

Table of contents

```
from notebookfuncs import *
print("Fit a model with ", 11, " variables")
Fit a model with 11 variables
print?
3 + 5
"hello, " + " " + "world!"
'hello, world!'
x = [3, 4, 5]
[3, 4, 5]
y = [4, 9, 7]
x + y
[3, 4, 5, 4, 9, 7]
import numpy as np
x = np.array([3, 4, 5])
y = np.array([4, 9, 7])
x + y
array([ 7, 13, 12])
```

```
x = np.array([[1, 2], [3, 4]])
array([[1, 2],
       [3, 4]])
x.ndim
2
x.dtype
dtype('int64')
x = np.array([[1, 2], [3.0, 4]])
x.dtype
dtype('float64')
np.array([[1, 2], [3, 4]], float).dtype
dtype('float64')
x.shape
(2, 2)
x = np.array([1, 2, 3, 4])
x.sum()
10
x = np.array([1, 2, 3, 4])
np.sum(x)
10
x = np.array([1, 2, 3, 4, 5, 6])
print("Beginning x:\n ", x)
x_reshape = x.reshape(2, 3)
print("reshaped x:\n", x_reshape)
Beginning x:
  [1 2 3 4 5 6]
reshaped x:
 [[1 2 3]
 [4 5 6]]
x_reshape[0, 0]
```

```
1
x_reshape[1, 2]
print("x before we modify x_reshape:\n", x)
print("x_reshape before we modify x_reshape:\n", x_reshape)
x_reshape[0, 0] = 5
print("x_reshape after we modify its top left element:\n", x_reshape)
print("x after we modify top left element of x_reshape:\n", x)
x before we modify x_reshape:
 [1 2 3 4 5 6]
x_reshape before we modify x_reshape:
 [[1 2 3]
 [4 5 6]]
x_reshape after we modify its top left element:
 [[5 2 3]
 [4 5 6]]
x after we modify top left element of x_reshape:
 [5 2 3 4 5 6]
my_tuple = (1, 2, 3)
# type error
# my_tuple[0] = 10
(1, 2, 3)
x_reshape.shape, x_reshape.ndim, x_reshape.T
((2, 3),
 2,
 array([[5, 4],
        [2, 5],
        [3, 6]]))
np.sqrt(x)
array([2.23606798, 1.41421356, 1.73205081, 2.
                                                      , 2.23606798,
       2.44948974])
x**2
array([25, 4, 9, 16, 25, 36])
x**0.5
array([2.23606798, 1.41421356, 1.73205081, 2.
                                                      , 2.23606798,
       2.44948974])
```

```
np.random.normal?
x = np.random.normal(size=50)
array([-2.69407528, 1.30638289, -1.2417101, 0.77335439, -1.00768454,
        0.37570708, 1.14840684, 0.24385284, 0.1489655, 0.75153836,
        0.27428506, 1.42477762, -0.43255728, -0.78197664, -0.66665415,
       -1.34321548, -0.79812058, 1.4970131, -0.28685096, -0.31747499,
       -1.63260239, 2.93190463, 1.76142482, -1.21606783, -0.48640548,
       -0.79689915, 1.39335265, -1.22836849, -0.75157686, 0.33664377,
       -0.94817173, -0.10310311, -0.9909636, 0.30839067, -0.47771352,
        0.34348909, \ -0.22561454, \ \ 0.37524314, \ \ 1.05230191, \ -1.68596954,
       -0.40867234, -0.88455741, 0.43987997, -1.25773579, -0.99620729,
       -0.35090783, 1.8835965, 0.26787752, -1.43797456, -0.37923744])
y = x + np.random.normal(loc=50, scale=1, size=50)
array([47.60307484, 51.39278212, 48.31463781, 50.21918001, 49.09335977,
       50.01687467, 51.59072064, 49.97588161, 51.33792972, 51.40072844,
       49.69994439, 51.64991283, 50.25938759, 49.45483362, 48.55780771,
       48.82937003, 50.86147188, 50.44924278, 49.1849952, 49.81742955,
       47.90559654, 52.71769717, 50.86058738, 47.74646955, 51.52444959,
       49.74732046, 52.70658836, 47.61608537, 49.22672158, 49.26588632,
       50.36650991, 50.09447561, 49.09457851, 48.65130282, 50.52192764,
       49.48580302, 48.53157058, 50.02856058, 51.40221908, 48.12023762,
       50.06467158, 47.64676194, 50.75274629, 48.78236872, 48.48093142,
       50.34669309, 52.76042499, 50.49177055, 49.36613527, 48.78362817])
np.corrcoef(x, y)
                  , 0.79729919],
array([[1.
       [0.79729919, 1.
                              11)
print(np.random.normal(scale=5, size=2))
print(np.random.normal(scale=5, size=2))
[2.74065459 6.48314826]
[-4.47024966 -8.84505787]
rng = np.random.default_rng(1303)
print(rng.normal(scale=5, size=2))
rng = np.random.default rng(1303)
print(rng.normal(scale=5, size=2))
[ 4.09482632 -1.07485605]
[ 4.09482632 -1.07485605]
```

```
rng = np.random.default_rng(3)
y = rng.standard_normal(10)
np.mean(y), y.mean()
(-0.1126795190952861, -0.1126795190952861)
np.var(y), y.var(), np.mean((y - y.mean()) ** 2)
(2.7243406406465125, 2.7243406406465125, 2.7243406406465125)
np.sqrt(np.var(y)), np.std(y)
(1.6505576756498128, 1.6505576756498128)
np.var?
X = rng.standard_normal((10, 3))
array([[ 0.22578661, -0.35263079, -0.28128742],
       [-0.66804635, -1.05515055, -0.39080098],
       [0.48194539, -0.23855361, 0.9577587],
       [-0.19980213, 0.02425957, 1.54582085],
       [0.54510552, -0.50522874, -0.18283897],
       [ 0.54052513, 1.93508803, -0.26962033],
       [-0.24355868, 1.0023136, -0.88645994],
       [-0.29172023, 0.88253897, 0.58035002],
       [0.0915167, 0.67010435, -2.82816231],
       [ 1.02130682, -0.95964476, -1.66861984]])
X.mean(axis=0)
array([ 0.15030588, 0.14030961, -0.34238602])
X.mean(axis=0)
array([ 0.15030588, 0.14030961, -0.34238602])
X.mean(0)
array([ 0.15030588, 0.14030961, -0.34238602])
X.mean(1)
array([-0.13604387, -0.70466596, 0.40038349, 0.45675943, -0.04765406,
        0.73533095, -0.04256834, 0.39038958, -0.68884708, -0.53565259]
X.mean()
```

-0.017256845138782704

```
ax.plot?

Object `ax.plot` not found.

from matplotlib.pyplot import subplots

fig, ax = subplots(figsize=(8, 8))
x = rng.standard_normal(100)
y = rng.standard_normal(100)
ax.plot(x, y);
```


fig, ax = subplots(figsize=(8, 8))
ax.plot(x, y, "o");

fig, ax = subplots(figsize=(8, 8))
ax.scatter(x, y, marker="o");


```
fig, ax = subplots(figsize=(8, 8))
ax.scatter(x, y, marker="o")
ax.set_xlabel("this is the x-axis")
ax.set_ylabel("this is the y-axis")
ax.set_title("Plot of X vs Y")
```

Text(0.5, 1.0, 'Plot of X vs Y')

0.8

0.6

0.4

0.2

1.0

0.8

0.0

0.6

0.4

0.2

0.0

```
fig.savefig("Figure.png", dpi=400)
fig.savefig("Figure.pdf", dpi=200)
axes[0, 1].set_xlim([-1, 1])
fig.savefig("Figure_updated.jpg")
fig
 1.0
 0.8
                                                                      0.8
 0.6
                                                                      0.6
 0.4
 0.2
                                                                      0.2
 0.0
                                                                      0.0
        0.2
              0.4
                                    -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
                    0.6
                         0.8
                               1.0
                                                                                         0.6
                                                                                               0.8
                                                                                                    1.0
                                   1.0
 1.0
 8.0
                                   8.0
 0.6
                                   0.6
 0.4
                                   0.4
 0.2
                                   0.2
 0.0
                                   0.0
fig, ax = subplots(figsize=(8, 8))
x = np.linspace(-np.pi, np.pi, 50)
print(x)
y = x
f = np.multiply.outer(np.cos(y), 1 / (1 + x**2))
ax.contour(x, y, f);
 \begin{bmatrix} -3.14159265 & -3.01336438 & -2.88513611 & -2.75690784 & -2.62867957 & -2.5004513 \end{bmatrix} 
 -2.37222302 \ -2.24399475 \ -2.11576648 \ -1.98753821 \ -1.85930994 \ -1.73108167
 -1.60285339  -1.47462512  -1.34639685  -1.21816858  -1.08994031  -0.96171204 
 -0.83348377 \ -0.70525549 \ -0.57702722 \ -0.44879895 \ -0.32057068 \ -0.19234241
 -0.06411414 \quad 0.06411414 \quad 0.19234241 \quad 0.32057068 \quad 0.44879895 \quad 0.57702722
  0.70525549 \quad 0.83348377 \quad 0.96171204 \quad 1.08994031 \quad 1.21816858 \quad 1.34639685
  1.47462512 \quad 1.60285339 \quad 1.73108167 \quad 1.85930994 \quad 1.98753821 \quad 2.11576648
  2.24399475 2.37222302 2.5004513 2.62867957 2.75690784 2.88513611
  3.01336438 3.14159265]
```


fig, ax = subplots(figsize=(8, 8))
ax.contour(x, y, f, levels=45);

