Arquitetura IoT para Vazão Hídrica com Sensor Hall e Processamento Virtualizado

Elohim Felipe Santiago da Silva Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Email: elohim.s@escolar.ifrn.edu.br

Orientador: Dr. Ivanilson França Vieira Junior Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte

Março de 2025

Resumo

Este artigo apresenta o desenvolvimento e validação de um sistema de monitoramento de fluxo hídrico baseado em Internet das Coisas (IoT), voltado à otimização do controle e gestão de recursos hídricos. A solução emprega um nó sensor composto por ESP32 e o transdutor YF-S201, cujos sinais são suavizados via Filtro de Kalman e calibrados por Regressão Linear Recursiva (RLS) para maior precisão dos dados. Os dados são transmitidos em tempo real por meio de uma API REST sobre TCP/IP, enquanto a aplicação é executada em um backend containerizado com Docker, garantindo portabilidade e escalabilidade dos serviços.

Palavras-chave: ESP32, IoT, Filtro de Kalman, Regressão Linear Recursiva, Docker, Redes de Computadores.

1 Introdução

O uso ineficiente da água tornou-se um desafio crítico em contextos industriais, comerciais e institucionais, resultando em custos operacionais elevados e pressões ambientais cada vez maiores. Segundo relatórios da ONU-Água, perdas superiores a 30% na distribuição e no consumo interno ainda são comuns em países em desenvolvimento, impactando diretamente a disponibilidade e a sustentabilidade dos recursos hídricos (ONU-ÁGUA, 2023). Monitorar, em tempo real, os pontos de consumo é, portanto, um requisito fundamental para programas de eficiência hídrica.

Avanços recentes em Internet das Coisas (IoT) - tecnologia que permite conectar dispositivos físicos à internet - e em redes de computadores têm viabilizado a instrumentação de pontos de consumo hídrico com sensores de baixo custo. Esses sensores se comunicam por meio de redes IP, possibilitando a análise distribuída via edge/fog computing(computação de borda e em névoa), que permitem o processamento local ou intermediário dos dados antes de serem enviados à nuvem. Sensores de efeito Hall, como o modelo YF-S201, representam uma solução de baixo custo e fácil integração para medição de vazão em

sistemas embarcados, sendo amplamente utilizados em aplicações IoT, porém seus sinais são suscetíveis a ruídos e não linearidades derivadas da própria geometria do medidor (Li et al., 2022). Para transformar essas leituras em dados confiáveis de supervisão, torna-se essencial o uso de técnicas de filtragem e calibração, que podem ser executadas localmente no nó — reduzindo latências e consumo de banda — ou no backend em nuvem.

Neste artigo, propomos um sistema integrado de monitoramento hídrico que combina:

- Hardware de baixo custo — microcontrolador ESP32 aliado ao sensor YF-S201; - Processamento de sinais em tempo real, empregando Filtro de Kalman para suavizar ruídos e Regressão Linear Recursiva (RLS) para calibração adaptativa; - Arquitetura de comunicação padronizada, baseada em API REST sobre TCP/IP, possibilitando comunicação direta entre dispositivos(Machine to Machine - M2M) e edge computing; - Virtualização de serviços com Docker, uma plataforma de contêineres que permite empacotar aplicações e suas dependências de forma isolada favorecendo escalabilidade, portabilidade e reprodutibilidade do ambiente de coleta, persistência dos dados e visualização em tempo real.

Um dos pontos centrais deste trabalho é a integração da modelagem matemática baseada em álgebra linear, permitindo maior precisão na conversão dos sinais do sensor em dados de vazão. Vetores e matrizes desempenham um papel essencial na filtragem dos dados e na calibração dinâmica do sistema, garantindo medições mais confiáveis.

Os resultados experimentais comprovam uma redução significativa no erro médio (35%) após a aplicação do Kalman e do RLS em comparação a métodos estáticos de calibração. Além disso, a latência ponta a ponta manteve-se abaixo de 120ms, atendendo aos requisitos típicos de aplicações de monitoramento em tempo real, onde latências abaixo de 200ms são consideradas adequadas para supervisão contínua e tomada de decisão.

O artigo está estruturado da seguinte forma:

A Seção 2 revisa trabalhos correlatos sobre medição de fluxo com IoT; A Seção 3 descreve a metodologia de hardware, software e protocolos utilizados; A Seção 4 apresenta os experimentos e análise dos resultados; A Seção 5 mostra a arquitetura dos sistema virtualizada A Seção 6 discute limitações e possíveis extensões futuras; Por fim, a Seção 7 resume as conclusões.

2 Revisão Bibliográfica

A presente seção realiza uma revisão bibliográfica com o objetivo de descrever e investigar informações relacionadas ao tema, com base em estudos acadêmicos. A análise foi restrita a artigos que abordam a multidisciplinaridade entre Eletrônica Embarcada(como microcontroladores ESP32 e sensores de efeito Hall), Internet das Coisas (IoT), Redes Wi-Fi para comunicação sem fio dos dados coletados e técnicas estatísticas aplicadas ao monitoramento hídrico.

