MAC Polygis

MAC ir LLC polygiai

Tinklo lygis Tinklo lygis LLC Kanalinis lygis MAC Fizinis lygis Fizinis lygis

MAC polygis

- Samprata
- Tikslai:
 - Teikti adresavimo paslaugas;
 - Valdyti prieigą prie kanalo

Statinis kanalo paskirstymas

- Laiko (TDM) arba dažnio (FDM) multipleksavimas nėra efektyvus dėl nereguliaraus naudotojų srauto
- Statinis kanalo paskirstymas nėra efektyvus, darant prielaida, kad naudotojų skaičius yra pastovus

Dinaminis kanalo paskirstymas

- Modelio sandara:
 - Stotys modelis susideda iš N nepriklausomų stočių
 - Vienas kanalas Kanalas yra vienas ir prieinamas visiems. Galimi tik programiniai prioritetai.
 - Kolizijos jei bent dvi stotys tuo pačiu metu perduoda kadrus, tai signalai yra sugadinami. Kitų klaidų nėra.

Dinaminis kanalo paskirstymas

• Laikas:

- Tolydus laikas kadro perdavimas gali prasidėti bet kuriuo laiko momentu. Sistema neturi bendro taimerio
- Diskretus laikas laikas skirstomas į diskrečius laiko intervalus – slotus

• Signalo aptikimas:

- Su signalo aptikimu stotis visada nustato ar kanalas užimtas ar laisvas prieš pradedant siuntimą. Nei neužimtas, siuntimas nepradedamas
- Be signalo aptikimo stotis nieko nežino apie kanalo būseną kol nepradeda jo naudoti

Perdavimo protokolai

- ALOHA perdavimo protokolai:
 - Tikrasis ALOHA;
 - Diskretus ALOHA;
- Protokolai su ryšio aptikimu:
 - CSMA;
 - CSMA/CD;
- Protokolai be kolizijų:
 - BitMap;
 - Adreso skaitliukas
 - Token ring

ALOHA protokolas

1970-ais mm. N.Abramson Havajų universitete pasiūlė paprastą kanalo paskirstymo būdą. Abramson pavadino sistemą ALOHA – Havajų kalboje tai yra sveikinimas. ALOHA buvo sukurta iš radijo stočių, kurios sujungė salas tarpusavyje. Pagrindinė idėja yra leisti kiekvienam naudotojui transliacinėje terpėje neribotai naudoti vieną bendrą kanalą.

Puasono dėsnis

- k paketų skaičius
- G bandymų skaičius per vieno paketo siuntimo laiką

$$P(k) = \left(\frac{G^k e^{-G}}{k!}\right)^{k-1}$$

Tikrasis ALOHA protokolas

- Kadro laikotarpis t laikas, reikalingas fiksuoto ilgio kadrui perduoti
- Daroma prielaida, kad:
 - Vartotojų yra be galo daug ir jie generuoja kadrus pagal
 Puasono dėsnį, vidutiniškai S kadrų per kadro laikotarpį
 - -0 < S < 1
 - Tikimybė per k bandymų persiųsti naujus ir iki tol nepersiųstus kadrus paskirstyta pagal Puasono dėsnį su vidurkiu G(G≥S)
- Pralaidumas $S = GP_0$, kur P_0 kolizijų perdavimo metu nebuvimo tikimybė
- Kolizijai aptikti reikia 2t laiko vienetų, intervale t₀+2t

Tikrasis ALOHA protokolas

Kolizijai aptikti reikia t₀ + 2t laiko vienetų

Tikrasis ALOHA protokolas

• Maksimalus pralaidumas yra pasiekiamas kai G=0.5 ir S=1/2e, tai yra ~18%

Diskretus (angl. slotted) ALOHA protokolas

- Jeigu perdavimą galima pradėti ne bet kuriuo laiko momentu, o tik po tam tikro signalo, tai $S=Ge^{-G}$.
- Pralaidumo maksimumas diskrečiai ALOHA su G=1, tai S=1/e, t.y. apie 0.37

ALOHA protokolų palyginimas

CSMA persistent ir non-persistent

- LAN tinkluose yra galimybė nustatyti ar kanalas yra užimtas ir tik jam atsilaisvinus pradėti duomenų perdavimą. Protokolai realizuojantys šią idėją vadinami protokolais su signalo aptikimu **CSMA** (angl. Carrier Sense Multiple Access)
- Persistent protokolai pastoviai tikrina kanalo užimtumą
- Non-persistent tikrina kanalą tik po atsitiktinio laiko tarpo
- Persistent lygio p protokolai (su tikimybe p siunčia arba su tikimybe q=1-p laukia sekančio sloto)

CSMA su kolizijų aptikimu

- CSMA/CD (angl. *Carrier Sense Multiple Access with Collision Detection*) stotys turi aptikti kolizijas kuo ankščiau, o ne kadro perdavimo pabaigoje
- Modelis kuris naudojamas sistemose
- Rungtynių periodas diskreti ALOHA su 2τ slotu

CSMA su kolizijų aptikimu

CSMA/CD gali turėti tris būsenas: rungtynių, perdavimo ir laukimo

Protokolai be konfliktų

- CSMA/CD protokole kolizijos gali atsirasti tik rungtynių metu, tai kai τ yra pakankamai didelis ir kadrų ilgis mažas, pralaidumas smarkiai krenta. Ar galima iš viso išvengti kolizijų?
- Bit-Map protokolas protokolų šeima su rezervavimu
- Tarkime turime N stočių su numeriais nuo 0 iki N-1

Bit-Map protokolas

Protokolai be konfliktų

- Adreso skaitliukas
- 1979 m. buvo pasiūlyta metodo modifikacija, kai stotims dinamiškai keičiamas prioritetas, kuris ir padeda apskaičiuoti laimėtoją. Laimėtojas gauna žemiausią prioritetą, kuris bus didinamas per kiekvienas rungtynes.

Adreso skaitliukas

Bit time 0 1 2 3 0 1 0 0 1001 100-1010 Result Stations 0010 Station 1001 sees this 1 and 0100 see this 1 and give up and gives up

TokenRing

- Protokolai su apribotu konfliktų skaičiumi naudojamos rungtynės esant nedidelėms apkrovoms ir metodai be konfliktų kai apkrova yra didelė
- Tarkime turime k stočių, kiekviena iš jų su tikimybe p yra pasiruošusi perduoti kadrą. Tikimybė, kad stotis perduos kadrą yra $kp(1-p)^{k-1}$. Funkcijos maksimali reikšmė yra kai p = 1/k ir lygi

$$Pr(k) = \left(\frac{k-1}{k}\right)^{k-1}$$

• Stotys paskirstytos į grupes ir rungtynės vykdomos tik grupės viduje. Kiekvienai grupei garantuotai išduodamas slotas.

Bevielio ryšio protokolai

- Bevieliai LAN
- Neišeina naudoti CSMA dėl dviejų problemų
 - Paslėptos stoties problema
 - Išstatytos stoties problema
- MACA protokolai Multiple Access Collision Avoidance

Bevielio ryšio protokolai

Bevielio ryšio protokolai

