Important families of Sampling Distributions

1. Multivariate Normal (AKA Gaussian) (μ, Σ)

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = \frac{1}{(2\pi)^{n/2} \sqrt{|\det(\boldsymbol{\Sigma})|}} \exp\left[-\frac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})\right].$$

$$E(\mathbf{Y}) = \boldsymbol{\mu}. \quad Cov(\mathbf{Y}) = \Sigma. \quad M_{\mathbf{Y}}(\mathbf{t}) = \exp\left[\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T \Sigma \mathbf{t}\right]$$

2. $Gamma(\alpha, \beta)$

Definition: When α is a positive integer, X is the sum of α independent exponential RV's with mean β .

pdf:
$$f_X(x) = \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, x > 0.$$

$$E(X) = \alpha \beta.$$
 $V(X) = \alpha \beta^2.$ $M_X(t) = (1 - \beta t)^{-\alpha}.$

3.
$$\chi^2(n)$$
 ($\chi^2(n)$ is the same as gamma($\alpha = n/2, \beta = 2$).

Definition: $X = Z_1^2 + Z_2^2 + \cdots + Z_n^2$, where Z_i are independent, standard normal.

$$f_X(x) = \frac{1}{\Gamma(n/2)2^{n/2}} x^{n/2-1} e^{-x/2}, \ x > 0.$$

$$E(Y) = n.$$
 $V(Y) = 2n.$ $M_X(t) = (1 - 2t)^{-n/2}$

4. Student's t(n)

Definition: $T=Z/\sqrt{U/n}$, where Z,U are independent, Z is standard normal, U is χ^2 with n df.

$$f_T(t) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} \cdot \frac{1}{(1+t^2/n)^{(n+1)/2}}.$$

$$E(T) = 0. V(T) = n/(n-2).$$

$$5.F(n_1,n_2)$$

Definition: $W = \frac{U_1/n_1}{U_2/n_2}$, where U_1, U_2 are independent, U_i is χ^2 with n_i df.

$$f_W(w) = \frac{(n_1/n_2)^{n_1/2} \Gamma[(n_1 + n_2)/2] w^{n_1/2 - 1}}{\Gamma(n_1/2) \Gamma(n_2/2) [1 + (n_1 w/n_2)]^{(n_1 + n_2)/2}}, w > 0.$$

$$E(W) = n_2/(n_2 - 2), Var(W) = 2n_2^2(n_1 + n_2 - 2)/((n_1(n_2 - 2)^2(n_2 - 4)).$$