Fundamentals of Machine Learning:

Linear Models for Classification: Probabilistic Models

Prof. Andrew D. Bagdanov (andrew.bagdanov AT unifi.it)

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI INGEGNERIA

Outline

Introduction

Probabilistic Generative Models

Probabilistic Discriminative Models

Bayesian Logistic Regression

Concluding Remarks

Introduction

Probabilistic approaches to classification

- In the last lecture we looked at linear models for classification from a purely geometric perspective.
- Like least squares regression, these lack the ability to quantify belief in their predictions.
- In this lecture we will look at linear classification from three probabilistic perspectives:
 - Generative: in which a class-conditional data likelihood and class priors will be used to derive a classification rule.
 - Discriminative: in which the posterior class distribution is directly estimated.
 - Bayesian: in which we approximate the parameter distribution from the data likelihood and prior and then integrate to make predictions.

Lecture objectives

At the end of this lecture you will:

- Understand the generative approach to classification and how the linear and quadratic discriminants derive from assumptions about class-conditional likelihoods.
- Understand the discriminative logistic regression approach to classification and how the negative log-likelihood loss can be used to train it.
- Understand the basics (and limits) of the Bayesian approach to classification and why approximate inference is needed.

Probabilistic Generative Models

Again, where are the probabilities?!

- Again, we find ourselves with a nice model, but one entirely unable to provide any measure of belief.
- We will now consider a specific type of generative view that will naturally lead (via Bayes rule) to just such a measure.
- As we saw for linear regression models, we will also find connections between the probabilistic and geometric views.

A generative model

• For K=2 class problems, we can write the posterior for class C_1 as:

$$p(C_1 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_1)p(C_1)}{p(\mathbf{x} \mid C_1)p(C_1) + p(\mathbf{x} \mid C_2)p(C_2)}$$

$$= \frac{1}{1 + \exp(-a)} \equiv \sigma(a(\mathbf{x}))$$
for $a = \ln \frac{p(\mathbf{x} \mid C_1)p(C_1)}{p(\mathbf{x} \mid C_2)p(C_2)}$

- Writing the posterior in this way might seem like a waste of time.
- However, we will see that this helps generalize our results, especially when $a(\mathbf{x})$ has a simple form.

σ , a familiar friend

- The $\sigma(\cdot)$ function is known as the logistic sigmoid function.
- It plays a important role in many classification models.
- It is very important for Artificial Neural Networks.

K-class problems

• For the case of K > 2:

$$p(C_k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_k)p(C_k)}{\sum_j p(\mathbf{x} \mid C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

- This is known as the normalized exponential or softmax function.
- Let's see what happens for a specific choice for a_k ...

- We can assume that the class-conditional densities (another name for the likelihood) are Gaussian with equal covariance matrices:
- Thus, the density for class C_k is:

$$p(\mathbf{x} \mid \mathcal{C}_k) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{-1}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}$$

• If we consider only the first class, and recalling the analysis we made about the form of the posterior, we have:

$$p(C_1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$$
where $\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$
and $w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(C_1)}{p(C_2)}$

- The quadratic terms in x have canceled (due to the common Σ).
- The decision boundaries are linear in input space.

- For the general case of K classes, we use the softmax instead of sigmoid.
- We have:

$$a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

where $\mathbf{w}_k = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k$
and $w_{k0} = \frac{1}{2} \boldsymbol{\mu}_k^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln p(\mathcal{C}_k)$

- The resulting decision boundaries are where two of the posteriors are equal.
- This corresponds to the minimum misclassification rate (again a linear function of x).

- If we relax the requirement that all covariance matrices are equal, the quadratic terms no longer cancel.
- The result is a quadratic Bayes classifier.

Probabilistic Discriminative Models

Generative versus discriminative

- We have seen that the posterior probability in a 2-class problem can be written as a logistic sigmoid of a linear function of x.
- Similarly, for the multi-class case we have a softmax function on a linear function of x.
- These are instances of what are known as generalized linear models.
- For specific choices of the class-conditional distributions we can use maximum likelihood to estimate their parameters (and those of the priors).
- These are sometimes called generative models, because we could generate samples x by sampling from the marginal p(x).
- What if, instead, we use the <u>functional</u> form of the generalized linear model <u>directly</u> to discriminate?

Fixed basis functions

- We have developed all of classifiers to work directly on the original input x.
- However, everything we have derived works equally well if we use a vector of basis functions $\phi(\mathbf{x})$.
- The resulting boundaries are linear in feature space ϕ , but nonlinear in the original space.

• We have just seen that we can write the posterior for a 2-class problem as:

$$p(C_1 \mid \boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$

- This is called (confusingly) a logistic regression model.
- For an M-dimensional feature space, this model has M parameters.
- The generative model would require 2M parameters for the means, plus M(M + 1)/2 parameters for the covariance matrix.
- We can use Maximum Likelihood to fit the parameters of this model, the convenient form of the derivative of the logistic sigmoid:

$$\frac{d}{da}\sigma(a) = \sigma(a)(1 - \sigma(a))$$

• For dataset $\mathcal{D} = \{ \phi_n, t_n \}$, where $t_n \in \{ 0, 1 \}$ and $\phi_n = \phi(\mathbf{x})$, the likelihood is:

$$p(\mathbf{t} \mid \mathbf{w}) = \prod_{n=0}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$
where $\mathbf{t} = (t_1, t_2, \dots t_N)^T$
and $y_n = p(C_1 \mid \phi_n)$

$$= \sigma(\mathbf{w}^T \phi_n)$$

• For our error function we will use the Negative Log-likelihood:

$$E(\mathbf{w}) = -\ln p(\mathbf{t} \mid \mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}\$$

