UNIVERSITE DE DSCHANG

INSTITUT TECHNOLOGIE FOTSO VICTOR DE BANDJOUN

Département : Génie Electrique /2019_2020

Option: Electronique & Electrotechnique / Niveau 1

UE/ Bases de l'électronique/ DUTGE1/ Enseignant : Dr.KOM G

TD SERIE 3 /2ieme Partie: Transistors TEC et leurs Applications/Régime Continu

EXERCICE 1: Polarisation automatique d'un FET

Soit le circuit de la figure 1, le transistor est tel que $g_{mo} = 8000 \mu s$.

- **4-1**°) Déterminer la valeur approchée de R_s donnant une polarisation à $V_{GS} = V_{GSoff} / 4$
- **4-2**°) soit $I_{DSS}=8mA$, déterminer V_{GS} pour la valeur de R_{S} trouvée ci-dessus et calculer la valeur correspondante de V_{DS} .

Figure 1

EXERCICE 2

: On considère le montage à transistor JFET ci-dessous (Figure 2).

On donne Vp= -2V ; I_{DSS} =2mA ; R1=60K Ω ; R2=30K Ω ; R3=100 Ω ; R4=10K Ω ; RE=300 Ω RL=2K Ω ; C1=0,1 μ F ; C2=0,1 μ F ; CE=100 μ F

- II-1°) Déterminer le point de repos Q (I_{DQ} , V_{GSQ}), sachant que $I_D = I_{DSS}(1-V_{GS}/V_p)^2$.
- II-°2) Calculer la valeur de la transconductance g_m au point de repos.
- II-3°) déterminer le gain en tension Av=Vs/Ve, le gain en courant Ai=i_L/i

EXERCICE 3

- 1°) Présenter les régimes de fonctionnement d'un Transistor bipolaire
- 2°) Donner en BF puis en HF la représentation électrique et analytique du transistor bipolaire
- 3°) Quelles sont les applications du transistor bipolaire
- 4°) Comment polariser un transistor JFET
- 5°) Donner en BF puis en HF la représentation électrique et analytique du JFET

6°) Quelles sont les applications du JFET

EXERCICE 4

On considère le schéma ci-contre où $E_D=24V$, $R_D=1K$ et $R_G=20M\Omega$. Préciser la tension de blocage.

- 1°) construire la droite de charge statique
- 2°) déterminer la valeur de la f.e.m E_G pour que V_{DS}=9V ; Vp= V_{GSoff}= 10V.

EXERCICE 5

Considérez un T E C dont les caractéristiques sont données dans la figure 1. Ce T E C est utilisé dans le montage figure 2 ; on donne . R_D = $1K\Omega$, la tension d'alimentation V_{DD} = 12V. Le point de fonctionnement est choisi tel que la tension $V_{DM} = 8V$

- 1) Calculer l'intensité du courant le et en déduire la tensions Vos.
- 2) Déterminer la valeur de la résistance Rs.
- 3) Donner la tension de pincement Vp.
- 4) Tracer la droite de charge sur la caractéristique de sortie, en déduire la valeur de la
- 5) Dans ce montage, la résistance Ro doit avoir une valeur élevée, expliquer pourquoi.

EXERCICE 6

On polarise un transistor à effet de champ au moyen de trois résistances R1, R2et R_L

Le réseau de caractéristiques du transistor est le suivant :

- 1. Ecrire l'équation de la droite de charge du transistor ID= f(VDS).
- 2. Tracer la droite de charge passant par le point ID= 4 mA, VDS= 0 V. Choisir le point de fonctionnement au milieu de la zone utilisable. En déduire la valeur de la tension VGS. 3. En déduire la valeur de RL.
- 4. Déterminer le rapport x = R1/R

2des résistances de polarisation. Calculer R1 en sachant que R2= 120 k Ω .

5. Le montage de la figure ci-dessous modifie-t-il le point de fonctionnement choisi en 2 ? Quel est l'intérêt de ce montage par rapport au précédent ?

EXERCICE 7

- I°) Pour V_{DS} compris entre 5V et 25V, le courant de drain d'un TEC à jonction a comme expression $i_D = 30(1+VGS/10)^2$. Ce TEC est placé dans un circuit analogue à celui de la figure 8 ci-dessus.
- $R_D = 500~\Omega$, $R_S = 500~\Omega$ 1°) on désire que le point de fonctionnement corresponde à $V_{GS} = -3V$ et $V_{DS} = 12V$.

Calculer les valeurs qu'ils conviennent de donner aux résistances R_D et Rs.

- 2°) Si $R_D = 0.7$ K Ω et $R_S = 0.3$ K Ω, calculer V_{GS} , V_{DS} et I_D .
- II°) Soit le montage de la figure 9 ci-dessus dans lequel l'élément actif est un transistor à effet de champ à jonction dont la résistance d'entrée est supposé infinie en régime continu comme en régime de variation (i_G =0).

A- Polarisation

On désire le point de repos suivant V_{DS} =15V, ID=5mA ; V_{GS} =-1,5V

1°) Sachant que R_2 = 2M Ω, calculer Rs et R_1 .

B- Etude en régime sinusoïdal

Ce montage est excité par une source de tension sinusoïdale de f.e.m $\,e_g\,$ et de résistance interne $\,r_g\,$ nulle.

