IC153: Calculus 1 (Lecture 12)

by

Anurag Singh IIT Bhilai

December 29, 2021

Recap

- Series of real numbers
- Convergence/divergence of a series
- Necessary condition for convergence of a series
- Necessary and sufficient condition for convergence of a series
- Absolute convergence ⇒ convergence
- Alternating series test (Leibniz test)

Comparison test

Theorem

Suppose $0 \le a_n \le b_n$ for all $n \ge k$ for some k. Then

Proof: (1)
$$T_n = seq$$
 of partial sums of $\sum_{n \ge k} b_n$

$$S_n = seq \text{ of partial sums of } \sum_{n \ge k} a_n$$

$$\sum_{i=1}^{\infty} a_i \text{ converges } \Longrightarrow \sum_{i=k} a_i \text{ converges}$$

$$S_n \le T_n \qquad \forall n \ge k$$

 Note: We say that $a_n \leq b_n$ eventually if there exists $N \in \mathbb{N}$ such that $a_k \leq b_k$ for all $k \geq N$.

$$\begin{array}{cccc}
\bullet & \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges.} & \frac{1}{\eta^2} \leq \frac{1}{\eta(n-1)} & \forall & \eta \geq 2 \\
& & \sum \frac{1}{\eta(\eta-1)} & \text{converges.} & \Rightarrow & \sum \frac{1}{\eta^2} & \text{converges.}
\end{array}$$

$$\begin{array}{ccc}
\bullet \sum_{n=1}^{\infty} \frac{1}{n!} \text{ converges.} & \frac{1}{n!} \leq \frac{1}{n^2} & \forall n \geq 4 \\
\bullet r & \frac{1}{n!} \leq \frac{1}{n(n-1)} & \forall n \geq 2
\end{array}$$

Corollary

Let $a_n \ge 0$. Then both the series $\sum\limits_{n=1}^{\infty} a_n$ and $\sum\limits_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converge or diverge together.

Limit comparison test

Theorem

Suppose $a_n, b_n \geq 0$ eventually. Let $\frac{a_n}{b_n} \longrightarrow L$

- If $L \in (0, \infty)$, then both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge or diverge together.
- ② If L = 0 and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
- If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof: Since L > 0 \exists $\epsilon > 0$ Site $L - \epsilon > 0$.

$$\frac{q_{n}}{b_{n}} \longrightarrow L \quad \Rightarrow \quad \exists \quad N \in \mathbb{N} \quad s.t.$$

$$L-\epsilon \leq \frac{q_{n}}{b_{n}} \leq L+\epsilon \quad -- \text{ (i)}$$

Proof (Cont.):

Eq (1)
$$\Rightarrow$$
 (1-\epsilon) by $\leq q_n \leq (1+\epsilon)b_n - 2$
(i) (i) $\leq q_n = (1-\epsilon)b_n \leq q_n = (1-\epsilon)b_n \leq q_n = (1-\epsilon)b_n = (1-\epsilon)b_$

$$\frac{q_{n}}{b_{n}} = \frac{3^{n}-n}{3^{n}} = 1 - \frac{n}{3^{n}}$$

$$\lim_{n\to\infty} \frac{q_{n}}{b_{n}} = 1$$

$$\lim_{n\to\infty} \frac{b_{n}}{b_{n}} = 1$$

$$\lim_{n\to\infty} \frac{b_{n}}{b_{n}} = 1 - \frac{n}{3^{n}}$$

$$\lim_{n\to\infty} \frac{converque}{b/c}$$

$$\lim_{n\to\infty} \frac{1}{3^{n}} = 1 - \frac{n}{3^{n}}$$

$$\lim_{n\to\infty} \frac{converque}{b/c}$$

$$\frac{q_n}{b_n} = \frac{\frac{1}{h}\log\left(1+\frac{1}{h}\right)}{\frac{1}{h^2}} = n\log\left(1+\frac{1}{h}\right)$$

$$\lim_{n\to\infty} \frac{q_n}{bn} = \log_{1}(1+\frac{1}{h})^n = \log_{1}(1+\frac{1}{h})^n = \log_{1}(1+\frac{1}{h})^n$$

$$= \log_{1}(1+\frac{1}{h})^n = \log_{1}(1+\frac{1}{h})^n = \log_{1}(1+\frac{1}{h})^n$$

Questions?

