

Inhalt

- Grundlangen
 - Was ist eine Diode?
 - Halbleiter
 - Dotierungen
 - Der pn-Übergang
- Anwendung der Diode, Kennlinien
- Shockley-Gleichung, Arbeitspunktberechnung
- Modell der konstanten Durchlassspannung
- Differentieller Widerstand, Kleinsignalmodell der Diode
- Zener-Diode, Grundschaltungen der Diode
- Optische Halbleiterbauelemente

pn-Sperrschichtdiode

Verschiedene Typen von Dioden

Bauformen

Diode	Durchlassspannung
Si-Diode	0.6-0.7 V
Ge-Diode	0.25-0.3 V
Schottky-Diode	0.15-0.45 V

Silizium – Der Stoff aus dem die Halbleiterträume sind

- Silizium ist ein Halbleiter mit 4 Außenelektronen
- Silizium hat das früher verwendete Germanium fast vollständig verdrängt
 - Grund: Es "rostet" perfekt (SiO₂)!

Diamantstruktur - Diamantgitter

Tetraeder-Bindung

Silizium - Dotierungen

• Durch Dotierung mit Gruppe 3 (Acceptor) bzw. Gruppe 5 (Donator) Elementen können die elektrischen Eigenschaften gezielt verändert werden

Vereinfachte Darstellung:

pn-Übergang: Bildung der Raumladungszone

Sperrschicht:

- keine freien, beweglichen Ladungsträger
- Raumladungszone (RLZ)

Elektronik 1

engl. depletion region (= Verarmungszone)

pn-Übergang: Durchlass- & Sperrichtung

Diode in Flusspolung

Sperrschicht hat sich verkleinert

Diode in Sperrpolung

Sperrschicht dehnt sich aus

Wiederholung Grundlagen – Teil 2

- Grundlagen
- Anwendung der Diode, Kennlinien
 - Die Diode als elektrisches Ventil
 - Eine mögliche Anwendung der Diode: Die Entkopplung von Stromkreisen
 - Welche Arbeitsbereiche gibt es bei der Diode?
- Shockley-Gleichung, Arbeitspunktberechnung
- Modell der konstanten Durchlassspannung
- Differentieller Widerstand, Kleinsignalmodell der Diode
- Zener-Diode, Grundschaltungen der Diode
- Optische Halbleiterbauelemente

Diode als elektrisches Ventil

Flusspolung (engl. Forward bias):
Betrieb in Durchlassrichtung
(Diode niederohmig)

Sperrpolung (engl. reverse bias):
Betrieb in Sperrrichtung
(Diode hochohmig)

Analogie zu einem Schleusenmodell

Übung: Diode "on" oder "off"?

Beispiel: Entkopplung von Stromkreisen (1)

Beispiel: Entkopplung von Stromkreisen (2)

Nur der ersten Batterie wird Energie entnommen.

Beispiel: Entkopplung von Stromkreisen (3)

Beide Quellen liefern Energie. D_2 ist hochohmiger $\Rightarrow I_2 \leq I_1$, d.h. die frischere Batterie wird stärker entladen.

Die 3 Arbeitsbereiche der Diodenkennlinie

Shockley-Gleichung: $I_D = f(U_D)$

 $I_D = I_S \cdot \left(\exp\left(\frac{q \cdot U_D}{n \cdot k \cdot T}\right) - 1 \right)$

W. B. Shockley 1910-1989

k Boltzmann-Konstante, $k = 1.38 \cdot 10^{-23} J/K$

T absolute Temperatur in Kelvin

q Elementarladung, $q = 1.60 \cdot 10^{-19} C$

I_s theoretischer Sättigungssperrstrom

n Emissionskoeffizient, n = 1...2

$$U_{Temp} = \frac{k \cdot T}{q} = 25 \ mV \ @ \ 293 \ K \ (20 \ ^{\circ}C)$$

= 26 mV \ @ 300 K \ (27 \ ^{\circ}C)

Bei Raumtemperatur beträgt die Temperaturspannung ca. 25 mV.

