Introduction to Statistical Analysis (using Shiny Apps)

CRUK:- Tuesday 21st June 2016

Robert Nicholls & Mark Dunning

www.tiny.cc/crukStats

Acknowledgements:- Sarah Vowler, Sarah Dawson, Liz Merrell, Deepak Parashar

Approximate Timetable

- 10.30 11.15 Lecture: Introduction to Statistical analysis
- 11.15 11.30 Quiz: Variables/Dependencies/Tests/Generalisability
- 11.30 12.00 Lecture: Parametric Tests for Continuous Variables; t-tests
- 12.00 12.30 Examples/Practicals (computer based)
- 12.30 13.30 Lunch (not provided)
- 13.30 14.00 Lecture: Non-parametric tests for continuous variable
- 14.00 14.30 Examples/Practicals (computer based)
- (14:30 COFFEE)
- 14.30 14.45 Lecture: Tests for Categorical Variables
- 14.45 15.30 Examples/Practicals/Solutions (computer based)
- 15.30 16.25 Group based exercise: Choosing appropriate tests
- 16.25 16.30 Summary

The point of statistics

- Rarely feasible to study the whole population that we are interested in, so we take a sample instead
- Assume that data collected represents a larger population

Use sample data to make conclusions about the overall population

Sample

Total Population

Beginning a study

- Which samples to include?
 - Randomly selected?
 - Affects generalisability
- Always think about the statistical analysis
 - Randomised comparisons?
 - Data type?
 - Any dependency in measurements?
 - Distribution of data?
 - Normally distributed? Skewed? Bimodal?

Generalisability

- How samples are selected affects interpretation
 - Generalisability is about population results apply to
- Statistical methods assume random samples
- Do not extrapolate beyond range of the data
 - i.e. don't assume results apply to anything not represented in the data
- Examples:
 - Males only, no idea about females
 - Adults only, no idea about children

Data - types

- Several different categorisations
- Simplest:
 - Categorical (nominal)
 - Categorical with ordering (ordinal)
 - Discrete
 - Continuous

Nominal

Pigs

ws Do

- Most basic type of data
- Three requirements:
 - Same value assigned to all the members of level
 - Same number not assigned to different levels
 - Each observation only assigned to one level
- Example: gender, 1 = female, 2 = male
- Boils down to yes/no answer
- Others: Surgery type, cancer type, eye colour, dead/alive, ethnicity.

- Next type of data
- Mutually exclusive fixed categories
- Implicit order
- Can say one category higher than another
 - But not how much higher
- Example: stress level 1 = low ... 7 = high
- Others: Grade, stage, treatment response, education level, pain level.

Discrete

- Third level of measurement
- Fixed categories
- Like ordinal but over bigger range
 - Can be treated as continuous if range is large
- Anything counted is discrete how many?
- Example: number of tumours
- Others: Shoe size, hospital admissions, parity, number of side effects, medication dose, CD4 count, viral load, reads.

Continuous

- Final type of data
- Anything that is measured, how much?
- Meaningful zero: ratio, otherwise interval
 - Care required with interpretation
- Given any two observations fit one between
- Example: Height,
- Others: Weight, blood pressure, temperature, operation time, blood loss, age.

Data - types

- Several different categorisations
- Simplest:
 - Categorical (nominal) yes/no
 - Categorical with ordering (ordinal) implicit order
 - Discrete how many?
 - Continuous how much?
- Write down examples

Measurements: Dependent / Independent?

- Measurements of gene expression taken from each of 20 individuals
- Are any measurements more closely related than others?
 - Siblings/littermates?
 - Same individual measured twice?
 - Batch effects?
- If no reason independent observations

Continuous Data – Distribution

Continuous Data – Distribution?

