Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 3

Дисциплина: Вычислительная математика

Выполнил студент гр. 3530901/10001	(подпись)	_ Д.Л. Симоновский
Руководитель _	(подпись)	В.Н. Цыган

"<u>28</u>" февраля 2023 г.

Санкт-Петербург

Оглавление

Задание:	2
Инструменты:	2
Ход выполнения работы:	2
Порядок действий:	2
Первая задача:	2
Полная формулировка:	2
Решение:	3
Вторая задача:	3
Полная формулировка:	3
Решение:	3
Результат:	6
Вывод:	9
Листинг кода:	10
Ссылки:	12

Задание:

Вариант 11:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

Начальные условия: $y(t = 1) = e^2$; $y'(t = 1) = 2e^2$

Точное решение: $y(t) = e^{2t}$

Решить на интервале: $1 \le t \le 2$

- 1. Используя программу RKF45 с шагом печати h_{print} = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования h_{int} = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int} = 0.05$; $h_{int} = 0.025$; $h_{int} = 0.0125$)

Инструменты:

Для работы был выбран язык программирования Python версии 3.11 по причине удобства его использования для поставленной задачи. Были выбраны следующие библиотеки:

- NumPy для большей скорости расчетов и простоты обработки
- SciPy для функции расчета решения дифура
- PrettyTable для красивого вывода таблицы в консоль
- MatPlotLib для вывода графиков

Ход выполнения работы:

Порядок действий:

Поставленное задание легко можно разбить на две глобальные задачи:

- 1. Сведение поставленной задачи к системе двух дифференциальных уравнений первого порядка.
- 2. Получить решение используя RKF45 и методы Рунге-Кутты 3-й степени

Первая задача:

Полная формулировка:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

Решение:

В начале сделаем коэффициент при старшей степени равным 1, для этого поделим уравнение на t:

$$y''-\frac{(t+1)}{t}y'-\frac{2(t-1)}{t}y=0$$
 Возьмем $\alpha_1=-\frac{(t+1)}{t}$ и $\alpha_2=-\frac{2(t-1)}{t}$, получим:
$$y''+\alpha_1y'+\alpha_2y=0$$

Решение этого уравнение эквивалентно решению системы $\frac{dx}{dt} = Ax + f(t)$, где f(t) = 0, А — матрица Фробениуса вида: $A = \begin{pmatrix} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{pmatrix}$, $x = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = \begin{pmatrix} y' \\ y \end{pmatrix}$. Таким образом получим систему:

$$\begin{cases} x^{(2)'} = x^{(1)} \\ x^{(2)'} = \alpha_1 x^{(1)} + \alpha_2 x^{(2)} \end{cases}$$

Вторая задача:

Полная формулировка:

Решить систему дифференциальных уравнений перового порядка.

Начальные условия: $y(t = 1) = e^2$; $y'(t = 1) = 2e^2$

Точное решение: $y(t) = e^{2t}$

Решить на интервале: $1 \le t \le 2$

- 1. Используя программу RKF45 с шагом печати h_{print} = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования h_{int} = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int}=0.05$; $h_{int}=0.025$; $h_{int}=0.0125$)

Решение:

Для дальнейшего использования сразу же зададим функцию, для получения значений системы уравнений:

```
def f(t, X):
    dX = np.zeros(X.shape)
    dX[0] = X[1]
    dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
    return dX
```

Так же нам понадобится функция для получения точно значения решения (чтоб сравнивать погрешности):

```
def g(T):
    return np.e ** (2 * T)
```

Далее нам понадобится функция, которая будет моделировать RKF45, к счастью в библиотеке scipy уже имеется подходящий вариант, правда требующий дополнительной настройки. Выполним её в отдельной функции:

```
def rkf45(f, T, X0):
    runge = ode(f).set_integrator('dopri5', atol=0.0001).set_initial_value(X0, T[0])
    X = [X0, *[runge.integrate(T[i]) for i in range(1, len(T))]]
    return np.array([i[0] for i in X])
```

Метод Рунге-Кутты по заданию необходимо написать самостоятельно. Для начала вспомним, как выглядит метод Рунге-Кутты третьей степени:

$$\begin{cases} x_{n+1} = x_n + \frac{2k_1 + 3k_2 + 4k_3}{9}, \\ k_1 = hf(t_n, x_n), \\ k_2 = hf(t_n + \frac{h}{2}, x_n + \frac{k_1}{2}), \\ k_3 = hf(t_n + \frac{3h}{4}, x_n + \frac{3k_2}{4}) \end{cases}$$

