G6321

	4652	Access DB#	11
	SEARCH REC	TOWN TO	
	oientific and Technic	al Information Center -0	
: (Enrigal	but claims i	n 4. S. Parent 10/047, 434	
Requester's Full Name: MOLL	Y CEPERLEY	Examiner #: 59757 Date: 05/09/02	
Art Unit: 1641 Phone	Number 30 8-423 9	, Serial Number: PCT/US 01/50838	
Mail Box and Bldg/Room Location	on: CMI-YDIS Res	ults Format Preferred (circle) PAPER DISK E-MAIL	: -1
If more than one search is sub	mitted, please prioriti	ze searches in order of need.	
Please provide a detailed statement of th	e search topic, and describe	as specifically as possible the subject matter to be searched.	(4) (1)
Include the elected species or structures, utility of the invention. Define any term	keywords, synonyms, acro s that may have a special m	nyms, and registry numbers, and combine with the concept or eaning. Give examples or relevant citations, authors, etc. if	
known. Please attach a copy of the cover			***
Title of Invention: MASS TAG	FOR QUANTITATIO	ANALYSIS	
Inventors (please provide full names):	Haihong Zou	A STATE OF THE STA	To the second
			3.3
Earliest Priority Filing Date: //	125/00		公園
	ude all pertinent information	(parent, child, divisional, or issued patent numbers) along with the	
appropriate serial number.			- 1
		inds of claims 19-22	一道
@ Please rearch for	the concept of	PROTEIN IDENTIFICATION PROTEOME ANAL	YSS
CITETALIANALYSIS SUSING	PROTE IN MASS TI	G (PMT) ISOTOPE CODED AFFINITY TAG	
(DOATA) DIFFERENTIAL LA	BELING FOR MA	SUSPECTROMETRY	1.71
CICATA DIFFERENTIAL LA	BELLING FOR MA	SESSECTROMETEN	
GCATA) DIFFERENTIAL LA	BENING FOR MA	SESPECTROMETEN AND AND AND AND AND AND AND AND AND AN	
(DEATE) DIFFERENTIAL LA	BELLING FOR IND	SESPECTROMETRY	
(DEATA) DIFFERENTIAL LA	BELLING FOR IMA	SESPECTROMETRY AND A TOTAL AND	
CECATA) DIFFERENTIAL LA	BELLING FOR MA	SESPECITROMETRIAL TO THE PROPERTY OF THE PROPE	
(DEATE) DIFFERENTIAL LA	SELLING FOR IND	SERECTROMETRY.	
(DEATA) DIFFERENTIAL LA	EEVING FOR IND	SESPECTROMETRY	
(DEATE) DIFFERENTIAL LA	SELLING FOR IND	SESPECIFICATELLY	
(DEATE) DIFFERENTIAL LA	SELLING FOR IND	SESSECTROMETE Y.	
(ESAT)) DIFFERENTIAL LA	EELING FOR IND	SESPECTROMETRY	
(BSATA) DIFFERENTIAL LA	SELLING FOR IND	SESSECTROMETE Y	
(ESAT)) DIFFERENTIAL LA	SELLING FOR IND	SESSECTROMETE Y.	
	SELLING FOR IND		
STAFF USE ONLY	Type of Search	Vendors and cost where applicable	
STAFF USE ONLY Searcher: Searcher: Searcher	Type of Search NA Sequence (#)	Vendors and cost where applicable	
STAFF USE ONLY Searcher Phone #: 308-449.9	Type of Search NA Sequence (#) AA Sequence (#)		
STAFF USE ONLY Searcher: Searcher: Searcher	Type of Search NA Sequence (#)	Vendors and cost where applicable SIN Dialog	
STAFF USE ONLY Searcher: Scarcher Phone #: 308 4499 Searcher Location:	Type of Search NA Sequence (#) AA Sequence (#) Structure (#)	Vendors and cost where applicable SIN Dialog Questel/Orbit	

PTO-1590 (8-01)

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 19:36:17 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 10 May 2002 VOL 136 ISS 19 FILE LAST UPDATED: 8 May 2002 (20020508/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> => => d stat que 18 L3 STR

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 27

STEREO ATTRIBUTES: NONE

L5 218 SEA FILE=REGISTRY SSS FUL L3

L6 STR

 $0 \stackrel{\longleftarrow}{==} C \sim C \sim X$ 45 @46 47 48

Page 1-A

Page 2-A VAR G1=20/21 VAR G2=32/42/46/57/65/59 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 66

STEREO ATTRIBUTES: NONE

=>

2001:923565 HCAPLUS

```
=>
=> d ibib abs hitrn 18 1
     ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
DOCUMENT NUMBER:
TITLE:
INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
     PATENT NO.
     WO 2001095857
     WO 2001095857
```

```
136:42919
Biotin derivatives for an extracorporeal device
Sandberg, Bengt; Wilbur, Scott; Nilsson, Rune
Mitra Medical Technology AB, Swed.; University of
Washington
PCT Int. Appl., 45 pp.
CODEN: PIXXD2
Patent
```

English

```
KIND DATE
                                          APPLICATION NO. DATE
                    A2
                            20011220
                                          WO 2001-SE1374 20010618
                     А3
                            20020328
        W: AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE, EE, ES,
             FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
             KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
            MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, SL, TJ,
             TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG,
            KZ, MD, RU, TJ
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                                        A 20000616
                                        SE 2000-2287
                                        US 2000-216625P P 20000707
```

A method for the conditioning of an extracorporeal device is described, as AΒ well as a method for extracorporeal extn. of toxic material from mammalian body fluids in connection with diagnosis or treatment of a mammalian condition or disease. The methods comprise (i) a soln. contg. a reagent comprising biotin moieties, such as natural biotin or its derivs., and a toxin-binding moiety, (ii) linkers and a trifunctional crosslinking moiety, and (ii) an extracorporeal device comprising said reagent. example, a dibiotin compd., 1-isothiocyanato-3,5-bis-(13'-biotinamidyl-4',7',10'-trioxatridecanamidyl)-aminoisophthalate was prepd. and conjugated with a toxin-binding mol., i.e., monoclonal antibody 53-6A2. A dibiotin-toxin-binding conjugate was used for conditioning of an avidin-agarose column suitable for removal of toxins from blood.

IT 380607-53-4P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. of biotin derivs. for conditioning of extracorporeal device and extn. of toxic material from mammalian body fluids)

=> fil caold FILE 'CAOLD' ENTERED AT 19:36:35 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

FILE COVERS 1907-1966

FILE LAST UPDATED: 01 May 1997 (19970501/UP)

This file contains CAS Registry Numbers for easy and accurate substance identification. Title keywords, authors, patent assignees, and patent information, e.g., patent numbers, are now searchable from 1907-1966. TIFF images of CA abstracts printed between 1907-1966 are available in the PAGE display formats.

This file supports REG1stRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information.

=> s 17

L9 · 0 L7

=> fil reg FILE 'REGISTRY' ENTERED AT 19:36:47 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 8 MAY 2002 HIGHEST RN 412906-88-8 DICTIONARY FILE UPDATES: 8 MAY 2002 HIGHEST RN 412906-88-8

TSCA INFORMATION NOW CURRENT THROUGH July 7, 2001

Please note that search-term pricing does apply when . conducting ${\tt SmartSELECT}$ searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Calculated physical property data is now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details: http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf

=> d ide can 17

- L7 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
- RN 380607-53-4 REGISTRY
- CN 1,3-Benzenedicarboxamide, 5-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-N,N'-bis[19-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-15-oxo-4,7,10-trioxa-14-azanonadec-1-yl]- (9CI) (CA INDEX NAME)
- FS STEREOSEARCH
- MF C52 H79 N9 O14 S2
- SR CA
- LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

***PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT**

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 136:42919

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 19:38:59 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 10 May 2002 VOL 136 ISS 19 FILE LAST UPDATED: 8 May 2002 (20020508/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

```
=>
=>
=> d stat que nos
L3
            218 SEA FILE=REGISTRY SSS FUL L3
T<sub>1</sub>5
L6
                 STR
L7
              1 SEA FILE=REGISTRY SUB=L5 SSS FUL L6
              1 SEA FILE=HCAPLUS ABB=ON PLU=ON L7
L8
L10
                 STR
             89 SEA FILE=REGISTRY SUB=L5 SSS FUL L10
L11
             33 SEA FILE=HCAPLUS ABB=ON PLU=ON L11
L12
L13
             32 SEA FILE=HCAPLUS ABB=ON PLU=ON L12 NOT L8
=>
=>
=> d ibib abs hitrn 113 1-32
L13 ANSWER 1' OF 32
                      HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                          2002:293894 HCAPLUS
TITLE:
```

High throughput or capillary-based screening of libraries of compounds for biological activities

INVENTOR(S): Short, Jay M.; Keller, Martin; Lafferty, William

Michael

PATENT ASSIGNEE(S): Diversa Corporation, USA PCT Int. Appl., 229 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                 KIND DATE
                                         APPLICATION NO. DATE
                          -----
    WO 2002031203 A2
                           20020418 WO 2001-US31806 20011010
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,
            PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
            US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
            BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
    US 2001041333
                           20011115
                                         US 2000-738871 20001215
                    A1
    US 2002048809
                      A1
                           20020425
                                         US 2001-790321
                                                          20010221
                                         US 2001-894956
                                                          20010627
    US 2002015997
                      A1
                           20020207
                                      US 2000-685432 A2 20001010
PRIORITY APPLN. INFO.:
                                      US 2000-738871 A2 20001215
                                      US 2001-790321 A2 20010221
                                      US 2001-894956 A2 20010627
                                      US 2001-309101P P 20010731
                                      US 1997-876276 A2 19970616
                                      US 1998-98206
                                                      A2 19980616
                                                     A2 19991122
                                      US 1999-444112
                                      US 2000-636778
                                                      A2 20000811
                                      US 2000-687219
                                                      A2 20001012
```

Provided is a method of screening or enriching a sample contg. AΒ polynucleotides from a mixed population of organisms. The method includes creating a DNA library from a plurality of nucleic acid sequences of a mixed population of organisms and sepg. clones contg. a polynucleotide sequence of interest on an analyzer detects a detectable mol. on a probe or bioactive substrate. Individual members of the library can be sepd. and analyzed using an ordered array of fine capillaries that can be used to take up individual members of the library. The capillary array may contain up to 1 million members. Methods of analyzing biol. activities, such as enzyme assays or reporter gene expression, are described. The analyzer includes FACS devices, SQUID devices and MSC devices. The sepd. or enrich library can then be further process by activity based screening or sequence based screening. In addn., the enriched sequence can be compared to a database and to identify sequences in the database which have homol. to a clone in the library thereby obtaining a nucleic acid profile of the mixed population of organisms.

IT INDEXING IN PROGRESS

IT 412319-47-2

RL: RCT (Reactant); RACT (Reactant or reagent) (prepn. and reactions of; high throughput or capillary-based screening of libraries of compds. for biol. activities)

IT 412319-48-3

RL: ARG (Analytical reagent use); RCT (Reactant); ANST (Analytical study); RACT (Reactant or reagent); USES (Uses)

(prepn. of, as assay substrate for esterases; high throughput or capillary-based screening of libraries of compds. for biol. activities)

L13 ANSWER 2 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2001:468181 HCAPLUS DOCUMENT NUMBER: 135:73673

TITLE: Assay compositions and kits using chemiluminescent compounds and photosensitizers activating oxygen to

its singlet state

INVENTOR(S): Ullman, Edwin F.; Kirakossian, Hrair; Pease, John S.;

Daniloff, Yuri; Wagner, Daniel B.

PATENT ASSIGNEE(S): Dade Behring Marburg G.m.b.H., Germany

SOURCE: U.S., 38 pp. CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
US 6251581	B1	20010626	US 1991-704569 19910522
US 5340716			
CA 2069145		19921123	
NO 9202009	Α	19921123	NO 1992-2009 19920521
EP 515194	A2	19921125	EP 1992-304630 19920521
EP 515194	A3	19931020	
EP 515194	В1		
R: AT, BE,	CH, DE	, DK, ES,	FR, GB, GR, IT, LI, LU, NL, PT, SE
AU 9217068	A1	19921126	AU 1992-17068 19920521
AU 657134			
			IL 1992-101945 19920521
			IL 1992-116300 19920521
EP 984281	A2	20000308	EP 1999-121547 19920521
EP 984281	A3		
			FR, GB, GR, IT, LI, LU, NL, SE, PT
EP 984282	A2	20000308	EP 1999-121551 19920521
EP 984282	A3	20000607	
			FR, GB, GR, IT, LI, LU, NL, SE, PT
AT 208039	E	20011115	AT 1992-304630 19920521
JP 05180773			
			US 1993-156181 19931122
US 5536834	A	19960716	US 1995-471131 19950606
US 6180354	BI	20010130	US 1995-480430 19950606
US 5811311	A	19980922 19980714	US 1995-488228 19950607
US 5780646	A	19980/14	US 1996-660029 19960606 US 1998-75264 19980511
05 6340599	BT	20020122	
PRIORITY APPLN. INFO	.:		US 1991-704569 A 19910522
			US 1991-718490 A 19910620 EP 1992-304630 A3 19920521
			IL 1992-101945 A3 19920521
			US 1993-156181 A3 19931122
			US 1995-471131 A1 19950606
			US 1995-488228 A1 19950607
AP Compact and kit	e aro d	isclosed t	for data an analyte in a medium sugn

AB Compns. and kits are disclosed for detg. an analyte in a medium suspected of contg. the analyte. One method comprises treating a medium suspected of contg. an analyte under conditions such that the analyte, if present, causes a photosensitizer and a chemiluminescent compd. to come into close proximity. The photosensitizer generates singlet oxygen and activates the chemiluminescent compd. when it is in close proximity. The activated chemiluminescent compd. subsequently produces light. The amt. of light produced is related to the amt. of analyte in the medium. Preferably, at least one of the photosensitizer and chemiluminescent compd. is assocd. with a surface which is usually a suspendable particle, and a specific binding pair member is bound thereto. Prepn. of assay reagents and assays for vitamin B12, digoxin, human chorionic gonadotropin, TSH, and a target oligonucleotide are described. The digoxin assay used digoxin conjugated

with 6-carboxyfluorescein via a linker from bis-(3-aminopropyl)methylamine, biotinylated monoclonal antibody to digoxin, avidin conjugated with polystyrene beads contg. dioctadecylaminocarboxylbenzal acridan as acceptor beads, and anti-fluorescein monoclonal antibody conjugated with polystyrene beads contg. tetra-(n-decyl)aluminum phthalocyanin as sensitizing beads. After addn. of the sensitizing beads and incubation in the dark for 30 min at room temp., the reaction mixts. were illuminated for 1 min and chemiluminescence was detd. using a luminometer.

IT 346403-99-4

RL: ARG (Analytical reagent use); RCT (Reactant); ANST (Analytical study); RACT (Reactant or reagent); USES (Uses)

(assay compns. and kits using chemiluminescent compds. and photosensitizers activating oxygen to singlet state)

REFERENCE COUNT: 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 3 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2001:408721 HCAPLUS

DOCUMENT NUMBER: 135:134197

TITLE: Biotin reagents for antibody pretargeting. 5.

Additional studies of biotin conjugate design to

provide biotinidase stability

AUTHOR(S): Wilbur, D. Scott; Hamlin, Donald K.; Chyan, Ming-Kuan;

Kegley, Brian B.; Pathare, Pradip M.

CORPORATE SOURCE: Department of Radiation Oncology, University of

Washington, Seattle, WA, 98195, USA

SOURCE: Bioconjugate Chemistry (2001)... 12(4), 616-623

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

An investigation was conducted in which the stabilities of four structurally different biotin derivs. were assessed with regard to biotinamide bond hydrolysis by the enzyme biotinidase. The biotin derivs. studied contained an extra methylene in the valeric acid chain of biotin (i.e., homobiotin), or contained conjugated amino acids having hydroxymethylene, carboxylate, or acetate functionalities on a methylene alpha to the biotinamide bond. The biotinidase hydrolysis assay was conducted on biotin derivs. that were radioiodinated at high specific activity, and then subjected to dild. human serum at 37.degree. for 2 h. After incubation, assessment of biotinamide bond hydrolysis by biotinidase was readily achieved by measuring the percentage of radioactivity that did not bind with avidin. As controls, an unsubstituted biotin deriv. which is rapidly cleaved by biotinidase and an N-methyl-substituted biotin deriv. which is stable to biotinidase cleavage were included in the study. The results indicate that increasing the distance from the biotin ring structure to the biotinamide bond by one methylene only decreases the rate of biotinidase cleavage, but does not block it. The data obtained also indicate that placing a hydroxymethylene, carboxylate, or acetate alpha to the biotinamide bond is effective in blocking the biotinamide hydrolysis reaction. These data, in combination with data previously obtained, which indicate that biotin derivs. contg. hydroxymethylene or carboxylate moieties retain the slow dissocn. rate of biotin from avidin and streptavidin [Wilbur, D. S., et al. (2000) Bioconjugate Chem. 11, 569-583], strongly support incorporation of these structural features into biotin derivs. being used for in vivo targeting applications.

IT 194920-45-1P 194920-46-2P 194920-60-0P 194920-61-1P 194920-64-4P 194920-71-3P

