TU Berlin - Institut für Mathematik Sommersemester 2024

Dozent: Dr. Nikolas Tapia

Assistentin: M.Sc. Claudia Drygala

Stochastik für Informatik(er) – Übung 10

Abgabe: Keine Abgabe

Hinweise zur Bearbeitung des Übungsblattes:

- Das Übungsblatt enthält Haus- und Tutoriumsaufgaben.
- Die Tutoriumsaufgaben werden in den Tutorien der KW 26 besprochen (24.06.-28.06.).
- Die Hausaufgaben werden selbstständig bearbeitet. Lösungsvorschläge werden von uns hochgeladen. Bei Fragen wenden Sie sich an die Tutor*innen direkt im Tutorium oder in den Sprechstunden.

Tutoriumsaufgaben

Tutoriumsaufgabe 10.1

Die Kapazitäten von 10 Kondensatoren sind

Kondensator										10
Kapazität	101	100	102	102	101	99	99	101	102	98

- (i) Bestimmen Sie alle absoluten Häufigkeiten.
- (ii) Bestimmen Sie das empirische Mittel und die empirische Varianz.
- (iii) Zeichnen Sie das zugehörige Histogramm mit den Klassen {98, 99, 100}, {101} und {102}.

Tutoriumsaufgabe 10.2

Seien $X_1,...,X_n$ Zufallsvariablen. Zeigen Sie für $\bar{\mu}:=\frac{1}{n}\sum_{j=1}^n X_j$, dass

(i)
$$\sum_{j=1}^{n} (X_j - \bar{\mu}) = 0$$
;

(ii)
$$\sum_{j=1}^{n} (X_j - \bar{\mu})^2 = \sum_{j=1}^{n} (X_j^2 - \bar{\mu}^2);$$

(iii)
$$\sum_{j=1}^{n} (X_j - M)^2$$
 ist minimal genau dann, wenn $M = \bar{\mu}$.

Tutoriumsaufgabe 10.3

Eine unfaire Münze, die mit unbekannter Wahrscheinlichkeit $p \in (0,1)$ Kopf zeigt, wird wiederholt geworfen. Bei 10 Wiederholungen wurden 7 Köpfe und 3 Zahlen beobachtet.

(i) Ermitteln Sie einen Schätzer \overline{p}_n für den Parameter p mittels der Maximum-Likelihood-Methode.

(ii) Geben Sie die Schätzung \overline{p}_{10} für das Münzwurfexperiment an.

Tutoriumsaufgabe 10.4

Sei y_1, y_2, \dots, y_n eine Stichprobe von unabhängigen, identisch verteilten Zufallsvariablen Y_1, Y_2, \dots, Y_n mit Dichte

$$f(y) = \begin{cases} \frac{\alpha y^{\alpha - 1}}{\theta^{\alpha}} & \text{ für } 0 \le y \le \theta \\ 0 & \text{ sonst} \end{cases}$$

mit unbekanntem $\theta > 0$ und bekanntem $\alpha > 0$.

- (i) Zeigen Sie, dass der Maximum-Likelihood-Schätzer $\bar{\theta} := \max\{y_1, \dots, y_n\}$ ist.
- (ii) Zeigen Sie, dass der Maximum-Likelihood-Schätzer nicht erwartungstreu ist.
- (iii) Finden Sie eine Konstante c>0, sodass der skalierte Schätzer $c\bar{\theta}$ erwartungstreu ist.

Tutoriumsaufgabe 10.1

Die Kapazitäten von 10 Kondensatoren sind

	Kondensator	1	2	3	4	5	6	7	8	9	10
K	⊆ Kapazität	101	100	102	102	101	99	99	101	102	98

- (i) Bestimmen Sie alle absoluten Häufigkeiten.
- (ii) Bestimmen Sie das empirische Mittel und die empirische Varianz.
- (iii) Zeichnen Sie das zugehörige Histogramm mit den Klassen $\{98, 99, 100\}$, $\{101\}$ und $\{102\}$.

