MEEN 646 – Aerothermodynamics of Turbomachinery

Module IV:

Design of Radial Compressor

Part 1: Aero-Thermo Analysis

Prepared by:

Dung Tran

Jitaditya Mondal

Re-Submission Date: 03/28/2016

Contents

Introduction	1
Aero Thermo Design	1
Given parameters	1
Schematic of Radial Compressor	2
Equations	2
Results	3
Table of Design Parameters	5
References	13
List of Tables	
Table 1: Design Parameters	1
Table 2: Complete Design Parameters	5
List of Figures	
Figure 1: Schematic of Radial Compressor	2
Figure 2: Pressure Ratio vs Mass Flow	3
Figure 3: Power vs Mass Flow	3
Figure 4: Efficiency vs Mass Flow	4
Figure 5: Flow Coefficient vs Mass Flow	4
Figure 6: Beta2 vs Mass Flow	
Figure 7: Rotation Speed vs Mass Flow	
Figure 8: Inlet Velocity vs Mass Flow	
Figure 9: Alpha3 vs Mass Flow	4
Figure 10: Outlet Velocity vs Mass Flow	5

I. Introduction

This module provides a preliminary design for a single stage radial compressor. Using aerodynamic and thermodynamic analysis, the effect of mass flow rate is noted on the inlet and outlet angles, power and on dimensionless coefficients. Matlab code is used to plot the variation of these parameters. These calculations provide design ground for 3D design of compressor components, which will be addressed in part 2 of this module.

II. Aero Thermo Design

1. Given parameters

Table 1: Design Parameters

m_D (Design mass flow rate)	3.5 kg/s		
T_{in} (Inlet temperature)	300 K		
P ₀₁ (Inlet total pressure)	1 bar		
π_{ref} (Reference pressure ratio)	3.0		
ω (Angular velocity)	5000		
$(\eta_{is})_{Design}$ (Design efficiency)	0.86		
D_{m2} (Inlet mean diameter)	160 mm		
D_3 (Exit diameter)	240 mm		
B_{h2} (Inlet blade height)	100 mm		
B_{h3} (Outlet blade height)	40 mm		
α_2 (Absolute inlet flow angle)	90°		
eta_3 (Relative exit angle)	90°		

The intention of this analysis is to study the effect of flow rate on performance for a given ω for different mass flow rates. Flow rate was varied from 2.5-4.5 kg/s. Efficiency was modelled using the following model.

$$\begin{split} a_0 &= -0.3844, a_1 = 3.0222, a_2 = -1.7778 \\ \eta_{is} &= a_0 + a_1 \left(\frac{\dot{m}}{\dot{m_D}}\right) + a_2 \left(\frac{\dot{m}}{\dot{m_D}}\right)^2, \quad \pi = \eta_{is} * \pi_{ref} \end{split}$$

2. Schematic of Radial Compressor

Figure 1: Schematic of Radial Compressor

3. Equations

a. Inlet parameters

$$P_{02} = P_2 + \frac{V_2^2 \rho_2}{2}$$

$$\rho_2 = \frac{P_2}{RT_2}$$

$$V_2 = \frac{\dot{m}}{\rho_2 A_2} = \frac{\dot{m}}{\rho_2 * pi/4 * [(D_{m2} + B_{h2})^2 - (D_{m2} - B_{h2})^2]}$$

$$P_2 = \rho_2 RT_2$$

b. Outlet parameters

$$P_3 = P_2 \pi$$

$$T_{3s} = T_2(\pi)^{\frac{k-1}{k}}$$

$$T_3 = T_2 + \frac{T_{3s} - T_2}{\eta_{is}}$$

$$\rho_3 = \frac{P_3}{RT_3}$$

$$W_3 = \frac{\dot{m}}{\rho_3 A_3}$$

c. Velocity calculations

$$V_{3} = \sqrt{W_{3}^{2} + U_{3}^{2}}$$

$$W_{2} = \sqrt{V_{2}^{2} + U_{2}^{2}}$$

$$\alpha_{3} = 90 + \tan^{-1}\left(\frac{U_{3}}{W_{3}}\right)$$

$$\beta_{2} = \tan^{-1}\left(\frac{V_{2}}{U_{2}}\right)$$

$$\phi = \frac{W_{3}}{U_{3}}$$

d. Power calculation

Power =
$$\dot{m} * (c_p(T_3 - T_2)) + \frac{V_3^2 - V_2^2}{2}$$

4. Results

Figure 2: Pressure Ratio vs Mass Flow

Figure 3: Power vs Mass Flow

Figure 4: Efficiency vs Mass Flow

Figure 5: Flow Coefficient vs Mass Flow

Figure 7: Rotation Speed vs Mass Flow

Figure 6: Beta2 vs Mass Flow

Figure 8: Inlet Velocity vs Mass Flow

Figure 10: Outlet Velocity vs Mass Flow

5. Table of Design Parameters

Table 2: Complete Design Parameters

Mass flow rate	m_D	3.5	kg/s
Inlet temperature	T_2	300	K
Inlet pressure	P_2	97,867	Pa
Outlet temperature	T_3	408	K
Outlet pressure	P_3	252,500	Pa
Pressure ratio	π	2.58	
Angular velocity	ω	3,000	Rad/s
Design efficiency	$(\eta_{is})_{Design}$	0.86	
Inlet mean diameter	D_{m2}	160	mm
Exit diameter	D_3	300	mm
Inlet blade height	B_{h2}	100	mm
Outlet blade height	B_{h3}	40	mm
Absolute inlet flow angle	α_2	90	deg
Relative inlet flow angle	eta_2	14.3	deg
Absolute exit angle	α_3	174.5	deg
Relative exit angle	eta_3	90	deg
Flow coefficient	ϕ	0.0957	
Absolute inlet velocity	V_2	61.26	m/s
Relative inlet velocity	W_2	247.7	m/s
Absolute outlet velocity	V_3	452.1	m/s
Relative outlet velocity	W_3	43.05	m/s
Power	Р	732	kW

