The Theory of Compositions, IV: Multicompositions

by

George E. Andrews*

August 31, 2007

Abstract

The theory of ordered partitions, or compositions, originated with P. A. MacMahon. In this paper, we explore compositions wherein several copies of the integers are used as summands.

1 Introduction

Compositions are ordered partitions of integers. For example, there are eight compositions of 4: 4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1+1+1+1. In his initial study of compositions [4, p. 151], P. A. MacMahon noted that there are 2^{n-1} compositions of n.

Our object in this paper is to consider compositions wherein we use k copies of the positive integers as summands: $\{1_1, 1_2, \ldots, 1_k, 2_1, 2_2, \ldots, 2_k, 3_1, 3_2, \ldots, 3_k, \ldots\}$. We shall refer to these new compositions as multicompositions (or k-compositions when using exactly k copies of the integers). We shall add one restriction on the summands, namely, **THE LAST SUBSCRIPT IN THE COMPOSITION MUST BE 1**. If we do not throw this in then we will have k sets of k-compositions which will be identical

^{*}Partially supported by National Science Foundation Grant

except for the last subscript. For example, in the case of bi-partitions of 3, our restriction allows

$$3_1, 2_1+1_1, 2_2+1_1, 1_1+2_1, 1_2+2_1, 1_1+1_1+1_1, 1_2+1_1+1_1, 1_1+1_2+1_1, 1_2+1_2+1_1$$

Whereas allowing any final subscript would add nine additional bi-compositions of 3, namely

$$3_2, 2_1+1_2, 2_2+1_2, 1_1+2_2, 1_2+2_2, 1_1+1_1+1_2, 1_2+1_1+1_2, 1_1+1_2+1_2, 1_2+1_2+1_2$$

In the interest of keeping the hand calculation of the relevant sums within reason, we have added this restriction.

In 1964, H. Gould [3, p. 251] studied compositions of n with relatively prime summands. We shall call this number the Gould function, $g_1(n)$. Thus $g_1(4) = 6$ because the compositions enumerated are 3 + 1, 1 + 3, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2 and 1 + 1 + 1 + 1. Clearly as is implied in Gould's paper

$$2^{n-1} = \sum_{d|n} g_1(d). \tag{1.1}$$

Recently E. Deutsch, in a problem in the American Mathematical Monthly [2], noted that $3|g_1(n)$ if $n \geq 3$, which means that since g(1) = g(2) = 1 the only time g(n) is prime is when n = 3. Actually $g_1(n)$ is highly composite as the following table reveals.

n	$g_1(n)$	$g_1(n)$ factored	n	$g_1(n)$	$g_1(n)$ factored
1	1	1	11	1023	$3 \cdot 11 \cdot 31$
2	1	1	12	2010	$2 \cdot 3 \cdot 5 \cdot 67$
3	3	3	13	4095	$3^2 \cdot 5 \cdot 7 \cdot 13$
4	6	$2 \cdot 3$	14	8127	$3^3 \cdot 7 \cdot 43$
5	15	$3 \cdot 5$	15	16365	$3 \cdot 5 \cdot 1091$
6	27	3^{3}	16	32640	$2^7 \cdot 3 \cdot 5 \cdot 17$
7	63	$3^{2}7$	17	65535	$3\cdot 5\cdot 17\cdot 257$
8	120	$2^{3}35$	18	130788	$2^2 \cdot 3^3 \cdot 7 \cdot 173$
9	252	2^23^27	19	262143	$3^3 \cdot 7 \cdot 19 \cdot 73$
10	495	3^2511	20	523770	$2 \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 19$

Obviously there is much more divisibility going on here than just divisibility by 3. Is there a more general factorization theorem for $g_1(n)$ than that given by Deutsch's problem?

Of course, we may naturally generalize Gould's function to $g_k(n)$ the number of k-compositions of n wherein the summands are relatively prime (here we ignore subscripts, so the summands in $4_2 + 2_1 + 2_2$ are viewed as having 2 as a common divisor).

Here is a table of the first twenty values of $g_2(n)$:

n	$g_2(n)$	$g_2(n)$ factored	n	$g_2(n)$	$g_2(n)$ factored
1	1	1	11	59048	$2^3 \cdot 11^2 61$
2	2	2	12	176880	$2^4 \cdot 3 \cdot 5 \cdot 11 \cdot 67$
3	8	2^3	13	531440	$2^4 \cdot 5 \cdot 7 \cdot 13 \cdot 73$
4	24	$2^3 \cdot 3$	14	1593592	$2^3 \cdot 7 \cdot 11 \cdot 13 \cdot 199$
5	80	$2^4 \cdot 5$	15	4782880	$2^5 \cdot 5 \cdot 167 \cdot 179$
6	232	$2^3 \cdot 29$	16	14346720	$2^5 \cdot 3^7 \cdot 5 \cdot 41$
7	728	$2^3 \cdot 7 \cdot 13$	17	43046720	$2^6 \cdot 5 \cdot 17 \cdot 41 \cdot 193$
8	2160	$2^4 \cdot 3^3 \cdot 5$	18	129133368	$2^3 \cdot 3^2 \cdot 7 \cdot 13 \cdot 19709$
9	6552	$2^3 \cdot 3^2 \cdot 7 \cdot 13$	19	387420488	$2^3 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 757$
10	19600	$2^4 \cdot 5^2 \cdot 7^2$	20	1162241760	$2^5 \cdot 3 \cdot 5 \cdot 41 \cdot 73 \cdot 809$

The object of this paper will be to prove the following result. We use the notation $\phi(n)$ to denote the number of positive integers $\leq n$ and relatively prime to n.

Theorem 1. If the prime factorization of n is $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, then the number

$$\ell.c.m\left(k(k+2)_3(k+1)^{\phi(p_1^{\alpha_1})}-1, (k+1)^{\phi(p_2^{\alpha_2})}-1, \dots, (k+1)^{\phi(p_r^{\alpha_r})}-1\right)$$

divides $g_k(n)$ provided $n \ge 3$.

For example, if $n = 18 = 3^22$, k = 2, then

$$\operatorname{lcm}\left(2\cdot 4,3^{\phi(2)}-1,3^{\phi(3)}-1\right) = \operatorname{lcm}\left(8,2,728\right) = 728 = 2^{3}\cdot 7\cdot 13.$$

The next section will be devoted to a proof of this theorem. We will conclude with some observations and open problems.

2 Proof of Theorem 1

In order to prove Theorem 1, it is sufficient to prove that each of the entries in the $\ell.c.m$ (= least common multiple) expression divides $g_k(n)$. First we require some preliminary results.

Lemma 2. Suppose $\{a_n\}$ and $\{b_n\}$ are sequences of integers,

$$\sum_{n=m}^{\infty} b_n q^n = \sum_{n=m}^{\infty} \frac{a_n q^n}{1 - q^n},$$
(2.1)

and $j|b_n$ for $n \ge m$. Then $j|a_n$ for $n \ge m$.

Proof. We proceed by induction. We note that

$$\sum_{n=m}^{\infty} \frac{a_n q^n}{1 - q^n} = \sum_{n=m}^{\infty} \sum_{s=1}^{\infty} a_n q^{ns}.$$
 (2.2)

Hence the coefficient of q^m on the right-hand side is a_m ; therefore $a_m = b_m$, so $j|a_m$.

Now assume that $j|a_n$ for $m \leq n < N$. So

$$\sum_{n=N}^{\infty} \frac{a_n q^n}{1 - q^n} = \sum_{n=m}^{\infty} b_n q^n - \sum_{n=m}^{N-1} \frac{a_n q^n}{1 - q^n}$$

$$= \sum_{n=m}^{\infty} b_n q^n - \sum_{n=m}^{N-1} \sum_{s=1}^{\infty} a_n q^{ns}.$$
(2.3)

All the coefficients on the right-hand side of (2.3) are divisible by j, and in particular the coefficient of q^N is so divisible. But on the left-hand side we see that the coefficient of q^N is just a_N . Hence $j|a_N$, and the result follows by mathematical induction.

Lemma 3. The total number of k-compositions of n is $(k+1)^{n-1}$.

Proof. We modify MacMahon's proof of the case k = 1. Namely, we can geometrically represent the k-compositions as follows: choose n_1 numbers among $\{1, 2, \ldots, n-1\}$ to be labelled "1"; choose n_2 numbers among those remaining to be labelled "2", etc. up through k. The number of possible choices is

$$\binom{n-1}{n_1, n_2, \dots, n_k, n-1-n_1-n_2-\dots-n_k}$$

$$= \frac{(n-1)!}{n_1! n_2! \cdots n_k! (n-1-n_1-n_2-\dots-n_k)!}$$

These labelled points define integer length segments on the unit line,

and these segments make up the k-composition with the stipulation that the label of the right end determines the subscript of the part (n is labelled "1").

For example. If k = 3, n = 10, $n_1 = 3$, $n_2 = 2$, $n_3 = 1$, then one possible choice is

yielding the 3-composition of 10: $1_3 + 1_2 + 2_1 + 1_1 + 2_2 + 1_1 + 2_1$. Thus the number of k-compositions of n with n_1 parts with subscript 1 (excluding the final part), n_2 parts with subscript 2, etc. is

$$\binom{n-1}{n_1, n_2, \dots, n_k, n-1-n_1-n_2-\dots-n_k}$$

and so the total number of k-compositions of n is

e total number of
$$k$$
-compositions of n is
$$\sum_{\substack{n_1, n_2, \dots, n_k \ge 0 \\ = (1 + \underbrace{1 + 1 + 1 + \dots + 1}_{k \text{ terms}})^{n-1}} \binom{n-1}{n_1, n_2, \dots, n_k, n-1 - n_1 - n_2 - \dots - n_k}$$

$$= (k+1)^{n-1}.$$

We are now in a position to prove Theorem 1. First we shall prove that k(k+2) divides $g_k(n)$ for $n \ge 3$.

We see immediately that

$$(k+1)^{n-1} = \sum_{d|n} g_k(d),$$

by classifying the k-compositions of n according to the greatest common divisor of their parts.

We may translate this into generating function form as follows:

$$\frac{q}{1 - (k+1)q} = \sum_{n=1}^{\infty} (k+1)^{n-1} q^n$$

$$= \sum_{n=1}^{\infty} \sum_{d \cdot e = n} g_k(d) q^n$$

$$= \sum_{d=1}^{\infty} \sum_{e=1}^{\infty} g_k(d) q^{ed}$$

$$= \sum_{d=1}^{\infty} \frac{g_k(d) q^d}{1 - q^d}.$$

Now $g_k(1)=1$ because $g_k(1)$ only counts 1_1 , and $g_k(2)=k$ because $g_k(2)$ counts $1_1+1_1,\, 1_2+1_1,\ldots, 1_k+1_1$. Hence

$$\sum_{d=3}^{\infty} \frac{g_k(d)q^d}{1-q^d} = \frac{q}{1-(k+1)q} - \frac{q}{1-q} - \frac{kq^2}{1-q^2}$$
$$= \frac{k(k+2)q^3}{(1-q)(1-q^2)(1-(k+1)q)}$$

Therefore by Lemma 1, k(k+2) divides $g_k(n)$ for $n \ge 3$.

Next we must consider each of the primes p_i which occur in the prime factorizations of $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.

So let

$$n = p^{\alpha} m$$

where (p, m) = 1.

Then by Möbius inversion [1, p. 87]

$$g_k(n) = \sum_{d|n} \mu(d)(k+1)^{\frac{n}{d}-1}$$

$$= \sum_{d|m} \mu(d)(k+1)^{p^{\alpha} \frac{m}{d}-1}$$

$$+ \sum_{d|m} \mu(pd)(k+1)^{p^{a-1} \frac{m}{d}-1}$$
(because $\mu(d) = 0$ if $p^2|d$)

$$= \sum_{d|m} \mu(d)(k+1)^{p^{\alpha-1}\frac{m}{d}-1} \left((k+1)^{\frac{m}{d}(p^{\alpha}-p^{\alpha-1})} - 1 \right).$$

Now each term in this last expression is clearly divisible by

$$(k+1)^{p^{\alpha}-p^{\alpha-1}} - 1 = (k+1)^{\phi(p^{\alpha})} - 1$$

This concludes the proof of Theorem 1 because we have now shown that each of the factors in the ℓ .c.m. divides $g_k(n)$.

Corollary 4. If all the prime factors of n are relatively prime to k+1, then $n|g_k(n)$.

Proof. Let $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$. Since $(p_i,k+1)=1$, we know by Euler's Theorem [1, p. 62] that

$$(k+1)^{\phi(p_i^{\alpha_i})} \equiv 1 \pmod{p_i^{\alpha_i}}.$$

Hence for each i,

$$p_i^{\alpha_i} \left| \left\{ (k+1)^{\phi(p_i^{\alpha_i})} - 1 \right\} \right| g_k(n);$$

therefore,

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \bigg| g_k(n).$$

Corollary 5. If n is odd, then $n|g_1(n)$.

Proof. This follows from Corollary 4 with k = 1.

3 Conclusion

While Theorem 1 explains a lot about why $g_k(n)$ has many small prime factors, it clearly doesn't explain everything. For example,

$$g_3(36) = 2^{10} \cdot 3^2 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 67 \cdot 241 \cdot 1,025,663,893.$$

whereas

$$\ell cm(3 \cdot 5, 4^{\phi(9)} - 1, 4^{\phi(4)} - 1) = \ell cm(3 \cdot 5, 4^6 - 1, 4^2 - 1)$$
$$= 3^2 \cdot 5 \cdot 7 \cdot 13.$$

This leaves $2^{10} \cdot 17$ unexplained.

So a natural project is the following:

Find other theorems like Theorem 1 that account for the other small prime factors of $g_k(n)$.

Also one may view $g_k(n)$ as a polynomial in k. In that case, Theorem 1 is still valid and asserts the divisibility of polynomials. So when n = 36

$$g_k(36) = k(k+1)^5(k+2)(k^2+k+1)(k^2+2k+2)$$

$$\times (k^2+3k+3)(k^4+4k^3+5k^2+2k+1)$$

$$\times (k^{18}+18k^{17}+\cdots+48620k^9+\cdots+24k+1).$$

On the other hand

$$\ell.c.m.(k(k+2), (k+1)^{\phi(2^2)} - 1, (k+1)^{\phi(3^2)} - 1)$$

= $k(k+2)(k^2+k+1)(k^2+3k+3),$

and this leaves unexplained the factors

$$(k+1)^5(k^2+2k+2)(k^4+4k^3+5k^2+2k+1)$$

= $(k+1)^5((k+1)^2+1)((k+1)^4-(k+1)^2+1).$

We note that each of the irreducible polynomial factors p(k) of our ℓ .c.m. is such that p(k-1) is a cyclotomic polynomial. So our final project is to account for all the other factors or $g_k(n)$ that are instances of cyclotomic polynomials evaluated at k+1.

References

- [1] G. E. Andrews, Number Theory, Dover, New York, 1994.
- [2] E. Deutsch, *Problem 11161 solution*, Amer. Math. Monthly, 114 (2007), 363.
- [3] H. W. Gould, Binomial coefficients, the bracket function, and compositions with relatively prime summands, Fibonacci Quart., 2 (1964), 241–260.

- [4] P. A. MacMahon, *Combinatory Analysis*, Vol. 1, Cambridge University Press, London, 1916. (Reprinted: Chelse, New York, 1960).
- [5] P. A. MacMahon, Collected Papers, Vol. 1, G. E. Andrews, ed., MIT Press, Cambridge, 1978.

Department of Mathematics The Pennsylvania State University University Park, PA 16802

Email: andrewsmath.psu.edu