Straight-Edge and Compass: Constructing the Heptadecagon

Daniel Baron

Western Washington University

May 15, 2013

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- 2 The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- 2 The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

It is a method for drawing "perfect" lengths and shapes with simple tools:

- An infinite, unruled straightedge.
- A compass which can draw a perfect circle of any radius.

Applications. Why bother?

We can use geometry to prove that a construction is exactly correct. This is significant in many fields. In particular, consider...

- Drafting, both by hand and with CAD software.
- The science of weights and measures.

Applications. Why bother?

We can use geometry to prove that a construction is exactly correct. This is significant in many fields. In particular, consider...

- Drafting, both by hand and with CAD software.
- The science of weights and measures.

And most importantly, it's fun to do!

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

The Ancients.

The ancient Greeks were very skilled with compass constructions. Euclid detailed a great many, including . . .

The Ancients.

The ancient Greeks were very skilled with compass constructions. Euclid detailed a great many, including . . .

- Division of line segments into equal parts.
- Bisection of angles.
- Construction of parallel and perpendicular lines.
- Construction of regular 3-, 4-, 5-, and 15-gons.

The Ancients.

The ancient Greeks were very skilled with compass constructions. Euclid detailed a great many, including . . .

- Division of line segments into equal parts.
- Bisection of angles.
- Construction of parallel and perpendicular lines.
- Construction of regular 3-, 4-, 5-, and 15-gons.

But very little progress was made after Euclid. In particular, no new polygon constructions were found until ...

The 18th Century and Beyond.

In 1796, Gauss discovered that the regular heptadecagon is constructible by ruler and compass.

The 18th Century and Beyond.

In 1796, Gauss discovered that the regular heptadecagon is constructible by ruler and compass.

Gauss further proved that the regular n-gon is constructible if and only if n is of the form

$$n=2^rp_1p_2\dots p_s,$$

where $r \ge 0$ and each p_i is a distinct Fermat prime; i.e., a prime of the form $p_i = 2^{2^k} + 1$.

The 18th Century and Beyond.

In 1796, Gauss discovered that the regular heptadecagon is constructible by ruler and compass.

Gauss further proved that the regular n-gon is constructible if and only if n is of the form

$$n=2^rp_1p_2\dots p_s,$$

where $r \ge 0$ and each p_i is a distinct Fermat prime; i.e., a prime of the form $p_i = 2^{2^k} + 1$.

The known Fermat primes are 3, 5, 17, 257, and 65537.

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- 2 The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

We can use compasses to bisect a given line segment:

Bisection.

We can use compasses to bisect a given line segment:

Or an angle:

A Time-Saving Tip.

It is usually only necessary to draw short arcs of your circles:

But perhaps it is not as visually pleasing.

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- 2 The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

Primitive Roots of Primes.

In fact, if n is prime, we can draw the n-gon given any angle $\frac{2k\pi}{n}$, with k an integer and 0 < k < n. We can find each of the n vertices of the polygon by copying $\frac{2k\pi}{n}$ around a circle as we did on the previous slide with $\frac{2\pi}{5}$.

Primitive Roots of Primes.

In fact, if n is prime, we can draw the n-gon given any angle $\frac{2k\pi}{n}$, with k an integer and 0 < k < n. We can find each of the n vertices of the polygon by copying $\frac{2k\pi}{n}$ around a circle as we did on the previous slide with $\frac{2\pi}{5}$.

We can understand this in group theory terms, noting that any nonzero element k of the group \mathbb{Z}_n of integers mod n generates the whole group, so the sets

$$\{0, k, 2k, \dots, (n-1)k\} = \{0, 1, 2, \dots, n-1\}$$

are equal under mod n arithmetic.

Primitive Roots of Primes.

Careful! This is only guaranteed if n is prime. In general, it works if gcd(k, n) = 1.

Constructing the cosine of an angle (i.e., constructing a line segment of that length) is just as good as constructing the angle itself:

Constructing the cosine of an angle (i.e., constructing a line segment of that length) is just as good as constructing the angle itself:

Constructing the cosine of an angle (i.e., constructing a line segment of that length) is just as good as constructing the angle itself:

Constructing the cosine of an angle (i.e., constructing a line segment of that length) is just as good as constructing the angle itself:

Of course, the sine is also sufficient.

Outline

- Background
 - Straightedge-And-Compass Construction
 - History
- 2 The Construction.
 - Basic Tools and Techniques.
 - Constructing Polygons.
 - How To Draw a Heptadecagon

A Brief Acknowledgment.

The construction method I will demonstrate today is due to Herbert William Richmond, who published it in 1893. I have only seen a few techniques, but I find his to be very elegant and I am proud to share it with you today.

Getting Started.

As we have seen, constructing the 17-gon is equivalent to constructing the length $\cos\frac{2k\pi}{17}$ for any 0 < k < 17. In particular, today we will directly construct

- $\cos \frac{6\pi}{17}$
- and $\cos \frac{10\pi}{17}$.

Getting Started.

As we have seen, constructing the 17-gon is equivalent to constructing the length $\cos \frac{2k\pi}{17}$ for any 0 < k < 17. In particular, today we will directly construct

- $\cos \frac{6\pi}{17}$
- and $\cos \frac{10\pi}{17}$.

For convenience, denote $\alpha = 2\pi/17$, so that we want $\cos 3\alpha$ and $\cos 5\alpha$.

Getting Started.

