Raport

Michał Milewski

5/16/2020

Wstęp

Bierzący raport dotyczy porowniania działania funkcji kn
n z użyciem różnych funkcji agregujących etykiety oraz funkcji dostępnych jako gotowe metody. Testowane metody to
 random
Forest::random
Forest , MASS:polr i e1071::svm.

Zbiór danych abalone

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że minimalnie można zaobserwować niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy pozostałych funkcji są porownywalne z błędami knn dla k > 10 oraz użyciem funkcji agregującej moda.

name	ERR	MAD	MSE
randomForest	0.1369361	0.2310223	0.5173501
polr	0.6667504	1.1364671	2.5331722
svm	0.6282059	1.1098814	2.6932691

Zbiór danych $abalone_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy pozostałych funkcji są porownywalne z błędami knn dla k > 10 oraz użyciem funkcji agregującej moda.

name	ERR	MAD	MSE
randomForest	0.08905796	0.1108438	0.1697338
polr	0.44409793	0.5472807	0.8360003
svm	0.42086955	0.5527697	0.9487081

Zbiór danych affairs

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Wyjątkiem od tej reguły jest tu uzycie funkcji agregującej minkara 1.5, która to przy użyciu metryki $L\infty$, zaczyna maleć dla k > 3. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najlepsze wyniki oferuje funkcja moda.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja minkara1.5. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3, choć w przypadku funckji $srednia_wazona$ jest on zdecydowanie łagodniejszy.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k, tak jest dla funkcji agregującej moda. Jednak dla innych funkji błąd dla k = 1 jest duży, a najmnijeszy dla k=3 i później rośnie. Najgwałtowniejszy spadek można zaobserwować dla k od 1 do 3. W tym przypadku moda cechuje się największym błędem średniokwadratowym. tu również widzimy oewne rozbieżności między błędami w przypadku uzycia różnych metryk. Metryka L ∞ daje największe błędy w tym przypadku.

Dla tego zbioru błędy wszystkich użytych funkcji są porównywalne z nieznacznie mniejszymi przy funkcji randomForest

name	ERR	MAD	MSE
randomForest	0.4339623	1.264151	4.683019
polr	0.4981132	1.483019	5.611321
svm	0.4943396	1.547170	6.000000

Zbiór danych ailerons

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k.W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy ERR pozostałych funkcji są porownywalne z błędami knn dla k > 10 oraz użyciem funkcji agregującej moda. Wszystkie te funkcje cechują zauważalnie mniejszymi błędami MAD i MSE.

name	ERR	MAD	MSE
randomForest	0.1172768	0.1877281	0.4015999
polr	0.5641600	0.8153501	1.4994497
svm	0.4470312	0.7423899	1.7314726

Zbiór danych $auto_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Widać też że dla niektórych k zauważalnie zmnijesza się błąd dla metryki L1

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k.W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy ERR pozostałych funkcji są porownywalne z błędami knn dla k > 3 oraz użyciem funkcji agregującej moda. Wszystkie te funkcje cechują zauważalnie mniejszymi błędami MAD i MSE.

name	ERR	MAD	MSE
randomForest	0.1224927	0.1504382	0.2417722
polr	0.4286595	0.5205777	0.7453749
svm	0.4335281	0.5457644	0.8722817

Zbiór danych $auto_riskness$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że najmnijeszy błąd osiągany jest przy k=1, a następnie błąd wzrasta wraz z wzrostem k. Wyjątkiem od tej reguły jest tu uzycie funkcji agregującej minkara 1.5, która to przy użyciu metryki $L\infty$, zaczyna maleć dla k>5. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

- \mathbf{MAD} - błąd bezwzględny

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k=1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3, choć w przypadku funckji $srednia_wazona$ jest on zdecydowanie łagodniejszy. Nieznacze różnice również powodują uzyte metryki.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku moda cechuje się największym błędem średniokwadratowym. tu również widzimy pewne rozbieżności między błędami w przypadku uzycia różnych metryk. Metryka $L\infty$ daje największe błędy w tym przypadku.

