

B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2000 (07.12.2000)

PCT

(10) International Publication Number
WO 00/73328 A2

- (51) International Patent Classification⁷: C07K 14/00 (74) Agent: BAVERSTOCK, Michael, George, Douglas;
Boul Wade Tenant, Verulam Gardens, 70 Gray's Innroad,
London WC1X 8BT (GB).
- (21) International Application Number: PCT/EP00/05108 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (22) International Filing Date: 2 June 2000 (02.06.2000) (84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
- (25) Filing Language: English (26) Publication Language: English
- (30) Priority Data:
9912755.7 1 June 1999 (01.06.1999) GB
- (71) Applicant (*for all designated States except US*): DEV-
GEN NV [BE/BE]; Technologiepark 9, B-9052 Zwij-
naarde (BE).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): VAN CRIEKINGE,
Wim [BE/BE]; Devgen NV, Technologiepark 9, B-9052
Zwijnaarde (BE). ROELENS, Ingele [BE/BE]; Dev-
gen NV, Technologiepark 9, B-9052 Zwijnaarde (BE).
BOGAERT, Thierry [BE/BE]; Devgen N.V., Technolo-
giepark 9, B-9052 Zwijnaarde (BE). VERWAERDE,
Phillipe [FR/BE]; Devgen NV, Technologiepark 9, B-9052
Zwijnaarde (BE).

Published:

- Without international search report and to be republished upon receipt of that report.

*For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.*

A2

WO 00/73328

(54) Title: UNC-5 CONSTRUCTS AND SCREENING METHODS

(57) Abstract: The invention provides novel splice variants of the human unc-5c cDNA and a novel human unc-5HS1 cDNA se-
quence. Also provided are assays based on protein-protein interactions between the UNC-5 protein and a variety of different inter-
acting proteins.

- 1 -

UNC-5 constructs and screening methods

The present invention is concerned with *unc-5*, a conserved animal gene family that encodes proteins implicated in directional cell behaviour. In particular, the invention is concerned with novel splice variants of the human *unc-5C* cDNA and a novel human *unc-5HS1* cDNA sequence. In addition, assays are provided based on protein-protein interactions between the *UNC-5* protein and a variety of different interacting proteins.

Unc-5 is a conserved animal gene family that encodes proteins implicated in directional cell behaviour. The *unc-5* gene of the nematode worm *Caenorhabditis elegans* (*C. elegans*) is known to be involved in dorsal migration in contrast to *unc-40* which is involved in ventral migrations (Hedgecock et al., *Neuron* Vol. 2; 61-85, 1990). Both the *unc-5* and *unc-40* genes are associated with the netrin *unc-6*, and all three genes play a dominant role in directional neuronal outgrowth .

The *C. elegans unc-5* gene encodes a 919 amino acid transmembrane receptor with two immunoglobulin and two thrombospondin type I extracellular domains (Leung-Hagesteijn et al., *Cell* Vol. 71:289-299, 1992). Ectopic overexpression of *unc-5* in the *C. elegans* touch neurons resulted in dorsal steering of these, instead of the normal ventral elongation of these neurons (Hamelin et al., *Nature*, 364:327-330, 1993).

Several vertebrate homologues of *unc-5* have been cloned including the *Rattus norvegicus unc5H1* and *unc5H2* (Leonardo et al., *Nature* Vol. 386:833-838, 1997), a *Mus musculus* homologue designated *rcm* (Ackerman et al, *Nature* Vol. 386:838-842, 1997) and a human homologue *unc5C* (Ackerman et al., *Genomics* Vol. 52:205-208, 1998).

- 2 -

The intracellular part of the UNC-5 proteins contains a ZO-1 domain. Such domains are known to be involved in tight junction biology. Furthermore UNC-5 proteins contain a death domain. So far this is the
5 only protein found in *C. elegans* that harbors such a death domain. Death domains are involved in the apoptotic process. In this process, caspases play an important role. The human UNC-40 homologue DCC, a protein also known involved in axonal outgrowth, is a
10 caspase-3 substrate (Mehen et al., Nature 395:801-804, 1998).

The present inventors have identified three previously unknown variant unc-5C cDNAs. These variant cDNAs correspond to alternatively spliced unc-15

15 transcripts.

Accordingly, in a first aspect provides a protein which comprises the amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6 or an amino acid sequence which differs from that shown in SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6 only in conservative amino acid changes.

Also provided by the invention are nucleic acid sequences which encode the proteins of the invention.

Also provided by the invention are a nucleic acid comprising the sequences of nucleotides set forth in SEQ ID NO: 1, a nucleic acid comprising the sequences of nucleotides set forth in SEQ ID NO: 3 and a nucleic acid comprising the sequences of nucleotides set forth in SEQ ID NO: 5.

30 The splice variants of human unc-5C were cloned by PCR technology. Two primers were developed to amplify the intracellular part of the unc-5C. Human Brain cDNA was used for this purpose. Three new splice variants of human unc-5C were characterized. A schematic representation of these splice variants is
35 given in Figure 5.

The first splice variant (designated unc-5Cb) has

- 3 -

a deletion of an intron in the UP region. The nucleotide sequence of a partial unc-5Cb cDNA is set forth in SEQ ID NO: 1 and the corresponding amino acid sequence is set forth in SEQ ID NO: 2. The splice of
5 this intron results in a UNC-5Cb protein which is considerably shorter than the previously known UNC-5C, as the coding frame is not maintained. This protein is truncated for the DD domain and for the major part of the UP domain.

10 The second splice variant (designated unc-5Cc) is deleted by an intron in the ZO-1 region, also resulting in a shorter protein than the previously known UNC-5C, as the coding frame is not maintained. The nucleotide sequence of a partial UNC-5Cc cDNA is
15 set forth in SEQ ID NO: 3 and the corresponding amino acid sequence is shown in SEQ ID NO: 4. The resulting protein (UNC-5Cc) is truncated for the DD domain, the UP domain and a part of the ZO-1 domain.

20 The third splice variant (unc-5C8) is deleted by a small intron in the ZO-1 domain, but the coding frame is maintained. This results in a slightly smaller protein (UNC-5C8), wherein only the amino acid sequence coded by the spliced intron is truncated. The nucleotide sequence of a partial UNC-5C8 cDNA is
25 set forth in SEQ ID NO: 5 and the corresponding amino acid sequence is shown in SEQ ID NO: 6.

The presence of various splice variants of unc-5C in the human brain indicated that the activity of UNC-5C is tightly regulated.

30 The inventors have also identified a human unc-5 cDNA which shares homology with the *Rattus norvegicus* unc-5H1 cDNA.

35 Accordingly, in a further aspect the invention provides a nucleic acid molecule comprising the sequence of nucleotides set forth in SEQ ID NO: 7.

Whilst performing yeast two hybrid experiments to identify proteins which interact with the human UNC-5C

- 4 -

protein the inventors identified a number of heretofore unknown human cDNAs which encode proteins which interact with human UNC-5C.

Accordingly, the invention further provides
5 a nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 56 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 57, a nucleic acid comprising the sequence of nucleotides set forth in
10 SEQ ID NO: 54 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 55, a nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 61 and a sequence of nucleotides complementary to the
15 sequence of nucleotides set forth in SEQ ID NO: 62 and a nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 63 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 64.

20 The nucleic acid molecules according to the invention may, advantageously, be included in a suitable expression vector to express the proteins encoded therefrom in a suitable host. Incorporation of cloned DNA into a suitable expression vector for
25 subsequent transformation of said cell and subsequent selection of the transformed cells is well known to those skilled in the art as provided in Sambrook et al. (1989), molecular cloning, a laboratory manual, Cold Spring Harbour Laboratory Press.

30 An expression vector according to the invention includes a vector having a nucleic acid according to the invention operably linked to regulatory sequences, such as promoter regions, that are capable of effecting expression of said DNA fragments. The term
35 "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.

- 5 -

Such vectors may be transformed into a suitable host cell to provide for expression of a protein according to the invention. Thus, in a further aspect, the invention provides a process for preparing proteins
5 according to the invention which comprises cultivating a host cell, transformed or transfected with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the protein, and recovering the
10 expressed protein.

The vectors may be, for example, plasmid, virus or phage vectors provided with an origin of replication, and optionally a promoter for the expression of said nucleotide and optionally a regulator of the promoter. The vectors may contain
15 one or more selectable markers, such as, for example, an antibiotic resistance.

Regulatory elements required for expression include promoter sequences to bind RNA polymerase and
20 to direct an appropriate level of transcription initiation and also translation initiation sequences for ribosome binding. For example, a bacterial expression vector may include a promoter such as the lac promoter and for translation initiation the Shine-Dalgarno sequence and the start codon AUG. Similarly,
25 a eukaryotic expression vector may include a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. Such vectors may be obtained
30 commercially or be assembled from the sequences described by methods well known in the art.

Nucleic acid molecules according to the invention may be inserted into the vectors described in an
35 antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other antisense nucleic acids, including antisense peptide

- 6 -

nucleic acid (PNA), may be produced by synthetic means.

In accordance with the present invention, a defined nucleic acid includes not only the identical 5 nucleic acid but also any minor base variations including in particular, substitutions in cases which result in a synonymous codon (a different codon specifying the same amino acid residue) due to the degenerate code in conservative amino acid 10 substitutions. The term "nucleic acid sequence" also includes the complementary sequence to any single stranded sequence given regarding base variations.

The nucleic acid sequences according to the invention may be produced using recombinant or 15 synthetic techniques, such as for example using PCR which generally involves making a pair of primers, which may be from approximately 10 to 50 nucleotides to a region of the gene which is desired to be cloned, bringing the primers into contact with cDNA, or 20 genomic DNA from a human cell, performing a polymerase chain reaction under conditions which brings about amplification of the desired region, isolating the amplified region or fragment and recovering the amplified DNA. Generally, such techniques are well 25 known in the art, such as described in Sambrook *et al.* (Molecular Cloning: a Laboratory Manual, 1989).

The nucleic acids according to the invention may carry a revealing label. Suitable labels include 30 radioisotopes such as ^{32}P or ^{35}S , enzyme labels or other protein labels such as biotin or fluorescent markers. Such labels may be added to the nucleic acids or oligonucleotides of the invention and may be detected using known techniques *per se*.

The protein according to the invention includes 35 all possible amino acid variants encoded by the nucleic acid molecule according to the invention including a protein encoded by said molecule and

- 7 -

having conservative amino acid changes. Proteins or polypeptides according to the invention further include variants of such sequences, including naturally occurring allelic variants which are 5 substantially homologous to said proteins or polypeptides. In this context, substantial homology is regarded as a sequence which has at least 70%, preferably 80 or 90% and preferably 95% amino acid homology with the proteins or polypeptides encoded by 10 the nucleic acid molecules according to the invention. The protein according to the invention may be recombinant, synthetic or naturally occurring, but is preferably recombinant.

A further aspect of the invention provides a host 15 cell or organism, transformed or transfected with an expression vector according to the invention. The host cell or organism may advantageously be used in a method of producing protein, which comprises recovering any expressed protein from the host or 20 organism transformed or transfected with the expression vector.

According to a further aspect of the invention there is also provided a transgenic cell, tissue or organism comprising a transgene capable of expressing 25 a protein according to the invention. The term "transgene capable of expressing" as used herein encompasses any suitable nucleic acid sequence which leads to expression of proteins having the same function and/or activity. The transgene, may include, 30 for example, genomic nucleic acid isolated from human cells or synthetic nucleic acid, including DNA integrated into the genome or in an extrachromosomal state. Preferably, the transgene comprises the nucleic acid sequence encoding the proteins according 35 to the invention as described herein, or a functional fragment of said nucleic acid. A functional fragment of said nucleic acid should be taken to mean a

- 8 -

fragment of the gene comprising said nucleic acid coding for the proteins according to the invention or a functional equivalent, derivative or a non-functional derivative such as a dominant negative 5 mutant, or bioprecursor of said proteins.

The protein expressed by said transgenic cell, tissue or organism or a functional equivalent or bioprecursor of said protein also forms part of the present invention. Recombinant proteins may be 10 recovered and purified from host cell cultures by methods known in the art, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose, chromatography, hydrophobic interaction 15 chromatography, affinity chromatography, hydroxyapatite chromatography and lectin chromatography.

The protein of the present invention may be a naturally purified product, or a product of chemical 20 synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the 25 expressed protein may lack the initiating methionine residue as a result of post-translational cleavage. Proteins which have been modified in this way are also included within the scope of the invention.

In a still further aspect the invention provides 30 an antibody capable of specifically binding to a protein according to the invention. Preferably the antibody is capable of specifically binding to a protein comprising the sequence of amino acids set forth in SEQ ID NO: 2, SEQ ID NO: 4 or SEQ ID NO: 6. 35 An antibody according to the invention may be raised according to standard techniques well known to those skilled in the art by using the protein of the

- 9 -

invention or a fragment or single epitope thereof as the challenging antigen.

A further aspect of the invention comprises a nucleic acid capable of hybridising to the nucleic acids according to the invention, and preferably capable of hybridising to the sequence of nucleotides set forth in SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63 or SEQ ID NO: 64, under high stringency conditions. Conditions of stringency are well known to those skilled in the art.

Stringency of hybridisation as used herein refers to conditions under which polynucleic acids are stable. The stability of hybrids is reflected in the melting temperature (T_m) of the hybrids. T_m can be approximated by the formula:

$$81.5^{\circ}\text{C} + 16.6(\log_{10}[\text{Na}^+] + 0.41 \ (\% \text{G\&C}) - 600/l)$$

wherein l is the length of the hybrids in nucleotides. T_m decreases approximately by $1-1.5^{\circ}\text{C}$ with every 1% decrease in sequence homology.

The nucleic acid capable of hybridising to nucleic acid molecules according to the invention will generally be at least 70%, preferably at least 80 or 90% and more preferably at least 95% homologous to the nucleotide sequences according to the invention.

The present invention also advantageously provides oligonucleotides consisting essentially of at least 10 consecutive nucleotides of a nucleic acid according to the invention and preferably from 10 to 50 consecutive nucleotides of a nucleic acid according to the invention, in particular a nucleic acid comprising the sequence of nucleotides shown in SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63 or SEQ ID NO: 64. These oligonucleotides may, advantageously be

- 10 -

used as probes or primers to initiate replication, or the like. Oligonucleotides having a defined sequence may be produced according to techniques well known in the art, such as by recombinant or synthetic means.

5 They may also be used in diagnostic kits or the like for detecting the presence of a nucleic acid according to the invention. These tests generally comprise contacting the probe with the sample under hybridising conditions and detecting for the presence of any

10 duplex or triplex formation between the probe and any nucleic acid in the sample.

To address the functional role of UNC-5 within the cell the inventors used the yeast two hybrid method (Fields and Song, Nature 340:245, 1989), a method well known to molecular biologists, both to investigate the ability of UNC-5 to form dimers and to search for proteins that interact with the UNC-5 protein. Using the two hybrid approach the inventors were able to demonstrate that UNC-5 is capable of forming homodimers and identified a number of proteins which interact with the intracellular domains of the *C. elegans* unc-5 or human UNC-5 proteins. These newly identified protein-protein interactions involving UNC-5 may represent important events in cellular signalling, hence compounds which disrupt these interactions may potentially have useful pharmacological properties.

Accordingly, in a further aspect the invention provides a method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

35 providing a host cell containing a DNA construct comprising a reporter gene operatively linked to a promoter regulated by a transcription factor having a DNA binding domain and an

- 11 -

activating domain;
expressing in said host cell a first hybrid
DNA sequence encoding a first fusion protein
comprising an UNC-5 protein or a fragment thereof
5 fused in-frame to either the DNA binding domain
or the activating domain of the said
transcription factor;
expressing in said host cell a second hybrid
DNA sequence encoding a second fusion protein
10 comprising an interacting protein or a fragment
thereof fused in-frame to either the DNA binding
domain or the activating domain of the said
transcription factor, such that when the first
fusion protein comprises the activation domain of
15 the said transcription factor the second fusion
protein comprises the DNA binding domain of the
said transcription factor and when the first
fusion protein comprises the DNA binding domain
of the transcription factor the second fusion
protein comprises the activation domain;
20 contacting the host cell with a sample of
the compound under test; and
detecting any binding of the UNC-5 protein
or fragment thereof to the interacting protein or
25 fragment thereof by detecting the production of
any reporter gene product in the said host cell.

The method of the invention is based upon the
standard two hybrid assay well known in the art.
30 Preferably the host cell is a yeast cell. Protocols
for performing a yeast two hybrid assay are well known
in the art and are given in the Examples included
herein.
As would be readily apparent to persons skilled
35 in the art, the assay can be performed in either
orientation. That is to say, the assay can be
performed using an UNC-5 protein or a fragment thereof

- 12 -

fused to the DNA binding domain of the transcription factor and the interacting protein or fragment thereof fused to the activation domain of the transcription factor or alternatively the assay can be performed
5 using an UNC-5 protein or a fragment thereof fused to the activation domain of the transcription factor and the interacting protein or fragment thereof fused to the DNA binding domain of the transcription factor.

The above-described method based on the classical
10 yeast two hybrid system can be used to screen for compounds that inhibit or enhance the interaction between two proteins. In addition, other systems have been developed to screen for dissociation events, these methods are designated reverse hybrid methods.
15 These systems make use of yeast strains in which the expression of interacting hybrid proteins increases the expression of a counter-selectable marker that is toxic under particular conditions. Under these conditions, dissociation of an interaction provides a
20 selective advantage, thereby facilitating detection: A few growing yeast colonies in which hybrids fail to interact can be identified among millions of non-growing colonies expressing interacting proteins. Several reverse hybrid systems are known in the art.

25 The first reverse two-hybrid system utilizes a yeast strain, which is resistant to cycloheximide due to the presence of a mutant CYH2 gene. This strain also contains the wild-type CYH2 allele under the transcriptional control of the GAL1 promoter.
30 Expression of the wild-type GAL4 protein is sufficient to restore growth sensitivity to cycloheximide. Growth sensitivity towards cycloheximide is also restored by the co-expression of the avian c-Rel protein and its I_KB- α counterpart, p40, as GAL4 fusion proteins.
35 Restoration of growth sensitivity towards cycloheximide requires the association of c-REL and p40 at the GAL1 promoter and correlates with the

- 13 -

ability of the c-REL/p40 interaction to activate expression from the GAL1 promoter (Leanna and Hannink, 1996, NAR 24:3341-3347)

Another reverse hybrid system makes use of the
5 most widely used counter-selectable marker in yeast genetics, URA3, which encodes orotidine-5'-phosphate decarboxylase, an enzyme required for the biosynthesis of uracil. Yeast cells that contain wild-type URA3, either on a plasmid or integrated in the genome, grow
10 on media lacking uracil (URA3+ phenotype). However, the URA3-encoded decarboxylase can also catalyze the conversion of a non-toxic analogue, 5-fluoroornithic acid (FOA) into a toxic product, 5-fluoroacil (Boeke et al., 1984, Mol. Genet. 197:345-346). Hence
15 mutations that prevent an interaction can be selected from large libraries of randomly mutated alleles. Similarly, molecules that dissociate or prevent an interaction could be selected from large libraries of peptides or compounds (Vidal et al., 1996, PNAS
20 93:10315-10320; Vidal et al., 1996, PNAS 93:10321-10326).

A third reversed yeast two hybrid is based on the use of GAL80 gene as relay gene. GAL80 encodes a protein that binds to and masks the activation domain
25 of a transcriptional activator, such as GAL4. The reporter genes, which will provide the transcriptional read-out (i.e. HIS3 or LACZ), are dependent upon the functional GAL4 for expression. Only when the level of GAL80 masking protein is reduced by interfering with
30 the two-hybrid interaction will Gal4 function as a transcriptional activator, providing a positive transcriptional read-out for molecules that inhibit the two-hybrid protein-protein interaction. An important feature of this reverse two-hybrid system is
35 that the basal level and the half-time of the relay protein, GAL80, can be fine-tuned to provide maximum sensitivity (Powers and Erickson, 1996, WO95/26400).

- 14 -

The invention further provides a method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding 5 to the said UNC-5 protein, which method comprises:

providing a transgenic cell or organism expressing a first fusion protein comprising an UNC-5 protein or a fragment thereof fused in-frame to a first genetically encoded fluorophore 10 and a second fusion protein comprising an interacting protein or a fragment thereof fused in-frame to a second genetically encoded fluorophore, the first and second fluorophores being characterised in that the emission spectrum 15 of one of the fluorophores overlaps with the absorption spectrum of the other fluorophore;

measuring the amount of fluorescence emitted from the fluorophore having an emission spectrum which overlaps with the absorption spectrum of 20 the other fluorophore;

exposing the transgenic cell or organism to a compound under test; and

detecting any change in the amount of fluorescence emitted fluorescence emitted from 25 the fluorophore having an emission spectrum which overlaps with the absorption spectrum of the other fluorophore.

This method uses fluorescence energy transfer or 30 FRET, a technique well known in the art for the detection and quantitative measurement of a whole range of specific binding interactions in biological systems, to screen for compounds which modulate the binding of UNC-5 or a fragment thereof to an 35 interacting protein. The general principles of FRET are as follows: one component of a binding pair is labelled with a first fluorophore (hereinafter

- 15 -

referred to as the donor fluorophore) and a second component of the binding pair is labelled with a second fluorophore (hereinafter referred to as the acceptor fluorophore).

5 It is an essential feature of the FRET technique that the fluorescence emission spectrum of the donor fluorophore overlaps with the absorption spectrum of the acceptor fluorophore, such that when the two components of the binding pair bind to each other,
10 bringing the donor and acceptor fluorophores into close proximity, a proportion of the fluorescent signal emitted by the donor fluorophore (following irradiation with incident radiation of a wavelength absorbed by the donor fluorophore) will be absorbed by
15 the proximal acceptor fluorophore (a process known in the art as fluorescence energy transfer) with the result that a proportion of the fluorescent signal emitted by the donor fluorophore is quenched and, in some instances, that the acceptor fluorophore emits
20 fluorescence. Fluorescence energy transfer will only occur when the donor and acceptor fluorophores are brought into close proximity by the specific binding reaction. Thus, in the presence of a compound which disrupts the specific binding, the amount of quenching
25 is reduced resulting in an increase in the intensity of the fluorescent signal emitted by the donor fluorophore or a fall in the intensity of the signal emitted by the acceptor fluorophore).

The method of the invention is an *in vivo* FRET assay because it is performed in a transgenic host cell or organism. The transgenic cell can be any mammalian cell line, the transgenic organism is preferably *C. elegans*.

The method of the invention uses genetically encoded donor and acceptor fluorophores which can be expressed as fusion proteins fused in frame to the UNC-5 protein and the interacting protein. This can

- 16 -

be readily accomplished by transforming or transfecting the cell or organism with appropriate expression vectors arranged to express the fusion proteins.

5 In a preferred embodiment the genetically encoded donor and acceptor proteins are variant green fluorescent proteins which exhibit different fluorescent properties and which have suitably overlapping emission/absorption spectra, such as EGFP
10 (enhanced green fluorescent protein) and EBFP
 (enhanced blue fluorescent protein). As would be readily apparent to persons skilled in the art, the FRET assay can be performed in either orientation. That is to say, the assay can be carried out using
15 UNC-5 fused to the donor fluorophore and the interacting protein fused to the acceptor fluorophore or using UNC-5 fused to the acceptor fluorophore and the interacting protein fused to the donor fluorophore.

20 The invention further provides a method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding
25 to the said UNC-5 protein, which method comprises:

 providing a first reaction component comprising a first protein linked to a solid support containing a scintillant and a second reaction component comprising a second protein which has been radioactively labelled, wherein the first and second proteins are an UNC-5 protein or a fragment thereof and an interacting protein or a fragment thereof;

30 bringing the first and second reaction components into contact in an aqueous solution in the presence of a compound under test; and
35 detecting binding of the first protein to

- 17 -

the second protein by detecting light emission from the scintillant.

The above method is based on the scintillation proximity assay (SPA™) developed by Amersham and commonly used in automated high throughput screening. In order to perform this assay a first interacting protein (e.g. an UNC-5 protein) must be linked onto a bead containing a scintillant. Linking of the protein to the beads can be carried out in many different ways, including, for example, via biotin-streptavidin affinity binding. Streptavidin-SPA beads are commercially available from Amersham and the interacting protein can easily be biotinylated *in vitro* or expressed as a biotinylated fusion protein using techniques known in the art. The second interacting protein (e.g. a protein known to interact with UNC-5) is labelled with radioactivity. This can be achieved, for example, by synthesising the second interacting protein by *in vitro* translation and incorporating a tritiated precursor amino acid. The SPA™ assay protocol is then as follows:

SPA beads linked to the first interacting protein are incubated for 30 minutes to one hour with a sample containing the radioactively labelled second interacting protein. Upon binding of the two interacting proteins, the radioactivity emitted by the labelled protein is brought into close proximity with the bead containing scintillant and therefore induces light emission from the scintillant. The free labelled protein in sample (non-bound) will not be held in sufficiently close proximity to the beads to induce light emission. Compounds which disrupt the binding of the first and second interacting proteins will cause a decrease in the amount of light emitted during the experiment.

As would be readily apparent to persons skilled

- 18 -

in the art the assay can be carried out using UNC-5 linked to the solid support containing scintillant and a radioactively labelled interacting protein or using an interacting protein linked to the solid support containing scintillant and a radioactively labelled UNC-5.

The invention further provides a method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

coating the wells of a microtiter plate with UNC-5 protein or a fragment thereof;

contacting the UNC-5 protein or fragment thereof with an aqueous solution comprising an interacting protein or a fragment thereof, said interacting protein being labelled with a tag which is directly or indirectly detectable, and a compound under test;

washing to remove the compound under test and any unbound tagged interacting protein; and detecting complexes of UNC-5 or a fragment thereof bound to the interacting protein or a fragment thereof by directly or indirectly detecting the presence of the tag.

This method of the invention uses an ELISA type approach to screen for compounds which disrupt binding between Unc-5 and a protein known to interact with UNC-5. In these experiments, the wells of a microtiter plate are coated with the UNC-5 protein or fragments thereof. A sample containing both the compound under test and a protein known to interact with UNC-5 (or a fragment of the protein which is still capable of binding to UNC-5) is then added to the wells and the plates are incubated to allow time for specific

- 19 -

binding of UNC-5 to the interacting protein. The interacting protein (or fragment thereof) is labelled with a tag which is directly or indirectly detectable, typically a fluorescent molecule such as GFP, or a tag which is detectable by specific antibody binding, such as a His-tag or GST-tag. Many other tag molecules which are equally suitable for this purpose are known in the art and are available commercially. The wells are then washed to remove the compound and any interacting proteins which remain unbound. Any interacting protein which has become bound to UNC-5 is not removed by the washing step and can be detected via the directly or indirectly detectable tag. If the interacting protein is labelled with a GFP tag, then bound proteins are detected by measuring GFP fluorescence; if the interacting protein is labelled with a His-tag or a GST tag, bound proteins are detected with immunological techniques, using an antibody of the appropriate specificity.

Compounds which disrupt the binding of UNC-5 to the interacting protein will result in more of the protein remaining unbound, hence less protein will be detected after the washing step.

The invention further provides a method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

exposing a cell or organism expressing UNC-5 and overexpressing nucleic acid encoding an interacting protein to the compound under test; and screening for reversion of the overexpression phenotype of the cell or organism to wild-type.

- 20 -

Over-expression of genes encoding for proteins which interact with UNC-5 in a cell line or in *C. elegans* results in an over-expression phenotype.

Assays to select for compounds that inhibit the interaction of UNC-5 and its interacting proteins can therefore be performed in cell lines or *C. elegans* by exposing cells or worms exhibiting an over-expression phenotype to the compound under test and screening for a 'reduction' of the over-expression phenotype (i.e. screening for a reversion to wild-type).

Over-expression of proteins which interact with unc-5 in *C. elegans* typically results in neuronal outgrowth phenotypes, distal tip cell outgrowth phenotypes, and other aberrant outgrowth of various tissues and cells. These phenotypes can be easily monitored by expressing reporter genes, such as fluorescent proteins in these cells. Reduction of the phenotype induced by the over-expression can then be monitored by visual inspection.

Simple assays have been developed to screen for compounds which cause reversion of the over-expression phenotype in cell lines. As Unc-5 receives signals from the netrins, over-expression of proteins which interact with unc-5 typically causes phenotypic changes in neuronal outgrowth and cell movement. Accordingly, the step of screening for reduction of the over-expression phenotype can be performed using a laminin assay, a netrin response assay and assays using agarose concentration gradients, a boyden chamber or stratified layers (see Gundersen, R. W., Dev. Biol., 1987, 121(2): 423-431; Klostermann, S. and Bonhoeffer, F., 1996, 4: 237-252). In general, these methods are based upon providing attractants or repellants for axonal guidance in a controlled manner. The way the cells react to these attractants and repellants forms the basis of the assay. In the Boyden chamber (upper and lower chambers separated by

- 21 -

a filter barrier) one typically cultivates cells in the upper chamber and measures how the cells grow through the filter. The agarose approach allows the establishment of gradients to which the cells react by forming specific patterns.

- The above-listed methods are all based upon novel interactions between an UNC-5 protein and proteins shown to physically interact with the UNC-5 protein.
- 10 In preferred embodiments, the UNC-5 protein is a *C. elegans* UNC-5 protein or a human UNC-5 protein. Preferably the human UNC-5 protein is UNC-5C or any of the UNC-5C splice variants identified hereinbefore or UNC-5HS1.
- 15 The methods of the invention can also be carried out using fragments of the UNC-5 protein which retain the ability to bind to the interacting protein. Preferably the fragment comprises the intracellular portion of the protein. Various sub-domains of the 20 intracellular portion of the protein or combinations thereof can also be used.

As used herein the term "interacting protein" encompasses any protein which has been demonstrated to interact with an UNC-5 protein. The interacting protein can be a second UNC-5 protein as the examples included herein demonstrate the ability of UNC-5 to form homodimers. The interacting protein can also be a protein identified as interacting with UNC-5 in a yeast two hybrid experiment. A list of proteins 25 identified as interacting with *C. elegans* UNC-5 or human UNC-5 in a yeast two hybrid experiment is given in the Example 4, below. Any of these proteins, or fragments thereof which retain a functional UNC-5 binding site, can be used in the methods of the 30 invention in combination with the appropriate UNC-5 protein or a fragment thereof.

As would be readily apparent to persons skilled

- 22 -

in the art, the UNC-5 signalling pathway is highly conserved across species. Hence it is to be expected that for every interacting protein identified in the yeast two hybrid experiments described in the Examples given herein a homologous interacting protein will be found in other species. For example, for every interacting protein found in *C. elegans* to interact with the *C. elegans* unc-5 protein it is expected that a homologous interacting protein will be found in humans and will interact with a human UNC-5 protein, and vice versa for interacting proteins first identified in humans. Accordingly, it is within the scope of the invention to perform the methods described above with "homologous combinations" of UNC-5 proteins and interacting proteins and even with cross-species combinations e.g. *C. elegans* unc-5 and a human interacting proteins, human UNC-5 and a human homologue of an interacting protein identified in *C. elegans*; *C. elegans* unc-5 and a human homologue of an interacting protein identified in *C. elegans*; *C. elegans* unc-5 and a human interacting protein etc. Lists of homologues of the *C. elegans* and human interacting proteins identified in the yeast two hybrid study are given in the Examples included herein.

In a still further aspect the invention provides a method of identifying compounds which reduce or inhibit the lethal phenotype associated with the expression of the UNC-5 death domain in yeast, which method comprises:

exposing a yeast cell containing an expression vector comprising nucleic acid encoding an UNC-5 protein or a fragment thereof comprising the death domain to a compound under test;

- 23 -

allowing the yeast cells to grow in the presence of the compound; and
5 screening for a reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast.

The UNC-5 protein used in the method of the invention is preferably a *C. elegans* UNC-5 protein or a human UNC-5 protein. Preferably the human UNC-5 10 protein is UNC-5C or any of the UNC-5C splice variants identified hereinbefore or UNC-5HS1.

In a still further aspect the invention provides a method of identifying suppressors of the lethal 15 phenotype associated with the expression of the UNC-5 death domain in yeast, which method comprises:

20 transfecting yeast cells containing an expression vector comprising nucleic acid encoding an UNC-5 protein or a fragment thereof comprising the death domain with a cDNA library cloned in a yeast expression vector;
allowing the transfected yeast cells to grow for one or more cell divisions; and
25 screening for reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast.

Optionally, the method further comprises the steps of:

30 identifying a transfected yeast cell exhibiting a reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast; and
35 isolating the cDNA clone(s) present in the transfected yeast cell which is/are responsible for conferring reduction or inhibition of the lethal phenotype.

- 24 -

Again, the UNC-5 protein is preferably a *C. elegans* UNC-5 protein or a human UNC-5 protein. Preferably the human UNC-5 protein is UNC-5C or any of the UNC-5C splice variants identified hereinbefore or 5 UNC-5HS1. The cDNA library is preferably a *C. elegans* cDNA library or a human cDNA library.

10 The invention will be further understood with reference to the following experimental examples, together with the accompanying Figures in which:

15 Figure 1 shows a sequence alignment of the known human unc-5C cDNA sequence and the three novel alternative splice variants of unc-5C. The region of alignment corresponds to the portion of the cDNA which encodes the intracellular domains of unc-5C.

20 Figure 2 shows a multiple alignment of unc-5H1 genes. ym97d12 is an EST clone containing a fragment of the unc-5HS1 cDNA, 3D is a fragment of the unc-5HS1 cDNA cloned by PCR in Example 2.

25 Figure 3 summarises the cloning of human unc-5C variants.

Figure 4 summarises the cloning of human unc-5HS1.

30 Figure 5 is a schematic representation of the human unc-5C splice variants.

35 Figure 6 shows an alignment between a fragment of the protein encoded by the cDNA fragment cloned in pYMP6 and the rat neurexim II-alpha-b cDNA.

Figure 7 shows an alignment between a fragment of the

- 25 -

protein encoded by the cDNA fragment cloned in pYMP17 and the mouse mena protein.

Figure 8 is a representation of the vector pGC1037.

5

Figure 9 is a representation of the vector pGC1003.

Example 1

10 Cloning of the human unc-5C splice variants.

Splice variants of human unc-5C were cloned, primary with RACE technology.

15 A 5' RACE was performed using the 5' RACE System for Rapid Amplification of cDNA Ends, Version 2.0 (GibcoBRL, Merelbeke, Belgium), according the instructions supplied by the manufacturer or with minor modifications thereof. The primers were based on the unc-5 EST ym97d12.

20 The first strand cDNA synthesis was performed with primer:

GSP1=oGC75: CGTAGCAGGCAGTGGCCTCC

PCR of dC-tailed cDNA: was performed with the gene-specific primer:

GSP2=oGC76: GCACTGGCCTCCAGCTGGCAGTAG

25 and the RACE anchor primer supplied with the 5' RACE system.

The PCR Program was:

Step 1 94°C, 2 min

Step 2 94°C, 30 sec

30 Step 3 60°C, 30 sec

Step 4 72°C, 2 min

Repeat steps 2 to 4 for 35 cycles

Step 5 72°C, 7 min

Step 6 4°C

35

A nested PCR was performed with gene-specific primer:

GSP3=oGC77: AGTAGAGGTGGGAGGGCGCCTCGCCCCAG

- 26 -

and 5' RACE anchor primer

The PCR program was:

Step 1 92°C, 2 min
5 Step 2 92°C, 1 min
Step 3 68°C, 2 min
Repeat steps 2 and 3 for 35 cycles
Step 4 72°C, 7 min
Step 5 4°C

10 The resulting RACE products were visualised by electrophoresis on agarose gels, the bands excised and purified with Jetsorb (Genomed, Germany). The RACE products were ligated into plasmids pAS2 and pGEX-5X-3 with T4 DNA ligase (Amersham pharmacia biotech, NJ, USA), or into a TA cloning vector (Invitrogen, Groningen, the Netherlands). Plasmid DNA was purified prior to sequencing using the Qiagen plasmid purification system (Westburg, Leusden, The Netherlands).

20

Example 2

Cloning of a new human unc-5 gene.

Human Brain Poly A+ RNA was obtained from Clontech, California, USA and first strand cDNA synthesis performed with the Ready To Go T-Primed First-Strand Kit ((Amersham pharmacia biotech, NJ, USA)).

Primers were:

for PCR1:

30 oGC56: CCGGAATTCCATATGTTAATACTGCCCTCTGCTGCTAA
oGC66: GCGATCTCTGTAGTTGTGGCCTTG

PCR program was:

Step 1 94°C, 1 min
Step 2 53°C, 30 sec
35 Step 3 72°C, 2 min
Repeat steps 1 to 3 40 times
Step 4 72°C, 7 min

- 27 -

Step 5 4°C

for PCR2
5 oGC63: GGGATTCCATATGTTGTTGTATCGGAAGAACATC
oGC64: ACGCGTCGACTTAATACTGCCCTCTGCTGCTAAGGAC
oGC65: CCGGAATTCCCTGTTGTATCGGAAGAACATC

PCR program was:
10 Step 1 94°C, 5 min
Step 2 92°C, 30 sec
Step 3 55°C, 30 sec
Step 4 72°C, 2 min
Repeat steps 2 to 4 for 25 cycles
Step 5 72°C, 7 min
Step 6 4°C

15

The resulting PCR products were isolated, cloned and analysed as described in Example 1.

SEQ ID NO: 7 shows the sequence of a PCR product isolated using the above PCR strategy. This PCR 20 product was designated clone 3D. Figure 2 shows an alignment between the *Rattus norvegicus* unc-5H1 cDNA sequence, the sequence of EST ym97d12, the sequence of clone 3D and the sequences of several other PCR 25 products amplified using the above PCR strategy (1G, 1Jrc and 2Brc).

Example 3
30 Cloning of two of the fragments of UNC-5 for the dimerization experiment.

A PCR amplification was performed with following primers:

UNC5F: GGT GGT CAT ATG GCC ATG GAG TGC TGT AAA CGT GGC
35 AAT TCA AAA AAG

UNC5R: GGC TGC AGG TCG ACG CCC CGG GGC TTA TGG GGA CAC

- 28 -

AAT TTG TGG

Using the cDNA library used in the yeast two hybrid experiment (Example 4) as template.

5

PCR program was:

Step 1 94°C, 1 min
Step 2 53°C, 30 sec
Step 3 72°C, 2 min
10 Repeat steps 1 to 3 for 25 cycles
Step 4 72°C, 7 min
Step 5 4°C

15 The resulting PCR products were isolated and cloned in frame as Ncol/Sall fragments in the vectors pAS2 and pGAD424 supplied by Clontech (Palo Alto, California, USA).

20

Example 4

Yeast two Hybrid Experiments

25

To address the functional role of unc-5 the inventors used the yeast two hybrid method (Fields and Song, Nature 340:245, 1989), a method well known to molecular biologists, to search for the proteins that interact with the UNC-5 protein.

30

The two hybrid method is based on a pair of fusion proteins. The first fusion protein comprises a first of two interacting proteins fused to the transcriptional activation domain of a bipartite yeast transcription factor; the second fusion protein comprises the second of two interacting proteins fused to the DNA binding domain of the bipartite yeast transcription factor. The principle of the method is that if the two domains of the bipartite transcription factor are physically brought together by binding of the first and second interacting proteins then the

- 29 -

resulting complex will be able to activate transcription from a promoter which contains a target binding site for the transcription factor. The two hybrid assay is commonly used to study protein-protein
5 interactions between two known proteins. It can also be used to screen a library of proteins to identify proteins which interact with a given protein. Both of these uses of the two hybrid system are well known to those skilled in the art.

10 In the present invention, the yeast two hybrid assay was used to identify proteins which interact with *C. elegans* UNC-5 or human UNC-5 as follows: the intracellular part of UNC-5 or parts thereof were cloned in fusion with the DNA-binding domain of the
15 yeast transcription factor GAL4. A cDNA library was cloned into a vector containing the transcriptional activation domain of GAL4. The fusion proteins were then independently expressed together in yeast containing a reporter gene under the transcriptional control of a promoter containing GAL 4 binding sites
20 (typically GALL lacZ or GALL-HIS3).

Methods

25 (A) Construction of the *C. elegans* library and standard yeast two hybrid experiments.

Construction of *C. elegans* cDNA libraries, and yeast two hybrid experiments with *C. elegans* cDNA were performed as described by Elledge et al., Proc. Natl. Acad. Sci., 1991, 88:1731-1735, or using the
30 Matchmaker™ maker system supplied by Clontech, California, USA according to the protocol supplied by the manufacturer, or by minor modifications of the above-described methods.

35

(B) A mating yeast two hybrid experiment.

Mating yeast two hybrid experiments were

- 30 -

performed using plasmid pGC1037 (a plasmid map of pGC1037 is shown in Figure 8 and the complete sequence of the plasmid is given in SEQ ID NO: 91) as bait, and a pre-transformed Human Brain MATCHMAKER cDNA library (Clontech, California, USA) according to the protocol supplied by the manufacturer, or with minor modifications thereof.

In brief summary, the steps of the method are as follows:-

10 Inoculate 1 colony containing the bait plasmid into an overnight culture;

Mate the bait culture and the library culture (24 h);

Plate library mating mixtures;

15 Incubate for at least 8 days;

Streak big colonies onto SD-3 + 5mM AT-plates (+/- Nylon Membrane);

Stain yeast on Nylon membrane;

Prepare yeast DNA from the positives;

20 Perform restriction digest, if digest is successful perform backtransformation, using positive and negative controls;

Transform positives into MC1061 cells;

Prepare bacterial DNA using Qiagen Plasmid Mini

25 Purification kit, according to the standard Qiagen protocol; and

Perform DNA sequencing.

All positives obtained in the yeast two hybrid screen were assayed for the specificity of the interaction (against empty vector and irrelevant proteins) using the two hybrid system.

(C) Double-stranded RNA inhibition-RNAi cloning
isolation and injection.

Double stranded RNA for RNA inhibition experiments was prepared according to the MEGAscript

- 31 -

protocol (Ambion, UK). RNA isolated using this protocol was purified away from contaminants using the RNeasy system from Qiagen (Westburg, the Netherlands), following the instructions for RNA clean-up supplied by the manufacturer. RNA was injected into the nematodes using standard procedures (Methods in Cell biology, Vol 48, Academic Press, 1995).

Results

10 (A) Auto-activation and dimerization experiments.

In a first series of experiments, the ability of the intracellular domain of *C. elegans* unc-5 or parts thereof to dimerize or to cause auto-activation was tested. Several plasmids were constructed harboring the intracellular domains of unc-5 and parts thereof. Various domains of unc-5, including the membrane proximal part (MMP), the zonula occludens homology domain (ZO-1), the unknown part (UP) and the Death domain (DD) and were cloned in the vectors pAS2 and pGAD424 (Matchmaker, Clontech, CA, USA). The resulting vectors are summarized in Table 1.

Several constructs containing the death domain were found to be either toxic or auto-activating. Furthermore, by performing homo-dimerization experiments, it was found that the intracellular domain of UNC-5C is capable of forming a homo-dimer. Further experiments led to the conclusion that the ZO-1/UP region is probably responsible for the homo-dimerization. Membrane located signal receptors often form homo- or hetero-dimers prior to intracellular signal transduction. Accordingly, it is postulated that dimer formation in UNC-5 could be a critical event in signalling. Based on a knowledge of this dimerization it is possible to develop assays to screen for compounds which disrupt dimer formation and to identify unc-5 mutants which are unable to dimerize.

- 32 -

The present inventors have found that in humans UNC-5 proteins may be encoded by at least three genes, the homologous genes unc-5C, unc-5HS1, unc-5HS2. As UNC-5 is an important receptor involved in a vast amount of biological processes, it is considered that more functional homologous genes or unc-5 genes may be present in the *Homo sapiens* genome. In addition, the expression of the unc-5 gene does not result in the production of a single transcript. The expression of unc-5C locus can result in the production at least 4 isoforms as a result of alternative splicing events. It is possible that the other unc-5 genes will also express splice variants, which may encode different protein isoforms. Any of these unc-5 isoforms may form dimers, analogous to the homo-dimerisation found for *C. elegans* unc-5. Accordingly, assays can also be developed to screen for chemical substances that alter the dimerization of human unc-5 proteins. Compounds identified using such an assay may have pharmacologically useful properties.

(B) Other receptor dimerizations.

It has been suggested that, in addition to UNC-6, UNC-129 also signals to the UNC-5 receptor (Colavita et al., Science 261:706-709). UNC-6 is also known to signal to UNC-40(DCC). UNC-129 belongs to the TGF- β superfamily. TGF- β receptors, including DAF-1 and DAF-4, do not affect axonal guidance. Although new TGF- β receptors may be found that are involved in axonal guidance, it is more likely that the UNC-129 molecule is able to interact with TSP type I domains, which are present in UNC-5. Such interaction between TGF- β molecules and TSP Type I domains has been shown previously (Schultz-Cherry et al., 1994, J. Biol. Chem. 269, 26775). Furthermore UNC-129 is also involved in the UNC-40 pathway.

Recent studies have provided support for the idea

- 33 -

that the UNC-5 receptor induces switching of UNC-40 from attraction to repulsion (Mehlen et al., Nature 395:801-804, 1998). This suggests a linkage of Unc-5 to oncology since Unc-40 is related to vertebrate DCC (deleted in colorectal cancer), which is a candidate tumour-suppressor gene, and encodes a receptor for netrin-1 (UNC-6). The reversal from attraction towards repulsion in growth cone steering with the two receptors UNC-5 and UNC-40 can be explained by hetero-dimerization between UNC-5 and UNC-40. Such switching of function has also been observed in other biological processes. The UNC-40/UNC-5 interaction may function analogously to the Bax/Bcl-2 interaction involved in apoptosis. Bax can be considered as the protein that protects against apoptosis but the relative titre of both Bax and Bcl-2 in a cell may be important in the decision of cell death.

Given that UNC-5 is capable of forming homodimers, it is postulated that UNC-5 is also capable of forming heterodimers with UNC-40. The UNC-5/UNC-40 heterodimers may act as a functional receptor for UNC-6 and UNC-129. Assays to isolate compounds that influence the interaction between UNC-5 and UNC-40, both enhancing and inhibiting this interaction have therefore been developed. These assays are analogous to the assays as described to isolate compounds that influence the formation of the UNC-5 dimers and the assays for compounds that influence the interaction of UNC-5 with its other interacting proteins (see below).

(C) C. elegans UNC-5 interacting proteins

The intracellular part of UNC-5 containing the domains MPP, ZO-1 and UP cloned in vector pGC1003 (a plasmid map of pGC1003 is given in Figure 9 and the complete sequence of the plasmid is given in SEQ ID NO: 92) was used as 'bait' in a yeast two hybrid

- 34 -

experiment screening against a *C. elegans* cDNA library. These experiments resulted in the identification of ten genes, including three known genes and seven genes with heretofore unknown function, encoding proteins which specifically interact with the intracellular part of UNC-5. Details of the UNC-5 interacting proteins identified during the two hybrid screen are given below. In most cases, the results of double-stranded RNA inhibition experiments (RNAi) designed to inhibit expression of the interacting protein are also given. Where appropriate, details of human homologues of the interacting protein are also given and any known disease associations are discussed.

15

1) Spectrin β-chain / Fodrin β-chain (pC1025)

A first series of hits resulted in the identification of plasmid pC1025 which contains a fragment of a cDNA encoding the *C. elegans* spectrin β-chain/Fodrin. The spectrin β-chain protein is encoded by the gene K11C4.3, located on chromosome IV.

The full length cDNA and amino acid sequences of spectrin β-chain/Fodrin are shown in SEQ ID NOS: 11 and 12, respectively. The nucleotide sequence of the fragment of the spectrin β-chain cDNA which is cloned as an insert in plasmid pC1025 is given in SEQ ID NO: 13, the corresponding amino acid sequence is given in SEQ ID NO: 14.

RNAi experiments using a double-stranded RNA corresponding to the cDNA fragment cloned in pC1025 revealed that inhibition of the expression of the native spectrin β-chain in *C. elegans* worms causes the following phenotype: no embryonal lethality, normal canals, normal elongation, growth retardation and growth arrest at L1 and L2, nearly no movement but touch reflex is observed. The phenotype is 100% penetrant, and the larvae are short and wrinkled.

- 35 -

These RNAi phenotypes and the corresponding knock-out phenotype can be used as the basis of a compound screen in *C. elegans* to identify chemical substances that modulate the activity of the spectrin β -chain protein.

5 Human Fodrin (genbank accession number 2493434) contains an extra C-terminal PDZ domain that is not present in spectrin (genbank accession number 134798). The human fodrin seems to be more homologous to the *C. elegans* protein. This is in agreement with the finding 10 that unc-5 is also expressed in the brain of vertebrates.

15 The interaction between UNC-5 and fodrin could be a critical event in a cell signalling, hence compounds which modulate the interaction between UNC-5 and fodrin, particularly the interaction between human UNC-5 and human fodrin, may potentially have pharmacological activity. Assays can also be developed 20 to screen for genetic mutations that inhibit the interaction needed for proper signal transduction. Compounds which enhance or inhibit the interaction of UNC-5 with fodrin and spectrin β -chain may be useful in the development of pharmaceutical preparations for 25 the treatment of Crohn's disease, Sjogren's syndrome, secretion related diseases, diseases related to neutrophil and platelet activation, and long-term potential in neurons, Alzheimer's disease, proliferative diseases such as carcinomas, neoplasia, 30 and more specifically, schwannomas, meningiomas, ependymomas, squamous cell carcinomas, malignant melanomas and lung carcinomas, spherocytosis, pyropoikilocytosis, Duchenne muscular dystrophy and various neurological disorders.

35

2) APR-1 (pC1028)

A second plasmid isolated in the yeast two hybrid

- 36 -

screen, pC1028, contained a fragment of a cDNA encoding APR-1.

The nucleotide sequence of the full length APR-1 cDNA is shown in SEQ ID NO: 15 and the amino acid sequence of the APR-1 protein encoded by this cDNA is shown in SEQ ID NO: 16. The nucleotide sequence of the fragment of the APR-1 cloned in pC1028 is shown in SEQ ID NO: 17, with the corresponding amino acid sequence shown in SEQ ID NO: 18.

RNAi experiments using a double-stranded RNA corresponding to the fragment cloned in pC1028 demonstrated that inhibition of APR-1 expression in *C. elegans* results in the following phenotype: more than 95% embryonic lethality, in 25% of cases this was due to the overproduction of pharyngeal tissue and lack of endoderm, and premature division of the E daughters (Rocheleau et al., Cell 90:707-716, 1997). Escapers (worms that survive) have abnormal gut cells. These RNAi phenotypes and the corresponding knock-out phenotype can be used as the basis of a compound screen in *C. elegans* to identify chemical entities that modulate the activity of APC (see below), and hence the unc-5 pathway.

Further yeast two hybrid experiments were performed in order to more precisely determine the position of the APR binding regions in UNC5, using the UNC5 domains MPP, ZO-1, UP and combinations thereof. APR-1 seemed to associate with two distinct regions in UNC5. First, APR-1 appears to bind to the MPP domain. Secondly, APR-1 appears to bind to the ZO-1/UP domain. APR-1 seems to bind less to the ZO-1 and UP domains when they are present alone and not in combination. A similar experiment was carried out using the *C. elegans* UNC-5 protein, and domains of human APC and analogous results were obtained. It is concluded that APC is capable of binding to two

- 37 -

distinct regions of UNC-5, the MPP and the ZO-1/UP domains.

The interaction between UNC-5 and APC/APR 1 could be a critical event in cellular signalling and hence 5 compounds which modulate this interaction, particularly compounds which modulate an interaction between human UNC-5 and human APC, may potentially have pharmacological activity. Furthermore genetic mutations, and splice variants can be identified that 10 inhibit the interaction, needed for proper signal transduction. Compounds which enhance or inhibit the interaction of UNC-5 with APR/APC may be useful in the development of pharmaceutical agents for the treatment of neurological diseases and colorectal cancers such 15 as adenomatous polyposis coli.

3) UNC-14 (pC1034)

A third plasmid identified during the yeast two hybrid screen using *C. elegans* UNC-5 as bait (pC1034) 20 was found to contain a fragment of the UNC-14 cDNA.

The nucleotide sequence of the full length UNC-14 cDNA is shown in SEQ ID NO: 19, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 20. The nucleotide sequence of the 25 fragment of the UNC-14 cDNA cloned as an insert in pC1034 is shown in SEQ ID NO: 21, with the corresponding amino acid sequence of the polypeptide encoded by this fragment shown in SEQ ID NO: 22.

C. elegans worms mutated in unc-14 are observed 30 to be very sluggish, almost paralysed, small, dumpyish, with a tendency to coil and show some egg retention. This phenotype can be used as the basis of a compound screen in *C. elegans* to identify chemical entities that modulate the activity of UNC-14.

Furthermore, *C. elegans* worms mutated in the 35 unc-14 gene were shown to have abnormal axonal elongation and axonal structures. The unc-14 gene

- 38 -

encodes a protein of 665 amino acids, and is co-expressed with the *unc-51* gene in the cell bodies and axons of almost all neurons including DD/VD and hermaphrodite-specific neurons. The results of yeast
5 two-hybrid experiments suggested that a central region of UNC-14 binds to the carboxy-terminal region of UNC-51, and that the UNC-51 carboxy-terminal region oligomerized (Ogura et al., Genes Dev. 11:1801-1811, 1997).

10 Mutations in the *unc-51* gene, isolated from mutants of *Caenorhabditis elegans* exhibiting abnormal axonal extension and growth, encodes a novel serine/threonine kinase (K. Ogura, et al., 1994, Genes Dev. 8: 2389- 2400).

15

4) F11A10.1 (pGC1021)

A fourth plasmid isolated during the yeast two hybrid screen, pGC1021, was found to contain a fragment of cDNA corresponding to the *C. elegans* gene 20 designated F11A10.1.

The nucleotide sequence of the full length F11A10.1 cDNA is shown in SEQ ID NO: 23, with the amino acid sequence of the protein encoded by this cDNA shown in SEQ ID NO: 24. The nucleotide sequence 25 of the fragment of the F11A10.1 cDNA cloned in pGC1021 is shown in SEQ ID NO: 25, the amino acid sequence of the protein fragment encoded by this fragment of the cDNA is shown in SEQ ID NO: 26.

To date, no function is as yet known for 30 F11A10.1. RNAi experiments using a double-stranded RNA corresponding to the insert of pGC1021 showed that inhibition of F11A10.1 expression in *C. elegans* results in worms which are weakly constipated. In *C. elegans*, constipation has been associated with 35 neuronal dysfunction (Thomas, Genetics 124:855-872, 1990). Furthermore and remarkably inhibition of F11A10.1 expression causes migration defects in the

- 39 -

distal tip cell, similar to those observed in unc-5 mutants and unc-14/unc-51 double mutants. These RNAi phenotypes and the corresponding knock-out phenotypes can be used as the basis of a compound screen in C. elegans to identify chemical entities that modulate the activity of F11A10.1.

The interaction between UNC-5 and F11A10.1 could be a critical event in cellular signalling and hence compounds which modulate this interaction may potentially have pharmacological activity.

Furthermore, genetic mutations, and splice variants can be identified that inhibit the interaction, needed for proper signal transduction. Compounds which enhance or inhibit the interaction of UNC-5 with F11A10.1 may be of use in the development of pharmaceutical compositions useful in the treatment of neurological disorders, tumours such as Kaposi's Sarcoma, immunological disorders and diseases related to vesicle fusion, proteolysis, peroxisomal and mitochondrial biogenesis, and transcription.

5) C15E6.1/2 (pGC1026)

A fifth plasmid identified during the yeast two hybrid experiment, pGC1026, was found to contain a fragment of a cDNA encoding the C15E6.1 protein.

The nucleotide sequence of the full length C15E6.1/2 cDNA is shown in SEQ ID NO: 27, with the amino acid sequence of the protein encoded by this cDNA shown in SEQ ID NO: 28. The nucleotide sequence of the fragment of the C15E6.1/2 cDNA cloned in pGC1026 is shown in SEQ ID NO: 29, the amino acid sequence of the protein fragment encoded by this fragment of the cDNA is shown in SEQ ID NO: 30.

RNAi experiments using a double-stranded RNA corresponding to the insert of pGC1026 did not result in any clear visual phenotype.

The identification of C15E6.1/2 as an UNC-5

- 40 -

interacting protein indicates that UNC-5 might be a band 4 .1 binding protein and may share homology with other band 4.1 binding proteins such as CD44, glycophrin C, and paranodin.

5 By using the band 4.1 signature to search a database of *C.elegans* genes, F07A11.1 on chromosome II was identified as encoding a band 4.1 protein.

The interaction between UNC-5 and C15E6.1/2 could be a critical event in cellular signalling and hence 10 compounds which modulate this interaction may potentially have pharmacological activity. Furthermore genetic mutations, and splice variants can be identified that inhibit the interaction, needed for proper signal transduction. Compounds which enhance 15 or inhibit the interaction of UNC-5 with C15E6.1/2 may be useful in the development of pharmaceutical preparations for the treatment of diseases related to axonal signalling, synaptic vesicle exocytosis, cell adhesion, cytoskeleton associated proteins, cell 20 morphology , cell growth, allergic inflammatory processes and rheumatoid arthritis.

6) D1081.7 (pGC1027)

A sixth plasmid identified during the two hybrid 25 screen was found to contain a fragment of cDNA corresponding to the *C. elegans* gene designated D1081.7.

The nucleotide sequence of the full length 30 D1081.7 cDNA is shown in SEQ ID NO: 31, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 32. The nucleotide sequence of the fragment of the D1081.7 cDNA cloned as an insert in pGC1027 is shown in SEQ ID NO: 33, with the corresponding amino acid sequence of the polypeptide 35 encoded by this fragment shown in SEQ ID NO: 34.

RNAi experiments performed using double stranded RNA corresponding to the insert in pGC1027 appeared

- 41 -

not to result in any clear visual phenotype.

All genes so far found in *C. elegans* have human homologues. It is therefore expected that D1081.7 will also have vertebrate, including human, homologues.

5 These homologues can be cloned using standard technologies.

The interaction between UNC-5 and D1081.1 could be a critical event in cellular signalling and hence compounds which modulate this interaction may 10 potentially have pharmacological activity and thus be of use in the development of pharmaceutical compositions. Furthermore genetic mutations, and splice variants may be identified that inhibit the interaction needed for proper signal transduction.

15

7) B0238.9 (pGC1032)

A seventh plasmid identified during the two hybrid screen was found to contain a fragment of cDNA corresponding to the *C. elegans* gene designated 20 B0238.9.

The nucleotide sequence of the full length B0238.9 cDNA is shown in SEQ ID NO: 35, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 36. The nucleotide sequence of the 25 fragment of the B0238.9 cDNA cloned as an insert in pGC1032 is shown in SEQ ID NO: 37, with the corresponding amino acid sequence of the polypeptide encoded by this fragment shown in SEQ ID NO: 38.

B0238.9 is located in the chromosomal region 30 where *seu-2* is also located. The *seu-2* was identified in suppressor screens of ectopically expressed *unc-5* and is considered to be involved in the *unc-5* pathway (Colavita and Culotti, Dev. Biol. 194:72-85, 1998). As a gene has now been isolated that interacts with 35 *unc-5*, it is high probable that B0238.9 is the same as *seu-2*. Mutations in *seu-2* appeared not to have any visual phenotype, as was also observed in RNAi

- 42 -

experiments using a double stranded RNA corresponding to a fragment of B0238.9. The finding that SEU-2 is a suppressor and a binding partner to UNC-5 validates the importance of this interaction. Other known
5 suppressors of ectopic unc-5 growth cone steering are unc-6, unc-40, unc-34, unc-44, unc-129, seu-1, seu-2, and seu-3. Mutations in some of these genes show axonal guidance defects, unlike seu-2.

Homology searches in the EST database with
10 B0238.9 revealed the presence of at least two human ESTs with significant homology. The ESTs so found, nz77b06 and yu53g01, can be used as basis to clone the full length cDNA encoding the human homologue of B0238.9.

15 The interaction between UNC-5 and B0238.9 could be a critical event in cellular signalling and hence compounds which modulate this interaction may potentially have pharmacological activity and thus may be useful in the development of pharmaceutical
20 compositions. Furthermore genetic mutations, and splice variants may be identified that inhibit the interaction, needed for proper signal transduction.

8) ZC404.8 (pGC1033)

25 An eighth plasmid identified during the two hybrid screen was found to contain a fragment of a cDNA corresponding to the *C. elegans* gene designated ZC404.8.

30 The nucleotide sequence of the full length ZC404.8 cDNA is shown in SEQ ID NO: 39, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 40. The nucleotide sequence of the fragment of the ZC404.8 cDNA cloned as an insert in pGC1033 is shown in SEQ ID NO: 41, with the
35 corresponding amino acid sequence of the polypeptide encoded by this fragment shown in SEQ ID NO: 42.

RNAi experiments using a double stranded RNA

- 43 -

corresponding to a fragment of this gene resulted in an embryonic lethal phenotype. The worms showed no elongation and only very little muscle activity, the hypodermis is clearly abnormal.

5 Homology searches in the EST database with ZC404.8.9 revealed the presence of at least three human ESTs with significant homology. The ESTs thus identified, qe69h03, zx61d04, and zd35e10, can be used as basis to clone the full length cDNAs.

10 The interaction between UNC-5 and ZC404.8 could be a critical event in cellular signalling and hence compounds which modulate this interaction may potentially have pharmacological activity and thus be useful in the development of pharmaceutical 15 preparations. Furthermore genetic mutations, and splice variants may be identified that inhibit the interaction, needed for proper signal transduction.

9) ykl17a3 (pGC1023)

20 A ninth plasmid identified during the yeast two hybrid experiment was found to contain a fragment of cDNA corresponding to the *C. elegans* gene designated ykl17a3.

25 The nucleotide sequence of the fragment of the ykl17a3 cDNA cloned as an insert in pGC1023 is shown in SEQ ID NO: 43, with the corresponding amino acid sequence of the polypeptide encoded by this fragment shown in SEQ ID NO: 44.

30 RNAi experiments using a double stranded RNA corresponding to a fragment of ykl17a3 resulted in the following phenotypes in *C. elegans*: Very slow growth, and the larvae get typical darker spots as they get older. Inhibition of ykl17a3 expression in some non wild-type genetic backgrounds leads to defective 35 moulting, where the worm cannot escape from the old cuticle and therefore shrinks and stays in the L4 stage. The defective moulting phenotype is also

- 44 -

observed when *yk17a3* expression is inhibited on a wild-type genetic background, although the phenotype is less prominent. Worms which escape the defective moulting phenotype show defects in vulva development,
5 either lacking a vulva altogether or having a vulva which is non-functional.

Homology searches in the Genbank database with *yk17a3* revealed the presence of at least one human homologue of this gene, designated KIAA0187.

10 The interaction between UNC-5 and *yk17a3* (KIAA0187) could be a critical event in cellular signalling and hence compounds which modulate this interaction may potentially have pharmacological activity. Furthermore genetic mutations, and splice
15 variants may be identified that inhibit the interaction, needed for proper signal transduction. Compounds which enhance or inhibit the interaction of UNC-5 with *yk17a3* may be of use in the development of pharmaceutical compositions for the treatment of
20 CADASIL, arteriohepatic dysplasia, Alzheimer's disease, neoplasia such as T-cell acute lymphoblastic leukemia and certain cancers, such as pancreatic cancer and colon cancer.

25 **10) F41H10.3 (pGC1020)**

A tenth plasmid identified using the yeast two hybrid experiment was found to contain a fragment of a cDNA corresponding to the *C. elegans* gene designated F41H10.3.

30 The nucleotide sequence of the full length F41H10.3 cDNA is shown in SEQ ID NO: 45, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 46. The nucleotide sequence of the fragment of the F41H10.3 cDNA cloned as an insert
35 in pGC1020 is shown in SEQ ID NO: 47, with the corresponding amino acid sequence of the polypeptide encoded by this fragment shown in SEQ ID NO: 48.

- 45 -

F41H10.3 harbors a ATP/GTP binding domain.

Worms resulting from RNAi experiments using a double stranded RNA corresponding to a fragment of F41H10.3 did not exhibit a clear visual phenotype.

5 All genes so far found in *C. elegans* have human homologues. It is therefore expected that F41H10.3 will also have vertebrate, including human, homologues. These homologues can be cloned using standard technologies well known to persons skilled in
10 the art.

The interaction between UNC-5 and F41H10.3 could be a critical event in signalling and compounds which modulate this interaction may potentially have pharmacological activity and thus be useful in the
15 development of pharmaceutical preparations.

Furthermore genetic mutations, and splice variants may be identified that inhibit the interaction, needed for proper signal transduction.

20 (D) Human UNC-5 interacting proteins.

The intracellular part of the human UNC-5 protein (human UNC-5HS1) containing the domains ZO-1, UP and DD cloned in vector pGC1037 (see above) was used as 'bait' in a yeast two hybrid experiment screening
25 against a pretransformed human brain Matchmaker cDNA library (Clontech, Palo Alto, California USA) using the mating screen approach described above. These experiments resulted in the identification of six genes encoding proteins which interact with UNC-5,
30 including two known genes and four heretofore unknown genes.

All proteins found in this yeast two hybrid screen with the human UNC-5 were different to the proteins found in the screen with the *C. elegans* UNC-5. There are at least two reasons for this variation in the isolated proteins. First, the screens
35 are not saturated, which means that not all possible

- 46 -

interacting proteins have been isolated, neither in the screen with the *C. elegans* UNC-5 nor in the screen with the human UNC-5. Secondly, different intracellular fragments have been used in the screens.

5 In the *C. elegans* UNC-5 screen, the intracellular domains MPP, ZO-1 and UP were used as bait, whereas in the human UNC-5 screen, the intracellular domains ZO-1, UP and DD were used as bait. Proteins with specific interaction patterns will not be isolated if
10 the necessary interacting domain is missing, or if the optimal combination of domains is missing. This has been shown in the *C. elegans* UNC-5 interaction with APR. APR interacts clearly with the MPP domain and the domain combination ZO-1,UP, but interacts less
15 efficiently to with domain combination MPP, ZO-1, although the MPP domain is present. APR binds efficiently to the domain combination MPP, ZO-1, UP.

The human UNC-5 interacting proteins identified during the two hybrid screen are listed below. In
20 each case, any known disease associations are discussed and genes/cDNAs encoding homologous *C. elegans* proteins are listed.

1) i-beta-1,3-N-acetylamyltansferase (pYMP5).

25 A first plasmid identified during the yeast two hybrid experiment was found to contain a fragment of the cDNA encoding i-beta-1,3-N-acetylamyltansferase.

The nucleotide sequence of the full length i-beta-1,3-N-acetylamyltansferase cDNA is shown in
30 SEQ ID NO: 49, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 50. The partial nucleotide sequences of the fragment of the i-beta-1,3-N-acetylamyltansferase cDNA cloned as an insert in pYMP5 are shown in SEQ ID NOS: 51 and 52,
35 with the corresponding amino acid sequence of the polypeptide encoded by these partial sequences shown in SEQ ID NO: 53.

- 47 -

C. elegans has at least seven putative homologues of i-beta-1,3-N-acetylaminyltransferase, designated F22F7.6, C18G1.3, K09C8.4, F21H7.10, C54C8.2, F56H6.6 and T15D6.4. cDNA and/or amino acid sequences for each of these putative homologues are given herein. Amino acid and nucleotide sequences for these homologues are given in SEQ ID NOS: 66 to 82.

The interaction between UNC-5 and beta-1,3-N-acetylglucosaminyltransferase could be a critical event in signalling and hence compounds which modulate this interaction may potentially have pharmacological activity. Furthermore genetic mutations, and splice variants may be identified that inhibit the interaction, needed for proper signal transduction. Compounds which modulate the interaction of UNC-5 with beta-1,3-N-acetylglucosaminyltransferase may be useful in the development of pharmaceutical preparations for the treatment of synaptic cleft dysfunctions, vesicle transport dysfunctions, inflammation, various tumours and more particular in tumour cell adhesion, migration and invasion, such as pancreas cancer, squamous cell cancer, human breast cancer, thyroid neoplasms, colorectal carcinomas.

25 2) new gene with slight homology to neurexin II-alpha-b (NHII) (pYMP6)

A second plasmid identified during the yeast two hybrid experiment was found to contain a fragment of a cDNA corresponding to a new gene with slight homology to neurexin II-alpha-b. The new gene was designated NHII.

Partial nucleotide sequences for the fragment of cDNA cloned as an insert in pYMP6 are shown in SEQ ID NO: 54 (coding strand sequenced from one end of the insert of pYMP6 sequenced with forward primer) and SEQ ID NO: 55 (non-coding strand sequenced from one end of pYMP6 with reverse primer). The plasmid pYMP6

- 48 -

was deposited in the Belgian Co-ordinated Collections of Microorganisms (BCCM), Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium on 21 May 1999 under accession number LMBP 3932. The cDNA 5 insert (approximately 1800bp) can easily be excised from this plasmid by digestion with the restriction enzymes EcoRI and XhoI. Alternatively the cDNA insert sequence can be amplified by PCR using primers corresponding to the sequences for the ends of the 10 insert given in SEQ ID NOS: 54 and 55.

The interaction between UNC-5 and the new gene with homology to neurexin II-alpha-b could be a critical event in signalling and hence compounds which modulate this interaction may potentially have 15 pharmacological activity.

3) New Gene with Mena homology (MHI) (pYMP17)

A third plasmid identified during the yeast two hybrid experiment was found to contain a fragment of a 20 cDNA encoding a protein sharing slight homology with the human mena protein. The new gene was designated MHI.

Partial nucleotide sequences of the fragment of cDNA cloned as an insert in pYMP17 are shown in SEQ ID 25 NO: 56, (coding strand sequenced from one end of the insert of pYMP sequenced with forward primer) and SEQ ID NO: 57 (non-coding strand sequenced from one end of pYMP with reverse primer). An alignment between the amino acid sequence encoded by the insert of pYMP17 30 and the mouse mena protein is shown in Figure 7. The plasmid pYMP17 was deposited in the Belgian Co-ordinated Collections of Microorganisms (BCCM), Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium on 21 May 1999 under accession number 35 LMBP 3935. The cDNA insert (approximately 1000bp) can easily be excised from this plasmid by digestion with the restriction enzymes EcoRI and XhoI. Alternatively

- 49 -

the cDNA insert sequence can be amplified by PCR using primers corresponding to the sequences for the ends of the insert given in Figures 55A and 55B.

5 *C. elegans* has at least one protein with homology to the new Mena homologue (MHI), encoded by the gene designated Y50D4.Contig200. The *C. elegans* gene, unc-34 (which maps with Y50D4) is known to suppress the axonal guidance defects induced by ectopic expression of the Netrin receptor UNC-5 (Colavita, A. 10 et al., Dev.Biol., 194:72-85, 1998.).

The interaction between UNC-5 and mena, members of this mena superfamily, unc-34, and Y50D4.contig200, could be a critical event in signalling and hence compounds which modulate these interactions may 15 potentially have pharmacological activity and thus may be useful in the development of pharmaceutical compositions.

4) Alpha-2 macroglobulin (pYMP30)

20 A fourth plasmid identified during the yeast two hybrid experiment was found to contain a fragment of the human alpha-2 macroglobulin cDNA.

25 The nucleotide sequence of the full length alpha-2 macroglobulin cDNA is shown in SEQ ID NO: 58, the amino acid sequence of the protein encoded by this cDNA is given in SEQ ID NO: 59. A partial nucleotide sequence for the fragment of the alpha-2 macroglobulin cDNA cloned as an insert in pYMP30 is shown in SEQ ID NO: 60.

30 *C. elegans* has at least one homologue of alpha-2 macroglobulin, designated ZK337.1, of which two splice variants designated ZK337.1a and ZK337.1b are known to exist.

35 The interaction between UNC-5 and alpha-2 macroglobulin could be a critical event in signalling and hence compounds which modulate this interaction may potentially have pharmacological activity.

- 50 -

Compounds which enhance or inhibit the interaction of UNC-5 with alpha-2 macroglobulin could be useful in the development of pharmaceutical substances.

5 5) New gene 1 (pYMP11)

A fifth plasmid identified during the yeast two hybrid experiment was found to contain a fragment of cDNA with no homology to any known human cDNA.

10 Partial nucleotide sequences for the fragment of cDNA cloned as an insert in pYMP11 are shown in SEQ ID NO: 61 (coding strand sequenced from one end of the insert of pYMP sequenced with forward primer) and SEQ ID NO: 62 (non-coding strand sequenced from one end of pYMP with reverse primer). The plasmid pYMP11 was
15 deposited in the Belgian Co-ordinated Collections of Microorganisms (BCCM), Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium on 21 May 1999 under accession number LMBP 3933. The cDNA insert (approximately 2300bp) can easily be excised
20 from this plasmid by digestion with the restriction enzymes EcoRI and XhoI. Alternatively the cDNA insert sequence can be amplified by PCR using primers corresponding to the sequences for the ends of the insert given in Figures 59A and 59B.

25 The interaction between UNC-5 and the protein encoded by the insert of pYMP11 could be a critical event in signalling and hence compounds which modulate this interaction may potentially have pharmacological activity and thus could be useful in the development
30 of pharmaceutical substances.

6) New gene 2 (pYMP12)

35 A sixth plasmid identified during the yeast two hybrid experiment was found to contain a fragment of cDNA with no homology to any known human cDNA.

Partial nucleotide sequences for the fragment of

- 51 -

cDNA cloned as an insert in pYMP12 are shown in SEQ ID NO: 63 (coding strand sequenced from one end of the insert of pYMP sequenced with forward primer) and SEQ ID NO: 64 (non-coding strand sequenced from one end of pYMP with reverse primer). The plasmid pYMP12 was deposited in the Belgian Co-ordinated Collections of Microorganisms (BCCM), Universiteit Gent, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium on 21 May 1999 under accession number LMBP 3934. The cDNA insert (approximately 2000bp) can easily be excised from this plasmid by digestion with the restriction enzymes EcoRI and XhoI. Alternatively the cDNA insert sequence can be amplified by PCR using primers corresponding to the sequences for the ends of the insert given in Figures 60A and 60B.

The interaction between UNC-5 and the protein encoded by the insert of pYMP12 could be a critical event in signalling and hence compounds which modulate this interaction may potentially have pharmacological activity and thus could be useful in the development of pharmaceutical substances.

Example 5

Yeast two hybrid compound screens

Interactions of proteins leads to expression of a reporter protein β -galactosidase in a yeast two hybrid assay. An assay has been developed that is usable in 96 or 384 well plates or microtiter plates with another number of wells. This assay is suitable for high throughput compound screening. Optimal performance of the assay is dependent upon at least two important parameters: lysis of yeast cells and the choice of the β -galactosidase substrate.

The basic protocol for an assay in 96 or 384 well plates is as follows:

A yeast strain containing the *Escherichia coli*

- 52 -

lacZ gene under the control of the yeast Gal4 promoter is grown overnight (with shaking at 230-270 rpm) then diluted with YPD medium to an OD600 of 0.2. Diluted cultures are grown for an additional 3-5 hr until
5 mid-log phase. Yeast cells are then transferred to either 96- or 384-well plates (100 µl/well or 25 µl/well, respectively). Alternatively, cells can be cultured in the microtiter plates, eliminating the need for a pipetting step.

10 The yeast cells are then either lysed by freeze and thaw method (liquid N₂ to freeze, 37°C water bath to thaw) or by use of a Lysis buffer (e.g.: 1% Lithium dodecyl sulphate, 100 mM EDTA and 10 mM Tris-HCl pH 8.0). Non-lysed cells also give a signal, although the
15 variability is increased if the cells are not lysed. Yeast cells can also be permeabilized with various reagents such as isopropanol (15 %).

20 The substrate sensitivity must be optimised for efficient detection in a screening process.
Fluorescein di galactoside (FDG) is a typical low cost fluorescent reagent for the detection of
β-galactosidase; it can be used for screening, although autofluorescent compounds can induce a non-desirable background leading to false positives.

25 Alternative substrates are available that become luminescent upon β-galactosidase cleavage, thereby eliminating background problems. An example of such a substrate Galacton-Star® from Tropix. Typically about 1µM substrate is added and the plates are incubated at room temperature for 60 minutes. Fluorescence (for
30 FDG) is then measured at 530 nm. It is typically possible to detect as low as 100 cells per well.

As an alternative to the use of β-galactosidase, secreted alkaline phosphatase can be used as a
35 reporter gene. The use of secreted alkaline phosphatase gives equivalent sensitivity to β-galactosidase with the advantage that there is no need

- 53 -

to lyse the cells. Fluorescent substrates for alkaline phosphatase are available commercially from Sigma-Aldrich (Bornem, Belgium) or Molecular Probes (Eugene, OR, USA).

