

La derivada y sus aplicaciones (l)

Tema 2

La derivada y sus aplicaciones (l)

Noción de derivada

Noción de derivada

El concepto comenzó a plantearse en la época de la Grecia clásica (siglo III a.C.), pero se formalizó al converger, en el siglo XVII, matemáticos europeos en la resolución de 4 problemas:

- El problema de la recta tangente.
- El problema de la velocidad y aceleración.
- El problema de máximos y mínimos.
- El problema del área.

¿Cómo varía una función?

¿En qué rangos crece o decrece, en cuales crece más rápido, etc.?

¿Cómo varía una función?

¿En qué rangos crece o decrece, en cuales crece más rápido, etc.?

Analizaremos su representación gráfica:

¿Cómo varía una función?

¿En qué rangos crece o decrece, en cuales crece más rápido, etc.?

Analizaremos su representación gráfica:

¿Cuánto varía y por cada unidad de x?

El concepto pendiente puede ayudar

En una recta, m da cuánto varía y por cada unidad de x

Definición a partir de la secante

Cuanto más se reduce el incremento...

Cuanto más se reduce el incremento...

Cuanto más se reduce el incremento...

Cuanto más se reduce el incremento...

Cuando \(\Delta x\) tiende a ser 0 la secante tiende a ser tangente

Definición de Tangente

Si la función f(x) está definida en un intervalo abierto que contiene a c y además existe el

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = m$$

entonces la recta que pasa por (c,f(c)) con pendiente m es la tangente a la gráfica de f(x) en el punto (c,f(c)).

Velocidad media

Supuesta una función s(t) que nos diera el espacio recorrido en un tiempo t:

Velocidad media

Supuesta una función *s(t)* que nos diera el espacio recorrido en un tiempo *t*:

La velocidad media desde el instante t al $t+\Delta t$ sería el espacio recorrido por unidad de tiempo en ese intervalo:

$$V_{m} = \frac{S(t + \Delta t) - S(t)}{\Delta t}$$

Velocidad instantánea

Si se va reduciendo Δt hasta el límite:

Velocidad instantánea

Si se va reduciendo Δt hasta el límite:

La velocidad calculada resultará instantánea:

$$v(t) = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}$$

Definición de Derivada

La derivada de f en x viene dada por la expresión:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

siempre que exista este límite. Para todos los *x* para los que exista este límite *f'* es una función de *x*.

Notaciones:

$$f'(x)$$
 $\frac{dy}{dx}$ y' $\frac{d}{dx}[f(x)]$ $D_x[y]$

Aclaraciones sobre la derivada

- Si existe la derivada f'(a), se dice que f es derivable en el punto a.
- Si no existe la derivada f'(a), se dice que f no es derivable en a.
- Una función es derivable en (a, b) si existe la derivada para cada número que pertenece a ese intervalo.
- La derivada de una función es un límite.
- Para hallar la derivada se requiere que la función sea continua en el punto.

Interpretaciones de la derivada

Geométrica:

Pendiente de la recta tangente a la gráfica de y = f(x) en el punto de abscisa x = c.

Mecánica:

Velocidad de una partícula cuya posición viene dada por y = s(t) en el instante t = c.

General:

Razón instantánea de cambio de y = f(x) con respecto a x cuando x = c.

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características

Derivada y continuidad

Teorema:

Si f es derivable en x, entonces es continua en x.

Lo contrario no es cierto:

¿Por qué?

Por ejemplo la función valor absoluto es continua para cualquier valor de x, pero sólo es derivable para x < 0 y x > 0

$$x < 0 f'(x) = \lim_{\Delta x \to 0} \frac{|x + \Delta x| - |x|}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x} = -1$$

$$x > 0 \quad f'(x) = \lim_{\Delta x \to 0} \frac{|x + \Delta x| - |x|}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

y no es derivable para x = 0

x = 0

Límites laterales

El valor absoluto no es derivable para x = 0 porque sus límites laterales no coinciden:

$$f'(x) = \lim_{\Delta x \to 0^{-}} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x} = -1$$
$$f'(x) = \lim_{\Delta x \to 0^{+}} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

La derivada no está definida en x = 0:

$$f'(x) = \frac{d}{dx}[|x|] = \frac{x}{|x|}$$

¿Cómo puede ser una función no derivable en un punto?

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características
- Reglas básicas de derivación

Derivada de una constante

Aplicamos la definición de derivada a f(x)=c:

$$f'(x) = \frac{d}{dx}[c] = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0$$

• Regla de la constante La derivada de una función constante es 0. Si c es un número real $\frac{d}{dx}[c] = 0$

Ya que la pendiente en toda su gráfica es 0:

(la

Apliquemos ahora la definición de derivada a otro ejemplo, la función $f(x)=ax^2$:

$$f'(x) = \frac{d}{dx} [ax^{2}] = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a(x + \Delta x)^{2} - ax^{2}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{a[(x + \Delta x)^{2} - x^{2}]}{\Delta x} = \lim_{\Delta x \to 0} \frac{a[(x + \Delta x) + x][(x + \Delta x) - x]}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{a[(x + \Delta x) + x]\Delta x}{\Delta x} = \lim_{\Delta x \to 0} a[(x + \Delta x) + x] =$$

$$= \lim_{\Delta x \to 0} a(2x + \Delta x) = 2ax$$

Ejemplo de derivada de potencia por constante:

$$\frac{d}{dx}[ax^2] = 2ax$$

Reglas básicas

Regla de la potencia:
 Si n es un número racional, entonces la función f(x)=xⁿ es derivable y

