CSE 2231: Notes on Asymptotic Analysis 1

O-notation:

O-notation is used to indicate that a function g(n) is an asymptotic upper bound of another function f(n). This is written f(n) = O(g(n)) and is read as "f(n) is big-oh of g(n)". Informally, O(g(n)) acts like a g(n) as g(n) is analogous to g(n).

Here is the precise definition, which you should memorize:

f(n) = O(g(n)) means that that there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Note: Many books write $f(n) \in O(g(n))$ instead of f(n) = O(g(n)). That is, they use the set inclusion symbol rather than an equals sign.

Examples:

1. Show that $3n^2 = O(n^2)$.

In this case, $f(n) = 3n^2$ and $g(n) = n^2$. We need to find positive constants c and n_0 such that $3n^2 \le cn^2$ for all $n \le n_0$.

Let c=3 and $n_0=1$. Then clearly $3x^2\leq 3x^2$ for all $n\geq 1$. Therefore $3n^2\in O(n^2)$.

Note that c could be any number greater than or equal to 3 and n_0 could be any number greater than or equal to 1.

2. Show that $n^2 + n = O(n^2)$.

In this case, $f(n) = n^2 + n$ and $g(n) = n^2$.

Since $n \le n^2$ for all $n \ge 1$, it follows that $n^2 + n \le n^2 + n^2 = 2n^2$, for all $n \ge 1$.

Therefore, $n^2 + n = O(n^2)$ [with c = 2 and $n_0 = 1$]

3. Show that $n^3 + 2n + 5 = O(n^3)$.

For $n \ge 1$, $n^3 + 2n + 5 \le n^3 + 2n^3 + 5n^3 = 8n^3$.

Therefore, $n^3 + 2n + 5 = O(n^3)$ [with c = 8 and $n_0 = 1$]

•

4. Show that $\sqrt{6n^4 + 2n^3 + 5} = O(n^2)$.

For
$$n \ge 1$$
, $\sqrt{6n^4 + 2n^3 + 5} \le \sqrt{6n^4 + 2n^4 + 5n^4} = \sqrt{13n^4} = \sqrt{13}\sqrt{n^4} = \sqrt{13}n^2$

So
$$\sqrt{6n^4 + 2n^3 + 5} \le \sqrt{13}n^2$$

Therefore,
$$\sqrt{6n^4 + 2n^3 + 5} = O(n^2) [c = \sqrt{13}; n_0 = 1]$$

5. Show that $n^3 \neq O(n^2)$.

Proof by contradiction: Assume to the contrary that $n^3 = O(n^2)$. By definition, there then exist positive constants c and n_0 such that $n^3 \le cn^2$ for all $n \ge n_0$. If we divide both sides of the inequality by n^2 , this implies that $n \le c$ for all $n \ge n_0$. This means though that n, which can be any number, is bounded above by the constant c. In other words, there is a constant c that is greater than any other number! Clearly this is impossible. Our assumption that $n^3 = O(n^2)$ must be incorrect, so $n^3 \ne O(n^2)$.

6. Show that $log_2(n^2) = O(log_2(n))$.

Recall that $log_c(a^n) = nlog_c(a)$. Therefore, $log_2(n^2) = 2log_2(n)$. So we need to show that $2log_2(n) = O(log_2(n))$. This is clearly true, since $2log_2(n) \le 2log_2(n)$ for all $n \ge 1$. $[c = 2; n_0 = 1]$

7. Show that $3^n \neq O(2^n)$.

Assume to the contrary that $3^n = O(2^n)$. Then, by definition, there exist positive constants c and n_0 such that $3^n \le c2^n$, for all $n \ge n_0$. If we divide both sides of the inequality by 2^n though, we get $\frac{3^n}{2^n} \le c$. This is equivalent to $(\frac{3}{2})^n \le c$. This is not possible though, since $\lim_{n\to\infty} (\frac{3}{2})^n = \infty$, and can't be bounded above by a constant c. Thus, our assumption is incorrect, and $3^n \ne O(2^n)$.

8. Show that $log_2(n) = O(log_3(n))$.

Recall the change of base formula:

$$log_b(a) = \frac{log_c(a)}{log_c(b)}$$

Therefore,

$$log_3(n) = \frac{log_2(n)}{log_2(3)} = \frac{1}{log_2(3)} \times log_2(n)$$

So it suffices to show that there exist positive constants c and n_0 such that:

$$log_2(n) \le c \times \frac{1}{log_2(3)} \times log_2(n), \forall n \ge n_0.$$

Clearly this is true for $c = log_2(3)$ and $n_0 = 1$.