5 The test compound can be added at various stages of the above procedure. Generally, the compound is added on the plates onto which the yeast are plated. However, the compound can also be added during the second incubation in order to overcome toxicity
10 problems. As a control, it is important to check whether the compound slows down the growth of the yeast. This can be done using turbidity measurements.

Example 6

15 Detection of *in vivo* protein-protein interactions using fluorescence energy transfer (FRET).

An *in vivo* FRET assay can be conveniently performed using two different mutants of GFP which absorb and emit light at different wavelengths and which have suitably overlapping emission/absorption spectra, such as EGFP (enhanced green fluorescent protein) and EBFP (enhanced blue fluorescent protein). When two such variant GFPs are brought into close proximity, within a few nanometers distance, fluorescence energy transfer (FRET) can be detected. Such transfer is characterized by a reduction of fluorescence intensity of the donor fluorophore (EBFP) and re-emission of fluorescence at the acceptor fluorophore (EGFP) wavelengths. Therefore if each fluorophore is fused to a protein domain known to bind to the other the protein-protein interaction can be monitored *in vivo* using FRET.

In a typical example, the APC binding domain of UNC-5 cloned in fusion with EBFP, whereas APC is
35 cloned in fusion with EGFP in expression vectors suitable for use in the chosen host cell line or organism. When both fusion proteins are expressed in

- 54 -

a cell line or in *C. elegans* it is possible to monitor and quantify their *in vivo* interaction by irradiating the cells/worms with light at 488nm. When the donor and acceptor fluorophore are brought into close
5 proximity by binding of the two fusion proteins fluorescent energy transfer results in a measurable decreased in fluorescence from the fluorescence donor at a wavelength within the emission spectrum of the donor. In simple terms, what is measured is a
10 quenching phenomenon since light emitted by the donor fluorophore is trapped by the acceptor fluorophore.
NB- The experiment could also be performed by measuring fluorescence from the acceptor fluorophore but this is often less sensitive.
15 Plasmid vectors containing both EGFP and EBFP are commercially available from Clontech (Palo Alto, California, USA). Information on the use of these vectors is also supplied by the manufacturer.

20

Example 7

Genetic and complementation screens in yeast.

UNC-5 expression in yeast cells results in a lethal phenotype, mainly because of the expression of
25 a death domain. This observation was most clearly seen in the experiments with *C. elegans* UNC-5. Accordingly, assays can be developed to screen for compounds, interacting proteins and suppressors which alter the activity of UNC-5, particularly the activity of the
30 death domain of UNC-5. These assays are analogous to those described by Xu and Reed (Mol. Cell 1998, 1:337-46).

(A) Compound screens.

35 Yeast cells are transfected with a plasmid encoding the *C. elegans* or human unc-5 (including the death domain), such as the vectors described in the

- 55 -

yeast two hybrid experiments. The transfected yeast cells are then placed in the wells of micotiter plates, and are exposed to the compounds under test. Compounds which reduce or inhibit the lethal phenotype of the yeast cells transfected with unc-5 are scored as hits. Such compounds will typically suppress the unc-5 lethal phenotype by interacting with UNC-5 itself, or with UNC-5 interacting proteins, or with proteins in the UNC-5 pathway, or with proteins in parallel pathways. The selected compounds can be used 5 10 in the development of pharmaceutical preparations.

(B) Suppressor screens.

Yeast cells are transfected with a plasmid 15 encoding the *C. elegans* or human unc-5 (including the death domain), such as the vectors described in the yeast two hybrid experiments. Furthermore, the yeast cells are transfected with a library expressing *C. elegans* or human cDNA, such as the libraries described 20 in the yeast two hybrid experiments. The transfected yeast cells are placed in the wells of micotiter plates, and allowed to grow further. This allows selection cDNAs, and hence genes and proteins, that reduce or inhibit the lethal phenotype of the yeast 25 cells transfected with the death domain of unc-5. Such proteins will interact with UNC-5, or with UNC-5 interacting proteins, or with proteins in the UNC-5 pathway, or with proteins in parallel pathways to cause suppression of the unc-5 lethal phenotype. 30 The selected cDNAs genes and proteins can be used in the development of pharmaceutical preparations or in the development of assays to select for compounds that enhance their function or expression.

35

Example 8

Cloning of a *C. elegans* gene starting from a *C.*

elegans insert.

If a fragment of a given gene or cDNA is known then further fragments of the corresponding full length gene and/or cDNA can be constructed can often 5 be found using *in silico* techniques such as AceDB (see <http://www.sanger.ac.uk>), or searching of the EST database. The full cDNA can be cloned using standard technology such as 5'/3' RACE or SL1/2 RT-PCR on worm total RNA and colony hybridization. An analogous 10 strategy is followed to clone a full length gene and/or cDNA for vertebrate and hence Human DNA.

*Example 9*Cloning of *C. elegans* gene starting from a human 15 insert.

A full length *C. elegans* gene can be cloned starting from a human sequence. Using *in silico* techniques, a homologue or an EST can be found. Standard molecular biology techniques can then be used 20 to clone the full length *C. elegans* gene. If no homologous sequence can be found by simple database searching, it may be necessary to perform species hopping. An analogous strategy is followed to clone a full length gene and/or cDNA for vertebrate and hence 25 Human DNA, starting from a *C. elegans* DNA sequence.

- 57 -

SEQUENCE LISTING

- SEQ ID NO: 1 nucleotide sequence of a part of the
5 human unc-5Cb cDNA which encodes the
intracellular region of the protein.
- SEQ ID NO: 2 amino acid sequence of the
10 intracellular part of the human unc-5Cb
protein encoded by the nucleotide
sequence shown as SEQ ID NO: 1.
- SEQ ID NO: 3 nucleotide sequence of a part of the
15 human unc-5Cc cDNA which encodes the
intracellular region of the protein.
- SEQ ID NO: 4 amino acid sequence of the
20 intracellular part of the human unc-5Cc
protein encoded by the nucleotide
sequence shown as SEQ ID NO: 3.
- SEQ ID NO: 5 nucleotide sequence of a part of the
25 human unc-5C8 cDNA which encodes the
intracellular region of the protein.
- SEQ ID NO: 6 amino acid sequence of the
30 intracellular part of the human unc-5C8
protein encoded by the nucleotide
sequence shown as SEQ ID NO: 5.
- SEQ ID NO: 7 nucleotide sequence of the fragment of
35 the human unc-5H1 cDNA cloned by PCR in
Example 2.
- SEQ ID NO: 8 predicted amino acid sequence for the
35 human unc-5H1 protein, translation in
frame 1.

- 58 -

SEQ ID NO: 9 predicted amino acid sequence for the human unc-5H1 protein, translation in frame 2.

5 SEQ ID NO: 10 predicted amino acid sequence for the human unc-5H1 protein, translation in frame 3.

10 SEQ ID NO: 11 nucleotide sequence of the *C. elegans* spectrin β-chain/Fodrin cDNA.

SEQ ID NO: 12 amino acid sequence of the *C. elegans* spectrin β-chain/Fodrin protein.

15 SEQ ID NO: 13 nucleotide sequence of the fragment of the *C. elegans* spectrin β-chain/Fodrin cDNA cloned in pC1025.

20 SEQ ID NO: 14 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 13.

25 SEQ ID NO: 15 nucleotide sequence of the *C. elegans* APR-1 cDNA.

SEQ ID NO: 16 amino acid sequence of the *C. elegans* APR-1 protein.

30 SEQ ID NO: 17 nucleotide sequence of a fragment of the *C. elegans* APR-1 cDNA cloned in pC1028.

35 SEQ ID NO: 18 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 17.

SEQ ID NO: 19 nucleotide sequence of the *C. elegans*

- 59 -

unc-14 cDNA.

SEQ ID NO: 20 amino acid sequence of the *C. elegans* unc-14 protein.

5

SEQ ID NO: 21 nucleotide sequence of the fragment of the *C. elegans* unc-14 cDNA cloned in pC1034.

10 SEQ ID NO: 22 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 21.

15 SEQ ID NO: 23 nucleotide sequence of the *C. elegans* F11A10.1 cDNA.

SEQ ID NO: 24 amino acid sequence of the *C. elegans* F11A10.1 protein.

20 SEQ ID NO: 25 nucleotide sequence of the fragment of the *C. elegans* F11A10.1 cDNA cloned in pGC1021.

25 SEQ ID NO: 26 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 25.

SEQ ID NO: 27 nucleotide sequence of the *C. elegans* C15E6.1 cDNA.

30

SEQ ID NO: 28 amino acid sequence of the *C. elegans* C15E6.1 protein.

35

SEQ ID NO: 29 nucleotide sequence of the fragment of the *C. elegans* C15E6.1 cDNA cloned in pGC1026.

- 60 -

SEQ ID NO: 30 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 29.

5 SEQ ID NO: 31 nucleotide sequence of the *C. elegans* D1081.7 cDNA.

SEQ ID NO: 32 amino acid sequence of the *C. elegans* D1081.7 protein.

10 SEQ ID NO: 33 nucleotide sequence of the fragment of the *C. elegans* 1081.7 cDNA cloned in pGC1027.

15 SEQ ID NO: 34 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 33.

20 SEQ ID NO: 35 nucleotide sequence of the *C. elegans* B0238.9 cDNA (seu-2).

SEQ ID NO: 36 amino acid sequence of the *C. elegans* B0238.9 protein (seu-2).

25 SEQ ID NO: 37 nucleotide sequence of the fragment of the *C. elegans* B0238.9 cDNA cloned in pGC1023.

30 SEQ ID NO: 38 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 37.

SEQ ID NO: 39 nucleotide sequence of the *C. elegans* ZC404.8 cDNA.

35 SEQ ID NO: 40 amino acid sequence of the *C. elegans* ZC404.8 protein.

- 61 -

- SEQ ID NO: 41 nucleotide sequence of the *C. elegans* ZC404.8 cDNA cloned in pGC1033.
- 5 SEQ ID NO: 42 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 41.
- 10 SEQ ID NO: 43 nucleotide sequence of the fragment of the *C. elegans* yk17a3 cDNA cloned in pGC1023.
- 15 SEQ ID NO: 44 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 43.
- SEQ ID NO: 45 nucleotide sequence of the *C. elegans* F41H10.3 cDNA.
- 20 SEQ ID NO: 46 amino acid sequence of the *C. elegans* F41H10.3 protein.
- 25 SEQ ID NO: 47 nucleotide sequence of the fragment of the *C. elegans* F41H10.3 cDNA cloned in pGC1020.
- SEQ ID NO: 48 amino acid sequence of the polypeptide encoded by the cDNA fragment shown as SEQ ID NO: 47.
- 30 SEQ ID NO: 49 nucleotide sequence of the human i-beta-1,3-N-acetylaminyltransferase cDNA.
- 35 SEQ ID NO: 50 amino acid sequence of the human i-beta-1,3-N-acetylaminyltransferase protein.

- 62 -

SEQ ID NO: 51 partial nucleotide sequence for the fragment of the human i-beta-1,3-N-acetylaminyltransferase cDNA cloned in pYMP5 (forward primer, coding strand).

5

SEQ ID NO: 52 partial nucleotide sequence for the fragment of the human i-beta-1,3-N-acetylaminyltransferase cDNA cloned in pYMP5 (reverse primer, non-coding strand)

10

SEQ ID NO: 53 partial amino acid sequence for the polypeptide encoded by the fragment of the i-beta-1,3-N-acetylaminyltransferase cDNA cloned in pYMP5.

15

SEQ ID NO: 54 partial nucleotide sequence for the human cDNA fragment cloned in pYMP6 (forward primer, coding strand).

20

SEQ ID NO: 55 partial nucleotide sequence for the human cDNA fragment cloned in pYMP6 (reverse primer, non-coding strand).

25

SEQ ID NO: 56 partial nucleotide sequence for the human cDNA fragment cloned in pYMP17 (forward primer, coding strand).

30

SEQ ID NO: 57 partial nucleotide sequence for the human cDNA fragment cloned in pYMP17 (reverse primer, non-coding strand).

35

SEQ ID NO: 58 nucleotide sequence of the human alpha-2-macroglobulin cDNA.

SEQ ID NO: 59 amino acid sequence of the human alpha-

- 63 -

2-macroglobulin protein.

- 5 SEQ ID NO: 60 partial nucleotide sequence for the fragment of the human alpha-2-macroglobulin cDNA cloned in pYMP30 (reverse primer, non-coding strand).
- 10 SEQ ID NO: 61 partial nucleotide sequence of the fragment of human cDNA cloned in pYMP11 (forward primer, coding strand).
- 15 SEQ ID NO: 62 partial nucleotide sequence of the fragment of human cDNA cloned in pYMP11 (reverse primer, non-coding strand).
- 20 SEQ ID NO: 63 partial nucleotide sequence of the fragment of human cDNA cloned in pYMP12 (forward primer, coding strand).
- 25 SEQ ID NO: 64 partial nucleotide sequence of the fragment of human cDNA cloned in pYMP12 (reverse primer, non-coding strand).
- 30 SEQ ID NO: 65 amino acid sequence of the mouse APC-2 cDNA.
- 35 SEQ ID NO: 66 nucleotide sequence of a *C. elegans* I-beta-1,3-N-acetylaminyltransferase cDNA (F22F7.6).
- 40 SEQ ID NO: 67 amino acid sequence of a *C. elegans* I-beta-1,3-N-acetylaminyltransferase protein (F22F7.6).
- 45 SEQ ID NO: 68 nucleotide sequence of the *C. elegans* alpha-2-macroglobulin cDNA ZK337.1a.

- 64 -

- SEQ ID NO: 69 nucleotide sequence of the *C. elegans* alpha-2-macroglobulin cDNA ZK337.1b
- 5 SEQ ID NO: 70 amino acid sequence of the *C. elegans* alpha-2-macroglobulin protein ZK337.1a.
- SEQ ID NO: 71 amino acid sequence of the *C. elegans* alpha-2-macroglobulin protein ZK337.1b.
- 10 SEQ ID NO: 72 cDNA sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue C18C1.3.
- 15 SEQ ID NO: 73 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue C18C1.3.
- 20 SEQ ID NO: 74 cDNA sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue K09C8.4.
- 25 SEQ ID NO: 75 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue K09C8.4.
- SEQ ID NO: 76 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue F21H7.10.
- 30 SEQ ID NO: 77 cDNA sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue C54C8.2.
- 35 SEQ ID NO: 78 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue C54C8.2.

- 65 -

SEQ ID NO: 79 cDNA sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue F56H6.6.

5 SEQ ID NO: 80 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue F56H6.6.

10 SEQ ID NO: 81 cDNA sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue T15D6.4.

15 SEQ ID NO: 82 amino acid sequence for the *C. elegans* I-beta-1,3-N-acetylaminyltransferase homologue T15D6.4.

20 SEQ ID NO: 83 amino acid sequence of the extracellular part of the *C. elegans* unc-5 protein.

SEQ ID NO: 84 amino acid sequence of the transmembrane region of the *C. elegans* unc-5 protein.

25 SEQ ID NO: 85 amino acid sequence of the membrane proximal part of the *C. elegans* unc-5 protein.

30 SEQ ID NO: 86 amino acid sequence of the zonula occludens part of the *C. elegans* unc-5 protein.

35 SEQ ID NO: 87 amino acid sequence of a part of the *C. elegans* unc-5 protein of unknown function.

SEQ ID NO: 88 amino acid sequence of the death domain

- 66 -

of the *C. elegans* unc-5 protein.

SEQ ID NO: 89 amino acid sequence of the human HS1
protein.

5

SEQ ID NO: 90 amino acid sequence of the human UNC5C
protein.

10 SEQ ID NO: 91 complete nucleotide sequence of plasmid
pGC1037.

SEQ ID NO: 92 complete nucleotide sequence of plasmid
pGC1003.

15 SEQ ID NO: 93 amino acid sequence of *C. elegans* unc-
40.

SEQ ID NO: 94 nucleotide sequence of *C. elegans* unc-
40.

20

SEQ ID NO: 95 amino acid sequence of human unc-40.

SEQ ID NO: 96 nucleotide sequence of human unc-40.

25

ACCESSION NUMBERS:

Human beta-fodrin cDNA-GenBank S65762

30 Human beta-fodrin protein-swissprot Q01082

Human APC-1 cDNA-GenBank M74088

Human APC-1 protein-swissprot P25054

35

Human unc-14 cDNA (KIAA0375)-GenBank AB002373

- 67 -

Human unc-14 protein (KIAA0375) -BAA20830

Human yk17a3 cDNA (KIAA0187) -GenBank D80009

5 Human yk17a3 protein (KIAA0187) -SPTREMBL:Q14692

TABLE 1: Schematic representation of dimerisations of *C. elegans* unc-5, using constructions in pAS2 and pGAD424

pAS2	pGAD424							
	full length unc-5 (1016)	Dd (1008)	MPP (1009)	MPP + ZO-1 (1010)	MPP + ZO-1 + UP (1011)	UP (1013)	ZO-1 (1012)	empty pGAD424
full length unc-5 (1006)	nd	nd	nd	nd	nd	nd	nd	not blue
UP + DD (1000) auto-activation	nd	blue	nd	nd	nd	nd	nd	blue
MPP (1001)	nd	nd	nd	nd	nd	nd	nd	nd
MPP + ZO-1 (1002)	not blue	nd	nd	nd	nd	nd	nd	nd
MPP + ZO-1 + UP (1003)	not blue	not blue	not blue	nd	blue	not blue	not blue	not blue
ZO-1 (1007)	nd	nd	nd	nd	nd	nd	not blue	nd
UP (1004)	nd	nnd	nd	nd	nd	not blue	nd	nd
ZO-1 + UP (1005)	not blue	nd	nd	nd	nd	nd	blue	nd
empty pAS2	not blue	nd	nd	nd	nd	nd	nd	nd

- 68 -

Claims:

1. A protein comprising the sequence of amino acids set forth in SEQ ID NO: 2 or a sequence of amino acids which differs from that set forth in SEQ ID NO: 2 only in conservative amino acid changes.

2. A nucleic acid comprising a sequence of nucleotides which encodes the protein claimed in claim 1.

3. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 1 or a fragment thereof.

4. An expression vector comprising the nucleic acid of claim 2 or claim 3.

5. A host cell or organism transformed or transfected with the expression vector of claim 4.

6. An antibody which is capable of specifically binding to the protein claimed in claim 1 or an epitope thereof.

7. A protein comprising the sequence of amino acids set forth in SEQ ID NO: 4 or a sequence of amino acids which differs from that set forth in SEQ ID NO: 4 only in conservative amino acid changes.

8. A nucleic acid comprising a sequence of nucleotides which encodes the protein claimed in claim 7.

9. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 3 or a fragment thereof.

- 69 -

10. An expression vector comprising the nucleic acid of claim 8 or claim 9.

11. A host cell or organism transformed or
5 transfected with the expression vector of claim 10.

12. An antibody which is capable of specifically binding to the protein claimed in claim 7 or an epitope thereof.

10 13. A protein comprising the sequence of amino acids set forth in SEQ ID NO: 6 or a sequence of amino acids which differs from that set forth in SEQ ID NO: 6 only in conservative amino acid changes.

15 14. A nucleic acid comprising a sequence of nucleotides which encodes the protein claimed in claim 13.

20 15. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 5 or a fragment thereof.

25 16. An expression vector comprising the nucleic acid of claim 13 or claim 14.

17.. A host cell or organism transformed or
transfected with the expression vector of claim 16.

30 18. An antibody which is capable of specifically binding to the protein claimed in claim 13 or an epitope thereof.

35 19. A method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which

- 70 -

method comprises:

providing a host cell containing a DNA construct comprising a reporter gene operatively linked to a promoter regulated by a transcription factor having a DNA binding domain and an activating domain;

5 expressing in said host cell a first hybrid DNA sequence encoding a first fusion protein comprising an UNC-5 protein or a fragment thereof fused in-frame to either the DNA binding domain or the activating domain of the said transcription factor;

10 expressing in said host cell a second hybrid DNA sequence encoding a second fusion protein comprising an interacting protein or a fragment thereof fused in-frame to either the DNA binding domain or the activating domain of the said transcription factor, such that when the first fusion protein comprises the activation domain of the said transcription factor the second fusion protein comprises the DNA binding domain of the said transcription factor and when the first fusion protein comprises the DNA binding domain of the transcription factor the second fusion protein comprises the activation domain;

15 20 25 contacting the host cell with a sample of the compound under test; and

30 detecting any binding of the UNC-5 protein or fragment thereof to the interacting protein or fragment thereof by detecting the production of any reporter gene product in the said host cell.

20. A method of identifying compounds which are capable of inhibiting or enhancing the binding of an 35 UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

- 71 -

- providing a transgenic cell or organism
expressing a first fusion protein comprising an
UNC-5 protein or a fragment thereof fused in-
frame to a first genetically encoded fluorophore
and a second fusion protein comprising an
interacting protein or a fragment thereof fused
in-frame to a second genetically encoded
fluorophore, the first and second fluorophores
being characterised in that the emission spectrum
of one of the fluorophores overlaps with the
absorption spectrum of the other fluorophore;
- measuring the amount of fluorescence emitted
from the fluorophore having an emission spectrum
which overlaps with the absorption spectrum of
the other fluorophore;
- exposing the transgenic cell or organism to
a compound under test; and
- detecting any change in the amount of
fluorescence emitted fluorescence emitted from
the fluorophore having an emission spectrum which
overlaps with the absorption spectrum of the
other fluorophore.
21. A method of identifying compounds which are
capable of inhibiting or enhancing the binding of an
UNC-5 protein to an interacting protein previously
identified as binding to the said UNC-5 protein, which
method comprises:
- providing a first reaction component
comprising a first protein linked to a solid
support containing a scintillant and a second
reaction component comprising a second protein
which has been radioactively labelled, wherein
the first and second proteins are an UNC-5
protein or a fragment thereof and an interacting
protein or a fragment thereof;
- bringing the first and second reaction

- 72 -

components into contact in an aqueous solution in the presence of a compound under test; and

detecting binding of the first protein to the second protein by detecting light emission
5 from the scintillant.

22. A method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

coating the wells of a microtiter plate with UNC-5 protein or a fragment thereof;

15 contacting the UNC-5 protein or fragment thereof with an aqueous solution comprising an interacting protein or a fragment thereof, said interacting protein being labelled with a tag which is directly or indirectly detectable, and a compound under test;

20 washing to remove the compound under test and any unbound tagged interacting protein; and

detecting complexes of UNC-5 or a fragment thereof bound to the interacting protein or a fragment thereof by directly or indirectly
25 detecting the presence of the tag.

23. A method of identifying compounds which are capable of inhibiting or enhancing the binding of an UNC-5 protein to an interacting protein previously identified as binding to the said UNC-5 protein, which method comprises:

exposing a cell or organism expressing UNC-5 and overexpressing nucleic acid encoding an interacting protein to the compound under test;
35 and

screening for reversion of the overexpression phenotype of the cell or organism

to wild-type.

24. A method as claimed in claim 23 wherein the organism is a nematode worm.

5

25. A method as claimed in claim 24 wherein the nematode worm is *C. elegans*.

10 26. A method as claimed in claim 23 wherein the cell is a mammalian cell line.

15 27. A method as claimed in any one of claims 23 to 26 wherein the cell or organism further expresses a reporter gene encoding a reporter protein.

15

28. A method as claimed in claim 27 wherein the reporter protein is a fluorescent protein or a luminescent protein.

20

29. A method as claimed in any one of claims 19 to 28 wherein the UNC-5 protein is a *C. elegans* UNC-5 protein.

25

30. A method as claimed in any one of claims 19 to 28 wherein the UNC-5 protein is a human UNC-5 protein.

30

31. A method as claimed in claim 30 wherein the human UNC-5 protein is UNC-5C or a protein as claimed in any one of claims 1, 7, 13 or 71.

35 32. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is a *C. elegans* UNC-5 protein or a fragment thereof.

33. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is *C. elegans*

- 74 -

UNC-40.

34. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is human UNC-40.

5

35. A method as claimed in claim 34 wherein the UNC-40 protein comprises the sequence of amino acids set forth in SEQ ID NO: 95.

10

36. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is a *C. elegans* spectrin β-chain/fodrin protein.

15

37. A method as claimed in claim 36 wherein the spectrin β-chain/fodrin protein comprises the sequence of amino acids set forth in SEQ ID NO: 12.

20

38. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is *C. elegans* APR-1.

25

39. A method as claimed in claim 38 wherein the *C. elegans* APR-1 protein comprises the sequence of amino acids set forth in SEQ ID NO: 16.

30

40. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is *C. elegans* UNC-14.

35

41. A method as claimed in claim 40 wherein the *C. elegans* UNC-14 protein comprises the sequence of amino acids set forth in SEQ ID NO: 20.

35

42. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 24.

- 75 -

43. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 28.

5 44. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of nucleotides set forth in SEQ ID NO: 32.

10 45. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 36.

15 46. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 40.

20 47. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 44.

48. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises the sequence of amino acids set forth in SEQ ID NO: 46.

25 49. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is a human UNC-5 protein.

30 50. A method as claimed in claim 49 wherein the human UNC-5 protein is UNC-5C or a protein as claimed in any one of claims 1, 7, 13 or 71.

35 51. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is human i-beta-1,3-N-acetylaminyltransferase.

52. A method as claimed in claim 51 wherein the

- 76 -

human i-beta-1,3-N-acetylaminyltransferase comprises the sequence of amino acids set forth in SEQ ID NO: 50.

5 53. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises a protein encoded by the nucleic acid of claim 72 or claim 73.

10 54. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises a protein encoded by the nucleic acid of claim 74 or claim 75.

15 55. A method as claimed in any one of claims 29 to 31 wherein the interacting protein is human alpha-2 macroglobulin.

20 56. A method as claimed in claim 55 wherein the alpha-2 macroglobulin comprises the sequence of amino acids set forth in SEQ ID NO: 59.

25 57. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises a protein encoded by the nucleic acid of claim 76 or claim 77.

30 58. A method as claimed in any one of claims 29 to 31 wherein the interacting protein comprises a protein encoded by the nucleic acid of claim 78 or claim 79.

35 59. A method of identifying compounds which reduce or inhibit the lethal phenotype associated with the expression of the UNC-5 death domain in yeast, which method comprises:

 exposing a yeast cell containing an

- 77 -

expression vector comprising nucleic acid encoding an UNC-5 protein or a fragment thereof comprising the death domain to a compound under test;

5 allowing the yeast cells to grow in the presence of the compound; and

 screening for a reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast.

10

60. A method as claimed in claim 59 wherein the UNC-5 protein is a *C. elegans* UNC-5 protein.

15

61. A method as claimed in claim 59 wherein the UNC-5 protein is a human UNC-5 protein.

62. A method as claimed in claim 61 wherein the human UNC-5 protein is a protein as claimed in any one of claims 1, 7 or 13 or 71.

20

63. A method of identifying suppressors of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast, which method comprises:

25

 transfecting yeast cells containing an expression vector comprising nucleic acid encoding an UNC-5 protein or a fragment thereof comprising the death domain with a cDNA library cloned in a yeast expression vector;

30

 allowing the transfected yeast cells to grow for one or more cell divisions; and

 screening for reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast.

35

64. A method as claimed in claim 63, which method further comprises the steps of:

 identifying a transfected yeast cell

- 78 -

exhibiting a reduction or inhibition of the lethal phenotype associated with the expression of the UNC-5 death domain in yeast; and

5 isolating the cDNA clone(s) present in the transfected yeast cell which is/are responsible for conferring reduction or inhibition of the lethal phenotype.

10 65. A method as claimed in claim 63 or claim 64 wherein the UNC-5 protein is a *C. elegans* UNC-5 protein.

15 66. A method as claimed in claim 63 or claim 64 wherein the UNC-5 protein is a human UNC-5 protein.

67. A method as claimed in claim 66 wherein the human UNC-5 protein is a protein as claimed in any one of claims 1, 7, 13 or 71.

20 68. A method as claimed in claim 65 wherein the cDNA library is a *C. elegans* cDNA library.

25 69. A method as claimed in claim 66 or claim 67 wherein the cDNA library is a human cDNA library.

70. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 7.

30 71. A protein comprising a sequence of amino acids encoded by the nucleic acid molecule of claim 8.

72. A nucleic acid which is obtainable by restriction enzyme digestion of the plasmid pYMP17 with the restriction enzymes EcoRI and XhoI.

35 73. A nucleic acid as claimed in claim 72 which comprises the sequence of nucleotides set forth in SEQ

- 79 -

ID NO: 56 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 57.

5 74. A nucleic acid which is obtainable by restriction enzyme digestion of the plasmid pYMP6 with the restriction enzymes EcoRI and XhoI.

10 75. A nucleic acid as claimed in claim 74 which comprises the sequence of nucleotides set forth in SEQ ID NO: 54 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 55.

15 76. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 61 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 62.

20 77. A nucleic acid as claimed in claim 76 which is obtainable by restriction enzyme digestion of the plasmid pYMP11 with the restriction enzymes EcoRI and XhoI.

25 78. A nucleic acid comprising the sequence of nucleotides set forth in SEQ ID NO: 63 and a sequence of nucleotides complementary to the sequence of nucleotides set forth in SEQ ID NO: 64.

30 79. A nucleic acid as claimed in claim 78 which is obtainable by restriction enzyme digestion of the plasmid pYMP12 with the restriction enzymes EcoRI and XhoI.

35 80. A nucleic acid probe which is capable of hybridizing to the nucleic acid of claim 70 under conditions of high stringency.

- 80 -

81. An oligonucleotide comprising a sequence of 10 or more consecutive nucleotides of the sequence of nucleotides set forth in SEQ ID NO: 7.

5 82. An antisense nucleic acid which is capable of hybridizing to the sequence of nucleotides set forth in SEQ ID NO: 7 under conditions of high stringency.

10 83. An expression vector comprising the nucleic acid of claim 70.

84. A host cell or organism transformed or transfected with the expression vector of claim 83.

15 85. An antibody which is capable of specifically binding to the protein claimed in claim 71.

FIG. 1.

Multalin version 5.3.3
 Copyright I.N.R.A. France 1989, 1991, 1994, 1996
 Published research using this software should cite
 Multiple sequence alignment with hierarchical clustering
 F. CORPET, 1988, Nucl. Acids Res., 16 22, 10881-10890
 Symbol comparison table: blosum62
 Gap weight: 12
 Gap length weight: 2
 Consensus levels: high=90% low=50%
 Consensus symbols:
 ! is anyone of IV
 \$ is anyone of LM
 % is anyone of FY
 # is anyone of NDQEBZ

MSF: 1599 Check: 0
 Name: UNC5C Len: 1599 Check: 410 Weight: 0.76
 Name: UNC5C8 Len: 1599 Check: 1710 Weight: 0.76
 Name: UNC5Cc Len: 1599 Check: 5512 Weight: 1.12
 Name: UNC5Cd(UNC5Cb) Len: 1599 Check: 1388 Weight: 1.37
 Name: Consensus Len: 1599 Check: 7845 Weight: 4.00

UNC5C	1	50
UNC5C8	TTGTTTGTGT ATCGGAAGAA TCATCGTGAC TTTGAGTCAG ATATTATTGAA	
UNC5Cc	TTGTTTGTGT ATCGGAAGAA TCATCGTGAC TTTGAGTCAG ATATTATTGAA	
UNC5Cd	TTGTTTGTGT ATCGGAAGAA TCATCGTGAC TTTGAGTCAG ATATTATTGAA	
Consensus	TTGTTTGTGT ATCGGAAGAA TCATCGTGAC TTTGAGTCAG ATATTATTGAA	
UNC5C	51	100
UNC5C8	CTCTTCGGCA CTCAAATGGGG GCTTTTCAGCC TGTGAACATC AAGGCAGCAA	
UNC5Cc	CTCTTCGGCA CTCAAATGGGG GCTTTTCAGCC TGTGAACATC AAGGCAGCAA	
UNC5Cd	CTCTTCGGCA CTCAAATGGGG GCTTTTCAGCC TGTGAACATC AAGGCAGCAA	
Consensus	CTCTTCGGCA CTCAAATGGGG GCTTTTCAGCC TGTGAACATC AAGGCAGCAA	
UNC5C	101	150
UNC5C8	GACAAGATCT GCTGGCTGTA CCCCCCAGACC TCACGTCAGC TGCAGCCATG	
UNC5Cc	GACAAGATCT GCTGGCTGTA CCCCCCAGACC TCACGTCAGC TGCAGCCATG	
UNC5Cd	GACAAGATCT GCTGGCTGTA CCCCCCAGACC TCACGTCAGC TGCAGCCATG	
Consensus	GACAAGATct gctggctgta cccccagaCC TCACGTCAGC TGCAGCCATG	
UNC5C	151	200
UNC5C8	TACAGAGGAC CTGTCTATGC CCTGCATGAC GTCTCAGACA AAATCCCAAT	
UNC5Cc	TACAGAGGAC CTGTCTATGC CCTGCATGAC GTCTCAGACA AAATCCCAAT	
UNC5Cd	TACAGAGGAC CTGTCTATGC CCTGCATGAC GTCTCAGACA AAATCCCAAT	
Consensus	TACAGAGGAC CTGTCTATGC CCTGCATGAC GTCTCAGACA AAATCCCAAT	
UNC5C	201	250
UNC5C8	GACCAACTCT CCAATTCTGG ATCCACTGCC CAACCTGAAA ATCAAAGTGT	
UNC5Cc	GACCAACTCT CCAATTCTGG ATCCACTGCC CAACCTGAAA ATCAAAGTGT	
UNC5Cd	GACCAACTCT CCAATTCTGG ATCCACTGCC CAACCTGAAA ATCAAAGTGT	
Consensus	GACCAACTCT CCAATTCTGG ATCCACTGCC CAACCTGAAA ATCAAAGTGT	
UNC5C	251	300
UNC5C8	ACAAACACCTC AGGTGCTGTC TCCCCCCAAG ATGACCTCTC TGAGTTTACG	
UNC5Cc	ACAAACACCTC AGGTGCTGTC ACC-----	
UNC5Cd	ACAAACACCTC AAGTGCTGTC ACC-----	
Consensus	ACAAACACCTC AGGTGCTGTC aCCCCccaag atgacctctc tgagtttacg	
UNC5C	301	350
UNC5C8	TCCAAGCTGT CCCCTCAGAT GACCCAGTCG TTGTTGGAGA ATGAAGCCCT	
UNC5Cc	-----	
UNC5Cd	TCCAAGCTGT CCCCTCAGAT GACCCAGTCG TTGTTGGAGA ATGAAGCCCT	
Consensus	tccaagctgt cccctcagat gacccagtcg ttgttggaga atgaagccct	

FIG. 1 (CONTINUED 1)

UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	351 CAGCCTGAAG AACCAGAGTC TAGCAAGGCA GACTGATCCA TCCTGTACCG CAGCCTGAAG AACCAGAGTC TAGCAAGGCA GACTGATCCA TCCTGTACCG ----- CAGCCTGAAG AACCAGAGTC TAGCAAGGCA GACTGATCCA TCCTGTACCG cagcctgaag aaccagagtc tagcaaggca gactgatcca tcctgtacccg	400
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	401 CATTTGGCAG CTTCAACTCG CTGGGAGGTC ACCTTATTGT TCCCAATTCA CATTTGGCAG CTTCAACTCG CTGGGAGGTC ACCTTATTGT TCCCAATTCA ----- CATTTGGCAG CTTCAACTCG CTGGGAGGTC ACCTTATTGT TCCCAATTCA catttggcag cttcaactcg ctgggaggtc accttattgt tcccaattca	450
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	451 GGAGTCAGCT TGCTGATTCC CGCTGGGCC ATTCCCCAAG GGAGAGTCTA GGAGTCAGCT TGCTGATTCC CGCTGGGCC ATTCCCCAAG GGAGAGTCTA GGAGTCAGCT TGCTGATTCC CGCTGGGCC ATTCCCCAAG GGAGAGTCTA GGAGTCAGCT TGCTGATTCC CGCTGGGCC ATTCCCCAAG GGAGAGTCTA GGAGTCAGCT TGCTGATTCC CGCTGGGCC ATTCCCCAAG GGAGAGTCTA	500
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	501 CGAAATGTAT GTGACTGTAC ACAGGAAAGA AACTATGAGG CCACCCATGG CGAAATGTAT GTGACTGTAC ACAGGAAAGA AACTATGAGG CCACCCATGG CGAAATGTAT GTGACTGTAC ACAGGAAAGA AACTATGAGG CCACCCATGG CGAAATGTAT GTGACTGTAC ACAGGAAAGA AACTATGAGG CCACCCATGG CGAAATGTAT GTGACTGTAC ACAGGAAAGA AACTATGAGG CCACCCATGG	550
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	551 ATGACTCTCA GACACTTTTG ACCCCTGTGG TGAGCTGTGG GCCCCCAGGA ATGACTCTCA GACACTTTTG ACCCCTGTGG TGAGCTGTGG GCCCCCAGGA ATGACTCTCA GACACTTTTG ACCCCTGTGG TGAGCTGTGG GCCCCCAGGA ATGACTCTCA GACACTTTTG ACCCCTGTGG TGAGCTGTGG GCCCCCAGGA ATGACTCTCA GACACTTTTG ACCCCTGTGG TGAGCTGTGG GCCCCCAGGA	600
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	601 GCTCTGCTCA CCCGCCCCGT CGTCCTCACT ATGCATCACT GCGCAGACCC GCTCTGCTCA CCCGCCCCGC CGTCCTCACT ATGCATCACT GCGCAGACCC GCTCTGCTCA CCCGCCCCGT CGTCCTCACT ATGCATCACT GCGCAGACCC GCTCTGCTCA CCCGCCCCGT CGTCCTCACT ATGCATCACT GCGCAGACCC GCTCTGCTCA CCCGCCCCGt CGTCCTCACT ATGCATCACT GCGCAGACCC	650
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	651 CAATACCGAG GACTGGAAAA TACTGCTCAA GAACCAGGCA GCACAGGGAC CAATACCGAG GACTGGAAAA TACTGCTCAA GAACCAGGCA GCACAGGGAC CAATACCGAG GACTGGAAAA TACTGCTCAA GAACCAGGCA GCACAGGGAC CAATACCGAG GACTGGAAAA TACTGCTC----- CAATACCGAG GACTGGAAAA TACTGCTcaa gaaccaggca gcacagggac	700
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	701 AGTGGGAGGA TGTGGTGGTG GTCGGGGAGG AAAACTTCAC CACCCCTCTGC AGTGGGAGGA TGTGGTGGTG GCCGGGGAGG AAAACTTCAC CACCCCTCTGC AGTGGGAGGA TGTGGTGGTG GTCGGGGAGG AAAACTTCAC CACCCCTCTGC ----- agtgggagga tgtggtgtg g cggggagg aaaacttcac caccctctgc	750
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	751 TACATTAAGC TGGATGCAGA GGCCTGCCAC ATCCTCACAG AGAACCTCAG TACATTAAGC TGGATGCAGA GGCCTGCCAC ATCCTCACAG AGAACCTCAG TACATTCAGC TGGATGCAGA GGCCTGCCAC ATCCTCACAG AGAACCTCAG ----- tacatt agc tggatgcaga ggcctgccac atccctcacag agaacctcag	800
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	801 CACCTACGCC CTGGTAGGAC ATTCCACCAC CAAAGCGGCT GCAAAGCGCC CACCTACGCC CTGGTAGGAC ATTCCACCAC CAAAGCGGCT GCAAAGCGCC CACCTACGCC CTGGTAGGAC ATTCCACCAC CAAAGCGGCT GCAAAGCGCC ----- cacctacgcc ctggtaggac attccaccac caaagcggt gcaaagcgcc	850
UNC5C UNC5C8 UNC5Cc UNC5Cd Consensus	851 TCAAGCTGGC CATCTTTGGG CCCCTGTGCT GCTCCTCGCT GGAGTACAGC TCAAGCTGGC CATCTTTGGG CCCCTGTGCT GCTCCTCGCT GGAGTACAGC TCAAGCTGGC CATCTTTGGG CCCCTGTGCT GCTCCTCGCT GGAGTACAGC ----- tcaagctggc catctttggg cccctgtgct gctcctcgct ggagtacagc	900

3/18

FIG. 1 (CONTINUED 2).

					950
UNC5C	ATCCGAGTCT	ACTGTCTGGA	TGACACCCAG	GATGCCCTGA	AGGAAATTTC
UNC5C8	ATCCGAGTCT	ACTGTCTGGA	TGACACCCAG	GATGCCCTGA	AGGAAATTTC
UNC5Cc	ATCCGAGTCT	ACTGTCTGGA	TGACACCCAG	GGTGCCCTGA	AGGAAATTTC
UNC5Cd	ATCCGAGTCT	ACTGTCTGGA	TGACACCCAG	GATGCCCTGA	AGGAAATTTC
Consensus	ATCCGAGTCT	ACTGTCTGGA	TGACACCCAG	GATGCCCTGA	AGGAAATTTC
					1000
UNC5C	ACATCTTGAG	AGACAGACGG	GAGGACAGCT	CCTAGAAGAA	CCTAAGGCTC
UNC5C8	ACATCTTGAG	AGAXXXXXXX	XXXXXXXXXX	XXXXXXXXXX	XXXXAGGTTT
UNC5Cc	ACATCTTGAG	AGACAGACGG	GAGGACAGCT	CCTAGAAGAA	CCTAAGGCTC
UNC5Cd	ACATCTTGAG	AGACAGACGG	GAGGACAGCT	CCTAGAAGAA	CCTAAGGCTC
Consensus	ACATCTTGAG	AGACAGACGG	gaggacagct	cctagaagaa	cctaAGGcTc
					1050
UNC5C	TTCATTTAA	AGGCAGCACCC	CACAACCTGC	GCCTGTCAAT	TCACGATATC
UNC5C8	TTCATTT-AA	AGCANGCANC	CNNCAATGN	GCCTGTCAAT	TCNCGATATG
UNC5Cc	TTCATTTAA	AGGCAGCACCC	CACAACCTGC	GCCTGTCAAT	TCACGATATC
UNC5Cd	TTCATTTAA	AGGCAGCACCC	CACAACCTGC	GCCTGTCAAT	TCACGATATC
Consensus	TTCATTT-AA	AggcAGCACCC	CacaAccTGC	GCCTGTCAAT	TCaCGATATC
					1100
UNC5C	GCCCATTCCC	TCTGGAAGAG	CAAATTGCTG	GCTAAATATC	AGGAAATTCC
UNC5C8	GCCCATTCCC	TCTGAAAGAG	CAAATTGCTG	GCTAAATATC	AGGAAATTCC
UNC5Cc	GCCCGTTCCC	TCTGGAAGAG	CAAATTGCTG	GCTAAATATC	AGGAAATTCC
UNC5Cd	GCCCATTTCCC	TCTGGAAGAG	CAAATTGCTG	GCTAAATATC	AGGAAATTCC
Consensus	GCCCaTTCCC	TCTGgAAAGAG	CAAATTGCTG	GCTAAATATC	AGGAAATTCC
					1150
UNC5C	ATTTTACCAT	GTTTGGAGTG	GATCTCAAAG	AAACCTGCAC	TGCACCTTCA
UNC5C8	ATTTTACCAT	GTTTGGAGTG	GATCTCAAAG	AANCTGCAC	TGCACNTTCA
UNC5Cc	ATTTTACCAT	GTTTGGAGTG	GATCTCAAAG	AAACCTGCAC	TGCACCTTCA
UNC5Cd	ATTTTACCAT	GTTTGGAGTG	GATCTCAAAG	AAACCTGCAC	TGCACCTTCA
Consensus	ATTTTACCAT	GTTTGGAGTG	GATCTCAAAG	AAACCTGCAC	TGCACCTTCA
					1200
UNC5C	CTCTGGAAAG	ATTTAGCCTG	AAACACAGTG	AGCTGGTTTG	CAAACCTCTGT
UNC5C8	CTCTGGAAAG	ATTTAGCCTG	AAACACAGTG	AGCTGGTTTG	CAAACCTCTGT
UNC5Cc	CTCTGGAAAG	ATTTAGCCTG	AAACACAGTG	AGCTGGTTTG	CAAACCTCTGT
UNC5Cd	CTCTGGAAAG	ATTTAGCCTG	AAACACAGTG	AGCTGGTTTG	CAAACCTCTGT
Consensus	CTCTGGAAAG	ATTTAGCCTG	AAACACAGTG	AGCTGGTTTG	CAAACCTCTGT
					1250
UNC5C	GTGCGGCAGG	TGGAAGGAGA	AGGGCAGATC	TTCCAGCTCA	ACTGCACCGT
UNC5C8	GT-CGGCAGG	TGGAAGGAGA	AGG-CAGATC	TTCCAGCTCA	ACTGCACCGT
UNC5Cc	GTGCGGCAGG	TGGAAGGAGA	AGGGCAGATC	TTCCAGCTCA	ACTGCACCGT
UNC5Cd	GTGCGGCAGG	TGGAAGGAGA	AGGGCAGATC	TTCCAGCTCA	ACTGCACCGT
Consensus	GTgCGGCAGG	TGGAAGGAGA	AGggCAGATC	TTCCAGCTCA	ACTGCACCGT
					1300
UNC5C	GTCAGAGGAA	CCTACTGGCA	TCGATTTGCC	GCTGCTGGAT	CCTGCGAACAA
UNC5C8	GTCAGAGGAA	CCTACTGGCA	TCGATTTGCC	GCTGCTGGAT	CCTGCGAACAA
UNC5Cc	GTCAGAGGAA	CCTACTGGCA	TCGATTTGCC	GCTGCTGGAT	CCTGCGAACAA
UNC5Cd	GTCAGAGGAA	CCTACTGGCA	TCGATTTGCC	GCTGCTGGAT	CCTGCGAACAA
Consensus	GTCAGAGGAA	CCTACTGGCA	TCGATTTGCC	GCTGCTGGAT	CCTGCGAACAA
					1350
UNC5C	CCATCACCAAC	GGTCACGGGG	CCCACTGCTT	TCAGCATCCC	TCTCCCTATC
UNC5C8	CCATCACCAAC	GGTCACGGGG	CCCACTGCTT	TCAGCATCCC	TCTCCCTATC
UNC5Cc	CCATCACCAAC	GGTCACGGGG	CCCACTGCTT	TCAGCATCCC	TCTCCCTATC
UNC5Cd	CCATCACCAAC	GGTCACGGGG	CCCACTGCTT	TCAGCATCCC	TCTCCCTATC
Consensus	CCATCACCAAC	GGTCACGGGG	CCCACTGCTT	TCAGCATCCC	TCTCCCTATC
					1400
UNC5C	CGGCAGAAGC	TCTGTAGCAG	CCTGGATGCC	CCCCAGACGA	GAGGCCATGA
UNC5C8	CGGCAGAAGC	TCTGTAGCAG	CCTGGATGCC	CCCCAGACGA	GAGGCCATGA
UNC5Cc	CGGCAGAAGC	TCTGTAGCAG	CCTGGATGCC	CCCCAGACGA	GAGGCCATGA
UNC5Cd	CGGCAGAAGC	TCTGTAGCAG	CCTGGATGCC	CCCCAGACGA	GAGGCCATGA
Consensus	CGGCAGAAGC	TCTGTAGCAG	CCTGGATGCC	CCCCAGACGA	GAGGCCATGA
					1450
UNC5C	CTGGAGGATG	CTGGCCCATA	AGCTGAACCT	GGACAGGTAC	TTGAATTACT
UNC5C8	CTGGAGGATG	CTGGCCCATA	AGCTGAACCT	GGACAGGTAC	TTGAATTACT
UNC5Cc	CTGGAGGATG	CTGGCCCATA	AGCTGAACCT	GGACAGGTAC	TTGAATTACT
UNC5Cd	CTGGAGGATG	CTGGCCCATA	AGCTGAACCT	GGACAGGTAC	TTGAATTACT
Consensus	CTGGAGGATG	CTGGCCCATA	AGCTGAACCT	GGACAGGTAC	TTGAATTACT

SUBSTITUTE SHEET (RULE 26)

FIG. 1 (CONTINUED 3).

	1451		1500		
UNC5C	TTGCCACCAA	ATCCAGCCCCA	ACTGGCGTAA	TCCTGGATCT	TTGGGAAGCA
UNC5C8	TTGCCACCAA	ATCCAGCCCCA	ACTGGCGTAA	TCCTGGATCT	TTGGGAAGCA
UNC5Cc	TTGCCACCAA	ATCCAGCCCCA	ACTGGCGTAA	TCCTGGATCT	TTGGGAAGCA
UNC5Cd	TTGCCACCAA	ATCCAGCCCCA	ACTGGCGTAA	TCCTGGATCT	TTGGGAAGCA
Consensus	TTGCCACCAA	ATCCAGCCCCA	ACTGGCGTAA	TCCTGGATCT	TTGGGAAGCA
	1501		1550		
UNC5C	CAGAACTTCC	CAGATGGAAA	CCTGAGCATG	CTGGCAGCTG	TCTTGGAAAGA
UNC5C8	CAGAACTTCC	CAGATGGAAA	CCTGAGCATG	CTGGCAGCTG	TCTTGGAAAGA
UNC5Cc	CAGAACTTCC	CAGATGGAAA	CCTGAGCATG	CTGGCAGCTG	TCTTGGAAAGA
UNC5Cd	CAGAACTTCC	CAGATGGAAA	CCTGAGCATG	CTGGCAGCTG	TCTTGGAAAGA
Consensus	CAGAACTTCC	CAGATGGAAA	CCTGAGCATG	CTGGCAGCTG	TCTTGGAAAGA
	1551		1599		
UNC5C	AATGGGAAGA	CATGAAACGG	TGGTGTCCCTT	ACCAGCAGAA	GGGCAGTAT
UNC5C8	AATGGGAAGA	CATGAAACGG	TGGTGTCCCTT	AGCAGCAGAA	GGGCAGTAT
UNC5Cc	AATGGGAAGA	CATGAAACGG	TGGTGTCCCTT	AGCAGCAGAA	GGGCAGTAT
UNC5Cd	AATGGGAAGA	CATGAAACGG	TGGTGTCCCTT	AGCAGCAGAA	GGGCAGTAT
Consensus	AATGGGAAGA	CATGAAACGG	TGGTGTCCCTT	AGCAGCAGAA	GGGCAGTAT

FIG. 2.

Multalin version 5.3.3

Copyright I.N.R.A. France 1989, 1991, 1994, 1996

Published research using this software should cite

Multiple sequence alignment with hierarchical clustering

F. CORPET, 1988, Nucl. Acids Res., 16 22, 10881-10890

Symbol comparison table: blosum62

Gap weight: 12

Gap length weight: 2

Consensus levels: high=90% low=50%

Consensus symbols:

! is anyone of IV

\$ is anyone of LM

% is anyone of FY

is anyone of NDQEBZ

MSF: 2908 Check: 0

Name: ratunc5h1	Len: 2908	Check: 8912	Weight: 0.87
Name: ym97d12	Len: 2908	Check: 4745	Weight: 0.87
Name: 1G	Len: 2908	Check: 1058	Weight: 1.05
Name: 1Jrc	Len: 2908	Check: 508	Weight: 1.04
Name: 2Brc	Len: 2908	Check: 6768	Weight: 1.04
Name: 3D	Len: 2908	Check: 8193	Weight: 1.13
Name: Consensus	Len: 2908	Check: 6031	Weight: 6.00

//

ratunc5h1 1 ATGGCCGTCC GGCCCGGCCT GTGCCAGTG CTCCTGGCA TAGTCCTCGC
 ym97d12

1G

1Jrc

2Brc

3D

Consensus

ratunc5h1 51 CGCCTGGCTT CGTGGTTCGG GTGCCAGCA GAGTGCCACG GTGGCCAATC
 ym97d12

1G

1Jrc

2Brc

3D

Consensus

ratunc5h1 101 CAGTCCCCGG TGCCAACCCC GACCTGCTGC CCCACTTCCT GGTAGAGCCT
 ym97d12

1G

1Jrc

2Brc

3D

Consensus

ratunc5h1 151 GAGGACGTGT ACATTGTCAA GAACAAGCCG GTGTTGTTGG TGTGCAAGGC
 ym97d12

1G

1Jrc

2Brc

3D

Consensus

SUBSTITUTE SHEET (RULE 26)

FIG. 2 (CONTINUED 1).

ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	201	TGTGCCTGCC ACCCAGATCT TCTTCAAGTG CAATGGGAA TGGGTCCGCC
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	251	AGGTTCGATCA CGTAATTGAA CGCAGCACCG ACAGCAGCAG CGGATTGCCA
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	301	ACCATGGAGG TCCGTATCAA CGTATCGAGG CAGCAGGTAG AGAAAGTGTGTT
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	350	TGGGCTGGAG GAATACTGGT GCCAGTGTGT GGCATGGAGC TCCTCGGGTA
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	401	CCACCAAAAG TCAGAAGGCC TACATCCGGA TTGCCTATTT GCGCAAGAAC
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	450	TTTGAGCAGG AGCCACTGGC CAAGGAAGTG TCACTGGAGC AAGGCATTGT
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	500	ACTACCTTGT CGCCCCCCCAG AAGGAATCCC CCCAGCTGAG GTGGAGTGGC

.7/18

FIG. 2 (CONTINUED 2).

ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	551	600
	TTCGAAATGA GGACCTCGTG GACCCCTCCC TCGATCCCAA TGTGTACATC	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	601	650
	ACGCAGGGAGC ACAGCCTAGT CGTGCAGTCAG GCCCGCCTGG CCGACACGGC	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	651	700
	CAACTACACC TGTGTGGCCA AGAACATCGT AGCCCGTCGC CGAAGCACCT	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	701	750
	CTGCAGCGGT CATTGTTAT GTGAACGGTG GGTGGTCGAC GTGGACTGAG	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	751	800
	TGGTCCGTCT GCAGCGCCAG CTGTGGCGT GGCTGGCAGA AACGGAGCCG	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	801	850
	GAGCTGCACC AACCCGGCAC CTCTAACGG GGGCGCCTTC TGTGAGGGC	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	851	900
	AGAATGTCCA GAAAACAGCC TGCGCCACTC TGTGCCAGT GGATGGGAGC	

SUBSTITUTE SHEET (RULE 26)

FIG. 2 (CONTINUED 3).

ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	901	950
	TGGAGTTCGT GGAGTAAGTG GTCAGCCTGT GGGCTTGACT GCACCCACTG	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	951	1000
	GCGGAGCCGC GAGTGCTCTG ACCCAGCACC CCGCAATGGA GGTGAGGAGT	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1001	1050
	GTCGGGGTGC TGACCTGGAC ACCCGCAACT GTACCAGTGA CCTCTGCCTG	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1051	1100
	CACACCGCTT CTTGCCCGA GGACGTGGCT CTCTACATCG <u>GCCTTGTGCG</u>	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1101	1150
	CACACTGCTT CTGGCCCTGA GGACGTGGCC CTCTATGTGG GCCTNATCGC	
<i>Predicted transmembrane region</i>		
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1151	1150
	<u>TGTGGCTGTG</u> TGCCTTTCT TGCTGTTGCT <u>GGCCCTTGG</u> A CTCATTACT	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1151	1200
	CGTGGCCGNN TGCCTGGTCC TGCTGCTGCT TGTCTCATC CTCGTTTATT t t c g cc c c c tt a	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1201	1250
	<u>GTCGCAAGAA</u> GGAAGGGCTG GACTCCGATG TGGCCGACTC GTCCATCCTC	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1250	1250
	GCCGGAAGAA GGAGGGGCTG GACTCANATG TGGCTGACTC GTCCATTCTC gcc aa gg g ga g t c ga c t t tc	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1250	1250
	ACCTCGGGCT TCCAGCCTGT CAGCATCAAG CCCAGCAAAG CAGACAACCC	
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	1250	1250
	ACCTCAGGCT TCCAGCCCCGT CAGCATCAAG CCCAGCAAAG CAGACAACCC cc a tt g cc t agc a ca g c cc	

SUBSTITUTE SHEET (RULE 26)

FIG. 2 (CONTINUED 4).

ratunc5h1 ym97d12	1251	CCACCTGCTC ACCATCCAGC CAGACCTCAG CACCACCACT ACCACCTACC	1300
1G			
1Jrc	CCTTGGGTTCC -CCNTCAAGT GGTNNCANGG GGGTGGCCCT TGAA-- TTCA		
2Brc	ACTTGGGTTCC -CCNTCAAGT TGT-- CAATG GGGNGCCCCT --GA-- ATCA		
3D	CCATCTGCTC ACCATCCAGC CGGACCTCAG CACCACCACC ACCACCTACC		
Consensus	cc t g tc cc tc ag g c g cc c a tc		
ratunc5h1 ym97d12	1301	AGGGCAGTCT ATGTTCGAGG CAGGATGGAC CCAGCCCCAA GTTCCAGCTC	1350
1G			
1Jrc			
2Brc			
3D	AGGGCAGTCT NTGTCCCCGG CAGGATGGGC CCAGCCCCAA GTTCCAGCTC		
Consensus	ag a t tgt gg gg tgg c agc c ccag		
ratunc5h1 ym97d12	1351	TCTAATGGTC ACCTGCTCAG CCCACTGGGG AGTGGCCGCC ATACGTTGCA	1400
1G			
1Jrc			
2Brc			
3D	TCAG CCCCTGGGT GGCGGCCGCC ACACACTGCA		
Consensus	ACCAATGGGC ACCTGCTCAG CCCCCTGGGT GGCGGCCGCC ACACACTGCA		
aa g c cct tcag ccc cctggg g ggccgCC acac tGCA			
ratunc5h1 ym97d12	1401	CCACAGCTCA CCCACCTCTG AGGCTGAGGA CTTCGTCCTCC CGCCTCTCCA	1450
1G			
1Jrc	CCACAGCTCT CCCACCTCTG AGGCGAGGA GTTCGTCCTCC CGCCTCTCCA		
2Brc			
3D	CCACAGCTCT CCCACCTNTG AGGCCNAGGA GTTCGNNTCC CGCCTTTCCA		
Consensus	cCacagCtct cCcacctctG aggcc AGGa gttCg tcc cGccT Tcca		
ratunc5h1 ym97d12	1451	CCCAGAACTA CTT-TCGTTTC CCTGCCCGC GGCACCAGCA ACATGGCCTA	1500
1G			
1Jrc	CCCAGAACTA CTT-CCGCTC CCTGCCCGA GGCACCAGCA ACATGACCTA		
2Brc			
3D	CCCAGAACTA CTTNCGGTTTC CCTGCCCGA GGCACCAGCA ACATGACCTT		
Consensus	cccagaacTa ctT cgGttC ctTgccCcga GGC ccagca acAtGaCCT		
ratunc5h1 ym97d12	1501	C---GGGACCT TCA-ACTTCC TCGGGGG-CC GGCTGATGAT --CCCTAATA	1550
1G			
1Jrc	T---GGGACCT TCA-ACTTCC TCGGGGG-CC GGCTGATGAT --CCCTAATA		
2Brc			
3D	T---GGGACCT TCNNACTTCC TCGGGGG-CC GGCTGATGAT --CCCTAATA		
Consensus	ATGGGGACCT TTAAATTTCCT TCGGGGGNCC GGNTTATGAA NCCCTAATTG		
gGGaCCT t acTTCc TcggggG CC Gg t atga cc atTc			
ratunc5h1 ym97d12	1551	CGGGGA--TC AGCCTCCT-C ATACCCCCGG ATGCCATCCC CC-GAGGAAA	1600
1G			
1Jrc	CAGGAA--TC AGCCTCCT-C ATCCCCCCCAG ATGCCATACC CC-GAGGAAA		
2Brc			
3D	CAGGAA--TC AGCCTCCT-C ATCCCCCCCAG ATGCCATACC CC-GAGGAAA		
Consensus	CAGGAAATTAA AACCTTCTTA ATCCCCCCCAA ATGCCANACC CCCGANGGAA		
CaGGaA Tc AgCCTcCT c ATcCCCCCAG ATGCCAtaCC CC GAGGgAA			

SUBSTITUTE SHEET (RULE 26)

FIG. 2 (CONTINUED 5).

	1601	1650
ratunc5h1	GATCT-ACGA GATCTACCTC ACACTGCACA AGCCAGAAGA CGTGAGGTTG	
ym97d12	GATCT-ATGA GATCTACCTC ACGCTGCACA AGCCGGAAGA CGTGAGGTTG	
1G	GATCT-ATGA GATCTGCCTC ACGCTGCACA AGCCGGAAGA CGTGAGGTTG	
1Jrc	GATCT-ATGA GATCTACCTC ACGCTGCACA AGCCGGAAGA CGTGAGGTTG	
2Brc	GATCT-ATGA GATCTACCTC ACGCTGCGCA AGCCGGAAGA CGTGAGGTTG	
3D	NATCTNTTGN NAACTACCTT A-----A ANCTTGANNA AGCCCGGAAA	
Consensus	gATCT atGa gAtCTaCCTc AcgctgcacA AgCcgGAagA cGtgaGGttg	
	1651	1700
ratunc5h1	CCCCTAGCTG GCTGTCAGAC CCTGCTGAGT CCAGTCGTTA GCTGTGGGCC	
ym97d12	CCCCTAGCTG GCTGTCAGAC CCTGCTGAGT CCCATCGTTA GCTGTGGACC	
1G	CCCCTAGCTG GCTGTCAGAC CCTGCTGAGT CCCATCGTTA GCTGTGGACC	
1Jrc	CCCCTAGCTG GCTGTCAGAC CCTGCTGAGT CCCATCGTTA GCTGTGGACC	
2Brc	CCCCTAGCTG GCTGTCAGAC CCTGCTGAGT CCCATCGTTA GCTGTGGACC	
3D	AACC	
Consensus	ccccctagctg gctgtcagac cctgctgagt cccatcgta gctgtggacc	
	1701	1750
ratunc5h1	CCCA-GGAGT CCTGCTCACC CGGCCAGTCA T-CCTTG-CA ATGGACCACT	
ym97d12	CCCT-GGCGT CCTGCTCACC CGGCCAGTCA T-CCTGG-CT ATGGACCACT	
1G	CCCT-GGCGT CCTGCTCACC CGGCCAGTCA T-CCTGG-CT ATGGACCACT	
1Jrc	CCCT-GGCGT CCTGCTCACC CGGCCAGTCA T-CCTGG-CT ATGGACCACT	
2Brc	CCCT-GGCGT CCTGCTCACC CGGCCAGTCA T-CCTGG-CT ATGGACCACT	
3D		
Consensus	ccct ggcgt cctgctcacc cggccagtca t cctgg ct atggaccaact	
	1751	1800
ratunc5h1	GT--GGAGAG CCCA-GCCCT -GACAGC--T GGAGTC-TGC GCCT---CAA	
ym97d12	GT--GGGGAG CCCA-GCCCT -GACAGC--T GGAGCC-TGC GCCT---CAA	
1G	GT--GGGGAG CCCA-GCCCT -GACAGC--T GGAGCC-TGC GCCT---CAA	
1Jrc	GT--GGGGAG CCCA-GCCCT -GACAGC--T GGAGCC-TGC GCCT---CAA	
2Brc	GT--GGGGAG CCCA-GCCCT -GACAGC--T GGAGCC-TGC GCCT---CAA	
3D		
Consensus	gt ggggag ccca gccct gacagc t ggagcc tgc gcct caa	
	1801	1850
ratunc5h1	AAAGCAG-TC CTGC-GAGGG CAGTTGGG-- -AGGATGTGC -TGCACCT-T	
ym97d12	AAAGCAG-TC GTGC-GAGGG CAGCTGGG-- -AGGATGTGC -TGCACCT-G	
1G	AAAGCAG-TC GTGC-GAGGG CAGCTGGG-- -AGGATGTGC -TGCACCT-G	
1Jrc	AAAGCAG-TC GTGC-GAGGG CAGCTGGG-- -AGGATGTGC -TGCACCT-G	
2Brc	AAAGCAG-TC GTGC-GAGGG CAGCTGGG-- -AGGATGTGC -TGCACCT-G	
3D		
Consensus	aaagcag tc tgc gaggg cagctggg aggatgtgc tgcacct g	
	1851	1900
ratunc5h1	GGTGAGGAGT CACCTTCCC A CCTCTACTAC TGCCAGCTGG AGGCCGGGGC	
ym97d12	GGCGAGGAGG CGCCCTCCC CCTCTACTAC TGCCAGCTGG AGGCCAGTGC	
1G	GGCGAGGAGG CGCCCTCCC CCTCTACTAA NTAAANCCN AA-TTNTTGC	
1Jrc	GGCGAGGAGG CGCCCTCCC CCTCTACTAG	
2Brc	GGCGAGGAGG CGCCCTCCC CCTCTACTAA G	
3D		
Consensus	ggcgaggag cgccctccc cctctacta	
	1901	1950
ratunc5h1	CTGCTATGTC TTCACGGAGC AGCTGGGCCG CTTTGCCTG GTAGGAGAGG	
ym97d12	CTGCTACGTC TTCACCGAGC AGCTGGGCCG CTTTGCCTG GTGGGAGAGG	
1G	AAAAATCCNT TTAAAATTGT NG--GNCCCN TTNAAACCTN -----	
1Jrc		
2Brc		
3D		
Consensus		

11/18

FIG. 2 (CONTINUED 6).

	1951	2000
ratunc5h1	CCCTCAGCGT GGCTGCCACC AAGGCCTCA GGCTCCTTCT GTTTGCTCCC	
ym97d12	CCCTCAGCGT GGCTGCCGCC AAGGCCTCA AGCTGCTTCT GTTTGCGCCG	
1G	CCCTTAAAAA GGGGCCAAAT TTCCNCCTNT NNNGNANCCN --TTNAAAAN	
1Jrc		
2Brc		
3D		
Consensus		
	2001	2050
ratunc5h1	GTGGCCTGTA CGTCCCTTGA GTACAACATC CGAGTGTACT GCCTACACGA	
ym97d12	GTGGCCTGCA CCTCCCTCGA GTACAACATC CGGGTCTACT GCCTGCATGA	
1G	NTAACTGGCC CCTNTTTNA AAACNNNCGA NCNGGGNAAA NCC	
1Jrc		
2Brc		
3D		
Consensus		
	2051	2100
ratunc5h1	CACCCACGAC GCTCTCAAGG AGGTGGTGCA GCTGGAGAAG CAGCTAGGTG	
ym97d12	CACCCACGAT GCACTCAAGG AGGTGGTGCA GCTGGAGAAG CAGCTGGGGG	
1G		
1Jrc		
2Brc		
3D		
Consensus		
	2101	2150
ratunc5h1	GACAGCTGAT CCAGGAGCCT CGCGTCCTGC ACTTCAAAGA CAGTTACCAAC	
ym97d12	GACAGCTGAT CCAGGAGCCA CGGGTCCTGC ACTTCAAGGA CAGTTACCAAC	
1G		
1Jrc		
2Brc		
3D		
Consensus		
	2151	2200
ratunc5h1	AACCTACGTC TCTCCATCCA CGACGTGCC AGCTCCCTGT GGAAGAGCAA	
ym97d12	AACCTGCGCC TATCCATCCA CGATGTGCC AGCTCCCTGT GGAAGAGTAA	
1G		
1Jrc		
2Brc		
3D		
Consensus		
	2201	2250
ratunc5h1	GCTACTTGTC AGCTACCAGG AGATCCCTTT TTACCACATC TGGAACGGCA	
ym97d12	GCTCCTTGTC AGCTACCAGG AGATCCCTTT TTATCACATC TGGAATGGCA	
1G		
1Jrc		
2Brc		
3D		
Consensus		
	2251	2300
ratunc5h1	CCCAGCAGTA TCTGCACTGC ACCTTCACCC TGGAGCGCAT CAACGCCAGC	
ym97d12	CGCAGCGGTA CTTGCACTGC ACCTTCACCC TGGAGCGTGT CAGCCCCAGC	
1G		
1Jrc		
2Brc		
3D		
Consensus		

SUBSTITUTE SHEET (RULE 26)

12/18

FIG. 2. (CONTINUED 7).

ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2301 ACCAGCGACC TGGCCTGCAA GGTGTGGGTG TGGCAGGTGG AGGGAGATGG ACTAGTGACC TGGCCTGCAA GCTGTGGGTG TGGCAGGTGG AGGGCGACGG	2350
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2351 GCAGAGCTTC AACATCAACT TCAACATCAC TAAGGACACA AGGTTTGCTG GCAGAGCTTC AGCATCAACT TCAACATCAC CAAGGACACA AGGTTTGCTG	2400
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2401 AATTGTTGGC TCTGGAGAGT GAAGGGGGGG TCCCAGCCCT GGTGGGCC AGCTGCTGGC TCTGGAGAGT GAAGGGGGGG TCCAAGCCCT GGTGGGCC	2450
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2451 AGTGCCTTCA AGATCCCCTT CCTCATT CGG CAAAGATCA TCGCCAGTCT AGTGCCTTCA AGATCCCCTT CCTCATT CGG CAGAAGATAA TTCCAGCCT	2500
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2501 GGACCCACCC TGCAGCCGGG GCGCCGACTG GAGAACTCTA GCCCAGAAC GGACCCACCC TGTAGGCGGG GTGCCGACTG GCGGACTCTG GCCCAGAAC	2550
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2551 TTCACCTGGA CAGCCATCTT AGCTTCTTG CCTCCAAGCC CAGCCCTACA TCCACCTGGA CAGCCATCTC AGCTTCTTG CCTCCAAGCC CAGCCCCACA	2600
ratunc5h1 ym97d12 1G 1Jrc 2Brc 3D Consensus	2601 GCCATGATCC TCAACCTATG GGAGGCACGG CACTTCCCCA ACGGCAACCT GCCATGATCC TCAACCTGTG GGAGGCGCGG CACTTCCCCA ACGGCAACCT	2650

SUBSTITUTE SHEET (RULE 26)

FIG. 2 (CONTINUED 8).

	2651	2700
ratunc5h1	CGGCCAGCTG	GCAGCAGCTG
ym97d12	TGGCCGGACT	GGGCCAACCA
1G	CAGCCAGCTG	GATGCTGGCC
1Jrc	GCTGCAGCAG	GGGCTGGACT
2Brc		GGGCCAGCCA
3D		GACGCTGGCC
Consensus		
	2701	2750
ratunc5h1	TCTTCACGGT	GTCGGAGGCC
ym97d12	GAGTGTTGA	
1G	TCTTCACAGT	TCTCGGAGGCT
1Jrc	GAGTGCTGAG	GCCGGCCAGG
2Brc		CCCGACACCT
3D		
Consensus		
	2751	2800
ratunc5h1	ACACTCTCAC	CAGCTTGCG
ym97d12	ACCCACCAAG	GACAGGCAGA
1G	GACAGGCAGA	AGCCGGACAG
1Jrc		
2Brc		
3D		
Consensus		
	2801	2850
ratunc5h1	GGGCCCTTCC	CCACACCGGG
ym97d12	GAGAGCTGCT	CGGACAGGCC
1G	CCCTCCCGGC	
1Jrc		
2Brc		
3D		
Consensus		
	2851	2900
ratunc5h1	CGAAGCTGTC	CCTTAATGCT
ym97d12	GGTCCTTCAG	ACCCTGCCCA
1G	CTCGTGCCGA	
1Jrc		
2Brc		
3D		
Consensus		
	2901	
ratunc5h1	ATTCTGGC	
ym97d12		
1G		
1Jrc		
2Brc		
3D		
Consensus		

FIG. 4.

OGC65 and OGC63
OGC66
transmembrane region
Soc11
ECORV
OGC64
OGC56

SUBSTITUTE SHEET (RULE 26)

FIG. 5.

SUBSTITUTE SHEET (RULE 26)

FIG. 6.

gi|205715 (M96376) neurexin II-alpha-b [Rattus norvegicus] 31 7.4
gi|205715 (M96376) neurexin II-alpha-b [Rattus norvegicus]
Length = 1728

Score = 31.3 bits (69), Expect = 7.4
Identities = 16/38 (42%), Positives = 20/38 (52%)

Query: 337 KACSVCXAGRRLMGKLLEEQGXGVGGRGKANADIYYR 224
KAC VC + GK LEE+G G G G+ IY +

Sbjct: 1690 KACCVCRCRATCIAGKPLEERGGG-RGEGERQMQIYIK 1726

FIG. 7.

gi|1644455 (U72520) mena protein [Mus musculus]
Length = 541

Score = 34.0 bits (76), Expect = 0.77
Identities = 14/23 (60%), Positives = 15/23 (64%)
Frame = +1

Query: 31 PPPPCTCPAGRHRVSALPPPAGP 99

PPPP P+G SALPPP GP

Sbjct: 284 PPPPPPLPSGPAYASALPPPGP 306

FIG. 8.

SUBSTITUTE SHEET (RULE 26)

FIG. 9.

