A bird's-eye view on the habitability of exoplanets via statistical learning techniques

Project for the exam: Machine learning, statistical learning, deep learning and artificial intelligence - Unsupervised Learning

Marzio De Corato

October 27, 2020

Overview

- ► **Final goal**: Survey the performances of different statistical learning algorithm in the prediction of exoplanets habitability
- Dataset: Planetary Habitability Laboratory @ UPR Arecibo [1]
- ► Algorithms: Decision Tree, Random Forest, Support Vector Classifier, Logistic Regression, Linear and Quadratic Classifier

Theoretical background - Exoplanets habitability

- Habitability: Rocky planets where water is present in liquid phase
- Liquid phase: At first order, if water is present, the liquid phase is controlled by the surface temperature
- ► Atmosphere: The atmosphere (CO₂) influences the surface temperature trough the greenhouse effect
- ► H₂ and CH₄: Other gases such as H₂ and CH₄ can produce the greenhouse effect, thus the habitable zone can be extended

Image taken from [4]

Theoretical background - Star features

- Main features: For this work the main features of star are the stellar luminosity (S_−L), its temperature (S_−T) and spectral type (S_−S_−T)
- ► H-R diagram: with these features the Hertzsprung-Russell diagram classify the stars (the temperature and spectral type of a star are two faces of the same medal)

Image taken from [2]

Theoretical background - Planet features

Mr = Earth Mass, Rr = Earth Radius

CREDIT: PHL @ UPR Arecibo (phl.upr.edu) Jul 2018

Image taken from [3]

Theoretical background - Planet features

- ▶ Distance: in this work the mean planet distance from the host star (P_D), the periastron (P_PN) and the apastron (P_A) as well the termal effective distance (P_D_E) from the host star were considered. These quantities constrain the planet orbital period (P_P) via the 3th Kepler law (a corollary of Newton's law of universal gravitation)
- ► Mass and Radius: the (estimated) planet mass (P_M) and its radius (P_R) were considered (these are also useful to distinguish the super-earth planets)
- ▶ Temperature: the planet equilibrium temperature (P_T_E) defined according to the expression $T_{eq} = T_{star} \sqrt{R/2a} \left(1-A\right)^{0.25}$) where R is the star radius (S_R), a the planet mean distance (P_D) and A the albedo here considered as 0.3 was considered as well the planet mean stellar flux P_F
- ► **Habitability**: The planet habitability was classified with a boolean variable using the values reported in the dataset [1]

Data inspection - densities

Data inspection - FAMD

0.0 Dim1 (20.4%)

References I

- [1] http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database.
- [2] https://www.slideserve.com/ruth-york/chapter-15surveying-the-stars-powerpoint-ppt-presentation.
- [3] http://phl.upr.edu/projects/habitable-exoplanets-catalog/media/pte.
- [4] Sara Seager. "Exoplanet habitability". In: Science 340.6132 (2013), pp. 577–581.