Temperaturgang der Kennlinie

$$I_D = I_S \cdot \left(\exp\left(\frac{q \cdot U_D}{n \cdot k \cdot T}\right) - 1 \right)$$

Halbleiter reagieren auf Erwärmung mit Erhöhung ihrer Leitfähigkeit.

 U_{Temp} und I_s sind temperaturabhängig!

⇒ Kennlinie verschiebt sich nach links (bzw. nach oben)

Für
$$I_D = const$$
 gilt: $\frac{dU_D}{dT} = -1 \dots - 3 \frac{mV}{K} \approx -2 \frac{mV}{K}$

Bei Erwärmung sinkt U_D um ca. 2 mV je Kelvin.

Kennlinie in halblogarithmischer Darstellung

$$I_D = I_s \cdot \left(e^{\frac{q \cdot U_D}{n \cdot k \cdot T}} - 1 \right)$$

$$I_D = I_S \cdot \left(e^{\frac{q \cdot U_D}{n \cdot k \cdot T}} - 1\right)$$
 Gute Näherung: $I_D = I_S \cdot e^{\frac{U_D}{n \cdot U_{Temp}}}$

für $U_D \gg n \cdot U_{Temp}$

Umkehrfunktion: $U_D = n \cdot U_{Temp} \cdot ln \frac{I_D}{I_s}$

$$U_D = n \cdot U_{Temp} \cdot ln \frac{I_D}{I_S}$$

Graphische Arbeitspunktbestimmung: Diode

Beispiel: Wo auf der Diodenkennlinie liegt der Arbeitspunkt?

Konstruktion

(Leerlaufspannung, Kurzschlussstrom):

 U_D -Achsenschnittpunkt = U_R

 I_D -Achsenschnittpunkt = $\frac{U_B}{R}$

Gleichung der Widerstandsgeraden im $I_D - U_D$ -Diagramm:

$$U_B = R \cdot I_D + U_D$$
 (Masche)

$$\Rightarrow I_D = \frac{U_B - U_D}{R} = -\frac{1}{R} \cdot U_D + \frac{U_B}{R} \text{ (vgl. } y = m \cdot x + b)$$

Modell der konstanten Durchlassspannung

Beispiel: Bestimme $I_D!$

Die Durchlassspannung einer Diode in Flusspolung kann mit $U_D = 0.7 \ V \approx const.$ angenommen werden.

Modell der konstanten Durchlassspannung (2)

Beispiel 2: Man bestimme jeweils den Wert des Potentials an der Ausgangsklemme.

Modell der konstanten Durchlassspannung (3)

Beispiel 3: Wie groß ist das Potential an der Ausgangsklemme hier?

Modell der konstanten Durchlassspannung (4)

Beispiel 4: Diesmal liegt die Diode in Durchlassrichtung. Wie groß ist I_D ?

$$R_{ie} = (R_1 || R_2) + (R_3 || R_4)$$

$$I_D = \frac{U_{qe} - U_D}{R_{ie}}$$

$$= \frac{2 V - 0.7 V}{1.2 k\Omega} = 1.08 mA$$

Inhalt

- Grundlagen
- Anwendung der Diode, Kennlinien
- Shockley-Gleichung, Arbeitspunktberechnung
- Modell der konstanten Durchlassspannung
- Differentieller Widerstand, Kleinsignalmodell der Diode
 - Was versteht man unter dem Bahnwiderstand einer Diode?
 - Was bedeutete "differentieller Widerstand"?
 - Mischspannung an einer Diode
 - Kleinsignalmodell der Diode
 - Was versteht man unter "nicht linearen Verzerrungen"?
- Zener-Diode, Grundschaltungen der Diode
- Optische Halbleiterbauelemente

Bahnwiderstand

Bahnwiderstand (R_s):

- endliche Leitfähigkeit der neutralen Zonen (Halbleitermaterial außerhalb der Sperrschicht)
- Kontaktwiderstände an den Metallisierungen

 U_D äußere Diodenspannung U'_D innere Diodenspannung

Wir versuchen, die resultierende Zweipolgleichung $I_D = f(U_D)$ zu bestimmen:

$$U_D = U'_D + R_S \cdot I_D$$

$$U_D = n \cdot U_{Temp} \cdot ln \frac{I_D}{I_S} + R_S \cdot I_D \qquad I_D = ?$$

Siehe Arbeitspunktberechnung!