```
351534-98-0P 351534-99-1P 351535-00-7P
     351535-01-8P 351535-05-2P 351535-06-3P
     RL: ARU (Analytical role, unclassified); SPN (Synthetic preparation); ANST
     (Analytical study); PREP (Preparation)
        (biotin reagents for antibody pretargeting.)
     351535-09-6P 351535-10-9P 351535-11-0P
ΙT
     RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
     (Reactant or reagent)
        (biotin reagents for antibody pretargeting.)
                               THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                         34
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L13 ANSWER 4 OF 32 HCAPLUS COPYRIGHT 2002 ACS
                         2001:194054 HCAPLUS
ACCESSION NUMBER:
                         134:367106
DOCUMENT NUMBER:
TITLE:
                         Synthesis of biotinylated bis-(D-glucose) derivatives
                         for glucose transporter photoaffinity labeling
                         Hashimoto, M.; Hatanaka, Y.; Yang, J.; Dhesi, J.;
AUTHOR(S):
                         Holman, G. D.
                         Department of Biology and Biochemistry, University of
CORPORATE SOURCE:
                         Bath, Claverton Down, Bath, BA2 7AY, UK
SOURCE:
                         Carbohydrate Research (2001), 331(2), 119-127
                         CODEN: CRBRAT; ISSN: 0008-6215
                         Elsevier Science Ltd.
PUBLISHER:
DOCUMENT TYPE:
                         Journal
LANGUAGE:
                         English
     New diazirine based bis-glucose derivs. for tagging glucose transporters
     have been synthesized. These included two biotinylated compds. linked
     either by an aminocaproate or by a cleavable dithiol link. These compds.
     have been derivatized via a key skeleton compd. that can be easily used
     for introduction of addnl. tags. Studies on the erythrocyte glucose
     transporter (GLUT1) and the insulin-stimulated adipose cell transporter
     (GLUT4) have revealed the biotinylated photoreactive bis-glucose compds.
     are effective labeling reagents.
     340293-00-7P 340293-01-8P
     RL: BAC (Biological activity or effector, except adverse); BSU (Biological
     study, unclassified); SPN (Synthetic preparation); BIOL (Biological
     study); PREP (Preparation)
        (synthesis of biotinylated bisglucose derivs. for glucose transporter
        photoaffinity labeling)
REFERENCE COUNT:
                         18
                               THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L13 ANSWER 5 OF 32 HCAPLUS COPYRIGHT 2002 ACS
                         2001:52907
                                    HCAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                         134:277052
                         Cell-surface recognition of biotinylated membrane
TITLE:
                         proteins requires very long spacer arms: an example
                         from glucose-transporter probes
                         Hashimoto, Makoto; Yang, Jing; Holman, Geoffrey D.
AUTHOR(S):
                         Department of Biology and Biochemistry, University of
CORPORATE SOURCE:
                         Bath, Bath, BA2 7AY, UK
SOURCE:
                         ChemBioChem (2001), 2(1), 52-59
                       Published in: Angew. Chem., Int. Ed., 40(1)
                         CODEN: CBCHFX; ISSN: 1439-4227
PUBLISHER:
                         Wiley-VCH Verlag GmbH
DOCUMENT TYPE:
                         Journal
```

English

Glucose transporters (GLUTs) can be photoaffinity labeled by

LANGUAGE:

(diazirinetrifluoroethyl)benzoyl-substituted glucose derivs. and the adduct can be recognized, after detergent solubilization of membranes, by using streptavidin-based detection systems. However, in intact cells recognition of photolabeled GLUTs by avidin and anti-biotin antibodies only occurs if the bridge between the photoreactive and the biotin moieties has a min. of 60-70 spacer atoms. We show that a suitably long bridge can be synthesized with a combination of polyethylene glycol and tartrate groups and that introduction of these spacers generates hydrophilic products that can be cleaved with periodate. Introduction of the very long spacers does not appreciably reduce the affinity of interaction of the probes with the transport system.

IT 332941-45-4P 332941-49-8P 332941-52-3P 332941-54-5P 332941-56-7P

RL: PNU (Preparation, unclassified); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(reagents with long spacer arms between biotin and photoaffinity label can be used for cell-surface recognition of biotinylated glucose transporters)

REFERENCE COUNT: 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 6 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:895537 HCAPLUS

DOCUMENT NUMBER: 134:204239

TITLE: Development of Biotin-Avidin Technology to Investigate

Okadaic Acid-Promoted Cell Signaling Pathway

AUTHOR(S): Konoki, K.; Sugiyama, N.; Murata, M.; Tachibana, K.;

Hatanaka, Y.

CORPORATE SOURCE: Department of Chemistry, School of Science, The

University of Tokyo, Tokyo, Bunkyo-Ku, Hongo,

113-0033, Japan

SOURCE: Tetrahedron (2000), 56(46), 9003-9014

CODEN: TETRAB; ISSN: 0040-4020

PUBLISHER: Elsevier Science Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 134:204239

AB Four biotin conjugates of okadaic acid were synthesized for evaluating their interactions with protein phosphatase 2A (PP2A) by surface plasmon resonance (SPR). C7-biotinylated okadaic acid exhibited the strongest binding affinity to the enzyme, while C1-biotinylated deriv. was devoid of affinity. C24- or C27-biotinylated okadaic acid showed moderate affinity to the enzyme. In the wake of this finding, a biotinyl photoaffinity probe was introduced into 7-OH of okadaic acid. Photoaffinity labeling followed by SDS-PAGE anal. indicated that the okadaic acid deriv. clearly labeled PP2A. Furthermore, three proteins were also labeled in crude exts. of a marine sponge Halichondria okadai. All these results imply that the C7-biotin conjugate is a versatile reagent for biochem. studies of okadaic acid-binding proteins including PP2A.

IT 328273-51-4P

RL: ARG (Analytical reagent use); ARU (Analytical role, unclassified); BUU (Biological use, unclassified); RCT (Reactant); SPN (Synthetic preparation); ANST (Analytical study); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

(development of biotin-avidin technol. to investigate okadaic acid-promoted cell signaling pathway)

IT 328273-42-3P 328273-45-6P 328273-48-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(development of biotin-avidin technol. to investigate okadaic acid-promoted cell signaling pathway)

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 7 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

2000:861452 HCAPLUS

DOCUMENT NUMBER:

134:29252

TITLE:

Synthesis of water soluble multi-biotin-containing

compounds for use in targeting biotin-binding proteins

University of Washington, USA PATENT ASSIGNEE(S):

SOURCE:

PCT Int. Appl., 68 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND DATE MO 2000070000 APPLICATION NO. DATE WO 2000072802 A2 20001207 A3 20020207 20001207 WO 2000-US15081 20000601

WO 2000072802

W: AU, BR, CA, IL, JP, KR, MX, RU

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE

EP 1196199 A2 20020417 EP 2000-938025 20000601

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI

PRIORITY APPLN. INFO.:

US 1999-324267 A 19990602 WO 2000-US15081 W 20000601

Syntheses of water sol. discrete multi-biotin-contg. compds. with at least AΒ three biotin mo<u>ieties</u> are disclosed. The water sol. biotin-contg. compds. may addn1. comprise one or more moieties that confer resistance to cleavage by biotinidase or that is cleavable in vitro or in vivo. The discrete multi-biotin-contg. compds. may include a reactive moiety that provides a site for reaction with yet another moiety, such as a targeting, diagnostic or therapeutic functional moiety. Biotinylation reagents comprising water sol. linker moieties are also disclosed and may addnl. comprise a biotinidase protective group. Methods for amplifying the no. of sites for binding biotin-binding proteins at a selected target using multi-biotin compds. are also disclosed.

194920-56-4P 194920-58-6P ΙT

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(synthesis of water sol. multi-biotin-contg. compds. for use in targeting biotin-binding proteins)

L13 ANSWER 8 OF 32 HCAPLUS COPYRIGHT 2002 ACS 2000:608717 HCAPLUS

ACCESSION NUMBER:

DOCUMENT NUMBER: 133:207678

TITLE: Preparation of sulfonamide derivs. as amyloid .beta.

production inhibitors useful in treating or preventing

diseases related to A.beta.

Smith, David W.; Munoz, Benito; Srinivasan, Kumar; INVENTOR(S):

Bergstrom, Carl P.; Chaturvedula, Prasad V.;

Deshpande, Milind S.; Keavy, Daniel J.; Lau, Wai Yu; Parker, Michael F.; Sloan, Charles P.; Wallace, Owen

B.; Wang, Henry Hui

PATENT ASSIGNEE(S):

Merck & Co., Inc., USA; Bristol-Myers Squibb Company

SOURCE:

PCT Int. Appl., 377 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

P.F.	ATENT :	NO.		KI	ND	DATE				APPL:	CATI	ON N	0.	DATE			
WO 2000050391 :			A1 20000831			WO 2000-US4560						20000222					
	W:	ΑE,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB	, BG,	BR,	BY,	CA,	CH,	CN,	CR,	CU,
		CZ,	DE,	DK,	DM,	EE,	ES,	FI,	GB	GD,	GE,	GH,	GM,	HR,	HU,	ID,	IL,
		IN,	IS,	JP,	ΚE,	KG,	ΚP,	KR,	ΚZ	, LC	LK,	LR,	LS,	LT,	LU,	LV,	MA,
		MD,	MG,	MK,	MN,	MW,	MX,	NO,	ΝZ	, PL	PT,	RO,	RU,	SD,	SE,	SG,	ŞΙ,
		SK,	SL,	ТJ,	TM,	TR,	TT,	TZ,	UA	, UG,	US,	UZ,	VN,	YU,	ZA,	ZW,	AM,
		ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM	Ī							
	RW:	GH,	GM,	KE,	LS,	MW,	SD,	SL,	SZ	, TZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,	DE,
		DK,	ES,	FΙ,	FR,	GB,	GR,	ΙE,	ΙT	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,
		CG,	CI,	CM,	GΑ,	GN,	GW,	ML,	MR	, NE	SN,	TD,	ΤG				
ΕF	1159			A						EP 20							
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GΒ	, GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FΙ,	RO										
BF	2000	0089	65	Α		2002	0226			BR 20	8-000	965		2000	0222		
NC	2001	0041	35	Α		2001	0927			NO 20	01-4	135		2001	0824		
PRIORIT	Y APP	LN.	INFO	.:					US	1999-	-1219	06P	Ρ	1999	0226		
•									US	1999-	-1227	46P	Ρ	1999	0226		
								•	US	1999-	-1227	48P	Ρ	1999	0226		
									US	1999-	-1309	94P	Ρ	1999	0423		
									US	1999-	-1309	95P	Α2	1999	0423		
									WO	2000-	-US45	60	W	2000	0222		
OTHER S	CHIPCE	191 .			MΣP	יייעס	122.	2076	78								

OTHER SOURCE(S):

MARPAT 133:207678

GΙ

AΒ Title compds. [(D)(G)CHN(E)SO2(J); D = H, alkyl, heterocycle, halo,alkoxyl, ester, amide; G = alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, (CHR1)nO(CHR2)mCONR3R4, heterocycle, aryl, amine, amide, ester, ether, carbamate; D-G = cyclic; n = 1, 2, 3, 4; m = 1, 2, 3, 40, 1, 2, 3, 4; R1, R2, R3, R4 are independently H, alkyl; R3-R4 = cyclic; E = H, alkyl, alkenyl, alkynyl, heterocycle, aryl, alkoxyl, amide, sulfonyl, sulfonamidyl, sulfide; J = alkyl, alkenyl, alkynyl, aryl,

Ι

heterocycle, polycyclic; J-E = cyclic], pharmaceutically acceptable salts, and compn. comprising title compds. are prepd. Title compds. can act to modulate prodn. of amyloid .beta. protein (APP751, APP695wt, APP670/671, APP670/671/717, sAPP, .alpha.-sAPP, .beta.-sAPP) and are useful in the prevention or treatment of a variety of diseases; such diseases are amyloid angiopathy, cerebral amyloid angiopathy, systemic amyloidosis, Alzheimer's disease, hereditary cerebral hemorrhage with amyloidosis of the Dutch type, inclusion body myositis, and Down's syndrome. Thus, the title compd. I was prepd. and tested.

IT 290330-19-7P

AUTHOR(S):

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of sulfonamide derivs. as amyloid .beta. prodn. inhibitors

useful in treating or preventing diseases related to A.beta.)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 9 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:550007 HCAPLUS

DOCUMENT NUMBER: 134:2118

TITLE: Development of biotin trimers as reagents to increase

(radio)nuclide localization in antibody pretargeting
Wilbur, D. S.; Pathare, P. M.; Hamlin, D. K.; Stayton,

P. S.; Klumb, L. A.; Tan, P.; To, R.; Buhler, K. R.;

Vessella, R. L.

CORPORATE SOURCE: Departments of Radiation Oncology, University of

Washington, Seattle, WA, 98195, USA

SOURCE: Synthesis and Applications of Isotopically Labelled

Compounds 1997, Proceedings of the International Symposium, 6th, Philadelphia, PA, United States, Sept.

14-18, 1997 (1998), Meeting Date 1997, 295-298. Editor(s): Heys, J. Richard; Melillo, David G. John

Wiley Cong Itd . Chichartay MV

Wiley & Sons Ltd.: Chichester, UK.

CODEN: 69AGFQ Conference

DOCUMENT TYPE: Conference LANGUAGE: English

AB The authors provide a method of prepg. compds. which contain three biotin moieties and an arylstannane moiety for application to tumor pretargeting

of radionuclides.

IT 308831-29-0P 308831-30-3P

RL: SPN (Synthetic preparation); PREP (Preparation)

(development of biotin trimers as reagents to increase radionuclide

localization in antibody pretargeting)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 10 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:475784 HCAPLUS

DOCUMENT NUMBER: 133:100420

TITLE: Optical sorting method applied to in vitro evolution

INVENTOR(S): Griffiths, Andrew; Tawfik, Dan PATENT ASSIGNEE(S): Medical Research Council, UK

SOURCE: PCT Int. Appl., 127 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

```
PATENT NO.
                      KIND DATE
                                            APPLICATION NO. DATE
                            _____
                      ____
                                            _____
                                           WO 2000-GB30 20000106
     WO 2000040712
                     A1
                            20000713
         W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,
             CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
             SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,
             DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
             CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                       A1 20011010
                                           EP 2000-900080
                                                              20000106
     EP 1141272
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO
PRIORITY APPLN. INFO.:
                                         GB 1999-298
                                                          A 19990107
                                         WO 2000-GB30
                                                         W 20000106
AB
     The invention describes a method for isolating one or more genetic
     elements encoding a gene product having a desired activity, comprising the
     steps of: (a) compartmentalizing genetic elements into microcapsules; (b)
     expressing the genetic elements to produce their resp. gene products
     within the microcapsules; (c) sorting the genetic elements which produce
     the gene product having the desired activity using a change in the optical
     properties of the microcapsule contents. The invention enables the in
     vitro evolution of nucleic acids and proteins by repeated mutagenesis and
     iterative applications of the method of the invention. Thus, a caged,
     biotin-labeled glutathione-S-transferase substrate was synthesized.
     Water-in-oil emulsions contg. this enzyme along with the substrate and
     2,4-dinitrochlorobenzene demonstrated that the gene for the enzyme could
     be expressed in this system and that the enzyme produced could create a
     fluorescent product from the caged, biotin-labeled substrate and
     2,4-dinitrochlorobenzene. The product was uncaged by UV irradn. then
     captured on avidin-coated beads. The product-coated beads were detected
     by flow cytometry. A complementary expt. demonstrated the expression of
     the GFP gene in this water-in-oil emulsion system.
     282718-77-8P 282718-82-5P
ΤŤ
     RL: ARG (Analytical reagent use); BPR (Biological process); BSU
     (Biological study, unclassified); SPN (Synthetic preparation); ANST
     (Analytical study); BIOL (Biological study); PREP (Preparation); PROC
     (Process); USES (Uses)
        (optical sorting method applied to in vitro evolution)
ΙT
     282718-83-6P
     RL: BPN (Biosynthetic preparation); BIOL (Biological study); PREP
     (Preparation)
        (optical sorting method applied to in vitro evolution)
                          2
                                THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                                RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
                      HCAPLUS COPYRIGHT 2002 ACS
L13 ANSWER 11 OF 32
                          2000:431259 HCAPLUS
ACCESSION NUMBER:
                          133:208058
DOCUMENT NUMBER:
TITLE:
                         A trifunctional reagent for photoaffinity labeling
AUTHOR(S):
                         Ruhl, Thomas; Hennig, Lothar; Hatanaka, Yasumaru;
                          Burger, Klaus; Welzel, Peter
CORPORATE SOURCE:
                       Universitat Leipzig, Institut fur Organische Chemie,
                         Leipzig, D-04103, Germany
                         Tetrahedron Letters (2000), 41(23), 4555-4558
SOURCE:
                         CODEN: TELEAY; ISSN: 0040-4039
PUBLISHER:
                         Elsevier Science Ltd.
```

DOCUMENT TYPE: Journal LANGUAGE: English

CASREACT 133:208058 OTHER SOURCE(S):

A photolabel, a biotin tag, and a moenomycin ligand were attached orthogonally to the 3 functional groups of isoserine to provide a compd. (I) that is to be used in affinity labeling of penicillin-binding protein. The urethane group in I is cleaved with BuNH2 in MeOH or H2O.

ΙT 290812-04-3P

> RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of photolabel for affinity labeling of penicillin-binding protein)

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 12 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:35037 HCAPLUS

DOCUMENT NUMBER: 132:90367

TITLE: Trifunctional reagent for conjugation to a biomolecule

for use in diagnosis and therapy

Wilbur, D. Scott; Sandberg, Bengt E. B. INVENTOR(S):

Dept. of Radiation Oncology, University of Washington, PATENT ASSIGNEE(S):

USA; Mitra Medical Technology AB

PCT Int. Appl., 48 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

```
PATENT NO. KIND DATE APPLICATION NO. DATE
    WO 2000002051 A1 20000113 WO 1999-SE1241 19990707
       W: AE, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU,
            CZ, CZ, DE, DE, DK, DK, EE, EE, ES, FI, FI, GB, GD, GE, GH, GM,
            HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
            LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
            SE, SG, SI, SK, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU,
            ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
            ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
            CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                    A1 20000124 AU 1999-50767 19990707
A1 20010502 EP 1999-935251 19990707
    AU 9950767
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO
                                         US 2000-750280 20001229
    US 2001023288
                    A1
                           20010920
    NO 2001000021
                           20010307
                                         NO 2001-21 20010103
                      Α
                                                      A 19980707
                                      SE 1998-1345
PRIORITY APPLN. INFO.:
                                      WO 1998-SE1345 A 19980707
                                      WO 1999-SE1241
                                                     W 19990707
```

A reagent for conjugation to a biomol. for diagnosis and treatment of AΒ human and animal conditions and diseases is described, wherein the reagent is a single mol. with at least three functional parts and a) wherein a trifunctional crosslinking moiety is coupled to b) an affinity ligand via a linker 1, said affinity ligand being capable of binding with another mol. having affinity for said ligand; to c) an effector agent, optionally via a linker 2, said effector agent exerting its effects on cells, tissues and/or humorous mols. in vivo or ex vivo; and to d) a biomol. reactive moiety, optionally via a linker 3, said moiety being capable of forming a

bond between the reagent and the biomol. The affinity ligand is esp. biotin or a biotin deriv. The effector agent is a toxin, an enzyme capable of converting a prodrug to an active drug, an immunosuppressant, an immunostimulant, or a radionuclide-binding agent, with or without the radionuclide.

IT 254441-23-1 254441-24-2D, derivs. 254441-25-3 254441-26-4 254441-28-6 254447-29-5 254447-31-9

RL: ARG (Analytical reagent use); BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent); USES (Uses)

(trifunctional reagent for conjugation to a biomol. for use in diagnosis and therapy)

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 13 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2000:35036 HCAPLUS

DOCUMENT NUMBER: 132:90366

TITLE: Trifunctional reagent for conjugation to a biomolecule

for use in diagnosis and therapy

INVENTOR(S): Wilbur, D. Scott; Sandberg, Bengt E. B.

PATENT ASSIGNEE(S): Department of Radiation Oncology, University of

Washington, USA; Mitra Medical Technology AB

SOURCE: PCT Int. Appl., 41 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PA'	TENT :	NO.		KI	ND	DATE			A	PPLI	CATI	ON NO). 	DATE			
WO	2000	0020	50	A	1	2000	0113		W	0 19:	98-SI	Ξ134!	5	1998	0707		
	W:	AL,	AM,	AT,	AT,	ΑU,	ΑZ,	ΒA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,
		CZ,	DE,	DE,	DK,	DK,	EE,	ΕE,	ES,	FI,	FΙ,	GB,	GΕ,	GH,	GM,	GW,	HR,
		HU,	ID,	IL,	IS,	JP,	ΚE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,
		LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,
		SI,	SK,	SK,	SL,	ТJ,	TM,	TR,	TT,	UA,	UG,	US,	UZ,	VN,	YU,	ZW,	AM,
		ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	MT								
	RW:	GH,	GM,	ΚE,	LS,	MW,	SD,	SZ,	UG,	ZW,	AT,	BE,	CH,	CY,	DE,	DK,	ES,
•		FΙ,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
		CM,	GΑ,	GN,	ML,	MR,	NE,	SN,	TD,	TG							
AU	9883	663		A.	1	2000	0124		Αl	J 19:	98-83	3663		19980	0707		
AU	9950	767		A.	1	2000	0124		ΑI	J 19	99-51	0767		19990	0707		
EP	1095	274		A.	1	2001	0502		E.	P 19:	99-93	3525	1	1999(0707		
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LŲ,	NL,	SE,	MC,	PT,
		IE,	SI,	LT,	LV,	FI,	RO										
NO	2001	0000	21	Α		2001	0307		N	201	01-2	1		2001	0103		
PRIORIT'	Y APP	LN.	INFO	.:				Ĭ	WO 1	998-	SE13	45	A	19980	0707		
								١	WO 1	999-:	SE12	41	W	19990	0707		

AB A reagent for conjugation to a biomol. for diagnosis and treatment of human and animal conditions and diseases is described, wherein the reagent is a single mol. with at least three functional parts and a) wherein a trifunctional crosslinking moiety is coupled to b) an affinity ligand via a linker 1, said affinity ligand being capable of binding with another mol. having affinity for said ligand; to c) an effector agent, optionally via a linker 2, said effector agent exerting its effects on cells, tissues

and/or humorous mols. in vivo or ex vivo; and to d) a biomol. reactive moiety, optionally via a linker 3, said moiety being capable of forming a bond between the reagent and the biomol. The affinity ligand is esp. biotin or a biotin deriv. The effector agent is a toxin, an enzyme capable of converting a prodrug to an active drug, an immunosuppressant, an immunostimulant, or a radionuclide-binding agent, with or without the radionuclide.

254441-23-1 254441-24-2D, derivs. 254441-25-3 ΙT 254441-26-4 254441-28-6 254447-29-5

RL: ARG (Analytical reagent use); BPR (Biological process); BSU (Biological study, unclassified); RCT (Reactant); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent); USES (Uses)

(trifunctional reagent for conjugation to a biomol. for use in diagnosis and therapy)

REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 14 OF 32 HCAPLUS COPYRIGHT 2002 ACS 1999:753428 HCAPLUS

ACCESSION NUMBER:

132:1814 DOCUMENT NUMBER:

TITLE: Bis-biotin compounds for specific binding assays INVENTOR(S): Pirio, Marcel Rene; Davalian, Dariush; Ishkanian,

Jacqueline Sadakan; Ullman, Edwin F.

Dade Behring Inc., USA PATENT ASSIGNEE(S):

PCT Int. Appl., 70 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND DATE PATENT NO. APPLICATION NO. DATE WO 9960400 A1 19991125 WO 1999-US10960 19990519 RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE 19980520 20001128 US 1998-81873 A1 20000607 EP 1999-923193 19990519 R: CH, DE, ES, FR, GB, IT, LI, NL, SE

US 1998-81873 PRIORITY APPLN. INFO.: A 19980520 WO 1999-US10960 W 19990519

The present invention relates to compds. that are bis-biotins. These AB compds. comprise two biotinyl radicals connected by a chain of atoms, usually at least 16 atoms in length. The bis-biotin is conjugated to a member of a specific binding pair ("sbp member") wherein the chain is not part of the sbp member. Also disclosed are compns. comprising a complex of avidin and a bis-biotin as described above. The compds. and compns. of the invention find use in an assay for an analyte wherein there is employed a reagent system comprising an avidin reagent and a biotin reagent. The improvement of the present invention comprises using as the biotin reagent a bis-biotin as described above. Also disclosed are kits comprising the present bis-biotins and methods of prepg. a bis-biotinylated conjugate of a member of a specific binding pair ("sbp member") for use in a specific binding assay. A bis-biotin conjugate with digoxin was prepd. and complexed with sensitizer beads having immobilized streptavidin. The beads were used in a chemiluminescence immunoassay for digoxin.

```
Ceperley pct us01 50838
     251096-25-ODP, complexes with streptavidin-sensitizer beads
IT
     RL: ARG (Analytical reagent use); PRP (Properties); SPN (Synthetic
     preparation); ANST (Analytical study); PREP (Preparation); USES (Uses)
        (for digoxin assay, stability of; bis-biotin compds. for specific
        binding assays)
ΙT
     251096-26-1DP, complexes with streptavidin-sensitizer beads
     RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST
     (Analytical study); PREP (Preparation); USES (Uses)
        (for thyroxine assay; bis-biotin compds. for specific binding assays)
ΙT
     251096-25-0P
     RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP
     (Preparation); RACT (Reactant or reagent)
        (in prepn. of digoxin assay reagent; bis-biotin compds. for specific
        binding assays)
ΙT
     251096-24-9P
     RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
     (Reactant or reagent)
        (in prepn. of digoxin assay reagent; bis-biotin compds. for specific
        binding assays)
     251096-26-1DP, complexes with streptavidin-sensitizer beads
ΙT
     RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
     (Reactant or reagent)
        (in prepn. of thyroxine assay reagent; bis-biotin compds. for specific
        binding assays)
                               THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                         11
                               RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L13 ANSWER 15 OF 32 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                         1999:313314 HCAPLUS
DOCUMENT NUMBER:
                         131:110893
                         Functionalized Congeners of 1,4-Dihydropyridines as
TITLE:
                         Antagonist Molecular Probes for A3 Adenosine Receptors
                         Li, An-Hu; Chang, Louis; Ji, Xiao-duo; Melman, Neli;
AUTHOR(S):
                         Jacobson, Kenneth A.
                         Molecular Recognition Section Laboratory of Bioorganic
CORPORATE SOURCE:
                         Chemistry, National Institute of Diabetes Digestive
                         and Kidney Diseases National Institutes of Health,
                         Bethesda, MD, 20892-0810, USA
SOURCE:
                         Bioconjugate Chemistry (1999), 10(4), 667-677
```

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivs. are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs. [1251]AB-MECA [N6-(4-amino-3-iodobenzyl)-5'-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chem. reactive adenosine A3 antagonists, for the purpose of synthesizing mol. probes for this receptor subtype. Selectivity of the new analogs for cloned human A3 adenosine receptors was detd. in radioligand binding in comparison to binding at rat brain Al and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and Ph groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure-activity anal. at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-di-Ph groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain deriv. contg. terminal amine functionalization at

the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride deriv. appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 .mu.M.

IT 233265-81-1P

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process)

(dihydropyridine functionalized congener prepn. as antagonist mol. probes for A3 adenosine receptors)

THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 36

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 16 OF 32 HCAPLUS COPYRIGHT 2002 ACS 1998:776598 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 130:38641

Preparation of water soluble vitamin B12 as TITLE:

antiinflammatory receptor modulating agents

INVENTOR(S): Morgan, A. Charles, Jr.; Wilbur, D. Scott; Pathare,

Pradip M.

PATENT ASSIGNEE(S): Receptagen Corporation, USA; University of Washington

U.S., 66 pp., Cont.-in-part of U.S. Ser. No. 406,191. SOURCE:

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA'	TENT	NO.		KI	ND	DATE			P	PPLI	CATI	ON NO	э.	DATE			
US US US	5840 5739 5840 5869 9714 W:	287 880 465 711 AL, DK, LK,	AM, EE, LR,	A A AT, ES, LS,	AU, FI, LT,	1998 1998 1999 1997 AZ, GB, LU,	0414 1124 0209 0424 BA, GE, LV,	BB, HU, MD,	U U W BG, IL, MG,	S 19 S 19 O 19 BR, IS, MK,	95-40 95-40 95-40 96-US BY, JP, MN,	0619 0619 0619 S166 CA, KE, MW,	2 1 4 72 CH, KG, MX,	1995 1995 1995 1995 1996 CN, KP, NO,	0316 0316 0316 1018 CU, KR, NZ,	KZ, PL,	LC, PT,
	9677 1015	AM, KE, IE, 182 475 AT,	AZ, LS, IT,	BY, MW, LU, A	KG, SD, MC, 1	KZ, SZ, NL, 1997	MD, UG, PT, 0507	RU, AT, SE,	TJ, BE, BF,	TM CH, BJ, U 19 P 19	DE, CF, 96-7	DK, CG 7182 4024	ES,	FI, 1996	FR, 1018 1018	GB,	GR,
US PRIORIT	6083 Y APP					2000	0704	1 1 1	US 1 US 1 US 1 US 1 WO 1	994- 995- 995- 995- 995-	2248: 4061: 4061: 4061: US44:	31 91 92 94 04	B2 A2 A2 A2 A2	1998 1994 1995 1995 1995 1995	0408 0316 0316 0316 0407		

US 1995-545496 · A 19951019 WO 1996-US16672 W 19961018

MARPAT 130:38641 OTHER SOURCE(S):

Vitamin B12 antiinflammatory receptor modulating agents capable of modulating cell surface receptors by affecting the cell surface receptor trafficking pathway are disclosed. The vitamin B12 receptor modulating agents are comprised of a covalently bound rerouting moiety and targeting moiety linked by a water-solubilizing linker. Synthesis of a vitamin B12/biotin conjugate and fusion protein receptor modulating agent is reported.

189887-16-9P 189887-17-0P TT

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of water sol. vitamin B12 as antiinflammatory receptor

modulating agents)

REFERENCE COUNT: THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS 34 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 17 OF 32 HCAPLUS COPYRIGHT 2002 ACS 1998:266383 HCAPLUS ACCESSION NUMBER:

129:119561 DOCUMENT NUMBER:

TITLE: Photocrosslinking as an approach to structural

biology: structural analysis of .beta.1,4-

galactosyltransferase

Hatanaka, Yasumaru; Hashimoto, Makoto; Kanaoka, Yuichi AUTHOR(S):

CORPORATE SOURCE: Research Institute for Wakan-Yaku, Toyama Medical and

Pharmaceutical University, Toyama, 930-01, Japan

Photomed. Photobiol. (1997), 19, 83-84 SOURCE:

CODEN: PHPHEA; ISSN: 0912-232X

PUBLISHER: Japanese Society for Photomedicine and Photobiology

DOCUMENT TYPE: Journal LANGUAGE: English

A novel photochem. crosslinking reagent, N-[2-[2-[2-(2biotinylaminoethoxy)-ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3yl]-benzoyl]-N4-[2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosyl]-Laspartamide (BDGA), was applied for the anal. of acceptor binding-site within .beta.1,4-galactosyltransferase (GalT). Using this carbene-generating N-acetylglucosamine deriv., a biotin tag was specifically introduced at the acceptor substrate binding-site of GalT. The biotin tag photochem. attached on GalT protein harness the power of avidin-biotin technol. for the high-sensitive detection and one-step purifn. of photolabeled GalT protein. Thus, we have examd. an efficient strategy for the localization of photolabeled site by using a chemiluminescent technique for the radioisotope free detection trace amt. of labeled products and an immobilized avidin for the selective retrieval of biotinylated components. Our approach successfully identified photolabeled fragments corresponding to the GalT acceptor substrate region where is no predictable sequence from the homol. search. The results clearly demonstrate that the biotinylation using BDGA could provide efficient methods' for the structural biol. of glycosyltransferases which shares no significant sequential homol. or is difficult to crystallize.

186263-07-0, BDGA

RL: RCT (Reactant)

(photocrosslinking in structural anal. of .beta.1,4qalactosyltransferase)

L13 ANSWER 18 OF 32 HCAPLUS COPYRIGHT 2002 ACS 1998:223967 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 129:25290

Cell-surface biotinylation of GLUT4 using bis-mannose TITLE:

photolabels

AUTHOR(S): Koumanov, Francoise; Yang, Jing; Jones, Alison E.;

Hatanaka, Yasumaru; Holman, Geoffrey D.

Department of Biology and Biochemistry, University of CORPORATE SOURCE:

Bath, Bath, BA2 7AY, UK

Biochemical Journal (1998), 330(3), 1209-1215 SOURCE:

CODEN: BIJOAK; ISSN: 0264-6021

Portland Press Ltd. PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

New cell-impermeant bis-mannose photolabels were developed with biotinyl groups attached to 4-(I-azi-2,2,2-trifluoroethyl)-benzoyl-1,3-bis(D-mannos-4-yloxy)-2-propylamine (ATB-BMPA) by either a polyethoxy spacer (Bio-ATB-BMPA) or an addnl. hexanoic acid spacer (Bio-LC-ATB-BMPA). half-maximal inhibition consts., K1 values, for inhibition of glucose transport activity in insulin-stimulated rat adipocytes were detd. to be 359 and 273 .mu.M for Bio-ATB-BMPA and Bio-LC-ATB-BMPA, resp. values are similar to those previously reported for the non-biotinylated compd. ATB-BMPA. Following UV-irradn.-induced crosslinking of the biotinylated photolabels to rat adipocytes, the biotinylated glucose transporter isoform 4 (GLUT4) was detected by non-radioactive and radioactive methods that utilized the interaction with streptavidin. Biotinylated GLUT4 from 1-2 .mu.g of adipose cell membranes, pptd. onto magnetic streptavidin beads, could be sensitively and quant. detected using an electrochemiluminescent assay method. This utilized a ruthenium-tagged anti-GLUT4 antibody that on excitation at an electrode generated an electrochemiluminescent signal in an ORIGEN analyzer. Alternatively, surface-biotinylated GLUT4 could be easily, but less sensitively, detected in streptavidin agarose ppts. which were analyzed by conventional GLUT4 Western blotting. Data obtained using the non-radioactive methods compared favorably with those using tritiated versions of the biotinylated probes. Insulin treatment of adipocytes increased the levels of signals from surface biotinylated GLUT4 by .apprx. 10-fold or .apprx. 20-fold, resp., when the electrochemiluminescent or the Western blot detection methods were used and these signals were blocked by cytochalasin B.

207971-24-2P 207971-25-3P ΙT

RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES (Uses) (cell-surface biotinylation of GLUT4 using bis-mannose photolabels)

L13 ANSWER 19 OF 32 HCAPLUS COPYRIGHT 2002 ACS

1998:52144 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 128:72612

A Rapid and Efficient Method for Identifying TITLE:

Photoaffinity Biotinylated Sites within Proteins

Hatanaka, Yasumaru; Hashimoto, Makoto; Kanaoka, Yuichi AUTHOR(S): Research Institute for Wakan-yaku, Toyama Medical and CORPORATE SOURCE:

Pharmaceutical University, Sugitani, 2630, Japan

J. Am. Chem. Soc. (1998), 120(2), 453-454 SOURCE: CODEN: JACSAT; ISSN: 0002-7863

American Chemical Society PUBLISHER:

Journal DOCUMENT TYPE: LANGUAGE: English

A rapid and efficient strategy has been developed for identification of photoaffinity labeled peptides. The strategy involves a radioisotope-free approach in which the photoaffinity label is biotinylated. The method

then utilizes a novel derivatization of PVDF membrane for identification and anal. of peptide fragments derived from the photoaffinity labeled binding site in a simple dot blot assay. In the present study, the method has been applied to identification of the binding site region of .beta.1,4-galactosyltransferase (galT). Sequence anal. has revealed that the biotinylated photoprobe is localized in a tryptic GalT fragment (Y197-R208). These data are consistent with previous suggestions concerning the GalT acceptor site and clearly demonstrate the effectiveness of our approach for rapid identification of photolabeled peptides.

IT 186263-07-0

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (a rapid and efficient method for identifying photoaffinity biotinylated sites within proteins)

L13 ANSWER 20 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:708440 HCAPLUS

DOCUMENT NUMBER: 127:298612

TITLE: Biotin Reagents for Antibody Pretargeting. 2.

Synthesis and in Vitro Evaluation of Biotin Dimers and

Trimers for Crosslinking of Streptavidin

AUTHOR(S): Wilbur, D. Scott; Pathare, Pradip M.; Hamlin, Donald

K.; Weerawarna, S. Ananda

CORPORATE SOURCE: Department of Radiation Oncology, University of

Washington, Seattle, WA, 98195, USA

SOURCE: Bioconjugate Chem. (1997), 8(6), 819-832

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

Polymn. and/or crosslinking of recombinant streptavidin (r-SAv) with biotin derivs. contq. two biotin moieties (biotin dimers) or three biotin moieties (biotin trimers) has been investigated as a model for reagents to be used to increase the amt. of radioactivity on cancer cells in tumor pretargeting protocols. In the investigation, six biotin dimers and three biotin trimers were synthesized. Most biotin derivs. synthesized had ether contq. linker mols. incorporated to improve their aq. soly. synthesized biotin dimers contained linker moieties which provided distances (when fully extended) of 13-49 .ANG. between biotin carboxylate carbon atoms, and the biotin trimers contained linker moieties which provided distances of 31-53 .ANG. between any two biotin carboxylate atoms. All of the biotin derivs. were evaluated for their ability to polymerize r-SAv in soln. When the biotin derivs. were mixed with r-SAv, none of the biotin dimers caused polymn., but all of the biotin trimers resulted in complete polymn. Some of the biotin dimers did cross-link r-SAv (to form r-SAv dimers, trimers, etc.), but the percentage of crosslinking was low (.ltoreq.40%). The length of the linker mol. was important in crosslinking of biotin dimers. While linkers which provided distances of 13 and 19 .ANG. between biotin carboxylate carbon atoms did not result in crosslinking, a linker which provided a 17 .ANG. distance resulted in a small (.ltoreq.10%) amt. of crosslinking. Also, crosslinking was increased in biotin dimers with linkers which provided distances between biotin carboxylate carbon atoms of .gtoreq.23 .ANG.. Crosslinking of streptavidin bound in polystyrene wells with biotin dimers and trimers was also examd. In those expts., an excess of each biotin deriv. was incubated at 37 .degree.C for 10-30 min in polystyrene wells contq. bound SAv. After the excess biotin deriv. was rinsed from the wells, an excess of r-[1251]SAv was incubated for another 10-30 min. amt. of r-[1251]SAv bound after rinsing the excess from the wells was an

indicator of the extent of crosslinking that occurred. The process of alternating addns. of reagents was repeated four times to demonstrate that bound radioactivity could be increased with each addn. of [125I]SAv. The results of crosslinking r-SAv in polystyrene wells paralleled results from crosslinking in soln.

IT 194920-45-1P 194920-46-2P 194920-56-4P 194920-58-6P 194920-64-4P 195370-62-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (prepn. and in vitro evaluation of biotin dimers and trimers for crosslinking of streptavidin)

L13 ANSWER 21 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1997:542454 HCAPLUS

DOCUMENT NUMBER:

127:220519

TITLE:

Preparation of biotin containing compounds with water

soluble linker moieties for use as radionuclides and

streptavidin crosslinking agents

INVENTOR(S):

Wilbur, Scott D.; Pathare, Pradip M.; Weerawarna, S.

Ananda; Hamlin, Donald K.

PATENT ASSIGNEE(S):

Board of Regents of the University of Washington, USA

SOURCE:

PCT Int. Appl., 80 pp.

DOUNCH.

CODEN: PIXXD2

DOCUMENT TYPE: LANGUAGE: Patent English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA:	TENT :	NO.		KI	ND	DATE			A	PPLI	CATI	ои ис	Э.	DATE			
									_								
WO	9729	114		А	1	1997	0814		M	0 19	97-U	S256	0	1997	0207		
	W:	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
		DK,	EE,	ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,
														NO,			
		RO,	RU,	SD,	SE,	SG,	SI,	SK,	ТJ,	TM,	TR,	TT,	UA,	UG,	UZ,	VN,	YU,
		ΑM,	AZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM							
	RW:	ΚE,	LS,	MW,	SD,	SZ,	UG,	AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,
		IE,	IT,	LU,	MC,	ΝL,	PT,	SE,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	ML,
		MR,	NE,	SN,	TD,	$^{ m TG}$									·		
AU	9720	524		Α	1	1997	0828		Αl	U 19	97-2	0524		1997	0207		
PRIORIT	APP	LN.	INFO	.:				1	US 1	996-	1132	1 P	P	1996	3208		
								Ţ	WO 1	997-1	US25	60	W	1997	0207		

$$H \longrightarrow N \longrightarrow H$$
 $H \longrightarrow N \longrightarrow H$
 $S \longrightarrow CO \longrightarrow X \longrightarrow Y \longrightarrow I$

AB Water sol. biotin-contg. compds. and biotinylation reagents I {X = divalent water sol. linker such as NH(CH2)3O(CH2)2O(CH2)2O(CH2)3NH, trivalent water sol. linker such as 1,3,5-C6H3[CONH(CH2)3O(CH2)2O(CH2)2O(CH2)3NH]3; Y = reactive moiety such as 4-Bu3Sn-C6H4-CO; targeting, diagnostic, or therapeutic moiety such as 4-125I-C6H4-CO, biotin, or cyano-e-cobalamin} were prepd. for use as biotinylation reagents, biotinidase inhibitors (no data), and streptavidin cross linking agents. Thus, biotin dimer II was prepd. starting from biotin and 4,7,10-trioxa-1,13-tridecanediamine and was tested for streptavidin cross linking.

IT 194920-56-4P 194920-58-6P 194920-60-0P 194920-61-1P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of biotin contg. compds. with water sol. linker moieties for use as biotinylation reagents, radionuclides, biotinidase inhibitors, and streptavidin crosslinking agents)

IT 194920-64-4P 194920-71-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (prepn. of biotin contg. compds. with water sol. linker moieties for use as biotinylation reagents, radionuclides, biotinidase inhibitors, and streptavidin crosslinking agents)

IT 194920-45-1P 194920-46-2P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of biotin contg. compds. with water sol. linker moieties for use as biotinylation reagents, radionuclides, biotinidase inhibitors, and streptavidin crosslinking agents)

L13 ANSWER 22 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1997:433652 HCAPLUS

DOCUMENT NUMBER: 127:121587

TITLE: Biotin reagents for antibody pretargeting. Synthesis,

radioiodination and in vitro evaluation of water soluble, biotinidase resistant biotin derivatives Wilbur, D. Scott; Hamlin, Donald K.; Pathare, Pradip

AUTHOR(S): Wilbur, D. Scott; Hamlin, M.; Weerawarna, S. Ananda

CORPORATE SOURCE:

Department of Radiation Oncology, University of

Washington, Seattle, WA, 98195, USA

SOURCE:

Bioconjugate Chem. (1997), 8(4), 572-584

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GT .

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

An investigation was conducted to examine the stability of water solubilized, radioiodinated biotin derivs. toward biotinidase degrdn. in mouse and human serum as development of antibody pretargeting for cancer therapy. Eight new biotin derivs. were synthesized to conduct the study. The biotin derivs. synthesized contained (1) the biotin moiety, (2) a water solubilizing linker moiety, (3) p-iodobenzoate or p-tributylstannylbenzoate moieties, and (4) in some compds., N-Me or .alpha.-Me contq. moieties were added to block biotinidase activity. linker moiety, 4,7,10-trioxa-1,13-tridecanediamine was included in the biotin derivs. to improve their water soly., and functioned as a 17 .ANG. spacer between the biotin and benzoyl moieties. Four of the new p-tributylstannylbenzoyl biotin derivs. I (R = H, Me; X = SnBu3), II (X = SnBu3) SnBu3), III (X = SnBu3) could be radioiodinated in the last synthetic step. The other four p-iodobenzoyl biotin derivs. I (R = H, Me; X = I), II (X = I), III (X = I) were used as HPLC ref. stds. Initial studies involved radioiodination of I (R = H; X = SnBu3) to yield [125I]-I (R = H; X = 125I). Radioiodinated I (R = H; X = I), did not contain a moiety for blocking biotinidase activity and was found to be rapidly degraded in both mouse and human serum at 37 .degree.C. Derivs. designed to be stable to biotinidase incorporated N-Me and .alpha.-Me moieties adjacent to the biotin carboxylate group. Linkers in the biotin derivs. were 4,7,10-trioxa-1,13-tridecanediamine, its N,N-di-Me analog or sarcosine (N-methylglycine). The radioiodinated N-Me contg. biotin derivs. I (R = Me; X = 125I) and II (X = 125I) were very stable to biotinidase degrdn. The radioiodinated .alpha.-Me contq. deriv., III (X = 125I), has an intermediate stability with regards to biotinidase degrdn.

192720-95-9P 192720-97-1P 192720-99-3P IT

192721-01-0P

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (synthesis, radioiodination and in vitro evaluation of water sol., biotinidase resistant biotin derivs.)

ΙT 192720-64-2P 192720-67-5P 192720-83-5P

192720-85-7P 192720-86-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (synthesis, radioiodination and in vitro evaluation of water sol., biotinidase resistant biotin derivs.)

ΙT 192720-66-4P 192720-70-0P 192720-88-0P

RL: SPN (Synthetic preparation); PREP (Preparation) (synthesis, radioiodination and in vitro evaluation of water sol., biotinidase resistant biotin derivs.)

L13 ANSWER 23 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:433600 HCAPLUS

DOCUMENT NUMBER:

127:106189

TITLE: Biotin-Pyrene Conjugates with Poly(ethylene glycol)

Spacers Are Convenient Fluorescent Probes for Avidin

and Streptavidin

AUTHOR(S):

Marek, Markus; Kaiser, Karl; Gruber, Hermann J.

CORPORATE SOURCE: Institute of Biophysics, J. Kepler University, Linz,

A-4040, Austria

SOURCE:

Bioconjugate Chem, (1997), 8(4), 560-566

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Conventional biotin-fluorophore conjugates with .ltoreq.14 atom spacers are strongly quenched when bound to avidin or streptavidin, whereas fluorescence becomes insensitive to receptor binding if typical fluorophores are linked to biotin via poly(ethylene glycol) (PEG) chains. In the present study the antagonism between PEG-PEG repulsion and fluorophore interaction was examd. more closely, using biotin-PEG-pyrene conjugates as model compds. The antagonistic tendencies between hydrophilic PEG chains and hydrophobic pyrene labels were about balanced in the PEG1900 deriv. since quenching was .apprx.50% in 4:1 complexes with avidin or streptavidin. In contrast, strong quenching and concomitant excimer fluorescence was seen with the biotin-PEG800-pyrene conjugate, providing for a new fluorescence assay to accurately measure avidin and streptavidin concns. at .gtoreq.40 and .gtoreq.10 nM, resp. Assocn./dissocn. kinetics were analyzed from pyrene fluorescence changes, and dissocn. consts. were deduced. About 3-fold affinities were obsd. for streptavidin as compared to avidin, and little influence of PEG chain length was seen. All affinities were increased by a factor of .apprx.3 when biotin-PEG-tetramethylrhodamine conjugates were used. The obsd. effect of fluorophore variation upon biotin binding is unexpectedly small; thus, the kinetic/thermodn. data appear to be representative for biotin-PEG conjugates in general.

ΤТ 192432-17-0

> RL: ARU (Analytical role, unclassified); ANST (Analytical study) (biotin-pyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin)

192432-86-3P ΤT

RL: ARU (Analytical role, unclassified); RCT (Reactant); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation) (biotin-pyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin)

L13 ANSWER 24 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1997:433599 HCAPLUS

DOCUMENT NUMBER:

127:106188

TITLE:

Biotin-Fluorophore Conjugates with Poly(ethylene glycol) Spacers Retain Intense Fluorescence after

Binding to Avidin and Streptavidin

AUTHOR(S):

Gruber, Hermann J.; Marek, Markus; Schindler,

Hansgeorg; Kaiser, Karl

CORPORATE SOURCE:

Institute of Biophysics, J. Kepler University, Linz,

A-4040, Austria

SOURCE:

Bioconjugate Chem. (1997), 8(4), 552-559

CODEN: BCCHES; ISSN: 1043-1802

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Conventional biotin-fluorophore conjugates with .ltoreq.14 atom spacers lose most of their fluorescence when binding to avidin or streptavidin, as

is demonstrated in the present study. This explains the unusual fact that only biotinylated marker enzymes, but not fluorescent biotins, are regularly used in bioanalytic assays. Novel biotin-spacer-fluorophore conjugates are presented that retain intense fluorescence when binding to avidin or streptavidin. Preservation of fluorescence depends upon the use of poly(ethylene glycol) (PEG) spacers, which are shown not to interfere with biotin function. The obsd. absence of nonspecific interactions may also be attributed to the PEG chain. These novel fluorescent biotins are expected to be excellent new tools in fluorescence microscopy and related techniques.

IT 192432-17-0P 192432-19-2P

RL: ARU (Analytical role, unclassified); RCT (Reactant); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation)

(biotin-fluorophore conjugates with poly(ethylene glycol) spacers retain intense fluorescence after binding to avidin and streptavidin)

IT 192432-16-9

RL: RCT (Reactant)

(biotin-fluorophore conjugates with poly(ethylene glycol) spacers retain intense fluorescence after binding to avidin and streptavidin)

L13 ANSWER 25 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:377886 HCAPLUS

DOCUMENT NUMBER: 126:343813

TITLE: Preparation of vitamin B12 receptor modulating agents

INVENTOR(S): Morgan, A. Charles, Jr.; Wilbur, D. Scott; Pathare,

Pradip M.

PATENT ASSIGNEE(S): Receptagen Corporation, USA; University of Washington;

Morgan, A. Charles, Jr.; Wilbur, D. Scott; Pathare,

Pradip, M.

Patent

SOURCE: PCT Int. Appl., 97 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

