Advanced Topics on Artificial Intelligence

Alban Grastien

The Australian National University

Second Semester, 2020

Model-free decision

- We are now considering the problem of decision under uncertainty when the model is unknown
 - We do not know the transition function P(s, a, s')
 - We do not know the reward function R(s, a, s')
 - But the state is still fully observable

My Previous Lecture: Bandit

Two important problems:

- How to update the knowledge
 - E.g., average outcome, temporal difference
- How to balance exploration / exploitation
 - E.g., ε -greedy strategy or UCB

Today

- Evaluation of a policy
- Computing the optimal (?) policy: SARSA / Q-learning

Small Number of States

- We now consider problems with small number of states.
- ullet Small number of states o anywhere from 1 to millions, maybe billions.
- The idea is that all states can be enumerated and visited a few times.

Policy Evaluation

As with MDP, we first focus on policy evaluation:

- Given a policy $\pi:S\to A$
- \bullet calculate the value $V_\pi(s)$ of each (reachable) state, i.e., the expected discounted reward / cost from this state

Approaches

• Run the system and record the output (new state, reward) to estimate the parameters of the MDP, and later use MDP techniques Issues:

- Does not directly compute the value of the policy
- Not good when the system dynamics change
- Run the system and record the long term outcome of each state (using Temporal Difference) Issues:
 - Can be fairly imprecise if some states are visited rarely.
- Run the system and update state value estimate using Temporal Difference (bootstrapping)

First Approach

ESTIMATE-MDP

- AddedUpReward[s, s'] = 0 for all s, s'
- AddedUpTransitions[s, s'] = 0 for all s, s'
- Repeat:
 - Choose a state s and execute action $\pi(s)$
 - ullet Let s' be the next state and r be the reward
 - AddedUpReward[s, s'] + = r
 - AddedUpTransitions[s, s'] + = 1
- return MDP $\langle S, A, P, R \rangle$ where
 - $P(s, \pi(s), s') = \frac{AddedUpTransitions[s, s']}{\sum_{a \in S} AddedUpTransitions[s, q]}$
 - $R(s, \pi(s), s') =$ AddedUpReward[s, s']/AddedUpTransitions[s, s']

Notice: here we use Average, but we could use Temporal Difference

Criticising the First Approach

- Computes an MDP and then we need to compute the value function
 - Very bad for incremental approach
- Is quadratic (keeps an entry for any pair of states)
 - That's potentially a problem from million of states on

Second Approach

ESTIMATE-LONG-TERM-REWARDS

- For all state, V(s) := 0
- Repeat:
 - From initial state s, run policy π
 - Record rewards r_1, \ldots, r_k , states s_1, \ldots, s_k
 - For each index $i \in \{0, \dots, k\}$,
 - long-term-reward := $\sum_{i>i} \gamma^{j-i} r_i$
 - ullet update $V(s_i) := V(s_i) + lpha(\mathit{long-term-reward} V(s_i))$

Notice: here we use Temporal Difference, but we could use Average

Criticising the Second Approach

- Needs a significant amount of memory
- Fairly bad at estimating values in situations with low probability and high reward/cost

It will take a long time to get a good (accurate) estimate of 3

Third Approach: Bootstrapping and Temporal Difference

Temporal Difference

- For all state, V(s) := 0
- Repeat:
 - \bullet Choose a state s
 - Execute action $\pi(s)$ and observe state s' and reward r
 - ullet Update state value: $V(s) := V(s) + lpha igg(r + \gamma \, V(s') \, V(s) igg)$

bootstrapping means that you compute the estimate of V(s) from another estimate (here V(s'))

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action
- Update value

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action
- Update value

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action
- Update value

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action
- Update value

- Cost of action = 1; reward for getting in goal = 0; $\gamma = 1$
- Initialise value of states to 0
- $\alpha = 0.1$
- Arrows represent the policy, but the RL agent does not know what they mean!
- Select a state
- Simulate action
- Update value
- Beware of states with ∞ value!

Properties of Temporal Difference

- ullet Value estimate with TD converges to V_{π} in the mean for a constant α if α is sufficiently small
- Notice: only "in the mean", but the estimate keeps fluctuating

Properties of Temporal Difference

• If α decreases according to the conditions presented in the section about Bandit, then it converges to V_{π} with probability 1

Finding Good / Optimal Policies

Problem definition:

- We assume given an MDP with unknown parameters
 - Fully observable
 - The list of applicable actions is known!
- ullet Calculate a policy that maximises/minimises $V_\pi(s)$ for all states s

SARSA

State Action Reward State Action

Q-Value

- With MDPs, we knew the probabilistic transition function P and the reward function R. Remember:
 - In MDPs, the optimal action is:

$$\arg\min_{a\in A(s)} \Sigma_{s'\in S} \ P(s,a,s') \times \bigg(R(s,a,s') + \gamma V^*(s') \bigg).$$

It is easy to compute the optimal action from $V^*(s)$.