Bahnwiderstand

Bahnwiderstand (R_s):

- endliche Leitfähigkeit der neutralen Zonen (Halbleitermaterial außerhalb der Sperrschicht)
- Kontaktwiderstände an den Metallisierungen

 U_D äußere Diodenspannung U'_D innere Diodenspannung

Wir versuchen, die resultierende Zweipolgleichung $I_D = f(U_D)$ zu bestimmen:

$$U_D = U'_D + R_S \cdot I_D$$

$$U_D = n \cdot U_{Temp} \cdot ln \frac{I_D}{I_S} + R_S \cdot I_D \qquad I_D = ?$$

Siehe Arbeitspunktberechnung!

((Shockley

100

10

Differentieller Widerstand: Berechnung

$$R_D \times \frac{U_D}{I_D} \Big|_A$$

absoluter Durchlasswiderstand

$$r_D = \left. \frac{dU_D}{dI_D} \right|_A$$

differentieller Durchlasswiderstand

$$g_D = \frac{1}{r_D} = \frac{dI_D}{dU_D} = \frac{d}{dU_D} \left(I_{S \cdot e} \frac{U_D}{n \cdot U_{Temp}} \right) = \frac{1}{n \cdot U_{Temp}} \cdot \underbrace{I_{S \cdot e} \frac{U_D}{n \cdot U_{Temp}}}_{= I_D}$$
 (1. Ableitung)

$$r_D = \frac{n \cdot U_{Temp}}{I_D}$$

 r_D ist arbeitspunktabhängig

Differentieller Widerstand: Werte

Inverse Proportionalität: $r_D \sim \frac{1}{I_D}$

Beispiel: Bei 20 °C gilt für n=1 (idealer pn-Übergang)

$$r_D = \frac{25 \, mV}{I_D}$$

Für $n = 1 \dots 2$ erhält man bei

Man beachte: Für große Diodenströme muss der in Serie liegende Bahnwiderstand mitberücksichtigt werden.

$$\frac{dU_D}{dI_D} = r_D + R_S$$

Diodenmodell mit differentiellem Widerstand

Idee: Die reale Kennlinie wird durch ihre Tangente im Arbeitspunkt A ersetzt.

$$U_D = U_{D0} + r_D \cdot I_D$$

$$\implies I_D = \frac{U_D - U_{D0}}{r_D} = \frac{1}{r_D} \cdot U_D - \frac{U_{D0}}{r_D}$$

Achtung: Die Gleichung gilt nur für die berechneten Werte im Arbeitspunkt !!!

Diodenmodell mit differentiellem Widerstand

Idee: Die reale Kennlinie wird durch ihre Tangente im Arbeitspunkt A ersetzt.

Einsatz der
$$U_D = U_{D0} + r_D \cdot I_D$$
 Tangentengleichung im Arbeitspunkt A: $\Rightarrow I_D = \frac{U_D - U_{D0}}{r_D} = \frac{1}{r_D} \cdot U_D - \frac{U_{D0}}{r_D}$

Achtung: Die Gleichung gilt nur für die berechneten Werte im Arbeitspunkt !!!

Differentieller Widerstand: Beispiel

Beispiel: Eine Diode ($I_s = 10^{-11} A$, n = 1,6) soll in der Umgebung des Arbeitspunkts $I_D = 1 \, mA$ durch das obige Modell approximiert werden.

