What is claimed is:

1	1. A wireless network system for use with two vehicles, said system comprising:
2	a first relay device including first and second Bluetooth® modules, each of the first
3	and second Bluetooth® modules capable of performing a cable communication irrespective
4	of which is a master or slave; and
5	at least one first wireless terminal including a third Bluetooth® module,
6	wherein the first and third Bluetooth® modules structure a first piconet in which the first
7	Bluetooth® module is a master, and the third Bluetooth® module is a slave,
8	the second Bluetooth® module structures a second piconet;
9	and wherein the first piconet and the second piconet structure a network.
1	2. The wireless network system according to claim 1, comprising:
2	a second relay device including a fourth Bluetooth® module; and
3	at least one second wireless terminal including a fifth Bluetooth® module,
4	wherein the second, fourth, and fifth Bluetooth® modules structure a second piconet in
5	which the fourth Bluetooth® module is a master, and the second and fifth Bluetooth®
6	modules are slaves.

- 1 3. The wireless network system according to claim 1, comprising:
- a second relay device including fourth and sixth Bluetooth® modules, each of the
- 3 fourth and sixth Bluetooth® modules capable of performing a cable communication
- 4 irrespective of which is a master or slave;
- at least one second wireless terminal including a fifth Bluetooth® module;
- the second and fourth Bluetooth® modules structure a third piconet in which the
- 7 fourth Bluetooth® module is a master, and the second Bluetooth® module is a slave;
- 8 wherein the fifth and sixth Bluetooth® modules structure a third piconet in which
- 9 the sixth Bluetooth® module is the master, and the fifth Bluetooth® module is the slave; and
- wherein the first, second, and third piconets structure a network.
- 1 4. The wireless network system according to claim 1, wherein the first and third
- 2 Bluetooth® modules communicate with each other with transmission electricity conforming
- 3 to a class 2 or 3 of a Bluetooth® standard.
- 1 5. The wireless network system according to claim 2, wherein the second, fourth, and
- 2 fifth Bluetooth® modules communicate with one another with transmission electricity
- 3 conforming to a class 1 of a Bluetooth® standard.

1	6.	The wireless network system according to claim 5, wherein the fifth Bluetooth®
2	module	includes means for restricting transmission electricity.
1	7.	The wireless network system according to claim 3, wherein the second and fourth
2	Bluetoo	th® modules communicate with each other with transmission electricity conforming
3	to a clas	ss 1 of a Bluetooth [®] standard.
1	8.	The wireless network system according to claim 3, wherein the fifth and sixth
2	Bluetoo	th® modules communicate with each other with transmission electricity conforming
3	to a clas	ss 2 or 3 of a Bluetooth® standard.
		·
1	9.	The wireless network system according to claim 1, wherein an SCO link or an
2	ACL lir	nk is established between the Bluetooth® modules.
1	10.	The wireless network system according to claim 1 or 2, wherein, in the first
2	relay de	evice, the first and second Bluetooth® modules are controlled by common control
3	means.	

1	11. The wireless network system according to claim 10, wherein the first and second
2	Bluetooth® modules and the control means are connected together via a bus.
1	12. The wireless network system according to claim 3, wherein, in the second relay
2	device, the fourth and sixth Bluetooth® modules are controlled by common control means.
1	13. The wireless network system according to claim 12, wherein the fourth and sixth
1	13. The wholess helwork system decording to claim 12, wherein the routin and sixual
2	Bluetooth® modules and the control means are connected together via a bus.
1	14. A wireless communications method in a wireless network system constructed by
2	plurality of Bluetooth® terminals, wherein
3	the system comprises:
4	a first relay device including first and second Bluetooth® modules, each of the
5	Bluetooth® modules performs a cable communication irrespective of which is a
6	master/slave; and
7	at least one first wireless terminal including a third Bluetooth® module, and
8	in the method,

the first and third Bluetooth® modules communicate with each other on a first 9 piconet in which the first Bluetooth® module is a master, and the third Bluetooth® module is 10 a slave, 11 the second Bluetooth® module communicates with any one of the other Bluetooth® 12 modules on a second piconet, and 13 14 the first Piconet and the other piconet structure a network. 15. The wireless communications method in a wireless network system according to 1 claim 14, wherein 2 3 the system comprises: a second relay device including a fourth Bluetooth® module; and 4 at least one second wireless terminal including a fifth Bluetooth® module, and 5 in the method, 6 the second, fourth, and fifth Bluetooth® modules communicate with one another on 7 a second piconet in which the fourth Bluetooth® module is a master, and the second and 8 fifth Bluetooth® modules are a slaves, and 9

the first and second piconets structure a network.

10

1 16. The wireless communications method in a wireless network system according to claim 14, wherein 2 3 the system comprises: a second relay device including fourth and sixth Bluetooth® modules, and each of 4 the Bluetooth® modules performs a cable communication irrespective of which is a 5 master/slave; and 6 at least one second wireless terminal including a fifth Bluetooth® module, and 7 8 in the method, the second and fourth Bluetooth® modules communicate with one another on a 9 third Piconet in which the fourth Bluetooth® module is a master, and the second Bluetooth® 10 module is a slave, 11 the fifth and sixth Bluetooth® modules communicate with each other on a third 12 piconet in which the sixth Bluetooth® module is the master, and the fifth Bluetooth® module 13 is the slave, and 14 the first, second, and third piconets structure a network. 15 1 17. The wireless communications method in a wireless network system according to claim 14, wherein the first and third Bluetooth® modules communicate with each other with 2

transmission electricity conforming to a class 2 or 3 of a Bluetooth® standard. 3 The wireless communications method in a wireless network system according to 1 18. claim 15, wherein the second, fourth, and fifth Bluetooth® modules communicate with one 2 another with transmission electricity conforming to a class 1 of a Bluetooth® standard. 3 1 19. The wireless communications method in a wireless network system according to claim 18, wherein the fifth Bluetooth® module restricts transmission electricity. 2 The wireless communications method in a wireless network system according to 20. 1 claim 16, wherein the second and fourth Bluetooth® modules communicate with each other 2 with transmission electricity conforming to a class 1 of a Bluetooth® standard. 3 21. The wireless communications method in a wireless network system according to 1 claim 16, wherein the fifth and sixth Bluetooth® modules communicate with each other 2 with transmission electricity conforming to a class 2 or 3 of a Bluetooth® standard. 3 1 22. The wireless communications method in a wireless network system according to

2	claim 14, wherein an SCO link or an ACL link is established between the Bluetooth®
3	modules.
1	23. The wireless communications method in a wireless network system according to
2	claim 14 or 15, wherein, in the first relay device, the first and second Bluetooth® modules
3	are controlled by common control means.
1	24. The wireless communications method in a wireless network system according to
2	claim 23, wherein the first and second Bluetooth® modules and the control means are
3	connected together via a bus.
1	25. The wireless communications method in a wireless network system according to
2	claim 16, wherein, in the second relay device, the fourth and sixth Bluetooth® modules are
3	controlled by common control means.
1	26. The wireless communications method in a wireless network system according to
2	claim 25, wherein the fourth and sixth Bluetooth® modules and the control means are
3	connected together via a bus.