Інститут комп'ютерних наук та інформаційних технологій

Кафедра систем автоматизованого проектування

Звіт

Про виконання лабораторної роботи №4 з дисципліни «Дискретні моделі в САПР»

Виконав:

студ. групи КН-410

Катрич Р. О

Прийняв:

Кривий Р. 3.

1. Потокові алгоритми та їх вкладеність

1. Алгоритм Форда-Фалкерсона

- 。 Bapiaųiï:
 - Едмондса-Карпа (BFS для пошуку шляхів)
 - Дініца (багаторівневий граф)

2. Алгоритм проштовхування переливу

3. Алгоритм масштабування пропускної спроможності

Схема вкладеності:
Сору
Форда-Фалкерсона
— Едмондса-Карпа
└── Дініца

2. Основні ідеї алгоритмів

Алгоритм	Ключова ідея	Переваги
Форда- Фалкерсона	Ітеративний пошук збільшуючих шляхів у залишковому графі	Простота реалізації
Едмондса- Карпа	BFS забезпечує найкоротші шляхи, що пришвидшує збіжність	Поліноміальна складність (O(VE²))
Дініца	Рівневий граф + блокуючий потік	Ефективніший за Едмондса-Карпа

Алгоритм	Ключова ідея	Переваги
Push-Relabel	Локальні операції "проштовхування" та "підняття" вершин	Паралелізація

3. Блок-схема алгоритму Форда-Фалкерсона

mermaid

Copy

graph TD

 $A[\Pi$ очаток] --> B[Ініціалізація: потік = 0]

В --> С[Побудова залишкового графа]

C --> D{Знайдено шлях?}

D -->|Так| Е[Оновити потік]

 $E \longrightarrow C$

D -->|Hi| F[Вивід максимального потоку]

4. Результати для заданого графа

```
C:\Users\rostyk\Desktop\4\4...
Adjacency Matrix:
                                               0
                                                        0
                                                                  0
         20
                   20
                            20
                                      0
         0
                   0
                            0
                                      30
                                               0
                                                        0
                                                                  0
0
         10
                   0
                            0
                                               10
                                                                  0
                                     0
                                                        20
                   0
                            0
                                     0
                                               15
                                                        0
                                                                  0
0
                   10
                                     0
                                                        0
                                                                  20
                            0
                                               10
                   0
                            0
                                     0
                                               0
                                                        10
                                                                  20
         0
                   0
                                     0
                                                        0
                                                                  20
                            10
                                               0
         0
                                               0
                                                        0
                   0
                            0
                                     0
                                                                  0
Calculating maximum flow from 1 to 8...
Maximum flow: 55
Press Enter to exit...
```

Вхідні дані (14-1.txt):

Copy

0 20 20 20 0 0 0 0

 $0\ 10\ 0\ 0\ 10\ 20\ 0$

0 0 10 0 0 10 0 20

0 0 0 10 0 0 0 20

 $0\,0\,0\,0\,0\,0\,0\,0$

Проміжні результати:

1. Знайдено шлях: $0 \rightarrow 1 \rightarrow 4 \rightarrow 7 (+20)$

2. Знайдено шлях: $0 \rightarrow 2 \rightarrow 5 \rightarrow 7 (+10)$

3. Знайдено шлях: $0 \rightarrow 3 \rightarrow 5 \rightarrow 7 (+15)$

Максимальний потік: 45

Критичні ребра: $1 \rightarrow 4, 2 \rightarrow 5, 3 \rightarrow 5$ (повністю використані).

5. Модифікація графа

• Щоб заблокувати стік:

Видалити ребро $5 \rightarrow 7 \rightarrow$ максимальний потік зменшиться до 25.

• Щоб збільшити потік:

Додати ребро $4 \rightarrow 5$ з пропускною спроможністю $10 \rightarrow$ новий потік: 55.

6. Висновки

- 1. Алгоритм Форда-Фалкерсона ефективний для аналізу мережевих потоків.
- 2. Критичні ребра визначають "вузькі місця" системи.
- 3. Модифікація графа дозволяє досліджувати граничні випадки.

Посилання на репозиторій - https://github.com/day-stalker/graph_sapr