Guilherme D. da Fonseca

Celina M. H. de Figueiredo

Vinícius G. Pereira de Sá

WAOA 2014

0000

- Unit disk graph: Intersection graph of unit-disks in the plane
- Applications in wireless networks
- Neither planar nor perfect:
 K_i and C_i are UDGs for all i
- Recognition: NP-Hard Doubly exponential algorithm exists
- Vertex coordinates (disk centers) are real numbers

Unit Disk Graph Algorithms

Introduction

0000

- Two types of algorithms:
 - Geometric: vertex coordinates
 - Graph-based: adjacency information only
- PTASs for several problems:
 - Minimum Dominating Set
 - Maximum (Weight) Independent Set
 - Minimum (Weight) Vertex Cover
 - Minimum Connected Dominating Set
 - ...

Our assumptions

- Vertex coordinates as input (geometric algorithm)
- Floor function and O(1)-time hashing

- PTASs have high complexity: $O(n^{10})$ to 4-approximate the *minimum dominating set*
- Faster constant-factor approximations exist:
 - 5-approximation in O(n) time
 - 4.89-approximation in $O(n \log n)$ time
 - 4.78-approximation in $O(n^4)$ time
 - 4-approximation in $O(n^6 \log n)$ time
 - 3-approximation in $O(n^{11} \log n)$ time

Our Results

Introduction

New method to obtain O(n)-time approximations:

- Minimum Dominating Set: $(4 + \varepsilon)$ -approximation
- Max-Weight Independent Set: $(4 + \varepsilon)$ -approximation
- Min. Vertex Cover: Linear-Time Approximation Scheme

0000

- (1) Break the original problem into subproblems of O(1)diameter (shifting strategy)
- (2) Build a coreset with O(1) points for each subproblem, which gives an α -approximation to the subproblem
- (3) Solve the coreset optimally
- (4) Combine the solutions into an $(\alpha + \varepsilon)$ -approximation

Maximum-Weight Independent Set

- Independent Set: Subset of points with minimum distance > 2
- Maximum-Weight Independent Set:
 - Points have real weights

Previous results:

- $(1+\varepsilon)$ -approx in $O(n^{4\lceil 2/\varepsilon\sqrt{3}\rceil})$ time: 4-approximation in $O(n^4)$ time
- 5-approximation in $O(n \log n)$ time

Our result:

• $(4 + \varepsilon)$ -approximation in O(n) time

Breaking the Problem into Subproblems

Break problem into O(1)-diameter subproblems (shifting strategy):

- Set k to smallest integer with $\left(\frac{k-2}{k}\right)^2 \geq \frac{4}{4+\varepsilon}$
- Use grids of size 2k
- Create k^2 shifted grids with even origins
- Contract grid cells by 1 in all directions
- Each contracted cell is a subproblem

Analysis of Shifting Strategy

- Contracted cells are distance 2 apart: union preserves independence
- 4-approximation in yellow area
- Yellow area gets much bigger than white area as $k \to \infty$
- Expected number of OPT points in white area is small
- Maximum is larger than expectation

Constant-Diameter Coreset

- Coreset: Subset with O(1) points that approximates the original solution
- Algorithm:
 - Create grid with cells of diameter $0.29 < (2 - \sqrt{2})/2$
 - Select a point of maximum weight inside each cell (coreset)
 - Find the optimal independent set among the selected points
- We need to prove it gives a 4-approximation!

Conclusion

Proof of 4-Approximation

- Consider the optimal independent set
- Moving points by at most 0.29, we obtain a planar graph
- Planar graphs are 4-colorable
- The color of maximum weight is a 4-approximation

Lower Bound of 3.25

- P_1 : Set of points from the figure
- P_2 : Multiply coordinates from P_1 by $(1+\varepsilon)$ and weights by $(1-\varepsilon)$
- $P_1 \cup P_2$ gives a lowerbound of 3.25
 - P₂ is independent
 - MWIS: P_2 , with $w(P_2) \approx 3.25$
 - Coreset: P₁
 - P₁ has MWIS with weight 1

Minimum Dominating Set

Introduction

Dominating Set: Subset of points D such that all input points are within distance at most 2 from a point in D