Die zu $I_D = 1 \, mA$ gehörende Arbeitspunktspannung U_D der realen Kennlinie ist:

$$U_D = n \cdot U_{Temp} \cdot \ln \frac{I_D}{I_S} = 1.6 \cdot 25 \ mV \cdot \ln \frac{10^{-3} \ A}{10^{-11} A} = 737 \ mV$$

Man bestimme noch r_D und U_{D0} .

$$r_D = \frac{n \cdot U_{Temp}}{I_D} = \frac{1.6 \cdot 25 \, mV}{1 \, mA} = 40 \, \Omega$$

Aus der Tangentengleichung $I_D = (U_D - U_{D0}) / r_D$ erhält man für U_{D0} (Ersatzquellenspannung):

$$U_{D0} = U_D - r_D \cdot I_D$$

 $\implies U_{D0} = 737 \, mV - 40 \, \Omega \cdot 1 \, mA = 697 \, mV \approx 0.7 \, V$

Mischspannung an einer Diode

Zerlegung des Mischstroms in zwei Komponenten:

1. Gleichstrom im Arbeitspunkt:

$$I_{DA} = I_S \cdot e^{\frac{U_{DA}}{n \cdot U_{Temp}}}$$

2. Überlagerter Wechselstrom: Ersetzt man im Arbeitspunkt die I-U-Kennlinie durch ihre Tangente (= Linearisierung), dann gilt für kleine Spannungsänderungen ($\hat{\mathbb{U}}_D \ll U_{DA}$) näherungsweise:

$$r_D = \left. \frac{dU_D}{dI_D} \right|_A \approx \frac{u_D}{i_D} \qquad \implies i_D \approx \left. \frac{u_D}{r_D} \right. \quad bzw. \quad \hat{I}_D \approx \frac{\hat{U}_D}{r_D}$$

Elektronik 1

Kleinsignalmodell der Diode

 $i_D = \frac{u_D}{r_D + R}$

Beispiel: Man bestimme die Komponenten der Mischspannung am Ausgang. Es gelte

- 1. DC-Anteil: Deaktiviere gedanklich alle Wechselquellen. I_{DA} , U_{DA} berechnen,
- z. B. mit dem Modell der konstanten U_D .

2. AC-Anteil: Deaktiviere gedanklich alle Gleichquellen. Ersetze die Diode durch r_D . u_D , i_D berechnen.

Nicht lineare Verzerrungen

Die Linearisierung der Kennlinie im Arbeitspunkt gilt näherungsweise nur für Kleinsignale.

Inhalt

- Grundlagen
- Anwendung der Diode, Kennlinien
- Shockley-Gleichung, Arbeitspunktberechnung
- Modell der konstanten Durchlassspannung
- Differentieller Widerstand, Kleinsignalmodell der Diode
- Zener-Diode, Grundschaltungen der Diode
 - Die Zener-Diode (Z-Diode) und Ihre Anwendung
 - Begrenzerschaltungen
 - Einweg-Gleichrichter
 - Brückengleichrichter
- Optische Halbleiterbauelemente

Z-Dioden (Zener-Dioden)

 U_{ZT} : Z-Spannung (laut Datenblatt) bei definiertem Teststrom I_{ZT} (z.B. IN764A mit $U_{ZT}=3.3V$ @ $I_{ZT}=20mA$)

 U_{Z0} : Z-Spannung, extrapoliert für $I_Z = 0$

 r_Z : differentieller Widerstand bei I_{ZT} (siehe Datenblatt)

 I_{Zmax} : max. zulässiger Dauerstrom

 I_{Zmin} : min. Arbeitsstrom (Grenze zum Knickbereich)

Z-Dioden sind in Sperrrichtung betriebene Si-Dioden mit definierter Durchbruchspannung.

Da diese die übliche Betriebsart ist, wird die Durchbruchspannung positive angegeben.

Z-Dioden: Varianten

- Durchbruchursache: 1. Zener- oder Tunneleffekt ($U_Z < 5,6V,TK -$)
 2. Lawineneffekt ($U_Z > 5,6V,TK +$)
- "Gezüchteter" Durchbruch durch speziellen Dotierungsverlauf
- handelsübliche Ausführungen von ca. 3...300 V (in E24-Abstufung)
- sehr steile Durchbruchkennlinie, typische Werte für $r_Z=2...20\Omega$
- auch Durchbruchkennlinien haben einen Temperaturgang (leider!)

