ChIP-seq data analysis

1.1 Reads downloading

I used Dataset #3 that contains

Yng (H3K27me3/Input) and Old (H3K27me3/Input) samples

They corresponding SRA ids are as follows:

SRR6116838, SRR6116863, SRR6116844, SRR6116875

I downloaded .fastq files in the ~/chipseq/fastq using fastq-dump tool from sra-toolkit, which is installed in meth conda environment on the machine.

```
~/chipseq/fastq
fastq-dump >>> .fastq
#1. Download fastq
sra ids="SRR6116838 SRR6116863 SRR6116844 SRR6116875"
mkdir -p fastq
cd fastq
conda activate meth
for sra id in ${sra ids}; do
  echo "${sra id}"
  fastq-dump --gzip ${sra id}
done
conda deactivate
```

1.2 Reads downsampling

H3K27me3 is a broad mark,

Broad Marks	H3F3A	H3K27me3	H3K36me3	H3K4me1	H3K79me2	H3K79me3	H3K9me1	H3K9me2	H4K20me1
Narrow Marks	H2AFZ	НЗас	H3K27ac	H3K4me2	H3K4me3	H3K9ac			
Exceptions	H3K9me3								

and for broad-peak histone experiments each replicate should have at least 45 million usable fragments (size recommended for the ChIP-seq type from Encode guidelines)

So I set K=45000000 and obtain _45000000 . fastq in the ~/chipseq/fastq folder

```
~/chipseq/fastq
awk >>> 45000000.fastq
 #1.2 Downsample fastq
K=45000000
for sra id in $sra ids
               INPUT="${sra id}.fastq.gz"
               OUTPUT="${sra id} ${K}.fastq.gz"
                zcat "$INPUT" | awk '{ printf("%s",$0); n++; if(n%4==0) {printf("\n");} else {
printf("\t");} }' | \
                 awk -v k=$K 'BEGIN(srand(systime() +
PROCINFO["pid"]); \\ \{s=x++< k?x-1: int(rand()*x); if(s< k)R[s]=\$0\} END\{for(i in R)print\} \\ \{s=x++< k?x-1: int(rand()*x); if(s< k)R[s]=\$0\} END\{for(i in R)print\} \\ \{s=x++k?x-1: int(rand()*x); if(s< k)R[s]=\$0\} END\{for(i in R)print\} \\ \{s=x+k?x-1: int(rand()*x); if(s< k)R[s]=\$0\} END\{for(i in R)print] \\ \{s=x+k?x-1: int(rand()*x); if(s< k)R[s]=\$0
R[i]}' | \
                 awk -F"\t" '{print 1"\n"$2"\n"$3"\n"$4}' | gzip - > "$OUTPUT"
                  echo "Processed $INPUT and saved to $OUTPUT"
done
 find /home/user/chipseq/fastq -name '*.qz' -exec gunzip {} \;
```

2 Reads QC

I prepared reads QC using **fastqc** and summarize results with **multiqc**.

```
~/chipseq/fastqc
fastqc >>> fastqc.html + fastqc.zip + fastqc.log
multiqc >>> multiqc report.html
#2 Reads OC
mkdir -p ~/chipseq/fastqc
conda activate chipseq
for FILE in $(find /home/user/chipseq/fastq -name '*.f*q')
do :
FILE NAME=${FILE##*/}
NAME=${FILE NAME%%.f*q} # file name without extension
fastqc --outdir ~/chipseq/fastqc "${FILE}" 2>&1 | tee ${NAME} fastqc.log
done
mv ~/chipseq/fastq/* fastqc.log ~/chipseq/fastqc/
multigc -f -o ~/chipseq/fastgc ~/chipseq/fastgc
```

