The relational model

- The learning objectives for this week are:
 - Knowing what is a data model
 - Knowing what is the relational data model
 - Knowing the core terminology of the relational model
 - Knowing what are the properties of database relations
 - Knowing what are domain integrity, entity integrity, and referential integrity rules
 - Knowing how to identify candidate keys, primary keys, alternate keys, and foreign keys

Data Model

- A data model is an abstract representation of data elements and the relationships between them based on real-world objects
 - In case of a simple online store, data element representing customer consists of data elements such as customer's name and region
- Data elements document real-world which means that the data model represents reality

Components of a data model

- A data model consists of three components:
 - i. Structural part: a set of rules according to which databases can be constructed
 - ii. Integrity part: a set of integrity constraints to ensure database integrity
 - iii. Manipulative part: a set of operations that are allowed on the data

The relational model

- When all data model's data is logically structured within relations, the model is a relational model
- These relations are informally referred to as *tables*
- The data is perceived by the users as tables
- Relation has named attributes (informally called columns)
- Attributes have a set of allowable values, which is referred to as the attribute's domain
 - For example "person" relation's "age" attribute could be an integer value larger or equal to zero
- The actual data is in relations's *tuples* (informally called *rows*)

Properties of relations

- Each relation has a name that is distinct from all other relation names
- Each attribute of a relation has a distinct name
- Each tuple's cell contains exactly one value
- Values of an attribute are all from the same domain
- The order of attributes has no significance
- There are no duplicate tuples
- The order of tuples has no significance

Integrity constraints

- The quality of the data directly determines the quality of the whole database
- Therefore preventing entry of incorrect data is one of the most important functions of a DBMS
- Integrity constraints are rules used to control the legal database states
- If the database satisfies all the integrity constraints specified on the database schema, it is in a legal state

Domain integrity

- A domain constraint specifies the set of allowable values for an attribute
 - For example valid grade marks are integers between 0 and 5
- Domain constraints enforce domain integrity

Entity Integrity

- A *superkey* is an attribute or group of attributes that uniquely identifies each tuple of a relation
- Relation can have multiple superkeys
 - In the "course" relation the "code" attribute, and group of "code" and "name" attributes are superkeys
 - What other superkeys does the "course" relation have?

code	name	credits
swd1tf001	Introduction to Software Engineering	5
swd4tf002	Programming (Java)	5
swd4tf003	Data Management and Databases	5

Entity Integrity

- A candidate key is a superkey that satisfies the property of minimality
 - Minimality is satisfied if an attribute can't be removed from the group of attributes without breaking the uniqueness property
 - In the "course" relation the group of "code" and "name" attributes doesn't satify minimality, so it isn't a candidate key
 - What other candidate keys does the "course" relation have?

code	name	credits
swd1tf001	Introduction to Software Engineering	5
swd4tf002	Programming (Java)	5
swd4tf003	Data Management and Databases	5

Entity Integrity

- From the set of candidate keys for the relation, *exactly one* candidate key is chosen to be the *primary key*
- The other candidate keys become alternate keys
- Each tuple has a value for the primary key, it can't be missing
- Primary key's value should not change
 - For example person's name or phone number might sound tempting options for a primary key but are actully subject to change
- Primary key constraint prevents duplicate tuples to exist for the relation
- Primary key constraints enforce entity integrity

Surrogate keys

- If there is initially no candidate key for a relation, then we cannot determine a natural primary key
- For example a relation for email messages:

from	to	title	body
kalle.ilves@haaga-helia.fi	john.doe@gmail.com	Greeting	Hello John!
john.doe@gmail.com	kalle.ilves@haaga-helia.fi	Response	Hello Kalle!

Surrogate keys

- We have to take care of the situation by including an extra attribute in the relation to act as the primary key
- For example a "messageid" column that holds a unique number for each tuple:

messageid	from	to	title	body
1	kalle.ilves@haaga- helia.fi	john.doe@gmail.com	Greeting	Hello John!
2	john.doe@gmail.com	kalle.ilves@haaga- helia.fi	Response	Hello Kalle!

Surrogate keys

- Such primary key is called a surrogate key
- Surrogate key has no relationship to the real-world meaning of the data held in a tuple
- Surrogate keys are quite common and a natural key is often replaced with a surrogate key
- Surrogate keys are commonly generated by the DBMS once a tuple is inserted
- Automatically incremented numbers and randomly generated values like UUID are common surrogate key values

Choosing a primary key

- Let's consider a suitable primary key in the following cases:
 - o Is "course" relation's "name" attribute a good option for a primary key? Why or why not?
 - Person's contacts are stored in relation which has attributes "address" and "name" (home address and name of a contact). What would be suitable primery key for this relation and why?

Referential Integrity

- Foreign key is a attribute or group attributes whose values are required to match those of the primary key of the referenced relation
- There can be several foreign keys in a relation
- Foreign-to-primary-key matching is the "glue" which holds the database together
- Foreign key constraint prevents foreign key not being matched by a primary key in the referenced relation
- Foreign key constraints enforce *referential integrity*

Employee (Referencing relation)

Department (Referenced relation)

Example of primary and foreign keys

- Let's have a look at the exercise
 5 in the first week's intro
 assignment
- What are the primary keys for each table?
- What are the foreign keys for each table?

TEAM

teamno		team name
9)	Hawks
7	,	Tigers
5	,	Sharks

ARTIST

artistno	given name	family name
a15	Katy	Perry
a3	Ariana	Grande
a16	Bruno	Mars
a20	Johnny	Smith
a7	Lady	Gaga
a12	Alicia	Keys

TEAM_ARTIST

teamno	artistno
9	a3
7	a7
7	a16
9	a7
7	a12

Not null constraint

- Null is a marker for a missing attribute value
- Null is not the same as e.g. blanks or zero. Null represents absence of a value
- The not null constraint is a restriction placed on an attribute
- It enforces the condition that, in that attribute, every tuple of data must contain a value
- For example it would make sense that in the "employee" relation, the "deptno" attribute has a not null constraint, meaning that every employee belongs to a department

Database manipulation

- A manipulation mechanism is among the most important parts of a data model
- A manipulation mechanism allows the data to be retrieved and updated
- *SQL* is the standard database language for relational databases. With SQL we can:
 - Create the database and relation structures
 - Perform insertion, modification, and deletion of data from the relations
 - Perform database queries
- Instead of using formal terms of relations, attributes, and tuples, the terms *tables*, *columns*, and *rows* are used in the SQL standard

SQL

- An SQL query is a single statement in which you describe what you want from the database
- The query operates on tables and builds a result table from one or more tables in the database
- Here's an example of an SQL query:

```
SELECT code, name, credits
FROM course
WHERE name = 'Data Management and Databases';
```

Summary

- A data model consists of three components: the structural part, the integrity part and the manipulative part
- In the *relational model*, all data is logically structured within relations that have attributes and tuples
- *SQL* is the standard database language for relational databases
- Integrity constraints are rules which make sure that the database is in a legal state
- Domain constraint specifies the set of allowable values for an attribute
- Primary key constraint prevents duplicate tuples to exist for the relation
- Foreign key constraint prevents foreign key not being matched by a primary key in the referenced relation