SUBSTITUTE SHEET (RULE 26)

1
SEQUENCE LISTING

<110> DEVGEM NV

<120> UNC-5 constructs and screening methods

<130> SCB/52877/002

<140>

<141>

<160> 96

<170> PatentIn Ver. 2.0

<210> 1

<211> 1393

<212> DNA

<213> Homo sapiens

<400> 1

ttgttttgtt atcggaaagaa tcatcgac tttgagttagt atattattga ctcttcggca 60
ctcaatgggg gcttcagcc tgtgaacatc aaggcagcaa gacaagatct gctggctgta 120
cccccagacc tcacgtcagc tgcatcgt tacagaggac ctgtctatgc cctgcatgac 180
gtctcagaca aaatccaat gaccaactct ccaattctgg atccactgcc caacctgaaa 240
atcaaagtgt acaacaccc aagtgcgtc acccccagaatgacctctc tgagtttacg 300
tccaagctgt cccctcagat gacccagtcg ttgttgaga atgaagccct cagcctgaag 360
aaccagagtc tagcaaggca gactgatcca tcctgttaccg catttggcag cttcaactcg 420
ctgggagggtc accttattgt tcccaattca ggagtcagct tgctgattcc cgctggggcc 480
attccccaaag ggagagtcta cgaaaatgtat gtgactgtac acagaaaaga aactatgagg 540
ccacccatgg atgactctca gacacttttgc accccctgtgg tgagctgtgg gccccccagga 600
gctctgctca cccgccccgt cgccctcact atgcatcact ggcagaccc caataccgag 660
gactggaaaa tactgctcct cgctggagta cagcatccga gtctactgtc tggatgacac 720
ccaggatgcc ctgaaggaaa ttttacatct tgagagacag acgggaggac agctcctaga 780
agaacctaag gctcttcatt taaaaggcag cacccacaac ctgcgcctgt caattcacga 840
tatcgcccat tccctcttggaa agagcaaatt gctggctaaa tatcaggaaa ttccattttt 900
ccatgtttgg agtggatctc aaagaaaacct gcactgcacc ttcactctgg aaagatttag 960
cctgaacaca gtggagctgg tttgcaaaact ctgtgtgcgg caggtggaaag gagaaggc 1020
gatcttccag ctcaactgca ccgtgtcaga ggaacactact ggcacatcgatt tgccgctgct 1080
ggatcctgcg aacaccatca ccacggtcac gggggccagt gcttcagca tccctctccc 1140
tatccggcag aagctcttggta gcagcccttggaa tgccccccag acgagaggcc atgactggag 1200
gatgctggcc cataagctga acctggacag gtacttgaat tacttgcac ccaaattccag 1260
cccaactggc gtaatccttgg atctttggaa agcacagaac ttccccatgt gaaaccttgag 1320
catgctggca gctgtcttgg aagaaatggg aagacatgaa acgggtgggtgt ccttagcagc 1380
agaagggcag tat 1393

<210> 2

<211> 238

<212> PRT

<213> Homo sapiens

<400> 2

Leu Phe Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile
1 5 10 15

Asp Ser Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala
20 25 30

Ala Arg Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala
 35 40 45

Ala Met Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys
 50 55 60

Ile Pro Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys
 65 70 75 80

Ile Lys Val Tyr Asn Thr Ser Ser Ala Val Thr Pro Gln Asp Asp Leu
 85 90 95

Ser Glu Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu
 100 105 110

Glu Asn Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr
 115 120 125

Asp Pro Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His
 130 135 140

Leu Ile Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala
 145 150 155 160

Ile Pro Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys
 165 170 175

Glu Thr Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro
 180 185 190

Val Val Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val
 195 200 205

Leu Thr Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile
 210 215 220

Leu Leu Leu Ala Gly Val Gln His Pro Ser Leu Leu Ser Gly
 225 230 235

<210> 3
 <211> 1438
 <212> DNA
 <213> Homo sapiens

<400> 3
 ttgtttgtgt atcggaaagaa tcatcgac tttgagtcag atattattga ctcttcggca 60
 ctc当地atgggg gctttcagcc tgtgaacatc aaggcagcaa gacaagatct gctggctgtta 120
 cccccagacc tcacgtcagc tgcatccatg tacagaggac ctgtctatgc cctgcatac 180
 gtctcagaca aaatcccaat gaccaactct ccaattctgg atccactgcc caacctgaaa 240
 atcaaagtgt acaacacctc aggtgctgtc acctattgtt cccaaattcag gagtcagctt 300
 gctgattccc gctggggcca ttcccccaagg gagagtctac gaaatgtatg tgactgtaca 360
 caggaaagaa actatgaggc cacccatgga tgactcttag acactttga cccctgtgg 420
 gagctgtggg cccccaggag ctctgctcac ccgcggccgtc gtcctcacta tgcatcactg 480
 cgccagacccc aataccgagg actggaaaat actgctcaag aaccaggcag cacagggaca 540
 gtgggaggat gtggtggtgg tcggggagga aaacttcacc accccctgct acattcagct 600
 ggtatgcagag gcctgccaca tcctcacaga gaacctcagc acctacgccc tggtaggaca 660

3

ttccaccacc aaagcggctg caaagcgcct caagctggcc atcttgggc ccctgtgctg 720
 ctcctcgctg gagtagacca tccgagtcta ctgtctggat gacacccagg gtgccctgaa 780
 gaaaattta catcttgaga gacagacggg aggacagctc ctagaagaac ctaaggctct 840
 tcattttaaa ggcaagcaccc acaacctgcg cctgtcaatt cacatatcg cccgttccct 900
 ctggaaagac aaattgctgg ctaaatatca ggaaattcca ttttaccatg ttggagtg 960
 atctcaaaga aacctgcact gcacccatc tctggaaaga tttagcctga acacagtgg 1020
 qctggtttc aaactctgtg tgccgcagg ggaaggagaa gggcagatct tccagctcaa 1080
 ctgcaccgtg tcagaggaac ctactggcat cgatttgcg ctgctggatc 1140
 catcaccacg gtacacggggc ccagtgttt cagcatccct ctccctatacc ggcagaagct 1200
 ctgttagcagc ctgatgccc cccagacgag aggccatgac tggaggatgc tggccctaa 1260
 gctgaacctg gacaggtact tgaattactt tgccacccaa tccagcccaa ctggcgtaat 1320
 cctggatctt tggaaagcac agaacttccc agatggaaac ctgagcatgc tggcagctgt 1380
 ctttggaaagaa atggaaagac atgaaacggg ggtgtcctta gcagcagaag ggcagtat 1438

<210> 4

<211> 130

<212> PRT

<213> Homo sapiens

<400> 4

Leu	Phe	Val	Tyr	Arg	Lys	Asn	His	Arg	Asp	Phe	Glu	Ser	Asp	Ile	Ile
1														10	15

Asp	Ser	Ser	Ala	Leu	Asn	Gly	Gly	Phe	Gln	Pro	Val	Asn	Ile	Lys	Ala
													20	25	30

Ala	Arg	Gln	Asp	Leu	Leu	Ala	Val	Pro	Pro	Asp	Leu	Thr	Ser	Ala	Ala
												35	40	45	

Ala	Met	Tyr	Arg	Gly	Pro	Val	Tyr	Ala	Leu	His	Asp	Val	Ser	Asp	Lys
	50											55	60		

Ile	Pro	Met	Thr	Asn	Ser	Pro	Ile	Leu	Asp	Pro	Leu	Pro	Asn	Leu	Lys
	65											70	75	80	

Ile	Lys	Val	Tyr	Asn	Thr	Ser	Gly	Ala	Val	Thr	Tyr	Cys	Ser	Gln	Phe
												85	90	95	

Arg	Ser	Gln	Leu	Ala	Asp	Ser	Arg	Trp	Gly	His	Ser	Pro	Arg	Glu	Ser
												100	105	110	

Leu	Arg	Asn	Val	Cys	Asp	Cys	Thr	Gln	Glu	Arg	Asn	Tyr	Glu	Ala	Thr
												115	120	125	

His Gly
130

<210> 5
 <211> 1575
 <212> DNA
 <213> Homo sapiens

<400> 5

ttgttgtgt	atcggaaagaa	tcatcgac	tttgagtcag	atattattga	ctttcgca	60
ctcaatgggg	gcttcagcc	tgtgaacatc	aaggcagcaa	gacaagacct	cacgtcagct	120
gcagccatgt	acagaggacc	tgtctatgcc	ctgcatgacg	tctcagacaa	aatcccaatg	180
accaactctc	caattctgga	tccactgccc	aacctgaaaa	tcaaagtgt	caacacccca	240

ggtgctgtca cccccaaga tgacctctct gagttacgt ccaagctgtc ccctcagatg 300
 acccagtctgt tggggagaa tgaaggccctc agcctgaaga accagagtct agcaaggcag 360
 actgatccat cctgtaccgc atttggcagc ttcaactcgc tgggaggtca ctttattgtt 420
 cccaaattcag gagtcagctt gctgattccc gctggggcca ttccccaaagg gagagtctac 480
 gaaaatgtatg tgactgtaca cagggaaagaa actatgaggg caccatggta tgactctcag 540
 acactttga cccctgtggg gagctgtggg ccccccaggag ctctgctcac cggccccgcc 600
 gtcctcacta tgcatactg cgccagacccc aataccgagg actggaaaat actgctcaag 660
 aaccaggcag cacagggaca gtgggaggat gtgggtggc cggggagga aaacttcacc 720
 acccccgtct acattaagct ggatgcagag gcctgcacca tcctcacaga gaacctcagc 780
 acctacgccc tggtaggaca ttccaccacc aaagcggtgc caaagcgctt caagctggcc 840
 atcttggc ccctgtgctg ctcctcgctg gagtacagca tccgagtcta ctgtctggat 900
 gacacccagg atgcctgaa gggaaattta catttgaga gannnnnnnn nnnnnnnnnn 960
 nnnnnnnnnn nnnagttt tcatttaaag cangcancc ncaaatgnnc ctgtcaattc 1020
 ncgatatggc ccattccctc taaaagagca aattgctggc taaatatcag gaaattccat 1080
 ttacatgt ttggagtggc tctcaaagaa ncctgcactg cacnttcaact ctggaaagat 1140
 ttagcctgaa cacagtggag ctgggttgca aactctgtgt cggcaggtgg aaggagaagg 1200
 cagatcttcc agctcaactg caccgtgtca gaggaaccta ctggcatcga tttgcccgtg 1260
 ctgatcttg cgaacaccat caccacggtc acggggccca gtgcttcag catccctctc 1320
 cctatccggc agaagctctg tagcagcctg gatcccccc agacgagagg ccatgactgg 1380
 agatgctgg cccataagct gaacctggac gggtaatttga attacttgc caccaaatcc 1440
 agcccaactg gcgtaatcct ggatcttgg gaagcacaga acttcccaga tggaaacctg 1500
 agcatgctgg cagctgtctt ggaagaaatg ggaagacatg aaacggtggt gtccttagca 1560
 gcagaaggc agtat 1575

<210> 6

<211> 526

<212> PRT

<213> Homo sapiens

<400> 6

Leu	Phe	Val	Tyr	Arg	Lys	Asn	His	Arg	Asp	Phe	Glu	Ser	Asp	Ile	Ile
1														10	15

Asp	Ser	Ser	Ala	Leu	Asn	Gly	Gly	Phe	Gln	Pro	Val	Asn	Ile	Lys	Ala
														20	30

Ala	Arg	Gln	Asp	Leu	Thr	Ser	Ala	Ala	Ala	Met	Tyr	Arg	Gly	Pro	Val
														35	45

Tyr	Ala	Leu	His	Asp	Val	Ser	Asp	Lys	Ile	Pro	Met	Thr	Asn	Ser	Pro
														50	60

Ile	Leu	Asp	Pro	Leu	Pro	Asn	Leu	Lys	Ile	Lys	Val	Tyr	Asn	Thr	Ser
														65	80

Gly	Ala	Val	Ser	Pro	Gln	Asp	Asp	Leu	Ser	Glu	Phe	Thr	Ser	Lys	Leu
														85	95

Ser	Pro	Gln	Met	Thr	Gln	Ser	Leu	Leu	Glu	Asn	Glu	Ala	Leu	Ser	Leu
														100	110

Lys	Asn	Gln	Ser	Leu	Ala	Arg	Gln	Thr	Asp	Pro	Ser	Cys	Thr	Ala	Phe
														115	125

Gly	Ser	Phe	Asn	Ser	Leu	Gly	Gly	His	Leu	Ile	Val	Pro	Asn	Ser	Gly
														130	140

Val	Ser	Leu	Leu	Ile	Pro	Ala	Gly	Ala	Ile	Pro	Gln	Gly	Arg	Val	Tyr
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

5

145	150	155	160												
Glu	Met	Tyr	Val	Thr	Val	His	Arg	Lys	Glu	Thr	Met	Arg	Pro	Pro	Met
	165				170				175						
Asp	Asp	Ser	Gln	Thr	Leu	Leu	Thr	Pro	Val	Val	Ser	Cys	Gly	Pro	Pro
	180				185						190				
Gly	Ala	Leu	Leu	Thr	Arg	Pro	Val	Val	Leu	Thr	Met	His	His	Cys	Ala
	195				200					205					
Asp	Pro	Asn	Thr	Glu	Asp	Trp	Lys	Ile	Leu	Leu	Lys	Asn	Gln	Ala	Ala
	210				215					220					
Gln	Gly	Gln	Trp	Glu	Asp	Val	Val	Val	Gly	Glu	Glu	Asn	Phe	Thr	
	225			230					235				240		
Thr	Pro	Cys	Tyr	Ile	Lys	Leu	Asp	Ala	Glu	Ala	Cys	His	Ile	Leu	Thr
	245				250				255						
Glu	Asn	Leu	Ser	Thr	Tyr	Ala	Leu	Val	Gly	His	Ser	Thr	Thr	Lys	Ala
	260				265					270					
Ala	Ala	Lys	Arg	Leu	Lys	Leu	Ala	Ile	Phe	Gly	Pro	Leu	Cys	Cys	Ser
	275				280					285					
Ser	Leu	Glu	Tyr	Ser	Ile	Arg	Val	Tyr	Cys	Leu	Asp	Asp	Thr	Gln	Asp
	290				295					300					
Ala	Leu	Lys	Glu	Ile	Leu	His	Leu	Glu	Arg	Gln	Thr	Gly	Gly	Gln	Leu
	305				310				315					320	
Leu	Glu	Glu	Pro	Lys	Ala	Leu	His	Phe	Lys	Gly	Ser	Thr	His	Asn	Leu
	325				330				335						
Arg	Leu	Ser	Ile	His	Asp	Ile	Ala	His	Ser	Leu	Trp	Lys	Ser	Lys	Leu
	340				345					350					
Leu	Ala	Lys	Tyr	Gln	Glu	Ile	Pro	Phe	Tyr	His	Val	Trp	Ser	Gly	Ser
	355				360					365					
Gln	Arg	Asn	Leu	His	Cys	Thr	Phe	Thr	Leu	Glu	Arg	Phe	Ser	Leu	Asn
	370				375					380					
Thr	Val	Glu	Leu	Val	Cys	Lys	Leu	Cys	Val	Arg	Gln	Val	Glu	Gly	Glu
	385				390				395				400		
Gly	Gln	Ile	Phe	Gln	Leu	Asn	Cys	Thr	Val	Ser	Glu	Glu	Pro	Thr	Gly
	405				410					415					
Ile	Asp	Leu	Pro	Leu	Leu	Asp	Pro	Ala	Asn	Thr	Ile	Thr	Thr	Val	Thr
	420				425					430					
Gly	Pro	Ser	Ala	Phe	Ser	Ile	Pro	Leu	Pro	Ile	Arg	Gln	Lys	Leu	Cys
	435				440					445					
Ser	Ser	Leu	Asp	Ala	Pro	Gln	Thr	Arg	Gly	His	Asp	Trp	Arg	Met	Leu
	450				455					460					

Aia His Lys Leu Asn Leu Asp Arg Tyr Leu Asn Tyr Phe Ala Thr Lys				
465	470	475	480	
Ser Ser Pro Thr Gly Val Ile Leu Asp Leu Trp Glu Ala Gln Asn Phe				
485	490	495		
Pro Asp Gly Asn Leu Ser Met Leu Ala Ala Val Leu Glu Glu Met Gly				
500	505	510		
Arg His Glu Thr Val Val Ser Leu Ala Ala Glu Gly Gln Tyr				
515	520	525		

<210> 7
<211> 813
<212> DNA
<213> Homo sapiens

<400> 7
cagtgacctc tggatcacaca ctgtttctgg ccctgaggac gtggccctct atgtggcct 60
natcgccgtg gcccgnntgcc tggtcctgct gctgcttgc tcatacctcg tttattgccc 120
gaagaaggag gggctggact canatgtggc tgactcgtcc attctcacct caggcttcca 180
gcccgtcagc atcaagccca gcaaaggcaga caacccccat ctgctcacca tccagccgga 240
cctcagcacc accaccacca cctaccaggc cagtctctgt ccccccgcagg atgggcccag 300
ccccaaattc cagctcacca atgggcacct gtcagcccc ctgggtggcg gccgccacac 360
actgcaccac agctctccca cctctgaggc cgaggagttc gtctcccgcc tctccaccca 420
gaactacttc cgctccctgc cccgaggcac cagcaacatg acctatggga ccttcaactt 480
cctcgggggc cggctgatga tccctaatac agaatcaag ctcctcatc ccccccagatg 540
ccataccccc agggaaagatc tatgagatct acctcacgct tgcacaagcc ggaagacgtg 600
aggttgcccc tagctggctg tcagaccctg ctgagttccca tcgttagctt gtggaccccc 660
tggcgccctg ctcaccggc cagtcatctt ggctatggac cactgtgggg agcccagccc 720
tgacagctgg agcctgcgcc tcaaaaagca gtcgtgcgag ggcagctggg aggatgtgct 780
gcacctggc gaggaggcgc cctcccaactc act 813

<210> 8
<211> 265
<212> PRT
<213> Homo sapiens

<400> 8
Gln Pro Leu Cys Thr His Cys Phe Trp Pro Gly Arg Gly Pro Leu Cys
1 5 10 15

Gly Pro Xaa Arg Arg Gly Xaa Xaa Pro Gly Pro Ala Ala Ala Cys Pro
20 25 30

His Pro Arg Leu Leu Pro Glu Glu Gly Gly Ala Gly Leu Xaa Cys Gly
35 40 45

Leu Val His Ser His Leu Arg Leu Pro Ala Arg Gln His Gln Ala Gln
50 55 60

Gln Ser Arg Gln Pro Pro Ser Ala His His Pro Ala Gly Pro Gln His
65 70 75 80

His His His His Leu Pro Gly Gln Ser Leu Ser Pro Ala Gly Trp Ala
85 90 95

Gln Pro Gln Val Pro Ala His Gln Trp Ala Pro Ala Gln Pro Pro Gly
 100 105 110
 Trp Arg Pro Pro His Thr Ala Pro Gln Leu Ser His Leu Gly Arg Gly
 115 120 125
 Val Arg Leu Pro Pro Leu His Pro Glu Leu Leu Pro Leu Pro Ala Pro
 130 135 140
 Arg His Gln Gln His Asp Leu Trp Asp Leu Gln Leu Pro Arg Gly Pro
 145 150 155 160
 Ala Asp Asp Pro Tyr Arg Asn Gln Ala Ser Ser Ser Pro Gln Met Pro
 165 170 175
 Tyr Pro Glu Gly Arg Ser Met Arg Ser Thr Ser Arg Leu His Lys Pro
 180 185 190
 Glu Asp Val Arg Leu Pro Leu Ala Gly Cys Gln Thr Leu Leu Ser Pro
 195 200 205
 Ile Val Ser Leu Trp Thr Pro Trp Arg Pro Ala His Pro Ala Ser His
 210 215 220
 Pro Gly Tyr Gly Pro Leu Trp Gly Ala Gln Pro Gln Leu Glu Pro Ala
 225 230 235 240
 Pro Gln Lys Ala Val Val Arg Gly Gln Leu Gly Gly Cys Ala Ala Pro
 245 250 255
 Gly Arg Gly Gly Ala Leu Pro Leu Thr
 260 265

<210> 9
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 9
 Ser Asp Leu Cys Val His Thr Ala Ser Gly Pro Glu Asp Val Ala Leu
 1 5 10 15
 Tyr Val Gly Xaa Ile Ala Val Ala Xaa Cys Leu Val Leu Leu Leu
 20 25 30
 Val Leu Ile Leu Val Tyr Cys Arg Lys Lys Glu Gly Leu Asp Ser Xaa
 35 40 45
 Val Ala Asp Ser Ser Ile Leu Thr Ser Gly Phe Gln Pro Val Ser Ile
 50 55 60
 Lys Pro Ser Lys Ala Asp Asn Pro His Leu Leu Thr Ile Gln Pro Asp
 65 70 75 80
 Leu Ser Thr Thr Thr Thr Tyr Gln Gly Ser Leu Cys Pro Arg Gln
 85 90 95

Asp Gly Pro Ser Pro Lys Phe Gln Leu Thr Asn Gly His Leu Leu Ser
 100 105 110
 Pro Leu Gly Gly Gly Arg His Thr Leu His His Ser Ser Pro Thr Ser
 115 120 125
 Glu Ala Glu Glu Phe Val Ser Arg Leu Ser Thr Gln Asn Tyr Phe Arg
 130 135 140
 Ser Leu Pro Arg Gly Thr Ser Asn Met Thr Tyr Gly Thr Phe Asn Phe
 145 150 155 160
 Leu Gly Gly Arg Leu Met Ile Pro Asn Thr Gly Ile Lys Pro Pro His
 165 170 175
 Pro Pro Arg Cys His Thr Pro Arg Glu Asp Leu Asp Leu Pro His Ala
 180 185 190
 Cys Thr Ser Arg Lys Thr Gly Cys Pro Leu Ala Val Arg Pro Cys Val
 195 200 205
 Pro Ser Leu Ala Cys Gly Pro Pro Gly Val Leu Leu Thr Arg Pro Val
 210 215 220
 Ile Leu Ala Met Asp His Cys Gly Glu Pro Ser Pro Asp Ser Trp Ser
 225 230 235 240
 Leu Arg Leu Lys Lys Gln Ser Cys Glu Gly Ser Trp Glu Asp Val Leu
 245 250 255
 His Leu Gly Glu Glu Ala Pro Ser His Ser
 260 265

<210> 10
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 10
 Val Thr Ser Val Tyr Thr Leu Leu Ala Leu Arg Thr Trp Pro Ser
 1 5 10 15
 Met Trp Ala Xaa Ser Pro Trp Pro Xaa Ala Trp Ser Cys Cys Cys Leu
 20 25 30
 Ser Ser Ser Phe Ile Ala Gly Arg Arg Arg Gly Trp Thr Xaa Met
 35 40 45
 Trp Leu Thr Arg Pro Phe Ser Pro Gln Ala Ser Ser Pro Ser Ala Ser
 50 55 60
 Ser Pro Ala Lys Gln Thr Thr Pro Ile Cys Ser Pro Ser Ser Arg Thr
 65 70 75 80
 Ser Ala Pro Pro Pro Pro Pro Thr Arg Ala Val Ser Val Pro Gly Arg
 85 90 95

Met Gly Pro Ala Pro Ser Ser Ser Pro Met Gly Thr Cys Ser Ala
 100 105 110
 Pro Trp Val Ala Ala Ala Thr His Cys Thr Thr Ala Leu Pro Pro Leu
 115 120 125
 Arg Pro Arg Ser Ser Ser Pro Ala Ser Pro Pro Arg Thr Thr Ser Ala
 130 135 140
 Pro Cys Pro Glu Ala Pro Ala Thr Pro Met Gly Pro Ser Thr Ser Ser
 145 150 155 160
 Gly Ala Gly Ser Leu Ile Gln Glu Ser Ser Leu Leu Ile Pro Pro Asp
 165 170 175
 Ala Ile Pro Arg Gly Lys Ile Tyr Glu Ile Tyr Leu Thr Leu Ala Gln
 180 185 190
 Ala Gly Arg Arg Glu Val Ala Pro Ser Trp Leu Ser Asp Pro Ala Glu
 195 200 205
 Ser His Arg Leu Val Asp Pro Leu Ala Ser Cys Ser Pro Gly Gln Ser
 210 215 220
 Ser Trp Leu Trp Thr Thr Val Gly Ser Pro Ala Leu Thr Ala Gly Ala
 225 230 235 240
 Cys Ala Ser Lys Ser Ser Arg Ala Arg Ala Ala Gly Arg Met Cys Cys
 245 250 255
 Thr Trp Ala Arg Arg Arg Pro Pro Thr His
 260 265

<210> 11
 <211> 6981
 <212> DNA
 <213> Caenorhabditis elegans

<400> 11
 atgtcgctgg tggatgacga gcatcatcct tcaattgaag ttgatattcc tgacgtttat 60
 gaaaagtgcattt ctgactgtga aaaaaactgaa gactgcacct atctaggatc tattctcaag 120
 gcgaaaaat cattgcgaaa aaccaagaaa gtcgctagtc ctggtatcta tccgggctcg 180
 gcgggtgctc tttcatctt ttcaaattggc cttagccgatg agaatagatc gccaactagt 240
 gctgaagttt ctgattcagt atgtggacaa aaatctataa attcagttga cttgaggttc 300
 agaggattga gagatgaacg tgaactcgtg caaaagaaaa catttacaaa atgggtcaac 360
 tcacacttgg ttcgagtcag ctgcaagta caagacctt acatggatat gcgagacgga 420
 aaaaatgc tccgacttcc cgcaaggctt tccggtaac gtctgccgaa accgacgccc 480
 ggaaaaatgc gtatccactg tcttgagaac gttgagaaag gtttgcattt cttgcgcatt 540
 caaacacgtgc atctcgaaaa cttgggttca cacgatatcg ttgacggaaa ttcacgcctc 600
 acgttgggtc tcatctggac gatcatcctt cgattccaga tccaaagatcacatttgc 660
 gacgctgaca atcacgagac acgttcagcg aaggaggctt tgtaactgtg gtgccagatg 720
 aaaaactgctg gatatccaaa tgtcaacgtc aagaacttct caaccagttg gagagatgg 780
 cttgcattca atgcacttta tcataaacat agacctgatc tcgttagacta cgataattt 840
 caaaaatcga atgctcttta caatttgcaa tctgcttttgc ataccgcaga aaatcaattt 900
 ggattggcca agttcctcga tgccgaagat gtgaacgtt accaacctga tgagaaatcc 960
 attatcactt atgtagttac atattatcat tacttcaaca aactgaaaca agataacatc 1020

caaggaaaac	gtatcgaaaa	agtgattaat	gagttgatgg	agaacgacaa	aatgatcaat	1080
cgatacggaa	ctcttcatc	tgatttgctc	gaatggatca	atgccaagat	ccaaacttctc	1140
aacgaacgtc	atttgagaa	taatttgaa	ggtgtcaaa	gacagctcac	cgagttcaac	1200
gactaccgt	ctcaggagaa	accaccaaag	ttcgatgaaa	agggagagct	cgaagtactt	1260
ctgttcaact	ttcaatcagc	tatgcgtgcc	aacaatcaga	gaccttgcgt	gccgagagaa	1320
ggaaaactga	ttgctgat	caaccgagca	tgcaatccc	ttgagaaggc	agaacacgaa	1380
cgagaacctg	tcctgaaaaga	ggaactcatt	cgtcaagaga	aactcgaaca	actcgagcc	1440
cgattcaaca	gaaaggccga	gatgcgagag	acttggctca	cagaaaacca	acggcttgtc	1500
agtcaggaca	atttcgaaa	cgacttgtct	tcgggtggaa	ctgcaccaa	aaagcacgaa	1560
gccatcgaga	cggacatctt	tgcttacgag	gagcgtgttc	aagccgtcg	cgctgttgct	1620
ggagagctt	aagccgagaa	ctaccatgat	caagccaaa	tcaatgagag	aaaggagaat	1680
gttcttcaac	tctgaaacta	tctttccaa	cttctttgg	ctcgagagt	tcgattggag	1740
ttgtcaatgg	ccattaaaa	gatcttccac	gatatgcttc	ttactctcg	tctcatggat	1800
gatattaaga	gcagactttt	aagcgaggat	ctggagccc	atcttatgga	cgtagaagat	1860
ttgcttcaaa	agcacgctct	tcttgagtct	gatattaata	ttatggaga	acgagtaac	1920
aattcttatt	ctcaagctca	acgcttccga	aatccagatg	gaccagatgg	aagtggatac	1980
aagccagtt	aaccaggaac	cattgatgag	agaagtgtat	ttctacaaa	acgttacaag	2040
gagcttctt	atttggctgc	tgaacgtaag	cgtcgtctcg	aagacaacaa	gagacttgc	2100
cagttctgtt	gggatgttgc	tgagcttggaa	catggtatta	aggaacaaga	gcaagttctt	2160
tcgtccact	atactggccg	tgatattgtc	actgttgc	atttgttgc	caaacataag	2220
aacgctgaga	acaacccctcg	cgacttggag	aagtacctcg	atcgcttgc	tgttctgga	2280
aaagaattgc	aagatgaaag	catcccagga	agtgacaaca	ttccctccaag	gcttgcgag	2340
attcgtgatt	acatcaacaa	gctcaaggaa	ctctctgtt	ctcgcaaaaga	aagacttgcc	2400
ggtggagtcg	aatactacca	attcttccacc	gacgcccacg	atgtcgatcg	ctacttgtat	2460
gatactctcc	gcgtcatgtc	atccgaagac	gttggaaaag	acgagggaa	tgttcaactt	2520
ctccctcaaga	agcacgacga	tgtccatgac	gagctccaga	actttgacca	acacatcaag	2580
gttcttcaacg	ccaaggccga	gtctcttcca	caggaagcca	gagaacatcc	agatatcaga	2640
caacgattgg	acacaactct	caagcagaag	gccgaactcg	aaaacccccc	tcaacttcgc	2700
aagcagagac	ttatcgatgc	tctctccctg	tacaagttgt	actcgatgc	cgattcagtc	2760
gagtcttgg	tcgatgagaa	gggaaaactt	ttggcaacat	ttgtccctgg	acgcgatata	2820
gaagaggtt	agatcatgaa	gcatcgttt	gatactctt	agcaagatat	gaagaatcaa	2880
gaagctaagg	ttactaacgt	caatgactt	gctcgtaat	tgcttaatgt	ggaacatcca	2940
aactccgacg	acattcttca	ccgtcaaaac	aagctcaac	ctcgctggc	tcaacttcgc	3000
gacatggctg	atcaaaaagag	aaacgagctc	gagagagctc	accgcctcga	aactttccgc	3060
atcgattgccc	aagaaacagt	tacttggatc	gaggacaaga	ctcggtact	cgaggattcg	3120
gacgcgttga	ccaacgatct	ttccgggtgtc	atggaaactt	aaagaagatt	gtccatgatg	3180
gaacgcgatt	tgggagcgat	tcaagccaa	ctcgactcgc	ttcacaaaga	agccgatgac	3240
atcgaaagag	aacgaccaca	agaagctcaa	gccattcgt	aagatataa	gagaatccac	3300
caagtctgg	atatcctaa	caagaaagtt	cgtgagcacg	aagctaaact	cgatgaagct	3360
ggagatcttc	aacgcttcc	ccgtgattt	gatcacttcc	aagctggct	tactgcacc	3420
cagagacaag	ttgcctcaga	ggaagagcca	caatccttgg	ctgaagctga	gcaacttctc	3480
aatcaacacg	ctgccccatcc	tgaagagatt	gacggatacg	ctgaggatta	caagaagatg	3540
cgtgcaatgg	gagatcggt	cactcaagat	caaaccgatc	cacaatacat	gttcctcgt	3600
caacgtctt	ctggacttca	agaaggatgg	gaagagttgc	agcgaatgtg	ggacaacaga	3660
caacatttgc	tttctcaagg	actcaacctt	caaattttcc	ttcgcgtatgc	caaacaagca	3720
gaggttatgc	tctctcaaca	agaaaactat	ctcgccaagg	acgatatccc	acaatcttgc	3780
gagcaagccg	agaaccaact	caagagacac	caagacttca	tcaccactat	ggatgccaac	3840
gacgaaaaga	ttcgcgcccgt	cggaatgtt	ggtgatcagc	tctgccaaga	tggtaactat	3900
gccgctgaca	agatccataa	gaaggctaga	aacattgtat	aacgtcggt	agccaaccgc	3960
gagaaggctc	aagaagtact	caagaagctg	aaggacgcct	tgtctctcca	acaattttgc	4020
tccgactgcg	acgagctgag	agaatggatc	gaggagaaga	tgatccgtgc	tcaagatgag	4080
acttacagag	acgccaagac	tatcacctcc	aaattcgtcc	gacatcaagc	attccaatcc	4140
gaacttgcgt	ctaacaagga	acgtcttgac	caacttaaac	atgctgccat	caaccttgg	4200
gacgacaagc	cagagtacca	cggaaccatt	gatccacaga	tcgaggaact	cgctactcaa	4260
tggatgatgt	tggaaaagac	tacagaggag	aaggagacaga	agttgttga	tgctaaccgc	4320
caacaactt	acgtacaaag	tattgctgac	atgaaggaat	ggcaacccca	acttgagaac	4380
gagatgactc	gtgaagacca	accaggagat	cttaccactg	tcaatgttgc	catgaaaaaa	4440
caacatttga	tgcggaaactga	aatgatcaag	aaggctcaac	acattgatca	actcatggag	4500

11

atggagccac agctcgagga acttcaccca gacgagctt gaaaacattaa ggctcatcgt 4560
 ttgcagttc aagaacaact tcaaagactc caggctccat tggacgaccg acgtaaggca 4620
 ttgaaacgcg aagaaggccgc cttccattt gtcgcgatg ttgatgacga gaaatttgtg 4680
 atttctgaga gacttgttct cgctaaagct caaaatctt gagaaggctt tccagattgt 4740
 catcgctcic aagaagaacct acaacttctt tccaatgaaa tcgacaaacca cgaaccatgg 4800
 atcaaccaga tctgtataaa tggtaaagag ttgattgacg aaggacatgc taacggacca 4860
 gcattcgaga aqaqattca agaactgcgc aytgcgttgc aagagttgaa ggaagccgtc 4920
 aaagacgaaa aggagatct tggagaaagc gagaaggctc atcaattctt gtatgattgc 4980
 ggagaggctg aaggctggat gagcgaacaa gaatttgata tgatgcaaga cgaagagga 5040
 aaagacgagt tctcaaccaa gaaccaaatac aagaaacacg aacgccttca atccgatatt 5100
 gacaaatttg ctgatacgat ccgtgtctt gccaccaagg ctcacaagg cgtcgaagag 5160
 aagtccacac tcaccgaaca gatccaagtt cgtcaagctc aaatcgagaa gctctacgca 5220
 ggtcttcaag atttgcgaa ggagcgcaga aagagactcg aagagacattt ggaacttac 5280
 gctcttcatac gtgaaatcga cgatcttctt caatggatcg ccgacaaagga agttgttgc 5340
 ggaagtcaag agaacggaca agactacgaa cacgtccaaa tgcttcaaga gagattccaa 5400
 cagtttgcgc gtgacaccga aaacatcgga tccgaacgtg ttgccaatgc taatgatgga 5460
 tgtgataactc tcattggtca cggacacact gacgctccga ctatagcatt gtggaaggat 5520
 tcgttgaatg aggcttggga gaatcttctg gagttgatgg acactcgtgc ccaaattctc 5580
 gaggcttcta gacttcttca caagtctac cacgactgcc gtgattgctt gtcaagaatc 5640
 atggaaaaga ctcatgctat gcctgatgat cttggacgtg actcaagcag tggatgtgc 5700
 ctctccagaa aacatcagaa ctatctcaag gatattgctg caattggaga acaagttgct 5760
 caaatcgaaa gagatgccgc agagcttcga gatggttacg ctggagacaa ggctcttgat 5820
 atcgatctc gcgaaagcga gttgtcaag gcatggagac atctccgcgg actctgtgac 5880
 gcccgtacat ctcgtctcat ggatacttct gatctttca agttcatgaa tatggccgt 5940
 gatttgcgt tggatggta tgaggtaag agagaaatga actcacaaga acgtccgaag 6000
 gatgtgagcg gagtcgagtt gctcatgaac aatcatcaat cgctcaaggc tggaaatcgat 6060
 gctcgccgagg agaacttcaa cgcgtcattc tcattggac gagatctgct caacagaaaa 6120
 cactacgcat caagtgaaat cgagaagaag ctgatcaagt tgacaaccga aagagccgaa 6180
 atgatgcgc gatggaaaga tcgttggaa tatcttcagc tcattcttgc agtgtaccaa 6240
 ttcggccgcg acgctgtgt ccgcgaatct tggctttcg cccaaagaacc atatcttatt 6300
 tcgaaggaat acgttagaaa cctcgaagaa accatcaaac tcatcaagaa acacgaggcg 6360
 ttcgagaaat cggcattcgc acaagaagaa cttttcttgg cgctcgagaa attgacaacg 6420
 ttcgaattga aagaaactca acaccgcgag gaggagaccc ccaagcgcac tggatccagct 6480
 catattggaa gtccttctag gtcaactcca gccgcggaaa catcttcgg cgcccaggat 6540
 gatggagcca aacaaggaga agcattcga ggaacgccta tcagaaagca cacttacgag 6600
 agtctcgacc gaaagccgc taaccgctca tggagaaac tttacgcagt gttgcggcag 6660
 aatgaactgt cattctacaa agatccgaag catagagatg aatctgtgca tggagagcca 6720
 ccaatggcac tgccaggatg ctctgtcaac gtggcatcag actatcaaaa gaagaagaac 6780
 gtactgtcgc tgaggattacc catcgccgccc gagtacctat tccaatgcgg tagcgaagaa 6840
 gacatgcagc gatggctcac cgagttgcaa gtgcacccg ggcaagccca actggaaagag 6900
 gcttagat cacagacgct accagcagaa ggcagtgcac caaagaagaa gggaggattt 6960
 ttctctcgag gcaagaagta a 6981

<210> 12

<211> 2326

<212> PRT

<213> Caenorhabditis elegans

<400> 12

Met	Ser	Ser	Val	Asp	Asp	Glu	His	His	Pro	Ser	Ile	Glu	Val	Asp	Ile
1															

Pro	Asp	Val	Tyr	Glu	Ser	Ala	Ser	Asp	Cys	Glu	Lys	Thr	Glu	Asp	Cys

Thr	Tyr	Leu	Gly	Ser	Ile	Leu	Lys	Ala	Lys	Lys	Ser	Leu	Arg	Lys	Thr

12

Lys Lys Val Ala Ser Pro Gly Ile Tyr Pro Gly Ser Ala Gly Ala Leu
 50 55 60

Ser Ser Leu Ser Asn Gly Leu Ala Asp Glu Asn Arg Ser Pro Thr Ser
 65 70 75 80

Ala Glu Val Ser Asp Ser Val Cys Gly Gln Lys Ser Ile Asn Ser Val
 85 90 95

Asp Leu Arg Phe Arg Gly Leu Arg Asp Glu Arg Glu Leu Val Gln Lys
 100 105 110

Lys Thr Phe Thr Lys Trp Val Asn Ser His Leu Val Arg Val Ser Cys
 115 120 125

Lys Val Gln Asp Leu Tyr Met Asp Met Arg Asp Gly Lys Met Leu Leu
 130 135 140

Arg Leu Leu Ala Val Leu Ser Gly Glu Arg Leu Pro Lys Pro Thr Pro
 145 150 155 160

Gly Lys Met Arg Ile His Cys Leu Glu Asn Val Glu Lys Gly Leu Gln
 165 170 175

Phe Leu Arg Asn Gln His Val His Leu Glu Asn Leu Gly Ser His Asp
 180 185 190

Ile Val Asp Gly Asn Ser Arg Leu Thr Leu Gly Leu Ile Trp Thr Ile
 195 200 205

Ile Leu Arg Phe Gln Ile Gln Asp Ile Thr Phe Glu Asp Ala Asp Asn
 210 215 220

His Glu Thr Arg Ser Ala Lys Glu Ala Leu Leu Leu Trp Cys Gln Met
 225 230 235 240

Lys Thr Ala Gly Tyr Pro Asn Val Asn Val Lys Asn Phe Ser Thr Ser
 245 250 255

Trp Arg Asp Gly Leu Ala Phe Asn Ala Leu Ile His Lys His Arg Pro
 260 265 270

Asp Leu Val Asp Tyr Asp Asn Leu Gln Lys Ser Asn Ala Leu Tyr Asn
 275 280 285

Leu Gln Ser Ala Phe Asp Thr Ala Glu Asn Gln Leu Gly Leu Ala Lys
 290 295 300

Phe Leu Asp Ala Glu Asp Val Asn Val Asp Gln Pro Asp Glu Lys Ser
 305 310 315 320

Ile Ile Thr Tyr Val Val Thr Tyr Tyr His Tyr Phe Asn Lys Leu Lys
 325 330 335

Gln Asp Asn Ile Gln Gly Lys Arg Ile Gly Lys Val Ile Asn Glu Leu
 340 345 350

Met Glu Asn Asp Lys Met Ile Asn Arg Tyr Glu Thr Leu Ser Ser Asp

355	360	365														
Leu	Leu	Glu	Trp	Ile	Asn	Ala	Lys	Ile	Gln	Leu	Leu	Asn	Glu	Arg	His	
370																380
Phe	Glu	Asn	Asn	Leu	Glu	Gly	Val	Gln	Arg	Gln	Leu	Thr	Glu	Phe	Asn	
385																400
Asp	Tyr	Arg	Thr	Gln	Glu	Lys	Pro	Pro	Lys	Phe	Asp	Glu	Lys	Gly	Glu	
																405
410																415
Leu	Glu	Val	Leu	Leu	Phe	Thr	Leu	Gln	Ser	Ala	Met	Arg	Ala	Asn	Asn	
420																430
Gln	Arg	Pro	Phe	Val	Pro	Arg	Glu	Gly	Lys	Leu	Ile	Ala	Asp	Ile	Asn	
435																445
Arg	Ala	Trp	Gln	Ser	Leu	Glu	Lys	Ala	Glu	His	Glu	Arg	Glu	Leu	Val	
450																460
Leu	Lys	Glu	Glu	Leu	Ile	Arg	Gln	Glu	Lys	Leu	Glu	Gln	Leu	Ala	Ala	
465																480
Arg	Phe	Asn	Arg	Lys	Ala	Glu	Met	Arg	Glu	Thr	Trp	Leu	Thr	Glu	Asn	
																485
490																495
Gln	Arg	Leu	Val	Ser	Gln	Asp	Asn	Phe	Gly	Asn	Asp	Leu	Ser	Ser	Val	
																500
505																510
Glu	Ala	Ala	Thr	Lys	Lys	His	Glu	Ala	Ile	Glu	Thr	Asp	Ile	Phe	Ala	
																515
520																525
Tyr	Glu	Glu	Arg	Val	Gln	Ala	Val	Val	Ala	Val	Ala	Gly	Glu	Leu	Glu	
																530
535																540
Ala	Glu	Asn	Tyr	His	Asp	Gln	Ala	Lys	Ile	Asn	Glu	Arg	Lys	Glu	Asn	
																545
550																560
Val	Leu	Gln	Leu	Trp	Asn	Tyr	Leu	Phe	Gln	Leu	Leu	Leu	Ala	Arg	Arg	
																565
570																575
Val	Arg	Leu	Glu	Leu	Ser	Met	Ala	Ile	Gln	Lys	Ile	Phe	His	Asp	Met	
																580
585																590
Leu	Leu	Thr	Leu	Asp	Leu	Met	Asp	Asp	Ile	Lys	Ser	Arg	Leu	Leu	Ser	
																595
595																605
Glu	Asp	Leu	Gly	Ala	His	Leu	Met	Asp	Val	Glu	Asp	Leu	Leu	Gln	Lys	
																610
615																620
His	Ala	Leu	Leu	Glu	Ser	Asp	Ile	Asn	Ile	Ile	Gly	Glu	Arg	Val	Asn	
																625
630																635
635																640
Asn	Ser	Ile	Ala	Gln	Ala	Gln	Arg	Phe	Arg	Asn	Pro	Asp	Gly	Pro	Asp	
																645
645																650
Gly	Ser	Gly	Tyr	Lys	Pro	Val	Glu	Pro	Gly	Thr	Ile	Asp	Glu	Arg	Ser	
																660
665																670

14

Asp Val Leu Gln Lys Arg Tyr Lys Glu Leu Leu Asp Leu Ala Ala Glu
675 680 685

Arg Lys Arg Arg Leu Glu Asp Asn Lys Arg Leu Cys Gln Phe Trp Trp
690 695 700

Asp Val Ala Glu Leu Glu His Gly Ile Lys Glu Gln Glu Gln Val Leu
705 710 715 720

Ser Ser Thr Asp Thr Gly Arg Asp Ile Val Thr Val Ser His Leu Leu
725 730 735

Ala Lys His Lys Asn Ala Glu Asn Asn Leu Arg Asp Leu Glu Lys Tyr
740 745 750

Leu Asp Arg Leu Asp Val Ser Gly Lys Glu Leu Gln Asp Glu Ser Ile
755 760 765

Pro Gly Ser Asp Asn Ile Pro Pro Arg Leu Ala Glu Ile Arg Asp Tyr
770 775 780

Ile Asn Lys Leu Lys Glu Leu Ser Ala Ser Arg Lys Glu Arg Leu Ala
785 790 795 800

Gly Gly Val Glu Tyr Tyr Gln Phe Phe Thr Asp Ala Asp Asp Val Asp
805 810 815

Arg Tyr Leu Tyr Asp Thr Leu Arg Val Met Ser Ser Glu Asp Val Gly
820 825 830

Lys Asp Glu Gly Thr Val Gln Leu Leu Leu Lys Lys His Asp Asp Val
835 840 845

His Asp Glu Leu Gln Asn Phe Asp Gln His Ile Lys Val Leu His Ala
850 855 860

Lys Ala Glu Ser Leu Pro Gln Glu Ala Arg Glu His Pro Asp Ile Arg
865 870 875 880

Gln Arg Leu Asp Thr Thr Leu Lys Gln Lys Ala Glu Leu Glu Asn Leu
885 890 895

Ser Gln Leu Arg Lys Gln Arg Leu Ile Asp Ala Leu Ser Leu Tyr Lys
900 905 910

Leu Tyr Ser Asp Ala Asp Ser Val Glu Ser Trp Ile Asp Glu Lys Gly
915 920 925

Lys Leu Leu Ala Thr Leu Val Pro Gly Arg Asp Ile Glu Glu Val Glu
930 935 940

Ile Met Lys His Arg Phe Asp Thr Leu Glu Gln Asp Met Lys Asn Gln
945 950 955 960

Glu Ala Lys Val Thr Asn Val Asn Asp Leu Ala Arg Gln Leu Leu Asn
965 970 975

15

Val Glu His Pro Asn Ser Asp Asp Ile Leu His Arg Gln Asn Lys Leu
980 985 990

Asn Ala Arg Trp Ala Gln Leu Arg Asp Met Val Asp Gln Lys Arg Asn
995 1000 1005

Glu Leu Glu Arg Ala His Arg Leu Glu Thr Phe Arg Ile Asp Cys Gln
1010 1015 1020

Glu Thr Val Thr Trp Ile Glu Asp Lys Thr Arg Val Leu Glu Asp Ser
1025 1030 1035 1040

Asp Ala Leu Thr Asn Asp Leu Ser Gly Val Met Lys Leu Gln Arg Arg
1045 1050 1055

Leu Ser Met Met Glu Arg Asp Leu Gly Ala Ile Gln Ala Lys Leu Asp
1060 1065 1070

Ser Leu His Lys Glu Ala Asp Asp Ile Glu Arg Glu Arg Pro Gln Glu
1075 1080 1085

Ala Gln Ala Ile Arg Glu Asp Ile Lys Arg Ile His Gln Val Trp Asp
1090 1095 1100

Ile Leu Asn Lys Lys Val Arg Glu His Glu Ala Lys Leu Asp Glu Ala
1105 1110 1115 1120

Gly Asp Leu Gln Arg Phe Leu Arg Asp Leu Asp His Phe Gln Ala Trp
1125 1130 1135

Leu Thr Ala Thr Gln Arg Gln Val Ala Ser Glu Glu Pro Gln Ser
1140 1145 1150

Leu Ala Glu Ala Glu Gln Leu Leu Asn Gln His Ala Ala Ile Arg Glu
1155 1160 1165

Glu Ile Asp Gly Tyr Ala Glu Asp Tyr Lys Lys Met Arg Ala Met Gly
1170 1175 1180

Asp Arg Val Thr Gln Asp Gln Thr Asp Pro Gln Tyr Met Phe Leu Arg
1185 1190 1195 1200

Gln Arg Leu Ala Gly Leu Gln Glu Gly Trp Glu Glu Leu Gln Arg Met
1205 1210 1215

Trp Asp Asn Arg Gln His Leu Leu Ser Gln Gly Leu Asn Leu Gln Met
1220 1225 1230

Phe Leu Arg Asp Ala Lys Gln Ala Glu Val Met Leu Ser Gln Gln Glu
1235 1240 1245

Asn Tyr Leu Ala Lys Asp Asp Ile Pro Gln Ser Leu Glu Gln Ala Glu
1250 1255 1260

Asn Gln Leu Lys Arg His Gln Asp Phe Ile Thr Thr Met Asp Ala Asn
1265 1270 1275 1280

Asp Glu Lys Ile Arg Ala Val Gly Met Phe Gly Asp Gln Leu Cys Gln

16

1285	1290	1295
Asp Gly His Tyr Ala Ala Asp Lys Ile His Lys Lys Ala Arg Asn Ile 1300	1305	1310
Asp Glu Arg Arg Gly Ala Asn Arg Glu Lys Ala Gln Glu Val Leu Lys 1315	1320	1325
Lys Leu Lys Asp Ala Leu Ser Leu Gln Gln Phe Leu Ser Asp Cys Asp 1330	1335	1340
Glu Leu Arg Glu Trp Ile Glu Glu Lys Met Ile Arg Ala Gln Asp Glu 1345	1350	1355
Thr Tyr Arg Asp Ala Lys Thr Ile Thr Ser Lys Phe Val Arg His Gln 1365	1370	1375
Ala Phe Gln Ser Glu Leu Ala Ala Asn Lys Glu Arg Leu Asp Gln Leu 1380	1385	1390
Lys His Ala Ala Ile Asn Leu Gly Asp Asp Lys Pro Glu Tyr His Gly 1395	1400	1405
Thr Ile Asp Pro Gln Ile Glu Glu Leu Ala Thr Gln Trp Asp Glu Leu 1410	1415	1420
Glu Lys Thr Thr Glu Glu Lys Gly Gln Lys Leu Phe Asp Ala Asn Arg 1425	1430	1435
Gln Gln Leu Tyr Val Gln Ser Ile Ala Asp Met Lys Glu Trp Ala Thr 1445	1450	1455
Gln Leu Glu Asn Glu Met Thr Arg Glu Asp Gln Pro Gly Asp Leu Thr 1460	1465	1470
Thr Val Asn Val Ala Met Gln Lys Gln His Leu Ile Glu Thr Glu Met 1475	1480	1485
Ile Lys Lys Ala Gln His Ile Asp Gln Leu Met Glu Met Glu Pro Gln 1490	1495	1500
Leu Glu Glu Leu His Pro Asp Glu Leu Glu Asn Ile Lys Ala His Arg 1505	1510	1515
Leu Ala Val Gln Glu Gln Leu Gln Arg Leu Gln Ala Pro Leu Asp Asp 1525	1530	1535
Arg Arg Lys Ala Leu Glu Arg Lys Lys Ala Ala Phe Gln Phe Gly Arg 1540	1545	1550
Asp Val Asp Asp Glu Lys Leu Trp Ile Ser Glu Arg Leu Val Leu Ala 1555	1560	1565
Lys Ala Gln Asn Leu Gly Glu Ser Leu Pro Asp Cys His Arg Leu Gln 1570	1575	1580
Lys Asn Leu Gln Leu Leu Ser Asn Glu Ile Asp Asn His Glu Pro Trp 1585	1590	1595
		1600

Ile Asn Gln Ile Cys Asn Asn Gly Gln Glu Leu Ile Asp Glu Gly His
 1605 1610 1615

Ala Asn Gly Pro Ala Phe Glu Lys Lys Ile Gln Glu Leu Arg Ser Ala
 1620 1625 1630

Trp Gln Glu Leu Lys Glu Ala Val Lys Asp Arg Lys Gly Asp Leu Gly
 1635 1640 1645

Glu Ser Glu Lys Ala His Gln Phe Leu Tyr Asp Cys Gly Glu Ala Glu
 1650 1655 1660

Ala Trp Met Ser Glu Gln Glu Leu Tyr Met Met Gln Asp Glu Arg Gly
 1665 1670 1675 1680

Lys Asp Glu Phe Ser Thr Lys Asn Gln Ile Lys Lys His Glu Arg Leu
 1685 1690 1695

Gln Ser Asp Ile Asp Lys Phe Ala Asp Thr Ile Arg Ala Leu Ala Thr
 1700 1705 1710

Lys Ala His Lys Phe Val Glu Glu Lys Ser Pro Leu Thr Glu Gln Ile
 1715 1720 1725

Gln Val Arg Gln Ala Gln Ile Glu Lys Leu Tyr Ala Gly Leu Gln Asp
 1730 1735 1740

Leu Ser Lys Glu Arg Arg Lys Arg Leu Glu Glu Thr Leu Glu Leu Tyr
 1745 1750 1755 1760

Ala Leu His Arg Glu Ile Asp Asp Leu Leu Gln Trp Ile Ala Asp Lys
 1765 1770 1775

Glu Val Val Ala Gly Ser Gln Glu Asn Gly Gln Asp Tyr Glu His Val
 1780 1785 1790

Gln Met Leu Gln Glu Arg Phe Gln Gln Phe Ala Arg Asp Thr Glu Asn
 1795 1800 1805

Ile Gly Ser Glu Arg Val Ala Asn Ala Asn Asp Gly Cys Asp Thr Leu
 1810 1815 1820

Ile Gly His Gly His Thr Asp Ala Pro Thr Ile Ala Leu Trp Lys Asp
 1825 1830 1835 1840

Ser Leu Asn Glu Ala Trp Glu Asn Leu Leu Glu Leu Met Asp Thr Arg
 1845 1850 1855

Ala Gln Ile Leu Glu Ala Ser Arg Leu Leu His Lys Phe Tyr His Asp
 1860 1865 1870

Cys Arg Asp Cys Leu Ser Arg Ile Met Glu Lys Thr His Ala Met Pro
 1875 1880 1885

Asp Asp Leu Gly Arg Asp Ser Ser Ser Val Gly Ala Leu Ser Arg Lys
 1890 1895 1900

18

His Gln Asn Tyr Leu Lys Asp Ile Ala Ala Ile Gly Glu Gln Val Ala
1905 1910 1915 1920

Gln Ile Glu Arg Asp Ala Ala Glu Leu Arg Asp Gly Tyr Ala Gly Asp
1925 1930 1935

Lys Ala Leu Asp Ile Gly Ser Arg Glu Ser Glu Val Val Lys Ala Trp
1940 1945 1950

Arg His Leu Arg Gly Leu Cys Asp Ala Arg Thr Ser Arg Leu Met Asp
1955 1960 1965

Thr Ser Asp Leu Phe Lys Phe Met Asn Met Val Arg Asp Leu Leu Leu
1970 1975 1980

Trp Met Asp Glu Val Lys Arg Glu Met Asn Ser Gln Glu Arg Pro Lys
1985 1990 1995 2000

Asp Val Ser Gly Val Glu Leu Leu Met Asn Asn His Gln Ser Leu Lys
2005 2010 2015

Ala Glu Ile Asp Ala Arg Glu Glu Asn Phe Asn Ala Cys Ile Ser Leu
2020 2025 2030

Gly Arg Asp Leu Leu Asn Arg Lys His Tyr Ala Ser Ser Glu Ile Glu
2035 2040 2045

Lys Lys Leu Ile Lys Leu Thr Thr Glu Arg Ala Glu Met Met Arg Arg
2050 2055 2060

Trp Glu Asp Arg Trp Glu Tyr Leu Gln Leu Ile Leu Glu Val Tyr Gln
2065 2070 2075 2080

Phe Ala Arg Asp Ala Ala Val Ala Glu Ser Trp Leu Phe Ala Gln Glu
2085 2090 2095

Pro Tyr Leu Ile Ser Lys Glu Tyr Gly Arg Asn Leu Glu Glu Thr Ile
2100 2105 2110

Lys Leu Ile Lys Lys His Glu Ala Phe Glu Lys Ser Ala Phe Ala Gln
2115 2120 2125

Glu Glu Arg Phe Leu Ala Leu Glu Lys Leu Thr Thr Phe Glu Leu Lys
2130 2135 2140

Glu Thr Gln His Arg Glu Glu Glu Thr Ala Lys Arg Arg Gly Pro Ala
2145 2150 2155 2160

His Ile Gly Ser Pro Ser Arg Ser Thr Pro Ala Ala Glu Thr Ser Phe
2165 2170 2175

Gly Ala Gln Asp Asp Gly Ala Lys Gln Gly Glu Ala Phe Glu Gly Thr
2180 2185 2190

Leu Ile Arg Lys His Thr Tyr Glu Ser Leu Asp Arg Lys Ala Ala Asn
2195 2200 2205

Arg Ser Trp Glu Lys Leu Tyr Ala Val Leu Arg Gln Asn Glu Leu Ser

19

2210

2215

2220

Phe Tyr Lys Asp Pro Lys His Arg Asp Glu Ser Val His Gly Glu Pro
 2225 2230 2235 2240

Pro Met Ala Leu Pro Gly Cys Ser Val Asn Val Ala Ser Asp Tyr Gln
 2245 2250 2255

Lys Lys Lys Asn Val Leu Ser Leu Arg Leu Pro Ile Gly Ala Glu Tyr
 2260 2265 2270

Leu Phe Gln Cys Gly Ser Glu Glu Asp Met Gln Arg Trp Leu Thr Glu
 2275 2280 2285

Leu Gln Val Ala Thr Gly Gln Ala Gln Leu Glu Glu Ala Ser Arg Ser
 2290 2295 2300

Gln Thr Leu Pro Ala Glu Gly Ser Ala Thr Lys Lys Lys Gly Gly Phe
 2305 2310 2315 2320

Phe Ser Arg Gly Lys Lys
 2325

<210> 13

<211> 2192

<212> DNA

<213> Caenorhabditis elegans

<400> 13

gaacttgcgt ctaacaagga acgtcttgac caacttaaac atgctgccat caaccttggt 60
 gacgacaaggc cagagtacca cggaccatt gatccacaga tcgaggaact cgctactcaa 120
 tggatgagt tggaaaagac tacagaggag aaggacaga agttgttga tgctaaccgc 180
 caacaactt acgtacaaag tattgctgac atgaaggaat gggcaaccca acttgagaac 240
 gagatgactc gtgaagacca accaggagat cttaccactg tcaatgtggc catgcaaaaa 300
 caacatttga tcgaaactga aatgatcaag aaggctcaac acattgtca actcatggag 360
 atggagccac agctcgagga acttcaccca gacgagcttg aaaacattaa ggctcatcgt 420
 ttgcagggtc aagaacaact tcaaagactc caggctccat tggacgaccg acgtaaggca 480
 ttgaaacgca agaaggccgc cttccaattt ggtcgcgtatg ttgatgacga gaaatttgtgg 540
 atttctgaga gacttgttct cgctaaagct caaatctt gagaaggcct tccagattgt 600
 catcgctcc agaagaacct acaacttctt tccaatgaaa tcgacaacca cgaaccatgg 660
 atcaaccaga tctgtataaa tggtaagag ttgattgacg aaggacatgc taacggacca 720
 gcattcgaga agaagattca agaactgcgc agtgcgttgc aagagttgaa ggaagccgtc 780
 aaagacagaa agggagatct tggagaaagc gagaaggctc atcaattctt gtatgattgc 840
 ggagaggctg aacgcctggat gacgaaacaa gaattgtaca tggatgcaaga cggaaagagga 900
 aaagacgagt tctcaaccaa gaaccaaattc aagaacacacg aacgccttca atccgatatt 960
 gacaaatttgc ctgatacgat ccgtgcctt gccaccaagg ctcacaagtt cgtcgaagag 1020
 aagtccacac tcaccgaaca gatccaagtt cgtcaagctc aaatcgagaa gctctacgca 1080
 ggtcttcaag atttgcgaa ggagcgcaga aagagactcg aagagacattt ggaactttac 1140
 gctcttcatc gtgaaatcga cgtcttctt caatggatcg ccgacaagga agttgttgca 1200
 ggaagtcaag agaacggaca agactacgaa cacgtccaaa tgcttcaaga gagattccaa 1260
 cagtttgcgt gtgacaccga aaacatcgga tccgaacgtg ttgccaatgc taatgatgga 1320
 tgtgataactc tcattggtca cggacacact gacgctccga ctatagcatt gtggaggat 1380
 tcgttgaatg aggccctggga gaatcttctg gagttgtatgg acactcgtgc ccaaattctc 1440
 gaggcttcta gacttcttca caagtctac cacgactgcc gtgattgctt gtcaagaatc 1500
 atggaaaaga ctcatgctat gcctgtatgt cttggacgtg actcaaggcag tggatgtca 1560
 ctctccagaa aacatcagaa ctatctcaag gatattgctg caatggaga acaagttgct 1620
 caaatcgaaa gagatgccgc agagcttcga gatggttacg ctggagacaa ggctcttgc 1680

20

atcggatctc gcgaaagcga gttgtcaag gcatggaggc atctccgcgg actctgtgac 1740
 gcccgtacat ctcgtctcat ggatacttct gatctttca agttcatgaa tatggccgt 1800
 gatttgttgt tgtggatgga tgaggtgaag agagaaatga actcacaaga acgtccgaag 1860
 gatgtgagcg gagtcgagtt gctcatgaac aatcatcaat cgctaaggc tgaaatcgat 1920
 gctcgcgagg agaactcaa cgcgtgcate tcattggac gagatctgct caacagaaaa 1980
 cactacgcat caagtgaaat cgagaagaag ctgatcaagt tgacaaccga aagagccgaa 2040
 atgatgcgca gatggaaaga tcgttggaa tatcttcagc tcattctgga agtgtaccaa 2100
 ttgcggccgcg acgctgctgt cgccgaatct tggctctcg cccaagaacc atatcttatt 2160
 tcgaaggaat acggttagaaa cctcgaagaa ac 2192

<210> 14

<211> 731

<212> PRT

<213> Caenorhabditis elegans

<400> 14

Glu	Leu	Ala	Ala	Asn	Lys	Glu	Arg	Leu	Asp	Gln	Leu	Lys	His	Ala	Ala
1															15

Ile	Asn	Leu	Gly	Asp	Asp	Lys	Pro	Glu	Tyr	His	Gly	Thr	Ile	Asp	Pro
															30
								25							

Gln	Ile	Glu	Glu	Leu	Ala	Thr	Gln	Trp	Asp	Glu	Leu	Glu	Lys	Thr	Thr
															45
										40					

Glu	Glu	Lys	Gly	Gln	Lys	Leu	Phe	Asp	Ala	Asn	Arg	Gln	Gln	Leu	Tyr
															50
									55			60			

Val	Gln	Ser	Ile	Ala	Asp	Met	Lys	Glu	Trp	Ala	Thr	Gln	Leu	Glu	Asn
															80
										70		75			

Glu	Met	Thr	Arg	Glu	Asp	Gln	Pro	Gly	Asp	Leu	Thr	Thr	Val	Asn	Val
															95
										85		90			

Ala	Met	Gln	Lys	Gln	His	Leu	Ile	Glu	Thr	Glu	Met	Ile	Lys	Lys	Ala
															100
										105			110		

Gln	His	Ile	Asp	Gln	Leu	Met	Glu	Met	Glu	Pro	Gln	Leu	Glu	Glu	Leu
															115
									120			125			

His	Pro	Asp	Glu	Leu	Glu	Asn	Ile	Lys	Ala	His	Arg	Leu	Ala	Val	Gln
															130
									135			140			

Glu	Gln	Leu	Gln	Arg	Leu	Gln	Ala	Pro	Leu	Asp	Asp	Arg	Arg	Lys	Ala
															145
									150			155			160

Leu	Glu	Arg	Lys	Lys	Ala	Ala	Phe	Gln	Phe	Gly	Arg	Asp	Val	Asp	Asp
															165
									170			175			

Glu	Lys	Leu	Trp	Ile	Ser	Glu	Arg	Leu	Val	Leu	Ala	Lys	Ala	Gln	Asn
															180
									185			190			

Leu	Gly	Glu	Ser	Leu	Pro	Asp	Cys	His	Arg	Leu	Gln	Lys	Asn	Leu	Gln
															195
									200			205			

Leu	Leu	Ser	Asn	Glu	Ile	Asp	Asn	His	Glu	Pro	Trp	Ile	Asn	Gln	Ile
															210
									215			220			

21

Cys Asn Asn Gly Gln Glu Leu Ile Asp Glu Gly His Ala Asn Gly Pro
225 230 235 240

Aia Phe Glu Lys Lys Ile Gln Glu Leu Arg Ser Ala Trp Gln Glu Leu
245 250 255

Lys Glu Ala Val Lys Asp Arg Lys Gly Asp Leu Gly Glu Ser Glu Lys
260 265 270

Ala His Gln Phe Leu Tyr Asp Cys Gly Glu Ala Glu Ala Trp Met Ser
275 280 285

Glu Gln Glu Leu Tyr Met Met Gln Asp Glu Arg Gly Lys Asp Glu Phe
290 295 300

Ser Thr Lys Asn Gln Ile Lys Lys His Glu Arg Leu Gln Ser Asp Ile
305 310 315 320

Asp Lys Phe Ala Asp Thr Ile Arg Ala Leu Ala Thr Lys Ala His Lys
325 330 335

Phe Val Glu Glu Lys Ser Pro Leu Thr Glu Gln Ile Gln Val Arg Gln
340 345 350

Ala Gln Ile Glu Lys Leu Tyr Ala Gly Leu Gln Asp Leu Ser Lys Glu
355 360 365

Arg Arg Lys Arg Leu Glu Glu Thr Leu Glu Leu Tyr Ala Leu His Arg
370 375 380

Glu Ile Asp Asp Leu Leu Gln Trp Ile Ala Asp Lys Glu Val Val Ala
385 390 395 400

Gly Ser Gln Glu Asn Gly Gln Asp Tyr Glu His Val Gln Met Leu Gln
405 410 415

Glu Arg Phe Gln Gln Phe Ala Arg Asp Thr Glu Asn Ile Gly Ser Glu
420 425 430

Arg Val Ala Asn Ala Asn Asp Gly Cys Asp Thr Leu Ile Gly His Gly
435 440 445

His Thr Asp Ala Pro Thr Ile Ala Leu Trp Lys Asp Ser Leu Asn Glu
450 455 460

Ala Trp Glu Asn Leu Leu Glu Leu Met Asp Thr Arg Ala Gln Ile Leu
465 470 475 480

Glu Ala Ser Arg Leu Leu His Lys Phe Tyr His Asp Cys Arg Asp Cys
485 490 495

Leu Ser Arg Ile Met Glu Lys Thr His Ala Met Pro Asp Asp Leu Gly
500 505 510

Arg Asp Ser Ser Ser Val Gly Ala Leu Ser Arg Lys His Gln Asn Tyr
515 520 525

Leu Lys Asp Ile Ala Ala Ile Gly Glu Gln Val Ala Gln Ile Glu Arg

	22	
530	535	540
Asp Ala Ala Glu Leu Arg Asp Gly Tyr Ala Gly Asp Lys Ala Leu Asp		
545	550	555
Ile Gly Ser Arg Glu Ser Glu Val Val Lys Ala Trp Arg His Leu Arg		
	565	570
	575	
Gly Leu Cys Asp Ala Arg Thr Ser Arg Leu Met Asp Thr Ser Asp Leu		
	580	585
	590	
Phe Lys Phe Met Asn Met Val Arg Asp Leu Leu Trp Met Asp Glu		
595	600	605
Val Lys Arg Glu Met Asn Ser Gln Glu Arg Pro Lys Asp Val Ser Gly		
610	615	620
Val Glu Leu Leu Met Asn Asn His Gln Ser Leu Lys Ala Glu Ile Asp		
625	630	635
640		
Ala Arg Glu Glu Asn Phe Asn Ala Cys Ile Ser Leu Gly Arg Asp Leu		
645	650	655
Leu Asn Arg Lys His Tyr Ala Ser Ser Glu Ile Glu Lys Lys Leu Ile		
660	665	670
Lys Leu Thr Thr Glu Arg Ala Glu Met Met Arg Arg Trp Glu Asp Arg		
675	680	685
Trp Glu Tyr Leu Gln Leu Ile Leu Glu Val Tyr Gln Phe Ala Arg Asp		
690	695	700
700		
Ala Ala Val Ala Glu Ser Trp Leu Phe Ala Gln Glu Pro Tyr Leu Ile		
705	710	715
720		
Ser Lys Glu Tyr Gly Arg Asn Leu Glu Glu Thr		
725	730	

<210> 15
<211> 3561
<212> DNA
<213> Caenorhabditis elegans

<400> 15

```

atgagctcta gtagtagtga tgaaaatgaa acaacgatac acagaacagg atcaaatacc 60
gttggaaagtg gaatctactc acaaacctcgta gcaggatcat caaaaagaac atcgaatgtg 120
cgacatgtatgt ttatgtatgt agatgtatgaa gaagagcatt atgcggatt tcgcgaagat 180
acggcgatcg aggttgacgta tgctataaca gttcttcttt catctctaca tttcgaaacac 240
aaacgtgata ttgttccgac cgatgaagat gataataaac ttcgagaact tcacgaaaag 300
atttttgcat tgataacgag tgaatctgtat gttaacagaa aaagacggct gaaaaaaagct 360
cttcctcggt ccaaactgtgt tagagaacaa gtatattatc ttgcgaaaggaa accatcaaca 420
ccaccagctt cttattatca tcgactaaat gcagctcttc acacaatcgta taaggaatca 480
tttggagaag aatatcgaaa agttgcata gtattaggac ttgttgaagc gcttgcagaa 540
gttttaatttc ttgaagttca cacatttggaa atcaatggaa ccaatcctgg agagcatcgaa 600
aatattcgaa aacttattgc caatgcctt acgaatttaa catacggtca aattcaactct 660
aaacgcccggc tatgctata tgatggattc attcgatcgta ttgttgcata tgcgtatcgaa 720
tctccaaata taactcaagt atacgctggaa ctaatcgaa atctctcatg gaacgcccgt 780

```

23

<210> 16
<211> 1186
<212> PRT
<213> Caen

<400> 16
Met Ser Ser Ser Ser Asp Glu Asn Glu Thr Thr Ile His Arg Thr
1 5 10 . 15

Gly Ser Asn Thr Gly Gly Ser Gly Ile Tyr Ser Gln Pro Arg Ala Gly

	20	24 25	30
Ser Ser Lys Arg Thr Ser Asn Val Arg His Asp Val Ser Asp Val Asp			
35	40	45	
Asp Glu Glu Glu His Tyr Ala Arg Phe Arg Glu Asp Thr Ala Ile Glu			
50	55	60	
Val Asp Asp Ala Ile Thr Val Leu Leu Ser Ser Leu His Phe Glu His			
65	70	75	80
Lys Arg Asp Ile Val Pro Thr Asp Glu Asp Asp Asn Lys Leu Arg Glu			
85	90	95	
Leu His Glu Lys Ile Phe Ala Leu Ile Thr Ser Glu Ser Asp Val Asn			
100	105	110	
Arg Lys Arg Arg Leu Lys Lys Ala Leu Pro Ala Ser Asn Cys Val Arg			
115	120	125	
Glu Gln Val Tyr Tyr Leu Arg Arg Lys Pro Ser Thr Pro Pro Ala Ser			
130	135	140	
Tyr Tyr His Arg Leu Asn Ala Ala Leu His Thr Ile Val Lys Glu Ser			
145	150	155	160
Phe Gly Glu Glu Tyr Arg Lys Val Ala Thr Val Leu Gly Leu Val Glu			
165	170	175	
Ala Leu Ala Glu Val Leu Ile Leu Glu Val His Thr Phe Gly Ile Asn			
180	185	190	
Glu Thr Asn Pro Gly Glu His Arg Asn Ile Arg Lys Leu Ile Ala Asn			
195	200	205	
Ala Leu Thr Asn Leu Thr Tyr Gly Gln Ile His Ser Lys Arg Arg Leu			
210	215	220	
Cys Ser Tyr Asp Gly Phe Ile Arg Cys Val Val Arg Ile Val Ile Glu			
225	230	235	240
Ser Pro Asn Ile Thr Gln Val Tyr Ala Gly Leu Ile Arg Asn Leu Ser			
245	250	255	
Trp Asn Ala Asp Ser Gly Met Ser Glu Ala Leu Gln Pro Thr Val His			
260	265	270	
Ala Leu Ser Ile Ala Ala Val His Ala His Thr His Arg Phe Asp Val			
275	280	285	
Thr Ala Thr Leu Ser Ala Leu Trp Asn Leu Ala Gly His Ser Val Glu			
290	295	300	
Asn Lys Arg Thr Ile Cys Asp Thr Pro Asn Cys Leu Lys Val Leu Ala			
305	310	315	320
Ser Leu Leu Ser Pro Asp Ala Arg Phe Thr Ser Leu Val Asp Ser Ala			
325	330	335	

Thr Gly Ile Leu Lys Tyr Val Ser Gln Tyr Leu Ala Asn Thr Ser Thr
340 345 350

His Leu Glu Leu Arg Ser Leu Leu Ile Thr Arg Met Leu Thr Leu Leu
355 360 365

Lys Ser Ala Ser Phe Thr Cys Val Thr Asn Thr Leu Gly Ala Ile Ala
370 375 380

Asn Leu Ile Val Lys Asp Pro His Met Gln Gln Met Ile Arg Gln Asp
385 390 395 400

Met Ala Ala Val Gln Gln Leu Asn Val Leu Arg Asn Ser Asn Arg Asp
405 410 415

Asp Ile Arg Thr Ala Val Lys Ser Val Leu Asn Thr Leu Asn Gln Pro
420 425 430

Cys Ser His Arg Tyr Gly Asp Met Ser His Ser Val Gly Gly Gly Ala
435 440 445

Thr Gly Met Gln Met Leu Ser Glu Pro Gln Leu Gln Met Gln Thr Ser
450 455 460

His His Ala Tyr His Gly Thr Ala Ser Pro Arg Leu Leu Ser Leu Arg
465 470 475 480

Ala Thr Arg Ala Ser Pro Gly Lys Tyr Ile Gln Pro Gln Ala Gln Gln
485 490 495

Gln Leu Ile Gln Thr Pro Gln Val Asp Gln Arg Ser Ser Leu Pro
500 505 510

Arg His Phe Ala Val Gln Arg Asn Gly Phe Val Met Ala Gln Ser Tyr
515 520 525

Asn Gln Gln Met Asp Gln His Gln Gln Gln Gln Met Ile Tyr Gln Leu
530 535 540

Gln Gln Gln Gln Gln Ile Met Thr Glu Asp Gln Ala Gln Met Glu His
545 550 555 560

His Gln Gln Ile Met Tyr Leu Gln Gln Gln Gln Gln Phe His Gln
565 570 575

Ile Gin Gln Gln Gln Met Gln Lys Ala Gln Glu Ala Asp Pro Val
580 585 590

Pro Pro Thr Asp Asp Asp Leu Asp Ile Pro Thr Ser Thr Val Met Gly
595 600 605

Thr Arg Ser Asn Ser Glu Arg Ser Leu Gly Ser Met Asn Pro Gly Ser
610 615 620

Val Met Thr Asn Trp Asn Ser Ser Leu Asp Thr Ala Ala Asn Ser Ser
625 630 635 640

26

Arg Ala Leu Ser Pro Val Ser Tyr Asn Asp Ile Pro Ala Ser Prc Thr
645 650 655

Met Cys Ala Gln Val Phe Asn Leu Pro Lys Ser Thr Glu Ser Glu His
660 665 670

His Gln Leu Thr Ser Gln Gln Asn Thr Thr His Tyr Ser Ser Gly
675 680 685

Ser Ala Asn Thr Met Thr Arg Ser Asp Gly Ala Thr Thr Val Pro Met
690 695 700

Asp Asn Ile Ile Thr Pro Thr Tyr Ala Ile Leu Asn Pro Ile Leu Val
705 710 715 720

His Glu Gln Thr Pro Asn Gly Thr Val Pro Arg Lys Thr Ser Glu Glu
725 730 735

Leu Asp Ser Pro Asp Asp Val Leu Pro Gly Pro Ser Leu Glu Glu Glu
740 745 750

Glu Gly Asp Tyr Ala Ile Ile Gly Gly Ala Ala Gln Lys Thr Asp Asp
755 760 765

Glu Leu Leu Thr Arg Ser Ile Gln Ser Glu Met Pro Thr Ser Ser Ser
770 775 780

Thr Pro Lys Met Lys Val Ser Pro Arg Leu Asn Gly Phe Phe Ser Pro
785 790 795 800

Thr Gln Lys Thr Thr Ser Ser Pro Ala Trp Ser His Pro Asp Thr Ser
805 810 815

Pro Ile Pro Lys Ser Ser Ser His Arg Thr Gln Pro Asn Arg Arg Gln
820 825 830

Asp Ala Ser Asp Ala Asp Arg Leu Leu Met Glu Ser Ile Met Ser Glu
835 840 845

Met Pro Lys Ser Arg Ile Ile Ser Pro Arg Leu Ala Gly Thr Gln Gln
850 855 860

Tyr Leu Glu Pro Glu Pro Glu Arg Arg Ser His Ser Lys Asn Glu Glu
865 870 875 880

Ala Asp Arg Arg Asp Ala Phe Thr Ala Ser His Glu Pro Ser Asp His
885 890 895

Asn Gly Ile Asp Val Ala Arg Gly Ser Asp Trp Ser Pro Gln Gln Gln
900 905 910

Leu His Arg Met Glu Ser Leu Glu Ser Gln Ala Ser Ser Glu Asp Ser
915 920 925

Phe Gly Leu Thr Ala Glu Glu Pro Asn Ser Ser Thr Ser Gly Ala Ala
930 935 940

Ala Asn Thr Met Arg Phe Asp Asp Glu Ile Asp Ala Ser Leu Pro Met

27

945	950	955	960
Asp Cys Val Asp Asp Asp Tyr Asp Tyr Thr Tyr Asp His Phe Glu			
965		970	975
Asp Tyr Glu Asp Glu Glu Asp Pro Asp Ala Thr Gln Phe Asp Asp Gly			
980		985	990
Val Asp Ala Gln Leu Thr Ile Asp Cys Ser Met Ile Ser Ser Gly Ser			
995		1000	1005
Gly Ser Ser Gln Arg Asn Glu Thr Thr Thr Ser Arg Asp Ser Lys			
1010		1015	1020
Ala Leu Ala Thr Ser Thr Pro Lys Gly Ser Ala Ser Ser Leu Pro Gly			
1025		1030	1035
Val Arg Gln Ala Thr Arg Val Ser Thr Asn Gly Lys Ser Arg Leu Pro			
1045		1050	1055
Val Pro Lys Thr Asn Gly Ser Leu Val Asp Lys Asn Pro Lys Pro Ile			
1060		1065	1070
Ile Ala Ser Arg Arg Pro Arg Leu Pro Pro Lys Pro Thr Leu Leu Lys			
1075		1080	1085
Asp Lys His Tyr Pro Glu Glu Asp Ser Ile Glu Asn Gln Thr Arg Asp			
1090		1095	1100
Asp Thr Ile Tyr Val Asn Ala Pro Val Val Glu Ala Glu Gln Glu Arg			
1105		1110	1115
Ile Tyr Met Asn Ala Leu Lys Gln Gln Lys Asn Ile Glu Gln Ser Pro			
1125		1130	1135
Ser Ile Gly Asn Gly Ser Pro Ile Ala Lys Ser Ala Ile Val Thr Pro			
1140		1145	1150
Tyr Asn Tyr Gln Lys Pro Pro Phe Thr Gly Arg Asn Asn Gly Glu Met			
1155		1160	1165
Ser Asn Glu Lys Ser Val Thr Pro Asn Pro Lys Gln Met Leu Val Thr			
1170		1175	1180
Ile Val			
1185			

<210> 17
<211> 1742
<212> DNA
<213> Caenorhabditis elegans

<400> 17
at gagctta gtagtagtga taaaaatgaa acaacgatac acagaacagg atcaaatacc 60
gg tggaaatg gaatctactc acaacctcg a cggatcat caaaaagaac atcgaatgtg 120
cgacatgtatgt ttagtgatgt agatgtatgaa gaagagcatt atgcaggatt tcgcgaatgt 180
acggcgatcg aggttgacga tgctataaca gttcttcttt catctctaca ttgcgaacac 240

