## Introduction to PyTorch

#### Yifei Liu

Tutorial session, STAT8056 2023 Spring

Slides and notebook available at: <a href="https://github.com/yifei-liu-stat/stat8056-intro-pytorch">https://github.com/yifei-liu-stat/stat8056-intro-pytorch</a>

For questions/discussions/typos, contact: liu00980@umn.edu

## **Outline**

- Set up working environment
  - Coding platform
  - Practice: create conda environment for your project
- Introduction to PyTorch framework
- Deep learning with PyTorch
- Additional resources



## Coding platform

### On your local machine

### Use Anaconda to manage packages:

- Go to <u>anaconda.com</u>
- Download Anaconda
- Open Anaconda Navigator (GUI)
  - Create an isolated environment for each of your projects.
  - Manage dependencies/versions of packages within the environment.
- Alternatively, one can use Anaconda in command-line style.

## Notebook-style coding:

- Good for reports and demos.
- In Anaconda Navigator, install Jupyter Notebook (if not already)
- Launch Jupyter Notebook.

### Script-style coding:

- For efficiency and productivity.
- Choose an IDE to start with.
- Take VS Code for example:
  - Download <u>VS Code</u>.
  - Follow this <u>tutorial</u> to learn how to use Python in Visual Studio Code.



## Coding platform

#### On a remote host/server

### Google Colab (for this tutorial)

- Notebook-style cloud computing.
  - https://colab.research.google.com/
  - Free version runs up to 12 hrs.
- Free GPU resource:
  - Runtime | Change runtime type |
     Hardware accelerator | GPU
- Many libraries (numpy, torch, scikitlearn ...) are pre-installed.
- Co-edit/code with collaborators.
- In sync. with your Google Drive.

#### Resources from MSI:

- Need to be in a research group to use the cluster. MSI access.
- Support Jupyter notebook now:
  - Connect to <u>UMN VPN</u> (off-campus only)
  - Visit notebooks.msi.umn.edu
  - Choose and start a server.
- Free MSI tutorial (with recordings)

#### Other cloud services:

- Deep-learning-in-cloud
  - A list of cloud vendors either with free or paid services (with some free credits)



## UMN computing resources

## MSI: <a href="https://www.msi.umn.edu/">https://www.msi.umn.edu/</a>

| Introduction to Minnesota<br>Supercomputing Institute (MSI)                    | This tutorial is geared to new MSI users and will provide a highlevel introduction to the facilities and computational resources at MSI.                                                          | 02/01/2022 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Introduction to Linux                                                          | This tutorial will provide an introduction to the Linux operating system, with particular attention paid to working from the command line                                                         | 02/03/2022 |
| Programming with Python                                                        | Introduction to fundamentals of programming using the python language.                                                                                                                            | 02/08/2022 |
| Job Submission and Scheduling at MSI                                           | This tutorial will introduce users to MSI supercomputers, and provide an overview of how to submit calculations to the job schedulers                                                             | 02/10/2022 |
| Interactive Computing at MSI                                                   | This two part tutorial will introduce you to the concept of interactive high performance computing, and provide attendees hands-on experience running interactive parallel jobs on the Mesabi HPC | 02/15/2022 |
| <u>Data Storage Systems and Data</u><br><u>Analysis Workflows for Research</u> | In this tutorial you will learn about the data storage systems available for academic research at the University of Minnesota                                                                     | 02/17/2022 |
| Compiling and Debugging at MSI                                                 | This tutorial will help users learn the basics of compiling and debugging their code on MSI systems                                                                                               | 02/24/2022 |
| Python for Scientific Computing                                                | This session includes efficient data processing with NumPy and Scipy, data visualization, and techniques for using python to drive parallel supercomputing tasks.                                 | 03/01/2022 |
| RNA-Seq Analysis                                                               | This tutorial covers the basics of differential expression analysis and touches on other RNA-seq topics such as transcriptome assembly.                                                           | 03/03/2022 |
| Parallel Computing On Agate                                                    | This tutorial will help users learn the basics of parallel computation methods, including strategies for collecting calculations together for parallel execution.                                 | 03/31/2022 |

## LATIS: <a href="https://latisresearch.umn.edu/">https://latisresearch.umn.edu/</a>

| Feb. 18th   10:00am-noon                  | Creating Publication Worthy Visualizations without Code            | Registration |
|-------------------------------------------|--------------------------------------------------------------------|--------------|
| Feb. 25th   10:00am-noon                  | Introduction to Computational Text<br>Analysis                     | Registration |
| Mar. 4th   10:00am-noon                   | Reproducible research practices in Excel (yes, Excel)              | Registration |
| Mar. 9th   10:00am-noon                   | Data Management in transition:<br>Strategies for when you graduate | Registration |
| Mar. 18th   10:00am-noon<br>[RESCHEDULED] | Advanced Nvivo                                                     | Registration |
| Mar. 25th   10:00am-noon                  | Introduction to parallel computing                                 | Registration |
| April 1st   10:00am-noon                  | Introduction to SQL and Research  Databases                        | Registration |