fig, ax = subplots(figsize=(8, 8))
ax.imshow(f);

```
0
 10 -
 20 -
 30 -
 40 -
                                   20
                                                  30
                   10
                                                                  40
seq1 = np.linspace(0, 10, 11)
seq1
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
seq2 = np.arange(0, 10)
seq2
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
"Hello, world!"[3:6]
'lo,'
"Hello, world!"[slice(3, 6)]
'lo,'
A = np.array(np.arange(16)).reshape((4, 4))
print(A)
A[1, 2]
[[ 0 1 2 3]
[4567]
 [8 9 10 11]
 [12 13 14 15]]
A[[1, 3]]
array([[ 4, 5, 6, 7],
       [12, 13, 14, 15]])
A[:, [0, 2]]
array([[ 0, 2],
      [4, 6],
       [8, 10],
       [12, 14]])
A[[1, 3], [0, 2]]
array([ 4, 14])
np.array([A[1, 0], A[3, 2]])
array([ 4, 14])
A[[1, 3]][:, [0, 2]]
array([[ 4, 6],
      [12, 14]])
idx = np.ix_([1, 3], [0, 2, 3])
A[idx]
array([[ 4, 6, 7],
       [12, 14, 15]])
```

```
A[1:4:2, 0:3:2]
array([[ 4, 6],
       [12, 14]])
keep_rows = np.zeros(A.shape[0], bool)
keep_rows
array([False, False, False, False])
keep_rows[[1, 3]] = True
keep_rows
array([False, True, False, True])
np.all(keep\_rows == np.array([0, 1, 0, 1]))
A[np.array([0, 1, 0, 1])]
array([[0, 1, 2, 3],
       [4, 5, 6, 7],
       [0, 1, 2, 3],
       [4, 5, 6, 7]])
A[keep_rows]
array([[ 4, 5, 6, 7],
       [12, 13, 14, 15]])
keep_cols = np.zeros(A.shape[1], bool)
keep_cols
array([False, False, False, False])
keep_cols[[0, 2, 3]] = True
keep_cols
array([ True, False, True, True])
idx_bool = np.ix_(keep_rows, keep_cols)
idx_bool
(array([[1],
        [3]]),
 array([[0, 2, 3]]))
A[idx_bool]
```

Reading in a data set

```
import pandas as pd
Auto = pd.read_csv("Auto.csv")
Auto
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
	•••						•••	•••	
392	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
393	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
394	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
395	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
396	31.0	4	119.0	82	2720	19.4	82	1	chevy s-10

```
Auto = pd.read_csv("Auto.data", sep="\s+")
Auto
```

<>:1: SyntaxWarning:

invalid escape sequence '\s'

<>:1: SyntaxWarning:

invalid escape sequence '\s'

/tmp/ipykernel_23421/4041205627.py:1: SyntaxWarning:

invalid escape sequence '\s'

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130.0	3504.0	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693.0	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436.0	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433.0	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449.0	10.5	70	1	ford torino
									•••
392	27.0	4	140.0	86.00	2790.0	15.6	82	1	ford mustang gl
393	44.0	4	97.0	52.00	2130.0	24.6	82	2	vw pickup
394	32.0	4	135.0	84.00	2295.0	11.6	82	1	dodge rampage
395	28.0	4	120.0	79.00	2625.0	18.6	82	1	ford ranger
396	31.0	4	119.0	82.00	2720.0	19.4	82	1	chevy s-10

Auto["horsepower"]

```
0
       130.0
1
       165.0
2
       150.0
3
       150.0
4
       140.0
392
       86.00
393
       52.00
394
       84.00
395
       79.00
396
       82.00
Name: horsepower, Length: 397, dtype: object
```

np.unique(Auto["horsepower"])

```
array(['100.0', '102.0', '103.0', '105.0', '107.0', '108.0', '110.0',
       '112.0', '113.0', '115.0', '116.0', '120.0', '122.0', '125.0',
       '129.0', '130.0', '132.0', '133.0', '135.0', '137.0', '138.0',
       '139.0', '140.0', '142.0', '145.0', '148.0', '149.0', '150.0',
       '152.0', '153.0', '155.0', '158.0', '160.0', '165.0', '167.0',
       '170.0', '175.0', '180.0', '190.0', '193.0', '198.0', '200.0',
       '208.0', '210.0', '215.0', '220.0', '225.0', '230.0', '46.00',
       '48.00', '49.00', '52.00', '53.00', '54.00', '58.00', '60.00',
       '61.00', '62.00', '63.00', '64.00', '65.00', '66.00', '67.00',
```

```
'68.00', '69.00', '70.00', '71.00', '72.00', '74.00', '75.00', '76.00', '77.00', '77.00', '78.00', '80.00', '81.00', '82.00', '83.00', '84.00', '85.00', '86.00', '87.00', '88.00', '89.00', '90.00', '91.00', '92.00', '93.00', '94.00', '95.00', '96.00', '97.00', '98.00', '?'], dtype=object)

Auto = pd.read_csv("Auto.data", na_values=["?"], sep="\s+")
Auto["horsepower"].sum()

<>:1: SyntaxWarning:
invalid escape sequence '\s'

/tmp/ipykernel_23421/3247743814.py:1: SyntaxWarning:
invalid escape sequence '\s'
```

(397, 9)

40952.0 Auto.shape

Auto_new = Auto.dropna()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130.0	3504.0	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693.0	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436.0	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433.0	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449.0	10.5	70	1	ford torino
	•••				•••			•••	
392	27.0	4	140.0	86.0	2790.0	15.6	82	1	ford mustang gl
393	44.0	4	97.0	52.0	2130.0	24.6	82	2	vw pickup
394	32.0	4	135.0	84.0	2295.0	11.6	82	1	dodge rampage
395	28.0	4	120.0	79.0	2625.0	18.6	82	1	ford ranger
396	31.0	4	119.0	82.0	2720.0	19.4	82	1	chevy s-10

Auto_new.shape

(392, 9)

Auto = Auto_new Auto.columns

Auto[:3]

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130.0	3504.0	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693.0	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436.0	11.0	70	1	plymouth satellite

idx_80 = Auto["year"] > 80
Auto[idx_80]

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
338	27.2	4	135.0	84.0	2490.0	15.7	81	1	plymouth reliant
339	26.6	4	151.0	84.0	2635.0	16.4	81	1	buick skylark
340	25.8	4	156.0	92.0	2620.0	14.4	81	1	dodge aries wagon (sw)
341	23.5	6	173.0	110.0	2725.0	12.6	81	1	chevrolet citation
342	30.0	4	135.0	84.0	2385.0	12.9	81	1	plymouth reliant
343	39.1	4	79.0	58.0	1755.0	16.9	81	3	toyota starlet
344	39.0	4	86.0	64.0	1875.0	16.4	81	1	plymouth champ
345	35.1	4	81.0	60.0	1760.0	16.1	81	3	honda civic 1300
346	32.3	4	97.0	67.0	2065.0	17.8	81	3	subaru
347	37.0	4	85.0	65.0	1975.0	19.4	81	3	datsun 210 mpg
348	37.7	4	89.0	62.0	2050.0	17.3	81	3	toyota tercel
349	34.1	4	91.0	68.0	1985.0	16.0	81	3	mazda glc 4
350	34.7	4	105.0	63.0	2215.0	14.9	81	1	plymouth horizon 4
351	34.4	4	98.0	65.0	2045.0	16.2	81	1	ford escort 4w
352	29.9	4	98.0	65.0	2380.0	20.7	81	1	ford escort 2h
353	33.0	4	105.0	74.0	2190.0	14.2	81	2	volkswagen jetta
355	33.7	4	107.0	75.0	2210.0	14.4	81	3	honda prelude
356	32.4	4	108.0	75.0	2350.0	16.8	81	3	toyota corolla
357	32.9	4	119.0	100.0	2615.0	14.8	81	3	datsun 200sx
358	31.6	4	120.0	74.0	2635.0	18.3	81	3	mazda 626
359	28.1	4	141.0	80.0	3230.0	20.4	81	2	peugeot 505s turbo diesel
360	30.7	6	145.0	76.0	3160.0	19.6	81	2	volvo diesel
361	25.4	6	168.0	116.0	2900.0	12.6	81	3	toyota cressida
362	24.2	6	146.0	120.0	2930.0	13.8	81	3	datsun 810 maxima
363	22.4	6	231.0	110.0	3415.0	15.8	81	1	buick century
									·

mpg cylinders displace	ement horsepower					
		weight	acceleration	year	origin	name
364 26.6 8 350.0	105.0	3725.0	19.0	81	1	oldsmobile cutlass ls
365 20.2 6 200.0	88.0	3060.0	17.1	81	1	ford granada gl
$366 17.6 6 \qquad \qquad 225.0$	85.0	3465.0	16.6	81	1	chrysler lebaron salon
$367 28.0 4 \qquad \qquad 112.0$	88.0	2605.0	19.6	82	1	chevrolet cavalier
$368 27.0 4 \qquad 112.0$	88.0	2640.0	18.6	82	1	chevrolet cavalier wagon
369 34.0 4 112.0	88.0	2395.0	18.0	82	1	chevrolet cavalier 2-door
370 31.0 4 112.0	85.0	2575.0	16.2	82	1	pontiac j2000 se hatchback
371 29.0 4 135.0	84.0	2525.0	16.0	82	1	dodge aries se
372 27.0 4 151.0	90.0	2735.0	18.0	82	1	pontiac phoenix
373 24.0 4 140.0	92.0	2865.0	16.4	82	1	ford fairmont futura
374 36.0 4 105.0	74.0	1980.0	15.3	82	2	volkswagen rabbit l
375 37.0 4 91.0	68.0	2025.0	18.2	82	3	mazda glc custom l
376 31.0 4 91.0	68.0	1970.0	17.6	82	3	mazda glc custom
377 38.0 4 105.0	63.0	2125.0	14.7	82	1	plymouth horizon miser
378 36.0 4 98.0	70.0	2125.0	17.3	82	1	mercury lynx l
379 36.0 4 120.0	88.0	2160.0	14.5	82	3	nissan stanza xe
380 36.0 4 107.0	75.0	2205.0	14.5	82	3	honda accord
381 34.0 4 108.0	70.0	2245.0	16.9	82	3	toyota corolla
382 38.0 4 91.0	67.0	1965.0	15.0	82	3	honda civic
383 32.0 4 91.0	67.0	1965.0	15.7	82	3	honda civic (auto)
384 38.0 4 91.0	67.0	1995.0	16.2	82	3	datsun 310 gx
385 25.0 6 181.0	110.0	2945.0	16.4	82	1	buick century limited
386 38.0 6 262.0	85.0	3015.0	17.0	82	1	oldsmobile cutlass ciera (die
387 26.0 4 156.0	92.0	2585.0	14.5	82	1	chrysler lebaron medallion
388 22.0 6 232.0	112.0	2835.0	14.7	82	1	ford granada l
389 32.0 4 144.0	96.0	2665.0	13.9	82	3	toyota celica gt
390 36.0 4 135.0	84.0	2370.0	13.0	82	1	dodge charger 2.2
391 27.0 4 151.0	90.0	2950.0	17.3	82	1	chevrolet camaro
392 27.0 4 140.0	86.0	2790.0	15.6	82	1	ford mustang gl
393 44.0 4 97.0	52.0	2130.0	24.6	82	2	vw pickup
394 32.0 4 135.0	84.0	2295.0	11.6	82	1	dodge rampage
395 28.0 4 120.0	79.0	2625.0	18.6	82	1	ford ranger
396 31.0 4 119.0	82.0	2720.0	19.4	82	1	chevy s-10

Auto[["mpg", "horsepower"]]

	mpg	horsepower
0	18.0	130.0
1	15.0	165.0
2	18.0	150.0
3	16.0	150.0
4	17.0	140.0
•••		

	mpg	horsepower
392	27.0	86.0
393	44.0	52.0
394	32.0	84.0
395	28.0	79.0
396	31.0	82.0

Auto.index

Auto_re = Auto.set_index("name")
Auto_re

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
name								
chevrolet chevelle malibu	18.0	8	307.0	130.0	3504.0	12.0	70	1
buick skylark 320	15.0	8	350.0	165.0	3693.0	11.5	70	1
plymouth satellite	18.0	8	318.0	150.0	3436.0	11.0	70	1
amc rebel sst	16.0	8	304.0	150.0	3433.0	12.0	70	1
ford torino	17.0	8	302.0	140.0	3449.0	10.5	70	1
ford mustang gl	27.0	4	140.0	86.0	2790.0	15.6	82	1
vw pickup	44.0	4	97.0	52.0	2130.0	24.6	82	2
dodge rampage	32.0	4	135.0	84.0	2295.0	11.6	82	1
ford ranger	28.0	4	120.0	79.0	2625.0	18.6	82	1
chevy s-10	31.0	4	119.0	82.0	2720.0	19.4	82	1

Auto_re.columns

Auto_re.shape

(392, 8)

