

Permutations

A permutation is an ordering of a set of objects

permutations of n objects?

Objects can be anything

For most excitement

Letters!

# letters		# permu- tations
1	a	1
2	a b b a	2
3	abc acb bac bca cba	6

General n?

Counting Permutations

2 objects

1 choice 2 choices a b ba 2 branches 1 branch

 $2 \times 1 = 2$

3 objects

2 choices

permutations of n objects = n × (n-1) × ... × 2 × 1 \triangleq n! n factorial

0 Factorial

For $n \ge 1$ n! = # permutations of n objects = $n \times (n-1) \times ... \times 2 \times 1$

What about 0!?

How many ways can you permute 0 objects?

a,b: ab, ba

a: a

: ?

a,b: (ab), (ba)

a: (a)

:()

0! = 1

Exact same reason as 20=1

Alternative Factorial View

Write

Left to right → Smallest to largest

One position for the 1st object

Two for 2nd

Three for 3rd

Four for 4th

 $1 \times 2 \times 3 \times ... \times n = n!$

Recursive Definition

n! can be defined recursively

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$

= $n \cdot [(n-1) \cdot \dots \cdot 2 \cdot 1]$
= $n \cdot (n-1)!$ $\forall n \ge 1$

1!=1x0!
Extends to negatives

n	Product	n!	_
0	1	1	\ \ \ \ \ \ \ 1
1	1	1	$\begin{array}{c} x \\ x \\ 2 \end{array}$
2	2 × 1	2	<
3	$3 \times 2 \times 1$	6	\times \times \times \times
4	$4 \times 3 \times 2 \times 1$	24	\times X 4
5	$5 \times 4 \times 3 \times 2 \times 1$	120	\times X 5
6	$6 \times 5 \times 4 \times 3 \times 2 \times 1$) x 6

Examples and applications

Basic Permutations

orders to visit 3 cities LA, SD, SF

LA SD SF

$$\cdots$$

SF SD LA
$$3! = 3 \times 2 \times 1 = 6$$

anagrams of 5 distinct letters PEARS

SPEAR
$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$
 EAPRS

Constrained Anagrams of PEARS

A,R stay adjacent in order

```
PARSE Permutations of P E AR S 4! = 4 x 3 x 2 x 1 = 24
```

A,R are adjacent in any order

```
SPARE 2 orders 24 anagrams each 2 x 24 = 48
```

A,R are not adjacent

```
AESPR ..... 5! - 48 = 120 - 48 = 72
SRPAE
```

More Constrained Permutations

ways 3 distinct boys and 2 distinct girls can stand in a row

Unconstrained

(3+2)! = 5! = 120

Alternating boys and girls

 $3! \times 2! = 6 \times 2 = 12$

Boys together and girls together

 $2 \times 3! \times 2! = 24$

Unconstrained, but orientation (left to right) doesn't matter

5! / 2 = 60

Circular Arrangements

ways 5 people can sit at a round table = ?

Rotations matter

Rotations don't matter

$$5!/5 = 4! = 24$$

