Integration of complex variable Functions

Line (Path) on contour in a complex plane:-

A curve (path) C is defined as

 $C: Z = \chi(t) + i \gamma(t), \quad \alpha \leq t \leq b$

extending from $Z(a) = Z_1$ to $Z(b) = Z_2$

C: Z(t) is said to be <u>smooth</u> if <u>LZ</u> exist at all points.

e.g.

Man-smooth curves: -

Defi - A set of smooth curves joined end to end is neferred as a contour.

N	of.	e .	'	_
M	ot.	P .	,	

- 1 Parametoric form of a line from Z1 to Z2 is
- $C: Z = (1-t)Z_1 + tZ_2, 0 \le t \le 1$
- Deparametoric form of a circle with center Zo=notive and nadius as
 - C: Z= Zo+deit, 066627
 - (>) ntiy = notiyota (cosotisino)
 - (=) n=no+acoso, y=yo+asino!
 - particular case: (i) If centre Zo = 0
 - C: Z= del , 0 = 0 = 27
 - () n = a aso, y = a hind
 - (ii) Foon upper semicionde:
 - C: Z=Zo+aeid, 0 S & S = T
 - (iii) For left half of the ciacle $Z = Z_0 + d e^{i\theta}$, $T_0 \le \theta \le \frac{3\pi}{6}$

Line on path on contour Integration of complex variable functions:

Let C: Z(t) = X(t) + iy(t), $a \le t \le b$ be a smooth curve in complex plane and f(z) = U(x,y) + i V(x,y) be a function. We know that:

z = x + iy; dz = dx + idy

 $\int_{C} f(z) dz = \int_{C} (u+iv) (dn+idy)$ $= \int_{C} f(z(t)) z'(t) dt$

Note: If c is not smooth and $C = C_1 + C_2 + \cdots + C_n$, where C_1 , C_2 , ..., C_n are smooth then $C_1 + C_2 + \cdots + C_n + C_n$

Ch Ca Ca

```
EIX.
1) Evaluate J, Z dz where c'is the
  Curve (i) Z = $2 + it from 0 to 4+2i
          (ii) storaight line from 0 to 4+2e
         (iii) upper half of the circle |z|=1
 \frac{Solh}{}; Let I = \int_{C} Z dZ
(i) C; Z = 22+it forom Z=0 to Z=412i
      ·· dz = (2++i) H
          Z = 22-it
        Z=0 => +=0
         2=4+21 => +=2
   I = \int_{-\infty}^{\infty} (t^2 - it) (2t + i) dt
             = \int_{2}^{2} 2 d^{3} + i d^{2} - 2 i d^{2} + d d
              =\int_{0}^{2} 2 d^{3} - i d^{2} + d d
               = \left[ 2 \frac{1}{4} - i \frac{1}{3} + \frac{1}{2} \right]^{2}
```

$$= 8 - i \frac{8}{3} + 2$$

$$= 10 - \frac{8}{3}i$$

C:
$$Z = t^{2} + it$$
 from $Z = 0$ to $Z = 4 + 2i$
 $\Rightarrow x = t^{2}$, $y = t$
 $\Rightarrow x = 2 + t^{2}t$, $\Rightarrow y = t^{2}t$
 $\Rightarrow x = 2 + t^{2}t$, $\Rightarrow y = t^{2}t$
 $\Rightarrow x = 2 + t^{2}t$, $\Rightarrow y = t^{2}t$
 $\Rightarrow x = 0$ for $z = 4 + 2i$
 $\Rightarrow x = 0$ for $z = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 0$ for $z = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 4 + 2i$
 $\Rightarrow x = 0$
 $\Rightarrow x = 0$