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

 Regla del múltiplo constante
 Si f es una función derivable y c una número real, entonces cf también es derivable y

$$\frac{d}{dx}[cf(x)] = cf'(x)$$

Reglas de suma y diferencia

La suma (o diferencia) de dos funciones derivables f y g es derivable y

Regla de la suma:

$$\frac{d}{dx}[f(x)+g(x)] = f'(x)+g'(x)$$

Regla de la diferencia:

$$\frac{d}{dx}[f(x)-g(x)] = f'(x)-g'(x)$$

Regla del producto

El producto de dos funciones derivables f y g es derivable y

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

Generalización al producto de varias funciones:

$$\frac{d}{dx}[f(x)g(x)h(x)] =$$

$$= f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

Regla del cociente

El cociente de dos funciones derivables f y g es derivable para todos los valores de x en los que $g(x) \neq 0$, y

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Apliquemos la definición esta vez a $f(x) = \ln x$

$$f'(x) = \frac{d}{dx}[\ln x] = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left[\frac{1}{\Delta x} \ln \left(\frac{x + \Delta x}{x} \right) \right] = \lim_{\Delta x \to 0} \left[\ln (1 + \Delta x / x)^{1/\Delta x} \right]$$

Apliquemos la definición esta vez a $f(x) = \ln x$

$$f'(x) = \frac{d}{dx}[\ln x] = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left[\frac{1}{\Delta x} \ln \left(\frac{x + \Delta x}{x} \right) \right] = \lim_{\Delta x \to 0} \left[\ln (1 + \Delta x / x)^{1/\Delta x} \right]$$

Sustituimos $u=\Delta x/x$ ($u\rightarrow 0$ en vez de $\Delta x\rightarrow 0$)

$$\lim_{u\to 0} [\ln(1+u)^{1/ux}] = \lim_{u\to 0} [(1/x)\ln(1+u)^{1/u}] = \frac{1}{x} \ln[\lim_{u\to 0} (1+u)^{1/u}]$$

Apliquemos la definición esta vez a $f(x) = \ln x$

$$f'(x) = \frac{d}{dx}[\ln x] = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left[\frac{1}{\Delta x} \ln \left(\frac{x + \Delta x}{x} \right) \right] = \lim_{\Delta x \to 0} \left[\ln (1 + \Delta x / x)^{1/\Delta x} \right]$$

Sustituimos $u=\Delta x/x$ ($u\rightarrow 0$ en vez de $\Delta x\rightarrow 0$)

$$\lim_{u \to 0} [\ln(1+u)^{1/ux}] = \lim_{u \to 0} [(1/x) \ln(1+u)^{1/u}] = \frac{1}{x} \ln[\lim_{u \to 0} (1+u)^{1/u}]$$

Por definición
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{u \to 0} (1 + u)^{1/u}$$

Entonces
$$\frac{d}{dx}[\ln x] = \frac{1}{x}\ln e = \frac{1}{x}$$

La derivada y sus aplicaciones (l)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena

Regla de la cadena

Si y=f(u) es una función derivable de u y a su vez u=g(x) es una función derivable de x, entonces y=f(g(x)) es una función derivable de x tal que

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

o lo que es lo mismo

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Apliquemos regla de la cadena a $y = \ln e^x$ suponiendo *u=e*^x

$$\frac{d}{dx}[\ln e^x] = \frac{d}{de^x}[\ln e^x] \cdot \frac{d}{dx}[e^x]$$

Como vimos anteriormente $\frac{d}{dx}[\ln x] = \frac{1}{x}$

$$\frac{d}{dx}[\ln x] = \frac{1}{x}$$

Por lo que
$$\frac{d}{dx}[\ln e^x] = \frac{1}{e^x} \cdot \frac{d}{dx}[e^x]$$

Si además
$$\frac{d}{dx}[\ln e^x] = \frac{d}{dx}[x] = 1$$

Entonces
$$\frac{1}{e^x} \cdot \frac{d}{dx} [e^x] = 1$$
 y $\frac{d}{dx} [e^x] = e^x$

Regla general de la potencia

Aplicando la regla de la cadena se puede generalizar la regla de la potencia:

Si $y=[u(x)]^n$, donde u es una función derivable de x y n un número racional, entonces

$$\frac{dy}{dx} = n[u(x)]^{n-1} \frac{du}{dx}$$

o lo que es lo mismo

$$\frac{d}{dx}[u^n] = nu^{n-1}u'$$

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos

Tablas de derivadas

Demostradas en ejemplos:

$$- f(x) = |x|$$
 $f'(x) = x/|x|$ $si x \ne 0$
 $- f(x) = ln x$ $f'(x) = 1/x$ $si x > 0$
 $- f(x) = e^x$ $f'(x) = e^x$

