Revisiting pitch framing with Bayesian Additive Regression Trees

Sameer K. Deshpande

University of Wisconsin-Madison

EURO 2022

6 July 2022

Pitch framing

- Umpires' ball/strike decisions not deterministic
- Some catchers can influence $\mathbb{P}(\text{strike})$
 - Good framers "make balls look like strikes"
 - ► Good framers "steal strikes"
- Seemingly outsized value relative to # of frameable pitches
 - ► Top framers save 15–25 runs on avg. per season
 - ► Estimated \$14M/yr in contract value
 - ▶ Only a few frameable pitches per game
 - Motivating questions:
 - How certain are we about the value of framing?
 - Is estimated framing value stable season-to-season?

Estimating the impact of pitch framing

- Catcher expected to save $\rho \times (p p_0)$ runs over baseline
 - ightharpoonup
 ho: expected value of a called strike relative to ball
 - ightharpoonup p ho ho ho: called strike prob. & league-average baseline prob.
 - Avoids awarding credit for obvious calls & accounts for context
 - \odot We don't know the exact values ρ , p or p_0 for each pitch

Estimating the impact of pitch framing

- Catcher expected to save $\rho \times (p p_0)$ runs over baseline
 - ho: expected value of a called strike relative to ball
 - $p \& p_0$: called strike prob. & league-average baseline prob.
 - Avoids awarding credit for obvious calls & accounts for context
 - \odot We don't know the exact values ρ , p or p_0 for each pitch
- Value of a called strike estimated using historic data
 - ho: diff. in avg. # runs in scored in half-inning after called ball & strike
 - Assumption: ρ depends only on count & outs
 - ► E.g. value of a strike on 1-1 pitch w/ 1 out is 0.14

Estimating the impact of pitch framing

- Catcher expected to save $\rho \times (p p_0)$ runs over baseline
 - ho: expected value of a called strike relative to ball
 - ▶ $p \& p_0$: called strike prob. & league-average baseline prob.
 - © Avoids awarding credit for obvious calls & accounts for context
 - \odot We don't know the exact values ρ , p or p_0 for each pitch
- Value of a called strike estimated using historic data
 - ho: diff. in avg. # runs in scored in half-inning after called ball & strike
 - Assumption: ρ depends only on count & outs
 - ► E.g. value of a strike on 1-1 pitch w/ 1 out is 0.14
- Estimated called strike probabilities
 - ▶ $\mathbb{P}(\text{called strike}) = F(\text{location}, \text{personnel}, \text{context})$
 - ▶ context: count, outs, baserunner configuration, ...
 - ▶ Baseline p_0 : average of "counterfactual" catcher probs.
 - ▶ Need to estimate *F* and get reliable uncertainty estimates

Remaining plan

- D & Wyner (2017)'s hierarchical model for ℙ(called strike)
 - © "Shares statistical strength" between umpires
 - Heavily over-parametrized & indirect parametrization of location
 - © Limited to two-way interactions (e.g. umpire × count)

Remaining plan

- D & Wyner (2017)'s hierarchical model for ℙ(called strike)
 - © "Shares statistical strength" between umpires
 - Heavily over-parametrized & indirect parametrization of location
 - © Limited to two-way interactions (e.g. umpire × count)

- Towards a fully nonparametric model
 - Uses Bayesian Additive Regression Trees
 - Avoid specifying functional form of F or potential interactions a priori
 - Implementation challenge: handling all of the categorical inputs

Framing the problem

Estimating strike probabilities

Results & next steps

Model from D. & Wyner (2017)

- Let y = 1 for called strike and y = 0 for ball
- For umpire *u*, we model

$$\log \left(\frac{\mathbb{P}(y=1)}{\mathbb{P}(y=0)}\right) = \theta_0^u + \theta_b^u + \theta_c^u + \theta_p^u + \theta_{count}^u + \theta_{loc}^u \times \log \left(\frac{\hat{p}}{1-\hat{p}}\right)$$

- Umpire-specific effects of batters, catchers, pitchers, & count
- For each catcher c: θ_c^u 's are i.i.d $\mathcal{N}(\overline{\theta}_c, \sigma_c^2)$
 - Shrink effects on each umpire to common mean $\overline{\theta}_c$
 - ▶ Common prior on $\overline{\theta}_c$'s shrinks all avg. catcher effects to 0
- \hat{p} is historical estimate of called strike prob. based on location

