Peptide Mass Fingerprinting

- Used to identify protein spots on gels or protein peaks from an HPLC run
- Depends of the fact that if a peptide is cut up or fragmented in a known way, the resulting fragments (and resulting masses) are unique enough to identify the protein*
- Requires a database of known sequences
- Uses software to compare observed masses with masses calculated from database

*Considering all as sequence combinations that are theoretically possible, only a very minor portion of protein sequences is realized in nature, and therefore a short peptide sequence is already highly protein-specific,

Principles of Fingerprinting

<u>Sequence</u>	Mass (M+H)	Tryptic Fragments
>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe	4842.05	acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe
>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe	4842.05	acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe
>Protein 3 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe	4842.05	acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe

Principles of Fingerprinting

Sequence

Mass (M+H)

>Protein 1
acedfhsakdfqea
sdfpkivtmeeewe
ndadnfekqwfe

4842.05

>Protein 2
acekdfhsadfqea
sdfpkivtmeeewe
nkdadnfeqwfe

4842.05

>Protein 3
acedfhsadfqeka
sdfpkivtmeeewe
ndakdnfeqwfe

4842.05

Mass Spectrum

Predicting Peptide Cleavages

http://ca.expasy.org/tools/peptidecutter/

http://ca.expasy.org/tools/peptidecutter/peptidecutter_enzymes.html#Tryps

PeptideCutter

The cleavage specificities of selected enzymes and chemicals:

A general model of enzymatic cleavage:

Fig.1 Schematic representation of enzyme-substrate complex with eight binding sites. Positions Pn to Pm' in the substrate are counted from the bond between P1 and P1', where the cleavage occurs.

Protease Cleavage Rules

Trypsin

Chymotrypsin

Lys C

Asp N endo

CNBr

XXX[KR]--[!P]XXX

XX[FYW]--[!P]XXX

XXXXXK-- XXXXX

XXXXXD-- XXXXX

XXXXXM--XXXXX

K-Lysine, R-Arginine, F-Phenylalanine, Y-Tyrosine, W-Tryptophan, D-Aspartic Acid, M-Methionine, P-Proline

Digest with specific protease

546 aa 60 kDa; 57 461 Da pl = 4.75

>RBME00320 Contig0311_1089618_1091255 EC-mopA 60 KDa chaperonin Groel Maakdvkfgr Tarekmlrgv Diladavkvt Lgpkgrnvvi eksfgaprit kdgvsvakev Eledkfenmg aqmlrevask tndtagdgtt tatvlgqaiv qegakavaag mnpmdlkrgi Dlavnevvae llkkakkint seevaqvgti sangeaeigk miaeamqkvg negvitveea ktaetelevv egmqfdrgyl spyfvtnpek mvadledayi llhekklsnl qallpvleav vqtskpllii aedvegeala tlvvnklrgg lkiaavkapg fgdcrkamle diailtggqv isedlgikle svtldmlgra kkvsiskent tivdgagqka eidarvgqik qqieettsdy dreklqerla klaggvavir vggatevevk ekkdrvddal natraaveeg ivagggtall rastkitakg vnadqeagin ivrraiqapa rqittnagee asvivgkile ntsetfgynt angeygdlis lgivdpvkvv rtalqnaasv agllitteam iaelpkkdaa pagmpggmgg mggmdf

Digest with specific protease

Trypsin yields 47 peptides (theoretically)

Peptide	masses	in	Da:
----------------	--------	----	-----

i Cptiu	C IIIass		<u>l </u>		
501.3	533.3	544.3	545.3	614.4	634.3
674.3	675.4	701.4	726.4	822.4	855.5
861.4	879.4	921.5	953.4	974.5	988.5
1000.6	1196.6	1217.6	1228.5	1232.6	1233.7
1249.6	1249.6	1344.7	1455.8	1484.6	1514.8
1582.9	1583.9	1616.8	1726.7	1759.9	1775.9
1790.6	1853.9	1869.9	2286.2	2302.2	2317.2
2419.2	2526.4	2542.4	3329.6	4211.4	

http://us.expasy.org/tools/peptide-mass.html

Digest with trypsin

In practice.....see far fewer by mass spec

- possibly incomplete digest (we allow 1 miss)
- lose peptides during each manipulation washes during digestion washes during cleanup step some peptides will not ionize well some signals (peaks) are poor low intensity; lack resolution

What Are Missed Cleavages?

