# Metric based classification

ограничение по времени на тест: 20 секунд ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Требуется построить метрический классификатор на обучающем наборе данных с известными классами и классифицировать с его помощью тестовый набор данных с неизвестными классами. Ваш классификатор должен содержать несколько метрик, сглаживающих ядер и стратегий выбора ширины окна ядра (числа ближайших соседей). Требуется выбрать оптимальную комбинацию гипер-параметров для каждого отдельного набора данных.

#### Входные данные

Первая строка содержит целое число M (5  $\leq$  M  $\leq$  200) — число признаков у объектов исключая класс.

Вторая строка содержит целое число K (2  $\leq K \leq$  25) — число классов.

Третья строка содержит целое число N (50 ≤ N ≤ 400) — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта **M**+1 целых чисел: первые **M** чисел  $\mathbf{A}_{i,j}$  ( $\mathbf{A}_{i,j} \le 10^9$ ) — признаки объекта, последнее число  $\mathbf{C}_i$  ( $1 \le \mathbf{C}_i \le \mathbf{K}$ ) — его класс.

Следующая строка содержит целое число  $\mathbf{Q}$  (50  $\leq \mathbf{Q} \leq$  400) — число объектов в тестовом множестве.

Следующие Q строк содержат описание объектов. t-тая из этих строк содержит описание t-того объекта: M целых чисел  $A_{t,j}$  ( $|A_{t,j}| \le 10^9$ ) — признаки объекта.

#### Выходные данные

Выведите Q строк. Каждая t-тая строка из них должна содержать результат классификации t-того объекта из тестового множества: целое число  $S_t$  ( $1 \le S_t \le 20$ ) — число соседей классифицируемого объекта, затем следует  $S_t$  пар чисел i и w ( $1 \le i \le N$ ,  $0 \le w \le 10^6$ ), где i — целое число, индекс объекта из тренировочного множества, а w — вещественное число с плавающей точкой, вес с которым учитывается этот объект. Числа  $S_t$  не обязательно должны быть одинаковыми для всех объектов.

# Система оценки

Для каждого объекта t будет рассчитан его предсказанный класс  $p_t$  = argmax( $\sum w \cdot [C_i = c]$ ) исходя из соответствующего множества пар (i,w), в случае неопределённости класс выбирается псевдослучайно. Далее на основании предсказанных и реальных классов вычисляется усреднённая по классам микро F мера. Тест считается пройденным, если эта F мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового метрического классификатора.

| Входные данные                                                     | Выходные данные                                  |  |
|--------------------------------------------------------------------|--------------------------------------------------|--|
| 2<br>2<br>4<br>2 2 1<br>6 2 1<br>4 1 2<br>4 3 2<br>2<br>1 2<br>5 2 | 3 1 0.75 3 0.21 4 0.21<br>3 2 0.75 3 0.65 4 0.65 |  |



Иллюстрация примера

#### Пояснение

Обратите внимание, что экземпляр задачи из данного примера не подходит под нижние ограничения на число объектов и признаков!

В данном примере в качестве метрики используется Евклидово расстояние, а в качестве взвешивающей функции Треугольное ядро. Используется три ближайших соседа с шириной окна 4.

Для первого запроса:

Номер объекта: 1 3 4

Расстояние: 1  $\sqrt{10}$   $\sqrt{10}$ 

Полученный вес: 0.75 0.21 0.21

Класс: 1 2 2

Суммарный вес первого класса 0.75, второго 0.42.

Для второго запроса:

Номер объекта: 2 3 4

Pасстояние:  $1 \sqrt{2} \sqrt{2}$ 

Полученный вес: 0.75 0.65 0.65

Класс: 1 2 2

Суммарный вес первого класса 0.75, второго 1.3.

# **SVM**

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Дан набор данных для бинарной классификации. Требуется построить разделяющие правило опирающиеся на объекты из заданного набора.

#### Входные данные

Первая строка содержит целое число M ( $2 \le M \le 10$ ) — число признаков у объектов исключая класс.