Dla tego zbioru funkcja randomForest cechuje się najmniejszymi błędami. Ciekawe jest że dla tej funkcji ERR, MAD i MSE są równe. Następnie funkjca svm ma wszystkie błędy o rząd większe od funkcji randomForest. Najgorsze wyniki w tym przypadku daje funkcja polr

name	ERR	MAD	MSE
randomForest	0.02500	0.02500	0.02500
polr	0.48750	0.55625	0.70625
svm	0.24375	0.36875	0.64375

Zbiór danych bostonhousing

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Widać też że dla niektórych k zauważalnie zmnijesza się błąd dla metryki L1

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1 i odrobinę wyższe dla metryki L2 i najwyższe dla L ∞ . Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym i najłagodniejszym wzrostem w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy ERR pozostałych funkcji są mnijesze od błędów knn dla k = 3 oraz większe niż dla 1-nn. Wszystkie te funkcje cechują zauważalnie mniejszymi błędami MAD i MSE.

name	ERR	MAD	MSE
randomForest	0.06125024	0.06913221	0.08885653
polr	0.37542225	0.44255484	0.62026791
svm	0.34377791	0.42083091	0.63026597

Zbiór danych $bostonhousing_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Widać też że dla niektórych k zauważalnie zmnijesza się błąd dla metryki L1

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1 i odrobinę wyższe dla metryki L2 i najwyższe dla L ∞ . Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym i najłagodniejszym wzrostem w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy ERR pozostałych funkcji są porównywalne do błędów knn dla k = 3 . Wszystkie te funkcje cechują zauważalnie mniejszymi błędami MAD i MSE.

name	ERR	MAD	MSE
randomForest	0.05730926	0.06523005	0.08899243
polr	0.25892060	0.28466317	0.35198990
svm	0.23913803	0.25894001	0.31438556

Zbiór danych californiahousing

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że minimalnie można zaobserwować niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są mniejsze niż błędy knn dla k = 3 oraz większe niż błędy 1-nn. Niestety użycie funkcji polr było niemożliwe bez usuwania dodatkowych oprócz liniowo zależnych kolumn ze zbioru danych.

name	ERR	MAD	MSE
randomForest	0.06463178	0.07679264	0.1078973
svm	0.38062016	0.47480620	0.7156008

Zbiór danych $cement_strength$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać minimalnie niższe błędy dla metryki L1 i L2. W tym przypadku moda cechuje się największym błędem średniokwadratowym. Najgorsze wyniki zostały uzyskane dla metryki L ∞ . Błędy dla tego zbioru rosną w bardziej płaski sposób niż w innych funkcjach.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędem knn dla k = 3. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k.

name	ERR	MAD	MSE
randomForest	0.06613568	0.07115075	0.0811809
polr	0.51607538	0.59626131	0.7666633
svm	0.32864322	0.37776382	0.4860352

Zbiór danych $fireman_example$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1 i L2. W tym przypadku moda cechuje się największym błędem średniokwadratowym. Najgorsze wyniki zostały uzyskane dla metryki L ∞ .

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są mniejsze niż błędy knn dla k = 3 oraz większe niż błędy 1-nn. Niestety użycie funkcji polr dało najgorsze wyniki porownywalne z knn dla k>=3 dla funkcji moda.

name	ERR	MAD	MSE
randomForest	0.1339287	0.2293957	0.5373327
polr	0.7626815	1.8284436	6.6958853
svm	0.5433184	0.8510845	1.7622409

Zbiór danych glass

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji minkara1.5, moda, $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 5. Najgorsze wyniki zostały uzyskane dla metryki L ∞ . Dla funckji minkara3.0 i $srednia_a$ wykresy są strome dla k od 1 do 3, a następnie już się spłaszczają.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmniejszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 5. W tym przypadku widać minimalnie niższe błędy dla metryki L1 i L2. W tym przypadku moda cechuje się największym błędem średniokwadratowym. Najgorsze wyniki zostały uzyskane dla metryki L ∞ .

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędem knn dla k = 3. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k.

name	ERR	MAD	MSE
randomForest	0.03277962	0.07984496	0.2213732
polr	0.49324474	0.70930233	1.2920266
svm	0.20708749	0.30155039	0.5854928

Zbiór danych kinematics

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki dają funkcje minkara3.0 i $srednia_a$, a najlepsze moda.

