

ត្រះវាទារសារចក្រកម្ពុថា

ಶುಣಿសាសលារុព្វៈមហាក្សរុគ្គ

រុក្ខសួចអម់វិយុទ៩ឧនិចក៏ឡា



# ວິອຣີຊຸ<u>ງ</u>

មេរៀនសច្ចេម និចលំមាង់ងំរួ សម្រាច់ស្ងនិស្សសង្សសង្គ្រាអន្ត១២ ឆ្នាំសិត្សា ២០១៤ - ២០១៥





#### មាននិងស្វា

មេរៀនសង្ខេប និងលំហាត់គំរូនៅក្នុងឯកសារនេះ គឺគ្រាន់តែជាជំនួយស្មារតីដល់អ្នក សិក្សាជីវវិទ្យាថ្នាក់ទី១២តែប៉ុណ្ណោះ វាមិនមែនជាឯកសារពេញលេញតាមកម្មវិធីសិក្សាថ្នាក់ទី១២ ទាំងស្រងនោះទេ។

មេរៀននីមួយៗត្រូវបានសង្ខេបដើម្បីឱ្យអ្នកសិក្សាងាយស្រួលយល់។ ក្រុមរៀបចំបានកែ លម្អនូវខ្លឹមសារមួយចំនួនដែលដកស្រង់ចេញពីសៀវភៅជីវវិទ្យាថ្នាក់ទី១២ ដែលកំពុងប្រើប្រាស់ បច្ចុប្បន្នដើម្បីឱ្យមានភាពសុក្រិតបន្ថែមទៀត។ ក្រុមអ្នករៀបរៀង និងកែលម្អក៏បានបញ្ចូលនូវ គន្លឹះដោះស្រាយលំហាត់សំខាន់ៗ លំហាត់គំរូ និងដំណោះស្រាយ ព្រមទាំងលំហាត់អនុវត្ត សម្រាប់ជាជំនួយដល់អ្នកសិក្សា។ នៅក្នុងដំណោះស្រាយអ្នកសិក្សាត្រូវធ្វើវាចារមុននឹងសរសេរ រូបមន្តគណនា។ នេះជាលក្ខណៈពិសេសនៃការដោះស្រាយលំហាត់ជីវវិទ្យា។

ឯកសារសង្ខេបមេរៀនជីវវិទ្យាថ្នាក់ទី១២នេះ បានកែលម្អូឡើងវិញដោយផ្អែកលើឯកសារ មេរៀនសង្ខេបដែលបានចែកផ្សាយដោយក្រសួងអប់រំ យុវជន និងកីឡាសម្រាប់ត្រៀមប្រឡង សញ្ញាបត្រមធ្យមសិក្សាទុតិយភូមិ និងបំពេញវិជ្ជា។

ក្រុមអ្នករៀបរៀង និងអ្នកកែលម្អសង្ឃឹមថា ឯកសារសង្ខេបនេះនឹងជួយឱ្យអ្នកសិក្សា ទទួលបានជោគជ័យក្នុងការប្រឡងផ្សេងៗ និងជាគ្រឹះសម្រាប់បន្តការសិក្សានៅឧត្តមសិក្សា។

ក្រុមអ្នករៀបរៀង រងចាំទទូលការវិះគន់កែលម្អពីអ្នកសិក្សា លោកគ្រូ-អ្នកគ្រូដើម្បីឱ្យ ឯកសារសង្ខេបមេរៀនកាន់តែមានភាពសុក្រិតទាំងខ្លឹមសារ និងការរៀបចំ។

# អ្នករៀបរៀខ

កញ្ញា ប៊ុន សុផានី

## អ្នកនៃសូម

- ១. កញ្ញា ឯម ស្ងូត្រ
- ២. លោក ម៉ម ចាន់សៀន
- ៣. លោកស្រី ហ្វូ ឃីម
- ៤. លោកស្រី ឈ្ងុក ណាស្រស់





| ទំពុភនី១៖ ស៊ីមណូស្កែម សិចអច់ស្យូស្កែម   |      |
|-----------------------------------------|------|
| មេរៀនទី ១៖ ស៊ីមណ្វស្ដែមំ                |      |
| មេរៀនទី ២៖ អង់ស្យូស្ពែម                 |      |
| ទំពុភនី៣៖ ងម្រុចនៅ្ទ១ៗរបស់សារពាខ្ពុតាយ  |      |
| មេរៀនទី១៖ តម្រូវប្រសាទ                  |      |
| មេរៀនទី២៖ សវីរាង្គវិញ្ញាណ               |      |
| មេរៀនទី៣៖ ប្រព័ន្ធអង់ដូគ្រីន            |      |
| ទំពុភនី៤៖ នានីប្រុះតអ៊ីនភូខសារពាខ្នុនាយ |      |
| មេរៀនទី១៖ អាស៊ីតអាមីនេ                  |      |
| មេរៀនទី២៖ ប្រុតអ៊ីន                     |      |
| មេរៀនទី៣៖ អង់ស៊ីម                       |      |
| ទំពុភនី៥៖ ព័ត៌មានសេខេនិច និចភារសំដែចនៃ  | ಕಿಂದ |
| មេរៀនទី១៖ ADN ជាព័ត៌មានសេនេទិច          |      |
| មេរៀនទី២៖ ការសំដែងនៃសែន                 |      |
| មេរៀនទី៣៖ បច្ចេកវិទ្យាជីវ:              |      |
| ខំពុតនី៦៖ ភារទិទត្តនៃភាទៈរស់            |      |
| មរៀនទី១៖ ទ្រឹស្តីរបស់លោកដាវិន           |      |
| មេរៀនទី២៖ ភស្តុតាងនៃការវិវត្ត           |      |
| ្ម ។<br>មេរៀនទី៣៖ កំពក់តេផតពែរ          |      |



# អន្ទិដព្ធជាអ ණිසුහුවක ස්පවුණි වූසමුජ්ව

ចំណាំ៖ ១. ពិបាកខ្លាំង

២. ពិបាកមធ្យម

៣. មិនពិបាក

| ទ្ធឹនសារខេរៀន                            | អន្រិងពិលាអ | <u> </u> |
|------------------------------------------|-------------|----------|
| ជំពូកទី១៖ ស៊ីមណ្វស្ពែម និងអង់ស្យូស្ពែម   |             |          |
| មេរៀនទី ១៖ ស៊ីមណ្វស្ពែម                  | 9           |          |
| មេរៀនទី ២៖ អង់ស្យូស្ពែម                  | 9           |          |
| ជំពូកទី៣៖ តម្រូវផ្សេងៗរបស់សារពាង្គកាយ    |             |          |
| មេរៀនទី១៖ តម្រូវប្រសាទ                   | ២           |          |
| មេរៀនទី២៖ សរីរាង្គវិញ្ញាណ                | ២           |          |
| មេរៀនទី៣៖ ប្រព័ន្ធអង់ដូគ្រីន             | 9           |          |
| ជំពូកទី៤៖ នាទីប្រូតេអ៊ីនក្នុងសារពាង្គកាយ |             |          |
| មេរៀនទី១៖ អាស៊ីតអាមីនេ                   | ៣           |          |
| មេរៀនទី២៖ ប្រុតអ៊ីន                      | ៣           |          |
| មេរៀនទី៣៖ អង់ស៊ីម                        | ៣           |          |
| ជំពូកទី៥៖ ព័ត៌មានសេនេទិច និងការសំដែង៤    | នសែន        |          |
| មេរៀនទី១៖ ADN ជាព័ត៌មានសេនេទិច           | ២           |          |
| មេរៀនទី២៖ ការសំដែងនៃសែន                  | ២           |          |
| មេរៀនទី៣៖ បច្ចេកវិទ្យាជីវ:               | ២           |          |
| ជំពូកទី៦៖ ការវិវត្តនៃភាវ:រស់             |             |          |
| មេរៀនទី១៖ ទ្រឹស្តីរបស់លោកដាវិន           | ៣           |          |
| មេរៀនទី២៖ ភស្តុតាងនៃការវិវត្ត            | ៣           |          |
| មេរៀនទី៣៖ កំណត់ត្រផ្ទស៊ីល                | ៣           |          |



ช์ตูสอ

# ស្ដួនបៅម្ដេត ស្ងួនអចុសិរីម៉េនិត

មេឡើននី១

ស៊ីមរស្មទ័ស្គម (Gymnosperm)

## ១-ម្រដោនដ្សេចៗនៃស៊ីមណ្តស្តែម

ស៊ីមណូស្ពែមគឺជារុក្ខជាតិមានគ្រាប់ទីមួយ តែគ្រាប់គ្មានសំបកការពារពីខាងក្រៅទេ វាមានគ្រាប់ននល។ ស៊ីមណូស្ពែមមាន ៤ក្រុមគឺ:

- -ប្រង់ (Cycads) មានលក្ខណៈដូចដើមត្នោតម្យ៉ាងដែលមានស្លឹកផ្តុំនៅកំពូលខាងចុង តែវ៉ាមានផលិតកោន។ ពេលល្ងតលាស់កោនរបស់ប្រង់មានរាងដូចបាល់ ។
- -កូនីភែ ដែលមានស្លឹករាងដូចមួល (Conifers) គឺស្រល់ លក្ខណៈបែបនេះបង្ការការបាត់បង់ជាតិទឹក និងបន្សាំជីវិតក្នុងអាកាសធាតុស្ងួត ។
  - -គឹងកូ (Ginkgoes) មានលក្ខណៈធន់នឹងកង្វក់បរិយាកាសបាន។
  - -ស៊ីណេតូភីត(Cinetophytes) ដើមឈើ ជាចុល្លព្រឹកសម្រាប់លម្អ ហើយខ្លះទ្យេតជាវល្លិ៍។



## ២<sub>~</sub>ងារឧទីបំនុះឧទុ<u>ទ្</u>តិនេះ

# ២.១ សរីវាខ្លួលគូលាស់

សរីរាង្គលូតលាស់ របស់ស៊ីមណូស្ពែមមាន ឬស ដើម និងស្លឹក

- 🖐 ឬសខ្លះជា ឬសកែវ ខ្លះជាឬសស្ញែ
- 🖐 ដើមស៊ីមណូស្ពែម មានសណ្ឋានជា ដើមទោលត្រង់ និងបញ្ចប់ដោយកូនស្លឹក ឬកន្សោមមែកនៅកំពូលដើម ។
- 🖐 ស្លឹកមានសំណើ( គុយទីន) ក្រាស់ខ្លាំង ស្គមាតតិចតែកប់ជ្រៅ ។ ស្លឹកមាន ទំហំធំ ទ្រនុងស្និត និងរាងប្លែកៗគឺ រាងផ្លឹត រាងមួរ រាងស្រកា។

## ២.២ ស៊ីពខ្លួមខ្លួតូ៩

- សរីរាង្គបន្តពូជឈ្មោល មានលក្ខណៈជាស្រកាមួយដែលផ្ទុកមីក្រូស្ប៉ារ៉ង់ (microsporangium) មាននាទីផលិតគ្រាប់ លំអង វិមីក្រូស្ប៉ូ(microspores) ។ គ្រាប់លំអងមានកោសិកាពីរគឺ កោសិកាបន្តពូជ និងកោសិកាលូតលាស់។
  - +សរិរាង្គបន្តពូជញី មានរូបផ្តុំប្រែប្រូលគឺ :
    - -ជួនកាលរួញខ្លីក្លាយជា អូវុលននល
    - –ជួនកាលវាបង្កជាស្រកាដែលមានផ្ទុកអូវុល ហៅថា ស្រកាកេសរញី ចានសភាពបើកចំហជានិច្ច គ្មានអូវែ

បិទបាំងអូវុលទេ (គ្រាប់ននល) ។





## ២.៣ ទន្តទីទឹតស៊ីមណ្តស្នែម

ស៊ីមណ្ឌស្ពែមផលិតកោនពីរប្រភេទគឺ

- កោនឈ្មោលផលិតគ្រាប់លំអងល្អិតៗបានច្រើនរាប់ពាន់គឺជាកាម៉ែតូភិតឈ្មោល។ គ្រាប់លំអងផ្ទុកកោសិកាដែលក្រោយ មករងមេយ៉ូសក្លាយ ជាស្ពែម៉ាតូសូអ៊ីត។
- កោនញ៊ីជាសរីរាង្គផលិតអូវុល ដែលក្រោយ មកអូវុលរងមេយ៉ូស រហូតដល់បង្កើតបានជាអូអូស្វែ (Oosphere ) ។ ដំណើរលំអងច្រើនប្រព្រឹត្តទៅដោយសារខ្យល់។ គ្រាប់លំអងធ្លាក់ពីកោនឈ្មោលទៅលើកោនញឹ ពេលនោះកាម៉ែត ឈ្នោលជួបជាមួយកាម៉ែតញ៊ីក្នុងស្រកាកោនញ៊ី។ បន្ទាប់ពីបង្កកំណើត អូវ៉ុលលូតលាស់ទៅជាគ្រាប់។ ពេលគ្រាប់ទុំ ស្រកា បើកគ្រាប់ជ្រុះទៅលើដី ។ ពេលជួបលក្ខខណ្ឌសមស្របគ្រាប់លូតលាស់ទៅជារុក្ខជាតិថ្មី ។

യുക്കുയുക





# ¥ខំស្វទ័ស្ណម (Angiosperm )

រុក្ខជាតិអង់ស្យស្ដែមមាននៅគ្រប់ទីកន្លែងលើផែនដី។ ទោះនៅតំបន់ត្រជាក់ តំបន់ត្រូពិច នៅវាលខ្សាច់ដែល គ្មានជីជាតិ ។

🖐 អង់ស្យស្តែមឬរុក្ខជាតិមានផ្កា និងគ្រាប់ស្ថិតនៅក្នុងផ្លែ ។ អង់ស្យស្តែមមានពីរថ្នាក់គឺ ម៉ូណូកូទីលេដូន និង ឌីកូទីលេដូន

# ១្តលក្ខណៈពិសេសនៃអច់ស្យស្នែម

#### ១.១ សំពែទ្ធលូតលាស់

🖐 សរីរាង្គលូតលាស់របស់រុក្ខជាតិអង់ស្យូស្ពែមមាន ឬស ដើម និងស្លឹក

- ឬសមានសសៃនាំទឹក និងអំបិលខនិជទៅ ដើម និងស្លឹក។ ឬសចងភ្ជាប់រុក្ខជាតិទៅនឹងដី ហើយក៏មាននាទីស្តុក

អាហារផងដែរ ។

-ដើម មាននាទីទ្រទ្រង់ផ្នែកដែលនៅលើជីរបស់រុក្ខជាតិ និងជីកនាំសារធាតុ រវាងឬស និង ស្លឹក។ ដើមខ្លះមានានទី ធ្វើរស្ទីសំយោគបង្កើតសារធាតុសរីរាង្គ សម្រាប់រុក្ខជាតិ ។

ជាលិកានាំរបស់រុក្ខជាតិ គឺបាច់សរសៃនាំមាន

- + ស៊ីឡែម មាននាទីដឹកនាំទឹក និងអំបិលខនិជ ពីប្ញូសទៅដើម និងស្លឹក
- + ផ្លូអែម មាននាទីដឹកនាំអាហារ (ផលិតផលរស្ទីសំយោគ) ពីស្លឹកទៅផ្នែក ផ្សេងៗនៃរុក្ខជាតិ

-ស្លឹក មាននាទីធ្វើរស្ទីសំយោគ ដើម្បីបង្កើតអាហារ ។ នៅក្នុងស្លឹក មានស្រទាប់កោសិកាប្រភេទខុសៗគ្នាគឺ:

- ស្រទាប់អេពីឌែមមានស្រទាប់អេពីឌែមលើ និងក្រោម
- ្រស្ទាប់ប៉ាលីសាតជាស្រទាប់កោសិកាដែលតម្រេប្រគ្នាយ៉ាងណែននៅក្រោមស្រទាប់កោសិកាអេពីឌែមលើ ។ កោសិកាប៉ាលីសាតមានក្លរ៉ូប្លាសផ្ទុកក្លរ៉ូភីល។

ស្រទាប់កោសិកាស្ពោត និងរន្ធខ្យល់ ស្ថិតនៅចន្លោះកោសិកាប៉ាលីសាត និងកោសិកាអេពីឌែមក្រោម។ ក្នុង

ស្រទាប់នេះមានស៊ីឡែមនិងផ្លូអែម។

#### 9.9 ผริกาฐชลูตุฮ

ស៊ីរាង្គបន្តពូជរបស់រុក្ខជាតិអង់ស្យស្ដែមគឺ ផ្កា។ ផ្កាផ្គុំឡើងដោយ ត្របក ស្រទាប់ កញ្ចុំកេសរញ៉ី កញ្ចុំកេសរឈ្នោល។



ព្លោកលំអង

គ្រាប់លំអង

ស្ទិចម៉ាត

ទា្មង់កេសរឈ្មោលនិង

ទងកេសវឈ្មោល

9ងកេស<u>វឈ្មេ</u>ល

សំបកឈើ

សាច់ឈើ



# **២~**ងរសេនីបំឡេសអាច្រក់ទីនិ

# ២.១ គំណគ្រាច់លំអខ

ក្នុងប្លោកលំអងមានស្ប៉ូអាប្លូអ៊ីតដែលកើតឡើងតាមចំណែកមេយ៉ូស។ ស្ប៉ូនីមួយៗចែកខ្លួនមួយដងតាមមីតូស រួច លូតលាស់ជាគ្រាប់លំអង។ គ្រាប់លំអងនីមួយៗមានណ្វៃយ៉ូអាប្លូអ៊ីតពីរគឺណ្វៃយ៉ូលូតលាស់ និងណ្វៃយ៉ូបន្តពូជ។



# ២.២ គំណថខ់អំឡើយ៉ូខ ឆិខគាម៉ែតញ៉ី

កោសិកាមេមួយរងចំណែកមេយ៉ូស បង្កើតបានស្ប៉ូអាប្លូអ៊ីត៤
(មេហ្គាស្ប៉) ។ តែត្រូវងាប់អស់ ៣ នៅសល់មួយ ត្រូវរងចំណែក
មីតូស៣ដងបន្ត បន្ទាប់បង្កើតបានជាថង់កំណ។ ថង់កំណនេះមាន
កោសិកាចំនួន៧ តែមានណ្វៃយ៉ូអាប្លូអ៊ីតចំនួន៨។



## ២.៣ ដំណើរសំអខ

ដំណើរលំអងជាផ្ទេរគ្រាប់លំអងពីប្លោកលំអងទៅលើស្ទិចមាត។ ដំណើរលំអងមានពីរយ៉ាងគឺ ស្វ័យដំណើរលំអង និង ដំណើរលំអងកាត់។

- + ស្វ័យដំណើរលំអង ឬដំណើរលំអងឯង ជាផ្ទេរគ្រាប់លំអងពីប្លោកលំអងទៅលើស្ទិចមាត់នៃផ្កាតែមួយ ។
- + ដំណើរលំអងកាត់ជាដំណើរគ្រាប់លំអងធ្លាក់ទៅលើស្ទិចម៉ាតរបស់ផ្កានៃរុក្ខជាតិមួយផ្សេងទៀត។ ដំណើរលំអង កាត់ប្រព្រឹត្តឡើងដោយសារ ទឹក ខ្យល់ សត្វ មនុស្ស ។

#### ២.៤ គារមទ្ធគំរេស៊ីត

គ្រាប់លំអងមិនមែនជាកាម៉ែតឈ្មោលទេ។ ពេលគ្រាប់លំអងធ្លាក់លើស្ទិចម៉ាត វាពន្លូតខ្លួនចាក់ចូលទៅក្នុងជាលិកា របស់កេសរញីរហូតដល់អូវុល។ ហ្វៃយ៉ូទាំងពីររបស់គ្រាប់លំអងធ្វើដំណើរក្នុងបំពង់លំអងគឺណ្វៃយ៉ូទី១ (ណ្វៃយ៉ូលូត លាស់)។ នៅចុងបំពង់លំអង ហើយណ្វៃយ៉ូទី២ (ណ្វៃយ៉ូបន្តពូជ) ចែកខ្លួនតាមមីតូសបានជាស្ពែម៉ាតូសូអ៊ីត២ដែលគ្មាន ផ្លាសែល។

ពេលបំពង់លំអងប៉ះនឹងថង់កំណរបស់អូវុល គឺ

- + ស្ពែម៉ាតូសូអ៊ីតទី១ បង្កកំណើតជាមួយកាម៉ែតញី បង្កើតបានជាស៊ីកូត (2n) ដែលលូតលាស់ទៅជាអំប្រ៊ីយ៉ុង។
- + ស្ដែម៉ាតូសូអ៊ីតទី២ជួបជាមួយណ្វៃយ៉ូប៉ូលៃ បង្កើតជាអាល់ប៊ុយមែន(3n) ដែលមាននាទីផ្ទុកអាហារបម្រុង។

🖐 ការបង្កកំណើត២ដងក្នុងពេលតែមួយហៅថា ៉ីការបង្កកំណើតទ្វេី ដែលជាលក្ខណៈពិសេសរបស់រុក្ខជាតិអង់ស្យូស្ពែម ។







# ២.៥ ទន្តទីទឹតមេស់រុក្ខខាត៌មានផ្លា

ទម្រង់នៃការបន្តពូជរបស់អង់ស្យស្ពែមមានពីរដំណាក់កាលគឺដំណាក់ផ្កា និងដំណាក់គ្រាប់ ដំណាក់កាលទាំងពីរនេះ



# ៣ ម្រៀមធៀមរុគ្ខខាតិម៉ូឈុគូនីលេខ្ទុន សិច្ចគេឌីគូនីលេខ្ទុន

+ រុក្ខជាតិម៉ូណូកូទីលេដូន

-មានកូទីលេដុងមួយ

-ផ្កាមានស្រទាប់បី ឬពហុគុណបី

-ដើមមានបាច់សរសៃនាំស្ថិតនៅរាយប៉ាយ

-ស្លឹកមានទ្រនុងស្រប

-ដើមទោល

-ប្តូសស្តែ

+ រុក្ខជាតិឌីកូទីលេដូន

-មានកូទីលេដុងពីរ

-ផ្កាមានស្រទាប់ ៤ ឬ៥ (ពហុគុណ ៤ ឬ៥)

-ដើមមានបាច់សរសៃនាំ ស្ថិតនៅជារង្មង់

-ស្លឹកមានទ្រនុងបែកខ្នែង

-ដើមបែកមែក

-ប្តូសកែវ

#### ៤. ផលប្រយោជន៍របស់រុគ្គជាតិមានគ្រាច់

រុក្ខជាតិមានផលប្រយោជន៍ណាស់ចំពោះជីវភាពរស់នៅរបស់មនុស្សយើង។

–រុក្ខជាតិស៊ីមណូស្ពែមជាពិសេសស្រល់អាចយកទៅធ្វើជាក្រដាស គ្រឿងសង្ហារឹម និងចំហុយធ្វើជាប្រេងសម្រាប់ លាបឈើ ផ្ទះ និងព្យាបាលជំងឺផងដែរ ។

-រុក្ខជាតិអង់ស្យូស្ពែម ជាប្រភពអាហារដ៏សំខាន់ ឱ្យសថសម្រាប់ព្យាបាលជំងឺ ផលិតជាសំពត់ ក្រដាស និងធ្វើជា គ្រឿងសំណង់ គ្រឿងសង្ហារឹមដ៏ប្រណីត ។ ពិសេសរុក្ខជាតិ ផ្តល់នូវអុកស៊ីសែនដល់មនុស្ស សត្វ ។







#### **ង**ន្ទែទន្សេ១ៗមេសសារពាខ្ពុនាយ င့္ၿပီးအယ

#### ខេត្តមន្ត្រ ឌន្ត្រីឧន្ត្រៃខាន

លក្ខណៈពិសេសរបស់ភាវរស់ទាំងអស់គឺមានសមត្ថភាពឆ្លើយតបនឹងវត្ថុភ្ញោច។ សមត្ថភាព ទាំងនេះអាស្រ័យលើប្រព័ន្ធប្រសាទប្រព័ន្ធអង់ដូគ្រីនសរីរាង្គវិញ្ញាណនិងប្រព័ន្ធគ្រោងឆ្អឹង-សាច់ដុំ ១-ដង្កែឧស្រុសានសង្កិដុងស្ពឺ១ដច

ដើម្បីទទូលព័ត៌មានពីខាងក្នុងសារពាង្គកាយនិងបរិស្ថានខាងក្រៅសត្វប្រើប្រាស់បណ្តា ញប្រសាទក្នុងការ បញ្ហូនព័ត៌មានទាំងឡាយទៅកោសិកាផ្សេងៗព្រមទាំងបញ្ហាទៅសាច់ដុំនិងក្រពេញទាំងអស់នៃ សារពាង្គកាយ។

# ១.១. តម្លេទម្រសានប្រូនិស

ប្រ្ទុទីសគ្មានប្រព័ន្ធប្រសាទពិតប្រាកដទេ តែវាមានលទ្ធភាពឆ្លើយតបនឹងរំញោចខ្លះតាមរបៀប សម្របសម្រួលពិសេសរបស់វា។ ប្រ្ទុទីសខ្លះមានរោមញ័រពិសេស ដែលមាននាទីដូចណឺរ៉ូនរបស់ សត្វថ្នាក់ខ្ពស់ភាគច្រើនដែរ។ ប្រទីសអាចផ្លាស់ទីទៅរកអាហារ ឬចេញឆ្ងាយពីសារធាតុពុល និងឧបសគ្គផ្សេងៗ។

# ១ ២ ឌរិគិនរិតមានអ្នំឌ

អ៊ីតគ្មានមជ្ឈមណ្ឌប្រសាទ (ខ្លួរក្បាលឬខ្លួរឆ្អឹងខ្នង) សម្រាប់ត្រឹតពិនិត្យ និងសម្របសម្រួល អាំងភ្លុចប្រសាទទេគឺប្រព័ន្ធប្រសាទអ៊ីតមានលក្ខណ:ជាបណ្តាញសរសៃប្រសាទ។ ផ្នែកណាមួយនៃសារពាង្គកាយទទូលបានរំញោច អាំងភ្លុចប្រសាទសាយយឺតៗ ចេញពីកន្លែង រំញោចនោះទៅពាសពេញបណ្ដាញសរសៃប្រសាទ ទាំងមូលនៃសារពាង្គកាយ។

#### ១.៣.តម្លេទម្រសាធិសម័និទ

ប្រព័ន្ធប្រសាទជន្លេនមានលក្ខណៈស្មុគស្មាញជាងប៉ារ៉ាមេស៊ី និងអ៊ីតគឺប្រព័ន្ធប្រសាទកើត ឡើងពីខ្លួរក្បាល កង់គ្លីយ៉ុង និងសរសៃប្រសាទចំហៀង។

\*\*កង់គ្លីយ៉ុងគឺកើតឡើងពីត្ចកោសិកាមួយក្រុម និងអន្តរណឺរ៉ូន ដែលប្តូរ បញ្ជូនបន្ត និងសម្រប សម្រួលអាំងភ្លុច ប្រសាទ។

# គំនូសបំព្រួញពីតម្រូវប្រសាទជន្លេន

រំញោច $\rightarrow$ ធ្មូលវិញ្ញាណ→ណឺរ៉ូនវិញ្ញាណនាំ→អន្តរណឺរ៉ូន→ណឺរ៉ូនចលករ→សាច់ដុំ ឬក្រពេញ

# 

ប្រព័ន្ធប្រសាទកណ្ដូបមានលក្ខណៈស្រដៀងគ្នានឹងជន្លេនដែរ គឺវាមានខូរក្បាល ពោះមាន សរសៃប្រសាទរឹងមួយគូ និងកង់គ្លីយ៉ុងដែលស្ថិតនៅតាមបណ្ដោយដងខ្លួន។

សរីរាង្គវិញ្ញាណកណ្តូបមានការវិវត្តខ្ពស់ជាងជន្លេនគឺ មានភ្នែក ពុក ជីវ្ហាវិញ្ញាណ ហើយក៏ជា







# ២ ត្បូមទម្រសានសត្វឆ្លឺ១ភ១ ២.១ រួមផ្គុំម្រព័ត្តម្រសាធសត្វឆ្អឹទនាខ

ប្រព័ន្ធប្រសាទសត្វឆ្អឹងកងមានពីរផ្នែកគឺ៖

- មជ្ឈមណ្ឌលប្រសាទមានខូរក្បាល និងខូរឆ្អឹងខ្នងដែលជាកន្លែងទទូលព័ត៌មាន និងបក ប្រែ នៅក្នុងប្រព័ន្ធប្រសាទ។
- បរិមណ្ឌលប្រសាទមានផ្លូវប្រសាទស្ថិតនៅពាសពេញសារពាង្គកាយលើកលែងតែខ្លូរ ក្បាល និងខូរឆ្អឹងខ្នង។ ផ្លូវប្រសាទចែកជាពីរក្រុមគឺផ្លូវប្រសាទវិញ្ញាណនាំជាអ្នកបញ្ជូនពត៌មានពី ធ្មូលវិញ្ញាណទៅកាន់មជ្ឈមណ្ឌលប្រសាទ។ ផ្លូវប្រសាទចលករជាអ្នកទទូលបញ្ជាពីមជ្ឈមណ្ឌល ក្នុងផ្លូវប្រសាទចលករចែកចេញជាប្រព័ន្ធប្រសាទឆន្ទ:ជាអ្នក ប្រសាទមកសរីរាង្គប្រតិកម្មវិញ។ និងប្រព័ន្ធប្រសាទអឆន្ទៈជាអ្នកភ្លោចក្រពេញនិងសាច់ដុំដទៃទៀតក្នុង បញ្ហាសាច់ដុំជាប់ឆ្អឹង សារ៣ង្គកាយ ។ ភីប(សរសៃ) ប្រសាទ្យមគ្នាជាបាច់ ហៅថាបាច់ប្រសាទ ។

#### ២.២ តម្លេងទ្រសានសង្គឆ្អឹម ៧.៧

ប្រព័ន្ធប្រសាទសត្វឆ្អឹងកងមានការអភិវឌ្ឍខ្ពស់ដោយខួរក្បាលវាមានការលូតលាស់ល្អ និង មាន សរីរាង្គវិញ្ញាណច្រើន ។

+អឌ្ឍគោលខូរជាតំបន់វិនិច្ឆ័យនៃខូរក្បាលដោយវាទទូលបកស្រាយកំណត់តំណបទៅនឹង ព័ត៌មានរបស់សរីរាង្គវិញ្ញាណ ។

+ខ្លួរត្វូចមាននាទីសម្របសម្រួលចលនា និងត្រូតពិនិត្យលំនឹង។ សរីរាង្គ្រឃានវិញ្ញាណរបស់ មនុស្សមានអនុភាពទាបជាងគេ បើធៀបជាមួយឆ្កែ ឆ្មា ចំណែកឯឆ្កែ ប្រចៀវ ផ្សោត មានភាពរូស ជាមួយសំឡេង ខ្ពស់ជាងមនុស្ស ។

