Introduction to nonstationarity

Spring 2017 Spatiotemporal Reading Group

John Best

April 18, 2017

Types of stationarity

For a spatial process Y(s), $s \in D$.

Strong stationarity

$$\Pr(Y(s_1+h),Y(s_2+h),\ldots)=\Pr(Y(s_1),Y(s_2),\ldots)$$

Weak (second-order) stationarity

$$\mathbb{E}[Y(s)] = \mu$$

and

$$\mathsf{Cov}(Y(s_1),Y(s_2)) = \mathsf{C}(s_1-s_2)$$

Nonstationarity in covariance

Figure 1: Fulgstad et al. 2015

Why is this hard?

- ► More parameters
- ► Trend-covariance tradeoff
- ► Limited data

Approaches for fitting

- Smoothing and kernel-based methods
- ▶ Basis function models
- Process convolution models
- Spatial deformation models

Smoothing and Kernel-based methods

- Consider local areas stationary; divide into subregions
- Estimate parameters locally
- ▶ Weight kernels by distance from subregion center

$$Y(s) = \sum_{i=1}^k w_i(s) Y_i(s)$$

Can be extended to

$$Y(x) = \int_D w(x-s)Y_{\theta(s)}(x) ds$$

Basis function models

Spectral decomposition of empirical covariance matrix

$$\mathbf{\hat{\Sigma}}_{Y}\mathbf{\Phi}=\mathbf{\Phi}\mathbf{\Lambda}$$

Requires multiple realizations

Fourier of Karhunen-Loeve expansions

Latent spatial power process induces nonstationarity

Wavelet models

Process convolution models

$$Y(s) = \int_{\mathbb{R}^2} k(s - u) \zeta(u) du$$

Figure 2: Calder & Cressie 2007

Spatial deformation model

Need temporal replicates;

$$Y(\mathbf{x},t) = \mu(\mathbf{x},t) + \nu(\mathbf{x})^{1/2} E_t(\mathbf{x}) + E_{\epsilon}(\mathbf{x},t)$$

- $\blacktriangleright \mu(\mathbf{x},t)$: mean field
- $\triangleright \nu(\mathbf{x})$: smooth function, spatial variance
- \triangleright $E_t(x)$: standard second-order continuous Gaussian process
- \blacktriangleright $E_{\epsilon}(\mathbf{x},t)$: measurement error/short scale structure

$$Cor(E_t(\mathbf{x}), E_t(\mathbf{y})) = \rho_{\theta}(\|f(\mathbf{x}) - f(\mathbf{y})\|)$$

Discussion

- ▶ Effects of uncertainty in spatial structure
- Understanding and calibrating Bayesian priors
- Model diagnostics
- Software/accessibility