Algunas trigonométricas:

```
-f(x) = \operatorname{sen} x \qquad f'(x) = \cos x
-f(x) = \cos x \qquad f'(x) = -\operatorname{sen} x
-f(x) = \tan x \qquad f'(x) = \operatorname{sec}^2 x
-f(x) = \cot x \qquad f'(x) = \operatorname{csc}^2 x
-f(x) = \operatorname{sec} x \qquad f'(x) = \operatorname{sec} x \tan x
-f(x) = \operatorname{csc} x \qquad f'(x) = -\operatorname{csc} x \cot x
```

- Reglas y tablas completas:
 - http://es.wikipedia.org/wiki/Anexo:Derivadas

Tabla resumen

Reglas generales de derivación			
Producto por un número	$\frac{d}{dx}\left[cf\right] = cf'$		
Suma	$\frac{d}{dx}\left[f+g\right] = f'+g'$	Diferencia	$\frac{d}{dx}\left[f-g\right] = f'-g'$
Producto	$\frac{d}{dx}[fg] = f'g + fg'$	Cociente	$\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{f'g - fg'}{g^2}$
Derivadas de funciones algebraicas			
Regla de la constante	$\frac{d}{dx}\left[c\right] = 0$	Regla simple de la potencia	$\frac{d}{dx}\left[x^n\right] = nx^{n-1}, \frac{d}{dx}\left[x\right] = 1$
Derivadas de funciones trigonométricas			
Seno	$\frac{d}{dx}\left[sen\ x\right] = cos\ x$	Coseno	$\frac{d}{dx}\left[\cos x\right] = -\sin x$
Tangente	$\frac{d}{dx}\left[\tanx\right] = \sec^2x$	Cotangente	$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$
Secante	$\frac{d}{dx}\left[\sec x\right] = \sec x \tan x$	Cosecante	$\frac{d}{dx}\left[\csc x\right] = -\csc x \cot x$
Regla de la cadena			
Regla de la cadena	$\frac{d}{dx}\left[f(u)\right] = f'(u) \ u'$	Regla general de la potencia	$\frac{d}{dx}\left[u^n\right] = n \ u^{n-1} \ u'$

Ejemplo 1

Obtener la derivada para $y = (x^2 + 1)^3$

Obtener la derivada para $y = (x^2 + 1)^3$

Consideraremos
$$u = (x^2 + 1)$$

e $y = u^3$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot u' = 3(x^2 + 1)^2 \cdot (2x) = 6x(x^2 + 1)^2$$

Ejemplo 2

¿Dónde f'(x) es 0 y dónde no existe?

$$f(x) = \sqrt[3]{(x^2 - 1)^2}$$

¿Dónde f'(x) es 0 y dónde no existe?

$$f(x) = \sqrt[3]{(x^2 - 1)^2}$$

Consideraremos $u = (x^2 - 1)$ e $y = u^{2/3}$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (2/3)u^{-(1/3)} \cdot u' = \frac{2}{3}(x^2 - 1)^{-\frac{1}{3}} \cdot (2x)$$

$$f'(x) = \frac{4x}{3\sqrt[3]{x^2 - 1}}$$

¿Dónde f'(x) es 0 y dónde no existe?

$$f(x) = \sqrt[3]{(x^2 - 1)^2}$$

Consideraremos $u = (x^2 - 1)$ e $y = u^{2/3}$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (2/3)u^{-(1/3)} \cdot u' = \frac{2}{3}(x^2 - 1)^{-\frac{1}{3}} \cdot (2x)$$

$$f'(x) = \frac{4x}{3\sqrt[3]{x^2 - 1}}$$

f'(x)=0 si 4x=0, es decir, si x=0f'(x) no existe si $x^2-1=0$, es decir, si $x=\pm 1$

Ejemplo 3

Obtener la derivada de $f(x) = sen^3 4x$

$$f(x) = (\text{sen}(4x))^3$$

Ejemplo 3

Obtener la derivada de $f(x) = sen^3 4x$

$$f(x) = (\text{sen}(4x))^3$$

Consideraremos

$$y = u^3$$
, $u = sen t y $t = 4x$$

Obtener la derivada de $f(x) = sen^3 4x$

$$f(x) = (\text{sen}(4x))^3$$

Consideraremos

$$y = u^3$$
, $u = sen t y t = 4x$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3u^2 \cdot \left(\frac{du}{dt} \cdot \frac{dt}{dx}\right) = 3(\operatorname{sen}(t))^2 \cdot (\cos(t)) \cdot t'$$

$$f'(x) = 3(\text{sen}(4x))^2(\cos(4x))4 = 12 \cdot \text{sen}^2 4x \cdot \cos 4x$$

