TEORIA DE GRAFOS E COMPUTABILIDADE

CONJUNTOS

Conjuntos: Introdução

- Conjuntos são as estruturas discretas fundamentais sobre as quais todas as demais estruturas discretas podem ser construídas.
- A Teoria dos Conjuntos é capaz de representar toda a Matemática.

Conceitos básicos como conjunto, pertinência de elementos a um conjunto, o conjunto vazio, operações sobre conjuntos (união, interseção, complemento, ...) podem capturar conceitos como aritmética, lógica, etc.

Conjuntos

 Um conjunto é coleção não-ordenada de objetos bem definidos, denominados elementos ou membros do conjunto.

Escrevemos

$$a \in A$$

para denotar que o elemento a pertence ao conjunto A.

Escrevemos

para denotar que o elemento a não pertence ao conjunto A.

Usamos normalmente letras maiúsculas para denotar conjuntos, e minúsculas para denotar elementos destes conjuntos.

Formas de definir um conjunto

- Listar seus elementos entre chaves:
 - {Ana, Bia, Carlos}

- **(1, 2, 3, . . . , 100)**
- Especificar uma propriedade que define um conjunto, como em S = {x | P(x)}:
- Usar uma definição recursiva:
 - 1 *∈ A*,
 - se $x \in A$ e x + 2 < 10, então $x + 2 \in A$.

Formas de definir um conjunto

Especificar uma função característica:

1, se
$$x = 1$$
, 3, 5, 7, 9, 0, caso contrário.

Alguns conjuntos importantes

Alguns conjuntos importantes são:

- N = { 0, 1, 2, 3, 4, 5, . . .} é o conjunto dos **números naturais**.
- Z = {..., -3, -2, -1, 0, 1, 2, 3, ...} é o conjunto dos números inteiros.
- Z⁺ = {1, 2, 3, 4, 5...} é o conjunto dos números inteiros positivos.
- Q = {p/q | p ∈ Z, q ∈ Z, e q f = 0} é o conjunto dos números racionais.
- R é o conjunto dos números reais.
- R⁺ é o conjunto dos números reais positivos.
- · C é o conjunto dos números complexos.

Igualdade de conjuntos

 Dois conjuntos são iguais sse eles possuem os mesmos elementos. Formalmente, para todos conjuntos A e B,

$$A = B \quad \leftrightarrow \quad \forall x : (x \in A \leftrightarrow x \in B).$$

- A definição de igualdade de conjuntos implica que:
 - A ordem na qual os elementos são listados é irrelevante:
 - Elementos podem aparecer mais de uma vez no conjunto:
 - {a, a, a, a, b, b, b, c, c, d} = {a, b, c, d}

Subconjuntos

Um conjunto A é chamado subconjunto de um conjunto B sse cada elemento de A também é um elemento de B.

Usamos $A \subseteq B$ para denotar que A é subconjunto de B.

Formalmente:

$$A \subseteq B \leftrightarrow \forall x : (x \in A \rightarrow x \in B).$$

- As frases "A está contido em B" e "B contém A" são formas alternativas de dizer que A é um subconjunto de B.
 - O conjunto dos naturais é um subconjunto dos inteiros.
 - O conjunto de brasileiros é um subconjunto do conjunto de brasileiros. (Nada impede que um conjunto seja um subconjunto de si próprio!)
 - O conjunto dos números complexos não é um subconjunto dos números reais

Subconjuntos próprios

Um conjunto A é subconjunto próprio de um conjunto B sse cada elemento de A está em B e existe pelo menos um elemento de B que não está em A.

Formalmente:

$$A \subseteq B \leftrightarrow \forall x : (x \in A \rightarrow x \in B) \land \exists x : (x \in B \land x \notin A) \leftrightarrow A \subseteq B \land A != B.$$

- O conjunto dos naturais é um subconjunto próprio do conjunto dos inteiros.
- O conjunto dos brasileiros não é um subconjunto próprio dos brasileiros.

Diagramas de Venn

- Se os conjuntos A e B forem representados por regiões no plano, relações entre A e B podem ser representadas por desenhos chamados de Diagramas de Venn.
- Exemplo: A ⊆ B.

Exemplo 2: ~(A ⊆ B).

Diagramas de Venn não podem ser usados como demonstração!