```
rows = ["amc rebel sst", "ford torino"]
Auto_re.loc[rows]
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
name								
amc rebel sst	16.0	8	304.0	150.0	3433.0	12.0	70	1
ford torino	17.0	8	302.0	140.0	3449.0	10.5	70	1

Auto_re.iloc[[3, 4]]

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
name								
amc rebel sst	16.0	8	304.0	150.0	3433.0	12.0	70	1
ford torino	17.0	8	302.0	140.0	3449.0	10.5	70	1

Auto_re.iloc[:, [0, 2, 3]]

	mpg	displacement	horsepower
name			
chevrolet chevelle malibu	18.0	307.0	130.0
buick skylark 320	15.0	350.0	165.0
plymouth satellite	18.0	318.0	150.0
amc rebel sst	16.0	304.0	150.0
ford torino	17.0	302.0	140.0
ford mustang gl	27.0	140.0	86.0
vw pickup	44.0	97.0	52.0
dodge rampage	32.0	135.0	84.0
ford ranger	28.0	120.0	79.0
chevy s-10	31.0	119.0	82.0

Auto_re.iloc[[3, 4], [0, 2, 3]]

	mpg	displacement	horsepower
name			
amc rebel sst ford torino	16.0 17.0	304.0 302.0	150.0 140.0

Auto_re.loc["ford galaxie 500", ["mpg", "origin"]]

mpg	origin
15.0	1
14.0	1
14.0	1
	15.0 14.0

idx_80 = Auto_re["year"] > 80
Auto_re.loc[idx_80]

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
name								
plymouth reliant	27.2	4	135.0	84.0	2490.0	15.7	81	1
buick skylark	26.6	4	151.0	84.0	2635.0	16.4	81	1
dodge aries wagon (sw)	25.8	4	156.0	92.0	2620.0	14.4	81	1
chevrolet citation	23.5	6	173.0	110.0	2725.0	12.6	81	1
plymouth reliant	30.0	4	135.0	84.0	2385.0	12.9	81	1
toyota starlet	39.1	4	79.0	58.0	1755.0	16.9	81	3
plymouth champ	39.0	4	86.0	64.0	1875.0	16.4	81	1
honda civic 1300	35.1	4	81.0	60.0	1760.0	16.1	81	3
subaru	32.3	4	97.0	67.0	2065.0	17.8	81	3
datsun 210 mpg	37.0	4	85.0	65.0	1975.0	19.4	81	3
toyota tercel	37.7	4	89.0	62.0	2050.0	17.3	81	3
mazda glc 4	34.1	4	91.0	68.0	1985.0	16.0	81	3
plymouth horizon 4	34.7	4	105.0	63.0	2215.0	14.9	81	1
ford escort 4w	34.4	4	98.0	65.0	2045.0	16.2	81	1
ford escort 2h	29.9	4	98.0	65.0	2380.0	20.7	81	1
volkswagen jetta	33.0	4	105.0	74.0	2190.0	14.2	81	2
honda prelude	33.7	4	107.0	75.0	2210.0	14.4	81	3
toyota corolla	32.4	4	108.0	75.0	2350.0	16.8	81	3
datsun 200sx	32.9	4	119.0	100.0	2615.0	14.8	81	3
mazda 626	31.6	4	120.0	74.0	2635.0	18.3	81	3
peugeot 505s turbo diesel	28.1	4	141.0	80.0	3230.0	20.4	81	2
volvo diesel	30.7	6	145.0	76.0	3160.0	19.6	81	2
toyota cressida	25.4	6	168.0	116.0	2900.0	12.6	81	3
datsun 810 maxima	24.2	6	146.0	120.0	2930.0	13.8	81	3
buick century	22.4	6	231.0	110.0	3415.0	15.8	81	1
oldsmobile cutlass ls	26.6	8	350.0	105.0	3725.0	19.0	81	1
ford granada gl	20.2	6	200.0	88.0	3060.0	17.1	81	1
chrysler lebaron salon	17.6	6	225.0	85.0	3465.0	16.6	81	1
chevrolet cavalier	28.0	4	112.0	88.0	2605.0	19.6	82	1
chevrolet cavalier wagon	27.0	4	112.0	88.0	2640.0	18.6	82	1
chevrolet cavalier 2-door	34.0	4	112.0	88.0	2395.0	18.0	82	1
pontiac j2000 se hatchback	31.0	4	112.0	85.0	2575.0	16.2	82	1
dodge aries se	29.0	4	135.0	84.0	2525.0	16.0	82	1

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
name	10	v	•	•	G		v	Ü
pontiac phoenix	27.0	4	151.0	90.0	2735.0	18.0	82	1
ford fairmont futura	24.0	4	140.0	92.0	2865.0	16.4	82	1
volkswagen rabbit l	36.0	4	105.0	74.0	1980.0	15.3	82	2
mazda glc custom l	37.0	4	91.0	68.0	2025.0	18.2	82	3
mazda glc custom	31.0	4	91.0	68.0	1970.0	17.6	82	3
plymouth horizon miser	38.0	4	105.0	63.0	2125.0	14.7	82	1
mercury lynx l	36.0	4	98.0	70.0	2125.0	17.3	82	1
nissan stanza xe	36.0	4	120.0	88.0	2160.0	14.5	82	3
honda accord	36.0	4	107.0	75.0	2205.0	14.5	82	3
toyota corolla	34.0	4	108.0	70.0	2245.0	16.9	82	3
honda civic	38.0	4	91.0	67.0	1965.0	15.0	82	3
honda civic (auto)	32.0	4	91.0	67.0	1965.0	15.7	82	3
datsun 310 gx	38.0	4	91.0	67.0	1995.0	16.2	82	3
buick century limited	25.0	6	181.0	110.0	2945.0	16.4	82	1
oldsmobile cutlass ciera (diesel)	38.0	6	262.0	85.0	3015.0	17.0	82	1
chrysler lebaron medallion	26.0	4	156.0	92.0	2585.0	14.5	82	1
ford granada l	22.0	6	232.0	112.0	2835.0	14.7	82	1
toyota celica gt	32.0	4	144.0	96.0	2665.0	13.9	82	3
dodge charger 2.2	36.0	4	135.0	84.0	2370.0	13.0	82	1
chevrolet camaro	27.0	4	151.0	90.0	2950.0	17.3	82	1
ford mustang gl	27.0	4	140.0	86.0	2790.0	15.6	82	1
vw pickup	44.0	4	97.0	52.0	2130.0	24.6	82	2
dodge rampage	32.0	4	135.0	84.0	2295.0	11.6	82	1
ford ranger	28.0	4	120.0	79.0	2625.0	18.6	82	1
chevy s-10	31.0	4	119.0	82.0	2720.0	19.4	82	1