## Create a conda environment for your Python project



- An alternative way to Virtualenv
- Manage dependencies (different versions of Python and some libraries) within an isolated environment.
  - An example: Python library <u>foolbox</u>
- Key commands:
  - conda create -n <envname> python=3.8.3
  - conda activate <envname>
  - conda install <package>=<version>
  - conda deactivate
- Check Conda Cheat Sheet



#### A hands-on exercise



- Make sure Anaconda is installed (either on your local machine or a remote host)
  - Windows: open Anaconda Prompt
  - MacOS/Linux: open terminal
  - Type conda --version to check availability
- Create an environment for course project
  - conda create -n 8056proj python=3.9.13
  - conda activate 8056proj
  - conda install numpy
  - conda install jupyter notebook
  - Do some coding:
    - Launch Jupyter Notebook: jupyter notebook
    - Launch Python terminal: python
  - conda deactivate



## **Outline**

- Set up working environment
- Introduction to PyTorch framework
  - Tensor, gradient and computation graph
  - Tensor manipulation on GPU
  - Use PyTorch as a general ML framework
- Deep learning with PyTorch
- Additional resources



## **Installation of PyTorch**

Choose configurations and install PyTorch from <a href="http://pytorch.org/">http://pytorch.org/</a>

| PyTorch Build          | Stable (1.11.0)                                                          | Preview (1 | Nightly)      | LTS (1.8.2)         |
|------------------------|--------------------------------------------------------------------------|------------|---------------|---------------------|
| Your OS                | Linux                                                                    | Mac        |               | Windows             |
| Package                | Conda                                                                    | Pip        | LibTorch      | Source              |
| Language               | Python                                                                   |            | C++/Java      |                     |
| Compute Platform       | CUDA 10.2                                                                | CUDA 11.3  | ROCm 4.2 (be  | <del>eta)</del> CPU |
| Run this Command:      | conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch |            |               |                     |
|                        |                                                                          |            | Run t         | his within your     |
| Previous versions of F |                                                                          |            | a environment |                     |

• If you use Google Colab, PyTorch is pre-installed with suitable configurations.



## Overview of PyTorch

### A fancy version of NumPy but can:

- Trace gradient via autograd
- Accelerate via GPU
- Accommodate a bunch of machine learning functionalities including but not limited to neural network

### More importantly,

- Easy interface compared to others
- Easy to understand and debug
- Check this <u>Google Trends</u>



Credit: "Gluon: new MXNet interface to accelerate research"



## Overview of PyTorch

### Can you guess what this model is?

```
# initialize a training model
train_model = nn.Sequential(
    nn.Linear(5, 256),
    nn.ReLU(),
    nn.Linear(256, 128),
    nn.ReLU(),
    nn.Linear(128, 1)
train model
Sequential(
  (0): Linear(in features=5, out features=256, bias=True)
  (1): ReLU()
  (2): Linear(in features=256, out features=128, bias=True)
  (3): ReLU()
  (4): Linear(in features=128, out features=1, bias=True)
```

#### What about this one?

```
model = nn.Sequential(
    nn.Conv2d(1, 32, 3, 1),
    nn.ReLU(),
    nn.Conv2d(32, 64, 3, 1),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Dropout(0.25),
    nn.Flatten(),
    nn.Linear(9216, 128),
    nn.ReLU(),
    nn.Dropout(0.5),
    nn.Linear(128, 10),
    nn.LogSoftmax(dim = 1)
```



## **Tensor**

#### What is a tensor?

- A multidimensional array
- Some examples:
  - 0D-tensor: scalar
  - 1D-tensor: vector
  - 2D-tensor: matrix; non-RGB image
  - 3D-tensor: RGB image (3 channels)
  - 4D-tensor: one RGB video clip
  - 5D-tensor: a collection of RGB video clips
  - 6D-tensor: ???
- Tensor in PyTorch:
  - Just like arrays in Numpy
  - t.numpy() and torch.from\_numpy(a)

#### np.array versus torch.tensor

- Similar object creations:
  - All-ones, all-zeros, identity matrix, random...
  - Check <u>PyTorch tensor creations</u>
- Similar math operations:
  - Indexing, slicing, reshape, transpose, tensor product, element-wise operation...
  - Check <u>PyTorch tensor math operations</u>

```
import numpy as np
myarray = np.ones(3)
print(myarray)
print(myarray + 1.5)

[1. 1. 1.]
[2.5 2.5 2.5]
```

```
import torch
mytensor = torch.ones(3)
print(mytensor)
print(mytensor + 1.5)

tensor([1., 1., 1.])
tensor([2.5000, 2.5000, 2.5000])
```



## Tensor (cont.)

- Enable gradient tracing:
  - Upon any tensor creation, setrequires\_grad = True
  - For any existent tensor t, callt.requires\_grad\_(True)
- Calculate gradient:
  - Do some calculation from t and get f
  - Call f.backward() for calculation
  - Call t.grad to access the gradient
- Disable gradient tracing:
  - (Permanently) t = t.detach()
  - (Temporarily) with torch.no\_grad():

enable do some call access the gradient calculation backward() gradient

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```







```
enable
gradient
```

```
do some calculation
```

call .backward()

access the gradient

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



enable gradient do some calculation

call .backward()

access the gradient

```
**2 S
```

C

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



enable gradient do some calculation

call .backward()

access the gradient

```
**2 S × 3 F
```

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



enable gradient do some call access the gradient sackward()

