Power Dividers and Hybrid Couplers

Name: Sparsh Arya

Registration Number:17BEC0656

Slot: F1

Subject: Microwave Engineering

OBJECTIVE

For a given load of Z_L =28.3- j44.2,

- 1. For the given operating frequency and characteristic impedance, design power dividers and hybrid couplers with following design parameters.
- 2. Implement on standard substrate $\varepsilon r = 4.4$, H=1.6 mm, T=0.05 mm, Tan δ =0.001.
- 3. Compare the performance based on return loss, bandwidth, and quality factor for both solutions.
- 4. System Impedance (Ohm)= 30
- 5. Design Frequency (GHz)= 4.5
- 6. Parameters= $K^2 = 2/6$
- 7. All parts should be matched: $S_{ii} = 0$ or < -40dB(practically)
- 8. Large isolation between output ports: $P(2,3) \Rightarrow S_{23} = S_{32}$
- 9. Reciprocal $S_{ij}=S_{ji \mid \text{where } i \text{ is not equal to } j}$
- 10. Loss-less condition: $|S_{11}|^2 + |S_{21}|^2 + |S_{31}|^2 = 1$
- 11. Power split: $K=0.577=P_3/P_2=(S_{31})^2/(S_{21})^2$

Procedure

Power Divider

- 1. Find the values of Z03,Z02,R,R2,R3.
- 2. Draw the schematic for the following circuit.
- 3. Run a frequency analysis for S parameters.
- 4. Tabulate the values.
- 5. Find the Bandwidth, Quality Factor and the return loss.

- 1. Find the values of Z_0 and $Z_0/(2)^{0.5}$.
- 2. Draw the schematic for the following circuit.
- 3. Run a frequency analysis for S parameters.
- 4. Tabulate the values.
- 5. Find the Bandwidth, Quality Factor and the return loss.

Calculations

Design

Wilkinson Power divider

Graph

Wilkinson Power divider

Tabular Readings

Wilkinson Power divider

Frequency (GHz)	DB(S(1,1)() wikinsonpwidwid	08gS(2,1)0 wikinsonpwidted	DB((S(3,1)) wikinsonpwidwid	DB(JS(3,2)() wikinsonpwrdwid	
4.47	-46.936	1.2743	-6.0468	-48.86	
4.48	-50.529	1,2743	6.0467	-52.145	
4,49	-56.715	1.2743	6.0467	-57.107	
4.5	-70.256	3.2744	-6.0457	-62.7	
4.51	-55,602	-1.2744	-6.0467	-57.265	
4.52	-49.95	1.2745	-6.0467	-52.24	
4.53	-46.538	-1.2747	-6.0467	-48,922	
4.54	-44.091	1.2748	6.0468	-46.493	
4.55	-42.182	-1.2749	-6:0468	-44.585	
4.56	-40,616	-1.2751	-6.0469	-43.017	
4.57	-39.289	-1.2753	-6.0471	41.686	D
4.58	-38.138	-1.2755	6.0472	-40.531	145
4.59	37.121	1.2758	-6.0474	-39.51	
4.6	36.21	1.276	-6.0476	-38.596	
4.61	-35.385	-1.2763	-6.0428	-37.769	
4.62	-34,632	-1.2766	-6.048	-37.013	
4.63	-33,938	-1.2769	-6.0482	36.318	
4.64	-33.296	-1.2773	-6.0485	-35.673	
4.65	-32.697	-1.2776	-6.0488	-35.073	
4.66	-32.137	-1.278	-6.0491	-34.512	
4.67	-31.611	-1.2784	-6.0495	-33.984	
4.68	-31.114	-1.2788	-6.0498	-33.487	
4.69	-30.645	-1.2793	-6.0502	-33.016	10.00
4,7	-30.199	-1.2797	-6.0506	-32.569	
4,71	-29.775	-1.2802	-6.051	-32.145 -21 780	

Frequency (CHz)	DBGS(1,11) byb_coupler	DBQS(2,13) hyb_coupler	DB(IS(3, LY) byb_coupler	DBQS(4,1)D hyb_coupler	
4.35	-23.829	-3.1327	-3.0611	-23.919	
4.36	-24.43	-3.1236	-3.061	-24.511	
4.37	-25.076	-3.1152	-3.0609	-25.148	
4.38	-25.774	-3.1074	-3.0609	-25.837	
4.39	-26.532	-3.1002	-3.0608	-26.587	
4.4	-27.362	-3.0936	-3.0608	-27.41	
4.41	-28.279	-3.0877	-3.0608	-28.321	
4.42	-29.305	-3.0624	-3.0606	-29.339	
4,43	-30.467	-3.0775	-3.0608	-30,495	
4,44	-31.809	-3.0738	-3.0608	-31.83	
4,45	-33.395	-3.0704	-3.0608	-33,409	
4.45	-35,335	-3.0677	-3.0608	-35.34	
4,47	-37.83	+3.0656	+3.0609	-37.52	
4,48	41.321	-3.0641	-3.0609	41,282	
4,49	47.073	-3.0633	-3.0609	-46.92	
4.5	-96.207	-3.0631	-3.061	-55.421	
4.51	-46.56	-3.0636	-3.061	46.55	
4.52	-41.037	-3.0647	-3.0611	-41.073	
4.53	-37.633	-3.0665	-3.0611	-37,675	
4.54	-35.482	-3.0689	-3.0611	-35.228	
4.55	-33,268	-3.072	-3.0612	-33.314	
4.56	-31.699	-3.0757	-3.0612	-31.747	
4.57	-30.368	-3.08	-3.0613	-30.42	
4.58	-29 214	-3.085	-3.0614	-29.27	
4.59	-25.194	-3.0907	-3.0615	-28.255	
4.5	-27,28	-3.0969	-3.0616	-27.347	
4.61	-26.453	-3.1029	-3.0617	-26.526	

Results

- Bandwidth= 4.5
- Quality factor= 70.06/4.5=15.70
- Return loss= 70.256 dB

Bandwidth= 4.5

• Quality factor=55.88/4.5=12.41

Return loss= 56.237dB

Wilkinson Power divider

Inferences

The Circuit diagram has been created for dividing input power in the ratio of 2:6 by designing a power divider and a hybrid coupler.

The graphs have been constructed and the output values such as return loss, bandwidth and quality factor has been recorded.

References

- Microwave Engineering- David M. Pozar
- https://www.tutorialspoint.com/microwave engineering introduction.htm
- https://www.microwaves101.com/encyclopedias/waveguide-mathematics
- https://en.wikipedia.org > wiki > Microwave engineering