Grammaires

Feuille de travaux dirigés n°7 27–31 mars 2008

Devoir 7. Soit G la grammaire suivante :

```
\begin{split} N &= \{S\} \\ T &= \{a,b\} \\ P &= \left\{ \begin{array}{l} S \rightarrow aSS \mid SSb \mid \varepsilon \end{array} \right\} \\ S \end{split}
```

- a) Trouvez une dérivation droite pour le mot aabb.
- b) Trouvez une dérivation gauche pour le même mot.
- c) On considère la suite de dérivation suivante : $\mathbf{S} \to aS\mathbf{S} \to aS\mathbf{S}Sb \to aSaSSSbSb \to aSaSSSbSb \to aSaSSSbSb \to aSaSSSbSbb \to aSaSSSbSbb \to aSaSSSbSbb \to aSaSSSbSbb \to aSaSSSbSSbbb \to aSaSSSbbbb \to aSaSSbSSbbb \to aSaSSbbbb \to aSaSSbbbb \to aSaSSbbbb \to aSabSbbbb \to aSabSbbbb \to aSaSSbbbb \to aSaSSbbb \to aSaSSbbbb \to aSaSS$

Dessinez A. l'arbre de dérivations associée.

d) Combien de suites de dérivations différentes peut-on obtenir à partir de A?

Corrigé partiel

$$\textbf{a) S} \rightarrow aSS \rightarrow aSSSbb \rightarrow aSSSbb \rightarrow aSSbb \rightarrow aSbb \rightarrow aaSbb \rightarrow aaSbb \rightarrow aabb$$

b)
$$S \rightarrow aSS \rightarrow aaSSS \rightarrow aaSS \rightarrow aaSSb \rightarrow aabSb \rightarrow aabbSbb \rightarrow aabbSbb \rightarrow aabb$$

d) Etant donné un arbre de dérivation A, on peut ne mettre dans A que les nuds d'étiquette une variable non terminale, ici il n'y a que S, et donc c'est un arbre binaire, tout nud à 2 fils S (car les deux productions issues de S sont aSS et bSS).

Etant donné un tel arbre de dérivation A, on met l'étiquette S_0 à la racine et si S_n est l'étiquette d'un nud, S_{n_0} est l'étiquette de son fils gauche et S_{n_1} celle de son fils droit. L'ensemble des suites de dérivations associées à A, est l'ensemble des mots que l'on peut écrire avec comme alphabet ces étiquettes et tels que S_n est écrit avant S_{n_n} , pour tout n et p mots sur 0—1 (en clair tout sommet est dérivé après ses ancêtres).

Alors, connaissant le nombre de dérivations possibles pour le fils gauche et le fils droit d'un noeud S_n , notons n_g et n_d respectivement ces deux nombres, comment calculer le nombre de dérivations possibles pour S_n ? Il suffit (et il faut?) de connaitre en outre la longueur respective de chacune de ces dérivations (toutes les dérivations issues d'un noeud S_x donné ont la même longueur, c'est le nombre de noeuds du sous-arbre de racine S_x), notons l_g et l_d respectivement ces deux nombres.

Etant donnée une dérivation de S_{n_0} et une dérivation de S_{n_1} , il y a $\binom{n_g+n_d}{n_g}$ (c'est le nombre de combinaisons de n_g éléments d'un ensemble à n_g+n_d éléments) manières possibles de les mélanger, et il y a $n_g\times n_d$ couples de dérivations possibles, donc le nombre de dérivations possibles pour S_n est $n_g\times n_d\times \binom{n_g+n_d}{n_g}$.

Par ailleurs la longueur des dérivations issues de S_n est $l_g + l_d + 1$ (+1 car il faut compter la dérivation de S_n). Pour les feuilles, on a 1 dérivation possible et la longueur de la dérivation est 1, on a ainsi un moyen (algorithme) pour compter le nombre de dérivations pour A quelqonque (pour cette grammaire) en partant des feuilles et en remontant à la racine.