Business Intelligence: OLAP, Data Warehouse, and Column Store

Thomas Heinis

Why we still study OLAP/Data Warehouse in Big Data?

- Understand the Big Data history
 - How does the requirement of (big) data analytics/business intelligence evolve over the time?
 - What are the architecture and implementation techniques being developed? Will they still be useful in Big Data?
 - Understand their limitation and what factors have changed from 90's to now?
- NoSQL is not only SQL ☺
- Hive/Impala aims to provide OLAP/BI for Big Data using Hadoop

Highlights

- OLAP
 - Multi-relational Data model
 - Operators
 - SQL
- Data warehouse (architecture, issues, optimizations)
- Join Processing
- Column Stores (Optimized for OLAP workload)

Back to the 70's: Relational Databases

Basic Structure

- Formally, given sets D_1, D_2, D_n a **relation** r is a subset of $D_1 \times D_2 \times ... \times D_n$ Thus, a relation is a set of n-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$
- Example:

Relation Schema

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema Example:

```
Customer_schema = (customer_name, customer_street, customer_city)
```

• r(R) is a relation on the relation schema R Example:

customer (Customer_schema)

Relation Instance

- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

customer

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information

account: stores information about accounts
depositor: stores information about which customer
owns which account
customer: stores information about customers

Storing all information as a single relation such as
 bank(account_number, balance, customer_name, ..)
results in repetition of information (e.g., two customers
 own an account) and the need for null values (e.g.,
 represent a customer without an account)

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Relational Algebra

Primitives

- Projection (π)
- Selection (σ)
- Cartesian product (x)
- Set union (\cup)
- Set difference (-)
- Rename (ρ)

Other operations

- Join (⋈)
- Group by... aggregation
- **—** ...

What happens next?

- SQL
- System R (DB2), INGRES, ORACLE, SQL-Server, Teradata
 - B+-Tree (select)
 - Transaction Management
 - Join algorithm

Early 90's: OLAP & Data Warehouse

Database Workloads

OLTP (online transaction processing)

- Typical applications: e-commerce, banking, airline reservations
- User facing: real-time, low latency, highly-concurrent
- Tasks: relatively small set of "standard" transactional queries
- Data access pattern: random reads, updates, writes (involving relatively small amounts of data)

OLAP (online analytical processing)

- Typical applications: business intelligence, data mining
- Back-end processing: batch workloads, less concurrency
- Tasks: complex analytical queries, often ad hoc
- Data access pattern: table scans, large amounts of data involved per query

OLTP

- Most database operations involve *On-Line Transaction Processing* (OTLP).
 - Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
 - Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.

OLAP

- Of increasing importance are *On-Line Application Processing* (OLAP) queries.
 - Few, but complex queries --- may run for hours.
 - Queries do not depend on having an absolutely up-to-date database.

OLAP Examples

- 1. Amazon analyzes purchases by its customers to come up with an individual screen with products of likely interest to the customer.
- 2. Analysts at Wal-Mart look for items with increasing sales in some region.

One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency
- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?

OLTP/OLAP Architecture

OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services

The Data Warehouse

- The most common form of data integration.
 - Copy sources into a single DB (warehouse) and try to keep it up-to-date.
 - Usual method: periodic reconstruction of the warehouse, perhaps overnight.
 - Frequently essential for analytic queries.

Warehouse Architecture

Star Schemas

- A *star schema* is a common organization for data at a warehouse. It consists of:
 - 1. Fact table: a very large accumulation of facts such as sales.
 - Often "insert-only."
 - 2. Dimension tables: smaller, generally static information about the entities involved in the facts.

Example: Star Schema

- Suppose we want to record in a warehouse information about every beer sale: the bar, the brand of beer, the drinker who bought the beer, the day, the time, and the price charged.
- The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

Example, Continued

• The dimension tables include information about the bar, beer, and drinker "dimensions":

Bars(bar, addr, license)

Beers(beer, manf)

Drinkers(drinker, addr, phone)

Visualization – Star Schema

Dimensions and Dependent Attributes

- Two classes of fact-table attributes:
 - 1. Dimension attributes: the key of a dimension table.
 - Dependent attributes: a value determined by the dimension attributes of the tuple