Solving the spherically symmetric Poisson's equation using B splines

Introduction

Poisson's equation is given by

$$\nabla^2 \varphi = -\rho/\epsilon_0 \tag{1}$$

where φ is the electric potential, ρ is a charge distribution and ϵ_0 is the permittivity of free space. For a spherically symmetric problem, the equation simplifies to

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\varphi}{\mathrm{d}r} = -\rho(r)/\epsilon_0 \tag{2}$$

and by defining the function $u = r\varphi$, this becomes

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + r\rho(r)/\epsilon_0 = 0. \tag{3}$$

A description will now be given on how this equation was solved numerically using B-splines for the following charge distributions:

1. A uniformily charged sphere,

$$\rho(r) = \begin{cases} 3q/(4\pi R^3), & r \le R\\ 0, & r > R \end{cases} \tag{4}$$

where q is the total charge and R is the radius of the sphere.

2. A uniformily charged shell,

$$\rho(r) = \begin{cases}
0, & r < R_1 \\
3q/(4\pi(R_2^3 - R_1^3)), & R_1 \le r \le R_2 \\
0, & r > R_2
\end{cases}$$
(5)

where R_1 and R_2 are the inner and outer radii, respectively.

3. The electron charge distribution in an hydrogen atom:

$$\rho(r) = \frac{q}{\pi a_0^3} e^{-2r/a_0} \tag{6}$$

where q is the charge of an electron and a_0 is the Bohr radius.

Method

Since $\varphi(r) = u(r)/r$ and we wish $\varphi(0)$ to be finite, we let u(0) = 0. For the first and second charge distributions, we know that $u(r) = q/4\pi\epsilon_0$ outside the enclosing volumes because of Gauss's law. Accordingly, we let $u(R) = q/4\pi\epsilon_0$ for the first distribution

and $u(R_2) = q/4\pi\epsilon_0$ for the second distribution. For the third distribution, we introduce a cut-off so that $u(\alpha a_0) = q/4\pi\epsilon_0$ where α is some constant which will later be determined such that the error from this approximation becomes negliable. To facilitate the numerical caluclations, the following dimensionless variables were defined:

$$\xi = r/r_0
\lambda = u/(q/4\pi\epsilon_0)$$
(7)

where r_0 is equal to R for the first distribution, R_2 for the second distribution and αa_0 for the third distribution. Then equation (3) can be written as

$$\lambda''(\xi) + \xi \sigma(\xi) = 0 \tag{8}$$

where $\sigma = 4\pi r_0^3 \rho/q$. The boundary conditions for λ are $\lambda(0) = 0$ and $\lambda(1) = 1$. Defining a new function, $g(\xi) = \lambda(\xi) - \xi$, we obtain the following boundary value problems:

$$g''(\xi) + \xi \sigma(\xi) = 0$$

$$g(0) = g(1) = 0.$$
 (9)

These are the equations that were solved for the different charge distributions, σ .

To do so, a collocation method with B-splines as candidate solutions was used. The numerical solution to g was written as

$$\hat{g}(\xi) = \sum_{j=0}^{n-1} c_j B_{j,k}(\xi) \tag{10}$$

where $B_{j,k}$ are B-splines of order k=4. Five knot points were placed at $\xi=0$ and another five at $\xi=1$ so that the only non-zero B-spline at $\xi=0$ was $B_{1,k}$ and the only non-zero B-spline at $\xi=1$ was $B_{n,k}$. The boundary conditions were thus satisfied by setting $c_1=c_{n-1}=0$. The collocation points were Chebyshev nodes,

$$\xi_k = \frac{1}{2} + \frac{1}{2} \cos\left(\frac{\pi(2k-1)}{2(n-2)}\right),$$
 (11)

where $k = 1, 2, \dots n - 2$. The coefficients were then obtained by solving the linear system of equations:

$$c_0 = 0, \quad c_{n-1} = 0,$$

$$\sum_{j=0}^{n-1} c_j B_{j,k}''(\xi_k) + \xi_k \sigma(\xi_k) = 0, \quad k = 1, 2 \dots, n-2.$$
(12)

Results