Continuous Data – Descriptive Statistics

Measures of location and spread

Mean and standard deviation

$$\overline{X} = \frac{X_1 + X_2 + \square + X_n}{n}$$

$$s.d. = \sqrt{\frac{\left(X_1 - \overline{X}\right)^2 + \left(X_2 - \overline{X}\right)^2 + \left(X_n - \overline{X}\right)^2}{n}}$$

Continuous Data — Descriptive Statistics

- Median: middle value
- Lower quartile: median bottom half of data
- Upper quartile: median top half of data

Continuous Data – Descriptive Statistics (Example)

- E.g. No. of Facebook friends for 7 colleagues 311, 345, 270, 310, 243, 5300, 11
- Measures of location and spread
 - Mean and standard deviation

$$\overline{X} = \frac{X_1 + X_2 + \Box + X_n}{n} = 970;$$

s.d. =
$$\sqrt{\frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + [] + (X_n - \overline{X})^2}{n}} = 1912.57$$

Median and interquartile range
 11, 243, 270, 310, 311, 345, 5300

Continuous Data – Descriptive Statistics (Example)

- E.g. No. of facebook friends for 7 colleagues 311, 345, 270, 310, 243, **530**, 11
- Measures of location and spread
 - Mean and standard deviation

$$\overline{X} = \frac{X_1 + X_2 + \Box + X_n}{n} = 289;$$

$$s.d. = \sqrt{\frac{\left(X_1 - \overline{X}\right)^2 + \left(X_2 - \overline{X}\right)^2 + \left(X_n - \overline{X}\right)^2}{n}} = 153.79$$

Median and interquartile range
 11, 243, 270, 310, 311, 345, 530

Categorical Data

- Summarised by counts and percentages
- Examples
 - 19/82 (23%) subjects had Grade IV tumour
 - 48/82 (58%) subjects had Diarrhoea as an Adverse Event.

Standard Deviation and Standard Error

- Commonly confused
- Standard deviation:
 - Measure of spread of the data
 - Used for describing population
- Standard error:
 - Variability of the mean from repeated sampling
 - Precision of mean
 - Used to calculate confidence interval
- SD: How widely scattered measurements are
- SE: Uncertainty in estimate of sample mean

Confidence intervals for the mean

- Confidence interval (CI) is a random interval
- In repeated experiments
 - 95% of time cover the mean
- Looser interpretation 95% of time mean in Cl

95%
$$CI: (\overline{X}-1.96 \times \text{standard error}, \overline{X}+1.96 \times \text{standard error})$$

Standard error =
$$\frac{\text{Standard deviation}}{\sqrt{n}} = \frac{154}{\sqrt{7}} = 58$$

Mean 289, 95% CI (175, 402)

Confidence intervals

No. of samples/observations

Standard deviation

Standard error of mean

Hypothesis tests – basic set-up

Formulate a null hypothesis, H₀

The difference in gene expression before and after treatment = 0

- Calculate a test statistic from the data under the null hypothesis $t_{n-1} = t_{29} = \frac{\overline{X_{After-Before}}}{s.e.(\overline{X_{After-Before}})}$
- Determine whether the test statistic is more extreme than expected under the null hypothesis (p-value)
- Reject or do not reject the null hypothesis

Absence of evidence is not evidence of absence (Bland and Altman, 1995)

Correction for multiple testing

Hypothesis tests – Example

Lady Tasting Tea

Randomised Experiment by Fisher

- Randomly ordered 8 cups of tea
 - 4 were prepared by first adding milk
 - 4 were prepared by first adding tea

- Task: Lady had to select the 4 cups of one particular method
- H₀: Lady had no such ability
- Test Statistic: number of successes in selecting the 4 cups.
- Result: Lady got all 4 cups right!

Reject the null hypothesis

Hypothesis tests – Errors

	Null hypothesis does not hold	Null hypothesis holds	
Reject null hypothesis	Correct True positive	Wrong False positive	
Do not reject null hypothesis	Wrong False negative	Correct True negative	

significance level, sample size, difference of interest, variability of the observations.

Be aware of issues of multiple testing!

When to use which test

		RESPONSE		
NO OF SAMPLES		NOMINAL	ORDINAL OR NON- NORMAL	NORMALLY DISTRIBUTED
ONE SAMPLE		χ²-test, Z-test	Kolmogorov-Smirnov Sign test	t-test
TWO SAMPLE	INDEPENDENT	χ^2 -test (r x c), Fisher's exact test	Mann-Whitney U Median test	Unpaired t-test
	PAIRED	McNemar's test Stuart-Maxwell test	Wilcoxon signed rank Sign test	Paired t-test
MULTIPLE SAMPLES (K>2)	INDEPENDENT	χ²-test (r x k) Fisher-Freeman-Halton	Kruskal-Wallis test Median Test Jonckheere-Terpstra test	Analysis of variance (ANOVA)
	PAIRED	Cochran Q test	Friedman test Page test Quade test	Repeated measures ANOVA
ASSOCIATION BETWEEN TWO VARIABLES		Contingency coefficient Phi, rø Cramér, C	Spearman's rank Kendall's tau	Pearson product moment correlation
AGREEMENT BETWEEN TWO VARIABLES		Simple kappa	Weighted kappa	Limits of agreement

