模块三 三角函数的图象性质

第1节 求三角函数解析式 $f(x) = A\sin(\omega x + \varphi) + B$ ($\bigstar \star \star \star$)

内容提要

求三角函数解析式 $f(x) = A\sin(\omega x + \varphi) + B$ 的常见题型有恒等变换化简、根据图象求解析式等.

- 1. 恒等变换化简得到 $f(x) = A\sin(\omega x + \varphi) + B$: 一般分"拆"、"降"、"合"三步.
- ①拆: 若解析式中有 $\cos(2x-\frac{\pi}{6})$ 这类结构,通常先拆开;
- ②降: 遇到 $\sin^2 x$, $\cos^2 x$, $\sin x \cos x$ 这些结构,可降次; ("拆"和"降"的顺序要视情况而定)
- ③合:完成前两步后,通常就化为了 $f(x) = a \sin \omega x + b \cos \omega x + B$ 这类结构,最后可利用辅助角公式合并.
- 2. 根据图象求解析式 $f(x) = A\sin(\omega x + \varphi) + B$:

①用最大值和最小值求 A:
$$\begin{cases} f(x)_{\text{max}} = |A| + B \\ f(x)_{\text{min}} = -|A| + B \end{cases} \Rightarrow |A| = \frac{f(x)_{\text{max}} - f(x)_{\text{min}}}{2};$$

②用最大值和最小值求 *B*:
$$\begin{cases} f(x)_{\text{max}} = |A| + B \\ f(x)_{\text{min}} = -|A| + B \end{cases} \Rightarrow B = \frac{f(x)_{\text{max}} + f(x)_{\text{min}}}{2};$$

- ③用最小正周期 T 求 ω : $|\omega| = \frac{2\pi}{T}$;
- ④最值点求 φ :将函数图象上的最大值或最小值点代入解析式,求出 φ .若图象上没有标出最值点,也无法通过简单的推理得出最值点,则考虑代图象上的其它已知点求 φ .之所以首选最值点,是因为一个周期内,只有最大值或最小值点是唯一的,若代其它点,可能会有增根需要舍去.
- 3. $y = \sin x$ 和 $y = \cos x$ 的图象及性质

-		·
函数	$y = \sin x$	$y = \cos x$
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
定义域	R	R
值域	[-1,1]	[-1,1]
周期性	最小正周期为2π	最小正周期为2π
奇偶性	奇函数	偶函数
单调性	单调递增区间: $[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}](k \in \mathbb{Z})$ 单调递减区间: $[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}](k \in \mathbb{Z})$	单调递增区间: $[2k\pi - \pi, 2k\pi](k \in \mathbb{Z})$ 单调递减区间: $[2k\pi, 2k\pi + \pi](k \in \mathbb{Z})$
最值	当 $x = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{max}} = 1$ 当 $x = 2k\pi - \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{min}} = -1$	当 $x = 2k\pi(k \in \mathbb{Z})$ 时, $y_{\text{max}} = 1$ 当 $x = 2k\pi + \pi(k \in \mathbb{Z})$ 时, $y_{\text{min}} = -1$
对称轴	$x = k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$	$x = k\pi(k \in \mathbf{Z})$

对称中心 $(k\pi,0)(k \in \mathbf{Z})$ $(k\pi + \frac{\pi}{2},0)(k \in \mathbf{Z})$

4. $y = \tan x$ 的图象及性质

-		
函数	$y = \tan x$	$y = A \tan(\omega x + \varphi)(A > 0, \omega > 0)$
图象	$\frac{1}{-\frac{\pi}{2}} \sqrt{\frac{\pi}{2}}$ $\frac{3\pi}{2}$	x
定义域	$\{x \mid x \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}$	$\{x \mid \omega x + \varphi \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}$
值域	\mathbf{R}	R
最小正周期	π	$rac{\pi}{\omega}$
奇偶性	奇函数	当 $\varphi = \frac{k\pi}{2} (k \in \mathbb{Z})$ 时为奇函数,否则为非奇非偶函数
增区间	$(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})(k \in \mathbf{Z})$	$(\frac{1}{\omega}(k\pi - \frac{\pi}{2} - \varphi), \frac{1}{\omega}(k\pi + \frac{\pi}{2} - \varphi))(k \in \mathbf{Z})$
对称中心	$(\frac{k\pi}{2},0)(k\in\mathbf{Z})$	$(\frac{1}{\omega}(\frac{k\pi}{2} - \varphi), 0)(k \in \mathbf{Z})$