Теперь необходимо реализовать его в виде метода:

```
def Runge_Kutta(f, T, X0):
    X = np.zeros((len(T), len(X0)))
    X[0] = X0
    h = T[1] - T[0]
    for i in range(0, len(T) - 1):
        k_1 = h * f(T[i], X[i])
        k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
        k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
        X[i + 1] = (X[i] + (2 * k_1 + 3 * k_2 + 4 * k_3) / 9)
    return X[:, 0]
```

Все методы, необходимые для подсчета реализованы. Создадим отдельную функцию для подсчета решения с разным шагом (т.к. этого требует задание), в ней сразу же зададим начальные значения, узлы, по которым будет искаться решение и значение функции в этих точках (для дальнейшего подсчета погрешности):

```
def evaluate(h):
    # Начальные значения
    X0 = np.array([np.e ** 2, 2 * np.e ** 2])
    # Значения в узлах
    T = np.arange(1, 2 + h, h)
    Y = g(T)
```

Воспользовавшись методами, которые были приведены выше, выполним расчеты:

```
# Расчет RKF45
Y_RKF45 = rkf45(f, T, X0)
# Расчет Рунге-Кутты
Y_Runge_Kutta = Runge_Kutta(f, T, X0)
# Погрешности
Y_RKF45_error = Y - Y_RKF45
Y_Runge_Kutta_error = Y - Y_Runge_Kutta
```

Далее необходимо вывести полученные значения на экран, используем для этого библиотеку MatPlotLib. Отдельно выведем графики погрешности и полученные значения:

```
def print_one_graph(t, y, title, id, count_graphs):
      Функция для отрисовки одного графика
      plt.subplot(1, count_graphs, id)
      plt.xlabel('t')
      plt.ylabel('y')
      plt.grid()
      plt.title(title)
      plt.plot(t, y, '-o')
  def print_graph(t_find, y_real, Y_RKF45, Y_Runge_Kutta, h):
      Функция для отрисовки всех графиков
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
      print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
      print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
      plt.savefig(f"Graphs_{h}.jpg")
      plt.show()
  def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
      Функция для отрисовки погрешности
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
      # Собственно сам график
      print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
      print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
      plt.savefig(f"Error_{h}.jpg")
      plt.show()
```

Вызовем их из функции evaluate, для отрисовки всех графиков:

```
# Рисуем графики
print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
```

Далее для дополнительного анализа выведем значения в консоль, используя библиотеку prettytable:

```
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error,
  h):
       print(f'h = \{h\}')
       koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
       pt = PrettyTable()
       pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
       pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45_error[::koef]])
pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
       pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
  Y_Runge_Kutta_error[::koef]])
       print(pt)
       print('First step of RKF45:', Y_RKF45_error[1])
       print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
       print('Global of RKF45:', Y_RKF45_error[::koef].sum())
       print('Global of Runge Kutta:', Y_Runge_Kutta_error[::koef].sum())
       print('h^4 is about:', h ** 4)
       print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
       print('=' * 110)
```

Результат:

Как и ожидалось, полученные графики практически не отличаются:

Рис. 4. График решения при h = 0.0125

Больший интерес представляют графики погрешности:

Рис. 8. График погрешности при h = 0.0125

Как можно заметить, форма самого графика остается одинаковой, однако порядок сильно меняется, при изменении шага.

Так же даже по графику заметно, что погрешность метода Рунге-Кутты третьей степени значительно проигрывает программе RKF45, что достаточно ожидаемо, ведь в основе этой программы лежат методы Рунге-Кутты четвертой и пятой степени точности.

Для анализа зависимости шага интегрирования h_{int} и величины локальной и глобальной погрешностей решения заданного уравнения обратимся к численным результатам исследования:

h = 0.1

+	t	+	+	+	++
t	real y	RKF45 y	Delta RKF45 y	Runge Kutta y	Delta Runge Kutta y
1.0	7.389056098930650	7.389056098930650	0.000000000000000	7.389056098930650	0.000000000000000
1.1	9.025013499434122	9.025013516869686	-0.000000017435564	9.024500515493969	0.000512983940153
1.2	11.023176380641605	11.023176538875457	-0.000000158233853	11.021923296256636	0.001253084384969
1.3	13.463738035001695	13.463738395525420	-0.000000360523725	13.461442319161440	0.002295715840255
1.4	16.444646771097059	16.444647415729236	-0.000000644632177	16.440908219135842	0.003738551961217
1.5	20.085536923187682	20.085537960060527	-0.000001036872845	20.079829238304580	0.005707684883102
1.6	24.532530197109370	24.532531768309873	-0.000001571200503	24.524164776382666	0.008365420726705
1.7	29.964100047397046	29.964102338701789	-0.000002291304742	29.952179913555369	0.011920133841677
1.8	36.598234443678031	36.598237696934191	-0.000003253256160	36.581595734422294	0.016638709255737
1.9	44.701184493300886	44.701188964687368	-0.000004471386482	44.678322256974440	0.022862236326446
2.0	54.598150033144321	54.598155598718769	-0.000005565574448	54.567124249851460	0.031025783292861