Auto_re.loc[idx_80, ["weight", "origin"]]

	weight	origin
name		
plymouth reliant	2490.0	1
buick skylark	2635.0	1
dodge aries wagon (sw)	2620.0	1
chevrolet citation	2725.0	1
plymouth reliant	2385.0	1
toyota starlet	1755.0	3
plymouth champ	1875.0	1
honda civic 1300	1760.0	3
subaru	2065.0	3
datsun 210 mpg	1975.0	3
toyota tercel	2050.0	3
mazda glc 4	1985.0	3

200	weight	origin
name		
plymouth horizon 4	2215.0	1
ford escort 4w	2045.0	
ford escort 2h	2380.0	
volkswagen jetta	2190.0	
honda prelude	2210.0	
toyota corolla	2350.0	3
datsun 200sx	2615.0	
mazda 626	2635.0	
peugeot 505s turbo diesel	3230.0	2
volvo diesel	3160.0	2
toyota cressida	2900.0	3
datsun 810 maxima	2930.0	3
buick century	3415.0	1
oldsmobile cutlass ls	3725.0	1
ford granada gl	3060.0	1
chrysler lebaron salon	3465.0	1
chevrolet cavalier	2605.0	1
chevrolet cavalier wagon	2640.0	1
chevrolet cavalier 2-door	2395.0	1
pontiac j2000 se hatchback	2575.0	1
dodge aries se	2525.0	1
pontiac phoenix	2735.0	1
ford fairmont futura	2865.0	1
volkswagen rabbit l	1980.0	2
mazda glc custom l	2025.0	3
mazda glc custom	1970.0	3
plymouth horizon miser	2125.0	1
mercury lynx l	2125.0	1
nissan stanza xe	2160.0	3
honda accord	2205.0	3
toyota corolla	2245.0	3
honda civic	1965.0	3
honda civic (auto)	1965.0	3
datsun 310 gx	1905.0 1995.0	3
buick century limited	2945.0	1
	3015.0	1
oldsmobile cutlass ciera (diesel)	2585.0	1
chrysler lebaron medallion		
ford granada l	2835.0	1
toyota celica gt	2665.0	3
dodge charger 2.2	2370.0	1
chevrolet camaro	2950.0	1
ford mustang gl	2790.0	$\frac{1}{2}$
vw pickup	2130.0	

	weight	origin
name		
dodge rampage	2295.0	1
ford ranger	2625.0	1
chevy s-10	2720.0	1

Auto_re.loc[lambda df: df["year"] > 80, ["weight", "origin"]]

	weight	origin
name	weight	origin
plymouth reliant	2490.0	1
buick skylark	2635.0	1
dodge aries wagon (sw)	2620.0	1
chevrolet citation	2725.0	1
plymouth reliant	2385.0	1
toyota starlet	1755.0	
plymouth champ	1875.0	1
honda civic 1300	1760.0	
subaru	2065.0	
datsun 210 mpg	1975.0	3
toyota tercel	2050.0	3
mazda glc 4	1985.0	3
plymouth horizon 4	2215.0	1
ford escort 4w	2045.0	1
ford escort 2h	2380.0	1
volkswagen jetta	2190.0	2
honda prelude	2210.0	3
toyota corolla	2350.0	3
datsun 200sx	2615.0	3
mazda 626	2635.0	3
peugeot 505s turbo diesel	3230.0	2
volvo diesel	3160.0	2
toyota cressida	2900.0	3
datsun 810 maxima	2930.0	3
buick century	3415.0	1
oldsmobile cutlass ls	3725.0	1
ford granada gl	3060.0	1
chrysler lebaron salon	3465.0	1
chevrolet cavalier	2605.0	1
chevrolet cavalier wagon	2640.0	1
chevrolet cavalier 2-door	2395.0	1
pontiac j2000 se hatchback	2575.0	1
dodge aries se	2525.0	1
pontiac phoenix	2735.0	1
_		

	weight	origin
name		
ford fairmont futura	2865.0	1
volkswagen rabbit l	1980.0	2
mazda glc custom l	2025.0	3
mazda glc custom	1970.0	3
plymouth horizon miser	2125.0	1
mercury lynx l	2125.0	1
nissan stanza xe	2160.0	3
honda accord	2205.0	3
toyota corolla	2245.0	3
honda civic	1965.0	3
honda civic (auto)	1965.0	3
datsun 310 gx	1995.0	3
buick century limited	2945.0	1
oldsmobile cutlass ciera (diesel)	3015.0	1
chrysler lebaron medallion	2585.0	1
ford granada l	2835.0	1
toyota celica gt	2665.0	3
dodge charger 2.2	2370.0	1
chevrolet camaro	2950.0	1
ford mustang gl	2790.0	1
vw pickup	2130.0	2
dodge rampage	2295.0	1
ford ranger	2625.0	1
chevy s-10	2720.0	1

Auto_re.loc[lambda df: (df["year"] > 80) & (df["mpg"] > 30), ["weight", "origin"]]

	weight	origin
name		
toyota starlet	1755.0	3
plymouth champ	1875.0	1
honda civic 1300	1760.0	3
subaru	2065.0	3
datsun 210 mpg	1975.0	3
toyota tercel	2050.0	3
mazda glc 4	1985.0	3
plymouth horizon 4	2215.0	1
ford escort 4w	2045.0	1
volkswagen jetta	2190.0	2
honda prelude	2210.0	3
toyota corolla	2350.0	3
datsun 200sx	2615.0	3

	. 1.	
	weight	origin
name		
mazda 626	2635.0	3
volvo diesel	3160.0	2
chevrolet cavalier 2-door	2395.0	1
pontiac j2000 se hatchback	2575.0	1
volkswagen rabbit l	1980.0	2
mazda glc custom l	2025.0	3
mazda glc custom	1970.0	3
plymouth horizon miser	2125.0	1
mercury lynx l	2125.0	1
nissan stanza xe	2160.0	3
honda accord	2205.0	3
toyota corolla	2245.0	3
honda civic	1965.0	3
honda civic (auto)	1965.0	3
datsun 310 gx	1995.0	3
oldsmobile cutlass ciera (diesel)	3015.0	1
toyota celica gt	2665.0	3
dodge charger 2.2	2370.0	1
vw pickup	2130.0	2
dodge rampage	2295.0	1
chevy s-10	2720.0	1

```
Auto_re.loc[
    lambda df: (df["displacement"] < 300)
    & (df.index.str.contains("ford") | df.index.str.contains("datsun")),
    ["weight", "origin"],
]</pre>
```

	weight	origin
name		
ford maverick	2587.0	1
datsun pl510	2130.0	3
datsun pl510	2130.0	3
ford torino 500	3302.0	1
ford mustang	3139.0	1
datsun 1200	1613.0	3
ford pinto runabout	2226.0	1
ford pinto (sw)	2395.0	1
datsun 510 (sw)	2288.0	3
ford maverick	3021.0	1
datsun 610	2379.0	3
ford pinto	2310.0	1

	imb+	
name	weight	origin
datsun b210	1950.0	3
ford pinto	2451.0	1
datsun 710	2003.0	3
ford maverick	3158.0	1
ford pinto	2639.0	1
datsun 710	2545.0	3
ford pinto	2984.0	1
ford maverick	3012.0	1
ford granada ghia	3574.0	1
datsun b-210	1990.0	3
ford pinto	2565.0	1
datsun f-10 hatchback	1945.0	3
ford granada	3525.0	1
ford mustang ii 2+2	2755.0	1
datsun 810	2815.0	3
ford fiesta	1800.0	1
datsun b210 gx	2070.0	3
ford fairmont (auto)	2965.0	1
ford fairmont (man)	2720.0	1
datsun 510	2300.0	3
datsun 200-sx	2405.0	3
ford fairmont 4	2890.0	1
datsun 210	2020.0	3
datsun 310	2019.0	3
ford fairment	2870.0	1
datsun 510 hatchback	2434.0	3
datsun 210	2110.0	3
datsun 280-zx	2910.0	3
datsun 210 mpg	1975.0	3
ford escort 4w	2045.0	1
ford escort 2h	2380.0	1
datsun 200sx	2615.0	3
datsun 810 maxima	2930.0	3
ford granada gl	3060.0	1
ford fairmont futura	2865.0	1
datsun 310 gx	1995.0	3
ford granada l	2835.0	1
ford mustang gl	2790.0	1
ford ranger	2625.0	1

for loops

```
total = 0
for value in [3, 2, 9]:
    total += value
print("total is: {0}".format(total))
total is: 14
total = 0
for value in [3, 2, 9]:
    for weight in [3, 2, 1]:
        total += weight * value
print("total is: {0}".format(total))
total is: 84
total = 0
for value, weight in zip([3, 2, 9], [0.2, 0.3, 0.5]):
    total += weight * value
print("weighted average is: {0}".format(total))
weighted average is: 5.7
rng = np.random.default_rng(1)
A = rng.standard_normal((127, 5))
array([[ 3.45584192e-01, 8.21618144e-01, 3.30437076e-01,
        -1.30315723e+00, 9.05355867e-01],
       [ 4.46374572e-01, -5.36953235e-01, 5.81118104e-01,
         3.64572396e-01, 2.94132497e-01],
       [ 2.84222413e-02, 5.46712987e-01, -7.36454087e-01,
       -1.62909948e-01, -4.82119313e-01],
       [ 5.98846213e-01, 3.97221075e-02, -2.92456751e-01,
        -7.81908462e-01, -2.57192241e-01],
       [8.14218052e-03, -2.75602905e-01, 1.29406381e+00,
         1.00672432e+00, -2.71116248e+00],
       [-1.88901325e+00, -1.74772092e-01, -4.22190412e-01,
         2.13642997e-01, 2.17321931e-01],
       [ 2.11783876e+00, -1.11202076e+00, -3.77605007e-01,
         2.04277161e+00, 6.46702996e-01],
       [ 6.63063372e-01, -5.14006372e-01, -1.64807517e+00,
         1.67464744e-01, 1.09014088e-01],
       [-1.22735205e+00, -6.83226662e-01, -7.20436797e-02,
        -9.44751623e-01, -9.82699679e-02],
       [ 9.54830275e-02, 3.55862371e-02, -5.06291658e-01,
```

```
5.93748072e-01, 8.91166954e-01],
[ 3.20848305e-01, -8.18230227e-01, 7.31652284e-01,
-5.01440018e-01, 8.79160618e-01],
[-1.07178742e+00, 9.14467203e-01, -2.00634546e-02,
-1.24874889e+00, -3.13899472e-01],
[5.41022788e-02, 2.72791339e-01, -9.82188125e-01,
-1.10737305e+00, 1.99584533e-01],
[-4.66749617e-01, 2.35505612e-01, 7.59519522e-01,
-1.64878737e+00, 2.54388117e-01],
[ 1.22464697e+00, -2.97526844e-01, -8.10814583e-01,
 7.52243827e-01, 2.53446516e-01],
[8.95883071e-01, -3.45215710e-01, -1.48181827e+00,
-1.10010765e-01, -4.45828153e-01],
[7.75323822e-01, 1.93632848e-01, -1.63084923e+00,
-1.19516308e+00, 8.83789037e-01],
[6.79765017e-01, -6.40243366e-01, -1.04879657e-03,
 4.45573554e-01, 4.68404336e-01],
[8.76242196e-01, 2.56485627e-01, -9.48283390e-02,
-2.58848065e-01, 1.05574280e+00],
[-2.25085428e+00, -1.38655325e-01, 3.30001040e-02,
-1.42534896e+00, 3.32813613e-01],
[-6.51281012e-01, 8.62444796e-01, -1.25592084e-01,
 6.69153241e-01, 1.21884361e+00],
[ 3.82929583e-01, -8.75721143e-01, -1.51431863e+00,
 1.75338412e+00, -1.11292193e-01],
[-6.88564948e-01, 1.44257088e-01, -1.91411330e-01,
 8.52142264e-01, 3.39281824e-02],
[ 1.37495836e-02, -7.14579721e-01, 4.69568099e-01,
-1.03386672e+00, 6.65889440e-01],
[ 1.52393751e+00, -1.52468604e+00, -2.46622923e+00,
 6.16878755e-01, 2.54789782e+00],
[-1.00092485e+00, -1.25069576e+00, 5.88968934e-01,
-8.40721590e-01, -5.06025484e-01],
[-3.48117467e-01, 5.32002086e-01, -4.05302361e-01,
 2.77882840e-01, -1.76533259e-01],
[-8.44671104e-01, -3.19826258e-01, -9.50399665e-01.
 6.51498587e-03, -1.12386623e+00],
[-1.09289437e+00, 1.45696182e+00, -5.31842203e-02,
-5.39020255e-02, 5.11536420e-01],
[-4.20857003e-01, -2.28535367e-01, 4.25148735e-01,
 2.82415842e-01, -1.15929673e+00],
[8.33342597e-01, -5.90434943e-01, -1.05607895e+00,
-9.00475070e-01, -3.90545344e-01],
[ 1.62730025e+00, -1.17553590e+00, 1.60075893e-01,
-2.13782436e+00, -1.56693315e-03],
[8.99566417e-01, -2.36663322e-01, -6.29354924e-01,
```

```
2.31511064e-01, 7.00151751e-01],
[ 6.63657571e-01, 1.97247385e+00, 2.09167472e-01,
-5.92410100e-01, -1.25979190e-01],
[-7.24985456e-02, 1.08737383e-01, -3.00278132e-02,
 1.73965939e-01, -1.67085006e+00],
[8.29628956e-01, -5.74739269e-01, -1.17315870e+00,
 6.37751160e-01, 1.31732601e+00],
[ 4.93028149e-01, 1.61159314e-01, -9.32220305e-01,
 2.87156734e+00, 8.80258621e-01],
[-1.13929467e+00, -7.79637916e-01, 8.69792486e-02,
-1.55473113e+00, 1.68630407e-01],
[-4.59071556e-01, 1.22627060e+00, 9.62154664e-01,
-2.71128544e+00, 4.17025860e-02],
[-1.61746750e+00, 1.10963800e+00, 1.68105869e-01,
 5.48405452e-01, -1.06512473e+00],
[ 1.82843024e+00, 2.02007337e+00, -1.06477104e+00,
 3.72815122e-01, -6.73302428e-01],
[-2.35699369e-02, -1.26563698e+00, 1.86714551e+00,
-9.69179511e-01, -2.96083815e-01],
[ 5.01482931e-01, -6.47560678e-01, -2.39312430e-01,
-5.63639846e-01, -1.33460755e-01],
[-1.17054264e+00, -4.37988076e-01, -2.06892925e-01,
-3.33726004e-01, 5.66899549e-02],
[-2.93102219e-01, 7.53211408e-01, -3.23195926e-01,
-1.36649596e-01, -6.64781336e-01],
[-5.26514840e-01, -1.26449279e+00, 5.18784921e-01,
-1.14251802e+00, -7.45856398e-01],
[ 3.59244652e-01, 4.02573366e-01, -4.00114751e-01,
-2.01926581e+00, 4.20513287e-01],
[ 2.59563459e-01, -1.41238122e+00, 7.70322083e-01,
-7.01099800e-01, -1.12618812e+00],
[ 9.57307110e-02, -1.78470431e-01, 2.02624001e-01,
-1.60574806e+00, 1.81223012e+00],
[-6.02658615e-01, -1.53965931e+00, 6.18842189e-01,
-3.54804130e-01, 3.24858486e-01],
[-3.39608431e-01, -5.97403605e-02, 2.45772844e-01,
-7.46652884e-01, 6.78739596e-01],
[-4.69900099e-01, -8.69687144e-01, 7.70324218e-02,
 4.45041278e-01, -2.29079342e-01],
[-8.62519787e-01, 6.19785566e-01, -1.76032879e+00,
-1.03086414e+00, 3.95228905e-02],
[-1.36105940e+00, 2.79942642e-02, -5.48631180e-02,
 8.98739789e-01, -9.14790352e-01],
[-6.25906524e-01, 3.33181685e-01, -2.45756359e+00,
 3.10004230e+00, -6.98650730e-01],
[-7.29835053e-01, 8.61127511e-01, -3.98318414e-02,
```

```
-1.77942862e+00, 6.26927380e-01],
[8.55377834e-01, -4.49946273e-01, -2.81600358e-01,
 4.85984597e-01, -9.08780250e-01],
[ 4.38388564e-01, 1.99298510e-01, -6.74932616e-01,
-1.39210187e+00, -2.25605831e-01],
[-8.75422258e-01, 1.00141023e+00, 1.44085368e-01,
 7.82084523e-01, 1.34621935e-01],
[ 2.62901117e-01, -7.82998917e-01, 6.68047427e-01,
 1.78469827e+00, -3.09687556e-01],
[-5.92774528e-01, -1.57836702e-01, -4.81280284e-01,
-7.01479299e-01, 1.38193644e-01],
[-2.90917533e-01, 1.43887359e+00, 2.01642955e-04,
 3.23911978e-01, 9.52021868e-01],
[-3.00755853e-01, 1.43673654e+00, -6.32694213e-01,
-8.08327702e-01, -3.66267019e-01],
[-1.14717392e-01, -1.40131820e+00, -3.50947841e-02,
-1.66748659e+00, 1.39213840e+00],
[-8.09969514e-02, -6.41957725e-01, -9.08338118e-01,
-3.84430474e-01, -2.23079468e-01],
[-1.04451097e+00, -9.19795094e-01, -1.87175005e-01,
-5.20783748e-01, 9.39213104e-01],
[ 1.13787037e+00, 1.60212036e-02, 4.73599572e-01,
-1.33518837e+00, 6.37417709e-01],
[-3.05834695e-02, 4.84668316e-01, 1.60035613e+00,
-2.28085776e+00, 2.60948179e-01],
[-1.09911906e+00, 5.92196691e-01, -1.31331344e+00,
-4.95399567e-01, 2.02733756e-01],
[ 6.13509386e-01, 7.47940893e-02, -7.92830939e-01,
-5.53532218e-01, 8.84502891e-01],
[-5.49961569e-03, -1.68381440e+00, 8.43662708e-01,
 4.16248480e-01, 8.73415545e-01],
[-3.36627466e-01, 8.28156518e-01, -1.06106492e+00]
 5.69999811e-01, -4.90380310e-01],
[ 6.74351705e-01, 1.00564412e+00, -7.35990152e-01,
-5.12294795e-02, 3.89546265e-02],
[ 1.18966482e+00, 7.10558091e-01, -1.21927754e+00,
 4.57608261e-01, 7.45089209e-01],
[ 2.12380590e+00, -1.67914910e+00, -5.36352300e-01,
 1.33337119e+00, -1.35507030e+00],
[-1.19946058e+00, 5.17082195e-01, 1.01840866e+00,
-6.68680487e-01, 5.40127172e-01],
[ 1.16955269e-01, 1.51874903e+00, -1.51843971e-03,
 9.90247312e-01, -9.03117859e-01],
[-1.84878849e-01, -9.67044538e-02, 1.13910795e+00,
 5.79613040e-01, -7.51753131e-01],
[ 6.81967764e-01, 7.70631276e-01, -1.11645722e-01,
```

```
-2.57662315e-01, -1.93803245e-01],
[-1.69499241e+00, 1.88743008e-01, 2.34577929e-01,
-8.65528524e-01, 7.42446250e-01],
[-1.37296694e+00, -5.51812821e-01, -4.75219069e-01,
 1.98750983e+00, -1.59918406e+00],
[ 5.62630255e-01, 9.42123278e-01, 3.77725564e-01,
 1.18180794e+00, -1.00273769e+00],
[-2.28025860e+00, 7.66817889e-01, -1.19582816e+00,
-3.26399877e-01, -1.17884600e+00],
[ 1.05234186e+00, 8.65150235e-01, -7.20063662e-01,
 9.03491845e-01, 1.21277259e-01],
[-1.39388831e-01, 5.74166620e-02, -2.02749360e-01,
 6.15005264e-01, 3.10347570e-01],
[-3.49467146e-01, 1.00625575e+00, -6.11475615e-01,
 2.86933643e-01, 4.22155371e-01],
[ 1.47880706e+00, -5.05441363e-01, 1.74308245e+00,
 1.76164952e-01, -1.93976911e-01],
[-6.72472751e-01, 5.86293419e-01, 4.89352444e-02,
-1.10360927e+00, -1.12788718e+00],
[-5.55519208e-01, -6.76006004e-01, 1.09030239e+00,
 1.37553830e+00, 8.68559624e-01],
[ 3.57868890e-01, -4.28238208e-01, 5.44832109e-02,
 8.84707006e-01, 2.13097223e+00],
[ 9.12899205e-01, -2.80412144e-01, 3.80250758e-02,
-4.82544901e-01, -7.82398576e-01],
[-1.84242002e-01, 1.95614692e-01, 1.83590159e+00,
 5.20324700e-02, 1.35735807e+00],
[ 1.76748908e+00, 7.88078703e-02, 1.60779889e+00,
 7.14935405e-01, -4.17535295e-01],
[ 2.65180025e-01, 2.28778180e-02, -2.32339030e-01,
-1.98781233e-01, 1.44209303e-01],
[ 4.34181140e-01, -8.84881875e-01, -9.38766200e-03,
-1.52235502e+00, 2.60795499e-01],
[ 6.23599476e-01, 1.63954838e-01, 2.85853152e-01,
 5.89943104e-01, -6.65100844e-01],
[-2.39048859e-01, 5.10922044e-01, 1.00188573e+00,
 3.94921401e-01, 2.55285942e+00],
[-9.13605722e-02, 9.99660429e-01, 1.26672768e+00,
-1.33769846e-01, -8.20512882e-01],
[-1.18260293e+00, 1.62277000e-01, 1.11029195e+00,
 2.71668399e-01, 1.72856075e-01],
[-3.79213883e-01, 5.61029733e-01, -2.13583105e+00,
 2.32373251e-01, 2.81263096e-02],
[-1.37034025e+00, 2.17559792e+00, -1.38741323e+00,
-1.07752050e+00, -1.20086311e+00],
[ 1.11036780e+00, -8.88084861e-01, 6.68656413e-01,
```

```
5.87510153e-01, 2.59670411e-01],
[-1.30757891e+00, -6.12106378e-01, 1.67311497e+00,
-1.29075440e+00, -8.31654960e-01],
[-1.62246523e-01, 8.08990072e-01, 2.51639191e-01,
 7.42044159e-01, -1.06729423e+00],
[ 9.44776594e-01, 5.69028817e-01, -1.59456456e+00,
