

010020979 **Image available**
WPI Acc No: 1994-288691/*199436*
Related WPI Acc No: 1998-257313; 1998-282270
XRPX Acc No: N94-227435

Exposure device using far-UV radiation or excimer laser beam as illuminating beam - has controller operating gas flow valve simultaneously energising illuminating beam source and controlling flow rate selector by set program

Patent Assignee: CANON KK (CANON)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 6216000	A	19940805	JP 9323564	A	19930119	199436 B
JP 3084332	B2	20000904	JP 9323564	A	19930119	200045

Priority Applications (No Type Date): JP 9323564 A 19930119

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
-----------	------	--------	----------	--------------

JP 6216000	A	5	H01L-021/027	
------------	---	---	--------------	--

JP 3084332	B2	6	H01L-021/027	Previous Publ. patent JP 6216000
------------	----	---	--------------	----------------------------------

Abstract (Basic): JP 6216000 A

Solenoid valve (8b) is opened and closed by output signals from a controller (7) simultaneously with energising/de-energising of the illuminating beam source (1) controlled by outputs of a laser control unit (6). A solenoid valve (8c) is opened simultaneously with opening of the solenoid valve (8b) and supplies a fixed amount of nitrogen gas to branch lines (8f,8g) for a fixed duration according to a nitrogen supply programme.

A throttling valve (8e) supplies nitrogen gas with a fixed flow rate to inside spaces (2f,2g) of the container (2d) via a by-pass line (8d) continuously when the solenoid valve (8b) is opened. Throttling valves (8i,8h) adjust the ratio of nitrogen gas flow rate from respective branch lines (8f,8g) to inner spaces (2f,2g) of the container (2d). The solenoid valve (8b) is closed simultaneously with de-energising of the illuminating beam source (1).

USE/ADVANTAGE - Air in container can be replaced by an inert gas quickly without consuming a large quantity of inert gas and stand-by time of exposure device is decreased while improving throughput.

Dwg.1/3

Title Terms: EXPOSE; DEVICE; ULTRAVIOLET; RADIATE; EXCIMER; LASER; BEAM; ILLUMINATE; BEAM; CONTROL; OPERATE; GAS; FLOW; VALVE; SIMULTANEOUS; ENERGISE; ILLUMINATE; BEAM; SOURCE; CONTROL; FLOW; RATE; SELECT; SET; PROGRAM

Derwent Class: P84; U11

International Patent Class (Main): H01L-021/027

International Patent Class (Additional): G03F-007/20

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): U11-C04E1

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-216000

(43)公開日 平成6年(1994)8月5日

(51)Int.Cl.⁵

H 01 L 21/027

G 03 F 7/20

識別記号

府内整理番号

F I

技術表示箇所

521

7316-2H

7352-4M

H 01 L 21/ 30

311 L

審査請求 未請求 請求項の数 4 FD (全 5 頁)

(21)出願番号

特願平5-23564

(22)出願日

平成5年(1993)1月19日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 加賀屋 寛人

神奈川県川崎市中原区今井上町53番地 キ
ヤノン株式会社小杉事業所内

(74)代理人 弁理士 阪本 善朗

(54)【発明の名称】 露光装置

(57)【要約】

【目的】 露光装置のレンズ系の容器の空気を迅速に不活性なガスによって置換する。

【構成】 光源1から発せられたレーザ光は光源レンズ系2、レチクル3および投影レンズ系5を経てウエハ4に照射される。光源レンズ系2のレンズ2a～2cは容器2dに収容されており、光源1の駆動開始と同時に空素ガス供給装置8の第1および第2の電磁弁8b、8cが開かれて、大流量の空素ガスが容器2dの内部空間2f、2gへ供給され、空気と置換される。所定の時間を経過したのち、コントローラ7に設定されたプログラムによって第2の電磁弁8cが閉じられる。これ以後はバイパスライン8dのみにより小流量の空素ガスが容器2dに供給される。

1

2

【特許請求の範囲】

【請求項1】 基板に照射される照明光の光路の光学系を収容する容器と、該容器に不活性なガスを供給する給気ラインと、該給気ラインに設けられた開閉弁および流量切換手段と、前記照明光の光源の駆動開始および停止とそれと同期して前記開閉弁を開閉するとともに、前記開閉弁が開かれた後に所定のプログラムに基づいて前記流量切換手段を駆動する制御手段からなる露光装置。

