

ЭТИКЕТКА

<u>СЛКН.431271.072 ЭТ</u> Микросхема интегральная 564 ЛА8Т1ЭП Функциональное назначение – Два логических элемента «4И-НЕ»

Схема расположение выводов Климатическое исполнение УХЛ

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход	8	Свободный
2	Вход	9	Вход
3	Вход	10	Вход
4	Вход	11	Вход
5	Вход	12	Вход
6	Свободный	13	Выход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
наименование нараметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} =$ 5 B, 10 B , $U_{IH} = U_{CC}, U_{IL} =$ 0 B	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IH} = 5$ B, $U_{IL} = 0$ B $U_{CC} = 10$ B, $U_{IH} = 10$ B, $U_{IL} = 0$ B	U _{OH}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, U_{IH} = 3,5 B, U_{IL} = 1,5 B U_{CC} = 10 B, U_{IH} = 7,0 B, U_{IL} = 3,0 B	U _{OL max}	-	0,95 2,90
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IH} = 3,5 B, U_{IL} = 1,5 B U_{CC} = 10 B, U_{IH} = 7,0 B, U_{IL} = 3,0 B	U _{OH min}	3,6 7,2	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 10 \; B, \; U_{IH} = 10 \; B, \; U_{IL} = 0 \; B$ $U_{CC} = 15 \; B, \; U_{IH} = 15 \; B, \; U_{IL} = 0 \; B$	I _{IL}	-	/-0,05/ /-0,10/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B$ $U_{CC} = 15~B,~U_{IH} = 15~B,~U_{IL} = 0~B$	I_{IH}	-	0,05 0,10

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5~B,~U_{IH} = 5~B,~U_{IL} = 0~B~, U_{O} = 0,5~B$ $U_{CC} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B~, U_{O} = 0,5~B$	I _{OL}	0,12 0,22	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5~B,~U_{IH} = 5~B,~U_{IL} = 0~B~, U_{O} = 4,5~B$ $U_{CC} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B~, U_{O} = 9,5~B$	I_{OH}	/-0,25/ /-0,55/	- -
9. Ток потребления при низком и высоком уровнях выходного напряжения, мкА, при: $U_{CC} = 5 \text{ B, } U_{IL} = 5 \text{ B, } U_{IL} = 0 \text{ B}$ $U_{CC} = 10 \text{ B, } U_{IH} = 10 \text{ B, } U_{IL} = 0 \text{ B}$ $U_{CC} = 15 \text{ B, } U_{IH} = 15 \text{ B, } U_{IL} = 0 \text{ B}$	I _{CCL} I _{CCH}	- - -	0,05 0,10 2,00
10. Время задержки распространения при включении, нс, при: $U_{CC}=5$ B, $U_{IH}=5$ B, $U_{IL}=0$ B, $C_L=50$ пФ $U_{CC}=10$ B, $U_{IH}=10$ B, $U_{IL}=0$ B, $C_L=50$ пФ	t _{PHL}	- -	160 80
11. Время задержки распространения при выключении, нс, при: U_{CC} = 5 B, U_{IH} = 5 B, U_{IL} = 0 B, C_L = 50 пФ U_{CC} = 10 B, U_{IH} = 10 B, U_{IL} = 0 B, C_L = 50 пФ	$t_{ m PLH}$	- -	250 120
12. Входная емкость, п Φ , при: U_{CC} = 10 В	Cı	-	12

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, серебро г,

в том числе:

золото г/мм

на 14 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{C\gamma}$) при $\gamma = 99\%$ при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте $3И\Pi$, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ЛА8Т1ЭП соответствуют техническим условиям АЕЯР.431200.610-01ТУ и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	от _		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП
Место для шт	гампа «Перепроверка г	іроизве	дена		»
Приняты по	(извещение, акт и др.)	от _		(дата)	
Место для шт	гампа ОТК				Место для штампа ВП
Цена договор	ная				

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