```
` APPLICATION NO. DATE
    PATENT NO.
                KIND DATE
                                   WO 1996-US16672 19961018
    WO 9714711 A1 19970424
        W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
            DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC,
            LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
            RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN,
            AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,
            IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG
    US 5840712
                          19981124
                                        US 1995-545151
                                                         19951019
                     Α
    AU 9677182
                      A1
                          19970507
                                         AU 1996-77182
    EP 1015475
                          20000705
                                        EP 1996-940247
                                                         19961018
                     A1
           AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
PRIORITY APPLN. INFO.:
                                      US 1995-545151
                                                      A 19951019
                                      US 1995-545496 A 19951019
                                      US 1994-224831 B2 19940408
                                      US 1995-406191 A2 19950316
                                                      A2 19950316
                                      US 1995-406192
                                                      A2 19950316
                                      US 1995-406194
                                      WO 1996-US16672 W 19961018
OTHER SOURCE(S):
                       MARPAT 126:343813
```

Vitamin B12 receptor modulating agents capable of modulating cell surface AΒ receptors by affecting the cell surface receptor trafficking pathway are disclosed. The vitamin B12 receptor modulating agents are comprised of a covalently bound rerouting moiety and targeting moiety linked by a water-solubilizing linker. TΤ 189887-16-9P 189887-17-0P RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and antiinflammatory activity of vitamin B12 receptor modulating agents) L13 ANSWER 26 OF 32 HCAPLUS COPYRIGHT 2002 ACS 1997:243325 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 126:289755 Photocrosslinking of .beta.1,4-galactosyltransferase TITLE: Hatanaka, Yasumaru; Hashimoto, Makoto; Kanaoka, Yuichi AUTHOR(S): Research Institute for Wakan-Yaku, Toyama Medical and CORPORATE SOURCE: Pharmaceutical University, Toyama, 930-01, Japan Photomed. Photobiol. (1996), 18, 119-120 ·SOURCE: CODEN: PHPHEA; ISSN: 0912-232X Japanese Society for Photomedicine and Photobiology PUBLISHER: DOCUMENT TYPE: Journal English LANGUAGE: Photochem. crosslinking reaction using a novel photoreactive N-acetylglucosamine deriv., N4-[2-(acetylamino)-2-deoxy-.beta.-Dglucopyranosyl]-2-[[2-[2-[2-[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1Hthieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-, (S)- (BDGA), was applied for the specific biotinylation of acceptor binding-site of .beta. 1,4-galactsyltransferase (GalT). The introduction of BDGA for photoaffinity labeling of bovine GalT has facilitated the subsequent steps of photolabeled product anal. based on the specific manipulation of photochem. attached biotinyl residue. The quant. chemiluminescent anal. revealed a presence of progressive decrement phenomenon in the yield of specific photolabeling with lowering the incubation temp. from 37.degree. to 20.degree. or 4.degree.. 186263-07-0 IT RL: PEP (Physical, engineering or chemical process); PROC (Process) (photocrosslinking of .beta.1, 4-galactosyltransferase) L13 ANSWER 27 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1996:747636 HCAPLUS DOCUMENT NUMBER: 126:114867 TITLE: Synthesis and characterization of a carbene-generating biotinylated N-acetylqlucosamine for photoaffinity labeling of .beta.-(1 .fwdarw. 4)galactosyltransferase Hatanaka, yasumaru; Hashimoto, Makoto; Nishihara, AUTHOR(S): Shoko; Narimatsu, Hisashi; Kanoaka, Yuichi Res. Inst. Wakan-yaku, Toyama Med. Pharm. Univ., CORPORATE SOURCE: Toyama, 930-01, Japan SOURCE: Carbohydr. Res. (1996), 294, 95-108 CODEN: CRBRAT; ISSN: 0008-6215 PUBLISHER: Elsevier DOCUMENT TYPE: Journal

English A photoreactive N-acetylglucosamine deriv., N-[2-[2-[2-(2biotinylaminoethoxy)ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3v1]benzoy1]-N4-[2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosy1]-Laspartamide (BDGA), was synthesized as a carbene-generating biotinylated

LANGUAGE:

probe for UDP-galactose: N-acetylglucosamine .beta.-(1.fwdarw.4)-galactosyltransferase (GalT). The photoaffinity labeling expts. of bovine GalT with BDGA under various conditions were examd. based on the quant. chemiluminescent detection of the biotinyl residue which was photochem. introduced into the GalT protein. A progressive decrease in the yield of specific photolabeling was obsd. upon lowering the incubation temp. from 37.degree. to 20.degree. or 4.degree. Using a crude protein mixt. of recombinant human GalT, a band corresponding to the glutathione S-transferase fusion GalT protein was also specifically visualized. Furthermore, combined use of BDGA photolabeling with an immobilized avidin was found to be effective for the selective retrieval of photolabeled GalT from a reaction mixt. contg. a large amt. of unlabeled GalT protein. The results obtained clearly demonstrate that the covalent biotinylation using the carbene-generating photoaffinity reagent BDGA would be useful for the anal. of acceptor substrate binding sites within the GalT protein.

IT 186263-07-0P, BDGA

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BUU (Biological use, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process); USES (Uses) (synthesis and characterization of a carbene-generating biotinylated N-acetylglucosamine for photoaffinity labeling of .beta.-(1 .fwdarw. 4)-galactosyltransferase)

L13 ANSWER 28 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:160493 HCAPLUS

DOCUMENT NUMBER: 124:283427

TITLE: Photoaffinity labeling along with avidin-biotin system AUTHOR(S): Hatanaka, Yasumaru; Hashimoto, Makoto; Kanaoka, Yuichi

CORPORATE SOURCE: Research Institute Wakan-Yaku, Toyama Medical and

Pharmaceutical University, Toyama, 930-01, Japan

SOURCE: Photomed. Photobiol. (1995), 17, 99-100

CODEN: PHPHEA; ISSN: 0912-232X

DOCUMENT TYPE: Journal LANGUAGE: English

As a new photoreactive N-acetylglucosamine deriv. carrying an aryl diazirine and a biotin moiety was prepd. to make use of avidin-biotin technol. for specific manipulation of photolabeled components. This reagent was applied to the photoaffinity labeling of UDP-galactose:N-acetylglucosamine .beta.-1,4-galactosyltransferase (GalT). Based on the enzyme-catalyzed signal amplification of the avidin-biotin complex, highly sensitive visualization of labeled GalT was performed by the chemiluminescent detection of the photochem. introduced biotinyl residue into the protein. Combined use of this reagent with immobilized avidin was also effective for the selective retrieval of photolabeled GalT from a reaction mixt. contg. a large amt. of unlabeled GalT protein.

IT 175663-44-2

RL: RCT (Reactant)

(photoaffinity labeling combined with avidin-biotin for protein labeling)

L13 ANSWER 29 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1995:1002147 HCAPLUS

DOCUMENT NUMBER: 124:176693

TITLE: A carbene-generating biotinylated lactosylceramide

analog as novel photoreactive substrate for GM3

synthase

AUTHOR(S): Hatanaka, Yasumaru; Hashimoto, Makoto; Hidari, Kazuya

I.-P. Jwa; Sanai, Yutaka; Nagai, Yoshitaka; Kanaoka,

Yuichi

CORPORATE SOURCE:

Res. Inst. Wakan-Yaku, Toyama Medicinal and Pharmaceutical Univ., Toyama, 930-01, Japan

SOURCE:

Bioorg. Med. Chem. Lett. (1995), 5(23), 2859-62

CODEN: BMCLE8; ISSN: 0960-894X

DOCUMENT TYPE:

LANGUAGE:

Journal English

GΙ

OH
$$CH_2CH_2N$$
 OH CH_2CH_2N OH

A new biotinylated lactose deriv. I [R = Me, 14CH3], bearing a AB phenyldiazirine was synthesized. A convenient approach based on avidin-biotin technol. was successfully applied for GM3 synthase assay and the Km value of this biotinylated photoprobe was detd. as 180 .mu.M using rat liver Golgi as the enzyme source. Further characterization revealed that this reagent could be a useful photoprobe for GM3 synthase.

173949-62-7P 173949-63-8P ΙT

RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (prepn. of a biotinylated lactosylceramide analog as substrate for GM3

synthase)

L13 ANSWER 30 OF 32 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1995:828611 HCAPLUS

DOCUMENT NUMBER:

123:222328

TITLE:

Interference-reducing agents for use in immunoassays Kientsch-Engel, Rosemarie; Donie, Frederic; Wiedmann,

Ι

Michael

PATENT ASSIGNEE(S):

Boehringer Mannheim G.m.b.H., Germany

SOURCE:

INVENTOR(S):

Ger. Offen., 12 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4407423	A1	19950907	DE 1994-4407423	19940305
WO 9523800	A1	19950908	WO 1995-EP690	19950225
W: CA. CN.	FI. JP	. KR. US		

