4.4.1 DFF (维持阻塞型)

1) 电路结构及逻辑符号:

2) 逻辑功能分析: (正边沿触发)

工作原理

(1) **D=1时**:

若CP=0,门3、4封锁, Qⁿ⁺¹=Qⁿ

若CP从0→1,门3、4打开,

$$Q^{n+1}=1$$

能否发生空翻?

2) 逻辑功能分析: (正边沿触发)

特点

(2) D=0时:

若CP=0,门3、4封锁, Oⁿ⁺¹=Oⁿ

若CP从0→1,门3、4打开, Oⁿ⁺¹=0

$$Q^{n+1}=D$$
. CP^{\uparrow}

① CP 个时,才接受输入数据

·② CP=1及CP=0期间,输入数据变化不会影响触发器状态

置

0

维持

D触发器的直接(异步)置0、置1功能

 $\overline{S}_D=0$ 期间, $\overline{R}_D=0$ 或 $\overline{S}_D=0$ 都可以作用到 基本触发器,直接影响Q输出. \overline{R}_D 撤销后 也能维持状态。

CP=1期间, $\overline{R}_D=0$,使Q=0;同时使门4输出0,门3输出1。即使 $\overline{R}_D=0$ 撤除,Q=0也可以保持不变。 \overline{S}_D 也是同样考虑,要接入门5。

3) 逻辑功能描述

- (1) 次态方程: Qⁿ⁺¹=[D]·CP↑
- (2)功能表

表4.4.1 维阻DFF功能表

\overline{S}_{D}	\overline{R}_{D}	D	СР	Q^{n+1}	功能名称
1	1	0	†	0	同步置" 0"
1	1	1	†	1	同步置" 1"
0	1	ϕ	φ	1	异步置" 1"
1	0	φ	φ	0	异步置" 0"
1	1	φ	0	Q^{-n}	保持

- 3) 逻辑功能描述
 - (1) 次态方程: Qⁿ⁺¹=[D]·CP
 - (2)功能表
 - (3)激励表

表4.4.2 维阻DFF激励表

Q^n —	\rightarrow Q^{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

3) 逻辑功能描述

4. 4. 3 TFF和T'FF

1) T 触发器

TFF是一种翻转触发器。具有翻转和保持功能。

T=1时,每有一个↓(或↑)到来,输出翻转一次; T=0时,保持。

由功能表可得次态方程:

T	Q ⁿ	
0	Qn	$\mathbf{Q}^{\mathbf{n}+1} = [\mathbf{T}\overline{\mathbf{Q}}^{\mathbf{n}} + \overline{\mathbf{T}}\mathbf{Q}^{\mathbf{n}}] \cdot \mathbf{CP}]$
1	$\overline{\mathbf{Q}}^{\mathrm{n}}$	

4. 4. 3 TFF和T'FF

- 1) T 触发器
- (1)下升沿触发

(a)逻辑符号

(b) 实现电路

4. 4. 3 TFF和T'FF

- 1) T 触发器
- (2)上升沿触发

4. 4. 3 TFF和T'FF

2) T'触发器

T'FF只具有翻转功能。

若固定T'FF的激励信号T=1,则该触发器每收到一个CP↑(或者↓),输出状态就翻转一次。

C	P p ⁿ	
0	Qn	$Q^{n+1} = [\overline{Q^n}]CP \uparrow$
^	PQ n	

4. 4. 3 TFF和T'FF

- 1) T 触发器
- (1)下升沿触发

(a)逻辑符号

(c)实现电路

4. 4. 3 TFF和T'FF

- 1) T 触发器
- (2)上升沿触发

(a)逻辑符号

(c)实现电路

作业