

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. YDW est un triangle rectangle en D et l'angle \widehat{DYW} mesure 85°. Quelle est la mesure de l'angle \widehat{DWY} ?
- **2.** LGT est un triangle quelconque. L'angle \widehat{LGT} mesure 38° et l'angle \widehat{GLT} mesure 96°. Quelle est la mesure de l'angle \widehat{GTL} ?
- 3. GWL est un triangle rectangle en W et $\widehat{WGL} = \widehat{WLG}$.

 Quelle est la mesure de l'angle \widehat{WLG} ?
- 4. SCR est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 5. WIX est un triangle isocèle en W. L'angle \widehat{WIX} mesure 62°. Quelle est la mesure de l'angle \widehat{IWX} ?
- **6.** XDM est un triangle isocèle en X. L'angle \widehat{XDM} mesure 11°. Quelle est la mesure de l'angle \widehat{DXM} ?
- 7. GJQ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 8. CRM est un triangle rectangle en R et $\widehat{RCM} = \widehat{RMC}$.

 Quelle est la mesure de l'angle \widehat{RMC} ?
- 9. YDF est un triangle rectangle en D et l'angle \widehat{DYF} mesure 31°. Quelle est la mesure de l'angle \widehat{DFY} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. OJR est un triangle rectangle en O. L'angle \widehat{OJR} mesure le double de l'angle \widehat{ORJ} .

 Quelles sont les mesures des angles \widehat{OJR} et \widehat{ORJ} ?
- **2.** EVW est un triangle rectangle en E. L'angle \widehat{EWV} mesure le tiers de l'angle \widehat{EVW} . Quelles sont les mesures des angles \widehat{EVW} et \widehat{EWV} ?
- 3. ZGC est un triangle rectangle en Z. L'angle \widehat{ZGC} est cinq fois plus grand que l'angle \widehat{ZCG} .

Quelles sont les mesures des angles \widehat{ZGC} et \widehat{ZCG} ?

- 4. GTO est un triangle isocèle en G. L'angle \widehat{TGO} mesure 76°. Quelle est la mesure de l'angle \widehat{TOG} ?
- 5. ZNI est un triangle isocèle en Z. L'angle \widehat{NZI} mesure les deux tiers de l'angle \widehat{ZNI} .

 Quelles sont les mesures des angles \widehat{ZNI} , \widehat{ZIN} et \widehat{NZI} ?
- **6.** EQS est un triangle rectangle en E. L'angle \widehat{ESQ} mesure le quart de l'angle \widehat{EQS} .

 Quelles sont les mesures des angles \widehat{EQS} et \widehat{ESQ} ?

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{YDW} est droit, les angles \widehat{DWY} et \widehat{DYW} sont complémentaires.

On a donc :
$$\widehat{DWY} + \widehat{DYW} = 90^{\circ}$$

D'où
$$\widehat{DWY} = 90^{\circ} - 85^{\circ} = 5^{\circ}$$

L'angle \widehat{DWY} mesure 5°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{LGT} + \widehat{GTL} + \widehat{GLT} = 180^{\circ}$$

Donc
$$\widehat{GTL} = 180 - \left(\widehat{LGT} + \widehat{GLT}\right)$$
.

D'où
$$\widehat{GTL}$$
= $180^{\circ} - (38^{\circ} + 96^{\circ}) = 180^{\circ} - 134^{\circ} = 46^{\circ}$.

L'angle \widehat{GTL} mesure 46°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{WGL} = \widehat{WLG}$$
,

on a :
$$2 \times \widehat{WGL} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{WGL} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{WGL} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{WGL} mesure 45°.

4. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{SCR} = \widehat{SRC} = \widehat{CSR}$$

D'où
$$3 \times \widehat{SCR} = 180^{\circ}$$
.

D'où :
$$\widehat{SCR} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{SCR} = \widehat{SRC} = \widehat{CSR} = 60^{\circ}$$
.

Le triangle SCR est un triangle équilatéral.

5. Dans un triangle, la somme des angles est égale à 180° .

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{WIX} = \widehat{IXW} = 62^{\circ}$$
.

D'où
$$\widehat{IWX} = 180^{\circ} - 2 \times 62^{\circ} = 180^{\circ} - 124^{\circ} = 56^{\circ}.$$

L'angle \widehat{IWX} mesure 56°.

6. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{XDM} = \widehat{DMX} = 11^{\circ}$$
.

D'où
$$\widehat{DXM} = 180^{\circ} - 2 \times 11^{\circ} = 180^{\circ} - 22^{\circ} = 158^{\circ}.$$

L'angle \widehat{DXM} mesure 158°.

7. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{GJQ} = \widehat{GQJ} = \widehat{JGQ}$$

D'où
$$3 \times \widehat{GJQ} = 180^{\circ}$$
.

D'où :
$$\widehat{GJQ} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{GJQ} = \widehat{GQJ} = \widehat{JGQ} = 60^{\circ}$$
.

