University of Copenhagen

MASTER THESIS

Multivariate contingent claims

Author:
Peter Pommergård LIND

Supervisor: Dr. David SKOVMAND

A thesis submitted in fulfillment of the requirements for the degree of Master Thesis in Actuarial Mathematics

August 28, 2020

Declaration of Authorship

I, Peter Pommergård LIND, declare that this thesis titled, "Multivariate contingent claims" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

"You were hired because you met expectations, you will be promoted if you can exceed them."

Saji Ijiyemi

UNIVERSITY OF COPENHAGEN

Abstract

Department of Mathematical Science Science

Master Thesis in Actuarial Mathematics

Multivariate contingent claims

by Peter Pommergård LIND

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgments and the people to thank go here, don't forget to include your project advisor. . .

Contents

Acknowledgements ix 1 Introduction 1 2 Arbitrage theory in continuous time finance 3 2.1 Financial markets 3 2.1.1 Financial Derivatives 4 2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2 Loss method for an American put 16 3.2.1 LSM method for Rainbow options 17 3.3.1.2 Options on the M	D	eclara	ition of	Authorship	iii
1 Introduction 1 2 Arbitrage theory in continuous time finance 3 2.1 Financial markets 3 2.1.1 Financial Derivatives 4 2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1.2 Options on the Maximum or the Minimum of Several	A۱	ostrac	et		vii
2 Arbitrage theory in continuous time finance 3 2.1 Financial markets 4 2.1.1 Financial Derivatives 4 2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 3.3.1.2.1 Best of assets or cash </th <th>A</th> <th>knov</th> <th>wledge</th> <th>ments</th> <th>ix</th>	A	knov	wledge	ments	ix
2.1 Financial markets 3 2.1.1 Financial Derivatives 4 2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1. Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 3.3.1.2.1 Best of assets or cash	1	Intr	oductio	on	1
2.1.1 Financial Derivatives 4 2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2 Deptions on the Maximum or the Minimum of Several Assets 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.	2	Arb	itrage t	heory in continuous time finance	3
2.1.2 Self-financing portfolio (Without consumption) 5 2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3		2.1	Finan	cial markets	3
2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 <th></th> <th></th> <th>2.1.1</th> <th>Financial Derivatives</th> <th>4</th>			2.1.1	Financial Derivatives	4
2.1.3 Arbitrage 5 2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 <td></td> <td></td> <td>2.1.2</td> <td>Self-financing portfolio (Without consumption)</td> <td>5</td>			2.1.2	Self-financing portfolio (Without consumption)	5
2.1.4 Complete Market and Hedging 5 2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.2.1 Last Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21			2.1.3		
2.2 Multidimensional Models 6 2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21			2.1.4		
2.2.1 Model assumptions 6 2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several		2.2	Multi		
2.2.2 Arbitrage free model 7 2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 3.3.1.2.1 Best of assets or cash 18 3.3.2.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21					
2.2.3 Complete model 8 2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 4 Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21			2.2.2		
2.2.4 Pricing and connection to classical approach 8 2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21 <td></td> <td></td> <td>2.2.3</td> <td></td> <td></td>			2.2.3		
2.3 Classical Black-Scholes Formulas 9 2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.2.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21			2.2.4	-	
2.4 American Options and optimal stopping 10 2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Options on the Maximum or the Minimum of Several		2.3			
2.4.1 American call without dividends 11 2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.2 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several		2.4			
2.4.2 American put 12 3 Classical numerical results and Benchmarks 13 3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21				1 11 0	
3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21			2.4.2		
3.1 Binomial Pricing Model 13 3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21	3	Clas	ssical n	umerical results and Benchmarks	13
3.1.1 Mathematics in Binomial valuation model 15 3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21					
3.2 Least Square Monte Carlo Method 15 3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21		0.1			
3.2.1 LSM method for an American put 16 3.2.2 Numerical results 16 3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21		3.2			
3.2.2 Numerical results		J. <u>_</u>		•	
3.3 Benchmarks in higher dimensions 17 3.3.1 Analytical formulas for Rainbow options 17 3.3.1.1 Geometric basket call option 17 3.3.1.2 Options on the Maximum or the Minimum of Several Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21					
3.3.1 Analytical formulas for Rainbow options		3.3			
3.3.1.1 Geometric basket call option		0.0		e de la companya de	
3.3.1.2 Options on the Maximum or the Minimum of Several			0.0.1	1	
Assets 18 3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21				<u>.</u>	1,
3.3.1.2.1 Best of assets or cash 18 3.3.1.2.2 Call on max and call on min 20 3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory 21 4.1.1 Architecture 21					18
3.3.1.2.2 Call on max and call on min					
3.3.2 Lattice approach for multivariate contingent claims 20 4 Deep Learning 21 4.1 Deep learning teory					
4.1 Deep learning teory			3.3.2		
4.1 Deep learning teory	4	Dee	n Lear	ning	21
4.1.1 Architecture	1				
		1.1			

		4.1.3 Optimization	22
		4.1.4 Backpropagation	23
	4.2	Deep Learning And Option Pricing	23
5	Dee	ep Learning And Option Pricing	25
	5.1	Deep Learning European Options	25
		5.1.1 Subsection 1	25
		5.1.2 Subsection 2	25
	5.2	Deep Learning American Options	25
A	-	tion contracts European Call and Put	27 27
В	Mat	thematical results and definitions	29
Bi	bliog	graphy	31

List of Figures

2.1	A Wiener process trajectory	3
3.1	Convergence of Binomial model	14
4.1	Deep Neural Network structure.	22

List of Tables

3.1	Valuation of American put option with K=40 and r=0.06	17
5.1	Parameter range	25

xvii

List of Abbreviations

B-S Black-Scholes BM**B**rownian **M**otion FPT1 Fundamental Pricing Theorem I Fundamental Pricing Theorem II FPT2 **GBM** Geometric Brownian Motion LIBOR London Interbank Offered Rate RNVF Risk Neutral Valuation Formula SDE Stochastic Differential Equation Self-Financing S-F

xix

List of Symbols

c	European call option price
p	European put option price
K	Strike price
T	Maturity in years
σ	Volatility of asset
C	American Call option price
P	American Put option price
S_0	Stock price today
S_T	Stock price at option maturity
$S_i(t)$	i'th stock price at time t
r	Continuous compounding risk-free yearly interest rate
$V^h(t)$	Value process
X	Simple Derivative
Φ	Contract function
W_t	Weiner process under martingale measure Q (synonym brownian motion)
$ar{W}_t$	Weiner process under probabilty measure P
p_{ij}	Correlation coefficient between asset i and j
μ_i	drift of the continuous lognormal distribution
•	pricing function of S(t) to time t

For/Dedicated to/To my...

Chapter 1

Introduction

In recent years we have seen an increasing complexity of financial products, where big investment- and banks use a lot of money on financial engineerers in creating new innovative products. With the complexity a lot of challenges has risen in this field. Nevertheless the products can help to mitigate risk and leverage your portfolio. A recent example from the financial crisis in 2007 where credit default swap (CDS) almost led to AIGs bailout. A CDS is a derivative, where you insure your risk of losing money on some financial product. The strategy of writing CDS seemed like a good business for AIG as long there was a bull market, because they got good feeds for insuring credit. The CDS was the main reasions that AIG needed a bailout by the US government under the recent financial crisis. In hindsight they wrote to many CDS, hence AIG was too exposed for risk. A great understanding in the financial derivatives is important to understand your risks and ulitmately migate the damage of financial turmoil as Warren Buffett says derivatives is "Financial weapons of mass destruction" (page 15 (Buffett, 2002)). Eventhough Buffett is critical against derivatives he acknowlegde the usage of derivatives, because he owns derivatives in his portfolio. Derivatives gives the trader more options either to utilize arbitrage, speculate or hedge, but without care or knowledge about your book of derivative the outcome can be disastrous (Buffett, 2008).