The graph structure is destroyed Once you call .backward()









```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



enable gradient do some call access the gradient gradient

## Access the gradient using t.grad

```
t s f
```

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



1. **t c** 

2. t \*\*2 S C

3. t \*\*2 S ×3 f

4. t s f

enable do some call access the gradient calculation backward()

```
# create tensors, and enable gradient tracing
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print("Tensor c:", c)
print("Tensor t:", t)
# do some calculation
s = t**2
f = 3 * s + c
# calculate the gradient of f w.r.t. t
f.backward()
# access the gradient
print("Gradient df/dt:", t.grad)
Tensor c: tensor(1.)
Tensor t: tensor(3., requires_grad=True)
Gradient df/dt: tensor(18.)
```



## Why should we understand PyTorch computation graph?

- Essentially, PyTorch is using chain rule to calculate the gradient
- A computation graph defines how the chain rule applies to your calculation
- Common MISTAKES:
  - Call .backward() when there is no graph
  - Retrieve gradient of non-leaf nodes
  - Gradient accumulation. To solve this problem, call t.grad.zero\_() before building the second graph

### Illustration of gradient accumulation

```
# first back propagation
t = torch.tensor(3., requires_grad = True)
s = t**2
s.backward()
print("Gradient ds/dt:", t.grad)

# second back propagation
f = 5 * t + 1
f.backward()
print("Gradient df/dt (without emptying t.grad):", t.grad)

Gradient ds/dt: tensor(6.)
Gradient df/dt (without emptying t.grad): tensor(11.)
```

```
t.grad.zero_() # zero out the gradient
f = 5 * t + 1
f.backward()
print("Gradient df/dt (after emptying t.grad):", t.grad)

Gradient df/dt (after emptying t.grad): tensor(5.)
```



## Calculation on GPU

 Neural network dates back to 1950s, but became popular only recently (last decade) due to huge improvements in computation



Credit: CSCI 5980/8980: Think Deep Learning offered by Ju Sun, UMN

- GPU allows faster large-scale matrix multiplication (or tensor product)
- Use GPU on PyTorch:
  - torch.cuda.is\_available() # GPU?
  - t = t.cuda() # move to GPU
  - -t = t.cpu() # move to CPU
  - t.device # cpu or cuda: index
  - The transfer time can be long
  - Make sure all tensor manipulations are performed on the same device
- Advanced: <u>train on multiple GPUs</u>



# Time comparison: matrix multiplication on CPU and GPU

- We want to perform matrix multiplication C = AB where both A and B are 3000 x 3000 matrices
- Enable GPU on <u>Google Colab</u> (free!)
  - Runtime
  - 2. Change runtime type
  - 3. Hardware Accelerator: GPU
  - 4. Runtime -> Restart Runtime
- Much faster on GPU for large problem!

```
np.random.seed(8056)
d = 3000
\# C = A B \text{ with numpy on CPU}
A = np.random.rand(d, d)
B = np.random.rand(d, d)
begin = time.time()
C = A.dot(B)
print(f"CPU time (numpy): {time.time() - begin} s")
\# C = A B with torch on CPU
A t cpu = torch.tensor(A)
B t cpu = torch.tensor(B)
begin = time.time()
C = torch.mm(A t cpu, B t cpu)
print(f"CPU time (torch): {time.time() - begin} s")
# C = A B with torch on GPU
# make sure GPU is available
A t gpu = torch.tensor(A).cuda()
B t gpu = torch.tensor(B).cuda()
begin = time.time()
C = torch.mm(A t gpu, B t gpu)
print(f"GPU time (torch): {time.time() - begin} s")
CPU time (numpy): 1.0066237449645996 s
CPU time (torch): 0.8800492286682129 s
GPU time (torch): 0.0038247108459472656 s
```



## GPU not always better

- Calculation on GPU should be optimized smartly since
  - GPU has limited memory compared to CPU
  - Transfer/overhead time from CPU to GPU can be large

```
d = 3000
begin = time.time()

