{1,2\}$	$\{0,3\}$	Ø
*{4}	Ø	Ø
$\{0,3\}$	$\{1,2\}$	$\{0,4\}$
Ø	Ø	Ø
*{0,4}	$\{1,2\}$	$\{4\}$

q	$\delta(q,a)$	$\delta(q,b)$
$\rightarrow 0$	$\{1,2\}$	{4}
$\{1,2\}$	$\{0,3\}$	Ø
*{4}	Ø	Ø
$\{0,3\}$	$\{1,2\}$	$\{0,4\}$
Ø	Ø	Ø
*{0,4}	$\{1,2\}$	$\{4\}$

Putting All Together

• Accepts the language corresponding to the regular expression

$$a^*((ab)^*b + b^*a)$$

Draw Transition Table

\boldsymbol{q}	$\delta(\mathbf{q}, \mathbf{a})$	$\delta(q,b)$	$\delta(\mathbf{q}, \mathbf{\Lambda})$	$\delta^*(q,a)$	δ*(q,b)
1	{1}	Ø	{2, 4}	{1, 2, 3, 4, 5}	{4, 5}
2	{3}	{5}	Ø	{3}	{5}
3	Ø	{2}	Ø	Ø	{2}
4	{5}	{4}	Ø	{5}	{4}
5	Ø	Ø	Ø	Ø	Ø

Eliminate Null-Transitions

q		$\delta(q,b)$	$\delta(q, \Lambda)$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	{1}	Ø	{2, 4}	$\{1, 2, 3, 4, 5\}$	{4, 5}
2	{3}	{5}	Ø	{3}	{5}
3	Ø	{2}	Ø	Ø	{2}
4	{5}	{4 }	Ø	{5}	{4 }
5	Ø	Ø	Ø	Ø	Ø

Subset Construction

$oldsymbol{q}$	$\delta(q,a)$	$\delta(q,b)$
→{1}	$\{1,2,3,4,5\}$	$\{4,5\}$
*{1,2,3,4,5}	$\{1,2,3,4,5\}$	$\{2,4,5\}$
*{4,5}	{5}	{4}
*{2,4,5}	$\{3,5\}$	$\{4,5\}$
{4}	{5}	{4}
*{5}	Ø	Ø
*{3,5}	Ø	{2}
{2}	{3}	{5}
{3}	Ø	{2}
Ø	Ø	Ø

Resulting Equivalent DFA

$oldsymbol{q}$	$\delta(q,a)$	$\delta(q,b)$
\rightarrow {1}	$\{1,2,3,4,5\}$	$\{4,5\}$
*{1,2,3,4,5}	$\{1,2,3,4,5\}$	$\{2,4,5\}$
*{4,5}	{5}	{4}
*{2,4,5}	$\{3,5\}$	$\{4,5\}$
{4}	{5}	{4}
*{5}	Ø	Ø
*{3,5}	Ø	{2}
$\{2\}$	$\{3\}$	{5 }
{3}	Ø	{2}
Ø	Ø	Ø

- **Theorem**: For every alphabet Σ , every regular language over Σ can be accepted by a finite automaton
- Because of what we have just shown, it is enough to show that every regular language over \sum can be accepted by an NFA
- The proof is by structural induction, based on the recursive definition of the set of regular languages over Σ

- The basis cases are easy
- The machines pictured below accept the languages \emptyset and $\{s\}$, respectively

- The induction hypothesis is that, suppose L_1 and L_2 are both regular languages over Σ for both i =1 and i = 2, L_i can be accepted by an NFA $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$
- For the induction step, we need to show there are NFAs accepting the three languages
- 1. $L(A_1) \cup L(A_2)$
- 2. $L(A_1) L(A_2)$
- 3. $L(A_1)^*$
- For simplicity, we assume there are two NFAs, A_1 and A_2 , accepting $L(A_1)$ and $L(A_1)$, respectively. Each of A_1 and A_2 may have two accepting states, both distinct from the initial state

- This NFA, A_u , accepts the language $L(A_1) \cup L(A_2)$
- Its states are those of A_1 and A_2 and one additional state q_u that is the initial state
- The transitions include all the ones in A_1 and A_2 as well as ε -transitions from q_u to q_1 and q_2 , the initial states of A_1 and A_2
- The accepting states are simply the states in $F_1 \cup F_2$

- This NFA, A_c , accepts the language $L(A_1)L(A_2)$
- The initial state is q_1 , and the accepting states are the elements of F_2
- The transitions include all those of A_1 and A_2 and a new ϵ -transition from every element of A_1 to q_2

• This NFA, A_k , accepts the language $L(A_1)^*$

• Its states are the elements of Q_1 and a new initial state q_k that is also the only accepting state

• The transitions are those of A_1 , a ϵ transition from q_k to q_1 , and a ϵ transition from every element of F_1 to q_k

• By using these constructions, we can create for **every** regular expression an NFA that accepts the corresponding language

- **Theorem**: For every finite automaton $A = (Q, \Sigma, \delta, q_0, F)$, the language L(A) is regular
- Proof:
- First, for two states p and q, we define notation for the language

$$L(p, q) = \{x \in \sum^* | \delta^*(p, x) = q\}$$

- If we can show that for every p and q in Q, L(p, q) is regular, then it will follow that L(A) is, because
 - $L(A) = \bigcup \{L(q_0, q) \mid q \in F\}$
 - The union of a finite collection of regular languages is regular
- We will show that L(p, q) is regular by expressing it in terms of simpler languages that are regular

- We will consider the distinct states through which A passes as it moves from p to q
- If $x \in L(p, q)$, we say x causes A to go from p to q through a state r if there are non-null strings x_1 and x_2 such that $x = x_1x_2$, $\delta^*(p, x_1) = r$, and $\delta^*(r, x_2) = q$
 - In using a string of length 1 to go from p to q, A does not go through any state
 - In using a string of length $n \ge 2$, it goes through a state n 1 times (but if n > 2, these states may not be distinct)

- Assume Q has n elements numbered 1 to n
- For $p, q \in Q$ and $j \ge 0$, we let L(p, q, j) be the set of strings in L(p, q) that cause A to go from p to q without going through any state numbered higher than j
- The set L(p, q, 0) is the set of strings that allow A to go from p to q without going through any state at all
 - Includes the set of alphabet symbols s for which $\delta(p,s) = q$
 - And in the case when p = q
 - In any case, L(p, q, 0) is a finite set of strings and therefore regular
- Suppose that for some number $k \ge 0$, L(p, q, k) is regular for every $p, q \in Q$ and consider how a string can be in L(p, q, k+1)

- Suppose that for some number $k \ge 0$, L(p, q, k) is regular for every $p, q \in Q$ and consider how a string can be in L(p, q, k+1)
- The easiest way is for it to be in L(p, q, k)
- If not, it causes A to go to k+1 one or more times, but A goes through nothing higher
 - It can go from p to k+1; it may return to k+1 one or more times; and it finishes by going from k+1 to q

- On each of these individual portions, the path starts or stops at state k+1 but doesn't go through any state numbered higher than k
- Every string in L(p, q, k+1) can be described in one of those two ways and every string that has one of these two forms is in L(p, q, k+1). This leads to the formula

$$L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) L(k+1, k+1, k)^* L(k+1, q, k)$$

Concluding Remarks

- Regular languages and regular expressions
- Nondeterministic finite automata
 - Eliminate e-transitions
 - Convert NFA into DFA
- Kleene's theorem