Ejemplo 4

Obtener la tangente a f(x) = 2 sen x + cos 2x en el punto $(\pi, 1)$

Obtener la tangente a f(x) = 2 sen x + cos 2x en el punto $(\pi, 1)$

Consideraremos

$$y = 2u + t$$
, $u = sen x$, $t = cos s$, $y = s = 2x$

$$\frac{dy}{dx} = 2\frac{dy}{du} + \frac{dt}{dx} = 2\cos(x) + \left(\frac{dt}{ds} \cdot \frac{ds}{dx}\right) = 2\cos(x) + (-\sin(s)) \cdot s'$$

$$f'(x) = 2\cos x + (-\sin(2x))2 = 2\cos x - 2\sin 2x$$

Obtener la tangente a f(x) = 2 sen x + cos 2x en el punto $(\pi, 1)$

Consideraremos

$$y = 2u + t$$
, $u = sen x$, $t = cos s$, $y = s = 2x$

$$\frac{dy}{dx} = 2\frac{dy}{du} + \frac{dt}{dx} = 2\cos(x) + \left(\frac{dt}{ds} \cdot \frac{ds}{dx}\right) = 2\cos(x) + (-\sin(s)) \cdot s'$$

$$f'(x) = 2\cos x + (-\sin(2x))2 = 2\cos x - 2\sin 2x$$

Pendiente en
$$(\pi, 1)$$
 $f'(\pi) = 2\cos \pi - 2\sin 2\pi = -2$

Recta con pendiente -2 que pasa por $(\pi, 1)$

$$y = mx + b = -2x + (1 + 2\pi)$$

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita

Derivación implícita

Hasta ahora hemos trabajado siempre con funciones explícitas de la forma: y=f(x)

No siempre es posible obtener una expresión con la y despejada a la izquierda de la igualdad, y a la derecha una expresión dependiente únicamente de x, y tanto una parte como la otra de la igualdad prodrán depender de ambas variables: $\sigma(x,y)=\tau(x,y)$

Derivación implícita

Otras veces simplemente nos interesará más la forma implícita que la explícita, como estrategia para simplificar la derivada, o entender mejor el concepto a aplicar, etc.

Podemos derivar una expresión implícita derivando ambos lados de la igualdad, pero siendo conscientes de que derivamos ambos respecto a la misma variable, *x* por lo general.

Respecto a la variable apropiada

Si derivamos respecto a *x* son correctas las expresiones:

1.
$$\frac{d}{dx}[x^3] = 3x^2$$

$$2. \quad \frac{d}{dx}[y^3] = 3y^2 \frac{dy}{dx}$$

$$3. \quad \frac{d}{dx}[x+3y] = 1+3\frac{dy}{dx}$$

4.
$$\frac{d}{dx}[xy^2] = \frac{d}{dx}[x]y^2 + x\frac{d}{dx}[y^2] = 1y^2 + x\left((2y)\frac{dy}{dx}\right) = y^2 + 2xy\frac{dy}{dx}$$

Estrategia para la derivación implícita

- 1. Derivar ambos lados de la ecuación respecto a x.
- Agrupar todos los términos en que aparezca dy/dx en el lado izquierdo de la ecuación y pasar todos los demás a la derecha.
- Sacar factor común dy/dx en el lado izquierdo de la ecuación.
- 4. Despejar dy/dx

Obtener la derivada de y respecto a x de $y^3+y^2-5y-x^2=-4$

Paso 1)

Derivar ambos lados de la ecuación respecto de x

$$\frac{d}{dx}[y^{3} + y^{2} - 5y - x^{2}] = \frac{d}{dx}[-4]$$

$$\frac{d}{dx}[y^{3}] + \frac{d}{dx}[y^{2}] - \frac{d}{dx}[5y] - \frac{d}{dx}[x^{2}] = \frac{d}{dx}[-4]$$

$$3y^{2} \frac{dy}{dx} + 2y \frac{dy}{dx} - 5 \frac{dy}{dx} - 2x = 0$$

Obtener la derivada de y respecto a x de $y^3+y^2-5y-x^2=-4$

Paso 2)

Agrupar todos los términos en los que aparezca *dy/dx* en el lado izquierdo de la ecuación y pasar todos los demás a la derecha.

$$3y^2 \frac{dy}{dx} + 2y \frac{dy}{dx} - 5 \frac{dy}{dx} = 2x$$

Obtener la derivada de y respecto a x de $y^3+y^2-5y-x^2=-4$

Paso 3)

Sacar factor común *dy/dx* en el lado izquierdo de la ecuación.

$$\frac{dy}{dx}(3y^2+2y-5)=2x$$

Paso 4)

Despejar la derivada de *y* respecto a *x*.

$$\frac{dy}{dx} = \frac{2x}{3y^2 + 2y - 5}$$

La derivada y sus aplicaciones (l)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita
- Derivadas de orden superior

Derivadas de orden superior

Llamamos derivada de segundo orden a la derivada de la función derivada de una dada.

$$f(x) \Rightarrow \frac{df}{dx}(x) = f'(x) \Rightarrow \frac{d^2f}{dx}(x) = f''(x)$$

La derivada tercera es la derivada de la función derivada segunda.

$$f(x) \Rightarrow \frac{df}{dx}(x) \Rightarrow \frac{d^2f}{dx}(x) \Rightarrow \frac{d^3f}{dx}(x)$$

Y así sucesivamente se da origen a las derivadas de orden superior.

