# Quantum Computing

### Kevin Chen

# December 25, 2021

# Contents

| 1 | Qua | antum mechanics              |
|---|-----|------------------------------|
| 2 |     | cuits                        |
|   | 2.1 | Dense coding                 |
|   | 2.2 | Teleportation                |
|   | 2.3 | No-cloning                   |
| 3 |     | orithms                      |
|   | 3.1 | Deutsch's algorithm          |
|   | 3.2 | Deutsch-Jozsa algorithm      |
|   | 3.3 | Bernstein-Vazirani algorithm |
|   | 3.4 | Simon's algorithm            |
|   |     | Grover's algorithm           |
|   | 3.6 | Quantum Fourier transform    |
|   | 3.7 | Phase estimation             |
|   | 3.8 | Shor's algorithm             |

### Foreword

The purpose of these notes is mainly for personal reference, so the overall presentation will be very terse. I hope this may also serve as a useful resource for others. The primary reference is John Watrous's lecture notes, which can be found at <a href="https://cs.uwaterloo.ca/">https://cs.uwaterloo.ca/</a> watrous/QC-notes/. This is supplemented in some places by John Preskill's lecture notes, which can be found at <a href="https://theory.caltech.edu/">https://theory.caltech.edu/</a> preskill/ph229/.

### 1 Quantum mechanics

We first review some basic facts about quantum mechanics that will be important in discussing quantum computing. Knowledge of quantum mechanics and notation is assumed.

1. A qubit is a state (i.e. a vector) of a two-dimensional complex vector space. A general qubit  $|\psi\rangle$  can be written as

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle , \qquad (1.1)$$

where  $|0\rangle$ ,  $|1\rangle$  are the basis vectors and  $\alpha$ ,  $\beta$  are complex numbers. Note that the qubit is normalized:

$$|\alpha|^2 + |\beta|^2 = 1. (1.2)$$

2. A system of two qubits is represented by taking the tensor product of the qubits,

$$(\alpha |0\rangle + \beta |1\rangle) \otimes (\gamma |0\rangle + \delta |1\rangle) = \begin{cases} \alpha \gamma |00\rangle \\ +\alpha \delta |01\rangle \\ +\beta \gamma |10\rangle \\ +\beta \delta |11\rangle \end{cases}$$
(1.3)

This implies that a system of n qubits forms a state of a  $2^n$ -dimensional complex vector space. In what follows, we will often omit  $\otimes$  and use the shorthand  $|0\rangle \otimes |1\rangle \equiv |0\rangle |1\rangle \equiv |01\rangle$ .

3. The evolution of a system of qubits is represented by the application of a unitary operator,

$$|\Psi\rangle \to U |\Psi\rangle$$
 , (1.4)

where U is a complex-valued matrix that satisfies

$$UU^{\dagger} = U^{\dagger}U = I \ . \tag{1.5}$$

4. The measurement of a qubit yields one of two outcomes: 0 or 1. For the qubit described in (1.1), a measurement of 0 occurs with probability  $|\alpha|^2$  and a measurement of 1 occurs with probability  $|\beta|^2$ . After the measurement, the qubit is altered and takes on the state corresponding to the measured outcome, either  $|0\rangle$  or  $|1\rangle$ .

Intuitively, a quantum computation is carried out by (i) preparing some input qubits, (ii) applying unitary operators to those qubits, and then (iii) measuring the result at the end.

### 2 Circuits

In this section, we establish some common language to describe quantum algorithms, as well as explore some important consequences of quantum mechanics, such as quantum teleportation and no-cloning.

Let us define some useful unitary matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \tag{2.1}$$

Note that X is the NOT operator, i.e.  $|0\rangle$  is mapped to  $|1\rangle$ , and vice versa. H is called the **Hadamard** matrix. All four matrices square to the identity matrix, I.

The circuit below shows the application of a unitary operator U on the second qubit of a two-qubit system. This is equivalent to the two-qubit unitary operator  $I \otimes U$ , which can be represented as a matrix

on the ordered basis  $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\},\$ 

$$I \otimes U = \begin{pmatrix} u_{00} & u_{01} & 0 & 0 \\ u_{10} & u_{11} & 0 & 0 \\ 0 & 0 & u_{00} & u_{01} \\ 0 & 0 & u_{10} & u_{11} \end{pmatrix} . \tag{2.2}$$

$$|\psi_1\rangle$$
 (2.3)  $|\psi_2\rangle$   $\overline{U}$ 

A qubit can control the application of a unitary operator on another qubit. The circuit below shows the application of U on the second qubit only when the first qubit is  $|1\rangle$ . This two-qubit unitary operator is represented by the matrix,

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & u_{00} & u_{01} \\
0 & 0 & u_{10} & u_{11}
\end{pmatrix}.$$
(2.4)

$$|\psi_1\rangle \longrightarrow \qquad (2.5)$$

$$|\psi_2\rangle \longrightarrow U \longrightarrow \qquad (2.5)$$

The **Bell states** are four mutually-orthogonal maximally entangled states,

$$|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle) ,$$
  
$$|\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle) .$$
 (2.6)

These states can be obtained from the basis states  $|00\rangle$ ,  $|01\rangle$ ,  $|10\rangle$ ,  $|11\rangle$  using the circuit,

$$|\psi_1\rangle$$
  $H$   $\psi_2\rangle$   $X$   $(2.7)$ 

$$|00\rangle \to |\Phi^{+}\rangle$$
,  $|01\rangle \to |\Psi^{+}\rangle$ ,  $|10\rangle \to |\Phi^{-}\rangle$ ,  $|11\rangle \to |\Psi^{-}\rangle$ . (2.8)

We will now describe three phenomena related to entanglement.

