Exercice1(5 pts)

A. Répondre par vrai ou faux sans justification

1. Les réels $\sqrt{3} + 1$ et 25.10⁻³ sont proportionnels aux réels 80 et $\sqrt{3} - 1$ dans cet ordre.

2.
$$\sqrt{50 - \sqrt{5 - \sqrt{16}}} = 7$$
.

- 3. $\sqrt{a^2 + b^2} = |a| + |b|$ pour tous réels a et b.
- B. Choisir la seule réponse exacte sans justification

Dans la figure ci-contre $\frac{AM}{AB} = \frac{2}{3}$ et les droites (MN) et (BC) sont parallèles.

D

H

1. L'aire du triangle ABC est \mathcal{A} et celle de AMN est \mathbf{a} .

a)
$$A=2$$
. a

b)
$$\mathcal{A} = \frac{9}{4} \cdot a$$

c)
$$A = \frac{3}{2} . a$$

2. Le périmètre du triangle ABC est P et celui de AMN est P.

a)
$$\mathcal{P}=\frac{3}{2} \cdot p$$

b)
$$\mathcal{P} = \frac{2}{3} \cdot p$$

c)
$$\mathcal{P} = \frac{9}{4} \cdot p$$

Exercice2(6.5 pts)

Dans la figure ci-contre ABCD est un parallélogramme tel que AB = 2 et BC = 5. Le triangle BEC est rectangle en E avec BE=3. Les segments [ED] et [BC] se coupent au point I.

1. **a)** Montrer que
$$\frac{BI}{AD} = \frac{EB}{EA}$$
.

b) En déduire que
$$BI = 3$$
.

2. Soit H le projeté orthogonal de $I \operatorname{sur}[CE]$.

a) Montrer que
$$\frac{EH}{EC} = \frac{EB}{EA}$$
.

b)En déduire la position relative des droites (AC) et(BH).

3. a) Vérifier que
$$AC = \sqrt{41}$$
.

b) En déduire *BH*.

Exercice3(6pts)

1. a) Développer
$$\left(\sqrt{3}-2\right)^2$$
.

b) En déduire que
$$\sqrt{7-4\sqrt{3}} = 2-\sqrt{3}$$
.

c) Montrer que
$$3\sqrt{7-4\sqrt{3}} + \frac{3}{2}|2-\sqrt{12}|$$
 est un entier naturel.

2. On donne
$$a = 7 - 4\sqrt{3} = 0.07179677...$$
 Déterminer :

- la notation scientifique de *a*.
- l'arrondi à 10^{-3} de a.
- la valeur approchée de a par excès à 10^{-6}

Exercice4(2,5 pts)

Soit x un réel de l'intervalle]-3,-1[.Donner un encadrement de : 2x-1 et $2-\frac{3}{x+4}$