A = torch.rand((d, d)).cuda()
B = torch.rand((d, d)).cuda()
print(f"Time from CPU to GPU: {time.time() - begin} s")
begin = time.time()
C = torch.mm(A, B)
print(f"GPU time (torch): {time.time() - begin} s")
Time from CPU to GPU: 0.15282464027404785 s
GPU time (torch): 0.0008263587951660156 s
```

| NV]               | DIA-SMI      | 440.1     | L00 Driver                     | Version: 440.100                            |                               |
|-------------------|--------------|-----------|--------------------------------|---------------------------------------------|-------------------------------|
| GPL<br>  Far      |              |           |                                | Bus-Id Disp.A<br>Memory-Usage               |                               |
|                   | TITAN<br>56C |           | Off<br>129W / 280W             | 00000000:1A:00.0 Off<br>13556MiB / 24220MiB | N/A  <br>N/A  <br>61% Default |
| 1<br>  41%        |              | RIA<br>P2 | 0ff<br>127∷ / 280W             | 00000000:1B:00.0 Off<br>18798MiB / 24220MiB | N/A  <br>60% Default          |
| 2<br>  41%        | TITAN<br>48C |           | Off<br>121W / 280W             | 00000000:3D:00.0 Off<br>13616MiB / 24220MiB | N/A  <br>62% Default          |
| 3<br>  41%        | TITAN<br>56C |           | O <del>ff</del><br>121W / 280W | 00000000:3E:00.0 Off<br>20962MiB / 24220MiB | N/A  <br>61% Default          |
| 4<br>  41%        | TITAN<br>53C |           | O <del>ff</del><br>162W / 280W | 00000000:88:00.0 Off<br>13590MiB / 24220MiB | N/A  <br>92% Default          |
| <u>5</u><br>  41% |              |           | O <del>ff</del><br>155W / 280W | 00000000:89:00.0 Off<br>18832MiB / 24220MiB | N/A  <br>61% Default          |
| 6<br>  41%        |              |           | O <del>ff</del><br>169W / 280W | 00000000:B1:00.0 Off<br>13650MiB / 24220MiB | N/A  <br>90% Default          |
| 7<br>  41%        |              |           | O <del>ff</del><br>109W / 280W | 00000000:B2:00.0 Off<br>20996MiB / 24220MiB | N/A  <br>91% Default          |



## ML in PyTorch

- PyTorch provides a framework for general ML modeling including but not limited to deep learning
- What is a common ML pipeline?
  - Prepare your dataset (batches)
  - Choose/design a training model
  - Choose a loss/objective function
  - Optimization (calculation; gradient)
  - Evaluation and inference

- The go-to optimization method: SGD
  - Instead of using gradient calculated from all training samples, we only use the gradient from a randomly chosen sample
- Practical one: (Mini-) Batch SGD
  - Use gradient from a batch of samples
  - Batch size: # samples in one batch
  - Epoch: a full pass of all training samples
  - Special cases:
    - Batch size = 1: vanilla SGD
    - Batch size = n: GD



## ML in PyTorch

Credit: HPRC Short Course by Jian Tao, TAMU





## **Linear regression with SGD**

## The naive way

- The true model: y = 2 \* x + 1
- Some other setups:
  - $n = 2000, x \sim Uniform(0, 1)$
  - Number of epochs: 10
  - Batch size: 200 (10 batches per epoch)
  - Learning rate: 0.05
  - Initialize both intercept and slope with Uniform(0, 1)

```
n = 2000
x = torch.rand(n)
# create dataset with true model
a0 = 2
b0 = 1
y = a0 * x + b0
# set up optimization parameter of SGD
a = torch.rand(1, requires grad = True)
b = torch.rand(1, requires grad = True)
nepochs = 10
batch size = 200
1r = 0.5
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
    end = start + batch_size
    # perform update on a batch
    x batch = x[start:end]
    y batch = y[start:end]
    # build computation graph
    y hat = a * x batch + b
    myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
    myloss.backward()
    # SGD update
    with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
  print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGDThe naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
   Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
0
```

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
   start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
   y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
   # SGD update
   with torch.no grad():
     a -= lr * a.grad
      b -= lr * b.grad
   # avoid gradient accumulation
   a.grad.zero ()
    b.grad.zero ()
 print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGD – The naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
   Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
0
```

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
   start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
   y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
   # SGD update
   with torch.no grad():
     a -= lr * a.grad
      b -= lr * b.grad
   # avoid gradient accumulation
   a.grad.zero ()
    b.grad.zero ()
 print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGD – The naive way

```
Γ→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
    myloss.backward()
   # SGD update
   with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
```

print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")

print(f"Epoch: {epoch + 1} / {nepochs}")

# Linear regression with SGD – The naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
    # SGD update
    with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
```

print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")

b.grad.zero ()

print(f"Epoch: {epoch + 1} / {nepochs}")

# Linear regression with SGDThe naive way

```
Γ→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



#### **Built-in functionalities**

- Dataset preparation:
  - torch.utils.data
  - Check Datasets & DataLoaders
- Define training model:
  - Check <u>torch.nn</u> for all kinds of components to build your own model
- Optimization algorithms:
  - Check <u>torch.optim</u> for various opt methods

```
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
```

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



### Prepare our datasets

- Dataset (a Python class)
  - \_\_init\_\_\_: initialize the dataset
  - len\_\_: sample size of the dataset
  - \_\_getitem\_\_: fetch a sample with idx
  - As the input of DataLoader function
- DataLoader (a Python function)
  - Split the dataset into batches
  - Check <u>this</u> for more advanced usages
  - Have some tricks to reduce overhead time when transferring data to GPU

```
class SimpleLinear(Dataset):
    def init (self, n, a, b):
      self.n = n
      self.x = torch.rand(n, 1)
      self.y = a * self.x + b
    def len (self):
        return self.n
    def getitem (self, idx):
        return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



Create the training model:

- nn.Sequential
  - Build a model with sequential operations
  - nn.Linear(m, n)
    - A linear operator of shape n x m
    - A bias vector of shape n x 1 (default)
  - All parameters are initialized automatically upon creation
  - Check <u>torch.nn</u> for other operations

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



### Set up optimization:

- The loss function
- The optimization method
- Optimization parameters

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



```
nepochs = 10
for epoch in range(nepochs):
   for x_batch, y_batch in mydataloader:
    # build computation graph
    yhat = mymodel(x_batch)
        myloss = criterion(y_batch, yhat)

    # optimization
    optimizer.zero_grad() # zero out gradient
    myloss.backward() # back propagation
    optimizer.step() # updata parameters
```

```
Epoch: 1 / 10
MSE: 3.52e-02; a: 1.3904; b: 1.3368
Epoch: 2 / 10
MSE: 9.21e-03; a: 1.6882; b: 1.1722
Epoch: 3 / 10
MSE: 2.41e-03; a: 1.8406; b: 1.0881
Epoch: 4 / 10
MSE: 6.30e-04; a: 1.9185; b: 1.0450
Epoch: 5 / 10
MSE: 1.65e-04; a: 1.9583; b: 1.0230
Epoch: 6 / 10
MSE: 4.31e-05; a: 1.9787; b: 1.0118
Epoch: 7 / 10
MSE: 1.13e-05; a: 1.9891; b: 1.0060
Epoch: 8 / 10
MSE: 2.95e-06; a: 1.9944; b: 1.0031
Epoch: 9 / 10
MSE: 7.71e-07; a: 1.9971; b: 1.0016
Epoch: 10 / 10
MSE: 2.02e-07; a: 1.9985; b: 1.0008
```



# Linear regression with SGD – The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
   for x_batch, y_batch in mydataloader:
     # build computation graph
     yhat = mymodel(x_batch)
     myloss = criterion(y_batch, yhat)

# optimization
     optimizer.zero_grad() # zero out gradient
     myloss.backward() # back propagation
     optimizer.step() # updata parameters
```

The whole optimization part

#### Output:

```
Epoch: 1 / 10
MSE: 3.52e-02; a: 1.3904; b: 1.3368
Epoch: 2 / 10
MSE: 9.21e-03; a: 1.6882; b: 1.1722
Epoch: 3 / 10
MSE: 2.41e-03; a: 1.8406; b: 1.0881
Epoch: 4 / 10
MSE: 6.30e-04; a: 1.9185; b: 1.0450
Epoch: 5 / 10
MSE: 1.65e-04; a: 1.9583; b: 1.0230
Epoch: 6 / 10
MSE: 4.31e-05; a: 1.9787; b: 1.0118
Epoch: 7 / 10
MSE: 1.13e-05; a: 1.9891; b: 1.0060
Epoch: 8 / 10
MSE: 2.95e-06; a: 1.9944; b: 1.0031
Epoch: 9 / 10
MSE: 7.71e-07; a: 1.9971; b: 1.0016
Epoch: 10 / 10
MSE: 2.02e-07; a: 1.9985; b: 1.0008
```



# Linear regression with SGDComparison of two ways

#### The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
    for x_batch, y_batch in mydataloader:
        # build computation graph
        yhat = mymodel(x_batch)
        myloss = criterion(y_batch, yhat)

# optimization
    optimizer.zero_grad() # zero out gradient
        myloss.backward() # back propagation
        optimizer.step() # updata parameters
```

Agnostic to datasets, models, losses and optimization methods!

#### The naive way

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
    start = batch * batch size
    end = start + batch size
    # perform update on a batch
    x batch = x[start:end]
    y batch = y[start:end]
    # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y_batch - y_hat)**2)
    # gradient calculation
    myloss.backward()
    # SGD update
    with torch.no grad():
     a -= lr * a.grad
     b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
```



# ML workflow in PyTorch

Credit: HPRC Short Course by Jian Tao, TAMU





# **Outline**

- Set up working environment
- Introduction to PyTorch framework
- Deep learning with PyTorch
  - Regression using ReLU neural net
  - Image classification with CNN
- Additional resources



# Recap

- Use Anaconda to manage multiple
   Python projects at the same time:
  - Ensure compacity between libraries;
  - Use it with GUI or from a shell.
- Use Google Colab (cloud service) for notebook-style coding:
  - One free GPU available;
  - Runs up to 12 hours;
  - In sync with Google Drive;
  - Collaborate with your teammates.

- DL framework PyTorch:
  - User-friendly interface;
  - Gradient tracing via computation graph;
  - GPU acceleration.
- General ML/DL workflow:
  - Prepare your dataset (batches);
  - Choose/design a training model;
  - Choose a loss/objective function;
  - Optimization (calculation; gradient);
  - Evaluation and inference.



#### Recap:

# **Linear regression with SGD**

– The PyTorch way

Prepare our datasets

- Dataset (a Python class)
  - \_\_init\_\_\_: initialize the dataset
  - \_\_\_len\_\_\_: sample size of the dataset
  - \_\_getitem\_\_: fetch a sample with idx
  - As the input of DataLoader function
- DataLoader (a Python function)
  - Split the dataset into batches
  - Check <u>this</u> for more advanced usages
  - Have some tricks to reduce overhead time when transferring data to GPU

```
class SimpleLinear(Dataset):
    def init (self, n, a, b):
      self.n = n
      self.x = torch.rand(n, 1)
      self.y = a * self.x + b
    def len (self):
        return self.n
    def getitem (self, idx):
        return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



#### Recap:

# **Linear regression with SGD**

– The PyTorch way

Create the training model:

- nn.Sequential
  - Build a model with sequential operations
  - nn.Linear(m, n)
    - A linear operator of shape n x m
    - A bias vector of shape n x 1 (default)
  - All parameters are initialized automatically upon creation
  - Check torch.nn for other operations

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
 (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



# Recap: Linear regression with SGD – The PyTorch way

#### Set up optimization:

- The loss function
- The optimization method
- Optimization parameters

```
class SimpleLinear(Dataset):
    def init (self, n, a, b):
      self.n = n
      self.x = torch.rand(n, 1)
      self.y = a * self.x + b
    def len (self):
        return self.n
    def getitem (self, idx):
        return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



## Recap:

### **Linear regression with SGD**

– The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
  for x batch, y batch in mydataloader:
   # build computation graph
   yhat = mymodel(x batch)
   myloss = criterion(y batch, yhat)
    # optimization
    optimizer.zero grad() # zero out gradient
    myloss.backward() # back propagation
    optimizer.step() # updata parameters
```



## Recap:

### **Linear regression with SGD**

– The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
    for x_batch, y_batch in mydataloader:
        # build computation graph
        yhat = mymodel(x_batch)
        myloss = criterion(y_batch, yhat)

# optimization
    optimizer.zero_grad() # zero out gradient
    myloss.backward() # back propagation
    optimizer.step() # updata parameters
```

The whole optimization part



# Recap: Linear regression with SGD – Comparison of two ways The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
    for x_batch, y_batch in mydataloader:
        # build computation graph
        yhat = mymodel(x_batch)
        myloss = criterion(y_batch, yhat)

# optimization
        optimizer.zero_grad() # zero out gradient
        myloss.backward() # back propagation
        optimizer.step() # updata parameters
```

Agnostic to datasets, models, losses and optimization methods!

#### The naive way

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
    start = batch * batch size
    end = start + batch size
    # perform update on a batch
    x batch = x[start:end]
    y batch = y[start:end]
    # build computation graph
   y hat = a * x batch + b
   myloss = torch.mean((y_batch - y_hat)**2)
    # gradient calculation
    myloss.backward()
    # SGD update
    with torch.no grad():
     a -= lr * a.grad
     b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
```



# Recap: ML workflow in PyTorch

Credit: HPRC Short Course by Jian Tao, TAMU





# From linear model to shallow ReLU network

Usage: nn.Linear(in\_features, out\_features)

#### Shallow ReLU neural net



Input Layer ∈ ℝ²

Hidden Layer ∈ ℝ³

Output Layer  $\in \mathbb{R}^1$ 

$$egin{aligned} ext{ReLUnn2:} ~ m{x} \in \mathbb{R}^2 &\mapsto m{w}_2^\intercal (m{W}_1 m{x} + m{b}_1)_+ + b_2 \in \mathbb{R} \ m{W}_1 \in \mathbb{R}^{3 imes 2}, m{b}_1 \in \mathbb{R}^3, m{w}_2 \in \mathbb{R}^3, b_2 \in \mathbb{R} \end{aligned}$$

```
# shallow relu net
ReLUnn2 = nn.Sequential(
    nn.Linear(2, 3),
    nn.ReLU(),
    nn.Linear(3, 1)
for param in ReLUnn2.parameters():
    print(type(param.data), param.shape)
<class 'torch.Tensor'> torch.Size([3, 2])
<class 'torch.Tensor'> torch.Size([3])
<class 'torch.Tensor'> torch.Size([1, 3])
<class 'torch.Tensor'> torch.Size([1])
```



#### What dose the data look like?



 $y = 4\sin(x_1) + \mathcal{N}(0,1) ext{ where } oldsymbol{x} \sim ext{Unif}([-1,1]^5)$ 

#### What is our training model?

```
# initialize a training model
train model = nn.Sequential(
    nn.Linear(5, 256),
    nn.ReLU(),
    nn.Linear(256, 128),
    nn.ReLU(),
    nn.Linear(128, 1)
train model
Sequential(
  (0): Linear(in features=5, out features=256, bias=True)
  (1): ReLU()
  (2): Linear(in features=256, out features=128, bias=True)
  (3): ReLU()
  (4): Linear(in features=128, out features=1, bias=True)
```

 A two-layer ReLU neural network with 256 hidden units in the first layer, and 128 hidden units in the second layer





#### Trained model on TRAINING data





# Fitted test data 1.5 1.0 0.5 fitted y 0.0 -0.5-1.0

-1.5

-0.75 -0.50

-0.25

0.00

0.25

0.50

0.75

1.00

#### Trained model on **TESTING** data





# Trained model on TESTING data and with REGULARIZATION



Code: optimizer = optim.Adam(train\_model.parameters(), lr = 0.001, weight\_decay = 0.01)



# Regularization of neural net

### - To achieve better generalization

Explicit regularization:

$$\min_{\boldsymbol{W}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(\boldsymbol{y}_{i}, \mathrm{DNN}_{\boldsymbol{W}}\left(\boldsymbol{x}_{i}\right)\right) + \frac{\lambda \Omega\left(\boldsymbol{W}\right)}{2}$$

- Norms of weight matrices
- Norms of gradients / Jacobians
- **–** ...
- Miscellaneous: A neural net structure can also induce regularization. E.g. The convolutional neural net (CNN)

- Implicit regularization:
  - The regularization that is not built in the objective function (the loss)
  - Regularization induced by an optimization algorithm: SGD tends to find a solution with small norm (regularized solution)
  - Early stopping; batch normalization; dropout



Credit: CSCI 5980/8980: Think Deep Learning offered by Ju Sun, UMN



#### **Dataset: MNIST**

- One of the benchmark datasets of deep learning for image classification
- Classifying digits as 0, 1, ..., 9



#### **Our CNN model**

```
model = nn.Sequential(
    nn.Conv2d(1, 32, 3, 1),
    nn.ReLU(),
    nn.Conv2d(32, 64, 3, 1),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Dropout(0.25),
    nn.Flatten(),
    nn.Linear(9216, 128),
    nn.ReLU(),
    nn.Dropout(0.5),
    nn.Linear(128, 10),
    nn.LogSoftmax(dim = 1)
```



Our CNN structure with activation functions, dropout regularization in between layers.



Convolution

Convolution

nn.Conv2d()

Max-Pool

nn.MaxPool2d()

Dense

nn.Linear()



#### Dropout for regularization:

 randomly kills inner neurons with some probability p



(a) Standard Neural Net



(b) After applying dropout.

Credit: Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.

#### **Our CNN model**

```
model = nn.Sequential(
    nn.Conv2d(1, 32, 3, 1),
    nn.ReLU(),
    nn.Conv2d(32, 64, 3, 1),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Dropout(0.25),
    nn.Flatten(),
    nn.Linear(9216, 128),
    nn.ReLU(),
    nn.Dropout(0.5),
    nn.Linear(128, 10),
    nn.LogSoftmax(dim = 1)
```



# The total number of trainable parameters is 1,199,882!

| Layer (type)                                                                | Input Shape     | <br>Param #                            | Tr. Param # |
|-----------------------------------------------------------------------------|-----------------|----------------------------------------|-------------|
| Conv2d-1                                                                    | [1, 1, 28, 28]  | ====================================== | 320         |
| ReLU-2                                                                      | [1, 32, 26, 26] | 0                                      | 0           |
| Conv2d-3                                                                    | [1, 32, 26, 26] | 18,496                                 | 18,496      |
| ReLU-4                                                                      | [1, 64, 24, 24] | 0                                      | 0           |
| MaxPool2d-5                                                                 | [1, 64, 24, 24] | 0                                      | 0           |
| Dropout-6                                                                   | [1, 64, 12, 12] | 0                                      | 0           |
| Flatten-7                                                                   | [1, 64, 12, 12] | 0                                      | 0           |
| Linear-8                                                                    | [1, 9216]       | 1,179,776                              | 1,179,776   |
| ReLU-9                                                                      | [1, 128]        | 0                                      | 0           |
| Dropout-10                                                                  | [1, 128]        | 0                                      | 0           |
| Linear-11                                                                   | [1, 128]        | 1,290                                  | 1,290       |
| LogSoftmax-12                                                               | [1, 10]         | 0                                      | 0           |
| Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0 |                 |                                        |             |



# **Check GPU availability**

cuda

```
# check device availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

cpu

# check device availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
```



# Download and preprocess the MNIST training / testing dataset

Other transforms: cropping, translation, rotation, padding...

```
# define preprocessing transforms for images
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
# import MNIST dataset
train data = datasets.MNIST('../data', train = True, download = True, transform = transform)
test data = datasets.MNIST('.../data', train = False, transform = transform)
# prepare dataset loaders
train loader = torch.utils.data.DataLoader(train data, batch size = 256, shuffle = True)
test loader = torch.utils.data.DataLoader(test data, batch size = 256)
```



# Download and preprocess the MNIST training / testing dataset

Most popular benchmark datasets can be loaded via <u>torchvision</u> library

```
# define preprocessing transforms for images
transform = transforms.Compose([
   transforms.ToTensor(),
   transforms.Normalize((0.1307,), (0.3081,))
])
                           Training size: 60,000; Test size: 10,000
# import MNIST dataset
train data = datasets.MNIST('../data', train = True, download = True, transform = transform)
test data = datasets.MNIST('../data', train = False, transform = transform)
# prepare dataset loaders
train_loader = torch.utils.data.DataLoader(train_data, batch_size = 256, shuffle = True)
test loader = torch.utils.data.DataLoader(test data, batch size = 256)
```

and don't forget to prepare DataLoader for training



### Define a training utils function

```
# a utils function for training
def train(model, device, train loader, optimizer, epoch):
    model.train() # enable dropout
   correct = 0
   for batch_idx, (data, target) in enumerate(train_loader):
        # transfer batches of data to specified device
        data, target = data.to(device), target.to(device)
        # build computation graph
       output = model(data)
        loss = F.nll loss(output, target)
        # the optimization part
        optimizer.zero grad()
        loss.backward()
        optimizer.step()
        # count the corrected classified cases
        pred = output.argmax(dim = 1, keepdim = True) # get the index of the max log-probability
        correct += pred.eq(target.view as(pred)).sum().item()
    print(f"Epoch {epoch + 1}:")
    print(f"Training accuracy: {100. * correct / len(train loader.dataset): .2f} %")
```



#### **Train our CNN**

```
# the training
model = myCNN() # initialize our model
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr = 0.005)
nepochs = 10
for epoch in range(nepochs):
  train(model, device, train loader, optimizer, epoch)
  test(model, device, test loader)
Epoch 1: Training accuracy: 93.75 %; Testing accuracy: 9847/10000 (98%)
Epoch 2: Training accuracy: 97.94 %; Testing accuracy: 9856/10000 (99%)
Epoch 3: Training accuracy: 98.33 %; Testing accuracy: 9891/10000 (99%)
Epoch 4: Training accuracy: 98.72 %; Testing accuracy: 9883/10000 (99%)
Epoch 5: Training accuracy: 98.74 %; Testing accuracy: 9890/10000 (99%)
Epoch 6: Training accuracy: 98.85 %; Testing accuracy: 9888/10000 (99%)
Epoch 7: Training accuracy: 98.88 %; Testing accuracy: 9879/10000 (99%)
Epoch 8: Training accuracy: 99.07 %; Testing accuracy: 9906/10000 (99%)
Epoch 9: Training accuracy: 99.14 %; Testing accuracy: 9909/10000 (99%)
Epoch 10: Training accuracy: 99.24 %; Testing accuracy: 9893/10000 (99%)
```



# Save / load the trained model: state dictionary method

Save the model: only save weights/biases of the model.



```
# save parameter values
torch.save(model.state_dict(), "model_dict.pt")
```

Load the model: initialize model, then load state dictionary.

```
# When one wants to use saved model next time:
# 1. initialize the same CNN model
model_new = myCNN()
# 2. load parameter values
model_new.load_state_dict(torch.load("model_dict.pt"))
model_new.eval()
```



### Save / load the trained model: checkpoint method

 Save the model: save BOTH weights/biases of the model and configurations of the optimizer.



### Save / load the trained model: checkpoint method

 Load the model: initialize BOTH model and optimizer, then load their state dictionaries.

```
# When one wants to use saved model next time:
# 1. initialize class and optimizer
model new = myCNN()
optimizer new = optim.Adam(model new.parameters(), lr = 0.005)
# 2. load checkpoints for both model and optimizer
checkpoint = torch.load("model_checkpoint.pt")
model new.load state dict(checkpoint['model state dict'])
optimizer new.load state dict(checkpoint['optimizer state dict'])
epoch = checkpoint['epoch']
# 3. do whatever you like :)
# - either - evaluate the mode and do some inference
model new.eval()
# - or - resume training from your last checkpoint
model_new.train()
```

Check saving and loading models for more details



#### **Robustness issue of CNN**

# **Underperformed test accuracy.** Solution: data augmentation!





### Use data augmentation to improve generalization

**Key idea:** Add some "noises" to augment your training data so that the trained model is more robust to new test data.

Original image

change colors











Original image

change spatial information













### Implement data augmentation in PyTorch

Simply add more augmentation transforms when preparing your Dataset.

```
transform = transforms.Compose([
    transforms.ColorJitter(brightness = 0.05, contrast = 0.05),
    transforms.RandomAffine(degrees = 10, translate = (0.1,0.1), scale = (0.9, 1.1)),
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
```

Check <u>Transforming and Augmenting Images</u> for more details.



# **CNN** trained with data augmentation

#### **Test accuracy 1.0**; Correctly classified 1, 7 and 9; Better generalization!





#### **Robustness issue of CNN**

#### Solution: adversarial training!



$$+.007 \times$$



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$  "nematode" 8.2% confidence



 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

x
"panda"
57.7% confidence

Credit: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.



# Outline

- Set up working environment
- Introduction to PyTorch framework
- Deep learning with PyTorch
- Other resources



#### Visualization with TensorBoard

- Monitor your training:
  - Metrics such as loss and accuracy
  - The model graph
  - Histograms, images and much more
- Some resources:
  - How to use TensorBoard with PyTorch
  - Visualizing models, data, and training with TensorBoard
  - PyTorch TensorBoard support





# **Use pretrained models from HuggingFace**



# The AI community building the future.

Build, train and deploy state of the art models powered by the reference open source in machine learning.



- HuggingFace: <a href="https://huggingface.co/">https://huggingface.co/</a>
- Check their <u>model hub</u>.
- Play with their <u>transformers</u> library.

- Thousands of pre-trained models:
  - Text: text classification, question answering, summarization, translation, text generation;
  - Images: image classification, object detection, segmentation, generation;
  - Audio: speech recognition, audio classification
- Quick APIs for download and fine-tuning.
- Backed by popular framework like PyTorch.





English | 简体中文 | 繁體中文 | 한국어 | Español | 日本語 | हिन्दी



#### **Tutorials and courses:**

#### **Books and tutorials:**

- <u>Dive into Deep Learning</u> (livebook)
- <u>Deep Learning</u> by Ian Goodfellow
- Official PyTorch tutorial
- Deep learning with Python (livebook)
- UvA DL Notebooks

#### Courses:

- <u>DL/ML tutorial</u> by Hung-Yi Lee
- <u>Deep learning</u> course by Yann LeCun
- Deep learning with Pytorch
- Stanford STAT385 series
- Think Deep Learning by Ju Sun





# University of Minnesota

# **Driven to Discover®**

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.