260617USOPCT.ST25 SEQUENCE LISTING

OH YO NI	KAJIMA, HIDEN KUBO, MITSURU SHIMURA, SEJI SHIO, NOBUYA SHIO, KAORI	J				
<120> NO	VEL 35 KD PRO	OTEIN				
<130> 26	0617US0PCT					
	/511,270 04-10-20					
	T/JP03/05431 03-04-28					
	2002-126107 02-04-26					
<160> 9						
<170> Pa	tentIn versio	on 3.3				
<210> 1 <211> 10 <212> DN <213> Ho						
<400> 1 gaagtctat	g ctgggtcccc	aagtctggtc	ttctgtgagg	caggggctaa	gcaggagctt	60
gtccaggaa	t gtgggggtct	gggcctcagg	ggaggggaag	aaggtggaca	ttgcgggtat	120
ctaccccct	g tgaccacccc	cttcactgcc	actgcagagg	tggactatgg	ggaaactgga	180
ggagaatct	g cacaaactgg	gcaccttccc	cttccgaggc	ttcgtggtcc	agggctccaa	240
tggcgagtt	t cctttcctga	ccagcagtga	gcgcctcgag	gtggtgagcc	gtgtgcgcca	300
ggccatgcc	c aagaacaggc	tcctgctagc	tggctccgga	tgcgagtcca	ctcaagccac	360
agtggagat	g accgtcagca	tggcccaggt	cggggctgac	gcggccatgg	tggtgacccc	420
ttgctacta	t cgtggccgca	tgagcagtgc	ggccctcatt	caccactaca	ccaaggttgc	480
tgatctctc	t ccaatccctg	tggtgctgta	cagtgtccca	gccaacacag	ggctggacct	540
gcctgtgga	t gcagtggtca	cgctttccca	gcacccgaat	attgtgggca	tgaaggacag	600
cggtggtga	t gtgaccagga	ttgggctgat	tgttcacaag	accaggaagc	aggattttca	660
ggtgttggc	t ggatcggctg	gctttctgat	ggccagctat	gccttgggag	ctgtgggggg	720
cgtctgcgc	c ctggccaatg	tcctgggggc	tcaggtgtgc	cagctggagc	gactgtgctg	780
cacggggca	a tgggaagatg	cccagaaact	gcagcaccgc	ctcattgagc	caaacgctgc	840
ggtgacccg	g cgctttggga	tcccagggct	gaagaaaatc	atggactggt	ttggctacta	900
tggaggccc	c tgccgcgccc	ccttgcagga	gctgagcccc	gctgaggagg	aggcactgcg	960
catggattt	c accagcaacg	gctggctctg	agggcaggca	gggtccatgg	ctggcctgag	1020
cccatctca	g cctcctgcct	tgcacttgca	gcctgaattc	c		1061

260617US0PCT.ST25

2 327 <210> Homo sapiens <400> Met Leu Gly Pro Gln Val Trp Ser Ser Val Arg Gln Gly Leu Ser Arg 1 5 10 15 Ser Leu Ser Arg Asn Val Gly Val Trp Ala Ser Gly Glu Gly Lys Lys 20 25 30 Val Asp Ile Ala Gly Ile Tyr Pro Pro Val Thr Thr Pro Phe Thr Ala 35 40 45 Thr Ala Glu Val Asp Tyr Gly Lys Leu Glu Glu Asn Leu His Lys Leu 50 55 60 Gly Thr Phe Pro Phe Arg Gly Phe Val Val Gln Gly Ser Asn Gly Glu 65 70 75 80 Phe Pro Phe Leu Thr Ser Ser Glu Arg Leu Glu Val Val Ser Arg Val 85 90 95 Arg Gln Ala Met Pro Lys Asn Arg Leu Leu Leu Ala Gly Ser Gly Cys 100 105 110 Glu Ser Thr Gln Ala Thr Val Glu Met Thr Val Ser Met Ala Gln Val 115 120 125 Gly Ala Asp Ala Ala Met Val Val Thr Pro Cys Tyr Tyr Arg Gly Arg 130 135 140 Met Ser Ser Ala Ala Leu Ile His His Tyr Thr Lys Val Ala Asp Leu 145 150 155 160 Ser Pro Ile Pro Val Val Leu Tyr Ser Val Pro Ala Asn Thr Gly Leu 165 170 175 Asp Leu Pro Val Asp Ala Val Val Thr Leu Ser Gln His Pro Asn Ile Val Gly Met Lys Asp Ser Gly Gly Asp Val Thr Arg Ile Gly Leu Ile 195 200 205 Val His Lys Thr Arg Lys Gln Asp Phe Gln Val Leu Ala Gly Ser Ala 210 220 Gly Phe Leu Met Ala Ser Tyr Ala Leu Gly Ala Val Gly Gly Val Cys 235 240 Ala Leu Ala Asn Val Leu Gly Ala Gln Val Cys Gln Leu Glu Arg Leu

