ОСНОВЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

Источники погрешности результата вычислений

- Математическая модель
- Исходные данные
- Приближённый метод
- Округления при вычислениях

Погрешности при численном решении задач делятся на две категории — **неустранимые и устранимые**.

Анализ погрешностей приближенных вычислений

- Погрешности задачи приближённый характер математического описания поведения реального процесса вследствие неучёта или неправильного учёта существенных факторов, влияющих на результаты решения задачи (неустранимые или безусловные погрешности)
- Погрешности исходных данных точность измерений экспериментальных данных (условно-устранимые)
- <u>Обусловленность задачи</u> чувствительность её к малым изменениям входных параметров
- <u>Погрешности методов решения задач</u> эффективность и надёжность метода (устранимые или условные)
- Погрешности алгоритма реализации численного метода решения задачи сходимость к правильному решению после различного количества вычислений, влияющих на их суммарную погрешность:

- Переходная погрешность вычислительного процесса при пошаговой реализации выбранного алгоритма, передающаяся от итерации к итерации (накапливающаяся или самоисправляющаяся)
- Погрешность бесконечных вычислительных процессов округление бесконечных рядов (остаточная погрешность)
- Погрешность округления из-за ограничения разрядности чисел, характерного для применяемого компьютера
- Погрешность действий выполнение арифметических операций с приближенными числами

Все описанные типы погрешностей позволяют оценить полную погрешность результата решения прикладной задачи на компьютере.

Учёт погрешностей арифметических операций

- Приближенным числом а называется число, незначительно отличающееся от точного А и заменяющее его в вычислениях.
- <u>Ошибка или погрешность</u> Δa приближенного числа a разность между точным и приближённым значениями: $\Delta a = A a$
- *Абсолютная погрешность* △ приближенного числа a: △= △a
- <u>Относительная погрешность</u> δ приближенного числа a: $\delta = \Delta / |A|$
- <u>Предельная абсолютная погрешность</u> приближенного числа a B всякое число Δ_a , не меньшее абсолютной погрешности этого числа: $\Delta = |A a| \le \Delta_a$
- <u>Предельная относительная погрешность</u> приближенного числа *а* всякое число $δ_a$, не меньшее относительной погрешности этого числа: $δ ≤ δ_a$
- Числа Δ_a и δ_a называют <u>оценками</u> или <u>границами</u>, соответственно, абсолютной и относительной погрешностей.

Значащими цифрами числа в его позиционной записи называются все его цифры, начиная с первой ненулевой слева.

a=0,02087 a=0,0208700 - значащие цифры подчёркнуты

Если приближённое число *а* имеет *п* значащих цифр, то за **предельную абсолютную погрешность** числа *а* принимают половину единицы разряда, выражаемого *п*—й значащей цифрой, считая слева направо.

Значащую цифру числа *а* называют **верной**, если абсолютная погрешность этого числа не превышает половины единицы разряда, соответствующего этой цифре (не превышает предельной абсолютной погрешности числа).

Вычислить приближённое число a с **точностью** до ε =10⁻ⁿ означает необходимость сохранить верной значащую цифру, стоящую в n-м разряде после запятой.

Пример Вычислить $\sqrt{2}$ с точностью $\varepsilon = 10^{-3}$.

Решение. $\sqrt{2}=1{,}4142$; третья цифра после запятой является верной, т. к. $\Delta(\sqrt{2})=|1{,}4142-1{,}414|=0{,}0002<0{,}0005=$ = $\Delta a<\varepsilon=10^{-3}$. Следовательно, все подчеркнутые цифры являются верными.

Таким образом, из определения абсолютной погрешности приближенного числа a и точности его вычисления вытекает очевидная связь:

$$\Delta(a) \leqslant \Delta_a < \varepsilon,$$

т.е. абсолютная погрешность и предельная абсолютная погрешность не превышают точности.

Пример 1. Абсолютная и относительная погрешности приближенного числа *e*.

Число e - трансцендентное число, представляется бесконечной непериодической дробью e = 2.71828.

Приближенное значение числа e^* = 2.7, тогда абсолютная погрешность $|e-e^*|$ = 0.01828, граница абсолютной погрешности 0.05, относительная погрешность числа $|e-e^*|/e^*$ = 0.007

Пример 2. Значащие цифры числа.

Значащие цифры чисел подчеркнуты:

0.0<u>3589</u>, <u>10.4920</u>, 0.00<u>456200</u>.