CSE 2231: Notes on Asymptotic Analysis 2

In part 1 of Notes on Asymptotic Analysis, we covered the definition of Big-O: f(n) = O(g(n)) means that that there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Here are some other definitions that you should memorize:

- 1. $f(n) = \Omega(g(n))$ means that that there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
- 2. $f(n) = \Theta(g(n))$ means that that there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

Here are some theorems that you should know. These are easy to memorize if you keep in mind that Θ is analogous to =, O is analogous to \leq and Ω is analogous to \geq .

We will prove the first theorem. The proofs of the others are similar.

Theorem: $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and g(n) = O(f(n)).

Proof:

 (\Rightarrow) If $f(n) = \Theta(g(n))$, then, by definition, there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$ for all $n \ge n_0$. Since there exists a constant c_2 such that $0 \le g(n) \le c_2 f(n)$ for all $n \ge n_0$, g(n) = O(f(n)). Likewise, $f(n) \le \frac{1}{c_1} g(n)$ for all $n \ge n_0$, so f(n) = O(g(n)).

- (\Leftarrow) If f(n) = O(g(n)) and g(n) = O(f(n)). Then, by definition:
 - 1. there exist positive constants c_0 and n_0 such that $f(n) \leq c_0 g(n)$ for all $n \geq n_0$, and
 - 2. there exist positive constants c_1 and n_1 such that $g(n) \leq c_1 f(n)$ for all $n \geq n_1$.

Letting n_2 be the maximum of n_0 and n_1 , it follows from the above that $\frac{1}{c_1}g(n) \leq f(n) \leq c_0g(n)$ for all $n \geq n_2$, so $f(n) = \Theta(g(n))$.

Theorem: f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.

Theorem: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Theorem: If $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.

CSE 2321: Notes on Asymptotic Analysis 3

In the previous notes, we have worked directly with the definitions of O, Ω , and Θ . In these notes, we'll look at some theorems that are often easier to apply.

Let f(n) and g(n) be two positive, monotonically increasing functions on the natural numbers. Then:

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} =$$
 a positive constant, then $f(n) = \Theta(g(n))$.

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = O(g(n))$ but $f(n) \neq \Theta(g(n))$.

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$
, then $f(n) = \Omega(g(n))$ but $f(n) \neq \Theta(g(n))$.

Examples:

(1) Let $f(n) = x^2 - 2x$ and $g(n) = 3x^2$. Then:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{x^2 - 2x}{3x^2} = \lim_{n \to \infty} \frac{\frac{x^2}{x^2} - \frac{2x}{x^2}}{\frac{3x^2}{x^2}} = \lim_{n \to \infty} \frac{1 - \frac{2}{x}}{3} = \frac{1}{3}$$

Since $\lim_{n\to\infty} \frac{f(n)}{g(n)} =$ a positive constant, $x^2 - 2x = \Theta(3x^2)$.

(2) Let $f(n) = x^2$ and $g(n) = 2^x$. Then:

$$\lim_{n\to\infty} \ \frac{x^2}{2^x} = \lim_{n\to\infty} \ \frac{2x}{ln2\times 2^x} = \lim_{n\to\infty} \ \frac{2}{lin2\times ln2\times 2^x} = 0 \ [\text{Note: we are using L'Hospital's rule}]$$

Since $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, $x^2 = O(2^x)$, but $x^2 \neq \Theta(2^x)$.

(3) Let $f(n) = 3^n$ and $g(n) = 2^n$. Then:

$$\lim_{n\to\infty}\frac{3^n}{2^n}=\lim_{n\to\infty}\left(\frac{3}{2}\right)^n=\infty$$

Since $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, $3^n = \Omega(2^n)$, but $3^n \neq \Theta(2^n)$.

(4) Let $f(n) = log_2(n)$ and $g(n) = n^2$. Then:

$$\lim_{n \to \infty} \frac{\log_2(n)}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{n \ln 2}}{2n} = \lim_{n \to \infty} \frac{1}{2n^2 \ln 2} = 0$$

Note that we use L'Hospital's Rule in the second step.

Since $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, $\log_2(n) = O(n^2)$, but $\log_2(n) \neq \Theta(n^2)$.