Poisson Process, Pokémons, and Prime Numbers

Kevin Wang

School of Mathematics and Statistics The University of Sydney

Last Modified: October 27, 2016

Background

That French guy

Poisson Process

Definition

Coupon Collector's Problem revisited

Number Theory

Prime Number Theorem and distribution of primes

The Poisson Distribution

Named after Simeon Denis Poisson.

$$\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \qquad k \in \mathbb{N}.$$
 (1)

PP can be used to describe:

- radioactive decays.
- arrivals of buses
- or failures of Carslaw lift. (ongoing research)

counting pro

Definition

A set of random variables $\{N(t)\}_{t\in\mathbb{N}}$ is called a **counting process** if:

- 1. N(t) takes value in \mathbb{N} .
- 2. N(0) = 0.
- 3. If s < t, then $N(s) \le N(t)$.
- 4. For s < t, N(t) N(s) equals the number of event in the interval (s, t].

Poisson Process Definition

Definition

Furthermore, a Poisson Process has additional assumptions:

- 1. The random variable N(s+t)-N(s) is $Pois(\lambda t)$ distributed, for all $s,t\geq 0$.
- 2. *Independent increments:* the numbers of events that occur in **disjoint** time intervals are independent.
- ▶ The time gap between any two consecutive arrivals (interarrival time) is $Exp(\lambda)$ distributed. $\mathbb{P}(X \ge t) = 1 e^{-\lambda t}$.

Figure 2.1: An arrival process and its arrival epochs $\{S_1, S_2, ...\}$, its interarrival intervals $\{X_1, X_2, ...\}$, and its counting process $\{N(t); t \geq 0\}$

Poisson Process Definition

Definition

Furthermore, a Poisson Process has additional assumptions:

- 1. The random variable N(s+t)-N(s) is $Pois(\lambda t)$ distributed, for all $s,t\geq 0$.
- 2. *Independent increments:* the numbers of events that occur in **disjoint** time intervals are independent.
- ▶ The time gap between any two consecutive arrivals (interarrival time) is $Exp(\lambda)$ distributed. $\mathbb{P}(X \ge t) = 1 e^{-\lambda t}$.

Figure 2.1: An arrival process and its arrival epochs $\{S_1, S_2, ...\}$, its interarrival intervals $\{X_1, X_2, ...\}$, and its counting process $\{N(t); t \geq 0\}$

Poisson Process Definition

Definition

Furthermore, a Poisson Process has additional assumptions:

- 1. The random variable N(s+t)-N(s) is $Pois(\lambda t)$ distributed, for all $s,t\geq 0$.
- 2. *Independent increments:* the numbers of events that occur in **disjoint** time intervals are independent.
- ▶ The time gap between any two consecutive arrivals (interarrival time) is $Exp(\lambda)$ distributed. $\mathbb{P}(X \ge t) = 1 e^{-\lambda t}$.

Figure 2.1: An arrival process and its arrival epochs $\{S_1, S_2, ...\}$, its interarrival intervals $\{X_1, X_2, ...\}$, and its counting process $\{N(t); t \geq 0\}$

The Coupon Collector's Problem with unequal probability

Problem

There are n individual coupons/Pokemons, each with capture probability p_i . Assuming we can collect 1 coupon per unit time, what is the expected number of coupon do we need to complete the collection?

▶ We also derived that in the unequal probability case:

$$\mathbb{E}(X) = \int_0^\infty \left(1 - \prod_{i=1}^n \left(1 - \exp(-p_i x) \right) \right) dx.$$
 (2)

▶ The Poisson Process solution is much cleaner.

Poisson Process Solution to CCP (Sketch)

- ▶ Modelling the **time** of arrival of coupons instead of **number** of coupons needed allow us to exploit *independence* of inter-arrival times.
- ▶ It can be shown that the expected time for collecting all coupons and the number of coupons needed in total are the same using properties of inter-arrival times of PP.

