Лабораторная работа №6

Задача об эпидемии

Сунгурова Мариян Мухсиновна 16 марта 2024

Российский университет дружбы народов, Москва, Россия

Докладчик

- Сунгурова Мариян Мухсиновна
- НКНбд-01-21
- Российский университет дружбы народов

Вводная часть

Цели и задачи

• Исследовать простейшую математическую модель эпидемии(SIR).

Материалы и методы

- · Язык программирования Julia
- Библиотеки
 - · OrdinaryDiffEq
 - · Plots
- · Язык программирования OpenModelica

Выполнение лабораторной работы

Зададим функцию для решения модели эпидемии. Возьмем интервал $t\in[0;200]$ с начальными условиями N=10850, , I(0)=209\$, ,R(0)=42 , , S(0)=N-I(0)- R(0) . Зададим функции для случаев если $I(0)< I^*$ и если $I(0)> I^*$. Рассмотрим сначала реализацию в Julia. Зададим начальные условия и функции для двух случаев:

$$R = 42$$

$$I = 209$$

$$N = 10850$$

$$S = N-R-I$$

$$p = [0.1, 0.05]$$

$$u0 = [S,I,R]$$

Функции для решения случаев $I(0) > I^*$ и $I(0) < I^*$

function sir!(du,u,p,t)

b,g = p

S, I, R = u

N = S+I+R

dn[3] = dn[3]

du[1] = -b*u[2]*u[1]/N

du[2] = b*u[2]*u[1]/N - g*u[2]

```
function sir_0!(du,u,p,t)
    b,g = p
    du[1] = 0
    du[2] = - g*u[2]
    du[3] = g*u[2]
```

end

Для задания проблемы используется функция ODEProblem, а для решения – численный метод Tsit5():

```
prob = ODEProblem(sir!,u0,tspan,p)

solution = solve(prob, Tsit5())

plot(solution, label=["S", "I", "R"])
```

```
problem = ODEProblem(sir_0!,u0,tspan,p)
solution = solve(problem, Tsit5())
plot(solution, label=["S", "I", "R"])
```

der(S) = -b*S*I/N:

 $don(D) - \sigma T$

der(I) = b*S*I/N - g*I:

```
Также зададим эту модель в OpenModelica. Модель для I(0) > I^*:
parameter Real N = 10850;
parameter Real b = 0.1:
parameter Real g = 0.05:
Real S(start = N - 209 - 42):
Real I(start = 209):
Real R(start = 42):
equation
```

11/18

```
Модель случая I(0) < I^*:
  parameter Real I 0 = 209;
  parameter Real R_0 = 42;
  parameter Real S 0 = 10599;
  parameter Real N = 10850;
  parameter Real b = 0.1;
  parameter Real c = 0.05;
  Real S(start=S 0);
  Real I(start=I 0);
  Real R(start=R 0);
```

equation

Посмотрим график изменения числа особей в каждой из трех групп при $I(0) < I^*$ (рис. (fig:001?), (fig:002?)):

Рис. 1: График изменения числа особей для случая $I(0) < I^*$. OpenModelica

Рис. 2: График изменения числа особей для случая $I(0) < I^*$. Julia

Графики решений, полученные с помощью OpenModelica и Julia идентичны. Можно увидеть, что число здоровых не изменяется, так как в этом случае все заражённые изолированы. При это заражённые выздоравливают и приобретают иммунитет.

Посмотрим график изменения числа особей в каждой из трех групп при $I(0) < I^*$ (рис. (fig:003?), (fig:004?)):

Рис. 3: График изменения числа особей для случая $I(0)>I^*$. OpenModelica

Рис. 4: График изменения числа особей для случая $I(0)>I^*$. Julia

Выводы

Построили математическую модель эпидемии.