Number Theory

Problem 1

How many numbers are there between 100 and 1000 that are

- (a) divisible by 3?
- (b) divisible by 5?
- (c) divisible by 15?

Problem 2

- (a) What is:
 - (i) gcd(420,720)?
 - (ii) lcm(420,720)?
 - (iii) 720 div 42?
 - (iv) $5^{20} \% 7$?
- (b) True or false:
 - (i) 42|7?
 - (ii) 7|42?
 - (iii) 3+5|9+23?
 - (iv) $27 \equiv_{(6)} 33$?
 - (v) $-1 \equiv_{(7)} 22$?

Problem 3^{\dagger} (2020 T2)

Prove, or give a counterexample to disprove:

(a) For all $x \in \mathbb{R}$:

$$|\lfloor x \rfloor| = \lfloor |x| \rfloor$$

(b) For all $x \in \mathbb{Z}$:

$$42|x^7 - x$$

(c) For all $x, y, z \in \mathbb{Z}$, with z > 1 and $z \nmid y$:

$$(x \operatorname{div} y) \equiv_{(z)} ((x \% z) \operatorname{div} (y \% z))$$

[†] indicates a previous exam question

^{*} indicates a difficult/advanced question.

Problem 4

Prove that for all $m, n, p \in \mathbb{Z}$ with $n \ge 1$:

- (a) $0 \le (m \% n) < n$
- (b) $m \equiv_{(n)} p$ if, and only if (m % n) = (p % n)

Problem 5

Suppose $m \equiv_{(n)} m'$ and $p \equiv_{(n)} p'$. Prove that:

- (a) $m + p \equiv_{(n)} m' + p'$
- (b) $m \cdot p \equiv_{(n)} m' \cdot p'$

Problem 6

- (a) Prove that the 4 digit number n = abcd is:
 - (i) divisible by 5 if and only if the last digit *d* is divisible by 5.
 - (ii) divisible by 9 if and only if the digit sum a + b + c + d is divisible by 9.
 - (iii) divisible by 11 if and only if a b + c d is divisible by 11.
- (b) Find a similar rule to determine if a 4 digit number is divisible by 7.

Problem 7*

Prove that for all $n \in \mathbb{Z}$:

$$\gcd(n, n+1) = 1.$$

Problem 8*

Prove that for all $x, y, z \in \mathbb{Z}$:

$$\gcd(\gcd(x,y),z)=\gcd(x,\gcd(y,z)).$$