Le triangle GJQ est un triangle équilatéral.

 $\pmb{8.}$ Dans un triangle, la somme des angles est égale à $180^\circ.$

Comme
$$\widehat{RCM} = \widehat{RMC}$$
,

on a :
$$2 \times \widehat{RCM} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{RCM} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{RCM} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{RCM} mesure 45°.

9. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{YDF} est droit, les angles \widehat{DFY} et \widehat{DYF} sont complémentaires.

On a donc :
$$\widehat{DFY} + \widehat{DYF} = 90^{\circ}$$

D'où
$$\widehat{DFY} = 90^{\circ} - 31^{\circ} = 59^{\circ}$$

L'angle \widehat{DFY} mesure 59°.

MathALEA

Entraînement 5G31

1. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{OJR} = 2 \times \widehat{ORJ}$ et comme \widehat{OJR} et \widehat{ORJ} sont complémentaires,

on a :
$$2 \times \widehat{ORJ} + \widehat{ORJ} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{ORJ} = 90^{\circ}$$
.

D'où
$$\widehat{ORJ} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{OJR} = 2 \times \widehat{ORJ} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{ORJ} mesure 30° et l'angle \widehat{OJR} mesure 60°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{EVW} = \frac{\widehat{EWV}}{3}$, on a $\widehat{EWV} = 3 \times \widehat{EVW}$.

De plus \widehat{EVW} et \widehat{EWV} sont complémentaires.

D'où :
$$3 \times \widehat{EVW} + \widehat{EVW} = 90^{\circ}$$
.

D'où
$$4 \times \widehat{EVW} = 90^{\circ}$$
.

D'où
$$\widehat{EVW} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{EWV} = 3 \times \widehat{EVW} = 3 \times 22,5^{\circ} = 67,5^{\circ}$$

L'angle \widehat{EWV} mesure 67,5° et l'angle \widehat{EVW} mesure 22,5°.

3. Dans un triangle, la somme des angles est égale à 180°.

 $\widehat{ZGC} = 5 \times \widehat{ZCG}$ et comme \widehat{ZGC} et \widehat{ZCG} sont complémentaires,

on a :
$$5 \times \widehat{ZCG} + \widehat{ZCG} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{ZCG} = 90^{\circ}$$
.

D'où
$$\widehat{ZCG} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{ZGC} = 5 \times \widehat{ZCG} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{ZCG} mesure 15° et l'angle \widehat{ZGC} mesure 75°.

4. Dans un triangle, la somme des angles est égale à 180°.

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{GTO} = \widehat{TOG}$$
.

On a donc : $\widehat{TGO} + 2 \times \widehat{TOG} = 180^{\circ}$.

Soit
$$76^{\circ} + 2 \times \widehat{TOG} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{TOG} = 180^{\circ} - 76^{\circ}$$
.

D'où
$$\widehat{TOG} = (180^{\circ} - 76^{\circ}) \div 2 = 104^{\circ} \div 2 = 52^{\circ}$$

L'angle \widehat{TOG} mesure 52°.

5. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{NZI} = \frac{2 \times \widehat{ZIN}}{3}$$
, on a $\widehat{ZIN} = \frac{3 \times \widehat{NZI}}{2}$

De plus \widehat{ZIN} et \widehat{ZNI} sont égaux, alors $\widehat{ZNI} = \frac{3 \times \widehat{NZI}}{2}$.

D'où :
$$\frac{3 \times \widehat{NZI}}{2} \times 2 + \widehat{NZI} = 180^{\circ}$$
.

D'où :
$$3 \times \widehat{NZI} + \widehat{NZI} = 180^{\circ}$$
.

D'où
$$4 \times \widehat{NZI} = 180^{\circ}$$
.

D'où
$$\widehat{NZI} = 180^{\circ} \div 4 = 45^{\circ}$$
.

D'où
$$\widehat{NZI} = 180^{\circ} \div 4 = 45^{\circ}$$
. $\widehat{ZIN} = \frac{3 \times \widehat{NZI}}{2} = \frac{3 \times 45^{\circ}}{2} = \frac{135^{\circ}}{2} = 67,5^{\circ}$

L'angle $\widehat{Z}I\widehat{N}$ mesure 67,5°, l'angle $\widehat{Z}N\widehat{I}$ mesure 67,5° et l'angle $\widehat{N}\widehat{Z}\widehat{I}$ mesure 45°

6. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{EQS} = \frac{\widehat{ESQ}}{4}$$
, on a $\widehat{ESQ} = 4 \times \widehat{EQS}$.

De plus \widehat{EQS} et \widehat{ESQ} sont complémentaires.

D'où :
$$4 \times \widehat{EQS} + \widehat{EQS} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{EQS} = 90^{\circ}$$
.

D'où
$$\widehat{EQS} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{ESQ} = 4 \times \widehat{EQS} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{ESQ} mesure 72° et l'angle \widehat{EQS} mesure 18°.