```
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
     EP 697021
                       A1
                            19960221
                                            EP 1995-909783
                                                             19950225
     EP 697021
                             20000705
                       В1
         R: AT, BE, DE, DK, ES, FR, GB, GR, IE, IT, NL, PT
                                            JP 1995-522680
     JP 08508301
                     Т2
                            19960903
                                                             19950225
     JP 2750003
                             19980513
                       В2
     AT 194349
                       Ε
                             20000715
                                            AT 1995-909783
                                                             19950225
     CA 2184386
                                            CA 1995-2184386 19950303
                       AΑ
                             19950908
                      A1
                                            WO 1995-EP776
     WO 9523801
                            19950908
                                                             19950303
         W: CA, CN, FI, JP, KR, US
         RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
     EP 749435
                                            EP 1995-912194
                             19961227
                                                            19950303
                       A1
     EP 749435
                             20001011
                       В1
         R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, NL, PT, SE
                            19970219
                                           CN 1995-191975 19950303
     CN 1143368
                      Α
     JP 09510289
                       Т2
                            19971014
                                            JP 1995-522705
                                                            19950303
     JP 3027770
                       В2
                            20000404
     AT 196906
                      \mathbf{E}
                            20001015
                                            AT 1995-912194
                                                            19950303
     ES 2152392
                      Т3
                                            ES 1995-912194
                            20010201
                                                            19950303
     FI 9603461
                                            FI 1996-3461
                       Α
                            19960904
                                                             19960904
     US 5863740
                                            US 1996-700435
                       Α
                            19990126
                                                            19960905
     US 5952185
                            19990914
                                            US 1997-958870
                                                            19971027
                       Α
PRIORITY APPLN. INFO.:
                                         DE 1994-4407423 A 19940305
                                                         W 19950225
                                         WO 1995-EP690
                                         WO 1995-EP776
                                                          W 19950303
                                         US 1995-535072
                                                          B1 19951103
AΒ
     The finding concerns interference-reducing agents for avoiding nonspecific
     reactions in immunoassays wherein the agents used are avidin or
     streptavidin or their derivs. Interferences in heterogeneous immunoassays
     can decrease sensitivity and specificity and even cause false-pos. anal.
     results esp. in the detn. of antibodies. The agents can be used for improving immunoassays of, e.g., haptens, antigens, or antibodies in,
     e.g., body fluids. Examples are given of the prepn. of, e.g., crosslinked
     streptavidin after activation by various crosslinking agents, of bovine
     serum albumin-streptavidin conjugates, etc.
ΙT
     168411-59-4DP, streptavidin conjugates
     RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST
     (Analytical study); PREP (Preparation); USES (Uses)
        (interference-reducing agents for use in immunoassays)
L13 ANSWER 31 OF 32 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                         1994:245753 HCAPLUS
DOCUMENT NUMBER:
                         120:245753
TITLE:
                         Evaluation of a vitamin-cloaking strategy for
                         oligopeptide therapeutics: biotinylated HIV-1 protease
                         inhibitors
AUTHOR(S):
                         Islam, I.; Ng, K. Y.; Chong, K. T.; McQuade, T. J.;
                         Hui, J. O.; Wilkinson, K. F.; Rush, B. D.; Ruwart, M.
                         J.; Borchardt, R. T.; Fisher, J. F.
CÓRPORATE SOURCE:
                         Upjohn Lab., Upjohn Co., Kalamazoo, MI, 49001, USA
                         J. Med. Chem. (1994), 37(2), 293-304
SOURCE:
                         CODEN: JMCMAR; ISSN: 0022-2623
DOCUMENT TYPE:
                         Journal
                         English
LANGUAGE:
GΙ
```

Ι

A series of eight peptidic HIV-1 protease inhibitors, e.g. I [X = CO,AR CONH(CH2)5CO, CONH-Val, 2-CH2SC6H4CO, 2-CH2OC6H4CO], contq. the structural segment of the vitamin biotin have been prepd to address the outstanding limitations of poor oral availability and rapid biliary clearance of oligopeptide therapeutic agents. These have been evaluated with regard to the hypothesis that this vitamin would cloak the peptidic character of these oligopeptides, and thus impart to these inhibitors the potential for absorption and distribution via biotin transporters and receptors. By iterative optimization about a Cha.psi.[CH(OH)CH(OH)]Val (Cha = cyclohexylalanine) core inhibitory insert, three particularly potent inhibitors (Ki .ltoreq. 10 nM) of the HIV-1 protease were obtained. Although excellent cell culture antiviral activity is obsd. for other peptidic protease inhibitors of comparable affinity, none in this series exhibited satisfactory antiviral activity. This failure is attributed to the incompatibility of the hydrophilic and hydrogen-bonding biotin segment with the facile membrane permeability and intracellular access presumably required for antiviral activity. The ability of the biotin to cloak the peptide, and thus render the overall appearance of the conjugate as that of a vitamin, was evaluated. I [X = CO, CONH(CH2)5CO, CONH-Val, 2-CH2OC6H4CO] were evaluated for recognition by the Caco-2 cell intestinal biotin transporter. None inhibited competitively biotin uptake, indicating a lack of recognition. A vitamin may bind to a specific protein carrier, and thus attain an improved serum profile (by resistance to biliary clearance) and advantageous delivery to cells. Therefore, the serum concns. were evaluated following an i.v. bolus in a rat model for serum clearance. Protease inhibitor I (X = CONH-Val) sustained a more than 5-fold increase in serum concn. at all time points relative to the benchmark structure. The others had serum concns. at least equal to the benchmark, suggestive of improved resistance to clearance. An avidin complex of I (X = 2-CH2OC6H4CO) (II) was prepd., and its antiviral activity was identical with that of uncomplexed II. This suggests that the avidin-inhibitor complexes capable of cell internalization. Although the overall weak antiviral activity of these biotinylated inhibitors precludes consideration as practical HIV therapeutics, the overall data remain suggestive of vitamin cloaking of oligopeptides as a strategy of potential value.

IT 153805-31-3P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn., virucidal, and HIV protease inhibitory activity of)

L13 ANSWER 32 OF 32 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1992:210738 HCAPLUS

DOCUMENT NUMBER: 116:210738

TITLE: Immunochemical determination of biogenic amines Huber, Erasmus; Stahl, Peter; Batz, Hans Georg; INVENTOR(S):

Huebner-Parajsz, Christa; Jungfer, Barbara; Klein,

Christian

PATENT ASSIGNEE(S): Boehringer Mannheim G.m.b.H., Germany

SOURCE: Eur. Pat. Appl., 25 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 471345	A1	19920219	EP 1991-113587	19910813
EP 471345	B1	19950802		
R: AT, BE,	CH, DE	, DK, ES, FR	R, GB, GR, IT, LI, LU,	, NL, SE
DE 4025726	A1	19920220	DE 1990-4025726	19900814
JP 04311395	A2	19921104	JP 1991-202650	19910813
PRIORITY APPLN. INFO	. :		DE 1990-4025726	19900814
OMITED COURCE (C).	MA	DDXM 11C.010	720	

OTHER SOURCE(S): MARPAT 116:210738

A primary or secondary amine (e.g. histamine or a catecholamine) is detd. immunochem. with the aid of a monoclonal antibody produced by immortalized cells from an animal immunized with the amine conjugated, via an iso(thio)cyanato group, with a coupling agent and a carrier mol. histamine was reacted successively with (1) 3-isothiocyanatobenzoic acid, (2) N-hydroxysuccinimide and N,N'-dicyclohexylcarbodiimide, and (3) N-biotinyl-1,8-diamino-3,6-dioxaoctane. The product of synthetic step 1 was used to immunize mice, whose spleen cells were later fused with myeloma cells to provide hybridoma cells for monoclonal antibody prodn. A microtiter plate was coated with streptavidin and the histidine-biotin conjugate, and then incubated successively with a histidine-contq. specimen, a sheep anti-mouse IqG-peroxidase conjugate, and peroxidase substrate for spectrophotometric detn. of histamine.

141110-92-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and immobilization of, for immunoassay)

=>

=> fil req

FILE 'REGISTRY' ENTERED AT 19:40:13 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 American Chemical Society (ACS)

8 MAY 2002 HIGHEST RN 412906-88-8 STRUCTURE FILE UPDATES: 8 MAY 2002 HIGHEST RN 412906-88-8 DICTIONARY FILE UPDATES:

TSCA INFORMATION NOW CURRENT THROUGH July 7, 2001

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Calculated physical property data is now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS

Registry File, for complete details: http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf

=> =>			
	d reg 111 1-89		
1	RN	412319-48-3	REGISTRY
2	RN	412319-47-2	REGISTRY
3	RN	380607-60-3	REGISTRY
4	RN	380607-59-0	REGISTRY
5	RN	380607-58-9	REGISTRY
6	RN	380607-57-8	REGISTRY
7		380607-56-7	REGISTRY
	RN		
8	RN	380607-55-6	REGISTRY REGISTRY
9	RN	380607-54-5	
10	RN	380607-53-4	REGISTRY
11	RN	380607-52-3	REGISTRY
12	RN	380607-51-2	REGISTRY
13	RN	380607-50-1	REGISTRY
14	RN	380607-48-7	REGISTRY
15	RN	351535-11-0	REGISTRY
16	RN	351535-10-9	REGISTRY
17	ŔŇ	351535-09-6	REGISTRY
18	RN	351535-06-3	REGISTRY
19	RN	351535-05-2	REGISTRY
20	RN	351535-01-8	REGISTRY
21	RN	351535-00-7	REGISTRY
22	RN	351534-99-1	REGISTRY
23	RN .	351534-98-0	REGISTRY
24	RN	346403-99-4	REGISTRY
25	RN .	340293-01-8	REGISTRY
26	RN	340293-00-7	REGISTRY
27	RN	332941-56-7	REGISTRY
28	RN	332941-54-5	REGISTRY
29	RN	332941-52-3	REGISTRY
30	RN	332941-49-8	REGISTRY
31	RN	332941-45-4	REGISTRY
32	RN	328273-51-4	REGISTRY
33	RN	328273-48-9	REGISTRY
34	RN	328273-45-6	REGISTRY
35	RN	328273-42-3	REGISTRY
36	RN	308831-30-3	REGISTRY
37	RN	308831 - 29-0	REGISTRY
38	RN	290812-04-3	REGISTRY
39	RN	290330-19-7	REGISTRY
40	RN	282718-83-6	REGISTRY
41	RN .	282718-82-5	REGISTRY
42	RN	282718-77-8	REGISTRY
43	RN	254447-31-9	REGISTRY
44	RN	254447-29-5	REGISTRY
45	RN	254441-28-6	REGISTRY
46	RN	254441-26-4	REGISTRY
47	RN	254441-25-3	REGISTRY
48	RN	254441-24-2	REGISTRY
49	RN	254441-23-1	REGISTRY
50	RN	251096-26-1	REGISTRY
51	RN	251096-25-0	REGISTRY
52	RN	251096-24-9	REGISTRY
53	RN	233265-81-1	REGISTRY