Model from D. & Wyner (2017)

- Let y = 1 for called strike and y = 0 for ball
- For umpire *u*, we model

$$\log \left(\frac{\mathbb{P}(y=1)}{\mathbb{P}(y=0)}\right) = \theta_0^u + \theta_b^u + \theta_c^u + \theta_p^u + \theta_{count}^u + \theta_{loc}^u \times \log \left(\frac{\hat{p}}{1-\hat{p}}\right)$$

- Umpire-specific effects of batters, catchers, pitchers, & count
- For each catcher c: θ_c^u 's are i.i.d $\mathcal{N}(\overline{\theta}_c, \sigma_c^2)$
 - lacktriangle Shrink effects on each umpire to common mean $\overline{ heta}_c$
 - ▶ Common prior on $\overline{\theta}_c$'s shrinks all avg. catcher effects to 0
- \hat{p} is historical estimate of called strike prob. based on location
- © 50+ hours to get 6,000 samples (fit in Stan in an HPC environment)
- \odot Heavily over-parameterized ($\geq 170,000$ parameters)
- © Only supported 2-way interaction (e.g. umpire × catcher)

Bayesian Additive Regression Trees

• Chipman et al. (2010)'s probit model: $\mathbb{P}(y=1) = \Phi(f(x))$ where f(x) = sum of M binary regression trees

- No need to specify functional form of f a priori
- BART has proven tremendously successful in applications
- Sums of regression trees have great representational flexibility

Gibbs Sampling

- Introduce latent $z \sim \mathcal{N}(f(x), 1)$ s.t. $y = \mathbb{1}(z \ge 0)$
- Given sum of trees f(x), draw z from truncated normal
- Given z, sequentially grow or prune each regression tree at random

Handling categorical predictors

- We have several categorical variables with many levels
 - **Each** season: 900+ batters, 100+ catchers, \sim 100 umpires

Handling categorical predictors

- We have several categorical variables with many levels
 - **Each** season: 900+ batters, 100+ catchers, \sim 100 umpires
- Default implementation of BART: create binary dummy variables

Handling categorical predictors

- We have several categorical variables with many levels
 - lacktriangle Each season: 900+ batters, 100+ catchers, \sim 100 umpires
- Default implementation of BART: create binary dummy variables
- Our implementation: randomly partition set of available levels

Framing the problem

Estimating strike probabilities

Results & next steps

Expected runs saved

Uncertainty in expected runs saved

- Causal estimates?
 - We summed $\hat{\rho} \times (\hat{p} \hat{p}_0)$ for each catcher
 - Expected runs saved is confounded by pitcher, batter, location, ...
 - ▶ Partial salvage: average out location (see D. & Wyner (2017))

- Causal estimates?
 - We summed $\hat{\rho} \times (\hat{p} \hat{p}_0)$ for each catcher
 - Expected runs saved is confounded by pitcher, batter, location, ...
 - ▶ Partial salvage: average out location (see D. & Wyner (2017))
- Smoother called strike estimates
 - ► For each (personnel, context) output a smooth heat map
 - Sum of treed GPs or sum of treed low rank thin plate splines?

- Causal estimates?
 - We summed $\hat{
 ho} imes (\hat{p} \hat{p}_0)$ for each catcher
 - Expected runs saved is confounded by pitcher, batter, location, ...
 - ▶ Partial salvage: average out location (see D. & Wyner (2017))
- Smoother called strike estimates
 - ► For each (personnel, context) output a smooth heat map
 - ▶ Sum of treed GPs or sum of treed low rank thin plate splines?
- Leveraging full pitch trajectory?
 - Effect of pitch movement & break on umpire's decision?
 - Functional inputs for treed models?

- Causal estimates?
 - We summed $\hat{\rho} \times (\hat{p} \hat{p}_0)$ for each catcher
 - Expected runs saved is confounded by pitcher, batter, location, ...
 - ▶ Partial salvage: average out location (see D. & Wyner (2017))
- Smoother called strike estimates
 - ► For each (personnel, context) output a smooth heat map
 - ▶ Sum of treed GPs or sum of treed low rank thin plate splines?
- Leveraging full pitch trajectory?
 - Effect of pitch movement & break on umpire's decision?
 - Functional inputs for treed models?

Thanks, y'all!

Email: sameer.deshpande@wisc.edu

D. & Wyner (2017): arXiv:1704.00823

Website: https://skdeshpande91.github.io