Uczenie maszynowe

Wprowadzenie

semestr letni 2024/25

wykład: 10h

laboratorium: 14h

dr inż. Mateusz Gorczyca mateusz.gorczyca@wroclaw.merito.pl Konsultacje: wkrótce pojawią się w planie

Plan wykładu

- Treść przedmiotu
- Literatura
- Sprawy formalne
- Część merytoryczna:
 - Wprowadzenie do uczenia maszynowego

Treść przedmiotu - wykład

- Wprowadzenie
 - definicja i zastosowania
 - typy i algorytmy uczenia maszynowego
 - podstawowe elementy uczenia maszynowego

Treść przedmiotu - wykład

- Uczenie nadzorowane
 - Klasyfikacja
 - drzewa decyzyjne
 - naiwny klasyfikator bayesowski
 - sieci neuronowe
 - Regresja
 - metody gradientowe
 - sieci neuronowe

Treść przedmiotu - wykład

- Uczenie bez nadzoru
 - Grupowanie
 - k-średnich
- Uczenie ze wzmocnieniem

Treść przedmiotu - ćwiczenia

- Praktyczne wykorzystanie treści wykładu
- Jupyter/Python w środowisku Anaconda lub Colab
- biblioteki uczenia maszynowego: scikit-learn, ...
- elementarne przetwarzanie i struktury danych: NumPy, pandas
- wizualizacja: matplotlib

O'REILLY' Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow jupyter Helion Aurélien Géron

Literatura

Aurélien Géron

Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow . Wydanie III

Helion, 2023

Rozdziały 1-9, 18

Github

scikit-learn.org

- Obecność na ćwiczeniach (dopuszczalna jedna nieobecność)
- Oceny z list zadań / projektu z uwzględnieniem pracy w trakcie ćwiczeń
- Przekroczenie terminu oddania listy zadań powoduje obniżenie oceny proporcjonalne do wielkości opóźnienia

- Minimalne wymagania do zaliczenia:
 - obecności na ćwiczeniach,
 - praca na ćwiczeniach,
 - oddanie minimum z listy zadań oraz projektu,
 - zaliczenie egzaminu (ostatni zjazd).

- Plagiaty w zależności od skali: ocena niedostateczna, komisja dyscyplinarna
- Ustawa o prawie autorskim
- Prace wykonujemy samodzielnie, chyba że wprost zalecono współpracę
- Nie można wykorzystywać w pracy sztucznej inteligencji, chyba że wprost to zalecono

- Ocena końcowa: średnia z oceny z kolokwium oraz oceny z ćwiczeń
- Ocena z ćwiczeń: średnia oceny z listy zadań i z projektu
- Przy wysyłaniu prac mailem lub na Teams/Moodle:
 - nie kompresujemy plików,
 - tytuł maila jest istotny,
 - nazwa pliku jest istotna,
 - format pliku jest istotny.

 Przy pisaniu zapytań lub informacji za pośrednictwem czatu na Teams proponuję pomijać wszelkie standardowe zwroty rozpoczynające ("Dzień dobry", "Witam", "Szanowny Panie Doktorze", itp.) Uprości to i przyspieszy komunikację.

Uczenie maszynowe - wprowadzenie

Czym jest uczenie maszynowe

 Sztuczna inteligencja jest działem informatyki badającym i tworzącym oprogramowanie umożliwiające maszynom postrzeganie otaczającego świata oraz wykorzystywanie uczenia się i inteligencji do osiągania wyznaczonych celów

Czym jest uczenie maszynowe

 Uczenie maszynowe skupia się na badaniu i tworzeniu algorytmów statystycznych, które mogą się uczyć z danych i uogólniać to na dane, których jeszcze nie widziały. Umożliwia to wykonywanie przez nie zadań, do których nie były jawnie zaprogramowane.

Problem klasyfikacji

Klasyfikacja

- Problem klasyfikacji (statystycznej)
 - dane trenujące:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_n,y_n)$$

gdzie:

- $\mathbf{x}_i = [x_{i1}, x_{i2}, \dots, x_{ik}]^{T}$ jest *i*-tym przykładem uczącym,
- x_{ik} jest wartością k-tej cechy i-tego przykładu uczącego,
- y_i jest klasą, do której należy *i*-ty przykład uczący.

