Table 1 Timing results for benchmark circuit instances with n=3 qubits. Obtained with the following parameter setting: $\lambda=0.25$, NumReads 150, Annealing Time 150.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
3_17_13	3	0.14	0.05	0.07	0.02
3_17_14	3	0.13	0.05	0.06	0.02
3_17_15	2	0.1	0.05	0.03	0.01
$ex-1_{-}166$	2	0.09	0.05	0.02	0.01
fredkin_5	1	0.09	0.05	0.03	0.01
fredkin_6	3	0.16	0.06	0.08	0.02
$fredkin_7$	1	0.09	0.06	0.02	0.02
$ham3_102$	1	0.1	0.05	0.03	0.01
$ham3_103$	2	0.09	0.05	0.03	0.01
$miller_11$	4	0.15	0.05	0.07	0.02
$miller_12$	2	0.1	0.05	0.04	0.02
$peres_10$	1	0.06	0.05	0.01	0.01
peres_8	1	0.06	0.05	0.0	0.01
peres_9	1	0.07	0.05	0.02	0.01
QFT_QFT3	1	0.06	0.05	0.0	0.0
$toffoli_1$	1	0.13	0.05	0.06	0.01
toffoli_2	1	0.11	0.05	0.05	0.01

Table 2 Timing results for benchmark circuit instances with n=4 qubits. Obtained with the following parameter setting: $\lambda=0.25$, NumReads 150, Annealing Time 150.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
decod24-v0_38	4	0.56	0.06	0.43	0.07
$decod24-v0_39$	5	0.47	0.05	0.38	0.04
$decod24-v0_40$	3	0.29	0.06	0.2	0.03
$decod24-v1_42$	2	0.28	0.05	0.2	0.03
$decod24-v2_43$	5	0.5	0.06	0.4	0.05
$decod24-v2_44$	3	0.24	0.05	0.15	0.04
$decod24-v3_46$	3	0.34	0.06	0.24	0.04
QFT_QFT4	3	0.25	0.06	0.17	0.02
$rd32-v0_{-}66$	3	0.46	0.06	0.37	0.04
$rd32-v0_67$	2	0.25	0.05	0.17	0.03
$rd32-v1_{-}68$	3	0.45	0.05	0.36	0.05
$rd32-v1_{-}69$	2	0.25	0.05	0.17	0.03
$toffoli_double_3$	1	0.26	0.05	0.19	0.02
toffoli_double_4	2	0.34	0.05	0.25	0.04

Table 3 Timing results for benchmark circuit instances with n=4 qubits. Obtained with the following parameter setting: $\lambda=0.35$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4_49_17	12	1.45	0.73	0.58	0.14
$aj-e11_{-}168$	13	0.93	0.79	0.05	0.1
$decod24-v1_41$	7	1.22	0.72	0.43	0.08
$decod24-v3_45$	15	1.38	0.78	0.5	0.1
$hwb4_52$	8	2.38	0.71	1.55	0.11

Table 4 Timing results for benchmark circuit instances with n=4 qubits. Obtained with the following parameter setting: $\lambda=0.35$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4_49_16	34	16.25	0.79	15.25	0.22
$aj-e11_{-}165$	26	5.4	0.72	4.51	0.17
$mod10_{-}171$	33	4.51	0.75	3.6	0.16
$mod10_{-}176$	19	3.42	0.76	2.5	0.16

Table 5 Timing results for benchmark circuit instances with n=4 qubits. Obtained with the following parameter setting: $\lambda = 0.50$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
hwb4_49	37	18.71	0.81	17.68	0.22
$hwb4_{-}50$	35	12.29	0.83	11.24	0.23
$hwb4_51$	64	14.22	0.82	13.15	0.25
mini-alu_ 167	43	15.12	0.82	14.1	0.21

Table 6 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda = 0.19$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4mod5-v0_19	3	15.97	0.8	15.02	0.15
$alu-v0_27$	5	17.79	0.7	16.94	0.15
alu-v129	4	11.02	0.76	10.14	0.13
$alu-v2_33$	4	18.44	0.78	17.5	0.16
$mod5mils_65$	4	32.39	0.75	31.51	0.12
QFTQFT5	8	36.48	0.68	35.68	0.12

Table 7 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda=0.19$, NumReads 250, Annealing Time 250.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4gt11-v1_85	1	29.79	0.11	29.51	0.17
$4gt11_{-}83$	3	33.38	0.11	33.13	0.14
$4gt11_{-}84$	1	17.94	0.11	17.77	0.06
$4 \text{mod} 5\text{-v} 0_20$	2	27.81	0.11	27.61	0.08
$4 \mod 5 - v1_2 $	1	33.52	0.1	33.32	0.11
$4 \mod 5 - v1_2 4$	3	15.88	0.12	15.63	0.13
$4 \mod 5 - v1_2 $	1	14.6	0.12	14.38	0.11
$mod5d1_63$	2	17.09	0.1	16.9	0.09
$mod5mils_71$	2	16.8	0.11	16.55	0.14

