FUNÇÃO EXPONENCIAL

Definição

Seja a um número real tal que

a > 0 e a $\neq 1$. Considere uma função real y=f(x) definida por:

$$y = a^x$$

Esta função recebe o nome de função exponencial. Nessa expressão, a é base, x é a variável independente e y a variável dependente. Veja alguns exemplos:

$$y = \left(\frac{1}{2}\right)^{\frac{1}{2}}$$

$$y = \sqrt{5^x}$$

Observe as restrições impostas ao valor da base a. Se a = 1 a função se reduz a

 $y = 1^x = 1$, ou seja, é uma função constante. Se a = 0 a função se torna

 $y = 0^x$ que não é definida para alguns valores de x (por exemplo, 0^{-2} não existe). Se a < 0 alguns valores de y não seriam reais (por exemplo

$$(-4)^{\frac{1}{2}} = \sqrt{-4} \notin \Re$$
).

Gráfico

Vamos construir, por pontos, o gráfico da função:

$$y = 2^x$$

X	2 ^x	у
-3	2-3	1
		$\overline{8}$
-2	2-2	1
		4
-1	2-1	1
		$\overline{2}$
0	20	1
1	21	2
2	2^2	4
3	2^3	8

Com estes pontos, obtemos o gráfico:

Fazendo o mesmo com a função:

$$y = \left(\frac{1}{2}\right)^x$$

Obtemos o gráfico:

De um modo geral, o gráfico da função exponencial é representado por uma curva especial que intercepta o eixo das ordenadas no ponto (0, 1). Esta curva pode ser crescente ou decrescente dependendo da base a.

Nos dois casos, o domínio e a imagem da função são:

$$D = \Re$$

$$I_m = \mathfrak{R}_+^*$$

Outras funções

A partir dessa função exponencial básica podemos definir outras funções.

É o caso, por exemplo, da função

$$y = 2^{2x-1}$$

Vamos construir o seu gráfico por pontos. Para isso, montamos uma tabela atribuindo valores convenientes a x, calculamos 2x - 1 e finalmente determinamos 2^{2x-1} .

X	2x-1	$Y=2^{2x-1}$
-1	-3	1
		$\frac{1}{8}$
1	-2	1
$-\frac{1}{2}$		$\frac{1}{4}$
0	-1	1
		$\frac{1}{2}$
1	0	1
$\frac{1}{2}$		
1	1	2
$\frac{1}{\frac{3}{2}}$	2	4
2	3	8

Num outro exemplo, veja a função:

$$y = 2^x + 1$$

Exercícios de Aula

01. Faça um esboço do gráfico das funções definidas abaixo, indicando o Domínio, contra-domínio, imagem, interceptos com os eixos e assíntota

$$y = 3^x + 5$$
 b) $y = (1/5)^x$ $\frac{x-1}{2}$

02. (MACK) Na figura, os gráficos I, II e III referem-se, respectivamente, às funções $y = a^x$, $y = b^x$ e $y = c^x$.

Então, está correto afirmar que:

- (A) 0<a<1<b<c
- (B) 0<b<1<c<a
- (C) a<0<1<b<c
- (D) 0<a<1<c<b
- (E) a<O<1<c<b
- 03. (UEL) Considere a função de R em R dada por $f(x) = 5^x + 3$. Seu conjunto imagem é (A)]- ∞ ;3[(B)]- ∞ ;5[(C) [3;5] (D)]3; + ∞ [(E)]5; + ∞ [

Tarefa Básica

$$\overline{01. \text{ (FUVEST) Sejam f(x)}} = \left(\frac{2}{3}\right)^x \text{ e g(x)} = \left(\frac{1}{5}\right)^x$$

a) Usando o mesmo par de eixos, esboce os gráficos de f e g.

- b) Decida a seguir qual dos números é o maior. $\left(\frac{1}{5}\right)^{\frac{2}{3}}$ ou $\left(\frac{2}{3}\right)^{\frac{1}{5}}$
- 02. (UFF) Em uma cidade a população de pessoas é dada por $P(t) = P_0 2^t$ e a população de ratos é dada por $R(t) = R_0 4^t$ sendo o tempo t medido em anos. Se em 1992 havia 112.000 pessoas e 7.000 ratos, em que ano o número de ratos será igual ao de pessoas?
- 03. (VUNESP) Uma cultura de bactérias cresce segundo a lei

 $N(t) = \alpha \ 10^{\lambda t}$, onde N(t) é o número de bactérias em t horas, $t \ge 0$, e α e λ são constantes estritamente positivas. Se após 2 horas o número inicial de bactérias, N(0), é duplicado, após 6 horas o número de bactérias será

- (A) 4α (B) $2\alpha \sqrt{2}$ (C) 6α (D) 8α (E) $8\alpha \sqrt{2}$
- 04. (UEL) Observe o gráfico:

Esse gráfico corresponde a qual das funções de R em R abaixo relacionadas?

(A)
$$y = 2^{x} - 1$$
 (B) $y = x + \log x$ (C) $y = \frac{2^{x}}{2}$ (D) $y = 2^{x} + 1$ (E) $y = 3^{x}$

05. Faça um esboço do gráfico das funções definidas abaixo, indicando o Domínio, contra-domínio, imagem, interceptos com os eixos e assíntota

a)
$$y = -5^x + 2$$
 b) $y = (1/3)^x - 4$ $\frac{3x-4}{}$ c) $y = 5$ $^2 + 3$

Respostas da Tarefa Básica

01. a) $\frac{(\frac{2}{3})^{\frac{1}{2}}}{(\frac{1}{5})^{\frac{1}{2}}}$

- 02. 1996
- 03. (D)
- 04. (A)

05.

a)

 $D(f) = \mathfrak{R}$

 $CD(f)=\Re$

 $Im(f) =]-\infty$; 2[

assintota (0;1) y = 2 b)

 $D(f) = \mathbf{R}$

 $CD(f)=\Re$

Im(f) =] _4;+'∞ [

assintota y=4 (0: -3)

c)

 $CD(f)=\mathbf{R}$

 $Im(f) =] 3; + \infty [$

assintota y=3

(0; 3,04)