Advancing in R Regression

Outline

- Brief review: theory of linear regression
- · Linear regression in R
 - 1) Data exploration (plotting!)
 - 2) Model construction
 - 3) Diagnostics
 - 4) Model evaluation

What is a regression?

- Regression analysis establishes a mathematical relationship between 2 or more variables by estimating a best-fit line (linear regression)
- How to find the best-fit line?
 - Minimizing the unexplained variation (the residual variation), through minimizing the sums of squared deviations

Assumptions of Regression

- Independent variable X, should be fixed
 - Rarely the case, but should have negligible error
- Variance of the dependent variable Y is constant for all values of the independent variable X
- Residual values must be normally distributed, i.e., residuals should be randomly distributed about the regression line

How does air temperature change with altitude in the Cairngorms?

Steps in univariate linear regression

- 1) Data exploration (plotting!)
- 2) Model construction
- 3) Diagnostics
- 4) Model evaluation

What is the predicted slope for the line?

What is the predicted slope for the line?

A. -0.2

B. -0.1

C. -0.02

D. -0.01

E. 0.01

F. 0.02

G. 0.1

H. 2

What is the predicted temperature at sea level?

A. 2°C

B. 8°C

C. 12°C

D. 17°C

E. 22°C

F. Not enough information

What is the predicted temperature at sea level?

- A. 2°C
- B. 8°C
- C. 12°C
- D. 17°C
- E. 22°C
- F. Not enough information

Which of the following is an appropriate null hypothesis for a regression of air temperature on elevation?

- A. Y intercept is positive
- B. Y intercept is negative
- C. Y-intercept = 0
- D. Slope is positive
- E. Slope is negative
- F. Slope = 0
- G. None of the above choices

Steps in univariate linear regression

- 1) Data exploration (plotting!)
- 2) Model construction
- 3) Diagnostics
- 4) Model evaluation

Calling a linear regression in R

➤ MODEL.NAME <- lm(Y ~ X)

➤ AIR.MOD <- lm(AIR.TEMP.CORR~ELEVATION,data=CG)

OR

➤ AIR.MOD <- lm(CG\$AIR.TEMP.CORR~CG\$ELEVATION)

Steps in univariate linear regression

- 1) Data exploration (plotting!)
- 2) Model construction
- 3) Diagnostics
- 4) Model evaluation

Residual diagnostics: to evaluate model

Residuals must be examined to test for normal errors and randomness in the distribution.

- The residuals vs fits plot: should show no pattern between the residuals and the fitted values
- The quantile-quantile (QQ) normal plot: if the theoretical and observed quantiles are similar, the dots should make a straight line on y=x
- The scale-location plot: as for the fits vs. resids, should show no pattern
- The Cook's distance plot: illustrates data points with high influence on parameter estimates

Steps in univariate linear regression

- 1) Data exploration (plotting!)
- 2) Model construction
- 3) Diagnostics
- 4) Model evaluation

```
The ANOVA table is much less informative than the summary call:

> summary.aov(AIR.MOD

Df Sum Sq Mean Sq F value Pr(>F)

ELEVATION 1 399.1 399.1 386.2 <2e-16 ***
Residuals 52 53.7 1.0

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```


Practical exercise

- Tannin is a plant compound that can interfere with insect digestion
- N = 9 caterpillars, all given a different concentration of tannin
- How does diet affect caterpillar growth?
- · Predictor variable?
- · Response variable?
- Plot?

Suggested reading:

- Ch. 8 in Logan (excellent!)
- Or Ch. 8 in Crawley Statistics...
- Or Ch. 10 in Crawley The R Book