Lezioni di Ricerca Operativa

Corso di Laurea in Informatica ed Informatica Applicata
Università di Salerno

Lezione n° 7

- Cono di recessione.
- Teorema della rappresentazione.

R. Cerulli – F. Carrabs

Vertici di un poliedro

Definizione

Un punto di un poliedro X è un **punto estremo** se e solo se non può essere espresso come combinazione convessa STRETTA di altri punti di X.

Teorema (no dim.)

(Proprietà dei punti estremi di un poliedro limitato)

Dato un poliedro X non vuoto e limitato con punti estremi $\underline{x}_1, \underline{x}_2,..., \underline{x}_k$, ogni punto $\underline{y} \in X$ può essere espresso come combinazione convessa dei punti estremi di X, cioè:

$$\underline{y} = \sum_{j=1}^{k} \lambda_j \underline{x}_j$$

con

$$\sum_{j=1}^{k} \lambda_j = 1 \qquad e \qquad \lambda_j \ge 0 \quad \forall j=1,...,k$$

Esempio

Voglio esprimere il vettore <u>y</u> come combinazione convessa dei vertici del politopo

$$y = \lambda \underline{x}_2 + (1 - \lambda)\underline{z}$$
 $\lambda \in (0,1)$

$$\underline{y} = \lambda \underline{x}_2 + (1 - \lambda)\underline{z} \qquad \lambda \in (0, 1)$$

$$\underline{z} = \mu \underline{x}_5 + (1 - \mu)\underline{x}_4 \qquad \mu \in (0, 1)$$

sostituisco:

$$\underline{y} = \lambda \underline{x}_2 + \mu (1 - \lambda) \underline{x}_5 + (1 - \mu) (1 - \lambda) \underline{x}_4$$

Nota che:

1.
$$\lambda \ge 0$$
 $\mu(1-\lambda) \ge 0$ $(1-\mu)(1-\lambda) \ge 0$

2.
$$\lambda + \mu(1-\lambda) + (1-\mu)(1-\lambda) = \lambda + (1-\lambda)(\mu + 1 - \mu) = 1$$

In generale:

Una combinazione convessa di \underline{x}_1 , \underline{x}_2 \underline{x}_3 permette di ottenere tutti i punti di $X' \subset X$

Quando un poliedro è illimitato?

Bisogna considerare le sue direzioni estreme

Raggi e direzioni di un poliedro

Definizione.

Un RAGGIO R di vertice \underline{x}_0 e di direzione \underline{d} è un insieme di punti

della forma:
$$R = \{ \underline{x}_0 + \lambda \underline{d} : \lambda \ge 0 \}$$

Raggi e direzioni di un poliedro

Definizione

Dato un poliedro X, il vettore \underline{d} è una **direzione** di X se e solo se per ogni punto $\underline{x}_0 \in X$, il raggio

$$\underline{x}_0 + \lambda \underline{d}, \ \lambda \ge 0$$

appartiene a X.

<u>d</u>₁ NON è direzione

 \underline{d}_2 è direzione

<u>d</u>₃ NON è direzione

Come si calcolano le direzioni di un poliedro?

(Procedimento algebrico)

$$X = \left\{ \underline{x} : A\underline{x} \le \underline{b}, \underline{x} \ge \underline{0} \right\} \text{ (poliedro)}$$

Dato un qualsiasi punto $\underline{x} \in X$, il vettore \underline{d} è una direzione del poliedro X se:

(i)
$$A(\underline{x} + \lambda \underline{d}) \leq \underline{b}$$

(ii) $\underline{x} + \lambda \underline{d} \geq \underline{0}$
(iii) $\underline{d} \neq \underline{0}$

(i)
$$A(\underline{x} + \lambda \underline{d}) \leq \underline{b}$$

(ii)
$$\underline{x} + \lambda \underline{d} \ge \underline{0}$$

(iii)
$$\underline{d} \neq \underline{0}$$

(i) poiché $x \in X$:

$$A(\underline{x} + \lambda \underline{d}) \le \underline{b} \Leftrightarrow A\underline{x} + \lambda A\underline{d} \le \underline{b} \Leftrightarrow \lambda A\underline{d} \le 0 \Leftrightarrow A\underline{d} \le \underline{0}$$

(ii)
$$\underline{x} + \lambda \underline{d} \ge \underline{0} \Leftrightarrow d \ge \underline{0}$$

Quindi le direzioni <u>d</u> del poliedro X sono tutti e soli i vettori tali che:

$$A\underline{d} \le \underline{0}$$

$$\underline{d} \ge \underline{0}$$

$$d \ne 0$$

Adesso vediamo un esempio poi vediamo come si interpretano geometricamente

Esempio 1

$$X = \begin{cases} (x_1, x_2) : -3x_1 + x_2 \le -2, -x_1 + x_2 \le 2, -x_1 + 2x_2 \le 8 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

L'insieme delle direzioni di X è dato dai vettori

$$\underline{d} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$D = \begin{cases} (d_1, d_2) : -3d_1 + d_2 \le 0, -d_1 + d_2 \le 0, -d_1 + 2d_2 \le 0 \\ d_1 + d_2 = 1, d_1 \ge 0, d_2 \ge 0 \end{cases}$$

$$\underline{d'} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} \qquad \underline{d''} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Coni Convessi

Definizione:

Un cono convesso C è un insieme convesso tale che se $\underline{x} \in C$ allora anche $\lambda \underline{x} \in C \ \forall \lambda \geq 0$.

Un cono convesso è un insieme convesso che contiene raggi che partono dall'origine (perché?)

In generale:

un cono convesso può essere espresso in funzione dei suoi raggi

Solo alcuni raggi sono sufficienti (detti RAGGI ESTREMI) perché gli altri sono espressi come combinazione conica di questi

Coni Convessi

Dato un insieme di vettori $\underline{d}_1, \underline{d}_2, ..., \underline{d}_k$ il cono convesso generato da questi vettori è dato da:

$$C = \left\{ \sum_{j=1}^{k} \lambda_j \underline{d}_j : \lambda_j \ge 0 \quad j = 1, 2, ..., k \right\}$$

Direzioni estreme di un poliedro

Definizione.

Una direzione \underline{d} di un poliedro X, è una direzione estrema di X se e solo se non è esprimibile come combinazione conica di altre direzioni di X.

Come si calcolano le direzioni di un poliedro?

(Procedimento geometrico)

$$X = \left\{ \underline{x} : A\underline{x} \le \underline{b}, \underline{x} \ge \underline{0} \right\} \text{ (poliedro)}$$

Abbiamo visto che <u>d</u>è una a direzione del poliedro se:

$$A\underline{d} \le \underline{0}$$

$$\underline{d} \ge \underline{0}$$

$$d \ne 0$$

Questo è un sistema omogeneo che definisce un cono poliedrico (detto CONO di RECESSIONE) ottenuto traslando gli iperpiani che definiscono X parallelamente a se stessi fino all'origine

Direzioni estreme del poliedro (direzioni estreme del cono di recessione)

Teorema (di rappresentazione di poliedri) (no dim.)

Dato un poliedro X non vuoto con punti estremi \underline{x}_i con i=1,...,k e direzioni estreme \underline{d}_j con j=1,...,t, ogni punto $\underline{x} \in X$ può essere espresso come combinazione convessa dei punti estremi di X e combinazione lineare non negativa (conica) delle sue direzioni estreme:

$$\underline{x} = \sum_{i=1}^{k} \lambda_i \ \underline{x}_i + \sum_{j=1}^{t} \mu_j \underline{d}_j$$

$$\sum_{i=1}^{k} \lambda_i = 1 \quad \lambda_i \ge 0 \quad i = 1, 2, ..., k$$

$$\mu_j \ge 0 \quad j = 1, 2, ..., t$$

$$\underline{y} = \lambda \underline{x}_2 + (1 - \lambda)\underline{x}_3 \qquad \lambda \in (0, 1)$$

$$\underline{w} = \underline{y} + \mu \underline{d}_1 \qquad \mu \ge 0$$

quindi:
$$\underline{w} = \lambda \underline{x}_2 + (1 - \lambda)\underline{x}_3 + \mu \underline{d}_1$$

Soluzione dei problemi di PL

Consideriamo il problema (PL) in Forma Standard

$$\min z = \underline{c}^T \underline{x}$$
s.t. $A\underline{x} = \underline{b}$

$$\underline{x} \ge \underline{0}$$

$$\underline{x}_i$$
 $i = 1, 2, ..., k$ punti estremi \underline{d}_j $j = 1, 2, ..., t$ direzioni estreme

Ogni punto $\underline{x} \in X$ può essere espresso come combinazione convessa dei punti estremi di X e combinazione lineare non negativa delle sue direzioni estreme:

$$\underline{x} = \sum_{i=1}^{k} \lambda_i \ \underline{x}_i + \sum_{j=1}^{t} \mu_j \underline{d}_j$$

$$\sum_{i=1}^{k} \lambda_i = 1 \quad \lambda_i \ge 0 \quad i = 1, 2, ..., k \quad \mu_j \ge 0 \quad j = 1, 2, ..., t$$

Possiamo trasformare il problema di PL in un nuovo problema con incognite:

$$\lambda_1, \lambda_2, ..., \lambda_k \in \mu_1, \mu_2, ..., \mu_t$$

$$\min \ z = \sum_{i=1}^{k} \left(\underline{c}^{T} \underline{x}_{i}\right) \lambda_{i} + \sum_{j=1}^{t} \left(\underline{c}^{T} \underline{d}_{j}\right) \mu_{j}$$

$$\sum_{i=1}^{k} \lambda_i = 1 \quad \lambda_i \ge 0 \quad i = 1, 2, ..., k \quad \mu_j \ge 0 \quad j = 1, 2, ..., t$$

Nota:

- 1. se esiste una direzione \underline{d}_j tale che $\underline{c}^T\underline{d}_j < 0 \implies l'ottimo del problema è illimitato$
- 2. se $\underline{c}^T \underline{d} \ge 0$ per ogni $\underline{d}_j \implies$
 - le corrispondenti variabili $\mu_1, \mu_2, ..., \mu_t$ sono scelte uguali a zero
 - per minimizzare il resto della sommatoria basta calcolare tutti i valori $\underline{c}^T\underline{x}_i$, scegliere il minimo ad esempio $\underline{c}^T\underline{x}_p$ e fissare λ_p =1 e tutti gli altri uguali a zero

RIASSUMENDO:

1. la soluzione ottima di un problema di minimo è finita se e solo se $\underline{c}^T \underline{d}_j \ge 0$ per ogni \underline{d}_j

2. in questo caso una soluzione ottima si trova su uno dei vertici del poliedro

3. se esistono più vertici ottimi allora ogni combinazione convessa di questi punti è una soluzione ottima

Soluzione dei problemi di PL: esempio

min
$$z = x_1 - 3x_2$$
 Calcoliamo punti estremi $-x_1 + x_2 \le 2$ e direzioni estreme $x_1, x_2 \ge 0$

$-x_1$ Soluzione dei problemi di PL; esempio (2)

$$-x_1 + 2x_2 = 6$$
; $x_1 = 0 \Rightarrow x_2 = 3$; $x_2 = 0 \Rightarrow x_1 = -6$

$$\begin{cases} -x_1 + x_2 = 2 \Rightarrow x_2 = 2 + x_1 \\ -x_1 + 2x_2 = 6 \Rightarrow -x_1 + 4 + 2x_1 = 6 \Rightarrow x_1 = 2, x_2 = 4 \end{cases}$$

Soluzione dei problemi di PL: esempio(3)
$$D = \begin{cases} (d_1, d_2) : -d_1 + d_2 \le 0, -d_1 + 2d_2 \le 0, d_1 + d_2 = 1 \\ d_1 \ge 0, d_2 \ge 0 \end{cases}$$

$$\begin{cases} d_1 = 1 - d_2 \\ -1 + d_2 + d_2 \le 0 \Rightarrow d_2 \le \frac{1}{2} \\ -1 + d_2 + 2d_2 \le 0 \Rightarrow d_2 \le \frac{1}{3} \end{cases}$$

$$0 \le d_2 \le \frac{1}{3}$$

$$\underline{d}^1 = \left(\frac{2}{3}, \frac{1}{3}\right)$$

$$\underline{d}^2 = (1,0)$$

Soluzione dei problemi di PL: esempio(4)

$$\min z = x_1 - 3x_2 \Rightarrow \underline{c}^T = (1, -3)$$

$$\underline{c}^{T}\underline{h} = (1, -3) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0; \ \underline{c}^{T}\underline{b} = (1, -3) \begin{pmatrix} 0 \\ 2 \end{pmatrix} = -6; \ \underline{c}^{T}\underline{a} = (1, -3) \begin{pmatrix} 2 \\ 4 \end{pmatrix} = -10;$$

$$\underline{c}^{T}\underline{d}^{1} = (1, -3) \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix} \neq -1/3; \underline{c}^{T}\underline{d}^{2} = (1, -3) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1;$$

min
$$0\lambda_1 - 6\lambda_2 - 10\lambda_3 - 1/3\mu_1 + \mu_2$$

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$
 $\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2 \ge 0$

Ottimo illimitato

(facendo tendere μ₁ a ∞ la f.o. tende a - ∞ indipendentemente dai valori scelti per le altre variabili)

Soluzione dei problemi di PL: esempio(5)

Consideriamo una differente funzione obiettivo

min
$$z = 4x_1 - x_2 \Rightarrow \underline{c}^T = (4, -1)$$

$$\underline{c}^{T}\underline{h} = (4, -1) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0; \ \underline{c}^{T}\underline{b} = (4, -1) \begin{pmatrix} 0 \\ 2 \end{pmatrix} = -2; \ \underline{c}^{T}\underline{a} = (4, -1) \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 4;$$

$$\underline{c}^{T}\underline{d}^{1} = (4, -1) {2/3 \choose 1/3} = 7/3; \ \underline{c}^{T}\underline{d}^{2} = (4, -1) {1 \choose 0} = 4;$$

$$\min 0\lambda_1 - 2\lambda_2 + 4\lambda_3 + 7/3\mu_1 + 4\mu_2$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2 \ge 0$$

Ottimo finito di valore -2 in corrispondenza del vertice <u>b</u> ottenuto assegnando alle variabili i valori

$$\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{3} = 0, \lambda_{2} = 1$$