Machine Translation

Luciano Barbosa (slides baseados no curso de NLP de Stanford)

Definição

Tarefa de traduzir um sentença x de uma língua (source language)
 para uma sentença y em uma outra língua (target language)

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau cın.urpe.br

Início da Área

- Anos de 1950
- Motivada pela gerra fria
 - Russo -> Inglês
 - Baseado em regras, usando dicionário bilíngüe

Statistical Machine Translation

- Ideia básica: aprender um modelo probabilístico a partir dos dados
- Ex: melhor sentença y em inglês, dada uma sentença x em francês

$$\operatorname{argmax}_{y} P(y|x)$$

Regra de Bayes quebra em 2 componentes:

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

Models how words and phrases should be translated (*fidelity*). Learnt from parallel data.

Language Model

Models how to write good English (fluency).
Learnt from monolingual data.

Statistical Machine Translation

- Como aprender o modelo de tradução P(x|y) ?
- Grande quantidade de corpus paralelo

Alinhamento de Corpus Paralelo

Definir alinhamentos entre sentencas paralelas

- **Desafios:**
 - Diferenças na construção de sentenças em diferentes línguas
 - Algumas palavras não possuem tradução

Examples from: "The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. http://www.aclweb.org/anthology/J93-2003

English

he hit me with a pie

Aprendendo o Alinhamento

- Combinação de fatores
 - Probabilidade do alinhamento de palavras específicas (depende da posição na sentença)
 - Probabilidade de uma palavra ter fertilidade
 - etc
- Utilização de algoritmos como Expectation-Maximization

Decoding

Statistical Machine Translation

- Melhores sistemas bem complexos
- Feature engineering para capturar detalhes das linguagens
- Muito esforço humano para manter

Neural Machine Translation

- Usa uma única rede neural
- Arquitetura: sequence-to-sequence
 - Utilizada também para: diálogo, parsing, geração de texto
- Duas etapas:
 - Treinamento
 - Tradução

Treinamento

Precisa de corpus paralelo

Tradução

Greedy: Seleciona a palavra com máxima probabilidade

Encoder

https://tomaxent.com/2018/01/21/Seq2Seq-with-Attention-and-Beam-Signature Person / 1988/01/21/Seq2Seq-with-Attention-and-Beam-Signature Person / 1988/01/21/Seq2Seq-with-Attention-Attention-Attention-Attention-Attention-Attention-Attention-Attention

Decoder (Greedy)

Decoder (Greedy)

Beam Search

- Limitação do greedy decoding: não permite desfazer decisões
- Em cada passo, manter as k traduções parciais mais prováveis ou hipóteses
- Não é garantido encontrar a melhor solução

- Source: il a m' entarté
- Target: he hit me with a pie
- K=2

Limitação do Sequence-to-Sequence

Attention

 Cada passo do decoder tem conexão direta com os encoders para focar em partes específicas da sentença fonte

Decoder Tradicional

Decoder com Attention

Decoder com Attention

Sequence-to-Sequence com Attention

Sequence-to-Sequence com Attention

Funções de Attention

Name	Alignment score function	Citation
Content- base attention	$score(s_t, h_i) = cosine[s_t, h_i]$	Graves2014
Additive(*)	$score(s_t, h_i) = \mathbf{v}_a^{\top} tanh(\mathbf{W}_a[s_t; h_i])$	Bahdanau2015
Location- Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$score(s_t, h_i) = s_t^T \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$score(s_t, h_i) = s_t^{T} h_i$	Luong2015
Scaled Dot- Product(^)	$\mathrm{score}(s_t, \boldsymbol{h}_i) = \frac{s_i^{T} \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Vantages do Uso de Attention

- Melhora bastante o desempenho do NMT
 - Foca em partes importantes da sentença fonte
- Lida com o problema de vanishing gradient
- Provê alguma interpretabilidade
- Alinhamento das palavras é aprendido automaticamente

NMT vs SMT

- Vantagens de NMT
 - Melhor desempenho
 - Mais fluente
 - Melhor uso do contexto
 - Uma única rede neural a ser otimizada
 - Necessita de muito menos esforço:
 - Sem feature engineering
 - Mesmo método para todos os pares de línguas
- Desvantagens de NMT:
 - Menos interpretável
 - Difícil de controlar pois não possui regras

Avaliação de Machine Translation: BL Score

- Similaridade entre a tradução automática com traduções feitas por humanos
 - Média geométrica ponderada da n-gram precision (usualmente 1, 2, 3 e 4-grams)
 - Penalidade por traduções muito pequenas
- Varia entre 0 e 1
- 1 muito raro (match perfeito)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$p_n = rac{\sum\limits_{C \in \{Candidates\}} \sum\limits_{n-gram \in C} Count_{clip}(n-gram)}{\sum\limits_{C' \in \{Candidates\}} \sum\limits_{n-gram' \in C'} Count(n-gram')}.$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

r: referência c: candidato

BLEU Score: Exemplo

- Referência: "the Iraqi weapons are to be handed over to the army within two weeks"
- MT output: "in two weeks Iraq's weapons will give army"
- 1-gram precision: 4/8
- 2-gram precision: 1/7
- 3-gram precision: 0/6
- 4-gram precision: 0/5
- BLEU score = 0 (weighted geometric average)

Melhorias dos Modelos com o Tempo

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

Problemas

- Palavras fora do vocabulário
- Mismatch entre treinamento e teste
- Manter contexto em textos longos
- Línguas com pouco corpus paralelo
- Expressões idiomáticas

