

Università degli studi Milano Bicocca - Dipartimento di Fisica

Esperimentazioni di Fisica Computazionale

S. Franceschina

$\mathrm{May}\ 29,\ 2025$

Abstract

Contents

1	Analisi dell'errore	2
	1.1 Teoria	2
	1.2 Esercizio 1.0.1	2
	1.3 Esercizio 1.2.1	
2	Sistemi lineari	3
	2.1 Teoria	3
3	Radici di equazioni non lineari	3
	3.1 Teoria	3
4	Interpolazioni	3
	4.1 Teoria	3
5	Integrazione numerica	3
	5.1 Teoria	3
6	Equazioni differenziali ordinarie	3
-	6.1 Teoria	

1 Analisi dell'errore

1.1 Teoria

Nella presente sezione analizziamo le due principali fonti di errore in contesti computazionali:

- 1. Errori di arrotondamento: dovuti alla rappresentazione di numeri reali con numero finito di digits.
- 2. Errori di approssimazione: dovuti alla modalità stessa con cui affrontiamo il problema, per questo motivo sono presenti anche nel caso ideale.

1.2 Esercizio 1.0.1

L'esercizio richiede di studiare $f(x)=e^x$ nell'intervallo [0,1], calcolando numericamente il suo sviluppo in serie: $g_N(x)=\sum_{n=0}^N\frac{x^n}{n}$

In particolare bisogna mostrare che

$$\Delta = |f(x) - g_N(x)| \approx \frac{x^{N+1}}{(N+1)!}$$
 (1)

Al fine dell'esercizio vengono rappresentati nel grafico 1 le funzioni Δ e $\frac{x^{N+1}}{(N+1)!}$, con N=1,2,3,4, al variare di x nell'intervallo [0,1].

Figure 1: Confronto tra Δ e $\frac{x^{N+1}}{(N+1)!}$ per N=1,2,3,4.

In generale possiamo osservare due andamenti.

Il primo è che all'aumentare di N la funzione Δ assume valori sempre più vicini allo zero. Questo significa che la distanza tra il valore della funzione f(x) presa in esame e la sua espansione di Taylor troncata all'ordine N diminuisce, proprio come ci aspettiamo, dato che miglioriamo l'approssimazione. In particolare la funzione Δ non è esattamente zero, perchè l'approssimazione di Taylor richiede $N \to \infty$. Inoltre possiamo notare che la funzione Δ , in ognuno dei grafici, è tanto più prossima allo zero quanto più ci si avvicina all'origine. Questo concorda con ciò che ci aspettiamo perchè lo sviluppo in serie è centrato in zero.

concorda con ciò che ci aspettiamo perchè lo sviluppo in serie è centrato in zero. Il secondo è che le funzioni Δ e $\frac{x^{N+1}}{(N+1)!}$ si avvicinano tra loro all'aumentare di N. Questo risponde alla richiesta dell'esercizio, cioè che l'errore scali come un polinomio di ordine N+1.

- 1.3 Esercizio 1.2.1
- 2 Sistemi lineari
- 2.1 Teoria
- 3 Radici di equazioni non lineari
- 3.1 Teoria
- 4 Interpolazioni
- 4.1 Teoria
- 5 Integrazione numerica
- 5.1 Teoria
- 6 Equazioni differenziali ordinarie
- 6.1 Teoria