Sprawozdanie nr 3

Aleksander Głowacki

27.11.2022

Spis treści

1	Zad	anie 1.	2		
	1.1	Opis problemu	2		
	1.2	Sposób rozwiązania			
2	Zad	anie 2.	2		
	2.1	Opis problemu	2		
	2.2	Sposób rozwiązania	3		
3	Zad	anie 3.	5		
	3.1	Opis problemu	5		
	3.2	Sposób rozwiązania			
4	Zadanie 4.				
	4.1	Opis problemu	6		
	4.2	Sposób rozwiązania	6		
	4.3	Ŵyniki	7		
		Wnioski	7		
5	Zad	anie 5.	7		
	5.1	Opis problemu	7		
	5.2	Sposób rozwiązania			
	5.3	Wyniki			
	5.4	Wnioski	8		

6	Zada	anie 6.	8
	6.1	Opis problemu	8
	6.2	Analiza	8
	6.3	Wyniki	Ĝ
	6.4	Wnioski	10
	6.5	Odpowiedzi na pytania	10

1 Zadanie 1.

1.1 Opis problemu

Rozwiązanie równania postaci f(x) = 0 metodą bisekcji.

1.2 Sposób rozwiązania

Szukamy miejsca zerowego funkcji na danym przedziale: (a, b).

Jeżeli funkcja jest ciągła na przedziale i $sign(f(a)) \neq sign(f(b))$ to znaczy, że istnieje miejsce zerowe funkcji na tym przedziale. (Twierdzenie Darboux o wartości pośredniej)

Jego przybliżeniem będzie wartość c równo pomiędzy a i b.

Jeżeli chcemy uzyskać lepsze przybliżenie to spradzamy na którym z dwóch przedziałów (a,c) i (c,b) funkcja zmienia znak ten przedział rozważamy, bo w nim występuje miejsce zerowe.

Powyższy schemat powtarzamy aż do uzyskania pożądanej dokładności. Delta określa szerokość przedziału na którym wystębuje przecięcie funkcji f(x) z osią OX, natomiast epsilon bada "wysokość"czyli wartość funkcji w znalezionym punkcie - to jak bardzo odbiega od zera.

2 Zadanie 2.

2.1 Opis problemu

Rozwiązanie równania postaci f(x) = 0 metodą stycznych. W tym problemie konieczna jest znajomość pochodnej badanej funkcji. W danych wejściowych konieczne jest również jakiekolwiek początkowe przybliżenie x0

Rysunek 1: ilustracja metody poławiania

2.2 Sposób rozwiązania

Szukamy miejsca zerowego na podstawie stycznej do wykresu funkcji. Styczna ma jeden punkt wspólny z krzywą - początkowo oznaczmy go (x0, f(x0)). Miejsce przecięcia stycznej z osią OX wyznacza przybliżenie szukanego miejsca zerowego f(x).

Aby uzyskać dokładniejszy wynik powtarzamy wyznaczenie stycznej, tym razem od punktu, który przed cheilą wyznaczyliśmy, na wykresie f(x). Wzór na styczną:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Podstawiamy y := 0 aby otrzymać x

$$0 = f'(x_0)(x) - f'(x_0)(x_0) + f(x_0)$$
$$x = \frac{(f'(x_0)(x_0) - f(x_0))}{f'(x_0)}$$
$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Wykonując iteracyjnie algorytm wyznaczania siecznych i miejsc ich przecięcia z osią X otrzymujemy coraz dokładniejsze przybliżenie miejsca zerowego fukncji f(x)

Rysunek 2: źródło: https://kmim.wm.pwr.edu.pl/myszka/dydaktyka/informatyka-i/laboratorium
projekt/laboratorium-6-funkcje-metoda-newtona-raphsona/

Rysunek 1: Przykład funkcji spełniającej założenia oraz ilustracja pierwszych kroków algorytmu

3 Zadanie 3.

3.1 Opis problemu

Rozwiązanie równania postaci f(x) = 0 metodą siecznych. Do rozwiązania problemu musimy zapewnić dwa punkty na których będziemy kłaść sieczną względem funkcji f(x). Czyli po prostu krańce przedziału tak jak w metodzie bisekcji.

3.2 Sposób rozwiązania

Wyznaczamy równanie prostej przechodzącej przez dwa punkty na wykresie funkcji: $(x_0, f(x_0))$ i $(x_1, f(x_1))$. Znajdujemy r - miejsce przecięcia z osią OX. To właśnie jest nasze wstępne przybliżenie pierwiastka.

Następnie działamy w pętli aż do uzyskania odpowiedniej dokładności lub limitu iteracji:

Badamy który z przedziałów (x0,r)i(r,x1) zawiera miejsce zerowe - zmiana znaku wartości na krańcach przedziału. Odpowiednio oznaczamy nowy przedział i nowe punkty do położenia siecznej i szukamy nowego przecięcia siecznej z osią OX.

Wzór na sieczną:

$$(y - f(x_0)(x_1 - x_0) - (f(x_1) - f(x_0))(x - x_0))$$

Podstawiamy y := 0 aby znaleźć miejsce przecięcia z OX.

$$(f(x_1) - f(x_0))(x_0) - f(x_0)(x_1 - x_0) = (f(x_1) - f(x_0))(x)$$
$$x = x_0 - f(x_0) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

x0 x3 x2 sieczna1 x1 sieczna0

Rysunek 3: ilustracja metody siecznych

4 Zadanie 4.

4.1 Opis problemu

Znalezienie rozwiązania równania:

$$sin(x) - (\frac{x}{2})^2$$

za pomocą trzech różnych metod.

4.2 Sposób rozwiązania

Użycie oprogramowanych funkcji dla danych z zadania i wyświetlenie wynikow.

4.3 Wyniki

Tabela 1: porównanie metod wyznaczania pierwiastka

metoda	r	v	it	err
Bisekcja	1.9337539672851562	-2.7027680138402843e-7	16	0
Styczne	1.933753779789742	-2.2423316314856834e-8	4	0
Sieczne	1.9337509005356321	3.783706985283075e-6	4	0

4.4 Wnioski

- 1. Wszystkie metody są skuteczne, ponieważ odnalazły pierwiastek w danej dokładności.
- 2. W testowanym przypadku metoda Newtona jest najskuteczniejsza, ponieważ wykonała najmniej iteracji.

5 Zadanie 5.

5.1 Opis problemu

Szukanie miejsca przecięcia funkcji $f(x) = e^x$ i g(x) = 3 * x

5.2 Sposób rozwiązania

Porównujemy zadane funkcje ze sobą, jedną z nich przerzucamy na drugą stronę i otrzymujemy równanie postaci f(x) - g(x) = 0 gdzie lewa strona jest nową funkcją, której pierwiastków szukamy. Miejsca przecięcia będą prwadopodobnie dwa, ewentualnie jedno lub wcale. Na początkowe przedziały wziąlem (-10,1) i (1,10)

5.3 Wyniki

Tabela 2: przecięcia funkcji

	r	v	it	err
Bisekcja1	1.5121002197265625	-5.274503124397256e-5	16	0
Bisekcja2	0.618988037109375	8.371583772359692e-5	15	0

5.4 Wnioski

Dokładność wyników zależy od początkowo ustalonego przedziału. W najgorszym wypadku wyniku nie będzie. Dalsze błędy zaokrągleń wynikają z dzielenia przedziału na pół - im szerszy przedział początkowy, tym więcej błędów może narosnąć. Nie są one jednak poważne, bo wyniki i tak znalazły się w kilkunastu iteracjach.

6 Zadanie 6.

6.1 Opis problemu

Znalezienie pierwiastków funkcji:

$$f(x) = e^{1-x}$$
 $g(x) = x * e^{-x}$

metodami bisekcji, stycznych i siecznych dla dokładności rzędu 10^{-5}

6.2 Analiza

$$\lim_{x \to \infty} f(x) = -1$$

$$\lim_{x \to \infty} g(x) = 0$$

Jeżeli szukamy przecięcia funkcji z osią OX gdy funkcja jest zbieżna do tej osi, to mamy duży problem. W granicy do nieskończoności funkcja osiąga wartości coraz bliższe zera aż w końcu kończy się precyzja arytmetyki i komputer będzie ustawiał te wartości dookoła zera, co jest niezgodne z prawdą. Możemy mieć sytuację, że funkcja zbiega do 0, a nigdy go nie osiąga, a mimo tego na komputerze możemy to 0 otrzymać w wyniku skończonej precyzji arytmetyki.

6.3 Wyniki

Tabela 3: Metoda bisekcji dla dokładności rzędu $10^{-5}\,$

funkcja	range	root	f(root)	it	err
f	(-1, 1000)	0.9999999443534762	5.5646525387587076e-8	32	0
g	(-1, 1000)	499.5	5.867347112928062e-215	1	0
f	(-10, 10)	0.9999999403953552	5.960464655174746e-8	26	0
g	(-10, 10)	0.0	0.0	1	0
f	(-10, -1)	Nothing	Nothing	Nothing	1
g	(-10, -1)	Nothing	Nothing	Nothing	1
f	(-1,2)	1.0000000596046448	-5.9604642999033786e-8	24	0
g	(-1,2)	-5.960464477539063e-8	-5.960464832810441e-8	24	0

Tabela 4: Metoda Newtona dla dokładności rzędu $10^{-5}\,$

funkcja	$\mathbf{x0}$	root	f(root)	it	err
f	-5.0	0.9999999998809204	1.1907963504143027e-10	10	0
g	-5.0	-8.215721693760581e-11	-8.215721694435562e-11	11	0
f	2.5	0.999999999788638	2.1136203898208805e-11	7	0
g	2.5	19.84810470417909	4.7620800660145274e-8	15	0
f	10.0	Nothing	Nothing	Nothing	1
\mathbf{g}	10.0	19.70579463139675	5.450998750038715e-8	9	0
f	1.0	1.0	0.0	0	0
g	1.0	Nothing	Nothing	Nothing	2

Tabela 5: Metoda siecznych dla dokładności rzędu 10⁻⁵

funkcja	(x0, x1)	root	f(root)	it	err
f	(0.0, 2.0)	1.0000000767640695	-7.676406654777423e-8	19	0
g	(0.0, 2.0)	0.0	0.0	1	0
f	(-20.0, 30.0)	Nothing	Nothing	Nothing	1
g	(-20.0, 30.0)	30.0	2.8072868906520526e-12	1	0
f	(-2.0, 3.0)	1.0000000897951176	-8.979511356699277e-8	102	0
g	(-2.0, 3.0)	8.891398861621269e-8	8.891398071051567e-8	147	0
f	(2.0, 5.0)	1.0000017595679251	-1.7595663771574621e-6	247	0
g	(2.0, 5.0)	Nothing	Nothing	Nothing	1

6.4 Wnioski

- 1. Algorytmy mają swoje wady głównie to że znajdują rzekome pierwiastki gdy funkcja zbiega do zera i w wyniku błędów arytmetyki wskazują na przecięcia.
- 2. Dobierając odpowiednio początkowe przybliżenia można jednak uzyskać prawidłowe wyniki.
- 3. Algorytmy nie są złe, błedy wynikają z ograniczeń komputera a nie samych algorytmów.

6.5 Odpowiedzi na pytania

Czy można wybrać początkowe przybliżenie x0 = 1 dla g(x)?

Odp: Nie, ponieważ zwracam wtedy błąd dzielenia przez 0.

Co się stanie gdy w metodzie Newtona wybiorę x0 >> 1 dla f(x)?

Odp: Nie dostanę wyniku w zadanej precyzji, bo będzie zbyt dużo iteracji. Dla dużych x to pochodna pada zbyt blisko zera i wtedy też sie psuje i dostaję inny kod błędu.

Co się stanie gdy dla g(x) podam x0 > 1?

Odp: Znajdę fikcyjne pierwiastki, ponieważ w wyniku skończonej precyzji arytmetyki otrzymuję zakłamania gdy funkcja zbiega do zera. Metoda Newtona znajduje przecięcia które się pojawiły w wyniku błędów arytmetyki.