#### 2.1 Dense coding

Holveo's theorem states that the amount of classical information that can be retrieved from n qubits is n bits. However, using entanglement, one can send two bits of classical information by sending only *one* qubit.

- Alice wants to send two bits of information to Bob.
- The state  $|\Phi^+\rangle$  is created from two qubits  $|A\rangle$  and  $|B\rangle$ .  $|A\rangle$  is sent to Alice and  $|B\rangle$  is sent to Bob.
- Alice prepares one of the four Bell states by applying single-qubit operators on  $|A\rangle$ :

$$Z: \frac{|\Phi^{+}\rangle \leftrightarrow |\Phi^{-}\rangle}{|\Psi^{+}\rangle \leftrightarrow |\Psi^{-}\rangle}, \qquad X: \frac{|\Phi^{+}\rangle \leftrightarrow |\Psi^{+}\rangle}{|\Phi^{-}\rangle \leftrightarrow -|\Psi^{-}\rangle}. \tag{2.9}$$

Then Alice sends qubit  $|A\rangle$  to Bob.

<sup>&</sup>lt;sup>1</sup>A two-qubit state  $|\psi_{AB}\rangle$  is **maximally entangled** when the partial trace of  $|\psi_{AB}\rangle\langle\psi_{AB}|$  over any one of the qubits is proportional to the identity matrix. Intuitively, a measurement on only one qubit acquires no information.

• Bob applies the circuit,

$$|A\rangle \longrightarrow H \longrightarrow (2.10)$$

$$|B\rangle \longrightarrow X \longrightarrow (2.10)$$

to undo the circuit in (2.7) and map the four Bell states back to the basis states  $|00\rangle$ ,  $|01\rangle$ ,  $|10\rangle$ ,  $|11\rangle$ . Bob can then perform measurements to determine which state he has and read off Alice's message.

This entire operation can be described by a circuit. Suppose the two bits Alice wants to send are ab. Double lines in the circuit represent classical bits, and the meter represents a measurement.



### 2.2 Teleportation

Using entanglement, a qubit can be teleported by sending two bits of classical information.

- Alice has a qubit  $|\psi\rangle$  that she wants to give to Bob.
- The state  $|\Phi^+\rangle$  is created from two qubits  $|A\rangle$  and  $|B\rangle$ .  $|A\rangle$  is sent to Alice and  $|B\rangle$  is sent to Bob.
- If we let  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , the state describing all three qubits is

$$(\alpha |0\rangle + \beta |1\rangle) \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (\alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle) . \tag{2.12}$$

Alice applies the circuit below on the two qubits  $|\psi\rangle$ ,  $|A\rangle$  in her possession:

$$|\psi\rangle \longrightarrow H \longrightarrow (2.13)$$

$$|A\rangle \longrightarrow X \longrightarrow (2.13)$$

The three-qubit state becomes

$$\frac{1}{2}\Big[\left|00\right\rangle \left(\alpha\left|0\right\rangle +\beta\left|1\right\rangle \right)+\left|01\right\rangle \left(\beta\left|0\right\rangle +\alpha\left|1\right\rangle \right)+\left|10\right\rangle \left(\alpha\left|0\right\rangle -\beta\left|1\right\rangle \right)+\left|11\right\rangle \left(-\beta\left|0\right\rangle +\alpha\left|1\right\rangle \right)\Big]\;.\tag{2.14}$$

Alice makes a measurement on her two qubits to obtain two classical bits ab, which she sends to Bob. This measurement causes qubit  $|B\rangle$  to be one of four possibilities, depending on ab. The possibilities are tabulated below.

$$\begin{array}{c|c} ab & |B\rangle \\ \hline 00 & \alpha |0\rangle + \beta |1\rangle \\ 01 & \beta |0\rangle + \alpha |1\rangle = X(\alpha |0\rangle + \beta |1\rangle) \\ 10 & \alpha |0\rangle - \beta |1\rangle = Z(\alpha |0\rangle + \beta |1\rangle) \\ 11 & -\beta |0\rangle + \alpha |1\rangle = XZ(\alpha |0\rangle + \beta |1\rangle) \end{array}$$

• Given the bits ab, Bob knows exactly what state his qubit  $|B\rangle$  is in. He can apply single-qubit operators on  $|B\rangle$  to obtain the original state  $\alpha |0\rangle + \beta |1\rangle$  that Alice had.

The circuit below describes this entire operation.



### 2.3 No-cloning

Note that in teleportation, the original  $|\psi\rangle$  qubit held by Alice is destroyed. It is not possible to clone a qubit. More precisely, there is no unitary operator that maps  $|\psi\rangle\otimes|0\rangle$  to  $|\psi\rangle\otimes|\psi\rangle$  for all qubits  $|\psi\rangle$ .