2 Reads QC

- **1. Per base sequence quality** shows appropriate results quality at all positions in a green zone.
- **2. Per sequence quality score** also shows good results with one peak near 30-39
- **3. Per base sequence content** also good, small fluctuations at the start probably corresponds to 10-12 bases result from non fully random priming during library preparation.
- **4. Per base sequence GC content** mean values are around 41, that is equal mean human GC content, but reads not fully random distributed and a little peak arises on each plot. In bad case it could be contamination or maybe it relates with library preparation/downsampling.
- **5. Sequence duplication level** shows a little peak near >10. I assume that possible reasons for it is many cycles of PCR amplification/too little starting material/downsampling consequences

3 Reads alignment

Reads were aligned using bowtie (.sam files + _bowtie.log), then using samtools view and sort binary files were created (.bam files) and saved in ~/chipseq/bam

```
~/chipseq/bam
bowtie >>> .sam + bowtie.log
samtools view >>> not sorted.bam
samtools sort >>> .bam
#3. Reads alignment
GENOME=hq19
export BOWTIE INDEXES=/mnt/chipseq/index/${GENOME}/
for FILE in $(find ~/chipseq/fastq -name '*.f*q')
do:
NAME=$(basename ${FILE%%.fastq})
ID=${NAME} ${GENOME}
BAM NAME="${ID}.bam"
if [[ ! -f "${BAM NAME}" ]]; then
  bowtie -p 6 -St -m 1 -v 3 --best --strata ${GENOME} ${FILE} ${ID}.sam 2>&1 |\
     tee ${NAME} bowtie.log
  samtools view -bS ${ID}.sam -o ${ID} not sorted.bam
  samtools sort ${ID} not sorted.bam -o ${BAM NAME}
  rm ${ID}.sam ${ID} not sorted.bam
fi
done
mkdir -p ~/chipseg/bam
mv ~/chipseq/fastq/*.bam ~/chipseq/bam/
mv ~/chipseq/fastq/* bowtie.log ~/chipseq/bam/
```

4 Reads alignment QC

Common alignment QC were aggregated with multiqc as in previous case.

4 Reads alignment QC

Majority of reads were successfully aligned, ~10% of reads were multimapped and ~5% was not aligned at all. I assume that it is appropriate result and we can proceed.

5 Coverage

Coverage .bw files were prepared using bamCoverage and saved in ~/chipseg/bw. Now we can explore them in genome browser.

```
~/chipseq/bw
bamCoverage >>> .bw + bw.log
#5 Coverage
for FILE in $(find ~/chipseq/bam -name '*.bam')
do:
  NAME=$(basename ${FILE%%.bam})
  BW=${NAME}.bw
  if [[ ! -f ${BW} ]]; then
     samtools index ${FILE}
     bamCoverage --bam $\{FILE\} -o $\{BW\} 2>&1 | tee $\{NAME\} bw.log
  fi
done
mkdir ~/chipseg/bw
mv ~/chipseq/fastq/*.bw ~/chipseq/bw
mv ~/chipseq/fastq/* bw.log ~/chipseq/bw
```

6 Analyze coverage profile

I've loaded results in JBR browser so now we can see Yng and Old samples with corresponding Inputs. We know in advance that H3K27me3 is a broad mark so list of possible tools is: MACS2 in broad option (but in general MACS2 is not so good for broad marks), SICER that is especially useful in this case and SPAN. Due to problems with SICER launching I decided at least do analysis using MACS2_broad and SPAN. Also just out of curiosity I repeat analysis with MACS2 in narrow peaks regimen. Honestly it is not easy to conclude unambiguously that profiles contains broad peaks only. It seems like some positions rather contains narrow peaks so I wanted to check how MACS will work with them.

So my final list if MACS2, MACS2_broad and SPAN.

