Question Number	Answer		Mark
20(a)	A main sequence star is fusing hydrogen (into helium) in the core of the star	(1)	1
20(b)(i)	Use of $L = A\sigma T^4$ and $A = 4\pi r^2$	(1)	
	$r = 6.94 \times 10^8 (\text{m})$	(1)	2
	Example of calculation	()	
	$r = \sqrt{\frac{L}{4\pi\sigma T^4}} = \sqrt{\frac{3.83 \times 10^{26} \text{ W}}{4\pi \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (5780 \text{ K})^4}} = 6.94 \times 10^8 \text{ m}$		
20(b)(ii)	Use of $L = A\sigma T^4$ and $A = 4\pi r^2$	(1)	
	Use of $\lambda_{max}T = 2.898 \times 10^{-3} \text{m K}$		
	$\lambda_{max} = 9.8 \times 10^{-7}$ (m) (ecf value of r from (i))	(1)	
		(1)	3
	Example of calculation		
	$T = \sqrt[4]{\frac{L}{4\pi r^2 \sigma}} = \sqrt[4]{\frac{1600 \times 3.83 \times 10^{26} \text{ W}}{4\pi (150 \times 7.0 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}}}$		
	$I = \sqrt{4\pi r^2 \sigma} = \sqrt{4\pi (150 \times 7.0 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}}$ $= 2972 \text{ K}$		
	$\lambda_{max} = \frac{2.898 \times 10^{-3} \text{ m K}}{2972 \text{ K}} = 9.75 \times 10^{-7} \text{ m}$		
20(b)(iii)	λ_{max} is not in the wavelength range for red light $\mathbf{Or}\ \lambda_{max}$ is in the infrared wavelength range	(1)	
	There is a range of wavelengths emitted around the value of λ_{max}	(1)	
	The most intense region of the visible spectrum will be red light (dependent upon MP2)	(1)	3
	[Accept annotated sketches of the black body curve]		
20(c)	(The mass of the Sun decreases and so) the gravitational force exerted on the planet decreases	(1)	
	The gravitational force provides a centripetal force	(1)	
	$F = m\omega^2 r$, ω decreases and so T must increase	(1)	
	OR		
	(The mass of the Sun decreases and so) the gravitational force exerted on the planet decreases	(1)	
	The gravitational force provides a centripetal force	(1)	
	$F = \frac{mv^2}{r}$, v will decrease and so T must increase	(1)	
	OR		
	Equate $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Derive expression for T	(1)	
	Deduce that T will increase	(1)	3
	Total for question 20		12