28

aaacgtgata	ttgttccgac	cgatgaagat	gataataaac	ttcgagaact	tcacgaaaag	300
atttttgcat	tgataaacgag	tgaatctgat	gttaacagaa	aaagacggct	aaaaaaagct	360
cttcctgcgt	caaactgtgt	tagagaacaa	gtatatattatc	ttcgaaggaa	accatcaaca	420
ccaccagctt	cttatttatca	tcgactaaat	gcagctttc	acacaatcgt	taaggaatca	480
tttggagaag	aatatcgaaa	agttgtaca	gtatttaggac	ttgttgaagc	gcttcagaa	540
gttttaattc	ttgaagttca	cacatttggaa	atcaatgaga	ccaatctgg	agagcatcgaa	600
aatattcgaa	aacttattgc	caatgcttct	acgaatttaa	catacggtca	aatttactct	660
aaacgcggc	tatgctcata	tgatggattc	attcgatgcg	ttgttcaat	tgtgatcgaa	720
tctccaaata	taactcaagt	atacgctggaa	ctaatacgaa	atctctcatg	gaacgccat	780
tcaggaatga	gtgaagctct	tcaaccaaca	gttcatgcac	tttcaattgc	tgcagttacat	840
gcacatacac	atagattcga	tgttacagca	acattatctg	cttggggaa	tcttgcgtgt	900
cactcgttag	agaataaaacg	aactatttgt	gataactccga	attgtttaaa	agtattagcc	960
agccttctat	ctccctgatgc	aagattcagc	toacttggtg	attcagctac	tggaaattctg	1020
aagtatgtat	cacaatatct	cgcgaataact	tccacgcatt	tagagctaa	aagcttgctc	1080
atcactcgaa	tgctcaactt	gctcaagagt	gcctcggtca	cttgggttac	aaatactcta	1140
ggagctattg	caaaccataat	tgtcaaagat	ccccacatgc	agcaaatgat	tcggcaggat	1200
atggctgcag	tacagcaact	caacgtactc	cgaaaactcga	atcggtatga	tattcgacaa	1260
gcagtgaaatg	ctgtgctgaa	tactcttaat	caaccgtgta	gtcatcggtt	tggtgatatg	1320
tcacattctg	ttggaggagg	agccacaggg	atgcaaatgc	tttgcggagcc	acaacttcag	1380
atgcaaaacat	ctcatcatgc	ttatcatggaa	actgcgtcac	caagattact	atcaactgaga	1440
gcaactcgag	catcacctgg	aaaatatata	caaccacagg	ctcaacaaca	gttgatacag	1500
actccacaag	ttgatcaag	atcttagtgc	ctgccaagac	attttgcgtt	tcaacgaaat	1560
ggattttgtga	tggcacagtc	ctacaatcaa	caaatggatc	aacatcagca	acaacaaatg	1620
atctatcaat	tgcagcaaca	acaacaaatt	atgacggagg	atcaagcgca	aatggaacat	1680
catcaacaaa	tcatgttacct	tcagcagcaa	caacaacaat	ttcatcaat	tcaacacaacag	1740
ca						1742

<210> 18

<211> 509

<212> PRT

<213> *Caenorhabditis elegans*

<400> 18

Met	Ser	Ser	Ser	Ser	Ser	Asp	Glu	Asn	Glu	Thr	Thr	Ile	His	Arg	Thr
1					5				10						15

Gly Ser Asn Thr Gly Gly Ser Gly Ile Tyr Ser Gln Pro Arg Ala Gly
20 25 30

Ser Ser Lys Arg Thr Ser Asn Val Arg His Asp Val Ser Asp Val Asp
 35 40 45

Asp Glu Glu Glu His Tyr Ala Arg Phe Arg Glu Asp Thr Ala Ile Glu
50 55 60

Val	Asp	Asp	Ala	Ile	Thr	Val	Leu	Leu	Ser	Ser	Leu	His	Phe	Glu	His
65					70					75					80

Lys Arg Asp Ile Val Pro Thr Asp Glu Asp Asp Asn Lys Leu Arg Glu
85 90 95

Leu His Glu Lys Ile Phe Ala Leu Ile Thr Ser Glu Ser Asp Val Asn
 100 105 110

Arg Lys Arg Arg Leu Lys Lys Ala Leu Pro Ala Ser Asn Cys Val Arg
115 120 125

Glu Gln Val Tyr Tyr Leu Arg Arg Lys Pro Ser Thr Pro Pro Ala Ser

	29		
130	135	140	
Tyr Tyr His Arg Leu Asn Ala Ala Leu His Thr Ile Val Lys Glu Ser			
145	150	155	160
Phe Gly Glu Glu Tyr Arg Lys Val Ala Thr Val Leu Gly Leu Val Glu			
165	170	175	
Ala Leu Ala Glu Val Leu Ile Leu Glu Val His Thr Phe Gly Ile Asn			
180	185	190	
Glu Thr Asn Pro Gly Glu His Arg Asn Ile Arg Lys Leu Ile Ala Asn			
195	200	205	
Ala Leu Thr Asn Leu Thr Tyr Gly Gln Ile His Ser Lys Arg Arg Leu			
210	215	220	
Cys Ser Tyr Asp Gly Phe Ile Arg Cys Val Val Arg Ile Val Ile Glu			
225	230	235	240
Ser Pro Asn Ile Thr Gln Val Tyr Ala Gly Leu Ile Arg Asn Leu Ser			
245	250	255	
Trp Asn Ala Asp Ser Gly Met Ser Glu Ala Leu Gln Pro Thr Val His			
260	265	270	
Ala Leu Ser Ile Ala Ala Val His Ala His Thr His Arg Phe Asp Val			
275	280	285	
Thr Ala Thr Leu Ser Ala Leu Trp Asn Leu Ala Gly His Ser Val Glu			
290	295	300	
Asn Lys Arg Thr Ile Cys Asp Thr Pro Asn Cys Leu Lys Val Leu Ala			
305	310	315	320
Ser Leu Leu Ser Pro Asp Ala Arg Phe Thr Ser Leu Val Asp Ser Ala			
325	330	335	
Thr Gly Ile Leu Lys Tyr Val Ser Gln Tyr Leu Ala Asn Thr Ser Thr			
340	345	350	
His Leu Glu Leu Arg Ser Leu Leu Ile Thr Arg Met Leu Thr Leu Leu			
355	360	365	
Lys Ser Ala Ser Phe Thr Cys Val Thr Asn Thr Leu Gly Ala Ile Ala			
370	375	380	
Asn Leu Ile Val Lys Asp Pro His Met Gln Gln Met Ile Arg Gln Asp			
385	390	395	400
Met Ala Ala Val Gln Gln Leu Asn Val Leu Arg Asn Ser Asn Arg Asp			
405	410	415	
Asp Ile Arg Thr Ala Val Lys Ser Val Leu Asn Thr Leu Asn Gln Pro			
420	425	430	
Cys Ser His Arg Tyr Gly Asp Met Ser His Ser Val Gly Gly Gly Ala			
435	440	445	

Thr Gly Met Gln Met Leu Ser Glu Pro Gln Leu Gln Met Gln Thr Ser
450 455 460

His His Ala Tyr His Gly Thr Ala Ser Pro Arg Leu Leu Ser Leu Arg
465 470 475 480

Ala Thr Arg Ala Ser Pro Gly Lys Tyr Ile Gln Pro Gln Ala Gln Gln
485 490 495

Gln Leu Ile Gln Thr Pro Gln Val Asp Gln Arg Ser Ser
500 505

<210> 19
<211> 1998
<212> DNA
<213> *Caenorhabditis elegans*

<210> 20
<211> 665
<212> PRT

31

<213> *Caenorhabditis elegans*

<400> 20

Met	Val	Glu	Leu	Cys	Glu	Leu	His	Met	Met	Pro	Glu	Glu	Asp	Gln	Trp
1															
															15

Pro	Asp	Asp	Ile	Asp	Ala	Arg	Ile	Ala	Ala	Leu	Asn	Phe	Cys	Gly	Glu
															30
20															

Asp	Ser	Met	Leu	Phe	Glu	Ser	Val	Asp	Pro	Ser	Val	Ser	Thr	Asp	Ser
															45
35															

Leu	Asp	Ser	Gln	Gln	Phe	Arg	Glu	Arg	Cys	Gln	Met	Lys	Lys	Glu	Asp
															60
50															

Phe	Gln	Leu	Ala	Phe	Ala	Asp	Ser	Gly	His	Trp	Gln	Ser	Gly	Ile	Asn
															80
65															

Asp	Asn	Leu	Thr	Thr	Trp	Gly	Arg	Ile	Arg	Thr	Ser	Glu	Pro	Leu	Asp
															95
85															

Glu	Arg	Thr	Ala	Ser	Ala	Pro	Asp	Val	Trp	Asn	Val	Lys	Arg	Ser	Asp
															110
100															

Ser	Ala	Arg	Ser	Pro	Asn	Arg	Pro	Asn	Ser	Leu	Ile	Ala	Asn	Phe	Val
															125
115															

Ser	Gly	Asp	Ala	Thr	Arg	Phe	Val	Asp	Val	Asn	Asp	Asn	Glu	Ile	Arg
															140
130															

Glu	Ala	Asn	Glu	Glu	Ile	Ile	Arg	Lys	Asp	Arg	Trp	Arg	Arg	Asp	Ser
															160
145															

Ala	Arg	Arg	Cys	Ser	Ser	Gly	Gly	Gln	Asn	Gln	Lys	Arg	Thr	Phe	Ala
															175
165															

Asp	Ile	Leu	Glu	Lys	Asn	Val	Thr	Ala	Pro	Thr	Ser	Met	Ala	Ile	Thr
															190
180															

Ser	Ser	Asp	Asn	Glu	Lys	Pro	Pro	Lys	Leu	Asp	Phe	Leu	Ala	Met	His
															205
195															

His	Glu	Met	Pro	Ser	Leu	Cys	Glu	Ser	Phe	Thr	Ala	Ser	Phe	Arg	Asp
															220
210															

Ala	Ile	Ile	Lys	Met	Gln	Lys	Cys	Glu	Pro	Leu	Pro	Ser	Ile	Thr	Ser
															240
225															

Thr	Asn	Asp	Phe	Pro	Leu	Phe	Phe	Gln	Glu	Asp	Ser	Pro	Asp	Ser	Gly
															255
245															

Leu	Gly	Cys	Ser	Gly	Pro	Ser	His	Ile	Glu	Asp	Trp	Gln	Ser	Leu	Ser
															270
260															

Val	Leu	Leu	Pro	Lys	His	Val	Ala	Glu	Ala	Cys	Ser	Phe	Phe	Lys	Ser
															285
275															

Asn Thr Gln Leu Leu Thr Ser Ser Thr Ser Lys Thr Ala Pro Gln Thr

32	300
290	295
Ser Thr Asn Ile Val Ser Asn Cys Ile Asp Arg Arg Ile Ser Gly Ile	320
305	310
Ser Ala Ser Ala Asn Glu Ala Cys Arg Thr Cys Tyr Arg Val Arg Arg	335
325	330
Arg Ile His Pro Pro Val Trp Ala Gln Thr Ala Gln Ser Lys Thr Val	350
340	345
Leu Cys Asp Cys Ala Ser Thr Pro Thr Asp Thr Asn Phe Ser Phe Ala	365
355	360
Pro Thr Thr Ser Thr Thr Arg His Gln Leu Arg Ala Lys Glu Leu Ser	380
370	375
Ile Val Gly Leu Pro Ile Tyr Ala Ala Lys Arg Thr Leu Val Glu Asn	400
385	390
Val Val Glu Gly Val Ala Ala Ile Ser Arg Gly Asp Gly Ser Asp Leu	415
405	410
Leu Val Ile Ala Met Arg Cys Leu Ile Glu Asp Gly Leu Gln Glu Asn	430
420	425
Val Ser Ala Trp Thr Met Ile Gln Thr Val Thr Ser Lys Gly Pro Ala	445
435	440
Thr Lys Asp Val His Ser Ile Val Lys Gln Leu Glu Glu Cys Ser Lys	460
450	455
Thr Asp Asn Val Lys Val Glu Ile Phe Phe Glu Glu Leu Ile Arg Glu	480
465	470
Asn Ser Leu Asp Cys Trp Leu Cys Tyr Ile Val Leu Lys Glu Lys Val	495
485	490
Leu Lys Thr Leu Tyr Ser Glu Asn Ala Phe Leu Leu Ser Ala Ser Ser	510
500	505
Glu Tyr Arg Thr Leu Leu Trp Arg Met Val Asp Ser Leu Ser Leu Leu	525
515	520
Pro Val Ile Glu Ala Arg Ser Asp Ser Val His Gln Gln Phe Lys Ser	540
530	535
Met Gln Gln Trp Gly Gly Ala Ser Arg Ile Ala Ser Asp Ser Arg Val	560
545	550
Pro Lys Ser Ser Ser Phe Pro Ala Arg Leu Ser Thr Ala Pro Ser Arg	575
565	570
Arg Ser Arg Ile Pro Leu Ser Thr Ser Arg Ile Ser Ile Ser Ser Thr	590
580	585
Thr Ser Thr Pro Arg Ser Ala Arg Ser Pro Ser Thr Thr Ser Arg Ile	605
595	600

Arg	Val	Ala	Ser	Ile	Met	Gly	Asp	Phe	Thr	Leu	Ala	Asn	Phe	Ser	Leu
						610									620
Ser	Asp	Gly	Glu	Lys	Val	Ser	Val	Leu	Ser	Thr	Arg	Gly	Gly	Leu	Ala
						625									640
Arg	Cys	Val	Arg	Leu	Thr	Thr	Ser	His	Ser	Lys	Ile	Asn	Asn	Gly	Val
									645						655
Ile	Pro	Ile	Glu	His	Leu	Leu	Phe	Gln							
									660						665

```
<210> 21
<211> 1839
<212> DNA
<213> Caenorhabditis elegans
```

<400> 21

tttcgagaga	gatgtcaaat	aaaaaaaagaa	gattttcaat	tagcattcgc	agactctgga	60
cattggcaat	caggtataaa	tgataatctg	acaacttggg	gtcgatttcg	gacatctgaa	120
ccattggatg	aacgtactgc	cagtgtccca	gatgtttgga	atgtaaaaaag	aagtgtatgt	180
gctcgatcac	caaatcgccc	aaattcactg	attgccaact	ttgtttccgg	agatgtact	240
cgattcgctg	atgttaatatg	taatgaaatt	cgcgaggccaa	atgaagaaaat	aattcgtaaa	300
gatcggttgg	gaagagattc	agcgagacga	tgctcatctg	gaggacaaaa	tcagaaacgaa	360
acatttcgccg	atattctgga	aaagaatgt	acagcacccaa	cttcaatggc	aatcacatcg	420
tctgataatg	aaaaggctcc	gaaatttagac	ttccctggca	tgcatcatg	gatgccatct	480
ctctgcgagt	cattcaccgc	ttcggttccgt	gatgctatta	ttaaaatgca	gaaatgttag	540
ccactaccgt	cgattactc	aaccaatgt	tttccgtct	tctttcaaga	agactctccc	600
gactcaggac	tcgggtttag	tggtccgagc	cacattgaag	attggcaatc	tctatctgtt	660
cttctggcca	aacacgtcgc	agaagcatgt	tcattttca	agagcaacac	ccaaattatta	720
acatcaagta	catcaaaaac	agcacccccaa	acatcaacaa	acatcgatc	aaattgcatt	780
gatcgccgt	tctctggtat	ttcagcatca	gcaaataaag	catgtcgaa	gtgttacgaa	840
gtacgaagga	ggatacacccc	accagtttg	gctcaaaact	cccaatcaa	gacgggtctt	900
tgtgactgcg	catcaacacc	cacggatacg	aattttccat	ttgcaccaac	aacttcaacg	960
actcgccatc	aactgcgcgc	aaaagagctc	tcaatttgtcg	gattgccgat	ttatgcagca	1020
aagcggacac	tcgttgagaa	tgttggtaa	ggcgttgctg	caatttcaag	aggggatgga	1080
agtgatttgc	ttgtcatcgc	catgagatgc	ttaatttgaag	atggtcttca	agaaaaatgt	1140
tcggcatgga	caatgattca	gacggttacc	tcaaaaggcc	cagctacaaa	agatgttcat	1200
tcaatttgtaa	aacaattg	agaatgttca	aagactgaca	acgtcaaagt	tgaardtcttc	1260
tttgaggagc	ttatcagaga	aaactcattt	gactgctggc	tgtgtat	tgtgtgaaa	1320
gagaagggtgc	tgaaaacatt	gtattctgaa	aatgcattcc	ttctttctgc	gagttctgaa	1380
tacagaactc	ttctttggag	aatgggtcgac	agtttgtctc	ttttgccagt	gatcgaagct	1440
cgcagtgtatt	cagttcacca	acagttcaaa	tcaatgcaac	aatggggcgg	agcatccaga	1500
atagcttctg	actcaagagt	tccaaagagt	tcattcgttcc	cagcaagatt	atcaactgt	1560
ccatcaagaa	gatcaaggat	accattgtca	acaagtcgca	tcaatgtatc	ctcaacaact	1620
tcaacaccc	gatcagctcg	atcaccttca	acgacatctc	gtattcgagt	tgcatctata	1680
atgggtgact	tcacacttgc	caatttctcc	ctctcagacg	gagaaaaaagt	tagtgttcta	1740
tcaactcg	gaggacttgc	tcgatgtgtc	cgtttaacga	tttctcattc	aaaaatcaac	1800
aatggagtt	ttccgattga	acatcttctt	ttccagtg			1839

<210> 22
<211> 612
<212> PRT
<213> *Caenorhabditis elegans*

<400> 22

34

Phe Arg Glu Arg Cys Gln Met Lys Lys Glu Asp Phe Gln Leu Ala Phe
1 5 10 15

Ala Asp Ser Gly His Trp Gln Ser Gly Ile Asn Asp Asn Leu Thr Thr
20 25 30

Trp Gly Arg Ile Arg Thr Ser Glu Pro Leu Asp Glu Arg Thr Ala Ser
35 40 45

Ala Pro Asp Val Trp Asn Val Lys Arg Ser Asp Ser Ala Arg Ser Pro
50 55 60

Asn Arg Pro Asn Ser Leu Ile Ala Asn Phe Val Ser Gly Asp Ala Thr
65 70 75 80

Arg Phe Val Asp Val Asn Asp Asn Glu Ile Arg Glu Ala Asn Glu Glu
85 90 95

Ile Ile Arg Lys Asp Arg Trp Arg Arg Asp Ser Ala Arg Arg Cys Ser
100 105 110

Ser Gly Gly Gln Asn Gln Lys Arg Thr Phe Ala Asp Ile Leu Glu Lys
115 120 125

Asn Val Thr Ala Pro Thr Ser Met Ala Ile Thr Ser Ser Asp Asn Glu
130 135 140

Lys Pro Pro Lys Leu Asp Phe Leu Ala Met His His Glu Met Pro Ser
145 150 155 160

Leu Cys Glu Ser Phe Thr Ala Ser Phe Arg Asp Ala Ile Ile Lys Met
165 170 175

Gln Lys Cys Glu Pro Leu Pro Ser Ile Thr Ser Thr Asn Asp Phe Pro
180 185 190

Leu Phe Phe Gln Glu Asp Ser Pro Asp Ser Gly Leu Gly Cys Ser Gly
195 200 205

Pro Ser His Ile Glu Asp Trp Gln Ser Leu Ser Val Leu Leu Pro Lys
210 215 220

His Val Ala Glu Ala Cys Ser Phe Phe Lys Ser Asn Thr Gln Leu Leu
225 230 235 240

Thr Ser Ser Thr Ser Lys Thr Ala Pro Gln Thr Ser Thr Asn Ile Val
245 250 255

Ser Asn Cys Ile Asp Arg Arg Ile Ser Gly Ile Ser Ala Ser Ala Asn
260 265 270

Glu Ala Cys Arg Thr Cys Tyr Arg Val Arg Arg Arg Ile His Pro Pro
275 280 285

Val Trp Ala Gln Thr Ala Gln Ser Lys Thr Val Leu Cys Asp Cys Ala
290 295 300

Ser Thr Pro Thr Asp Thr Asn Phe Ser Phe Ala Pro Thr Thr Ser Thr

		35		
305	310		315	320
Thr Arg His Gln Leu Arg Ala Lys Glu Leu Ser Ile Val Gly Leu Pro				
325 330 335				
Ile Tyr Ala Ala Lys Arg Thr Leu Val Glu Asn Val Val Glu Gly Val				
340 345 350				
Ala Ala Ile Ser Arg Gly Asp Gly Ser Asp Leu Leu Val Ile Ala Met				
355 360 365				
Arg Cys Leu Ile Glu Asp Gly Leu Gln Glu Asn Val Ser Ala Trp Thr				
370 375 380				
Met Ile Gln Thr Val Thr Ser Lys Gly Pro Ala Thr Lys Asp Val His				
385 390 395 400				
Ser Ile Val Lys Gln Leu Glu Glu Cys Ser Lys Thr Asp Asn Val Lys				
405 410 415				
Val Glu Ile Phe Phe Glu Glu Leu Ile Arg Glu Asn Ser Leu Asp Cys				
420 425 430				
Trp Leu Cys Tyr Ile Val Leu Lys Glu Lys Val Leu Lys Thr Leu Tyr				
435 440 445				
Ser Glu Asn Ala Phe Leu Leu Ser Ala Ser Ser Glu Tyr Arg Thr Leu				
450 455 460				
Leu Trp Arg Met Val Asp Ser Leu Ser Leu Leu Pro Val Ile Glu Ala				
465 470 475 480				
Arg Ser Asp Ser Val His Gln Gln Phe Lys Ser Met Gln Gln Trp Gly				
485 490 495				
Gly Ala Ser Arg Ile Ala Ser Asp Ser Arg Val Pro Lys Ser Ser Ser				
500 505 510				
Phe Pro Ala Arg Leu Ser Thr Ala Pro Ser Arg Arg Ser Arg Ile Pro				
515 520 525				
Leu Ser Thr Ser Arg Ile Ser Ile Ser Ser Thr Thr Ser Thr Pro Arg				
530 535 540				
Ser Ala Arg Ser Pro Ser Thr Thr Ser Arg Ile Arg Val Ala Ser Ile				
545 550 555 560				
Met Gly Asp Phe Thr Leu Ala Asn Phe Ser Leu Ser Asp Gly Glu Lys				
565 570 575				
Val Ser Val Leu Ser Thr Arg Gly Gly Leu Ala Arg Cys Val Arg Leu				
580 585 590				
Thr Thr Ser His Ser Lys Ile Asn Asn Gly Val Ile Pro Ile Glu His				
595 600 605				
Leu Leu Phe Gln				
610				

<210> 23
<211> 3435
<212> DNA
<213> Caenorhabditis elegans

<400> 23

```

atgcaggcga tagatgaatc caagcgaaat caaaaagtgc cgccgtcaaa acgaaagcgg 60
atatatttgt ctgacgagga agaggaagat tttgctgaag cggcgcacgt tgagaacaca 120
gtccccgagc gtgcaactcg acgttagcacc agaagacgtt catcaatgca cgaagaactt 180
ggagtttcag aacaggaaga gtcgcccgtt cgccaggactc gcaaaagccgc caagcgcctt 240
ggaagtgagc aaccagagga aaatctagca gcagatgatc cgttgccaat ggaaggaggt 300
gcccggatgg tgcttccaaat tgctgaaatt gatggaatgg ctgaacaaga aaatgaggac 360
ttgatttgaga aaatttggaaag ggaagaagag gaggaaaggcg ctgaagaaga tgagcaaagc 420
gtgtaaaaaaatccagaaga agaagaggat gatagcagca atgcagaaag ttcataggaa 480
tcaactgcct cacgtcaata cagtcttcgc cgccgtcaac cagttgtcca gttcaatgca 540
tcagaagctc gtgaaaatcg acgggctcg tctgaacatc atcggttgc aaatcaaaac 600
agacatcacc gcaatcgaaa tggatctcg tgaagacgaa gcgattcgga ttctgtatgt 660
gatgatatgg tgcttccgag acctgtataa cgtcaatcg ggcctcatat gcataaccgt 720
ggagaacgtg aacgtggctg atttatgccg atcaatatga ccgaaaaaaga attgcagtct 780
gcccaacaca ttctgtatgga tcgaatgaga aaaactgtatc ctggtcaagg tgcaagtgac 840
attgatccaa tgagtgttga ttctgtcggtt ggtttcgatc aagttggagg actcggtcat 900
catattcaat ctctcaaaga agttgtccct ttcccaatgc ttatcttca agtatttcaa 960
aagttcagaa taaatccgccc aaaagggtgc gtattctatg ggcggccagg aaccggaaaa 1020
actcttgcgtg cacgtgcgtc tgcgaatgaa tgccgaagag gagccaacaa atttgcattc 1080
tttatgcgaa aaggagctga ttgtttgagt aaatgggtcg gagagtctga aagacaactt 1140
cgactattgt ttgatcaagc atatgcctatcg cgtccatcaa ttatctttt tgatgaaatc 1200
gatggtttag ctccagttcg ttcttcgaaa caagatcaaa ttcatgcgag catagtgagt 1260
acattgttag cactgtatgga cggatttagt ggtcgaggag aagttgttgc aattggagct 1320
acaaatcgat tagatactct tgatccagct ctacgaagac caggacgtt tgataggaa 1380
ctccgtttt cccttcctgaa ttgaatgccc cgacgacaaa ttttagatat tcacacttcc 1440
aaatggggagg aaaacaaaacc gattccggaa acactcgatc ctattgcaga gagaactagt 1500
ggatattgcg gtggcgattt gaaattcttg tgcacagaag cagttcttat tggatttgaga 1560
tctcgatatac ctcatatcta catgtttct gaaaggctga aactcgacgt tgccaccatt 1620
aaaatcaattt ctgacgatctt accatggat gaacgaactt caattttact tggagatact 1740
gatcttacaa ttccatcgag gtaatccca caaggatatc gatgcgttgc aaatgcaatg 1800
gtgagcaact tgatttcgtt ggaacaatgtt gttagggcat tggaaacctaa tccaaccgtg 1860
gcgcacgctt caagcgaact ggaacaatgtt atgtggatctt gagcaactcg cggacgggtt acaaaccgtct 1920
cctgtatcc gtcttcttctt acgttgcattt gatcatctac cgggtttctc tcttcgtt 1980
tacgttcttc ccgcattctt acgttgcattt gatcatctac cgggtttctc tcttcgtt 1980
tcaagtctt taacagatgg acgttgcattt gatcatctac cgggtttctc tcttcgtt 1980
atgcgtgcattt cagcaaccgg cccatgtatc atgtggatctt gagcaactcg cggacgggtt acaaaccgtct 2040
aaagtcatcc ctgtatcgtt tcaacatatg cttatcacat gatcatctac cgggtttctc tcttcgtt 2040
ttcacgcccgtt ttctttccat atcgacgtt gacacttcgtt tggaaatgc gcctgaatat 2220
gtcacggaaa ttttcagaca tgcggatgtt atcacttttgc atccttcccg ccgaacaatt 2280
cgtcaaaaat atttcgagca cgttatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2340
ccacgtctt tgcggatgtt tgcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2400
gctgaggact attatgagat ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2460
ctgaataattt gcaatataa ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2520
acgaatgcctc tcgaatataa ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2580
gcaaatacac ttcgagatgc aatttgcgat ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2640
gtcgaacgaa ttgaaacagt ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2700
gataaaatttac tcacagaaat ttcggatgtt gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2760
aatttcacttgc caaaaat gatatttgcgaa aagattaaca ctccacccaaat gatatttgcgaa 2820
atgttgagca agcttgggtt agctgcgttca acatttgcgaa aatgcgttgc gatatttgcgaa 2880
gatatgaaaaa gtgaagaagg aacgagcaca tcaactgtatg gatatttgcgaa aatgcgttgc gatatttgcgaa 2940
aataaaaaaaa aatttgcgttca aatgcgttgc gatatttgcgaa aatgcgttgc gatatttgcgaa 3000

```

37

gaagagcacg atgaagatag tacagttgaa gacgcaggag aagataacaat tgtagaaaaat 3060
 cttgaaatca agaaaaatca ggaaactcca aacagtgaac atgatatcga gatgaaaagat 3120
 gcttctaaag attctacacc ttccgtgcaa atttcgattt ctgagaaaaga attgatagtt 3180
 tcgaagccag caacatgcga gctgattcag tgggtgtcg aaaagtcgga gggttggtca 3240
 gtcagcagt tgaaacgtt gtcttctgtt ctatcacata caattgaacg attccggac 3300
 gaatggAACCGC accagccaa cttacccaaa ttgtacgtga atggcaaaca 3360
 gctgacgatt cgaacaatac aattgttaat ggaaccctca aaaaaatcgaa tggaaatctt 3420
 gccaatggac actaa 3435

<210> 24

<211> 1144

<212> PRT

<213> Caenorhabditis elegans

<400> 24

Met	Gin	Ala	Ile	Asp	Glu	Ser	Lys	Arg	Asn	Gln	Lys	Val	Pro	Pro	Ala
1														15	

Lys	Arg	Lys	Arg	Ile	Tyr	Leu	Ser	Asp	Glu	Glu	Glu	Asp	Phe	Ala
														30
20								25						

Glu	Ala	Ala	His	Val	Glu	Asn	Thr	Val	Pro	Glu	Arg	Ala	Thr	Arg	Arg
35					40						45				

Ser	Thr	Arg	Arg	Arg	Ser	Ser	Met	His	Glu	Glu	Leu	Gly	Val	Ser	Glu
50					55						60				

Gln	Glu	Glu	Ser	Pro	Val	Arg	Arg	Thr	Arg	Lys	Ala	Ala	Lys	Arg	Leu
65					70					75				80	

Gly	Ser	Glu	Gln	Pro	Glu	Glu	Asn	Leu	Ala	Ala	Asp	Asp	Pro	Leu	Pro
85									90					95	

Met	Glu	Gly	Gly	Glu	Ile	Val	Leu	Pro	Ile	Ala	Glu	Ile	Asp	Gly
100							105						110	

Met	Ala	Glu	Gln	Glu	Asn	Glu	Asp	Leu	Ile	Glu	Lys	Ile	Gly	Arg	Glu
115					120						125				

Glu	Glu	Glu	Gly	Ala	Glu	Glu	Asp	Glu	Gln	Ser	Gly	Glu	Lys	Asp
130					135						140			

Pro	Glu	Glu	Glu	Glu	Asp	Asp	Ser	Ser	Asn	Ala	Glu	Ser	Ser	Glu	Glu
145					150					155				160	

Ser	Thr	Ala	Pro	Arg	Gln	Tyr	Ser	Leu	Arg	Arg	Arg	Gln	Pro	Val	Val
165								170					175		

Gln	Phe	Asn	Ala	Ser	Glu	Ala	Arg	Glu	Asn	Arg	Arg	Ala	Arg	Leu	Glu
180							185					190			

His	His	Arg	Val	Ala	Asn	Gln	Asn	Arg	His	His	Arg	Asn	Arg	Asn	Gly
195					200						205				

Ser	Arg	Arg	Arg	Arg	Ser	Asp	Ser	Asp	Ser	Asp	Asp	Asp	Met	Val
210					215						220			

Leu	Pro	Arg	Pro	Asp	Lys	Arg	Gln	Ser	Arg	Pro	His	Met	His	Asn	Arg

	38		
225	230	235	240
Gly Glu Arg Glu Arg Gly Arg Phe Met Pro Ile Asn Met Thr Glu Lys			
245		250	255
Glu Leu Gln Ser Ala Gln His Ile Leu Met Asp Arg Met Arg Lys Thr			
260		265	270
Asp Ala Gly Gln Gly Ala Ser Asp Ile Asp Pro Met Ser Val Asp Ser			
275		280	285
Ser Val Gly Phe Asp Gln Val Gly Gly Leu Gly His His Ile Gln Ser			
290		295	300
Leu Lys Glu Val Val Leu Phe Pro Met Leu Tyr Pro Glu Val Phe Glu			
305		310	315
Lys Phe Arg Ile Asn Pro Pro Lys Gly Val Val Phe Tyr Gly Pro Pro			
325		330	335
Gly Thr Gly Lys Thr Leu Val Ala Arg Ala Leu Ala Asn Glu Cys Arg			
340		345	350
Arg Gly Ala Asn Lys Val Ala Phe Phe Met Arg Lys Gly Ala Asp Cys			
355		360	365
Leu Ser Lys Trp Val Gly Glu Ser Glu Arg Gln Leu Arg Leu Leu Phe			
370		375	380
Asp Gln Ala Tyr Ala Met Arg Pro Ser Ile Ile Phe Phe Asp Glu Ile			
385		390	395
Asp Gly Leu Ala Pro Val Arg Ser Ser Lys Gln Asp Gln Ile His Ala			
405		410	415
Ser Ile Val Ser Thr Leu Leu Ala Leu Met Asp Gly Leu Asp Gly Arg			
420		425	430
Gly Glu Val Val Val Ile Gly Ala Thr Asn Arg Leu Asp Thr Leu Asp			
435		440	445
Pro Ala Leu Arg Arg Pro Gly Arg Phe Asp Arg Glu Leu Arg Phe Ser			
450		455	460
Leu Pro Asp Leu Asn Ala Arg Arg Gln Ile Leu Asp Ile His Thr Ser			
465		470	475
Lys Trp Glu Glu Asn Lys Pro Ile Pro Glu Thr Leu Asp Ala Ile Ala			
485		490	495
Glu Arg Thr Ser Gly Tyr Cys Gly Ala Asp Leu Lys Phe Leu Cys Thr			
500		505	510
Glu Ala Val Leu Ile Gly Leu Arg Ser Arg Tyr Pro His Ile Tyr Met			
515		520	525
Cys Ser Glu Arg Leu Lys Leu Asp Val Ala Thr Ile Lys Ile Thr Ser			
530		535	540

Glu His Phe Gly His Ala Met Arg Arg Ile Thr Pro Ala Ser Arg Arg
 545 550 555 560
 Asp Leu Thr Ile Pro Ser Arg Pro Leu Asp Glu Arg Thr Ser Ile Leu
 565 570 575
 Leu Gly Asp Thr Val Ser Asn Leu Ile Ser Leu Arg Ile Pro Gln Gly
 580 585 590
 Tyr Arg Cys Val Glu Asn Ala Met Ala Thr Ala Ser Ser Glu Leu Glu
 595 600 605
 Gln Val Val Arg Ala Leu Glu Pro Asn Pro Thr Val Pro Ala Ile Arg
 610 615 620
 Leu Leu Leu Cys Gly Ser Glu Gln Leu Ala Asp Gly Gly Gln Thr Ser
 625 630 635 640
 Tyr Val Leu Pro Ala Ile Leu Ala Lys Leu Asp His Leu Pro Val Phe
 645 650 655
 Ser Leu Ser Val Ser Ser Leu Leu Thr Asp Gly Arg Pro Glu Glu Ala
 660 665 670
 Phe Ser Asn Ala Ile Gln Ser Ala Met Arg Ala Ser Ala Thr Gly Pro
 675 680 685
 Cys Ile Met Leu Leu Pro Ser Ile Asp Glu Trp Ile Lys Val Ile Pro
 690 695 700
 Val Ser Val Gln His Met Leu Ile Thr Cys Leu Glu Ser Met Thr Gly
 705 710 715 720
 Phe Thr Pro Ile Leu Phe Leu Ser Thr Leu Asp Thr Ser Phe Glu Asp
 725 730 735
 Ala Pro Glu Tyr Val Thr Glu Ile Phe Arg His Ala Asn Cys Ile Thr
 740 745 750
 Leu Asn Pro Ser Arg Arg Thr Ile Arg Gln Lys Tyr Phe Glu His Val
 755 760 765
 Ile Glu Lys Ile Asn Thr Pro Pro Lys Val Phe Asp Pro Arg Leu Met
 770 775 780
 Arg Asp Arg Arg Phe Val Glu Phe Val Glu Pro Val Asp Pro Asp Glu
 785 790 795 800
 Ala Glu Asp Tyr Tyr Glu Ile Ile Glu Thr Pro Ile Cys Met Gln Asp
 805 810 815
 Ile Met Glu Lys Leu Asn Asn Cys Glu Tyr Asn His Ala Asp Lys Phe
 820 825 830
 Val Ala Asp Leu Ile Leu Ile Gln Thr Asn Ala Leu Glu Tyr Asn Pro
 835 840 845

40

Ser Thr Thr Lys Asp Gly Lys Leu Ile Arg Gln Met Ala Asn Thr Leu
850 855 860
Arg Asp Ala Ile Asp Asp Leu Ile Glu Cys Glu Leu Asp Glu Ser Phe
865 870 875 880
Val Glu Arg Ile Glu Thr Val Ser Arg Met Leu Gln Asp Ala Gly Val
885 890 895
Thr Pro Thr Ser Asp Lys Leu Leu Thr Glu Ile Pro Lys Gly Phe Ala
900 905 910
Arg Lys Lys Ala Trp Ser Met Thr Asn Ser Leu Ala Lys Glu Ile Glu
915 920 925
Gln Trp Thr Ser Glu Arg Glu Ala Glu Asn Gln Lys Met Leu Ser Lys
930 935 940
Leu Gly Val Ala Ala Pro Thr Leu Glu Leu Val Val Val Pro Val Glu
945 950 955 960
Asp Met Lys Ser Glu Glu Gly Thr Ser Thr Ser Thr Asp Gly Val Pro
965 970 975
Ala Ser Ala Gly Asn Lys Lys Lys Leu Leu Lys Lys Lys Gly Gln
980 985 990
Lys Lys Ser Lys Thr Gly Glu Ser Glu Glu His Asp Glu Asp Ser Thr
995 1000 1005
Val Glu Asp Ala Gly Glu Asp Thr Ile Val Glu Asn Leu Glu Ile Lys
1010 1015 1020
Lys Asn Gln Glu Thr Pro Asn Ser Glu His Asp Ile Glu Met Lys Asp
1025 1030 1035 1040
Ala Ser Lys Asp Ser Thr Pro Ser Val Gln Ile Ser Ile Ala Glu Lys
1045 1050 1055
Glu Leu Ile Val Ser Lys Pro Ala Thr Cys Glu Leu Ile Gln Cys Cys
1060 1065 1070
Val Glu Lys Ser Glu Gly Trp Ser Val Ser Glu Leu Glu Arg Leu Ser
1075 1080 1085
Ser Val Leu Ser His Thr Ile Glu Arg Phe Arg Asp Glu Trp Asn Arg
1090 1095 1100
Glu Asn Leu Pro Ala Gln Leu Thr Gln Ile Val Arg Glu Trp Gln Thr
1105 1110 1115 1120
Ala Asp Asp Ser Asn Asn Thr Ile Val Asn Gly Thr Leu Asn Lys Ser
1125 1130 1135
Asn Gly Asn Leu Ala Asn Gly His
1140

<210> 25
<211> 1908
<212> DNA
<213> *Caenorhabditis elegans*

<400> 25

ggagaacaaag	aggatgtata	cagcaatgc	gaaagtcaq	aggaatcaac	tgctccacgt	60
caatacagtc	ttcgccgccc	tcaaccagg	gtccaggttca	atgcatacaga	agctcgtaa	120
aatcgacggg	ctcgcttga	acatcatcg	gttgc当地	aaaacagaca	tcaccgcaat	180
cggaaatggat	ctcgctcga	acgaagcgat	tcggattctg	atagtgtat	tatggtgctt	240
ccgagacctg	ataaacgtca	atcgaggcct	catatgcata	accgtggaga	acgtgaacgt	300
gttcgat	tgccgatcaa	tatgaccgaa	aaagaattgc	agtctgccc	acacattctg	360
atggatcgaa	tgagaaaaac	tgatgctgt	caagggtca	gtgacattga	tccaatgagt	420
gttgatcg	cgggttgtt	cgatcaagtt	ggaggactcg	gtcatcatat	tcaatctc	480
aaagaatgg	tcctttccc	aatgc当地	cctgaat	ttgaaaagg	cagaataaat	540
ccgccaatag	gtgtcgatt	ctatggccc	ccaggaacc	aaaaaactct	tgttgcacgt	600
gctcttgcga	atgaatgccc	aaggaggcc	aacaaatgg	cattcttat	gcgaaaagga	660
gctgatgtt	ttagtaaatg	ggtcggagag	tctgaagac	aacttcgact	attgtttgt	720
caagcatatg	ccatgcgtcc	atcaattatc	tttttgc	aatcgc当地	tttagctcca	780
gttcgttctt	cggaaacaaga	tcaaattcat	gcgagcatag	ttagtacatt	tttagcactg	840
atggacggat	tagatggtc	aggagaagtt	gttgc当地	gagctacaaa	tcgatttagat	900
actcttgatc	cagctctacg	aagaccagga	cgttttgata	gggaactc	ttttccctt	960
cctgat	atgcccga	acaaatttt	gatattcaca	cttccaaat	ggagggaaaac	1020
aaaccgattc	cggaaacact	cgatgctatt	gcagagagaa	ctagtg	ttgcgggtcc	1080
gatttggaaat	tcttgcac	agaacgcgtt	cttattggat	ttagatctcg	atattcctcat	1140
atctacatgt	gttctgaaag	gctgaaactc	gacgttgca	ccattaaaat	cacttctgag	1200
cattttggac	atgcaatgc	gaggatcaca	cctgcttca	gacgagatct	tacaattcca	1260
tcgagaccat	tggatgaa	aacttcaatt	ttacttgag	atactgtgag	caacttgatt	1320
tcgttgagaa	ttccacaagg	atatcgatc	gtggaaaatg	caatggc	agcttcaagc	1380
gaactgaa	aagtgttag	ggcattggaa	cctaattccaa	ccgtgc	tattcg	1440
cttctatgt	gatctgagca	actcgcggac	ggtggacaaa	cgtcttac	tcttccg	1500
attctagcaa	aactggatca	tctaccgg	ttctctt	ctgtttcaag	tcttttaaca	1560
gatggacgtc	cagaagaagc	attttcaa	gcaattc	cgcaatgc	tgcatcagca	1620
accggccat	gtatcatgt	tcttccatca	atcgat	ggattaaat	cattcctgt	1680
tcagttcaac	atatgc当地	cacatgtct	gaatcaat	ctgggtt	gccgatttct	1740
ttcctatcga	cgttgcac	ttcg	gatgcgc	aatatgtc	ggaaatttc	1800
agacatgca	actgtatcac	tttgaatc	tccgc	caattcgt	aaaatattt	1860
gagcagcgtt	ttgagaagat	taacactc	ccaaaatgt	ttgatc		1908

<210> 26

<211> 636

<212> PRT

<213> *Caenorhabditis elegans*

<400> 26

Glu Glu Glu Glu Asp Asp Ser Ser Asn Ala Glu Ser Ser Glu Glu Ser
1 5 10 15

Thr Ala Pro Arg Gln Tyr Ser Leu Arg Arg Arg Gln Pro Val Val Val Gln
20 25 30

Phe Asn Ala Ser Glu Ala Arg Glu Asn Arg Arg Ala Arg Leu Glu His
35 40 45

His Arg Val Ala Asn Gln Asn Arg His His Arg Asn Arg Asn Gly Ser
50 55 60

Arg Arg Arg Arg Ser Asp Ser Asp Ser Asp Ser Asp Asp Met Val Leu

65	70	42	75	80
Pro Arg Pro Asp Lys Arg Gln Ser Arg		Pro His Met His Asn Arg Gly		
85		90		95
Glu Arg Glu Arg Gly Arg Phe Met Pro Ile Asn Met Thr	Glu Lys Glu			
100		105		110
Leu Gln Ser Ala Gln His Ile Leu Met Asp Arg Met Arg	Lys Thr Asp			
115		120		125
Ala Gly Gln Gly Ala Ser Asp Ile Asp Pro Met Ser Val Asp Ser Ser				
130		135		140
Val Gly Phe Asp Gln Val Gly Gly Leu Gly His His Ile Gln Ser Leu				
145		150		160
Lys Glu Val Val Leu Phe Pro Met Leu Tyr Pro Glu Val Phe Glu Lys				
165		170		175
Phe Arg Ile Asn Pro Pro Lys Gly Val Val Phe Tyr Gly Pro Pro Gly				
180		185		190
Thr Gly Lys Thr Leu Val Ala Arg Ala Leu Ala Asn Glu Cys Arg Arg				
195		200		205
Gly Ala Asn Lys Val Ala Phe Phe Met Arg Lys Gly Ala Asp Cys Leu				
210		215		220
Ser Lys Trp Val Gly Glu Ser Glu Arg Gln Leu Arg Leu Leu Phe Asp				
225		230		240
Gln Ala Tyr Ala Met Arg Pro Ser Ile Ile Phe Phe Asp Glu Ile Asp				
245		250		255
Gly Leu Ala Pro Val Arg Ser Ser Lys Gln Asp Gln Ile His Ala Ser				
260		265		270
Ile Val Ser Thr Leu Leu Ala Leu Met Asp Gly Leu Asp Gly Arg Gly				
275		280		285
Glu Val Val Val Ile Gly Ala Thr Asn Arg Leu Asp Thr Leu Asp Pro				
290		295		300
Ala Leu Arg Arg Pro Gly Arg Phe Asp Arg Glu Leu Arg Phe Ser Leu				
305		310		320
Pro Asp Leu Asn Ala Arg Arg Gln Ile Leu Asp Ile His Thr Ser Lys				
325		330		335
Trp Glu Glu Asn Lys Pro Ile Pro Glu Thr Leu Asp Ala Ile Ala Glu				
340		345		350
Arg Thr Ser Gly Tyr Cys Gly Ala Asp Leu Lys Phe Leu Cys Thr Glu				
355		360		365
Ala Val Leu Ile Gly Leu Arg Ser Arg Tyr Pro His Ile Tyr Met Cys				
370		375		380

43

Ser Glu Arg Leu Lys Leu Asp Val Ala Thr Ile Lys Ile Thr Ser Glu
385 390 395 400

His Phe Gly His Ala Met Arg Arg Ile Thr Pro Ala Ser Arg Arg Asp
405 410 415

Leu Thr Ile Pro Ser Arg Pro Leu Asp Glu Arg Thr Ser Ile Leu Leu
420 425 430

Gly Asp Thr Val Ser Asn Leu Ile Ser Leu Arg Ile Pro Gln Gly Tyr
435 440 445

Arg Cys Val Glu Asn Ala Met Ala Thr Ala Ser Ser Glu Leu Glu Gln
450 455 460

Val Val Arg Ala Leu Glu Pro Asn Pro Thr Val Pro Ala Ile Arg Leu
465 470 475 480

Leu Leu Cys Gly Ser Glu Gln Leu Ala Asp Gly Gly Gln Thr Ser Tyr
485 490 495

Val Leu Pro Ala Ile Leu Ala Lys Leu Asp His Leu Pro Val Phe Ser
500 505 510

Leu Ser Val Ser Ser Leu Leu Thr Asp Gly Arg Pro Glu Glu Ala Phe
515 520 525

Ser Asn Ala Ile Gln Ser Ala Met Arg Ala Ser Ala Thr Gly Pro Cys
530 535 540

Ile Met Leu Leu Pro Ser Ile Asp Glu Trp Ile Lys Val Ile Pro Val
545 550 555 560

Ser Val Gln His Met Leu Ile Thr Cys Leu Glu Ser Met Thr Gly Phe
565 570 575

Thr Pro Ile Leu Phe Leu Ser Thr Leu Asp Thr Ser Phe Glu Asp Ala
580 585 590

Pro Glu Tyr Val Thr Glu Ile Phe Arg His Ala Asn Cys Ile Thr Leu
595 600 605

Asn Pro Ser Arg Arg Thr Ile Arg Gln Lys Tyr Phe Glu His Val Ile
610 615 620

Glu Lys Ile Asn Thr Pro Pro Lys Val Phe Asp Pro
625 630 635

<210> 27

<211> 3024

<212> DNA

<213> Caenorhabditis elegans

<400> 27

atggaacgac acggttcaga attacaagga gaagtggttt tcactacgac gagtactgcg 60
aataacaatg tcaaacgac cgtcaaatat ttcaagatg ataatcaaga tgatgcacta 120

44

<210> 28
<211> 1007
<212> PRT
<213> Caen

<400> 28

Met Glu Arg His Gly Ser Glu Leu Gln Gly Glu Val Val Phe Thr Thr
1 5 10 15

45

Thr Ser Thr Ala Asn Asn Asn Val Lys Arg Ala Val Glu Tyr Phe Glu
 20 25 30

Asp Asp Asn Gln Asp Asp Ala Leu Thr Ser Thr Ser Ser Gly Asn Ser
 35 40 45

Thr Gln Lys Glu Ser Ser Pro Phe Thr Asp Phe Asp Asp Val Pro Pro
 50 55 60

Pro Pro Val Ala Pro Glu Thr Pro Ala Pro Ala Gln Asn Arg Arg Glu
 65 70 75 80

Ser Ala Ser Pro Glu Arg Gln Phe Leu Asp Glu Ser His Leu Gly Gly
 85 90 95

Ile Gly Ser Pro Leu Ser Gln Ser Thr Arg Leu Asp Glu Thr Phe Ile
 100 105 110

Glu Glu Tyr Ser Ile Glu Leu Asp Thr Ser Gly Lys Asn Asn Ile Ser
 115 120 125

Ser Ala Ala Ser Pro Gly Pro Lys Ser Pro Phe Asp Asp Asp Phe Thr
 130 135 140

Asp Thr Ala Ala Pro Val Ala Pro Pro Pro Ala Pro Thr Lys Ala Ala
 145 150 155 160

Glu Glu Tyr Arg Arg Gln Pro His Gln Asn Pro Phe Asp Glu Glu Glu
 165 170 175

Glu Glu Glu Ser Gln Phe Gly Gly Thr Leu Ser Gly Arg Asp Pro
 180 185 190

Phe Asp Glu Asp Ser Gly Asn Ser Asn Glu Asn Gln Leu Arg Glu Lys
 195 200 205

Lys Leu His Lys Lys Glu Gln Leu Ala His Arg Leu Ser Ser Ser Ser
 210 215 220

Glu Glu Ile Val Glu Ala Ser Ile His Glu Asp Glu Pro Ile Val Met
 225 230 235 240

Ala Gln Ile Pro Glu Glu Lys Pro Lys Pro Lys Ala Ile Pro Ala Phe
 245 250 255

Asp Asn Ala Tyr Asp Ala Asp Phe Asp Asn Ser Pro Pro Leu His His
 260 265 270

Tyr Ser Ala Val His Leu Glu Thr Gly Leu Ser Pro Leu Glu Glu Ala
 275 280 285

Gln Arg Ala Leu Arg Ala Asn Arg Ala Arg His Lys Pro Ser Asn Val
 290 295 300

Ser Leu Ala Glu Glu Ala Lys Leu Ala Ala Arg Gln Arg Tyr Ser Asn
 305 310 315 320

46

Ala Ser Asp Ile Arg Arg Glu Glu Glu Glu Val Val Glu Glu Asp
325 330 335

Pro Ala Val Val Val Pro Val Leu Arg Lys Asp Leu Glu Val Glu Glu
340 345 350

Ala Pro Lys Ser Val Arg Pro Pro Arg Tyr Arg Lys Ser Arg Glu Ile
355 360 365

Glu Glu Pro Val Val Val Asp Arg Phe Val Glu Glu Val Asp Glu
370 375 380

Lys Glu Asp Ile Asp Ala Ile Phe Glu Lys Tyr Arg Lys Thr Ser Val
385 390 395 400

Ser Ala Asp Pro Lys Ser His Thr Pro Ile Leu Met Ala Asp Glu Tyr
405 410 415

Lys Glu Pro Gln Lys Gln Val Pro Ala Pro Val Val Val Ala Gln Glu
420 425 430

Ser Pro Ile Leu Lys Arg Arg Asn Ser Leu Val Pro Ser Arg Ile Ser
435 440 445

Gly Arg Gln Ser Thr Arg Arg Ser Val Thr Ser Val Arg Ser Met Arg
450 455 460

Gly Lys Arg Lys Thr Arg Ala Ile Pro Glu Phe Phe Asp Leu Thr Arg
465 470 475 480

His Gln Asn Ile Arg Leu Arg Ala Pro Ala Thr Lys Lys Lys Arg Ile
485 490 495

Ser Leu His Arg Val Glu Asp Thr Glu Val Val Val Glu Leu Leu Asn
500 505 510

Gly Gln Lys Val Glu Val Ala Cys Arg Ser Asp Val Ile Ser Arg Asp
515 520 525

Val Phe Ser Leu Ile Val Gln Asn Met Asn Ile Asn Glu His Val Phe
530 535 540

Phe Gly Leu Ser Phe Leu Arg Asp Gly Glu His Tyr Phe Ile Glu Asp
545 550 555 560

His Gln Arg Leu Glu Lys Phe Ala Pro Ser Gly Trp Lys Ser Val Ala
565 570 575

Arg Val Gly Val Lys Val Pro Tyr Val Leu His Leu Arg Phe Lys Phe
580 585 590

Tyr Pro Gln Ile Leu Asp Phe Ile Lys Thr Asp Val Thr Met Asn Glu
595 600 605

Leu Tyr Leu Gln Cys Arg Arg Asp Val Leu Glu Glu Arg Ile Gln Pro
610 615 620

Lys Arg Asp Ala Ala Phe Glu Leu Ala Ala Leu Ala Leu Gln Ala Glu

47

625	630	635	640												
Phe	Gly	Asn	Arg	Pro	Pro	Pro	Val	Ile	Thr	Asp	Tyr	Phe	Asp	Ile	Gln
		645					650					655			
His	Tyr	Leu	Pro	Lys	Lys	Tyr	Ser	Ser	Phe	Glu	Asp	Gln	Ser	Arg	Leu
		660					665					670			
Lys	Asn	Ile	Leu	Ala	Glu	Leu	His	Gly	His	Tyr	Ala	Gly	Thr	Arg	Ile
		675					680					685			
Ser	Glu	Ala	Lys	His	Lys	Tyr	Ile	Gln	Ile	Cys	Gln	Arg	His	Pro	Asp
		690				695					700				
Phe	Gly	Ala	His	Val	His	Arg	Val	Phe	Arg	Thr	Lys	Pro	Thr	Ser	Ala
		705				710					715				720
His	Gly	Ala	Ser	Pro	Phe	Asp	Pro	Asp	Thr	Gly	Ser	Ser	Leu	Trp	Ile
		725				730					735				
Gly	Ile	Met	Pro	Arg	Gly	Ile	Ser	Ile	Tyr	Glu	Gln	Gln	Gly	Gly	Ala
		740					745					750			
Arg	Glu	Val	Ile	Ala	Glu	His	Val	Trp	Pro	Gln	Thr	Gln	Thr	Leu	Gln
		755					760					765			
Phe	Asp	Lys	Lys	Arg	Phe	Val	Ile	Val	Ala	Val	Gly	Ala	His	Asp	Glu
		770				775					780				
Gln	Ile	Glu	Ser	Thr	Phe	Tyr	Thr	Asp	His	His	Ser	Lys	Ser	Ser	Tyr
		785				790					795				800
Phe	Val	Arg	Phe	Ala	Ala	Ser	Gln	His	Arg	Trp	Met	Met	Lys	Met	Arg
		805					810					815			
Gln	Trp	Lys	Ser	Thr	Leu	Arg	His	Glu	Asn	Thr	Ile	Gln	Ala	Met	Pro
		820				825						830			
Asp	Val	Ile	Val	Glu	Gly	Gln	Thr	Ile	Pro	Pro	Ala	Pro	Ile	Arg	Gln
		835				840						845			
Gly	Leu	Glu	Glu	Ser	Pro	Pro	Ser	Thr	Pro	Leu	Leu	Ala	Ser	Ala	Asp
		850				855					860				
Gln	Ile	Phe	Ala	Lys	Met	Ser	Val	Ser	Gln	Glu	Lys	Pro	Ala	Ala	Asn
		865				870					875				880
Arg	Pro	Ala	Glu	Leu	Pro	Pro	Ala	Pro	Ser	Ser	Lys	Phe	Ala	Ala	
		885				890						895			
Gln	Tyr	Asp	Thr	Val	Asp	Glu	Ile	Val	Cys	Asp	Ser	Gln	Ala	Glu	
		900				905						910			
Asn	Phe	Glu	Arg	Val	Asp	Ser	Thr	Asp	Asn	Gly	Asn	Val	Thr	Pro	Arg
		915				920						925			
Gly	Met	Gln	Phe	Asp	Ile	Leu	Leu	Val	Lys	Asp	Pro	Ala	Asn	Gly	Leu
		930				935						940			

Gly Leu Thr Leu Val Asp Gly Asn Leu Asn Gly Val Pro Gly Val Tyr
 945 950 955 960

Val Lys Leu Val Ala Asp Asn Gly Ala Gly Met Lys Ala Val Arg Ile
 965 970 975

Arg Asn Phe Ser Gln Tyr Pro Phe Ser Ser Gly Cys Thr Leu Glu Leu
 980 985 990

Cys Lys Ser Thr His Asn Val Phe Ser Ile Ile Ser Glu Lys Ser
 995 1000 1005

<210> 29

<211> 1311

<212> DNA

<213> Caenorhabditis elegans

<400> 29

aaaccgaagg ctatccggc ttttataac gcctatgacg ccgactttga caattcccc 60
 ccacttcattc attactcgcc gggttcatttg gaaaactgggc tctcaccgct tgaggaggct 120
 cagagagctc tccgagccaa ccgagcaagg cataagccgt cgaatgtatc gttggcagag 180
 gagggcgaagg ttgctgccag acagagatac tcaaatgcat cgatatttag aagagaagag 240
 gaggaagaagatggtggaa agatccacca gtggtagttc cagttctacg gaaggatctg 300
 gaagtggagg aggctccgaa atcggtaacca ccccttagat atcggaaagtc aaggaaatt 360
 gaggaaccgg tgggttgtga tcgggtttgtt gaggaagaag ttgatgagaa ggaggatatt 420
 gatgcgatt ttgagaaata tcgaaagacg tctgtatccg cccatccaaa atctcacacg 480
 ccgattttga tggccgacga gtacaaagaa ccacagaagc aagtgcctgc accagttgtc 540
 gttgctcagg agtcgcccattt cttaaaacga agaaactctc tagtaccatc aaggatcagt 600
 ggaaggcagt cgacgcggcg aagtgtcacc agtgttcgga gtatgagagg aaaacggaag 660
 acccgtgcga ttcccgagtt ctgcgaccta acccgacatc agaacattcg gctccgtgct 720
 ccagctacga aaaagaaacg catabgccta caccgcgtcg aggacaccga agtcgtcg 780
 gagctcctga acggccaaaa agttgaagtgc gcatgccaa gtgacgtcat ctcgcgtgac 840
 gtgttctctc ttatcgcca gaacatgaat atcaatgagc acgtgttctt cgggctctcg 900
 ttccctcgat atggcgagca ctacttata gaggatcatc aacggctcgaa aagtttca 960
 ccgtccggat ggaaaagtgt ggcacgcgtg ggcgttaagg tgccatacgt gttgcactt 1020
 cgattcaaat ttatccgca gatttggat ttcatcaaaa cagacgtAAC gatgaacgag 1080
 ttgttatctac aatgttagacg agacgtactc gaagagagaa tccaaacccaa aagagacgca 1140
 gcattcgaac tcgcccgcct cgcctccaa gccgaatttg gaaatcgacc gcccacgggt 1200
 atcaccgatt atttcgatatac tcaacactac ctgcccaga agtatacgatc atttgaagat 1260
 cagtcacggc tgaagaacat tctcgccgag ctgcacgggc attacgcggg c 1311

<210> 30

<211> 437

<212> PRT

<213> Caenorhabditis elegans

<400> 30

Lys Pro Lys Ala Ile Pro Ala Phe Asp Asn Ala Tyr Asp Ala Asp Phe
 1 5 10 15

Asp Asn Ser Pro Pro Leu His His Tyr Ser Ala Val His Leu Glu Thr
 20 25 30

Gly Leu Ser Pro Leu Glu Glu Ala Gln Arg Ala Leu Arg Ala Asn Arg
 35 40 45

49

Ala Arg His Lys Pro Ser Asn Val Ser Leu Ala Glu Glu Ala Lys Leu
 50 55 60

Aia Ala Arg Gln Arg Tyr Ser Asn Ala Ser Asp Ile Arg Arg Glu Glu
 65 70 75 80

Glu Glu Glu Val Val Glu Glu Asp Pro Ala Val Val Val Pro Val Leu
 85 90 95

Arg Lys Asp Leu Glu Val Glu Glu Ala Pro Lys Ser Val Arg Pro Pro
 100 105 110

Arg Tyr Arg Lys Ser Arg Glu Ile Glu Glu Pro Val Val Val Asp Arg
 115 120 125

Phe Val Glu Glu Glu Val Asp Glu Lys Glu Asp Ile Asp Ala Ile Phe
 130 135 140

Glu Lys Tyr Arg Lys Thr Ser Val Ser Ala Asp Pro Lys Ser His Thr
 145 150 155 160

Pro Ile Leu Met Ala Asp Glu Tyr Lys Glu Pro Gln Lys Gln Val Pro
 165 170 175

Ala Pro Val Val Val Ala Gln Glu Ser Pro Ile Leu Lys Arg Arg Asn
 180 185 190

Ser Leu Val Pro Ser Arg Ile Ser Gly Arg Gln Ser Thr Arg Arg Ser
 195 200 205

Val Thr Ser Val Arg Ser Met Arg Gly Lys Arg Lys Thr Arg Ala Ile
 210 215 220

Pro Glu Phe Phe Asp Leu Thr Arg His Gln Asn Ile Arg Leu Arg Ala
 225 230 235 240

Pro Ala Thr Lys Lys Lys Arg Ile Ser Leu His Arg Val Glu Asp Thr
 245 250 255

Glu Val Val Val Glu Leu Leu Asn Gly Gln Lys Val Glu Val Ala Cys
 260 265 270

Arg Ser Asp Val Ile Ser Arg Asp Val Phe Ser Leu Ile Val Gln Asn
 275 280 285

Met Asn Ile Asn Glu His Val Phe Phe Gly Leu Ser Phe Leu Arg Asp
 290 295 300

Gly Glu His Tyr Phe Ile Glu Asp His Gln Arg Leu Glu Lys Phe Ala
 305 310 315 320

Pro Ser Gly Trp Lys Ser Val Ala Arg Val Gly Val Lys Val Pro Tyr
 325 330 335

Val Leu His Leu Arg Phe Lys Phe Tyr Pro Gln Ile Leu Asp Phe Ile
 340 345 350

Lys Thr Asp Val Thr Met Asn Glu Leu Tyr Leu Gln Cys Arg Arg Asp

50

355

360

365

Val Leu Glu Glu Arg Ile Gln Pro Lys Arg Asp Ala Ala Phe Glu Leu
 370 375 380

Ala Ala Leu Ala Leu Gln Ala Glu Phe Gly Asn Arg Pro Pro Pro Val
 385 390 395 400

Ile Thr Asp Tyr Phe Asp Ile Gln His Tyr Leu Pro Lys Lys Tyr Ser
 405 410 415

Ser Phe Glu Asp Gln Ser Arg Leu Lys Asn Ile Leu Ala Glu Leu His
 420 425 430

Gly His Tyr Ala Gly
 435

<210> 31

<211> 2574

<212> DNA

<213> Caenorhabditis elegans

<400> 31

atgcctgcta atgagctttt cgtagattct gatccggaaag gggatgaaat ttttgaaga 60
 gttcgaaagg tgcaaccaaa gtcgatcaat gtaactgaga atcaaaaagg agaccctatg 120
 cgtaaagtca aaatcgagct tcaagctgtt ttgggtgcgg aaaaaatacc aatttagtaca 180
 gaagaaatca gacggcgtct gctggattct tatggtgcat gtcctgatcc gaaaagatat 240
 aactgttgcg ctttggacga tcttcttcaa gcattgtcgg agtcaattgt acacacttcc 300
 ggccgtgatg gaatacaccg atatgggcca agaactactg aagccaacca agatattatc 360
 gaaatggtcc agcagcagtc gagctcaaaa cgccccggccc gtcgtttttt agttcagga 420
 gctactaata acctcagcac tcattggtca tcattccggg cattcagagg tccgtatgcg 480
 tcagagggaa tcgctaaatc gagaggaaca cctgagcaat tcaaagcaag acacaagttg 540
 ggtccagcaa aaacaatttc tcgcgtaaaaa aaccttgcag aggtttgaa agaatatgtc 600
 gatgagatag gagtttcaca tcctgtatgag ccaaattcgcg agatgttaac actggcagct 660
 cttagccaata agttcaaaca gttgtattgt ttaccagcat gggggaaagaa catatcgaa 720
 agtgaactat acattcagct caatgttcct ccttcaacg aatatctgcg tttctgcgt 780
 cttagcgaaa aaggtgacat cttcggtatgt ttttgcgtatgc gtgacaatgc cgatccaact 840
 caaaaaaagtg aacaaaatcc gtcagcagat gtttcttattc aatctgaatc ttttggcggt 900
 aaaagttcag cttagcgtt tgaacaatct gtatgtatccg ctccttcaac tattagagat 960
 caaacatccg attcctttga cgggttcaac agtttgcgaa tgcccccaaga aaatggaaac 1020
 aaagattcaa aaattttcaa ctcgaatcaa gaaagcatcg atgactatcc aggaaatgtc 1080
 atatctcgag atcgaaccgc tgatatgacc gacattgcgat tgcgtttgg aactgtctct 1140
 gtggcaagcc aacaatgtcc ggtatctcg tcactcggtc cacaaaatgg aattctcg 1200
 cagtcgcgtg ctcaagaaga cgacacaac acatcttattc taactattca atcatctcg 1260
 cgcaatcatt cagtcgttcg tcattcgatcg atcaaggcctc gcaatccaac aaaaaatctt 1320
 gctgaagtcg taaaaactca tggtagcatt ccttatgaag cgcttcggg ttgtgataag 1380
 attatctcg acttagggaa gaacatttc aaagttatg caactcaacc tggagaaatg 1440
 atggtccgccc tttgtatcc ccacgttgac acgactacat tgccactcct agagaacaat 1500
 cttcgggatc ctgtcgagtc tgatttacgt tggatgacac tggggaaattc ccatatcaag 1560
 aaacaatctg ttaaaagtgtt caagcctgca atgtttatg cgccacgcgg atttttgtt 1620
 attttaaaag atgaagaacg tgaagaaatg gacgttgaaa aggttgctac tatggggaaat 1680
 atattgcggg ccgtgatggt agcgcctatt gtggagctcc agcgtgaaac cgtccgcacg 1740
 ggatcagctg cagtcgtacgt ttatcgacaa ggagcggagg tgcgttattaa tagagtgtt 1800
 atagttggac aagctaaaca agatggtggaa gtgttggtt tggatgttgcgatg tgcgtatgt 1860
 caatatttcg tggatgtaca tctatctcat ttgttccca ttccggaaaga agccagcttc 1920
 aaacactttc ctcgaatgt tgcgtatgc acattgcgt gactactggg tttgacgctt 1980
 tctgagcagg atgtgtatgtt cgaaaacatt gataatgtg atacaaaacg atttgtgggt 2040

51

ggatattttc atggaaacga tgacagaatt cttaacatcg atatggttt gaaaaatgag 2100
 cgtggtaat ttgagtggct ttcacaaatt gtcaagagac gtggagcagt tacttcgtcc 2160
 gatgccaca tcattcactt tccacattct gcactcgatg tgataaagtc tgttggacca 2220
 gattgttccg ttgtgttgc cgactattca gttcgtgtatg aatctgcaac atcttcattt 2280
 atggaatcga ctagaattgt tcatgatagt cgtgaatcta tgacaactac ttatgttgg 2340
 gagatgccaa gcccaattat cgaagaaatc gatgcaacat cttcatttga cccaaaactc 2400
 ityaatctcc attcattgtt cgataagttt atcgaggaa agaatgttac tatgatgtg 2460
 gggatgttcc aattcgttcg aagtttgaag gatttattcg gcgataacaa tgaatggaa 2520
 cgcttgcctca cgtacatgct cacgactggt aaaaacaata acattcgtct ctga 2574

<210> 32

<211> 857

<212> PRT

<213> Caenorhabditis elegans

<400> 32

Met	Pro	Ala	Asn	Glu	Leu	Phe	Gly	Asp	Ser	Asp	Pro	Glu	Gly	Asp	Glu
1				5					10					15	

Ile	Phe	Glu	Arg	Val	Arg	Lys	Val	Gln	Pro	Lys	Ser	Ile	Asn	Val	Thr
				20				25					30		

Glu	Asn	Gln	Lys	Val	Asp	Pro	Met	Arg	Lys	Val	Lys	Ile	Glu	Leu	Gln
				35			40				45				

Ala	Val	Leu	Val	Ala	Glu	Lys	Ile	Pro	Ile	Ser	Thr	Glu	Glu	Ile	Arg
					55				60						

Arg	Arg	Leu	Leu	Asp	Ser	Tyr	Gly	Ala	Cys	Pro	Asp	Pro	Lys	Arg	Tyr
65				70				75					80		

Asn	Cys	Ser	Thr	Leu	Asp	Asp	Leu	Leu	Gln	Ala	Cys	Ser	Glu	Ser	Ile
					85			90				95			

Val	His	Thr	Phe	Gly	Arg	Asp	Gly	Ile	His	Arg	Tyr	Gly	Pro	Arg	Thr
					100			105				110			

Thr	Glu	Ala	Asn	Gln	Asp	Ile	Ile	Glu	Met	Val	Gln	Gln	Gln	Ser	Ser
						115		120				125			

Ser	Lys	Arg	Pro	Ala	Arg	Ser	Phe	Leu	Gly	Ser	Gly	Ala	Thr	Asn	Asn
					130		135				140				

Leu	Ser	Thr	His	Gly	Ser	Ser	Phe	Arg	Ala	Phe	Arg	Gly	Pro	Tyr	Ala
145					150				155				160		

Ser	Glu	Glu	Ile	Ala	Lys	Ser	Arg	Gly	Thr	Pro	Glu	Gln	Phe	Lys	Ala
					165			170				175			

Arg	His	Lys	Leu	Gly	Pro	Ala	Lys	Thr	Ile	Ser	Arg	Val	Lys	Asn	Leu
					180			185				190			

Ala	Glu	Val	Leu	Lys	Glu	Tyr	Ala	Asp	Glu	Ile	Gly	Val	Ser	His	Pro
						195		200				205			

Asp	Glu	Pro	Asn	Arg	Lys	Ile	Val	Thr	Leu	Ala	Ala	Leu	Ala	Asn	Lys
					210			215				220			

52

Phe Lys Gln Leu Tyr Cys Leu Pro Ala Trp Gly Lys Asn Ile Ser Glu
 225 230 235 240

Ser Glu Leu Tyr Ile Gln Leu Asn Val Pro Pro Phe Asn Glu Tyr Leu
 245 250 255

His Phe Trp Arg Leu Ser Glu Lys Gly Asp Ile Phe Val Asp Cys Ile
 260 265 270

Asp Arg Asp Asn Ala Asp Pro Thr Gln Lys Ser Glu Gln Asn Pro Ser
 275 280 285

Ala Asp Val Ser Ile Gln Ser Glu Ser Phe Gly Gly Lys Ser Ser Ala
 290 295 300

Ser Ala Phe Glu Gln Ser Val Val Ser Ala Pro Ser Thr Ile Arg Asp
 305 310 315 320

Gln Thr Ser Asp Ser Phe Asp Gly Phe Asn Ser Phe Glu Val Pro Pro
 325 330 335

Glu Asn Gly Ser Lys Asp Ser Lys Ile Phe Asn Ser Asn Gln Glu Ser
 340 345 350

Ile Asp Asp Tyr Pro Gly Asn Ala Ile Ser Arg Asp Arg Thr Ala Asp
 355 360 365

Met Thr Asp Ile Ala Leu Arg Phe Gly Thr Val Ser Val Ala Ser Gln
 370 375 380

Gln Cys Pro Val Ser Ser Leu Val Pro Gln Asn Gly Ile Leu Arg
 385 390 395 400

Gln Ser Arg Ala Gln Glu Asp Asp Asn Asn Thr Ser Ile Leu Thr Ile
 405 410 415

Gln Ser Ser Arg Arg Asn His Ser Val Leu Arg His Arg Thr Ile Lys
 420 425 430

Pro Arg Asn Pro Thr Gln Asn Leu Ala Glu Val Val Lys Thr His Gly
 435 440 445

Ser Ile Pro Tyr Glu Ala Leu Ser Asp Cys Asp Lys Ile Ile Val Asp
 450 455 460

Leu Gly Lys Asn Ile Phe Lys Val Tyr Ala Thr Gln Pro Gly Glu Met
 465 470 475 480

Met Val Arg Leu Cys Asp Pro His Val Asp Thr Thr Thr Leu Pro Leu
 485 490 495

Leu Glu Asn Asn Leu Arg Asp Pro Val Glu Ser Asp Leu Arg Trp Met
 500 505 510

Thr Leu Gly Asn Ser His Ile Lys Lys Gln Ser Val Lys Val Val Lys
 515 520 525

Pro Ala Met Phe Ile Ala Pro Arg Gly Phe Leu Leu Ile Leu Lys Asp

53	540
Glu Glu Arg Glu Glu Met Asp Val Glu Lys Val Ala Thr Met Gly Asn	
545	550
Ile Leu Arg Ala Val Met Val Ala Pro Ile Val Glu Leu Gln Arg Glu	
555	570
575	
Thr Val Arg Thr Gly Ser Ala Ala Val Tyr Val Tyr Arg Gln Gly Ala	
580	585
590	
Glu Val Arg Tyr Tyr Arg Val Leu Ile Val Gly Gln Ala Lys Gln Asp	
595	600
605	
Gly Glu Val Leu Val Leu Leu Ala Asp Val Asp Asp Gln Tyr Phe Val	
610	615
620	
Asp Val His Leu Ser His Leu Phe Pro Ile Pro Glu Glu Ala Ser Phe	
625	630
635	
640	
Lys His Phe Pro Ser Asn Val Val Phe Ala Thr Leu His Gly Val Leu	
645	650
655	
Gly Leu Thr Leu Ser Glu Gln Asp Val Met Phe Glu Asn Ile Asp Asn	
660	665
670	
Asp Asp Thr Lys Arg Phe Val Gly Gly Tyr Phe His Gly Asn Asp Asp	
675	680
685	
Arg Ile Leu Asn Ile Asp Met Val Trp Lys Asn Glu Arg Gly Gln Phe	
690	695
700	
Glu Trp Leu Ser Gln Ile Val Lys Arg Arg Gly Ala Val Thr Ser Ser	
705	710
715	
720	
Asp Ala Asn Ile Ile His Phe Pro His Ser Ala Leu Asp Val Ile Lys	
725	730
735	
Ser Val Gly Pro Asp Cys Ser Val Cys Phe Val Asp Tyr Ser Val Arg	
740	745
750	
Asp Glu Ser Ala Thr Ser Ser Leu Met Glu Ser Thr Arg Ile Val His	
755	760
765	
Asp Ser Arg Glu Ser Met Thr Thr Thr Tyr Val Gly Glu Met Pro Ser	
770	775
780	
Pro Ile Ile Glu Glu Ile Asp Ala Thr Ser Ser Phe Asp Pro Lys Leu	
785	790
795	
800	
Leu Asn Leu His Ser Leu Phe Asp Lys Leu Ile Glu Glu Gln Asn Val	
805	810
815	
Thr Met Ile Val Gly Met Phe Gln Phe Val Arg Ser Leu Lys Asp Leu	
820	825
830	
Phe Gly Asp Asn Asn Glu Trp Glu Arg Leu Leu Thr Tyr Met Leu Thr	
835	840
845	

Thr Gly Lys Asn Asn Asn Ile Arg Leu
850 855

```
<210> 33
<211> 1587
<212> DNA
<213> Caenorhabditis elegans
```

