TOÁN RỜI RẠC

Chương 2

TẬP HỢP VÀ ÁNH XẠ

Nội dung

Chương 2. TẬP HỢP VÀ ÁNH XẠ

- 1. Tập hợp
- 2. Ánh xạ

2.1. Tập hợp

- Khái niệm
- 2 Các phép toán trên tập hợp
- Tập các tập con của một tập hợp
- Tích Descartes

2.1.1. Khái niệm

Tập hợp là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví dụ.

- Tập hợp sinh viên của một trường đại học.
- Tập hợp các số nguyên.
- Tập hợp các trái táo trên một cây.

Để minh họa tập hợp thì chúng ta dùng sơ đồ Ven

Lực lượng của tập hợp

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$ là các tập vô hạn
- $\bullet~X=\{1,3,4,5\}$ là tập hữu hạn với |X|=4

Cách xác định tập hợp

Có 2 cách phổ biến:

 ${\color{blue} \bullet}$ Liệt kê tất cả các phần tử của tập hợp

$$A = \{1, 2, 3, 4, a, b\}$$

2 Đưa ra tính chất đặc trưng

$$B = \{ n \in \mathbb{N} \mid n \text{ chia h\'et cho 3} \}$$

Quan hệ giữa các tập hợp

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$, nghĩa là

b. Bằng nhau. Hai tập hợp A và B được gọi là bằng nhau nếu $A \subset B$ và $B \subset A$, ký hiệu A = B.

Ví dụ. Cho
$$A = \{1, 3, 4, 5\}, B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 và $C = \{x \in \mathbb{Z} \mid 0 < x < 9\}.$ Khi đó

$$A \subset B$$
 và $B = C$.

2.1.2. Các phép toán trên tập hợp

a) Hợp

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A \cup B$, nghĩa là

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Ví dụ. Cho $A = \{a, b, c, d\}$ và $B = \{c, d, e, f\}$. Khi đó

$$A \cup B = \{a, b, c, d, e, f\}$$

Tính chất.

- $2 Tinh giao hoán <math>A \cup B = B \cup A$

b) Giao

Giao của A và B là tập hợp gồm tất cả các phần tử vừa thuộc A và thuộc B, ký hiệu $A \cap B$, nghĩa là

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A \quad A \cap B \quad B$$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right.$$
 $x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$

Tính chất.

- $2 Tinh giao hoán <math>A \cap B = B \cap A$

Tính chất. Tính phân phối của phép hợp và giao

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

c) Hiệu

Hiệu của hai tập hợp A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B ký hiệu $A \setminus B$, nghĩa là

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Tính chất. Cho A, B, C là các tập hợp. Khi đó

d) Tập bù

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A = \{1, 3, 4, 6\}$$
 và $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Khi đó

$$\overline{A} = \{2,5,7,8\}$$

Tính chất. Luật De Morgan

$$\bullet \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Tính chất.

• $A \setminus B = A \cap \overline{B}$ (triệt hiệu)

 $\bullet \ A \cap \overline{A} = \emptyset.$

 $\bullet \ \overline{\overline{A}} = A$

 $\bullet \ A \cup \overline{A} = U.$

\mathbf{V} í dụ. Cho A, B, C là các tập hợp. Chứng minh rằng:

- a) $A \setminus (A \setminus B) = A \cap B$
- b) $(A \backslash B) \cup (A \backslash C) = A \backslash (B \cap C)$
- c) $(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$
- d) $A \cap (B \setminus A) = \emptyset$
- e) $A \setminus B = A \setminus (A \cap B) = (A \cup B) \setminus B$

\mathbf{V} í dụ. Cho các tập hợp A, B và C chứa trong E. Chứng minh

$$(B\backslash C)\backslash (B\backslash A) = (A\cap B)\backslash C.$$

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (giao hoán, kết hợp)
 $= \overline{C} \cap ((B \cap \overline{B}) \cup (B \cap A))$ (phân phối)
 $= \overline{C} \cap (\emptyset \cup (B \cap A))$ (bù)
 $= \overline{C} \cap (B \cap A)$ (trung hòa)
 $= (A \cap B) \cap \overline{C}$ (giao hoán)
 $= (A \cap B) \setminus C = VP$ (triệt hiệu)

 Ví dụ. (tự làm) Cho các tập hợp A, B và $C \subset E$. Chứng minh

$$A\cap (B\backslash C)=(A\cap B)\backslash (A\cap C).$$

2.1.3. Tập các tập con của một tập hợp

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho
$$X = \{a, b\}$$
. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Ví dụ. (tự làm) Cho
$$X = \{1, 2, 3\}$$
. Tìm tập $P(X)$?

