Data Mining

About Myself

- Contact Details
 - Room: 28
 - Email: mghouri@numl.edu.pk
 - Contact Hours: Mon 8:00 AM − 1:00 PM

Textbook

 Han, J., Kamber, M., & Pei, J. "Data Mining: Concepts and Techniques", Latest Edition, Morgan Kaufmann

Evaluation Criteria

Subject to change as per policy

Activity	Evaluation Percentage
Assignments	15
Quizzes	10
Project	10
Mid Term	25
End Term	40

Why Data Mining?

- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

- Why Data Mining?
- What Is Data Mining?

- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>hidden</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - □ (Deductive) expert systems

Knowledge Discovery (KDD) Process

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base

Data Cube

Data Mining in Business Intelligence

KDD Process: A View from ML and Statistics

This is a view from typical machine learning and statistics communities

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Multi-Dimensional View of Data Mining

Data to be mined

Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream (e.g. video), spatiotemporal (e.g. maps), time-series and sequence (e.g. stock), text (customer sentiment) and web, multi-media, graphs & social and information networks

Knowledge to be mined (or: Data mining functions)

- Characterization (summarization of general features of a target class. E.g. characteristics of software products whose sales were increased by 10% last year)
- □ Discrimination (comparison of features of contrasting classes. Eg. Comparing features of dataset where software were increased by 10% Vs. which were decreased by 30%)
- Association, classification, clustering, trend/deviation, outlier analysis
- Descriptive (characterize properties of data) vs. predictive data mining (predictions)

Multi-Dimensional View of Data Mining

Techniques utilized

□ Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?

- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- Summary

Data Mining Functions: (1) Generalization

- Information integration and data warehouse construction
 - Data cleaning, transformation, integration, and multidimensional data model
- Data cube technology
 - Multidimensional aggregates
 - OLAP (online analytical processing)

- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region

Data Mining Functions: (2) Pattern Discovery

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association and Correlation Analysis

- A typical association rule
 - Diaper \rightarrow Juice [0.5%, 75%] (support, confidence) (P(XUY),P(X|Y))
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

Data Mining Functions: (3) Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- Typical applications:
 - Credit card fraud detection, direct marketing, classifying diseases, web-pages, ...

Data Mining Functions: (4) Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- □ Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity& minimizing interclass similarity
- Many methods and applications
 - Like market segmentation, community detection, improving search results, ...

Data Mining Functions: (5) Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person's garbage could be another person's treasure
 - Methods: by product of clustering or regression analysis, ...
 - Useful in fraud detection, rare events analysis

Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of "patterns"
 - Some may fit only certain dimension space (time, location, ...)
 - Some may not be representative, may be temporary, ...
- Evaluation of mined knowledge
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Relevance

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- Summary

Data Mining: Confluence of Multiple Disciplines

Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be scalable to handle big data
- High-dimensionality of data
 - May have tens of thousands of dimensions
- High complexity of data
 - □ Data streams and sensor data (temp, humidity, air pressure, gps, heart rate etc.)
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial (3D), spatiotemporal (maps), multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?

- Major Issues in Data Mining
- Summary

Applications of Data Mining

- Web page analysis: classification, clustering, ranking
- Recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis
- Data mining and text analysis
- Data mining and social and information network analysis
- Data mining and software engineering (e.g. bug mining, i.e. mining of software bugs in large programs)
- □ Built-in (invisible data mining) functions in Google, MS, Yahoo!, Linked, Facebook, ...

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining

Summary

Major Issues in Data Mining (1)

- Mining Methodology
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space (e.g. cube)
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining
- User Interaction
 - Interactive mining
 - Incorporation of background knowledge
 - Presentation and visualization of data mining results

Major Issues in Data Mining (2)

- Efficiency and Scalability
 - Efficiency and scalability of data mining algorithms
 - Parallel and incremental mining methods (dealing with new input data)
- Diversity of data types
 - Handling complex types of data
 - Mining dynamic, networked, and global data repositories
- Data mining and society
 - Social impacts of data mining (good use in society vs misuse)
 - Privacy-preserving data mining
 - Invisible data mining (web search engines, internet-based stores)

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- Summary

Summary

- Data mining: Discovering interesting patterns and knowledge from massive amount of data
- A natural evolution of science and information technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of data
- Data mining functionalities: characterization, discrimination, association, classification, clustering, trend and outlier analysis, etc.
- Data mining technologies and applications
- Major issues in data mining

Recommended Reference Books

- □ Charu C. Aggarwal, Data Mining: The Textbook, Springer, 2015
- E. Alpaydin. Introduction to Machine Learning, 2nd ed., MIT Press, 2011
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, 2009
- T. M. Mitchell, Machine Learning, McGraw Hill, 1997
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005 (2nd ed. 2016)
- □ I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005
- Mohammed J. Zaki and Wagner Meira Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms 2014