homework 1

1. 将下面的汇编指令/二进制编码转换为对应的二进制编码/汇编指令

1. sll x4, x3, x3

7bit	5bit	5bit	3bit	5bit	7bit
0000000	rs2	rs1	001	rd	opcode
0000000	00011	00011	001	00100	0110011

Answer: 0x319233

2. jalr x2, 0x100(x3)

jalr rd, rs1, imm

12bit	5bit	3bit	5bit	7bit
imm	rs1	000	rd	opcode
0001_0000_0000	00011	000	00100	1100111

Answer: 0×10018267

3. lui x4,0x12345

20bit	5bit	7bit
imm	rd	opcode
0001_0010_0011_0100_0101	00100	0110111

Answer: 0x12345237

4. 0x00f0c093

12bit	5bit	3bit	5bit	7bit
imm	rs1	func	rd	opcode
0000_0000_1111	00001	100	00001	0010011

Answer:

XORI x1, x1, 0x00f

5. 0x0020e463

7bit	5bit	5bit	3bit	5bit	7bit
imm[12 10:5]	rs2	rs1	func	imm[4:1 11]	opcode
0 00_0000	00010	00001	110	0100 0	1100011

Answer:

6. 0xfe20bc23

7bit	5bit	5bit	3bit	5bit	7bit
imm[11:5]	rs2	rs1	func	imm[4:0]	opcode
1111111	00010	00001	011	11000	0100011

Answer:

SD x1, (0xff8)x2

2. 计算下面指令序列的 cpi,使用 double bubble 技术和 stall 技术处理 数据竞争和控制竞争, 不考虑结构竞争

默认 beq 不跳转;double bubble 是指 regfile 下降沿写入的处理方法;不考虑 forward 技术;控制竞争停顿的拍数因硬件结构而异,如果有歧义,大家可以在边上注明自己的硬件实现方法,言之有理即可

Label:

sd x29, 12(x16)

ld x29, 8(x16)

sub x17, x15, x14 # data hazard

beq x17, x0, Label # control hazard

add x15, x11, x14

sub x15, x30, x15 # data hazard

CPI = 16/6 = 8/3

3. 计算下面指令序列的 cpi,使用 double bubble 技术和 stall 技术处理 数据竞争和控制竞争, 不考虑结构竞争

```
Label:

sd x29, 12(x16)

sub x17, x15, x14 <-----\
```

比较 2 和 3 的指令序列的 cpi 和实现的功能的区别,比较之所以序列 3 的 cpi 更小的原因和 可以借鉴的 cpi 加速的方法

Answer:

cpi = 11/6

比较和分析:

指令序列2与指令序列3的主要区别在于指令的顺序。在指令序列3中,通过重新排序指令,数据依赖性减少,从而减少了因数据冲突而产生的额外周期。这是因为加载指令(可能产生数据冲突的主要来源)被放置在了序列的后半部分,减少了与其他指令的直接数据依赖。

结论和优化技术:

指令序列3相比于指令序列2具有更低的CPI,主要是由于通过指令重排减少了数据冲突和加载延迟的影响。这种优化技术表明,通过减少指令间的依赖性和考虑指令的最佳顺序,可以有效地提高流水线的性能。通过重新组织指令顺

序,以减少数据和控制冲突,从而减少 stall 的发生.