<400> 33
atttttgaaa gagttcgaaa ggtgcaacca aagtgcgatca atgtaactga gaatcaaaag 60
gtagacccta tgcgtaaagt caaaaatcgag cttcaagctg tttgggtgc ggaaaaaaata 120
ccaatttagta cagaagaaaat cagacggcgt ctgctggatt cttatggtgc atgtcctgat 180
ccgaaaagat ataactgttc gactttggac gatcttcttc aagcatgctc ggagtcaatt 240
gtacacactt tcggccgtga tggaaatacac cgatatggc caagaactac tgaagccaac 300
caagatatta tcgaaaatggt ccagcagcag tcgagctcaa aacgcccggc ccgctcggt 360
tttaggttcag gagctactaa taacctcagc actcatgggt catcattccg ggcattcaga 420
ggtccgtatg cgtcagagga aatcgctaaa tcgagaggaa cacctgagca attcaaagca 480
agacacaagt tgggtccagc aaaaacaatt tctcgcgtaa aaaaccttgc agaggtttg 540
aaagaatatg ctgatgagat aggagttca catcctgtat agccaaatcg caagattgt 600
acactggcag ctcttgccaa taagttcaaa cagttgtatt gtttaccagc atggggaaag 660
aacatatcg aaagtgaact atacattcag ctcaatgttc ctcccttcaa cgaatatctg 720
catttctggc gtcttagcga aaaagggtgac atcttcgttg attgtattga tcgtgacaat 780
gccgatccaa ctcaaaaaaag tgaacaaaaat ccgtcagcag atgtttctat tcaatctgaa 840
tcttttggcg gtaaaaagttc agcttcagcg tttgaacaat ctgttagtata cgctccttca 900
actatttagag atcaaacatc cgattcctt gacgggttca acagttcga agtgcuccca 960
gaaaatggaa gcaaagatcc aaaaattttc aactcgaatc aagaaagcat cgatgactat 1020
ccagggaaatg ctatatctcg agatcgaacc gctgatatga ccgacattgc attgcgttt 1080
ggaacttgtct ctgtggcaag ccaacaatgt ccgttatctt cgtcactcgt tccacaaaat 1140
ggaattcttc gtcagtcg tgctcaagaa gacgacaaca acacatctat tctaactatt 1200
caatcatctc gtcgcaatca ttcatgtct cgtcatcgta cgatcaagcc tcgcaatcca 1260
acacaaaatc ttgctgaagt cgtaaaaact catggtagca ttccttatga agcgctttcg 1320
gattgtgata agattatcgt cgacttagga aagaacattt tcaaagttt tgcaactcaa 1380
cctggagaaaa tgatggtccg ccttgtgtat ccccacgtt acacgactac attgccactc 1440
ctagagaaca atcttcggga tcctgtcgag tctgatttac gttggatgac actggggaaat 1500
tcccatatca agaaacaatc tggtaaagtgt gtcaaggctg caatgtttat tgcgccacgc 1560
ggatttttgt tgatttaaa agatgaa 1587

<210> 34
<211> 529
<212> PRT
<213> *Caenorhabditis elegans*

<400> 34
Ile Phe Glu Arg Val Arg Lys Val Gln Pro Lys Ser Ile Asn Val Thr
1 5 10 15

Glu Asn Gln Lys Val Asp Pro Met Arg Lys Val Lys Ile Glu Leu Gln
20 25 30

Ala Val Leu Val Ala Glu Lys Ile Pro Ile Ser Thr Glu Glu Ile Arg
35 40 45

Arg Arg Leu Leu Asp Ser Tyr Gly Ala Cys Pro Asp Pro Lys Arg Tyr
50 55 . . . 60

Asn Cys Ser Thr Leu Asp Asp Leu Leu Gln Ala Cys Ser Glu Ser Ile

65	70	55	75	80
Val His Thr Phe Gly Arg Asp Gly Ile His Arg Tyr Gly Pro Arg Thr				
85			90	95
Thr Glu Ala Asn Gln Asp Ile Ile Glu Met Val Gln Gln Ser Ser				
100			105	110
Ser Lys Arg Pro Ala Arg Ser Phe Leu Gly Ser Gly Ala Thr Asn Asn				
115			120	125
Leu Ser Thr His Gly Ser Ser Phe Arg Ala Phe Arg Gly Pro Tyr Ala				
130			135	140
Ser Glu Glu Ile Ala Lys Ser Arg Gly Thr Pro Glu Gln Phe Lys Ala				
145			150	160
Arg His Lys Leu Gly Pro Ala Lys Thr Ile Ser Arg Val Lys Asn Leu				
165			170	175
Ala Glu Val Leu Lys Glu Tyr Ala Asp Glu Ile Gly Val Ser His Pro				
180			185	190
Asp Glu Pro Asn Arg Lys Ile Val Thr Leu Ala Ala Leu Ala Asn Lys				
195			200	205
Phe Lys Gln Leu Tyr Cys Leu Pro Ala Trp Gly Lys Asn Ile Ser Glu				
210			215	220
Ser Glu Leu Tyr Ile Gln Leu Asn Val Pro Pro Phe Asn Glu Tyr Leu				
225			230	240
His Phe Trp Arg Leu Ser Glu Lys Gly Asp Ile Phe Val Asp Cys Ile				
245			250	255
Asp Arg Asp Asn Ala Asp Pro Thr Gln Lys Ser Glu Gln Asn Pro Ser				
260			265	270
Ala Asp Val Ser Ile Gln Ser Glu Ser Phe Gly Gly Lys Ser Ser Ala				
275			280	285
Ser Ala Phe Glu Gln Ser Val Val Ser Ala Pro Ser Thr Ile Arg Asp				
290			295	300
Gln Thr Ser Asp Ser Phe Asp Gly Phe Asn Ser Phe Glu Val Pro Pro				
305			310	320
Glu Asn Gly Ser Lys Asp Ser Lys Ile Phe Asn Ser Asn Gln Glu Ser				
325			330	335
Ile Asp Asp Tyr Pro Gly Asn Ala Ile Ser Arg Asp Arg Thr Ala Asp				
340			345	350
Met Thr Asp Ile Ala Leu Arg Phe Gly Thr Val Ser Val Ala Ser Gln				
355			360	365
Gln Cys Pro Val Ser Ser Ser Leu Val Pro Gln Asn Gly Ile Leu Arg				
370			375	380

Gln Ser Arg Ala Gln Glu Asp Asp Asn Asn Thr Ser Ile Leu Thr Ile
 385 390 395 400

Gln Ser Ser Arg Arg Asn His Ser Val Leu Arg His Arg Thr Ile Lys
 405 410 415

Pro Arg Asn Pro Thr Gln Asn Leu Ala Glu Val Val Lys Thr His Gly
 420 425 430

Ser Ile Pro Tyr Glu Ala Leu Ser Asp Cys Asp Lys Ile Ile Val Asp
 435 440 445

Leu Gly Lys Asn Ile Phe Lys Val Tyr Ala Thr Gln Pro Gly Glu Met
 450 455 460

Met Val Arg Leu Cys Asp Pro His Val Asp Thr Thr Thr Leu Pro Leu
 465 470 475 480

Leu Glu Asn Asn Leu Arg Asp Pro Val Glu Ser Asp Leu Arg Trp Met
 485 490 495

Thr Leu Gly Asn Ser His Ile Lys Lys Gln Ser Val Lys Val Val Lys
 500 505 510

Pro Ala Met Phe Ile Ala Pro Arg Gly Phe Leu Leu Ile Leu Lys Asp
 515 520 525

Glu

<210> 35

<211> 1593

<212> DNA

<213> *Caenorhabditis elegans*

<400> 35

```

atgcgcattt tccgtacaca ccgcgacgag ttttacgga cattgtgctt gaacttgttt 60
tgggtctgt tgatcaactc aattgagaaa tcaaaacaaa ttcaatcttc agcgatatttt 120
tttgcattt ctcaactctt cgccatcgaa aagtcaaaaa gaaaacaaca aaaaatgcct 180
cgccgtctac ggagagcaga ttttagtcaaa cgacatcgcc actcaacgac aggagacaaa 240
gacggaggaa taccagaagt aataggatgc ccagttttat atccttattat ctgccaatgt 300
ccaaaagatg agatcgagct tggtaagga gtcagatga cgtgcacttg ggaatcatgc 360
ccgtactcta gttagaccact tcacatcacat tgcataaac tgctcgagga caatcttgct 420
aagcgattag cctcaactggg aagtgcacga ggtatggacag tgccacaacg gaggataaac 480
ttatggaga ggaagggtca gtccctgtatc gggaaagtctt gccgatgtcg ctgcgatcgg 540
ggacaaatga ccagagacaa gcaggctta tatgagaaag agaaggctgt ggaaaaagag 600
aagaagaaga aggccaagaa agcaaaacaa ctgccccagc tacaattaa ttctaaacct 660
ttggcagcta tcgaggagaa aaagcgagga gacgctgtatc tattccactc accgtccatt 720
gcctcaagta cacggcatca cacattctcg acgacgacac gatcgact tcataactgtat 780
cggtcggtttt cttccatttt aacacacact attggaaagaa cgtggccga atcttcgttt 840
gccggtgaaa caaatggtca gtacgacaac aatcaggagc cacatccatc aaattgtgaa 900
tgcgttatttc atcacgatta cgacgctgac gatcaaatacg atacggattt cgagtgtgaa 960
agcaatcaca gcgacgtaat agttccacgt ccacttccac cacttcagac gaaaaagctat 1020
gcagcgacaa taatgagaaa cgggacacccg aaggttacaa attattcacc ggatagtgg 1080
ctcgatcagc aaactccaag gtttcatttgc tcttcttgcgatc gttggaggaga tgtcgataat 1140
caacatggag acttccacgt ggaaactaga atttccgagc atctcaacgc gttggactc 1200

```

57

agcataatgt cgccgggtgga gaatgcgaat gaaaatgtca attatgaaga atcgccgttc 1260
tacccggagc tgacatcgac tccaatcgac tcgaagaagc agcgggaacc tctccgagcg 1320
aaaaagagca catctgtctc gaagcttcca cttgctccgt cgtcacagct attcaatgaa 1380
gaatcgcgtt gtggatttcag attcaatgtg ccgttgcgcg aaatgatgga catatggcaa 1440
gagtctggag ccttgcgcgc ggcaattcga gaaacacagg ctgaaaatac tgaaaaaaga 1500
gctgagaatg cgtcgggtgt actccaatat ggatggactc cattttcgga caatggcttc 1560
aaacccyay aycyccctcta ctacttcccc tag 1593

<210> 36

<211> 530

<212> PRT

<213> *Caenorhabditis elegans*

<400> 36

Met	Arg	Ile	Val	Arg	Thr	His	Arg	Asp	Glu	Phe	Leu	Arg	Thr	Leu	Cys
1															15

Leu	Asn	Leu	Phe	Cys	Cys	Leu	Leu	Ile	Asn	Ser	Ile	Glu	Lys	Ser	Lys
20						25							30		

Gln	Ile	Gln	Ser	Ser	Ala	Tyr	Phe	Phe	Arg	Asn	Ser	His	Ser	Phe	Ala
35					40							45			

Ile	Glu	Lys	Phe	Lys	Arg	Lys	Gln	Gln	Lys	Met	Pro	Arg	Gly	Leu	Arg
50				55							60				

Arg	Ala	Asp	Leu	Val	Lys	Arg	His	Arg	His	Ser	Thr	Thr	Gly	Asp	Lys
65					70						75			80	

Asp	Gly	Gly	Val	Pro	Glu	Val	Ile	Gly	Cys	Pro	Val	Leu	Asp	Pro	Ile
85						90						95			

Ile	Cys	Gln	Cys	Pro	Lys	Asp	Glu	Ile	Glu	Leu	Gly	Glu	Gly	Val	Lys
100					105							110			

Met	Thr	Cys	Thr	Trp	Glu	Ser	Cys	Pro	Tyr	Ser	Ser	Arg	Pro	Leu	His
115					120							125			

His	Ile	Cys	Tyr	Gln	Leu	Leu	Glu	Asp	Asn	Leu	Val	Lys	Arg	Leu	Ala
130					135						140				

Ser	Leu	Gly	Ser	Ala	Arg	Gly	Trp	Thr	Val	Pro	Gln	Arg	Arg	Asn	Asn
145					150					155			160		

Leu	Trp	Glu	Arg	Lys	Gly	Gln	Ser	Leu	Ile	Gly	Lys	Phe	Cys	Arg	Cys
165					170						175				

Arg	Cys	Asp	Arg	Gly	Gln	Met	Thr	Arg	Asp	Lys	Gln	Ala	Leu	Tyr	Glu
180					185						190				

Lys	Glu	Lys	Ala	Val	Glu	Lys	Glu	Lys	Lys	Lys	Ala	Lys	Lys	Ala	
195					200						205				

Lys	Gln	Leu	Pro	Gln	Leu	Gln	Phe	Asn	Ser	Lys	Pro	Leu	Ala	Ala	Ile
210					215						220				

Glu	Glu	Lys	Lys	Arg	Gly	Asp	Ala	Asp	Val	Phe	His	Ser	Pro	Ser	Ile
225					230					235			240		

Ala Ser Ser Thr Arg His His Thr Phe Ser Thr Thr Thr Arg Ser Arg
245 250 255

Leu His Thr Asp Arg Ser Ala Ser Ser Ile Leu Thr His Thr Ile Gly
260 265 270

Arg Thr Trp Ser Glu Ser Ser Phe Ala Gly Glu Thr Asn Gly Gln Tyr
275 280 285

Asp Asn Asn Gln Glu Pro His Pro Ser Asn Cys Glu Cys Val Phe His
290 295 300

His Asp Tyr Asp Ala Asp Asp Gln Ile Asp Thr Asp Phe Glu Cys Glu
305 310 315 320

Ser Asn His Ser Asp Val Ile Val Pro Ala Pro Leu Pro Pro Leu Gln
325 330 335

Ala Lys Ser Tyr Ala Ala Thr Ile Met Arg Asn Gly Thr Pro Lys Val
340 345 350

Thr Asn Tyr Ser Pro Asp Ser Gly Leu Asp Gln Gln Thr Pro Arg Phe
355 360 365

Ser Leu Ser Ser Ser Ser Gly Gly Asp Val Asp Asn Gln His Gly Asp
370 375 380

Phe His Val Glu Thr Arg Ile Ser Glu His Leu Asn Ala Leu Gly Leu
385 390 395 400

Ser Ile Met Ser Pro Val Glu Asn Ala Asn Glu Asn Val Asn Tyr Glu
405 410 415

Glu Ser Pro Phe Tyr Pro Glu Leu Thr Ser Thr Pro Ile Val Ser Lys
420 425 430

Lys Gln Arg Glu Pro Leu Arg Ala Lys Lys Ser Thr Ser Val Ser Lys
435 440 445

Leu Pro Leu Ala Pro Ser Ser Gln Leu Phe Asn Glu Glu Ser Arg Cys
450 455 460

Gly Phe Arg Phe Asn Val Pro Val Arg Glu Met Met Asp Ile Trp Gln
465 470 475 480

Glu Ser Gly Ala Leu Ser Pro Ala Ile Arg Glu Thr Gln Ala Glu Asn
485 490 495

Thr Glu Lys Arg Ala Glu Asn Ala Ser Gly Val Leu Gln Tyr Gly Trp
500 505 510

Thr Pro Phe Phe Gly Asn Gly Phe Asn Leu Gly Glu Arg Leu Tyr Tyr
515 520 525

Phe Pro
530

<210> 37
 <211> 1458

<212> DNA

<213> *Caenorhabditis elegans*

<400> 37

tctttcgcca tcgaaaagtt caaaagaaaa caacaaaaaaaaa tgcctcgccg tctacggaga 60
 gcagatttag tcaaacgaca tcgccactca acgacaggag acaaagacgg aggagtacca 120
 gaagtaatag gatgcccagt tttagatcct attatctgcc aatgtccaaa agatgagatc 180
 gagcttggtg aaggagtcaa gatgacgtgc acttgggaat catgccgtc ctctagtaga 240
 ccacttcatac acatatgcta tcaactgctc gaggacaatc ttgtcaagcg attagcctca 300
 ctgggaagtg cacgaggatg gacagtccca caacggagga ataacttatg ggagaggaag 360
 ggtcagtcggaaa tgatcgccga gttctgccc tgtcgctgcg atcggggaca aatgaccaga 420
 gacaaggcagg ctttatatga gaaagagaag gctgtggaaa aagagaagaa gaagaaggcc 480
 aagaaagcaa aacaactgcc ccagctacaa ttaattcta aacctttggc agctatcgag 540
 gagaaaaaagc gaggagacgc tgatgtattc cactcaccgt ccattgcctc aagtacacgg 600
 catcacacat tctcgacgac gacacgatcg cgacttcata ctgatcggtc ggcttcttcc 660
 attttaacac acactattgg aagaacgtgg tccgaatctt cggttgcgg tgaaacaaaat 720
 ggtcagtacg acaacaatca ggagccacat ccatcaaatt gtgaatgcgt atttcatcac 780
 gattacgacg ctgacgatca aatagatacg gatttcgagt gtgaaagcaa tcacagcgac 840
 gtaatagttc cagctccact tccaccactt caggcggaaa gctatgcagc gacaataatg 900
 agaaaacggga caccgaaggt tacaaattat tcaccggata gtggctcga tcagcaaact 960
 ccaaggttt cattgtcttc ttcgagtgga ggagatgtcg ataatcaaca tggagacttc 1020
 cacgtggaaa ctagaatttc cgagcatctc aacgcgttgg gactcagcat aatgtcgccg 1080
 gtggagaatg cgaatgaaaat tgtcaattat gaagaatcgc cggttctaccc ggagctgaca 1140
 tcgactccaa tcgtctcgaa gaagcagcgg gaacctctcc gagcggaaaaa gagcacatct 1200
 gtctcgaagc ttccacttgc tccgtcgtca cagctattca atgaagaatc gcgttgcgg 1260
 ttcaagattca atgtgccgt tcgcgaaatg atggacatat ggcaagagtc tggagccttg 1320
 tcgccccaa ttcgagaaac acaggctgaa aatactgaaa aaagagctga gaatgcgtcg 1380
 ggtgtactcc aatatggatg gactccattc ttccggcaatg gcttcaatctt cgagagcgc 1440
 ctctactact tcccatag 1458

<210> 38

<211> 485

<212> PRT

<213> *Caenorhabditis elegans*

<400> 38

Ser	Phe	Ala	Ile	Glu	Lys	Phe	Lys	Arg	Lys	Gln	Gln	Lys	Met	Pro	Arg
1													10		15

Gly	Leu	Arg	Arg	Ala	Asp	Leu	Val	Lys	Arg	His	Arg	His	Ser	Thr	Thr
													20	25	30

Gly	Asp	Lys	Asp	Gly	Gly	Val	Pro	Glu	Val	Ile	Gly	Cys	Pro	Val	Leu
													35	40	45

Asp	Pro	Ile	Ile	Cys	Gln	Cys	Pro	Lys	Asp	Glu	Ile	Glu	Leu	Gly	Glu
													50	55	60

Gly	Val	Lys	Met	Thr	Cys	Thr	Trp	Glu	Ser	Cys	Pro	Tyr	Ser	Ser	Arg	
													65	70	75	80

Pro	Leu	His	His	Ile	Cys	Tyr	Gln	Leu	Leu	Glu	Asp	Asn	Leu	Val	Lys
													85	90	95

Arg	Leu	Ala	Ser	Leu	Gly	Ser	Ala	Arg	Gly	Trp	Thr	Val	Pro	Gln	Arg
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

100	105	110
Arg Asn Asn Leu Trp Glu Arg Lys Gly Gln Ser Leu Ile Gly Lys Phe	60	
115	120	125
Cys Arg Cys Arg Cys Asp Arg Gly Gln Met Thr Arg Asp Lys Gln Ala		
130	135	140
Leu Tyr Glu Lys Glu Lys Ala Val Glu Lys Glu Lys Lys Lys Ala		
145	150	155
Lys Lys Ala Lys Gln Leu Pro Gln Leu Gln Phe Asn Ser Lys Pro Leu		
165	170	175
Ala Ala Ile Glu Glu Lys Lys Arg Gly Asp Ala Asp Val Phe His Ser		
180	185	190
Pro Ser Ile Ala Ser Ser Thr Arg His His Thr Phe Ser Thr Thr Thr		
195	200	205
Arg Ser Arg Leu His Thr Asp Arg Ser Ala Ser Ser Ile Leu Thr His		
210	215	220
Thr Ile Gly Arg Thr Trp Ser Glu Ser Ser Phe Ala Gly Glu Thr Asn		
225	230	235
Gly Gln Tyr Asp Asn Asn Gln Glu Pro His Pro Ser Asn Cys Glu Cys		
245	250	255
Val Phe His His Asp Tyr Asp Ala Asp Asp Gln Ile Asp Thr Asp Phe		
260	265	270
Glu Cys Glu Ser Asn His Ser Asp Val Ile Val Pro Ala Pro Leu Pro		
275	280	285
Pro Leu Gln Ala Lys Ser Tyr Ala Ala Thr Ile Met Arg Asn Gly Thr		
290	295	300
Pro Lys Val Thr Asn Tyr Ser Pro Asp Ser Gly Leu Asp Gln Gln Thr		
305	310	315
320		
Pro Arg Phe Ser Leu Ser Ser Ser Gly Gly Asp Val Asp Asn Gln		
325	330	335
His Gly Asp Phe His Val Glu Thr Arg Ile Ser Glu His Leu Asn Ala		
340	345	350
Leu Gly Leu Ser Ile Met Ser Pro Val Glu Asn Ala Asn Glu Asn Val		
355	360	365
Asn Tyr Glu Glu Ser Pro Phe Tyr Pro Glu Leu Thr Ser Thr Pro Ile		
370	375	380
Val Ser Lys Lys Gln Arg Glu Pro Leu Arg Ala Lys Lys Ser Thr Ser		
385	390	395
400		
Val Ser Lys Leu Pro Leu Ala Pro Ser Ser Gln Leu Phe Asn Glu Glu		
405	410	415

61

Ser Arg Cys Gly Phe Arg Phe Asn Val Pro Val Arg Glu Met Met Asp
 420 425 430

Ile Trp Gln Glu Ser Gly Ala Leu Ser Pro Ala Ile Arg Glu Thr Gln
 435 440 445

Ala Glu Asn Thr Glu Lys Arg Ala Glu Asn Ala Ser Gly Val Leu Gln
 450 455 460

Tyr Gly Trp Thr Pro Phe Phe Gly Asn Gly Phe Asn Leu Gly Glu Arg
 465 470 475 480

Leu Tyr Tyr Phe Pro
 485

<210> 39

<211> 1056

<212> DNA

<213> Caenorhabditis elegans

<400> 39

atgcaaaaaca cacagatatt tactaacttc gctcacagag cacatgatgg attaccgttt 60
 aacagtgcga atccttccaa caaagatcca attttcacaa tgccaatatc ggtcaaaccg 120
 aaaactcgtg agccggcttc tttcacagat aacaggatat atgtcagcaa tattcccttc 180
 tcgtttcgtg aacaagattt ggcggcaatg ttcttcgcatt atggaagagt cctgagtg 240
 gaaatcgta caaatgatcg tggatccaaa gggttcggtt ttgtcacact cgattccatc 300
 gaatcctgtg agaaaagctcg tgctgcgtt cacgaatcac atgttcaagg aagaattata 360
 gaagtgagaa gagcgcacacc aacccgcaga aagcttatca acaatccaca aaatgaagtt 420
 ttgccaccac caaagctgtg tgtcgatctt cgagccccctc ataatttatg gagagctgag 480
 ccaatgcacatc agttgttcaa ggaaaaggag aacacaacat gttttcccga agctggattc 540
 atgatggcac cataccgttag caatgaaatt ttcacacacgc gtatgtttgt gcagacccaaa 600
 ccacctcgat gcaccaagca cagcgagctc aagctttctt cagctggta atacttgc 660
 aaaaacggcg agcctacgac ggaaacaagt attctgatgt gcatgcacag aaaaaactca 720
 ccatgcagca ataagtgttc tgattttcg aatcacgagc tgtctgatgt ggagttgaac 780
 tctatattcc cacatcatct tcgtgaccag attactgctc ttctcgacac ttcaaaccat 840
 tttggatcg gaaataatag tgctaacaaa ggaaagagag caccatctgt gacatcttct 900
 ggattgagat catcagagag cgagacagtt tcagacgaag agattcatttgcgttccac 960
 aacagccctg attatcttct cgctgctctc tacgaagggtt ccacatcggtt ccacggaaag 1020
 tctgtttctc caccaaaaga atcgtcaagc cagtaa 1056

<210> 40

<211> 351

<212> PRT

<213> Caenorhabditis elegans

<400> 40

Met Gln Asn Thr Gln Ile Phe Thr Asn Phe Ala His Arg Ala His Asp
 1 5 10 15

Gly Leu Pro Phe Asn Ser Ala Asn Pro Ser Asn Lys Asp Pro Ile Phe
 20 25 30

Thr Met Pro Ile Ser Val Lys Pro Lys Thr Arg Glu Pro Ala Ser Phe
 35 40 45

Thr Asp Asn Arg Ile Tyr Val Ser Asn Ile Pro Phe Ser Phe Arg Glu

50	55	62	60												
Gln	Asp	Leu	Ala	Ala	Met	Phe	Phe	Ala	Tyr	Gly	Arg	Val	Leu	Ser	Val
65					70				75					80	
Glu	Ile	Val	Thr	Asn	Asp	Arg	Gly	Ser	Lys	Gly	Phe	Gly	Phe	Val	Thr
					85				90					95	
Leu	Asp	Ser	Ile	Glu	Ser	Cys	Glu	Lys	Ala	Arg	Ala	Ala	Leu	His	Glu
								105					110		
Ser	His	Val	Gln	Gly	Arg	Ile	Ile	Glu	Val	Arg	Arg	Ala	Thr	Pro	Thr
					115			120					125		
Arg	Arg	Lys	Leu	Ile	Asn	Asn	Pro	Gln	Asn	Glu	Val	Leu	Pro	Pro	Pro
					130			135			140				
Lys	Leu	Cys	Val	Asp	Leu	Arg	Ala	Pro	His	Asn	Leu	Trp	Arg	Ala	Glu
						150				155			160		
Pro	Met	His	Gln	Leu	Phe	Lys	Glu	Lys	Glu	Asn	Thr	Thr	Cys	Phe	Pro
					165				170					175	
Glu	Ala	Gly	Phe	Met	Met	Ala	Pro	Tyr	Arg	Ser	Asn	Gly	Ile	Phe	Asn
					180			185					190		
Thr	Arg	Ser	Leu	Val	Gln	Thr	Lys	Pro	Pro	Arg	Cys	Thr	Lys	His	Ser
					195			200				205			
Glu	Leu	Lys	Leu	Ser	Ser	Ala	Gly	Glu	Tyr	Phe	Cys	Lys	Asn	Gly	Glu
						210		215			220				
Pro	Thr	Thr	Glu	Thr	Ser	Ile	Leu	Met	Cys	Met	His	Arg	Gln	Asn	Ser
						225		230		235			240		
Pro	Cys	Ser	Asn	Lys	Cys	Ser	Asp	Ser	Ser	Asn	His	Glu	Leu	Ser	Asp
					245				250			255			
Val	Glu	Leu	Asn	Ser	Ile	Phe	Pro	His	His	Leu	Arg	Asp	Gln	Ile	Thr
					260				265			270			
Ala	Leu	Leu	Asp	Thr	Ser	Asn	His	Phe	Gly	Ser	Gly	Asn	Asn	Ser	Ala
						275		280			285				
Asn	Lys	Gly	Lys	Arg	Ala	Pro	Ser	Val	Thr	Ser	Ser	Gly	Leu	Arg	Ser
						290		295			300				
Ser	Glu	Ser	Glu	Thr	Val	Ser	Asp	Glu	Glu	Ile	His	Trp	Ser	Pro	His
					305			310		315			320		
Asn	Ser	Pro	Asp	Tyr	Leu	Leu	Ala	Ala	Leu	Tyr	Glu	Gly	Ser	Thr	Ser
					325				330			335			
Phe	His	Gly	Lys	Ser	Val	Ser	Pro	Pro	Lys	Glu	Ser	Ser	Ser	Gln	
					340			345			350				

<211> 1053

<212> DNA

<213> Caenorhabditis elegans

<400> 41

caaaaacacac agatatttac taacttcgct cacagagcac atgatggatt accgttaac 60
 agtgcgaatc cttccaacaa agatccaaatt ttcacaatgc caaatcggt caaaaccggaaa 120
 actcgtgagc cggcttctt cacagataac agatatatg tcagcaatat tcccttctcg 180
 tttcgtgaac aagatttggc ggcaatgttc ttgcataatg gaagagtctt gagtgtggaa 240
 atcgtcacaa atgatcgtgg atccaaaggg ttccgggttt tcacactcgaa 300
 tcctgtgaga aagctcgtgc tgcgcttcac gaatcacatg ttcaaggaag aattataagaa 360
 gtgagaagag cgacaccaac ccgcagaaag ctatcaaca atccacaaaa tgaagtttg 420
 ccaccaccaa agctgtgtgt cgatcttcga gcccctcata atttatggag agctgagcca 480
 atgcatcaatg tttcaagga aaaggagaac acaacatgtt ttccccaagc tggattcatg 540
 atggcaccat accgttagaa tggatttc aacacgcgtt gtcttgtca gaccacca 600
 cctcgatgca ccaagcacag cgagctcaag ctttcttcag ctggtaata cttctgcaaa 660
 aacggcgagc ctacgacgaa aacaagtatt ctgatgtgca tgcacagaca aaactcacca 720
 tgcagcaata atgttctga ttcttcgaat cacgagctgt ctgatgtgga gttgaactct 780
 atattccac atcatcttcg tgaccaggatt actgctcttc tcgacacttc aaaccatttt 840
 ggatcagggaa ataataatgtgc taacaaaagga aagagagcac catctgtgac atcttctgga 900
 ttgagatcat cagagagcga gacagttca gacgaagaga ttccattggc cccacataaac 960
 agccctgatt atcttctcgc tgctcttcac gaaggttcca catcgttcca cggaaagtct 1020
 gtttctccac caaaagaatc gtcaagccag taa 1053

<210> 42

<211> 350

<212> PRT

<213> Caenorhabditis elegans

<400> 42

Gln	Asn	Thr	Gln	Ile	Phe	Thr	Asn	Phe	Ala	His	Arg	Ala	His	Asp	Gly
1				5					10				15		

Leu	Pro	Phe	Asn	Ser	Ala	Asn	Pro	Ser	Asn	Lys	Asp	Pro	Ile	Phe	Thr
									25				30		

Met	Pro	Ile	Ser	Val	Lys	Pro	Lys	Thr	Arg	Glu	Pro	Ala	Ser	Phe	Thr
								35	40			45			

Asp	Asn	Arg	Ile	Tyr	Val	Ser	Asn	Ile	Pro	Phe	Ser	Phe	Arg	Glu	Gln
								50	55		60				

Asp	Leu	Ala	Ala	Met	Phe	Phe	Ala	Tyr	Gly	Arg	Val	Leu	Ser	Val	Glu
								65	70	75		80			

Ile	Val	Thr	Asn	Asp	Arg	Gly	Ser	Lys	Gly	Phe	Gly	Phe	Val	Thr	Leu
								85	90		95				

Asp	Ser	Ile	Glu	Ser	Cys	Glu	Lys	Ala	Arg	Ala	Ala	Leu	His	Glu	Ser
								100	105		110				

His	Val	Gln	Gly	Arg	Ile	Ile	Glu	Val	Arg	Arg	Ala	Thr	Pro	Thr	Arg
								115	120		125				

Arg	Lys	Leu	Ile	Asn	Asn	Pro	Gln	Asn	Glu	Val	Leu	Pro	Pro	Pro	Lys
									130	135		140			

Leu	Cys	Val	Asp	Leu	Arg	Ala	Pro	His	Asn	Leu	Trp	Arg	Ala	Glu	Pro
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	64		
145	150	155	160
Met His Gln Leu Phe Lys Glu Lys Glu Asn Thr Thr Cys Phe Pro Glu			
165		170	175
Ala Gly Phe Met Met Ala Pro Tyr Arg Ser Asn Gly Ile Phe Asn Thr			
180		185	190
Arg Ser Leu Val Gln Thr Lys Pro Pro Arg Cys Thr Lys His Ser Glu			
195		200	205
Leu Lys Leu Ser Ser Ala Gly Glu Tyr Phe Cys Lys Asn Gly Glu Pro			
210		215	220
Thr Thr Glu Thr Ser Ile Leu Met Cys Met His Arg Gln Asn Ser Pro			
225		230	240
Cys Ser Asn Lys Cys Ser Asp Ser Ser Asn His Glu Leu Ser Asp Val			
245		250	255
Glu Leu Asn Ser Ile Phe Pro His His Leu Arg Asp Gln Ile Thr Ala			
260		265	270
Leu Leu Asp Thr Ser Asn His Phe Gly Ser Gly Asn Asn Ser Ala Asn			
275		280	285
Lys Gly Lys Arg Ala Pro Ser Val Thr Ser Ser Gly Leu Arg Ser Ser			
290		295	300
Glu Ser Glu Thr Val Ser Asp Glu Glu Ile His Trp Ser Pro His Asn			
305		310	320
Ser Pro Asp Tyr Leu Leu Ala Ala Leu Tyr Glu Gly Ser Thr Ser Phe			
325		330	335
His Gly Lys Ser Val Ser Pro Pro Lys Glu Ser Ser Ser Gln			
340		345	350

<210> 43

<211> 1349

<212> DNA

<213> Caenorhabditis elegans

<400> 43

```

aagtttggagg taacaaaaat gccgccgcca gctccgttcg agggggcaaaa gaacaaaggg 60
cacaatgtcc acaaaaactgg aggaaaagca anaaagcgaa atgagaagga gcccggagtc 120
aagggaaaca atctgaaagc tttcacattc cactccgccc tatccgctgg aaaagcgatt 180
cgacgagctg cagatctcaa tgaaaagaag aaacatgttc tgatgtatggc cagaaaaaccc 240
atcgaaacac caccaatcat tgttagcaatc gttggaccgc gtaaaagtccg aaaaacgaca 300
cttctccggg gtcttgtcaa gtattacctc cgtgatggat tcggagagat caatggtcca 360
gtgacaattt taactggaaa gaaacgtcgt gtacagttca ttgaggtcaa aaacgataatt 420
aatcatatga ttgatatatgc gaaagtcgca gatttgggtc ttctaattgtt cgatgcattcg 480
tatggatttg aaatggaaac ctttgaattt ctaaatattt gccaagtgcg cggaatgc 540
cgatttatgg gagtattgaa tcattttggat cttctcgatg gaatctcacg tgtcaataag 600
accaagaaaa ttctgaaaca tcgtttctgg acggagctct accagggcgc gaagctttc 660
tacatgactg gaatgatgca tggacagttt aaatataatg agatccataa cctctgcaga 720
ttcatttctg tcatgaaatt ccgtccgatg gtgtggaaag atgctcatcc atacgttctt 780

```

65

tgtgatcgtt tcaagacat taccaacgtc gaaactcttc gaacggatcc actcatcgat 840
 cgacacattt ccatgttatgg atgggttcat ggtgctcatt tgaagaatca ttgcgtcgatt 900
 catgtgccag gtgttgttga tatgaggatc agtaatgtca cgagtctacc cgatccgtgt 960
 ccgctgcctg atgagattaa gaaacgagcg ttgaatgaga aagagcggaa agtgtatgtct 1020
 ccgttttctg gattaggagg tgtcattat gataaggatg cgatttat tgagtcaaag 1080
 aatgcacaca atttaatag aaaacgcgac ggactcggtg aagctctcga aggcgtcaag 1140
 tcaggaaaccg atgataaaatt gaaqaaatcc tctctgcaac ttctcggtga ttcaatgtca 1200
 ctgtatattg atcaggaaag tgattggcca gagcctggag aagaagatga agaagatctg 1260
 gatgaggagg attttcagga tgaagaagaa gatgaagatg aggatgagga tgaggaagat 1320
 gtttgtgtcg taaaaaagga aggtgtact 1349

<210> 44

<211> 449

<212> PRT

<213> *Caenorhabditis elegans*

<400> 44

Lys	Phe	Glu	Val	Thr	Lys	Met	Pro	Pro	Pro	Ala	Pro	Phe	Glu	Gly	Gln
1															15

Lys	Asn	Lys	Gly	His	Asn	Val	His	Lys	Thr	Gly	Gly	Lys	Ala	Xaa	Lys
20															30

Arg	Asn	Glu	Lys	Glu	Pro	Arg	Val	Lys	Gly	Asn	Asn	Leu	Lys	Ala	Phe
35															45

Thr	Phe	His	Ser	Ala	Val	Ser	Ala	Gly	Lys	Ala	Ile	Arg	Arg	Ala	Ala
50															60

Asp	Leu	Asn	Glu	Lys	Lys	His	Val	Leu	Met	Met	Asp	Arg	Lys	Pro
65														80

Ile	Glu	Thr	Pro	Pro	Ile	Ile	Val	Ala	Ile	Val	Gly	Pro	Ser	Lys	Val
85															95

Gly	Lys	Thr	Thr	Leu	Leu	Arg	Gly	Leu	Val	Lys	Tyr	Tyr	Leu	Arg	Asp
100															110

Gly	Phe	Gly	Glu	Ile	Asn	Gly	Pro	Val	Thr	Ile	Val	Thr	Gly	Lys	Lys
115															125

Arg	Arg	Val	Gln	Phe	Ile	Glu	Val	Lys	Asn	Asp	Ile	Asn	His	Met	Ile
130															140

Asp	Ile	Ala	Lys	Val	Ala	Asp	Leu	Val	Leu	Leu	Met	Val	Asp	Ala	Ser
145															160

Tyr	Gly	Phe	Glu	Met	Glu	Thr	Phe	Glu	Phe	Leu	Asn	Ile	Cys	Gln	Val
165															175

His	Gly	Met	Pro	Arg	Ile	Met	Gly	Val	Leu	Asn	His	Leu	Asp	Leu	Leu
180															190

Asp	Gly	Ile	Ser	Arg	Val	Asn	Lys	Thr	Lys	Lys	Ile	Leu	Lys	His	Arg
195															205

Phe	Trp	Thr	Glu	Leu	Tyr	Gln	Gly	Ala	Lys	Leu	Phe	Tyr	Met	Thr	Gly
210															220

Met Met His Gly Gln Tyr Lys Tyr Asn Glu Ile His Asn Leu Cys Arg
 225 230 235 240

Phe Ile Ser Val Met Lys Phe Arg Pro Met Val Trp Lys Asp Ala His
 245 250 255

Pro Tyr Val Leu Cys Asp Arg Phe Glu Asp Ile Thr Asn Val Glu Thr
 260 265 270

Leu Arg Thr Asp Pro Leu Ile Asp Arg His Ile Ala Met Tyr Gly Trp
 275 280 285

Val His Gly Ala His Leu Lys Asn His Ser Ser Ile His Val Pro Gly
 290 295 300

Val Gly Asp Met Arg Ile Ser Asn Val Thr Ser Leu Pro Asp Pro Cys
 305 310 315 320

Pro Leu Pro Asp Glu Ile Lys Lys Arg Ala Leu Asn Glu Lys Glu Arg
 325 330 335

Lys Val Tyr Ala Pro Phe Ser Gly Leu Gly Gly Val Ile Tyr Asp Lys
 340 345 350

Asp Ala Ile Tyr Ile Glu Ser Lys Asn Ala His Asn Phe Asn Arg Lys
 355 360 365

Arg Asp Gly Leu Val Glu Ala Leu Glu Gly Val Lys Ser Gly Thr Asp
 370 375 380

Asp Lys Leu Lys Lys Ser Ser Leu Gln Leu Leu Gly Asp Ser Val Ala
 385 390 395 400

Leu Asp Ile Asp Gln Glu Ser Asp Trp Pro Glu Pro Gly Glu Glu Asp
 405 410 415

Glu Glu Asp Leu Asp Glu Glu Asp Phe Gln Asp Glu Glu Glu Asp Glu
 420 425 430

Asp Glu Asp Glu Asp Glu Glu Asp Val Gly Val Val Lys Lys Glu Gly
 435 440 445

Val

<210> 45

<211> 3423

<212> DNA

<213> Caenorhabditis elegans

<400> 45

atgtcgtaacc gcgttttc acgcgtcgat ccccatgtgc catcgacatc cacagctcca 60
 cagcgtcggt ttcaagaaaa cttgcaaaaa ttcaagcgat ttttccgcc aaacgcacca 120
 ccaacactct ggaaagttt ctcctcgaaa caacgcagca aatcattgaa aaacacgttt 180
 caaacggaag tacgtgcact acgaggactt aatttacag tattgctgaa tccgtacaaa 240
 aactatctca atgatctcac aaatctatcc ggttccacct tcgatgatct ttgtcaagca 300

67

cttcgattct ttgcattta tagaaaacag ccagtttga agtcaaataat ggaagatgct 360
 aacgaattat ttcgattaat tgcaagttgc atcatttttatt caaatgataa ctggaggcg 420
 tccatcgata aatcaacact agtgatcgt ctgtcaatga acattttgaa gaagcagagg 480
 cttagaatc tgaacaacaaga atcatctgaa caaaaagatc caatataccc accactattc 540
 caagatgtg agctaccc tcgttccataa caaattggca gattgaaaga cagagaaaaaa 600
 gtaccaattc ctccgcctcc ttgttagaaat gatTTTcgta tgcgacaatt taatccgtt 660
 gaagatgaac attacatc aatgcaccc tggaaatcatg ttgggtgtaa tgatgcaaaa 720
 ttcaatggc catggagag aactatcaaa atgatgtcta agaataatgt tgcgattcgc 780
 tccaaagatc gacgattgag cgatgtggaa tattacggag acaatgaaga tttaccatcc 840
 acacatataca gtttagatt agattctgtg atgcaatttga ttaactttga tttccccaaa 900
 attgaagatg atggatattt ctccaaagaa tggctggata gtgcattgtt tctctacgag 960
 aattatcaaa ctgtcttca tgaatgcaca actgctttcg cagtatccg acctccatct 1020
 ggacgtacaa tcaagccggg attcggttga gatggccctaa ctacagacga atgttcagaa 1080
 tttcatatga tggacgaca tattcatgaa ttttccaag tatggaggga agaggatcgt 1140
 ggatggagag aatcaaataatgg aaaatgggtc ccacggcgat atttgggtgaa tatctacaat 1200
 catattatgt ttccatttatt cgtaaaatgg gaaactttgc cgtcaacatt gaaatggct 1260
 tttgataagt acagcttgc tggatttataa ctaatgtcaa tgatttataag acatccacaa 1320
 gaattgttga atgctggaga gaacttattt tcgaggatc catcgattt gttgaatcg 1380
 aatagatatg atatgagcac tacgaaagga cggaaatcgtt atttatcagc aattcaaata 1440
 gagaataatc gagttgtgaa caagcatatg cacagttcg cttacaagct tcttattcga 1500
 gaggacgaa gaaggagaaa gaggaaaccg aaggatgaag ctctactcg 1560
 aaagtacaa caccctcgaaa agttcttgc ccacctctat ttgctccaac tcgatttatt 1620
 tcttcattca ctccaaacaa acgcgcctcg ttgttcaaa aagagaattt ggagaaaaaca 1680
 atgattaatc aagtgcacc acgtttaat acaccaccat ccccacaaca gactgcttca 1740
 caactcaaaa agacgccaac ttccgttaca aaacgttattt taccggaaat tgagcaagaa 1800
 ttgaagtccg aacttgtccc agctccacca ccaaccaaga aaatgtcaat tatagtcgc 1860
 agttggatg atcatgttgg taattcgatg gaagaagaac atgttagatga gaaggattcg 1920
 gagaaaaatgg aagattcaga aggaagacag aatgtttggg ttccacagga tcgagggaaa 1980
 gaatatgcac ctgaacaata tgccgttgcgat attatcgac attatattcc tgctgctcga 2040
 gatcatccac ctcaaccaca acaaccacca cctccactac caacgcccga gcctccacga 2100
 agacggaaat ccgttcagaa aactgtatca acgactccat catcagacgc cgaagcttca 2160
 tccgatcctg caccgcctgt tcctgttgc ccagtggctc ctgttgcattt aattgttcca 2220
 attgttccag ttcatcctgt acctttgc aacggaaatg taaataactcc aaaagtgaag 2280
 acgattgca aagacaacacg acgactactg tattccattt aacctcaat accaccaatt 2340
 gcaacaaaaa ctgtgtatcc tgtcaagaag ttgacaccc ttgttagttcc gtctccaatg 2400
 attttaaatg gaaataactgc aactgtcaatg ccatcgaaaa atgcagcatc ttttttttttgc 2460
 agaaatgcat atacattttc attacagcaaa aagactccat attatccagc tggaaatcg 2520
 ccgaaaccaa ctcaaaaatgg aattgaaaca cctccgttgc gaggacaatc ttaatcg 2580
 gcagccttct atagtggatg tcatcctaca cgaagtcccc tcgttccgtt tggtttttttt 2640
 cctccagggtt ccacatcatc tactttgtt cctgttgc caataccatc acctgcttagc 2700
 cgagcaatag ctcatcgaaa gcaatgttc ttaatcgaa aacgtgtcg acgcgttatg 2760
 ccgtttaata ttcaaaatggc attcaaaatcc cgttgcgttgc atccttcc gaaatcttct 2820
 ggtgttttttgc ctcatcgaaa ttcaacaata ccatatgtt cagcgttcc caacaactca 2880
 acacaatcg actttcgcc gagaagcttc agtcaaaaata gtgttgcattc cccggcttcc 2940
 gctccttttc caaatgcaat aaagagaaga gaagtagggaa attttaaatc tcggcagtat 3000
 gtgccatggc tcgcaatag cagggcggtt gtggcagccg cgttgcac gatggaggag 3060
 acggctggaa agatgttttgc gagcccgat ttttttttttgc gacaactttt 3120
 atgccaactc ctcccttcc ggctccggct cctgttcaag catcgatca atcaacatca 3180
 gcaactccatc cattgggttgc tacaatatcg gtttttttttgc aacaactaca 3240
 ggcgatttca atcagtcaaa ttcccttta cggacgtaca catcacatc tcgaaaaact 3300
 ccttggacaaa cactgacacc tgaagaaaatc ggccgacgcga ttcaactga aagtcaaaa 3360
 ttcaagagg atggatgttgc agggccaaaca gtgaaaagct ttcaatgaa catctacaat 3420
 tga 3423

<210> 46

<211> 1140

<212> PRT

<213> Caenorhabditis elegans

<400> 46
Met Ser Tyr Arg Val Phe Ser Arg Val Asp Pro His Val Pro Ser Thr
1 5 10 15

Ser Thr Ala Pro Gln Arg Arg Phe Gln Glu Asn Leu Gln Lys Phe Lys
20 25 30

Arg Phe Pro Pro Asn Ala Pro Pro Thr Leu Trp Glu Val Cys Ser
35 40 45

Ser Lys Gln Arg Ser Lys Ser Leu Lys Asn Thr Phe Gln Thr Glu Val
50 55 60

Arg Ala Leu Arg Gly Leu Asn Phe Thr Val Leu Leu Asn Pro Tyr Lys
65 70 75 80

Asn Tyr Leu Asn Asp Leu Thr Asn Leu Ser Gly Phe Thr Phe Asp Asp
85 90 95

Leu Cys Gln Ala Leu Arg Phe Phe Ala Phe Tyr Arg Lys Gln Pro Val
100 105 110

Leu Lys Ser Asn Met Glu Asp Ala Asn Glu Leu Phe Arg Leu Ile Ala
115 120 125

Ser Cys Ile Ile Tyr Ser Asn Asp Asn Trp Arg Ala Ser Ile Asp Lys
130 135 140

Ser Thr Leu Val Asp Thr Leu Ser Met Asn Ile Leu Glu Lys Gln Arg
145 150 155 160

Leu Lys Asn Leu Lys Gln Glu Ser Ser Glu Gln Lys Asp Pro Ile Tyr
165 170 175

Pro Pro Leu Phe Gln Asp Asp Glu Leu Pro Ser Val Pro Ile Gln Ile
180 185 190

Gly Arg Leu Lys Asp Arg Glu Lys Val Pro Ile Pro Pro Pro Cys
195 200 205

Arg Asn Asp Phe Ser Met Arg Gln Phe Asn Pro Leu Glu Asp Glu His
210 215 220

Leu Arg Ser Met His Leu Trp Asn His Val Gly Cys Asn Asp Ala Lys
225 230 235 240

Phe Asn Gly Pro Phe Glu Arg Thr Ile Lys Met Met Ser Lys Asn Asn
245 250 255

Val Ala Ile Arg Ser Lys Asp Arg Arg Leu Ser Asp Val Glu Tyr Tyr
260 265 270

Gly Asp Asn Glu Asp Leu Pro Ser Thr His Ile Ser Phe Arg Leu Asp
275 280 285

Ser Val Met Gln Leu Ile Asn Phe Asp Phe Pro Lys Ile Glu Asp Asp
290 295 300

Gly Tyr Phe Ser Lys Glu Cys Leu Asp Ser Ala Trp Tyr Leu Tyr Glu
305 310 315 320

Asn Tyr Gln Thr Ala Leu His Glu Cys Thr Thr Ala Phe Ala Val Ile
325 330 335

Arg Pro Pro Ser Gly Arg Thr Ile Lys Pro Gly Phe Val Glu Asp Gly
340 345 350

Leu Thr Thr Asp Glu Cys Ser Glu Phe His Met Met Gly Arg His Ile
355 360 365

His Gly Phe Phe Gln Val Trp Arg Glu Glu Asp Arg Gly Trp Arg Glu
370 375 380

Ser Asn Gly Lys Trp Val Pro Arg Arg Tyr Leu Val Asp Ile Tyr Asn
385 390 395 400

His Ile Met Phe Pro Leu Phe Val Lys Trp Glu Leu Trp Pro Ser Thr
405 410 415

Leu Lys Trp Ala Phe Asp Lys Tyr Ser Leu Tyr Gly Leu Arg Leu Met
420 425 430

Ser Met Ile Arg Arg His Pro Gln Glu Leu Leu Asn Ala Gly Glu Asn
435 440 445

Leu Phe Ser Arg Tyr Pro Ser His Leu Leu Glu Ser Asn Arg Tyr Asp
450 455 460

Met Ser Thr Thr Lys Gly Arg Asn Gln Tyr Leu Ser Ala Ile Gln Met
465 470 475 480

Glu Asn Asn Arg Val Val Asp Lys His Met His Ser Ser Ala Tyr Lys
485 490 495

Leu Leu Ile Glu Glu Asp Gly Arg Arg Arg Lys Arg Lys Pro Lys Asp
500 505 510

Glu Ala Leu Leu Gly Val Ala Ala Lys Val Arg Thr Pro Arg Lys Val
515 520 525

Leu Glu Pro Pro Leu Phe Ala Pro Thr Arg Phe Ile Ser Ser Ser Thr
530 535 540

Pro Lys Gln Arg Ala Leu Leu Val Gln Lys Glu Asn Leu Glu Lys Thr
545 550 555 560

Met Ile Asn Gln Val Pro Pro Val Val Asn Thr Pro Pro Ser Pro Gln
565 570 575

Gln Thr Ala Ser Gln Leu Lys Lys Thr Pro Thr Ser Ala Thr Lys Arg
580 585 590

His Leu Pro Glu Ile Glu Gln Glu Leu Lys Ser Glu Ser Val Pro Ala
595 600 605

70

Pro Pro Pro Thr Lys Lys Met Ser Ile Ile Ala Asp Ser Trp Asp Asp
 610 615 620

His Val Gly Asn Ser Met Glu Glu Glu His Val Asp Glu Lys Asp Ser
 625 630 635 640

Glu Lys Met Glu Asp Ser Glu Gly Arg Gln Asn Val Trp Val Pro Gln
 645 650 655

Asp Arg Gly Lys Glu Tyr Ala Pro Glu Gln Tyr Ala Arg Asp Ile Ile
 660 665 670

Glu His Tyr Ile Pro Ala Ala Arg Asp His Pro Pro Gln Pro Gln Gln
 675 680 685

Pro Pro Pro Pro Leu Pro Thr Pro Lys Pro Pro Arg Arg Arg Lys Ser
 690 695 700

Gly Gln Lys Thr Asp Gln Thr Pro Ser Ser Asp Ala Glu Ala Ser
 705 710 715 720

Ser Asp Pro Ala Pro Pro Val Pro Ala Ala Pro Val Ala Pro Val Val
 725 730 735

Pro Ile Val Pro Ile Val Pro Val His Pro Val Pro Leu Pro Asn Gly
 740 745 750

Ser Val Asn Thr Pro Lys Val Lys Thr Ile Ala Lys Thr Thr Ala Arg
 755 760 765

Val Leu Tyr Ser Ile Lys Pro Gln Ile Pro Pro Ile Ala Asn Lys Thr
 770 775 780

Val Tyr Pro Val Lys Lys Leu Thr Pro Ser Val Val Pro Ser Pro Met
 785 790 795 800

Ile Leu Asn Gly Asn Thr Ala Thr Ala Ser Pro Ser Lys Asn Ala Ala
 805 810 815

Ser Val Val Val Arg Asn Ala Tyr Thr Phe Ser Leu Gln Gln Lys Ala
 820 825 830

Pro Tyr Tyr Pro Ala Gly Met Arg Pro Lys Pro Thr Gln Asn Gly Ile
 835 840 845

Glu Thr Pro Pro Thr Gly Ala Gln Ser Leu Met Arg Ala Ala Phe Tyr
 850 855 860

Ser Glu Ser His Pro Thr Arg Ser Pro Leu Val Pro Tyr Gly Phe Val
 865 870 875 880

Pro Pro Val Ala Thr Ser Ser Thr Phe Val Pro Ala Ala Thr Ile Pro
 885 890 895

Ser Pro Ala Ser Arg Ala Ile Ala His Gln Lys Gln Met Leu Leu Asn
 900 905 910

Thr Glu Thr Cys Arg Arg Val Met Pro Phe Asn Ile Gln Met Ala Phe

	71	
915	920	925
Lys Pro Arg Arg Trp Asp Pro Leu Pro Lys Ser Ser Gly Val Leu Ala		
930	935	940
His Ser Asn Ser Thr Ile Pro Tyr Val Gln Arg Val Pro Asn Asn Ser		
945	950	955
Thr Gln Ser Asp Phe Arg Pro Arg Ser Phe Ser Gln Asn Ser Val Ala		
965	970	975
Ser Pro Ala Pro Ala Pro Val Pro Asn Ala Ile Lys Arg Arg Glu Val		
980	985	990
Gly Asn Leu Lys Ser Arg Gln Tyr Val Pro Trp Ile Ala Asn Ser Arg		
995	1000	1005
Ala Leu Val Ala Ala Ala Met Ala Thr Met Glu Glu Thr Ala Glu Lys		
1010	1015	1020
Met Ser Ser Ser Pro Leu Leu Ser Ser Gln Ala Pro Met Thr Thr Leu		
1025	1030	1035
Met Pro Thr Pro Pro Pro Ala Pro Ala Pro Ala Gln Ala Ser Ala		
1045	1050	1055
Gln Ser Thr Ser Ala Thr Pro Ala Leu Val Asp Thr Ile Ser Ala Gly		
1060	1065	1070
Ser Thr Thr Thr Glu Thr Thr Gly Asp Ser Asn Gln Ser Asn Pro		
1075	1080	1085
Pro Leu Arg Thr Tyr Thr Ser His Ile Arg Lys Thr Pro Gly Thr Thr		
1090	1095	1100
Leu Thr Pro Glu Glu Ile Gly Asp Ala Ile Arg Thr Glu Ser Gln Arg		
1105	1110	1115
Phe Gln Glu Asp Gly Asp Glu Gly Pro Thr Val Lys Ser Phe Leu Met		
1125	1130	1135
Asn Ile Tyr Lys		
1140		

<210> 47
<211> 1644
<212> DNA
<213> Caenorhabditis elegans

<400> 47
ttaccggaaa ttgagcaaga attgaagtgcg gaatctgtcc cagctccacc accaaccaag 60
aaaatgtcaa ttatacgctga cagttggat gatcatgttg gtaattcgat ggaagaagaa 120
catgttagatg agaaggattc ggagaaaatg gaagattcag aaggaagaca gaatgttgg 180
gttccacagg atcgaggaaa agaatatgca cctgaacaat atgcgcgaga tattatcgaa 240
cattatattc ctgctgctcg agatcatcca cctcaaccac aacaaccacc acctccacta 300
ccaacgcgcga agcctccacg aagacggaaa tccggtcaga aaactgatca aacgactcca 360
tcatcagacg ccgaagcttc atccgatcct gcaccgcctg ttcctgctgc tccagtggct 420

72

cctgttggttc caattgttcc aattgttcca gttcatcctg tacctttgcc aaacggaagt 480
 gtaaaatactc caaaagtcaa gacgattgca aagacaacag cacgagact gtattccatt 540
 aaacacctaaa taccaccaat tgcgaacaaa actgtgtatc ctgtcaagaa gttgacaccc 600
 tctgttagttc cgtctccaaat gattttaaat gaaataactg caactgcaag tccatcgaaa 660
 aatgcagcat ctgtagttgt cagaaatgca tatacattt cattacagca aaaagctcca 720
 tattatccag ctggaatgcg tccgaaacca actcaaaatg gaattgaaac acctccgaca 780
 ggagcacaat cttaatgcg tgcagccttc tatagtgaga gtcatcctac acgaagtccc 840
 ctcgtccccgt atgggtttgt tcctccagtt gccacatcat ctactttgt acctgctgca 900
 acaaataccat cacctgctag ccgagcaata gctcatcaga agcaaattgtctt cttaaatacg 960
 gaaacgtgtc gacgcgttat gccgttaat attcaaattgg cattcaaacc acgtcggtgg 1020
 gatcctcttc cgaatcttc tgggttttg gctcattcaa attcaacaat accatatgtt 1080
 cagcgagtcc ccaacaactc aacacaatca gactttcggc cgagaagctt cagtcaaaat 1140
 agtgttgctt cccggctcc tgctcctgtt ccaaattgcaa taaagagaag agaagtaggg 1200
 aatttaaaat ctcggcagta tggccatgg atcgc当地 aatgc当地 gatggcggtt ggtggcagcg 1260
 gcgatggcaa cgatggagga gacggctgaa aagatgtctt cgagcccgtt actatcgtca 1320
 caggctccga tgacaactt gatgccaact cctcctccctc cggtccggc tcctgctcaa 1380
 gcatctgcac aatcaacatc agcaactcca gcattgggtt atacaatatc ggctggttca 1440
 acgactacag aaacaactac aggcgattca aatcgtcaa atcctccctt acggacgtac 1500
 acatcacaca ttcaaaaaac tcctggaaaca acactgacac ctgaagaaaat cggcgacgac 1560
 attcgaactg aaagtcaaag atttcaagag gatggtgatg aaggccaaac agtggaaaagc 1620
 ttccataatga acatctacaa atga 1644

<210> 48

<211> 547

<212> PRT

<213> Caenorhabditis elegans

<400> 48

Leu	Pro	Glu	Ile	Glu	Gln	Glu	Lys	Lys	Ser	Glu	Ser	Val	Pro	Ala	Pro
1															15

Pro	Pro	Thr	Lys	Lys	Met	Ser	Ile	Ile	Ala	Asp	Ser	Trp	Asp	Asp	His
															30
20															

Val	Gly	Asn	Ser	Met	Glu	Glu	Glu	His	Val	Asp	Glu	Lys	Asp	Ser	Glu
35															45

Lys	Met	Glu	Asp	Ser	Glu	Gly	Arg	Gln	Asn	Val	Trp	Val	Pro	Gln	Asp
50															60

Arg	Gly	Lys	Glu	Tyr	Ala	Pro	Glu	Gln	Tyr	Ala	Arg	Asp	Ile	Ile	Glu
65															80

His	Tyr	Ile	Pro	Ala	Ala	Arg	Asp	His	Pro	Pro	Gln	Pro	Gln	Gln	Pro
85															95

Pro	Pro	Pro	Leu	Pro	Thr	Pro	Lys	Pro	Pro	Arg	Arg	Arg	Lys	Ser	Gly
100															110

Gln	Lys	Thr	Asp	Gln	Thr	Thr	Pro	Ser	Ser	Asp	Ala	Glu	Ala	Ser	Ser
115															125

Asp	Pro	Ala	Pro	Pro	Val	Pro	Ala	Ala	Pro	Val	Ala	Pro	Val	Val	Pro
130															140

Ile	Val	Pro	Ile	Val	Pro	Val	His	Pro	Val	Pro	Leu	Pro	Asn	Gly	Ser
145															160

73

Val Asn Thr Pro Lys Val Lys Thr Ile Ala Lys Thr Thr Ala Arg Val
165 170 175

Leu Tyr Ser Ile Lys Pro Gln Ile Pro Pro Ile Ala Asn Lys Thr Val
180 185 190

Tyr Pro Val Lys Lys Leu Thr Pro Ser Val Val Pro Ser Pro Met Ile
195 200 205

Leu Asn Gly Asn Thr Ala Thr Ala Ser Pro Ser Lys Asn Ala Ala Ser
210 215 220

Val Val Val Arg Asn Ala Tyr Thr Phe Ser Leu Gln Gln Lys Ala Pro
225 230 235 240

Tyr Tyr Pro Ala Gly Met Arg Pro Lys Pro Thr Gln Asn Gly Ile Glu
245 250 255

Thr Pro Pro Thr Gly Ala Gln Ser Leu Met Arg Ala Ala Phe Tyr Ser
260 265 270

Glu Ser His Pro Thr Arg Ser Pro Leu Val Pro Tyr Gly Phe Val Pro
275 280 285

Pro Val Ala Thr Ser Ser Thr Phe Val Pro Ala Ala Thr Ile Pro Ser
290 295 300

Pro Ala Ser Arg Ala Ile Ala His Gln Lys Gln Met Leu Leu Asn Thr
305 310 315 320

Glu Thr Cys Arg Arg Val Met Pro Phe Asn Ile Gln Met Ala Phe Lys
325 330 335

Pro Arg Arg Trp Asp Pro Leu Pro Lys Ser Ser Gly Val Leu Ala His
340 345 350

Ser Asn Ser Thr Ile Pro Tyr Val Gln Arg Val Pro Asn Asn Ser Thr
355 360 365

Gln Ser Asp Phe Arg Pro Arg Ser Phe Ser Gln Asn Ser Val Ala Ser
370 375 380

Pro Ala Pro Ala Pro Val Pro Asn Ala Ile Lys Arg Arg Glu Val Gly
385 390 395 400

Asn Leu Lys Ser Arg Gln Tyr Val Pro Trp Ile Ala Asn Ser Arg Ala
405 410 415

Leu Val Ala Ala Ala Met Ala Thr Met Glu Glu Thr Ala Glu Lys Met
420 425 430

Ser Ser Ser Pro Leu Leu Ser Ser Gln Ala Pro Met Thr Thr Leu Met
435 440 445

Pro Thr Pro Pro Pro Ala Pro Ala Pro Ala Gln Ala Ser Ala Gln
450 455 460

Ser Thr Ser Ala Thr Pro Ala Leu Val Asp Thr Ile Ser Ala Gly Ser

74

465 470 475 480

Thr Thr Thr Glu Thr Thr Thr Gly Asp Ser Asn Gln Ser Asn Pro Pro
 485 490 495

Leu Arg Thr Tyr Thr Ser His Ile Arg Lys Thr Pro Gly Thr Thr Leu
 500 505 510

Thr Pro Glu Glu Ile Gly Asp Ala Ile Arg Thr Glu Ser Gln Arg Phe
 515 520 525

Gln Glu Asp Gly Asp Glu Gly Pro Thr Val Lys Ser Phe Leu Met Asn
 530 535 540

Ile Tyr Lys
 545

<210> 49
<211> 1248
<212> DNA
<213> Homo sapiens

<400> 49

atgcagatgt cctacgccc cat ccgggtgcgcc ttctaccaggc tgctgctggc cgcgctcatg 60
 ctgggtggcga tgctgcagct gctctacccg tcgctgctgt ccggactgca cggggcaggag 120
 gagcaagacc aatattttga gttctttccc ccgtccccac ggtccgtgga ccaggtcaag 180
 ggcgcagctcc gcaccgcgct ggcctcttgg ggcgtccctgg acgcttagcgg cgattaccgc 240
 gtctacaggc gcctgctgaa gaccaccatg gaccccaacg atgtgatccct ggccacgcac 300
 gccagcgtgg acaacctgct gcacccctgtcg ggtctgctgg agcgcgtggg gggcccgctg 360
 tccgtgtcgg tggccgtggc caccaaggag gaggcgcagc tggccacggg gctggccatc 420
 ggcgcgtggca gccactgccc cgacatgcgc gccagggtcg ccatgcaccc cgtgtgcccc 480
 tcgcgttacg aggccgcgt gcccgcaccc cgggagccgg gggagtttc cctgctgcgg 540
 tcctgcgcagg aggtctttga caagctagcc agggtgcccg agcccccggat taatttatgcg 600
 ctggggcacca atgtctccca ccccaataac ctgctgagga atctggctcg tgagggggcc 660
 aactatgccc tggtgatcga tggccatg gtgcccagcg aggggctgtg gagaggccctg 720
 cgggaaatgc tggatcagag caaccagtgg ggaggcaccg cgctggctgg gcctgccttc 780
 gaaatccgaa gagccgcgc catgcccatt aacaaaaacg agctggtgca gctctaccag 840
 gttggcggagg tggccgcctt ctattatggg ttgtgcaccc cctgcccaggc accccaccaac 900
 tattcccgct gggtaaacct gccggaaagag agcttgcgtgc ggcccgccta cgtggtaacct 960
 tggcaggacc cctgggagcc attctacgtg gcaggaggca aggtgcccac ctgcacgcag 1020
 cgctttcggc agtacggctt caaccgaatc agccaggcct gcgagctgca tggccgggg 1080
 tttgattttg aggtcctgaa cgaaggtttc ttggttcata agggcttcaa agaagcgttg 1140
 aagtccatc cccaaaagga ggctgaaaat cagcacaata agatcctata tcgcccagtcc 1200
 aaacaggagt tgaaggccaa gtaccccaac tctccccgac gctgctgaa 1248

<210> 50

<211> 415

<212> PRT

<213> Homo sapiens

<400> 50

Met Gln Met Ser Tyr Ala Ile Arg Cys Ala Phe Tyr Gln Leu Leu Leu
 1 5 10 15

Ala Ala Leu Met Leu Val Ala Met Leu Gln Leu Leu Tyr Leu Ser Leu
 20 25 30

75

Leu Ser Gly Leu His Gly Gln Glu Glu Gln Asp Gln Tyr Phe Glu Phe
35 40 45

Phe Pro Pro Ser Pro Arg Ser Val Asp Gln Val Lys Ala Gln Leu Arg
50 55 60

Thr Ala Leu Ala Ser Gly Gly Val Leu Asp Ala Ser Gly Asp Tyr Arg
65 70 75 80

Val Tyr Arg Gly Leu Leu Lys Thr Thr Met Asp Pro Asn Asp Val Ile
85 90 95

Leu Ala Thr His Ala Ser Val Asp Asn Leu Leu His Leu Ser Gly Leu
100 105 110

Leu Glu Arg Trp Glu Gly Pro Leu Ser Val Ser Val Phe Ala Ala Thr
115 120 125

Lys Glu Glu Ala Gln Leu Ala Thr Val Leu Ala Tyr Ala Leu Ser Ser
130 135 140

His Cys Pro Asp Met Arg Ala Arg Val Ala Met His Leu Val Cys Pro
145 150 155 160

Ser Arg Tyr Glu Ala Ala Val Pro Asp Pro Arg Glu Pro Gly Glu Phe
165 170 175

Ala Leu Leu Arg Ser Cys Gln Glu Val Phe Asp Lys Leu Ala Arg Val
180 185 190

Ala Gln Pro Gly Ile Asn Tyr Ala Leu Gly Thr Asn Val Ser Tyr Pro
195 200 205

Asn Asn Leu Leu Arg Asn Leu Ala Arg Glu Gly Ala Asn Tyr Ala Leu
210 215 220

Val Ile Asp Val Asp Met Val Pro Ser Glu Gly Leu Trp Arg Gly Leu
225 230 235 240

Arg Glu Met Leu Asp Gln Ser Asn Gln Trp Gly Gly Thr Ala Leu Val
245 250 255

Val Pro Ala Phe Glu Ile Arg Arg Ala Arg Arg Met Pro Met Asn Lys
260 265 270

Asn Glu Leu Val Gln Leu Tyr Gln Val Gly Glu Val Arg Pro Phe Tyr
275 280 285

Tyr Gly Leu Cys Thr Pro Cys Gln Ala Pro Thr Asn Tyr Ser Arg Trp
290 295 300

Val Asn Leu Pro Glu Glu Ser Leu Leu Arg Pro Ala Tyr Val Val Pro
305 310 315 320

Trp Gln Asp Pro Trp Glu Pro Phe Tyr Val Ala Gly Gly Lys Val Pro
325 330 335

Thr Phe Asp Glu Arg Phe Arg Gln Tyr Gly Phe Asn Arg Ile Ser Gln

340	76 345	350
Ala Cys Glu Leu His Val Ala Gly Phe Asp Phe Glu Val Leu Asn Glu		
355	360	365
Gly Phe Leu Val His Lys Gly Phe Lys Glu Ala Leu Lys Phe His Pro		
370	375	380
Gln Lys Glu Ala Glu Asn Gln His Asn Lys Ile Leu Tyr Arg Gln Phe		
385	390	395
Lys Gln Glu Leu Lys Ala Lys Tyr Pro Asn Ser Pro Arg Arg Cys		
405	410	415

<210> 51
<211> 557
<212> DNA
<213> Homo sapiens

<400> 51
caggcaccca ccaactattc ccgctgggtc aacctgccgg aagagagctt gctgcggccc 60
gcctacgtgg taccttgca ggacccttgg gagccattct acgtggcagg aggcaagggt 120
ccccaccccg acgagcgctt tcggcagttac ggcttcaacc gaatcaagcc aggcctgcga 180
gctgcattgt gcgggggttg attttgaggt cctgaacgaa gtttcttgg ttcataaggg 240
cttcaaagaa gcgttgaagt tccatccccaa aaaggaggct gaaaatcagc acaataagat 300
cctatatcgc cagttcaaac aggagttgaa gccaactctc cccgacgctg 360
ctgagccctt ccctccctta atctgagaag tcagcctctt ggctcctcag gccaccattt 420
aaggcctgac tgggttaaga aatgtcgctn cactttacag angtagctt tggtgtgaa 480
acaactggact tggatgtggg gtgcttggga atcgattcct aactttacca ctactaactt 540
gngtggncctt gagtaaa 557

<210> 52
<211> 646
<212> DNA
<213> Homo sapiens

<400> 52
gggtgtgaac acgcatttat ttacacattt tcacatcggtag gcacatacc agcccaagccc 60
gttgaaggga cagatcttag gctgtcaccc atggnaacct gcagaccctt ccctccctca 120
gaacccttga aggcgaagcc ctgagagaac caggaatttt aggcttctgt tcaagagcta 180
agaactaaat tttatgcctt catctgattt ctttccaaaa agtccatttc attaagtatt 240
cagacttctt agtcccatcc cattcataact ttttgccttc ctactaccca cccaaaggattg 300
ttaataataa caataataat aacaacaata atactgcgtt aatattaata cttcacattt 360
gtacgaagct tacagaatgt tttcacat agcatctcat ctgagcctcc caacagttcc 420
gtgaggttagg tatttcacc tccctttta cagacagggct aaccgaggct nagagaggt 480
cgggatttac tcaaggccac acagctagtt agtgggtaaa gcttaggaatc gatcccagca 540
cccccatatt caaggccatgggttaaac accacagctt cttntggtn aagtgggagc 600
gacattttt accccagtc ggcctaaaat gggggcctga nggagc 646

<210> 53
<211> 121
<212> PRT
<213> Homo sapiens

<400> 53
Cys Gln Ala Pro Thr Asn Tyr Ser Arg Trp Val Asn Leu Pro Glu Glu
1 5 10 15

Ser Leu Leu Arg Pro Ala Tyr Val Val Pro Trp Gln Asp Pro Trp Glu
 20 . 25 30

Pro Phe Tyr Val Ala Gly Gly Lys Val Pro Thr Phe Asp Glu Arg Phe
 35 40 45

Arg Gln Tyr Gly Phe Asn Arg Ile Ser Gln Ala Cys Glu Leu His Val
 50 55 60

Ala Gly Phe Asp Phe Glu Val Leu Asn Glu Gly Phe Leu Val His Lys
 65 70 75 80

Gly Phe Lys Glu Ala Leu Lys Phe His Pro Gln Lys Glu Ala Glu Asn
 85 90 95

Gln His Asn Lys Ile Leu Tyr Arg Gln Phe Lys Gln Glu Leu Lys Ala
 100 105 110

Lys Tyr Pro Asn Ser Pro Arg Arg Cys
 115 120

<210> 54

<211> 552

<212> DNA

<213> Homo sapiens

<400> 54

cctccttcct tacccctccc tacctccctg cctctacatg gcttctctcc acccctccca 60
 gagtcctacg ggacaggacc ctgctccagt ggtatccaac tcctccctgc ccactcttcc 120
 tcatgggcca cctcacctcc cacttcgtat gtctcgccctc ccgtggccac cctgcaatta 180
 gctttccaag ccccctcccg tggccgtccc ctccccagac ctctcacccta tgttagcaatc 240
 cctacatggc tgcctgtcat gtcctactc tctaaggccct cctgcccact gttcctccct 300
 ccccgacatg ctgacaccaa gtggtgaaaa ccacccctca gccccaaagcc tgccctgtgc 360
 agagttcagc tttgtgtga atgagggggg agagggacaa gtgagggcgg agagagaagt 420
 tcaggaggag gcagggatgc gcangagca ganagtgaag gaaggaagat ccgaacagat 480
 tgacngaaaa cgttggaccg naaaagttgg ttntcctaa ttttttccg ggagaaccccg 540
 ttacacagtt nt 552

<210> 55

<211> 754

<212> DNA

<213> Homo sapiens

<400> 55

ggaaagtttt tgtttcttt ttcccacaca tttccggggt tggggtgttt tccaagactc 60
 agacacattt gttaacaaag agaaaaaaaaa aactggggga gcagggagcc cgtgggcaaa 120
 gaagtgaccc cagcagtctg tggacaatgc cttgctccct cttccctgct gaccgcgccc 180
 agcgggtgcc acaggctgct gctcggtaa tctagatgtat ttgtctgtaa tatatatctg 240
 catttgcctt tcccctccct cccacccnn accccgtctc ctccagcagc ttccccatca 300
 atgcacgtcg nccggcggna cacacagaac aggcttccg tcagggctga gcccctcc 360
 tggggcggcac caaagcaggt gccnnntctg gtgagggggat ttggggcact tgccccagcc 420
 nancanactn acacctggc cantncggna nnccctntnn cntcnntcn aaccnattct 480
 ggaanccnn nggaaannaa nnggnancnt annncnnna tcncnaannn aanaatnanc 540
 nannnnccnng nnnccnnncnn ncannncan ncacccang nnacgnnana tcgnannccc 600
 ttgnnctcaa ancgaancgc cnccacnncc tacagganca nanncnnaac tcagngaaan 660
 tcnaccntac tnccanncan cncttcccaa cccnnntcatc cttcnnntcn ncnatccnnnc 720

aatataannn cncttataca naactccacn ngnt

754

<210> 56

<211> 555

<212> DNA

<213> Homo sapiens

<400> 56

gggcagccgg	gcgagtcaca	gggcaggggt	cctccgccc	cttgcacctg	ccctgctggg	60
cggcaccggg	tcagtgcct	ccccccctcct	gccccgtccca	actctcttt	tcccatcgtg	120
cgtcctctgg	agaagtgcgc	gcgtgagctg	acatggaccc	aaatcctcg	gccgcctgg	180
agcgccagca	gctccgcctt	cgggagcggc	aaaaattctt	cgaggacatt	ttacaagcca	240
gagacagagt	ttgtcttcc	tctgtcccat	ctgcatctcg	agtcgcagag	accccccata	300
ggttaagtatc	tcatccatgg	aagtgaatgt	ggacacactg	gagcaagtag	aacttattga	360
ccttggggac	ccggatgcag	cagatgtgtt	cttgccttgc	gaagatcctt	caccaacccc	420
caagtccgtc	tgggatggac	aaccatttgg	aaggaagctg	agcctgccc	tgcctacatc	480
agacaaggac	cacatttanga	acttcttctt	cctcctcctn	cgactcttca	ncaanctgga	540
taagccaaat	caagt					555

<210> 57

<211> 611

<212> DNA

<213> Homo sapiens

<400> 57

nggcntnttn	ttnttagttn	ntnttnnanc	ccggnccttn	nnccaaaagg	gnnntanggg	60
ggcnccnnngg	ntngngnccc	ncnttacttg	annngtnang	ggntnnncat	cnnttaaaa	120
ccncttgnnt	gaaaaactgt	tttaaaaaaac	tncggngang	ttnagggng	ggaanagnnc	180
taaaaaaaagc	ngggntttt	ngnccaaaccn	aanttntnt	tncctaattn	gcaaatcntn	240
tntcaggggt	aanccaaaaa	ctggnggnag	gnntncncn	ggaaaaaantt	accnttaaan	300
caggganaggg	ttaaattntn	aaaaaggggcc	ccaattcccc	ccatcnttcc	caccttnggg	360
ggccnnctgc	nagtaaanag	nctggtcttt	tccccaanag	gnntttggc	tggcccnng	420
gcccnnattn	gggnnaatn	ccccnccgn	ggcacaann	ntncaagcc	agggcccccc	480
nttggtaaa	ttttaagggn	nccnagggtt	tttgccttgc	ttnanaaccc	ccctttnccc	540
cncctttaa	aancnnct	ttcccccaa	ngnnccctt	ttntgncccc	aanannnacc	600
tgggatttgg	g					611

