Approximately Stationary Bandits with Knapsacks

Giannis Fikioris and Éva Tardos

Cornell University

Introduction and Model

Lower and Upper Bounds

Bandits with Knapsacks (Bwk)

Generalizes Multi-armed Bandits: online decision-making with global constraints

T rounds

d resources

Budget $B = \rho T$ for each resource, $\rho \in [0, 1]$

Action $a_t \in [K]$ in round t:

• reward $R_t(a_t) \in [0,1]$

• consumption $C_{t,i}(a_t) \in [0,1]$ of resource i

 $T_{\rm A}$: round any resource runs out or T ${\rm REW} = \sum_{t=1}^{T_{\rm A}} r_t(a_t)$

 \exists null action with $R_t(\emptyset) = C_{t,i}(\emptyset) = 0$

Stochastic/Adversarial BwK

Stochastic BwK: (R_t, C_t) drawn from distribution. Guarantee (tight):

$$\mathsf{REW} \ge \mathsf{OPT}_{\mathsf{FD}} - \tilde{O}\left(\frac{1}{\rho}\sqrt{KT\log d}\right) \tag{1} \qquad \mathsf{OPT}_{\mathsf{FD}} = \max_{\substack{A \in \Delta([K]) \\ T^* \in [T]}} \sum_{t=1}^{T} r_t(A)$$

Adversarial BwK: (R_t, C_t) picked by adversary. Guarantee (tight):

$$\mathsf{REW} \ge \rho \, \mathsf{OPT_{FD}} - \tilde{O}\left(\frac{1}{\rho}\sqrt{KT\log d}\right) \tag{2}$$

Best-of-both-worlds: Algorithm with both (1) and (2), unaware of environment [Castiglioni et al., ICML'22]

"In-between" BwK

 (R_t, C_t) not fully adversarial

E.g., sequential auctions:

- Seasonal changes: item value and price fluctuate
- Bidding against other players: item price unpredictable but not adversarial
- (1) inapplicable, (2) too pessimistic

Approximately Stationary BwK

Expectations conditioned on past actions and rewards/consumptions:

- $r_t(a) = \mathbb{E}\left[R_t(a)|\mathcal{H}_{t-1}\right]$
- $c_{t,i}(a) = \mathbb{E}\left[C_{t,i}(a)|\mathcal{H}_{t-1}\right]$

 (σ_r, σ_c) -stationary adversary:

 $\cdot \sigma_{r}$ limits rewards: $\forall a$,

$$\min_{t} r_t(a) \geq \sigma_r \max_{t} r_t(a)$$

 $\cdot \sigma_{\rm c}$ limits consumptions: $\forall a, i$,

$$\min_{t} c_{t,i}(a) \geq \sigma_{\mathsf{c}} \max_{t} c_{t,i}(a)$$

(0,0)-stationary \iff Adversarial BwK

(1,1)-stationary \longleftarrow Stochastic BwK

Benchmark

Best-fixed distribution of arms:

$$\mathsf{OPT}_{\mathsf{FD}} = \max_{\substack{A \in \Delta([K]) \\ T^* \in [T]}} \sum_{t=1}^{T^*} r_t(A)$$
s.t.
$$\sum_{t=1}^{T^*} c_{t,i}(A) \le \rho T \quad \forall i \in [d]$$

Lagrangian Algorithm

Slight modification of algorithms of [Immorlica et al., FOCS'19], [Castiglioni et al., ICML'22]

Idea: find saddle point of "Lagrangian":

$$\mathcal{L}_t(a,i) = R_t(a) + \frac{1}{\rho} \mathbb{1} \left[i \neq 0 \right] \left(\rho - C_{t,i}(a) \right)$$

Alg_{max} chooses $a_t \in [K]$ to maximize $\sum_t \mathcal{L}(a_t, i_t)$

Alg_{min} chooses $i_t \in [d] \cup \{0\}$ to minimize $\sum_t \mathcal{L}(a_t, i_t)$

