APLIKASI VIRTUAL FITTING ROOM MENGGUNAKAN WEBCAM BERBASIS WEB

WEB BASED VIRTUAL FITTING ROOM APPLICATION USING WEBCAM

I Kadek Bayu Arys Wisnu Kencana

Prodi D3 Manajemen Informatika, Fakultas Ilmu Terapan, Universitas Telkom bayuarys2010@gmail.com

Abstrak

Kamar pas atau fitting room yang berada pada suatu toko pakaian merupakan ruangan bagi pelanggan yang hendak mencoba suatu pakaian. Kamar pas atau fitting room hanya dapat ditemukan pada toko offline saja, berbeda halnya dengan toko online yang hanya menampilkan foto produk saja pada katalognya. Pada proyek akhir ini akan dibangun sebuah aplikasi yang dapat memvisualisasikan kamar pas atau fitting room dengan menggunakan webcam. Aplikasi yang dibangun merupakan aplikasi berbasis web yang menerapkan konsep augmented reality untuk menampilkan objek pakaian secara 2D, dimana augmented reality adalah teknologi yang menggabungkan benda maya dua dimensi dan ataupun tiga dimensi ke dalam sebuah lingkungan nyata tiga dimensi lalu memproyeksikan benda-benda maya tersebut secara real-time. Dalam interaksinya aplikasi yang dibangun menerapkan konsep perceptual user interaction dimana pengguna dapat melakukan interaksi dengan aplikasi tanpa menggunakan mouse ataupun keyboard. Hasil dari proyek akhir ini adalah sebuah aplikasi yang dapat digunakan oleh pengguna untuk mencoba pakaian dan mengganti ukuran pakaian yang dicoba secara virtual dengan menggunakan webcam.

Kata Kunci: HTML5, Webcam, Fitting room

Abstract

Fitting room that placed at a clothing store is a place for customer who want to try on clothes. Fitting room can be found at offline store only, it's different with online store which just showing photos of the products on their catalogue. An application will be built in this final project which can visualize fitting room using webcam. Application that will be built is web based application that using augmented reality concept to show the clothes as 2D object, which augmented reality is technology that combine two dimension and-or three dimension virtual object into a real three dimension environment then projecting virtual objects in real-time. The interaction of application is using perceptual user interaction which user can interact with application without using mouse or keyboard. Result of this final project is an application which can used by user to try on clothes and changing clothes size that their tried in virtual way with using webcam.

Keywords: HTML5, Webcam, Fitting room

1. Pendahuluan

1.1 Latar Belakang

Banyaknya toko *online* maupun toko *offline* seperti *distro* yang bermunculan membuat proses jual-beli produk berupa pakaian terus meningkat. Terlebih lagi toko-toko *online* yang muncul belakangan ini menjual produk yang tidak lepas dari dunia berbusana seperti baju, celana, kacamata, dan lain-lain. Dengan memilih produk yang ditawarkan melalui internet pembeli tidak perlu lagi menghabiskan waktu untuk pergi ke toko langsung. Pembeli hanya harus menunggu sampai produk yang dibeli sampai ke tangan pembeli.

Kamar pas atau *fitting room* yang berada pada suatu toko pakaian merupakan ruangan bagi pelanggan yang hendak mencoba suatu pakaian. Kamar pas atau *fitting room* hanya dapat ditemukan pada toko *offline* saja, berbeda halnya dengan toko *online* yang hanya menampilkan foto produk saja pada katalognya. Pelanggan atau calon pembeli terkadang ingin mencoba baju yang berada pada toko *online* tetapi toko tersebut tidak memiliki *offline store* sehingga pelanggan atau calon pembeli tidak dapat mencoba baju yang diinginkannya.

Maka dari itu dibangun sebuah aplikasi yang dapat memvisualisasikan kamar pas atau *fitting room* dengan menggunakan *webcam*. Aplikasi yang dibangun merupakan aplikasi berbasis web yang menerapkan konsep *augmented reality* untuk menampilkan objek pakaian secara 2D dan dalam interaksinya aplikasi yang dibangun menerapkan konsep *perceptual user interaction* dimana pengguna dapat melakukan interaksi dengan aplikasi tanpa menggunakan *mouse* ataupun *keyboard*. Aplikasi yang dibangun dapat digunakan oleh pengguna untuk mencoba pakaian dan mengganti ukuran pakaian yang dicoba secara virtual dengan menggunakan *webcam*.

