lab6

June 7, 2022

```
[]: import numpy as np
    import pandas as pd
    from matplotlib import pyplot
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')
[]: coffee = pd.read_csv('coffee.csv', header = 0, index_col = 0, parse_dates =__
      ⇔True, squeeze = True)
[]: coffee.head()
[]:
                  Open
                          High
                                   Low
                                         Close Volume Currency
    Date
    2000-01-03 122.25
                       124.00 116.10
                                       116.50
                                                  6640
                                                            USD
                                        116.25
    2000-01-04 116.25 120.50 115.75
                                                  5492
                                                            USD
    2000-01-05 115.00 121.00
                                115.00
                                                  6165
                                                            USD
                                        118.60
    2000-01-06 119.00 121.40
                                116.50
                                        116.85
                                                  5094
                                                            USD
    2000-01-07 117.25 117.75 113.80
                                                  6855
                                        114.15
                                                            USD
[]: coffee.shape
[]: (5683, 6)
[]: ts_coffee = pd.read_csv('coffee.csv', header = 0, index_col = 0, parse_dates =__
      →True)
[]: ts_coffee.head()
[]:
                                                Volume Currency
                  Open
                          High
                                   Low
                                         Close
    Date
    2000-01-03 122.25 124.00 116.10
                                        116.50
                                                  6640
                                                            USD
    2000-01-04 116.25 120.50 115.75
                                        116.25
                                                  5492
                                                            USD
    2000-01-05 115.00 121.00 115.00
                                        118.60
                                                  6165
                                                            USD
    2000-01-06 119.00 121.40 116.50
                                        116.85
                                                  5094
                                                            USD
    2000-01-07 117.25 117.75 113.80
                                        114.15
                                                  6855
                                                            USD
```

```
[]: ts_coffee.shape
[]: (5683, 6)
[]: drop_columns = ['High', 'Low', 'Close', 'Volume', 'Currency']
[]: ts_coffee=ts_coffee.drop(drop_columns,axis=1)
[]: ts_coffee.head()
[]:
                   Open
    Date
     2000-01-03 122.25
     2000-01-04 116.25
     2000-01-05 115.00
     2000-01-06 119.00
     2000-01-07 117.25
[]: ts_coffee['Open']['2000-01']
[]: Date
     2000-01-03
                   122.25
     2000-01-04
                   116.25
     2000-01-05
                   115.00
     2000-01-06
                   119.00
     2000-01-07
                   117.25
     2000-01-10
                   123.50
     2000-01-11
                   115.50
     2000-01-12
                   117.80
     2000-01-13
                   119.25
     2000-01-14
                   117.75
     2000-01-18
                   111.75
     2000-01-19
                   116.50
     2000-01-20
                   118.25
     2000-01-21
                   112.00
     2000-01-24
                   110.95
                   111.60
     2000-01-25
     2000-01-26
                   112.50
     2000-01-27
                   114.75
     2000-01-28
                   115.10
     2000-01-31
                   113.75
     Name: Open, dtype: float64
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
     fig.suptitle('
     ts_coffee.plot(ax=ax, legend=False)
     pyplot.show()
```

Временной ряд в виде графика


```
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
    fig.suptitle(' 20 ')
    ts_coffee[:20].plot(ax=ax, legend=False)
    pyplot.show()
```

Первые 20 точек ряда


```
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle(' ')
ts_coffee.hist(ax=ax, legend=False)
pyplot.show()
```



```
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle(' ')
ts_coffee.plot(ax=ax, kind='kde', legend=False)
pyplot.show()
```

Плотность вероятности распределения данных


```
for i in range(1, 5):
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,4))
    fig.suptitle(f' {i}')
    pd.plotting.lag_plot(ts_coffee, lag=i, ax=ax)
    pyplot.show()
```