Obtener todas las derivadas de orden superior de $f(x)=x^5$

$$\frac{d(x^{5})}{dx} = 5x^{4}$$

$$\frac{d^{2}(x^{5})}{dx^{2}} = \frac{d(5x^{4})}{dx} = 20x^{3}$$

$$\frac{d^{3}(x^{5})}{dx^{3}} = \frac{d^{2}(5x^{4})}{d^{2}x} = \frac{d(20x^{3})}{dx} = 60x^{2}$$

$$\frac{d^{4}(x^{5})}{dx^{4}} = \frac{d^{3}(5x^{4})}{d^{3}x} = \frac{d^{2}(20x^{3})}{d^{2}x} = \frac{d(60x^{2})}{dx} = 120x$$

$$\frac{d^{5}(x^{5})}{dx^{5}} = \frac{d^{4}(5x^{4})}{d^{4}x} = \frac{d^{3}(20x^{3})}{d^{3}x} = \frac{d^{2}(60x^{2})}{d^{2}x} = \frac{d(120x)}{dx} = 120$$

$$\frac{d^{6}(x^{5})}{dx^{6}} = \frac{d^{5}(5x^{4})}{d^{5}x} = \frac{d^{4}(20x^{3})}{d^{4}x} = \frac{d^{3}(60x^{2})}{d^{3}x} = \frac{d^{2}(120x)}{d^{2}x} = \frac{d(120x)}{dx} = 0$$

Y a partir de esta todas son 0.

La derivada y sus aplicaciones (l)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita
- Derivadas de orden superior
- Derivadas parciales de funciones de varias variables.

DERIVADAS PARCIALES

Dada una función de dos variables z = f(x, y)

La derivada parcial de f respecto de x $f_x^{'} = \frac{\partial f}{\partial x}$ es la derivada de f como función de una sola variable x, dejando y constante.

La derivada parcial de f respecto de y $f_x^{'} = \frac{\partial f}{\partial x}$ es la derivada de f como función de una sola variable y, dejando x constante.

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

EJEMPLO Derivadas parciales de f(x,y) en (1,1):

$$f(x, y) = 3x^2 + y^3x + y$$

EJEMPLO Derivadas parciales de f(x,y) en (1,1):

$$f(x, y) = 3x^2 + y^3x + y$$

$$\frac{\partial f}{\partial x} = 6x + y^3 \qquad \qquad \frac{\partial f}{\partial x}(1,1) = 7$$

$$\frac{\partial f}{\partial y} = 3y^2x + 1 \qquad \qquad \frac{\partial f}{\partial y}(1,1) = 4$$

Para funciones de tres variables:

f(x, y, z)

Se definen las tres derivadas parciales:

$$f_x' = \frac{\partial f}{\partial x}$$
 $f_y' = \frac{\partial f}{\partial y}$ $f_z' = \frac{\partial f}{\partial z}$

como las derivadas respecto de x, y ó z respectivamente dejando las otras dos variables constantes.

Para funciones de *n* variables: $f: \mathbb{R}^n \to \mathbb{R}$ $f(x_1, x_2, ..., x_n)$

$$f'_{x_1} = \frac{\partial f}{\partial x_1} \quad f'_{x_2} = \frac{\partial f}{\partial x_2} \quad \dots \quad f'_{x_n} = \frac{\partial f}{\partial x_n}$$

$$x = (x_1, x_2, \dots, x_n) \qquad e_j = (b_1, b_2, \dots, b_n) \quad b_{i \neq j} = 0 \quad b_j = 1$$

$$\frac{\partial f}{\partial x_j} = \lim_{\lambda \to 0} \frac{f(x + \lambda e_j) - f(x)}{\lambda}$$

NOTA:

Para funciones f(x) de una sola variable real:

Existe derivada f' IMPLICA que f es continua

Para funciones $f(x_1, x_2, ..., x_q)$ de más de dos variables reales: La existencia de las derivadas parciales **NO IMPLICA** la continuidad de f.

Existen funciones de varias variables:

- continuas que no tienen derivadas parciales.
- que tienen derivadas parciales y no son continuas.
- que no son continuas ni tienen derivadas parciales.
- que son continuas y tienen derivadas parciales.

MATRIZ JACOBIANA

Dado un conjunto de s funciones $f=(f_1, f_2, ...f_s)$, de q variables cada una, se define la matriz Jacobiana de f (Jf) como una matriz con s filas y q columnas, tal que en la fila i, columna j, tiene el elemento:

$$\frac{\partial f_i}{\partial x_j}$$

$$Jf = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_q} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_q} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_s}{\partial x_1} & \frac{\partial f_s}{\partial x_2} & \dots & \frac{\partial f_s}{\partial x_q} \end{bmatrix}$$

EJEMPLO 1:

Hallar la matriz Jacobiana en el punto a = (1,1,1) de la función:

$$f(x, y, z) = e^{x+y^3+z^2}$$

EJEMPLO 1:

Hallar la matriz Jacobiana en el punto a = (1,1,1) de la función:

$$f(x, y, z) = e^{x+y^3+z^2}$$

$$\frac{\partial f}{\partial x} = e^{x+y^3+z^2} \quad \frac{\partial f}{\partial y} = 3y^2 e^{x+y^3+z^2} \quad \frac{\partial f}{\partial z} = 2z e^{x+y^3+z^2}$$

$$\frac{\partial f}{\partial x}(1,1,1) = e^3 \quad \frac{\partial f}{\partial y}(1,1,1) = 3e^3 \quad \frac{\partial f}{\partial z}(1,1,1) = 2e^3$$

$$Jf(x, y, z) = 1 \times 3$$

$$Jf(x,y,z) = \begin{bmatrix} e^{x+y^3+x^2} & 3y^2e^{x+y^3+z^2} & 2ze^{x+y^3+z^2} \end{bmatrix}$$

$$Jf(1,1,1) = [e^3 \quad 3e^3 \quad 2e^3]$$

EJEMPLO 2:

Hallar la matriz Jacobiana en el punto (1,2) de:

$$f(x,y) = (x^2y^3, e^{x^2+y^4}, \text{sen}(2\pi y))$$

$$Jf(x,y) = 3 \times 2$$

$$Jf(x,y) = \begin{bmatrix} 2xy^3 & 3x^2y^2 \\ 2xe^{x^2+y^4} & 4ye^{x^2+y^4} \\ 0 & 2\pi\cos(2\pi y) \end{bmatrix}$$

$$Jf(1,2) = \begin{bmatrix} 16 & 12 \\ 2e^{17} & 32e^{17} \\ 0 & 2\pi \end{bmatrix}$$

EJEMPLO 2:

Hallar la matriz Jacobiana en el punto (1,2) de:

$$f(x,y) = (x^2y^3, e^{x^2+y^4}, \text{sen}(2\pi y))$$

DERIVADAS PARCIALES SEGUNDAS:

Se obtienen derivando parcialmente respecto a una variable x_i (dejando las demás fijas) y volviendo derivar a la derivada que se obtiene, derivándola parcialmente respecto a otra variable x_i o la misma variable x_i (y dejando las demás fijas).

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = f'_{xx} = f''_{x} \qquad \qquad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f'_{yx}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f'_{yy} = f''_{y} \qquad \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f'_{xy}$$

Las derivadas de orden superior sobre derivadas de distinta variable se llaman derivadas "iteradas"

EJEMPLO:

$$f(x,y) = e^{x^2 + y^3}$$

EJEMPLO:

$$f(x,y) = e^{x^2 + y^3}$$

$$\frac{\partial f}{\partial x} = 2xe^{x^2 + y^3} \quad \frac{\partial f}{\partial y} = 3y^2 e^{x^2 + y^3}$$

EJEMPLO:

$$f(x,y) = e^{x^2 + y^3}$$

$$\frac{\partial f}{\partial x} = 2xe^{x^2 + y^3} \quad \frac{\partial f}{\partial y} = 3y^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial x^2} = (2 + 4x^2)e^{x^2 + y^3}$$
$$\frac{\partial^2 f}{\partial y \partial x} = 6xy^2 e^{x^2 + y^3}$$

EJEMPLO:

$$f(x,y) = e^{x^2 + y^3}$$

$$\frac{\partial f}{\partial x} = 2xe^{x^2 + y^3} \quad \frac{\partial f}{\partial y} = 3y^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial x^2} = (2 + 4x^2)e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial x \partial y} = 6xy^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = 6xy^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial y^2} = (6y + 9x^4)e^{x^2 + y^3}$$

EJEMPLO:

$$f(x,y) = e^{x^2 + y^3}$$

$$\frac{\partial f}{\partial x} = 2xe^{x^2 + y^3} \quad \frac{\partial f}{\partial y} = 3y^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial x^2} = (2 + 4x^2)e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial x \partial y} = 6xy^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = 6xy^2 e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial y^2} = (6y + 9x^4)e^{x^2 + y^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$$

La derivada y sus aplicaciones (l)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita
- Derivadas de orden superior
- Derivadas parciales de funciones de varias variables.
- Valores extremos en un intervalo

Máximo y mínimo

Sea f una función definida sobre un intervalo [a,b] que contiene a c:

- f(c) es un **máximo** de f en [a,b] si $f(c) \ge f(x)$ para todo $x \in [a,b]$
- f(c) es un **mínimo** de f en [a,b] si $f(c) \le f(x)$ para todo $x \in [a,b]$

Se conocen por Valores extremos

Máximo absoluto

Mínimo absoluto

Extremos terminales

En un intervalo cerrado [a,b] los valores extremos pueden coincidir en los valores terminales del intervalo:

$$f(x)=e^{x} en [-1,1]$$

No puede ocurrir en un intervalo abierto

$$f(x)=e^{x} en (-1,1)$$

Sin máximo o mínimo

f(0) mínimo en (-2,2):

$$f(x) = x^2 + 1$$

$$f(x) = \begin{cases} x^2 + 1 & x \neq 0 \\ 2 & x = 0 \end{cases}$$

Falta de continuidad

Sin máximo en [-1,1]

$$f(x) = \frac{1}{x^2}$$

Mínimos en los puntos terminales porque el intervalo es cerrado

Teorema del Valor Extremo

Si f es continua en el intervalo cerrado [a,b], entonces tiene un mínimo y un máximo en ese intervalo.

