

Hanif Muhammad Dhiya Ulhaq Prama Pradipta Andrisi (13018019) (13018032) Dr. Ir. IGBN Makertiharta Dr. Haryo Pandu Winoto

Latar Belakang

Konsumsi avtur 2015^[1]: 4336,6 juta L 2018: 5717,7 juta L (naik 31,8% dalam 3 tahun)

Impor avtur 2018^[1]: **1518** juta L **(26,5% dari konsumsi avtur)**

Salah satu bahan bakar alternatif : bioavtur dari minyak nabati.

Indonesia merupakan **penghasil kelapa sawit terbesar di dunia** sejak tahun **2006**^[2] **(produksi : 31 juta ton)**

Kandungan utama PKO adalah **asam laurat** (C12) dan **asam miristat** (C14)

Proses produksi bioavtur : **Hidrodeoksigenasi** (**HDO**) dan Hidroisomerisasi.

Diperlukan simulasi HDO asam laurat dalam proses produksi bioavtur.

^[1] Kementrian Energi dan Sumber Daya Mineral. (2020). Handbook of Energy & Economics Statistics of Indonesia 2019.

^[2] Sequiño, A. C., dan Magallon-Avenido, J. (2015). IAMURE International Journal of Ecology and Conservation, 13(1).

Avtur

Karakteristik umum avtur^[1]:

- Tidak berwarna
- Relatif tidak volatil
- Komposisi rata rata $C_{12,5}H_{24,4}$, BM = 175 g/mol
- Rentang rantai karbon avtur C₉-C₁₅

Jenis avtur : Jet-A (AS), Jet-A1 (di luar AS), JP-8 (militer)

Tabel 1.1 Spesifikasi avtur^[2]

Properti	Jet-A1a	Jet A ^b	JP-8 ^c			
Densitas pada 15 °C, (kg/m3)	775-840	775-840	775-840			
Flash Point (°C)	≥ 38	≥ 38	≥ 38			
Titik Beku (°C)	≤ -47	≤ -40	≤ -47			
^a Spesifikasi dari DEF STAN 91-91						
^b Spesifikasi dari ASTM D						
^c Spesifikasi dari MIL-DTL-83133E						

^[1] Goodger, E., dan Vere, R. (1985): Aviation Fuels Technology, Macmillan Publishers Ltd, Hampshire and London.

^[2] Nelson, E. S., dan Reddy, D. R. (2017): Sustainable Energy Developments, Taylor & Francis Group, London.

Bioavtur

Tabel 1.2 Perkembangan bioavtur^[1]

Tahun	Umpan	Maskapai Penerbangan	Kandungan Bioavtur	Rute konversi
2008	Kelapa &	Virgin Atlantic	20%	Oil to jet
	Babassu			
2008	Minyak jarak	Air New Zealand	50%	Oil to jet
2009	Camelina	KLM	50%	Oil to jet
2011	Waste cooking oil	KLM	50%	Oil to jet
2011	Waste cooking oil	Air France	50%	Oil to jet
2011	Minyak jarak	Minyak jarak AeroMexico 30%		Oil to jet
2011	Alga Continental Airlines			Alcohol to jet
2013	Palm oil & waste	China Eastern Airlines		Oil to jet
	cooking oil			

Indonesia???

^[1] Wang, W. C., dan Tao, L. (2016): Bio-jet fuel conversion technologies, Renewable and Sustainable Energy Reviews, 53, 801–822..

Jenis Umpan Bioavtur

1st Gen

- Umpan : edible
- Kelebihan : murah dan sustainable
- Kekurangan :

 Persaingan dengan
 industri pangan,
 persaingan lahan,
 tanah dan air dengan
 tanaman pangan

Minyak kelapa sawit, jagung, kelapa

2nd Gen

- Umpan : non-edible yaitu tanaman energi dan waste biomass
- Kelebihan: Tidak ada persaingan dengan tanaman & industri pangan, murah
- Kekurangan : komposisinya bervariasi (minyak jelantah)

Minyak jelantah, minyak jarak

3rd Gen

- Umpan : Alga
- Kelebihan: tidak memerlukan lahan yang luas
- Kekurangan: belum feasible secara ekonomi sampai saat ini, masalah dalam budidaya, pemanenan dan ekstraksi minyak tidak efisien

Alga

4th Gen

- Umpan : organisme yang gennya dimodifikasi, bukan makhluk hidup
- Kelebihan : lebih ramah lingkungan
- Kekurangan : biayanya mahal, membutuhkan teknologi tinggi dan peralatan yang canggi

Gas CO & H₂, cahaya matahari, organisme yang gennya dimodifikasi

Sumber: Doliente dkk. (2020): Frontiers in Energy Research, 8(July), 1–38.

Rute Produksi Bioavtur

HEFA (hydroprocessed esters and fatty acids)

Proses konversi oleokimia seperti hidroproses lipid dari minyak nabati. Sampai tahun 2020, HEFA satu satunya rute produksi bioavtur yang diimplementasikan pada skala industri

Gambar 1.1 Proses HEFA^[1]

Hidrogenasi dan Deoksigenasi

Gambar 1.2 Skema umum reaksi deoksigenasi trigliserida^[1]

Minyak Nabati

Tabel 1.3 Kandungan asam lemak dalam berbagai minyak nabati^{[1],[2],[3], dan [4]}

					% massa		
Asam Lemak	Struktur	Palm	Rapeseed	Jarak	Sunflower	PKO	Kelapa
Asam Kaprilat	C8:0	-	-	-	-	3,3	7,6
Asam Kuprat	C10:0	-	-	-	-	3,5	5,5
Asam Laurat	C12:0	0,1	-	0,0	0,0	47,8	47,7
Asam Miristat	C14:0	0,7	0,11	0,0	0,0	16,3	19,9
Asam Palmitat	C16:0	36,7	4,8	15,9	6,2	8,5	-
Asam Palmitoleat	C16:1	0,1	0,33	0,9	0,1	-	-
Asam Stearat	C18:0	6,6	1,89	6,9	3,7	2,4	2,7
Asam Oleat	C18:1	46,1	61,9	41,1	25,2	15,4	6,2
Asam Linoleat	C18:2	8,6	19,8	34,7	63,1	2,4	1,6
Asam Linolenat	C18:3	0,3	9,21	0,3	0,2	-	-
Asam Arakidat	C20:0	0,4	0,62	0,0	0,3	0,1	-
Asam Gadroleat	C20:1	0,2	1,41	0,2	0,2	-	-

Kandungan utama PKO adalah asam laurat dan asam miristat yang sudah sesuai dengan rentang panjang rantai hidrokarbon avtur, sehingga tidak diperlukan cracking.

^[1] Khan dkk. (2019). Journal of Analytical and Applied Pyrolysis, 140(January), 1–24.

^[2] Noriega dkk. (2020). Chinese Journal of Chemical Engineering, 28(6), 1670–1683.

^[3] Orsavova, dkk. (2015). International Journal of Molecular Sciences, (16), 12871–12890.

^[4] Mancini dkk. (2015)., *Molecules*, **20**(9), 17339–17361.

Katalis HDO

Aktivitas hidrogenasi **Ni>Co**Aktivitas hidrogenasi **Pt>Pd>Ni**

Pt dan Pd jarang digunakan karena mahal, Ni lebih sering digunakan karena lebih murah dan melimpah

Mo juga terbukti efektif dalam proses hydrotreating

CoMo/Al₂O₃ dan **NiMo/Al₂O₃** adalah katalis yang umum digunakan untuk HDO^[1]

Katalis **CoMo** menghasilkan produk **olefin** karena aktivitas **hidrogenasi** yang lebih **rendah**^[2]

Katalis NiW lebih menyukai jalur DCO dan DCO2[2]

Katalis tidak berpenyangga => selektivitas HDO ↓[3]

Deaktivasi katalis HDO disebabkan oleh :

- 1. **Kenaikan T** (reaksi HDO bersifat eksotermal)^[4]
- 2. **Tekanan uap air** (produk samping HDO)^[5]
- 3. Penutupan pori oleh deposit karbon^[6]
- [1] Mohammad dkk. (2013): Renewable and Sustainable Energy Reviews, **22**(X), 121–132.
- [2] Toba dkk. (2011): Catalysis Today, 164(1), 533-537.
- [3] Zhang dkk. (2014): "Applied Catalysis B, Environmental," **150–151**, 238–248.

- [4] Ancheyta. (2016): John Wiley and Sons, Hoboken.
- [5] Laurent dan Delomn. (1994): Studies in Surface Science and Catalysis, **88**(C), 459–466.
- [6] Jenistova dkk . (2017). Chemical Engineering Journal.

