

Mizpah Christian School - https://www.mizpahchristianschool.org

Topic :Algorithm Analysis and Stack DS

Functions that often appear in algorithm analysis:

Constant ≈ 1 Logarithmic ≈ log n Linear ≈ n N-Log-N ≈ n log n Quadratic ≈ n^2 Cubic ≈ n^3 Exponential ≈ 2^n

Algorithm Pseudo-code Example - Finding max element from an array

arrayMax(A,n):

Input: An array A storing n>=1 integers

Output: Maximum element in A

current_max \leftarrow A[0]

for $i \leftarrow to n-1 do$

if current_max < A[i] then

current_max ← A[i]

return current_max

The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most important. They

are used in a host of different applications, and as a tool for many more sophisticated data structures and algorithms.

Formally, a stack is an abstract data type (ADT) such that an instance S supports the following two methods:

S.push(e): Add element e to the top of stack S.

S.pop(): Remove and return the top element from the stack S; an error occurs if the stack is empty.

Additionally, let us define the following accessor methods for convenience:

S.top(): Return a reference to the top element of stack S, without removing it; an error occurs if the stack is empty.

S.is empty(): Return True if stack S does not contain any elements.

len(S): Return the number of elements in stack S; in Python, we implement this with the special method len .

END