

PH4911

“Free Electron Lasers”

Physics Department
Naval Postgraduate School

“FREE” Electron Laser Weapon

FEL @ 10% efficiency for 5 s \Rightarrow 50 MJ needed

oil contains 110 MJ / gallon

Gas-turbine generator has 35% efficiency

Engagement uses a few gallons of fuel at a few

National cost is important for a Naval weapon system

missile defense engagement costs \$ 1,500,000

ANX missile engagement cost \$ 3,000

Training with missiles is COSTLY

Time cost of FEL maybe very reasonable !!

FEL General History

- o Microwave Tubes (1930's)

Uses beam of free non-relativistic electrons

+ closed microwave cavity

⇒ long wavelengths & efficient

- o Atomic and Molecular Lasers (1960's)

Uses system of bound electrons

+ open optical resonator

⇒ short wavelengths, not tunable or efficient

- o Free Electron Laser (Madey 1970's)

Uses beam of free relativistic electrons

+ open optical resonator

⇒ short wavelengths, tunable, & efficient

FEL Attributes

- o FELs are continuously tunable: $\lambda = \lambda_0(1+K^2)/2\gamma^2$
- o FELs are designable:
microwaves → infrared → visible
→ UV → X-Rays
- o FELs are powerful: laser medium
cannot be damaged
- o FELs are efficient: $\approx 10\%$ ($> 60\%$
for microwave tubes)
- o FELs are reliable: systems now run 24
hrs/day for weeks

FEL Oscillators and Amplifiers

- o Most FELs have been oscillators
- o Jefferson laboratory is an FEL oscillator
- o WSMR uses laser oscillators (our most powerful Lasers)

- o Several FEL amplifiers have been built in the past (80s)
- o Many FEL amplifiers recently developed (late 90s)

- o **BUT** FELs can do *both* the amplifier

Amplifier/Oscillator Requirements

- o **Laser Wavelength:**

$$E_b \approx 90\text{MeV}, \quad \lambda_0 \approx 3\text{cm}, \quad K \approx 2 \\ \Rightarrow \lambda = \lambda_0(1+K^2)/2\gamma^2 \approx 2\mu\text{m}$$

- o **Electron Beam Power:** (E_b set by wavelength requirement)

- o $E_b \approx 90 \text{ MeV}$ and $I_{avg} \approx 0.7\text{A} \Rightarrow P_b \approx 70 \text{ MW}$

- o Extraction $\eta \approx 2\%$ gives $P \approx 1\text{MW}$

- o **RF accelerator and FEL Gain requires high peak current:**

- o RF & pulse repetition frequency: $f \approx 50\text{GHz}$

Relativistic Equations: Planar Undulator

- o Relativistic Equations of Motion:

$$\frac{d(\gamma \vec{\beta})}{dt} = -\frac{e}{mc} (\vec{E} + \vec{\beta} \times \vec{B}) \quad \dot{\gamma} = \frac{d\gamma}{dt} = -\frac{e}{mc} \vec{\beta} \cdot \vec{E} \quad \gamma^{-2} = 1 - \vec{\beta}^2$$

- o Undulator Field: $\mathbf{B} = B(0, \sin k_0 z, 0)$ (linear polarization)

- o Optical Fields: $\mathbf{E}_s = E(\cos \psi, 0, 0)$, $\mathbf{B}_s = E(0, \cos \psi, 0)$, $\psi = kz - \omega t + \phi$

where $k = 2\pi/\lambda$, $\omega = kc$ optical frequency, ϕ = optical phase

FEL Theory: Microscopic Motion

- o Relativistic equations → electron's microscopic motion

Simple Pendulum Equation

$$\overset{\text{oo}}{\zeta} = \overset{\text{o}}{v} = |a| \cos(\zeta + \phi)$$

- o Dimensionless optical field:
 $|a| = 4\pi NeKLE/\gamma^2 mc^2$
- o Electron phase on $\overset{\text{o}}{v} = \overset{\text{o}}{\zeta} = L[(k + k_0)\beta_z - k] \approx 4\pi N(\gamma - \gamma_R)/\gamma_R$
 λ scale:
 $\gamma_R = \sqrt{\lambda_0(1+K^2)/2\lambda}$ $\lambda = \lambda_0(1+K^2)/2\gamma_R^2$
- o Electron phase velocity:
optical fields $a < \pi$
⇒ o Resonant electron "weak fields" ⇒ finite gain
ng optically fields have $a > \pi$ ⇒ strong bunching, sa