Tests for continuous variables T-tests

Statistical tests – continuous variables

- T-test:
 - One-sample t-test

```
(e.g. H_0: mean = 5)
```

Independent two-sample t-test

(e.g. H_0 : mean of sample 1 = mean of sample 2)

Paired two-sample t-test

(e.g. H_0 : mean difference between pairs = 0)

T-distributions

Comparison of t Distributions

One-sample t-test: does mean = X?

E.g. Research question: Published data suggests that the microarray failure rate for a particular supplier is 2.1%.

Genomics Core want to know if this holds true in their own lab?

One-sample t-test: does mean = X?

- Null hypothesis, H₀:
 Mean monthly failure rate = 2.1%.
- Alternative hypothesis, H₁:
 Mean monthly failure rate ≠ 2.1%.
- Tails: two-tailed.
- Either reject or do not reject the null hypothesis never accept the alternative hypothesis

One-sample t-test – the data

Month	Monthly failure rate	
January	2.90	
February	2.99	
March	2.48	
April	1.48	
May	2.71	
June	4.17	
July	3.74	
August	3.04	
September	1.23	
October	2.72	
November	3.23	
December	3.40	

The **mean** is the sum of all observations divided by the number of observations.

Mean =
$$(2.90 + ... + 3.40)/12$$

= 2.84

Standard deviation = 0.84

Test value: 2.1

One-sample t-test – key assumptions

- Observations are independent
- Observations are normally distributed

One-sample t-test - results

Test statistic:

$$t_{n-1} = t_{11} = \frac{\overline{x} - \mu_0}{s.d./\sqrt{n}} = \frac{2.84 - 2.10}{s.e.(\overline{x})} = 3.07$$

One-sample t-test - results

One-sample t-test - results

Test statistic:

$$t_{n-1} = t_{11} = \frac{\overline{x} - \mu_0}{s.d./\sqrt{n}} = \frac{2.84 - 2.10}{s.e.(\overline{x})} = 3.07$$

$$df = 11$$

$$P = 0.01$$

Reject H

(Evidence that mean monthly failure rate \neq 2.1%.)

One-sample t-test results

- The mean monthly failure rate of microarrays in the Genomics core is 2.84 (95% CI: 2.30, 3.37).
- It is not equal to the hypothesized mean proposed by the company of 2.1.
- t=3.07, df=11, p=0.01

Two-sample t-test

Two types of two-sample t-test:

– Independent:

e.g. the weight of two different breeds of mice.

– Paired:

e.g. a measurement of disease at two different parts of the body in the same patient/animal.

Independent two-sample t-test Does mean of group A = mean of group B?

E.g. Research question: 40 male mice (20 of breed A and 20 of breed B) were weighed at 4 weeks old.

Does the weight of 4 week old male mice depend on breed?

Independent two-sample t-test Does mean of group A = mean of group B?

- Null hypothesis, H₀:
 - Mean weight of breed A = Mean weight of breed B.
- Alternative hypothesis, H₁:
 Mean weight of breed A ≠ Mean weight of breed B.
- Tails: two-tailed.
- Either reject or do not reject the null hypothesis never accept the alternative hypothesis

Independent two-sample t-test – the data

В	reed A	Ві	reed B
Subject	Weight at 4 weeks (g)	Subject	Weight at 4 weeks (g)
1	20.77	21	15.51
2	9.08	22	12.93
3	9.80	23	11.50
4	8.13	24	16.07
5	16.54	25	15.51
6	11.36	26	17.66
7	11.47	27	11.25
8	12.10	28	13.65
9	14.04	29	14.28
10	16.82	30	13.21
11	6.32	31	10.28
12	17.51	32	12.41
13	9.87	33	9.63
14	12.41	34	14.75
15	7.39	35	9.81
16	9.23	36	13.02
17	4.06	37	12.33
18	8.26	38	11.90
19	10.24	39	8.98
20	14.64	40	11.29
Mean	11.50	Mean	12.80
Standard deviation	4.18	Standard deviation	2.33

Independent two-sample t-test – key assumptions

- Observations are independent
- Observations are normally distributed

Independent two-sample t-test -More key assumptions...

