Решение задач на Python, Интегралы

Дифференциал функции

Пример 1. Найти дифференциал функции $y = \arctan(\frac{1}{x})$

```
Ввод [1]:
```

```
from sympy import *
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
```

Ввод [2]:

```
x = Symbol('x')
dx = Symbol('dx')
a = diff(atan(1/x), x)
print( dx*a )
```

```
-dx/(x^{**}2^{*}(1 + x^{**}(-2)))
```

Ввод [3]:

```
x = Symbol('x')
dx = Symbol('dx')
y = Symbol(' y')
xx = diff(sqrt(1+(sin(x))**2), x )
y=print( xx*dx )
```

```
dx*sin(x)*cos(x)/sqrt(sin(x)**2 + 1)
```

Неопределенный интеграл

Пример 2. Найти неопределенный интеграл. $\int 6x^5 dx$

Ввод [4]:

```
x = symbols('x')
y=integrate(6*x**5, x)
print (y)
```

x**6

Пример 3. Найти неопределенный интеграл. $\int \frac{x}{x+2} dx$

Ввод [5]:

```
x = symbols('x')
y=integrate(x/(x+2), x)
y
```

Out[5]:

$$x - 2\log(x + 2)$$

Пример 4. Найти неопределенный интеграл. $\int \frac{1}{(x^2+1)^2} dx$

Ввод [6]:

integrate(1/(x**2+1)**2)

Out[6]:

Пример 5. Найти неопределенный интеграл. $\int xe^{2x}dx$

Ввод [7]:

integrate(x*exp(2 *x),x)

Out[7]:

$$\frac{(2x-1)e^{2x}}{4}$$

Пример 6. Найти неопределенный интеграл. $\int \frac{\sqrt{x+4}}{x} dx$

Ввод [8]:

integrate(sqrt(x+4)/x)

Out[8]:

$$\begin{cases} 2\sqrt{x+4} - 4 \operatorname{acoth}\left(\frac{\sqrt{x+4}}{2}\right) & \text{for } |x+4| > 4 \\ 2\sqrt{x+4} - 4 \operatorname{atanh}\left(\frac{\sqrt{x+4}}{2}\right) & \text{otherwise} \end{cases}$$

Определенный интеграл

Пример 7.
$$\int_{0}^{4} 6x^{5} dx$$

```
Ввод [9]:
```

```
x = symbols('x')
y=integrate(6*x**5, (x,0,4))
y
```

Out[9]:

4096

Пример 8. $\int_{1}^{3} \frac{x}{x+2} dx$

Ввод [10]:

```
x = symbols('x')
y=integrate(x/(x+2), (x, 1, 3))
y
```

Out[10]:

 $-2\log(5) + 2 + 2\log(3)$

Пример 9. $\int_{-1}^{1} \frac{1}{(x^2+1)^2} dx$

Ввод [11]:

Out[11]:

$$\frac{1}{2} + \frac{\pi}{4}$$

Пример 10. $\int_{0}^{100} xe^{2x} dx$

Ввод [12]:

Out[12]:

$$\frac{1}{4} + \frac{199e^{200}}{4}$$

Пример 11.
$$\int_{-1}^{0} \sqrt{x+4} dx$$

Ввод [13]:

integrate(sqrt(x+4),(x,-1,0))

Out[13]:

$$\frac{16}{3} - 2\sqrt{3}$$

Несобственный интеграл

Пример 12.
$$\int_{1}^{\infty} x^{-4} dx$$

Ввод [14]:

Out[14]:

Пример 13.
$$\int\limits_{-1}^{\infty}e^{-2x}dx$$

Ввод [15]:

integrate(
$$exp(-2*x)$$
, (x, -1, oo))

Out[15]:

$$\frac{e^2}{2}$$

Пример 14.
$$\int_{0}^{1} \ln(x) dx$$

Ввод [16]:

Out[16]:

-1

Пример 15.
$$\int_{0}^{7} \frac{1}{x^{\frac{6}{7}}} dx$$

Ввод [17]:

```
integrate(1/x**(6/7), (x, 0, 7))
```

Out[17]:

9.24328473429286

Кратные интегралы

Пример 16. $\int \int (y^2x - 2xy) dx dy$, где $x \le y \le 2, -1 \le x \le 2$

Ввод [18]:

```
x = symbols('x')
y = symbols('y')
d = integrate(y**2*x-2*x*y,(y,x,2))
d
```

Out[18]:

Ввод [19]:

```
integrate(d, (x, -1, 2))
```

Out[19]:

$$-\frac{9}{20}$$

Применения интегралов

Пример 17. Найти площадь фигуры, ограниченной линиями $y=2x, y=-x^2+7x-6$.

