

CSCI 3022: Intro to Data Science Spring 2019 Tony Wong

Lecture 11: Variance of Discrete and Continuous Random Variables

Announcements and reminders

Practicum 1 posted, due Monday 4 March at 11:59 PM.

→ Monday after your midterm. Plan ahead!

Midterm:

- Tuesday 26 February, 7-8:30 PM, HUMN 1B50
- Special accommodations: 6-? PM, HUMN 335
- Tell me as soon as possible about conflicts -- include documentation
- Concept guide on Piazza; material up through variance (today/Friday)
- 3"x5" notecard for cheat-sheet. Calculator is okay. Smart phone is **not**.
- Review in class on Monday 25 March (Q&A)
- Study from: old exams, lecture notes, homework, practicum, textbooks...

Previously, on CSCI 3022...

Definition: The <u>expectation</u> or <u>expected value</u> of a discrete random variable X that takes the values a_1, a_2, \ldots and with pmf p is given by

$$E[X] = \sum_{i} a_i P(X = a_i) = \sum_{i} a_i p(a_i)$$

Definition: The <u>expectation</u>, <u>expected value</u>, or <u>mean</u>, of a continuous random variable X with probability density function f is $E[X] = \int_{-\infty}^{\infty} x f(x) dx$

Change-of-variables formula: Let X be a random variable and
$$g : \mathbb{R} \to \mathbb{R}$$
 be a function. Then:

$$E[g(x)] = \sum_i g(a_i) P(X = a_i)$$
 and $E[g(x)] = \int_{-\infty}^{\infty} g(x) f(x) dx$

probability p of moving to the right off of each peg. (Ignoring the edges for now.)

https://www.youtube.com/watch?v=naUppHrHJpI

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What distribution does X follow?

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What distribution does X follow?

- Each row results in either a move **right** (w/ prob p) or **left** (1-p)
- Have n rows ... or trials
 - \rightarrow each row is a Bernoulli trial. Call result of row i Y_i
 - \rightarrow entire thing is sum of Bernoulli trials: $X = Y_1 + Y_2 + ... + Y_n$
 - \rightarrow that makes X ~ Bin(n, p)

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off each peg. (Ignoring the edges for now.)

Question: What is the expected value of X?

Hint: Remember that the expectation of a linear function is E[aX+b] = a E[X] + b

$$E[X] = E[Y] + E[Y] + \dots = E[Xh]$$

$$= nE[X]$$

$$= nE[X]$$

$$= nE[X] = E[Y] + E[Y] + \dots = E[Xh]$$

$$= nE[X] = E[X] + \dots = E[Xh]$$

$$= nE[X] = E[Xh] + \dots = E[Xh]$$

$$= nE[Xh] = nE[Xh]$$

$$= nE[Xh]$$

$$= nE[Xh] = nE[Xh]$$

$$= nE[Xh]$$

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the expected value of X?

Hint: Remember that the expectation of a linear function is E[aX+b] = a E[X] + b

$$E[X] = np$$

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of X?

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of X?

Actually... what *is* variance?

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of X?

Actually... what is variance?

Given data $\mathbf{x_1}, \, \mathbf{x_2}, \, \dots, \, \mathbf{x_n},$ their sample variance is $\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2$

... which amounts to: Average[(datum - Average_of_Data)²]

... or more formally: $E[(X - E[X])^2]$

Definition: The <u>variance</u> Var(X) of a random variable X is the number

$$Var(X) = E[(X - E[X])^2]$$

Definition: The **standard deviation** of a random variable X is the square root of the variance:

$$SD(X) = \sqrt{Var(X)}$$

How to compute:

- First, compute E[X]
- Then, use the definition of Variance and change-of-variables formula $(w/g(x) = (x-E[X])^2)$ to get Var(X):

$$\operatorname{Var}(X) = \sum_i (a_i - \operatorname{E}[X])^2 \ p(a_i)$$
 or $\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - \operatorname{E}[X])^2 \ f(x) \ dx$

Definition: The <u>variance</u> Var(X) of a random variable X is the number

$$Var(X) = E[(X - E[X])^2]$$

Now hang on a second. There's a $(X-E[X])^2$ in there... can we FOIL that out and simplify?

$$Var[x] = E[(X - E[x])^{2}]$$

$$= E[x^{2} - 2xE[x] + E[x]^{2}]$$

$$= E[x^{2}] - E[xxE[x]] + E[E[x]^{2}]$$

$$= E[x^{2}] - 2E[x]E[x] + E[x]^{2}$$

$$= E[x^{2}] - E[x]$$

Definition: The <u>variance</u> Var(X) of a random variable X is the number

$$Var(X) = E[(X - E[X])^2]$$

Now hang on a second. There's a $(X-E[X])^2$ in there... can we FOIL that out and simplify?

$$Var(X) = E[(X - E[X])^{2}]$$

$$= E[X^{2} - 2X E[X] + E[X]^{2}]$$

$$= E[X^{2}] - E[2X E[X]] + E[E[X]^{2}]$$

$$= E[X^{2}] - 2E[X]E[X] + E[X]^{2}$$

$$= E[X^{2}] - E[X]^{2}$$

Definition: The <u>variance</u> Var(X) of a random variable X is the number

$$Var(X) = E[(X - E[X])^2]$$

Alternatively:
$$Var(X) = E[X^2] - E[X]^2$$

Okay, back to Plinko!

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of $X \sim Bin(n, p)$?

First step: What is the variance of each $Y \sim Ber(p)$?

Okay, back to Plinko!

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of $X \sim Bin(n, p)$?

First step: What is the variance of each $Y \sim Ber(p)$?

