

第十七章 平面图

PART 01 平面图的基本概念

PART 02

平面图的对偶图

- ■平面图与平面嵌入
- ■平面图的面、有限面、无限面
- ■面的次数
- ■极大平面图
- ■极小非平面图

定义17.1 如果能将图G除顶点外边不相交地画在平面上,则称G是平面图.

这个画出的无边相交的图称作G的平面嵌入. 没有平面嵌入的图称作非平面图.

(1) (2) (3) (4) (5)

上图中(1)~(4)是平面图, (2)是(1)的平面嵌入, (4)是(3)的平面嵌入. (5)是非平面图.

定理17.1 平面图的子图都是平面图, 非平面图的母图都是非平面图。

定理17.2 设G是平面图,则在G中加平行边或环后所得的图还是平面图。

定义17.3 给定平面图G的平面嵌入,G的边将平面划分成若干个区域,每个区域都称作G的一个面。

无限面(外部面): 面积无限的面,用 R_0 表示

有限面(内部面): 面积有限的面, 用 $R_1, R_2, ..., R_k$ 表示

面 R_i 的边界:包围 R_i 的所有边构成的回路组

面 R_i 的次数: R_i 边界的长度,用 $deg(R_i)$ 表示

例分析右平面图的划分。

右图有4个面,

 R_1 的边界: a

 $deg(R_1)=1;$

 R_2 的边界: bce

 $deg(R_2)=3;$

 R_3 的边界: fg

 $deg(R_3)=2;$

R₀的边界: dcbaed,fg

 $deg(R_0)=8.$

例 下面2个图是同一个平面图的平面嵌入.

 R_1 在(1)中是外部面,在(2)中是内部面;

 R_2 在(1)中是内部面,在(2)中是外部面.

其实,在平面嵌入中可把任何面作为外部面.

定理17.3 平面图各面的次数之和等于边数的2倍.

定义17.3 若G是简单平面图,并且在任意两个不相邻的顶点之间加一条新边所得图为非平面图,则称G为极大平面图.

例 K_5 若删去一条边是极大平面图.

 K_1, K_2, K_3, K_4 都是极大平面图(它们已无不相邻顶点).

练 判断下列图是否是极大平面图?

不是

不是

是

定理17.4 $n(n \ge 3)$ 阶简单连通平面图是极大平面图当且仅当它每个面的次数都为3.

定理17.5 若在非平面图G中任意删除一条边,所得的图为平面图则称G为极小非平面图。

说明:极小非平面图必为简单图

例 K₅是极小非平面图

作业

习题 17 (P353)

3

PART 01 平面图的基本概念

PART 02 平面图的对偶图

定义14.16 设无向图G=<V,E>, $E'\subseteq E$, 若p(G-E')>p(G)且

 $\forall E'' \subset E', p(G-E'')=p(G), 则称E'为G的边割集.$

若{e}为边割集,则称e为割边或桥.

例 e7是桥

定义17.6 设平面图G,有n个顶点,m条边和r个面,G的对偶图

$$G^* = \langle V^*, E^* \rangle$$
如下:

在G的每一个面 R_i 中任取一个点 v_i *作为G*的顶点,

$$V^* = \{ v_i^* | i=1,2,...,r \}.$$

对G每一条边 e_k ,

若 e_k 在面 R_i 与 R_j 的公共边界上,则作边 e_k *=(v_i *, v_j *),且与 e_k 相交;若 e_k 为G中的桥且在面 R_i 的边界上,则作环 e_k *=(v_i *, v_i *),且与 e_k 相交.

$$E^*=\{e_k^*|k=1,2,...,m\}.$$

例画出下面两张图的对偶图。

黑色实线为原平面图,红色虚线为其对偶图

平面图G的对偶图G*有以下性质:

- 1) G^* 是平面图,而且是平面嵌入;
- 2) G*是连通图;
- 3)若边e为G中的环,则G*与e对应的边e*为桥; 若边e为G中的桥,则G*中与e对应的边e*为环;
- 4) 多数情况下,G*为多重图(含平行边的图)。

定理17.14 设平面图G是连通的,G*是G的对偶图,n, m, r*和n*,r*分别为G和G*的顶点数、边数和面数,则

- 1) $n^*=r$;
- 2) $m^*=m$;
- 3) $r^*=n$:
- 4)设G*的顶点 v_i *位于G的面 R_i 中,则 $d_{G^*}(v_i^*)=deg(R_i)$ 。

定理17.15 设平面图G有 $k(k \ge 1)$ 个连通分支,G*是G的对偶图,n,m,r和n*,m*,r*分别为G和G*的顶点数、边数和面数,则

- 1) $n^*=r$;
- 2) $m^*=m$;
- 3) $r^*=n-k+1$;
- 4) 设G*的顶点 v_i *位于G的面 R_i 中,则 $d_{G^*}(v_i^*)=deg(R_i)$ 。

测验15

- (1) 求出平面图中各面的边界及次数;
- (2) 求出平面图的对偶图。

作业

习题 17 (P353)

20