DP 0.3 Overview

Pedro Bernardinelli, Jake Kurlander, Joachim Moeyens, Tom Wagg, Ari Heinze, Mario Juric (UW), Siegfried Eggl, Sam Cornwall (UIUC), Matt Holman (CfA) for the Rubin Construction and Commissioning Team

What is DP0.3?

- Data set containing simulated catalogs from the first year of operations as well as the full 10yr survey (roughly a billion total measurements)
 - Data products mimic what will be delivered by the real survey (SSObjects, diaSource, MPCORB tables) and uses a prototype of the daily processing pipeline
 - Note: catalogs only no simulated images!
- Simulations use v3.0 cadence
- Astrometric and photometric errors match expectations as a function of magnitude
- Simulated linking matches design goals (95% completeness under many conditions)
- Same database system as will be used during operations

Schematics of the processing for DP0.3

- Hybrid catalog
 - o Inputs: S3M, MPCORB, (+NEOs)
 - Outputs: Hybrid Catalog Objects
- ObjectsInField
 - o Inputs: V3.0 Baseline cadence, orbital parameters (source populations)
 - Outputs: ephemerides
- SurveySimPP
 - Inputs: ephemeris, orbital parameters, colors
 - Outputs: Detection catalog
- Daily data products pipeline (prototype)
 - Simulated linking
 - Orbit fits
 - Absolute magnitude fits per band
- Note: for more details on ObjectsInField and surveySimPP: talk to Steph Merritt and Grigori Fedorets

Source populations

- Granvik NEO model (<u>Granvik et al</u>
 2018 Icarus, Vol. 312, p 181-207)
- Pan-STARRS Synthetic Solar System model (S3M, <u>Grav et al 2011 - PASP,</u> <u>Vol 123, 902, 423</u>)
- Catalog has been "hybridized" to account for objects that are already in the MPC (by T. Wagg et al)
- Population of interstellar objects (by A. Heinze)
- Some oddities (TBD!)

Hybrid catalog (by T. Wagg)

- The Minor Planet Center has over 1 million objects already, and a good fraction of these will be recovered by LSST
- To avoid overestimating discovery rates in the bright/near complete regime, objects from S3M are replaced by their most similar real counterparts in the source population

Interstellar objects (A. Heinze)

- Objects are simulated according to a realistic distribution of Galactic velocities from local stars and realistic impact parameters
 - Times of perihelion passage are chosen so that objects become maximally close to the Sun during survey operations
- Orbits are integrated using n-body simulations
- Simple power law absolute magnitude distribution
- Population probably overestimates ISO rates so use these only for testing pipelines!

Simulated linking (by J. Moeyens)

difi: "Did I Find It?". Python code that was designed to answer two questions:

- What should an idealized linking algorithm find in these labelled observations?
- Given these linkages found, how did my linking algorithm perform?

Tracklet-metric:

- 2 observations on at least 3 unique nights within a 15 day window
- Tracklets must be astrometrically separated by more than 1 arcsecond
- Consecutive detections cannot be separated by more than 90 minutes
- Each discovery opportunity (each set of three tracklets) has a 95% chance of being successfully linked

Daily data processing pipeline

- Will be run daily by the survey and deliver survey products for all linked objects:
 - Orbit fits (currently using openorb)
 - Absolute magnitudes (HG12 system) per band
 - Matched to MPCORB catalog (that is, will have MPC identifiers for all objects)
- Left: example of a randomly chosen object

First look at the data preview

- There is a preliminary version of the catalog available in the Rubin Science Platforms!
 - This is not meant for long term usage (like DP0.3 will be) and will be replaced by DP0.3 do not rely on this data yet!
 - Timeline for actual DP0.3: "August (+- a month)
- This is not a public release please do not share it with people outside the sprint.
 - Avoid unofficially announcing it online (eg posting about it on Twitter or whatever platform exists nowadays)
- Link for RSP: https://data.lsst.cloud/

Portal

Notebooks

APIs

Documentation

Support

Community

Log in

Weekly 21 is now the new recommended (default) image for notebooks

Show more

Rubin Science Platform

Portal

Discover data in the browser

Notebooks

Process and analyze LSST data with Jupyter notebooks in the cloud

APIs

Learn how to programatically access data with Virtual Observatory interfaces

Consent to Attribute Release Science Platform requests access to the following information. If you do not approve this request, do not proceed. · Your CILogon user identifier · Your email address · Your username and affiliation from your identity provider Select an Identity Provider **Select your institution here** ORCID -This will take you to your institution Log On specific log on page By selecting "Log On", you agree to the privacy policy.

Do this twice - quirk in the process! Note: this requires external approval

Portal

Notebooks

APIs

Documentation

Support

Community

phbern ~

Weekly 21 is now the new recommended (default) image for notebooks

Show more

Rubin Science Platform

Portal

Discover data in the browser

Notebooks

Process and analyze LSST data with Jupyter notebooks in the cloud

APIs

Learn how to programatically access data with Virtual Observatory interfaces

Let's look at a very simple notebook!!!! Files on slack, both in Jupyter Notebook and pdf form Note: must be run on RSP because of table queries

Discussion

- What sorts of tutorials do you think will be helpful for DP0.3?
- Any other (small!!!) things we could do to improve the simulated data?
- Anything else you'd like to talk about related to DP0.3?