IUT Nice-Côte d'Azur Département Informatique. Semestre 1 Noëlle Stolfi

Contrôle d'Algèbre Linéaire

13 janvier 2016. Durée 1h. Documents, téléphones et calculatrices interdits.

Exercice 1 (7 points)

On considère le système linéaire (S) suivant, où a est un réel :

$$\begin{cases} x - 2z & = -4 \\ -x + y + (a+4)z & = 10 \\ x - ay - 5z & = -10 \end{cases}$$

- 1) Ecrire la matrice A des coefficients du système (S).
- 2) Calculer le déterminant de A. Pour quelles valeurs de a, a-t-on det(A) = 0?
- 3) Dans le cas où $det(A) \neq 0$, en utilisant la méthode de Cramer, trouver les solutions de (S).
- 4) Dans le cas où a = 1 quelles sont les solutions de (S)?
- 5) Dans le cas où a = -3 quelles sont les solutions de (S)?

Exercice 2 (6 points)

Soient les vecteurs
$$V_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \\ 4 \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 3 \\ 1 \\ -4 \\ 6 \end{pmatrix}$, $V_3 = \begin{pmatrix} 1 \\ 0 \\ -4 \\ 1 \end{pmatrix}$ dans R^4 .

- 1) Ces vecteurs sont-ils linéairement dépendants ou indépendants?
- 2) Quelle est la dimension du sous-espace vectoriel engendré par ces vecteurs?
- 3) Trouver les équations du sous-espace vectoriel engendré par ces vecteurs.
- 4) Compléter ces vecteurs de manière à obtenir une base de \mathbb{R}^4 . Justifier la réponse.

Exercice 3 (7 points)

Soient
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix}$, $C = I + B^2$.

- 1) Calculer det(A).
- 2) Calculer det(B).
- 3) Calculer B^2 .
- 4) Calculer B^4 .
- 5) Montrer que $C^2 = I + 2B^2$.
- 6) Est-ce que le système $AX = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ admet une unique solution? Justifier.

 7) Est-ce que le système $BX = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ admet une unique solution? Justifier.

1