### B056743

### NASA TECHNICAL NOTE



NASA TN D-2459





SURFACE FAILURE OF TITANIUM CARBIDE CERMET AND SILICON CARBIDE BALLS IN ROLLING CONTACT AT TEMPERATURES TO 2000° F

Approved for Public Release
Distribution Unlimited

by Richard J. Parker, Salvatore J. Grisaffe, and Erwin V. Zaretsky

Lewis Research Center Cleveland, Ohio

20011221 123

### SURFACE FAILURE OF TITANIUM CARBIDE CERMET AND SILICON CARBIDE BALLS IN ROLLING CONTACT AT

TEMPERATURES TO 2000° F

By Richard J. Parker, Salvatore J. Grisaffe, and Erwin V. Zaretsky

Lewis Research Center Cleveland, Ohio

Reproduced From Best Available Copy

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

### SURFACE FAILURE OF TITANIUM CARBIDE CERMET AND SILICON

### CARBIDE BALLS IN ROLLING CONTACT AT

### TEMPERATURES TO 2000° F

by Richard J. Parker, Salvatore J. Grisaffe and Erwin V. Zaretsky

Lewis Research Center

### SUMMARY

The five-ball <u>fatigue</u> tester was used to study the behavior of <u>nickel</u>-bonded titanium carbide cermet and self-bonded <u>silicon</u> carbide balls under repeated stresses applied in rolling contact. Test conditions were 80° and 700° F, a contact angle of 20°, and a shaft speed of 950 rpm with a mineral oil lubricant. The nickel-bonded titanium carbide - cermet balls were tested at maximum Hertz stresses from 400,000 to 550,000 psi, while the silicon carbide balls were tested at maximum Hertz stresses from 300,000 to 400,000 psi.

Failure appearance for both materials was unlike the fatigue pits found in bearing steels and a crystallized-glass ceramic. However, the pits were similar to those found in alumina balls (both hot pressed and cold pressed and sintered). A typical failure was a shallow eroded area less than 1 mil deep for the titanium carbide cermet and 3 to 5 mils for the silicon carbide. These failures evolved by progressing slowly from a very small pit to one spanning the running track width.

Tests at 80° F with mineral oil <u>lubrication</u> over a range of stresses show that life varies inversely with stress to a power that ranges from 9.7 to 10.5 for the titanium carbide cermet and from 6.9 to 8.6 for the silicon carbide. The load capacity of the titanium carbide and silicon carbide balls was 3 and 1 percent, respectively, that of typical bearing steel balls, and 41 and 18 percent, respectively, that of hot-pressed alumina balls.

Tests showed that both materials had shorter lives and lower load capacities at a race temperature of  $700^{\circ}$  F than they did at  $80^{\circ}$  F; these decreases were attributed to decreased lubricant viscosity with increased temperature. Failure appearance and rate of progression at  $700^{\circ}$  F were similar to those at  $80^{\circ}$  F for each of these materials.

Preliminary tests with molybdenum disulfide - argon mist lubrication at a maximum Hertz stress of 400,000 psi show that self-bonded silicon carbide will exhibit excessive plastic deformation at temperatures as low as  $1600^{\circ}$  F. Similar results were obtained with nickel-bonded titanium carbide cermet at a maximum Hertz stress of 310,000 psi at temperatures as low as  $1100^{\circ}$  F. These preliminary tests indicate that both materials are limited to less severe conditions of temperature and stress.

### INTRODUCTION

Advancing technology has created a need for reliable bearings that are capable of operating at elevated temperatures for long periods of time. Since many aerospace applications today dictate operating conditions that are beyond the useful range of today's ferrous and nonferrous bearing materials, the more refractory metals and compounds must be considered (ref. 1). Among these materials are titanium-carbide cermets and silicon carbide.

The selection of the nickel-bonded titanium-carbide cermet used in this investigation was based on the relatively large amount of information available on its physical properties, which indicates that the material maintains a high modulus of elasticity and a high compressive strength at temperatures above  $1000^{\circ}$  F. Such properties indicate that the titanium-carbide cermet has promise as a high-temperature bearing material.

For many aerospace applications, it becomes necessary to use materials that retain more satisfactory strength and friction properties to higher temperatures than do cermet-type materials. Such a material is a self-bonded silicon carbide. This material also has a high hardness and a high modulus of elasticity; however, its compressive strength at 70°F is only one-third that of the titanium-carbide cermet. Typical values of the physical properties of the titanium carbide cermet and the silicon carbide are given in the section MATERIALS.