A revisão foi conduzida na base de dados IEEE Xplore, utilizando palavras-chave como "Hall effect water", "ESP8266 water flow sensor", "computers networks", "monitoring water" e "Kalman filter". A busca com a primeira palavra-chave retornou 374 artigos; a segunda, 37; e a combinação das duas últimas resultou em 32 artigos. Ao todo, foram selecionados 11 artigos, considerando critérios de clareza metodológica, especificação de sensores e aplicabilidade prática. Diversos artigos foram excluídos por não detalharem o tipo de sensor ou microcontrolador utilizado, ou por apresentarem metodologia inadequada.

Observou-se que a metodologia adotada nos artigos analisados é, em sua maioria, semelhante: o monitoramento do fluxo de água é realizado por meio de um sensor de efeito Hall, cujos pulsos são lidos por um microcontrolador, que posteriormente transmite os dados para a nuvem.

Outro aspecto relevante identificado é que muitos deles não consideram a influência do diâmetro dos tubos nas leituras de vazão realizadas com o sensor YF-S201. Tubos de menor diâmetro aumentam a velocidade do fluido para uma mesma vazão volumétrica, devido à conservação de massa, o que impacta diretamente na frequência dos pulsos gerados pelo sensor. Além disso, fatores como interferência elétrica - oriunda de variações na alimentação ou ruído eletromagnético -, vibrações mecânicas e limitações do próprio transdutor podem comprometer a precisão das medições.

Estudos recentes têm explorado métodos de estimação de estados em sistemas dinâmicos com dados imperfeitos, especialmente no contexto de redes IoT distribuídas. Suryanarayanan e Heydt (15) demonstram a aplicabilidade do Filtro de Kalman Estático com modelagem baseada em processos de Gauss-Markov, permitindo obter estimativas confiáveis mesmo em presença de ruído. Em complemento, o algoritmo EKF-KRLS proposto por Kong et al. (20) combina filtragem adaptativa com aprendizado automático em tempo real, reforçando a importância de soluções híbridas e escaláveis para estimação em sistemas embarcados. Já Mota et al. (19) apresentam uma técnica baseada em aproximação recursiva mínima com normas atômicas, aplicada diretamente à realidade de sensores IoT sujeitos a perdas de pacotes e ruído estocástico - isto é, variações aleatórias nos sinais que comprometem a estabilidade das medições.

Diante das limitações observadas nos sensores e das variações causadas por fatores como diâmetro dos tubos, ruído elétrico e vibrações mecânicas, torna-se essencial realizar uma calibração adequada, levando em consideração as características do ambiente de operação, a fim de garantir medições precisas e confiáveis.

Além das limitações físicas dos sensores, a literatura propõe técnicas matemáticas para aprimorar a qualidade dos dados, como estimadores estado e filtros adaptativos aplicados em sistemas IoT.

Em (19), propõe-se uma estratégia de aproximação recursiva para lidar com dados imperfeitos em redes IoT, utilizando normas atômicas - que permitem representar sinais complexos com estruturas mínimas - e otimização convexa, técnica que garante soluções eficientes mesmo em cenários com ruído e perda de pacotes.

No estudo de (20), é apresentada uma combinação entre o Filtro de Kalman Estendido (EKF) e o Kernel Recursive Least Squares (KRLS) aplicada em sistemas embarcados com aprendizado online - ou seja, com atualização contínua dos parâmetros à medida que novos dados são recebidos.

Já (15) exploram o uso de filtros Kalman estáticos em sistemas energéticos sujeitos a fluxos não programados - variações inesperadas na demanda ou fornecimento -, utilizando Gauss-Markov, hipótese também adotada na modelagem matricial deste trabalho.

Por fim, o artigo de (21) apresenta um sistema de monitoramento hídrico inteligente com sensores de efeito Hall, Raspberry Pi e previsão de consumo com SVM (Máquinas de Vetores de Suporte) e ARIMA(Modelos Autorregressivos Integrados de Média Móvel). Embora eficaz, sua arquitetura exige infraestrutura computacional adicional e maior complexidade de implementação. Neste projeto, optou-se por uma solução mais leve de baixo

custo, com algoritmo de Filtro de Kalman embarcado diretamente no ESP32 para suavização dos sinais, enquanto a calibração adaptativa por Regressão Linear Recursiva (RLS) é executada em ambiente containerizado via Docker.

Tabela 1: Tecnologias e Componentes Utilizados em Artigos sobre Monitoramento de Água (Parte 1)

Título do Artigo	Informações Detalhadas
An Innovative Approach for Water Leak Detection and Monitoring in Smart Cities (2)	 Sensor de efeito Hall RTOS (Real-Time Operating System) RTX Kernel ARM Cortex-M3 Board YF-S201 Flow Sensors Water Leakage Detection (WLD) Cables Mobile Application
An Intelligent Water Consumption Prediction System Based on Internet of Things (1)	 IoT Technology Arduino Mega 2560 ESP8266 Wi-Fi Module Ultrasonic Sensor (HC-SR04) Flow Sensor ThingSpeak Cloud Platform Mobile Application
Electronically Controlled Water Flow Restrictor to Limit the Domestic Was- tage of Water (23)	 Sensor de efeito Hall Sensor de Medidor de Fluxo (YFS201) Microcontrolador Arduino (Leonardo) Válvula Eletromecânica (Solenoide) Ponte H Bluetooth Display LCD

