key notes & fake aways from Differential geometry -1

Christoffel symbol [Top = Top
$$\frac{\partial x^{\beta}}{\partial x^{\beta}} \frac{\partial x^{\gamma}}{\partial x^{\delta}} \frac{\partial x^{\gamma}}{\partial x^{\delta}} + \frac{\partial x^{\gamma}}{\partial x^{\delta}} \frac{\partial^2 x^{\gamma}}{\partial x^{\delta}}$$
Transformation law:

heodesic equation:

Non tensorial component

Londition: A vector Il transported along itself leaves a geodesic poth-

= vi 2 / viej) = vi [2vi ei + 2ej vi)

= vi [dvð = + Tij k vj eu] = V' (3vk + Tij vo) eik = (vidvk+vivo Tijk) ex = 0. If a vector is parametrized in a tayort vector space given by then Analogy becomes

The above equation be comes: (Vidivk+TikViv) Ck =0 (2xi 2 / 2xk) + [ik 2xi 2xi 2xi]=0

[22 gai (97) 13 22 82] $= \sqrt{\left[\frac{\partial \chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right) + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} = \sqrt{\left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right] + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right] + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right] + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right]} + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}\right)\right] + \left[\frac{\chi^{h}}{\partial \lambda}\left(\frac{\partial \chi^{h}}{\partial \lambda}$ The Geodesic S 22h + Tij 32i 32i = 0 (5 #work on spherical co-ordinate

(wived Space Geometry (Abstract)

Riemann (wzrature temor. 7 Reab -> identities and symmetries. II Sectional curvature and Ricci curvature (Rmn).

ruce rensor - components & symmetries. # 2nd Bianchi identity & Eienstien's tensor (qua) $h(\vec{u}\vec{v})\vec{\omega}$ 7 BAW DLBA W - W 4,500 [I]W-DCBAW

۲J

distributing denominator accoss two terms.

$$\Rightarrow R(\vec{u},\vec{v})\vec{w} = DL \text{ It } \left(\frac{\vec{c}}{n},\frac{\vec{c}}{s},\frac{\vec{c}}{s}\right) + \frac{1}{s}\left(\frac{\vec{c}}{n},\frac{\vec{c}}{s}\right) \\ - \left[\frac{R}{s}\left(\frac{A\vec{w}-\vec{w}}{s}\right) + \frac{1}{s}\left(\frac{R\vec{w}-\vec{w}}{s}\right)\right]$$

Recalling tooms formation paralellogram

linu 915-30 Di C can be considered identity mabiles
(For a local point frame). so, For a cloxing panablegram, Alixi) W= Tath W- To Taw But what if the two metors ti, & ii are not crossing, i.e. their lie bracket [u,v] to, Lett we need to include amother ferm where the Coveriant Serivative must be taken in the direction where the lie browset

(ū', i') is non zero."

Les freimann (worrature tensor in an abstract vector space.

Expanding vectors in toms of their basis

R(U'ei, Vdej) wez - ui vd V; Vj wez - vàui Vj V; wes

- u'và V[ei,ej] Wker O(ei,ej) 20.

By linevity of Riemann assistance fensor

Time! ... are mound martial designations of miles ?

to get another ext of Charistofell Mymboll.... Then faller out dummies with first two ferms as ej dumy indices.

$$\Rightarrow R(\vec{e}_{a},\vec{e}_{b}) \vec{e}_{c} = \partial_{a} (\Gamma_{bc}) \vec{e}_{i} + \Gamma_{bc} \Gamma_{ai} \vec{e}_{d}$$

$$- \partial_{b} (\Gamma_{ac}) \vec{e}_{j} - \Gamma_{ac} \Gamma_{bj} \vec{e}_{f}$$

=>
$$R(\vec{e}_{a},\vec{e}_{b})\vec{e}_{c} = \partial_{a}(\vec{b}_{c})\vec{e}_{d} + \vec{b}_{c}(\vec{a}_{i})\vec{e}_{d}$$

 $-\partial_{b}(\vec{a}_{c})\vec{e}_{d} - \vec{b}_{a}(\vec{b}_{b})\vec{e}_{d}$
=> $R(\vec{e}_{a},\vec{e}_{b})\vec{e}_{c} = \partial_{a}(\vec{b}_{b})\vec{e}_{d} - \partial_{b}(\vec{b}_{a})\vec{e}_{d}$

It can be written in index notation as a rank of tensor.

6 Components of Riemann Gornature tensor.

Riemann (worature Tensor - Symmetries and Identities:

il) 34 Symmetry. R(Q,V) W= U V W R(ea, eb) co R(la, es) et = VaVs et - Vb Va et (imilarly $R(\vec{v},\vec{u})\vec{w} = v^a u^b w^c R(\vec{e_b},\vec{e_a})\vec{e_c}$ R(eg, ea) ec = V3 Vacc - Va Vs ec = - (R(ea,eb)) 3-4

Symmetry : Rab = -Rab > 34 Symmetry

aris from torsion free

property q the basis wells in 1st Bianchi Identity: considering the expression $R(\vec{e_a}, \vec{e_b})\vec{e_c} + R(\vec{e_b}, \vec{e_c})\vec{e_a} + R(\vec{e_c}, \vec{e_d})\vec{e_b}$ => (Note, here all ferms involving V[ei,ei] =0 801 VaVbec - Vb Taec => R(Eireb) ezt R(Eirec) Es

+ R(ec eq)eb = 0.

$$u^{\alpha}v^{b}w^{c}$$
 [Rab + Rabc + Rbca] ed = 0
 \vdots R'cab + Rbca + Rabc = 0 — (2)
Ls first Bianchi identity
from fossion free property.

Metric lompatability: $\nabla_{\overline{w}}(\overline{u}\cdot\overline{v}) = \overline{v}\cdot(\nabla_{\overline{w}}\overline{u}) + \overline{u}\cdot(\nabla_{\overline{w}}\overline{v})$ Ly lo-variourl derivative of the det.

chain rule.

Component of Riemann Fencor -> Ricab

by Contacting if with metric tensor

got Ricab = Ricab => Ricab (Since f is a dumny index).

in Hip symmetry:

Considering All the agreementates and identities mentioned

:. Rabod = Rbado) -> Flip Symmetry
in Riemann Curreture
tensor.

Summanizing Riemann Tensor:

nab-00 1 1 05 L'ac/- 16c lai + lac 16)

tropoutius.

1-2	Rdodc = - Rad bc.
3-4	Rdabc = -Rdacb.
Plip.	Rabid = Rbadc
BI	Road + Rocat Pabe =0
	1

Hetric compatibility.

From poon Symmetries-

-> Toxsion true

L. Liemann tunior butsaltion my metric.

Volume element destrotive. I # Ricci Convoture tensor. # volume elements in Lurved spaks

2nd Bianchi identity.

Einstein Tensor.

Who Volumes in a pace expand and Mrink based on Convergence and Stress ence in geoclesics.

Volume element derivative is used to calculate the changes in volume of our opjert i

Les Skipping the volume element derivative, the final insight come the "Ricci Curvature tensor"— a contracted version of the "Reimann Curvature tensor".

Mathematically, the only meaningful Contraction of the Reimann Converture fensor is this -> (Raib

Georgic dwiation:

The balk notation to worke a geodesec is $\nabla_i \vec{v} = 0$, in the direction of tangent vectors

(onsider a speciation vertor 3 whose magnitude is changing based on the goodenic deviation along geodesics 9 V.

(So, we take the borreriant derivative of one discetion gleadering with respect to other.

To To adding and subfracting

TV To V = 0. マスヤントロルアアーカックラー A(S,V)V+VVVV=0 since the space time is boundered forsion free PSV > 703 : Volo = - R(1, V)] But from Symmetry of Lieuwann Fensor. 72723= R(V,S)2

The Geodesic deviation can be categorized into 3 types:

No deviation:

To the second se

V2 V25=0

sbecause 5 separation vector distribute or disection.

"Inwand geoderic deviation!

7-33 40 become 13/115 Judeaktry.

1. (t) 705]. 540

Outword Geodesic deviation

323

moving separation 3, it's moving separation 3, it's mornifedo actually inchesor

: [R(J))]]3/0

but that change is constant is being alwharated. Volume dements in différential geome pry; Just like We saw how live elements strink and expand based on geodesic deviation, same thing happens with volunce elements. 4 The Rimann tensor can't describe if because it only acts on verbos but not volume elements. 1/ Hence, We will use Volume element derivative technique and arrive at the fundamental de férifion of Ricci Convature tensor. to explain volume changes in geodoxici

Volume Elements:

Volume form Volume tensor. Outputs the volume when we input some vectors of appropriate dimensions.

