Security

crispo@cs.vu.nl

text book: Network Security, second edition, C. Kaufman, R. Perlman and M. Specimer,

Prentice Hall ed.

slides at www.cs.vu.nl/~crispo/teaching

classes: Tuesday 14.45-16.30 room M143

Risk Analysis

Implementation of security

Technical ...what we cover in this course

- Documentation → security policies
 - principles and goals
 - application domain
 - compliance to laws and standards
 - personnel roles and responsibilities
 - description of technical mechanisms and their maintenance and management

Basic security properties

- Confidentiality: to prevent unauthorised disclosure of the information
- Integrity: to prevent unauthorised modification of the information
- Authentication: to prove the claimed identity can be Data or Entity authentication
- Availability: to guarantee access to information

Auxiliary security properties

- Non repudiation: to prevent false denial of performed actions
- Authorisation: "what Alice can do"
- Auditing: to securely record evidence of performed actions
- Fault-tolerance: ability to provide some degree of service after failures or attacks
- Disaster Recovery: ability to recover a safe state
- Key-recovery, key-escrow,

Security mechanisms

- Encryption/Decryption
- Digital signatures
- Message authentication code
- Hash functions
- Key exchange
- Key distribution
- Time stamping

Types of attacker

Types of attack

- Passive: the attacker can only read any information
 - Tempest

 Active: the attacker can read, modify, generate, destroy any information

Assurance

Assurance: confidence that a system meets its security objectives

Orange Book security levels

- D Minimal protection
- C1 Discretionary security protection
- C2 Controlled access protection
- **B1** Labeled security protection
- **B2** Structured Protection
- **B3** Security Domains
- A1 Verified design

Malicious Software

- Viruses
- Worms
- Trojan Horses

- Trapdoor
- Logic bomb
- Zombie

Virus

original program

inst i

inst i+1

inst i+2

inst i+3

• • • •

inst n

attacked program

inst i

inst i+1

x jump k

m inst i+3

•••••

inst n

v_inst 1

copy itself

damage

v_inst end

insti+2

jump m

Antivirus

- Detection rather than prevention
- Pattern matching
- Polymorphic virus
- Executable data
 — mail attachment, macro

Cryptography

Figure 1.1: A taxonomy of cryptographic primitives.

Encryption and Decryption

M=message space, C=ciphertext space K=key space

e∈ K ® bijection Ee :M ® C encryption function

 $d \in K \otimes bijection \ Dd:C \otimes M \ decryption$ function

Encryption and Decryption

 $\{Ee: e \in K\} \text{ and } \{Dd: d \in K\}$

For each $e \in K$ there is a unique $d \in K$: $Dd=1/Ee \approx Dd(Ee(m))=m$

(e,d) key pair e=d symmetric schemese≠d asymmetric schemes

Encryption scheme

Symmetric key encryption

Asymmetric key encryption

Asymmetric key encryption

Hash Functions

- One-way functions
- Hash function mapping bs of arbitrary length to bs of fixed length

Confidentiality with SK

Encryption/decryption

Integrity with SK

MAC=message authentication code

Confidentiality with AK

Integrity with AK

ass: Dd(Ee)≈Ee(Dd)

Digital Signature

 Sig guarantees that only that d can have been used → msg authentication

• if $d \leftrightarrow entity \rightarrow entity$ authentication

if entity ↔ user → user authentication

 if other conditions are met a digital signature can be built

Randomness

1 bit input \rightarrow half bits of the output

N randomly chosen input → any particular bit of the output will be on half the time

Kerchoffs' principles

- Theoretically unbreakable, or at least unbreakable in practice
- Ciphertext transmitted over unsecure channel
- Security of the scheme should reside only in the chosen key

Type of attacks

Passive: the attacker can only read any information
confidentiality

 Active: the attacker can read, modify, generate, destroy any information

integrity, authenticity and confidentiality

Attacks on encryption schemes

- Ciphertext only
- Known-plaintext
- Chosen-plaintext
- Adaptive chosen-plaintext
- Chosen-ciphertext
- Adaptive chosen-ciphertext

Security strength

- Unconditional security (Otp)
- Complexity-theoretic security
- Provable security
- Computational security
- Ad hoc security