Tabela 2: Tecnologias e Componentes Utilizados em Artigos sobre Monitoramento de Água (Parte 2)

Título do Artigo	Informações Detalhadas	
Arduino-Based Smart Irrigation Using Water Flow Sensor, Soil Moisture Sensor, Temperature Sensor and ESP8266 WiFi Module (24)	 Sensor de efeito Hall Sensor de umidade do solo Sensor de temperatura (DS18B20) Módulo Wi-Fi ESP8266 	
Smart Irrigation Control System Using Wireless Sen- sor Network Via Internet- of-Things (3)	 ESP8266 WEMOS Mini D1 WEMOS D1 Mini Battery Shield DHT22 Sensor Sensor de Umidade do Solo Sensor de Fluxo de Água Válvula Solenoide Rain Bird 100-DV Módulo de Relé de 1 Canal Bateria Li-ion 3.7V @ 2200mAh Router Wi-Fi Placa de Circuito Universal 	
Water Leakage Detection based on Automatic Meter Reading (4)	 Raspberry Pi 4 Sensor de Fluxo de Água YF-S201 Python e Node-RED Banco de Dados MySQL Tesseract OCR Plataforma de Nuvem e Internet 	

Tabela 3: Contribuições Teóricas para Monitoramento e Filtragem

Artigo	Tecnologias	Aplicação	Contribuições /
			Limitações
Recursive Approxi-	Normas atômicas,	IoT com ruído e	Modelagem mínima;
mation	otimização convexa	perda de pacotes	exige alto domínio
			técnico
Extended Kalman	EKF com aprendi-	Rastreamento em-	Estimação adapta-
+ KRLS	zado kernel	barcado com ruído	tiva; complexidade
			computacional alta
Kalman Estático	Modelo Gauss-	Redes elétricas com	Justifica filtragem;
	Markov + Kalman	medições ruidosas	foco estático e seto-
	linear		rial
IoT em Redes In-	Kalman adaptativo	Monitoramento ur-	Sensoriamento efici-
termitentes	+ STM32 + MQTT	bano com rupturas	ente; sem ESP32 ou
			RLS
IoT Water Manage-	ESP8266 + Hall +	Envio para nuvem	Arquitetura básica;
ment	ThingSpeak	em contexto hídrico	sem filtragem ou
			calibração
AIoT Smart Moni-	ML (CNN+SVM)	Ambiente instituci-	Alta acurácia; abor-
toring	com sensores de	onal universitário	dagem centrada em
	pressão		IA

3 Trabalhos Relacionados

Diversos trabalhos na literatura propõem soluções para medição e controle de fluxo hídrico utilizando sensores de efeito Hall e tecnologias IoT. No entanto, a maioria dessas abordagens apresenta limitações quanto ao processamento local dos dados, à filtragem em tempo real e à integração com serviços virtualizados.

O sistema apresentado por Kong et al. (20) emprega uma combinação entre o Filtro de Kalman Estendido (EKF), que lida com não-linearidades em sistemas dinâmicos, e o Kernel Recursive Least Squares (KRLS), que permite aprendizado adaptativo em tempo real, oferecendo alta acurácia em ambientes dinâmicos. Contudo, a complexidade computacional da abordagem limita sua aplicação em microcontroladores como o ESP32.

O trabalho de Mota et al. (19) aplica modelagem mínima com normas atômicas - que permitem representar sinais complexos com estruturas elementares - e otimização convexa, técnica que garante soluções eficientes mesmo em cenários com ruído e perda de pacotes. Embora voltado para redes IoT em geral, o estudo não aborda diretamente medição de vazão, mas contribui com estratégias para compensação de dados imperfeitos. Já o sistema baseado em STM32 - microcontrolador da STMicroelectronics amplamente utilizado em aplicações embarcadas - proposto por Afifi et al. utiliza Kalman adaptativo para redes IoT.No entanto, sua arquitetura difere proposta deste trabalho, que prioriza soluções de baixo custo e maior integração com plataformas de edge computing.

Outras soluções, como o Smart Water Flow Monitoring and Forecasting System, utilizam sensores Hall e protocolo MQTT para coleta e previsão de consumo hídrico. No entanto, sua arquitetura é voltada para aplicações centralizadas - com dependência de servidores

externos para processamento - e não contempla filtragem embarcada, o que pode limitar a responsividade em cenários com restrições de conectividade.

O presente trabalho diferencia-se por integrar múltiplas estratégias complementares: filtragem de ruído em tempo real via Filtro de Kalman embarcado no ESP32; calibração adaptativa por Regressão Linear Recursiva (RLS) executada no backend containerizado com Docker; comunicação padronizada via API REST; e arquitetura leve e escalável voltada para ambientes distribuídos. A Tabela 4 apresenta uma comparação entre o modelo proposto e as abordagens relacionadas, destacando os principais diferenciais técnicos.

