Контрольная работа №1

Студент: Левашов А.В.

Группа: Эр-15-16

Дано:

Сигнал ГЛОНАСС L2ОСр – радиосигнал открытого доступа, пилотная

компонента.

Задача:

С помощью учебной литературы и интерфейсного контрольного

документа записать основные характеристики навигационного сигнала

L2OCp.

Решение:

В общем случае модель навигационного сигнала имеет вид:

 $S(t) = ABCMOD\cos(2\pi f_0 t + \varphi),$

где

— A – амплитуда сигнала;

— B = B(t) – модуляция цифровой поднесущей, принимает значения +1

и -1 смена значений происходит часто (половина мкс или менее);

— $M = M(t) - \Pi$ -функция размещения во временном слоте, принимает

значения +1 и 0 внутри и вне временного слота соответственно, смена

значений происходит часто (половина мкс или менее);

— O = O(t) — модуляция оверлейным кодом, принимает значения +1 и -1

при значениях символа оверлейного кода 0 и 1 соответственно, смена

значений происходит редко (1 мс или более).

1

- C = C(t) – модуляция дальномерным кодом, принимает значения +1 и -1 при значениях символа дальномерного кода 0 и 1 соответственно.

— D = D(t) - цифровая информация.

Сигнал L2OCр имеет следующие характеристики:

Сигнал	Несущая	Уплотнение	Модуляция,	Дальномерный код, C(t)			
	частота,	компонент,	B (t)	Символьная	Длина,	Период,	Тип
	<i>f</i> МГц	M(t)		скорость,	бит	мс	
				Мбит/с			
L2OCp	1248,06	временное	BOC(1,1)	0.5115	10230	20	Усеч.
							Касами
							(14)

Овер	лейный ко	од, O(t)	Цифровая	Ширина спектра сигнала, МГц
			информация,	
			D(t)	
Длительность	Длина,	Период,	HET	4,092
символа, мс	бит	МС		
20	50	1000		

Частота цифровой поднесущей для сигнала с модуляцией BOC(m,n) определяется следующим образом:

$$f_s = mf_b = 1.1,023 = 1,023M\Gamma y$$

Для определения периода и частоты функции M(t) приведем ее реализацию (рисунок 1):

Рисунок 1 – формирование временного уплотнения

При временном уплотнении компоненты радиосигнала передаются в разные непересекающиеся промежутки времени. Можно сказать, что данная функция «включает» и «выключает» компоненты сигнала.

Соответственно можно заметить, что на один символ дальномерного кода укладываются два символа функции M(t). Тогда:

$$f_{\scriptscriptstyle m} = 2 * f_{\scriptscriptstyle bit} = 2 * 0.5115 = 1.023 M \Gamma$$
ų, где $f_{\scriptscriptstyle bit}$ частота символов ДК

Тогда период будет равен:

$$T_{\scriptscriptstyle m} = \frac{1}{f_{\scriptscriptstyle m}} = 0.978$$
мкс

Соответственно смена значений происходит примерно каждые 0.5 мкс.