Poisson Process Solution to CCP (Sketch)

- ▶ Modelling the **time** of arrival of coupons instead of **number** of coupons needed allow us to exploit *independence* of inter-arrival times.
- ▶ It can be shown that the *expected time for collecting all coupons* and *the number of coupons needed in total* are the **same** using properties of inter-arrival times of PP.

Poisson Process Solution to CCP

▶ This meant $Z = \max\{Z_1, \dots, Z_n\}$ is the maximum of a set of *independent* $Exp(p_i)$ random variable:

$$\mathbb{P}(Z \le t) = \mathbb{P}(Z_1 \le t, \dots, Z_n \le t),$$

$$= \prod_{i=1}^n \mathbb{P}(Z_i \le t),$$

$$= \prod_{i=1}^n (1 - \exp(-p_i t)).$$
(3)

$$\mathbb{E}(Z) = \int_0^\infty \mathbb{P}(Z > t)$$

$$= \int_0^\infty \left(1 - \prod_{i=1}^n \left(1 - \exp(-p_i t) \right) \right) dt. \tag{4}$$

Background
That French guy

Poisson Process
Definition

Coupon Collector's Problem revisited

Number Theory
Prime Number Theorem and distribution of primes

Prime Number Theorem

- ▶ Define $\pi(x)$ as the function which counts the number of primes up to x.
- ▶ (One version of) the Prime Number Theorem states:

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log(x)} = 1. \tag{5}$$

- Gauss gaussed it (pun intended).
- ▶ Heuristically, since about $x/\log(x)$ of the x positive integers less than or equal to x are prime, the "probability" of one of them being prime is about $1/\log(x)$.

Prime Number Theorem

- ▶ Define $\pi(x)$ as the function which counts the number of primes up to x.
- ▶ (One version of) the Prime Number Theorem states:

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log(x)} = 1. \tag{5}$$

- Gauss gaussed it (pun intended).
- ▶ Heuristically, since about $x/\log(x)$ of the x positive integers less than or equal to x are prime, the "probability" of one of them being prime is about $1/\log(x)$.

Statistics of primes

- ► Harald Cramér (1893-1985) made some significant contributions/conjectures towards understanding the distribution of primes.
- "We are interested in the distribution of a given sequence S of integers, we then consider S as a member of an infinite class C of sequences, which may be concretely interpreted as the possible realizations of some game of chance. It is then in many cases possible to prove that, with a probability 1, a certain relation R holds in C, i.e. that in a definite mathematical sense 'almost all' sequences of C satisfy R". 1
- ▶ This "pseudo-randomness" gives us some heuristic evidence that some conjectures are true.
- Cramér's Conjecture:

$$p_{n+1} - p_n = O((\log p_n)^2).$$
(6)

^{1 &}quot;Of course we cannot in general conclude that R holds for the particular sequence S, but results suggested in this way may sometimes afterwards be rigorously proved by other methods.

Statistics of primes

- ► Harald Cramér (1893-1985) made some significant contributions/conjectures towards understanding the distribution of primes.
- "We are interested in the distribution of a given sequence S of integers, we then consider S as a member of an infinite class C of sequences, which may be concretely interpreted as the possible realizations of some game of chance. It is then in many cases possible to prove that, with a probability 1, a certain relation R holds in C, i.e. that in a definite mathematical sense 'almost all' sequences of C satisfy R". 1
- ▶ This "pseudo-randomness" gives us some heuristic evidence that some conjectures are true.
- Cramér's Conjecture:

$$p_{n+1} - p_n = O((\log p_n)^2).$$
(6)

^{1 &}quot;Of course we cannot in general conclude that R holds for the particular sequence S, but results suggested in this way may sometimes afterwards be rigorously proved by other methods".