However in original article MACS2 broad peak calling was used for H3K27me3 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080409/)

7 Peak calling (MACS2)

Peak calling was done using

- -MACS in narrow regimen,
- -MACS in broad regimen,
- -SPAN

Each tool was launched twice for Yng and Old samples

```
~/chipseq/macs2
macs2 >>> .narrowPeak + macs2.log
#7 Peak calling
#7.1 MACS Narrow
SUFFIX="q0.05"
PARAMS="-q 0.05"
# Yng
INPUT=~/chipseq/bam/SRR6116863 45000000 hg19.bam
FILE=~/chipseq/bam/SRR6116838 45000000 hg19.bam
# Old
INPUT=~/chipseq/bam/SRR6116875 45000000 hg19.bam
FILE=~/chipseq/bam/SRR6116844 45000000 hg19.bam
NAME=$(basename ${FILE%%.bam}) # File name without extension
ID=${NAME} ${SUFFIX}
if [[ -z $(find . -name "${ID}*.*Peak") ]]; then # Peaks file is not created yet
   TMP DIR=$ (mktemp -d macs2.XXXXXXXX)
   mkdir -p ${TMP DIR}
   echo "Macs2 TMP DIR: ${TMP DIR}"
       macs2 callpeak --tempdir ${TMP DIR} -t ${FILE} -c ${INPUT} -f BAM -g hs -n
${ID} ${PARAMS} 2>&1 |\
          tee ${ID} macs2.log
   # Cleanup
   rm -rf ${TMP DIR}
fi
```

7 Peak calling (MACS2_broad)

Peak calling was done using

- -MACS in narrow regimen,
- -MACS in broad regimen,
- -SPAN

Each tool was launched twice for Yng and Old samples

```
~/chipseq/macs2 broad
macs2 >>> .broadPeak + macs2.log
#7 Peak calling
#7.2 MACS Broad
SUFFIX="broad 0.1"
PARAMS="--broad --broad-cutoff 0.1"
# Yng
INPUT=~/chipseg/bam/SRR6116863 45000000 hg19.bam
FILE=~/chipseq/bam/SRR6116838 45000000 hg19.bam
# Old
INPUT=~/chipseq/bam/SRR6116875 45000000 hg19.bam
FILE=~/chipseq/bam/SRR6116844 45000000 hg19.bam
NAME=$(basename ${FILE%%.bam}) # File name without extension
ID=${NAME} ${SUFFIX}
if [[ -z $(find . -name "${ID}*.*Peak") ]]; then # Peaks file is not created yet
   TMP DIR=$ (mktemp -d macs2.XXXXXXXX)
   mkdir -p ${TMP DIR}
   echo "Macs2 TMP DIR: ${TMP DIR}"
       macs2 callpeak --tempdir $\{TMP DIR\} -t $\{FILE\} -c $\{INPUT\} -f BAM -g hs -n \}
${ID} ${PARAMS} 2>&1 |\
          tee ${ID} macs2.log
   # Cleanup
   rm -rf ${TMP DIR}
fi
```

7 Peak calling (SPAN)

Peak calling was done using

- -MACS in narrow regimen,
- -MACS in broad regimen,
- -SPAN

Each tool was launched twice for Yng and Old samples

```
~/chipseq/macs2 broad
span >>> .peak + span.log
#7 Peak calling
#7.3 SPAN
BIN=200
FDR=0.05
GAP=5
# Young
INPUT=~/chipseq/bam/SRR6116863_45000000_hg19.bam
FILE=~/chipseg/bam/SRR6116838 45000000 hg19.bam
# Old
INPUT=~/chipseq/bam/SRR6116875 45000000 hg19.bam
FILE=~/chipseq/bam/SRR6116844 45000000 hg19.bam
NAME=$(basename ${FILE%%.bam}) # File name without extension
ID=${NAME} ${FDR} ${GAP}
if [[ ! -f ${ID}.peak ]]; then # Not created yet
 java -Xmx16G -jar /mnt/chipseq/span-1.1.5628.jar analyze -t ${FILE} -c ${INPUT} \
   --chrom.sizes /mnt/chipseq/hg19.chrom.sizes \
   --bin ${BIN} --fdr ${FDR} --gap ${GAP} \
   --peaks ${ID}.peak \
   --threads 6 2>&1 | tee ${NAME} span.log
fi
```

8 Peak calling visualization

8 Peak calling visualization

As an example I decided to explore **WNT1** gene, protooncogene. Also modifications in WNT signaling were mentioned in the original article. On the figure above you can see H3K27me3 peaks in Yng sample which disappear during aging. This modification associated with gene downregulation and formation of heterochromatic regions. Maybe this could lead to cancer progression during aging.

