SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Mechanical Academic Year: 2022 Duration: 3 hours

Engineering Date: 10.01.2023

Time: 10:30 am to 01:30 pm

Subject: Mechanical Vibrations (Semester V)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question	heat labelled diagrams, wherever necessary.	Max.
_		
No. Q1 (a)	i). Using Holzer's table find the inertia of rotor X in figure so that the highest natural frequency is 20 rad/sec. If the displacement of X is 1.5 Deg. Find the displacement of other rotors. So Kg-cm² X	[06]
	OR ii)A three degree of freedom system is shown in fig. write down its three differential equations of motion by Newton's second law. Put these equations in matrix form.	
	3K $4m$ $2m$ m m	[06]
Q1 (b)	20 N at 30cm, 30 N at 60 cm and 10 N at 100 cm's from the fixed end are the on cantilever beam. The deflection under 30N load due to all loads is 2 mm, what would be the natural frequency of transverse vibration if 20N is added at 80 cm from fixed end? Deflection at a section 'i' due to unit load 'section.	[09]
	$U_{ij} = \frac{S_i^2 (3S_j - S_i)}{Constant}$ for $S_i < S_j$, $U_{ij} = U_{ji}$	

******* 1 *******

00 ()		5007
Q2 (a)	i) An Underdamped shock absorber is to be designed for a motor cycle of mass 250kg such that during road bump, the damped period of vibration is limited to	[09]
	3 sec and amplitude of vibration should reduce to one eighteenth in one cycle. Find the stiffness of the spring and damping coefficient of shock absorber. OR	
		[00]
	ii) A door 200 cm high, 75 cm wide and 4 cm thick and weighing 35 kg is fitted with an automatic door closer. The door opens against a spring with a modulus of 1 kgcm/radian. If the door is opened 90 Deg. and released, how long will it take the door to be within 1Deg. of closing? Assume the return spring of the door to	[09]
	be critically damped.	
Q2 (b)	The Block as shown in Fig.is displaced 25mm and released it is observed that the	[06]
£ (-)	amplitude decreases 1.2 mm each cycle. What is the coefficient of friction between the block and the surface?	
	nove 10 kg	
	250	
Q3 (a)	A motor car Moving with a speed of 100km/hr. has a gross mass of 1500kg. It	[10]
	passes over a rough road which has a sinusoidal surface with an amplitude of	
	75mm and wavelength of 5m. The Suspension system has a spring constant of 500	
	N/mm and damping ratio of 0.5. Determine the displacement amplitude of car and	
	time lag.	
Q3 (b)	i) Explain salient features of frequency response curve and phase frequency curve.	[05]
	OR	
	ii) Explain the term magnification factor and obtain expression for it.	[05]
Q4 (a)	i)Four masses A, B, C, D are completely balanced. Masses C and D makes angle	[10]
	of 90 Deg. and 210 Deg. respectively with B in same sense. The Planes containing	
	B and C are 300 mm apart. Masses A, B, C, D, can be assumed to be concentrated	
	at radii of 360, 480, 240 and 300 mm respectively. The masses B, C and D are	
	15kg, 25kg, and 20kg respectively. Determine-1. The mass of A and its angular	
	position, 2. The position of planes A and D.	
	OR	
	ii)A four cylinder in line engine running at 2000 rpm is having crank and	[10]
	connecting rod lengths of 60 mm and 240 mm respectively. The mass of	
	reciprocating part of each cylinder is 2 kg. The cylinders are spaced 160mm apart	
	and the crank appears at 90 Deg. Intervals in an end view. If the firing order of the	
	engine is 1-4-2-3, determine 1. The unbalance primary and secondary forces ,2.	
	The unbalance primary and secondary couples.	
Q4 (b)	What is the function of a vibration isolator? Also write a note on commercial isolator material.	[05]
Q5 (a)	A spring-mass-damper system, having an undamped natural frequency of 100 Hz	[10]
	and a damping constant 20 N-s/m, is used as an accelerometer to measure the	r - 1
	vibration of a machine operating at a speed of 3000 r.p.m., if the actual acceleration	
	is 10 m/s ² and recorded acceleration is 9 m/s ² , find the mass and spring constant	
	of the accelerometer.	
Q5 (b)	i)What do you mean by vibration monitoring of machine? List various types of	[05]
Q U (0)	vibration monitoring techniques.	
	OR	

******* 2 *******