Problem Sets

Page numbers below refer to Kolman and Beck, 2nd edition. It is recommended that you also do the odd numbered problems, whose answers appear near the end of the book.

problem set 1: pg. 21 #6.(b). Additional instructions: (i). Solve for x, y, and z in terms of w. (ii). Solve for x, z, and w in terms of y. pg. 21 #9.(a), pg. 28 #6.(c), #8.(b), pg. 42 #5.(d), #6.(b).

problem set 2: pg. 57 #2, #4, pg. 58 #6, #8, pg. 59 #10. Put these problems in canonical and in standard form.

problem set 3: pg. 82 #14, pg. 83 #16. In the preceding questions, replace instructions (b) and (c) with "draw the line $z = c^{T}x = k$, where k is the optimal value of z." pg. 91 #4, #8, #12, pg. 100 #6, #8.

(A warning: the answers at the bottom of pg. 419 for #7.(a) and #7.(c) are incorrect. The correct answer for #7.(a) is: "Not even a solution". The correct answer to #7.(c) is the answer pg. 417 has for #7.(a).) Supplementary problems:

- 1. Prove that the set of optimal solutions of any linear programming problem is convex.
- 2. Prove that the set of objective values which a linear programming problem attains over its feasible region is convex.
- 3. Give an example of a convex set in \mathbb{R}^2 , which is not a line segment, and which has $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ as its only extreme points.
- 4. Find all extreme points (in \mathbb{R}^3) of

$$\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \text{ s.t. } x_1 - x_2 + x_3 = -1, 3x_1 - 2x_2 + 4x_3 = 2, x_1 + x_2 + 3x_3 = 9, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \right\}.$$

problem set 4: pg. 120 #6 (solve the problem which this tableau represents), #8 (insert row labels and solve the problem), pg. 121 #14, #16, #19, pg. 122 #22, #23, pg. 131 #6.

problem set 5: pg. 150 #2, pg. 152 #10, #20.

Supplementary problems:

- $2x_1 + x_2 + x_3 = 5$ 1. Maximize $z = -x_1 + 5x_2 + 3x_3$ subject to the constraints $3x_1 + 2x_2 + x_3 = 5$ $4x_1 + 3x_2 x_3 \leq 7$
- $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$
- 2. Maximize $z = -9x_1$ $-4x_3$ subject to the constraints $\begin{array}{rcl}
 9x_1 & + & x_2 & + & x_3 & \geq & 27 \\
 3x_1 & + & x_2 & + & 2x_3 & = & 9, \\
 x_1 \geq 0, x_2 \geq 0, x_3 \geq 0.
 \end{array}$

problem set 6: pg. 165 #2, #4, pg. 166 #6, pg. 183 #9. Modify this problem by replacing " x_1, x_2, x_3 unrestricted" with " $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ ". pg. 184 #11. Supplementary problem (pertaining to §3.3):

Consider the standard problem: Maximize $z=-76x_1+13x_2-11x_3-27x_4+2x_5$ subject to the constraints $11x_1+x_2-x_3-7x_4+x_5\leq 3$ $-15x_1-x_2+2x_3+23x_4-3x_5\leq 2$, $x_1\geq 0$, $x_2\geq 0$, $x_3\geq 0$, $x_4\geq 0$, $x_5\geq 0$. $-7x_1+2x_2-2x_3-9x_4+x_5\leq 4$

- a) Insert slack variables x_6, x_7, x_8 for the 1st, 2nd, and 3rd constraints respectively, and write the initial simplex tableau for the problem.
- b) The final simplex tableau for the problem has basic variables x_5, x_3, x_2 (in that order). Without using the simplex method, write the final simplex tableau for the problem.
- c) Let $w_i(i = 1, 2, 3)$ be the dual variable associated with the i^{th} primal constraint. What is the optimal solution of the dual problem?

problem set 7: pg. 214 #2, pg. 215 #4, #8, pg. 223 #2, #4, pg. 224 #6, #8.