Д/3 Вариант 22

Чжоу Гуаньюй March 11, 2020

Задача 1

$$S = \int_{1}^{e} \int_{0}^{\ln x} dy dx + \int_{1-\ln x}^{e} \int_{0}^{0} dy dx$$
$$= 3 \int_{1}^{e} \ln x dx = 3[x \ln x - x]_{1}^{e} = 3(e \ln e - e - \ln 1 + 1) =$$
$$= 3$$

Ответ:

Площадь фигуры S=3

$$y = (x/2)^2, y = x - 1, x = 0;$$
ось Oy

Анализ:

В той части, где y больше нуля, объем вращающегося тела определяется интегрированием. В той части, где y меньше нуля, объем вращающегося тела представляет собой конус, то:

$$V = V_{top} + V_{below}$$

Решение:

 $\mathbf{a})V_{top}$

$$V_{top} = \pi \int_0^1 ((y-1)^2 - 4y) \, dy$$
$$= \pi \int_0^1 (y^2 - 2y + 1) \, dy$$
$$= \pi \left[\frac{1}{3} y^3 - y^2 + y \right]_0^1$$
$$= \pi$$

$\mathbf{b})V_{below}$

$$V_{below} = \frac{1}{3}Sh$$

$$= \frac{1}{3} \cdot \pi \cdot 1^2 \cdot 1$$

$$= \frac{1}{3}\pi$$

$\mathbf{c})V_{total}$

$$V_{total} = V_{top} + V_{below}$$
$$= \pi + \frac{1}{3}\pi = \frac{4}{3}\pi$$

Анализ:

Как видно из рисунка, область, окруженная двумя кривыми, является симметричной, поэтому нам нужно рассчитать только площадь одной стороны Решение:

$$\begin{cases} \rho = \sin \varphi \\ \rho = \sin 3\varphi \end{cases}$$

Откуда мы получаем : $\varphi = \frac{\pi}{4}, \frac{3\pi}{3}, 0, \pi, (\varphi \in [0, 2\pi])$

b)

$$S_{total} = S_{left} + S_{right} = 2S_{right}$$

$$S_{right} = \frac{1}{2} \int_0^{\frac{\pi}{4}} \sin^2 \varphi \, d\varphi + \frac{1}{2} \int_{\frac{\pi}{4}}^{\pi} \sin^2 3\varphi \, d\varphi$$

$$= \left[\frac{1}{2} \varphi - \frac{\sin 2\varphi}{4} \right]_0^{\frac{\pi}{4}} + \left[\frac{1}{2} \varphi - \frac{\sin 6\varphi}{12} \right]_{\frac{\pi}{4}}^{\pi}$$

$$= \frac{\pi}{8} - \frac{1}{4} + \frac{1}{2} \pi - 0 - \frac{\pi}{8} - \frac{1}{12}$$

$$= \frac{1}{2} \pi - \frac{1}{3}$$

$$S_{total} = 2S_{right} = \pi - \frac{2}{3}$$

$$y = \sqrt{e^{-2x} + 1}/2, x_1 = 0, x_2 = \ln 4,$$
ось Ох

Решение:

$$y'(x) = -\frac{1}{2e^x\sqrt{1+e^{2x}}}$$

$$S_{ox} = 2\pi \int_0^{\ln 4} y(x)\sqrt{1+(y'(x))^2} dx$$

$$= 2\pi \int_0^{\ln 4} \frac{\sqrt{e^{-2x}+1}}{2} \sqrt{1+(-\frac{1}{2e^x\sqrt{1+e^{2x}}})^2} dx$$

$$= 2\pi \int_0^{\ln 4} \frac{\sqrt{1+e^{2x}}}{2e^x} \sqrt{1+(-\frac{1}{2e^x\sqrt{1+e^{2x}}})^2} dx$$

$$= 2\pi \int_0^{\ln 4} \frac{\sqrt{\frac{4e^{2x}+4e^{4x}+1}{4e^{2x}}}}{2e^x} dx$$

$$= \frac{1}{2}\pi \int_0^{\ln 4} \frac{2e^{2x}+1}{e^{2x}} dx$$

$$= \frac{1}{2}\pi \left[2x - \frac{1}{2e^{2x}}\right]_0^{\ln 4}$$

$$= \frac{1}{2}\pi (4\ln 2 + \frac{15}{32}) = 2\pi \ln 2 + \frac{15}{64}\pi$$

$$y = \cosh x, l(x) = \operatorname{sech}^2 x, x_1 = -\ln 2, x_2 = \ln 2$$

Решение:

$$y'(x) = \sinh x$$

$$m = \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2} x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \int_{-\ln 2}^{\ln 2} \frac{1}{\cosh^{2} x} \cosh x \, dx$$

$$= \int_{-\ln 2}^{\ln 2} \frac{1}{\cosh x} \, dx$$

$$= \int_{-\ln 2}^{\ln 2} \frac{2}{e^{x} + e^{-x}} \, dx$$

$$= \left[2 \arctan e^{x} \right]_{-\ln 2}^{\ln 2}$$

$$= 2 \arctan 2 - 2 \arctan \frac{1}{2}$$

$$x_{c} = \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \frac{x}{\cosh x} \, dx$$

$$= 0(\operatorname{Heuethaf} \operatorname{фyhkiuf})$$

$$y_{c} = \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

$$= \frac{1}{m} \int_{-\ln 2}^{\ln 2} \operatorname{sech}^{2}(x) \cosh x \sqrt{1 + \sinh^{2} x} \, dx$$

Ответ

Центром масс $C(0, \frac{\ln 2}{\arctan 2 - \arctan \frac{1}{2}})$