

بسم الله الرحمن الرحيم

Project Title: Transistor-Level INV Gate Design

• Author: Ahmed Assem Mohamed

1446 فو القعدة، 1446 MAY 14, 2025

1. Abstraction

This report presents the design and implementation of a INV gate at the transistor level, leveraging 130nm MOSFET technology. The circuit was meticulously developed and simulated using Cadence Virtuoso.

2. Logic Function and Truth Table

$$Y = \sim (IN)$$

IN	Y (INV)
0	1
1	0

3. Circuit Design

3.1. Schematic

1446 فو القعدة، 1446 MAY 14, 2025

3.2. Design Approach

• 130nm CMOS process

• 1.2V VDD

• INPUTS: IN

OUTPUT: OUT

Input Parameter: WN_INV

 Sizes: the NMOS has dimension WN_INV, while the two PMOS has dimension 1.8* WN INV

why 1.8? (came from simulation) therefore min Tpo INV.

 The previous graph is simulation of (T_{PLH}, T_{PHL}, T_{P0}) VS WP at const WN = 160nm. therefore WP = 288nm (WP/WN = 288/160 = 1.8)

note: T_{P0} is the average

1446 في القعدة، 17 MAY 14, 2025

3.3. Symbol

4. Simulation and Results

Note: the simulation result is performed with an input f = 1.25GHZ for IN.

1446 فو القعدة، 1446 فو القعدة MAY 14, 2025