To prove this, let  $|\psi\rangle$ ,  $|\phi\rangle$  be two different qubits where  $\langle\psi|\phi\rangle\neq0$ .

$$\langle \psi | \phi \rangle = (\langle \psi | \otimes \langle 0 |) (| \phi \rangle \otimes | 0 \rangle)$$

$$= (\langle \psi | \otimes \langle 0 |) U^{\dagger} U (| \phi \rangle \otimes | 0 \rangle)$$

$$= (\langle \psi | \otimes \langle \psi |) (| \phi \rangle \otimes | \phi \rangle)$$

$$= \langle \psi | \phi \rangle^{2} . \tag{2.16}$$

This implies that  $\langle \psi | \phi \rangle = 1$ , i.e. they are the same qubit, which is a contradiction.

### 3 Algorithms

We will now describe some quantum algorithms that scale better than their classical counterparts.

### 3.1 Deutsch's algorithm

Given a function  $f: \{0,1\} \to \{0,1\}$  on one bit, determine whether it is **constant** (i.e. same output for all inputs) or **balanced** (i.e. the number of inputs for which f equals 0 and 1 are equal).

Classically, two queries of f are needed to solve this problem. Quantum mechanically, if we have access to the two-qubit operator,<sup>2</sup>

$$B_f |a\rangle |b\rangle = |a\rangle |b \oplus f(a)\rangle ,$$
 (3.1)

where  $\oplus$  is the XOR operator, then this problem can be solved in one query using the circuit,

Let us track the two-qubit state through this circuit. The initial state is  $|0\rangle |1\rangle$ . The state after the initial Hadamard gates is

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{1}{2}|0\rangle(|0\rangle - |1\rangle) + \frac{1}{2}|1\rangle(|0\rangle - |1\rangle). \tag{3.3}$$

 $B_f$  maps this state to

$$\frac{1}{2}|0\rangle (|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle) + \frac{1}{2}|1\rangle (|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle) 
= \frac{1}{2}(-1)^{f(0)}|0\rangle (|0\rangle - |1\rangle) + \frac{1}{2}(-1)^{f(1)}|1\rangle (|0\rangle - |1\rangle) 
= \frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) .$$
(3.4)

Note that the second qubit is independent of f and always equals  $H|1\rangle$ . This qubit is discarded in the computation. Applying a final Hadamard gate to the first qubit gives us the state  $(-1)^{f(0)}|f(0) \oplus f(1)\rangle$ . A measurement of this state determines whether  $f(0) \oplus f(1) = 0$  (constant) or = 1 (balanced).

 $<sup>{}^2</sup>B_f$  is unitary because it is a permutation operator; the states  $|a\rangle|b\rangle$  and  $|a\rangle|b\oplus f(a)\rangle$  are mapped to each other under  $B_f$ . This will be so for any function f.

### 3.2 Deutsch-Jozsa algorithm

Given a function  $f: \{0,1\}^n \to \{0,1\}$  on n bits, determine whether it is constant or balanced. f is guaranteed to be one of these two cases.

This is a generalization of Deutsch's problem. Classically, up to  $2^{n-1} + 1$  queries are needed to solve this problem in the worst-case scenario. Probabilistically, with k queries we can solve this problem with a probability of error  $\leq 2^{1-k}$  by guessing "constant" when all k outputs are equal. Quantum mechanically, if we have access to the (n+1)-qubit operator  $B_f$ , which is defined in the same way as in (3.1) where a represents an n-bit vector, then this problem can be solved in one query using the circuit,

Let us track the state through this circuit. The state after the initial Hadamard gates is

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle \, \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \ . \tag{3.6}$$

 $B_f$  maps this to

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) . \tag{3.7}$$

Discarding the final qubit and operating the final Hadamard gates, we have

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} H^{\otimes n} |x\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \left( \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle \right) 
= \sum_{y \in \{0,1\}^n} \left( \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot y} \right) |y\rangle ,$$
(3.8)

where  $x \cdot y$  is interpreted as the dot product of two *n*-bit vectors x and y, taken modulo 2. Note that the amplitude for the  $|y\rangle = |0^n\rangle$  state simplifies when f is constant or balanced:

$$\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} = \begin{cases} (-1)^{f(0)} & \text{if } f \text{ is constant,} \\ 0 & \text{if } f \text{ is balanced.} \end{cases}$$
(3.9)

Therefore a measurement of the n output qubits produces an n-bit vector, which are all 0 only when f is constant. Otherwise, f is balanced.

### 3.3 Bernstein-Vazirani algorithm

Given a function  $f: \{0,1\}^n \to \{0,1\}$  defined by

$$f(x) = x \cdot s$$
,

where s is a secret n-bit vector, determine s.

This is a variation on the Deutsch-Jozsa problem, since when  $s \neq 0$  iff the function f is balanced. Classically, n queries are needed to solve this problem. Quantum mechanically, this problem can be solved in one query using the same circuit as for the Deutsch-Jozsa algorithm. In the last step, the final state is

$$\sum_{y \in \{0,1\}^n} \left( \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot (s+y)} \right) |y\rangle \tag{3.10}$$

The amplitude is non-zero only for  $|y\rangle = |s\rangle$ . Therefore, a measurement of the *n* output qubits produces the *n*-bit vector *s*.

This is the first problem that we have discussed so far for which the quantum algorithm, which requires  $\mathcal{O}(1)$  queries, is faster than the probabilistic/classical algorithm, which requires  $\mathcal{O}(n)$  queries.