1.2 Rumusan Masalah

Rumusan masalah dari perancangan aplikasi Virtual Fitting Room adalah sebagai berikut:

1. Bagaimana cara pengguna atau pelanggan memvisualisasikan dirinya menggunakan baju tetapi tanpa menggunakannya secara nyata?

2. Bagaimana cara pengguna atau pelanggan menentukan ukuran baju yang sesuai?

Bagaimana cara pengguna atau pelanggan mengambil gambar dirinya menggunakan baju tetapi tanpa menggunakannya secara nyata?

1.3 Tujuan

Tujuan dari perancangan aplikasi Virtual Fitting Room adalah sebagai berikut:

- 1. Membuat aplikasi yang dapat memvisualisasikan kamar pas atau fitting room dengan menggunakan webcam.
- 2. Membuat aplikasi yang dapat membantu pengguna menentukan ukuran baju yang sesuai.
- 3. Membuat aplikasi yang dapat mengambil gambar atau melakukan *capture* pengguna yang sedang menggunakan aplikasi *Virtual Fitting Room*.

1.4 Batasan Masalah

Adapun batasan-batasan masalahnya adalah:

- 1. Objek yang akan tampil pada monitor pengguna berupa objek 2D.
- 2. Pengguna hanya dapat mencoba pakaian berupa baju kaos dan atau kemeja.
- 3. Jarak minimum antara webcam dengan pengguna ±50cm.
- 4. Diperlukan cahaya ruangan yang cukup agar webcam dapat mendeteksi wajah pengguna dengan baik.
- 5. Objek yang tampil tidak dapat menyesuaikan lekuk tubuh pengguna.

Metode Pengerjaan

Pada metode pengerjaan,penulis menggunakan metode waterfall. Waterfall didalamnya dibagi menjadi lima tahapan. Berikut tahap-tahapan model waterfall [1]:

Gambar 1 Siklus Metode Waterfall

1. Analisis Kebutuhan Perangkat Lunak

Mengumpulkan kebutuhan-kebutuhan yang dibutuhkan oleh pengguna kemudian dianalisis dan didefinisikan kebutuhan yang harus dipenuhi oleh program yang akan dibangun seperti menganalisis aplikasi pembanding dan menganalisis ukuran pakaian yang biasa digunakan.

2. Desain Perangkat Lunak

Perancangan desain perangkat lunak diantaranya dilakukan dengan membuat gambaran awal, *mockup, storyboard*, dan *flowmap*. Setelah semuanya terkumpul maka aplikasi *Virtual Fitting Room* dibuat.

3. Pembuatan Kode Program

Pada tahap ini dilakukan perancangan aplikasi web *Virtual Fitting Room* dengan menggunakan *HTML5*, *PHP*, *CSS* dan *JavaScript*.

4. Pengujian Perangkat Lunak

Penyatuan unit-unit program kemudian diuji secara keseluruhan menggunakan web browser. Pengujian sistem dilakukan dengan menggunakan pengujian fungsionalitas sehinga pengembang dapat mengetahui kekurangan-kekurangan yang terdapat pada aplikasi. Jika terjadi kesalahan maka akan dilakukan perbaikan.

5. Penerapan Program dan Maintenance

Pada tahap ini penulis berencana menerapkan aplikasi yang dibuat untuk dilakukan *hosting* dan ditawarkan kepada toko-toko *online*.

ISSN: 2442-5826

2. Dasar Teori/Perancangan

2.1 Augmented Reality

Augmented Reality merupakan teknologi yang menggabungkan benda maya dua dimensi dan ataupun tiga dimensi ke dalam sebuah lingkungan nyata tiga dimensi lalu memproyeksikan benda-benda maya tersebut secara real-time. Tiga dimensi biasa disingkat 3D atau disebut ruang dari benda yang memiliki panjang, lebar, dan tinggi. Istilah ini biasanya digunakan dalam bidang seni, animasi, komputer dan matematika. Benda-benda maya menampilkan informasi berupa label maupun objek virtual yang hanya dapat dilihat dengan kamera handphone maupun dengan komputer. Sistem dalam Augmented Reality bekerja dengan menganalisis secara real-time objek yang ditangkap dalam kamera. [4]

Ronald T. Azuma mendefinisikan *Augmented Reality* sebagai penggabungan benda-benda nyata dan maya di lingkungan nyata, berjalan secara interaktif dalam waktu nyata, dan terdapat integrasi antarbenda dalam tiga dimensi, yaitu benda maya terintegrasi dalam dunia nyata. Penggabungan benda nyata dan maya dimungkinkan dengan teknologi tampilan yang sesuai, interaktivitas dimungkinkan melalui perangkat-perangkat *input* tertentu, dan integrasi yang baik memerlukan penjejakan yang efektif.[5]

2.2 Perceptual User Interaction

Perceptual atau persepsi merupakan sebuah proses pemberian makna terhadap sensasi dari panca indra sehingga menjadi sebuah informasi. Dalam memproses sebuah informasi, persepsi sangatlah berperan penting karena kesalahan dari persepsi akan menimbulkan kesalahan dalam memproses sebuah informasi.

Dalam hubungannya dengan interaksi, dimana interaksi merupakan komunikasi 2 arah antara manusia atau *user* dengan sistem komputer akan mendapatkan hasil yang maksimal apabila antara user dengan komputer memberikan stimulan dan respon yang saling mendukung satu dengan yang lainnya. Stimulan dan respon tersebut didapatkan dari sensasi yang dihasilkan oleh persepsi manusia dalam berhubungan dengan komputer yang didukung juga oleh *interface* atau antarmuka yang dapat menghubungkan *user* dengan komputer. Sifat dari *perceptual interface* harus dari dua arah dimana keduanya akan mengambil keuntungan dari *machine perception* yang berasal dari lingkungan mereka terutama informasi yang mereka dapat dari proses mendengar, melihat maupun dari pemodelan *user* lain yang berinteraksi dengan sistem komputer tersebut karena peningkatkan kemampuan *perceptual* manusia akan lebih efektif jika mereka berkomunikasi melalui gambar, video dan juga suara. Oleh karena itu, jika indera ikut terlibat dalam interaksi antara *user* dengan computer maka *user* tidak akan merasa canggung dalam menggunakan aplikasi tersebut sehingga tidak akan membatasi komunikasi antara manusia dengan komputer atau sistem. Hubungan tersebut juga akan memungkinkan *user* dalam menyalurkan ketrampilan sosial alami mereka untuk berinteraksi dengan teknologi, mengurangi beban *user* dan dapat melatih kebutuhan kognitif pengguna. *Perceptual interface* juga akan memanfaatkan kemampuan manusia untuk melakukan beberapa tugas dalam satu waktu dan beberapa hal lain yang saat ini belum dapat dilakukan oleh sistem dengan baik [9].

2.3 Aplikasi Web

Pada awalnya aplikasi web dibangun dengan hanya menggunakan bahasa yang disebut *HyperText Markup Langauge (HTML)*. Pada perkembangan berikutnya, sejumlah skrip dan objek dikembangkan untuk memperluas kemampuan HTML seperti *PHP* dan *ASP* pada skrip dan *Apllet* pada objek. Aplikasi Web dapat dibagi menjadi dua jenis yaitu aplikasi web statis dan dinamis.

Web statis dibentuk dengan menggunakan HTML. Kekurangan aplikasi seperti ini terletak pada keharusan untuk memelihara program secara terus menerus untuk mengikuti setiap perkembangan yang terjadi. Kelemahan ini diatasi oleh model aplikasi web dinamis. Pada aplikasi web dinamis, perubahan informasi dalam halaman web dilakukan tanpa perubahan program tetapi melalui perubahan data. Sebagai implementasi, aplikasi web dapat dikoneksikan ke basis data sehingga perubahan informasi dapat dilakukan oleh operator dan tidak menjadi tanggung jawab dari webmaster.

Arsitektur aplikasi web meliputi klien, web *server*, *middleware* dan basis data. Klien berinteraksi dengan web *server*. Secara internal, web *server* berkomunikasi dengan *middleware* dan *middleware* yang berkomunikasi dengan basis data. Contoh middleware adalah *PHP* dan *ASP*. Pada mekanisme aplikasi web dinamis, terjadi tambahan proses yaitu server menerjemahkan kode *PHP* menjadi kode *HTML*. Kode *PHP* yang diterjemahkan oleh mesin *PHP* yang akan diterima oleh klien. [6]

2.4 Flowmap

Flowmap merupakan diagram yang menggambarkan aliran dokumen pada suatu prosedur kerja di organisasi dan memperlihatkan diagram alir yang menunjukan arus dari dokumen, aliran data fisik, entitas-entitas sistem informasi dan kegiatan operasi yang berhubungan dengan sistem informasi. Penggambaran biasanya diawali dengan mengamati dokumen apa yang menjadi media data atau informasi. Selanjutnya ditelusuri bagaimana dokumen tersebut terbentuk, kebagian atau entitas mana dokumen tersebut mengalir, perubahan apa yang terjadi pada dokumen tersebut, proses apa yang terjadi terhadap dokumen tersebut, dan seterusnya. [7]

2.5 Storyboard

Storyboard adalah sebuah teknik atau metode yang digunakan untuk memvisualisasikan antarmuka (*interface*) sebelum memulai implementasi sistem. Storyboard berupa sketsa dari apa yang dibuat. [8]

Storyboard mempunyai peranan penting dalam pengembangan multimedia. Storyboard digunakan sebagai alat bantu pada tahapan perancangan multimedia. Proses storyboarding yang dikenal saat ini dikembangkan oleh Walt Disney Studio sekitar tahun 1930.

2.6 *XAMPP*

XAMPP adalah aplikasi web server instan yang dibutuhkan untuk membangun aplikasi berbasis web. Fungsi XAMPP adalah sebagai server yang berdiri sendiri (localhost), yang terdiri atas program Apache, http server, MySQL, database, dan penerjemah bahasa yang ditulis dengan bahasa pemrograman PHP dan Perl.

Nama *XAMPP* merupakan singkatan dari X (X=Cross Platform), *Apache*, *MySQL*, *PHP* dan *Perl*. Program ini tersedia dalam lisensi GNU (General Public License) dan gratis. Dengan menginstal *XAMPP*, kita tidak perlu menginstal aplikasi *server* satu persatu karena di dalam *XAMPP* sudah terdapat: [2]

- 1. Apache 2.2.14 (Ipv6 Enabled) + open SSL 0.9.81
- 2. MySQL 4.11.41 + PBXT engine
- 3. PHP 4.13.1
- 4. PHPMyAdmin 3.2.4
- 5. Perl 4.110.1
- 6. Filezilla FTP Server 0.9.33. Mercury Mail Transport System 4.72.

2.7 HTML5

HTML adalah bahasa markup dominan digunakan untuk menggambarkan konten, atau data, pada World Wide Web. HTML5 adalah iterasi terbaru dari bahwa bahasa markup, dan menyertakan fitur baru, perbaikan fitur yang ada, dan berbasis API scripting. HTML5 itu sendiri bukan merupakan reformulasi dari versi sebelumnya. HTML5 mencakup semua elemen dari kedua HTML4 dan XHTML 1.0 serta mencakup pendefinisian ulang dari elemen-elemen markup dan elemen baru yang menjinkan desainer web untuk lebih ekspresif.

Istilah "HTML5" memiliki tambahan yang digunakan untuk merujuk sejumlah teknologi baru dan API. Beberapa diantaranya adalah menggambar dengan elemen *<canvas>*, penyimpanan *offline*, elemen baru yaitu *<video>* dan *<audio>*, fungsi *drag-and-drop*, *microdata*, *embedded fonts*, dan masih banyak lagi. [2]

2.8 Javascript

Javascipt merupakan scripting language yang terintegrasi dengan web browser untuk memberikan fleksibilitas tambahan bagi programmer untuk mengontrol elemen – elemen dalam halaman web. Aplikasi javascript sebenarnya cukup luas namun pada aplikasi yang dirancang, digunakan javascript yang dibatasi untuk DHTML (Dinamic HyperText Markup Language), yaitu javascript yang digunakan untuk mengakses property, method, dan event handler yang disediakan oleh DOM dan CSS.

Property didefinisikan sebagai setting nilai suatu objek tertentu. Contohnya adalah warna suatu teks, action untuk suatu form, nama file untuk suatu gambar, dll. Method adalah fungsi-fungsi yang dapat diterapkan dalam suatu objek. Misalnya maximize untuk window. Event handler menspesifikasikan bagaimana suatu objek merespon terhadap suatu kejadian, misalnya suatu button diklik, window dilakukan resize, dan lain-lain. [3]

2.9 JS-objectdetect

JS-objectdetect merupakan library JavaScript untuk deteksi objek secara real-time. Library ini dapat digunakan untuk deteksi objek, tracking dan, dalam kombinasi dengan fitur terbaru HTML5 seperti WebRTC, untuk semua jenis aplikasi augmented reality yang berjalan pada browser tanpa plugin. JS-objectdetect memiliki kompatibel yang mendasar berdasarkan yang digunakan oleh OpenCV, sudah termasuk pengklasifikasi untuk wajah, tangan, dan mata. Namun, tidak semua pengklasifikasi dalam JS-objectdetect memiliki kinerja yang sama dan terdapat beberapa yang cukup sensitif terhadap kondisi cahaya. [10]

ISSN: 2442-5826

2.10 Storyboard dan Mock-up

Tabel 1 Storyboard dan Mock-up

2.11 Flowmap

Gambar 4 Flowmap Capture User

Gambar 3 Flowmap Pilihan Baju

Selesai

3. Pembahasan

3.1 Implementasi

Gambar 5 Halaman Utama Aplikasi

Gambar 6 Halaman Login

Gambar 7 Deteksi Wajah

Gambar 8 Pilihan Baju

Gambar 9 Capture

Gambar 10 Hasil Capture

Gambar 11 Share Social Media (Twitter)

Gambar 12 Share Social Media (Facebook)

Gambar 13 Hasil Capture Yang Disimpan

Gambar 14 Menampilkan Hasil Capture

4. Penutup

4.1 Kesimpulan

Kesimpulan dari proyek akhir ini adalah telah berhasil dibangun sebuah aplikasi Virtual Fitting Room yang mampu:

- 1. Pada aplikasi ini terdapat fungsionalitas untuk mendeteksi wajah dan menempatkan objek baju pada badan pengguna secara visual dengan menggunakan *webcam*.
- 2. Pada aplikasi ini terdapat fungsionalitas untuk mengubah ukuran baju dengan ukuran S,M,L, dan XL.
- 3. Pada aplikasi ini terdapat fungsionalitas *capture* untuk mengambil gambar pengguna yang sedang mencoba objek baju.

4.2 Saran

Dalam proses pembangunan perangkat lunak juga dibutuhkan sebuah pengembangan lebih lanjut. Penulis menyadari masih banyak kekurangan dalam pembuatan Aplikasi *Virtual Fitting Room* ini. Oleh karena itu penulis memberikan beberapa saran untuk pembaca atau pengembang yang ingin mengembangkan aplikasi ini diantaranya:

- 1. Pembaharuan dan pengembangan dengan menggunaan kamera sensor seperti *Kinect* untuk menciptakan interaksi yang lebih nyata dengan pengguna.
- 2. Pengembangan dan perbaikan terhadap fungsionalitas supaya dapat dijalankan di banyak browser.
- 3. Pengembangan dan perbaikan terhadap deteksi wajah dan deteksi pergerakan yang belum optimal, dimana bila terdapat 2 orang dalam menggunakan aplikasi ini, deteksi wajah dan deteksi pergerakan dalam aplikasi ini belum bekerja dengan baik

Daftar Pustaka

- [1] Pressman, R.S (2010). Software Engineering: A Practitioner's Approach. New York: Mc Graw-Hill
- [2] Goldstein, Alexis. HTML5 & CSS3 For The Real World. United States of America: SitePoint, 2011, 1-2
- [3] Oktavian, Diar Puji (2010). Menjadi Programmer Jempolan Menggunakan PHP. Yogyakarta: MediaKom
- [4] Putra, Darma (2010). Pengolahan Citra Digital. Yogyakarta: Andi
- [5] Ambrosius Tukan, Ewaldus (2011). Penerapan Augmented Reality Pada Game Book. Yogyakarta: Sekolah Tinggi Manajemen Informatika dan Komputer Amikom
- [6] Kadir, Abdul (2009). Belajar Database Menggunakan MySQL. Yogyakarta: Andi
- [7] Rosa.A.S M.Salahudin, *Modul Pembelajaran Rekayasa Perangkat Lunak*. Bandung: Modula, 2011
- [8] Dastbaz, Mohammad (2003). Designing Interactive Multimedia. New York: McGraw-Hill
- [9] Sani, Khairul (2014). Perceptual Human Computer Interaction / Interface Menggunakan Teknik Computer Vision. Yogyakarta: Gajah Mada University
- [10] Js-objectdetect. Js-objectdetect introduction. Retrieved June 16, 2015, from Js-objectdetect: http://github.com/mtschirs/js-objectdetect/