Given by $\omega(\vec{a}, \vec{b})$ = volume of \vec{a}, \vec{b} vectors.

or $\omega(\vec{a}, \vec{b}, \vec{s})$ solume of $\vec{a}, \vec{b}, \vec{s}$.

For non-osthonormal bours like the following.

$$\vec{u} = \vec{u}^2 \vec{e_1} + \vec{u}^2 \vec{e_2}$$
 \Rightarrow Now, Volume is given by $\vec{w} = \vec{w} \vec{e_1} + \vec{u}^2 \vec{e_2}$ \Rightarrow $clet \left(\vec{u}^1 \vec{w}^1 \vec{v} \right) = \omega(\vec{u}^2 \vec{v}^2)$

c

the value of w/uiti)= Let | u'w') can be written in the form of "Levi-Civita (onne chous Sy (W(TerW) = Eij U'W = E11 WW + E12 WZU + E2 | 42 W1 + E2 6242 in 3-d 60-ordinate systems, (W(V, V, W) = Eijk u' VàWh ijk even permutation. Here, Eijk = 5 +1 ijk ald permutation ony rejented insdices.

But what if the vector space is additionally , i.e. different basis.

If
$$\vec{e}_i$$
 basis is heavy from from \vec{e}_i

then It's expression (let) be.

 $\vec{e}_i = F_i \vec{e}_i + F_i^2 \vec{e}_i^2$
 $\vec{e}_i = F_i \vec{e}_i + F_i^2 \vec{e}_i^2$

or in an abstract vector space where basis are just partial desirative operators.

then $\vec{q} = \frac{\partial}{\partial a} \cdot \frac{\partial x}{\partial a} + \frac{\partial x^2}{\partial a} \cdot \frac{\partial}{\partial x}$

الاها المحكيا

then the volume
$$W(\hat{e}_{1}^{2}, \hat{e}_{2}^{2}) = \det \begin{bmatrix} \frac{\partial A}{\partial \pi_{1}} & \frac{\partial A}{\partial \pi_{2}} \\ \frac{\partial A}{\partial \pi_{1}} & \frac{\partial A}{\partial \pi_{2}} \end{bmatrix}$$

$$= \det \begin{bmatrix} Jacobian \end{bmatrix} = \det \begin{bmatrix} Jacobian$$

Now, applying determinant on both &iter-

det g = (det F)(det F) det (g) (det f) det (g) (gdet product)NOW, if "g" comes prom an orthornormal halic then $det(g) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$. : det $g = (det F)^2 = 2\sqrt{\det(g)} = \det F$ But the basic volume of the toursformed system is actually "Let F"

Grandly "Jet F" $\omega\left(\frac{2}{e_{1}},\frac{2}{e_{1}}\right)=\det F=\int dd\left(\frac{1}{e_{1}}\right) dd\left(\frac{1}{e_{1}}\right)$

(ale: Volume created by non-orthonormal basis.

u= u|e|+ u2e2 -> Now, it's rolune is アーリデナンぞ given by wing volume tensor. (u/v) = (det g Eij u'v) here gameto/c
toréjatéj General to namitate. Volume form components.

Tracking Volume changes in Geoderic deviations.

Is we now have a defined volume element from an abstract & arbitrary vector space defined by the

volume form tensor [W(I, V, W) = Tolet g U'V JWK Eijk Ly know how it is changing when the geodesees are getting deviated due to geometry currenture if any). We take it's double co-variant dorivative -(ase: Problem: #Flonsider a volume element bounded by 3 vectors in a 3-d spale => "W(U, W, F)"

Now this volume element is being transported along one of the geodesics in "\vec{v}" Lithat transport is géven by its 6-varient devivative. But here, we use double G-varioust donivative

Des M [Wi Wirt/=D Prw(WWF) = (vow) (WWJ) + w(vor) $= + \omega(\vec{u}_1, \vec{v}_2, \vec{v}_3) + \omega(\vec{u}_2, \vec{w}_3, \vec{v}_3, \vec{v}_3)$ Sink inner braniant duivatiens are zero because they were paralell tour forfed. i. $\nabla_{i} \omega = 0$ =) $\partial_{i} \left(\sqrt{\partial_{i}} f_{i} \in ijk \right) = 0$ 2nd Covariant durivatives of Volume spanned by vectors: ille sometime voctors. 51,52 & 52 50

Ly Now, that we have arrived with a mathematical expression for a "volume element" with "variable seperation"; we need to take it's double derivative in the direction of I which is parametrized by "]"

To V = d2 / (: Volume is a salen &)

sor Calculating the first Lorivotive

(M. M.)