【請求項2】 流量切換手段が、給気ラインのバイパスラインを除く部分を遮断することの自在な第2の開閉弁からなることを特徴とする請求項1記載の露光装置。

【請求項3】 流量切換手段が、給気ラインに設けられた可変弁からなることを特徴とする請求項1記載の露光装置。

【請求項4】 容器の雰囲気ガスの酸素濃度を検出するセンサが設けられ、制御手段が、所定のプログラムの替わりに前記センサの出力に基づいて流量切換手段を駆動するものであることを特徴とする請求項1ないし3いずれか1項記載の露光装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、特に、強力な光束をもち雰囲気ガスを活性化しやすい遠紫外線やエキシマレーザ光を照明光とする露光装置に関するものである。

【0002】

【従来の技術】 半導体の製造等に用いられる露光装置において、特に、強力な光束をもち雰囲気ガスを活性化しやすい遠紫外線やエキシマレーザ光を照明光とするものは、光源のレンズ系や、投影レンズ系等の光学系の雰囲気ガスの酸素や有機物等が照明光によって活性化され、これらの化学反応によって前記光学系の光学部材の表面が汚染されるおそれがある。そこで、光源のレンズ系や投影レンズ系等の光学系を容器内に収容し、該容器の空気を窒素ガス等の不活性なガスによって置換することによって各光学部材の汚染を防ぐ方法が開発された。

【0003】

【発明が解決しようとする課題】 しかしながら上記従来の技術によれば、光学系を収容する容器は密閉性の高いものではないため、露光を開始する毎に不活性なガスを供給し、容器内の酸素濃度が所定の値に低下するまで露光装置を待機させるか、あるいは、露光装置が不作動であっても不活性なガスの供給を続ける必要がある。前者の場合には、露光装置の待機時間が長くなり、そのためにスループットが低下するおそれがあり、後者の場合は、常時不活性なガスを供給するために大量の不活性なガスを消費する。

【0004】 本発明は上記従来の技術の未解決の課題に鑑みてなされたものであり、大量の不活性なガスを消費することなく、光学系の容器の空気を不活性なガスによって迅速に置換することができる露光装置を提供すること

とを目的とするものである。

【0005】

【課題を解決するための手段】 上記の目的を達成するため、本発明の露光装置は、基板に照射される照明光の光路の光学系を収容する容器と、該容器に不活性なガスを供給する給気ラインと、該給気ラインに設けられた開閉弁および流量切換手段と、前記照明光の光源の駆動開始および停止とそれと同期して前記開閉弁を開閉するとともに、前記開閉弁が開かれた後に所定のプログラムに基づいて前記流量切換手段を駆動する制御手段からなる露光装置。

【0006】 流量切換手段が、給気ラインのバイパスラインを除く部分を遮断することの自在な第2の開閉弁からなるとよい。

【0007】 また、流量切換手段が、給気ラインに設けられた可変弁から構成されていてもよい。

【0008】 さらに、容器の雰囲気ガスの酸素濃度を検出するセンサが設けられ、制御手段が、所定のプログラムの替わりに前記センサの出力に基づいて流量切換手段を駆動するものであってもよい。

【0009】

【作用】 光源の駆動開始と同期して開閉弁を開いて不活性なガスの供給を開始する。光源の駆動開始後、所定時間を経過したのち、所定のプログラムに基づいて流量切換手段が駆動され、容器に供給される不活性なガスの流量が低減される。あるいは、光源の駆動開始後、センサによって容器内の酸素濃度をモニタし、酸素濃度が所定の値以下に低減したときに流量切換手段が駆動されるよう構成してもよい。光源の駆動開始と同時に大流量の不活性なガスを容器に供給し、容器の雰囲気ガスを迅速に置換させたのち、不活性なガスの供給量を定常値へ低減することで不活性なガスの消費量を低減することができる。

【0010】

【実施例】 本発明の実施例を図面に基づいて説明する。

【0011】 図1は、第1実施例を説明する説明図であって、本実施例の露光装置E₁は、一般にステッパと呼ばれる縮小投影型の半導体露光装置であって、エキシマレーザからなる光源1と、光源1から発せられた照明光であるレーザ光L₁を所定の形状の光束に成形する光学系である光源レンズ系2と、該光源レンズ系2によって所定の形状に成形されたレーザ光L₁をレチクル3を経て基板であるウエハ4に結像させる投影レンズ系5からなる。光源1はそのレーザ出力を制御するレーザ制御装置6を有し、レーザ制御装置6は制御手段であるコントローラ7によって制御される。

