Aravind Chandrasekaran, Ph. D.

Postdoctoral Researcher
Department of Pharmacology
University of California San Diego CA 92093
Citizenship India, Residency US Permanent resident

aravindcsn@gmail.com +1-240-281-2241 <u>LinkedIn</u> Code repositories

Research Interests

Bioinformatics, pharmacodynamics, protein design, drug discovery, structure-function relationship, data-driven modeling, scientific computation

Technical Skills

Molecular dynamics, multiscale modeling and simulation, ODE, PDE, agent-based modeling (ABM), QSP, mechanism-based PK/PD, optimization (gradient-descent, least-squares, SLSQP), machine learning (PCA, K-means clustering), multi-objective optimization

Computational Skills

Software development Jira, Git

Parallel computing CUDA, MPI, OpenMP, Pthreads, UMESIMD

Programming languages C++, Python, Tcl/Tk, Java

Python Libraries Scikit-learn, scipy, matplotlib, numpy, pandas, PyTorch

Molecular modeling LAMMPS, Cytosim, MEDYAN, VMD, FTDock

Other MATLAB, LaTeX, VCell

Work Experience

Postdoctoral ResearcherUniversity of California San DiegoAug 2021- PresentResearch FellowNational Institutes of Health, BethesdaAug 2018 - Dec 2019Teaching AssistantUniversity of Maryland College ParkJan 2017- May 2018Research ScientistNational Tsing Hua University, Hsinchu TaiwanFeb. 2014 - May 2014

Research and Leadership Experience

Molecular modeling of cellular signaling

- Developed software to study spatial signaling models under both stochastic and continuum frameworks
- Devised and delivered automatic actin structure classifier using graph theoretical models, Markov state models, PCA, and K-means clustering

Protein structure-function relationship

- Established a non-redundant dataset of DNA-binding proteins incorporating multiple sequence alignment, EC number classification, CATH codes, and crystal structure analysis
- Developed a **docking pose filter** for DNA-protein through principal component analysis and normal model analysis delivered 2.5 fold enrichment in near-native poses

Software application development

Lead developer, MEDYAN (<u>Github repo</u>, C++) **and contributor, Cytosim** (<u>GitLab</u> repo C++, forked edits for constant polymer copy number and multimerization)

- Contributed **30,000+ lines** over **five releases**, improving user-interface, additional features, and algorithmic optimizations to achieve **10x acceleration**
- Led and trained junior developers in software best practices, statistical modeling, and protein simulations, engaged 10 active users

Teaching

 Instructor, Department of Chemistry, UMD for nine semesters, undergraduate (General Chemistry, Organic Chemistry, Physical Chemistry) and graduate (Chemical Thermodynamics, Computational Biology) courses

Education

Ph. D. in Chemistry University of Maryland, College Park Aug 2014 – July 2021 **M. Sc.** Bioinformatics & Structural Biology Feb 2012 – Jan 2014

National Tsing Hua University, Hsinchu, Taiwan

B. Tech. Chemical Engineering

Anna University, Chennai, India

July 2007 – May 2011

Honors and Awards

2024	Chosen for the Summer School 2024: Self-Organizing Matter: From
	Inanimate to the Animate, University of Colorado, Boulder
2023	Chosen for the Rising Stars in Soft and Biological Matter Symposium,
	University of Chicago
2019, 2015, & 2014	Dean's Fellowship, University of Maryland, College Park
2018	NIH-UMD Partnership Fellowship
2013 & 2012	International Student Scholarship, National Tsing Hua University, Taiwan
2010	Summer Research Fellowship Programme, Indian Academy of Sciences

Platform Presentations selected

2025	Biophysical Society Annual Meeting, Los Angeles, CA
2024	American Society of Cell Biology Annual Meeting, San Diego, CA
2023	Rising Stars in Soft and Biological Matter Symposium, Chicago, IL
2019	American Institute of Chemical Engineers Annual Meeting, Orlando, FL
2018	International Physics of Living Systems Annual Meeting, Houston, TX

Professional Services

- 2021 Co-organized multi-lab seminar series (Allen Institute of Cell Science, Drubin/Barnes Lab, UC Berkeley, and Rangamani Lab, UC San Diego)
- 2020 Facilitated panel discussion on addressing imposter syndrome, Grow PoLS workshop
- 2016 US Science & Engineering Festival, Washington D.C.
- Reviewer Journal of Chemical Information and Modeling, Journal of Computational and Theoretical Chemistry

Publications (selected, 138 citations, total 14, full list here)

- 1. Walker, C., **Chandrasekaran, A.**, Mansour, D., Graham, K., Torres, A., Wang, L., Lafer, E.M., Rangamani, P., Stachowiak, J.C. (2025). <u>Liquid-like condensates that bind actin drive filament polymerization and bundling</u>, *Developmental Cell (In Press)*
- 2. **Chandrasekaran, A.**, Graham, G., Stachowiak, J.C., Rangamani, P. (2024). <u>Kinetic trapping organizes actin filaments within liquid-like protein droplets</u>, *Nature Communications*, 15, 3139
- 3. **Chandrasekaran, A.**, Chan, J., Lim, C., and Yang, L. W. (2016) <u>Protein Dynamics and Contact</u> Topology Reveal Protein-DNA Binding Orientation. J. Chem. Theory Comput., **12**, 5269
- 4. Li, H., Sakuraba, S., Chandrasekaran, A., and Yang, L. W. (2014) Molecular binding sites are located near the interface of intrinsic dynamics domains (IDDs). J. Chem. Inf. Model., 54, 2275