Tujuan Penelitian

Membuat model matematika proses dan melakukan optimasi parameter operasi untuk reaksi HDO asam laurat secara kontinu pada reaktor pipa yang dioperasikan secara adiabatik.

Sasaran Penelitian

- 1. Membuat model matematika simulasi proses HDO asam laurat (LA) dalam reaktor pipa yang dioperasikan secara adiabatik menggunakan software Python.
- 2. Mengevaluasi konsentrasi LA umpan agar mencapai konversi dan selektivitas HDO yang optimal tanpa melebihi batas temperatur desain reaktor
- 3. Mengevaluasi temperatur umpan agar mencapai konversi dan selektivitas HDO yang optimal
- 4. Mengevaluasi kecepatan ruang reactor (LHSV) agar mencapai konversi HDO yang optimal

Ruang Lingkup Penelitian

- 1. Umpan yang digunakan pada simulasi proses HDO adalah asam laurat
- 2. Katalis yang digunakan pada simulasi proses HDO adalah NiMo/Al₂O₃.
- 3. Tekanan operasi adalah 30 bar
- 4. Rasio H_2 /asam laurat = 150 v/v (Nm³ gas H_2 / m³ asam laurat cair)
- 5. Dimensi reaktor yang digunakan adalah reaktor pipa *hydrotreater* RU II-Dumai dengan L = 3 m, D = 1,6 m, dan $V = 6 \text{ m}^3$ (Subagjo dan Ulfah, 2013).
- 6. Reaktor pipa beroperasi secara ideal

Bahasa pemrograman:

Tahapan Pemodelan

Gambar 2.1 Tahap simulasi reaktor

Instalasi Software dan Pengumpulan Data

Data literatur: Data kinetika reaksi, data kapasitas panas senyawa, data panas reaksi

Software:

Pengolahan Data dan Pemodelan Reaktor

Neraca massa dan energi reaktor:

$$u\left(\frac{TP_0}{T_0P}\right)\frac{dC_i}{dz} = k_iC_i$$

$$\rho C_{p} u \left(\frac{T P_{0}}{T_{0} P} \right) \frac{dT}{dz} = \sum (-\Delta H_{ri}) |r_{i}|$$

Dasar Pemodelan (1)

Jurnal Referensi

Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-020-01046-9

ORIGINAL ARTICLE

The conversion of coconut oil into hydrocarbons within the chain length range of jet fuel

Ruana D. Brandão 1,2 • Antônio M. de Freitas Júnior 1,3 • Silvia C. Oliveira 1 • Paulo A. Z. Suarez 1 • Marcos J. Prauchner 1 [6]

Received: 30 April 2020 / Revised: 7 September 2020 / Accepted: 2 October 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Data Referensi

Tabel 2.1 Data indeks keasamaan pada beberapa kondisi operasi

No	Perlakuan	Indeks Keasaman	Konversi
1	Asam Laurat	280,8	
2	400 C, 1 jam	0,3	0,9989
3	340 C, 1 jam	17,8	0,9366
4	340 C, 3 jam	0,3	0,9989
5	280 C, 3 jam	19,0	0,9323
6	280 C, 6 jam	0,3	0,9989

Tabel 2.2 Data perolehan pada beberapa kondisi operasi

No	Perlakuan	Yield C12 (%)	Yield C11 (%)	Yield <c11 (%)<="" th=""></c11>
1	400 °C, 1 jam	26,9	53,6	17,8
2	340 °C, 3 jam	35,2	61,5	2,4
3	280 °C, 6 jam	41,8	54,4	2,7

Dasar Pemodelan (2)

Model Kinetika

Gambar 2.2 Model reaksi deoksigenasi LA yang digunakan

Data kapasitas panas (Cp) senyawa, panas reaksi (ΔH_R), dimensi reaktor

Model Reaktor

Neraca Massa Reaktor:

$$u\frac{dC_i}{dz} = k_i C_i \tag{2.1}$$

Neraca Energi Reaktor:

$$\rho C_{p} u \frac{dT}{dz} = \sum (-\Delta H_{ri})|r_{i}| \qquad (2.2)$$

Variasi Percobaan

KONTROL

Katalis

NiMo/Al₂O₃

Dimensi reaktor

 $(L = 3 \text{ m}, V = 6 \text{ m}^3, D = 1.6 \text{ m})$

Tekanan = 30 bar

 H_2 /feed = 300 v/v

TERIKAT

Konversi asam laurat

 $X_{HDO} = \frac{C_{LA \text{ umpan}} - C_{LA \text{ produk}}}{C_{LA \text{ umpan}}} \times 100\%$

Selektivitas HDO

 $S_{HDO} = \frac{\overline{C_{dodekana}}}{C_{LA\ umpan} - C_{LA\ produk}} \times 100\%$

Profil temperatur reaktor

BEBAS

T umpan

280 - 340 °C (interval: 10 °C)

Fraksi massa LA umpan

5, 10 – 100%-wt LA (interval: 10%-wt)

<u>LHSV</u>

1/6, 1/4, 1/3, 1/2, 2/3, 5/6, 1 jam⁻¹

Model Reaktor (1)

Tabel 3.1 Properti fisik dan kimia senyawa organik

			Cp liq	ΔH_f			
Senyawa	$Cp = A + BT + CT^2 + DT^3$		$\left(\frac{J}{mol \cdot K}\right)$	$\Delta H_f =$	$\Delta H_f = A + BT + CT^2 \left(\frac{kJ}{mo}\right)$		
	Α	В	С	D	Α	В	C
Asam laurat	50,80	2,258	-4,966 x10 ⁻³	4,377 x10 ⁻⁶	-582,24	-0,2311	1,255 x10 ⁻⁴
n-Dodekana	84,49	2,036	-5,098 x10 ⁻³	5,218 x10 ⁻⁶	-225,66	-0,2598	1,382 x10 ⁻⁴
n-Undekana	94,17	1,781	-4,630 x 0 ⁻³	4,968 x10 ⁻⁶	-208,56	-0,2469	1,320 x10 ⁻⁴

Tabel 3.3 Data berat molekul senyawa

Senyawa	MW (kg/kmol)
Asam laurat	200,3
n-Dodekana	184,3
n-Undekana	170,3
Hidrogen	2,00
Air	18,02
Karbon dioksida	44,01

Tabel 3.2 Properti fisik dan kimia senyawa anorganik

		$\Delta H_{f,298}$				
Senyawa		$\frac{\mathrm{Cp^{ig}}}{\mathrm{R}} = \mathrm{A} + \mathrm{BT} + \mathrm{CT^{-2}}$				
	Α					
Hidrogen	3,249	0,422 x 10 ⁻³	0,083 x 10 ⁵	0		
Air	3,470	1,45 x 10 ⁻³	0,121 x10 ⁵	-241.818		
CO2	5,457	1,045 x 10 ⁻³	-1,157 x 10 ⁵	-393.509		

Model Reaktor (2)

Tabel 3.4 Parameter kinetika reaksi deoksigenasi LA

Parameter		Nilai	Satuan
NiMo/Al ₂ O ₃ ^[1]	A_1	0,027	S ⁻¹
	Ea₁	24,24	kJ/mol
	A_2	0,708	S ⁻¹
	Ea ₂	38,08	kJ/mol
Pt/ZIF ^[2]	A_1	0,027	S ⁻¹
	Ea₁	24,24	kJ/mol
	A_2	0,708	S ⁻¹
	Ea ₂	38,08	kJ/mol

Tabel 3.5 Daftar variabel kontrol

Parameter	Nilai	Satuan
Panjang reaktor	3	m
Diameter reaktor	1,6	m
Volume reaktor	6	m³
Tekanan	30	bar
H ₂ / Asam laurat	300	Nm ³ /m ³

Tabel 3.6 Daftar variabel terikat

Parameter	Perhitungan
Temperatur reaktor	(berdasarkan neraca energi)
Konversi LA	$X_{LA} = \frac{C_{LA \text{ umpan}} - C_{LA \text{ produk}}}{C_{LA \text{ umpan}}} \times 100\%$
Selektivitas HDO	$S_{\rm HDO} = \frac{C_{\rm DD}}{C_{\rm LA\; umpan} - C_{\rm LA\; produk}} \times 100\%$
Perolehan	$Perolehan = X_{LA} \times S_{HDO} \times 100\%$

[2] Yang dan Carreon (2017): ACS Applied Material and Interfaces, 9, 31993-32000

^[1] Brandao,dkk. (2020): Biomass Conversion and Biorefinery, 11, 837-847

Model Reaktor (3)

Keterangan subskrip: LA = Asam laurat

CO2 = Karbon dioksida

DD = Dodekana

UD = Undekana

H2 = Hidrogen

H2O = Air

Neraca Massa Reaktor

$$u\frac{dC_{LA}}{dz} = -(k_1 + k_2)C_{LA}$$
 (3.1)

