Projet Chaos Billard Carré avec Barre Centrale

Jun Nuo Chi, Nathan Dwek

Ecole Polytechnique de Bruxelles

8 janvier 2014

Projet Chaos

J. Chi, N. Dwek

Modélisation

au Repos

Respirante

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes

Modélisation

Barre Centrale u Repos

Barre Centrale Respirante

Théorie du Chaos - But du Projet

Introduction

Modélisation

arre Centrale u Repos

Barre Centrale Respirante

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - Non linéaire (superposition non applicable)

Théorie du Chaos - But du Projet

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - Non linéaire (superposition non applicable)
- ► Applications dans de nombreux domaines : météorologie, finance, mécanique . . .

Introduction

Modélisation

u Repos

Respirante

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - Non linéaire (superposition non applicable)
- ► Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- ► Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :

Vlodelisation

au Repos

Respirante

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - Non linéaire (superposition non applicable)
- ► Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :
 - Orientation du billard : vertical ou horizontal

Modélisation

Barre Centrale au Repos

Barre Centrale Respirante

viouelisation

Barre Centrale au Repos

Barre Central Respirante

- Système déterministe mais non prédictible à long terme
 - Possède des équations d'évolution déterministes
 - Sensible aux conditions initiales
 - Non linéaire (superposition non applicable)
- Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :
 - Orientation du billard : vertical ou horizontal
 - ▶ Paramètres de respiration de la barre :

$$I = I_0(1 + \sin(\omega t))$$

Système déterministe mais non prédictible à long terme

- Possède des équations d'évolution déterministes
- Sensible aux conditions initiales
- Non linéaire (superposition non applicable)
- Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- ► Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :
 - Orientation du billard : vertical ou horizontal
 - Paramètres de respiration de la barre : $I = I_0(1 + \sin(\omega t))$
 - Conditions initiales de la balle : position et vitesse initiales

Introduction

viouensation

u Repos

Respirante

Mouvement composé d'une suite de déplacement continus : J. Chi, N. Dwek

Modélisation

Barre Centrale u Repos

Respirante

Lonclusion

Mouvement composé d'une suite de déplacement continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

r rojet Chaos

J. Chi, N. Dwek

Modélisation

au Repos

Barre Centrale Respirante

J. Chi, N. Dwek

Mouvement composé d'une suite de déplacement continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

▶ Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant

Modélisation

Modelisation

Barre Centrale au Repos

Respirante

Mouvement composé d'une suite de déplacement continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
 - Rebond sur une paroi extérieure du billard :
 - $x = \pm \frac{L}{2} \text{ ou } y = \pm \frac{L}{2}$
 - Simple inversion de la vitesse selon une des coordonnées

J. Chi, N. Dwek

Modélisation

Modelisation

Barre Centrale au Repos

Respirante

 Mouvement composé d'une suite de déplacement continus:

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
 - Rebond sur une paroi extérieure du billard :
 - $x = \pm \frac{L}{2}$ ou $y = \pm \frac{L}{2}$
 - Simple inversion de la vitesse selon une des coordonnées
 - Rebond sur la barre centrale :
 - ▶ $|x| \le l_0(1 + \sin(\omega t))$ et y = 0
 - Transfert de quantité de mouvement avec

$$m_{barre} >> m_{balle}$$
 :

$$\begin{cases} \dot{x}^+ = C\dot{x}^- + (\operatorname{sgn}(x))(1+C)\cos(\omega t)\omega \\ \dot{y}^+ = -C\dot{y}^- \end{cases}$$

Modélisation

Modélisation

au Repos

Barre Centrale Respirante

- \blacktriangleright Pas de transfert de quantité de mouvement en x \rightleftharpoons y ou système \rightleftharpoons y
 - Si g = 0: Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible

Modélisation

Modelisation

au Repos

Respirante

- \blacktriangleright Pas de transfert de quantité de mouvement en x \rightleftharpoons y ou système \rightleftharpoons y
 - Si g = 0: Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable

Modélisation

au Repos

Barre Centrale Respirante

- \blacktriangleright Pas de transfert de quantité de mouvement en x \rightleftharpoons y ou système \rightleftharpoons y
 - Si g = 0: Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - ► Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos

Modélisation

au Repos

Respirante

- \blacktriangleright Pas de transfert de quantité de mouvement en x \rightleftharpoons y ou système \rightleftharpoons y
 - Si g = 0: Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos
 - ► Chaos en x ⇒ chaos en y
 - ▶ Barre au repos ⇒ mouvement en x régulier

IIILIOUUCLIOII

Modélisation

au Repos

Respirante

- \blacktriangleright Pas de transfert de quantité de mouvement en x \rightleftharpoons y ou système \rightleftharpoons y
 - Si g=0 : Conservation de $|\dot{y}|$
 - Si $g \neq 0$: Conservation de $y_{max} = \frac{\dot{y}^2}{2} + gy$
 - ▶ Zone $y > y_{max}$ inaccessible
 - ▶ Cas dégénéré $y_{max} \le 0$: pas d'interaction avec la barre
 - ► Cas dégénéré $y_{max} \gg \frac{L}{2}$: influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos
 - ▶ Chaos en $x \Rightarrow$ chaos en y
 - ▶ Barre au repos ⇒ mouvement en x régulier
 - ▶ Chaos en $x \stackrel{?}{\Leftrightarrow}$ chaos en $y \to A$ vérifier!

Observations

▶ Billard horizontal :

- ► Mouvement régulier en x et en y comme attendu
- Deux états échantillonables en y qui s'enchaînent de manière régulière

J. Chi. N. Dwek

Maddiastas

au Repos

Barre Centrale

Barre Centrale Respirante

Observations

► Billard horizontal :

- Mouvement régulier en x et en y comme attendu
- Deux états échantillonables en y qui s'enchaînent de manière régulière
- ▶ Billard vertical :
 - Mouvement toujours régulier en x
 - Mouvement en y :

J. Chi. N. Dwek

Introduction

Modélisation

Barre Centrale au Repos

Barre Centrale Respirante

Observations

J. Chi, N. Dwek

- Billard horizontal :
 - ► Mouvement régulier en x et en y comme attendu
 - Deux états échantillonables en y qui s'enchaînent de manière régulière
- ► Billard vertical :
 - Mouvement toujours régulier en x
 - ► Mouvement en y :

Modélisation

Barre Centrale au Repos

respirante

Interprêtation dans le Cas Billard Vertical

 Mouvement formé d'une suite de trois "cycles" dont deux de longueur indépendante en y

- Infinité d'états échantillonables
- Période potentielle = combili naturelle des longueurs de ces trois cycles
 - Vérifié par les simulations
 - ▶ Période peut être très longue ⇒ indicateur de la transition vers le chaos
 - Mais une telle période ne semble pas toujours exister
- I = L: mouvement périodique mais
- ► Cas dégénéré $y_{max} \gg \frac{+L}{2}$ également vérifié par les simulations

J. Chi, N. Dwek

Modélisation

Barre Centrale au Repos

Respirante

Projet Chaos

J. Chi, N. Dwek

Modélisation

au Repos

Barre Centrale Respirante

J. Chi, N. Dwek

.....

Modélisation

au Repos

Barre Centrale Respirante