Let's use $E[Y^2] - E[Y]^2$

$$E[Y^{2}] = \sum_{i} a_{i}^{2} P(X = a_{i}) = 1^{2} \cdot p + 0^{2} \cdot (1 - p) = p$$

and
$$E[Y]^2 = (p)^2 = p^2$$

So:
$$Var(Y) = E[Y^2] - E[Y]^2 = p - p^2 = p(1-p)$$

Quick summary

If $X \sim Ber(p)$, then:

- E[X] = p
- Var(X) = p(1-p)

Okay, back to Plinko!

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of $X \sim Bin(n, p)$?

Fun fact: If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y)

Okay, back to Plinko!

Let X be the random variable describing the result in each round of Plinko with n rows and probability p of moving to the right off of each peg. (Ignoring the edges for now.)

Question: What is the variance of $X \sim Bin(n, p)$?

Fun fact: If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y)

$$→ Var(X) = Var(Y_1 + Y_2 + ... + Y_n) = Var(Y_1) + Var(Y_2) + ... + Var(Y_n)$$

$$= p(1-p) + p(1-p) + ... + p(1-p)$$

$$= np(1-p)$$

Quick summary

If $X \sim Ber(p)$, then:

- E[X] = p
- Var(X) = p(1-p)

If $X \sim Bin(n, p)$, then:

- E[X] = np
- Var(X) = np(1-p)

The Binomial distribution

Example: You are taking a 12-question quiz and believe there to be about a 75% chance that any one of your answers is correct. What is your expected grade on the quiz? What is the variance in your quiz grade?

The Binomial distribution

Example: You are taking a 12-question quiz and believe there to be about a 75% chance that any one of your answers is correct. What is your expected grade on the quiz? What is the variance in your quiz grade?

$$X \sim Bin(n=12, p=0.75)$$

$$\rightarrow$$
 E[X] = $np = 12 \cdot 0.75 = 9$

And

$$→ Var[X] = np(1-p)$$

= 12·0.75·0.25 = 9/4

$$\rightarrow$$
 SD[X] = 1.5

Recall: Expectation is **linear**: E[aX+b] = a E[X] + b

So what about **variance**?

Recall: Expectation is **linear**: E[aX+b] = a E[X] + b

So what about variance?

• What happens if we shift $X \to X+b$?

Recall: Expectation is **linear**: E[aX+b] = a E[X] + b

So what about variance?

What happens if we scale X → a X?

Recall: Expectation is **linear**: E[aX+b] = a E[X] + b

Conclusion: Variance is **not** linear: $Var(aX+b) = a^2 Var(X)$

Mean and variance of a uniform random variable

Example: Let $X \sim U[\alpha, \beta]$. What are E[X] and Var(X)?

Mean and variance of a uniform random variable

Example: Let $X \sim U[\alpha, \beta]$. What are E[X] and Var(X)?

The pdf of X is:
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \leq x \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

So the expected value is:
$$\mathrm{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{\alpha}^{\beta} x \cdot \frac{1}{\beta - \alpha} dx$$

$$= \frac{x^2}{2(\beta - \alpha)} \bigg|_{\alpha}^{\beta} = \frac{\alpha + \beta}{2}$$

And the variance is $\operatorname{Var}(X) = \operatorname{E}[X^2] - \operatorname{E}[X]^2$, so we'll calculate $\operatorname{E}[\mathsf{X}^2]$ next...

Mean and variance of a uniform random variable

Example: Let $X \sim U[\alpha, \beta]$. What are E[X] and Var(X)?

$$E[X^{2}] = \int_{\alpha}^{\beta} x^{2} \cdot \frac{1}{\beta - \alpha} dx = \frac{x^{3}}{3(\beta - \alpha)} \Big|_{\alpha}^{\beta} = \frac{\beta^{3} - \alpha^{3}}{3(\beta - \alpha)}$$
$$= \frac{(\beta - \alpha)(\beta^{2} + \alpha\beta + \alpha^{2})}{3(\beta - \alpha)} = \frac{\beta^{2} + \alpha\beta + \alpha^{2}}{3}$$

So...

$$Var(X) = E[X^{2}] - E[X]^{2} = \frac{\beta^{2} + \alpha\beta + \alpha^{2}}{3} - \left(\frac{\alpha + \beta}{2}\right)^{2}$$

$$= \frac{\beta^{2} + \alpha\beta + \alpha^{2}}{3} - \frac{\alpha^{2} + 2\alpha\beta + \beta^{2}}{4} = \frac{4\beta^{2} + 4\alpha\beta + 4\alpha^{2} - 3\alpha^{2} - 6\alpha\beta - 3\beta^{2}}{12}$$

$$= \frac{\beta^{2} - 2\alpha\beta + \alpha^{2}}{12} = \frac{1}{12}(\beta - \alpha)^{2}$$

So if
$$X \sim U[\alpha, \beta]$$
, then $\mathrm{E}[X] = \frac{1}{2}(\alpha + \beta)$ and $\mathrm{Var}(X) = \frac{1}{12}(\beta - \alpha)^2$

Quick summary

If $X \sim Ber(p)$, then:

- E[X] = p
- Var(X) = p(1-p)

If $X \sim Bin(n, p)$, then:

- E[X] = np
- Var(X) = np(1-p)

If $X \sim U[\alpha, \beta]$, then:

- $E[X] = \frac{1}{2}(\alpha + \beta)$ $Var(X) = \frac{1}{12}(\beta \alpha)^2$

Next time (or later this time, more likely) ...

... notebook day!

Then ...

- we review for the midterm exam!
- Q&A format, so you bring the Qs and I'll bring the As
- Many study materials.
 - ... HW/quizlet/in-class notebooks/lecture examples/old exams