 $u\frac{dC_{DD}}{dz} = k_1 C_{LA} \tag{3.2}$

 $u\frac{dC_{UD}}{dz} = k_2 C_{LA} \tag{3.3}$

 $u \frac{dC_{H2}}{dz} = -(3k_1)C_{LA}$ (3.4)

 $u\frac{dC_{H2O}}{dz} = 2k_1C_{LA} \tag{3.5}$

 $u\frac{dC_{CO2}}{dz} = k_2 C_{LA}$ (3.6)

Neraca Energi Reaktor

$$\rho C_{p} u \frac{dT}{dz} = \sum (-\Delta H_{ri})|r_{i}| \qquad (3.7)$$

Keterangan variabel:

 ρ = Massa jenis senyawa di reaktor (kg/m³)

 C_p = Kapasitas panas (J/kg K)

u = Laju alir linear fluida dalam reaktor (m/s)

T = Temperatur reaktor pada posisi z (K)

 ΔH_{ri} = Perubahan entalpi reaksi i (J/mol)

r_i = Laju reaksi i (mol/L.s)

Pengaruh Fraksi Massa LA Umpan (1)

Terhadap temperatur reaktor

Gambar 3.2 Profil temperatur di sepanjang reaktor pada berbagai variasi fraksi massa LA umpan pada temperatur umpan 300 °C

- Reaksi deoksigenasi asam lemak sangat eksotermis → temperatur meningkat sangat tinggi
- Peningkatan konsentrasi LA → peningkatan hasil panas reaksi → peningkatan temperatur reaktor
- Batas konsentrasi maksimal LA umpan:
 - **NiMo/alumina : 30%-wt**; T = 661 K
 - **Pt/ZIF** : **25%-wt**; T = 658 K

Pengaruh Fraksi Massa LA Umpan (2)

Terhadap konversi LA dan selektivitas HDO

Gambar 3.3 Profil konversi LA pada berbagai variasi fraksi massa LA umpan pada temperatur umpan 300 °C

- Peningkatan konsentrasi LA → peningkatan temperatur reaksi → Peningkatan konstanta laju reaksi → peningkatan konversi LA
- Peningkatan konsentrasi LA → penurunan selektivitas HDO
- Menunjukkan pada kondisi operasi yang dipilih, konstanta laju reaksi DCO₂ > HDO
- Sehingga, peningkatan laju reaksi DCO₂ akan lebih besar dari HDO ketika konsentrasi LA umpan ditingkatkan

Pengaruh Fraksi Massa LA Umpan (4)

Terhadap perolehan dodekana

- Baseline: perolehan dodekana tiap katalis pada konsentrasi LA umpan 50%-wt
- > Perolehan dodekana terbesar didapat pada:
 - NiMo/alumina: 30%-wt LA
 - Pt/ZIF : 5%-wt LA
- Meskipun 5%-wt LA menghasilkan perolehan dodekana terbaik untuk katalis Pt/ZIF, perbedaannya hanya bernilai 6% dibanding perolehan 25%-wt LA (batas LA umpan maksimum)

Gambar 3.4 Kurva sensitivitas total produk dodekana terhadap fraksi massa LA umpan pada temperatur umpan 300°C LHSV 1 jam⁻¹

Pengaruh T_{feed} & LHSV: NiMo/alumina (1)

Terhadap temperatur reaktor

Gambar 3.5 Pengaruh variasi temperatur umpan dan LHSV terhadap temperatur reaktor pada fraksi massa LA umpan 30%

- Peningkatan LHSV → penurunan temperatur reaktor
- Peningkatan temperatur umpan → peningkatan temperatur reaktor
- Peningkatan temperatur umpan lebih berdampak terhadap peningkatan temperatur reaktor daripada penurunan LHSV

Tabel 3.7 Batasan kondisi operasi reaksi HDO

Temperatur umpan (K)							
553	563	573	583	593	603	613	
662.61	668.08	673.82	679.80	686.00	692.41	698.99	
662.60	668.08	673.82	679.80	686.00	692.41	698.99	
662.54	668.05	673.81	679.80	686.00	692.40	698.99	
661.27	667.33	673.40	679.57	685.88	692.34	698.96	
656.59	664.28	671.45	678.35	685.12	691.88	698.68	
648.52	658.42	667.30	675.46	683.16	690.56	697.81	
638.99	650.80	661.41	671.03	679.90	688.21	696.14	
	662.61 662.60 662.54 661.27 656.59 648.52	662.61 668.08 662.60 668.08 662.54 668.05 661.27 667.33 656.59 664.28 648.52 658.42	553 563 573 662.61 668.08 673.82 662.60 668.08 673.82 662.54 668.05 673.81 661.27 667.33 673.40 656.59 664.28 671.45 648.52 658.42 667.30	553 563 573 583 662.61 668.08 673.82 679.80 662.60 668.08 673.82 679.80 662.54 668.05 673.81 679.80 661.27 667.33 673.40 679.57 656.59 664.28 671.45 678.35 648.52 658.42 667.30 675.46	553 563 573 583 593 662.61 668.08 673.82 679.80 686.00 662.60 668.08 673.82 679.80 686.00 662.54 668.05 673.81 679.80 686.00 661.27 667.33 673.40 679.57 685.88 656.59 664.28 671.45 678.35 685.12 648.52 658.42 667.30 675.46 683.16	553 563 573 583 593 603 662.61 668.08 673.82 679.80 686.00 692.41 662.60 668.08 673.82 679.80 686.00 692.41 662.54 668.05 673.81 679.80 686.00 692.40 661.27 667.33 673.40 679.57 685.88 692.34 656.59 664.28 671.45 678.35 685.12 691.88 648.52 658.42 667.30 675.46 683.16 690.56	

Pengaruh T_{feed} & LHSV : NiMo/alumina (2)

Terhadap konversi LA dan selektivitas HDO

Gambar 3.6 Kurva sensitivitas perubahan temperatur umpan dan LHSV terhadap (a) konversi LA dan (b) selektivitas HDO pada fraksi massa LA umpan 30%

- Peningkatan temperatur → peningkatan konstanta laju reaksi → peningkatan konversi LA
- Peningkatan temperatur → lebih memilih jalur reaksi DCO₂ → selektivitas HDO menurun
- Peningkatan LHSV → penurunan konversi LA

LHSV (jam-1)

Peningkatan LHSV → penurunan selektivitas HDO

Pengaruh T_{feed} & LHSV: NiMo/alumina (3)

Terhadap perolehan dodekana

LHSV (jam-1)

▶ Baseline: Temperatur umpan 310 °C
 LHSV ½ jam⁻¹

- Perolehan dodekana terbesar didapat pada temperatur umpan 280°C LHSV 1/6 iam-1
- Perolehan dodekana PER JAM terbesar didapat pada temperatur umpan 300°C LHSV 1 jam-1

Gambar 3.7 Pengaruh variasi temperatur umpan dan LHSV terhadap (a) total perolehan dodekana dan (b) total perolehan dodekana per jam pada fraksi massa LA umpan 30%

Perbandingan dengan Pt/ZIF (1)

Terhadap konversi LA dan selektivitas HDO

Gambar 3.8 Pengaruh variasi temperatur umpan terhadap (a) konversi LA dan (b) selektivitas HDO

- Peningkatan temperatur → peningkatan konstanta laju reaksi → peningkatan konversi LA
- Peningkatan temperatur → lebih memilih jalur reaksi DCO₂ → selektivitas HDO menurun
- Konversi LA menggunakan NiMo/alumina relatif lebih tinggi dibanding Pt/ZIF
- Selektivitas HDO menggunakan NiMo/alumina relatif lebih tinggi dibanding Pt/ZIF

Perbandingan dengan Pt/ZIF (2)

Terhadap perolehan dodekana

Gambar 3.9 Pengaruh variasi temperatur umpan terhadap total perolehan dodekana per jam

- Baseline: NiMo/alumina; 30%-wt LA, T_{feed} 310 °C; LHSV ½ jam⁻¹
- Perolehan dodekana PER JAM terbesar menggunakan Pt/ZIF didapat pada temperatur umpan 280°C
- Namun, perolehan dodekana per jam menggunakan Pt/ZIF masih jauh lebih rendah dibanding NiMo/alumina pada kondisi optimal

Kesimpulan

- 1. Reaktor PFR adiabatik untuk menjalankan reaksi HDO asam laurat berhasil disimulasikan menggunakan software Python
- 2. Fraksi massa asam laurat maksimal yang dapat diumpankan ke dalam reaktor sebelum temperatur reaktor melebihi batas desain adalah 30%, sekaligus menghasilkan perolehan dodekana terbesar.
- 3. Kondisi operasi untuk mencapai reaksi HDO dengan konversi dan selektivitas yang optimal adalah sebagai berikut:
 - Temperatur umpan 300 °C
 - LHSV 1 jam⁻¹

