

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών

Όνομα: Κάραλης Νικόλας

A/M: 09104042

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Προσθήκη στην αρχική εργασία.

Συνεργάτες: Καλαμαρά Αντιγόνη

Υπεύθυνος Εργαστηρίου:

Μέτρηση του συντελεστή λ του ορείχαλκου

Από τον Πίνακα 2 προκύπτει ο παρακάτω πίνακας :

P(W)	$\frac{(T_5-T_1)}{L}(\frac{{}^0C}{m})$
3	168,57
6	287,14
9	447,14
12	582,86
15	697,14

Με βάση τις τιμές του πίνακα αυτού σχεδιάστηκε η γραφική παράσταση 2 της θερμοβαθμίδας συναρτήσει τις ισχύος.

Με τη μέθοδο των ελαχίστων τετραγώνων συμπληρώνουμε τον παρακάτω πίνακα και με βάση αυτόν, βρίσκουμε την κλίση της ευθείας καθώς και το σφάλμα της.

P(W)	$\frac{(T_5-T_1)}{L}(\frac{{}^0C}{m})$	$P^2(W^2)$	$P\frac{(T_5-T_1)}{L}(W\frac{{}^{0}C}{m})$	d	d^2
3	168,57	9	505,71	2,572	$6615,184 \cdot 10^{-3}$
6	287,14	36	1722,84	-14,144	$200052,7\cdot10^{-3}$
9	447,14	81	4024,26	10,570	$111724,9 \cdot 10^{-3}$
12	582,86	144	6994,32	11,004	$121088 \cdot 10^{-3}$
15	697,14	225	10457,10	-10,002	$100040 \cdot 10^{-3}$

$\sum_{1}^{5} P$	$\sum_{1}^{5} \frac{(T_5 - T_1)}{L}$	$\sum_{1}^{5} P^2$	$\sum_{1}^{5} P \cdot \frac{(T_5 - T_1)}{L}$	$\sum_{1}^{13} d^2$
45	2182,85	495	23704,23	$539,521 \cdot 10^{-3}$

H ευθεία είναι η $y = \alpha x + \beta$, με $\alpha = 45.0 \pm 1.4$ και $\beta = 30.7 \pm 14.0$

Όπως αναπτύχθηκε παραπάνω, έχουμε $K=-\frac{1}{\lambda S}\Leftrightarrow \lambda=-\frac{1}{KS}$ και το σφάλμα του λ δίνεται από τη σχέση : $\delta\lambda=\frac{1}{\lambda}\sqrt{\frac{\delta K^2}{K^2}+\frac{\delta S^2}{S^2}}$ Οπότε έχουμε : $\lambda=(234,19\pm26,21)$ W/m oC

Μέτρηση του συντελεστή λ κακού αγωγού θερμότητας

Με βάση τον Πίνακα 5 φτιάχνουμε τον παρακάτω πίνακα :

t (s)	T (°C)	$\ln(extsf{T-}T_\pi)$
0	69,3	3,910
30	65,6	3,832
60	59,9	3,701
90	53,9	3,540
120	48,4	3,367
150	44,0	3,202
180	40,4	3,044
210	37,3	2,884
240	34,4	2,708
270	32,1	2,541
300	30,2	2,379
330	28,6	2,219
360	27,2	2,054

Από τους Πίνακες 4 και 5 σχεδιάζουμε τη γραφική παράσταση 4 της θερμοκρασίας συναρτήσει του χρόνου στις 2 περιπτώσεις και με βάση τον παραπάνω πίνακα σχεδιάζουμε την γραφική παράσταση 5 του $\ln(\text{T-}T_\pi)$ συναρτήσει του χρόνου.

Με τη μέθοδο τον ελαχίστων τετραγώνων κατασκευάζουμε τον παρακάτω πίνακα και βρίσκουμε την κλίση της ευθείας που προκύπτει στη γραφική παράσταση 5.

t (s)	T (°C)	$t^2(s^2)$	$tT(s^{o}C)$	d	d^2
0	3,910	0	0,00	-0,079	$6,300 \cdot 10^{-3}$
30	3,832	900	114,96	0,003	$0,007 \cdot 10^{-3}$
60	3,701	3600	222,06	0,032	$1,002 \cdot 10^{-3}$
90	3,540	8100	318,60	0,031	$0,940 \cdot 10^{-3}$
120	3,367	14400	404,04	0,018	$0,312 \cdot 10^{-3}$
150	3,202	22500	480,30	0,013	$0,161 \cdot 10^{-3}$
180	3,044	32400	547,92	0,015	$0,216 \cdot 10^{-3}$
210	2,884	44100	605,64	0,015	$0,216 \cdot 10^{-3}$
240	2,708	57600	649,92	-0,001	$0,002 \cdot 10^{-3}$
270	2,541	72900	686,07	-0,008	$0,068 \cdot 10^{-3}$
300	2,379	90000	713,70	-0,010	$0,105 \cdot 10^{-3}$
330	2,219	108900	732,27	-0,010	$0,105 \cdot 10^{-3}$
360	2,054	129600	739,44	-0,015	$0,232 \cdot 10^{-3}$

$\sum_{1}^{13} t$	$\sum_{1}^{13} T$	$\sum_{1}^{13} t^2$	$\sum_{1}^{13} t \cdot T$	$\sum_{1}^{13} d^2$
2340	39,381	585000	6214,92	$9,667 \cdot 10^{-3}$

H ευθεία είναι η y = αx + β με α = (-53,3 ± 0,7) $\cdot 10^{-4} \, s^{-1}$ και β = (39899 ± 150) $\cdot 10^{-4} \, s^{-1}$

Άρα η κλίση είναι $K = (-53.3 \pm 0.7) \cdot 10^{-4} s^{-1}$

Όπως είδαμε από τη θεωρία, έχουμε $\lambda = -\mathbf{K}\,\frac{mca}{S_d}$

και
$$\delta \lambda = \frac{1}{S_d} \sqrt{(mc\alpha \delta \mathbf{K})^2 + (Kmc\delta \alpha)^2 + (Kc\alpha \delta m)^2 + (\frac{Kmc\alpha}{S_d} \delta S_d)^2}$$

όπου $c = 370 \ \frac{J}{kg \cdot K}$ η ειδική θερμότητα του ορείχαλκου.

Οπότε $\lambda = (0.72\pm0.04)$ W/m ^{o}C .