Full-Time-Pad Symmetric Stream Cipher

Improved One-Time-Pad Encryption Scheme

Taha Canturk kibnakanoto@protonmail.com

2024-05-20

Version 1.0

License to copy this document is granted provided it is identified as "Full-Time-Pad", in all material mentioning or referencing it.

Abstract

One-Time-Pad Encrypion Scheme is a secure algorithm but there are 2 main security risks. One, a key cannot be reused. Two, plaintext length equals key length which is very inefficient when dealing with long plaintexts. These 2 security risks only exist due to a lack of confusion and diffusion per ciphertext. As denoted by Claude Shannon in the report he published in 1945, A Mathematical Theory of Cryptography, A secure cryptographic algorithm requires confusion and diffusion. The Full-Time-Pad symmetric stream cipher is developed based on the One-Time-Pad with solutions to the security risks while maintaining high speed computation. To achieve diffusion, the key is permutated in it's byte array form using a constant permutation matrix. To achieve the confusion, the key is manipulated in it's 32-bit integer representation using Modular Addition in F_p , Bitwise Rotations, and Xor (ARX). The permutation garuntees that every time there is a manipulation, eacj 32-bit number is made up of a different byte order.

Contents

1	Introduction		
	1.1	Pre-requisite Terminology	1
	1.2	Applications	1
	1.3	Key Generation	1
	1.4	Prerequisite Mathematics	1
	1.5	Vector Permutation	1
2	Seci	urity Vulnerabilities	1
	2.1	Brute-Force	1
		2.1.1 Birthday Attack	1
		2.1.2 Denial of Service (DoS)	1
	2.2	Reverse Engineering the Transformation	1
	2.3	Collision-Resistance	1
		2.3.1 Different Permutation Matrices	1
		2.3.2 Number of Rounds	1
		2.3.3 Constant - F_p - Prime Galois Field Size	1
		2.3.4 Constant - r - Dynamic Rotation Constant	1
3	Has	shing	1
	3.1	Diffusion - Permutation	1
		3.1.1 Vector Permutation	1
		3.1.2 Dynamic vs. Static	1
	3.2	Dynamic Matrix Permutation	1
		3.2.1 Deravation	1
		3.2.2 Dynamic Permutation Matrix Values	3
		3.2.3 Other Options	3
	3.3	Confusion - ARX	3
		3.3.1 A - Modular Addition	3
		3.3.2 R - Bitwise Rotation	3
		3.3.3 X - XOR	3
	3.4	Key Transformation	3
4	Cip	her	3
-	4.1	Transformation	3
	4.2	Avalanche Effect - Plaintext	3
	1.4	4.2.1 Encryption Index	3
	4.3	Long Plaintexts	3
	1.0	Dong 1 1001100A00	9

1 Introduction

1.1 Pre-requisite Terminology

Symmetric Same key is used for encryption and decryption

Stream Plaintext is encrypted without seperating it into blocks

plaintext plain data before encryption

ciphertext encrypted plaintext

Cipher Encryption algorithm. Plaintext is transformed into a ciphertext that

can only be reversed with a key

1.2 Applications

- 1.3 Key Generation
- 1.4 Prerequisite Mathematics
- 1.5 Vector Permutation

2 Security Vulnerabilities

- 2.1 Brute-Force
- 2.1.1 Birthday Attack
- 2.1.2 Denial of Service (DoS)
- 2.2 Reverse Engineering the Transformation
- 2.3 Collision-Resistance
- 2.3.1 Different Permutation Matrices
- 2.3.2 Number of Rounds
- 2.3.3 Constant F_p Prime Galois Field Size
- 2.3.4 Constant r Dynamic Rotation Constant

3 Hashing

- 3.1 Diffusion Permutation
- 3.1.1 Vector Permutation
- 3.1.2 Dynamic vs. Static
- 3.2 Dynamic Matrix Permutation
- 3.2.1 Derayation

Python code is in the test/perm.py

Algorithm 1 Dynamic Permutation Matrix Deravation Pseudo-code

```
1: Input: an array of incrementing numbers (0-31) A
 2: Output: Most Efficient Permutation Matrix V (16 \times 32)
 3: Begin
 4:\ P \leftarrow \texttt{copy of A}
 5: for k = 0 to 4 do
         for i = 0 to 8 do
 7:
              P_i \leftarrow A_{i \times 4}
              P_{i+8} \leftarrow A_{i \times 4+1}
 8:
              P_{i+16} \leftarrow A_{i \times 4+2}
 9:
              P_{i+24} \leftarrow A_{i \times 4+3}
10:
         end for
11:
         A \leftarrow \texttt{copy of P}
12:
         V.append(P)
13:
         C \leftarrow \texttt{copy of P}
14:
         for m = 0 to 3 do
15:
              for i = 0 to 8 do
16:
                   for n = 0 to 4 do
17:
                        P_{i\times 4+n} \leftarrow C_{(1+n+m) \mod 4 + i\times 4}
18:
                   end for
19:
              end for
20:
              V.append(P)
21:
22:
         end for
         A \leftarrow \mathsf{copy} \ \mathsf{of} \ \mathsf{P}
23:
24: end for
25: Return V
```

