Data visualization in

EMBL-EBI

Leland Taylor @lelandtlr

November 21, 2014 www.ebi.ac.uk

Outline

- 1. ggplot2 for data visualizations
- 2. Bioconductor for data visualizations
- 3. Other cool stuff

http://bit.ly/1yWPQA1

Introduction

Packages extend R

Bundles of functions that extend the core R language

Stored in code repositories (e.g. The Comprehensive R Archive Network – CRAN)

Packages extend R

A package for everything

Anders and Huber *Genome Biology* 2010, **11**:R106 http://genomebiology.com/2010/11/10/R106

METHOD Open Access

Differential expression analysis for sequence count data

Simon Anders*, Wolfgang Huber

Packages are easy to install and use

```
# install package
install.packages("ggplot2")
# load package
library("ggplot2")
# supplemental documentation
vignette()
```

ggplot2 for data visualizations

ggplot2

Dataframe based plotting package

http://docs.ggplot2.org

The core function

```
# guesses what plot you want
qplot()

# gives you more control
ggplot()
```

Plot composition

- 1. A dataset and set of aesthetic mappings
- 2. Multiple layers
- 3. A scale for each aesthetic*
- 4. A coordinate system*

* Optional user input

A dataset and aesthetic mappings

ggplot() initializes a reference to the source data and global aesthetic mappings

A dataset example

```
> head(mpg)
 manufacturer model displ year cyl trans drv cty hwy fl
                                                              class
         audi
                 a4
                      1.8 1999
                                    auto(15)
                                               f
                                                  18
                                                      29
                                                          p compact
                                4 manual(m5)
         audi
                    1.8 1999
                                               f
2
                 a4
                                                  21
                                                      29
                                                          p compact
         audi
                 a4 2.0 2008
                                 4 manual(m6) f
                                                      31
3
                                                  20
                                                          p compact
         audi
                 a4 2.0 2008
                                    auto(av) f
                                                  21
                                                      30
4
                                                          p compact
         audi
                    2.8 1999
                                    auto(15)
                                               f
5
                 a4
                                                  16
                                                      26
                                                          p compact
         audi
                 a4 2.8 1999
                                 6 manual(m5)
                                               f
                                                  18
                                                      26
6
                                                          p compact
```

Each row is a point

```
# x and y mappings are displ and hwy for all layers
ggplot(mpg, aes(x=displ, y=hwy))
```


Plots have layers

Layers are the components of the plot

Layers are stacked on top of each other to render the final image

http://www.innovativegis.com/basis/BeyondMappingSeries/BeyondMapping_IV/Topic1/BM_IV_T1_files/image008.png

Adding multiple layers

```
ggplot(mpg, aes(x=displ, y=hwy)) +
      geom_point()
                                         20 -
                                                 displ
ggplot(mpg, aes(x=displ, y=hwy)) +
      geom_point() +
      geom_line()
                                         20 -
                                               3
                                                 displ
```

Layers have 2 flavors

- 1. Geometric Objects
 - Plot the raw data
 - geom_<name>
 geom_point(), geom_line(), geom_bar(), geom_boxplot()...

- 2. Statistical transformations
 - Transform the raw data and then plot it
 - stat_<name>
 stat_summary (), stat_smooth(), stat_bin()...

An example of a stat layer

```
ggplot(mpg, aes(x=displ, y=hwy)) +
    geom_point() +
    geom_line() +
    stat_smooth(method="lm")
```


stat_smooth fits and plots a linear regression

We can add many aesthetic mappings

Type	Discrete Data	Continuous Data
Color & Fill	Different color for each (rainbow of colors)	Linear mapping between gradient and value
Size	Discrete size steps for each	Linear mapping between radius and value
Shape	Different shape for each	-
Alpha	Different alpha for each	Linear mapping between alpha and value

Aesthetic mappings make pretty plots

ggplot(mpg, aes(x=displ, y=hwy, color=class)) + 40 geom point() class 2seater compact midsize minivan pickup subcompact 20 suv displ

Aesthetic mappings make pretty plots

ggplot(mpg, aes(x=displ, y=hwy, cty color=class, 10 15 40 size=cty)) + 20 geom point() 30 35 **ywd** 30 class 2seater compact midsize 20 minivan pickup subcompact suv displ

Aesthetic mappings can be global or local

ggplot(mpg, aes(x=displ, y=hwy, color=class, size=class)) + 40class geom point() + 2seater compact geom line() 30 midsize minivan pickup subcompact 20 suv size applies to all layers displ

Aesthetic mappings can be global or local

Anscombe_summarize.csv

- 1. Summarize all variables
 - Median, quartiles, outliers, distribution of the data

Anscombe_regression.csv

- Fit a linear regression to the <u>entire</u> dataset
 - Education should be the dependent variable
- 2. Fit a linear regression to **each** variable

Plot scales

Scale = mappings of data to aesthetic properties
Convey mappings via guides (axes and legends)

Manually adjusting scales:

- scale_<aesthetic_name>
- All default scales are continuous or discrete

Manually adjusting scales

```
ggplot(mpg, aes(x=displ, y=hwy, color=class)) +
    geom_point() +
    scale_x_reverse("Engine Displacement")
```


Plot coordinate system

Coordinate systems = mapping from plot coordinates to the 2d plane of the computer screen.

Manually adjusting coordinates:

- coord_<coordinate_system>
- Can transform or zoom in on coordinates

Manually adjusting coordinate system

```
ggplot(mpg, aes(x=displ, y=hwy, color=class)) +
    geom_point() +
    coord_polar()
```


Anscombe_summarize.csv

- 1. Summarize all variables
 - Median, quartiles, outliers, distribution of the data
 - A linear and log10 scale
 - Plots should have a title and labels on <u>all</u> <u>aesthetics</u>

Facets

Facets display subsets of the dataset in different panels.

facet_grid()

Lay out panels in a grid

facet_wrap()

Wrap a ribbon of panels

Facets subset data

```
ggplot(mpg, aes(x=displ, y=hwy, color=class)) +
    geom_point() +
    facet_grid( ~ drv)
```


Preset themes for your plot

ggplot(mpg, aes(x=displ, y=hwy, color=class, alpha=class)) + class geom point() + 2seater compact theme bw() midsize minivan pickup subcompact 20 suv displ

Preset color schemes for your plot

```
ggplot(mpg, aes(x=displ, y=hwy,
      color=class,
      alpha=class)) + 40-
                                                  class
      geom point() +
                                                    2seater
                                                    compact
      theme_bw() +
                                                    midsize
                                                    minivan
scale_colour_brewer(
                                                    pickup
                                                    subcompact
      palette="Dark2"
                                                    suv
                                      displ
```

Saving plots

```
# saves your last plot, guesses settings
ggsave("cars.pdf")
# pdf
pdf(file="cars01.pdf", height=5, width=6)
      <ggplot call here>
dev.off()
# png = good for many data points
png(file="cars.png", width=1000, height=700,
      units='px', res=120)
      <ggplot call here>
dev.off()
```

Anscombe_regression.csv

- 1. Fit a linear regression to **each** variable
 - Education should be the dependent variable

- Plots should have a title and labels on <u>all aesthetics</u>
- Change something about the theme
- Set the scale to the EBI color scheme
 - "#71B360", "#48877C", "#CC6D78"
- Facet by variable and adjust the scales so you can see the regression
- Save the plot to a pdf file

Bioconductor for data visualizations

Bioconductor

Collection of packages for high-throughput genomics

http://www.bioconductor.org/

R + Bioconductor Applications

- Visualize high-throughput genomics data
- Differential gene expression analysis
- Gene ontology enrichment
- Workflows for analyzing variants, epigenomics data (e.g. ChIP-seq), transcriptome data
- Applying machine learning techniques to biological data

http://www.bioconductor.org/help/workflows/

Installing Bioconductor

```
source("http://bioconductor.org/biocLite.R")
biocLite()

# install the Sushi
biocLite("Sushi")
```


Other cool stuff

*wow your boss

ggvis

Create interactive graphics

http://ggvis.rstudio.com/

Histogram:

Shiny

Create interactive applications

http://shiny.rstudio.com/

Acknowledgements

This module is derived from resources by

 Hadley Wickham (under the under the Creative Commons Attribution-Noncommercial 3.0 United States License)

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