- Equal variance in the two comparison groups
 - Use Welch's correction if variances are different
 - » Alters the t-value and degrees of freedom

Independent two-sample t-test - results ____ ___

Test statistic:

$$t_{df} = \frac{\overline{X_A} - \overline{X_B}}{s.e.(\overline{X_A} - \overline{X_B})} = 1.21$$

df = 29.78 (Welch's correction)

P-value: **0.24**

Do not reject H₀

(No evidence that mean weight of breed A ≠ mean weight of breed B)

Independent two-sample t-test - results

- The difference in mean weight between the two breeds is -1.30 (95% CI: -3.48, 0.89)
 - [NB this is negative breed B weights tend to be bigger than breed A weights].
- There is no evidence of a difference in weights between breed A and breed B.
- t=1.21, df= 29.78 (Welch's correction), p=0.24.

Paired two-sample t-test: Does the mean difference = 0?

E.g. Research question: 20 patients with ovarian cancer were studied using MRI imaging. Cellularity was measured for each patient at two sites of disease.

Does the cellularity differ between two different sites of disease?

Paired two-sample t-test: Does the mean difference = 0?

- Null hypothesis, H₀:
 Cellularity at site A = Cellularity at site B
- Alternative hypothesis, H₁:
 Cellularity at site A ≠ Cellularity at site B
- Tails: two-tailed.
- Either reject or do not reject the null hypothesis never accept the alternative hypothesis

Paired two-sample t-test – Null hypothesis

H₀: Cellularity at site A = Cellularity at site B
OR

 H_0 : Cellularity at site A - Cellularity at site B = 0

H_0 : Cellularity at site A - Cellularity at site B = 0

Subject		Cellularity	
Subject	Site A: Primary ovarian mass	Site B: Peritoneal deposits	Difference
1	1201.33	1155.98	-45.35
2	1029.64	1020.82	-8.82
3	895.57	881.21	-14.37
4	842.14	830.78	-11.36
5	903.07	897.06	-6.01
6	1311.57	1262.73	-48.84
7	833.52	823.06	-10.46
8	1007.66	951.01	-56.65
9	1465.51	1450.98	-14.53
10	967.82	978.15	10.33
11	812.72	778.26	-34.46
12	884.08	823.57	-60.51
13	1358.56	1335.78	-22.78
14	1280.10	1293.91	13.80
15	942.38	925.75	-16.63
16	884.33	891.34	7.01
17	930.09	892.02	-38.07
18	1146.75	1132.80	-13.95
19	881.50	847.78	-33.72
20	1315.22	1337.80	22.58
		Mean difference	19.14
		Standard deviation	23.37

Paired two-sample t-test – key assumptions

- Observations are independent
- The paired differences are normally distributed

Paired two-sample t-test - results

Test statistic

$$t_{n-1} = t_{19} = \frac{X_{A-B}}{s.e.(\overline{X_{A-B}})} = 3.66$$

df = 19

P-value: 0.002

Reject H₀

(Evidence that cellularity at site A \neq Cellularity at site B)

Paired two-sample t-test - results

- The difference in cellularity between the two sites is 19.14 (95% CI: 8.20, 30.08).
- There is evidence of a difference in cellularity between the two sites.
- t=3.66, df=19, p=0.0017.

What if normality is not reasonable?

• Transform your data, e.g. Ln transformation

Non-parametric tests:

Parametric test	Non-parametric test
One-sample t-test	One-sample Wilcoxon signed rank test One-sample sign test
Independent two-sample t-test	Mann-Whitney U test/ Wilcoxon rank sum test
Paired two-sample t-test	Matched-pairs Wilcoxon signed rank test Two-sample sign test

Summary – continuous variables

One-sample t-test

Use when we have one group.

Independent two-sample t-test

Use when we have <u>two independent groups</u>. A <u>Welch correction</u> may be needed if the two groups have different spread.

Paired two-sample t-test

Use when we have two non-independent groups.

Non-parametric tests or transformations

Use when we cannot assume normality.

