Metody Optymalizacji Laboratorium 1

Adrian Herda 2025-04-03

1. Zadanie 1

1.1. Model

1.1.1. Zmienne decyzyjne

• $n \in \mathbb{N}$ - Wymiar problemu

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \ge 0$$

1.1.2. Ograniczenia

$$Ax = b$$

gdzie:

-
$$a_{ij}=\frac{1}{i+j-1},$$
dla $i,j,=1,...,n$

•
$$b_i = \sum_{j=1}^n \Bigl(\frac{1}{i+j-1}\Bigr)$$
, dla $i,j,=1,...,n$

1.2. Funkcja kosztu

 $\min c^T x$

gdzie: •
$$c_i = \sum_{j=1}^n \left(\frac{1}{i+j-1}\right)$$
, dla $i,j,=1,...,n$

1.3. Wyniki

Prawidłowym rozwiązaniem jest x=1. Skoro znamy już ten wynik, bardziej interesujące będzie przeanalizowanie błędów względnych by lepiej zobrazować co się dzieje.

$$error = \frac{\|x - \hat{x}\|_2}{\|x\|_2}$$

n	error
1	0
2	$1.05325004057301 \cdot 10^{-15}$
3	$3.67157765110227 \cdot 10^{-15}$
4	$3.27016385075681 \cdot 10^{-13}$
5	$3.35139916635905 \cdot 10^{-12}$
6	$6.83335790676898 \cdot 10^{-11}$
7	$1.67868542192291 \cdot 10^{-08}$
8	0.514058972177268

n	error			
9	0.682911338087722			
10	0.990387574803086			

n	Funkcja kosztu			
1	1			
2	2.333333333333333			
3	3.7			
4	5.07619047619048			
5	6.45634920634921			
6	7.83852813852814			
7	9.22187257187257			
8	10.6059496062796			
9	11.9905168356488			
10	13.37542804637291			

1.4. Wnioski

Zadanie szukania zadanego wektora jest źle uwarunkowane, ponieważ do jego liczenia jest potrzebna macierz Hilberta.

Błąd względny dla wymiaru n=7 jest jeszcze wyjątkowo mały ale już dla n=8 błąd ten wynosi prawie 0.5

2. Zadanie 2

Zadanie opisuje problem optymalnego przemieszczenia dźwigów między miastami aby zniwelować zapotrzebowania w miastach wykorzystując nadmiary w innych miastach

2.1. Model

2.1.1. Zmienne decyzyjne

- $movI_{m1,m2}$ liczba dźwigów typu I przeniesiona z miasta m
1 do miasta m2,
- $movII_{m1,m2}$ liczba dźwigów typu II przeniesiona z miasta m
1 do miasta m
2,
- $movIII_{m1,m2}$ liczba dźwigów typu II przeniesiona z miasta m
1 do miasta m 2 w celu zastąpienia dźwigów typu I,

2.1.2. Ograniczenia

- 1. Ograniczenie przenoszonych dźwigów wedle nadmiarów
 - $\sum_{m2 \in M} movI_{m1,m2} \leq surpI_{m1}$
 - $\sum_{m2 \in M} (movII_{m1,m2} + movIII_{m1,m2}) \le surpII_{m1}$
- 2. Ograniczenie przenoszonych dźwigów wedle braków
 - $\sum_{m1 \in M} \left(movI_{m1,m2} + movIII_{m1,m2} \right) \geq shortI_{m2}$
 - $\sum_{m1 \in M} movII_{m1,m2} \geq surpII_{m2}$

2.2. Funkcja kosztu

Minimalizujemy koszt związany z transportem

$$\min \textstyle \sum_{m1,m2 \in M} \left(dist_{m1,m2} \cdot movI_{m1,m2} + 1.2 \cdot dist_{m1,m2} \cdot \left(movII_{m1,m2} + movIII_{m1,m2} \right) \right)$$

2.3. Wyniki

z	do	ile	typ dźwigu
Opole	[Brzeg]	4	I
Opole	Kędzierzyn-Koźle	3	I
Nysa	Brzeg	5	I
Nysa	Prudnik	1	I
Strzelce Opolskie	Kędzierzyn-Koźle	5	I
Nysa	Opole	2	II
Prudnik	Strzelce Opolskie	4	II
Prudnik	Kędzierzyn-Koźle	2	II
Prudnik	Racibórz	1	II
Brzeg	Brzeg	1	II zmiana na I
Prudnik	Prudnik	3	II zmiana na I

Całkowity koszt wyniósł 1400.44 jakimi posługiwał się twórca zadania. Pozbycie się warunku na całkowitoliczbowość zmiennych decyzyjnych nie wpływa na końcowy wynik. Solver widocznie lubi wykorzystanie dźwigów typu II jako typu I bez zmiany miasta przez to że nie wprowadza to żadnych kosztów związanych z przewozem. Zapotrzebowanie na dźwigi zostało zlikwidowane w optymalny sposób.

3. Zadanie 3

Zadanie to polegało na optymalizacji kosztów rafinerii tworzącej 3 rodzaje paliw z dwóch rodzajów ropy. Rafineria wykorzystuje destylacje i krakowanie jako metody tworzenia paliw.