Câu hỏi. Nếu tập X có n phần tử thì tập P(X) có bao nhiêu phần tử?

Đáp án.
$$|X| = n \Rightarrow |P(X)| = 2^n$$
.

2.1.4. Tích Descartes

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Ví dụ. Cho $A = \{1, 2, 3\}$ và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A| = n và |B| = m thì $|A \times B| = ?$ Đáp án. $n \times m$.

Khái niệm tích Descartes cũng được mở rộng cho hữu hạn tập hợp, nghĩa là

$$A_1 imes A_2 imes \cdots imes A_k = \{(x_1, x_2, \ldots, x_k) \, | \, x_i \in A_i, orall i = \overline{1, k} \}$$

2.2. Ánh xạ

- Định nghĩa ánh xạ
- Ánh xạ hợp
- Ånh và ảnh ngược
- Các loại ánh xạ
- Ánh xạ ngược

2.2.1. Định nghĩa

Định nghĩa. Một ánh xa f từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho **mỗi phần tử** x của X được liên kết **duy nhất** với **một phần tử** y của Y, ký hiệu: y = f(x)

$$\begin{array}{cccc} f: & X & \longrightarrow & Y \\ & x & \longmapsto & y = f(x). \end{array}$$

Khi đó X được gọi là $t\hat{q}p$ $ngu\hat{o}n$, Y được gọi là $t\hat{q}p$ dích.

Không là ánh xạ

Ví dụ.

a) Ánh xa đồng nhất trên X

$$Id_X: X \longrightarrow X$$

$$r \longmapsto r$$

b) Xét ánh xạ

$$pr_A: A \times B \longrightarrow A$$

 $(a,b) \longmapsto a.$

Khi đó pr_A được gọi là $ph\acute{e}p$ $chi\acute{e}u$ $th\acute{u}$ $nh\acute{a}t$

Nhận xét. Nếu X,Y là tập hợp các số (chẳng hạn, $\emptyset \neq X,Y \subset \mathbb{R}$) thì $f:X \to Y$ còn được gọi là hàm số. Như vậy, hàm số chính là một trường hợp riêng của ánh xạ.

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Ví dụ. Xét ánh xạ f(x)=(x-1)(x+1) và $g(x)=x^2-1$ từ $\mathbb R$ vào $\mathbb R$. Ta có f=g.

Ví dụ. Cho $f,g:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=3x+4 và g(x)=4x+3. Hỏi f=g không?

Giải. Vì $f(0) \neq g(0)$ nên $f \neq g$.

2.2.2. Ánh xạ hợp

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$, lúc đó $g \circ f: X \longrightarrow Z$ là *ánh xạ hợp* của g và f, được xác định bởi

$$g \circ f(x) = g(f(x)).$$

Tính chất. Cho ánh xạ $f: X \to Y$. Khi đó

i)
$$f \circ Id_X = f$$

ii)
$$Id_Y \circ f = f$$

Ví dụ. Cho $f, g : \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = x + 2 và g(x) = 3x - 1. Xác định $g \circ f$ và $f \circ g$.

$$f(x) = x + 2$$
, $g(x) = 3x - 1$

Giải. i) Với mọi $x \in \mathbb{R}$ ta có

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g_{\circ}f: \mathbb{R} \to \mathbb{R}$ được xác định bởi $g_{\circ}f(x) = 3x + 5$.

ii) Với mọi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 = 3x + 1.$$

Vậy ánh xạ $f_{\circ}g:\mathbb{R}\to\mathbb{R}$ được xác định bởi $f_{\circ}g(x)=3x+1$.

Ví dụ. (tự làm) Cho $f, g : \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 1$ và g(x) = 2 - 3x. Xác định $g \circ f$ và $f \circ g$.

