Contents

[ASN.1 Basics	5
1	Abstract Syntax Notation: ASN.1	7
	1.1 Some of the ASN.1 Basic Types	8
	1.1.1 The BOOLEAN type	8
	1.1.2 The INTEGER type	
		UMERATED type

4	CONTE	ENTS
	4.3.2 Encoding DER 4.3.3 Encoding XER 4.3.4 Validating the target structure 4.3.5 Printing the target structure 4.3.6 Freeing the target structure	25 26 26
III	Examples	29

ASN.1 Basics

Abstract Syntax Notation: ASN.1

ASN.1. For example, this data structure may be encoded according to some encoding rules and sent to the destination using the TCP protocol. The ASN.1 specifies several

1.1.3 The ENUMERATED type

1.3 ASN.1 Constructed Types

1.3.1 The SEQUENCE type

This is an ordered collection of other simple or constructed types. The SEQUENCE constructed type resembles the C "struct" statement.

1.3.2 The SET type

This is a collection of other simple or constructed types. Ordering is not important. The

1.3.5 The SET OF type

The SET OF type models the bag of structures. It resembles the SEQUENCE OF type, but the order is not important: i.e. the elements may arrive in the order which is not

Part II

ASN.1 Compiler

Introduction to the ASN.1 Compiler

Quick start

After building and installing the compi9er, the $asn1c^1$

Overall Options	Description
-E	Stop after the parsing stage and print the reconstructed
	ASN.1 specification code to the standard output.
-F	Used together with -E, instructs the compiler to stop after the
	ASN.1 syntax tree fixing stage and dump the reconstructed
	ASN.1 specification to the standard output.
-P	Dump the compiled output to the standard output instead of

4.3.2 Encoding DER

The Distinguished Encoding Rules is the *canonical* variant of BER encoding rules. The DER is best suited to encode the structures where all the lengths are known beforehand.

This is probably exactly how you want to encode: either[(v)25Ather[(v)25r[(v)2(BER)-247dencodingv manucalfiall1(-up,l)-187(the)-34((t)1ar)187gete(structure)-34(containse)-34((the)-33(data:)-34(whiche)-34((izre) SN.1 ypde787(asn_DEF_Reacat787fromy thewhiche ishats

}

As you see, the DER encoder does not write into some sort of buffer or something. It just invokes the custom function (possible, multiple times) which would save the

Part III Examples

Step-by-step: A "Rectangle" Decoder

This chapter will help you to create a simple decoder of a simple "Rectangle" type used throughout this document.

1. Create a file named

6. Compile all files together using C compiler (varies by platform):

7. Voila! You have just created the Rectangle type decoder named **rdecode**!