1 Beta Distribution

1.1 Notation

 $Beta(\alpha, \beta)$ where $\alpha, \beta > 0$ are the shape parameters.

1.2 Density Function

$$f(x) = \tfrac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} \text{ where } B(\alpha,\beta) = \tfrac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

1.3 Mean and Variance

$$\begin{split} E[X] &= \frac{\alpha}{\alpha + \beta} \\ Var[X] &= \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \end{split}$$

2 Uniform Distribution

2.1 Notation

U(a, b) where $-\infty < a < b < \infty$.

2.2 Density Function

$$f(x) = \frac{1}{b-a}$$

2.3 Mean and Variance

$$E[X] = \frac{1}{2}(a+b)$$

$$Var[X] = \frac{1}{12}(b-a)^{2}$$

3 Gamma Distribution

3.1 Notation

 $Gamma(n, 1/\lambda)$

3.2 Density Function

$$f(x)=(\frac{\lambda^n}{\Gamma(n)})x^{n-1}e^{-\lambda x}$$
, where $\Gamma(n)=\int_0^\infty x^{n-1}e^{-x}dx$.
Note that $(\frac{\lambda^n}{\Gamma(n)})$ is constant wrt to x .

3.3 Mean and Variance

$$\begin{array}{l} E[X] = \frac{n}{\lambda} \\ Var[X] = \frac{n}{\lambda^2} \end{array}$$

4 Normal Distribution

4.1 Notation

 $N(\mu, \sigma^2)$ where μ is the mean, σ^2 is the variance

4.2 Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{((x-\mu)^2)}{2\sigma^2}\}, -\infty < x < \infty.$$

5 Dirichlet Distribution

This is a multivariate generalisation of the beta distribution, hence it is also known as the multivariate beta distribution (MBD).

5.1 Notation

 $Dir(\alpha_1, \alpha_2, ..., \alpha_n)$ where $\alpha_i > 0$.

5.2 Density Function

$$f(x) = \frac{\prod_{i=1}^n x_i^{\alpha_i - 1}}{B(\alpha_1, \alpha_2, ..., \alpha_n)} \text{ where } B(\alpha_1, \alpha_2, ..., \alpha_n) = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)...\Gamma(\alpha_n)}{\Gamma(\alpha_1 + \alpha_2 + ... + \alpha_n)}$$

5.3 Mean and Variance

$$\begin{split} E[X_i] &= \frac{\alpha_i}{\sum_{i=1}^n \alpha_i} \\ Var[X_i] &= \frac{\tilde{\alpha}_i (1 - \tilde{\alpha}_i)}{\alpha_0 + 1} \text{ where } \alpha_0 = \sum_{i=1}^n \alpha_i \text{ and } \tilde{\alpha}_i = \alpha_i / \alpha_0 \end{split}$$

6 t distribution

TODO

7 Truncated Normal Distribution

TODO

8 Multinomial Distribution

TODO