

#### **ASIGNATURA:**

## **ESTADÍSTICA**

# ING. ALEXANDRA ELIZABETH ESCOBAR MENDEZ CARLOS ANDRES CARRASCO NOVOA

### Manual de Excel para encuesta sobre aplicaciones de idiomas

Este manual proporciona una guía detallada para realizar un análisis estadístico de encuestas sobre la utilización de las aplicaciones para aprender idiomas en los estudiantes de la Universidad de las fuerzas armadas ESPE utilizando Excel. Se abordarán cálculos de medidas de tendencia central y dispersión, distribuciones de probabilidad continua y discreta, probabilidades y técnicas de conteo.

## Datos no agrupados

Excel proporciones comando para poder realizar estos de una forma rápida y sencilla utilizando las siguientes funciones:

- **Media:** =PROMEDIO(rango\_de\_celdas)
- **Mediana:** =MEDIANA(rango\_de\_celdas)
- **Moda:** =MODA(rango\_de\_celdas)
- **Amplitud:** =MAX(rango\_de\_celdas) MIN(rango\_de\_celdas)
- **Varianza:** =VAR.P(rango\_de\_celdas)
- **Desviación Estándar:** =DESVEST.P(rango\_de\_celdas)
- Cuartiles: =CUARTIL(rango\_de\_celdas, 1), =CUARTIL(rango\_de\_celdas, 2), =CUARTIL(rango\_de\_celdas, 3)
- **Percentiles:** =PERCENTIL(rango\_de\_celdas, 0.9), =PERCENTIL(rango\_de\_celdas, 0.1)
- **Curtosis:** =KURT(rango\_de\_celdas)

Con estas formulas se consigo sacar la siguiente tabla sobre la muestra que se realizó de la pregunta:

6, Califique del 1 al 100 su conocimiento sobre la aplicación de su preferencia para aprender idiomas

| Datos no agrupados | Columna1               |       |
|--------------------|------------------------|-------|
|                    |                        |       |
|                    | Media                  | 78,40 |
|                    | Error típico           | 1,19  |
|                    | Mediana                | 75    |
|                    | Moda                   | 70    |
|                    | Desviación estándar    | 9,39  |
|                    | Varianza de la muestra | 88,30 |
|                    | Curtosis               | 0,92  |
|                    | Mínimo                 | 67    |
|                    | Máximo                 | 100   |
|                    | Suma                   | 1019  |
|                    | CV                     | 1,13  |
|                    | CA                     | 1,09  |
| CUARTILES          | q1=                    | 70    |
|                    | q2=                    | 75    |
|                    | q3=                    | 10,50 |
|                    |                        |       |
| PERCENTILES        | p90=                   | 96    |
|                    | p10=                   | 68,2  |
| CURTOSIS           |                        |       |
|                    | curtosis=              | -0,33 |

## **Datos agrupados**

En este apartado se calculo los datos agrupados y se realizo una tabla en donde facilitamos los cálculos con las funciones = y así poder multiplicar las celdas automáticamente

1.- Primero se trabajo con el rango con la que se iba a realizar la tabla

| $-2^k \geq n$ | k=5         | Máximo - Mínimo = | 6.6 = 7 |
|---------------|-------------|-------------------|---------|
| $z \leq n$    |             | k                 |         |
| 32>= 13       |             |                   |         |
|               |             |                   |         |
|               |             |                   |         |
| Rango =       | 67 - 1 = 66 |                   |         |
|               |             |                   |         |

2.- Se realizo la tabla con los nuevos parámetros y se utilizó la función = para realizar las debidas multiplicaciones

|            |       | f             |                  | Х              |       |         |           |            |              |          |                        |              |
|------------|-------|---------------|------------------|----------------|-------|---------|-----------|------------|--------------|----------|------------------------|--------------|
| intervalos | ;     | fr.abs.simple | fr.abs.Acumulada | marca de clase | fx    | X-XPROM | [X-XPROM] | f[X-XPROM] | f(X-XPROM)^2 | fx^2     | (X-XPROM) <sup>2</sup> | f(X-XPROM)^2 |
| 66         | 73    | 4             | 6                | 69,5           | 278   | -9,5    | 9,5       | 38         | 361          | 19321    | 90,25                  | 361          |
| 74         | 81    | 6             | 12               | 77,5           | 465   | -1,5    | 1,5       | 9          | 13,5         | 36037,5  | 2,25                   | 13,5         |
| 82         | 88    | 1             | 13               | 85             | 85    | 6       | 6         | 6          | 36           | 7225     | 36                     | 36           |
| 89         | 96    | 1             | 14               | 92,5           | 92,5  | 92,5    | 92,5      | 92,5       | 8556,25      | 8556,25  | 8556,25                | 8556,25      |
| 97         | 106   | 1             | 15               | 101,5          | 101,5 | 22,5    | 22,5      | 22,5       | 506,25       | 10302,25 | 506,25                 | 506,25       |
|            | Total | 13            | 60               | 426            | 1022  | 110     | 132       | 168        | 9473         | 81442    | 9191                   | 9473         |

3.- Con la tabla se puedo aplicar las debidas formulas para sacar los datos de la media, mediana, moda y desviación estándar

| media=                        | 79                                            |      |
|-------------------------------|-----------------------------------------------|------|
| $\bar{x} = \frac{\sum fx}{n}$ |                                               |      |
| mediana=                      | 76,0                                          |      |
| Me = Li +                     | $\left \frac{\frac{n}{2} - FA}{f}(Ai)\right $ |      |
| Moda=                         |                                               |      |
| Mo = Li +                     | $\left[\frac{d1}{d1+d2}(Ai)\right]$           |      |
| desviació                     | n media =                                     | 9,5  |
| $\sigma^2 = \frac{\sum f}{n}$ | $\frac{(x-\bar{x})^2}{n-1}$                   |      |
| Desviacio                     | n estandar=                                   | 90,5 |

