

Topics to be covered

- Medics Test, Revision of Last Class
- Solubility Product, Ionic Product,
- 3 Simultaneous Solubility, Buffer solution.
- Magarmach Practice questions, Home work from modules

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- Don't watch the videos in high speed if you want to understand better.

21 which satt Can furnish Ht in its aqueous son? (a) Na Ha Poz. H3POS (B) NagHPO3 H3PO3 @Nog MPO4. H3 PGY @ Storogeon d all of these @ 2 Ka (HPOy) = 4-8 X10 13 1 @ weaker 6 equal Ka (HSO3) = 6.3 x 10-8 (d) Can't say : HPOy is a weaker aid than HSOZ

63 Ka HSOUT = X

Ka HQPOUT = 3

Ka HCO3 = Z

find which species is strongest base

find which species 18 strong

- 1 Hasoy.
- @ Soy-
- (d) HPOy2-

GH Congregate base of Ha Poir 12

BHPON

POU3

A HaPOH

what is hydronium ion conc of 025M HA soll (Ka = 4x108) C20.25 M.

hec3 + Lec-H-> Jonic eq. onevise -> Medics test tomorrow.

Revision of Last Class

SOLUBILITY PRODUCT

$$AgCI(s) \Leftrightarrow Ag^{+}(aq)^{+}CI^{-}(aq)$$

At 25°C, K_{sp} for PbBr₂ is equal to 8 x 10⁻⁵. If the salt is 80% dissociated, what is the solubility of PbBr₂ in mol/litre?

$$\left[\frac{10^{-5}}{1.6 \times 1.6} \right]^{1/3}$$

$$\left[\frac{10^{-4}}{0.8 \times 0.8}\right]^{1/3}$$

89×5=0.85

Difference Between Kip & Ksp

Kip = Ionic Poroduct = TAg+ITCII s: 103M Ksp = Solubility peroduct = TAg+ITCII

Ag CL. + Hao -> Agt + Ci S=105M 105m/

MIT (Kip < Ksp =) Soil is unsaturated =) b. b.t. not formed Kip = Ksp =) soil is saturated = | b. b.t. not formed

Kip > Ksp=) sol is super saturated=) p. p. t. formed

2) Higher dillarence bluk.

Higher difference b/w Kipa Kap=> faster lis p.p.t.t

A solution which is 10^{-3} M each in Mn²⁺, Fe²⁺, Zn²⁺ and Hg²⁺ is treated with 10^{-16} M sulphide ion. If K_{SP} of MnS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first.

- (A) FeS [5-] = 156 M Kip = 15-19.
- B MgS
- HgS
 - D ZnS

QUESTION - (AIIMS 2008)

On adding 0.1 M solution each of [Ag+], [Ba2+], [Ca2+] in a Na2SO4 solution, species

first precipitated is:

 $[K_{sp} BaSO_4 = 10^{-11}, K_{sp} CaSO_4 = 10^{-6}, K_{sp} Ag_2SO_4 = 10^{-5}]$

- CaSO₄
- All of these

 $|Kip CAgasow| = \Gamma Agt J^2 \Gamma sout^{-1}$ $= (0.1)^2 x$ $= 15^2 x$

Kip Bason - Kip Cason = 101x.

When equal volume of $AgNO_3$ and NaCl solution are mixed, the precipitation of AgCl ($K_{sp} = 1.81 \times 10^{-10}$) will occur with:

- A 10⁻³ M (Ag⁺) and 10⁻¹⁰ M (Cl⁻)
- B 10⁻⁵ M (Ag⁺) and 10⁻⁵ M (Cl⁻)
- C 10⁻⁶ M (Ag⁺) and 10⁻⁵ M (Cl⁻)
- 10⁻⁴ M (Ag⁺) and 10⁻⁴ M (Cl⁻)

At 25° C, the solubility product of Hg_2Cl_2 in water is 3.2×10^{-17} mol³ dm⁻⁹. What is the solubility of Hg_2Cl_2 in water at 25° C?

- (A) $1.2 \times 10^{-12} \,\text{M}$
- (B) 3.0 × 10⁻⁶ M
- 2 × 10⁻⁶ M
- 1.2 × 10⁻¹⁶ M

of
$$Hg_2Cl_2$$
 in water at 25° C?

 $|Hg_2Cl_2| + rg_0 \rightarrow |Hg_2| + 2Cl$
 $|Hg_2Cl_2| + rg_0 \rightarrow |Hg_2Cl_2| + 2Cl$
 $|Hg_2Cl_2| + r$

Common ion Effect

$$K_{SP} = [Ag^{\dagger}][[]]$$

$$K_{SP} = (S)'(C)'$$

*When a strong electrolyte is added to a solution of weak electrolyte having a common ion

Weak electrolyte:

QUESTION - (NEET 2020)

Find out the solubility of $Ni(OH)_2$ in 0.1 M NaOH. Given that the ionic product of

 $Ni(OH)_2$ is 2×10^{-15} .

ty of Ni(OH)₂ in 0.1 M NaOH. Given that the ionic product of

$$K_{SP} = [N_1^{2}][OH]^{2}$$
 $N_{SP} = [N_1^{2}][OH]^{2}$
 $N_{SP} = [N_1^{2}][OH]^{2}$

4X109=(5)(5X10=9)2

The solubility of PbF₂ in water at 25 °C is $\approx 10^{-3}$ M. What is its solubility in 0.05 M NaF solution? Assume the later to be fully ionized.

sume the later to be fully ionized.

PbF2 + H20
$$\rightleftharpoons$$
 | Pb2+ + $2F$ | $5 = 10^3$ M \rightleftharpoons Ksp= (0^3) (axio)

Solve | NaF + H20 \Rightarrow Na+ + F

Sxio²

Sxio²
 5×10^2
 5×10^2

$$S = 10^{3} \text{ m} = |K_{SP} = |0^{-5}| (4x10)$$
 $= |X_{SP} = |X_{SP} = |0^{-5}| (5x10)^{2}$
 $= |X_{SP} = |X_{SP} = |0^{-5}| (5x10)^{2}$

QUESTION - (AIIMS 2017)

PH= ? "

At 25°C, the solubility product of Mg(OH)₂ is 1.0×10^{-11} . At which pH will Mg²⁺ ions start precipitating in the form of Mg(OH)₂ from a solution of 0.001 M Mg²⁺

$$K_{SP} = E_{Mg}^{2+} I_{SN}^{2} I_{SN}^{2}$$
 $I_{O}^{3} I_{O}^{1} I_{O}^{2}$
 $I_{O}^{3} I_{O}^{1} I_{O}^{1}$
 $I_{O}^{3} I_{O}$

Application of Solubility Product

In salting Out Soap

In Purification of Common Salt

Due to Common ion effect of cities.

eq. 8hift backwards: Nacl p.p.t.

Buffer Solution

Solution which resist the change in pH on addition of small amount of

acid or base or dilution.

Community

Types of Buffer solution. @Simble Buffer > solt of w.A & w.B.

(3) Acidic Buffor:
(3) Bordic Buffor:

Simple Buffer.

Salt af W.A. + W.B.

CH3COOH + NHYOH

CH3 COO NHY

PH=7+ = (PKa-PKb)

as no Conc. involved: pH won't Charge

 $Ent_{3}Ton Ton 37 JC = N$ $NH_{4}t + H_{2}O \Rightarrow NH_{4}OH + H_{4}t$ $CH_{3}Coot + H_{2}O \Rightarrow CH_{3}CooH + OH$

as acid add [HT] T this is neutralised by OH from hydrolysis of NH, t. pH won't Change.

or book)) [OH] This is neutralised by OH from hydrolysis of NH, t. pH won't Change.

Correct ?

Josephan Time bound Study

Calculation silly mistakes

Tupka

Mistake Copy Test > Test analysis

Home work from modules

Brarambh = 9104 to 9115

Porabal -> 925,26

Magarmach Practice Questions (MPQ)

K_{sp} of AgCl is 1×10^{-10} . its solubility in 0.1 M Ag⁺NO₃⁻ will be:

- A 10⁻⁵ moles/litre
- B > 10⁻⁵ moles/litre
- C < 10⁻⁵ moles/litre
- None of these

What is the minimum pH necessary to cause a precipitate of Pb(OH)₂ (K_{sp} = 1.2 × 10⁻⁵) to form in a 0.12 M PbCl₂ solution?

- A 12.4
- B 10.8
- C 12.0
- D 11.1

QUESTION - (AIIMS 2018, 27 May)

Solubility of a sparingly soluble salt XB₂ in water is X. What will be its solubility if the concentration of YB is 0.001 M?

- $A x^2 \times 10^{-6}$
- $B 4x^3 \times 10^6$
- 6 $4x^3 \times 10^{-6}$

QUESTION - (AIIMS 2010)

Solubility product of a salt AB is 1×10^{-8} in a solution in which the concentration of A⁺ ions is 10^{-3} M. The salt will precipitate when the concentration of B⁻ ions is kept

- A Between 10⁻⁸ M to 10⁻⁷ M
- Between 10⁻⁷ M to 10⁻⁸ M
- C > 10⁻⁵ M
- O < 10-8 M

QUESTION - (NEET 2016-II)

The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be:

- A 1.6 × 10⁻¹¹ M
- B Zero
- C 1.26 × 10⁻⁵ M
- 1.6 × 10⁻⁹ M

QUESTION - (AIIMS 2008)

On adding 0.1 M solution each of [Ag⁺], [Ba²⁺], [Ca²⁺] in a Na₂SO₄ solution, species first precipitated is:

 $[K_{sp} BaSO_4 = 10^{-11}, K_{sp} CaSO_4 = 10^{-6}, K_{sp} Ag_2SO_4 = 10^{-5}]$

- A Ag₂SO₄
- BaSO₄
- C CaSO₄
- All of these

QUESTION - (NEET

2019)

pH of a saturated solution of $Ca(OH)_2$ is 9. The solubility product (K_{sp}) of $Ca(OH)_2$ is:

- \bigcirc 0.5 × 10⁻¹⁵
- B 0.25 × 10⁻¹⁰
- © 0.125 × 10⁻¹⁵
- 0.5 × 10⁻¹⁰

QUESTION - (NEET 2018)

The solubility of $BaSO_4$ in water is 2.42×10^{-3} gL⁻¹ at 298 K. The value of its solubility product (K_{sp}) will be (Given molar mass of $BaSO_4 = 233$ g mol⁻¹)

- A 1.08 × 10⁻¹⁰ mol² L⁻²
- B 1.08 × 10⁻¹² mol² L⁻²
- C 1.08 × 10⁻⁸ mol² L⁻²
- 1.08 × 10⁻¹⁴ mol² L⁻²

QUESTION - (NEET 2015)

The K_{sp} of Ag_2CrO_4 , AgCl, AgBr and AgI are respectively, 1.1×10^{-12} , 1.8×10^{-10} , 5.0×10^{-13} , 8.3×10^{-17} . Which one of the following salts will precipitate last if $AgNO_3$ solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na_2CrO_4 ?

- A AgCl
- B AgBr
- C Ag₂CrO₄
- D AgI

QUESTION - (AIPMT 2010)

If pH of a saturated solution of Ba(OH)₂ is 12, the value of its K_(sp) is:

 \bigcirc 5.00 × 10⁻⁷ M³

