$10_{127} (K10n_{16})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{15} - 8u^{14} + \dots + 2b - 5, -3u^{15} - 6u^{14} + \dots + 2a - 7, u^{16} + 3u^{15} + \dots + 3u + 1 \rangle$$

 $I_2^u = \langle b - a, a^2 - a - 1, u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{15} - 8u^{14} + \dots + 2b - 5, -3u^{15} - 6u^{14} + \dots + 2a - 7, u^{16} + 3u^{15} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{15} + 3u^{14} + \dots + u + \frac{7}{2} \\ \frac{3}{2}u^{15} + 4u^{14} + \dots + 3u + \frac{5}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3u^{15} + 7u^{14} + \dots + 4u + 6 \\ \frac{3}{2}u^{15} + 4u^{14} + \dots + 3u + \frac{5}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{15} + 2u^{14} + \dots + 4u + 1 \\ \frac{1}{2}u^{15} + u^{14} + \dots + 2u + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{15} - u^{14} + \dots - 3u + \frac{1}{2} \\ -\frac{1}{2}u^{15} - u^{14} + \dots - u - \frac{9}{2} \\ -\frac{1}{2}u^{15} - u^{14} + \dots + \frac{11}{2}u^{2} - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}u^{15} - 4u^{14} + \dots - u - \frac{9}{2} \\ -\frac{1}{2}u^{15} - u^{14} + \dots + \frac{11}{2}u^{2} - \frac{3}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-u^{15} - 3u^{14} + u^{13} + 12u^{12} + 10u^{11} - 19u^{10} - 29u^9 + 10u^8 + 44u^7 + 4u^6 - 40u^5 - 18u^4 + 26u^3 + 19u^2 - 7u - 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{16} - 3u^{15} + \dots - 3u + 1$
c_2, c_8	$u^{16} - u^{15} + \dots + 4u + 4$
<i>c</i> ₃	$u^{16} + 5u^{15} + \dots + 15u + 1$
<i>C</i> ₅	$u^{16} - 2u^{15} + \dots + 2u + 1$
c_6, c_7, c_9 c_{10}	$u^{16} + 2u^{15} + \dots - 6u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{16} - 5y^{15} + \dots - 15y + 1$
c_2, c_8	$y^{16} - 15y^{15} + \dots - 152y + 16$
<i>c</i> ₃	$y^{16} + 15y^{15} + \dots - 75y + 1$
<i>C</i> 5	$y^{16} + 18y^{15} + \dots - 12y + 1$
c_6, c_7, c_9 c_{10}	$y^{16} - 18y^{15} + \dots - 12y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.817221 + 0.650517I		
a = 0.69329 + 1.38874I	-6.61455 - 2.48847I	-10.73866 + 2.85289I
b = -1.47026 - 0.07876I		
u = 0.817221 - 0.650517I		
a = 0.69329 - 1.38874I	-6.61455 + 2.48847I	-10.73866 - 2.85289I
b = -1.47026 + 0.07876I		
u = 1.09835		
a = -0.682687	-2.11624	-0.212820
b = -0.347472		
u = -0.616496 + 0.976582I		
a = -0.323356 - 0.180239I	-0.88412 - 2.45544I	-7.41928 + 0.95551I
b = 1.45750 + 0.22598I		
u = -0.616496 - 0.976582I		
a = -0.323356 + 0.180239I	-0.88412 + 2.45544I	-7.41928 - 0.95551I
b = 1.45750 - 0.22598I		
u = -0.839144 + 0.905830I		
a = 0.354184 + 0.747930I	5.17546 + 0.91530I	-4.32887 + 0.19716I
b = -0.427794 - 0.712268I		
u = -0.839144 - 0.905830I		
a = 0.354184 - 0.747930I	$\int 5.17546 - 0.91530I$	-4.32887 - 0.19716I
b = -0.427794 + 0.712268I		
u = -0.997540 + 0.847971I		
a = -0.383254 - 1.181700I	4.68170 + 5.57131I	-5.69073 - 5.47773I
b = -0.593993 + 0.677497I		
u = -0.997540 - 0.847971I		
a = -0.383254 + 1.181700I	4.68170 - 5.57131I	-5.69073 + 5.47773I
b = -0.593993 - 0.677497I		
u = -0.688577		
a = -2.20439	-9.85589	-4.30720
b = -1.64693		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.35209		
a = 1.39091	-8.27471	-10.1750
b = 1.48463		
u = 0.549818 + 0.327281I		
a = -0.426191 - 1.322820I	-0.629599 - 1.102380I	-6.95123 + 6.20216I
b = 0.349186 + 0.338218I		
u = 0.549818 - 0.327281I		
a = -0.426191 + 1.322820I	-0.629599 + 1.102380I	-6.95123 - 6.20216I
b = 0.349186 - 0.338218I		
u = -1.127720 + 0.779615I		
a = 0.38145 + 1.56857I	-2.44912 + 8.89682I	-9.23385 - 5.21727I
b = 1.56155 - 0.22278I		
u = -1.127720 - 0.779615I		
a = 0.38145 - 1.56857I	-2.44912 - 8.89682I	-9.23385 + 5.21727I
b = 1.56155 + 0.22278I		
u = -0.334148		
a = 1.90392	-1.34177	-6.57950
b = 0.757410		

II.
$$I_2^u = \langle b - a, a^2 - a - 1, u - 1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 2a \\ a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2a \\ a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2a - 1 \\ -a - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a - 2 \\ -a - 1 \end{pmatrix}$$

$$\left(-a-2\right)$$

$$a_9 = \begin{pmatrix} a \\ a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -17

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^2$
c_2, c_8	u^2
C4	$(u+1)^2$
c_5, c_6, c_7	$u^2 + u - 1$
c_9, c_{10}	u^2-u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^2$
c_{2}, c_{8}	y^2
c_5, c_6, c_7 c_9, c_{10}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.618034	-2.63189	-17.0000
b = -0.618034		
u = 1.00000		
a = 1.61803	-10.5276	-17.0000
b = 1.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^{16} - 3u^{15} + \dots - 3u + 1)$
c_2, c_8	$u^2(u^{16} - u^{15} + \dots + 4u + 4)$
c_3	$((u-1)^2)(u^{16} + 5u^{15} + \dots + 15u + 1)$
c_4	$((u+1)^2)(u^{16} - 3u^{15} + \dots - 3u + 1)$
c_5	$(u^2 + u - 1)(u^{16} - 2u^{15} + \dots + 2u + 1)$
c_6, c_7	$(u^2 + u - 1)(u^{16} + 2u^{15} + \dots - 6u^2 + 1)$
c_9, c_{10}	$(u^2 - u - 1)(u^{16} + 2u^{15} + \dots - 6u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^2)(y^{16} - 5y^{15} + \dots - 15y + 1)$
c_{2}, c_{8}	$y^2(y^{16} - 15y^{15} + \dots - 152y + 16)$
<i>c</i> ₃	$((y-1)^2)(y^{16}+15y^{15}+\cdots-75y+1)$
<i>c</i> ₅	$(y^2 - 3y + 1)(y^{16} + 18y^{15} + \dots - 12y + 1)$
c_6, c_7, c_9 c_{10}	$(y^2 - 3y + 1)(y^{16} - 18y^{15} + \dots - 12y + 1)$