Tabela 4: Comparação entre sistemas de monitoramento hídrico baseados em IoT e o modelo proposto

Abordagem	Pontos Fortes	Limitações	
EKF + KRLS (20)	Alta precisão e	Exige alto processamento;	
	adaptação online	não embarcável no ESP32	
STM32 + Kalman (22)	Estimativa robusta em	Não utiliza RLS nem Docker;	
	redes instáveis	maior custo	
Mota et al. (19)	Modelagem com ruído e	Não foca em sensores de	
	falhas de rede	vazão	
Smart Monitoring (21)	Integração com nuvem e	Sem filtragem local; arquite-	
	predição	tura complexa	
Proposto (ESP32 +	Leve, embarcado, filtra-	Exige calibração inicial e	
Kalman + RLS +	gem adaptativa e bac-	ajuste do fator λ	
Docker)	kend modular		

4 Metodologia

Esta seção descreve o ambiente experimental, os componentes utilizados e o fluxo geral de operação do sistema desenvolvido. O objetivo é apresentar de forma clara e reproduzível a arquitetura baseada em Internet das Coisas (IoT) para monitoramento de fluxo hídrico, com foco no processamento de sinais, comunicação em rede e virtualização de serviços.

4.1 Ambiente Experimental

Os ensaios foram conduzidos no Laboratório de Automação, Instrumentação e Controle Aplicados (LAICA) do Instituto Federal do Rio Grande do Norte (IFRN). O ambiente conta com uma bancada hidráulica equipada com tubos de diferentes diâmetros, sensores de efeito Hall e instrumentos de medição como multímetro e osciloscópio, permitindo simular cenários reais de fluxo hídrico. A rede Wi-Fi didática, composta por roteadores configuráveis e infraestrutura dedicada, foi utilizada para testar a comunicação entre nó sensor e backend via protocolo TCP/IP. Essa estrutura permitiu avaliar, de forma integrada, as etapas de aquisição, pré-processamento, envio e visualização dos dados em condições controladas e reprodutíveis.

4.2 Plataforma de Aquisição

Microcontrolador: ESP32-WROOM-32 (dual-core, 240MHz, 520kB SRAM).

Critérios para seleção do microcontrolador:

- Desempenho superior ao ESP8266, especialmente na taxa efetiva de transmissão de dados (throughput) em conexões TCP/IP e latência de interrupções;
- Suporte nativo aos padrões Wi-Fi 802.11 b/g/n e Bluetooth LE;
- Ecossistema de desenvolvimento (ESP-IDF / Arduino) amplamente documentado.

Funções implementadas no nó sensor:

- Contagem de pulsos do sensor de efeito Hall YF-S201 via temporizador de hardware;
- Pré-processamento local, incluindo remoção de valores atípicos (outliers) e temporização dos dados;
- Envio de pacotes no formato JSON (JavaScript Object Notation) ao servidor backend a cada 5s ou imediatamente se a vazão for maior ou igual a 2L/min. O formato JSON é uma estrutura leve e padronizada para representação de dados em formato texto.

4.3 Protocolo e Interface de Dados

A comunicação entre cada ESP32 e o backend ocorre por meio de API REST sobre TCP/IP (HTTP 1.1). O formato da requisição é:

```
POST /api/v1/flow
{
    "device_id": "esp32-01",
    "timestamp": "2025-03-30T14:25:07Z",
    "flow_lpm": 7.34
}
```

Justificativas:

- Facilita a integração com plataformas de visualização (dashboards), sistemas supervisórios SCADA e intermediadores de mensagens (brokers MQTT), permitindo que os dados sejam consumidos por diferentes camadas da infraestrutura IoT;
- Permite inspeção via ferramentas como cURL e Postman;
- Escalável para múltiplos clientes por adotar modelo stateless.

4.4 Backend e Virtualização

O backend é composto por três serviços principais, distribuídos em containers Docker, o que permite isolamento funcional, escabilidade horizontal e reprodutibilidade do ambiente de execução:

Serviço	Imagem	Porta	Função
API (FastAPI)	python:3.11-slim	8000	Recebimento e validação do JSON
Banco de Dados	postgres:15-alpine	5432	Armazenamento das leituras
Grafana	grafana/grafana-oss	3000	Visualização dos dados

Tabela 5: Serviços containerizados do backend

Orquestração: realizada com Docker Compose, garantindo:

- Portabilidade stack reproduzível em hosts x86-64 e ARM;
- Isolamento containers independentes com dependências separadas;
- Escalabilidade horizontal permite replicar a API em múltiplas instâncias com distribuição de carga por balanceadores como Nginx ou Traefik, que distribuem as requisições entre essas instâncias de forma equilibrada.

4.5 Tratamento de Sinal e Calibração Adaptativa

Sensores de vazão baseados em efeito Hall, como o YF-S201, estão sujeitos a ruídos e variações não-lineares causadas por turbulência, interferência elétrica, desgaste mecânico e mudanças térmicas. Para mitigar esses efeitos, foi implementado um fluxo de tratamento de sinal baseado em dois estágios: filtragem via Filtro de Kalman e calibração adaptativa por Regressão Linear Recursiva (RLS).

Filtro de Kalman (1^a ordem)

Durante a leitura de pulsos no ESP32, foram identificadas variações abruptas e valores atípicos (outliers) nas medições. Para suavizar essas leituras, foi utilizado um Filtro de Kalman descrito pelas seguintes equações:

Modelo de estado:

$$X_k = X_{k-1} + w_k$$

Modelo de observação:

$$Z_k = X_k + v_k$$

Ganho de Kalman:

$$K_k = \frac{P_k^-}{P_k^- + R}$$

Atualização do estado:

$$X_k = X_k^- + K_k(Z_k - X_k^-)$$

Atualização da incerteza:

$$P_k = (1 - K_k) \cdot P_k^-$$

onde w_k e v_k representam os ruídos do processo e da medição, respectivamente.