Лаг порядка 1

Лаг порядка 3

Лаг порядка 4


```
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle(' ')
pd.plotting.autocorrelation_plot(ts_coffee, ax=ax)
pyplot.show()
```

Автокорреляционная диаграмма

Временной ряд со скользящими средними


```
[]: from sklearn.metrics import mean_squared_error
     from statsmodels.tsa.arima.model import ARIMA
     from statsmodels.tsa.holtwinters import ExponentialSmoothing
[]: xnum = list(range(ts coffee2.shape[0]))
     Y = ts coffee2['Open'].values
     train_size = int(len(Y) * 0.7)
     xnum_train, xnum_test = xnum[0:train_size], xnum[train_size:]
     train, test = Y[0:train_size], Y[train_size:]
     history_arima = [x for x in train]
     history_es = [x for x in train]
[ ]: #
                 (p,d,q)
     arima order = (6,1,0)
     predictions_arima = list()
     for t in range(len(test)):
         model_arima = ARIMA(history_arima, order=arima_order)
         model_arima_fit = model_arima.fit()
         yhat_arima = model_arima_fit.forecast()[0]
         predictions_arima.append(yhat_arima)
         history_arima.append(test[t])
                  RMSE
     error_arima = mean_squared_error(test, predictions_arima, squared=False)
[ ]: | #
     predictions_es = list()
     for t in range(len(test)):
         model_es = ExponentialSmoothing(history_es)
         model_es_fit = model_es.fit()
         yhat_es = model_es_fit.forecast()[0]
         predictions_es.append(yhat_es)
         history_es.append(test[t])
     error_es = mean_squared_error(test, predictions_es, squared=False)
[]: np.mean(Y), error_arima, error_es
[]: (126.20606545838467, 2.772484753663894, 2.7684518794710455)
[]: ts_coffee2['predictions_ARIMA'] = (train_size * [np.NAN]) +
     ⇒list(predictions arima)
     ts_coffee2['predictions_HWES'] = (train_size * [np.NAN]) + list(predictions_es)
[]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(20,20))
     fig.suptitle('
```

```
ts_coffee2[5600:].plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда

Gen Left	Length	Fitness	Length	Fitness	00B Fitness	Time
0	263.65	1.83344e+82	26	7096.47	N/A	
3.87m	142 00	A F0400-110	27	6402 62	NT / A	
1 1.97m	143.20	4.52488e+18	37	6423.63	N/A	
2	125.76	3.17714e+28	36	2981.26	N/A	
1.68m 3	37.19	1.00884e+15	35	1357.48	N/A	
46.25s		1.000010.10	00	1007.40	N/ A	
4		3.00561e+11	36	1348.53	N/A	
43.14s 5		3.6604e+12	29	1347.86	N/A	
42.24s						
6 49.27s		5.00527e+11	53	1340.74	N/A	
7		1.00247e+11	32	1337.52	N/A	
38.62s					4	
8 46.22s		3.02114e+13	67	1333.78	N/A	
9		2.04272e+11	80	1330.71	N/A	
41.00s		2 0040-111	07	1207 7	NT / A	
46.35s		3.0042e+11	87	1327.7	N/A	
11	67.91	1.17323e+10	56	1321.53	N/A	
