

(11)Publication number:

11-02730

(43)Date of publication of application: 29.01.1999

(51)Int,CI. H04L 12/44

(21)Application number : 09-174879

(71)Applicant:

MATSUSHITA ELECTRIC WORKS LTD

(22)Date of filing:

30.06.1997

(72)Inventor: IJIMA OSAMU

(54) HUB DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent system trouble by connecting a buffer section between an up-link and a down-link to store up-link and down-link signals in the case that a maximum transmission delay time being a sum of maximum delay times of the respective up-link and down-link sides of collision timing measurement sections exceeds a reference time so as to decrease occurrence of aborted packets.

SOLUTION: A transmission delay time arithmetic output section 14 sums respective maximum delay timings in collision occurrence timings monitored by collision timing measurement sections 12, 13 of a down-link and up-link sides to calculate a maximum transmission delay time in a network and allows a buffered repeat function control section 15 to connect a buffer section 11 between the up-link and the down-link when the maximum transmission delay time exceeds a standard time. Since the buffer section 11 is inserted automatically before collision detection by the CSMA/CD method is not available, occurrence of aborted packets due to the transmission delay is avoided.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-27303

(43)公開日 平成11年(1999)1月29日

(51) Int.Cl.⁶

H04L 12/44

識別記号

FΙ

H04L 11/00

340

審査請求 未請求 請求項の数4 OL (全 9 頁)

(21)出願番号

(22)出願日

特願平9-174879

平成9年(1997)6月30日

(71)出顧人 000005832

松下電工株式会社

大阪府門真市大字門真1048番地

(72)発明者 飯島 治

大阪府門真市大字門真1048番地松下電工株

式会社内

(74)代理人 弁理士 佐藤 成示 (外1名)

(54) 【発明の名称】 HUB装置

(57)【要約】

(修正有)

【課題】 パケット破棄の発生を少なくしてシステムト ラブルを防止できるHUB装置を提供する。

【解決手段】 アップリンク信号及びダウンリンク信号を蓄積せずに送出するリビート機能部10と、前記信号を蓄積するバッファ部11と、バッファ部11の接続及び切り離しを行うバッファド・リビート機能制御部15と、アップリンク側及びダウンリンク側におけるバケット信号のコリジョンタイミングを測定し送信遅延時間を蓄積記憶するコリジョンタイミング側定部12, 13と、前記測定部12, 13のアップリンク側とダウンリンク側の最大遅延時間を加算して最大伝送遅延時間を出りがッファド・リビート機能制御部15へ出力する伝送遅延時間演算出力部14とを有し、基準値を超えたときに、バッファド・リビート機能制御部15がバッファ部11の接続を行う。

【特許請求の範囲】

【請求項1】 CSMA/CD方式のLANシステムに 使用するHUB装置であって、アップリンク信号及びダ ウンリンク信号を蓄積せずにリピート送出するリピート 機能部と、前記アップリンク信号及びダウンリンク信号 を蓄積するバッファ部と、前記バッファ部の接続及び切 り離しを行うバッファド・リピート機能制御部と、アッ プリンク側及びダウンリンク側におけるバケット信号の コリジョンタイミングを測定しかつコリジョン発生によ るダウンリンク側及びアップリンク側における送信遅延 10 時間を蓄積記憶するコリジョンタイミング測定部と、前 記コリジョンタイミング測定部のアップリンク側とダウ ンリンク側のそれぞれの最大遅延時間を加算して最大伝 送遅延時間を算出し前記最大伝送遅延時間と基準値とを 比較して比較結果によりバッファド・リピート機能制御 部へ出力する伝送遅延時間演算出力部とを有し、前記最 大伝送遅延時間が基準値を超えたときに、バッファド・ リピート機能制御部が前記バッファ部の接続を行うこと を特徴とするHUB装置。

1

【請求項2】 CSMA/CD方式のLANシステムに 20 使用するHUB装置であって、アップリンク信号及びダウンリンク信号を蓄積せずにリピート送出するリピート機能部と、前記アップリンク信号を蓄積するバッファ部と、前記バッファ部の接続及び切り離しを行うバッファド・リピート機能制御部と、アップリンク側レイトコリジョン検出部とを有し、前記アップリンク側レイトコリジョン検出部とダウンリンク側レイトコリジョン検出部とダウンリンク側レイトコリジョン検出部の少なくとも一方においてレイトコリジョンを検出したときに、バッファド・リピート機能制御部が 30 前記バッファ部の接続を行うことを特徴とするHUB装置。

