Machine Learning

Assignment 01: Linear Algebra Review

Übung 01

Wenn A*x = b und C*x = b für jedes x und b, so ist A = C?

Beweis:

Annahme:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} \text{ und } b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$A * x = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} * \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} * \begin{pmatrix} 3 \\ 1 \end{pmatrix} = C * x$$

Da aber offensichtlich $A \neq C$ ist, ist die Annahme falsch.

Übung 02

o.B.d.A.: Die Matrix $B \in R^{3x3}$ ist in der dritten Spalte linear abhängig.

$$B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 3 \\ 1 & 0 & 1 \end{pmatrix} = > \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = 1 * \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + 1 * \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$$

Für ein beliebiges A gilt nun:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A * B = \begin{pmatrix} 2a_{11} + a_{13} & 3a_{12} & 2a_{11} + 3a_{12} + a_{13} \\ 2a_{21} + a_{23} & 3a_{22} & 2a_{21} + 3a_{22} + a_{23} \\ 2a_{31} + a_{33} & 3a_{32} & 2a_{31} + 3a_{32} + a_{33} \end{pmatrix}$$

$$1 * \begin{pmatrix} 2a_{11} + a_{13} \\ 2a_{21} + a_{23} \\ 2a_{31} + a_{33} \end{pmatrix} + 1 * \begin{pmatrix} 3a_{12} \\ 3a_{22} \\ 3a_{32} \end{pmatrix} = \begin{pmatrix} 2a_{11} + 3a_{12} + a_{13} \\ 2a_{21} + 3a_{22} + a_{23} \\ 2a_{31} + 3a_{32} + a_{33} \end{pmatrix}$$

Die lineare Abhängigkeit in der Matrix A*B bleibt weiterhin bestehen, sodass, wie in diesem Beispiel, die dritte Spalte aus den anderen beiden auf die gleiche Weise wie vorher gebildet werden kann.

Übung 03

Für Matrizen gilt im Allgemeinen: (E = Einheitsmatrix)

$$E * A = A = A * E \text{ und } A * A^{-1} = E$$

Hieraus folgt:
 $A * A^{-1} = A * E * A^{-1} = A * (B * B^{-1}) * A^{-1} = (A * B) * (B^{-1} * A^{-1}) = E$

Weiterhin gilt:

$$E = (A * B) * (A * B)^{-1} = (A * B) * (B^{-1} * A^{-1})$$

Woraus letztendlich folgt: $(A * B)^{-1} = (B^{-1} * A^{-1})$ qed.

Marcel Zauder 16-124-836

Machine Learning

Assignment 01: Linear Algebra Review

Übung 04

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}_{m*n} \qquad B = \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{pmatrix}_{n*m}$$

$$A * B = \begin{pmatrix} \sum_{i=1}^{m} a_{1i}b_{i1} & \cdots & \ddots \\ \vdots & \ddots & \vdots \\ \ddots & \cdots & \sum_{i=1}^{m} a_{in}b_{ni} \end{pmatrix} \qquad B * A = \begin{pmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \cdots & \ddots \\ \vdots & \ddots & \vdots \\ \ddots & \cdots & \sum_{i=1}^{n} a_{im}b_{mi} \end{pmatrix}$$

$$tr(AB) = (AB)_{11} \cdots (AB)_{mm} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji}$$

$$tr(BA) = (BA)_{11} \cdots (BA)_{nn} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ji}a_{ij}$$

Da die Reihenfolge von Additionen und Multiplikationen keine Rolle spielt, folgt, dass die Spuren gleich sind.

Übung 05

Aus dem LinAlg Tutorial 1 wissen wir:

, wenn
$$G = A^T A$$
, mit $A \in R^{m*n}$, folgt:

$$x^T G x = x^T A^T A x = (Ax)^T (Ax) = y^T y \ge 0$$

und daher ist G positiv semi-definiert. (Analog für E)

Für G+E gilt dann:

$$x^{T}(G+E)x = x^{T}(A^{T}A + B^{T}B)x = x^{T}A^{T}Ax + x^{T}B^{T}Bx = (Ax)^{T}(Ax) + (Bx)^{T}(Bx)$$
$$= y^{T}y + z^{T}z \ge 0$$

woraus folgt, das G+E positiv semi-definiert ist.

Übung 06

Vorgabe: C positiv definiert, A unabhängige Spalten

Es ist klar, dass A^TA symmetrisch ist.

Wir zeigen zuerst, dass A^TA positiv definiert ist, d.h. $\forall x \neq 0$: $\left| |Ax| \right|^2 = x^TA^TAx > 0$: Da die Spalten von A alle linear unabhängig voneinander sind, impliziert dies,

dass $Ax \neq 0$, woraus letztlich $x^T A^T Ax = ||Ax||^2 > 0$ folgt.

Nun ist noch zu zeigen, dass $x^T S x > 0$ ist:

$$x^{T}Sx = x^{T}A^{T}CAx = (Ax)^{T}C(Ax) > 0$$
 qed.

Marcel Zauder 16-124-836

Machine Learning

Assignment 01: Linear Algebra Review

Übung 07

$$x_i y_i^T = \begin{pmatrix} x_1^i \\ \vdots \\ x_n^i \end{pmatrix} * (y_1^i \quad \cdots \quad y_n^i) = \begin{pmatrix} x_1^i y_1^i & \cdots & x_1^i y_n^i \\ \vdots & \ddots & \vdots \\ x_n^i y_1^i & \cdots & x_n^i y_n^i \end{pmatrix}$$

Jede Spalte liegt in der Form $\binom{x_1k_i}{\vdots}_{x_nk_i}$ $mit\ k=(y_1\ \cdots\ y_n)$ vor.

 $\forall i,j$ können wir sagen, dass $k_i = c*k_j$. Da $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ in jeder Spalte vorkommt und jedes $\mathbf{k_j}$ ein

Vielfaches von k_i ist, sind alle Spalten linear von der ersten Spalte abhängig, woraus folgt $rank(x_iy_i^T)=1$. Da $rank(\sum_{i=1}^n A_i) \leq \sum_{i=1}^n rank(A_i)$ ist, folgt:

$$rank(\sum_{i=1}^{m} x_i y_i^T) \le \sum_{i=1}^{m} rank(x_i y_i^T) = \sum_{i=1}^{m} 1 = m$$
 qed.

Marcel Zauder 16-124-836