Cooper Johnston

# Linear Algebra

## **Contents**

| 0 | Sets | and Proofs          | 1 |
|---|------|---------------------|---|
|   |      | Sets                |   |
|   | 0.2  | Mappings            | 2 |
|   | 0.3  | Propositional logic | 3 |
|   | 0.4  | Proofs              | 3 |
| _ | Vec  |                     | 5 |
|   | 1.1  | Vector spaces       | 5 |

## Chapter 0

## **Sets and Proofs**

#### 0.1 Sets

We will begin by exploring the concept of a set through what is sometimes called intuitive or naive set theory. This intuitive treatment of sets will suffice for the purposes of this course. A more rigorous approach, axiomatic set theory, is outside the scope of this course.

**Definition 0.1.1.** A **set** is a well-defined collection of objects. By "well-defined" we mean that for any set *S*, any object is either definitely in *S* or definitely not in *S*.

An object that is in a set is called an element of that set. We write  $x \in S$  to denote that x is an element of the set S.

The set that does not contain any elements is called the empty set, denoted  $\emptyset$ .

The number of elements in a set is called the cardinality of that set. We write |S| to denote the cardinality of the set S.

One way to describe a set is by listing its elements. For example, we can define *A* to be the set containing the numbers 3, 6, 9, and 12, denoted by

$$A = \{3, 6, 9, 12\}.$$

Another way is to give a defining property of its elements. For example, A is the set of the first four positive multiples of three, or more mathematically, A is the set of all elements 3n such that n = 1, 2, 3, 4, denoted by

$$A = \{3n \mid n = 1, 2, 3, 4\}.$$

The latter notation is often called set-builder notation.

2 0 Sets and Proofs

We will denote certain special sets of numbers as follows:

 $\mathbb{Z}$  is the set of integers;

 $\mathbb{Z}^+$  is the set of positive integers;

 $\mathbb{Q}$  is the set of rational numbers;

 $\mathbb{Q}^+$  is the set of positive rational numbers;

 $\mathbb{R}$  is the set of real numbers;

 $\mathbb{R}^+$  is the set of positive real numbers; and

 $\mathbb C$  is the set of complex numbers.

**Example 0.1.2.** The set of even numbers is the set of all numbers 2n where n is an integer, i.e.  $\{2n \mid n \in \mathbb{Z}\}$ .

**Example 0.1.3.** The set of **ratio**nal numbers  $\mathbb{Q}$  is the set of all numbers that can be expressed as a **ratio** p/q where p and q are integers and  $q \neq 0$ , i.e.  $\mathbb{Q} = \{p/q \mid p, q \in \mathbb{Z}, q \neq 0\}.$ 

**Definition 0.1.4.** Let A and B be two sets. B is called a subset of A, denoted  $B \subseteq A$ , if every element in B is also an element in A, i.e. for every  $b \in B$ , we have  $b \in A$ .

B is called a proper subset of A, denoted  $B \subset A$ , if  $B \subseteq A$  and  $B \neq A$ .

**Definition 0.1.5.** Let  $A_1, A_2, \ldots, A_n$  be non-empty sets. The set

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

is called the Cartesian product of  $A_1, A_2, \ldots, A_n$ .

The Cartesian product of a set with itself can be denoted by

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ times}} = A^n.$$

For example,  $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ , the set of ordered pairs of real numbers.

**Example 0.1.6.** Let  $A = \{1, 2\}$  and  $B = \{1, 2, 3\}$ . Then,

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$
  
= \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}.

### 0.2 Mappings

**Definition 0.2.1.** Let A and B be two non-empty sets, and let  $\mathcal{R} \subseteq A \times B$ . The set  $\mathcal{R}$  is called a relation between A and B. For an ordered pair  $(a,b) \in \mathcal{R}$ , we say that  $\mathcal{R}$  relates a to b.

**Definition 0.2.2.** Let A and B be two non-empty sets. A relation f between A and B is called a mapping or a function if for every  $a \in A$ , there exists exactly one  $b \in B$  such that f relates a to b. The set A is called the domain of f, and B is called the codomain of f.

