

Module: Calcul Scientifique Classes: 3^{ème} année AU: 2023 / 2024

TP 4: Résolution numérique de l'équation f(x) = 0

Objectif de ce TP:

Le but de ce TP est d'implémenter deux méthodes pour la résolution numérique de l'équation f(x) = 0 et de comparer ces deux méthodes.

1 Méthode itérative 1: méthode de Dichotomie

On considère une fonction f continue et strictement monotone sur [a, b].

- 1. Écrire une fonction iterativemethod1(f,a,b,epsilon,Nmax) qui renvoie la valeur approchée du zéro x^* d'une fonction f continue, strictement monotone sur [a,b], selon la méthode de dichotomie , et renvoie aussi le nombre d'itérations.
 - Les arguments de la fonction dichotomie devront être: la fonction f, des réels a et b, avec a < b, un réel $\varepsilon > 0$ et Nmax le nombre maximal d'itérations.
 - Le résultat renvoyé doit être composé d'une valeur approchée de x^* à ε près et le nombre d'itérations.
 - On testera au préalable si f(a)f(b) > 0, et dans ce cas, on renverra f(a) et f(b) ne sont pas de même signe.
 - On utilise le test d'arrêt $|b_n a_n| \le \varepsilon$. (voir le cours de l'analyse numérique pour avoir plus de détails).
- 2. On considère la fonction f continue sur [1,2]

$$f(x) = \ln(1 + x^2) - \sin(x).$$

NB: La fonction logarithme s'écrit sous python comme suit : np.log() ou sp.log().

- (a) Justifier graphiquement que f(x) = 0 admet une unique solution dans [1,2].
- (b) Tester la fonction iterativemethod1(f,a,b,epsilon,Nmax) pour : $\varepsilon = 10^{-5}$ et Nmax = 20.

2 Méthode itérative 2

On considère une fonction f continue sur [a,b] telle que $f(a) \neq f(b)$. On souhaite approcher numériquement la racine d'une équation (E): f(x) = 0 en utilisant le schéma itératif suivant:

$$(MI)_n: \begin{cases} x_{n+1} = x_n - \frac{b-a}{f(b) - f(a)} f(x_n), \\ x_0 \in [a, b], \end{cases}$$

avec (x_n) est une suite convergente vers la solution exacte x^* de (E) $(\lim_{n\to+\infty} x_n = x^*)$.

- 1. (a) Écrire une fonction iterativemethod2(a,b,x0,f,epsilon) qui prend les paramètres suivants: a et b les deux extrémités de [a,b], la fonction f, la valeur initiale x0 et la tolérance epsilon. Cette fonction doit retourner **deux listes** dont la première contient tous les itérés $x = [x_0, x_1, x_2, \cdots]$ et la deuxième contient $y = [f(x_0), f(x_1), f(x_2), \cdots]$. Dans cette fonction, on utilise le test d'arrêt $|f(x_n)| \le epsilon$; $\forall n \ge 0$.
 - (b) Donner l'instruction nécessaire pour déterminer l'expression de la dérivée de f, notée df.
 - (c) Représenter graphiquement df, la fonction dérivée de f sur [1,2].
 - (d) Déduire que (E) admet une unique solution sur [1,2].
- 2. Prenant dans la suite $x_0 = 2$ et epsilon $= 10^{-2}$.
 - (a) Donner l'instruction qui permet d'afficher la solution approchée de x^* à epsilon près en utilisant la fonction "iterativemethod2".
 - (b) Trouver le nombre d'itération N pour approcher la solution x^* à espsilon près.
 - (c) Remplir le tableau ci-dessous qui contient les trois premiers itérés (deux chiffres seulement après la virgule) du schéma $(MI)_n$.

X	$x_0 = 2$	$x_1 =$	$x_2 =$	$x_3 =$
Y	$f(x_0) =$	$f(x_1) =$	$\int f(x_2) =$	$f(x_3) =$

3 Comparaison des deux méthodes

Comparer les deux méthodes de résolution de f(x)=0: "iterativemethod1" et "iterativemethod2", en terme de nombre d'itérations effectuées, pour approcher la solution x^* de la fonction $f(x)=cos(2x)-x^2$ sur l'intervalle $[0,\frac{\pi}{4}]$ pour $Nmax=10^3$, et $\varepsilon\in\{10^{-n},\ 2\le n\le 8\}$. Que peut-on conclure?