# ៣. ម្រព័ន្ធម្រសានមនុស្ស ៣.១ ខានីប្រព័ន្ធប្រសាន

ប្រព័ន្ធប្រសាទមនុស្សមាននាទី

- ទទូលនិងវិភាគពត៌មានពីមជ្ឈដ្ឋានខាងក្រៅ និងពីផ្នែកផ្សេងៗក្នុងសារពាង្គកាយ។
- ឆ្លើយតបទៅនឹងព័ត៌មានបន្ទាប់ពីទទូលបានពត៌មានវាបញ្ហារទៅសរីរាង្គពាក់ព័ន្ធនៅក្នុង សារពាង្គកាយដើម្បីសម្របសម្រួលហើយឆ្លើយតបនិងពត៌មាននោះ។
  - នាទីរបស់ប្រពន្ធ័ប្រសាទ រក្សាថេរលំនឹង ។

#### ធរុំស្វែ ៧.៣

ណឺរ៉ូនជាកោសិកាឯកទេសដែលមាននាទីបញ្ជូនព័ត៌មានទៅពាសពេញសារពាង្គកាយ។ ព័ត៌មានដែល ណឺរ៉ូនដឹកនាំហៅថា អាំងភ្លួចប្រសាទ។

## នះ ខែនុំស៊ីរ៉ូន

ណឺរ៉ូនមានបីផ្នែកសំខាន់ៗគឺ៖

-ដង់ឌ្រីត ជាសរសៃឆ្មារៗខ្លីដែលបែកចេញពីតូកោសិកា មាននាទីដឹកនាំអាំងភ្លួចប្រសាទ







- តូកោសិកា មានផ្ទុកមីតូកុងឌ្រី ប្រដាប់កុលស៊ី សារធាតុនីស និងណឺរ៉ូភីប្រ៊ី ។
- ដង់ឌ្រីត ជាសរសៃតូចល្អិតបំផុតដែលឃើញមាននៅក្នុងអាក់ស្ងន និង ណីរ៉ូភិប្រ៊ិ តូកោសិកា វាមាននាទី បញ្ជូនអាំងភ្លួចនៅក្នុងកោសិកាប្រសាទ។
- អាក់ស្ងួនជាពន្លួយដែលបែកចេញពី់តួកោស់ិកាមានតែមួយវែងហើយធំ។



## ខ. ម្រដោនផ្សេចៗនៃសិរ៉ូន

- តាមតូនាទីរបស់វា គេចែកណឺរ៉ូនជាបីប្រភេទ៖
  - ណឺរ៉ូនវិញ្ញាណនាំ មាននាទីដឹកនាំព័ត៌មានទៅកាន់មជ្ឈមណ្ឌលប្រសាទ
  - ណឺរ៉ូនចលករមាននាទីដឹកនាំព័ត៌មានពីមជ្ឈមណ្ឌលប្រសាទទៅកាន់សរីរាង្គប្រតិកម្ម (សាច់ដុំ ក្រពេញ)
  - ណឺរ៉ូនភ្ជាប់(ឬអន្តរណឺរ៉ូន) មាននាទីបញ្ជូនបន្តព័ត៌មានពីណឺរ៉ូនមួយ ទៅណឺរ៉ូនមួយទៀត។
- តាមពន្លយចេញពីតូកោសិការបស់វា គេចែកណឺរ៉ូនជាបីប្រភេទ៖
- ណឺរ៉ូនឯកប៉ូល៖ មានពន្លយមួយបែកចេញពីតូកោសិកា មាននាទីដឹកនាំព័ត៌មានចេញពីធ្មួលវិញ្ញាណទៅ កាន់មជ្ឈមណ្ឌលប្រសាទ។
- ្ណារ៉ូនទ្វេប៉ូល៖ មានពន្លយពីរបែកចេញពីតួកោសិកា មាននាទីបញ្ជូនបន្តនូវព័ត៌មានចេញ ពីណឺរ៉ូន មួយទៅណឺរ៉ូនមួយទៀត។ វាមានទីតាំងក្នុងមជ្ឈមណ្ឌលប្រសាទ។
- ្ណារ៉ូនពហុប៉ូល៖មានពន្លយច្រើនចេញពីតូកោសិកាមាននាទីដឹកនាំព័ត៌មានពីមជ្ឈមណ្ឌល ប្រសាទ ទៅកាន់សរីរាង្គចលករ។

# ដ.ឃុំចង្គិតវិតមាន

ធ្វើដំណើរចាប់ពីដង់ឌ្រីតមួយហើយធ្វើដំណើរយ៉ាងលឿនទៅកាន់តូកោសិការបស់ណឺរ៉ូន រួចចុះតាមអាក់ស្ងួនរហូតដល់ចុងអាក់ស្ងួនអាំងភ្លួចប្រសាទធ្វើដំណើរតាមបណ្ដោយណឺរ៉ូនក្រោម រូបរាងជាសញ្ញាណអគ្គិសនី និងគីមី។

#### ಚು.ಹೈಣಾಳ

ស៊ីណាប់គឺជាចន្លោះលំហតូចមួយរវាងអាក់ស្ងួននៃណឺរ៉ូនមួយ និងដង់ឌ្រីតនៃណឺរ៉ូនមួយ ខេត្តិ

នៅចុងអាក់ស្ងួនមានថង់តូចៗជាច្រើនដែលផ្ទុកសារធាតុគីមី(ណឺរ៉ូនបញ្ជូនសារ)។ ពេល អាំងភ្លុចប្រសាទទៅដល់ចុងនៃអាក់ស្ទូន ថង់ទាំងនោះផ្ទះបែកហើយបញ្ចេញណឺរ៉ូនបញ្ជូនសារ



សាយឆ្លងកាត់ស៊ីណាប់។ បន្ទាប់មកណឺរ៉ូនបញ្ជូនសារនេះបង្កើតអាំងភ្លុចប្រសាទនៅក្នុងដង់ឌ្រីត របស់ណឺរ៉ូនមួយទៀត រួចវាធ្វើ ដំណើរតាមតូកោសិកា និងចុះតាមអាក់សូន។

## ៣.៣ មខ្លាំងស្នាលម្រសាធ

#### **ភ**.ខូរត្បាល

ខ្ចុរក្បាលជាសរីរាង្គសំខាន់ជាងគេនៃមជ្ឈមណ្ឌលប្រសាទមានណឺរ៉ូនប្រហែល១០០៣ន់ ខ្ចុរក្បាលមនុស្សមានទម្ងន់ប្រហែលពី១២០០ក្រាមទៅ១៣៥០ក្រាមចំពោះមនុស្សប្រុស និងប្រហែលពី១០០ក្រាមទៅ១២៥០ក្រាមចំពោះមនុស្សស្រី។ ផ្ទៃក្រឡារបស់វាប្រហែលពី២០០០ ទៅ២១០០cm³។ ខូរក្បាល ការពារដោយឆ្អឹងលលាដ៍។ ខូរក្បាលស្រោបដោយជាលិកាសន្ធាន៣ ស្រទាប់ហៅថាស្រោមខួរ។ ចន្លោះរវាងស្រទាប់ក្នុងបង្អស់ និងស្រទាប់កណ្ដាលពេញដោយធាតុ រាវគឺទឹកខ្លួរ។ ទឹកខ្លួររត់កាត់ខ្លួរក្បាលដោយ ដឹកនាំអុកស៊ីសែន គ្លួយកូស កោសិកា ឈាមស និង អរម៉ូន។ ដើម្បីឲ្យខូរក្បាលចំពេញនាទីបានល្អ វាត្រូវ ទទួលការផ្គត់ផ្គង់អាហារ និងអុកស៊ីសែនជា ប្រចាំ។ ប្រសិនបើការផ្គត់ផ្គង់ O₂ ត្រូវកាត់ផ្ដាច់រយៈពេល ២ ទៅ ៣នាទី ខួរក្បាលនឹងរងការខូច ខាតបណ្តាលឱ្យស្លាប់។

ខ្ទរក្បាលមានតំបន់ ៣សំខាន់គឺ ខ្ទរធំ ខ្ទរតូច និងខ្ទរកញ្ចឹងក។

- ្ទរធំជាផ្នែកធំជាងគេនៃខូរក្បាល ខូរធំចែកជា២ចំហៀងគឺអឌ្ឍគោលខូរស្តាំត្រូតពិនិត្យ សកម្មភាពសារពាង្គកាយខាងឆ្វេង និងអឌ្ឍគោលខូរឆ្វេងត្រូតពិនិត្យសកម្មភាពសារពាង្គកាយ ខាងស្តាំ។ ផ្នែកផ្សេងៗនៃខ្ទរធំនៅផ្នែកបាតនៃខ្ទរធំ កើតពីសារធាតុប្រផេះ ហៅថាតាឡាមុស។
- តាឡាមុសមាននាទីទទូលអាំងភ្លុចពីណឺរ៉ូនវិញ្ញាណនាំ ហើយបញ្ជូនទៅកាន់សំបកខ្ទុរ ដើម្បីបកស្រាយ។ ក្រៅពីនេះតាឡាមុសជ្រើសរើសព័ត៌មានមួយចំនូនដែលអាចទប់ស្កាត់មិនឱ្យ រំភើបខ្លាំងពេក។
- អ៊ីប៉ូតាឡាមុសស្ថិតនៅក្រោមតាឡាមុស។ វាត្រូតពិនិត្យវេទនារម្មណ៍សំខាន់ៗទាក់ទង នឹងការថែររក្សាលំនឹងដូចជាការស្រេក ការឃ្លាន តំហែសីតុណ្ហភាព តុល្យភាពទឹក និងសម្ពាធ ឈាម។ អ៊ីប៉ូតាឡាមុសមាននាទីសម្រាប់បង្កើត ឬភ្លោចការបញ្ចេញអរម៉ូនរបស់អ៊ីប៉ូភីស។
- ្ទខ្លួរតូចស្ថិតនៅផ្នែកខាងក្រោយក្រោមខ្លួរធំ។ ខ្លួរតូចក៏មានសារធាតុប្រផេះ និងសដែរ។ ខ្ចរត្វចត្រួតពិនិត្យចលនាឆន្ទ:ទាំងអស់ និងចលនាអឆន្ទ:មួយចំនួន។ ខ្ចរត្វចបញ្ជូនអាំងភ្លួចទៅ កាន់សំបកខ្លួរក្បាលដើម្បីកែលំអរ និងសម្របសម្រួលចលនាសាច់ដុំ។ ដូចនេះសំបកខ្លួរក្បាល និងខូរតូចធ្វើការរួមគ្នាដើម្បី បង្កើតចលនាឆន្ទ:មានសណ្តាប់ធ្នាប់និងរលូន។

ឧទាហរណ៍: ដំណើរទ្រេតទ្រោតនិងសញ្ញាផ្សេងៗទៀតនៃការបាត់បង់លំនឹងកើតមាននៅ ពេលណាគេផឹកគ្រឿងស្រវឹងច្រើនពេកដែលបណ្តាលឲ្យមានការបាត់បង់ជាបណ្តោះអាសន្ននូវ នាទីរបស់ខ្លួរតូច។





្ទរកញ្ចឹងកស្ថិតនៅខាងក្រោមខ្ទរធំ និងខួរតូច ហើយភ្ជាប់នឹងខូរឆ្អឹងខ្នង។ ស្រទាប់ក្រៅ ជាសារធាតុស ឯស្រទាប់ក្នុងជាសារធាតុប្រផេះ។ ខ្លួរកញ្ចឹងកកើតឡើងពីភីបប្រសាទដែលភ្ជាប់ ខូរឆ្អឹងខ្នង ទៅនឹងផ្នែកផ្សេងៗទៀតនៃខូរក្បាល។

ឧទាហរណ៍: ណឺរ៉ូនក្នុងខូរកញ្ចឹងកតម្រូវដង្ហើមនិងត្រូតពិនិត្យចង្វាក់បេះដូង។

#### ខ. ខូរឆ្អឹចខូច

ខ្ចរឆ្អឹងខ្នងបន្តចេញពីខ្ចរក្បាលសន្ធឹងចុះមកខាងក្រោមតាមប្រហោងឆ្អឹងកងខ្នងប្រវែង ប្រហែល ៤២-៤៥cm។

តាមខ្នាត់ទទឹងខូរឆ្អឹងខ្នង៖ ផ្នែកខាងក្នុង មានរូបរាងជាអក្សរ H ដែ៧ន្លជាសារធាតុប្រផេះ។ សារធាតុប្រផេះកើតពីអន្តរណឺរ៉ូន និងតូកោសិកានៃណឺរ៉ូនចលករហើយត្រូវបានរុំព័ទ្ធជុំវិញដោយ សារធាតុស។ សារធាតុសកើតពីភីបអាក់សូនដែលដឹកនាំអាំងភ្លុចរវាងផ្នែកទាំងអស់នៃសារពាង្គ កាយជាមួយខូរឆ្អឹងខ្នង និងខូរក្បាល។ នៅចំកណ្ដាលឆ្អឹងខ្នងជាប្រហោងឆ្អឹងខ្នងពេញដោយធាតុ រាវ ខូរឆ្អឹងខ្នង។

ខ្ទរឆ្អឹងខ្នងមានសារៈសំខាន់ដោយសំអាងលើមូលហេតុ២ ៖

- ្ទទី១ : វាភ្ជាប់សរសៃប្រសាទនៃបរិមណ្ឌលប្រសាទទៅនឹងខូរក្បាល។
- ្ទី២ : វាត្រួតពិនិត្យអេផ្លិចខ្លះៗដែលជាតំណបស្វ័យប្រវត្តិ។

#### ៣.៤ មរិមណ្ណល្យមុសាន

គ្រប់ផ្នែកទាំងអស់នៃប្រព័ន្ធប្រសាទរួមបញ្ចូលទាំងសរសៃប្រសាទលលាដ៍ក្បាល១២គូដែល បែកចេញពីខ្លួរក្បាល និងសរសៃប្រសាទឆ្អឹងខ្នង៣១គូដែលបែកចេញពីខ្លួរឆ្អឹងខ្នងជាបរិមណ្ឌល លើកលែងតែខូរក្បាល និងខូរឆ្អឹងខ្នង។

ណឺរ៉ូនចលករនៃបរិមណ្ឌលប្រសាទចែកចេញជា២ក្រុម៖

- ្សប្រព័ន្ធប្រសាទសូម៉ាទិចមានណឺរ៉ូនចលករដែលភ្ជាប់មជ្ឈមណ្ឌលប្រសាទទៅនឹងសាច់ដុំ ឆ្នូត ឬសាច់ដុំឆន្ទ:។
- ប្រព័ន្ធប្រសាទស្វ័យប្រវត្តិធ្វើដំណើរទៅក្រពេញសាច់ដុំរលីងនិងសាច់ដុំបេះដូង។ ប្រព័ន្ធប្រសាទស្វ័យប្រវត្តិចែកចេញជា២ផ្នែក៖
  - ្សប្រព័ន្ធប្រសាទសាំប៉ាទិចមានសកម្មភាពនៅពេលមានភាពតានតឹង។
  - ប្រព័ន្ធប្រសាទប៉ារ៉ាសាំប៉ាទិចមានអំពើបញ្ច្រាសគ្នា។បន្ទាប់ពីមានភាពអាសន្នប្រព័ន្ធ ប្រសាទប៉ារាសាំប៉ាទិចធ្វើឱ្យសារពាង្គកាយត្រឡប់ទៅស្ថានភាពធម្មតាវិញ។







#### ៣.៥ ថ្នាំ សិចម្រព័ន្ធម្រសាន

ថ្នាំជាច្រើនដូចជាអាល់កុល កាហ្វេអ៊ីនមានឥទ្ធិពលផ្ទាល់លើប្រព័ន្ធប្រសាទ។ នៅពេលជឹក ចូលអាល់កុលឆ្លងកាត់ភ្នាសក្រពះភ្នាសពោះវៀនតូចចូលទៅប្រដាប់របត់ឈាម។ អាល់កុល ពន្យឺតសកម្មភាពមជ្ឈមណ្ឌលប្រសាទ។ ការវិនិច្ឆ័យ ការពិចារណាសតិការប្រមូលផ្ដុំអារម្មណ៍ត្រូវ ការប្រើប្រាស់អាល់កុលច្រើនហូសហេតុបំផ្លាញកោសិកាខូរក្បាល និងថ្លើមៗ ថយចុះ។ កាហ្វេអ៊ីនបង្កើនល្បឿនសកម្មភាពមជ្ឈមណ្ឌលប្រសាទ។ ការផឹកកាហ្វេអ៊ីនច្រើនហ្វេសហេតុនាំ ឱ្យអត្រាចង្វាក់បេះជូងរសាប់រសល់ដំណើរញ័រ ដេកមិនលក់។ វាក៏អាចភ្ញោចតម្រងនោមឱ្យ ជលិតទឹកនោមច្រើនដែរ។ កាហ្វេអ៊ីនមាននៅក្នុងកាហ្វេ តែកូកា និងភេសជ្ជ:ជាច្រើនទៀត សារធាតុនីកូទីនមាននៅក្នុងថ្នាំជក់។ វាបង្កើនអត្រាចង្វាក់បេះដូងសម្ពាធឈាម អត្រាដង្ហើម និងការបញ្ចេញជាតិអាស៊ីតក្នុងក្រពះ។

രുമെ&രുമ





## សំពែទ្ធទិញ្ញាណ (Sense organ)

ប្រព័ន្ធប្រសាទឆ្លើយតបទៅនឹងព្រឹត្តការណ៍ផ្សេងៗដែលនៅជុំវិញខ្លួនយើង។ វិញ្ញាណរបស់មនុស្សមាន ៥ គឺ ចក្ខុវិញ្ញាណ សោតវិញ្ញាណ ឃានវិញ្ញាណ ជីវ្ហាវិញ្ញាណ កាយវិញ្ញាណ។

# ១~ឧងំខ្លួយវាខា

ភ្នែក ជាសរីរាង្គគំហើញ វាផ្តល់ព័ត៌មានជាង៨០% ដែលទទួលបានពីពិភពខាងក្រៅ។ ភ្នែកមាននាទីប្រមូល ផ្តុំកាំរស្ទីពន្លឺ ដែលនៅជុំវិញខ្លួនយើង។ ខួរក្បាលចាប់យករូបភាពពីភ្នែកខាងឆ្វេង និងភ្នែកខាងស្តាំ ហើយសំយោគបញ្ចូល គ្នាទៅជារូបភាពតែមួយ ដែលផ្តល់នូវគំឃើញនៃវិមាត្របីបែប សម្រាប់ធ្វើការវិនិច្ឆ័យពីប្រវែង ទំហំ នៃរូបភាព។

## ១.១ ឧម្ទេទ់គ្រាម់ត្អែត

គ្រាប់ភ្នែកមានរាងស្វ៊ែរ មានអង្កត់ផ្ចិត ២.៥ ស.ម ដែលស្ថិតនៅក្នុងប្រឡង់ភ្នែកនៃលលាដ៏ក្បាល។ គ្រាប់ភ្នែក របស់ មនុស្សមានភ្នាស់បីស្រទាប់គឺ ក្លេរ៉ូទិច កូរ៉ូអ៊ីត រ៉េទីន និងស្រោបដោយមជ្ឈដ្ឋានថ្លា។

#### គ. ត្តាសគ្រាម់ត្លែគ

- ក្លេវ៉ូទិច (Sclerotique ) ជាស្រទាប់ក្រៅបង្អស់ ពណ៌ស ក្រាស់ រឹង ស្វិត។ ផ្នែកខាងមុខភ្នែក ស្រទាប់ ក្រៅឡើងប៉ោង ថ្លាគឹករនេ។ ករនេមានលក្ខណៈកោងជាងទម្រង់គ្រាប់ភ្នែកទាំងមូល វ៉ាមាននាទីពត់កាំពន្លឺដែល ចាំងចូល ក្នុងភ្នែកឱ្យរួមជួបគ្នានៅកន្លែងតែមួយលើរ៉េទីន។
- កូរ៉ូរអ៊ីត (Choroïde)ស្រទាប់នេះសំបូរសរសៃឈាម ដែលមាននាទីដឹកនាំសារធាតុចិញ្ចឹម អុកស៊ីសែន ដល់ស្រទាប់ រេទីន និងទ្រទ្រង់លំនឹងសីតុណ្ហភាពក្នុងភ្នែក និងជាតិពណ៌ត្នោតចាស់ ដែលបង្ការការជះត្រឡប់វិញនៃ ពន្លឺនៅក្នុង គ្រាប់ភ្នែក។
- + កែវភ្នែកចងភ្ជាប់នឹងអង្គស៊ីលីយែរ (Corps Ciliaire)(សាច់ដុំរលីងដែលស្ថិតនៅជុំវិញភ្នែក) ដោយសរសៃ ចំណង។
- ប្រស្រីភ្នែកជាសាច់ដុំរលីងដែលបង្កើតពីស្រទាប់កូរ៉ូអ៊ីតផ្នែកខាងមុខនៃភ្នែក ព្រមទាំងមានជាតិពណ៌។ នៅ កណ្តាលប្រស្រីភ្នែកមានរន្ធចំហមួយហៅថា រន្ធប្រស្រី។ រន្ធប្រស្រីរីកធំពេលពន្លឺខ្សោយ ហើយរួមតូចពេលពន្លឺខ្លាំងទំហំរន្ធ ប្រស្រីភ្នែកត្រួតពិនិត្យដោយប្រព័ន្ធប្រសាទស្វ័យប្រវត្តិ។
- -រ៉េទីន(Rétine ) គឺជាស្រទាប់ក្នុងបង្អស់នៃគ្រាប់ភ្នែក និងជាធ្នូលរួសនឹងពន្លឺ ។ ធ្នូលពន្លឺមានកោសិកាពីរបែបគឺ កោសិកាកោន និងកោសិកាដំបង ។
- ផូវៀ ជាតំបន់រួសនឹងពន្លឺជាងគេលើស្រទាប់រេទីន ដែលបង្កឡើងពី កោសិកាកោន និងកោសិកាដំបង ។ ចំណុចខ្វាក់ ជាកន្លែង ដែលសរសៃ ឈាម និងសរសៃប្រសាទភ្ជាប់នឹងគ្រាប់ភ្នែក ។ ចំណុចនេះគ្មានកោសិកា ឃាំ រួសនឹងពន្លឺទេ ហើយវាមិនផ្តល់ ព័ត៌មានទៅខួរក្បាលដែរ ។







#### ខ. មជ្ឈដ្ឋានថ្កា

- កែវភ្នែក ជាផ្នែកថ្លាទន់។ កែវភ្នែកភ្ជាប់ និងអង្គស៊ីលីយែរ ដោយសរសៃចំណង។
- ឃ្លប់គ្រាប់ភ្នែកៈ ចែកជាបីផ្នែកគឺ ចាប់ពីផ្នែកខាងមុខទៅផ្នែកខាងក្រោយនៃភ្នែកមាន ករនេ អ៊ុយម័រទឹក អ៊ុយម័រខន់។
  - អ៊ុយម័រទឹកផលិតដោយសរសៃប្តូរនៅក្នុងអង្គស៊ីលីយែល វាមាននាទីរក្សាលំនឹងនៅ ក្នុងឃ្លប់ គ្រាប់ភ្នែក។
- អ៊ុយម័រខន់ផលិតដោយអង្គស៊ីលីយែល និងផ្ដល់នូវសារធាតុចិញ្ចឹមបន្ថែមសម្រាប់កែវភ្នែក និងស្រទាប់រេទីន។
   វាផ្ដល់ទម្រង់មាំដល់ភ្នែក និងការពារភ្នែកពីសម្ពាធខាងក្រៅ។

#### ១.២ ស៊ីវាទូខ្ទមសម្ព័ន្ធ

#### **គ.សរីព១ខ្**គារពារ

មានផ្នែកផ្សេង១សម្រាប់ការពារភ្នែកគឺ៖

- ប្រឡង់ភ្នែក ជាប្រហោងដែលព័ទ្ធជុំវិញដោយឆ្អឹង ប្រឡង់ភ្នែក សម្រាប់ការពារ ភ្នែកទប់ នឹងការប៉ះទង្គិចពីខាងក្រៅ ។
- ត្របកភ្នែក មានរោមភ្នែកជាច្រើន សម្រាប់ការពារភ្នែកកុំឱ្យធូលីហុយចូល ។
- ក្រពេញទឹកភ្នែក ស្ថិតនៅខាងក្រោយត្របកភ្នែកលើ មាននាទីធ្វើឱ្យប្រឡង់ភ្នែកមានភាព សើមជានិច្ច។ ទឹកភ្នែកកើតឡើងពី ទឹក អំបិល លីសូសូម និងសមាសធាតុសរីរាង្គ ផ្សេងៗ ដែលផលិតចេញពីភ្នាសស្លេស្ទ។

➤ លីសូសូម (lysosome )ជាធាតុកោសិកាមានភ្នាសព័ទ្ធជុំវិញ ដែលផ្ទុកអង់ស៊ីមរំលាយ ។

#### **ខ.សរីពខ្លួចល**គរ

សត្វឆ្អឹងកងអាចធ្វើចលនាបង្វិលគ្រាប់ភ្នែកបានដោយសារសាច់ដុំ ប្រាំមួយ ដែលសាច់ដុំនីមួយ១ទទួលខុសត្រូវចំពោះ ចលនានៅក្នុងទិសដៅ ពិសេសមួយ ដើម្បីមើលរូបភាពមួយដែលមានវិមាត្របី ហើយតម្រូវដោយ សរសៃប្រសាទលលាដ៏ក្បាល។

# ១.៣ គោសិគារួសនី១ពន្ថិ

ស្រទាប់រេទីន កើតឡើងពីស្រទាប់កោសិកាខុសៗគ្នាគឺ៖

- កោសិការាងកោន ត្រូវការពន្លឹច្រើន ហើយផ្តល់ ឱ្យយើងនូវរូបភាពភ្លឺច្បាស់ ។ កោសិការាងកោន មានបីប្រភេទ ហើយកោសិកានីមួយៗរូសទៅនឹង ជាតិពណ៌ផ្សេងៗគ្នា ដូចជា ពណ៌ខ្យេវ បៃតង និង



សាច់ដុំក្រោម

ក្រពេញទឹកភ្នែក

សាច់ដុំលើបញ្ជិត

សាច់ដុំក្រោមបញ្ជិត *សាច់ដុំភ្នែក* 

សាច់ដុំកណ្ដាល សរសៃប្រសាទអុបទិ

សាច់ដុំចំហៀង

ក្រហម។

នៅពេលពន្លឺប៉ះនឹងកោសិកាកោន ឬកោសិកាដំបងវាបំបែកសម្ព័ន្ធគីមីរវាងជាតិពណ៌នៃស្រទាប់រេទីន ប្រូតេអ៊ីន បង្កើតឱ្យមាន អាំងភ្លួចប្រសាទ ដឹកនាំទៅកាន់ខួរក្បាល តាមសរសៃប្រសាទអុបទិច ហើយខួរក្បាលធ្វើការបក ស្រាយជាគំហើញ ។

- 🗲 សរសៃប្រសាទអុបទិចកើតពីសរសៃប្រសាទចេញពីកោសិកាកោន ឬកោសិកាដំបង រួមគ្នា។
- ➤ មនុស្សខ្វាក់មាន់ បណ្តាលមកពីខ្វះវិតាមីនអា ដែលមិនអាចមើលឃើញក្នុងពន្លឹខ្សោយទេ។

#### គំមេស៊ីញ 9.હ

តំហើញ ស ខ្មៅ និងពណ៌កើតឡើងដោយសារ មានជាតិពណ៌ និងវត្តមានវីតាមីនអា។ ការចាប់យកពន្លឺបាន អាស្រ័យដោយកោសិការូសនឹងពន្លឺនៅលើរេទីន ដែលអាចដាលទៅខួរក្បាល ត្រឹមពន្លឺណាដែលចូលទៅក្នុងភ្នែកប៉ុណ្ណោះ ។ ដំបូងពន្លឹនីមួយៗដាលទៅខួរក្បាលត្រឹមតែបំណែកតូចៗនៃរូបភាពដែលវាចាប់បាន។ បន្ទាប់មក តូចៗទាំងនោះបញ្ចូលជាមួយគ្នាឱ្យទៅជារូបភាពមួយពេញលេញ។ អង្គស៊ីលីយែរ និងសរសៃចំណងជួយតម្រូវកែវភ្នែក ដើម្បីបង្កើតរូបភាពច្បាស់លួ ។

#### គ.លានិរបស់គែចផ្នែក

ការប្តូរថាមពលត្រូវធ្វើឡើងនៅលើរេទីន ព្រោះទីនោះ មានកោសិកាប្រសាទ ១២០លាន។ កែវភ្នែកឡើងក្រាស់នៅចំកណ្ដាល ហើយគែមជុំវិញស្ដើង គឺកែវប៉ោង។ កែវប៉ោង អាចចាប់យកកាំរស្ចីពន្លឺដែល រាយប៉ាយ ហើយពត់កាំពន្លឺទាំងនោះឱ្យជួបជាមួយគ្នា គឺចំណុចប្រសព្វគ្នានៃពន្លឹ។

#### ខ.គារសម្រមតម្លេច

ការសម្របតម្រូវរបស់កែវភ្នែក ដើម្បីមើលឃើញវត្ថុផ្សេងៗដែលមានចម្ងាយខុសៗគ្នាឱ្យបានច្បាស់ល្អ។ ដើម្បីមើលរូបភាពមួយច្បាស់ល្អ កែវភ្នែកត្រូវមានកម្រាស់ត្រឹមត្រូវ

- បើចង់មើលវត្ថុជិត អង្គស៊ីលីយែរកន្ត្រាក់(រួមតូច) សរសៃចំណងប្រែជាធូរ នាំឱ្យកែវភ្នែកឡើងក្រាស់។
- បើចង់មើលវត្ថុឆ្ងាយ អង្គស៊ីលីយែបន្ធរសរសៃចំណងឡើងតឹងទាញកែវភ្នែកឱ្យស្តើងធ្វើឱ្យមើលឃើញរូបភាព នៃវត្ថបានច្បាស់។ បំណិនបែបនេះធ្វើឱ្យកែវភ្នែកមានកម្រាស់ត្រឹមត្រូវអាចមើលឃើញវត្ថផ្សេងៗស្ថិតក្នុង ចម្ងាយខុសៗគ្នា។ នេះហៅថា កំលាំងនៃសម្របតម្រូវ។

# **ದ್**ಚಾಚಿಕ್ಕ್ರಮಿಶು

មាននាទី២យ៉ាងគឺ រស់នឹងសូរ និងតំថែរក្សាលំនឹង។

#### រូបឆ្គុំត្រូចេ្យិត **ෆ**.ඉ

ត្រច្យេកចែកជា ៣ ផ្នែកគឺត្រច្បេកក្រៅ ត្រច្យេកណ្ដាល ត្រច្បេកក្នុង។







#### គ. គ្រូខេ្យិតឡេភវ

ត្រច្បើកក្រៅមាន : ស្លឹកត្រច្បើក និងបំពង់ សោតវិញ្ណាណខ្លីមួយ ។ ស្លឹកត្រច្បើកមានលក្ខណៈជាបន្ទះ ស្បែករាងដូចជីឡាវ ទ្រទ្រង់ដោយឆ្អឹងខ្ចី។ វាមាននាទី ប្រមូលផ្តុំរលកសូរ ។ បំពង់សោតវិញ្ណាណ កើតឡើងពី ឆ្អឹងខ្ចីដែលមានប្រវែង 3-4 ស.ម និងមានរោមល្អិតៗ នៅក្នុងបំពង់សោតវិញ្ណាណ ហើយនៅចុងម្ខាងនៃបំពង់ មានភ្នាសស្ដើង យឺត ហៅថា ក្រដាសត្រច្បើក។