### 3.4 Simon's algorithm

Given a function  $f: \{0,1\}^n \to \{0,1\}^n$  that has a **period** s, i.e.

$$y = x \oplus s \iff f(y) = f(x)$$
,

determine s. Here x, y, and s are all n-bit vectors and the operation  $\oplus$  is taken element-wise.

Classically, this problem requires exponentially many queries to solve, even for a probabilistic solution—intuitively, the reason why is that the chance that two random inputs create the same output is  $2^{-n}$ . Quantum mechanically, this problem can be solved in  $\mathcal{O}(n)$  queries of the 2n-qubit operator  $B_f$  given in (3.1), where a and b both represent n-bit vectors. Consider the following circuit:

Let us track the state through this circuit. The state after the initial Hadamard gates is

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle |0^n\rangle . \tag{3.12}$$

 $B_f$  maps this to

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle . \tag{3.13}$$

The state after the final Hadamard gates is

$$\frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} H^{\otimes n} |x\rangle |f(x)\rangle = \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} \left( \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle \right) |f(x)\rangle 
= \sum_{y \in \{0,1\}^n} |y\rangle \left( \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle \right).$$
(3.14)

If s = 0, then f is a bijective function and the term inside the parentheses is a sum over  $2^n$  distinct states with coefficients that are either  $\pm 2^{-n}$ . Therefore, the measurement of y gives a random n-bit vector with uniform probability.

If  $s \neq 0$ , then f is a two-to-one function. Let  $X \subset \{0,1\}^n$  be a maximal set on which f is bijective. In other words, for each pair x and  $x \oplus s$  that map to the same output f(x), X contains exactly one element of the pair. Then,

$$\frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} (-1)^{x \cdot y} |f(x)\rangle = \frac{1}{2^{n}} \sum_{x \in X} \left[ (-1)^{x \cdot y} |f(x)\rangle + (-1)^{(x+s) \cdot y} |f(x+s)\rangle \right] 
= \frac{1}{2^{n-1}} \sum_{x \in X} (-1)^{x \cdot y} \left[ \frac{1 + (-1)^{s \cdot y}}{2} \right] |f(x)\rangle$$
(3.15)

For y that satisfy  $s \cdot y = 0$ , this is a sum over  $2^{n-1}$  distinct states with coefficients that are either  $\pm 2^{-(n-1)}$ . Otherwise, the coefficient is zero when  $s \cdot y \neq 0$ . Therefore, the measurement of y gives a random n-bit vector that satisfies  $s \cdot y = 0$  with uniform probability.

The strategy is to run this circuit until we collect n-1 linearly independent measurements  $y_1, \ldots, y_{n-1}$ . This will be very quick, since if we already have k linearly independent vectors, the probability of obtaining a new linearly independent vector (if one exists) is  $1-2^{k-n} \geq 50\%$ . The solution to the linear system of equations  $s \cdot y_i = 0$  for  $i = 1, \ldots, n-1$  gives a unique non-zero vector  $\hat{s}$ . Next, we run the circuit a couple more times to make sure there is not an nth linearly independent vector  $y_n$ . If we do find  $y_n$ , then we conclude s = 0. Otherwise, we conclude  $s = \hat{s}$ . Since the probability of finding  $y_n$ , if it exists, is 50%, with k more runs the probability of an incorrect conclusion is  $2^{-k}$ . Thus we can find the period in  $\mathcal{O}(n)$  queries with an arbitrarily low probability of error.

### 3.5 Grover's algorithm

Given a function  $f:\{0,1\}^n \to \{0,1\}$ , find an x such that f(x)=1, if such a x exists.

Classically,  $2^n$  queries are needed to solve this problem in the worst-case scenario. Probabilistically, we still need  $\mathcal{O}(2^n)$  queries for any finite probability of success. Quantum mechanically, this problem can be solved in  $\mathcal{O}(2^{n/2})$  queries of the (n+1)-qubit operator  $B_f$ , which is defined in the same way as in (3.1) where a represents an n-bit vector. Using  $B_f$ , we can implement the n-qubit operator,

$$Z_f: |x\rangle \mapsto (-1)^{f(x)} |x\rangle ,$$
 (3.16)

using a circuit similar to the one used for the Deutch-Josza algorithm:

$$|x\rangle \qquad \qquad (-1)^{f(x)}|x\rangle$$

$$|1\rangle \qquad H \qquad |1\rangle \qquad (3.17)$$

Note that  $Z_f$  can be viewed as a reflection that flips any "good vector"  $|a\rangle \mapsto -|a\rangle$ , where f(a) = 1, and leaves "bad vectors"  $|b\rangle$  unchanged, where f(b) = 0. Let A be the set of "good vectors" and B be the set of "bad vectors". We can alternatively write

$$Z_f = I - \sum_{a \in A} 2|a\rangle \langle a| = \sum_{b \in B} 2|b\rangle \langle b| - I.$$
(3.18)

Next, we define another n-qubit operator,

$$Z_h = 2|h\rangle\langle h| - I , \qquad |h\rangle \equiv \frac{1}{2^{n/2}} \sum_{x \in \{0,1\}^n} |x\rangle , \qquad (3.19)$$

which represents a reflection preserving the component parallel to  $|h\rangle$ . This operator can be efficiently implemented by  $Z_h = H^{\otimes n} Z_0 H^{\otimes n}$  where  $Z_0 = 2 |0\rangle^n \langle 0|^n - I$  is negative the *n*-qubit operator that sends  $|0^n\rangle \mapsto -|0^n\rangle$  but leaves all other vectors unchanged.