We write  $f : A \to B$  to denote that f is a mapping with domain A and codomain B; that is, f is a mapping from A to B.

We write f(a) = b or  $a \mapsto b$  to denote that f relates a to b; that is, f maps a to b.

**Definition 0.2.3.** Let *S* be a set and let  $\odot$  :  $S \times S \to S$  be a mapping.  $\odot$  is called a binary operation on *S*.

We write  $x \odot y = z$  to denote that  $\odot$  maps (x, y) to z.

## 0.3 Propositional logic

## 0.4 Proofs

## Chapter 1

## **Vectors**

## 1.1 Vector spaces

**Definition 1.1.1.** Let F be a set and let + and  $\cdot$  be two binary operations on F. F, together with the operations + and  $\cdot$ , is called a field if all of the following axioms are satisfied:

1. + and · are associative, i.e. for all  $a, b, c \in F$ , we have

$$(a+b)+c=a+(b+c)$$
 and  $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ .

2. + and · are commutative, i.e. for all  $a, b \in F$ , we have

$$a + b = b + a$$
 and  $a \cdot b = b \cdot a$ .

3. There exists an element  $0_F \in F$ , called the additive identity, such that for all  $a \in F$ , we have

$$a + 0_F = a$$
.

4. There exists an element  $1_F \in F$ , called the multiplicative identity, such that for all  $a \in F$ , we have

$$a \cdot 1_F = a$$
.

5. For every  $a \in F$ , there exists an element  $-a \in F$ , called the additive inverse of a, such that

$$a + (-a) = 0_F.$$

6. For every  $a \in F$  other than  $0_F$ , there exists an element  $a^{-1} \in F$ , called the multiplicative inverse of a, such that

$$a \cdot a^{-1} = 1_F.$$

7. · is distributive over +, i.e. for all  $a, b, c \in F$ , we have

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$
.

5

Let us examine some examples of what is and isn't a field.

6 1 Vectors

**Example 1.1.2.** Show that the set of real numbers  $\mathbb{R}$ , together with standard addition and multiplication, is a field.

Solution. We will prove this result by examining each of the axioms one-by-one:

- We already know that standard addition and multiplication are associative.
- 2. We also know that standard addition and multiplication are commutative.
- 3. The additive identity is the number 0.
- 4. The multiplicative identity is the number 1.
- 5. For any  $x \in \mathbb{R}$ , the additive inverse is the number -x.
- 6. For any  $x \in \mathbb{R}$  other than 0, the multiplicative inverse is the number 1/x.
- 7. We already know that standard multiplication is distributive over standard addition.

Hence,  $\mathbb{R}$  is a field.

**Example 1.1.3.** Show that the set of integers  $\mathbb{Z}$ , together with standard addition and multiplication, is not a field.

*Solution.* The multiplicative identity is the number 1. Consider the number  $2 \in \mathbb{Z}$ . There does not exist a number  $n \in \mathbb{Z}$  such that 2n = 1; that is, 2 does not have a multiplicative inverse in  $\mathbb{Z}$ . Hence,  $\mathbb{Z}$  is not a field.

**Definition 1.1.4.** Let F be a field and V be a set, and let  $\odot : F \times V \to V$  and  $\oplus : V \times V \to V$  be two binary operations<sup>1</sup>. V, together with these operations, is called a vector space over F if all of the following axioms are satisfied:

1.  $\oplus$  is associative, i.e. for all  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ , we have

$$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} = \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}).$$

2.  $\oplus$  is commutative, i.e. for all  $\mathbf{u}, \mathbf{v} \in V$ , we have

$$\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$$
.

3. There exists an element  $\mathbf{0} \in V$ , called the zero vector, such that for all  $\mathbf{v} \in V$ , we have

$$\mathbf{v} \oplus \mathbf{0} = \mathbf{v}$$
.