【請求項3】 CSMA/CD方式のLANシステムに 使用するHUB装置であって、アップリンク信号及びダ ウンリンク信号を蓄積せずにリピート送出するリピート 機能部と、前記アップリンク信号及びダウンリンク信号 を蓄積するバッファ部と、前記バッファ部の接続及び切 り離しを行うバッファド・リピート機能制御部と、アッ プリンク側信号のコリジョンタイミングを測定しかつコ リジョン発生によるアップリンク側における送信遅延時 40 間を蓄積記憶するアップリンク側コリジョンタイミング 測定部と、ダウンリンク側のケーブル長の最大値を入力 するダウンリンク側ケーブル長入力機能部と、前記ダウ ンリンク側のケーブル長の最大値からダウンリンク側の 最大伝送遅延時間を算出しかつアップリンク側の最大遅 延タイミングを加算して全体の最大伝送遅延時間を算出 しかつ前記全体の最大伝送遅延時間と基準値とを比較し て比較結果によりバッファド・リピート機能制御部へ出 力する伝送遅延時間演算出力部とを有し、前記最大伝送

ト機能制御部が前記バッファ部の接続を行うことを特徴とするHUB装置。

【請求項4】 CSMA/CD方式のLANシステムに 使用する100Mbps のHUB装置であって、アップリ ンク信号及びダウンリンク信号を蓄積せずにリピート送 出するリピート機能部と、前記アップリンク信号及びダ ウンリンク信号を蓄積するバッファ部と、前記パッファ 部の接続及び切り離しを行うバッファド・リピート機能 制御部と、アップリンク側信号のコリジョンタイミング を測定しかつコリジョン発生によるアップリンク側にお ける送信遅延時間を蓄積記憶するアップリンク側コリジ ョンタイミング測定部と、ダウンリンクポートに接続し た100Mbps 端末機にアイドル信号を送出してケーブ ル長を測定するダウンリンク側ケーブル長測定部と、ダ ウンリンク側のケーブル長からダウンリンク側の最大伝 送遅延時間を算出しアップリンク側の最大遅延タイミン グを加算して全体の最大伝送遅延時間を算出しかつ前記 全体の最大伝送遅延時間と基準値とを比較して比較結果 によりバッファド・リピート機能制御部へ出力する伝送 遅延時間演算出力部とを有し、前記最大伝送遅延時間が 基準値を超えたときに、バッファド・リピート機能制御 部が前記バッファ部の接続を行うことを特徴とするHU B装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CSMA/CD方式を用いたLANシステムに使用するHUB装置に関する

[0002]

【従来の技術】従来、CSMA/CD方式、又はイーサネットを用いた伝送システムでは、LAN機器の接続配線が長くなったり、HUBの接続段数が多くなった場合、CSMA/CD方式の信号の伝送遅延が大きくなる。この遅延が規格、例えばCSMA/CD方式における10BASE5であれば、データ伝送速度が10Mビット/秒、ケーブルの最大長が500mと規定されているが、この値以上になるとコリジョン(衝突)の検出ができなくなる場合が発生し、再送が行われずバケットが破棄されることになる。

【0003】またCSMA/CD方式では伝送遅延の最大許容値が定められているため、最大接続ケーブル長やHUBの最大接続段数が規定されている。この規格以上にケーブル長を延ばしたりHUBを多く接続する場合は、新たにバッファド・リビータやブリッジなどを導入してセグメントの分割を行う必要がある。

[0004]

しかつ前記全体の最大伝送遅延時間と基準値とを比較し 【発明が解決しようとする課題】しかし、このようなネ て比較結果によりバッファド・リピート機能制御部へ出 ットワーク設計は専門的な知識が必要であり、一般ユー 力する伝送遅延時間演算出力部とを有し、前記最大伝送 ザでは行うことができない。また一旦稼働しはじめたネ 遅延時間が基準値を超えたときに、バッファド・リピー 50 ットワークでは端末機の増設や端末機増設に伴うHUB 3

の接続追加がしばしば行われるが、上記の伝送遅延を考慮したネットワーク設計がされないたことが多い。この結果、HUBの追加、ケーブルの追加により伝送遅延が規格以上に大きくなり、パケットの破棄が発生しシステムトラブルの原因となっている。

