Statistical Computing - Practical One

2025-02-05

Table of contents

1	Index		3	
2	Question One		4	
	2.0.1	Finding all row numbers of "air quality" with missing values	4	
3	Question Two			
	3.0.1	Mean of temperature	ŗ	
	3.0.2	Standard deviation of temperature	Ę	
	3.0.3	Minimum of temperature	Ę	
	3.0.4	Maximum of temperature	Ę	
	3.0.5	Mean of Ozone	ŗ	
	3.0.6	Standard deviation of Ozone	(
	3.0.7	Minimum of Ozone	(
	3.0.8	Maximum of Ozone	(
4	Question Three		7	
	4.0.1	Parameter estimates using matrix calculations	7	
5	Question Fo	Question Four		
	5.0.1	Fitting a linear model using lm()	8	

1 Index

Practical One of Statistical Computing . This practical consists of 4 questions .

2 Question One

2.0.1 Finding all row numbers of "airquality" with missing values

```
rowsNA <-which((is.na(airquality)))</pre>
```

[1] 43 45 46 52 53 [20] 55 56 57 58 59 61 65 72 75 83 84 102 103 107 115 119 150 158 [39] 159 164 180 249 250 251

3 Question Two

3.0.1 Mean of temperature

```
tempmean <- mean(airquality$Temp,na.rm=TRUE)</pre>
```

[1] 77.88235

3.0.2 Standard deviation of temperature

```
tempsd <- sd(airquality$Temp,na.rm=TRUE)</pre>
```

[1] 9.46527

3.0.3 Minimum of temperature

```
tempmin <- min(airquality$Temp,na.rm=TRUE)</pre>
```

[1] 56

3.0.4 Maximum of temperature

```
tempmax <- max(airquality$Temp,na.rm=TRUE)</pre>
```

[1] 97

3.0.5 Mean of Ozone

```
ozonemean <- mean(airquality$0zone,na.rm=TRUE)</pre>
```

[1] 42.12931

3.0.6 Standard deviation of Ozone

```
ozonesd <- sd(airquality$Ozone,na.rm=TRUE)</pre>
```

[1] 32.98788

3.0.7 Minimum of Ozone

```
ozonemin <- min(airquality$0zone, na.rm=TRUE)
```

[1] 1

3.0.8 Maximum of Ozone

```
ozonemax <- max(airquality$0zone,na.rm=TRUE)</pre>
```

[1] 168

4 Question Three

4.0.1 Parameter estimates using matrix calculations

```
beta <- solve(t(xmatrix)%*%xmatrix)%*%t(xmatrix)%*%ymatrix</pre>
```

[,1] [1,] -17.579095 [2,] 3.932409

5 Question Four

5.0.1 Fitting a linear model using Im()

```
modelfit <- lm(dist~speed,data=cars)</pre>
summary(modelfit)
Call:
lm(formula = dist ~ speed, data = cars)
Residuals:
   Min
           1Q Median 3Q
                                  Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791
                       6.7584 -2.601 0.0123 *
speed
             3.9324
                       0.4155 9.464 1.49e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511,
                            Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```