PRENOM

GROUPE :.....

Contrôle 2 Electronique

CORRIGE
Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. **Réponses exclusivement sur le sujet**

Partie A. Transistors à effet de champ - Polarisation (10 points)

Exercice 1. (6 points)

On considère un transistor à effet de champ à jonction canal N, et son réseau de caractéristiques présenté sur le graphique suivant :

Rq: Pour tout utilisation du graphique, travaillez avec les caractéristiques idéalisées.

a) On l'inclut dans le montage ci-contre.

On donne :
$$\begin{cases} R_1 = 800k\Omega \\ R_2 = 400k\Omega \\ V_{CC} = 12V \end{cases}$$

On souhaite faire fonctionner le transistor dans sa zone <u>linéaire</u> avec un point de polarisation défini par :

$$V_{DS} = 4V$$
 et $V_{GS} = -3V$

Déterminer les valeurs des deux résistances R_{D} et R_{S} .

Le Loi des mailles mous donne:
$$U_2 - V_{GS} - U_{RS} = 0$$
.

Je . $U_2 - V_{GS} - R_S \cdot T_D = 0 \implies R_S = \frac{U_2 - V_{GS}}{T_D} = 1 \text{ kg}$

Puis, on a $V_{CC} = R_D \cdot T_D + R_S \cdot T_D + U_{DS}$

$$\Rightarrow R_D = \frac{V_{CC} - R_S \cdot T_D - V_{DS}}{T_D} = \frac{1}{7} \text{ kg}.$$

b) On l'inclut dans le montage ci-contre.

Déterminer la condition sur la valeur de la résistance R_D ainsi que la valeur de R_S pour que le transistor soit polarisé dans sa zone de fonctionnement linéaire avec $V_{GS}\,=\,-2V$

da loi des mailles donne $V_S + V_{GS} = 0 \Rightarrow R_S = -\frac{V_{GS}}{I_D}$ $\Rightarrow R_S = \frac{2}{12 \cdot l_0^3} = \frac{1}{6} \cdot k_S = 0$

De plus, Vcc = RD. Is $+ Ubs + R_s^c ID = 0 RD = \frac{Vcc - Ubs + VGs}{ID}$.

Gu vent que le transister soit polarisé dans sa zone livéaire. $\Rightarrow Ubs > 3.5$.

$$= R_D < \frac{18 - 3.5 - 2}{12.10^3} = \frac{9.5}{12} \log 2.$$

Exercice 2. (4 points)

On considère un Transistor à Effet de Champ dont les caractéristiques sont données dans la figure 1. Ce **TEC** est utilisé dans le montage figure 2. On donne :

- ✓ Tension d'alimentation V_{DD} = 12V
- \checkmark Le point de fonctionnement est choisi tel que la tension V_{DM} = 8V.

a) Calculer l'intensité du courant I_D sachant que $R_D=1k\Omega$ et en déduire la tension V_{GS} .

Find
$$V_{DD} = V_{DQ} + R_D I_D$$
.

$$= D I_D = \frac{12 - 8}{1.16^3} = 4 \text{ mA}.$$
D'après le graphe, on a donc $V_{6S} = -2V$.

b) Déterminer la valeur de la résistance $R_{\mathcal{S}}$

$$J_q$$
 étant nul, on a R. $I_D + V_{GS} = 0$

$$= D R = \frac{2}{4 \cdot 10^3} = 500 \cdot \Omega.$$

Partie B. Transistors à effet de champ - Petits signaux (5 points)

Dans le schéma ci-dessous, le transistor à effet de champ est monté en grille commune.

a) Dessiner le schéma équivalent petits signaux du montage.

b) Déterminer l'amplification en tension de ce montage. Rq: On pourra exprimer les tensions d'entrée et de sortie en fonction de v_{as} .

$$= 0 \text{ A}_{s} = \frac{s_{007}}{s_{10}} = \frac{-R_0 \cdot s_{0}s_{0}}{-s_{0}} = s_{0} \cdot R_0.$$

c) Quelle est l'expression de l'impédance d'entrée $Z_e=\frac{v_{IN}}{i_{IN}}$ de ce circuit. Simplifier cette expression si $R_S\gg \frac{1}{s}$.

$$J_{in} = J_{gs}$$

$$J_{in} + J_{s}J_{gs} = J_{Rs} = J_{in} = J_{gs} = J_{in} = J_{in$$

Partie C. Transistors MOS et Portes Logiques (5 points)

a) Donnez le schéma d'une porte NOR réalisée en technologie CMOS.

b) Soit le montage suivant : De quelle fonction logique s'agit-il ? Justifiez votre réponse.

Rq : Vous donnerez le résultat sous la forme d'une équation logique.

(Pa / Pc) sere Pg.

(Pa / Pc) sere Pg.

(Pa sere) / Nb.

= Il y a complimentanti

Il suffit donc d'étudies

un sent des 2 étages.

6 in sait pue les post sont

conducteurs son Ngs = -5V.

= 0 8 à a = 0, alors Pa conducteurs,

Idem pour les autres

Most.

Gu aura dons $V_S = 5V$ (i.e S = 1) si: (Pa ou Pc conducteurs) ET Ps conducteur. S = 5. $(\bar{a} + \bar{c})$