MTH 101-Calculus

Spring-2021

Assignment 4: Mean Value Theorem, Taylor's Theorem, Curve Sketching

- 1. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Suppose that f(a)=a and f(b)=b. Show that there is $c \in (a,b)$ such that f'(c)=1. Further, show that there are distinct $c_1, c_2 \in (a,b)$ such that $f'(c_1)+f'(c_2)=2$.
- 2. Using Cauchy Mean Value Theorem, show that
 - (a) $1 \frac{x^2}{2!} < \cos x$ for $x \neq 0$.
 - (b) $x \frac{x^3}{3!} < \sin x$ for x > 0.
- 3. Let f be the function $f(x) = e^x$. Let $a_1 < a_2$ be two real numbers and set $P = (a_1, f(a_1))$ and $Q = (a_2, f(a_2))$. Let $L = \overline{PQ}$ be the line containing P and Q. Show that there exists a unique real number c such that the tangent line to f at x = c is parallel to the line L.
- 4. Let $f:[a,b]\to\mathbb{R}$ be a differentiable function. Then show that f' has intermediate value property.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with $|f'(x)| \leq M$. Prove that there is a constant $c \in \mathbb{R}$ such that the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = x + cf(x) is a bijection.
- 6. Find $\lim_{x \to 5} (6-x)^{\frac{1}{x-5}}$ and $\lim_{x \to 0^+} (1+\frac{1}{x})^x$.
- 7. Sketch the graphs of $f(x) = x^3 6x^2 + 9x + 1$ and $f(x) = \frac{x^2}{x^2 1}$.
- 8. (a) Let $f:[a,b] \to \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a,b]$. Suppose $x_0 \in [a,b]$. Show that for any $x \in [a,b]$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

i.e., the graph of f lies above the tangent line to the graph at $(x_0, f(x_0))$.

- (b) Show that $\cos y \cos x \ge (x y) \sin x$ for all $x, y \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 9. Suppose f is a three times differentiable function on [-1,1] such that f(-1)=0, f(1)=1 and f'(0)=0. Using Taylor's theorem show that $f'''(c)\geq 3$ for some $c\in (-1,1)$.