Lecture Notes for Machine Learning in Python

Professor Eric Larson Basic Convolutional Neural Networks

Logistics and Agenda

- Logistics
 - Wide/Deep due this week
- Agenda
 - Basic CNN architectures and Demo

Last Time:

Convolutional Neural Networks

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

What we did before

images: Jianbo Shi, Upenn

What we did before

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_1^{\Sigma}(u,v), \ldots, \mathbf{G}_H^{\Sigma}(u,v)
ight]^{ op}$$

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0,v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

CNN Overview

- First layer(s):
 - convolution with different filters
 - nonlinearity
 - pooling
 - Each pooling layer can make the input image "smaller"
 - more summative explanations
- Final layers are densely connected
 - typically multi-layer perceptrons

CNN Overview: Self Test

- First layer(s):
 - convolution with different filters
 - nonlinearity
 - pooling
 - Each pooling layer can make the input image "smaller"
 - more summative explanations
- Final layers are densely connected
 - typically multi-layer perceptrons
- Where are unstable gradients most problematic?
 - (A) During Convolution Layer(s) updates
 - (B) During Fully Connected Layer(s) updates
 - (C) Both A and B
 - (D) They are not a problem

CNN Filtering

- Why perform lots of filtering?
 - recall gabor filtering?

Image responses for Gabor filter kernels.

CNN Filtering

- Why perform lots of filtering?
 - recall gabor filtering?

V1 Motion

V2 Stereo

V3 Color

V3a Texture segregation

V3b Segmentation, grouping

V4 Recognition

V7 Face recognition

MT Attention

MST Working memory/mental imagery

CNN Pooling

- Why perform pooling?
- Why max pooling?
 - reduce translation effects
 - param reduction

max pooling

Lecture Notes for Machine Learning in Python

Professor Eric Larson Basic Convolutional Neural Networks

Logistics and Agenda

- Logistics
 - Welcome back!
 CNNs due one week from tomorrow
- Agenda
 - Basic CNN architectures
 - Next Time: Finish CNN architecture

Convolution Review (and clarification)

From Fully Connected to CNN

If image is 9x9, and each fully connected layer is 20 hidden neurons wide, how many parameters are in this NN (ignore bias)?

$$(K^2 \times 20) + (20 \times 10) = 200 + 20 K^2$$

for
$$9x9 = 200 + 20x9^2 = 1,820$$
 parameters

From Fully Connected to CNN

16

From Fully Connected to CNN

17

CNN gradient

Derivative of convolution is more involved:

$$\frac{\partial C}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \frac{\partial C}{\partial z_{x,y}^{l}} \frac{\partial z_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l})}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b'}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',y-b'}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',b}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',b}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',b}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',b}^{l}) + b_{x,y}^{l}}{\partial w_{a,b}^{l}} = \sum_{x} \sum_{y} \delta_{x,y}^{l} \frac{\partial (\sum_{a'} \sum_{b'} w_{a',b}^{l} \sigma(z_{x-a',b}^{l}) + b_{x,y}^{l}}{\partial$$

CNN gradient

- But we really want to understand the process!
- These are great guides:
 - https://grzegorzgwardys.wordpress.com/ 2016/04/22/8/
 - http://andrew.gibiansky.com/blog/machinelearning/convolutional-neural-networks/

CNN adding more convolutional layers

Some Example CNN Architectures

CNN: What does it all mean?

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

11. Convolutional Neural Networks.ipynb

Demo

TensorFlow and Basic CNNs

Convolutional Neural Networks in TensorFlow with Keras

Next Lecture

More CNN architectures and CNN history

Lecture Notes for Machine Learning in Python

Professor Eric Larson

An Ongoing History of Convolutional Networks

Class logistics and Agenda

- Wide/Deep Lab due this week
- But we will start RNN next time
- Agenda:
 - History of CNNs
 - with Modern CNN Architectures

11. Convolutional Neural Networks.ipynb

TensorFlow and Basic CNNs

Convolutional Neural Networks

in TensorFlow with Keras

Finish

Last Time:

Types of CNN, 1988-1998

Heads Facebook Al Team

- **LeNet-1** (1988)
 - ~2600 params, not many layers
- **LeNet-5** (1998)
 - 7 layers, gets excellent MNIST performance
- Major contribution, general structure:
 - conv=>pool=>non-linearity=> ...=>MLP
 avg tanh or sigmoid

CNN History

 List of major breakthroughs from 1998 through 2010 in convolutional networks:

• 2010

Types of CNN, 2010

Al Researcher IDSA, Switzerland

Circesan Net

- Publishes code for running CNN via GPU
 - Subsequently wins 5 international competitions
 - from stop signs => cancer detection
- Major contribution: NVIDIA parallelized training algorithms

Figure 2: Forward propagation: a) mapping of kernel 1 grid onto the padded weight matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; c) output of forward propagation.

ImageNet Competition (2010)

Types of CNN, 2012

Google

- AlexNet, Hinton is mentor
 - wins ImageNet competition
- Major contributions:
 - dropout for regularization
 - systematic use of ReLU
 - data expansion
 - overlapping max pool

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / ReLU

Warning

Types of CNN, 2013

- Oxford VGG Net (Visual Geometry Group)
- Major contributions:
 - small cascaded kernels
 - way more layers (19 versus ~7)
 - "emulates" biology "better"
 - trained on NVIDIA GPUs for 2-3 weeks

		ConvNet C	onfiguration			
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i	nput (224 × 2	24 RGB image	2)		
conv3-64	conv3-64	conv3-64	conv3-64 conv3-64		conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pcol			
conv3-128	conv3-128	com/3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pcol			
conv3-256	com/3-256	com/3-256	comv3-256	conv3-256	conv3-256	
comv3-256	conv3-256	com/3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	comv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pcol			
conv3-512	conv3-512	comv3-512	comv3-512	conv3-512	conv3-512	
comv3-512	conv3-512	comv3-512	comv3-512	comv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pcol			
			4096			
			4096			
			1000			
		soft-	-max			

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Network In Network

Types of CNN, 2014

- Network in Network NiN
 - or MLPConv

(a) Linear convolution layer

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering

²Department of Electronic & Computer Engineering

National University of Singapore, Singapore

{linmin, chengiang, eleyans}@nus.edu.sg

(b) Mlpconv layer

Types of CNN, 2014

Types of CNN, 2014

Figure 2: Inception module

Types of CNN, 2015 February and December

- Inception V2, Inception V1 with batch normalization
- Inception V3:
 - replace 5x5 with multiple 3x3

Types of CNN, 2015 December

- Research

- Major Contributions:
 - ensembles, not strictly sequential
- ResNet
 - PReLU: adaptive trained slope

bio-plausible with feedback

(A) ResNet with shared weights (B) ResNet in recurrent form

- NiN: triple bypass layer
 - similar to bottelneck

Types of CNN, 2017 April

- Major Contributions:
 - combining branching / residual blocks
 - separable convolutions

Xception

15x15x728 desture maps

Francois Chollet **Google**

How big are these networks?

How big are these networks?

43

Self Test

- We have seen a lot of different networks.
- The most important concept to understand in using convolutional neural networks is:
 - A. Use proper initialization of layers
 - B. Have plenty of data or use expansion
 - C. Set aside time for training
 - D. Use batch normalization

12. More Advanced CNN Techniques.ipynb

More Modern CNN Architectures

Demo

Even more Convolutional Neural Networks
...in TensorFlow
...with Keras

Next Time:

- CNN Lab Discussion (Town Hall)
- Intro to Recurrent Neural Network Architectures
 - RNNs, GRUs, LSTMs
 - Training for characters