Final Project Notes

Conor Holden

October 20, 2020

Contents

		General Information		
	1.1	Description	1	
	1.2	Tools	1	
	1.3	Videos about Iplug2	1	
		Tutorials about Juce		
2	Digital Signal Processing		2	
	2.1	Waves	2	
	2.2	Fast Fourier Transform Algorithm	9	

1 General Information

Project Link

1.1 Description

Fiddle about with trying to develop a realistic simulation for uilleann pipes or violins, or some unique instrumental sound of your own imagination.

1.2 Tools

- iPlug2 GitHub \Rightarrow For Creating both plug-ins and stand-alone
- iPlug2 Wiki
- Juce \Rightarrow More mature and has more tutorials
- ACM Digital Library
- Physical Modelling

1.3 Videos about Iplug2

Abandoned

- Oliver Larkin: Faust in iPlug 2
- iPlug2: Desktop Plug-in Framework Meets Web Audio Modules by Oliver Larkin

1.4 Tutorials about Juce

• Juce String Model

2 Digital Signal Processing

- Juce DSP
- Digital Signal Processing (DSP) Tutorial

2.1 Waves

- Sin Wave \Rightarrow std::sin (x)
- Saw Tooth \Rightarrow map $-\pi \pi$ to -1 1 (juce::MathConstants<double>::pi)
- Triangle \Rightarrow map $-\pi 0$ to -1 1 and 0π to 1 -1

2.2 Fast Fourier Transform Algorithm

Faster version of the Discrete Fourier transform.

- Transforms waves into its components or formula
- The inverse can be used to create sound waves from