To summarize,  $Z_f$  is a reflection that preserves the component parallel to the hyperplane spanned by B, and  $Z_h$  is a reflection that preserves the component parallel to  $|h\rangle$ . Let us define the normalized vectors,

$$|A\rangle = \frac{1}{\sqrt{|A|}} \sum_{a \in A} |a\rangle , \qquad |B\rangle = \frac{1}{\sqrt{|B|}} \sum_{b \in B} |b\rangle .$$
 (3.20)

 $|h\rangle$  is a (real) linear combination of  $|A\rangle$  and  $|B\rangle$ . On the (real) two-dimensional subspace spanned by  $\{|A\rangle, |B\rangle\}$ , the composition of two reflections  $G = Z_h Z_f$  is a rotation through an angle  $2\theta$ , where  $\theta$  is the acute angle between  $|h\rangle$  and  $|B\rangle$ :

$$\cos \theta = \langle h|B\rangle = \frac{\sqrt{|B|}}{2^{n/2}} \implies \sin \theta = \frac{\sqrt{|A|}}{2^{n/2}}.$$
 (3.21)

This is sketched below. By repeatedly applying G on the vector  $|\psi\rangle = |h\rangle$ , the resulting vector will eventually be almost parallel to  $|A\rangle$ . A measurement at that time will have a high probability of yielding an element of A, that is, an n-bit vector that solves the problem.



To be concrete, let us consider the case where |A| = 1. After k iterations of G on  $|h\rangle = \cos\theta |A\rangle + \sin\theta |B\rangle$ , the state is

$$G^{k} |h\rangle = \cos[(2k+1)\theta] |A\rangle + \sin[(2k+1)\theta] |B\rangle . \tag{3.22}$$

Thus, we should pick  $k \approx \pi/4\theta - 1/2$  to maximize the amplitude of  $|A\rangle$ . We can always pick a k such that the amplitude of  $|B\rangle$  is less than  $\sin \theta$ . Taking a measurement, the probability of erroneously obtaining an element of B is  $\leq 2^{-n}$ . To summarize Grover's algorithm,

- Start with the *n*-qubit state  $|h\rangle = H^{\otimes n} |0^n\rangle$ .
- Apply the operator  $G = Z_h Z_f$  a total of  $k \approx 2^{n/2} \pi/4 1/2$  times.
- Measure the state to obtain an *n*-bit vector x. With high probability, f(x) = 1.
- If f(x) = 0, repeat the steps above as needed. If no x such that f(x) = 1 is found after a couple iterations, then we can conclude that f(x) = 0 for all inputs x.

#### 3.6 Quantum Fourier transform

In preparation of discussing Shor's algorithm, we will introduce the quantum Fourier transform (QFT).

Given a function f on  $2^n$  values  $x = 0, 1, \dots, 2^n - 1$ , compute the discrete Fourier transform,

$$\mathcal{F}(y) = \sum_{x=0}^{2^{n}-1} e^{2\pi i x y/2^{n}} f(x) ,$$

for  $y = 0, 1, \dots, 2^n - 1$ .

Classically, the  $\mathcal{F}(y)$  coefficients can be computed in  $\mathcal{O}(n2^n)$  time using the fast Fourier transform. Quantum mechanically, we can do this in  $\mathcal{O}(n^2)$  time, in the sense that the n-qubit operator,

QFT 
$$|x\rangle = \frac{1}{2^{n/2}} \sum_{y=0}^{2^{n}-1} e^{2\pi i x y/2^{n}} |y\rangle$$
, (3.23)

can be implemented with  $\mathcal{O}(n^2)$  gates. Note that here, x and y are integers where  $0 \le x, y < 2^n$ , not n-bit vectors. This notation will be used for the remainder of this section, unless stated otherwise. We can also express the QFT as an  $2^n \times 2^n$  matrix,

$$QFT = \frac{1}{2^{n/2}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{2^{n}-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(2^{n}-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{2^{n}-1} & \omega^{2(2^{n}-1)} & \dots & \omega^{(2^{n}-1)^{2}} \end{pmatrix},$$
(3.24)

where  $\omega \equiv e^{2\pi i/2^n}$ . In retrospect, we can observe that all the algorithms we have discussed so far, except Grover's, actually rely on the QFT since the Hadamard gate can be viewed as the QFT on a single qubit. Although Grover's algorithm technically uses Hadamard gates, the general technique is better classified as "amplitude amplification".

Let us now implement the QFT operator. We first decompose the integers  $0 \le x, y < 2^n$  into their constituent bits,

$$x = 2^{n-1}x_{n-1} + \dots + 2x_1 + x_0 ,$$
  

$$y = 2^{n-1}y_{n-1} + \dots + 2y_1 + y_0 .$$
(3.25)  
(3.26)

Note that in computing  $e^{2\pi ixy/2^n}$ , when taking the product xy we can throw away any multiples of  $2^n$ . Thus,

$$\frac{xy}{2^n} \equiv y_{n-1}(x_0) + y_{n-2}(x_1x_0) + \dots + y_0(x_{n-1}\dots x_1x_0) \pmod{1}, \qquad (3.27)$$

where the notation  $(.abc...) \equiv 2^{-1}a + 2^{-2}b + 2^{-3}c + \cdots$  represents the decimal expansion in base 2. With this observation, the QFT can be expanded as a tensor product of n qubits,

$$\sum_{n=0}^{2^{n}-1} e^{2\pi i x y/2^{n}} |y\rangle = \left( |0\rangle + e^{2\pi i (.x_{0})} |1\rangle \right) \left( |0\rangle + e^{2\pi i (.x_{1}x_{0})} |1\rangle \right) \cdots \left( |0\rangle + e^{2\pi i (.x_{n-1}...x_{1}x_{0})} |1\rangle \right) . \tag{3.28}$$