Пример 3. Верные цифры числа.

Верные цифры числа а = 356.78245 подчеркнуты.

- Если абсолютная погрешность числа Да = 0.01, то верных цифр в числе 4:
 - a=356.78245, т.к. при четырёх верных цифрах в этом числе его предельная абсолютная погрешность $\Delta_a=0.05$, и соблюдается условие $\Delta a < \Delta_a$.
- Если $\Delta a = 0.03$, то верных цифр в числе также 4: a = 356.78245 $\Delta_a = 0.05$, и соблюдается условие $\Delta a < \Delta_a$.
- Если $\Delta a = 0.00001$, то верных цифр в числе a будет 7: $a = \underline{356.7824}5$, при семи значащих цифрах $\Delta_a = 0.00005$, и $\Delta a < \Delta_a$.
- Если, $\Delta a = 0.00006$, то верных цифр в числе только 6: a = 356.78245 $\Delta_a = 0.0005$, и $\Delta a < \Delta_{a,}$, т.к. данная погрешность превышает предельную абсолютную погрешность, соответствующую 7 верным цифрам.

Поскольку истинные абсолютные и относительные погрешности неизвестны, то за них часто принимают предельные погрешности.

При округлении приближённого числа a до n-й значащей цифры необходимо к цифре (n+1)-го разряда прибавить цифру 5; если полученное число больше или равно 10, то к цифре n—го разряда добавляется единица, а разряды, начиная с (n+1)-го отбрасываются; в противном случае разряды начиная с (n+1)-го отбрасываются без прибавления единицы к n—му разряду.

Пример. Округлить число π = 3,141592:

- а) до третьей значащей цифры;
- б) до четвёртой значащей цифры.

Решение: а) 3,14, т.к. 1,592+5=6,592 < 10

б) 3,142, т.к. 5,92+5=10,92 > 10

Прямая задача теории погрешностей

Основная задача теории погрешностей состоит в том, чтобы определить по известным погрешностям параметров погрешность функции от этих параметров.

При грубом оценивании погрешности результата вычисления значения дифференцируемой функции $u=f(x_1,...,x_n)$ с приближёнными аргументами $x_1,...,x_n$ будем считать, что известны границы абсолютных погрешностей аргументов Δ_{x_1} , ..., Δ_{x_n} соответственно.

В этом случае точные значения аргументов x^*_{1} , ..., x^*_{n} лежат соответственно на отрезках: $\begin{vmatrix} x_1 - \Delta x_1, x_1 + \Delta x_1 \end{vmatrix}, ..., \begin{vmatrix} x_n - \Delta x_n, x_n + \Delta x_n \end{vmatrix}$

При этом абсолютная погрешность результата $u=f(x_1, ..., x_n)$ равна $\Delta u = \left| f(x_1, ..., x_n) - f(x_1^*, ..., x_n^*) \right|$

и представляет собой модуль полного приращения функции.

Главной (линейной) частью этого приращения является полный дифференциал *du*, который имеет вид:

$$\Delta u \approx \left| du \right| = \left| \sum_{i=1}^{n} \frac{\partial u}{\partial x_{1}} dx_{i} \right| \leq \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_{1}} \right| x_{1} - x_{1}^{*} \left| \leq \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_{1}} \right| \Delta_{x_{i}} \right|$$

По этой причине за *границу абсолютной погрешности* результата приближенно может быть принята величина

$$\Delta_{u} = \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_{i}} \right| \Delta_{x_{i}}$$
 (1.1)

В соответствии с этим равенством получается формула приближенной *оценки границы относительной погрешности* дифференцируемой функции *u*:

$$\delta_{u} = \frac{\Delta_{u}}{|u|} = \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_{i}} \right| \frac{\Delta_{x_{i}}}{|u|} = \sum_{i=1}^{n} \left| \frac{\partial u}{u \partial x_{i}} \right| \Delta_{x_{i}} = \sum_{i=1}^{n} \left| \frac{\partial \ln|u|}{\partial x_{i}} \right| \Delta_{x_{i}}$$
(1.2)

Оценка погрешностей арифметических действий

Оценка погрешностей арифметических действий проводится с применением формул (1.1) и (1.2).

