

Partially Observable Markov Decision Process

CS4246/CS5446

Al Planning and Decision Making

This lecture will be recorded!

Topics

- Partially Observable Markov Decision Process (16.4)
- Belief states and definitions
- Solution algorithms (16.5)
 - Value iteration
 - Online methods (16.5.2 and 3rd ed. 17.4.3)

Solving Sequential Decision Problems

- Decision (Planning) Problem or Model
 - Appropriate abstraction of states, actions, uncertain effects, goals (wrt costs and values or preferences), and time horizon + observations (through sensing)
- Decision Algorithm
 - Input: a problem
 - Output: a solution as an optimal action sequence or policy over time horizon
- Decision Solution
 - An action sequence or solution from an initial state to the goal state(s)
 - An optional solution or action sequence; OR
 - An optimal policy that specifies "best" action in each state wrt to costs or values or preferences
 - (Optional) A goal state that satisfies certain properties

Recall: Decision Making under Uncertainty

Decision Model:

- Actions: $a \in A$
- Uncertain current state: $s \in S$ with probability of reaching: P(s)
- Transition model of uncertain action outcome or effects: P(s'|s,a) probability that action a in state s reaches state s'
- Outcome of applying action a: Result(a) – random variable whose values are outcome states
- Probability of outcome state s', conditioning on that action a is executed: $P(\text{Result}(a) = s') = \sum_{s} P(s)P(s'|s,a)$
- Preferences captured by a utility function: U(s) assigns a single number to express the desirability of a state s

Sequential Decision Problems

- What are sequential decision problems?
 - An agent's utility depends on a sequence of decisions
 - Incorporate utilities, uncertainty, and sensing
 - Search and planning problems are special cases
 - Decision (Planning) Models:
 - Markov decision process (MDP)
 - Partially observable Markov decision process (POMDP)
 - Reinforcement learning: sequential decision making + learning

Why Study POMDPs?

Uncertainty in action outcomes

- MDP: fully observable environment
- Agent knows exactly which state it is in

Uncertainty in observations

- POMDP: partially observable environment
- Agent does not know exactly which state it is in cannot observe the state directly
- Some noisy observations projected from a state

Real-world challenges

- Model sequential decision problem for an uncertain, dynamic, partially observable environment
- If the state is not directly observable, how does an agent reason about its decisions?

Partially Observable Markov Decision Process (POMDP)

- An POMDP $M \triangleq (S, A, E, T, O, R)$ consists of
- A set S of states
- A set A of actions
- A set *E* of evidences or observations or percepts
- A transition function $T: S \times A \times S \rightarrow [0,1]$ such that:

$$\forall s \in S, \forall a \in A: \sum_{s' \in S} T(s, a, s') = \sum_{s' \in S} P(s'|s, a) = 1$$

• An observation function $0: S \times E \rightarrow [0, 1]$ such that:

$$\forall s \in S, \forall e \in E: \sum_{e \in E} O(s, e) = \sum_{e \in E} P(e|s) = 1$$

- A reward function $R: S \to \Re$ or $R: S \times A \times S \to \Re$
- Solution: What is a policy in POMDP?

Observation Function and Sensor Model

Observation function:

- O(s,e) = P(e|s) is the probability of observing (or perceiving evidence) e from state s
- Define O(s,e) for all $s \in S$ and $e \in E$
- Assumption of Markov property

Sensor model

- The observation function defines the sensor model
- An observation is also called a measurement or test

Evidence – Real-life Examples

Robotics: grasping an item in a clutter evidence by pixels

Navigation: driving from A to B evidence by road signs/buildings/etc

Medicine: detecting a diagnosis of a patient *evidence by symptoms*

Belief State as Probability Distribution

Belief State:

- Actual state of the system is unknown, but we can track the probability distribution or belief state over the possible states
- An action α changes the belief state b, not just the physical state s
- b(s) denotes probability assigned to actual state s by belief state b
- If b(s) is the current belief, the agent executes action a and receives evidence e, then the updated belief is given by filtering:

$$b'(s') = \alpha P(e'|s') \sum_{s} P(s'|s,a) b(s)$$

where α is the normalizing constant that makes the belief state sum to 1

• Filtering Function:

$$b' = FORWARD(b, a, e')$$

Exercise

$$b'(s') = \alpha P(e'|s') \sum_{s} P(s'|s, a)b(s)$$

- Consider a problem with two states s_1 and s_2 :
 - Current belief $b(s_1) = 0.6$ and $b(s_2) = 0.4$.
- For action a:
 - Let the transition probabilities be: $P(s_1|s_1,a)=0.2$ and $P(s_2|s_1,a)=0.8$; $P(s_2|s_2,a)=0.3$ and $P(s_1|s_2,a)=0.7$
 - Let the observation probabilities be: $P(o_2|s_1) = 0.7$ and $P(o_2|s_2) = 0.2$
- Assume that evidence $e' = o_2$ is received. What is b'?

$$b'(s_1) = \alpha P(o_2|s_1)[P(s_1|s_1, a)b(s_1) + P(s_1|s_2, a)b(s_2)]$$

$$= \alpha 0.7[0.2 \times 0.6 + 0.7 \times 0.4] = ?$$

$$b'(s_2) = \alpha P(o_2|s_2)[P(s_2|s_1, a)b(s_1) + P(s_2|s_2, a)b(s_2)]$$

$$= \alpha 0.2[0.8 \times 0.6 + 0.3 \times 0.4] = ?$$

Decision Making in POMDPs

Main ideas:

- Optimal action depends only on agent's current belief
- Optimal policy can be described by a mapping $\pi^*(b)$ from belief to action
- Optimal policy does not depend on the actual state agent is in!
- Include value of information as a component in decision making

Decision cycle of a POMDP agent:

- Given current belief b, execute action $a = \pi^*(b)$
- Receive percept e'
- Set belief to b' = FORWARD(b, a, e') and repeat

Example: Navigation in Grid World

• POMDP:

• States S, actions A, transition T, reward R, and observation model O.

Assume:

- An observation function measures no. of adjacent walls in a state s
- For all non-terminal states except those in column 3 (where value = 1):
- O(s,2) = 0.9, O(s,*) = 0.1 (where * indicates a wrong value)

Belief state:

- b((1,1)) = 1/9, b((1,2)) = 1/9, ..., b((3,4)) = 0
- Suppose agent moves Left and sensor reports 1 adjacent wall
 - It is quite likely that agent is now in (3, 1)
- What is the exact probability values of the new belief state?

Calculating New Belief State

- What is the probability that an agent in belief state b reaches belief state b' after executing action a?
 - With current belief b(s), agent executes action a and perceives e', updated belief is:

$$b'(s') = \alpha P(e'|s') \sum_{s} P(s'|s,a)b(s) = \text{FORWARD}(b,a,e')$$

where α is normalizing constant for belief state to sum to 1

- New belief b' is a conditional probability over actual state given sequence of percepts and actions so far
- If action and subsequent percept were known, deterministic update to the belief using b' = FORWARD(b, a, e')
- But subsequent percept is not yet known, so agent might arrive in one of several possible belief states b', depending on percept received

Calculating Probability of Percept

Probability of percept

• Probability of perceiving e', given that a was performed starting in belief state b, is given by summing over all the actual states s' that the agent might reach:

$$P(e'|a,b) = \sum_{s'} P(e'|a,s',b)P(s'|a,b)$$

$$= \sum_{s'} P(e'|s')P(s'|a,b)$$

$$= \sum_{s} P(e'|s')\sum_{s} P(s'|s,a)b(s)$$
Sensor model

Transition model

Calculating Transition Model and Reward Model

- Probability of reaching b' from b, given action a:
 - Transition model for belief state space:

$$P(b'|a,b) = \sum_{e'} P(b'|e',a,b) P(e'|a,b)$$

$$= \sum_{e'} P(b'|e',a,b) \sum_{s'} P(e'|s') \sum_{s} P(s'|s,a) b(s).$$
Sensor model

Transition model

where P(b'|e', a, b) is 1 if b' = FORWARD(b, a, e') and 0 otherwise

- Reward function of belief state space:
 - Expected reward if the agent does *a* in belief state *b*:

$$\rho(b,a) = \sum_{s} b(s) \sum_{s'} P(s'|s,a) R(s,a,s')$$

Reducing POMDP into an MDP

Belief space MDP:

