DAILY ASSESSMENT FORMAT

Date:	28-05-2020	Name:	Sahana S R
Course:	Logic design	USN:	4al17ec083
Topic:	Boolean equation for digital	Semester	6 th sem
	circuits. Combinational circuits Conversions of MUX and decoder to logic gate • Design of 7segment decoder with common anode display	& Section:	B sec
Github	sahanasr-course		
Repository:			

FORENOON SESSION DETAILS Image of session **LEARNING IS EVERYTHING** DIGITAL CIRCUITS **LECTURE-12 BOOLEAN ALGEBRA (PART-1)** 元) (n) (x') = (1) (2)

MUX TO LOGIC GATES

- 1. NAND, NOR -Universal gates
- 2. "Universal Logic"
- 3. MUX and Decoders are called "Universal Logic"
- 4.now we will see haw a 2:1 MUX can be used to create different logic gates.

= selection lines

INVERTER DESIGN

A	\mathbf{B}	C	D	a	ь	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

BCD to 7-segment decoder

A	\mathbf{B}	C	D	a	ь	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

Report – Report can be typed or hand written for up to two pages.

Boolian equations for digital counits

s In 1854. Gierge Book developed am algebraic ryster now called booken algebra

and operation On operation Not operation
$$0.0 = 0$$
 $0.0 = 0$ $0.1 = 0$ $0.1 = 1$

In boolian algebra

In ordinary algebra

$$| + | = 3$$

$$| + | = 3$$

$$| + | = | + |$$

$$| + | = | + |$$

In kinary number rystem

$$x + 0 = x$$
 $x \cdot 0 = 0$

$$x+1=1$$
 $x'=x$

$$x + x = x$$

$$-5(\overline{x})$$
 $(x')' = x$

Sdintity elimint: OR operation AND operation The additive identity = 0

Mua to Logic gate

1. NAND. NOR - Universal gates

a. Mux and Devoder are called "Universal logic"

4. Now we will sec haw 2:1 MUX Can be used to Create different logic gate.

BCD to 7-segment decoder

A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