- 2°) Montrer que les condensateurs C₁ et C₂ n'interviennent pas en régime sinusoïdal fréquence f=1kHz.
- 3°) Calculer l'amplification en tension Av= Vs/Ve. On donne s=6mS
- 4°) Calculer l'impédance d'entrée Ze de l'étage
- 5°) Sachant que la valeur crête de la tension d'entrée est mV, calculer la valeur crête à crête de la tension de sortie.

EXERCICE 8: Connaissances Générales

- **8-1**°) Le TEC est encore appelé transistor unipolaire .Justifier cette allégation en fournissant des explications en le comparant au BJT.
- 8-2°) Définir : Tension de pincement ; zone de déplétion
- 8-3°) Donner un autre terme approprié pour designer un MOSFET.
- **8-4°)** Donner les symboles d'un MOSFET à enrichissement et à appauvrissement.
- **8-5°**) Citer 2 modes de Polarisation des transistors à effet de champ (TEC) que vous connaissez.
- **8-6**°) Donner la signification de V_{GSoff} utilisée lors de la polarisation d'un transistor à effet de champ (TEC)
- 8-7°) Donner les signes des tensions V_{GS} et V_{DS} pour un TEC canal N et pour un TEC canal P
- **8-8°)** On suppose que le transistor à effet de champ est caractérisé par ses paramètres g_m et $\rho = 1/g_d$.
 - a) Expliquer ce que représente ces deux paramètres,
 - b) C'est quoi leurs unités
 - c) Comment peuvent-ils être déterminés à partir des caractéristiques statiques du transistor ?
- 8-9°) Donner 2 avantages et 2 inconvénients des transistors TEC par rapport au BJT.
- **8-10°**) Le TEC est encore appelé transistor unipolaire .Justifier cette allégation en fournissant des explications en le comparant au BJT.
- **8-11**°) Quel est l'avantage du MOSFET par rapport au transistor bipolaire lorsque les deux sont utilisés dans le domaine de l'électronique digitale

EXERCICE 9 : Régime de fonctionnement du transistor nMOS

9-1°) Déterminer l'état de fonctionnement du transistor nMOS dans les 3 montages (Figure 2-a 2-b et 2-c) suivants si V_{tn} =0,4V :

 \underline{Rappel} : La condition limite entre le régime saturé et le régime non saturé d'un transistor nMOS est donné par la relation $V_{GS}=V_{DS}+V_{tn}$. Par ailleurs :

- Pour V_{GS}<V_{DS}+V_{tn} on a un fonctionnement en régime saturé
- Pour V_{GS}>V_{DS}+V_{tn} on a un fonctionnement en régime non saturé
- 9-2°) Soit un transistor MOS à canal N avec une tension de seuil V_T =2V et une polarisation V_S =0, V_D = V_G =3V. Dans ces conditions, on mesure un courant de drain ID=1 mA. Répondre aux questions suivantes en utilisant le modèle simplifié du MOS (sans effet de substrat).
- **a**°) Le point de fonctionnement est-il dans la zone de conduction (non saturée) ou dans la zone saturée des caractéristiques ?
- **b**°) Que devient le courant I_D si la polarisation est portée à V_D= 5 V et VG= 4 V ?
- c°) Quelle est la résistance du canal Ron autour de VDS= 0 V lorsque VG= 4 V ?

EXERCICE 10: Polarisation d'un MOSFET à canal N

Figure 4

- **10-1°)** Dans le circuit de la figure 4 comment doit-on choisir V₁ afin d'obtenir une tension V_{DS}=6,2V?
- 10-2°) Dans quel mode de fonctionnement se trouve t-on?

Données ; $K=2mA/V^2$ et $V_t=1,5V$; $R_2=4,7k\Omega$; $V_2=10V$.

- **10-3°)** On considère le circuit de la figure 4 avec les données suivantes : $V_t=2V$; $V_1=2.8V$; $V_2=12V$; $R_2=5.6k\Omega$.
 - a°) Quelle est la plus grande valeur de K qui maintient le transistor en régime de saturation ?
 - b°) Si K augmente au-delà de cette valeur, dans quel régime le transistor entre-t-il?

EXERCICE 11: Polarisation du MOSFET

Partie I : Polarisation d'un MOSFET par diviseur de tension (Figure2)

11-1°) Déterminez la polarisation du transistor de la figure 2 ci-dessus.

- resistances : R_1 = 1 $M\Omega$, R_2 = 2 $M\Omega$, R_D = 1 $k\Omega$, R_S = 5.1 $k\Omega$;
- transistor : $K = 0.5 \text{ mA/V}^2 \text{ et Vt} = 2 \text{ V}.$

Partie II Le MOSFET du montage `a drain commun de la figure 3 a les caractéristiques suivantes :

MOSFET `a enrichissement `a canal n, $K = 0.4 \text{ mA/V}^2$, $Vt = 1 \text{ V et ro} \rightarrow \infty$.

11-2°) Déterminez les valeurs de R_S, R_D et R_G de façon telle que

- la résistance d'entrée soit égale `a r_{in} = 10 M Ω ,
- la composante de polarisation du courant de drain soit 'égale \ a $I_D = 0.1 \text{ mA}$,
- le transistor soit polarise en régime de saturation avec une marge de 1 V.
- 11-3°) Déterminez le gain en tension du montage ainsi obtenu.

EXERCICE 12

On suppose que les transistors dans les montages ci-dessous sont parfaits et fonctionnent en commutation.

- 12-1°) Analyser ces montages
- 12-2°) Compléter les tableaux correspondants