- Transition model P(b'|b,a) and reward model $\rho(b,a)$ define an observable MDP on the space of belief states!
- Solving a POMDP on a physical state space solving a continuous, usually high-dimensional MDP on the corresponding belief-state space
- An optimal policy for this MDP, $\pi^*(b)$ is also an optimal policy for the original POMDP

• Remember:

The belief state is always observable to the agent, by definition

Value Iteration

Value Iteration for POMPDs

Policy and conditional plan

- ullet Consider an optimal policy π^* and its application in a single belief state b
- Policy generates an action, then for each subsequent observation or percept, belief state is updated and new action is generated, and so on
- For b, the policy is equivalent to a conditional plan

Main issue:

 How does the expected utility of executing a fixed conditional plan varies with the initial belief state?

Conditional Plan

• A policy at a belief b_0 is a conditional plan

• Multiple conditional plans are possible

Utility Function for Belief State

Note:

- A belief state b is a probability distribution
- Each utility value in a POMDP is a function of an entire probability distribution

• Problems:

- Probability distributions are continuous
- Huge complexity of belief spaces

Solution:

• For finite state, action, and observation spaces and planning horizon: utility functions represented by piecewise linear functions over belief space

Utility Function of Belief State (1) (1) (1)

• Let the utility of executing a fixed conditional plan p starting in physical state s be $\alpha_p(s)$ – alpha vector

• Expected utility of executing p in belief state b is:

$$U_p(b) = \sum_S b(S) \alpha_p(S)$$
 or $b \cdot \alpha_p$ (inner product of vectors b , α_p)

• A linear function of b, corresponding to a hyperplane in belief space

 At any particular belief state b, optimal policy is to choose the conditional plan with highest utility:

$$U^{\pi^*}(b) = U(b) = \max_p b \cdot \alpha_p$$

- Utility or value function U(b) on belief states, being the maximum of a collection of hyperplanes, will be piecewise linear and convex
- For finite depth, there are only a finite number of conditional plans
 - With |A| actions, |E| observations, there are $|A|^{O(|E|^{d-1})}$ distinct depth-d plans

Example: A Two-State World

- Given:
 - Two states: A, B (or 0, 1 in RN 3e) [Belief space is 1-dimensional]
 - Rewards: R(.,.,A) = 0, R(.,.,B) = 1 [Any transition ending in A is 0, ...]
 - Two actions:
 - Stay Stays put with probability = 0.9
 - Go Switches to the other state with probability = 0.9
 - Discount factor: $\gamma = 1$
 - Sensor: Reports correct state with probability = 0.6
- Obviously:
 - Agent should: Stay when it thinks it is in state B and Go when it thinks it is in state A
- What are the values for 1-step plans (α -vectors)?

Example: Solving a POMDP, d=1

- Consider one-step plans: [Stay] and [Go]
 - Each receives reward for one transition as follows:

$$\alpha_{[Stay]}(A) = 0.9 R(A, Stay, A) + 0.1 R(A, Stay, B) = 0.1$$

 $\alpha_{[Stay]}(B) = 0.1 R(B, Stay, A) + 0.9 R(B, Stay, B) = 0.9$
 $\alpha_{[Go]}(A) = 0.1 R(A, Go, A) + 0.9 R(A, Go, B) = 0.9$
 $\alpha_{[Go]}(B) = 0.9 R(B, Go, A) + 0.1 R(B, Go, B) = 0.1$

- Hyperplanes for $b \cdot \alpha_{[Stay]}$ and $b \cdot \alpha_{[Go]}$
 - Utility or value function: max of the two linear functions
- What is the one-step optimal policy?
 - Optimal policy is to Stay if b(B) > 0.5 and Go otherwise

Utility of Belief-State b(B): d = 1

Source: RN Figure 17.15 (a)

Example: Solving a POMDP, d=2

- Deriving a solution:
 - Obtain utilities $\alpha_p(s)$ for all the conditional plans p of depth 1 in each physical state s
 - Compute utilities for conditional plans of depth 2 by considering:
 - each possible first action
 - · each possible subsequent percept, and
 - each way of choosing a depth-1 plan to execute for each percept:

```
[Stay; if Percept = A then Stay else Stay]

[Stay; if Percept = A then Stay else Go]

[Go; if Percept = A then Stay else Stay] ...
```