【0005】本発明は上記の問題点を解決するためになされたものであり、その目的とするところは、パケット破棄の発生を少なくしてシステムトラブルを防止できるHUB装置を提供することにある。

[0006]

【課題を解決するための手段】前記の課題を解決するた めに、請求項1記載の発明では、CSMA/CD方式の LANシステムに使用するHUB装置であって、アップ リンク信号及びダウンリンク信号を蓄積せずにリピート 送出するリピート機能部と、前記アップリンク信号及び ダウンリンク信号を蓄積するバッファ部と、前記バッフ ァ部の接続及び切り離しを行うバッファド・リピート機 能制御部と、アップリンク側及びダウンリンク側におけ るパケット信号のコリジョンタイミングを測定しかつコ リジョン発生によるダウンリンク側及びアップリンク側 20 における送信遅延時間を蓄積記憶するコリジョンタイミ ング測定部と、前記コリジョンタイミング測定部のアッ プリンク側とダウンリンク側のそれぞれの最大遅延時間 を加算して最大伝送遅延時間を算出し前記最大伝送遅延 時間と基準値とを比較して比較結果によりバッファド・ リピート機能制御部へ出力する伝送遅延時間演算出力部 とを有し、前記最大伝送遅延時間が基準値を超えたとき に、バッファド・リピート機能制御部が前記バッファ部 の接続を行う。

【0007】請求項2記載の発明では、CSMA/CD 30 方式のLANシステムに使用するHUB装置であって、 アップリンク信号及びダウンリンク信号を蓄積せずにリ ピート送出するリピート機能部と、前記アップリンク信 号及びダウンリンク信号を蓄積するパッファ部と、前記 バッファ部の接続及び切り離しを行うバッファド・リビ ート機能制御部と、アップリンク側レイトコリジョン検 出部と、ダウンリンク側レイトコリジョン検出部とを有 し、前記アップリンク側レイトコリジョン検出部とダウ ンリンク側レイトコリジョン検出部の少なくとも一方に おいてレイトコリジョンを検出したときに、バッファド 40 ・リピート機能制御部が前記バッファ部の接続を行う。 【0008】請求項3記載の発明では、CSMA/CD 方式のLANシステムに使用するHUB装置であって、 アップリンク信号及びダウンリンク信号を蓄積せずにリ ピート送出するリピート機能部と、前記アップリンク信 号及びダウンリンク信号を蓄積するバッファ部と、前記 バッファ部の接続及び切り離しを行うバッファド・リピ ート機能制御部と、アップリンク側信号のコリジョンタ イミングを測定しかつコリジョン発生によるアップリン

側コリジョンタイミング測定部と、ダウンリンク側のケーブル長の最大値を入力するダウンリンク側ケーブル長入力機能部と、前記ダウンリンク側のケーブル長の最大値からダウンリンク側の最大伝送遅延時間を算出しかつアップリンク側の最大遅延タイミングを加算して全体の最大伝送遅延時間を算出しかつ前記全体の最大伝送遅延時間と基準値とを比較して比較結果によりバッファド・リピート機能制御部へ出力する伝送遅延時間演算出力部とを有し、前記最大伝送遅延時間が基準値を超えたときに、バッファド・リピート機能制御部が前記バッファ部の接続を行う。

【0009】請求項4記載の発明では、CSMA/CD 方式のLANシステムに使用する100Mbps のHUB 装置であって、アップリンク信号及びダウンリンク信号 を蓄積せずにリピート送出するリピート機能部と、前記 アップリンク信号及びダウンリンク信号を蓄積するバッ ファ部と、前記バッファ部の接続及び切り離しを行うバ ッファド・リピート機能制御部と、アップリンク側信号 のコリジョンタイミングを測定しかつコリジョン発生に よるアップリンク側における送信遅延時間を蓄積記憶す るアップリンク側コリジョンタイミング測定部と、ダウ ンリンクポートに接続した100Mbps 端末機にアイド ル信号を送出してケーブル長を測定するダウンリンク側 ケーブル長測定部と、ダウンリンク側のケーブル長から ダウンリンク側の最大伝送遅延時間を算出しアップリン ク側の最大遅延タイミングを加算して全体の最大伝送遅 延時間を算出しかつ前記全体の最大伝送遅延時間と基準 値とを比較して比較結果によりバッファド・リピート機 能制御部へ出力する伝送遅延時間演算出力部とを有し、 前記最大伝送遅延時間が基準値を超えたときに、バッフ ァド・リピート機能制御部が前記バッファ部の接続を行 う。