Summary — t-test

 Turn scientific question to null and alternative hypothesis

Think about test assumptions

Calculate summary statistics

Carry out t-test if appropriate

T-tests practical

- Work through examples in the slides
- Complete the t-test practical
 First three datasets only
- We will start the next lecture after lunch (13: 30pm)
- Feel free to take a short break if you want to

Tests for continuous variables non-parametric methods

When to use which test

			RESPONSE		
NO OF	SAMPLES	NOMINAL	ORDINAL OR NON- NORMAL	NORMALLY DISTRIBUTED	
	ONE MPLE	χ²-test, Z-test	Kolmogorov-Smirnov Sign test	t-test	
TWO	INDEPENDENT	χ²-test (r x Fisher's exact test	Mann-Whitney U Median test	∪npaired t-test	
SAMPLE	PAIRED	McNemar's test Stuart-Maxwell test	Wilcoxon signed rank Sign test	Paired t-test	
MULTIPLE SAMPLES	INDEPENDENT	χ²-test (r x k) Fisher-Freeman-Halton	Kruskal-Wallis test Median Test Jonckheere-Terpstra test	Analysis of variance (ANOVA)	
(K>2)	PAIRED	Cochran Q test	Friedman test Page test Quade test	Repeated measures ANOVA	
	ION BETWEEN ARIABLES	Contingency coefficient Phi, rø Cramér, C	Spearman's rank Kendall's tau	Pearson product moment correlation	
	NT BETWEEN ARIABLES	Simple kappa	Weighted kappa	Limits of agreement	

Mann-Whitney U test

- Wilcoxon, Mann-Whitney
- Assumptions:
 - Two independent groups
 - At least ordinal dependent variable
 - Randomly selected observations
 - Population distributions same shape
- Hypotheses:
 - $-H_0$: populations have the same median
 - $-H_0$: populations have the same spread and shape

Misunderstood test

Statistics	Group 1	Group 2				
Minimum	9.03	0.40				
Median	9.94	9.94				
Maximum	19.48	10.85				
Mann-Whitney U	U=303, p=0.03					

Method

- Construct hypotheses and decide on α
- Rank whole sample from smallest to largest
- Assign average rank to ties
- Calculate sum of ranks for each group
- Calculate:

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R$$

$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2}$$

$$U = \min(U_{1}, U_{2})$$

Compare U to critical value in the tables

Example

- Fisher's book, coronary artery surgery study
- Exercise times in seconds, control and 3 vessel's group
- Is there a difference in exercise times between the two groups, two-sided test

		Treadmill times in seconds												
Control	1014	684	810	990	840	978	1002	1110						
3 vessels	864	636	638	708	786	600	1320	750	594	750				

Example

- Fisher's book, coronary artery surgery study
- Exercise times in seconds, control and 3 vessel's group
- Is there a difference in exercise times between the two groups, two-sided test

Group	Treac	Treadmill times in seconds											
Control	1014	684	810	990	840	978	1002	1110					
Rank	17	5	10	14	11	13	15	16					
3 vessels	864	636	638	708	786	600	1320	750	594	750			
Rank	12	3	4	6	9	2	18	7.5	1	7.5			

Sum of ranks: control group =101, 3 vessels =70

$$U_1 = 8 \times 10 + \frac{8(8+1)}{2} - 101 = 15$$

$$U_2 = 8 \times 10 + \frac{10(10+1)}{2} - 70 = 65$$

$$U = \min(U_1, U_2) = \min(15, 65) = 15$$

- Look up $n_1 = 8$, $n_2 = 10$, p = 2.5 (as 2-sided)
- U = 15 < 17, from tables
- Presentation of the results:
 - The Mann-Whitney U test showed that the individuals in the control group exercised for significantly longer than the individual in the 3 vessels disease group (U=15, p=0.025)

Advantages and limitations

- Almost as powerful as t-test
- Therefore almost as likely as t-test to reject H₀ if false
- Sensitive to central tendencies of scores
- Often misinterpreted
- Difference in medians if same shape distributions
- Otherwise tests for difference in spread and shape

