Math 221 Lec 16

4.4: Abstract linear transformations

Asa Royal (ajr74)

11/2/23, 11/9/23

Definition 1 (isomorphism). $T: V \mapsto W$ is an **isomorphism** if T is bijective.

Lemma 2. T is an isomporphism iff $\exists T^{-1}: W \mapsto V$ with $T \circ T^{-1} = id_w \forall \mathbf{w} \in W$ and $T^{-1} \circ T = id_v \forall \mathbf{v} \in V$

Proposition 3. $T: V \mapsto W$ is an isomorphism iff T(basis for V) is a basis for W.

Corollary 4. dim V = n iff V is isomorphic to \mathbb{R}^n (there's an isomorphism from V to \mathbb{R}^n . The isomorphism is that you choose a basis for V and send the basis vectors of \mathbb{R}^n to it.