• Writing the error function in this way:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}\$$

- And recalling that $y_n = \sigma(\mathbf{w}^T \boldsymbol{\phi}_n)$.
- And using our observation about the derivative of the logistic sigmoid:

$$\frac{d}{da}\sigma(a) = \sigma(a)(1 - \sigma(a))$$

• Lets us see the connection more explicitly between likelihood and weights w:

$$\nabla_{\mathbf{w}}(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

• Here we see why the model is called logistic regression:

$$\nabla_{\mathbf{w}}(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

- This is the same sequential learning update for linear regression with fixed basis functions ϕ .
- And we see that the objective is to regress the target $t_n \in \{0,1\}$ from $\phi(\mathbf{x})$.
- Note: this Maximum Likelihood solution is highly prone to overfitting when C_1 and C_2 are linearly separable.
- In this case, $||\mathbf{w}||_2$ will go to infinity, converging to a posterior estimate in which for all \mathbf{x} , and for some k, $p(\mathcal{C}_k \mid \mathbf{x}) = 1$.

Bayesian Logistic Regression

The recipe for Bayesian ML

- We developed a step towards a recipe for full Bayesian learning in our discussion about regression.
- Let's try to apply it to our classification problem:
 - 1. Decide on a prior $p(\mathbf{w})$.
 - 2. Maximize the resulting posterior to arrive at a parameter distribution $p(\mathbf{w} \mid \mathbf{t})$.
 - 3. Derive the predictive distribution $p(C_k \mid \Phi, t)$ that we can use on new data $\phi(x)$.
- Step 1 is "easy" although it is one of the primary criticisms of Bayesian learning.
- Steps 2 and 3 are, unfortunately, intractable: the posterior distribution over the parameters is no longer Gaussian.
- Let's see what we can do.

The Laplace approximation

- First, assume a Gaussian prior: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$.
- First step, approximate the parameter distribution.
- A simple method is known as the Laplace Approximation that uses the best Gaussian approximation.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{w}_{\mathsf{MAP}}, \mathsf{S}_{\mathsf{N}})$$

Where the parameters are derived from the Maximum a Posteriori (MAP)
 estimate of the mean and covariance given my minimizing a second-order
 approximation of the true posterior.

The Laplace approximation

• Here is an example of approximating $p(z) \propto \exp(-z^2/2)\sigma(20z + 4)$:

The predictive distribution

 Armed with this approximation we can now write the (approximate) predictive distribution:

$$p(C_1 \mid \boldsymbol{\phi}, \mathbf{t}) = \int p(C_1 \mid \boldsymbol{\phi}, \mathbf{w}) p(\mathbf{w} \mid \mathbf{t}) d\mathbf{w} \approx \int \sigma(\mathbf{w}^T \boldsymbol{\phi}) q(\mathbf{w}) d\mathbf{w}$$

 This is a convolution of a logistic sigmoid and a Gaussian, which can be approximated (after very lengthy derivations) as:

$$p(C_1 \mid \phi, \mathbf{t}) \approx \sigma(\kappa(\sigma_a^2)\mu_a)$$

where $\kappa(\sigma^2) = (1 + \pi\sigma_a^2/8)^{-1/2}$
for $\sigma_a^2 = \text{var}[a] = \phi^T S_N \phi$
and $\mu_a = \mathbf{w}_{\text{MAP}}^T \phi$

Concluding Remarks

Probabilistic generative models

- The generative view of $p(C_k \mid \mathbf{x})$ is appealing for a number of reasons.
- Under Maximum Likelihood estimation of parameters, we just estimate a distribution for class-conditional likelihoods $p(\mathbf{x}|\mathcal{C}_k)$ and posteriors $p(\mathcal{C}_k)$.
- For the Gaussian case, these estimates turn out to be the "usual" ones.
- If we assume equal covariance for all classes, the result is a linear classifier.
- Instead, if we estimate a Σ_k for each class the resulting classifier is quadratic in the input.

- Logistic regression is an extremely important model because nearly all Deep Neural Networks for classification are performing multi-class logistic regression.
- A Deep Network estimates the feature embedding ϕx , then a linear function and softmax are applied.
- Then a Negative Log Likelihood also known as a Cross Entropy loss is applied.
- Despite its problems, it is a model quite suited to incremental, gradient-based optimization.
- Important: the fact that the outputs sum to one, means little in terms of probabilistic interpretation of the result.

Bayesian Logistic Regression

- Exact Bayesian inference is intractable due to the complexity of the data likelihood.
- And the need to normalize the posterior we can't just ignore the evidence factor in Bayes rule any longer.
- There are very sophisticated techniques to approximate normalized posteriors:
 - Laplace's Method: approximate with a Gaussian.
 - Variational Inference: match a proxy distribution to posterior.
 - Monte Carlo Methods: use Markov chain sampling for integration.

Reading and Homework Assignments

Reading Assignment:

• Bishop: Chapter 4 (4.2, 4.3, 4.4*, 4.5*)