Cys Cys Thr Gly Gln Trp Glu Asp Ala Gln Lys Leu Gln His Arg Leu 260 265 270

Ile Glu Pro Asn Ala Ala Val Thr Arg Arg Phe Gly Ile Pro Gly Leu 275 280 285

Lys Lys Ile Met Asp Trp Phe Gly Tyr Tyr Gly Gly Pro Cys Arg Ala 290 295 300

Pro Leu Gln Glu Leu Ser Pro Ala Glu Glu Glu Ala Leu Arg Met Asp 305 310 315 320

Phe Thr Ser Asn Gly Trp Leu 325

<210>

1017

DNA

<211> <212> <213> Rattus sp.

<400> 3

cgggatccat	gctgggcccc	caaatctggg	cctccatgag	gcaggggctg	agcaggggct	60
tgtctaggaa	cgtgaagggg	aagaagatag	acattgccgg	catctaccca	cccgtgacca	120
ccccattcac	cgccaccgca	gaagtagact	atgggaaact	ggaagagaac	ctgaacaaac	180
tggccgcctt	cccctttcga	ggcttcgtgg	tccagggctc	tactggagag	tttccattcc	240
tgaccagcct	tgagcgccta	gaggtggtga	gccgagtgcg	ccaggccata	cccaaggaca	300
agctcctgat	agccggctct	ggctgcgagt	ccacgcaagc	cacagtagag	atgactgtca	360
gcatggctca	ggtgggtgct	gatgccgcca	tggtggtgac	cccttgttac	tatcgcggcc	420
gcatgaacag	cgctgccctc	attcaccact	acaccaaggt	tgctgatctt	tctccaatcc	480
cggtggtgct	gtacagtgtc	ccaggcaaca	cgggtctaga	gctgcctgtg	gatgccgtgg	540
tcacattgtc	tcagcaccca	aatatcattg	gcttgaagga	cagtggtgga	gatgtgacca	600
ggactgggct	gattgttcac	aagaccagca	agcaggattt	ccaggtgttg	gctgggtcag	660
ttggcttcct	cctggccagc	tatgctgtgg	gagctgttgg	gggcatatgt	ggcctggcca	720
atgtcttggg	ggcccaggtg	tgccagctgg	agagactctg	cctcacaggg	cagggggaag	780
ctgcccagag	actgcagcac	cgcctcatcg	agcccaacac	tgcggtgacc	cggcgctttg	840
gaataccagg	gctgaagaaa	accatggact	ggtttggcta	ctatggaggt	ccctgccgtg	900
ccccttgca	ggagttgagc	ccctcagagg	aagaggcgct	tcgcttggat	ttcagcaaca	960
atggctggct	ttaatgacaa	gcgggggaca	cctggtctga	gctgtctcag	aattccg	1017

<210>

³²¹

<212> PRT

Rattus sp.

260617US0PCT.ST25

<400> 4

Met Leu Gly Pro Gln Ile Trp Ala Ser Met Arg Gln Gly Leu Ser Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Gly Leu Ser Arg Asn Val Lys Gly Lys Lys Ile Asp Ile Ala Gly Ile 20 25 30 Tyr Pro Pro Val Thr Thr Pro Phe Thr Ala Thr Ala Glu Val Asp Tyr 35 40 45 Gly Lys Leu Glu Glu Asn Leu Asn Lys Leu Ala Ala Phe Pro Phe Arg 50 55 60 Gly Phe Val Val Gln Gly Ser Thr Gly Glu Phe Pro Phe Leu Thr Ser 70 75 80 Leu Glu Arg Leu Glu Val Val Ser Arg Val Arg Gln Ala Ile Pro Lys 85 90 95 Asp Lys Leu Leu Ile Ala Gly Ser Gly Cys Glu Ser Thr Gln Ala Thr 100 105 110 Val Glu Met Thr Val Ser Met Ala Gln Val Gly Ala Asp Ala Ala Met 115 120 125 Val Val Thr Pro Cys Tyr Tyr Arg Gly Arg Met Asn Ser Ala Ala Leu 130 135 140 Ile His His Tyr Tyr Lys Val Ala Asp Leu Ser Pro Ile Pro Val Val 145 150 155 160 Leu Tyr Ser Val Pro Gly Asn Thr Gly Leu Glu Leu Pro Val Asp Ala 165 170 175 Val Val Thr Leu Ser Gln His Pro Asn Ile Ile Gly Leu Lys Asp Ser 180 185 190 Gly Gly Asp Val Thr Arg Thr Gly Leu Ile Val His Lys Thr Ser Lys 195 200 205 Gln Asp Phe Gln Val Leu Ala Gly Ser Val Gly Phe Leu Leu Ala Ser 210 215 220 Tyr Ala Val Gly Ala Val Gly Gly Ile Cys Gly Leu Ala Asn Val Leu 225 230 235 240 Gly Ala Gln Val Cys Gln Leu Glu Arg Leu Cys Leu Thr Gly Gln Gly 245 250 255 Glu Ala Ala Gln Arg Leu Gln His Arg Leu Ile Glu Pro Asn Thr Ala

260617US0PCT.ST25 265

270

260

Val Thr Arg Arg Phe Gly Ile Pro Gly Leu Lys Lys Thr Met Asp Trp 275 280 285

Phe Gly Tyr Tyr Gly Gly Pro Cys Arg Ala Pro Leu Gln Glu Leu Ser 290 295 300

Pro Ser Glu Glu Glu Ala Leu Arg Leu Asp Phe Ser Asn Asn Gly Trp 305 310 315 320

Leu

<210> 5 <211> 202

<211> 202 <212> PRT

<213> Rattus sp.

<220>

<221> misc_feature

<222> (165)..(165)

<223> Xaa can be any naturally occurring amino acid

<400> 5

Gly Arg Met Asn Ser Ala Ala Leu Ile His His Tyr Thr Lys Val Ala 1 10 15

Asp Leu Ser Pro Ile Pro Val Val Leu Tyr Ser Val Pro Gly Asn Thr 20 25 30

Gly Leu Glu Leu Pro Val Asp Ala Val Val Thr Leu Ser Gln His Pro 35 40 45

Asn Ile Ile Gly Leu Lys Asp Ser Gly Gly Asp Val Thr Arg Thr Gly 50 60

Leu Ile Val His Lys Thr Ser Lys Gln Asp Phe Gln Val Leu Ala Gly 65 70 75 80

Ser Val Gly Phe Leu Leu Ala Ser Tyr Ala Val Gly Ala Val Gly Gly 85 90 95

Ile Val Gly Leu Ala Asn Val Leu Gly Ala Gln Val Cys Gln Leu Glu 100 105 110

Arg Leu Cys Leu Thr Gly Gln Gly Glu Ala Ala Gln Arg Leu Gln His 115 120 125

Arg Leu Ile Glu Pro Asn Thr Ala Val Thr Arg Arg Phe Gly Ile Pro 130 135 140

260617US0PCT.ST25	
Gly Leu Lys Lys Thr Met Asp Trp Phe Gly Tyr Tyr Gly Gly Pro Cys 145 150 155 160	
Arg Ala Pro Leu Xaa Glu Leu Ser Pro Ser Glu Glu Ala Leu Arg 165 170 175	
Leu Asp Phe Ser Asn Asn Gly Trp Leu Gln Ala Gly Asp Thr Trp Ser 180 185 190	
Glu Leu Ser Gln Thr Leu Val Pro Thr Val 195 200	
<210> 6	
<400> 6 cgggatccaa tgctgggccc ccaaatctgg	30
<210> 7 <211> 24 <212> DNA <213> Rattus sp.	
<400> 7 cggaattctg agacagctca gacc	24
<210> 8 <211> 29 <212> DNA <213> Homo sapiens	
<400> 8 gaagatctat gctgggtccc caagtctgg	29
<210> 9 <211> 30 <212> DNA <213> Homo sapiens	
<400> 9	30