20210630

1. MM-value=11/time=20

ESSAY 11 points 0.10 penalty editor

The public authority of a rural province wants to optimize the water supply to a set of cultivation fields F. Each field $v \in F$ requires q_v^t m³ at period $t \in T$, being T the time horizon. The water can be collected from a set of basins B. Each basin $w \in B$ has h_w m³ available in total for the entire time horizon. Each $v \in B$ is connected to each $w \in F$ by a pipe for the distribution of water. Each pipe from v to w has a cost l_{vw} per m³ transiting in it and a maximum capacity of p_{vw} for each period $t \in T$.

Write a mixed integer programming model to obtain a feasible water flow for each period while respecting the constraints. No water pressure, speed, or turbulence is considered.

Include the following constraint into the model: if basin 1 is used in period τ , then basin 2 cannot be used in *either* period $\tau + 1$ or $\tau + 2$ (i.e., basin 2 can be used at most in one of the two periods).

Notes for grader:

• Solution:

- $-f_{vw}^{t} = m^{3}$ of water carried on arc $(v, w) \in A$ in period $t \in T$;
- $-\gamma = 1$ if basin 2 is not used in period $\tau + 1$; 0 otherwise;
- $-\delta = 1$ if basin 2 is not used in period $\tau + 2$; 0 otherwise;
- -M is an arbitrary large constant.

$$\begin{aligned} \min z &= \sum_{(v,w) \in A} l_{vw} \sum_{t \in T} f_{vw}^t \\ &\sum_{t \in T} \sum_{w \in F} f_{vw}^t \leq h_v \quad v \in B \\ &\sum_{v \in B} f_{vw}^t \geq q_w^t \quad w \in F, t \in T \\ &f_{vw}^t \leq p_{vw} \quad w \in B, w \in F, t \in T \\ &\sum_{w \in F} f_{1w}^\tau \leq M(\gamma + \delta) \\ &\sum_{w \in F} f_{2w}^{\tau + 1} \leq M(1 - \gamma) \\ &\sum_{w \in F} f_{2w}^{\tau + 2} \leq M(1 - \delta) \\ &f_{vw}^t \geq 0 \quad v \in B, w \in F, t \in T \\ &\delta \in \{0, 1\} \end{aligned}$$

2. PLC-value=9/time=15

Consider the following LP problem:

$$\begin{aligned} & \min & 2x_1 - 3x_2 + 11x_3 \\ & & 4x_1 - 12x_2 + 2x_3 \geq 3 \\ & & -x_1 + 3x_2 + 9x_3 \geq 8 \\ & & x_1, x_2 \geq 0. \end{aligned}$$

Write the corresponding dual problem and the complementary slackness. Given the dual solution $\overline{u}=(10/19,21/19)$, verify if it is the optimal solution by using the complementary slackness. Explain your rationale.

Notes for grader:

• Solution:

$$\begin{aligned} & \min \quad 3u_1 + 8u_2 \\ & 4u_1 - u_2 \leq 2 \\ & -12u_1 + 3u_2 \leq -3 \\ & 2u_1 + 9u_2 = 11 \\ & u_1, u_2 \geq 0. \end{aligned}$$

$$(4x_1 - 12x_2 + 2x_3 - 3)u_1 = 0$$

$$(-x_1 + 3x_2 + 9x_3 - 8)u_2 = 0$$

$$(4u_1 - u_2 - 2)x_1 = 0$$

$$(-12u_1 + 3u_2 + 3)x_2 = 0$$

$$(2u_1 + 9u_2 - 11)x_3 = 0$$

$$u_1 = 10/19$$

 $u_2 = 21/19$
 $x_1 = 0$
 $x_2 = -11/114$
 $x_3 = 35/38$

The dual solution is not the optimal solution because one of the corresponding primal variables does not respect its non negativity constraint for variable x_2 .

3. DP-value=8/time=15 (FRO 6CFU)

ESSAY 8 points 0.10 penalty editor

Given a knapsack of capacity c = 7, and 3 objects of weights $w_i = (2,3,4)$ and profits $p_i = (2,3,3)$, solve the corresponding knapsack problem with dynamic programming using the profits as phases. We also know that an upper bound for the maximum profit is 6 (this information can be used to reduce the number of stages considered).

Notes for grader:

• Solution:

	0	1	2	3	4	5	6
f_0	0	M	M	M	M	M	\overline{M}
f_1	0	M	2	M	M	M	M
f_2	0	M	2	3	M	5	M
f_3	0	M	2	3	M	5	7

	0	1	2	3	4	5	6
J_0	E	E	E	E	E	E	\overline{E}
J_1	E	E	{1}	E	E	E	E
J_2	E	E	{1}	{2}	E	$\{1, 2\}$	E
J_3	E	E	{1}	{2}	E	$\{1, 2\}$	$\{2, 3\}$

The optimal solution $x = \{2, 3\}$ has value 6.

 $Total\ of\ marks:\ 28$