The focus is on financial derivatives, where the prime examples will be plain vanilla stock options. We will start with the most basic derivatives European options and move toward more complex products like American options. The European option will be the reference point for our different nummerical approaches to American options, because the European option has a closed form solution (see proposition 2.3.1). When moving into more complex derivatives as American options the Black Scholes analytical framework breaks down, and this calls for numerical methods. We will take different numerical approaches for pricing and hedging, where the ultimate goal is to use machine learning for pricing and hedging.

Chapter 2

Arbitrage theory in continuous time finance

Arbitrage theory in continuous time finance is a very broad field with a lot of technical details. The focus on this chapter will to provide the basic tools and intuition for the arbitrage theory and lay the foundations for the computational finance methods. We follow the style in (Hull, 2018) and (Björk, 2009) to focus on intuition without going into the whelm of technicalities and proofs. We start with introducing the financial markets and key concepts for building arbitrage free and complete market models (see section 2.1). Then we actually build a framework for finding "fair" prices, i.e. finding a complete model with absense of arbitrage (see section 2.2). Lastly we go into specific cases where either numerical methods is needed or we have a closed-form solution (see section 2.4 and 2.3).

2.1 Financial markets

FIGURE 2.1

In the financial markets there is a lot of players and different types of investments. The classical investments are bonds and stocks, where you either lending or buying equity. The big players in the markets are commercial banks, investment banks, insurance companies and pension funds. Besides the classical investments types derivatives gives additional options for investments. A derivative are a financial instrument depending on an underlying asset, where the dependency is specified in the contract. The options in this thesis will all be stock options, but the techniques developed can easisy be extended to other types of derivatives. The contract of stock options can be constructed in many ways, where we in appendix A included the put and call option. When pricing financial product we use the market to price derivatives (This correspond to the equivalent martingale measure Q to the objective measure P), so we do not introduce arbitrage to the market. We will make idealized assumptions about the market:

Assumption 2.1.1. *We assume following institutional facts:*

- Short positions and fractional holding are allowed
- There are no bid-ask spread, i.e. selling price is equal to buying price
- There are no transactions costs of trading.
- The market is completely liquid, i.e. it is possible to buy/sell unlimited quantities on the market. You can borrow unlimited amount from the bank by selling short.

(see p. 6 (Björk, 2009))

We can discuss these assumptions at length, but in order to progress mathematically, we need to accept them for now. There is some justification for liquidity on vanilla options, because those options gets traded on large scale. Before going into the mathematics, we need to introduce some key concepts.

2.1.1 Financial Derivatives

There is a broad range of different derivatives. In this thesis, we will mainly divide derivatives into two classes.

- 1. Simple derivatives (T-claims)
- 2. Exotic derivatives (e.g. American options)

The first class is the simple derivatives. These are simple because you can only exercise them at maturity (time T). The exotic derivatives are all kind of functions on the underlying assets, where you can e.g. have an option to exercise from inception to maturity (see section 2.4) or a contract on several underlying stocks (see section ??). There are so many derivatives, hence the list will not be comprehensive at all. Some important simple derivatives will be the European calls and puts, because we can price analytically.

Definition 2.1.1. European Call Option: A European call option is an option where the owner of the option has the option to exercise at maturity. The contract function for the derivative:

$$\Phi(S(T)) = \max\{S(T) - K, 0\}$$
 (2.1)

Where S(T) is the price of underlying asset at maturity and K is the agreed strike price.

For illustration of above contract see appendix A (Björk, 2009).

5

2.1.2 Self-financing portfolio (Without consumption)

A self-financing portfolio h, is a portfolio h which doesn't get any external injection of money. h is the number of each assets in our portfolio. We denote $V^h(t)$ the value of our portfolio h at time t, hence:

Definition 2.1.2. Self-financing portfolio A portfolio consisting of n+1 assets: $h(t)=(h_0(t),h_1(t),\ldots,h_n)$ is self-financing if:

$$dV^{h}(t) = \sum_{i=0}^{n} h_{i}(t)dS_{i}(t)$$
(2.2)

Where S_i is the i'th asset in our portfolio, n+1 is the total number of assets and $V^h(t) = \sum_{i=0}^n h_i(t)S_i(t)$

The important takeaway is that a S-F portfolio is kind of a budget restriction. You are only allowed to reallocate your assets within the portfolio but not injecting cash into the portfolio. The concept is important for the discussion of arbitrage and hedging (Björk, 2009).

2.1.3 Arbitrage

Arbitrage is the financial term for a "free lunch". If there is arbitrage in the market an investor can profit without bearing risk. In order to avoid making a "money machine", we want to price derivatives by not introducing arbitrage to the market.

Definition 2.1.3. Arbitrage: An arbitrage possibility on a financial market is a self-financed portfolio h suct that

$$V^{h}(0) = 0$$

 $P(V^{h}(T) \ge 0) = 1$
 $P(V^{h}(T) > 0) > 1$ (2.3)

We say that the market is arbitrage free if there aro no arbitrage possibilities. (see p. 96 (Björk, 2009))

From the definition of a self-financing portfolio fulfilling equation (2.3) would give the possibility for arbitrage. The investor in this portfolio starts with 0 dollars, and without injecting any money, the investor is certain of not losing any money. In addition he has a positive probability by ending up with more than 0 at maturity. Arbitrage is a way to price financial products "fair". To price "fair" and hedge against risk will be the topics for the rest of this thesis.

2.1.4 Complete Market and Hedging

Hedging is a concept to protect against exposure to risk. A hedge is simply a risk neutralization action in order to minimize the overall risk. In the definition below, we define a hedge for an simply T-claim.

Definition 2.1.4. Hedging and completeness for T-claim: A T-claim X can be hedged, if there exist a self-financing portfolio h such that:

•
$$V^h(T) = X \text{ P-a.s.}$$

I.e. h is an hedge portfolio for X if it is guaranteed to pay in all circumstances an amount identical to the payout of X.

The market is complete, if every derivative is hedgeable. (see p. 192fa (Björk, 2009))

Hedging and completeness means the same for other derivatives than T-claims, but for now we will only show the concepts for the T-claim. By defining the fundamental concepts we are ready to solve the two fundamental problems:

- Pricing derivatives without introducing arbitrage to the market.
- When is the market complete?

2.2 Multidimensional Models

There is two main method for deriving arbitrage free and complete markets. The classical approach is the delta hedging approach (Black and Scholes, 1973) and (Cox and Stephen Ross, 1979)). The more advanced mathematical approach is the martingale approach (Björk, 2009). In this section we will focus on the martingale approach and show the delta hedging approach is a special case of the more general martingale theory. For the martingale approach the First and Second Fundamental Theorems of Mathematical Finance will be the key for obtaining a fair market. Besides the model assumptions will we also assumes the financial market assumptions in section 2.1.

