

ON THE μ -INVARIANT OF THE CYCLOTOMIC DERIVATIVE OF KATZ p -ADIC L-FUNCTION

ASHAY A. BURUNGALE

ABSTRACT. When the branch character has root number -1 , the corresponding anticyclotomic Katz p -adic L-function identically vanishes. In this case, we study the μ -invariant of the cyclotomic derivative of Katz p -adic L-function. As an application, this proves the non-vanishing of the anticyclotomic regulator of a self-dual CM modular form with the root number -1 .

CONTENTS

1. Introduction	2
2. Hilbert modular Shimura variety	4
2.1. Setup	4
2.2. Moduli interpretation	5
2.3. CM points	7
2.4. Igusa tower	7
2.5. Tate objects	8
2.6. Deformation theory of an ordinary abelian variety	8
2.7. Geometric Hilbert modular forms	9
2.7.1. Classical Hilbert modular forms	9
2.7.2. p -adic Hilbert modular forms	9
2.7.3. Mod p Hilbert modular forms	10
2.8. Linear independence	10
3. Cyclotomic derivative	11
3.1. Eisenstein series on $\mathrm{GL}_2(\mathbf{A}_{\mathcal{F}})$	12
3.2. Fourier coefficients of Eisenstein series	12
3.3. Choice of the local sections	13
3.4. q -expansion of normalized Eisenstein series	14
3.5. Cyclotomic derivative	15
4. Proof of Theorem A	15
4.1. An outline	16
4.2. The vanishing of an Eisenstein series	17
4.3. A lower bound	18
4.4. An upper bound I	19
4.5. An upper bound II	22
5. Non-vanishing of anticyclotomic regulator	23
References	24

Date: April 17, 2013.

2010 *Mathematics Subject Classification.* Primary 11F33, 11F41, 11G18 Secondary 11R23.

1. INTRODUCTION

Zeta values often enter the p -adic world via p -adic L-functions. One expects that p -adic L-functions are intimately connected with arithmetic. A p -adic L-function can have several variables. In such a case, we may expect that a power series obtained by taking its partial derivative with respect to one of the variables at a specific value of that variable, also has some arithmetic meaning.

Katz p -adic L-function over a totally real field of degree d has $(d+1+\delta)$ -variables, where δ is the Leopoldt defect for the totally real field. In this article, by Katz p -adic L-function we mean the projection to the first $(d+1)$ -variables. When the branch character is self-dual with the root number -1 , the corresponding anticyclotomic Katz p -adic L-function of d -variables identically vanishes. In this article, we study the μ -invariant of the cyclotomic derivative of the Katz p -adic L-function when the branch character is of this type. Following a strategy of Hida, we determine this μ .

Let us introduce some notation. Fix an odd prime p . Let \mathcal{F} be a totally real field of degree d over \mathbf{Q} and \mathcal{K} be a totally imaginary quadratic extension of \mathcal{F} . Let $D_{\mathcal{F}}$ be the discriminant of \mathcal{F}/\mathbf{Q} . Fix two embeddings $\iota_{\infty}: \overline{\mathbf{Q}} \rightarrow \mathbf{C}$ and $\iota_p: \overline{\mathbf{Q}} \rightarrow \mathbf{C}_p$. Let c denote the complex conjugation on \mathbf{C} which induces the unique non-trivial element of $\mathrm{Gal}(\mathcal{K}/\mathcal{F})$ via ι_{∞} . We assume the following hypothesis throughout:

(ord) Every prime of \mathcal{F} above p splits in \mathcal{K} .

The condition (ord) guarantees the existence of a p -adic CM type Σ i.e. Σ is a CM type of \mathcal{K} such that, p -adic places induced by elements in Σ via ι_p are disjoint from those induced by Σc . Let \mathcal{K}_{∞}^+ and \mathcal{K}_{∞}^- be the cyclotomic \mathbf{Z}_p -extension and anticyclotomic \mathbf{Z}_p^d -extension of \mathcal{K} . Let $\mathcal{K}_{\infty} = \mathcal{K}_{\infty}^+ \mathcal{K}_{\infty}^-$ be a \mathbf{Z}_p^{d+1} -extension of \mathcal{K} . Let $\Gamma^{\pm} := \mathrm{Gal}(\mathcal{K}_{\infty}^{\pm}/\mathcal{K})$ and let $\Gamma = \mathrm{Gal}(\mathcal{K}_{\infty}/\mathcal{K}) \simeq \Gamma^+ \times \Gamma^-$.

Let \mathfrak{C} be a prime-to- p integral ideal of \mathcal{K} . Decompose $\mathfrak{C} = \mathfrak{C}^+ \mathfrak{C}^-$, where \mathfrak{C}^+ (respectively \mathfrak{C}^-) is a product of split primes (respectively ramified or inert primes) over \mathcal{F} . Let λ be a Hecke character of infinity type $k\Sigma$, $k > 0$ and suppose \mathfrak{C} is the prime-to- p conductor of λ . Associated to this data, a $(d+1)$ -variable Katz p -adic L-function $L_{\Sigma, \lambda}(T_1, T_2, \dots, T_d, S) \in \overline{\mathbf{Z}}_p[[\Gamma]]$ is constructed in [10] and [4]. Here T_1, \dots, T_d are the anticyclotomic variables and S is the cyclotomic variable. We occasionally abbreviate this function as $L_{\Sigma, \lambda}$. It interpolates critical Hecke L-values $L(0, \lambda\chi)$ as χ varies over certain Hecke characters mod $\mathfrak{C}p^{\infty}$ (cf. [4, Thm. II]). Let $L_{\Sigma, \lambda}^- \in \overline{\mathbf{Z}}_p[[\Gamma^-]]$ be the anticyclotomic projection obtained by substituting $S = 0$.

For each local place v , choose a uniformiser ϖ_v and let $|.|_v$ denote the corresponding absolute value normalised so that $|\varpi_v|_v = |N(\varpi_v)|_l$ and $|l|_l = \frac{1}{l}$, where N is the norm, $v \cap \mathbf{Q} = (l)$ and $l > 0$. Let v_p be the p -adic valuation of \mathbf{C}_p normalised such that $v_p(p) = 1$. We view it as a function on $\overline{\mathbf{Q}}$ via ι_p . Let N be the norm Hecke character i.e. adelic realisation of the p -adic cyclotomic character. For each v dividing \mathfrak{C}^- and λ as above, the local invariant $\mu_p(\lambda_v)$ is defined by

$$(1.1) \quad \mu_p(\lambda_v) = \inf_{x \in K_v^{\times}} v_p(\lambda_v(x) - 1).$$

Let us also define

$$(1.2) \quad \mu_p'(\lambda_v) = v_p\left(\frac{\log_p(|\varpi_v|)}{\log_p(1+p)}\right) + \sum_{w \neq v, w \mid \mathfrak{C}^-} \mu_p(\lambda_w) \geq 0$$

and

$$(1.3) \quad \mu_p'(\lambda) = \sum_{v \mid \mathfrak{C}^-} \mu_p(\lambda_v).$$

From now on, suppose that λ is self-dual i.e. $\lambda|_{\mathbf{A}_{\mathcal{F}}^{\times}} = \tau_{\mathcal{K}/\mathcal{F}} \cdot |\mathbf{A}_{\mathcal{F}}$, where $\tau_{\mathcal{K}/\mathcal{F}}$ is the quadratic character associated to \mathcal{K}/\mathcal{F} and $|\cdot|_{\mathbf{A}_{\mathcal{F}}}$ is the adelic norm. In particular, the global root number of λ is ± 1 . Now, suppose that the global root number is -1 . In view of the functional equation of Hecke L-function, this root number

condition forces all the Hecke L-values appearing in the interpolation property of $L_{\Sigma,\lambda}^-$ to vanish. Accordingly, $L_{\Sigma,\lambda}^- = 0$. This also follows from the functional equation of $L_{\Sigma,\lambda}$ (cf. [4, §5]). The anticyclotomic arithmetic information contained in $L_{\Sigma,\lambda}$ may seem to have disappeared. However, we can look at the cyclotomic derivative

$$(1.4) \quad L'_{\Sigma,\lambda} = \left(\frac{\partial}{\partial S} L_{\Sigma,\lambda}(T_1, \dots, T_d, S) \right) |_{S=0}.$$

For any integer k , $L_{\Sigma,\lambda}(T_1, T_2, \dots, T_d, (1+p)^k - 1)$ equals $L_{\Sigma,\lambda N^k}^-$ and $\lim((1+p)^{p^n} - 1)$ equals zero. Thus, the cyclotomic derivative equals

$$(1.5) \quad \frac{1}{\log_p(1+p)} \left(\frac{d}{ds} L_{\Sigma,\lambda N^s}^- \right) |_{s=0} \in \overline{\mathbf{Z}}_p[\Gamma^-].$$

Note that the factor $\frac{1}{\log_p(1+p)}$ comes from the fact that

$$\lim \frac{(1+p)^{p^n} - 1}{p^n} = \log_p(1+p).$$

Here, \log_p is Iwasawa's p -adic logarithm normalised so that $\log_p(p) = 0$. In (1.5) and throughout this article our meaning of derivative is the following. Let f be a function from integers to a p -adic domain of characteristic different from p . We define

$$(1.6) \quad \frac{d}{ds} f(s) |_{s=0} := \lim \frac{f(p^n) - f(0)}{p^n}.$$

Here, \lim denotes the p -adic limit. Note that the Leibnitz product rule is valid for this notion of derivative.

The following can be considered as the main result of the article.

Theorem A Let $h_{\mathcal{K}}^- := h_{\mathcal{K}}/h_{\mathcal{F}}$ be the relative class number. Suppose that $p \nmid h_{\mathcal{K}}^- \cdot D_{\mathcal{F}}$. Then, we have

$$\mu(L'_{\Sigma,\lambda}) = \min_{v|\mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}.$$

We now describe the strategy of the proof. Some of the notation used here is not followed in the rest of the article.

We basically follow a strategy of Hida. Let us briefly recall Hida's strategy to determine $\mu(L_{\Sigma,\lambda}^-)$ (cf. [6]). Suppose that $p \nmid h_{\mathcal{K}}^- \cdot D_{\mathcal{F}}$. The starting point is the observation that there are classical Hilbert modular Eisenstein series $(f_{i,\lambda})_i$ such that

$$(1.7) \quad L_{\Sigma,\lambda}^- = \sum_i a_i \circ (f_{i,\lambda}(t)),$$

upto an automorphism of $\overline{\mathbf{Z}}_p[\Gamma^-]$, where $f_{i,\lambda}(t)$ is the t -expansion of f_i around a well chosen CM point x with the CM type (\mathcal{K}, Σ) on the Hilbert modular Shimura variety Sh and a_i is an automorphism of the deformation space of x in Sh . Based on Chai's study of Hecke-stable subvarieties of a Shimura variety, Hida proves the linear independence of $(a_i \circ f_{i,\lambda})_i$ modulo p . It follows that $\mu(L_{\Sigma,\lambda}^-) = \min_i \mu(f_{i,\lambda}(t)) = \min_i \mu(f_{i,\lambda})$. Now, $\mu(f_{i,\lambda}) = \mu(f_{i,\lambda}(q))$, where $f_{i,\lambda}(q)$ is the q -expansion of $f_{i,\lambda}$. Thus, the question reduces to the computation of the μ -invariant of the q -expansion. When $\mathfrak{C}^- = 1$, this computation can be done quite explicitly. However, when $\mathfrak{C}^- \neq 1$, the computation seems quite complicated. As an alternative, Hsieh constructs certain Hilbert modular Eisenstein series $(\mathbf{f}_{i,\lambda})_i$ whose q -expansion computation is a bit simpler than that of $(f_{i,\lambda})_i$ such that the property (1.7) still holds i.e. the power series $L_{\Sigma,\lambda}^-$ equals $\sum_i a_i \circ (\mathbf{f}_{i,\lambda}(t))$ upto an automorphism of $\overline{\mathbf{Z}}_p[\Gamma^-]$ (cf. [8]). In [6] and [8], the condition $p \nmid h_{\mathcal{K}}^-$ is not needed as otherwise the power series $L_{\Sigma,\lambda}^-$ restricted to an explicit finite open cover is still of the form (1.7).

In our case, the root number condition forces that $\mathfrak{C}^- \neq 1$. So, we use the later Eisenstein series. Firstly, we show that there are p -adic Hilbert modular forms $(\mathbf{f}'_{i,\lambda})_i$ such that

$$(1.8) \quad L'_{\Sigma,\lambda} = \sum_i a_i \circ (\mathbf{f}'_{i,\lambda}(t)),$$

upto an automorphism of $\overline{\mathbf{Z}}_p[[\Gamma^-]]$. Basically, $\mathbf{f}'_{i,\lambda}$ is the derivative of $\mathbf{f}_{i,\lambda N^s}$ at $s = 0$ (cf. (1.5)). As in Hida's strategy, the question then reduces to the computation of the μ -invariant of q -expansion of $(\mathbf{f}'_{i,\lambda})_i$. However, the expression for the q -expansion coefficients does not seem to be very explicit. The coefficients are the products of certain local Whittaker integrals and derivatives.

When \mathcal{F} equals \mathbf{Q} and λ is the Grössencharakter associated to a CM elliptic curve E/\mathbf{Q} having CM by \mathcal{O}_K , the Katz p -adic L-function, $L_{\Sigma,\lambda}$ is the two variable commutative p -adic L-function associated to E . In [12], Rubin proves that $L_{\Sigma,\lambda}$ generates the characteristic ideal of a certain Selmer group associated to E/\mathcal{K}_∞ . This two variable main conjecture gives cyclotomic and anticyclotomic main conjectures. When λ has root number -1 , both sides of the anticyclotomic main conjecture are zero (cf. [1]). However, in [loc. cit., Thm A] it is shown that $L'_{\Sigma,\lambda}$ generates the characteristic ideal of the torsion part of the anticyclotomic Selmer group times a certain anticyclotomic regulator associated to λ after tensoring with \mathbf{Q}_p . In the appendix of [1], Rubin proves the non-vanishing of this anticyclotomic regulator. Thus, $L'_{\Sigma,\lambda}$ is non-trivial. The results of [loc. cit.] have been generalised to self-dual CM modular forms in [2], except the non-vanishing of the anticyclotomic regulator. Theorem A proves the non-vanishing of the anticyclotomic regulator of a CM modular form with the root number -1 . This seems to be one of the first instances where the non-vanishing of an Iwasawa theoretic regulator is proven by a modular method (combined with the main conjecture).

