

# PROBLEMA GERAL DE PROGRAMAÇÃO LINEAR

Método Simplex de Venttsel

# Formulação geral do Problema de Programação Linear



 O problema geral da programação linear necessita determinar os valores de que minimizam a função objetivo linear.

$$F(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \sum_{i=1}^{n} c_i x_i$$

Observando o sistema de restrições lineares:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$
  
 $a_{21}x_2 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$   
 $\dots$ 

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

e das restrições quanto aos sinais das variáveis

$$x_1 \geq 0$$
 onde  $i = 1, \ldots, n$ 

# Formulação geral do Problema de Programação Linear



 A inclusão no sistema de equações apenas das igualdades não limita a formulação do problema, porque as restrições dadas como desigualdades, podem ser reduzidas às igualdades pela introdução de variáveis adicionais.



# Formulação geral do Problema de Programação Linear



 Além disso, o problema da maximização da função objetivo, pode ser reduzido ao um problema de minimização da função objetivo pela alteração do seu sinal.

$$FO(x) \to \text{Max } \mathbb{Z} = 80x_1 + 60x_2 \qquad FO(x) \to \text{Min } \mathbb{Z} = -80x_1 - 60x_2$$

 Por isso, pode-se falar em problema geral da programação linear.

## Portanto, o modelo abaixo pode ser transformado da seguinte forma...



$$FO(x) o Max \ \mathbb{Z} = 80x_1 + 60x_2$$
  $4x_1 + 6x_2 \ge 24$   $4x_1 + 2x_2 \le 16$   $1x_2 \le 3$   $x_i \ge 0 \ onde \ i = 1, ..., n$ 

FO(x) 
$$\rightarrow$$
 Min  $\mathbb{Z} = -80x_1 - 60x_2$   
 $4x_1 + 6x_2 - x_3 = 24$   
 $4x_1 + 2x_2 + x_4 = 16$   
 $x_2 + x_5 = 3$   
 $x_i \ge 0$  onde  $i = 1, ..., n$ 















FO(x)  $\to$  Max  $\mathbb{Z} = 80x_1 + 60x_2$   $4x_1 + 6x_2 \ge 24$   $4x_1 + 2x_2 \le 16$  $1x_2 \le 3$ 

 $x_i \ge 0$  onde i = 1, ..., n

É evidente que variando-se a constante de L para  $L_1$  o coeficiente angular não se modifica, variando apenas o segmento que corta o eixo  $0\ x_2$ 



$$80x_1 + 60x_2 = L$$

Temos como resultado a equação da reta no plano  $(x_1, x_2)$ . O coeficiente angular desta reta é: -80/60 = -4/3, e o segmento cortado por esta reta no eixo  $0 x_2$  é  $\frac{L}{60}$ 





10

## Construindo a tabela do Método Simplex de Petr Ekel



- Para montarmos a tabela do Método Simplex, devemos realizar modificações nas equações a fim de facilitar os passos necessários para o funcionamento do algoritmo sem perder o resultado matemático das expressões que compõem o modelo proposto.
- Para isso, deverão ser identificados nas expressões os elementos nos quais denominaremos como "livres"



para a Função Objetivo:

$$FO(x) \to Max \mathbb{Z} = 80x_1 + 60x_2 \quad (-1)$$

$$FO(x) \to Min \mathbb{Z} = -80x_1 - 60x_2$$

$$FO(x) \rightarrow Min \mathbb{Z} = 0 - (\underbrace{+80x_1 + 60x_2})$$
 elementos livres





para a primeira restrição:

$$4x_1 + 6x_2 - x_3 = 24$$
 $-x_3 = 24 - 4x_1 - 6x_2$  (-1)
 $x_3 = -24 + 4x_1 + 6x_2$ 
 $x_3 = -24 - (-4x_1 - 6x_2)$ 
elementos livres





para a segunda restrição:

$$4x_1 + 2x_2 + x_4 = 16$$

$$x_4 = 16 - 4x_1 - 2x_2$$

$$x_4 = 16 - (\underbrace{+4x_1 + 2x_2}_{\text{elementos livres}})$$





para a terceira restrição:

$$0x_1 + x_2 + x_5 = 3$$

$$x_5 = 3 - (\underbrace{+x_2}_{\text{elementos livres}})$$



#### Como o método funciona?



• A idéia do método simplex é suficientemente simples. Basicamente um método de escalada. Assim que se encontra uma solução de vértices, o método examina todos os vértices imediatamente adjacentes e pergunta "e se eu mover para um desses vértices, o valor da Função Objetivo melhorará?" Se a resposta for sim, um novo cálculo é realizado no referido vértice e então novamente ele pergunta se a mudança para o vértice vizinho não melhoraria as coisas ainda mais. Se a resposta for não, o método proclama vitória e para.





#### Como o método funciona?



- Portanto, o Método é dividido em duas Etapas e em ambas o Algoritmo de Troca é utilizado a fim de obter a desejada solução.
- Com a ajuda do Algoritmo da Troca das variáveis é possível resolver o qualquer problema da programação linear ou convencer-se, que ele não tem a solução.
- A obtenção da solução do problema da programação linear inclui duas etapas:
  - a) a obtenção da solução permissível;
  - b) a obtenção da solução ótima, que minimiza a função objetiva linear.



#### Como o método funciona?



- No processo da primeira etapa, pode ser encontrada a situação que a solução permissível não existe.
- No processo da segunda etapa, pode ser encontrada a situação que a função objetivo não é limitada.
- A execução das duas etapas é baseada na utilização do Algoritmo da Troca



#### Conhecendo a tabela





#### Construindo a tabela



$$\mathbb{Z} = 0 - (+80x_1 + 60x_2)$$

$$x_3 = -24 - (-4x_1 - 6x_2)$$

$$x_4 = 16 - (+4x_1 + 2x_2)$$

$$x_5 = 3 - (+x_2)$$

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$ | $x_2$ |
|----------------------------------------------------------------|-------------------------|-------|-------|
| f(x)                                                           | 0                       | 80    | 60    |
| $x_3$                                                          | -24                     | -4    | -6    |
| $x_4$                                                          | 16                      | 4     | 2     |
| $x_5$                                                          | 3                       | 0     | 1     |





1. Na tabela padronizada procuramos uma variável básica com membro livre negativo.

1.1 - **Se** essa variável **existe**, então passamos para a operação 2 do presente algoritmo.

1.2 - Se essa variável não existe, então passamos para a segunda etapa da solução do problema de programação linear.

| 100                                                            |                         | ]     |                       |
|----------------------------------------------------------------|-------------------------|-------|-----------------------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$ | <i>x</i> <sub>2</sub> |
| f(x)                                                           | 0                       | 80    | 60                    |
| $x_3$                                                          | -24                     | -4    | -6                    |
| $x_4$                                                          | 16                      | 4     | 2                     |
| $x_5$                                                          | 3                       | 0     | 1                     |



Coluna Permitida

- 2. Na linha que corresponde à variável com membro livre negativo, procuramos o elemento negativo.
- 2.1 **Se** o elemento negativo **existe**, então a coluna, onde está esse elemento, é escolhida como permissível.
- 2.2 **Se** o elemento negativo **não existe** (todos as SCS >= 0), então a solução permissível não existe.



Neste caso, como há valores negativos nas duas colunas, qualquer uma delas pode ser escolhida

Optimum Consultoria

Coluna

3. Busca-se a linha permitida a partir da identificação do Elemento Permitido (EP) que possuir o menor quociente entre os membros livres que representam as variáveis básicas (VB)

| -24             | 16            | 3              |
|-----------------|---------------|----------------|
| $\overline{-4}$ | $\frac{1}{4}$ | $\overline{0}$ |

Linha Permitida

|                                                                |                         | Permitida |       |
|----------------------------------------------------------------|-------------------------|-----------|-------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$     | $x_2$ |
| f(x)                                                           | 0                       | 80        | 60    |
| $x_3$                                                          | -24                     | -4        | -6    |
| $x_4$                                                          | 16                      | 4         | 2     |
| $x_5$                                                          | 3                       | 0         | 1     |



#### Fim da 1<sup>a</sup> Fase do Método



Coluna Permitida Variáveis Membro não básicas Livre (VNB)  $x_2$  $x_1$ Variáveis 4. Executamos os passos do (ML) Básicas (VB) Algoritmo da Troca 80 0 60 f(x)-6 -24  $x_3$ 16 Linha  $x_4$ Permitida  $x_5$ 





Coluna Permitida

1. Calcula-se o inverso do Elemento Permitido

Se 
$$4 = \frac{4}{1} \cdot (\frac{1}{4})$$

Linha Permitida

|                                                                |                         | •                              |       |
|----------------------------------------------------------------|-------------------------|--------------------------------|-------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$                          | $x_2$ |
| f(x)                                                           | 0                       | 80                             | 60    |
| $x_3$                                                          | -24                     | -4                             | -6    |
| $x_4$                                                          | 16                      | $4$ $\left(\frac{1}{4}\right)$ | 2     |
| <i>x</i> <sub>5</sub>                                          | 3                       | 0                              | 1     |





Coluna Permitida

2. Multiplica-se toda a linha pelo EP Inverso

$$16 \times \frac{1}{4} = 4$$

$$2 \times \frac{1}{4} \neq \frac{1}{2}$$

Linha Permitida

|                                                                |                         | · Y   |               |
|----------------------------------------------------------------|-------------------------|-------|---------------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$ | $x_2$         |
| f(x)                                                           | 0                       | 80    | 60            |
| $x_3$                                                          | -24                     | -4    | -6            |
| $x_4$                                                          | 16 4                    | 4 1/4 | $\frac{2}{2}$ |
| $x_5$                                                          | 3                       | 0     | 1             |





Coluna Permitida

3. Multiplica-se toda a coluna pelo - (EP Inverso)

$$80 \times -\left(\frac{1}{4}\right) = \boxed{20}$$

$$-4 \times -\left(\frac{1}{4}\right) = 1$$

$$0 \times -\left(\frac{1}{4}\right) \neq 0$$

|                                                                |                         | • I CIMI CIGO |                         |
|----------------------------------------------------------------|-------------------------|---------------|-------------------------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$         | $x_2$                   |
| f(x)                                                           | 0                       | 80 -20        | 60                      |
| $x_3$                                                          | -24                     | -4 1          | -6                      |
| $x_4$                                                          | 16 4                    | 4 1/4         | $\frac{2}{\frac{1}{2}}$ |
| $x_5$                                                          | 3                       | 0             | 1                       |



Coluna Permitida

4. Marcar todas as subcélulas superiores (SCS) da Linha Permitida e todas as sub-células Inferiores (SCI) da Coluna Permitida

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$ | $x_2$                   |  |
|----------------------------------------------------------------|-------------------------|-------|-------------------------|--|
| f(x)                                                           | 0                       | -20   | 60                      |  |
| $x_3$                                                          | -24                     | -4 1  | -6                      |  |
| $x_4$                                                          | 16 4                    | 4 1/4 | $\frac{2}{\frac{1}{2}}$ |  |
| $x_5$                                                          | 3                       | 0 0   | 1                       |  |

Linha 
Permitida





Coluna Permitida

5. Nas (SCI) vazias, multiplica-se a (SCS) marcada em sua respectiva coluna com a (SCI) marcada de sua respectiva linha

$$16 \times -20 = -320$$

$$16 \times 1 \neq 16$$

$$16 \times 0 \neq 0$$

|                                                                |                         | • Permittida |                         |
|----------------------------------------------------------------|-------------------------|--------------|-------------------------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$        | $x_2$                   |
| f(x)                                                           | 0 -320                  | -20          | 60                      |
| $x_3$                                                          | -24 16                  | )-4          | -6                      |
| $x_4$                                                          | 16 4                    | 4 1/4        | $\frac{2}{\frac{1}{2}}$ |
| <i>x</i> <sub>5</sub>                                          | 3 0                     | 0 0          | 1                       |





Coluna Permitida

5. Nas (SCI) vazias, multiplica-se a (SCS) marcada em sua respectiva coluna com a (SCI) marcada de sua respectiva linha

$$2 \times -20 = -40$$

$$2 \times 1 \neq 2$$

$$2 \times 0 = 0$$

|                                                                |                         | • I CIMI CIGO  |        |
|----------------------------------------------------------------|-------------------------|----------------|--------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$          | $x_2$  |
| f(x)                                                           | 0 -320                  | <del>-20</del> | 60 -40 |
| $x_3$                                                          | -24<br>16               | -4 1           | -6 2   |
| $x_4$                                                          | 16 4                    | 4 1/4          | 2 1/2  |
| $x_5$                                                          | $\frac{3}{0}$           | 0 0            | 1 0    |





7. Reescreva a tabela trocando de posição a variável não básica com a variável básica, ambas definidas como "Permitidas na tabela anterior

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_1$ | $x_2$                   | Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_2$ |
|----------------------------------------------------------------|-------------------------|-------|-------------------------|----------------------------------------------------------------|-------------------------|-------|
| f(x)                                                           | 0 -320                  | -20   | 60 -40                  | f(x)                                                           |                         |       |
| $x_3$                                                          | -24 16                  | -4 1  | -6 2                    | $x_3$                                                          |                         |       |
| $x_4$                                                          | 16 4                    | 4 1/4 | $\frac{2}{\frac{1}{2}}$ |                                                                |                         |       |
| $x_5$                                                          | $\frac{3}{0}$           | 0 0   | 1 0                     | $x_5$                                                          |                         |       |



8. Todas as (SCI) da Linha e Coluna Permitida da tabela original deverão ser copiadas para suas respectivas (SCS) da nova tabela

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |       | $x_2$                                 | Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$ | $x_2$ |
|----------------------------------------------------------------|-------------------------|-------|---------------------------------------|----------------------------------------------------------------|-------------------------|-------|-------|
| f(x)                                                           | 0 -320                  | -20   | 60 -40                                | f(x)                                                           |                         |       |       |
| $x_3$                                                          | -24 16                  | -4 1  | -6 2                                  | $x_3$                                                          |                         |       |       |
|                                                                | 16 4                    | 4 1/4 | $\frac{2}{\frac{1}{2}}$               | $x_1$                                                          |                         |       |       |
| $x_5$                                                          | $\frac{3}{0}$           | 0 0   | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $x_5$                                                          |                         |       |       |



9. Somam-se as (SCI) com as (SCS) das demais células restantes da tabela original e seu resultado deverá ser copiado para sua respectiva (SCS) da nova tabela

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |     | $x_2$  | Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$         | $x_2$         |
|----------------------------------------------------------------|-------------------------|-----|--------|----------------------------------------------------------------|-------------------------|---------------|---------------|
| f(x)                                                           | 0 _320                  | 80  | 60 _40 | f(x)                                                           | -320                    | -20           | 20            |
| $x_3$                                                          | -24<br>16               | )-4 | -6 2   | $x_3$                                                          | -8                      | 1             | -4            |
|                                                                | 16                      | 4   | 2      | $x_1$                                                          | 4                       | $\frac{1}{4}$ | $\frac{1}{2}$ |
| $x_5$                                                          | $\frac{3}{0}$           | 0   | 1 0    | x <sub>5</sub>                                                 | 3                       | 0             | 1             |

$$0 - 320 = -320$$

$$3 + 0 = 3$$

$$-6 + 2 = -4$$

$$-24 + 16 = -8$$

$$60 - 40 = 20$$

$$1 + 0 = 1$$



10. Se após os passos anteriores ainda houver valor negativo na coluna (ML) (exceto na célula da linha que representa a Função Objetivo), o Algoritmo da Troca deverá ser repetido até todos os valores da (ML) estarem positivos

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$         | $x_2$         |
|----------------------------------------------------------------|-------------------------|---------------|---------------|
| f(x)                                                           | -320                    | -20           | 20            |
| $x_3$                                                          | -8                      | 1             | -4            |
| $x_1$                                                          | 4                       | $\frac{1}{4}$ | $\frac{1}{2}$ |
| $x_5$                                                          | 3                       | 0             | 1             |

#### Entendendo o resultado parcial



| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | <i>x</i> <sub>4</sub> | $x_2$         |
|----------------------------------------------------------------|-------------------------|-----------------------|---------------|
| f(x)                                                           | -320                    | -20                   | 20            |
| <i>x</i> <sub>3</sub>                                          | -8                      | 1                     | -4            |
| $x_1$                                                          | 4                       | $\frac{1}{4}$         | $\frac{1}{2}$ |
| <i>x</i> <sub>5</sub>                                          | 3                       | 0                     |               |



(a) 
$$4x_1 + 6x_2 - x_3 = 24$$

(b) 
$$4x_1 + 2x_2 + x_4 = 16$$

(c) 
$$0x_1 + 1x_2 + x_5 = 3$$
  
 $x_1 \ge 0$   
 $x_2 \ge 0$ 





## Continuando com o Algoritmo da Troca Optimum Consultoria



| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$         | $x_2$         | Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | $x_3$          |
|----------------------------------------------------------------|-------------------------|---------------|---------------|----------------------------------------------------------------|-------------------------|----------------|----------------|
| f(x)                                                           | -320                    | -20           | 20            | f(x)                                                           | -360                    | -15            | 5              |
| $x_3$                                                          | -8                      | 1             | -4            | $x_2$                                                          | 2                       | $-\frac{1}{4}$ | $-\frac{1}{4}$ |
| $x_1$                                                          | 4                       | $\frac{1}{4}$ | $\frac{1}{2}$ | $x_1$                                                          | 3                       | $\frac{3}{8}$  | $\frac{1}{8}$  |
| <i>x</i> <sub>5</sub>                                          | 3                       | 0             | 1             | $x_5$                                                          | 1                       | 0              | $\frac{1}{4}$  |
|                                                                | Do passo 1 ao passo 11  |               |               |                                                                |                         |                |                |

#### Entendendo o resultado parcial



| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | $x_3$          |
|----------------------------------------------------------------|-------------------------|----------------|----------------|
| f(x)                                                           | -360                    | -15            | 5              |
| $x_2$                                                          | 2                       | $-\frac{1}{4}$ | $-\frac{1}{4}$ |
| $x_1$                                                          | 3                       | $\frac{3}{8}$  | 1 8            |
| $x_5$                                                          | 1                       | 0              | $\frac{1}{4}$  |

 $FO(x) \to \text{Max } \mathbb{Z} = 80x_1 + 60x_2$ 

(a) 
$$4x_1 + 6x_2 - x_3 = 24$$

(b) 
$$4x_1 + 2x_2 + x_4 = 16$$

(c) 
$$0x_1 + 1x_2 + x_5 = 3$$
  
 $x_1 \ge 0$   
 $x_2 \ge 0$ 





- Na linha F(x) procuramos um elemento positivo (não consideramos o membro livre).
  - 1.1 Se o elemento positivo existe, então passamos para a operação 2 do presente algoritmo.
  - 1.2 Se o elemento positivo não existe, então a solução ótima é obtida.

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | $x_3$          |
|----------------------------------------------------------------|-------------------------|----------------|----------------|
| f(x)                                                           | -360                    | -15            | 5              |
| $x_2$                                                          | 2                       | $-\frac{1}{4}$ | $-\frac{1}{4}$ |
| $x_1$                                                          | 3                       | $\frac{3}{8}$  | $\frac{1}{8}$  |
| $x_5$                                                          | 1                       | 0              | $\frac{1}{4}$  |





Coluna

- 2. Na coluna permitida, correspondente ao elemento positivo escolhido, procuramos o elemento positivo fora da linha F(x).
  - 2.1 **Se** o elemento positivo **existe**, então passamos para a operação 3 do presente algoritmo.
  - 2.2 Se o elemento positivo não existe (todos as SCS <= 0), então a solução ótima não existe, ou seja a Solução

|                                                                |                         |                | ▶ Permitida           |
|----------------------------------------------------------------|-------------------------|----------------|-----------------------|
| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | <i>x</i> <sub>3</sub> |
| f(x)                                                           | -360                    | -15            | 5                     |
| $x_2$                                                          | 2                       | $-\frac{1}{4}$ | $-\frac{1}{4}$        |
| $x_1$                                                          | 3                       | $\frac{3}{8}$  | $\frac{1}{8}$         |
| $x_5$                                                          | 1                       | 0              | $\frac{1}{4}$         |





Coluna

3. Busca-se a linha permitida a partir da identificação do Elemento Permitido (EP) que possuir o menor quociente entre os membros livres que representam as variáveis básicas (VB)





Linha Permitida

Obs.: Somente será identificado como quociente válido aquela fração que possuir numerador e denominador com o mesmo sinal e denominador maior que zero



Coluna Permitida

4. Executamos os passos do Algoritmo da Troca

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | $x_3$          |
|----------------------------------------------------------------|-------------------------|----------------|----------------|
| f(x)                                                           | -360                    | -15            | 5              |
| $x_2$                                                          | 2                       | $-\frac{1}{4}$ | $-\frac{1}{4}$ |
| $x_1$                                                          | 3                       | $\frac{3}{8}$  | $\frac{1}{8}$  |
| $x_5$                                                          | 1                       | 0              | $\frac{1}{4}$  |



