Atividades Unidade 3 - Processamento de Linguagem Natural

Aluno: Carlos Eduardo Falandes

01/12/2024

TC.3.2. Qual a relação entre as etapas de pré-processamento de texto e a redução de dimensionalidade quando se lida com extração de características? Ilustre isso considerando 2 exemplos que façam uso de stemização e/ou lematização.

A principal relação entre as etapas de préprocessamento do texto e a redução de dimensionalidade é que o pré-processamento simplifica os dados textuais, ele remove elementos que podem dificultar a interpretação do texto ou até mesmo torná-la impossível. Ao realizar essa simplificação, a etapa elimina redundâncias e variações desnecessárias, facilitando a extração de características e tornando o conjunto de dados menos complexo para a etapa de aprendizado de máquina.

A stemização e a lematização são fundamentais para reduzir a dimensionalidade do conjunto de dados, pois ambas diminuem significativamente a quantidade de palavras únicas no vocabulário.

- Stemização: Reduz as palavras ao seu radical, ignorando flexões ou terminações.
- Lematização: Simplifica as palavras à sua forma base, removendo variações gramaticais enquanto preserva o significado.

Exemplo 1: Original: "Os produtos são incríveis! Gostei muito da qualidade oferecida." Com stemização: "prod incriv gost muit qualidad oferec"

Exemplo 2: Original: "A aprendizagem profunda tem aplicações robustas em visão computacional."

Com lematização: "aprendagem profundo aplicação robusto visão computacional"

PP.4.2. Construa um modelo do tipo word2vec (W2V) para classificação de revisões de produto que atenda aos seguintes critérios:

- a) O modelo deve operar sobre dados de revisão que tenham sido pré-processados;
- b) O modelo deve ser comparado, em termos de desempenho de classificação, com um modelo clássico do tipo bag of words (BOW) com transformação TFIDF.
- c) Para a classificação, utilizar no mínimo 15 reviews de treinamento, classificador utilizando Multilayer Perceptron e mais 45 reviews de validação, sendo elas igualmente distribuídas entre revisões positivas, negativas e neutras.

Código da atividade: Product Review Classifier with IA

Table 1: Métricas calculadas para Word2Vec e BOW-TFIDF

Métrica	Word2Vec	BOW-TFIDF
T (Total samples)	45.00	45.00
TPR (True Positive Rate)	0.60	0.80
FPNR (False Positive Negative Rate)	0.33	0.07
FNeP (False Neutral Positive Rate)	0.00	0.01
FPR (False Positive Rate)	0.10	0.24
TNR (True Negative Rate)	0.60	0.47
FNP (False Negative Positive Rate)	0.20	0.47
FNNe (False Negative Neutral Rate)	0.20	0.07
FNR (False Negative Rate)	0.17	0.10
TNeR (True Neutral Rate)	0.73	0.80
FNeN (False Neutral Negative Rate)	0.00	0.13
FNeR (False Neutral Rate)	0.04	0.07
Acurácia (Accuracy)	0.64	0.69
Verossimilhança positiva	5.87	3.36
Verossimilhança negativa	3.60	4.67
Verossimilhança neutra	18.33	11.61

Figure 1: Matriz de confusão Word2Vec

Figure 2: Matriz de confusão BOW-TFIDF

Analisando os dados obtidos pelo seu modelo e os valores para as várias taxas, acurácia geral e razões de verossimilhança, diga o que poderá acontecer caso esse modelo seja utilizado em uma base de dados contendo novas reviews (qual a previsão de comportamento da classificação)?

