Circuit Diagram

Simulator

Switch Measurements

Parameter	Value	Units	Conditions
Resistance of the	9.87k		with power off and
10kΩ resistor, R1		ohms	disconnected from circuit
			(measured with ohmmeter)
	3.3		
Supply Voltage, V _{+3.3}		volts	Powered
			(measured with voltmeter)
			Powered, but
Input Voltage, V _{PE1}	0	volts	with switch not pressed
			(measured with voltmeter)

Resistor current	0	mA	Powered, but switch not pressed $I=V_{\text{PEI}}/R1 \text{ (calculated and }$
			measured with an ammeter)
Input Voltage, V _{PE1}	3.3	volts	Powered and with switch pressed
			(measured with voltmeter)
Resistor current	0.33	mA	Powered and switch pressed $I{=}V_{\scriptscriptstyle PEI}/R1 \ (\text{calculated and}$
			measured with an ammeter)

LED Measurements

Row	Parameter	Value	Units	Conditions
1	Resistance of the 220Ω resistor, R19	217	ohms	with power off and disconnected from circuit (measured with ohmmeter)
2	+5 V power supply V_{+5}	4.97	volts	(measured with voltmeter relative to ground, notice that the +5V power is not exactly +5 volts)
3	TM4C123 Output, V_{PE0} input to 7406	3.3	volts	with PE0 = 0 (measured with voltmeter relative to ground)
4	7406 Output, V_k LED k-	0.16	volts	with PE0 = 0 (measured with voltmeter relative to ground)
5	LED a+, V_{a+} Bottom side of R19	2.11	volts	with PE0 = 0 (measured with voltmeter relative to ground)
6	LED voltage	1.95	volts	calculated as V_{a+} - V_{k-}
7	LED current	13	mA	calculated as $(V_{+5}$ - $V_{a+})/R19$ and measured with an ammeter
8	TM4C123 Output, V_{reo} input to 7406	2-1.3	volts	with PE0 = 1 (measured with voltmeter relative to ground)
9	7406 Output, V _k LED k-	2.3-1.4	volts	with PE0 = 1 (measured with voltmeter relative to ground)

10	LED a+, V_{a+} Bottom side of R19	3.8-3.1	volts	with PE0 = 1 (measured with voltmeter relative to ground)
11	LED voltage	1.4-1.1	volts	calculated as V_{a+} - V_{k-}
12	LED current	5-8	mA	calculated as $(V_{+5}$ – V_{a+})/R19 and measured with an ammeter

Assembly Code

```
;************* main.s **********
; Program written by: Chimezie Iwuanyanwu & Xinyuan Pan
; Date Created: 1/22/2016
; Last Modified: 2/20/2016
; Section: Wednesday 5-6
; Instructor: Ramesh Yerraballi
; Lab number: 3
; Brief description of the program
; If the switch is presses, the LED toggles at 8 Hz
; Hardware connections
; PE1 is switch input (1 means pressed, 0 means not pressed)
; PEO is LED output (1 activates external LED on protoboard)
;Overall functionality of this system is the similar to Lab 2, with six changes:
;1- the pin to which we connect the switch is moved to PE1,
;2- you will have to remove the PUR initialization because pull up is no longer needed.
;3- the pin to which we connect the LED is moved to PEO,
;4- the switch is changed from negative to positive logic, and
;5- you should increase the delay so it flashes about 8 Hz.
;6- the LED should be on when the switch is not pressed
; Operation
; 1) Make PEO an output and make PE1 an input.
 2) The system starts with the LED on (make PEO =1).
; 3) Wait about 62 ms
 4) If the switch is pressed (PE1 is 1), then toggle the LED once, else turn the LED on.
; 5) Steps 3 and 4 are repeated over and over
```

```
GPIO_PORTE_DATA_R
                    EQU 0x400243FC
GPIO_PORTE_DIR_R
                   EQU 0x40024400
GPIO PORTE AFSEL R EQU 0x40024420
GPIO_PORTE_DEN_R
                    EQU 0x4002451C
GPIO PORTE AMSEL R EQU 0x40024528
GPIO PORTE PCTL R
                    EQU 0x4002452C
SYSCTL RCGCGPIO R
                    EQU 0x400FE608
COUNT
                   EQU
                          1240000
   IMPORT TExaS_Init
   AREA |.text|, CODE, READONLY, ALIGN=2
   THUMB
   EXPORT Start
```

```
Start
; TExaS_Init sets bus clock at 80 MHz
               BL TExaS_Init; voltmeter, scope on PD3
; you initialize PE1 PE0
       LDR R1, =SYSCTL_RCGCGPIO_R
       LDR R0, [R1]
       ORR R0, #0x10
       STR RO, [R1]
       NOP
       NOP
       LDR R1, =GPIO_PORTE_AMSEL_R
       LDR R0, [R1]
       AND RO, #0xFC
       STR RO, [R1]
       LDR R1, =GPIO_PORTE_PCTL_R
       LDR R0, [R1]
       AND RO, #0xFC
       STR R0, [R1]
       LDR R1, =GPIO_PORTE_DIR_R
       LDR R0, [R1]
       AND RO, #0xFC
       ORR RO, #0x01
       STR RO, [R1]
       LDR R1, =GPIO_PORTE_AFSEL_R
       LDR R0, [R1]
       AND RO, #0xFC
       STR R0, [R1]
       LDR R1, =GPIO_PORTE_DEN_R
       LDR R0, [R1]
       ORR R0, #
       STR R0, [R1]
       B set_LED
       CPSIE I
loop
       BL delay
       LDR R1, =GPIO_PORTE_DATA_R
       LDR R0, [R1]
       AND R2, #0
       AND R2, R0, #0x02
       LSR R2, #1
       CMP R2, #1
```

BNE set_LED

```
EOR R3, R0, #0x01
       STR R3, [R1]
       B loop
set_LED
       LDR R1, =GPIO_PORTE_DATA_R
       LDR R0, [R1]
       ORR R0, #0x01
       STR R0, [R1]
       B loop
delay
       LDR R1, =COUNT
delay_loop
       SUBS R1, #1
       BNE delay_loop
       BX LR
       ALIGN
       END
```