<210> 58

<211> 4425

<212> DNA

<213> Homo sapiens

<400> 58

atgggaaaga	acaaactcct	tcatccaagt	ctggttcttc	tcctcttgg	cctcctgccc	60
acagacgcct	cagtctctgg	aaaaccgcag	tatatggttc	tggtccctc	cctgctccac	120
actgagacca	ctgagaaggg	ctgtgtcctt	ctgagctacc	tgaatgagac	agtgactgt	180
atgtcttcct	tggagtctgt	cagggaaaac	aggagctct	tcactgacct	ggaggcggag	240
aatgacgtac	tccactgtgt	cgccttcgct	gtcccaaagt	ttcatccaa	tgaggaggt	300
atgttcctca	ctgtccaagt	gaaaggacca	acccaagaat	ttaagaagcg	gaccacagt	360
atggtaaga	acgaggacag	tctggtcttt	gtccagacag	acaaatcaat	ctacaaacca	420
ggcagacag	tgaaatttcg	tgttgtctcc	atggatgaaa	actttcaccc	cctgaatgag	480
ttgattccac	tagtatacat	tcaggatccc	aaaggaaatc	gcatcgaca	atggcagagt	540
ttccagttag	agggtggcct	caagcaattt	tctttcccc	tctcatcaga	gcccttcag	600
ggctcctaca	aggtgggtgt	acagaagaaa	tcaggtggaa	ggacagagca	ccctttcacc	660
gtggaggaat	ttgttcttcc	caagttgaa	gtacaagtaa	cagtgc当地	gataatcacc	720
atcttggaaag	aagagatgaa	tgtatcgtg	tgtggcttat	acacatatgg	gaagcctg	780
cctggacatg	tgactgtgag	cattgcaga	aagtatagtg	acgcttccga	ctgcccacgg	840
gaagattcac	aggcttctg	tgagaaattc	agtgacagc	taaacagcca	tggctgctc	900

79

tatcagcaag taaaaaccaa ggtctccag ctgaagagga aggagtatga aatgaaactt 960
 cacactgagg cccagatcca agaagaagga acagtggtg aattgactgg aaggcagtcc 1020
 agtgaardca caagaaccat aaccaaactc tcatttgta aagtggactc acacttcga 1080
 cagggaaatc ccttcttgc gcaggtgcgc ctagtagatg ggaaaggcgt ccctatacca 1140
 aataaagtca tattcatcaag agaaaatgaa gcaaactatt actccaatgc taccacggat 1200
 gagcatggcc ttgtacagtt ctctatcaac accaccaacg ttatgggtac ctctcttact 1260
 gttagggtca attacaagga tcgttagtccc tgtagcgct accagtgggt gtcagaagaa 1320
 cacgaagagg cacatcacac tgcttatctt gtgttctccc caagcaagag ctttgtccac 1380
 cttgagccca tgtctcatga actaccctgt ggcataactc agacagtcca ggcacattat 1440
 attctgaatg gaggcacccct gctggggctg aagaagctct ccttttatta tctgataatg 1500
 gcaaaggagg gcattgtccg aactgggact catggactgc ttgtgaagca ggaagacatg 1560
 aaggggcatt tttccatctc aatccctgtg aagttagaca ttgctcctgt cgctcggtt 1620
 ctcatctatg ctgttttacc taccggggac gtgattgggg attctgcaaa atatgatgtt 1680
 gaaaattgtc tggccaacaa ggtggatttg agttcagcc catcacaag tctccagcc 1740
 tcacacgccc acctgcgagt cacagcggct cctcagttccg tctgcgcctt ccgtgctgt 1800
 gaccggaaagcg tgctgctcat gaagcctgtat gctgagctct cggcgctc ggtttacaac 1860
 ctgctaccag aaaaggacccct cactggctc cctgggcctt tgaatgacca ggacgatgaa 1920
 gactgcatca atcgtcataa tgtctatatt aatggaaatca catataactcc agtataaagt 1980
 acaaataaaa aggatatgtat cagttccta gaggacatgg gcttaaaggc attcaccac 2040
 tcaaagattc gtaaacccaa aatgtgtcca cagttcaac agtataaatt gcatgaccc 2100
 gaagggtctac gtgttagggtt ttatgagtca gatgtaatgg gaagaggcca tgcacgcctg 2160
 gtgcattttg aagagcctca cacggagacc gtacgaaatg acttccctga gacatggatc 2220
 tgggattttg tggtgttaaa cttagcaggg gtggctgagg taggagtaac agtccctgac 2280
 accatcacccg agtggaaaggc agggggcttc tgcctgtctg aagatgctgg acttggatc 2340
 tcttccactg cctctctccg agccttccag cccttcttgc tggagcttac aatgccttac 2400
 tctgtgattc gtggagaggc cttagcactc aaggccacgg tcctaaacta ccttccaaa 2460
 tgcattccggg tcagttgtca gctggaaagcc tctcccgct tccttgctgt cccagtgag 2520
 aaggaacaag cgcctcactg catctgtca aacggggccg aaactgtgtc ctggcgatg 2580
 accccaaatg cattagaaaa tgtgaatttc actgtgagcg cagaggact agagtctcaa 2640
 gagctgtgtg ggactgaggt gccttcagtt cctgaacacg gaaggaaaga cacagtcatt 2700
 aaggcctctgt tggtgtacc tgaaggacta gagaaggaaa caacattcaa ctccctactt 2760
 tgtccatctcag gtggtgaggt ttctgaagaa ttatccctga aactgcccacc aatgtggta 2820
 gaagaatctg cccgagcttc tgtctcagtt ttgggagaca tattaggctc tgccatgcaa 2880
 aacacacaaa atcttctcca gatgccctat ggctgtggag agcagaatat ggtccctttt 2940
 gctcctaaca tctatgtact ggattatcta aatgaaacac agcagcttac tccagaggc 3000
 aagtccaaagg ccattggcta tctcaacact gtttaccaga gacagttgaa ctacaaacac 3060
 tatgtggct cctacagcac ctttggggag cgatatggca ggaaccaggc caacacctgg 3120
 ctcacagccct ttgttctgaa gactttgccc caagctcgag cctacatctt catcgatgaa 3180
 gcacacacca cccaaaggccct catatggctc tcccagaggc agaaggacaa tggctgtttc 3240
 aggagctctg ggtcaactgct caacaatgcc ataaaggagg gatgtaaaga tgaagtgacc 3300
 ctctccgcct atatcaccat cgccttctg gagattcctc tcacagtccac tcaccctgtt 3360
 gtccgcaatg ccctgttttgc cctggagtca gcctggaga cagcacaaga aggggaccat 3420
 ggcagccatg tatataccaa agcaactgctg gcctatgtt ttgcctggc aggttaaccag 3480
 gacaagagga aggaagtact caagtcactt aatgagggaa ctgtgaagaa agacaactct 3540
 gtccattttgg agcccccctca gaaacccaag gcaccagggg ggcattttta cgaaccccaag 3600
 gctccctctg ctgaggtggat gatgacatcc tatgtgtcc tcgcttatct cacggccccag 3660
 ccagccccaa cctcggagga cctgacctct gcaaccaaca tcgtgaagtg gatcacgaa 3720
 cagcagaatg cccaggccgg tttctcctcc acccaggaca cagtggggc tctccatgct 3780
 ctgtccaaat atggagccgc cacatttacc aggactggg aggtgtcaca ggtgactatc 3840
 cagtcttcag ggacattttc cagcaaattc caagtggaca acaacaatcg cctgttactg 3900
 cagcaggtct cattggcaga gtcgttccgg gaatacagca tggaaagtgc aggagaagga 3960
 tgtgtctacc tccagacccct cttggaaatac aatattctcc cagaaaaggaa agagttcccc 4020
 ttgtcttag gagtgcagac tctgcctcaa acttgtgatg aacccaaaggc ccacaccaggc 4080
 ttccaaatct ccctaaatgt cagttacaca gggagccgt ctgcctccaa catggcgatc 4140
 gttgtatgtca agatggtctc tggcttcatt cccctgttgc caacagtggaa aatgtttgaa 4200
 agatctaacc atgtgagccg gacagaagtc agcagcaacc atgtttgat ttaccttgat 4260
 aagggtgtcaa atcagacact gagttgttc ttcacgggtc tgcaagatgt cccagtaaga 4320
 gatctcaaacc cagccatagt gaaagtctat gattactacg agacggatgatgatc 4380

80

gctgagtaca atgctccttg cagcaaagat ctggaaatg cttga 4425

<210> 59
<211> 1474
<212> PRT
<213> Homo sapiens

<400> 59
Met Gly Lys Asn Lys Leu Leu His Pro Ser Leu Val Leu Leu Leu
1 5 10 15

Val Leu Leu Pro Thr Asp Ala Ser Val Ser Gly Lys Pro Gln Tyr Met
20 25 30

Val Leu Val Pro Ser Leu Leu His Thr Glu Thr Thr Glu Lys Gly Cys
35 40 45

Val Leu Leu Ser Tyr Leu Asn Glu Thr Val Thr Val Ser Ala Ser Leu
50 55 60

Glu Ser Val Arg Gly Asn Arg Ser Leu Phe Thr Asp Leu Glu Ala Glu
65 70 75 80

Asn Asp Val Leu His Cys Val Ala Phe Ala Val Pro Lys Ser Ser Ser
85 90 95

Asn Glu Glu Val Met Phe Leu Thr Val Gln Val Lys Gly Pro Thr Gln
100 105 110

Glu Phe Lys Lys Arg Thr Thr Val Met Val Lys Asn Glu Asp Ser Leu
115 120 125

Val Phe Val Gln Thr Asp Lys Ser Ile Tyr Lys Pro Gly Gln Thr Val
130 135 140

Lys Phe Arg Val Val Ser Met Asp Glu Asn Phe His Pro Leu Asn Glu
145 150 155 160

Leu Ile Pro Leu Val Tyr Ile Gln Asp Pro Lys Gly Asn Arg Ile Ala
165 170 175

Gln Trp Gln Ser Phe Gln Leu Glu Gly Gly Leu Lys Gln Phe Ser Phe
180 185 190

Pro Leu Ser Ser Glu Pro Phe Gln Gly Ser Tyr Lys Val Val Val Gln
195 200 205

Lys Lys Ser Gly Gly Arg Thr Glu His Pro Phe Thr Val Glu Glu Phe
210 215 220

Val Leu Pro Lys Phe Glu Val Gln Val Thr Val Pro Lys Ile Ile Thr
225 230 235 240

Ile Leu Glu Glu Glu Met Asn Val Ser Val Cys Gly Leu Tyr Thr Tyr
245 250 255

Gly Lys Pro Val Pro Gly His Val Thr Val Ser Ile Cys Arg Lys Tyr
260 265 270

Ser Asp Ala Ser Asp Cys His Gly Glu Asp Ser Gln Ala Phe Cys Glu
275 280 285

Lys Phe Ser Gly Gln Leu Asn Ser His Gly Cys Phe Tyr Gln Gln Val
290 295 300

Lys Thr Lys Val Phe Gln Leu Lys Arg Lys Glu Tyr Glu Met Lys Leu
305 310 315 320

His Thr Glu Ala Gln Ile Gln Glu Glu Gly Thr Val Val Glu Leu Thr
325 330 335

Gly Arg Gln Ser Ser Glu Ile Thr Arg Thr Ile Thr Lys Leu Ser Phe
340 345 350

Val Lys Val Asp Ser His Phe Arg Gln Gly Ile Pro Phe Phe Gly Gln
355 360 365

Val Arg Leu Val Asp Gly Lys Gly Val Pro Ile Pro Asn Lys Val Ile
370 375 380

Phe Ile Arg Gly Asn Glu Ala Asn Tyr Tyr Ser Asn Ala Thr Thr Asp
385 390 395 400

Glu His Gly Leu Val Gln Phe Ser Ile Asn Thr Thr Asn Val Met Gly
405 410 415

Thr Ser Leu Thr Val Arg Val Asn Tyr Lys Asp Arg Ser Pro Cys Tyr
420 425 430

Gly Tyr Gln Trp Val Ser Glu Glu His Glu Glu Ala His His Thr Ala
435 440 445

Tyr Leu Val Phe Ser Pro Ser Lys Ser Phe Val His Leu Glu Pro Met
450 455 460

Ser His Glu Leu Pro Cys Gly His Thr Gln Thr Val Gln Ala His Tyr
465 470 475 480

Ile Leu Asn Gly Gly Thr Leu Leu Gly Leu Lys Lys Leu Ser Phe Tyr
485 490 495

Tyr Leu Ile Met Ala Lys Gly Gly Ile Val Arg Thr Gly Thr His Gly
500 505 510

Leu Leu Val Lys Gln Glu Asp Met Lys Gly His Phe Ser Ile Ser Ile
515 520 525

Pro Val Lys Ser Asp Ile Ala Pro Val Ala Arg Leu Leu Ile Tyr Ala
530 535 540

Val Leu Pro Thr Gly Asp Val Ile Gly Asp Ser Ala Lys Tyr Asp Val
545 550 555 560

Glu Asn Cys Leu Ala Asn Lys Val Asp Leu Ser Phe Ser Pro Ser Gln
565 570 575

82

Ser Leu Pro Ala Ser His Ala His Leu Arg Val Thr Ala Ala Pro Gln
580 585 590

Ser Val Cys Ala Leu Arg Ala Val Asp Gln Ser Val Leu Leu Met Lys
595 600 605

Pro Asp Ala Glu Leu Ser Ala Ser Ser Val Tyr Asn Leu Leu Pro Glu
610 615 620

Lys Asp Leu Thr Gly Phe Pro Gly Pro Leu Asn Asp Gln Asp Asp Glu
625 630 635 640

Asp Cys Ile Asn Arg His Asn Val Tyr Ile Asn Gly Ile Thr Tyr Thr
645 650 655

Pro Val Ser Ser Thr Asn Glu Lys Asp Met Tyr Ser Phe Leu Glu Asp
660 665 670

Met Gly Leu Lys Ala Phe Thr Asn Ser Lys Ile Arg Lys Pro Lys Met
675 680 685

Cys Pro Gln Leu Gln Gln Tyr Glu Met His Gly Pro Glu Gly Leu Arg
690 695 700

Val Gly Phe Tyr Glu Ser Asp Val Met Gly Arg Gly His Ala Arg Leu
705 710 715 720

Val His Val Glu Glu Pro His Thr Glu Thr Val Arg Lys Tyr Phe Pro
725 730 735

Glu Thr Trp Ile Trp Asp Leu Val Val Val Asn Ser Ala Gly Val Ala
740 745 750

Glu Val Gly Val Thr Val Pro Asp Thr Ile Thr Glu Trp Lys Ala Gly
755 760 765

Ala Phe Cys Leu Ser Glu Asp Ala Gly Leu Gly Ile Ser Ser Thr Ala
770 775 780

Ser Leu Arg Ala Phe Gln Pro Phe Phe Val Glu Leu Thr Met Pro Tyr
785 790 795 800

Ser Val Ile Arg Gly Glu Ala Phe Thr Leu Lys Ala Thr Val Leu Asn
805 810 815

Tyr Leu Pro Lys Cys Ile Arg Val Ser Val Gln Leu Glu Ala Ser Pro
820 825 830

Ala Phe Leu Ala Val Pro Val Glu Lys Glu Gln Ala Pro His Cys Ile
835 840 845

Cys Ala Asn Gly Arg Gln Thr Val Ser Trp Ala Val Thr Pro Lys Ser
850 855 860

Leu Gly Asn Val Asn Phe Thr Val Ser Ala Glu Ala Leu Glu Ser Gln
865 870 875 880

Glu Leu Cys Gly Thr Glu Val Pro Ser Val Pro Glu His Gly Arg Lys

	83	
885	890	895
Asp Thr Val Ile Lys Pro Leu Leu Val Glu Pro Glu Gly Leu Glu Lys		
900	905	910
Glu Thr Thr Phe Asn Ser Leu Leu Cys Pro Ser Gly Gly Glu Val Ser		
915	920	925
Glu Glu Leu Ser Leu Lys Leu Pro Pro Asn Val Val Glu Glu Ser Ala		
930	935	940
Arg Ala Ser Val Ser Val Leu Gly Asp Ile Leu Gly Ser Ala Met Gln		
945	950	955
Asn Thr Gln Asn Leu Leu Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn		
965	970	975
Met Val Leu Phe Ala Pro Asn Ile Tyr Val Leu Asp Tyr Leu Asn Glu		
980	985	990
Thr Gln Gln Leu Thr Pro Glu Val Lys Ser Lys Ala Ile Gly Tyr Leu		
995	1000	1005
Asn Thr Gly Tyr Gln Arg Gln Leu Asn Tyr Lys His Tyr Asp Gly Ser		
1010	1015	1020
Tyr Ser Thr Phe Gly Glu Arg Tyr Gly Arg Asn Gln Gly Asn Thr Trp		
1025	1030	1035
1040		
Leu Thr Ala Phe Val Leu Lys Thr Phe Ala Gln Ala Arg Ala Tyr Ile		
1045	1050	1055
Phe Ile Asp Glu Ala His Ile Thr Gln Ala Leu Ile Trp Leu Ser Gln		
1060	1065	1070
Arg Gln Lys Asp Asn Gly Cys Phe Arg Ser Ser Gly Ser Leu Leu Asn		
1075	1080	1085
Asn Ala Ile Lys Gly Gly Val Glu Asp Glu Val Thr Leu Ser Ala Tyr		
1090	1095	1100
Ile Thr Ile Ala Leu Leu Glu Ile Pro Leu Thr Val Thr His Pro Val		
1105	1110	1115
1120		
Val Arg Asn Ala Leu Phe Cys Leu Glu Ser Ala Trp Lys Thr Ala Gln		
1125	1130	1135
Glu Gly Asp His Gly Ser His Val Tyr Thr Lys Ala Leu Leu Ala Tyr		
1140	1145	1150
Ala Phe Ala Leu Ala Gly Asn Gln Asp Lys Arg Lys Glu Val Leu Lys		
1155	1160	1165
Ser Leu Asn Glu Glu Ala Val Lys Lys Asp Asn Ser Val His Trp Glu		
1170	1175	1180
Arg Pro Gln Lys Pro Lys Ala Pro Val Gly His Phe Tyr Glu Pro Gln		
1185	1190	1195
1200		

Ala Pro Ser Ala Glu Val Glu Met Thr Ser Tyr Val Leu Leu Ala Tyr
1205 1210 1215

Leu Thr Ala Gln Pro Ala Pro Thr Ser Glu Asp Leu Thr Ser Ala Thr
1220 1225 1230

Asn Ile Val Lys Trp Ile Thr Lys Gln Gln Asn Ala Gln Gly Gly Phe
1235 1240 1245

Ser Ser Thr Gln Asp Thr Val Val Ala Leu His Ala Leu Ser Lys Tyr
1250 1255 1260

Gly Ala Ala Thr Phe Thr Arg Thr Gly Lys Ala Ala Gln Val Thr Ile
1265 1270 1275 1280

Gln Ser Ser Gly Thr Phe Ser Ser Lys Phe Gln Val Asp Asn Asn Asn
1285 1290 1295

Arg Leu Leu Leu Gln Gln Val Ser Leu Pro Glu Leu Pro Gly Glu Tyr
1300 1305 1310

Ser Met Lys Val Thr Gly Glu Gly Cys Val Tyr Leu Gln Thr Ser Leu
1315 1320 1325

Lys Tyr Asn Ile Leu Pro Glu Lys Glu Phe Pro Phe Ala Leu Gly
1330 1335 1340

Val Gln Thr Leu Pro Gln Thr Cys Asp Glu Pro Lys Ala His Thr Ser
1345 1350 1355 1360

Phe Gln Ile Ser Leu Ser Val Ser Tyr Thr Gly Ser Arg Ser Ala Ser
1365 1370 1375

Asn Met Ala Ile Val Asp Val Lys Met Val Ser Gly Phe Ile Pro Leu
1380 1385 1390

Lys Pro Thr Val Lys Met Leu Glu Arg Ser Asn His Val Ser Arg Thr
1395 1400 1405

Glu Val Ser Ser Asn His Val Leu Ile Tyr Leu Asp Lys Val Ser Asn
1410 1415 1420

Gln Thr Leu Ser Leu Phe Phe Thr Val Leu Gln Asp Val Pro Val Arg
1425 1430 1435 1440

Asp Leu Lys Pro Ala Ile Val Lys Val Tyr Asp Tyr Tyr Glu Thr Asp
1445 1450 1455

Glu Phe Ala Ile Ala Glu Tyr Asn Ala Pro Cys Ser Lys Asp Leu Gly
1460 1465 1470

Asn Ala

<210> 60

<211> 722

<212> DNA

<213> Homo sapiens

<400> 60

ngaccnnaaa aagngtttat tcatacaagtn tttaaagatn caaaaacacg tgnntntgn 60
 ggagctntga naacaggact ccagcaaagc actttcaagc cttgggnct tcaagcattt 120
 ccaaqatctt tgctgcaagg agcattgnnc tcagcaatg caaactcatc ctntcgtag 180
 naancataga ctttcaactat ggctggttc ananctnta ctgggacatt ttgcanaacc 240
 gngaanaaca agctcagggn ctgatttgac accttntcaa ggtaaatcaa gacatggtt 300
 ctgntgactt ctgncccggn tcacatgggt tagatcttc aagcnnntt nactgnnnng 360
 cttcagggga atgaaacccc gagacntnt nncaatnaa cgacncccnt nttgggaggc 420
 aaaccggntc cctgngtaac ctnnccctta gggganattt ggtttttttt gttgtggncn 480
 tttgggttca tnnnnnaagggt ttnagggcna agnnctgnct tcnnnaagca aagggnacc 540
 tnttccnntt ttntggnnaa antttgnntt ttcagggnat tnnnaagnt annnncaacc 600
 ttctcccggn nnttcaang cnggnnttcc cagggnagtt ttggnatagn nccnntnnna 660
 aaannncgggg ggttttttac ncccttggaa ttntnnggaa aaaannccn 720
 ac 722

<210> 61

<211> 557

<212> DNA

<213> Homo sapiens

<400> 61

gtgtgcagtg cccccttgcc tcttcaaacc tacagcttct ctttgcatt tggatttc 60
 acatcaactcc acacagaaac attacagctt ggcattccca gtcttgcct tcttccagct 120
 gcctcgacac agcactgtgg cctgtcccta ttgcccaggc acgccatttca agggcagg 180
 aaggggcagt gtcctgaagc ccatctttc tgcactgtc tttaggtatg ttagcccc 240
 tccaccttcc cactcaacaa cctcccaccc ctgtcctgct gcatggtccg gagtctgg 300
 cctacttgtt ttttggat ttatgacatt gttaaagaa aataaatatc tcccaacctt 360
 taaaaaaaaaaaaaaa aactcgagag atctatgaat cgaagatact gaaaaacccc 420
 gcangttcac ttcaactgtg catcgcan catctcaatt ctttcatttn atacatccnt 480
 ttgccttcc tttatgtaac tatactcctc taaagttca atcttggca ttnaacctt 540
 gatctataaa atttta 557

<210> 62

<211> 640

<212> DNA

<213> Homo sapiens

<400> 62

ttaaagggttggagatattt attttcttta aacaaggctca taaataacaa aaaacaaagt 60
 aggtcccaga ctccggacca tgcagcagga caggggtggg aggttggta gtggaaagg 120
 ggagggggctt acacatcacc taagacagtc acagaaaaga tgggcttcag gacactgccc 180
 cttcctgccc ttggaaatgg cgtgcctggg caataggac agggcacagt gctgtgtcga 240
 ggcagctgga agaaggcaaa gactggggat gccaggctgt aatgtttctg tggagatgt 300
 tgtgaaatcc acaaatggca aagagaagct ttaggttga agaggcaagg gggcactgca 360
 cacgtcgacg cggccgcgaa ttcggatccc cggggcctcc atggccatat gaccacccaa 420
 gctagctaa tctggAACAT cgtatggta aagccataga gatctttttt tttgggttt 480
 gtggggtatac ttcatcatcg aatagatagt tatatacata tccattgtat tggataaa 540
 catccctgta gtgattccaa acgcgttata cgcagttgg tccgtccaac caggtgacag 600
 nggtttaat tattaccatc tcaattttac tagccgggat 640

<210> 63

<211> 566

<212> DNA

<213> Homo sapiens

<400> 63

ctccccccatc cgcatcctcc tcctcctgtc ccctttctt ctctgtccct caccaagcca 60
 tcccctctt gcctctcccc atccctcgct ggcctgtcc tgctccctt ctcccatcct 120
 cccctccccc gtctctgccc agccagcccc ctcccgactc cccagttca tcggactccc 180
 tggcccccattc ccgtccccgc cctggccctt ttgtgcccct tctcatcggt ttctccctcc 240
 ttcccgggct tggcgtccct tctcccccct aactccttcc ctcggcctcc ctgcccccttc 300
 acggccccccc tgcctccctt gcccaagtcc tgagccacca tgctgacccc gatggtgccc 360
 cggnggggtg gtgtccccgg actcttctct ntncaagaac acgcttcagc cggctcccc 420
 aagctacgct gggaggaggc cgacgcagcn ttgcctnagc caggcctggt ggtccttgn 480
 ccagnccatca tggccttcan tggcggtnc tnngnttcac ctnctggnag cacntattga 540
 taccaanatg ggtggccnta tnncta 566

<210> 64

<211> 648

<212> DNA

<213> Homo sapiens

<400> 64

tggcgttcac gcagatcgac ttttatttagc ggtctgtaaa gcacccccc gggcccccc 60
 accccagatt ggaggaagcc ttgagaggac agtagcacca gggacatggc agggccccgag 120
 ggcgcgatgt gcagccgatg gtgaggact gggccccctc gcctcccccc ggggttgtca 180
 gcactggaa ggcttgggg tagcagccac ctcctccccc caacccaaca gactagttca 240
 aatttgggta aataaataaaa ataaataaga ttccctcaagc tggcctaccc tggagaggag 300
 ccgtgggtgc agccggccac tcgggaggcc cgagggccag cgggggttag ttggggcgtc 360
 ctctcccttc gggtgatggg gagccctggg ggatggcagc ataggggctg ggatggcctt 420
 ggcagaggcc gtctnccac attctgactc cttggtccccc cttgaaaccc tttgggtgtc 480
 cttcccccaca aagccctct tgcctcagt gggtggggaa ggccgggtgc ccctccctt 540
 cttcancgca aagggtntgc aggaaagggg caaaattagg gggaaaaaag gtccctttt 600
 tcanccccna aaagatgggg cttttccnt ttngngt 648

<210> 65

<211> 2274

<212> PRT

<213> Mus sp.

<400> 65

Met	Thr	Ser	Ser	Met	Ala	Ser	Tyr	Glu	Gln	Leu	Val	Arg	Gln	Val	Glu
1														15	

Ala	Leu	Lys	Ala	Glu	Asn	Thr	His	Leu	Arg	Gln	Glu	Leu	Arg	Asp	Asn
														30	
20															

Ser	Ser	His	Leu	Ser	Lys	Leu	Glu	Thr	Glu	Thr	Ser	Gly	Met	Lys	Glu
35													45		

Val	Leu	Lys	His	Leu	Gln	Gly	Lys	Leu	Glu	Gln	Glu	Ala	Arg	Val	Leu
50												60			

Val	Ser	Ser	Gly	Gln	Thr	Glu	Val	Leu	Glu	Gln	Leu	Lys	Ala	Leu	Gln
65												75		80	

Thr	Asp	Ile	Ser	Ser	Leu	Tyr	Asn	Leu	Lys	Phe	His	Ala	Pro	Ala	Leu
85												90		95	

Gly	Pro	Glu	Pro	Ala	Ala	Arg	Thr	Pro	Glu	Gly	Ser	Pro	Val	His	Gly
100												105		110	

Ser	Gly	Pro	Ser	Lys	Asp	Ser	Phe	Gly	Glu	Leu	Ser	Arg	Ala	Thr	Ile
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

87

115	120	125
Arg Leu Leu Glu Glu Leu Asp Gln Glu Arg Cys Phe Leu Leu Ser Glu 130	135	140
Ile Glu Lys Glu Glu Lys Glu Lys Leu Trp Tyr Tyr Ser Gln Leu Gln 145	150	155
Gly Leu Ser Lys Arg Leu Asp Glu Leu Pro His Val Asp Thr Phe Ser 165	170	175
Met Gln Met Asp Leu Ile Arg Gln Gln Leu Glu Phe Glu Ala Gln His 180	185	190
Ile Arg Ser Leu Met Glu Glu Arg Phe Gly Thr Ser Asp Glu Met Val 195	200	205
Gln Arg Ala Gln Ile Arg Ala Ser Arg Leu Glu Gln Ile Asp Lys Glu 210	215	220
Leu Leu Glu Ala Gln Asp Arg Val Gln Gln Thr Glu Pro Gln Ala Leu 225	230	235
Leu Ala Val Lys Pro Val Ala Val Glu Glu Glu Gln Glu Ala Glu Val 245	250	255
Pro Thr His Pro Glu Asp Gly Thr Pro Gln Pro Gly Asn Ser Lys Val 260	265	270
Glu Val Val Phe Trp Leu Leu Ser Met Leu Ala Thr Arg Asp Gln Glu 275	280	285
Asp Thr Ala Arg Thr Leu Leu Ala Met Ser Ser Ser Pro Glu Ser Cys 290	295	300
Val Ala Met Arg Arg Ser Gly Cys Leu Pro Leu Leu Leu Gln Ile Leu 305	310	315
His Gly Thr Glu Ala Gly Ser Val Gly Arg Ala Gly Ile Pro Gly Ala 325	330	335
Pro Gly Ala Lys Asp Ala Arg Met Arg Ala Asn Ala Ala Leu His Asn 340	345	350
Ile Val Phe Ser Gln Pro Asp Gln Gly Leu Ala Arg Lys Glu Met Arg 355	360	365
Val Leu His Val Leu Glu Gln Ile Arg Ala Tyr Cys Glu Thr Cys Trp 370	375	380
Asp Trp Leu Gln Ala Arg Asp Ser Gly Thr Glu Thr Pro Val Pro Ile 385	390	395
Glu Pro Gln Ile Cys Gln Ala Thr Cys Ala Val Met Lys Leu Ser Phe 405	410	415
Asp Glu Glu Tyr Arg Arg Ala Met Asn Glu Leu Gly Gly Leu Gln Ala 420	425	430

Val Ala Glu Leu Leu Gln Val Asp Tyr Glu Met His Lys Met Thr Arg
435 440 445

Asp Pro Leu Asn Leu Ala Leu Arg Arg Tyr Ala Gly Met Thr Leu Thr
450 455 460

Asn Leu Thr Phe Gly Asp Val Ala Asn Lys Ala Thr Leu Cys Ala Arg
465 470 475 480

Arg Gly Cys Met Glu Ala Ile Val Ala Gln Leu Gly Ser Glu Ser Glu
485 490 495

Glu Leu His Gln Val Val Ser Ser Ile Leu Arg Asn Leu Ser Trp Arg
500 505 510

Ala Asp Ile Asn Ser Lys Lys Val Leu Arg Glu Val Gly Ser Met Thr
515 520 525

Ala Leu Met Glu Cys Val Leu Arg Ala Ser Lys Glu Ser Thr Leu Lys
530 535 540

Ser Val Leu Ser Ala Leu Trp Asn Leu Ser Ala His Ser Thr Glu Asn
545 550 555 560

Lys Ala Ala Ile Cys Gln Val Asp Gly Ala Leu Gly Phe Leu Val Ser
565 570 575

Thr Leu Thr Tyr Arg Cys Gln Gly Asn Ser Leu Ala Val Ile Glu Ser
580 585 590

Gly Gly Gly Ile Leu Arg Asn Val Ser Ser Leu Ile Ala Thr Arg Glu
595 600 605

Asp Tyr Arg Gln Val Leu Arg Asp His Asn Cys Leu Gln Thr Leu Leu
610 615 620

Gln His Leu Thr Ser His Ser Leu Thr Ile Val Ser Asn Ala Cys Gly
625 630 635 640

Thr Leu Trp Asn Leu Ser Ala Arg Ser Pro Arg Asp Gln Glu Leu Leu
645 650 655

Trp Asp Leu Gly Ala Val Gly Met Leu Arg Asn Leu Val His Ser Lys
660 665 670

His Lys Met Ile Ala Met Gly Ser Ala Ala Ala Leu Arg Asn Leu Leu
675 680 685

Ala His Arg Pro Ala Lys Tyr Gln Ala Ala Ala Met Ala Val Ser Pro
690 695 700

Gly Thr Cys Val Pro Ser Leu Tyr Val Arg Lys Gln Arg Ala Leu Glu
705 710 715 720

Ala Glu Leu Asp Thr Arg His Leu Val His Ala Leu Gly His Leu Glu
725 730 735

89

Lys Gin Ser Leu Pro Glu Ala Glu Thr Thr Ser Lys Lys Pro Leu Pro
 740 745 750

Pro Leu Arg His Leu Asp Gly Leu Val Gln Asp Tyr Ala Ser Asp Ser
 755 760 765

Gly Cys Phe Asp Asp Asp Asp Ala Pro Ser Leu Ala Ala Ala Ala Thr
 770 775 780

Thr Ala Glu Pro Ala Ser Pro Ala Val Met Ser Met Phe Leu Gly Gly
 785 790 795 800

Pro Phe Leu Gln Gly Gln Ala Leu Ala Arg Thr Pro Pro Ala Arg Gln
 805 810 815

Gly Gly Leu Glu Ala Glu Lys Glu Ala Gly Gly Glu Ala Ala Val Ala
 820 825 830

Ala Lys Ala Lys Ala Lys Leu Ala Leu Ala Val Ala Arg Ile Asp Arg
 835 840 845

Leu Val Glu Asp Ile Ser Ala Leu His Thr Ser Ser Asp Asp Ser Phe
 850 855 860

Ser Leu Ser Ser Gly Asp Pro Gly Gln Glu Ala Pro Arg Glu Gly Arg
 865 870 875 880

Ala Gln Ser Cys Ser Pro Cys Arg Gly Thr Glu Gly Gly Arg Arg Glu
 885 890 895

Ala Gly Ser Arg Ala His Pro Leu Leu Arg Leu Lys Ala Ala His Thr
 900 905 910

Ser Leu Ser Asn Asp Ser Leu Asn Ser Gly Ser Thr Ser Asp Gly Tyr
 915 920 925

Cys Thr Arg Glu His Met Thr Pro Cys Pro Leu Ala Ala Leu Ala Glu
 930 935 940

His Arg Asp Asp Pro Val Arg Gly Gln Thr Arg Pro Arg Arg Leu Asp
 945 950 955 960

Leu Asp Leu Pro Ser Arg Ala Glu Leu Pro Ala Arg Asp Thr Ala Ala
 965 970 975

Thr Asp Ala Arg Val Arg Thr Ile Lys Leu Ser Pro Thr Tyr Gln His
 980 985 990

Val Pro Leu Leu Asp Gly Ala Ala Gly Ala Gly Val Arg Pro Leu Val
 995 1000 1005

Gly Pro Gly Thr Ser Pro Gly Ala Arg Lys Gln Ala Trp Ile Pro Ala
 1010 1015 1020

Asp Ser Leu Ser Lys Val Pro Glu Lys Leu Val Ala Ser Pro Leu Pro
 1025 1030 1035 1040

Ile Ala Ser Lys Val Leu Gln Lys Leu Val Ala Gln Asp Gly Pro Met

90
1045 1050 1055

Ser Leu Ser Arg Cys Ser Ser Leu Ser Ser Leu Ser Ser Thr Gly His
1060 1065 1070

Ala Val Pro Ser Gln Ala Glu Asn Leu Asp Ser Asp Ser Ser Leu Glu
1075 1080 1085

Gly Leu Glu Glu Ala Gly Pro Gly Glu Ala Glu Leu Gly Arg Ala Trp
1090 1095 1100

Arg Ala Ser Gly Ser Thr Ser Leu Pro Val Ser Ile Pro Ala Pro Gln
1105 1110 1115 1120

Arg Gly Arg Ser Arg Gly Leu Gly Val Glu Asp Ala Thr Pro Ser Ser
1125 1130 1135

Ser Ser Glu Asn Cys Val Gln Glu Thr Pro Leu Val Leu Ser Arg Cys
1140 1145 1150

Ser Ser Val Ser Ser Leu Gly Ser Phe Glu Ser Arg Ser Ile Ala Ser
1155 1160 1165

Ser Ile Pro Ser Asp Pro Cys Ser Gly Leu Gly Ser Gly Thr Val Ser
1170 1175 1180

Pro Ser Glu Leu Pro Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg
1185 1190 1195 1200

Ser Lys Thr Pro Pro Ala Pro Pro Gly Gln Pro Glu Thr Ser Gln Phe
1205 1210 1215

Ser Leu Gln Trp Glu Ser Tyr Val Lys Arg Phe Leu Asp Ile Ala Asp
1220 1225 1230

Cys Arg Glu Arg Cys Gln Pro Pro Ser Glu Leu Asp Ala Gly Ser Val
1235 1240 1245

Arg Phe Thr Val Glu Lys Pro Asp Glu Asn Phe Ser Cys Ala Ser Ser
1250 1255 1260

Leu Ser Ala Leu Ala Leu His Glu Leu Tyr Val Gln Gln Asp Val Glu
1265 1270 1275 1280

Leu Arg Leu Arg Pro Pro Ala Cys Pro Glu Arg Ala Val Gly Gly Gly
1285 1290 1295

Gly His Arg Arg Arg Asp Glu Ala Ala Ser Arg Leu Asp Gly Pro Ala
1300 1305 1310

Pro Ala Gly Ser Arg Ala Arg Ser Ala Thr Asp Lys Glu Leu Glu Ala
1315 1320 1325

Leu Arg Glu Cys Leu Gly Ala Ala Met Pro Ala Arg Leu Arg Lys Val
1330 1335 1340

Ala Ser Ala Leu Val Pro Gly Arg Arg Ser Leu Pro Val Pro Val Tyr
1345 1350 1355 1360

Met Leu Val Pro Ala Pro Ala Arg Gly Asp Asp Ser Gly Thr Asp Ser
1365 1370 1375

Ala Glu Gly Thr Pro Val Asn Phe Ser Ser Ala Ala Ser Leu Ser Asp
1380 1385 1390

Glu Thr Leu Gln Gly Pro Ser Arg Asp Lys Pro Ala Gly Pro Gly Asp
1395 1400 1405

Arg Gln Lys Pro Thr Gly Arg Ala Ala Pro Ala Arg Gln Thr Arg Ser
1410 1415 1420

His Arg Pro Lys Ala Ala Gly Ala Gly Lys Ser Thr Glu His Thr Arg
1425 1430 1435 1440

Gly Pro Cys Arg Asn Arg Ala Gly Leu Glu Leu Pro Leu Ser Arg Pro
1445 1450 1455

Gln Ser Ala Arg Ser Asn Arg Asp Ser Ser Cys Gln Thr Arg Thr Arg
1460 1465 1470

Gly Asp Gly Ala Leu Gln Ser Leu Cys Leu Thr Thr Pro Thr Glu Glu
1475 1480 1485

Ala Val Tyr Cys Phe Tyr Asp Ser Asp Glu Glu Pro Pro Ala Thr Ala
1490 1495 1500

Pro Pro Pro Arg Arg Ala Ser Ala Ile Pro Arg Ala Leu Lys Arg Glu
1505 1510 1515 1520

Lys Pro Ala Gly Arg Lys Glu Thr Pro Ser Arg Ala Ala Gln Pro Ala
1525 1530 1535

Thr Leu Pro Val Arg Ala Gln Pro Arg Leu Ile Val Asp Glu Thr Pro
1540 1545 1550

Pro Cys Tyr Ser Leu Thr Ser Ser Ala Ser Ser Leu Ser Glu Pro Glu
1555 1560 1565

Ala Pro Glu Gln Pro Ala Asn His Ala Arg Gly Pro Glu Gln Gly Ser
1570 1575 1580

Lys Gln Asp Ser Ser Pro Ser Pro Arg Ala Glu Glu Glu Leu Leu Gln
1585 1590 1595 1600

Arg Cys Ile Ser Leu Ala Met Pro Arg Arg Arg Thr Gln Val Pro Gly
1605 1610 1615

Ser Arg Arg Arg Lys Pro Arg Ala Leu Arg Ser Asp Ile Arg Pro Thr
1620 1625 1630

Glu Ile Thr Gln Lys Cys Gln Glu Glu Val Ala Gly Ser Asp Pro Ala
1635 1640 1645

Ser Asp Leu Asp Ser Val Glu Trp Gln Ala Ile Gln Glu Gly Ala Asn
1650 1655 1660

92

Ser Ile Val Thr Trp Leu His Gln Ala Ala Ala Lys Ala Ser Leu Glu
1665 1670 1675 1680

Ala Ser Ser Glu Ser Asp Ser Leu Leu Ser Leu Val Ser Gly Val Ser
1685 1690 1695

Ala Gly Ser Thr Leu Gln Pro Ser Lys Leu Arg Lys Gly Arg Lys Pro
1700 1705 1710

Ala Ala Glu Ala Gly Gly Ala Trp Arg Pro Glu Lys Arg Gly Thr Thr
1715 1720 1725

Ser Thr Lys Ile Asn Gly Ser Pro Arg Leu Pro Asn Gly Pro Glu Lys
1730 1735 1740

Ala Lys Gly Thr Gln Lys Met Met Ala Gly Glu Ser Thr Met Leu Arg
1745 1750 1755 1760

Gly Arg Thr Val Ile Tyr Ser Ala Gly Pro Ala Ser Arg Thr Gln Ser
1765 1770 1775

Lys Gly Ile Ser Gly Pro Cys Thr Thr Pro Lys Lys Thr Gly Thr Ser
1780 1785 1790

Gly Thr Thr Gln Pro Glu Thr Val Thr Lys Ala Pro Ser Pro Glu Gln
1795 1800 1805

Gln Arg Ser Arg Ser Leu His Arg Pro Gly Lys Ile Ser Glu Leu Ala
1810 1815 1820

Ala Leu Arg His Pro Pro Arg Ser Ala Thr Pro Pro Ala Arg Leu Ala
1825 1830 1835 1840

Lys Thr Pro Ser Ser Ser Ser Gln Thr Ser Pro Ala Ser Gln Pro
1845 1850 1855

Leu Pro Arg Arg Ser Pro Leu Ala Thr Pro Thr Gly Gly Pro Leu Pro
1860 1865 1870

Gly Pro Gly Gly Ser Leu Val Pro Lys Ser Pro Ala Arg Ala Leu Leu
1875 1880 1885

Ala Lys Gln His Lys Thr Gln Lys Ser Pro Val Arg Ile Pro Phe Met
1890 1895 1900

Gln Arg Pro Ala Arg Arg Val Pro Pro Pro Leu Ala Arg Pro Ser Pro
1905 1910 1915 1920

Glu Pro Gly Ser Arg Gly Arg Ala Gly Ala Glu Gly Thr Pro Gly Ala
1925 1930 1935

Arg Gly Ser Arg Leu Gly Leu Val Arg Met Ala Ser Ala Arg Ser Ser
1940 1945 1950

Gly Ser Glu Ser Ser Asp Arg Ser Gly Phe Arg Arg Gln Leu Thr Phe
1955 1960 1965

Ile Lys Glu Ser Pro Gly Leu Leu Arg Arg Arg Ser Glu Leu Ser

93

1970

1975

1980

Ser Ala Asp Ser Thr Ala Ser Thr Ser Gln Ala Ala Ser Pro Arg Arg
 1985 1990 1995 2000

Gly Arg Pro Ala Leu Pro Ala Val Phe Leu Cys Ser Ser Arg Cys Asp
 2005 2010 2015

Glu Leu Arg Val Ser Pro Arg Gln Pro Leu Ala Ala Gln Arg Ser Pro
 2020 2025 2030

Gln Ala Lys Pro Gly Leu Ala Pro Leu Ala Pro Arg Arg Thr Ser Ser
 2035 2040 2045

Glu Ser Pro Ser Arg Leu Pro Val Arg Ala Ser Pro Gly Arg Pro Glu
 2050 2055 2060

Thr Val Lys Arg Tyr Ala Ser Leu Pro His Ile Ser Val Ser Arg Arg
 2065 2070 2075 2080

Ser Asp Ser Ala Val Ser Val Pro Thr Thr Gln Ala Asn Ala Thr Arg
 2085 2090 2095

Arg Gly Ser Asp Gly Glu Ala Arg Pro Leu Pro Arg Val Ala Pro Pro
 2100 2105 2110

Gly Thr Thr Trp Arg Arg Ile Lys Asp Glu Asp Val Pro His Ile Leu
 2115 2120 2125

Arg Ser Thr Leu Pro Ala Thr Ala Leu Pro Leu Arg Val Ser Ser Pro
 2130 2135 2140

Glu Asp Ser Pro Ala Gly Thr Pro Gln Arg Lys Thr Ser Asp Ala Val
 2145 2150 2155 2160

Val Gln Thr Glu Asp Val Ala Thr Ser Lys Thr Asn Ser Ser Thr Ser
 2165 2170 2175

Pro Ser Leu Glu Ser Arg Asp Pro Pro Gln Ala Pro Ala Ser Gly Pro
 2180 2185 2190

Val Ala Pro Gln Gly Ser Asp Val Asp Gly Pro Val Leu Thr Lys Pro
 2195 2200 2205

Pro Ala Ser Ala Pro Phe Pro His Glu Gly Leu Ser Ala Val Ile Ala
 2210 2215 2220

Gly Phe Pro Thr Ser Arg His Gly Ser Pro Ser Arg Ala Ala Arg Val
 2225 2230 2235 2240

Pro Pro Phe Asn Tyr Val Pro Ser Pro Met Ala Ala Ala Thr Met Ala
 2245 2250 2255

Ser Asp Ser Ala Val Glu Lys Ala Pro Val Ser Ser Pro Ala Ser Leu
 2260 2265 2270

Leu Glu

<210> 66
<211> 942
<212> DNA
<213> Caenorhabditis elegans

<400> 66

```
atgtacgaag atcagtactg cgtgggtat aattttctgg aaggaacagg agacttcga 60
gaagacggc tagaacctat caccctggca tcccatgcc a cttcagatat gatgttaact 120
ctggaaaaaa tgacctaat gtggatgga cctatatcg ttggatatt tattgattt 180
caactctagtc aagctctgga gtatctcgca gaagtgcaca gatgtatgaa ggagtcagg 240
aagaagatga caattcaact tgcaatccgt cagtcagcat tccaaacaaac ttgccc 300
attcaaattc cagcttcaga cagaacttgc tggaaagtca gagcggatca atcctacctc 360
cgaagccatc tgtcaggacc cttccaacta tatccgagca accttatgag aaatttg 420
cgccaggag ccaagtcgga tattcattt attatggatg cagatatgat tgtagtgag 480
ggattcgcgc ggaaactcaa aaaagtggca aatgagatga tcgacggaaa aagtaaaaaa 540
gtattggca ttcaagatt cgaatcggtt aatgaaactt atttgccatg aactca 600
gagttgaagc aatctatggc ttattccaac gatatgaaat gggaaagtca agtaattctt 660
caccgtaaacg accctataa cgcggctat ttcccgtcca gaatcaaagt tatgcactct 720
ctgatttacg ccctttgtcg tgctggttac acgtttcatg ttccgtcaca cgtttcgat 780
gttcatgaag ggattaagca tactaataca atttattcga aagccacaat tgctcatcag 840
gaagcttacg cgatggacat agccggagcc agatatgtca gagaatggc cgaaaagtac 900
ccggacactt tggacaagtg tggaaagattc aagatgtatt ag 942
```

<210> 67
<211> 313
<212> PRT
<213> Caenorhabditis elegans

<400> 67

Met	Tyr	Glu	Asp	Gln	Tyr	Cys	Val	Gly	Tyr	Asn	Phe	Leu	Glu	Gly	Thr
1															15

Gly	Asp	Phe	Arg	Glu	Asp	Gly	Leu	Glu	Pro	Ile	Thr	Leu	Ala	Ser	His
															30

Ala	Thr	Ser	Asp	Met	Met	Leu	Thr	Leu	Glu	Lys	Met	Thr	Ser	Met	Trp
															45

Asp	Gly	Pro	Ile	Ser	Val	Gly	Ile	Phe	Ile	Asp	Phe	His	Ser	Ser	Gln
															60

Ala	Leu	Glu	Tyr	Leu	Ala	Glu	Val	His	Arg	Cys	Asp	Glu	Glu	Phe	Arg
															80

Lys	Lys	Met	Thr	Ile	His	Phe	Ala	Ile	Arg	Gln	Ser	Ala	Phe	Gln	Gln
															95

Thr	Cys	Pro	Lys	Ile	Gln	Ile	Pro	Ala	Ser	Asp	Arg	Thr	Cys	Trp	Lys
															110

Phe	Arg	Ala	Asp	Gln	Ser	Tyr	Leu	Arg	Ser	His	Leu	Ser	Gly	Pro	Phe
															125

Gln	Leu	Tyr	Pro	Ser	Asn	Leu	Met	Arg	Asn	Leu	Ala	Arg	Gln	Gly	Ala
															140

95

Lys	Ser	Asp	Ile	His	Phe	Ile	Met	Asp	Ala	Asp	Met	Ile	Val	Ser	Glu
145					150				155						160

Gly	Phe	Ala	Arg	Lys	Leu	Lys	Lys	Val	Ala	Asn	Glu	Met	Ile	Asp	Gly
				165				170							175

Lys	Ser	Lys	Lys	Vai	Leu	Aia	Ile	Arg	Arg	Phe	Glu	Ser	Val	Asn	Gly
				180				185							190

Thr	Tyr	Leu	Pro	Arg	Thr	His	Phe	Glu	Leu	Lys	Gln	Ser	Met	Ala	Tyr
					195			200							205

Ser	Asn	Gly	Tyr	Glu	Trp	Glu	Val	Gln	Val	Ile	Leu	His	Arg	Asn	Asp
					210			215				220			

Pro	Tyr	Asn	Ala	Ala	Tyr	Phe	Pro	Ser	Arg	Ile	Lys	Val	Met	His	Ser
					225			230			235				240

Leu	Ile	Tyr	Ala	Leu	Cys	Arg	Ala	Gly	Tyr	Thr	Phe	His	Val	Pro	Ser
					245				250						255

His	Val	Phe	Asp	Val	His	Glu	Gly	Ile	Lys	His	Thr	Asn	Thr	Ile	Tyr
					260			265							270

Ser	Lys	Ala	Thr	Ile	Ala	His	Gln	Glu	Ala	Tyr	Ala	Met	Asp	Ile	Ala
					275			280				285			

Gly	Ala	Arg	Tyr	Val	Arg	Glu	Met	Asp	Glu	Lys	Tyr	Pro	Asp	Thr	Leu
				290			295				300				

Asp	Lys	Cys	Gly	Arg	Phe	Lys	Met	Tyr
					305			310

<210> 68

<211> 4527

<212> DNA

<213> Caenorhabditis elegans

<400> 68

```

atgcggctgc taatttctcaa tatatttattt gtggtttggc aaatacatgg cgtcatcgga 60
cagagtacaa atgcagctgt ggtgtcaaca accgcggcgc cagttaaacc agccacttat 120
atgcttgtcg ccccagcagt agtgcgaccc gatcaaccgt tctccgtttg catgaacctt 180
ctgaaaacaag ctacggatga agacatgatt gttcggattg aagtggagaac tgaacggAAC 240
gagacgattt gtgctcgagt tataagcaat ttgaagccgg gaatcgacca gactgtcagc 300
ttgagtgaga tgcctgctca atcactaact cctaggccaa gctataagct ctacatccgc 360
ggggagactc ttaacgcaga actcatattt gaaaacgaaa atgagttaaa gtacgatcaa 420
aaagctttat cagtttcat ccaaacagat cgacaaatct atcggcctgc ttctcttgg 480
cgataccggg caattttagt gaaatcgac ttgaaacctt acgtcgaaaa cgctactatt 540
aaaattttcg atccaaggcag aaatctgatt tcacagacga ttgggtgtaac tttggataga 600
ggagttatata gcggcgagat ccaacttgcc gaagagactc tccttggaga ttgggttatac 660
gaggtggaaa cctcgaatgg agtccaggac aagtgcgtcat ttacggtaga tacatacg 720
cttcccaaat ttgaagtgaa tatcaagacg tcttcgttta taactattaa cgatgattt 780
tcagtgttcg tcgatgcaaa gtacacatat ggaaaaggcg ttgctggaaa ggccaaagta 840
tctctagagc ttccatggca cagatggcat gcgatggttc ccactatcat tgacgaaaat 900
ggagtcaaga aggaagagga gctgatggtc gagcgtactg taaagctgaa cagacaagga 960
gaagcggcag ttgtttctc gaatgatgag ctcagaggc acaagttgct acatgaatgg 1020
ggaggaggtt caattcgaat tggtgcctca gtcactgaat aatcgaaaga 1080

```

aacgctactc	atcaaatttc	aacgttccgt	gaggaggica	aacttgatgt	tgaaaagcag	1140
ggagacacct	tcaagccagg	actcaacttat	aatgtttag	ttgcactgaa	acaaatggat	1200
gacactcccc	tgaaggcaac	tttgc当地	agagttcagg	tatcaacatt	ctacaactat	1260
ccatacaatc	atgacacttc	atctctgaa	gaggaaaaag	aaacaaaaat	tgtggaaagt	1320
gacgctcacg	gcaccccggt	tctcaccctc	caaccaccaa	tcaactgcac	ttctgctcgc	1380
attgaggctc	attatgatat	tggtggcaag	gacaacttca	cagccacccc	aatatattcc	1440
tcgctataatg	tcgaggcagc	cgtgagccca	acgaagagtt	tcctgcagct	tttggctgat	1500
aatgaggggag	ctgtttagt	aggaaagagt	cttagctct	cggtgaaggc	tacccagccg	1560
ctgtcgacaa	ttaccttatca	ggtcatgtct	cggtcgaa	ttgtgggtgc	tcaacaaatg	1620
actgttaatt	ccgaacatgc	gaccattagc	ttcccagcaa	cggtctaata	ggccccaaag	1680
tcacgggtga	tcgtctatgc	cattattgag	agtagtcaag	aagttcttgc	tgtgcactt	1740
gactttaaag	tagaaggaat	attccaaaac	caagtggcac	tatcaattga	caaacaagca	1800
gtcgagccag	gacagaatgt	gaagtttaag	gtcacatctg	acaagaactc	ttttgttggg	1860
cttcttgg	tagatcagag	tgttcttgc	ttaaaaactg	gcaatgat	cactagagaa	1920
aaagttgagc	aagacttgg	gaattatgac	tctaataatg	ttggaggagg	attcgggggt	1980
ccacggccat	gggaggcaat	tgatagaaag	aagaggtcca	tttggagacc	ttgggtggg	2040
attggaggga	gtgatgctca	atcaatctt	tctaattgt	ggctttagt	tttgaccgac	2100
gccctcttgt	accgcgagcc	tcaacgtgaa	tttatgtcag	taatgat	ggatgggt	2160
ccaggaatgg	ctgaagccgc	attcgccgt	ccgccaatgg	gccccgtc	gcctccaccg	2220
ccgacagttc	gaaagttctt	cccacacacc	tggatttgg	cgatctcaa	ctctactagt	2280
ggagaagttg	agatggaaat	tgaagctccg	gacaccatca	cctcgtggg	cgcctccact	2340
tttgc当地	atgaggaaaa	tggtctcggt	gtggctccaa	cgacttcaaa	acttcgcgt	2400
tttcgtccat	tttttattca	actcaatctt	ccatatgt	tccgtcgtgg	agaaaagttt	2460
gcactttgg	tgcttggttt	caattatatg	gaaaaggagc	aagatgtaac	agtgactctg	2520
aagtatgata	aagactctgg	ttacgatctc	ctgaagaaag	atgaaactgt	agtaaggcgt	2580
gacgaggtt	gccaacaaaa	tgttctgtt	gtgtccgtt	ctgggtggagg	aacatcgaaa	2640
gcagtgtact	tcccaattgt	gccgtcttca	atggagaga	tcccgtaca	tataagcgt	2700
attgc当地	aaggtggta	tgcagtagag	atgaacttga	gagttgatcc	acaaggat	2760
aaagtagata	gaaatattcc	atttgcatt	gacctaaca	ataactctt	ggatttctcc	2820
aaaaatctt	agcttatctg	gccaacacgac	gtggttgt	gatcgcagaa	ggcaagatta	2880
gatgtgattt	gtgatgatgt	gggaccagt	ttaaacaatg	ctcataagct	cgtacaaatg	2940
ccatatggat	gtggagaaca	gaatatgtt	aacttggtc	caaataattt	ggtggcaag	3000
tacttaagag	caacaaatag	aatgagagc	caattagaga	caaaggctat	caagtttatt	3060
gagcagggaa	ttcagaggg	gttgcacgt	aaacgtctg	acaactctt	ctcagctt	3120
ggcgataatg	ataaaagctgg	ttcaacgtgg	ctcaccgcat	ttgtcgat	atcgatccat	3180
cacgc当地	aatacgcatt	cgtggatcct	aatgttattt	cccgagcagt	cgcattctt	3240
aactctcaac	aaatggagtc	ttgtgcattt	gccgaacgt	gtgaagttca	tcacaaggat	3300
atgcagggg	gtgctcagga	cggggggtgt	gctctaaccg	catttgcgt	aatctcgatt	3360
ttggagaatg	gaatggagaa	tggaaaggcg	gtgacgtatt	tggaaaagca	tttggatgaa	3420
gtatctggaa	atgcgtatac	aatggctgt	gtggcatatg	cacttcaatt	ggcaaaaagt	3480
aagcaagctg	gaaaggcatt	cgagaattt	aagaaacata	agatcgat	gaaaagtgg	3540
gatgtgaaat	ttgcccgtgc	tcagaaaaaa	gtggagaaac	taaaagaatc	gagagcgt	3600
atgttccagg	cccgccat	agacattgaa	actacctt	acgcagttt	ttcttacctc	3660
gcccaaatac	aaacctcaga	atctctca	attattcg	ggttagt	ccaaacgcac	3720
gagctaggag	gattcacttc	cactcaagac	actgtcat	ctcttca	tctcttcc	3780
tacgc当地	tcacttattc	cgacaaacac	acaagtcaag	taacaattt	caacggaaa	3840
catactact	catttgcata	caacataaga	aacgcattt	ttcttcaatc	ctatcaacta	3900
tcttcattt	atgatgcatt	ttcaattt	gccaatggaa	ctgggtgt	tttcgtc	3960
ttgagttt	cttactacag	ggactctt	aatgacgt	ctccgtt	ctgctcc	4020
gagatcaagg	aaataagagc	tggaaatcga	ctgcaattt	atttgcgtt	caactatacc	4080
cgtcctggaa	agtcttaacat	ggctctagcc	gaaattgtat	ccttgcgtt	ttaccgatt	4140
gatgc当地	agggtcatac	tttgacaaat	attgaggatt	tgcaaaagggt	ggagatggaa	4200
aaggacgaca	ctaaatgtt	cgtatattt	aacccgct	gtggccgtt	ggtatgtt	4260
tcgttataat	ctgatgtc	ttatcaattt	gcccataaa	aacctgcca	tttccgatt	4320
gtggattact	acgatccg	ggagcagct	aaaatgcata	acgcgc	gcaaaacacg	4380
tcgctgcaag	agaaaatgtgg	ggaagactgt	tggccaccga	tttccccatc	actgccttca	4440
tttgacgat	cgacagtaac	aggcacgtt	tctggttt	gtgccaagtg	gtgtgcgtt	4500
atcattgt	tgctcattt	tgcatga				4527

<210> 69
 <211> 4560
 <212> DNA
 <213> *Caenorhabditis elegans*

<400> 69
 atgcggctgc taattctcaa tatattattt gtggtttggc aaatacatgg cgtcatcgga 60
 cagagtacaa atgcagctgt ggtgtcaaca accgcggcgc cagttaaacc agccacttat 120
 atgcttgcg ccccagcagt agtgcgaccc gatcaaccgt tctccgttt catgaacctt 180
 ctgaaaacaag ctacggatga agacatgatt gttcggtt aagtgagaac tgaacggaac 240
 gagacgattt ctgctcgagt tataagcaat ttgaagccgg gaatcgacca gactgtcagc 300
 ttgagtgaga tgcctgctca atcactaact cctaggcaaa gctataagct ctacatccgc 360
 ggggagactc ttaacgcaga actcatattt gaaaaacgaaa atgagttaaa gtacgatcaa 420
 aaagctttat cagtttcat ccaaacadat cgagcaatct atcggcctgc ttctttgtt 480
 cgataccggg caatttgtat gaaatcgaccc ttgaaacctt acgtcgaaa cgctactatt 540
 aaaatttcg atccaagcag aaatctgatt tcacagacga ttgggttaac tttggataga 600
 ggagtataca gcggcgagct ccaacttgcc gaagagactc tccttggaga ttggtttac 660
 gaggtggaaa cctcgaatgg agtccaggac aagtctgtat ttacggtaga tacatacgt 720
 ctccccaaat ttgaagtgaa tatcaagacg tcttcgttta taactattaa cgatgattt 780
 tcagtgttcg tcgatgcaaa gtacacatattt ggaaaaggcg ttgctggaaa gcccaaagta 840
 tctctagacg ttccatggca cagatggcat gcgatggtc ccactatcat tgacgaaaat 900
 ggagtcaaga aggaagagga gctgatggc gacgtactg taaagctgaa cagacaagga 960
 gaagcggcag ttgtttctc gaatgatgag ctcaagaggc acaagttgtc acatgaatgg 1020
 ggaggagggt caattcgaat ttgcctca gtcactgaag acatcactga aatcgaaaga 1080
 aacgctactc atcaaatttc aacgttccgt gaggagggtca aacttgatgt tgaaaagcag 1140
 ggagcacacct tcaagccagg actcaattt aatgtttagt ttgactgaa acaaattggat 1200
 gacactcccg tgaaggcaac ttgc当地 aatcactat 1260
 ccataacaatc atgacacttc atctctgca gaggaaaag aaacaaaat tggaaagtt 1320
 gacgctcactg gcacctcggt tctcaccctc caaccaccaa tcaactgcac ttctgctcgc 1380
 attgaggctc attatgatattt tggggcaag gacaacttca cagccacccc aatataattcc 1440
 tcgctatatg tcgaggcagc cgtgagccca acaagaggtt tcctgcagct ttggctgat 1500
 aatgaggagg ctgtttagt agggaaagat cttagcttct cgttgaaggc taccaggccg 1560
 ctgtcgacaa ttacctatca ggtcatgtct cggttgaaca ttgtgtgtc tcaacaaatg 1620
 actgttaatt ccgaacatgc gaccattagc ttcccagcaa cggctaactat gggcccaaag 1680
 tcacggttga tcgtctatgc cattattttag agtagtcaag aagttcttgc ttagtgcactt 1740
 gactttaaaat tagaaggaat attccaaaac caagtggcac tatcaattga caaacaaagca 1800
 gtcgagccag gacagaatgt gaagtttaag gtcacatctg acaagaactc ttttgggg 1860
 cttcttgg tagatcagat ttgttcttgc taaaaactg gcaatgatattt cactagagaa 1920
 aaagttgagc aagacttggaa gaattatgac tctaataatg ttggaggagg attcgggggt 1980
 ccacggccat gggaggcaat tgatagaaag aagagggtcca ttggagacc ttgggggg 2040
 attggaggaa gtgatgctca atcaatctt tctaataatgc tggttgcactt tttgaccgac 2100
 gccctttgtt accgcgagcc tcaacgtgaa ttatgtcactt ggttgcactt aatataaccc 2160
 ggaggtctt cagaatgtat gatggatgtt gtcctcaggaa ttggctgaagc cgcatcgcc 2220
 gtcggccaa tgggggggtc gtcgcctca cggccgacag ttggaaagtt cttccacac 2280
 acctggattt ggtcgatct caactctact agtggagaag ttgagatggaa aattgaagct 2340
 ccggacacca tcacctcggt ggtcgccctcc acttttgc当地 tcaatgagga aatgttctc 2400
 ggtgtggctc caacgacttc aaaacttcgc gtgttgc当地 catttttat tcaactcaat 2460
 cttccatatg ctgtccgtc tggagaaaat tttgcactt ttggcttgc当地 tttcaattat 2520
 atggaaaagg agcaagatgt aacagtactt ctgaagtatg ataaagactc ttggttacgat 2580
 ctcctgaaga aagatggaaat tggatgttgc当地 cgtgacgagg ttggccaaaca aatgttgc当地 2640
 attgtgtccg ttgctgggg aggaacatcg aagcagttt acttcccaat ttgtgc当地 2700
 tcaattggag agatcccggt acatataatgc gctattgc当地 cccaaagggtgg ttgtgc当地 2760
 gagatgaact tggatgttgc当地 tccacaagga tataaagtag atagaaatat tccatttgc当地 2820
 attgacctca acaataactt ttcggatattt tccaaaatc ttggatgttgc当地 ctggccaaac 2880
 gacgtgggtt atggatgc当地 gaaggcaaga ttggatgttgc当地 ttggatgttgc当地 gatggacca 2940
 gtgttaaaca atgctcataaa gctcgatcaa atgccatatg gatgtggaga acagaatatg 3000
 ttgaacttgg ttccaaatattt ttgggttgc当地 aagtacttgc当地 gagcaacaaa tagaaatg 3060

98

agccaattag	agacaaaaggc	tatcaagttt	attgagcagg	gaattcagag	ggagttgacg	3120
tacaaacgtg	ctgacaactc	tttctcagct	tttggcgata	gtgataaaagc	tggttcaacg	3180
tggctcaccg	catttgtcgt	tcgatcggtc	catcacgcca	aacaatacgc	attcgtggat	3240
cctaattgtta	tttcccggagc	agtgcattc	ttgaactctc	aacaatatgga	gtctgggtca	3300
tttggccgaaac	gtgggtgaagt	tcatcacaag	gatatgcagg	gagggtctca	ggacgggggt	3360
gtagctctaa	cggcattttgt	gctaattctcg	attttggaga	atggaatgga	aatggaaaag	3420
gcgggtgacgt	atttggaaaaa	gcatttggat	gaagtatctg	aaaatgcgt	tacaatggct	3480
gttagtggcat	atgcacttca	attggcaaaa	agtaagcaag	ctggaaagggc	attcgagaat	3540
ttgaaggaaac	ataagatcgt	tgagaaaaagt	ggagatgtga	agtttgcacag	tgctcagaaa	3600
aaagtggaga	aactaaaaga	atcgagagcg	tatatgttcc	aggcccgtcc	agtagacatt	3660
gaaactacct	cttacgcagt	tcttcttac	ctcgccccaa	atcaaaccctc	agaatctctc	3720
tcaattattc	gttgggttagt	atcccaacgc	aacgagctag	gaggattcac	ttccactcaa	3780
gacactgtca	tggcttctca	agctctctct	tcctacgcag	cagtcaactt	ttccgacaaa	3840
cacacaagtc	aagtaacaat	tctcaacgg	aaacataactc	actcatttga	tatcaacata	3900
agaaaacgca	ttgttctcca	atccstatcaa	ctatcttcat	tgaatgatgc	agttcaatt	3960
aatgccaatg	gaactggtgt	ggtcttcgct	cagttgagtt	attcttacta	cagggactct	4020
ttgaatgacg	atgctccgtt	cttctgctcc	caggagatca	aggaaaataag	agctggaaat	4080
cgactgcaat	tggattttgt	ttgcaactat	acccgtctcg	gaaagtctaa	catggctcta	4140
gccgaaattg	atgcctttag	tggttaccga	ttcgtatgcgg	aacaggtgca	tactttgaca	4200
agtatttgagg	atttgcaaaag	ggtgaggatg	gaaaaggacg	acactaagat	gaacgtatat	4260
ttcaacccgc	tcggtgccg	tccgttatgt	ctctcggttat	actctgtatgt	cacttatcaa	4320
gttggccgatc	aaaaacctgc	caacttccga	tttagtggatt	actacgatcc	ggaggagcag	4380
ctcaaaatga	catacgccgc	caagcaaaca	cgatcgtgc	aagagaaaatg	tgggaaagac	4440
tgttggccac	cgatttcccc	atcaactgcct	ccatttgacg	agtcgacagt	aacaggcacy	4500
tcctctggtt	ttgggtccaa	gtgggtgtct	cttattcattg	ctgtgctct	tattqcatqa	4560

<210> 70

<211> 1508

<212> PRT

<213> *Caenorhabditis elegans*

<400> 70

Met Arg Leu Leu Ile Leu Asn Ile Leu Phe Val Val Trp Gln Ile His
1 5 10 15

Gly Val Ile Gly Gln Ser Thr Asn Ala Ala Val Val Ser Thr Thr Ala
20 25 30

Ala Pro Val Lys Pro Ala Thr Tyr Met Leu Val Ala Pro Ala Val Val
35 40 45

Arg Pro Asp Gln Pro Phe Ser Val Cys Met Asn Leu Leu Lys Gln Ala
50 55 60

Thr Asp Glu Asp Met Ile Val Arg Ile Glu Val Arg Thr Glu Arg Asn
65 70 75 80

Glu Thr Ile Ala Ala Arg Val Ile Ser Asn Leu Lys Pro Gly Ile Ala
85 90 95

Gln Thr Val Ser Leu Ser Glu Met Pro Ala Gln Ser Leu Thr Pro Arg
100 105 110

Gln Ser Tyr Lys Leu Tyr Ile Arg Gly Glu Thr Leu Asn Ala Glu Leu
115 120 125

Ile Phe Glu Asn Glu Asn Glu Leu Lys Tyr Asp Gln Lys Ala Leu Ser
130 135 140

99

Val Phe Ile Gln Thr Asp Arg Ala Ile Tyr Arg Pro Ala Ser Leu Val
 145 150 155 160
 Arg Tyr Arg Ala Ile Val Val Lys Ser Asp Leu Lys Pro Tyr Val Gly
 165 170 175
 Asn Ala Thr Ile Lys Ile Phe Asp Pro Ser Arg Asn Leu Ile Ser Gln
 180 185 190
 Thr Ile Gly Val Thr Leu Asp Arg Gly Val Tyr Ser Gly Glu Leu Gln
 195 200 205
 Leu Ala Glu Glu Thr Leu Leu Gly Asp Trp Phe Ile Glu Val Glu Thr
 210 215 220
 Ser Asn Gly Val Gln Asp Lys Ser Ser Phe Thr Val Asp Thr Tyr Val
 225 230 235 240
 Leu Pro Lys Phe Glu Val Asn Ile Lys Thr Ser Ser Phe Ile Thr Ile
 245 250 255
 Asn Asp Asp Leu Ser Val Phe Val Asp Ala Lys Tyr Thr Tyr Gly Lys
 260 265 270
 Gly Val Ala Gly Lys Ala Lys Val Ser Leu Glu Leu Pro Trp His Arg
 275 280 285
 Trp His Ala Met Val Pro Thr Ile Ile Asp Glu Asn Gly Val Lys Lys
 290 295 300
 Glu Glu Glu Leu Met Val Glu Arg Thr Val Lys Leu Asn Arg Gln Gly
 305 310 315 320
 Glu Ala Ala Val Val Phe Ser Asn Asp Glu Leu Lys Arg His Lys Leu
 325 330 335
 Leu His Glu Trp Gly Gly Ser Ile Arg Ile Val Ala Ser Val Thr
 340 345 350
 Glu Asp Ile Thr Glu Ile Glu Arg Asn Ala Thr His Gln Ile Ser Thr
 355 360 365
 Phe Arg Glu Glu Val Lys Leu Asp Val Glu Lys Gln Gly Asp Thr Phe
 370 375 380
 Lys Pro Gly Leu Thr Tyr Asn Val Val Ala Leu Lys Gln Met Asp
 385 390 395 400
 Asp Thr Pro Val Lys Ala Thr Leu Pro Lys Arg Val Gln Val Ser Thr
 405 410 415
 Phe Tyr Asn Tyr Pro Tyr Asn His Asp Thr Ser Ser Leu Gln Glu Glu
 420 425 430
 Lys Glu Thr Lys Ile Val Glu Val Asp Ala His Gly Thr Ser Val Leu
 435 440 445

100

Thr	Leu	Gln	Pro	Pro	Ile	Asn	Cys	Thr	Ser	Ala	Arg	Ile	Glu	Ala	His
450					455						460				

Tyr	Asp	Ile	Gly	Gly	Lys	Asp	Asn	Phe	Thr	Ala	Thr	Pro	Ile	Tyr	Ser
465					470				475				480		

Ser	Leu	Tyr	Val	Glu	Ala	Ala	Val	Ser	Pro	Thr	Lys	Ser	Phe	Leu	Gln
								485		490				495	

Leu	Leu	Ala	Asp	Asn	Glu	Gly	Ala	Val	Asp	Val	Gly	Lys	Ser	Leu	Ser
				500					505				510		

Phe	Ser	Leu	Lys	Ala	Thr	Gln	Pro	Leu	Ser	Thr	Ile	Thr	Tyr	Gln	Val
					515			520			525				

Met	Ser	Arg	Ser	Asn	Ile	Val	Val	Ser	Gln	Gln	Met	Thr	Val	Asn	Ser
					530			535			540				

Glu	His	Ala	Thr	Ile	Ser	Phe	Pro	Ala	Thr	Ala	Asn	Met	Ala	Pro	Lys
				545				550			555			560	

Ser	Arg	Leu	Ile	Val	Tyr	Ala	Ile	Ile	Glu	Ser	Ser	Gln	Glu	Val	Leu
					565				570				575		

Val	Asp	Ala	Leu	Asp	Phe	Lys	Val	Glu	Gly	Ile	Phe	Gln	Asn	Gln	Val
					580			585			590				

Ala	Leu	Ser	Ile	Asp	Lys	Gln	Ala	Val	Glu	Pro	Gly	Gln	Asn	Val	Lys
					595			600			605				

Phe	Lys	Val	Thr	Ser	Asp	Lys	Asn	Ser	Phe	Val	Gly	Leu	Leu	Val	Val
					610			615			620				

Asp	Gln	Ser	Val	Leu	Leu	Lys	Thr	Gly	Asn	Asp	Ile	Thr	Arg	Glu	
					625			630			635			640	

Lys	Val	Glu	Gln	Asp	Leu	Glu	Asn	Tyr	Asp	Ser	Asn	Asn	Val	Gly	Gly
					645			650					655		

Gly	Phe	Gly	Gly	Pro	Arg	Pro	Trp	Glu	Ala	Ile	Asp	Arg	Lys	Lys	Arg
					660			665			670				

Ser	Ile	Trp	Arg	Pro	Trp	Trp	Gly	Ile	Gly	Gly	Ser	Asp	Ala	Gln	Ser
					675			680			685				

Ile	Phe	Ser	Asn	Ala	Gly	Leu	Val	Val	Leu	Thr	Asp	Ala	Leu	Leu	Tyr
					690			695			700				

Arg	Glu	Pro	Gln	Arg	Glu	Phe	Met	Ser	Val	Met	Met	Met	Asp	Gly	Ala
					705			710			715			720	

Pro	Gly	Met	Ala	Glu	Ala	Ala	Phe	Ala	Ala	Pro	Pro	Met	Gly	Gly	Ser
					725			730			735				

Ser	Pro	Pro	Pro	Pro	Thr	Val	Arg	Lys	Phe	Phe	Pro	His	Thr	Trp	Ile
					740			745			750				

