

Казахский агротехнический университет имени С.Сейфуллина "КАТУ"

ПРОЕКТ ПЦФ

АНАЛИЗ ТИПОВ АККУМУЛЯТОРОВ

Версия документа v.1 от 07.10.2021г.

СОДЕРЖАНИЕ

1 Общая информация	3
2 Источники анализа	
3 Общее описание основных типов аккумуляторных батарей	
4 Требования по условиям эксплуатации	
5 Анализ рынка	

1 Общая информация

- 1.1 Анализ проводится для выбора батарей, для применения в проекте ПЦФ.
- 1.2 Анализ проводится с целью принятия окончательного решения, дающих полное представление о характеристиках батареи и ее показателях.
 - 1.3 В данном документе приводятся:
 - а) источники анализа типов существующих типов аккумуляторных батарей;
 - б) краткое описание типов аккумуляторных батарей;
 - в) требования по условиям эксплуатации аккумуляторных батарей;
 - г) анализ рынка аккумуляторных батарей.
 - 1.4 Документ будет дополняться по мере проведения работ.
 - 1.5 В документе приняты следующие сокращения:

АКБ – аккумуляторная батарея.

2 Источники анализа

- 2.1. Оптимизация ресурсоопределяющих эксплуатационных режимов тяговых аккумуляторных батарей электромобилей
 - 2.2. Сравнение аккумуляторов различных типов
- 2.3. Аккумуляторы для ЦОДа: сравнение литий-ионных аккумуляторов со свинцово-кислотными
 - 2.4. Типы аккумуляторных батарей
 - 2.5. Литий-ионные и литий-полимерные аккумуляторы
- 2.6. Накопители электрической энергии для их использования в энергоустановках на возобновляемых источниках энергии
- 2.7. <u>Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material</u>
 - 2.8. Литий-полимерный аккумулятор: отличие от ионного
 - 2.9. Li-Ion или Li-Polymer Аккумуляторы
 - 2.10. BU-216: Summary Table of Lithium-based Batteries

3 Общее описание основных типов аккумуляторных батарей

Свинцово-кислотные аккумуляторы

Одна из старейших аккумуляторных систем. Эта недорогая, надежная и переносящая перегрузки батарея; но она имеет низкую удельную энергию и ограниченный срок службы. Свинцовый кислотный аккумулятор используется в автомобильном транспорте, в инвалидных колясках, в системах аварийного освещения и в источниках бесперебойного питания (ИБП).

Данный тип для питания рассматриваемого носимого устройтва не подходит.

Никель-кадмиевые (NiCd) аккумуляторы

Также является одной из старейших и хорошо изученных аккумуляторных систем. Эти источники питания используется там, где необходим длительный срок службы, высокий ток разрядки, экстремальные температуры и низкая стоимость. Из-за того, что NiCd аккумуляторы наносят значительный вред окружающей среде, их заменяют другими типами систем. Основные области применения: электроинструмент, рации, авиационный транспорт, ИБП. В Европе запретили продавать потребительские товары с такими типами аккумуляторов, но в России их можно приобрести.

Данный тип для питания рассматриваемого носимого устройтва не подходит.

Никель-металлгидридные (NiMH) аккумуляторы

Фактически являются заменой никель-кадмиевых; имеет более высокую удельную энергию и меньшее количество токсичных металлов. NiMH аккумуляторы используется в медицинском оборудовании, в гибридных автомобилях, в ракетно-космической технике, в промышленности.

Данный тип для питания рассматриваемого носимого устройтва не подходит.

Литий-ионные (Li-ion) аккумуляторы

Самый перспективный тип аккумуляторных систем; используется в портативных потребительских товарах, также как и в электромобилях. Li-ion аккумуляторы чувствительны к превышению напряжения при заряде и, для обеспечения безопасности, в них добавляется защитный контур, но не всегда. Эти типы аккумуляторов дороже, чем описанные выше.

<u>Данный тип подходит для питания рассматриваемого носимого устройтва. Ниже</u> рассмотрены разновидности литиевых аккумуляторов.

Семейство литий-ионных систем можно разделить на три основных типа батарей в зависимости от материала катода — это кобальт лития, литий-марганцевая шпинель и литий-феррофосфат. Характеристики этих литий-ионных систем приведены ниже.

Кобальт лития или литий оксид кобальта (LiCoO2)

Обладает высокой удельной энергией, переносит умеренные нагрузки и обладает небольшим сроком службы. Применяется в сотовых телефонах, ноутбуках, цифровых фотоаппаратах и других гаджетах.

