

TP FINAL MYS

Implementación de control de un filtro FIR suprime banda

INTRODUCTION

¿Qué hace un filtro suprime banda?

XXXX

INTRODUCCIÓN

¿Qué es un filtro FIR?

DISEÑO

DISEÑO

VALIDACIÓN DEL DISEÑO

Simulación del hw

El HW implementado fue previamente simulado

Empaquetado del IP

Haciendo uso del IP manager se creó el package del componente

Implementación en Vivado

Una vez empaquetado se realizaron las conexiones con los demás componentes del diseño y se validó el funcionamiento mediante la implementación de un código de prueba

SIMULACIÓN DEL NCO

SIMULACIÓN DEL NCO

SIMULACIÓN DEL NCO

SIMULACIÓN DEL FILTRO

CONSTRUCCIÓN DEL IP

IMPLEMENTACIÓN EN VIVADO

CÓDIGO DE PRUEBA

```
while (1)
{
    psb_check = XGpio_DiscreteRead(&push, 1);
    dip_check = XGpio_DiscreteRead(&dip, 1); // leo switches

    xil_printf("Botones: 0x%x | Switches (PASO NCO): 0x%x\r\n", psb_check, dip_check);

    unsigned int paso_w = (dip_check << 4) + psb_check;

    // Escribe el valor leído al registro 0 del IP FIR (PASO_W)
    FIR_IP_mWriteReg(XPAR_FIR_IP_0_S00_AXI_BASEADDR, FIR_IP_S00_AXI_SLV_REG0_OFFSET, paso_w);
    sleep(1);
}</pre>
```

 \times \times \times

IMPLEMENTACIÓN EN LA FPGA

CONCLUSIONES

El agregado de un IP en conjunto con la utilización del microcontrolador embebido me permitió controlar fácilmente la frecuencia de paso que alimenta al filtro

 \times \times \times

A lo ya visto en la materia anterior se suma la posibilidad de interactuar por medio de código con cualquier elemento de hardware creado lo que amplifica enormemente el panorama de aplicación de esta tecnología

PREGUNTAS

XXXX

GRACIAS!