Spannungsstabilisierung mit Z-Dioden

R_L: Lastelement(zu betreibende Schaltung)

- 1. $U_E > U_{Z0}$
- 2. $I_{Zmin} < I_Z < I_{Zmax}$

Spannungsstabilisierung: Beispiel

Beispiel: Für eine Z-Diode macht der Hersteller folgende Angaben: $U_Z=6.8V,\ r_Z=5\ \Omega$ (jeweils bei einem Messstrom $I_{ZT}=20\ mA$). Die Z-Diode wird über einem Vorwiderstand $R_V=220\ \Omega$ an einer nicht konstanten Eingangsspannung $U_E=(12V\pm4V)$ betrieben

a) Bestimme die Ausgangsspannung U_A bei $U_E = 12 V$ mit Hilfe der Z-Dioden-Ersatzschaltung.

extrapolierte Z-Spannung aus den Angaben:

$$U_Z = U_{Z0} + r_Z \cdot I_Z$$

$$\Rightarrow U_{Z0} = U_Z - r_Z \cdot I_Z$$

$$= 6.8 V - 5 \Omega \cdot 20 mA = 6.7 V$$

Berechne die Z-Spannung für den Arbeitspunkt:

$$U_A = U_{Z0} + (U_E - U_{Z0}) \cdot \frac{r_Z}{r_Z + R_V}$$
$$= 6.7 V + (12 V - 6.7 V) \cdot \frac{5 \Omega}{5 \Omega + 220 \Omega} = 6.82 V$$

Spannungsstabilisierung: Beispiel

b) Wie groß ist die Änderung der Ausgangsspannung ΔU_A , wenn sich die Eingangsspannung U_E (12 $V \pm 4V$) um $\Delta U_E = 8V$ ändert?

Differentiation von: $U_A = U_{Z0} + (U_E - U_{Z0}) \cdot \frac{r_Z}{r_Z + R_V}$

$$U_{E} = 220\Omega$$

$$U_{E} = V_{E} = V_{E}$$

$$V_{E} = V_{E}$$

Die Spannungsstabilisierung ist umso besser, je kleiner r_Z gegenüber R_V ist.

Spannungsstabilisierung mit Last

$$U_E = 12V$$

$$U_E = 12V$$
 $R_V = 220\Omega$

$$U_Z = 6.8V$$

$$U_Z = 6.8V$$
 $U_{Amin} = 5V$

Frage: Ab welchem Laststrom (Stromaufnahme des Systems dargestellt als Widerstand R_L) wird U_A kleiner 5V?

$$I_Z = 0 \implies I_{Last} = \frac{U_{RL}}{R_{Lmin}} = \frac{U_{RV}}{R_V}$$

$$I_{Last} = \frac{U_{RV}}{R_V} = \frac{7V}{220\Omega} = 32 \ mA$$

$$\left(R_{Lmin} = \frac{5V}{32mA} = 157\Omega\right)$$

- Wenn $U_A < U_Z(U_{Amin} < U_Z)$ Z-Diode sperrt \rightarrow Spannungsteiler (Spannung nicht stabilisiert!)
- Sonst wird U_A von der Zenerspannung bestimmt

Begrenzerschaltungen (Limiter)

Einweg-Gleichrichter

 $u_E > u_A + 0.7V$: Diode "on" \Rightarrow C wird von $(u_E - 0.7V)$ geladen.

 $u_E < u_A + 0.7V$: Diode "off" \Rightarrow C entlädt sich über R_L .

