Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

	· · · · · · · · · · · · · · · · · · ·	
1.	$(1+2i)^2 = -3+4i$	3p
	Partea reală este egală cu -3	2 p
2.	$x_1 + x_2 = 3$	2p
	$x_1 x_2 = a$	2p
	a=2	1p
3.	$x = g(5) \Rightarrow f(x) = 5$	2p
	$2^{x} + 3 = 5$	2 p
	x=1	1p
4.	$p = \frac{\text{nr.cazuri favorabile}}{1 + 1 + 1}$	1 _n
	nr.cazuri posibile	1p
	Numărul cazurilor posibile este $2^5 = 32$	2p
	Numărul submulțimilor cu 3 elemente este $C_5^3 = 10$, adică 10 cazuri favorabile	1p
	$p = \frac{5}{16}$	1p
5.		
3.	$\overrightarrow{AB} = 6\overrightarrow{i} + 9\overrightarrow{j}$ și $\overrightarrow{AM} = (x_M - 1)\overrightarrow{i} + (y_M - 3)\overrightarrow{j}$	2p
	$\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} \iff \begin{cases} x_M - 1 = 2 \\ y_M - 3 = 3 \end{cases}$	2p
	(· m	
	M(3,6)	1p
6.	$\sin x + 2\cos x = 3\cos x$	2p
	$\sin x = \cos x$	1p
	$x = \frac{\pi}{}$	2p
	4	- r

SUBIECTUL al II-lea (30 de puncte)

1.a)	$D(0,1,-1) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & -2 \\ 0 & 3 & 3 \end{vmatrix}$	2p
	$\begin{vmatrix} 0 & 3 & 3 \end{vmatrix}$ D(0,1,-1) = 12	3p
b)		1
	$A(0,1,x) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2x \\ 0 & 3 & 3x^2 \end{pmatrix}$	1p
	Există minorul $d = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 2 \neq 0 \Rightarrow \operatorname{rang} A(0,1,x) \geq 2$	1p
	rang $A(0,1,x) = 2 \Leftrightarrow D(0,1,x) = 0$	1p
	$D(0,1,x) = 6x(x-1) \Rightarrow x = 0 \text{ sau } x = 1$	2p

Probă scrisă la Matematică

Varianta 3

		1
c)	$D(a,b,c) = 6 \cdot \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$	1p
	D(a,b,c) = 6(b-a)(c-a)(c-b)	2 p
	$D(a,b,c) = 0 \Rightarrow a = b$ sau $b = c$ sau $c = a$, deci triunghiul este isoscel	2 p
2.a)	$f(\hat{1}) = \hat{0}$	2p
	$f(\hat{3}) = \hat{0}$	2p
	Finalizare	1p
b)	P are rădăcinile $\hat{1}$, $\hat{3}$ și $\hat{4}$	3p
	$P = (X - \hat{1})(X - \hat{3})(X - \hat{4}) = (X + \hat{4})(X + \hat{2})(X + \hat{1})$	2p
c)	$f(\hat{1}) = f(\hat{3})$, deci f nu este injectivă	2p
	$\operatorname{Im} f$ nu poate avea 5 elemente, deci f nu este nici surjectivă	3p

SUBIECTUL al III-lea (30 de puncte)

	(ev de punete)	
1.a)	$f'(x) = \frac{3-9x}{(x^2+3)\sqrt{x^2+3}}$ Finalizare	4p 1p
b)	$\lim_{x \to +\infty} f(x) = 1$	3p
	Dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$	2p
c)	$\lim_{x \to +\infty} f(x) = 1, \lim_{x \to -\infty} f(x) = -1$	2p
	Din monotonie, valoarea maximă a funcției este $f\left(\frac{1}{3}\right) = 2\sqrt{7}$	2p
	Imaginea funcției este $\left(-1,2\sqrt{7}\right]$	1p
2.a)	F este derivabilă și $F'(x) = \ln x$, pentru orice $x > 0$	3p
	F' = f	2p
b)	Aria este egală cu $\int_{1}^{e} \ln x dx =$	2p
	$=F(x)\big _{1}^{e}=1$	3 p
c)	$(p+1)\int_{1}^{x} f^{p}(t)dt = \int_{1}^{x} t \cdot (p+1) \cdot f^{p}(t) \cdot \frac{1}{t}dt =$	1p
	$= \int_{1}^{x} t \cdot \left(\ln^{p+1} t\right)' dt = t \cdot \ln^{p+1} t \Big _{1}^{x} - \int_{1}^{x} \ln^{p+1} t dt = x \ln^{p+1} x - \int_{1}^{x} \ln^{p+1} t dt$	3 p
	Finalizare	1p

Probă scrisă la **Matematică** Varianta 3