Algorithms and Satisfiability 10. Abstraction Heuristics For Planning It's a Long Way to the Goal, But How Long Exactly?

Álvaro Torralba

AALBORG UNIVERSITET

Spring 2023

Thanks to Jörg Hoffmann for slide sources

Introduction Recap: STRIPS Recap: Search FDR Idea Abstraction Basics Pathological concording control on the con

- Introduction
- 2 Recap: The STRIPS Planning Formalism
- Recap: Planning as Heuristic Search
- Finite-Domain Representation (FDR) Planning
- 6 Abstractions: Idea
- 6 Abstraction Basics
- Practical vs. Pathological Abstractions
- 8 Pattern Databases
- Onclusion

Introduction Recap: STRIPS Recap: Search FDR Idea Abstraction Basics Pathological concording control on the con

- Introduction
- Recap: The STRIPS Planning Formalism
- Recap: Planning as Heuristic Search
- Finite-Domain Representation (FDR) Planning
- 6 Abstractions: Idea
- 6 Abstraction Basics
- Practical vs. Pathological Abstractions
- 8 Pattern Databases
- Onclusion

- Introduction
- 2 Recap: The STRIPS Planning Formalism
- Recap: Planning as Heuristic Search
- Finite-Domain Representation (FDR) Planning
- 6 Abstractions: Idea
- 6 Abstraction Basics
- Practical vs. Pathological Abstractions
- 8 Pattern Databases
- Onclusion

Planning

Ambition:

Write one program (planner) that can solve all sequential decision-making problems.

How do we describe our problem to the planner?

- A logical description of the possible states
- A logical description of the initial state I
- A logical description of the goal condition G
- logical description of the set A of actions in terms of preconditions and effects
- \rightarrow Solution (plan) = sequence of actions from A, transforming I into a state that satisfies G.

Planning

Ambition:

Write one program (planner) that can solve all sequential decision-making problems.

How do we describe our problem to the planner?

- A logical description of the possible states
- A *logical description* of the initial state *I*

Algorithms and Satisfiability

- A logical description of the goal condition G
- logical description of the set A of actions in terms of preconditions and effects
- \rightarrow Solution (plan) = sequence of actions from A, transforming I into a state that satisfies G.
- →Here, we focus on the simplest form of planning: Classical Planning. In the mini-project, we will briefly cover other extensions.

5/71

Algorithmic Problems in Planning

Input: A planning task Π .

Output: A plan for Π , or "unsolvable" if no plan for Π exists.

0 . . . I DI

Input: A planning task Π .

 $\textbf{Output:} \quad \text{An } \textit{optimal} \ \mathsf{plan} \ \mathsf{for} \ \Pi, \ \mathsf{or} \ \text{``unsolvable''} \ \mathsf{if} \ \mathsf{no} \ \mathsf{plan} \ \mathsf{for} \ \Pi \ \mathsf{exists}.$

Algorithmic Problems in Planning

Input: A planning task Π .

Output: A plan for Π , or "unsolvable" if no plan for Π exists.

Input: A planning task Π .

Output: An *optimal* plan for Π , or "unsolvable" if no plan for Π exists.

 \rightarrow The techniques successful for either one of these are almost disjoint. And satisficing planning is *much* more effective in practice.

Algorithmic Problems in Planning

Input: A planning task Π . **Output:** A plan for Π , or "unsolvable" if no plan for Π exists.

Input: A planning task Π .

Output: An *optimal* plan for Π , or "unsolvable" if no plan for Π exists.

 \rightarrow The techniques successful for either one of these are almost disjoint. And satisficing planning is *much* more effective in practice.

→ Programs solving these problems are called (optimal) planners, planning systems, or planning tools.

Classical Planning IPC Overview

- IPC 2000: Winner heuristic search.
- IPC 2002: Winner heuristic search.
- IPC 2004: Winner satisficing heuristic search; optimal compilation to SAT.
- IPC 2006: Winner satisficing heuristic search; optimal compilation to SAT.
- IPC 2008: Winner satisficing heuristic search; optimal symbolic search.
- **IPC 2011:** Winner satisficing heuristic search; optimal heuristic search.
- IPC 2014: Winner satisficing heuristic search; optimal symbolic search.
- IPC 2018: Winner satisficing heuristic search; optimal portfolio/symbolic search/heuristic search.
- → This and next lecture focus on planning as heuristic search; Chapter 12 will focus on compilation to SAT and symbolic search.