•Сложение (вычитание)
$$\frac{\partial u}{\partial x_i} = 1$$
 Пусть $u = x_1 + ... + x_n$. Тогда $\frac{\partial u}{\partial x_i} = 1$ и абсолютная погрешность операции сложения (вычитания) по формуле (1.1) будет равна

$$\Delta_{\sum(\pm x_i)} = \sum_{i=1}^n 1 \cdot \Delta_{x_i} = \sum_{i=1}^n \Delta_{x_i}$$

т.е. при сложении и вычитании приближенных чисел их предельные абсолютные погрешности складываются.

При оценке относительной погрешности суммы положительных

приближенных чисел x_1, x_2, \dots, x_n , имеющих границы

относительных погрешностей $\delta_{x_i},...,\delta_{x_n}$ соответственно, будет справедливо:

$$\delta(x_1 + \dots + x_n) = \frac{\Delta(x_1 + \dots + x_n)}{x_1 + \dots + x_n} \le \frac{\Delta_{x_1 + \dots + x_n}}{x_1 + \dots + x_n} = \frac{\Delta_{x_1} + \dots + \Delta_{x_n}}{x_1 + \dots + x_n} = \frac{\Delta_{x_1} + \dots + \Delta_{x_n}}{x_1 + \dots + x_n} = \frac{\Delta_{x_1} + \dots + \Delta_{x_n}}{x_1 + \dots + x_n} = \frac{\Delta_{x_1} + \dots + \Delta_{x_n}}{x_1 + \dots + x_n} \le \frac{\Delta_{x_1} + \dots + \Delta_{x_n}}{x_1 + \dots + x_n} \le \delta^*$$

Где $\delta^* = \max \delta_{x_i} (1 \le i \le n)$

В результате можно сделать вывод, что относительная погрешность суммы положительных приближенных чисел не превосходит максимальной относительной погрешности слагаемых.

Для оценки относительной погрешности **разности** будет справедливо

$$\delta_{x_1 - x_2} = \frac{\Delta_{x_1 - x_2}}{|x_1 - x_2|} \le \frac{\Delta_{x_1} + \Delta_{x_2}}{|x_1 - x_2|}$$

Что указывает на возможность сильного возрастания погрешности при

$$x_1 - x_2 \rightarrow 0$$

В этом случае принято говорить о потере точности при вычитании близких чисел.

Умножение (деление)

В соответствии с формулой (1.2) при умножении положительных сомножителей $u = x_1 \dots x_n$ будет справедливо

$$\ln u = \ln x_1 + \dots + \ln x_n \qquad \frac{\partial \ln u}{\partial x_i} = \frac{1}{x_i}$$

В результате чего получается:

$$\delta_{\prod_{i=1}^{n} x_i} = \sum_{i=1}^{n} \frac{1}{x_i} \Delta_{x_i} = \sum_{i=1}^{n} \delta_{x_i}$$

 $\delta_{\prod_{i=1}^{n} x_i} = \sum_{i=1}^{n} \frac{1}{x_i} \Delta_{x_i} = \sum_{i=1}^{n} \delta_{x_i}$ При делении двух чисел $u = \frac{x_1}{x_2}$, где $x_1, x_2 > 0$ $\ln u = \ln x_1 - \ln x_2$ $\left| \frac{\partial \ln u}{\partial x_i} \right| = \frac{1}{x_i}$

$$\ln u = \ln x_1 - \ln x_2 \qquad \left| \frac{\partial \ln u}{\partial x_i} \right| = \frac{1}{x_i}$$

И, соответственно, с учётом (1.2)

$$\delta_{x_1/x_2} = \frac{\Delta_{x_1}}{x_1} + \frac{\Delta_{x_2}}{x_2} = \delta_{x_1} + \delta_{x_2}$$

Таким образом, при умножении й делении приближенных чисел предельная относительная погрешность результата равна сумме предельных относительных погрешностей сомножителей.

Пример 4. Погрешности арифметических действий.

Пусть числа x и y заданы с абсолютными погрешностями Δx и Δy

$$x = 2.5378$$
 $\Delta x = 0.0001$ $y = 2.536$ $\Delta y = 0.001$

$$y = 2.536$$
 $\Delta y = 0.00^{\circ}$

Тогда относительные погрешности чисел будет равны:

$$\delta x = 3.94 \times 10^{-5}$$
 $\delta y = 3.94 \times 10^{-4}$

$$\delta y = 3.94 \times 10^{-4}$$

Найдем предельные абсолютные и относительные погрешности суммы и разности этих чисел.

$$S1 = x + y$$

$$S1 = x + y$$
 $\Delta S1 := \Delta_x + \Delta_y$ δ_{S1}

$$\delta_{_{\rm S1}}$$

$$S2 = x - y$$

S2 = x - y
$$\triangle$$
 S2 : = \triangle_x - \triangle_y δ_{S2}

$$\delta_{s2}$$

Относительная погрешность разности более, чем в 1600 раз превышает относительную погрешность суммы!