 1.53991621e+00, 2.29239786e+00],
[-7.68577357e-01, 5.56528166e-02, 1.39742258e+00,
-1.48124023e+00, -1.98986032e+00],
[-1.29694412e+00, -5.67066786e-01, -5.78442212e-01,
 6.07347174e-01, 2.68536372e-01],
[-1.24607726e+00, 5.67379970e-01, 1.87408134e+00,
 1.19705428e+00, 9.91107448e-01],
[ 2.01779285e-02, 9.83631395e-01, -9.66132820e-01,
 7.51014637e-01, -8.72484195e-02],
[ 1.13090570e+00, 4.66010551e-01, -1.08987979e+00,
 1.27992953e-01, 1.21822147e+00],
[-1.12923389e+00, -5.59139878e-01, -7.68673008e-01,
-1.49564594e+00, 9.61268275e-01],
[ 1.31099730e+00, 8.00043207e-01, 2.42570315e-01,
-5.20313843e-02, 2.39380301e-01],
[-7.31555917e-01, 8.93845600e-01, 1.04549232e+00,
 9.32543534e-01, -5.30948218e-01],
[7.84043419e-02, -1.65780819e-01, 1.78857479e+00,
 1.79696202e-01, -1.88207089e+00],
[ 3.98505651e-01, 1.88226625e+00, 6.85175716e-01,
 8.79479710e-01, 3.60612668e-02],
[-1.97138949e+00, -1.81025775e+00, -1.24594777e+00,
-1.26832037e-01, 3.09998496e-01],
[ 6.89414152e-01, -3.40458043e-01, 9.56929258e-01,
-2.79748758e-01, -7.04489515e-01],
[8.51641715e-01, -9.14444983e-01, -2.72908493e+00,
-1.05995676e+00, 9.41595455e-02],
[-3.08017776e+00, -3.57138046e-01, -3.32090359e-01,
-1.42645597e+00, -1.48250346e+00],
[-4.62461948e-01, -5.47100170e-01, 1.25991851e+00,
 3.74863045e-01, -1.58085545e+00],
[-8.54651470e-01, 7.05141527e-01, 1.89597677e+00,
 3.86499494e-01, 3.10712545e-01],
[1.86075246e+00, -2.26714440e-02, -3.09100958e-01,
-1.41324878e+00, -5.13016082e-01],
[ 2.17871274e+00, -1.42174139e+00, 1.11917068e-02,
-1.40832743e+00, 1.28475748e-01],
[8.87647203e-01, -2.43649320e-01, 7.30347270e-01,
 7.20843826e-01, 4.47024816e-01],
[ 1.71624800e+00, 7.78837554e-01, -3.04959566e-01,
```

```
-6.80823548e-01, -8.45306348e-01],
      [ 4.75867438e-01, -3.23721814e-01, 2.72916704e+00,
        1.84244761e+00, -2.14524000e-01],
      [-3.29131254e-01, 1.69017655e+00, -1.88335978e+00,
       -4.51551059e-01, 9.50756951e-01]])
A.shape
(127, 5)
M = rng.choice([0, np.nan], p=[0.8, 0.2], size=A.shape)
array([[ 0., 0., 0., nan],
      [nan, 0., 0., 0., 0.],
      [nan, 0., nan, 0., 0.],
      [ 0., nan, nan, 0., nan],
      [ 0., 0., 0., nan, 0.],
      [0., 0., 0., 0., 0.],
      [ 0., 0., 0., nan],
      [nan, nan, 0., 0., 0.],
      [ 0., 0., nan, nan, 0.],
      [ 0., 0., 0., nan, 0.],
      [nan, 0., 0., 0., nan],
      [nan, 0., 0., 0., 0.],
      [ 0., 0., nan, 0., 0.],
      [0., 0., 0., 0., 0.]
      [ 0., 0., 0., nan, nan],
      [ 0., 0., nan, 0., 0.],
      [0., 0., 0., 0., 0.]
      [ 0., nan, nan, 0., 0.],
      [0., 0., 0., 0., 0.]
      [0., 0., 0., 0., 0.]
      [ 0., nan, 0., nan, nan],
      [ 0., nan, 0., 0., nan],
      [ 0., nan, 0., nan, 0.],
      [nan, 0., 0., nan, 0.],
      [ 0., nan, nan, 0., nan],
      [ 0., nan, nan, 0., 0.],
      [ 0., nan, 0., 0., nan],
      [ 0., 0., 0., nan, nan],
      [ 0., 0., nan, 0., 0.],
      [ 0., 0., 0., nan],
      [ 0., 0., nan, nan, nan],
      [ 0., 0., 0., nan, 0.],
      [ 0., nan, nan, 0., 0.],
      [nan, 0., nan, 0., 0.],
```

```
[0., 0., 0., 0., 0.]
[ 0., nan, 0., 0., 0.],
[0., 0., 0., 0.,
                   0.],
[ 0., 0., 0., nan,
                   0.],
[nan, 0., 0., 0.,
                   0.],
[ 0., 0., 0., 0.,
                   0.],
[ 0., nan, nan, 0.,
                   0.],
                   0.],
[nan, 0., 0., 0.,
[0., 0., 0., 0.,
                   0.],
[0., 0., 0., 0.,
                   0.],
[ 0., 0., nan, nan,
                   0.],
[0., 0., 0., 0., 0.]
[nan, 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[ 0., nan, nan, nan, nan],
[nan, 0., 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[ 0., 0., 0., nan, 0.],
                   0.],
[ 0., nan, 0., nan,
[ 0., 0., 0., nan,
                   0.],
[ 0., 0., 0., 0.,
                   0.],
[ 0., nan, 0., 0.,
                   0.],
[ 0., 0., nan, 0.,
                   0.],
                   0.],
[nan, nan, nan, nan,
[ 0., 0., 0., nan,
                   0.],
[ 0., nan, 0., 0.,
                   0.],
[ 0., nan, 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[0., 0., 0., 0., 0.]
[ 0., 0., 0., nan],
[ 0., 0., nan, 0., 0.],
[nan, nan, 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[ 0., 0., nan, 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]
[ 0., nan, 0., nan, nan],
[ 0., nan, 0., 0., 0.],
[0., 0., 0., 0., 0.]
[ 0., nan, 0., 0., 0.],
[ 0., 0., 0., nan, 0.],
[ 0., nan, 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[nan, 0., nan, 0., 0.],
[ 0., 0., nan, 0., 0.],
[ 0., 0., nan, 0., nan],
```

```
[ 0., nan, 0., 0., 0.],
[nan, nan, nan, 0., nan],
[0., 0., 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[0., 0., 0., 0., 0.]
[0., 0., 0., 0., 0.]
[0., 0., 0., 0., 0.]
         0., 0., 0.],
[nan, nan,
[nan, 0., 0., 0., nan],
[0., 0., 0., 0., 0.]
[ 0., 0., 0., nan, 0.],
[ 0., nan, 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[ 0., nan, nan, nan, 0.],
[ 0., 0., nan, 0., nan],
[0., 0., 0., 0., 0.],
[ 0., nan, nan, 0., 0.],
[ 0., nan, 0., 0., 0.],
[ 0., 0., 0., nan],
[0., 0., 0., 0., 0.],
[ 0., 0., 0., nan],
[0., 0., 0., 0., 0.]
[0., 0., 0., 0., 0.],
[ 0., 0., nan, 0., 0.],
[ 0., 0., 0., nan],
[0., 0., 0., 0., 0.],
[ 0., nan, nan, nan, 0.],
[ 0., nan, 0., 0., nan],
[0., 0., 0., 0., 0.]
[ 0., 0., 0., nan, nan],
[ 0., 0., nan, 0., nan],
[0., 0., 0., 0., 0.]
[ 0., 0., 0., nan, 0.],
[0., 0., 0., 0., 0.],
[nan, 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]
[nan, 0., nan, nan, nan],
[ 0., 0., 0., nan],
[0., 0., 0., 0., 0.],
[ 0., nan, 0., 0., nan],
[0., 0., 0., 0., 0.],
[nan, 0., 0., 0., 0.],
[nan, 0., 0., nan, 0.],
[ 0., 0., 0., nan],
[ 0., 0., nan, 0., 0.],
[0., 0., 0., 0., 0.]
```

```
array([[ 3.45584192e-01, 8.21618144e-01, 3.30437076e-01,
        -1.30315723e+00,
                                    nan],
       nan, -5.36953235e-01, 5.81118104e-01,
         3.64572396e-01, 2.94132497e-01],
       nan, 5.46712987e-01,
                                                      nan,
       -1.62909948e-01, -4.82119313e-01],
       [ 5.98846213e-01,
                                    nan,
                                                      nan,
       -7.81908462e-01,
                                    nan],
       [8.14218052e-03, -2.75602905e-01, 1.29406381e+00,
                    nan, -2.71116248e+00],
       [-1.88901325e+00, -1.74772092e-01, -4.22190412e-01,
         2.13642997e-01, 2.17321931e-01],
       [ 2.11783876e+00, -1.11202076e+00, -3.77605007e-01,
         2.04277161e+00,
                                    nan],
                   nan,
                                    nan, -1.64807517e+00,
         1.67464744e-01, 1.09014088e-01],
       [-1.22735205e+00, -6.83226662e-01,
                                                     nan,
                    nan, -9.82699679e-02],
       [ 9.54830275e-02, 3.55862371e-02, -5.06291658e-01,
                    nan, 8.91166954e-01],
                    nan, -8.18230227e-01, 7.31652284e-01,
                                    nan],
        -5.01440018e-01,
                   nan, 9.14467203e-01, -2.00634546e-02,
       -1.24874889e+00, -3.13899472e-01],
       [ 5.41022788e-02, 2.72791339e-01,
                                                     nan,
       -1.10737305e+00, 1.99584533e-01],
       [-4.66749617e-01, 2.35505612e-01, 7.59519522e-01,
       -1.64878737e+00, 2.54388117e-01],
       [ 1.22464697e+00, -2.97526844e-01, -8.10814583e-01,
                                    nan],
                    nan,
       [ 8.95883071e-01, -3.45215710e-01,
                                                     nan,
       -1.10010765e-01, -4.45828153e-01],
       [7.75323822e-01, 1.93632848e-01, -1.63084923e+00,
       -1.19516308e+00, 8.83789037e-01],
       [ 6.79765017e-01,
                                    nan,
                                                      nan,
         4.45573554e-01, 4.68404336e-01],
       [8.76242196e-01, 2.56485627e-01, -9.48283390e-02,
       -2.58848065e-01, 1.05574280e+00],
       [-2.25085428e+00, -1.38655325e-01, 3.30001040e-02,
       -1.42534896e+00, 3.32813613e-01],
       [-6.51281012e-01,
                                    nan, -1.25592084e-01,
                    nan,
                                    nan],
```

```
[ 3.82929583e-01,
                            nan, -1.51431863e+00,
 1.75338412e+00,
                             nan],
[-6.88564948e-01,
                             nan, -1.91411330e-01,
            nan, 3.39281824e-02],
            nan, -7.14579721e-01, 4.69568099e-01,
            nan, 6.65889440e-01],
[ 1.52393751e+00,
                             nan,
                                              nan.
 6.16878755e-01,
                             nan],
[-1.00092485e+00,
                             nan,
                                              nan,
-8.40721590e-01, -5.06025484e-01],
[-3.48117467e-01,
                             nan, -4.05302361e-01,
 2.77882840e-01,
                             nan],
[-8.44671104e-01, -3.19826258e-01, -9.50399665e-01,
            nan,
                             nan],
[-1.09289437e+00, 1.45696182e+00,
                                              nan,
-5.39020255e-02, 5.11536420e-01],
[-4.20857003e-01, -2.28535367e-01, 4.25148735e-01,
 2.82415842e-01,
                             nan],
[ 8.33342597e-01, -5.90434943e-01,
                                              nan.
            nan,
[ 1.62730025e+00, -1.17553590e+00, 1.60075893e-01,
            nan, -1.56693315e-03],
[ 8.99566417e-01,
                                              nan,
  2.31511064e-01, 7.00151751e-01],
            nan, 1.97247385e+00,
