kendall

April 26, 2022

```
[1]: import numpy as np # linear algebra
     import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
     import seaborn as sns
     sns.set style('whitegrid')
     import matplotlib.pyplot as plt
     from sklearn.metrics import accuracy_score
     import warnings
     warnings.filterwarnings('ignore')
     import os
     import time
     from sklearn.model selection import KFold, StratifiedKFold
     from sklearn.metrics import roc_auc_score, roc_curve
     from sklearn.decomposition import PCA
     from sklearn.preprocessing import StandardScaler,MinMaxScaler
     from sklearn.metrics import make_scorer
     from sklearn.model selection import GridSearchCV, RandomizedSearchCV
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
     from sklearn.naive_bayes import GaussianNB
     from sklearn.linear_model import LogisticRegression
     from xgboost import XGBClassifier
     from sklearn.model_selection import KFold,StratifiedKFold
     from sklearn.model_selection import cross_val_score
     from sklearn.model_selection import ShuffleSplit
     from sklearn.model_selection import LeaveOneOut as loocv
     from plotly import tools
     from plotly.offline import plot
     import plotly.offline as py
     from plotly.graph_objs import Scatter, Layout
     import plotly.graph_objs as go
     import plotly.figure_factory as ff
```

```
[2]: # load in training and test data
            train = pd.read_csv('training.csv')
            test = pd.read_csv('testing.csv')
            print("Rows and Columns(Train): ",train.shape)
            print("Rows and Columns(Test) : ",test.shape)
           Rows and Columns(Train): (168, 148)
           Rows and Columns(Test): (507, 148)
[3]: # check for missing values although it is clear there are none
            train.isnull().any().any()
[3]: False
[4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others as [4]: # duplicate function of pandas returns a duplicate row as true and others are particular function of pandas returns a duplicate row as true and other function of pandas returns a duplicate row and duplicate row as true and other function of pandas returns a duplicate row and duplicate
              \hookrightarrow false
            sum(train.duplicated())
[4]: 0
[5]: # basic statistical details
            fig = train.describe().T
            fig = fig.round(5) # round to 5 decimal places
            table = go.Table(
                       columnwidth=[0.8]+[0.5]*8,
                       header=dict(
                                 values=['Attribute'] + list(fig.columns),
                                 line = dict(color='darkslategray'),
                                 fill = dict(color='royalblue'),
                       ),
                       cells=dict(
                                 values=[fig.index] + [fig[k].tolist() for k in fig.columns[:]],
                                 line = dict(color='darkslategray'),
                                 fill = dict(color=['paleturquoise', 'white'])
                       )
            plot([table], filename='table-of-data')
[5]: 'table-of-data.html'
[6]: # more general data exploration
            print(train['class'].value_counts())
            f,axes=plt.subplots(1,2,figsize=(20,8))
            train['class'].value_counts().plot.pie(autopct='%1.1f\%',ax=axes[0])
            axes[0].set_title('Visual for Distribution of Different Classes')
            axes[0].set_ylabel('')
```

```
sns.countplot('class',data=train,ax=axes[1]) # sns.countplot is used like a

→histogram but for categorical data

axes[1].set_title('Visual for Distribution of Different Classes')
plt.show()
```

29 grass 25 building concrete 23 tree 17 shadow 16 car 15 pool 15 asphalt 14 14 soil

Name: class, dtype: int64


```
outlier_indices = Counter(outlier_indicator)
multiple_outliers = list(k for k, j in outlier_indices.items() if j > n)
return multiple_outliers
```

[8]: # find outliers that should be removed
list_atributes = train.drop('class', axis=1).columns
outliers_to_remove = examine_outliers(train, 2, list_atributes)
train.loc[outliers_to_remove]

[8]:		class		Area		_	Compact	_		\
	11	asphalt	4.19	418	2.48	83.35	4.21	4.30		
	10	building	1.57	3552	0.46		1.32	1.60		
	18	building	1.21	2797	0.78	244.70	1.34	1.23		
	32	building	1.48	3084	0.93	230.71	1.33	2.52	215.62	
	71	building	1.38	1482	0.54	145.95	1.42	1.42	122.53	
				•••	•••	•••				
	99	grass	1.76	423	1.09		1.63	2.09	210.94	
	134	${\tt asphalt}$	2.22	116	1.29	100.77	2.72	2.37	87.45	
	13	grass	1.14	289	0.38	173.16	1.21	1.21	213.71	
	158	asphalt	2.25	542	1.49	76.52	2.09	2.32	60.50	
	132	asphalt	2.37	642	1.46	63.67	2.00	2.53	51.76	
		Mean_R Me	ean_NIR	SD_N	IR_140	LW_140	GLCM1_140	Rect_	140 \	
	11	88.80	93.17		26.40	1.50	0.77	7 0	. 68	
	10	229.84	236.80		6.53	1.54	0.33	3 0	.94	
	18	252.21	252.37		6.84	1.27	0.52	2 0	. 85	
	32	252.64	223.88		12.08	5.19	0.68	3 0	. 65	
	71	156.16	159.16		8.45	1.20	0.54	1 0	. 87	
		•••		•••		•••	•••			
	99	114.01	133.93		36.11	2.89	0.90	0	. 43	
	134	105.32	109.53		28.19	1.07	0.86	5 0	. 46	
	13	145.56	160.23		16.13	1.80	0.50	0	.92	
	158	82.17	86.88		27.72	1.45	0.80	0	. 56	
	132	67.20	72.05		21.07	2.19	0.81	L 0	.46	
		GLCM2_140	Dens_140	Assy	m_140	NDVI_140	BordLngt	th_140 (GLCM3_140)
	11	8.19	1.85		0.46	-0.11		1342	1294.14	Ŀ
	10	6.40	2.20		0.46	-0.14		410	3132.13	3
	18	6.72	2.18		0.44	-0.04		264	2605.29)
	32	7.16	1.01		0.98	-0.07		682	1965.50)
	71	6.70	2.20		0.41	-0.12		238	2345.76	;
		•••	•••				•••			
	99	9.11	1.07		0.88	0.20		2022	680.93	3
	134	8.55	1.26		0.35	-0.02		1156	1087.71	
	13	6.91	2.04		0.52	0.18		84	2915.26	;

```
    158
    8.60
    1.44
    0.62
    -0.09
    3026
    1297.05

    132
    8.05
    0.90
    0.91
    -0.06
    3092
    1181.12
```

