

STAT 4224/5224

Bayesian Statistics

Dobrin Marchev

Probability Review

Let H denote the sample space and let the subset $E \subset H$ be an event.

A **probability measure** P is defined on H such that for each event E, P(E) satisfies the following axioms:

- Axiom 1: $P(E) \ge 0$, for each E.
- Axiom 2: P(H) = 1.
- Axiom 3:

If E_1, E_2, \ldots are disjoint events, then:

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

Basic Probability Rules

- 1. $P(E) \ge 0$, for each E.
- 2. P(H) = 1.
- 3. If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$
- 4. $P(\bar{A}) = 1 P(A)$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Partitions

Definition: A collection of events $\{H_1, \ldots, H_k\}$ is a *partition* of the sample space H if:

- 1. The events are disjoint, that is, $H_i \cap H_j = \text{ for } i \neq j$
- 2. The union of all events is H, that is, $\bigcup_{i=1}^k H_i = H$

Partitions and Probability

Suppose $\{H_1, \ldots, H_k\}$ is a partition of the sample space H and E is any event. Then the following can be proved.

• Multiplication Law:

$$P(E \cap H_j) = P(H_j)P(E|H_j)$$

Total Probability Law:

$$P(E) = \sum_{i=1}^{k} P(E \cap H_i) = \sum_{i=1}^{k} P(H_i)P(E|H_i)$$

Bayes' Theorem:

$$P(H_{j}|E) = \frac{P(H_{j})P(E|H_{j})}{P(E)} = \frac{P(H_{j})P(E|H_{j})}{\sum_{i=1}^{k} P(H_{i})P(E|H_{i})}$$

Example 1

An insurance company insured 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers. The probability of an accident involving a scooter driver, car driver, and a truck is 0.01, 0.03, and 0.015, respectively. One of the insured persons had an accident. What is the probability that he/she is a scooter driver?

Example 1 Solution

An insurance company insured 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers. The probability of an accident involving a scooter driver, car driver, and a truck is 0.01, 0.03, and 0.015, respectively. One of the insured persons had an accident. What is the probability that he/she is a scooter driver?

$$H_{1} = \{\text{scooter driver}\}, P(H_{1}) = \frac{2000}{12000} = \frac{1}{6}$$

$$H_{2} = \{\text{car driver}\}, P(H_{2}) = \frac{4000}{12000} = \frac{1}{3}$$

$$H_{3} = \{\text{truck driver}\}, P(H_{3}) = \frac{6000}{12000} = \frac{1}{2}$$

$$E = \{\text{accident}\}, P(E|H_{1}) = 0.01, P(E|H_{2}) = 0.03, P(E|H_{3}) = 0.015$$

$$P(E) = \sum_{i=1}^{3} P(H_{i})P(E|H_{i}) = \frac{1}{6}(0.01) + \frac{1}{3}(0.03) + \frac{1}{2}(0.015) = 0.019167$$

$$P(H_{1}|E) = \frac{P(H_{1})P(E|H_{1})}{P(E)} = \frac{\frac{1}{6}(0.01)}{0.019167} = 0.0869565$$

Example 1 Analysis

Prior distribution of driver type is:

$$P(H_1) = \frac{1}{6}, P(H_2) = \frac{1}{3}, P(H_3) = \frac{6000}{12000} = \frac{1}{2}$$

Posterior distribution, given there is an accident is:

$$P(H_1|E) = 0.08696, P(H_2|E) = 0.52174, P(H_3|E) = 0.39130$$

Note that before the "experiment" E , the ratio of car to truck drivers was $\frac{P(H_2)}{P(H_3)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$. After we know driver had an accident,

the ratio doubles:

$$\frac{P(H_2|E)}{P(H_3|E)} = \frac{0.5217}{0.3913} = \frac{4}{3}$$

$$= \frac{P(E|H_2)}{P(E|H_3)} \times \frac{P(H_2)}{P(H_3)} = \text{Bayes Factor} \times \text{Prior Ratio}$$

A person uses his car 30% of the time, walks 30% of the time and rides the bus 40% of the time as he goes to work. He is late 10% of the time when he walks; he is late 3% of the time when he drives; and he is late 7% of the time he takes the bus.

- a) What is the probability he took the bus if he was late?
- b) What is the probability he walked if he is on time?

Answers:

- a) 0.418
- b) 0.289

Independence

Definition: Two events A and B are independent if

$$P(A \cap B) = P(A)P(B)$$

Definition: Two events *A* and *B* are *conditionally* independent given a third event *C*, if

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$$

Note: By the multiplication law we *always* have that

$$P(A \cap B \mid C) = P(B \mid C) P(A \mid B \cap C)$$

Therefore, conditional independence means that

$$P(A \mid C) = P(A \mid B \cap C)$$

Example 2

A box contains two coins: a regular fair coin and a fake two-headed coin with P(H) = 1. A coin is chosen at random and tossed twice. Define the following events.

A = First coin toss results in an H

B = Second coin toss results in an H

C = The regular coin has been selected.

Find P(A|C), P(B|C), $P(A \cap B|C)$, P(A), P(B), and $P(A \cap B)$.

Note that A and B are not independent, but they are conditionally independent given C.

Example 2 Solution

A box contains two coins: a regular fair coin and a fake two-headed coin with P(H)

- = 1. A coin is chosen at random and tossed twice. Define the following events.
- A = First coin toss results in an H
- B = Second coin toss results in an H
- C = The regular coin has been selected.
- Find P(A|C), P(B|C), $P(A \cap B|C)$, P(A), P(B), and $P(A \cap B)$.

Obviously,
$$P(A|C) = P(B|C) = \frac{1}{2}$$
. Also, $P(A \cap B|C) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.

For P(A) we need the law of total probability:

$$P(A) = P(C)P(A|C) + P(\bar{C})P(A|\bar{C}) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 = \frac{3}{4}$$

Similarly, $P(B) = \frac{3}{4}$. And for $P(A \cap B)$ we apply again the law of total probability:

$$P(A \cap B) = P(C)P(A \cap B|C) + P(\bar{C})P(A \cap B|\bar{C})$$

$$= P(C)P(A|C)P(B|C) + P(\bar{C})P(A|\bar{C})P(B|\bar{C})$$

$$= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 \cdot 1 = \frac{5}{8}$$

12

Consider rolling a die and let:

$$A = \{1, 2\},$$

 $B = \{2, 4, 6\},$
 $C = \{1, 4\}$

Show that A and B are independent, but are *not* conditionally independent given C.

Answers:

$$P(A \cap B) = \frac{1}{6}, P(A \cap B|C) = 0$$

Random Variables

Let X be a random variable (r.v.) and X be the set of all possible values of X. We say that X is discrete if the set X is finite or countable, meaning you can write it as $X = \{x_1, x_2, ...\}$. If X is uncountably infinite (like an interval), then X is called continuous.

Examples:

- Counts are discrete r.v. For example, number of children in a family, or number of years of education.
- Measurements are continuous r.v. For example, height, weight.

Discrete Random Variables

Let X be a discrete random variable. For each $x \in \mathcal{X}$, we write p(x) for P(X = x). The function p(x), $x \in \mathcal{X}$ is called the probability mass function (pmf) or probability density function (pdf) of X. It satisfies the following properties:

- $0 \le p(x) \le 1$ for all $x \in \mathcal{X}$.
- $\sum_{x \in \mathfrak{X}} p(x) = 1$

Any other property of X can be derived from the pdf. For example, $P(X \in A) = \sum_{x \in A} p(x)$ and $E(X) = \sum_{x \in \mathfrak{X}} xp(x)$. Often the pdf has parameter(s) θ .

Example 3: Binomial Distribution

Let $\mathcal{X} = \{0, 1, 2, ..., n\}$, where n is a natural number. Then X is said to have *Binomial distribution* with parameter $\theta \in (0, 1)$ if

$$p(x;\theta) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}$$

Interpretation: X can be thought of as the number of successes in a sequence of n independent trials, each having probability of success θ .

Notation: $X \sim \text{Binom}(n, \theta)$.

In R:

dbinom(x, size, prob) gives you $\binom{\text{size}}{x}$ prob^x $(1 - \text{prob})^{\text{size}-x}$

For example, if n = 8, $\theta = 0.9$, and x = 4, then

$$p(4; 0.9) = {8 \choose 4} 0.9^4 (0.1)^4 = 0.0045927 = \text{dbinom}(4, 8, 0.9)$$

The probability that Ari will score above a 90 on any mathematics test is 4/5 and he takes the tests independently. What is the probability that he will score above a 90 on exactly three of the four tests this semester?

Answer: 0.4096

Example 4: Poisson Distribution

Let $\mathcal{X} = \{0, 1, 2, ... \}$. Then X is said to have a *Poisson distribution* with parameter $\theta > 0$ if

$$p(x;\theta) = \frac{\theta^x e^{-\theta}}{x!}$$

Interpretation: X can be thought of as the number of times an event is happening within a given time or space interval, where θ is the average intensity per unit interval.

Notation: $X \sim \text{Poisson}(\theta)$.

In R:

dpois(x, lambda) gives you
$$\frac{\text{lambda}^x e^{-\text{lambda}}}{x!}$$

For example, if $\theta = 6$, and x = 11, then

$$p(11;6) = \frac{6^{11}e^{-6}}{11!} = 0.02252896 = \text{dpois}(11.6)$$

Example 4: Poisson Distribution

The graph of the Poisson pdf when $\theta = 6$ is shown below:

Note: Poisson distribution converges to the normal when $\theta \to \infty$

Passengers drop by a busy store at an average rate of $\theta = 4$ per minute. If the number of passengers dropping by the store obeys a Poisson distribution, what is the probability that 16 passengers drop by the store in a particular 4-minute period?

Answer: 0.09921753

Continuous Random Variables

Let X be a continuous random variable with a probability density function f(x), $x \in \mathcal{X}$. It satisfies the following properties:

- $0 \le f(x)$ for all $x \in \mathcal{X}$.
- $\int f(x) = 1$

Often, for such variables we use the *cumulative distribution* function F(x), defined as

$$F(x) = P(X \le x), x \in \mathcal{X}$$

with the following properties:

- $F(\infty) = 1$
- $F(-\infty) = 0$
- $F(a) \le F(b)$ if a < b
- $P(a < X \le b) = F(b) F(a)$
- $F(a) = \int_{-\infty}^{a} f(x) dx$

Example 5: Normal Distribution

Let $\mathcal{X} = (-\infty, \infty)$. Then X is said to have a Normal distribution with parameter vector $\boldsymbol{\theta} = (\mu, \sigma^2)$ if

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1(x-\mu)^2}{2\sigma^2}}$$

Interpretation: The normal distribution is symmetric with most values clustering around a central region, and values tapering off as they go further away from the center. The mean is μ and the variance is σ^2 .

Notation: $X \sim N(\mu, \sigma^2)$.

In R:

dnorm(x, mean, sd) gives you the pdf
$$\frac{1}{\sqrt{2\pi sd^2}}e^{\frac{1(x-mean)^2}{2}}$$

pnorm (q, mean, sd) gives you the cdf
$$\int_{-\infty}^{q} \frac{1}{\sqrt{2\pi \text{sd}^2}} e^{-\frac{1(x-\text{mean})^2}{2}} dx$$

Example 5: Normal Distribution

For normally distributed variables, you can find probabilities in R or by using the *z*-table.

For example, let $X \sim N(-3.4, 4.5)$ and we are interested in finding $P(X \le -4.5)$.

In R: pnorm
$$(-4.5, -3.4, \text{ sqrt}(4.5)) = 0.302039$$

Using the *z*-table we first standardize:

$$P(X \le -4.5) = P\left(Z \le \frac{-4.5 - (-3.4)}{\sqrt{4.5}}\right) = P(Z \le -0.518545)$$

Then look-up -0.52 in the margins of the table and find the approximate answer inside: .3015

Example 5: Normal Distribution

The graphs of the pdf and cdf of $X \sim N(-3.4, 4.5)$ are shown below:

If X is a normally distributed variable with mean $\mu = 30$ and standard deviation $\sigma = 4$. Find

- a) P(X < 40)
- b) P(X > 21)
- c) $P(30 \le X \le 35)$

Answers:

- a) 0.9937903
- b) 0.9877755
- c) 0.3943502

Characteristics of Random Variables

• The *mean* or *expected value* of *X* is defined as follows:

$$E(X) = \sum_{x \in X} xp(x)$$
, when X is discrete $E(X) = \int xf(x)dx$, when X is continuous

• The *mode* of X is defined as the value x for which p(x) or f(x) achieves its largest value:

$$mode = argmax_{x \in \mathcal{X}} p(x) \text{ or } mode = argmax f(x)$$

- The *median* of *X* is defined as the value *m* such that $P(X \le m) = 0.5$
- The *variance* of *X* is defined as follows:

$$Var(X) = \sum_{x \in \mathcal{X}} [x - E(X)]^2 p(x)$$
, when X is discrete
 $Var(X) = \int [x - E(X)]^2 f(x) dx$, when X is continuous

• The *standard deviation* is defined as $\sqrt{\text{Var}(X)}$

Example 6

• If $X \sim \text{Binom}(n, \theta)$, then

$$E(X) = n\theta$$

$$Var(X) = n\theta(1 - \theta)$$

$$Mode = \lfloor (n+1)\theta \rfloor \text{ or } \lceil (n+1)\theta \rceil - 1$$

$$Median = \lfloor n\theta \rfloor \text{ or } \lceil n\theta \rceil$$

• If $X \sim \text{Poisson}(\theta)$, then

$$E(X) = Var(X) = \theta$$

$$Mode = [\theta] - 1 \text{ or } [\theta]$$

$$Median \approx \left[\theta - \frac{1}{3} - \frac{1}{50\theta}\right]$$

• If $X \sim N(\mu, \sigma^2)$, then

$$E(X) = Median = Mode = \mu$$

 $Var(X) = \sigma^2$

A fair coin is flipped twice. Let *X* denote the number of heads and *Y* denote the number of tails. Find:

- a) Var(X)
- b) Var(Y)
- c) Var(X+Y)

Answers:

- a) $\frac{1}{2}$
- b) ½