First step of RKF45: -1.743556410360725e-08 First step of Runge Kutta: 0.0005129839401529779

Global of RKF45: -1.937042049959814e-05 Global of Runge Kutta: 0.10432030445312179

h^4 / Runge Kutta first step: 0.1949378765545347

Рис. 9. Результат исследования при h = 0.1

h = 0.05

į t	real y	RKF45 y	Delta RKF45 y	Runge Kutta y	Delta Runge Kutta y
1.0	7.389056098930650	7.389056098930650	0.0000000000000000	7.389056098930650	0.00000000000000000
1.1	9.025013499434122	9.025013501625160	-0.000000002191038	9.024944064111462	0.000069435322660
1.2	11.023176380641605	11.023176388458154	-0.000000007816549	11.023006764304872	0.000169616336732
1.3	13.463738035001695	13.463738050827361	-0.000000015825666	13.463427281404844	0.000310753596851
1.4	16.444646771097059	16.444646798095160	-0.000000026998102	16.444140699310093	0.000506071786965
1.5	20.085536923187682	20.085536965529673	-0.000000042341991	20.084764279314374	0.000772643873308
1.6	24.532530197109370	24.532530260266185	-0.000000063156815	24.531397750236174	0.001132446873196
1.7	29.964100047397046	29.964100138510030	-0.000000091112984	29.962486350914514	0.001613696482533
1.8	36.598234443678031	36.598234572030442	-0.000000128352411	36.595981911389273	0.002252532288757
1.9	44.701184493300886	44.701184670916255	-0.000000177615370	44.698089349913182	0.003095143387704
2.0	54.598150033144321	54.598150275544839	-0.000000242400517	54.593949586335228	0.004200446809094

First step of RKF45: -7.847944516470307e-11

First step of Runge Kutta: 3.1413899460375205e-05

Global of RKF45: -1.4647554884561487e-06

Global of Runge Kutta: 0.025995142229312762 h^4 is about: 6.25000000000001e-06

 h^4 / Runge Kutta first step: 0.1989565162988954

Рис. 10. Результат исследования при h = 0.05

t	real y	RKF45 y	Delta RKF45 y	Runge Kutta y	Delta Runge Kutta y
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	7.389056098930650 9.025013499434113 11.023176380641585 13.463738035001660 16.444646771097002 20.085536923187593 24.532530197109239 29.964100047396858 36.598234443677775	7.389056098930650 9.025013499577801 11.023176380992583 13.463738035644724 16.444646772144257 20.085536924786492 24.532530199452719 29.964100050736249 36.598234448339191	0.000000000000000 -0.000000000143688 -0.000000000350997 -0.000000001047255 -0.000000001598899 -0.000000002343480 -0.0000000033339391 -0.000000004661416	7.389056098930650 9.025004466700494 11.023154315441113 13.463697609276819 16.444580936340852 20.085436409796969 24.532382876383917 29.963890119904967 36.597941408375718	0.000000000000000000000000000000000000
1.9	44.701184493300531 54.598150033143838	44.701184499705683 54.598150041836362	-0.000000006405152 -0.000000008692524	44.700781840110089 54.597603587064640	0.000402653190442 0.000546446079198

First step of RKF45: -3.091749078976136e-11 First step of Runge Kutta: 1.9436371978542866e-06

Global of RKF45: -1.0308740350239987e-07 Global of Runge Kutta: 0.006480486576304401 h^4 is about: 3.906250000000007e-07

h^4 / Runge Kutta first step: 0.2009762935342242

Рис. 11. Результат исследования при h = 0.025

h = 0	.0125				
į t	real y	RKF45 y	Delta RKF45 y	Runge Kutta y	Delta Runge Kutta y
1.0 1.1 1.2 1.3 1.4 1.5 1.6	9.025013499434113 11.023176380641585 13.463738035001660 16.444646771097002 20.085536923187593 24.532530197109239 29.964100047396858	7.389056098930650 9.025013499438806 11.023176380653045 13.463738035022654 16.444646771131190 20.085536923239793 24.532530197185743 29.964100047505873	0.00000000000000000000000000000000000	7.389056098930650 9.025012347561770 11.023173566841647 13.463732879827486 16.444638375705598 20.085524105495647 24.532511410433283 29.96407377443064	0.000000000000000 0.00001151872343 0.000002813799938 0.000005155174174 0.000008395391404 0.000012817691946 0.000018786675955 0.000026770445761 0.0000187866770445761
1.8 1.9 2.0	44.701184493300531	36.598234443829952 44.701184493509636 54.598150033427601	-0.000000000152177 -0.0000000000209106 -0.000000000283762	36.598197075112964 44.701133145977167 54.598080348967869	0.000037368564811 0.000051347323364 0.000069684175969

First step of RKF45: -4.920508445138694e-13 First step of Runge Kutta: 1.2086842193781422e-07

Global of RKF45: -6.880966907374386e-09 Global of Runge Kutta: 0.001689689679643891 h^4 is about: 2.4414062500000004e-08

h^4 / Runge Kutta first step: 0.201988758590402

Рис. 12. Результат исследования при h = 0.0125

Можно заметить, что локальная погрешность первого шага пропорциональна четвертой степени шага, как и было предсказано.

Так же из приведенных результатов более заметна разница между методами Рунге-Кутты 3 степени точности и программой RKF45, как после первого шага, так и при подсчете глобальной погрешности, что сильнее проявляется при уменьшении шага.

Вывод:

В ходе выполненной работы мы привели линейное дифференциальное уравнение к системе двух дифференциальных уравнений первого порядка, после чего решили эту систему при заданных НУ, используя методы Рунге-Кутты третьей степени точности, а также программу RKF45. Была найдена зависимость шага интегрирования h и величины глобальной и локальной погрешности а также наглядно продемонстрирована разница между используемыми методами.

Листинг кода:

```
import numpy as np
from scipy.integrate import ode
import matplotlib as mpl
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def rkf45(f, T, X0):
    Pewaem x' = f(t, x) для каждого t \ \theta \ T
    С начальным значением `XO`, используя аналог rkf45
    runge = ode(f).set_integrator('dopri5', atol=0.0001).set_initial_value(X0, T[0])
    X = [X0, *[runge.integrate(T[i]) for i in range(1, len(T))]]
    return np.array([i[0] for i in X])
def Runge_Kutta(f, T, X0):
    Pewaem x' = f(t, x) для каждого t \ \theta \ T
    С начальным значением `ХО`, используя формулы Рунге-Кутты 3 степени
    X = np.zeros((len(T), len(X0)))
    X[0] = X0
    h = T[1] - T[0]
    for i in range(0, len(T) - 1):
        k_1 = h * f(T[i], X[i])
        k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
        k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
        X[i + 1] = (X[i] + (2 * k_1 + 3 * k_2 + 4 * k_3) / 9)
    return X[:, 0]
def f(t, X):
    Правая часть x' = f(t, x).
    dX = np.zeros(X.shape)
    dX[0] = X[1]
    dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
    return dX
def g(T):
    Точное решение
    return np.e ** (2 * T)
def print_one_graph(t, y, title, id, count_graphs):
    Функция для отрисовки одного графика
    plt.subplot(1, count_graphs, id)
    plt.xlabel('t')
    plt.ylabel('y')
    plt.grid()
    plt.title(title)
    plt.plot(t, y, '-o')
```

```
def print graph(t find, y real, Y RKF45, Y Runge Kutta, h):
    Функция для отрисовки всех графиков
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
    plt.savefig(f"Graphs_{h}.jpg")
    plt.show()
def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
    Функция для отрисовки погрешности
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    # Собственно сам график
    print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
    print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
    plt.savefig(f"Error_{h}.jpg")
    plt.show()
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta,
Y_Runge_Kutta_error, h):
    Функция для отрисовки таблицы
    print(f'h = {h}')
    koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
    pt = PrettyTable()
    pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
    pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
    \label{eq:pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45\_error[::koef]])} \\
    pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
    pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
Y_Runge_Kutta_error[::koef]])
    print(pt)
    print('First step of RKF45:', Y_RKF45_error[1])
    print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
    print('Global of RKF45:', Y_RKF45_error.sum())
    print('Global of Runge Kutta:', Y_Runge_Kutta_error.sum())
    print('h^4 is about:', h ** 4)
    print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
    print('=' * 110)
```

```
def evaluate(h):
   Получение решения при разных шагах
   # Начальные значения
   X0 = np.array([np.e ** 2, 2 * np.e ** 2])
   # Значения в узлах
   T = np.arange(1, 2 + h, h)
   Y = g(T)
   # Расчет RKF45
   Y_RKF45 = rkf45(f, T, X0)
   # Расчет Рунге-Кутты
   Y_Runge_Kutta = Runge_Kutta(f, T, X0)
   # Погрешности
   Y_RKF45_error = Y - Y_RKF45
   Y_Runge_Kutta_error = Y - Y_Runge_Kutta
   # Рисуем графики
   print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
   print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
   # Выводим данные в консоль
   print_table(T, Y, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error, h)
def main():
   h = 0.1
   for i in range(4):
       evaluate(h)
       h /= 2
if __name__ == '__main__':
   main()
```

Ссылки:

Листинг код: github.com

Документация по SciPy: docs.scipy.org