1 Paper Outline

• Abstract

- Flatbed scanner alternative with improved resolution to digitizing tree cookies and cores
- Digital twins of samples is important for building data repositories and promoting replicable science
- Digitizing wood samples has limits to sample dimensions or lacks affordable implementations
- Current alternatives are very expensive (\$70,000USD), lack a high level of detail (printer scanners), or cannot scan cookies (CaptuRING)
- Tina is open source and able to be assembled with 3D printed parts, OpenBuilds parts kits, and hand tools

• Introduction

- Tree ring science overview
 - * **Lizzie add here**
 - * tree rings can help reconstruct past climates
 - * understanding tree growth mechanisms
- Development of scanning alternatives
 - * beginning with ATRICS
 - * expensive Gigapixel
 - * DIY CaptuRING
- Main reasons to build this
 - * further develop the affordable / open source alternatives for scientific equipment
 - * reduce the need for proprietary software such as PTGUI for image stitching
 - * allow a method to digitize cookies to have higher quality data than cores alone
 - * avoid size limitations to digitize tree cookies and cores
 - * Digitizing wood samples for better data pooling / archiving
- Software can be used to help record annual growth
 - * Coorecorder
 - * Various ML based methods that Sandy has researched

• Materials and Methods

- Hardware Design
 - * Cartesian gantry robot kit from OpenBuilds (ACRO system)
 - * Camera
 - · chose Raspberry Pi HQ Camera for C-mount lens options, ability to stream, cost effectiveness, and clear obscelescence statement
 - * computer
 - NVIDIA Jetson Orin Nano for processing power in a light package, can connect to Raspberry Pi camera. Powerful enough to power a GUI and monitor display as well
 - · NVMM Hardware accelerated video streaming reduces CPU load
 - * 3D printed components
 - \cdot 3D printed parts from a Bambu X1C were designed to mount the lens and computer to the ACRO system
 - · other parts such as a drag chain for cable management were also 3D printed
 - · levelling tables were designed to allow for the cookie samples to be arranged orthogonally to the lens. Imperative to capturing in focus images across the entire cookie

- Software Design

- * image focusing
 - · sample levelling is not perfect. At different points on the cookie, the Z-height of the gantry must vary to capture the in focus image. A routine was made to take multiple images at varied Z-heights. The image with the highest normalized variance score was chosen as the in focus image and is kept.
 - · automatic PID control was implemented to adjust the initial Z-coordinate for each set of images to increase the probability of having an in focus image at each image set
- * grid traverse
 - · The software traverses the entire surface area of the sample. Each row and column is overlapping with its adjacent row and column. Allowing for feature based image sttiching.
- * feature based image stitching
 - · An implementation, Stitch2D, of feature based OpenCV image stitching was used. Edits to the code were made to allow for more memory efficient methods of stitching with the use of NumPy memory maps
- * user interface
 - · A GUI was made to navigate the machine to samples, set the size of the sample and its center. After samples are set up the operation is passive.

• Results

- scans of cookies / cores
 - * ultra high resolution scans (DPI 15,000 +)
 - * downscaled versions as high resolution is not necessary for all applications
 - * Digitization time as a function of surface area. Large cookies can scan only a portion of the cookie including the center and half of the rings.
 - * large surface areas can produce files that are inconveniently large
- File-size results in functional limits
 - * max filesize for TIFF files is 2.5 GB
 - * other lossless filetypes for larger images are not compatible with standard image viewers
 - * workaround with NumPy memory maps and cropped viewing
- Discussion (for MEE Only)
 - strengths and opportunities
 - * Ability to capture multiple cores / cookies simultaneously
 - * cost effective
 - * potential for automatic tree ring identification with iamge processing / ML
 - \ast potential for vessel counts for an entire ring although final quality is only as good as the sample preparation
 - opportunities for improvements
 - Lenses
 - * troubles with fixed aperature / non autofocusing / poorly manufactured lens
 - · lack of control to increase sharpness
 - · autofocusing with Z-axis movement is time consuming to do without image blur
 - \cdot poor lens manufacturing can lead to drastically different quality / lighting between the edges and center of an image
 - * good lens can increase sharpness and therefore stitching accuracy and ML inference
 - * obtain similar quality between the corner and center of the image
 - poor lens quality seemed to be the culprit of producing visible seams when stitching with larger field of view images

- focus stacking
 - when a sample is microtomed, the vessels are hollow. The autofocusing algorithm can be confused from this
- Difficulty stitching with lower detail images, can't increase digitizing speed, must downscale high resolution images
- Autofocusing with hardware would significantly decrease the time to capture a cookie (using a professional camera)
- Conclusions (optional for MEE)

_