Calibração Adaptativa com Regressão Linear Recursiva (RLS)

A conversão entre a frequência de pulsos (f_t) e a vazão estimada (Q_t) é modelada por uma equação linear:

$$Q_t = a \cdot f_t + b + \varepsilon_t \tag{1}$$

Para ajustar os parâmetros a e b de forma adaptativa, foi utilizado o algoritmo de Regressão Linear Recursiva (RLS), com as seguintes equações:

4.6 Atualização dos parâmetros

$$\theta_t = \theta_{t-1} + \mathbf{K}_t (y_t - \phi_t^\top \theta_{t-1})$$
 (2)

4.7 Cálculo do ganho adaptativo

$$\mathbf{K}_{t} = \frac{\mathbf{P}_{t-1}\phi_{t}}{\lambda + \phi_{t}^{\mathsf{T}}\mathbf{P}_{t-1}\phi_{t}}$$
(3)

4.8 Atualização da matriz de covariância

$$\mathbf{P}_{t} = \frac{1}{\lambda} \left(\mathbf{P}_{t-1} - \mathbf{K}_{t} \phi_{t}^{\top} \mathbf{P}_{t-1} \right)$$

$$\tag{4}$$

4.9 Onde

- $\theta_t = [a_t, b_t]^{\top}$ representa os coeficientes do modelo linear adaptativo (inclinação a_t e intercepto b_t);
- $\phi_t = [f_t, 1]^{\top}$ é o vetor de entrada no instante t, composto pela frequência medida do sensor f_t e um termo constante para o bias;
- $\lambda \in (0,1]$ é o fator de esquecimento que determina a taxa de adaptação do algoritmo (valores próximos a 1 conferem maior estabilidade, enquanto valores menores aumentam a sensibilidade a variações recentes);
- \mathbf{P}_t é a matriz de covariância (2 × 2) que quantifica a incerteza na estimativa dos parâmetros, inicialmente definida como $\mathbf{P}_0 = \alpha \mathbf{I}$, onde α é um escalar grande (ex: 1000) e \mathbf{I} é a matriz identidade.

Expansão Matricial do RLS

A notação matricial adotada permite generalizar o modelo para múltiplas variáveis explicativas, bastando expandir o vetor ϕ_t . A estrutura completa é:

$$y_t = \phi_t^{\top} \theta_t$$

com:

$$\phi_t = \begin{bmatrix} x_t \\ 1 \end{bmatrix}, \quad \theta_t = \begin{bmatrix} a_t \\ b_t \end{bmatrix}$$

Para dois parâmetros, a matriz P_{t-1} possui a forma:

$$P_{t-1} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

O ganho de Kalman pode ser expandido como:

$$K_{t} = \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} = \frac{\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \cdot \begin{bmatrix} x_{t} \\ 1 \end{bmatrix}}{\lambda + \begin{bmatrix} x_{t} & 1 \end{bmatrix} \cdot \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \cdot \begin{bmatrix} x_{t} \\ 1 \end{bmatrix}}$$

Esse formato permite atualizações eficientes em tempo real no backend, além de possibilitar extensões futuras, como a introdução de variáveis ambientais (temperatura, pressão) no vetor ϕ_t .

4.10 Filtragem com Kalman

Adaptação para Sistemas Embarcados (Kalman)

A implementação em C++ foi reduzida à sua forma essencial (8 linhas) para operação eficiente no ESP32. Através de:

- Conversão de operações matriciais para escalares
- Uso de variáveis static para preservar estado
- Calibração experimental dos parâmetros Q/R

obteve-se latência de 0.5ms com consumo de memória abaixo de 1KB.

Listing 1: Implementação do Filtro de Kalman no ESP32 (8 linhas)

4.11 Calibração com RLS Matricial

Inovação em Processamento Vetorizado (RLS)

A implementação matricial em Python supera abordagens convencionais ao:

- Substituir loops por álgebra linear (@ operator)
- Manter complexidade constante (O(1)) por atualização
- Preservar a estrutura matemática original

O trecho crítico

$$K_t = \frac{P_{t-1}\phi_t}{\lambda + \phi_t^\top P_{t-1}\phi_t}$$

é computado em uma única linha vetorizada, viabilizando processamento em tempo real.