When to use which test

			RESPONSE	
NO OF	SAMPLES	NOMINAL	ORDINAL OR NON- NORMAL	NORMALLY DISTRIBUTED
	ONE MPLE	χ²-test, Z-test	Kolmogorov-Smirnov Sign test	t-test
TWO	INDEPENDENT	χ²-test (r x c), Fisher's exact test	Mann-Whitney U Median test	Unpaired t-test
SAMPLE	PAIRED	McNemar's test Stuart-Maxwell tes	Wilcox on signed rank Sign test	Paired t-test
MULTIPLE SAMPLES	INDEPENDENT	χ²-test (r x k) Fisher-Freeman-Halton	Kruskal-Wallis test Median Test Jonckheere-Terpstra test	Analysis of variance (ANOVA)
(K>2)	PAIRED	Cochran Q test	Friedman test Page test Quade test	Repeated measures ANOVA
	ION BETWEEN ARIABLES	Contingency coefficient Phi, r\(\phi\) Cramér, C	Spearman's rank Kendall's tau	Pearson product moment correlation
	NT BETWEEN ARIABLES	Simple kappa	Weighted kappa	Limits of agreement

Sign Test

- A very simple test
 - Based on binomial distribution
- Uses directions of differences
- One-sample case: compares to fixed value
- Two-sample case: compares medians
- Can be used when it's possible to say one quantity is greater than another

Sign Test

- Assumptions:
 - Order in coding system
 - Randomly selected observations
 - Paired data in two-sample case
- Hypotheses:
 - $-H_0$: medians equal in two groups
 - H_A: medians in two groups differ

Method

- One-sample: compare values to m
 - + if bigger, if smaller, = equal
- Two-sample: compare values to each other
 - + if 1st largest, if 2nd largest, = equal
- Count +, -, =
 - -x = number of smaller values
 - -r = number of non-ties
 - -p = 0.5 (probability, not p-value)
- Compare to binomial tables

One-Sample Example

- General health section of SF-36 collected in a breast cancer study
- Expected value in general population 72

GH value	60	55	75	100	55	60	50	60	72	40	90	75	70	75	55
Sign	-	-	+	+	-	-	-	-	=	-	+	+	-	+	_

- Number of non-ties = 14
- $9 < 5 + \square$ smaller value = 5
- Look up n=14, p=0.5, x=5 in binomial tables

One-Sample Example

- General health section of SF-36 collected in a breast cancer study
- Expected value in general population 72

GH value	60	55	75	100	55	60	50	60	72	40	90	75	70	75	55
Sign	-	-	+	+	-	-	-	-	=	-	+	+	-	+	_

- P = 0.42
- Therefore insufficient evidence to reject H₀
- Conclude median value not different to 72

Two-Sample Example

- General health values collected in same study at a 2nd time point
- Is there a difference between the time points?

Time 1	60	55	75	100	55	60	50	60	72	40	90	75	70	75	55
Time 2	70	65	100	50	70	95	95	65	85	55	95	45	75	65	60
Sign	-	-	-	+	-	-	-	-	-	-	-	+	-	+	-

- Number of non-ties = 15
- $12 -> 3 + \square$ smaller value is 3
- Look up n=15, p=0.5, x=3 in binomial tables

Two-Sample Example

- General health values collected in same study at a 2nd time point
- Is there a difference between the time points?

Time 1	60	55	75	100	55	60	50	60	72	40	90	75	70	75	55
Time 2	70	65	100	50	70	95	95	65	85	55	95	45	75	65	60
Sign	-	-	-	+	-	-	-	-	_	-	-	+	-	+	-

- Pr = 0.035, sufficient evidence to reject H₀
- There is a difference in General health between the two time points

Presentation of the Results

One-sample case:

 There is no evidence of a difference in median general health value of 60 in this population and that of 72 in the general population (p=0.42, sign test).

Two-sample case

 The median general health value at the second time point, 70 was significantly higher than the median of 60 at the first time point, (p=0.035, sign test).

Advantages and Limitations

- Simple
- Probability can be adjusted
- Quick assessment of direction
- Less powerful than other tests
 - Does not consider magnitude

When to Use Which Test

			RESPONSE	
NO OF SAMPLES		NOMINAL	ORDINAL OR NON- NORMAL	NORMALLY DISTRIBUTED
ONE SAMPLE		χ²-test, Z-test	Kolmogorov-Smirnov Sign test	t-test
TWO	INDEPENDENT	χ²-test (r x c), Fisher's exact test	Mann-Whitney U Median test	Unpaired t-test
SAMPLE	PAIRED	McNemar's test Stuart-Maxwell test	Wilcoxon signed rank Sign test	Paired t-test
MULTIPLE SAMPLES	INDEPENDENT	χ²-test (r x k) Fisher-Freeman-Halton	Kruskal-Wallis test Median Test Jonckheere-Terpstra test	Analysis of variance (ANOVA)
(K>2)	PAIRED	Cochran Q test	Friedman test Page test Quade test	Repeated measures ANOVA
ASSOCIATION BETWEEN TWO VARIABLES		Contingency coefficient Phi, rø Cramér, C	Spearman's rank Kendall's tau	Pearson product moment correlation
	NT BETWEEN ARIABLES	Simple kappa	Weighted kappa	Limits of agreement

