

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA AUTOMTYKI

Modelowanie układów fizycznych i biologicznych

Podwójne wahadło Double pendulum

Autor: Żaneta Błaszczuk, Rafał Kozik, Filip Kubicz, Jakub Nowak, Jakub Porębski

Kierunek studiów: Automatyka i Robotyka
Opiekun pracy: dr inż. Ireneusz Wochlik

3 1. TEORIA

1. Teoria

Wahadło podwójne jest to wahadło matematyczne zawieszone na drugim wahadle matematycznym. Jego schemat pokazuje rys. 1. Wahadło opisuje 5 parametrów masy m_1 i m_2 , długości l_1 i l_2 oraz przyśpieszenie

Rysunek 1: Schemat wahadła

ziemskie g. Można jednka zmniejszyś ich ilość podstawiając:

$$A = \frac{m_1}{m_2} \qquad B = \frac{l_2}{l_1} \qquad C = \frac{g}{l_1} \tag{1}$$

Stan wahadł opisują cztery parametry: kąty φ_1 i φ_2 oraz prędkości kątowe ω_1 i ω_2 . Ruch opisuje układ czterech równań różniczkowych:

$$\dot{\varphi}_1 = \omega_1 \tag{2}$$

$$\dot{\omega}_1 = -\frac{\sin(\varphi_1 - \varphi_2)(B\omega_2^2 + \omega_1^2\cos(\varphi_1 - \varphi_2)) + C((A+1)\sin(\varphi_1) - \sin(\varphi_2)\cos(\varphi_1 - \varphi_2))}{A + \sin^2(\varphi_1 - \varphi_2)}$$
(3)

$$\dot{\varphi}_2 = \omega_2 \tag{4}$$

$$\dot{\varphi}_{1} = \omega_{1} \tag{2}$$

$$\dot{\varphi}_{1} = -\frac{\sin(\varphi_{1} - \varphi_{2})(B\omega_{2}^{2} + \omega_{1}^{2}\cos(\varphi_{1} - \varphi_{2})) + C((A+1)\sin(\varphi_{1}) - \sin(\varphi_{2})\cos(\varphi_{1} - \varphi_{2}))}{A + \sin^{2}(\varphi_{1} - \varphi_{2})} \tag{3}$$

$$\dot{\varphi}_{2} = \omega_{2} \tag{4}$$

$$\dot{\omega}_{2} = \frac{(A+1)(\omega_{1}^{2}\sin(\varphi_{1} - \varphi_{2}) - C\sin(p_{2})) + \cos(\varphi_{1} - \varphi_{2})((B\omega_{2}^{2}\sin(\varphi_{1} - \varphi_{2})) + C(A+1)\sin(\varphi_{1}))}{B(A+\sin^{2}(\varphi_{1} - \varphi_{2}))} \tag{5}$$

W modelu nie uwzględniono tarcia.

2. Implementacja

Równiania zostały rozwiązane numerycznie za pomocą metody Rungego-Kutty czwartego rzedu która została zaimplementowana w języku c++. Wyniki zostały zapisane do pliku tekstowego, w każdej lini odzielone spacjami: czas od początku symulacji, kąty φ_1 , φ_2 oraz prędkości kątowe ω_1 i ω_2 . Wykeresy zostały przygotowane w programie gnuplot. Powstał także program przedstawiający ruch wahadła napisany z wykorzystaniem biblioteki QT. Wygląd programu pokazuje rys. 2. Kody źródłowe przygotowanego oprogramowania znajdują się w repozytorium pod adresem www.github.com/Qbicz/MUFB.

4 4

Rysunek 2: Graficzna symulacja ruchu wahadła.

3. Wyniki

Symulacja dla parametrów $A=100,\,B=1,\,C=1$ oraz stanu w chwili $t_0=0$ $\varphi_1(0)=0,\,\varphi_2(0)=1,$ $\omega_1(0)=0$ i $\omega_2(0)=0$. Symulacja trwała 300 sekund z krokiem co 0,001 sekundy.

Rys. 3 przedstawia wartości kątów φ_1 , φ_2 , ω_1 oraz ω_2 w funkcji czasu. Dla tak dobranych parametrów powstają dudnienia. Rys. 3 przedstawia trajektorię ruchu wahadła narysowaną w przestrzenie φ_1 , φ_2 . Dla

Rysunek 3: Kąty oraz prędkości kątowe w funkcji czasu.

300 sekund nie da się zaobserwować żadnej regularnonści w ruchu wahadła. Rys. 3 przedstawia trajektorie w przestrzeni fazowej: wykresy prędkości kątowej w funkcji wartości kąta.

4. Bibliografia

- 1. Wróblewski J. praca licencjacka "Wahadło podwójne"Warszawa 2011
- 2.Dudek-Dyduch E., Wąs J., Dutkiewicz L., Grobel-Dębska K., Gudowski B. "Metody numeryczne wybrane zagadnienia" Wydawnictwo AGH Kraków 2011

4. BIBLIOGRAFIA 5

Rysunek 4: Trajektoria w przestrzenie $\varphi_1,\,\varphi_2$ a) dla pierwszych 30 sekund i b) dla 300 sekund.

Rysunek 5: Trajektoria w przestrzeni fazowej.