Вторая строка содержит целое число  $N (M \le N \le 100)$  — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта: **M** целых чисел  $D_{i,j}$  ( $|D_{i,j}| \le 10^5$ ) — признаки объекта и его класс ('+' если объект положительный class( $D_i$ ) = +1 и '-' если он отрицательный class( $D_i$ ) = -1).

## Выходные данные

Выведите решающие правило формата:

$$class(Q) = sign((\sum \lambda_i \cdot class(\mathbf{D}_i) \cdot f(\mathbf{D}_i, Q)) - b)$$

В первой строке выведите симметричную функцию ядра  $f: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$ , состоящую из не более чем 1000 символов. Данная функция должна удовлетворять грамматике:

- $E \rightarrow pow(E,E)$ , где  $pow(a,b) = a^b$
- **E** → sub(**E**,**E**), где sub(a,b) = a b
- $E \rightarrow sum(E,E,...,E)$ , где sum(a,b,...z) = a + b + ... + z
- $E \rightarrow \text{prod}(E, E, ..., E)$ , где  $\text{prod}(a, b, ... z) = a \times b \times ... \times z$
- $E \rightarrow A0 \mid A1 \mid ... \mid A9$ , где Ai значение i-той координаты первого вектора  $(0 \le i < M$ , координаты нумеруются с нуля).
- $E \rightarrow B0 \mid B1 \mid ... \mid B9$ , где Bi значение i-той координаты второго вектора.
- *E* → число с плавающей **точкой**.

Запрещено использовать пробелы и иные символы. E, E, ..., E — это непустое перечисление через запятую.

В следующих **N** строках выведите **N** вещественных чисел  $\lambda_i$  ( $0 \le \lambda_i \le 10^6$ ,  $\sum \lambda_i$ : class( $\mathbf{D}_i$ )=0) — веса объектов в порядке их перечисления во входных данных.

В последней строке выведете одно вещественное число b — коэффицент сдвига.

# Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F-мера. Тест считается пройденным, если эта F-мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового решения.

| Входные<br>данные                                                                                                   | Выходные данные                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>12<br>1 2 -<br>1 3 -<br>1 4 -<br>2 1 +<br>2 3 -<br>2 4 -<br>3 1 +<br>3 2 +<br>3 4 -<br>4 1 +<br>4 2 +<br>4 3 + | <pre>pow(sum(0.0,prod(sub(A0,2.5),sub(B0,2.5),0.73) ,prod(sub(A1,2.5),sub(B1,2.5),0.3)),1.0) 0.3823 0 0 0.3823 1.0 0 0 0.3823 0 0 0.3823 0 0 0.3823</pre> |

# Linear regression

ограничение по времени на тест: 4 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

## Задача

Найдите уравнения прямой аппроксимирующей положение объектов из заданного набора данных.

## Входные данные

Первая строка содержит целое число M (1  $\leq M \leq$  1000) — число признаков у объектов исключая зависимую переменную.

Вторая строка содержит целое число  $N (M \le N \le 10000)$  — число объектов в обучающем множестве.

Следующие **N** строк содержат описание объектов. **i**-тая из этих строк содержит описание **i**-того объекта, **M** целых чисел:  $\mathbf{X}_{i,j}$  ( $|\mathbf{X}_{i,j}| \le 10^9$ ) — признаки объекта и  $\mathbf{Y}_i$  ( $|\mathbf{Y}_i| \le 10^9$ ) — значение его зависимой переменной.

#### Выходные данные

Выведите M + 1 вещественных чисел с плавающей точкой  $A_j$  — коэффициенты прямой из уравнения  $y = a_0 \cdot x_0 + a_1 \cdot x_1 + \ldots + a_{M-1} \cdot x_{M-1} + a_M$ 

#### Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных значений  $\mathbf{Y}_t$  и реальных  $\mathbf{Y}_t$  вычисляется ошибка предсказания — нормированная сумма квадратов  $\mathbf{E} = \sum (\mathbf{Y}_t' - \mathbf{Y}_t)^2 / D(\mathbf{Y})$ , где  $D(\mathbf{Y})$  — это дисперсия зависимой величины. Решение засчитывается если полученная ошибка  $\mathbf{E}$  отличается от ошибки полученной базовым решением не более чем на 0.01

| Входные данные | Выходные данные |  |
|----------------|-----------------|--|
| 1              | 2               |  |
| 4              | -1              |  |
| 1 0            |                 |  |
| 1 2            |                 |  |
| 2 2            |                 |  |
| 2 4            |                 |  |

# **Decision tree**

ограничение по времени на тест: 6 секунд ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

## Задача

Постройте дерево принятия решений.

