

Cálculo 1 - HONORS - CM311

Derivadas e Propriedades

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a + h) - f(a)}{h}$$

 Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$
.

• Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

• Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a + h) - f(a)}{h}$$

 Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$

• Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a + h) - f(a)}{h}$$

 Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1.

Calcule as derivadas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$
.

• Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

• Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a + h) - f(a)}{h}$$

 Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1.

Calcule as derivadas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$
.

Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}.$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a+h) - f(a)}{h}$$

• Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1.

Calcule as derivadas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$
.

Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}.$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

• Definimos derivada em um ponto

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to 0} \frac{f(a + h) - f(a)}{h}$$

• Se a função tiver derivada em vários pontos, definimos a função derivada f'.

Exemplo 1.1.

Calcule as derivadas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \operatorname{sen} x$$
.

Como calcular a derivada da função abaixo?

$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}.$$

- Existem propriedades que relacionam as operações fundamentais e o cálculo das derivadas
- Mas antes, vamos ver mais algumas derivadas...

Exemplo 1.2.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^n$$
, $n \in \mathbb{N}$. b) $f(x) = \sqrt{x}$.

$$f(x) = \sqrt{x}.$$

c)
$$f(x) = \sqrt[3]{x}$$
.

a)
$$f(x) = \cos x$$
.

b)
$$f(x) = \sqrt[n]{x}, n \in \mathbb{N}.$$

• Existe alguma relação entre continuidade e derivabilidade?

- A recíproca não vale! Exemplos:
 - f(x) = |x| (bico).
 - $f(x) = \sqrt[3]{x}$ (reta tangente vertical).

Exemplo 1.2.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^n$$
, $n \in \mathbb{N}$. b) $f(x) = \sqrt{x}$.

$$f(x) = \sqrt{x}.$$

c)
$$f(x) = \sqrt[3]{x}$$
.

Exercício.

Calcular as derivadas das funções abaixo

a)
$$f(x) = \cos x$$
.

b)
$$f(x) = \sqrt[n]{x}, n \in \mathbb{N}.$$

Existe alguma relação entre continuidade e derivabilidade?

- A recíproca não vale! Exemplos:
 - f(x) = |x| (bico).
 - $f(x) = \sqrt[3]{x}$ (reta tangente vertical).

Exemplo 1.2.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^n$$
, $n \in \mathbb{N}$. b) $f(x) = \sqrt{x}$.

$$f(x) = \sqrt{x}.$$

c)
$$f(x) = \sqrt[3]{x}$$
.

Exercício.

Calcular as derivadas das funções abaixo

a)
$$f(x) = \cos x$$
.

b)
$$f(x) = \sqrt[n]{x}$$
, $n \in \mathbb{N}$.

Existe alguma relação entre continuidade e derivabilidade?

- A recíproca não vale! Exemplos:
 - f(x) = |x| (bico).
 - $f(x) = \sqrt[3]{x}$ (reta tangente vertical).

Exemplo 1.2.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^n$$
, $n \in \mathbb{N}$. b) $f(x) = \sqrt{x}$.

o)
$$f(x) = \sqrt{x}$$
.

c)
$$f(x) = \sqrt[3]{x}$$
.

Exercício.

Calcular as derivadas das funções abaixo

a)
$$f(x) = \cos x$$
.

b)
$$f(x) = \sqrt[n]{x}$$
, $n \in \mathbb{N}$.

Existe alguma relação entre continuidade e derivabilidade?

Proposição 1.3.

Se f é derivável em a, então f é contínua em a.

- A recíproca não vale! Exemplos:
 - f(x) = |x| (bico).
 - $f(x) = \sqrt[3]{x}$ (reta tangente vertical).

Exemplo 1.2.

Calcule as derivadas das funções abaixo

a)
$$f(x) = x^n$$
, $n \in \mathbb{N}$. b) $f(x) = \sqrt{x}$.

$$f(x) = \sqrt{x}.$$

c)
$$f(x) = \sqrt[3]{x}$$
.

Exercício.

Calcular as derivadas das funções abaixo

a)
$$f(x) = \cos x$$
.

b)
$$f(x) = \sqrt[n]{x}$$
, $n \in \mathbb{N}$.