TERIMA KASIH

BACKUP SLIDE

Tahapan Penelitian & Jadwal Kerja

Studi Literatur dan Pengumpulan Data Instalasi Python, pengumpulan data, pemodelan reaktor Pembuatan Program
Penulisan program, pengujian program

Simulasi ReaktorPerlakuan variasi kondisi operasi, analisis performa reaktor HDO

Tahap awal	Pemodelan reaktor	Penulisan program	Pengujian program	Simulasi dan Pemaparan hasil
Instalasi Python	Pengolahan data kinetika HDO	1. Pembelajaran Python	1. Pengecekan program	1. Perlakuan variasi simulasi
 Pengumpulan data literatur (kinetika reaksi HDO LA, Cp senyawa, ΔH_R, Mr senyawa) 	2. Pembuatan nerac massa dan energi reaktor	2. Penulisan model	2. Modifikasi progra	2. Analisis performa reaktor 3. Pemaparan hasil
(Target: Data sudah lengkap)	(Target: Model reaktor selesai)	(Target	: Program selesai)	(Target: Penelitian selesai)
Minggu 1	Minggu 2 - 3	Minggu 2 - 7	Minggu 7(2) - 8(15)	Minggu 7 - 15

Model Reaktor (1)

Penentuan Konstanta Laju Reaksi

Tabel 3.1 Penentuan order dan konstanta laju reaksi total

T (°C)	t (jam)	K (M ^{0,5} jam ⁻¹)	K (jam ⁻¹)	K (M ⁻¹ jam ⁻¹)
280	3	1,035	0,898	1,044
280	6	0,676	1,140	35,417
Nilai k rata rata (T = 280 °C)	0,856	1,019	18,230
340	1	3,139	2,758	3,358
340	3	1,353	2,281	70,833
Nilai k rata rata (T = 340 °C)	2,246	2,519	37,096

$$K = (k_1 + k_2) (3.1)$$

$$k_1 = \frac{\text{yield}_{DD}}{\text{yield}_{UD} + \text{yield}_{DD}} \cdot K \quad (3.2)$$

$$k_2 = \frac{\text{yield}_{\text{UD}}}{\text{yield}_{\text{UD}} + \text{yield}_{\text{DD}}} \cdot K$$
 (3.3)

Tabel 3.2 Nilai konstanta laju reaksi utama dan samping

T (°C)	K (jam ⁻¹)	k₁ (jam ⁻¹)	k ₂ (jam ⁻¹)
340	2,519	0,915	1,604
280	1,019	0,443	0,576

Tabel 3.3 Nilai In(k) dan 1/T reaksi utama dan samping

T (C)	k₁		k ₂	
	In(k ₁)	1/T x 10 ³	In(k ₂)	1/T x 10 ³
340	-8,28	1,63	-7,72	1,63
280	-9,00	1,81	-8,74	1,81

Model Reaktor (2)

Regresi linear: $ln(k) = ln(A_0) - \frac{Ea}{R} \cdot \frac{1}{T}$

Tabel 3.4 Parameter kinetika reaksi deoksigenasi LA

Parameter		Nilai	Satuan
	A ₁	0,027	S ⁻¹
k ₁	Ea₁	24,24	kJ/mol
	A_2	0,708	S ⁻¹
k ₂	Ea ₂	38,08	kJ/mol

Model Reaktor (3)

Validasi Parameter Kinetika Reaksi

Tabel 3.5 Perbandingan nilai konversi LA dan selektivitas HDO dari data referensi dan hasil permodelan

No Perlak	B. 1.1	Konversi asam laurat (%)			Selektivitas HDO (%)		
	Perlakuan	Referensi	Model	%Error	Referensi	Model	%Error
1	340 C, 3 jam	99,89	99,89	0,0	36,40	36,37	0,1
2	280 C, 6 jam	99,89	99,89	0,0	43,45	43,42	0.1

- Validasi dilakukan dengan membandingkan nilai konversi dan selektivitas pada kondisi 280 °C (6 jam) dan 320 °C (3 jam)
- Nilai error bernilai sangat kecil (<5%) sehingga parameter kinetika dapat digunakan.

Perbandingan dengan Pt/ZIF (1)

Terhadap temperatur reaktor

Peningkatan temperatur umpan → peningkatan temperatur reaktor

Gambar 3.8 Pengaruh variasi temperatur umpan terhadap temperatur reaktor

SIMULASI AWAL

ASUMSI PERMODELAN

- Dalam reaksi tidak hanya terjadi HDO, namun juga terjadi DCO2 yang saling bersaingan
- *Cracking* pada temperatur 280 340 °C, hanya sekitar 2% dan dapat diabaikan.

Gambar 6. Model reaksi HDO asam laurat

DATA FISIK DAN KIMIA

Tabel 6. Data kimia senyawa kimia organik

		Ср					ΔH_f		
Senyawa	$Cp = A + BT + CT^{2} + DT^{3} + ET^{4}(\frac{J}{mol \cdot K})$						$\Delta H_f = A + BT + CT^2 \left(\frac{kJ}{mol}\right)$		
	Α	В	С	D	Е	Α	В	С	
Asam Laurat	-4,295	1,23730	-8,2209 x 10 ⁻⁴	2,768 x 10 ⁻⁷	-3,8871 x 10 ⁻¹¹	-582,24	-0,23113	1,2546 x 10 ⁻⁴	
n-Dodekana	71,498	0,72559	1,1553 x 10 ⁻⁴	-4,12 x 10 ⁻⁷	1,4141 x 10 ⁻¹⁰	-225,66	-0,25979	1,3823 x 10 ⁻⁴	
n-Undekana	125,21	0,31401	7,9137 x 10 ⁻⁴	-9,141 x 10 ⁻⁷	2,7568 x 10 ⁻¹⁰	-208,56	-0,24686	1,3203 x 10 ⁻⁴	

DATA FISIK DAN KIMIA (2)

Tabel 7. Data kimia senyawa anorganik

		$\Delta H_{f,298}$		
Senyawa		J/mol		
	А	В	С	
Hidrogen	3,249	0,422 x 10 ⁻³	0,083 x 10 ⁵	0
Air	3,47	1,45 x 10 ⁻³	0,121 x10 ⁵	-241818
CO2	5,457	1,045 x 10 ⁻³	-1,157 x 10 ⁵	-393509

Tabel 8. Data berat molekul

Senyawa	Rumus Molekul	MW (kg/kmol)
Asam laurat	CH ₃ (CH ₂) ₁₀ COOH	200,321
n-Dodekana	$C_{12}H_{26}$	184,322
n-Undekana	C ₁₁ H ₂₄	170,295
Hidrogen	H_2	2
Air	H_2O	18,015
Karbon dioksida	CO_2	44,01

PENGOLAHAN DATA HDO

Menghitung Konversi

Konversi dihitung dengan menggunakan persamaan (1)

$$Konversi = 1 - \frac{Indeks\ Keasaman\ Akhir}{Indeks\ Keasaman\ Awal}$$

(1)

Tabel 9. Data nilai indeks keasaman dan konversi masing masing kondisi operasi.

No	Perlakuan	Indeks Keasaman	Konversi
1	Asam Laurat	280,8	
2	400 C, 1 h	0,3	0,9989
3	340 C, 1 h	17,8	0,9366
4	340 C, 3 h	0,3	0,9989
5	280 C, 3 h	19,0	0,9323
6	280 C, 6 h	0,3	0,9989

PENGOLAHAN DATA HDO (2)

Mencari Orde Reaksi

Orde reaksi dicari dengan menggunakan cara tabulasi, yaitu dengan membandingkan nilai konstanta laju reaksi pada waktu reaksi yang berbeda dalam temperatur yang sama untuk masing masing orde.

