Задание ПЗ №8. Прогнозирование и планирование временных рядов.

Задание 1. По данным о средних доходах на конечное потребление за десять лет, которые представлены в табл. 1, оцените наличие тренда и в случае положительного ответа постройте трендовую модель.

Расходы на конечное потребление, тыс. у.е.

Таблица 1

Год (t)	P асходы (y_t)
1-й	7
2-й	8
3-й	8
4-й	10
5-й	11
6-й	12
7-й	14
8-й	16
9-й	17
10-й	19

Решение. Для формального определения структуры временного ряда проводится автокорреляционный анализ уровней временного ряда. С этой целью рассчитываются коэффициенты автокорреляции уровней временного ряда. Расчет автокорреляционной функции можно осуществлять на компьютере средствами Excel: **Анализ** данных / **Корреляция.**

	Α	В	С	D	Е	F	G	
1	t	y ;	y _{t-1}		t	y ,	y t-2	
2	1	7			1	7		
3	2	8	7		2	8		
4	3	8	8		3	8	7	
5	4	10	8		4	10	8	
6	5	11	10		5	11	8	
7	6	12	11		6	12	10	
8	7	14	12		7	14	11	
9	8	16	14		8	16	12	
10	9	17	16		9	17	14	
11	10	19	17		10	19	16	
12			19				17	
13							19	
14								

На рис. 2 представлены диалоговые окна расчета коэффициентов автокорреляции первого и второго порядков временного ряда y_t .

 $Puc.\ 2.\$ Диалоговые окна расчета коэффициента автокорреляции первого и второго порядков ряда y_t

На рис. 3 представлены результаты расчетов.

	Столбец 1	Столбец 2		Столбец 1	Столбец 2
Столбец 1	1		Столбец 1	1	
Столбец 2	0,986854	1	Столбец 2	0,981221	1

Рис. 3. Результаты расчетов коэффициентов автокорреляции.

Поскольку коэффициенты автокорреляции первых порядков (r_1, r_2) являются высокими, можно предположить наличие линейного тренда T = a + bt.

Определите уравнение линейного тренда. Для этого:

- 1. Постройте диаграмму по значениям временного ряда y_t . (тип *Точечная*).
- 2. Нажмите правой кнопкой мыши на одной из точек данных на диаграмме. В открывшемся меню необходимо выбрать команду *Добавить линию тренда*. На экране появится диалоговое окно *Линия тренда*.

- 3. Выберете тип регрессии. Например, линейная.
- 4. Переключитесь на вкладку *Параметры*. В разделе *Название аппроксимирующей* (сглаженной) кривой установите переключатель автоматическое, установите отображение на диаграмме уравнения и величины достоверности аппроксимации.

Аналогично постройте линию тренда, в качестве функции выбрать степенную.

Замечание: Уравнение линейного тренда можно получить, используя инструмент Регрессия Пакета анализа.

Задание для самостоятельной работы №1.

По данным о выпуске продукции за десять лет, которые представлены в табл. 1, оцените наличие тренда и в случае положительного ответа постройте трендовую модель.

		Годы выпуска продукции (t)								
№ варианта	1	2	3	4	5	6	7	8	9	10
1.	13,5	12,7	12	11,9	11,5	11,2	10,8	10,7	10,6	10,5
2.	251	249	248	246	242	239	235	230	228	225
3.	0,91	0,87	0,85	0,82	0,79	0,75	0,7	0,66	0,62	0,6
4.	2,54	2,5	2,45	2,4	2,37	2,3	2,27	2,19	2,05	2
5.	6,3	6,21	6,15	6	5,8	-5,45	5,05	4,85	4,5	4,2
6.	18,2	17,5	17,1	16,8	16,1	15,7	15,2	14,5	14,3	14
7.	134	130	128	126	122	120	117	112	108	105
8.	64	61	58	52	49	45	40	37	34	30
9.	4,25	4,2	4,18	4,11	4,05	4	3,91	3,85	3,77	3,7
10.	1,8	1,78	1,7	1,64	1,59	1,51	1,45	1,42	1,4	1,37

Задание 2. Провести сглаживание данных задачи 1 и выполнить прогноз на период t=11.

Скопируйте условие предыдущего примера на Лист 2. (Диапазон A1:B11)

С помощью пакета анализа рассчитайте значения скользящего среднего (инструмент «скользящее среднее»).

Заполните диалог следующим образом:

- входной интервал \$B\$2:\$B\$11,
- интервал 3,
- выходной интервал -\$С\$3,
- установите флажок Вывод графика.

Удалите значения равные **#H**/Д. Результаты оформите в таблицу с тремя столбцами: **t**, y_t , **Прогноз (скользящ.)**

Скорректируйте построенный график таким образом, чтобы по оси X были значения t (от 1 до 11), по оси Y – значения скользящего среднего. График фактических значений y_t должен быть построен для дней, начиная c 1-го по 10-ый, график прогнозируемых значений должен быть построен для дней начиная c 4-го по 11-ый.

С помощью пакета анализа рассчитайте значения экспоненциального сглаживания (инструмент «экспоненциальное сглаживание»).

Заполните диалог следующим образом:

- входной интервал \$B\$2:\$B\$11,
- фактор затухания 0,25,

- выходной интервал **\$D\$2**,
- установите флажок Вывод графика.

Удалите значения равные #Н/Д.

Продлите значения рассчитанного столбца для получения прогноза на 11-й день. Назовите столбец **Прогноз (экспоненц.).** Скорректируйте построенный график таким образом, чтобы по оси X были значения дней (от 1 до 11), по оси У — спрогнозированные значения. График фактических значений y_t должен быть построен для дней, начиная с 1-го по 10-ый, график прогнозируемых значений должен быть построен для дней начиная с 2-го по 11-ый.

Сформулируйте экономический смысл полученных моделей. Объясните механизм прогнозирования в каждой их них.

Задание для самостоятельной работы №2.

По данным задания 1 проведите сглаживание данных и выполните прогноз на период t=11.

Задание 3. По данным табл. 2 исследуйте структуру временного ряда по квартальным данным потребления электроэнергии за 2001-2004 гг. Оцените уровень и структуру потребления электроэнергии в 2005 г.

Исхолные ланные

Таблица 2

Исходные данные				
Период	Потребление электроэнергии,			
	млрд. кВт - ч			
I кв. 2001 г.	6,0			
II кв. 2001 г.	4,4			
III кв. 2001 г.	5,0			
IV кв. 2001 г.	9,0			
I кв. 2002 г.	7,2			
II кв. 2002 г.	4,8			
III кв. 2002 г.	6,0			
IV кв. 2002 г.	10,0			
I кв. 2003 г.	8,0			
II кв. 2003 г.	5,6			
III кв. 2003 г.	6,4			
IV кв. 2003 г.	11,0			
I кв. 2004 г.	9,0			
II кв. 2004 г.	6,6			
III кв. 2004 г.	7,0			
IV кв. 2004 г.	10,8			

Решение. В данной задаче в качестве зависимой переменной y выступает потребление электроэнергии, в качестве независимой переменной — время t ($t = \overline{1,16}$). Проверим наличие сезонности в ряде y_t .

Первоначально изобразите ряд графически. Постройте диаграмму по исходным данным задачи. Тип диаграммы – график с маркерами. Периоды от 1 до 16 использовать в качестве подписи по оси X.

Попробуйте пообобрать линию тренда на построенном графике.

Рис. 4. График потребления электроэнергии за I кв. 2001 г. - IV кв. 2004 г.

Из рис. 4 видно, что в IV кв. потребление электроэнергии каждый год возрастает, поэтому есть подозрение на наличие сезонной компоненты в ряде. Визуально также Видно, что амплитуда сезонных колебаний постоянна, что позволяет предположить аддитивную структуру временного ряда y = T + S + E.

Решение задачи (с расчетом сезонных компонент). Для расчета сезонных компонент воспользуемся методом скользящей средней. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 4). Полученные суммы разделим на длину периода (в нашем случае на 4) и найдем скользящие средние, которые уже не зависят от сезонности (гр. 4 табл. 4). Чтобы привести эти значения в соответствие с фактическими моментами времени, найдем средние значения из каждых двух соседних скользящих средних (гр. 5 табл. 4). Оценку сезонной компоненты найдем, вычитая из фактического значения уровня ряда у, центрированную скользящую среднюю (гр. 6 табл. 4).

Таблица 4

<u>Исходные</u>	данные
-----------------	--------

	<u> исходиме данные</u>						
Номер	Потребление	Итого за	Скользящая	Центрированная	Оценка		
периода (t)	электроэнергии	четыре	средняя за	скользящая	сезонной		
	(y_t)	квартала	четыре квартала	средняя	компоненты		
1	2	3	4	5	6		
1	6	-	-	-	-		
2	4,4	24,4	6,1	-	_		
3	5	25,6	6,4	6,25	-1,25		
4	9	26	6,5	6,45	2,55		
5	7,2	27	6,75	6,625	0,575		
6	4,8	28	7	6,875	-2,075		
7	6	28,8	7,2	7,1	-1,1		
8	10	29,6	7,4	7,3	2,7		
9	8	30	7,5	7,45	0,55		
10	5,6	31	7,75	7,625	-2,025		
11	6,4	32	8	7,875	-1,475		

12	11	33	8,25	8,125	2,875
13	9	33,6	8,4	8,325	0,675
14	6,6	33,4	8,35	8,375	-1,775
15	7	24,4	-	-	-
16	10,8	-	-	-	-

На следующем этапе подготовим вторую вспомогательную табл. 5. Занесем в нее оценки сезонных компонент, распределив их по кварталам. За каждый квартал найдем среднюю оценку сезонной компоненты. Например, для I кв. $\overline{S_1} = (0.575 + 0.55 + 0.675) / 3 = 0.6$.

Сезонные воздействия за период должны взаимопогашаться. В аддитивной модели это выражается в том, что сумма всех сезонных компонент за период должна быть равна нулю. Рассчитаем корректирующий коэффициент по формуле $k = \sum_{i=1}^n \overline{S_i} / n$, где n — длина периода.

Для нашего примера k = (0.6 - 1.958 - 1.275 + 2.708) / 4 = 0.01875.

Скорректированные значения сезонной компоненты рассчитываем как разность между средним значением сезонной компоненты и корректирующим коэффициентом $S_i = \overline{S_i} - k$, $i = \overline{1,n}$ (табл. 5).

Таблица 5

Квартал	Год		Средняя оценка сезонной	Скорректирован ная сезонная			
	2001		••••	• • • •	_		
	2001	2002	2003	2004	компоненты для і-	компонента (S_i)	
					го квартала (S_i)		
I	-	0,575	0,55	0,675	0,6	0,6	
II	-	-2,075	-2,025	-1,775	-1,95833	-2,0	
III	-1,25	-1,1	-1,475	ı	-1,275	-1,3	
IV	2,55	2,7	2,875	ı	2,708333	2,7	
Корректиру	Корректирующий коэффициент				0,01875		

Элиминируем сезонную компоненту из исходного ряда, т.е. рассчитаем y - S. С этой целью заполним рабочую табл. 6.:

Таблица 6

Номер	Исходный	Сезонная	Преобразованн
периода (t)	ряд (у)	компонента (S)	ый ряд <i>(у -S)</i>
1-й	6,0	0,6	5,4
2-й	4,4	-2,0	6,4
3-й	5,0	-1,3	6,3
4-й	9,0	2,7	6,3
5-й	7,2	0,6	6,6
6-й	4,8	-2,0	6,8
7-й	6,0	1,3	7,3
8-й	10,0	2,7	7,3
9-й	8,0	0,6	7,4
10-й	5,6	-2,0	7,6
11-й	6,4	-1,3	7,7
12-й	11,0	2,7	8,3
13-й	9,0	0,6	8,4

14-й	6,6	-2,0	8,6
15-й	7,0	-1,3	8,3
16-й	10,8	2,7	8,1

Далее в преобразованном ряду y - S можно выделить линейный тренд.

Зная значения сезонных компонент

$$S = \begin{cases} 0.6; t = 1.5.9.13 \\ -2; t = 2.6.10.14 \\ -1.3; t = 3.7.11.15 \\ 2.7; t = 4.8.12.16 \end{cases}$$

и тренд y=a+bt, можно прогнозировать потребление электроэнергии в каждом квартале с использованием модели $y = a+bt + S_t$:

Вычислите

у17; у18; у19 и у20.

Задание для самостоятельной работы №3.

В табл. 7 имеются данные об объеме экспорта по кварталам за 2000-2005 гг. Постройте аддитивную модель временного ряда и спрогнозируйте экспорт по кварталам на 2006 г.

Таблица 3.7

Номер	Экспорт,	Номер	Экспорт,
периода	млрд дол.	периода(t)	млрд. дол.
	США		США
1-й	4087	13-й	6975
2-й	4737	14-й	6891
3-й	5768	15-й	7527
4-й	6005	16-й	7971
5-й	5639	17-й	5875
6-й	6745	18-й	6140
7-й	6311	19-й	6248
8-й	7107	20-й	6041
9-й	5741	21-й	4626
10-й	7087	22-й	6501
11-й	7310	23-й	6284
12-й	8600	24-й	6707