Existe alguma relação entre continuidade e derivabilidade?

Proposição 1.3.

Se f é derivável em a, então f é contínua em a.

- A recíproca não vale! Exemplos:
 - f(x) = |x| (bico).
 - $f(x) = \sqrt[3]{x}$ (reta tangente vertical).

• É fácil pensar em funções contínuas onde não tem derivadas em alguns pontos.

 Existe alguma função que é contínua em todo ponto, mas não é derivável em nenhum ponto? Sim: função de Weierstrass

• Pode ser definida pela fórmula abaixo (série) para a, b apropriados

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x).$$

• É fácil pensar em funções contínuas onde não tem derivadas em alguns pontos.

 Existe alguma função que é contínua em todo ponto, mas não é derivável em nenhum ponto? Sim: função de Weierstrass

• Pode ser definida pela fórmula abaixo (série) para a, b apropriados

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x).$$

• É fácil pensar em funções contínuas onde não tem derivadas em alguns pontos.

 Existe alguma função que é contínua em todo ponto, mas não é derivável em nenhum ponto? Sim: função de Weierstrass

• Pode ser definida pela fórmula abaixo (série) para a, b apropriados

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x).$$

Proposição 1.4.

Sendo f, g funções deriváveis, $c \in \mathbb{R}$, vale:

1.
$$(f+g)'=f'+g'$$
.

2.
$$(c.f)' = c.f'$$
.

3.
$$(f.g)' = f'.g + f.g'$$
.

4.
$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$
.

Exemplo 1.5

Calcule as derivadas das funções abaixo

•
$$f(x) = ax^2 + bx + c$$
.

$$f(x) = x \operatorname{tg} x.$$

$$f(x) = \frac{ax+b}{cx+d}.$$

•
$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$

Exemplo 1.6 (Movimento Uniformemente Variado).

Sendo
$$s(t) = s_0 + v_0 t + \frac{at^2}{2}$$
, temos $v(t) = s'(t) = v_0 + a.t$. E também $a(t) = v'(t) = s''(t) = a = \text{const.}$.

Proposição 1.4.

Sendo f, g funções deriváveis, $c \in \mathbb{R}$, vale:

1.
$$(f+g)'=f'+g'$$
.

2.
$$(c.f)' = c.f'$$
.

3.
$$(f.g)' = f'.g + f.g'$$
.

4.
$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$
.

Exemplo 1.5.

Calcule as derivadas das funções abaixo

•
$$f(x) = ax^2 + bx + c$$
.

$$f(x) = x \operatorname{tg} x.$$

$$f(x) = \frac{ax+b}{cx+d}.$$

•
$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$
.

Exemplo 1.6 (Movimento Uniformemente Variado).

Sendo
$$s(t) = s_0 + v_0 t + \frac{at^2}{2}$$
, temos $v(t) = s'(t) = v_0 + a.t$. E também $a(t) = v'(t) = s''(t) = a = \text{const.}$.

Proposição 1.4.

Sendo f, g funções deriváveis, $c \in \mathbb{R}$, vale:

1.
$$(f+g)'=f'+g'$$
.

2.
$$(c.f)' = c.f'$$
.

3.
$$(f.g)' = f'.g + f.g'$$
.

4.
$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$
.

Exemplo 1.5.

Calcule as derivadas das funções abaixo

•
$$f(x) = ax^2 + bx + c$$
.

$$f(x) = x \operatorname{tg} x.$$

$$f(x) = \frac{ax+b}{cx+d}.$$

•
$$f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$$
.

Exemplo 1.6 (Movimento Uniformemente Variado).

Sendo
$$s(t) = s_0 + v_0 t + \frac{at^2}{2}$$
, temos $v(t) = s'(t) = v_0 + a.t$. E também $a(t) = v'(t) = s''(t) = a = \text{const.}$.

Proposição 1.4.

Sendo f, g funções deriváveis, $c \in \mathbb{R}$, vale:

- 1. (f+g)'=f'+g'.
- 2. (c.f)' = c.f'.
- 3. (f.g)' = f'.g + f.g'.

4.
$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$
.