Sequence

>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

Tryptic Fragments (no missed cleavage)

acedfhsak (1007.4251) dfgeasdfpk (1183.5266) ivtmeeewendadnfek (2098.8909) gwfe (609.2667)

Tryptic Fragments (1 missed cleavage)

acedfhsak (1007.4251)
dfgeasdfpk (1183.5266)
ivtmeeewendadnfek 2098.8909)
gwfe (609.2667)
acedfhsakdfgeasdfpk (2171.9338)
ivtmeeewendadnfekgwfe (2689.1398)
dfgeasdfpkivtmeeewendadnfek (3263.2997)

Calculating Peptide Masses

Sum the monoisotopic residue masses

Monoisotopic Mass: the sum of the exact or accurate masses of the lightest stable isotope of the atoms in a molecule

- Add mass of H₂O (18.01056)
- Add mass of H⁺ (1.00785 to get M+H)
- If Met is oxidized add 15.99491
- If Cys has acrylamide adduct add 71.0371
- If Cys is iodoacetylated add 58.0071

```
<sup>1</sup>H-1.007828503 amu <sup>12</sup>C-12

<sup>2</sup>H-2.014017780 amu <sup>13</sup>C-13.00335, <sup>14</sup>C-14.00324
```

Masses in MS

Figure shows a simulated isotopic distribution of the [M+H]+ ion of a compound with the following elemental composition, C_{48} H_{82} N_{16} O_{17} (Poly-Alanine)

Masses in MS

monoisotopic mass

- Monoisotopic mass is the mass determined using the masses of the most abundant isotopes
- Average mass is the abundance weighted mass of all isotopic components

Mass Calculation (Glycine)

Amino acid

$$R_1$$
— NH — CH_2 — CO — R_3

Residue

Monoisotopic Mass

 $^{1}H = 1.007825$

 $^{12}C = 12.00000$

 $^{14}N = 14.00307$

 $^{16}O = 15.99491$

Glycine Amino Acid Mass

5xH + 2xC + 2xO + 1xN

= 75.032015 amu

Glycine Residue Mass

3xH + 2xC + 1xO + 1xN

=57.021455 amu

Amino Acid Residue Masses

Monoisotopic Mass

Glycine	57.02147	Aspartic acid	115.02695
Alanine	71.03712	Glutamine	128.05858
Serine	87.03203	Lysine	128.09497
Proline	97.05277	Glutamic acid	129.0426
Valine	99.06842	Methionine	131.04049
Threonine	101.04768	Histidine	137.05891
Cysteine	103.00919	Phenylalanine	147.06842
Isoleucine	113.08407	Arginine	156.10112
Leucine	113.08407	Tyrosine	163.06333
Asparagine	114.04293	Tryptophan	186.07932

Preparing a Peptide Mass Fingerprint Database

- Take a protein sequence database (Swiss-Prot or nr-GenBank)
- Determine cleavage sites and identify resulting peptides for each protein entry
- Calculate the mass (M+H) for each peptide
- Sort the masses from lowest to highest
- Have a pointer for each calculated mass to each protein accession number in databank

Building A PMF Database

Sequence DB

>P12345 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

>P21234 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe

>P89212 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe

Calc. Tryptic Frags

acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe

acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe

acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe

Mass List

450.2017 (P21234)

609.2667 (P12345)

664.3300 (P89212)

1007.4251 (P12345)

1114.4416 (P89212)

1183.5266 (P12345)

1300.5116 (P21234)

1407.6462 (P21234)

1526.6211 (P89212)

1593.7101 (P89212)

1740.7501 (P21234)

2098.8909 (P12345)

The Fingerprint (PMF) Algorithm

- Take a mass spectrum of a trypsin-cleaved protein (from gel or HPLC peak)
- Identify as many masses as possible in spectrum (avoid autolysis peaks of trypsin)
- Compare query masses with database masses and calculate # of matches or matching score (based on length and mass difference)
- Rank hits and return top scoring entry this is the protein of interest

Query (MALDI) Spectrum

Query vs. Database

Database search

PeptIdent (ExPasy)

Mascot (Matrix Science)

MS-Fit (Prospector; UCSF)

ProFound (Proteometrics)

MOWSE (HGMP)

Human Genome Mapping Project

Uninterpreted MS/MS Database Search

Keep best match

What You Need To Do PMF

- A list of query masses (as many as possible)
- Protease(s) used or cleavage reagents
- Databases to search (SWProt, Organism)
- Estimated mass and pl of protein spot
- Cysteine (or other) modifications
- Minimum number of hits for significance
- Mass tolerance (100 ppm = 1000.0 ± 0.1 Da)
- A PMF website (ProFound, Mascot, etc.)

