Certifying Robustness to Programmable Data Bias in Decision Tree Learning

Anna P. Meyer Joint work with Aws Albarghouthi and Loris D'Antoni

Is the dataset unbiased?

complete?

representative?

Is the dataset biased?

complete?

representative?

Probably not.

What is the impact on the model's predictions?

Goal: certify robustness to training-data bias

Types of dataset bias

- Label-flipping
- Missing data
- Fake data (data-poisoning)

Types of dataset bias

- Label-flipping
- Missing data
- Fake data (data-poisoning)

Assume fixed amount and type of data bias

Types of dataset bias

- Label-flipping
- Missing data
- Fake data (data-poisoning)

Each type can be general or targeted

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels show that $A_{D'}(x) = A_D(x)$

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels show that $A_{D'}(x) = A_D(x)$

Dataset $oldsymbol{D}$

etc.

etc.

|D| = 1000 n = 10 $\sim 10^{23}$ datasets!

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels

show that $A_{D'}(x) = A_D(x)$

Key challenge Combinatorial explosion in the number of datasets

training datasets

trained models

large set of training datasets

abstract

decision-tree learning algorithm

large set of decision trees

(Very) simplified decision tree algorithm

- 1. Choose the predicate that minimizes entropy on the data
- 2. Split the data according to that predicate
- 3. Repeat on child nodes until entropy is 0, or maximum depth is reached

(Very) simplified decision tree algorithm

- 1. Choose the predicate that minimizes entropy on the data
- 2. Split the data according to that predicate
- 3. Repeat on child nodes until entropy is 0, or maximum depth is reached

Dataset D

Dataset $oldsymbol{D}$

Dataset **D**

Number = 4
Number = 1

Dataset $oldsymbol{D}$

Gini Impurity =
$$\sqrt{(1-\sqrt{)} + \times (1-\times)}$$

= $\frac{4}{5}(1-\frac{4}{5}) + \frac{1}{5}(1-\frac{1}{5})) = 0.32$

Abstraction of Dataset D

Number = 4 Number = 1 Number = [3, 5] Number = [0, 2]

Abstraction of Dataset D

Gini Impurity =
$$\checkmark \cdot (1-\checkmark) + \checkmark \cdot (1-\checkmark)$$

= $\frac{[3,5]}{5}(1-\frac{[3,5]}{5}) + \frac{[0,2]}{5}(1-\frac{[0,2]}{5}) = [0, 0.8]$

Gini Impurity =
$$\checkmark \cdot (1 - \checkmark) + \checkmark \cdot (1 - \checkmark)$$

= $\frac{[3,5]}{5} (1 - \frac{[3,5]}{5}) + \frac{[0,2]}{5} (1 - \frac{[0,2]}{5}) = [0, 0.8]$

Aside: We can be more precise!

E.g., we can't simultaneously have 5 \checkmark and 2 \thickapprox

—> details omitted from this presentation, but in our experiments we use the precise version

Experimental results

Certification rate

Given n% bias, what percentage of test data points are certifiably robust?

		Bias a	Bias amount as a percentage of training set				
Bias type	Dataset	0.05	0.1	0.2	0.4	0.7	1.0
FLIP (label-flipping)	Drug Consumption COMPAS Adult Income	94.5 100.0 98.4	94.5 89.0 96.6	94.5 81.5 85.2	94.5 71.5 64.4	92.1 47.8 42.2	85.1 39.7 14.8
	COMPAS targeted AI targeted	100.0 98.8	89.0 98.6	89.0 96.6	81.9 81.6	76.2 69.0	53.0 52.8

Certification rate

Given n% bias, what percentage of test data points are certifiably robust?

		Bias a	Bias amount as a percentage of training set				
Bias type	Dataset	0.05	0.1	0.2	0.4	0.7	1.0
FLIP (label-flipping)	Drug Consumption COMPAS Adult Income	94.5 100.0 98.4	94.5 89.0 96.6	94.5 81.5 85.2	94.5 71.5 64.4	92.1 47.8 42.2	85.1 39.7 14.8
	COMPAS targeted AI targeted	100.0 98.8	89.0 98.6	89.0 96.6	81.9 81.6	76.2 69.0	53.0 52.8

Bias-set size color scheme $< 10^{10}$ $< 10^{50}$ $< 10^{100}$ $< 10^{500}$ $> 10^{500}$ infinite	Bias-set size color scheme

Future work

- Extensions to other ML algorithms
- Counter-examples to robustness