Linear Algebra I Problem Set 12: Hermitian Matrices

Dr Nicholas Sedlmayr

Friday April 15th 2016

Due: In class, April 22nd 2016

1. (10) Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} .$$

As we have seen in the lectures these eigenvectors form an orthogonal basis with respect to the standard inner product on \mathbb{C}^3 . By considering a basis transformation to an orthonormal basis of eigenvectors find a diagonalizing matrix \mathbf{P} , and hence $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ where \mathbf{B} is diagonal. (Hint: $\mathbf{P}^{-1} = \bar{\mathbf{P}}^T$ for an orthogonal transformation from one orthonormal basis to another.)

2. (5) Without explicitly calculating the diagonalizing matrix \mathbf{P} , write down a possible diagonal matrix $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ similar to the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & -\frac{1}{2}\\ 0 & -\frac{1}{2} & 1 \end{pmatrix} .$$

3. (5) Prove theorem 6.25 from the lectures, i.e. that if f is a self-adjoint transformation of an inner product space V, and λ is an eigenvalue of f, then λ is real. (Hint: Consider the properties of $\langle v|f(v)\rangle$ for a self-adjoint transformation f where v is an eigenvector of f.)

Total available marks: 20