$$f(x) = |x-1| + 1$$

Máximo en el terminal *f(a)*Y mínimo en el intermedio *f(c)*

No se exige derivabilidad

Máximos y mínimos relativos

Sea f una función definida sobre un intervalo abierto (a,b) que contiene a c:

Si f(c) es un máximo de f en (a,b) entonces f(c) es un máximo relativo

Si f(c) es un mínimo de f en (a,b) entonces f(c) es un mínimo relativo

Máximo local

Mínimo local

Derivadas y extremos locales

Si la derivada existe es 0:

$$f(x) = |x| + 1$$
$$f'(x) = \frac{|x|}{x}$$

$$f(x) = x^2 + 1$$
$$f'(x) = 2x$$

Puntos críticos

Definición:

Sea f definida en c. Si f'(c)=0 o si f no es derivable en c, entonces c es un punto crítico de f.

Los extremos relativos ocurren sólo en los puntos críticos.

Teorema:

Si *f(c)* es un mínimo relativo o un máximo relativo en *(a,b)*, entonces *c* es un punto crítico de *f*.

Determinación de extremos en un intervalo cerrado [a,b]

- Se buscan los punto críticos de f en (a,b). Usaremos la derivada.
- 2. Se evalúa f en cada punto crítico en (a,b)
- 3. Se evalúa f en cada punto terminal del intervalo [a,b]: a y b.
- 4. El más pequeño de estos valores es el mínimo y el más grande es el máximo

Ejemplo 1

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3$ en [-1,2]

Ejemplo 1

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3$ en [-1,2]

Derivamos $f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$

Puntos críticos: x=0 y x=1

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3$ en [-1,2]

Derivamos
$$f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$$

Puntos críticos: x=0 y x=1

Valores en puntos críticos:

$$f(0)=0 y f(1)=-1$$

Y en extremos del intervalo:

$$f(-1)=7 \text{ y } f(2)=16$$

Mínimo
$$f(1)=-1$$

Máximo
$$f(2)=16$$

Ejemplo 2

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3 - 12x^2 + 26$ en [-2,3]

Ejemplo 2

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3 - 12x^2 + 26$ en [-2,3]

Derivamos
$$f'(x) = 12x^3 - 12x^2 - 24x$$

= $12x(x^2 - x - 2) = 12x(x + 1)(x - 2)$

Puntos críticos: x=-1, x=0 y x=2

Ejemplo 2

Determinar máximo y mínimo absolutos de $f(x) = 3x^4 - 4x^3 - 12x^2 + 26$ en [-2,3]

Derivamos
$$f'(x) = 12x^3 - 12x^2 - 24x$$

= $12x(x^2 - x - 2) = 12x(x + 1)(x - 2)$

Puntos críticos: x=-1, x=0 y x=2

Valores en críticos:

$$f(-1)=21 f(0)=26 y f(2)=-6$$

Y en terminales:

$$f(-2)=58 y f(3)=53$$

Mínimo f(2)=-6

Máximo f(-2)=58

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita
- Derivadas de orden superior
- Derivadas parciales de funciones de varias variables.
- Valores extremos en un intervalo
- Funciones crecientes y decrecientes (Primera Derivada)

Funciones crecientes y decrecientes

Una **función es creciente** sobre un intervalo si para cualquiera de dos números x_1 y x_2 en el intervalo, $x_1 < x_2$ implica $f(x_1) < f(x_2)$

Intuitivamente, pendiente positiva

Una **función es decreciente** sobre un intervalo si para cualquiera de dos números x_1 y x_2 en el intervalo, $x_1 < x_2$ implica $f(x_1) > f(x_2)$

Intuitivamente, pendiente negativa

Criterio de crecimiento y decrecimiento

Teorema:

Sea f una función que es continua en el intervalo cerrado [a,b] y derivable en el intervalo abierto (a,b), entonces

- 1.Si f'(x)>0 para todo x en (a,b), entonces f es creciente en [a,b].
- 2.Si f'(x) < 0 para todo x en (a,b), entonces f es decreciente en [a,b].
- 3.Si f'(x)=0 para todo x en (a,b), entonces f es constante en [a,b].

Criterio de crecimiento y decrecimiento

Demostración:

Cojamos x_1 y x_2 en [a,b] tales que $x_1 < x_2$. f es continua en [a,b] y derivable en (a,b)Aplicamos Valor Medio*:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Si f'(c)>0 y $x_2-x_1>0$ entonces $f(x_1)< f(x_2)$

Igualmente con signo contrario y obvio para 0

(*) El Teorema del Valor Medio se verá más adelante.