As métricas fornecidas para ambos os modelos Word2Vec e BOW-TFIDF, torna possível fazer algumas previsões sobre o comportamento da classificação se esses modelos forem utilizados em uma base de dados contendo novas reviews:

Word2Vec:

- 1. Acurácia: 0.64 (64%) A acurácia geral indica que o modelo acerta 64% das classificações. Essa taxa não é tão alta, sugerindo que o modelo pode estar cometendo erros em 36% dos casos.
- 2. Taxa de Verdadeiros Positivos (TPR): 0.60 (60%) O modelo está conseguindo identificar corretamente 60% das instâncias positivas (ou seja, aquelas que pertencem à classe positiva).
- 3. Taxa de Falsos Positivos (FPR): 0.10 (10%) O modelo tem uma taxa relativamente baixa de falsos positivos, o que significa que ele raramente classifica incorretamente uma instância negativa como positiva.
- 4. Taxa de Falsos Negativos (FNR): 0.17 (17%) Embora seja moderada, uma taxa de falsos negativos de 17% sugere que o modelo pode deixar passar uma quantidade considerável de amostras positivas.

O modelo Word2Vec provavelmente terá uma boa performance em identificar amostras positivas, mas poderá errar ao classificar amostras negativas e neutras. Isso pode indicar que, em uma base de dados com novas reviews, o modelo pode ser mais eficaz em classificar as reviews positivas corretamente, mas terá dificuldades em lidar com o equilíbrio de classes, especialmente com a classe negativa.

BOW-TFIDF

- 1. Acurácia: 0.69 (69%) O modelo tem uma acurácia ligeiramente superior ao Word2Vec, o que indica uma melhor performance geral.
- 2. Taxa de Verdadeiros Positivos (TPR): 0.80 (80%) O modelo é muito mais eficaz em identificar instâncias positivas, com 80% de acerto.
- 3. Taxa de Falsos Positivos (FPR): 0.24 (24%) A taxa de falsos positivos é mais alta em comparação com o modelo Word2Vec, o que significa que o modelo pode ter mais dificuldades em não classificar amostras negativas como positivas.
- 4. Taxa de Falsos Negativos (FNR):
 0.10 (10%) A taxa de falsos negativos
 é mais baixa que a do modelo Word2Vec,
 o que sugere que ele consegue identificar
 mais amostras positivas corretamente.

O modelo BOW-TFIDF terá uma performance muito boa ao identificar amostras positivas (80% de TPR), mas com uma taxa de falsos positivos mais alta (24%). Isso significa que, em uma base de novas reviews, o modelo pode acabar classificando algumas amostras negativas como positivas, o que pode levar a uma classificação incorreta, especialmente se houver uma alta proporção de reviews negativas. Contudo, o modelo tende a ser mais eficaz na identificação de amostras positivas e menos propenso a cometer falsos negativos do que o modelo Word2Vec.

O que acontece se o número de amostras de uma das classes for reduzido enquanto o número de amostra das demais for mantido? (ex. Utilize 2 amostras negativas, 8 positivas e 8 neutras para treinamento e repita o cálculo das taxas de acerto e erro para positivas, negativas e neutras, assim como os demais indicadores de desempenho – acurácia e razões de verossimilhança).

Table 2: Métricas calculadas para Word2Vec com dados de treinamento não equiparados e equiparados

Métrica	Word2Vec	BOW-TFIDF
T (Total samples)	45.00	45.00
TPR (True Positive Rate)	0.40	0.67
FPNR (False Positive Negative Rate)	0.00	0.00
FNeP (False Neutral Positive Rate)	0.04	0.02
FPR (False Positive Rate)	0.15	0.31
TNR (True Negative Rate)	0.07	0.13
FNP (False Negative Positive Rate)	0.27	0.60
FNNe (False Negative Neutral Rate)	0.67	0.27
FNR (False Negative Rate)	0.03	0.00
TNeR (True Neutral Rate)	0.73	0.93
FNeN (False Neutral Negative Rate)	0.07	0.00
FNeR (False Neutral Rate)	0.32	0.18
Acurácia (Accuracy)	0.40	0.58
Verossimilhança positiva	2.61	2.14
Verossimilhança negativa	2.00	∞
Verossimilhança neutra	2.28	5.32

Figure 3: Matriz de confusão Word2Vec para amostras de treinamento não equiparadas

Figure 4: Matriz de confusão BOW-TFIDF para amostras de treinamento não equiparadas

Quando o número de amostras de uma das classes é reduzido enquanto o número de amostras das demais é mantido, isso geralmente afeta o desempenho do modelo, especialmente nas classes com menos amostras. Sendo assim pode-se observar como isso impacta cada métodos.