#### Teorema de ballas

Se utilizo la regla de adición para poder realizar este ejercicio

#### 1.- Creamos las tablas con los datos de los encuestados

| _                                     | Duolingo | Memrise | Busuu | HelloTalk | Babbel | TOTAL |
|---------------------------------------|----------|---------|-------|-----------|--------|-------|
| Ing. en Tecnologías de la Información | 35       | 10      | 4     | 8         | 6      | 63    |
| Ing. en Software                      | 21       | 6       | 5     | 7         | 8      | 47    |
| Ing. en Mecatrónica                   | 19       | 9       | 2     | 4         | 6      | 40    |
| TOTAL                                 | 75       | 25      | 11    | 19        | 20     | 150   |

2.- Se uso una gráfica para poder poner los datos que después Excel cogió para poder realizar la fórmula de la adición.

**Regla de Adición:**  $P(A \cup B) = P(A) + P(B) - P(A \cap B)P(A \setminus Cup B) = P(A) + P(B) - P(A \setminus Cup B)P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

| Duolingo 0,23 0,42 Memrise 0,07 TICS Busuu 0,03 HelloTalk 0,05                                               |  |
|--------------------------------------------------------------------------------------------------------------|--|
| 0,42         Memrise         0,07           TICs         Busuu         0,03           HelloTalk         0,05 |  |
| TICs         Busuu         0,03           HelloTalk         0,05                                             |  |
| HelloTalk 0,05                                                                                               |  |
|                                                                                                              |  |
|                                                                                                              |  |
| Babbel 0,04                                                                                                  |  |
|                                                                                                              |  |
|                                                                                                              |  |
| Duolingo 0,14                                                                                                |  |
| 0,31 Memrise 0,04                                                                                            |  |
| Software Busuu 0,03                                                                                          |  |
| HelloTalk 0,05                                                                                               |  |
| Babbel 0,05                                                                                                  |  |
|                                                                                                              |  |
|                                                                                                              |  |
| Duolingo 0,13                                                                                                |  |
| 0,27 Memrise 0,06                                                                                            |  |
| Mecatrónica Busuu 0,01                                                                                       |  |
| HelloTalk 0,03                                                                                               |  |
| Babbel 0,04                                                                                                  |  |
|                                                                                                              |  |
| Total 1,00                                                                                                   |  |
|                                                                                                              |  |

#### 3.- Se realizo los ejercicios planteados

| Cual es la probabilida               | ad de que un In | g. en Tecnolo | ogías de la Infor | mación esco | ga Busuu |
|--------------------------------------|-----------------|---------------|-------------------|-------------|----------|
| P(netflix U STAR+)=                  | 0,03            | *             | 100               | =           | 2,67     |
| ¿Cuál es La probabilidad de que esco | oja Duolingo un | estudiante d  | de software ?     |             |          |
| P(OTROS U MAGISTV)=                  | 0,28            | *             | 100               | =           | 28,00    |

## **Permutaciones y Combinaciones**

La distribución hipergeométrica es un tipo de distribución de probabilidad discreta que se utiliza para calcular la probabilidad de obtener k éxitos al realizar n extracciones sin reemplazo de una población finita de tamaño N, en la cual hay exactamente K elementos

exitosos. Es especialmente útil cuando se selecciona una muestra de una población y se desea determinar la probabilidad de obtener un número determinado de éxitos dentro de esa muestra.

1.- Se realizó un ejercicio con una muestra de los datos que se tomó de la encuesta facilitando con comando en Excel

| e quiere<br>Duolingo |                            | tes de la carrera de TIC | Cs, que tiene u | n total de 100, | para darles u | un mes de |                               |         | diferentes de apre<br>e aprender en Duo | n Duolingo, 3 | en HelloTalk y | 7 en |
|----------------------|----------------------------|--------------------------|-----------------|-----------------|---------------|-----------|-------------------------------|---------|-----------------------------------------|---------------|----------------|------|
| =                    | 100                        |                          |                 |                 |               |           | Duolingo                      | 5       |                                         |               |                |      |
| =                    | 20                         |                          |                 |                 |               |           | HelloTalk                     | 3       |                                         |               |                |      |
|                      |                            |                          |                 |                 |               |           | Busuu                         | 7       |                                         |               |                |      |
| $_{n}P_{r}=$         | $\frac{n!}{(n-r)!} = 1,30$ | 4*10^39                  |                 |                 |               |           | n=<br>r=                      | 15<br>5 |                                         |               |                |      |
|                      |                            |                          |                 |                 |               |           | $nCr = \frac{n!}{r! (n - 1)}$ | - r)! = | 3003                                    |               |                |      |

## Probabilidad Hipergeométrica

La distribución uniforme es una distribución de probabilidad continua en la que todos los intervalos de igual longitud dentro del rango permitido tienen la misma probabilidad de ocurrencia. Se emplea para representar situaciones en las que cualquier valor dentro de un cierto intervalo es igualmente probable.



Para esto se escogió una muestra de 7 estudiante que de la totalidad que es 25

En este manual se puedo ver que a lo que se refiera a cálculos y formulas Excel nos facilita mucho para sacar los porcentajes probabilidad de un grupo de datos