TP3 Perceptron simple y multicapa

72.27 - Sistemas de Inteligencia Artificial

Perceptron simple

Función de activación step

А	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

"limit": 1000,
"learning_rate": 0.02,
"bias": 0,

"limit": 1000,

"learning_rate": 0.02,

"bias": 0,

"limit": 1000,

"learning_rate": 0.02,

"bias": O,

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

El perceptron:

"limit": 1000,

"learning_rate": 0.02,

"bias": O,

"limit": 1000,

"learning_rate": 0.02,

"bias": O,

"limit": 1000,

"learning_rate": 0.02,

"bias": 0,

"epsilon": 0.1

2

Perceptron Simple Lineal y No Lineal

Análisis de beta

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$g(x) = \frac{1}{1 + e^{-30x}}$$


```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 0.1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 10
}
#train = 24
```

#test = 4


```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 0.1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 10
}
#train = 24
```

#test = 4

Análisis de k

Lineal


```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 2,
}
#train = 14
#test = 14
```

Lineal


```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
}
#train = 24
#test = 4
```

Lineal


```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 10,
}
#train = 26
#test = 2
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 2,
    "beta": 1
}
#train = 14
#test = 14
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 10,
    "beta": 1
}
#train = 26
#test = 2
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 2,
    "beta": 1
}
#train = 14
#test = 14
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 6,
    "beta": 1
}
#train = 24
#test = 4
```



```
{
    "limit": 1000,
    "learning_rate": 0.05,
    "bias": 0,
    "epsilon": 0.1,
    "k": 10,
    "beta": 1
}
#train = 26
#test = 2
```


3

Perceptron Multicapa

XOR con multicapa

Arquitectura [2,2,2,1]

d(tanh(3x))/dx

tanh(3x)

Recap: XOR con simple escalón Error vs Epoch

"limit": 1000,

"learning_rate": 0.02,

"bias": 0,

"epsilon": 0.1

XOR con multicapa Error vs Epoch

Error es el Mean Square Error

"limit": 500,

"learning_rate": 0.08,

"bias": 0,

"epsilon": 0.1,

"beta": 3

XOR - Funcionamiento de la red

XOR - Final

XOR - Otras soluciones A

XOR - Otras soluciones B

XOR - Otras soluciones A

XOR - Otras soluciones B

XOR - Otras soluciones A

XOR - Otras soluciones B

XOR - Otras soluciones A

XOR - Otras soluciones B

Paridad Arquitectura [35,10,2,1]

Acerca del ruido

Se utilizó ruido con distribución normal

Se armaron 10 archivos, cada uno con distintas versiones de los dígitos dependiendo del ruido aplicado

: 0 - 0.25

• : 0.25 - 0.5

□ : 0.50 **-** 0.75

᠍: 0.75 - 1

Extra Groups

Cantidad de copias extra por número

```
#total = 10 + 10 * #extra_groups
#test = floor( #total/k )
#train = #total - #test
```

Cómo evaluamos métricas

Métricas

Todos los valores se encuentran normalizados

Accuracy

 $\frac{Accuracy}{TP + TN}$ $\overline{TP + TN + FP + FN}$

Sin extra group: #train = 8

#test = 2

1 extra group: #train 15

#test = 5

"limit": 500,

"random_start": true,

"learning_rate": 0.02,

"bias": 0,

"epsilon": 0.1,

"k": 4,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8

Precision

Precision TP $\overline{TP + FP}$

Sin extra group: #train = 8 #test = 2

1 extra group: #train 15

#test = 5

"limit": 500,

"random_start": true,

"learning_rate": 0.02,

"bias": O,

"epsilon": 0.1,

"k": 4,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8

Recall

Recall TP $\overline{TP + FN}$

Sin extra group: #train = 8 #test = 2

1 extra group: #train 15 #test = 5

"limit": 500,

"random_start": true,

"learning_rate": 0.02,

"bias": O,

"epsilon": 0.1,

"k": 4,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8

F1 Score

 $\frac{F1 - Score}{2*Precision*Recall} \\ \frac{Precision + Recall}{Precision + Recall}$

Sin extra group: #train = 8

#test = 2

1 extra group: #train 15

#test = 5

"random_start": true,

"learning_rate": 0.02,

"bias": 0,

"epsilon": 0.1,

"k": 4,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159, "b2": 0.9658289155465659,

"e": 1e-8

"limit": 500,

Digitos Arquitectura [35,10,10,10]