#### Входные данные

Первая строка содержит два целых положительных числа M (1  $\leq M \leq$  100) и K (2  $\leq K \leq$  20) — число признаков у объектов (исключая класс) и число классов. Вторая строка содержит целое положительное число N (1  $\leq N \leq$  4000) — число объектов в обучающей выборке.

Следующие **N** строк содержат описания объектов в обучающей выборке. В i-той из этих **N** строк перечислены **M**+1 целое число: первые **M** чисел  $A_{i,j}$  ( $|A_{i,j}| \le 10^9$ ) — признаки i-того объекта, последнее число  $C_i$  ( $1 \le C_i \le K$ ) — его класс.

#### Выходные данные

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число  $\mathbf{S}$  (1  $\leq \mathbf{S} \leq 2^{11}$ ) — число вершин в дереве.

В следующих  ${m S}$  строках выведите описание вершин дерева. В  ${m v}$ -той из этих строк выведите описание  ${m v}$ -той вершины:

- Если **v**-тая вершина **yзел**, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число  $f_v$  ( $1 \le f_v \le M$ ) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой  $b_v$  константа с которой происходит сравнения для проверки, два целых положительных числа  $I_v$  и  $r_v$  ( $v < I_v, r_v \le S$ ) индекс вершины дерева в которую следует перейти, если выполняется условие  $A_i[f_v] < b_v$ , и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если **v**-тая вершина **лист**, выведите через пробел: заглавную латинскую букву 'С' и целое положительное число  $D_v$  (1  $\leq D_v \leq K$ ) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина. Глубина дерева не должна превышать 11-ти вершин.

# Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F-мера. Тест считается пройденным, если эта F-мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового решения.

| Входные данные                            | Выходные данные                               |
|-------------------------------------------|-----------------------------------------------|
| 2 4<br>8<br>1 2 1<br>2 1 1<br>3 1 2       | 7<br>Q 1 2.5 2 5<br>Q 2 2.5 3 4<br>C 1<br>C 4 |
| 4 2 2<br>3 4 3<br>4 3 3<br>1 3 4<br>2 4 4 | Q 2 2.5 6 7<br>C 2<br>C 3                     |

# **Naive Bayes**

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Постройте спам фильтр на основе Наивного Байесовского классификатора. Ваш классификатор должен быть строго смещён в сторону класса легетимных писем (не спама). Это значит, что он не должен отправить ни одного легитимного письма в спам.

#### Входные данные

Первая строка содержит целое число N (2 ≤ N ≤ 10 $^{5}$ ) — число писем в обучающей выборке. Далее перечислены N писем из обучающей выборки в 2·N строках (по две строки на письмо). Для каждого письма:

- Первая строка содержит целое число K (1 ≤ K ≤ 3·10<sup>5</sup>) и заглавную латинскую букву — длину письма и его класс ('L' — легитимное и 'S' спам).
- Вторая строка содержит **К** целых чисел  $\mathbf{w}_{j}$  (1  $\leq$   $\mathbf{w}_{j} \leq$  10<sup>6</sup>) содержание письма.

Далее следует целое число T ( $2 \le T \le 10^5$ ) — число писем в тестовой выборке. Далее перечислены T писем из тестовой выборки в  $2 \cdot T$  строках (по две строки на письмо). Для каждого письма:

- Первая строка содержит целое число K ( $1 \le K \le 3 \cdot 10^5$ ) длину письма.
- Вторая строка содержит **К** целых чисел  $\mathbf{w}_{j}$  (1 ≤  $\mathbf{w}_{j}$  ≤ 10<sup>6</sup>) содержание письма.