Tutoriumsaufgabe 10.2

Seien $X_1,...,X_n$ Zufallsvariablen. Zeigen Sie für $\bar{\mu}:=\frac{1}{n}\sum_{j=1}^n X_j$, dass

(i)
$$\sum_{j=1}^{n} (X_j - \bar{\mu}) = 0$$
;

(ii)
$$\sum_{j=1}^{n} (X_j - \bar{\mu})^2 = \sum_{j=1}^{n} (X_j^2 - \bar{\mu}^2)$$
;

(iii) $\sum_{j=1}^{n} (X_j - M)^2$ ist minimal genau dann, wenn $M = \bar{\mu}$.

$$(;;) \sum_{j=1}^{n} (x_{i} - \bar{\mu})^{2} = \sum_{j=1}^{n} (x_{i}^{2} - 2x_{i}\bar{\mu} + \bar{\mu}^{2}) = \sum_{j=1}^{n} (x_{i}^{2} - \bar{\mu}^{2} - 2x_{i}\bar{\mu} + 2\bar{\mu}^{2})$$

$$= \sum_{j=1}^{n} (x_{i}^{2} - \bar{\mu}^{2}) - 2\bar{\mu} \cdot \sum_{j=1}^{n} (x_{i} - \bar{\mu})$$

(iii) Ubriance
$$1: f: R \mapsto R$$
, $M \mapsto \frac{R}{2}(K_3 - M)^2$

$$f'(M) = \frac{1}{2} \sum_{i=1}^{n} 2(M - K_i) = 2MM - \sum_{i=1}^{n} 2K_3 = 2MM - 2MM = 0$$

$$f''(M) = \frac{1}{2} \sum_{i=1}^{n} 2(M - K_i) = 2MM - \sum_{i=1}^{n} 2K_3 = 2MM - 2MM = 0$$

$$f''(M) = \frac{1}{2} \sum_{i=1}^{n} 2(M - K_i) = 2MM - \sum_{i=1}^{n} 2K_3 = 2MM - 2MM = 0$$

$$f''(M) = \frac{1}{2} \sum_{i=1}^{n} 2(K_1 - K_1)^2 = \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 = \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 + \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 = \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 + \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 = \frac{1}{2} \sum_{i=1}^{n} (K_1 - K_1)^2 =$$

Tutoriumsaufgabe 10.3

Eine unfaire Münze, die mit unbekannter Wahrscheinlichkeit $p \in (0,1)$ Kopf zeigt, wird wiederholt geworfen. Bei 10 Wiederholungen wurden 7 Köpfe und 3 Zahlen beobachtet.

=) 0 > n (m - 1/4)2

a M=7

- (i) Ermitteln Sie einen Schätzer \overline{p}_n für den Parameter p mittels der Maximum-Likelihood-Methode.
- (ii) Geben Sie die Schätzung \overline{p}_{10} für das Münzwurfexperiment an.

(ii) Geben Sie die Schätzung
$$\overline{p}_{10}$$
 für das Münzwurfexperiment an.

