Low-Resource NLP Indian Language LLMs

Chandan Kumar Rohit Tiwari Under Guidance of Dr. B.N. Subudhi

May 07, 2025

Agenda

- Research Gap & Objectives
- Corpus
- Tokenizer
- Model Architecture
- Evaluation Metrics
- Demo Interface
- Challenges & Solutions
- Applications & Limitations & Future Work
- Conclusion
- References

Research Gap & Motivation

• **Problem**: Existing tokenizers fail for Indian languages.

```
# Example of BPE failure
"राष्ट्रपति" → ["रा", "ष्ट्र", "प", "ति"]
# Morpheme-aware |
"राष्ट्रपति" → ["राष्ट्र", "पति"]
```

Motivation:

- 22 official Indian languages with complex morphology.
- Need for linguistically-aware tokenization.

Objectives

Primary Goals

- Develop morpheme-based tokenizer for Hindi
- Train GPT-2 from scratch with custom tokens
- Compare against BPE baseline

Corpus Overview

- Source:
 - Wikipedia Hindi Dumps (1GB raw)
- After Cleaning and reducing corpus to 100MB:
 - Total Number of Words: 77,60,500
 - Total Characters: 4,01,26,198
 - Total Unique Characters: 121
 - Unique Characters:

ऀँःःऄअआइईउऊऋऌऍऎएऐऑऒओओकखगघङचछजझनटठडढणतथदधननपफबभमयरऱलळऴवशष सर्ह्|ऽािीुॣुुूऽेेेैोाॅोौाैाःौॐ॑ॢे॔ॕ॔ॖऋॡॣॖॗॽ॥०१२३४५६७८९°ॱॲॳॴॵॶॶॸॹॺॻॼॽॾॿ

BPE Tokenizer Training Process

Step-by-Step Algorithm

- Initialization
 - Start with UTF-8 byte-level vocabulary
 - Prepare 100MB Hindi corpus
- Frequency Analysis
 - Count all symbol pairs in training data
 - Identify most frequent combinations
- Iterative Merging
 - Merge the most frequent pair in each iteration
 - Repeat until reaching target vocabulary size (12,000)
- Finalization
 - Add special tokens: <s>, </s>, <unk>, <pad>

BPE Tokenizer Training Process

Key Statistics

Metric	Value
Training Corpus Size	100MB Hindi
Number of Tokens	9,598,690
Vocabulary Size	12,000
Special Tokens	4 (<s>, </s> , <unk>, <pad>)</pad></unk>
Continuing Prefix	##

Morpheme Tokenizer Algorithm

Segmentation Process

- Prefix Identification
 - Check against 80+ Hindi prefixes
 - If match found, split and recurse on remainder
- Suffix Identification
 - Check against 200+ Hindi suffixes
 - If match found, split and recurse on base
- Root Matching
 - Check remaining segment against 5,000+ root dictionary
 - If no match, treat as complete word

Model Architecture (New)

Model Architecture Workflow:

Figure: Interactive comparison of BPE vs Morpheme outputs

Morpheme Tokenizer Specifications

Key Parameters

Parameter	Value
Vocab Size	12,000
Training Tokens	8,178,047
Prefixes	+08
Suffixes	200+
Roots	5,000+

Key Advantage

Preserves linguistic structure better than BPE (23% lower perplexity)

GPT-2 Architecture Design

Core Components

- 8-Layer Transformer:
 - Each layer contains:
 - Multi-Head Attention (6 heads)
 - Feed Forward Network (384 \rightarrow 1536 \rightarrow 384)
 - Residual Connections + LayerNorm
- Input Processing:
 - Token Embeddings (12,000 vocab)
 - Positional Encoding (384-dim)
- Output Layer:
 - Linear projection to vocab size
 - Softmax temperature scaling

Model Parameters & Performance

Configuration

Parameter	Value
Vocabulary Size	12,000
Embedding Dim	384
Layers	8
Attention Heads	6
FFN Hidden Dim	1,536

Training Setup

Parameter	Value
Batch Size	32
Learning Rate	5e-4

Evaluation Approach

PERPLEXITY (PPL)

- Measures model confidence
- Lower = Better

Perplexity Comparison

Challenges & Solutions

Challenge	Solution
Rare morphemes	Hybrid character fallback
Training instability	Gradient clipping
Compute limitations	Mixed precision

Demo Interface

Figure: Interactive comparison of BPE vs Morpheme outputs

Applications

- Hindi chatbots (education, customer support)
- Content generation (news, stories)
- Multilingual translation pipelines

Limitations

- Coverage of rare morphemes (85%)
- Currently Hindi-only

Future Work

- Expand to other Indian languages
- Hybrid tokenizer approach
- Larger model architectures

Conclusion

- Morpheme tokenizer reduces PPL by 23% vs BPE
- Better handles Hindi morphology
- Publicly released code/models

References

- 1 Jabbar, Haris. "MorphPiece: A Linguistic Tokenizer for Large Language Models." arXiv preprint arXiv:2307.07262 (2023).
- 2 Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Thank You! Questions?

