A:\10.595656.R1.Kempers et al..str

74 75 76 80 83 90 97 98 ring nodes: 1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 29 30 31 32 13 33 34 35 36 37 38 39 40 41 45 46 47 48 49 50 51 52 53 54 55 56 57 58 82 chain bonds:

7 8 9 19 20 27 28 42 43 44 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

3-9 4-8 6-7 16-20 18-19 24-28 26-27 30-43 31-42 32-97 41-44 43-62 46-60 47-59 48-80 49-98 58-61 60-73 62-63 62-64 64-65 65-66 66-67 66-90 70-71 75-76 82-83 ring bonds:

1-6 1-2 2-3 3-4 4-5 5-6 10-11 10-12 11-13 12-14 13-14 13-15 14-18 15-16 16-17

17-18 21-26 21-22 22-23 23-24 24-25 25-26 29-30 29-32 30-31 31-82 32-82 33-35 34-36 35-37 36-37 36-38 37-41 38-39 39-40 40-41 45-46 45-49 46-47 47-48 48-49 50-51 50-52 51-53 52-54 53-54 53-55 54-58 55-56 56-57 57-58 exact/norm bonds :

1-6 1-2 2-3 3-4 4-5 4-8 5-6 6-7 10-11 10-12 11-13 12-14 13-14 13-15 14-18 15-16 16-17 16-20 17-18 18-19 21-26 21-22 22-22 23-24 24-25 24-28 25-26 26-27 29-30 29-32 30-31 31-42 31-82 32-97 32-82 33-34 33-35 34-36 35-37 41-44 45-46 45-49 46-47 47-48 47-59 48-49 48-80 49-98 50-51 50-52 51-53 52-54 58-61 62-63 62-64 64-65 65-66 66-67 66-90 82-83 82-8

3-9 30-43 43-62 46-60 60-73 70-71 75-76 normalized bonds :

36-37 36-38 37-41 38-39 39-40 40-41 53-54 53-55 54-58 55-56 56-57 57-58

G1:[*1],[*2]

chain nodes :

G2:[*3],[*4],[*5],[*6],[*7]

G3:[*8],[*9],[*10],[*11],[*12]

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:CLASS 8:CLASS 9:CLASS 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:CLASS 20:CLASS 21:Atom 22:Atom

| 23:Atom | 24:Atom | 25:Atom | 26:Atom | 27:CLASS | 28:CLASS | 29:Atom | 30:Atom | 31:Atom | 33:Atom | 34:Atom | 35:Atom | 36:Atom | 37:Atom | 37:Atom | 38:Atom | 39:Atom | 40:Atom | 41:Atom | 42:CLASS | 43:CLASS | 43:CLASS | 43:CLASS | 43:CLASS | 43:CLASS | 43:Atom | 43:Ato