Литий-марганцевая шпинель или литий-марганцевый (LiMn2O4)

Переносит высокий ток заряда и разряда, но имеет низкую удельную энергию и небольшой срок службы; используется в электроинструментах, медицинском оборудовании и в электрических силовых агрегатах.

Литий-феррофосфатный (LiFePO4)

Схож с литий-марганцевым; номинальное напряжение 3,3 В/элемент; более долговечный, но обладает более высокой скоростью саморазряда, чем другие литий-ионные системы.

Литий-полимерный (LiPol)

Li pol элементы питания отличаются от литий ионных в основном по физическому состоянию электролита. В первом случае используется твердый полимерный электролит, либо пластины с включениями гелеобразного электролита, а во втором случае электроды разделены жидким активным веществом. Использование полностью сухого электролита снижает его активность, поэтому для улучшения эксплуатационных характеристик батарей, в него добавляют вкрапления гелевого полужидкого электролита. Использование полимерной электролитной прослойки вместо пористого сепаратора, наполненного электролитом, усложняет технологический процесс и удорожает его, но позволяет получить более удобные и безопасные при эксплуатации источники питания.

Данный тип подходит для питания рассматриваемого носимого устройтва.

На рисунке 3.1 приведены равнительные характеристики четырех наиболее часто используемых типов аккумуляторных систем, с указанием усредненных параметров

Параметр	Свинцово-	NiCd	NiMH	Li ion		
	кислотные			Кобальт лития	Литий- марганце- вые	Литий- ферро- фосфат- ные
Удельная плотность энергии, Втч / кг	30-50	45-80	60-120	150-190	100-135	90-120
Внутреннее сопротивление ¹ , (mΩ)	<100 аккум. блок 12В	100-200 аккум. блок 6В	200-300 аккум. блок 6В	150-300 7,2B	25-75 ² на элемент	25-50 ² на элемент
Жизненный цикл ⁴ (80% разряда)	200-300	1000 ³	300-500 ³	500-1000	500-1000	1000-2000
Время быстрой зарядки	8-164	обычно 1ч	2-44	2-44	1ч или менее	1ч или менее
Терпимость к перезарядке	Высокая	Средняя	Низкая	Низкая. Не переносят постоянную подзарядку		
Саморазрядка/месяц (при комнатной температуре)	5%	20% ⁵	30% ⁵	Менее 10% ⁶		
Напряжение в элементе (номинальное)	2B	1,2B ⁷	1,2B ⁷	3,6B ⁸	3,8B ⁸	3,3B
Напряжение отсечки при зарядке (В/элемент, 1С)	около 2,4 и 2,25			4	1,2	3,6
Напряжение отсечки при разряде (В/элемент, 1С)	1,75	1,	00	2,5	5-3,0	2,8
Пиковый ток нагрузки (лучшие результаты)	5C ⁹ (0,2C)	20C (1C)	5C (0,5C)	>3C (<1C)	>30C (<10C)	>30C (<10C)
Температура зарядки	от -20°С до 50°С	от 0°C до 45°C от 0°C до 45°C ¹⁰		C ¹⁰		
Температура разрядки	от -20°С до 50°С	от -20°С до 65°С		от -20°С до 60°С		
Требования к обслуживанию	3-6 ¹¹ месяцев (подзарядка)	30-60 дней (разрядка)	60-90 дней (разрядка)	Не требуется		
Требования к безопасности	термически стабильны	Термически стабильны, обычно используются термопредохранители		Обязатель	ный защитн	ый контур ¹²
Используются с	конца 1800х	1950	1990	1991	1996	1999

Рисунок 3.1 – Сравнительные характеристики аккумуляторов

Наиболее подходящими вариантами для носимого устройства являются литий-ионные и литий-полимерные аккумуляторные батареи. Сравнение характеристик литий-ионных и литий-полимерных батарей приведено в таблице 3.1.

Таблица 3.1 – Сравнение литий-ионных и литий-полимерных батарей

Характеристика	Литий-ионные АКБ	Литий-полимерные АКБ
Плотность энергии	Высокая	Низкая
Эффект старения	Со временем теряет емкость	Теряет емкость медленее литий-
Эффект старения	Со временем теряет емкость	Теряет емкость медленее литий- ионных АКБ

Продолжение таблицы 3.1

Безопасность	При перезаряде могут	Взрывоопасны варианты с
	взорваться	жидким электролитом
Стоимость	Высокая	Низкая
Время зарядки	Медленно	Быстро
Токоотдача при пониженной температуре	Высокая	Низкая
Срок службы	Высокий	Меньше чем у литий-ионных АКБ

По полученным данным литий-ионные и литий-полимерные АКБ являются подходящими к требованию вариантами. Литий-ионная АКБ имеет большую плотность энергии, а также низкую стомость, также этот тип АКБ более распространен на рынке, нежели литий-полимерные АКБ. Однако литий-полимерные АКБ являются более безопасными.