Note: $\overset{\text{o}}{(\cdots)} = \frac{d(\cdots)}{d\tau}$

FEL Pendulum Phase Space

- o FEL pendulum equation

$$\ddot{\zeta} = \frac{d^2\zeta}{d\tau^2} = \ddot{v} = \frac{dv}{d\tau} = |a| \cos(\zeta + \phi)$$

- o FEL separatrix

$$v_s^2(\zeta_s) = 2|a|[1 + \sin(\zeta_s + \phi)]$$

- o FEL electrons only evolve for time $\tau = 0 \rightarrow 1$

electron beam has many electrons in each wavelength
 10^6 - 10^7 random ζ_0 's within in each optical wavelength

- o v -axis follows electron energy in phase space
- o ζ -axis follows $v_p^2 = \frac{e^2}{m_e c^2} \sin^2(\zeta_0 + \phi)$, position in phase space

FEL Pendulum Phase Space

- o FEL pendulum equation

$$\ddot{\zeta} = \frac{d^2\zeta}{dt^2} = \dot{v} = \frac{dv}{d\tau} = |a| \cos(\zeta + \phi)$$

- o FEL separatrix

$$v_s^2(\zeta_s) = 2|a|[1 + \sin(\zeta_s + \phi)]$$

- o FEL electrons only evolve

- o for time $\tau = 0 \rightarrow 1$

- o $\approx 10^6 - 10^7$ random ζ_0 's within in each

- optical wavelength λ

- o v -axis follows electron energy in phase space

FEL Phase Space Evolution

- Use 20 sample electrons
- Follow all paths in (ζ, v)
- Gain: $G(\tau) = (|a(\tau)|^2 - a_0^2)/a_0^2$
- Optical phase: $\phi(\tau)$
- Evolution for $\tau=0 \rightarrow 1$
- Separatrix path given by
- Separatrix height: $v_s^2(\zeta_s) = 2|a| [1 + \sin(\zeta_s + \phi)]$
- Initial Conditions:
 - Weak fields: $a_0=2$
 - π
- At resonance: $v_0=0$

$$\zeta = \frac{d^2 \zeta}{d\tau^2} = v = \frac{dv}{d\tau} = |a| \cos(\zeta + \phi)$$

FEL Pendulum Equation

FEL Phase Space Evolution

- 200 sample electrons
- Follow all paths in (ζ, v)
- Gain:

$$G(\tau) \underset{\text{beam}}{\underset{\text{average}}{\gtrless}} \frac{\langle \gamma(\tau) \rangle}{a_0} \propto \frac{\langle \Delta v(\tau) \rangle}{a_0}$$

- $G \propto \rho \propto I = \text{beam current}$

- Separatrix height: $2|a|^{1/2}$

- Initial Conditions:
Weak fields: $a_0=2$

$$< \pi$$

- Off resonance: $v_0=3$

$$\zeta = \frac{d^2 \zeta}{d\tau^2} = \overset{\circ}{v} = \frac{dv}{d\tau} = |a| \cos(\zeta + \phi)$$

