

CSCE 580: Introduction to Al

Week 6 - Lectures 11 and 12: Al Trust; Symbolic - Representation and Logic

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 23RD AND 25TH SEP 2025

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

Organization of Week 6 - Lectures 11, 12

- Introduction Section
 - Recap from Week 5 (Lectures 9 and 10)
 - Al news
- Main Section
 - L11: ML Trust Issues Explainability, Rating
 - L12: Symbolic Representation and Logic
- Concluding Section
 - About next week W7: Lectures 13, 14
 - Ask me anything

CSCE 580 - FALL 2025 2

Recap of Week 5

- We talked about
 - Language models
 - LLMs
 - Using LLMs
 - AI/ LLM Trust
 - Exercise 1, Project A

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the Trust Problem
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, Adversarial attacks
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: <u>Trustworthy Decision Making</u>: <u>Explanation</u>, AI testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 <u>Safe AI/ Chatbots</u>

Al News

F 581 - SPRING 2025

#1 NEWS – Discovering Plants Around Us (SC), Virtually!

• Link: https://herbarium.org/ - Initiative started by Dr. Andrew Charles Moore over a century back of dried plant specimens

Potential usage

- 1. Learn about plants
- 2. Learn how they change with location and time
- 3. How fall colors change over time

Example

 https://sernecportal.org/portal/collections/list.php?db=147&include othercatnum=1&hasimages=1&usethes=1&taxontype=2&associatio n-type=none&taxontype-association=2&usethesassociations=1&comingFrom=newsearch

Introduction Section

SCF 580 - FALL 2025

Lecture 11: Overcoming ML Trust Issues – Explainability, Rating

Lecture 11: Concluding Comments

We discussed

- Al trust and risk mitigation
- Explanability methods
- Rating methods

Lecture 12: Representation and Logic

CSCE 580 - FALL 2025 10

Main Section

Intelligent Agent – Simple Knowledge Based

Logic – Basic Idea

- Starting with true assumptions, a knowledge-based system (automaton) to draw true conclusions
- Logic consists of three components
 - Syntax -- allowable sentences
 - Semantics -- determining truth of sentence given a model (assignment of values to sentences)
 - Inference Procedure -- rules to draw conclusion given a set of sentences

Formal Logic -1/3

- An automaton for manipulating symbols and drawing conclusions
- Consists of a knowledge base with:
 - a set of true statements (sentences).
 Sentences have
 - Syntax
 - Semantics compositional property
 - Proof theory: a set of rules for deducing the entailments / interpretations of the sentences

- Properties of sentences
 - Valid: A sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds. Also called a tautology
 - **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Propositional Logic

- Sentences: assertions about the world
 - Atomic sentence: propositional symbol
 - ClassToday whether there is a class today: Yes, No
 - A -- any fact of interest: Yes, No
 - True -- always true
 - False -- always false

Propositional Logic - Syntax

Sentence — AtomicSentence ComplexSentence

```
AtomicSentence — True | False

| P Q R ...

ComplexSentence — (Sentence)

| Sentence Connective Sentence

| ¬Sentence
```

Connective $- A \mid V \mid \Leftrightarrow \mid \Rightarrow$

BNF (Backus-Naur Form) grammar of sentences in propositional logic

Source: Russell & Norvig, AI: A Modern Approach

Propositional Logic - Semantics

Model of sentence: Any world in which a sentence is true (under a particular interpretation)

α	β	7	$\alpha \lor \beta$	$\neg \beta \mathbf{V} 7$	a V 7
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	True	<u>True</u>	<u>True</u>	<u>True</u>
True	<u>False</u>	<u>False</u>	<u>True</u>	True	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

Truth table to prove soundness of inference

Source: Russell & Norvig, AI: A Modern Approach

Inference Procedure

- ullet Given a knowledge base (KB), generate new sentences $\, \alpha \,$ that are entailed by KB
 - KB |= α
- Given KB and α , report whether or not α is entailed by KB
 - KB |- α

•

Propositional Logic

Inference Procedures

Source: Russell & Norvig, AI: A Modern Approach

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{a \Rightarrow \beta, \qquad a}{\beta}$$

♦ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 A \alpha_2 A \dots A \alpha_n}{\alpha_i}$$

♦ **And-Introduction**: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 A \alpha_2 A \dots A \alpha_n}$$

0 Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ **Double-Negation Elimination:** (From a doubly negated sentence, you can infer a positive sentence.)

$$\frac{\neg \neg a}{\alpha}$$

♦ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{a \vee \beta, \quad \neg \beta}{a}$$

Resolution: (This is the most difficult. Because θ cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{a \vee \beta, \quad \neg \beta \vee 7}{a \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

$$\frac{\neg \alpha \Rightarrow \beta, \qquad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

KB Agent Procedure

function KB-AGENT(*percept*) **returns** an *action* static: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action - ASK(KB, MAKE-ACTION-QUERY(t))TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

Source: Russell & Norvig, AI: A Modern Approach

Formal Logic -2/3

- Levels at which sentences are encoded
 - Epistemic (also called knowledge): what agents knows or believes
 - Logical: how sentences are encoded to allow inferencing. E.g., symbols
 - Executional: how sentences are encoded during execution. E.g., vectors, symbols