2.2.1 Model assumptions

Let us consider a filtered probability space $(\Omega, \mathcal{F}, P, \mathcal{F}_t^{\bar{W}})$. Note the assumption that filtration is only generated from the Wiener process, so the \bar{W} is the only random source and we assume \bar{W}_i is k-dimensional. I.e. we assume that we are in a Wiener world, where all processes are Wiener driven. A priori we assume a market $(B(t), S_1(t), S_2(t), \ldots, S_n(t))$, where $S_i(t)_{i=1,2,\ldots,n}$ is n risky assets S(t) and B(t) is the risk free asset. By assumptions their dynamics are given by:

$$dS(t) = D[S(t)]\alpha(t)dt + D[S(t)]\sigma(t)d\bar{W}(t)$$
(2.4)

$$dB(t) = r(t)B(t)dt (2.5)$$

We assume α_i , σ_{ij} and the short rate r(t) are adapted processes. For convenience we used vector and matrix notation for the GBM process. n risky assets

$$S(t) = \begin{pmatrix} S_1(t) \\ S_2(t) \\ \vdots \\ S_n(t) \end{pmatrix}$$

k dimensional Wiener processes:

$$\bar{W}(t) = \begin{pmatrix} \bar{W}_1(t) \\ \bar{W}_2(t) \\ \vdots \\ \bar{W}_n(t) \end{pmatrix}$$

volatility matrix $\sigma = {\{\sigma_{ij}(t)\}_{i=1,\dots,n,j=1,\dots,k}}$, local mean of rate of return vector $\alpha = (\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t))^T$, and D(x) denotes a diagonal matrix with vector x as its

diagonal.

Furthermore the Wiener processes covariance is $Cov(dW_i(t)dW_j(t)) = \rho_{ij}dt$ where $\rho_{i,i} = 1$

2.2.2 Arbitrage free model

The first problem we are faced with in arbitrage theory is to price the derivative, i.e. finding $\Pi(t,\mathcal{X})$ the price at time t without introducing arbitrage to the market $(B(t),S(t),\Pi(t))$. The First Fundamental Theorem tells us how to price $\Pi(t)$.

Theorem 2.2.1. First Fundamental Pricing Theorem of Mathematical Finance(FFT1): The market model is free of arbitrage if and only if there exist a martingale measure, i.e. a measure $Q \sim P$ s.t. the processes:

$$\frac{S_0(t)}{S_0(t)}, \frac{S_1(t)}{S_0(t)}, \cdots, \frac{S_n(t)}{S_0(t)}$$

are (local)martingales under Q. (see p. 154 (Björk, 2009))

From the FFT1 with the bank account B(t) as numeraire, we have:

Proposition 2.2.1. We assume that $B(t) = S_0(t)$ is our numeraire and all the processes are Weiner driven, then a equivalent measure $Q \sim P$ is martingale measure if and only if all assets $(B(t), S_1(t), \ldots, S_n(t))$ have the short rate as their local rates of return, i.e.

$$dS_i(t) = S_i(t)r(t)dt + S_i(t)\sigma_i(t)dW^{Q}(t)$$
(2.6)

(see p. 154 (Björk, 2009))

So to not introduce arbitrage to the model for the market, we need to ensure the Q-dynamics of S is:

$$dS(t) = D[S(t)]r(t)dt + D[S(t)]\sigma(t)d\bar{W}(t)$$
(2.7)

The tool to obtain the dynamics in eq. (2.7) is Girsanov Theorem (see B.0.2). Girsanov Theorem is a continuous measure transformation, where in our model we want to transform the dynamics given with the objective probability measure P to an equivalent martingale measure Q (i.e. the martingale measure chosen by the market). By suitable chooses of the likelihood process L and setting dQ = L(T)dP, then with Girsanov theorem we can write:

$$d\bar{W}(t) = \phi(t)dt + dW(t)$$

When applying to eq. (2.4):

$$dS(t) = D[S(t)](\alpha(t) + \sigma(t)\phi(t))dt + D[S(t)]\sigma(t)d\bar{W}(t)$$

Going back to the FFT1 and the proposition, we know that Q is martingale measure if and only if:

$$\alpha(t) + \sigma(t)\phi(t) = \mathbf{r}(t)$$
 holds with probability 1 for each t (2.8)

By above discussion and disregarding "pathological models" (will use the term generically arbitrage free when pathological models are not considered). Furthermore we assume enough integrability and we have the following useful result:

Proposition 2.2.2. Disregarding integrability problems the model is generically arbitrage free if and only if, for each $t \leq T$ and P-a.s. the mapping: $\sigma(t) : \mathbb{R}^k \to \mathbb{R}^n$ is surjective, i.e. if and only if the volatility matrix $\sigma(t)$ has rank n. (see p. 198 (Björk, 2009))

We note that in order not to have arbitrage in our model, we need $k \ge n$, i.e. have at least as many random sources as number of risky assets.

2.2.3 Complete model

Second Fundamental Pricing Theorem is key to obtain a complete market model, i.e. a market model where every claim can be hedged.

Theorem 2.2.2. Second Fundamental Pricing Theorem of Mathematical Finance(FFT2): Assuming absence of arbitrage, the market model is complete if and only if the martingale measure Q is unique. (see p. 155 (Björk, 2009))

Hence in our Wiener world we have a unique martingale measure if eq. 2.8 has a unique solution.

Proposition 2.2.3. Assume that the model is generically arbitrage free and that the filtration is defined by:

$$\mathcal{F}_t = \mathcal{F}_t^{ar{W}}$$

Then disregarding integrability problems, the model is complete if and only if k=n and the volatility matrix $\sigma(t)$ is invertible P-a.s. for each $t \leq T$ (see p. 200 (Björk, 2009))

2.2.4 Pricing and connection to classical approach

The pricing formula for arbitrage free market model is the risk neutral valuation formula:

Proposition 2.2.4. *To avoid arbitrage,* X *must be priced according to the formula:*

$$\Pi(t;\mathcal{X}) = S_0(t)E^{\mathcal{Q}}\left[\frac{\mathcal{X}}{S_0}|\mathcal{F}_t\right]$$
(2.9)

Note if we choose our numeraire $S_0(t) = B(t)$ *then*

$$\Pi(t;\mathcal{X}) = E^{\mathbb{Q}}[\exp(-\int_{t}^{T} r(s)ds)\mathcal{X}|\mathcal{F}_{t}]$$
(2.10)

(see p. 155 (Björk, 2009))

The classical approach to arbitrage free and complete market models is based on a Markovian model assumption and k=n. Assume we are in a Wiener world, where the probability space $(\Omega, \mathcal{F}, P, \mathcal{F}_t^{\bar{W}_t})$ is given. Furthermore we assume α and σ are deterministic functions and constant over time. σ is also assumed invertible. Under these more restrictive assumptions the risk neutral valuation formula for a simple T-claim is given by the Markov property:

$$\exp(-r(T-t))E^{\mathbb{Q}}[\mathcal{X}|S(t)] \tag{2.11}$$

Applying Kolmogorov backward equation on eg. 2.11, we obtain the BS-PDE for the pricing function $F(t,S(t))=\Pi(t;\mathcal{X})$.

Theorem 2.2.3. *Black Scholes PDE:* Consider the contract $\mathcal{X} = \Phi(S(T))$. In order not to introduce arbitrage to the market, the pricing function F(t,s) must solve the boundary value problem.(TODO)

$$F_t(t,s) + rsF_s(t,s) + \frac{1}{2}s^2\sigma^2(t,s)F_{ss}(t,s) - rF(t,s) = 0$$

$$F(T,s) = \Phi(s)$$
(2.12)

(see p. 155 (Björk, 2009))

2.3 Classical Black-Scholes Formulas

We will not do the classical delta hedging approach in (Black and Scholes, 1973). Instead we use the general multidimensional martingale approach to derive the essential formulas for pricing. To derive a closed-form solution to the European call and put option, we concentrate at a special case of the multidimensional framework, where we only have the risk free asset and one risky asset. We further restrict ourselves to:

Assumption 2.3.1. *Black-Scholes assumptions We assume following ideal conditions in addition to* (2.1.1):

- The short-term interest rate is known and is constant through time
- The stock price follows a Geometric Brownian Motion. The σ is constant.
- *The stock pays no dividends or other distributions.*
- *The option is a simple option ("European" see* (2.1.1)).

