

自上而下

LL(1)分析法

目的:避免回溯和左递归

消除左递归

$$p o Plpha_1|Plpha_2|\dots|Plpha_m|eta_1|eta_2|\dots|eta_n$$

其中每个 α 都不等于 ϵ ,而每个 β 都不以P开头,消除左递归公式

$$P o eta_1 P' |eta_2 P'| \dots |eta_n P' | P' o lpha_1 P' | lpha_2 P' | \dots |lpha_m P' | \epsilon$$

提取公共左因子(避免回溯)

使对于任意符号进行匹配任务时, 所选择的子树应是确定的, 肯定会获得成功的

首终结**符集FIRST**(α)

$$FIRST(\alpha) = \{a | \alpha \stackrel{*}{\Rightarrow} a \cdots, a \in V_T\}$$

若 $lpha \stackrel{*}{\Rightarrow} \epsilon$,则 $\epsilon \in FIRST(lpha)$ 。

若对于不同的非终结符 α , 首终结符集相交,即无法直接确定下一步递归的子树,就需要提取公共左因子。

提取公共左因子

给定

$$A \rightarrow \delta \beta_1 |\delta \beta_2| \cdots |\delta \beta_n| \gamma_1 |\gamma_2| \cdots |\gamma_m$$
(其中,每个 γ 不以 δ 开头)

那么,以上规则可被改写为

$$A \to \delta A' |\gamma_1| \gamma_2 | \cdots |\gamma_m$$

 $A' \to \beta_1 |\beta_2| \cdots |\beta_n$

但对于某非终结符 α 遇到匹配字符a, $a\notin FIRST(\alpha)$ 但 $\epsilon\in FIRST(A)$,此时只有当a 紧跟着 α 才能被匹配,否则就是错误。

FOLLOW(lpha) 紧跟在 lpha 后的终结符或#

$$FOLLOW(A) = \{a|S \overset{*}{\Rightarrow} \cdots Aa \cdots, a \in V_T\}$$

若 $S\stackrel{*}{\Rightarrow}\cdots A$,则 $\#\in FOLLOW(A)$.