- 5-approximation in O(n) time
- 4.89-approximation in $O(n \log n)$ time
- 4.78-approximation in $O(n^4)$ time
- 4-approximation in $O(n^6 \log n)$ time
- 3-approximation in $O(n^{11} \log n)$ time

Minimum Dominating Set

Introduction

Dominating Set: Subset of points D such that all input points are within distance at most 2 from a point in D

- 5-approximation in O(n) time
- 4.89-approximation in $O(n \log n)$ time
- 4.78-approximation in $O(n^4)$ time

new $(4 + \varepsilon)$ -approximation in O(n) time

- 4-approximation in $O(n^6 \log n)$ time
- 3-approximation in $O(n^{11} \log n)$ time

Minimum Dominating Set Algorithm

• Break the problem into subproblems of O(1) diameter using the shifting strategy

Conclusion

- Cells need to be expanded rather than contracted
- We'll present only the coreset

Constant-Diameter Coreset

- Algorithm:
 - Create grid with cells of diameter $\gamma = 0.24$ (any positive γ satisfying

$$\sqrt{8-8\cos\left(\frac{\frac{\pi}{2}+2\arcsin(\frac{\gamma}{2})}{2}\right)}+\gamma<2$$

suffices)

- Select the points of min and max x and y coordinates
- Find the optimal dominating set among the coreset points, but dominating all points
- We need to prove it's a 4-approximation!

Proof of 4-Approximation

- For each point p in OPT,
 - either p is in the coreset (great!)
 - or there are points q_1, q_2 near p with angle $> 90^\circ$
- We dominate all points dominated by p using at most 4 points q_1, q_2, q_3, q_4

Lower Bound of 4

- 4-approximation
- () Optimal solution
 - × Remaining disks

- Vertex Cover: Complement of independent set
- Linear-time PTAS already known
- Minimum vertex cover corresponds to maximum independent set
- *C*: Vertex cover, *I*: Independent set, |C| = n |I|
- Approximation ratio is not preserved

- Vertex Cover: Complement of independent set
- Linear-time PTAS already known
- Minimum vertex cover corresponds to maximum independent set
- *C*: Vertex cover, *I*: Independent set, |C| = n |I|
- Approximation ratio is not preserved
 - Bad when $|C| \ll n$
 - Great when $|I| \ll n$

- Break the problem into subproblems of O(1) diameter using the shifting strategy
- A set of diameter d has at most $(d+2)^2/4$ independent vertices
- If n is sufficiently small (constant), solve the problem optimally $\left(n<\left(1+\frac{3}{4\varepsilon}\right)\frac{(d+2)^2}{4}\right)$
- Otherwise, compute the 4-approximate maximum independent set and use its complement

Conclusion

- New method to obtain O(n)-time algorithms for problems on geometric intersection graphs, yielding:
 - A $(4 + \varepsilon)$ -approximation to max-weight independent set
 - A $(4 + \varepsilon)$ -approximation to minimum dominating set
 - A $(1+\varepsilon)$ -approximation to minimum vertex cover

Conclusion

Open Problems

- Tight analysis for max-weight independent set?
- Improvement for the unweighted version (by considering extreme points in several directions)?
- Similar method without geometric information?
- Solve other problems:
 - Minimum-weight dominating set?
 - Minimum connected dominating set?
 - Minimum independent dominating set?
- Other geometric intersection graphs?

Bibliography

Introduction

1 G. Fonseca, C. Figueiredo, V. Pereira de Sá, R. Machado. Efficient sub-5 approximations for minimum dominating sets in unit disk graphs. *Theoretical Computer Science*, 540: 70–81, 2014.

Conclusion

- 2 H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. *Journal of Algorithms*, 26:238–274, 1998.
- 3 R. K. Jallu, P. R. Prasad, and G. K. Das. Minimum dominating set for a point set in R². preprint, arXiv:1111.2931, 2014.
- 4 M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for unit disk graphs. *Networks*, 25(2):59–68, 1995.
- 5 T. Matsui. Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In *JCDCG*, volume 1763 of *Lecture Notes in Computer Science*, pages 194–200, 1998.
- 6 T. Nieberg, J. Hurink, and W. Kern. Approximation schemes for wireless networks. ACM Transactions on Algorithms, 4(4):49:1–49:17, 2008.

Thank you!

Photo by Gilbert Garcin