                                              nan,
-5.92410100e-01, -1.25979190e-01],
[-7.24985456e-02, 1.08737383e-01, -3.00278132e-02,
 1.73965939e-01, -1.67085006e+00],
[ 8.29628956e-01,
                             nan, -1.17315870e+00,
 6.37751160e-01, 1.31732601e+00],
[ 4.93028149e-01, 1.61159314e-01, -9.32220305e-01,
 2.87156734e+00, 8.80258621e-01],
[-1.13929467e+00, -7.79637916e-01, 8.69792486e-02,
            nan, 1.68630407e-01],
            nan, 1.22627060e+00, 9.62154664e-01,
-2.71128544e+00, 4.17025860e-02],
[-1.61746750e+00, 1.10963800e+00, 1.68105869e-01,
 5.48405452e-01, -1.06512473e+00],
[ 1.82843024e+00,
                                              nan,
 3.72815122e-01, -6.73302428e-01],
            nan, -1.26563698e+00, 1.86714551e+00,
-9.69179511e-01, -2.96083815e-01],
[ 5.01482931e-01, -6.47560678e-01, -2.39312430e-01,
-5.63639846e-01, -1.33460755e-01],
[-1.17054264e+00, -4.37988076e-01, -2.06892925e-01,
-3.33726004e-01, 5.66899549e-02],
```

```
[-2.93102219e-01, 7.53211408e-01,
                                              nan,
            nan, -6.64781336e-01],
[-5.26514840e-01, -1.26449279e+00, 5.18784921e-01,
-1.14251802e+00, -7.45856398e-01],
            nan, 4.02573366e-01, -4.00114751e-01,
-2.01926581e+00, 4.20513287e-01],
[ 2.59563459e-01, -1.41238122e+00, 7.70322083e-01,
-7.01099800e-01, -1.12618812e+00],
[ 9.57307110e-02,
                                              nan,
                             nan],
            nan,
            nan, -1.53965931e+00, 6.18842189e-01,
-3.54804130e-01, 3.24858486e-01],
[-3.39608431e-01, -5.97403605e-02,
                                              nan.
-7.46652884e-01, 6.78739596e-01],
[-4.69900099e-01, -8.69687144e-01, 7.70324218e-02,
            nan, -2.29079342e-01],
[-8.62519787e-01,
                             nan, -1.76032879e+00,
            nan, 3.95228905e-02],
[-1.36105940e+00, 2.79942642e-02, -5.48631180e-02,
            nan, -9.14790352e-01],
[-6.25906524e-01, 3.33181685e-01, -2.45756359e+00,
 3.10004230e+00, -6.98650730e-01],
[-7.29835053e-01,
                             nan, -3.98318414e-02,
-1.77942862e+00, 6.26927380e-01],
[ 8.55377834e-01, -4.49946273e-01,
                                              nan,
 4.85984597e-01, -9.08780250e-01],
nan,
                             nan,
                                              nan,
            nan, -2.25605831e-01],
[-8.75422258e-01, 1.00141023e+00, 1.44085368e-01,
            nan, 1.34621935e-01],
                             nan, 6.68047427e-01,
[ 2.62901117e-01,
 1.78469827e+00, -3.09687556e-01],
                             nan, -4.81280284e-01,
[-5.92774528e-01,
-7.01479299e-01, 1.38193644e-01],
[-2.90917533e-01, 1.43887359e+00,
                                              nan,
 3.23911978e-01, 9.52021868e-01],
[-3.00755853e-01, 1.43673654e+00, -6.32694213e-01,
-8.08327702e-01, -3.66267019e-01],
[-1.14717392e-01, -1.40131820e+00, -3.50947841e-02,
-1.66748659e+00,
                             nan],
[-8.09969514e-02, -6.41957725e-01,
-3.84430474e-01, -2.23079468e-01],
                             nan, -1.87175005e-01,
            nan,
-5.20783748e-01, 9.39213104e-01],
[ 1.13787037e+00, 1.60212036e-02,
                                              nan,
-1.33518837e+00, 6.37417709e-01],
```

```
[-3.05834695e-02, 4.84668316e-01,
                                              nan,
-2.28085776e+00, 2.60948179e-01],
[-1.09911906e+00, 5.92196691e-01, -1.31331344e+00,
-4.95399567e-01, 2.02733756e-01],
[6.13509386e-01, 7.47940893e-02, -7.92830939e-01,
-5.53532218e-01, 8.84502891e-01],
                             nan, 8.43662708e-01,
[-5.49961569e-03,
            nan,
                             nan],
[-3.36627466e-01,
                             nan, -1.06106492e+00,
 5.69999811e-01, -4.90380310e-01],
[ 6.74351705e-01, 1.00564412e+00, -7.35990152e-01,
-5.12294795e-02, 3.89546265e-02],
[ 1.18966482e+00,
                             nan, -1.21927754e+00,
 4.57608261e-01, 7.45089209e-01],
[ 2.12380590e+00, -1.67914910e+00, -5.36352300e-01,
            nan, -1.35507030e+00],
[-1.19946058e+00,
                             nan, 1.01840866e+00,
-6.68680487e-01, 5.40127172e-01],
[ 1.16955269e-01, 1.51874903e+00,
                                              nan.
 9.90247312e-01, -9.03117859e-01],
Γ
            nan, -9.67044538e-02,
                                              nan.
 5.79613040e-01, -7.51753131e-01],
[ 6.81967764e-01, 7.70631276e-01,
                                              nan,
-2.57662315e-01, -1.93803245e-01],
[-1.69499241e+00, 1.88743008e-01,
                                              nan,
-8.65528524e-01,
                             nan],
                             nan, -4.75219069e-01,
[-1.37296694e+00,
 1.98750983e+00, -1.59918406e+00],
            nan,
                             nan,
 1.18180794e+00,
                             nan],
[-2.28025860e+00, 7.66817889e-01, -1.19582816e+00,
-3.26399877e-01, -1.17884600e+00],
[ 1.05234186e+00, 8.65150235e-01,
                                              nan,
 9.03491845e-01, 1.21277259e-01],
[-1.39388831e-01, 5.74166620e-02, -2.02749360e-01,
 6.15005264e-01, 3.10347570e-01],
[-3.49467146e-01, 1.00625575e+00, -6.11475615e-01,
 2.86933643e-01, 4.22155371e-01],
[ 1.47880706e+00, -5.05441363e-01, 1.74308245e+00,
 1.76164952e-01, -1.93976911e-01],
            nan,
                             nan, 4.89352444e-02,
-1.10360927e+00, -1.12788718e+00],
            nan, -6.76006004e-01, 1.09030239e+00,
 1.37553830e+00,
                             nan],
[ 3.57868890e-01, -4.28238208e-01, 5.44832109e-02,
 8.84707006e-01, 2.13097223e+00],
```

```
[ 9.12899205e-01, -2.80412144e-01, 3.80250758e-02,
            nan, -7.82398576e-01],
[-1.84242002e-01,
                             nan, 1.83590159e+00,
 5.20324700e-02, 1.35735807e+00],
[ 1.76748908e+00, 7.88078703e-02,
                                              nan,
 7.14935405e-01, -4.17535295e-01],
[ 2.65180025e-01,
                                              nan,
            nan, 1.44209303e-01],
[ 4.34181140e-01, -8.84881875e-01,
                                              nan,
-1.52235502e+00,
                             nan],
[ 6.23599476e-01, 1.63954838e-01, 2.85853152e-01,
 5.89943104e-01, -6.65100844e-01],
[-2.39048859e-01,
                                              nan.
 3.94921401e-01, 2.55285942e+00],
[-9.13605722e-02,
                             nan, 1.26672768e+00,
-1.33769846e-01, -8.20512882e-01],
[-1.18260293e+00, 1.62277000e-01, 1.11029195e+00,
 2.71668399e-01,
                             nan],
[-3.79213883e-01, 5.61029733e-01, -2.13583105e+00,
 2.32373251e-01, 2.81263096e-02],
[-1.37034025e+00, 2.17559792e+00, -1.38741323e+00,
-1.07752050e+00,
                             nan],
[ 1.11036780e+00, -8.88084861e-01, 6.68656413e-01,
 5.87510153e-01, 2.59670411e-01],
[-1.30757891e+00, -6.12106378e-01, 1.67311497e+00,
-1.29075440e+00, -8.31654960e-01],
[-1.62246523e-01, 8.08990072e-01,
                                              nan,
 7.42044159e-01, -1.06729423e+00],
[ 9.44776594e-01, 5.69028817e-01, -1.59456456e+00,
 1.53991621e+00,
                             nan],
[-7.68577357e-01, 5.56528166e-02, 1.39742258e+00,
-1.48124023e+00, -1.98986032e+00],
[-1.29694412e+00,
                             nan,
                                              nan,
            nan, 2.68536372e-01],
[-1.24607726e+00,
                             nan, 1.87408134e+00,
 1.19705428e+00,
                             nan],
[ 2.01779285e-02, 9.83631395e-01, -9.66132820e-01,
 7.51014637e-01, -8.72484195e-02,
[ 1.13090570e+00, 4.66010551e-01, -1.08987979e+00,
            nan,
                             nan],
[-1.12923389e+00, -5.59139878e-01,
-1.49564594e+00,
                             nan],
[ 1.31099730e+00, 8.00043207e-01, 2.42570315e-01,
-5.20313843e-02, 2.39380301e-01],
[-7.31555917e-01, 8.93845600e-01, 1.04549232e+00,
            nan, -5.30948218e-01],
```

```
[ 7.84043419e-02, -1.65780819e-01, 1.78857479e+00,
         1.79696202e-01, -1.88207089e+00],
                   nan, 1.88226625e+00, 6.85175716e-01,
        8.79479710e-01, 3.60612668e-02],
       [-1.97138949e+00, -1.81025775e+00, -1.24594777e+00,
       -1.26832037e-01, 3.09998496e-01],
                   nan, -3.40458043e-01,
                                                     nan,
                   nan,
                                    nan],
       [8.51641715e-01, -9.14444983e-01, -2.72908493e+00,
       -1.05995676e+00,
                                    nan],
       [-3.08017776e+00, -3.57138046e-01, -3.32090359e-01,
       -1.42645597e+00, -1.48250346e+00],
                                    nan, 1.25991851e+00,
       [-4.62461948e-01,
         3.74863045e-01,
                                    nan],
       [-8.54651470e-01, 7.05141527e-01, 1.89597677e+00,
         3.86499494e-01, 3.10712545e-01],
                   nan, -2.26714440e-02, -3.09100958e-01,
       -1.41324878e+00, -5.13016082e-01],
                   nan, -1.42174139e+00, 1.11917068e-02,
                   nan, 1.28475748e-01],
       [8.87647203e-01, -2.43649320e-01, 7.30347270e-01,
         7.20843826e-01,
       [ 1.71624800e+00, 7.78837554e-01,
                                                     nan,
       -6.80823548e-01, -8.45306348e-01],
       [ 4.75867438e-01, -3.23721814e-01, 2.72916704e+00,
        1.84244761e+00, -2.14524000e-01],
       [-3.29131254e-01, 1.69017655e+00, -1.88335978e+00,
        -4.51551059e-01, 9.50756951e-01]])
D = pd.DataFrame(A, columns=["food", "bar", "pickle", "snack", "popcorn"])
```