#### ខ.ត្រូចេ្យិតតណ្ណាល

ត្រច្បើកកណ្ដាលជាប្រហោងមួយពេញដោយ ខ្យល់ ចាប់ពីក្រដាសត្រច្បើក មានឆ្អឹងតូច១បីបន្តជាប់គ្នា បង្កើតបានជាស្ពានឆ្លងកាត់ត្រច្បើកកណ្តាល ដែលភ្ជាប់ ក្រដាសត្រច្បើកនឹងភ្នាសមួយទ្យេតគឺ បង្អួចរាងពងក្រពើ។ ប្រមោយអឺស្តាស ធ្វើអោយសម្ពាធក្នុងត្រច្បើកកណ្តាល ស្នើ





នឹងសម្ពាធនៃបរិយាកាសខាងក្រៅសារពាង្គកាយ។ វាមាននាទីបង្ការការរំហែកក្រដាសត្រច្បើក។

#### គ.ត្រូខេទ្ធិតត្តខ

ត្រច្បេកក្នុងមាន បំពង់រាងគូទខ្យង និងបំពង់រាងពាក់កណ្ដាលរង្វង់។

បំពង់រាងគូទខ្យង ជាសរីរាង្គល្បី ពេញដោយសារធាតុរាវ ហើយមានស្រទាប់កោសិកាធ្នូលដែលមានរោមល្អិតៗ នៅលើភ្នាសខាងក្នុងនៃបំពង់ ។ កោសិកាធ្មូលរួសនឹងរំញ័្យរ ។

បំពង់ពាក់កណ្តាលរង្វង់ ពេញដោយសារធាតុរាវ និងពាសដោយកោសិកាធ្មល មានពន្លយឆ្នារៗ ដែលជួយអោយ សារពាង្គកាយរក្សាលំនឹងបាន។

#### ස.ස න්ඩු

ពេលរលកសូរធ្វើដំណើរទៅកាន់ត្រច្យេកក្នុង កោសិកាធ្នូលប្តូររំញ័រទៅជាអាំងភ្លួចប្រសាទ។ បន្ទាប់មកអាំងភ្លួច ប្រសាទ ដឹកនាំទៅកាន់ខួរក្បាល តាមសរសៃប្រសាទសោតវិញ្ញាណ។

## ២.៣ គំហែរក្សាលំនិ៍១

តំហែរក្សាលំនឹង ជានាទីរបស់ត្រច្យេកក្នុង និងខួរតូច។ នៅក្នុងត្រច្យេកក្នុងមានបំពង់ពាក់កណ្តាករង្វង់ចំនួនបី ដែលពេញ ដោយសារធាតុរាវ និងមានស្រទាប់កោសិការោមញ័្យរ ។

និងរោមញ័រមានចលនា។ ពេលបង្វិលខ្លួន សារធាតុរាវ ចលនាមេកានិចបំប្លែងទៅជាអាំងភ្លួចប្រសាទ រួចធ្វើដំណើរទៅកាន់ខួរតូច តាមសរសៃប្រសាទសោតវិញ្ណាណ។ ខួរតូច ធ្វើការបកស្រាយទិសដៅ ហើយបញ្ជូនអាំងភូច ទៅខួរធំ រួចភ្ញោចទៅសាច់ដុំផ្នែកក្បាល និងក ឱ្យរក្សាទីតាំងក្បាល ។





# ៣. ខឹទ្ធាទឹញ្ញារណ

នៅលើផ្ទៃអណ្តាតមានគ្រាប់តូចល្អិត១ គឺជាពន្លកជីវ្ហាវិញ្ណាណ។ ពន្លកជីវ្ហាវិញ្ញាណជាធ្មួលវិញ្ញាណគីមី ដែលរួសនឹងរសជាតិ។ កោសិកា ទាំងនេះស្ថិតនៅក្នុងអញ្ច្រាញលើផ្ទៃអណ្តាត។ អណ្តាតរួសនឹងរសជាតិ មានមូលដ្ឋានបួនគឺ ជូរ ល្វីង ប្រៃ និងផ្អែម ។



#### ៤. មានទិញ្ញារណ ទីតាំងរសជាតិទាំងបួន

មាននាទីសំខាន់ក្នុងដំណកដង្ហើម និងទទួលក្លិន។ ច្រមុះជាសរីរាង្គមួយ ប្រហោងច្រមុះមានស្រទាប់សើម ដែលកើត ពីកោសិកាបីស្រទាប់គឺ ស្រទាប់កោសិកាទ្រទ្រង់ ស្រទាប់កោសិកាមូលដ្ឋាន និងស្រទាប់កោសិកាឃានវិញ្ណាណ។ ភ្នាសស៊ើមដែលពាសក្នុងរន្ធច្រមុះសំបូរដោយសរសៃឈាមមានពណ៌ផ្កាឈូក។ ភ្នាសស៊ើមនេះមានក្រពេញរំអិលជាច្រើន ដែលជួយរក្សាភាពសើមជានិច្ច ។

វារលាយទៅក្នុងធាតុរាវដែលគ្របស្រទាប់អេពីឌែមឃានវិញ្ញាណ។ ពេលម៉ូលេគុលក្លិនជ្រាបចូលតាមរន្ធច្រមុះ សារធាតុគីមីរលាយនេះទៅភ្ជាប់ជាមួយធ្នូលនៃរោមញ័ររបស់ណ៏រ៉ូនឃានវិញ្ញាណ។ ពេលនោះអាំងភ្លុចប្រសាទកើតឡើង ហើយធ្វើ ដំណើរទៅកាន់ខួរក្បាល ដើម្បីបែងចែកក្លិនខុសៗគ្នាប្រហែល ១០.០០០បែប ។

# ៥ គាមទិញ្ញាស

កាយវិញ្ញាណ ជាធ្នូលវិញ្ញាណមេកានិចរួសនឹងការប៉ះទង្គិច និងសីតុណ្ហភាព។ ធ្នូលវិញ្ញាណនេះមាននៅពាសពេញ សារពាង្គកាយ ហើយវាទទួលរំញោចខុសៗគ្នា ដូចជា ក្ដៅ ត្រជាក់ ធ្ងន់ ស្រាល...។

#### **๕.๑ ลาลิเซลเ้ล**เรส

ស្បែកមាននាទី ៖

- -បង្ការការជ្រៅ្មតចូលនៃមេរោគ
- -ការពារសារពាង្គកាយពីឥទ្ធិពលរូប-គីមីនៃមជ្ឈដ្ឋានខាងក្រៅ
- -បង្ហារការបាត់បង់ជាតិទឹក
- -ជាកន្លែងសម្រាប់ធ្វើបណ្តូរឧស្ថ័ន
- -ការពារពីកាំរស្ចីស្វាយអ៊ុលត្រា
- -បញ្ចេញកាកសំណល់មេតាបូលីស តាមក្រពេញញើស
- -ថែរក្សាផ្ទៃសារពាង្គកាយឱ្យសើមជានិច្ច
- -បញ្ចេញជាតិខ្លាញ់ និងស្រូបយកសារធាតុឱ្យសថមួយចំនួន
- -ទទួលរំញោចផ្សេងៗពីបម្រែបម្រួលសីតុណ្ហាភាព ការប៉ះទង្គិចជាដើម។

#### ಜ.ರು ಚಣಿಕಿತ ಕಿಶಕಿತಕ

ស្បែកមាន២ស្រទាប់គឺអេពីខែ្មម និងខែ្មម៖







អេពីឌែមជាស្រទាប់កោសិកាក្រៅបង្អស់របស់សារពាង្គកាយមានកម្រាស់ប្រហែល០,៧ម.ម វាគ្មានសរសៃឈាម ទេតែវាទទួលសារធាតុចិញ្ចឹមតាមរយៈបន្សាយដែលចេញពីសរសៃឈាមក្នុងស្រទាប់ខ្មែម។ កោសិកាមេឡាណូស៊ីត (Melanocyte) នៃស្រទាប់អេពីខែមផលិតមេឡានីនដែលផ្តល់ពណ៌ឱ្យស្បែក។

ឌែមជាស្រទាប់ដែលកើតពីជាលិកាសន្ធានសរសៃយឺតនិងកូឡាសែន (collagen) សម្បូរសរសៃឈាម និងចុងភិប ប្រសាទ ។ ស្រទាប់នេះផ្គត់ផ្គង់សារធាតុចិញ្ចាំមដល់កោសិកា និងតម្រូវសីតុណ្ហភាពក្នុងស្បែក ។

#### ស៊ីវាខ្លួមខ្ទាខ់មន្សិវមស់ស្បែត

ស៍រីរាង្គបនា្ចប់បន្សំរបស់ស្បែកមាន ក្រពេញនៅក្នុងស្បែក រោម និងក្រចក។ ស្បែកក្រពេញមាន២បែបគឺ

- ក្រពេញសេបូម មាននាទីដូចជារបាំងទប់ទល់នឹងជំងឺដែលបង្កដោយបាក់តេរី និងផ្សិត ។
- ក្រពេញញើស មាននាទីតម្រូវសារពាង្គកាយតាមរំហូតញើស។

## ៥.៤ ឆ្នូលគាយទីញ្ញាណ

ក្នុងស្រទាប់ឌែមមានធ្នូលកាយវិញ្ណាណច្រើនបែបសម្រាប់ឆ្លើយតបនឹងរំញោចផ្សេងៗគ្នាទៅនឹងប្រតិកម្មមេកានិច ខុសៗគ្នាដែរ ។ ពេលទទួលបានរំញោច ធ្មូលវិញ្ញាណខ្លះរួសនឹងប៉ះទង្គិចខ្សោយ ខ្លះទៀតរួសនឹងប៉ះទង្គិចខ្លាំង ហើយធ្មូល វិញ្ញាណដទៃទ្យេឥរូសនឹងការឈឺចាប់ សីតុណ្ហភាពត្រជាក់ ឬ ក្ដៅ។

ធ្នូលកាយវិញ្ហាណមាននាទីតម្រូវសីតុណ្ហភាពរបស់សារង្គកាយតាមរំហូតញើស។ សារង្គកាយមាន សីតុណ្ហភាពថេរជានិច្ច ដោយហេតុថាកំដៅលើសត្រ្ទវបានបញ្ចេញដោយរំហូតទឹកតាមការបែកញើស។

രുള്ള





# មេឡើលនី៣ ម្រូវពីន្ទអេចដុំគ្រឹង (Endocrin system)

ប្រព័ន្ធប្រសាទ និងប្រព័ន្ធអង់ដូត្រីនមាននាទីសម្របសម្រួល ដើម្បរក្សាលំនឹង មជ្ឈដ្ឋានក្នុង និងមជ្ឈដ្ឋានខាង ក្រៅ នៃសារពាង្គកាយអោយមាន។

ថេរលំនឹង គឹតំហែរក្សាមជ្ឈដ្ឋានសារពាង្គកាយឱ្យមានតុល្យភាពជាមួយ មជ្ឈដ្ឋានខាងក្រៅ។

# ១. ក្រុះពេញ និខអម្ចើន

#### ១.១. ក្រុះពេញ

ក្រពេញជាស់រីរាង្គដែលកើតឡើងពីកោសិកាអេពីតេល្យូម។ វាមានឯកទេសកម្ម ក្នុងការបញ្ចេញសារធាតុសំរាប់ សារពាង្គកាយ។ ក្រពេញមាន ២យ៉ាងគឺ ក្រពេញអ៊ិចសូគ្រីន និងក្រពេញអង់ដូគ្រីន។

ក្រពេញអ៊ិចសូគ្រីន ឬក្រពេញបញ្ចេញក្រៅជាក្រពេញមានបំពង់នាំមាននាទីបញ្ចេញរសតាមបំពង់នាំ។ ក្រពេញ អ៊ិចសូគ្រីនមានក្រពេញញើស ក្រពេញទឹកមាត់ ក្រពេញរសរំលាយអាហារ ក្រពេញភេទ លំពែង (ជាក្រពេញអ៊ិចសូគ្រីន និងក្រពេញអង់ដូគ្រីនផង ហៅថាក្រពេញចម្រុះ)។

ក្រពេញអង់ដូគ្រីន ឬក្រពេញបញ្ចេញក្នុងជាក្រពេញដែលគ្មានបំពង់នាំមាននាទីបញ្ចេញអរម៉ូនទៅក្នុងចរន្តឈាម ដោយផ្ទាល់។

#### **១.២ ¥អនុំន** (hormone)

- អរម៉ូនជាសារធាតុគីមីដែលមានឥទ្ធិពលទៅលើមេតាបូលីសនៃកោសិកាគោលដៅ។ កោសិកាគោលដៅជា កោសិកាដែលភ្ជាប់ជាមួយអរម៉ូនយថាប្រភេទមួយ។
- អរម៉ូនអាចភ្ញោចកោសិកាគោលដៅដោយបង្កើន ឬបន្ថយសកម្មភាពរបស់វា។ លក្ខណៈបែបនេះអាស្រ័យដោយ ការប្រែប្រួលនៃអត្រាប្រតិកម្មគីមីជីវៈណាមួយនៅក្នុង កោសិកាគោលដៅ។

# ១.៣ ចលនភារនៃអំពើរមស់អរម៉ូន

គេចែកអរម៉ូនជា២ ក្រុមគឺ

- -អរម៉ូនប៉ិបទីតជាប្រូតេអ៊ីនធំៗដែលកើតពីច្រវ៉ាក់នៃអាស៊ីតអាមីនេ។ វាមិនរលាយក្នុងលីពីត ដូចនេះ វាមិនអាច ឆ្លងកាត់ភ្នាសកោសិកាបានទេ។
- -អរម៉ូនស្តេរ៉ូអ៊ីត ជាលីពីតដែលត្រូវបានផលិតឡើងពីកូលេសស្តេរ៉ុល ។ វាមាន លទ្ធភាពឆ្លងកាត់ភ្នាសកោសិកា ។ គ.អរម៉ូនចុំចនឹត

អរម៉ូនប៉ិបទីតរួមមានអរម៉ូនរបស់ក្រពេញអ៊ីប៉ូភិស ប៉ារ៉ាទីរ៉ូអ៊ីត អាំងស៊ុយលីន និងគ្លុយកាកុង វាត្រូវបានសំយោគ ក្រោមការដឹកនាំរបស់សែនក្នុងកោសិកាក្រពេញអង់ដូគ្រីន។

អរម៉ូនប៉ិបទីតមានឥទ្ធិពលលើដំណើរប្រព្រឹត្តរបស់កោសិកាគោលដៅដោយធ្វើឱ្យអង់ស៊ីមអាដេនីលស៊ីក្លាសដែល ភ្ជាប់លើផ្ទៃខាងក្នុងនៃភ្នាសកោសិកាគោលដៅសកម្មឡើង។

#### **७.साधुँ शक्युँ भैंस** (hormone stéroïd)

អរម៉ូនស្តេរ៉ូអ៊ីតមានអរម៉ូនដែលផលិតឡើងដោយក្រពេញលើតម្រងនោម អូវែ ពងស្វាស។ វាជាអរម៉ូនរលាយ

គោលដៅ។ សែនឯកទេសមួយក្នុងកោសិកាគោលដៅត្រូវបានភ្ញោចឱ្យសកម្មឡើង ដើម្បីសំយោគប្រូតេអ៊ីនយថាប្រភេទ មួយ។

## ២. ការត្រួតពិសិត្យសៃរួមព័ន្ធអេចជុំគ្រឹស

ក្រពេញអង់ដូគ្រីនសំយោគអរម៉ូននៅពេលដែលសារពាង្គកាយត្រូវការ ហើយ ប្រសិទ្ធិភាពបរិមាណអរម៉ូននៅក្នុង ឈាមត្រូវស្ថិតក្នុងដែនកំណត់មួយច្បាស់លាស់ ។

សកម្មភាពរបស់ក្រពេញអង់ដូគ្រីនត្រូវបានត្រួតពិនិត្យដោយចលនការតំណបត្រឡប់អវិជ្ជមាន។ តាមរយៈតំណប ត្រឡប់អវិជ្ជមានកំហាប់របស់សារធាតុមួយចំនួននៅក្នុងឈាមពន្លឿន ឬបង្អាក់ការបញ្ចេញរបស់ក្រពេញចលនការ ត្រឡប់អវិជ្ជមាន មាននាទីតំហែរក្សា លំនឹងនៃមជ្ឈដ្ឋានខាងក្នុង។



ដ្យាក្រាមៈ តំណបត្រឡប់អវិជ្ជមាន

## ៣. ប្រព័ន្ធអច់ជុំគ្រឹនមនុស្ស

ចំពោះមនុស្ស ប្រព័ន្ធអង់ដូគ្រីនកើតឡើងពីក្រពេញអង់ដូគ្រីនផ្សេងៗជាច្រើន ដូចជា អ៊ីប៉ូតាឡាមុស ក្រពេញ ទីរ៉ូអ៊ីត ក្រពេញប៉ារ៉ាទីរ៉ូអ៊ីត ក្រពេញទីមុស ក្រពេញលើតម្រងនោម លំពែង ក្រពេញភេទញ៉ី ក្រពេញឈ្នោល...។

#### ៣.១ អ៊ីឡីតារឡាមុស (Hypothalamus)

អ៊ីប៉ូតាឡាមុស ជាផ្នែកមួយនៃខួរក្បាល ដែលតម្រូវមជ្ឈដ្ឋានក្នុងសារពាង្គកាយ និង មាននាទីត្រួតពិនិត្យការបញ្ចេញរបស់ក្រពេញអ៊ីប៉ូភីស។

ក្រពេញអ៊ីប៉ូតាឡាមុស ផលិតអរម៉ូន២ យ៉ាងគឺ អង់ទីឌីអ៊ុយរេទិច និង អុកស៊ីតូស៊ីន រួចស្តុកទុកក្នុង ក្រពេញអ៊ីប៉ូភិសក្រោយ។

# **៣.២ ត្រូវពេញអ៊ីម៉ូគីស** (Hypophyse )

អ៊ីប៉ូភិសជាក្រពេញតូចមួយ មានអង្កត់ប្រហែល ១ស.ម ដែលស្ថិតនៅខាងក្រោម អ៊ីប៉ូតាឡាមុស។ អ៊ីប៉ូភិសចែកជា ២ផ្នែកគឺ អ៊ីប៉ូភិសមុខ និង អ៊ីប៉ូភិសក្រោយ។

#### គ.អ៊ីម៉ូគីសក្មេរាយ

- អង់ទីឌីអ៊ុយរេទិច (ADH= Antidiuretique Hormone ) មាននាទីភ្លោចតម្រងនោម ឱ្យមានសម្រូបទឹកឡើងវិញ។
- អុកស៊ីតូស៊ីន (Ocytocine ) មាននាទីភ្ញោចស្បូនឱ្យកន្ត្រាក់ក្នុងរយៈពេលសម្រាលកូន។

#### ខ.អ៊ីថ្ងឺគឺសមុខ

អ៊ីប៉ូភ៊ីសមុខ ផលិតអរម៉ូន ៦ ប្រភេទខុសៗគ្នាគឺ

- អរម៉ូនលូតលាស់ (GH=Growth Hormone ) មាននាទីជំរុញការលូតលាស់ នៃសារពាង្គកាយ ។
- អរម៉ូនប្រូឡាក់ទីន (PRL= ProlactinHormone) មាននាទីជំរុញការលូតលាស់ក្រពេញទឹកដោះ និងផលិត ទឹកដោះ ។
- អរម៉ូនមេឡាណូស៊ីតស្តីមួយឡង់(MSH=Melanocyte StimulanteHormone) ភ្លោចកោសិកា មេឡាណូស៊ីតនៃ ស្បែកឱ្យ ផលិតមេឡានីន។
  - អរម៉ូនទីរ៉េអូស្គីមុយលីន (TSH=Thyreo StimulineHormone) ភ្ញោចក្រពេញទីរ៉ូអ៊ីត ឱ្យផលិតទីរ៉ុកស៊ីន។
- អរម៉ូនអាត្រេណូករទីកូត្រូប (ACTH=AdrenoCorticoTrope Hormone) ភ្លោចករតិចលើ តម្រងនោមឱ្យផលិត អរម៉ូនករទីសូល។
- អរម៉ូនកូណាដូស្គីមួយលីន (FSH=Folliculo Stimuline Hormone=Gonadostimuline hormone) និងអរម៉ូន Luteinisante=LH មាននាទីភ្លោច សរីរាង្គភេទ ឱ្យបញ្ចេញអរម៉ូនភេទ

#### ៣.៣ ត្រូវពេញនិរ្ម័ន្នី (Thyroide Grande )

ក្រពេញទីរ៉ូអ៊ីត ស្ថិតនៅត្រង់ក ចំពីក្រោយបំពង់សំលេង និងនៅខាងមុខបំពង់ខ្យល់។ វាមាននាទីផលិតអរម៉ូន ទីរ៉ុកស៊ីន។

កង្វះជាតិអ៊ីយ៉ូតបណ្តាលឱ្យកើតជំងឺពកកដោយក្រពេញទីរ៉ូអ៊ីតរីកធំ ដើម្បីបង្ការកុំឱ្យកើតជំងឺពកកត្រូវបរិភោគ អាហារមានជាតិអ៊ីយ៉ូត ដូចជាត្រី និងអាហារ សមុទ្រផ្សេងៗ។

អរម៉ូនទីរ៉ុស៊ីន កំណត់អត្រាមេតាបូលីសនៅក្នុងសារពាង្គកាយ។ វាបង្កើនអត្រា មេតាបូលីស ប្រូតេអ៊ីន គួយកូស និងខ្លាញ់។ កំណើនកម្រិតអរម៉ូនទីរ៉ុកស៊ីន បណ្តាលឱ្យមានកំណើនអត្រាដង្ហើមកោសិកា គឺកោសិកា ផលិតថាមពលច្រើន ហើយក្លាយជាសកម្មខ្លាំង។

ដូចនេះក្រពេញទីរ៉ូអ៊ីត តម្រូវអត្រាមេតាបូលីសកោសិកា និងបន្ថយកម្រិតកាល់ស្យម នៅក្នុងឈាម។







#### **៣.៤** ត្រូវពេញស៊ារីន៍អ៊ីត (Parathyroide Grande )

ក្រពេញប៉ារ៉ាទីរ៉ូអ៊ីតជាក្រពេញរាងពងក្រពើតូច១ចំនួន៤ ដែលបង្កប់ក្នុងផ្នែកខាងក្រោយ នៃក្រពេញទីរ៉ូអ៊ីត។ វាមាន មុខងារបញ្ចេញអរម៉ូនប៉ារ៉ាទីរ៉ូអ៊ីត(PTH)សម្រាប់តម្រូវ មេតាប៉ូលិស កាល់ស្យម និងផូស្វាត។ ជាតិCa ចាំបាច់សម្រាប់ ការលូតលាស់ឆ្អឹង ធ្មេញ កំណកឈាម លំនាំប្រសាទ និងការកន្ត្រាក់ សាច់ដុំ។ ជាតិផូស្វាតមានក្នុងឆ្អឹង និងជាសមាសធាតុ សំខាន់១ជាច្រើននៃសារពាង្គកាយ រួមទាំង ATP AND និង ARN ។

កង្វះអរម៉ូនប៉ារ៉ាទីរ៉ូអ៊ីត (PTH) បណ្តាលឱ្យកម្រិត  $Ca^{ij}$ ក្នុងឈាមទាបនាំឱ្យសាច់ដុំជាប់ឆ្អឹង ប្រែជារួសហួសហេតុ ហើយកន្ត្រាក់យ៉ាងខ្លាំងគឺជំងឺតេតាណួស។

ការលើសអរម៉ូនប៉ារ៉ាទីរ៉ូអ៊ីត(PTH)ហួសហេតុបណ្តាលឱ្យមានការបញ្ចេញ Ca" ពីឆ្អឹងមកវិញ ដែលធ្វើឱ្យ

ឆ្អឹងប្រែជាងាយបាក់។ អរម៉ូនប៉ារ៉ាទីរ៉ូអ៊ីតមាននាទី:

-ភ្លោចតម្រងនោមឱ្យបញ្ចេញ  ${
m PO}_{_{\! 4}}^{^2}$  នៅពេល  ${
m Ca}^{^{^{^{\prime}}}}$  ភ្ជាប់ក្នុងឆ្អឹង មានតិច ស្ថិតក្រោមទម្រង់ជាកា ល់ស្យមផ្លូស្វាត (Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) ។ -សម្រូប  $\operatorname{Ca}^{\overset{\bullet}{\iota}}$  ឡើងវិញ ដើម្បីបង្កើនអត្រាជាតិកាល់ស្យម ។

-បញ្ចេញអង់ស៊ីមដែលធ្វីឱ្យវីតាមីន D សកម្ម ដើម្បីបង្កើន ការស្រូបយកCa របស់ពោះវៀន។







## ៣.៥. ត្រូវពេញលើតម្រុខលោម (Surrenales Grande)

🖐 លើតម្រងនោមមនុស្សមានក្រពេញ២ដែលក្រពេញនីមួយៗមានទម្ងន់ប្រហែល១២ក្រាម និង លក្ខណៈពិសេសរបស់វា សម្បុរសរសៃឈាម។ ក្រពេញនីមួយៗមាន ២ផ្នែកគឺ:

- -ផ្នែកខាងក្រៅ ហៅថាក្រពេញករតិចលើតម្រងនោម
- -ផ្នែកខាងក្នុង ហៅថាក្រពេញខូរលើតម្រងនោម

#### គ. ត្រូវពេញខុវលើតម្លេខលោម (Medullo-Surrenale Grande )

ក្រពញេខួរលើតម្រងនោមមានមុខងារបញ្ចេញ អរម៉ូនអេពីណេព្រីន (ឬហៅថាអរម៉ូនអាដ្រេណាលីន) និង អរម៉ូនណូអេពីណេព្រីន។

អាដ្រេណាលីនមានមុខងារបង្កើនអត្រាចង្វាក់បេះដូង កំណើនកំហាប់គ្លុយកូសនិងអត្រាកំណកឈាមក្នុង



សរសៃឈាម វាក៏បណ្តាលឱ្យរន្ធប្រស្រីភ្នែកវិកធំ និងបង្រួមសរសៃឈាមក្រោមស្បែកដែលធ្វើ ឱ្យស្បែក ឡើងស្លាំង និងបណ្ដាលឱ្យញ័្នរ ។

ណូអេពីណេព្រីនមានមុខងារសកម្មក្នុងការដឹកនាំអាំងភ្លួចប្រសាទទៅកោសិកាក្បែរៗវា និងមានឥទ្ធិពលទៅលើការកន្ត្រាក់រួមតូចនៃសរសៃវ៉ែន។

# **ខ.ត្រូវពេញភាវតិចលើតទ្រូខលោម** (Cortico-Surrenale Grande)

ក្រពេញករតិចលើតម្រងនោមផលិតអរម៉ូន២យ៉ាងគឺ ករទីសូល និងអាល់ដូស្តេរ៉ូន។

- ករទីសូល (Cortisol) មាននាទីភ្ញោចអ៊ីដ្រូលីស ប្រូតេអ៊ីនឱ្យទៅអាស៊ីតអាមីនេចូលក្នុងឈាម ធ្វើ ឱ្យកម្រិត គ្លួយកូសក្នុងឈាមឡើងខ្ពស់ នៅពេលថ្លើមបំប្លែងអាស៊ីតអាមីនេ ទាំងនេះទៅជាត្លយកូស។

អរម៉ូនករទីសូលស្ថិតក្រោមការត្រួតពិនិត្យរបស់ ក្រពេញអ៊ីប៉ូភ៊ីសមុខដោយបញ្ចេញអរម៉ូន អាដ្រេណូករទីកូដ្រូពិច (ACTH) ដោយអ៊ីប៉ូតាឡាមុសផលិត អរម៉ូនករទីកូដ្រូពិចរីលីស (CRH = Corticotropin Releasing Hormone) ទៅភ្ញោចអ៊ីបូភីសមុខ។

អរម៉ូនអាល់ដូស្តេរ៉ូន (Aldosterone) ធ្វើឱ្យតម្រងនោម ស្រូបយកសូដ្យម $(Na^+)$ ជាឡើងវិញ និងបញ្ចេញប៉ូតាស្យមចោល $(K^+)$  ។ អរម៉ូនអាល់ដូស្តេរ៉ូនមិនស្ថិតក្រោមការត្រូតពិនិត្យរបស់អ៊ីប៉ូភីសមុខទេ។



រេណាំងជាអង់ស៊ីមដែលបំប្លែងប្លាស្ទាប្រូតេអ៊ីនអង់ស៊ីយូតង់ស៊ីណូសែន ទៅជាអង់ស៊ីយូតង់ស៊ីនា





អាល់ដូស្តេរ៉ូនធ្វើឱ្យតម្រងនោមស្រូបយកសូដ្យមជាថ្មី នៅពេលកម្រិត សូដ្យមក្នុងឈាមខ្ពស់ ទឹកត្រូវបានស្រួបឡើងវិញ នោះសម្ពាធឈាមត្រូវរក្សាលំនឹង។

#### m.៦ លំពែខ (Pancreas )

លំពែងជាស់វិរាង្គមួយវែងសណ្តូកទទឹងក្នុងពោះ និងនៅពីលើពោះវៀនតូច។ លំពែង មាននាទីផលិតអរម៉ូន អាំងស៊ុយលីន និងគ្លួយកាកុង ។

លំពែងជាក្រពេញអង់ដូគ្រីនផង និងជាក្រពេញអិចសុគ្រីនផង ព្រោះ

- -ក្រពេញអាស៊ីនុសបញ្ចេញរសរំលាយអាហារទៅក្នុងពោះវៀនតូចតាមបំពង់លំពែង (ជាក្រពេញអិចសូគ្រីន) ។
- ក្រពេញអ៊ីឡូឡង់សេរ៉ង់ក្នុងលំពែងបញ្ចេញអរម៉ូនដោយផ្ទាល់ទៅក្នុងឈាម (ជាក្រពេញអង់ដូគ្រីន) ។

#### គ.សាំខស៊ុយលីន (Insulin)

កោសិកាបេតា (β) បញ្ចេញអរម៉ូនអាំងស៊ុយលីន។ អរម៉ូនអាំងស៊ុយលីនមាននាទី បន្ថយជាតិស្ករនៅក្នុងឈាម។

#### ខ.ត្តួយភាគុខ (Glucagon )

កោសិកាអាល់ហ្វា $(\alpha)$ បញ្ចេញអរម៉ូនគ្លួយកាកុង ទៅក្នុងឈាមដោយផ្ទាល់ ។ វាមាននាទីបង្កើនកម្រិតជាតិស្ករ នៅក្នុងឈាម។

#### គ.ช์อีลีสเลายเลีย



ជំងឺទឹកនោមផ្អែមកើតឡើងនៅពេលដែលអ៊ីឡឡង់សេរ៉ង់ផលិតអាំងស៊ុយលីនមិនបានគ្រប់គ្រាន់បណ្តាលឱ្យបរិមាណ គ្លួយកូសក្នុងឈាមកើនឡើង ហើយតម្រងនោមមិនអាចស្រូបយកគ្លួយកូស ទាំងអស់ឡើងវិញបាន ដូចនេះ គ្លួយកូសដែល លើសត្រូវបានបញ្ចេញទៅក្នុងទឹកនោម។ ជំងឺទឹកនោមមានរោគសញ្ហាដូច ជាការស្រកទម្ងន់ ការស្រេកទឹកយ៉ាងខ្លាំង និងការ ចុះខ្សោយកម្លាំង។ គេអាចព្យាបាលជំងឺនេះ ដោយឱ្យអ្នកជំងឺមានរបបអាហារត្រឹមត្រូវ លេបថ្នាំឱ្យបានឡេងទាត់ និងចាក់ អាំងស៊ុយលីនរឿងរាល់ថ្ងៃ ។