- \mathbf{MAD} - błąd bezwzględny

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$, a najlepsze dla metryki L1

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędem knn dla k = 3 dla agregacji np. moda. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k, a MSE i MAD w tym przypadku było nawet gorsze.

name	ERR	MAD	MSE
randomForest	0.1229249	0.2062988	0.4687495
polr	0.7343758	1.4976826	4.1688359
svm	0.4774169	0.7211923	1.4484908

Zbiór danych $machine_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Widać też że dla niektórych k zauważalnie zmnijesza się błąd dla metryki L1

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1 i odrobinę wyższe dla metryki L2 i najwyższe dla L ∞ . Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących, z wyjątkiem funkcji moda, która ma duże wahania w wartości. Ciekawe jest to że najmnijeszym błędem średniokwadratowym i najłagodniejszym wzrostem w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Błąd wzrasta łagodniej niż w przypadku pozostałych zbiorów. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędami knn dla k = 3. Niestety użycie funkcji polr było niemożliwe bez usuwania dodatkowych oprócz liniowo zależnych kolumn ze zbioru danych.

name	ERR	MAD	MSE
randomForest	0.09538462	0.1405128	0.2307692
svm	0.29602564	0.4315385	0.8328205

Zbiór danych skill

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać minimalnie niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędami knn dla k = 3. Niestety użycie funkcji polr było niemożliwe bez usuwania dodatkowych oprócz liniowo zależnych kolumn ze zbioru danych.

name	ERR	MAD	MSE
randomForest	0.1171754	0.1480411	0.2163638
svm	0.4941659	0.6488019	0.9970320

Zbiór danych $stock_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k=1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Dla wszytskich funkcji wykresy te rosną łagodniej niż w innych zbiorach. Najlepsze wyniki daje funkcja $srednia_wazona$

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmniejszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. W tym przypadku widać że wszystkie metryki osiągają podobne wartości. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmniejszym błędem średniokwadratowym i najłagodniejszym wzrostem w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k=1, a następnie błąd wzrasta wraz z wzrostem k. Błąd wzrasta łagodniej niż w przypadku pozostałych zbiorów. W tym przypadku widać że można zaobserwować niższe błędy dla metryki L1, trochę wieksze dla L2 i największe dla L ∞ . W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędami knn dla k = 3. Niestety użycie funkcji polr dała najgorsze wyniki, gorsze od funkcji knn.

name	ERR	MAD	MSE
randomForest	0.01368421	0.01368421	0.01368421
polr	0.30000000	0.30736842	0.32210526
svm	0.16105263	0.16105263	0.16105263

Zbiór danych winequality-red

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najlepsze wyniki dała funkcja $srednia_wazona$.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$, a najlepsze dla metryki L1

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędem knn dla k = 3 dla agregacji $srednia_wazona$. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k.

name	ERR	MAD	MSE
randomForest	0.07432711	0.08241535	0.09859182
polr	0.41943510	0.45475364	0.52833189
svm	0.35543195	0.39518667	0.48058932

Zbiór danych winequality-white

Poniżej znajdują się wykresy obrazujące nastepujące dane:

- \mathbf{ERR} - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. Najgorsze wyniki zostały uzyskane dla metryki $L\infty$, a najlepsze dla metryki L1

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku widać niższe błędy dla metryki L1. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy funkcji svm są porównywalne z błędem knn dla k = 3. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k.

name	ERR	MAD	MSE
randomForest	0.08860866	0.09719133	0.1153668
polr	0.47109079	0.52865159	0.6558906
svm	0.40418784	0.45594087	0.5665138

Zbiór danych $wisconsin_breast_ord$

Poniżej znajdują się wykresy obrazujące nastepujące dane:

• ERR - proporcję błędnej klasyfikacji

Na poniższych wykresach widzimy że błąd ERR zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Najmnijeszy błąd osiągany jest przy $\mathbf{k}=1$, a następnie błąd wzrasta wraz z wzrostem \mathbf{k} . Najgwałtowniejszy wzrost można zaobserwować dla \mathbf{k} od 1 do 3. Najlepsze wyniki daje funkcja moda.