Word2Vec

- 1. Acurácia: 0.40 (40%) A acurácia caiu significativamente, indicando que o modelo tem dificuldades gerais em classificar corretamente com a distribuição desbalanceada.
- 2. Taxa de Verdadeiros Positivos (TPR): 0.40 (40%) A TPR caiu, sugerindo que o modelo teve dificuldade em identificar corretamente as instâncias positivas (em comparação com 60% antes).
- 3. Taxa de Verdadeiros Negativos (TNR): 0.07 (7%) A TNR também caiu drasticamente, indicando que o modelo tem dificuldade em identificar corretamente as instâncias negativas, provavelmente devido à escassez de amostras negativas.
- [4.] Taxa de Falsos Positivos (FPR): 0.15 (15%) A FPR aumentou, indicando que o modelo classificou mais amostras negativas como positivas.
- 5. Taxa de Falsos Negativos (FNR): 0.03 (3%) A FNR diminuiu, indicando que o modelo cometeu menos erros ao deixar de identificar amostras positivas.
- 6. Taxas de Likelihood Ratio: A razão de verossimilhança para amostras negativas caiu para 2.00, o que indica que a classificação de amostras negativas é menos confiável devido à baixa quantidade de amostras dessa classe.

A redução do número de amostras negativas fez com que o modelo tivesse um desempenho significativamente pior na identificação de amostras negativas e, de forma geral, resultou em uma acurácia consideravelmente mais baixa. A escassez de amostras negativas também causou um aumento no número de falsos positivos e uma taxa de verdadeiros negativos muito baixa.

BOW-TFIDF

- 1. Acurácia: 0.58 (58%) A acurácia caiu em relação ao valor anterior de 0.69, mas ainda é superior ao modelo Word2Vec. Isso demonstra que o BOW-TFIDF mantém um desempenho relativamente bom, embora a redução de amostras negativas tenha impactado sua performance.
- 2. Taxa de Verdadeiros Positivos (TPR): 0.67 (67%) A TPR diminuiu em relação aos 80% anteriores, mas o modelo ainda consegue identificar bem as amostras positivas.
- 3. Taxa de Verdadeiros Negativos (TNR): 0.13 (13%) A TNR sofreu uma redução significativa, indicando dificuldades na identificação correta de amostras negativas após a diminuição de amostras dessa classe.
- 4. Taxa de Falsos Positivos (FPR): 0.31 (31%) A FPR aumentou, mostrando que o modelo está cometendo mais erros ao classificar amostras negativas como positivas.
- 5. Taxa de Falsos Negativos (FNR): 0.00 (0%) A FNR permanece zerada, indicando que o modelo continua identificando todas as amostras positivas corretamente.
- 6. Taxas de Likelihood Ratio: ∞ A razão de verossimilhança para amostras negativas tornou-se "infinita", refletindo a extrema dificuldade do modelo em classificar corretamente amostras negativas devido à escassez de exemplos dessa classe.

A escassez de amostras negativas afetou gravemente a capacidade do modelo BOW-TFIDF de classificar corretamente instâncias negativas. Embora o modelo continue a identificar bem as instâncias positivas, ele comete muitos falsos positivos e tem extrema dificuldade com as instâncias negativas, o que é refletido na taxa "infinita" de likelihood ratio para as negativas.

A redução do número de amostras de uma classe (negativa, neste caso) provoca um desbalanceamento nas classes, afetando negativamente a capacidade do modelo de classificar corretamente as instâncias dessa classe. Ambas as métricas (Word2Vec e BOW-TFIDF) mostram uma queda na acurácia, taxa de verdadeiros negativos (TNR) e um aumento na taxa de falsos positivos (FPR). O modelo BOW-TFIDF parece sofrer ainda mais com a escassez de amostras negativas, enquanto o Word2Vec apresenta uma queda mais generalizada nas taxas de desempenho.