If we define the single-qubit operator,

$$R_d = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/2^d} \end{pmatrix} \,, \tag{3.29}$$

then the QFT can be constructed out of n(n-1)/2 controlled applications of these operators and n Hadamard gates; shown below is the n=3 case.

$$|x_{0}\rangle \longrightarrow H \longrightarrow R_{1}$$

$$|x_{2}\rangle \longrightarrow H \longrightarrow R_{2}$$

$$(3.30)$$

#### 3.7 Phase estimation

This algorithm is used as a subroutine for many other algorithms, including Shor's algorithm, and relies on the QFT. It solves the following problem: given an n-qubit unitary operator U and an eigenvector  $U |\Psi\rangle = e^{2\pi i\theta} |\Psi\rangle$ , estimate  $\theta \in [0,1)$ . We will show that it is possible to evaluate  $\theta$  to m bits of precision, where m can be arbitrarily large. However, the algorithm requires the implementation of an (m+n)-qubit operator,

$$\Lambda_m(U): |k\rangle \otimes |x\rangle \mapsto |k\rangle \otimes U^k |x\rangle , \qquad (3.31)$$

where  $k = 0, 1, ..., 2^m - 1$ . This can be implemented for general U with  $\mathcal{O}(2^m)$  controlled applications of U; shown below is the m = 3 case.

$$|k_{2}\rangle \longrightarrow |k_{2}\rangle$$

$$|k_{1}\rangle \longrightarrow |k_{1}\rangle$$

$$|k_{0}\rangle \longrightarrow |k_{0}\rangle$$

$$|x\rangle \longrightarrow U \longrightarrow U^{2} \longrightarrow U^{4} \longrightarrow U^{k}|x\rangle$$

$$(3.32)$$

More efficient implementations for  $\Lambda_m(U)$  may exist for certain operators U.

Then, consider the following circuit:

$$|0^{m}\rangle$$
  $H^{\otimes m}$   $\Lambda_{m}(U)$  QFT<sup>†</sup> (3.33)

Let us track the state through this circuit. The state after the initial Hadamard gates is

$$\frac{1}{2^{m/2}} \sum_{k=0}^{2^{m}-1} |k\rangle |\Psi\rangle . \tag{3.34}$$

 $\Lambda_m(U)$  maps this to

$$\frac{1}{2^{m/2}} \sum_{k=0}^{2^{m}-1} |k\rangle U^{k} |\Psi\rangle = \frac{1}{2^{m/2}} \sum_{k=0}^{2^{m}-1} e^{2\pi i k\theta} |k\rangle |\Psi\rangle . \tag{3.35}$$

We disregard the  $|\Psi\rangle$  part of the state. Applying the inverse of QFT, we have

$$\frac{1}{2^m} \sum_{j=0}^{2^m - 1} \sum_{k=0}^{2^m - 1} e^{2\pi i k (\theta - j/2^m)} |j\rangle . \tag{3.36}$$

The measurement of j occurs with probability,

$$p_{j} = \frac{1}{2^{2m}} \left| \sum_{k=0}^{2^{m-1}} e^{2\pi i k (\theta - j/2^{m})} \right|^{2}$$

$$= \frac{1}{2^{2m}} \left| \frac{e^{2\pi i 2^{m} (\theta - j/2^{m})} - 1}{e^{2\pi i (\theta - j/2^{m})} - 1} \right|^{2}$$

$$= \frac{\sin^{2}(2^{m} \delta)}{2^{2m} \sin^{2} \delta}, \qquad (3.37)$$

where we have defined  $\delta \equiv \pi(\theta - j/2^m)$ . This probability is maximized for the value of j closest to  $2^m\theta$ . We can derive a lower bound for this probability:

$$p_j \stackrel{j=2^m \theta+1/2}{\longrightarrow} \frac{\sin^2(\pi/2)}{2^{2m} \sin^2(\pi/2^{m+1})} \ge \frac{1}{2^{2m} (\pi/2^{m+1})^2} = \frac{4}{\pi^2} \approx 0.405 \ .$$
 (3.38)

Therefore, with probability > 40.5%, this circuit returns the integer  $0 \le j < 2^m$  that is the closest *m*-bit integer to  $2^m\theta$ , so that  $\theta \approx j/2^m$ . This circuit can be run multiple times or with a slightly higher precision before rounding down to ensure that the correct approximation for  $\theta$  is obtained.

### 3.8 Shor's algorithm

Given an integer N, return its prime factorization,

$$N = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} .$$

The quantum part of Shor's algorithm solves a related problem:

(Order finding) Given coprime integers a and N, find the **order** of a modulo N, i.e. the smallest integer r such that

$$a^r \equiv 1 \pmod{N}$$
.