[0010]

【発明の実施の形態】本発明の第1の実施形態を図1及び図2に基づいて説明する。図1はシステム構成図、図2はHUB装置の内部機能ブロック構成を示す図である。

【0011】HUB装置1,2はCSMA/CD方式のLANシステム等に使用するものである。図1において、HUB装置1は、1個のアップリンクボート16とn個のダウンリンクボート17,.…17。(図1では5個のダウンリンクボート)とを有している。一方、HUB装置2も1個のアップリンクボート19とn個のダウンリンクボート18,,…18。(図1では5個のダウンリンクボート)とを有している。

【0012】そしてHUB装置1のアップリンクボート 16はHUB2のダウンリンクボート18の一つダウン リンクボート18、に接続している。

イミングを測定しかつコリジョン発生によるアップリン 【0013】HUB装置1のダウンリンクポート17、 ク側における送信遅延時間を蓄積記憶するアップリンク 50 は空きポートとなっている。またHUB装置2のアップ

リンクボート19も空きボートとなっている。

【0014】また、HUB装置1のダウンリンクポート 172, …17, には、それぞれツイストペアケーブル tp₁, …tp₄を介してパソコン等の端末機20₁, …2 0.を接続している。

【0015】同様に、HUB装置2の各ダウンリンクボ ート18, ...18, には、それぞれツイストペアケー ブルtp, , …tp。を介してパソコン等の端末機21, , …21、を接続している。HUB装置1、2間はツイス トペアケーブルtp。で接続している。

【0016】そして各端末機20,,…20,及び21 1, …21, は、HUB装置1、HUB装置2を介し て、CSMA/CD方式の信号による通信を行ってい る。・

【0017】HUB装置1及びHUB装置2の内部は同 一の機能ブロック構成となっており、HUB装置1内部 の機能ブロックは、リピート機能部10、バッファド・ リピート機能用のバッファ部11、ダウンリンク側コリ ジョンタイミング測定部12、アップリンク側コリジョ ンタイミング測定部13、伝送遅延時間演算部14、バ 20 ッファド・リピート機能制御部15、アップリンクポー ト16(HUB装置2では19)、ダウンリンクポート 17, , …17, (HUB装置2では18, , …1 8,)、バッファド・リピート機能接続部20, 21、 リピート機能接続部22,23により構成されている。 【0018】リピート機能部10は、信号波形の整形、 信号の増幅、中継等を行い、伝送距離の延長及び配線の 分岐の自由度を高めるものである。とのリピート機能部 10で接続されたLAN及び端末は単一のネットワーク

【0019】バッファド・リピート機能に使用するバッ ファ部11は、パケット信号を一時蓄積して再送する機 能を有する。

【0020】ダウンリンク側コリジョンタイミング測定 部12は、常時コリジョンの発生タイミングを測定し、 ダウンリンク側のコリジョン発生の遅延タイミングを蓄 積している。コリジョンタイミングの測定は、コリジョ ン(衝突)の発生するたびにパケットの先頭から何パイ ト目で衝突が発生したか、又は発生時間を、一定時間に 渡って記録する。この記録の中で、最も遅く衝突が発生 40 したタイミングが更新により記憶され、レイトコリジョ ンの最悪のケースを検出する。

【0021】アップリンク側コリジョンタイミング測定 部13は、常時コリジョンの発生タイミングを測定し、 アップリンク側のコリジョン発生の遅延タイミングを蓄 積している。コリジョンタイミングの測定は、コリジョ ン(衝突)の発生するたびにパケットの先頭から何バイ ト目で衝突が発生したか、又は発生時間を、一定時間に 渡って記録する。との記録の中で、最も遅く衝突が発生 したタイミングが更新により記憶され、レイトコリジョ 50 ピート機能のどちらかに設定される。

ンの最悪のケースを検出する。

【0022】伝送遅延時間演算部14は、アップリンク ポート側、ダウンリンクポート側それぞれの最大遅延タ イミングを加算して当該ネットワーク内の最大伝送遅延 時間を算出する。またとの最大伝送遅延時間が、基準値 であるパケットの先頭から512ビットより大きいか否 かを判定する。この512ビット(64バイト)は、C SMA/CD方式における衝突検出が可能な最小フレー ム・サイズとして規定されている。そして512ビット より大きい場合は、伝送遅延時間演算部14からバッフ ァド・リピート機能制御部15に信号を送出する。