Trp	Ser	Asp	Leu	Asn	Ser	Thr	Ser	Gly	Glu	Val	Glu	Met	Glu	Ile	Glu

101

755 760 765

Ala Pro Asp Thr Ile Thr Ser Trp Val Ala Ser Thr Phe Ala Ile Asn
770 775 780

Glu Glu Asn Gly Leu Gly Val Ala Pro Thr Thr Ser Lys Leu Arg Val
785 790 795 800

Phe Arg Pro Phe Phe Ile Gln Leu Asn Leu Pro Tyr Ala Val Arg Arg
805 810 815

Gly Glu Lys Phe Ala Leu Leu Val Leu Val Phe Asn Tyr Met Glu Lys
820 825 830

Glu Gln Asp Val Thr Val Thr Leu Lys Tyr Asp Lys Asp Ser Gly Tyr
835 840 845

Asp Leu Leu Lys Lys Asp Gly Thr Val Val Arg Arg Asp Glu Val Gly
850 855 860

Gln Gln Asn Val Arg Ile Val Ser Val Ala Gly Gly Gly Thr Ser Lys
865 870 875 880

Ala Val Tyr Phe Pro Ile Val Pro Ser Ser Ile Gly Glu Ile Pro Val
885 890 895

His Ile Ser Ala Ile Ala Ser Gln Gly Gly Asp Ala Val Glu Met Asn
900 905 910

Leu Arg Val Asp Pro Gln Gly Tyr Lys Val Asp Arg Asn Ile Pro Phe
915 920 925

Val Ile Asp Leu Asn Asn Asn Ser Ser Asp Phe Ser Lys Asn Leu Glu
930 935 940

Leu Ile Trp Pro Asn Asp Val Val Asp Gly Ser Gln Lys Ala Arg Leu
945 950 955 960

Asp Val Ile Gly Asp Met Met Gly Pro Val Leu Asn Asn Ala His Lys
965 970 975

Leu Val Gln Met Pro Tyr Gly Cys Gly Glu Gln Asn Met Leu Asn Leu
980 985 990

Val Pro Asn Ile Leu Val Val Lys Tyr Leu Arg Ala Thr Asn Arg Asn
995 1000 1005

Glu Ser Gln Leu Glu Thr Lys Ala Ile Lys Phe Ile Glu Gln Gly Ile
1010 1015 1020

Gln Arg Glu Leu Thr Tyr Lys Arg Ala Asp Asn Ser Phe Ser Ala Phe
1025 1030 1035 1040

Gly Asp Ser Asp Lys Ala Gly Ser Thr Trp Leu Thr Ala Phe Val Val
1045 1050 1055

Arg Ser Phe His His Ala Lys Gln Tyr Ala Phe Val Asp Pro Asn Val
1060 1065 1070

102

Ile Ser Arg Ala Val Ala Phe Leu Asn Ser Gln Gln Met Glu Ser Gly
1075 1080 1085

Ala Phe Ala Glu Arg Gly Glu Val His His Lys Asp Met Gln Gly Gly
1090 1095 1100

Ala Gln Asp Gly Gly Val Ala Leu Thr Ala Phe Val Leu Ile Ser Ile
1105 1110 1115 1120

Leu Glu Asn Gly Met Glu Asn Gly Lys Ala Val Thr Tyr Leu Glu Lys
1125 1130 1135

His Leu Asp Glu Val Ser Gly Asn Ala Tyr Thr Met Ala Val Val Ala
1140 1145 1150

Tyr Ala Leu Gln Leu Ala Lys Ser Lys Gln Ala Gly Lys Ala Phe Glu
1155 1160 1165

Asn Leu Lys Lys His Lys Ile Val Glu Lys Ser Gly Asp Val Lys Phe
1170 1175 1180

Ala Ser Ala Gln Lys Lys Val Glu Lys Leu Lys Glu Ser Arg Ala Tyr
1185 1190 1195 1200

Met Phe Gln Ala Arg Pro Val Asp Ile Glu Thr Thr Ser Tyr Ala Val
1205 1210 1215

Leu Ser Tyr Leu Ala Gln Asn Gln Thr Ser Glu Ser Leu Ser Ile Ile
1220 1225 1230

Arg Trp Leu Val Ser Gln Arg Asn Glu Leu Gly Gly Phe Thr Ser Thr
1235 1240 1245

Gln Asp Thr Val Met Ala Leu Gln Ala Leu Ser Ser Tyr Ala Ala Val
1250 1255 1260

Thr Tyr Ser Asp Lys His Thr Ser Gln Val Thr Ile Leu Asn Gly Lys
1265 1270 1275 1280

His Thr His Ser Phe Asp Ile Asn Ile Arg Asn Ala Ile Val Leu Gln
1285 1290 1295

Ser Tyr Gln Leu Ser Ser Leu Asn Asp Ala Val Ser Ile Asn Ala Asn
1300 1305 1310

Gly Thr Gly Val Val Phe Ala Gln Leu Ser Tyr Ser Tyr Tyr Arg Asp
1315 1320 1325

Ser Leu Asn Asp Asp Ala Pro Phe Phe Cys Ser Gln Glu Ile Lys Glu
1330 1335 1340

Ile Arg Ala Gly Asn Arg Leu Gln Leu Asp Leu Cys Cys Asn Tyr Thr
1345 1350 1355 1360

Arg Pro Gly Lys Ser Asn Met Ala Leu Ala Glu Ile Asp Ala Leu Ser
1365 1370 1375

103

Gly Tyr Arg Phe Asp Ala Glu Gln Val His Thr Leu Thr Ser Ile Glu
 1380 1385 1390

Asp Leu Gln Arg Val Glu Met Glu Lys Asp Asp Thr Lys Met Asn Val
 1395 1400 1405

Tyr Phe Asn Pro Leu Gly Gly Arg Pro Val Cys Leu Ser Leu Tyr Ser
 1410 1415 1420

Asp Val Thr Tyr Gln Val Ala Asp Gln Lys Pro Ala Asn Phe Arg Leu
 1425 1430 1435 1440

Val Asp Tyr Tyr Asp Pro Glu Glu Gln Leu Lys Met Thr Tyr Ala Ala
 1445 1450 1455

Lys Gln Thr Arg Ser Leu Gln Glu Lys Cys Gly Glu Asp Cys Trp Pro
 1460 1465 1470

Pro Ile Ser Pro Ser Leu Pro Pro Phe Asp Glu Ser Thr Val Thr Gly
 1475 1480 1485

Thr Ser Ser Gly Phe Gly Ala Lys Trp Cys Ala Leu Ile Ile Ala Val
 1490 1495 1500

Leu Leu Ile Ala
 1505

<210> 71
<211> 1519
<212> PRT
<213> Caenorhabditis elegans

<400> 71
Met Arg Leu Leu Ile Leu Asn Ile Leu Phe Val Val Trp Gln Ile His
 1 5 10 15

Gly Val Ile Gly Gln Ser Thr Asn Ala Ala Val Val Ser Thr Thr Ala
 20 25 30

Ala Pro Val Lys Pro Ala Thr Tyr Met Leu Val Ala Pro Ala Val Val
 35 40 45

Arg Pro Asp Gln Pro Phe Ser Val Cys Met Asn Leu Leu Lys Gln Ala
 50 55 60

Thr Asp Glu Asp Met Ile Val Arg Ile Glu Val Arg Thr Glu Arg Asn
 65 70 75 80

Glu Thr Ile Ala Ala Arg Val Ile Ser Asn Leu Lys Pro Gly Ile Ala
 85 90 95

Gln Thr Val Ser Leu Ser Glu Met Pro Ala Gln Ser Leu Thr Pro Arg
 100 105 110

Gln Ser Tyr Lys Leu Tyr Ile Arg Gly Glu Thr Leu Asn Ala Glu Leu
 115 120 125

104

Ile	Phe	Glu	Asn	Glu	Asn	Glu	Leu	Lys	Tyr	Asp	Gln	Lys	Ala	Leu	Ser
130						135						140			
Val	Phe	Ile	Gln	Thr	Asp	Arg	Ala	Ile	Tyr	Arg	Pro	Ala	Ser	Leu	Val
145					150					155				160	
Arg	Tyr	Arg	Ala	Ile	Val	Val	Lys	Ser	Asp	Leu	Lys	Pro	Tyr	Val	Gly
					165				170				175		
Asn	Ala	Thr	Ile	Lys	Ile	Phe	Asp	Pro	Ser	Arg	Asn	Leu	Ile	Ser	Gln
					180				185				190		
Thr	Ile	Gly	Val	Thr	Leu	Asp	Arg	Gly	Val	Tyr	Ser	Gly	Glu	Leu	Gln
					195			200				205			
Leu	Ala	Glu	Glu	Thr	Leu	Leu	Gly	Asp	Trp	Phe	Ile	Glu	Val	Glu	Thr
					210			215				220			
Ser	Asn	Gly	Val	Gln	Asp	Lys	Ser	Ser	Phe	Thr	Val	Asp	Thr	Tyr	Val
					225			230			235				240
Leu	Pro	Lys	Phe	Glu	Val	Asn	Ile	Lys	Thr	Ser	Ser	Phe	Ile	Thr	Ile
					245				250				255		
Asn	Asp	Asp	Leu	Ser	Val	Phe	Val	Asp	Ala	Lys	Tyr	Thr	Tyr	Gly	Lys
					260				265				270		
Gly	Val	Ala	Gly	Lys	Ala	Lys	Val	Ser	Leu	Glu	Leu	Pro	Trp	His	Arg
					275			280				285			
Trp	His	Ala	Met	Val	Pro	Thr	Ile	Ile	Asp	Glu	Asn	Gly	Val	Lys	Lys
					290			295				300			
Glu	Glu	Glu	Leu	Met	Val	Glu	Arg	Thr	Val	Lys	Leu	Asn	Arg	Gln	Gly
					305			310			315				320
Glu	Ala	Ala	Val	Val	Phe	Ser	Asn	Asp	Glu	Leu	Lys	Arg	His	Lys	Leu
					325				330				335		
Leu	His	Glu	Trp	Gly	Gly	Ser	Ile	Arg	Ile	Val	Ala	Ser	Val	Thr	.
					340			345				350			
Glu	Asp	Ile	Thr	Glu	Ile	Glu	Arg	Asn	Ala	Thr	His	Gln	Ile	Ser	Thr
					355			360				365			
Phe	Arg	Glu	Glu	Val	Lys	Leu	Asp	Val	Glu	Lys	Gln	Gly	Asp	Thr	Phe
					370			375				380			
Lys	Pro	Gly	Leu	Thr	Tyr	Asn	Val	Val	Ala	Leu	Lys	Gln	Met	Asp	
					385			390			395				400
Asp	Thr	Pro	Val	Lys	Ala	Thr	Leu	Pro	Lys	Arg	Val	Gln	Val	Ser	Thr
					405				410				415		
Phe	Tyr	Asn	Tyr	Pro	Tyr	Asn	His	Asp	Thr	Ser	Ser	Leu	Gln	Glu	Glu
					420				425				430		
Lys	Glu	Thr	Lys	Ile	Val	Glu	Val	Asp	Ala	His	Gly	Thr	Ser	Val	Leu

105
435 440 445

Thr Leu Gln Pro Pro Ile Asn Cys Thr Ser Ala Arg Ile Glu Ala His
450 455 460

Tyr Asp Ile Gly Gly Lys Asp Asn Phe Thr Ala Thr Pro Ile Tyr Ser
465 470 475 480

Ser Leu Tyr Val Glu Ala Ala Val Ser Pro Thr Lys Ser Phe Leu Gln
485 490 495

Leu Leu Ala Asp Asn Glu Gly Ala Val Asp Val Gly Lys Ser Leu Ser
500 505 510

Phe Ser Leu Lys Ala Thr Gln Pro Leu Ser Thr Ile Thr Tyr Gln Val
515 520 525

Met Ser Arg Ser Asn Ile Val Val Ser Gln Gln Met Thr Val Asn Ser
530 535 540

Glu His Ala Thr Ile Ser Phe Pro Ala Thr Ala Asn Met Ala Pro Lys
545 550 555 560

Ser Arg Leu Ile Val Tyr Ala Ile Ile Glu Ser Ser Gln Glu Val Leu
565 570 575

Val Asp Ala Leu Asp Phe Lys Val Glu Gly Ile Phe Gln Asn Gln Val
580 585 590

Ala Leu Ser Ile Asp Lys Gln Ala Val Glu Pro Gly Gln Asn Val Lys
595 600 605

Phe Lys Val Thr Ser Asp Lys Asn Ser Phe Val Gly Leu Leu Val Val
610 615 620

Asp Gln Ser Val Leu Leu Lys Thr Gly Asn Asp Ile Thr Arg Glu
625 630 635 640

Lys Val Glu Gln Asp Leu Glu Asn Tyr Asp Ser Asn Asn Val Gly Gly
645 650 655

Gly Phe Gly Gly Pro Arg Pro Trp Glu Ala Ile Asp Arg Lys Lys Arg
660 665 670

Ser Ile Trp Arg Pro Trp Trp Gly Ile Gly Gly Ser Asp Ala Gln Ser
675 680 685

Ile Phe Ser Asn Ala Gly Leu Val Val Leu Thr Asp Ala Leu Leu Tyr
690 695 700

Arg Glu Pro Gln Arg Glu Phe Met Ser Glu Arg Arg Leu Asn Thr Pro
705 710 715 720

Gly Gly Leu Thr Val Met Met Met Asp Gly Ala Pro Gly Met Ala Glu
725 730 735

Ala Ala Phe Ala Ala Pro Pro Met Gly Gly Ser Ser Pro Pro Pro Pro
740 745 750

106

Thr Val Arg Lys Phe Phe Pro His Thr Trp Ile Trp Ser Asp Leu Asn
755 760 765

Ser Thr Ser Gly Glu Val Glu Met Glu Ile Glu Ala Pro Asp Thr Ile
770 775 780

Thr Ser Trp Val Ala Ser Thr Phe Ala Ile Asn Glu Glu Asn Gly Leu
785 790 795 800

Gly Val Ala Pro Thr Thr Ser Lys Leu Arg Val Phe Arg Pro Phe Phe
805 810 815

Ile Gln Leu Asn Leu Pro Tyr Ala Val Arg Arg Gly Glu Lys Phe Ala
820 825 830

Leu Leu Val Leu Val Phe Asn Tyr Met Glu Lys Glu Gln Asp Val Thr
835 840 845

Val Thr Leu Lys Tyr Asp Lys Asp Ser Gly Tyr Asp Leu Leu Lys Lys
850 855 860

Asp Gly Thr Val Val Arg Arg Asp Glu Val Gly Gln Gln Asn Val Arg
865 870 875 880

Ile Val Ser Val Ala Gly Gly Thr Ser Lys Ala Val Tyr Phe Pro
885 890 895

Ile Val Pro Ser Ser Ile Gly Glu Ile Pro Val His Ile Ser Ala Ile
900 905 910

Ala Ser Gln Gly Gly Asp Ala Val Glu Met Asn Leu Arg Val Asp Pro
915 920 925

Gln Gly Tyr Lys Val Asp Arg Asn Ile Pro Phe Val Ile Asp Leu Asn
930 935 940

Asn Asn Ser Ser Asp Phe Ser Lys Asn Leu Glu Leu Ile Trp Pro Asn
945 950 955 960

Asp Val Val Asp Gly Ser Gln Lys Ala Arg Leu Asp Val Ile Gly Asp
965 970 975

Met Met Gly Pro Val Leu Asn Asn Ala His Lys Leu Val Gln Met Pro
980 985 990

Tyr Gly Cys Gly Glu Gln Asn Met Leu Asn Leu Val Pro Asn Ile Leu
995 1000 1005

Val Val Lys Tyr Leu Arg Ala Thr Asn Arg Asn Glu Ser Gln Leu Glu
1010 1015 1020

Thr Lys Ala Ile Lys Phe Ile Glu Gln Gly Ile Gln Arg Glu Leu Thr
1025 1030 1035 1040

Tyr Lys Arg Ala Asp Asn Ser Phe Ser Ala Phe Gly Asp Ser Asp Lys
1045 1050 1055

107

Ala Gly Ser Thr Trp Leu Thr Ala Phe Val Val Arg Ser Phe His His
1060 1065 1070

Ala Lys Gln Tyr Ala Phe Val Asp Pro Asn Val Ile Ser Arg Ala Val
1075 1080 1085

Ala Phe Leu Asn Ser Gln Gln Met Glu Ser Gly Ala Phe Ala Glu Arg
1090 1095 1100

Gly Glu Val His His Lys Asp Met Gln Gly Gly Ala Gln Asp Gly Gly
1105 1110 1115 1120

Val Ala Leu Thr Ala Phe Val Leu Ile Ser Ile Leu Glu Asn Gly Met
1125 1130 1135

Glu Asn Gly Lys Ala Val Thr Tyr Leu Glu Lys His Leu Asp Glu Val
1140 1145 1150

Ser Gly Asn Ala Tyr Thr Met Ala Val Val Ala Tyr Ala Leu Gln Leu
1155 1160 1165

Ala Lys Ser Lys Gln Ala Gly Lys Ala Phe Glu Asn Leu Lys Lys His
1170 1175 1180

Lys Ile Val Glu Lys Ser Gly Asp Val Lys Phe Ala Ser Ala Gln Lys
1185 1190 1195 1200

Lys Val Glu Lys Leu Lys Glu Ser Arg Ala Tyr Met Phe Gln Ala Arg
1205 1210 1215

Pro Val Asp Ile Glu Thr Thr Ser Tyr Ala Val Leu Ser Tyr Leu Ala
1220 1225 1230

Gln Asn Gln Thr Ser Glu Ser Leu Ser Ile Ile Arg Trp Leu Val Ser
1235 1240 1245

Gln Arg Asn Glu Leu Gly Gly Phe Thr Ser Thr Gln Asp Thr Val Met
1250 1255 1260

Ala Leu Gln Ala Leu Ser Ser Tyr Ala Ala Val Thr Tyr Ser Asp Lys
1265 1270 1275 1280

His Thr Ser Gln Val Thr Ile Leu Asn Gly Lys His Thr His Ser Phe
1285 1290 1295

Asp Ile Asn Ile Arg Asn Ala Ile Val Leu Gln Ser Tyr Gln Leu Ser
1300 1305 1310

Ser Leu Asn Asp Ala Val Ser Ile Asn Ala Asn Gly Thr Gly Val Val
1315 1320 1325

Phe Ala Gln Leu Ser Tyr Ser Tyr Tyr Arg Asp Ser Leu Asn Asp Asp
1330 1335 1340

Ala Pro Phe Phe Cys Ser Gln Glu Ile Lys Glu Ile Arg Ala Gly Asn
1345 1350 1355 1360

Arg Leu Gln Leu Asp Leu Cys Cys Asn Tyr Thr Arg Pro Gly Lys Ser

1365	108	1375
	1370	
Asn Met Ala Leu Ala Glu Ile Asp Ala Leu Ser Gly Tyr Arg Phe Asp		
1380	1385	1390
Ala Glu Gln Val His Thr Leu Thr Ser Ile Glu Asp Leu Gln Arg Val		
1395	1400	1405
Glu Met Glu Lys Asp Asp Thr Lys Met Asn Val Tyr Phe Asn Pro Leu		
1410	1415	1420
Gly Gly Arg Pro Val Cys Leu Ser Leu Tyr Ser Asp Val Thr Tyr Gln		
1425	1430	1435
Val Ala Asp Gln Lys Pro Ala Asn Phe Arg Leu Val Asp Tyr Tyr Asp		
1445	1450	1455
Pro Glu Glu Gln Leu Lys Met Thr Tyr Ala Ala Lys Gln Thr Arg Ser		
1460	1465	1470
Leu Gln Glu Lys Cys Gly Glu Asp Cys Trp Pro Pro Ile Ser Pro Ser		
1475	1480	1485
Leu Pro Pro Phe Asp Glu Ser Thr Val Thr Gly Thr Ser Ser Gly Phe		
1490	1495	1500
Gly Ala Lys Trp Cys Ala Leu Ile Ile Ala Val Leu Leu Ile Ala		
1505	1510	1515

<210> 72
<211> 1026
<212> DNA
<213> Caenorhabditis elegans

<400> 72

```

atgaatattg tgggttat aatttttg aagctacaga aaggcattt ccgagaagat 60
ggacttgaac cagtaacact agcagttcat ggtactgcag aaatgatgga aatgatagaa 120
aataagccctg agaactggga tggcctata tcatttgat tgtttattga ttttcattct 180
agacaaaattc tggattacgt cgctaagggtt tatagctgcg atgaggagtt tcagaaaaag 240
gttaccgtac acttgcatt ccgtctatca cccttcaaa ctagctgcc acaaatcaaa 300
gtctcacccgt caactctcga atgtggcgag ttcctctcca acagaaaaaa gtttcgacgt 360
gctgttaggcg actcattca attgtaccca agtaacttga tgagaaatat tgcaagaaaa 420
ggtgccaaattc cggatattca ttcatgtc gatggata tgataatgag tgatggattt 480
gcggaaaaaga ttaaacaat tgcaaattca attgttgatg ggaaaaacaa aaatgtattg 540
gttgttagaa gattgaaac aaatgaaacg acaatacccc acaaccatata agaattgaaa 600
aatgcattt aaaaataaca agtctccaa ttcatcaca gattttctt tgctggcat 660
aaaatttcaa atatttca cttgttgcg gttccaatg aaaccgacga aattactgt 720
tggaaatac cttactcgag cagcttatgg gaagttcaag tgattctca tcgtaacgac 780
ttgtacaatg cggattactt tccagcgaga atcaaggta tgcagtcatt ggtgtacagc 840
ctgtgcagag ccaactatac gttcaaccc tcatacacacg tttcaacgt gcacaaagga 900
atcaaatttgcg gctactaa cttctcaaaa tccgttatac cacactctaa gagaaatgaa 960
agaaatagcg aactccagga tacatacccc gatacgttgg atagatgcgg tcaatttgcg 1020
atgtaa                                         1026

```

<210> 73
<211> 341
<212> PRT

109

<213> Caenorhabditis elegans

<400> 73

Met	Asn	Ile	Val	Trp	Val	Ile	Ile	Phe	Trp	Lys	Leu	Gln	Lys	Gly	Ile
1				5					10					15	

Phe	Arg	Glu	Asp	Gly	Leu	Glu	Pro	Val	Thr	Leu	Ala	Val	His	Gly	Thr
		20				25							30		

Ala	Glu	Met	Met	Glu	Met	Ile	Glu	Asn	Lys	Pro	Glu	Asn	Trp	Asp	Gly
		35				40						45			

Pro	Ile	Ser	Phe	Gly	Leu	Phe	Ile	Asp	Phe	His	Ser	Arg	Gln	Ile	Leu
			50			55				60					

Asp	Tyr	Val	Ala	Lys	Val	Tyr	Ser	Cys	Asp	Glu	Glu	Phe	Gln	Lys	Lys
		65			70				75				80		

Val	Thr	Val	His	Phe	Ala	Phe	Arg	Leu	Ser	Pro	Phe	Gln	Thr	Ser	Cys
			85					90				95			

Pro	Gln	Ile	Lys	Val	Ser	Pro	Ser	Thr	Leu	Glu	Cys	Gly	Glu	Phe	Leu
			100					105				110			

Ser	Asn	Arg	Lys	Lys	Phe	Arg	Arg	Ala	Val	Gly	Asp	Ser	Phe	Gln	Leu
			115					120				125			

Tyr	Pro	Ser	Asn	Leu	Met	Arg	Asn	Ile	Ala	Arg	Lys	Gly	Ala	Lys	Ser
				130		135				140					

Asp	Ile	His	Phe	Ile	Val	Asp	Gly	Asp	Met	Ile	Met	Ser	Asp	Gly	Phe
		145			150				155			160			

Ala	Glu	Lys	Ile	Lys	Pro	Ile	Ala	Asn	Gln	Ile	Val	Asp	Gly	Lys	Asn
				165					170			175			

Lys	Asn	Val	Leu	Val	Val	Arg	Arg	Phe	Glu	Thr	Asn	Glu	Thr	Thr	Ile
				180				185			190				

Pro	His	Asn	His	Ile	Glu	Leu	Lys	Asn	Ala	Ile	Glu	Asn	Lys	Gln	Val
				195				200			205				

Phe	Gln	Phe	His	His	Arg	Phe	Phe	Phe	Ala	Gly	His	Lys	Ile	Ser	Asn
			210			215				220					

Ile	Ser	His	Trp	Phe	Ala	Val	Ser	Asn	Glu	Thr	Asp	Glu	Ile	Thr	Ala
			225			230			235			240			

Trp	Glu	Ile	Pro	Tyr	Ser	Ser	Leu	Trp	Glu	Val	Gln	Val	Ile	Leu
			245					250			255			

His	Arg	Asn	Asp	Leu	Tyr	Asn	Ala	Asp	Tyr	Phe	Pro	Ala	Arg	Ile	Lys
			260					265			270				

Val	Met	Gln	Ser	Leu	Val	Tyr	Ser	Leu	Cys	Arg	Ala	Asn	Tyr	Thr	Phe
			275			280				285					

Asn	Leu	Leu	Ser	His	Val	Phe	Asn	Val	His	Lys	Gly	Ile	Lys	Leu	Gly
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

290	110	300
	295	305

Asp Thr Asn Phe Ser Lys Ser Val Ile Ala His Ser Lys Arg Asn Gly	305	320
	310	315

Arg Asn Ser Glu Leu Gln Asp Thr Tyr Pro Asp Thr Leu Asp Arg Cys	325	335
	330	335

Gly Gln Phe Val Met	340	
	340	

<210> 74

<211> 1869

<212> DNA

<213> Caenorhabditis elegans

<400> 74

```

atgcagtaca ttgtacgtc atatttaca atatggaact ttgtggacca cacacgtgtt 60
ggggcgtttc cggaaagaaga ttacattcgc cttgcgtata ttatcggtgg aaattttatg 120
acacgtctta tggcatgca gcattttaaa agtgtattga agtactctga ccatttctt 180
cgccctacatc tgataactga tgaaaatcac cgatccgata ttcatgagct catgacgtca 240
tggaatattt caaactgcga gtggttttt cacaatctca cagagttcga aaaacgagtt 300
gcttggattc caaattcaca ttattcaaaa tattatggtt tgagcaaact tttattccct 360
gaaatcatcg gcaatgacat tggaaagatt atgttcatgg atgttgatat cattttcaa 420
accaatattt ttgatttgcg gaaacaattt agaaacttta acaattccca gttttcggg 480
atggtgaaaa atcttccga ttgttatctt aacaaggatg gtaaaaaagtc gttttggcca 540
gcattgggac gtggatttaa cactggaata atcatgtttg atttgataa gctccggaaa 600
aatggatggg caagcaaattt gagagtagtg gctaacaat atttacgaat tcacggaaaa 660
actgccatgt cagatcaaga catatttaat gcatacattc atgactatcc gactgaaatt 720
atacaattt catgtgctta caattatcaa cttggagcac tcacaaaatc caaagaacta 780
tgtccggaga ctccacttgc gctacatttc aactcacaat acaagactgt tggaaaaat 840
tacgcattt ttgacaagat tcgaaaagcg tttgatgaaa tggatggttc agatctaaa 900
cgacgttagac gatctttaa agggaaataat caaaaagata tctgccatga atatttacca 960
ttagacaattt tccgaattat cccaaatgca attggaagaa tgacaaaacc tgcagaactc 1020
tgcattgttgc cgcagtttc caaagatcga cttaatcatt ttctggaaag tgcaaattgcg 1080
tggcggcattc ctatatctac agcagtagatc gggaggata aagatttgct agacattgca 1140
aaagccgtca cagaattgaa tcgcacagat atcacaatcc atctggttt tgaggaacca 1200
actgaatccc ggatgctaga ctctttat cccataaatt ttttggaaa tgtagcaatt 1260
gaacacgcaa actgcaataa tattttatg actgatgtt attttgggt acttggagat 1320
tacggtacaa taatcgatca aactggaaac ctgaaacaaa aagaagttct ggtgatccct 1380
gcattggaaa tgacataccc gcagctgagg ttaaattttt caaattttct ctcgagaaaa 1440
gattttgttgc tagaacattt attgaacaaa accattcaaa cttttcggga aacaatttgg 1500
ccaaagtcttc acgtacctac aaatatttca aaatggataa agtcaaattcg cacttataatg 1560
gtagcacaaa atgtaaatta tgaaaagaac tatgaacattt attttggat caaaaaagaa 1620
gaatgccctt ttacgatca gcggttcggg ggatttggct ggaataaaagt aactcatgta 1680
atgcaactga aaatgtatgaa ttataagttc ttggtttctc caactagttt tatgattcat 1740
caaaatcata atgcttcaaa atcattgaaa cgctggagac gtgacccaca ttatcagaaa 1800
tgccttcaca cgttaaaaaaa taaattttatg aaaaaaactg ctatcgact gggatcaag 1860
ctaatggatcaag 1869

```

<210> 75

<211> 622

<212> PRT

<213> Caenorhabditis elegans

<400> 75

Met Gln Tyr Ile Val Ala Ser Tyr Phe Thr Ile Trp Asn Phe Val Asp

1	5	10	15
111			
His Thr Arg Val Gly Ala Phe Pro Glu Glu Asp Tyr Ile Arg Leu Ala			
20		25	
Tyr Ile Ile Gly Gly Asn Phe Met Thr Arg Leu Met Phe Met Gln His			
35		40	
45			
Phe Lys Ser Val Leu Lys Tyr Ser Asp His Phe Phe Arg Leu His Leu			
50		55	
60			
Ile Thr Asp Glu Asn His Arg Ser Asp Ile His Glu Leu Met Thr Ser			
65		70	
75			
80			
Trp Asn Ile Ser Asn Cys Glu Trp Phe Phe His Asn Leu Thr Glu Phe			
85		90	
95			
Glu Lys Arg Val Ala Trp Ile Pro Asn Ser His Tyr Ser Lys Tyr Tyr			
100		105	
110			
Gly Leu Ser Lys Leu Leu Ile Pro Glu Ile Ile Gly Asn Asp Ile Gly			
115		120	
125			
Lys Ile Met Phe Met Asp Val Asp Ile Ile Phe Gln Thr Asn Ile Phe			
130		135	
140			
Asp Leu Trp Lys Gln Phe Arg Asn Phe Asn Asn Ser Gln Val Phe Gly			
145		150	
155			
160			
Met Val Glu Asn Leu Ser Asp Trp Tyr Leu Asn Lys Asp Gly Lys Lys			
165		170	
175			
Ser Val Trp Pro Ala Leu Gly Arg Gly Phe Asn Thr Gly Ile Ile Met			
180		185	
190			
Phe Asp Leu Asp Lys Leu Arg Lys Asn Gly Trp Ala Ser Lys Trp Arg			
195		200	
205			
Val Val Ala Asn Lys Tyr Leu Arg Ile His Gly Lys Thr Ala Met Ser			
210		215	
220			
Asp Gln Asp Ile Phe Asn Ala Tyr Ile His Asp Tyr Pro Thr Glu Ile			
225		230	
235			
240			
Ile Gln Ile Pro Cys Ala Tyr Asn Tyr Gln Leu Gly Ala Leu Thr Lys			
245		250	
255			
Ser Lys Glu Leu Cys Pro Glu Thr Pro Leu Ala Leu His Phe Asn Ser			
260		265	
270			
Gln Asn Lys Thr Val Gly Lys Asn Tyr Ala Phe Phe Asp Lys Ile Arg			
275		280	
285			
Lys Ala Phe Asp Glu Met Asp Gly Ser Asp Leu Lys Arg Arg Arg Arg			
290		295	
300			
Ser Phe Lys Gly Asn Asn Gln Lys Asp Ile Cys His Glu Tyr Leu Pro			
305		310	
315			
320			

112

Leu Asp Asn Phe Arg Ile Ile Pro Asn Ala Ile Gly Arg Met Thr Lys
325 330 335

Pro Ala Glu Leu Cys Met Val Thr Gln Phe Ser Lys Asp Arg Leu Asn
340 345 350

His Phe Leu Glu Ser Ala Asn Ala Trp Arg His Pro Ile Ser Thr Ala
355 360 365

Val Tyr Gly Lys Asp Lys Asp Leu Leu Asp Ile Ala Lys Ala Val Thr
370 375 380

Glu Leu Asn Arg Thr Asp Ile Thr Ile His Leu Val Phe Glu Glu Pro
385 390 395 400

Thr Glu Ser Trp Met Leu Asp Ser Leu Tyr Pro Ile Asn Phe Leu Arg
405 410 415

Asn Val Ala Ile Glu His Ala Asn Cys Lys Tyr Ile Leu Met Thr Asp
420 425 430

Val Asp Phe Val Val Leu Gly Asp Tyr Gly Thr Ile Ile Asp Gln Thr
435 440 445

Gly Asn Leu Lys Gln Lys Glu Val Leu Val Ile Pro Ala Leu Glu Met
450 455 460

Thr Tyr Pro Gln Leu Arg Leu Asn Leu Ser Asn Phe Leu Ser Arg Lys
465 470 475 480

Asp Leu Val Ile Glu His Leu Leu Asn Lys Thr Ile Gln Thr Phe Arg
485 490 495

Glu Thr Ile Trp Pro Ser Ser His Val Pro Thr Asn Ile Ser Lys Trp
500 505 510

Ile Lys Ser Asn Arg Thr Tyr Met Val Ala Gln Asn Val Asn Tyr Glu
515 520 525

Lys Asn Tyr Glu Pro Tyr Phe Val Ile Lys Lys Glu Glu Cys Pro Phe
530 535 540

Tyr Asp Gln Arg Phe Gly Gly Phe Gly Trp Asn Lys Val Thr His Val
545 550 555 560

Met Gln Leu Lys Met Met Asn Tyr Lys Phe Leu Val Ser Pro Thr Ser
565 570 575

Phe Met Ile His Gln Asn His Asn Ala Ser Lys Ser Leu Lys Arg Trp
580 585 590

Arg Arg Asp Pro His Tyr Gln Lys Cys Leu His Thr Leu Lys Asn Lys
595 600 605

Phe Met Lys Lys Thr Ala Ser Arg Leu Gly Ile Lys Leu Arg
610 615 620

<210> 76
<211> 417
<212> PRT
<213> *Caenorhabditis elegans*

<400> 76
Met Val Ser Leu Gln Lys Ser Ile Gly Leu Leu Leu Ser Ala Ile
1 5 10 15
Ile Gly Leu Val Phe Leu Ile Gln His Arg Lys Ser Tyr Thr Ser Ser
20 25 30
Asp Ala Leu Leu Glu Asn Gly Tyr Pro Asn Lys Tyr Tyr Thr Ile Glu
35 40 45
Asn Pro Ala Glu Glu Gly Glu Arg Arg Ser Tyr Ser Ile Gln Thr Glu
50 55 60
Met His Ala Asp Gln Tyr Cys Ile Ala Tyr Lys Phe Leu Glu Ala Thr
65 70 75 80
Glu Ser Phe Arg Glu Ala Asp Gly Leu Glu Pro Val Thr Leu Ala Thr
85 90 95
His Ala Thr Ala Asp Met Ile Glu Thr Val Glu Asn Met Thr Phe Leu
100 105 110
Trp Asp Gly Pro Ile Ser Ile Gly Ile Phe Val Asp Tyr His Ser Tyr
115 120 125
Asn Val Leu Glu Tyr Leu Ala Glu Val His Arg Cys Asp Val Ser Phe
130 135 140
Arg Arg Lys Met Asn Val His Phe Ala Phe Arg Arg Ser Pro Phe Gln
145 150 155 160
Thr Glu Cys Pro Leu Ile Glu Ile Pro Gln Ser Asn Arg Ser Cys Gln
165 170 175
Glu Phe Phe Ala Thr His Thr Glu Leu Arg Asn Ala Ile Val Gly Pro
180 185 190
Phe Gln Leu Tyr Pro Ser Asn Leu Met Arg Asn Ile Ala Arg Lys Gly
195 200 205
Ala Gln Thr Asp Leu Gln Phe Ile Met Asp Gly Asp Met Val Pro Ser
210 215 220
Glu Gly Phe Ala Thr Lys Ile Lys Arg Ile Ala Asn Glu Val Ile Asp
225 230 235 240
Gly Lys Asn Lys Arg Val Leu Ala Ile Arg Arg Phe Glu Thr Ser Asp
245 250 255
Thr Ala Glu Ile Pro Arg Asp His Leu Lys Leu Leu Lys Ser Lys Lys
260 265 270

114

Leu	His	Lys	Thr	Phe	Glu	Phe	His	His	Arg	Tyr	Phe	Pro	Glu	Gly	His
275					280							285			
His	Ile	Asp	Gly	Leu	Asp	Asp	Trp	Phe	Arg	Thr	Ser	Ile	His	Ser	Gly
290					295						300				
Val	Val	Thr	Thr	Lys	Glu	Val	Ala	Tyr	Pro	Gly	Tyr	Leu	Trp	Glu	Val
305					310				315				320		
Gln	Thr	Ile	Leu	His	Arg	Asn	Asp	Pro	Tyr	Asn	Ala	Asp	Tyr	Phe	Pro
325								330					335		
Ser	Arg	Ile	Lys	Val	Met	His	Ser	Leu	Val	Tyr	Ala	Leu	Cys	Arg	Ala
340								345					350		
Gly	Tyr	Thr	Phe	His	Val	Pro	Thr	His	Val	Phe	Asp	Ser	His	Arg	Gly
355							360					365			
Ile	Lys	His	Thr	Asn	Thr	Ile	Tyr	Ser	Lys	Ala	Thr	Ile	Ala	His	Gln
370						375					380				
Glu	Ala	Tyr	Ala	Met	Lys	Glu	Ala	Gly	Asp	Arg	Tyr	Ile	Lys	Glu	Met
385						390				395				400	
Asp	Asp	Leu	Tyr	Pro	His	Thr	Leu	Ser	Gln	Cys	Gly	Glu	Phe	Ser	Met
405									410				415		

Ile

<210> 77
<211> 1050
<212> DNA
<213> Caenorhabditis elegans

<400> 77
atgcacgacg agcagtttg tgggttat aacttcctgg aggccgaaga tacattccga 60
gaagacgct tggaccagt aactcttgct attcatggca ctcaggaaat ttgtcaacta 120
ttggggata agcctttgaa ctggatggg cctatttcat ttggtctatt cgttagattt 180
cattccccaaa aggcctgaa ttatatttcc atgctacata aatgtgatgc agctttaaa 240
agacagatga ctgtccactt tgcatccga atctcaccat ctcacatccga atgccaatg 300
attcaagttc ttgggtatca ggatttgtgcc acattttac agaaaagcaa gcagtcctt 360
gaggaaattg aggactctt tcaaacttac ccgataaacc taatgagaaaa tattgctcg 420
cgcggagcaa agtcggattt acacttgata atcgatacag atatgatgat gagcaccaac 480
tttgc当地 gttaaaacc aatcgcaaat cggatgattt atgggaagaaa taagcaagt 540
ttgggttgc当地 gacgtttgc当地 gaccaacgaa aatgagctac caatgagctt tgggatctt 600
gaggaggaa ttgaaaatca taaaacattc cagttccatc acaaatttctt ttcgttgg 660
catcaaatttcccaacttgc当地 ggaatggttc gaaagatctc acgcctctaa tgatgtgg 720
gcatgggaga ttccatatac tggaaatgtat tgggaatgttca aatcatttctt tcaccgcaac 780
gatccatatac atgttagatgc当地 tttcccttc当地 cgagtcaagg atatgcagtc tttgatctt 840
aagttatgcc当地 gtgcaaacta caccttcaat ttgctcttc当地 atgtgttcaat tgttcataaa 900
ggaatcaaag aagatgatac catgtactcg aagggtgtga ctgctcacac aaaacggcaa 960
ggaagatgtgaa ggacgcttgc当地 tcgatatgtc actgaaatttgc当地 acaggaaata cccggatacc 1020
atgaaacatgttggcagttt tttgttataa 1050

<210> 78
<211> 349

115

<212> PRT

<213> Caenorhabditis elegans

<400> 78

Met His Asp Glu Gln Phe Cys Val Gly Tyr Asn Phe Leu Glu Ala Glu
1 5 10 15Asp Thr Phe Arg Glu Asp Gly Leu Glu Pro Val Thr Leu Ala Ile His
20 25 30Gly Thr Pro Glu Val Leu Gln Leu Leu Gly Asn Lys Pro Leu Asn Trp
35 40 45Asp Gly Pro Ile Ser Phe Gly Leu Phe Val Asp Phe His Ser Gln Lys
50 55 60Ala Leu Asn Tyr Ile Ser Met Leu His Lys Cys Asp Ala Ala Phe Lys
65 70 75 80Arg Gln Met Thr Val His Phe Ala Phe Arg Ile Ser Pro Ser Gln Ser
85 90 95Glu Cys Pro Met Ile Gln Val Leu Gly Tyr Gln Asp Cys Ala Thr Phe
100 105 110Leu Gln Lys Ser Lys Gln Leu Leu Glu Glu Ile Glu Asp Ser Phe Gln
115 120 125Ile Tyr Pro Ile Asn Leu Met Arg Asn Ile Ala Arg Arg Gly Ala Lys
130 135 140Ser Asp Leu His Leu Ile Ile Asp Thr Asp Met Met Met Ser Thr Asn
145 150 155 160Phe Ala Lys Met Val Lys Pro Ile Ala Asn Arg Met Ile Asp Gly Lys
165 170 175Asn Lys Gln Val Leu Val Val Arg Arg Phe Glu Thr Asn Glu Asn Glu
180 185 190Leu Pro Met Ser Phe Gly Asp Leu Glu Glu Gly Ile Glu Asn His Lys
195 200 205Thr Phe Gln Phe His His Lys Phe Phe Phe Val Gly His Gln Ile Pro
210 215 220Asn Leu Met Glu Trp Phe Glu Arg Ser His Ala Ser Asn Asp Val Val
225 230 235 240Ala Trp Glu Ile Pro Tyr Thr Gly Asn Asp Trp Glu Val Gln Ile Ile
245 250 255Leu His Arg Asn Asp Pro Tyr Asn Val Glu Tyr Phe Pro Ser Arg Val
260 265 270Lys Asp Met Gln Ser Leu Ile Tyr Lys Leu Cys Arg Ala Asn Tyr Thr
275 280 285

116

Phe	Asn	Leu	Leu	Ser	His	Val	Phe	Asn	Val	His	Lys	Gly	Ile	Lys	Glu
290															300

Asp	Asp	Thr	Met	Tyr	Ser	Lys	Val	Val	Thr	Ala	His	Thr	Lys	Arg	Gln
305															320

Gly	Arg	Leu	Arg	Thr	Leu	Ser	Arg	Tyr	Val	Thr	Glu	Ile	Asp	Arg	Lys
															335

Tyr	Pro	Asp	Thr	Met	Lys	Arg	Cys	Gly	Gln	Phe	Leu	Leu			
															340

															345
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----

<210> 79

<211> 1167

<212> DNA

<213> Caenorhabditis elegans

<400> 79

```

atgctcaaga tttcctcaag atttactcca tttgctttgt ttctcctatt ttcaattcta 60
ctttgttgtt ggttttgaa gaaaatttct caagatctt ctaggatctc tatagaactt 120
tatgaaaatg agtttgcac tggctacaat ttcctggagg ctacagaaaa attccgagaa 180
gacggcttgg agcctgtgac acttgcatt catggacat ccgatgtcct tgaagttagt 240
gagaagaagc catcaaactg ggatgggcct atatcatcg ggtatgttgg tgactatcac 300
tcccagaagg ctctggaata tgtggcaatg cttcatcagt gtgataagga gttcggggag 360
aaagtccaccg ttcaactatgt gttccgaact ttcctttccc agatggattt tccagtgata 420
actcctgatg tgcgggtgaa ttgtgatgaa tttcgtcgaa atcggaaagca gtcctcaaa 480
gaaataaacct ccccgttca aatctaccca ataaacttga tgagaaatgt tgcccgccgt 540
ggagcaacct ctgatctaca cttgatagtc gacgctgata tgacaatgag ctctgatttt 600
gcgagaaaaag tgaagccaat cgcaaatcgc ataattgatg gggaaacagag acaagtttg 660
gtagttcgac gtttgagac aaacgaagat gagattccac tggaaagttga gcagctgaag 720
atgggattt gagaatcaaaa agtattcgag ttccatcaca attttttctt tattgggcat 780
aaaattccag acgtggaaaa atggttcac gcctcgaaga cagaaaaatga agtactgcc 840
tgggaaattc catactcagg aatgcatgg gaagtcaag tgattctca ccggaaacgac 900
atgtacaacg ccgagtaactt tccgtctaga atccgagaca tgcagtctt gatctacggt 960
ctctgccgag ccaactacac cttcaacttg ctctctcacg tattcaatgt tcaccaaggc 1020
atcaaagagg atgacacaat gtactcgaaa gttgtcacag ctcactcgaa gcgatatgga 1080
aggaatagag cattctcccg ctacgtccat gagatgaata ctgcgtatcc gggaaactatt 1140
cagcggtgcg ggaagtttgaa gatgtga 1167

```

<210> 80

<211> 388

<212> PRT

<213> Caenorhabditis elegans

<400> 80

Met	Leu	Lys	Ile	Ser	Ser	Arg	Phe	Thr	Pro	Phe	Ala	Leu	Phe	Leu	Leu
1															15

Phe	Ser	Ile	Leu	Leu	Cys	Leu	Trp	Phe	Leu	Lys	Lys	Tyr	Ser	Gln	Asp
															30

Leu	Ser	Arg	Ile	Ser	Ile	Glu	Leu	Tyr	Glu	Asn	Glu	Phe	Cys	Ile	Gly
															45

Tyr	Asn	Phe	Leu	Glu	Ala	Thr	Glu	Lys	Phe	Arg	Glu	Asp	Gly	Leu	Glu
															50

117

Pro	Val	Thr	Leu	Ala	Ile	His	Gly	Thr	Ser	Asp	Val	Leu	Glu	Val	Val
65															80
Glu	Lys	Lys	Pro	Ser	Asn	Trp	Asp	Gly	Pro	Ile	Ser	Phe	Gly	Met	Phe
			85							90					95
Val	Asp	Tyr	His	Ser	Gln	Lys	Ala	Leu	Glu	Tyr	Val	Ala	Met	Leu	His
			100						105						110
Gln	Cys	Asp	Lys	Glu	Phe	Gly	Glu	Lys	Val	Thr	Val	His	Tyr	Val	Phe
			115				120								125
Arg	Thr	Ser	Pro	Ser	Gln	Met	Asp	Cys	Pro	Val	Ile	Thr	Pro	Asp	Val
			130			135					140				
Ser	Val	Asn	Cys	Asp	Glu	Phe	Arg	Arg	Asn	Arg	Lys	Gln	Leu	Leu	Lys
	145				150				155						160
Glu	Ile	Thr	Ser	Pro	Phe	Gln	Ile	Tyr	Pro	Ile	Asn	Leu	Met	Arg	Asn
			165					170							175
Val	Ala	Arg	Arg	Gly	Ala	Thr	Ser	Asp	Leu	His	Leu	Ile	Val	Asp	Ala
			180					185							190
Asp	Met	Thr	Met	Ser	Ser	Asp	Phe	Ala	Arg	Lys	Val	Lys	Pro	Ile	Ala
			195				200					205			
Asn	Arg	Ile	Ile	Asp	Gly	Lys	Gln	Arg	Gln	Val	Leu	Val	Val	Arg	Arg
		210				215						220			
Phe	Glu	Thr	Asn	Glu	Asp	Glu	Ile	Pro	Leu	Glu	Val	Glu	Gln	Leu	Lys
	225				230				235						240
Met	Gly	Phe	Glu	Asn	Gln	Lys	Val	Phe	Glu	Phe	His	His	Asn	Phe	Phe
			245					250							255
Phe	Ile	Gly	His	Lys	Ile	Pro	Asp	Val	Glu	Lys	Trp	Phe	His	Ala	Ser
			260					265							270
Lys	Thr	Glu	Asn	Glu	Val	Thr	Ala	Trp	Glu	Ile	Pro	Tyr	Ser	Gly	Asn
			275					280				285			
Ala	Trp	Glu	Val	Gln	Val	Ile	Leu	His	Arg	Asn	Asp	Met	Tyr	Asn	Ala
			290				295					300			
Glu	Tyr	Phe	Pro	Ser	Arg	Ile	Arg	Asp	Met	Gln	Ser	Leu	Ile	Tyr	Gly
	305				310					315					320
Leu	Cys	Arg	Ala	Asn	Tyr	Thr	Phe	Asn	Leu	Leu	Ser	His	Val	Phe	Asn
				325					330						335
Val	His	Gln	Gly	Ile	Lys	Glu	Asp	Asp	Thr	Met	Tyr	Ser	Lys	Val	Val
				340				345							350
Thr	Ala	His	Ser	Lys	Arg	Tyr	Gly	Arg	Asn	Arg	Ala	Phe	Ser	Arg	Tyr
			355				360					365			
Val	His	Glu	Met	Asn	Thr	Ala	Tyr	Pro	Gly	Thr	Ile	Gln	Arg	Cys	Gly

118
370 375 380

Lys Phe Glu Met
385

<210> 81
<211> 1275
<212> DNA
<213> *Caenorhabditis elegans*

<400>	81					
atgtgtactt	ttaaaaaatt	cgatggagaa	actcgaaaaa	ctcggatcca	gattttgtat	60
tttgctgcat	cactcgtaa	tctcgatctc	aaggcctgtga	agctaaattc	caatgcgaat	120
atatgcgtca	aaattgaaaac	ttctcacttt	acctctggca	cttatttatat	taacttggca	180
tctgtacaat	tcaaaggtaa	tgctcctggt	tctgatgtcg	aaggaaggtt	tttcaagaaa	240
ctacacggaa	aaccagaaaa	taattataat	tccttacaga	cgactgtaca	ctttgcattc	300
cgaatctcac	catctcaaac	cgaatgtcct	gtgatctata	cttccgggtt	taaggattgt	360
gtcacgttt	tccaaaagaa	cacagagctc	cttgagaaaa	tggaggaccc	ttttcagatc	420
tacccgataa	atctaatttag	aaatattgtct	cgacgcggag	caaagtgcga	tttacacttg	480
atagtcgata	cagatatatgt	aatgagttact	aactttgcaa	agatggtaaa	accagttgcg	540
aatcgatgta	ttgatggat	gaataaaacaa	gtcttgggt	ttcgacgctt	cgagaccaac	600
gaaaccgaac	ttccactgaa	cttggacgaa	cttgagcaag	ggcttctgaa	tgagaacaca	660
tttgaattcc	atcactcggt	ctttttgtt	ggccatcaaa	tacccaaactt	gtctgagtgg	720
tttggaaaatt	cttacgcattc	agaagaaaacc	actgcatggg	agattccata	cacaggaagt	780
gattgggaag	ttcaaataat	tcttcaccgc	aacgaccat	ataacattga	gtacttccc	840
tcgcgagtca	gggatatatgca	gtctttgatt	tataaactct	gccgtgcgaa	ctacacattc	900
aatttgcct	ctcacgtatt	caatgttcac	aaggggatca	aagaagatga	tacaatgtac	960
tcgaaagtgc	tcactgctca	cacaaagcaa	ttttggaaaa	tgaggtattt	attttttgt	1020
tgttagagaat	tcccaagata	tgcttgtgaa	tttacagaac	gctttcccg	tacactgccc	1080
aaatcgacaa	gcagtaccca	gacactacaa	caagataatt	tgccagatgt	ttccttattt	1140
tttcaaggag	tattcagaat	gttcacgcaa	ttctcgaaat	tttcagagca	tttgaacatt	1200
tttaaagccg	gaaaagcgta	ctgtttgtt	gtttctgtca	cttttctggt	gtctttaaaa	1260
tatqqqaaaa	aataa					1275

<210> 82
<211> 424
<212> PRT
<213> *Caenorhabditis elegans*

<400> 82
Met Cys Thr Phe Lys Lys Phe Asp Gly Glu Thr Arg Lys Thr Arg Ile
1 5 10 15

Gln Ile Leu Tyr Phe Ala Ala Ser Leu Val Asn Leu Asp Leu Lys Pro
20 25 30

Val Lys Leu Asn Ser Asn Ala Asn Ile Cys Val Lys Ile Glu Thr Ser
 35 40 45

His Phe Thr Ser Gly Thr Tyr Tyr Ile Asn Leu Ala Ser Val Gln Phe
50 55 60

Lys Gly Asn Ala Pro Gly Ser Asp Ala Glu Gly Arg Phe Phe Lys Lys
65 70 75 80

Leu His Gly Lys Pro Glu Asn Asn Tyr Asn Ser Leu Gln Thr Thr Val
85 90 95

119

His Phe Ala Phe Arg Ile Ser Pro Ser Gln Thr Glu Cys Pro Val Ile
100 105 110

Tyr Thr Ser Gly Tyr Lys Asp Cys Val Thr Phe Phe Gln Lys Asn Thr
115 120 125

Glu Leu Leu Glu Glu Met Glu Asp Pro Phe Gln Ile Tyr Pro Ile Asn
130 135 140

Leu Met Arg Asn Ile Ala Arg Arg Gly Ala Lys Ser Asp Leu His Leu
145 150 155 160

Ile Val Asp Thr Asp Met Val Met Ser Thr Asn Phe Ala Lys Met Val
165 170 175

Lys Pro Val Ala Asn Arg Met Ile Asp Gly Met Asn Lys Gln Val Leu
180 185 190

Val Val Arg Arg Phe Glu Thr Asn Glu Thr Glu Leu Pro Leu Asn Leu
195 200 205

Asp Glu Leu Glu Gln Gly Leu Leu Asn Glu Asn Thr Phe Glu Phe His
210 215 220

His Ser Phe Phe Val Gly His Gln Ile Pro Asn Leu Ser Glu Trp
225 230 235 240

Phe Glu Asn Ser Tyr Ala Ser Glu Glu Thr Thr Ala Trp Glu Ile Pro
245 250 255

Tyr Thr Gly Ser Asp Trp Glu Val Gln Ile Ile Leu His Arg Asn Asp
260 265 270

Pro Tyr Asn Ile Glu Tyr Phe Pro Ser Arg Val Arg Asp Met Gln Ser
275 280 285

Leu Ile Tyr Lys Leu Cys Arg Ala Asn Tyr Thr Phe Asn Leu Leu Ser
290 295 300

His Val Phe Asn Val His Lys Gly Ile Lys Glu Asp Asp Thr Met Tyr
305 310 315 320

Ser Lys Val Val Thr Ala His Thr Lys Gln Phe Trp Lys Met Arg Tyr
325 330 335

Leu Phe Phe Cys Cys Arg Glu Phe Pro Arg Tyr Ala Cys Glu Phe Thr
340 345 350

Glu Arg Phe Pro Val Thr Leu Pro Lys Ser Thr Ser Ser Thr Gln Thr
355 360 365

Leu Gln Gln Asp Asn Leu Pro Asp Val Ser Leu Phe Phe Ser Gly Val
370 375 380

Phe Arg Met Phe Thr Gln Phe Ser Lys Phe Ser Glu His Leu Asn Ile
385 390 395 400

120
Phe Lys Ala Gly Lys Ala Tyr Cys Phe Val Val Ser Val Thr Phe Leu
 405 410 415

Val Ser Leu Lys Tyr Gly Glu Lys
420

<210> 83
<211> 370
<212> PRT
<213> *Caenorhabditis elegans*

<400> 83
Met Glu Asp Asp Thr Pro Asp Val Ser Ser Asp Ser Asn Gly Asp Ala
1 5 10 15

Ala Tyr Ser Asp Tyr Phe Leu Asp Tyr Lys Ser Ile Met Asp Glu Ile
20 25 30

Thr Ile Thr Thr Gln Pro Lys Ser Gly Tyr Val Ile Arg Asn Lys Pro
35 40 45

Leu Arg Leu Gln Cys Arg Ala Asn His Ala Thr Lys Ile Arg Tyr Lys
50 55 60

Cys Ser Ser Lys Trp Ile Asp Asp Ser Arg Ile Glu Lys Leu Ile Gly
65 70 75 80

Thr Asp Ser Thr Ser Gly Val Gly Tyr Ile Asp Ala Ser Val Asp Ile
85 90 95

Ser Arg Ile Asp Val Asp Thr Ser Gly His Val Asp Ala Phe Gln Cys
100 105 110

Gln Cys Tyr Ala Ser Gly Asp Asp Asp Gln Asp Val Val Ala Ser Asp
115 120 125

Val Ala Thr Val His Leu Ala Tyr Met Arg Lys His Phe Leu Lys Ser
130 135 140

Pro Val Ala Gln Arg Val Gln Glu Gly Thr Thr Leu Gln Leu Pro Cys
145 150 155 160

Gln Ala Pro Glu Ser Asp Pro Lys Ala Glu Leu Thr Trp Tyr Lys Asp
165 170 175

Gly Val Val Val Gln Pro Asp Ala Asn Val Ile Arg Ala Ser Asp Gly
180 185 190

Ser Leu Ile Met Ser Ala Ala Arg Leu Ser Asp Ser Gly Asn Tyr Thr
195 200 205

Cys Glu Ala Thr Asn Val Ala Asn Ser Arg Lys Thr Asp Pro Val Glu
210 215 220

Val Gln Ile Tyr Val Asp Gly Gly Trp Ser Glu Trp Ser Pro Trp Ile
225 230 235 240

121

Gly	Thr	Cys	His	Val	Asp	Cys	Pro	Leu	Leu	Arg	Gln	His	Ala	His	Arg
245								250					255		

Ile	Arg	Asp	Pro	His	Asp	Val	Leu	Pro	His	Gln	Arg	Arg	Thr	Arg	Thr
260							265					270			

Cys	Asn	Asn	Pro	Ala	Pro	Leu	Asn	Asp	Gly	Glu	Tyr	Cys	Lys	Gly	Glu
275							280					285			

Glu	Glu	Met	Thr	Arg	Ser	Cys	Lys	Val	Pro	Cys	Lys	Leu	Asp	Gly	Gly
290						295					300				

Trp	Ser	Ser	Trp	Ser	Asp	Trp	Ser	Ala	Cys	Ser	Ser	Ser	Cys	His	Arg
305						310				315				320	

Tyr	Arg	Thr	Arg	Ala	Cys	Thr	Val	Pro	Pro	Pro	Met	Asn	Gly	Gly	Gln
325								330					335		

Pro	Cys	Phe	Gly	Asp	Asp	Leu	Met	Thr	Gln	Glu	Cys	Pro	Ala	Gln	Leu
340							345					350			

Cys	Thr	Ala	Asp	Ser	Ser	Arg	Ile	Val	Ile	Ser	Asp	Thr	Ala	Val	Tyr
355							360					365			

Gly	Ser														
	370														

<210> 84

<211> 20

<212> PRT

<213> Caenorhabditis elegans

<400> 84

Val	Ala	Ser	Ile	Phe	Ile	Val	Ala	Ser	Phe	Ile	Leu	Ala	Ile	Leu	Ala
1				5						10				15	

Met	Phe	Cys	Cys
		20	

<210> 85

<211> 122

<212> PRT

<213> Caenorhabditis elegans

<400> 85

Lys	Arg	Gly	Asn	Ser	Lys	Lys	Ser	Lys	Pro	Leu	Lys	Pro	Gln	Lys	Met
1				5						10				15	

Asn	Ser	Glu	Lys	Ala	Gly	Gly	Ile	Tyr	Tyr	Ser	Glu	Pro	Pro	Gly	Val
				20				25					30		

Arg	Arg	Leu	Leu	Leu	Glu	His	Gln	His	Gly	Thr	Leu	Leu	Gly	Glu	Lys
						35		40					45		

Ile	Ser	Ser	Cys	Ser	Gln	Tyr	Phe	Glu	Pro	Pro	Pro	Leu	Pro	His	Ser
						55						60			

122

Thr Thr Leu Arg Ser Gly Lys Ser Ala Phe Ser Gly Tyr Ser Ser Thr
65 70 75 80
Arg Asn Ala Gly Ser Arg Ala Ala Leu Ile Gln Glu Cys Ser Ser Ser
85 90 95
Ser Ser Gly Ser Gly Gly Lys Arg Thr Met Leu Arg Thr Ser Ser Ser
100 105 110
Asn Cys Ser Asp Asp Asp Asn Tyr Ala Thr
115 120

<210> 86

<211> 165

<212> PRT

<213> Caenorhabditis elegans

<400> 86

Leu Tyr Asp Tyr Met Glu Asp Lys Ser Val Leu Gly Leu Asp Thr Ser
1 5 10 15

Gln Asn Ile Val Ala Ala Gln Ile Asp Ser Asn Gly Ala Arg Leu Ser
20 25 30

Leu Ser Lys Ser Gly Ala Arg Leu Ile Val Pro Glu Leu Ala Val Glu
35 40 45

Gly Glu Lys Met Leu Tyr Leu Ala Val Ser Asp Thr Leu Thr Asp Gln
50 55 60

Pro His Leu Lys Pro Ile Glu Ser Ala Leu Ser Pro Val Ile Val Ile
65 70 75 80

Gly Gln Cys Asp Val Ser Met Ser Ala His Asp Asn Ile Leu Arg Arg
85 90 95

Pro Val Val Val Ser Phe Arg His Cys Ala Ser Thr Phe Pro Arg Asp
100 105 110

Asn Trp Gln Phe Thr Leu Tyr Ala Asp Glu Gly Ser Gly Trp Gln Lys
115 120 125

Ala Val Thr Ile Gly Glu Glu Asn Leu Asn Thr Asn Met Phe Val Gln
130 135 140

Phe Glu Gln Pro Gly Lys Lys Asn Asp Gly Phe Gly Trp Cys His Val
145 150 155 160

Met Thr Tyr Ser Leu
165

<210> 87

<211> 157

<212> PRT

<213> Caenorhabditis elegans

123

<400> 87

Ala	Arg	Leu	Met	Leu	Ala	Gly	His	Pro	Arg	Arg	Asn	Ser	Leu	Ser	Ala
1				5					10					15	

Ala	Lys	Arg	Val	His	Leu	Ala	Val	Phe	Gly	Pro	Thr	Glu	Met	Ser	Ala
			20				25					30			

Tyr	Arg	Arg	Pro	Phe	Glu	Leu	Arg	Val	Tyr	Cys	Val	Pro	Glu	Thr	Gly
				35			40				45				

Ala	Ala	Met	Glu	Ser	Val	Trp	Lys	Gln	Glu	Asp	Gly	Ser	Arg	Leu	Leu
					50		55				60				

Cys	Glu	Ser	Asn	Asp	Phe	Ile	Leu	Asn	Glu	Lys	Gly	Asn	Leu	Cys	Ile
			65			70			75			80			

Cys	Ile	Glu	Asp	Val	Ile	Pro	Gly	Phe	Ser	Cys	Asp	Gly	Pro	Glu	Val
				85			90				95				

Val	Glu	Ile	Ser	Glu	Thr	Gln	His	Arg	Phe	Val	Ala	Gln	Asn	Gly	Leu
					100			105				110			

His	Cys	Ser	Leu	Lys	Phe	Arg	Pro	Lys	Glu	Ile	Asn	Gly	Ser	Gln	Phe
				115			120				125				

Ser	Thr	Arg	Val	Ile	Val	Tyr	Gln	Lys	Ala	Ser	Ser	Thr	Glu	Pro	Met
				130			135				140				

Val	Met	Glu	Val	Ser	Asn	Glu	Pro	Glu	Leu	Tyr	Asp	Ala
				145		150				155		

<210> 88

<211> 113

<212> PRT

<213> Caenorhabditis elegans

<400> 88

Thr	Ser	Glu	Glu	Arg	Glu	Lys	Gly	Ser	Val	Cys	Val	Glu	Phe	Arg	Leu
1				5					10			15			

Pro	Phe	Gly	Val	Lys	Asp	Glu	Leu	Ala	Arg	Leu	Leu	Asp	Met	Pro	Asn
				20			25				30				

Glu	Ser	His	Ser	Asp	Trp	Arg	Gly	Leu	Ala	Lys	Lys	Leu	His	Tyr	Asp
				35			40				45				

Arg	Tyr	Leu	Gln	Phe	Phe	Ala	Ser	Phe	Pro	Asp	Cys	Ser	Pro	Thr	Ser
				50		55				60					

Leu	Leu	Leu	Asp	Leu	Trp	Glu	Ala	Ser	Ser	Ser	Gly	Ser	Ala	Arg	Ala
				65		70			75			80			

Val	Pro	Asp	Leu	Leu	Gln	Thr	Leu	Arg	Val	Met	Gly	Arg	Pro	Asp	Ala
				85			90				95				

Val	Met	Val	Leu	Glu	Arg	Phe	Leu	Ser	Ala	Phe	Pro	Gln	Ile	Val	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

124
105 110

sapiens

Thr	Leu	His	His	Ser	Ser	Pro	Thr	Ser	Glu	Ala	Glu	Glu
5						10					15	
Arg	Leu	Ser	Thr	Gln	Asn	Tyr	Phe	Arg	Ser	Leu	Pro	Arg
20					25						30	
Asn	Met	Thr	Tyr	Gly	Thr	Phe	Asn	Phe	Leu	Gly	Gly	Arg
				40						45		
Pro	Asn	Thr	Gly	Ile	Ser	Leu	Leu	Ile	Pro	Pro	Asp	Ala
				55					60			
Gly	Lys	Ile	Tyr	Glu	Ile	Tyr	Leu	Thr	Leu	His	Lys	Pro
				70				75				80
Arg	Leu	Pro	Leu	Ala	Gly	Cys	Gln	Thr	Leu	Leu	Ser	Pro
		85				90						95
Cys	Gly	Pro	Pro	Gly	Val	Leu	Leu	Thr	Arg	Pro	Val	Ile
		100			105					110		
Asp	His	Cys	Gly	Glu	Pro	Ser	Pro	Asp	Ser	Trp	Ser	Leu
				120						125		
Lys	Gln	Ser	Cys	Glu	Gly	Ser	Trp	Glu	Asp	Val	Leu	His
				135				140				
Glu	Ala	Pro	Ser	His	Leu	Tyr	Tyr	Cys	Gln	Leu	Glu	Ala
				150				155				160
Tyr	Val	Phe	Thr	Glu	Gln	Leu	Gly	Arg	Phe	Ala	Leu	Val
		165				170					175	
Leu	Ser	Val	Ala	Ala	Ala	Lys	Arg	Leu	Lys	Leu	Leu	Leu
				180		185				190		
Val	Ala	Cys	Thr	Ser	Leu	Glu	Tyr	Asn	Ile	Arg	Val	Tyr
				200						205		
Asp	Thr	His	Asp	Ala	Leu	Lys	Glu	Val	Val	Gln	Leu	Glu
				215						220		
Gly	Gly	Gln	Leu	Ile	Gln	Glu	Pro	Arg	Val	Leu	His	Phe
				230				235				240
Tyr	His	Asn	Leu	Arg	Leu	Ser	Ile	His	Asp	Val	Pro	Ser

	125		
245	250	255	
Ser Leu Trp Lys Ser Lys Leu Leu Val Ser Tyr Gln Glu Ile Pro Phe			
260	265	270	
Tyr His Ile Trp Asn Gly Thr Gln Arg Tyr Leu His Cys Thr Phe Thr			
275	280	285	
Leu Glu Arg Val Ser Pro Ser Thr Ser Asp Leu Ala Cys Lys Leu Trp			
290	295	300	
Val Trp Gln Val Glu Gly Asp Gly Gln Ser Phe Ser Ile Asn Phe Asn			
305	310	315	320
Ile Thr Lys Asp Thr Arg Phe Ala Glu Leu Leu Ala Leu Glu Ser Glu			
325	330	335	
Ala Gly Val Gln Ala Leu Val Gly Pro Ser Ala Phe Lys Ile Pro Phe			
340	345	350	
Leu Ile Arg Gln Lys Ile Ile Ser Ser Leu Asp Pro Pro Cys Arg Arg			
355	360	365	
Gly Ala Asp Trp Arg Thr Leu Ala Gln Lys Leu His Leu Asp Ser His			
370	375	380	
Leu Ser Phe Phe Ala Ser Lys Pro Ser Pro Thr Ala Met Ile Leu Asn			
385	390	395	400
Leu Trp Glu Ala Arg His Phe Pro Asn Gly Asn Leu Ser Gln Leu Ala			
405	410	415	
Ala Ala Val Ala Gly Leu Gly Gln Pro Asp Ala Gly Leu Phe Thr Val			
420	425	430	
Ser Glu Ala Glu Cys			
435			

<210> 90
<211> 931
<212> PRT
<213> Homo sapiens

<400> 90			
Met Arg Lys Gly Leu Arg Ala Thr Ala Ala Arg Cys Gly Leu Gly Leu			
1	5	10	15
Gly Tyr Leu Leu Gln Met Leu Val Leu Pro Ala Leu Ala Leu Leu Ser			
20	25	30	
Ala Ser Gly Thr Gly Ser Ala Ala Gln Asp Asp Asp Phe Phe His Glu			
35	40	45	
Leu Pro Glu Thr Phe Pro Ser Asp Pro Pro Glu Pro Leu Pro His Phe			
50	55	60	
Leu Ile Glu Pro Glu Glu Ala Tyr Ile Val Lys Asn Lys Pro Val Asn			

	126			
65	70	75	80	
Leu Tyr Cys Lys Ala Ser Pro Ala Thr Gln Ile Tyr Phe Lys Cys Asn				
85		90		95
Ser Glu Trp Val His Gln Lys Asp His Ile Val Asp Glu Arg Val Asp				
100		105		110
Glu Thr Ser Gly Leu Ile Val Arg Glu Val Ser Ile Glu Ile Ser Arg				
115		120		125
Gln Gln Val Glu Glu Leu Phe Gly Pro Glu Asp Tyr Trp Cys Gln Cys				
130		135		140
Val Ala Trp Ser Ser Ala Gly Thr Thr Lys Ser Arg Lys Ala Tyr Val				
145		150		155
Arg Ile Ala Tyr Leu Arg Lys Thr Phe Glu Gln Glu Pro Leu Gly Lys				
165		170		175
Glu Val Ser Leu Glu Gln Glu Val Leu Leu Gln Cys Arg Pro Pro Glu				
180		185		190
Gly Ile Pro Val Ala Glu Val Glu Trp Leu Lys Asn Glu Asp Ile Ile				
195		200		205
Asp Pro Val Glu Asp Arg Asn Phe Tyr Ile Thr Ile Asp His Asn Leu				
210		215		220
Ile Ile Lys Gln Ala Arg Leu Ser Asp Thr Ala Asn Tyr Thr Cys Val				
225		230		235
240				
Ala Lys Asn Ile Val Ala Lys Arg Lys Ser Thr Thr Ala Thr Val Ile				
245		250		255
Val Tyr Val Asn Gly Gly Trp Ser Thr Trp Thr Glu Trp Ser Val Cys				
260		265		270
Asn Ser Arg Cys Gly Arg Gly Tyr Gln Lys Arg Thr Arg Thr Cys Thr				
275		280		285
Asn Pro Ala Pro Leu Asn Gly Gly Ala Phe Cys Glu Gly Gln Ser Val				
290		295		300
Gln Lys Ile Ala Cys Thr Thr Leu Cys Pro Val Asp Gly Arg Trp Thr				
305		310		315
320				
Pro Trp Ser Lys Trp Ser Thr Cys Gly Thr Glu Cys Thr His Trp Arg				
325		330		335
Arg Arg Glu Cys Thr Ala Pro Ala Pro Lys Asn Gly Gly Lys Asp Cys				
340		345		350
Asp Gly Leu Val Leu Gln Ser Lys Asn Cys Thr Asp Gly Leu Cys Met				
355		360		365
Gln Thr Ala Pro Asp Ser Asp Asp Val Ala Leu Tyr Val Gly Ile Val				
370		375		380

127

Ile Ala Val Ile Val Cys Leu Ala Ile Ser Val Val Val Ala Leu Phe
385 390 395 400

Val Tyr Arg Lys Asn His Arg Asp Phe Glu Ser Asp Ile Ile Asp Ser
405 410 415

Ser Ala Leu Asn Gly Gly Phe Gln Pro Val Asn Ile Lys Ala Ala Arg
420 425 430

Gln Asp Leu Leu Ala Val Pro Pro Asp Leu Thr Ser Ala Ala Ala Met
435 440 445

Tyr Arg Gly Pro Val Tyr Ala Leu His Asp Val Ser Asp Lys Ile Pro
450 455 460

Met Thr Asn Ser Pro Ile Leu Asp Pro Leu Pro Asn Leu Lys Ile Lys
465 470 475 480

Val Tyr Asn Thr Ser Gly Ala Val Ser Pro Gln Asp Asp Leu Ser Glu
485 490 495

Phe Thr Ser Lys Leu Ser Pro Gln Met Thr Gln Ser Leu Leu Glu Asn
500 505 510

Glu Ala Leu Ser Leu Lys Asn Gln Ser Leu Ala Arg Gln Thr Asp Pro
515 520 525

Ser Cys Thr Ala Phe Gly Ser Phe Asn Ser Leu Gly Gly His Leu Ile
530 535 540

Val Pro Asn Ser Gly Val Ser Leu Leu Ile Pro Ala Gly Ala Ile Pro
545 550 555 560

Gln Gly Arg Val Tyr Glu Met Tyr Val Thr Val His Arg Lys Glu Thr
565 570 575

Met Arg Pro Pro Met Asp Asp Ser Gln Thr Leu Leu Thr Pro Val Val
580 585 590

Ser Cys Gly Pro Pro Gly Ala Leu Leu Thr Arg Pro Val Val Leu Thr
595 600 605

Met His His Cys Ala Asp Pro Asn Thr Glu Asp Trp Lys Ile Leu Leu
610 615 620

Lys Asn Gln Ala Ala Gln Gly Gln Trp Glu Asp Val Val Val Val Gly
625 630 635 640

Glu Glu Asn Phe Thr Thr Pro Cys Tyr Ile Lys Leu Asp Ala Glu Ala
645 650 655

Cys His Ile Leu Thr Glu Asn Leu Ser Thr Tyr Ala Leu Val Gly His
660 665 670

Ser Thr Thr Lys Ala Ala Lys Arg Leu Lys Leu Ala Ile Phe Gly
675 680 685

128

Pro Leu Cys Cys Ser Ser Leu Glu Tyr Ser Ile Arg Val Tyr Cys Leu
690 695 700

Asp Asp Thr Gln Asp Ala Leu Lys Glu Ile Leu His Leu Glu Arg Gln
705 710 715 720

Thr Gly Gly Gln Leu Leu Glu Glu Pro Lys Ala Leu His Phe Lys Gly
725 730 735

Ser Thr His Asn Leu Arg Leu Ser Ile His Asp Ile Ala His Ser Leu
740 745 750

Trp Lys Ser Lys Leu Leu Ala Lys Tyr Gln Glu Ile Pro Phe Tyr His
755 760 765

Val Trp Ser Gly Ser Gln Arg Asn Leu His Cys Thr Phe Thr Leu Glu
770 775 780

Arg Phe Ser Leu Asn Thr Val Glu Leu Val Cys Lys Leu Cys Val Arg
785 790 795 800

Gln Val Glu Gly Glu Gly Gln Ile Phe Gln Leu Asn Cys Thr Val Ser
805 810 815

Glu Glu Pro Thr Gly Ile Asp Leu Pro Leu Leu Asp Pro Ala Asn Thr
820 825 830

Ile Thr Thr Val Thr Gly Pro Ser Ala Phe Ser Ile Pro Leu Pro Ile
835 840 845

Arg Gln Lys Leu Cys Ser Ser Leu Asp Ala Pro Gln Thr Arg Gly His
850 855 860

Asp Trp Arg Met Leu Ala His Lys Leu Asn Leu Asp Arg Tyr Leu Asn
865 870 875 880

Tyr Phe Ala Thr Lys Ser Ser Pro Thr Gly Val Ile Leu Asp Leu Trp
885 890 895

Glu Ala Gln Asn Phe Pro Asp Gly Asn Leu Ser Met Leu Ala Ala Val
900 905 910

Leu Glu Glu Met Gly Arg His Glu Thr Val Val Ser Leu Ala Ala Glu
915 920 925

Gly Gln Tyr
930

<210> 91
<211> 9700
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plasmid
pGC1037

