Übungsblatt 25 zur Homologischen Algebra II

Aufgabe 1. Čech-Methoden zur Berechnung von Garbenkohomologie

Für eine Prägarbe \mathcal{F} abelscher Gruppen auf einem topologischen Raum ist die Gruppe der n-Čech-Koketten bezüglich einer Überdeckung $\mathcal{U} = (U_i)_i$ von X definiert als $\check{C}^n(\mathcal{U}, \mathcal{F}) := \prod_{i_0, \dots, i_n \in I} \mathcal{F}(U_{i_0 \dots i_n})$, wobei $U_{i_0 \dots i_n} := U_{i_0} \cap \dots \cap U_{i_n}$. Sei \mathcal{F} im Folgenden sogar eine Garbe abelscher Gruppen.

- a) Sei $\iota: \mathrm{AbSh}(X) \to \mathrm{AbPSh}(X)$ der Vergissfunktor. Sei $U \subseteq X$ eine offene Menge. Zeige: $(R^n \iota \mathcal{F})(U) \cong H^n(U, \mathcal{F})$.
 - Tipp: Verwende die Grothendieck-Spektralsequenz für $\Gamma_U \circ \iota : AbSh(X) \to Ab$, wobei $\Gamma_U : AbPSh(X) \to Ab$ die Gruppe der U-Schnitte bestimmt. Benutze Aufgabe 3 von Blatt 21, um dazu eine technische Voraussetzung nachzuweisen.
- b) Zeige: Die Garbifizierung der Prägarben $R^n \iota \mathcal{F}$ ist für $n \geq 1$ Null. Tipp: Verwende die Grothendieck-Spektralsequenz für $Id_{AbSh(X)} \cong s \circ \iota$, wobei s der Garbifizierungsfunktor ist.
- c) Konstruiere zwei Spektralsequenzen mit

$$\check{H}^p(\mathcal{U}, R^q \iota \mathcal{F}) \Longrightarrow H^{p+q}(X, \mathcal{F}) \quad \text{und} \quad \check{H}^p(U, R^q \iota \mathcal{F}) \Longrightarrow H^{p+q}(X, \mathcal{F}).$$

 $\begin{array}{l} \textit{Hinweis:} \; \text{Es ist} \; \check{H}^p(U,\mathcal{E}) \coloneqq \text{colim}_{\mathcal{U}} \; \check{H}^p(\mathcal{U},\mathcal{E}), \; \text{wobei} \; \mathcal{U} \; \text{\"{u}ber} \; \text{alle offenen \'{U}berdeckungen von} \; U \; \text{\"{l}\"{a}uft.} \; \text{Man kann zeigen, dass} \\ \text{f\"{u}r} \; \text{verschiedene Verfeinerungen} \; \mathcal{U} \to \mathcal{V} \; \text{die induzierten Morphismen} \; \check{H}^p(\mathcal{U},\mathcal{E}) \to \check{H}^p(\mathcal{V},\mathcal{E}) \; \text{\"{u}bereinstimmen.} \end{array}$

- d) Gelte $H^q(U_{i_0\cdots i_r},\mathcal{F})=0$ für alle q>0 und $r\geq 0$. Zeige: $\dot{H}^p(\mathcal{U},\mathcal{F})\cong H^p(X,\mathcal{F})$.
- e) Zeige: Die Abbildung $\check{H}^n(X,\mathcal{F}) \to H^n(X,\mathcal{F})$ ist für n=0 und für n=1 ein Isomorphismus und für n=2 ein Monomorphismus.

 Tipp: Verwende Aufgabe 2.
- f) Zeige: Ist X parakompakt, ist die Abbildung sogar für alle $n \geq 0$ ein Isomorphismus.

Aufgabe 2. Die exakte Sequenz in niedrigen Graden zu einer Spektralsequenz XXX

Aufgabe 3. Gruppenkohomologie

Seite 214, Aufgabe 1