ELECTROCARDIOGRAMA (ECG)

Nadia Martin

Alejandro Wohlwend

Luis Oliari

Definición de problema

• Predecir diferentes arritmias en base a un electrocardiograma (ECG).

Base de datos

• La base de datos de arritmias de MIT-BIH contiene 48 extractos de media hora de registros de ECG ambulatorios de dos canales, obtenidos de 47 sujetos estudiados por el Laboratorio de Arritmias de BIH entre 1975 y 1979.

fuentes: https://physionet.org/content/mitdb/1.0.0/

QUE ES UN ECG?

EDA

- Un dataset train de 87554 observaciones.
- Un dataset test de 21892 observaciones.
- Una relación de (95:5) entre dataset train y test.
- El dataset tiene 186 variables numéricas independientes y una variable categórica dependiente.
- Las variables estan normalizadas entre (0-1)mV y autocorrelacionadas (se registra la lectura de potencia en intervalos de a 0,04seg), tomadas a 125Hz.

- Las clases a predecir son las siguientes.
- Con un conjunto de datos nulos a partir del dato 140.

	Clases
0	Normales
1	Supraventicular
2	Ventricular
3	Fusion
4	Sin clasificar

UN DATASET COMPLETAMENTE DESBALANCEADO:

ALGORITMOS SELECCIOANDOS

- Random Forest
- Boosting
- Redes Neuronales Convoluciones

Estrategia para trabajar con database desbalanceados para la clasificación de clases

- Oversamplig (datos sintéticos SMOTE).
- Subsampling (librería submuestrea randomicamente las clases mayoritarias con/sin reposición.
- Combinados.

RANDOM FOREST

					Reca	ıll c/c	lases		Peor coef.	Obs.	
	Nº	Dataset	Manejo de desbalance	0	1	2	3	4	Matriz confusión		
	1	Completo	Class_weight = None (default)	1,00	0,58	0,86	0,60	0,94	0,58	* Semejante matriz confusión	
	2	Completo	Class_weight = balanced	1,00	0,58	0,86	0,58	0,94	0,58	* Semejante matriz confusión	
	3	Completo	SMOTE	0,99	0,76	0,94	0,77	0,97	0,76		
	4	Completo	Class_weight (RandomSeachCV)	1,00	0,59	0,81	0,59	0,94	0,59		
RF	5	Completo	Undersampling	0,87	0,81	0,87	0,91	0,95	0,81	** Semejante matriz confusión	
	6	Completo	Undersampling (RandomSeachCV)	0,88	0,82	0,88	0,91	0,95	0,82	** Semejante matriz confusión	
	7	.iloc[:,0:140]	Class_weight=None (default)	1,00	0,58	0,86	0,60	0,94	0,58	* Semejante matriz confusión	
	8	.iloc[:,0:140]	Class_weight=balanced	1,00	0,58	0,86	0,58	0,93	0,58	* Semejante matriz confusión	

GRADIENT BOOSTING

	N°	Dataset	Manejo de desbalance	Recall c/clases					Peor coeficiente (Matriz confusion)	Obs
			manejo de desbalance	0	1	2	3	4	r cor coericiente (matriz comasion)	ODS
GB	1	Completo		0,88	0,1	0,27	0,03	0,69	0,03	
GB	2	Completo	pleto Undersampling		0,71	0,77	0,92	0,94	0,66	

REDES NEURONALES (CONVOLUCIONALES)

		Dataset	Manejo de desbalance	Funcion de	Dropout			Recall c/clases		Peor coef.	Observaciones		
		Dataset	Manejo de desparance	ivianejo de despaiance	activacion	layer	0	1	2	3	4	Matriz	Observaciones
	1	Completo	No	relu	No	1,00	0,12	0,57	0,00	0,82	0,00		
	2	Completo	SMOTE	relu	No	0,83	0,54	0,54	0,81	0,87	0,54		
	3	.iloc[:,0:140]	SMOTE	sigmoid	No	0,65	0,68	0,77	0,94	0,90	0,68		
NL	4	.iloc[:,0:140]	SMOTE	relu	No	0,69	0,72	0,75	0,96	0,92	0,69		
	5	.iloc[:,0:140]	SMOTE	relu	Si	0,63	0,78	0,68	0,88	0,93	0,68	Gráfica Loss indicio overfitting	
	6	.iloc[:,0:140]	Undersampling	relu	Si	0,78	0,81	0,84	0,92	0,97	0,78	Gráfica Loss indicio suavizada	

MODELO SELECCIONADO: RANDOM FOREST UNDERSAMPLING RANDOMSEARCHCV

	precision	recall	f1-score	support	
0.0	0.99	0.88	0.93	18118	
1.0	0.37	0.82	0.51	556	
2.0	0.77	0.88	0.82	1448	
3.0	0.13	0.91	0.22	162	
4.0	0.90	0.95	0.93	1608	
accuracy			0.88	21892	
macro avg	0.63	0.89	0.68	21892	
weighted avg	0.94	0.88	0.91	21892	

https://ml-proyecto-final-ecg.herokuapp.com/

REFERENCIAS:

- https://www.kaggle.com/code/gregoiredc/arrhythmia-onecg-classification-using-cnn
- https://www.kaggle.com/code/abhigyandatta/ecg-heartbeat-classification-smote/notebook
- https://www.kaggle.com/code/gregoiredc/arrhythmia-on-ecg-classification-using-cnn/notebook
- https://scikitlearn.org/stable/modules/generated/sklearn.ensemble.
 RandomForestClassifier.html?highlight=random+forest

REFERENCIAS:

- https://www.my-ekg.com/generalidades-ekg/papel-ekg.html
- https://www.aprendemachinelearning.com/clasifica cion-con-datos-desbalanceados/
- https://www.kaggle.com/code/residentmario/under sampling-and-oversampling-imbalanceddata/notebook