A brief introduction to Wavelet Analysis

Xiangdong Zeng

Fourier Transform (FT)

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$f(t) = \cos(20\pi t) + \cos(50\pi t) + \cos(200\pi t) + \cos(500\pi t)$$

Fourier Transform (FT)

How to get information from **both** time and frequency?

Short-Time Fourier Transform (STFT)

Window function

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$F(\tau, \omega) = \int_{-\infty}^{\infty} f(t) w(t - \tau) e^{-i\omega t} dt$$

Short-Time Fourier Transform (STFT)

Everything seems OK, right?

Uncertainty Principle

Werner Heisenberg

$$\Delta x \, \Delta p \geq \frac{\hbar}{2}$$

One CANNOT know the exact time-frequency representation of a signal!

Resolution Problem

Can we use the "changeable" window?

Continuous Wavelet Transform (CWT)

Add window function

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$WT(\tau, s) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} f(t) \, \psi\left(\frac{t - \tau}{s}\right) dt$$

Change basis

Infinite trigonometric basis

Finite "wavelet" basis

from French: ondelette (means "small wave")

Continuous Wavelet Transform (CWT)

However, the horrible computation ...

Discrete Wavelet Transform's Family

- Discrete Wavelet Transform (DWT)
- Stationary Wavelet Transform (SWT)
- Lifting Wavelet Transform (LWT)

- Discrete Wavelet Packet Transform (DWPT)
- Stationary Wavelet Packet Transform (SWPT)

Fast Wavelet Transform (FWT)

References

- [1] Wavelet. https://en.wikipedia.org/w/index.php?title=Wavelet&oldid=744313663
- [2] Robi Polikar. The Wavelet Tutorial. http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
- [3] Wavelet Analysis. https://reference.wolfram.com/language/guide/Wavelets.html
- [4] Can you explain the relationship between wavelet analysis and Fourier analysis? https://www.zhihu.com/question/22864189

Question Time