【0023】バッファド・リピート機能制御部15は、 前記伝送遅延時間演算部14からの信号を受けて、バッ ファド・リピート機能側接続部20,21とリピート機 能接続部22,23を制御して、バッファド・リピート 機能用のバッファ部11を接続側に切り替える。

【0024】パッファド・リピート機能接続部20,2 1とリピート機能接続部22,23は、連動してバッフ ァ11の接続、切り離しを行う。

【0025】次に内部機能ブロック間の接続関係を説明 する。リピート機能部10は、ダウンリンクポート17 1,…17。を有するとともに、更にダウンリンク側コ リジョンタイミング測定部12に接続してある。

【0026】ダウンリンク側コリジョンタイミング測定 部12は伝送遅延時間演算部14に接続するとともに、 バッファド・リピート機能接続部20の切替部25に接 続してあり、切り替えによりリピート機能接続部22側 にも接続される。

【0027】アップリンク側コリジョンタイミング測定 部13はアップリンクボート16に接続してあり、かつ 伝送遅延時間演算部14にも接続してある。またバッフ ァド・リピート機能接続部21の切替部23に接続して あり、切り替えによりリピート機能接続部23側にも接 続される。

【0028】伝送遅延時間演算部14は、前記のよう に、ダウンリンク側コリジョンタイミング測定部12と アップリンク側コリジョンタイミング測定部13に接続 するとともに、バッファド・リピート機能制御部15に 接続している。

【0029】パッファド・リピート機能制御部15は、 破線で示すようにバッファド・リピート機能接続部2 0、21、リピート機能接続部22、23を、バッファ ド・リピート機能側、リピート機能側に接続切り替えす ることができる。

【0030】バッファ部11はバッファド・リピート機 能接続部20.21の間に接続している。

【0031】次に、本実施の形態の動作を説明する。ア ップリンクポート16は、バッファド・リビート機能制 御部15の制御によりバッファド・リピート機能又はリ

【0032】HUB装置1に関するLAN接続が、最大接続ケーブル長以内、HUB装置の最大接続段数が規格内等である場合は、バッファド・リピート機能制御部15の制御により、HUB装置1内はリピート機能をオンとし、バッファド・リピート機能をオフに設定し、伝送速度を優先させたリピート動作をしている。

【0033】従って、リピート機能接続部22,23が接続状態となり、パケットはバッファリングされることなく転送されている。

【0034】そして、ダウンリンク側コリジョンタイミ 10ング測定部12、及びアップリンク側コリジョンタイミング測定部13は常時コリジョンの発生するタイミングを監視しており、アップリンク側、ダウンリンク側それぞれについてコリジョン発生の遅延タイミングの情報を蓄積している。

【0035】また、伝送遅延時間演算部14においてはアップリンク、ダウンリンクのそれぞれの最大遅延タイミングを加算しており、当該ネットワーク内の最大伝送遅延時間を算出している。

【0036】更に伝送遅延時間演算部14においては、 この伝送遅延がパケットの先頭から512ビットより大 きいかどうかを伝送遅延時間演算部14において判定する。

【0037】512ビットよりも大きい場合には、伝送 遅延時間が規格値を越えていると判断しバッファド・リ ピート機能制御部15にその旨の信号を出力する。

【0038】 この場合にはバッファド・リピート機能制御部15の制御によりリピート機能接続部22,23が接続状態となり、受信されたパケットは一旦バッファに蓄積された後、転送される。パケット信号は一旦バッフ 30 ァに蓄積されることになり、アップリンク側とダウンリンク側は、別のセグメントに分割される。以上の結果、CSMA/CD方式による衝突検出ができなくなる前に、自動的にバッファ部11が介挿されるので、伝送遅延によるパケット破棄が起こらなくなる。

【0039】次に第2の実施の形態について図1及び図3に基づいて説明する。図3はHUB装置の内部機能ブロック構成を示す図である。図1のシステム構成図は、第1の実施形態と同一である。第2の実施の形態では、HUB装置1内部の機能ブロックとして、リビート機能 40部10、バッファド・リビート機能用のバッファ11、ダウンリンク側レイトコリジョン検出部30、アップリンク側レイトコリジョン検出部31、バッファド・リビート機能制御部15、アップリンクボート16、ダウンリンクボート17、、…17。、バッファド・リピート機能接続部20、21、リビート機能接続部22、23により構成されている。