<400> 91

tatggccaca ctgcaccacca gctctcccac ctctgaggcc gaggagttcg tctccgcct 60
ctccaccagg aactacttcc gtcctcgcc ccgaggcacc agcaacatga cctatggac 120
cttcaacttc ctcgggggccc ggctgtatcc ccctaataca ggaatcagcc tcctcatccc 180
cccagatgcc ataccccgag ggaagatcta tgagatctac ctacacgtgc acaaggccga 240
agacgtgagg ttgccccctag ctggctgtca gaccctgtg agtcccateg ttagctgtgg 300
accccccggc gtccgtctca cccggccagt catccgtct atggaccact gtggggagcc 360
cagccctgac agctggagcc tgcgcctcaa aaagcagtcg tgcgagggca gctgggagga 420
tgtgtgcac ctggcgagg aggcccctc ccaccttac tactgcccage tggagggccag 480
tgcctgtac gtcttcaccc agcagctggg ccgcttgcc ctggtgggag aggcccttag 540
cgtggctgcc gcacaagcgcc tcaagctgct tctgtttcg ccggtggccct gcacccccc 600
cgagtacaac atccgggtct actgcctgca tgacaccac gatgcactca aggaggtgt 660
gcagctggag aagcagctgg ggggacagct gatccaggg ccacgggtcc tgcacttcaa 720
ggacagttac cacaacctgc gcctatccat ccacgatgtg cccagctccc tggtaagag 780
taagctccctt gtcagctacc aggagatccc ctttatcac atctggaatg gcacgcagcg 840
gtacttgcac tgcacccctca ccctggagcg tgtcagcccc agcactagtg acctggcctg 900
caagctgtgg gtgtggcagg tggagggcga cgggcagagc ttcaagcatca acttcaacat 960
cbeccaaggac acaagggttt ctgagctgct ggctctggag agtgaagcgg gggtccaagc 1020
cctgggtggc cccagtcctca tcaagatccc cttcctcatt cggcagaaga taattccag 1080
cctggaccca ccctgttaggc ggggtgcccga ctggcggact ctggcccaga aactccacct 1140
ggacagccat ctcaagttct ttgcctccaa ccccagcccc acagccatga tcctcaacct 1200
gtggggaggcg cggcacttcc ccaacggaa cctcagccag ctggctgcag cagtggctgg 1260
actggggccag ccagacgctg gcctcttac agtgtcggag gctgagtgtc gagtcgaccc 1320
gcagccaagc taattccggg cgaatttctt atgattttag atttttatta taaaataagt 1380
tataaaaaaa ataagtgtat acaaattttt aagtgactt taggtttaa aacgaaaatt 1440
cttggcttctt gtaactctt tcctgttaggt caggttgctt tctcaggtat agcatgaggt 1500
cgctcttatt gaccacaccc ctaccggcat gcaagctgg cgtaatcatg gtcatactgt 1560
tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata 1620
aagtgtaaag cctgggggtgc ctaatgagtg aggttaactca cattaattgc gttgcgtca 1680
ctgcccgtt tccagtcggg aaacctgtcg tgccagctgg attaatgaat cggccaaacgc 1740
gcggggagag ggggttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg 1800
cgctcgtgtcg ttccgctgcg gcgagcggta tcagctact caaaggcggt aatacggtta 1860
tccacagaat caggggataa cgcagggaaag aacatgttag caaaaggcca gcaaaaggcc 1920
aggaaccgta aaaaggccgc gttgtggcg tttttccata ggctccgccc ccctgacgag 1980
catcacaaaa atcgacgctc aagttagagg tggcgaaacc cgacaggact ataaagatac 2040
caggcggttc cccctggaaag ctccctcgta cgctctcctg ttccgaccct gccgcttacc 2100
ggataacctgt cccctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt 2160
aggtatctca gttcggtgt ggtcggtcg tccaaagctgg gctgtgtgca cgaacccccc 2220
gttcagcccg accgctgcgc cttatccggta aactatcgtc ttgagtccaa cccggtaaaga 2280
cacgacttat cggcactggc agcagccact ggtAACAGGA tttagcagagc gaggtatgt 2340
ggcggtgcta cagagttctt gaagtggtag cctaactacg gctacactag aaggacagta 2400
tttggtatct gcgctctgtc gaagccagtt accttcggaa aaagagttgg tagctttga 2460
tccggcaaaac aaaccaccgc tggtagcggt ggttttttg tttcaagca gcaaggatc 2520
cgcagaaaaaa aaggatctca agaagatctt ttgatcttt ctacggggtc tgacgctc 2580
tggaaacaaaa actcacgtt agggattttg gtcagatgat tatcaaaaaag gatcttcacc 2640
tagatccctt taataaaaaa atgaagttt aaatcaatct aaagtatata tgagtaaact 2700
tggctctgaca gttaccaatg cttaatcgtt gaggcaccta tctcagcgat ctgtctattt 2760
cgttcatcca tagttgcctg actccccgtc gtgttagataa ctacgatacgg gggggctta 2820
ccatctggcc ccaagtgtgc aatgataccg cgagaccac gctcaccggc tccagattta 2880
tcagcaataa accagccagc cggaaaggccc gagcgcagaa gtggctctgc aactttatcc 2940
gcctccatcc agtctattaa ttgttgcgg gaaagcttagag taagtagttc gccagttaat 3000
agtttgcgca acgttgttgc cattgttaca ggcgttgcgaa tctgacgctc gtcgttgg 3060
atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg 3120
tgcaaaaaaa cggtagctc cttcggtctt ccgatcggtc tcagaagttaa gttggccgca 3180
tggttatcac tcatggttat ggcagcactg cataatttcc ttactgtcat gccatccgt 3240
agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg 3300
cgaccgggtt gctcttgccc ggcgtcaata cgggataata cccgcggcaca tagcagaact 3360
ttaaaatgtc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg 3420

130

ctgtttagat ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatcttt 3480
 actttcacca gcgttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga 3540
 ataaggcgca cacggaaatg ttgaatactc atactcttc ttttcaata ttattgaagc 3600
 atttatcagg gttattgtct catgagcgga tacatatgg aatgtattta gaaaaataaa 3660
 caaatagggg ttccgcgcac atttcccga aaagtccac ctgaacgaag catctgtgct 3720
 tcattttgtt gaacaaaaat gcaacgcgag agcgctaatt tttcaaacaag aagatctgag 3780
 ctgcattttt acagaacaga aatgcaacgc gaaagcgcta ttttaccaac gaagaatctg 3840
 tgcttcattt ttgtaaaaca aaaatgcaac gcgagagcgc taattttca aacaagaat 3900
 ctgagctgca tttttacaga acagaaaatgc aacgcgagag cgctattttt ccaacaaaga 3960
 atctataactt ctttttgtt ctacaaaaat gcatcccggag agcgctattt ttctaaacaaa 4020
 gcatcttaga ttactttttt ttcctttgt gcgctctata atgcagtctc ttgataactt 4080
 tttgcactgt aggtccgtt aggttagaag aaggctactt tgggtcttat tttctttcc 4140
 ataaaaaaag cctgactcca cttccgcgt ttactgatta ctacgcaagc tgcgggtgca 4200
 tttttcaag ataaaggcat ccccgattat attctatacc gatgtggatt ggcgcatactt 4260
 tgtgaacaga aagtgtatgc gttgtatgatt cttcatttgtt cagaaaattt tgaacggg 4320
 cttctatttt gtctctatata actacgtata gggaaatgttt acatttcgtt attgtttcg 4380
 attcactcta tgaatagttt ttactacaat ttttttgtt aaagagtaat actagagata 4440
 aacataaaaaa atgttagaggt cgagtttaga tgcaagttca aggagcgaaa ggtggatggg 4500
 taggttatata agggatatacg cacagagata tatagcaaag agataactttt gagcaatgtt 4560
 tgtggaaagcg gtattcgaa tatttttagta gctcggtaca gtcgggtgcg tttttggg 4620
 tttgaaagtg cgtcttcaga ggcctttgg ttttcaaaag cgctctgaag ttccctatact 4680
 ttcttagagaa taggaacttc ggaataggaa cttcaaaagcg tttccgaaaaa cgagcgcttc 4740
 cggaaaatgca acgcgagctg cgcacataca gctcactgtt cacgtcgac ctatatctgc 4800
 gtgttgccctg tatataatata tacatgagaa gAACGGCATA gtgcgtgttt atgcattaaat 4860
 gcgtaattat atgcgtctat ttatgttaga tgaaaggtag tctagttacct cctgtgatata 4920
 tatcccattt catgcgggggt atcgtatgct tccttcagca ctacccttta gctgttctat 4980
 atgctgccac tcctcaattt gattgtctc atccttcaat gctatcattt ctttgatata 5040
 tggatcatat taagaaacca ttattatcat gacattaaacc tataaaaata ggcgtatcac 5100
 gaggcccttt cgtctcgccg gtttcggta tgacgggtgaa aacctctgac acatgcagct 5160
 cccggagacg gtcacagctt gtctgtaaac ggatgccccgg agcagacaaag cccgtcaggg 5220
 cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat cagagcagat 5280
 tgtactgaga gtgcaccata gatcaacgac attactataat atataatata ggaagcattt 5340
 aatagacacg atcgtatataat atgtgtactt tgcaagttatg acgcacatgc gcagtagtgg 5400
 aagatattttt ttattgaaaaa atagcttgc accttacgta caatcttgat ccggagcttt 5460
 tctttttttt ccgattaaga attaattcgg tcgaaaaaaag aaaaggagaa ggcacaaagg 5520
 gagggcattt gtgactattt agcacgtgag tatacgtatgta taagcacaca aaggcagctt 5580
 ggagtatgtc tggattttat ttcacaggta gttctggcc attgggtgaaa gtttgcggct 5640
 tgcagagcac agaggccgca gaatgtgctc tagattccga tgctgacttg ctgggttatta 5700
 tatgtgtgcc caatagaaaaa agaacaattt acccggttat tgcaaggaaa atttcaagtc 5760
 ttgtaaaaagc atataaaaat agttcaggca ctccgaaata cttgggttggc gtgttgc 5820
 atcaacctaa ggaggatgtt ttggctctgg tcaatgatta cggcatttgc atcgatccaa 5880
 tgcattggaga ttagtctgtt caagaatacc aagagttctt cgggttgcgaa gtttattaaaa 5940
 gactcgattt tccaaaagac tgcaacatac tactcagtg agcttcacaa aaccccttatt 6000
 cgtttatcc cttgtttgtt tcagaaggcag gtgggacagg tgaactttt gattggact 6060
 cgatttctga ctgggttggc aggcaagaga gccccgaaag cttacattttt atgttagctg 6120
 gtggactgac gccagaaaaat gttgggtatg cgcttagatt aaatggcgat attgggttt 6180
 atgttaaggcg aggtgtggag acaaattgtg taaaagactc taacaaaata gcaaatttcg 6240
 tcaaaaaatgc taagaaatag ttattactg agtagtattt atttaagtat tgtttgc 6300
 cttgccgatc tatgcgggtt gaaataccgc acagatgcgt aaggagaaaa taccgcata 6360
 gggaaattgtt aacgttaata ttttggtaaaa attcgcgtt aatttttgtt aaatcagctc 6420
 attttttaac caataggccg aaatccgcaaa aatcccttatt aatcaaaaag aatagaccga 6480
 gatagggtt agtgttgc ttagttggaa caagagtcca ctattaaaga acgtggactc 6540
 caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc 6600
 ctaatcaagt tttttgggggt cgaggtgcgg taaagacta aatcgaaacc ctaaaggag 6660
 ccccccattt agagcttgc gggggaaagcc ggcgaacgtg gcgagaaaagg aagggaaagaa 6720
 agcgaaaaagga gccccgcgtt gggcgctggc aagtgtatgc gtcacgctgc gcgttaaccac 6780
 cacaccggcc gcgcttaatg cggccgttaca gggcgctggc cgccatttcgc cattcaggct 6840
 gcgcaactgt tggaaaggc gatcggtgcg ggcctttcg ctattacgccc agctggcgaa 6900

131

ggggggatgt	gctgcaaggc	gattaagtg	ggtaacgcca	gggtttccc	agtcacgacg	6960
ttgtaaaacg	acggccagtc	gtccaagctt	tcgcgagctc	gagatcccga	gctttgaaaa	7020
ttaaaggcctt	cgagcgtccc	aaaaccttct	caagcaaggt	tttcagata	atgttacatg	7080
cgtacacgcg	tctgtacaga	aaaaaaagaa	aaatttggaa	tataaataac	gttcttata	7140
ctaacataac	tataaaaaaa	taaataggga	cctagacttc	aggttgtcta	actccttcct	7200
tttcggttag	agcgatgtg	gggggagggc	gtgaatgtaa	gcgtgacata	actaattaca	7260
tgatatcgac	aaaggaaaaag	gggcctgttt	actcacaggt	tttttttttt	taggiaatta	7320
agtcgttct	gtcttttcc	ttcttcaacc	caccaaaggc	catcttggta	cttttttttt	7380
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	7440
tttttttttt	tttttttttt	tttttcatag	aaataataca	gaagtagatg	ttgaattaga	7500
ttaaactgaa	gataatataat	ttattggaaa	atacatagag	ctttttgttg	atgcgcttaa	7560
gcgatcaatt	caacaacacc	accagcagct	ctgatttttt	cttcagccaa	cttggagacg	7620
aatctagctt	tgacgataac	tggaacattt	ggaatttctac	ccttacccaa	gatcttaccg	7680
taaccggctg	ccaaagtgtc	aataactgga	gcagttctt	tagaagcaga	tttcaagtat	7740
tggtctctct	tgtcttctgg	gatcaatgtc	cacaatttgt	ccaaagtccaa	gactggcttc	7800
cagaaatgag	cttggcgtt	gtggaaagtat	ctcataccaa	nccttacccaa	aataacctgg	7860
atggtattta	tccatgttaa	ttctgtggtg	atggttgcacca	ccggccatatac	ctctaccacc	7920
gggggtgctt	ctgtgcttac	cgatacgcacc	tttaccggct	gagacgtgac	ctctgtgctt	7980
tctagtccta	gtgaatctgg	aaggcattct	tgatttagtt	gatgatttgg	ctgggattta	8040
atgcaaaaaaaa	atcaactaaga	agggaaaaaa	tcaacggaga	aagcaaacgc	catcttaaat	8100
atacgggata	cagatgaaag	gttggacact	atctggaaaa	atacgcattta	aacaagcga	8160
aaactgcgag	gaaaattgtt	tgcgtctctg	cgggctattc	acgcgccaga	ggaaaatagg	8220
aaaataaaca	gggcatttaga	aaaataattt	tgattttgg	aatgtgtgg	tccctgggt	8280
acagatgtt	cattggttac	agtaactcttg	tttttgcgt	gttttgcgt	gaatctccaa	8340
aatggtgtt	agcacatgga	agagtcacccg	atgctaagtt	atctctatgt	aagctacgt	8400
gcgtgacttt	tgatgaagcc	gcacaagaga	tacaggattt	gcaactgcaa	atagaatctg	8460
gggatctaga	tatcctttt	ttgtttccgg	gtgtacaata	tggacttcct	ctttctggc	8520
aaccaaaccc	atacatcggg	attcctataa	tacccctcg	ggtctcccta	acatgttaggt	8580
ggcggagggg	agatatacaa	tagaacagat	accagacaag	acataatgg	ctaaacaaga	8640
ctacaccaat	taacactgcct	cattgatgtt	ggtacataac	gaactaatac	tgtagcccta	8700
gacttgatag	ccatcatcat	atcgaagttt	cactaccctt	tttccattt	ccatctattt	8760
aagtaataat	aggcgcatgc	aactctttt	ctttttttt	ctttctctc	tcccccggt	8820
ttgtctcacc	atataccgcaa	tgacaaaaaa	aatgatggaa	gacactaaag	gaaaaaaatta	8880
acgacaaaaga	cagcaccaac	agatgtcggt	gttccagagc	tgatgagggg	tatttcgaa	8940
cacacgaaac	tttttccttc	cttcattcac	gcacactact	ctctaatgag	caacggtata	9000
cggccttcct	tccagttact	tgaatttggaa	ataaaaaaaag	tttgcgcctt	tgcttatcaag	9060
tataaataga	cctgcaatta	ttaatctttt	gtttcctcgt	cattgttctc	gttccctttc	9120
ttccctgttt	cttttctgc	acaatatttc	aagctataacc	aagcataacaa	tcaactccaa	9180
gcttgaagca	agccttcgt	aagatgaagc	tactgtcttc	tatcgaaccaa	gcatgcgata	9240
tttgcgcact	taaaaagctc	aagtgttcca	aagaaaaacc	gaagtgcgcc	aagtgtctga	9300
agaacaactg	ggagtgtcgc	tactctccca	aaacccaaaag	gttcccgctg	actagggcac	9360
atctgacaga	agtggaaatca	aggctagaaa	gactggaaaca	gttatttctt	ctgatttttc	9420
ctcgagaaga	ccttgacatg	atttgaaaaa	tggattctt	acaggatata	aaagcattgt	9480
taacaggatt	atttgtacaa	gataatgtga	ataaaagatgc	cgtcacagat	agattggctt	9540
cagtggagac	tatatgcct	ctaacattga	gacagcatag	aataagtgcg	acatcatcat	9600
cggaagagag	tagtaacaaa	ggtcaaagac	agttgactgt	atcgccggaa	ttcatggctt	9660
accctatacga	tgttccagat	tacgttagct	tggttggtca			9700

<210> 92
<211> 9749
<212> DNA
<213> Anti:

<220>
<223> Description of Artificial Sequence: plasmid
pGC1003

<400> 92

132

agaatctggg gatctagata tcctttgtt gttccgggt gtacaatatg gacttcctct 60
tttctggca ccaaaccat acatcggtt tcctataata cttcgttgg tctccctaac 120
atgtaggtagg cgagggggat atatacaata gaacagatac cagacaagac ataatggct 180
aaacaagact accccaatta cactgcctca ttgatgggtt tacataacga actaatactg 240
tagccctaga cttgatagcc atcatcatat cgaagttca ctaccctttt tccatttgcc 300
atctattgaa gtaataatag gcgcattgaa cttctttct tttttttct tttctctctc 360
ccccgtgtt gtctcaccat atccgcaatg aaaaaaaaaa tgatggaaaga cactaaagga 420
aaaaataaac gacaaagaca gcaccaacag atgtcggtt tccagagctg atgagggta 480
tcttcgaaca cacgaaaactt tttccttcct tcattcacgc acggtatag gccttccttc cagttacttg aatttgaat
ctatcaagta taaatagacc tgcaattatt aatctttgtt aaaaaaagtt tgccgcttg 600
tccctttctt cttgtttct tttctgcac aatatttcaa ttccctgtca ttgttctctg 660
aactccaagc ttgaagcaag cttcctgaaa gatgaagcta gctataccaa gcatacaatc 720
atgcgatatt tgccgactta aaaagctcaa gtgctccaaa ctgtcttgc tcaacaatc
gtgtctgaag aacaactggg agtgcgtca ctctccaaa
tagggcacat ctgacagaag tggatcaag gctagaaaga ctgtcttgc tcaacaatc
gattttcctt cgagaagacc ttgacatgtat tttggaaaatg
agcattgtt acaggattat ttgtacaaga taatgtgaat
attggcttca gtggagactg atatgcctct aacattgaga
atcatcatcg gaagagagta gtaacaaagg tcaaaagacag
catggcttac ccatacgatg ttccagatta cgctagctt
gtgctgtaaa cgtggcaatt caaaaaagtc gaaaccattt
ggaaaaagca ggaggaaatct actattctga gcctccaggt
gcatcaacat gaaacattgc tcggagagaa aatatcatcg
tcctccctca ccacattcaa caactctcg atctggaaaa
ttcaacaaga aacgctggc cacgagctgc ttaattcaaa
aggatctggt gaaaaacgga caatgcttag aacttcaagc
taattatgct acgttatatg attatatggg agacaagagt
aaaaaatatt gttgctgcgc agattgatag caatggagca
tggagcaaga ttaattgtac ctgaattggc agtggaaagga
tgtttcggac accttaacag atcaacctca cctcaaacc
agtcatcgatc atcggacaat gtgtatgttc aatgtcagct
tcctgttggt gtatccttcc gtcatgtgc ttcaactttt
cacattgtat gctgtatggg gatccggatg gcagaaggct
cttgaataacc aacatgtttg tacaattcga gcaacctggg
atggtgccac gttatgacat attccttagc gaggttaatg
aaattcttg agtgcgtcaa aaagagtca tttagctgt
agcttatcgaa agaccattt aattgagat ttattgttt
ggaaagtgtt tggaaacagg aagatggatc tcgtctactt
tttaaatgaa aaggaaatc tttgcatttg tattgaagat
cgatggccct gaagttgtgg aatctcgga aacacaacac
ccttcattgc tcattgaaat tccgacccaa ggaatcaac
agtaattgtc tatcaaaagg caagctcaac ggagccaatg
gccggagctc tatgtatgcag ccccgggcg tcgacctgca
atttcttatg atttatgatt tttatttata aataagttt
aattttaaag tgactcttag gttttaaaac gaaaattctt
tgttaggttagt gttgctttt caggtatagc atgaggtcgc
ccggcatgca agcttggcgtaatcatcgatc atagctgttt
gctcacaatt ccacacaaca tacgagccgg aagcataaag
atgagtgagg taactcacat taattgcgtt gcgctcactg
cctgtctgc cagctggatt aatgaatcgg ccaacgcgc
tggcgctct tccgcttct cgtctactga ctcgcgtc
agcggatca gtcactcaa aggccgtaat acggttatcc
aggaaagaac atgtgagcaa aaggccagca aaaggccagg
gctggcggtt ttccataggc tccggcccccc tgacgagcat
tcagaggtgg cgaaaccgaa caggactata aagataccag
cctcgctgc tctctgttc cgaccctgccc gcttaccgg
ttcgggaagc gtggcgctt ctcatacgatc acgctgttagg

133

cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt 3540
 atccggtaac ttcgtcttg agtccaaccc ggtaaagacac gacttatcgc cactggcagc 3600
 agccactggt aacaggatta gcagagcgg gtatgttaggc ggtgctacag agttcttcaa 3660
 gtggtggcct aactacggct acactagaag gacagtattt ggtatctcgc ctctgctgaa 3720
 gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaaacaaa ccaccgctgg 3780
 tagcgggtgt tttttgtt gcaagcagca gattacgcgc agaaaaaaaaa gatctaaga 3840
 agatcccttgc atcttttcta cggggctgaa cgctcagtgg aacgaaaaact cacgttaagg 3900
 gattttggtc atgagattat caaaaaggat cttcacccatg attaaaaatg 3960
 aagttttaaa tcaatctaaa gtatatatga gtaaaacttgg tctgacagtt accaatgctt 4020
 aatcagttag gCACCTATCT cagcgtatctg tctatttcgt tcattccatag ttgcctgact 4080
 ccccgctgt tagataacta cgatacggg gggcttacca tctggcccca gtgctgcaat 4140
 gataccgcga gacccacgct caccggctcc agatttatca gcaataaaacc agccagccgg 4200
 aaggggccgag cgcagaatg gtcctgcaac tttatccgccc tccatccagt ctattaattg 4260
 ttggccggaa getagagtaa gtatgtcgcc agttaatagt ttgcgcaacg ttgttgccat 4320
 tgctacaggc atcgtgggtg cacgctcgcc gtttggatg gtttcattca gctccggttc 4380
 ccaacgatca aggcgagttt catgatcccc catgttgc aaaaaaagccg ttagctcctt 4440
 cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc 4500
 agcaactcat aattcttta ctgtcatgcc atccgtaaaga tgctttctg tgactggta 4560
 gtactcaacc aagtcatctt gagaatagtg tatgcggcga cccagttgtc tttgcccggc 4620
 gtcaataacgg gataataccg cgccacatag cagaacttta aaagtgcctca tcattggaaa 4680
 acgttcttcg gggcgaaaaac ttciaaggat cttaccgctg ttgagatcca gttcgatgta 4740
 acccaactcg tgcacccaact gatcttcgcg atctttact ttccaccagcg tttctgggtg 4800
 agcaaaaaaca ggaaggcaaa atgcgcggaa aaaggaaata agggcgacac ggaatgttg 4860
 aataactcata ctcttcctt ttcaatattt ttgaagcatt tatcagggtt attgtctcat 4920
 gagcggatac atatttgaat gtattnagaa aaataaaacaa ataggggttc cgccacatt 4980
 tccccgaaaaa gtgccacctg aacgaagcat ctgtgcttca ttttggtagaa caaaaatgca 5040
 acgcgagagc gctaattttt caaacaaaga atctgagctg catttttaca gaacagaaat 5100
 gcaacgcgaa agcgctattt taccacggaa gaatctgtc ttcatctttt taaaacaaaa 5160
 atgcaacgcg agagcgctaa ttttcaaac aaagaatctg agctgcattt ttacagaaca 5220
 gaaatgcaac gcgagagcgc tattttacca acaaagaatc tatacttctt ttttggtagaa 5280
 caaaaatgca tcccgagagc gctatcttc taacaaagca tcttagatata cttttttct 5340
 cctttgtcg ctctataatg cagtccttg ttagaagaag gctactttgg tgtctatctt 5400
 cccgcgttta ctgattacta gcgaagctgc ataaacttttt gcactgttagg tccgtaagg 5460
 cgattatatt ctataccgt gtggatttgcg ggtgcattt tttcaagata aaggcatccc 5520
 gatgattctt cattggtcag aaaattatga acgtatagga aatgtttaca ttttcgtatt catacttgcgtaacagaaatg tagagtcga 5580
 ctacaatttt tttgtctaaa gagtaatact gtttagatgc aagttcaagg agcggaaaggat acggttctt ctatcttgc tctatatact 5640
 agagatatat agcaaaagaga tacttttag gtttagtagct cggtacagtc cggtcgctt gtttgcatt cactctatga atagttctta 5700
 ataggaactt caaagcgtt ccgaaaaacga acatacagct cactgttcac gtcgcaccta atgagaagaa cggcatagtg cgtgtttatg tttttgggtt tcaaaagcgc tctgaagttt agagataaaac ataaaaatg tagagtcga 5760
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat ggtatggtag gttatataagg gatatagcac 5820
 agagatatat agcaaaagaga tacttttag gtttagtagct cggtacagtc cggtcgctt ttagtgcattt ggaagcggta ttgcataat 5880
 ataggaactt caaagcgtt ccgaaaaacga acatacagct cactgttcac gtcgcaccta atgagaagaa cggcatagtg cgtgtttatg tttttgggtt tcaaaagcgc tctgaagttt agagataaaac ataaaaatg tagagtcga 6000
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6060
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6120
 ttagtgcattt tttttgggtt ggaagcggta ttgcataat 6180
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6240
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6300
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6360
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6420
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6480
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6540
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6600
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6660
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6720
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6780
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6840
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6900
 gtcggatgtga aaggtagtct agtacctctt gtttagatgc aagttcaagg agcggaaaggat gtcggatgtga aatgtcaacg cgagctgcgc 6960

134

tgtgctctag attccgatgc tgacttgctg ggtattatat gtgtgccaa tagaaagaga 7020
 acaattgacc cggttattgc aaggaaaatt tcaagtcttgc taaaagcata taaaaatagt 7080
 tcaggcactc cgaataactt ggttggcgtg ttccgtatc aacctaagga ggatgtttt 7140
 gctctggtca atgattacgg cattgatatac gtccaaactgc atggagatga gtcgtggcaa 7200
 gaataccaag agttccctcg tttgccagtt attaaaagac tcgtatttcc aaaagactgc 7260
 aacataactac tcagtgcagc ttcacagaaaa cctcattcgt ttattccctt gtttGattca 7320
 gaagcaggtg ggacaggtga acttttggat tggaaactcga tttctgactg ggttggaaagg 7380
 caagagagcc ccgaaagctt acattttatg ttagctggtg gactgacgccc agaaaatgtt 7440
 ggtgatgcgc ttagattaaa tggcgttatt ggtgttgcgt taagcggagg tggagaca 7500
 aatgggttaa aagactctaa caaaatagca aatttgcgtca aaaatgtctaa gaaatagggtt 7560
 attactgagt agtattttatt taagtattgt ttgtgcactt gccatctat gcgggtgtgaa 7620
 ataccgcaca gatgcgtaa gagaaaatac cgcattcaat ttttgcgtttt gttttttttt 7680
 tggtaaaatt cgcgttaat ttttgcgtttt ttagctcatt ttttgcgtttt 7740
 tcggcaaaat cccttataaa tcaaaagaat agaccgagat agggttgagt gttttccag 7800
 ttttggaaaca gagtccacta ttaaagaacg tggactccaa cgtcaaaaggg cggaaaaccg 7860
 tctatcaggg cgatggccca ctacgtgaac catcaccta atcaagttt ttgggtgcgaa 7920
 ggtgcgttaa agcactaaat cggaaaccta aaggggagcc ccgatttaga gttttacggg 7980
 gaaagccggc gaacgtggcg agaaaggaag cgttgcgtttt tttttttttt 8040
 cgctggcaag tttttttttt tttttttttt 8100
 tttttttttt tttttttttt 8160
 cgctacaggg cgcgtcgccg cattcgccat tttttttttt 8220
 cggtgtggc ctcttcgtta ttacgcgcg caccacgtt taaaacgcacg 8280
 taagttgggt aacgcccaggg tttttttttt 8340
 caagcttcg ctagctcgag atcccgagct ttacatgcgt acacgcgtct 8400
 accttctcaa gcaagggttt cagtataatg cttaatacta acataactat 8460
 aaaagaaaaaa tttgaaatataaataaacgtt atagggacct agacttcagg ttgtctact 8520
 ggagggcgtg aatgtaaagcg tgacataact cttccctttt cgtttagagc 8580
 cctgtttact cacaggctt tttcaagtag tttttttttt 8640
 ttcaaccac caaaggccat cttggacttt tttttttttt 8700
 tttttttttt tttttttttt 8760
 tttttttttt tttttttttt 8820
 ttcatagaaa taatacagaa gtagatgttg aattagatta aactgaagat atataattta 8880
 ttggaaaata catagagctt tttgttgatg cgcttaagcg atcaattcaa 8940
 agcagctctg attttttctt cagccaactt caaacccat cttaccgtaa ccggctgcac 9000
 aacatttgg aattctaccct taccgaagat aactggagca gtttccctt aagcagattt 9060
 caatgtccac aattttgtcca agttcaagac gtagtgcgttccat gttttttttt 9120
 gaagtatctc ataccaancc ttaccgaaat tttttttttt 9180
 tttttttttt tttttttttt 9240
 tttttttttt tttttttttt 9300
 tttttttttt tttttttttt 9360
 tttttttttt tttttttttt 9420
 tttttttttt tttttttttt 9480
 tttttttttt tttttttttt 9540
 tttttttttt tttttttttt 9600
 tttttttttt tttttttttt 9660
 tttttttttt tttttttttt 9720
 gtcaccgatg ctaagttatc tctatgtaaactac gttttttttt 9749
 caagagatac agattggca actgcaat

<210> 93
 <211> 1415
 <212> PRT
 <213> *Caenorhabditis elegans*

<400> 93

Met	Ile	Leu	Arg	His	Phe	Gly	Phe	Ile	Leu	Ile	Ile	Leu	Thr	Val	Tyr
1	5							10					15		

Leu Ser Ser Thr His Ala Thr Thr Arg Lys His His Arg Arg Ser Ile

	20	25	30	135
Asp Asn Asp Ala Arg Asn Leu Gly Phe Gln Phe Val Met Glu Pro Arg				
35	40			45
Arg Asn Val Thr Val Met Glu Ser Ser Ser His Leu Leu Glu Cys Ser				
50	55			60
Tyr Val Leu Ala His Glu Arg Leu Val His Asp Val Arg Ile Glu Trp				
65	70	75		80
Lys Arg Asp Gly Val Leu Leu Ser Glu Arg Thr Ser Ser Arg Ile Lys				
85	90			95
Val Met Ser Asn Gly Ser Leu Trp Ile Glu Ser Val Ser Ser Ala Glu				
100	105			110
Glu Gly Thr Tyr Gln Cys Ala Val His Val Thr Thr Lys Ser Asp Gln				
115	120			125
Thr Ser Asp Thr Trp Thr Phe Leu Ser Arg Lys Ala Thr Leu Arg Leu				
130	135			140
Ala Asp Leu Ala Lys Phe Glu Leu Gln Ala Ile Asp Arg Thr Leu Ala				
145	150	155		160
Lys Gly Gln Pro Thr Ala Phe His Cys Leu Ile Asn Ser Lys Pro Thr				
165	170			175
Pro Thr Ala Val Trp Leu His Asn Asp Glu Pro Ile Val Asn Gly Gly				
180	185			190
Glu Tyr His Ile Leu Pro Val Ser Asn Thr Leu Glu Ile Ser Ser Thr				
195	200			205
Gln Ser Arg His Glu Gly Thr Tyr Arg Cys Thr Val Glu Gly Ala Gly				
210	215			220
Lys Arg Arg Ser Ser Gln Thr Ala Arg Leu Thr Val Thr Glu Thr				
225	230	235		240
Val Ser Asn Glu Leu Val Phe Ile Thr Thr Pro Arg Leu Gln Val Val				
245	250			255
Glu Gln Gly Asp Glu Phe Leu Leu Glu Cys Leu Val Ala Ser Leu Ile				
260	265			270
Arg Pro Gln Val Arg Trp Leu Lys Asp Ser Arg Gln Ile Ile Val Asp				
275	280			285
Gly Val Arg Ile Arg Arg Val Gly Val Ser Ser Ile Leu Val Ser Arg				
290	295			300
Ala Ser Ile Glu Asp Thr Gly Leu Tyr Thr Cys Arg Ala Ser Asn Asn				
305	310	315		320
Asp Asp Ser Ile Asp Arg Ala Val Ser Val Glu Val Arg Ala Pro Pro				
325	330			335

136

Arg Ile Thr Thr Arg Pro Thr Thr Lys Val Ala Val Glu Thr Ala Asp
340 345 350

Val Glu Leu Glu Cys Gly Thr Ala Ala Ala Arg Pro Glu Ala Arg Val
355 360 365

Asn Trp Tyr Lys Asn Gly Glu Ala Ile Ile Gly Ser Glu Tyr Phe Val
370 375 380

Ile Glu Pro Asn Arg Leu Arg Ile Leu Gly Val Val Arg Ala Asp Gln
385 390 395 400

Ala Ile Tyr Gln Cys Ile Ala Glu Asn Asp Val Gly Ser Glu Gln Ala
405 410 415

Ser Ala Gln Leu Leu Val Asp Ala Pro Asp Ser Ser Val Ala Ala
420 425 430

Ser Ser Gly Val Pro Met Thr Ser Ser Ala Pro Leu Gly Leu Arg Ser
435 440 445

Thr Ser Ser Gly Ser Arg Phe Ile Asn Val Glu Trp Asp Pro Pro Val
450 455 460

Gln Arg Asn Gly Asn Ile Met Arg Tyr His Ile Phe Tyr Lys Asp Asn
465 470 475 480

Leu Ile Asp Arg Glu Arg Met Ile Asn Ser Ser Ser Thr Ser Ala Thr
485 490 495

Leu Thr Ser Leu Gln Pro Ser Thr Met Tyr Leu Ile Arg Val Thr Ala
500 505 510

Glu Asn Glu Ala Gly Met Gly Lys Phe Ser Asp Ser Leu Lys Val Thr
515 520 525

Thr Asn Lys Glu Gln Ala Val Pro Gly Lys Val Ala Ser Leu Thr Thr
530 535 540

Thr Ala Thr Gly Pro Glu Thr Ile Asp Ile Arg Trp Ser Pro Pro Ser
545 550 555 560

Gly Gly Gln Pro Ala Leu Arg Tyr Lys Ile Phe Tyr Ser His Asp Pro
565 570 575

Leu Glu Lys Asn Glu Lys Glu Thr Leu Ile Thr Thr Ser Thr Thr His
580 585 590

Tyr Thr Leu His Gly Met Asp Lys Tyr Thr Gly Tyr Gln Ile Arg Ile
595 600 605

Glu Ala Glu Gly Ser Asn Gly Ser Gly Leu Ser Ser Asp Thr Val Lys
610 615 620

Val Arg Thr Gln Ser Asp Glu Pro Ser Ala Pro Pro Val Asn Ile Gln
625 630 635 640

137

Ala Glu Ala Asp Ser Ser Thr Ser Val Arg Val Ser Trp Asp Glu Pro
 645 650 655

Glu Glu Glu Ser Val Asn Gly Glu Ile Thr Gly Tyr Arg Leu Lys Tyr
 660 665 670

Lys Thr Lys Ala Arg Gly Ala Lys Gly Asn Thr Leu Val Ile Asp Ala
 675 680 685

Thr Ala Arg Glu Tyr Thr Met Gly Asn Leu Glu Pro Asn Thr Gln Tyr
 690 695 700

Leu Ile Arg Met Ala Val Val Asn His Asn Gly Thr Gly Pro Phe Ser
 705 710 715 720

Asp Trp Val Ser Ile Asp Thr Pro Gly Gln Asp Lys Glu Glu Arg Thr
 725 730 735

Leu Gly Ala Pro Arg Glu Ile Arg Pro His Ala Gly Ile Asp Tyr Ile
 740 745 750

Leu Val Ser Trp Leu Pro Pro Ala Asp Glu Gln Asn Leu Val Arg Gly
 755 760 765

Tyr Gln Ile Gly Trp Gly Leu Ser Val Pro Asp Thr Glu Thr Ile Arg
 770 775 780

Val Thr Ala Ser Thr Thr Gln Tyr Lys Ile Ala Arg Leu His Ser Glu
 785 790 795 800

Arg Asp Tyr Val Ile Ser Leu Arg Ala Phe Asn Asn Leu Gly Ser Gly
 805 810 815

Phe Pro Ile Tyr Glu Thr Val Arg Thr Leu Ser Arg Glu Thr Pro Ser
 820 825 830

His Phe Asn Glu Asp Ser Asp Ser Asp Asp Ser Asp Val Gly Ser Ser
 835 840 845

Glu Ser Thr Pro Val Gly Val Arg Ala Glu Ala Ile Ser Ala Thr Ser
 850 855 860

Ile Arg Val Met Trp Thr Glu Ser Asp Glu Thr Ala Phe Asn Thr Gln
 865 870 875 880

Tyr Thr Val Arg Tyr Ser Thr Ala Val Asp Gly Asn Gln His Arg Tyr
 885 890 895

Val Asn Ser Thr Glu Thr Trp Ala Thr Val Glu Gly Leu Arg Pro Ala
 900 905 910

Thr Glu Tyr Glu Phe Ala Val Arg Ala Val Ala Ser Asn Gly Gln Leu
 915 920 925

Ser Thr Trp Ser Met Ala Thr Arg Asn Arg Thr Leu Ala Ala Pro Pro
 930 935 940

Ser Ser Ala Pro Arg Asp Leu Thr Val Leu Pro Ala Glu Ser Gly Asp

139

Leu Arg Gly Thr Pro Pro Asn Ser Ser Ala Ala Asn Ala Leu Arg Ser
 1265 1270 1275 1280

Phe Thr Gln Leu Ala Gly Ala Thr Pro Pro Pro His Ser Ala Ala
 1285 1290 1295

Ser Ser Ser Arg Pro Thr Ile Ile Ala Ala Gly Gly Arg Gln Val
 1300 1305 1310

Pro Val Gly Arg Ala Thr Ala Gln Pro Arg Val Asn Val Ala Asn Ile
 1315 1320 1325

Tyr Ser Pro Phe Ala Ser Cys Ser Ala Ser Ser Asp Ala Gly Glu Ser
 1330 1335 1340

Asp Lys Lys Ser Gly Glu Cys Met Glu Met Arg Glu Thr Thr Pro Ile
 1345 1350 1355 1360

Lys Ser Asn Thr Ala Gly Ser Ser Asn Gly Glu Lys Met Asn Thr Asn
 1365 1370 1375

Met Asn Pro Ser His Ser Ala Glu Asp Leu Asn Ala His Leu Glu Asn
 1380 1385 1390

Leu Asp Thr Met Leu Asp Asp Leu Gln Gln Leu Gln His Asn Leu His
 1395 1400 1405

Phe Glu Thr Ser Met Asp Lys
 1410 1415

<210> 94
<211> 4248
<212> DNA
<213> Caenorhabditis elegans

<400> 94
atgattttgc gacatttcgg tttcattctt ataattctga cagtttatct gtcatctact 60
catgccacaa cacggaaaca tcatcgctga tcgattgata atgatgctcg gaatcttggc 120
tttcaattcg taatggAAC acgacggaat gtgactgtta tgaatcatac gtctcattta 180
tttagaatgtt gttatgttct ggctcatgag agacttgtac acgatgtccg aattgaatgg 240
aaacgtgatg gtgtgttgct cagtgaacgg acatttcta gaataaaagt aatgtcaaat 300
ggttcattat ggatagaatc agtgagcagt gccgaagaag gaacatatca atgcgctgt 360
catgtgacta caaaaagcga tcaaacaagt gatacgttga catttttagt tcgaaaagct 420
acgttacgat tggcggattt ggcaaagttt gaactgcaag cgattgatcg aactctagca 480
aaaggcgcgc caactgcgtt tcattgtctt attaactcga aaccaacccc aacagcagt 540
tggcttcaca acgatgaacc tattgtaaat ggtggcgaat atcacattct accagtgtca 600
aacactttgg agatttagttc cactcaatct agacacgaa ggacgtatag gtgtacggta 660
gaaggtgctg ggaagagaag aagtagccaa actgcacgat tgaccgttac tactgaaaca 720
gtatcgaatg agctagttt catcacaacg ccacgtctac aagttgttga acaaggcgc 780
gaattcttac ttgaatgcct tttgcctca ctaatcagac ctcaagttag atggctcaaa 840
gattctcgac aaattattgt cgtatggatt cgtattcgac gtgttggcgt atcgtcaatt 900
cttgcgtcac gtgcattctat cgaagatact gggctataca ctgtcgagc ttcgaataat 960
gatgattcaa ttgatcgagc tgtatctgtt gaagttcgtg ctccgcccag aatcactaca 1020
cgacctacca cggaaagtgc ttgttggaaact gctgatgtt aatttagatg tgaaacggc 1080
gctgctagac cagaggcacg cgttaattgg tacaatggatg gagaagcaat aattgggagc 1140
gagtattttg taatttgagcc gaacagactc cgcatttttgc gagtcgtac agccgatcaa 1200

		138		
945	950		955	960
Pro His Ser Ser Ser Leu His Trp Gln Pro Pro Lys Tyr Ser Asn Gly				
965		970		975
Glu Ile Glu Glu Tyr Leu Val Phe Tyr Thr Asp Arg Ala Ser Leu Ala				
980		985		990
Asp Lys Asp Trp Thr Ile Asn Tyr Val Ala Gly Asp Lys Leu Ser His				
995		1000		1005
Gln Val Ser Asn Leu Leu Pro Lys Ala Asn Tyr Phe Phe Lys Ile Gln				
1010		1015		1020
Ala Arg Asn Glu Lys Gly His Gly Pro Phe Ser Ser Val Val Gly Tyr				
1025		1030		1035
Thr Pro Ser Gly Gly Ala Ile Leu Ser Gly Lys Asp Arg His Asn Ala				
1045		1050		1055
Arg Gly His Gly Ser Ala Ala Ser Gly Asp Thr Val Ser Leu Val Asp				
1060		1065		1070
Gln Leu Gln Ser Leu Leu His Ser Asn Pro Leu Tyr Leu Ile Leu Leu				
1075		1080		1085
Ala Ala Phe Ala Leu Ile Leu Ile Leu Thr Leu Ile Leu Ile Ile Met				
1090		1095		1100
Cys Cys Trp Lys Arg Ser Ser Gly Gly Arg Lys Asn Gly Tyr Gln				
1105		1110		1115
1120				
Ser Gly Lys Lys Thr Ser Ala Gly Ala Gly Ser Gly Gly Gly Ile Gly				
1125		1130		1135
Gly Leu Gly Gly Pro Pro Asn Asp Leu Trp Ile Asn Gly Thr Gly Ser				
1140		1145		1150
His Met Arg Ala Gly Ala Ser Asp Tyr Met Val Asp Gly Leu Ala Thr				
1155		1160		1165
Ala His Leu Thr Ala Ala Asp Ile Glu Ser Pro Thr Pro Arg Tyr His				
1170		1175		1180
His Leu Gln Gly Gln Gly Thr Leu Thr Arg Ser Tyr His Gln Ser Ser				
1185		1190		1195
1200				
Gln Ser Leu Glu Gly Arg Gln Arg Thr Pro Gln Val Val Tyr Thr Gly				
1205		1210		1215
Thr Gly Arg His Gln Pro Ile Gln Arg Ile Asp Phe Glu Ser Pro Tyr				
1220		1225		1230
Gly Ser Ser Ser Ala Ile Gly Ser Ala Ser Thr Pro Pro Leu Pro Met				
1235		1240		1245
Gln Ala Pro Pro Ser Gly Pro Pro Thr Val Ile Asp Gly Tyr Arg Thr				
1250		1255		1260

140

gcaatctacc aatgtattgc agaaaatgat gttggaaagtg aacaagctag tgcacaactt 1260
 cttgttcatg ctccagattc atcatcagtg gctgcttcct caggagttcc aatgactcg 1320
 tctgcaccgt taggcctccg ttgcacgtct tctggttctc gcttataaaa tggttaatgg 1380
 gatccaccag ttcaaagaaa tggaatatt atgagatatac atatattcta caaagataat 1440
 ttaatcgaca gagaaaggat gatcaattca tcaagtacat ctgcaacgtt aacatctca 1500
 caaccatcaa caatgttattt aattcgagtt actgctgaaa atgaagctgg aatgggaaag 1560
 ttttagtgatt cacttaaagt taccacaaac aaagaacaag cagttctgg aaaagtgcga 1620
 tcactaaca caactgcaac tggccccgaa acgattgaca tccgttggag cccaccaagt 1680
 ggaggacaac ctgcccttcg atacaaaata ttcttattcgc atgatccatt ggagaaaaat 1740
 gaaaaagaaa cattgattac gacctcgaca acacattata cacttcatgg aatggataaa 1800
 tacactggat atcagattcg aattgaagct gaaggatcca atggatcggg gcttcaagt 1860
 gatactgtga aagtacgaac acaatccgat gaaccatcag caccgcctgt aaacattcaa 1920
 gcagaagctg atagctcaac aagtgttcga gttagttggg atgagccaga agagaatct 1980
 gttaacggag aaattactgg atatcggtt aagtacaaga caaaagctcg tggagccaaa 2040
 ggcaataactc ttgtgattga cgccactgct agagagtata ctatggaaa tttgaaaccg 2100
 aatacacagt atctgataag aatggcagta gtgaatcaca atggaacggg acccttctcg 2160
 gattgggtt ctattgatac tcctggacaa gataaagaag aacgaacact tggagcaccg 2220
 agagagattc gaccacatgc tggaaattgtatattcttgc tatcatggct tccaccagca 2280
 gatgaacaga atcttggtag aggatataatggatggg gattgagtgt tcctgatact 2340
 gaaacaattc gtgtactgc ttccacaact caatataaaa ttgcccattt gcatcgaa 2400
 cgagattatg tgatttctct tcgagcattt aataatctag gatctggatt tccgatttat 2460
 gagactgtcc gaacattgtc tcgtgaaact ccatcacatt tcaatgaaga ttctgattct 2520
 gacgattctg acgttggatc ctcagaatct actccagttt gagtgcgtgc tgaggcaatc 2580
 tctgcaacat caatacgatg tatgtggacg gaatctgatg aaactgcttt caatacacag 2640
 tatacagttc gatatagtac agctgttgat gggaaatcaac atagatacgt gaatagcacc 2700
 gagacatggg ctactgtgga aggactacga ccagctactg agatgagtt tgcggttaga 2760
 gctgttgcattt caaatggca gttgagttact tggtaatggcttaccaggaa tcgaacatta 2820
 gcccgtccac caagttcgcg tccacgtgat ctcactgtgc tgcctgcaga aagtggcgat 2880
 cctcaacttt caagtcttca ttggcaaccc tggaaatattt caaatggaga aattgaagaa 2940
 tatttagtgtt ttatacggatc tcgagttctt cttgcggaca aagattggac aattaactat 3000
 gtagctggatc ataagttgtc acatcaagtc agcaatttac ttccaaaagc taattatttc 3060
 ttcaagattc aagcaagaaa tgagaaaaggatcatggccat tctcttctgt agttggatac 3120
 actccatcag gccgtctat tctatcagga aaagatcgtc acaatgcacg tgggcatgaa 3180
 tcagcggctt ctggcgatac agtttcttta gtcgatcaac ttcaatctct tcttcactct 3240
 aaccatttgtt atctcataact tttggctgct tttgctctga ttctgatcct tacactgatt 3300
 cttatcataa ttgtttgtt gaaacgatct agtggggag ggcgaaagaaa tggatatcag 3360
 tctggaaaaaa agacgagtgc cggagctgga gttggaggatgtaatggatgg tcttggaggt 3420
 ccacctaattt attatggat taatggaaact ggaagtctata tgagagctgg tgcttctgt 3480
 tatatgggtt atgtcttagc aaccggccat cttactgtgc ctgacattga atcacccaca 3540
 cctagatacc atcatctaca agggcaagga actctaaacac gaagttatca tcaaagctca 3600
 caaagtcttca aaggacgaca acgaacaccc caagtgggtt atacagggaaatc tggaggatc 3660
 cagccgattt aaagaatcga ctttggaaatgttcatgtgc tgccttctg catcatctgc aattggatcc 3720
 gcctcgactc cgccctctccc aatgcacgttcc cccacccatgttcatgtgc gttccacctac agtaatcgat 3780
 ggataccgta ctctacgtgg aacacccttca aattcatcag ctgcaaatgc tcttcggtca 3840
 ttcactcaat tggcaggagc aacaccaccc ccaccacact ctgcggcatc atcatcttct 3900
 cgaccgacta ttattgcagc cggtgacgg caagttccag ttggaaagagc aactgctcaa 3960
 ccacgtgtca atgttgcataa tatctacagt ccatttgcatttcatgtctgc atcttctgt 4020
 gcaggagaat cagataaaaaa gagtggagaa tttatggaaa tgagagaaac cacaccattt 4080
 aaatctaata cagctggttc atcgaatggaa gagaagatga acacaaatat gaatcctca 4140
 cactcggcag aagatctcaa cgacatctt gagaaccttgc acacaatgt tcatgtatcta 4200
 caacaatttac agcacaattt gcatatttgc acgagtatgg ataagtaa 4248

<210> 95
 <211> 1447
 <212> PRT
 <213> Homo sapiens

<400> 95

141

Met	Glu	Asn	Ser	Leu	Arg	Cys	Val	Trp	Val	Pro	Lys	Leu	Ala	Phe	Val		
1				5					10						15		
Leu Phe Gly Ala Ser Leu Leu Ser Ala His Leu Gln Val Thr Gly Phe																	
				20					25					30			
Gln Ile Lys Ala Phe Thr Ala Leu Arg Phe Leu Ser Glu Pro Ser Asp																	
				35					40					45			
Ala Val Thr Met Arg Gly Gly Asn Val Leu Leu Asp Cys Ser Ala Glu																	
				50					55					60			
Ser Asp Arg Gly Val Pro Val Ile Lys Trp Lys Lys Asp Gly Ile His																	
				65					70					75			80
Leu Ala Leu Gly Met Asp Glu Arg Lys Gln Gln Leu Ser Asn Gly Ser																	
				85					90					95			
Leu Leu Ile Gln Asn Ile Leu His Ser Arg His His Lys Pro Asp Glu																	
				100					105					110			
Gly Leu Tyr Gln Cys Glu Ala Ser Leu Gly Asp Ser Gly Ser Ile Ile																	
				115					120					125			
Ser Arg Thr Ala Lys Val Ala Val Ala Gly Pro Leu Arg Phe Leu Ser																	
				130					135					140			
Gln Thr Glu Ser Val Thr Ala Phe Met Gly Asp Thr Val Leu Leu Lys																	
				145					150					155			160
Cys Glu Val Ile Gly Glu Pro Met Pro Thr Ile His Trp Gln Lys Asn																	
				165					170					175			
Gln Gln Asp Leu Thr Pro Ile Pro Gly Asp Ser Arg Val Val Val Leu																	
				180					185					190			
Pro Ser Gly Ala Leu Gln Ile Ser Arg Leu Gln Pro Gly Asp Ile Gly																	
				195					200					205			
Ile Tyr Arg Cys Ser Ala Arg Asn Pro Ala Ser Ser Arg Thr Gly Asn																	
				210					215					220			
Glu Ala Glu Val Arg Ile Leu Ser Asp Pro Gly Leu His Arg Gln Leu																	
				225					230					235			240
Tyr Phe Leu Gln Arg Pro Ser Asn Val Val Ala Ile Glu Gly Lys Asp																	
				245					250					255			
Ala Val Leu Glu Cys Cys Val Ser Gly Tyr Pro Pro Pro Ser Phe Thr																	
				260					265					270			
Trp Leu Arg Gly Glu Glu Val Ile Gln Leu Arg Ser Lys Lys Tyr Ser																	
				275					280					285			
Leu Leu Gly Gly Ser Asn Leu Leu Ile Ser Asn Val Thr Asp Asp Asp																	
				290					295					300			
Ser Gly Met Tyr Thr Cys Val Val Thr Tyr Lys Asn Glu Asn Ile Ser																	

142

305	310	315	320
Ala Ser Ala Glu Leu Thr Val Leu Val Pro Pro Trp Phe Leu Asn His			
325		330	335
Pro Ser Asn Leu Tyr Ala Tyr Glu Ser Met Asp Ile Glu Phe Glu Cys			
340	345		350
Thr Val Ser Gly Lys Pro Val Pro Thr Val Asn Trp Met Lys Asn Gly			
355	360	365	
Asp Val Val Ile Pro Ser Asp Tyr Phe Gln Ile Val Gly Gly Ser Asn			
370	375	380	
Leu Arg Ile Leu Gly Val Val Lys Ser Asp Glu Gly Phe Tyr Gln Cys			
385	390	395	400
Val Ala Glu Asn Glu Ala Gly Asn Ala Gln Thr Ser Ala Gln Leu Ile			
405		410	415
Val Pro Lys Pro Ala Ile Pro Ser Ser Ser Val Leu Pro Ser Ala Pro			
420	425		430
Arg Asp Val Val Pro Val Leu Val Ser Ser Arg Phe Val Arg Leu Ser			
435	440	445	
Trp Arg Pro Pro Ala Glu Ala Lys Gly Asn Ile Gln Thr Phe Thr Val			
450	455	460	
Phe Phe Ser Arg Glu Gly Asp Asn Arg Glu Arg Ala Leu Asn Thr Thr			
465	470	475	480
Gln Pro Gly Ser Leu Gln Leu Thr Val Gly Asn Leu Lys Pro Glu Ala			
485		490	495
Met Tyr Thr Phe Arg Val Val Ala Tyr Asn Glu Trp Gly Pro Gly Glu			
500	505		510
Ser Ser Gln Pro Ile Lys Val Ala Thr Gln Pro Glu Leu Gln Val Pro			
515	520	525	
Gly Pro Val Glu Asn Leu Gln Ala Val Ser Thr Ser Pro Thr Ser Ile			
530	535	540	
Leu Ile Thr Trp Glu Pro Pro Ala Tyr Ala Asn Gly Pro Val Gln Gly			
545	550	555	560
Tyr Arg Leu Phe Cys Thr Glu Val Ser Thr Gly Lys Glu Gln Asn Ile			
565		570	575
Glu Val Asp Gly Leu Ser Tyr Lys Leu Glu Gly Leu Lys Lys Phe Thr			
580	585	590	
Glu Tyr Ser Leu Arg Phe Leu Ala Tyr Asn Arg Tyr Gly Pro Gly Val			
595	600	605	
Ser Thr Asp Asp Ile Thr Val Val Thr Leu Ser Asp Val Pro Ser Ala			
610	615	620	

143

Pro Pro Gln Asn Val Ser Leu Glu Val Val Asn Ser Arg Ser Ile Lys
625 630 635 640

Val Ser Trp Leu Pro Pro Pro Ser Gly Thr Gln Asn Gly Phe Ile Thr
645 650 655

Gly Tyr Lys Ile Arg His Arg Lys Thr Thr Arg Arg Gly Glu Met Glu
660 665 670

Thr Leu Glu Pro Asn Asn Leu Trp Tyr Leu Phe Thr Gly Leu Glu Lys
675 680 685

Gly Ser Gln Tyr Ser Phe Gln Val Ser Ala Met Thr Val Asn Gly Thr
690 695 700

Gly Pro Pro Ser Asn Trp Tyr Thr Ala Glu Thr Pro Glu Asn Asp Leu
705 710 715 720

Asp Glu Ser Gln Val Pro Asp Gln Pro Ser Ser Leu His Val Arg Pro
725 730 735

Gln Thr Asn Cys Ile Ile Met Ser Trp Thr Pro Pro Leu Asn Pro Asn
740 745 750

Ile Val Val Arg Gly Tyr Ile Ile Gly Tyr Gly Val Gly Ser Pro Tyr
755 760 765

Ala Glu Thr Val Arg Val Asp Ser Lys Gln Arg Tyr Tyr Ser Ile Glu
770 775 780

Arg Leu Glu Ser Ser Ser His Tyr Val Ile Ser Leu Lys Ala Phe Asn
785 790 795 800

Asn Ala Gly Glu Gly Val Pro Leu Tyr Glu Ser Ala Thr Thr Arg Ser
805 810 815

Ile Thr Asp Pro Thr Asp Pro Val Asp Tyr Tyr Pro Leu Leu Asp Asp
820 825 830

Phe Pro Thr Ser Val Pro Asp Leu Ser Thr Pro Met Leu Pro Pro Val
835 840 845

Gly Val Gln Ala Val Ala Leu Thr His Asp Ala Val Arg Val Ser Trp
850 855 860

Ala Asp Asn Ser Val Pro Lys Asn Gln Lys Thr Ser Glu Val Arg Leu
865 870 875 880

Tyr Thr Val Arg Trp Arg Thr Ser Phe Ser Ala Ser Ala Lys Tyr Lys
885 890 895

Ser Glu Asp Thr Thr Ser Leu Ser Tyr Thr Ala Thr Gly Leu Lys Pro
900 905 910

Asn Thr Met Tyr Glu Phe Ser Val Met Val Thr Lys Asn Arg Arg Ser
915 920 925

144

Ser Thr Trp Ser Met Thr Ala His Ala Thr Thr Tyr Glu Ala Ala Pro
 930 935 940

Thr Ser Ala Pro Lys Asp Phe Thr Val Ile Thr Arg Glu Gly Lys Pro
 945 950 955 960

Arg Ala Val Ile Val Ser Trp Gln Pro Pro Leu Glu Ala Asn Gly Lys
 965 970 975

Ile Thr Ala Tyr Ile Leu Phe Tyr Thr Leu Asp Lys Asn Ile Pro Ile
 980 985 990

Asp Asp Trp Ile Met Glu Thr Ile Ser Gly Asp Arg Leu Thr His Gln
 995 1000 1005

Ile Met Asp Leu Asn Leu Asp Thr Met Tyr Tyr Phe Arg Ile Gln Ala
 1010 1015 1020

Arg Asn Ser Lys Gly Val Gly Pro Leu Ser Asp Pro Ile Leu Phe Arg
 1025 1030 1035 1040

Thr Leu Lys Val Glu His Pro Asp Lys Met Ala Asn Asp Gln Gly Arg
 1045 1050 1055

His Gly Asp Gly Gly Tyr Trp Pro Val Asp Thr Asn Leu Ile Asp Arg
 1060 1065 1070

Ser Thr Leu Asn Glu Pro Pro Ile Gly Gln Met His Pro Pro His Gly
 1075 1080 1085

Ser Val Thr Pro Gln Lys Asn Ser Asn Leu Leu Val Ile Ile Val Val
 1090 1095 1100

Thr Val Gly Val Ile Thr Val Leu Val Val Val Ile Val Ala Val Ile
 1105 1110 1115 1120

Cys Thr Arg Arg Ser Ser Ala Gln Gln Arg Lys Lys Arg Ala Thr His
 1125 1130 1135

Ser Ala Gly Lys Arg Lys Gly Ser Gln Lys Asp Leu Arg Pro Pro Asp
 1140 1145 1150

Leu Trp Ile His His Glu Glu Met Glu Met Lys Asn Ile Glu Lys Pro
 1155 1160 1165

Ser Gly Thr Asp Pro Ala Gly Arg Asp Ser Pro Ile Gln Ser Cys Gln
 1170 1175 1180

Asp Leu Thr Pro Val Ser His Ser Gin Ser Glu Thr Gln Leu Gly Ser
 1185 1190 1195 1200

Lys Ser Thr Ser His Ser Gly Gln Asp Thr Glu Glu Ala Gly Ser Ser
 1205 1210 1215

Met Ser Thr Leu Glu Arg Ser Leu Ala Ala Arg Arg Ala Pro Arg Ala
 1220 1225 1230

Lys Leu Met Ile Pro Met Asp Ala Gln Ser Asn Asn Pro Ala Val Val

	145		
1235	1240	1245	
Ser Ala Ile Pro Val Pro Thr Leu Glu Ser Ala Gln Tyr Pro Gly Ile			
1250	1255	1260	
Leu Pro Ser Pro Thr Cys Gly Tyr Pro His Pro Gln Phe Thr Leu Arg			
1265	1270	1275	1280
Pro Val Pro Phe Pro Thr Leu Ser Val Asp Arg Gly Phe Gly Ala Gly			
1285	1290		1295
Arg Ser Gln Ser Val Ser Glu Gly Pro Thr Thr Gln Gln Pro Pro Met			
1300	1305		1310
Leu Pro Pro Ser Gln Pro Glu His Ser Ser Ser Glu Glu Ala Pro Ser			
1315	1320		1325
Arg Thr Ile Pro Thr Ala Cys Val Arg Pro Thr His Pro Leu Arg Ser			
1330	1335		1340
Phe Ala Asn Pro Leu Leu Pro Pro Pro Met Ser Ala Ile Glu Pro Lys			
1345	1350	1355	1360
Val Pro Tyr Thr Pro Leu Leu Ser Gln Pro Gly Pro Thr Leu Pro Lys			
1365	1370		1375
Thr His Val Lys Thr Ala Ser Leu Gly Leu Ala Gly Lys Ala Arg Ser			
1380	1385		1390
Pro Leu Leu Pro Val Ser Val Pro Thr Ala Pro Glu Val Ser Glu Glu			
1395	1400		1405
Ser His Lys Pro Thr Glu Asp Ser Ala Asn Val Tyr Glu Gln Asp Asp			
1410	1415		1420
Leu Ser Glu Gln Met Ala Ser Leu Glu Gly Leu Met Lys Gln Leu Asn			
1425	1430	1435	1440
Ala Ile Thr Gly Ser Ala Phe			
1445			

<210> 96
 <211> 4344
 <212> DNA
 <213> Homo sapiens

<400> 96
 atggagaata gtcttagatg tgtttggta cccaagctgg cttttgtact cttcgagct 60
 tccttgctca ggcgcacatc tcaagtaacc ggttttcaaa tttaagcttt cacagcactg 120
 cgcttcctct cagaacacctc tgatgccgtc acaatgcggg gaggaaatgt cctcctcgac 180
 tgctccgcgg agtccgaccc aggagttcca gtgatcaagt ggaagaaaaga tggcattcat 240
 ctggccttgg gaatggatga aaggaagcag caacttcaa atgggtctct gctgatacaa 300
 aacatacttc attccagaca ccacaagcca gatgaggac ttaccaatg tgaggcatct 360
 ttaggagatt ctggctcaat tattagtcgg acagaaaaag ttgcagtagc aggaccactg 420
 agttccttt cacagacaga atctgtcaca gccttcatgg gagacacagt gctactcaag 480
 tgtgaagtca ttggggagcc catgccaaca atccactggc agaagaacca acaagacctg 540
 actccaatcc caggtgactc ccgagtgggt gtcttgcctt ctggaggatt gcagatcagc 600

146

cgactccaac cgggggacat tggaaattac cgatgctcag ctcgaaatcc agccagctca 660
 agaacaggaa atgaagcaga agtcagaatt ttatcagatc caggactgca tagacagctg 720
 tattttctgc aaagaccatc caatgttaga gccattgaag gaaaagatgc tgccttggaa 780
 ttttgttt ctggctatcc tccaccaagt ttacatgtt tacgaggcga ggaagtcatc 840
 caactcaggta caaaaaagta ttctttattt ggtggaaagca acttgcttat ctccaatgtg 900
 acagatgtg acagtggaaat gtatacctgt ttgtcacat ataaaaatga gaatattagt 960
 gcctctgcag agctcacatc ttgggtccg ccatggttt taaatcatcc ttccaacctg 1020
 tatgcctatg aaagcatgga tattgagttt gaatgtacag tctctggaaa gcctgtgccc 1080
 actgtgaatt ggatgaagaa tggagatgtg gtcattcta gtgattattt tcagatagt 1140
 ggaggaagca acttacggat acttgggtt gtaagtcag atgaaggctt ttatcaatgt 1200
 gtggctgaaa atgaggctgg aaatgcccag accagtgcac agctcattgt ccctaagcct 1260
 gcaatcccaa gctccagttt cctccctcg gctcccagag atgtgtccc tgccttggaa 1320
 tccagccgat ttgtccgtct cagctggcgc ccacctgcag aagcggaaagg gaacattcaa 1380
 actttcagg tcttttctc cagagaaggt gacaacaggg aacgagcatt gaataacaaca 1440
 cagcctgggt ccctcagct cactgtgggaa aacctgaagc cagaagccat gtacacctt 1500
 cgagttgtgg cttacaatga atggggacccg ggagagagtt ctcaacccat caagggtggcc 1560
 acacagcctg agttgcaagt tccaggccca gtagaaaacc tgcaagctgt atctacctca 1620
 cctacctcaa ttcttattac ctggaaaccc cctgcctatg caaacggctcc agtccaaggt 1680
 tacagattgt tctgcactga ggtgtccaca gggaaaagaa agaataataga gtttgcgtt 1740
 ctatcttata aactggaaagg cctgaaaaaaaaa ttcaccgaat atagtctcg attcttagct 1800
 tataatcgct atgtccggg cgtctctact gatgatataa cagtggttac actttctgac 1860
 gtgccaagtg ccccgctca gaacgtctcc ctggaaagttt tcaattcaag aagtatcaaa 1920
 gttagctggc tgcctcctcc atcagaaca caaatggat ttattaccgg ctataaaatt 1980
 cgacacagaa agacgaccccg caggggttag atggaaacac tggagccaaa caacctctgg 2040
 tacctattca cagactgga gaaaggaagt cagtcagtt tccagggtgtc agccatgaca 2100
 gtcaatggta ctggaccacc ttccaacttgg tatactgcag agactccaga gaatgatcta 2160
 gatgaatctc aagttcctga tcaaccaagc tctcttcatg tgaggccccca gactaactgc 2220
 atcatcatga gttggactcc tcccttgaac ccaaacatcg tggcggagg ttatattatc 2280
 gtttatggcg ttggagccctt acgtgttgcg acagtgcgtg tgacagccaa gcagcgatat 2340
 tattccattt agaggttaga gtcaagttcc cattatgtaa tctccctaaa agcttttaac 2400
 aatgccggag aaggagttcc tctttatgaa agtgcacca ccaaggtctat aaccgatccc 2460
 actgacccag ttgattatta tcctttgtt gatgatttcc ccacctcggt cccagatctc 2520
 tccaccccca tgctcccacc agtaggtgtt caggctgtgg ctcttaccca tgatgtgtg 2580
 agggtcagct gggcagacaa ctctgtccct aagaacccaa agacgtctga ggtgcgactt 2640
 tacaccgtcc gttggagaaac cagttttctt gcaagtgcac aatacaagtc agaagacaca 2700
 acatctctaa gttacacacgc aacaggcctc aaacccaaaca caatgtatga attctcggtc 2760
 atggtaacaa aaaacagaag gtccagttact tggagcatga ctgcacatgc caccacgtat 2820
 gaagcagccc ccacctctgc tcccaaggac ttacagtca ttacttagggaa agggaaagct 2880
 cgtgccgtca ttgtgagttt gcagcctccc ttggaaagcca atggggaaat tactgtttac 2940
 atcttatttt ataccttggaa caagaacatc ccaattgtatc actggattat gggaaacaatc 3000
 agtgggtata ggcttactca tcaaattatc gatctcaacc ttgatataat gtttactttt 3060
 cgaattcaag cacaaaattt aaaaggatgt gggccactt ctgatcccat cctcttcagg 3120
 actctgaaag tggAACACCC ttgacaaaatg gctaattgacc aaggtcgtca tggagatggaa 3180
 gtttattggc cagttgatac taatttgc gatagaagca ccttaaatgt gcccggaaatt 3240
 ggacaaaatgc acccccccgc tggcgtgtc actcctcaga agaacagccaa cctgcttgc 3300
 atcattgtgg tcaccgttgg tgcattcaca gtgtgttgcg tggatcatgtt ggtgtgtt 3360
 tgcacccggac gctttcagc ccagcagaga aagaaacggg ccacccacag tgctggccaaa 3420
 aggaaggggca gccagaaggaa cctccgaccc cctgatctt ggttccatca tgaagaaatg 3480
 gagatgaaaaa atattgaaaaa gccatctggc actgaccctg cagggaggaa ctctccatc 3540
 caaagttgcc aagacctcac accagtgcac cacagccagt cagaaacccca actggaaagc 3600
 aaaagcacct ctcatcagg tcaagacact gaggaaggcag ggagctctat gtccactctg 3660
 gagaggtcgc tggctgcaccc cggagcccccc cggggccaaagc tcatgatttcc catggatgcc 3720
 cagtccaaaca atcctgtgt cgtgacgcgc atcccggtgc caacgctaga aagtgcggc 3780
 taccctggaa tcctcccgcc tccacacatc ggatatcccc accccgcgtt cactctccgg 3840
 cctgtgcacccat tcccaacact ctcagttggac cgggtttcg gagcaggaaag aagtcaatc 3900
 gtgagtgaaag gaccaactac ccaacaacca cctatgtgc ccccatctca gcctgagcat 3960
 tcttagcagcg aggaggcacc aagcagaacc atccccacag ctgtgtttcg accaactcac 4020
 ccactccgca gctttgctaa tcctccacca tgagtgcata agaaccgaaa 4080

147

gtcccttaca caccacttt gtctcagcca gggcccactc ttcctaagac ccatgtgaaa 4140
acagcctccc ttgggttggc tggaaaagca agatcccctt tgcttcctgt gtctgtgcca 4200
acagccccctg aagtgtctga ggagagccac aaaccaacag aggattcagc caatgtgtat 4260
gaacaggatg atctgagtga acaaatggca agtttggaaag gactcatgaa gcagcttaat 4320
gccatcacag gctcagcctt ttaa 4344

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2000 (07.12.2000)

PCT

(10) International Publication Number
WO 00/73328 A3

(51) International Patent Classification⁷: C12N 15/12, C07K 14/71, C12Q 1/68, G01N 33/50, 33/68, C07K 16/18, 14/435

(74) Agent: BAVERSTOCK, Michael, George, Douglas; Boult Wade Tenant, Verulam Gardens, 70 Gray's Innroad, London WC1X 8BT (GB).

(21) International Application Number: PCT/EP00/05108

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 2 June 2000 (02.06.2000)

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
9912755.7 1 June 1999 (01.06.1999) GB

Published:

— With international search report.

(71) Applicant (*for all designated States except US*): DEVGEN NV [BE/BE]; Technologiepark 9, B-9052 Zwijnaarde (BE).

(88) Date of publication of the international search report:
12 April 2001

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): VAN CRIEKINGE, Wim [BE/BE]; Devgen NV, Technologiepark 9, B-9052 Zwijnaarde (BE). ROELENS, Ingele [BE/BE]; Devgen NV, Technologiepark 9, B-9052 Zwijnaarde (BE). BOGAERT, Thierry [BE/BE]; Devgen N.V., Technologiepark 9, B-9052 Zwijnaarde (BE). VERWAERDE, Phillippe [FR/BE]; Devgen NV, Technologiepark 9, B-9052 Zwijnaarde (BE).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 00/73328 A3

(54) Title: UNC-5 CONSTRUCTS AND SCREENING METHODS

(57) Abstract: The invention provides novel splice variants of the human unc-5c cDNA and a novel human unc-5HS1 cDNA sequence. Also provided are assays based on protein-protein interactions between the UNC-5 protein and a variety of different interacting proteins.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/05108

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7 C12N15/12 C07K14/71 C12Q1/68 G01N33/50 G01N33/68 C07K16/18 C07K14/435					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K C12N C12Q G01N					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) BIOSIS, EMBASE					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relevant passages				Relevant to claim No.
X	ACKERMAN SUSAN L ET AL: "Cloning and mapping of the UNC5C gene to human chromosome 4q21-q23." GENOMICS, vol. 52, no. 2, 1998, pages 205-208, XP000946854 ISSN: 0888-7543 cited in the application the whole document ---				3,9,15
A					1-18
A	WO 98 37085 A (UNIV CALIFORNIA) 27 August 1998 (1998-08-27) the whole document ---				1-28, 30-59, 61-64, 66,67,69
					-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.			<input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed					
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *&* document member of the same patent family					
Date of the actual completion of the international search 17 October 2000			Date of mailing of the international search report 08.01.2001		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016			Authorized officer ANDRES S.M.		

INTERNATIONAL SEARCH REPORT

Intern. Appl. No
PCT/EP 00/05108

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 14424 A (UNIV CALIFORNIA) 24 April 1997 (1997-04-24) the whole document ---	19-23
A	COLAVITA ANTONIO ET AL: "Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in <i>Caenorhabditis elegans</i> ." DEVELOPMENTAL BIOLOGY, vol. 194, no. 1, 1 February 1998 (1998-02-01), pages 72-85, XP000946782 ISSN: 0012-1606 cited in the application the whole document -----	23-25, 27,28

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 00/05108

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

see further information sheet invention 1

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-18 (totally) and 19-28,30-59,61-64,66-67,
69 (all partially)

- 1.1. Claims: 1-6 (totally) and 19-28,30-59,61-64,66-67,
69 (all partially)

A human Unc-5Cb protein (SEQ ID 2), nucleic acids encoding it (SEQ ID 1), vectors and cells expressing it and an antibody binding thereto. Methods for identifying compounds which are capable of modulating the binding of Unc-5Cb to an interacting protein.

- 1.2. Claims: 7-12,71,85 (totally) and 19-28,30-59,61-64,
66-67,69 (all partially)

As for subject 1.1, but concerning a human Unc-5Cc protein (SEQ ID 4).

- 1.3. Claims: 13-18 (totally) and 19-28,30-59,61-64,66-67,
69 (all partially)

As for subject 1.1, but concerning a human Unc-5C8 protein (SEQ ID 6).

2. Claims: 19,29-58 (all partially)

A method, as characterised in claim 19, for identifying compounds capable of modulating the binding of an unc-5 protein to an interacting protein.

3. Claims: 20,29-58 (all partially)

A method, as characterised in claim 20, for identifying compounds capable of modulating the binding of an unc-5 protein to an interacting protein.

4. Claims: 21,29-58 (all partially)

A method, as characterised in claim 21, for identifying compounds capable of modulating the binding of an unc-5 protein to an interacting protein.

5. Claims: 22,29-58 (all partially)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

A method, as characterised in claim 22, for identifying compounds capable of modulating the binding of an unc-5 protein to an interacting protein.

6. Claims: 23-58 (all partially)

A method, as characterised in claim 23, for identifying compounds capable of modulating the binding of an unc-5 protein to an interacting protein.

7. Claims: 59,61-64,66-67,69 (all partially) and claims 60,65, 68 (totally)

A method for identifying compounds reducing or inhibiting the lethal phenotype associated with the expression of an UNC-5 death domain in yeast.

8. Claims: 70,80-84 (totally) and 19-28,30-59,61-64,66-67, 69 (all partially)

A nucleic acid encoding the human unc-5H1 homolog (SEQ ID 7), probes and antisense nucleic acids hybridizing therewith, vectors and cells comprising it. Methods for identifying compounds which are capable of modulating the binding of Unc-5H1 to an interacting protein.

9. Claims: 72-73 (totally) and 19-31,53 (all partially)

A nucleic acid obtainable by digestion of pYMP17 with EcoRI and XhoI (SEQ ID 56). Methods for identifying compounds which are capable of modulating the binding of Unc-5 protein to the protein encoded by SEQ ID 56.

10. Claims: 74-75 (totally) and 19-31,54 (all partially)

A nucleic acid obtainable by digestion of pYMP6 with EcoRI and XhoI (SEQ ID 54). Methods for identifying compounds which are capable of modulating the binding of Unc-5 protein to the protein encoded by SEQ ID 54.

11. Claims: 76-77 (totally) and 19-31,57 (all partially)

A nucleic acid obtainable by digestion of pYMP11 with EcoRI and XhoI (SEQ ID 61). Methods for identifying compounds which are capable of modulating the binding of Unc-5 protein to the protein encoded by SEQ ID 61.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

12. Claims: 78-79 (totally) and 19-31,58 (all partially)

A nucleic acid obtainable by digestion of pYMP12 with EcoRI and XhoI (SEQ ID 63). Methods for identifying compounds which are capable of modulating the binding of Unc-5 protein to the protein encoded by SEQ ID 63.

Please note that all inventions mentioned under item 1, although not necessarily linked by a common inventive concept, could be searched without effort justifying an additional fee.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.
PCT/EP 00/05108

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9837085	A 27-08-1998	US 5939271 A		17-08-1999
		AU 718795 B		20-04-2000
		AU 6174498 A		09-09-1998
		EP 0973794 A		26-01-2000
<hr/>				
WO 9714424	A 24-04-1997	US 5747262 A		05-05-1998
		AU 688698 B		12-03-1998
		AU 7433496 A		07-05-1997
		CA 2207505 A		24-04-1997
		EP 0802795 A		29-10-1997
		JP 10511558 T		10-11-1998
		US 6087326 A		11-07-2000