Definire le espressioni regolare e la nozione di implicazione fra espressioni regolari

Un'espressione regolare è una stringa costituita da caratteri dell'alfabeto terminale, dall'insieme vuoto, dalla stringa vuota e dagli operatori di unione, star e concatenamento.

Definire per casi in modo formale le espressioni regolari

Il linguaggio regolare si basa sulle espressioni regolare.

- espressione regolare = ϕ (insieme vuoto)
- espressione regolare = E (stringa vuota)
- espressione regolare = a (con a $\in \Sigma$, cioè qualsiasi simbolo che appartiene all'alfabeto)
- espressione regolare = e_1 U e_2 (unione di due espressioni regolari)
- espressione regolare = $e_1^* e_2^*$ (star di due espressioni regolari)
- espressione regolare = $e_1 \cdot e_2$ (concatenamento di due espressioni regolari)

Definire formalmente l'automa a stati finiti <u>deterministico</u> equivalente ad un automa <u>non</u> deterministico (senza epsilon mosse)

L'AUTOMA A STATI FINITI DETERMINISTICO, quindi con le 8 mosse, è definito da 5 elementi:

<Q, Σ , ∂ , q_0 , F>.

Q, rappresenta l'insieme degli stati

Σ, rappresenta l'alfabeto

 $\boldsymbol{\delta}$, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input. $\boldsymbol{\delta} = \mathbf{Q} \times \boldsymbol{\Sigma} -> \mathbf{Q}$, significa che uno stato con un certo input può andare solo ed esclusivamente in un altro stato.

q₀, rappresenta lo stato iniziale

F, è un sottoinsieme di Q, rappresenta l'insieme degli stati finiti

L'**AUTOMA A STATI FINITI NON DETERMINISTICO**, quindi senza le E mosse, è definito da 5 elementi:

<Q, Σ, ∂, q₀, F>.

Q, rappresenta l'insieme degli stati

Σ, rappresenta l'alfabeto

 $\boldsymbol{\delta}$, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input. $\boldsymbol{\delta} = \mathbf{Q} \times \boldsymbol{\Sigma} -> \mathbf{2}^{\mathbf{Q}}$, significa che uno stato con un certo input può andare in altri stati. \mathbf{q}_0 , rappresenta lo stato iniziale

F, è un sottoinsieme di Q, rappresenta l'insieme degli stati finiti

Definire le regole che permettono di costruire in modo automatico a partire da un automa a stati finiti che riconosce il linguaggio complemento

L'**AUTOMA COMPLEMENTO** di un automa a stati finiti deterministico, è definito da 5 elementi:

<Q', Σ' , ∂' , q_0' , F'>.

 $\mathbf{Q'} = \mathbf{Q} \cup \{P\}$, cioè uguale a \mathbf{Q} dell'automa a stati finiti con l'aggiunta dello stato \mathbf{P} , detto stato pozzo

Σ', rimane lo stesso di quello dell'automa a stati finiti

 \mathbf{d}' , viene suddivisa in casi: (per ogni q \in Q e per ogni a \in Σ)

- se $\partial(q, a) = k$ allora $\partial'(q, a) = k$, cioè ogni arco dell'automa a stati finiti ci sarà anche nell'automa complemento
- se $\partial(q, a) = /$ allora $\partial'(q, a) = P$, cioè se nell'automa a stati finiti non c'era l'arco con un simbolo dell'alfabeto, allora in quello complemento andrà nello stato P
- d'(p, a) = P, cioè si crea una arco che va da P a P con tutti i simboli dell'alfabeto

 $q_0' = q_0$, cioè rimane sempre lo stesso stato iniziale dell'automa a stati finiti

F' = (Q - F) U {P}, cioè tutti gli stati non finali dell'automa a stati finiti e lo stato P

Definire formalmente l'automa a pila

L'AUTOMA A PILA è definito da 7 elementi:

<Q, Σ , T, ∂ , q_0 , Z_0 , F>.

Q, rappresenta l'insieme degli stati

Σ, rappresenta l'alfabeto dell'input

T, rappresenta l'alfabeto della pila, cioè i simboli che si possono mettere o togliere dalla pila

ð, rappresenta la funzione di transizione, cioè cosa succede ad un certo stato con un certo input.

q₀, rappresenta lo stato iniziale

Z₀, rappresenta la pila vuota ed è un simbolo della pila

F, è un sottoinsieme di Q, rappresenta l'insieme degli stati finiti

Definire la nozione di "configurazione" per un automa a pila

La **CONFIGURAZIONE** è descritta così: $(q, y, y) \in Q \times \Sigma^* \times T^*$, dove q è lo stato, y è la stringa in input che dovrà essere consumata e la y è la stringa che dovrà essere consumata dalla pila.

La configurazione iniziale deve specificare tutti e 3 gli elementi: (q₀, A, Z₀).

Definire la nozione di "mossa" per un automa a pila

Nell'automa a pila, data una configurazione viene definita **MOSSA** il passaggio da una configurazione ad un'altra tramite la funzione di transizione.

Ci sono 2 casi: $(y, x \in T^*)$

- $(q, aY, yx) \rightarrow (p, Y, y\pi)$ se $(p, \pi) \in \partial(q, a, x)$, cioè si consuma un elemento dall'input e si fa una push sulla pila
- $(q, Y, \chi x) \rightarrow (p, \chi \pi)$ se $(p, \pi) \in \partial(q, \mathcal{E}, x)$

Definire la nozione di "stato" per un automa a pila

CCCC

Definire l'accettazione per un input negli automi a pila

L'ACCETTAZIONE di un input in un automa a pila avviene per:

- **stato finale**, cioè quando si consuma tutta l'input e si arriva in uno stato finale $(q_0, A, Z_0) \rightarrow (q, \mathcal{E}, \gamma)$ se $q \in F$
- **pila vuota**, cioè quando si consuma tutto l'input e alla fine la pila è vuota, cioè non contiene nessun simbolo, nemmeno Z_0

$$(q_0, A, Z_0) -> (q, E, E) \text{ se } q \in Q$$

Definire formalmente le regole che permettono di costruire in modo automatico un automa a pila non deterministico data una grammatica context free

- si utilizza un'accettazione a pila vuota, cioè F è un insieme vuoto, <Q, Σ, T, ∂, q₀, Z₀, />
- $Q = \{q_0\}$, esiste solo lo stato iniziale
- $\Sigma = \Sigma$, l'alfabeto dell'input è sempre lo stesso
- $Z_0 = Z_0$, rimane invariato il simbolo della pila vuota
- T = { Z_0 } U Σ U V, cioè sulla pila ci sono tanti simboli quanti sono i simboli dell'alfabeto e dei non terminali
- vengono gestite le regole di produzione, cioè per ogni A -> α :
 - se α = terminale allora α = a β -> ∂ (q₀, a, A) = (q₀, β ^R)
 - se α = non terminale allora α = $X\beta$ -> $\partial(q_0, \xi, A) = (q_0, \beta^R X)$
- vengono gestito ogni simbolo dell'alfabeto, cioè per ogni $A \in \Sigma -> \partial(q_0, a, a) = (q_0, E)$
- vengono gestite le regole della funziona di transizione
 - inizializzazione -> $\partial(q_0, \mathcal{E}, Z_0) = (q_0, \angle S)$
 - terminazione -> $\partial(q_0, \angle, \angle) = (q_0, E)$