

Statistics for Economics, Lecture 20

Today

- Review homework 9
- Review t-test with varying sample size and variance
- Review regression line t-test
- Introduce confidence intervals
- Introduce Central Limit Theorem

What are the three things that economists are looking for in applied analysis?

Review homework 9

0.100	1.644854	1.281552
0.050	1.959964	1.644854

2.575829

3.290527

2.326348

3.090232

desired alpha level two-sided test one-sided test

0.010

0.001

(simple) T Tests = z-test

$$z_{\bar{X}} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{N}}$$

#1. We can make a normal with the mean and the standard deviation

$$\bar{x} = \frac{\sum x}{15} = \frac{1238}{15} = 82$$

$$\sigma = \sqrt{\frac{(\sum x - \bar{x})^2}{N - 1}} = \sqrt{\frac{4672}{14}} = 18.2$$

Can use the abstraction to compare to other abstractions:

Compare 2 classes:

Class1: 82 (18)

Class2: 72 (18)

Can extend this to further abstraction:

Compare 2 classes:

Class1: 82 (18) (green)

Class2: 72 (18)(**red**)

Or even

Class1: 82 (18) (green)

Class2: 72 (36)(orange)

Center any normal to standard normal (0,1)

- Subtract mean
- Divide by variation

Remember, we can use the CDF is find how much of the area is bounded under curve

Simple T-Test Case 1

Class1: 82 (18)

Class2: 72 (18)

Ho: Difference - o

H1: Not Ho

$$Z = \frac{82 - 72}{18/\sqrt{15}} = 2.27$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

Simple T-Test Case 2: smaller delta

Class1: 82 (18)

Class2: 76 (18)

Ho: Difference - 0

H1: Not Ho

$$Z = \frac{82 - 76}{18/\sqrt{15}} = 1.3$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

Simple T-Test Case 3: higher variance

Class1: 82 (28)

Class2: 72 (28)

Ho: Difference - o

H1: Not Ho

$$Z = \frac{82 - 72}{28/\sqrt{15}} = 1.4$$

$$z_{\bar{X}} = \frac{X - \mu_0}{\sigma / \sqrt{N}}$$

T-test

$$t = \frac{X_1 - X_2}{SE}$$

where

$$SE = \sqrt{\frac{\sigma_1^2}{N1} + \frac{\sigma_2^2}{N2}}$$

Difference between two groups with different sample sizes and variance

 $H_0: \quad \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

• Classroom 1

o Avg: 82

o Stdev: 18

• Size: 15

• Classroom 2

• Avg: 72

o Stdev: 22

• Size: 30

- Classroom 1Avg: 82
 - Stdev: 18Size: 15
- Classroom 2
 - Avg: 72Stdev: 22
 - o Size: 24

$$SE = \sqrt{\frac{18^2}{15} + \frac{24^2}{30}} = 6.3$$

$$T = \frac{82 - 72}{6.3} = 1.56$$

$$\dot{S} = \frac{X_1 - X_2}{SE}$$

where

$$SE = \sqrt{\frac{\sigma_1^2}{N1} + \frac{\sigma_2^2}{N2}}$$

Linear Regression

$$y_i = a + b * x_i + u_i$$

$$\hat{y}_i = \hat{a} + \hat{b} * x_i$$

$$\hat{u}_i = y_i - \hat{y}_i$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{b} = \frac{\text{cov}(x,y)}{\text{var}(x)} = \frac{\sum (x_i - \bar{x}) \sum (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{a} = \bar{y} - \hat{b} * \bar{x}$$

Walk through example

X	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y
3	6	-2.4	5.76	1.6	2.56	-3.84
5	9	-0.4	0.16	4.6	21.16	-1.84
2	2	-3.4	11.56	-2.4	5.76	8.16
8	1	2.6	6.76	-3.4	11.56	-8.84
9	4	3.6	12.96	-0.4	0.16	-1.44
	AV.	Å.	37.2		41.2	-7.8
		_				

yhat	y-yhat	
b0 + b1*x	error	
4.90	1.10	
4.48	4.52	
5.11	-3.11	
3.85	-2.85	
3.65	0.35	

mean_y	4.4
mean_x	5.4

numerator	-1.95	-1.95	-0.199	correlation	
denom	sqrt(37.2/4 * 41.2/4)	9.79		13.1	

-1.95

sum/(n-1)

slope	-0.210		
intercept	5.53		

Confidence Interval

 H_0 : b_1 = 0 (we don't believe there is a slope (relationship))

H_A: b₁not equal o (we believe there is a slope (relationship))

$$t = \frac{b_1 - 0}{SE_{b_1}} = \frac{b_1}{SE_{b_1}}$$

Confidence interval is $b1 + /- CV^*$ SE, where CV is critical value. This is easier to show than anything else (see notebook).

Central Limit Theorem

$$\sqrt{n}\left(ar{X}_n-\mu
ight) \stackrel{a}{
ightarrow} \mathcal{N}\left(0,\sigma^2
ight)$$