(see p. 640 (Black and Scholes, 1973))

We assume the underlying stock follows a geometric brownian motion: $dS(t) = \alpha S dt + \sigma S dW_t$ where the solution to the SDE is given as

$$S(t) = S(0) \cdot \exp\left(\left(\alpha - \frac{1}{2}\sigma^2\right)t + \sigma W(t)\right)$$
 (2.13)

Where α is the local mean rate of return and σ is the volatility of S. By above assumptions we are in a Markovian model, and we know the Black Scholes PDE in this setup (see eq. 2.2.3). By Feynman-Kac we have the risk neutral valuation formula.

Theorem 2.3.1. Risk-neutral valuation formula: Given Q is the martingale measure

$$\Pi(t,X) = exp(-r(T-t)) \cdot E_{t,x}^{Q}[X]$$
(2.14)

From the RNVF we can derive a closed form solution for both a European call and put option. We will provide the European call option and the put-call-parity, because from the put-call-parity relationship we derive the European put option from the call option.

Proposition 2.3.1. *Black-Scholes formula for call option:* The price of a European call option with strike K and maturity T is given by the formula $\Pi(t) = F(t, S(t), where$

$$F(t,s) = s \cdot N(d_1(t,s)) - e^{-r(T-t)} \cdot K \cdot N(d_2(t,s))$$

N is the cumulative distribution function of a standard normal distribution $\mathcal{N}(0,1)$ and

$$d_1(t,s) = \frac{1}{\sigma \cdot \sqrt{T-t}} \cdot \left(\ln(\frac{s}{K}) + (r + \frac{1}{2}\sigma^2)(T-t) \right)$$
$$d_2(t,s) = d_1(s,t) - \sigma\sqrt{T-t}$$

(see p. 105 (Björk, 2009))

Proposition 2.3.2. *Put-call parity:* Assume the call and put option has same strike price and time to maturity.

$$p(t,s) = K \cdot \exp(-r(T-t)) + c(t,s) - s$$

(see p. 126 (Björk, 2009))

The put-call-parity holds only for European options, but the framework developed in this section will be useful for benchmarks and control variate for the numerical procedures.

The above formula for the European call option is actually the same for an American call option, but is not true for an American put option or for call options paying dividends. The result for the American call option was shown by Merton (Merton, 1973), that the intrinsic value is never greater than the worth of the option given by the risk-neutral valuation formula. In section 2.4 we will show a martingale approach to prove the value of a European and American call coincides when the underlying is a non-dividend paying stock (Björk, 2009).

2.4 American Options and optimal stopping

The American options adds additional complexity to the pricing problem, because compared to the European option the American option can be exercised at any time from inception to maturity. The main problem with American options is to find a optimal stopping time, i.e.

$$\max_{0 \le \tau \le T} \{ E[\Phi(\tau, X_{\tau})] \} \tag{2.15}$$

Where τ is a stopping time (see definition B.0.1). We assume satisfied integrability condition on a finite interval [0, T]:

$$\sup_{0 \le \tau \le T} \{ E[\Phi(\tau, X_{\tau})] \} < \infty$$

and assume a diffusion setting:

$$dX_t = \mu(t, X(t))dt + \sigma(t, X(t))dW(t)$$

To find the optimal stopping time we introduce the optimal value function V(t,X(t)).

Definition 2.4.1. Optimal value function For fixed $(t, x) \in [0, T]X\mathbb{R}$, and each stopping time τ with $\tau > t$ the optimal value function V(t, x) is defined by

$$V(t,x) = \sup_{t < \tau < T} \{ E[\Phi(\tau, X_{\tau})] \}$$
 (2.16)

A stopping time which realizes supremum for V is called optimal and be denoted $\hat{\tau}_{tx}$. (see page 341 (Björk, 2009))

By using a dynamic programming argument with three strategies:

- Use optimal stopping strategy $\hat{\tau}_t$
- Stop immediately
- Wait one time-step h and then use optimal stopping strategy $\hat{\tau}_{t+h}$

Jumping over some argument and like in this section assuming "enough regularity", we arrive at two important propositions for numerically evaluating American options.

Proposition 2.4.1. *variational inequalities Given enough regularity, the optimal value function is characterized by the following relations:*

$$V(T,x) = \Phi(T,x)$$

$$V(t,x) \ge \Phi(t,x) \quad \forall (t,x)$$

$$\left(\frac{\partial}{\partial t} + \mathbb{A}\right) V(t,x) \le 0 \quad \forall (t,x)$$

$$\max \left\{ V(t,x) - \Phi(t,x), \left(\frac{\partial}{\partial t} + \mathbb{A}\right) V(t,x) \right\} = 0 \quad \forall (t,x)$$

$$Where \, \mathbb{A} \text{ is the Itô operator:}$$

$$\mathbb{A} f(t,x) = \mu(t,x) \frac{\partial f(t,x)}{\partial x} + \frac{1}{2} \sigma^2(t,x) \frac{\partial^2 f(t,x)}{\partial x^2}$$

$$(2.17)$$

(see p. 344 (Björk, 2009))

Proposition 2.4.2. *Free boundary value problem Assuming enough regularity, the optimal value function satisfies the following parabolic equation*

$$\begin{cases} \frac{\partial V(t,x)}{\partial t}(t,x) + \mu(t,x) \frac{\partial V(t,x)}{\partial x}(t,x) + \frac{1}{2}\sigma^{2}(t,x) \frac{\partial^{2}V(t,x)}{\partial x^{2}} = 0 & (t,x) \in C \\ V(t,x) = \Phi(t,x) & (t,x) \in \partial C \end{cases}$$

Where C is the continuation region defined by:

$$C = \{(t, x) : V(t, x) > \Phi(t, x)\}$$

(see p. 343-344 (Björk, 2009))

We will see in the American put section why these two propositions are useful.

2.4.1 American call without dividends

The American call options is a special case, because the optimal stopping time is always at the options maturity. With martingale machinery it means the value-process is a submartingale, which mean the $\hat{\tau} = T$.

The optimal stopping problem is:

$$\max_{0 < \tau < T} \{ E[\exp(-r\tau) \max\{S_{\tau} - K, 0\}] \}$$

Hence we want to maximize the expectation of the process:

$$\max\{\exp(-rt)S_t - \exp(-rt)K, 0\}$$

From the theory developed we know that $\exp(r \cdot t) \cdot S_t$ is a Q-martingale and $\exp(r \cdot t) \cdot K$ is a deterministic decreasing function hence a supermartingale. Then $\exp(r \cdot t) \cdot S_t - \exp(r \cdot t) \cdot K$ is a submartingale. Applying the function max which is a convex and increasing function on a submartingale is still a submartingale. Hence the optimal stopping time is $\hat{\tau} = T$.

2.4.2 American put

For the American put the optimal stopping problem is:

$$\max_{0 \le \tau \le T} \{ E[\exp(-r\tau) \max\{K - S_{\tau}, 0\}] \}$$

There is no analytical formula for American put, hence numerical procedures are required. For practical use there are three strategies to find the fair price for the option:

- Solve the free boundary free problem numerically (see 2.4.2)
- Solve the variational inequalities numerically (see 2.4.1)
- Approximate the Black-Scholes model by a binomial model and compute the exact binomial American put price.

parencitefinKont

We will in the following chapters try to valuate with both the binomial model and solving the variational inequalities.

