02561 Computer Graphics

Spline Surfaces and Subdivision

Jeppe Revall Frisvad

November 2021

Bézier curves

- ▶ A parametric curve is a vector valued function of a single variable.
- ▶ Bernstein basis functions: $B_k^n(t) = \binom{n}{k} (1-t)^{n-k} t^k$, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
- ▶ Bézier curve of degree *n*:

$$\boldsymbol{p}(t) = \boldsymbol{P} \begin{bmatrix} B_0^n(t) & B_1^n(t) & \cdots & B_n^n(t) \end{bmatrix}^T, \quad \boldsymbol{P} = \begin{bmatrix} \boldsymbol{p}_0 & \boldsymbol{p}_1 & \cdots & \boldsymbol{p}_n \end{bmatrix},$$
where \boldsymbol{p}_k are $n+1$ Bézier control points.

Tensor product Bézier surface

- Bézier curve: $p(t) = \sum_{k=0}^{n} p_k B_k^n(t)$.
- ▶ Bézier surface: $p(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} p_{ij} B_i^n(u) B_j^m(v)$.
- ▶ The surface is a tensor product of two curves.

Finding a point on a curve or on a surface

Let us define operators producing a modified set of control points:

$$R : (\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k) \mapsto (\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_{k-1})$$

$$L : (\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_k) \mapsto (\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k).$$

We can then define the parameter-dependent de Casteljau operator

$$C(t) = (1-t)R + tL.$$

A point on a Bézier curve is then given by *n*-fold application of C(t):

$$p(t) = C(t)^n P$$

where \boldsymbol{P} is a control point mesh.

Subdivision

▶ The points generated by $C(\frac{1}{2})^n$ can be used as a refined control point mesh.

- ▶ In the case of a surface, we apply the de Casteljau operator to each curve in the tensor product.
- ► The result is four connected quadrants with the same number of control points as the original control point mesh.

 p_{33}

- The control mesh generated by recursive subdivision converges to the actual Bézier curve or Bézier surface that it describes.
- We can thus use the control mesh as a subdivision surface.

Newell's teapot

▶ One of the first computer graphics objects to be modeled using spline surfaces.

- ▶ This Utah teapot consists of 32 bicubic Bézier patches defined by 302 vertices.
- ▶ The textbook describes an implementation of the teapot as a subdivision surface.
- ➤ Some patches are degenerate, which means that care must be taken when computing surface normals.

Differentiation to get surface normals

- ▶ The forward difference operator: $\Delta = L R$.
- If applied to a Bézier curve of degree n, the result is a Bézier curve of degree n-1.
- ▶ We observe that $C(t) = (1-t)R + tL = R + t\Delta$, and we have $\frac{d}{dt}C(t) = \Delta$.
- For surfaces, we use a subscript to denote whether the operator pertains to rows (Δ_1) or columns (Δ_2) in the control mesh P.
- ▶ We then have the following differential vectors:

$$\frac{\partial \boldsymbol{p}}{\partial u}(u,v) = nC_1(u)^{n-1}C_2(v)^m(v)\Delta_1\boldsymbol{P}$$

$$\frac{\partial \boldsymbol{p}}{\partial v}(u,v) = mC_1(u)^nC_2(v)^{m-1}(v)\Delta_2\boldsymbol{P}$$

and the surface normal is $\mathbf{n}(u, v) = \frac{\partial \mathbf{p}}{\partial u}(u, v) \times \frac{\partial \mathbf{p}}{\partial v}(u, v)$.

▶ We can use this to get vertex normals for a given subdivision of the control mesh.

WebGL demonstrator (A: 11.10)

subdivide coarsen