【0012】 光源レンズ系2は、レーザ光L₁を所定の形状の光束に成形するための複数のレンズ2a～2cを有し、これらは容器2dに収容され、容器2dは、光源1に対向する端壁に窓2eを有し、また、容器2d内を

2つの内部空間2 f, 2 gに分割するための隔壁2 jを有する。なお、図示最下端のレンズ2 cは、レチクル3に向ってレーザ光L₁を放出する第2の窓を兼ねている。

【0013】容器2 dの各内部空間2 f, 2 gにそれぞれ不活性なガスである空素ガスを供給する空素ガス供給装置8は、図示しない空素ガス供給源に接続された給気ライン8 aと、該給気ライン8 aに設けられた開閉弁である第1の電磁弁8 bと、その下流側に接続された第2の開閉弁である第2の電磁弁8 cと、これを迂回するバイパスライン8 dと、該バイパスライン8 dに設けられた第1の絞り弁8 eと、バイパスライン8 dの下流側に設けられた一対の分岐ライン8 f, 8 gと、分岐ライン8 f, 8 gにそれぞれ設けられた第2および第3の絞り弁8 f, 8 hからなり、第2および第3の絞り弁8 f, 8 hの吐出側はそれぞれ容器2 dの内部空間2 f, 2 gに接続されている。

【0014】第1の電磁弁8 bは、レーザ制御装置6の出力によって光源1が駆動あるいは停止されると同時に、コントローラ7の出力信号によって開閉されるものであり、第2の電磁弁8 cは、光源1が駆動されると同時に第1の電磁弁8 bとともに開かれて、所定の流量の空素ガスを分岐ライン8 f, 8 gに供給し、コントローラ7に設定されたプログラムである空素供給プログラムによって所定時間を経たのちに閉じられる。また、容器2 dの各内部空間2 f, 2 gの酸素濃度を検出するセンサを設け、該センサの出力に基づいて第2の電磁弁8 cを閉じるように構成してもよい。第1の絞り弁8 eは、第1の電磁弁8 bが開かれた後、常時バイパスライン8 dを経て所定の流量の空素ガスを容器2 dの内部空間2 f, 2 gに供給する。第2, 第3の絞り弁8 f, 8 hは、それぞれ分岐ライン8 f, 8 gから容器2 dの内部空間2 f, 2 gに供給される空素ガスの流量の比率を調節するものである。

【0015】第2の電磁弁8 cを閉じるタイミングは、光源1の駆動後に所定の強度の照明光が得られるまでの光源1の立上り時間に基づいて設定されるもので、図2のタイムチャートA～Eに示すような空素供給プログラムによって制御される。また、露光装置Eにおいて露光が終了し、光源1の駆動が停止されると同時に、第1の電磁弁8 bが閉じられて、空素ガスの供給が停止される。

【0016】図2のタイムチャートAに示す空素供給プログラムは、光源1の駆動開始時刻t₁において第1および第2の電磁弁8 b, 8 cを開き、大流量値q₁で示す供給量の空素ガスを容器2 dの各内部空間2 f, 2 gに供給し、各内部空間2 f, 2 gの雰囲気の酸素濃度を速かに低下させたのち、時刻t₂において第2の電磁弁8 cを閉じる。光源1がエキシマレーザである場合は、光源1を駆動したのちに所定の出力のレーザ光が得られ

るまでに数分以上の時間を必要とする。前述の時刻t₁は、このような光源1の立上り時間に合わせて設定される。時刻t₁において第2の電磁弁8 cが閉じられると、空素ガスはバイパスライン8 dのみを経て容器2 dの各内部空間2 f, 2 gに供給されるため、空素ガスの供給量は小流量値(定常値)q₂に低下する。時刻t₂において露光装置の露光が終了し、光源1の駆動が停止されると、これと同時に第1の電磁弁8 bが閉じられて空素ガスの供給が停止される。なお、小流量値q₂は、容器2から漏出する空素ガスを補うのに充分であればよい。