(i) $\overline{p}_{10} = \frac{7}{10}$

(ii) $\overline{p}_{10} = \frac{7}{10}$

(ii) $\overline{y}_{10} = \frac{7}{10}$

(iii) $\overline{y}_{10} = \frac{7}{10}$

(iv) $\overline{y}_{10} = \frac{7}{10}$

Subject 2: Manimum L Sight P

(Min: Externized Externized Externized in Small SU

Down State do Ly-Max-L-h-Flit and $l = log \circ l$ d.h. $l(x_1, ..., x_{n-1}, p) = \frac{l^n}{2} (x_1 log 0) + (n-x_1) log (n-p)$ $\frac{d}{dp} l(x_1, ..., x_{n-1}, p) = \frac{l^n}{2} (x_1 log 0) + (n-x_1) log (n-p)$ $\frac{d}{dp} l(x_1, ..., x_{n-1}, p) = \frac{l^n}{2} (x_1 log 0) + (n-x_1) log (n-p)$ $\frac{d}{dp} l(x_1, ..., x_{n-1}, p) = \frac{l^n}{2} (x_1 log 0) + (n-x_1) log (n-p)$ Bosenhan von $l(x_1, ..., x_{n-1}, p) = 0$ $\frac{d}{dp} l(x_1, ..., x_{n-1}, p) = 0$ $\frac{d}{dp} l(x_1, ..., p) =$

Pring von 2. Whileing $\frac{d^2}{dp^2} = \sum_{i=1}^{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac{1}{10} \left(\frac{A - X_i}{p^2} + \frac{A - X_i}{(A - P)^2} \right) \leq \frac$

HISO P 12 l(X17Kn, P) Strike howstant and insgesant Pro des globale Mosoimum von l

Da log Strike wachsent, ist Pro anch des globale Wax von L

Tutoriumsaufgabe 10.4

Sei y_1, y_2, \ldots, y_n eine Stichprobe von unabhängigen, identisch verteilten Zufallsvariablen Y_1, Y_2, \ldots, Y_n mit Dichte

$$f(y) = \begin{cases} \frac{\alpha y^{\alpha - 1}}{\theta^{\alpha}} & \text{für } 0 \le y \le \theta \\ 0 & \text{sonst} \end{cases}$$

mit unbekanntem $\theta > 0$ und bekanntem $\alpha > 0$.

- (i) Zeigen Sie, dass der Maximum-Likelihood-Schätzer $\bar{\theta} := \max\{y_1, \dots, y_n\}$ ist.
- (ii) Zeigen Sie, dass der Maximum-Likelihood-Schätzer nicht erwartungstreu ist.
- (iii) Finden Sie eine Konstante c>0, sodass der skalierte Schätzer $c\bar{\theta}$ erwartungstreu ist.

Hausaufgaben

Hausaufgabe 10.1

(0 Punkte)

Die Zahl der Verkehrsunfälle in einer Stadt lag im letzen Jahr an zehn zufällig gewählten, regenfreien Tagen bei

4 0 6 5 2 1 2 0 4 3

Die Anzahl der Unfälle an einem Tag sei poissonverteilt mit unbekanntem Parameter $\lambda > 0$.

- (i) Ermitteln Sie einen Schätzwert für den Parameter λ mittels der Maximum-Likelihood-Methode, nehmen sie dabei an, dass jede beobachtete Stichprobe mindestens einen Tag mit einem Unfall enthält.
- (ii) Verwenden Sie den ML-Schätzer zur Stichprobe aus dem ersten Aufgabenteil, um den den Anteil der regenfreien Tage, an denen im letzten Jahr zwei oder weniger Verkehrsunfälle passierten, zu schätzen.

Hausaufgabe 10.2

(0 Punkte)

Die Körpergröße der Studentinnen (in cm) beim Kurs Stochastik für Informatiker ist normalverteilt mit unbekanntem Erwartungswert $\mu>0$ und bekannter Varianz $\sigma^2>0$.

- (i) Bestimmen Sie den Maximum-Likelihood-Schätzer für μ und seinen Erwartungswert.
- (ii) Wir beobachten die folgenden 6 Realisierungen von X_1, \ldots, X_6 :

$$x_1 = 176$$
 $x_2 = 164$ $x_3 = 169$ $x_4 = 158$ $x_5 = 192$ $x_6 = 155$

Berechnen Sie auf Grundlage dieser Beobachtungen den Schätzwert $\overline{\mu}_6$ für den unbekannten Parameter μ , falls $\sigma^2=81$. Berechnen Sie auch den Median und die empirische Varianz von (x_1,\ldots,x_n) . Welche von diesen Kenngrößen hängen von σ^2 ab?