Chapter 3

Classical numerical results and Benchmarks

TODO:Equidistant time steps

By last section we saw the American put was an example of an option that required numerical procedures to be priced fair. The American put is far from the only example of a derivative without a closed-form solution. In this chapter the two first sections deals with pricing American put option with 1 underlying risky asset, where in the last section we try to price options with several underlying risky assets.

The two first sections is two classical valuing algorithms in computational finance the Binomial model (Cox and Stephen Ross, 1979) and the Least Square Monte Carlo (LSM (Longstaff and Schwartz, 2001)) approach with one underlying asset. The binomial model is an example of a strategy to approximate the B-S model and the LSM is a method trying to solve the variational inequalities. We could also have chosen to solve the free boundary problem with implicit finite difference, but we chose to focus on the two other numerical procedures. The final section in this chapter will be trying to value exotic options with several underlying assets. Here we will extend the binomial pricing model to multidimensional ((Ekvall, 1996) and (Boyle, Evnine, and Gibbs, 1989)) and provide some closed form solutions ((Johnson, 1987) and (Ouwehand, 2006)). Therefore the chapter have two purposes to gain insight into valuation for exotic options and provide some benchmarks for the Neural Network in the coming chapters.

3.1 Binomial Pricing Model

The classical (Cox and Stephen Ross, 1979) presented in this section will be used for pricing an American put stock option and to build the foundation for the multidimensional binomial model (Boyle, Evnine, and Gibbs, 1989). The Binomial model provides an intuitive and easy implementable model for valuing American and European options. The Binomial model comes handy, when no analytical model exists e.g. an American put option. The Binomial model also has its limitations, because it is not suited for valuing path dependent options or options with a lot of several underlying factors. The key difference on the Binomial model and the other numerical procedures is that the Binomial model is build on a discrete framework.

The central concepts arbitrage and completeness from continuous time also work in the discrete time setup. The paper (Cox and Stephen Ross, 1979) which introduced the binomial model to option pricing came after the Black-Scholes model described in section 2 (Black and Scholes, 1973). The main reason for developing a model in

discrete time, is that the discrete time approach gives a simplified model in terms of the mathematics and highlights the essential concepts in arbitrage theory. You can argue that the simpler mathematics in this model makes the binomial model more instructive and clear. Besides being easier to understand for non-mathematician it works nicely with other options than the European options like American options.

Even though we assume the stock price moves at discrete time instead in continuous time it can actually be shown for a European Option that if the number of time-steps in the tree approaches infinity. The Binomial model will then converge to the continuous time closed form solution for a European option (Cox and Stephen Ross, 1979) (Hull, 2018). Hence the binomial pricing model will be equivalent with the continuous time analytical pricing model derived by Fischer Black and Myron Scholes in the limit for European options (Cox and Stephen Ross, 1979).

To value an American put option, we lay out all the possible path of the stock, based on the S_0 , σ and T. We need to specify the number of time-steps ($\Delta t = \frac{T}{N}$ where N = No. of steps) for the tree, where for each step, we add another possible value for the stock. We only add 1 more possibility for each time-step because the tree recombines. The precision for the algorithm increases with the number of steps and the option value stabilizes (see Figure 3.1). For valuing an American put option, we value the exercise value at maturity (time T) for all possible outcomes for the stock. Then we use backward induction where we compare the intrinsic value with the conditional expectation, where we choose the maximum of these two (Hull, 2018).

FIGURE 3.1

3.1.1 Mathematics in Binomial valuation model

The mathematics behind the Binomial model is simple and we will in this section provide the basic mathematics. First we need to construct the tree, then afterwards work backwards in the tree for valuation. For each time step (Δt) , we assume the stock (S) moves up $(S \cdot u)$ or down $(S \cdot d)$. In order to avoid arbitrage we need to find the risk neutral measure q (martingale measure) for the binomial tree. The probability for the stock moves up is q. The risk neutral measure q is chosen such that the expected return is the risk-free rate r for the risk neutral portfolio.

Theorem 3.1.1. Risk-neutral valuation formula in discrete time. Assume there exists a risk free asset. Then the market is arbitrage free if and only if there exists a risk neutral measure $Q \sim P$ s.t.

$$s = \exp(-r\Delta t) \cdot E^{Q}[S(t + \Delta t)|S(t) = s]$$
(3.1)

Where Δt is a single time-step.

From the above theorem, we can calculate the risk neutral measure as:

$$q = \frac{e^{\Delta t} - d}{u - d}$$

The d and u is chosen s.t. they match volatility. So we choose:

$$u = \exp(\sigma \sqrt{\Delta t})$$
 $d = \exp(-\sigma \sqrt{\Delta t})$

Now we have determined the three parameters needed for constructing a binomial tree (Cox and Stephen Ross, 1979) (Hull, 2018) (Björk, 2009).

We want to value an American put option, hence we need to work backward in the tree and comparing in each node the intrinsic value with the conditional expectation (see theorem 3.1.1) by:

$$max\{K - S(t), \exp(-r\Delta t) \cdot E^{Q}[P(t + \Delta t, T)|P(t, T) = p]\}$$
(3.2)

The comparison will be applied for every node in each time-step Δt and all the way back in time to the initialization date. By this procedure we get present value of the American option at initialization.

3.2 Least Square Monte Carlo Method

The classical result in this section is of a different nature, because it is based on simulation and linear regression. In our setting we regress the expected payoff by continuation of the contract and compare it to the intrinsic value. The dependent variable in the regression is the expected value of continuation and the independent variables is a set of orthogonal basis functions in $L^2(\Omega, \mathcal{F}, Q)$ of the simulated paths. Typical choices for basis functions could be weighted Laguerre -, Hermit -, and Jacob polynomials. This kind of regression is a nonlinear expansion of the linear model. In order to create data, we will simulate paths according to the underlying risky asset.

3.2.1 LSM method for an American put

We want to valuate an American put option with a stock as underlying asset. We take the same assumptions as in Chapter 2 (see assumption 2.3.1) except the option is an American option. Hence in order to simulate the paths of the stock, we simulate from a GBM: $dS(t) = rSdt + \sigma SdW_t$ where σ and r are constant (see solution to SDE equation 2.13). We simulate 100.000 paths for the stock. Like in the binomial model, we work backward to decide the optimal stopping time. The computer is discrete, hence we simulate the stock path as an Bermuda option, where we have 50 time-steps per year. I.e. we approximate the American option with a Bermudan option on same underlying.

At maturity the cash flow from the option is the same as for an European put option, hence the cash flow from each path is $C(\omega, T; T, T) = max(K - S_T, 0)$. We use the notation $C(\omega, s; t, T)$ denote the path of cash flows generated by the option condition on the option not being exercised before t and the option holder follow the optimal stopping strategy for all s, $t < s \le T$. (inspired by (Longstaff and Schwartz, 2001) p. 121). The continuation value is given by:

$$F(\omega; t_k) = E^{\mathbb{Q}}\left[\sum_{j=k+1}^{K} \exp\left(-\int_{t_k}^{t_j} r(\omega, s) ds\right) C(\omega, t_j; t_k, T) | \mathcal{F}_{t_k}\right]$$
(3.3)

where $r(\omega, t)$ is risk free interest rate, and the \mathcal{F}_{t_k} is the filtration at time t_k .

We get the optimal stopping strategy by comparing thr continuation value with the intrinsic value at each time step. By working backward in time until the initialization of the option, we have specified the optimal stopping times and the cash flows associated with exercising at the optimal stopping times. To estimate the condition expectation in equation 3.3, we regres with the basis functions taking on the underlying asset for the option being the independent variable:

$$F(\omega; t_{K-1}) = \sum_{j=0}^{\infty} a_j L_j(X)$$

where a is the coefficients for the regression, L is the basis function, where the argument is the underlying asset X (Longstaff and Schwartz, 2001).

3.2.2 Numerical results

By the above two algorithms for valuation, we choose to vary spot, volatility and maturity for pricing an American put option with K=40 and r=0.06. This table will serve as reference for the machine learning algorithm in chapter (!TODO chapter for machine learning). For the binomial tree we use 100 time-steps, which gives stable results (compare to figure 3.1) and for the LSM we use 10^5 paths with 50 time-steps per year. The European option is valued by using BS closed form solution for a call option (see proposition 2.3.1) and Put-call parity (see proposition ??). We see the maximum difference between the two algorithms is 0.027 at S=38, $\sigma = 0.4$ and T=2. The other obvious fact is that the European put has a lower value than its American counterpart, because the continuous exercise feature adds additional value to the put option.

Spot	σ	T	Closed form European	Binomial Tree	LSM	abs. diff.
36	0.2	1	3.844	4.488	4.478	0.010
36	0.2	2	3.763	4.846	4.828	0.018
36	0.4	1	6.711	7.119	7.092	0.027
36	0.4	2	7.700	8.508	8.500	0.008
38	0.2	1	2.852	3.260	3.245	0.015
38	0.2	2	2.991	3.748	3.735	0.013
38	0.4	1	5.834	6.165	6.144	0.021
38	0.4	2	6.979	7.689	7.665	0.024
40	0.2	1	2.066	2.316	2.313	0.003
40	0.2	2	2.356	2.885	2.881	0.004
40	0.4	1	5.060	5.310	5.326	0.016
40	0.4	2	6.326	6.914	6.908	0.006
42	0.2	1	1.465	1.622	1.622	0.000
42	0.2	2	1.841	2.217	2.212	0.005
42	0.4	1	4.379	4.602	4.596	0.006
42	0.4	2	5.736	6.264	6.243	0.021
44	0.2	1	1.017	1.117	1.113	0.004
44	0.2	2	1.429	1.697	1.688	0.009
44	0.4	1	3.783	3.956	3.962	0.006
44	0.4	2	5.202	5.656	5.649	0.007

TABLE 3.1: Valuation of American put option with K=40 and r=0.06.

3.3 Benchmarks in higher dimensions

In this section will we provide closed form solution for some special cases of European multivariate contingent claims. Furthermore we present a lattice approach in multidimensional for pricing both European and American multivariate contingent claims. The basic assumptions and results are given in section 2.2.

3.3.1 Analytical formulas for Rainbow options

We derive closed form solutions to European call and put options depending on several variables, for simplicity we will focus on pricing options with 2 or 3 underlying stocks. We apply the intuition given in (Johnson, 1987) and the results given in (Ouwehand, 2006). The derivatives we will consider are the geometric mean -, maximum - and minimum call option.

3.3.1.1 Geometric basket call option

For a geometric basket call option the contract function is given by:

$$\Phi(S(T)) = \max\{(\prod_{i=1}^{n} S_i(T))^{\frac{1}{n}} - K, 0\}$$

The key to derive closed form solution is the known result that the sum of normal random variables are multivariate normal distributed. This implies that the product

of lognormal random variables are multivariate log-normal distributed. Since:

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$
$$X \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow Y = \exp(X) \sim LN(\mu, \sigma^2)$$

We assume as in section 2.2 that the stocks price process follows a GBM, hence:

$$\left(\prod_{i=1}^{n} S_i(T)\right)^{\frac{1}{n}} = \left(\prod_{i=1}^{n} S_i(0)\right)^{\frac{1}{n}} \exp\left(\left(r - \frac{1}{2n} \sum_{i=1}^{n} \sigma_i^2\right)T + \frac{1}{n} \sum_{i=1}^{n} \sigma_i W_i(T)\right)$$
(3.4)

By defining

$$\sigma = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_i^2 + 2 \sum_{i \neq j} \rho_{i,j} \sigma_i \sigma_j}$$
 (3.5)

$$F = \left(\prod_{i=1}^{n} S_i(0)\right)^{\frac{1}{n}} \exp\left(\left(r - \frac{1}{2n} \sum_{i=1}^{n} \sigma_i^2\right)T + \frac{1}{2}\sigma^2 \cdot T\right)$$
(3.6)

We arrive at the price by skipping some arguments:

$$\Pi(t,\mathcal{X}) = \exp(-r*(T-t))\left(FN(d_1) - KN(d_2)\right)$$
(3.7)

where
$$d_1 = \frac{\ln(\frac{F}{K}) + \frac{1}{2}\sigma^2 T}{\sigma \cdot \sqrt{T}}$$
 and $d_2 = d_1 - \sigma \sqrt{T}$

3.3.1.2 Options on the Maximum or the Minimum of Several Assets

Here we restrict ourselves to consider the case with three underlying stocks like in (Boyle, Evnine, and Gibbs, 1989) and (Ouwehand, 2006), but the formula can be generalized to higher dimensions. The contract functions we consider are:

- Best of assets or cash: $\Phi(S(T)) = \max\{S_1, S_2, \dots, S_n, K\}$
- Call on max: $\Phi(S(T)) = \max\{\max(S_1, S_2, ..., S_n) K, 0\}$

We use n=3 because it shows the generality without the notation becomes to cumbersome.

We use the martingale framework developed in section 2.2 to value these exotic options. The key is to choose the numeraire to a risky assets instead of the bank account. By results from section 2.2 the processes are still Q-martingales given the numeraire is strictly postive. So under the asssumption the arbitrage free and complete market it follows:

$$S_0(t)E_t^{Q_0}\left[\frac{X_T}{S_0(T)}\right] = S_1(t)E_t^{Q_1}\left[\frac{X_T}{S_1(T)}\right]$$

3.3.1.2.1 Best of assets or cash

The best of assets will both provide a price and the method for pricing call on max and min. We assume WLOG n=4 and define the payoff as for the i'th asset:

$$S_i(T) \cdot 1_{S_i(T) > S_j(T): i \neq j}$$

Hence the best of assets derivative is a sum of above equation for each asset. So we are considering four cases, because we assumed WLOG n=4.

For i=1 we set S_1 to be the numeraire asset with martingale measure \mathbb{Q}_1 . Then we see by using RNVF (see proposition 2.2.4):

$$\Pi_{1}(t,\mathcal{X}) = S_{1}(t)E_{t}^{Q_{1}}[1_{S_{1}(T)>S_{2}(T),S_{1}(T)>S_{3}(T),S_{1}(T)>S_{4}(T)}]
= S_{1}(t)Q_{1}[\ln(\frac{S_{2}(T)}{S_{1}(T)}) < 0, \ln(\frac{S_{3}(T)}{S_{1}(T)}) < 0, \ln(\frac{S_{4}(T)}{S_{1}(T)}) < 0]$$
(3.8)

By cycling through the numeraires we get four derivatives that we need to add together for optaining the fair price for best of assets $\Pi_{max}(t, \mathcal{X})$. Before we can proceed we need to find the probaility under the *Q*-martingale measure. By using Ito's lemma (see B.0.1):

$$\ln(\frac{S_i(T)}{S_j(T)}) \sim \mathcal{N}(\ln(\frac{S_i(T)}{S_j(T)}) - \frac{1}{2}\sigma_{i/j}^2 \cdot (T-t), \sigma_{i/j}\sqrt{T-t})$$

where $\sigma_{i/j}^2 = \sigma_i^2 + \sigma_j^2 - 2\rho_{ij}\sigma_i\sigma_j$.

Besides using the definition for d_1 and d_2 in proposition 2.3.1 we define:

$$d_1^{i/j} = \frac{1}{\sigma \cdot \sqrt{T-t}} \cdot \left(\ln(\frac{S_i}{S_j}) + \frac{1}{2} \sigma_{i/j}^2 \cdot (T-t) \right)$$
(3.9)

$$d_2^{i/j} = d_1^{i/j} - \sigma_{i/j}\sqrt{T - t}$$
 (3.10)

Furthermore the correlation between $\ln(\frac{S_i(T)}{S_j(T)})$ and $\ln(\frac{S_i(T)}{S_j(T)})$ is given by (see page 5 (Ouwehand, 2006)):

$$\rho_{ij,k} = \frac{\rho_{ij}\sigma_i\sigma_j - \rho_{ik}\sigma_i\sigma_k - \rho_{kj}\sigma_k\sigma_j + \sigma_k^2}{\sqrt{(\sigma_i^2 + \sigma_k^2 - 2\rho_{ik}\sigma_i\sigma_k) \cdot (\sigma_j^2 + \sigma_k^2 - 2\rho_{jk}\sigma_j\sigma_k)}}$$
(3.11)

Hence:

$$Q_1[\ln(\frac{S_2(T)}{S_1(T)}) < 0, \ln(\frac{S_3(T)}{S_1(T)}) < 0, \ln(\frac{S_4(T)}{S_1(T)}) < 0] = N_3(-d_2^{2/1}, -d_2^{3/1}, -d_2^{4/1}, \rho_{23,1}, \rho_{24,1}, \rho_{34,1})$$

Cycling through each derivative, we get:

$$\Pi_{max}(t,\mathcal{X}) = S_{1}(t)N_{3}(-d_{2}^{2/1}, -d_{2}^{3/1}, -d_{2}^{4/1}, \rho_{23,1}, \rho_{24,1}, \rho_{34,1})
+ S_{2}(t)N_{3}(-d_{2}^{1/2}, -d_{2}^{3/2}, -d_{2}^{4/2}, \rho_{13,2}, \rho_{14,2}, \rho_{34,2})
+ S_{3}(t)N_{3}(-d_{2}^{1/3}, -d_{2}^{2/3}, -d_{2}^{4/3}, \rho_{12,3}, \rho_{14,3}, \rho_{24,3})
+ S_{4}(t)N_{3}(-d_{2}^{1/4}, -d_{2}^{2/4}, -d_{2}^{3/5}, \rho_{12,4}, \rho_{13,4}, \rho_{23,4})$$
(3.12)

We can extend the above result to best of assets and cash by letting $S_4(t) = K \exp(-r(T-t))$, where K do not have any volatilty and also independent of the other assets,

hence (3.12) becomes:

$$\Pi_{max}(t, \mathcal{X}) = S_{1}(t)N_{3}(-d_{2}^{2/1}, -d_{2}^{3/1}, d_{1}^{1}, \rho_{23,1}, \rho_{24,1}, \rho_{34,1})
+ S_{2}(t)N_{3}(-d_{2}^{1/2}, -d_{2}^{3/2}, d_{1}^{2}, \rho_{13,2}, \rho_{14,2}, \rho_{34,2})
+ S_{3}(t)N_{3}(-d_{2}^{1/3}, -d_{2}^{2/3}, d_{1}^{3}, \rho_{12,3}, \rho_{14,3}, \rho_{24,3})
+ K \cdot \exp(-r(T-t))N_{3}(-d_{2}^{1}, -d_{2}^{2}, -d_{2}^{3}, \rho_{12}, \rho_{13}, \rho_{23})$$
(3.13)

3.3.1.2.2 Call on max and call on min

From (3.13) is easy to see the call max fair price is:

$$\Pi_{cmax}(t,\mathcal{X}) = S_{1}(t)N_{3}(-d_{2}^{2/1}, -d_{2}^{3/1}, d_{1}^{1}, \rho_{23,1}, \rho_{24,1}, \rho_{34,1})
+ S_{2}(t)N_{3}(-d_{2}^{1/2}, -d_{2}^{3/2}, d_{1}^{2}, \rho_{13,2}, \rho_{14,2}, \rho_{34,2})
+ S_{3}(t)N_{3}(-d_{2}^{1/3}, -d_{2}^{2/3}, d_{1}^{3}, \rho_{12,3}, \rho_{14,3}, \rho_{24,3})
- K \exp(-r(T-t)) \cdot \left(1 - N_{3}(-d_{2}^{1}, -d_{2}^{2}, -d_{2}^{3}, \rho_{12}, \rho_{13}, \rho_{23})\right)$$
(3.14)

To derive put max we can utilize a put-call-parity (see page 6 (Ouwehand, 2006)), but it takes a different form than the one presented in 2 (see 2.3.2). The relationship for the exotic call options:

$$V_c(K) + K \exp(-r \cdot (T - t)) = V_p(K) + V_c(0)$$

Where $V_c(K)$ is the value of the exotic call option.

These options will serve as benchmark for the multivariate lattice approach, and for pricing the call on min see (Ouwehand, 2006).

3.3.2 Lattice approach for multivariate contingent claims

Chapter 4

Deep Learning

Deep learning experiences a renaissance because of the technology improvements in hardware and software. The collection of data has also significant improved making it possible to train even more complex models. The purpose of supervised Deep Learning is to learn a relationship between input and output:

$$Y = f(X) + \epsilon$$

4.1 Deep learning teory

Deep Learning is a specialized field in Machine Learning, which means it is within the field of applied statistics. Like in statistics and Machine Learning the basic components of a Deep Learning algorithm are a dataset, cost function, optimazation algorithm and a model. E.g. in the lsm method we assumed the model was Gaussian, dataset was the simulated paths, the lose function was the mean square error and the optimazation algorithm was solving the normal equations. Deep learning is about studying neural networks which allows for greater flexiblity than standard methods like linear regression. "Deep" comes from that a neural network consists of multiple layers, where the depth tells you how many layers the network has. The network consists of a input layer, hidden layers and finally a output layer where the input and output layers are observable to the user. To fit a model we need to provide weights, bias and the activation function for each layer, hence the ouput is a chain of functions applied to the input. In order to measure the performance of the model, we need a function to measure the difference on the response variable and the actually observed response. This function is referred as the loss function, where the cost function is the average over the loss functions. The cost function tells us how good our model is on the data. The cost function is key to improving our model or in machine learning lingo learning the model, hence we applied an optimization algorithm to find the optimal set of weights in order to improve the cost function (Goodfellow, Bengio, and Courville, 2016).

4.1.1 Architecture

The neural network is not like classical linear regression in section 3.2 where a single linear transformation from input to output is applied. In neural network we have a larged nested function, where each input go through a chain of functions until reaching the output. Each function in the composition of functions correspond to a "layer" in the neural network. The neural network inputs are called the input layer, the output layer is the output of the neural network. The layers between the input and output layer are hidden layers. This could be an explanation why the field is

called Deep learning, because we a deep structure of layers. Each layer consists of neurons, where the width of the layer is the number of neurons (see figure 4.1).