5. 设A>0, $\omega>0$, 则函数 $y=A\sin(\omega x+\varphi)$ 和 $y=A\cos(\omega x+\varphi)$ 的性质如下表:

函数	$y = A\sin(\omega x + \varphi)$	$y = A\cos(\omega x + \varphi)$
定义域	R	R
值域	[-A,A]	[-A,A]
周期性	最小正周期为 $\frac{2\pi}{\omega}$	最小正周期为 $\frac{2\pi}{\omega}$
单调性	增区间: $2k\pi - \frac{\pi}{2} \le \omega x + \varphi \le 2k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$ 减区间: $2k\pi + \frac{\pi}{2} \le \omega x + \varphi \le 2k\pi + \frac{3\pi}{2}(k \in \mathbb{Z})$	增区间: $2k\pi - \pi \le \omega x + \varphi \le 2k\pi (k \in \mathbb{Z})$ 减区间: $2k\pi \le \omega x + \varphi \le 2k\pi + \pi (k \in \mathbb{Z})$
	当 $\omega x + \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{max}} = A$	
最值	当 $\omega x + \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{min}} = -A$	当 $\omega x + \varphi = 2k\pi(k \in \mathbf{Z})$ 时, $y_{\text{max}} = A$ 当 $\omega x + \varphi = 2k\pi + \pi(k \in \mathbf{Z})$ 时, $y_{\text{min}} = -A$
对称轴	$\omega x + \varphi = k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$	$\omega x + \varphi = k\pi(k \in \mathbf{Z})$
对称中心	$(\frac{1}{\omega}(k\pi - \varphi), 0)(k \in \mathbf{Z})$	$(\frac{1}{\omega}(k\pi + \frac{\pi}{2} - \varphi), 0)(k \in \mathbf{Z})$

典型例题

类型 I: 化简求解析式

【例 1】已知函数 $f(x) = \sin x \cos(x + \frac{\pi}{6})$,则 f(x)的最小正周期为_____,值域为_____.

解析:要求周期和值域,得把解析式化为 $y = A\sin(\omega x + \varphi) + B$ 这种形式,先拆 $\cos(x + \frac{\pi}{6})$ 这部分,

曲题意,
$$f(x) = \sin x (\cos x \cos \frac{\pi}{6} - \sin x \sin \frac{\pi}{6}) = \frac{\sqrt{3}}{2} \sin x \cos x - \frac{1}{2} \sin^2 x$$
,

再对
$$\sin x \cos x$$
 和 $\sin^2 x$ 降次,所以 $f(x) = \frac{\sqrt{3}}{4} \sin 2x - \frac{1}{2} \cdot \frac{1 - \cos 2x}{2} = \frac{\sqrt{3}}{4} \sin 2x + \frac{1}{4} \cos 2x - \frac{1}{4}$

最后用辅助角公式合并,故 $f(x) = \frac{1}{2}\sin(2x + \frac{\pi}{6}) - \frac{1}{4}$,所以 f(x)的最小正周期 $T = \frac{2\pi}{2} = \pi$,

最小值为 $-\frac{3}{4}$,最大值为 $\frac{1}{4}$,故f(x)的值域为 $[-\frac{3}{4},\frac{1}{4}]$.

答案: π , $\left[-\frac{3}{4}, \frac{1}{4}\right]$

【**反思**】化简三角函数解析式的步骤: ①拆: 例如本题遇到 $\cos(x + \frac{\pi}{6})$ 这种结构,将其拆开;②降: 用降次公式对 $\sin^2 x$, $\cos^2 x$, $\sin x \cos x$ 这类项降次;③合: 用辅助角公式合并.

【变式】(2019•浙江卷节选)设函数 $f(x) = \sin x (x \in \mathbf{R})$,求函数 $y = [f(x + \frac{\pi}{12})]^2 + [f(x + \frac{\pi}{4})]^2$ 的值域.

解: 由题意,
$$y = [f(x + \frac{\pi}{12})]^2 + [f(x + \frac{\pi}{4})]^2 = \sin^2(x + \frac{\pi}{12}) + \sin^2(x + \frac{\pi}{4})$$
,

(要求该函数的值域,应将其化为 $y = A\sin(\omega x + \varphi) + B$ 的形式,先用降次公式降次)

$$y = \sin^2(x + \frac{\pi}{12}) + \sin^2(x + \frac{\pi}{4}) = \frac{1 - \cos(2x + \frac{\pi}{6})}{2} + \frac{1 - \cos(2x + \frac{\pi}{2})}{2} = \frac{1 - \cos(2x + \frac{\pi}{6})}{2} + \frac{1 + \sin 2x}{2},$$

(接下来拆 $\cos(2x + \frac{\pi}{6})$ 这部分,随后再用辅助角公式合并)

$$y = 1 - \frac{1}{2}(\cos 2x \cos \frac{\pi}{6} - \sin 2x \sin \frac{\pi}{6}) + \frac{1}{2}\sin 2x = 1 + \frac{3}{4}\sin 2x - \frac{\sqrt{3}}{4}\cos 2x = 1 + \frac{\sqrt{3}}{2}\sin(2x - \frac{\pi}{6}),$$

因为
$$-1 \le \sin(2x - \frac{\pi}{6}) \le 1$$
,所以函数 $y = [f(x + \frac{\pi}{12})]^2 + [f(x + \frac{\pi}{4})]^2$ 的值域是 $[1 - \frac{\sqrt{3}}{2}, 1 + \frac{\sqrt{3}}{2}]$.

【反思】若解析式中有像 $\sin^2(x+\frac{\pi}{12})$ 这类平方项,应先降次,而不是先拆角,再平方展开,降次,合并.

类型 II: 由部分图象求解析式

【例 2】如图是
$$f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}$$
)的部分图象,则 $f(x) = _____.$

解析: 从图象可以看出 f(x) 的最大值,可由此求出 A,由图可知 A=2;

图象上
$$\frac{2\pi}{3}$$
到 $\frac{13\pi}{6}$ 这一段是 $\frac{3}{4}$ 个周期,所以周期可求,那么 ω 也就有了,

$$\frac{13\pi}{6} - \frac{2\pi}{3} = \frac{3\pi}{2} = \frac{3}{4}T$$
, 所以 $T = 2\pi$, 故 $\omega = \frac{2\pi}{T} = 1$;

最后代点求 φ , 首选最值点, 此处本身就给出 $\frac{2\pi}{3}$ 这个最大值点, 就代它,

曲图可知,
$$f(\frac{2\pi}{3}) = 2\sin(\frac{2\pi}{3} + \varphi) = 2 \Rightarrow \sin(\frac{2\pi}{3} + \varphi) = 1 \Rightarrow \frac{2\pi}{3} + \varphi = 2k\pi + \frac{\pi}{2} \Rightarrow \varphi = 2k\pi - \frac{\pi}{6} (k \in \mathbb{Z})$$
,

又
$$|\varphi| < \frac{\pi}{2}$$
,所以 k 只能取 0, $\varphi = -\frac{\pi}{6}$,故 $f(x) = 2\sin(x - \frac{\pi}{6})$.

答案: $2\sin(x-\frac{\pi}{6})$

【变式 1】已知函数 $f(x) = A\sin(\omega x + \varphi) + B(\omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图所示,则(

(A)
$$f(x) = -4\sin(\frac{\pi}{8}x + \frac{\pi}{4}) + 2$$
 (B) $f(x) = 4\sin(\frac{\pi}{8}x - \frac{\pi}{4}) + 2$

(C)
$$f(x) = -4\sin(\frac{\pi}{8}x - \frac{\pi}{4}) + 2$$
 (D) $f(x) = 4\sin(\frac{\pi}{8}x + \frac{\pi}{4}) + 2$

解法 1: 图上只有一个最大值点,求周期还不够,观察发现可由x轴上的两个点推断出最小值点,

由图可知,
$$x = -\frac{2}{3}$$
和 $x = \frac{14}{3}$ 的中间 $x = 2$ 必为最小值点,所以 $\frac{T}{2} = 10 - 2 = 8$,

从而
$$T = 16$$
, 故 $\omega = \frac{2\pi}{T} = \frac{\pi}{8}$, 所以 $f(x) = A\sin(\frac{\pi}{8}x + \varphi) + B$,

从图象可以看出最大、最小值分别为6和-2,可由此求A和B,但由于没给A的正负,故需讨论,

①当
$$A > 0$$
时,由图可知,
$$\begin{cases} A + B = 6 \\ -A + B = -2 \end{cases}$$
,解得: $A = 4$, $B = 2$,所以 $f(x) = 4\sin(\frac{\pi}{8}x + \varphi) + 2$,

最后求 φ ,首选最值点,代最小值点x=2或最大值点x=10均可,不妨代x=2,

故
$$f(2) = 4\sin(\frac{\pi}{8} \times 2 + \varphi) + 2 = -2$$
,所以 $\sin(\frac{\pi}{4} + \varphi) = -1$,

因为
$$|\varphi| < \frac{\pi}{2}$$
,所以 $-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,从而 $-\frac{\pi}{4} < \frac{\pi}{4} + \varphi < \frac{3\pi}{4}$,故 $\sin(\frac{\pi}{4} + \varphi) = -1$ 无解;

②当
$$A < 0$$
时,由图可知,
$$\begin{cases} -A + B = 6 \\ A + B = -2 \end{cases}$$
,解得: $A = -4$, $B = 2$,所以 $f(x) = -4\sin(\frac{\pi}{8}x + \varphi) + 2$,

接下来再求
$$\varphi$$
, 还是代最小值点 $x=2$, $f(2)=-4\sin(\frac{\pi}{4}+\varphi)+2=-2\Rightarrow \sin(\frac{\pi}{4}+\varphi)=1$,

结合
$$-\frac{\pi}{4} < \frac{\pi}{4} + \varphi < \frac{3\pi}{4}$$
 可得 $\frac{\pi}{4} + \varphi = \frac{\pi}{2}$, 所以 $\varphi = \frac{\pi}{4}$, 故 $f(x) = -4\sin(\frac{\pi}{8}x + \frac{\pi}{4}) + 2$.

解法 2: 这种给出部分图象,选解析式的题,有时也可结合图象的一些特征,用排除法来选答案,

由图可知, $f(-\frac{2}{3})=0$,经检验,选项 B、C、D 均不满足,故选 A.

答案: A

【反思】①不确定 A 的正负时,可讨论;②选择题抓住图中关键信息,用排除法选答案也是好方法.

【变式 2】下图是函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}$) 的部分图象,则 $f(\frac{3\pi}{4}) = ____.$

解析:图中标注了最大、最小值,可由此求 A,由图可知, $f(x)_{max} = 2$,结合 A > 0 可得 A = 2,

接下来一般的想法是由图上的关键点(最值点、零点)求周期,但本题的关键点只有一个最小值点,也无 法推断其它关键点,求不出周期,故尝试把图中标出的 $(-\pi,-2)$ 和(0,1)这两个点代进解析式,

由图可知,
$$\begin{cases} f(-\pi) = 2\sin(-\omega\pi + \varphi) = -2 & \textcircled{1} \\ f(0) = 2\sin\varphi = 1 & \textcircled{2} \end{cases}$$
 , 我们发现式②是关于 φ 的单变量方程,可先求出 φ ,

由②可得
$$\sin \varphi = \frac{1}{2}$$
,结合 $|\varphi| < \frac{\pi}{2}$ 可得 $\varphi = \frac{\pi}{6}$,代入①化简得: $\sin(-\omega\pi + \frac{\pi}{6}) = -1$,

所以
$$-\omega\pi + \frac{\pi}{6} = 2k\pi - \frac{\pi}{2}$$
, 故 $\omega = \frac{2}{3} - 2k(k \in \mathbb{Z})$,

要求 ω ,还需筛选k,怎么办呢?由图虽无法看出周期,但能看出周期的范围,进而得到 ω 的范围,

如图,P,M两点的横向距离是 $\frac{T}{4}$,此距离小于点P到y轴的距离 π ,所以 $\frac{T}{4} < \pi$,故 $T < 4\pi$,

又 P, Q 两点的横向距离为 $\frac{T}{2}$, 此距离大于点 P 到 y 轴的距离, 所以 $\frac{T}{2} > \pi$, 故 $T > 2\pi$,

所以 $2\pi < T < 4\pi$,从而 $2\pi < \frac{2\pi}{\omega} < 4\pi$,故 $\frac{1}{2} < \omega < 1$,结合 $\omega = \frac{2}{3} - 2k$ 可得 k 只能取 0,此时 $\omega = \frac{2}{3}$,

所以
$$f(x) = 2\sin(\frac{2}{3}x + \frac{\pi}{6})$$
,故 $f(\frac{3\pi}{4}) = 2\sin(\frac{2}{3} \times \frac{3\pi}{4} + \frac{\pi}{6}) = 2\sin(\frac{2\pi}{3} + \frac{\pi}{3})$

答案: √3

【**反思**】当无法从图上直接观察或推断出周期时,可以考虑利用最值点、零点这些关键点的横向距离构造不等式限定周期的范围,从而得出 ω 的范围.

类型III:由伸缩比例求周期

【例 3】(2023・新高考 II 卷)已知函数 $f(x) = \sin(\omega x + \varphi)$,如图,A,B 是直线 $y = \frac{1}{2}$ 与曲线 y = f(x) 的两个交点,若 $|AB| = \frac{\pi}{6}$,则 $f(\pi) =$ ____.

解法 1: $|AB| = \frac{\pi}{6}$ 这个条件怎么翻译? 可用 $y = \frac{1}{2}$ 求 A, B 横坐标的通解,得到 |AB|,从而建立方程求 ω ,

不妨设
$$\omega > 0$$
, $\diamondsuit \sin(\omega x + \varphi) = \frac{1}{2}$ 可得 $\omega x + \varphi = 2k\pi + \frac{\pi}{6}$ 或 $2k\pi + \frac{5\pi}{6}$, 其中 $k \in \mathbb{Z}$,

由图知
$$\omega x_A + \varphi = 2k\pi + \frac{\pi}{6}$$
, $\omega x_B + \varphi = 2k\pi + \frac{5\pi}{6}$, 两式作差得: $\omega(x_B - x_A) = \frac{2\pi}{3}$, 故 $x_B - x_A = \frac{2\pi}{3\omega}$,

又
$$|AB| = x_B - x_A = \frac{\pi}{6}$$
,所以 $\frac{2\pi}{3\omega} = \frac{\pi}{6}$,解得: $\omega = 4$,故 $f(x) = \sin(4x + \varphi)$,

再求 φ ,由图知 $\frac{2\pi}{3}$ 是零点,可代入解析式,注意, $\frac{2\pi}{3}$ 是增区间上的零点,且 $y=\sin x$ 的增区间上的零点是 $2n\pi$,故应按它来求 φ 的通解,

所以
$$\frac{8\pi}{3} + \varphi = 2n\pi(n \in \mathbb{Z})$$
, 从而 $\varphi = 2n\pi - \frac{8\pi}{3}$, 故 $f(x) = \sin(4x + 2n\pi - \frac{8\pi}{3}) = \sin(4x - \frac{2\pi}{3})$,

所以
$$f(\pi) = \sin(4\pi - \frac{2\pi}{3}) = \sin(-\frac{2\pi}{3}) = -\sin\frac{2\pi}{3} = -\frac{\sqrt{3}}{2}$$
.

