The Allendaria

Input file Flh14273new; Output File Flh14273tra

Sequence length 1743

SPECARA М TCCGGACTAGTTCTAGACCGCTGCGGGCCCCAGGCGCCCGGGA ATG TCC CCT GAA TGC GCG CGG GCA GCG L R S L E Q A N R T 29 GGC GAC GCG CCC TTG CGC AGC CTG GAG CAA GCC AAC CGC ACC CGC TTT CCC TTC TTC TCC 87 D V K G D H R L V L A A V E T T V L V L GAC GTC AAG GGC GAC CAC CGG CTG GTG CTG GCC GCG GTG GAG ACA ACC GTG CTG GTG CTC 147 S L L G N V C A L V L V A R R 69 ATC TTT GCA GTG TCG CTG GGC AAC GTG TGC GCC CTG GTG CTG GCG CGC CGA CGA CGC CGC GGC GCG ACT GCC TGC CTG GTA CTC AAC CTC TTC TGC GCG GAC CTG CTC TTC ATC 267 AIPLVLAVRWT A W 109 AGC GCT ATC CCT CTG GTG CTG GCC GTG CGC TGG ACT GAG GCC TGG CTG CTG GGC CCC GTT 327 I. I. F Y V M T L S G S V T I L T L GCC TGC CAC CTG CTC TTC TAC GTG ATG ACC CTG AGC GGC AGC GTC ACC ATC CTC ACG CTG 387 A A V S L E R M V C I V H L Q R G V R G 149 GCC GGG GTC AGC CTG GAG CGC ATG GTG TGC ATC GTG CAC CTG CAG CGC GGC GTG CGG GGT 447 P G R R A R A V L L A L I W G Y S A V A CCT GGG CGG CGG GCG GCA GTG CTG CTG GCG CTC ATC TGG GGC TAT TCG GCG GTC GCC 507 P 189 FFRVV PORL C V GCT CTG CCT CTC TGC GTC TTC TTT CGA GTC GTC CCG CAA CGG CTC CCC GGC GCC GAC CAG 567 E I S I C T L I W P T I P G E I S W D V GAA ATT TCG ATT TGC ACA CTG ATT TGG CCC ACC ATT CCT GGA GAG ATC TCG TGG GAT GTC 627 S F V T L N F L V P G L V I V I S Y S K TCT TTT GTT ACT TTG AAC TTC TTG GTG CCA GGA CTG GTC ATT GTG ATC AGT TAC TCC AAA 229 ITKASRKRLTVSLA ATT TTA CAG ATC ACA AAG GCA TCA AGG AAG AGG CTC ACG GTA AGC CTG GCC TAC TCG GAG 747 S H Q I R V S Q Q D F R L F R T L F L L 269 AGC CAC CAG ATC CGC GTG TCC CAG GAC TTC CGG CTC TTC CGC ACC CTC TTC CTC CTC 807M V S F F I M W S P I I I I L L I ATG GTC TCC TTC TTC ATC ATG TGG AGC CCC ATC ATC ATC ACC ATC CTC CTC ATC CTG ATC 867 T F A N S A L N P I L Y N M T L C R N E 329
ACA TTT GCT AAT TCA GCC CTA AAC CCC ATC CTC TAC AAC ATG ACA CTG TGC AGG AAT GAG 987

W K K I F C C F W F P E K G A I L T D T 349
TGG AAG AAA ATT TTT TGC TGC TTC TGG TTC CCA GAA AAG GGA GCC ATT TTA ACA GAC ACA 1047

S V K R N D L S I I S G \star 362 TCT GTC AAA AGA AAT GAC TTG TCG ATT ATT TCT GGC TAA 1086

```
Sequence Description
                                                                       E-value N
                                                             Score
7tm_1
         PF00001 7 transmembrane receptor (rhodopsin
                                                             119.9
                                                                        4.7e-37
Parsed for domains:
Sequence Domain seq-f seq-t
                                   hmm-f hmm-t
                                                      score
                                                             E-value
                         321 ..
                                      1 259 []
                     57
           1/1
                                                      119.9
7=m_1
                                                            4.7e-37
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 119.9, E = 4.7e-37
                     *->GNILVilvilrtkklrtptnifilNLAvADLLflltlppwalyylvg
                        GN+ +++++++ ++++ +++ ++ +++ ++ ADLL£ + p++ ++ -+
ONVCALVLVAR-RRRRGATACLVLNLFCADLLFISAIPLVLAVR-WT 101
   Flh14273.
                     gsedWpfGsalCklvtaldvvnmyaSillLtaISiDRYLAIvhPlryrrr
                       e W++G++ C+l+ ++++++ + il+L+a S++R + Iv l+ +r
                103 -- EAWLLGFVACHLLFYVMTLSGSVTILTLAAVSLERMVCIV-HLQRGVR 148
   F1h14273,
                     rtsprrAkvvillyWvlalllslPpllfswvktveegngtlnvnvtvCli
                +x +v+++1+W +++++1P +f+ v + ++ ++ ++ +c++
149 GPGRRARAVLLALIWGYSAVAALPLCVFFRVVPQR_PG--ADQEISICTL 196
   Flh14273,
                     dfpeestasvstwlrsyvllstlvgFllPllvilvcYtrIlrtlr....
                                   ++s+ +++ ++ Fl+P lvi++ Y+ Il + + ++++
                197 IWPTIPG-----EISWDVSFVTLNFLVPGLVIVISYSKILQITKasrkr 240
   Flh14273.
                             .....kaaktllvvvvvFvicWiPyfivllldtlc
                      + + +++++ + ++++ ++ +tl++++v F++ W P i++l: +
   Flh14273,
                241 lcvslayseshcirvsqqdfRLFRTLFLLMVSFFIMWSPIIITILLILIQ 290
                     .lsiimsstCelervlptallvtlwLayvNsclNPiIY<-*
                -+ + + p ++++ + ++++Ns+lNpi+Y
291 pfk-----QDLVIWPSLFFWVVAFTFANSALNPILY
   Flh14273,
                                                                   321
11
```


Analysis of Flh14273, (362 aa)

FIL14273. 1086 bases, 1825 checksum.
MSPECARAAGDAPLRSLEQANATRPPFFSDVKGDHRLVLAAVETTVLVLIFAVSLLGNVC
ALVLVARRRRGATACLVLN_FCADLLFISAIPLVLAVRWTEAWLLGPVACHLLFYVMTL
SGSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV
FQRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR
LTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITLLLILIQNFKQDLVIWP
SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS

Prosite Pattern Matches for Flh14273,

>PS00001|PDOC00001|ASN_GLYCOSYLATICN N-glycosylation site.

Query: 21 NRTR 24

Query: 322 NMTL 325

>PS00004 PDOC00004 CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kintse phosphorylatic

Query: 239 KRLT 242

>PS00005|PD0C00005|PKC_PROSPHO_SITS Protein kinase C phosphorylation site.

Query: 237 SRK 239

Query: 350 SVK 352

>FS00006|PD0C00006|CK2_PH0SPH0_SITE Casein kinase II phosphorylation site.

Query: 256 SQQD 259

- >PS00008|PD0C00008|MYRISTYL N-myristoylation site.

Query: 57 GNVCAL 62

Query: 72 GATACL 77

Query: 343 GAILID 348

>PS00009 | PDOC00009 | AMIDATION Amidation sits.

Query: 150 PGRR 153

>PS000291PDOC000291LEUCINE_ZIPPER Leucine zipper pattern.

Query: 106 LGPVACHLLFYVMTLSGSVTIL 127

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
75 .	98	ins->out	4.0
113	134	out>ins	4.0
156	177	ins>out	4.9
209	227	out>ins	3.7
266	289	ins>out	6.5
297	321	out>ins	3.2

>Flh14273

MSPECARAAGDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVLIFAVSLLGNVC
ALVLVARRRRGATACLVLNLFCADLLFISATPLVLAVRWTEAWLLGPVACHLLFYVMTL
USGSVTILTLAAVSLERMVCIVHLQRGVRGPGRARAVLLALIWGYSAVAALPLCYFFRVV
PORLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR
LTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWP
SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS

Transmembrane segments for presumed mature peptide

r			
`	t End	Orient	Score
14	37	ins>out	4.0
52	73	out>ins	4.0
95	116	ins>out	4.9
148	166	out>ins	3.7
205	228	ins>out	6.5
236	260	out>ins	3.2

>Flh14273._mature

LVLVARRRRGATACLVLNLFCADLLFISAIPLVLAVRWTEAWLLGPVACHLLFYVMTLS
GSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCYPPRVVP
QRLPGADQEISICTLIWPTIPGEISWDVSFVTLNPLVPGLVIVISYSKILQITKASRKRL
TVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWPS
LFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDL9IISG