FIGURE 4.1: Deep Neural Network structure.

Dense layers

4.1.2 Forward propagation

activation function important feature for neural network, why are they used? activation functions apply a non-linear transformation and decide whether a neuron should be activated or not. Without activation functions the whole network would essentially be a linear regression model. variations:

- Sigmoid function: $f(x) = \frac{1}{1 + \exp(-x)}$
- tanH function: scaled and shifted sigmoid function: $f(x) = \frac{2}{1 + \exp(-2x)} 1$ (good for hidden layers)
- ReLU function most popular choice $f(x) = \max(0, x)$. Rule of thump use ReLU
- Leaky ReLU function better version than Relu:

$$f(x) = \begin{cases} x & \text{if } x \ge 0\\ a \cdot x & \text{otherwise} \end{cases}$$

4.1.3 Optimization

Quantifying loss Gradients is essential for model optimization stepwidth is our learning rate

4.1.4 Backpropagation

The chain rule: $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$ coputational graph - local gradient -> gradient, because we want to minimize the loss function so we want $\frac{\partial Loss}{\partial x}$ use chain rule to find the "final gradient". SO three steps: 1. forward pass: compute Loss 2. compute local gradients 3. backward pass: compute $\frac{\partial Loss}{\partial weights}$ using chain rule

4.2 Deep Learning And Option Pricing

The unique attribute of neural network is the ability to approximate any kind of function (Universal Apporximate Theorem), because of the flexibility with applying multiple functions to the input layer. The neural network has a lot of different design options, where e.g. hidden layers, layer width, activation functions etc. are hyperparameters.

Chapter 5

Deep Learning And Option Pricing

5.1 Deep Learning European Options

For the European option with have a analytical solution to the option pricing problem, hence we can easily produce the data set with input features and target variable (x,y). Remember the 5 parameters for pricing an European put option (proposition 2.3.1). The input data x will be varying combinations of the 5 parameters and the target variable will be generated by the Black-Scholes Euro put price.

TABLE 5.1: Parameter range

Spot	K	r	σ	T
\$10-\$500	\$7-\$650	1%-3%	0.05-0.9	0.1-3.0

- **5.1.1 Subsection 1**
- 5.1.2 Subsection 2

5.2 Deep Learning American Options

Appendix A

Option contracts

This list of option contracts are far from complete, but the purpose is to illustate some payoff contracts for reference.

A.1 European Call and Put

The European options will be the most basic options, we will work with. This means not that they are not important, actually they are key for pricing options. The European call option is a contract, which pays at maturity $\Phi(S(T)) = max(S - K, 0)$.

FIGURE A.1: European call with K=100

The European put is very similar to the call, except now we earn, when the stock is below the strike price K.

$$\Phi(S(T)) = max(K - S, 0).$$

FIGURE A.2: European put with K=100

Appendix B

Mathematical results and definitions

Theorem B.0.1. *Itô's formula multidimensional* Let the n-dimensional process X have dynamics given by:

$$dX(t) = \mu(t)dt + \sigma(t)dW(t) \tag{B.1}$$

Then the process f(t, X(t)) has stochastic differential given by:

$$df(t,X(t)) = \frac{\partial f(t,X(t))}{\partial t}dt + \sum_{i=1}^{n} \frac{\partial f(t,X(t))}{\partial x_i}dX_i(t) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f(t,X(t))}{\partial x_i \partial x_j}dX_i(t)dX_j(t)$$
(B.2)

Note:

$$dW_i \cdot dW_j = \begin{cases} \rho_{ij}dt & \textit{For correlated Weiner processes} \\ 0 & \textit{For independent Weiner processes} \end{cases}$$

(see page 58-60 (Björk, 2009))

Theorem B.0.2. The Girsanov Theorem Assume the probability space $(\Omega, \mathcal{F}, P, \mathcal{F}_t^{W^p})$ and let the Girsanov kernel ϕ be any d-dimensional adapted column vector process. Choose a fixed T and define the process L on [0,T] by:

$$dL_t = \phi(t)^T \cdot L_t d\bar{W}_t^P$$

 $L_0 = 1$

Assume that $E^{P}[L_{T}] = 1$ and define the new probability measure Q on \mathcal{F}_{T} by:

$$L_T = \frac{dQ}{dP}$$
 on \mathcal{F}_T

Then

$$d\bar{W}(t) = \phi(t)dt + dW(t)$$
(B.3)

Where W(t) is the Q-Wiener process and $\overline{W}(t)$ is the P-Wiener process (see page 164 (Björk, 2009))

Definition B.0.1. Stopping time in continuous time: A nonnegative random variable τ is called a stopping time w.r.t. the filtration \mathcal{F} if it satisfies the condition:

$$\{\tau \le t\} \in \mathcal{F}_t \quad \forall t \ge 0 \tag{B.4}$$

(see page 329 (Björk, 2009))

Definition B.0.2. Orthogonal vectors: Two vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal, if their dot product is 0:

$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$

We will use the notation:

$$\overrightarrow{a} \perp \overrightarrow{b}$$
 (B.5)

Bibliography

- Björk, Thomas (2009). Arbitrage Theory in Continuous Time. Third edition. Oxford.
- Black, Fischer and Myron Scholes (1973). "The Pricing of Options and Corporate Liabilities". In: *The Journal of Political Economy* 81.3, pp. 637–654. URL: http://www.jstor.org/stable/1831029 (visited on 02/09/2020).
- Boyle, Phelim P., Jeremy Evnine, and Stephen Gibbs (1989). "Numerical Evaluation of Multivariate Contingent Claims". eng. In: *The Review of financial studies* 2.2, pp. 241–250. ISSN: 0893-9454.
- Buffett, Warren (2002). "Berkshire Hathaway's (BRK.B) annual letters to shareholders". In: URL: https://www.berkshirehathaway.com/letters/2002pdf.pdf (visited on 06/23/2020).
- (2008). "Berkshire Hathaway's (BRK.B) annual letters to shareholders". In: URL: https://www.berkshirehathaway.com/letters/2008ltr.pdf (visited on 06/23/2020).
- Cox, John and Mark Rubinstein Stephen Ross (1979). "Option princing: A simplified approach". In: *Journal of Financial Economics* 7, pp. 229–263.
- Ekvall, Niklas (1996). "A lattice approach for pricing of multivariate contingent claims". In: European Journal of Operational Research 91.2, pp. 214–228. URL: https://EconPapers.repec.org/RePEc:eee:ejores:v:91:y:1996:i:2:p:214-228.
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). *Deep Learning*. http://www.deeplearningbook.org. MIT Press.
- Hull, John C. (2018). *Options, Futures, and Other Derivatives*. Vol. Tenth edition. Pearson Education.
- Johnson, Herb (1987). "Options on the Maximum or the Minimum of Several Assets". In: *The Journal of Financial and Quantitative Analysis* 22.3, pp. 277–283. URL: https://www.jstor.org/stable/2330963?seq=1.
- Longstaff, Francis A. and Eduardo S. Schwartz (2001). "Valuing American Options by Simulation: A Simple Least-Squares Approach". In: *The Review of Financial Studies*.
- Merton, Robert C. (1973). "Theory of Rational Option Pricing". In: The Bell Journal of Economics and Management Science 4.1, pp. 141–183. URL: http://links.jstor.org/sici?sici=0005-8556%28197321%294%3A1%3C141%3ATOROP%3E2.0.C0%3B2-0 (visited on 05/14/2020).
- Ouwehand, P. (2006). "PRICING RAINBOW OPTIONS". In: