Candidate's Name	:	
Signature:		
P525/1		
CHEMISTRY		
Paper 1		
April. /May. 202	4	
2 ½ hrs.		

CHEMISTRY DEPARTMENT

SAYIDINA ABUBAKAR SECONDARY SCHOOL- KABASANDA S.6 END OF TERM ONE EXAMINATIONS 2024

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRYUCTION TO CANDIDATES:

- Answer all questions in section A and six questions in section B.
- All question must be answered in the space provided.
- Illustrate your answers with equation(s) where applicable.

Where necessary, use the following:

Molar gas constant, R = 8.31 JK⁻¹mol⁻¹

Molar volume of a gas at s.t.p is 22.4 litres

Standard temperature = 273K

Standard pressure = 101325NM⁻²

For examine	r's use only
Section A	
Section B	
Total	

SECTION A (46MARKS)

Answer all questions in this section.

1. The standard electrode potential of some half cells reactions are given below:

	Half cells	5		E _e (Λ)	
Sn ⁴⁺ (aq) + 2e		→ Sn ²⁺ (a	q)	+ 0.15	
PbO ₂ (s) + 4H ⁺	(aq) + 2e	Pb ²⁺ (a	q) + 2H ₂ O (I)	+1.46	
(a). Write the combined. (01½	· · · · · · · · · · · · · · · · · · ·	ion for the cell	reaction that	occurs when the half ce	ils are
(b). Calculate t	the work done	by the cell. (F	araday constar	nt= 96500C) (03mks)	
(c). State whe	ther the cell	is feasible or n	ot. Give a reas	on for your answer. (011	nk)
2. Complete th	ne following ed	quations and wr	ite the accept	ed mechanism in each c	ase.
(a) CH ₃ CH ₂ C	Н(ОН)СН3 _	conc. H₂SO₄ 180°C			
					(02±mks)

(b) C ₆ H ₆ conc. H ₂ SO ₄ Heat	
	(03mks)
3. (a) (i) Explain what is meant by	the order of chemical reaction. (01mks)
(ii) Name two methods used to det	termine order of reaction. (01mks)
(b) The results obtained for the ki given in the table below.	inetics of the decomposition of nitrogen (V) oxide are
[N2O5] (moldm ⁻³)	Initial rate (moldm ⁻³ s ⁻¹)
1.6 × 10-3	0.12
2.4 x 10-3	0.18
3.2 × 10-3	×
Calculate the value of x. $(03\frac{1}{2}$ mks)	

4. The table below shows the melting points of the oxides of group (II) elements.

Oxides	BeO	MgO	CaO	Sr0	BaO
Melting points of oxides (${}^{\circ}C$)	2530	2800	2580	2430	1928

Explain the trend in the melting points of these oxides. (04mks)
5. A compound Q contains 60% carbon, 13.3% hydrogen and the rest being oxygen. W 0.698g of Q was dissolved in 1000g of a solvent, there was a $0.19^{\circ}C$ depression in freezing point of a solvent. (Kf of the solvent = $1.63^{\circ}CKg^{-1}mol^{-1}$).
(a) Calculate the simplest formula of Q. (O2mks)
(b) Determine the molecular formula of Q. (03mks)
(c) Write the structural formula and the name of compound Q. (01mk)

6. (a) Ex	plain what is meant by a diagonal relationship. (01mk)
(b) Writ	e the electronic configuration of the following elements:
•	ium. (01mk)
	inium. (01mk)
(c) State (02mks)	e any two reasons as to why beryllium resembles aluminium in its properties.
7. (a) De	fine the term activation energy. (01mk)
(b) X and	d Y react to form W and Z according to the following equation.
X (g) + Y	(g) \longrightarrow W (g) + Z (g) Heat of a reaction= +50KJmol ⁻¹
(i)	Draw a fully labelled potential energy versus reaction coordinate diagram for the reaction of X and Y. (02 $\frac{1}{2}$ mks)

8. Complete the follow product in each case.	ng equations and write the IUPAC no	
(a) CH ₃ CH ₂ CH ₂ COOH	NaOH(s)/ CaO(s) Heat	(01mk)
Name		(0½mk)
(b) CH ₃ CH=CHCH ₃	1. O ₃ , CCl ₄ , < 20°C 2. H ₂ O, Zn, CH ₃ COOH.	(01mk)
Name		(0½mk
(c) CH ₃ COCH ₃	NaBH4	(01mk
Name	H ₂ O	(O ¹ / ₂ ml
(a) State the common of riodic Table. (01mk)	xidation states exhibited by element	rs in group (IV) of the
	f the following group (IV) elements	
(ii) Lead. (02mks)		

SECTION B (54 MARKS)

Answer six question from this section
10. Name one functional group that can be identified using each of the following reagents. In each case state what would be observed and write equation for the reaction that would take place
(a) Bromine water:
Functional group. (01mk)
Observation. (01mk)
Equation. (01mk)
(b) 2, 4-dinitrophenyl hydrazine:
Functional group. (01mk)
Observation. (01mk)
Equation. (01mk)
(c) Sodium carbonate:
Functional group (01mk)

Observation. (01mk)
Equation. (01mk)
11. (a) Define the term boiling point constant of a substance. (01mk)
(b) State any two colligative properties of a solution. (02mks)
(c) 2.00g of phosphorus raise the boiling point of 37.4g carbon disulphide by $1.003^{\circ}C$.
(i) Calculate the molar mass of phosphorus in carbon disulphide. (Kb for carbon disulphide is 2.35° Cmol $^{-1}$ Kg $^{-1}$) (03mks)
(ii). Hence determine the molecular formula of phosphorous in carbon disulphide. (P= 31) (02mks)
(iii) Comment on the results in c (iii) above. (01mk)

12. Write equations to show how the following conversion can be effected.
(a) CH_4 from $H_2C=CH_2$ (03mks)
(b) CH_3CH_2COOH from $CH_3CH=CH_2$ (03mks)
(c) Benzene to Benzoic acid. (03mks)
13. (a) (i) Sketch a graph to show the pH change when hydrochloric acid is titrated
with ammonia solution. $(01\frac{1}{2}\text{mks})$
(ii) Explain the shape of your sketch graph in (a) (i). (03½mks)

(b) Calculate the pH of the resultant solution formed when $10cm^3$ of a $0.1M$ sodium hydroxide is added to $25cm^3$ of a $0.1M$ ethanoic acid at $25^{\circ}C$.					
(Dissociation constant of ethanoic acid at $25^{\circ}C = 1.8 \times 10^{-5} \text{ moldm}^{-3}$) (04mks)					
			••••••		
14. The table below sho	ws the ioniz	zation energi	es of Group VII e	lements.	
Element	F	Cl	Br	I	
Atomic radius(nm)	0.072	0.099	0.114	0.133	
Ionic radius (nm)	0.136	0.181	0.195	0.216	
(b) State and explain th	ne trend in (atomic radius	s of the elements.	(04mks)	
(c) Explain why the ionic neutral atom for eac		_	ne atomic radius o	f the corresponding	

	when 0.1g of aluminium chloride was vaporized at 350°C and pressure of 1 ere, 19.2cm³ of vapour was formed.
(i) Calcu	late the relative molecular mass of aluminium. (02mks)
	e the molecular formula of aluminium chloride in the gaseous state at 350°c. Cl =35.5). (02mks)
(b) Alum	inium chloride is normally contaminated by traces of iron (III) chloride.
	ame one reagent that can be used to detect the presence of iron (III) ion in a nated solution of aluminium chloride. (01mk)
	state what would be observed if the contaminated aluminium chloride solution atted with the reagent you have named in b (i). ($0\frac{1}{2}$ mk)
(c). Wat	er was added dropwise to aluminium chloride.
(i)	State what was observed. $(0\frac{1}{2}mk)$
(ii)	Write equation for the reaction that took place. (01 $\frac{1}{2}$ mks)
(d) S	tate one use of aluminium chloride in organic synthesis. (01½mks)

	1) Explain the term partition coefficient. (U2mks)
(b) S	tate two conditions under which partition coefficient is valid. (02mks)
solut	solute Q is three times as soluble in ethoxyethane as in water. An aqueous ion containing 4.5g of Q per litre of a solution was shaken by ethoxyethane in a rating funnel. Calculate the mass of Q that was extracted when the solution was en:
(i)	With 100cm³ of ethoxyethane. (02mks)
(ii)	Twice with 50cm³ of ethoxyethane. (02mks)
(d)	Comment on your results in (c) above. (01mk)

17.	Sodium,	aluminium,	silicon an	d phosphorous	are the	elements	in period	3 of the	Periodic
Tal	ble.								

(a) For each element, write the formula and name the structure of the oxide (04 $\frac{1}{2}$ mks)

Element	Formula of oxide	Structure
Sodium		
Aluminium		
Silicon		
Phosphorous		

(b) Write equ	lation for the reaction between aluminium oxide and
(i)	Dilute hydrochloric acid (01½mks)
(iii)	Excess sodium hydroxide. (01½mks)
(c) Write equ (01½mks)	uation of a reaction between the oxide of silicon and sodium hydroxide.

END.