Окончательный выбор между этими видами АКБ будет сделан опираясь на имеющиеся варианты на рынке. Анализ рынка представлен в главе 5.

4 Требования по условиям эксплуатации

АКБ будет применяться с составе систем, работающих на фермах, а также на удаленных пастбищах Казахстана.

Температура окружающей среды может колебаться от -40 до +45 градусов Цельсия. Температура аккумуляторного отсека будет отличаться незначительно.

При необходимости смену АКБ или аккумуляторного отсека должен иметь возможность заменить пользователь не обладающий специальными профессиональными навыками, а также без сложного спец инструмента.

Устройство, в составе которого будет применяться АКБ часто находится в условиях повышенной влажности. АКБ будет иметь герметичный корпус или же будет помещена в герметичный аккумуляторный отсек. Устройство с АКБ является носимым, поэтому к АКБ предъявляются повышенные требования к безопасности.

Обязательным условием является возможность перезарядки АКБ. Перезарядка будет осуществляться при температурах от 0 до +45 градусов Цельсия.

АКБ подбирается как альтернатива для уже используемых батерей. Устройство с открытым аккумуляторным отсеком показано на рисунке 4.1.

Рисунок 4.1 – Аккумуляторный отсек носимого устройства

В настоящее время в носимом устройстве применяются 4 литиевые батареи от Energizer формата AAA с номинальным напряжением 1.5 вольта и диапазоном температур от - 40° C до + 60° C.

Технические характеристики АКБ Energizer L92 AAA показаны на рисунке 4.2.

Specifications

Classification: "Cylindrical Lithium"

Chemical System: Lithium/Iron Disulfide (Li/FeS₂)

Designation: ANSI 24-LF, IEC-FR03

Nominal Voltage: 1.5 Volts

Compatible With: E92, NH12, 1212

Storage Temp: -40°C to 60°C (-40°F to 140°F) **Operating Temp:** -40°C to 60°C (-40°F to 140°F)*

Typical Weight: 7.6 grams (0.3 oz.)

Typical Volume: 3.8 cubic centimeters (0.2 cubic inch)

Max Discharge: 1.5 Amps Continuous

(single battery only) 2.0 Amps Pulse (2 sec on / 8 sec off)

Max Rev Current: 2 uA

Lithium Content: Less than 1 gram

Typical IR: 140 to 180 milliohms (depending on method)

Shelf Life: 20 years at 21°C

Shipping: Please refer to PSDS Document

Certifications:

€x II 1G

Ex ia IIC Ga Baseefa 14ATEX0107U

Рисунок 4.2 – Технические характеристики АКБ

На рисунках 4.3, 4.4 приведены графики из технической документации на батареи Energizer L92 AAA.

Discharge Profile Constant Current Discharge

Рисунок 4.3 – Зависимость напряжения от емкости при разряде

Temperature Effects on Capacity Constant Current Discharge

Рисунок 4.4 – Зависимость емкости от температуры при разряде

5 Анализ рынка

В первую очередь поиск проведен на сайтах таких крупнейших дистрибьютеров как: <u>DigiKey Electronics - Electronic Components Distributor; Дистрибьютор электронных компонентов - Mouser Российская Федерация; компания Arrow.com; интернет-магазин AliExpress.</u>

При поиске в фильтровались АКБ по следующим критериям:литий-ионного или литий-полимерного типа, типоразмер ААА либо герметичный корпус, напряжение 1.5, 3, 3.6, 6 или 7.2 вольта, активный статус, наличие, возможность перезарядки, работа в условиях пониженных температур. Ниже приведены ссылки на наиболее подходищие под эти критерии варианты.

- 1. <u>18650 7.2 V Lithium-Ion Battery Rechargeable (Secondary) 3.25Ah</u> Рабочая температура +10°C to +45°C. Цена: \$27
- 2. <u>18650 3.6 V Lithium-Ion Battery Rechargeable (Secondary) 2.55Ah</u> Рабочая температура +10°C to +45°C. Цена: \$19.48
- 3. <u>Набор из 8 АКБ типоразмера AAA PALO и зарядного устройства 990mWh 1.5V</u> Рабочая температура -20°C to +60°C. Цена: 1150 руб.

Вариант полностью удовлетворяющий требования не был найден. Наиболее подходящий вариант (вариант №3) не удовлетворяет требования по рабочей температуре. <u>Не удалось найти перезаряжаемые АКБ с рабочей температурой ниже -20°C.</u>