Exercice 1.

$$A = \frac{\frac{2}{7} + \frac{12}{5} - \frac{1}{2}}{\frac{4}{2} + \frac{1}{3}} = \frac{\frac{20 + 168 - 35}{70}}{\frac{6 + 1}{3}} = \frac{153}{70} \frac{3}{7} = \frac{459}{490} = \frac{17 \cdot 3^3}{2 \cdot 5 \cdot 7^2}$$

$$B = \frac{\sin(\pi/2) + \cos(2\pi/3) - 1}{\sqrt{48} - \sqrt{75}} = \frac{1 - \frac{1}{2} - 1}{4\sqrt{3} - 5\sqrt{3}} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6}$$

Exercice 2.

On pose $x = \sqrt{2} + \sqrt{3}$. Alors $x^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}$, donc $\sqrt{6} = \frac{x^2 - 5}{2}$. Supposons x rationnel. Alors $(x^2 - 5)/2$ est rationnel, donc $\sqrt{6}$ aussi, ce qui est absurde. Conclusion, $\sqrt{2} + \sqrt{3}$ est irrationnel.

Exercice 3.

Soit x un réel tel que $\sqrt{x^2 - 3x + 2} = \sqrt{x(x+1)}$. En passant au carré, on obtient $x^2 - 3x + 2 = x^2 + x$, d'où 2 = 4x, puis x = 1/2.

Réciproquement, $(1/2)^2 - 3(1/2) + 2 = 3/4 \ge 0$, et $1/2(1/2 + 1) = 3/4 \ge 0$, donc on a bien l'égalité $\sqrt{(1/2)^2 - 3(1/2) + 2} = \sqrt{1/2(1/2 + 1)}$.

Conclusion, 1/2 est l'unique réel qui satisfait cette égalité.

Exercice 4.

1. Soit $n \ge 2$.

$$u_n = \frac{1}{n+1} \left(\frac{(n^2 - 2n - 1)(n-1) - (n^2 + 1)(n+1)}{n^2 - 1} \right) = \frac{-4n^2}{(n+1)^2(n-1)} = \frac{-4}{(1+1/n)^2} \frac{1}{n-1}$$

Comme $-4/(1+1/n)^2 \xrightarrow[n \to +\infty]{} -4$ et $1/(n-1) \xrightarrow[n \to +\infty]{} 0$. On en déduit que $u_n \xrightarrow[n \to +\infty]{} 0$.

2. Soit $n \in \mathbb{N}^*$.

$$v_n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right)$$

Or ln est dérivable en 1 et $\ln'(1) = 1/1 = 1$, donc $n\ln\left(1+\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 1$. D'après la continuité de l'exponentielle en 1, on en déduit que $v_n \xrightarrow[n \to +\infty]{} e$.

3. Soit $n \in \mathbb{N}^*$.

$$w_n = \left[\frac{x^{n+2}}{n+2}\right]_0^1 \left[\ln(x)\right]_1^{n^2} = \frac{2\ln(n)}{n+2} = 2\frac{\ln(n)}{n} \frac{1}{1+2/n}$$

D'après les croissances comparées, $w_n \xrightarrow[n \to +\infty]{} 0$.

4. Soit $n \in \mathbb{N}^*$.

$$s_n = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2}$$

En particulier, $s_n > 0$ et

$$\frac{s_{n+1}}{s_n} = \frac{(2n+2)!}{(n+1)!^2} \frac{n!^2}{(2n)!} = \frac{(2n+2)(2n+1)}{(n+1)^2} = 2\frac{2n+1}{n+1} \ge 2\frac{n+1}{n+1} = 2$$

On en déduit par récurrence que $s_n \ge 2^n$. Comme $2^n \xrightarrow[n \to +\infty]{} +\infty$, $s_n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 5.

1. Soit $n \in \mathbb{N}^*$. Pour tout réel x dans $[0,1], 0 \le x^{n+1} \le x^n$. On en déduit que $\forall x \in [0,1], 0 \le \frac{x^{n+1}}{1+x^2} \le \frac{x^n}{1+x^2}$. On en déduit par croissance de l'intégrale que $0 \le J_{n+1} \le J_n$. Ainsi, la suite $(J_n)_{n \in \mathbb{N}^*}$ est décroissante. On a également démontré qu'elle était minorée par 0. Le théorème de la limite monotone assure alors que cette suite est convergente.

De plus, $\forall n \in \mathbb{N}^*, \forall x \in [0,1], 0 \le \frac{x^n}{1+x^2} \le x^n$. On en déduit toujours par croissance de l'intégrale que

$$\forall n \in \mathbb{N}^*, 0 \le J_n \le \int_0^1 x^n dx = \frac{1}{n+1}$$

Comme $1/(n+1) \xrightarrow[n \to +\infty]{} 0$, cela entraîne via le théorème d'encadrement que la limite de la suite $(J_n)_{n \in \mathbb{N}^*}$ vaut 0.

2. Soit $n \in \mathbb{N}^*$. Les fonctions $[0,1] \to \mathbb{R}, x \mapsto \frac{x^{n+1}}{n+1}$ et $[0,1] \to \mathbb{R}, x \mapsto \ln(1+x^2)$ sont de classe C^1 , ce qui justifie l'utilisation de l'intégration par parties. On obtient

$$I_n = \left[\frac{x^{n+1}}{n+1} \ln(1+x^2) \right]_0^1 - \int_0^1 \frac{x^{n+1}}{n+1} \frac{2x}{1+x^2} dx = \frac{\ln(2)}{n+1} - 0 - \frac{2}{n+1} \int_0^1 \frac{x^{n+2}}{1+x^2} dx = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}$$

3. Comme $J_n \xrightarrow[n \to +\infty]{} 0$, on a également $J_{n+2} \xrightarrow[n \to +\infty]{} 0$. De plus, $\frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$, ce qui entraîne via la relation de la deuxième question la convergence de la suite $(I_n)_{n \in \mathbb{N}^*}$ vers 0. En outre

$$\forall n \in \mathbb{N}^*, nI_n = \frac{\ln(2)}{1 + 1/n} - \frac{2}{1 + 1/n}J_{n+2}$$

Comme $1 + 1/n \xrightarrow[n \to +\infty]{} 1$, on en déduit que la suite $(nI_n)_{n \in \mathbb{N}^*}$ est convergente de limite $\ln(2)$.

Exercice 6.

1. Soit x un réel non nul. Comme x^2 et n^q sont positifs, $n^p + x^2 n^q \ge n^p > 0$, d'où $\frac{1}{n^p + x^2 n^q} \le \frac{1}{n^p}$ par décroissance de la fonction inverse sur \mathbb{R}_+^* . On en déduit comme |x| est positif que

$$|f(x)| = \frac{|x|}{n^p + x^2 n^q} \le \frac{|x|}{n^p}.$$

Pour démontrer la seconde inégalité, on procède de même en remarquant que $n^p + x^2 n^q \ge x^2 n^q > 0$ puisque x est non nul, donc que $\frac{1}{n^p + x^2 n^q} \le \frac{1}{x^2 n^q}$ par décroissance de la fonction inverse sur \mathbb{R}_+^* . Ainsi, comme |x| est positif, on obtient

$$|f(x)| \le \frac{|x|}{x^2 n^q} = \frac{|x|}{|x|^2 n^q} = \frac{1}{|x|n^q}.$$

2. On remarque tout d'abord que la fonction f est un quotient de fonctions dérivables dont le dénominateur ne s'annule jamais. Elle est par conséquent dérivable et vérifie pour tout réel x,

$$f'(x) = \frac{1(n^p + x^2 n^q) - x2xn^q}{(n^p + x^2 n^q)^2} = \frac{n^p - x^2 n^q}{(n^p + x^2 n^q)^2}$$

Comme le dénominateur est un carré, l'étude du signe de f' revient à l'étude du signe du numérateur. C'est un polynôme de degré 2 qui s'annule en $\pm \sqrt{n^p/n^q} = \pm n^{(p-q)/2}$ et de coefficient dominant négatif. On en déduit que f est décroissante sur $]-\infty, -n^{(p-q)/2}]$, croissante sur $[-n^{(p-q)/2}, n^{(p-q)/2}]$, puis décroissante sur $[n^{(p-q)/2}, +\infty[$. De plus, d'après la seconde inégalité prouvée précédemment,

f tend vers 0 en $-\infty$ et en $+\infty$ par théorème d'encadrement. Il s'ensuit que le maximum de f est atteint en $n^{(p-q)/2}$ et qu'il vaut

$$f(n^{(p-q)/2}) = \frac{n^{(p-q)/2}}{n^p + n^{p-q}n^q} = \frac{n^{(p-q)/2}}{2n^p} = \frac{1}{2}n^{-(p+q)/2}$$

Exercice 7.

1. Le nombre de tirages favorables est $\binom{8}{3}$. Le nombre total de tirages est $\binom{32}{3}$. La probabilité recherchée est donc

$$\frac{\binom{8}{3}}{\binom{32}{3}} = \frac{8 \times 7 \times 6}{32 \times 31 \times 30} = \frac{7}{620}.$$

2. Le raisonnement est identique. Le nombre de tirages favorables est $\binom{4}{3}$. On obtient

$$\frac{\binom{4}{3}}{\binom{32}{3}} = \frac{4 \times 3 \times 2}{32 \times 31 \times 30} = \frac{1}{1240}.$$

3. Le nombre de tirages favorables est $\binom{8}{2} \times \binom{8}{1}$. La probabilité recherchée est donc

$$\frac{\binom{8}{2} \times \binom{8}{1}}{\binom{32}{3}} = \frac{28 \times 8}{4960} = \frac{7}{155}.$$

Exercice 8.

1. La fonction g est dérivable comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas. De plus,

$$\forall x > 0, g'(x) = \frac{\frac{1}{x}x - \ln(x) \times 1}{x^2} = \frac{1 - \ln(x)}{x^2}$$

Par conséquent, la fonction g est croissante sur]0,e], et décroissante sur $[e,+\infty[$. On en déduit que g admet un maximum en e, et que celui-ci vaut g(e)=1/e. Conclusion, $\forall x>0, \frac{\ln(x)}{x}\leq \frac{1}{e}$.

2. Soit x un réel strictement positif.

$$\frac{\ln(x)}{x} = \frac{\ln(\sqrt{x}^2)}{\sqrt{x}^2} = \frac{2}{\sqrt{x}} \frac{\ln(\sqrt{x})}{\sqrt{x}}$$

Comme $2/\sqrt{x}$ est positif, on en déduit d'après la question précédente que $\frac{2}{\sqrt{x}}\frac{\ln(\sqrt{x})}{\sqrt{x}} \le \frac{2}{\sqrt{x}}\frac{1}{e}$. Conclusion,

$$\forall x > 0, \frac{\ln(x)}{x} \le \frac{2}{e} \frac{1}{\sqrt{x}}$$

3. L'inégalité précédente donne en particulier,

$$\forall x \ge 1, 0 \le \frac{\ln(x)}{x} \le \frac{2}{e} \frac{1}{\sqrt{x}}$$

Comme $1/\sqrt{x} \xrightarrow[x \to +\infty]{} 0$, on en déduit par théorème d'encadrement que $x \mapsto \ln(x)/x$ admet une limite en $+\infty$ et que $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.

3

Exercice 9.

1. Soit x un réel. L'expression $\ln(x+\sqrt{x^2+1})$ est définie si et seulement si $x^2+1\geq 0$ et $x+\sqrt{x^2+1}>0$. L'inégalité $x^2+1\geq 0$ est vérifiée pour tout réel x. L'autre inégalité est clairement vérifiée pour $x\geq 0$. Considérons le cas x<0. On a les équivalences

$$x + \sqrt{x^2 + 1} > 0 \iff \sqrt{x^2 + 1} > -x \iff x^2 + 1 > x^2 \iff 1 > 0$$

car la fonction $y\mapsto y^2$ est strictement croissante sur \mathbb{R}^+ et $-x\in\mathbb{R}_+$. Comme l'inégalité 1>0 est vraie, l'inégalité $x+\sqrt{x^2+1}>0$ est vérifiée pour tout réel x<0. Conclusion, l'ensemble de défintion de f est l'ensemble \mathbb{R} .

2. Soit $x \in \mathbb{R}$. Comme $x + \sqrt{x^2 + 1} > 0$, on peut multiplier « haut et bas » par cette quantité

$$f(-x) = \ln\left(-x + \sqrt{x^2 + 1}\right) = \ln\left(\frac{(-x + \sqrt{x^2 + 1})(x + \sqrt{x^2 + 1})}{x + \sqrt{x^2 + 1}}\right) = \ln\left(\frac{x^2 + 1 - x^2}{x + \sqrt{x^2 + 1}}\right) = -\ln\left(x + \sqrt{x^2 + 1}\right) = -f(x)$$

Conclusion, f est impaire.

3. On sait que la racine carrée est dérivable sur \mathbb{R}_+^* . Ici $\forall x \in \mathbb{R}, x^2 + 1 > 0$, donc $x \mapsto \sqrt{x^2 + 1}$ est dérivable sur \mathbb{R} . On en déduit que f est dérivable sur \mathbb{R} . De plus,

$$\forall x \in \mathbb{R}, f'(x) = \frac{1 + \frac{2x}{2\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}} > 0$$

Comme \mathbb{R} est un intervalle, on en déduit que la fonction f est strictement croissante. De plus, $x + \sqrt{x^2 + 1} \xrightarrow[x \to +\infty]{} +\infty$, donc $f(x) \xrightarrow[x \to +\infty]{} +\infty$. Par imparité de f, $f(x) \xrightarrow[x \to -\infty]{} -\infty$.

Cette figure représente le graphe de f en bleu, ainsi que sa tangente en 0 en noir.

Exercice 10.

1. (a) Soit z un complexe écrit sous forme unique a+ib avec $(a,b) \in \mathbb{R}^2$. Comme les modules sont des réels positifs, on a les équivalences

$$|z| = |z+1| \iff |z|^2 = |z+1|^2 \iff a^2 + b^2 = (a+1)^2 + b^2 \iff 0 = 2a+1 \iff a = -1/2$$

L'ensemble recherché est donc l'ensemble des complexes de partie réelle -1/2.

- (b) L'ensemble de ces complexes est l'ensemble des affixes complexes des points du plan à égale distance du point O(0,0) et du point A(-1,0), i.e la médiatrice du segment O(0,0). Cette droite est l'unique perpendiculaire à la droite O(0,0) passant par le milieu de O(0,0) de coordonnées O(0,0). Les affixes complexes correspondants sont les complexes de partie réelle O(0,0) de coordonnées O(0,0).
- 2. Un tel complexe est de module 1 si et seulement si $b^2=1-(1/2)^2=3/4$ ssi $b=\pm\sqrt{3}/2$. On reconnaît alors les complexes $e^{2i\pi/3}$ et $e^{-2i\pi/3}$.

Exercice 11.

- 1. Soit $n \in \mathbb{N}$. Premier cas : n pair. Il existe un entier naturel k tel que n = 2k. Mais alors $n^2 = 4k^2$ est divisible par 4, donc $n^2 \equiv 0[4]$ dans ce cas. Deuxième cas : n impair. Il existe un entier naturel k tel que n = 2k + 1, mais alors $n^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$, donc $n^2 \equiv 1[4]$.
- 2. D'après ce qui précède, p est congru à 0,1 ou 2 modulo 4 d'après la compatibilité entre l'addtion et les congruences. Or $75 = 3 \cdot 24 + 3$ est congru à 3 modulo 4, donc p diffère de 75.

* * * * *