Computabilidade e Complexidade

Resumo

Conteúdo

1	Mo	delos d	de Computação	3					
	1.1	Conjuntos							
	1.2	Autón	natos Finitos Deterministas	3					
		1.2.1	Linguagem Reconhecida por um AFD	4					
	1.3	Autón	natos Finitos Não Deterministas	4					
		1.3.1	Linguagem Reconhecida por um AFND	4					
		1.3.2	Converter AFND em AFD	4					
	1.4	Máqui	ina de Turing	5					
		1.4.1	Máquina de Turing Multi-Fita	5					
		1.4.2	Máquina de Turing Universal	5					
		1.4.3	Máquina de Turing Não Determinística	8					
2	Cor	nputal	bilidade	10					
	2.1	-	iar uma Máquina	10					
		2.1.1	Enumeração	10					
		2.1.2	Teoremas	10					
	2.2	Indeci	dibilidade	12					
	2.3		referência e replicação	12					
		2.3.1	Sintaxe	12					
		2.3.2	Teoremas	13					
3	Cor	nplexi	dade	15					
	3.1	_	es Tempo e Espaço Construtíveis	15					
		3.1.1	Relógios	16					
		3.1.2	Construção de Uma Classe de Tempo	17					
		3.1.3	Construção de Uma Classe de Espaço	17					
	3.2								
	3.3								
		3.3.1	Tempo e Espaço	18					
		3.3.2	Classes Básicas	18					
		3.3.3	Classes Notáveis	20					
		3.3.4	Hierarquia do Espaço	21					
	3.4	Circui	itos	22					
		3.4.1	Fórmulas Booleanas	22					
		3.4.2	Circuitos Clássicos	24					
		3.4.3	Circuitos $AND - OR$	25					
		3.4.4	Teoria do Custo de Circuitos	26					
		3.4.5	Circuitos de Custo Exponencial	27					

3.4.6	Simulação de Máquinas de Turing	30
3.4.7	Circuitos de Custo Polinomial	33
3.4.8	Circuitos Polinomiais Pouco Profundos	36

Capítulo 1

Modelos de Computação

1.1 Conjuntos

Uma linguagem ou conjunto L é um conjunto de palavras sobre um alfabeto Σ , que por sua vez são conjuntos ordenados de símbolos de Σ

Definição 1. Conjunto recursivamente enumerável ou reconhecível:

A linguagem A diz-se recursivamente enumerável ou reconhecível se existir uma máquina de Turing M tal que a computação de M sobre o input w termina na configuração de aceitação se e só se $w \in A$.

Definição 2. Conjunto recursivo ou decidível:

A linguagem A diz-se recursiva ou decidível se existir uma máquina de Turing M tal que a computação de M para o input w termina numa configuração de aceitação sempre que $w \in A$ e termina numa configuração de rejeição sempre que $w \notin A$.

Definição 3. Função computável:

Uma função (possivelmente parcial) $f: \Sigma^* \to \Sigma^*$ diz- se computável se existir uma máquina de Turing M que, para todo o input $w \in \Sigma^*$ tal que o valor de f(w) está definido, escreve f(w) na fita de output antes de aceitar; para os demais inputs, a máquina deixa a fita de output em branco e rejeita ou não para.

1.2 Autómatos Finitos Deterministas

Um autómato finito determinista é um 5-tuplo $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$, em que:

- Q é um conjunto finito de estados
- Σ é o alfabeto (conjunto finito de símbolos)
- $\delta:Q\times\Sigma\to Q$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto dos estados de aceitação

Dado um autómato finito determinístico $\mathcal{D} = (Q, \Sigma, \delta, q_0, F)$, a função de transição δ pode estender-se recursivamente a palavras sobre Σ^* , $\delta^* : Q \times \Sigma^* \to Q$:

- $\forall q \in Q, \delta^*(q, \varepsilon) = q$;
- $\forall q \in Q, \forall a \in \Sigma, \forall w \in \Sigma^* : \delta^*(q, wa) = \delta(\delta^*(q, w), a).$

1.2.1 Linguagem Reconhecida por um AFD

 $\mathcal{D} = (Q, \Sigma, \delta, q_0, F)$ aceita a palavra $w \in \Sigma^*$ se $\delta^*(q_0, w) \in F$. A linguagem reconhecida por \mathcal{D} é o conjunto $\mathcal{L}(\mathcal{D}) = \{w \in \Sigma^* : \mathcal{D} \ aceita \ w\}$.

Uma linguagem diz-se regular se existe um AFD que a reconhece. A classe das linguagens regulares está fechada para a complementação, para a interseção finita e para união finita.

1.3 Autómatos Finitos Não Deterministas

Um autómato finito não determinista é um 5-tuplo $\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$, em que:

- Q é um conjunto finito de estados
- Σ é o alfabeto (conjunto finito de símbolos)
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ é a função de transição, em que $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- $q_0 \in Q$ é o estado inicial
- $F\subseteq Q$ é o conjunto dos estados de aceitação

Dados dois estados p e q do autómato $\mathcal N$, diz-se que \widetilde{pq} é uma trajetória- ε em $\mathcal N$ se \widetilde{pq} é uma trajetória de transições ε no digrafo subjacente. Chama-se fecho- ε ao conjunto de estados relativamente a um autómato $\mathcal N, \mathcal E_{\mathcal N}: \mathcal P(Q) \to \mathcal P(Q)$, para todo $R \subseteq Q$:

$$\mathcal{E}_{\mathcal{N}}(R) = \{ q \in Q : \exists r \in R, \widetilde{rq} \text{ \'e uma trajet\'oria-} \varepsilon \text{ em } \mathcal{N} \}$$

Novamente, dado um AFND $\mathcal{N} = (Q, \Sigma, \delta, q_0, F)$, a função de transição δ pode estender-se a palavras sobre $\Sigma^*, \delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

- $\forall q \in Q, \delta^*(q, \varepsilon) = \varepsilon(\{q\});$
- $\forall q \in Q, \forall a \in \Sigma, \forall w \in \Sigma^*, \delta^*(q, wa) = \bigcup_{r \in \delta^*(q, w)} \varepsilon(\delta(r, a)).$

1.3.1 Linguagem Reconhecida por um AFND

 $\mathcal{N} = (Q, \Sigma, \delta, q_0, F)$ aceita $w \in \Sigma^*$ se $\delta^*(q_0, w) \cap F \neq \{\}$. A linguagem reconhecida por \mathcal{N} é o conjunto $\mathcal{L}(\mathcal{N}) = \{w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \{\}\}$.

1.3.2 Converter AFND em AFD

Definição 4. Dois autómatos com o mesmo alfabeto dizem-se equivalentes se reconhecem a mesma linguagem.

Teorema 1. Todo o autómato não determinístico é equivalente a um autómato determinístico.

Seja $\mathcal{N} = (Q, \Sigma, \delta, q_0, F)$ um AFND. É possível construir um AFD $\mathcal{M} = (Q', \Sigma, \delta', q'_0, F')$ tal que L(N) = L(M).

- $Q' = \mathcal{P}(Q)$
- $q'_0 = E_{\epsilon}(q_0)$, i.e. o conjunto dos estados atingíveis por caminhos vazios a partir do estado inicial.
- $\forall q' \in Q$ considere-se $R \subset Q : R = q'$. Para cada $a \in \Sigma$ definimos $\delta'(q', a) = \delta'(R, a) = \bigcup_{r \in R} E_{\varepsilon}(\delta(r, a)) = \{q \in Q : \exists r \in R, q \text{ atingível por transição } \varepsilon \text{ de } \delta(r, a)\}$
- $F' = \{R \in Q' : R \text{ contém algum estado de aceitação de } \mathcal{N}\}\$

1.4 Máquina de Turing

1.4.1 Máquina de Turing Multi-Fita

Uma máquina de Turing multi-fita é um 8-tuplo $MT=(Q,k,\Sigma,\Gamma,\delta,q_0,q_{aceita},q_{rejeita})$ onde:

- Q é um conjunto finito de estados
- k > 0 é o número de fitas
- Σ é o alfabeto de entrada (não contém o símbolo branco)
- Γ é o alfabeto de fita $\Sigma \subset \Gamma$ (inclui branco)
- $\delta: Q \times \Gamma^{k+1} \to Q \times \Gamma^{k+1} \times \{L,R,N\}^{k+2}$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $q_a \in Q$ é o estado de aceitação
- $q_r \in Q$ é o estado de rejeição

1.4.2 Máquina de Turing Universal

Existe uma máquina de Turing universal $\mathcal U$ que:

- Sob o input $\mathcal{M} \star w$:
 - Simula \mathcal{M}_m sob input n

$$\mathcal{U}(m \star n) \equiv \mathcal{M}_m(n)$$

A fita da máquina universal tem o seguinte formato:

Figura 1.1: Fita da MT universal

Onde:

- Os símbolos Y delimitam a descrição de \mathcal{M} , em que:
 - X delimita as transições possíveis
 - $-\mu_n$ representa o movimento da cabeça ($|\mu_n| = 1$, desde que apenas se considerem transições $L \in R$)
 - U_n representa o par $(simbolo \star estado)$ após a transição $(|U_n|$ é igual para todo o n)
 - N_n representa o par (simbolo * estado) antes da transição $(|N_n|$ é igual para todo o n e ∀n, k $|N_n| = |U_k|)$
 - -W representa o par $(simbolo \star estado)$ atual
- M representa a célula da pseudofita de \mathcal{M} que está a ser visitada

Após uma fase inicial em que a cabeça de \mathcal{U} é posicionada sob o último símbolo X, esta opera segundo 4 módulos.

Figura 1.2: Módulo inicial

Módulo 1 - Encontrar Transição

A máquina percorre a fita da direita para a esquerda, tentando encontrar o $N_n = W$. São usados os símbolos auxiliares A e B para marcar as transições já verificadas $(0 \to A, 1 \to B)$ e Z, no caso de se permitir o não-movimento da cabeça.

