Clase 18. Propiedades de las Determinantes.

Curso 'Linear Algebra' del MIT.

Resumen

Desde esta clase hasta las próximas dos, nos centraremos en estudiar a un número asociado solo a matrices cuadradas que recibe el nombre de determinante. En esta ocasión, revisaremos diez propiedades que es posible obtener de ellos con las cuales podremos comprender mejor a este escalar.

1. Determinantes.

Cuando tenemos una matriz cuadrada, es posible encontrar un valor escalar asociado a ella conocido como **Determinante**. En particular, es un número que está **en función de las entradas de aquella matriz**.

Si A es una matriz de $n \times n$, su determinante se denota como $\det(A)$ o |A|. Cuando consiste de las siguiente entradas:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$$

la determinante de esta matriz se denota como:

$$\det(A) = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{vmatrix}$$

La importancia de los determinantes, es que su valor y signo nos entrega información relevante de la matriz cuadrada de la que proviene. No toda sobre ella, pero si bastante. Para entenderlos mejor, revisemos sus propiedades.

2. Propiedades de los Determinantes.

Estudiaremos 10 propiedades de los determinantes. Para comenzar, definiremos tres y las siete restantes las obtendremos a partir de las primeras señaladas.

Propiedad 1: El determinante de una matriz identidad I es igual a 1.

$$\det(I) = 1$$

Al conocer la fórmula de un determinante, podemos ver que esta igualdad se cumple, así que la daremos por sentada.

Propiedad 2: El intercambio de filas de una matriz cuadrada A, revierte el signo de su determinante inicial, donde:

- Cantidad de intercambios es $par \rightarrow + det(A)$.
- Cantidad de intercambios es **impar** \rightarrow $-\det(A)$.

Es posible interpretar a las matrices cuadradas de permutación P como matrices identidad en las que se realizaron intercambios de filas. En ese sentido, el determinante de ellas será:

$$\det(P) = \pm 1$$

cuyo signo dependerá de la cantidad de intercambio que se le hayan realizado a I.

Propiedad 3: El determinante de una matriz cuadrada A se comporta como una función lineal de una de sus filas mientras las otras se mantienen constantes.

$$3.a) \begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \cdot \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
$$3.b) \begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

El concepto de **función lineal** la profundizaremos cuando estudiemos transformaciones lineales, pero se refiere a que si tenemos dos espacios vectoriales W y $V \in K$ (un campo vectorial), la función $f: V \to W$ es una función lineal si, para dos vectores $\vec{a}, \vec{b} \in V$ y un escalar $c \in K$ se cumplen las siguientes condiciones:

$$f(\vec{a} + \vec{b}) = f(\vec{a}) + f(\vec{b})$$

$$f(c\vec{a}) = cf(\vec{a})$$

Ahora bien, vimos que un determinante **se comporta** como una función lineal para una fila de la matriz cuadrada A sin alterar las demás. Por lo tanto, **ES INCORRECTO** señalar que $\det(A + B) = \det(A) + \det(B)$, porque significa que estamos sumando todas las filas de $\det(A)$ con todas las de $\det(B)$ y no es a lo que se refiere la propiedad 3.B.

Por otra parte, a partir de la Propiedad 3.A podemos corroborar que:

$$\det(2A) = 2^n \cdot \det(A)$$

puesto que en 2A cada fila de A está siendo multiplicada por 2, por lo tanto, al factorizar cada una de ellas conlleva a 2^n , donde n es la cantidad de filas de A.

En las siguientes siete propiedades las conoceremos a partir de las tres primeras que acabamos de aprender.

Propiedad 4: Si una matriz cuadrada A tiene dos filas iguales, su determinante será igual a cero.

La explicación de esta propiedad podemos tomarla desde la propiedad 2.

Suponga que A de $n \times n$ tiene dos filas iguales y su determinante es $\det(A)$. Si intercambiamos este par de filas, ocurre que:

$$\det(A) = -\det(A)$$

porque si bien hicimos este cambio y, por consiguiente, se revierte el signo del determinante, las entradas de ambas filas de A siguen siendo las mismas. En consecuencia, la única posibilidad de que se cumpla dicha igualdad es que

$$\det(A) = 0$$

Cuando dos filas de una matriz son iguales, significa que son **linealmente dependientes**. Para el caso de una matriz cuadrada, lo anterior implica que **no tiene una inversa**.

Por lo tanto, podemos extrapolar la **propiedad 4** para señalar que **si** $\det(A) = 0$, entonces A es **singular**.

En general, uno de los principales usos del determinante de una matriz cuadrada, es para evaluar si es invertible o no según si es igual a cero o a cualquier otro valor.

