i By composition rule in an

Q1)

We know that :-

HA) is PRIMITIVE RECURSIVE

And PRIMITIVE RECURSIVE FUNCTIONS OR SATISFYING COMPOSITION.

Net
$$h(z_1, z_2 - - - z_n) = f(g_1(z_1 - z_n) - \dots g_K(z_1, - \dots z_n))$$

FROM HYPOTHESIS

h: PRIMITIVE REWRSIVE of f, g,, g2....gk are PRIMITIVE REWRSIVE Laci)

We'll prove $f^k(x) = f(f(\dots f(x)))$ is Primitive recursive by PROOF BY INDUCTION.

Base case:

$$f^2(x) = f(f(x))$$

: We know I is primitive recursive.

Hence, by using the composition rule defined in (i), we can say that f(f(x)) is primitive recursive.

: f(x) is PRIMITIVE RECURSIVE satisfying the base case.

Hypothesis:

det fk(x) = f(f(----f(x)) is PRIMITIVE RECURSIVE.

dots do it for (K+1):-

We have to prove $f^{k+1}(x)$ is PRIMITIVE RECURSIVE. $f^{k+1}(x) = f(f^k(x))$

WE know that f is primitive recursive and $f^{K}(x)$ is also primitive recursive from hypothesis.

- .. By composition rule in (i), $f^{K+1}(x) \approx \text{PRIMITIVE RECURSIVE}.$
- -1. By MATHEMATICAL INDUCTION, we can conclude that $f^n(x)$ is primitive recursive.

(b)

2)

Net g be a function in comp.

From 20,

$$g(x_1, \dots, x_n) = K \quad (69)$$

 $g(x_1, \dots, x_n) = x_i + K$

CASE (1)

$$\theta(x_1, \dots, x_n) = K$$

dets suppose, n-tuples (x_1, \dots, x_n) , (y_1, \dots, y_n) such that $x_i \leq y_i$

$$g(x_1, \dots, x_n) = k$$

$$g(y_1, \dots, y_n) = k$$

$$g(x_1, \dots, x_n) = g(y_1, \dots, y_n)$$

.. Condition Given is TRUE for case(i).

CASE (i)

$$g(x_1, \dots, x_n) = x_i + k$$

$$g(x_1, \dots, x_n) = x_i + k$$

$$g(y_1, \dots, y_n) = y_i + k$$

We know,
$$x_i \leq y_i$$
, $g(x_1, \dots, x_n) \leq g(y_1, \dots, y_n)$

: Gondition Given is TRUE for case ii)

Now, as it is satisfying both CASE (i) and CASE (ii),

g is MONOTONE.

: Every Function in COMP is MONOTONE

3A :-

det $\pi(x)$: Number of primes that are less than (0e) equal to x.

BASELASE:- T(0) = 0

The number of primes $\leq x+1$ is given by, the number of primes less than (oc) equal to x, plus 1 if x+1 is a PRIME.

: T(x) is given by the recursion equations.

 $\pi(t+1) = \pi(t) + prime(t+1)$ This is a recursive case.

Now, let's combine both the base case and recursive case.

(0), $\pi(0)=0$ $\pi(t+1)=\pi(t)+prime(t+1)$

Since, the addition (+) and prime are PRIMITIVE RECURSIVE,

@ Using ZERO, SUCCESOR and PROJECTION RULES.

 $\overline{ZER0}$: $f(x_1, \dots, x_n) = 0$

Successor:- $f(x_1, \dots, x_n) = x_i + 1$

 $\frac{PROJECTION:}{f(x_1, \dots, x_N) = x_i}$

from composition rule,

 $h(x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n) \dots g_n(x_1, \dots, x_n))$: $h, g_1, g_2, \dots g_n \in comp$

As $h \in COMP$, we can write $f(x_1, \dots x_n) = 0$ (or) $f(x_1, \dots x_n) = x_i + 1$ (or) $f(x_1, \dots x_n) = x_i$

.. We can conclude that for "m" compositions,

we can write: $f(x_1, \dots, x_n) = m$ (or) $f(x_1, x_2, \dots, x_n) = x_i + m$ $[gf f(x_1, \dots, x_n) \in comp]$