第六章习题解答

1. 给出结构模式识别方法的定义。

答:

教程第 222 页下方,"首先,使用某种方法从输入复杂模式······最后,借助于所获得的组合规则对输入复杂模式的结果进行分析,完成识别任务。"

2. 画出一个句法模式识别的系统框图, 简述构建该系统的步骤。答:

- 1. 学习过程(文法推断):利用已知结构的样本模式来推断产生这些模式的文法规则。
- 2. 识别过程(句法分析):用有序字符串表达输入模式,并利用文法规则对其进行句法分析以判断能否由相应的文法所生成。
- 3. 简述文法的分类以及相应的定义。

答:

文法分为四类:0型文法、1型文法、2型文法和3型文法。

0型文法: 也称为无约束文法或短语结构文法, 其产生式具有

$$\alpha \rightarrow \beta$$

的形式. 其中, $\alpha \in \Sigma^+$ 和 $\beta \in \Sigma^*$. 这类文法对产生式没有任何限制.

1型文法:也称为上下文有关文法,其产生式具有

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

的形式. 其中, $\alpha_1, \alpha_2 \in \Sigma^*, \beta \in \Sigma^+$ 以及 $A \in N$.

2型文法:也称为上下文无关文法,其产生式具有

$$A \rightarrow \beta$$

$A \rightarrow aB$ 或 $A \rightarrow b$						
的形式. 其中, $A,B \in N, a,b \in T$.						
 4. 考虑文法 G = (N, T, P, S), 其中 N = {S, A, B}, T={a, b, c}, 以及 P: (1) S → aAb (2) A → aBc (3) B → bBc (4) B → a 问: (1) 说明以上文法定义中各符号的含义 ? (2) 这是什么文法? (3) 由此可以生成的语言? (要求给出推导过程) 答: (1) N 为 G 的非终结符或变量的有穷集合, T 为 G 的终结符或常量的有穷集合, P 是产生式或再写规则的有穷集合, 而 S∈N 为句子的起始符。 (2) 文法 G 是二型文法. 						
(3) 文法 G 可以生成的语言是 $L(G) = \{a^2b^nac^{n+1}b \mid n = 0,1,2,\cdots\}$,						
推导过程如下:						
(1) (2) (4)						
$S \Rightarrow aAb \Rightarrow aaBcb \Rightarrow aaacb$						
$G \qquad G \qquad \qquad G$						
(1) (2) (3) (4)						
$S \Rightarrow aAb \Rightarrow aaBcb \Rightarrow aabBccb \Rightarrow aabaccb$						
$G \hspace{0.5cm} G \hspace{0.5cm} G \hspace{0.5cm} G$						
(1) (2) (3) (4)						
$S \Rightarrow aAb \Rightarrow aaBcb \Rightarrow aabBccb \Rightarrow aabbBcccb \Rightarrow aabbacccb$						
$G \hspace{0.5cm} G \hspace{0.5cm} G \hspace{0.5cm} G$						
(1) (2) (3) (3) (3) (4) $S \Rightarrow aAb \Rightarrow aaBcb \Rightarrow aabBccb \Rightarrow aabbBcccb \Rightarrow aabbbBccccb \Rightarrow aabbbaccccb$						
$G \hspace{0.5cm} G \hspace{0.5cm} G \hspace{0.5cm} G \hspace{0.5cm} G$						
所以,由文法 G 生成的语言是						

的形式. 其中, $A \in N, \beta \in \Sigma^+$.

3型文法: 也称为有限状态文法或正则文法, 其产生式具有

 $L(G) = \{aaacb, aabaccb, aabbacccb, aabbbacccb, \cdots\} = \{a^2b^nac^{n+1}b \mid n = 0, 1, 2, \cdots\}$

5. 已知一个非确定的有限状态自动机 $A = (Q, \Sigma_I, \delta, q_0, F)$, 其中,

Q =
$$\{q_0, q_1, q_2\}$$
, $\Sigma_I = \{0, 1\}$, $F=\{q_2\}$, 以及 δ :

(1)
$$\delta(q_0,0) = \{q_0,q_1\}$$
 (2) $\delta(q_0,1) = \{q_1,q_2\}$

(3)
$$\delta(q_1,0) = \{q_1\}$$
 (4) $\delta(q_1,1) = \{q_2\}$

(5)
$$\delta(q_2,0) = \{q_2\}$$
 (6) $\delta(q_2,1) = \{q_2\}$

请你:

- (1) 给出状态转移表以及状态转移图。
- (2) 构造对应的确定的有限状态自动机,并给出状态转移图。

答:

(1)

状态转移表:

符号 状态	0	1	
$\cdot q_{\scriptscriptstyle 0}$	$\left\{ \mathbf{\dot{q}}_{\scriptscriptstyle 0}, \mathbf{q}_{\scriptscriptstyle 1} \right\}$	$\left\{q_{\scriptscriptstyle 1},q_{\scriptscriptstyle 2ullet} ight\}$	
$q_{_1}$	$q_{_1}$	$q_{_{2\bullet}}$	
$q_{_{2\bullet}}$	$q_{_{2ullet}}$	$q_{_{2\bullet}}$	

状态转移图:

(2) 设所求的确定的有限状态自动机为 $A=(Q,\Sigma_I,\delta,q_0,F)$, A 的初始状态为 $[q_0]$,则可以按照以下步骤求解:

- i)考虑初始状态 $[q_0]$ 在输入符号为 0,1 情况下的状态转移情况。因为在 δ 中有 $\delta(q_0,0) = \{q_0,q_1\}$,而 A 中无对应的转移状态,故新增状态 $[q_0,q_1]$ 。又因为在 δ 中有 $\delta(q_0,1) = \{q_1,q_2\}$,而在 A 中无对应的转移状态,故新增状态 $[q_1,q_2]$,而该状态含有 A 的终结状态,故 $[q_1,q_2]$ 为 A 的终结状态。
- ii) 考虑状态 $[q_0,q_1]$ 在输入符号 0,1 情况下的状态转移情况。因为在在 δ 中有 $\delta(\{q_0,q_1\},0)=\{q_0,q_1\}$, $\delta(\{q_0,q_1\},1)=\{q_1,q_2\}$,而在A 已有状态 $[q_0,q_1]$ 和 $[q_1,q_2]$,因此使用已有状态。
- iii) 考虑状态 $[q_1,q_2]$ 在输入符号 0,1 情况下的状态转移情况。因为在在 δ 中有 $\delta(\{q_1,q_1\},0)=\{q_1,q_2\}$, $\delta(\{q_1,q_2\},1)=\{q_2\}$,而在A已有状态 $[q_1q_2]$,可以直接使用 此状态,但无转移状态 $[q_2]$,因此新增状态 $[q_3]$ 。
- iv) 考虑状态 $[q_2]$ 在输入符号为 0,1 情况下的状态转移情况。因为在在 δ 中有 $\delta(\{q_2\},0)=\{q_2\}$, $\delta(\{q_2\},1)=\{q_2\}$,而在A已有状态 $[q_2]$,故可以直接使用此状态。 至此,所有状态已被遍历,所得对应的确定的有限状态自动机的状态转移图如下:

*[选做题] 虽然本题不计入本次作业成绩,但要求掌握.若能正确完成,则本次作业附加 2 分,但最终得分不超过满分上限.

试用 CYK 算法判断符号串 x = b+c*a 能否被上下文无关文法 G = (N, T, P, S) 所接收。其中, $N = \{S, T\}$, $T = \{a, b, c, +, *\}$,以及 P:

(1) S \rightarrow T, (2) S \rightarrow S+T, (3) T \rightarrow I, (4), T \rightarrow T*I, (5) I \rightarrow a, (6) I \rightarrow b, (7) I \rightarrow c. 答:

可以被上下文无关文法 G = (N, T, P, S)所接收。

参考教材第 296 页,首先将题目中的产生式改写成乔姆斯基范式的形式,这部分 与教材上的相同。然后根据 CYK 算法, 依次进行如下操作:

对于三角表格的第一行,在P中查找是否有形如 $A_{i,1} \rightarrow a_i$ 的产生式

对于三角表格的第二行,在P中查找是否有形如 $A_{i,2} \rightarrow A_{i}A_{i+1,1}$ 的产生式

对于三角表格的第三行,在
$$P$$
中查找是否有形如 $\begin{cases} A_{i,3} \to A_{i,1} A_{i+1,2} \\ A_{i,3} \to A_{i,2} A_{i+2,1} \end{cases}$ 的产生式

对于三角表格的第三行,在
$$P$$
中查找是否有形如 $\begin{cases} A_{i,3} \to A_{i,1}A_{i+1,2} \\ A_{i,3} \to A_{i,2}A_{i+2,1} \end{cases}$ 的产生式对于三角表格的第四行,在 P 中查找是否有形如 $\begin{cases} A_{i,4} \to A_{i,1}A_{i+1,3} \\ A_{i,4} \to A_{i,2}A_{i+2,2} \end{cases}$ 的产生式 $A_{i,4} \to A_{i,3}A_{i+3,1}$

对于三角表格的第五行(最后一行),在
$$P^{'}$$
中查找是否有形如
$$\begin{cases} A_{l,5} \to A_{l,1}A_{l,4} \\ A_{l,5} \to A_{l,2}A_{3,3} \\ A_{l,5} \to A_{l,3}A_{4,2} \\ A_{l,5} \to A_{l,5}A_{5,1} \end{cases}$$
的产生式

如果找到这样的产生式,则把相应产生式左端的 $A_{i,j}$ 填写在当前考虑的单元格中,

若不存在这样的产生式,则在此处填写 ϕ 。

可以得到如下三角表格:

$_{X}$ =	b	+	c	*	a
	S, T, I	A	S, T, I	M	S, T, I
j = 1	ф	В	ф	С	
	S	ф	T		•
	ф	В			
	S		•		

例如填写三角表格 $A_{5,4}$ 位置处时,查找 P' 中是否有产生式产生 AT 或者 BC? 通 过查找,存在(2)B→AT,所以在这个位置上填写 B。

由于表格的最后一行包含 S, 故有 CYK 算法的结论, 判 x 有 S 派生, 即 x 能够被 上下文无关文法 G = (N, T, P, S) 所接收。