第二节 常数项级数的审敛法

- 一、正项级数及其审敛法
- 二、交错级数及其审敛法
- 三、绝对收敛与条件收敛
- 四、小结 思考题

一、正项级数及其审敛法

- 1. 【定义】 若 $u_n \ge 0$,则称 $\sum_{n=1}^{\infty} u_n$ 为正项级数.
- 2. 正项级数收敛的充要条件:

【基本定理1】

正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \longrightarrow 部分和数列 $\{s_n\}$ 有界 $(n=1,2,\cdots)$.

【证】"一一"若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\{s_n\}$ 收敛,故有界.

" $: u_n \geq 0$, ∴ 部分和数列 $\{s_n\}$ 单调递增,

又已知 $\{s_n\}$ 有界,故 $\{s_n\}$ 收敛,从而 $\sum_{n=1}^{n} u_n$ 也收敛.

注: 如果正项级数 u_n 发散,部分和数 $m_n \to +\infty$.

即
$$\sum_{n=1}^{\infty} u_n = +\infty$$
.

3. 【定理2】比较审敛法

设
$$\sum_{n=1}^{\infty} u_n$$
和 $\sum_{n=1}^{\infty} v_n$ 均为正项级数,且 $u_n \leq v_n$ ($n = 1, 2, \cdots$)

则 (1) 若 $\sum_{n=1}^{\infty} v_n$ 收敛, 必有 $\sum_{n=1}^{\infty} u_n$ 收敛.

(2) 若
$$\sum_{n=1}^{\infty} u_n$$
 发散, 必有 $\sum_{n=1}^{\infty} v_n$ 发散.

【推论】设 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都是正项级数,

若
$$\sum_{n=1}^{\infty} v_n$$
收敛(发散),

且
$$u_n \le kv_n \quad (n \ge N, k > 0)$$
 (或 $u_n \ge kv_n$)

则
$$\sum_{n=1}^{\infty} u_n$$
 收敛 (发散).

欲证收敛,则放大,欲证发散,则缩小

比较审敛法的不便: 须有参考级数 (比较对象).

【教材例 1】 讨论 p-级数

$$1+\frac{1}{2^p}+\frac{1}{3^p}+\frac{1}{4^p}+\cdots+\frac{1}{n^p}+\cdots$$
的收敛性. $(p>0)$

【解】 设
$$p \le 1$$
, $\therefore n^p \le n \Rightarrow \frac{1}{n^p} \ge \frac{1}{n}$, p —级数发散

设
$$p > 1$$
, 由图可知

$$n-1 \leq x \leq n$$
 时, $\frac{1}{n^p} \leq \frac{1}{x^p}$,

$$\frac{1}{n^p} = \int_{n-1}^n \frac{dx}{n^p} < \int_{n-1}^n \frac{dx}{x^p} \ (n = 2, 3, \dots)^{\frac{n-1}{p}} = \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}$$

$$s_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$$

$$<1+\int_{1}^{2}\frac{dx}{x^{p}}+\int_{2}^{3}\frac{dx}{x^{p}}+\cdots+\int_{n-1}^{n}\frac{dx}{x^{p}}$$

$$=1+\int_{1}^{n}\frac{dx}{x^{p}}=1+\frac{1}{p-1}(1-\frac{1}{n^{p-1}})<1+\frac{1}{p-1}$$

即 $\{s_n\}$ 有界,则p-级数收敛.

【结论】

$$p-$$
级数 $\begin{cases} \exists p > 1$ 时,收敛 $\exists p \leq 1$ 时,发散

[重要参考级数] 几何级数, p — 级数, 调和级数.

【教材例 2】 证明级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ 是发散的.

【证明】 因为 $n(n+1) \leq (n+1)^2$

$$\frac{1}{\sqrt{n(n+1)}} \ge \frac{1}{\sqrt{(n+1)^2}} = \frac{1}{n+1} (n=1,2,\cdots)$$

而级数
$$\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{k=2}^{\infty} \frac{1}{k}$$
 发散

根据比较审敛法可知, 所给级数发散.

4. 【定理3】比较审敛法的极限形式

设 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都是正项级数, 如果 $\lim_{n\to\infty} \frac{u_n}{v_n} = l$,

则(1) 当 $0 < l < +\infty$ 时,二级数有相同的敛散性[同敛散]

- (2) 当 l = 0 时,若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛;
- (3) 当 $l = +\infty$ 时,若 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散.