Wilcoxon Signed Rank Test

- Alternative to sign test
- Assumptions:
 - Single sample in pairs, matched or before/after
 - Continuous or ordinal data (no normality assump)
 - Symmetry of difference scores about true median difference (test with plot)
- Hypothesis:
 - H₀: sum positive ranks equals sum negative ranks
 - H_A: sum positive ranks is not equal sum negative ranks

Method

- Construct hypotheses and decide α
- Find difference for each subject
- Rank magnitude of differences
- Put sign of difference with rank
- Find sum of positive and negative ranks
- Compare smaller sum to critical value from tables

Example

- Taken from Glanz' book, data are urine production before/after diuretic
- Is there a difference? Two-sided test

Person	Daily urine prod	Daily urine production ml/day				
Person	Before drug	After drug				
1	1600	1490				
2	1850	1300				
3	1300	1400				
4	1500	1410				
5	1400	1350				
6	1010	1000				
7	1750	1750				

Example

	Daily ur	ine prod	duction ml/day	Rank of	Signed
Person	Before	After	Difference	difference	rank of
	drug	drug	Difference	uniterence	difference
1	1600	1490	-110	5	-5
2	1850	1300	-550	6	-6
3	1300	1400	+100	4	+4
4	1500	1410	-90	3	-3
5	1400	1350	-50	2	-2
6	1010	1000	-10	1	-1
7	1750	1750	0	-	

• $W^+=4 < W^-=17$ look up n= 6, P=2.5 in tables

Results

- As W⁺>0 not sufficient evidence to reject null hypothesis
- Conclude that there is no evidence of a change in urine production before and after drug
- Presentation of the results:
 - The Wilcoxon signed rank test showed that there was no evidence of a change in urine production before and after treatment (W=4, p=0.22).

Advantages and Limitations

- Easy to apply
- Powerful
 - Takes into account more information
- Computer output confusing
- Sometimes misinterpreted

Summary-Two Independent Samples

- t-test: a test for comparing means in two independent groups when the data are consistent with a normal distribution.
- Mann-Whitney U test (Wilcoxon Rank Sum test): If the assumption of similarity of distributions holds it is a test for comparing medians in two independent groups.
 Otherwise it compares the shape and spread of the two groups.

Summary-Paired Groups

- One-sample sign test: is for comparing the median to a proposed value in the population.
- Two-sample sign test: is for comparing the medians between matched pairs.
- Wilcoxon signed rank test: if there is a symmetry of difference scores about the true median difference it compares means.
- Paired t-test: if the within pair differences are consistent with a normal distribution compares means.

Tests for categorical variables

Associations between categorical variables

- All about frequencies!
- Row x Column table (2 x 2 simplest)
- Categorical data

Treatment group	Tumour shr	inkage
	No	Yes
Treatment	44	40
Placebo	24	16

 Look for association (relationship) between row variable and column variable

• E.g. Research question: A trial to assess the effectiveness of a new treatment versus a placebo in reducing tumour size in patients with ovarian cancer.

Treatment group	Tumour shrinkage		
	No	Yes	
Treatment	44	40	
Placebo	24	16	

- Is there an association between treatment group and tumour shrinkage?
- Null hypothesis, H₀: No association
- Alternative hypothesis, H₁: Some association

Calculating expected frequencies:

Treatment group	Tumour s	Total	
	No	Yes	
Treatment	4446.1	40 37.9	84
Placebo	24 21.9	16 18.1	40
Total	68	56	124

$$E = \frac{\text{row total} \times \text{col total}}{\text{overall total}}$$

Calculating the chi-square statistic:

Treatment group	Tumour shr	Total	
	No	Yes	
Treatment	44 <mark>46.1</mark>	40 37.9	84
Placebo	24 <mark>21.9</mark>	16 18.1	40
Total	68	56	124

$$\chi^{2}_{(r-1)\times(c-1)} = \sum \frac{(O-E)^{2}}{E}$$

$$\chi_{(r-1)\times(c-1)}^2 = \sum \frac{(O-E)^2}{E} = \frac{(44-46.1)^2}{46.1} + \frac{(40-37.9)^2}{37.9} + \frac{(24-21.9)^2}{21.9} + \frac{(16-18.1)^2}{18.1} = 0.64$$

Limitations of the chi-square test

- In general, a Chi-square test is appropriate when:
 - at least 80% of the cells have an <u>expected</u>
 frequency of 5 or greater
 - none of the cells have an <u>expected</u> frequency less than 1
- If these conditions aren't met, <u>Fisher's exact</u> test should be used.

