L05 Tableau Proofs in Propositional Logic Chapter 4

1. Motivation

```
Major concept \Sigma \models \sigma
One goal is to automatically construct a proof to show the above
First work on \{\} \models \sigma, i.e., \sigma is a tautology.
Tableaux proof idea (intuition: proof by contradiction)
(A V -A) is tautology
Proof (by contradiction) [informal]
        Assume (A V -A) is F.
        (working forward) by definition of V
        (1) A is F, and
        (2) -A is F
        (3) A is T (by (2) and definition of -)
        Contradiction (1) and (3)
QED
Prove (A \land B) is tautology
Proof (by contradiction) [not a proof below]
        Assume (A \land B) is F.
        (working forward) by definition of ∧
        We consider two case
                                                            we consider 3 cases
        (1) A is F .... No contradiction
                                                                A is F B is T
        (2) OR B is F ... No contradiction
                                                                A is F B is F
                                                                A is TB is F
        No Contradiction
QED
```

2. Motivation of tableaux proof

Motivation of tableaux proof: proof by contradiction. A signed proposition $F\alpha$ means assume α is false or we would like α to be false. Worked out atomic tableaux ourselves. Work out a few examples on reducing a signed proposition (all paths are contradiction, no path is contradiction or some contradiction and some not)

Finishing studying the finite tableaux / tableaux definition. Check what are defined? Using drawing (tree, path) to check understanding of the definition.

A precise informal reading of signed proposition:

 $F(\alpha)$: we would like to find a way (valuation) to make α to be false $T(\alpha)$: we would like to find a way (valuation) to make α to be true Entries on a path is understood as conjunction. For example

Read as we would like to find a valuation to make $A \lor B$ true and to make A true. In this case, since we have to make A to be true and thus $A \lor B$ true, we don't need to consider an alternative case of making B to be true.

Prove $(((A \rightarrow B) \rightarrow A) \rightarrow A)$ is a tautology

3. Studying the definitions

3.1 Definitions of finite tableau and tableau

Read from tableaux def (most time of class spent on the first definition)

1a	1b	2a	2b
TA	FA	$T(\alpha \wedge \beta)$ $T\alpha$ $T\beta$	$F(\alpha \wedge \beta)$ $F\alpha$ $F\beta$
3a	3Ъ	4a	4b F(α ∨ β)
$T(\neg \alpha)$ $ $ $F\alpha$	F(¬α) Tα	$T(\alpha \vee \beta)$ $T\alpha$ $T\beta$	Fα Fβ
5a	5b	6a	6b
$ \begin{array}{c} T(\alpha \to \beta) \\ \nearrow \\ F\alpha & T\beta \end{array} $	$F(\alpha \rightarrow \beta)$ $T\alpha$ $F\beta$	$T(\alpha \leftrightarrow \beta)$ $T\alpha$	$F(\alpha \leftrightarrow \beta)$ $T\alpha \qquad F\alpha$ $ \qquad \qquad$

Definition 4.1 A finite tableau is a binary tree, labeled with signed propositions called entries, that satisfies the following inductive definition:

- (i) All atomic tableaux are finite tableaux.
- (ii) If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P and τ' is obtained from τ by adjoining the unique atomic tableau with root entry E to τ at the end of the path P, then τ' is also a finite tableau.

If $\tau_0, \tau_1, ..., \tau_n, ...$ is a (finite or infinite) sequence of finite tableaux such that, for each $n \geq 0$, τ_{n+1} is constructed from τ_n by an application of (ii), then $\tau = \cup \tau_n$ is a tableau.

Drawing a picture helps to understand the definition.

Exercise: figure out the union of graphs, apply it to the union of two finite tableaux

$$G1 = (V1, E1) G2 = (V2, E2)$$

G1 U G2 = (V1 U V2, E1 U E2)

3.2 Definitions of tableau proof and complete systematic tableau

We would like to precisely define

- Tableau proof, and
- A systematic way to construct a tableau proof called complete systematic tableau
 - Continue to "analyze" (or reduce) each node in a tableau until each node is "reduced" (so that no cheating to say there is no tableau proof by intentionally stopping the analyze of each node)

Definition 4.2 Let τ be a tableau, P a path on τ and E an entry occurring on P.

- (i) E has been reduced on P if all the entries on one path through the atomic tableau with root E occur on P. (E.g., TA and FA are reduced for every propositional letter A. $T \neg \alpha$ and $F \neg \alpha$ are reduced (on P) if $F\alpha$ and α , respectively, appear on P. $T(\alpha \lor \beta)$ is reduced if either $T\alpha$ or $T\beta$ appears on P. $F(\alpha \lor \beta)$ is reduced if both $F\alpha$ and $F\beta$ appear on P.)
- (ii) P is contradictory if, for some proposition α , $T\alpha$ and $F\alpha$ are both entries on P. P is finished if it is contradictory or every entry on P is reduced on P.
- (iii) τ is finished if every path through τ is finished.
- (iv) τ is contradictory if every path through τ is contradictory. (It is, of course, then finished as well.)

Definition 4.3 A tableau proof of a proposition α is a contradictory tableau with root entry $F\alpha$. A proposition is tableau provable, written $\vdash \alpha$, if it has a tableau proof.

A tableau refutation for a proposition α is a contradictory tableau starting with $T\alpha$. A proposition is tableau refutable if it has a tableau refutation.

Definition 4.4 Let R be a signed proposition. We define the complete systematic tableau (CST) with root entry R by induction.

- Let τ_0 be the unique atomic tableau with R at its root.
- Assume that τ_m has been defined. Let n be the smallest level of τ_m containing an entry that is unreduced on some noncontradictory path in τ_m and let E be the leftmost such entry of level n. We now let τ_{m+l} be the tableau gotten by adjoining the unique atomic tableau with root E to the end of every noncontradictory path of τ_m on which E is unreduced. The union of the sequence τ_m is our desired complete systematic tableau.

Theorem 4.5 Every CST is finished.

Theorem 4.6 If $\tau = \cup \tau_n$ is a contradictory tableau, then for some m, τ_m is a finite contradictory tableau. Thus, in particular, if a CST is a proof, it is a finite tableau.

Definition 4.7 Define the degree of a proposition α , $d(\alpha)$ by induction:

- (i) If α is a propositional letter, then $d(\alpha) = 0$.
- (ii) If α is $\neg \beta$, then $d(\alpha) = d(\beta) + 1$.
- (iii) If α is $\beta \vee \gamma$, $\beta \wedge \gamma$, $\beta \to \gamma$ or $\beta \leftrightarrow \gamma$, then $d(\alpha) = d(\beta) + d(\gamma) + 1$. The degree of a signed proposition $T\alpha$ or $F\alpha$ is the degree of α . If P is a path in a tableau τ , then d(P) the degree of P is the sum of the signed propositions on P that are not reduced on P.

Theorem 4.8 Every CST is finite