解法 2: 若注意到横向伸缩虽会改变图象在水平方向上的线段长度,但不改变长度比例,则可先分析 $y = \sin x$ 与 $y = \frac{1}{2}$ 交点的情况,再按比例对应到本题的图中来,

如图 1,直线
$$y = \frac{1}{2}$$
与函数 $y = \sin x$ 在 y 轴右侧的三个交点 I , J , K 的横坐标分别为 $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{13\pi}{6}$,

所以
$$|IJ| = \frac{5\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{3}$$
, $|JK| = \frac{13\pi}{6} - \frac{5\pi}{6} = \frac{4\pi}{3}$, $|IJ|: |JK| = 1:2$,故在图 2 中 $|AB|: |BC| = 1:2$,

因为
$$|AB| = \frac{\pi}{6}$$
,所以 $|BC| = \frac{\pi}{3}$,故 $|AC| = |AB| + |BC| = \frac{\pi}{2}$,又由图 2 可知 $|AC| = T$,所以 $T = \frac{\pi}{2}$,

故
$$\omega = \frac{2\pi}{T} = 4$$
,接下来同解法 1.

答案:
$$-\frac{\sqrt{3}}{2}$$

【反思】①对于函数 $y = \sin(\omega x + \varphi)(\omega > 0)$,若只能用零点来求解析式,则需尽量确定零点是在增区间还是减区间. "增区间的零点"用 $\omega x + \varphi = 2n\pi$ 来求,"减区间的零点"用 $\omega x + \varphi = 2n\pi + \pi$ 来求;②对图象进行横向伸缩时,水平方向的线段长度比例关系不变,当涉及水平线与图象交点的距离时,我们常抓住这一特征来求周期.

强化训练

1. (★★) 设 $f(x) = 4\cos(2x - \frac{\pi}{6})\sin 2x$,则函数 y = f(x) 的值域为_____.

3. $(2021 \cdot 全国甲卷 \cdot ★★)$ 已知函数 $f(x) = 2\cos(\omega x + \varphi)$ 的部分图象如图所示,则 $f(\frac{\pi}{2}) = ____.$

- 4. (2023•全国乙卷•★★) 已知函数 $f(x) = \sin(\omega x + \varphi)$ 在区间 $(\frac{\pi}{6}, \frac{2\pi}{3})$ 单调递增,直线 $x = \frac{\pi}{6}$ 和 $x = \frac{2\pi}{3}$ 为 函数 y = f(x) 的图象的两条对称轴,则 $f(-\frac{5\pi}{12}) = ($
- (A) $-\frac{\sqrt{3}}{2}$ (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$

5. $(2023 \cdot 海南模拟 \cdot ★★★)函数 <math>f(x) = A\cos(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图所示,则

$$f(\frac{7}{3}) = ($$
)

(A) $\frac{1}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{1}{2}$

6. (2020・新课标 I 巻・★★★)设 $f(x) = \cos(\omega x + \frac{\pi}{6})$ 在 $[-\pi, \pi]$ 的图象大致如下图,则 f(x)的最小正周 期为()

- (A) $\frac{10\pi}{9}$ (B) $\frac{7\pi}{6}$ (C) $\frac{4\pi}{3}$ (D) $\frac{3\pi}{2}$

- 7. $(2022 \cdot 福州模拟 \cdot \star \star \star)$ 如图,A,B 是函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$ 的图象与x 轴的两个交点,若 $|OB| |OA| = \frac{4\pi}{3}$,则 $\omega = ($)
- (A) 1 (B) $\frac{1}{2}$ (C) 2 (D) $\frac{2}{3}$

《一数•高考数学核心方法》