Exercício Prático

Aula Prática 7 – Arduíno ficheiro

SISTEMAS EMBEBIDOS E DE TEMPO REAL

Licenciatura em Engenharia de Sistemas Informáticos

1º semestre 2021/22

Docente:

Pedro Cunha

Alunos:

João Apresentação 21152 Gonçalo Cunha 21145 Pedro Simões 21140

Barcelos, Portugal

22 de novembro de 2022

Resumo

Neste documento serão demonstrados os exercícios práticos desenvolvidos recorrendo ao uso do Arduíno IDE e do Arduíno, na aula prática 7 da disciplina de Sistemas Embebidos e de Tempo Real no dia 25/11/2022.

Conteúdo

Resumo	2
Exercício 1 - Controlar a posição de rotação com um servo	4
Resumo	4
Material	4
Montagem do Arduíno	4
Código fonte	5
Exercício 2 - Controlar a velocidade de servos de rotação contínua	6
Resumo	6
Material	6
Montagem do Arduíno	6
Código Fonte	7
Exercício 3 - Controlar servo motor através de sensor de proximidade ultrassónico	8
Resumo	8
Material	8
Montagem do Arduíno	8
Código Fonte	9
Exercício 4 - Controlar servo com transístor Darlington TIP120	10
Resumo	10
Material	10
Montagem do Arduíno	10
Código Fonte	11
Conclusão	12
Bibliografia	12

Exercício 1 - Controlar a posição de rotação com um servo

Neste tópico será documentado a realização do primeiro exercício da aula prática recorrendo a uma explicação do código presente do IDE do Arduíno e demonstração da montagem do próprio Arduíno.

Resumo

Neste exercício é realizado alterações dos ângulos de posição do servo.

Material

- 1 Arduíno UNO R3;
- 3 Fios Breadboard;
- 1 Micro servo (Tipo posicional).

Montagem do Arduíno

Exercício 1 - Montagem Arduíno

Código fonte

```
#include <Servo.h>
     Servo myservo;
     //Variavel que armazena angulo atual do servo
     int angle = 0;
8 ∨ void setup(){
     myservo.attach(3);
11 \vee void loop(){
      for(angle = 0; angle < 180; angle += 1) {</pre>
         myservo.write(angle);
        delay(20);
       }
       for(angle = 180; angle >= 1; angle -= 1)
         myservo.write(angle);
         delay(20);
      }
23
```

Código Fonte 1 - Exercício 1

Exercício 2 - Controlar a velocidade de servos de rotação contínua

Neste tópico será documentado a realização do segundo exercício da aula prática recorrendo a uma explicação do código presente do IDE do Arduíno e demonstração da montagem do próprio Arduíno. Contém um vídeo da demonstração na pasta de trabalho.

Resumo

Neste exercício é realizado alterações na velocidade de rotação dos servos.

Material

- 1 Arduíno UNO R3;
- 6 Fios Breadboard;
- 2 Micro servos (Tipo contínuo).

Montagem do Arduíno

Exercício 2 - Montagem Arduíno

Código Fonte

```
#include <Servo.h>
    Servo myservoLeft;
     Servo myservoRight;
     //Variavel que armazena o angulo atual do servo
     int angle = 0;
10 ∨ void setup(){
     myservoLeft.attach(3);
     myservoRight.attach(9);
15 ∨ void loop(){
     for(angle = 90; angle < 180; angle += 1) // goes from 90 to 180 degrees
        myservoLeft.write(angle);
        myservoRight.write(180-angle);
        delay(20);
       for(angle = 180; angle \rightarrow= 90; angle -= 1)
        myservoLeft.write(angle);
        myservoRight.write(180-angle);
```

Código Fonte 2 - Exercício 2

Exercício 3 - Controlar servo motor através de sensor de proximidade ultrassónico

Neste tópico será documentado a realização do segundo exercício da aula prática recorrendo a uma explicação do código presente do IDE do Arduíno e demonstração da montagem do próprio Arduíno. Contém um vídeo da demonstração na pasta de trabalho.

Resumo

Neste exercício é realizado um controlo do servo motor recorrendo ao sensor de proximidade ultrassónico.

Material

- 1 Arduíno UNO R3;
- 9 Fios Breadboard;
- 1 Micro servo motor (SG90);
- 1 Sensor ultrassónico (HC-SR04 (Generic)).

Montagem do Arduíno

Exercício 3 - Montagem Arduíno

Código Fonte

```
#include <Servo.h>
     Servo myservo;
     const int servo_pin = 3;
     const int trig pin = 6;
     const int echo pin = 4;
     const int inter_time = 200;
     int time = 0;
     void setup()
10 V {
       Serial.begin(9600);
       myservo.attach(servo_pin, 500, 2400);
       myservo.write(90);
       pinMode (trig_pin, OUTPUT);
       pinMode (echo_pin, INPUT);
       delay(3000);
     void loop()
       float duration, distance;
       digitalWrite(trig_pin, HIGH);
       delayMicroseconds(1000);
       digitalWrite(trig_pin, LOW);
       duration = pulseIn (echo pin, HIGH);
       distance = (duration / 2) / 29;
       Serial.print(distance);
       Serial.println(" cm");
       time = time + inter_time;
       delay(inter_time);
       if (distance < 10)
         for(int i = 1500; i >= 1100; i-=25){
           myservo.writeMicroseconds(i);
           Serial.println("2");
           delay(100);
         delay(1000);
46
         for(int i = 1100; i \le 1500; i+=25){
           myservo.writeMicroseconds(i);
           Serial.println("1");
           delay(100);
```

Exercício 4 - Controlar servo com transístor Darlington TIP120

Neste tópico será documentado a realização do segundo exercício da aula prática recorrendo a uma explicação do código presente do IDE do Arduíno e demonstração da montagem do próprio Arduíno. Contém um vídeo da demonstração na pasta de trabalho.

Resumo

Neste exercício é realizado um controlo do servo com o transístor Darlington TIP120 que funciona como intermediário de acesso a energia e é esse que recebe informações de quanta energia deve ser utilizada nos componentes envolvidos.

Material

- 1 Arduíno UNO R3;
- 9 Fios Breadboard;
- 1 Resistência (220 Ohms);
- 1 Micro servo motor (SG90);
- 1 transistor Darlington (TIP120).

Montagem do Arduíno

Exercício 4 - Montagem Arduíno

Código Fonte

```
int powerControl = 3;
int servoPin = 7;
void setup() {
  pinMode(powerControl, OUTPUT);
  Serial.println("Transistor base set to pin " + String(powerControl, DEC));
   pinMode(servoPin, OUTPUT);
   Serial.println("Servo signal set to pin " + String(servoPin, DEC));
  // turn on the pwm signal to the servo
servo.attach(servoPin);
Serial.println("Servo attached to " + String(servoPin, DEC));
  // turn on servo power
digitalWrite(powerControl, HIGH);
Serial.println("Servo Power is ON");
  //Sweep the servo 0 to 180 for (int servoPosition = 0; servoPosition < 181; servoPosition += 5) {
   servo.write(servoPosition);
Serial.println("Position: " + String(servoPosition, DEC));
delay(15);
   digitalWrite(powerControl, LOW);
Serial.println("Servo power is OFF");
   //turn off the pwm signal to the servo
servo.detach();
Serial.println("Servo detached");
   // turn on the pwm signal to the servo
servo.attach(servoPin);
Serial.println("Servo attached to " + String(servoPin, DEC));
   // turn on servo power
digitalWrite(powerControl, HIGH);
Serial.println("Servo Power is ON");
   //Sweep the servo 180 to 0 for (int servoPosition = 180; servoPosition >= 0; servoPosition -= 5) {
   servo.write(servoPosition);
Serial.println("Position: " + String(servoPosition, DEC));
   // turn off servo power
digitalWrite(powerControl, LOW);
Serial.println("Servo Power is OFF");
   //turn off the pwm signal to the servo
servo.detach();
Serial.println("Servo detached");
   //wait for 1 second
Serial.println("Waiting for 2 sec...");
```

Conclusão

Esta aula prática desenvolveu as nossas capacidades para trabalhar com Arduíno e o seu IDE com recurso a várias formas de uso de servos. Estes proporcionaram além de novas capacidades, ideias para futuros projetos não só da unidade curricular em questão como extracurriculares.

Bibliografia

App utilizada para montagem do Arduíno: https://www.tinkercad.com/