9 Peak calling summary

#	Title	Bed format	Count	Total length	Genome coverage	Min length	Max length	Mean length	Median length
1	SRR6116838_45000000_hg19_q0.05_peaks.narrowPeak	(bed6+, '\t')	13041	6724654	0.0021435474411748315	295	12145	515	404
2	SRR6116838_45000000_hg19_broad_0.1_peaks.broadPeak	(bed6+, '\t')	13280	27166863	0.008659696048063915	295	67797	2045	1159
3	SRR6116838_45000000_hg19_0.05_5.peak	(bed6+, '\t')	26063	73437331	0.023408847942475424	200	143800	2817	1400
4	SRR6116844_45000000_hg19_q0.05_peaks.narrowPeak	(bed6+, '\t')	1030	77728	2.4776539507852345E-5	52	320	75	67
5	SRR6116844_45000000_hg19_broad_0.1_peaks.broadPeak	(bed6+, '\t')	7417	1544089	4.921930592854598E-4	52	3129	208	170
6	SRR6116844_45000000_hg19_0.05_5.peak	(bed6+, '\t')	64306	549864441	0.17527452200493573	200	427600	, 8550	5000

In general SPAN found more peaks and peaks are much longer. There is especially prominent result for Old sample (highlighted). It looks uncommonly.. maybe it will good to adjust the settings for SPAN another time (?)

10-11 Common and differential peaks

Using bedtools intersect -u I've obtained common peaks and with bedtools intersect -v I obtain differential peaks.

To explore changes that occurs during aging I compare Old sample with Yng.

- -a is an Old sample peaks
- -ь is an Yng sample peaks

So I found peaks that (i) **Old shares** with Yng samples and (ii) peaks that are founded in **Old sample only**

```
~/chipseq/intersect
bedtools intersect >>> .bed
# 10 Common peaks
mkdir ~/chipseq/intersect
bedtools intersect -u -a
~/chipseq/macs2 broad/SRR6116844 45000000 hq19 broad 0.1 peaks.broadPeak \
 -b ~/chipseq/macs2 broad/SRR6116838 45000000 hg19 broad 0.1 peaks.broadPeak >
~/chipseg/intersect/macs2 broad common.bed
# 11 Differential peaks
bedtools intersect -v -a
~/chipseq/macs2 broad/SRR6116844 45000000 hg19 broad 0.1 peaks.broadPeak \
 -b ~/chipseq/macs2 broad/SRR6116838 45000000 hg19 broad 0.1 peaks.broadPeak >
~/chipseg/intersect/macs2 broad differential.bed
```

Firstly I prepared .bed3 files and then switched to R console..

Old_only (differential)

Peaks that occurs in Old sample are more often located in distal intergenic region..

Old_shared (common)

Old_only (differential)

This plots support the previous one, and we can see that peaks are typical for Old sample are rarely found in Exons..

Old_shared (common)

Old_only (differential)

Reactome db shows that common peaks are associated with pathways related with Neuronal system, Development, Gastrulation..

Peaks founded in Old sample only (differential) are related with signaling (G alpha signalling events, Signaling by GPCR, DAG and IP3 signaling), Potassium Channels and GABA receptor activation.