Ví dụ.(tự làm) Cho hai hàm số $f, g : \mathbb{R} \to \mathbb{R}$ với f(x) = 2x + 3 và $f \circ g(x) = 4x + 1$. Tìm g(x)?

2.2.3. Ånh và ảnh ngược

Định nghĩa. Cho $f: X \longrightarrow Y$,

a) Cho $A\subset X,$
ảnh của A bởi f là tập
 $f(A)=\{f(x)\,|\,x\in A\}\subset Y;$

b) Cho $B \subset Y$, ảnh ngược của B bởi f là tập $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$

c) Ta ký hiệu Im(f) = f(X), gọi là ảnh của f.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^2 + 1$. Hãy tìm

a) f([1,3]); f([-2,-1]); f([-1,3]); f((1,5));

b) $f^{-1}(1)$; $f^{-1}(2)$; $f^{-1}(-5)$; $f^{-1}([2,5])$?

Đáp án.

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$
b) $f^{-1}(1) = \{0\};$ $f^{-1}(2) = \{-1,1\};$

$$f^{-1}(-5) = \emptyset;$$
 $f^{-1}([2,5]) = [-2,-1] \cup [1,2].$

 Ví dụ. (tự làm) Cho $f:\mathbb{R}\to\mathbb{R}$ được xác định
 $f(x)=x^2-2x+3.$ Hãy tìm

- a) f([1,5]); f([-5,-2]); f([-3,3]); f((0,5));
- b) $f^{-1}(1)$; $f^{-1}(3)$; $f^{-1}(-5)$; $f^{-1}([3,11])$?

2.2.4. Các loại ánh xạ

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

- i) $f \ don \ anh \Leftrightarrow "\forall x_1, x_2 \in X, f(x_1) = f(x_2) \to x_1 = x_2".$
- ii) f không đơn ánh \Leftrightarrow " $\exists x_1, x_2 \in X, x_1 \neq x_2 \land f(x_1) = f(x_2)$ ".

Chứng minh. i) Sử dụng luật logic $p \to q \Leftrightarrow \neg q \to \neg p$.

ii) Sử dụng luật logic $\neg(p \to q) \Leftrightarrow p \land \neg q$.

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=x+3. Xét tính đơn ánh của f.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$,

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

$$\Leftrightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0 \quad (\text{vì } x_1^2 + x_1x_2 + x_2^2 + 1 \ge 1)$$

$$\Leftrightarrow x_1 = x_2$$

Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 + x$. Xét tính đơn ánh của f.

Giải. Ta có f(-1)=f(0)=0 mà $-1\neq 0$. Do đó f không là đơn ánh.

Định nghĩa. Cho ánh xạ $f:X\to Y$. Ta nói f toàn ánh nếu

"
$$\forall y \in Y, \exists x \in X \text{ sao cho } y = f(x)$$
",

nghĩa là mọi phần tử thuộc Y đều là ảnh của ít nhất một phần tử thuộc X.

Ví dụ.

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- i) f là toàn ánh \Leftrightarrow với mọi $y\in Y,$ phương trình y=f(x) có nghiệm
- ii) f không là toàn ánh \Leftrightarrow tồn tại $y_0 \in Y$ sao cho phương trình $y_0 = f(x)$ vô nghiệm

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 3x + 5$. Hỏi f có toàn ánh không?

Giải. Với y = 0 ta có phương trình y = f(x) vô nghiệm. Suy ra f không toàn ánh.

Định nghĩa. Ta nói $f:X\to Y$ là một $song~\acute{a}nh$ nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

- a) $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là song ánh
- b) $g:\mathbb{R}\to\mathbb{R}$ được xác định $g(x)=x^2+1$ không là song ánh

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = x + 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta có

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

 Ví dụ. (tự làm) Cho $f:\mathbb{N}\to\mathbb{N}$ xác định bởi f(x)=2x+1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

