Graphes et combinatoire de Ramsey

Voici un exemple de graphe à 5 sommets qui possède 3 sommets étrangers (les sommets 0, 2 et 4), même s'il ne possède pas trois amis.

Un graphe avec n = 5 qui vérifie l'énoncé de Ramsey

Proposition. Dans un groupe de 6 personnes, il y a toujours 3 amis (les trois se connaissent deux à deux) ou 3 étrangers (les trois sont tous des inconnus les uns pour les autres).

Nombre de sommets	Nombre de graphes	Temps de calcul approximatif
n=6	32 768	< 1 seconde
n = 7	2 097 152	< 1 minute
n = 8	268 435 456	< 1 heure
n = 9	68 719 476 736	< 10 jours

Modélisation

Sous-ensembles

Soit $E_n = \{0, 1, 2, ..., n-1\}$ l'ensemble des entiers de 0 à n-1. L'ensemble E_n contient donc n éléments.

Par exemple $E_3 = \{0, 1, 2\}, E_4 = \{0, 1, 2, 3\}...$

Exemple.

Il y a 8 sous-ensembles de E_3 , ce sont :

- le sous-ensemble {0} composé du seul élément 0;
- le sous-ensemble {1} composé du seul élément 1;
- le sous-ensemble {2} composé du seul élément 2;
- le sous-ensemble {0,1} composé de l'élément 0 et de l'élément 1;
- le sous-ensemble {0,2};
- le sous-ensemble {1,2};
- le sous-ensemble {0,1,2} composé de tous les éléments ;
- l'ensemble vide Ø qui ne contient aucun élément!

Proposition. L'ensemble E_n contient 2^n sous-ensembles.

Exemple. n = 6 et p = 26.

- L'écriture binaire de p = 26 sur n = 6 bits est [0,1,1,0,1,0],
- il y a des 1 au rang 1, 2 et 4 (en commençant au rang 0 à gauche),
- le sous-ensemble associé est alors {1, 2, 4}.

$$p = 26$$
 $(n = 6)$ 0 1 1 0 1 0 \longrightarrow $\{1, 2, 4\}$

Entier p de départ

Écriture de p sur n bits

Sous-ensemble associé à p

Exemple. n = 8 et p = 57

- L'écriture binaire sur 8 *bits* est [0,0,1,1,1,0,0,1],
- le sous-ensemble associé correspond aux rangs 2, 3, 4, 7,
- c'est donc {2, 3, 4, 7}.

Entier p de départ

Écriture de p sur n bits

Sous-ensemble associé à p