Untuk mencari nilai konstanta laju reaksi deoksigenasi asam laurat (K) digunakan persamaan (2)

$$K = \frac{\ln(1 - X_{LA})}{t} \text{ (orde 1)}$$

(2)

Tabel 10. Hasil tabulasi nilai K pada berbagai orde reaksi

T (C)	T(jam)	K (M ^{0,5} jam ⁻¹)	K (jam ⁻¹)	K (M ⁻¹ jam ⁻¹)
280	3	1,035	0,898	1,044
280	6	0,676	1,140	35,417
Nilai k rata rata	(T = 280 C)	0,856	1,019	18,230
340	1	3,139	2,758	3,358
340	3	1,353	2,281	70,833
Nilai k rata rata	(T = 340 C)	2,246	2,519	37,096

Diperoleh orde reaksi = 1

PENGOLAHAN DATA HDO (3)

Model persamaan reaksi

Karena orde reaksi = 1, maka model persamaan reaksi ditunjukkan dalam persamaan 3,4,5,6,7, dan 8

$$r_{LA} = \frac{dC_{LA}}{dt} = -(k_1 + k_2)C_{LA}$$

$$r_{DD} = \frac{dC_{DD}}{dt} = k_1 C_{LA}$$

$$r_{UD} = \frac{dC_{UD}}{dt} = k_2 C_{LA}$$

$$r_{H2} = \frac{dC_{H2}}{dt} = -(3k_1)C_{LA}$$

$$r_{H2O} = \frac{dC_{H2O}}{dt} = (2k_1)C_{LA}$$

$$r_{CO2} = \frac{dC_{CO2}}{dt} = k_2 C_{LA}$$

Keterangan subskrip:

LA = Asam Laurat

DD = Dodekana

UD = Undekana

H2 = hydrogen

CO2 = Karbon dioksida

H2O = Air

PENGOLAHAN DATA HDO (4)

Menghitung k₁ dan k₂

Konstanta laju reaksi HDO (k₁) dan konstanta laju reaksi DCO2 (k₂) dihitung dengan menggunakan persamaan (10) dan (11)

$$K = (k_1 + k_2)$$

(9)

$$k_1 = \frac{yield_{DD}}{yield_{UD} + yield_{DD}} \cdot K$$

(10)

$$k_2 = \frac{yield_{UD}}{yield_{UD} + yield_{DD}} \cdot K$$

(11)

Tabel 11. Data hasil perhitungan konstanta laju reaksi

T (°C)	t (jam)	X _{LA}	Yield C12 (%)	Yield C11 (%)	K (jam ⁻¹)	k ₁ (jam ⁻¹)	k ₂ (jam ⁻¹)
400	1	0,9989	26,9	53,6	6,482	2,286	4,555
340	3	0,9989	35,2	61,5	2,519	0,915	1,604
280	6	0,9989	41,8	54,4	1,019	0,443	0,576

PENGOLAHAN DATA HDO (5)

Mencari Energi Aktivasi (Ea) dan konstanta Arrhenius

Energi aktivasi dan konstanta Arhenius dapat dicari dari hubungan konstanta laju reakis dengan temperatur dengan menggunakan persamaan 12 dan 13

$$k = A_0 \exp\left(-\frac{Ea}{RT}\right)$$

(12)

$$lnk = lnA_0 - \frac{Ea}{R} \cdot \frac{1}{T}$$

(13)

Dengan Ea adalah energi aktivasi (J/mol), A₀ adalah konstanta Arrhenius (s⁻¹), dan R adalah konstanta gas ideal. Dengan mengalurkan lnk terhadap 1/T, lalu regresi linear data, diperoleh persamaan 14 dan 15

$$y = mx + c$$

(14)

$$m = -\frac{Ea}{R}$$
; $c = lnA_0$

(15)

Sehingga, nilai Konstanta Arrhenius dan energi aktivasi dapat diperoleh dengan persamaan 16 dan 17

$$A_0 = \exp(c)$$

(16)

$$Ea = -(m \cdot R)$$

(17)

PENGOLAHAN DATA HDO (6)

Mencari Energi Aktivasi (Ea) dan konstanta Arrhenius (2)

Tabel 12. Data pengolahan untuk mencari Ea dan A₀

T (00)		k	1	k_2		
T (°C)	t (jam)	Ink	1/T x 10 ³	lnk	1/T x 10 ³	
400	1	-7,36	1,49	-6,67	1,49	
340	3	-8,28	1,63	-7,72	1,63	
280	6	-9,00	1,81	-8,74	1,81	

Tabel 13. Parameter kinetika reaksi HDO asam laurat

Parameter kinetika		Satuan	Nilai
le.	A ₁	s ⁻¹	1,0909
К ₁	Ea₁	J/mol	42036
	A_2	s ⁻¹	16,145
k ₂	Ea ₂	J/mol	53126

Gambar 7 grafik hubungan lnk₁ terhadap 1/T

Gambar 8 grafik hubungan Ink₂ terhadap 1/T

PERSAMAAN DI REAKTOR

Neraca Massa Reaktor

Neraca massa reactor ditunjukkan dengan persamaan 18-23

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{LA}}{dz} = -(k_{1} + k_{2})C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{DD}}{dz} = k_{1}C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{UD}}{dz} = k_{2}C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{H2}}{dz} = -(3k_{1})C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{H20}}{dz} = 2k_{1}C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{H20}}{dz} = 2k_{1}C_{LA}$$

$$u\left(\frac{TP_{0}}{T_{0}P}\right)\frac{dC_{CO2}}{dz} = k_{2}C_{LA}$$

$$(23)$$

PERSAMAAN DI REAKTOR (2)

Neraca Energi Reaktor

Neraca energi reactor ditunjukkan dengan persamaan 24

$$\rho C_p u \left(\frac{TP_0}{T_0 P} \right) \frac{dT}{dz} = \sum (-\Delta H_{ri}) |r_i|$$

$$\rho = (C_{LA} \cdot Mr_{LA}) + (C_{H2} \cdot Mr_{H2}) + (C_{DD} \cdot Mr_{DD}) + (C_{UD} \cdot Mr_{UD}) + (C_{H2O} \cdot Mr_{H2O}) + (C_{CO2} \cdot Mr_{CO2})$$

$$C_{total} = C_{LA} + C_{H2} + C_{DD} + C_{UD} + C_{H2O} + C_{CO2}$$

$$C_{p} = \left(\frac{\left(C_{p,LA} \cdot C_{LA} / M \, r_{LA}\right) + \left(C_{p,H_{2}} \cdot C_{H2} / M \, r_{H2}\right) + \left(C_{p,DD} \cdot C_{DD} / M \, r_{DD}\right) + \left(C_{p,UD} \cdot C_{UD} / M \, r_{UD}\right) + \left(C_{p,H_{2}O} \cdot C_{H_{2}O} / M \, r_{H_{2}O}\right) + \left(C_{p,CO2} \cdot C_{CO2} / M \, r_{CO2}\right)\right) / C_{total}$$

PERSAMAAN DI REAKTOR (3)

Keterangan

```
Keterangan :  \rho = \text{Massa jenis campuran senyawa di reaktor (kg/m}^3)   C_p = \text{Kapasitas panas (J/kg K)}   u = \text{Laju alir linear fluida dalam reaktor (m/s)}   T_0 = \text{Temperatur umpan masuk reaktor (K)}   T = \text{Temperatur reaktor pada posisi z (K)}   P_0 = \text{Tekanan umpan masuk reaktor (Pa)}   P = \text{Tekanan reaktor pada posisi z (Pa)}   \Delta H_{ri} = \text{Perubahan entalpi reaksi i (J/mol)}   r_i = \text{Laju reaksi i (mol/L.s)}
```


MODEL REAKTOR PIPA BERDAUR ULANG YANG BEROPERASI SECARA ADIABATIK

Model Reaktor

Gambar 9. Skema reactor pipa daur ulang adiabatik

Dengan RR adalah rasio daur ulang. Rasio umpan = Nm³ H₂ / m³ Asam Laurat. Dengan umpan awal (sebelum dicampur dengan aliran daur ulang) hanya mengandung gas hidrogen dan asam laurat.

PENULISAN PROGRAM PADA PYTHON

Masukkan scipy, numpy, dan matplotlib.pyplot

Buat variable parameter kinetika, variable tetap, variable bebas dan data berat molekul

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
```

```
#konstanta
R = 8.314 # Konstanta gas ideal (J/mol K)
rhoLA = 880 #Massa jenis asam laurat (kg/m^3)
#Parameter kinetika
Aox = np.array([0.5887, 8.696])#Nilai konstanta arrhenius (s^{-1})
Eax = np.array([38887,49972]) #Nilai energi aktivasi (J/mol)
#variabel tetap
L = 3 \# L = panjang reaktor (m)
Po = 3000000  #Tekanan awal (Pa)
Rasio = 150 #rasio h2/umpan (Nm3/m^3)
#variabel bebas
To = 350+273 #Temperatur awal masuk reaktor (K)
tpfr = 1 #waktu tinggal di reaktor (jam)
RR = 4 #Rasio Recycle
#Data berat molekul (kg/kmol)
MrLA = 200.321
MrDD = 184.322
MrUD = 170.295
MrH2 = 2
MrH20 = 18.015
MrCO2 = 44.01
```

PENULISAN PROGRAM PADA PYTHON (2)

Buat fungsi konstanta laju reaksi (fungsi temperatur dari Ea dan A₀)

Buat fungsi dengan variabel inputnya konsentrasi atau temperatur dan panjang reaktor. Didalam fungsinya terdapat penentuan variabel integrasi, perhitungan nilai k, Cp, ΔH_f , β , laju alir linear, persamaan diferensial neraca massa dan persamaan diferensial neraca energi