O conjunto vazio

- O conjunto vazio ou conjunto nulo n\u00e3o cont\u00e9m elementos. Denotamos o conjunto vazio por \u03d3 ou \u20a2.
- Note que ⟨∅⟩ não denota o conjunto vazio, mas o conjunto cujo único elemento é o conjunto vazio.
- **Teorema**: O conjunto vazio é subconjunto de qualquer conjunto.

Prova. Seja A um conjunto qualquer. Então

$$\forall x : (x \in \emptyset \rightarrow x \in A)$$

é verdade por vacuidade, já que a premissa da implicação é sempre falsa. Logo $\varnothing \subseteq A$.

Conjunto potência

 Dado um conjunto A, o conjunto potência de A é o conjunto de todos os subconjuntos de A.

Denotamos por P(A) o conjunto potência de A.

- Exemplos:
 - Dado o conjunto S = {x, y, z}, seu conjunto potência é

$$P(S) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}.$$

Dado o conjunto vazio Ø, seu conjunto potência é

$$P(\emptyset) = \{\emptyset\}.$$

Conjunto potência

■ **Teorema:** Se um conjunto finito *A* tem *n* elementos, então *P*(*A*) tem 2ⁿ elementos.

Prova. Para formar um subconjunto S qualquer de A, podemos percorrer cada elemento $a_i \in A$ ($1 \le i \le n$), decidindo se $a_i \in S$ ou se $a_i f \in S$.

Como para cada elemento há duas opções (pertence ou não pertence), e há um total de n elementos em A, há 2^n maneiras de se formar um subconjunto S de A.

Logo,
$$|P(A)| = 2^n$$
.

Tuplas ordenadas

- Uma n-tupla ordenada (a₁, a₂, ..., a_n) é uma coleção ordenada de n elementos, em que a₁ é o primeiro elemento, a₂ é o segundo elemento, ..., e a_n é o n-ésimo elemento.
- Algumas n-tuplas ordenadas recebem nomes especiais:

Uma 2-tupla ordenada é chamada de par ordenado Uma 3-tupla ordenada é chamada de triplaordenada

Duas *n*-tuplas ordenadas $(x_1, x_2, ..., x_n)$ e $(y_1, y_2, ..., y_n)$ são **iguais** sse $x_i = y_i$, para i = 1, ..., n.

Produto Cartesiano

Sejam A e B conjuntos. O produto cartesiano de A e B, denotado A × B, é o conjunto de todos os pares ordenados (a, b), onde a ∈ A e b ∈ B. Formalmente:

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}.$$

Exemplo: Sejam A = {1, 2} e B = {a, b, c}.

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

$$A \times A = A \stackrel{?}{=} \{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

Produto Cartesiano

Produtos cartesianos podem ser generalizados para mais de dois conjuntos. Sejam A₁, A₂, ..., A_n conjuntos. O produto cartesiano de A₁, A₂, ..., A_n, denotado

$$A_1 \times A_2 \times \ldots \times A_n$$

é o conjunto de todas n-tuplas ordenadas (a_1, a_2, \ldots, a_n) , onde $a_i \in A_i$ para $i = 1 \ldots N$. Formalmente:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ para } i = 1 ... n\}$$

• Exemplo: Sejam $A = \{0, 1\}, B = \{a, b\}, C = \{\gamma, \delta\}.$

$$A \times B \times C = \{(0, a, \gamma), (0, a, \delta), (0, b, \gamma), (0, b, \delta), (1, a, \gamma), (1, a, \delta), (1, b, \gamma), (1, b, \delta)\}$$

O tamanho de conjuntos finitos

Seja A um conjunto finito contendo exatamente n elementos distintos. Dizemos que a cardinalidade (ou tamanho) de A é n.
 A notação |A| = n indica que o tamanho de A é n elementos.

Operações em conjuntos

Sejam A e B subconjuntos do conjunto universal U:

Alternativamente:
$$x \in A \cap B \leftrightarrow x \in A \land x \in B$$

Diferença: $A - B = \{x \in U \mid x \in A \land \neg (x \in B)\}$ Alternativamente: $x \in A - B \leftrightarrow x \in A \land \neg (x \in B)$

Complemento: $\overline{A} = \{x \in U \mid \neg (x \in A)\}$ Alternativamente: $x \in \overline{A} \leftrightarrow \neg (X \in A)$

Operações em conjuntos

Exemplo: Sejam os conjuntos A = {1, 3, 4, 5} e B = {1, 2, 5, 6}.
 Considere como conjunto universo U = {0, 1, 2, 3, 4, 5, 6, 7}.

$$\blacksquare$$
 A U B = {1, 2, 3, 4, 5, 6}

$$A \cap B = \{1, 5\}$$

$$A - B = \{3, 4\}$$

$$\blacksquare$$
 B - A = {2, 6}

$$\overline{A} = \{0, 2, 6, 7\}$$

$$\blacksquare \overline{B} = \{0, 3, 4, 7\}$$

Igualdade de conjuntos

- Dois conjuntos A e B são iguais se, e somente se, cada elemento de A está em B, e cada elemento de B está em A.
- Uma maneira conveniente de se mostrar que dois conjuntos são iguais é mostrando que cada conjunto é subconjunto do outro.

Formalmente:

$$A = B$$
 sse $\forall x : (x \in A \leftrightarrow x \in B)$.

Teorema: A = B sse $A \subseteq B$ e $B \subseteq A$.

Prova. Escrevendo $A \subseteq B \in B \subseteq A$ formalmente:

```
A = B
\equiv \forall x : (x \in A \leftrightarrow x \in B) \qquad \text{(definição de igualdade)}
\equiv \forall x : ((x \in A \to x \in B) \land (x \in B \to x \in A)) \qquad \text{(definição de } \leftrightarrow) \text{ (distributividade de }
\equiv (\forall x : (x \in A \to x \in B)) \land (\forall x : (x \in B \to x \in A)) \qquad \forall \text{ sobre } \land)
\equiv A \subseteq B \land B \subseteq A \qquad \text{(definição de } \subseteq)
```

Igualdade de conjuntos

• Sejam todos os conjuntos abaixo subconjuntos do conjunto universal *U*.

Comutatividade	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Associatividade	$(A \cap B) \cap C = A \cap (B \cap C)$	$ \begin{array}{ccc} (A \ \cup \ B) \ \cup \ C = \\ A \ \cup \ (B \ \cup \ C) \end{array} $
Distributividade	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
União e interseção com U	$A \cap U = A$	$A \cup U = U$
Complemento duplo	~~A = A	
Idempotência	$A \cap A = A$	$A \cup A = A$
De Morgan	~(A ∩ B) = ~A ∪ ~B	~(A ∪ B) = ~A ∩ ~B
Absorção	$A \cap (A \cup B) = A$	$A \cup (A \cap B) = A$
Diferença de conjuntos	$A - B = A \cap B$	
União e interseção com Ø	A U ∅ = A	A ∩ ∅ = ∅
União e interseção com o complemento	A U ~A = U	A ∩ ~A = ∅
Complementos de <i>U</i> e ∅	~U = Ø	~0= U

Conjuntos disjuntos

 Dois conjuntos são chamados disjuntos sse eles não têm nenhum elemento em comum.

Formalmente:

$$A \in B$$
 são disjuntos \leftrightarrow $A \cap B = \emptyset$.

■ Proposição: Dados dois conjuntos A e B, (A - B) e B são disjuntos.

Prova. Por contradição. Suponha que a afirmação seja falsa, ou seja, que existem conjuntos A e B tais que $(A - B) \cap B$ $f = \emptyset$. Neste caso existe um elemento x tal que $x \in (A - B) \land x \in B$. Note que, em particular, isso significa que $x \in B$.

Por outro lado, também teremos $x \in (A - B)$, o que, pela definição de diferença, significa que $x \in A \land \neg (x \in B)$. Em particular, isso implica que $\neg (x \in B)$.

Logo chegamos a uma contradição, uma vez que $x \in B$ e $\sim (x \in B)$. Portanto, a proposição deve ser verdadeira.

Partições de um conjunto

- Os conjuntos A_1, A_2, \ldots, A_n são chamados **mutuamente disjuntos** (ou **disjuntos par-a-par**, ou **sem sobreposição**) sse $A_i \cap A_j = \emptyset$ para todos $i, j = 1, 2, \ldots, n$ e i != j.
- Uma coleção de conjuntos não vazios {A₁, A₂, ..., A_n} é uma partição do conjunto A sse
 - (i) $A = A_1 U A_2 U ... U A_n$, e
 - (ii) A_1 , A_2 ,..., A_n são mutuamente disjuntos.
- Exemplo: {{1, 2, 5}, {3}, {4}} é uma partição de {1, 2, 3, 4, 5}.