- In reinforcement learning, this is no longer true
 - \rightarrow If you don't know P and R, then knowing $V^*(s')$ for all s' is useless to decide the next action.
- Instead, we reason about the Q-value:
 - Q(s, a) is the expected (discounted) value of applying a in s (assuming some policy / the best policy will be used after that).

Second Semester, 2020

How to Estimate the Q(s, a)?

Important factors:

- We want to boostrap
 - So we start with some estimate Q(s, a)
- We want to use temporal difference
 - Bootstrapping without temporal difference is a very bad idea because the initial estimated rewards are very bad
- We want to use the best moves (according to the current estimate)
- We also want to explore!

SARSA

SARSA

- Q(a,s) := 0 for all $s \in S$ and $a \in A(s)$
- Repeat:
 - ullet Start from initial state s
 - Let $a := \pi(s)$
 - Execute n times
 - (r, s') := execute(s, a)
 - Let $a' := \pi(s')$
 - $Q(s, a) := Q(s, a) + \alpha \left(r + \gamma Q(s', a') Q(s, a) \right)$
 - \bullet s:=s' and a:=a'

In general, π is the ϵ -greedy policy based on Q:

- With probability 1ϵ , $\pi(s) = \arg \max_{a \in A(s')} Q(s, a)$
- With probability ϵ , $\pi(s)$ is chosen (pseudo)-randomly

Example 1: executing a_0 in s_0

•
$$r = 1$$

•
$$\gamma = .95$$

•
$$\alpha = .05$$

$$ullet$$
 Simulation $o s_1$

• Next action: a_1

•
$$Q(s_0, a_0) = 10$$

•
$$Q(s_1, a_1) = 10$$

$$Q(s_1, a_1) = 10$$

•
$$Q(s_1, a_2) = 3$$

Updating the *Q*-value:

•
$$R := r + \gamma Q(s_1, a_1) = 10.5$$

•
$$Q(s_0, a_0) := Q(s_0, a_0) + \alpha(R - Q(s_0, a_0)) = 10.025$$

Example 2: executing a_0 in s_0

•
$$r = 1$$

•
$$\gamma = .95$$

•
$$\alpha = .05$$

• Simulation
$$\rightarrow s_1$$
 • $Q(s_1, a_2) = 3$

• Next action:
$$a_2$$

•
$$Q(s_0, a_0) = 10$$

•
$$Q(s_1, a_1) = 10$$

•
$$Q(s_1, a_2) = 3$$

Updating the *Q*-value:

•
$$R := r + \gamma Q(s_1, a_2) = 3.85$$

•
$$Q(s_0, a_0) := Q(s_0, a_0) + \alpha(R - Q(s_0, a_0)) = 9.6925$$

Q-Learning

Q-Learning

Q-learning is a slight variation of SARSA.

We will discuss the practical differences later.

SARSA

- Q(a,s) := 0 for all $s \in S$ and $a \in A(s)$
- Repeat:
 - ullet Start from initial state s
 - Execute *n* times
 - Let $a := \pi(s)$
 - (r, s') := execute(s, a)
 - $Q(s, a) := Q(s, a) + \alpha \left(r + \gamma \max_{a' \in A(s')} Q(s', a') Q(s, a) \right)$
 - \bullet s := s'

In general, π is the ϵ -greedy policy based on Q

Differences between SARSA and Q-learning

The next discounted reward is estimated to:

- SARSA
 - $r + \gamma Q(s', a')$, which is the value that we expect to get this time
 - ullet since a' is the action that we will perform from s'
 - We call this an on-policy control
- Q-learning
 - $r + \gamma \max_{a' \in A(s')} Q(s', a')$, which is the best outcome we can expect
 - Notice that we may then decide to perform an action different from the optimal action a', if we choose to explore
 - We call this an off-policy control

Which one to choose?

SARSA or Q-learning

- SARSA estimates the expected outcome assuming you will explore
- Q-learning estimates the expected outcome assuming you will take the best action

So...

- Choose SARSA if you want to use the system during the learning process
 - for instance, if you are driving your car

Choose Q-learning if you don't mind making mistakes during the learning process

• for instance, if you are practising for a competition