- There are 8 distinct depth-2 plans in all
 - 4 suboptimal and dominated plans dominated plans are never optimal
 - 4 undominated plans, each optimal in a specific region
- The regions partition the belief-state space

Example: Utility of Belief-State b(B): d=2

Utilities of 8 distinct 2-step plans

Utilities of 4 undominated 2-step plans

- Continuous belief space is divided into regions; the regions partition the belief-state space
 - Each region corresponds to a conditional plan that is optimal for that region
- U(b) is piecewise linear and convex

Source: RN Figure 16.15 (b) and (c)

Value Iteration in POMDP

- In general:
 - Let p be a depth-d conditional plan with initial action a followed by depth (d-1) subplans $p \cdot e'$ for percept e' $\alpha_p(s) = \sum_i P(s'|s,a) \left| R(s,a,s') + \gamma \sum_i P(e'|s') \alpha_{p \cdot e'}(s') \right|$
- Given utility function:
 - Executable policy extracted by:
 - looking at which hyperplane is optimal at any given belief state b
 - executing the first action of the corresponding plan
- POMDP Value Iteration (VI):
 - maintains a collection of undominated plans $\{p\}$ with their utility hyperplanes $\{alpha\ vectors\ \alpha_p\}$
 - Cf MDP VI computes one utility number, U(s) for each state s

Example: Utility of Belief-State b(B): d=8

Utility function for optimal 8-step plans

Source: RN Figure 17.15 (d)

POMDP Value Iteration Algorithm

```
function POMDP-VALUE-ITERATION(pomdp, \epsilon) returns a utility function
  inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s'|s,a),
               sensor model P(e|s), rewards R(s), discount \gamma
           \epsilon, the maximum error allowed in the utility of any state
   local variables: U, U', sets of plans p with associated utility vectors \alpha_p
   U' \leftarrow a set containing just the empty plan [], with \alpha_{[]}(s) = R(s)
   repeat
      U \leftarrow U'
       U' \leftarrow the set of all plans consisting of an action and, for each possible next percept,
           a plan in U with utility vectors computed according to Equation (17.18)
       U' \leftarrow \text{REMOVE-DOMINATED-PLANS}(U')
   until MAX-DIFFERENCE(U, U') \leq \epsilon (1 - \gamma)/\gamma
   return U
                                                                           Source: RN Figure 17.16
```

Notes on Value Iteration

- Algorithm's complexity depends primarily on how many plans get generated.
 - Given |A| actions and |E| observations, there are $|A|^{O(|E|^{d-1})}$ distinct depth-d plans.
 - $|A|n^{|E|}$ conditional plans generated at level d+1 before elimination, where n is the no. of conditional plans at level d
 - Elimination of dominated plans to reduce doubly exponential growth
 - P-SPACE hard very inefficient in practice
 - Approximate methods necessary
- Intermediate belief states have lower value than state A and state B
 - In the intermediate states the agent lacks information needed to choose a good action.
 - Information has value and optimal policies in POMDPs often include informationgathering actions.

Online Methods

Approximate solutions

Scaling POMDP solvers

- POMDP solvers need to solve two problems
 - Belief tracking/filtering
 - Given the history observed, what is the current belief?
 - Planning
 - Given the current belief, what is the optimal action to take?
- To scale up, need to scale up for both problems

Online Agent for POMDP

Main ideas:

- Represent transition model and sensor model by a dynamic decision network (DDN)
- Belief tracking Inference in DDN Exact inference is computationally intractable
 - No known polynomial time algorithm, as number of state variables grow
- Approximate solution: Deploy a filtering algorithm (exact or particle filtering) to incorporate each new percept and action and to update belief state representation
- Projecting forward possible action sequences and choosing the best one

Note:

 A DDN can actually be used as inputs for any POMDP algorithm, include those for value iteration and policy iteration

Dynamic Decision Network (DDN)

- Execution of POMDP over time can be represented as a DDN
 - Transition and sensor models represented by a Dynamic Bayesian Network (DBN)
 - Add decision and utility nodes to get DDN

