ESTRATÉGIA DE REGIÕES DE CONFIANÇA.

REFS:

- 1) RIBEIRO, KARAZ. OTINIZAÇÃO CONTINUA. CENGAGE. 2013.
- 2) MARTINEZ, SANTOS. MÉTOPOS COMPUTACIONAIS DE OTIMIZAÇÃO.

ESTRATÉGIA DE BUSCA LINEAR

- (i) CALCULAR DIRECTE d
- (ii) BUSCA LINEAR: PROCURA

 XK+1 AD LONGO DE d.

ESTRATEGIA DE REGIOES DE CONFIANÇA

- (i) BUSCO UM PONTO QUE

 DIMINUA UM MODELO

 SIMPLIFICADO DO PROBLEMA

 ORIGINAL, RESTRITO A

 UMA VIZINHANÇA DE XX.
- (ii) SE O PONTO FOI REDEITADO, REDUZO A VIZINHANCA.

A ESTRATEGIA PE REGIÕES PE COLFIANÇA PERMITE TENTAR MINIMIZAK & EN TODAS AS DIRECTES A PARTIR DE XX.

POR OUTRO LADO, O CÁLCULO PE XXXII É MAIS

CUSTOSO QUE A BUSCA LINTAR. A IDEIA É TROCAR

O PROBLEMA ORIGINAL POR UM MODECO SIMPLIFICATO.

PROBLEMA IRRESTRITO:

min f(x)s.o. $x \in \mathbb{R}^{n}$

MODELO SIMPLIFICADO: SUPONHA J DE CLASSE (, OU SEJA, J TEM 2º DERIVADAS PONTINVAS. APROXIMAÇÃO DE TAYLOR DE 2^{α} ORDEM (40 REPOR DE χ^{κ}): $f(\chi) \approx f(\chi^{\kappa}) + \nabla f(\chi^{\kappa})^{\dagger} (\chi - \chi^{\kappa}) + \frac{1}{2} (\chi - \chi^{\kappa})^{\dagger} \nabla^{2} f(\chi^{\kappa}) (\chi - \chi^{\kappa})$ $(\chi \approx \chi^{\kappa}).$

OLPE

 $m(d) = f(x^*) + \nabla f(x^*)^t d + \frac{1}{2} d^t B_* d$ $d = x - x^*.$

CASO & REDUZA, DAMOS O PASSO "COMPLETO" NA
DIRECTO d' CALCULADA PELO MOPELO:

 $\chi^{K+1} = \chi^{K} + \chi^{K}$

- O MOPELO QUAPRÁTICO $\frac{50}{6}$ É CONFINÍVEL PRÓXIMO À χ^{K} .

 OU SERA, QUANRO $\|\chi \chi^{K}\| \leq \Delta_{K}$ (RAIO RE CONTINCA).
- * NO MODECO QUADRATICO, PODEMOS TROCAR A HESSIALA $\nabla^2 f(x^*)$ POR UMA MATRIZ B_K SEMI-DEFINIDA POSITIVA BARATA DE CALCULAR.
 - * $\nabla^2 f(x^*)$ PODE NÃO SER SEMI-DET. POSIT \Rightarrow MODELO QUADRÁTICO É NÃO-CONVEXO.
 - * POPE SER CARA DE CALCULAR.
 - * BK (QUASE-NENTON: BFGS, DFD, ...)

OLPE

 $m(d) = f(x^*) + \nabla f(x^*)^t d + \frac{1}{2} d^t B_* d$ $d = x - x^*.$

CASO & REDUZA, DAMOS O PASSO "COMPLETO" NA
DIRECTO d' CALCULADA PELO MOPELO:

 $\chi^{KH1} = \chi^{K} + \chi^{K}$

ared =
$$f(x^k) - f(x^k + d^k)$$

$$pred = m(0) - m(d^*)$$

MEDIDA DE ACEITAÇÃO:

$$\rho_{\kappa} = \frac{\text{and}}{\text{prod}}$$

SITUAÇÃO BOA: QUANDO and FOR CRANDE EM RELAÇÃO À pred,

NÍVEL DE A
min

ESQUENA PE REGIÕES DE COLFIANÇA

- . DADOS $\chi^{\circ} \in \mathbb{R}^{m}$, $\Delta_{\circ} > 0$, $\eta \in [0, \frac{1}{4}]$, $\kappa = 0$.
- · REPITA ENQUALTO $\nabla f(x^*) \neq 0$

RESOLVA APROXIMAPAMENTE O MODELO UNDRÁTICO
CENTRADO EM X":

min m(d)

MIN $m(\alpha)$ 5.a. $\|d\| \leq \Delta_K$ OBTEMOS ASSIM UMA SOLUÇÃO d^K .

PALCULE p_K .

SE $p_K > \eta$ $\chi^{K+1} = \chi^K + d^K$ (REDUÇÃO FOI BOA \Rightarrow ALEITO O PONTO)

CONO RESOLVER O MODECO QUADRATICO min m(d)s.a. $\|d\| \leq \Delta_{\kappa}$.

- 1°) APLICAR UM MÉTODO DE DESCIDA (POR EX. COM DIREÇÕES - Vm).
- 2°) APLICAR GRADIENTES CONJUGADOS PARA RESOLVER min m(d)s.a. $d \in \mathbb{R}^{n}$.

SE A SOLUÇÃO d' SATISFAZER IIdII \ A, ACEITE.

CASO CONTRARIO, USE A ESTRATÉGIA 1.

3°) MÉTODO DOG-LEG: CONSISTE NA COMBINAÇÃO DAS DIREL

COES - VM COM A DIRECTO PE NEUTON.

PETALHES: VEJA A REF. 1.