	food	bar	pickle	snack	popcorn
0	0.345584	0.821618	0.330437	-1.303157	NaN
1	NaN	-0.536953	0.581118	0.364572	0.294132
2	NaN	0.546713	NaN	-0.162910	-0.482119
3	0.598846	NaN	NaN	-0.781908	NaN
4	0.008142	-0.275603	1.294064	NaN	-2.711162
122	NaN	-1.421741	0.011192	NaN	0.128476
123	0.887647	-0.243649	0.730347	0.720844	NaN
124	1.716248	0.778838	NaN	-0.680824	-0.845306
125	0.475867	-0.323722	2.729167	1.842448	-0.214524
126	-0.329131	1.690177	-1.883360	-0.451551	0.950757

D[:3]

	food	bar	pickle	snack	popcorn
0	0.345584	0.821618	0.330437	-1.303157	NaN
1	NaN	-0.536953	0.581118	0.364572	0.294132
2	NaN	0.546713	NaN	-0.162910	-0.482119

```
for col in D.columns:
    template = "Column {0} has {1: .2%} missing values"
    print(template.format(col, np.isnan(D[col]).mean()))

Column food has 16.54% missing values
Column bar has 25.98% missing values
Column pickle has 29.13% missing values
Column snack has 21.26% missing values
Column popcorn has 22.83% missing values
fig, ax = subplots(figsize=(8, 8))
ax.plot(Auto["horsepower"].values, Auto["mpg"].values, "o");
```


ax = Auto.plot.scatter("horsepower", "mpg")
ax.set_title("Horsepower vs MPG")

Text(0.5, 1.0, 'Horsepower vs MPG')

CategoricalDtype(categories=[3, 4, 5, 6, 8], ordered=False, categories_dtype=int64)

```
fig, ax = subplots(figsize=(8, 8))
Auto.boxplot("mpg", by="cylinders", ax=ax);
```

Boxplot grouped by cylinders


```
fig, ax = subplots(figsize=(8, 8));
Auto.hist("mpg", ax=ax);
```


fig, ax = subplots(figsize=(8, 8))
Auto.hist("mpg", color="red", bins=12, ax=ax);

Auto.hist?

pd.plotting.scatter_matrix(Auto);

pd.plotting.scatter_matrix(Auto[["mpg", "displacement", "weight"]]);

Auto[["mpg", "weight"]].describe()

	mpg	weight
count	392.000000	392.000000
mean	23.445918	2977.584184
std	7.805007	849.402560
\min	9.000000	1613.000000
25%	17.000000	2225.250000
50%	22.750000	2803.500000
75%	29.000000	3614.750000
max	46.600000	5140.000000

Auto[["cylinders"]].describe()

	cylinders
count	392
unique	5
top	4
freq	199

Auto[["mpg"]].describe()

	mpg
count	392.000000
mean	23.445918
std	7.805007
\min	9.000000
25%	17.000000
50%	22.750000
75%	29.000000
max	46.600000

allDone()

<IPython.lib.display.Audio object>