Properties of inner products

LATEST SUBMISSION GRADE

1	0	0	%

1.Question 1

The function

$$\beta(x,y) = x^T[2-1], [-1 \ 1]y$$

is

1 / 1 poin	1

V	symmetric
---	-----------

✓	bilinea
	Dillilloa

П					
		not	an	inner	product

not	bilinear
-----	----------

2.Question 2

The function

$$\beta(x,y) = x^T[1-1], [-1 1]y$$

is

1 / 1 point

	not	sym	met	tric
--	-----	-----	-----	------

~	symmetric			
~	bilinear			
□	positive definite not an inner product			
~	not positive definite			
	3.Question 3 The function			
β(x	$(x,y) = x^T[2-1], [1\ 1]y$			
is				
1 / 1	l point			
	symmetric			
~	not symmetric			
~	bilinear			
	not bilinear			
	an inner product			
~	not an inner product			
4.Question 4 The function				
β(x	$(y) = x^T[1 \ 0], [0 \ 1]y$			
is				
1/1	l point			
~	bilinear			
~	symmetric			
	not bilinear			

```
an inner product

not an inner product

not positive definite

not symmetric

positive definite
```

5.Question 5

For any two vectors $x,y \in \mathbb{R}^{n-2}$ write a short piece of code that defines a valid inner product.

1 / 1 point

```
import numpy as np

def dot(a, b):
    """Compute dot product between a and b.

Args:
    a, b: (2,) ndarray as R^2 vectors

Returns:
    a number which is the dot product between a, b
    """

    dot_product = np.dot(a, b)

    return dot_product
# Test your code before you submit.

a = np.array([1,0])
b = np.array([0,1])
print(dot(a,b))
RunReset
```