【教材例 3】 判定下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$
; (2) $\sum_{n=1}^{\infty} \frac{1}{3^n - n}$; (3) $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{n^2})$

$$\sin \frac{1}{n}$$
【解】(1):
$$\lim_{n \to \infty} \frac{n}{1} = 1, \qquad 原级数发散.$$

n

(2)
$$\lim_{n\to\infty} \frac{\frac{1}{3^n-n}}{\frac{1}{3^n}} = \lim_{n\to\infty} \frac{1}{1-\frac{n}{3^n}} = 1, :: \sum_{n=1}^{\infty} \frac{1}{3^n}$$
 收敛, 故原级数收敛.

$$(3) :: \lim_{n \to \infty} \frac{\ln(1 + \frac{1}{n^2})}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = 1, \quad 故原级数收敛.$$

若将正项级数与等比级数比较,则得到两个实用中很方便的比值判别法和根值判别法.

6. 【定理4】比值审敛法(达朗贝尔判别法):

设
$$\sum_{n=1}^{\infty} u_n$$
是正项级数,如果 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho (\rho$ 为数或+ ∞)

则 $(1)\rho < 1$ 时级数收敛; $(2)\rho > 1$ 时级数发散;

 $(3) \rho = 1$ 时失效.

【两点注意】

1.当 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=1$ 时,级数可能收敛也可能发散.

【例】级数
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
发散,级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, $(\rho = 1)$

事实上,对
$$p$$
—级数, $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}} = 1$

但
$$p > 1$$
, 级数收敛; $p \le 1$, 级数发散.

2.比值审敛法的条件是充分的,而非必要.

【教材例 4】 判别下列级数的收敛性:

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
; (2) $\sum_{n=1}^{\infty} \frac{n!}{10^n}$; (3) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)\cdot 2n}$.

【解】 (1)
$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{\frac{1}{n!}} = \frac{1}{n+1} \to 0 \quad (n \to \infty),$$
 故级数 $\sum_{n=1}^{\infty} \frac{1}{n!}$ 收敛.

(2)
$$: \frac{u_{n+1}}{u_n} = \frac{(n+1)!}{10^{n+1}} \cdot \frac{10^n}{n!} = \frac{n+1}{10} \to \infty \ (n \to \infty),$$

故级数 $\sum_{n=1}^{\infty} \frac{n!}{10^n}$ 发散.

$$(3) \sum_{n=1}^{\infty} \frac{1}{(2n-1)\cdot 2n}$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{(2n-1)\cdot 2n}{(2n+1)\cdot (2n+2)}=1,$$

比值审敛法失效,改用比较审敛法

$$\because \frac{1}{(2n-1)\cdot 2n} < \frac{1}{n^2}, \quad \because 级数\sum_{n=1}^{\infty} \frac{1}{n^2} 收敛,$$

故级数
$$\sum_{n=1}^{\infty} \frac{1}{2n\cdot(2n-1)}$$
 收敛.

7. 根值审敛法【定理 5】(柯西判别法):

设正项级数
$$\sum_{n=1}^{\infty} u_n$$
, 若 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$ (ρ 为数或+ ∞),

则 (1) ρ < 1 时级数收敛; (2) ρ > 1 时级数发散;

(3) $\rho = 1$ 时失效.

【例如】 设级数 $\sum_{n=1}^{\infty} \frac{1}{n^n}$,

$$\because \sqrt[n]{u_n} = \sqrt[n]{\frac{1}{n^n}} = \frac{1}{n} \to 0 \ (n \to \infty) \quad 故级数收敛.$$

【说明】

- (1) 根值法条件同样是充分条件,不必要.
- (2) 根值法常用于一般项 u_n 中含有指数为n次幂的级数的判别.
- (3) 比值法较根值法更常用,但也有例外.

【教材例5】判别级数 $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{2^n}$ 敛散性.

$$: \sqrt[n]{u_n} = \sqrt[n]{\frac{2 + (-1)^n}{2^n}} = \frac{\sqrt[n]{2 + (-1)^n}}{2}$$

当
$$n$$
为偶数时, $\sqrt[n]{u_n} = \frac{\sqrt[n]{3}}{2} \rightarrow \frac{1}{2}$

当
$$n$$
为奇数时, $\sqrt[n]{u_n} = \frac{\sqrt[n]{1}}{2} = \frac{1}{2} \rightarrow \frac{1}{2}$

从而
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \frac{1}{2}$$
 即原级数收敛.

【教材例5】判别级数
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n}$$
 敛散性.

【解】而若用比值法来求

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2 + (-1)^{n+1}}{2^{n+1}}}{\frac{2 + (-1)^n}{2^n}}$$

当n为偶数时,
$$\frac{u_{n+1}}{u_n} = \frac{1}{6}$$
 当n为奇数时, $\frac{u_{n+1}}{u_n} = \frac{3}{2}$

 $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$ 不存在,从而比值法失效,

且此例告诉我们收敛级数未必满足 $\lim_{n\to\infty}\frac{u_{n+1}}{u}<1$

二、交错级数及其审敛法

【定义】 正、负项相间的级数称为交错级数.