Same question, smaller sample size

• E.g. Research question: Is there an association between treatment group and tumour shrinkage?

Treatment group	Tumour shr	Total	
	No	Yes	
Treatment	8	3	11
Placebo	9	4	13
Total	17	7	24

- Null hypothesis, H₀: No association
- Alternative hypothesis, H₁: Some association

Expected frequencies

$$E = \frac{\text{row total} \times \text{col total}}{\text{overall total}}$$

Treatment group	Tumour shrinkage		Total	
	No	Yes		Expected frequency less than 5
Treatment	87.8	33.2	11	less than 5
Placebo	9 9.2	43.8	13	Only 50% of cells have an
Total	17	7	24	expected frequency greater than 5 → use Fisher's exact test
	1			

Fisher's exact test - results

Treatment group	Tumour shr	Total	
	No	Yes	
Treatment	8 7.8	3 3.2	11
Placebo	9 9.2	4 3.8	13
Total	17	7	24

Test statistic: N/A

• P-value: **1.00**

Interpretation: Do not reject H₀ (No evidence of an association between treatment group and tumour shrinkage).

Chi-square test for trend

• **E.g. Research question:** Is there a <u>linear</u> association between tumour grade and the incidence of tumour shrinkage?

Tumour grado	Tumour s	Total	
Tumour grade	No	Yes	TOtal
2	18	5	23
3	15	14	27
4	11	21	34
Total	44	40	84

- Null hypothesis, H₀: No <u>linear</u> association
- Alternative hypothesis, H₁: Some <u>linear</u> association

Expected frequencies

$$E = \frac{\text{row total} \times \text{col total}}{\text{overall total}}$$

Tumour grade	Tumour shrinkage		Total
	No	Yes	Total
2	18 12.0	5 11.0	23
3	15 14.	14 12.9	27
4	11 17.8	21 16.2	34
Total	44	40	84

Chi-square test for trend

Chi-square test for trend - results

P-value: **0.001**

Reject H₀ (evidence of a linear association between tumour grade and tumour shrinkage)

Summary – categorical variables

Chi-square test

Use when we have two categorical variables, each with two or more levels, and our expected frequencies are not too small.

Fishers exact test

Use when we have two categorical variables, each with two levels, and our expected frequencies are small.

• Chi-square test for trend Use when we have two categorical variables, where one or both are naturally ordered and the ordered variable has at least three <u>levels</u>, and our <u>expected frequencies are not too small</u>.

McNemar's test

Use when we have two categorical paired variables.

Summary – contingency tables

 Turn scientific question to null and alternative hypothesis

Calculate expected frequencies

Think about test assumptions

Carry out chi-square or Fishers test if appropriate

Contingency table practical

Work through examples in the slides

Complete contingency table practical

We will have solutions before moving to the group exercise

Summary

- For independent observations
- For normally distributed continuous outcomes Ttests
- For categorical outcomes Chi-squared tests
- Confidence interval tell us more of story than p-value
- Limitations
 - Confounding can adjust for important factors by stratification or regression

References

- Essential Medical Statistics, Betty Kirkwood and Jonathan Sterne, Wiley-Blackwell, 2nd Edition 2003.
- 2. Practical Statistics for Medical Research, Douglas G. Altman, Chapman & Hall / CRC, 1999.
- 3. Ten Simple Rules for Effective Statistical Practice, Robert E. Kass, Brian S. Caffo, Marie Davidian, Xio-Li Meng, Bin Yu, Nancy Reid http://journals.plos.org/ploscompbiol/article?id=10. 1371/journal.pcbi.1004961

Finally...

Course Materials:-

http://tiny.cc/crukStats

Course Feedback:-

http://tinyurl.com/stats-june21