

2.1 Derivation

The biasing conditions are shown in the figure

If Vas < Vt: -> No inversion layer (channel) exists under the gate

$$\rightarrow Z_{DS} = 0$$

1f VGs > Vt: -> A channel is created.

1f Vas = 0:

> The horizontal & field is o

$$\rightarrow I_{DS} = 0.$$

Vas controls the vertical & field while Vos controls the horizontal & field.

> Field effect transistors.

We want to find an expression for Io ID = dQ do: incremental channel charge at a distance y from the source in an incremental length dy of the channel dt: the time needed for de to cross length dy. Channel > Y da = az. w.dy Qz: charge per area in the channel Let V(y) be the voltage in the channel Qz = Cox. I Vas-V(y) - Vt] Let vol (y) be the electron dirft velocity. Ud(y) = fln · E(y) if E(y). the horizontal electric field induced by Vos is small. dy = Vd(y) dt = µn E(y) dt = µn dy dt dt = fln.dl dy2 Io = de = Cox I VGS-V(y) - Vt] . W. dy. Un. dy2 Indy = Cox I VGS-V(y) - Vt]. W. Hudw So Indy = So Cox I VGS-V(y) - Vt]. w. plu du Is L = MnCox W [(VGS-Vt) VDS - 2 VOS2] ID = Len Cox. WI (VGS-Vt) VDS - 2 VDS2]

If Vos ≥ Vas-Vt > Vos = Vas + Vog > Vas - Vt, Vog > - Vt, Ved < Vt -> No inversion occurs at the drain. -> Channel pinch-off > In becomes independent of Vos. -> Voltage drop across the channel is VBS-Vt. -> MOSFE is saturated. Io = µu Cox 2 [(VGs-Vt) (VGs-Vt)- 2 (VGS-Vt)2] = $\frac{1}{2} \mu n \cos \frac{\omega}{\lambda} \cdot (V_{GS} - V_{t})^{2}$ Vas < V+h: Cutoff VGS = V+h: O VDS << 2(VGS-V+h), ID & MINCOX. W (VGS-V+h)-VOS (since 1 Vos = << (VGs-V+h)·Vos) ID is a linear function of Vos

Ron = Zo = funcox (VGS-V+h) W

Deep triode region; MOSFET operates as
a resistor 2 Vas < VGS-V+h: Troole 3 Vos > VGS-VH: Saturation

- 2.2 Transconductance (Gm)
- In general. $Gm = \frac{Z}{V} (S = \frac{1}{2} = \frac{A}{V})$

How does Ins change with respect to Vgs. Vos. VBS ?

1. Gate transconductance.

$$g_m = \frac{2Z_0}{2V_{GS}} = \left[\mu_0 C_{OX} \frac{\omega}{L}\right] (V_{GS} - V_{HA}) = \frac{2Z_0}{V_{GS} - V_{HA}}$$

* gm = 2 20/ Vor may be deceiving since Is is dependent on Vor.

gm in thode region:

$$g_{m} = \frac{\lambda I_{o}}{\lambda V_{GS}} = \frac{\lambda}{\lambda V_{GS}} \left(\frac{1}{2} \mu_{n} C_{ox} \frac{\omega}{L} \left(2 \left(V_{GS} - V_{Th} \right) V_{oS} - V_{oS}^{2} \right) \right)$$

$$= \mu_{n} C_{ox} \frac{\omega}{L} V_{oS}$$

gm duops in the triple vegion

> For amplication MosteTs

> Vas are usually leapt in Saturation.

2. Body transconductance. *
$$\beta = \mu_0 \log \omega$$

$$I_D = \frac{\beta}{2} (V_{GS} - V_{H_0})^2 \quad \text{V+h is a function of VSB}$$

$$\Delta I_D = \left(\frac{2I_D}{2V_{SB}}\right) \Delta V_{SB}$$

$$\frac{2I_D}{2V_{SB}} = -\beta \left(V_{GS} - V_{H_0}(V_{SB})\right) \left(\frac{2V_{H_0}}{2V_{SB}}\right)$$

$$\Delta Z_D = \left(\frac{2Z_D}{2V_{SB}}\right) \Delta V_{SB}$$

$$\frac{2Z_0}{2VSB} = -g_m \cdot \eta = -g_{mb}$$

3. Dram / source transconductance.

Ideally gds = 0. and Yo & L.

2.3 Second-Order Effects

Channel Length Modulation (CLM)

Increasing Vas Th NMOS

- -> Increases the width of the depletion region around the drain
- -> Reduces the effective channel length in saturation
- \Rightarrow Causes Ips to increase (since $R \propto \frac{L}{\omega}$ and $I = \frac{V}{R}$)
- $\Rightarrow \Delta I_{p} = \frac{2Z_{p}}{2V_{0S}} \Delta V_{0S}$

Body Effect

For MMOS, if VB < Vs:

- > More holes are attracted to the substrate connection
- ? Creates a larger negative charge
- > Depletion region widens
- > Vth increases because the gate charge must minor depletion area charge first

The body effect can occur even when VB is constant as Vs varies.

Subthreshold Conduction

For MMOS, if VD > ~ loomV

- -> For Vas = V+h, some Io Still flows from drain to source
- -> ID exhibits an exponential dependence on Vas
- \Rightarrow $I_D = I_0 \exp\left(\frac{V_{GS}}{\mathcal{E} \cdot V_T}\right)$.
 - $I_0 \propto \frac{\omega}{L}$ 3 $\varepsilon > 1$ (nonideality factor), $V_1 = \frac{kT}{9}$
- ⇒ Weak inversion region (as opposed to VGS > Vth (

 Strong minusion)

 ⇒ $g_m = \frac{ID}{E \cdot V_T}$ ⇒ $\frac{ID}{E \cdot V_T} = \frac{2ZD}{V_{SY}}$, $V_{SY} = 2EV_T \approx 80mV$ if $E \approx 1.5$

- -> Large device widths or low To are necessary