DEPTH FROM SINGLE IMAGE

Input

Output

LOCAL PREDICTIONS

Superpixels:

Achanta et al., PAMI'12

LOCAL PREDICTIONS

Train a regressor to predict superpixel depth:

—> Noisy predictions.

Encouraging coherence

Connect the neighboring superpixels

Encourage their depths to be consistent.

Saxena et al., PAMI'09

MARKOV RANDOM FIELD

Graph with vertices and edges

Assign values to the nodes to minimize

$$E(Y) = \sum_{i} \varphi(y_i) + \sum_{(i,j)} \psi(y_i, y_j)$$
unary pairwise

REASONING ABOUT EDGES

Liu et al., CVPR 2014

HIGHER ORDER TERMS

Larger regions can help reason about the scene

Zhuo et al., CVPR 2015

DEEP LEARNING WITH MRF

Liu et al., PAMI 2016

DEPTH FROM A SINGLE IMAGE

Liu et al., PAMI 2016

PREDICTING NORMALS

Using deep learning

Wang et al., CVPR 2015

NORMALS FROM A SINGLE IMAGE

Wang et al., CVPR 2015

OLD VARIATIONAL METHODS

Minimize:

$$\int \int \left(\left[I(u,v) - Ref(\frac{\delta z}{\delta u}, \frac{\delta z}{\delta v}) \right]^2 + \lambda \left[\left(\frac{\delta^2 z}{\delta u^2} \right)^2 + \left(\frac{\delta^2 z}{\delta u \delta v} \right)^2 + \left(\frac{\delta^2 z}{\delta v^2} \right)^2 \right] \right) du dv$$

or:

Brightness constraint

Smoothness term

constraint

STRENGTHS AND LIMITATIONS

Strengths:

- More general than shape-from-texture.
- Leverages data.

Limitations:

- Requires training data for specific scenes.
- Currently, only limited geometrical reasoning.