#### ៣.៧. ទ្រុះពេញតែន (Sex Grande)

ក្រពេញភេទមាននាទី ភ្ញោចការលូតលាស់ប្រដាប់បន្តពូជ និងបញ្ចេញអរម៉ូន LH និង អរម៉ូន FSH ភ្ញោច ការបញ្ចេញ អរម៉ូនភេទពីអូវែ និងពងស្វាស។

# **គ.អូទែ** (Ovary)

អូវែជាក្រពេញអង់ដូគ្រីន ដែលផលិតអរម៉ូនអឺស្ត្រូសែន និងប្រូសេស្តេរ៉ូន។

- អរម៉ូន FSH មានឥទ្ធិពលទៅលើកោសិកាផូលីគុលនៃអូវែក្នុងការផលិតអរម៉ូនអឺស្ត្រូសែន(Estrogen Hormone) ។ អំពើរបស់វាធ្វើឱ្យស្រទាប់ភ្នាស់សើមស្បនឡើងក្រាស់ ដោយបង្កើនចំណែកមីតូសនៃកោសិកា។ វាក៏មានឥទ្ធិពលទៅលើ លក្ខណៈភេទបន្ទាប់របស់មនុស្ស ស្រីដែរ។





- អរម៉ូន LH មានឥទ្ធិពលទៅលើអូវែបណ្តាលឱ្យផូលីគុលដីក្រាបផ្ទុះបែក និងបញ្ចេញអូវុលមកក្រៅ ព្រមទាំង បញ្ចេញ អរម៉ូនប្រូសេស្តេរ៉ូន និងអឺស្ត្រូស្រនផងដែរ។ អរម៉ូននេះ ភ្ញោចភ្នាសសើមស្បូនឱ្យឡើងកម្រាសត្រេ្យមលក្ខណៈ សម្រាប់ការកាច់សម្របុករបស់អំប៊្រីយ៉ុង។
- ប្រូសេស្តេរ៉ូន ថែរក្សាគិភដោយបណ្តាលឱ្យសាច់ដុំស្បូនសម្រាក និងមានឥទ្ធិពលទៅលើការលូតលាស់របស់ ក្រពេញទឹកដោះផងដែរ ។ ឯអង្គលឿងបន្តការផលិត ប្រូសេស្តេរ៉ូនរហូត ដល់ ខែទី៤នៃការមានផ្ទៃពោះ ហើយខែបន្ទាប់ ជានាទីរបស់សុកត្រូវបំពេញបន្ត។



#### **ខ.ពខស្ទាស** (Testes)

អរម៉ូន FSH មានអំពើលើកោសិកាសែតូលីក្នុងបំពង់ស៊ីមីនីភែនៃពងស្វាសធានា កំណកាម៉ែត និងអរម៉ូន LH ភ្ញោចកោសិកាអាំងទែស្ទីស្យែលបញ្ចេញអរម៉ូនតេស្តូស្តេររ៉ូនឬ ហៅថាអរម៉ូនអង់ដ្រូសែន។ តេស្តូសេរ៉ូនធ្វើឱ្យកាន់តែ ប្រសើរឡើងនូវិការលូតលាស់លក្ខណៈ ភេទបន្ទាប់របស់មនុស្សប្រុស ដូចជាសំឡេងគ្រលរ ដុះពុកមាត់...។

#### ៣.៨ ត្រូវពេញនឹង្សស(Thymus)

ក្រពេញទីមុសស្ថិតនៅផ្នែកខាងលើនៃទ្រូងក្បែរបេះដូង។ វាមានទំហំធំក្នុងវ៉យកុមារ ហើយ រួញតូចក្រោយពេល គ្រប់ការ។ ក្រពេញទីមុសផលិតអរម៉ូនទីម៉ូស៊ីន។ អរម៉ូនទីម៉ូស៊ីនភ្លោច និងផលិតឡាំផូស៊ីតថ្លីនៅក្នុងក្រពេញទឹករងៃ និងក្នុងសរីរាង្គដទៃទៀត។

# 

ប្រដាប់រំលាយអាហារក៏មានផលិតអរម៉ូនដែរគឺ

កោសិកាភ្នាសក្រពះបញ្ចេញអរម៉ូនកាស្ទ្រីន (Gastrine) ភ្ញោចឱ្យមានរំហូររសក្រពះ។ កោសិកា ភ្នាសពោះវៀនតូចផលិត អរម៉ូនសេក្រេទីន (Secretine) ភ្ញោចឱ្យមានរំហូររសល់ពែង។





# 

មេអៀននី១ អាស៊ីអាមីទេ (Amino Acid)

គ្រប់ភាវរស់មានប្រូតេអ៊ូនជាសមាសធាតុគីមីនៃជីវិត។ ប្រូតេអ៊ីនបង្កឡើងពីអាស៊ីតអាមីនេ។

## ១្ន្រខ្ទុំអាស្ទឹងអាទិ៍ទេ

គ្រប់សកម្មភាពទាំងអស់របស់សារពាង្គកាយត្រូវការប្រូតេអ៊ីនជាចាំបាច់ ព្រោះវាជាសមាស ធាតុគ្រឹះនៃជីវិត។ ប្រូតេអ៊ីនជាសារធាតុសរីរាង្គសាំញាំដែលផ្ទុកកាបូន(C) អ៊ីដ្រូសែន(H) អុកស៊ីសែន(O) និងអាសូត(N) ជូនកាល ផងដែរ។ គ្រប់ម៉ូលេគុលប្រូតេអ៊ីនត្រូវបានបង្កើតឡើងពីសារធាតុងាយគឺអាស៊ីត មានផ្លូស្វាត(P) និងស្ពាន់ធ័រ(S) អាមីនេ។

–អាស៊ីតអាមីនេនីមួយ១កើតឡើងពីបណ្តុំកាបុកស៊ីល( –COOH<math>) បណ្តុំអាមីន( – $NH_2<math>)$  មួយអាតូមកាបូន (C) មួយអាតូម អ៊ីដ្រូសែន (H) និងរ៉ាឌីកាល់(R) ។ រូបមន្តទូទៅ របស់អាស៊ីតអាមីនេគឺ៖

នៅក្នុងកោសិកាសត្វ និងមនុស្សមានអាស៊ីតអាមីនេ ២០ប្រភេទ។ នៅកម្រិត pH=៧ បណ្តំកាបុកស៊ីល បំបែកទៅជាទម្រង់បាស(-coo<sup>-</sup>) ហើយបណ្តុំអាមីនបំបែកទៅជាទម្រង់ អាស៊ីត (-NH<sup>+</sup>3)។ ដូចនេះអាស៊ីតអាមីនេ នីមួយៗអាចមានលក្ខណៈជាអាស៊ីត ឬជាបាស។

- នៅក្នុងទម្រង់ទី១ របស់ប្រូតេអ៊ីន អាស៊ីតអាមីនេមួយចំនួនឬកម្លាយរបស់វាមាននាទីជា អ្នកនាំសារ។ ឧទារហណ៍: ត្តីស៊ីនអាស៊ីតត្លុយតាម៉ិច សេរ៉ូតូនីនក្លាយមកពីទ្រីបតូហ្វាន ទាំងអស់នេះសុទ្ធតែជាអ្នកញ្ជូនព័ត៌មានប្រសាទព្រោ<mark>ះ</mark> វាជា សារធាតុដែលបញ្ចេញដោយកោសិកាប្រសាទ ហើយមានឥទ្ធិពលទៅលើនាទីរបស់កោសិកាគោលដៅ ឬកោសិកាសាច់ដុំ។

# **២\_ច្រូះនានខ្សេចៗនៃអាស៊ីតអាទី**ទេ

–អ៊ីដ្រូលិសម៉ូលេគុលប្រូតេអ៊ីនទទួលបានម៉ូណូមែរជាអាស៊ីតអាមីនេយ៉ាងច្រើន។ ទម្រង់អាស៊ីត អាមីនេទាំង ២០ដែលគេរកឃើញក្នុងម៉ូលេគុលប្រូតេអ៊ីន ហៅថាអាស៊ីតអាមីនេស្តង់ដា។ អាស៊ីតអាមីនេគ្មានស្តង់ដាគឺជាអាស៊ីត អាមីនេ ដែលចាំបាច់ក្នុងមេតាបូលីសនៃកោសិកា ប៉ុន្តែ វា មិនមែនជាធាតុបង្ករបស់ប្រូតេអ៊ីនទេ។





## ខាងក្រោមជារូបមន្តរបស់អាស៊ីតអាមីនេទាំង ២០ប្រភេទ៖

#### ឈ្មោះកាត់របស់អាស៊ីតអាមីនេទាំង ២០ ប្រភេទ៖

| អាស៊ីតអាមីនេ          | ឈ្មោះកាត់បីអក្សរ | ឈ្មោះកាត់មួយអក្សរ |
|-----------------------|------------------|-------------------|
| អាឡានីន               | Ala              | A                 |
| អាស៊ីនីន              | Arg              | R                 |
| អស្ប៉ារ៉ាស៊ីន         | Asn              | N                 |
| អស៊ីតអាស្ប៉ាទិច       | Asp              | D                 |
| ស៊ីស្តេអ៊ីន           | Cys              | С                 |
| អាស៊ីតគ្លួយតាមិច      | Glu              | Е                 |
|                       | Gln              | Q                 |
| ត្លយតាមីន<br>ក្តីស៊ីន | Gly              | G                 |
| អ៊ីស្តេឌីន            | His              | Н                 |
| អ៊ីសូឡីស៊ីន           | Ile              | I                 |
| ឡឹស៊ីន                | Leu              | L                 |
| លីស៊ីន                | Lys              | K                 |
| មេត្យូនីន             | Met              | М                 |
| ផេនីលអាឡានីន          | Phe              | F                 |
| ប្រលីន<br>្ត្រី       | Pro              | P                 |
| ហូ<br>សេរីន           | Ser              | S                 |
| ត្រេអូនីន             | Thr              | Т                 |
| ទ្រីបតូផាន<br>-       | Trp              | w                 |
| ទីរ៉ូស៊ីន             | Tyr              | Y                 |
| វ៉ាលីន                | Val              | V                 |

## ៣~ថ្មឹមនឹត

- 🖐 អាស៊ីតអាមីនេជាម៉ូលេគុលតូចៗងាយវារលាយក្នុងទឹក ហើយអាចជ្រាបតាមភ្នាសកោសិកាបាន និងជ្រាប ចូលទៅក្នុងកោសិកានៃសារពាង្គកាយបានយ៉ាងងាយ។ នៅក្នុងសារពាង្គកាយអាស៊ីតអាមីនេភ្ជាប់គ្នាឡើងវិញ ដើម្បីបង្កើត បានជាប្រូតេអ៊ីន។
  - 💖 ប៉ិបទីតជាអាស៊ីតអាមីនេពីរ ឬច្រើនភ្ជាប់គ្នា។
- ចំណងប៉ិបទីតកើតឡើងពីការភ្ជាប់រវាងអាស៊ីតអាមីនេពីរគឺបណ្តុំកាបុកស៊ីលនៃអាស៊ីតអាមីនេមួយ ភ្ជាប់ជាមួយបណ្តុំ អាមីន នៃអាស៊ីតអាមីនេមួយទៀត ដោយផ្ដាច់បាន ១ម៉ូលេគុលទឹក។

 អាស៊ីតអាមីនេ២ភ្ជាប់គ្នា ហៅថាឌីប៉ិបទីត។ ពេលអាស៊ីតអាមីនេកាន់តែច្រើន ច្រវ៉ាក់កាន់តែវែង ថាប៉ិបទីតត្រូវផ្លាស់ប្តូរតាមចំនួនអាស៊ីតអាមីនេដូចជា ទ្រីប៉ិបទីតមានអាស៊ីតអាមីនេ ៣ភ្ជាប់គ្នា ...។ ឧទារហណ៍: តេត្រាប៉ិបទីត

🖐 អាស៊ីតអាមីនេភ្ជាប់គ្នាច្រើនបង្កើតបានជាប៉ូលីប៉ិបទីត ហើយច្រវ៉ាក់ប៉ូលីប៉ិបទីតបត់បែនជាច្រើន ផ្នត់បង្កើតបានជា ទម្រង់ទី២ ទម្រង់ទី៣ និងទម្រង់ទី៤នៃប្រូតេអ៊ីន។

യുക്കയു



# មេរៀលនី ២ ម្រូវតាអ៊ីល (Protein)

ក្នុងសារពាង្គកាយ ប្រូតេអ៊ីនមាននាទី ៦ យ៉ាងគឺ:

- -ប្រូតេអ៊ីនទម្រង់វាបង្កើតជាទម្រងកោសិកា
- កាតាលីករគីមីជីវ: ដែលជមរុញ្ញល្បឿនប្រតិកម្មគីមីក្នុងកោសិកាជាអង់ស៊ីម។
- មាននាទីការពារសារពាង្គកាយទប់នឹងភ្នាក់ងារបង្ករោគជាអង់ទីករ។
- អាំងស៊ុយលីនជាអរម៉ូនតម្រូវ តម្រូវសកម្មភាពផ្សេង១ក្នុងសារពាង្គកាយ ឧទាហរណ៍ កម្រិតគ្លួយកូសក្នុងឈាម។
  - -មាននាទីដឹកនាំសារធារតុផ្សេងៗឆ្លងកាត់ភ្នាសកោសិកា ដូចជា អេម៉ូក្លូប៊ីនដឹកនាំ អុកស៊ីសែន។
  - -អ្នកធ្វើចលនា ប្រូតេអ៊ីនចូលរួមគ្រប់ចលនារបស់កោសិកា។

# ១\_រួមឆ្នាំមស់រុម្ភូតេអ៊ីន

ប្រូតេអ៊ីនជាម៉ាក្រូម៉ូលេគុលសាំញាំដែលជាប៉ូលីមែនៃអាស៊ីតអាមីនេយថាប្រភេទខុសៗគ្នា។ ប្រូតេអ៊ីនដែលមាន អាស៊ីតអាមីនេតិចជាង ៥០ ហៅថាប៉ិបទីត។ ប្រូតេអ៊ីនមាន ច្រវ៉ាក់ប៉ិបទីតមួយឬច្រើន ហើយកើតពីអាស៊ីតអាមីនេចាប់ ពី៥០ឡើងទៅ ។

💖 ផ្នែកលើទម្រង់ និងសមាសធាតុរបស់ប្រូតេអ៊ីន គេចែកប្រូតេអ៊ីនជា ៤ ទម្រង់ គឺ

**១.1 ទម្រង់ទី១** : កើតពីតំណលំដាប់អាស៊ីតអាមីនេស្មទ្ធ។

**១.2 ទម្រង់ទី២** : ច្រវ៉ាក់ប៉ូលីប៉ិបទឹតបត់បែន

ជាខ្សែខ្លៅដែលចែកជា ២ប្រភេទគឺ





ಶಿព្ធឥនី៤ ខានីមេស់ប្រូកេអ៊ីខត្លុសារពាខ្មតាយ

មេអ្វេសន៍ ១ ങ്ങള്ങള്ങേ (Amino Acid)

គ្រប់ភាវរស់មានប្រូតេអ៊ីនជាសមាសធាតុគីមីនៃជីវិត។ ប្រូតេអ៊ីនបង្កឡើងពីអាស៊ីតអាមីនេ។

#### ១-ទម្រង់អាស៊ីតអាមីនេ

គ្រប់សកម្មភាពទាំងអស់របស់សារពាង្គកាយត្រូវការប្រូវតេអ៊ីនជាចាំបាច់ ព្រោះវាជាសមាស ធាតុគ្រឹ៖នៃជីវិត។ ប្រូតេអ៊ីនជាសារធាតុសរីរាង្គសាំញាំដែលផ្ទុកកាបូន(C) អុកស៊ីសែន(O) និងអាសូត(N) ជូនកាលមានផូស្វាត(P) និងស្ពាន់ធ័រ(S) ផងដែរ។ គ្រប់ ម៉ូលេគុលប្រូតេអ៊ីនត្រូវបានបង្កើតឡើងពីសារធាតុងាយគឺអាស៊ីតអាមីនេ។

-អាស៊ីតអាមីនេនីមួយៗកើតឡើងពីបណ្តុំកាបុកស៊ីល( -COOH) បណ្តុំអាមីន( -NH $_2$ )

មួយអាតូមកាបូន (C) មួយអាតូមអ៊ីដ្រូសែន (H) និងរ៉ាឌីកាល់(R)។ រូបមន្តទូទៅ របស់អាស៊ីតអាមីនេគឺ

នៅក្នុងកោសិកាសត្វ និងមនុស្សមានអាស៊ីតអាមីនេ ២០ប្រភេទ។ នៅកម្រិត <sub>PH</sub>=៧ បណ្តំកាបុកស៊ីលបំបែកទៅជាទម្រង់បាស( -coo - ហើយបណ្តំអាមីនបំបែកទៅជាទម្រង់ អាស៊ីត (  $-NH^+_3$ ) ។ ដូចនេះអាស៊ីតអាមីនេនីមួយៗអាចមានលក្ខណៈជាអាស៊ីត ឬជាបាស។

- នៅក្នុងទម្រង់ទី១ របស់ប្រូតេអ៊ីន អាស៊ីតអាមីនេមួយចំនួនឬកម្លាយរបស់វាមាននាទីជា អ្នកនាំសារ ។ ឧទារហណ៍ៈ គ្លីស៊ីន អាស៊ីតគ្លួយតាម៉ិច សេរ៉ូតូនីនក្លាយមកពីទ្រីបតូហ្វាន ទាំងអស់ នេះសុទ្ធតែជាអ្នកញ្ជូនព័ត៌មានប្រសាទព្រោះវាជាសារធាតុដែលបញ្ចេញដោយកោសិកាប្រសាទ ហើយមានឥទ្ធិពលទៅលើនាទីរបស់កោសិកាគោលដៅ ឬកោសិកាសាច់ដុំ។

#### ២-ប្រភេទផ្សេងៗនៃអាស៊ីតអាមីនេ

-អ៊ីដ្រូលីសម៉ូលេគុលប្រូតេអ៊ីនទទួលបានម៉ូណូមែរជាអាស៊ីតអាមីនេយ៉ាងច្រើន។ ទម្រង់អាស៊ីត ២០ដែលគេរកឃើញក្នុងម៉ូលេគុលប្រូតេអ៊ីន ហៅថាអាស៊ីតអាមីនេស្តង់ដា។ អាស៊ីតអាមីនេគ្មានស្ដង់ដាំគឺជាអាស៊ីតអាមីនេដែលចាំបាច់ក្នុងមេតាបូលីសនៃកោសិកា ប៉ុន្តែ វា មិនមែនជាធាតុបង្ករបស់ប្រូតេអ៊ីនទេ។ ខាងក្រោមជារូបមន្តរបស់អាស៊ីតអាមីនេទាំង ២០

facebook.com/moeys.gov.kh 🧶 www.moey

# សំពាល់ៈ ក្នុងភាពជាសូលុយស្យុងទឹក អាស៊ីតអាមីនេមានទម្រង់ ៣បែបគឺ ខាងក្រោមឈ្មោះកាត់របស់អាស៊ីតអាមីនេទាំង ២០ ប្រភេទ

| អាស៊ីតអាមីនេ            | ឈ្មោះកាត់ថីអក្សរ | ឈ្មោះកាត់មួយអក្សរ |
|-------------------------|------------------|-------------------|
| អាឡានីន                 | Ala              | Α                 |
| អាស៊ីនីន                | Arg              | R                 |
| អាស្ប៉ារ៉ាស៊ីន          | Asn              | N                 |
| អាស៊ីតអាស្ប៉ាទិច        | Asp              | D                 |
| ស៊ីស្តេអ៊ីន             | Cys              | С                 |
| អាសីតគយតាមិច            | Glu              | Е                 |
| ត្តយតាមីន<br>រ ្គ       | Gln              | Q                 |
| ក្តីស៊ីន                | Gly              | G                 |
| <br>អ៊ីស្តេឌីន          | His              | Н                 |
| ,<br>អ៊ីសូឡឺស៊ីន        | Ile              | I                 |
| ឡីស៊ីន                  | Leu              | L                 |
| លីស៊ីន                  | Lys              | K                 |
| មេត្យនីន                | Met              | M                 |
| <sub>ថែនីលអាឡានីន</sub> | Phe              | F                 |
| ្រូលីន<br>្ត្រី         | Pro              | P                 |
| សវីន                    | Ser              | S                 |
| ត្រេអូនីន               | Thr              | Т                 |
| ទ្រីបតូផាន              | Trp              | W                 |
| ទីរ៉ូស៊ីន               | Tyr              | Y                 |
| វ៉ាលីន                  | Val              | V                 |

### ៣-ចុិបទីត

- 🖐 អាស៊ីតអាមីនេជាម៉ូលេគុលតូចៗងាយវារលាយក្នុងទឹក ហើយអាចជ្រាបតាមភ្នាស និងជ្រាបចូលទៅក្នុងកោសិកានៃសារពាង្គកាយបានយ៉ាងងាយ ។ កោសិកាបាន សារពាង្គកាយអាស៊ីតអាមីនេភ្ជាប់គ្នាឡើងវិញ ដើម្បីបង្កើតបានជាប្រូតេអ៊ីន។
- 🖐 ប៉ិបទីតជាអាស៊ីតអាមីនេពីរ ឬច្រើនភ្ជាប់គ្នា។
- +ចំណងប៉ិបទីតកើតឡើងពីការភ្ជាប់រវាងអាស៊ីតអាមីនេពីរគឹបណ្តុំកាបុកស៊ីលនៃអាស៊ីតអាមីនេ មួយ ភ្ជាប់ជាមួយបណ្តុំអាមីននៃអាស៊ីតអាមីនេមួយទ្យេត ដោយផ្តាច់បាន ១ម៉ូលេគុលទឹក។

+អាស៊ីតអាមីនេ២ភ្ជាប់គ្នា ហៅថាឌីប៉ិបទីត។ ពេលអាស៊ីតអាមីនេកាន់តែច្រើន ច្រវ៉ាក់កាន់តែ វែងការហៅថាប៉ិបទីតត្រូវផ្លាស់ប្តូរតាមចំនួនអាស៊ីតអាមីនេដូចជា ទ្រីប៉ិបទីតមានអាស៊ីតអាមីនេ ៣ភ្ជាប់គ្នា ... ។ ឧទារហណ៍: តេត្រាប៉ិបទីត









🖐 អាស៊ីតអាមីនេភ្ជាប់គ្នាច្រើនបង្កើតបានជាប៉ូលីប៉ិបទីត ហើយច្រវ៉ាក់ប៉ូលីប៉ិបទីតបត់បែនជាច្រើន ផ្ទត់បង្កើតបានជា ទម្រង់ទី២ ទម្រង់ទី៣ និងទម្រង់ទី៤នៃប្រូតេអ៊ីន។

#### യുള്ള

្សេត្តទីន (Protein)

ក្នុងសារពាង្គកាយ ប្រូតេអ៊ីនមាននាទី ៦ យ៉ាងគឺ:

- -ប្រូតេអ៊ីនទម្រង់វាបង្កើតជាទម្រងកោសិកា
- កាតាលីករគីមីជីវៈដែលជមរុញល្បឿនប្រតិកម្មគីមីក្នុងកោសិកាជាអង់ស៊ីម។
- មាននាទីការពារសារពាង្គកាយទប់នឹងភ្នាក់ងារបង្ករោគជាអង់ទីករ ។
- តម្រូវសកម្មភាពផ្សេងៗក្នុងសារពាង្គកាយ ឧទាហរណ៍ អាំងស៊ុយលីនជាអរម៉ូនតម្រូវ កម្រិតគ្លួយកូសក្នុងឈាម។
- -មាននាទីដឹកនាំសារធារតុផ្សេងៗឆ្លងកាត់ភ្នាសកោសិកា ដូចជា អេម៉ូក្លូប៊ិនដឹកនាំ អុកស៊ីសែន។
  - -អ្នកធ្វើចលនា ប្រូតេអ៊ីនចូលរួមគ្រប់ចលនារបស់កោសិកា។

# ១-រូបផ្គុំរបស់ប្រូពេអ៊ីន

ប្រូតេអ៊ីនជាម៉ាក្រូម៉ូលេគុលសាំញាំដែលជាប៉ូលីមែនៃអាស៊ីតអាមីនេយថាប្រភេទ ខុសៗគ្នា។ ប្រូតេអ៊ីនដែលមានអាស៊ីតអាមីនេតិចជាង ៥០ ហៅថាប៉ិបទីត។ ប្រូតេអ៊ីនមាន ច្រវ៉ាក់ប៉ិបទីតមួយឬច្រើន ហើយកើតពីអាស៊ីតអាមីនេចាប់ពី៥០ឡើងទៅ។

**១.១ ទម្រង់ទី១**: កើតពីតំណល់ដាប់អាស៊ីតអាមីនេសុទ្ធ។

១.២ ទម្រង់ទី២ : ច្រវ៉ាក់ប៉ូលីប៉ិបទឹតបត់បែន ជាខ្មែរខ្មៅដែលចែកជា ២ប្រភេទគឺ

- ទម្រង់បត់បែនស្រប )ផ្នត់រង្វេល $\alpha$  (ះច្រវ៉ាក់ប៉ូលីប៉ិបទីត តម្រៅបទៅតាមទិសដៅតែមួយ។



ទម្រង់បត់បែនមិនស្រប(ផ្នត់រង្វេល ន): ច្រវ៉ាក់ប៉ូលីប៉ិបទីតតម្រៀប ក្នុងទិសដៅផ្ទុយគ្នា មានទម្រង់សាំញ៉ាំ ហើយកាន់តែមាំ។

**១.៣ ទម្រង់ទី៣** : គឺសំដៅទៅលើទម្រង់មាន ៣ សណ្ឋាន

ប៉ូលីប៉ិបទីត មួយចំនួនដែលមានអាស៊ីតអាមីនេ នៅឃ្លាតពីគ្នា ក្រោយពេលបត់បែនជាច្រើន ផ្នត់

អាស៊ីតអាមីនេក៏នៅជាប់គ្នា។

- បន្ទាប់ពីបត់បែនច្រើនផ្គត់ ប្រូតេអ៊ីនក៏ក្លាយជា ប្រូតេអ៊ីនគ្រាប់ ដែលមានទំហំតូចៗ ហើយភាគច្រើន ប្រូតេអ៊ីនជ្រាបទឹកចូល។



เขอ 2.3 อาหตับ 3

ែលខ្មែកលិទ្ធម្រង់ និងសមាសព់តុកលិច្ចារូវតេអ៊ីនGដេកប្រើតេអ៊ីនជា<mark>៥ទម្</mark>មង់ គឺWWW.Moeys.gov.kh 🛮 🐉 google.com/+moeys

- ចំណែកប្រូតេអ៊ីនគ្រាប់មានទំហំធំ តែងតែផ្ទុកគ្រាប់តូច១ ហៅថា**ដូមេន**។ ដូមេនជាផ្នែកមួយរបស់ប្រូតេអ៊ីនដែលមានទម្រង់ទី៣មានរាងមូល។ ដូចនេះវាជាអង្កត់ ដែលមានទម្រង់ជាក់លាក់ ហើយមាននាទីយថាប្រភេទ។

**១.៤ ទម្រង់ទី៤**: ជាប្រូតេអ៊ីនដែលមាន ទម្រង់ធំ១ សុទ្ធតែបង្កឡើងដោយច្រវ៉ាក់ ប៉ូលីប៉ិបទីត ៣ ឬ៤ ដែលធ្វើឱ្យកាន់ តែមានភាពសាំញ៉ាំ។



រូបទី 2.3 ខម្រង់ទី 4

## ២-នាទីរបស់ប្រូពេអ៊ីន

ប្រូតេអ៊ីនមាននាទី ៦យ៉ាងគឺ

1. **កាតាលីករ** ជម្រុញល្បឿនប្រតិកម្មគីមី។ ឧទារហណ៍: វិប៊ុយឡូប៊ីផូស្វាតកាបុកស៊ីឡាស ជាសមាសធាតុ(អង់ស៊ីម)យ៉ាងសំខាន់ក្នុង ដំណើរវស្ចីសំយោគ។ ឯនីត្រូសែណាស់ ជាប្រូតេអ៊ីនមាននាទីភ្ជាប់អាសូត។

**2.ប្រូវតេអ៊ីនទម្រង់** មាននាទីជាអ្នកការពារ និងទ្រទ្រង់។ ឧទារហល់ៈ កូឡាសែន (សរសៃប្រូវតេអ៊ីនក្នុងជាលិកាសន្ធាន) ជាសមាសធាតុចម្បងក្នុង ការភ្ជាប់ជាលិកាឱ្យវឹងមាំ។ **អេឡាស្ទីន** 

មាននៅក្នុងសរសៃយឺតនៃជាលិការបស់សារពាង្គកាយ ដូចជា សរសៃឈាម lacebook.com/moeys.gov.kn



ស្បែក ធ្វើឱ្យជាលិកាក្នុងសារពាង្គកាយមានភាពយឹត។

**3.អ្នកធ្វើចលនា** ចូលរួមគ្រប់ចលនារបស់កោសិកា។

ឧទារហណ៍: អាក់ទីន (មីក្រូភីឡាម៉ង់) ទុយប៊ុយលីន(កូនបំពង់តូចៗ)...។ សំណុំ ប្រូតេអ៊ីនទាំងនេះនៅក្នុងគ្រោងឆ្អឹងកោសិកា មានសកម្មភាពក្នុងការធ្វើចំណែកកោសិកា។

**4.អ្នកការពារ** ប្រឆាំងនឹងការជ្រៀតចូលរបស់មេរោគក្នុងសារពាង្គកាយបាន។ ឧទារហណ៍: ស្បែក ការពារការជ្រៀតចូលនៃមេរោគពេលរបួស។ **ភីប្រ៊ីណូសែន** និងត្រុំប៊ីន ជាប្រូតេអ៊ីនធ្វើឱ្យឈាមកក នៅពេលមានរបួស។ **អង់ទីករ** ប្រឆាំងនឹងការជ្រៀត ចូលរបស់មេរោគ (សម្លាប់) ។

**5.អ្នកតម្រូវ(អរម៉ូន**) ផលិតចេញពីក្រពេញអង់ដូគ្រីន។

ឧទារហណ៍: អាំស៊ុយលីន និងគ្លុយកាកុង តម្រូវកម្រិតគ្លុយកូសក្នុងឈាម។ រីឯអរម៉ូន លូតលាស់ភ្ញោចកោសិកាឱ្យធ្វើចំណែក។