55.39s 12	84.75	3.00497e+11	74	1315.42	N/A	
1.02m	04.73	3.004376111	74	1313.42	N/ A	
13	117.59	4.38221e+11	175	1313.81	N/A	
1.36m 14	134.62	4.42353e+11	78	1306.47	N/A	
1.59m	101.02	1.120000111	70	1000.47	N/ A	
15	93.23	6.40904e+16	70	1305.42	N/A	
1.08m 16	93.54	4.18069e+11	82	1292.6	N/A	
1.14m					,	
17	83.26	2.36324e+11	105	1292.17	N/A	
1.10m 18	95.85	3.0474e+11	97	1285.02	N/A	
1.04m						
19	97.38	2.59852e+10	65	1283.7	N/A	
1.37m 20	97.62	2.37122e+11	92	1280.18	N/A	
1.03m						
21 1.31m	97.70	4.16481e+11	104	1277.5	N/A	
1.01m						

22	108.00	4.15384e+11	108	1270.33	N/A
1.30m 23	119.44	5.75953e+11	107	1270.26	N/A
1.40m 24 1.10m	122.91	7.85085e+11	189	1265.6	N/A
25 1.13m	117.03	2.06137e+11	289	1262.8	N/A
26 1.30m	161.66	3.8515e+13	125	1258.4	N/A
27 1.76m	208.47	3.54604e+10	179	1240.85	N/A
28 1.54m	214.05	2.08075e+11	169	1240.86	N/A
29 1.95m	193.55	1.16327e+11	187	1240.58	N/A
30 1.92m	282.15	1.4358e+11	171	1237.85	N/A
31 1.65m	202.84	4.27824e+11	169	1236.93	N/A
32 1.15m	193.22	1.34157e+11	205	1235.69	N/A
33 1.49m	186.32	2.08e+11	165	1227.65	N/A
34 1.63m	195.75	3.61611e+11	273	1223.82	N/A
35 1.48m	207.24	4.16854e+11	182	1215.98	N/A
36 1.24m	200.67	1.48128e+11	187	1215.08	N/A
37 1.24m	217.53	2.35494e+10	188	1213.41	N/A
38 1.01m	188.83	3.12841e+10	285	1210.87	N/A
39 1.28m	194.81			1208.82	N/A
40 1.15m		1.7514e+10		1208.81	N/A
41 1.26m	264.01		273	1207.24	N/A
42 1.30m	220.34	1.9401e+11	234	1206.3	N/A
43 1.02m	248.83		277	1203.89	N/A
44 1.12m	265.90			1203.89	N/A
45 58.05s		1.24033e+11	263	1202.06	N/A

46	259.05	2.33082e+11	246	1202.06	N/A
1.00m 47 54.18s	274.01	3.51011e+14	269	1200.61	N/A
48 47.20s	238.53	1.37946e+11	283	1198.32	N/A
49 1.10m	254.42	1.19972e+11	282	1198.32	N/A
50 45.62s	250.23	6.59532e+09	289	1196.49	N/A
51 46.43s	268.52	1.13479e+09	289	1196.16	N/A
52 48.66s	327.28	1.1708e+11	385	1193.54	N/A
53 51.41s	320.06	1.8292e+10	385	1193.54	N/A
54 54.40s	357.94	1.63158e+10	652	1193.53	N/A
52.91s		1.00109e+11	408	1191.62	N/A
56 53.40s	485.86	9.71437e+09	420	1191.53	N/A
57 45.21s		1.08283e+11	429	1191.14	N/A
58 39.19s	420.28	5.76415e+09	431	1191.14	N/A
59 37.46s 60	414.51	2.07525e+10	406	1190.02	N/A N/A
32.86s 61	421.65 425.74	4.04333e+11 3.40622e+09	406 504	1190.02 1189.98	N/A
28.43s	444.41	3.729e+10	509	1189.98	N/A
27.50s 63		7.55312e+09	418	1189.94	N/A
23.63s 64	406.27	1.25908e+11	393	1188.65	N/A
17.92s 65		1.10143e+11	431	1189.85	N/A
14.61s 66		6.81453e+09	420	1188.81	N/A
10.32s 67	398.40	1.04182e+11	424	1188.67	N/A
7.10s 68		4.36312e+11		1188.26	N/A
3.56s 69	435.89	1.07835e+11		1187.87	N/A
0.00s					

[]: print(est_gp._program)

