GCN-RL Circuit Designer: Transferable Automatic Transistor Sizing with Graph Neural Networks and Reinforcement Learning

GCN-RL Circuit Designer: Transferable Automatic Transistor Sizing with Graph Neural Networks and Reinforcement Learning

Hanrui Wang¹, Kuan Wang¹, Jiacheng Yang¹, Linxiao Shen², Nan Sun²,
Hae-Seung Lee¹, Song Han¹

¹Massachusetts Institute of Technology

²University of Texas at Austin

Motivation: Analog IC is Labor Intensive for Design

Digital IC

Standard Cell Libraries
Synthesis: Design Compiler, Genius...
Place & Route: IC Compiler...

Highly Automatic

Analog IC

Manual schematic design

Manual transistor sizing

Manual layout design

Less Automatic Labor Intensive

GCN-RL Circuit Designer: ML for Hardware Better Performance with Less Human Labor

Motivation:

Transistor sizing is challenging

- Large design space
- Complex trade-offs

Transfer learning to reduce design porting overhead

- Between technology nodes
- Between different circuit schematics

Leverage Graph Neural Networks

- Circuit is a graph
- Involve graph information into optimization loop

Method: GCN-RL Circuit Designer Overview

GCN-RL Achieves highest FoM

2.32	2.02	1.15	0.61
2.46±0.02	1.74±0.06	0.74±0.03	0.27±0.03
2.66±0.03	1.91±0.02	1.30±0.03	0.40±0.07
2.48±0.03	1.85±0.19	1.24±0.14	0.45±0.05
2.54±0.01	1.70±0.08	1.27±0.04	0.58±0.04
2.59±0.06	1.98±0.12	1.39±0.01	0.71±0.05
2.69±0.03	2.23±0.11	1.40±0.01	0.79±0.02

GCN-RL consistently achieved Highest FoMs with small variance

GCN-RL Achieves highest FoM

GCN-RL has highest FoM and fast converging speed Graph info improves FoM (GCN-RL v.s. NG-RL)

GCN-RL with Transfer Learning is Better Than no Transfer