[63 rows x 148 columns]

[12]: array([8, 2, 3, 1, 6, 0, 4, 7, 5], dtype=int64)


```
[15]: # correlation of features with target
    corr = train.corr().abs().unstack().sort_values(kind="quicksort").reset_index()
    corr = corr[corr['level_0'] != corr['level_1']]
    corr.head()
    correlations = corr.loc[corr[0] == 1]
    features_to_be_removed = set(list(correlations['level_1']))
    correlations.shape
[15]: (42, 3)
```

```
[16]: # prepare to try different classification algorithms
    X_train = train.drop(['class'], axis=1)
    y_train = pd.DataFrame(train['class'].values)
    X_test = test.drop(['class'], axis=1)
```

```
y_test = test['class']
      scaler = StandardScaler() #standardize data values into standard format
      X_train_std = scaler.fit_transform(X_train)
      X_test_std = scaler.transform(X_test)
[23]: X_train.columns
[23]: Index(['BrdIndx', 'Area', 'Round', 'Bright', 'Compact', 'ShpIndx', 'Mean_G',
             'Mean_R', 'Mean_NIR', 'SD_G',
             'SD_NIR_140', 'LW_140', 'GLCM1_140', 'Rect_140', 'GLCM2_140',
             'Dens_140', 'Assym_140', 'NDVI_140', 'BordLngth_140', 'GLCM3_140'],
            dtype='object', length=147)
[17]: # classification algorithms
      classification_choice = [KNeighborsClassifier(), DecisionTreeClassifier(),_u
       →RandomForestClassifier(), GaussianNB(),]
      accuracy = {}
      accuracy_std = {}
      for choice in classification choice:
          choice.fit(X train, y train)
          pred = choice.predict(X_test)
          accuracy[str((str(choice).split('(')[0]))] = accuracy_score(pred, y_test)
      for choice in classification_choice:
          choice.fit(X_train_std, y_train)
          prediction = choice.predict(X_test_std)
          accuracy_std[str((str(choice).split('(')[0]))] = accuracy_score(prediction,_
       →y_test)
      data = accuracy.values()
      labels = accuracy.keys()
      data_std = accuracy_std.values()
      labels std = accuracy std.keys()
[18]: # plot accuracy for visualization
      fig = plt.figure(figsize=(20,5))
      plt.subplot(121)
      plt.plot([i for i, e in enumerate(data)], data); plt.xticks([i for i, e in_
      →enumerate(labels)], [1[:] for 1 in labels])
      plt.title("Accuracy Without Preprocessing",fontsize = 15)
      plt.xlabel('Model',fontsize = 12)
      plt.xticks(rotation = 75)
      plt.ylabel('Accuracy',fontsize = 12)
     plt.subplot(122)
```



```
[19]: # now lets perform cross validation
n_fold = 5
folds = KFold(n_splits=n_fold, shuffle=True, random_state=1)
```

```
[20]: # Random Forest Classifier
      prediction = np.zeros(len(X_test))
      complete acc = []
      out_of_fold = np.zeros(len(X_train))
      for fold_n, (train_index, valid_index) in enumerate(folds.split(X_train, ____
      →y_train)):
          print('Fold', fold_n, 'started at', time.ctime(), end=" ")
          X_train_, X_valid = X_train.iloc[train_index], X_train.iloc[valid_index]__
       →#iloc function used to retrieve rows from a data set
          y_train_, y_valid = y_train.iloc[train_index], y_train.iloc[valid_index]
          classifier_randomforest = RandomForestClassifier(n_estimators=1000,__
       →n_jobs=-1, random_state=0) # default estimator, -1 is using all processors, u
       \rightarrow 0 fixes sequence
          classifier_randomforest.fit(X_train_, y_train_)
          out_of_fold[valid_index] = classifier_randomforest.predict(X_train.
       →iloc[valid index])
          prediction = classifier_randomforest.predict(X_test)
          print("Validation Score: ", accuracy_score(y_test, prediction))
```

```
complete_acc.append(accuracy_score(y_test, prediction))
print("CV score".format(accuracy_score(y_train, out_of_fold)))
print("Mean Testing Score: ", np.mean(complete_acc))
```

```
Fold 0 started at Tue Apr 26 09:33:02 2022 Validation Score:
0.7909270216962525
Fold 1 started at Tue Apr 26 09:33:04 2022 Validation Score:
0.8067061143984221
Fold 3 started at Tue Apr 26 09:33:08 2022 Validation Score:
0.8047337278106509
Fold 4 started at Tue Apr 26 09:33:10 2022 Validation Score:
0.814595660749507
CV score
Mean Testing Score: 0.8063116370808678
```


[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	