III. Solidworks design

1. Compressor

a. Compressor casing

Figure 11: Bottom casing

Figure 12: Top casing

b. Impeller design

Figure 13: Impeller

c. Bearing housing arrangement

Figure 14: Bearing housing arrangement

d. Full assembly

Figure 15: Compressor full assembly

e. Explored view

Figure 16: Compressor exploded view

2. Complete Turbocharger

Figure 17: Complete Turbocharger full assembly

Figure 18: Turbocharger exploded view

References

[1] Schobeiri, Meinhard T., *Turbomachinery Flow Physics and Dynamic Performance – Chapter 5*, 2nd Ed. Springer 2012. Print & Online

%%% MEEN 646 Module 4 %%%

```
clear all
clc
mdot_d=3.5;
T2=300;
p02=10^5;
pi_ref=3.0;
om=3000; %rad/s
eta_d=0.86;
Dm2=0.16;
Rm2=0.08;
D3 = 0.3;
R3=0.15;
hb2=0.1;
hb3=0.04;
alp2=pi/2;
bet3=pi/2;
mdot=[2.5:0.01:4.5];
R=287;
k=1.3975; %subjected to change
cp=1009; %subjected to change
a0=-0.3844; a1=3.0222; a2=-1.7778;
U2=om*(Dm2/2); U3=om*(D3/2);
IR2=Dm2/2-hb2/2; OR2=Dm2/2+hb2/2;
A2=pi*(OR2^2-IR2^2);
A3=pi*D3*hb3;
for i=1:length(mdot)
  %Efficiency parameters (given)
  eta(i)=a0+a1*(mdot(i)/mdot_d)+a2*(mdot(i)/mdot_d)^2;
  p_ratio(i)=eta(i)*pi_ref;
  %Inlet parameters
  syms a %a=V2
  a = solve(p02 = mdot(i)*R*T2/(A2*a) + mdot(i)*a/(2*A2),a);
  b(i,1:2)=double(vpa(a));
  V2(i)=double(vpa(min(a)));
  rho2(i) = mdot(i)/(A2*V2(i));
  P2(i)=rho2(i)*R*T2;
  %Outlet parameters
  P3(i)=P2(i)*p_ratio(i);
  T3s=T2*(p_ratio(i)^((k-1)/k));
  T3(i)=T2+(T3s-T2)/eta(i);
  rho3(i) = P3(i)/(R*T3(i));
  W3(i)=mdot(i)/(rho3(i)*A3);
  %Velocity calculations
  bet2(i)=atan(V2(i)/U2);
  bet2_deg(i)=bet2(i)*180/pi; %in degree
  W2(i) = sqrt(V2(i)^2 + U2^2);
  %check(i)=acos(U3/V3(i));
  V3(i) = sqrt(W3(i)^2 + U3^2);
  alp3(i)=pi/2+atan(U3/W3(i));
  alp3_deg(i)=alp3(i)*180/pi; %in degree
  %Additional calculations
  phi(i)=W3(i)/U3;
  ome(i)=om;
  Power(i) = (abs(mdot(i)*cp*(T3(i)-T2)))/10^3;
  Power(i)=mdot(i)*(cp*(T3(i)-T2)+0.5*(V3(i)^2-V2(i)^2)); %unit in W
```

```
Power1(i)=Power(i)/10<sup>3</sup>; %unit in kW
  i=i+1;
end
figure (1)
plot(mdot',p_ratio','r')
xlabel('Mass flow [kg/s]')
ylabel('Pressure Ratio \pi')
%xlim([2 4.5])
grid on
figure (2)
plot(mdot',Power1','r')
xlabel('Mass flow [kg/s]')
ylabel('Power [kW]')
%xlim([3 4])
grid on
figure (3)
plot(mdot',eta','r')
xlabel('Mass flow [kg/s]')
ylabel('\eta')
%xlim([2 4.5])
grid on
figure (4)
plot(mdot',phi','r')
xlabel('Mass flow [kg/s]')
ylabel('\phi')
%xlim([3 4])
grid on
figure (5)
plot(mdot',ome','r')
xlabel('Mass flow [kg/s]')
ylabel('Rotation speed \omega')
%xlim([3 4])
grid on
figure (6)
plot(mdot',bet2_deg','r')
xlabel('Mass flow [kg/s]')
ylabel('\beta_2')
%xlim([3 4])
grid on
figure (7)
plot(mdot',alp3_deg','r')
xlabel('Mass flow [kg/s]')
ylabel('\alpha_3')
%xlim([3 4])
grid on
figure (8)
plot(mdot', V2', 'r*'); hold on
plot(mdot',W2','g'); hold off
xlabel('Mass flow [kg/s]')
ylabel('V_2,W_2(m/s)')
legend('V_2','W_2')
%xlim([3 4])
```

```
grid on
```

figure (9)
plot(mdot',V3','r*'); hold on
plot(mdot',W3','g'); hold off
xlabel('Mass flow [kg/s]')
ylabel('V_3,W_3(m/s)')
legend('V_3','W_3')
%xlim([3 4])
grid on