

CLAIMS

What is claimed is:

- 1 1. A method for securely transferring data across an optical-switched (OS) network,
2 comprising:
 - 3 distributing security keys to edge nodes in the OS network;
 - 4 encrypting, at a source edge node, data to be sent from the source edge node to a
5 destination edge node, said data encrypted with a security key distributed to the source node;
 - 6 sending the data along a virtual lightpath between the source and destination edge
7 nodes, the virtual lightpath spanning at least one lightpath segment; and
 - 8 decrypting, at the destination edge node, the encrypted data that are sent.
- 1 2. The method of claim 1, wherein the OS network comprises an optical burst-switched
2 (OBS) network.
- 1 3. The method of claim 2, wherein the OBS network comprises a photonic burst-
2 switched (PBS) network.
- 1 4. The method of claim 2, wherein the PBS network comprises a wavelength-division
2 multiplexed (WDM) PBS network.
- 1 5. The method of claim 1, wherein the security keys are distributed by distributing a
2 common decryption and encryption key pair to each of the edge nodes.
- 1 6. The method of claim 1, wherein the security keys are distributed by:

2 distributing a respective decryption key to each of the edge nodes, each respective
3 decryption key being particular to its node; and
4 distributing respective sets of encryption keys to each node, each set of encryption
5 keys for a given node including encryption keys corresponding to the decryption keys
6 distributed to each of the other edge nodes.

1 7. The method of claim 1, wherein the security keys are distributed by:
2 distributing a respective private key to each of the edge nodes, each respective private
3 key being particular to its node; and
4 distributing respective sets of digital certificates sets to each node, each set of digital
5 certificates for a given node containing a set of public keys corresponding to the private keys
6 distributed to each of the other edge nodes.

1 8. The method of claim 6, further comprising self-generating the digital certificates.

1 9. The method of claim 8, further comprising:
2 for each edge node,
3 self-generating an digital certificate containing a public key that is asymmetric to the
4 private key for the edge node; and
5 sending the digital certificate to each of the other edge nodes.

1 10. The method of claim 9, further comprising:
2 for at least one node,
3 generating a private key for the edge node via key-generation facilities provided by
4 the edge node; and
5 generating the public key for the edge node via the key-generation facilities.

1 11. The method of claim 7, further comprising:
2 sending security data to a certificate authority, the security data defining public keys
3 that are to be included in respective digital certificates; and
4 receiving authenticated digital certificates from the certificate authority.

1 12. The method of claim 11, wherein the security data is sent from an administrator of the
2 OBS network.

1 13. The method of claim 9, further comprising:
2 generating a respective set of security data at each edge node; and
3 sending the respective set of security data from each edge node to the certificate
4 authority.

1 14. The method of claim 1, further comprising sending security keys to the edge nodes
2 using a communication channel that is external to the OBS network to distribute the security
3 keys.

1 15. The method of claim 1, further comprising sending security keys to the edge nodes
2 using an out-of-band channel of the OBS network to distribute the security keys.

1 16. The method of claim 15, further comprising sending security data via a control burst
2 for the OBS network, the security data including one or more security keys or containing
3 information from which one or more security keys can be derived.

1 17. The method of claim 1, further comprising sending information to each edge node
2 identifying at least one of an encryption algorithm and decryption algorithm to be employed
3 to encrypt and/or decrypt the data via the security keys.

1 18. The method of claim 17, further comprising sending encryption and/or decryption
2 code to an edge node, the encryption and/or decryption code to be executed to perform
3 encryption and/or decryption operations.

1 19. A machine-readable medium to provide instructions, which when executed by a
2 processor in a source edge node of an optical switched (OS) network cause the source edge
3 node to perform operations including:

4 encrypting data to be sent to a destination edge node;

5 generating a control burst, the control burst containing information to reserve network
6 resources to form a virtual lightpath between the source edge node and the destination edge
7 node during a scheduled timeslot, the virtual lightpath including at least one lightpath
8 segment;

9 embedding information in the control burst identifying one or more data bursts to be
10 sent from the edge node to the destination edge node will be encrypted;

11 sending the control burst to a first hop along the virtual lightpath, the first hop
12 comprising one of a switching node or the destination edge node; and

13 sending said one or more data bursts containing the data that are encrypted to the first
14 hop along the virtual lightpath during the scheduled timeslot.

1 20. The machine-readable medium of claim 19, wherein execution of the instructions
2 further perform the operation of sending an encryption key to each of a plurality of edge
3 nodes in the OS network.

1 21. The machine-readable medium of claim 20, wherein execution of the instructions
2 performs the operation of sending the encryption key to an edge node by:

3 generating a control burst containing security data including the encryption key or
4 data from which the encryption key can be derived; and

5 sending the control burst to a first hop along a virtual lightpath coupling the edge
6 node sending the control burst to and edge node receiving the control burst, the first hop
7 comprising one of the edge node receiving the control burst or a switching node.

1 22. The machine-readable medium of claim 21, wherein the security data include an
2 digital certificate.

1 23. The machine-readable medium of claim 22, wherein execution of the instructions
2 performs the further operation of generating a self-signed digital certificate.

1 24. The machine-readable medium of claim 21, wherein the security data include one of
2 information identifying an encryption algorithm used to encrypt the data or executable code
3 that may be used to decrypt the certificate.

1 25. The machine-readable medium of claim 20, wherein an encryption key is sent to an
2 edge node via a communication channel that is external from the OS network.

1 26. The machine-readable medium of claim 19, wherein execution of the instructions
2 performs further operations including:
3 generating an encryption key, the encryption key to be used to encrypt the data; and
4 generating a decryption key corresponding to the encryption key.

1 27. The machine-readable medium of claim 19, wherein execution of the instructions
2 performs further operations including:

3 generating security data including the decryption key and identifying the decryption
4 key as a public key, the security data comprising data from which an digital certificate may
5 be issued; and
6 sending the security data to a certificate authority.

1 28. A system comprising:
2 at least one processor;
3 memory coupled to said at least one processor;
4 an encryption component;
5 an optical interface; and
6 a storage device in which instructions are stored, said instructions to perform
7 operations when executed by said at least one processor, including:
8 invoking the encryption component to encrypt data to be sent to a destination
9 edge node operatively linked in communication to the system via a photonic burst-
10 switched (PBS) network, the system to operate as a source edge node;
11 generating a control burst, the control burst containing information to reserve
12 PBS network resources to form a virtual lightpath between the source edge node and
13 the destination edge node during a scheduled timeslot, the virtual lightpath including
14 at least one lightpath segment;
15 embedding information in the control burst identifying one or more data
16 bursts to be sent from the source edge node to the destination edge node will be
17 encrypted;
18 sending the control burst to a first hop along the virtual lightpath, the first hop
19 comprising one of a switching node or the destination edge node; and
20 sending said one or more data bursts containing the data that are encrypted to
21 the first hop along the virtual lightpath during the scheduled timeslot.

1 29. The system of claim 28, wherein said at least one processor includes a network
2 processor.

1 30. The system of claim 29, wherein said at least one processor includes an ingress
2 network processor and an egress network processor.

1 31. The system of claim 30, wherein the encryption component comprises a hardware
2 device programmed to perform encryption operations.

1 32. The system of claim 30, wherein the encryption component is embodied as a software
2 module comprising a plurality of instructions to effectuate encryption operations when
3 executed on a processor.

1 33. The system of claim 28, further comprising a decryption component configured to
2 decrypt data received from the PBS network.

1 34. The system of claim 33, wherein the decryption component comprises a hardware
2 device programmed to perform decryption operations.

1 35. The system of claim 33, wherein the decryption component is embodied as a software
2 module comprising a plurality of instructions to effectuate decryption operations when
3 executed on a processor.

1 36. The system of claim 28, further comprising a key generation component.

1 37. The system of claim 36, wherein the key generation component comprises a hardware
2 device programmed to generate security keys.

1 38. The system of claim 36, wherein the key generation component is embodied as a
2 software module comprising a plurality of instructions to effectuate generation of security
3 keys.