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n \ \vec{\boxtimes} \sum_{n=1}^{\infty} (-1)^n u_n \quad (\sharp + u_n > 0)$$

【定理7】(莱布尼兹定理)

(Leibnitz 交错级数 判别法) 若交错级数满足条件:

1)
$$u_n \ge u_{n+1} \ (n=1,2,\cdots);$$

$$\lim_{n\to\infty}u_n=0,$$

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛,且其和 $s \le u_1$,其余项满足

$$|r_n| \leq u_{n+1}$$
.

【注意】条件(1)是充分条件,不必要.

即使不满足条件(1),交错级数仍有可能收敛.

条件(2)是任何级数收敛的必要条件.

【快速练习】用Leibnitz 判别法判别下列级数的敛散性:

1)
$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n-1}\frac{1}{n}+\cdots$$
 www.

3)
$$\frac{1}{10} - \frac{2}{10^2} + \frac{3}{10^3} - \frac{4}{10^4} + \dots + (-1)^{n-1} \frac{n}{10^n} + \dots$$
 \text{\text{\psi}}

上述级数各项取绝对值后所成的级数是否收敛?

三、绝对收敛与条件收敛

【定义】 正项和负项任意出现的级数称为任意项级数.

【定义】 若
$$\sum_{n=0}^{\infty} |u_n|$$
收敛,则称 $\sum_{n=1}^{\infty} u_n$ 为绝对收敛.

若
$$\sum_{n=1}^{\infty} |u_n|$$
发散,而 $\sum_{n=1}^{\infty} u_n$ 收敛,则称 $\sum_{n=1}^{\infty} u_n$ 为条件收敛.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2} \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n-1)!}, \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{10^n}$$

为绝对收敛

【定理】 若 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛.

证明 $0 \le u_n + |u_n| \le 2|u_n|$

根据比较审敛法 $\sum_{n=1}^{\infty} u_n + |u_n|$ 收敛,

$$u_n = (u_n + |u_n|) - |u_n| \Rightarrow \sum_{n=1}^{\infty} u_n$$
 where

【说明】(1) 上定理的作用: 任意项级数

正项级数

(2) 逆命题不成立.

如
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
 收敛, 但 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散

(3) 上例也说明 若 $\sum |u_n|$ 发散, $\sum u_n$ 未必发散. 但若

【教材例6】证明下列级数绝对收敛:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin n \alpha}{n^4}$$
; (2) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$.

【证】(1) 此为变号级数(任意项级数)

$$\therefore \sum_{n=1}^{\infty} \left| \frac{\sin n \alpha}{n^4} \right|$$
 收敛

因此
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
 绝对收敛.

$$(2) \Leftrightarrow u_n = \frac{n^2}{e^n},$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n} = \lim_{n\to\infty}\frac{\frac{(n+1)^2}{e^{n+1}}}{\frac{n^2}{e^n}}$$

$$=\lim_{n\to\infty}\frac{1}{e}\left(\frac{n+1}{n}\right)^2=\frac{1}{e}<1$$

$$\therefore \sum_{n=1}^{\infty} |(-1)^n \frac{n^2}{e^n}|$$
 收敛,因此 $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$ 绝对收敛.

四、小结

常数项级数审敛

- 1. 利用部分和数列的极限判别级数的敛散性(定义)
- 2. 正项级数审敛法
- 3. 交错级数审敛法(Leibniz判别法)
- 4. 任意项级数审敛法

绝对收敛 条件收敛

级数审敛法表格一览

	正项级数	交错级数	任意项级数
4	1.		
审	2.		
<i>N</i> 4-	3. 按基本性质; (数乘、加减、有限项、括号)		
図	4. 充要条件	4. Leibnitz定理	4. 绝对收敛
法	5. 比较法		5. 条件收敛
14	6. 比值法		
	7. 根值法		

【思考与练习】

设正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 能否推出 $\sum_{n=1}^{\infty} u_n^2$ 收敛?

[提示]
$$\lim_{n\to\infty}\frac{u_n^2}{u_n} = \lim_{n\to\infty}u_n = 0$$

由比较审敛法极限形式可知 $\sum_{n=1}^{\infty} u_n^2$ 收敛.

【注意】 反之不成立. 例如,

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散.

[思考] 若将上述正项级数改为一般项级数,还成立吗?

$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}} \, \psi \, , \qquad \sum_{n=1}^{\infty} u_n^2 = \sum_{n=1}^{\infty} \frac{1}{n} \, \psi \, .$$

