1

计算理论导论

习题一: 有限状态自动机

中国人民大学 信息学院 崔冠宇 2018202147

- 1. Design DFAs: 1.6 (d)(i)(n).
- (d) $\{w | w \text{ has length at least } 3 \text{ and its third symbol is a } 0\},$
- (i) $\{w | \text{ every odd position of } w \text{ is a } 1\}$,
- (n) All strings except the empty string.

解:

(d) 思路: 前两个字符无论为何都会进入下一个状态, 到第三个字符处根据 o、1 进行分类。结果如图 所示。

(i) 思路: 按奇偶位置分类,在进入奇数位置时按字符为 o、1 分类;同时根据"蕴涵式前件为假,则蕴涵式为真", ε 也应被接受。结果如图所示。

(n) 思路: 只要读到字符就可以接受。结果如图所示。

- **2.** Design NFAs: **1.7** (b)(c)(e).
- (b) $\{w | w \text{ contains substring } 0101\}$ with five states,
- (c) $\{w \mid w \text{ contains an even number of } 0s, \text{ or contains exactly two } 1s\}$ with six states,
- (e) $\{w|\ w=\mathbf{o}^*\mathbf{1}^*\mathbf{o}^+\}$ with three states.

解:

(b) 思路: 起始状态占用一个状态, NFA "猜测"进入 o101 子串的位置, 其他四个状态用于识别子串。结果如图所示。

(c) 思路:该语言是两个语言的并,所以分别设计二者的 NFA,然后再将其合成一个机器。对于偶数个 o 的部分,可以用两个状态的机器识别;对于仅含两个 1 的部分,可以用三个状态的机器识别。结果 如图所示。

(e) 思路: 这是一个正则表达式描述的正则语言,可以用课本上的设计方法,先设计三个小的 NFA,再

将其拼接起来。结果如图所示。

3. NFA \rightarrow DFA: **1.16** Use the construction given in Theorem **1.39** to convert the following two nondeterministic finite automata to equivalent deterministic finite automata.

解: 设对 NFA $N = (Q, \Sigma, \delta, q_0, F)$,它应用 Theorem **1.39** 所对应的 DFA 记作 $D = (Q', \Sigma, \delta', q'_0, F')$;再记某状态集合 R 的 ε -闭包 $E(R) = \{q|q$ 能从R 中某状态经过 0 个或更多 ε 边直接到达 $\}$ 。

(a) 这是一个无 ε 边的 NFA, 因此 $Q' = \mathcal{P}(Q) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, \ q'_0 = \{q_0\} = \{1\}, F' = \{q \in Q' | q \cap F \neq \emptyset\} = \{\{1\}, \{1,2\}\}, \ \delta'(R,w) = \bigcup_{r \in R} \delta(r,w), \ 结果如表所示:$

	a	b
Ø	Ø	Ø
{1}	$\{1, 2\}$	{2}
{2}	Ø	{1}
$\boxed{\{1,2\}}$	$\{1, 2\}$	$\{1, 2\}$

表 1: $\delta'(R, w)$

画出对应的 DFA 的图表示,如下所示:

从起始状态开始遍历,发现每一个状态都可达,因此无法进行进一步化简。

(b) 这是一个有 ε 边的 NFA,因此 $Q' = \mathcal{P}(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\},$ $q'_0 = E(q_0) = \{1, 2\}, \ F' = \{q \in Q' | q \cap F \neq \emptyset\} = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\},$ $\delta'(R, w) = \bigcup_{r \in R} E(\delta(r, w)), \ \text{具体结果如表所示:}$

	a	b
Ø	Ø	Ø
{1}	$\{3\}$	Ø
{2}	$\{1, 2\}$	Ø
{3}	{2}	$\{2, 3\}$
$\{1, 2\}$	$\{1, 2, 3\}$	Ø
$\{1,3\}$	$\{2, 3\}$	$\{2,3\}$
$\{2,3\}$	$\{1, 2\}$	$\{2,3\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2,3\}$

画出对应的 DFA 的图表示,如下所示:

从起始状态开始遍历,发现仅有 \emptyset 、 $\{1,2\}$ 、 $\{2,3\}$ 、 $\{1,2,3\}$ 可达,因此可以删去其他状态。化简后的 DFA 如图所示:

4. Design DFA and RE: 1.12 Let $D = \{w | w \text{ contains an even number of a's and an odd number of b's and does not contain the substring ab}. Give a DFA with five states that recognizes <math>D$ and a regular expression that generates D. (Suggestion: Describe D more simply.)

解: 仅考虑条件"不含子串 ab",可以推出串具有 b^*a^* 的形式。下面证明这一事实:

- 1. 当字符串不含 a 时,显然成立;
- 2. 当字符串含有 a 时,设 a_0 是第一个出现的 a,
 - (a) 若 a₀ 后面没有出现 b, 结论得证;
 - (b) 若 a_0 后面出现了 b,取出现的第一个 b,记作 b_0 。因为是第一个,所以 b_0 前面紧跟的字符 是 a,出现了 ab 子串,矛盾。所以此种情况不会出现。

综上,结论成立,即条件"不含子串 ab"蕴含串具有 b*a* 的形式。综合前面两个条件,可得 $D = \{w | w = b^i a^j, i$ 为奇数,j 为偶数 }。设计识别它的 DFA 如下: $(q_0$ 为前面有连续偶数个 b, q_1 为前面有连续奇数 个 b, q_2 为连续奇数个 b 后有连续奇数个 a, q_3 表示连续奇数个 b 后有连续偶数个 a, q_4 为死状态)

容易写出 D 的正则表达式: b(bb)*(aa)*。