EEM 308 SINYALLER VE SISTEMLER II

ÖRNEKLEME

Yrd. Doç. Dr. Selda GÜNEY

İÇERİK

- •Örnekleme Teoremi
- Sinyalin Yeniden Oluşturulması
- Örtüşme (Aliasing)
- Sürekli Zaman Sinyallerinin Ayrık Zaman İşlemesi
- Ayrık Zaman Sinyallerinin Örneklenmesi

1.1 Dürtü Katarı Örneklemesi

Örnekleme

$$\begin{cases} x_p(t) = x(t)p(t) \\ X_p(j\omega) = \frac{1}{2\pi} [X(j\omega) * P(j\omega)] \end{cases}$$

$$p(t) = \delta_T(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT)$$

Zaman domeninde:

$$x_p(t) = x(t) \cdot \delta_T(t) = \sum_{n = -\infty}^{+\infty} x(nT) \delta(t - nT)$$

Frekans domeninde:

$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$p(t) = \delta_T(t) \qquad \text{(Periyodik Sinyal)}$$

$$p(t) \stackrel{F}{\longleftrightarrow} P(j\omega) = \sum_{k=-\infty}^{+\infty} \frac{2\pi}{T} \delta(\omega - k\omega_s) = \sum_{k=-\infty}^{+\infty} \omega_s \delta(\omega - k\omega_s)$$

$$x_p(t) \stackrel{F}{\longleftrightarrow} X_p(j\omega) = \frac{\omega_s}{2\pi} \sum_{k=-\infty}^{+\infty} X(\omega - k\omega_s) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(\omega - k\omega_s)$$

Örnekleme Teoremi

Örnekleme Teoremi:

$$x(t)$$
 $X(j\omega)=0$, $|\omega|>\omega_M$ bant sinirli sinyal olsun.
 $\omega_s>2\omega_M$ $\omega_s=\frac{2\pi}{T}$

$$x(t)$$
, $x(nT)$, $n=0,\pm 1,\cdots$ örnekleri tarafından oluşturulabilir.

 $2\omega_{M}$: Nyquist Hızı (Nyquist Frekansı)

Sinyalin yeniden oluşturulması

Örnekleme Teorisi

1.2. Sıfırıncı Dereceden Bir tutunmalı Örnekleme

$$x_0(t) = x_p(t) * h_0(t) = \sum_{n=-\infty}^{+\infty} x(nT)h_0(t-nT)$$

$$H_o(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin(\omega T/2)}{\omega} \right]$$

Zero-Order Hold
$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t-nT)$$
 Yeniden Oluşturma Filtre $x(t) \longrightarrow x_p(t) \longrightarrow x_p(t) \longrightarrow x_p(t) \longrightarrow x_r(t) \longrightarrow x_r$

 ω

Örnekleme

$$H_r(j\omega) = \frac{e^{j\omega T/2}H(j\omega)}{2\sin(\omega T/2)}$$

2. Sinyalin Yeniden Oluşturulması

Bant-sınırlı ara değerleme

$$x_r(t) = x_p(t) * h(t) \qquad h(t) = \frac{T \sin(\omega_c t)}{\pi t}$$

$$= \sum_{n=-\infty}^{\infty} (x(nT)\delta(t-nT)) * h(t)$$

$$= \sum_{n=-\infty}^{\infty} x(nT)h(t-nT) \qquad = \sum_{n=-\infty}^{\infty} x(nT) \frac{T \sin[\omega_c(t-nT)]}{\pi(t-nT)}$$

Sinyalin Yeniden Oluşturulması

Orijinal Sinyal

Örneklemeden Sonra

Alçak geçiren Süzgeçten geçtikten sonra

Sinyalin Yeniden Oluşturulması

Zero-order hold
$$p(t) = \sum_{n=0}^{+\infty} \delta(t - nT)$$

Orijinal Sinyal

Örneklemeden sonra

Sıfırıncı dereceden Tutma devresinden geçtikten sonra

Zero-Order Hold

$$H_o(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin(\omega T/2)}{\omega} \right] H(j\omega)$$

$$H_r(j\omega) = \frac{e^{j\omega T/2}H(j\omega)}{2\sin(\omega T/2)}$$

Zero-Order Hold Recover Filter

Sinyalin Yeniden Oluşturulması

Örtüşme:

Eğer bir sinyal Nyquist hızından(frekansından) daha düşük bir hızda örneklenirse, spektral örtüşme meydana gelir.

Örtüşme

$$w_0=\frac{w_s}{6}$$

$$w_0 = \frac{2w_s}{6}$$

Örtüşme

C/D dönüşümü

Dijital Türev Alıcı

Yarı-Örneklem Gecikmesi

Yarı-Örneklem Gecikmesi

Ayrık Zaman Sinyallerinin Örneklenmesi

1. Dürtü Katarı Örneklemesi

Dürtü Katarı Örneklemesi

Dürtü Katarı Örneklemesi

Ayrık Zamanlı Sinyallerinin Örneklenmesi

Örnek:

