Évaluation blanche du module Méthodes Numériques pour l'Ingénieur pour les classes 3A15->3A28 & 3B1->3B12

Total des points 100/100

Il est à noter que :

- La présente évaluation sera accessible durant 48h à compter de la date de sa planification.
- Uniquement un seul envoi du présent formulaire est autorisé.
- Votre score sera affiché en pourcentage.
- Chaque question pourrait avoir une ou plusieurs réponses correctes.

L'adresse e-mail du répondant (ahmed.issiou@esprit.tn) a été enregistrée lors de l'envoi de ce formulaire.

Cochez la bonne réponse : *

8/8

Soit:

$$I = \int_0^2 \frac{1}{x+2} \, dx$$

Quel est le nombre de sous intervalles minimal à choisir pour avoir une erreur d'intégration (relative à la méthode des trapèzes composites pour le calcul approché de I) inférieure à 10^{-4} ?

Commentaire

Trouver une majoration de l'erreur E (relative à la méthode composite des trapèzes) en fonction de n (le nombre de sous intervalles), et puis la majorer par 10^(-4). C'est à dire:

 $E < = (((b-a)^3)/(12 n^2)) \sup |f''(x)| < = 10^{-4}$ avec fa=0, b=2, f(x)=1/(x+2), et sup |f''(x)|=1/4, pour x dans l'intervalle[0,2]. Le résultat trouvé est n>=40.82483.

Cochez la bonne réponse : *

6/6

Soit $f(x) = x^3 + 4x^2 - 10$. On vérifie graphiquement que f admet une racine réelle dans l'intervalle [1, 2] et que la méthode de dichotomie est applicable (voir la figure ci-dessous).

Alors le nombre d'itérations nécessaire pour estimer cette racine à une tolérance $\varepsilon=10^{-10}$ est :

27

Commentaire

Application directe du théorème de convergence de la méthode de dichotomie : il suffit d'écrire que l'indice n doit vérifier $|x_n - x^*|$ inférieur ou égale à $1/2^{n+1}$, c'est à dire 1/2^{n+1} inférieure ou égale à 10^{-10} ce qui donne que n est supérieur ou égale à 10. $log_2(10)-1$ c'est presque égale à 32.21. D'où n = 33.

Soit f une fonction définie sur [1,2] par son graphe (on ne connnais pas exactement l'expression explicite de f(x)).

Si on note par I_{ex} la valeur exacte $\int_1^2 f(x) dx$ et par I_t^s la valeur approchée de $\int_1^2 f(x) dx$ par la méthode simple d'intégration des trapèzes, alors :

 $I_{ex} < I_t^s$

 $I_{ex} = I_t^s$

réponse A :

réponse B :

 $I_{ex} > I_t^s$

réponse C :

✓ Cochez la bonne réponse : *

6/6

Soit une fonction f définie sur I = [-4, 4] dont le tableau de variations est le suivant :

L'équation $f(x) + \frac{3}{2} = 0$

- n'admet pas de solution sur]-4 , 4[
- admet une solution unique sur]-4 , 4[
- admet 2 solutions sur]-4 , 4[
- admet 3 solutions sur]-4 , 4[

Commentaire

Une solution sur]-4;-3[d'après le TVI;

Pas de solution sur]-3;1[ni sur]1;4[où f prend des valeurs supérieures ou égales à -1.

✓ Soit f une fonction continue et strictement monotone su telle que f(1).f(3)<0. Parmi les propositions suivantes, qu nombres d'itérations à appliquer par la méthode de dich permettent d'assurer une précision E=0.001 pour estim l'équation f(x)=0 sur]1,3[? *	iels sont les notomie qui
7	
9	
11	✓
20	✓
100	~
Commentaire On utilise l'estimation du nombre d'itération pour la méthode de dicho précision E.	otomie avec une

✓ Cochez la bonne réponse : *

8/8

Donner une valeur approchée de $I=\int_0^{\pi/2}f(x)dx$, par la méthode des trapèzes composites, en se basant sur le tableau suivant :

x	0	π/8	$\pi/4$	$3\pi/8$	$\pi/2$
f(x)	0	0.382683	0.707107	0.923880	1

1,987116

0.987116

2.98716

Commentaire

Appliquer la formule de trapèze composite avec : x0=0, $x1=\pi/8$ $x2=\pi/4$ $x3=3\pi/8$ $x4=\pi/2$

 $h=\pi/8$

I=h/2 * [f(x0)+2f(x1)+2f(x2)+2f(x3)+f(x4)]

/	Cochez	la	bonne	réponse		*
	COCHEZ	ıa		reponse	•	

Soit f une fonction continue sur un intervalle $[a, b] \subset \mathbb{R}$. Quelles sont les hypothèses suffaisantes pour que la solution de f(x) = 0 est unique?

$$-f(a).f(b) < 0$$

f est strictement monotone sur [a, b]

$$- f(a).f(b) < 0$$
$$- f([a,b]) \subset [a,b]$$

réponse A :

réponse B:

$$- f([a,b]) \subset [a,b]$$

f est strictement monotone sur [a, b]

 $-f([a,b]) \subset [a,b]$

- f est de classe \mathfrak{C}^1 sur [a,b]

réponse C:

réponse D:

Commentaire

- * Pour que f(x)=0 admet une solution sur [a,b], il faut que f(a).f(b)<0
- * Pour assurer l'unicité de cette solution, il faut que f soit strictement monotone sur [a,b].

./	Cochez	la	honne	réponse :	. :
V	COCHEZ	ıa	DOLLIG	reponse.	•

Soient l'intégrale $I=\int_0^\pi \sin x \; dx$ et E l'erreur d'intégration relative à la méthode des trapèzes composites pour le calcul approché de I, en considérant un pas de subdivision $h=\frac{\pi}{4}$ de l'intervalle $[0,\pi].$

Parmi ces valeurs, quelle est la plus petite valeur qui majore E?

- 0.1614
- 0.1785
- 0.1523

Commentaire

Appliquer la formule de la majoration de l'erreur (Trapèze composite) avec n=4 et sup |f''(x)|=1, x dans l'intervalle [0,pi].

✓ Cochez la bonne réponse : *

8/8

Soit $f:[2,3] \longrightarrow \mathbb{R}$ définie par $f(x) = x^3 - 2x - 5$.

On se propose de résoudre numériquement par l'algorithme de Newton l'équation:

$$(E): f(x) = 0.$$

La suite $(x_n)_n$ de la méthode de Newton définie par:

$$\begin{cases} x_0 \in [2,3] & \text{tel que} \quad f(x_0)f''(x_0) > 0 \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

est convergente vers α , l'unique solution de (E).

vrai

faux

Commentaire

la suite converge vers la solution de (E) car:

- -f est de classe C^2 sur [2,3].
- f(2)f(3)<0 donc (E) admet au moins une solution
- -la dérivée de f ne s'annule pas sur [2,3] : unicité de la solution.
- -la dérivée second de f ne s'annule pas sur [2,3].

Evaluation blanding at module inclined in the inclined pour ringement pour les diabots of the	5 - 6/120 Q 0B 1 - 0B 12
✓ Cochez la bonne réponse : *	10/10
Soit f la fonction définie par $f(x) = e^x - x - 2$ sur $[1,2]$. En utilisant la méthode de New une valeur approchée de la solution de $f(x) = 0$ sur $[1,2]$ avec une précision de $\varepsilon = 10^{-2}$ un choix de $x_0 = 2$ est:	
1.1488	
1.1461	✓
1.2073	
0.1456	
Commentaire	
On utilise l'algorithme de Newton jusqu'à atteindre l'inégalité x_{n+1}-x_n <10^{-2}, ensuite on prend x_{n+1} comme valeur approchée de x*, l de f sur [1,2].	a racine

0.479

✓ Cochez la bonne réponse : *

Commentaire

Application directe de la formule de Simpson simple: $l_s=((1-0)/6)*(f(0)+4*f((0+1)/2)+f(1))$ avec $f(x)=1/(1+exp(-x^2))$.

5/5

Soit f une fonction définie, sur $[\frac{1}{2},1]$, par $f(x)=3x^5-x^4-1$. Pour la résolution de l'équation f(x)=0 avec la méthode de Newton , on choisit x_0 égale à

- 0 = 3/4
- $0 \times 0 = 1/2$
- **x**0=1

Commentaire

réponse 3 f">0 alors x0=1 car f(1)>0

✓ Cochez la bonne réponse : *	5/5
Soit la fonction définie par $f(x) = \sqrt{x-1} - \frac{1}{2}$ sur [1,2]. La fonction f satisf elle les hypothèses de la convergence de la méthode de Newton pour la résolution $f(x)=0$?	
Oui	
Non	/
Commentaire	
La fonction f n'est pas dérivable en 1.	

Ce formulaire a été créé dans esprit.

Google Forms