#### Physics 1320 - Calculus-based Physics II Summer 2022 Midterm Exam II

# Question 1 (15 pts)

Consider a segment of AWG 12 (diameter = 2.052mm) copper wire in a circuit that is 20m long that is connected to an  $100\Omega$  resistance. A potential difference of 12V is applied as shown.



| Material   | Conductivity, $\sigma$ $\left(\left.\Omega\cdot\mathrm{m}\right)^{-1}$ | Resistivity, $ ho$ $(\Omega \cdot \mathrm{m})$ |
|------------|------------------------------------------------------------------------|------------------------------------------------|
| Conductors |                                                                        |                                                |
| Silver     | $6.29\times10^7$                                                       | $1.59  	imes  10^{-8}$                         |
| Copper     | $5.95\times10^7$                                                       | $1.68  	imes  10^{-8}$                         |
| Gold       | $4.10\times10^7$                                                       | $2.44  	imes  10^{-8}$                         |
| Aluminum   | $3.77\times10^7$                                                       | $2.65	imes10^{-8}$                             |
| Tungsten   | $1.79\times10^7$                                                       | $5.60 \times 10^{-8}$                          |

- A What is the resistance of this segment of copper wire?
- B For an aluminum wire of the same length, what diameter is required to match the resistance of the copper wire?
- C How much energy is used by this segment of copper wire?
- D Where does this energy go?

## Question 2 (15 pts)

Consider the below circuit:



- A What is the total current flowing from the power supply?
- B What is the voltage across resistor  $R_2$ ?
- C What is the current through resistor  $R_6$ ?

#### Question 3 (20 pts)

Consider the circuit below with a power supply V=12V,  $R_1=10k\Omega$ ,  $R_2=3.3k\Omega$ ,  $C_1=180\mu F$ , and  $C_2=120\mu F$ .



Assume that the switch starts open (connected neither to the power supply nor the resistor  $R_2$ ). It closes to the power supply at time = 5 seconds. And, then at time = 14 seconds it switch over to connect to the resistor  $R_2$ .

- A What is the charge on capacitor  $C_2$  at time = 11 seconds?
- B What is the voltage across capacitor  $C_1$  at time = 20 seconds?

## Question 4 (15 pts)

Consider a magnetic field of magnitude 2.73T that is parallel to the positive z-axis. For each of the following situations, calculate the force vector acting upon the particle.

- A An electron moving in the negative y direction with a velocity of  $4.2 \frac{m}{s}$ .
- B A proton moving in the negative z direction with a velocity of  $8.99\frac{m}{s}$ .
- C An alpha-particle (two protons and two neutrons) moving with a velocity of  $(-3\hat{i}+4\hat{j}-5\hat{k})\frac{m}{s}$

Note: the mass of a proton is  $m_p = 1.637 \cdot 10^{-27} kg$  and the mass of a electron is  $9.11 \cdot 10^{-31} kg$ . The charge on an electron is  $1.602 \cdot 10^{-19} C$ .

## Question 5 (15 pts)

Consider a right triangle with sides of 3cm and 4cm carrying 5A of current as shown in the figure below. It is placed in a 80mT magnetic field at an angle of  $\theta$  as shown.



A When  $\theta = 0^{\circ}$ , what is the force on each of the three sides of the triangle?

B When  $\theta = 45^{\circ}$ , what is the magnetic dipole moment of this current-carrying loop?

C When  $\theta = 45^{\circ}$ , what is the torque on this current-carrying loop?

#### Question 6 (20 pts)

Consider the below mass spectrometer with the following fields with  $E = 12,500 \frac{V}{m}$ , B = 0.01T, and  $B_0 = 1.404T$  in the directions shown in the Figure below.



A Describe qualitatively how the velocity selector portion of the mass spectrometer works.

B What is the velocity of a particle emerging from the velocity selector?

- C A gas chromatography system breaks the source gas into constituent atoms and ionizes them. These ions then enter the mass spectrometer. An equal number of ions (singularly charged) hit a detector at radius 12.91cm and 14.75cm, what is the mass of each type of ion?
- D Given the table at the end of this exam, what is the original gas that was fed into the gas chromatogrphy system? (Note:  $1 \text{ AMU} = 1.66 * 10^{-27} kg$ ).

# Question 7 - Extra Credit (5pts)

- A How much horsepower can a horse exert over a short period of time?
- B If the horse exerts its maximum pull for 5 minutes, how much Energy does it use. (Note: one horsepower equals 745.7 W).

#### Reference: Atomic Mass Table

| ATOMIC NUMBER | ELEMENT    | ATOMIC MASS |
|---------------|------------|-------------|
| 1             | Hydrogen   | 1.008       |
| 2             | Helium     | 4.0026      |
| 3             | Lithium    | 6.94        |
| 4             | Beryllium  | 9.0122      |
| 5             | Boron      | 10.81       |
| 6             | Carbon     | 12.011      |
| 7             | Nitrogen   | 14.007      |
| 8             | Oxygen     | 15.999      |
| 9             | Fluorine   | 18.998      |
| 10            | Neon       | 20.180      |
| 11            | Sodium     | 22.990      |
| 12            | Magnesium  | 24.305      |
| 13            | Aluminium  | 26.982      |
| 14            | Silicon    | 28.085      |
| 15            | Phosphorus | 30.974      |
| 16            | Sulfur     | 32.06       |
| 17            | Chlorine   | 35.45       |
| 18            | Argon      | 39.948      |
| 19            | Potassium  | 39.098      |
| 20            | Calcium    | 40.078      |
| 21            | Scandium   | 44.956      |
| 22            | Titanium   | 47.867      |
| 23            | Vanadium   | 50.942      |