Exemplo 1.5.

Calcule as derivadas das funções abaixo

• $f(x) = ax^2 + bx + c$.

 $f(x) = x \operatorname{tg} x.$

 $f(x) = \frac{ax+b}{cx+d}.$

• $f(x) = x^3 \operatorname{sen}(x) - \frac{x^2 - 1}{1 + \operatorname{tg}^2 x}$.

Exemplo 1.6 (Movimento Uniformemente Variado).

Sendo $s(t) = s_0 + v_0 t + \frac{at^2}{2}$, temos $v(t) = s'(t) = v_0 + a.t$. E também a(t) = v'(t) = s''(t) = a = const..

- Podemos definir a **2a derivada da função** f, caso a função derivada f' seja derivável, como sendo f'' = (f')'.
- Analogamente podemos definir derivadas com ordem maiores.
- Notação $f^{(n)} = \text{derivada de ordem } n \text{ de } f$.

Definição 1.7.

Supondo que f seja n-vezes derivável, se $f^{(n)}$ for derivável, definimos a derivada de ordem n+1 como sendo $f^{(n+1)}=(f^n)'$.

Exemplo 1.8.

a)
$$f^{(3)}(x)$$
, b) $f^{(2024)}(x)$, $f(x) = \cos(x)$. $f(x) = ax^3 + bx^2 + cx + d$.

- Podemos definir a **2a derivada da função** f, caso a função derivada f' seja derivável, como sendo f'' = (f')'.
- Analogamente podemos definir derivadas com ordem maiores.
- Notação $f^{(n)} = \text{derivada de ordem } n \text{ de } f$.

Definição 1.7.

Supondo que f seja n-vezes derivável, se $f^{(n)}$ for derivável, definimos a derivada de ordem n+1 como sendo $f^{(n+1)}=(f^n)'$.

Exemplo 1.8

a)
$$f^{(3)}(x)$$
, b) $f^{(2024)}(x)$, $f(x) = \cos(x)$ $f(x) = ax^3 + bx^2 + cx + d$.

- Podemos definir a **2a derivada da função** f, caso a função derivada f' seja derivável, como sendo f'' = (f')'.
- Analogamente podemos definir derivadas com ordem maiores.
- Notação $f^{(n)} = \text{derivada de ordem } n \text{ de } f$.

Definição 1.7.

Supondo que f seja n-vezes derivável, se $f^{(n)}$ for derivável, definimos a derivada de ordem n+1 como sendo $f^{(n+1)}=(f^n)'$.

Exemplo 1.8.

a)
$$f^{(3)}(x)$$
,
 $f(x) = ax^3 + bx^2 + cx + d$.
b) $f^{(2024)}(x)$, $f(x) = \cos(x)$.

- Podemos definir a **2a derivada da função** f, caso a função derivada f' seja derivável, como sendo f'' = (f')'.
- Analogamente podemos definir derivadas com ordem maiores.
- Notação $f^{(n)} = \text{derivada de ordem } n \text{ de } f$.

Definição 1.7.

Supondo que f seja n-vezes derivável, se $f^{(n)}$ for derivável, definimos a derivada de ordem n+1 como sendo $f^{(n+1)}=(f^n)'$.

Exemplo 1.8.

Calcule as derivadas de ordem superior abaixo

a)
$$f^{(3)}(x)$$
, b) $f^{(2024)}(x)$, $f(x) = \cos(x)$

Diego Otero Cálculo 1 6/6

- Podemos definir a **2a derivada da função** f, caso a função derivada f' seja derivável, como sendo f'' = (f')'.
- Analogamente podemos definir derivadas com ordem maiores.
- Notação $f^{(n)} = \text{derivada de ordem } n \text{ de } f$.

Definição 1.7.

Supondo que f seja n-vezes derivável, se $f^{(n)}$ for derivável, definimos a derivada de ordem n+1 como sendo $f^{(n+1)}=(f^n)'$.

Exemplo 1.8.

a)
$$f^{(3)}(x)$$
,
 $f(x) = ax^3 + bx^2 + cx + d$.
b) $f^{(2024)}(x)$, $f(x) = \cos(x)$.