CPT_S 580 HW4

Yang Zhang

11529139 (graduate)

4.3

4.4.1

Vertex	Df#	low#
а	0	0
b	2	2
С	1	0
d	3	0
е	4	0
f	5	0
g	6	3
h	7	6
i	8	6

Vertex g and c are cut vertices, and dfnumber(c) \leq low(b), dfnumber(g) \leq low(h), which verifies the assertion of Corollary 4.4.12

4.4.2

Df#	low#
2	1
0	0
1	1
4	1
3	1
6	2
5	2
7	5
	2 0 1 4 3 6 5

i	8	5

Vertex g and c are cut vertices, and dfnumber(c) \leq low(b), dfnumber(g) \leq low(h), which verifies the assertion of Corollary 4.4.12

4.4.3

Vertex	Df#	low#
а	1	0
b	8	8
С	0	0
d	3	0
е	2	0
f	5	1
g	4	3
h	6	4
i	7	4

4.4.4

Vertex g is cut vertex, and dfnumber(g) <= low(h), which verifies the assertion of Corollary 4.4.12

Vertex	Df#	low#
а	1	0
b	3	3
С	2	0
d	4	0
е	0	0
f	6	0
g	5	3
h	6	6
i	7	6

Vertex g and c are cut vertices, and dfnumber(c) \leq low(b), dfnumber(g) \leq low(h), which verifies the assertion of Corollary 4.4.12

5.1.2

5.1.4

It is impossible, because if the 3 connected graph G only has 1 bridge, then $k_E(G) = 1$ and $k_V(G) = 3$, which violates the Corollary 5.1.6 ($k_V(G) \le k_E(G)$).

5.1.14

5.1.15

5.1.20

Any 3-connected simple graph must have at least 5 vertices and min degree number >= 3. Therefore, the smallest possible 3-connected graph is as shown below:

Which has 8 egdes. Therefore, there doesn't exist such a graph with 7 edges.

5.2.2

5.2.6

A 3-connected graph can be constructed from a wheel graph by applying Tutte Synthesis Q_3 can be constructed from a wheel graph as follow steps:

Therefore, Q₃ is 3-connected graph.

5.3.2

One collection of two internally disjoint paths could be $P=\{(u,t,y,v), (u,s,w,x,v), (u,a,b,v)\}$. The u-v separating vertex set $\{t,s,a\}$ shows that P is maximum-size collection.

5.3.11

Since S_{UV} is a u-v separating set, each u-v path in P_{uv} must include at least one vertex of S_{uv} . Since the paths in P_{uv} are internally disjoint, no two of them can include the same vertex. Thus, the number of internally disjoint u-v paths in G is at most $|S_{uv}|$. Therefore, if $|P_{uv}| = |S_{uv}|$, P_{uv} has the maximum size.

Coding Part

The question is asking to implement the Prim Algorithm

The Prim' Algorithm will produce the MST. To implement the Prim:

- 1. Transfer a graph into its adjacent matrix
- 2. Initialize an array checklist to track on the vertex already visited
- 3. Initialize an array parent to track on the vertex' parent (i.e. the edge)
- 4. Initialize an array v to store the frontier edge weight of current vertex
- 5. Growing the tree:

Pick the 1^{st} vertex u as starting point, and set v[u] = 0; parent[u] = -1; #Vertices = n

Iterates the building process n-1 times:

Pick the vertex s with minimum v[s]

Mark s as visited

Iterates other vertices x:

If s and x are adjacent to each other and x is unvisited and edge between s and x has smaller weight than other edge on s:

Record the weight of edge between s and x (v[x])And mark s as the parent of x

The input is the adjacent matrix of a graph

The output is the list of edges that Prim would pick

Output result:

Verification of correctness:

Hand produced prim MST of 4.3.3:

The program pick the same edge set building the MST as doing it by hand

As a conclusion, the Prim algorithm would produce an MST successfully.