Classical Planning IPC Overview

- IPC 2000: Winner heuristic search.
- IPC 2002: Winner heuristic search.
- IPC 2004: Winner satisficing heuristic search; optimal compilation to SAT.
- IPC 2006: Winner satisficing heuristic search; optimal compilation to SAT.
- IPC 2008: Winner satisficing heuristic search; optimal symbolic search.
- IPC 2011: Winner satisficing heuristic search; optimal heuristic search.
- IPC 2014: Winner satisficing heuristic search; optimal symbolic search.
- IPC 2018: Winner satisficing heuristic search; optimal portfolio/symbolic search/heuristic search.
- → This and next lecture focus on planning as heuristic search; Chapter 12 will focus on compilation to SAT and symbolic search.
- \rightarrow This is a VERY short summary of the history of the IPC! There are many different categories, and many different awards.

Our Agenda for This Topic

Planning and heuristic search were already introduced in the Machine Intelligence course, as it is a sub-area of Artificial Intelligence. Here, we focus on how to (1) design efficient algorithms that can solve planning tasks in practice; and (2) make use of existing planners by encoding your problems as planning tasks.

- This Chapter: How to automatically generate a heuristic function, given planning language input?
 - \rightarrow Focusing on heuristic search as the solution method, this is the main question that needs to be answered.
- Mini-project: How to use planners to solve your problems?
- Chapter 11: How to solve planning using SAT? How to solve planning using BDDs?
 - ightarrow 0 ther algorithms to solve planning based on the techniques we have seen before.

- Introduction
- 2 Recap: The STRIPS Planning Formalism
- Recap: Planning as Heuristic Search
- Finite-Domain Representation (FDR) Planning
- Abstractions: Idea
- 6 Abstraction Basics
- Practical vs. Pathological Abstractions
- 8 Pattern Databases
- Onclusion

STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short planning task, is a 4-tuple $\Pi = (P, A, I, G)$ where:

- P is a finite set of facts (aka propositions).
- A is a finite set of actions; each $a \in A$ is a triple $a = (pre_a, add_a, del_a)$ of subsets of P referred to as the action's precondition, add list, and delete list respectively; we require that $add_a \cap del_a = \emptyset$.
- $I \subseteq P$ is the initial state.
- $G \subseteq P$ is the goal.

We will often give each action $a \in A$ a name (a string), and identify a with that name.

STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short planning task, is a 4-tuple $\Pi = (P, A, I, G)$ where:

- P is a finite set of facts (aka propositions).
- A is a finite set of actions; each $a \in A$ is a triple $a = (pre_a, add_a, del_a)$ of subsets of P referred to as the action's precondition, add list, and delete list respectively; we require that $add_a \cap del_a = \emptyset$.
- $I \subseteq P$ is the initial state.
- $G \subseteq P$ is the goal.

We will often give each action $a \in A$ a name (a string), and identify a with that name.

→We'll see some extensions beyond STRIPS for the mini-project, when we discuss PDDL.

"TSP" in Australia

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state *I*:

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state I: {at(Sydney), visited(Sydney)}.
- Goal *G*:

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state $I: \{at(Sydney), visited(Sydney)\}.$
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a :

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state I: {at(Sydney), visited(Sydney)}.
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x,y) where x,y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a :

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state $I: \{at(Sydney), visited(Sydney)\}.$
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a : $\{at(y), visited(y)\}$. Delete list del_a :

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}$.
- Initial state I: $\{at(Sydney), visited(Sydney)\}.$
- Goal G: $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x,y) where x,y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a : $\{at(y), visited(y)\}$. Delete list del_a : $\{at(x)\}$.
- Plan:

- Facts $P: \{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Initial state I: $\{at(Sydney), visited(Sydney)\}.$
- Goal G $\{at(Sydney)\} \cup \{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane, Perth, Darwin\}\}.$
- Actions $a \in A$: drive(x, y) where x, y have a road. Precondition pre_a : $\{at(x)\}.$ Add list add_a : { at(y), visited(y) }. Delete list del_a : { at(x) }.
- Plan: \(\langle drive(Sydney, Brisbane)\), \(drive(Brisbane, Sydney)\), \(drive(Sydney, Adelaide)\), drive(Adelaide, Perth), drive(Perth, Adelaide), drive(Adelaide, Darwin), drive(Darwin, Adelaide), drive(Adelaide, Sydney).

