NT A N CIT	T 1 NT	/
NAME	 Index No	./

545/2

CHEMISTRY

PAPER 2

June/July 2017

2 hours

MWALIMU EXAMINATIONS BUREAU

UCE RESOURCE PRE-MOCK EXAMINATIONS 2017

CHEMISTRY

PAPER 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all questions in this section.

Answer to these questions **must** be written in the spaces provided.

Section **B** consists of 4 semi-structured questions. Attempt any **two** questions from this section. Answers to the questions **must** be written in the answer sheet(s)/booklet(s) provided.

In both sections all working must be clearly shown.

Where necessary use;

$$(H = 1, C = 12, N = 14, O = 16, Na = 23, S = 32, Cl = 35.5, Cu = 64, Fe = 56)$$

1 mole of a gas occupies 24 l at room temperature.

1 mole of a gas occupies 22.4 l at s.t.p.

	For Examiners' Use Only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A: (50 marks)

	ethod.		(05 mks)
Method		Mixture	
Use of a	magnet		
Fractiona	l distillation		
Mechanic	eal sorting		
Fractiona	l cystallisation		
Sublimati	on		
The atom	nic number of ek	ement A is 13.	
		ronic configuration of an atom of A.	(01 mk)
		in the Periodic Table to which A belongs	
		nula of the oxide of ${f A}$.	(01 mk)
(ii)	State the type	of bonding in the oxide of A.	(01 mk)
	able below show	es the oxides formed by some elements. In each	ch case classify
		, neutral or amphoteric.	(02 mks)
the oxide		Lings	
the oxide Eleme	ent Oxide	Class	
the oxide Eleme Lead	ent Oxide PbO	Class	
the oxide Eleme Lead Carbo	PbO n CO ₂	Class	
the oxide Eleme Lead	ent Oxide PbO n CO2 n Na2O	Class	
the oxide Eleme Lead Carbo Sodiur Nitrog	ent Oxide PbO n CO2 m Na2O en NO	ow the oxide of queous calcium hydroxide solution.	(1½ mks)

	hydrochloric acid solution for complete neutralisation. Calculate the copper(II) oxide in the mixture.	(05 mks)
5.	(a) Ethanol reacts with sulphuric acid to form a gas W that turns re	eddish
	brown bromine water to colourless.	(01 mls)
	(i) Identify the gas W.	(01 mk)
	(ii) State the conditions for the reaction.	(01 mk)
	(iii) Write the equation leading to the formation of the gas W.	(1½ mks)
	(iii) write the equation leading to the formation of the gas with	,
	(b) Write the equation for the reaction between the gas ${\bf W}$ and excess	oxygen.
		(1½ mks)
6.	(a) What is meant by the term hard water ?	(01 mk)

(ii) State one chemical method of r	emoving permanent hardness of	
(iii) Write equation for the reaction	involved in (b)(ii) above.	(1½ mks)
(i) State what was observed.		(0½ mk)
(ii) Write equation for the react	ion that took place.	(1½ mks)
(ii) Write equation for the react (a)(i) Name two substances from laboratory.	ion that took place.	(1½ mks) n be prepared in the (02 m
(ii) Write equation for the react (a)(i) Name two substances from laboratory.	ion that took place. m which hydrogen chloride can	(1½ mks) In the prepared in the (02 minus) We named in (a)(i).
(ii) Write equation for the react (a)(i) Name two substances from laboratory.	ion that took place. m which hydrogen chloride can	(1½ mks) In the prepared in the (02 m
(ii) Write equation for the react (a)(i) Name two substances from laboratory.	ion that took place. m which hydrogen chloride can between the substances you ha	(1½ mks) In the prepared in the (02 m In the work of the (02 m In the prepared in the (02 m

8.	(a) Write an ionic equation for the reaction between dilute suphuric sodium hydroxide solution.	(01 mk)
•		
	(b) When 25 cm ³ of a 0.25 M sulphuric acid was added to 25 cm ³ of hydroxide solution, the temperature of the mixture rose from 25.0° Calculate the molar enthalpy of neutralisation of sodium hydroxide capacity of water = $4.2 J g^{-1} {}^{o} C^{-1}$, density of water = $1 g cm^{-3}$).	C to 28.4°C.
	capacity of water $= 1.2 \text{ y g}$ $= 0$, definity of water $= 1 \text{ g cm}$ $= 1$.	(03 mks)
		•••••
•		
9.	Chlorine reacts with hydrogen sulphide according to the following $Cl_2(g) + H_2S(g) \rightarrow HCl(g) + S(s)$ (a) State what was observed when dry chlorine is mixed with dry	-
	(b) Name the type of the reaction that took place in (a).	(0½ mk)
	(c) Identify the substance which acts as:(i) an oxidising agent.	(01 mk)
	(1) all Oaklishig agent.	· · · · · ·
•	(ii) a reducing agent.	(01 mk)
10.	Aluminium sulphate crystals were dissolved in distilled water, the	resultant solution
	divided into two parts and treated as below.	
	(I) To the first part was added three drops of lead(II) nitrate solution itric acid.	n followed dilute
	(II) To the second part was added dilute ammonia drop wise until in	n excess

took place.	
(a) (I)	
Observation	
Equation	
(b) (II)	
(b) (II)	
Observation	
Equation	
SECTION B:	
(a) Describe how a dry sample of sulphur dioxide can be prepared	l in the
laboratory. (Diagram is not required)	(05 mks)
(b) Sulphur dioxide reacts with excess air in the presence of a cata	alyst X.
(i) Identify catalyst X.	$(0\frac{1}{2} \text{ mk})$
(ii) Write equation for the reaction that took place.	(1½ mks)
(c) The product in (b) dissolves in water to form compound Z. (i) Write equation to show how the product reacts with we	oter to form
(i) Write equation to show how the product reacts with wa compound Z.	(1½ mks)
(ii) Give a reason why it is not advisable to form compound	· · · · · · · · · · · · · · · · · · ·
dissolving the product in (b) in water.	(01 mk)
(iii) State two uses of compound Z.	(01 mk)
(d) Write equation to show how compound Z acts as	(44.4
(i) an oxidising agent.	$(1\frac{1}{2} \text{ mks})$
(ii) a dehydrating agent.	(1½ mks)
(e) Briefly describe a test you would carry out to confirm the anion solution of compound Z. State what would be observed.	n in a dilute aqueous $(1\frac{1}{2} \text{ mks})$
solution of compound 2. state what would be observed.	(1/2 11113)

State what was observed in each case and write ionic equation for the reaction that

11.

12. (a) Excess zinc reacts with dilute hydrochloric acid according to the following equation.

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

- (i) Name a compound that can be added to the reaction mixture to speed up the reaction rate. (01 mk)
- (ii) Apart from the compound named in (a)(i), state **two** factors that affect the rate of the reaction above. (01 mk)
- (iii) Explain how **one** of the named factors in (a)(i) affects the rate of the above reaction. (05 mks)
- (b) (i) Draw a well labeled diagram of the setup of apparatus that can be used to measure the volume of hydrogen evolved in the reaction in (a). (03 mks)
- (ii) Sketch a graph to show how the volume of hydrogen evolved in reaction(a) varies with time. (02 mks)
- (iv) Describe how the graph in (b)(ii) can be used to measure the rate of evolution of hydrogen. (03 mks)
- 13. An experiment to prepare carbon monoxide and investigate its effect on copper(II) oxide was carried out using apparatus in the diagram below in a fume cupboard. Use it to answer questions that follow.

- a) (i) Name gas Q. (01 mk)
 - (ii) Write equation for the reaction that took place in tube C. $(1\frac{1}{2} \text{ mks})$
- b) (i) Explain using an equation the purpose of potassium hydroxide solution. (2½ mks)
 - (ii) State what was observed in the tube D. (01mk)
 - (iii) Write equation for the reaction that took place in (b)(ii). $(1\frac{1}{2} \text{ mks})$
- c) (i) Give a reason why is this experiment was carried out in a fume cupboard. (01 mk)

- (ii) State **one** industrial application of carbon monoxide gas. (0½ mk)
- d) Using equations, briefly describe what happens when burning magnesium ribbon is lowered in to gas jar of carbon dioxide. (06 mks)
- 14. Explain each of the following observations.
 - (a) Molten sodium chloride conducts electric current whereas solid sodium chloride does not. (02 mks)
 - (b) When carbon dioxide was passed through a saturated solution of calcium hydroxide until no further change, a white solid was formed which dissolved to form a colourless solution. (05 mks)
 - (c) A brown solid is formed when magnesium dust is added to an aqueous copper(II) sulphate solution. (04 mks)
 - (d) Moist red litmus paper turns white when dropped in a jar of dry chlorine. (04 mks)

End