Let n be the number of bits needed to express the integer N, i.e.  $N \leq 2^n < 2N$ . We define an n-qubit operator that implements multiplication by a modulo N,

$$M_a: |x\rangle \mapsto |ax \pmod{N}\rangle$$
, (3.39)

for x = 0, 1, ..., N-1. The mapping of the values  $N \le x < 2^n$  can be arbitrary (while keeping  $M_a$  unitary), since they are not used here. The order finding algorithm makes use of the phase approximation algorithm on this  $M_a$  operator. We note in passing that  $\Lambda_m(M_a)$  can be efficiently implemented using  $\mathcal{O}(mn^2)$  gates. While we will not prove this fact, it is ultimately due to the fact that any classical circuit that uses k operations (such as AND, OR, and NOT) can be implemented by a quantum circuit that uses  $\mathcal{O}(k)$  gates. For instance, the multiplication of two n-bit integers x, y may be implemented by a quantum circuit that uses  $\mathcal{O}(n^2)$  gates, following the usual rules of multiplication. In order to maintain unitarity, we need n ancilliary qubits to carry the output, denoted in the circuit below by w:

$$|x\rangle \longrightarrow |x\rangle$$

$$|y\rangle \longrightarrow \times |y\rangle$$

$$|w\rangle \longrightarrow |w + xy\rangle$$

$$(3.40)$$

To implement the classical map  $x \mapsto a^k x \pmod{N}$ , we can write  $a^k$  for  $k = 2^{m-1} k_{m-1} + \cdots + 2k_1 + k_0$  as the controlled multiplication of repeated squares of a:

$$a^{k} = (a)^{k_0} (a^2)^{k_1} (a^4)^{k_2} \cdots (a^{2^{m-1}})^{k_{m-1}} . (3.41)$$

There are  $\mathcal{O}(m)$  factors in this product and each successive squaring requires the  $\mathcal{O}(n^2)$  multiplication circuit, so in total there are  $\mathcal{O}(mn^2)$  gates to calculate  $a^k$  for any  $0 \le k < 2^m$ . For additional reference, the gates needed to implement Shor's algorithm are explicitly constructed in https://arxiv.org/abs/quant-ph/9511018.

Now that we have  $\Lambda_m(M_a)$ , let us turn to the eigenvectors of  $M_a$ . We note that if r is the order of a modulo N, then we have r eigenvectors  $|\Psi_\ell\rangle$  for  $\ell=0,1,\ldots,r-1$  with eigenvalues  $\omega_r^\ell$  where  $\omega_r\equiv e^{2\pi i/r}$ :

$$|\Psi_{\ell}\rangle = \frac{1}{\sqrt{r}} \left( |1\rangle + \omega_r^{-\ell} |a\rangle + \omega_r^{-2\ell} |a^2\rangle + \dots + \omega_r^{\ell} |a^{r-1}\rangle \right). \tag{3.42}$$

It is not possible to construct these eigenvectors without knowing r beforehand. However, we can note that the easily prepared state  $|1\rangle$  can be written as a sum of all these eigenvectors,

$$|1\rangle = \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} |\Psi_{\ell}\rangle . \tag{3.43}$$

So if we pass the state  $|1\rangle$  through the phase estimation algorithm, the measurement  $j/2^m$  will approximate the phase  $\theta = \ell/r$  of an  $|\Psi_{\ell}\rangle$  eigenvector chosen uniformly at random. Moreover, if we pick a high enough precision m, then we can know the exact value of the fraction  $\ell/r$ , as a consequence of the following simple

fact: the difference between any two reduced fractions  $x_1/y_1$  and  $x_2/y_2$  is  $> 1/N^2$  if all integers  $x_1, x_2, y_1, y_2$  are  $\leq N$ . Letting m=2n is sufficient. Note that a single measurement may not determine r since  $\ell/r$  may not be a reduced fraction. But by making multiple measurements and obtaining many different reduced fractions, taking the least common multiple of all denominators will yield r with high probability.

In summary, the order finding algorithm is a quantum algorithm that can compute the order of a modulo N in  $\mathcal{O}(\log^3 N)$  time. This is exponentially faster than any classical computation—the brute force algorithm runs in  $\mathcal{O}(N)$  time. The remainder of the prime factorization algorithm is classical and runs in the same time complexity. The general strategy is to find a square-root b of 1 modulo N that is not  $\pm 1$ . The existence of such square-roots are guaranteed by the Chinese Remainder Theorem, as explained below. Since

$$b^2 - 1 = (b - 1)(b + 1) \equiv 0 \pmod{N}, \tag{3.44}$$

and N cannot divide b-1 or b+1, N must share non-trivial divisors with both factors. Then  $d = \gcd(b-1, N)$  will compute one of those non-trivial divisors.

We start by preprocessing N: (i) eliminate all factors of 2 from N, (ii) check that N is not a prime (using a quick method such as Miller-Rabin), and (iii) check that N is not a power of a prime. Shor's algorithm then finds a non-trivial divisor for N:

- Pick a random integer 1 < a < N.
- Compute  $d = \gcd(a, N)$  using the Euclidean algorithm. If  $d \neq 1$ , then we are very lucky and have found a non-trivial divisor.
- Run the order finding algorithm to find the order r of a modulo N.
- If r is even and  $a^{r/2} \not\equiv -1 \pmod{N}$ , then  $d = \gcd(a^{r/2} 1, N)$  is a non-trivial divisor.
- Repeat the above steps until a divisor is found.

