

Universidad Nacional de Córdoba Facultad de Ciencias Económicas

Matemática II - Redictado

Unidad 1: Límites y Continuidad de funciones

Clase 1 - COMISIÓN: MOYANO

Año 2023

CONCEPTOS PREVIOS: Intervalos

Sean dos números reales "a" y "b", siendo a menor que b (a < b), definimos como intervalo al conjunto de números reales comprendidos entre a y b, donde a y b se denominan extremos del intervalo, el número "a" es el extremo inferior del intervalo y el número "b" es el extremo superior del intervalo. Y la diferencia (b-a) es la amplitud del intervalo.

La incógnita x, representa a todo número real comprendido entre a y b. De forma tal que pueden presentarse cualquiera de las siguientes situaciones:

Intervalo Abierto = (a,b)

Un conjunto

Intervalo Cerrado = [a,b] $a \le x \le b$ Un conjunto

$$a \le x \le b$$

Int. Semiabierto izquierda = (a,b) $a < x \le b$ Un conjunto

Int. Semiabierto derecha = [a,b) $a \le x < b$ Un conjunto

CONCEPTOS PREVIOS: Intervalos

Si uno de los extremos no es un número finito, lo simbolizamos por (∞) infinito. Se definen los intervalos infinitos de la siguiente manera:

Intervalo = (a,+∞)	$x \ge a$	Un conjunto	$\stackrel{\times}{\underset{a}{\longleftrightarrow}} X$
Intervalo = [a,+∞)	$x \ge a$	Un conjunto	$\stackrel{x}{\longleftrightarrow}$
Intervalo = (-∞,b)	x < b	Un conjunto	\leftarrow \xrightarrow{x} \xrightarrow{b}
Intervalo = (-∞,b]	$x \le b$	Un conjunto	< x

En el caso que tanto el extremo inferior y el extremo superior sean infinitos, se trata del conjunto de números reales $(-\infty,+\infty)=\Re$, si el conjunto está formado por un único punto "c" se lo simboliza utilizando llaves $\{c\}$ es un conjunto formado por un único punto. Este intervalo se denomina intervalo degenerado.

ENTORNO DE UN PUNTO: CONCEPTO

Entorno de un punto xo

Un entorno de un punto $\mathbf{x} = \mathbf{x}_0$ es un intervalo abierto de la forma $(\mathbf{x}_0-\mathbf{h}, \mathbf{x}_0+\mathbf{k})$ donde h y k son valores reales positivos distintos y muy pequeños que junto al punto definen los extremos del entorno. Simbolizamos a un entorno de un punto por: $\mathbf{E}(\mathbf{x}_0)$

$$E(x_0)=(x_0-h, x_0+k)$$

Ejemplo: Entorno de x_0 =3 con h=0.10 y k=0.15 es igual a $E(x_0)$ = E(3)=(2.90 , 3.15)

ENTORNO REDUCIDO: CONCEPTO

Entorno Reducido de un punto x₀

Un entorno reducido de un punto $\mathbf{x} = \mathbf{x}_0$ es un entorno o intervalo cuya amplitud puede hacerse tan pequeña como se quiera y se excluye al punto. Es decir el punto no pertenece al entorno y lo marcamos como un punto hueco o sin sombrear. Se lo simboliza por $\mathbf{E}'(\mathbf{x}_0)$

$$E'(x_0)=(x_0-h, x_0) \cup (x_0, x_0+k)$$

<u>Ejemplo:</u> Entorno de $x_0 = 3$ con h=0.10 y k=0.15 es igual a $E'(x_0) = E'(3)=(2.90,3)$ U (3,3.15)

ENTORNO SIMÉTRICO: CONCEPTO

Entorno Simétrico de un punto x₀ y radio δ

Un entorno simétrico de un punto $\mathbf{x} = \mathbf{x}_0$ y de radio δ , es un intervalo abierto de la forma $(x_0-\delta, x_0+\delta)$ donde δ es un valor real positivo y muy pequeño, que junto al punto definen los extremos del entorno.

Simbolizamos a un entorno simétrico de x_0 de radio δ por: $E(x_0, \delta)$

$$E(\mathbf{x}_0, \delta) = (\mathbf{x}_0 - \delta, \mathbf{x}_0 + \delta)$$

 $E(\mathbf{x}_0, \delta): |\mathbf{x} - \mathbf{x}_0| < \delta$

$$\mathbf{E}(\mathbf{x}_0, \boldsymbol{\delta}): |\mathbf{x} - \mathbf{x}_0| < \delta$$

Ejemplo: Entorno de $x_0 = 3$ y radio $\delta = 0.01$ es igual a $E(x_0, \delta) = E(3, 0.01) = (2.99, 3.01)$

ENTORNO REDUCIDO Y SIMÉTRICO: CONCEPTO

Entorno Reducido y Simétrico de un punto x₀ y radio δ

Un entorno reducido y simétrico de un punto $\mathbf{x} = \mathbf{x}_0$ y de **radio** $\boldsymbol{\delta}$, es un intervalo abierto de la forma $(\mathbf{x}_0 - \boldsymbol{\delta}, \mathbf{x}_0 + \boldsymbol{\delta})$ donde $\boldsymbol{\delta}$ es un valor real positivo y muy pequeño, y se excluye al punto. Simbolizamos a un entorno reducido y simétrico de \mathbf{x}_0 de radio $\boldsymbol{\delta}$ por: $\mathbf{E}'(\mathbf{x}_0, \boldsymbol{\delta})$

$$E'(x_0, \delta) = (x_0-\delta, x_0) \cup (x_0, x_0+\delta)$$

**E'(x₀,
$$\delta$$
):** $0 < |x - x_0| < \delta$

Ejemplo: Entorno de $x_0 = 3$ y radio $\delta = 0.01$ es igual a $E'(x_0, \delta) = E'(3, 0.01) = (2.99, 3)$ U (3, 3.01)

PUNTO DE ACUMULACIÓN: CONCEPTO

Punto de Acumulación

Si A es un conjunto de puntos de la recta real, un punto \mathbf{x}_0 es un punto de acumulación de A, si a todo entorno reducido de \mathbf{x}_0 pertenece por lo menos un punto de A. El punto \mathbf{x}_0 puede pertenecer o no al conjunto A. Pero la definición exige que en cualquier entorno del punto \mathbf{x}_0 exista al menos otro punto. Observe el punto rojo en el gráfico.

En símbolos:

 x_0 es un punto de Acumulación de A $\Leftrightarrow \forall E'(x_0, \delta) : \exists x / (x \in A \land 0 < |x - x_0| < \delta)$

PUNTO DE ACUMULACIÓN: EJEMPLO

<u>Ejemplo:</u> Entorno de x_0 = 3 y radio δ = 0.1 es igual a E'(x_0 , δ) = E'(3,0.1)= (2.9,3) U (3,3.1)

Existe por lo tanto al menos un punto que pertenece al intervalo (2.9, 3) y otro punto que pertenece al intervalo (3, 3.1) muy cercanos al valor del punto de acumulación $x_0 = 3$, estos puntos son:

- * Uno por Derecha = (3.00000...1) Lo simbolizaremos por $3^+ = 3.00000...1$
- * Uno por Izquierda = (2.99999...9) Lo simbolizaremos por 3^- = 2.99999...9

FUNCIÓN: CONCEPTO

Concepto de Función Real de Variable Real

Una Función "f" es una regla de correspondencia que asocia a cada elemento "x" de un conjunto Dominio, uno y solo un valor "y" de un conjunto Codominio. Donde el Dominio y el Codominio son subconjuntos del conjunto de números reales. En símbolos:

$$D_{f} = \{x/x \in R \land \exists y \in R/y = f(x)\}$$

$$C_{f} = \{y/y \in R \land \exists x \in R/y = f(x)\}$$

Trabajaremos únicamente con los números reales durante toda la asignatura. Por lo tanto definiremos una función real de variable real. Ello indica que el dominio y el Codominio serán:

$$\forall x \in (Dominio D_f \subset Reales), \exists y \in (Codominio C_f \subset Reales)$$

FUNCIÓN: CONCEPTO

El siguiente diagrama de Venn, nos permitirá recordar los conceptos que intervienen en una función real de variable real.

¿TODAS LAS RELACIONES SON FUNCIONES?

FUNCIÓN: REPRESENTACIÓN

Las funciones se pueden expresar de diferentes formas, a través de:

- Una ecuación (fórmula).
- · Una tabla cartesiana.
- Un gráfico cartesiano.
- Con un diagrama, como los diagramas de Venn utilizados en el ejemplo anteriormente planteado.

	$f(x) = 3x^2 - 6x + 4$	\Box	
* 9	= F(1) =	×	4-601
	$=3(1)^{2}-6(1)+4$	-21	7.0
	=3(1)(1)-6(1)+4	- 1	13
	- 3-6+4	0	113
	- 3-6-1		14
T			4
T		2	
I		3	

CLASIFICACIÓN DE LAS FUNCIONES

LÍMITE FUNCIONAL

Se dice que la constante "L" es el límite de la función y = f(x) cuando "x tiende a al punto x_0 " si y solo si, para todo " ε " tan pequeño como se quiera, existe otro número " δ ", también positivo y arbitrariamente pequeño, tal que se verifique:

$$|f(x) - L| < \varepsilon$$
; para: $0 < |x - x_0| < \delta$

Simbolizamos al límite de una función cuando x tiende al punto x_0 por:

$$\lim_{x \to x_{o}} f(x) = L$$

LÍMITE FUNCIONAL

LÍMITES LATERALES

Límite Lateral por la Izquierda

Si el valor de (x_0^-) que se encuentra a la izquierda de x_0 , asume una ordenada $f(x_0^-)$ y el mismo se aproximará en el eje de las ordenadas a un valor fijo que llamaremos (L_i).

$$L_{i} = \lim_{x \to x_{0}^{-}} f(x)$$

Límite Lateral por la Derecha

Si el valor de (x_0^+) que se encuentra a la derecha de x_0 , asume una ordenada $f(x_0^+)$ y el mismo se aproximará en el eje de las ordenadas a un valor fijo que llamaremos (L_1).

$$L_d = \lim_{x \to x_0^+} f(x)$$

Si los límites laterales existen y el valor de $L_i=L_d$, entonces diremos que ese valor constante L es el límite de la función para cuando x tiende a x_0

$$L_i = L_d = L \implies \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L$$

LÍMITE FUNCIONAL: EJEMPLO

Si consideramos la función: f(x) = x + 2 donde el dominio de esta función son todos los números reales.