【0017】タイムチャートBは、前述のセンサによって検出された酸素濃度が所定の値に減少した時刻t₃において第2の電磁弁8 cを閉じるように設定した空素供給プログラムを示し、タイムチャートCは、上記酸素濃度が所定の値に減少した時刻t₃から所定の時間遅れ△tを経た時刻t₄において第2の電磁弁8 cを閉じるように設定した空素供給プログラムを示し、タイムチャートDは、前述のタイムチャートA～Cの時刻t₁, t₂またはt₃において第2の電磁弁8 cを閉じたのち、これを間欠的に開くことによって容器2 dから漏出する空素ガスを補充する空素供給プログラムを示すもので、この場合はバイパスライン8 dを必要としない。また、タイムチャートEは、前述のセンサによって検出された酸素濃度が所定の値d₁に減少した時刻t₅において第2の電磁弁8 cを閉じたのちも時刻t₅まで前記センサによる測定を継続し、これによって容器2 dの酸素濃度を所定の値に維持するに必要な空素ガスの供給量を実測し、これに基づいて空素ガスの補充量を設定する空素供給プログラムを示すものである。

【0018】本実施例によれば、光源の駆動開始とともに大流量の空素ガスを光源レンズ系の容器内へ供給し、容器内の空気を短時間で空素ガスによって置換させるとともに、所定時間後あるいは容器内の酸素濃度が所定の値に低減したのちに空素ガスの供給量を縮小することで、大量の空素ガスを消費することなく容器の空気を迅速に空素ガスと置換させることができる。

【0019】図3は、第2実施例を説明する説明図であって、本実施例の露光装置E₂は、第1実施例と同様に、エキシマレーザからなる光源21と、光源21から発せられた照明光であるレーザ光L₁を所定の光束に成形する光学系である光源レンズ系22と、該光源レンズ系22によって所定の光束に成形されたレーザ光L₁をレチクル23を経てウエハ24に結像させる投影レンズ系25からなる。光源21はそのレーザ出力を制御するレーザ制御装置26を有し、レーザ制御装置26は制御手段であるコントローラ27によって制御される。

【0020】光源レンズ系22は、レーザ光L₁を所定の光束に成形するためのレンズ22a, 22bを有し、これらは容器22dに収容され、容器22dは、光源2

5

1に対向する端壁に窓22eを有し、また、図示下方のレンズ22bはレチクル23に向ってレーザ光L₁を放出する第2の窓を兼ねている。

【0021】容器22dの内部空間22fに不活性なガスである窒素ガスを供給する窒素ガス供給装置28は、図示しない窒素ガス供給源から容器22dの内部空間22fに窒素ガスを供給する給気ライン28aと、該給気ライン28aに直列に設けられた開閉弁である第1の電磁弁28bおよび可変弁28cと、容器22dの内部空間22fから雰囲気ガスを排出する排気ライン28hと、これに設けられた第2の電磁弁28gと、容器22dの内部空間22fの酸素濃度を検出するセンサ28fからなり、第1の電磁弁28bおよび可変弁28cは光源21の駆動開始と同時に開かれて容器22dの内部空間22fに所定の大流量値の窒素ガスを供給し、センサ28fによって検出される酸素濃度が所定の値に減少したとき、可変弁28cが切換えられて、窒素ガスの供給量を所定の小流量値(定常値)に減少させるように構成されている。なお、光源21の駆動開始と同時に、第2の電磁弁28gを開き、排気ライン28hから容器22dの内部空間22fの空気を排出すれば、窒素ガスによる置換をより一層迅速に行うことができる。

【0022】本実施例は、バイパスラインを必要とせず、また、容器22dの密封状態に応じて可変弁28cを数段階に切換えることによって補充用の窒素ガスの流量を変化させることができる。

【0023】

【発明の効果】本発明は上述のとおり構成されているので、以下に記載するような効果を奏する。

【0024】大量の不活性なガスを消費することなく、30

6

光学系の容器の空気を不活性なガスによって迅速に置換することができる、その結果、露光装置の待機時間を短縮し、スループットを改善できる。

【図面の簡単な説明】

【図1】第1実施例を説明する説明図である。

【図2】図1の装置を制御するタイムチャートの様々な例を示す図である。

【図3】第2実施例を説明する説明図である。

【符号の説明】

10	L ₁ , L ₂	レーザ光
1, 21	光源	
2, 22	光源レンズ系	
2d, 22d	容器	
3, 23	レチクル	
4, 24	ウエハ	
5, 25	投影レンズ系	
6, 26	レーザ制御装置	
7, 27	コントローラ	
8, 28	窒素ガス供給装置	
20	8a, 28a	給気ライン
	8b, 28b	第1の電磁弁
	8c, 28g	第2の電磁弁
	8d	バイパスライン
	8e	第1の絞り弁
	8f	第2の絞り弁
	8h	第3の絞り弁
	28c	可変弁
	28f	センサ
	28h	排気ライン

【図1】

【図2】

【図3】

THIS PAGE BLANK (USPTO)