```
def k(T,Ea,Ao) :
    #T dalam Kelvin
    K = Ao*np.exp(-Ea/(R*T))
    return (K)
```

```
def r(C,z):
    #penentuan variabel integrasi
    CLA = C[0]
    CDD = C[1]
    CUD = C[2]
    CH2 = C[3]
    CH2O = C[4]
    CCO2 = C[5]
    T = C[6]

#perhitungan nilai k (s^-1)
    k1 = k(T,Eax[0],Aox[0])
    k2 = k(T,Eax[1],Aox[1])
```

PENULISAN PROGRAM PADA PYTHON (3)

Buat fungsi dengan variabel inputnya konsentrasi atau temperatur dan panjang reaktor. Didalam fungsinya terdapat penentuan variabel integrasi, perhitungan nilai k, Cp, ΔH_f , β , laju alir linear, persamaan diferensial neraca massa dan persamaan diferensial neraca energi

```
#perhitungan Cp #J/mol K
CpLA = (-4.295) + (1.2373*T) + ((-8.2209e-4)*T**2)
        +((2.768e-7)*T**3)+((-3.8871e-11)*T**4)
CpDD = (71.498) + (0.72559*T) + ((1.1553e-4)*T**2)
        +((-4.12e-7)*T**3)+((1.4141e-10)*T**4)
CpUD = (125.21) + (0.31401*T) + ((7.9137e-4)*T**2)
        +((-9.141e-7)*T**3)+((2.7568e-10)*T**4)
CpH2 = ((3.249) + ((0.422e-3)*T) + ((0.083e5)*T**(-2)))*R
CpH2O = ((3.47) + ((1.45e-3)*T) + ((0.121e5)*T**(-2)))*R
CpCO2 = ((5.457) + ((1.045e-3)*T) + ((-1.157e5)*T**(-2)))*R
#perhitungan dHf #J/mol
dHfLA = ((-582.24) + (-0.23113*T) + ((1.2546e-4)*T**2))*1000
dHfDD = ((-225.66) + (-0.25979*T) + ((1.3823e-4)*T**2))*1000
dHfUD = ((-208.56) + (-0.24686*T) + ((1.3203e-4)*T**2))*1000
dHfH2 = 0 + ((3.249*(T-298)) + (((0.422e-3)/2)*(T**2-298**2))
        +(-(0.083e5)*((1/T)-(1/298)))*R)
dHfH20 = -241818 + ((3.47*(T-298)) + (((1.45e-3)/2)*(T**2-298**2))
        +(-(0.121e5)*((1/T)-(1/298)))*R)
dHfCO2 = -393509 + ((5.457*(T-298)) + (((1.045e-3)/2)*(T**2-298**2)) \setminus
        +((1.157e5)*((1/T)-(1/298)))*R)
#perhitungan variabel beta dan laju alir linear
beta = T/To
u = L/(tpfr*3600) #laju alir linear (m/s)
#persamaan diferensial neraca massa
dCLAdz = -(k1+k2)*CLA/(beta*u)
dCDDdz = k1*CLA/(beta*u)
dCUDdz = k2*CLA/(beta*u)
dCH2dz = -(3*k1)*CLA/(beta*u)
dCH2Odz = (2*k1)*CLA/(beta*u)
dCCO2dz = k2*CLA/(beta*u)
Ctot = CLA+CDD+CUD+CH2+CH2O+CCO2 #mol/L
rho = ((CLA*MrLA)+(CDD*MrDD)+(CUD*MrUD)+(CH2*MrH2)\
        +(CH2O*MrH2O)+(CCO2*MrCO2)) #kg/m^3
Cp = ((CpLA*CLA/MrLA) + (CpDD*CDD/MrDD) + (CpUD*CUD/MrUD) + (CpH2*CH2/MrH2) \
      +(CpH2O*CH2O/MrH2O)+(CpCO2*CCO2/MrCO2))*1000/Ctot #J/kg K
dHHDO = ((dHfDD+(2*dHfH2O))-((3*dHfH2)+dHfLA)) #J/mol
dHDCO2 = ((dHfDD+dHfCO2)-(dHfLA)) #J/mol
#Persamaan diferensial neraca energi
dTdz = ((-dHHDO*k1*CLA) + (-dHDCO2*k2*CLA))*1000/(rho*Cp*u*beta)
return (dCLAdz, dCDDdz, dCUDdz, dCH2dz, dCH2Odz, dCCO2dz, dTdz)
```

PENULISAN PROGRAM PADA PYTHON (4)

Perhitungan konsentrasi umpan masuk reaktor (campuran aliran umpan dan produk daur ulang

```
#Konsentrasi umpan
CLAo = ((1*rhoLA/MrLA)*((Po/(R*To))/1000))/((Rasio*101325/)
        (1000*R*293))+(1*rhoLA/MrLA))#mol/L
CH2o = (Rasio*101325/(1000*R*293))*((Po/(R*To))/1000)/
       ((Rasio*101325/(1000*R*293))+(1*rhoLA/MrLA))*mol/L
#konstanta parameter kinetika masuk reaktor
k1x = k(To, Eax[0], Aox[0])
k2x = k(To, Eax[1], Aox[1])
#Konsentrasi umpan masuk reaktor
#dengan asumsi konversi asam laurat di reaktor adalah 100%
CLAox = CLAo*(1/(RR+1))
CDDox = ((k1x*CLAo)/(k1x+k2x))*(RR/(RR+1))
CUDox = ((k2x*CLAo)/(k1x+k2x))*(RR/(RR+1))
CH2ox = CH2o
CH2Oox = 0
CCO2ox = 0
```

Pembuatan sintaks untuk integrasi persamaan diferensial dengan odeint

```
#syntax untuk integrasi
#buat array rentang integrasi
zspan = 100 #jumlah rentang integrasi
z = np.linspace(0,L,zspan)
#konsentrasi awal masuk reaktor
Co = np.array([CLAox,CDDox,CUDox,CH2ox,CH2Oox,CCO2ox,To])
#Integrasi di dalam reaktor (konsentrasi dan temperatur)
C = odeint(r,Co,z)
```

PENULISAN PROGRAM PADA PYTHON (4)

Plotting profil temperatur, selektivitas, konversi, dan konsentrasi reaktan dan produk di sepanjang reaktor