In order for this algorithm to work, we have to show that each iteration has a high probability of finding a divisor. This requires a bit of number theory, but the conclusion is that each iteration of Shor's algorithm has a  $\geq 50\%$  chance of finding a non-trivial divisor. We note that after the preprocessing steps we can write  $N = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$  where  $p_i$  are odd primes and  $m \geq 2$ . By the Chinese Remainder Theorem, for any  $0 \leq a < N$  there exist unique integers  $a_i$  for  $i = 1, 2, \ldots, m$  such that

$$a \equiv a_i \pmod{p_i^{k_i}} , \qquad 0 \le a_i < p_i^{k_i} . \tag{3.45}$$

This implies that there are  $2^{m-1}$  unique square-roots of 1 modulo N apart from  $a = \pm 1$ , since any combination of  $a_i = \pm 1$  corresponds to an a that squares to 1. Note that all  $a_i = 1$  corresponds to 1, and all  $a_i = -1$  corresponds to a = -1.

If a is coprime to N, then all  $a_i$  have an order  $r_i$  modulo  $p_i^{k_i}$ . r is the least common multiple of these orders, i.e.  $r = \operatorname{lcm}(r_1, r_2, \dots, r_m)$ . Now if r is even and  $a^{r/2} \not\equiv -1 \pmod{N}$ , as required in Shor's algorithm, then  $b = a^{r/2}$  is the candidate square-root of 1 modulo N, and  $a^{r/2} \equiv \pm 1 \pmod{p_i^{k_i}}$  for  $i = 1, 2, \dots, m$ . Note that we cannot have all  $a^{r/2} \equiv 1 \pmod{p_i^{k_i}}$  else  $a^{r/2} \equiv 1 \pmod{N}$  which contradicts r being the order of a modulo N, and we cannot have all  $a^{r/2} \equiv -1 \pmod{p_i^{k_i}}$  else  $a^{r/2} \equiv -1 \pmod{N}$  which is not a square-root of 1 that we want.

Let c(n) be the number of times 2 can divide into n. We claim that statements "r is even and  $a^{r/2} \not\equiv -1 \pmod{N}$ " and " $c(r_i) \not\equiv c(r_j)$  for some i and j" are equivalent. For the forward direction, r even implies there exists an  $r_i$  even. Assuming for a contradiction that all  $c(r_i)$  are equal, this implies that all  $r_i$  are even. So  $a^{r_i/2} \equiv -1 \pmod{p_i^{k_i}}$  for all i, since  $r_i$  is the order and this is the only remaining square-root of 1 modulo  $p_i^{k_i}$ . But since  $r = r_i \cdot (\text{odd number})$ , this implies  $a^{r/2} \equiv -1 \pmod{p_i^{k_i}}$  and so  $a^{r/2} \equiv -1 \pmod{N}$  which is a contradiction. For the backward direction, WLOG suppose  $c(r_1) < c(r_2)$ . Then  $r = 2r_1 \cdot (\text{integer})$  and is even. Moreover,  $a^{r/2} \equiv (a^{r_1})^{(\text{integer})} \equiv 1 \pmod{p_1^{k_1}}$  which implies  $a^{r/2} \not\equiv -1 \pmod{N}$ .

<sup>&</sup>lt;sup>3</sup>Other sources cite a slightly faster time complexity of  $\mathcal{O}((\log N)^2(\log\log N)(\log\log\log N))$ , but I do not know how this is justified.

Thus, an iteration of Shor's algorithm fails if we pick an a whose  $a_i$  all have identical  $c(r_i)$ . How likely is this to happen? Since the multiplicative group of integers modulo  $p_i^{k_i}$  is cyclic, there exists a primitive element  $u_i$  that generates the group. The order of  $u_i$  is the size of the group, which we denote as  $\varphi_i = p_i^{k_i-1}(p_i-1)$ . As we can write  $a_i \equiv u^{q_i} \pmod{p_i^{k_i}}$  for some integer  $q_i$ , we can note that  $r_i = \varphi_i/\gcd(q_i, \varphi_i)$ . Picking a random  $a_i$  in this multiplicative group is equivalent to picking a random integer  $0 \le q_i < \varphi_i$  uniformly. So if we pick a random  $q_1$  that gives us a  $c(r_1)$ , we will need to pick a  $q_2$  such that

$$c(r_1) = c(\varphi_2) - \min(c(q_2), c(\varphi_2)) , \qquad \Longrightarrow c(q_2) \begin{cases} \geq c(\varphi_2) & \text{if } c(r_1) = 0, \\ = c(\varphi_2) - c(r_1) & \text{if } c(r_1) > 0. \end{cases}$$
(3.46)

In either case, the probability of picking such a  $q_2$  from a uniform distribution is  $\leq 50\%$ . In the first case, since  $\varphi_2$  is necessarily even we just need to pick an even number. In the second case, we need to pick a specific power of 2. Therefore, an iteration of Shor's algorithm has a  $\leq 50\%$  chance of failing to find a non-trivial root. To be specific, if N has  $m \geq 2$  distinct prime factors, then the chance to fail is  $\leq 2^{m-1}$ .

<sup>&</sup>lt;sup>4</sup>This is why we needed N to be odd. The multiplicative group of integers modulo n is cyclic iff  $n = 2, 4, p^k, 2p^k$  where p is an odd prime. See https://mathworld.wolfram.com/ModuloMultiplicationGroup.html for more details.