Navodila za GPtorqueCalculator

Zagon programa

Program zaženemo z dvoklikom na datoteko Script/Script.exe

Vnos osnovnih parametrov

Številke vnašamo s decimalno piko (»69.2« in ne »69,2«). Za potrditev pritisnemo »Enter«

Koeficient padanja sile s temperaturo (v N/°C):

Izračuna se s pomočjo numerične simulacije (Ansys) ohišja v bloku motorja (primer VW)

Model postavimo tako, da je ohišje pri 22°C (T_0) neobremenjeno (F_0 =0N), nato izračunamo silo na ohišju (F_k) pri izbrani temperaturi (T_k). Koeficient nato izračunamo kot:

$$k = \frac{F_k - F_0}{T_k - T_0} = \frac{F_k - 0N}{T_k - 22^{\circ}C} = \frac{F_k}{T_k - 22^{\circ}C} \left[\frac{N}{{}^{\circ}C} \right]$$

Primer izračuna:

Izberemo si končno temperaturo 100°C in pri tej temperaturi izračunamo silo na ohišju. Ansys nam izračuna, da imamo na ohišju pri 100°C silo 5397,6N. Iz tega podatka izračunamo koeficient:

$$k = \frac{F_k}{T_k - 22^{\circ}C} = \frac{5397,6N}{100^{\circ}C - 22^{\circ}C} = 69,2\frac{N}{{}^{\circ}C}$$

Koeficient 69,2 nato vpišemo v program.

Nekaj uporabnih koeficientov:

Svečka	5011-721-414	5011-725-166	
Koeficient [N/°C]	69,2	43,56	

Imenski premer navoja (v mm):

Vpišemo številko označeno z rdečim okvirčkom. (V našem primeru 10)

Korak navoja (v mm):

Vpišemo številko označeno z rdečim okvirčkom. (V našem primeru 1)

Testni premer konusa (v mm):

Vpišemo številko označeno z rdečim okvirčkom. (V našem primeru 7)

Minimalna sila tesnenja (v N) - lahko prazno:

Če poznamo minimalno silo tesnjenja jo vnesemo. V primeru da pustimo prazno se nam vrednost izračuna po enačbi:

$$F_{min} = p \cdot A \cdot v = p \cdot \frac{D_{test}^{2} \cdot \pi}{4} \cdot v [N]$$

Pri čemer je »p« tlak motorja (program predvideva vrednost 200bar), »D_{test}« je testni premer konusa, »u« pa varnostni faktor (program vzame vrednost 1,4).

Vnos vrednosti grafa

Izberi količino na X osi (možnosti: 'kf', 'F', 'M' in 'T'):

Na izbiro imamo vnesti »kf« (koeficient trenja), »F« (sila na ohišju), »M« (moment privitja ohišja) ter »T« (temperatura okolice).

Vpiši minimalno vrednost:

Vpišemo minimalno vrednost količine ki bo prikazana na X osi.

Vpiši maksimalno vrednost:

Vpišemo maksimalno vrednost količine ki bo prikazana na X osi.

Izberi diskretno količino (možnosti: kf F M T):

Na izbiro imamo vnesti »kf« (koeficient trenja), »F« (sila na ohišju), »M« (moment privitja ohišja) ter »T« (temperatura okolice). V kolikor, da kateri od teh manjka smo ga najbrž že izbrali za prikaz na X osi oz. ni kompatibilen s količino na X osi.

Izberi vrednost diskretne količine:

Vnesemo prvo vrednost diskretne količine. (Nujno)

Izberi vrednost diskretne količine (pusti prazno za prekinitev):

Vnesemo ostale vrednosti diskretne količine. Ni potrebno - če vnesemo prazno vrednost prekinemo z vnosom diskretnih vrednosti.

Izberi količino na Y osi (možnost F M T):

Na izbiro imamo vnesti »F« (sila na ohišju), »M« (moment privitja ohišja) ter »T« (temperatura okolice). V kolikor, da kateri od teh manjka smo ga najbrž že izbrali za prikaz na X osi ali kot diskretno količino oz. ni kompatibilen s količino na X osi ali diskretno količino.

Vnesi naslov grafa (lahko prazno):

Vnesemo naslov grafa ki ga želimo prikazati – lahko pustimo tudi prazno.

Zapri graf za nadaljevanje...

Z vnosom lahko nadaljujemo ko zapremo graf s klikom na »x«.

Vnesi 'e' za izhod ali 'Enter' za nadaljevanje:

Za nov izris grafa pritisnemo »Enter« (pustimo prazno). Program nas ponovno vrne na vnos količine za X os.

Za izhod iz programa vnesemo vrednost »e«.

Posebnosti

Graf brez prikaza sile (»F«)

Pri grafih brez prikazane sile se upošteva minimalna sila tesnjenja. Spodnji primer prikazuje potreben moment za dosego minimalne sile tesnjenja pri različnih temperaturnih obremenitvah.