【0040】ダウンリンク側レイトコリジョン検出部3 0は、ダウンリンク側の伝送遅延時間が規格値をオーバーしているか否かを判定する機能を有している。レイト 50 コリジョンの検出は、常時パケットを受信しながら、パケットが最後までつぶれずに正しく受信できているかを確認し、パケットの受信途中において衝突によりパケットがつぶれた場合に、その場所によってレイトコリジョンが発生したかどうかを判定する。

【0041】アップリンク側レイトコリジョン検出部3 1は、アップリンク側の伝送遅延時間が規格値をオーバーしているか否かを判定する機能を有している。レイトコリジョンの検出は、常時パケットを受信しながら、パケットが最後までつぶれずに正しく受信できているかを確認し、パケットの受信途中において衝突によりパケットがつぶれた場合に、その場所によってレイトコリジョンが発生したかどうかを判定する。

【0042】各内部機能ブロックの接続関係は第1の実施の形態と略同一であり、第1の実施の形態のダウンリンク側コリジョンタイミング測定部12とアップリンク側コリジョンタイミング測定部13に替えて、ダウンリンク側レイトコリジョン検出部30とアップリンク側レイトコリジョン検出部31を設けている。

20 【0043】また、伝送遅延時間演算部14を有してしないが、バッファド・リビート機能オンオフ制御部15 を直接に、ダウンリンク側レイトコリジョン検出部30 とアップリンク側レイトコリジョン検出部31に接続している。

【0044】次に、本実施の形態の動作を説明する。アップリンクボート16は、バッファド・リピート機能制御部15の制御によりバッファド・リピート機能又はリピート機能のどちらかに設定される。

【0045】HUB装置1に関するLAN接続が、最大接続ケーブル長以内、HUBの最大接続段数が規格内等である場合は、バッファド・リピート機能制御部15の制御により、HUB1内はリピート機能をオンとし、バッファド・リピート機能をオフに設定し、伝送速度を優先させたリピート動作をしている。

【0046】従って、リピート機能接続部22,23が接続状態となり、パケットはバッファリングされることなく転送されている。

【0047】ダウンリンク側レイトコリジョン検出部3 0は、常時レイトコリジョンの発生を監視している。

【0048】アップリンク側、ダウンリンク側の少なくとも一方でレイトコリジョンが検出された場合、伝送遅延時間が規格値をオーバーしていることを意味するためセグメントの分割を行う必要がある。従ってバッファド・リピート機能制御部15の制御によりリピート機能接続部22、23が接続状態となり、受信されたバケットは一旦バッファ部11に蓄積された後、転送される。バケット信号は一旦バッファ部11に蓄積されることになり、アップリンク側とダウンリンク側は、別のセグメントに分割される。

【0049】以上の結果、CSMA/CD方式による衝

突検出ができなくなる前に、自動的にバッファ11が介 挿されるので、伝送遅延によるパケット破棄が起こらな くなる。

【0050】次に第3の実施の形態について図1及び図 4に基づいて説明する。図4はHUB装置の内部機能ブ ロック構成を示す図である。図1のシステム構成図は、 第1の実施形態と同一である。第3の実施の形態では、 HUB装置1内部の機能ブロックとして、リピート機能 部10、バッファド・リピート機能用のバッファ11、 ダウンリンク側コリジョンタイミング検出部13、ダウ 10 ンリンク側ケーブル長入力機能部40、シリアルポート (RS232C) 41、設定用端末機42、バッファド ・リピート機能制御部15、アップリンクポート16、 ダウンリンクポート17,,…17。、バッファド・リ ピート機能側接続部20,21、リピート機能側接続部 22, 23により構成されている。

【0051】そして、ダウンリンク側ケーブル長入力機 能部40と伝送遅延時間演算部14とが接続してあり、 ダウンリンク側ケーブル長入力機能部40はシリアルボ ート41を介してパソコン等の設定用端末機42に接続 20 してある。

【0052】ダウンリンク側ケーブル長入力機能部40 は、ユーザがダウンポートのケーブル長の最大値をシリ アルポート41に接続した設定端末機42から入力する ものであり、このケーブル長データを伝送遅延時間演算 部14に送出する機能を有している。