3. Вычислить относительную погрешность в определении значения функции

$$u=xy^2z^3$$
, если $x^*=37,1,y^*=9,87,z^*=6,052,\Delta x^*=0,3,\Delta y^*=0,11,\Delta z^*=0,016.$

Решение:

$$\delta_x = \frac{0.3}{37.1} \approx 0.81 \cdot 10^{-2}, \delta_y = \frac{0.11}{9.87} \approx 1.12 \cdot 10^{-2}, \delta_z = \frac{0.016}{6.052} \approx 0.26 \cdot 10^{-2},$$
$$\delta(u) = \delta(x^*) + 2\delta(y^*) + 3\delta(z^*) = 3.8 \cdot 10^{-2}.$$

Решение обратной задачи теории погрешностей

В отличие от прямой задачи оценивания погрешности результата вычисления значения функции при заданных оценках погрешностей аргументов обратная задача заключается в оценивании величин Δxi (и δx_i) по известной величине Δu .

С физической точки зрения необходимо определить, какой точности нужно подать данные на вход, чтобы получить результат заданной точности.

Для случая дифференцируемой функции одной переменной грубое решение обратной задачи тривиально: если y = f(x)

TO
$$\Delta y = |dy| = |f'(x)| \Delta x$$
,

откуда
$$\Delta x = \frac{\Delta y}{|f'(x)|}$$

Для функции большого числа переменных нужно использовать дополнительные условия, формируемые, например, в соответствии с *принципом равных влияний*.

Он состоит в предположении, что частные дифференциалы $\left|\frac{\partial u}{\partial x_i}\right|_{\Delta_{x_i}}$ в (1.1) одинаково влияют на

погрешность значения функции.

В результате получается, что в соответствии с (1.2)

$$\Delta_u = n \left| \frac{\partial u}{\partial x_i} \right| \Delta_{x_i}$$

Откуда решение обратной задачи имеет вид:

$$\Delta_{x_i} = \frac{\Delta_u}{n \left| \frac{\partial u}{\partial x_i} \right|}$$

Другим вариантом формулировки дополнительных условий является допущение о равенстве относительных погрешностей всех аргументов, т.е. принимается, что $\delta_{x_i} = \frac{\Delta_{x_i}}{|_{Y}|} = \delta \qquad (i = 1,...,n)$

Тогда
$$\Delta_{x_i} = \delta |x_i|$$
 и в соответствии с (1.1) $\Delta_u = \delta \sum_{i=1}^n \left| \frac{\delta u}{\delta x_i} x_i \right|$

Из последнего равенства можно получить величину δ, характеризующую относительный уровень точности задания аргументов Λ

 $\delta = \frac{\Delta_u}{\sum_{i=1}^n \left| x_i \frac{\partial u}{\partial x_i} \right|}$

Откуда легко записываются выражения для определения границ абсолютных погрешностей аргументов: $|_{_{Y}}|_{\Lambda}$

 $\Delta_{x_i} = \frac{\left| x_i \right| \Delta_u}{\sum_{i=1}^n \left| x_i \frac{\partial u}{\partial x_i} \right|}$

Статистический подход к учёту погрешностей арифметических действий

При больших количествах однотипных вычислений вступают в силу уже вероятностные или статистические законы формирования погрешностей результатов действий. Например, методами теории вероятностей показывается, что математическое ожидание абсолютной погрешности суммы n слагаемых с одинаковым уровнем абсолютных погрешностей, при достаточно большом n, пропорционально \sqrt{n} ([20, 25, 61]). В частности, если n > 10 и все слагаемые округлены до m-го десятичного разряда, то для подсчета абсолютной погрешности суммы S применяют правило Чеботарева

$$\Delta S \approx \sqrt{3n} \cdot 0.5 \cdot 10^{-m} \,. \tag{1.4}$$

Пусть $x = \frac{1}{n}(x_1 + ... + x_n)$ — среднее арифметическое n = (n > 10) приближенных чисел (например, результатов измерений), имеющих одинаковый уровень абсолютных погрешностей $\Delta_{x_i} = 0.5 \cdot 10^{-m}$. Тогда классическая оценка абсолютной погрешности величины x есть

$$\Delta_{x} = \frac{1}{n} \left(\Delta_{x_{1}} + \ldots + \Delta_{x_{n}} \right) = \frac{1}{n} \cdot n \cdot 0.5 \cdot 10^{-m} = 0.5 \cdot 10^{-m} = \Delta_{x_{i}},$$