Einweg-Gleichrichter mit Glättungskapazität

Die Dauer der Entladung beträgt nahezu *T*. Somit gilt für die von C abfließende Ladung nährungsweise:

$$Q \approx I_L \cdot T \approx \frac{\hat{U}_E - 0.7V}{R_L} \cdot T = \frac{\hat{U}_E - 0.7V}{f \cdot R_L}$$

Die Spannungsänderung am Kondensator ist mit der abfließenden Ladung wie folgt verknüpft:

$$Q = U_{Br} \cdot C$$
 $(U_{Br}: Brummspannung)$

Durch Gleichsetzen erhält man als Dimensionierungsformel für den Ladekondensator:

$$U_{Br} \cdot C = \frac{\hat{U}_E - 0.7 V}{f \cdot R_L} \implies C = \frac{\hat{U}_E - 0.7 V}{f \cdot R_L \cdot U_{Br}}$$

Brückengleichrichter

- Beide Halbwellen werden ausgenutzt (Vorteil).
- In der pos. Halbwelle leiten D1 und D3, in der negativen Halbwelle D2 und D4.
- Wegen halber Entladungsdauer braucht C nur halb so groß zu sein.
- Brummfrequenz ist doppelt so groß ("100-Hz-Brumm").

$$U_{Br} = \frac{\hat{U}_E - 1.4V}{2f \cdot R_L \cdot C} \implies C = \frac{\hat{U}_E - 1.4V}{2f \cdot R_L \cdot U_{Br}}$$

Schottky-Dioden

Schaltsymbol

Funktionsweise:

Eine Schottky-Diode (auch Hot-Carrier-Diode) besteht aus einem

Metall-HL-Übergang:

Damit sich eine Sperrschicht ausbilden kann, müssen die Austrittsenergien W_A von HL und Metall unterschiedlich sein.

 W_A : Energie, die notwendig ist, um ein Elektron aus dem Kristall ins Unendliche zu bringen (nach W_{∞}). Ist $W_A(HL) < W_A(Metall)$, so entsteht im Energiediagramm eine Stufe.

Aufbau und Banddiagramm

Schottky-Dioden

• Elektronen strömen von der HL-Seite zum Metall, um einen niedrigeren Energiezustand zu erhalten. Zurück bleiben ionisierte Donatoratome. Auf der Metallseite bildet sich eine negative Oberflächenladung.

[Elektronenaffinität z.B. Al 4,1eV, n-Si 4,05eV]

- 1. Fall: U>0 (Minus an n-Seite) Elektronen strömen "von rechts" zum Übergang und bauen die RLZ ab. \rightarrow Strom fließt, $U_S \approx 0.3V$
- 2. Fall U<0: Die "Stufe" kann nicht überwunden werden. → Diode sperrt.

Vergleich der Diodenkennlinien und -werte

Parameter	Si-Diode	Ge-Diode	Schottky-Diode
Schleusenspannung U _S	0,7 – 0,8 V	0,3 - 0,4 V	0,3 - 0,4 V
Sperrstrom I _R	nA-Bereich	μA-Bereich	μA-Bereich
Durchbruchspannung U _{Rmax}	100 – 1500 V	50 – 100 V	50 – 100 V
Rückwärtserholzeit t _{rr}	100 ns	10 ns	0,1 ns

Inhalt

- Grundlagen
- Anwendung der Diode, Kennlinien
- Shockley-Gleichung, Arbeitspunktberechnung
- Modell der konstanten Durchlassspannung
- Differentieller Widerstand, Kleinsignalmodell der Diode
- Zener-Diode, Grundschaltungen der Diode
- Optische Halbleiterbauelemente
 - Absorption, Emission
 - LED
 - LDR
 - Fotodiode
 - Solarzelle

Optoelektronische Bauelemente

Absorption und Emission

a) Absorption

Fällt Licht auf einen Halbleiter, wird es absorbiert, falls für die Energie der einzelnen Photonen $W_{Ph} = h \cdot f$ gilt:

$$W_{Ph} = h \cdot f \geq \Delta W_g$$

Energiediagramm:

- →Ein ELP entsteht!
- →innerer Photoeffekt

Die Wellenlänge bei der gerade noch Absorption auftritt, nennt man Grenzwellenlänge λ_g :

$$\lambda_g = \frac{c}{f_g} = \frac{h \cdot c}{\Delta W_g} \text{ mit } f_g = \frac{\Delta W_g}{h}$$

b) Emission

Bei Rekombination eines ELP kann die freiwerdende Energie ΔW_a in Lichtenergie umgewandelt werden.

$$W_{Ph} = h \cdot f \leq \Delta W_g$$

Die Leuchtdiode, LED: Light Emitting Diode

Prinzip:

Elektronen wandern zur p^+ -Seite und rekombinieren dort.