- ${f 6.}{f u}$ កដឹកនាំ ដឹកនាំម៉ូលេគុល ឬអ៊ីយ៉ុងសារធាតុផ្សេងៗឆ្លងកាត់ភ្នាសកោសិកាដូចជា  ${f Na}^+, {f K}^+$  ... ។ អេម៉ូក្លូប៊ីន ដឹកនាំអុកស៊ីសែនពីសួតទៅកាន់កោសិកា ។
  - តាមទម្រង់របស់ប្រូវតេអ៊ីនគេបែងចែកវាជា២ក្រុមគឺ
- **ប្រូវតេអ៊ីនសរសៃ** ជាម៉ូលេគុលវែងមិនរលាយក្នុងទឹក ហើយស្វិត។ វាមាននៅក្នុងស្បែក សក់ ក្រចក មាននាទីជាអ្នកការពារ។
- **ប្រូវតេអ៊ីនគ្រាប់** ជាម៉ូលគុលរាងមូលតូចៗរលាយក្នុងទឹក។ វាមាននាទីជាចលករ អង់ទីករ អេម៉ូក្លូប៊ីន អាល់ប៊ុយមីន ជាអ្នកដឹកនាំអាស៊ីតខ្លាញ់ក្នុងឈាម។

www.moeซูรูเตียต์แล้นและ เลือน เลือ

- -**ប្រូវតេអ៊ីនងាយ** កើតពីអាស៊ីតអាមីនេសុទ្ធ។ ឧទារហណ៍: សេរ៉ូមអាល់ប៊ុយមីន កេរ៉ាទីន។
- កើតពីអាស៊ីតអាមីនេ និងសារធាតុមិនមែនជាប្រូតេអ៊ីន (ក្រុមប្រូស្ដេទិច ) ។ **ប្រូតេអ៊ីនសាំញ៉ាំ ត្រូវបានចំណាត់ថ្នាក់តាម** ក្រុមប្រូស្ដេទិច ។ ឧទាហរណ៍ : គ្លីកូប្រូតេអ៊ីន
  មានផ្ទុក កាបូនអ៊ីត្រាត លីប៉ូប្រូតេអ៊ីនផ្ទុកម៉ូលេគុលលីពីត មេតាឡូប្រូតេអ៊ីន
  ផ្ទុកអ៊ីយ៉ុងលោហៈ ។

ប្រូតេអ៊ីនមានការបាត់បង់គុណភាពក្រោមលក្ខខណ្ឌ ដូចតទៅ:

- **អាស៊ីព ឬបាសខ្លាំង** បណ្តាលឱ្យសម្ព័ន្ធអ៊ីដ្រូសែនត្រូវបានបង្អាក់
- **ភ្នាក់ងារផ្សេង១** បង្អាក់សម្ព័ន្ធអ៊ីដ្រូសែន និងការជ្រៅ្មតចូលនៃទឹក
- អង្គធាតុរំលាយ បង្អាក់ការជ្រាបចូលរបស់ទឹក
- **សាប៊ូ** បង្អាក់ភាពបត់បែនរបស់ប្រូតេអ៊ីន និងឱ្យរលាច្រវ៉ាក់ប៉ិបទីត
- **កំហាប់អំបិល** បង្កើនសមាសធាតុរលាយក្នុងទឹក
- លោហៈបាតុធ្ងន់ បារត(Hg) មានឥទ្ធិពលលើទម្រង់ប្រូតេអ៊ីន និងនាទីរបស់វា ។
- **បម្រែបម្រូលសីតុណ្ហភាព** សកម្មភាពរបស់ប្រូតេអ៊ីនប្រែប្រួលអាស្រ័យ

#### នឹងសីតុណ្ហភាព ។

• ចលនាមេកានិច កម្លាំងបង្អាក់ការបង្កើតទម្រង់ប្រូតេអ៊ីន។ ឧទារហណ៍: សស៊ុត នឹងអស់គុណភាព ក្លាយជាពពុះពេលគេកូរវ៉ា។





**ଞ୍ଜୌ**ଣ୍ଡି ଗ

গওঁনুগৈ (Enzyme)

#### ១. អង់ស៊ីម

អង់ស៊ីម ជាសារធាតុប្រូតេអ៊ីនដែលមាននាទីជាកាតាលីករជួយជំរុញល្បឿនប្រតិកម្ម គីមីជីវ:ផ្សេងៗ។

ប្រសិនបើគ្នានអង់ស៊ីមទេ

សកម្មភាពផ្សេងៗក្នុងសារពាង្គកាយមិនអាចប្រព្រឹត្តទៅបានទេ អង់ស៊ីម គឺជាកាតាលីករគីមីជីវៈដែលមានប្រតិកម្មយថាប្រភេទកម្រិតខ្ពស់ ហើយសកម្មភាព នៃប្រតិកម្មគីមីជីវៈ គឺទៀងទាត់ និងជាក់លាក់។



្កុងបន្ទប់ពិសោធន៍: ដើម្បីបំបែកគ្លុយស៊ីត ខ្លាញ់ ប្រូតេអ៊ីន
ត្រូវមានកាតាលីករ សីតុណ្ហភាព និងកត្តាផ្សេងៗ ដើម្បីជំរុញប្រតិកម្មប្រព្រឹត្តទៅបានល្អ។
ក្នុងសារពាង្គកាយរស់ មិន អាចប្រើកំដៅ ឬ កំហាប់ប្រតិករបានទេ
តែប្រតិកម្មគីមីទាំងនោះប្រើប្រាស់កាតាលីករសរីរាង្គ ដែលផលិតពីប្រូតេអ៊ីន ហៅថា
"អង់ស៊ីម"។

ឧទារប្រណុំ: អាហារដែលយើងបរិភោគ ថ្ងៃ

ជាម៉ូលេគុលធំ១ ជាហេតុមិនអាចឆ្លងកាត់ផ្ទៃភ្នាសកោសិកាបាន គឺវាត្រូវតែផ្លាស់ប្តូរទៅជា
- សារធាតុងាយ តូច១ដែលអាចរលាយក្នុងទឹក។
-ម៉ូលេគុលរបស់វ៉ាអាចជ្រាប
តាមភ្នាសកោសិកាបាន។

Glucose

Fructose

Fructose

#### ២. ចំណែកថ្នាក់អង់ស៊ីម

គេធ្វើចំណែកថ្នាក់អង់ស៊ីម ដោយផ្អែកលើនាទីរបស់វា គឺឈ្មោះរបស់អង់ស៊ីម ដែលបញ្ចប់ដោយពាក្យ អាស "បន្ថែមលើឈ្មោះស៊ុបត្រាត។ គេធ្វើចំណែកថ្នាក់អង់ស៊ីមជា ៦ក្រុមគឺ:

- អុកស៊ីដូរេដុតាស (Oxydoreductases) ជាអង់ស៊ីមចូលរួមប្រតិកម្មអុកស៊ីដូរេដុកម្ម (ប្រតិករ) ថ្នាក់រងក្រុមនេះមាន រេដុចតាស អុកស៊ីដាស អុកស៊ីសែនណាស ពែអុកស៊ីដាស អ៊ីដ្រូស៊ីឡាស។
- អ៊ីដ្រូឡាស (Hydrolases) ជាអង់ស៊ីមដែលចូលរួមក្នុងប្រតិកម្មផ្ដាច់សម្ព័ន្ធគឹមី ដោយភ្ជាប់អ៊ីយ៉ុង OH និង អ៊ីយ៉ុង H ដែលបានមកពីម៉ូលេគុលទឹក(ប្រតិកម្មអ៊ីដ្រូលីស) ។

អ៊ីដ្រូឡាសមាន កាបូអ៊ីដ្រាស ប្រូវតេអាស លីប៉ាស អេស្ទែរ៉ាស ផូស្វាតាស ប៉ិបទីដាស។

- facebook.com/moeys.gov.kh

- ត្រង់ស្វេរ៉ាស (Transferases) ជាអង់ស៊ីមដែលចូលរួមក្នុងប្រតិកម្មគីមី យថាប្រភេទ ដោយផ្ទេរម៉ូលេគុលពីបណ្ដុំមួយទៅបណ្ដុំមួយទៅទៀត ឧទាហរណ៍ ត្រង់ កាបុកស៊ីឡាស។
- អ៊ីដ្រូឡាស (Hydrolases) ជាអង់ស៊ីមដែលចូលរួមក្នុងប្រតិកម្មផ្ដាច់សម្ព័ន្ធ គឺមិ ដោយភ្ជាប់អ៊ីយ៉ុង OH និង អ៊ីយ៉ុង H ដែលបានមកពីម៉ូលេគុលទឹក (ប្រតិកម្មអ៊ីដ្រូលីស) ។

អ៊ីដ្រូឡាសមាន កាបូនអ៊ីដ្រាស (អាមីឡាស សែលុយឡាស) ប្រូតេអាស លីប៉ាស អេស្ទែរ៉ាស...។

- លីយ៉ាស (Lyases) ជាអង់ស៊ីមដែលបំបែកទឹក កាបូនឌីអុកស៊ីត និងអាម៉ូញ៉ាក់ ក្នុងនោះរួមមាន ដេអ៊ីដ្រាតាស ឌែមីណាលីយាស។
- អ៊ីសូមេរ៉ាស ជាអង់ស៊ីមដែលជួយជម្រុញប្រតិកម្មម៉ូលេគុល ដើម្បីរ្យប់ចំ ម៉ូលេគុលជាថ្មី ឧទារណ៍ អេពីមេរ៉ាស មុយតាស។
- លីហ្គាស ជាអង់ស៊ីមដែលចូលរួមក្នុងប្រតិកម្មបង្កើតសម្ព័ន្ធគីមីរវាងម៉ូលេគុល ស៊ុបស្ត្រាតពីរ វាជាសាំងតេតាស កាបុកស៊ីឡាស ។

#### ៣-លក្ខណះរបស់អង់ស៊ីម

អង់ស៊ីមជាប្រូតេអ៊ីនមានសកម្មភាពខ្លាំងក្លាបំផុត។ ឧទាហរណ៍ កាតាឡាសមួយម៉ូលេគុលអាច បំបែកអ៊ីដ្រូំសែនពែអុកស៊ីតរាប់លានក្នុង រយៈពេលតែមួយ នាទី។ អង់ស៊ីមមានលក្ខណៈសម្បត្តិដូចជា

អង់ស៊ីមមួយចំនួនតូចអាចបង្កើនប្រតិកម្មបានមួយចំនួនធំ ។
 Oeys gov kh
 អង់ស៊ីមអាចបង្កើនល្អើនបតិកម្មគឺមីជីវៈដែលកើតមានក្នុងកោសិកា ។

អង់ស៊ីមមួយមានអំពើទៅលើតែស៊ុបស្ត្រាតមួយគឺជាយថាប្រភេទរបស់វា។សារធាតុដែលអង់ស៊ីមមានអំពើអាស្រ័យទៅលើស៊ុបស្ត្រាត:

| ស៊ុបស្ត្រាត           | អង់ស៊ីម          | ស៊ុបស្ត្រាត | អង់ស៊ីម           |
|-----------------------|------------------|-------------|-------------------|
| លីពីត                 | លីប៉ាស           | អ៊ុយរេ      | អ៊ុយរេអាស         |
| ម៉ាល់តូស              | ម៉ាល់តាស         | ឡាក់តូស     | ឡាក់តាស           |
| សាការ៉ូស              | សាក់ការ៉ាស       | ប្រូតេអ៊ីន  | ប្រូតេអាស         |
| អាមីដុង               | អាមីឡាស          | ប៉ិបទីត     | ប៉ិបទ <b>ីដាស</b> |
| អាស៊ីតវីបូនុយក្លេអ៊ិច | អាស៊ីតនុយក្លេអាស |             |                   |

#### ក.ឥទ្ធិពលនៃសីតុណ្ហភាពទៅលើសកម្មភាពអង់ស៊ីម

តាមរយៈក្រាហ្វខាងក្រោម អង់ស៊ីមមានសកម្មភាពប្រសើបំផុត នៅសីតុណ្ហភាព 40  $^{\circ}_{\rm C}$  ទៅ 45  $^{\circ}_{\rm C}$  ហើយសកម្មភាពអង់ស៊ីមត្រូវថយចុះភាពនៅសីតុណ្ហភាពខ្ពស់ពេក (លើសពី45  $^{\circ}_{\rm C}$ ) និងទាបពេក (0  $^{\circ}_{\rm C}$ ) ។



ឥទ្ធិពលនៃសីតុណ្ហភាពទៅលើសកម្មភាពអង់ស៊ីម

#### ខ.ឥទ្ធិពល pH ទៅលើអង់ស៊ីម

តាមរយៈក្រាហ្វខាងក្រោម អង់ស៊ីមមានសកម្មភាព អាស្រ័យទៅលើ pH។ អង់ស៊ីមអាមីឡាសមានសកម្មភាពប្រសើរបំផុតនៅកម្រិត pH=7 ហើយសកម្មភាពអង់ស៊ីម អាមីឡាសថយចុះភាពនៅកំហាប់ pH<7 និង pH>7 ខ្ពស់ពេក បើpH=4 ឬ ស្នើ 9 អាមីឡាសបាត់បង់គុណភាពទាំងស្រុង។

#### គ.ឥទ្ធិពលស៊ុបស្ត្រាត និងកំហាប់អង់ស៊ីមទៅលើប្រតិកម្ម

កាលណាកំហាប់អង់ស៊ីមកាន់តែខាប់ ល្បឿនប្រតិកម្មគីមីជីវៈកាន់តែកើនឡើង។



### គ.អង់ស៊ីមត្រូវការកូអង់ស៊ីមដើម្បីធ្វើសកម្មភាព

អង់ស៊ីមក៏ត្រូវការកូអង់ស៊ីម ដើម្បីជួយក្នុងប្រតិកម្មគីមីជីវៈដែរ មានដូចជា វីតាមីន បេកុំផ្លិច។

www.moeys.gov.Kn google.com/+moeys

អង់ស៊ីម ជាកាតាលីករដែលមានប្រតិកម្មបញ្ច្រាស ព្រោះវាអាចបំប្លែងទៅជា សារធាតុថ្មី ហើយសារធាតុថ្មីនោះ ក៏អាចប្រែប្រួលមកជាសាធាតុដើមវិញ។ «នេសសានស 

 ชัตุหลี๕
 ตัสิเผเลลิย ลิย สาเผ่เชอไลเ้ผล

 เซเปิลลิย
 ADNชาตัสิยาลเผเลลิย

AND ជាទម្រព័ត៌មានសេនេទិច ព្រោះផ្ទុកតំណលំដាប់នុយក្លេអូទីត ដែលជាព័ត៌មាន សេនេទិច (សម្ភារតំណពូជ) ។

ក្នុងការបន្តពូជដោយភេទ ឯកត្តៈថ្មីកើតពីស៊ីកូតបានមកពីការរលាយចូលគ្នារវាង កាម៉ែតញ៉ី និង កាម៉ែតឈ្មោល។ ស៊ីកូតមានព័ត៌មានសេនេទិច សម្រាប់កសាងលក្ខណៈរបស់ ភាវរស់។

#### សមាសធាតុគីមីនៃសម្ភារសេនេទិច

#### **១.១ ការពិសោធរបស់លោកគ្រីភីត** (Griffith 1928)

ភ្នឺម៉ូកូក ជាបាក់តេរីដែលបង្កជំងឺឱ្យមានជំងឺរលាកសូត ។ វ៉ាមាន រូបរាង២ បែប គឺ រាង S និងរាង R ។

- បាក់តេរី S គឺរូបរាងមានស្រោមដែលធ្វើអំពីគ្លុយស៊ីត។ វ៉ាមានលក្ខណៈរហ័សក្នុង ការបង្កឱ្យមានជំងឺ។
- បាក់តេរី R គឺរាងគគ្រាតគ្មានស្រោម និងមិនបង្កឱ្យមានជំងឺទេ។ តាមការស្រាវជ្រាវរបស់លោកគ្រីភីត បានសន្និដ្ឋានថា បាក់តេរី R គ្មានស្រោម បំប្លែងជា បាក់តេរី S មានស្រោមដែលអាចបង្កជំងឺ និងបញ្ជូនទៅសណ្ដានក្រោយ។

#### ១.២ ការពិសោធរបស់លោកអាវីវី







ADN ជាទំរព័ត៌មានសេនេទិច។ លោកវ៉ាត់សុន និងគ្រិនរកឃើញទំរង់ម៉ូលេគុលADN។ គំរូADN ម៉ូលេគុលនេះកើតឡើងពីច្រវ៉ាក់ពីរខ្សែដែលរុំជារង្វេលលើគ្នា។

#### ១.៣ ការពិសោធរបស់ហ៊ីស៊ី និងឆាស

- -**ហឹស៊ី**បានរៀបចីវិរុស២ក្រុម ដោយវិរុស មួយក្រុមចងភ្ជាប់ស្ពាន់ធ័រវិទ្យុសកម្ម 35 ហើយ មួយក្រុមទៀតចងភ្ជាប់ផូស្វ័រវិទ្យុសកម្ម 32។
- រួចគាត់យកវីរុសទាំងពីរក្រុម ដាក់ លើបាក់តេរីហើយរង់ចាំឱ្យវីរុសបន្តពូជក្នុងបាក់តេរី ។ តាមការពិសោធបង្ហាញថា ស្ពាន់ធ័រវិទ្យុសកម្ម 35 នៅសល់ ឯផូស្វ័រវិទ្យុសកម្ម32 គ្មាននៅសល់ទេ ។ គាត់ធ្វើការសន្និដ្ឋានថា វីរុសបញ្ជូន DNA ទៅក្នុង បាក់តេរី បន្ទាប់មក DNA ស្វ័យតំឡើងទ្វេ និង សំយោគប្រូតេអ៊ីនដែលបង្កជាវីរុសថ្មីៗជាច្រើន ។ ដូចនេះ DNA ជាព័ត៌មានសេនេទិច ។



### **២. ទំ**រង់ម៉ូលេកុល ADN

#### **២.១** ធាតុបង្កម៉ូលេគុលADN

- ម៉ូលេគុល and បង្កឡើងពីច្រវ៉ាក់នុយក្លេអូទីតពីរខ្សែ។ នុយក្លេអូទីតនីមួយៗ មានធាតុបង្កគឺ - បាសនីទ្រិចមានបួនបែប: អាដេនីន(A) ទីមីន(T) ស៊ីតូស៊ីន(C) ហ្គានីន(G) ។ អាដេនីន និងទីមីន ជាគូបាសបំពេញគ្នា ហើយស៊ីតូស៊ីន និងហ្គានីន ជាគូបាសបំពេញគ្នាដែរ ។ ហើយស៊ីតូស៊ីននិងហ្គានីនជាគូបាសបំពេញគ្នាដែរ ។

 $H_3PO_4$  + ស្ករដេអុកស៊ីរីបូស + A

 $H_3PO_4$  + ស្គរដេអុកស៊ីវិបូស + T

 $H_3PO_4$  + ស្ករដេអុកស៊ីរីបូស + C

 $H_3PO_4$  + ស្តរដេអុកស៊ីរីបូស + G

| អាដេនីន                                                                                  | ក្រុមពូវីន                              | ក្រុមពីរីមីឌីន                         |  |  |
|------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--|--|
|                                                                                          | H H                                     | н<br> <br>н О                          |  |  |
| ស្ករC <sub>5</sub> H <sub>10</sub> O <sub>4</sub>                                        | H-C N C N C-H H H หกเหลือ               | H-C N-H N-C H-C N-H                    |  |  |
| អាស៊ីតផូស៊ីវិច 🗪 🦫 ទិមីន                                                                 | O    N C. H                             | 99а<br>Н Н<br>Н N                      |  |  |
| mãa                                                                                      | H-C   H   H   H   H   H   H   H   H   H | H-C N-H<br>N-C N-H<br>H O<br>ผู้สูผู้ล |  |  |
| រូបទី 1.4 ក. ទម្រង់ច្រវាក់គុយក្មេអូទីតម្ខាងរបស់ម៉ូលេគុល ADN ន. រូបមន្តស្ទើរលាតនៃបាសអាសួត |                                         |                                        |  |  |

anស៊ីតធូស្វិរិចមួយម៉ូលេគុល + ស្ករដេអុកស៊ីរិបូសមួយម៉ូលេគុល + បាសអាសូត<mark>មួយម៉</mark>ូលេគុល www.moeys.gov.kh

8+ google.com/+moeys

#### ២.២ លក្ខណះបាសអាសូត

តាមរាតាងបរិមាណបាសអាសតនៃ ADN ក្នុងកោសិកាផ្ទេងៗបង្ហាញថា

|                    | U        |      | <u>_</u>     |      |
|--------------------|----------|------|--------------|------|
| ប្រភេទភាវៈរស់      | បាសពូវិច |      | បាសពីវិមីឌីន |      |
|                    | A        | G    | Т            | С    |
| ស្វា               | 31.0     | 18.4 | 31.5         | 19.1 |
| ដ្រូសូភិល          | 27.3     | 22.5 | 27.6         | 22.5 |
| ផ្សិតណឺរ៉ូស្ប៉ូរ៉ា | 23.0     | 26.1 | 23.3         | 27.1 |
| បាក់តេរីអ៊ឹកូលី    | 24.6     | 25.6 | 24.3         | 25.5 |
| មនុស្ស ថ្លើម       | 30.3     | 19.5 | 30.3         | 19.8 |

| $\frac{A}{-}$ | $\frac{C}{1} = 1$  | A+C |
|---------------|--------------------|-----|
| $T^{-}$       | $G^{1}$ , $G^{-1}$ | T+G |
| ដូចនេ         | 38                 |     |

- +បរិមាណទីមីន និង អាដេនីនស្ចើគ្នា
- +បរិមាណស៊ីតូស៊ីន និង កានីនស្ចើគ្នា

#### ២.៣ **គំរូម៉ូលេគុល** ADN

លោកវ៉ាត់សុន និងលោកគ្រិក រកឃើញទម្រង់ម៉ូលេគុល ADN ។ ម៉ូលេគុល AND កើតពីច្រវ៉ាក់នុយក្លេអូទីត ២ខ្សែ ដែលរុំជារង្ខេលលើគ្នា។ ច្រវ៉ាក់ទាំងពីរភ្ជាប់ គ្នាទៅវិញទៅ មកដោយសម្ព័ន្ធអ៊ីដ្រូសែនខ្សោយ តាមគោលការណ៍បំពេញបាសនីទ្រិចគឺ A ភ្ជាប់ T ដោយ សម្ព័ន្ធអ៊ីដ្រូសែន 2ជាន់ (A=T ) និង C ភ្ជាប់ G ដោយសម្ព័ន្ធអ៊ីដ្រូសែន 3ជាន់( $C \equiv G$ ) អាស៊ីតផូស្វ៊ីវិចនៃនុយក្លេអូទីតមួយភ្ជាប់ទៅនឹងស្ករដេអុកស៊ីនៃនុយក្លេអូទីតមួយទៀត សម្ព័ន្ធកូវ៉ាឡង់។

ប្រសិនបើគេពនាត្យវ៉ាក់ទាំង២ ដែលរុំជារង្វេលដាក់ឱ្យរាបស្ចើនោះ ម៉ូលេកុល ADN មានសភាពជាជណ្តើរយ៉ាងវែង និងបណោយច្រើនមីលីម៉ែត ដែលមានទទឹង 2nm

ទៅច្រើនម៉ែតមេជណ្តើរកើតពីអាស៊ីតផូស្វរិច និងស្ករដេអុកស៊ីរីបូស ឯកាំជណ្តើរកើតពីបាស និក្សិត្តacebook.com/moeys.gov.kh



ដោយ រជំហាន=1រង្វេល=10ប្រឡោ៖=3.4nm ហើយចន្ទោះពីនុយក្មេអូលទឹត ន្ទុយក្មេអូលទីត១ ស៊ើ 0.34 nm ។

ADN នីមួយៗមានចំនួននុយក្លេអូទីតច្រើន។ ម៉ូលេកល ម៉ូលេកល និងទីតាំងរបស់នុយក្លេអូទីត។ ដោយចំនួនប្រភេទ ផ្សេង១ខុសគ្នា តំណលំដាប់នុយក្លេអូទីតទាំងបួនប្រភេទ មានសារៈសំខាន់ សំរាប់សំគាល់ ម៉ូលេគុល ADN នីមួយៗ។

ឧទាហរណ៍ ម៉ូលេគុល ADN ដែលមានប្រវែង ១ mmមាននុយក្លេអូទីត ៣០លានគូ។

www.moeys.gov.kh 8 google.com/+moeys

#### **៣-ស្វ័យតំល៊ើង**ទ្វេ ADN

### ៣.១ **បរិមាណ** ADN **ក្នុងកោសិកា**

ADN មានលក្ខណៈពិសេសដូចតទៅៈ

- -ឯកត្ត:ក្នុងប្រភេទតែមួយមានបរិមាណ ADN ថេរចំពោះគ្រប់កោសិកាលូតលាស់ តែ កោសិកាបន្តពូជមានបរិមាណ ADN ថយចុះមកពាក់កណ្តាល។
- -បរិមាណADNប្រែប្រួលពីប្រភេទមួយទៅប្រភេទមួយទៀតព្រោះចំនួនក្រូម៉ូសូមប្រែប្រួល ៣.២ **ស្វ័យតំល៊ើងទ្វេ** ADN
- ធាតុបង្កគីមីនៃក្រូម៉ូសូមមាន ADN និងប្រូតេអ៊ីនអ៊ីស្តូនវាមានរាងជានុយក្លេអូ ភីឡាម៉ង់ រងស្ពេក្រមួ។
  - នុយក្លេអូភីឡាម៉ង់បង្កឡើងម៉ូលេគុល ADN ដែលរុំលើគ្រាប់ប្រូតេអ៊ីនអ៊ីស្គន។ ក្រាបខាងក្រាមនេះ តាងពីការវិវត្តនៃបរិមាណ ADN ក្នុងមួយវដ្តកោសិកា។



វដ្តកោសិកា ពេល(ម៉ោង) facebook.com/moe រូបទី 1.6 វិវត្តន៍នៃបរិមាណ ADNក្នុងមួយវដ្តពោសិកា

ក.ដំណើរការស្វ័យដំឡើងខ្វេ ADN

មុនចំណែកកោសិកានីមួយៗ ច្រវ៉ាក់នុយក្លេអូលទីតទាំង២ នៃម៉ូលេគុល A<u>DN</u>

មេផ្តាច់ចេញ ពីគ្នា ។ ច្រវ៉ាក់ម្ខាងរបស់ ADN មេជាពុម្ព សម្រាប់ សំយោគច្រវ៉ាក់ថ្មីបំពេញបន្ថែម។ ម៉ូលេគុល ADN កូនទាំង២ ដូចម៉ូលេគុល ADN មេបេះបិទ។ នៅពេលចំណែកកោសិកា កោសិកាកូននីមួយៗបានទទួលម៉ូលេគុល ADNកូនមួយក្នុង ចំណោម ADN កូនទាំង២។

ដូចនេះកោសិកាកូនទទួលបានព័ត៌មានសេនេទិចទាំង ស្រុងពីកោសិកាមេ ។ ចលនការស្វ័យតំឡើងទ្វេ ADN មានសារសំខាន់:



- នៅចំណែកមីតូស កោសិកាកូន និងកោសិកាមេមាន ADN ដូចគ្នា។ ដូចនេះ ធានាឱ្យមានការបញ្ជូនព័ត៌មាន ចលនការស័យ តំឡើងទេ ADN សេនេទិចដូចគ្នាពីកោសិកាមេទៅកោសិកាកូន។
  - -ចលនការស្វ័យតំឡើងទ្វេ ADN ប្រព្រឹត្តទៅនៅវគ្គS នៃចន្លោះវគ្គ។
- -ផ្នែកស័យតំឡើងទេ ជាតំបន់នៃម៉ូលេគុលADN ដែលធ្វើការស្វ័យតំឡើងទ្វេនៅចន្លោះតំបន់ មិនទាន់មានការស្វ័យតំឡើងទ្វេ។

-ADN ប៉ូលីមេរ៉ាស ជាអង់ស៊ីមយថាប្រភេទ។



.moeys.gov.kh 8+ google.com/+moeys

### ខ.ដំឡើងទ្វេ ADN ក្នុងប្រូការីយ៉ូត

-បាក់តេវិមានក្រូម៉ូលេគុលតែមួយ។ ADN របស់វាមានរាងជារង្វង់ដែលត្រូវតំឡើងទ្វេ មុនចំណែកកោសិកា ។ ដំឡើងទ្វេប្រព្រឹត្តទៅដោយចេញពីចំណុចតែមួយ រួចញែកចេញ ទៅតាម ទិសដៅពីរផ្ទុយគ្នា។ បាក់តេរីអាចតំឡើងទ្វេក្នុងល្បឿនប្រហែល ១០<sup>៦</sup> គូបាស ក្នុងមួយ នាទីហើយប្រហែល ៤០ នាទី។

### គ.ដំឡើងទ្វេ ADN ក្នុងអឺការីយ៉ូត

ក្នុងកោសិកាអឺការីយ៉ូតស្វ័យតំឡើងទ្វេ ប្រព្រឹត្តទៅក្នុងល្បឿនក្នុងសភាពយឺត ប្រហែល 500 ទៅ 5000គូបាស/នាទី និងនៅលើចំណុចជាច្រើន ផ្ទុយពីល្បឿនការតំឡេងទ្វេ ADN ក្នុងកោសិកាមនុស្ស មានរាប់ពាន់លានគូបាស។

#### ៣.៣ នាទីស្វ័យដំឡើងទ្វេ

ស្វ័យដំឡើងទ្វេ ADN មាននាទីរ៉ាប់រងការដំឡើងទ្វេនៃក្រូម៉ូសូម ចំនួន និងរូបរាង របស់វា ឱ្យនៅដដែលក្រោយចំណែកកោសិកា ហើយវារក្សាព័ត៌មានសេនេទិចឱ្យនៅថេរដដែល ក្នុងការឆ្លង កាត់ជំនាន់។

#### യുള്ളയുള

### គន្លឹះដោះស្រាយលំហាត់

- ១. រកចំនួននុយក្លេអូទីតទាំងអស់របស់ម៉ូលេគុលADN អង្កត់AND ឬសែន តាមគោលការណ៍បំពេញបាសនីទ្រិច A-T , C-G  $\Rightarrow$  A=T , C=G ⇒ ចំនួននុយក្លេអូទីតសរុប (M)= 2A+2C
  - +ដើម្បីរក M បើគេប្រាប់ចំនួន $\mathbf{A}$  និងសមាមាត្រភាគរយ $\mathbf{A}$   $\Longrightarrow$   $M = \frac{A \times 100}{\% \, A}$
  - ulletដើម្បីរក  $oldsymbol{\mathrm{M}}$  បើគេប្រាប់ចំនួន $oldsymbol{\mathrm{T}}$  និងសមាមាត្រភាគរយ $oldsymbol{\mathrm{T}} \Rightarrow M = rac{T imes 100}{\% T}$
  - +ដើម្បីរក M បើគេប្រាប់ចំនួនC និងសមាមាត្រភាគរយ $C \Longrightarrow M = \frac{C \times 100}{\% C}$
  - +ដើម្បីរក M បើគេប្រាប់ចំនួនG និងសមាមាត្រភាគរយ $G \Rightarrow M = \frac{Gx100}{c}$
- ២. រកចំនួននុយក្លេអូទីតនីមួយៗរបស់ម៉ូលេគុលADN អង្កត់AND ឬសែន តាមគោលការណ៍បំពេញបាសនីទ្រិច A-T, C-G ⇒ A=T, C=G ⇒ ចំនួននុយក្លេអូទីតសរុប (M)= 2A+2C

$$\Rightarrow A = T = \frac{M}{2} - C$$

$$\Rightarrow C = G = \frac{M}{2} - A$$

 $\Rightarrow C = G = \frac{M}{2} - A$ 

+បើស្គាល់M និងសមាមាត្រភាគរយ $A \Rightarrow$  ចំនួននុយក្លេអូទីត  $A = \frac{M \times \% A}{100}$ 