Сумма длин всех писем из обучающей и тестовой выборки не превышает 3·106

# Выходные данные

Выведите *Т* заглавных латинских букв: для каждого письма из тестовой выборки в соответствующем порядке выведите его класс: 'L' — если письмо легитимное и 'S' — если оно спам.

# Система оценки

На основании предсказанных и реальных классов вычисляется точность. Тест считается пройденным, если эта точность будет выше определённого порога, рассчитанного с 5% запасом с помощью базового решения и **ни одно легитимное письмо не было помечено как спам**.

```
Входные данные
2
10 L
10 11 12 13 14 15 16 17 18 19
10 S
20 21 22 23 24 25 26 27 28 29
4
10
10 11 12 13 14 15 16 17 18 19
10
10 11 12 13 14 15 26 27 28 29
10
20 21 22 23 24 25 16 17 18 19
10
20 21 22 23 24 25 26 27 28 29
Выходные данные
L
L
L
S
```

# Deep Neural Network

ограничение по времени на тест: 10 секунд ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Обучите нейронную сеть с заданой архитектурой.

# Входные данные

Первая строка содержит целое положительное число D ( $2 \le D \le 6$ ) — глубину нейронной сети.

Следующая строка содержит D целых положительных чисел  $n_i$  (1  $\leq n_i \leq$  100) — число нейронов в i-том слое. Первый слой — вход сети, его размер равен числу признаков у объекта  $M = n_1$ . Последний слой — выход сети, он задаёт бинарный класс объекта в зависимости от знака числа полученного на нём, его размер всегда равен единице  $n_D = 1$ . Гарантируется, что  $\sum (n_i + 1) \cdot (n_{i+1}) \leq 1000$ . Следующая строка содержит целое положительное число T (1  $\leq T \leq$  1024) — число объектов в тестовой выборке.

Следующие T строк содержат описания соответствующих объектов. Каждый объект задаётся M+1 целым числом: первые M из этих чисел  $x_j$  ( $|x_i| \le 10^9$ ) — признаки объекта, последнее число c — его класс (-1 или 1).

#### Выходные данные

Выведите **D**-1 переход между соответствующими слоями.

Переход между слоями i и i+1 описывается  $n_{i+1}$  строкой, описанием соответствующих нейронов на i+1 слое. Каждый нейрон описывается строкой состоящей из  $n_i$  вещественного числа с плавающей точкой  $w_j$  и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-того слоя. Линейная зависимость задается по формуле:  $y = \sum w_j \cdot x_j + b$ . Предполагается, что после каждого суммирования к его результату применяется гиперболический тангенс.

# Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам

микро F-мера. Тест считается пройденным, если эта F-мера будет выше определённого порога, рассчитанного с 5% запасом с помощью базового решения.

| Входные данные                                        | Выходные данные                                               |
|-------------------------------------------------------|---------------------------------------------------------------|
| 3<br>2 2 1<br>4<br>0 0 -1<br>1 0 1<br>0 1 1<br>0 0 -1 | 1.322 1.950 -0.883<br>3.301 2.078 -1.230<br>1.371 1.860 0.107 |

# **Logic Expression**

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт ввод: стандартный ввод вывод: стандартный вывод

## Задача

Постройте нейронную сеть по таблице истинности.

#### Входные данные

Дана логическая функция f, заданная таблицей истинности.

Первая строка содержит целое число M (1  $\leq M \leq$  10) — число переменных в f. Следующие  $2^M$  строк содержат значения f в таблице истинности (0 — ложь, 1 — правда). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

| <b>M</b> = 1 | <b>M</b> = 2   | <b>M</b> = 3     |
|--------------|----------------|------------------|
| <i>f</i> (0) | <i>f</i> (0,0) | <i>f</i> (0,0,0) |
| <i>f</i> (1) | <i>f</i> (1,0) | <i>f</i> (1,0,0) |
|              | <i>f</i> (0,1) | <i>f</i> (0,1,0) |
|              | <i>f</i> (1,1) | <i>f</i> (1,1,0) |
|              |                | <i>f</i> (0,0,1) |
|              |                | <i>f</i> (1,0,1) |
|              |                | <i>f</i> (0,1,1) |
|              |                | f(1,1,1)         |

