Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	30-10-2023
Team ID	PNT2022TMIDxxxxxx
Project Name	Malware detection and classification
Maximum Marks	20 Marks

Team Members:

Naladala Navya

Sanisetty Hema Sagar

Kurra Naveen Abhiram

Vishnubhatla V L Sruta Keerthi

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Project setup & Infrastructure	USN-1	Set up the development environment with the required tools and frameworks to start the garbage classification project.	1	High	Abhiram
Sprint-1	development environment	USN-2	Gather a diverse dataset of images containing different types of garbage (plastic, paper, glass, organic) for training the deep learning model.	2	High	Hema Sagar
Sprint-2	Data collection	USN-3	Preprocess the collected dataset by resizing images, normalizing pixel values, and splitting it into training and validation sets.	2	High	Sruta Keerthi

Sprint-2	data preprocessing	USN-4	Explore and evaluate different deep learning architectures (e.g., CNNs) to select the most suitable model for garbage classification.	3	High	Navya
Sprint-3	model development	USN-5	train the selected deep learning model using the preprocessed dataset and monitor its performance on the validation set.		High	Hema Sagar
Sprint-3	Training	USN-6	implement data augmentation techniques (e.g., rotation, g) flippin to improve the model's robustness and accuracy.	6	medium	Navya
Sprint-4	model deployment & Integration	USN-7	deploy the trained deep learning model as an API or web service to make it accessible for garbage classification. integrate the ad model's API into a user-friendly web interface for users to upl images and receive garbage classification results.	1	medium	Abhiram
Sprint-5	Testing & quality assurance	USN-8	conduct thorough testing of the model and web interface to identify and report any issues or bugs. fine-tune the model hyperparameters and optimize its performance based on user feedback and testing results.	1	medium	Sruta Keerthi

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	2 Days	4 Oct 2023	6 Oct 2023	20	3 Sep 2023
Sprint-2	5	4 Days	6 Oct 2023	10 Oct 2023		
Sprint-3	10	6 Days	10 Oct 2023	16 Oct 2023		
Sprint-4	2	8 Days	16 Oct 2023	24 Oct 2023		
Sprint-5	1	6 Days	24 Oct 2023	30 Oct 2023		

Velocity:

Imagine we have a 29-days sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint \ duration}{velocity} = \frac{20}{10} = 2$$

$$AV = 26/20 = 1.35$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Burndown Chart:

Board section.

We have completed sprint 1 and 2. So we can see the remaining tasks on board.

Backlog section

Backlog

...

Timeline

	SEP	ОСТ
KAN-11 Having user friendly interface		
KAN-12 Gathering datasets		
KAN-13 data analysis		
✓ ► KAN-14 data preprocessing		
✓ KAN-16 feauture extraction TO DO		
KAN-15 model training		
KAN-17 detection phase		
KAN-18 model evalution		