## GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

### PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Teoría de Optimización

| CICLO           | CLAVE DE LA ASIGNATURA | TOTAL DE HORAS |  |
|-----------------|------------------------|----------------|--|
| Octavo Semestre | 7064                   | 85             |  |

### OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno adquirirá los conocimientos de Teoría de Optimización necesarios para entender a profundidad las condiciones que rigen el comportamiento de los programas lineales y no lineales, que sustentan diversos métodos de solución de los mismos.

### TEMAS Y SUBTEMAS

#### 1. Introducción

- 1.1 Modelos de optimización y definiciones básicas
- 1.2 Algunos ejemplos ilustrativos
- 1.3 Solución de problemas por el método gráfico

# 2. Condiciones necesarias y suficientes de optimalidad

- 2.1 Problemas sin restricciones
- 2.2 Problemas con restricciones de desigualdades
- 2.3 Problemas con restricciones de igualdades y desigualdades
- 2.4 Condiciones necesarias y suficientes de segundo orden para problemas con restricciones

### 3. Cualificaciones de restricciones

- 3.1 El cono tangente
- 3.2 Otras cualificaciones de restricciones
- 3.3 Problemas con restricciones de igualdad y desiguald

# 4. Dualidad de Lagrange y condiciones de optimalidad de punto silla

- 4.1 El problema dual de Lagrange
- 4.2 Teoremas de dualidad y optimalidad de punto silla
- 4.3 Propiedades de la función dual
- 4.4 Solución del problema dual
- 4.5 Dualidad en programación lineal y cuadrática

#### ACTIVIDADES DE APRENDIZAJE

Exposición de temas por parte del profesor. Asignación de listas de ejercicios. Uso de un sistema algebraico computacional por parte de los alumnos.

## CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales y un examen final.



### **BIBLIOGRAFÍA**

### Libros básicos:

- 1. **Nonlinear programming theory and algorithms**, Mokhtar S. Bazaraa, Hanif D. Sherali and C.M. Shetty, Wiley-Interscience, Third Edition, 2006.
- 2. Nonlinear Programming, Dimitri P. Bertsekas, Athena Scientific; 2nd edition, 1999.
- 3. The Mathematics of Nonlinear Programming. A. L. Peressini, F. E. Sullivan, J. J. Uhl, Jr. Springer.
- 4. Convex Analysis and Minimization Algorithms I. Jean-Baptiste Hiriart-Urruty, Claude Lemarechal. Springer.

#### Libros de consulta:

- 1. **Numerical Optimization**, <u>Jorge Nocedal</u>, <u>Stephen Wright</u>, Springer Series in Operations Research and Financial Engineering, Springer, 2nd edition, 2006.
- 2. Convex Analysis R. Tyrrell Rockafellar. Princeton University Press.
- 3. Nonlinear Optimization, Andrzej Ruszczynski, Princeton University Press, 2006.

# PERFIL PROFESIONAL DEL DOCENTE

Posgrado en Matemáticas con dominio de los temas de optimización.