```
#plot temperatur di sepanjang reaktor
plt.plot(z,C[:,6])
plt.xlabel('z (m)')
plt.ylabel('Temperatur (K)')
plt.title('Profil Temperatur di Sepanjang Reaktor')
plt.show()
#Plot konsentrasi asam laurat, dodekana dan undekana di sepanjang reaktor
ulan\sigma = 3
for i in range (ulang):
    plt.plot(z,10**3*(C[:,i]))
plt.xlabel('z(m)')
plt.ylabel('Konsentrasi (x 10^(-3) M)')
plt.legend(['C Asam laurat','C Dodekana','C Undekana'])
plt.title('Profil Konsentrasi di Sepanjang Reaktor')
plt.show()
#Plot Konversi Asam Laurat di sepanjang reaktor
KonvLA = np.zeros(zspan-1)
for i in range (zspan-1):
    KonvLA[i] = -(C[i+1,0]-C[0,0])*100/C[0,0]
plt.plot(z[0:(zspan-1)],KonvLA)
plt.xlabel('z (m)')
plt.ylabel('% Konversi Asam Laurat')
plt.title('Profil % Konversi Asam Laurat di Sepanjang Reaktor')
plt.show()
#Plot selektivitas HDO di sepanjang reaktor
SHDO = np.zeros(zspan-1)
for i in range (zspan-1):
    SHDO[i] = -(C[i+1,1]-C[0,1])*100/(C[i+1,0]-C[0,0])
plt.plot(z[0:(zspan-1)],SHDO)
plt.xlabel('z (m)')
plt.ylabel('% Selektivitas HDO')
plt.title('Profil % Selektivitas HDO di Sepanjang Reaktor')
plt.show()
```

CONTOH HASIL SIMULASI

Dengan temperatur umpan masuk reaktor = 623 K, rasio H2/umpan = 150 (Nm³ H₂/m³ Asam Laurat), Tekanan = 30 bar, Rasio Recycle = 4, LHSV= 1 jam⁻¹, panjang reaktor = 4m, Volume reaktor = 20 m³.

Gambar 10. Profil temperatur di sepanjang reaktor

Gambar 11. Profil konsentrasi di sepanjang reaktor

CONTOH HASIL SIMULASI (2)

Gambar 12. Profil % konversi asam laurat di sepanjang reaktor

Gambar 13. profil selektivitas HDO di sepanjang reaktor

VALIDASI MODEL

Model reaksi beserta data kinetika yang telah dibuat dibandingkan dengan nilai konversi dan distribusi produk pada jurnal referensi sesuai dengan kondisi operasi.

LAIN LAIN

KEROSIN VS AVTUR

Perbedaan avtur dengan kerosin :

Avtur lebih murni (refined) dibanding kerosin, lebih banyak syarat spesifikasi yang harus dipenuhi seperti titik beku, flash point, viskositas, kandungan sulfur, dan energi spesifik. Beberapa jenis avtur memiliki additives agar terbakar lebih sempurna, bersih dan efisien serta untuk mencegah terbentuknya es dan korosi.

RUTE PRODUKSI BIOAVTUR

ATJ (Alcohol to Jet)

Produksi jet fuel dari alcohol melalui proses dehidrasi, oligomerisasi, hidrogenasi dan fraksionasi.

Gambar 14. Proses Alcohol to Jet[1]

RUTE PRODUKSI BIOAVTUR

FT (Fischer-Tropsch)

Proses produksi hidrokarbon dari syngas

Gambar 15. Proses FT biomass to liquid^[1]

[1] Wang, W. C., dan Tao, L. (2016): Bio-jet fuel conversion technologies, *Renewable and Sustainable Energy Reviews*, **53**, 801–822...

MEKANISME HDO

Fatty alcohol akan bereaksi dengan fatty acid membentuk fatty ester atau bereaksi dengan hydrogen melalui rute HDO. Fatty ester sebagai senyawa intermediet yang akan melalui rute HDO. Semakin banyak fatty ester yang terbentuk, selektivitas alkana rantai genap akan semakin tinggi dibanding semakin banyak fatty acid yang terbentuk.

Gambar 16. Skema reaksi hidrodeoksigenasi refined rapeseed oil

MEKANISME HDO (2)

Gambar 17. Skema reaksi hidrodeoksigenasi tripalmitin dan tristearin

Terjadi konversi trigliserida membentuk lemaknya. asam Kemudian, lemak akan asam hidrogen tereduksi oleh menjadi Pada jalur dekarbonilasi, aldehid. aldehid terkonversi menjadi heptadekana dan pentadekana, serta CO sebagai by-product. Pada jalur hidrodeoksigenasi, aldehid tereduksi hidrogen membentuk oleh alkohol dilanjutkan dengan dehidrasi menjadi olefin dan berakhir dengan hidrogenasi membentuk senyawa oktadekana dan heksadekana.

MEKANISME HDO (3)

Itthibenchapong dkk (2017) melakukan deoksigenasi PKO dengan menggunakan katalis NiMoS $_2/\gamma$ -Al $_2$ O $_3$ rasio Ni/NiMo = 0,33. . Propana akan mengalami cracking menjadi etana dan metana dengan adanya gas hidrogen dan pada temperatur tinggi (> 330 C). Gas CO dapat mengalami reaksi metanasi dengan adanya gas hidrogen menjadi metana dan uap air terutama pada tekanan hidrogen tinggi (> 50 bar)

Gambar 18. Skema reaksi deoksigenasi minyak inti kelapa sawit^[1]

KATALIS HDO

CoMo/Al₂O₃ dan **NiMo/Al₂O₃** disulfidasi adalah katalis yang banyak digunakan untuk HDO

(Toba dkk, 2011)

Katalis **CoMo** menghasilkan produk **olefin** karena aktivitas **hidrogenasi** yang lebih **rendah**

(Toba dkk, 2011)

Katalis **NiW** lebih menyukai jalur **DCO** dan **DCO2**

(Zhang dkk, 2014)

Katalis **tidak berpenyangga =>** selektivitas HDO ↓

(Jenistova dkk, 2017)

Deaktivasi katalis HDO disebabkan oleh :

- 1. **Kenaikan T** (reaksi HDO) (Ancheyta, 2016)
- 2. **Tekanan uap air** (produk samping HDO) (Laurent dan Delmon, 1994)
- 3. **Penutupan pori** oleh deposit **karbon**

KATALIS HDO (2)

Gambar 19. Konversi TG pada katalis NiMo dengan Ni/Ni+Mo = 0,3 (biru), Mo (hitam), dan Ni (merah). T = 260 °C, P = 3,5 MPa (Kubic dan Kaluza, 2010).

Gambar 20. Selektivitas n-oktadekana (HDO) terhadap yield hidrokarbon pada katalis (a) NiMo dengan Ni/Ni+Mo = 0,3 (biru), Mo (hitam), dan Ni (merah). T = 260 -280 °C, P = 3,5 MPa, V/F = 0,25 - 4 h ; (b) NiMo dengan Ni/Ni+Mo = 0,2 (hitam), 0,3 (biru), dan 0,4 (merah). T = 260 - 280 °C, P = 3,5 MPa, V/F = 0,25 - 1 h (Kubic dan Kaluza, 2010)

Konversi TG NiMo>Mo>Ni. Selektivitas HDO pada Mo>NiMo>Ni. (Kubic dan Kaluza, 2010)

Rasio Ni/Ni+Mo = 0,2 memberikan selektivitas maksimal (Burimsitthigul dkk, 2021)

KATALIS HDO (3)

Reaksi NiMo sulfida

$$2(NH_4)_2MoS_4 + Ni(NO_3)_2 \rightarrow (NH_4)_2\{Ni(MoS_4)_2\} + 2NH_4NO_3$$
 (1)

$$Ni(MoS4)2 + H2 \rightarrow Ni(MoS3)2 + H2S$$
 (2)

$$Ni(MoS3)2 + H2 \rightarrow Ni(MoS2)2 + H2S$$
 (3)

EFEK KONDISI OPERASI

Temperatur

Gambar 21 Efek temperatur terhadap DO PKO pada P = 50 bar dan LHSV = 1 jam⁻¹ dengan katalis NiMoS₂/ γ -Al₂O₃^[2]

Pada temperatur yang tinggi (400 °C) perolehan produk *cracking* akan meningkat^[1]

Selektivitas HDO menurun pada temperatur tinggi (330 °C)^[2]

Semakin tinggi temperatur, konversi asam lemak akan semakin meningkat^[1]

Temperatur memengaruhi laju deaktivasi katalis^[3]

- [1] Brandao dkk . (2020). DOI: https://doi.org/10.1007/s13399-020-01046-9
- [2] Itthibenchapong dkk. (2017): Energy Conversion and Management, 134, 188–196...
- [3] Khan dkk. (2019): Journal of Analytical and Applied Pyrolysis, 140(January), 1–24.

EFEK KONDISI OPERASI (2)

LHSV

Gambar 22 Efek LHSV terhadap DO PKO pada T = 300 °C dan P = 50 bar dengan katalis NiMoS₂/ γ -Al₂O₃^[2]

Semakin kecil LHSV, semakin besar produk cracking^[1]

Semakin besar LHSV, semakin kecil selektivitas HDO^[2]

- [1] Anand dkk (2016): Applied Catalysis A: General, **516**, 144–152.
- [2] Itthibenchapong dkk. (2017): Energy Conversion and Management, 134, 188–196.

EFEK KONDISI OPERASI (3)

Tekanan

Semakin tinggi tekanan hidrogen semakin tinggi selektivitas HDO^{[1],[2]}