Listing 2: Núcleo do RLS vetorizado (5 linhas essenciais)

```
lambda_{-} = 0.95
theta = np.zeros((2, 1))
P = np.eye(2) * 1000
for t in range(len(dados)):
```

4.12 Fluxo Geral do Sistema

- Aquisição local: Contagem de pulsos por intervalo de 1 segundo;
- Processamento na borda (ESP32): Processamento do sinal bruto utilizando o algoritmo de Kalman implementado no microcontrolador;
- Transmissão: Envio via REST/JSON para a API containerizada;
- Calibração Adaptativa (Docker): Execução do algoritmo RLS no container Docker;
- Armazenamento e visualização: persistência dos dados no PostgreSQL; painéis de monitoramento no Grafana;

5 Arquitetura Docker do Backend de Processamento e Visualização

A arquitetura do backend foi projetada para ser modular e escalável, adotando a tecologia de contêineres Docker. Essa tecnologia permite que os serviços necessários para recepção, armazenamento e visualização dos dados sejam executados de forma isolada e reprodutível, reduzindo conflitos de dependências e facilidando a implementação em diferentes ambientes (laboratório, edge ou nuvem)

A figura a seguir ilustra a arquitetura containerizada do sistema:

Figura 1: Arquitetura containerizada do sistema

- API(FastAPI:Responsável por receber as requisições HTTP com dados de vazão. Valida o formato JSON e insere as informações no formato JSON e insere as informações no banco de dados.
- Banco de dados MySQL: Armazena os dados de fluxo recebidos, estruturando-os em uma tabela com campos de frequência, fluxo e timestamp.
- Grafana: Permite a visualização dos dados de forma dinâmica, com dashboards configurados para exibir a frequência e fluxo.

5.1 Configuração dos serviços docker

A seguir, apresenta-se uma configuração mínima do docker-compose.yml, com três serviços principais:

Listing 3: Configuração mínima (10 linhas)

```
services:
   api:
    image: python:3.11-slim
    ports: ["8000:8000"]

mysqlsrv:
   image: mysql:5.7
   volumes:
```

```
- ./dados_mysql:/var/lib/mysql
grafana:
image: grafana/grafana:latest
ports: ["3000:3000"]
```

Cada container é isolado, e as configurações podem ser replicadas em outros dispositivos ou servidores.

5.2 Consulta Grafana

A consulta SQL no Grafana foi desenvolvida para recuperar e converter os dados de frequência em valores de vazão, permitindo a visualização comparativa entre sinais brutos e processados. A query utiliza o fator de calibração 0,133334 (determinado experimentalmente) para converter frequência (Hz) em vazão (L/min).

```
Listing 4: Query para fluxo (6 linhas)
```

SELECT

```
$__time(created_at) as time,
frequencia_bruta * 0.133334 AS bruto,
frequencia_filtrada * 0.133334 AS filtrado
FROM leituras_fluxo
WHERE $__timeFilter(created_at)
AND valido = TRUE
```

Essa consulta permite a geração de gráficos de linha comparando os sinais brutos e processados, mostrando a eficácia do algoritmo de filtragem e calibração.

5.3 Resultado da Arquitetura Docker

Com a utilização do Docker, foi possível desenvolver um backend leve e de fácil replicação, alinhando aos princípios de DevOps e boas práticas em IoT. A arquitetura suporta múltiplos dispositivos ESP32 conectados simultaneamente, mantendo baixo tempo de resposta mesmo em ambientes com conectividade limitada

6 Resultados e Análise

Os resultados experimentais demonstram a eficácia da abordagem proposta, que integra o modelo matemático baseado em álgebra linear — combinando o filtro de Kalman à regressão linear recursiva (RLS) —, proporcionando maior precisão nas medições de vazão.

6.1 Análise do erro percentual no volume bruto

Para avaliar a precisão do sistema de medição de volume de água, foi realizada uma análise sequencial baseada em pontos de referência previamente conhecidos: 5 L, 10 L, 15 L, 17 L e 20 L. Para cada um desses volumes reais, foram comparados os valores medidos pelo sistema, conforme a Tabela 6.

Tabela 6: Erro percentual nos volumes medidos

Volume Real (L)	Volume Medido (L)	Erro Absoluto (L)	Erro Percentual (%)
5	4,35	0,65	13,00
10	8,67	1,33	13,30
15	13,33	1,67	11,13
17	15,16	1,84	10,82
20	18,93	1,07	5,35

Os valores de erro percentual foram calculados usando a fórmula:

$$\label{eq:erro} \text{Erro Percentual} = \left| \frac{\text{Volume Real} - \text{Volume Medido}}{\text{Volume Real}} \right| \times 100\%$$

A partir dos erros percentuais individuais, foram calculadas as seguintes métricas:

- Erro percentual médio (\bar{E}) : é a média aritmética dos erros percentuais, calculada como

$$\bar{E} = \frac{1}{n} \sum_{i=1}^{n} E_i,$$

onde E_i é o erro percentual em cada ponto de referência e n=5 é o número total de pontos.

 Desvio padrão do erro (σ): representa a dispersão dos erros em torno da média, calculado por

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2}.$$

- Erro percentual mínimo: menor valor entre os erros percentuais individuais.
- Erro percentual máximo: maior valor entre os erros percentuais individuais.

No presente estudo, os valores calculados foram:

- Erro percentual médio: 10,72 %

- Desvio padrão do erro: 3,13 %

- Erro percentual mínimo: 5.35 %

- Erro percentual máximo: 13,30 %

O desvio padrão indica o grau de variação dos erros em relação à média, mostrando que as medições do sistema são relativamente estáveis em toda a faixa de volumes testados.

A escolha da análise sequencial por pontos de referência se justifica pela suposição de que o sistema apresenta um comportamento linear aproximado entre os volumes conhecidos. Dessa forma, medições intermediárias podem ser consideradas confiáveis, e pequenas variações são absorvidas estatisticamente pelas métricas de erro.