Cauchy test

Theorem (Cauchy Condensation Test)

If $a_n \ge 0$ and $a_{n+1} \le a_n$ for all n, then $\sum\limits_{n=1}^\infty a_n$ converges if and only if $\sum\limits_{k=1}^\infty 2^k a_{2^k}$ converges.

Proof: Let
$$S_n = Q_1 + Q_2 + \cdots + Q_n$$
 \$ $T_k = Q_1 + 2Q_2 + \cdots + 2^k Q_{2^k}$ (E)
Suppose T_k converges. For a fixed n , choose k s.f. $2^k \ge n$,

Then $S_n = Q_1 + Q_2 + \cdots + Q_n$

$$\leq Q_1 + (Q_2 + Q_3) + \cdots + (Q_{2^k} + \cdots + Q_{2^{k+l-1}})$$

$$\leq Q_1 + 2Q_2 + \cdots + 2^k Q_{2^k} = T_k$$

$$\Rightarrow (S_n) \text{ is bounded above } \Rightarrow (S_n) \text{ is convergent}.$$

$$\sum_{k=1}^{\infty} 2^{k} q_{2k} = \sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{(2^{k})^{p}} = \sum_{k=1}^{\infty} 2^{k} \cdot 2^{-pk}$$

$$= \sum_{k=1}^{\infty} 2^{k} (1-p) \quad \text{converges if a only if $b>1$.}$$

$$\sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{2^{k} \cdot (\log 2^{k})^{p}} = \sum_{k=1}^{\infty} \frac{1}{(k \log 2)^{p}}$$

$$= \frac{1}{(\log 2)^{p}} \sum_{k=1}^{\infty} \frac{1}{(\log 2)^{p}}$$

$$= \frac{1}{(\log 2)^{p}} \sum_{k=1}^{\infty} \frac{1}{(\log 2)^{p}}$$

$\mathsf{Theorem}$

Let $a_n \neq 0$ for all n.

- If $\left|\frac{a_{n+1}}{a_n}\right| \leq q$ eventually for some 0 < q < 1, then the series $\sum_{n=1}^{\infty} |a_n|$ converges.
- ② If $\left|\frac{a_{n+1}}{a_n}\right| \geq 1$ eventually, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Ratio test

Corollary

Let $a_n \neq 0$ for all n and $\left|\frac{a_{n+1}}{a_n}\right| \longrightarrow L$ for some L.

- If L < 1 then the series $\sum_{n=1}^{\infty} |a_n|$ converges.
- ② If L > 1 then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- **1** If L = 1 then we can not say anything.

Proof (Cont.):

(i) L<1,
$$\beta$$
 $\left|\frac{a_{m+1}}{a_m}\right| \longrightarrow L$

$$\Rightarrow \left|\frac{a_{m+1}}{a_m}\right| \le L + \frac{1-L}{2} = 9 < 1$$

$$\Rightarrow \left[\frac{a_{m+1}}{a_m}\right] \le Converges$$

(2). Do it yourself.

Root test

$\mathsf{Theorem}$

Let $|a_n|^{1/n} \longrightarrow L$ for some L.

- If L < 1 then the series $\sum_{n=0}^{\infty} |a_n|$ converges.

$$\begin{cases} 3 \\ \sum \frac{1}{n} & \text{and} & \sum \frac{1}{h^2} \end{cases}$$

$$\bullet \sum_{n=1}^{\infty} \left(\frac{5n-3n^3}{7n^3+2} \right)^n$$

$$\lim_{n\to\infty} \left| \frac{5n-3n^3}{7n^3+2} \right| = \frac{3}{7} < 1$$

ample
$$\sum_{n=1}^{\infty} \left(\frac{5n-3n^3}{7n^3+2}\right)^n$$

$$\lim_{n\to\infty} \left|\frac{5n-3n^3}{7n^3+2}\right| = \frac{3}{7} < 1$$

$$\lim_{n\to\infty} \left(\frac{1}{n^2}\right)^{1/n} = 1$$

$$\lim_{n\to\infty} \left(\frac{1}{n^2}\right)^{1/n} = 1$$

$$\lim_{n\to\infty} \left(\frac{1}{n^2}\right)^{1/n} = 1$$

$$\sum_{n=1}^{\infty} \left(\frac{n}{1+n}\right)^{n^2} \lim_{n \to \infty} \left(\frac{n}{1+n}\right)^n = \lim_{n \to \infty} \frac{1}{\left(1+\frac{1}{n}\right)^n}$$

$$= \frac{1}{e} < 1$$

$$\Rightarrow \text{ Serien converges.}$$

Questions?