Tính chất. Cho ánh xạ $f: X \to Y$ và $g: Y \to Z$. Khi đó

- (i) f, g đơn ánh $\Rightarrow g \circ f$ đơn ánh $\Rightarrow f$ đơn ánh;
- (ii) f, g toàn ánh $\Rightarrow g \circ f$ toàn ánh $\Rightarrow g$ toàn ánh;
- $\mbox{(iii)} \ \ f,g \ song \ \mbox{\'a}nh \ \ \Rightarrow g_{\circ}f \ song \ \mbox{\'a}nh \ \ \Rightarrow f \ \mbox{\'a}on \ \mbox{\'a}nh, \ g \ \mbox{\'a}o\ \mbox{\'a}nh.$

2.2.5. Ánh xạ ngược

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là **ánh xạ ngược** của f và ký hiệu f^{-1} . Như vậy:

$$\begin{array}{cccc} f^{-1}: & Y & \longrightarrow & X \\ & y & \longmapsto & x \text{ v\'oi } f(x) = y. \end{array}$$

Ví dụ. Cho f là ánh xạ từ $\mathbb R$ vào $\mathbb R$ xác định bởi f(x)=x+4. Chứng tỏ f song ánh và tìm f^{-1} ?

Đáp án. $f^{-1}(y) = y - 4$.

Ví dụ. Cho
$$f: [0;2] \longrightarrow [0;4]$$

$$x \longmapsto x^{2}$$
thì
$$f^{-1}: [0;4] \longrightarrow [0;2]$$

$$y \longmapsto \sqrt{y}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta xét phương trình ẩn x sau

$$y = f(x) \Leftrightarrow y = 5x - 3 \Leftrightarrow x = \frac{y+3}{5}$$
.

Như vậy, phương trình có nghiệm duy nhất, suy ra f là song ánh.

Hơn nữa

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

Ví dụ. (tự làm) Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + 1$. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f

Ví dụ. (tự làm) Cho ánh xạ $f: X = (2, +\infty) \rightarrow Y = \mathbb{R}$ định bởi

$$f(x) = 4\ln(5x - 10) + 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược f^{-1} .

 Ví dụ. (tự làm) Cho $f: X = (3,6] \rightarrow Y = [-27,-6)$ được xác định

$$f(x) = -x^2 + 2x - 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược $f^{-1}(x)$.

Mệnh đề. Cho $f: X \to Y$ và $g: Y \to Z$ là hai song ánh. Khi đó:

(i) f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;

(ii)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Mệnh đề. Cho hai ánh xạ $f: X \to Y$ và $g: Y \to X$. Nếu

$$g \circ f = Id_X, f \circ g = Id_Y$$

thì f là song ánh và g là ánh xạ ngược của f.

Ví dụ. Cho
$$f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R} \setminus \{2\}$$
 và $g: Y \to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $g(x) = \frac{x+1}{x-2}$.

Ta dễ dàng kiểm tra $g_{\circ}f(x) = x$ và $f_{\circ}g(x) = x$. Do đó f là song ánh và g là ánh xạ ngược của f.

i)
$$f_{\circ}\theta = h \Leftrightarrow \theta = f_{\circ}^{-1}h$$

ii)
$$\theta \circ f = h \Leftrightarrow \theta = h \circ f^{-1}$$

iii)
$$f_{\circ}\theta_{\circ}g = h \Leftrightarrow \theta = f_{\circ}^{-1}h_{\circ}g^{-1}$$

Ví dụ. Cho
$$f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R} \setminus \{2\}$$
 và $h: X \to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có
$$g_{\circ}f = h \Leftrightarrow g_{\circ}f_{\circ}f^{-1} = h_{\circ}f^{-1}$$
. Mà $f_{\circ}f^{-1} = Id_X$, suy ra $g = h_{\circ}f^{-1}$. Theo như ví dụ trước ta có $f^{-1}(x) = \frac{x+1}{x-2}$. Vậy

$$g(x) = h\left(\frac{x+1}{x-2}\right) = 5\frac{x+1}{x-2} + 3 = \frac{8x-1}{x-2}.$$

Nhận xét. Cho X và Y là các tập hữu hạn và ánh xạ $f:X\to Y$. Khi đó

- (i) Nếu f đơn ánh thì $|X| \leq |Y|$;
- (ii) Nếu f toàn ánh thì $|X| \geq |Y|;$
- (iii) Nếu f song ánh thì |X| = |Y|.