6.2 Análise da Performance Pós-Calibração no Sistema

A validação experimental do sistema foi realizada mediante coleta de dados em bancada hidráulica, com os resultados estatísticos apresentados na Figura 2, observa-se que:

- 1. Redução de Erro: O processamento combinado (Kalman + RLS) proporcionou:
 - Redução média de 5.0% (30.29L \rightarrow 28.78L)
 - Redução máxima de $7.0\%~(58.58L \rightarrow 54.47L)$
 - Diminuição do desvio padrão em $1.4\%~(18.76L \rightarrow 18.50L)$

Figura 2: Comparação entre volumes bruto e filtrado com indicadores estatísticos

2. Otimização do Fator de Esquecimento: A análise comparativa dos fatores λ revelou:

Figura 3: Regressão RLS com $\lambda = 0.95$

 $-\lambda = 0.95$: Convergência mais rápida (11 iterações) com equação final:

$$Q(f) = 0.133334 \cdot f + 0.000014$$

Ideal para ambientes dinâmicos com variações frequentes de vazão.

Figura 4: Regressão RLS com $\lambda = 0.99$

 $-\lambda = 0.99$: Maior estabilidade (21 iterações) com equação:

$$Q(f) = 0.133334 \cdot f + 0.000019$$

Recomendado para condições operacionais estáveis.

- $-\lambda = 0.97$ (teste adicional): Equilíbrio ideal entre velocidade e estabilidade, com convergência em 15 iterações e variação de coeficientes limitada a ± 0.00003 .
- 3. Eficácia Global: A abordagem combinada alcançou:
 - Erro médio final de 2.1% (vs. 10% do sensor bruto)
 - -Redução de 7.9% no erro absoluto
 - Latência de processamento de ${\bf 2.3\,\pm\,0.4\,\,ms}$ no ESP32
 - Coeficiente de determinação $R^2 = 0.9987$ para a relação frequência-vazão

Tabela 7: Desempenho comparativo dos fatores de esquecimento

λ	Iterações para Convergência	Variação Máxima de b	Aplicação Recomendada
0.99	21	± 0.00002	Ambientes estáveis
0.97	15	± 0.00003	Condições semi-dinâmicas
0.95	11	± 0.00007	Ambientes altamente variáveis

Impacto na Precisão: A sinergia Kalman+RLS permitiu reduzir o erro total em 7.9%, sendo:

- 7.0% atribuídos ao Filtro de Kalman (supressão de ruídos e outliers)

Figura 5: Frequência Bruta e Filrada

- 0.9% à RLS (compensação de não-linearidades e calibração adaptativa)

Figura 6: Fluxo Bruto e Filtrado

A relação linear obtida demonstrou excelente aderência aos dados experimentais, validando o modelo proposto e superando em $4.76\times$ a precisão original do sensor.

7 Conclusão

O trabalho apresentou um sistema integrado para monitoramento de fluxo hídrico baseado em IoT, combinando o sensor YF-S201 com o microcontrolador ESP32, e

técnicas de filtragem e calibração por Filtro de Kalman e Regressão Linear Recursiva (RLS). Essa abordagem possibilitou uma redução do erro médio de medição para 2,1

A arquitetura baseada em containers Docker viabilizou portabilidade, reprodutibilidade e escalabilidade, enquanto a comunicação via API REST permitiu integração direta com sistemas externos. A análise dos fatores de esquecimento no RLS demonstrou a capacidade de adaptação do sistema a diferentes condições operacionais. Com baixo custo, simplicidade de implementação e capacidade de processamento embarcado, o sistema proposto se mostrou adequado para aplicações práticas em gestão de recursos hídricos, validando sua eficiência por meio de experimentos controlados.

Como limitações, destaca-se a necessidade de calibração inicial do RLS e a sensibilidade do sensor YF-S201 a variações bruscas de pressão. Trabalhos futuros podem explorar a inclusão de sensores complementares (e.g., temperatura, pressão) e a aplicação de técnicas de aprendizado de máquina para detecção de anomalias. A solução desenvolvida, contudo, representa um avanço em relação a métodos convencionais, alinhando-se às demandas por eficiência hídrica e sustentabilidade.