Propiedad 5: Al aplicar operaciones de reducción de filas a una matriz A de $n \times n$, su determinante se mantiene igual.

Por ejemplo, digamos que A es la siguiente matriz:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

con determinante:

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Supongamos que queremos reducir la segunda fila de A. Para aquello, multiplicamos a la primera por un escalar -l y sumamos la segunda con esta última, obteniendo la siguiente matriz:

$$B = \begin{bmatrix} a & b \\ c - la & d - lb \end{bmatrix}$$

y cuyo determinante es:

$$\det(B) = \begin{vmatrix} a & b \\ c - la & d - lb \end{vmatrix}$$

Si aplicamos la propiedad 3.B a det(B), entonces:

$$\det(B) = \begin{vmatrix} a & b \\ c - la & d - lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a & b \\ -la & -lb \end{vmatrix}$$

Luego, por medio de la propiedad 3.A:

$$\det(B) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} - l \cdot \begin{vmatrix} a & b \\ a & b \end{vmatrix}$$

Finalmente, por la propiedad 4:

$$\det(B) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} - l \cdot 0 = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \det(A)$$

Propiedad 6: Si una matriz A de $n \times n$ tiene al menos una fila completa de ceros, entonces su determinante será igual a cero.

Una manera de explicar esta propiedad, es la siguiente: Sea la matriz A

$$A = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$$

Sumemos la primera fila a la segunda de A, obteniendo una matriz B:

$$B = \begin{bmatrix} a & b \\ 0+a & 0+b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

Esto implica que el det(B) es:

$$\det(B) = \begin{vmatrix} a & b \\ a & b \end{vmatrix}$$

Debido a que la matriz B es solo la matriz A en la cual realizamos operaciones en sus filas, por la Propiedad 5 significa que sus determinantes son iguales.

$$\det(A) = \det(B)$$

$$\det(A) = \begin{vmatrix} a & b \\ a & b \end{vmatrix}$$

Sin embargo, por la Propiedad 4, la igualdad de arriba conlleva a lo siguiente:

$$\det(A) = 0$$

Propiedad 7: El determinante de una matriz triangular (superior o inferior) es igual al producto de su diagonal principal.

Suponga que U es una matriz triangular superior y $d_{i,j} \neq 0$ las entradas de su diagonal principal, para $i=1,\ 2,\cdots,\ n$ y $j=1,\ 2,\cdots,\ n$.

$$U = \begin{bmatrix} d_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1,n} \\ 0 & d_{2,2} & u_{2,3} & \cdots & u_{2,n} \\ 0 & 0 & d_{3,3} & \cdots & u_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n,n} \end{bmatrix}$$

Ahora, digamos que realizamos operaciones de filas en U para eliminar todas las entradas

que están arriba de su diagonal principal, obteniendo a una matriz V.

$$V = \begin{bmatrix} d_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & d_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n,n} \end{bmatrix}$$

Lo que significa que el determinante de V es:

$$\det(V) = \begin{vmatrix} d_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & d_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n,n} \end{vmatrix}$$

Por la Propiedad 5, el determinante de V es igual al de la matriz U:

$$\det(U) = \det(V)$$

$$\det(U) = \begin{vmatrix} d_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & d_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n,n} \end{vmatrix}$$

Es válido asumir que cada fila del det(U) es un múltiplo de $d_{i,j}$, por lo tanto podemos factorizarlas a partir de la Propiedad 3.A.

$$\det(U) = (d_{n,n} \cdot \ldots \cdot d_{3,3} \cdot d_{2,2} \cdot d_{1,1}) \cdot \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{vmatrix}$$

$$\det(U) = (d_{n,n} \cdot \ldots \cdot d_{3,3} \cdot d_{2,2} \cdot d_{1,1}) \cdot \det(I)$$

Por la Propiedad 1 sabemos que det(I) = 1, implicando que

$$\det(U) = (d_{n,n} \cdot \ldots \cdot d_{3,3} \cdot d_{2,2} \cdot d_{1,1})$$

La Propiedad 7 nos lleva a otra interpretación del determinante. Si aplicamos el método de eliminación de Gauss a una matriz A de $n \times n$, llevando a $A \to U$, entonces el det(U) corresponde al \pm **producto de las entradas pivotes de** A, cuyo signo depende de si hicimos intercambio de filas en aquel proceso.

Esta propiedad también nos ayuda a verificar que cuando $\det(A) = 0$, entonces A no es invertible. Si la matriz A tiene un par de filas linealmente dependientes, entonces en la eliminación de Gauss una de sus filas será el $\vec{0}$. En consecuencia, una de las diagonales de U será igual a cero y, por consiguiente, el $\det(U) = \det(A) = 0$.

A partir de la Propiedad 7 podemos conocer la **Fórmula para el determinante de una matriz de** 2×2 . Sea A:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Pasemos de $A \to U$ multiplicando la primera fila por -(c/a) y, luego, sumemos la segunda a ésta.

$$U = \begin{bmatrix} a & b \\ 0 & d - (bc/a) \end{bmatrix}$$

Por la Propiedad 5, det(U) = det(A). Por lo tanto:

$$\det(A) = \begin{vmatrix} a & b \\ 0 & d - (bc/a) \end{vmatrix}$$

Finalmente, aplicando la Propiedad 7, obtenemos que:

$$\det(A) = a \cdot \left(d - \frac{bc}{a}\right) = ad - a\frac{bc}{a} = ad - bc$$

Por lo tanto, la **fórmula del determinante de una matriz** A **de** 2×2 se calcula como:

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Propiedad 8: El determinante de una matriz singular A de $n \times n$ es igual a cero.

Por medio de las propiedades 4, 6 y 8 de los determinantes, hemos podido verificar que el det(A) = 0 cuando A no es invertible. Por lo tanto, si resulta en dicho valor, quiere decir que algunas de sus filas son linealmente dependientes o, simplemente, está compuesta de ceros.

Propiedad 9: El determinante de una matriz resultante del producto matricial entre dos

matrices A y B corresponde a la multiplicación de los determinantes individuales de ambas.

$$\det(AB) = \det(A) \cdot \det(B)$$

A partir de esta propiedad podemos conocer el determinante de la inversa de una matriz.

Suponga que A es de $n \times n$ y que existe A^{-1} . Esto significa que podemos asegurar que:

$$A^{-1}A = I$$

Calculemos el determinante de las matrices de ambos lados de la ecuación.

$$det(A^{-1}A) = \det(I)$$

Aplicando la Propiedad 9 en el lado izquierdo y la Propiedad 1 en el derecho, obtenemos que:

$$\det(A^{-1}) \cdot \det(A) = 1$$

Recordemos que los determinantes son valores escalares. Por lo tanto, podemos multiplicar por $1/\det(A)$ para conocer al $\det(A^{-1})$.

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Acá tenemos una tercera prueba de que una matriz A no es invertible cuando $\det(A) = 0$, puesto que el $\det(A^{-1})$ no existe en ese caso al estar dividido por cero.

Otra consecuencia de la Propiedad 9, es que si elevamos al cuadrado a una matriz A de $n \times n$ o, en otras palabras, si la multiplicamos por si misma, su determinante también se elevará a dicho valor:

$$\det(A^2) = \det(A) \cdot \det(A) = (\det(A))^2$$

Propiedad 10: El determinante de la transpuesta de una matriz A de $n \times n$ es igual al determinante de A.

$$\det(A^T) = \det(A)$$

Para comprobarla, establezcamos que A=LU, que es la descomposición de A al aplicar el

método de eliminación de Gauss. Reemplacemos la igualdad de arriba con dichas matrices.

$$\det([LU]^T) = \det(LU)$$
$$\det(U^T L^T) = \det(LU)$$

Por medio de la Propiedad 9, podemos establecer que:

$$\det(U^T) \cdot \det(L^T) = \det(L) \cdot \det(U)$$

Recordemos que la matriz L es triangular inferior, consiste de los factores aplicados a la matriz A al ir reduciendo sus filas y su diagonal principal siempre consiste de unos (1s). Por lo tanto, a partir de la Propiedad 7, $\det(L^T) = 1$ y $\det(L) = 1$.

$$\det(U^T) = \det(U)$$

En cuanto a U, recordemos que es la matriz triangular resultante de haber aplicado el reducido sus filas por medio del método de Gauss, por lo que podemos aplicar la Propiedad 5 para señalar que:

$$\det(A^T) = \det(A)$$

Una consecuencia relevante de la Propiedad 10, es que podemos confirmar que **el determinante de una matriz con al menos una columna igual al** $\vec{0}$, **es igual a cero**. Por ejemplo, sea:

$$A = \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix}$$

Si la transponemos, entonces:

$$A^T = \begin{bmatrix} a & c \\ 0 & 0 \end{bmatrix}$$

Por la Propiedad 6, el determinante de A^T será igual a cero:

$$\det(A^T) = \begin{vmatrix} a & c \\ 0 & 0 \end{vmatrix} = 0$$

En consecuencia, a partir de la Propiedad 10 podemos concluir que:

$$\det(A) = \det(A^T)$$

$$det(A) = 0$$