Note de l'auteur, c'est un résumé des notes de cours de théorie des anneaux, pas tous les théorèmes, définitions, et autres y sont écrites, seules celles que je veux retenir et qui ne sont pas évidentes.

Chapitre 1

Proposition 1. Soit A un anneau. Alors l'ensemble $A^{n \times n}$ des matrices de tailles $n \times n$ sur A est un anneau.

Proposition 2. $\mathbb{Z}/n\mathbb{Z}$ est un anneau.

Définition 1. Un sous-anneau B de l'anneau A est un sous-groupe additif de A tel que :

- 1. $\forall a, b \in B, ab \in B$
- 2. $1 \in B$

Corollaire 1. L'intersection de tous les sous-anneaux de l'anneau A est l'ensemble $\{n \cdot 1 | n \in \mathbb{Z}\}$, avec la notation usuelles des groupes additifs.

Définition 2. Si A est un anneau, on dit qu'un élément a de A est inversible s'il existe b de A tel que ab = ba = 1. Un tel élément b est alors unique et est appelé inverse de a.

Définition 3. L'ensembles des éléments inversibles d'un anneau A est noté U(A).

Proposition 3. U(A) est un groupe sous la multiplication.

Définition 4. Dans un anneau A un diviseur de 0 est un élément de a de A, tel que $a \neq 0$ et :

- 1. ab = 0 (a est un diviseur de 0 à gauche).
- 2. ba = 0 (a est un diviseur de 0 à droite).

Définition 5. Un anneau est dit intègre s'il n'a aucun diviseur de 0.

Proposition 4. Si $a, b, c \in A$, un anneau intègre. Alors $ab = 0 \Rightarrow a = 0$ ou b = 0. De plus, si $a \neq 0$ et $ab = ac \Rightarrow b = c$ et $ba = ca \Rightarrow b = c$.

Proposition 5. Soient A,B deux anneaux. L'ensemble $A \times B$ muni de l'addition

$$(a,b) + (a',b') = (a+a',b+b')$$

et de la multiplication

$$(a,b)\cdot(a',b')=(aa',bb')$$

est un anneau, avec $0_{A\times B}=(0,0)$ et l'élément neutre $1_{A\times B}=(1,1)$. Il est commutatif si et seulement si A et B le sont aussi. L'anneau $A\times B$ n'est pas intègre.

Définition 6. On appelle $A \times B$ l'aneau produit de A et B.

Proposition 6. $U(A \times B) = U(A) \times U(B)$

Définition 7. Un homomorphisme d'anneau $f: A \longrightarrow B$ est une fonction tel que :

- 1. f est un homomorphisme de groupes additifs.
- 2. $\forall a, b \in A, f(aa') = f(a)f(a').$
- 3. $f(1_A) = 1_B$.

Définition 8. Un idéal dans un anneau A est un sous-ensemble I tel que :

- 1. I est un sous-groupe additif.
- 2. $\forall a \in A, \forall x \in I, ax, xa \in I$.

Proposition 7. Le noyau d'un homomorphisme est un idéal.

Proposition 8. Soit I un idéal d'un anneau A, tel que $I \neq A$. On construit le groupe additif A/I, quotient des groupes additifs A et I. Alors A/I est un anneau, tel que l'homomorphisme canonique de groupe $A \longrightarrow A/I$ est aussi un homomorphisme d'anneaux.

Définition 9. On appelle A/I l'anneau quotient de A par l'idéal I.

Théorème 1. Il est à la fin de la page 7(chapitre 1), il n'est pas copiable à cause d'une figure. À lire.

Corollaire 2. Si $f: A \longrightarrow B$ est un isomorphisme d'anneau, on a toujours l'isomorphisme d'anneau $A/\ker(f) \simeq f(a)$

Proposition 9. L'image et l'image réciproque d'un sous-anneau est un sous-anneau. L'image réciproque d'un idéal est un idéal. Si l'homomorphisme est surjectif, alors l'image d'un idéal est un idéal.

Proposition 10. $\mathbb{Z}/m\mathbb{Z}$ est intègre si et seulement si m est premier.

Proposition 11. Les éléments inversibles de $\mathbb{Z}/m\mathbb{Z}$ sont les n avec $n \perp m$.