Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC303	Database Management System	03			03			03

Course	Course	Examination Scheme						
Code	Name	Theory Marks						
		Internal assessment		End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Flact. /Olai	Total
ITC303	Database Management System	20	20	20	80			100

Course Objectives:

Sr.	Course Outcomes	Cognitive levels
No.		of attainment as
		per Bloom's
		Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Identify the need of Database Management System.	L1, L2
2	Design conceptual model for real life applications.	L6
3	Create Relational Model for real life applications	L6
4	Formulate query using SQL commands.	L3
5	Apply the concept of normalization to relational database design.	L3
6	Demonstrate the concept of transaction, concurrency and recovery.	L2

Course Outcomes:

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping

0	Prerequisite	CommentBasic knowledge of operating systems and file systems, Any programming	02	
I	Database System Concepts and Architecture	Introduction, Characteristics of Databases, File system v/s Database system, Data abstraction and Data Independence, DBMS system architecture, Database Administrator (DBA), Role of DBA Self-learning Topics: Identify the types of Databases.	05	CO1
II	The Entity- Relationship Model	Conceptual Modeling of a database, The Entity-Relationship (ER) Model, Entity Type, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Weak entity Types Generalization, Specialization and Aggregation, Extended Entity-Relationship (EER) Model. Self-learning Topics: Design an ER model for any real time case study.	05	CO2
III	Relational Model & Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for Unary Relational Operations,	05	CO3
IV	Structured Query Language (SQL) & Indexing	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries; Integrity constraints in SQL. Database Programming with JDBC, Security and authorization: Grant & Revoke in SQL Functions and Procedures in SQL and cursors. Indexing:Basic Concepts, Ordered Indices, Index Definition in SQL Self-learning Topics: Physical design of database for the relational model designed in module III and fire various queries.	08	CO4

V	Relational Database Design	Design guidelines for relational Schema, Functional Dependencies, Database tables and normalization, The need for normalization, The normalization process, Improving the design, Definition of Normal Forms-1NF, 2NF, 3NF & The Boyce-Codd Normal Form (BCNF). Self-learning Topics: Consider any real time application and normalization upto 3NF/BCNF	07	CO5
VI	Transactions Management and Concurrency and Recovery	Transaction: Transaction concept, State Diagram, ACID Properties, Transaction Control Commands, Concurrent Executions, Serializability – Conflict and View, Concurrency Control: Lock-based-protocols, Deadlock handling Timestamp-based protocols, Recovery System: Recovery Concepts, Log based recovery. Self-learning Topics: Study the various deadlock situation which may occur for a database designed in module V.	07	CO6

Text Books:

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

1. Peter Rob and Carlos Coronel, — Database Systems Design,

Implementation and Managementl, Thomson Learning, 9th Edition.

2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press

3. G. K. Gupta: "Database Management Systems", McGraw – Hill

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.oreilly.com
3.	https://www.coursera.org/