• In DDN:

- State S_t becomes set of variables \mathbf{X}_t
- Evidence/observation variables are \mathbf{E}_t
- Action at time t is A_t
- Transition: $P(\mathbf{X}_{t+1}|\mathbf{X}_t, A_t)$
- Sensor model: $P(\mathbf{E}_t|\mathbf{X}_t)$

Note:

- Variables with known values are shaded
- Current time is t and agent must decide what to do

Look-Ahead Solution of POMDP

Source: RN 3e Figure 16.11

Notes on Online Solution

Main ideas:

- Project action sequences forward from current belief state
- Determine utility estimates at projected depth based on future rewards
- Extract decision by backing up utilities from the leaves
 - Averaging chance nodes and maximizing/minimizing decision nodes
- Non-leaf states may have rewards
- Decision nodes correspond to belief states rather than actual states

Complexity

• Time complexity of exhaustive search to depth d is $O(|A|^d|E|^d)$ where |A| is the no. of available actions and |E| is the number of possible percepts

POMCP¹

Partially Observable
Monte Carlo Planning

MCTS:

- Select
- Expand
- Simulate
- Backup
- To run UCT on POMDP, we need to represent beliefs in the nodes
 - Inference to construct beliefs is intractable in general
 - For MDP, states are easy to generate
 - Beliefs are difficult to generate, so POMCP uses action-observation history
 - History is equivalent to belief assuming same initial belief
- Instead of propagating beliefs forward in a trial
 - POMCP samples a state at the root from the initial belief.
 - Run the simulation using the state to generate action-observation history
 - Only need to sample from P(s'|s,a) then P(e'|s') to generate observation e' for the action-observation history
 - Avoid constructing beliefs

Silver, D. and J. Veness, Monte-Carlo planning in large POMDPs, in Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. 2010: Vancouver, British Columbia, Canada. p. 2164-2172

Determinized Sparse
Partially Observable Tree

Construct search tree differently! (make tree smaller)

Source: Ye et al 2017

- Construct k different search trees
- Each search tree, sample a state at the root to initialize
- At every action node, try all actions on the (single) state at that node
- At every observation node, sample a single observation from the (single) state at node
- Size of the tree:
 - Each of the k trees have size A^d . Combine together to get tree of size $O(|A|^d k)$
 - Exponentially smaller than $|A|^d |E|^d$
- Can show that searching sampled tree is sufficient if a small good policy exists
 - Use heuristics to do anytime search of this tree

²Ye, N., et al., *DESPOT: online POMDP planning with regularization*. J. Artif. Int. Res., 2017. **58**(1): p. 231–266.

POMDP Applications

- Autonomous driving golf cart in UTown
 - https://youtu.be/y_9VMD_sQhw
 - DESPOT is used there
 - Works in real-time
- Robotics
- Airborne Collision Avoidance System X
 - ACAS X
 - POMDPs with neural networks for function approximation
- Education
- Dialog system/Chatbot
 - Assistive agent for dementia patients

ADTICLE

Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process

Summary

POMDPs

- Compute optimal policy in partially observable, uncertain domains.
- For finite horizon problems, resulting optimal utility (value) functions are continuous, piecewise linear, and convex.
- In each iteration, no. of linear constraints grows exponentially.
- Approximate solvers can scale to to large size problems; solvers mainly remain in research settings
 - For example, the SARSOP solver from NUS does the Bellman update only on a small subset of beliefs and use heuristics to explore the belief space
 - http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
- Online search tends to scale better.

Homework

Readings

- RN 16.4, 16.5
- RN 14.2.1, 14.5.3 (Filtering and Particle Filtering Optional)

References

- Kaelbling, L.P., M.L. Littman, and A.R. Cassandra, *Planning and acting in partially observable stochastic domains*. Artif. Intell., 1998. **101**(1–2): p. 99–134.
- Silver, D. and J. Veness, Monte-Carlo planning in large POMDPs, in Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. . 2010: Vancouver, British Columbia, Canada. p. 2164-2172.
- Ye, N., et al., *DESPOT: online POMDP planning with regularization.* J. Artif. Int. Res., 2017. **58**(1): p. 231–266.