C:
$$Z = x^2 + i x$$
 from $Z = 0$ to $Z = 4 + 2 i$
 $\Rightarrow x = x^2$, $y = x$
 $\Rightarrow x = y^2$, $\Rightarrow x = 2 + 2 i$
 $\Rightarrow x = y^2$, $\Rightarrow x = 2 + 2 i$
 $\Rightarrow y = 0$ & $\Rightarrow y = 0$

$$I = \int_{C} Z dZ$$

$$= \int_{C} (y^{2} - iy) (2y dy + i dy)$$

$$= \int_{0}^{2} (y^{2} - iy) (2y dy + i dy)$$

$$= \int_{0}^{2} (y^{2} - iy) (2y + i) dy$$

$$= 10 - \frac{8}{3}i$$
(ii) C: straight line from $z = 0$

$$to z = y + 2i$$

$$= (y + 2i) dt$$

$$= (y + 2i) dt$$

$$= (y - 2i) dt$$

$$= \int_{C} Z dZ$$

$$= \int_{0}^{2} (y - 2i) dt (y + 2i) dt$$

$$= 20 \int_{0}^{1} dd$$

$$= 20 \left[\frac{d^{2}}{2} \right]_{0}^{1} = 20 \times \frac{1}{2} = 10$$

C:
$$Z = (1-x) \cdot 0 + x (4+2x), 0 \le x \le 1$$

= $(4+2x)x$
= $4x + 2xx$

$$I = \int_{C} Z dZ$$

$$= \int_{C} (N - iY) (dN + idY)$$

$$= \int_{C} (Yd - i2d) (Yd + i2dY)$$

$$= \int_{C} (Y - 2i) d (Y + 2i) dA$$

$$Z = 0 + 1e^{i\theta}$$

$$= e^{i\theta}, \quad 0 \le \theta \le \pi$$

$$\therefore \overline{Z} = e^{-i\theta}$$

$$I = \int_{C} \overline{Z} dZ$$

$$= \int_{0}^{\pi} e^{i\theta} d\theta$$

$$= i \int_{0}^{\pi} d\theta = i \left[\theta \right]_{0}^{\pi} = \pi i$$

(2) Evaluate
$$\int_{0}^{2+i} z^{2} dz$$
 along the (i) line $x = 2y$ (ii) along the parabola $2y^{2} = x$.

$$I = \int_{0}^{2+i} z^{2} dz$$

$$= \int_{0}^{2+i} (x+iy)^{2} (dx+idy)$$

(i)
$$C: N = 2y$$

 $dN = 2dy$

$$Z = 0 \implies y = 0$$

$$Z = 2 + i \implies y = 1$$

$$Z = -1 = \int_{0}^{1} (2y + iy)^{2} (2 + iy) dy$$

$$= \int_{0}^{1} (2 + i)^{2} y^{2} (2 + iy) dy$$

$$= (2 + i)^{3} \int_{0}^{1} y^{2} dy$$

$$= (2 + i)^{3} \left[\frac{y^{3}}{3} \right]_{0}^{1}$$

$$= \frac{2 + 11i}{3}$$

$$= \frac{2 + 11i}{3}$$

$$= -14y dy$$

$$= -16(2y^{2} + iy)^{2} (4y dy + iy)$$

$$= \int_{0}^{1} (2y^{2} + iy)^{2} (4y dy + iy) dy$$

$$= \int_{0}^{1} (2y^{2} + iy)^{2} (4y + iy) dy$$

$$= \int_{0}^{1} (4y^{4} + 4iy^{3} - y^{2}) (4y + iy) dy$$

$$I = \int_{0}^{1} 16 y^{5} + 4 i y^{4} + 16 i y^{4} - 4 y^{3} - 4 y^{3} - i y^{2} dy$$

$$= \int_{0}^{1} 16 y^{5} + 20 i y^{4} - 8 y^{3} - i y^{2} dy$$

$$= \left[16 \frac{y^{6}}{6} + 4 i y^{5} - 2 y^{4} - i y^{3} \frac{y^{3}}{3} \right]_{0}^{1}$$

$$= \frac{8}{3} + 4 i - 2 - \frac{1}{3}$$

$$= \frac{2}{3} + \frac{11}{3} i = \frac{2 + 11 i}{3}$$

Note that; Food both curved line and parabola having same initial and final points; the entegral values are equal.

Why?