13 Motif analysis with Homer

To find motifs across common and differential peaks I firstly sorted and filtered previously founded peak sets and save only top-500 in each group in _top500.bed, then obtain homer output in homerResults.html

```
~/chipseg/intersect
sort >>> top500.bed
homer >>> homerResults.html
# 13 Motif analysis with Homer
sort -k 9,9nr ~/chipseq/intersect/macs2 broad common.bed | head -n 500 | sort -k1,1
-k2,2n |\
awk -v OFS='\t' '{print($1, int(($3+$2)/2)-100, int(($3+$2)/2)+100)}' >\
~/chipseq/intersect/macs2 broad common top500.bed
sort -k 9,9nr ~/chipseq/intersect/macs2 broad differential.bed | head -n 500 | sort
-k1,1 -k2,2n \mid \
awk -v OFS='\t' '{print($1, int(($3+$2)/2)-100, int(($3+$2)/2)+100)}' >\
~/chipseq/intersect/macs2 broad differential top500.bed
perl /opt/conda/envs/chipseq/share/homer/bin/findMotifsGenome.pl \
~/chipseg/intersect/macs2 broad common top500.bed hg19 \
~/chipseq/macs2 broad common top500.narrowPeak.motif -size 200 -mask
perl /opt/conda/envs/chipseg/share/homer/bin/findMotifsGenome.pl \
~/chipseq/intersect/macs2 broad differential top500.bed hg19 \
~/chipseg/macs2 broad differential top500.narrowPeak.motif -size 200 -mask
```

13 Motif analysis with Homer

Old_shared (common)

Rank	Motif	P-value	log P-pvalue	% of Targets
1	CGGCTTTTTGCC	1e-17	-4.107e+01	2.83%
2	ATTGAGCGGCGG	1e-12	-2.896e+01	1.29%
3 *	GGGAGACTCFCC	1e-11	-2.697e+01	3.08%
4 *	AGATTCITGIAC	1e-11	-2.550e+01	1.29%
5 *	GATCATTAGA	1e-11	-2.547e+01	2.06%

Old_only (differential)

Rank	Motif	P-value	log P-pvalue	% of Targets
1	GTGAATGACACA	1e-12	-2.897e+01	5.56%
2 *	<u>AATATGGAATCC</u>	1e-11	-2.592e+01	6.86%
3 *	IITTICACAÇTC	1e-9	-2.284e+01	1.96%
4 *	GCCIGAGGGCCC	1e-9	-2.246e+01	4.90%
5 *	AACGATTAAI	1e-9	-2.141e+01	1.96%

14 Gene set enrichment analysis

Old_shared (common)

Old_only (differential)

Gene enrichment shows that common peaks are associated with organ morphogenesis, regionalization, system development (Biological processes) Peaks founded in Old sample only (differential) are related with G-proteins, regulation of membrane potential signal release, trans-synaptic signaling.

15 Related datasets (common peaks)

Then I've download .bed files to find related datasets in ChIP-Atlas. Results contains datasets from various classes (Blood, Stem cells, Placenta..) and H3K4me3/H3K27me3 Antigens

ChIP-Atlas / Enrichment Analysis

Search for proteins significantly bound to your data.

My project

ID Antigen class	Antigen	Cell class	Cell	Num of peaksOverlaps /	dataset commonOverlaps	/ ControlLo	g P-valLog	Q-valFol	d EnrichmentFE > 1?
SRX2018542 Histone	H3K27me3	Blood	Neutrophil progenitors	20231	294/5793	32/5793	-54.8	-50.3	9.19TRUE
SRX2018544 Histone	H3K27me3	Blood	Neutrophil progenitors	20376	292/5793	33/5793	-53.5	-49.3	8.85TRUE
SRX386200 Histone	H3K27me3	Blood	CD34+	29643	285/5793	32/5793	-52.4	-48.3	8.91TRUE
SRX646123 Histone	H3K27me3	Blood	Erythroblasts	24690	255/5793	22/5793	-51.8	-47.8	11.59TRUE
SRX2018543 Histone	H3K27me3	Blood	Neutrophil progenitors	16796	262/5793	25/5793	-51.3	-47.5	10.48TRUE
SRX2018541 Histone	H3K27me3	Blood	Neutrophil progenitors	15575	258/5793	24/5793	-51.0	-47.3	10.75TRUE
SRX2018540 Histone	H3K27me3	Blood	Neutrophil progenitors	17089	272/5793	30/5793	-50.4	-46.7	9.07TRUE
SRX1089821 Histone	H3K27me3	Blood	Erythroblasts	24739	251/5793	23/5793	-49.9	-46.3	10.91TRUE
SRX2018538 Histone	H3K27me3	Blood	CD34+	11870	207/5793	13/5793	-46.1	-42.5	15.92TRUE
SRX2018539 Histone	H3K27me3	Blood	CD34+	15021	215/5793	18/5793	-44.0	-40.5	11.94TRUE
SRX480621 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	15403	225/5793	22/5793	-43.6	-40.1	10.23TRUE
SRX1008493 Histone	H3K4me1	Epidermis	NHEK	248649	552/5793	194/5793	-42.4	-39.0	2.85TRUE
SRX547407 Histone	H3K4me3	Pluripotent stem ce	lliPS cells	37420	282/5793	48/5793	-41.8	-38.4	5.88TRUE
SRX9621856 Histone	H3K4me3	Pluripotent stem ce	IIhESC H9	33435	282/5793	49/5793	-41.2	-37.9	5.76TRUE
SRX480623 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	19239	212/5793	21/5793	-40.9	-37.5	10.10TRUE
SRX547409 Histone	H3K4me3	Pluripotent stem ce	lliPS cells	34098	275/5793	47/5793	-40.6	-37.3	5.85TRUE
SRX8406468 Histone	H3K27me3	Prostate	Prostate	46194	331/5793	74/5793	-40.4	-37.1	4.47TRUE
SRX13466354Histone	H3K4me3	Pluripotent stem ce	IIES cells	32234	275/5793	48/5793	-40.1	-36.8	5.73TRUE
SRX480610 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	15488	203/5793	19/5793	-40.0	-36.7	10.68TRUE
SRX547411 Histone	H3K4me3	Pluripotent stem ce	lliPS cells	39332	298/5793	59/5793	-39.9	-36.7	5.05TRUE
SRX547405 Histone	H3K4me3	Pluripotent stem ce	lliPS cells	36340	302/5793	61/5793	-39.9	-36.7	4.95TRUE
SRX480611 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	25730	247/5793	37/5793	-39.4	-36.2	6.68TRUE
SRX480622 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	13785	195/5793	17/5793	-39.4	-36.2	11.47TRUE
SRX9621855 Histone	H3K4me3	Pluripotent stem ce	IIhESC H9	38136	285/5793	54/5793	-39.4	-36.2	5.28TRUE
SRX6608388 Histone	H3K27me3	Blood	RCH-ACV	13360	201/5793	20/5793	-38.7	-35.6	10.05TRUE
SRX480609 Histone	H3K27me3	Pluripotent stem ce	IIhESC H9	15618	209/5793	23/5793	-38.6	-35.5	9.09TRUE
SRX8997966 Histone	H3K4me3	Pluripotent stem ce	lliPS cells	41220	337/5793	82/5793	-38.3	-35.2	4.11TRUE
SRX5931557 Histone	H3K27me3	Blood	CD34+	9900	185/5793	16/5793	-37.4	-34.4	11.56TRUE

15 Related datasets (differential peaks)

ChIP-Atlas / Enrichment Analysis

Search for proteins significantly bound to your data.