As we have seen, constructing the 17-gon is equivalent to constructing the length $\cos\frac{2k\pi}{17}$ for any 0 < k < 17. In particular, today we will directly construct

- $\cos \frac{6\pi}{17}$
- and $\cos \frac{10\pi}{17}$.

For convenience, denote $\alpha = 2\pi/17$, so that we want $\cos 3\alpha$ and $\cos 5\alpha$.

Let's see what they look like ...

The Big, Complicated Numbers.

We have
$$\cos 3\alpha = \frac{1}{4096}(\sqrt{-2\sqrt{17}+34})$$
 $+\sqrt{2\sqrt{-2\sqrt{17}+34}}(\sqrt{17}-1)-16\sqrt{2\sqrt{17}+34}+12\sqrt{17}+68)$ $+\sqrt{17}-1)^3+\frac{3}{4096}((\sqrt{-2\sqrt{17}+34})$ $+\sqrt{2\sqrt{-2\sqrt{17}+34}}(\sqrt{17}-1)-16\sqrt{2\sqrt{17}+34}+12\sqrt{17}+68)$ $+\sqrt{17}-1)^2-256)(\sqrt{-2\sqrt{17}+34}$ $+\sqrt{2\sqrt{-2\sqrt{17}+34}}(\sqrt{17}-1)-16\sqrt{2\sqrt{17}+34}+12\sqrt{17}+68)$ $+\sqrt{17}-1).$

The Big, Complicated Numbers.

And
$$\cos 5\alpha = \frac{1}{1048576}(\sqrt{-2\sqrt{17}+34} + \sqrt{2\sqrt{-2\sqrt{17}+34}}(\sqrt{17}-1) - 16\sqrt{2\sqrt{17}+34} + 12\sqrt{17}+68 + \sqrt{17}-1)^5 + \frac{5}{524288}((\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+34 + 12\sqrt{17}+68 + \sqrt{17}-1)^2 - 256)(\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+34 + 12\sqrt{17}+68 + \sqrt{17}-1)^3 + \frac{5}{1048576}((\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+34 + 12\sqrt{17}+68 + \sqrt{17}-1)^3 + \frac{5}{1048576}((\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+34 + 12\sqrt{17}+68 + \sqrt{17}-1)^2 - 256)^2(\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+34 + 12\sqrt{17}+68 + \sqrt{17}-1)^2 - 256)^2(\sqrt{-2\sqrt{17}+34} + 12\sqrt{17}+68 + \sqrt{17}-1).$$

The Easy Way

Consider the acute angle ϕ such that $\tan 4\phi = 4$ (so ϕ is about 18°).

The Easy Way

Consider the acute angle ϕ such that $\tan 4\phi = 4$ (so ϕ is about 18°).

It can be shown that

$$\tan \phi = 2(\cos 3\alpha + \cos 5\alpha)$$

and

$$\tan(\phi - \frac{\pi}{4}) = 4 \cos 3\alpha \cos 5\alpha.$$

We will now construct these two lengths.

Start with a unit circle and arbitrary diameter. The point *A* is your 0th vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point *A* is your 0th vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point *A* is your 0th vertex.

Next, find a perpendicular radius.

radius.

First Steps.

Start with a unit circle and arbitrary diameter. The point *A* is your 0th vertex.

Next, find a perpendicular

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Bisect \overline{OB} twice to find I at $(0,\frac{1}{4})$.

Using your straightedge, draw the line segment \overline{AI} .

Start with a unit circle and arbitrary diameter. The point A is your 0^{th} vertex.

Next, find a perpendicular radius.

Bisect *OB* twice to find *I* at $(0,\frac{1}{4})$.

Using your straightedge, draw the line segment \overline{AI} .

The Angle 4ϕ .

Recall that ϕ is acute and that $\tan 4\phi = 4$. Since

$$tan \angle OIA = \overline{OA}/\overline{OI}$$
$$= 4,$$

we have already constructed the angle 4ϕ .

Next, bisect $\angle OIA$ twice to construct ϕ .

Next, bisect $\angle OIA$ twice to construct ϕ .

Next, bisect $\angle \textit{OIA}$ twice to construct ϕ . There it is, $\phi = \angle \textit{OIE}$.

Next, bisect $\angle \textit{OIA}$ twice to construct ϕ . There it is, $\phi = \angle \textit{OIE}$. And in fact,

$$\tan \phi = \tan \angle OIE$$

$$= \overline{OE}/\overline{OI}$$

$$= 4 \overline{OE}.$$

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{EI} through I.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{El} through l.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{El} through l.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{EI} through I.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{El} through l.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{El} through l.

To construct $\phi - \frac{\pi}{4}$, begin by finding a perpendicular line segment to \overline{EI} through *I*. Next, bisect that right angle ... And you have it. Further, notice that

$$\tan(\phi - \frac{\pi}{4}) = 4\overline{OF}.$$

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Draw a circle with diameter \overline{AF} . This circle intersects \overline{OB} at the point K. Now draw a circle through K with center E . . .

Now we use what we know about the relationships among $\cos 3\alpha$, $\cos 5\alpha$, $\tan \phi$, and $\tan(\phi-\frac{\pi}{4})$ to construct the two lengths we want.

Draw a circle with diameter \overline{AF} . This circle intersects \overline{OB} at the point K. Now draw a circle through K with center E . . .

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

This last circle intersects our original diameter at N_3 and N_5 . I now claim that

$$\overline{\mathit{ON}_3} = \cos 3\alpha$$

and

$$\overline{ON_5} = -\cos 5\alpha.$$