3.1. Model

- $R = \{B1, B2\}$ rodzaje ropy
- $P_d = \{$ benzyna, olej, destylat, reszta $\}$ produkty destylacji
- $P_k = \{ {\rm benzyna}, \, {\rm olej}, \, {\rm reszta} \}$ produkty krakowania destylatu
- $W_o = \{\text{domowe, ciezkie}\}$ wykorzystanie oleju z destylacji
- $W_d = \{ \text{krak, ciezkie} \}$ wykorzystanie destylatu

3.1.1. Parametry

- wydajnosc $_{r,p}$ wydajność destylacji ropy określająca ile produktu $p \in P_d$ zostało stworzonego z ropy $r \in R$
- wydajnosc_krak $_p$ wydajność krakowania destylatu określająca ile produktu $p \in P_k$ zostało stworzonego
- desty_siarka_r udział siarki w oleju pozyskanego z destylacji ropy $r \in R$
- krak_siarka_r udział siarki w oleju pozyskanego z krakowania destylatu ropy $r \in R$

3.1.2. Zmienne decyzyjne

• $\operatorname{ropa}_r, r \in R$ – ilość ton zakupionej oraz przetwarzanej ropy B1 oraz B2

- olej $_{r,c}$, $r\in R$, $c\in W_o$ określa ilość, w tonach, oleju z każdego rodzaju ropy idącego do paliw domowych i ciężkich
- desty $_{r,c}$, $r \in R$, $c \in W_d$ określa ilość, w tonach, destylatu z każdego rodzaju ropy idącego do krakowania i paliw ciężkich

3.1.3. Ograniczenia

 Suma oleju wyprodukowanego z danego typu ropy musi równać się sumie ton oleju wykorzystywanego do różnych celów

$$\forall_{r \in R} \left(\text{wydajnosc}_{r, \text{ olej}} \cdot \text{ropa}_r = \sum_{w \in W_o} \text{olej}_{r, w} \right)$$

 Suma destylatu wyprodukowanego z danego typu ropy musi równać się sumie ton destylatu wykorzystywanego do różnych celów

$$\forall_{r \in R} \left(\text{wydajnosc}_{r, \text{ destylat}} \cdot \text{ropa}_r = \sum_{w \in W_d} \text{desty}_{r, w} \right)$$

• Ilość wyprodukowanych paliw silnikowych nie może być mniejsza niż podane w zadaniu $\min_s=200000$ na ilość wyprodukowanego paliwa składa się benzyna z destylacji oraz benzyna z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{benzyna}} \cdot \text{desty}_{r, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ krak}} + \text{wydajnosc}_{r, \text{ krak}} \right)$$

• Ilość wyprodukowanych paliw olejowych nie może być mniejsza niż podane w zadaniu $\min_o=400000$ na ilość wyprodukowanego paliwa składa się część oleju z destylacji oraz olej z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{olej}} \cdot \text{desty}_{r, \text{ krak}} + \text{olej}_{r, \text{ domowe}} \right) \geq \min_{o}$$

• Ilość wyprodukowanych paliw ciężkich nie może być mniejsza niż podane w zadaniu $\min_c=250000$ na ilość wyprodukowanego paliwa składa się część oleju z destylacji, część destylatu, resztki destylacji oraz resztki z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{reszta}} \cdot \text{desty}_{r, \text{ krak}} + \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{desty}_{r, \text{ krak}} + \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ ropa}_{r}} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ ropa}_{$$

• Wyprodukowane paliwa olejowe nie mogą mieć więcej niż $\max_s=0.5\%$ siarki w swoim składzie. Skład siarki w podawany jest przez parametry desty_siraka oraz krak_siarka

$$\begin{split} \sum_{r \in R} & \left(\text{desty_siarka}_r \cdot \text{olej}_{r, \text{ ciezkie}} + \text{krak_siarka}_r \cdot \text{wydajnosc_krak}_{r, \text{ olej}} \cdot \text{desty}_{r, \text{ krak}} \right) \leq \\ & \max_{s} \cdot \sum_{r \in R} & \left(\text{wydajnosc_krak}_{\text{olej}} \cdot \text{desty}_{r, \text{ krak}} + \text{olej}_{r, \text{ domowe}} \right) \end{split}$$

3.2. Funkcja kosztu

- $C_{B1} = 1300$ koszt tony ropy B1
- $\,C_{B2} = 1500$ koszt tony ropy B2
- $CR_1 = 10$ koszt destylacji ropy
- $CR_2=20$ koszt krakowania destylatu

Chcemy zminimalizować koszty produkcji paliw:

$$\min \sum_{r \in R} \bigl(\operatorname{ropa}_r * (C_r + CR_1) + CR_2 * \operatorname{desty}_{r, \text{ krak}} \bigr)$$

3.3. Wyniki

Optymalnym rozwiązaniem okazuje się zakup wyłącznie tańszej ropy B1. Ta ropa nie dość że jest tańsza w kupnie jak i w obróbce ale ma również mniejszą zawartość siarki.

- Kupujemy 1026030.37 ton ropy B1
- 381561.37 ton oleju z destylacji idzie na cele paliw olejowych
- 28850.325 ton oleju z destylacji idzie na cele paliw ciężkich
- 91190.89 ton destylatu idzie do krakowania
- 61713.67 ton destylatu idzie na cele paliw ciężkich

Całkowity koszt wyniósł 1345943600.87\$

4. Zadanie 4

Zadanie polegało na znalezieniu optymalnego planu ćwiczen wedle godzin i ocen zajęć podanych w treści zadania. Dodatkowo w plan trzeba było zmieścić godzinną przerwę w godzinach 12 - 14