ISYE/CSE 6740 Homework 2

Yiming Tong

September 22, 2019

$\mathbf{Q2}$ 1

It's obvious that $f_v(x) = (x^T v)v$. Hence, the target function becomes

$$\begin{split} & \underset{||v||}{argmin} \sum_{i=1}^{n} ||x_i - (x_i^T v)v||^2 \\ &= \underset{||v||}{argmin} \sum_{i=1}^{n} (x_i^T x_i - 2(x_i^T v)^2 + (x_i^T v)^2 v^T v) \\ &= \underset{||v||}{argmin} \sum_{i=1}^{n} (x_i^T x_i - (x_i^T v)^2) \\ &= \underset{||v||}{argmin} (\Sigma - v \Sigma v^T) \end{split}$$

which is constraint by $v^Tv = 1$, where $\Sigma = \sum_{i=1}^n x_i^Tx_i$ is the covariance matrix of the components of the data set X. This is exactly the same optimization problem as in PCA, since the first term Σ is independent with argument v. Thus, $argmin \sum_{i=1}^{n} ||x_i - (x_i^T v)v||^2$ gives the principle component.

$\mathbf{2}$ Q4

(a) $\mathcal{L}(\Delta_i, h_i) = \log \prod_{i=1}^m (\frac{h_i \Delta_i}{\sum_i h_i \Delta_i})^{n_i}$. (b) Added Lagrange multiplier, the target function is obtained as:

$$L(h_i, \lambda) = log \prod_{i=1}^{m} (h_i \Delta_i)^{n_i} + \lambda (1 - \sum_i \Delta_i h_i)$$
$$= \sum_i n_i log(\Delta_i h_i) - \lambda \sum_i \Delta_i h_i + \lambda.$$

Taking $\frac{\partial L}{\partial h_i}$ gives $\frac{n_i}{h_i} - \lambda \Delta_i = 0, h_i = \frac{n_i}{\lambda \Delta_i}$. Then we can determine λ by normalizing the probability: $\sum_i \Delta_i h_i = \sum_i n_i / \lambda = 1, \lambda = \sum_i n_i = N$. In summary, the maximum log likehood esitimator $h_i = \frac{n_i}{N\Delta_i}$. (c)

- F: More like have many parameters. The number of parameters \sim number of samples.
- F: Too many bins in high dimensional cases; Full bandwidth induces higher statistical risk.
- T: The shape follows the model you choose, e.g. guassian.

3 Q5

(a) For given $z^{(k)}$, only the k^{th} term in the product exists, i.e.

$$p(z = z^{(k)}) = \pi_k,$$

$$p(x|z = z^{(k)}) = \mathcal{N}(x|\mu_k, \Sigma_k).$$

Thus,

$$(2) = \sum_{z \in Z} p(z)p(x|z)$$

$$= \sum_{k} p(z^{(k)})p(x|z^{(k)})$$

$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) = (1).$$

(b)

$$\begin{split} p(z_k^n = 1 | x_n) = & \frac{p(z_n^k = 1) p(x_n | z_k^n = 1)}{p(x_n)} \\ = & \frac{\pi_k \times \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_k p(z_n^k = 1) p(x_n | z_k^n = 1)} \\ = & \frac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_k \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}, \end{split}$$

where $\mathcal{N}(x_i|\mu_k, \Sigma_k) := \frac{1}{|\Sigma|^{\frac{1}{2}}(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2}(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)\right).$

(c) In M-step we maximize the following target function, which is the log-likehood function of sum of K normal distributions:

$$f(\pi_k, \Sigma_k, \mu_k) = \sum_{i=1}^{m} \sum_{k=1}^{K} \tau_k^i \left[\log \pi_k - (x^i - \mu_k)^T \Sigma_k (x^i - \mu_k) + \log \Sigma_k + c \right],$$

which is constraint by $\Sigma \pi_k = 1$. As usual we add Lagrange mutiplexer, the target function becomes:

$$L(\pi_k, \Sigma_k, \mu_k, \lambda) = \sum_{i=1}^m \sum_{k=1}^K \tau_k^i \left[\log \pi_k - \left(x^i - \mu_k \right)^T \Sigma_k \left(x^i - \mu_k \right) + \log \Sigma_k + c \right] - \lambda (1 - \sum \pi_k).$$

By setting the partial derivative of π_k, Σ_k, μ_k and λ to zero, we find out:

$$\begin{split} \sum_{i} \frac{\tau_{k}^{i}}{\pi_{k}} - \lambda &= 0, \\ \sum_{i} \tau_{k}^{i} \Sigma_{k} (x^{i} - \mu_{k}) &= 0, \\ \sum_{i} \tau_{k}^{i} [(x^{i} - \mu_{k})^{T} (x^{i} - \mu_{k}) + \Sigma_{k}^{-1}] &= 0, \\ \sum_{k} \pi_{k} &= 0. \end{split}$$

By solving these equations, we could come to the updated π_k, μ_k and Σ_k :

$$\begin{split} \pi_k &= \frac{\sum_i \tau_k^i}{m}, \\ \mu_k &= \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}, \\ \Sigma_k &= \frac{\sum_i \tau_k^i (x^i - \mu_k)^T (x^i - \mu_k)}{\sum_i \tau_k^i}. \end{split}$$

(d) By substituting $\Sigma_k = \epsilon I$ into normal distribution we get

$$\mathcal{N}(x^i, \mu_k, \Sigma_k = \epsilon I) = \frac{1}{\sqrt{2\pi\epsilon}} e^{-\frac{1}{2\epsilon}||x^i - \mu_k||^2}.$$

Then the τ_k^i is given by

$$\tau_k^i = \frac{\pi_k exp(-||x^i - \mu_k||^2/2\epsilon)}{\sum_k \pi_k exp(-||x^i - \mu_k||^2/2\epsilon)} \rightarrow \gamma_k^k,$$

as $\epsilon \to 0$, where $\gamma_{ik} = 1$ if x^i is closest to μ_k and $\gamma_{ik} = 0$ otherwise. This is because as $\epsilon \to 0$, only the term with the smallest $||x^i - \mu_k||^2$ is significant. In this case, the log likehood function becomes:

$$f(\pi_k,\mu_k) = \sum_n \sum_k \gamma_{nk} (\log(\pi_k) - \frac{1}{2\epsilon} ||x^n - \mu_k||^2 + \log(\frac{1}{\sqrt{2\pi\epsilon}})) \rightarrow -\sum_n \sum_k \gamma_{nk} \frac{1}{2\epsilon} ||x^n - \mu_k||^2,$$

as $\epsilon \to 0$. To maximize $f(\pi_k, \mu_k)$ is equivalent to minimize $J = \sum_n \sum_k \gamma_{nk} \|x_n - \mu_k\|^2$ in this case. (e)

$$\mu_{mixture} = \sum_{k} \pi_{k} \mu_{k}$$

$$\Sigma_{mixture} = \sum_{k} \pi_{k} \Sigma_{k}.$$