Estrategia

- 1. Localizar puntos críticos de f y utilizarlos para delimitar intervalos
- 2. Determinar el signo de f' en cada intervalo
- 3. Aplicar el criterio para concluir si la función es creciente o decreciente

$$f(x) = x^3 - \frac{3}{2}x^2$$

$$f'(x) = 3x^2 - 3x = 3x(x-1)$$

2 -	
1.5 -	
1 -	
0.5 -	Creciente
f(0)	
0.5	0 0.5 1.5 2 2.5 3 Decreciente
/ -0.5 - ente	f(1)
-1 -	
-1.5 -	

Intervalo	Valor	Signo	Conclusión
$-\infty < x < 0$	x = -1	f'(-1) = 6 > 0	Creciente
0 < x < 1	$x = \frac{1}{2}$	$f'(\frac{1}{2}) = -\frac{3}{4} < 0$	Decreciente
$1 < x < \infty$	x = 2	f'(2) = 6 > 0	Creciente

Criterio de la primera derivada

Teorema:

Sea c un punto crítico de una función f continua en (a,b), y derivable al menos los $x\neq c$, entonces

- 1.Si f'(x) cambia de negativa a positiva en c, entonces f tiene un mínimo relativo en f(c).
- 2.Si f'(x) cambia de positiva a negativa en c, entonces f tiene un máximo relativo en f(c).
- 3.Si f'(x) es positiva en ambos lados de c o negativa en ambos lados de c, entonces f(c) no es ni mínimo ni máximo.

$$f(x) = (x^2 - 4)^{2/3}$$

$$f'(x) = \frac{2}{3}(x^2 - 4)^{-1/3}(2x)$$

$$f'(x) = \frac{4x}{3(x^2 - 4)^{1/3}}$$

Intervalo	Valor	Signo	Conclusión
$-\infty < x < -2$	x = -3	f'(-3) < 0	Decreciente
-2 < x < 0	x = -1	f'(-1) > 0	Creciente
0 < x < 2	x = 1	f'(1) < 0	Decreciente
$2 < x < \infty$	x = 3	f'(3) > 0	Creciente

La derivada y sus aplicaciones (I)

- Noción de derivada
- Características
- Reglas básicas de derivación
- Regla de la cadena
- Tablas de derivadas y ejemplos
- Derivación implícita
- Derivadas de orden superior
- Derivadas parciales de funciones de varias variables.
- Valores extremos en un intervalo
- Funciones crecientes y decrecientes (Primera Derivada)
- Concavidad (Segunda derivada)

Concavidad

Sea f derivable en un intervalo (a,b).
Su gráfica es cóncava hacia arriba
sobre el intervalo si f' es creciente en (a,b)
y cóncava hacia abajo
si f' es decreciente en ese intervalo.

Quiere decir:

Cóncava hacia arriba (convexa) si la gráfica yace sobre todas sus tangentes.

Cóncava hacia abajo (sólo cóncava) si la gráfica subyace bajo todas sus tangentes.

Criterio de concavidad

Teorema:

Sea f una función cuya segunda derivada existe en el intervalo abierto (a,b), entonces

1.Si f''(x)>0 para todo x en (a,b), entonces f es cóncava hacia arriba en (a,b).

2.Si f"(x)<0 para todo x en (a,b), entonces f es cóncava hacia abajo en (a,b).

$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

$$f(x) = \frac{x^2 + 1}{x^2 - 4} \qquad f'(x) = \frac{-10x}{(x^2 - 4)^2} \qquad f''(x) = \frac{10(3x^2 + 4)}{(x^2 - 4)^3}$$

$$f(x) = \frac{6}{x^2 + 3} \quad f'(x) = \frac{-12x}{(x^2 + 3)^2} \quad f''(x) = \frac{36(x^2 + 3)(x^2 - 1)}{(x^2 + 3)^4}$$

Punto de inflexión

Sea f una función que es continua en un intervalo (a,b) y sea c un punto en ese intervalo.

Si la gráfica de f tiene una recta tangente en este punto (c,f(c)), entonces este punto es un **punto de inflexión de la gráfica** de f si la concavidad de f cambia de cóncava hacia arriba a cóncava hacia abajo o viceversa en ese punto.

Punto de inflexión

Teorema:

Si (c,f(c)) es un punto de inflexión de la gráfica de f, entonces f''(c)=0 o f''(c) no existe en x=c

Lo contrario no es cierto: Contra ejemplo $f(x)=x^4$

$$f'(x) = x^4 - 4x^3$$

$$f'(x) = 4x^3 - 12x^2$$

$$f'(x) = 4x^3 - 12x^2$$
Punto de inflesión (0.f(0))
Punto de inflesión (2.f(2))

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

Criterio de la segunda derivada

Teorema:

Sea f una función tal que f'(c)=0 y la segunda derivada de f existe en un intervalo (a,b) que contiene a c, entonces

- 1.Si f''(x)>0, entonces f(c) es un mínimo relativo.
- 2. Si f''(x) < 0, entonces f(c) es un máximo relativo.
- 3.Si f''(x)=0, f(c) puede o no ser un valor extremo. Se dice entonces que el criterio de la segunda derivada falla y sólo es aplicable el de la primera derivada.

$$f(x) = -3x^5 + 5x^3$$

$$f(x) = -3x^5 + 5x^3$$
 $f'(x) = -15x^4 + 15x^2 = 15x^2(1-x^2)$

$$f''(x) = -60x^3 + 30x = 30x(1-2x^2)$$