Alg_{max}: no-regret algorithm (bandit feedback) with regret Reg_{\max}

Alg_{\text{min}}: no-regret algorithm (full-information) with regret Reg_{\max}

 $Reg = Reg_{max} + Reg_{min}$

Algorithmic Bound 1

Against (σ_r, σ_c) -stationary adversary:

$$REW \ge (\rho + \sigma_r(\sigma_c - \rho)^+) OPT_{FD} - Reg$$

- Continuous and increasing in $\sigma_{\rm r}$, $\sigma_{\rm c}$
- Interpolates (1) and (2)
- $\sigma_{\rm r}\sigma_{\rm c}$ fraction of OPT_{FD} when $\rho\ll\sigma_{\rm r}\sigma_{\rm c}$
- Adversary can be adaptive

Novel key Lemma: For any $A \in \Delta([K])$

$$REW \ge \min\left\{1, \frac{\rho}{\max_{t,i} c_{t,i}(A)}\right\} \sum_{t=1}^{T} r_t(A) - Reg$$

Implies (1) and (2)

Upper Bound

If $\sigma_{\rm r}, \sigma_{\rm c}$ unknown and algorithm guarantees $\alpha_{\rho}(\sigma_{\rm r}, \sigma_{\rm c}) {\rm OPT_{FD}} - o(T)$ with $\alpha_{\rho}(0,0) \geq \rho$, then

$$\alpha_{\rho}(\sigma_{r}, \sigma_{c}) \leq \begin{cases} \sigma_{r} + \rho(1 - \sigma_{r}), & \sigma_{r} \in [0, \rho] \\ 2\sqrt{\sigma_{r}\rho} - \sigma_{r}\rho, & \sigma_{r} \in \left[\rho, \frac{\rho}{\sigma_{c}^{2}}\right] \\ \sigma_{r}\sigma_{c} + \rho(1/\sigma_{c} - \sigma_{r}), & \sigma_{r} \in \left[\frac{\rho}{\sigma_{c}^{2}}, 1\right] \end{cases}$$

- $\alpha_{\rho}(\sigma_{\rm r}, \sigma_{\rm c}) \approx \sigma_{\rm r}\sigma_{\rm c}$ when $\rho \ll \sigma_{\rm r}\sigma_{\rm c}^2$
- $\cdot \alpha_{\rho}(\sigma_{r}, \sigma_{c}) = O(\rho)$ when $\sigma_{r} = O(\rho)$
- $\alpha_{\rho}(\sigma_{r}, \sigma_{c}) = \rho$ when $\sigma_{r} = \sigma_{c} = 0$

Algorithmic Bound 2

Restart Lagrangian algorithm periodically If $\sum_{t=1}^{T-1} \left| c_{t,i}(a) - c_{t+1,i}(a) \right| \le o(T)$ guarantee

$$\min_{x \in [\rho,1]} \left(\max \left\{ \rho, x \sigma_{c}, \sigma_{r} \frac{x}{d+x} \right\} + \max \left\{ \rho \sigma_{r} \frac{1-x}{x}, \sigma_{r} \sigma_{c} (1-x) \right\} \right)$$

fraction of OPT_{FD}

- -Large improvement over Algorithmic Bound 1 when $\sigma_{\rm c}, \rho$ small
- If $\sigma_{\rm c} \leq \rho \ll \sigma_{\rm r}$ then

$$\begin{cases} 2\sigma_{\mathsf{r}}(\sqrt{\rho} - \rho), & \sigma_{\mathsf{r}}^2 \ge \rho \\ \sigma_{\mathsf{r}}^2 + \rho - 2\rho\sigma_{\mathsf{r}}, & \sigma_{\mathsf{r}}^2 \le \rho \end{cases}$$

Improved key Lemma: For any $A \in \Delta([K])$

$$\mathsf{REW} \ge \sum_{t=1}^{T} r_t(A) \min \left\{ 1, \frac{\rho}{\max_i c_{t,i}(A)} \right\} - o(T)$$

arXiv link