т.е. такая же, как и у исходных данных. В то же время по формуле (1.4) имеем

$$\Delta_{x} \approx \frac{1}{n} \sqrt{3n} \cdot 0.5 \cdot 10^{-m} = \sqrt{\frac{3}{n}} \cdot 0.5 \cdot 10^{-m} = \sqrt{\frac{3}{n}} \cdot \Delta_{x_{i}} \xrightarrow[n \to \infty]{} 0.$$

Как видим, применение правила Чеботарева приводит к естественному выводу о том, что арифметическое усреднение результатов измерений или наблюдений увеличивает точность, чего нельзя сказать на основе классической теории погрешностей.

Технический подход к учёту погрешностей арифметических действий

Согласно принципу А.Н.Крылова, приближенное число должно записываться так, чтобы в нём все значащие цифры кроме последней были верными и лишь последняя была бы сомнительна, и при том в среднем не более, чем на единицу.

Чтобы результаты арифметических действий над приближенными числами, записанными таким образом, также соответствовали этому принципу, нужно придерживаться следующих правил:

- 1. При сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков.
- 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим количеством значащих цифр.
- 3. Результаты промежуточных вычислений должны иметь одиндва запасных знака (которые затем должны быть отброшены).

Оценка погрешностей компьютерной арифметики

Основу памяти компьютера составляют базисные элементы, имеющие *r* устойчивых состояний (2, 8, 16 и т.п.). Каждому числу ставится в соответствие одинаковое количество *k* базисных элементов.

Упорядоченные базисные элементы образуют *разрядную сетку машинного слова* – в каждом разряде записано одно из базис-чисел 0, 1, 2,... *r* -1 и в специальном разряде - знак числа.

При записи числа с фиксированной запятой кроме *r* параметров основания системы счисления и *k* разрядов числа указывается ещё количество *I* разрядов под запись дробной части числа.

Таким образом, положительное вещественное число α может представлять собой в r—ичной системе счисления дробь и отображается следующей конечной последовательностью:

 $a_1a_2...a_{k-l}a_{k-l+1}...a_{k-1}a_k$ где $a_i \in \{0;1;...;r-1\}$ т.е. реализуется приближенное равенство:

$$a \approx fix(a) = \alpha_1 r^{k-l-1} + \alpha_2 r^{k-l-2} + \dots + \alpha_{k-l} r^0 + \alpha_{k-l+1} r^{-1} + \dots + \alpha_{k-1} r^{-(l-1)} + \alpha_k r^{-l}$$

Абсолютная погрешность представления чисел с фиксированной запятой есть оценка величины |a - fix(a)| от способа округления:

• γ^{-1} при простом отбрасывании «хвоста» числа

$$\alpha_{k+1} r^{-(l+1)} + \alpha_{k+2} r^{-(l+2)} + \dots$$

• половина величины r^{-1} при округлении, т.е. при увеличении α_k на единицу, если $\alpha_{k+1} > r/2$

Абсолютная погрешность представления вещественных чисел с фиксированной запятой одинакова в любой части диапазона, в то время, как относительная погрешность

$$\left| \frac{a - fix(a)}{a} \right|$$
 или $\left| \frac{a - fix(a)}{fix(a)} \right|$

может значительно различаться в зависимости от того, берётся α близким к 0 или к границе диапазона .

