The Dangerous Jungle

CSC 154

Basic questions

Is network security important? Why?

Why are today's networks so vulnerable?

 Based on your personal experience, what attacks do you know?

Why is network security important?

 The jungle (public networks, including internet) becomes more and more dangerous (vulnerable).

Observation

- Increasing numbers of vulnerability and exploit incidents;
- Impact
 - Critical mission asset concerns in business;
 - User privacy concerns;
 - National security concerns;

Why are networks vulnerable?

- More complexity, more security holes, more risk
 - Increasing number of internet users;
 - More users and system admins with poor security understanding, such as using the same password everywhere;
 - Increasing number and exposure to attack tools;
 - Increasing business infrastructures based on networks;
 - Security is an add-on, not an initial design part;
 - Business investment is more cost-oriented, not security-oriented;
 - The corporate networks (intranets) tend to "globalize" based on Internet;
 - Insider attackers with more insider knowledge;
 - More exposure to external attackers;

What network attacks do you know?

Virus

DoS

– DDoS

• Worm

How does Melissa virus work?

- (step 1) launched as an email with a malicious attachment;
- (step 2) the attachment contains an executable macro program;
- (step 3) exploit the user's address book to flood emails out by copying itself;
 - take the 50 out of the user's address book
- (step 4) if the user click/open the attachment, the code will be executed → you are infected!
 - If the user does not click the attachment? -Nothing happen.
- What could be the consequences?
 - Performance problems, denial of services on mail servers clogged with propagating virus e-mails

Melissa

- email attachment: "list.doc"
 - a Word document that contains code!

How does "I love you" virus work?

- Use email attachment → user click and open → execute → break passwords → address book to self-propagate → replace certain file names with itself
- "Social engineering" words makes user more prone to click:
 - "I love you" (Love-Letter-For-You.txt.vbs);
 - Very-Funny.vbs;
 - virus_warning.jpg.vbs;
 - protect.vbs;
 - Others: you got an award; read this paper

What is the effects of denial-of-service attacks?

- unavailability (services like email, web)
 - web/email server down

Characteristics:

- keep users from access to necessary resources;
- servers are attacked instead of clients;
- hard to detect since the each zombie's connection looks legitimate;
- time and money costly for a company;
- does not disclose information for an individual;
- possible network performance drop even a non-target;
- more with a brute force attack;

What is the difference between Melissa and "I love you"

social engineering aspects;

a visual basic script instead of a macro;

break passwords and report back;

usually also corrupt files;

DDoS Attack

http://www.slashgear.com/whats-a-ddos-attack-zombies-shopping-help-explain-it-all-11333110/ (picture borrowed from SlashGear)

http://business.singtel.com/upload hub/mnc/SingNet DDoS protect.htm (video borrowed from SingTel)

What is a worm?

- Self-propagating programs that kill the Internet
- Compare virus and worm:
 - worms do not need user interaction (clicking to open);
 - In Melissa, the users need to click
- Compare DDoS with worm:
 - Worms are self-propagating but DDoS attacks are not;
 - DDoS attacks target certain servers, while a worm may target any vulnerable host in the Internet, and worms may attack both servers and clients;
 - Worms also collect info, but DDoS do not;
 - Both DDoS attack and worms may cause large-scale network congestion and performance slowdown.

Some historical worms of note

Worm	Date	Distinction
Morris	11/88	Used multiple vulnerabilities, propagate to "nearby" sys
ADM	5/98	Random scanning of IP address space
Ramen	1/01	Exploited three vulnerabilities
Lion	3/01	Stealthy, rootkit worm
Cheese	6/01	Vigilante worm that secured vulnerable systems
Code Red	7/01	First sig Windows worm; Completely memory resident
Walk	8/01	Recompiled source code locally
Nimda	9/01	Windows worm: client-to-server, c-to-c, s-to-s,
Scalper	6/02	11 days after announcement of vulnerability; peer-to- peer network of compromised systems
Slammer	1/03	Used a single UDP packet for explosive growth

Kienzle and Elder, Recent Worms: A Survey and Trends, WORM 03