Veamos los valores que toma la función a medida que x toma valores cercanos a a=2:

Si le damos a x valores menores a 2 muy cercanos:

X	f(x)=x+2
1	3
1,5	3,5
1,9	3,9
1,99	3,99 3,999
1,99 1,999	3,999

Observamos que, a medida que nos acercamos a 2, la función se acerca cada vez más a 4.

Ahora le damos valores a x mayores que 2 pero muy cercanos:

x	f(x)=x+2
3	5
2,5	4,5
2,1	4,1
2,01	4,01
2,001	4,001

Observamos que, a medida que nos acercamos a 2, la función se acerca cada vez más a 4.

LÍMITE FUNCIONAL: EJEMPLO

Ahora veamos esto en el gráfico de la función:

Expresado de otra manera sería: $Lim_{x\to 2}(x+2)=4$

$$\lim_{x \to 2^{-}} f(x) = 4$$

$$\lim_{x\to 2^+} f(x) = 4$$

$$L_i = L_d$$

$$\lim_{x\to 2} f(x) = 4$$

LÍMITE FUNCIONAL: EJEMPLO

$$f(x) = x^2 + 1$$

LÍMITES LATERALES

Si
$$(x \to x_0^+)$$
 por la derecha entonces $\lim_{x \to x_0^+} f(x) = L_d$
Si $(x \to x_0^-)$ por la izquierda entonces $\lim_{x \to x_0^-} f(x) = L_i$

$$L_d \neq L_i \Rightarrow \not \equiv L$$

Matemática II Comisión: MOYANO

LÍMITES LATERALES: EJEMPLO

$$L_i = \lim_{x \to 2^-} f(x) = +1$$

$$L_d = \lim_{x \to 2^+} f(x) = -1$$

$$L = \lim_{x \to 2} f(x) = \not\exists$$

LÍMITE EN EL INFINITO

Hemos definido el límite como aquella constante a la cual tiende la función cuando x tiende a un punto de acumulación x_0 .

Pero ahora vamos a ampliar el concepto para cuando x tienda a un valor positivo sumamente grande o a un valor negativo sumamente grande.

Por lo tanto podemos calcular los siguientes límites sobre una función definida sobre todo el conjunto de números reales:

$$\lim_{x \to -\infty} f(x) = L \qquad \qquad \lim_{x \to +\infty} f(x) = L$$

En ambos casos definimos como el límite de la función cuando x tiende a infinito de la siguiente manera:

Se dice que la constante "L" es el límite de la función y = f(x) cuando "x tiende a al infinito" si y solo si, para todo " ε " tan pequeño como se quiera, existe otro número "N", también positivo y arbitrariamente grande, tal que se verifique:

$$|f(x) - L| < \varepsilon$$
; para: $|x| > N$

Simbolizamos al límite de una función cuando x tiende al infinito por:

$$\lim_{x \to \infty} f(x) = L$$

LÍMITE INFINITO

Se dice que la función y = f(x) tiene por límite a infinito cuando "x tiende a un punto x_0 " si y solo si, para todo número "M" positivo y tan grande como se quiera, existe otro número " δ ", también positivo y arbitrariamente pequeño, tal que se verifique:

$$|f(x)| > M$$
; para: $0 < |x - x_0| < \delta$

Simbolizamos al límite de una función cuando x tiende al punto x_0 por:

$$\lim_{x \to x_0} f(x) = \pm \infty = \infty$$

LÍMITE INFINITO

Se dice que la función y = f(x) tiene por límite a infinito cuando la variable "x tiende al infinito" si y solo si, para todo número "M" positivo y tan grande como se quiera, existe otro número "N", también positivo y arbitrariamente grande, tal que se verifique:

$$|f(x)| > M$$
; para: $|x| > N$

Simbolizamos al límite de una función cuando x tiende al infinito negativo o positivo por:

$$\lim_{x\to\infty} f(x) = \pm \infty = \infty$$

Matemática II Comisión: MOYANO

Llegamos al final de la clase de hoy, en la próxima continuamos con la Unidad 1

Bibliografía obligatoria:

- Stewart, James (2007): "Cálculo Diferencial e Integral". 2° Edición. Editorial Thompson. México.
- Casparri de Rodriguez, María T. (2001): "Análisis Matemático I con aplicaciones a las Ciencias Económicas". Editorial Macchi. Argentina.

carina.moyano@unc.edu.ar