Result: - If f(z) is Analytic in a domain containing a curve C extending from z_1 to z_2 , then the integral of f(z) along C is independent of the curve and depends only on initial and final points z_1 and z_2 .

i.e.
$$\int_{C} f(z) dz = \int_{C}^{Z_{2}} f(z) dz = \left[\int_{Z} f(z) dz \right]_{Z=Z_{1}}^{Z_{2}}$$

Note: -

- 1) Z, |Z| are not Analytic at all points on complex plane.
- ② constant, Z, polynomial en Z, ez, sintz, cost and Analytic at all points en complex plane.
- 3) If f(z) and g(z) are two Analytic functions then
 - (i) f(z) + g(z) is Analytic
 - (ii) f(z)·g(z) is Analytic
 - (iii) f(g(z)) is Analytic
- (iv) $\frac{f(z)}{g(z)}$ is not Analytic only at g(z) = 0
- ② Evaluate ∫₀ z² dz along the curves
 - (i) line n=2y (ii) parabola $2y^2=x$,

Solh Let $I = \int_0^2 Z^2 dZ$ $f(Z) = Z^2$ is Analytic at all points.

integral of f(z) is independent of the curves.

I =
$$\int_{0}^{2+i} Z^{2} dZ$$

$$= \left[\begin{array}{c} Z^{3} \\ Z^{3} \end{array}\right]_{0}^{2+i}$$

$$=\frac{1}{3}(2+i)^3=\frac{2+11i}{3}$$

3 Evaluate SIZI dz where c is the left half of the circle |z|=2.

$$\frac{Sol^h}{L} = \int_C |Z| dz$$

$$Z = 0 + 2 e^{i\theta}, \quad \underline{T}_{2} \leq \theta \leq 3\underline{T}_{2}$$

$$= 2 e^{i\theta}$$

$$17 = 2$$

$$= \frac{3\sqrt{2}}{2 \cdot 2i} e^{i\theta} d\theta$$

$$e^{i3\sqrt{2}} = \frac{3\sqrt{2}}{2 \cdot 2i} e^{i\theta} d\theta$$

$$\begin{array}{c|c}
e^{i3\sqrt{2}} \\
= \omega 3\sqrt{2} \\
= \omega 3\sqrt{2} \\
= -i \\
= -i \\
= 4 \left[-i - i \right] = -8i
\end{array}$$

$$\begin{array}{c|c}
e^{i3\sqrt{2}} \\
= 4 \left[-i - i \right] = -8i$$

(4) Evaluate \(\frac{2+e}{\pi^2 dz} \) along the line from A to B and then from B to C where A=(0,0), B=(2,0), C=(2,1).

$$\frac{501^{h}}{I} = \int_{0}^{2+i} (\overline{z})^{2} dz$$

C: line forom (0,0) to (2,0) and then line from (2,0) to (2,1)

C₁: line y = 0 from C_2 (2,1) (0,0) to (2,0)

$$3 y = 0 dx$$

 $3 y = 0 do y = 2$

$$I_{1} = \int_{C_{1}} (\overline{Z})^{2} dZ$$

$$= \int_{C_1} (\chi - i \psi)^2 (d\chi + i d\psi)$$

$$=\int_{0}^{2}(\chi)^{2}d\chi$$

$$= \left[\begin{array}{c} \chi^3 \\ \overline{3} \end{array}\right]_0^2 = \frac{8}{3}$$

C2: line from
$$(2,0)$$
 to $(2,1)$

i.e. $N=2$

i.e. $J=0$ dy

& from $J=0$ dy

& from $J=0$ dy

= $J=0$

(5) Evaluate
$$\int_{C} f(z) dz$$
 where $f(z) = \begin{cases} 44 & 4>0 \\ 1 & 4<0 \end{cases}$

and C is the anc from -1-i to 1+i of the cuboical curve $y=x^3$. Soly C: $y=x^3$ from -1-i to 1+i

$$I = \int_{C} f(z) dz$$

$$= \int_{C} 1 dz + \int_{0} 4y dz$$

$$= \int_{-1-i}^{0} 1 dz + \int_{0}^{1} 4y dz$$

along $y = n^3$ $\therefore dy = 3n^2 dn$

$$I = \int_{-1-i}^{0} (dn+idy) + \int_{-1-i}^{1+i} (dn+idy)$$

$$= \int_{-1-i}^{0} (dn+i3n^2dn) + \int_{-1-i}^{1} (dn+i3n^2dn)$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} \, (1 + 3i \, n^{2}) \, dn$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} + 12i \, n^{5} \, dn$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} + 12i \, n^{5} \, dn$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} + 12i \, n^{5} \, dn$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} + 12i \, n^{5} \, dn$$

$$= \int_{-1}^{0} 1 + 3i \, n^{2} \, dn + \int_{0}^{1} 4 \, n^{3} + 12i \, n^{5} \, dn$$