Klasyfikacja

- Problem klasyfikacji (statystycznej)
 - **szukane**: klasyfikator h odgadujący klasę y dla zadanego obiektu \mathbf{x}
 - dla odróżnienia od rzeczywistej klasy y, wynik zwracany przez klasyfikator oznaczamy \hat{y}

Przykładowe dane trenujące – diagnostyka raka piersi:

```
from sklearn.datasets import load_breast cancer
data = load breast cancer()
print(data.DESCR)
.. breast cancer dataset:
Breast cancer wisconsin (diagnostic) dataset
**Data Set Characteristics:**
    :Number of Instances: 569
    :Number of Attributes: 30 numeric, predictive attributes and the class
    :Attribute Information:
        - radius (mean of distances from center to points on the perimeter)

    texture (standard deviation of gray-scale values)

        - perimeter
        - area
        - smoothness (local variation in radius lengths)
        - compactness (perimeter^2 / area - 1.0)
```

Wszystkie instancje (przykłady) trenujące należą do jednej z 2 klas:

```
data.target_names
array(['malignant', 'benign'], dtype='<U9')</pre>
```

Wczytanie danych treningowych – wartości cech (X):

```
X, y = load_breast_cancer(return_X_y=True, as_frame=True)
X
```

	mean radius	mean texture	mean perimeter	 worst concave points	worst symmetry	worst fractal dimension
0	17.99	10.38	122.80	 0.2654	0.4601	0.11890
1	20.57	17.77	132.90	 0.1860	0.2750	0.08902
2	19.69	21.25	130.00	 0.2430	0.3613	0.08758
566	16.60	28.08	108.30	 0.1418	0.2218	0.07820
567	20.60	29.33	140.10	 0.2650	0.4087	0.12400
568	7.76	24.54	47.92	0.0000	0.2871	0.07039
300	7.70	24.54	47.92	 0.0000	0.2071	0.07033

instancja danych treningowych

cecha

569 rows × 30 columns

Wczytanie danych treningowych – etykiety klas (y):

```
У
0
566
567
568
Name: target, Length: 569, dtype: int32
```

Klasyfikacja

Problem regresji

Problem regresji

- dane trenujące:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_n,y_n)$$

gdzie:

- $\mathbf{x}_i = [x_{i1}, x_{i2}, \dots, x_{ik}]^T$ jest *i*-tym przykładem uczącym,
- x_{ik} jest wartością k-tej zmiennej niezależnej i-tego przykładu uczącego,
- y_i jest wartością zmiennej objaśnianej.

Problem regresji

- szukane: model h pozwalający estymować y dla zadanego obiektu $\mathbf x$
- dla odróżnienia od rzeczywistej wartości y, wynik zwracany przez model oznaczamy \hat{y}

Dane wejściowe – procentowa zawartość

inconvenient/costly.

```
thus 7 C7 [ [428]: from sklearn.datasets import fetch_openml
                          data = fetch openml(name='bodyfat', version=1)
                          print(data.DESCR)
                          **Author**: Roger W. Johnson
                          **Source**: [UCI (not available anymore)](https://archive.ics.uci.edu/ml
                          **Please cite**: None.
                          Short Summary:
                          Lists estimates of the percentage of body fat determined by underwater
                          weighing and various body circumference measurements for 252 men.
                          Classroom use of this data set:
                          This data set can be used to illustrate multiple regression techniques.
                          Accurate measurement of body fat is inconvenient/costly and it is
                          desirable to have easy methods of estimating body fat that are not
```

```
[432]:
         from sklearn.datasets import fetch openml
         X, y = fetch openml(name='bodyfat', version=1, as frame=True, return X y=True)
  [442]: X
  [442]:
               Density Age Weight ... Biceps Forearm Wrist
                                                                       у
                1.0708
                         23
                              154.25
                                           32.0
                                                    27.4
                                                           17.1
                                                                              12.3
                1.0853
                         22
                              173.25 ...
                                           30.5
                                                    28.9
                                                           18.2
                                                                               6.1
                                                                              25.3
                                                    25.2
                                                           16.6
                1.0414
                         22
                              154.00
                                           28.8
                                                                              10.4
                                                                              28.7
                                                                       4
                1.0751
                         26
                             184.75
                                                    29.4
                                                           18.2
                                           32.4
                                                                               . . .
                                                                       247
                                                                              11.0
                1.0340
                         24
                              184.25
                                           32.2
                                                    27.7
                                                           17.7
                                                                              33.6
                                                                       248
                                                                       249
                                                                              29.3
                                                                              26.0
                                                                       250
          247
                1.0736
                         70
                              134.25
                                           25.6
                                                    25.7
                                                           18.5
                                                                       251
                                                                              31.9
                                                                       Name: class, Length: 252, dtype: float64
                1.0236
                         72
                              201.00
                                           35.2
                                                           20.1
          248
                                                    28.6
          249
                1.0328
                         72
                              186.75
                                           31.3
                                                    27.2
                                                           18.0
```


Uczenie maszynowe

 Dalsza część wykładu jest w notatniku Jupyter "UM – Wykład1 lato 2025.ipynb"