Statistics of primes

- ► Harald Cramér (1893-1985) made some significant contributions/conjectures towards understanding the distribution of primes.
- "We are interested in the distribution of a given sequence S of integers, we then consider S as a member of an infinite class C of sequences, which may be concretely interpreted as the possible realizations of some game of chance. It is then in many cases possible to prove that, with a probability 1, a certain relation R holds in C, i.e. that in a definite mathematical sense 'almost all' sequences of C satisfy R". 1
- ▶ This "pseudo-randomness" gives us some heuristic evidence that some conjectures are true.
- Cramér's Conjecture:

$$p_{n+1} - p_n = O((\log p_n)^2).$$
(6)

^{1 &}quot;Of course we cannot in general conclude that R holds for the particular sequence S, but results suggested in this way may sometimes afterwards be rigorously proved by other methods".

Poisson distribution in primes

- ▶ Under Cramér's idea, we can imagine drawing 1 black/white ball every time from an infinite series urns, with probability of a white ball in urn U_n being $1/\log(n)$.
- Define

$$z_n := \mathbb{I}(n\text{-th urn gives a white ball}), \tag{7}$$

$$\Pi(x) := \sum_{n \le x} z_n. \tag{8}$$

- ▶ Under Cramér's framework, $\Pi(x)$ is a random variable analogy of $\pi(x)$.
- Now, if n is close to some x, then we can think of $z_n \sim Binomial(1, 1/\log(x))$.
- ▶ For fixed $\lambda > 0$, $k \in \mathbb{N}$,

#{integers
$$x \le X : \Pi(x + \lambda \log(x) - \Pi(x) = k \sim \text{Pois}(\lambda),$$
 (9)

Poisson distribution in primes

- ▶ Under Cramér's idea, we can imagine drawing 1 black/white ball every time from an infinite series urns, with probability of a white ball in urn U_n being $1/\log(n)$.
- Define

$$z_n := \mathbb{I}(n\text{-th urn gives a white ball}), \tag{7}$$

$$\Pi(x) := \sum_{n \le x} z_n. \tag{8}$$

- ▶ Under Cramér's framework, $\Pi(x)$ is a random variable analogy of $\pi(x)$.
- Now, if n is close to some x, then we can think of $z_n \sim Binomial(1, 1/\log(x))$.
- ▶ For fixed $\lambda > 0$, $k \in \mathbb{N}$,

#{integers
$$x \le X : \Pi(x + \lambda \log(x) - \Pi(x) = k \sim \text{Pois}(\lambda),$$
 (9)

Poisson distribution in primes

- ▶ Under Cramér's idea, we can imagine drawing 1 black/white ball every time from an infinite series urns, with probability of a white ball in urn U_n being $1/\log(n)$.
- Define

$$z_n := \mathbb{I}(n\text{-th urn gives a white ball}),$$
 (7)

$$\Pi(x) := \sum_{n \le x} z_n. \tag{8}$$

- ▶ Under Cramér's framework, $\Pi(x)$ is a random variable analogy of $\pi(x)$.
- Now, if n is close to some x, then we can think of $z_n \sim Binomial(1, 1/\log(x))$.
- ▶ For fixed $\lambda > 0$, $k \in \mathbb{N}$,

#{integers
$$x \le X : \Pi(x + \lambda \log(x) - \Pi(x) = k \sim \text{Pois}(\lambda),$$
 (9)

Poisson process and primes

▶ In other words, under this pseudo-random model of the primes, the random sets "behave" like a Poisson process:

References

- ▶ Robert Gallager. Lecture notes on Poisson Process.
- http://phillipmfeldman.org/mathematics/primes.html
- ▶ https://www.youtube.com/watch?v=pp06oGD4m00
- ► Harald Cramér and the distribution of prime numbers A. Granville. 1993.
- ▶ The Coupon Collector's Problem, M. Ferrante, M. Saltalamacchia, (2014)
- Introduction to Probability Models. S.Ross.
- ▶ A First Course in Probability. S. Ross.
- ▶ STAT3911: Stochastic Processes Lecture Notes. R. Kawaii.
- https://primes.utm.edu/howmany.html
- https://terrytao.wordpress.com/tag/cramers-random-model/