FEL Pendulum Equation

FEL Gain and Phase Spectra

- o Evaluate Gain $G(v_0)$ at

$$\tau=1 \\ G = j \frac{[2 - 2 \cos(v_0) - v_0 \sin(v_0)]}{v_0^3}$$

$$\phi = j \frac{[2 \sin(v_0) - v_0 (1 + \cos(v_0))]}{2v_0^3}$$

$$j = \frac{8N(e\pi KL)^2 \rho F}{\gamma^3 mc^2}$$

- o $G(v_0)$ is anti-symmetric in v_0

- o $\phi(v_0)$ is symmetric in v_0

$$v_0 = L[(k + k_0)\beta_z(0) - k] \approx 4\pi N \Delta \gamma / \gamma \approx 2\pi N \Delta \lambda / \lambda$$

Strong Field FEL Phase Space Evolution

- Use 1000 sample electron

- Initial Conditions:

Strong fields:

$$a_0=20 > \pi$$

- Off resonance: $v_0=3$

- Electron bunch takes energy back from laser beam

- Gain reduced $G \approx 13\% \rightarrow 3\%$

- Separatrix path given by

$$\sqrt{\frac{v_s^2}{2}} = \max[\ln(\sin(\xi_s + \phi)) / |a|] \text{ due to}$$

- Spread $\Delta v_0 = \sigma_G = 0.5$ electron beam energy spread
- $\sigma_G = 0.5 < \pi$ is

High Current FEL Gain and Phase Spectra

- For large current $j \gg \pi$
optical field grows exponentially
 $G(\tau) \approx \exp[(j/2)^{1/3} \sqrt{3}\tau]/9$
 $\phi(\tau) \approx (j/2)^{1/3} \tau/2$
- Gain at $\tau=1$:
 $G(\tau) \approx \exp[(j/2)^{1/3} \sqrt{3}]/9 \approx 350 \gg 1$
- Optical phase significant !!
- $G(v_0)$ is \approx symmetric in v_0
- Significant gain at resonance $v_0 = [k + k_0] \beta_0(0) - k \approx 4\pi N \Delta \gamma / \gamma \approx 2\pi N \Delta \lambda / \lambda$

$$j = \frac{8N(e\pi KL)^2 \rho F}{\gamma^3 mc^2} \gg \pi$$

High Current FEL Phase Space Evolution

- High Current $j=200 \gg \pi$
- Follow 1000 electrons
- Gain is exponential in τ
- phase ϕ is linear in τ
- $|a(\tau)|$ & $\phi(\tau)$ self-consistent
- Separatrix grows and shifts with $|a(\tau)|$ & $\phi(\tau)$
- Weak field Gain at $v_0=0$
 - 1st - no gain, but $\phi > 0$
 - 2nd - bunching at $\zeta \approx \pi/2$
 - 3rd - bunch lowers $\langle v \rangle$

$$\begin{aligned} \zeta &= \frac{\phi}{|a|} = \frac{v}{|a|} \cos(\zeta + \phi) \\ |a| &= -j \langle \cos(\zeta + \phi) \rangle \\ \phi &= j \langle \sin(\zeta + \phi) \rangle / |a| \end{aligned}$$

FEL Pendulum & Wave Equation

Tapered FEL Undulator Designs

Conventional Periodic Undulator:
 (you already saw these)

Positively Tapered Undulator:

$$K \downarrow \quad \gamma \downarrow \quad \text{so} \quad \lambda = \lambda_0(1+K^2)/2\gamma^2$$

Negatively Tapered Undulator: $\delta < 0$

not intuitive, but works for

Positive Step-Taper Undulator:

Negative Step-Taper Undulator:

Tapered Phase Space

($\delta > 0$)

- Strong laser field $|a|=20$, increase taper $\delta = 0, 10, 15, 20, 25$
- Closed orbit region decreases, more open orbits

Linearly Tapered Undulator:

$\delta=4\pi$

- o “conventional taper” $\delta=4\pi$
- o electrons trapped and
- o bunched near $v = 0$
- o Note new separatrix due to phase acceleration δ
- o extraction for $\delta=4\pi$ is

$$\zeta^{\infty} = v^{\circ} = \delta + |a| \cos(\zeta + \phi)$$

$$\delta = -4\pi N \frac{K^2}{1+K^2} \frac{\Delta K}{K}$$