ΑΛΓΟΡΙΘΜΟΙ-Εαρινό εξάμηνο 2022

Ομάδα Ασκήσεων #1

Άσκ. 1 (Βαθ. 1) Βάλτε τις παρακάτω συναρτήσεις σε σειρά, $f_1, f_2, f_3, ...$, ώστε να ισχύει $f_i = O(f_{i+1})$. Δεν χρειάζεται να αιτιολογήσετε την απάντησή σας.

$$n!$$
, $(\log n)^9$, $\sqrt[9]{n}$, $n^{\log n}$, $2^{(\log n)^2}$, n^n , $(\log n)^{\log n}$, $n \log_9 n$, $n \log(\log n)^9$, \sqrt{n}^n , $2^{n \log n}$, $n^{\sqrt{n}}$.

Άσκ. 2 (Βαθ. 1) Για κάθε μία από τις παρακάτω περιπτώσεις αναδρομικού ορισμού της T(n) (με T(1)=O(1)) δώστε συνάρτηση f (την καλύτερη που μπορείτε) ώστε T(n)=O(f). Εξηγήστε τις παραμέτρους εφαρμογής του Master Theorem.

$$T(n) = T(n/2) + O(n), \quad T(n) = T(n/2) + O(1), \quad T(n) = 2T(n/2) + O(1),$$

 $T(n) = 4T(n/2) + O(n^2), \quad T(n) = 4T(n/2) + O(n^3), \quad T(n) = 4T(n/2) + O(n).$

Άσκ. 3 (Βαθ. 3) Εξηγείστε τι κάνει ο παρακάτω αλγόριθμος και αποδείξτε την ορθότητά του διατυπώνοντας αναλλοίωτη για τον βρόχο στις γραμμές 2–5.

```
A(a,b) //θετικοί ακέραιοι a,b

1 p \leftarrow 0

2 while a > 0

3 if a \mod 2 = 1 then p \leftarrow p + b

4 a \leftarrow \lfloor a/2 \rfloor

5 b \leftarrow 2b

6 return p
```

- Ασκ. 4 (Βαθ. 3) Δίνεται πίνακας A με n στοιχεία. Ένα στοιχείο του ονομάζεται a-δημοφιλές, αν εμφανίζεται τουλάχιστον an φορές. Μεταξύ των στοιχείων δεν υπάρχει διάταξη και δεν ορίζονται πράξεις (δεν μπορείτε να κάνετε συγκρίσεις ή αριθμητικές πράξεις μεταξύ των στοιχείων), μπορείτε όμως να ελέγξετε αν δύο στοιχεία είναι ίσα. Σχεδιάστε αλγόριθμο με την τεχνική διαίρει και βασίλευε που βρίσκει όλα τα a-δημοφιλή στοιχεία του A. Ποια είναι η πολυπλοκότητα του αλγορίθμου σας;
- **Ασκ. 5** (Βαθ. 2) Δίνονται αριθμοί x_1, x_2, \ldots, x_{2n} . Σχεδιάστε αλγόριθμο που τους χωρίζει σε ζεύγη ώστε να ελαχιστοποιείται το μέγιστο άθροισμα των ζευγών. Αποδείξτε αυστηρά ότι ο αλγόριθμός σας βρίσκει τη βέλτιστη διαμέριση σε ζεύγη.

Προθεσμία: 8 Απριλίου