Semakin tinggi tekanan hidrogen reaksi metanasi gas CO menjadi metana semakin meningkat^[2]

Gambar 23 Efek tekanan terhadap DO PKO pada $T = \text{dan LHSV} = 1 \text{ jam}^{-1} \text{ dengan katalis NiMoS}_2/\gamma - \text{Al}_2\text{O}_3^{[2]}$

[1] Kimura dkk. (2013): Applied Catalysis A: General, **471**, 28–38.

[2] Itthibenchapong dkk. (2017): Energy Conversion and Management, 134, 188–196..

STATE OF THE ART

Tabel 14. Rangkuman HDO dengan umpan minyak nabati

Umpan	Katalis	Kondisi	Produk	Penjelasan	Referensi
Refined Rapeseed Oil	MoO ₃ /CoO/MCM-41	Jumlah katalis = 8 g. T = $300 - 320$ °C. P = 2-11 MPa. WHSV = 1-4 h ⁻¹ . H ₂ : minyak = 50.		rasio C18/C17 berkurang seiring peningkatan WHSV. Semakin besar WHSV semakin kecil selektivitas terhadap hidrokarbon.	(Bejblova dan Kubic, 2010)
Rapeseed Oil	Mo/Al ₂ O _{3,} Ni/ Al ₂ O _{3,} 0,3NiMo/ Al ₂ O _{3,}	Reaktor unggun tetap. T = $260 - 280$ °C. WHSV = $0.25 - 4$ h-1. H2 : minyak = $50.$ P = 3.5 MPa.		Efek katalis: urutan katalis yang memberikan konversi tinggi ke rendah adalah NiMo>Mo>Ni Ni lebih menyukai rute DCO ₂ sedangkan Mo lebih menyukai rute HDO.	`
Waste Vegetable Oil	$ m NiMo/Al_2O_3,~CoMo/~Al_2O_3,$ dan $ m NiW/~Al_2O_3$	Reaktor kontinu. P = 5 MPa H_2 . T = 350 °C. t = 3 jam. WHSV = 2,8 h^{-1}	n-alkana	CoMo membentuk olefin. NiW menempuh jalur DCO2 dan DCO dibanding HDO.	(Toba dkk., 2011)
Minyak jarak	CoMo/MTS CoMo/Al ₂ O ₃	$P = 80 \text{ bar. } T = 300 - 425 \text{ °C. LHSV} = 200 - 12 \text{ h}^{-1} \text{ .}$	C15 – C18	Pada temperatur yang lebih rendah (320 °C) dan space-velocity yang lebih besar akan menyebabkan terjadinya oligomerisasi	(Sharma dkk., 2012)
Minyak kelapa	NiMo/ γ-Al ₂ O ₃	Menggunakan reaktor unggun tetap aliran kontinu dengan diameter dalam 8 mm. Katalis 1Ml. $P = 0.4 - 0.8$ MPa, $T = 350$ C. LHSV = 1-20 h^{-1}		EfeSemakin lama waktu reaksi semakin besar konversi (konversi saat 1 jam = 96,9%). Yield C1-C3 meningkat seiring meningkatnya waktu reaksi karena hidrogenasi CO dan ${\rm CO_2}$ ke metana.	, ,
Waste Cooking Oil		Dalam reactor partaian. T = 375 $^{\circ}$ C. Katalis : minyak = 1:200. Jumlah katalis = 0,6 g. P = 1300 psi. WHSV = 2,8 h ⁻¹		Terdapat data kinetik berupa nilai k. Katalis yang tidak berpenyangga memberikan rasio C18/C17 yang lebih rendah.	(Zhang dkk., 2014)
Minyak inti kelapa sawit	NiMoS ₂ / γ -Al ₂ O ₃ Ni/NiMo = 0,33	P = 30-50 bar, T = 270 – 330 C, LHSV = 1-5 h ⁻¹ , H ₂ /Minyak = 1000 (Ncm ³ /cm ³) pada trickle-bed reaktor	nC11 – nC18	Kondisi optimal adalah P = 50 bar, T = 330 °C, LHSV = $1h^{-1}$, rasio H_2 /minyak = 1000 N(cm³/cm³) yang menghasilkan konversi 92%, selektivitas HDO = 60%.	(Itthibenchapong dkk., 2017)

STATE OF THE ART (2)

Tabel 15. Rangkuman HDO dengan umpan asam lemak atau trigliserida

Umpan	Katalis	Kondisi	Produk	Penjelasan	Referensi	
Asam stearat	Ni/ γ -Al $_2$ O $_3$, Ni/SiO $_2$ Ni/HZSM-5	, P=12 - 14,5 bar. T = 533 - 563 K . Waktu = 360 menit. Kecepatan pengadukan =1200 rpm		n-heptadekana merupakan produk dominan. Reaksi dekarbonilasi lebih cepat daripada reaksi HDO. Data kinetik berupa konstanta laju reaksi, konstanta Arrhenius dan energi aktivasi	(Kumar dkk., 2	2014)
Asam oleat	FMoOX/Zeol	P= 20 bar. T = 320 - 380 °C. Jumlah katalis = 10 - 30 mg. Waktu = 120 mnt	n-oktadekana i-oktadekana	Temperatur terbaik adalah 360 °C, dengan waktu terbaik 60	(Ayodele 2015)	dkk.,
	(15NiAI)	i P = 30 bar. T = 553 - 633 K. Katalis digunakan 5-20 w/w%. Waktu reaksi = 360 menit. Kecepatan pengadukan = 1200 rpm		TG terkonversi ke FAs dalam waktu yang sangat cepat (~ 0 menit). Reaksi dekarbonilasi lebih dominan dari reaksi deokssigenasi. Data kinetik berupa konsatanta laju reaksi, konstanta Arrhenius dan energi aktivasi	2016)	dkk.,
Asam stearat	5 wt% Ni-γ-Al ₂ O ₃ 5 wt% Ni/SiO ₂ 5 wt% Pd/C	P = 7 - 50 bar. T = 300 °C. Kecepatan pengadukan = 1200 rpm. Waktu reaksi = 6 jam.		Tekanan 30 bar memberikan konversi dan yield C17 terbesar (pada katalis 5 wt% Ni-γ-Al ₂ O ₃) yaitu 99% dan 96%. Selektivitas C18OH dan C17 saat 50% konversi pada tekanan 30 bar juga yang terbesar yaitu 14% dan 88%.	2017)	dkk.,
Fatty Acids Methyl Esters (FAME)	5wt% Ni/H-Y-80 & 5 wt% Pd/C	Dilakukan pada reactor semi-partaian. T= 300 °C, P = 30 bar dan V = 300 mL. Jumlah katalis 0,25 g.			(Hachemi Murzin, 2017)	dan
Palm Fatty Acid Distillate (PFAD)	NiMo/γ-Al ₂ O ₃	Dilakukan pada reaktor autoclave. T = 350 & 400 °C. Tekanan 32,5 = 40 bar. K. Waktu = 4 jam		Konversi terbesar yaitu 98,7% pada suhu 400 oC tekanan 40 bar rasio pelarut = 2:1 dan jumlah katalis = 3%.	(Sabarman 2019)	dkk.,
Asam Laurat	Sulfided NiMo/Al ₂ O ₃	Reaktor partaian. Jumlah katalis = 0,5 g. $P = 30$ bar. $T = 400$ °C.	C12 dan C11	Efek temperatur : semakin tinggi temperatur, semakin besar produk cracking dan semakin dominan jalur DCO dan DCO_2	(Brandão 2020)	dkk.,

ALASAN PEMILIHAN VARIASI

Temperatur

Variasi temperatur yang digunakan adalah 280, 300, 320, dan 340 °C. Sesuai dengan data yield yang ada pada referensi yaitu 280 °C dan 340 °C. Data kinetik pada 400 °C tidak digunakan karena sudah banyak terbentuk cracking (17,8%).

Tabel 16. Data distribusi produk HDO asam laurat pada berbagai kondisi
--

No	Perlakuan	Yield C12 (%)	Yield C11 (%)	Yield <c11 (%)<="" th=""></c11>
1	400 °C, 1 jam	26,9	53,6	17,8
2	340 °C, 3 jam	35,2	61,5	2,4
3	280 °C, 6 jam	41,8	54,4	2,7

ALASAN PEMILIHAN VARIASI (2)

Rasio Daur Ulang

Variasi rasio daur ulang yang digunakan adalah 2,3,4,5 dan 6. Hal ini dilakukan setelah melihat hasil simulasi awal, reaktor tidak *runaway* pada rasio recycle disekitar 3 dan 4.

ALASAN PEMILIHAN VARIASI (3)

LHSV

Variasi LHSV yang digunakan adalah 1, 1/3 dan 1/6 jam⁻¹. Variasi ini sesuai dengan data kondisi operasi yang ada di referensi yaitu dengan waktu reaksi 1, 3 dan 6 jam.

Tabel 17. Data indeks keasaman produk HDO asam laurat pada .. berbagai kondisi operasi

No	Perlakuan	Indeks Keasaman
1	Asam Laurat	280,8
2	400 °C, 1 h	0,3
3	340 °C, 1 h	17,8
4	340 °C, 3 h	0,3
5	280 °C, 3 h	19,0
6	280 °C, 6 h	0,3

KATALIS HDO (4)

Mekanisme HDO di katalis NiMo/SAPO-11

Gambar 24. Skema reaksi hidrodeoksigenasi pada katalis NiMo/SAPO^[1]

Tahapan Pemodelan

Penulisan Program dan Simulasi Reaktor

Jadwal Kerja

Tabel 18. Jadwal kerja

Kegiatan		Waktu (minggu)													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15
Instalasi software python															
Pengumpulan data															
Pengolahan data dan pemodelan															
Mempelajari python															
Pembuatan program pada python															
Pengujian program dan model															
Perlakuan variasi variabel bebas															
pada simulasi															
Pengecekan ulang hasil simulasi &															
modifikasi program															
Pembuatan laporan															