```
54
          RN
                          207971-25-3 REGISTRY
55
                          207971-24-2 REGISTRY
          RN
56
                          195370-62-8
          RN
                                       REGISTRY
57
                          194920-71-3
          RN
                                       REGISTRY
58
                          194920-64-4
          RN
                                        REGISTRY
59
          RN
                          194920-61-1
                                        REGISTRY
60
          ŔN
                          194920-60-0
                                       REGISTRY
61
          RN
                          194920-58-6
                                       REGISTRY
62
          RN
                          194920-56-4
                                       REGISTRY
63
          RN
                          194920-46-2
                                       REGISTRY
64
                          194920-45-1
          RN
                                       REGISTRY
65
          RN
                          192721-01-0
                                       REGISTRY
                          192720-99-3
66
          RN
                                       REGISTRY
67
          RN
                         192720-97-1
                                       REGISTRY
68
                          192720-95-9
          RN
                                       REGISTRY
69
          RN
                          192720-88-0
                                       REGISTRY
70
                          192720-86-8
          RN
                                       REGISTRY
71
          RN
                          192720-85-7
                                       REGISTRY
72
          RN
                          192720-83-5
                                       REGISTRY
73
          RN
                          192720-70-0
                                       REGISTRY
74
          RN
                          192720-67-5
                                       REGISTRY
75
          RN
                          192720-66-4
                                       REGISTRY
76
          RN
                          192720-64-2 REGISTRY
77
          RN
                          192432-86-3 REGISTRY
78
          RN
                          192432-19-2 REGISTRY
79
          RN
                          192432-17-0 REGISTRY
80
                          192432-16-9 REGISTRY
          RN
81
                          189887-17-0 REGISTRY
          RN
82
          RN
                          189887-16-9 REGISTRY
83
                          186263-07-0
          RN
                                       REGISTRY
84
          RN
                          175663-44-2
                                       REGISTRY
85
          RN
                          173949-63-8
                                       REGISTRY
86
          RN
                          173949-62-7
                                       REGISTRY
87
          RN
                          168411-59-4
                                       REGISTRY
88
          RN
                          153805-31-3
                                       REGISTRY
89
          RN
                          141110-92-1
                                       REGISTRY
=>
=>
=> d ide can 111 1 3 15 22 24 25 27 32 36 38 39 40 43 45 50 53 54 56 57 65 66 77 81
83 84 85 87 88 89
L11
    ANSWER 1 OF 89 REGISTRY COPYRIGHT 2002 ACS
RN
     412319-48-3 REGISTRY
CN
     INDEX NAME NOT YET ASSIGNED
```

Absolute stereochemistry.

STEREOSEARCH

STN Files:

C53 H68 N4 O13 S

CAPLUS

FS

MF

ŞR

LC

CA

O (CH₂) 5 Me

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

L11 ANSWER 3 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 380607-60-3 REGISTRY

CN Carbamic acid, [3-(1,17-dioxo-6,9,12-trioxa-2,16-diazaheneicos-1-yl)-5-[21-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1,17-dioxo-6,9,12-trioxa-2,16-diazaheneicos-1-yl]phenyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C48 H81 N7 O13 S

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 136:42919

L11 ANSWER 15 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 351535-11-0 REGISTRY

CN 6,9,12-Trioxa-2,16-diazaeicosan-20-oic acid, 19-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-(4-iodophenyl)-1,17-dioxo-, 1,1-dimethylethyl ester, (19S)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C35 H54 I N5 O9 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 135:134197

L11 ANSWER 22 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 351534-99-1 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, hexahydro-N-[(1S)-1-(hydroxymethyl)-18-[4-(iodo-125I)phenyl]-2,18-dioxo-7,10,13-trioxa-3,17-diazaoctadec-1-yl]-2-oxo-, (3aS,4S,6aR)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C30 H46 I N5 O8 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

$$\begin{array}{c|c}
 & H & H \\
\hline
 & N & S \\
\hline
 & H & N & N \\
\hline$$

1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 135:134197

L11 ANSWER 24 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 346403-99-4 REGISTRY

CN lH-Thieno[3,4-d]imidazole-4-pentanamide, N-[21-(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-6-y1)-6,21-dioxo-11,16-dioxa-7,20-diazaheneicos-1-y1]hexahydro-2-oxo-, (3aS,4S,6aR)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C47 H59 N5 O11 S

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 135:73673

L11 ANSWER 25 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 340293-01-8 REGISTRY

CN D-Glucose, 4,4'-O-[2-[[2-[[26-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-10,17,22-trioxo-3,6-dioxa-13,14-dithia-9,18,21-triazahexacos-1-yl]oxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-1,3-propanediyl]bis- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C48 H73 F3 N8 O20 S3

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

R

PAGE 2-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 134:367106

L11 ANSWER 27 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 332941-56-7 REGISTRY

CN D-Glucose, 4-O-[(31R,32R)-63-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-31,32-dihydroxy-25,30,33,59-tetraoxo-2-[[4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-4,7,10,13,16,19,22,37,40,43,46,49,52,55-tetradecaoxa-26,29,34,58-tetraazatrihexacont-1-yl]-(9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C65 H108 F3 N9 O28 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

PAGE 1-D

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 134:277052

L11 ANSWER 32 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 328273-51-4 REGISTRY

CN 1,7-Dioxaspiro[5.5]undec-10-ene-2-propanoic acid, 8-[(1R,2E)-3-[(2R,4'aR,5R,6'S,8'R,8'aS)-hexahydro-8'-hydroxy-6'-[(1S,3S)-1-hydroxy-3-[(2S,3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undec-2-yl]butyl]-7'-methylenespiro[furan-2(3H),2'(3'H)-pyrano[3,2-b]pyran]-5-yl]-1-methyl-2-propenyl]-5-[[[5-[[2-[2-[2-[2-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]pentyl]amino]carbonyl]oxy]-.alpha.-hydroxy-.alpha.,10-dimethyl-, (.alpha.R,2S,5R,6R,8S)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C75 H110 F3 N7 O20 S

SR CA

LC STN Files: CA, CAPLUS, CASREACT

Absolute stereochemistry. Double bond geometry as shown.

PAGE 2-B

1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 134:204239

L11 ANSWER 36 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 308831-30-3 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, N,N'-[20-[28-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-23-methyl-6,11,24-trioxo-3-[3-oxo-3-[[2-[[4-(tributylstannyl)benzoyl]amino]ethyl]amino]propyl]-14,17,20-trioxa-3,7,10,23-tetraazaoctacos-1-yl]-12,17,23,28-tetraoxo-3,6,9,31,34,37-hexaoxa-13,16,20,24,27-pentaazanonatriacontane-1,39-diyl]bis[hexahydro-N-methyl-2-oxo-, (3aS,3'aS,4S,4'S,6aR,6'aR)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C101 H177 N19 O23 S3 Sn

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

$$\begin{array}{c|c}
 & H & H \\
\hline
 & R & S \\
\hline
 & R & S$$

PAGE 1-B

PAGE 1-C

Me

(CH2) 4

N

(CH2) 4

N

(CH2) 4

(CH2) 4

(CH2) 4

(CH2) 4

PAGE 1-D

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 134:2118

L11 ANSWER 38 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 290812-04-3 REGISTRY

.alpha.-D-Glucopyranuronamide, O-(5R)-5-C-[3-(3-carboxy-1-oxopropyl)-1-[3-[[2-[[4-[(3R)-19-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-2-[[[[2-methoxy-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]methoxy]carbonyl]amino]methyl]-1,4,15-trioxo-2,8,11-trioxa-5,14-diazanonadec-1-yl]phenyl]thioxomethyl]amino]ethyl]amino]carbonyl]-4-nitrophenyl]-1H-1,2,4-triazol-5-yl]-.alpha.-L-arabinopyranosyl-(1.fwdarw.4)-O-2-(acetylamino)-2,6-dideoxy-.beta.-D-glucopyranosyl-(1.fwdarw.6)]-O-2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosyl-(1.fwdarw.2)-4-C-methyl-, 3-carbamate 1-[(2R)-2-carboxy-2-[[(2Z,6E,13E)-3,8,8,14,18-pentamethyl-11-methylene-2,6,13,17-nonadecatetraenyl]oxy]ethyl hydrogen phosphate] (9CI) (CA INDEX

NAME)

FS STEREOSEARCH

MF C116 H161 F3 N17 O47 P S2

SR CA

LC STN Files: CA, CAPLUS, CASREACT

Absolute stereochemistry. Double bond geometry as shown.

PAGE 1-C

PAGE 1-D

PAGE 2-C

__CO2H

- 1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:208058

L11 ANSWER 39 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 290330-19-7 REGISTRY

CN lH-Thieno[3,4-d]imidazole-4-pentanamide, N-[(5S)-5-[(4-benzoylbenzoyl)amino]-6-[[3-[2-[[[(4-chlorophenyl)sulfonyl](2,5-difluorophenyl)amino]methyl]phenoxy]propyl]methylamino]-6-oxohexyl]hexahydro-2-oxo-, (3aS,4S,6aR)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C53 H57 C1 F2 N6 O8 S2

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:207678

L11 ANSWER 40 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 282718-83-6 REGISTRY

CN L-Glutamine, N2-[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]-N-[[4-(9-hydroxy-9-oxido-1-oxo-8,10-dioxa-2-aza-9-phosphadodec-1-yl)phenyl]methyl]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C30 H46 N5 O10 P S

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 133:100420

L11 ANSWER 43 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 254447-31-9 REGISTRY

CN 6,9,12-Trioxa-2,16-diazaeicosan-20-oic acid, 1-[3-[[[4-[2-[bis(carboxymethyl)amino]-3-[[2-[bis(carboxymethyl)amino]cyclohexyl](carboxymethyl)amino]propyl]phenyl]amino]carbonyl]-5-isothiocyanatophenyl]-18[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1oxopentyl]amino]-1,17-dioxo-(9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C58 H80 N10 O20 S2

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PAGE 1-A

$$\begin{array}{c|c}
 & H & H \\
\hline
N & R & S \\
HN & S & S
\end{array}$$

$$(CH_2)_{4} & N & H \\
\hline
N & (CH_2)_{3} & O \\
\end{array}$$

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:90367

L11 ANSWER 45 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 254441-28-6 REGISTRY

CN 1,3,5-Benzenetricarboxamide, N-[3-[2-[2-[3-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)propoxy]ethoxy]ethoxy]propyl]-N'-[19-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-15-oxo-4,7,10-trioxa-14-azanonadec-1-

yl]-N''-[15-(4-iodophenyl)-15-oxo-4,7,10-trioxa-14-azapentadec-1-yl]-(9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C60 H89 I N8 O17 S

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER, USPATFULL

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1967 TO DATE)
2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:90367

REFERENCE 2: 132:90366

L11 ANSWER 50 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 251096-26-1 REGISTRY

CN L-Tyrosine, N-acetyl-O-(4-hydroxy-3,5-diiodophenyl)-3,5-diiodo-, anhydride with 12-[3,5-bis[[5-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxopentyl]amino]phenyl]-12-oxo-5,8-dioxa-2,11-diazadodecanoic acid (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C61 H79 I4 N11 O15 S2

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)

2 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 132:1814

L11 ANSWER 53 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 233265-81-1 REGISTRY

CN 3,5-Pyridinedicarboxylic acid, 1,4-dihydro-2-methyl-6-phenyl-4- (phenylethynyl)-, 5-ethyl 3-[[4-[[[2-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethyl]amino]carbonyl]phenyl] methyl] ester (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C44 H47 N5 O7 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 131:110893

L11 ANSWER 54 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 207971-25-3 REGISTRY

CN D-Mannose, 4,4'-O-[2-[[2-[[21-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-10,17-dioxo-3,6-dioxa-9,16-diazaheneicos-1-yl]oxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-1,3-propanediyl]bis-

(9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C46 H70 F3 N7 O19 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 129:25290

L11 ANSWER 56 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 195370-62-8 REGISTRY

CN 1,3,5-Benzenetricarboxamide, N,N',N''-tris[23-(hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl)-17-methyl-15,19-dioxo-4,7,10-trioxa-14,18-diazatricos-1-yl]-, [3aS-[3a.alpha.,4.beta.(3aR*,4R*,6aS*),4(3aR*,4R*,6aS*),6a.alpha.]]-[partial]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C81 H135 N15 O21 S3

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 1-C

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:298612

L11 ANSWER 57 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 194920-71-3 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, N-[2,18-dioxo-18-[4-(tributylstannyl)phenyl]-7,10,13-trioxa-3,17-diazaoctadec-1-yl]hexahydro-N-methyl-2-oxo-, (3aS,4S,6aR)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, N-[2,18-dioxo-18-[4-(tributylstannyl)phenyl]-7,10,13-trioxa-3,17-diazaoctadec-1-yl]hexahydro-N-methyl-2-oxo-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]-

FS STEREOSEARCH

MF C42 H73 N5 O7 S Sn

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1967 TO DATE)
2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 135:134197

REFERENCE 2: 127:220519

L11 ANSWER 65 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 192721-01-0 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, hexahydro-N-[19-[4-(iodo-125I)phenyl]-1-methyl-3,19-dioxo-8,11,14-trioxa-4,18-diazanonadec-1-yl]-2-oxo-(9CI) (CA INDEX NAME)

FS 3D CONCORD

MF C31 H48 I N5 O7 S

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

PAGE 1-A

PAGE 1-B

$$-0-CH_2-CH_2-0-(CH_2)_3-NH-C$$

1 REFERENCES IN FILE CA (1967 TO DATE)

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:121587

L11 ANSWER 66 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 192720-99-3 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, hexahydro-N-[18-[4-(iodo-1251)phenyl]-2,18-dioxo-7,10,13-trioxa-3,17-diazaoctadec-1-yl]-N-methyl-2-oxo-(9CI) (CA INDEX NAME)

FS 3D CONCORD

MF C30 H46 I N5 O7 S

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

PAGE 1-A

PAGE 1-B

1 REFERENCES IN FILE CA (1967 TO DATE)

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:121587

L11 ANSWER 77 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 192432-86-3 REGISTRY

CN Poly(oxy-1,2-ethanediyl), .alpha.-[2-[[5-(hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl)-1-oxopentyl]amino]propyl]-.omega.-[2-[(1-pyrenylcarbonyl)amino]propoxy]-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]-(9CI) (CA INDEX NAME)

MF (C2 H4 O)n C33 H38 N4 O4 S

CI PMS

PCT Polyether

SR CA

LC STN Files: CA, CAPLUS

PAGE 1-A

PAGE 1-B

1 REFERENCES IN FILE CA (1967 TO DATE)

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 127:106189

L11 ANSWER 81 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 189887-17-0 REGISTRY

CN Cobinamide, Ne,Ne'-[[5-[[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]amino]-l,3-phenylene]bis(15-oxo-4,7,10-trioxa-14-azapentadecane-15,1-diyl)]bis[Co-(cyano-.kappa.C)-, bis(dihydrogen phosphate) (ester), bis(inner salt), P.fwdarw.3':P'.fwdarw.3'''-diester with (5,6-dimethyl-1-.alpha.-D-ribofuranosyl-1H-benzimidazole-.kappa.N3) (9CI) (CA INDEX NAME)

MF C170 H246 Co2 N34 O39 P2 S

CI CCS

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

2 REFERENCES IN FILE CA (1967 TO DATE)

2 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 130:38641

REFERENCE 2: 126:343813

L11 ANSWER 83 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 186263-07-0 REGISTRY

CN Butanediamide, N4-[2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosyl]-2-[[2-[2-[2-[2-[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-, (2S)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Butanediamide, N4-[2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosyl]-2-[[2-[2-[2-[2-[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-, (S)-

OTHER NAMES:

CN BDGA

FS STEREOSEARCH

MF C37 H52 F3 N9 O13 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

4 REFERENCES IN FILE CA (1967 TO DATE)

4 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 129:119561

REFERENCE 2: 128:72612

REFERENCE 3: 126:289755

REFERENCE 4: 126:114867

L11 ANSWER 84 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 175663-44-2 REGISTRY

CN L-Asparagine, N-[2-(acetylamino)-2-deoxy-.beta.-D-glucopyranosyl]-N2-[2-[2-[2-[2-[5-(hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl)-1-oxopentyl]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-

yl]benzoyl]-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C37 H51 F3 N8 O14 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 124:283427

L11 ANSWER 85 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 173949-63-8 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, N-[6-[[2-[(4-O-.beta.-D-galactopyranosyl-.beta.-D-glucopyranosyl)oxy]ethyl]amino]-5-[[2-(methoxy-14C)-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoyl]amino]-6-oxohexyl]hexahydro-2-oxo-, [3aS-[3a.alpha.,4.beta.(R*),6a.alpha.]]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C40 H58 F3 N7 O16 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-B

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 124:176693

L11 ANSWER 87 OF 89 REGISTRY COPYRIGHT 2002 ACS RN 168411-59-4 REGISTRY

CN 1H-Thieno[3,4-d]imidazole-4-pentanamide, N-[2-[2-[2-[(4-azidobenzoyl)amino]ethoxy]ethoxy]ethyl]hexahydro-2-oxo-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C23 H33 N7 O5 S

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

1 REFERENCES IN FILE CA (1967 TO DATE)

1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 123:222328

L11 ANSWER 88 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 153805-31-3 REGISTRY

CN L-Idonamide, 6-cyclohexyl-2,5,6-trideoxy-N-[1-[[[5-(hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl)-1-oxopentyl]amino]methyl]-2-methylbutyl]-2-(1-methylethyl)-5-[[2-(2-phenoxyethoxy)benzoyl]amino]-, [3aS-[3a.alpha.,4.beta.(1R*,2R*),6a.alpha.]]- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN 1H-Thieno[3,4-d]imidazole, L-idonamide deriv.

FS STEREOSEARCH

MF C46 H69 N5 O8 S

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 120:245753

L11 ANSWER 89 OF 89 REGISTRY COPYRIGHT 2002 ACS

RN 141110-92-1 REGISTRY

CN 1H-Thieno[3,4-b]imidazole-4-pentanamide, N-[2-[2-[2-[[3-[[[2-(3,4-dihydroxyphenyl)ethyl]amino]thioxomethyl]amino]benzoyl]amino]ethoxy]ethoxy]ethyl]hexahydro-2-oxo-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C32 H44 N6 O7 S2

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE) 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 116:210738

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 19:45:31 ON 10 MAY 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 10 May 2002 VOL 136 ISS 19 FILE LAST UPDATED: 8 May 2002 (20020508/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> =>

=> d stat que

1.18

8 SEA FILE=HCAPLUS ABB=ON PLU=ON (DIFFERENTIAL(W)LABEL?)(L)SPEC TROMET?

=> d ibib abs hitrn 118 1-8

L18 ANSWER 1 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2002:276137 HCAPLUS

DOCUMENT NUMBER:

136:305090

TITLE:

Whole cell engineering by mutagenizing a substantial portion of a starting genome and combining mutations

with optional reiteration, identifying protein

profiles by differential labeling

and mass spectrometry, and by metabolic flux

analysis

INVENTOR(S):

Short, Jay M.; Fu, Pengcheng; Latterich, Martin; Wei,

Jing; Levin, Michael

PATENT ASSIGNEE(S): SOURCE:

Diversa Corporation, USA PCT Int. Appl., 869 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE:

• 🤈 ີ

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
20020411
                                           WO 2001-US31004 20011001
     WO 2002029032
                       A2
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
             GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,
             PT, RO, RU
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
     WO 2001096551
                       A2
                            20011220
                                           WO 2001-US19367 20010614
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
             GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
             RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
             UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                        US 2000-677584
                                                         A2 20000930
                                        US 2001-279702P P 20010328
                                        WO 2001-US19367 W 20010614
                                                         A2 20000614
                                        US 2000-594459
     An invention comprising cellular transformation, directed evolution, and
AB
     screening methods for creating novel transgenic organisms having desirable
     properties. In one embodiment, this invention provides a method of
     generating a transgenic organism, such as a microbe or a plant, having a
     plurality of traits that are differentially activatable. This invention
     also provides a method of retooling genes and gene pathways by the
     introduction of regulatory sequences, such as promoters, that are operable
     in an intended host, this conferring operability to a novel gene pathway
     when it is introduced into an intended host. For example a novel man-made
     gene pathway, generated based on microbially-derived progenitor templates,
     that is operable in a plant cell. This invention also provides a method
     of generating novel host organisms having increased expression of
     desirable traits, recombinant genes, and gene products. This invention
     provides novel methods for detg. polypeptide profiles, and protein
     expression variations, which methods are applicable to all sample types
     disclosed herein. The present invention provides methods of
     simultaneously identifying and quantifying individual proteins in complex
     protein mixts. by fragmentation, differential labeling
     , and tandem mass spectrometry. Addnl. this invention provides
     methods for cellular and metabolic engineering of new and modified
     phenotypes by using "online" or "real-time" metabolic flux anal.
L18 ANSWER 2 OF 8 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                         2002:154547 HCAPLUS
                         Quantitative proteomics strategy involving the
TITLE:
                         selection of peptides containing both cysteine and
                         histidine from tryptic digests of cell lysates
AUTHOR(S):
                         Wang, Shihong; Zhang, Xiang; Regnier, Fred E.
CORPORATE SOURCE:
                         Department of Chemistry, Purdue University, West
                         Lafayette, IN, 47907-1393, USA
                         Journal of Chromatography, A (2002), 949(1-2), 153-162
SOURCE:
                         CODEN: JCRAEY; ISSN: 0021-9673
PUBLISHER:
                         Elsevier Science B.V.
DOCUMENT TYPE:
                         Journal
LANGUAGE:
                         English
```

This paper describes a procedure for quant. proteomics that selects

peptides contq. both cysteine and histidine residues from tryptic digests of cell lysates. Cysteine-contg. peptides were selected first by covalent chromatog. using thiol disulfide exchange. Following the release of cysteine-contg. peptides from the covalent chromatog. column with reductive cleavage, histidine-contg. peptides were captured by passage through an immobilized metal affinity chromatog. column loaded with copper. Quantification was achieved in a four-step process involving (i) differential labeling of control and exptl. samples with isotopically differing forms of succinic anhydride, (ii) mixing the two qlobally labeled samples, (iii) fractionating the labeled peptides by reversed-phase liq. chromatog., and (iv) detg. the isotope ratio in individual peptides by mass spectrometry. The results of these studies indicate that by selecting peptides contg. both cysteine and histidine, the complexity of protein digests could be substantially reduced. Up-regulated proteins from plasmid bearing Escherichia coli that had been induced with iso-Pr .beta.-thiogalacto-pyranoside were identified and quantified by the global internal std. technol. (GIST) described above. Database searches were greatly simplified because the no. of possible peptide candidates was reduced more than 95%.