Referências

- 1 AHMAD, R. W. et al. An intelligent water consumption prediction system based on Internet of Things. *IEEE Communications Magazine*, v. 55, n. 1, p. 26–33, 2017. Disponível em: \(\text{https://ieeexplore.ieee.org/document/7906792} \). Acesso em: 04 ago. 2024.
- 2 SHARMA, H.; GUPTA, A. An innovative approach for water leak detection and monitoring in smart cities. *Journal of Network and Computer Applications*, v. 104, p. 41–50, 2018. Disponível em: (https://www.sciencedirect.com/science/article/pii/S1084804517301134). Acesso em: 04 ago. 2024.
- 3 ALAM, M. S.; KAWASHIMA, K.; ISHIKAWA, K. Smart irrigation control system using wireless sensor network via Internet-of-Things. *Sensors*, v. 19, n. 9, p. 1953, 2019. Disponível em: (https://www.mdpi.com/1424-8220/19/9/1953). Acesso em: 04 ago. 2024.
- 4 MAHMOOD, A.; ZAFFAR, N. A.; KHAN, W. A. Water leakage detection based on automatic meter reading. In: *2020 International Conference on Engineering and Emerging Technologies (ICEET)*. Lahore, Pakistan: IEEE, 2020. Disponível em: \(\text{https://ieeexplore.ieee.org/document/9377437} \). Acesso em: 27 ago. 2024.
- 5 STA ELETRÔNICA. Características principais do Arduino Uno. 2022. Disponível em: (https://www.sta-eletronica.com.br/artigos/arduinos/caracteristicas-principais-do-arduino-uno). Acesso em: 31 maio 2025.
- 6 EMBARCADOS. Arduino Uno. 2022. Disponível em: (https://embarcados.com. br/arduino-uno/). Acesso em: 31 maio 2025.
- 7 ARDUINO. Arduino Referência em Português. 2025. Disponível em: https://www.arduino.cc/reference/pt/). Acesso em: 31 maio 2025.
- 8 IMC RESISTÊNCIAS. Quer saber o que é e como funciona o sensor de efeito Hall? Veja aqui!. 2022. Disponível em: \(\https://www.imcresistencias.com.br/post/\)

- quer-saber-o-que-e-e-como-funciona-o-sensor-de-efeito-hall-veja-aqui \rangle . Acesso em: 31 maio 2025.
- 9 BRAGA, Newton C. Como funcionam os sensores de efeito Hall ART1050. 2022. Disponível em: (https://www.newtoncbraga.com.br/index.php/como-funciona/6640-como-funcionam-os-sensores-de-efeito-hall-art1050). Acesso em: 31 maio 2025.
- 10 KEEPFY. O que são rotores?. 2022. Disponível em: \(\text{https://keepfy.com/blog/o-que-sao-rotores/} \). Acesso em: 31 maio 2025.
- 11 BYTEFLOP. Sensor de fluxo de água 1/2" YF-S201. 2022. Disponível em: $\langle \text{https://www.byteflop.com.br/sensor-de-fluxo-de-agua-12-yf-s201} \rangle$. Acesso em: 31 maio 2025.
- 12 KALMAN FILTER. Filtro de Kalman. Disponível em: (https://www.kalmanfilter.net/PT/default_pt.aspx). Acesso em: 07 jun. 2025.
- 13 MONTGOMERY, D. C.; RUNGER, G. C. *Estatística Aplicada e Probabilidade para Engenheiros*. 2. ed. Rio de Janeiro: LTC, 2008.
- 14 DOCKER. Docker Documentation. Disponível em: $\langle \text{https://docs.docker.com/} \rangle$. Acesso em: 30 jun. 2025.
- 15 SURYANARAYANAN, S.; HEYDT, G. T. A linear static Kalman filter application for the accommodation of unscheduled flows. *IEEE Transactions on Power Systems*, v. 19, n. 1, p. 391–398, 2004. Disponível em: \(\https://ieeexplore.ieee.org/document/1397548 \rangle \). Acesso em: 03 jul. 2025.
- 16 SCHMIDT, R. et al. A platform for smart objects and the Internet of Things. In: *2011 3rd International Conference on Cloud Computing Technology and Science (CloudCom)*. IEEE, 2011. p. 531–538. Disponível em: \(\text{https://ieeexplore.ieee.org/document/6033388} \). Acesso em: 03 jul. 2025.
- 17 MUHAMMAD, G. et al. Efficient data filtering in IoT sensor networks using adaptive Kalman filtering. *IEEE Access*, v. 8, p. 120926–120934, 2020. Disponível em: (https://ieeexplore.ieee.org/document/9080611). Acesso em: 03 jul. 2025.
- 18 BACCELLI, E. et al. The RIOT operating system: Towards a common IoT software platform. In: *2018 IEEE INFOCOM Workshops*. IEEE, 2018. p. 1–6. Disponível em: (https://ieeexplore.ieee.org/document/8256792). Acesso em: 03 jul. 2025.
- 19 MOTA, A. B. et al. Recursive approximation with atomic norms in IoT environments. *Sensors Journal*, 2023.
- 20 KONG, X. et al. EKF-KRLS: A hybrid approach for real-time estimation in embedded systems. *IEEE Transactions on Instrumentation and Measurement*, v. 70, 2021.
- 21 GOSAVI, R. et al. Smart water flow monitoring and forecasting system using Hall sensors. *International Journal of Advanced Research in Electronics and Communication Engineering*, v. 6, n. 3, p. 123–127, 2017.
- 22 AFIFI, M. et al. IoT-based monitoring in intermittent networks with adaptive Kalman filter. *IoT Journal*, 2023.

- 23 ANISHA, R.; MENON, A.; PRABHAKAR, A. Electronically controlled water flow restrictor to limit the domestic wastage of water. In: *2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS)*. IEEE, 2017. p. 1–6. Disponível em: \(\text{https://ieeexplore.ieee.org/document/8211591} \). Acesso em: 30 jul. 2025.
- 24 SINGH, P.; SAIKIA, S. Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi module. In: *2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)*. IEEE, 2016. p. 1–4. Disponível em: \(\hat{https://ieeexplore.ieee.org/document/7906792} \). Acesso em: 30 jul. 2025.