Here for a Co-ordinate system, we tric determinant
$$\varepsilon$$
 levi-civita are Constant:

Sol $dV = det(9) \in \mathcal{A}_{1,1,2,...,u_{h}} \left[\frac{d}{d\lambda} \left(\prod_{i=1}^{n} \mathcal{S}_{i}^{u_{i}} \right) \right] \left[\frac{dultivariable}{d\lambda} \right] = \int_{1}^{a} \mathcal{S}_{1}^{u_{i}} \mathcal{S}_{2}^{u_{i}} + \mathcal{S}_{1}^{u_{i}} \mathcal{S}_{2}^{u_{i}} \right] \left[\frac{dv}{d\lambda} \left(\prod_{i=1}^{n} \mathcal{S}_{1}^{u_{i}} \right) \right] \left[\frac{dv}{d\lambda} \left(\prod_{i=1}^{$

Now the second derivative
$$\frac{d^2V}{d\lambda^2} = \frac{d}{d\lambda} \left(\frac{dV}{d\lambda} \right)$$

$$= 3 \frac{d^2V}{d\lambda^2} = \frac{d}{d\lambda} \left(\frac{dV}{d\lambda} \right) \left(\frac{M}{M} \right) \left(\frac{M}{M}$$

Now, applying the same Chain rule will give the following equation.

=> d\frac{\forall^2}{\forall^2} = \forall \for

Here, there are two terms,

Term 1: $\int_{j}^{\mu_{j}} \left(\prod_{\substack{i=1\\i\neq j}}^{n} S_{i}^{\mu_{i}} \right) \left(\prod_{\substack{i=1\\i\neq j\neq k}}^{n} S_{i}^{\mu_{i}} \right) \left(\prod_{\substack{i=1\\i\neq j\neq k}}^{n} S_{i}^{\mu_{i}} \right)$

Si (Si) Tolety Eurum

(in) (in) Tolety Eurum

(in) (in) Tolety Eurum

(in) (in) (in) derivative term can be expressed as

a component of Riemann burrature tensor. Sin = VV VV S = -R (SIV) V2 In if S Component from, -R(J,J)) ande wortfor as Sj = - Ryz Sj V3 V2

* Jdety Ening...un

It here the index y can now take any value of jadat from "MI to Mn" # Also, the product is happenly such that Sind terms It In levi-civita symbol, if there are any repeated indices the terms goes to "zero".

Given these landitions, the only non zono lamponent of synation vector $S_j^y = S_j^{H_j}$

That means y=yj & Ti= (-RMj VXV35 si/ sin) x Jdefg x Emmi-m

Now, this is a Contraction of lieunann hurrature tensor over
the 2nd index. - Layj = Raz Ja Component of Cicci Curreture tensor"
the term Sj goes back into the product and it j Condition is now revoked.
TI= -RAZVNV8 (MSi) Tdetg EMIMIMn
Also, the form $\left(\prod_{i=1}^{n} \int_{1}^{n} \sqrt{det}g \; \mathcal{E}_{u_{i},u_{2}u_{n}}\right) = Volume (V)$

Important note: # Term I involving Ricci Currature fensor keeps track of volumes in "Curved geoderics" because do to geniakon the abuble durinative term (5.45" = V2 V2S) Heeps toach of allebrating changes of volumes. # Torm 2 involving fingle derivatives keeps toack of volume changes involving in flat spaces | Hat geodenics because Single derivatives theck with non recelerating thouses in volumes over geodoxics.

Visual understanding of Ricci burnature temsos:

Like changes observed while how line elements change their length/separation while the geodesics deviate due to geometry curreture, the change in their volume can also be visablized

Ly The Ricci curvature can also be classified into 3 types.

Null Convature:

W(74)

volume & No deviation in geodesics Inward Curvature:

the the volume element V_1 is reduced in lipe due to the geodenic deriations lineward?

Dutword Convature.

seperation is increasing in size due to the outward goderic

: The Ricci brivatore tensor

will be

his (V)V) = hab Vavb

Lic(i,v) LD