Derivatives Markets: Advanced Modeling and Strategies

Cheat sheet for MITx 15.435x Derivatives Markets: Advanced Modeling and Strategies.

Week 1: Forward Contracts

Forward contract basics

Forward Contract

- A forward contract is an agreement between two counterparties to trade a prespecified amount of goods or securities at a pre-specified future date, T, for a pre-specified price, F₀.
- The **Profit/Loss (P/L)** at the contract maturity T for each counterparty is: $P/L_{long} = N(S_T F_0)$, $P/L_{short} = N(F_0 S_T)$
- Price of a zero coupong bond with face value Z: $P = e^{-rT}Z$ $f(0, T_1, T_2)$ denotes the **forward rate** between time T_1 and T_2 , as of time 0: $f(0, T_1, T_2) = \frac{T_2rT_2 T_1rT_1}{T_2 T_1}$
- Long forward positions are equivalent to borrowing and going long in the underlying asset
- Forward short positions are equivalent to lending and going short the underlying

Pricing formulas

Pricing formulas

- An arbitrage opportunity is a trading strategy that either (1) Yields a positive
 profit today, and zero cash flows in the future; or (2) Costs nothing today and
 yields a positive profit in the future
- The Law of One Price: Securities with identical payoffs must have the same price
- Stock with known dividend D at time t < T: $F_0 = (P_{S,0} De^{-rt})e^{rT}$ Stock with known dividend yield q: $F_0 = P_{S,0}e^{(r-q)T}$
- Bond with coupon C at time t < T: $F_0 = (P_{B,0} Ce^{-rt})e^{rT}$
- Currencies. $r_{\$}$ ($r_{\$}$) the USD (EUR) risk-free rate. S_t is the exchange rate (USD per EUR) at time t: $F_0 = S_0 e^{(r_{\$} r_{\$})T}$

Forward prices for commodities

- Forward price with lump-sum storage cost $U: F_{0,T} = (S_0 + PV(U))e^{rT}$
- Forward price with proportional storage cost u: $F_{0,T} = S_0 e^{(r+u)T}$
- Forward price with convenience yield y: $F_{0,T} = S_0 e^{(r-y)T}$
- Forward price with proportional storage cost and convenience yield: $F_{0,T} = S_0 e^{(r+u-y)T}$
- Contango is a pattern of forward prices that increases with contract maturity
- Backwardation is a pattern of forward prices over time that decreases with contract maturity

Key concepts for hedging and speculating

Valuing a forward contract over time

- Suppose that K = F₀ the original delivery price, initial value of contract f₀ = 0.
- Value of a **long** forward contract at time t: $f_{long,t,T} = (F_t K)e^{-r(T-t)}$
- Value of a **short** forward contract at time $t: f_{short,t,T} = (K F_t)e^{-r(T-t)}$
- Basis is the difference between the spot and forward price of a security or commodity.

- Cross-hedging involves using a contract type to hedge which differs from the security or commodity being hedged.
- The **hedge ratio** is the relative number of forward contracts to units of the asset being hedged that maximizes the effectiveness of the hedge: $N_S \mathbb{E}[\mathrm{d}S] = N_F \mathbb{E}[\mathrm{d}F]$ then: $\frac{N_S}{N_F} = \frac{\mathbb{E}[\mathrm{d}F]}{\mathbb{E}[\mathrm{d}S]}$. If long in spot then short in forwards, and vice versa.

Week 4: Options Strategies and Pricing Basics

Option Basics

- Put call parity: $Put Call = e^{-rT}(K F_{0,T})$
- For a non-dividend paying stock: $Put = Call + e^{-rT}K S_0$
- Important: This formula only holds for European options!

Option Strategies

- Protective put: Long put, Long stock. Payoff at $T: S_T + \max(K S_T, 0)$
- Covered call: Long stock, Short call. Payoff at $T: S_T \max(S_T K, 0)$
- Bear spread: Short OTM put (strike K_1) and long ITM put ($K_2 > K_1$)
- Bull spreads: Long ITM call (strike K_1) and short OTM call ($K_2 > K_1$)
- Buttefly spread: Long 1 call with strike K₀, short 2 calls with strike K₁ and long 1 call with strike K₂, with K₀ < K₁ < K₂ and K₁ = \frac{K_0 + K_2}{2}
- Straddle: Bet on high volatility. Long a call and a put with the same strike.
- Strangle: Bet on high movements. Long put with K_0 and call with $K_1 > K_0$

Binomial trees

- One step: $S_0 = \frac{E[S_1]}{1+R} = \frac{qS_{1,u} + (1-q)S_{1,d}}{1+R}$
- Expected (gross) Return: $\mathbb{E}\left[\frac{S_1}{S_0}\right] = q\frac{S_{1,u}}{S_0} + (1-q)\frac{S_{1,d}}{S_0}$
- Variance

$$\mathbb{E}\left[\left(\frac{S_1}{S_0} - \mathbb{E}\left[\frac{S_1}{S_0}\right]\right)^2\right] = q\left(\frac{S_{1,u}}{S_0} - \mathbb{E}\left[\frac{S_1}{S_0}\right]\right)^2 + (1-q)\left(\frac{S_{1,d}}{S_0} - \mathbb{E}\left[\frac{S_1}{S_0}\right]\right)^2$$

• replicating portfolio:

$$\Delta \cdot S_{1,u} + B_0 e^r = V_{1,u} \Delta \cdot S_{1,d} + B_0 e^r = V_{1,d}$$

Solution:
$$\Delta = \frac{V_{1,u} - V_{1,d}}{S_{1,u} - S_{1,d}}$$
, then we solve for $B_0 = e^{-r}(V_{1,u} - \Delta \cdot S_{1,u})$ no arbitrage $\implies V_0 = \Delta \cdot S_0 + B_0$

• risk neutral pricing: we choose q^* so that all risky assets earn the risk-free

rate:
$$q^*S_{1,u}e-rT+(1-q*)S_{1,d}e^{-rT}=S_0 \implies q^*=\frac{S_0e^{rT}-S_{1,d}}{S_{1,u}-S_{1,d}}$$

 $S_0=\mathbb{E}^*[e^{-rT}S_1]$. In general: **Price of derivative** $=\mathbb{E}^*[e^{-rT}$ **payoff**]

- American options. Compare the value of immediate exercise with the value of the option. Exercise if an only if (for put): K − S > Discounted value of future distribution of payoffs if wait.
- multi-step trees: (i,j) time: $i=0,1,2,\ldots,n$; node: $j=1,2,\ldots n$ with European derivative: $V_{i,j}^E=e^{-rh}\mathbb{E}^*[V_{i+1}^E|(i,j)]$, where $h=\frac{T}{n}$ with American derivative: $V_{i,j}^A=\max\left(g_{i,j},e^{-rh}\mathbb{E}^*[V_{i+1}^A|(i,j)]\right)$, where $h=\frac{T}{n}$ where $g_{i,j}$ is the payoff from the American derivative

Recommended Resources

- MITx 15.435x Derivatives Markets: Advanced Modeling and Strategies Lecture Slides
- John Hull's, Options Futures and Other Derivatives, 10th edition
- Bruce Tuckman and Angel Serrat, Fixed Income Securities; Tools for Today's Markets, 3rd Edition (BTAS)
- LaTeX File (github.com/j053g/cheatsheets/15.435x)

Last Updated October 29, 2021