- Valid: A sentence is valid or necessarily true
 if and only if it is true under all possible
 interpretations in all possible worlds. Also called a tautology
- **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Formal Logic – 3/3

- Properties of Logic System
 - **Soundness**: if it produces only true statements
 - **Completeness**: if it produces all true statements
 - Consistency: if it does not produce a sentence and its negation

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Example: Course Selection

Example Situation – Course Selection

- A person wants to pass an academic program in two majors: A and B
- There are three subjects available: A, B and C, each with three levels (*1, *2, *3). There are thus 9 courses: A1, A2, A3, B1, B2, B3, C1, C2, C3
- To graduate, at least one course at beginner (*1) level is needed in major(s) of choice(s), and two courses at intermediate levels (*2) are needed
- Answer questions
 - Q1: How many minimum courses does the person have to take?
 - Q2: Can a person graduate in 2 majors studying 3 courses only?
 - ...

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has_studied_courseA2
 - has_studied_courseA3
 - has studied courseB1
 - has_studied_courseB2
 - has_studied_courseB3
 - has_studied_courseC1
 - has studied courseC2
 - has_studied_courseC3

Issue: What about hierarchy among courses?

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has studied courseA2
 - has_studied_courseA3
 - has studied courseB1
 - has studied courseB2
 - has_studied_courseB3
 - has studied courseC1
 - has_studied_courseC2
 - has_studied_courseC3

LowerThan_Course_A1_CourseA2 LowerThan_Course_A2_CourseA3 LowerThan_Course_B1_CourseB2 LowerThan_Course_B2_CourseB3 LowerThan_Course_C1_CourseC2 LowerThan_Course_AC_CourseC3

• Previous statements set did not capture hierarchy between levels; new sentences would not have followed the reality in the world. Need more statements – LowerThan as shown.

How to Tackle Course Selection Problem?

- Represent the world as sentences in KB
 - Update KB based on scenarios
- Solve problems about courses selection scenarios
 - Pose problems as queries to KB
 - Interpret answers // reason with the world

function KB-AGENT(*percept*) **returns** an *action* static: *KB*, a knowledge base *t*, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t)) action — Ask(KB, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ return action

Source: Russell & Norvig, AI: A Modern Approach

Major Types of Reasoning

- Inference: From premises to conclusions
 - Major types
 - Deduction: deriving logical conclusions from premises known or assumed to be true
 - Induction: deriving from particular premises to a universal conclusion.
 - Abduction: from an observation, find the most likely conclusion from the observations

Usage

- Deduction is useful to build knowledge bases from parts
- Induction: to generalize
- Abduction is a good source for hypothesis / priors in Bayesian learning

Setting Up for AIMA Code

- Al resources https://github.com/biplav-s/course-ai-tai-f23/blob/main/sample-code/Al-Resources.md
- Setting up for Python code from AIMA book https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/ai-book-samples

Exercise and Code

- Logical Reasoning
 - From Book: AI A Modern Approach, <u>https://github.com/aimacode/aima-</u> python/blob/master/logic.ipynb

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
	,		
1,2	2,2	3,2	4,2
S OK	OK		
1,1	2,1 B	3,1 P!	4,1
V	V		
OK	OK		

B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Source: Russell & Norvig, AI: A Modern Approach

Examples of Agents

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis	Symptoms, findings,	Questions, tests,	Healthy patient,	
system	patient's answers	treatments	minimize costs	Patient, hospital
Satellite image analysis	Pixels of varying	Print a categorization of	Correct	Images from
system	intensity, color	scene	categorization	orbiting satellite
	Pixels of varying	Pick up parts and sort	Place parts in	Conveyor belt
Part-picking robot	intensity	into bins	correct bins	with parts
	Temperature,	Open, close valves;	Maximize purity,	
Refinery controller	pressure readings	adjust temperature	yield, safety	Refinery
			Maximize	
Interactive English		Print exercises,	student's score	
tutor	Typed words	suggestions, corrections	on test	Set of students

Source: Russell & Norvig, AI: A Modern Approach

Lecture 12: Summary

- We talked about
 - Knowledge-based agents
 - Logic (Propositional)
 - Inferencing (Propositional)

Week 6: Concluding Comments

We talked about

- AI/ ML Trust
 - Explainability
 - Trust ratings
- Representation and Logic
 - Propositional

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the <u>Trust Problem</u>
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, <u>Adversarial attacks</u>
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: <u>Trustworthy Decision Making</u>: <u>Explanation</u>, AI testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 <u>Safe AI/ Chatbots</u>

CSCE 580- FALL 2025 33

Upcoming Evaluation Milestones

• Projects B: Sep 30 – Nov 20

• Quiz 2: Oct 7

• Quiz 3: Nov 11

• Paper presentation (grad students only): Nov 18

CSCE 580 - FALL 2025 34

About Week 7 – Lectures 13 and 14

SCF 580- FALL 2025 35

Week 7 – Lectures 13 and 14

- L13: Logic and Inference First Order
- · L12: Search, Search Uninformed

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2: Data: Formats, Representation, ML Basics
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, <u>Adversarial attacks</u>
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: <u>Trustworthy Decision Making</u>: <u>Explanation</u>, AI testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 <u>Safe AI/ Chatbots</u>

Note: exact schedule changes slightly to accommodate for exams and holidays.

CSCE 580- FALL 2025 36