+បើស្គាល់M និងសមាមាត្រភាគរយT $\Rightarrow$  ចំនួននុយក្លេអូទីត  $T=rac{M imes\%T}{100}$ 





 $\bullet$ បើស្គាល់M និងសមាមាត្រភាគរយ $G \Rightarrow$  ចំនួននុយក្លេអូទីត  $G = \frac{M \times \%G}{100}$ 

៣. រកប្រវែងADN ប្រវែងអង្កត់ADN ឬប្រវែងសែន

ដោយនុយក្លេអូទីត១ មានប្រវែង**0.34nm** ហើយ**ADN ជាច្រវ៉ាក់ទ្វេ** 

$$\Rightarrow l = \frac{M}{2} 0.34nm$$

ដោយ l ជាប្រវែងADN ប្រវែងអង្កត់ADN ឬប្រវែងសែន M ជាចំនួននុយក្លេអូទីតសរុបនៅលើច្រវ៉ាក់ទាំង2

៤. រកចំនួនជំហាននៃម៉ូលេគុលADN អង្កត់AND ឬសែន

ដោយ១ជំហានមានប្រវែង3.4nm (ក្នុងករណីស្គាល់ ប្រវែង)

 $\Rightarrow$  ចំនួនជំហាន =  $\frac{l}{3.4}$ 

ឬដោយ១ជំហានមាន១០គូបាស

(ក្នុងករណីស្គាល់ចំនួននុយក្លេអូទីតសរុប)

 $\Rightarrow$  ចំនួនជំហាន =  $\frac{M}{20}$ 

៥. រកចំនួនសម្ព័ន្ធអ៊ីជ្រូសែនរបស់ម៉ូលេគុលADN អង្កត់AND ឬសែន

ដោយA ភ្ជាប់ T ដោយសម្ព័ន្ធអ៊ីដ្រូសែន 2 ហើយ C ភ្ជាប់ G ដោយសម្ព័ន្ធអ៊ីដ្រសែន 3

⇒ចំនួនសម្ព័ន្ធអ៊ីជ្រសែនសរុប L= 2A + 3C

ចំណាំ៖ គេអាចរកចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនសរុបរវាង A និង T ឬ C និងG 🔏

facebook.com/moeys.gov.kh

#### ៦. រកភាគរយនុយក្លេអូទីត

ដោយ ADN មាននុយក្លេអូទីត ៤យ៉ាង គឺ %A + %T+ %C + %G = ១០០%

$$\Rightarrow$$
 %2A + %2C = 100%

$$\Rightarrow$$
 %A + % C = 50%  $\Rightarrow$  % A = 50% - % C,  $\Rightarrow$  % C = 50% - % A

$$\Rightarrow$$
 %A = %T =  $\frac{100\%}{2} - \%C$ 

$$\Rightarrow \%C = \%G = \frac{100\%}{2} - \%A$$

៧. រកចំនួននុយក្លេអូទីតសេរីសរុប (**M**')

ដោយម៉ូលេគុលADN 1 តំឡើងទ្វេបង្កើតបានកូន 2

- ⇒ចំនូននុយក្លេអូទីតសេរីសម្រាប់ADN តំឡើងទ្វេ១ដងគឺ M′ = M
- $\Rightarrow$ ចំនូននុយក្លេអូទីតសេរីសម្រាប់ADN តំឡើងទ្វេ n ដងគឺ M'=M ( $2^n-1$ )
- ៨. រកចំនួននុយក្លេអូទីតសេរីប្រភេទនីមួយៗ (A', T', C', G')

ដោយនៅពេលតំឡើងទ្វេនុយក្លេអូទីតសេរីភ្ជាប់នឹងនុយក្លេអូទីតរបស់ADN តាមគោលការណ៍បំពេញបាស A'-T, T'-A, C'-G,

- ⇒ចំនូននុយក្លេអូទីតសេរីប្រភេទ A´=T´=A (2<sup>n</sup>−1)
- ⇒ចំនូននុយក្លេអូទីតសេរីប្រភេទ C´=G´=C (2<sup>n</sup>−1)

#### <u>အို့အေ</u>ခဲ့

ម៉ូលេគុល

**ADN** 

មួយមាននុយក្លអូទីតប្រភេទA=120000

ដែលមានសមាមាត្រ20% នៃនុយក្រុអ្ធទីតទាំងអស់។ www.moeys.gov.kh google.com/+moeys

- ក. រកភាគរយនៃនុយក្លេអូទីតប្រភេទនីមួយៗ
- ខ. រកចំនួននុយក្លេអូទីតប្រភេទនីមួយៗរបស់ម៉ូលេគុលADN
- គ. រកប្រវែងម៉ូលេគុលADN ជាមីក្រម៉ែត្រ (μm)
- ឃ. រកចំនួនជំហានរបស់ម៉ូលេគុលADN
- ង. រកចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនសរុបរបស់ម៉ូលេគុលADN
- ច. រកសម្ព័ន្ធអ៊ីដ្រូសែនរវាង C និង G
- ឆ. រកចំនូននុយក្លេអូទីតសេរីសម្រាប់ADN តំឡើងទ្វេ5ដង

### ជំណោះស្រាយ

ក. រកភាគរយនៃនុយក្លេអូទីតប្រភេទនីមួយៗ បម្រាប់៖ នុយក្លេអូទីតសរុបរបស់ADN (M)=120000, %A=20%

តាមគោលការណ៍បំពេញបាសនីទ្រិច A-T, C-G ⇒ %A=%T, %C=%G ដោយADN មាននុយក្លេអូទីត ៤យ៉ាង⇒ 2 %A + 2 %C=100%

$$\Rightarrow$$
 %C =  $\frac{100\%}{2}$  -  $\frac{100\%}{2}$  - 20% = 30%

ដូចនេះភាគរយនៃនុយក្លេអូទីតប្រភេទនីមួយៗគឺ៖

$$%A = %T = 20%$$

$$%C = %G = 30%$$

ខ. កេចំនូននុយក្លេអូទីតប្រភេទនីមួយៗរបស់AND

 $\Rightarrow$  នុយក្លេអូទីតសរុបរបស់ ADN  $M = \frac{120000 \times 100}{20} = 600000$ ដោយ%C=30% នៃនុយក្លេអូទីតទាំងអស់

$$\Rightarrow$$
 នុយក្លេអូទីតប្រភេទ C=  $\frac{600000 \times 30}{100}$  = 180000

ដូចនេះនុយក្លេអូទីតប្រភេទនីមួយៗគឺ៖

នុយក្លេអូទីតប្រភេទ A = T = 120000

នុយក្លេអូទីតប្រភេទ C = G = 180000

គ. រកប្រវែងម៉ូលេគុលADN ជាមីក្រូម៉ែត្រ

ដោយនុយក្លេអូទីត១ មានប្រវែង**0.34nm** ហើយ**ADN** ជាច្រវ៉ាក់ទ្វេ

$$\Rightarrow$$
ប្រវែងម៉ូលេគុល ADN  $l = \frac{M}{2}$  0.34 $nm = \frac{600000}{2}$  0.34 $nm = 102000$ nm

ដោយ 1nm = 10<sup>-3</sup>μm

ដូចនេះប្រវែងម៉ូលេគុល ADN = 102000nm=102μm

ឃ. រកចំនួនជំហានរបស់ម៉ូលេគុល ADN

ដោយ១ជំហានមានប្រវែង3.4nm

$$\Rightarrow$$
 ចំនួនជំហាន =  $\frac{l}{3.4}$  =  $\frac{102000}{3.4}$  = 30000

ដូចនេះចំនួនជំហានរបស់ម៉ូលេគុលADN គឺ៖ 30000ជំហាន

ង. រកចំនូនសម្ព័ន្ធអ៊ីដ្រូសែនសរុបរបស់AND

ដោយA ភ្ជាប់ T ដោយសម្ព័ន្ធអ៊ីជ្រសែន 2 ហើយ C ភ្ជាប់ G សម្ព័ន្ធអ៊ីជ្រាសន៍វា <mark>8+</mark> google.com/+moeys

តែជាបន្ថែលក្លូអូទឹតAា/12000€\/20%ថៃនុយក្លេអូទីត**ទាំង**អស់WW.ជ្រាលសម្ព័ន្ធអ៊ីជ្រើសនៈវា

⇒ចំនួនសម្ព័ន្ធអ៊ីជ្រួសែនសរុប L= 2A + 3C ដោយនុយក្លេអូទីតប្រភេទ A = 120000 នុយក្លេអូទីតប្រភេទ C = 180000 ⇒ ចំនួនសម្ព័ន្ធអ៊ីជ្រូសែនសរុប L= 2 x 120000 + 3 x 180000 = 780000

ដូចនេះចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនសរុបគឺ៖ 780000 សម្ព័ន្ធ ច. រកសម្ព័ន្ធអ៊ីដ្រូសែនរវាង C និង G ដោយC ភ្ជាប់ G ដោយសម្ព័ន្ធអ៊ីជ្រូសែន 3 ⇒ ចំនួនសម្ព័ន្ធអ៊ីជ្រូសែនរវាង C និង G = 3C= 3x180000=540000 ដូចនេះសម្ព័ន្ធអ៊ីដ្រូសែនរវាង C និង G គឺ៖ 540000 សម្ព័ន្ធ ឆ. រកចំនូននុយក្លេអូទីតសេរីសម្រាប់ADNតំឡើងទ្វេ5ដង ដោយម៉ូលេគុលADN 1 តំឡើងទ្វេបង្កើតបានកូន 2  $\Rightarrow$ ចំនូននុយក្លេអូទីតសេរីសម្រាប់ADN តំឡើងទ្វេ n ដងគឺ M'=M ( $2^n-1$ )

 $=600000 (2^5 - 1) = 600000x31 = 19200000$ ដូចនេះដើម្បីតំឡើងទ្វេ5ដងត្រូវការនុយក្លេអូទីតសេរីសរុប 19200000

#### លំខាងអនុទង្គ

១. ម៉ូលេគុល ADN មួយមានប្រវែង 0,១០២ mm ។

ក.គណនាចំនួននុយក្លេអូទីតប្រភេទនីមួយៗរបស់ម៉ូលេគុលADN ។បើនុយក្លេអូទីត T=18% នៃនុយក្លេអូទីតទាំងអស់។

ខ.រកចំនួននុយក្លេអូទីតសេរីពេល ADN ស្វ័យតំឡើងទ្វេ

គ.រកចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនសរុប

២. ម៉ូលេគុល ADN មួយមាននុយក្លេអូទីត ប្រភេទ A=15 % នៃនុយក្លេអូទីតសរុប។ នុយក្លេអូទីតប្រភេទ C ច្រើនជាង A ចំនួន4400 នុយក្លេអូទីត ។

ក.គណនាចំនួននុយក្លេអូទីតប្រភេទនីមួយៗរបស់ម៉ូលេគុល ADN

ខ.គណនាប្រវែងរបស់ម៉ូលេគុល ADN ជា មីក្រូម៉ែត

គ.បើម៉ូលេគុលADN ស្វ័យតំល៊ើងទ្វេ៤ដង តើត្រូវការនុយក្លេអូទីតសេរីចំនួនប៉ុន្មាន? ៣. ម៉ូលេគុល  ${
m ADN}$  មួយមានផលបូកនុយក្លេអូទីតប្រភេទ ${
m A}$  និង ${
m T}$  ស្ចើ៣ ${
m O}_{
m N}$ នៃនុយក្លេអូទីត ទាំងអស់ និងមានចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនសរុប ២៩៧០០។

ក.រកចំនួននុយក្លេអូទីតប្រភេទនីមួយៗរបស់ម៉ូលេគុល ADN

ខ.រកប្រវែងម៉ូលេគុល ADN ជា mm

គ.រកម៉ាសរបស់ម៉ូលេគុល ADN បើនុយក្លេអូទីតមួយមានម៉ាស៣០០ខ្នាតកាបូន។ ៤. ច៉ូលេកុល ADN មួយមានចំនួនសម្ព័ន្ធអ៊ីដ្រូសែនរវាងA និងT ស្ចើចំនួនសម្ព័ន្ធអ៊ីដ្រូសែន C និង G ស្ទើ ៣.១០ ។

ក.គណនាចំនួននុយក្លេអូទីតប្រភេទនីមួយៗរបស់ ម៉ូលេគុល ADN





### មេឡើននី២ ភារស់ខែ១ចេញនៃសំសន

ADN ជាសម្ភារៈសេនេទិចដែលផ្ទុកព័ត៌មានសេនេទិច។

ផេណូទីបរបស់ភាវរស់ត្រូវបានកំណត់់ដោយសេណូទីបដែលផ្ទុកព័ត៌មានសេនេទិចស្ថិត នៅក្នុងណ្វៃយ៉ូនៃកោសិកា។ ព័ត៌មានសេនេទិចត្រូវបានបញ្ជូនពីកោសិកាមេទៅកោសិកាកូន តាមរយៈស្វ័យតំឡើងទ្វេ ADN និងរបាយស្វ៊ើនៃ ADN ក្នុងវគ្គអាណាផាសនៃមីតូស។

### ១. សកម្មភាពនៃសែន

### ១.១.ពិសោធន៍របស់ប៊ីដល (Beadle )និងពាទុម (Tatum)

លោកប៊ីដល់ និងតាទុមធ្វើការពិសោធដោយបញ្ចាំងកាំរស្ទី X ទៅលើស្ប៉ារបស់ផ្សិតផ្អូរ ក្រហម ( ណឺរ៉ូស្ប៉ារ៉ាក្រាសសា) ហើយយកស្ប៉ានោះទៅចិញ្ចឹមនៅក្នុងមជ្ឈដ្ឋានពីរខុសគ្នាគឺ

- + មជ្ឈដ្ឋានសម្បុរសារធាតុចិញ្ចឹម
- + មជ្ឈដ្ឋានខ្យ<sup>°</sup>ត់សារធាតុចិញ្ចឹម ដោយមជ្ឈដ្ឋានមួយលាយមេតាបូលីត C និង មជ្ឈដ្ឋានមួយទៀតលាយមេតាបុលីត D ។ តាមការពិសោធបង្ហាញថា មានអង់ស៊ីម២

ច្រភេទត្រូវបានសំយោគដោយ មីសេល្យូម ដើម្បីទ្រទ្រង់ការលូត លាស់នៅក្នុងមជ្ឈដ្ឋាន C និង D ។ គាត់ហៅសម្មតិកម្មនេះថា សែន មួយដឹកនាំសំយោគ អង់ស៊ីមមួយ ។



មេតាបូលីត ជាសារធាតុដែលចូលរួមមេតាបូលីស។
ផ្សិតផ្លួរក្រហមឈ្មោះណឺរ៉ូស្ប៉ូរ៉ាក្រាសសាមានលក្ខណៈពិសេសគឺអាចលូតលាស់

ក្នុងមជ្ឈដ្ឋាន ខ្សត់សារធាតុចិញ្ចឹម ហើយបន្តពូជតាមរយៈស្ប៉ូអាប្លូអ៊ីត ។

facebook.com/moeys.gov.kh



សែនជាអង្កត់តូចមួយរបស់ ADN ដែលមានផ្ទុកព័ត៌មានសេនេទិច សម្រាប់ សំយោគប្រូតេអ៊ីនយថាប្រភេទមួយ ហើយប្រតេអ៊ីនជាអ្នកកំណត់លក្ខណៈរបស់ឯកត្តៈ។

សែនជាអង្កត់មួយរបស់ ADN ដែលផ្ទុកព័ត៌មានសេនេទិច សម្រាប់កំណត់ការ សំយោគប្រូតេអ៊ីនមួយ។ ប្រូតេអ៊ីននេះធ្វើឱ្យលេចចេញនូវលក្ខណៈមួយ ឬផេណូទីបមួយ។

### ១.២.ភាពត្រូវគ្នានៃ ADN និងប្រូវតអ៊ីន

ទ្រឹស្តីខាងលើដែលថា សែនមួយដឹកនាំសំយោគអង់ស៊ីមមួយ ធ្វវប្តូរជា សែនមួយដឹកនាំសំយោគប្រូអ៊ីនមួយ ៉

#### ប្រៅបធៀប AND និងប្រូវតអ៊ីន

+ចំណុចដូចគ្នា: - ជាម៉ាក្រូម៉ូលេគុល

-ម៉ូលេតុលនីមួយៗដែលកើតពីឯកតាតូចៗភ្ជាប់គ្នាជាច្រវ៉ាក់ម៉ូលេតុល។

-ម៉ូលេគុលនីមួយៗមានតំណលំដាប់នុយក្លេអូទីត ឬអាស៊ីអាមីនេជាក់លាក់។

| ADN                                      | ប្រូតេអ៊ីន                                 |
|------------------------------------------|--------------------------------------------|
| -កើតពីច្រវ៉ាក់នុយកេលអូទីតពីរបំពេញគ្នា ពី | កើតឡើងពីច្រវ៉ាក់អាស៊ីតអាមីនេមួយខ្សែ        |
| ADN ហើយបញ្ជូនទៅរីបូសូម ដើម្បី            |                                            |
| សំយោគប្រូតេអ៊ីន។                         |                                            |
| - នុយក្លេអូទីត 3 កំណត់អាស៊ីតអាមីនេ 1។    | -អាស៊ីតអាមីនេបីកំណត់កូដុងមួយ               |
|                                          |                                            |
| - មានប្រវែង វែងជាងប្រូតេអ៊ីន <b>S</b> +  | -មានប្រវែងខ្ទីជាង AND<br>googie.com/+moeys |

- ADN នីមួយៗមាននុយក្លេអូទីត ៤ប្រភេទ ដែលតម្រៅបជាតំណលំដាប់នុយ ក្លេអូទីតជាក់លាក់។
- មានអាស៊ីតអាមីនេ ២០ប្រភេទដែល តម្រៀបគ្នាតាមតំណលំដាប់ជាក់លាក់បង្កើតបាន ជាច្រវ៉ាក់បូលីប៉ិបទីត។

#### ២. ការចម្លងព័ត៌មានសេនេទិច

ព័ត៌មានសេនេទិចជាប្លង់សាងសង់ប្រូតេអ៊ីនមាននៅលើអង្កត់ AND ក្នុងណ្វៃយ៉ូ ក្រោមទម្រង់ជាតំណលំដាប់នុយក្លេអូទីត ។

រោងជាងសំណង់ប្រូតេអ៊ីន គឺ រីបូសូម ហើយស្ថិតនៅក្នុងស៊ីតូប្លាស។

### ២.១ រូបផ្តុំ ARN នាំសារ( ARNm)

-នៅក្នុងស៊ីតូប្លាស ម៉ូលេគុល ARNm ជាដឹកនាំ សំយោកប្រូតេអ៊ីនដោយផ្ទាល់ ។ ARNm ជាម៉ូលេគុលដែលចូលទៅចម្លងព័ត៌ មានសេនេទិចពីច្រវ៉ាក់ AND មេម្ខាង ដើម្បី សំយោកប្រូតេអ៊ីន ។



#### លក្ខណៈខុសគ្នារវាងម៉ូលេគុល ADN និងម៉ូលេគុល ARN

| ម៉ូលេគុល ADN                                | ម៉ូលេគុល ARN                        |
|---------------------------------------------|-------------------------------------|
| +ជាច្រវ៉ាក់ដេអុកស៊ីវិបូនុយក្លេអូទីតពីវខ្សែ  | +ជាច្រវ៉ាក់វីបូនុយក្លេអូទីតមួយខ្សែ  |
| ដែលភ្ជាប់គ្នាដោយសម្ព័ន្ធអ៊ីដ្រូសែន          |                                     |
| ÷វែងជាងម៉ូលេគុល ARN យ៉ាងខ្លាំង              | + ខ្លីជាងម៉ូលេគុល AND               |
| +ចំនួននុយក្លេអូទីតច្រើន (រាប់ម៉ឺន-រាប់លាន)  | + ចំនួននុយក្លេអូទីតតិច(រាប់សិប-៣ន់) |
| +ម៉ាសម៉ូលេគុលប្រែប្រួលពីរាប់លានទៅរាប់កោដ    | + មាំសម៉ូលេគុលប្រែប្រួលពី 25000     |
|                                             | ទៅ500000 ។                          |
| +ស្ករប្រភេទដេអុកស៊ីពីបូស ( $C_5H_{10}O_4$ ) | • ស្ករប្រភេទវិបូស (C5H10O5)         |
| •បាសប្រភេទទីមីន ( T )                       | • បាសប្រភេទអ៊ុយរ៉ាស៊ីល (U)          |
|                                             |                                     |

ARN មាន ៣ប្រភេទ ទៅតាមមុខងាររបស់វា គឺ:

- ARN នាំសារ( ARNm) ជាអ្នកចម្លងក្រមពី ADN ។
- ARN ដឹកនាំ( ARN<sub>t</sub>) ជាអ្នកដឹកនាំអាស៊ីតអាមីនេទៅដាក់លើកូដុង នៃ ម៉ូលេគុល ARNm ។
- ARN វិបូសូម( ARN, )ជាកន្លែងសំយោគប្រូតេអ៊ីន។

www.moeys.gov.kh







#### ២.២ ចលនការចម្លងក្រុម

ការសំយោគ ARNm ចាំបាច់ព្រោះព័ត៌មានសេនេទិច( ADN) ស្ថិតនៅក្នុងហ្វៃយ៉ូ ជានិច្ច ឯការសំយោគប្រូតេអ៊ីនធ្វើនៅក្នុងស៊ីតូប្លាស ហើយត្រូវមានម៉ូលេគុលទៅចម្លងក្រមគឺ ARNm ۹

ការសំយោគ ARNm កើតឡើងដោយមានអន្តរាគមន៍ពី អង់ស៊ីម ARN ប៉ូលីមេរ៉ាស។

អង់ស៊ីម ARN ប៉ូលីមេរ៉ាសមាននាទី

🖒 •ទទួលស្គាល់សញ្ញាណសេនេទិច នៅលើម៉ូលេគុល ADN ដែលអាចចាប់ផ្តើម និងបញ្ចប់ការសំយោគ ARNm ត្រង់កន្លែងជាក់លាក់។

+ សម្ព័ន្ធអ៊ីដ្រូសែនខ្សោយរបស់ម៉ូលេគុល ADN ។

+ ធ្វើឱ្យមានប៉ូលីមែកម្មនៃវិបូនុយក្លេអូទីត ដោយវិបូនុយក្លេអូទីតសេរី ទៅបំពេញជាមួយនុយក្លេអូទីត

ច្រវ៉ាក់ម្ខាងរបស់ AND តាមគោលការណ៍បំពេញ

បាស A-U , C-G ។

🖒 ការចម្លងក្រមព័ត៌មានសេនេទិច គឺជាការចម្លង តំណលំដាប់នុយក្លេអូទីតលើអង្កត់មួយរបស់ AND ឱ្យទៅជាតំណលំដាប់វីបូនុយក្លេអូទីតរបស់ ARNm

RN ប៉ូលីមេរ៉ាស ច្រវាក់ ADN ពុម្ពគំរូ ( ច្រវាក់ចម្លង ) ថ្ងៃវាក់ ARN... រូបទី 2.3 ២លនការសំយោគរបស់ម៉ូលេគុលARN<sub>m</sub>

🖒 ក្រមសេនេទិច ជាប្រព័ន្ធនៃភាពត្រូវគ្នា រវាងតំណលំដាប់នុយក្លេអូទីត ទៅនឹងតំណលំដាប់ អាស៊ីតអាមីនេក្នុងប្រតេអ៊ីន ។

នុយក្លេអូទីត៤ប្រភេទរបស់ AND កំណត់អាស៊ីតអាមីនេទាំង២០ ប្រភេទ តិ៍មានសម្<u>ច</u>តិកម្មប៊ី:

- នុយក្លេអូទីត១កំណត់អាស៊ីតអាមីនេ១( $4^1$ =4) នោះសល់អាស៊ីតអាមីនេ១៦ វាមិនគ្រប់។
- នុយក្លេអូទីត២កំណត់អាស៊ីតអាមីនេ១ (4<sup>2</sup>=16) នោះសល់អាស៊ីតអាមីនេ ៤ វាមិនគ្រប់។
- នុយក្លេអូទីត៣កំណត់អាស៊ីតអាមីនេ១ (4<sup>3</sup>=64) គ្រប់គ្រាន់សម្រាប់កំណត់ អាស៊ីតអាមីនេ។

សន្និដ្ឋានបានថា នុយក្លេអូទីត 3 (មួយត្រីធាតុ)កំណត់អាស៊ីតអាមីនេមួយ ។ អាស៊ីត អាមីនេ មួយទទួលក្រមពីត្រីធាតុមួយរឺច្រើនពី ADN ។

៣. ក្រុមសេនេទិច



<sup>៣.១</sup> ការចាំ<u>ជាច់រិទ្ធក្រុមមួយ</u> Com/moeys.gov.kh





#### ៣.២ តារាងក្រុមសេនេទិច

|            | អក្សរទីពីរ                                                                                 |                                                     |                          |                                                                |                                                    |                  |           |
|------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------|-----------|
|            |                                                                                            | U                                                   | С                        | A                                                              | G                                                  | 1                |           |
|            | U                                                                                          | UUU   ផេនិល<br>UUC   អាឡានិន<br>UUA   ឡីស៊ីន<br>UUG | UCU<br>UCC<br>UCA<br>UCG | UAU <sup>ទ</sup> ូស៊ីន<br>UAC<br>UAA<br>UAA } កូពុងស្គា<br>UAG | UGU ស៊ីស្ដេអ៊ីន<br>UGC ក្នុងស្ដា<br>UGG ទ្រឹបតូពាន | U<br>C<br>A<br>G |           |
| អក្សរទិមួយ | С                                                                                          | CUU<br>CUC<br>CUA<br>CUG                            | CCU<br>CCC<br>CCA<br>CCG | CAU ្វហ៊ីស្ទីឌីន<br>CAC ្វ<br>CAA ្វត្តយតាមីន<br>CAG           | CGU<br>CGC<br>CGA<br>CGG                           | U<br>C<br>A<br>G | ងមារទិន្ន |
| หกู        | A                                                                                          | AUU<br>AUC<br>AUA<br>AUA<br>G មេត្បូនិន             | ACU ACC ACA ACG          | AAU }អាស្ប៉ារ៉ាស៊ីន<br>AAC }<br>AAA }លីស៊ីន<br>AAG }           | AGU<br>AGC<br>AGA<br>AGA<br>AGG                    | U<br>C<br>A<br>G | 96        |
|            | G                                                                                          | GUU<br>GUC<br>GUA<br>GUG                            | GCU<br>GCC<br>GCA<br>GCG | GAU }អាស៊ីត<br>GAC }អាស៊ីត<br>GAA }អាស៊ីត<br>GAG }គួយតាមិច     | GGU<br>GGC<br>GGA<br>GGG                           | U<br>C<br>A<br>G |           |
|            | តារាងនេះផ្តល់លទ្ធភាពបន្សិនុយក្លេអូទិត 3 ៗក្នុងចំណោមនុយក្លេអូទិត 4 បែបរបស់ ARN <sub>m</sub> |                                                     |                          |                                                                |                                                    |                  |           |

៣នុយក្លេអូទីត=១ត្រីធាតុ=១កូដុង=១អង់ទីកូដុង=១អាស៊ីតអាមីនេ ដោយARNmជាអ្នកសំយោកប្រូវតេអ៊ីនដោយផ្ទាល់ ដូចនេះគេអាចឱ្យនិយមន័យ ក្រមសេនេទិច ជាប្រព័ន្ធត្រូវគ្នានៃតំណល់ដាប់វីបូនុយក្ខេអូទីតរបស់ ARNm និងតំណល់ដាប់ អាស៊ីតអាមីនេ។

នាំឱ្យ 4 =64 កូដុង-3 កូដុងស្គប=61 កូដុង ត្រូវនឹងអាស៊ីតអាមីនេ 20ប្រភេទ។ -តាមតារាងក្រមសេនេទិច កូដុងដែលមិនកំណត់អាស៊ីតអាមីនេ មានកូដុង UAA UAG UGA ព្រោះវាជាកូដុងសម្រាប់ បញ្ឈប់ការសំយោគប្រូតេអ៊ីន ដែលហៅថាកូដុងស្តប។ ក្រុមសេនេទិចមានលក្ខណៈជាសកល ព្រោះភាវៈរស់ទាំងអស់មាននុយក្លេអូទីត

ម្រែភេទ សម្រាប់កំណត់អាស៊ីតអាមីនេ ២០ ប្រភេទ ហើយត្រីធាតុមួយ កំណត់អាស៊ីត អាមីនេមួយ Pook.com/moeys.gov.kh w\

#### ៤. ការបកប្រែក្រម

ការសំយោគប៉ូលីប៉ិបទីតមានការចូលរួមពី ARNm រឺបួសូម ARNt ។

#### ៤.១ វីប្ផស្លូម

វាស្ថិតនៅសេរីក្នុងស៊ីតូប្លាសដែលចូលរួមសំយោគ រីបូសូមជាធាតុកោសិកាមួយ ប្រូតេអ៊ីន ហើយមាននាទីជារោងជាងសាងសង់ប្រូតេអ៊ីន។

 រីបូសូមមាន២ផ្នែកគឺ ឯកតារងធំ និងឯកតារងតូច ហើយមានកំពស់ 30nm និងទទឹង 20nm ។

-ឯកតារងធំ =  $ARN_r$  3ម៉ូលេគុល + ប្រូតេអ៊ីន45

-ឯកតារងតូច= ARN<sub>r</sub> 1ម៉ូលេគុល + ប្រូតេអ៊ីន33



រួបទី 2.5 រូបផ្តីវិបួសូម

ប៉ូលីសូម ជាសំណុំរីបូសូម ដែលតភ្ជាប់គ្នាដោយម៉ូលេគុលARNm

www.moeys.gov.kh 8+ google.com/+moeys

#### G.២ ARN ដឹកនាំ (ARN<sub>t</sub>)

ARN<sub>t</sub> កើតពីច្រវ៉ាក់នុយក្មេអូទីតទោល ដែលចុងម្ខាងរុំលើខ្លួនឯងបង្កើតជាកំពកបី ។ កំពកនិមួយៗ ជាកន្លែងដែលនុយក្លេអូទីតមិន បំពេញគ្នាដោយកំពកមួយមានបាសប៊ីតគ្នា សម្រាប់បំពេញជាមួយ ក្នុដុងរបស់ ARNm ហៅថា អង់ទីកូដុង។



#### ARNt មានកន្លែងពិសេស២គឺ

ផ្នែកផ្សេងៗពីគ្នា

- + ទទួលស្គាល់កូដុង ( បាស៣តភ្ជាប់គ្នារបស់ ARNm) ដោយសារអង់ទឹក្ខដុង។
- + ភ្ជាប់អាស៊ីតអាមីនេយថាប្រភេទមួយ។

ARN, វ៉ាមាននាទីជាអ្នកដឹកនាំអាស៊ីតអាមីនេ យថាប្រភេទមួយដោយផ្ទាល់ របស់វ៉ា។ ការភ្ជាប់អាស៊ីតអាមីនេមួយទៅ  $ARN_t$  យថាប្រភេទប្រព្រឹត្តឡើងដោយមានអន្តរាគមន៍ពី អង់ស៊ីមយថាប្រភេទមួយគឺ អង់ស៊ីមអាមីណូអាស៊ីត ARN<sub>t</sub> សាំងតេតាស និងថាមពល



#### ៤.៣ ចលនការបកប្រែក្រុម

- -ការសំយោគច្រវ៉ាក់ប៉ូលីប៉ិបទីតប្រព្រឹត្តទៅនៅក្នុងស៊ីតូប្លាសលើវិបូសូម។ វាជាចលនការទី២ បន្ទាប់ពីចលនការចម្លងក្រមនៃការសំដែងចេញនៃសែន។
- ចលនការបកប្រែក្រមប្រព្រឹត្តទៅ ឬចលនការសំយោគប៉ូលីប៉ិបទីតមាន ៣ ដំណាក់គឺ ដំណាក់ផ្ដើម ដំណាក់លូតវែង និងដំណាក់បញ្ជប់ ។



#### ក.ដំណាក់ដំបូង

- កូដុងផ្តើម AUGត្រូវនឹងអាស៊ីតអាមីនេឈ្មោះ មេត្យនីន។
- –វិបូសូមមានកន្លែងពិសេស ២ គឺថត P សម្រាប់មេត្យនីន និងសម្រាប់ប៉ូលីប៉ិបទីត និងថត A សម្រាប់ទទួលអាស៊ីតអាមីនេ។
- -ដំណាក់ដំបូងចាប់ផ្តើមដោយឯកតាទាំង២នៃវីបូសូមភ្ជាប់គ្នា ហើយភ្ជាប់ខ្លួនទៅនឹងកូដុងផ្តើម AUG នៃ ARNm ។ ARNt ដែលមានអង់ទីកូដុង UAC តម្រូវជាមួយកូដុង AUG ដឹកនាំ មេត្យនិនទម្លាក់ក្នុងថត **P**់នៃរីបូសូម ហើយចាកចេញពីរីបូសូម ។



រួមទី 2.7 ការភ្ជាប់អាស៊ីតអាមីនេមួយទៅលើ ARN,

#### ខ.ដំណាក់ល្អតវែង

- ARN $_{
  m t}$  ដែលទម្លាក់អាស៊ីតអាមីនេរួចហើយ វាចាកចេញដើម្បីឱ្យថត  ${f A}$  ទំនេរសម្រាប់ទទួល ARN<sub>t</sub> ថ្ចី ។
- ក្នុងដំណាក់លូតវែងរីបូសូមមានសកម្មភាពផ្លាស់ទីតាមបណ្ដោយ ARNm ដោយលោតជា ជំហានៗ ហើយមួយជំហានស្នើ 🤊 កូដុង ។ ពេលវិបូសូមលោតមួយជំហានៗ គឺត្រូវមាន ARN<sub>t</sub> ដឹកនាំអាស៊ីតអាមីនេមួយចូលទៅទម្លាក់ក្នុងវិបូសូមជានិច្ច ក្រោយពេលកូដុង និងអង់ទីកូដុង បំពេញគ្នាក្នុងថតA ។ នៅក្នុងថត P អាស៊ីតអាមីនេភ្ជាប់គ្នាពីមួយទៅមួយដោយចំណងប៉ិបទីត ហើយកាន់តែលូតវែងទៅៗ។
- -បំលាស់ទីនៃវិបូសូមច្រើនលើ ARNm មានអត្ថប្រយោជន៍សម្រាប់ការសំយោគម៉ូលេគុល *ប៉ូ*លីប៉ិបទីតឱ្យបានជាច្រើន។

#### គ.ដំណាក់បញ្ជប់

- កាលណាវិបូសូមផ្លាស់ទីដល់កូដុងស្តប UUA UAG UGA ការសំយោគប្រូតេអ៊ីនត្រូវបាន បញ្ចប់ព្រាះកូដុងស្តូបជាកូដុងដែលបញ្ចប់ការសំយោគប្រូតេអ៊ីន ហើយឯកតារងទាំង២របស់ រីបូសូមបំបែកចេញពីគ្នា ហើយARNm ARNt និងច្រវ៉ាក់ប៉ូលីប៉ិបទីតក៏បំបែកចេញពីគ្នាដែរ ។ -នៅក្នុងច្រវ៉ាក់ប៉ូលីប៉ិបទីត ពេលសំយោគប្រូតេអ៊ីនចប់ មេត្យនីនត្រូវបានផ្តាច់ចេញពីចំណង ប៉ិបទីត បន្ទាប់មកប្រូតេអ៊ីនដែលបានសំយោគហើយត្រូវដឹកជញ្ជូនទៅកន្លែងដែលត្រូវការ ។









www.moeys.gov.kh



google.com/+moeys



### ៥. តម្រូវការនៃការសំដែងផេណូទីប

- -គ្រប់កោសិកាក្នុងសារពាង្គតែមួយមានសែនដូចគ្នា ពីព្រោះកោសិកាទាំងអស់មានដើមកំណើត ចេញពីស៊ីកូតតែមួយដែលចែកខ្លួនជាបន្តបន្ទាប់តាមមីតូស។
- -សែនទាំងអស់នៃសារពាង្គកាយមួយគ្មានសកម្មភាពគ្រប់ពេលព្រមគ្នាទេ ពីព្រោះសែន នីមួយៗសំយោគតែប្រូតេអ៊ីនណាដែលចាំបាច់ចំពោះវា និងនៅពេលណាដែលវាត្រូវការ ប៉ុណ្ណោះ ។ ដូចនេះគេថា ឺវាមានតម្រូវសំយោគប្រូតេអ៊ីន ៉ ។
- តម្រូវសំយោកប្រូតេអ៊ីនទទួលឥទ្ធិពលពីស៊ីតូប្លាស និងមានសែន៣ប្រភេទចូលរួមសំយោក ប្រូតេអ៊ីន:
- សែនទម្រង់ជាសែនមានព័ត៌មានសេនេទិចសម្រាប់កំណត់ទម្រង់ប្រូតេអ៊ីន។
- +សែនប្រតិបត្តិការជាសែនដែលមាននាទីបញ្ជាលើសែនទម្រង់។
- •សែនតម្រូវឬសែនត្រួតពិនិត្យជាសែនដែលទទួលឥទ្ធិពលពីស៊ីតូប្លាស ហើយមាននាទីបញ្ហាលើ សែនប្រតិបត្តិការ ។

# facebook.com/moeys.gov.kh



### **គន្លឹះដោះស្រាយលំហាត់**

- ១. រកចំនួននុយក្លេអូទីតសរុបរបស់**ARNm** (ឬចំនួននុយក្លេអូទីតសេរីសរុប) (តាងដោយ**m)** 
  - \* ដោយARNm ចម្លងចេញពីច្រវ៉ាក់ម្ខាងរបស់សែន
  - $\Rightarrow$  ចំនួនវីបូនុយក្លេអូទីតសរុបរបស់ARNm  $m=rac{\mathrm{M}}{2}$

M ជាចំនួននុយក្លេអូទីតសរុបរបស់AND

- \* ដោយARNm មានរីប្វនុយក្លេអូទីតចំនួន៤ប្រភេទ
- ⇒ ចំនួនវីប្ងនុយក្លេអូទីតសរុបរបស់ARNm (m) = A+U+C+G

\*បើគេប្រាប់ចំនួន 
$$\mathbf{A}_{\mathrm{ARNm}}$$
 និង %  $\mathbf{A}_{\mathrm{ARNm}} \Longrightarrow m = \frac{\mathbf{A}_{\mathrm{ARNm}} \times 100}{\% \mathbf{A}_{\mathrm{ARNm}}}$ 

$$*$$
បើគេប្រាប់ចំនួន  $\mathbf{U}_{\mathrm{ARNm}}$  និង%  $\mathbf{U}_{\mathrm{ARNm}} \Longrightarrow \quad m = \frac{\mathbf{U}_{\mathrm{ARNm}} \times 100}{\% \mathbf{U}_{\mathrm{ARNm}}}$ 

$$*$$
បើគេប្រាប់ចំនួន $C_{ARNm}$  និង%  $C_{ARNm} \Longrightarrow m = \frac{C_{ARNm} \times 100}{\% C_{ARNm}}$ 

$$*$$
បើគេប្រាប់ចំនួន $G_{ARNm}$  និង%  $G_{ARNm} \Longrightarrow m = \frac{G_{ARNm} \times 100}{\% G_{ARNm}}$ 

### ២. រកប្រវែង ARNm

ដោយរីបូនុយក្លេអ៊ិច១ មានប្រវែង0.34nm

⇒ប្រវែឯl<sub>ARNm</sub> = m x 0.34nm

m ជាចំនួនរីបូនុយក្លេអូទីតសរុបរបស់ARNm

ចំណាំ៖ ប្រវែង ARNm ស្មើនឹងប្រវែងសែន www.moeys.gov.kn google.com/+moeys

#### ៣. រកចំនួនវីបួនុយក្លេអូទីតប្រភេទនីមួយៗរបស់ARNm

តាមគោលការណ៍ចម្លងក្រម AADN - UARNM TADN - AARNM

C<sub>ADN</sub> - G<sub>ARNm</sub> G<sub>ADN</sub> - C<sub>ARNm</sub>

 $\Rightarrow$   $A_{ADN} = U_{ARNm}$   $T_{ADN} = A_{ARNm}$ 

 $C_{ADN} = G_{ARNm}$   $G_{ADN} = C_{ARNm}$ 

ដោយសែនជាច្រវ៉ាក់2ខ្សែ ហើយ ARNm ចម្លងចេញពីច្រវ៉ាក់ម្ខាងរបស់ សែន

 $\Rightarrow$   $A_{1508} = T_{1508} = A_{ARNm} + U_{ARNm} \Rightarrow A_{ARNm} = A_{1508} - U_{ARNm}$ 

UARNM = Atais - AARNM

 $\Rightarrow C_{\text{IMS}} = G_{\text{IMS}} = C_{\text{ARNm}} + G_{\text{ARNm}} \Rightarrow C_{\text{ARNm}} = C_{\text{IMS}} - G_{\text{ARNm}}$ 

 $G_{ARNm} = C_{lins} - C_{ARNm}$ 

\*បើគេប្រាប់ m និង% $A_{ADNm}$  $\Longrightarrow$ ចំនួនរីបូនុយក្លេអូទីត  $A_{ARNm} = \frac{m \times \% A_{ARNm}}{100}$ 

\*បើគេប្រាប់ m និង%U $_{ADNm}$  $\Longrightarrow$ បំន្ទូនរីប្ទនុយក្លេអូទីត U $_{ARNm}=\frac{m \times \%~U_{ARNm}}{100}$ 

\*បើគេប្រាប់ m និង%C<sub>ADNm</sub> $\Longrightarrow$  ចំនួនវីបូនុយក្លេអូទីត  $C_{ARNm} = \frac{m \times \% C_{ARNm}}{100}$ 

\*បើគេប្រាប់៣ និង $\%G_{\mathrm{ADNm}}$  $\Longrightarrow$  ចំនួនវីបូនុយក្លេអូទីត  $G_{\mathrm{ARNm}} = \frac{m \times \%G_{\mathrm{ARNm}}}{100}$ 

#### ៣. រកភាគរយនៃវីបូនុយក្លេអូទីតនីមួយៗ

ដោយសែនជាច្រវ៉ាក់ទ្វេ ហើយARN<sub>m</sub>សំយោគចេញពីច្រវ៉ាក់ម្ខាង របស់សែន

 $ARN_m \ \ \cancel{\%} \ U \quad \ \% \ A \quad \ \% \ G \quad \ \% \ C$ 

+%
$$A_{\text{ins}} = \frac{\% A_1 + \% A_2}{2} = \frac{\% (U + A)_{ARNm}}{2}$$
  $\Longrightarrow$  % $A_{\text{ins}} = \% T_{\text{ins}} = \frac{\% (U + A)_{ARNm}}{2}$ 

 $\Rightarrow$  %U<sub>ARNm</sub> = 2 %A - %A<sub>ARNm</sub>

 $\Rightarrow$  %A<sub>ARNm</sub> = 2 %A - %U<sub>ARNm</sub>

+%
$$C_{\text{inis}} = \frac{\%C_1 + \%C_2}{2} = \frac{\%(C + G)_{ARNm}}{2}$$
  $\Rightarrow$ % $C_{\text{inis}} = \%G_{\text{inis}} = \frac{\%(C + G)_{ARNm}}{2}$ 

 $\Rightarrow$  %C<sub>ARNm</sub> = 2 %C - %G<sub>ARNm</sub>

 $\Rightarrow$  %G<sub>ARNm</sub> = 2 %C - %C<sub>ARNm</sub>

### ៤. រកចំនូនអាស៊ីតអាមីនេនៅក្នុងម៉ូលេគុលប្រភេអ៊ីន

ដោយត្រីធាតុ (កូដុង) 1 របស់ARN<sub>m</sub> ត្រូវនឹងអាស៊ីតអាមីនេ1 កូដុងស្តុបមិន

ហើយអាស៊ីតអាមីនេដែលសំយោគដោយកូដុងផ្ដើមត្រូវផ្ដាច់ចេញនៅពេល បញ្ចប់ការសំយោគប្រូតេអ៊ីន







### ៥. រកចំនួនARN ដែលចូលរួមក្នុងការសំយោគប្រូតេអ៊ីន

ដោយARN<sub>t</sub> 1 ដឹកនាំអាស៊ីតអាមីនេយថាប្រភេទ1 ក្នុងពេលសំយោគប្រភេអ៊ីន

⇒ ចំនួនARNt = ចំនួនអាស៊ីតអាមីនេរបស់ប្រូតេអ៊ីន + 1

### ៦. រកចំនួនវីបូសូមឆ្លងកាត់ក្នុងពេលសំយោគប្រូតេអ៊ីន

- \*បើរីប្ងូសូម 1 ឆ្លងកាត់ដោយត្រលប់មកវិញ
  - ⇒ ចំនួនប្រូទីត = ចំនួន nដងនៃរីបូសូមឆ្លងកាត់
- \*បើរីប្ចូសូម1 ឆ្លងកាតឥតត្រលប់មកវិញ
  - ⇒ ចំនួនប្រ្ចូទីត = ចំនួន**ARN**m
- \* បើរីបូសូមច្រើនឆ្លងកាត់ដោយត្រលប់មកវិញnដង
  - $\Rightarrow$  ចំនួនប្រូទីត = ចំនួន $\mathbf n$  ដងនៃវីប្វសូមឆ្លងកាត់  $\mathbf x$  ចំនួនវីប្វសូម
- \* បើវីបូសូមច្រើនឆ្លងកាត់ដោយឥតត្រលប់មកវិញ
  - $\Rightarrow$  ចំនួនប្រូទីត = ចំនួនរីប្វសូម x ចំនួន $\mathsf{ARN}_\mathsf{m}$

# ៧. រកល្បឿនវីបូសូមឆ្លងកាត់ក្នុងពេលសំយោគប្រូតេអ៊ីន

\*ករណីដឹងរយ:វីបូសូម**1** ឆ្លងកាត់

 $\Rightarrow$ ល្បឿនវីហ្វូសូមឆ្លងកាត់  $V=rac{l_{\mathit{ARNm}}}{t_{\scriptscriptstyle{
m INNM}}}$ 





$$\Rightarrow$$
េស្បឿនវីបូសូមឆ្លងកាត់  $V = rac{l_{\mathit{ARNm}} + l_{\scriptscriptstyle ext{punitum}} + \iota_{\scriptscriptstyle ext{punitum}}}{t_{\scriptscriptstyle ext{Application in }}}$ 

៨. រកម៉ាសប្រគេអ៊ីន ឬប្រទីត

ដោយអាស៊ីតអាមីនេ1 មានម៉ាស 110 ខ្នាតកាបូន ⇒ ម៉ាសប្រូតេអ៊ីន = ចំនូនaa x 110

### លំខាងងង្គ

សែនមួយមាននុយគ្លេអូទីតសរុប480 និងនុយក្លេអូទីត A=100។ ARN<sub>m</sub> ដែលសំយោគចេញពីសែននេះមានរីប្ងនុយក្លេអូទីត U=50 និង C=60។

- ក. រកប្រវែង ARN<sub>m</sub> ដែលសំយោគចេញពីសែនេះ
- ខ. រករីបូនុយក្លេអូទីតប្រភេទផ្សេងៗទៀតរបស់ ARN<sub>m</sub> នេះ
- គ. រកសមាមាត្រជាភាគរយនៃវីប្ងនុយក្លេអូទីតប្រភេទនីមួយៗ
- យ. គណនាចំនូនអាស៊ីតអាមីនេនៅក្នុងម៉ូលេគុលប្រូតេអ៊ីនដែល សំយោគចេញពីសែននេះ
- ង. រកម៉ាសប្រធ្រាអ៊ីនដែលសំយោគដោយសែននេះ
- ច. រកចំនួនARNt ដែលចូលរួមក្នុងការសំយោគប្រ្វូតេអ៊ីន

### **ಜೀಬಾ:ಕಿಲಾ**ಡಾ

ក. រកប្រវែង ARN<sub>m</sub> ដែលសំយោគចេញពីសែនេះ

បម្រាប់៖ នុយក្លេអូទីតសរុប្រមស់សែន (M)=480 www.moeys.gov kh ពោយARNm ចម្លងចេញពីច្រវ៉ាក់ម្ខាងរមស់សេន

$$\Rightarrow$$
 ចំនួនវីបូនុយក្លេអូទីតសរុបរបស់ARNm  $m=\frac{M}{2}=\frac{480}{2}$ =240 ដោយវីបូនុយក្លេអ៊ិច១ មានប្រវែង0.34nm

ខ. រករីបូនុយក្លេអូទីតប្រភេទផ្សេងៗទៀតរបស់ ARN<sub>m</sub> នេះ បម្រាប់៖ A<sub>សែន</sub>=100, U<sub>ARNm</sub> = 50, C<sub>ARNm</sub> = 60

តាមគោលការណ៍បំពេញបាស A-T, C-G ⇒ A=T, C=G

$$\Rightarrow$$
C =  $\frac{M}{2}$  - A =  $\frac{480}{2}$  - 100 = 140

ដោយសែនជាច្រវ៉ាក់2ខ្សែ

ហើយARN<sub>m</sub>

### ចម្លងចេញពីច្រវ៉ាក់ម្ខាងរបស់សែន

$$\Rightarrow A_{\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{I}$}\text{$\hat{$$

$$\Rightarrow C_{\text{lNS}} = G_{\text{lNS}} = C_{\text{ARNm}} + G_{\text{ARNm}} \Rightarrow G_{\text{ARNm}} = C_{\text{lNS}} - C_{\text{ARNm}}$$
 
$$= 140 - 60 = 80$$

ដូចនេះវីប្វនុយក្លេអូទីតរបស់ ARN<sub>m</sub> គឺ៖ A<sub>ARNm</sub> = 50, G<sub>ARNm</sub> =80 គ. រកសមាមាត្រជាភាគរយនៃវីប្ងនុយក្លេអូទីតប្រភេទនីមួយៗ

ដោយARN<sub>m</sub> ជាច្រវ៉ាក់ទោល ហើយមានរីបូនុយក្លេអូទីតតែ4 ប្រភេទ



 $C_{ARNm} + G_{ARNm} + A_{ARNm} + U_{ARNm} = m$ 

$$60 + 80 + 50 + 50 = 240$$

$$\Rightarrow \% C_{ARNm} = \frac{60 \times 100}{240} = 25\%$$

$$\Rightarrow$$
 % G<sub>ARNm</sub> =  $\frac{80 \times 100}{240}$  = 33.33%

$$\Rightarrow$$
 % A<sub>ARNm</sub> =  $\frac{50 \times 100}{240}$  = 20.83%

$$\Rightarrow$$
 % U<sub>ARNm</sub> =  $\frac{50 \times 100}{240}$  = 20.83%

ដូចនេះសមាមាត្រភាគរយនៃវីបូនុយក្លេអូទីតគឺ៖ % C<sub>ARNm</sub> = 25% % G<sub>ARNm</sub> = 33.33%, % A<sub>ARNm</sub> = 20.83%, % U<sub>ARNm</sub> = 20.83%

ឃ. គណនាចំនួនអាស៊ីតអាមីនេនៅក្នុងម៉ូលេគុលប្រូតេអ៊ីន

ដោយត្រីធាតុ (កូដុង) 1 របស់ARN<sub>m</sub> ត្រូវនឹងអាស៊ីតអាមីនេ1 កូដុងស្តុបមិន

ហើយអាស៊ីតអាមីនេដែលសំយោគដោយកូដុងផ្ដើមត្រូវផ្ដាច់ចេញនៅពេល បញ្ចប់ការសំយោគប្រតេអ៊ីន

$$\Rightarrow$$
 ចំនួនអាស៊ីតអាមីនេក្នុងប្រូតេអ៊ីន =  $\frac{m}{3}$  - 2 =  $\frac{240}{3}$  - 2 = 78 ដូចនេះចំនួនអាស៊ីតអាមីនេក្នុងប្រូតេអ៊ីនគឺ៖ 78

ង. រកម៉ាសប្រពេអ៊ីនដែលសំយោគដោយសែននេះ

ដោយអាស៊ីតអាមីនេ។ មានម៉ាស 110 ខ្នាតកាបូន www.moeys.gov.kh google.com/+moeys

- ⇒ ម៉ាសប្រគេអ៊ីន = ចំនូនaa x 110 = **78 x 110** = **8580** ខ្នាតិកាបូន ដូចនេះម៉ាសប្រភេអ៊ីនគឺ៖ 8580ខ្នាតកាប្ងន
- ច. រកចំនួនARNt ដែលចូលរួមក្នុងការសំយោគប្រូតេអ៊ីន ដឹកនាំអាស៊ីតអាមីនេយថាប្រភេទ1 ដោយARNt ក្នុងពេលសំយោគប្រូតេអ៊ីន
  - ⇒ ចំនូនARNt = ចំនូនអាស៊ីតអាមីនេរបស់ប្រូតេអ៊ីន + 1 =79 ជ្លីបនេះចំនួន **ARN**t = **79**

### 

- ១. ម៉ូលេគុលARNm មួយមានទំនាក់ទំងនុយក្លេអូទីតដូចខាងក្រោម៖ A=4U, U/G=1/5, G/C=1/2
- ក. គណនាភាគរយនៃនុយគ្លេអូទីតប្រភេទនីមួយៗរបស់អង្កត់ADN ដែលកំណត់ សំពេកគ ARNm នេះ។
- ២. សែនមួយមានផលបូកនុយគ្លេអូទីតប្រភេទ C និង G ស្មើនឹង៧៥% នៃនុយគ្លេអូទីតទាំង អស់ ហើយមាន សម្ព័ន្ធ អ៊ីដ្រូសែនសរុប១២៨៧។
  - ក. គណនាចំនួននុយគ្លេអូទីតប្រភេទនីមួយៗរបស់សែន។
- ខ. គណនាប្រវែងសែនគិតជាមីក្រូម៉ែត្រ (um)។ ៣. សែនមួយមានប្រវែង៦៨០nm។ សែននេះកំណត់សំយោគARNm មួយដែលមានទំនាក់ ទំនងវីបូនុយគ្លេអូទីត 2A - 3C= 3G - 2U1
  - ក. គណនាចំនួននុយគ្លេអូទីតប្រភេទនីមួយៗរបស់សែននេះ។
- ខ. គណនាចំនួននុយគ្លេទីតប្រភេទនីមួយៗរបស់ARNm បើគេដឹងថាក្នុងម៉ូលេគុល ARNm នេះមានផលដក រវាង A និង U= ៣០០ ហើយផលដករវាង C និង G=២០០។
- ៤. ក្នុងច្រវ៉ាក់ម្ខាងរបស់ម៉ូលេគុលADN មួយមាននុយគ្លេអូទីតប្រភេទ C=2000 និងនុយគ្លេអូទីតប្រភេទC=4000។
- គេដឹងថានៅក្នុងម៉ូលេគុលADN នេះមាននុយគ្លេអូទីត ប្រភេទ A=30% នៃនុយគ្លេអូទីតទាំងអស់។





moeys ពេលខាធំនូននេយគ្លេម្មទីកទាំងមល់ៗle.com/+moeys

- ខ. នៅពេលADN
- នេះតំឡើងទ្វេតើត្រូវការនុយគ្លេអូទីតសេរីចំនួនប៉ុន្មាន? ហើយវា ផ្តាច់សម្ព័ន្ធអ៊ីជ្រូសែនអស់ ប៉ុន្មាន?
- ៥. អង្កត់ADN មួយមាននុយគ្លេអូទីតប្រភេទ A=600000។ នៅក្នុឯអង្កត់ADN នោះមាន A+T/C+G=2/3។
  - ក. គណនាចំនួននុយគ្លេអូទីតទាំងអស់
  - MARON Market .s
- នេះតំឡើងទ្វេ៣ដងតើវាត្រូវការនុយគ្លេអូទីតសេរីប្រភេទនីមួយៗ ចំនូនប៉ុន្មាន?
  - គ. គណនាប្រវែងADN កូនទាំងអស់គិតជាមីក្រូម៉ែត្រ។
- ៦. ក្នុងម៉ូលេគុលADN មួយមានសម្ព័ន្ធអ៊ីជ្រូសែនចំនូនសរុប៨០០០០ ហើយមានចំនូននុយគ្លេអូទីតប្រភេទC=G ច្រើនជាង ២ដងនៃនុយគ្លេអូទីតA=T។
  - ក. ចូររកចំនួននុយគ្លេអូទីតប្រភេទនីមួយៗក្នុងម៉ូលេគុលADN នេះ។
  - ខ. ចូររកម៉ាសរបស់ម៉ូលេគុលADN នេះ
  - គ. ចូររកចំនួនជំហានម៉ូលេគុលADN នេះ
- ៧. សែនមួយមានប្រវែង២០,៤ X 10<sup>-5</sup> mm។
  - ក. តើសែនខាងលើនេះអាចចំលងក្រមម៉ូលេគុលប្រូតេអ៊ីនមួយ
- ដែលមានអាស៊ុនមាចនេចុន្មាន/moeys.gov.kh

- ខ. តើម៉ូលេគុលARNm ដែលសំយោគចេញពីសែននេះមាន នុយក្លេអូទីតប៉ុន្មាន? ហើយ មានប្រវែងប៉ុន្មានមីក្រូម៉ែត្រ?
- គ. តើចាំបាច់ត្រូវមានម៉ូលេគុលARNដឹកនាំប៉ុន្មានដើម្បីចូលរួម សំយោគប្រូតេអ៊ីនដែល កំណត់សំយោគដោយ សែនខាងលើ? ៨. សែនមួយមាននុយគ្លេអូទីត៣៨០០។ នៅលើច្រវ៉ាក់ទី១មាននុយគ្លេអូទីតA=26% និងនៅលើ ច្រវ៉ាក់ទី២ មាន នុយគ្លេអូទីត A=18%។
  - ក. គណនាចំនួននុយគ្លេអូទីតប្រភេទនីមួយៗរបស់សែន។
  - ខ. រកសម្ព័នអ៊ីជ្រូសែនសរុបរបស់សែន។
- ៩. គេមានអង្កត់ADN ពីរដែលក្នុងនោះមាននុយគ្លេអូទីតសរុប៥៤០០។ អង្កត់ទាំងពីរនេះតំឡើងទ្វេជាបន្តបន្ទាប់ដោយ មានចំនូនដងស្មើៗគ្នា ហើយបង្កើតបានADNកូនមូចំនួនដែលមានប្រវែង សរុប ៧៣៤៤មីក្រម៉ែត្រ។
  - ក. តើអង្កត់ADN នីមួយៗតំឡើងទ្វេប៉ុន្មានលើក?
- ខ. តើអង្កត់ADN នីមួយៗមានប្រវែងប៉ុន្មាន? បើគេដឹងឋាអង្កត់ទី១មាននុយគ្លេអូទីតលើសអង្កត់ទី២ ចំនួន៦០០។

#### യുളെ

www.moeys.gov.kh



8+ google.com/+moeys

នេទៀខខ្លួយ

# មម្លេកទិធ្យាខិទ:

### ១.ការបង្កាត់ជ្រើស

ក្នុងធម្មជាតិតែងតែមានការប្រកួតប្រជែង។ ការប្រយុទ្ធដើម្បីភាព ធន់នឹងជំងឺបន្ស៊ាំយ៉ាងល្អទៅនឹងបម្លាស់ប្តូរមជ្ឈដ្ឋាន ធ្វើអោយភាវរស់អាច និងបន្តពូជបាន។ ប្រភេទដែលមិនអាចសម្របនឹងលក្ខខណ្ឌ រស់រាន ខាងលើ ត្រូវបានស្លាប់និងបាត់បង់។ ឧទាហរណ៍ ក្នុងមជ្ឈដ្ឋានស្ងួត រុក្ខជាតិ ដែលមានប្រព័ន្ធឫសមិនសូវលូតលាស់ល្អមិនអាចរស់បាន។ លំនាំបែបនេះហៅថា ជម្រើសដោយធម្មជាតិ។

ការលេចឡើងនូវបម្រែបម្រួលនៃសារពាង្គកាយបណ្ដាលមកពីមួយ ក្នុងចំណោមបម្រែម្រួលទាំងនេះ ខ្លះមានប្រយោជន៍ច្រើន តាស្យុង។ ខ្លះមានប្រយោជន៍តិច ខ្លះទៀតគ្មានប្រយោជន៍។ មនុស្សត្រូវការជ្រើស រើសពូជ ដែលមានប្រយោជន៍ដើម្បីរក្សា និងបង្កលក្ខខណ្ឌ ល្អឱ្យវាបន្តពូជ ហើយពូជនោះក៏ល្ងួតលាស់ពីមួយថ្ងៃទៅមួយថ្ងៃ។ ដើម្បីបង្កើន គុណភាពដំណាំ និងចិញ្ចឹមសត្វ អ្នកស្រាវជ្រវបានប្រើវិធីផ្សេងៗដូចជា ការ បង្កាត់ ការធ្វើអ៊ីប្រ៊ីតកម្ម ក្លូន ប៉ូលីប្លូអ៊ីឌី...

### 9.9 ការបង្កាត់ជ្រើសចំពោះរុក្ខជាតិ

អ៊ីប្រ៊ីតកម្ម គឺជាការបង្កាត់ពូជខុសគ្នា នៃប្រភេទតែមួយ រឺប្រភេទខុសគ្នា ដើម្បីបានកូនកាត់ឬអ៊ីប្រ៊ីត។ ឧទាហរណ៍ គេយកប្រភេទ អំពៅសំបូរស្ករតែងាយរងជំងឺ បង្កាត់ជាមួយដើមអំពៅដែលកម្រិត

មានខ្មែន និងជំងឺ ៥សាមធ្លាក់noeys.gov.kh

រុក្ខជាតិទាំងពីរប្រភេទនេះផ្តល់នូវអ៊ីប្រ៊ិតដែលមានលក្ខណៈរួមដែលធន់នឹង ជម្ងឺ ហើយសម្បូរជាតិស្ករ។ អ៊ីប្រ៊ិតដែលទទួលបានពីការបង្កាត់របៀបនេះ ហៅថាអេត្យ៉េស៊ីស។

### ១.២ ការបង្កាត់ជ្រើសចំពោះសត្វ

#### ក- ការបង្កាត់ជិត

វិធីបង្កាត់ជិត ឬជម្រើសពូជសុទ្ធជាការបង្កាត់សត្វដែលកើតពី មេបា១គូរវាងគ្នា ឬរវាងមេបានឹងកូនរបស់វា។ ការបង្កាត់ជិតត្រូវបាន គេអនុវត្តក្នុងករណីគេចង់រក្សាទុកពូជមួយក្នុងភាពជាអូម៉ូស៊ីកូតនៃ លក្ខណៈអន់ៗ

### ខ- ការបង្កាត់ឆ្ងាយ

ការបង្កាត់ឆ្ងាយគឺជាការបង្កាត់រវាងពូជខុសគ្នា ឬរវាងប្រភេទ ខុសគ្នា ឬមានស្រឡាយឆ្ងាយពីគ្នា។ ឧទាហរណ៍ ការបង្កាតរវាងសេះញី និងលាឈ្មោល ផ្តល់អេតេរ៉ូស៊ីស គឺមុយលេ។

ការបង្កាត់ឆ្ងាយផ្តល់ ផ្តល់អ៊ីប្រ៊ីតដែលមានលក្ខណ:ល្អ កម្លាំងខ្លាំង ផ្តល់ ទិន្នផលខ្ពស់ ឆាប់ល្ងួតលាស់ឆាប់ ធន់នឹងជំងឺ...។

បាតុភូតអេតេរ៉ូស៊ីស លេចឡើងក្នុងការបង្កាត់សត្វ និងរុក្ខជាតិ រវាងពូជខុសគ្នា ឬប្រភេទខុសគ្នាដែលបង្កើតឡើងបានអ៊ីប្រ៊ីត មាន លក្ខណៈប្រសើរជាងមេបា។ ការបង្កើតអេតេរ៉ូស៊ីស អ៊ីប្រ៊ីតនោះច្រើន តែអារ (គ្មានកូន)។

www.moeys.gov.kh 8 google.com/+moeys

### ២. ក្លូន

ក្លួន ជាកោសិកាមួយក្រុមដែលមានប្រភពចេញពីកោសិកាដើម តែមួយគត់។ ក្លួន ជាសារពាង្គកាយមួយក្រុមដែលមានព័ត៌មានសេនេទិច ដូចគ្នាបេះបិទ។

### ១. ក្លួនរុក្ខជាតិ

**ក្លួនរុក្ខជាតិ** ជារុក្ខជាតិ១ក្រុម ដែលមានប្រភពចេញពីជាលិការុក្ខជាតិ ហើយមានព័ត៌មានសេនេទិចដូចគ្នាទាំងអស់ និងដូចទៅនឹង រុក្ខជាតិមេ។

### ២. ក្លូនសត្វ

ការបន្តព្វជតាមរបៀបក្លូនជាការបន្តព្វជដោយឥតភេទ ពីព្រោះ ឯកត្ត: ថ្មីដែលកើតឡើងគ្មានការចូលរួមពីកាម៉ែតញី និងកាម៉ែត ឈ្មោលទេ។

កូនភ្លោះពិតអាចចាត់ទុកដូចជាក្លួនមួយបាន ពីព្រោះស៊ីកូតមួយ ចែកជាកោសិកាកូនពីរដែលមានពត៌មានសេនេទិចដូចគ្នាសុទ្ធសា**ធ**។

### ៣. ប៉ូលីប្លូអ៊ីឌី

គឺកោសិកាទាំងឡាយនៃសារពាង្គកាយមួយមានសំណុំ ប៉ូលីប្លអ៊ីឌី ក្រុម៉ូសូមលើសពី2n។ វាជាបាតុភូតដែលធ្វើឲ្យចំនួនក្រុម៉ូសូមកើនឡើង តាម ពហុគុណនៃ n ។

### ៤. វិស្វកម្មសេនេទិច

ដំណាក់ផ្សេងៗនៃបន្ទេរសែន lacebook.com/moeys.gov.kh



វិស្វកម្មសេនេទិច ជាសំនុំនៃបច្ចេកទេសដែលអាចធ្វើបន្ទេរសែនចម្លែកមួយ ដើម្បីធ្វើយ៉ាងណាឲ្យកោសិកានោះទទួលបាន ទៅកោសិកាបណ្តុះមួយ លក្ខណៈថ្មីជាប់នឹងសែនបន្ទេរនោះ។

វិស្វកម្មសេនេទិចមាន ៤ជំហាន៖

- . ការកាត់ម៉ូ. ADNជាអង្កត់តូចៗ
- . ការបញ្ចូលអង្កត់ADNបន្ទេរទៅក្នុងប្លាស្មីតបាក់តេរី
- . ការបង្កើតក្លួន
- . ការសម្ដែងនៃសែន។

ញ្ញាស្មីតរបស់បាក់តេរីមានរាងជារង្វង់តូចៗបិទជិត។

### ២. ឧទាហរណ៍ផ្សេងៗក្នុងបន្ទេរសែន

#### ក-ការផលិតអរម៉ូនអាំងស៊ុយលីន

គេអាចផ្ទេរសែនពីកោសិកាមនុស្សទៅក្នុងកោសិកាបាក់តេរី ឬវីរុស។ ឧទាហរណ៍: គេអាចផ្ទេរសែនដែលអាចផលិតអរម៉ូនអាំងស៊ុយលីន ទៅក្នុង បាក់តេរី។ បាក់តេរីដែលមានសែនបន្ទេរអាចសំយោគអរម៉ូនអាំងស៊ុយលីន របស់មនុស្សបាន ហើយមានលក្ខណៈដូចអរម៉ូនអាំងស៊ុយលីនដែល សំយោគ ដោយមនុស្សដែរ។

- ខ. រុក្ខជាតិបន្ទេរសែន
- ៥. បច្ចេកវិទ្យាក្នុងការផលិត



ផ្សិតមេរ៉ូតេស្យូម មានសែនមួយដែលអាចសំយោគ ស្យាណាមីតអ៊ីដ្រាតាស (Cyanamid hydratase)។ អង់ស៊ីមនេះបម្លែងស្បាណាមីតឲ្យទៅជាអ៊ុយរ៉េ ដែលជាប្រភពអាសូតសម្រាប់ការលូតលាស់របស់រុក្ខជាតិ។ សែននេះ ត្រូវបានបញ្ចូលទៅក្នុងដើមថ្នាំជក់។

វិស្វកម្មសេនេទិចផ្តល់ផលប្រយោជន៍ដល់កសិករ ដូចជារុក្ខជាតិ ធន់នឹងជំងឺ សត្វល្អិតចង្រៃ អាកាសធាតុ ថ្នាំសម្លាប់សត្វល្អិត និងថ្នាំ សម្លាប់ស្មៅ។ វាក៏ធ្វើរុក្ខជាតិលូតលាស់ល្អ និងបង្កើនគុណភាពដីដំណាំផងដែរ។ ១- ក្នុងវិស័យសុខាភិបាល

ផលិតផលដែលបានពីបច្ចេកទេសនៃវិស្វកម្មសេនេទិចក្នុង វិស័យសុខាភិបាល គេអាចផលិតសារធាតុ១ចំនូនដែលមានប្រយោជន៍ សម្រាប់ទប់ស្កាត់ការទន្ទ្រានពីមេរោគផ្សេងៗ ដូចជាគេផលិតប្រូតេអ៊ីន សម្រាប់ព្យាបាលជំងឺ៖

| អរម៉ូន                       | ការព្យាបាល                      |  |
|------------------------------|---------------------------------|--|
| .អាំងស៊ុយលីន                 | .ជំងឺទឹកនោមផ្អែម                |  |
| .លូតលាស់                     | .ការលូតលាស់យឺតយ៉ាវ(ក្រិស)       |  |
| .អាំងទែផេរ៉ុង                | .ជំងឺមហារីក និង ប្រឆាំងនឹងវីរុស |  |
| .អេវីត្រូប្រភេអ៊ីន           | .ជំងឺកង្វះឈាម                   |  |
| អាំងទៃទ្វីគឺន<br>facebook co | .ជំងឺមហារីក<br>nm/moeys doy kh  |  |

ជាសារធាតុសាំញ៉ាំដែលផលិតដោយមីក្រូសារពាង្គ កាយ សម្រាប់ពុំ្យាបាលជំងឺបង្កឡើងដោយ់បាក់តេរី។ ឧទាហរណ៍ ប៉េនីស៊ីលីន ផលិតចេញពីផ្សិតប៉េនីសេល្បូម ស្ត្រិបតូមីស៊ីន និង តេត្រាស៊ីគ្លិន ផលិតចេញពីបាក់តេរីស្ត្រិបតូមីសែស។

២- វិស័យឧស្សាហកម្មផលិតស្បៀង ក្នុងវិស័យឧស្សាហកម្មស្បៀងអ្នកវិទ្យាសាស្ត្រប្រើប្រាស់វិស្វកម្ម សេនេទិចដើម្បី ផលិតអាហារ និងស្រាជាដើម។

សម្គាល់

+អង់ស៊ីមបង្រ្ហឹម ជាអង់ស៊ីមដែលមានអំពើក្នុងការកាត់ម៉ូ. ADN ជាអង្កត់តូចៗ។

+អង់ស៊ីមភ្ជាប់ ជាអង់ស៊ីមដែលមានអំពើក្នុងការភ្ជាប់ច្រវ៉ាក់ ADN ដែលបានកាត់ដោយអង់ស៊ីមបង្រួមអោយជាប់គ្នាឡើងវិញ។

៣. របៀបផលិតអរម៉ូនអាំងស៊ុយលីនដោយវិស្វកម្មសេនេទិចគឺ៖ .ជំហានទី១៖ កាត់ ADN មនុស្សដោយអង់ស៊ីមសមស្រប។ .ជំហានទី២៖ ដក ADN ពីបាក់តេរីហើយកាត់វាដោយអង់ស៊ីម។ .ជំហានទី៣៖ បញ្ចូលអង្កត់ ADN របស់មនុស្សទៅក្នុង ADN បាក់តេរី។ .ជំហានទី៤៖ បាក់តេរិបង្កើនចំនួនយ៉ាងឆាប់រហ័សដែលធ្វើអោយសែន នៅ ក្នុងបាក់តេរីនោះកើនចំនូនយ៉ាងច្រើនដែរ។ សែននីមួយៗសំយោគ



8+ google.com/+moeys

៤- សារធាតុគីមីដែលផលិតតាមបច្ចេកវិទ្យាជីវ:មានដូចជា៖ .ក្នុងវិស័យសុខាភិបាលមាន៖អាំងស៊ុយលិន អាំងទែផេរ៉ូន អាំងទែឡឹគីន អង់ទីប្បទិច និង វ៉ាក់សាំង។ .ក្នុងវិស័យកសិកម្មនិងឧស្សាហកម្មមាន៖ ថ្នាំសំលាប់សត្វល្អិត អរម៉ូនលូតលាស់និងអរម៉ូនជួយអោយក្រ្គជាតិលូតលាស់លឿន មានផ្កានិងផ្អែ។

#### യുളെയുള

**ខំពុ**ធន៍៦ ការទីទត្តខែកាទសេ មេរៀនទី១ ទ្រឹស្តីរបស់លោកដាវិន

ភាវរស់ដំបូងកកើតឡើងលើផែនដីមានរូបរាងងាយបំផុត។ ក្រោយពីការឆ្លង កាត់ រយៈពេលដ៏យូរអង្វែង ភាវរស់ដំបូងនេះវិវត្តជាបន្តបន្ទាប់ ហើយបង្កើតជាបានភាវរស់ប្រភេទ ផ្សេងៗដែលមាននៅផែនដី។

#### 1. สาเพเฐสเขมนาธิ์ม

ការធ្វើដំណើររបស់លោកដាវិនចាប់ផ្ដើមពីចាប់ផ្ដើមពីប្រទេសអង់គ្លេសទៅអាមេរិក ខាងត្បូង ប្រជុំកោះកាឡាប៉ាកូស ទ្វីបអូស្ត្រាលី កាត់តាមទ្វីបអាព្រិច រួចវិលចូលប្រទេស អង់គ្លេសវិញ។

ដាវីនបានសង្កេតឃើញភាវរស់ប្លែកៗ សំណល់នៃភាវរស់ជំនាន់មុន និងលក្ខណៈពិសេស

នៃសម្រាងក្លាយលើប្រជុំកោះកាឡាប៉ាក្ខស។ lacebook.com/moeys.gov.kh



#### ១.១ លក្ខណៈថ្លែកៗនៃតាវៈរស់

ភាវរស់ប្លែកៗ ដែលដាវីនបានឃើញមានសត្វល្អិតដែលមានសណ្ឋានដូចស្រមោច សត្វស្លូត(Sloth) សត្វម៉ូណ្ធាត្រែម(Monotreme)។

#### ១.២ ផ្គស្នីល

ដាវីនបានសង្កេតឃើញថា ផូស៊ីលដែលជាសំណល់នៃភាវរស់ជំនាន់មុនមានលក្ខណៈ ប្លែកៗខុសពីភាវរស់សព្វថ្ងៃៗ

ផូស៊ីលគឺជាស្វាម បុសំណល់ភាវរស់ដែលមានជីវិតរស់នៅកាលពីជំនាន់មុនយូរមកហើយ។ ២. តាទៈរស់នៅរុម្ធខំគោះភាន្យាប៉ាតូស

លោកដាវីនបានធ្វើការប្រៀបធៀប ភាវរស់លើប្រជុំកោះកាឡាប៉ាកូស ទៅកន្លែងផ្សេងទៀតគឺមាន លក្ខណៈខ្លះដូចគ្នានិងលក្ខណៈខ្លះខុសគ្នា ។ ២.១ ការប្រៅ្ឋបធ្យេបតាវៈរស់នៅប្រជុំកោះកាឡាញ៉ាកូសជាមួយតាវៈរស់នៅអាមេរិកខាងត្បូង លោកដាវីនសង្កេតឃើញកាវរស់ទាំងនោះមានលក្ខណ:ដូចគ្នាខ្លះនិងមិនដូចគ្នាខ្លះ ដូចជាបង្គួយលើទ្វីបមានក្រញ៉ាំ ជើងតូចដែលអាចតោងលើដើមឈើដើម្បីស៊ីស្លឹករុក្ខជាតិ ឯបង្គុយលើកោះមានក្រញ៉ាំជើងធំ ដែលអាចតោងលើថ្មរអិលស៊ីសារាយសមុទ្របាន។ សត្វនិងរុក្ខជាតិនៅប្រជុំកោះកាឡាប៉ាកូសមានក្ខណ:ដូចគ្នាជាមួយ សត្វនិងរុក្ខជាតិនៅអាមេ រិកខាងត្បូង។ ដាវីនបានទាញសម្មតិកម្មថា ភាវៈរស់នៅលើប្រជុំកោះកាឡាប៉ាកូសមានដើម កំណើតចេញពីទ្វីបអាមេរិកខាងត្បូងតែឆ្លងកាត់រយៈពេលដ៏យូរ ទម្រង់សារពាង្គកាយនិង លក្ខណៈរបស់ភាវៈរស់ទាំងនោះប្រែប្រលទៅតាមលក្ខខណ្ឌជីវិតនៅលើកោះ។ 2.២ ការប្រៅបធ្យេប់តាវៈរស់ដែលនៅប្រជុំកោះផ្សេងៗនៃប្រជុំកោះកាឡាប៉្យាកូស

www.moeys.gov.kh 8+ google.com/+moeys



+ តាមការប្រៀបធៀបភាវៈរស់ដែលនៅប្រជុំកោះផ្សេងៗនៃប្រជុំកោះកាឡាប៉ាកូស លោកដាវីន សង្កេតឃើញភាវៈរស់មានលក្ខណៈខុសគ្នាខ្លះដូចជាអណ្តើកលើកោះខ្លះមានស្នុករាងមូល ហើយកោះខ្លះ ទៀតមានអណ្តើកមានស្នុកសំប៉ែត។

#### ២.៣ បន្សាំ

បន្ស៊ាំជាលក្ខណៈមួយដែលធ្វើឱ្យកាវរស់រស់រានមានជីវិត និងបន្តពូជបានសមស្របនឹង មជ្ឈដ្ឋានដែលវារស់នៅ។

+លក្ខណៈបន្ស៊ាំរបស់សត្វស្លាបនៅលើប្រជុំកោះកាឡាប៉ាកូស៖

សត្វស្លាបទាំងអស់មានរូបរាង ទំហំ និងចំពុះខុសៗគ្នា ដូចជាបក្សី(Finch) ចំពុះមានរូបរាងខុសៗគ្នាទៅតាមរបបអាហារ គឺបក្សីស៊ីសត្វល្អិតមានចំពុះតូច រាងដូចមួល ឯបក្សីស៊ីគ្រាប់ធញ្ញ ជាតិមានចំពុះធំទូលាយហើយមាំ។ដូចនេះយើងសន្និដ្ឋានថា រូបរាងនិងទំហំរបស់ចំពុះបក្សីជាទម្រង់មួយដែលធ្វើឱ្យបក្សី អាចចឹកចំណី ដើម្បីចិញ្ចឹមជីវិតនិងបន្តពូជនៅទីនោះបាន។



#### ៣. ភារទិទដ្

៣.១ វិចាររបស់ដាវីន

ការវិវត្តគឺជាការផ្លាស់ប្តូរ ឬបម្រែបម្រលជាបន្តបន្ទាប់នៃទម្រង់ឬលក្ខណ:នៃភាវ:រស់មួយ ប្រភេទដោយឆ្លងកាត់ជំនាន់ជាច្រើន ដែលនាំឱ្យកើតនូវទម្រង់សត្វឬក្នេជាតិថ្មីៗ។ បានជាសត្វនៅលើកោះមានលក្ខណៈខុសពីសត្វនៅលើទ្វីប ព្រោះសត្វនៅលើទ្វីបបាន អណ្តែតទើលើកោះមានការផ្លាស់ប្តូរ និងការប្រែប្រួលលក្ខណៈ ដើម្បីបន្សាំនឹងលក្ខខណ្ឌ ជីវិតថ្មីៗ

៣.២ ជម្រើសដោយមនុស្ស

+ការលេចចេញនូវពូជសត្វឬរុក្ខជាតិថ្មីៗ ព្រោះនៅក្នុងហ្វូងសត្វ





លក្ខណៈទាំងនោះសមស្រមទៅតាមសេចក្តីត្រូវការរបស់មនុស្ស នោះមនុស្សជ្រើសរើស ឯកត្ត:នោះទុកឱ្យបន្តពូជដាច់ដោយឡែក។ ដូចនេះពូជសត្វស្រក ឬរុក្ខជាតិដាំជាច្រើនបែប ខុសៗគ្នា ហើយពូជសត្វឬក្គ្រជាតិនីមួយៗឆ្លើយតបនឹងតម្រវការរបស់មនុស្ស។

ការសិក្សាអំពីជម្រើសដោយមនុស្សផ្តល់ផលប្រយោជន៍ ដល់ដាវីនសម្រាប់បក ស្រាយអំពីការវិវត្ត អំពីការវិវត្តធម្មជាតិមានដំណើរការជម្រើសសត្វ និងរុក្ខជាតិផងដែរ។ ៤. សម្រើសដោយធម្មសិតិ

ជម្រើសដោយធម្មជាតិ ជាដំណើរដែលឯកត្ត:មានបន្ស៊ាំទៅនឹងមជ្ឈដ្ឋានប្រសើរជាងគេគឺ អាចរស់រានមានជីវិត និងបន្តពូជបានច្រើនជាងភាវរស់ដទៃក្នុងប្រភេទតែមួយ ហើយកត្តា ដែលជះឥទ្ធិពលលើជម្រើសដោយធម្មជាតិមាន ការបង្កើតកូនចៅច្រើនហួសប្រមាណ ការ ប្រជែងដើម្បីរស់ និងបម្រែបម្រល...។

លោកដាវិនពន្យល់ថា ឆ្លងកាត់តាមរយៈពេលដ៏យូរអង្វែង ជម្រើសរើសដោយធម្មជាតិ នាំឱ្យមានការផ្លាស់ប្តូរលក្ខណ:នៃប្រភេទភាវ:រស់។ បម្រែបម្រលលក្ខណ:មានប្រយោជន៍ ត្រវ បានប្រមូលគរផ្គុំជាបន្តបន្ទាប់ចំពោះប្រភេទភាវៈរស់មួយ ឯបម្រែបម្រលលក្ខណៈគ្មាន ប្រយោជន៍ត្រូវបាត់បង់ទៅវិញ។ ការផ្លាស់ប្តូរមជ្ឈដ្ឋាននាំឱ្យមានជម្រើសដោយធម្មជាតិ។ ចំណុចសំខាន់ៗនៃទ្រឹស្តីវិវត្តន៍របស់ដាវីនគឺ៖

- ភាវៈរស់មានបម្រែបម្រលគឺមានលក្ខណៈថ្មីកើតឡើង
- ភាវៈរស់បង្កើតកូនចៅច្រើនលើសលុប បណ្តាលឱ្យភាវៈរស់មានការប្រជែងគ្នាដើម្បី រស់និងបន្តពូជ។
- 。 ភាវៈរស់ដែលមានបម្រែបម្រលមានប្រយោជន៍អាចបន្ស៉ានឹងមជ្ឈដ្ឋានអាចរស់នៅ និងបន្តពូជ ហើយបញ្ជូនលក្ខណៈរបស់ខ្លួនទៅសណ្តានក្រោយ។ ឆ្លងកាត់រយៈ ពេលដ៏យូរ បម្រែបម្រួលមានប្រយោជន៍ផ្តុំទុកក្នុងពូជ ឬប្រភេទភាវៈរស់ថ្មី។ ឯកត្ត:នៅក្នុងប្រភេទតែមួយអាចមានលក្ខណៈខុសគ្នាជាច្រើន។ លក្ខណៈខុសគ្នា

រវាងឯកត្ត:នៅក្នុងប្រភេទតែមួយហៅជាប្រើម្របម្រល។
www.moeys.gov.kh google.com/+moeys

### **អស្តុតា**ខនៃភាទេិទផ្ត

### ១. ចំណតម្រាយតស្តុតាទនៃភារទិនត្ត

ភស្តុតាងដែលបញ្ជាក់ថាភាវរស់វិវត្តមាន ផ្ទស៊ីល ការលូតលាស់របស់អំប្រ៊ីយ៉ុង នៃ

សត្វប្រភេទ ផ្សេងៗ និងទម្រង់ដូចគ្នានៃសារពាង្គកាយ។ **9.9 ផូស៊ីល**(Fossiles) ជាស្នាមឬសំណល់របស់ភាវរស់ ជំនាន់ដើម ដែលរក្សាទុកនៅក្នុងសិលាតាំងពីរាប់លាន ឆ្នាំមកហើយ។



# ១.២ ប្រៀបធ្រៀបការលូតលាស់អំប្រ៊ីយ៉ុងសត្វប្រភេទផ្សេងៗ

ការសង្កេតពីការលូតលាស់អំប្រ៊ីយ៉ុងនៃសត្វឆ្អឹងកងផ្សេ<mark>ងៗនៅដំណាក់ដំបូង នាំ៤</mark> សន្និដ្ឋានបានថា គ្រប់ប្រភេទនៃសត្វឆ្អឹងកងមានបុព្វរួមតែមួយ។

### ១.៣ ភាពដូចគ្នានៃរូបផ្គុំសារពាង្គកាយ

ភស្តុតាដែលបង្ហាញថាសត្វឆ្អឹងកងទាំងអស់មានបុព្វរួមតែមួយមានដូចជា៖ រូបផ្គុំក្នុងដូចគ្នា ( គ្រោង ឆ្អឹងក្នុង និងមានឆ្អឹងកង)។ ស្លាបបក្សី ព្រុយដូហ្វាំង ដៃមនុស្ស មានរូបរាងនិងនាទីខុសគ្នា តែ មានរូបផ្គុំដូចគ្នា។

ដូចនេះវាមានប្រភេទតែមួយនៅក្នុងដំណាក់អំប្រ៊ិយ៉ុង។

**សរីរាង្គអូម៉ូឡូក** ជាសរីរាង្គដែលមាននាទីខុសគ្នា តែមានរូបផ្គុំនៅក្នុងប្លង់តែមួយ។ ដូចជា អវៈយវៈខាងមុខនៃគោ ព្រុយដូហ្វាំង ឬត្រីបាឡែន បក្សី ប្រចៀវ និងមនុស្ស ។

### ២. នំនាក់នំនខសែស្រន្សាយទោទប្រគេនផ្សិទៗ

អ្នកវិទ្យាសាស្ត្រធ្វើការប្រៀបធៀបម៉ូលេគុល ADN និងម៉ូលេគុលប្រូតេអ៊ីននៃប្រភេទ ផ្សេងៗ ដើម្បីកំណត់រកទំនាក់ទំនងសែស្រឡាយរវាងប្រភេទភាវរស់ផ្សងៗ។

ភាវរស់ដែលមានទំនាក់ទំនងសែស្រឡាយជិតតែងមានតំណលំដាប់នុយក្លេអូទីតក្នុង ម៉ូលេគុល ADN និងតំណលំដាប់អាស៊ីតអាមីនេក្នុងម៉ូលេគុលប្រ្ទុតេអ៊ីនដូចគ្នាភាគច្រើន។

#### **M**. ខើមគំណើតរួមគេន

ប្រភេទ ជាក្រុមសារពាង្គកាយដែលមានរូបរាងស្រដៀងគ្នា ហើយធ្វើការបន្តពូជជា មួយគ្នាបាន ដោយបង្កើតកូនចៅដែលអាចបន្តពូជបានទៀត។

### ក.របាំងភូមិសាស្ត្រ







របាំងភូមិសាស្ត្រ កើតឡើងកាលណាពពួកផ្សេងៗ ត្រូវបែកចេញពីគ្នាដោយសារភ្នំទឹកកក ឬដែសមុទ្រជាដើម។

ប្រភេទថ្មីកើតទ្បើង នៅពេលដែលពព្ទកមួយត្រូវបែកចេញពីពព្ទកមួយផ្សេងទៀតក្នុង ប្រភេទរបស់វា។ ការបែកចេញរយៈពេលដ៏យូរធ្វើឲ្យលក្ខណៈរបស់វាមានការវិវត្ត។

### ខ.របាំងជីវសាស្ត្រ

ការលេចឡើងនៃប្រភេទថ្មី បណ្ដាលមកពីការកកើតរបាំងបន្តព្វជរវាងឯកត្ត:។ របាំងបន្តពូជជា របាំងជីវសាស្ត្រ។

- +ការបន្តពូជមិនអាចប្រព្រឹត្តទៅបាន ដោយឯកត្ត:មានរូបរាងទំហំប្រដាប់បន្តពូជខុសគ្នា។
- +ប្រភេទខ្លះស្រដៀងគ្នា រស់នៅមជ្ឈដ្ឋានតែមួយ តែបន្តពូជនៅរដូវខុសគ្នា និងខែខុសគ្នា។
- +ការទាក់ទាញរវាងសត្វញី ឈ្មោលមានបៀបខុសគ្នា។
- +កាម៉ែតញី ឈ្មោលក្នុងប្រភេទខុសគ្នាមិនអាចរលាយចូលគ្នាបាន។

യുകയുക





### នុំខ្មែរ ខ្មែរ ខ្មែ

តាមការប្រៀបធៀបសរីរាង្គផ្សេងៗរបស់ភាវរស់ ផ្ទស៊ីលក៏ជាភស្តុតាងមួយបញ្ជាក់ថា ភាវរស់មានការវិវត្ត។

### ១. កំណផ្ងស៊ីល

ផ្ទស៊ីល កើតឡើងដោយសារពាង្គកាយមួយស្លាប់ធ្លាក់ចុះទៅបាតទឹកស្ទឹង ឬទឹកទន្លេ ហើយមានកម្ទេចកំណគ្របដណ្តប់លើសាកសពនោះជាច្រើនឆ្នាំ ស្រទាប់កំទេចកំណក្លាយជារឹង ហើយប្លែងជាសិលាកំទេចកំណ។

ដំណើរកកើតផ្ទស៊ីលមាន៣របៀបគឺ៖

- ១. ដំណើរក្លាយជាថ្ម សំណល់ភាវរស់ខ្លះដែលកប់ជាប់ក្នុងកម្ទេចកំណប្លែងជាថ្ម។
- ២. ពុម្ពក្រៅ និងពុម្ពក្នុង
- ពុម្ពក្រៅ ពេលដែលសារពាង្គកាយកប់ក្នុងកម្ទេចកំណ ត្រូវរលាយបន្តិច ម្តងៗ ហើយបន្សល់ នូវពុម្ពទទេមានទម្រង់ដូចសារពាង្គកាយ។
- ពុម្ពក្នុង ទឹកហូរនាំកម្ទេចកំណមកបំពេញពុម្ពទទេនោះបង្កើតបានជាពុម្ពក្នុង ដែលប្លែងជា សិលាមានទ្រង់ទ្រាយដូចសារពាង្គកាយ។
- ផ្ទស៊ីលក៏អាចជាសារពាង្គកាយទាំងមូលកប់ ការក្សាទុកសារពាង្គកាយទាំងមូល៖ ក្នុងជ័ររុក្ខជាតិ ឬក្នុងទឹកកក។

# ២. ការកំណត់អាយុផ្ចស៊ីល

អ្នកវិទ្យាសាស្ត្រអាចកំណត់អាយុផ្ទស៊ីលតាមរបៀប២យ៉ាងគឺ៖

- 9. ការកំណត់តាមស្រទាប់សិលា៖ ការសិក្សាពីស្រទាប់សិលាកម្ទេចកំណដែលមាន ផ្លុស៊ីលអាច ឲ្យយើងដឹងពីអាយុធៀបរបស់ផ្លុស៊ីល។
- ២. ការកំណត់តាមសារធាតុវិទ្យុសកម្ម៖ គេអាចកំណត់អាយុផ្ទស៊ីលដោយគណនា បរិមាណរូបធាតុ ដែលបែកចេញពីធាតុវិទ្យុសកម្ម។
- \* សារធាតុវិទ្យុសកម្ម៖ ជាសារធាតុគ្មានស្ថេរភាពវាអាចបំបែក ហើយប្លែងជាសារធាតុ មួយផ្សេងទៀត។ ឧទាហរណ៍:រ៉ាដ្យូម(Ra ) ជាសារធាតុវិទ្យុសកម្មដែលបំបែក ហើយប្លែង ជាសំណ(Pb)។



### ៣. សារៈសំខាន់នៃផូស៊ីល

ផូស៊ីលមានសារៈសំខាន់ដូចជា ឲ្យយើងស្គាល់ប្រវត្តិនៃការវិវត្តរបស់ភាវៈរស់ដូចជាការកកើត ការរីកចំរើន និងការវិនាសបាត់បង់ទៅវិញនៃប្រភេទភាវរស់ខ្លះហើយផូស៊ីលក៏អាចយកមក សិក្សាពីប្រវត្តិ ផែនដីផងដែរ។

> ការសិក្សាលើផ្ទស៊ីលធ្វើឲ្យយើងដឹង៖ -ប្រវត្តិជីវិតលើផែនដី ស្គាល់ការវិវត្តរបស់ភាវរស់ -ស្គាល់អាយុផ្ទស៊ីល ស្គាល់អាយុសិលា

> > യുകയുക