Termina com a cabeça a ler o símbolo á esquerda do último X.

Figura 1.3: Módulo 1

Módulo 2 - Copiar Transição

O par $(simbolo \star estado)$ correspondente ao resultado da transição em curso é copiado para $W(U_N \to W)$. Para tal são novamente usados os símbolos A, B e Z pelo que, no final, a transição efetuada e todas á sua direita estão codificadas.

O estado final do módulo depende do valor de μ_n , que não é copiado, sendo guardado na memória do estado.

Figura 1.4: Módulo 2

Módulo 3 - Restaurar $\mathcal M$

No caso da cabeça da máquina não se mover, é executado o módulo 3a:

As células com $A,\ B$ e Z têm os seus valores restaurados e volta-se ao módulo 1

Figura 1.5: Módulo 3a

Em caso contrário executa-se o módulo 3b:

Substitui-se o símbolo M pelo sentido do movimento e, de seguida restauram-se os valores A, B e Z. Por fim, escreve-se S á direita do último X. O estado final depende do valor que estava em S.

Figura 1.6: Módulo 3b

Módulo 4 - Mover Cabeça

Na sequência do módulo 3b, a cabeça desloca-se até ao último A/B (onde estava M) e troca o símbolo pelo valor que estava em S, guardando na memória do estado se M era A ou B. Por fim, a cabeça desloca-se no sentido do movimento, escreve M e copia o seu conteúdo anterior para S.

Figura 1.7: Módulo 4

1.4.3 Máquina de Turing Não Determinística

A máquina de Turing não determinística corresponde a uma relaxação da computação determinística. Em qualquer momento da computação, a partir de uma mesma configuração, a máquina pode realizar transições diferentes. A única diferença reside na função de transição:

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L,R,N\})$$

Ou, no caso da máquina multi-fita:

$$\delta: Q \times \Gamma^{k+1} \to \mathcal{P}(Q \times \Gamma^{k+1} \times \{L, R, N\}^{k+2})$$

Cada vértice da árvore das computações relativa a uma máquina de Turing não determinística \mathcal{M} e input w pode ter vários descendentes, sendo o grau de ramificação limitado pela função de transição da máquina.

Por outro lado, para toda a máquina de Turing não determinística \mathcal{M} de grau de ramificação maximal b>2, há sempre uma máquina não determinística \mathcal{M}' de grau de ramificação maximal b'=2 que lhe é equivalente. Esta transformação é conseguida escolhendo uma de entre b alternativas através de uma sequência de não mais de $\lceil \log_2 b \rceil$ escolhas de 2 alternativas, atrasando-se todos os demais aspetos da computação enquanto a sequência de escolhas não estiver concluída.

Toda a computação de profundidade t(n), onde n é o tamanho do input, passa a ter profundidade que não excede $\lceil \log_2 b \rceil \times t(n)$.

Para toda a máquina de Turing não determinística \mathcal{N} , existe uma máquina de Turing determinística \mathcal{D} que lhe é equivalente.

Capítulo 2

Computabilidade

2.1 Silenciar uma Máquina

2.1.1 Enumeração

Uma vez que a especificação de uma máquina de Turing é, ela mesma, uma palavra, podemos enumerar as máquinas de Turing pela ordem lexicográfica das suas descrições, ou qualquer outra ordem.

Toda a enumeração de máquinas de Turing satisfaz as seguintes propriedades:

- P_1 Para toda a máquina \mathcal{M} da enumeração, existe uma máquina $\mathcal{M}^{\#}$ (diagonalizadora) na enumeração tal que, para todo o $n \in \mathbb{N}$, $\mathcal{M}^{\#}$ comporta-se para com o input n do mesmo modo que \mathcal{M} se comporta para com o input n + n
- P_2 Para toda a máquina \mathcal{M} da enumeração, existe uma máquina $\widetilde{\mathcal{M}}$ (dual) na enumeração que aceita exatamente os inputs que \mathcal{M} rejeita e rejeita exatamente os inputs que \mathcal{M} aceita;
- P_3 Existe na enumeração uma máquina \mathcal{U} , dita universal, tal que, para todo o $m, n \in \mathbb{N}, U$ comporta-se para com o input $m \star n$ do mesmo modo que \mathcal{M}_m se comporta para com o input n.

Pode-se pensar em qualquer tipo de máquinas, para além das máquinas de Turing.

2.1.2 Teoremas

Teorema 2. Existe uma máquina C que, para todo o $n \in N$, processa o input n exatamente da mesma maneira que a máquina \mathcal{M}_n processa o input n.

Existe uma máquina \mathcal{D} tal que, para todo o input n, D aceita n se \mathcal{M}_n rejeita n, D rejeita n se \mathcal{M}_n aceita n e D fica em silêncio se \mathcal{M}_n fica em silêncio.

Toma-se para $\mathcal C$ a máquina $\mathcal U^\#,$ onde $\mathcal U$ denota a máquina universal:

$$\mathcal{U}^{\#}(n) = \mathcal{U}(n \star n) = \mathcal{M}_n(n)$$

Pelo que $\mathcal{U}^{\#}$ se comporta como \mathcal{M}_n sob o input n. Para \mathcal{D} podemos tomar a máquina $\widetilde{\mathcal{U}}^{\#}$, uma vez que \mathcal{D} é a máquina dual de \mathcal{C} .

Teorema 3. Existe um input n para o qual a computação de \mathcal{U} não termina.

Seja m o código de $\mathcal{D} = \widetilde{\mathcal{U}}^{\#}$

$$\mathcal{M}_m \ aceita \ n \ sse \ \mathcal{D} \ aceita \ n$$
 (2.1)

$$sse \mathcal{U}^{\#} rejeita n$$
 (2.2)

$$sse\ \mathcal{U}\ rejeita\ n \star n$$
 (2.3)

$$sse \mathcal{M}_n rejeita n$$
 (2.4)

$$seja \ n = m \tag{2.5}$$

$$\mathcal{M}_m \ aceita \ m \ sse \ \mathcal{M}_m \ rejeita \ m$$
 (2.6)

Logo \mathcal{M}_m fica em silêncio com input m e $m \star m$ silencia \mathcal{U}

Teorema 4. A máquina dual da diagonalizadora da máquina \mathcal{M} é a diagonalizadora da máquina dual de $\mathcal{M}(\widetilde{\mathcal{M}^{\#}} = \widetilde{\mathcal{M}}^{\#})$.

$$\widetilde{\mathcal{M}}^{\#} \ aceita/rejeita \ n \ sse \ \widetilde{\mathcal{M}} \ aceita/rejeita \ n \star n$$
 (2.7)

$$sse \ \mathcal{M} \ rejeita/aceita \ n \star n$$
 (2.8)

$$sse \mathcal{M}^{\#} rejeita/aceita n$$
 (2.9)

$$sse \widetilde{\mathcal{M}}^{\#} aceita/rejeita n$$
 (2.10)

Teorema 5. Para toda a máquina \mathcal{M} , existe pelo menos um input n tal que \mathcal{U} e \mathcal{M} se comportam da mesma maneira relativamente ao input n.

- Dada uma máquina \mathcal{M} , seja \mathcal{M}_m a máquina $\mathcal{M}^{\#}$;
- Para todo o input k, \mathcal{M}_m com input k e \mathcal{M} com input $k \star k$ têm o mesmo comportamento;
- \mathcal{U} com input $m \star m$ e \mathcal{M}_m com input m têm o mesmo comportamento;
- Deste modo, \mathcal{U} e \mathcal{M} comportam-se de maneira idêntica relativamente ao input $m \star m$;
- Tome-se $n = m \star m$;

Teorema 6. Não existe uma máquina \mathcal{M} que pare exatamente para os inputs que silenciam \mathcal{U} .

Consequência do teorema anterior:

- Tome-se um input n relativamente ao qual as máquinas \mathcal{U} e \mathcal{M} concordam
- Ambas as máquinas param dado o input n ou ambas são silenciadas por n.

2.2 Indecidibilidade

Definição 5. O conjunto de aceitação A_{TM} é a coleção de todos os códigos $\langle \mathcal{M}, w \rangle$, tais que \mathcal{M} é uma máquina de Turing que aceita o input w.

$$A = \{m \star w : \mathcal{M}_m \ aceita \ w\}$$

Definição 6. O conjunto de paragem H_{TM} é a coleção de todos os códigos $\langle \mathcal{M}, w \rangle$, tais que \mathcal{M} é uma máquina de Turing que para (em aceitação ou rejeição) quando o input é w.

$$H = \{m \star w : \mathcal{M}_m \text{ aceita ou rejeita } w\}$$

Teorema 7. O problema da aceitação, $\langle \mathcal{M}, w \rangle \in {}^?A_{TM}$, e o problema da paragem, $\langle \mathcal{M}, w \rangle \in {}^?H_{TM}$ são indecidíveis por uma máquina de Turing.

Figura 2.1: Prova da indecidibilidade de A_{TM} . Se $\widetilde{\mathcal{A}}$ fosse construida e tivesse o seu código como input, esta aceitaria se rejeitasse e vice-versa

Figura 2.2: Prova da indecidibilidade de H_{TM} . Se \mathcal{A} fosse construida decidiria A_{TM}

2.3 Autorreferência e replicação

Considerando uma enumeração $\mathcal{P}_1,...,\mathcal{P}_n,...$ de programas de construção de máquinas, associam-se respetivamente os robots $\mathcal{R}_1,...,\mathcal{R}_n,...$ Para todos os $x,y\in\mathbb{N}$ dizemos que o robot \mathcal{R}_x constrói o robot \mathcal{R}_y para significar que cada robot com o programa \mathcal{P}_x constrói um robot com o programa \mathcal{P}_y .