Definition (STRIPS State Space). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The state space of Π is $\Theta_{\Pi} = (S, A, T, I, S^G)$ where:

• The states (also world states) $S = 2^P$ are the subsets of P.

13/71

- The states (also world states) $S=2^P$ are the subsets of P.
- A is Π 's action set.

- The states (also world states) $S=2^P$ are the subsets of P.
- A is Π 's action set.
- The transitions are $T = \{s \xrightarrow{a} s' \mid pre_a \subseteq s, s' = appl(s, a)\}$. If $pre_a \subseteq s$, then a is applicable in s and $appl(s, a) := (s \cup add_a) \setminus del_a$. If $pre_a \not\subseteq s$, then appl(s, a) is undefined.

- The states (also world states) $S = 2^P$ are the subsets of P.
- A is Π 's action set.
- The transitions are $T = \{s \xrightarrow{a} s' \mid pre_a \subseteq s, s' = appl(s, a)\}$. If $pre_a \subseteq s$, then a is applicable in s and $appl(s, a) := (s \cup add_a) \setminus del_a$. If $pre_a \not\subseteq s$, then appl(s, a) is undefined.
- I is Π 's initial state.
- The goal states $S^G = \{s \in S \mid G \subseteq s\}$ are those that satisfy Π 's goal.

Definition (STRIPS State Space). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The state space of Π is $\Theta_{\Pi} = (S, A, T, I, S^G)$ where:

- The states (also world states) $S = 2^P$ are the subsets of P.
- A is Π 's action set.
- The transitions are $T = \{s \xrightarrow{a} s' \mid pre_a \subseteq s, s' = appl(s, a)\}$. If $pre_a \subseteq s$, then a is applicable in s and $appl(s, a) := (s \cup add_a) \setminus del_a$. If $pre_a \not\subseteq s$, then appl(s, a) is undefined.
- I is Π 's initial state.
- The goal states $S^G = \{s \in S \mid G \subseteq s\}$ are those that satisfy Π 's goal.

An (optimal) plan for $s \in S$ is an (optimal) solution for s in Θ_{Π} , i.e., a path from s to some $s' \in S^G$. A solution for I is called a plan for Π . Π is solvable if a plan for Π exists.

Definition (STRIPS State Space). Let $\Pi = (P, A, c, I, G)$ be a STRIPS planning task. The state space of Π is $\Theta_{\Pi} = (S, A, T, I, S^G)$ where:

- The states (also world states) $S = 2^P$ are the subsets of P.
- A is Π 's action set.
- The transitions are $T = \{s \xrightarrow{a} s' \mid pre_a \subseteq s, s' = appl(s, a)\}$. If $pre_a \subseteq s$, then a is applicable in s and $appl(s, a) := (s \cup add_a) \setminus del_a$. If $pre_a \not\subseteq s$, then appl(s, a) is undefined.
- I is Π 's initial state.
- The goal states $S^G = \{s \in S \mid G \subseteq s\}$ are those that satisfy Π 's goal.

An (optimal) plan for $s \in S$ is an (optimal) solution for s in Θ_{Π} , i.e., a path from s to some $s' \in S^G$. A solution for I is called a plan for Π . Π is solvable if a plan for Π exists.

For $\vec{a} = \langle a_1, \dots, a_n \rangle$, $appl(s, \vec{a}) := appl(\dots appl(appl(s, a_1), a_2) \dots, a_n)$ if each a_i is applicable in the respective state; else, $appl(s, \vec{a})$ is undefined.

STRIPS Encoding of Simplified "TSP"

- Facts P: $\{at(x), visited(x) \mid x \in \{Sydney, Adelaide, Brisbane\}\}$.
- Initial state I: {at(Sydney), visited(Sydney)}.
- Goal G: $\{visited(x) \mid x \in \{Sydney, Adelaide, Brisbane\}\}$. (Note: no "at(Sydney)".)
- Actions $a \in A$: drive(x,y) where x,y have a road. Precondition pre_a : $\{at(x)\}$. Add list add_a : $\{at(y), visited(y)\}$. Delete list del_a : $\{at(x)\}$.

STRIPS Encoding of Simplified "TSP": State Space

STRIPS Encoding of Simplified "TSP": State Space

 \rightarrow Is this actually the state space?