#### Выходные данные

В первой строке выведите целое положительное число D (2  $\leq D \leq$  3) — глубину нейронной Далее выведите D целых положительных сети.  $n_i$  (1  $\leq n_i \leq$  2000) — число нейронов на *i*-том слое. Первый слой (входной) должен содержать ровно *М* нейронов, а последний (выходной) — ровно один. Далее выведите описание **D** - 1 перехода между соответствующими слоями. Переход между слоями i и i+1 описывается  $n_{i+1}$  строкой, описанием соответствующих нейронов на *i*+1 слое. Каждый нейрон описывается строкой состоящей из  $n_i$  вещественного числа с плавающей точкой  $\mathbf{w}_i$  и одного вещественного числа **b** — описание линейной зависимости текущего нейрона от выходов предыдущего і-того слоя. Линейная зависимость задается по формуле: у =  $\sum w_i \cdot x_j$  + b . Предполагается, что после каждого суммирования к его результату применяется функция ступенчатой активации, график функции представлен на Рисунке 1. Обратите внимание, что в нуле данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.



Рисунок 1. Ступенчатая функция активации.

| Входные<br>данные     | Выходные<br>данные                                    | Полученная нейронная сеть                             |
|-----------------------|-------------------------------------------------------|-------------------------------------------------------|
| 2<br>0<br>1<br>0<br>1 | 2 2 1 1.0 0.0 -0.5                                    | $X_1$ $X_2$ $0.0$ $\Sigma$ $f(x_1,x_2)$ $0.5$         |
| 2<br>0<br>1<br>1<br>0 | 3 2 2 1<br>1.0 -1.0 -0.5<br>-1.0 1.0 -0.5<br>1 1 -0.5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

## Входные данные

Первая строка содержит два целых положительных числа  $K_1$  и  $K_2$  (1  $\leq K_1, K_2 \leq 10^5$ ) — максимальное число различных значений первого и второго признака.

Следующая строка содержит целое положительное число  $N (1 \le N \le 10^5)$  — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых положительных числа  $x_1$  и  $x_2$  ( $1 \le x_1 \le K_1$ ,  $1 \le x_2 \le K_2$ ) — значения первого и второго признака описываемого объекта.

# Выходные данные

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 2 3            | 0.8333333333333 |
| 5              |                 |
| 1 2            |                 |
| 2 1            |                 |
| 1 1            |                 |
| 2 2            |                 |
| 1 3            |                 |

#### Пояснение

В данном примере таблицы числа наблюдений выглядит как:

| реальное<br>число наблюдений | 1 | 2 | 3 |
|------------------------------|---|---|---|
| 1                            | 1 | 1 | 1 |
| 2                            | 1 | 1 | 0 |

| ожидаемое число<br>наблюдений | 1   | 2   | 3   |
|-------------------------------|-----|-----|-----|
| 1                             | 1.2 | 1.2 | 0.6 |
| 2                             | 8.0 | 8.0 | 0.4 |

# Pearson correlation

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный вывод вывод: стандартный вывод

# Задача

Посчитайте корреляцию Пирсона двух численных признаков.

# Входные данные

Первая строка содержит целое положительное число N (1  $\leq N \leq$  10 $^5$ ) — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых числа  $\mathbf{x}_1$  и  $\mathbf{x}_2$  (-10<sup>9</sup>  $\leq \mathbf{x}_1$ ,  $\mathbf{x}_2 \leq 10^9$ ) — значения первого и второго признака описываемого объекта.