Um robot \mathcal{X} é chamado de replicante se o robot que constrói tem o mesmo programa de \mathcal{X} .

2.3.1 Sintaxe

Definição 7. Alfabeto:

 $Seja \Sigma um alfabeto cujos elementos são designados símbolos de programa. Um$

programa para um robot, ou simplesmente um robot, é uma palavra sobre um alfabeto Σ que contém os símbolos notáveis $\{Q, \mathcal{R}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}\}.$

Definição 8. Expressões:

Recorremos a letras minúsculas para denotar variáveis ou expressões genéricas, as quais podem assumir qualquer valor sobre Σ^* .

A ação de cada robot descrito por uma expressão $u \in \Sigma^*$ deve ser interpretada lendo u da esquerda para a direita até se encontrar o operador Q dito de invocação. A leitura prossegue agora da direita para a esquerda, interpretando cada um dos símbolos do alfabeto.

- \mathcal{Q} Para toda a expressão x, o programa $\mathcal{Q}x$ invoca o programa x. Por exemplo, $\mathcal{Q}BAH$ invoca o programa BAH; $\mathcal{Q}\mathcal{Q}H$ invoca o programa $\mathcal{Q}H$. Porém, embora $\mathcal{Q}H$ invoque H, $\mathcal{Q}\mathcal{Q}H$ não invoca H.
- \mathcal{R} Para todas as expressões x e y, se x invoca y, então $\mathcal{R}x$ invoca yy. Por exemplo, $\mathcal{RQ}B$ invoca o programa BB; $\mathcal{RQ}B\mathcal{R}$ invoca o programa $B\mathcal{R}B\mathcal{R}$; para toda a expressão x, a expressão $\mathcal{RQ}x$ invoca xx. (Note-se que, em geral, $\mathcal{R}x$ não invoca xx.)
- \mathcal{C} Para todas as expressões x e y, se x invoca y, então $\mathcal{C}x$ constrói y. Por exemplo, $\mathcal{CQ}y$ constrói o robot y (robot com o programa y); $\mathcal{CRQ}x$ constrói o robot xx; $\mathcal{CRRQ}x$ constrói o robot xxx.
- \mathcal{D} Para todas as expressões x e y, se x constrói y, então $\mathcal{D}x$ destrói y. Por exemplo, $\mathcal{DCQ}x$ destrói o robot x (robot com o programa x).

2.3.2 Teoremas

Teorema 8. Autorreferência:

Existe um robot x que se invoca a si mesmo, i.e. x invoca x (RQRQ).

Teorema 9. Existe um robot x tal que $\Re x$ invoca xx. ($\Re Q \Re Q$)

Teorema 10. Ponto fixo:

Dado um robot a, dizemos que x é ponto fixo de a se x invoca ax. Todo o robot a tem ponto fixo.

- RQaRQ invoca a repetição de aRQ;
- A repetição é aRQaRQ
- Ou seja ($\mathcal{R}\mathcal{Q}a\mathcal{R}\mathcal{Q}$) invoca $a(\mathcal{R}\mathcal{Q}a\mathcal{R}\mathcal{Q})$

A fórmula do ponto fixo é:

 RQ_RQ

Teorema 11. Fórmula da criação:

Para todo o robot a, existe um robot x que constrói ax.

- Procuramos um robot y que invoque aCy; consequentemente, Cy constrói aCy;
- A fórmula da invocação dá-nos $y = \mathcal{RQ}a\mathcal{C}\mathcal{RQ}$;

• Ou seja CRQaCRQ constrói aCRQaCRQ.

A fórmula da criação é:

CRQ CRQ

Teorema 12. Duplo ponto fixo:

Existem robots x e y tais que x invoca ay e y invoca bx.

- É suficiente encontrar robots x e y tais que x invoca aQbx e y = Qbx;
- Recorrendo à fórmula da invocação $x = \mathcal{R}\mathcal{Q}a\mathcal{Q}b\mathcal{R}\mathcal{Q}$ e $y = \mathcal{Q}b\mathcal{R}\mathcal{Q}a\mathcal{Q}b\mathcal{R}\mathcal{Q}$;
- Alternativamente, determinamos robots x e y tais que x = Qay e y invoca bQay;
- Recorrendo de novo à fórmula da invocação obtemos $y = \mathcal{R}\mathcal{Q}b\mathcal{Q}a\mathcal{R}\mathcal{Q}$ e $x = \mathcal{Q}a\mathcal{R}\mathcal{Q}b\mathcal{Q}a\mathcal{R}\mathcal{Q}$.

Teorema 13. Existem robots x e y tais que x constrói y e y constrói x.

- É suficiente encontrar robots x e y tais que x constrói $\mathcal{CQ}x$ e $y = \mathcal{CQ}x$, por sua vez, constrói x;
- Recorrendo à fórmula da criação $x = \mathcal{CRQCQCRQ}$ e $y = \mathcal{CQCRQCQCRQ}$.

Teorema 14. Auto-destruição:

Existe um robot que se auto-destrói.

- Procuramos um robot x que construa $\mathcal{D}x$; nestas circunstâncias o robot $\mathcal{D}x$ autodestrói-se;
- Aplicando a fórmula da criação, $x = \mathcal{CRQDCRQ}$;
- Ou seja, DCRQDCRQ autodestrói-se.

Teorema 15. Fórmula da destruição:

Para todo o robot a, existe um robot x que destrói ax.

- Procuramos um robot x que construa $a\mathcal{D}x$; consequentemente, $\mathcal{D}x$ destrói $a\mathcal{D}x$;
- A fórmula da criação dá-nos $x = \mathcal{CRQaDCRQ}$;
- Ou seja DCRQaDCRQ destrói aDCRQaDCRQ.

A fórmula da destruição é:

 $DCRQ_DCRQ$

Capítulo 3

Complexidade

3.1 Funções Tempo e Espaço Construtíveis

Definição 9. Função de tipo tempo:

Uma função total $f: \mathbb{N} \to \mathbb{N}$ diz-se própria de tipo tempo se existe uma máquina de Turing determinística \mathcal{M} e um número $p \in \mathbb{N}$ tais que, para todo o input de tamanho $n \geq p, \mathcal{M}$ para exatamente ao fim de f(n) transições.

Definição 10. Função de tipo espaço:

Uma função total $f: \mathbb{N} \to \mathbb{N}$ diz-se própria de tipo espaço se existe uma máquina de Turing determinística \mathcal{M} e um número $p \in \mathbb{N}$ tais que, para todo o input de tamanho $n \geq p$, \mathcal{M} para numa configuração na qual exatamente f(n) células são não brancas e, durante a computação, não foram lidas mais células.

3.1.1 Relógios

Figura 3.1: Implementação de um relógio linear numa máquina de Turing. Para input de tamanho n e $k\geq 4$, efetua kn transições. Para k=1 a função não é construtível no tempo. Para k=2,3, podem construir-se máquinas simplificadas

Figura 3.2: Implementação de um relógio polinomial numa máquina de Turing. Para input de tamanho $n \geq 4$, efetua n^2 transições.

3.1.2 Construção de Uma Classe de Tempo

Consideremos uma nova enumeração de máquinas de Turing, $\mathcal{M}_0||\mathcal{M}_t,...,\mathcal{M}_1||\mathcal{M}_t,...,\mathcal{M}_n||\mathcal{M}_t$ onde \mathcal{M}_t é a máquina de Turing escolhida para testemunhar a construtibilidade temporal de t(n), em que n é o comprimento do input. $\mathcal{M}_i||\mathcal{M}_t$ é a máquina de Turing especificada como se segue:

- Sob input w de comprimento n:
 - Simula alternadamente uma transição de \mathcal{M}_i e uma transição de \mathcal{M}_t , ambas com input w;
 - Se \mathcal{M}_i parar primeiro, então aceita ou rejeita w de acordo com \mathcal{M}_i ; se \mathcal{M}_t parar primeiro, então rejeita.

$$DTIME(t(n)) = \{\mathcal{L}(\mathcal{M}_i||\mathcal{M}_t) : i \in \mathbb{N}\}$$

Note-se também que a máquina $\mathcal{M}_i || \mathcal{M}_t$ pode decidir uma linguagem diferente de $\mathcal{L}(\mathcal{M}_i)$, mesmo quando a máquina \mathcal{M}_i para em todos os inputs.

3.1.3 Construção de Uma Classe de Espaço

Consideremos uma enumeração de todas as máquinas de Turing determinísticas, $\mathcal{M}_0, ..., \mathcal{M}_n, ...$, e seja \mathcal{M}_s a máquina de Turing escolhida para testemunhar a construtibilidade espacial de s. $\mathcal{M'}_i = \mathcal{M}_s$; \mathcal{M}_i é a máquina de Turing especificada como se segue:

- Sob input w de comprimento n:
 - Simula a computação de \mathcal{M}_s e marca as primeiras s(n) células da fita de trabalho;
 - Simula \mathcal{M}_i nesse espaço; se esta exceder o espaço rejeita, caso contrário, tem o mesmo output que \mathcal{M}_i

$$DSPACE(s(n)) = \{\mathcal{L}(\mathcal{M}_i||\mathcal{M}_s) : i \in \mathbb{N}\}$$

3.2 Decidibilidade da Paragem

Teorema 16. Se \mathcal{M}_1 é uma máquina de Turing determinística que reconhece o conjunto A em espaço próprio $s(n) \geq \log(n)$, então existe uma máquina de Turing determinística \mathcal{M}_2 que decide A em espaço próprio 2s(n).

Consideremos uma máquina de Turing determinística que reconhece A em espaço s(n). Cada configuração da máquina é caracterizada por um estado, pelo conteúdo da fita (uma palavra sobre Γ), pela posição da cabeça de leitura/escrita da fita de trabalho e pela posição da cabeça de leitura da fita de input. Para um valor $c \in \mathbb{N}$, com $n \leq 2^{s(n)}$ seu número de configurações é majorado por:

$$(\#Q)\times (\#\Gamma)^{s(n)}\times s(n)\times (n+1)\leq 2^{cs(n)}$$

Seja então \mathcal{M}_2 uma máquina com 3 fitas. São reservadas s(n) células nas segunda e terceira fitas e simula \mathcal{M}_1 na segunda fita, enquanto na terceira conta o número de passos simulados.

Se a contagem ultrapassar o número de configurações de \mathcal{M}_1 então esta está num ciclo infinito e \mathcal{M}_2 rejeita. Se \mathcal{M}_1 parar antes da contagem chegar ao fim, então \mathcal{M}_2 aceita ou rejeita, de acordo com \mathcal{M}_2 . O espaço usado por \mathcal{M}_2 é 2s(n) para inputs de tamanho n.

3.3 Classes de Complexidade

Seja $f: \mathbb{N} \to \mathbb{N}_1$. Seguem-se alguns conjuntos de funções $g: \mathbb{N} \to \mathbb{N}_1$ relevantes:

$$o(f) : \forall r \in \mathbb{R}^+, \exists p \in \mathbb{N}, \forall n \ge p : g(n) < rf(n)$$
 (3.1)

$$\mathcal{O}(f) : \exists r \in \mathbb{R}^+ \exists p \in \mathbb{N}, \forall n \ge p : g(n) < rf(n)$$
(3.2)

$$\Omega_{\infty}(f) : \exists r \in \mathbb{R}^+ \forall p \in \mathbb{N}, \exists n \ge p : g(n) > rf(n)$$
(3.3)

$$\omega(f) : \forall r \in \mathbb{R}^+ \forall p \in \mathbb{N}, \exists n \ge p : g(n) > rf(n)$$
(3.4)

$$\Theta(f) : \exists r_1, r_2 \in \mathbb{R}^+ \exists p \in \mathbb{N}, \forall n \ge p : r_1 f(n) < g(n) < r_2 f(n)$$
 (3.5)

3.3.1 Tempo e Espaço

Teorema 17. Compressão do espaço:

Se o conjunto A é decidível por uma máquina de Turing \mathcal{M} em espaço s, então, para todo o $c \in \mathbb{N}_1$, existe uma máquina de Turing \mathcal{M}' que decide A em espaço $\lceil \frac{1}{c}s \rceil$.

Teorema 18. Compressão do tempo:

Se o conjunto A é decidível por uma máquina de Turing \mathcal{M} em tempo t, tal que $n \in o(t(n))$, então, para todo o $c \in \mathbb{N}_1$, existe uma máquina de Turing \mathcal{M}' que decide A em tempo $\lceil \frac{1}{c}t \rceil$.

Teorema 19. Decidibilidade da paragem:

Se \mathcal{M}_1 é uma máquina de Turing determinística (não determinística) que reconhece o conjunto A em espaço próprio $s(n) \geq \log(n)$, então existe uma máquina de Turing determinística (não determinística) \mathcal{M}_2 que decide A em espaço próprio s(n).

Teorema 20. Se o conjunto A é decidível por uma máquina de Turing determinística \mathcal{M} de k > 2 fitas em tempo t(n), então existe uma máquina de Turing determinística de 2 fitas \mathcal{M}' que decide A em tempo $\mathcal{O}(t(n)\log(t(n)))$.

3.3.2 Classes Básicas

Para todas as funções totais $t,s:\mathbb{N}\to\mathbb{N}$, monótonas não decrescentes, tais que $t(n)\geq n+1$ e $s(n)\geq 1$:

- DTIME(t) é a classe dos conjuntos decidíveis por máquinas de Turing determinísticas cujo tempo é majorado por t
- NTIME(t) é a classe dos conjuntos decidíveis por máquinas de Turing não determinísticas cujo tempo é majorado por t
- DSPACE(s) é a classe dos conjuntos decidíveis por máquinas de Turing determinísticas cujo espaço é majorado por s

• NSPACE(s) é a classe dos conjuntos decidíveis por máquinas de Turing não determinísticas cujo espaço é majorado por s

Seja t um recurso de tempo e s um recurso de espaço. Tem-se:

- $DTIME(t) \subseteq NTIME(t)$
- $DSPACE(s) \subseteq NSPACE(s)$

Seja t de acordo com a convenção para recursos de tempo e de espaço. Tem-se:

- $DTIME(t) \subseteq DSPACE(t)$
- $NTIME(t) \subseteq NSPACE(t)$

Sejam s e s' de acordo com a convenção para recursos de espaço, $s' \in \mathcal{O}(s)$. Tem-se:

- $DSPACE(s') \subseteq DSPACE(s)$
- $NSPACE(s') \subseteq NSPACE(s)$

Sejam t e t' de acordo com a convenção para recursos de tempo, $t'(n) \in \mathcal{O}(t(n))$ e $n \in o(t(n))$. Tem-se:

- $DTIME(t') \subseteq DTIME(t)$
- $NTIME(t') \subseteq NTIME(t)$

Teorema 21. Se s é construtível no espaço e $s(n) \ge \log(n)$, então:

$$NSPACE(s) \subset DTIME(2^{\mathcal{O}(s)})$$

Teorema 22. Se t é construtível no tempo, então:

$$NTIME(t) \subseteq DSPACE(t)$$

Teorema 23. Teorema de Savitch:

Se s(n) é uma função construtível no espaço, $s(n) \ge \log(n)$ e \mathcal{M}_1 é uma máquina de Turing não determinística que opera em espaço s(n), para inputs de tamanho n, e decide o conjunto A, então existe uma máquina de Turing determinística \mathcal{M}_2 que decide o conjunto A e, para inputs de tamanho n, opera em espaço $s(n)^2$.

Uma consequência deste teorema é que:

$$NSPACE(n^k) \subseteq DSPACE(n^{2k})$$

Teorema 24. Teorema de Borodin-Trakhtenbrot:

Para qualquer função total computável $f: \mathbb{N} \to \mathbb{N}$ tal que $f(n) \geq n, \forall n \in \mathbb{N}$, existe um limite temporal T(N) tal que:

$$DTIME(f(T(n))) = DTIME(T(n))$$

Figura 3.3: Relações estruturais entre classes de complexidade básicas

3.3.3 Classes Notáveis

As principais classes notáveis são:

$$LOG = \bigcup_{k>1} DSPACE(k\log(n)) = DSPACE(\log(n))$$
 (3.6)

$$LOG = \bigcup_{k \ge 1} DSPACE(k \log(n)) = DSPACE(\log(n))$$

$$NLOG = \bigcup_{k \ge 1} NSPACE(k \log(n)) = NSPACE(\log(n))$$

$$P = \bigcup_{k \ge 1} DTIME(n^k)$$

$$(3.8)$$

$$P = \bigcup_{k>1} DTIME(n^k) \tag{3.8}$$

$$NP = \bigcup_{k>1} NTIME(n^k) \tag{3.9}$$

$$PSPACE = \bigcup_{k \ge 1} DSPACE(n^k) \tag{3.10}$$

$$NPSPACE = \bigcup_{k>1} NSPACE(n^k)$$
(3.11)

$$DEXT = \bigcup_{k>1} DTIME(2^{kn}) \tag{3.12}$$

$$NEXT = \bigcup_{k \ge 1} NTIME(2^{kn}) \tag{3.13}$$

$$EXPTIME = \bigcup_{k \ge 1} DTIME(2^{n^k}) \tag{3.14}$$

$$NP = \bigcup_{k \ge 1} NTIME(n^{k})$$

$$NP = \bigcup_{k \ge 1} NTIME(n^{k})$$

$$PSPACE = \bigcup_{k \ge 1} DSPACE(n^{k})$$

$$NPSPACE = \bigcup_{k \ge 1} NSPACE(n^{k})$$

$$DEXT = \bigcup_{k \ge 1} DTIME(2^{kn})$$

$$NEXT = \bigcup_{k \ge 1} NTIME(2^{kn})$$

$$EXPTIME = \bigcup_{k \ge 1} DTIME(2^{n^{k}})$$

$$NEXPTIME = \bigcup_{k \ge 1} DTIME(2^{n^{k}})$$

$$NEXPTIME = \bigcup_{k \ge 1} NTIME(2^{n^{k}})$$

$$(3.14)$$

Figura 3.4: Relações estruturais entre classes de complexidade notáveis

3.3.4 Hierarquia do Espaço

Teorema 25. Se s e s' são recursos espaciais, s e s' são construtíveis no espaço e $s \in o(s')$, então DSPACE(s') contém um conjunto que não pertence a DSPACE(s).

Outra interpretação deste resultado é que dados recursos temporais s e s' tais que $s' \in \omega(s)$ então:

$$DSPACE(s') - DSPACE(s) \neq \emptyset$$

A seguinte máquina \mathcal{M}' decide um conjunto A da classe DSPACE(s') que não está em DSPACE(s):

- Sob input w:
 - -n=|w|
 - Recorrendo à construtibilidade de s', reservam-se s'(n) células;
 - Ignora-se o prefixo da forma 1*0 (padding) de w, se este existir;
 - Verifica-se se o sufixo u (w = 1*0u) codifica uma DTM \mathcal{M}_u ;
 - * Em caso afirmativo, simula-se \mathcal{M}_u sobre w; se não rejeita-se w;
 - Se a simulação de \mathcal{M}_u sobre w for bem sucedida:
 - $\ast\,$ Se terminar numa configuração de rejeição, então aceita-se w,
 - $\ast\,$ Se terminar numa configuração de aceitação, então rejeita-se w,
 - Se não, rejeita-se w.

Esta máquina opera em espaço s', logo, tem-se $A \in DSPACE(s')$.

Suponhamos que $A \in DSPACE(s)$. Seja \mathcal{M} a máquina de Turing que, supostamente, decide A em espaço s. Seja $b = \#\Gamma$ o número dos símbolos do alfabeto de trabalho de \mathcal{M} e u o código binário de \mathcal{M} .

Como se tem $s \in o(s')$, decorre que, para uma infinidade de valores de $n \in N, n > |u|$, se tem que $\log(b)s(n) < s'(n)$. Note-se que $\log(b)s(n)$ é precisamente a extensão do espaço de que \mathcal{M}' necessita para simular \mathcal{M} operando em

binário (enquanto \mathcal{M} opera com um conjunto de b símbolos). Tomando inputs w da forma 1^j0u de tamanho n (j=n-|u|-1) que satisfaça a desigualdade anterior, \mathcal{M}' tem espaço suficiente para completar a simulação: w é aceite por \mathcal{M}' se e só se é rejeitada por \mathcal{M} . Portanto, \mathcal{M} não decide A, contrariamente ao pressuposto.

Teorema 26. Se t e t' são recursos temporais, t e t são construtíveis no tempo e $t(n)\log(t(n)) \in o(t'(n))$, então DTIME(t') contém um conjunto que não pertence a DTIME(t).

A seguinte máquina \mathcal{M}' decide um conjunto A da classe DTIME(t') que não está em DTIME(t):

- Sob input w:
 - n = |w|
 - Inicia-se a contagem do tempo, rejeitando-se após t'(n) transições no caso de a máquina não se desligar antes;
 - Ignora-se o prefixo da forma 1*0 (padding) de w, se este existir;
 - Verifica-se se o sufixo u (w = 1*0u) codifica uma $DTM \mathcal{M}_u$;
 - * Em caso afirmativo, simula-se \mathcal{M}_u sobre w; se não rejeita-se w;
 - Se a simulação de \mathcal{M}_u sobre w for bem sucedida:
 - * Se terminar numa configuração de rejeição, então aceita-se w,
 - * Se terminar numa configuração de aceitação, então rejeita-se w,
 - Se não, rejeita-se w.

Esta máquina opera em tempo t', logo $A \in DTIME(t')$.

Suponhamos que $A \in DTIME(t)$. Seja \mathcal{M} a máquina de Turing que, supostamente, decide A em tempo t. Seja $b = \#\Gamma$ o número dos símbolos do alfabeto de trabalho de \mathcal{M} , k o número das suas fitas e u o seu código binário.

Sabemos que uma máquina de Turing de k > 2 fitas pode ser simulada por uma máquina de Turing de duas fitas em tempo $ct(n)\log(t(n))$, para certa constante c. Como se tem $t(n)\log(t(n)) \in o(t'(n))$, decorre que, para uma infinidade de valores $n \in N, n > |u|$, se tem que $c\log(b)t(n)\log(t(n)) < t'(n)$. Note que $c\log(b)t(n)\log(t(n))$ é precisamente a extensão do tempo de que \mathcal{M}' necessita para simular \mathcal{M} operando em binário com duas fitas (enquanto \mathcal{M}' opera com um conjunto de b símbolos e k fitas). Tomando inputs w da forma 1^j0u de tamanho n (j = n - |u| - 1) que satisfaça a desigualdade anterior, \mathcal{M}' tem tempo suficiente para completar a simulação: w é aceite por \mathcal{M}' se e só se é rejeitada por \mathcal{M} . Portanto, \mathcal{M} não decide A, contrariamente ao pressuposto.

3.4 Circuitos

3.4.1 Fórmulas Booleanas

Definição 11. Fórmula booleana:

A classe das fórmulas booleanas sobre o conjunto X (das variáveis) é o conjunto indutivo $BOOL_X$ definido pelas regras:

- Se $s \in X \cup \{0,1\}$, então x é uma fórmula booleana
- Se F é uma fórmula booleana, então ¬F também
- Se F_1 e F_2 são fórmulas booleanas, então $F_1 \wedge F_2$ e $F_1 \vee F_2$ são fórmulas booleanas

Definição 12. Fórmula booleana quantificada:

A classe das fórmulas booleanas quantificadas sobre o conjunto X (das variáveis) é o conjunto indutivo $Q\mathbb{B}_X$ definido pelas regras:

- Toda a fórmula booleana é uma fórmula booleana quantificada;
- Se F é uma fórmula booleana quantificada e $x \in X$, então $\exists xF$ e $\forall xF$ são fórmulas booleanas quantificadas.

Definição 13. Atribuição de valores:

Uma atribuição de valores booleanos é uma aplicação V de X em $\{0,1\}$. Dada uma fórmula booleana F e uma atribuição de valores V, o valor de F induzido por $V,V:BOOL_X \to \{0,1\}$, define-se como se segue:

$$\overline{\mathcal{V}}(F) = 0 \text{ se } F \neq 0 \tag{3.16}$$

$$\overline{\mathcal{V}}(F) = 1 \text{ se } F \neq 1 \tag{3.17}$$

$$\overline{\mathcal{V}}(F) = \overline{\mathcal{V}}(x) \text{ se } F \in x, \text{ para } x \in X$$
(3.18)

$$\overline{\mathcal{V}}(F) = \overline{\mathcal{V}}(F_1) \times \overline{\mathcal{V}}(F_2) \text{ se } F \in (F_1 \wedge F_2)$$
(3.19)

$$\overline{\mathcal{V}}(F) = \overline{\mathcal{V}}(F_1) + \overline{\mathcal{V}}(F_2) - \overline{\mathcal{V}}(F_1) \times \overline{\mathcal{V}}(F_2) \text{ se } F \notin (F_1 \vee F_2)$$
(3.20)

$$\overline{\mathcal{V}}(F) = 1 - \overline{\mathcal{V}}(F_1) \text{ se } F \in (\neg F)$$
(3.21)

$$\overline{\mathcal{V}}(F) = 1 - \overline{\mathcal{V}}(F_1|_{x:=0} \vee F_1|_{x:=1}) \text{ se } F \notin (\exists x F_1)$$
(3.22)

$$\overline{\mathcal{V}}(F) = 1 - \overline{\mathcal{V}}(F_1|_{x:=0} \wedge F_1|_{x:=1}) \text{ se } F \notin (\forall x F_1)$$
(3.23)

Dada uma fórmula booleana F, dizemos que uma atribuição de valores V satisfaz F se $\overline{\mathcal{V}}(F)=1$. Uma fórmula F diz-se satisfazível se existir uma atribuição de valores V que satisfaz F, caso contrário, F diz-se não satisfazível.

Duas fórmulas booleanas sobre X, F_1 e F_2 , dizem-se equivalentes, $(F_1 \equiv F_2)$, se, para toda a atribuição de valores $\mathcal{V}: X \to \{0,1\}$, se verifica $\overline{\mathcal{V}}(F_1) = \overline{\mathcal{V}}(F_2)$.

Suponhamos que as fórmulas booleanas sobre X estão codificadas em palavras sobre $\{0,1\}$. Eis algumas linguagens importantes:

- SAT é o conjunto das codificações das fórmulas booleanas satisfazíveis
- CNF-SAT é o conjunto das codificações das fórmulas booleanas satisfazíveis na forma normal conjuntiva
- QBF é o conjunto das codificações das fórmulas booleanas quantificadas, sem variáveis livres, às quais corresponde o valor 1.

3.4.2 Circuitos Clássicos

Um circuito diz-se booleano, ou clássico, se todas as suas unidades lógicas de computação têm não mais do que dois inputs.

Definição 14. Unidade de computação:

Uma unidade de computação sobre o conjunto (de variáveis) $X = \{x_1, ..., x_n\}$ define-se indutivamente como se segue:

- Todo o elemento de X é uma unidade de computação sobre X
- As constantes 0 e 1 de $\mathbb B$ são unidades de computação sobre X
- Se g é uma unidade de computação sobre X, então (NOT,g) também é uma unidade de computação sobre X
- Se g_1 e g_2 são unidades de computação sobre X, então (AND, g_1, g_2) e (OR, g_1, g_2) também são unidades de computação sobre X

Definição 15. Sequência de computação:

Uma sequência de computação sobre X é uma sequência $g_1, ..., g_s$, na qual cada $g_i, 1 \le i \le s$, é uma variável de X, 0 ou 1, um par (NOT, g_l) , com $1 \le l < i$, um terno (AND, g_l, g_m) , com $1 \le l, m < i$, ou um terno (OR, g_l, g_m) , com $1 \le l, m < i$.

A função de valoração val do conjunto das portas e elementos fonte para o conjunto $BOOL_X$ define-se recursivamente de modo seguinte:

$$val(g_i) = \begin{cases} g_i & se \ g_i \ \'e \ fonte \\ (\neg val(g_l)) & se \ g_i \ \'e \ (NOT, g_l) \\ (val(g_l) \land val(g_m)) & se \ g_i \ \'e \ (AND, g_l, g_m) \\ (val(g_l) \lor val(g_m)) & se \ g_i \ \'e \ (OR, g_l, g_m) \end{cases}$$

Dada uma função booleana $f: \mathbb{B}^n \to \mathbb{B}^m$ (que pode ser representada por um m-tuplo $(f_1,...,f_m)$ de funções booleanas $f_i: \mathbb{B}^n \to \mathbb{B}, i=1..m$), dizemos que a função f é computada pela sequência de computação $g_1,...,g_s$ se, para todo o $r,1 \le r \le m$, existe $k,1 \le k \le s$, tais que $f_r = val(g_k)$.

Teorema 27. Toda a função booleana pode ser computada por um circuito booleano clássico.

Teorema 28. Se C_1 e C_2 são dois circuitos booleanos que representam as expressões booleanas $\alpha_1 = \alpha_1(x_1,...,x_n)$ e $\alpha_2 = \alpha_2(x_1,...,x_n)$, então C_1 e C_2 são equivalentes se e só se $\alpha_1 \equiv \alpha_2$.

Propriedades de Circuitos

Definição 16. Custo de circuitos:

O custo ou tamanho de um circuito é o número das suas portas. Dada uma função booleana f, o seu custo booleano s_f , é o tamanho do mais pequeno circuito que determina os valores de f.

Definição 17. Profundidade de circuitos:

A profundidade de um circuito é o comprimento da maior trajetória no grafo do circuito. Dada uma função booleana f, denotamos por d_f a sua profundidade booleana, i.e., a mais pequena profundidade de entre as profundidades dos circuitos que determinam os valores de f.

Definição 18. Complexidade:

Para cada n, definimos a complexidade do conjunto A, $c_A(n)$, como o custo booleano da função característica \mathcal{X}_A^n de $A \cup \mathbb{B}^n$. Definimos a profundidade de A, $d_A(n)$, como a profundidade booleana de \mathcal{X}_A^n .

3.4.3 Circuitos AND - OR

Este tipo de circuito difere dos circuitos clássicos no sentido em que vértices têm grau arbitrário. Todos os circuitos clássicos, aqueles cujas portas têm grau menor ou igual a 2, são também, circuitos AND-OR.

Teorema 29. Todo o circuito AND-OR de n inputs, custo s e profundidade d é equivalente a um circuito AND-OR de custo não superior 2s + n e profundidade não superior a d, tal que todas as portas NOT se encontram no nível 1.

Codificação

O número de inputs x é codificado em unário através da palavra com n uns e corresponde ao mesmo número de inputs complementares x, ordenados na sequência $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$.

Para todo o j=1..n, a porta $g_i\in V$ é codificada numa palavra binária de 2n+i+2 bits:

$$\alpha_1 \alpha_2 \alpha_3 \beta_1 \gamma_1 \dots \beta_n \gamma_n \delta_1 \dots \delta_{i-1}$$

Onde os três primeiros bits designam a porta:

- $001 \text{ se } l(g_i) = AND$
- 010 se $l(g_i) = OR$
- $000 \text{ se } l(g_i) = 0$
- 011 se $l(g_i) = 1$

Os 2n bits seguintes codificam as conexões de cada um dos inputs a g_i :

- Para todo o j = 1..n, $\beta_j = 1$ sse $(x_j, g_i) \in E$
- Para todo o $j = 1..n, \gamma_j = 1$ sse $(\overline{x}_j, g_i) \in E$

Os bits restantes codificam as ligações das portas $g_1, ..., g_{i-1}$ a g_i :

• Para todo o $j=1..i-1, (g_j,g_i)\in E$ se e só se $\delta_j=1$

Um output y é codificado pela palavra

101 00...00
$$\delta_1...\delta_m$$

Onde 00...00 corresponde a 2n zeros e, para todo o $j=1..m, g_j \in Y$ sse $\delta_j=1$.

Figura 3.5: Exemplo de codificação de um circuito

3.4.4 Teoria do Custo de Circuitos

Teorema 30. Teorema do custo:

Existe uma função booleana $f: \mathbb{B}^n \to \mathbb{B}$ que só pode ser computada por um circuito AND - OR alternado de custo $\Omega(2^{n/2})$.

Seja $\mathcal{N}(m,n)$ o número de circuitos de n inputs e custo m. Existem $2^{m(m-1)}$ grafos orientados de m vértices e 3^{nm} maneiras diferentes de ligar cada um destes circuitos aos n inputs, pois cada vértice pode ser ligado a $x_i, \overline{x_i}$, ou a nenhum destes inputs, $1 \leq i \leq n$. Existem também m maneiras de escolher a porta de output e 2^m maneiras de escolher a função de cada vértice. Conclui-se que $\mathcal{N}(m,n) \leq m2^{m^2}3^{nm}$.

Existem 2^{2^n} funções booleanas de n inputs. Se todas pudessem ser computadas por um circuito de m portas, então $\mathcal{N}(m,n) \geq 2^{2^n}$. Não pode dar-se o caso de ser $m \leq n$, caso contrário a primeira desigualdade dar-nos-ia $\mathcal{N}(m,n) \leq 2^{\mathcal{O}(n^2)}$ em contradição com a segunda desigualdade. Ter-se-á então $m \geq n$. A primeira desigualdade reduz-se a $\mathcal{N}(m,n) \leq 2^{\mathcal{O}(m^2)}$, donde se conclui que $2^{\mathcal{O}(m^2)} \geq 2^{2^n}$, i.e., $m \in \Omega(2^{n/2})$.

Teorema 31. Teorema de Riordan and Shannon:

Para $n \in \mathbb{N}$ suficientemente grande, existem funções booleanas de n inputs de custo não inferior a $2^n/n$.

Consideremos as funções booleanas de n inputs f de custo $s_f \leq g(n) > n$. Podemos construir uma extensão do circuito de f de forma a que o seu custo seja exatamente g(n), onde C_1 é um circuito que computa os valores de f de custo s_f e C_2 é um circuito inútil de tamanho $g(n) - s_f$.

Figura 3.6: Ilustração do circuito auxiliar

Cada uma destas sequências de computação é constituída por g(n) ternos de entre no máximo $3(g(n)+n)^2$ ternos possíveis. Ao todo, temos, no máximo, $(3(g(n)+n)^2)^{g(n)}$ sequências de computação que podem ser particionadas em classes. Certas classes consistem numa sequência que corresponde a um circuito conjuntamente com g(n)!-1 sequências que correspondem às possíveis permutações dos ternos. Seja $H_g(n)$ o número de funções booleanas que podem ser sintetizadas com exatamente g(n) portas:

$$H_g(n) < \frac{1}{g(n)!} (3(g(n) + n)^2)^{g(n)}$$
 (3.24)

$$\gtrsim \frac{(12e)^{g(n)}g(n)^{2g(n)}}{g(n)^{g(n)}} \tag{3.25}$$

$$<(12e)^{g(n)}g(n)^{g(n)}$$
 (3.26)

Tomamos agora $g(n) = 2^n/n$, donde decorre que g(n) > n, n > 4, e, para valores de n suficientemente grandes, temos:

$$H_g(n) < (12e)^{\frac{2^n}{n}} \left(\frac{2^n}{n}\right)^{\frac{2^n}{n}} < (2^n)^{\frac{2^n}{n}} = 2^{2^n}$$

3.4.5 Circuitos de Custo Exponencial

Teorema 32. Todo o circuito alternado de profundidade 2 que compute a função PARITY tem custo pelo menos $2^{n-1} + 1$.

Consideremos um circuito C de profundidade 2 que compute a função PARITY tal que o nível 1 consta de portas AND e o segundo nível consiste numa única porta OR. Deve existir no nível 1 pelo menos uma porta AND cujos inputs são um subconjunto de $x_1[\alpha_1],...,x_n[\alpha_n]$. Suponhamos que a porta X tem inputs neste conjunto e, sem perda de generalidade, X computa:

$$x_1[\alpha_1] \wedge \ldots \wedge x_{n-1}[\alpha_{n-1}]$$

Assim C dá output 1 para ambos os inputs $(\alpha_1, ..., \alpha_{n-1}, \alpha_n)$ e $(\alpha_1, ..., \alpha_{n-1}, \overline{\alpha_n})$, o que é absurdo. Assim, a porta X deve ter como inputs todos os valores

 $x_1[\alpha_1],...,x_n[\alpha_n]$. Cada porta AND do nível 1 deve ser específica de uma só possível palavra de PARITY. Conclui-se que existem 2^{n-1} portas no nível 1 e $2^{n-1}+1$ portas em todo o circuito.

Teorema 33. Para toda a função $f: \mathbb{B}^n \to \mathbb{B}, (n > 0)$, existe um circuito AND - OR alternado de custo quando muito $2^{n-1} + 1$ e profundidade 2 que computa f.

Se a função f for constante, então é implementada com um circuito de custo 0. Suponhamos, pois, que f não é constante. Um circuito alternado possível para f pode ser construído através da tabela de verdade da função f. Consideremos os $m \in \mathbb{N}$ inputs que tornam f igual a 1:

$$(\alpha_{1,1},...,\alpha_{n,1}),...,(\alpha_{1,m},...,\alpha_{n,m})$$

E os $2^n - m$ inputs que tornam f igual a 0:

$$(\beta_{1,1},...,\beta_{n,1}),...,(\beta_{1,m'},...,\beta_{n,m'})$$

Suponhamos primeiro que $m \leq 2^{n-1}$. Podemos escrever a expressão de f na forma:

$$f(x_1,...,x_n) = (x_1[\alpha_{1,1}] \land ... \land x_n[\alpha_{n,1}]) \lor ... \lor (x_1[\alpha_{1,m}] \land ... \land x_n[\alpha_{n,m}])$$

Onde por $x_i[\xi]$ denota-se x_i se $\xi=1$ e $\overline{x_i}$ se $\xi=0$, para todo o $1\leq i\leq n$. Deste modo, a função f pode ser computada por um circuito alternado de profundidade 2 cujo nível 1 é constituído por portas AND e o nível 2 consiste numa única porta OR com inputs de todas as portas AND do nível 1. O custo deste circuito é $m+1\leq 2^{n-1}+1$. Suponhamos agora que $m\geq 2^{n-1}$. Neste caso operamos com os inputs que dão valor 0 a f:

$$f(x_1,...,x_n) = (\overline{x_1}[\beta_{1,1}] \vee ... \vee \overline{x_n}[\beta_{n,1}]) \wedge ... \wedge (\overline{x_1}[\beta_{1,m'}] \vee ... \vee \overline{x_n}[\beta_{n,m'}])$$

De novo se conclui que f pode ser computada por um circuito alternado cujo nível 1 é constituído por m' portas OR e o nível 2 consiste numa única porta AND com inputs provenientes de todas as portas OR. Este circuito tem custo $m'+1 \leq 2^{n-1}+1$.

Teorema 34. Qualquer função $f: \mathbb{B}^n \to \mathbb{B}$ que pode ser computada por um circuito alternado de profundidade 2 com p portas AND de n inputs no nível 1 e 1 porta OR no nível 2, pode ser computada por um circuito alternado de profundidade 2 e custo $n^p + 1$, com portas OR no nível 1 e 1 porta AND no nível 2. Este resultado é válido se trocarmos as portas AND por portas OR.

Figura 3.7: Ilustração da conversão AND-OR para OR-AND

Teorema 35. Toda a função $f: \mathbb{B}^n \to \mathbb{B}$ pode ser computada por um circuito AND-OR alternado de custo $\mathcal{O}(2^{n/2})$ e profundidade 3.

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$	x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	0	1	0	0	0	0
0	0	0	1	1	1	0	0	1	0
0	0	1	0	0	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0

Figura 3.8: Ilustração da construção de um circuito simplificado para f. É usada uma função $g(x_1, x_2)$ auxiliar que tem como valor as combinações de x_3 e x_4 que tornam f verdadeira. Por exemplo, $g(0,0) = (\overline{x_3} \wedge \overline{x_4}) \vee (x_3 \wedge \overline{x_4}) \vee (x_3 \wedge x_4)$

3.4.6 Simulação de Máquinas de Turing

Consideremos uma máquina de Turing determinística \mathcal{M} de apenas uma fita, alfabeto de trabalho $\Gamma = \{a_1, ..., a_n\}$, conjunto de estados $Q = \{q_1, ..., q_m\}$ e função de transição $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R, N\}$.

Seja $r = \lceil \log |Q| \rceil + 1$ e $r' = \lceil \log |\Gamma| \rceil + 1$. Codificamos os estados de Q em binário através de sequências de r bits, excluindo a sequência 0^r . Similarmente, codificamos os símbolos de Γ em binário como sequências de r' bits, excluindo a sequência $0^{r'}$.

Em cada passo da computação de \mathcal{M} , associamos a cada célula u da fita de \mathcal{M} uma representação dos seus parâmetros: o conteúdo da célula, se a cabeça de leitura/escrita está posicionada ou não nessa célula e, em caso afirmativo, o estado de \mathcal{M} nessa configuração. Esta representação é dada através de um par $u_i = (e_i, x_i)$, onde x_i é o código do símbolo que ocupa a célula u ao fim de i transições e e_i é o código do estado da máquina ao fim de i transições, definido

por:

$$e_i = \begin{cases} 0^r & \text{se } \mathcal{M} \text{ n\~ao se encontra em u ao fim de i transiç\~oes} \\ \text{c\'odigo de } q_l & \text{se } \mathcal{M} \text{ se encontra em u no estado } q_l \text{ ao fim de i transiç\~oes} \end{cases}$$

Suponhamos que, quando \mathcal{M} entra no estado de aceitação q_a , aí permanece em ciclo até terem sido completadas as t(n) transições. Construímos um circuito booleano que simula a evolução do conteúdo da fita de \mathcal{M} quando o input é w, impresso nas |w| células mais à esquerda da fita de \mathcal{M} , durante exatamente t(n) transições. Para decidir se uma palavra é aceite, o circuito testa se o estado de \mathcal{M} após t(n) transições é q_a .

Figura 3.9: Cada caixa representa uma cópia completa do circuito que computa a parte relativa ao estado e a parte relativa ao símbolo de uma célula. A caixa que se encontra na coluna j e na linha $i, 0 \le j, i \le t(n)$, calcula o conteúdo da célula j da fita após i transições, conjuntamente com a indicação sobre se a cabeça de leitura/escrita está a ler essa célula j após i transições

Durante a computação de \mathcal{M} , a variação do conteúdo de uma célula depende somente do conteúdo dessa mesma célula e do conteúdo das células à sua direita e à sua esquerda. Consideremos a representação de três células contíguas após i transições: u_l^i , u_{l+1}^i e u_{l+2}^i . A variação da representação de u_{l+1}^i para u_{l+1}^{i+1} deve-se a uma das três razões seguintes:

- A cabeça de leitura/escrita está posicionada na célula u_i e move-se para a direita. Nestas circunstâncias, u_{l+1} contém um novo estado, mas o símbolo que guarda mantém-se inalterado.
- A cabeça de leitura/escrita está posicionada na célula u_{l+2} e move-se para a esquerda

• A cabeça de leitura/escrita está na célula u_{l+1} . Então, dependendo da função de transição, o conteúdo da célula pode mudar, e portanto podem mudar quer a codificação relativa ao estado, quer a codificação relativa ao símbolo, quer ambas as codificações

Função ESTADO

A função $ESTADO: \{0,1\}^{r+r'} \to \{0,1\}^{3r}$ é definida de modo a codificar simultaneamente o movimento da cabeça de leitura/escrita e a mudança de estado:

$$ESTADO(q,x) = \left\{ \begin{array}{ll} (q',0^r,0^r) & se \ a \ cabe \emptyset a \ se \ move \ para \ a \ esquerda \\ (0^rq',0^r) & se \ a \ cabe \emptyset a \ se \ n\~ao \ se \ move \\ (0^r,0^r,q') & se \ a \ cabe \emptyset a \ se \ move \ para \ a \ direita \end{array} \right.$$

Onde q' é o próximo estado como é indicado pela função de transição δ de \mathcal{M} . Também definimos $ESTADO(0^r,x)=(0^r,0^r,0^r)$. Denotamos por e-ESTADO, m-ESTADO e d-ESTADO, as funções responsáveis pela extração das componentes da esquerda, do meio e da direita de ESTADO(q,x).

Função SÍMBOLO

A função $S\text{\'{1}}MBOLO: \{0,1\}^{r+r'} \to \{0,1\}^{r'}$ determina o próximo símbolo a ser guardado na célula e define-se da seguinte maneira:

- $SIMBOLO(0^r, x) = x$, pois só a presença da cabeça de leitura/escrita pode alterar o símbolo
- SIMBOLO(q, x) é o símbolo impresso sobre x por \mathcal{M} no estado q, tal como indicado por $\delta(q, x)$

Note-se ainda que as funções ESTADO e SÍMBOLO dependem somente da função de transição de \mathcal{M} .

Na última linha, exatamente uma das caixas contém o estado no qual a computação de $\mathcal M$ terminou após t(n) transições. As caixas remanescentes não contêm qualquer informação sobre o m-ESTADO. O circuito pode encontrar o estado calculando a disjunção dos resultados dos m-ESTADO de todas as t(n)+1 células e comparar este resultado com o valor de q_a .

Figura 3.10: Representação do circuito final

Resultados

Teorema 36. Se o conjunto A é decidível por uma máquina de Turing determinística em tempo construtível t(n), então o custo da família de circuitos clássicos que decide A é $s_A(n) \in \mathcal{O}(t(n)^2)$.

Teorema 37. Se a função f é computável por uma máquina de Turing determinística de uma fita em tempo t(n), então a restrição de f a $\{0,1\}^n$ pode ser computada por um circuito de tamanho $\mathcal{O}(t(n)^2)$.

Teorema 38. Se a máquina de Turing não determinística \mathcal{M} de alfabeto binário, equipada com uma fita de input e apenas uma fita de trabalho, decide o conjunto A em espaço construtível $s(n) \geq \log(n)$, então $d_A(n) \in \mathcal{O}(s(n)^2)$.

Definição 19. Diz-se que a família de circuitos $C = \{C_i\}_{i \in \mathbb{N}}$ é uniforme se existe um algoritmo tal que, dado o comprimento do input n, gera o código do circuito C_n para inputs de comprimento n.

Teorema 39. Uma função é computável se e só se pode ser computada por uma família uniforme de circuitos booleanos.

3.4.7 Circuitos de Custo Polinomial

Circuito Satisfazível

Definição 20. Diz-se que um circuito C de n inputs é satisfazível se existe uma palavra binária de tamanho n que origina output 1.

CVP é a linguagem dos pares $\langle w, y \rangle$, onde $w \in \{0, 1\}^*$ e y é o código binário de um circuito booleano com |w| inputs satisfazível pelo input w.

Equivalência de circuitos através de SAT

Figura 3.11: Ilustração do circuito a estudar

Suponhamos que o circuito C_1 tem output y_1 e o circuito C_2 tem output y_2 , e que C_1 e C_2 são modificados de modo a produzirem como outputs os valores de \overline{y}_1 e \overline{y}_2 .O circuito global C é satisfazível se e só se os dois circuitos componentes não são equivalentes.

Uma instância de NONEQ consiste no emparelhamento dos códigos de dois circuitos AND-OR alternados C_1 e C_2 . A correspondente instância de SAT é o código do circuito alternado C. Se $\langle C_1, C_2 \rangle \in NONEQ$, então existe um input que torna $y_1 = \overline{y}_2$ e $\overline{y}_1 = y_2$. Consequentemente, as portas AND dão output 1, pelo que o circuito C dá output y = 1.

Reciprocamente, se $\langle C_1, C_2 \rangle \notin NONEQ$, então, para todos os inputs, temse y1 = y2 e $\overline{y}_1 = \overline{y}_2$ e nenhuma das portas AND dá output 1, pelo que y = 0. Conclui-se que $\langle C_1, C_2 \rangle \in NONEQ$ se e só se $\langle C \rangle \in SAT$.

Escrevemos $NONEQ \leq_p^m SAT$ e dizemos que o problema NONEQ se reduz ao problema SAT. Pode especificar-se um circuito booleano AND-OR alternado polinomial tal que, dado $\langle C_1, C_2 \rangle$ como input, constrói a codificação do circuito C.

Reduções

Uma função f que opera a redução da linguagem A para linguagem B pode ser computada por uma família de circuitos AND - OR alternados $\{C_{f,i}\}_{i \in \mathbb{N}}$ de

custo polinomial.

Por sua vez, a família de circuitos $\{C_{B,i}\}_{i\in\mathbb{N}}$ decide o conjunto B. Em virtude do nosso estudo sobre a simulação da máquina de Turing determinística por uma família uniforme de circuitos booleanos, o circuito $C_{A,|w|}$ pode ser construído ligando o output de $C_{f,|w|}$ ao input de $C_{B,|f(|w|)|}$.

Figura 3.12: Representação do circuito que opera a redução

$CVP \ \mathbf{em} \ P$

Teorema 40. $CVP \in P$

A demonstração efetua-se por meio do seguinte procedimento:

- input $z = \langle w, y \rangle$;
- verificar se y é o código de um circuito C_n com n = |w| inputs; caso contrário rejeitar z;
- para i := 1 até n:
 - substituir o *i*-ésimo bit de w em todas as ocorrências de x_i em C_n ;
- ciclo % enquanto houver portas prontas:
 - varrer y à procura de uma porta pronta p:
 - * avaliar a porta;
 - * marcar a porta como avaliada;
 - * substituir o seu valor em todas as ocorrências desta porta;
- fim do ciclo;
- rejeitar z se ainda houver portas por avaliar;
 caso contrário aceitar z se e só se o valor do output é 1;

NP-completude de SAT

Definição 21. Definição alternativa de NP:

O conjunto A diz-se elemento da classe NP se existe um conjunto $B \in P$ e um polinómio n^k (para algum $k \in \mathbb{N}_1$) tais que, para toda a palavra $w \in \{0,1\}^*$, $w \in A$ se e só se existe uma palavra $y \in \{0,1\}^*$ tal que $|y| \leq |w|^k$ e $\langle w, y \rangle \in B$.

Definição 22. Díficil e completo:

Seja C uma classe computacional. Um conjunto A é C-difícil se, para todo o conjunto $B \in C$, $B \leq_m^p A$. Um conjunto A é C-completo se A é C-difícil e $A \in C$.

Teorema 41. SAT é NP-completo

Seja $A \in NP$. Existe um conjunto $B \in P$, um polinómio $n^k, k \in \mathbb{N}_1$, e uma família uniforme de circuitos AND - OR alternados polinomiais $\mathcal{C}_B = \{C_i\}_{i \in \mathbb{N}_1}$ que decide B, tais que, para todo o $n \in \mathbb{N}_1$, para todos os $a_1, ..., a_n \in \mathbb{B}, a_1, ..., a_n \in A$ se e só se existem $a_{n+1}, ..., a_{n^k} \in B$ tais que o circuito C_{n^k} sob input $a_1, ..., a_{n^k}$ dá output 1.

Suponhamos que o circuito C_{n^k} tem inputs $\Delta = \{x_1, ..., x_{n^k}\}$ e portas $V = \{g_1, ..., g_s\}$. Construímos o circuito C'_{n^k-n} da redução substituindo os primeiros n inputs pelos valores de $a_1, ..., a_n$:

$$V' = V \cup \{g_i', \overline{g}_i' : 1 \le i \le n\}$$
(3.27)

$$X' = \{x_{n+1}, ..., x_{n^k}\}\tag{3.28}$$

$$(g_i, g_j) \in E' \ sse \ (g_i, g_j) \in E \quad 1 \le i, j \le s \tag{3.29}$$

$$(x_i, g_j) \in E' \ sse \ (x_i, g_j) \in E \quad n+1 \le i \le n^k, 1 \le j \le s$$
 (3.30)

$$(\overline{x}_i, g_j) \in E' \ sse \ (\overline{x}_i, g_j) \in E \quad n+1 \le i \le n^k, 1 \le j \le s$$
 (3.31)

$$(g_i', g_j) \in E' \ sse \ (x_i, g_j) \in E \ 1 \le i \le n, 1 \le j \le s$$
 (3.32)

$$(\overline{g}_i', g_i) \in E' \ sse \ (\overline{x}_i, g_i) \in E \quad 1 \le i \le n, 1 \le j \le s$$
 (3.33)

$$l'(g_i) = l(g_i) \quad 1 \le i \le s \tag{3.34}$$

$$l'(g_i') = a_i \quad 1 \le i \le n \tag{3.35}$$

$$l'(\overline{g}_i') = \overline{a}_i \quad 1 \le i \le n \tag{3.36}$$

O output de C_{n^k} sob input $a_1,...,a_n$ é igual ao output de C'_{n^k-n} sob input $a_{n+1},...,a_{n^k}$. Assim, tem-se $a_1,...,a_n\in A$ se e só se existem $a_{n+1},...,a_{n^k}$ tais que o output de C_{n^k} sob input $a_{n+1},...,a_{n^k}$ é 1 se e só se C'_{n^k-n} é satisfazível.

Logo, existe um circuito AND-OR alternado de tamanho polinomial que, sob input $a_1,...,a_n$, dá como output a codificação de C'_{n^k-n} . Conclui-se que $A \leq_m^p SAT$.

3.4.8 Circuitos Polinomiais Pouco Profundos

Definição 23. NC^i é a classe dos conjuntos A que podem ser decididos por famílias uniformes de circuitos booleanos clássicos $C = \{C_i\}_{i \in \mathbb{N}}$ de custo polinomial e profundidade $\log(n)^i$ geráveis em espaço logarítmico, i.e.:

- (a) a família C decide A,
- (b) a função que a cada input de tamanho n dá como output o código do circuito C_n é computável em espaço logarítmico, e
- (c) existe $k \in \mathbb{N}$, tal que, para todo o $n \in \mathbb{N}$, o circuito C_n tem custo n^k e profundidade $\log(n)^i$.

Seja $NC = \bigcup_{i \in \mathbb{N}} NC^i$.

Definição 24. AC^i é a classe dos conjuntos A que podem ser decididos por famílias uniformes de circuitos booleanos AND - OR alternados $C = \{C_i\}_{i \in \mathbb{N}}$ de custo polinomial e profundidade $\log(n)^i$ geráveis em espaço logarítmico, i.e.:

- (a) a família C decide A,
- (b) a função que a cada input de tamanho n dá como output o código do circuito C_n é computável em espaço logarítmico, e
- (c) existem $k \in \mathbb{N}$, tal que, para todo o $n \in \mathbb{N}$, o circuito C_n tem custo n^k e profundidade $\log(n)^i$.

Seja $AC = \bigcup_{i \in \mathbb{N}} AC^i$.

Teorema 42. $NC \subseteq P$ e $AC \subseteq P$

Teorema 43. $\forall i \in \mathbb{N}, NC^i \subseteq DSPACE(\log(n)^i)$

Teorema 44. $NC \neq PSPACE$ e $AC \neq PSPACE$

Teorema 45. Para todo o $n \in \mathbb{N}_1$, a operação iterada \circ^{n-1} , i.e. $x_1 \circ x_2 \circ ... \circ x_n$, pode ser computada por um circuito booleano AND - OR alternado de custo $(n-1)\mu$ e profundidade $d\lceil \log(n) \rceil$.

Seja C o circuito que computa a operação \circ . A construção do desejado circuito C_n que computa $x_1 \circ x_2 \circ ... \circ x_n$ decorre por indução completa em $n \in \mathbb{N}$:

Base de indução: $1, 2 \leftarrow n$. Se n = 1, então a fonte x_1 , de custo 0 e profundidade 0, implementa a função de expressão x_1 . Se n = 2, o circuito C implementa a função de expressão $x_1 \circ x_2$.

Hipótese de indução: Para todo o $0 < k < n \in \mathbb{N}_3$, existe um circuito booleano AND - OR alternado de custo $\mu(k-1)$ e profundidade $\lceil \log(k) \rceil$ que computa $x_1 \circ x_2 \circ \ldots \circ x_k$.

Passo de indução: $n \leftarrow n-1$. Constrói-se C_n a partir dos circuitos $C_{\lceil n/2 \rceil}$ e $C_{\lceil n/2 \rceil}$ cujos outputs são os inputs de mais uma cópia de C.

Por hipótese de indução, os dois circuitos $C_{\lceil n/2 \rceil}$ e $C_{\lfloor n/2 \rfloor}$ computam as funções booleanas $x_1 \circ x_2 \circ ... \circ x_{\lceil n/2 \rceil}$ e $x_{\lceil n/2 \rceil + 1} \circ x_2 \circ ... \circ x_n$. O acréscimo de um circuito C permite completar um circuito que computa C_n com $\lceil n/2 \rceil - 1 + \lfloor n/2 \rfloor - 1 + 1 = n-1$ circuitos C, o que corresponde a um custo $(n-1)\mu$ e uma profundidade $d\lceil \log(n/2) \rceil + d = d\lceil \log n \rceil$.

Figura 3.13: Representação do circuito resultante

Teorema 46. A função PARITY restringida a n inputs pode ser computada por um circuito booleano AND-OR alternado de custo 4n-5 e profundidade $\lceil \log(n) \rceil + 1$.

Figura 3.14: Representação da transformação

Definição 25. Diz-se que o conjunto A é AC-redutível ao conjunto B, e escreve-se $A \leq_c B$ se existir uma função f computável por uma família uniforme de circuitos AND - OR alternados de custo polinomial e profundidade polylog tal que, para toda a palavra binária $w, w \in A$ se e só se $f(w) \in B$.

Teorema 47. A classe AC está fechada para a redução-AC

Teorema 48. CVP é P-completo para a redução-AC

Teorema 49. Para todo o circuito AND - OR de custo s e profundidade d, existe um circuito clássico de custo $s^2 + sn$ e profundidade $d\lceil \log(s+n) \rceil$

Teorema 50. Resultados finais: $\forall i \in \mathbb{N}, NC^i \subseteq AC^i \ \forall i \in \mathbb{N}, AC^i \subseteq NC^{i+1} \ NC = AC$