Input file 14273m; Output File 14273mtra
Sequence length 1560

TTGCCAAGCTCAGCGTAAGCCTCTTCCACTGCAATCTCACAGAAGGGGTTCATGGAGTGCTTCACACCATCAGTGACCA

			•							i											
	cccc	ATCI	TCCC	:GGAC	:GCG1	'GGGC	:cccc	cccc	:CGGC	M ATG		P		C TGT		Q CAG	T ACG	T ACG	G GGC	:	10
	P CCT	-	P CCC	S TCG						. V GTC						P CCT					30 90
	V GTC	K AAG	G GGC	D GAC	H CAC	R CGG	L TTG	V GTG	L TTG	S AGC	V GTC	V GTG	E GAG	T ACC	T ACC	V GTT	L CTG	G GGA	L CTC	I ATC	50 150
	F TTT	V GTC	V GTC	S TCA	L CTG	L CTG	G GGC	N AAC	V GTG	C TGT	A GCT	L CTA	V GTG	L CTG	V GTG	A GCG	R CGC	R CGT	R CGG	R CGC	70 210
2.	R CGT		A GCG	S TCA	A GCC	S AGC	L CTG	V GTG	L CTC	N AAC	L CTC	F TTC	C TGC		D GAT	L TTG	L CTC	_	T ACC	S AGC	90 270
Mante Charles 3	A GCC	I ATC	P CCT	L CTA	V GTG	_	V GTC	V GTG	R CGC	W TGG	T ACT	E GAG	A GCC	W TGG	L CTG	L TTG	G GGG	P CCC	V GTC	V GTC	110 330
t mull Mage	C TGC	H CAC	L CTG	L CTC	F TTC	Y TAC	V GTG	M ATG	T ACA	M ATG	S AGC	G GGC	S AGC	V GTC	T ACG	I ATC	L CTC	T ACA	L CTG	A GCC	130 390
hee Beat Mad	A GCG	V GTC	S AGC	L CTG	E GAG	R CGC	M ATG	V GTG	C TGC	I ATC	V GTG	R CGC	L CTC	R CGG	R CGC	G. GGC		S AGC	G GGC	P CCG	150 450
New A	G GGG	R CGG	R CGG	T ACT	Q CAG	A GCG	A GCA	L CTG	L CTG	A GCT	F TTC	I ATA	W TGG	G GGT	Y TAC	S TCG	A GCG	L CTC	A GCC	A GCG	170 510
n He Mann	L CTG	P CCC	L CTC	Y TAC	I ATC	L TTG	F TTC	R CGC	V GTG	V GTC	P CCG	Q CAG	R CGC	L CTT	P CCC	G GGC	G GGG	D GAC	Q CAG	E GAA	190 570
tites Beard Pare	I ATT	P CCG	I ATT	C TGC	T ACA	L TTG	D GAT	W TGG	P CCC	N AAC	R CGC	I ATA	G GGA	E GAA	I ATC	S TCA	W TGG	D GAT	V GTG	F TTT	210 630
r.	F TTT	E GAG	T ACT	L TTG	N AAC	F TTC	L CTG	V GTG	P CCG	G GGA	L CTG	V GTC	I ATT	V GTG	I ATC	S AGT	Y TAC	S TCC	K AAA	I ATT	230 690
	L TTA	Q CAG	I ATC	T ACG	K AAA	A GCA	S TCG	R CGG	K AAG	R AGG	L CTT	T ACG	L CTG	S AGC	L TTG	A GCA	Y TAC	S TCT	E GAG	S AGC	250 750
	H CAC	Q CAG	I	R CGA	V GTG	s TCC	Q CAA	Q CAA		Y TAC	R CGA	L CTC	F TTC	R CGC	T ACG	L CTC	F TTC	L CTG	L CTC	M ATG	270 810
	V GTT	S	F	F TTC	I	M ATG	W TGG	S AGT	P CCC	I ATC	I	I ATC	T ACC	I ATC	L CTC	L	I	L TTG	I	Q CAA	290 870
	N AAC	F	R CGG	Q CAG	D GAC	L CTG	V GTC	I TATC	W TGG	P CCA	s TCC	L CTT	F TTC	F	W TGG	V GTG	V GTG	A GCC	F TTC	T ACG	310 930
																				W TGG	330 990
	R AGG	K AAG	I TTA	F TTT	C C	C TGC	F TTC	F TTI	F TTT	P CCA	E GAG	K AAG	G GGA	A GCC	I TTA	F	T ACA	D GAT	T ACG	S TCT	350 1050
										S TCC											362 108 <i>€</i>

