다양한 손동작을 구현해 주는 유연한 착용형 로봇의 설계 및 제어

박 형 순

Associate Professor
Director of RENEW project
Director of Neuro-Rehabilitation Engineering Lab.
Department of Mechanical Engineering
Korea Advanced Institute of Science and Technology
291 Daehakro, Yuseonggu
Daejeon, South Korea

KΔIST

Importance of Hand

Hand structure

Bones: 27 Bones (54 for two hands, 206 for whole body) – 26%

only 1.2 % in weight

Joints: 29 major joints

Tendons: Tendon sheath + tendon

Muscles: 36 Extrinsic muscles (forearm) + 34 Intrinsic muscles (hand)

Ligaments: at least 123 ligaments in each hand

Skin: Palmar skin + dorsal skin

Nerve: 3 major nerves
24 sensory branches
21 muscular branches

Practice more and get better

How to promote patients to use affected arm more often?

Promoting frequent use of affected hand in ADL

Constraint Induced Therapy

What prevent patients from using affected arm?

Reduced controllability

Longer time to conduct tasks

Existing hand devices

Dexterity of hand manipulation

Versatility vs. DOF

- Feix et al. (2014)은 다양한 크기, 모양, 무게의 물체에 대한 파지 자세를 분석함
 → 60% ~ 70% 물체를 3개 ~ 5개의 파지 자세로 파지 가능
- 파지 자세는 3개~ 5개의 postural synergy로 80% 이상의 정확도로 reconstruct 가능 (Santello et al., 1998; Gabiccini et al., 2003; Leo et al., 2016)
 - → 주요 파지 자세와 Synergy의 최종 자세가 유사

■ 사람손이 다양한 자세, 작업을 수행 할 수 있는 요인

Required Features for Versatility

- 1) Grasping with various aspect of the finger and thumb
 - → Opposable thumb with LARGE WORKSPACE (Young, Journal of anatomy ,2003)

2) FORCE DIRECTION CONTROL at contact points

→ Combined use of Extrinsic and Intrinsic tendons (Vermillion et al., TNSRE, 2019)

Thumb Opposition

■ 뇌졸중 후 손기능 저하

- Various grasping postures are not achievable.
- → Muscle activation pattern are lost.
- \rightarrow Difficult to extend digits due to contracture. (Workspace \downarrow)
- **Tip force direction control ↓** (Seo et al., 2010)
- Extension without hyperextension of joints is difficult due to distorted joint stiffness.

Research Objective

- Developing a soft robotic glove

Objective

- 1. Preventing hyperextension
 - → Proper distribution of force
- 2. Enabling various grasping postures
 - → Thumb workspace ↑
 - → Tip force direction adjustment

4-DOF soft robotic glove

Cable-Actuated Agonist and Elastic Antagonist Design

1) Flexes when the cable is actuated
Storing Elastic
Elastic Force
Storing Elastic
Potential Energy

2) Extends by elastic force

Elastic Force

Extension by single tendon

Finger Extension Mechanism Design

- 1. Extrinsic + Intrinsic muscle-tendon unit
 - → Orientation was replicated with exotendons

- 2. Interconnected structure with multiple insertions
 - → Distributes extensor tendon force to the tip and middle phalange

Total 18 stroke survivors

Group A: PIP stiffness greatest; Group B: MCP stiffness greatest

Inter-joint coordination (Conventional vs. Proposed)

- Design1: single tendon extension (conventional)
 - → Large difference with voluntary (healthy) is shown when PIP stiffness is the greatest.
- Design 2: Proposed mechanism
- → Closer kinematics with voluntary (healthy)
- → No difference in joint kinematics depending on joint stiffness conditions.

Reduced DIP joint hyperextension

PIP joint extend prior to the hyperextension of other joints

Thumb Extension Mechanism Design

- Dorsal tendinous hood (DTH) structure was replicated.

Thumb extension with DTH

- IP joint Hyperextension 20°↓ (p=0.005)
- CMC joint Extension 6° ↑ (p=0.013)

Lower Level Controller

Bidirectional Control (Supplement 71p ~ 73p)

Two active tendons

Flexion: $\tau_c(q, f_{a1}) = P_{a1}(q)f_{a1}$

Extension: $\tau_c(f_{a2}) = -P_{a2}f_{a2}$

서로 다른 방향의 움직임을 위해 **두 텐던 사이의 스위칭** 필요 **f**_i: Exotendon force

 \mathbf{P}_i : Force to torque transformation matrix of \mathbf{f}_i

Active tendon + Passive tendon

Both: $\tau_c(q, u_a) = P_a(q)u_a(f_a, q) - Cf_p(q)$

$$\mathbf{u}_a = \mathbf{f}_a - \mathbf{P}_a^+(\mathbf{q})\mathbf{P}_p\mathbf{f}_p(\mathbf{q})$$
 (항상 $\mathbf{f}_p > 0$)

$$\mathbf{u}_a \ge -\mathbf{P}_a^+(\mathbf{q})\mathbf{P}_p\mathbf{f}_p$$
 Bidirectional

하나의 텐던으로 양방향을 Control 하는 것처럼 Formulation 가능

sEMG-based 동작 분류 및 제어

EMG-based 동작 분류 & 제어 개념도

Myo Armband

- 두개의 Class로 분류 1) relax, 2) pinching
 → 환자의 근신호에서 구분되는 패턴이 적음
- 3 개의 파지 자세 state를 가진 state machine 구성

 → 1) Pinching, 2) Lateral grasp, 3) Pinching to Lateral grasp