Ввод [20]:

Out[20]:

Пример 18. Найти площадь фигуры, ограниченной линиями y = -2x, $y = -x^2 + 5x - 10$.

Ввод [21]:

```
x = symbols('x')
integrate(-x**2+5*x-10+2*x,(x,2,5))
```

Out[21]:

 $\frac{9}{2}$

Пример 19. Найти площадь фигуры, ограниченной линиями y = -2x, $y = -x^2 + 3x - 6$.

Ввод [22]:

Out[22]:

 $\frac{1}{6}$

Объемы тел вращения

Пример 20. Вычислите объём тела, образованного вращением вокруг оси Ох области, ограниченной линиями $y = x^2 - x$ и y = 0 при $x \in [2, 4]$

Ввод [23]:

Out[23]:

 $\frac{1456\pi}{15}$

Пример 21. Вычислите объём тела, образованного вращением вокруг оси Ох области, ограниченной линиями $y=\sqrt{3-x}$ и y=-x-53 при $x\in[-61,-53]$

Ввод [24]:

Out[24]:

 $\frac{928\pi}{3}$

Длина дуги

Пример 22. Вычислить длину дуги параболы $y=x^2$ от точки A(1,1) до точки B(2,4)

Ввод [25]:

```
x = symbols('x')
integrate(sqrt(1+diff(x**2)**2), (x,1,2))
```

Out[25]:

$$-\frac{\sqrt{5}}{2} - \frac{\sinh{(2)}}{4} + \frac{\sinh{(4)}}{4} + \sqrt{17}$$

Пример 23. Вычислить длину дуги параболы $y^2 = x^3$ от точки M(0,0) до точки N(1,1)

Ввод [26]:

```
integrate(sqrt(1+diff(pow(x,3/2))**2),(x,0,1))
```

Out[26]:

1.43970987337155

Экономические задачи

Пример 24. Найдите функцию дохода R(x), если предельный доход при реализации единиц продукции определяется по формуле $MR = 6x^6 - 230$.

Ввод [27]:

```
x=symbols('x')
y=integrate(6*x**6-230,x)
y
```

Out[27]:

$$\frac{6x^7}{7} - 230x$$

Пример 25. Найти функцию издержек TC(q), если предельные издержки заданы функцией $MC = 18g^5 + 20q^4 + 16q^3$, а начальные фиксированные затраты равны 790.

Ввод [28]:

```
x=symbols('x')
y=integrate(18*x**5+20*x**4+17*x**3,x)
y
```

Out[28]:

$$3x^6 + 4x^5 + \frac{17x^4}{4}$$

Пример 26. Найти общую себестоимость выпуска q единиц продукции TC(q), если предельная себестоимость производства q единиц продукции задана функцией $MC = e^{7,8q}$, а начальные фиксированные затраты равны 21.

Ввод [29]:

```
x=symbols('x')
y=integrate(exp(7.8*x),x)
y
```

Out[29]:

 $0.128205128205128e^{7.8x}$

Пример 27. Количество потребляемой предприятием электроэнергии меняется в течение суток в зависимости от времени t со скоростью v(t)=8+4sin(-(t+7)), где время t измеряется в часах. Найти суммарный расход электроэнергии за сутки.

Ввод [30]:

```
x=symbols('x')
y=integrate(8+4*sin(pi/4*(x+7)),(x,0,24))
y
```

Out[30]:

192

Пример 28. Найти объем продукции, произведений за 6 лет, если функция Кобба - Дугласа имеет вид: $F(t) = (1+t)e^{2t}$.

Ввод [31]:

```
x=symbols('x')
y=integrate((1+x)*exp(2*x),(x,0,6))
y
```

Out[31]:

$$-\frac{1}{4} + \frac{13e^{12}}{4}$$

Примеры решения задач

1. Найти неопределенный интеграл. $\int \frac{(x-4)^2}{x} dx$

Ввод [32]:

```
x=symbols('x')
y=integrate(((x-4)**2)/x,x)
y
```

Out[32]:

$$\frac{x^2}{2} - 8x + 16\log(x)$$

2. Найдите неопределенный интеграл. $\int \frac{4(1+\cos^2x)}{1+\cos^2x} dx$

Ввод [33]:

```
x=symbols('x')
y=integrate(4*(1+cos(x)**2)/(1+cos(2*x)),x)
y
```

Out[33]:

 $2x + 2\tan(x)$

19. Найдите определенный интеграл $\int\limits_{-\frac{11}{2}}^{-\frac{5}{2}} \frac{dx}{\sqrt{-x^2-8x-7}}$