REFERENCE COUNT: 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 3 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1999:688465 HCAPLUS

DOCUMENT NUMBER: 132:75555

TITLE: Mass Spectrometry to Characterize the Binding of a

Peptide to a Lipid Surface

AUTHOR(S): MacPhee, Cait E.; Howlett, Geoffrey J.; Sawyer,

William H.

CORPORATE SOURCE: Russell Grimwade School of Biochemistry and Molecular

Biology, University of Melbourne, Parkville, 3052,

Australia

SOURCE: Analytical Biochemistry (1999), 275(1), 22-29

CODEN: ANBCA2; ISSN: 0003-2697

PUBLISHER: Academic Press

DOCUMENT TYPE: Journal LANGUAGE: English

AB The binding of an amphipathic .alpha.-helical peptide to small unilamellar lipid vesicles has been examd. using chem. derivitization and mass spectrometry. The peptide is derived from the sequence of human apolipoprotein C-II (apoC-II), the protein activator of lipoprotein lipase (LpL). ApoC-II19-39 forms approx. 60% .alpha.-helix upon binding to model egg yolk phosphatidylcholine small unilamellar vesicles. Measurement of the affinity of the peptide for lipid by spectrophotometric methods is complicated by the contribution of scattered light to optical signals. Instead, we characterize the binding event using the differential labeling of lysine residues by the lipid- and aq.-phase cross-linkers, disuccinimidyl suberate (DSS) and bis(sulfosuccinimidyl) suberate (BS3), resp. In aq. soln., the three lysine residues of the peptide are accessible to both cross-linkers. In the presence of lipid, the C-terminal lysine residue becomes inaccessible to the lipid-phase cross-linker DSS, but remains accessible to the aq.-phase cross-linker, BS3. We use mass spectrometry to characterize this binding event and to derive a dissocn. const. for the interaction (Kd = 5 .mu.M). We also provide evidence for the formation of dimeric cross-linked peptide when high densities of peptide are bound to the lipid surface. (c) 1999 Academic Press.

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 4 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1996:367273 HCAPLUS

DOCUMENT NUMBER: 125:80988

TITLE: Advances in high resolution SIMS studies of

BrdU-labeled human metaphase chromosomes

AUTHOR(S): Levi-Setti, R.; Chabala, J. M.; Gavrilov, K.;

Espinosa, R., III; Le Beau, M. M.

CORPORATE SOURCE: Dep. Physics, Univ. Chicago, Chicago, IL, 60637, USA

SOURCE: Cell. Mol. Biol. (Paris) (1996), 42(3), 301-324

CODEN: CMOBEF; ISSN: 0145-5680

DOCUMENT TYPE: Journal LANGUAGE: English

The detection of bromine in human metaphase chromosomes labeled with the thymidine-analog bromodeoxyuridine (BrdU), by imaging secondary ion mass spectrometry (SIMS) with a high resoln. scanning ion microprobe, provides detailed maps of the AT distribution within the chromosomes. Similarly, maps of the emitted CN-mol. ions describe the overall DNA, RNA and protein distribution, details of which are also revealed by maps of the divalent cations Ca2+ and Mg2+. Base-specific banding patterns (SIMS bands), mimicking the well known G- or Q-bands resulting from conventional staining methods for optical microscopy, are obsd. in several prepns., more noticeably in mitotic cells at the 1st cell division, after in situ DNA denaturation or Giemsa staining. A structured distribution, seemingly related to G/Q-banding patterns, is also obsd. in the Mg2+ and Ca2+ maps. The differential label signal intensities between sister chromatids, at the 2nd cell division and beyond, manifest the occurrence of sister chromatid exchanges (SCE), occurring both spontaneously and induced following exposure of the cells to the chem. aphidicolin (an inhibitor of DNA replication). Imaging SIMS emerges as a powerful investigative method for the study of chromosome structure and the elucidation of banding mechanisms, to assess the removal of proteins and DNA involved in chromosome prepr. in in situ procedures, and in the study of a no. of cytogenetic phenomena.

L18 ANSWER 5 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1995:273444 HCAPLUS

DOCUMENT NUMBER: 122:75018

TITLE: Identification of posttranslationally modified

18-kilodalton protein from rice as eukaryotic

translation initiation factor 5A

AUTHOR(S): Mehta, Arkesh M.; Saftner, Robert A.; Mehta, Roshni

A.; Davies, Peter J.

CORPORATE SOURCE: Section Plant Biol., Cornell Univ., Ithaca, NY,

14853-5908, USA

SOURCE: Plant Physiol. (1994), 106(4), 1413-19

CODEN: PLPHAY; ISSN: 0032-0889

DOCUMENT TYPE: Journal LANGUAGE: English

Using anther-derived rice (Oryza sativa L.) cell-suspension cultures, we have identified an 18-kD protein that is posttranslationally modified by spermidine and is influenced by endogenous polyamine levels. The posttranslationally modified residue has been identified as the unusual amino acid hypusine [N.epsilon.-(4-amino-2-hydroxybutyl)lysine] by reverse-phase high-performance liq. chromatog. and gas chromatog.-mass-spectrometry analyses. Differential labeling

of the protein with labeled amines provided evidence that the butylamine moiety of spermidine is the immediate precursor of the hypusine residue in the protein. The eukaryotic translation initiation factor 5A (eIF-5A) is

the only known mammalian protein that undergoes a similar posttranslational modification with hypusine. The purified 18-kD protein co-electrophoreses with human translational initiation factor eIF-5A in both isoelec. focusing and sodium dodecyl sulfate-polyacrylamide gels. The purified protein from rice stimulated methionyl-puromycin synthesis in vitro, indicating its functional similarity to mammalian eIF-5A. The results presented provide evidence that the posttranslationally modified 18-kD protein from rice contg. hypusine is eIF-5A and suggest the conservation of hypusine-contg. translation initiation factor eIF-5A in eukaryotes.

L18 ANSWER 6 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1993:466320 HCAPLUS

DOCUMENT NUMBER: 119:66320

TITLE: Identification of sites for feedback regulation of

glutamine 5-phosphoribosylpyrophosphate

amidotransferase by nucleotides and relationship to

residues important for catalysis

AUTHOR(S): Zhou, Gaochao; Charbonneau, Harry; Colman, Roberta F.;

Zalkin, Howard

CORPORATE SOURCE: Dep. Biochem., Purdue Univ., West Lafayette, IN,

47907-1153, USA

SOURCE: J. Biol. Chem. (1993), 268(14), 10471-81

CODEN: JBCHA3; ISSN: 0021-9258

DOCUMENT TYPE: Journal LANGUAGE: English

Glutamine phosphoribosylpyrophosphate amidotransferase, the key regulatory enzyme for de novo purine nucleotide synthesis, is subject to feedback regulation by adenine and guanine nucleotides. Affinity labeling with 5'-p-fluorosulfonylbenzoyladenosine (FSBA) and 8-azidoadenosine 5'-monophosphate (N3-AMP) was used to identify purine nucleotide sites for feedback control of the Escherichia coli amidotransferase. FSBA inactivated the amidotransferase with satn. kinetics. Specificity for inactivation was shown by the covalent attachment of 2.0-2.4 equiv of [3H] sulfobenzoyladenosine (SBA) per subunit and protection by GMP and AMP against inactivation and incorporation of [3H]SBA. Six chymotryptic peptides modified with [3H]SBA were isolated and identified by differential labeling followed by high performance liq. chromatog. and radioactivity. Mass spectrometry and Edman degrdn. anal. were used to identify 5 residues that were covalently modified by [3H]SBA: Tyr74, Tyr258, Lys326, Tyr329, and Tyr465. Tyr258 was also modified ny N3-AMP. Mutant enzymes K326Q and Y329A had activity similar to that of the wild type enzyme. However, both mutants exhibited decreased sensitivity to inhibition by GMP and decreased binding of GMP but were inhibited by AMP. Mutant enzymes Y74A and Y258F were normally feedback-inhibited but were defective in glutamine amide transfer and synthase functions, resp. Therefore Tyr74 and Tyr258 are important for activity and modification by FSBA and N3-AMP accounts for enzyme inactivation. These results localize residues important for catalysis in close proximity to a site for nucleotide binding. Two addnl. mutant enzymes, G331I and N351A, were constructed which were refractory to inhibition by GMP with little change in inhibition by AMP. A replacement of Tyr465 indicates that this residue is not essential for catalysis or feedback inhibition. Overall, these results are interpreted in terms of a two-nucleotide site model with Lys326, Tyr329, Gly331, and Asn351 defining a site required for inhibition by GMP. A second nucleotide site not affinity labeled by analogs is very close to or overlaps with the catalytic site.

L18 ANSWER 7 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1992:631520 HCAPLUS

DOCUMENT NUMBER: 117:231520

TITLE: Site-specific glycation of lens crystallins by

ascorbic acid

AUTHOR(S): Ortwerth, Beryl J.; Slight, Simon H.; Prabhakaram,

Malladi; Sun, Yiping; Smith, Jean B.

CORPORATE SOURCE: Mason Inst. Ophthalmol., Univ. Missouri, Columbia, MO,

USA

SOURCE: Biochim. Biophys. Acta (1992), 1117(2), 207-15

CODEN: BBACAQ; ISSN: 0006-3002

DOCUMENT TYPE: Journal LANGUAGE: English

The oxidn. of ascorbic acid leads to the formation of several compds. which are capable of reacting with protein amino groups via a Maillard reaction. Radioactivity from [1-14C]ascorbic acid was linearly incorporated into lens crystallins over a 10 day period in the presence of NaCNBH3. This rate of incorporation was 6-7-fold more rapid than that obtained with [14C]glucose under the same conditions. SDS-PAGE showed a linear incorporation into all the crystallin subunits. [1-14C]ascrobic acid-labeled .alpha.-crystallin was sepd. into its component A and B subunits, and each was digested with chymotrypsin. HPLC peptide anal. showed a differential labeling of the various lysine residues. Anal. of the peptides by mass spectrometry allowed the identification of the sites and the extent of modification. values ranged from 6% for Lys-78 to 36% for Lys-11 in the A subunit and from 5% for Lys-82 to an av. of 38% for the peptide contg. Lys-166, Lys-174 and Lys-175 in the B subunit. Amino acid anal. demonstrated a single modification reaction producing N.epsilon.-(carboxymethyl)lysine. This agreed with the mass increase of 58 obsd. for each modified peptide.

L18 ANSWER 8 OF 8 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1984:607688 HCAPLUS

DOCUMENT NUMBER: 101:207688

TITLE: Biosynthesis of esterified alkan-2-ols and

.beta.-diketones in barley spike epicuticular wax:

synthesis of radioactive intermediates

AUTHOR(S): Mikkelsen, Joern Dalgaard

CORPORATE SOURCE: Dep. Physiol., Carlsberg Lab., Copenhagen Valby,

DK-2500, Den.

SOURCE: Carlsberg Res. Commun. (1984), 49(3), 391-416

CODEN: CRCODS; ISSN: 0105-1938

DOCUMENT TYPE: Journal LANGUAGE: English

Thirteen different 14C- and 3H-labeled epicuticular wax precursors were synthesized and their structures detd. by gas chromatog.-mass spectrometry analyses. The biosyntheses of .beta.-diketones and alkan-2-ol-contg. esters were studied by incorporating these intermediates into tissue slices of barley spikes whose awns had been removed. A differential labeling pattern of the alkan-2-ol esters and the .beta.-diketones was obsd. after feeding 3 selected mutants blocked in different steps catalyzed by a multifunctional enzyme encoded for by the cer-cqu gene. In cer-u69 tissue slices, (9,10-3H)-3-oxopalmitoyl-CoA was incorporated into both the esterified alkan-2-ols and the .beta.-diketones. Only the former wax component was synthesized by the mutants cer-c36 and -q42. When C14 and C16 fatty acyl chains were fed to the tissue slices, those of cer-u69 and -c36 readily labeled the esterified alkan-2-ols, whereas those of cer-q42 were totally inactive. In all 3 mutants, (2-14C)-pentadecan-2-one, (10,11-3H)-heptadecan-2-one,

and (2-3H)-pentadecan-2-ol exclusively labeled the alkan-2-ol moieties of the specified esters. (9,10-3H)-L-3-Hydroxypalmitoyl-CoA and (3-14C)-labeled DL-3-hydroxy fatty acids having 14, 16 and 18 C atoms were incorporated with a very low efficiency into the .beta.-diketones and the esterified alkan-2-ols. (9,10-3H)-3-oxopalmitoyl-CoA is the primer for the enzyme system known as .beta.-ketoacyl elongase which forms the C29 (nonacosan-14,16-dione), C31 (hentriacontan-14,16-dione), and C33 (tritriacontan-16,18-dione) .beta.-diketones. After protection of the .beta.-dicarbonyl group, 7 or 8 C2 units are added before the presumed decarboxylation to yield the complete .beta.-diketone carbon chain. The alkan-2-ol esters arise from the 3-oxoacyl-CoA deriv. by an initial decarboxylation to form a Me ketone, followed by a redn. to an alkan-2-ol. The latter is then esterified with a fatty acid to form the alkan-2-ol-contg. esters. The 3 steps involved in the alkan-2-ol ester synthesis are accomplished by the coordinated action of a decarboxylase, reductase, and ester synthetase.

```
=> d stat que 126
L14
           2507 SEA FILE=HCAPLUS ABB=ON PLU=ON PROTEIN(W)IDENTIFICATION
L15
          10591 SEA FILE=HCAPLUS ABB=ON PLU=ON (PROTEOME OR PROTEIN) (W) ANALYS
                TS
L16
           1278 SEA FILE=HCAPLUS ABB=ON PLU=ON PROTEIN(W)MASS(W)TAG OR PMT
            113 SEA FILE=HCAPLUS ABB=ON PLU=ON ISOTOPE(W)CODED(W)AFFINITY(W)T
L17
                AG OR ICAT
              8 SEA FILE=HCAPLUS ABB=ON PLU=ON (DIFFERENTIAL(W)LABEL?)(L)SPEC
L18
                TROMET?
L25
            14 SEA FILE=HCAPLUS ABB=ON PLU=ON L17 AND (L14 OR L15 OR L16)
            14 SEA FILE=HCAPLUS ABB=ON PLU=ON L25 NOT L18
L26
=>
=>
=> d ibib abs hitrn 126 1-14
L26 ANSWER 1 OF 14 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                         2002:326448 HCAPLUS
TITLE:
                         Quantitative proteome analysis by
                         solid-phase isotope tagging and mass spectrometry
AUTHOR(S):
                         Zhou, H.; Ranish, J. A.; Watts, J. D.; Aebersold, R.
                         Institute for Systems Biology, 1441 North 34th Street,
CORPORATE SOURCE:
                         Seattle, WA, 98103-8904., USA
                         Nature Biotechnology (2002), 20(5), 512-515
SOURCE:
                         CODEN: NABIF9; ISSN: 1087-0156
PUBLISHER:
                        Nature America Inc.
DOCUMENT TYPE:
                         Journal
LANGUAGE:
                         English'
     The adaptation of sequences of chem. reactions to a solid-phase format has
     been essential to the automation, reproducibility, and efficiency of a no.
     of biotechnol. processes including peptide and oligonucleotide synthesis
     and sequencing. Here we describe a method for the site-specific, stable
```

isotopic labeling of cysteinyl peptides in complex peptide mixts. through a solid-phase capture and release process, and the concomitant isolation

microcapillary liq. chromatog. and tandem mass spectrometry (.mu.LC-MS/MS) to det. their sequences and relative quantities. The method was used to

Page 75

of the labeled peptides. The recovered peptides were analyzed by

detect galactose-induced changes in protein abundance in the yeast Saccharomyces cerevisiae. A side-by-side comparison with the

ICAT) method demonstrated that the solid-phase method for stable isotope tagging of peptides is comparatively simpler, more efficient, and more sensitive.

L26 ANSWER 2 OF 14 HCAPLUS COPYRIGHT 2002 ACS

2002:124090 HCAPLUS ACCESSION NUMBER:

TITLE: Mass spectrometry in coupling with affinity

> capture-release and isotope-coded affinity tags for quantitative

protein analysis

Turecek, Frantisek AUTHOR(S):

Department of Chemistry, University of Washington, CORPORATE SOURCE:

Seattle, WA, 98195-1700, USA

Journal of Mass Spectrometry (2002), 37(1), 1-14 SOURCE:

CODEN: JMSPFJ; ISSN: 1076-5174

PUBLISHER: John Wiley & Sons Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

Affinity capture-release electrospray ionization mass spectrometry

(ACESIMS) and isotope-coded affinity

tags (ICAT) are two recently introduced techniques for the quantitation of protein activity and content with applications to

clin. enzymol. and functional proteomics, resp. One common feature of these methods is that they use biotinylated tags that function as mol. handles for highly selective and reversible affinity capture of conjugates from complex biol. mixts. such as cell homogenates and sub-cellular organelles. ACESIMS uses synthetic substrate conjugates specifically to target cellular enzymes that, when deficient, are the cause of genetic diseases. Multiplex detn. of enzyme activities is used for the diagnosis of lysosomal storage diseases. The ICAT method relies on

selective conjugation of cysteine thiol groups in proteins, followed by enzymic digestion and quant. anal. of peptide conjugates by mass spectrometry. Another common feature of the ACESIMS and ICAT

approaches is that both use conjugates labeled with stable heavy isotopes as internal stds. for quantitation. Selected applications of the ACESIMS and ICAT techniques are presented that include mol.-level

diagnosis of genetic diseases in children and quant. detn. of protein expression in cells.

75 THERE ARE 75 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 3 OF 14 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2002:44449 HCAPLUS

DOCUMENT NUMBER: 136:147258

TITLE: Proteome analysis of low-abundance

proteins using multidimensional chromatography and

isotope-coded affinity

tags

Gvai Steven P.; Rist, Beate; Griffin, Timothy J.; AUTHOR(S):

Eng, Jimmy; Aebersold, Ruedi

CORPORATE SOURCE: Department of Cell Biology, Harvard Medical School,

Boston, MA, 02115, USA

SOURCE: Journal of Proteome Research (2002), 1(1), 47-54

CODEN: JPROBS; ISSN: 1535-3893

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

The effectiveness of proteome-wide protein

identification and quant. expression profiling is dependent on the

ability of the anal. methodologies employed to routinely obtain information on low-abundance proteins, as these are frequently of great biol. importance. Two-dimensional gel electrophoresis, the traditional method for proteome anal., has proven to be biased toward highly expressed proteins. Recently, two-dimensional chromatog.

toward highly expressed proteins. Recently, two-dimensional chromatog. of the complex peptide mixts. generated by the digestion of unsepd. protein samples has been introduced for the identification of their components, and isotope-coded affinity tags (

ICAT) have been introduced to allow for accurate quantification of the components of protein mixts. by mass spectrometry. Here, we demonstrate that the combination of isotope coded affinity protein tags and multidimensional chromatog./mass spectrometry of tryptic peptide mixts. is capable of detecting and quantifying proteins of low abundance in complex samples.