ProFound

ProFound - Peptide Mapping [Short Form] Version 4.10.5 The Rockefeller University Edition				
General			Digestion	
Sample ID			Allow maximum 1 v missed cleavages	
Database	NCBInr (2002/11/27)		Enzyme Trypsin	
Taxonomic Category	All taxa	~	For user-defined cleavage, please click <u>here</u> . Modifications	
	single protein only		Complete Unmodified Modification(s) 4-vinyl-pyridine (Cys)	
Mass Protein pl	U - 3000 kDa		Acrylamide (Cys) Iodoacetamide (Cys) Iodoacetic acid (Cys)	
Report Top	10 Candidates		Partial Methionine oxidation	
	Please write to <u>ProFound about ProFound?</u>		For more partial modifications, please click <u>here</u> .	
Masses				
Average Mas	ses:		Monoisotopic Masses:	
Mass toleran	Mass tolerance for average data: +/- 1 Mass tolerance for monoisotopic data: +/- 0.1			
Tolerance un	it: 💿 Da 🔾 % 🔾 ppm		Charge state: ⊙ M ○ MH+	
Identify Protein Extra Settings Example Reset Form				

ProFound Results

ProFound - Search Result Summary

Version 4.10.5 The Rockefeller University Edition

Protein Candidates for search вочозать-отсо-товьять [1209637 sequences searched]							
Rank	Probability	Est'd Z	Protein Information and Sequence Analyse Tools (T)	%	pl	kDa	®
1	2.2e-001	0.12	T gil15222204 ref[NP 172776.1] putative oxysterol-binding protein; protein id: At1g13170.1 [Arabidopsis thaliana]	<u>8</u>	6.1	92.31	®
2	2.2e-001	0.12	T gj 17547403 ref NP 520805.1 PROBABLE OXIDOREDUCTASE PYRROLINE-5-CARBOXYLATE REDUCTASE SIGNAL PEPTIDE PROTEIN [Ralstonia solanacearum]	<u>11</u>	5.8	28.10	®
3	7.6e-002	-	T gi 23054472 gb ZP 00080629.1 hypothetical protein [Geobacter metallireducens]	<u>11</u>	6.1	51.76	®
4	7.6e-002	-	т gi 19920902 ref NP 609168.1 СС7228-РА [Drosophila melanogaster]	7	8.6	66.18	®
5	2.6e-002	-	T gi 19572314 emb CAD19081.1 potassium channel beta chain [Stigmatella aurantiaca]	<u>10</u>	9.6	41.10	®
+6	2.5e-002	-	T gi 2133779 pir S63985 collagen alpha 2 chain precursor - sea urchin (Strongylocentrotus purpuratus) (fragment)	<u>3</u>	4.4	200.03	®
7	2.3e-002	-	т <u>gi 15450423 gb AAK96505.1 </u> AT4g20760/F21C20_110 [Arabidopsis thaliana]	<u>13</u>	9.8	32.46	®
+8	2.0e-002	-	T gi 7495844 pir T25534 hypothetical protein C10H11.6 - Caenorhabditis elegans	<u>8</u>	6.7	58.38	®
9	1.9e-002	-	T gi[21293583 gb EAA05728.1] agCP10259 [Anopheles gambiae str. PEST]	4	6.3	66.10	®
10	1.6e-002	-	T gi 16121031 ref NP 404344.1 sigma-54 transcriptional regulatory protein [Yersinia pestis]	<u>10</u>	6.1	37.74	®

Advantages of PMF

- Uses a "robust" & inexpensive form of MS (MALDI)
- Doesn't require too much sample optimization
- Can be done by a moderately skilled operator (don't need to be an MS expert)
- Widely supported by web servers
- Improves as DB's get larger & instrumentation gets better

Limitations With PMF

- Requires that the protein of interest already be in a sequence database
- Spurious or missing critical mass peaks always lead to problems
- Mass resolution/accuracy is critical
- Generally found to only be about 40% effective in positively identifying gel spots