4. For every  $\mathbf{v} \in V$ , there exists an element  $-\mathbf{v} \in V$ , called the additive inverse of  $\mathbf{v}$ , such that

$$\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}.$$

5. For all  $a, b \in F$  and  $\mathbf{v} \in V$ , we have

$$a \odot (b \odot \mathbf{v}) = (ab) \odot \mathbf{v}.$$

 $<sup>^1</sup>$ Here,  $\odot$  is a binary operation under a more generalized definition than Definition 0.2.3, since F and V are different sets.

6. For every  $\mathbf{v} \in V$ , we have

$$1_F \odot \mathbf{v} = \mathbf{v}$$

where  $1_F$  is the multiplicative identity of F.

7.  $\odot$  is distributive over  $\oplus$ , i.e. for all  $a \in F$  and  $\mathbf{u}, \mathbf{v} \in V$ , we have

$$a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$$

8. For all  $a, b \in F$  and  $\mathbf{v} \in V$ , we have

$$(a + b) \odot \mathbf{v} = (a \odot \mathbf{v}) \oplus (b \odot \mathbf{v}).$$

The elements of F are called scalars and the elements of V are called vectors. The operation  $\odot$  is called scalar multiplication and the operation  $\oplus$  is called vector addition.

Note that the zero vector is the same as the additive identity under vector addition.

Let us now examine some examples of what is and isn't a vector space.

**Example 1.1.5.** Show that  $\mathbb{R}^2$ , together with

- vector addition  $\oplus$  defined such that for all  $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ , we have  $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ ; and
- scalar multiplication  $\odot$  defined such that for all  $c \in \mathbb{R}$  and  $(x, y) \in \mathbb{R}^2$ , we have  $c \odot (x, y) = (cx, cy)$ ,

is a vector space over  $\mathbb{R}$ .

*Solution.* Let (x, y),  $(x_1, y_1)$ ,  $(x_2, y_2)$ ,  $(x_3, y_3) \in \mathbb{R}^2$  and let  $a, b \in \mathbb{R}$ . We will prove this result by examining each of the axioms one-by-one:

1. We have

$$((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3) = (x_1 + x_2, y_1 + y_2) \oplus (x_3, y_3)$$

$$= (x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$

$$= (x_1, y_1) \oplus (x_2 + x_3, y_2 + y_3)$$

$$= (x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)),$$

so  $\oplus$  is associative.

2. We have

$$(x_1,y_1)\oplus (x_2,y_2)=(x_1+x_2,y_1+y_2)=(x_2+x_1,y_2+y_1)=(x_2,y_2)\oplus (x_1,y_1),$$

so  $\oplus$  is commutative.

3. Let  $\mathbf{0} = (0, 0)$ . Then,

$$(x, y) \oplus \mathbf{0} = (x, y) \oplus (0, 0) = (x + 0, y + 0) = (x, y),$$

so 0 is the zero vector.

8 1 Vectors

4. Let 
$$-(x, y) = (-x, -y)$$
. Then,  $(x, y) \oplus (-(x, y)) = (x, y) \oplus (-x, -y) = (x - x, y - y) = (0, 0) = \mathbf{0}$ , so  $-(x, y)$  is the additive inverse of  $(x, y)$ .

5. We have

$$a \odot (b \odot (x, y)) = a \odot (bx, by) = (abx, aby) = (ab) \odot (x, y).$$

6. Recall that the number 1 is the multiplicative identity of  $\mathbb{R}$ . We have

$$1 \odot (x, y) = (1x, 1y) = (x, y).$$

7. We have

$$a \odot ((x_1, y_1) \oplus (x_2, y_2)) = a \odot (x_1 + x_2, y_1 + y_2) = (a(x_1 + x_2), a(y_1 + y_2))$$
$$= (ax_1 + ax_2, ay_1 + ay_2) = (ax_1, ay_1) \oplus (ax_2, ay_2)$$
$$= (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$$

8. We have

$$(a+b)\odot(x,y) = ((a+b)x,(a+b)y) = (ax+bx,ay+by)$$
$$= (ax,ay)\oplus(bx,by) = (a\odot(x,y))\oplus(b\odot(x,y)).$$

Hence,  $\mathbb{R}^2$  with these operations is a vector space over  $\mathbb{R}$ .