Camera Model

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
O	Beginner	13
	Intermediate	6
\Q	Advanced	1
\&>	Expert	0

Goal				
4722	16			
5722	18			
Total Completed				
2	0			

Draw ^CP (Geometry only)

World Coordinate System

Camera Coordinate System

² □ Draw ^CP (Geometry only)

World Coordinate System

Camera Coordinate System

³ □ Draw ^CP (Geometry only)

World Coordinate System

Camera Coordinate System

⁴ Convert ${}^{W}P \rightarrow {}^{C}P$ using a rotation matrix

Camera rotates along Y from X to Z by 53 degrees

degrees	37	53	60	90
sin(θ)	3/5	4/5	√3/2	1
cos(θ)	4/5	3/5	1/2	0

3	P
2	

WD

$$^{W}P = (3, 2, 4)$$

0.	R	Z/	5 R*F	> [
L	3/5	415	0	
			0	
5	45	3/5	0	
		C	1	

-75	CP 9 15
2	
24/5	2+12/5

⁵ Convert ${}^{W}P \rightarrow {}^{C}P$ using a rotation matrix

Camera rotates along X from Z to Y by 90 degrees

degrees	37	53	60	90
sin(θ)	3/5	4/5	√3/2	1
cos(θ)	4/5	3/5	1/2	0

$$^{W}P = (4, 5, 3)$$

	R	y		R*P	1	. (5
			\$	0	4	^C P
	C	0		0	3	
ん		-	0	0	-5	
		-5	C	-		

 $^{\mathsf{W}}\mathsf{P}$

⁶ Convert ${}^{W}P \rightarrow {}^{C}P$ using a rotation matrix

Camera rotates along Z from Y to X by 37 degrees

degrees	37	53	60	90
sin(θ)	3/5	4/5	√3/2	1
cos(θ)	4/5	3/5	1/2	0

$$^{W}P = (4, 3, -2)$$

	R ᢞ	5	R*F	, 1
C	45	3/5	0	5
y	-3/5	4/5	0	0
O	-5	C	0	-2
			1	

 $^{\mathsf{W}}\mathsf{P}$

⁷✓ Fill R, T, WP, ^CP

$$^{CO}P = (4, -1, 5)$$

Camera rotates from Y to X by 90 degrees

$$^{C1}P = (1, 4, 5)$$

$$^{C2}P = (3, 1, 6)$$

degrees	37	53	60	90
sin(θ)	3/5	4/5	√3/2	1
cos(θ)	4/5	3/5	1/2	0

8 Fill R, T, WP, CP

$$^{CO}P = (3, 2, -4)$$

Camera rotates from Z to X by 53 degrees

$$^{C1}P = (5, 2, 0)$$

$$6a - 12c = 0$$
 $6a + 6c = 75$
 $25a = 75$
 $6a = 25$

$$^{C2}P = (3, 1, 1)$$

degrees	37	53	60	90
sin(θ)	3/5	4/5	√3/2	1
cos(θ)	4/5	3/5	1/2	0

-				-				\
	4/5	√3/2	1			P	0	WP
	3/5	1/2	0				3	
				•			2	
							4	
	R	L			Т			
	3/5			15	- _		5	СP
		γ					2	
7	-4/	5	ć	3/5			0	
					1			

⁹ ✓ O Derive the Extrinsic Matrix

Camera rotates along Y from Z to X by 53 degrees then translates

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

 M_{F}

3/5	-4/5	-2
		1
4/5	3/5	1

 $^{\mathsf{W}}\mathsf{P}$

3

-4

3	9 416 2
	- 5ーム/

¹⁰✓ O Derive the Extrinsic Matrix

Camera rotates along X from Y to Z by 90 degrees then translates

degrees	30	37	45	53	60	90
sin(θ)	1/2	3/5	√2/2	4/5	√3/2	1
cos(θ)	√3/2	4/5	√2/2	3/5	1/2	0

M_E y

			3
	0		-2
	1	©	رکا

 $^{\mathsf{W}}\mathsf{P}$

1
_

1	
Т	

	^C P
4	14.

2 notation 90

-4	[₩] P
4	
6	
1	

 M_{E}

0	-1		1
1	0		4
		1	-2
			1

5	Г
0	
4	
1	

0		0	0
-1	0	0	O
0	O	1	0
0	0	0	1

1	0	0	-1	5	Ч
Q	-	0	-4	0	
0	0	٦	2	4	
0	0	0		1	
M _E	1				· WP
0	1		-4	-4	-4
-1	0		1	- 4	-5+1
		1	2	6	472
					•

Derive M_E⁻¹ from M_E

 M_{E}

5

20

1

WP (5	12	
375-4	.66+	45-48+18
10-10 =D		(15)
4. 13.6	6.76	60-40 20
8 15 P		60 40 0

1			ر ا ا
	_	1	40
		_	- bo
			1
$\overline{M_{L}^{-1}}$	1		

1		•	-50	75	
		1	40	40	
		1.	- <i>bo</i>	60	
			1	1	
\	1				ı

WP

3/5		4/5	50
	1		40
-4/5		3/5	60
			1

٠		СР
	75	r
	40	
	60	
	1	

3/5		4/5	
	l		
4/5		3/5	
			1

INIE	•	ı		
3/5		-4E	18	15
	1		-40	50
4/5		3/5	-76	20
			1	1

¹⁵™∕o Calculate & Draw ^IP ⁵[

$$^{C}P = (4, 2, 4)$$

$$IP = (2, 1)$$
 $f = 2$

$$f = 2$$

4	-

 M_{I}

2		
	2	
		1

IP

¹⁶ ○ Calculate & Draw ^IP ⁵↑

$$^{C}P = (4, 2, 4)$$

$$^{I}P = (\underline{\mathsf{I}},\underline{\mathsf{'5}})$$

$$f = \underline{\hspace{1cm}}$$

M_{I}

$$^{C}P = (4, 2, 2)$$

$$^{\mathrm{I}}\mathrm{P}=(\underline{},\underline{})$$

$$f = \underline{\hspace{1cm}}$$

 $^{\mathrm{C}}\mathrm{P}$

 M_{I}

¹⁸ Calculate & Draw ^IP ₅₁

$$^{C}P = (-1, 3, 4)$$
 $^{I}P = (-\frac{1}{2}, \frac{3}{2})$
 $^{C}P = (-\frac{1}{2}, \frac{3}{2})$
 $^{C}P = (-\frac{1}{2}, \frac{3}{2})$

Ip

-05

M_{I}			·
2			-2
	2		Ь
			4

N /

¹⁹□ Calculate & Draw ^IP ₅ f

$$^{C}P = (-1, 3, 4)$$

$$^{C}P = (-1, 3, 4)$$
 $^{I}P = (-\frac{1}{2}, \frac{3}{4})$
 $f_{x} = \frac{2}{4}$
 $f_{y} = \frac{1}{4}$

$$f_x = 2$$

$$f_y = \underline{\hspace{1cm}}$$

 M_{I}

²⁰ Calculate ^IP

$$^{C}P = (12, -8, 8)$$
 $^{I}P = (\underline{b}, -4)$
 $f = 4$