Чаще употребляется представление вещественных чисел с плавающей запятой, которое записывается в экспоненциальной форме :

$$a = \pm M \cdot r^p$$

где r- основание системы счисления; p- порядок; M- мантисса числа, такая, что

$$r^{-1} \leq M < l(=r^0)$$

Если под мантиссу выделяется l r-ичных элементов, а под порядок — m, то в системе записи с плавающей запятой вещественное число a представляется конечным числом f(a)

$$a = fl(a) = \pm (\beta_1 r^{-1} + \beta_2 r^{-2} + \dots + \beta_l r^{-l})r^{\gamma}$$

Где **r**- целое число из промежутка

$$\begin{bmatrix} -r^m, r^m - 1 \end{bmatrix} \qquad \beta_1 \in \begin{bmatrix} 1; \dots; r - 1 \end{bmatrix} \qquad \beta_i \in \begin{bmatrix} 0; 1; \dots; r - 1 \end{bmatrix} \qquad (i = 2, \dots, l)$$

т.е. машинное слово имеет следующую структуру:

Знак порядка	Порядок	Знак мантиссы	Мантисса
	т разрядов	<i>l</i> разрядов	

Числа $\pm_{r}^{r^{m}}$ определяют границы допустимого числового диапазона, при этом диапазон представления положительных вещественных чисел составляет промежуток $\lceil r^{-r^{m}}, r^{r^{m}-1} \rceil$

Левую и правую границы этого отрезка называют соответственно *машинным нулём и машинной бесконечностью*, так как числа из промежутка

 $[-r^{-r^m}, r^{r^{m-1}}]$ компьютер заменяет нулём, а числа, лежащие за пределами промежутка $[-r^{-r^m-1}, r^{r^{m-1}}]$ он не воспринимает.

Важной характеристикой является число ε , называемое *машинным эпсилон* и обозначаемое обычно идентификатором *macheps*. Определяется как расстояние между единицей и ближайшим следующим за ней числом системы машинных чисел с плавающей запятой. Так как

$$1 = (1r^{-1} + 0r^{-2} + ... + 0r^{-l} + ...) \cdot r^{-l}$$

а следующее за 1 машинное число есть

$$(1r^{-1} + 0r^{-2} + ... + 0r^{-(l-1)} + 1r^{-l})r^{-1} = fl(1 + \varepsilon)$$

то за *macheps* можно принять величину

$$\varepsilon = 1r^{-l}r^{1} = r^{1-l}$$

Это число непосредственно связано с относительной погрешностью представления чисел в системе с плавающей запятой

$$\left| \frac{a - fl(a)}{a} \right| = \frac{\beta_{l+1} r^{-(l+1)} + \beta_{l+2} r^{-(l+2)} + \dots}{\beta_1 r^{-1} + \beta_2 r^{-2} + \dots} \le \frac{1 \cdot r^{-l}}{\beta_1 \cdot r^{-1}} \le r^{(1-l)} = \varepsilon$$

Таким образом, *машинный эпсилон* служит мерой относительной погрешности представления вещественных чисел, причём эта точность одинакова в любой части числового диапазона и зависит лишь от числа *r*-ичных разрядов, отводимых под мантиссу числа.

В то же время оценка абсолютной погрешности

$$|a - fl(a)| \le |a| \cdot r^{(1-l)}$$

показывает, что расстояние между вещественными числами и конечными приближениями к ним в системе с плавающей запятой не одинаковы в разных частях числового диапазона.

Величина macheps служит оценкой относительной точности представления вещественного числа α при условии, что

$$|a| > r^{-r^m}$$

Если $a\in [-r^{-r^m},r^{-r^m}]$, то $fl(a)\equiv 0$ и это значит, относительная погрешность $\left|\frac{a-fl(a)}{a}\right|\equiv 1$

Т.е. является постоянной достаточно большой величиной, в то время как абсолютная погрешность не превосходит величины p^{-r^m}

Пример.

Для записи числа в 48-разрядном машинном слове 40 двоичных разрядов выделяется под мантиссу, 6 — под порядок и 2 — под знаки мантиссы и порядка. Отсюда, принимая, что r = 2, l = 40, m = 6, получаем, что точность представления чисел с плавающей запятой не хуже 2^{-39} (~ 10^{-12}), граница машинного нуля 2^{-64} (~ 10^{-19}), машинной бесконечности 2^{63} (~ 10^{19}).

Если машинное слово имеет 32 двоичных разряда, из них под мантиссу выделяется 24, а под порядок 7. Зная параметры r = 2, l = 24, m = 7, получаем $macheps = 2^{-23}$ (~10⁻⁷), $mauuhhhhe hyhhe 10^{-38}$ и $mauuhhhe hyhhe 10^{-38}$ и $mauuhhe hyhhe 10^{-38}$

Когда используется представление вещественных чисел по основанию r=16, эти машины имеют относительную точность представления $\sim 10^{-7}$ и диапазон для положительных чисел $\sim 10^{-77} \div 10^{76}$.