Table 8 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda=0.25$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4gt11_82	8	39.97	0.75	39.07	0.15
$4gt13-v1_{-}93$	7	8.39	0.77	7.48	0.14
$4gt13_{-}92$	8	32.34	0.74	31.43	0.17
$4 \mod 5 - v_0_2 1$	9	24.32	0.74	23.41	0.17
alu-v128	4	21.15	0.74	20.24	0.16
$alu-v3_34$	5	28.49	0.74	27.6	0.16
$alu-v3_35$	6	14.79	0.78	13.87	0.14
$alu-v4_37$	6	13.88	0.73	13.0	0.15
$mod5d2_64$	13	31.25	0.78	30.25	0.22
$mod5d2_70$	5	14.44	0.73	13.55	0.16
$rd32_272$	8	29.47	0.8	28.5	0.18

Table 9 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda=0.25$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4gt13_91	32	70.32	0.81	69.27	0.24
$4\mathrm{gt}5_75$	11	24.1	0.74	23.18	0.18
$4\mathrm{gt}5$ _76	19	66.23	0.84	65.17	0.21
$4 \mathrm{gt} 5_77$	21	43.33	0.79	42.28	0.26
$4 \text{mod} 5\text{-v} 0_18$	13	39.15	0.82	38.12	0.2
$4 \text{mod} 5\text{-v} 1_23$	16	64.44	0.8	63.45	0.19
alu-v026	12	41.69	0.74	40.77	0.17
$alu-v4_36$	24	73.12	0.83	72.02	0.27
one-two-three-v $2_{-}100$	15	64.37	0.8	63.33	0.24
one-two-three-v3 $_{-}101$	11	46.62	0.78	45.69	0.16
$rd32_{-}271$	24	57.2	0.78	56.2	0.22

Table 10 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda=0.35$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	\mathbf{TimeQ}	QPU Time	Embedding T	QUBO Time
4gt10-v1_81	50	108.69	0.82	107.54	0.34
one-two-three-v1_99	45	184.65	0.84	183.19	0.62

Table 11 Timing results for benchmark circuit instances with n=5 qubits. Obtained with the following parameter setting: $\lambda=0.70$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
4gt12-v0_88	87	374.62	0.83	373.38	0.4
$4gt12-v1_89$	116	557.64	0.82	556.09	0.74
$4gt13_{-}90$	61	258.96	0.82	257.54	0.6
$4gt4-v0_{-}79$	-2	611.68	0.84	608.9	1.94
$4gt4-v0_{-}80$	84	180.65	0.82	179.44	0.39
$4 \mod 7 - v_0 - 94$	86	176.58	0.75	175.49	0.33
$4 \mod 7 - v_0_95$	84	180.88	0.82	179.58	0.48
$4 \mod 7 - v1_{-}96$	86	264.16	0.87	262.97	0.33
$alu-v2_{-}32$	94	142.56	0.83	141.36	0.38
one-two-three-v $0_{-}98$	81	206.92	0.82	205.7	0.4
sf_275	-2	381.49	0.8	380.25	0.45

Table 12 Timing results for benchmark circuit instances with n=6 qubits. Obtained with the following parameter setting: $\lambda=0.19$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	TimeQ	QPU Time	Embedding T	QUBO Time
ex1_226	4	72.41	0.8	71.44	0.17
$graycode6_47$	0	90.16	0.72	89.31	0.13
graycode6_48	2	92.85	0.74	92.0	0.12
$xor5_254$	8	120.46	0.7	119.43	0.32

Table 13 Timing results for benchmark circuit instances with n=6 qubits. Obtained with the following parameter setting: $\lambda=0.35$, NumReads 1250, Annealing Time 450.

Benchmark	# SWAPSQ	\mathbf{TimeQ}	QPU Time	Embedding T	QUBO Time
$4 \mod 5$ - $ \mod 287$	-2	898.63	0.86	896.84	0.94
$alu-bdd_288$	-2	999.87	0.88	997.48	1.51
$decod24-bdd_294$	-2	316.42	0.84	314.71	0.87
$decod24$ -enable_124	64	150.25	0.84	148.94	0.47
$decod24$ -enable_125	71	304.3	0.82	302.85	0.63
QFTQFT6	65	101.91	0.83	100.52	0.57
QFT_QFT7	-2	327.79	0.86	325.81	1.12