My project

ID Antigen cla	ass Antigen	Cell class	Cell	Num of peaksOverl	laps / dataset AOverlaps	/ ControlLo	g P-valLo	Q-valFold	d EnrichmentFE > 1?
SRX2586644 Histone	H3K4me3	Pluripotent stem of	elliPSC derived neural cells	34697	39/1624	8/1624	-5.3	-1.4	4.88TRUE
SRX16711619Histone	H3K4me3	Placenta	Placenta	35628	48/1624	13/1624	-5.2	-1.4	3.69TRUE
SRX2586643 Histone	H3K4me3	Pluripotent stem of	elliPSC derived neural cells	38128	41/1624	10/1624	-4.9	-1.4	4.10TRUE
SRX1089821 Histone	H3K27me3	Blood	Erythroblasts	24739	33/1624	6/1624	-4.9	-1.4	5.50TRUE
SRX16711622Histone	H3K4me3	Placenta	Placenta	33897	48/1624	14/1624	-4.8	-1.4	3.43TRUE
SRX16711620Histone	H3K4me3	Placenta	Placenta	38043	46/1624	13/1624	-4.8	-1.4	3.54TRUE
SRX19194555Histone	H3K27me3	Blood	PBMC	15394	23/1624	2/1624	-4.7	-1.4	11.50TRUE
SRX5931554 Histone	H3K4me3	Blood	HUDEP-2	26590	42/1624	11/1624	-4.7	-1.4	3.82TRUE
SRX16711601Histone	H3K4me3	Placenta	Placenta	32741	40/1624	10/1624	-4.7	-1.4	4.00TRUE
SRX10606493Histone	H3K4me3	Kidney	293	22804	38/1624	9/1624	-4.7	-1.4	4.22TRUE
SRX646123 Histone	H3K27me3	Blood	Erythroblasts	24690	32/1624	6/1624	-4.7	-1.4	5.33TRUE
SRX3288598 Histone	H3K4me3	Pluripotent stem of	ellhESC H9	38173	36/1624	8/1624	-4.6	-1.4	4.50TRUE
SRX12982841Histone	H3K27me3	Blood	Peripheral blood	14505	25/1624	3/1624	-4.6	-1.4	8.33TRUE
SRX16711623Histone	H3K4me3	Placenta	Placenta	32948	45/1624	13/1624	-4.6	-1.4	3.46TRUE
SRX16711606Histone	H3K4me3	Placenta	Placenta	33498	43/1624	12/1624	-4.5	-1.3	3.58TRUE
SRX16711608Histone	H3K4me3	Placenta	Placenta	31066	41/1624	11/1624	-4.5	-1.3	3.73TRUE
SRX3468015 Histone	H3K4me3	Others	Aska	27445	39/1624	10/1624	-4.5	-1.3	3.90TRUE
SRX8150290 Histone	H3K4me1	Others	SCC-25	109192	56/1624	20/1624	-4.4	-1.3	2.80TRUE
SRX2636082 Histone	H3K4me3	Neural	Fetal neural cells	32517	37/1624	9/1624	-4.4	-1.3	4.11TRUE
SRX16711607Histone	H3K4me3	Placenta	Placenta	31852	44/1624	13/1624	-4.4	-1.3	3.38TRUE
SRX8150293 Histone	H3K4me1	Others	SCC-25	127775	55/1624	20/1624	-4.3	-1.2	2.75TRUE
SRX3088201 Histone	H3K27ac	Neural	Entorhinal Cortex	42689	36/1624	9/1624	-4.2	-1.2	4.00TRUE
SRX386200 Histone	H3K27me3	Blood	CD34+	29643	36/1624	9/1624	-4.2	-1.2	4.00TRUE
SRX5392486 Histone	H3K27ac	Neural	Wilms Tumor	89095	61/1624	24/1624	-4.2	-1.2	2.54TRUE
SRX11354207Histone	H3K4me3	Digestive tract	SW 480	29988	34/1624	8/1624	-4.2	-1.2	4.25TRUE
SRX16500387Histone	H3K27me3	Blood	Dendritic Cells	19322	21/1624	2/1624	-4.2	-1.2	10.50TRUE
SRX16711617Histone	H3K4me3	Placenta	Placenta	33260	43/1624	13/1624	-4.2	-1.2	3.31TRUE
SRX2636167 Histone	H3K4me3	Pluripotent stem of		41981	44/1624	14/1624	-4.1	-1.1	3.14TRUE
SRX14410413Histone	H3K4me3	Pluripotent stem of	elliPS cells	28841	33/1624	8/1624	-4.0	-1.1	4.12TRUE