

Règles de la Déduction Naturelle

Axiome

- $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n, h: A$ montrons A
- $\langle i \rangle$ CQFD (Ax avec h)

Axiome

 $\langle j \rangle$ supposons $h'_1: A'_1, \cdots, h'_k: A'_k, h: A$ montrons B ... $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$ montrons A $\langle i \rangle$ CQFD (Ax avec h) ... $\langle j \rangle$ CQFD (Nom)

Introduction du connecteur \Rightarrow

Introduction du connecteur \wedge

Affaiblissement

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n,h:B$ montrons A $\begin{array}{c|c} \langle i+1 \rangle & \text{montrons } A \text{ sans utiliser } h \\ \hline \langle i+1 \rangle & \text{CQFD} \\ \hline \langle i \rangle & \text{CQFD (Af)} \end{array}$

Introduction de true

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n$ montrons true $\langle i \rangle$ CQFD (I_{\top})

Elimination de false

 $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n,h:$ false montrons B $\langle i \rangle$ CQFD $(E_\perp \text{ avec } h)$

Elimination du connecteur \Rightarrow

Elimination gauche du connecteur \wedge

Elimination droite du connecteur \wedge

Introduction gauche du connecteur ∨

Introduction droite du connecteur \lor

Introduction du connecteur ¬

Elimination du connecteur \vee

```
supposons h_1: A_1, \cdots, h_n: A_n
      montrons C
                   montrons A \vee B
       \langle i+1 \rangle
                    . . .
        \langle i+1 \rangle
                   CQFD
                   supposons h_A:A
                   montrons C
                   CQFD
                   supposons h_B: B
                   montrons C
                    . . .
       \langle i+3 \rangle
                   CQFD
      CQFD (E_{\vee})
\langle i \rangle
```

Elimination du connecteur ¬

Introduction du quantificateur \forall

```
supposons h_1: A_1, \cdots, h_n: A_n
montrons \forall x A
               soit une nouvelle variable y
                (y \notin \operatorname{Free}(A) \cup \bigcup_{i=1}^n \operatorname{Free}(A_i))
               montrons A[x := y]
  \langle i+1 \rangle
               CQFD
CQFD (I_{\forall})
```

Introduction du quantificateur \exists

Raisonnement par l'absurde

```
\langle i \rangle supposons h_1: A_1, \cdots, h_n: A_n
      montrons A
       \langle i+1 \rangle
                  supposons h: \neg A
                   montrons false
        \langle i+1 \rangle
                   CQFD
    cqfd (Abs)
```

Elimination du quantificateur \forall

```
supposons h_1: A_1, \cdots, h_n: A_n
montrons A[x := t]
 \langle i+1 \rangle montrons \forall x A
 \langle i+1 \rangle
              CQFD
CQFD (E_{\forall})
```

Elimination du quantificateur ∃

Règles supplémentaires pour le connecteur \Leftrightarrow

Introduction du connecteur \Leftrightarrow

Elimination gauche du connecteur \Leftrightarrow

Elimination droite du connecteur \Leftrightarrow

Règles Dérivées

Elimination gauche directe du connecteur A

supposons $h_1: A_1, \cdots, h_n: A_n, h: A \wedge B$ montrons ACQFD $(D^g_{\wedge} \text{ avec } h)$

Introductions du connecteur \Rightarrow

```
\langle i \rangle supposons h_1: F_1, \cdots, h_m: F_m
       montrons A_1 \Rightarrow (A_2 \Rightarrow (\cdots (A_n \Rightarrow A_{n+1}) \cdots))
         \langle i+1 \rangle supposons h'_1:A_1,\cdots,h'_n:A_n
                      montrons A_{n+1}
                      ...
        \langle i+1 \rangle CQFD
```

Elimination droite directe du connecteur \wedge

supposons $h_1: A_1, \cdots, h_n: A_n, h: A \wedge B$ montrons BCQFD $(D^d_{\wedge} \text{ avec } h)$

Elimination directe du connecteur \Rightarrow

 $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n$, $h'_1: A \Rightarrow B, h'_2: A$ montrons BCQFD $(D_{\Rightarrow} \text{ avec } h'_1, h'_2)$

Hypothèses contradictoires

supposons $h_1: A_1, \dots, h_n: A_n, h'_1: A, h'_2: \neg A$ montrons BCQFD $(D^1_{\perp} \text{ avec } h'_1, h'_2)$

Hypothèses contradictoires

Elimination directe du connecteur \neg

- $\langle i \rangle$ supposons $h_1:A_1,\cdots,h_n:A_n,h'_1:A,h'_2:\neg A$ montrons false
- $\langle i \rangle$ CQFD $(D_{\neg} \text{ avec } h'_1, h'_2)$

Elimination directe du connecteur \lor

Elimination directe du quantificateur \forall

- $\langle i \rangle$ supposons $h_1: A_1, \cdots, h_n: A_n, h: \forall x A$ montrons A[x:=t] $\langle i \rangle$ CQFD $(D_{\forall} \text{ avec } h)$
- Elimination directe du quantificateur \exists

Double négation

Double négation

$$\begin{array}{c|c} \langle i \rangle & \text{supposons } h_1 : A_1, \cdots, h_n : A_n \\ & \text{montrons } \neg A \\ \hline & \langle i+1 \rangle & \text{montrons } A \\ \hline & \langle i+1 \rangle & \text{cqfd} \\ \hline \langle i \rangle & \text{cqfd} & (R_{\neg}^2) \\ \end{array}$$

Tiers exclu

Elimination du tiers exclu

