## One-Dimensional Range Counting Queries using Range Trees $^1$

Range trees can also be used to answer other types of queries. We can apply the range tree approach to one-dimensional and multi-dimensional problems. In this note I will show how one-dimensional range counting queries can be answered in  $O(\log n)$  time. The problem is to store a set of two-dimensional points in a data structure, so that for any range  $[x_1, x_2]$  we can *count* the *number* of points whose x-coordinates are in  $[x_1, x_2]$ . We use the same example as in the note on range trees by Shahin Kamali.

```
p_2:(9,15)
   p_0:(8,47)
                   p_1:(7,21)
                                                  p_3:(11,25)
                                                                  p_4:(13,40)
                                p_7: (16,31) p_8: (18,17) p_9: (19,36)
p_5:(14,34)
                p_6:(15,14)
                p_{11}:(5,12)
                                 p_{12}:(1,28)
                                                  p_{13}::(4,5)
p_{10}:(10,8)
                                                                   p_{14}:(3,45)
p_{15}:(20,3)
                p_{16}:(22,16)
                                 p_{17}:(24,46)
                                                  p_{18}:(28,1)
                                                                   p_{19}:(30,19)
p_{20}:(35,50)
                 p_{21}:(32,18)
                                  p_{22}:(40,6)
                                                  p_{23}:(42,20)
                                                                   p_{24}:(48,2)
p_{25}:(50,41)
                p_{26}:(61,55)
                                 p_{27}:(63,24)
                                                  p_{28}:(74,70)
                                                                   p_{29}:(90,27)
p_{30}:(80,31)
```

Figure 1 shows the main balanced BST based on x-coordinates of points. We do not need any secondary trees in this case. Instead we keep in every node v the total number  $n_v$  of points in its subtree (i.e., the total number of points in v and all its descendants). This information is sufficient to answer one-dimensional range counting queries. Given a query  $[x_1, x_2]$ , we search for  $x_1$  in T and we search for  $x_2$  in T. Let  $P_1$  denote the search path for  $P_1$  and let  $P_2$  denote the search path for  $P_2$ . We examine all boundary nodes (i.e., nodes on  $P_1$  or  $P_2$ ) and count the number  $n_1$  of points in  $[x_1, x_2]$ that are stored in boundary nodes v on  $P_1 \cup P_2$ . We also examine all top inside nodes and count  $n_2 = \sum n_v$  where the sum is taken over all top inner nodes. Then the total number of points in  $[x_1, x_2]$  is equal to  $n_1 + n_2$ . For instance, suppose that we want to count the number of points in [4,59]. We examine all boundary nodes and compute  $n_1$ , the number of points in boundary nodes that are in  $[x_1, x_2]$ . In our example,  $n_1 = 6$ . Top inside nodes are nodes that contain  $p_0$ ,  $p_6$ ,  $p_{19}$ , and  $p_{24}$ . The total number of points in or below these four nodes is  $n_2 = 18$ . Hence there are  $n_1 + n_2 = 24$  points with x-coordinates in [4, 59].

<sup>&</sup>lt;sup>1</sup>Prepared for CS 240 - University of Waterloo - Spring 2015 (S. K., Y.N., O. Z.)



Figure 1: The range tree of the listed points. The red nodes indicate the boundary points for range  $4 \le x \le 59$ .