Ввод [34]:

```
x=symbols('x')
y=integrate(1/(-x**2-8*x-7),(x,-11/2,-5/2))
y
```

Out[34]:

0.366204096222703

20. Найдите определенный интеграл $\int\limits_{2}^{3}x(28-3x^{2})^{\frac{1}{5}}dx$

Ввод [35]:

```
x=symbols('x')
y=integrate(x*(28-3*x**2)**(1/5),(x,2,3))
y
```

Out[35]:

40. Найдите несобственный интеграл или установите его расходимость $\int\limits_0^4 {\frac{{dx}}{{{x^4}}}} dx$

```
Ввод [36]:
```

```
x=symbols('x')
y=integrate(1/x**4,(x,0,4))
y
```

Out[36]:

 ∞

42. Найдите несобственный интеграл или установите его расходимость $\int\limits_0^{+\infty} \frac{dx}{x^3} dx$

Ввод [37]:

```
x=symbols('x')
y=integrate(1/x**3, (x,3,oo))
y
```

Out[37]:

 $\frac{1}{18}$

47. Найти площадь фигуры, ограниченной линиями y = 5x, $y = 3x^2 - 9x + 15$.

Ввод [38]:

```
solve(5*x-(3*x**2-9*x+15),x)
```

Out[38]:

[5/3, 3]

Ввод [39]:

```
abs(integrate(5*x- (3*x**2-9*x+15), (x, 5/3, 3)))
```

Out[39]:

1.18518518518518

49. Вычислить кратный интеграл $\int \int (3y^3x - xy^2) dx dy$, по области $D = \{(x,y) \in \mathbb{R} | -1 \le x \le 1, 3 \le y \le x\}$

Ввод [40]:

```
x, y = symbols("x y")
f = (3*y**3*x-x*y**2)
I = integrate(f, (y, 3, x), (x, -1, 1))
I
```

Out[40]:

$$-\frac{5}{2916}$$

Задачи для самостоятельного решения

Задача 16:

Найти интеграл

$$\int_{1}^{2} \frac{4x^3 + 5x^2 - 4}{x^2} dx$$

Ввод [41]:

```
x=symbols('x')
y=integrate((4*x**3+5*x**2-4) / x ** 2 ,(x,1,2))
y
```

Out[41]:

9

Индивидуальное задание

Задача: Рассмотрим модель хищник-жертва, известную как уравнения Лотки-Вольтерры. Популяция добычи (кроликов) представлена x(t), а популяция хищников (лисиц) - y(t). Скорость изменения популяции хищников определяется $\frac{dx}{dt} = ax - bxy$, а скорость изменения популяции хищников определяется $\frac{dy}{dt} = cxy - dy$, где a, b, c и d - положительные константы.

Пусть $a=0.8, b=0.3, c=0.5, d=0.2, x_0=4, y_0=2$. Где x_0 - начальное количество кроликов, а y_0 - начальное количество лисиц.

Ввод [42]:

```
t = symbols('t')
x = Function('x')(t)
y = Function('y')(t)
a = 0.8
b = 0.3
c = 0.5
d = 0.2
x0 = 20
y0 = 1
t0 = 0
t_end = 10
dt = 0.01
```

Определение дифференциальных уравнений:

```
Ввод [43]:
```

```
dx_dt = a * x - b * x * y
dx_dt
```

Out[43]:

```
-0.3x(t)y(t) + 0.8x(t)
```

Ввод [44]:

```
dy_dt = c * x * y - d * y
dy_dt
```

Out[44]:

```
0.5x(t)y(t) - 0.2y(t)
```

Преобразование функций sympy в функции numpy для вычислений

Ввод [45]:

```
dx_dt_num = lambdify((t, x, y), dx_dt)
dy_dt_num = lambdify((t, x, y), dy_dt)
```

Решение системы дифференциальных уравнений, используя метод Эйлера

Ввод [46]:

```
t_values = np.arange(t0, t_end, dt)
x_values = [x0]
y_values = [y0]

for t_val in t_values[1:]:
    x_val = x_values[-1]
    y_val = y_values[-1]
    dx = dx_dt_num(t_val, x_val, y_val) * dt
    dy = dy_dt_num(t_val, x_val, y_val) * dt
    x_values.append(x_val + dx)
    y_values.append(y_val + dy)
```

Построение графика развития двух популяций.

Ввод [47]:

```
plt.plot(t_values, x_values, label='Кролики')
plt.plot(t_values, y_values, label='Лисы')
plt.xlabel('Время')
plt.ylabel('Население')
plt.title('Модель Лотки-Вольтерры: Динамика хищник-жертва')
plt.legend()
plt.show()
```

Модель Лотки-Вольтерры: Динамика хищник-жертва

В	вод []:				