Linha

Permitida

#### Entendendo o resultado final



| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) | $x_4$          | $x_5$          |
|----------------------------------------------------------------|-------------------------|----------------|----------------|
| f(x)                                                           | -380                    | -15            | -20            |
| $x_2$                                                          | 3                       | $-\frac{1}{4}$ | 1              |
| $x_1$                                                          | $\frac{5}{2}$           | $\frac{3}{8}$  | $-\frac{1}{2}$ |
| $x_3$                                                          | 4                       | 0              | 4              |

$$FO(x) \to \text{Max } \mathbb{Z} = 80x_1 + 60x_2$$

(a) 
$$4x_1 + 6x_2 - x_3 = 24$$

(b) 
$$4x_1 + 2x_2 + x_4 = 16$$

$$0x_1 + 1x_2 + x_5 = 3$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$



### Resumo: Solução Impossível



- 1. Na tabela padronizada procuramos uma variável básica com membro livre negativo.
  - 1. Se essa variável existe, então passamos para a operação 2 do presente algoritmo.
- 2. Na linha que corresponde à variável com membro livre negativo, procuramos o elemento negativo.
  - Se o elemento negativo não existe (todos as partes altas das células >= 0), então a solução permissível não existe.

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |     |     |
|----------------------------------------------------------------|-------------------------|-----|-----|
| f(x)                                                           |                         |     |     |
|                                                                |                         |     |     |
|                                                                | (-)                     | (+) | (+) |
|                                                                |                         |     |     |



## Resumo: Solução Ótima



- 1. Na tabela padronizada procuramos uma variável básica com membro livre negativo.
  - Se essa variável não existe, então passamos para a segunda etapa da solução do problema de programação linear.

#### (Segunda Etapa)

- 1. Na linha F(x) procuramos um elemento positivo (não consideramos o membro livre).
  - 1. Se o elemento positivo não existe, então a solução ótima é obtida.

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |     |     |
|----------------------------------------------------------------|-------------------------|-----|-----|
| f(x)                                                           |                         | (-) | (-) |
|                                                                | (+)                     |     |     |
|                                                                | (+)                     |     |     |
|                                                                | (+)/                    |     |     |



#### Resumo: Múltiplas Soluções



- 1. Na tabela padronizada procuramos uma variável básica com membro livre negativo.
  - Se essa variável não existe, então passamos para a segunda etapa da solução do problema de programação linear.

#### (Segunda Etapa)

- 1. Na linha F(x) procuramos um elemento positivo (não consideramos o membro livre).
  - 1. Se o elemento positivo não existe, então a solução ótima é obtida.

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |   |     |
|----------------------------------------------------------------|-------------------------|---|-----|
| f(x)                                                           |                         | 0 | (-) |
|                                                                | (+)                     |   |     |
|                                                                | (+)/                    |   |     |
|                                                                | (+)/                    |   |     |



#### Resumo: Solução Ilimitada



- 1. Na tabela padronizada procuramos uma variável básica com membro livre negativo.
  - Se essa variável não existe, então passamos para a segunda etapa da solução do problema de programação linear.

#### (Segunda Etapa)

- 1. Na linha F(x) procuramos um elemento positivo (não consideramos o membro livre).
  - Se o elemento positivo existe, então passamos para a operação 2 do presente algoritmo.
- 1. Na coluna permitida, correspondente ao elemento positivo escolhido, procuramos o elemento positivo fora da linha F(x).
  - 1. Se o elemento positivo não existe
     (todos as partes altas das células <=
     0), então a solução ótima não existe
     (Solução Ilimitada)</pre>

| Variáveis<br>não básicas<br>(VNB)<br>Variáveis<br>Básicas (VB) | Membro<br>Livre<br>(ML) |     |  |
|----------------------------------------------------------------|-------------------------|-----|--|
| f(x)                                                           |                         | (+) |  |
|                                                                | (+)                     | (-) |  |
|                                                                | (+)                     | (-) |  |
|                                                                | (+)                     | (-) |  |

#### Referências



Venttsel' E. S. Issledovanie operatsiy
 [Operation research]. — Moscow: Sovetskoe radio, 1972. — 552 p. [in Russian]