# Выходные данные

Выведите одно вещественное число с плавающей точкой — корреляцию Пирсона двух признаков у заданных объектов.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 5              | -0.5            |
| 1 4            |                 |
| 2 5            |                 |
| 3 1            |                 |
| 4 2            |                 |
| 5 3            |                 |

# **Distance**

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

## Задача

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние =  $\sum |\mathbf{x}_i \mathbf{x}_i| \cdot [\mathbf{y}_i = \mathbf{y}_i]$
- Межклассовое расстояние =  $\sum |\mathbf{x}_i \mathbf{x}_i| \cdot [\mathbf{y}_i \neq \mathbf{y}_i]$

#### Входные данные

Первая строка содержит одно целое положительное число K (1  $\leq K \leq$  10<sup>5</sup>) — максимальное число различных значений Y второго признака. Следующая строка содержит одно целое положительное число **N** (1 ≤ **N** ≤  $10^5$ ) — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых числа  $\mathbf{x}$  и  $\mathbf{y}$  ( $|\mathbf{x}| \le 10^7$ ,  $1 \le \mathbf{y} \le \mathbf{K}$ ) — значения первого и второго признака описываемого объекта.

## Выходные данные

В первой строке выведите одно целое число — внутриклассовое расстояние. Во второй строке выведите одно целое число — межклассовое расстояние.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 2              | 8               |
| 4              | 12              |
| 1 1            |                 |
| 2 2            |                 |
| 3 2            |                 |
| 4 1            |                 |

# Conditional entropy

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

# Задача

Посчитайте условную энтропию  $\mathbf{H}(\mathbf{Y}|\mathbf{X})$ . При расчётах используйте натуральные логарифмы  $\ln(x)$ , либо логарифмы идентичные натуральному  $\log_{\mathbf{x}}(x)$ .

## Входные данные

Первая строка содержит два целых положительных числа  $K_x$  и  $K_y$  ( $1 \le K_x$ ,  $K_y \le 10^5$ ) — максимальное число различных значений признаков X и Y. Следующая строка содержит целое положительное число N ( $1 \le N \le 10^5$ ) — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых положительных числа x и y (1  $\leq x \leq K_x$ ,1  $\leq y \leq K_v$ ) — значения признаков x и y.

# Выходные данные

Выведите одно вещественное число с плавающей точкой — условную энтропию.

| Входные данные | Выходные данные    |
|----------------|--------------------|
| 2 3            | 0.9364262454248438 |
| 5              |                    |
| 1 2            |                    |
| 2 1            |                    |
| 1 1            |                    |
| 2 2            |                    |
| 1 3            |                    |

# Spearman rank correlation coefficient

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный вывод вывод: стандартный вывод

## Задача

Посчитайте коэффициент ранговой корреляции Спирмена двух численных признаков.

## Входные данные

Первая строка содержит целое положительное число N (1 ≤ N ≤ 10 $^{5}$ ) — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых числа  $\mathbf{x}_1$  и  $\mathbf{x}_2$  (-10<sup>9</sup>  $\leq \mathbf{x}_1$ , $\mathbf{x}_2 \leq 10^9$ ) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

#### Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена у заданных объектов.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 5              | -0.5            |
| 1 16           |                 |
| 2 25           |                 |
| 3 1            |                 |
| 4 4            |                 |
| 5 9            |                 |

# Conditional variance

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный вывод вывод: стандартный вывод

## Задача

Посчитайте условную дисперсию  $\mathbf{D}(\mathbf{Y}|\mathbf{X})$ . При расчётах используйте смещённую оценку дисперсии случайной величины.

## Входные данные

Первая строка содержит одно целое положительное число K ( $1 \le K \le 10^5$ ) — максимальное число различных значений признака X.

Следующая строка содержит целое положительное число  $N (1 \le N \le 10^5)$  — число объектов.

Следующие **N** строк содержат описания соответствующих объектов. Каждая из этих **N** строк содержит описание одного объекта: два целых положительных числа  $\mathbf{x}$  и  $\mathbf{y}$  ( $1 \le \mathbf{x} \le \mathbf{K}, |\mathbf{y}| \le 10^9$ ) — значения признаков  $\mathbf{X}$  и  $\mathbf{Y}$ .

# Выходные данные

Выведите одно вещественное число с плавающей точкой — условную дисперсию.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 2              | 1.25            |
| 4              |                 |
| 1 1            |                 |
| 2 2            |                 |
| 2 3            |                 |
| 1 4            |                 |