Emissions-Wellenlänge:

$$\lambda_g = \frac{h \cdot c}{\Delta W_g}$$

Um LEDs mit bestimmten Farben (WL) herzustellen verwendet man Mischkristalle (Legierungshalbleiter).

Beispiel:

GaAs:

$$\Delta W_g = 1.43 eV \rightarrow \lambda_g = 870 nm$$

 $GaAs_{0,35}P_{0,65}$:

$$\Delta W_g = 1.97 eV \rightarrow \lambda_g = 630 nm$$

Typischer Gehäuseaufbau

Der Fotowiderstand, LDR: Light Dependent Resistor

Ein LDR ist ein HL-Kristall, dessen Eigenleitungsdichte (und damit Leifähigkeit) durch Lichteinstrahlung variiert wird. Ursache: innerer Fotoeffekt.

Symbol:

Kennlinie:

Nachteil:

- LDR ist träge
- unempfindlich

Vorteil:

- günstig
- robust

Einsatz:

- Fotokamera
- Dämmerungsschalter
- Bewegungsmelder

Falls die Absorption außerhalb der RLZ stattfindet, rekombinieren die erzeugten ELP wieder und liefern kein Beitrag zum Fotostrom

Kennlinie Fotodiode/ Solarzelle

Solarzellen sind Fotodioden, die darauf optimiert sind, aus Sonnenlicht Strom zu erzeugen.

Der Betrieb erfolgt im 4. Quadranten

$$I = I_S \left(e^{U/U_T} - 1 \right) - I_{Ph}$$

Kennlinie Fotodiode/ Solarzelle

Da die Solarzelle eine Spannungs- bzw. Stromquelle darstellt, wird oft das Erzeugerzählpfeilsystem verwendet und nur der relevante Kennlinien-Ausschnitt dargestellt:

MPP: Maximum Power Point: Kennlinienpunkt mit maximaler Leistungsabgabe

U<0: Fotodiodenbetrieb

 $I = -I_S - I_{Ph} \approx -I_{Ph}$ dabei ist $I_{Ph} \sim$ Bestrahlungsstärke \rightarrow Fotodiode wirkt hier als lichtgesteuerte Stromquelle

U>0: Solarzellenbetrieb

In diesem Fall ist P<0 und das Bauteil gibt Energie ab.

PIN-Diode

Vorteil:

- > große RLZ
- > → Cs klein
- > → schnell

Die Solarzelle, Zelltypen, ESB

Monokristallin

Multikristallin

Dünnschichtzelle (z.B. amorphes Si)

Kennliniengleichung:
$$I = I_{Ph} - I_D = I_{Ph} - I_S \left(e^{\frac{U}{U_T}} - 1 \right)$$

$$I = I_{Ph} + I_S \left(1 - e^{\frac{U}{U_T}} \right)$$

Zusätzliche Verluste:

- Zuleitungswiderstände: R_s
- Verluste im Halbleiter: R_n

Leerlaufspannung:
$$U_L = U(I = 0) = U_T \cdot \ln \left(1 + \frac{I_{Ph}}{I_S} \right)$$

Der Optokoppler

Ziel: Galvanische Trennung zweier Stromkreise

a) mit Fotodiode

CTR = Current Transfer Ratio =
$$\frac{I_A}{I_E}$$

Konkreter Aufbau von Optokopplern

Direkter Strahlengang

Reflexionskoppler

hohes CTR

hohe Isolationsspannung (z.B. 2KV)

Fototransistor

Licht

n-Kollektor

m

Der Fototransistor wird eingesetzt, um den schwachen Fotostrom "gleich an der Quelle" zu verstärken.

p-Basis n-Emitter

Symbol:

Aufbau:

Die Absorption erfolgt in der RLZ des BC-Übergangs.

ESB:

Kennlinie:

