Bayesian Hierarchical Time Series

Leo Guelman

Tech Talk DNA RBC Royal Bank

A Metaphor...

- Read Richard McElreth
- Example decision tree, or flowchart, for selecting an appropri- ate statistical procedure. Beginning at the top, the user answers a series of questions about measurement and intent, arriving eventually at the name of a procedure. Many such decision trees are possible.
- Something similar to ML
- Probably I should put each use case a label: Prediction / Counterfactuals / Inference / Instrumental Variables (well this os not the objective but the method is to solve a problem)
- What is the goal of this presentation?
 - ► Often cases, thinking about the data generating process (the underlying mechanism that generated the observed data)?
 - When is this important? Think about noisy settings (with low signal to noise ratio), limited data, or when we want to predict under intervention (as opposed to under observation)
 - Contrast to using domain knowledge vs end-to-end ML o make predictions?

December 2020

A Model for Golf Putting

- Aggregate data¹ from professional golfers, showing the proportion of successful putts as a function of distance.
- Error bars associated to each point j are classical standards deviations $\sqrt{\hat{p}_j(1-\hat{p}_j)/n_j}$.

A Model for Golf Putting - Logistic Regression

The Model

```
y_j \sim \mathsf{Binomial}(n_j, p_j)
\mathsf{logit}(p_j) = a + bx_j; \; \mathsf{for} \; j = \{1, \dots, J\}
a \sim \mathsf{Normal}(0, 1)
b \sim \mathsf{Normal}(0, 1)
```

A Model for Golf Putting - Logistic Regression

The Model

$$y_j \sim \mathsf{Binomial}(n_j, p_j)$$
 $\mathsf{logit}(p_j) = a + bx_j; \; \mathsf{for} \; j = \{1, \dots, J\}$
 $a \sim \mathsf{Normal}(0, 1)$
 $b \sim \mathsf{Normal}(0, 1)$

	mean	std	median	5.0%	95.0%	n_eff	r_hat
а	2.23	0.06	2.22	2.13	2.32	2274.20	1.00
b	-0.26	0.01	-0.26	-0.27	-0.24	2294.94	1.00

Number of divergences: 0

A Model for Golf Putting - Principled Approach

• The dotted line represents the angle within which the ball of radius *r* must be hit so that it falls within the hole of radius *R*.

- The threshold angle is given by $\sin^{-1}((R-r)/x)$.
- Next, we need to model the human error:

$$\mathsf{Angle} \sim \mathsf{Normal}(\mathsf{0}, \sigma)$$

 \bullet The probability the ball goes in the hole \Rightarrow Probability that the angle is less than the threshold

$$\Pr\bigl(|\mathsf{angle}| \leq \mathsf{sin}^{-1}\bigl((R-r)/x\bigr)\bigr) = 2\Phi\Biggl(\frac{\mathsf{sin}^{-1}\bigl((R-r)/x\bigr)}{\sigma}\Biggr) - 1$$

A Model for Golf Putting - Principled Model (cont'd)

The Model

$$y_j \sim \text{Binomial}(n_j, p_j)$$

$$p_j = 2\Phi\left(\frac{\sin^{-1}((R-r)/x_j)}{\sigma}\right) - 1$$

where r=1.68; R=4.25 inches.

A Model for Golf Putting - Principled Model (cont'd)

The Model

$$y_j \sim \mathsf{Binomial}(n_j, p_j)$$
 $p_j = 2\Phi\left(rac{\mathsf{sin}^{-1}ig((R-r)/x_jig)}{\sigma}
ight) - 1$

where r=1.68; R=4.25 inches.

mean std median sigma 0.03 0.00 0.03

5.0% 95.0% n_eff r_hat 0.03 0.03 2562.56 1.00

Number of divergences: 0

A Client Attrition Model

• Consider the following problem: we are tasked to build a client attrition model for RBC Visa Avion Cards, and we find the following "insight":

- What is our best prediction of renewal if:
 - we were to observe a client using 90% of her reward points?
 - e create an incentive program to promote usage, and get this client to use 90% of her reward points?

A Client Attrition Model (cont'd)

- Case 1 is a well-studied problem in ML: we just need to fit a model and use it to make a prediction under the new X (renewal points).
- Case 2 requires us to think about the data generating process, and in particular, the optimal prediction should depend on the underlying causal structure.

A Client Attrition Model (cont'd)

- Case 1 is a well-studied problem in ML: we just need to fit a model and use it to make a prediction under the new X (renewal points).
- Case 2 requires us to think about the data generating process, and in particular, the optimal prediction should depend on the underlying causal structure.

• If we do not accept any form of causal notion, we cannot distinguish between these two cases and our best prediction must be: "I do not know."!