

Figure 1: Caption

Determination of Moment of Inertia of a Flywheel

Aim

To determine the moment of inertia I of a flywheel about its axis of rotation.

Apparatus Required

Flywheel, light string, known weight, stopwatch, meter scale or vernier calipers.

Theory

When a torque τ acts on a rotating body, the angular acceleration α is given by

$$\tau = I\alpha$$

In this experiment, a light string is wound around the axle of the flywheel. A small mass m is attached to the free end of the string. When released, the mass descends with linear acceleration a, and the flywheel acquires angular acceleration $\alpha = \frac{a}{r}$, where r is the radius of the axle. The tension T in the string provides the torque on the flywheel:

$$\tau = Tr = I\alpha$$

For the falling mass,

$$mg - T = ma$$

Eliminating T and substituting $a = r\alpha$, we have

$$mgr - mr^{2}\alpha = I\alpha$$

$$\Rightarrow I = \frac{mgr - mr^{2}\alpha}{\alpha} = mr\left(\frac{g - r\alpha}{\alpha}\right)$$

$$I = mr\frac{(g - r\alpha)}{\alpha}$$

The angular acceleration α is determined from the time t taken by the falling mass to unwind the string through n revolutions before detachment:

$$\theta = 2\pi n = \frac{1}{2}\alpha t^2$$

$$\Rightarrow \boxed{\alpha = \frac{4\pi n}{t^2}}$$

Substitute this α in the above expression to obtain I.

If the frictional torque is small, it may be neglected in the first approximation.

Procedure

- 1. Measure the radius r of the flywheel axle using a vernier caliper or meter scale.
- 2. Wind a light, inextensible string around the axle and attach a known mass m to its free end.
- 3. Allow the mass to fall through n revolutions and record the time t taken for the fall.
- 4. Repeat the experiment for different values of m or n.
- 5. For each observation, calculate $\alpha = \frac{4\pi n}{t^2}$.
- 6. Compute $I = mr \frac{(g r\alpha)}{\alpha}$ for each trial.
- 7. Find the mean value of I.

Observations

Sl. No.	m (kg)	n	t (s)	$\alpha = \frac{4\pi n}{t^2} \; (\mathrm{rad/s^2})$	$I = \frac{mr(g-r\alpha)}{\alpha}$ (kg m ²)
1					
2					
3					
4					
5					
6					

Calculations

$$\alpha = \frac{4\pi n}{t^2}$$

$$I = mr \frac{(g - r\alpha)}{\alpha}$$

$$I_{\text{mean}} = \frac{\sum I_i}{N}$$

Result

$$I = \dots$$
 kg m²

The moment of inertia of the flywheel about its axis is determined using the above relation.

Precautions

- 1. The string should be light, inextensible, and wound uniformly without overlap.
- 2. The flywheel axle should be well-lubricated and free from wobble.
- 3. The falling weight should be just sufficient to overcome friction.
- 4. Start and stop the stopwatch accurately.
- 5. Repeat the readings for consistency.

Sources of Error

- Error in measurement of radius of the axle.
- Reaction time error in stopwatch operation.
- Neglecting the effect of frictional torque and air resistance.
- Non-uniform winding of the string.

1 Error Analysis

Note that $I_{mean} = \overline{I_i}$

Sl. No.	I_i	$\overline{(I_i-\overline{I_i})^2}$	$\sqrt{\overline{(I_i - \overline{I_i})^2}}$
1			
2			
3			
4			
5			
6			

Conclusion

The experiment verifies the relationship between the torque and angular acceleration of a rotating flywheel and allows the determination of its moment of inertia.