CASE LA29A DIV-1

#### AMENDMENTS TO THE CLAIMS

Claim 1. (Currently Amended) A compound which has the structure

wherein x is 1, 2, 3 or 4; m is 1 or 2; n is 1 or 2;  $X_x$  is a carbon chain of 1, 2, 3 or 4 carbon atoms. Which is selected from alkylene of 1, 2, 3 or 4 carbon atoms, alkenylene of 2, 3 or 4 carbon atoms, allenyl or alkylene alkynylene of 2, 3 or 4 carbon atoms;

X<sub>m</sub> is a carbon chain of 1 or 2 carbon atoms which is selected from alkylene of 1 or 2 carbon atoms, alkenylene of 2 carbon atoms or alkynylene of 2 carbon atoms;

X<sub>n</sub> is a carbon chain of 1 or 2-carbon atoms which is selected from alkylene of 1 or 2 carbon atoms, alkenylene of 2 carbon atoms or alkynylene of 2 carbon atoms;

Q is C:

A is O:

Z is O;

R1 is H or lower alkyl;

X is N:

R<sup>2</sup> is H, alkyl, alkoxy, halogen, amino or substituted amino;

R<sup>2a</sup>, R<sup>2b</sup> and R<sup>2c</sup> are the same or different and are selected from H or alkyl;

R<sup>3</sup> is alkyl, arylalkyl, alkoxyarylalkyl, arylalkoxyarylalkyl, or alkylaryloxyarylalkyl;

Y is CO₂R⁴ where R⁴ is H or alkyl, or a prodrug ester,

or stereoisomers thereof, a prodrug ester thereof, or a pharmaceutically acceptable salt thereof.

# Claim 2. (Previously Presented) The compound as defined in Claim 1 having the structure

$$\mathbb{R}^{2b} \xrightarrow{\mathbb{R}^{2a}} \mathbb{X}_{x_{n}} \times \mathbb{X}_{x_{n}$$

# Claim 3. (Previously Presented) The compound as defined in Claim 1 having the structure

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

$$\mathbb{R}^{2\mathbf{b}}$$

## Claim 4. (Previously Presented) The compound as defined in Claim 1 having structure

Claim 5. (Currently Amended) The compound as defined in Claim 1 wherein  $(CH_x) \times X_x$  is alkylene[[,]] alkenylene, allenyl, or alkynylene.

Claims 6 to 8. (Cancelled).

Claim 9. (Previously Presented) The compound as defined in Claim 1 having the structure

wherein R<sup>1</sup> is H or lower alkyl; and R<sup>3</sup> is alkyl, arylalkyl, alkoxyarylalkyl, arylalkyl, arylalkyl, arylalkyl, arylalkyl, arylalkyl.

Claim 10. (Previously Presented) The compound as defined in Claim 1 wherein  $X_x$  is  $CH_2$ ,  $CH_3$ ,

Claims 11 and 12. (Cancelled).

Claim 13. (Previously Presented) The compound as defined in Claim 1 wherein  $X_x$  is  $CH_2CH_2$ ,  $X_m$  is  $CH_2$  and  $X_n$  is  $CH_2$ .

Claim 14. (Previously Presented) The compound as defined in Claim 1 having the structure

#### CASE LA29A DIV-1

wherein  $R^1$  is H or lower alkyl; and  $R^3$  is alkyl, arylalkyl, alkoxyarylalkyl, arylalkyl or alkylaryloxyarylalkyl.

### Claim 15. (Previously Presented) The compound as defined in Claim 1 having the structure

where 
$$X_n$$
 is  $CH_2$  or  $CH_2$ ;

R1 is H or lower alkyl; and

 $\mathbb{R}^3$  is alkyl, arylalkyl, alkoxyarylalkyl, arylalkoxyarylalkyl or alkylaryloxyarylalkyl.

Claim 16. (Cancelled).

### Claim 17. (Previously Presented) The compound as defined in Claim 1 having the structure

CASE LA29A DIV-1

Claims 18 to 32. (Cancelled).

Claim 33. (Original) A pharmaceutical composition comprising a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

Claim 34. (Previously Presented) A method for lowering blood glucose levels or for treating diabetes or for treating an early malignant disease, a malignant disease, or a dysplastic disease, which comprises administering to a patient in need of treatment a therapeutically effective amount of a compound as defined in Claim 1.

Claim 35. (Original) A method for treating diabetes which comprises administering to a patient in need of treatment a therapeutically effective amount of a compound as defined in Claim 1.

Claims 36 to 54. (Cancelled).