6 Evaluate 1, 12/2 dz where c'is the square with vertices (0,0), (1,0), (1,1) and (0,1).

501 C: square with vertices (0,0), (1,0), (1,1) & (0,1)

(1,1) (4) (2) C1: line y=0 forom (0,0) to (1,0).

 \therefore dy = 0 dn

4 from N = 0 to N = 1 |Z = N + iy $|Z| = \int |Z|^2 dZ$ $|Z|^2 = N^2 + y^2$ $|Z|^2 = N^2 + y^2$ $I_1 = \int_{C_1} |z|^2 dz$

 $=\int_{C_1} (\chi^2 + \gamma^2) (d\chi + i dy)$

$$Z = n + i y$$
 $|Z| = \int n^2 + y^2$
 $|Z|^2 = n^2 + y^2$

$$I_1 = \int_0^1 \chi^2 d\chi = \left[\frac{\chi^3}{3}\right]_0^1 = \frac{1}{3}$$

C2: line
$$n=1$$
 form $(1,0)$ to $(1,1)$
:. $dn=0$ dy

= 4 i

$$I_{2} = \int_{C_{2}} (y^{2} + y^{2}) (dy + i dy)$$

$$= \int_{0}^{1} (i + y^{2}) i dy$$

$$= \left[y + y^{3} \right]_{0}^{1} i = \left[1 + \frac{1}{3} \right] i$$

$$C_3$$
: line $y=1$ from $(1,1)$ to $(0,1)$
 $\therefore dy = 0 dN$
 $x fog N = 1$ for $x = 0$

$$T_{3} = \int_{C_{3}} (n^{2} + y^{2}) (dn + i dy)$$

$$= \int_{C_{3}} (n^{2} + 1) dn$$

= -1+2

(7) Evaluate (logz dz where C is the unit ciacle in the z-plane.

$$\frac{5014}{I}$$
 $I = \int_{C} log Z dZ$

f(z) = logz is not Analytic at Z=0 and Z=negative geal numbers.

c: unit ciacle de. 12 =1

:. There is some not Analytic point of logz lies on the circle.

parametric form of cincle |z|=1

 $Z = 0 + 1e^{i\theta}$

 $= e^{x}$, $0 \le \theta \le 2\pi$ $dz = i e^{i\theta} d\theta$

log(Z) = iD

 $I = \int_{0}^{2\pi} i \theta \cdot i e^{i\theta} d\theta$

 $=-\int_{0}^{2\pi}\theta\,e^{\hat{i}\theta}\,d\theta$

 $= -\left[\theta \stackrel{ei\theta}{=} + e^{i\theta}\right]_{0}^{2\pi} = 1$

 $= -\left[\frac{2\pi}{i}e^{i2\pi} + e^{i2\pi} - 0 - 1\right]$

 $=- \left[\frac{2\pi}{i} + 1 - 1 \right] = -\frac{2\pi}{i} = 2\pi \hat{L}$

(8) Evaluate $\int_C z^2 + 3z \, dz$ along the straight line from (2,0) to (2,2) and then from (2,2) to (0,2).

 $\sum \frac{50l^{h}}{L} = \int_{C} Z^{2} + 3Z dZ$

C: line forom (2,0) to (2,2) and the forom (2,2) to (0,2).

 $f(Z) = Z^2 + 3Z$ is

(0,2) $f(Z) = Z^2 + 3Z$ is

of complex plane.

(2,2)

independent of f(z) is independent of the curves and depends on initial and final points.

 $I = \int_{2}^{2} Z^{2} + 3Z dZ$

$$= \left[\frac{z^{3}}{3} + \frac{3}{2} z^{2} \right]_{2}^{2i}$$

$$=-\frac{8}{3}\hat{\lambda}-6-\frac{8}{3}-6$$

$$= -\frac{44}{3} - \frac{8}{3}i$$