Ying Hu
Taut Foliations on Surgered 3-mfds & The Euler class
3-mfds & The Euler class
Motivation: L-space conjecture
Ma QHS 3-mfd Rational homology sphere
STIM left orderable iff
TIM <u>left orderable</u> iff Madmits a co-orientable taut foliation
G is left orderable iff it admits a total order
and a left action (·c): a -> ca
where $a \le b \Rightarrow ca \le cb$
(Note: forces 161=∞
Thm: Mirreducible, orientable
π, M is LO :ff ∃ p:π, M → Homeo(R)
Given (M, F), produce T, M S; does it lift to 1R?
Uses universal circle action (Thurston)

Answer yes iff
$$e(TF) = 0 \in H^2(M)$$

Tangent foliation
 $(\Rightarrow \pi, M \text{ is LO})$

Some Notation

 $Ya\ QHS$, $K \subseteq Ya\ null-homologous\ Knot$ $X = Y \cdot u(K)$, $u, \lambda \in \partial X$ Meridian & longitude

Thm: F a co-oriented taut foliation on X(l/q),

The the core of f surgery solid torus, let g = genus(K); $l/q \in M_g \implies e(TF) \neq 0$

where $M_g = \mathbb{Z} \cup \{\bigcup_{n \geq 1} M_{g,n} \}$

Note $Mg \subseteq \mathbb{R}$ is nowhere dense (ie $(M)^\circ = \emptyset$)

Thm: Let \mathcal{F} be a CTF on X, where $X \not \cap \partial X$ in simple closed curves of slope \mathcal{P}_q . Then $e(T\hat{\mathcal{F}}) = \mathcal{O} \in H^2(X(\mathcal{P}_q))$ where $\hat{\mathcal{F}} = \text{extension}$ of \mathcal{F} on $X(\mathcal{P}_q)$,

• σ = Section of TF pointing inward on ∂X iff

0 PD(e,(TF))=u[m]

2 u(g)=1 mod p

Pf: Look at SES $= H(X(P_Q), X)$ $O \rightarrow H'(\partial X) \rightarrow H^2(X, \partial X) \oplus H^2(N, \partial N) \rightarrow \cdots$

restrict foliation