【0053】伝送遅延時間演算部14は、第1、第2の 実施形態のと略同様の機能を有し、ダウンリンク側のケ ーブル長からダウンリンク側の最大伝送遅延時間を算出 するとともに、アップリンク側の最大遅延タイミングを 30 加算することによりネットワーク内の最大伝送遅延時間 を算出し、更にこの伝送遅延がパケットの先頭から51 2ビットよりも大きいかどうかを判定する。512ビッ トよりも大きい場合、伝送遅延時間が規格値を越えてい ると判断する。

【0054】次に、本実施の形態の動作を説明する。ア ップリンクポート16は、バッファド・リピート機能制 御部15の制御によりバッファド・リピート機能又はリ ピート機能のどちらかに設定される。

【0055】HUB装置1に関するLAN接続が、最大 40 接続ケーブル長以内、HUBの最大接続段数が規格内等 である場合は、バッファド・リピート機能制御部15の 制御により、HUB装置1内はリピート機能をオンと し、バッファド・リピート機能をオフに設定し、伝送速 度を優先させたリピート動作をしている。

【0056】従って、リピート機能接続部22, 23が 接続状態となり、パケットはバッファリングされること なく転送されている。

【0057】アップリンク側コリジョンタイミング測定 部13は常時コリジョンの発生タイミングを監視し、ア 50 3のアイドル信号を用いて、HUB装置3側からケーブ

ップリンク側のコリジョン発生のタイミングの統計情報 を蓄積しておく。一方ダウンリンク側は、ユーザがダウ ンポートのケーブル長の最大値をシリアルポートに接続 した設定端末機42から入力し、ダウンリンク側ケーブ ル長入力機能部40に設定する。このケーブル長から伝 送遅延時間演算部14はダウンリンク側の最大伝送遅延 時間を算出するとともに、アップリンク側の最大遅延タ イミングを加算することによりシステム全体の最大伝送 遅延時間を算出する。

10

【0058】更に、この遅延がパケットの先頭から51 2ビットよりも大きいかどうかを判定する。512ビッ トよりも大きい場合、伝送遅延時間が規格値を越えてい ると判断できる。この場合、バッファド・リピート機能 オンオフ制御部15の制御によりリピート機能接続部2 2, 23が接続状態となり、受信されたパケットは一旦 バッファに蓄積された後転送される。パケット信号は一 旦バッファに蓄積されることになり、アップリンク側と ダウンリンク側は、別のセグメントに分割される。

【0059】以上の結果、CSMA/CD方式による衝 突検出ができなくなる前に、自動的にバッファ 1 1 が介 挿されるので、伝送遅延によるパケット破棄が起こらな くなる。

【0060】次に第4の実施の形態について図1及び図 5に基づいて説明する。図5はHUBの内部機能ブロッ ク構成を示す図である。図1のシステム構成図は、第1 の実施形態と同一である。第4の実施の形態では、HU B装置として、100MbpsHUB装置3を使用してい

【0061】また、100Mbps HUB装置3内部の機 能ブロックとして、リピート機能部10、バッファド・ リピート機能用のバッファ部11、バッファド・リピー ト機能制御部15、アップリンクポート16、ダウンリ ンクポート171, …171、バッファド・リピート機 能側接続部20,21、リピート機能側接続部22,2 3とを有し、更にHUB装置3のダウンリンクポート1 7, と17, と17. に、100 Mbps 端末機50, , 50,,50,を接続して構成している。

【0062】リピート機能部10の内部には、ダウンリ ンク側ケーブル測定機能部60を具備している。このダ ウンリンク側ケーブル測定機能部60からダウンリンク ポート17, と17, と17, を介して、前記100M bps 端末機501,502,50,を接続している。

【0063】100Mbps 端末機50, , 50, , 50 」は、100Mbps の高速で通信ができる端末機であ

【0064】ダウンリンク側ケーブル測定機能部60 は、伝送遅延時間演算部14に接続してある。

【0065】そして、ダウンリンク側は、ダウンリンク 側ケーブル測定機能部60が、100Mbps HUB装置

ル測定用コマンドを100Mbps 端末機501.5 O, , 50, に送信し、100Mbps 端末機50, , 5 0, 50, からの返信信号の応答時間から各ケーブル 長を測定する。

11

【0066】次に、本実施の形態の動作を説明する。ア ップリンクポート16は、バッファド・リピート機能制 御部15の制御によりバッファド・リピート機能又はリ ピート機能のどちらかに設定される。