add(sub(sub(div(X0, 28.307), div(sub(div(add(div(div(mul(X0, X0), sub(37.158, -19.620), add($\sin(-38.730)$, add($\sin(-38.730)$, $\sup(X0, X0)$)), $\sin(-38.730)$), div(X0, 28.307)), sub(37.158, -19.620)), X0)), sub(add(sin(-38.730), add(sin(-38.730), sub(X0, X0))), sub(37.158, -19.620))), div(sub(mul(X0, -11.576), sub(X0, X0)), add(div(div(mul(X0, X0), add(sub(sub(sub(sub(sub(div(X0, 28.307), div(X0, X0)), sub(div(X0, X0), sub(37.158, -19.620))), -19.620), -19.620), -19.620), div(add(div(div(mul(X0, X0), add(sub(sub(div(X0, 28.307), div(X0, X0)), sub(div(X0, X0), sub(37.158, -19.620))), div(sub(mul(X0, -11.576), sub(37.158, -19.620)), add(div(div(mul(X0, X0), add(sub(37.158, -19.620), div(add(div(div(mul(X0, X0), add(37.158, sub(div(X0, 28.307), sub(X0, X0)))), add(sin(-38.730), add(sin(-38.730), sub(X0, X0)))), sub(sub(37.158, -19.620), -19.620)), div(X0, 28.307)))), add(-19.620, add(sin(-38.730), sub(X0, X0)))), div(sub(sin(div(sub(div(X0, X0), sub(37.158, -19.620)), X0)), sub(37.158, add(div(div(mul(X0, X0), add(sub(sub(div(X0, 28.307), div(X0, X0)), sub(div(X0, X0), sub(37.158, -19.620))), div(sub(mul(X0, -11.576), sub(sub(div(X0, 28.307), div(add(div(div(mul(X0, X0), sub(37.158, -19.620)), sub(sub(div(X0, 28.307), sub(sub(div(X0, 28.307), div(sub(div(X0, X0), sub(37.158, -19.620)), X0)),sub(div(sub(X0, X0), X0), sub(37.158, -19.620)))), sub(div(X0, X0), sub(37.158, -19.620))), sin(-38.730)), div(X0, 28.307))), sub(div(X0, X0), sub(37.158, -19.620)))), add(div(div(mul(X0, X0), add(sub(37.158, -19.620), div(add(div(div(mul(X0, X0), sub(37.158, -19.620)), add(sin(-38.730), add(sin(-38.730), sub(X0, X0)))), sin(-38.730)), div(X0, 28.307))))add(-19.620, add(sin(-38.730), sub(X0, X0)))), div(sub(sin(sub(X0, X0)), sub(37.158, add(div(div(mul(X0, X0), add(sub(sub(div(X0, 28.307), div(X0, X0)), sub(div(X0, X0), sub(37.158, -19.620))), div(sub(mul(X0, -11.576), X0),add(div(div(mul(X0, X0), add(sub(37.158, -19.620), div(add(div(div(mul(X0, X0), sub(37.158, -19.620)), add(sin(-38.730), add(sin(-38.730), sub(X0, X0)))), sin(-38.730)), div(X0, 28.307)))), add(-19.620, add(<math>sin(-38.730), sub(X0, -38.730)), sub(X0, -38.730)) X0)))), div(sub(X0, X0), X0))))), add(sin(-38.730), sub(X0, X0))), X0))), X0))))), add(sin(-38.730), sub(X0, X0))), X0)))), add(sin(-38.730), sub(X0, X0)), X0), div(X0, 28.307))), add(sin(-38.730), add(sin(-38.730), sub(X0, X0))), div(sub(sin(sub(X0, X0)), sub(37.158, -19.620)), X0))))

```
[ ]: y_gp = est_gp.predict(np.array(xnum_test).reshape(-1, 1))
y_gp[:10]
```

```
[]: array([197.02008255, 197.05604924, 197.09201562, 197.1279817, 197.16394748, 197.19991296, 197.23587813, 197.271843, 197.30780756, 197.34377183])
```

Предсказания временного ряда (тестовая выборка)