When λ is self-dual without a condition on the root number, the method in this paper can be used to study non-triviality of certain higher order anticyclotomic derivatives $L_{\Sigma,\lambda}^{(k)}$ modulo p . As a consequence, we can show that $L_{\Sigma,\lambda} \in \overline{\mathbf{Z}}_p[[\Gamma]]$ is not a polynomial.

It seems likely that $L'_{\Sigma,\lambda}$ generates the characteristic ideal of the torsion part of the anticyclotomic Selmer group upto an anticyclotomic regulator. Another interesting question would be whether a normalisation of $L'_{\Sigma,\lambda}$ interpolates a normalisation of (complex) derivative L-values.

The article is organised as follows. In §2, we recall some facts about Hilbert modular Shimura variety. Basically, we need to state a version of Hida's linear independence result suitable to our setting. This does not seem to be directly stated in [6]. We also recall the notion of the t -expansion of a Hilbert modular form around a CM point which plays an essential role in the article. The reader familiar with [6] can begin with §3. In §3, firstly we recall the construction of Eisenstein series in [9]. Towards the end, the p -adic Hilbert modular forms $(\mathbf{f}'_{i,\lambda})_i$ are constructed. In §4, we prove Theorem A. In §4.1, we firstly give an outline of the proof. In §5, as an application, we prove the non-vanishing of the anticyclotomic regulator in [2].

Acknowledgments. We are grateful to our advisor Prof. Haruzo Hida for continuous guidance and encouragement. The question was suggested by him. We also thank Ming-Lun Hsieh for patiently answering our questions regarding [8] and [9].

2. HILBERT MODULAR SHIMURA VARIETY

In this section, we recall some facts about Hilbert modular Shimura variety. We end with a certain linear independence of mod p Hilbert modular forms due to Hida. We follow [5], [6] and [9].

2.1. Setup. In this subsection, we recall a basic setup regarding Hilbert modular Shimura variety.

Let $G = \text{Res}_{\mathcal{F}/\mathbf{Q}} GL_2$ and $h_0 : \text{Res}_{\mathbf{C}/\mathbf{R}} \mathbb{G}_m \rightarrow G_{/\mathbf{R}}$ be the morphism of real group schemes given by

$$a + bi \mapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix},$$

where $a + bi \in \mathbf{C}^\times$. Let X be the set of $G(\mathbf{R})$ -conjugacy classes of h_0 . We have a canonical isomorphism $X \simeq (\mathbf{C} - \mathbf{R})^I$, where I is the set of real places of \mathcal{F} . The pair (G, X) satisfies Deligne's axioms for a Shimura variety. It gives rise to a tower $(Sh_K(G, X))_K$ of quasi-projective smooth varieties over \mathbf{Q} indexed by open compact subgroups K of $G(\mathbf{A}^f)$. The tower is endowed with an action of $G(\mathbf{A}^f)$. The pro-algebraic variety $Sh(G, X)/\mathbf{Q}$ is the projective limit of these varieties. The complex points of these varieties are given as follows

$$(2.1) \quad Sh_K(G, X)(\mathbf{C}) = G(\mathbf{Q}) \backslash X \times G(\mathbf{A}^f)/K, \quad Sh(G, X)(\mathbf{C}) = G(\mathbf{Q}) \backslash X \times G(\mathbf{A}^f)/\overline{Z(\mathbf{Q})}.$$

Here, $\overline{Z(\mathbf{Q})}$ is the closure of the center $Z(\mathbf{Q})$ in $G(\mathbf{A}^f)$ under the adélic topology. For $(z, g) \in X \times G(\mathbf{A}^f)$, let $[z, g]$ denote the corresponding point on $Sh(G, X)(\mathbf{C})$.

Let us introduce some notation. Consider $V = \mathcal{F}^2$ as a two dimensional vector space over \mathcal{F} . Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Let $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathcal{F}$ be the \mathcal{F} bilinear pairing defined by $\langle e_1, e_2 \rangle = 1$. Let $\mathcal{L} = Oe_1 \oplus O^*e_2$ be the standard O lattice in V . For a fractional ideal \mathfrak{b} of O , $\mathfrak{b}^* := \mathfrak{b}^{-1}\mathfrak{d}_{\mathcal{F}}^{-1}$. Here, $\mathfrak{d}_?$ denotes the different of $?/\mathbf{Q}$, where $?$ equals \mathcal{F} or \mathcal{K} . Sometimes, we denote $\mathfrak{d}_{\mathcal{F}}$ by \mathfrak{d} . For $g \in G(\mathbf{Q})$, $g' := \det(g)g^{-1}$. Note that $G(\mathbf{Q})$ has a natural right action on \mathcal{F}^2 . For $x \in V$, consider the left action $gx := xg'$.

Let h be the set of finite places of \mathcal{F} . For $v \in h$,

$$K_v^0 := \{g \in GL_2(\mathcal{F}_v) | g(\mathcal{L} \otimes O_v) = \mathcal{L} \otimes O_v\}, \quad K_p^0 := \prod_{v|p} K_v^0.$$

From now on, we consider only those open compact subgroups K of $G(\mathbf{A}^f)$ for which K_p equals K_p^0 . We say that K is maximal at p if K equals $G(\mathbf{Z}_p) \times K^{(p)}$. Sometimes, by 1 we mean the trivial subgroup.

2.2. Moduli interpretation. In this subsection, we describe the moduli functor represented by Hilbert modular Shimura variety.

To describe the functor, we first introduce a certain fibered category. Let Ξ be a finite set of rational primes. Let $\mathbf{Z}_{(\Xi)}$ denote the localisation of \mathbf{Z} at Ξ . Consider the fibered category $\mathcal{A}_K^\Xi/SCH_{/\mathbf{Z}_{(\Xi)}}$ as follows. Let $S/\mathbf{Z}_{(\Xi)}$ be a locally Noetherian and connected scheme. Let \bar{s} be a geometric point of S . The objects are abelian varieties with real multiplication over S of level K . To be precise, an object $\underline{\mathcal{A}} = (A, \bar{\lambda}, \iota, \bar{\eta}^\Xi)_S$ is a quadruple where

- (rm1) A/S is an abelian scheme of dimension d .
- (rm2) λ is prime to Ξ polarisation of A/S and $\bar{\lambda} := \{\lambda' \in \text{Hom}(A, A^t) \otimes \mathbf{Z}_{\Xi} | \lambda' = \lambda \circ a, a \in O_{(\Xi),+}^\times\}$. Here, $O_{(\Xi),+} := \{a \in O_{(\Xi)} | \sigma(a) > 0, \forall \sigma \in I\}$.
- (rm3) $\iota : O \hookrightarrow \text{End}_S A \otimes_{\mathbf{Z}} \mathbf{Z}_{(\Xi)}$ is an embedding.
- (rm4) $\bar{\eta}^\Xi = \eta^\Xi K^\Xi$ is a $\pi_1(S, \bar{s})$ -invariant $K^{(p)}$ -orbit of $O_{\mathcal{K}}$ -module isomorphism $\eta^\Xi : \mathcal{L} \otimes \mathbf{A}^{f(\Xi)} \simeq H_1(A_{\bar{s}}, \mathbf{A}^{f(\Xi)})$. Here and henceforth, $\mathbf{A}_?^{f(\square)}$ denotes the finite adèles of $\mathbf{A}_?$ outside a finite set of rational primes \square , of a number field $?$. When $? = \mathbf{Q}$, from the notation we drop the subscript. For $g \in GL_2(\mathbf{A}_{\mathcal{F}}^{f(\Xi)})$, $(\eta^\Xi g)(x) := \eta^\Xi(gx)$.

We also demand the quadruple to satisfy the following conditions.

- (c1) $\forall b \in O$, $\iota(b)^t = \iota(b)$ where t is the Rosati involution induced by λ .
- (c2) We fix an isomorphism $\zeta : \mathbf{A}^f \simeq \mathbf{A}^f(1)$. Thus, we can regard the Weil pairing e^λ induced by λ as an \mathcal{F} -alternate form $e^\lambda : V^\Xi(A) \times V^\Xi(A) \rightarrow \mathfrak{d}_{\mathcal{K}}^{-1} \otimes_{\mathbf{Z}} \mathbf{A}^{f(\Xi)}$. Let e^η denote the \mathcal{F} -alternate form $e^\eta(x, x') := \langle x\eta, x'\eta \rangle$. Then, $e^\lambda = ue^\eta$ for some $u \in \mathbf{A}_{\mathcal{F}}^{f(\Xi)}$.
- (c3) There exists an $O \otimes_{\mathbf{Z}} \mathcal{O}_S$ -module isomorphism $\text{Lie}A \simeq O \otimes_{\mathbf{Z}} \mathcal{O}_S$, locally under the Zariski topology of S .

Let $\underline{\mathcal{A}} = (A, \bar{\lambda}, \iota, \bar{\eta}^\Xi)$ and $\underline{\mathcal{A}}' = (A', \bar{\lambda}', \iota', \bar{\eta}'^\Xi)$. We define

$$(mor) \quad Mor_{\mathcal{A}_K^\Xi}(\underline{\mathcal{A}}, \underline{\mathcal{A}}') := \{f \in Hom_O(A, A') \mid f^*\bar{\lambda}' = \bar{\lambda}, f \circ \bar{\eta}'^\Xi = \bar{\eta}^\Xi\}.$$

We say that $\underline{\mathcal{A}} \sim \underline{\mathcal{A}}'$ (resp. \simeq) if there exists prime to Ξ isogeny (resp. isomorphism) in $Mor_{\mathcal{A}_K^\Xi}(\underline{\mathcal{A}}, \underline{\mathcal{A}}')$.

Consider the functor

$$\begin{aligned} \mathcal{E}_K^\Xi : SCH/\mathbf{Z}_{(\Xi)} &\rightarrow SETS \\ S &\mapsto \{\underline{\mathcal{A}} \in \mathcal{A}_K^\Xi(S)\}/\sim. \end{aligned}$$

Also, let us consider the functor

$$\begin{aligned} \mathcal{C}_K^\Xi : SCH/\mathbf{Z}_{(\Xi)} &\rightarrow SETS \\ S &\mapsto \{\underline{\mathcal{A}} \in \mathcal{A}_K^\Xi(S) \mid \eta^\Xi(\mathcal{L} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}) = H_1(A_{\bar{s}}, \hat{\mathbf{Z}})\}/\simeq. \end{aligned}$$

In [5, §4.2], it is shown that $\mathcal{E}_K^\Xi \simeq \mathcal{C}_K^\Xi$.

Let us first consider the case $\Xi = \emptyset$. Accordingly, in the above notation we drop Ξ .

Theorem 2.1. (*Shimura-Deligne*) *The functor \mathcal{E}_1 is represented by $Sh(G, X)/\mathbf{Q}$. When K is small, \mathcal{E}_K is represented by $Sh_K(G, X) = Sh(G, X)/K$ (cf. [5, §4.2]).*

Let $\underline{\mathcal{A}}_{K,univ}$ be the universal object.

Now, let us consider the case $\Xi = \{p\}$.

Theorem 2.2. (*Kottwitz*) *The functor $\mathcal{E}_1^{(p)}$ is represented by $Sh^{(p)}(G, X)/\mathbf{Z}_{(p)}$. Moreover,*

$$Sh^{(p)}(G, X) \times \mathbf{Q} \simeq Sh(G, X)/G(\mathbf{Z}_p)/\mathbf{Q}.$$

When K is small and maximal at p , $\mathcal{E}_K^{(p)}$ is represented by $Sh_K^{(p)}(G, X) = Sh^{(p)}(G, X)/K$ (cf. [5, §4.2.1]).

Let $\underline{\mathcal{A}}_{K,univ}^{(p)}$ be the universal object.

Let K be sufficiently small (cf. [5, §4.1]). Let \mathbf{c} be an ideal of O prime to p . Let $\mathbf{c} \in (\mathbf{A}_{\mathcal{F}}^{f(p)})^\times$ such that $\mathbf{c} = i\mathcal{I}_{\mathcal{F}}(\mathbf{c})$. Here, $i\mathcal{I}_{\mathcal{F}}(\mathbf{c}) = \mathbf{c}(O \otimes \hat{\mathbf{Z}}) \cap \mathcal{F}$. We say that $\underline{\mathcal{A}} \in \mathcal{A}_K^\Xi(S)$ is \mathbf{c} -polarised, if there exists $\lambda \in \bar{\lambda}$ (cf. (rm2)) such that for u as in (c2), $u \in \mathbf{c}det(K)$. We can consider the subfunctors $\mathcal{E}_{\mathbf{c}, K}^\Xi$ and $\mathcal{C}_{\mathbf{c}, K}^\Xi$ of \mathbf{c} -polarised quadruples. It follows that $\mathcal{E}_{\mathbf{c}, K}^\Xi \simeq \mathcal{C}_{\mathbf{c}, K}^\Xi$. This functor is represented by geometrically irreducible scheme $Sh_K^\Xi(\mathbf{c})(G, X)/\mathbf{Z}_{(\Xi)}$. Moreover,

$$(2.2) \quad Sh_K^\Xi(G, X) = \bigsqcup_{[\mathbf{c}] \in Cl_{\mathcal{F}}^+(K)} Sh_K^\Xi(\mathbf{c})(G, X).$$

Here, $Cl_{\mathcal{F}}^+(K)$ is the narrow ray class group of \mathcal{F} of level $det(K)$. Following the previous notation, let $\underline{\mathcal{A}}_{\mathbf{c}, K, univ}^\Xi$ be the corresponding universal object.

For $g \in G(\mathbf{A}^f)$, $(A, \bar{\lambda}, \iota, \bar{\eta}) \mapsto (A, \bar{\lambda}, \iota, \overline{\eta \circ g})$ induces a right action of $G(\mathbf{A}^f)$ on $Sh(G, X)$. Let $\mathcal{G} = \mathcal{G}(G, X) = \{g \in G(\mathbf{A}) \mid det(g) \in \mathbf{A}^\times \mathcal{F}^\times \mathcal{F}_{\infty, +}^\times / \mathcal{F}^\times \mathcal{F}_{\infty, +}^\times\}$ and $\overline{\mathcal{E}}(G, X) = \mathcal{G}(G, X) / \overline{Z(\mathbf{Q})G(\mathbf{R})_+}$.

Theorem 2.3. (Shimura) The group $\bar{\mathcal{E}}(G, X)$ is the stabiliser of $Sh(\mathfrak{c})(G, X)$ in $G(\mathbf{A})/\overline{Z(\mathbf{Q})G(\mathbf{R})_+}$ (cf. [5, Thm. 4.14]).

When $g \in \bar{\mathcal{E}}(G, X)$ is regarded as an automorphism of $\mathcal{O}_{Sh(\mathfrak{c})(G, X)}$, we sometime write it as $\tau(g)$.

2.3. CM points. In this subsection, we recall the notion of a CM point on the Hilbert modular Shimura variety.

Recall, $X = (\mathbf{C} - \mathbf{R})^I = \mathcal{F} \otimes \mathbf{C}$.

Definition 2.4. A point $x = [z, g] \in Sh(G, X)(\mathbf{C})$ is said to be a CM point if $z \in X$ generates a totally imaginary quadratic extension $\mathcal{K}_x/\mathcal{F}$.

Let c_x be the complex conjugation of $\mathcal{K}_x/\mathcal{F}$. Let $\mathcal{O} = \mathcal{O}_{\mathcal{K}_x}$ be the ring of integers of \mathcal{K}_x . Let $T = \text{Res}_{\mathcal{O}_{(p)}/\mathbf{Z}_{(p)}} \mathbb{G}_m$, $T_x = \text{Res}_{\mathcal{O}_{(p)}/\mathbf{Z}_{(p)}} \mathbb{G}_m$. The inclusion $O \hookrightarrow \mathcal{O}$ induces an inclusion $T \hookrightarrow T_x$ of $\mathbf{Z}_{(p)}$ -tori. Consider the $\mathbf{Z}_{(p)}$ -torus $\mathcal{T} = T/T_x$. As explained in [6, §3.2], x gives rise to the morphism

$$(2.3) \quad \widehat{\rho}_x : T_x \rightarrow G_{/\mathbf{A}^f}$$

of \mathbf{A}^f -group schemes. It also gives rise to a CM type Σ_x of \mathcal{K}_x (cf. [6, §3.2]).

Now, suppose that (ord) is satisfied for $\mathcal{K}_x/\mathcal{F}$. Also, suppose that Σ_x is a p -adic CM type. Let $\mathbf{p} = \prod_{v \in \Sigma_{x,p}} \mathfrak{p}_v$. Consider, $\mathcal{O}_{(p)}^\times \rightarrow \mathcal{O}_{\mathbf{p}}^\times$ given by $\alpha \mapsto \alpha^{1-c_x}$. It induces an injective homomorphism

$$(2.4) \quad \mathcal{T}(\mathbf{Z}_{(p)}) \rightarrow T(\mathbf{Z}_p).$$

Let $\underline{\mathcal{A}}_x$ be the fiber of $\underline{\mathcal{A}}_{univ}$ at the geometric point x . The condition that x is a CM point translates in geometric terms as A_x is a CM abelian variety with CM type $(\mathcal{K}_x, \Sigma_x)$ (cf. [13]).

2.4. Igusa tower. In this subsection, we recall the notion of an Igusa tower over Hilbert modular Shimura variety. We basically add p -power level structure to the moduli problems $\mathcal{E}_K^{(p)}$ and $\mathcal{C}_K^{(p)}$.

Consider the fibered category $\mathcal{A}_{K,n}^{(p)}/SCH/\mathbf{Z}_{(p)}$ defined as follows. Let $S/\mathbf{Z}_{(p)}$ be a locally Noetherian and connected scheme. The objects are the pairs $(\underline{\mathcal{A}}, j_n)/S$, where $\underline{\mathcal{A}} \in \underline{\mathcal{A}}_{K^{(p)}}^{(p)}(S)$ and

$$j_n : O^* \otimes \mu_{p^n} \hookrightarrow A[p^n]$$

is a monomorphism of O -group schemes.

We define

$$(mor') \quad Mor_{\mathcal{A}_{K,n}^{(p)}}((\underline{\mathcal{A}}, j_n), (\underline{\mathcal{A}}', j'_n)) := \{f \in Mor_{\mathcal{A}_{K^{(p)}}^{(p)}}(\underline{\mathcal{A}}, \underline{\mathcal{A}}') | f j_n = j'_n\}.$$

Consider the functor

$$\begin{aligned} \mathcal{E}_{K,n}^{(p)} &: SCH/\mathbf{Z}_{(p)} \rightarrow SETS \\ S &\mapsto \{(\underline{\mathcal{A}}, j_n) \in \mathcal{A}_{K,n}^{(p)}(S)\} / \sim . \end{aligned}$$

Considering $\mathcal{C}_K^{(p)}$ instead of $\mathcal{E}_K^{(p)}$ and \simeq instead of \sim , we get a functor $\mathcal{C}_{K,n}^{(p)}$. It follows that $\mathcal{E}_{K,n}^{(p)} \simeq \mathcal{C}_{K,n}^{(p)}$.

Theorem 2.5. The functor $\mathcal{E}_{K,n}^{(p)}$ is represented say by $I_{K,n}/\mathbf{Z}_{(p)}$ (cf. [5, §4.2.4]).

For $n \geq m$, we have the projection morphism $\pi_{n,m} : I_{K,n} \rightarrow I_{K,m}$ induced by $O^* \otimes \mu_{p^m} \hookrightarrow O^* \otimes \mu_{p^n}$. Let $I_K = \varprojlim I_{K,n}$. Note that

$$(2.5) \quad \exists f : O^* \otimes \mu_{p^\infty} \hookrightarrow A[p^\infty] \iff \exists \widehat{f} : O^* \otimes \widehat{\mathbb{G}}_m \simeq \widehat{A},$$

where \widehat{A} is the formal completion of A along the identity section.

(act) Thus, $\text{Aut}(O^* \otimes \widehat{\mathbb{G}}_m)$ acts on I_K .

Let A be a p -adic algebra and $Ig_{K/A} = \varinjlim_m \varprojlim_n I_{K,n/A/p^m A}$. In other words, Ig_K is the formal completion of I_K along the mod p fiber. As before,

(act') $\text{Aut}(O^* \otimes \widehat{\mathbb{G}}_m)$ acts on Ig_K .

Let \mathbb{F} be an algebraic closure of \mathbb{F}_p and $W(\mathbb{F})$ be the corresponding Witt ring. Clearly,

$$(2.6) \quad Ig_{K/W(\mathbb{F})} \otimes \mathbb{F} = I_{K/\mathbb{F}}.$$

We consider a similar subfunctor $\mathcal{E}_{K,n}^{(p)}(\mathfrak{c})$ as in (2.2). It is represented by geometrically irreducible scheme $I_{K,n}(\mathfrak{c})$. We have a similar decomposition as in (2.2). We can put $I_{K,n}(\mathfrak{c})$ in the previous discussion of this subsection. Thus, we get a geometrically connected formal scheme $Ig_K(\mathfrak{c})$.

Note that $(\underline{A}, j_n) \mapsto \underline{A}$ induces an étale morphism $\pi_{K,n}(\mathfrak{c}) : I_{K,n}(\mathfrak{c}) \rightarrow Sh_K^{(p)}(\mathfrak{c})(G, X)$. Thus, we get an étale morphism $\pi_K(\mathfrak{c}) : I_K(\mathfrak{c}) \rightarrow Sh_K^{(p)}(G, X)$. In particular, for $x \in I_K(\mathfrak{c})$

$$(2.7) \quad \widehat{\mathcal{O}}_{I_K(\mathfrak{c}), x} \simeq \widehat{\mathcal{O}}_{Sh_K^{(p)}(G, X), \pi(x)}.$$

2.5. Tate objects. In this subsection, we recall some notation regarding Tate objects on the Hilbert modular Shimura variety. Basic references for this subsection are [10, §1.1] and [5, §4.1.5].

Let \mathfrak{L} be a set of d linearly independent elements $l \in \text{Hom}(\mathcal{F}, \mathbf{Q})$ such that $l(\mathcal{F}_+) > 0$. Let L be a lattice in \mathcal{F} and n be a positive integer, we define $L_{\mathfrak{L}, n} = \{x \in L | l(x) > -n, \forall l \in \mathfrak{L}\}$ and $A((L, \mathfrak{L})) = \varinjlim A[\![L_{\mathfrak{L}, n}]\!]$. Pick two fractional ideals $\mathfrak{a}, \mathfrak{b}$ of O prime-to- p . To this pair, Mumford associated a certain abelian variety with real multiplication $Tate_{\mathfrak{a}, \mathfrak{b}}(q)_{/\mathbf{Z}((\mathfrak{a}, \mathfrak{b}, \mathfrak{L}))}$ endowed with a canonical O -action ι_{can} . Formally, $Tate_{\mathfrak{a}, \mathfrak{b}}(q) = \mathfrak{a}^* \otimes_{\mathbf{Z}} \mathbb{G}_m / q^{\mathfrak{b}}$. It is also endowed with a canonical polarisation λ , p^∞ level structure j_{can} and a generator ω_{can} of $\Omega_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}$.

Let $\underline{A}_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}$ denote $(Tate_{\mathfrak{a}, \mathfrak{b}}(q), \lambda_{can}, \iota_{can}, j_{can})$.

2.6. Deformation theory of an ordinary abelian variety. In this subsection, we briefly recall Serre-Tate deformation theory of an ordinary abelian variety.

Recall, $W = W(\mathbb{F})$. Let CL_W be the category of complete local W -algebras with residue field \mathbb{F} . Let $x = (\underline{A}, j_\infty) \in I_K(\mathfrak{c})(\mathbb{F}) = Ig_K(\mathfrak{c})(\mathbb{F})$. Consider the deformation functor

$$\begin{aligned} \widehat{\mathcal{P}}_x : CL_W &\rightarrow SETS \\ S &\mapsto \{y \in I_K(\mathfrak{c})(S) | y \otimes \mathbb{F} \simeq x\} / \simeq. \end{aligned}$$

Let T_1 be the torus $\mathfrak{d}^{-1} \otimes_{\mathbf{Z}} \mu_{p^\infty}$. The corresponding formal torus \widehat{T}_1 is $\mathfrak{d}^{-1} \otimes_{\mathbf{Z}} \widehat{\mathbb{G}}_m$. Note that

$$(2.8) \quad \mathcal{O}_{\widehat{T}_1} \simeq W[\![t^{\xi_1} - 1, \dots, t^{\xi_d} - 1]\!],$$

for a basis $\{\xi_1, \dots, \xi_d\}$ of O/\mathbf{Z} and the co-ordinate t of $\mathfrak{d}^{-1} \otimes_{\mathbf{Z}} \widehat{\mathbb{G}}_m$.

Theorem 2.6. (Serre-Tate) *The deformation functor $\widehat{\mathcal{P}}_x$ is represented by the formal scheme $\widehat{S}_x = \text{Spf}(\widehat{\mathcal{O}}_{I_K(\mathfrak{c}), x}) = \text{Spf}(\widehat{\mathcal{O}}_{Sh_K^{(p)}(\mathfrak{c}), \pi_K(x)})$. Moreover, the level p^∞ -structure j_∞ induces a canonical isomorphism $\widehat{S}_x \simeq \widehat{T}_{1/W}$ (cf. [6, §2.4]).*

Let $x_{ST} = (\underline{\mathcal{A}}_{x, ST}, j_{x, ST})$ be the corresponding universal object.

2.7. Geometric Hilbert modular forms. In this subsection, we recall the geometric definitions of classical, p -adic and mod p Hilbert modular forms.

2.7.1. Classical Hilbert modular forms. In this part of subsection, we recall the geoemetric definition of classical Hilbert modular forms.

Let R be a $\mathbf{Z}_{(p)}$ -algebra. A classical Hilbert modular form of polarisation ideal \mathfrak{c} , level K over R is a function f of isomorphism classes of $x = (\underline{\mathcal{A}}, \omega)$ where $\underline{\mathcal{A}} \in Sh_K^{(p)}(\mathfrak{c})(S)$ and ω is a differential form generating $H^0(A, \Omega_{A/S})$ over $O \otimes_{\mathbf{Z}} S$ for an R -algebra S such that the following conditions are satisfied.

- (Gc1) If $x \simeq x'$, then $f(x) = f(x') \in S$.
- (Gc2) $f(x \otimes S') = \rho(f(x))$ for any R -algebra homomorphism $\rho : S \rightarrow S'$.
- (Gc3) $f(\underline{\mathcal{A}}_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}, \bar{\eta}^{(p)}, \omega_{can}) \in R[\![\mathfrak{ab}_{\geq 0}]\!]$ for any level $K^{(p)}$ -structure $\eta^{(p)}$ of $Tate_{\mathfrak{a}, \mathfrak{b}}(q)$ defined over R , where $\mathfrak{ab}_{\geq 0} = (\mathfrak{ab} \cap \mathcal{F}_+) \cup \{0\}$.

Let $M(\mathfrak{c}, K, R)$ be the space of f 's satisfying the above conditions (Gc1-3). Let $\mathbb{T} = Res_{O/\mathbf{Z}} \mathbb{G}_m$. We can define the notion of a weight $\kappa \in Mor(T, \mathbb{G}_m)$ of $f \in M(\mathfrak{c}, K, R)$ (cf. [7, §4.1]). Here Mor denotes the group scheme homomorphisms. Let $M(\kappa, \mathfrak{c}, K, R)$ denote weight κ elements in $M(\mathfrak{c}, K, R)$. It turns out that

$$(2.9) \quad M(\mathfrak{c}, K, R) = \bigoplus_{\kappa} M(\kappa, \mathfrak{c}, K, R).$$

For $f \in M(\mathfrak{c}, K, R)$, we have the following fundamental q -expansion principle (cf. [5, Thm. 4.21]).

(q -exp) For any level $K^{(p)}$ -strucutre $\eta^{(p)}$ of $Tate_{\mathfrak{a}, \mathfrak{b}}(q)$ defined over R , $f \mapsto f(\underline{\mathcal{A}}_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}, \bar{\eta}^{(p)}, \omega_{can}) \in R[\![\mathfrak{ab}_{\geq 0}]\!]$ determines f uniquely.

2.7.2. p -adic Hilbert modular forms. In this part of subsection, we recall the geoemetric definition of p -adic Hilbert modular forms.

Let R be a p -adic algebra. A p -adic Hilbert modular form of polarisation ideal \mathfrak{c} , level K over R is a function f of isomorphism classes of $x = (\underline{\mathcal{A}}, j_\infty) \in I_K(\mathfrak{c})(\text{Spec}(S)) = Ig_K(\mathfrak{c})(\text{Spf}(S))$ defined over any p -adic R -algebra S such that the following conditions are satisfied.

- (Gp1) If $x \simeq x'$, then $f(x) = f(x') \in S$.
- (Gp2) $f(x \otimes S') = \rho(f(x))$ for any p -adic R -algebra homomorphism $\rho : S \rightarrow S'$.
- (Gp3) $f(\underline{\mathcal{A}}_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}, \bar{\eta}^{(p)}) \in R[\![\mathfrak{ab}_{\geq 0}]\!]$ for any level $K^{(p)}$ -strucutre $\eta^{(p)}$ of $Tate_{\mathfrak{a}, \mathfrak{b}}(q)$ defined over R .

In other words, p -adic Hilbert modular forms are the formal functions on $Ig_K(\mathfrak{c})/R$. Let $V(\mathfrak{c}, K, R)$ be the space of f 's satisfying the above conditions (Gp1-3). Note that

$$(2.10) \quad V(\mathfrak{c}, K, R) = H^0(Ig_K(\mathfrak{c})/R, \mathcal{O}_{Ig_K(\mathfrak{c})/R}).$$

We can embed $M(\mathfrak{c}, K, R)$ in $V(\mathfrak{c}, K, R)$ as follows. Take $f \in M(\mathfrak{c}, K, R)$ and $(\underline{\mathcal{A}}, j_\infty) \in Ig_K(\mathfrak{c})(S)$. Note, j_∞ induces an isomorphism $j_\infty : O^* \otimes_{\mathbf{Z}_p} Lie(\widehat{\mathbb{G}}_m) \rightarrow Lie(A)$. Thus, $j_\infty^*(\frac{dt}{t})$ generates $H^0(A, \Omega_A)$ as $O \otimes_{\mathbf{Z}} R$ -module. Now, $f \mapsto \hat{f}(\underline{\mathcal{A}}, j_\infty) := f(\underline{\mathcal{A}}, j_\infty^*(\frac{dt}{t}))$ gives the desired embedding. In fact, $M(\mathfrak{c}, K, R)$ is dense in $V(\mathfrak{c}, K, R)$ (cf. [5, Cor 8.4]).

In what follows, let $f \in V(\mathfrak{c}, K, R)$ and $\kappa \in Aut(O^* \otimes \widehat{\mathbb{G}}_m)$.

(wt) We say that f has weight κ if $f(\underline{\mathcal{A}}, aj_\infty) = \kappa(a)^{-1}f(\underline{\mathcal{A}}, j_\infty)$ for all $a \in O^* \otimes \widehat{\mathbb{G}}_m(S)$. Here, a acts on j_∞ in view of (2.5).

Let $V(\kappa, \mathfrak{c}, K, R)$ be the elements in $V(\mathfrak{c}, K, R)$ of weight κ .

For $f \in V(\mathfrak{c}, K, R)$, we have the following fundamental q -expansion principle (cf. [5, Thm. 4.21])

(q -exp)' For any level $K^{(p)}$ -structure $\eta^{(p)}$ of $Tate_{\mathfrak{a}, \mathfrak{b}}(q)$ defined over R , $f \mapsto f(\underline{\mathcal{A}}_{Tate_{\mathfrak{a}, \mathfrak{b}}(q)}, \bar{\eta}^{(p)}) \in R[\![\mathfrak{ab}_{\geq 0}]\!]$ determines f uniquely.

Now, let x be as in §2.6 and suppose $R \in CL_W$. We also have the following fundamental t -expansion principle (cf. [5, §8.4])

(t -exp) $f \mapsto f(x_{ST}) \in R[\![t^{\xi_1} - 1, \dots, t^{\xi_d} - 1]\!]$ characterises f uniquely.

We call $f(x_{ST})$ as the t -expansion of f around x .

2.7.3. Mod p Hilbert modular forms. In this part of subsection, we recall geometric definition of mod p Hilbert modular forms. For the basic theory of mod p Hilbert modular forms, we refer the reader to [3].

We define mod p Hilbert modular forms in the same way as p -adic Hilbert modular forms, just by replacing p -adic algebras in §2.7.2 by characteristic p -algebras. Let $V(\mathfrak{c}, K, \mathbb{F})$ be the space of mod p Hilbert modular forms over \mathbb{F} . Note that

$$(2.11) \quad V(\mathfrak{c}, K, \mathbb{F}) = H^0(I_{K/\mathbb{F}}, \mathcal{O}_{I_{K/\mathbb{F}}})$$

This follows from (2.10) and (2.6). We say that a mod p Hilbert modular form is classical if it is a reduction of a classical Hilbert modular form mod p . Let 1 denote the constant mod p Hilbert modular form 1 .

Proceeding as in §2.7.2, we can define the notion of a weight for $f \in V(\mathfrak{c}, K, \mathbb{F})$. In this case, a weight κ turns out to be an element in $Mor(\mathbb{T}(\mathbb{F}_p), \mathbb{F}^\times)$. Here, \mathbb{F}_p is a finite field with p elements and Mor just denotes the group homomorphisms.

In this case, we also have an appropriate analogue of (q -exp).

In view of (q -exp), $M(\mathfrak{c}, K, W)$ canonically embeds in $W[\![\mathfrak{ab}_{\geq 0}]\!]$. It turns out that the natural map from $(M(\mathfrak{c}, K, W) \otimes_W \mathbb{F}) \cap \mathbb{F}[\![\mathfrak{ab}_{\geq 0}]\!]$ to $V(\mathfrak{c}, K, \mathbb{F})$ is surjective (cf. [3]).

2.8. Linear independence. In this subsection, we recall a result on the linear independence of mod p Hilbert modular form and its image under certain transcendental automorphisms of the deformation space \hat{S}_x due to Hida.

Let x be as in §2.6. It comes from a CM point with CM type $(\mathcal{K}_x, \Sigma_x)$ (cf. [6, §3.2]). We write ρ for $\hat{\rho}_x$ as in (2.3). We denote $I_{K/\mathbb{F}}$ by $Ig_{K/\mathbb{F}}$. In view of (2.6), this is notationally consistent.

As p is unramified in \mathcal{F}/\mathbf{Q} , $\mathfrak{d}_p^{-1} = O_p$. Thus,

$$(2.12) \quad \widehat{S}_x = \mathfrak{d}^{-1} \otimes_{\mathbf{Z}} \widehat{\mathbb{G}}_m = \mathfrak{d}_p^{-1} \otimes_{\mathbf{Z}_p} \widehat{\mathbb{G}}_m = O_p \otimes_{\mathbf{Z}_p} \widehat{\mathbb{G}}_m.$$

(aut) So, $\text{Aut}(\widehat{S}_x) = O_p^\times$.

For each open compact subgroup $K \subset G(\mathbf{A}^f)$ is maximal at p , let $V_{K/\mathbb{F}}$ be the geometrically irreducible component containing $\pi_K(\mathfrak{c})(x)$ in $Sh_{K/\mathbb{F}}^{(p)}$. Consider $V_{/\mathbb{F}} = \varprojlim V_{K/\mathbb{F}}$. Let $Ig(\mathfrak{c})_{/\mathbb{F}}$ be the Igusa tower over $V_{/\mathbb{F}}$. From (2.7), $\widehat{\mathcal{O}}_{Ig(\mathfrak{c}),x} \simeq \widehat{\mathcal{O}}_{V,\pi(x)}$.

(inc) Note that $\mathcal{O}_{Ig(\mathfrak{c}),x/\mathbb{F}} = \varinjlim \mathcal{O}_{Ig(\mathfrak{c}),K,x/\mathbb{F}}$ and $\mathcal{O}_{Ig(\mathfrak{c}),x}$ is dense in $\mathcal{O}_{\widehat{S}_x}$.

As shown in [6, Lem. 3.3], $\rho(\mathcal{T}(\mathbf{Z}_{(p)})) \simeq \mathcal{O}_{(p)}^\times$ in $\overline{\mathcal{E}}(G, X)$ fixes x . Thus, $\mathcal{O}_{(p)}^\times$ acts on $\mathcal{O}_{Ig(\mathfrak{c}),x}$ and $\mathcal{O}_{V,\pi(x)}$.

Recall, $\mathcal{T}(\mathbf{Z}_{(p)}) \hookrightarrow T(\mathbf{Z}_p) = O_p^\times$ (cf. (2.4)). The above action of $\mathcal{O}_{(p)}^\times$ extends to its p -adic completion $O_p^\times = \text{Aut}(\widehat{S}_x)$ (cf. (aut)). Note that $a \in O_p^\times$ acts on \widehat{S}_x by $t \mapsto t^a$ where t is the canonical Serre-Tate co-ordinate.

Theorem 2.7. (Hida) For $1 \leq i \leq n$, let $a_i \in \mathcal{T}(\mathbf{Z}_p)$ such that $a_i a_j^{-1} \notin \mathcal{T}(\mathbf{Z}_{(p)})$ for all $i \neq j$. Then, $a_i(\mathcal{O}_{Ig(\mathfrak{c}),K,x/\mathbb{F}})$ are linearly disjoint over \mathbb{F} in $\widehat{\mathcal{O}}_{Ig(\mathfrak{c}),x/\mathbb{F}}$.

PROOF. For $K = 1$, this is [6, Thm. 3.19]. Thus, for K maximal at p , we are done from (inc) and the fact that the projection $\pi_K : Ig(\mathfrak{c}) \rightarrow Ig_K(\mathfrak{c})$ is étale. \square

Let f be a mod p Hilbert modular form coming from the structure sheaf of $Ig_K(\mathfrak{c})_{/\mathbb{F}}$ (cf. (2.12)). For $a \in \mathcal{T}(\mathbf{Z}_p)$, $a(f) \in \mathcal{O}_{\widehat{S}_x}$ (cf. (inc)).

Corollary 2.8. For $1 \leq i \leq n$, let $a_i \in T_x(\mathbf{Z}_p)$ such that $a_i a_j^{-1} \notin T_x(\mathbf{Q})$, for $i \neq j$. Let J be a subset of these indices. If $\{1, f_j \in V(\mathfrak{c}, K, \mathbb{F})\}_j$ are linearly independent over \mathbb{F} , then $\{a_i(f_j)\}_{i,j}$ are linearly independent over \mathbb{F} .

PROOF. In view of (2.11), we are done by Theorem 2.7. \square

3. CYCLOTOMIC DERIVATIVE

In this section, we obtain an expression for the cyclotomic derivative of Katz p -adic L-function in terms of the t -expansion of certain p -adic Hilbert modular forms around a well chosen CM point x (cf. (1.8)).

Let χ be a Hecke character of infinity type $k\Sigma + \kappa(1 - c)$, where $k \geq 1$ and $\kappa = \sum \kappa_\sigma \sigma \in \mathbf{Z}[\Sigma]$ with $\kappa_\sigma \geq 0$. In §3.1-3.4, we recall Hsieh's construction of a special Eisenstein series \mathbb{E}_χ^h used to compute $L_{\Sigma,\chi}^-$ and the formula of its q -expansion without proofs. In §3.5, we express $L'_{\Sigma,\lambda}$ in terms of the t -expansion of certain p -adic Hilbert modular forms around x upto an automorphism of $\overline{\mathbf{Z}}_p[[\Gamma^-]]$ (cf. (1.8)).

3.1. Eisenstein series on $\mathrm{GL}_2(\mathbf{A}_{\mathcal{F}})$. In this subsection, we briefly recall the construction of an Eisenstein series on $\mathrm{GL}_2(\mathbf{A}_{\mathcal{F}})$ in terms of a section.

Let χ be a Hecke character of infinity type $k\Sigma$, where $k \geq 1$ and $\kappa = \sum \kappa_{\sigma} \sigma \in \mathbf{Z}[\Sigma]$ with $\kappa_{\sigma} \geq 0$.

We will identify the CM-type $\Sigma \subset \mathrm{Hom}(\mathcal{K}, \mathbf{C})$ with the set $\mathrm{Hom}(\mathcal{F}, \mathbf{R})$ of archimedean places of \mathcal{F} by the restriction map. Let $K_{\infty}^0 := \prod_{\sigma \in \Sigma} \mathrm{SO}(2, \mathbf{R})$ be a maximal compact subgroup of $\mathrm{GL}_2(\mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R})$. We put

$$\chi^* = \chi| \cdot |_{\mathbf{A}_{\kappa}}^{-\frac{1}{2}} \text{ and } \chi_+ = \chi|_{\mathbf{A}_{\mathcal{F}}^{\times}}.$$

For $s \in \mathbf{C}$, we let $I(s, \chi_+)$ denote the space consisting of smooth and K_{∞}^0 -finite functions $\phi : \mathrm{GL}_2(\mathbf{A}_{\mathcal{F}}) \rightarrow \mathbf{C}$ such that

$$\phi\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} g\right) = \chi_+^{-1}(d) \left|\frac{a}{d}\right|_{\mathbf{A}_{\mathcal{F}}}^s \phi(g).$$

Conventionally, the functions in $I(s, \chi_+)$ are called *sections*. Let B be the upper triangular subgroup of GL_2 . The adelic Eisenstein series associated to a section $\phi \in I(s, \chi_+)$ is defined by

$$E_{\mathbf{A}}(g, \phi) = \sum_{\gamma \in B(\mathcal{F}) \backslash \mathrm{GL}_2(\mathcal{F})} \phi(\gamma g).$$

It is known that the series $E_{\mathbf{A}}(g, \phi)$ is absolutely convergent for $\Re s \gg 0$.

3.2. Fourier coefficients of Eisenstein series. In this subsection, we recall the formula for the Fourier coefficients of the Eisenstein series on $\mathrm{GL}_2(\mathbf{A}_{\mathcal{F}})$.

Put $\mathbf{w} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Let v be a place of \mathcal{F} and let $I_v(s, \chi_+)$ be the local constitute of $I(s, \chi_+)$ at v . For $\phi_v \in I_v(s, \chi_+)$ and $\beta \in \mathcal{F}_v$, we recall that the β -th local Whittaker integral $W_{\beta}(\phi_v, g_v)$ is defined by

$$W_{\beta}(\phi_v, g_v) = \int_{\mathcal{F}_v} \phi_v(\mathbf{w} \begin{bmatrix} 1 & x_v \\ 0 & 1 \end{bmatrix} g_v) \psi(-\beta x_v) dx_v,$$

and the intertwining operator $M_{\mathbf{w}}$ is defined by

$$M_{\mathbf{w}} \phi_v(g_v) = \int_{\mathcal{F}_v} \phi_v(\mathbf{w} \begin{bmatrix} 1 & x_v \\ 0 & 1 \end{bmatrix} g_v) dx_v.$$

Here, dx_v is Lebesgue measure if $\mathcal{F}_v = \mathbf{R}$ and is the Haar measure on \mathcal{F}_v normalized so that $\mathrm{vol}(\mathcal{O}_{\mathcal{F}_v}, dx_v) = 1$ if \mathcal{F}_v is non-archimedean. By definition, $M_{\mathbf{w}} \phi_v(g_v)$ is the 0-th local Whittaker integral. It is well known that local Whittaker integrals converge absolutely for $\Re s \gg 0$, and have meromorphic continuation to all $s \in \mathbf{C}$.

If $\phi = \otimes_v \phi_v$ is a decomposable section, then it is well known that $E_{\mathbf{A}}(g, \phi)$ has the following Fourier expansion:

$$(3.1) \quad E_{\mathbf{A}}(g, \phi) = \phi(g) + M_{\mathbf{w}} \phi(g) + \sum_{\beta \in \mathcal{F}} W_{\beta}(E_{\mathbf{A}}, g), \text{ where} \\ M_{\mathbf{w}} \phi(g) = \frac{1}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}}} \cdot \prod_v M_{\mathbf{w}} \phi_v(g_v); W_{\beta}(E_{\mathbf{A}}, g) = \frac{1}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}}} \cdot \prod_v W_{\beta}(\phi_v, g_v).$$

3.3. Choice of the local sections. In this subsection, we recall the choice of local sections in [8, §4.3] which gives rise to the Hilbert modular Eisenstein series \mathbb{E}_χ^h used to compute $L_{\Sigma, \chi}^-$.

We begin with some notation. Let v be a place of \mathcal{F} . Let $F = \mathcal{F}_v$ (resp. $E = \mathcal{K} \otimes_{\mathcal{F}} \mathcal{F}_v$). Denote by $z \mapsto \bar{z}$ the complex conjugation. Let $|\cdot|$ be the standard absolute values on F and let $|\cdot|_E$ be the absolute value on E given by $|z|_E := |z\bar{z}|$. Let $d_F = d_{\mathcal{F}_v}$ be a fixed generator of the different $\mathfrak{d}_{\mathcal{F}}$ of \mathcal{F}/\mathbf{Q} . Write χ (resp. χ_+) for χ_v (resp. $\chi_{+,v}$). If $v \in \mathbf{h}$, denote by ϖ_v a uniformizer of \mathcal{F}_v . For a set Y , denote by \mathbb{I}_Y the characteristic function of Y .

Suppose that \mathfrak{C} is the prime-to- p conductor of χ . We write $\mathfrak{C} = \mathfrak{C}^+ \mathfrak{C}^-$ such that \mathfrak{C}^+ (resp. \mathfrak{C}^-) is a product of prime factors split (resp. non-split) over \mathcal{F} . We further decompose $\mathfrak{C}^+ = \mathfrak{F}\mathfrak{F}_c$ such that $(\mathfrak{F}, \mathfrak{F}_c) = 1$ and $\mathfrak{F} \subset \mathfrak{F}_c^c$. Let $D_{\mathcal{K}/\mathcal{F}}$ be the discriminant of \mathcal{K}/\mathcal{F} and let

$$\mathfrak{D} = p\mathfrak{C}\mathfrak{C}^c D_{\mathcal{K}/\mathcal{F}}.$$

Case I: $v \nmid \mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}$. We first suppose that $v = \sigma \in \Sigma$ is archimedean and $F = \mathbf{R}$. For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{GL}_2(\mathbf{R})$, we put $J(g, i) := ci + d$. Define the sections $\phi_{k,s,\sigma}^h$ of weight k in $I_v(s, \chi_+)$ by

$$\phi_{k,s,\sigma}^h(g) = J(g, i)^{-k} |\det(g)|^s \cdot \left| J(g, i) \overline{J(g, i)} \right|^{-s}.$$

Suppose that v is non-archimedean. Denote by $\mathcal{S}(F)$ and (resp. $\mathcal{S}(F \oplus F)$) the space of Bruhat-Schwartz functions on F (resp. $F \oplus F$). Recall that the Fourier transform $\widehat{\varphi}$ for $\varphi \in \mathcal{S}(F)$ is defined by

$$\widehat{\varphi}(y) = \int_F \varphi(x) \psi(yx) dx.$$

For a character $\mu : F^\times \rightarrow \mathbf{C}^\times$, we define a function $\varphi_\mu \in \mathcal{S}(F)$ by

$$\varphi_\mu(x) = \mathbb{I}_{O_v^\times}(x) \mu(x).$$

If $v|p\mathfrak{F}\mathfrak{F}^c$ is split in \mathcal{K} , write $v = w\bar{w}$ with $w|\mathfrak{F}\Sigma_p$, and set

$$\varphi_w = \varphi_{\chi_w} \text{ and } \varphi_{\bar{w}} = \varphi_{\chi_{\bar{w}}^{-1}}.$$

To a Bruhat-Schwartz function $\Phi \in \mathcal{S}(F \oplus F)$, we can associate a Godement section $f_{\Phi,s} \in I_v(s, \chi_+)$ defined by

$$(3.2) \quad f_{\Phi,s}(g) := |\det g|^s \int_{F^\times} \Phi((0, x)g) \chi_+(x) |x|^{2s} d^\times x,$$

where $d^\times x$ is the Haar measure on F^\times such that $\mathrm{vol}(\mathcal{O}_F^\times, d^\times x) = 1$. Define Godement sections by

$$(3.3) \quad \phi_{\chi,s,v} = f_{\Phi_v^0,s}, \text{ where } \Phi_v^0(x, y) = \begin{cases} \mathbb{I}_{O_v}(x) \mathbb{I}_{d_F^{-1} O_v}(y) & \cdots v \nmid \mathfrak{D}, \\ \varphi_{\bar{w}}(x) \widehat{\varphi}_w(y) & \cdots v|\mathfrak{F}\mathfrak{F}^c. \end{cases}$$

Let $u \in \mathcal{O}_F^\times$. Let $\varphi_{\bar{w}}^1$ and $\varphi_w^{[u]}$ be the Bruhat-Schwartz functions defined by

$$\varphi_{\bar{w}}^1(x) = \mathbb{I}_{1+\varpi_v O_v}(x) \chi_{\bar{w}}^{-1}(x) \text{ and } \varphi_w^{[u]}(x) = \mathbb{I}_{u(1+\varpi_v O_v)}(x) \chi_w(x).$$

Define $\Phi_v^{[u]} \in \mathcal{S}(F \oplus F)$ by

$$(3.4) \quad \Phi_v^{[u]}(x, y) = \frac{1}{\mathrm{vol}(1 + \varpi_v O_v, d^\times x)} \varphi_{\bar{w}}^1(x) \widehat{\varphi}_w^{[u]}(y) = (|\varpi_v|^{-1} - 1) \varphi_{\bar{w}}^1(x) \widehat{\varphi}_w^{[u]}(y).$$

Case II: $v|D_{\mathcal{K}/\mathcal{F}} \mathfrak{C}^-$. In this case, E is a field. We define an embedding $E \hookrightarrow M_2(F)$ by

$$a + b\delta \mapsto \begin{bmatrix} a & b\delta^2 \\ b & a \end{bmatrix}.$$

Here, δ is as in [6, (d1) and (d2)]. Then $\mathrm{GL}_2(F) = B(F)\rho(E^\times)$. We fix a O_v -basis $\{1, \theta_v\}$ of \mathcal{O}_E such that θ_v is a uniformizer if v is ramified and $\overline{\theta_v} = -\theta_v$ if $v \nmid 2$. Let $t_v = \theta_v + \overline{\theta_v}$ and put

$$\varsigma_v = \begin{bmatrix} d_{\mathcal{F}_v} & -2^{-1}t_v \\ 0 & d_{\mathcal{F}_v}^{-1} \end{bmatrix}.$$

Let $\phi_{\chi, s, v}$ be the smooth section in $I_v(s, \chi_+)$ defined by

$$(3.5) \quad \phi_{\chi, s, v}\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \rho(z) \varsigma_v\right) = L(s, \chi_v) \cdot \chi_+^{-1}(d) \left|\frac{a}{d}\right|^s \cdot \chi^{-1}(z) \quad (b \in B(F), z \in E^\times).$$

Here, $L(s, \chi_v)$ is the local Euler factor of χ_v .

3.4. q -expansion of normalized Eisenstein series. In this subsection, we recall the formula for the q -expansion coefficients of the Hilbert modular Eisenstein series \mathbb{E}_χ^h (cf. §3.3) used to compute $L_{\Sigma, \chi}^-$.

Let \mathcal{U}_p be the torsion subgroup of $\mathcal{O}_{\mathcal{F}_p}^\times$. For $u = (u_v)_{v|p} \in \mathcal{U}_p$, let $\Phi_p^{[u]} = \otimes_{v|p} \Phi_v^{[u_v]}$ be the Bruhat-Schwartz function defined in (3.4). Define the section $\phi_{\chi, s}^h(\Phi_p^{[u]}) \in I(s, \chi_+)$ by

$$\phi_{\chi, s}^h(\Phi_p^{[u]}) = \bigotimes_{\sigma \in \Sigma} \phi_{k, s, \sigma}^h \bigotimes_{\substack{v \in \mathbf{h}, \\ v \nmid p}} \phi_{\chi, s, v} \bigotimes_{v|p} f_{\Phi_v^{[u_v]}, s}.$$

We put

$$X^+ = \{\tau = (\tau_\sigma)_{\sigma \in \Sigma} \in \mathbf{C}^\Sigma \mid \mathrm{Im} \tau_\sigma > 0 \text{ for all } \sigma \in \Sigma\}.$$

The holomorphic Eisenstein series $\mathbb{E}_{\chi, u}^h : X^+ \times \mathrm{GL}_2(\mathbf{A}_{\mathcal{F}}^f) \rightarrow \mathbf{C}$ is defined by

$$(3.6) \quad \mathbb{E}_{\chi, u}^h(\tau, g_f) := \frac{\Gamma_\Sigma(k\Sigma)}{\sqrt{|D_{\mathcal{F}}|_{\mathbf{R}}(2\pi i)^{k\Sigma}}} \cdot E_{\mathbf{A}}((g_\infty, g_f), \phi_{\chi, s}^h(\Phi_p^{[u]}))|_{s=0} \cdot \prod_{\sigma \in \Sigma} J(g_\sigma, i)^k, \\ (g_\infty = (g_\sigma)_\sigma \in \mathrm{GL}_2(\mathcal{F} \otimes_{\mathbf{Q}} \mathbf{R}), (g_\sigma i)_{\sigma \in \Sigma} = (\tau_\sigma)_{\sigma \in \Sigma}).$$

Proposition 3.1. *Let $\mathbf{c} = (\mathbf{c}_v) \in (\mathbf{A}_{\mathcal{F}}^f)^\times$ such that $\mathbf{c}_v = 1$ at $v|\mathfrak{D}$ and let $\mathfrak{c} = \mathbf{c}(\mathcal{O}_{\mathcal{F}} \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}) \cap \mathcal{F}$. The q -expansion of $\mathbb{E}_{\chi, u}^h$ at the cusp (O, \mathfrak{c}^{-1}) is given by*

$$\mathbb{E}_{\chi, u}^h|_{(O, \mathfrak{c}^{-1})}(q) = \sum_{\beta \in \mathcal{F}_+} \mathbf{a}_\beta(\mathbb{E}_{\chi, u}^h, \mathfrak{c}) \cdot q^\beta.$$

The β -th Fourier coefficient $\mathbf{a}_\beta(\mathbb{E}_{\chi, u}^h, \mathfrak{c})$ is given by

$$\begin{aligned} \mathbf{a}_\beta(\mathbb{E}_{\chi, u}^h, \mathfrak{c}) &= \beta^{(k-1)\Sigma} \prod_{w|\mathfrak{F}} \chi_w(\beta) \mathbb{I}_{O_v^\times}(\beta) \prod_{w \in \Sigma_p} \chi_w(\beta) \mathbb{I}_{u_v(1+\varpi_v O_v)}(\beta) \\ &\times \prod_{v \nmid \mathfrak{D}} \left(\sum_{i=0}^{v(\mathbf{c}_v \beta)} \chi^*(\varpi_v^i) \right) \cdot \prod_{v|\mathfrak{C}^- D_{\mathcal{K}/\mathcal{F}}} L(0, \chi_v) \tilde{A}_\beta(\chi_v), \end{aligned}$$

where

$$(3.7) \quad \begin{aligned} \tilde{A}_\beta(\chi_v) &= \int_{\mathcal{F}_v} \chi_v^{-1} |\cdot|_E^s(x_v + \theta_v) \psi(-d_{\mathcal{F}_v}^{-1} \beta x_v) dx_v |_{s=0} \\ &:= \lim_{n \rightarrow \infty} \int_{\varpi_v^{-n} \mathcal{O}_{\mathcal{F}_v}} \chi_v^{-1}(x_v + \theta_v) \psi(-d_{\mathcal{F}_v}^{-1} \beta x_v) dx_v. \end{aligned}$$

PROOF. This follows from (3.1) and the calculations of local Whittaker integrals of special local sections in [9, §4.3] (cf. [8, Prop. 4.1 and Prop. 4.4]). \square

3.5. Cyclotomic derivative. In this subsection, we express $L'_{\Sigma,\lambda}$ in terms of the t -expansion of certain p -adic Hilbert modular forms around x upto an automorphism of $\overline{\mathbf{Z}}_p[[\Gamma^-]]$ (cf. (1.8)).

Suppose that λ is a self-dual Hecke character of type $k\Sigma$ with the root number -1 and $k > 0$.

For $a \in \mathbf{A}_K^{f(p)}$, let $\mathfrak{c}(a) = \mathfrak{c}(\mathcal{O}_K)N_{\mathcal{K}/F}(\mathfrak{a})$. Here, $\mathfrak{a} = a(\mathcal{O}_K \otimes_{\mathbf{Z}} \hat{\mathbf{Z}}) \cap \mathcal{K}$. Let $U_{\mathcal{K}} = (\mathcal{O}_K \otimes_{\mathbf{Z}} \hat{\mathbf{Z}})^{\times}$, $Cl_- = \mathcal{K}^{\times} \mathbf{A}_{F,f}^{\times} \setminus \mathbf{A}_{\mathcal{K},f}/U_{\mathcal{K}}$ and Cl_-^{alg} be the subgroup of Cl_- generated by the ramified primes. Let \mathcal{U}_p be the torsion subgroup of $(\mathcal{O}_F \otimes_{\mathbf{Z}} \mathbf{Z}_p)^{\times}$ and let $\mathcal{U}^{alg} = U_{\mathcal{K}} \cap (\mathcal{K}^{\times})^{1-c}$. Let \mathcal{D}_1 (resp. \mathcal{D}_0) be a set of representatives of Cl_-/Cl_-^{alg} in $(\mathbf{A}_{\mathcal{K},f}^{(\mathfrak{D})})^{\times}$ (resp. $\mathcal{U}_p/\mathcal{U}^{alg}$ in \mathcal{U}_p).

The following theorem gives a formula for $\mu(L'_{\Sigma,\lambda})$ in terms of $\mu(\mathbb{E}_{\lambda',u}^h)$. Here, $\mathbb{E}_{\lambda',u}^h$ denotes the derivative of $\mathbb{E}_{\lambda N^k,u}^h$ with respect to k at $k = 0$.

Theorem 3.2. *Suppose that $p \nmid h_{\mathcal{K}}^- \cdot D_F$. Then, we have*

$$\mu(L'_{\Sigma,\lambda}) = \inf_{(u,a) \in \mathcal{D}_0 \times \mathcal{D}_1} v_p\left(\frac{\mathbf{a}_{\beta}(\mathbb{E}_{\lambda',u}^h, \mathfrak{c}(a))}{\log_p(1+p)}\right).$$

PROOF. We follow the notation of [8, §5.2]. For a Hecke character χ and $a \in \mathcal{D}_1$, we put $\mathcal{E}_{\chi,u,a} = \mathbb{E}_{\chi,u}^h|_{\mathfrak{c}(a)}$. Sometimes, we drop χ from the notation.

The global root number being -1 implies that $\mathcal{E}_{\lambda,u,a} = 0$ (cf. Lemma 4.1). As $p \nmid h_{\mathcal{K}}^- D_F$, from [loc. cit., remark on pp.19 and proof of Thm. 5.5], it follows that

$$\mathcal{E}_{\lambda N^k}(t) = \sharp(\mathcal{U}^{alg}) \sum_{(u,a) \in \mathcal{D}_0 \times \mathcal{D}_1} \lambda N^k(a) \mathcal{E}_{\lambda N^k,u,a} |[a](t^{\langle a \rangle_{\Sigma} u^{-1}})$$

equals $L_{\Sigma,\lambda N^k}^-$ upto an automorphism of $\overline{\mathbf{Z}}_p[[T_1, \dots, T_d]]$. Thus,

$$\mathcal{E}_{\lambda'}(t) = \sharp(\mathcal{U}^{alg}) \sum_{(u,a) \in \mathcal{D}_0 \times \mathcal{D}_1} \lambda(a) \mathcal{E}_{\lambda',u,a} |[a](t^{\langle a \rangle_{\Sigma} u^{-1}}).$$

It follows from (1.4) that $L'_{\Sigma,\lambda}$ equals $\frac{\mathcal{E}_{\lambda'}(t)}{\log_p(1+p)}$ upto an automorphism of $\overline{\mathbf{Z}}_p[[T_1, \dots, T_d]]$. Being a p -adic limit of classical eigenforms, $\mathcal{E}_{\lambda',u,a}$ is a p -adic eigenform.

Note that $p \nmid \sharp(\mathcal{U}^{alg})$. In view the linear independence of mod p Hilbert modular forms (cf. Corollary 2.7), this finishes the proof. We refer to [loc. cit., proof of Thm 5.5] for the details. □

4. PROOF OF THEOREM A

In this section, we prove Theorem A. In §4.1, we firstly give an outline of the proof. In §4.2, under the global root number being -1 hypothesis, we prove the vanishing of the corresponding Hilbert modular Eisenstein series (cf. §3.4). In §4.3 - 4.5, we prove the Theorem.

4.1. An outline. In this subsection, we give an outline of the proof of Theorem A. Some of the notation used here is not followed in the rest of the section.

Let λ be a Hecke character as in §3.5. To determine $\mu(L'_{\Sigma, \lambda})$, we try to study $\mathbf{a}_\beta(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))$ (cf. Theorem 3.2). For a given $\beta \in \mathcal{F}_+$, as χ varies over Hecke characters as in §3.3 with conductor being divisible by a fixed finite set of primes, then all but finitely many terms $\mathbf{a}_\beta(\mathbb{E}_{\chi, u}^h, \mathfrak{c}(a))$ equal one or zero (cf. (3.7)). We say that such a term is non-trivial, if it does not equal one or zero. As k varies, the conductor of λN^k is divisible by a finite set of fixed primes in \mathcal{K} . Say an upper bound for the number of non-trivial terms in $\mathbf{a}_\beta(\mathbb{E}_{\lambda N^k, u}^h, \mathfrak{c}(a))$ is $n = n_\beta$. For $1 \leq i \leq n$, let us denote the non-trivial places by $(v_i)_i$. For a place v , let $\mathbf{a}_{\beta, \chi, v}$ denote the local factor corresponding to v . For any $\beta_v \in \mathcal{F}_v^\times$, we define $\mathbf{a}_{\beta_v, \chi, v}$ by the same expression as the one for $\beta \in \mathcal{F}_+$. In other words, the terms appearing in the expression for $\mathbf{a}_{\beta, \chi, v}$ are also defined for any $\beta_v \in \mathcal{F}_v^\times$. In this notation,

$$\mathbf{a}_\beta(\mathbb{E}_{\chi, u}^h, \mathfrak{c}(a)) = \prod_{i=1}^n \mathbf{a}_{\beta, \chi, v_i}.$$

In particular, for an integer k

$$\mathbf{a}_\beta(\mathbb{E}_{\lambda N^k, u}^h, \mathfrak{c}(a)) = \prod_{i=1}^n \mathbf{a}_{\beta, \lambda N^k, v_i}.$$

Thus, by our definition (1.6) and the Leibnitz product rule

$$(4.1) \quad \mathbf{a}_\beta(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a)) = \sum_{i=1}^n \left(\prod_{j=1, j \neq i}^n \mathbf{a}_{\beta, \lambda, v_j} \right) \mathbf{a}_{\beta, \lambda', v_i}.$$

As the root number of λ is -1 , $\mathbf{a}_\beta(\mathbb{E}_{\lambda, u}^h, \mathfrak{c}(a))$ equals zero (cf. Lemma 4.1). So, there exists at least one j such that $\mathbf{a}_{\beta, \lambda, v_j}$ equals zero. Choose one such j . Now, (4.1) simplifies as

$$(4.2) \quad \mathbf{a}_\beta(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a)) = \left(\prod_{j=1, j \neq i}^n \mathbf{a}_{\beta, \lambda, v_j} \right) \mathbf{a}_{\beta, \lambda', v_i}.$$

Analysing $\inf_{\beta \in \mathcal{F}_v^\times} v_p(\mathbf{a}_{\beta, \lambda, v_j})$ and $\inf_{\beta \in \mathcal{F}_v^\times} v_p(\mathbf{a}_{\beta, \lambda', v_i})$, we get the lower bound of the equality asserted in Theorem A (cf. §4.3).

The upper bound seems to be delicate. In §4.4, we construct $\beta \in \mathcal{F}_+$ such that

$$(4.3) \quad v_p\left(\frac{\mathbf{a}_\beta(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)}\right) = \mu'_p(\lambda).$$

For a given v dividing \mathfrak{C}^- , in §4.5 we construct $\beta' \in \mathcal{F}_+$ such that

$$(4.4) \quad v_p\left(\frac{\mathbf{a}_{\beta'}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)}\right) = \mu'_p(\lambda_v).$$

This proves the upper bound of the equality asserted in Theorem A.

To construct $\beta \in \mathcal{F}_+$ satisfying (4.3) turns out to be equivalent to constructing $\beta \in \mathcal{F}_+$ such that the following conditions are satisfied.

- There exists a non-split place $v_1 \nmid \mathfrak{D}$ such that $\mathbf{a}_{\beta, \lambda, v_1}$ equals zero and for all $v \neq v_1$, $\mathbf{a}_{\beta, \lambda, v}$ does not equal zero.
- For $v \mid \mathfrak{C}^-$, $v_p(\mathbf{a}_{\beta, \lambda, v}) = \mu_p(\lambda_v)$.
- $v_p(\mathbf{a}_{\beta, \lambda', v_1}) = v_p(\log_p(1+p))$.
- For $v \nmid \mathfrak{C}^-$ and $v \neq v_1$, $v_p(\mathbf{a}_{\beta, \lambda, v}) = 0$.

To directly construct β satisfying the above properties seems difficult. So instead, we firstly construct $\beta_v \in \mathcal{F}_v^\times$ such that the following conditions are satisfied.

- There exists a non-split place $v_1 \nmid \mathfrak{D}$ such that $\mathbf{a}_{\beta_{v_1}, \lambda, v_1}$ equals zero and for all $v \neq v_1$, $\mathbf{a}_{\beta_v, \lambda, v}$ does not equal zero.
- For $v \mid \mathfrak{C}^-$, $v_p(\mathbf{a}_{\beta_v, \lambda, v}) = \mu_p(\lambda_v)$.
- $v_p(\mathbf{a}_{\beta_{v_1}, \lambda', v_1}) = v_p(\log_p(1 + p))$.
- For $v \nmid \mathfrak{C}^-$ and $v \neq v_1$, $v_p(\mathbf{a}_{\beta_v, \lambda, v}) = 0$.

Then, we try to find $\beta \in \mathcal{F}_+$ such that $\mathbf{a}_{\beta, \lambda, v} = \mathbf{a}_{\beta_v, \lambda, v}$. However, it turns out that patching local β_v 's to get a global β is not straightforward. Perhaps, this is not surprising as λ is self-dual with the root number -1 . For this kind of patching to work, Hsieh introduced a certain epsilon dichotomy condition for each place v on β_v (cf. Lemma 4.7). In his case, the root number is 1 . Depending on a place, we modify his condition to our setting (cf. Lemma 4.6).

Summarising, it suffices to find $\beta_v \in \mathcal{F}_v^\times$ satisfying the above dotted properties and the epsilon dichotomy condition. This is a local question. For $v \neq v_1$, the construction of such β_v is due to Hsieh. To find such β_v , Hsieh uses some input from local theta correspondence (cf. [8, Lem. 6.1]). For $v = v_1$, we find such a β_v rather directly (cf. Lemma 4.6).

To construct β' satisfying (4.4), we follows the same strategy as in the above construction of β (cf. §4.4). In this case, for $v \mid \mathfrak{C}^-$ we need to consider $\mathbf{a}_{\beta, \lambda', v}$. Thus, the computation is a bit more involved.

4.2. The vanishing of an Eisenstein series. In this subsection, under the global root number being -1 hypothesis, the vanishing of the corresponding Hilbert modular Eisenstein series (cf. §3.4) is proven.

We start with the vanishing.

Lemma 4.1. *Let λ be a self-dual Hecke character with the root number -1 . Let $\mathbb{E}_{\lambda, u}^h$ be the corresponding Eisenstein series (cf. §3.4). Then, $\mathbb{E}_{\lambda, u}^h = 0$. Moreover, for a given $\beta \in \mathcal{F}_+$ coprime-to- \mathfrak{F} and satisfying $\beta \in u_v(1 + \varpi_v O_v)$ for all $v \mid p$, there exists a non-split place v_1 such that $W_\beta(\phi_{\lambda, 0, v_1}, \mathbf{c}_{\mathbf{v}_1}) = 0$.*

PROOF. Recall,

$$\mathcal{E}_\lambda(t) = \sharp(\mathcal{U}^{alg}) \sum_{(u, a) \in \mathcal{D}_0 \times \mathcal{D}_1} \lambda(a) \mathcal{E}_{\lambda, u, a}[[a]](t^{\langle a \rangle_{\Sigma u}^{-1}})$$

equals $L_{\Sigma, \lambda}^-$ upto an automorphism of $\overline{\mathbf{Z}}_p[[T_1, \dots, T_d]]$.

As the root number of λ is -1 , it follows that $L_{\Sigma, \lambda}^- = 0$ (cf. Introduction). By the linear independence of mod p Hilbert modular forms (cf. Corollary 2.7) it follows that $\mathbb{E}_{\lambda, u}^h = 0$. Thus, $\mathbf{a}_\beta(\mathbb{E}_{\lambda, u}^h, \mathbf{c}(a)) = 0$. In particular, there exists a place v_1 such that $W_\beta(\phi_{\lambda, 0, v_1}, \mathbf{c}_{\mathbf{v}_1}) = 0$.

If β is as in the last part of the lemma, then v_1 has to be non-split as for a split v , we have $W_\beta(\phi_{\lambda, 0, v}, \mathbf{c}_{\mathbf{v}}) \neq 0$ (cf. (3.7)). □

Here is a useful corollary.

Corollary 4.2. *Let $\beta \in \mathcal{F}_+$. A necessary condition for non-vanishing of $a_\beta(\mathbb{E}_{\lambda', u}^h, \mathbf{c}(a))$ is that exactly one of $W_\beta(\phi_{\lambda, 0, v}, \mathbf{c}_{\mathbf{v}})$'s vanishes for local v 's. Moreover, such a v must be non-split.*

PROOF. The first part of the corollary follows by the Leibnitz rule (cf. (3.7)).

If β is as in Lemma 4.1, the second part follows immediately by the lemma. If it is not of this form, then $W_\beta(\phi_{\lambda,0,v}, \mathbf{c}_v) = 0$ for some $v \nmid p\mathfrak{F}$ (cf. (3.7)). Thus,

$$a_\beta(\mathbb{E}_{\lambda N^k, u}^h, \mathbf{c}(a)) = 0$$

for any k (cf. (3.7)). In particular, $a_\beta(\mathbb{E}_{\lambda', u}^h, \mathbf{c}(a)) = 0$. □

4.3. A lower bound. In this subsection, we prove greater the lower bound

$$\mu(L'_{\Sigma, \lambda}) \geq \min_{v \mid \mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}$$

of the equality asserted in Theorem A.

Let v be a local place of \mathcal{F} and $| \cdot |$ be the corresponding absolute value. Sometime, we denote $\mathcal{K}_v, \mathcal{F}_v$ by \mathcal{K}, \mathcal{F} respectively.

Let λ be as in §4.2 and N be the norm Hecke character. From self-duality,

$$(4.5) \quad \lambda^*|_{\mathcal{F}_v^\times} = \tau_{\mathcal{K}_v/\mathcal{F}_v}.$$

Here, $\tau_{\mathcal{K}_v/\mathcal{F}_v}$ denotes the character associated to the extension $\mathcal{K}_v/\mathcal{F}_v$.

Let λ' be the derivative of λN^k with respect to k at $k = 0$.

Lemma 4.3. *i.* $\lambda'(u\varpi_v^n) = cn(\tau_{K/F}(u)(-\lvert \varpi_v \rvert^n)) \log_p(\lvert \varpi_v \rvert)$.

ii. $\lambda'^*(u\varpi_v^n) = (-1)^n cn\tau_{K/F}(u) \log_p(\lvert \varpi_v \rvert)$.

iii. $\log_p(\varpi_v)$ divides $W_\beta(\phi_{\lambda',0,v}, c_v)$ for any local place $v \nmid p$ and $\beta \in \mathcal{F}_v^\times$.

PROOF. From (4.5), for $u \in \mathcal{O}_{\mathcal{F}_v}^\times$,

$$(4.6) \quad \lambda(u\varpi_v^n) = \tau_{\mathcal{K}/\mathcal{F}}(u\varpi_v^n) \lvert \varpi_v \rvert^n = \tau_{\mathcal{K}/\mathcal{F}}(u)(-\lvert \varpi_v \rvert)^n.$$

Now, $N = |\cdot|_{\mathbf{A}_\mathcal{K}^\times}$. Thus, $N^k(u\varpi_v^n) = |\varpi_v|^{cnk}$. Here, $c = 1$ or 2 depending on v . Fixing u and n , we think $N^k(u\varpi_v^n)$ as a function of k . Note that

$$(4.7) \quad \lambda'(u\varpi_v^n) = (\tau_{\mathcal{K}/\mathcal{F}}(u)(-\lvert \varpi_v \rvert)^n) \log_p(\lvert \varpi_v \rvert^{cn}) = cn(\tau_{K/F}(u)(-\lvert \varpi_v \rvert^n)) \log_p(\lvert \varpi_v \rvert).$$

In particular, $\lambda'(u) = 0$. In any case, $\log_p(\lvert \varpi_v \rvert)$ divides $\lambda'(u\varpi_v^n)$. Also note that

$$(4.8) \quad \lambda'^*(u\varpi_v^n) = |\varpi_v|^{-n} \lambda'(u\varpi_v^n) = (-1)^n cn\tau_{K/F}(u) \log_p(\lvert \varpi_v \rvert).$$

It follows from the formulas in [9, §4.3] that $\log_p(\lvert \varpi_v \rvert)$ divides $W_\beta(\phi_{\lambda',0,v}, c_v)$ for $v \nmid p$. Here, $W_\beta(\phi_{\lambda',0,v}, c_v)$ denotes the p -adic derivative of $W_\beta(\phi_{\lambda N^k,0,v}, \mathbf{c}_v)$ with respect to k at $k = 0$. □

Now, we are ready to prove the lower bound.

Proposition 4.4.

$$\mu(L'_{\Sigma, \lambda}) \geq \min_{v \mid \mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}.$$

PROOF. From the definition of μ and Theorem 3.2, it follows that there exists $\beta_n \in \mathcal{F}_+$ and $(u, a) \in \mathcal{D}_0 \times \mathcal{D}_1$ such that

$$(4.9) \quad \lim_n v_p \left(\frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} \right) = \mu(L'_{\Sigma, \lambda}).$$

In view of §4.2, we can suppose that β_n is coprime-to- \mathfrak{F} and $\beta_n \in u_v(1 + \varpi_v O_v)$ for all $v|p$. We can also suppose that there exists exactly one non-split place v_n such that $W_{\beta}(\phi_{\lambda, 0, v_n}, \mathbf{c}_{v_n})$ vanishes.

We have the following two cases.

Case I - $v_n|\mathfrak{C}^-$. From (3.7), it follows that

$$(4.10) \quad \frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} = \beta_n^{(k-1)\Sigma} \frac{W_{\beta_n}(\phi_{\lambda', 0, v_n}, \mathbf{c}_{v_n})}{\log_p(1+p)} \prod_{v \neq v_n, v|\mathfrak{C}^-} W_{\beta_n}(\phi_{\lambda, 0, v}, \mathbf{c}_v),$$

By Lemma 4.3 iii.,

$$v_p \left(\frac{W_{\beta_n}(\phi_{\lambda', 0, v_n}, \mathbf{c}_{v_n})}{\log_p(1+p)} \right) \geq v_p \left(\frac{\log_p(|\varpi_{v_n}|)}{\log_p(1+p)} \right).$$

From [9, (4.16) and (4.17)],

$$v_p(W_{\beta_n}(\phi_{\lambda, 0, v}, \mathbf{c}_v)) \geq \mu_p(\lambda_v).$$

Thus,

$$(4.11) \quad v_p \left(\frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} \right) \geq \mu'_p(\lambda_{v_n}).$$

Case II - $v_n \nmid \mathfrak{C}^-$. From (3.7), it follows that

$$(4.12) \quad \frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} = \beta_n^{(k-1)\Sigma} \frac{W_{\beta_n}(\phi_{\lambda', 0, v_n}, \mathbf{c}_{v_n})}{\log_p(1+p)} \prod_{v|\mathfrak{C}^-} W_{\beta_n}(\phi_{\lambda, 0, v}, \mathbf{c}_v).$$

By a similar argument as in the previous case, we conclude

$$(4.13) \quad v_p \left(\frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} \right) \geq \mu'_p(\lambda).$$

In either case, we get

$$v_p \left(\frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} \right) \geq \min_{v|\mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}.$$

Thus,

$$(4.14) \quad \lim_n v_p \left(\frac{a_{\beta_n}(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)} \right) \geq \min_{v|\mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}.$$

□

4.4. An upper bound I.

In this subsection, we prove an upper bound

$$\mu(L'_{\Sigma, \lambda}) \leq \mu'_p(\lambda)$$

of the equality asserted in Theorem A.

Let $\xi = 2\delta$, where δ is as in [6, (d1) and (d2)]. We recall a lemma on the local root number of a self-dual Hecke character.

Lemma 4.5. *Let χ be a self-dual Hecke character. Then,*

$$W(\chi_v^*) = \pm \chi_v^*(\xi).$$

Moreover,

- 1. If v is split, then $W(\chi_v^*) = \chi_v^*(\xi)$ and
- 2. If v is non-split, then $W(\chi_v^*) = (-1)^{a(\chi_v^*)+v(\mathfrak{c}(R))} \chi_v^*(\xi)$, where $\mathfrak{c}(R) = \mathcal{D}_{\mathcal{F}}^{-1}(\xi \mathcal{D}_{\mathcal{K}/\mathcal{F}}^{-1})$ (cf. [11, Prop. 3.7]).

We start with a couple of local lemmas.

Let v_1 be a non-split place which is relatively prime to $p\mathfrak{C}\mathfrak{C}^c D_{\mathcal{K}/\mathcal{F}}$ such that

$$(4.15) \quad v_p\left(\frac{\log_p(|\varpi_{v_1}|)}{\log_p(1+p)}\right) = 0.$$

Lemma 4.6. *There exists an $\eta_{v_1} \in \mathcal{F}_{v_1}^\times$ and \mathbf{c}_{v_1} such that the following conditions are satisfied.*

i.

$$(4.16) \quad W(\lambda_{v_1}^*) \tau_{\mathcal{K}_{v_1}/\mathcal{F}_{v_1}}(\eta_{v_1}) = -\lambda_{v_1}^*(\xi),$$

ii.

$$(4.17) \quad v_p\left(\frac{W_{\eta_{v_1}}(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1})}{\log_p(1+p)}\right) = 0.$$

PROOF. Choose an η_{v_1} satisfying (4.16) and let \mathbf{c}_{v_1} be such that $v_1(\eta_{v_1} \mathbf{c}_{v_1})$ is odd. The existence of η_{v_1} follows by Lemma 4.5.

Note that the condition (4.16) forces $W_{\eta_{v_1}}(\phi_{\lambda,0,v_1}, \mathbf{c}_{v_1})$ to vanish (cf. [9, (4.7)]).

From (3.7), it now follows that

$$(4.18) \quad W_{\eta_{v_1}}(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1}) = |\mathcal{D}_{\mathcal{F}}|^{-1} \log_p(|\varpi_{v_1}|) \sum_{i=0}^{v_1(\eta_{v_1} \mathbf{c}_{v_1})} (-1)^i i.$$

Now, $\sum_{i=0}^{n} (-1)^i i$ equals $\frac{n}{2}$ if n is even and $\frac{-(n+1)}{2}$ if n is odd.

In view of Lemma 4.5, the condition (4.16) basically puts a restriction on whether $v_1(\eta_{v_1})$ is even or odd. Thus, we are done from the above formula (4.18) and the choice of v_1 (cf. (4.15)).

□

For convenience, let us state [8, Prop. 6.3] as the following lemma.

Lemma 4.7. (Hsieh) *Let $v|\mathfrak{C}^-$. There exists an $\eta_v \in \mathcal{F}_v^\times$ and \mathbf{c}_v such that the following conditions are satisfied.*

i.

$$(4.19) \quad W(\lambda_v^*) \tau_{\mathcal{K}_v/\mathcal{F}_v}(\eta_v) = \lambda_v^*(\xi).$$

ii.

$$(4.20) \quad v_p(W_{\eta_v}(\phi_{\lambda,0,v}, \mathbf{c}_v)) = \mu_p(\lambda_v).$$

With enough preparations, we have the following proposition.

Proposition 4.8. *There exists $\beta \in \mathcal{F}_+$, $u \in \mathcal{D}_0$ and $\mathfrak{c}(a)$ such that*

$$v_p\left(\frac{a_\beta(\mathbb{E}_{\lambda',u}^h, \mathfrak{c}(a))}{\log_p(1+p)}\right) = \mu_p'(\lambda).$$

In particular,

$$\mu(L'_{\Sigma,\lambda}) \leq \mu_p'(\lambda).$$

PROOF. As explained in §4.1, we basically modify the strategy in [9, proof of Prop. 6.7] to our setting.

Let v_1 and η_v 's be as in the last two lemmas. We extend $(\eta_v)_{v=v_1, v|\mathfrak{C}^-}$ to an idele $\eta = (\eta_v)$ in $\mathbf{A}_{\mathcal{F}}^\times$ such that

$$W(\lambda_v^*)\tau_{\mathcal{K}_v/\mathcal{F}_v}(\eta_v) = \lambda_v^*(\xi)$$

for every finite place $v \neq v_1$. From [14],

$$W(\lambda_\sigma^*) = i^{2\kappa_\sigma+1} = \lambda_\sigma^*(\xi)$$

for $\sigma \in \Sigma$. As $W(\lambda^*) = -1$, we conclude that $\tau_{\mathcal{K}/\mathcal{F}}(\eta) = 1$. In particular, η can be written as $\beta N_{\mathcal{K}/\mathcal{F}}(a)$ for some $\beta \in \mathcal{F}_+$ and $a \in \mathbf{A}_{\mathcal{K}}^\times$. By the approximation theorem, a can be chosen so that $a \equiv 1 \pmod{p(v_1\mathfrak{C}^-)^n}$ for sufficiently large n .

Summarising, for every sufficiently small ϵ , we have $\beta \in \mathcal{F}_+^\times \cap O_{(p\mathfrak{F}\mathfrak{F}^\complement)}$ such that

- $|\beta - \eta_v| < \epsilon$ for all $v = v_1$ and v dividing \mathfrak{C}^- ,
- $W(\lambda_{v_1}^*)\tau_{\mathcal{K}_{v_1}/\mathcal{F}_{v_1}}(\eta_{v_1}) = -\lambda_{v_1}^*(\xi)$ and $W(\lambda_v^*)\tau_{\mathcal{K}_v/\mathcal{F}_v}(\eta_v) = \lambda_v^*(\xi)$ for every finite place $v \neq v_1$.

Now, choose ϵ small enough so that $W_\beta(\phi_{\lambda,0,v}, \mathbf{c}_v) = W_{\eta_v}(\phi_{\lambda',0,v}, \mathbf{c}_v)$ for all $v|\mathfrak{C}^-$ and $W_\beta(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1}) = W_{\eta_{v_1}}(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1})$.

Consider, $\mathfrak{J} := \prod_{\mathfrak{q}|v_1\mathfrak{C}} \mathfrak{q}^{v_{\mathfrak{q}}(\beta)}$. From lemma 4.5, it follows that $v(\beta) \equiv v(\mathfrak{c}(R)) \pmod{2}$ for every inert place $v \nmid v_1\mathfrak{C}^-$. Thus, there exists a fractional ideal \mathfrak{a} of R such that

$$(4.21) \quad \mathfrak{J} = (\beta)\mathfrak{c}(R)N_{\mathcal{K}/\mathcal{F}}(\mathfrak{a})^{-1} = (\beta)\mathfrak{c}(\mathfrak{a}).$$

Define $\mathbf{c} \in (\mathbf{A}_{\mathcal{F}}^f)^\times$ by $\mathbf{c}_v = \beta^{-1}$ if v is prime to $p v_1 \mathfrak{C} \mathfrak{C}^\complement$, \mathbf{c}_{v_1} as in Lemma 4.6 and $\mathbf{c}_v = 1$ otherwise. Thus, $\mathfrak{il}_{\mathcal{F}}(\mathbf{c}) = \mathfrak{c}(\mathfrak{a})$. Let $u \in \mathcal{U}_p$ such that $u \equiv \beta \pmod{p}$.

By (3.10), $a_\beta(\mathbb{E}_{\lambda'}^h, \mathfrak{c})$ equals

$$\begin{aligned} & \frac{1}{|D_{\mathcal{F}}|_{\mathbf{R}}} \prod_{v \in h \setminus v_1} W_{\eta_v}(\phi_{\lambda,0,v}, \mathbf{c}_v) W_{\eta_{v_1}}(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1}) \\ (4.22) \quad &= \lambda_+(\mathbf{c}) \prod_{w|\mathfrak{F}} \lambda_w(\beta) \prod_{v|\mathfrak{C}^-} W_{\eta_v}(\phi_{\lambda,0,v}, \mathbf{c}_v) W_{\eta_{v_1}}(\phi_{\lambda',0,v_1}, \mathbf{c}_{v_1}). \end{aligned}$$

We are done by (4.17) and (4.20). □

4.5. An upper bound II. In this subsection, we prove an upper bound

$$\mu(L'_{\Sigma, \lambda}) \leq \mu'_p(\lambda_v)$$

of the equality asserted in Theorem A. This subsection is quite similar to the previous subsection.

Let v be a place dividing \mathfrak{C}^- such that $w(\mathfrak{C}^-) = 1$.

We start with a couple of local lemmas.

Lemma 4.9. *Suppose that v is ramified. There exists an $\eta_v \in \mathcal{F}_v^\times$ and \mathbf{c}_v such that the following conditions are satisfied.*

i.

$$(4.23) \quad W(\lambda_v^*)\tau_{K_v/F_v}(\eta_v) = -\lambda_v^*(\xi).$$

ii.

$$(4.24) \quad v_p\left(\frac{W_{\eta_v}(\phi_{\lambda', 0, v}, \mathbf{c}_v)}{\log_p(1+p)}\right) = v_p\left(\frac{\log_p(|\varpi_v|)}{\log_p(1+p)}\right).$$

PROOF. Recall, the condition (4.23) just puts a condition on the parity of $v(\eta_v)$ (cf. Lemma 4.5). Start with an η_v satisfying this condition along with $v(2\eta_v) \geq -1$. Then, it follows that (cf. [9, Prop. 4.4])

$$(4.25) \quad W_{\eta_v}(\phi_{\lambda N^k, 0, v}, \mathbf{c}_v) = \psi^0(t_w \eta_v) |2d_F^{-1}| ((\lambda N^k)^*(\theta^{-1}) |\varpi_v|^{1/2} + (\lambda N^k)^*(-2\eta_v d_F^{-1}) \epsilon(1, (\lambda N^k)_+ |.|^{-1}, \psi)).$$

Thus,

(4.26)

$$W_{\eta_v}(\phi_{\lambda', 0, v}, \mathbf{c}_v) = a((\lambda')^*(\theta^{-1}) |\varpi_v|^{1/2} + (\lambda')^*(-2\eta_v d_F^{-1}) \epsilon(1, \lambda_+ |.|^{-1}, \psi) + \lambda^*(-2\eta_v d_F^{-1}) \epsilon(1, \lambda'_+ |.|^{-1}, \psi)),$$

where $a = \psi^0(t_w \eta_v) |2d_F^{-1}|$.

Now, $\lambda^*((-2\eta_v d_F^{-1})) = \tau_{K_v/F_v}((-2\eta_v d_F^{-1}))$ (cf. (4.5)). This value is already by (4.23). So, the only quantity we can vary is $(\lambda')^*(-2\eta_v d_F^{-1})$.

By (4.8), it is clear that we can choose an η_v satisfying (4.24) as well. Let $\mathbf{c}_v = \mathbf{1}$. □

We now consider the inert case.

Lemma 4.10. *Suppose that v is inert. There exists an $\eta_v \in F_v^\times$ and \mathbf{c}_v satisfying the same conditions as of the previous lemma.*

PROOF. In view of (4.23) and (4.24), it follows that the only change in this and the ramified case is the formula for $W_{\eta_v}(\phi_{\lambda N^k, 0, v}, \mathbf{c}_v)$. Recall, $\lambda N^k|_{O_v^\times} = 1$ (cf. (4.3)).

Let $\eta_v \in O_v$. Thus, from [9, Prop. 4.5]

$$(4.27) \quad W_{\eta_v}(\phi_{\lambda N^k, 0, v}, \mathbf{c}_v) = b(-|\varpi_v| + \sum_{j=0}^{v(2\beta)} (\lambda N^k)^*(\varpi_v^j) |1 - \varpi_v| - (\lambda N^k)^*(\varpi_v^{v(2\beta)+1}) |\varpi_v|),$$

where $b = |d_F^{-1}| L(0, \lambda N^k)$ (cf. [loc. cit., (4.16)]).

From (4.8), \sum expression is quite similar to (4.18). As the argument is very similar to the proof of Lemma

4.6, we skip the details.

□

With enough preparations, we have the following proposition.

Proposition 4.11.

$$\mu(L'_{\Sigma, \lambda}) \leq \min_{v|\mathfrak{C}^-} \{\mu'_p(\lambda), \mu'_p(\lambda_v)\}.$$

PROOF. If $\mu_p(\lambda_v) = 0$ for all $v|\mathfrak{C}^-$, then the proposition follows from Proposition 4.8. Thus, we suppose that $\mu_p(\lambda_{v_1}) \neq 0$ for $v_1|\mathfrak{C}^-$.

In this case, $w_1(\mathfrak{C}^-) = 1$ (cf. [8, proof of Prop. 6.3]). Thus, we are in the situation of the last two lemmas.

Let η_{v_1} be as in these lemmas depending on whether v_1 is ramified or inert. Let η_v for $v|\mathfrak{C}^-$ and $v \neq v_1$ be as in Lemma 4.7.

Extend $(\eta_v)_{v|\mathfrak{C}^-}$ to an idele (η_v) in $\mathbf{A}_{\mathcal{F}}^\times$ in the same way as in the proof of Proposition 4.8. Proceeding as in the same proof, we get $\beta \in \mathcal{F}_+$, $u \in \mathcal{D}_0$ and $\mathfrak{c}(a)$ such that

$$v_p\left(\frac{a_\beta(\mathbb{E}_{\lambda', u}^h, \mathfrak{c}(a))}{\log_p(1+p)}\right) = \mu'_p(\lambda_{v_1}).$$

□

Corollary 4.12. *Theorem A holds.*

PROOF. This follows from Proposition 4.8 and Proposition 4.11.

□

5. NON-VANISHING OF ANTICYCLOTOMIC REGULATOR

In this section, we prove the non-vanishing of the anticyclotomic regulator of a self-dual CM modular form with the global root number -1 .

In this section, we suppose that $\mathcal{F} = \mathbf{Q}$. Let the notation and hypothesis be as in Theorem A. Let f_λ be the CM modular form associated to λ .

To finish the notation, let \mathcal{R}_λ be the regulator of the $\Lambda[\Gamma^-]$ -adic height pairing associated to f_λ (cf. [2, §4.4]).

Our application is as follows.

Proposition 5.1. *Suppose that $p \nmid h_K$. Then, the anticyclotomic regulator \mathcal{R}_λ does not vanish.*

PROOF. We follow the notation in [loc. cit.].

Let $\mathcal{X}^*(\mathcal{K}_\infty^-)$ be the anticyclotomic dual-Selmer group associated to $f_\lambda/\mathcal{K}_\infty^-$. It is a $\Lambda[\Gamma^-]$ -module of rank one (cf. [loc. cit., Thm. 2.2]). Let $\mathcal{X} \in \Lambda[\Gamma^-]$ be the characteristic ideal of the torsion sub-module of $\mathcal{X}^*(\mathcal{K}_\infty^-)$.

In [2, Thm. 2.2], it is proven that

$$(5.1) \quad \mathcal{X}\mathcal{R} = (L'_{\Sigma, \lambda})$$

as ideals of $\overline{\mathbf{Z}}_p[[\Gamma^-]] \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$.

The proposition follows by Theorem A.

□

Remark. When λ is a Größencharacter of a CM elliptic curve, the above proposition is proven via Iwasawa theory of CM elliptic curves and a non-vanishing result of Rohrlich (cf. [1, App.]).

REFERENCES

- [1] A. Agboola and B. Howard (with an appendix by K. Rubin), *Anticyclotomic Iwasawa Theory of CM elliptic curves*, Annales de L'Institut Fourier 56, 4 (2006) no. 6, 1374-1398.
- [2] T. Arnold, *Anticyclotomic main conjectures for CM modular forms*, J. Reine Angew. Math., 606 (2007), 41-78.
- [3] F. Andreatta and E. Goren, *Hilbert modular forms: mod p and p-adic aspects*, Mem. Amer. Math. Soc., 173 (2005), no. 819.
- [4] H. Hida and J. Tilouine, *Anticyclotomic Katz p-adic L-functions and congruence modules*, Ann. Sci. Ecole Norm. Sup., (4) 26 (1993), no. 2, 189-259.
- [5] H. Hida, *p-adic automorphic forms on Shimura varieties*, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004.
- [6] H. Hida, *The Iwasawa μ -invariant of p-adic Hecke L-functions*, Annals of Math., 172 (2010), no. 1, 41-137.
- [7] H. Hida, *Vanishing of the μ -invariant of p-adic Hecke L-functions*, Compositio Math., 147 (2011), 1151-1178.
- [8] M.-L. Hsieh, *On the μ -invariant of anticyclotomic p-adic L-functions for CM fields*, to appear in J. Reine Angew. Math., revised preprint available at "<http://www.math.ntu.edu.tw/~mlhsieh/research.htm>", 2011.
- [9] M.-L. Hsieh, *On the non-vanishing of Hecke L-values modulo p*, to appear in American Journal of Math., preprint available at "<http://www.math.ntu.edu.tw/~mlhsieh/research.htm>", 2011.
- [10] N. M. Katz, *p-adic L-functions for CM fields*, Invent. Math., 49(1978), no. 3, 199-297.
- [11] A. Murase and T. Sugano, *Local theory of primitive theta functions*, Compositio Math., 123 (2000), no. 3, 273-302.
- [12] K. Rubin, *The "main conjectures" of Iwasawa theory for imaginary quadratic fields*, Invent. Math., 103 (1991), no. 1, 25-68.
- [13] G. Shimura, *Abelian varieties with complex multiplication and modular functions*, Princeton Mathematical Series, 46. Princeton University Press, Princeton, NJ, 1998.
- [14] J. Tate, *Number theoretic background*, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, 3-26.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095-1555, USA
E-mail address: ashay@math.ucla.edu