6 数列 $\{a_n\}$ を

$$a_1 = 1$$
, $a_{n+1} = \sqrt{\frac{3a_n + 4}{2a_n + 3}}$ $(n = 1, 2, 3, \dots)$

で定める。以下の問いに答えよ。

- (1) $n \ge 2$ のとき, $a_n > 1$ となることを示せ。
- (2) $a^2=rac{3lpha+4}{2lpha+3}$ を満たす正の実数 lpha を求めよ。
- (3) すべての自然数 n に対して $a_n < \alpha$ となることを示せ。
- (4) 0 < r < 1 を満たすある実数 r に対して,不等式

$$\frac{\alpha - a_{n+1}}{\alpha - a_n} \le r \quad (n = 1, 2, 3, \dots)$$

が成り立つことを示せ。さらに,極限 $\lim_{n o\infty}a_n$ を求めよ。