## CIE QUESTION PAPER



## Course Outcomes: At the end of the course the students are able to

1

| CO1 | Represent the signals in various forms.                      |
|-----|--------------------------------------------------------------|
| CO2 | Analyze Signals over AWGN channel.                           |
| CO3 | Generate and detect various Digital Modulation techniques.   |
| CO4 | Compute performance parameters of band limited channels.     |
| CO5 | Explain the concept of Spread spectrum communication system. |

1



Figure Q5

21/11/25

QLECES 2 Global Academy of Technology, Bengaluru-98 **Scheme & Solution** 

sub with code: Digital communication system Dept: Ecand & IA: 1/11/111 Allocated Definition! Phase selectivity was shift between Pertinent signals to achiève obesire séparation e phase angles of all frequency contents given signals are shifted by ± 90°. The resulting function of time is Hilbert Transform,
of signal. It is also called as quadrator filter g(t) = = 1 g(T) dT 1. Signal 9H) and its H-T gH have same magnitude repetrum [H4)-1-jsgn4) Properties 194) = 194) N.K. T ê(4): -j sqn(4) q(1) [-j sqncf) = 1 [q(1)] = |- jægnet) q(1) 1941= 1941 2. If get is H.T of get then H.T of g(1) · in -g(+) g(t) -> H.7 -9H) H.T X H.T > - j sgn(f) · - j sgn(f) :; sqn 4)=1 = j2 pgn2(f)

= -1/1. \$ +

Q No.

Proof 941= - j sqn4). 94) - - j sqn(1) [- j sqn(4) - q(4)] = j2 sqn24) .4(1)

JF7 0 (44)·11 -9(4) (44) -1FT) -9H)

3. Signal 9H) and its H7 ĝH are orthogo - nul -10 each other over entire time interval

i.e 5 9H) gH dt=0

1°941941 dt = 1°94) . 34) olb

94) = - j - gn (1) 9(4)

育(-1) =-jsgne1) 解的 GC-f)

= j sqn(1) q(4)

Jog4) gH)dt= Jeq1) jsqn41 4(-1) d1

= [ jøgney) 19(4) 1° old

= [ j sgn4) 194)12 df

Squet) -> odd function

( elet) / -> even fontion

odd junction over the runge Integration of an odd







Subject Title:

No.

Solution



scheme for recognition of bandpull signal from its inphase and quadrature phase component

Equipon (2) in (1) 
$$j2x+c-$$

$$S(4) = [2][4] + j[2][4]$$

$$S(4) = [3][4] + j[3][4]$$

$$S(t) = [S_{7}(t) + j S_{9}(t)] [con 2\pi f t + j sin 2\pi f t]$$
  
=  $[S_{7}(t) + j S_{9}(t)] [con 2\pi f t + j S_{9}(t) con 2\pi f t]$ 

$$= (S_{7}(t) + j S_{9}(t)) \left[ \frac{\omega \Lambda}{2\pi} \frac{2\pi}{f} t + j \frac{\omega \Lambda}{2\pi} \frac{$$



Subject code: Solution = A rest [th] { con extet + i sin extet} 2+1+) = A reit [+/7] e 12a/c1-Incoming Message Mi î= 1, 2 --- M; Modulated wave sitt) 3silt) y > M energy lignal N - orthonormal balin function Where NSM Sittl and Qtt) linear to each other Real valued energy signed Sittl= Sij filt) OSTET i=1 j= 1, 2, --- N Sij > coefficient Sij = ( Sil+) qil+1 dt  $\int_0^T \phi_i(t) \phi_j(t) dt = \begin{cases} 1 \rightarrow i = j \\ 0 \rightarrow i \neq j \end{cases}$ M=3 N=2  $\sum_{i=1}^{\infty} S_{3j} \phi_{j} H$ 

IA: 1/11/111

gode Digital communication syl Dept: Marks Allocated Jo dt > 531 (p) I dt >532 5311) There is an interesting relationship between the energy content of a signal and its

representations are vector, By definition. The energy of a rignal Sitt) of duration T secondi is

Ei= Jo Silf) dt i=1,2,--- M Ei= [ Sij PjH] [ Sik AcH)] dt

Ei = \( \sum\_{N} \sij \sik \) \( \phi\_{N}(t) \)

 $\frac{1}{1} = \sum_{j=1}^{N} \sum_{k=1}^{N} S_{ij}^{k} = \sum_{j=1}^{N} S_{ij}^{2} \rightarrow \sum_{j=1}^{N} S_{ij}^{2$ = 115:112

$$51t^{1}$$
  $\int_{0}^{4} (3)^{2} dt = 9[4] = 36J$ 

$$\phi_{1}(1) = \frac{S_{1}(1)}{\sqrt{E_{1}}} = \frac{3}{\sqrt{36}} = \frac{3}{6} = 0.5.$$
 05 \(\frac{1}{5} \)

$$\int S_{11} = 6$$

$$Eg_2 = \int_0^2 (1.5)^2 dt + \int_1^4 (1.5)^2 dt$$

$$= (1.5)^2 \times 2 + (1.5)^2 \times 2 = 9$$

5.32 = -3

Marks Allocated

Subject code:

| Subject Titl | le:                                   | Marks<br>Allocated |
|--------------|---------------------------------------|--------------------|
| Q<br>No.     | Solution                              |                    |
|              | 93H)= 53L+) - 3 \$1L+1 + 3 \$2L+)     |                    |
|              | = 0 - 3x 0.3                          |                    |
|              | $= -1.5 + 1.5 = 0$ 0 $\leq t \leq 2$  |                    |
|              | 93H) = 3-1.5 + 8x (-1.5) 2 = + 54     |                    |
|              | $9_3 + 1 = 3 - 3 = 0$ $\phi_3(+) = 0$ |                    |
|              | $S_{33} = 0$                          |                    |
|              | S3(+) = S31 9, (+) + S32 92(+)        |                    |
|              | = 3x0.5 + (-8) [3]                    |                    |
|              | = 0 4 0 < + < 2                       |                    |
|              | = 3 × 0.5 + (-3) × -1.5               |                    |
|              | = 1.5 + 1.5 = 3 & < t < 4             | 9                  |
| 117 3 3 3 3  |                                       |                    |