Optimization in Finance

Maximum Entropy Distribution of an Asset Inferrred from Option Prices

Bertrand Le Nezet

Numerical implementation steps

- 1. Option prices snap from Google Finance API
- 2. Data cleaning:
 - · Calculate mid from bid / ask
 - Keep only relevant option prices (put-call parity/liquidity)
- 3. Apply the Cross Entropy Minimization algorithm
- 4. Compute option prices from asset distribution
- 5. Convert option prices into Black-Scholes Implied Volatility

GOOG.OQ Option quotes

Google Inc (NASDAQ:GOOG)

View options by expiration Apr 24, 2015 ▼

Calls							Puts					
Price	Change	Bid	Ask	Volume	Open Int	Strike	Price	Change	Bid	Ask	Volume	Open Int
-	-	118.30	122.50	-	0	440.00	0.45	0.00	0.15	0.55	-	6
-	-	113.00	117.50	-	0	445.00	-	-	0.15	0.55	-	0
-	-	108.00	112.50	-	0	450.00	0.55	0.00	0.15	0.70	-	7
-	-	103.30	107.60	-	0	455.00	0.70	0.00	0.20	0.70	-	6
-	-	98.20	102.70	-	0	460.00	-	-	0.30	0.75	-	0
-	-	93.20	97.70	-	0	465.00	-	-	0.40	0.90	-	0
-	-	88.50	92.80	-	0	470.00	-	-	0.45	0.90	-	0
-	-	83.40	87.90	-	0	475.00	-	-	0.60	1.00	-	0
-	-	78.80	82.80	-	0	480.00	-	-	0.70	1.10	-	0
-	-	74.00	78.20	-	0	485.00	-	-	0.85	1.25	-	0
-	-	69.10	73.10	-	0	490.00	2.40	0.00	1.05	1.25	-	1
-	-	64.30	68.60	-	0	495.00	-	-	1.25	1.45	-	0
61.00	0.00	59.30	63.00	-	18	500.00	1.63	-0.57	1.50	1.75	1	2
-	-	51.60	54.20	-	0	510.00	2.35	-2.65	2.20	2.50	1	7
-	-	42.70	44.30	-	0	520.00	3.60	-0.90	3.20	3.70	7	9
-	-	40.10	42.10	-	0	522.50	-	-	3.60	4.00	-	0
-	-	38.50	40.00	-	0	525.00	7.22	0.00	4.00	4.40	-	3
-	-	35.90	37.90	-	0	527.50	-	-	4.40	4.90	-	0
33.70	0.00	34.40	35.90	-	9	530.00	7.40	0.00	4.80	5.40	-	107

Volatility smile - Put-Call parity

Cross Entropy Minimization algorithm

- 1. A uniform distribution is used as a prior (non-informed prior)
- 2. The option prices we snaped are used as constraint
- 3. The Lagrangian function (transforms constrained optimization into an unconstrainted optimization) is constructed
- 4. The Lagrangian function is minimized using an optimization routine (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

GOOG.OQ Asset distribution (1m/2m/3m/6m)

Asset distribution with constant volatility (25%)

GOOG.OQ Volatility smile (from Asset distribution)

Volatility smile (from Quotes)

Conclusion

- 1. We have observed that assets distribution inferred from options prices are not log-normal (i.e. Volatility is not constant)
- 2. Principle of Minimum Cross-Entropy can be used to estimate the distribution of an asset without any assumption (non-parametric approach)
- 3. The algorithm is stable and fast
- 4. This method can be used to perform implied volatility interpolation/extrapolation from only few quotes

Appendix

Kullback-Leibler Relative entropy

- 1. In Information Theory, Shannon defines the entropy as a measure of unpredictability of information content
- 2. the KL relative entropy (or KL divergence) is a non-suymetric mesure of the difference between two probability distribution P and Q.

3.
$$D_{KL}(P\|Q)=\int_{-\infty}^{\infty}p(x)\lnrac{p(x)}{q(x)}\,dx$$

- 4. Properties:
- 5. KL is equal to zero if P and Q are identical
- 6. KL relative entropy is always positive

Calculation of Relative Entropy

Formulating the Optimization problem

We have one prior probability density function q(x)

We have m price constraints: $orall i=1,2,\ldots m\ d_i=D(T)\mathbb{E}_{\mathbb{Q}}[c_i(X_T)]$ where

- $\cdot \ D(T) = e^{-(r-q)T}$ represents the discount factor
- \cdot $c_i(X_t)$ denotes the ith option pay-off function at expiry dependent only on the asset value at expiry
- $\cdot \,\, d_i$ is the corresponding option price
- $\cdot r$ risk-free rate for T
- $\cdot \; q$ dividend yield

Formulating the Optimization problem (2)

Minimize
$$S(p,q) = \int_{-\infty}^{\infty} p(x) \log \left[rac{p(x)}{q(x)}
ight] dx$$

Subject to 2 constraints:

1.
$$\int_{0}^{\infty} p(x) dx = 1$$

2.
$$orall i=1,2,\ldots m \; \mathbb{E}[c_i(X)]=\int_0^\infty p(x) \; c_i(x) dx=ci$$

This is a standard constrained optimization problem which solved by using the method of Lagrange which transforms a problem in n variable and m constraints into an unconstrainted optimization with n+m variables.

Objective function

$$H(p) = -\int_0^\infty p(x) \log \Bigl[rac{p(x)}{q(x)}\Bigr] dx + (1+\lambda_0) \int_0^\infty p(x) dx + \sum_{i=1}^m \lambda_i \int_0^\infty p(x) \; c_i(x) dx$$

From standard calculus, we know that the minimum $\lambda^* = (\lambda_0^*, \dots, \lambda_M^*)$ is reached when:

- · the gradient (vector of derivatives) δH is equal to zero: $\delta H(\lambda^*)=\int_0^\infty \left[-\log\left[rac{p(x)}{q(x)}
 ight]+\lambda_0+\sum_{i=1}^m\lambda_ic_i(x)
 ight]\delta p(x)dx=0$ (necessary condition)
- · the hessian (matrix of second derivatives) is positive definite (sufficient condition)

Objective function solution

This leads immediately to the following explicit representation of the MED:

$$p(x)=rac{q(x)}{\mu}\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)$$
, $\mu=\int_0^\infty q(x)\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)dx$

Impact of constraints on MXED

