μΑ747

DUAL FREQUENCY COMPENSATED OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The μ A747 is a pair of high performance monolithic operational amplifiers constructed on a single silicon chip, using the Fairchild Planar* epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of "latch-up" make the μ A747 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. The µA747 is short-circuit protected and requires no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications. For single amplifier performance, see μ A741 data sheet.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

ABSOLUTE MAXIMUM RATINGS

Military (312 Grade) Commercial (393 Grade) Internal Power Dissipation (Note 1) Metal Can Ceramic DIP Differential Input Voltage Input Voltage (Note 2) Voltage between Offset Null and V-Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 seconds) Output Short-Circuit Duration (Note 3)

Supply Voltage ±22 V ±18 V 500 mW 670 mW ±30 V ±15 V ±0.5 V -65° C to $+150^{\circ}$ C -55°C to +125°C 300° C Indefinite

OFFSET INPLIT A NON-INV □ V+ A OFFSET C OUTPUT A NULL A ⊐ NO CONNECT V-- E OFFSET OUTPUT B NON-INV INPUT B □ OFFSET INV INPUT B ORDER PART NOS. U7A7747312 U7A7747393 10 LEAD METAL CAN NON-INVERTING ORDER PART NOS. U5F7747312 U5F7747393

CONNECTION DIAGRAMS

(TOP VIEWS)

14 LEAD DIP

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ747

PARAMETERS (see definitions)	CONDITIONS	MIN.	. TYP.	MAX.	UNIT
Input Offset Voltage	$R_{S} \leq 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current	•		20	200	nA
Input Bias Current			. 80	500	nA
Input Resistance		0.3	2.0		$M\Omega$
Input Capacitance			1.4		pF
Offset Voltage Adjustment Range			±15		mV
Large-Signal Voltage Gain	$R_{L} \geq 2 k\Omega$, $V_{out} = \pm 10 V$	50,000	200,000		
Output Resistance	-		75		Ω
Output Short-Circuit Current			25		mA
Supply Current			1.7	2.8	mA
Power Consumption			50	85	mW
Transient Response (unity gain)	$ m V_{in} = 20~mV, R_{i} = 2~k\Omega, C_{L} \leq 100~pF$				
Risetime			0.3		μ S
Overshoot			5.0		%
Slew Rate	${\sf R_L} \geq 2~{\sf k}\Omega$		0.5		V/μs
Channel Separation			120	-	dB
The following specifications appl	y for $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}.$				
Input Offset Voltage	${ m R_S} \leq 10~{ m k}\Omega$		1.0	6.0	mV
Input Offset Current	$T_A = +125$ °C		7.0	200	nA
•	$T_A = -55$ °C		85	500	nA
Input Bias Current	$T_A = +125$ °C		0.03	0.5	μ A
	$T_A = -55$ °C	•	0.3	1.5	μ A
Input Voltage Range		±12	±13		٧
Common Mode Rejection Ratio	${ m R_S} \leq 10~{ m k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$ extsf{R}_{ extsf{S}} \leq 10 \; extsf{k}\Omega$		30	150	μ V/V
Large-Signal Voltage Gain	$ m R_L \geq 2~k\Omega$, $ m V_{out} = \pm 10~V$	25,000			
Output Voltage Swing	${ m R_L} \geq 10~{ m k}\Omega$	±12	±14		٧
• * .	${ m R_L} \geq 2~{ m k}\Omega$	±10	±13	v	٧
Supply Current	$T_A = +125$ °C		1.5	2.5	mA
	$T_A = -55$ °C		2.0	3.3	mA
Power Consumption	$T_A = +125$ °C		45	75	mW
	$T_A = -55$ °C		60	100	mW

TYPICAL PERFORMANCE CURVES (Each Amplifier)

TYPICAL PERFORMANCE CURVES

1. 1. 4.

OPEN LOOP VOLTAGE GAIN

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ747

PARAMETERS (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	${ m R_S} \leq 10~{ m k}\Omega$		1.0	6.0	mV
Input Offset Current			20	200	nA
Input Bias Current			80	500	nA
Input Resistance		0.3	2.0		Ω M
Input Capacitance			1.4		pF
Offset Voltage Adjustment Range			±15		mV
Large-Signal Voltage Gain	$ m R_L \geq 2~k\Omega$, $ m V_{out} = \pm 10~V$	25,000	200,000		
Output Resistance			75		Ω
Output Short-Circuit Current			25		mA
Supply Current			1.7	2.8	mA
Power Consumption			50	85	mW
Transient Response (unity gain)	${ m V_{in}}=20$ mV, ${ m R_{L}}=2$ k Ω , ${ m C_{L}}\leq100$ pF				
Risetime			0.3		μ S
Overshoot			5.0		%
Slew Rate	$ extsf{R}_{ extsf{L}} \geq 2 \; extsf{k}\Omega$		0.5		V /μs
Channel Separation			120		dB
The following specifications app	ly for 0° C \leq T _A \leq +70°C.				
Input Offset Voltage	${ m R_S} \leq 10~{ m k}\Omega$		1.0	7.5	mV
Input Offset Current			7.0	300	nA
Input Bias Current			0.03	0.8	μ A
Input Voltage Range		±12	±13		٧
Common Mode Rejection Ratio	${ m R_S} \leq 10~{ m k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10 \; k\Omega$		30	150	μ V/V
Large-Signal Voltage Gain	$ m R_L \geq 2~k\Omega, V_{out} = \pm 10~V$	15,000			
Output Voltage Swing	$ m R_L \geq 10~k\Omega$	±12	±14		٧
	$ m R_L \geq 2~k\Omega$	±10	±13		٧
Supply Current			2.0	3.3	mA
Power Consumption			60	100	mW

NOTES

^{1.} Rating applies to ambient temperatures up to 70° C. Above 70° C ambient derate linearly at 6.3 mW/°C for the Metal Can and 8.3 mW/°C for the Ceramic DIP package.

For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
 Short circuit may be to ground or either supply. Military rating applies to +125°C case temperature or +60°C ambient temperature for

TYPICAL PERFORMANCE CURVES (Each Amplifier)

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS & FUNCTION OF SUPPLY VOLTAGE

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOOD RESISTANCE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

ABSOLUTE MAXIMUM POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF

INPUT NOISE CURRENT AS A FUNCTION OF **FREQUENCY**

BROADBAND NOISE FOR VARIOUS BANDWIDTHS

TYPICAL PERFORMANCE CURVES (Each Amplifier) OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY **OPEN LOOP VOLTAGE GAIN OUTPUT VOLTAGE SWING** AS A FUNCTION OF FREQUENCY AS A FUNCTION OF FREQUENCY 10 V_S • ± 15V - T_A • + 25 °C V_S = ± 15V V_S = ± 15V T_A = 25 °C T_A • 25 °C R_L • 10kΩ 32 PEAK-TO-PEAK OUTPUT SWING - V 28 PHASE - DEGREES 24 20 12 цА747 μA747 00i 10 100 lk 10k 100k 1M 10 100 100k 1M 10k FREQUENCY - Hz FREQUENCY - Hz FREQUENCY - Hz OUTPUT RESISTANCE AS A FUNCTION OF INPUT RESISTANCE AND COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY INPUT CAPACITANCE AS A **FUNCTION OF FREQUENCY FREQUENCY** V_S • ± 15V T_A • 25 °C V_S ± 15V T_A • 25 °C µA747 80 COMMON MODE REJECTION RATIO -70 50 30 10 μΑ747 μA747 0 L 100 10k 100k 10k 100k 10 100 lk 10k 100k 1M FREQUENCY - Hz FREQUENCY - Hz FREQUENCY - Hz TRANSIENT RESPONSE **VOLTAGE FOLLOWER** TRANSIENT RESPONSE TEST CIRCUIT LARGE-SIGNAL PULSE RESPONSE V_S • ± 15V T_A • 25 °C 24 Ē NPUT OUTPUT . VS* ± 15V 1_A • 25 C RISE TIM R_L= 2kΩ C_L= 100oF µA747 2.0 0 10 20 30 40 50 60 70 80 FREQUENCY CHARACTERISTICS FREQUENCY CHARACTERISTICS AS A FUNCTION OF **VOLTAGE OFFSET** AS A FUNCTION OF SUPPLY VOLTAGE **NULL CIRCUIT** AMBIENT TEMPERATURE TA - + 25 C V_S • ± 15V RELATIVE VALUE EW RATE

μA747

15

SUPPLY VOLTAGE - ± V

0.6

10

0.8

-20

20

60

TEMPERATURE - 'C

μΑ747

100

TYPICAL APPLICATIONS

UNITY-GAIN VOLTAGE FOLLOWER

$$\begin{split} \mathbf{R}_{\mathrm{IN}} &= 400 \; \mathrm{M}\Omega \\ \mathbf{C}_{\mathrm{IN}} &= 1 \; \mathrm{pF} \\ \mathbf{R}_{\mathrm{out}} &< < 1 \; \Omega \\ \mathbf{B.W.} &= 1 \; \mathrm{MHz} \end{split}$$

NON-INVERTING AMPLIFIER

Ì	GAIN	R,	R ₂	B.W.	R _{IN}
	10	1 kΩ	9 kΩ	100 kHz	400 MΩ
	100	100 Ω	9.9, kΩ	10 kHz	280 MΩ
	1000	100 Ω	99.9 kΩ	1 kHz	80 MΩ

INVERTING AMPLIFIER

GAIN	R,	R ₂	B.W.	R _{IN}
1	10 kΩ	10 kΩ	1 MHz	10 kΩ
10	1 kΩ	10 kΩ	100 kHz	1 kΩ
100	1 kΩ	100 kΩ	10 kHz	1 kΩ
1000	100 Ω	100 kΩ	1 kHz	100 Ω

WEIGHTED AVERAGING AMPLIFIER

$$\begin{split} -E_{\text{out}} &= E_{\text{INI}} \left(\frac{R_{\text{f}}}{R_{\text{I}}} \right) + E_{\text{IN2}} \left(\frac{R_{\text{f}}}{R_{\text{2}}} \right) + \\ E_{\text{IN3}} \left(\frac{R_{\text{f}}}{R_{\text{3}}} \right) - E_{\text{IN4}} \left(\frac{R_{\text{f}}}{R_{\text{4}}} \right) - E_{\text{IN5}} \left(\frac{R_{\text{f}}}{R_{\text{5}}} \right) \end{split}$$

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ747

TYPICAL APPLICATIONS

QUADRATURE OSCILLATOR

ANALOG MULTIPLIER

COMPRESSOR/ÈXPANDER AMPLIFIERS

TRACKING POSITIVE AND NEGATIVE VOLTAGE REFERENCES

NOTCH FILTER USING THE μ A747 AS A GYRATOR