Query: 14273m,

Scor	ces for sections Description	quence riptio	family c	lassifica	ction (scor	e includ	es all do Score	mains): E-value	N
7tm_	1 <u>PF000</u>	001 7	transmemb	rane rece	ptor (rhod	opsin	118.8	le-35	1
Sequ	ed for don longe Doma	in se		hma-f	hmm-t	8core	E-value	_	_
7tm_			57 321	1	259 []	118.8	10-36	-	-
Alig 7tm_		1 05	1. from 5 *->GN1LVi GN+ ++	57 to 321 lvilrtkk1 ++++r +++	: score ll: rtptnifiln r ++ ++lN	LAVADLL£ L ADLL£	lltlppwal; + + p++ +	+ ++	
	14273m.	57	GNVCAL	VLVAR-RRR	rcasaslvin	LFCADLLF	PSAIPĹVĽV	VX-WT 101	
£ 9.15	14273m,		e W++G+	++C+l+ ++	dvvnmyasil +++++ + il MTKSGSVTIL	+L+a S++	R + IV 1:	- +	ì
Marie Stands Sauds seedly	14273m,	149	rr+÷+ GP-GRRTqA	+++++# ALLAFIWGY	allisiPpli ++1++1P ++ SALAALPLYI	++ v + LFRVVPQR	++g + LPGGDQE	+ +C+ IPICT 195	i
	14273m,		+d+3-÷ +	++5+	vllstlygfl: +++ ++ Fl: DVFFETLNFL	+2 lv1++	Y+ Il +	4 444	· -
Hard from super	14273m,	240	+++ +-	+* + +÷	kaakt11 -+ ++ +t1+ qdyrbfrtbf	444V F++	W P 1++	11 +	'
Throng Park	14273m,		4+	+ + p	tallvilwLay ++++ + ++ SLFFWVVAFT	++Ns+lNP	<u>i</u> +Y	1	

Analysis of 14273m, (362 aa)

>14273m, 1086 bases, 6943 checksum.

MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVMTM
SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV
PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLMFLVPGLVIVISYSKILQITKASAKR
LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMWSPIIITILLILIQNFRQDLVIWP
SLFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVIS
S*

Prosite Pattern Matches for 14273m,

>PEOGOD1 | PDCC00001 | ASN_GLYCOSYLATION N-glycosylation eite.

Query: 21 NRTH 24 Query: 322 325 NMSL

>PS00002|PDoc00002|GLYCOSAMINOGLYCAN Glycosaminoglycan attachment site.

RU Additional rules:

There must be at least two acidic amino acids (Glu or Asp) from -2 to RU

RU -4 relative to the serine.

Query: 148 SGPG 151

PS00004|PD0C00004|CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kinase phosphorylatic

Query: 239 KRLT 242

>PS00005;PDOC00005|PKC_PHOSPHO_SITE Protein kinase C phosphorylation sits.

Query: 237 XER 239

Query: 350 SVR 352

>PS00006[PD0C00006[CK2_PHOSPHO_SITE Casein kinase II phosphorylation site.

δησέλ: 40 SVVE 43

Query: 256 SQQD 259

>PS00008|PD0C00008|MYRISTYL N-myristoylation site.

Query: 57 GNVCAL 62

Query: 72 GASASL

Query: 343 GAIFTD

>PE00009 PDOC00009 AMIDATION Amidation site.

Query: 150 **PGRR** 153

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
77	98	ins>out	3.3
113	134	out>ins	3.8
156	177	ins>out	4.5
209	227	out->ins	2.4
266	289	ins>out	6.5
297	321	out>ins	3.2

>14273m,

MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWJEAWLLGPVVCHLLFYVMTM SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV PQRLPGGDQEIPICTLDWPMRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKR LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMWSFIIITILLILIQNFRQDLVIWP SLFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFFFPEXGAIFTDTSVRRNDLSVIS S

Transmembrane segments for presumed mature peptide

į	Start	End	Orient	Score
	16	37	ins>out	3.3
	52	73	out->ins	3.8
	95	116	ins>out	4.5
	148	166	out->ins	2.4
	205	228	ins>out	6.5
Į	236	260	out>ins	3.2

>14273m,_mature

LVLVARRRRRASASLVLNUFCADLLFTSAIPLULVVRWTEAWLLGPVVCHELFYVETKS
GSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALFLYILFRVVP
QRLPGGDQEIPICTLDWPPNRIGEISWEVFFETLNFLVPGLVIVISYSKILQITKASRKRL
TLSLAYSESKQIRVSQQDYRLFRTLFLLWVSFFIMWSPILJILLLILIQNFRQDLVIWPS
LJPWVVAFTFANSALNPILYMMSLZRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVISS