

Espacenet**Bibliographic data: JP 9220209 (A)****LIVING BODY ELECTRIC IMPEDANCE MEASURING INSTRUMENT**

Publication date: 1997-08-26
Inventor(s): KUBOTA YASUYUKI; ISHII TETSUYA; KURIWAKI MASASHI +
Applicant(s): SEKISUI CHEMICAL CO LTD +
Classification:
- international: A61B5/05; A61M1/14; (IPC1-7): A61B5/05; A61M1/14
- European:
Application number: JP19960031968 19960220
Priority number(s): JP19960031968 19960220

Abstract of JP 9220209 (A)

PROBLEM TO BE SOLVED: To perform automatic continuous measurement and to reduce the burdens of an operator. **SOLUTION:** This device 4 to be presented is provided with a signal output circuit 5 to flow the probe current I_a of multiple frequencies to the body B of a testee as measurement signals, a current detection circuit 6 for detecting the probe current I_a flowing through the body B of the testee, a voltage detection circuit 7 for detecting a voltage V_b between the hands and feet of the testee, a keyboard 8, a display device 9, a CPU 10 for obtaining the respective amounts of the intracellular fluid and extracellular fluid of the body of the testee based on detected results I_a and V_b and four surface electrodes H_p , H_c , L_p and L_c stuck to the hands and feed of the testee. By using the keyboard 8, total measurement time T and a measurement interval (t), etc., are arbitrarily set. At the display device 9, the respective amounts of the intracellular fluid and the extracellular fluid calculated by the CPU 10 are displayed on a trend graph screen during the total measurement time.

Last updated: 26.04.2011
Worldwide Database 5.7.23.1; 92p