3.2.2 Dynamic Permutation Matrix Values

```
0 \quad 4 \quad 8 \ 12 \ 16 \ 20 \ 24 \ 28 \quad 1 \quad 5 \quad 9 \quad 13 \ 17 \ 21 \ 25 \ 29 \quad 2 \quad 6 \ 10 \ 14 \ 18 \ 22 \ 26 \ 30 \quad 3 \quad 7 \ 11 \ 15 \ 19 \ 23 \ 27 \ 31
  4 \quad 8 \ 12 \quad 0 \ 20 \ 24 \ 28 \ 16 \quad 5 \quad 9 \quad 13 \quad 1 \ 21 \ 25 \ 29 \ 17 \quad 6 \ 10 \ 14 \quad 2 \ 22 \ 26 \ 30 \ 18 \quad 7 \ 11 \ 15
  8 \ 12 \quad 0 \quad 4 \ 24 \ 28 \ 16 \ 20 \quad 9 \quad 13 \quad 1 \quad 5 \ 25 \ 29 \ 17 \ 21 \ 10 \ 14 \quad 2 \quad 6 \ 26 \ 30 \ 18 \ 22 \ 11 \ 15
                                                                                                                7 27 31 19 23
 12 \quad 0 \quad 4 \quad 8 \ 28 \ 16 \ 20 \ 24 \ 13 \quad 1 \quad 5 \quad 9 \quad 29 \ 17 \ 21 \ 25 \ 14 \quad 2 \quad 6 \ 10 \ 30 \ 18 \ 22 \ 26 \ 15 \quad 3
                                                                                                           7 11 31 19 23 27
 12 28 13 29 14 30 15 31 0 16 1 17 2 18 3 19 4 20 5 21
                                                                                    6\ 22
                                                                                           7 23 8 24 9 25 10 26 11 27
 28 \ 13 \ 29 \ 12 \ 30 \ 15 \ 31 \ 14 \ 16 \quad 1 \ 17 \quad 0 \ 18 \quad 3 \ 19 \quad 2 \ 20 \quad 5 \ 21
                                                                               4 22
                                                                                       7 23
                                                                                               6\ 24\ 9\ 25
                                                                                                                8 26 11 27 10
 13 29 12 28 15 31 14 30 1 17 0 16 3 19
                                                          2 18 5 21 4 20
                                                                                   7 23 6 22 9 25
 29 \ 12 \ 28 \ 13 \ 31 \ 14 \ 30 \ 15 \ 17 \quad 0 \ 16 \quad 1 \ 19 \quad 2 \ 18 \quad 3 \ 21 \quad 4 \ 20 \quad 5 \ 23 \quad 6 \ 22 \quad 7 \ 25 \quad 8 \ 24 \quad 9 \ 27 \ 10 \ 26 \ 11
 29 31 17 19 21 23 25 27 12 14 0 2
                                                  4
                                                       6 \quad 8 \ 10 \ 28 \ 30 \ 16 \ 18 \ 20 \ 22 \ 24 \ 26 \ 13 \ 15
                                                                                                                 3
 31\ 17\ 19\ 29\ 23\ 25\ 27\ 21\ 14\ 0\ 2\ 12\ 6\ 8\ 10\ 4\ 30\ 16\ 18\ 28\ 22\ 24\ 26\ 20\ 15
                                                                                                       1 3 13
 17 19 29 31 25 27 21 23 0 2 12 14 8 10
                                                          4 6 16 18 28 30 24 26 20 22
                                                                                                   1 3 13 15 9 11
 19 29 31 17 27 21 23 25 2 12 14 0 10
                                                      4 6 8 18 28 30 16 26 20 22 24 3 13 15
 19\ 27\ 2\ 10\ 18\ 26\ 3\ 11\ 29\ 21\ 12\ 4\ 28\ 20\ 13\ 5\ 31\ 23\ 14\ 6\ 30\ 22\ 15\ 7\ 17\ 25\ 0\ 8\ 16\ 24
 27 \quad 2 \ 10 \ 19 \ 26 \quad 3 \ 11 \ 18 \ 21 \ 12 \quad 4 \ 29 \ 20 \ 13 \quad 5 \ 28 \ 23 \ 14 \quad 6 \ 31 \ 22 \ 15 \quad 7 \ 30 \ 25 \quad 0
                                                                                                           8 17 24 1 9 16
  2\ 10\ 19\ 27\quad 3\ 11\ 18\ 26\ 12\quad 4\ 29\ 21\ 13\quad 5\ 28\ 20\ 14\quad 6\ 31\ 23\ 15\quad 7\ 30\ 22\quad 0\quad 8\ 17\ 25
```

- 3.2.3 Other Options
- 3.3 Confusion ARX
- 3.3.1 A Modular Addition
- 3.3.2 R Bitwise Rotation
- 3.3.3 X XOR
- 3.4 Key Transformation
- 4 Cipher
- 4.1 Transformation
- 4.2 Avalanche Effect Plaintext
- 4.2.1 Encryption Index
- 4.3 Long Plaintexts