【0067】100Mbps HUB装置3に関するLAN 接続が、最大接続ケーブル長以内、HUBの最大接続段 10 数が規格内等である場合は、バッファド・リピート機能 制御部15の制御により、100Mbps HUB3内はリ ピート機能をオンとし、バッファド・リピート機能をオ フに設定し、伝送速度を優先させたリピート動作をして

【0068】従って、リピート機能接続部22, 23が 接続状態となり、パケットはバッファリングされること なく転送されている。

【0069】アップリンク側コリジョンタイミング測定 部13は常時コリジョンの発生タイミングを監視し、ア 20 ップリンク側のコリジョン発生の遅延タイミングの情報 を蓄積しておく。

【〇〇7〇】一方ダウンリンク側は、ダウンリンク側ケ ーブル測定部60が100Mbps HUB装置3のアイド ル信号を用いて100Mbps HUB装置3側からケーブ ル測定用コマンドを送信し、100Mbps 端末機5 0, , 50, , 50, からの返信信号の応答時間から各 ケーブル長を測定する。

【0071】上記ケーブル長の測定は以下の方法により 行うことができる。一般に100Mbps HUBでは、通 30 信パケットが送出されていない状態では、アイドル信号 が常時送出されている。アイドル信号は予め決められた パターン信号が送出されているものであり、HUBの間 ではこのアイドル信号を互いに受信することにより、ケ ーブルの接続状態を確認し、また信号の同期をとってい る。通常は上記の目的で用いられているアイドル信号 を、本実施の形態では、アイドル信号の減衰を測定す る、あるいはアイドル信号に独自のパターンを付加して ループバックさせ返信までの時間を測定する、等の手段 によりケーブル長を測定している。

【0072】この結果得られたケーブル長から伝送遅延 時間演算部14は、伝送遅延時間演算部14はダウンリ ンク側の最大伝送遅延時間を算出するとともに、アップ リンク側の最大遅延タイミングを加算することによりシ ステム全体の最大伝送遅延時間を算出する。

【0073】更に、この遅延がバケットの先頭から51 2ビットよりも大きいかどうかも判定する。512ビッ トよりも大きい場合、伝送遅延時間が規格値を越えてい ると判断できる。

【0074】この場合、バッファド・リピート機能オ

ン、オフ制御部15の制御によりリピート機能接続部2 2.23が接続状態となり、受信されたパケットは一旦 バッファに蓄積された後、転送される。

【0075】バケット信号は一旦バッファに蓄積される ことになり、アップリンク側とダウンリンク側は、別の セグメントに分割される。

【0076】以上の結果、CSMA/CD方式による衝 突検出ができなくなる前に、自動的にバッファ11が介 挿されるので、伝送遅延によるパケット破棄が起こらな くなる。

[0077]

【発明の効果】請求項1記載の発明によれば、規格以上 のケーブル長での接続やHUB装置の接続段数オーバー などシステム接続ミスによる伝送遅延の発生をHUB装 置において検知し、通常はリピータ機能のHUB装置と して動作しているアップリンクポートを自動的にバッフ ァド・リピータ動作に切り替えてセグメントを分割し、 衝突検知の不能を解消してトラブルの発生を防止すると とができる。

【0078】また逆にバッファド・リピータ機能を動作 させる必要がないLANシステムでは自動的にリピータ として動作させることができる。

【0079】よってシステム毎に人為的にケーブル長や HUB装置の接続段数等を考慮したシステム設計を行う 必要がなく容易にシステムを構築することができるとい う効果を奏する。

【0080】請求項2記載の発明によれば、ダウンリン ク側レイトコリジョン検出部と、アップリンク側レイト コリジョン検出部を用いて伝送遅延時間を演算すること により、請求項1記載の発明の効果を奏することができ る。

【0081】請求項3記載の発明によれば、ダウンリン ク側ケーブル長入力機能部によりケーブル長を入力する ことにより、請求項1記載の発明の効果を奏することが

【0082】請求項4記載の発明によれば、100Mbp s HUB装置と100Mbps 端末機を用いて、ケーブル 長を測定することにより、請求項1記載の発明の効果を 奏することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態のシステム構成図であ

【図2】同上のHUB装置の内部機能ブロックを示す図 である。

【図3】第2の実施形態のHUB装置の内部機能ブロッ クを示す図である。

【図4】第3の実施形態のHUB装置の内部機能ブロッ クを示す図である。

【図5】第4の実施形態のHUB装置の内部機能ブロッ 50 クを示す図である。

