Di-electron Widths of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

Jim Pivarski

Cornell University

CLEO Collaboration

Motivation for a New High-Precision Measurement

ullet Di-electron width Γ_{ee} is a basic parameter of the Υ meson

• "Golden-mode" test of high-precision Lattice QCD

ullet This test is relevant for CKM element V_{td}

Motivation for a New High-Precision Measurement

- Di-electron width Γ_{ee} is a basic parameter of the Υ meson
- "Golden-mode" test of high-precision Lattice QCD

Staggered-quark formalism makes QCD simulations with realistic u, d, s masses possible Allows few-percent calculations of observables such as Γ_{ee}

High-precision Γ_{ee} measurement tests high-precision Γ_{ee} calculation

ullet This test is relevant for CKM element V_{td}

Motivation for a New High-Precision Measurement

- ullet Di-electron width Γ_{ee} is a basic parameter of the Υ meson
- "Golden-mode" test of high-precision Lattice QCD

Staggered-quark formalism makes QCD simulations with realistic u, d, s masses possible Allows few-percent calculations of observables such as Γ_{ee}

High-precision Γ_{ee} measurement tests high-precision Γ_{ee} calculation

ullet This test is relevant for CKM element V_{td}

 f_B is a QCD factor that obfuscates V_{td} (blue band)

 Γ_{ee} and f_B share: NRQCD action

staggered-quark formalism

but not: heavy-light quark asymmetry

axial vector coupling

Complementary with f_D : see Topher Cawlfield's talk

Method

Determine $\Upsilon \to e^+e^-$ decay rate by measuring $e^+e^- \to \Upsilon$ cross-section

$$\Gamma_{ee} = \frac{M\gamma^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE$$

Cornell Electron Storage Ring

Integrated Luminosity (on+off peak)

 $\Upsilon(1S)$ $\,$ 0.27+0.19 $\mathrm{fb^{-1}}$ $\,$ 4.9 million

 $\Upsilon(2S)$ 0.08+0.41 fb $^{-1}$ 0.5 million

 $\Upsilon(3S)$ $\,$ 0.22+0.14 $\mathrm{fb^{-1}}$ $\,$ 0.9 million

Measure $\sigma(e^+e^- \to \Upsilon \to {\rm hadrons})$ at several beam energies Integrate spectrum without initial-state radiation convolution

Backgrounds

Efficiency

• Select $\Upsilon(2S) \to \pi^+\pi^- \ \Upsilon(1S)$ by $\pi^+\pi^-$ recoil mass

- Set of $\Upsilon(1S)$ events is unbiased, includes all decays
- $\Upsilon(1S)$ efficiency = #pass/#total = (97.8 \pm 0.5)%
- For $\Upsilon(2S)$ and $\Upsilon(3S)$ efficiency, we extrapolate using Monte Carlo

Integrated Luminosity

- Count $e^+e^- \rightarrow e^+e^-$ events and compare with theoretical cross-section
- Check overall scale with $e^+e^- \to \mu^+\mu^-$ and $e^+e^- \to \gamma\gamma$

Beam Energy Uncertainty

- Beam energy determined by dipole magnet measurement
- Calibration drifts with time (0.5 MeV/month)
- Each resonance completely scanned in 48 hours (repeated scans for statistical precision)
- Measurements alternated above and below resonance peak
- Point of high slope repeated (1 & 5): convert cross-section reproducibility into beam energy reproducibility
- \Rightarrow 0.07 MeV uncertainty in center-of-mass differences, 0.2% in Γ_{ee}

Fit Results

Statistical Systematic

$$\Gamma_{ee}(1S) = 1.354 \pm 0.004 \pm 0.020 \text{ keV} \quad 0.3\% \quad 1.5\%$$

$$\Gamma_{ee}(2S) = 0.619 \pm 0.004 \pm 0.010 \text{ keV} \quad 0.7\% \quad 1.6\%$$

$$\Gamma_{ee}(3S) = 0.446 \pm 0.004 \pm 0.007 ext{ keV} \qquad 1.0\% \qquad \qquad 1.5\%$$

Interference with Continuum Hadrons

Interference between $e^+e^- \to \Upsilon \to q\bar{q}$ and $e^+e^- \to q\bar{q}$ matters

Phase difference cycles through resonance: destructive interference below resonance, constructive above

Our fit prefers $q\bar{q}$ -interference over no-interference by 3.7 standard deviations

red: no interference

blue: exaggerated interference

Contribution to Γ_{ee}	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Correction for leptonic modes	0.2%	0.2%	0.3%
Hadronic efficiency*	0.5%	0.5%	0.5%
Xe^+e^- , $X\mu^+\mu^-$ correction	0	0.15%	0.13%
Overall luminosity scale*	1.3%	1.3%	1.3%
Bhabha $/\gamma\gamma$ inconsistency	0.4%	0.4%	0.4%
Beam energy measurement drift	0.2%	0.2%	0.2%
Fit function shape	0.1%	0.1%	0.1%
χ^2 inconsistency	0.2%	0.6%	0
Total systematic uncertainty	1.5%	1.6%	1.5%
Statistical uncertainty	0.3%	0.7%	1.0%
Total	1.5%	1.8%	1.8%

Results!

$$\Gamma_{ee}(1S) = 1.354 \pm 0.004 \pm 0.020 \ \text{keV}$$
 1.5%
 $\Gamma_{ee}(2S) = 0.619 \pm 0.004 \pm 0.010 \ \text{keV}$ 1.8%
 $\Gamma_{ee}(3S) = 0.446 \pm 0.004 \pm 0.007 \ \text{keV}$ 1.8%
 $\Gamma_{ee}(2S)/\Gamma_{ee}(1S) = 0.457 \pm 0.004 \pm 0.004 \ \text{keV}$ 1.2%
 $\Gamma_{ee}(3S)/\Gamma_{ee}(1S) = 0.329 \pm 0.003 \pm 0.003 \ \text{keV}$ 1.3%
 $\Gamma_{ee}(3S)/\Gamma_{ee}(2S) = 0.720 \pm 0.009 \pm 0.007 \ \text{keV}$ 1.6%
 $\Gamma(1S) = 54.4 \pm 0.2 \pm 0.8 \pm 1.6 \ \text{keV}$ 3.3%
 $\Gamma(2S) = 30.5 \pm 0.2 \pm 0.5 \pm 1.3 \ \text{keV}$ 4.6%
 $\Gamma(3S) = 18.6 \pm 0.2 \pm 0.3 \pm 0.9 \ \text{keV}$ 5.2%

 Γ_{ee} : hep-ex/0512056, to be published in Phys. Rev. Lett. (March 2006)

 $\mathcal{B}_{\mu\mu}$: G.S. Adams et~al. (CLEO Collaboration), Phys. Rev. Lett. 94, 012001 (2005)

History

Deviation from PDG average (%)

Comparison with Lattice QCD

- Lattice QCD results are preliminary
- Final results will have few percent precision in $\Gamma_{ee}(nS)/\Gamma_{ee}(mS)$ and $\sim 10\%$ in $\Gamma_{ee}(nS)$

Lattice QCD A. Gray *et al.* [HPQCD Collaboration], Phys. Rev. D **72**, 094507 (2005) Experiment hep-ex/0512056, to be published in Phys. Rev. Lett. (March 2006) and J. Pivarski, Cornell University, Ph.D. thesis