REFERENCE COUNT: 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 4 OF 14 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2001:896292 HCAPLUS

DOCUMENT NUMBER: 136:98677

TITLE: Toward a high-throughput approach to quantitative

proteomic analysis: expression-dependent

protein identification by mass

spectrometry

AUTHOR(S): Griffin, Timothy J.; Han, David K. M.; Gygi, Steven

P.; Rist, Beate; Lee, Hookeun; Aebersold, Ruedi;

Parker, Kenneth C.

CORPORATE SOURCE: Department of Molecular Biotechnology, University of

Washington, Seattle, WA, USA

SOURCE: Journal of the American Society for Mass Spectrometry

(2001), 12(12), 1238-1246

CODEN: JAMSEF; ISSN: 1044-0305

.PUBLISHER: Elsevier Science Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

AB The isotope-coded affinity tag (

ICAT) technol. enables the concurrent identification and comparative quant. anal. of proteins present in biol. samples such as cell and tissue exts. and biol. fluids by mass spectrometry. The initial implementation of this technol. was based on microcapillary chromatog. coupled online with electrospray ionization tandem mass spectrometry. This implementation lacked the ability to select proteins for identification based on their relative abundance and therefore to focus on differentially expressed proteins. In order to improve the sample throughput of this technol., we have developed a two-step approach that is focused on those proteins for which the abundance changes between samples: First, a new software program for the automated quantification of ICAT reagent labeled peptides analyzed by microcapillary electrospray ionization time-of-flight mass spectrometry dets. those peptides that differ in their abundance and second, these peptides are identified by tandem mass spectrometry using an electrospray quadrupole time-of flight mass spectrometer and sequence database searching. Results from the application of this approach to the anal. of differentially expressed proteins secreted from nontumorigenic human prostate epithelial cells and metastatic cancerous human prostate epithelial cells are shown.

REFERENCE COUNT: 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 5 OF 14 HCAPLUS COPYRIGHT 2002 ACS

2001:759856 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 136:98535 Nowhere to hide TITLE: O'Driscoll, Cath AUTHOR(S): Royal Society of Chemistry, UK CORPORATE SOURCE: Chemistry in Britain (2001), 37(9), 26-28 SOURCE: CODEN: CHMBAY; ISSN: 0009-3106 Royal Society of Chemistry PUBLISHER: Journal; General Review DOCUMENT TYPE: English LANGUAGE: A review discusses the new approaches for probing proteomes which make it easier for drug researchers to pinpoint useful protein targets. The characteristics of MudPIT, which detected a large no. of proteins, the Isotope-coded affinity tag (ICAT) reagents, 2D-GE anal., and the coupling of ICAT reagents with a state-of-the art MALDI quadrupole time-of-flight mass spectrometer (MALDI QqTOF), are discussed. The ICAT reagents make protein identification faster and less labor-intensive, and allows quantification even for low abundance and difficult-to-isolate proteins. The 2D-GE anal. has identified 502 proteins for the virus Haemophilus influenzae. The MALDI QqTOF is the approach that massively reduced the researchers' workload by sifting out only the differentially expressed proteins of interest for subsequent quantification and identification. THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 8 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L26 ANSWER 6 OF 14 HCAPLUS COPYRIGHT 2002 ACS 2001:737615 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 136:306330 TITLE: The isotope-coded affinity tag reagent method for quantitative proteomics AUTHOR(S): Aerbersold, Ruedi: Gygi, Steven P.; Griffin, Timothy J.; Han, David. K. M.; Yelle, Michael J. Univ. of Washington, Seattle, WA, USA CORPORATE SOURCE: American Genomic/Proteomic Technology (2001), 1(1), SOURCE: 22, 24, 26-27 CODEN: AGTMC7; ISSN: 1537-0003 International Scientific Communications, Inc. PUBLISHER: DOCUMENT TYPE: Journal LANGUAGE: English The Isotope-coded Affinity Tag (ICAT) reagent method, first described by Gygi et al. and recently commercialized by Applied Biosystems (Foster City, CA) enables the concurrent quantification and identification of proteins in complex mixts. It is based on a new class of chem. reagents termed isotopecoded affinity tags used in conjunction with tandem MS and multidimensional liq. chromatog. The method addresses several limitations of two-dimensional PAGE (2D-PAGE)-based proteomic expts. It has been shown to successfully identify and quantify both low-abundance and membrane proteins, classes that are typically difficult to analyze by 2D-PAGe. Automation is enabled by using a tandem MS instrument (API QSTARTM system with oMaldiTM and electrospray ion sources, from Applied Biosystems and MDS Sciex [Toronto, Ontario, Canada]) for performing expression-dependent protein identification THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

REFERENCE COUNT:

10

L26 ANSWER 7 OF 14 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2001:695694 HCAPLUS 135:300592 DOCUMENT NUMBER: TITLE: Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis Smolka, Marcus B.; Zhou, Huilin; Purkayastha, AUTHOR(S): Subhasish; Aebersold, Ruedi Departamento de Bioquimica, Instituto de Biologia, CORPORATE SOURCE: Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil Analytical Biochemistry (2001), 297(1), 25-31 SOURCE: CODEN: ANBCA2; ISSN: 0003-2697 PUBLISHER: Academic Press DOCUMENT TYPE: Journal LANGUAGE: English The combination of isotope coded affinity tag (ICAT) reagents and tandem mass spectrometry constitutes a new method for quant. proteomics. It involves the site-specific, covalent labeling of proteins with isotopically normal or heavy ICAT reagents, proteolysis of the combined, labeled protein mixt., followed by the isolation and mass spectrometric anal. of the labeled peptides. The method critically depends on labeling protocols that are specific, quant., general, robust, and reproducible. Here we describe the systematic evaluation of important parameters of the labeling protocol and describe optimized labeling conditions. The tested factors include the ICAT reagent concn., the influence of the protein, SDS, and urea concns. on the labeling reaction, and the reaction time. We demonstrate that using the optimized conditions specific and quant. labeling was achieved on std. proteins as well as in complex protein mixts. such as a yeast cell lysate. (c) 2001 Academic Press. THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 7 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L26 ANSWER 8 OF 14 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2001:197242 HCAPLUS Novel tools for the field of proteomics TITLE: AUTHOR(S): Martin, Stephen A.; Vestal, Marvin; Juhasz, Peter; Williamson, Brian; Marchese, Jason; Graber, Armin; Patterson, Dale CORPORATE SOURCE: Proteomics Research Center, Applied Biosystems, Framingham, MA, 01701, USA SOURCE: Abstr. Pap. - Am. Chem. Soc. (2001), 221st, ANYL-155 CODEN: ACSRAL; ISSN: 0065-7727 PUBLISHER: American Chemical Society Journal; Meeting Abstract DOCUMENT TYPE: LANGUAGE: English Proteomics encompasses a broad range of technologies aimed at detg. the identity and quantity of expressed protein in cells, their three-dimensional structure and interaction partners. Intense focus has been placed on the development of a series of processes that will enable researchers to complete these studies with appropriate sensitivity and throughput to leverage the corresponding genomics information. In the subset of proteomics focused on protein identification and quantification we have been investigating a series of novel technologies that may accelerate the overall work flow in Proteomics. Two

key areas include isotope coded affinity

tags (ICAT) and matrix assisted laser desorption

ionization tandem time of flight (MALDI TOF/TOF). The ICAT

reagent enables rapid relative quantification of protein expression without the requirement for 2D-gel electrophoresis. MADLI TOF/TOF couples a high throughput mode of ionization with tandem mass spectrometry. This combination provides both mol. mass and primary sequence information with MALDI.

L26 ANSWER 9 OF 14 HCAPLUS COPYRIGHT 2002 ACS 2001:172543 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 134:350140

Matrix-assisted laser desorption/ionization coupled TITLE:

with quadrupole/orthogonal acceleration time-of-flight

mass spectrometry for protein discovery, identification, and structural analysis

Baldwin, Michael A.; Medzihradszky, Katalin F.; Lock, Chris M.; Fisher, Bill; Settineri, Tina A.; AUTHOR(S):

Burlingame, A. L.

CORPORATE SOURCE: Mass Spectrometry Facility Department of

Pharmaceutical Chemistry, University of California,

San Francisco, CA, 94143-0446, USA

Analytical Chemistry (2001), 73(8), 1707-1720 CODEN: ANCHAM; ISSN: 0003-2700SOURCE:

American Chemical Society PUBLISHER:

DOCUMENT TYPE: Journal English LANGUAGE:

The design and operation of a novel UV-MALDI ionization source on a com. QqoaTOF mass spectrometer (Applied Biosystem/MDS Sciex QSTAR Pulsar) is described. Samples are loaded on a 96-well target plate, the movement of which is under software control and can be readily automated. Unlike conventional high-energy MALDI-TOF, the ions are produced with low energies (5-10 eV) in a region of relatively low vacuum (8 mTorr). Thus, they are cooled by extensive low-energy collisions before selection in the quadrupole mass analyzer (Q1), potentially giving a quasi-continuous ion beam ideally suited to the oaTOF used for mass anal. of the fragment ions, although ion yields from individual laser shots may vary widely. Ion dissocn. is induced by collisions with argon in an rf-only quadrupole cell, giving typical low-energy CID spectra for protonated peptide ions. Ions sepd. in the oaTOF are registered by a four-anode detector and time-to-digital converter and accumulated in "bins" that are 625 ps wide. Peak shapes depend upon the no. of ion counts in adjacent bins. As expected, the accuracy of mass measurement is shown to be dependent upon the no. of ions recorded for a particular peak. With internal calibration, mass accuracy better than 10 ppm is attainable for peaks that contain sufficient ions to give well-defined Gaussian profiles. By virtue of its high resoln., capability for accurate mass measurements, and sensitivity in the low-femtomole range, this instrument is ideally suited to protein identification for proteomic applications by generation of peptide tags, manual sequence interpretation, identification of modifications such as phosphorylation, and protein structural elucidation. Unlike the multiply charged ions typical of electrospray ionization, the singly charged MALDI-generated peptide ions show a linear dependence of optimal collision energy upon mol. mass, which is advantageous for automated operation. It is shown that the novel pulsing technique of this instrument that increases the sensitivity for precursor ions scans is applicable to the identification of peptides labeled with isotope-coded affinity

tags.

76 THERE ARE 76 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 10 OF 14 HCAPLUS COPYRIGHT 2002 ACS

2001:79420 HCAPLUS ACCESSION NUMBER:

134:219186 DOCUMENT NUMBER:

Quantitative proteomic analysis using a MALDI TITLE:

quadrupole time-of-flight mass spectrometer

Griffin, Timothy J.; Gygi, Steven P.; Rist, Beate; AUTHOR(S):

Aebersold, Ruedi; Loboda, Alexander; Jilkine, Alexandra; Ens, Werner; Standing, Kenneth G.

Department of Molecular Biotechnology, University of CORPORATE SOURCE:

Washington, Seattle, WA, 98195-7730, USA

Analytical Chemistry (2001), 73(5), 978-986 CODEN: ANCHAM; ISSN: 0003-2700 SOURCE:

PUBLISHER: American Chemical Society

Journal DOCUMENT TYPE: English LANGUAGE:

We describe an approach to the quant. anal. of complex protein mixts. using a MALDI quadrupole time-of-flight (MALDI QqTOF) mass spectrometer

and isotope coded affinity tag

reagents (Gygi, S. P.; et al. Nat. Biotechnol. 1999, 17, 994-9.). Proteins in mixts. are first labeled on cysteinyl residues using an

isotope coded affinity tag reagent,

the proteins are enzymically digested, and the labeled peptides are purified using a multidimensional sepn. procedure, with the last step being the elution of the labeled peptides from a microcapillary reversed-phase lig. chromatog. column directly onto a MALDI sample target. After addn. of matrix, the sample spots are analyzed using a MALDI QqTOF mass spectrometer, by first obtaining a mass spectrum of the peptides in each sample spot in order to quantify the ratio of abundance of pairs of isotopically tagged peptides, followed by tandem mass spectrometric anal. to ascertain the sequence of selected peptides for protein

identification. The effectiveness of this approach is

demonstrated in the quantification and identification of peptides from a control mixt. of proteins of known relative concns. and also in the comparative anal. of protein expression in Saccharomyces cerevisiae grown on two different carbon sources.

REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 11 OF 14 HCAPLUS COPYRIGHT 2002 ACS 2000:894688 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 134:292351

The proteome: analysis and utility TITLE:

AUTHOR(S): Aebersold, Ruedi; Rist, Beate; Gygi, Steven P.

Department of Molecular Biotechnology, University of CORPORATE SOURCE:

Washington, Seattle, WA, 98195, USA

Peptides for the New Millennium, Proceedings of the SOURCE:

> American Peptide Symposium, 16th, Minneapolis, MN, United States, June 26-July 1, 1999 (2000), Meeting Date 1999, 393-395. Editor(s): Fields, Gregg B.; Tam, James P.; Barany, George. Kluwer Academic Publishers:

Dordrecht, Neth. CODEN: 69ATHX

DOCUMENT TYPE: Conference LANGUAGE: English

With the completion of a rapidly increasing no. of genomic sequences much attention is currently focused on the questions if and how the information contained in sequence databases can be interpreted in terms of the structure, function and control of biol. systems. Quant. proteome anal., the global anal. of protein expression, has been proposed

as a method to study steady state and perturbation-induced changes in gene expression. It is shown that in the emerging post-genomic era, technologies that can quant., globally, and automatically measure gene expression at the protein level are essential for the comprehensive anal. of biol. processes and systems. Furthermore, the limitations of the current std. method for large-scale protein anal. with respect to the anal. of low abundance proteins are documented, and a new approach to quant. proteome anal. is proposed.

THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 11 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 12 OF 14 HCAPLUS COPYRIGHT 2002 ACS 2000:548383 HCAPLUS ACCESSION NUMBER:

133:249085 DOCUMENT NUMBER:

Proteome profiling-pitfalls and progress TITLE:

Haynes, Paul A.; Yates, John R., III AUTHOR(S):

Novartis Agricultural Discovery Institute, San Diego, CORPORATE SOURCE:

CA, 92121, USA

Yeast (2000), 17(2), 81-87 CODEN: YESTE3; ISSN: 0749-503X SOURCE:

PUBLISHER: John Wiley & Sons Ltd. DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

A review, with 51 refs. In this review we examine the current state of anal. methods in proteomics. The conventional methodol. using two-dimensional electrophoresis gels and mass spectrometry is discussed, with particular ref. to the advantages and shortcomings thereof. recently published methods which offer an alternative approach are presented and discussed, with emphasis on how they can provide information not available via two-dimensional gel electrophoresis. These two methods are the isotope-coded affinity tags

approach of Gygi et al. and the two-dimensional liq. chromatog.-tandem mass spectrometry approach as presented by Link et al. We conclude that both of these new techniques represent significant advances in anal. methodol. for proteome anal. Furthermore, we believe

that in the future biol. research will continue to be enhanced by the continuation of such developments in proteomic anal. technol.

REFERENCE COUNT: 51 THERE ARE 51 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 13 OF 14 HCAPLUS COPYRIGHT 2002 ACS 2000:390113 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 134:142438

TITLE: New approaches to quantitative proteome

analysis

Aebersold, Ruedi; Rist, Beate; Gygi, Steven P. AUTHOR(S):

Department of Molecular Biotechnology, University of CORPORATE SOURCE:

Washington, Seattle, WA, 98195, USA

Biotecnologia Aplicada (2000), 17(1), 46-47 SOURCE:

CODEN: BTAPEP; ISSN: 0864-4551

Elfos Scientiae PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

Levels of protein expression encoded by mRNA with comparable abundance varied by as much as 30-fold in exponentially growing Saccharomyces cerevisiae. In this same system, levels of mRNA coding for protein with comparable expression levels varied by as much as 20-fold. This indicates that mRNA anal. alone is insufficient to describe protein expression. Comparison of codon bias distributions for all yeast ORFs with

distribution of all proteins analyzed by std. 2-dimensional gel electrophoresis (2DE), silver staining, and tandem mass spectrometry (MS/MS) found a large bias towards the most highly expressed proteins when using 2DE/MS/MS. The use of **isotope-coded**

affinity tags (ICAT) and MS/MS addresses the

limitation inherent in 2DE/MS/MS.

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L26 ANSWER 14 OF 14 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1999:683625 HCAPLUS

DOCUMENT NUMBER:

132:47167

TITLE:

Quantitative analysis of complex protein mixtures

using isotope-coded

affinity tags

AUTHOR(S):

Gygi, Steven P.; Rist, Beate; Gerber, Scott A.;

Turecek, Frantisek; Gelb, Michael H.; Aebersold, Ruedi

CORPORATE SOURCE:

Dep. Mol. Biotechnol., Univ. Washington, Seattle, WA,

98195-7730, USA

SOURCE:

AB

Nature Biotechnology (1999), 17(10), 994-999

CODEN: NABIF9; ISSN: 1087-0156

PUBLISHER:

Nature America

DOCUMENT TYPE:

Journal English

LANGUAGE:

We describe an approach for the accurate quantification and concurrent sequence identification of the individual proteins within complex mixts.

The method is based on a class of new chem. reagents termed

isotope-coded affinity tags (

ICATs) and tandem mass spectrometry. Using this strategy, we compared protein expression in the yeast Saccharomyces cerevisiae, using either ethanol or galactose as a carbon source. The measured differences in protein expression correlated with known yeast metabolic function under glucose-repressed conditions. The method is redundant if multiple cysteinyl residues are present, and the relative quantification is highly accurate because it is based on stable isotope diln. techniques. The ICAT approach should provide a widely applicable means to compare

quant. global protein expression in cells and tissues.

REFERENCE COUNT:

THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT