Unsupervised Learning Machine Learning 101

Institute of Al

Why unsupervised learning?

- Supervised learning works great if you have correct labels
- Most of the data in the real world is not labelled
- Labelling using human expertise is expensive

Types of unsupervised learning algorithms

Clustering

Grouping similar instances into clusters

Anomaly detection

Identifying abnormal instances in data

Dimensionality reduction

Generate a representation of data with fewer dimensions

Clustering

Example: customer segmentation.

Cluster customers based on their activity on your site so that you can adapt your product and marketing campaigns to each segment.

Example: semi-supervised learning.

Only a few samples have labels. Perform clustering and assign the same label to all items in a cluster.

Clustering

Two popular clustering algorithms

K-Means DBSCAN

K-Means Clustering

K-Means Code Walkthrough

DBSCAN

Density Based Spatial Clustering of Applications with Noise

DBSCAN

Hyperparameters

- 1. Epsilon
- 2. Minimum samples

Epsilon

The distance around a point.

Minimum samples

The number of points that have to be in the ϵ neighborhood to form a cluster.

DBSCAN

The algorithm

- 1. For each instance, count how many other instances are within epsilon (the ϵ neighborhood).
- 2. If a neighborhood has more than "minimum samples" instances, they form a cluster.
- 3. The neighborhood of a cluster is a combination of neighborhoods of all points in the cluster.

Visualizing DBSCAN

Link

DBSCAN Code Walkthrough

Anomaly Detection using DBSCAN

Instances that have a label of -1 are anomalies