Métricas

		8	
Expected	•••	1	•••
Output	•••	O	•••

False Negative

Accuracy

Sin extra group

2 extra group

"random_start": true,

"learning_rate": 0.02,

"bias": 0,

"epsilon": 0.1,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159, "b2": 0.9658289155465659,

"e": 1e-8,

"limit": 1000,

Precision

 $rac{TP}{TP + FP}$

Sin extra group

2 extra group

"limit": 1000,

"random_start": true,

"learning_rate": 0.02,

"bias": O,

"epsilon": 0.1,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8,

Recall

Sin extra group

2 extra group

"limit": 1000,

"random_start": true,

"learning_rate": 0.02,

"bias": O,

"epsilon": 0.1,

"beta": 1,

"optimizer": "adam",

"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8,

F1 Score

 $F1 - Score \\ \frac{2*Precision*Recall}{Precision + Recall}$

Sin extra group

2 extra group

"random_start": true,
"learning_rate": 0.02,
"bias": 0,
"epsilon": 0.1,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,

"b2": 0.9658289155465659,

"e": 1e-8,

"limit": 1000,

ADAM vs GDS

Accuracy

ADAM

GDS

"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,

"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"batch_size": 10
#train = 25
#test = 5

"limit": 1000,

Precision

 $\frac{Precision}{TP}$ $\frac{TP}{TP + FP}$

ADAM

GDS

"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,

"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"batch_size": 10
#train = 25
#test = 5

"limit": 1000,

Recall

ADAM

GDS

"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,

"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"batch_size": 10
#train = 25
#test = 5

"limit": 1000,

F1 Score

 $F1 - Score \\ \frac{2*Precision*Recall}{Precision + Recall}$

ADAM

GDS

"limit": 1000,

"random_start": true,

"learning_rate": 0.08,

"bias": O,

"epsilon": 0.1,

"extra_groups": 2,

"k": 6,

"beta": 1,

"batch_size": 10

#train = 25

#test = 5

"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,

ONLINE vs BATCH

ONLINE vs BATCH: complejidad

#train = floor((10 + 10 * #extra_groups) * (k-1)/k)

En online: #propagaciones = #epochs

En batch #propagaciones = #epochs * #train

En general #calculo_costo = #epochs

Accuracy

$\frac{Accuracy}{TP+TN} \\ \overline{TP+TN+FP+FN}$

Online


```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

#test = 5

Accuracy

$\frac{Accuracy}{TP+TN} \\ \overline{TP+TN+FP+FN}$

Batch


```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

#test = 5

Accuracy

Semi-Batch (10)


```
\frac{Accuracy}{TP + TN}
\overline{TP + TN + FP + FN}
```

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Precision

Online

 $\frac{TP}{TP + FP}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Precision

Batch

 $\frac{TP}{TP + FP}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Precision

Semi-Batch (10)

 $\frac{TP}{TP + FP}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Recall

Online

 $\frac{Recall}{TP} \\ \frac{TP}{TP + FN}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Recall

Batch

 $\frac{Recall}{TP} \\ \frac{TP}{TP + FN}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Recall

Semi-Batch (10)

 $\frac{Recall}{TP} \\ \frac{TP}{TP + FN}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

F1 Score

$\frac{F1-Score}{2*Precision*Recall} \\ \frac{Precision+Recall}{Precision+Recall}$

Online


```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

F1 Score

Batch

 $F1 - Score \\ \frac{2*Precision*Recall}{Precision + Recall}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

F1 Score

Semi-Batch (10)

 $F1 - Score \\ \frac{2*Precision*Recall}{Precision + Recall}$

```
"limit": 2000,
"random_start": true,
"learning_rate": 0.08,
"bias": 0,
"epsilon": 0.1,
"extra_groups": 2,
"k": 6,
"beta": 1,
"optimizer": "adam",
"b1": 0.9331338848100159,
"b2": 0.9658289155465659,
"e": 1e-8,
#train = 25
```

Conclusiones

- Existen problemas no linealmente separables que no se pueden resolver con el perceptrón simple escalón, pero sí aproximar con un perceptrón multicapa (Teorema de Aproximación Universal)
- Utilizar k-folding con distintos valores de k es una buena manera de obtener pesos que se ajusten bien al problema
- Es fundamental la incorporación de elementos adicionales (por ejemplo con ruido) en los data sets para evitar overfitting y lograr la generalización

Conclusiones

 Si bien se le puede dar un significado semántico a cada valor en cada neurona, interpretarlo se puede complejizar mucho, sobre todo considerando que hay varias soluciones posibles

Gracias!

Preguntas?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>