Практически в любом компьютере промежуточные вычисления производятся с двойной точностью, что учитывается также и большинством языков программирования.

Возникновение возможных больших случайных погрешностей обусловлено следующими основными причинами:

- методом округления, принятом в компьютере;
- потерями значащих разрядов при вычитании;
- потерей разрядов при превышении допустимой разрядности представления чисел (например при делении на малые числа).

Устойчивость численного метода

Под *устойчивостью численного (приближенного)* метода подразумевается несущественное отклонение получаемых приближенных результатов от точного решения.

Строго:

Численный метод называется устойчивым, если для любой погрешности $\varepsilon>0$ в исходных данных существует такое $\delta>0$, что максимальная погрешность результатов будет меньше ε при максимальной погрешности ввода, меньшей δ .

Основной задачей при реализации численных методов (комбинации численных методов) для решения задач компьютерного моделирования является обеспечение их устойчивости, т.е. минимизации всевозможных погрешностей.

Обусловленность задачи

Пример 1.1. Вычислить все корни уравнения

Точное решение задачи легко найти:

$$(x-2)^2 = \pm 10^{-4},$$

 $x_1 = 2,01; \quad x_2 = 1,99; \quad x_{3,4} = 2 \pm 0,01i.$

Если компьютер работает при $\delta_M > 10^{-8}$, то свободный член в исходном уравнении будет округлен до 16,0 и, с точки зрения представления чисел с плавающей точкой, будет решаться уравнение $(x-2)^4=0$, т. е. $x_{1,2,3,4}=2$, что, очевидно, неверно. В данном случае малые погрешности в задании свободного члена $\approx 10^{-8}$ привели, независимо от метода решения, к погрешности в решении $\approx 10^{-2}$.

Пример 1.4. Решением системы линейных алгебраических уравнений (СЛАУ)

$$\begin{cases} u + 10v = 11 \\ 100u + 1001v = 1101 \end{cases}$$

является пара чисел $\{1, 1\}$.

Изменив правую часть системы на 0,01, получим возмущенную систему

$$\begin{cases} u + 10v = 11.01 \\ 100u + 1001v = 1101 \end{cases}$$

с решением {11.01; 0.00}, сильно отличающимся от решения невозмущенной системы. Эта система также плохо обусловлена.

Влияние выбора вычислительного алгоритма на результаты вычислений

Пример 1.6. Пусть необходимо вычислить значение выражения $\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3$.

Избавившись от знаменателя, получаем $(\sqrt{2}-1)^6=(3-2\sqrt{2})^3=99-70\sqrt{2}$.

Полагая а) $\sqrt{2} \approx \frac{7}{5} = 1,4$, в) $\sqrt{2} \approx \frac{17}{12} = 1,41(6)$ и рассматривая эти приближения как разные методы вычисления, получим следующие результаты:

$\sqrt{2}$	$\left(\sqrt{2}-1\right)^6$	$(3-2\sqrt{2})^3$	$99-70\sqrt{3}$
7/5	0,004096	0,008000	1
17/12	0,005233	0,004630	-0,1(6)

Очевидно, что столь значительное различие в результатах вызвано влиянием ошибки округления в задании $\sqrt{2}$.

Экономичность вычислительного метода

Однако если заметить, что $S=\frac{1-x^{1024}}{1-x}$, то количество арифметических действий значительно уменьшается; в частности, для вычисления x^{1024} требуется всего 10 умножений: $x^2=x\cdot x; x^4=(x)^2(x)^2,\ldots,x^{1024}=(x)^{512}(x)^{512}$.

Задание.

- 1. Самим выполнить пример 4 из лекции.
- 2. Вычислить абсолютную и относительную погрешности функции многих переменных $u(x,y,z)=x^2y^2/z^4$, если заданы $x=37.1 y=9.87 z=6.052 \Delta x=0.1 \Delta y=0.05 \Delta z=0.02$
- 3. Вычислить абсолютную и относительную погрешности функции многих переменных.
- Пусть x = -3.59 y = 0.467 z = 563.2 По приведенным начальным условиям считаем, что погрешности переменных равны $\Delta x = 0.01$ $\Delta y = 0.001$ $\Delta z = 0.1$