

Formularium

 $Academieja ar\ 2024-2025$

Timo Vandevenne

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	$\mathbf{P} \text{ Druk } [1 \text{ atm} = 1013\text{hPa} = 760 \text{ mmHg}]$
	V Volume
	n Aantal deeltjes [mol]
	R Gasconstante
	T Temperatuur [K]
$\Delta U = U_{prod.} - U_{reag.} = q + w$	ΔU Verandering van interne energie [J]
	q Warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie [kJ/mol]
$\Delta H_{rxn}^{0}\!=\!\sum i\Delta H_{f}^{0}(prod.)\!-\!\sum j\Delta H_{f}^{0}(reag.)$	
,,	$\mathbf{H_f^0}$ Standaardvormingsenthalpie [kJ/mol]
	i, j Coefficiënten in reactievergelijking
$q = ms\Delta T = C\Delta T$	m Massa [g]
	s Specifieke warmte $\left[\frac{J}{q^{\circ}C}\right]$
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	ΔT Temperatuurverandering [K]
$q_{rxn} = n\Delta H_{rxn}^0$	C Warmtecapaciteit [J/K]
$q_{rxn} = n\Delta H_{rxn}^0$ $E = h\mathbf{v} = h\frac{c}{\lambda}$	E Energie [J]
Α	h Constante van Planck = $6.62 \cdot 10^{-34}$ Js
	ν Frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\mathbf{v} - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	m Massa bewegend deeltje [kg]
	\mathbf{u} Snelheid $[\mathbf{m/s}]$
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
	y _i Molfractie gas [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
	P ^o Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	C _i Concentratie
We valid from j . If $w_i = i $ k	
	H _i Henry constante
A.T. '17	k Gegeven constante bij bepaalde temperatuur
$\Delta T_b = iK_b m$	ΔT _b Kookpuntsverhoging
$\Delta T_f = iK_f m$	△T _f Vriespuntsverlaging
	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	K _b , K _f Karakteristiek van het oplosmiddel [°C/m]
·MDC	m Molaliteit [mol/kg]
$\pi = iMRT$	π Osmotische druk
$\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^0$	ΔP Dampdrukverlaging

Formule	Variabelen en uitleg
$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	v Reactiesnelheid [M/s]
	k Snelheidsconstante [Eenheid afh. van reactieorde]
Arrhenius:	$\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{b}$ indien elementaire stap
$k = Ae^{\frac{-Ea}{RT}}$	E _a Activeringsenergie [kJ/mol]
$-E_a$	
$\ln k = \frac{-E_a}{RT} + \ln A$	A Botsingsfrequentiefactor
$\frac{\ln \frac{k_2}{k_1} = \frac{-E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})}{K = \frac{[C]^c [D]^d}{[A]^a [B]^b}}$	Dezelfde reactie op verschillende temperaturen vergelijken
$K = \frac{[C]^c [D]^a}{C^2}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
$[A]^a[B]^b$	K_p bij gassen (druk), K_c bij concentraties
	[X] Concentratie van stof $X [M] = [mol/1]$
	Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
$K_p = K_c(RT)^{\Delta n}$	$\Delta \mathbf{n} = (c+d)-(a+b)$ bij $aA+bB \rightleftharpoons cC+dD$
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
Timolpo van Zo chavener	Concentratieverandering
	• Druk & volumeverandering
	• Temperatuursverandering \rightarrow K verandert
	• Katalysator & inert gas hebben geen invloed
$pH = -\log[H^+] = -\log[H_3O^+]$	Travally savor as mere gas nessen geen invised
$pH = \log[H] = \log[H_3O]$ $pOH = \log[OH^-] = 14 - pH$	
$pOH = \log[OH] = H pH$ $[H^+][A^-]$	
$K_a = \frac{[H][H]}{[HA]}$	$\mathbf{K_a}$ Aciditeits constante $(\mathbf{p}\mathbf{K_a} = -\log K_a)$
$\begin{bmatrix} \Pi A \end{bmatrix}$ $[O H^{-1}][D^{+1}]$	
$pOH = -\log[OH^{-}] = 14 - pH$ $K_a = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_b = \frac{[OH^{-}][B^{+}]}{[B]}$	$\mathbf{K_b}$ Basiciteitsconstante $(\boldsymbol{pK_b} = -\log K_b)$
$K_a K_b = K_w$	$\mathbf{K_w}$ Dissociatieconstante van water
$pK_a + pK_b = pK_w$	$K_{\rm w} = [H^+][OH^-] = 10^{-14} \text{ bij } 25^{\circ}\text{C}$
$K_{sp} = [C]^c [D]^d$	$\mathbf{K_{sp}}$ Oplosbaarheidsproduct: beschrijft het oplossen van
	een ionische binding in water
$Q = [C]_0^c [D]_0^d$	\mathbf{Q} Reactiequotiënt, \mathbf{K}_{sp} met actuele concentraties
· 101 10	$[X]_0$ Concentratie voor reactie
	• $Q < K_{sp}$: Onverzadigde oplossing \rightarrow Geen neerslag
	• $Q=K_{sp}$: Verzadigde oplossing \rightarrow Net geen neerslag
Henderson-Hasselbalch:	• Q> K_{sp} : Oververzadigde oplossing \rightarrow Neerslag onstaat
[geconj. base] _{h}	• Sp G F And G A A A A A A A A A A A A A A A A A A
$pH = pK_a + \log \frac{1}{[\text{zuur}]_b}$	
Nernst: $E = E^0 - \frac{RT}{mE} \ln Q$	F Faraday constante: lading 1 mol e ⁻
$pH = pK_a + \log \frac{[\text{geconj. base}]_b}{[\text{zuur}]_b}$ $Nernst: E = E^0 - \frac{RT}{nF} \ln Q$ $A_{(s)} \mid A_{(aq)}^{a+} (xM) \mid B_{(aq)}^{b+} (yM) \mid B_{(s)}$ Anode: exidation	Notatie celdiagram
Milode, Oxidatic Mathode, Teductic	
$E_{cel}^0 = \frac{RT}{nF} \log K$	$\mathbf{E_{cel}}$ Celpotentiaal ($E_{cel} > 0$: Formatie producten)
$E_{cel}^{0} = E_{ox}^{1F} + E_{red}^{0} = E_{red,anode}^{0} + E_{red,kathode}^{0}$	$\mathbf{E_{red}}$ Reductiepotentiaal (afleesbaar in de tabel)
rea, anoue rea, autoue	$\mathbf{E_{ox}}$ Oxidatiepotentiaal $E_{ox} = -E_{red}$

 ${\rm Timo~Vandevenne} \\ 2/2$