Na poniższych wykresach widzimy że błąd MAD zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem bezwzględnych w tym przypadku cechuje się funkcja $srednia_wazona$. Najmniejszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3.

Na poniższych wykresach widzimy że błąd MSE zachowuje się w podoby sposób dla wszystkich funkcji agregujących. Ciekawe jest to że najmnijeszym błędem średniokwadratowym w tym przypadku cechuje się funkcja $srednia_wazona$. Najmnijeszy błąd osiągany jest przy k = 1, a następnie błąd wzrasta wraz z wzrostem k. Najgwałtowniejszy wzrost można zaobserwować dla k od 1 do 3. W tym przypadku moda cechuje się największym błędem średniokwadratowym.

Dla tego zbioru danych można zaobserwować że najlepiej radzi sobie funkcja randomForest z najmniejszymi wszystkimi błędami. Błąd ERR tej funkcji jest porownywalny z błędem 1-nn. Błędy ERR pozostałych funkcji są porownywalne z błędami knn dla k > 3. Błędy funkcji svm są porównywalne z błędem knn dla k = 3. Niestety użycie funkcji polr dało najgorsze wyniki porównywalne z knn dla dużego k.

name	ERR	MAD	MSE
randomForest	0.1031039	0.1909582	0.4390013
polr	0.6033738	0.9699055	1.9202429
svm	0.4584345	0.9739541	2.5310391

Użycie funkcji MASS:polr

Z użyciem tej funkcji na zadanych zbiorach benchmarkowych pojawił się pewien problem związany prawdopodobnie z liniową zależnością pewnych kolumn w macierzy uczącej. Problem ten został rozwiązany z pomocą użycia funkcji WeightIt::make_full_rank. co prawda przez takie działanie usuwane są pewne cechy opisujące przypadki, ale niestety jest to konieczne do poprawnego działania funkcji MASS:polr.

Ogólny opis wyników

Po przeprowadzeniu wszystkich pomiarów, zobrazowaniu ich na różnorakich tabelach można zaobserwować pewne łaczace zależności między parametrami uzycia funkcji knn do otrzymanych wyników. Oto one:

- Największa dokładność osiągana jest dla
k=1w funkcji kn
n
 - Wynikać to może z faktu że nie zawsze inni najbliźsi sąsiedzi należą do dobrej grupy, kompletnie inna budowa zbiorów testowych i uczących również może zmienić tę zależność.
- W niewielu przypadkach użycie metryki L ∞ poprawia wyniki, w większości przypadków lepiej jest użyć metryki L1
- W większośći przypadków funkcja agregująca moda daje najwększe błędy średniokwadratowe.
- W większości przypadków funkcja agregująca **srednia_wazona** daje najmniejsze błędy **sredniokwadratowe.

Wynika to z tego że na wybranie etykiety najbardziej wpływa najbliższy sąsiad, który jak widać po pierwszej kropce jest najbardziej prawdopodobnym dobrym wyborem.

- Funkcja biblioteczna random
Forest daje najlepsze wyniki bliskie pod względem ilości pomylonych ety
kiet (ERR) do 1-nn oraz dużo lepsze przybliżenie tych które nie zostały dokładnie trafione błędy (MAD i
 MSE)
- Funkcja biblioteczna e1071::svm daje znacznie gorsze wyniki niż randomForest, ale przeważnie lepsze wyniki niż MASS::polr

Podsumowanie

Funkcja autorska **knn** będąca przedmiotem rozważań tego raportu cechuje się małą skutecznością dla dużej ilości wybranych najbliższych sąsiadów. O dziwo najlepsze efekty daje po prostu wybranie najbliższego sąsiada i uzycie jego etykiety jako etykiety przedmiotu badanego. Istnieją metody biblioteczne takie jak randomForest::randomForest które cechują się podobnym współczynnikiem dobrze odgadniętych oraz błędami bezwzględnymi i średniokwadratowymi co knn dla k = 1.