Friction and wear characteristics of these materials in both rolling and sliding contact under a variety of conditions are reported in the literature (refs. 2 to 8). The section BACKGROUND is a summary of the reported data. In view of the reported data on both the physical properties and the friction and wear properties of titanium carbide and silicon carbide, it was concluded that these materials are promising bearing materials for rolling-element bearings at temperatures to  $1600^{\circ}$  F (and possibly higher). Thus, the objective of this investigation was to examine the effects of temperature and stress on the surface failure of these materials under repeated stresses applied in rolling contact. Tests were conducted with 1/2-inch-diameter ball specimens in the five-ball fatigue tester at maximum Hertz stresses of 300,000 to 550,000 psi, a shaft speed of 950 rpm, a contact angle of  $20^{\circ}$ , and temperatures of  $80^{\circ}$  and  $700^{\circ}$  F with a highly refined naphthenic mineral oil as the lubricant.

Preliminary rolling-contact tests were also conducted on these materials in a modified five-ball tester at 450 rpm and at temperatures to  $2000^{\circ}$  F with molybdenum disulfide (MoS<sub>2</sub>) - argon (Ar) mist lubrication. The data at  $80^{\circ}$  F obtained in this investigation are compared with data for steel ball specimens run under similar conditions. All experimental results for a given type of material were obtained with a single batch of material and lubricant.

### BACKGROUND

A relatively large amount of research and development has been performed with nickel bonded titanium carbide cermets in rolling-element bearings. Con-

siderably less data has been reported on the use of a self-bonded silicon carbide for this purpose. A large portion of the reported data on these materials is summarized in the following paragraphs.

Data reported in reference 2 indicate that 20-millimeter-bore titanium-carbide cermet ball bearings are capable of running to temperatures of 1200° F for periods of 2 to 3 hours at approximately a half million DN with a solid film lubricant. Maximum Hertz stress conditions for these tests were 320,000 psi on the outer race. The failure mechanisms for these bearings were retainer failure, wear, and surface pitting (ref. 3).

Research reported in reference 4 indicated that a titanium-carbide cermet exhibited comparable coefficients of friction to that of alumina sliding unlubricated on similar materials at temperatures up to 1650° F. Additionally, research reported in reference 5 substantiates that the titanium-carbide cermets have friction coefficients similar to the one for alumina in rolling contact and generally have over three times the impact resistance of the other refractory materials reported therein.

A titanium-carbide cermet ball bearing was run under oscillatory conditions at temperatures from  $1500^{\circ}$  to  $2000^{\circ}$  F with the major test effort at  $1600^{\circ}$  F (ref. 5). These tests indicate that titanium-carbide cermet bearings are satisfactory in air-frame-type applications for short periods of time (10 to 15 min) at  $1600^{\circ}$  F. Further, development work was reported in reference 6 using a bearing having titanium-carbide cermet races and alumina balls run at moderate loads with a molybdenum disulfide (MoS<sub>2</sub>) lubricant carried in an inert gas. These bearings operated at temperatures to  $1500^{\circ}$  F for durations as long as 8 hours. The failure of these bearings was by pitting of the titanium-carbide cermet races.

Unlubricated rolling contact bench tests reported in reference 7 indicated that a self-bonded silicon carbide exhibited minimal wear relative to other materials (such as hot-pressed alumina, a titanium-carbide cermet, and two superalloys) at a maximum Hertz stress of 375,000 psi for over 250 million stress cycles of operation. Macroscopic examination of the wear track revealed no surface cracking or spalling. Additionally, research reported in reference 8 indicates that a titanium carbide - silicon carbide combination resulted in approximately the same sliding friction coefficients as that of a titanium carbide - alumina combination.

### MATERIALS

In order to provide a background for the examination of the surface failure mechanisms of a titanium-carbide cermet and a self-bonded silicon carbide, the fabrication, constituents, structure, and physical properties of the materials were studied.

TABLE I. - PHYSICAL PROPERTIES OF CONSTITUENTS OF SELF-BONDED SILICON CARBIDE (SELECTED DATA FROM MANY SOURCES)

| Constituent | Property                                                    | Temperature, o <sub>F</sub> | Value                       |
|-------------|-------------------------------------------------------------|-----------------------------|-----------------------------|
| Silicon     | Lattice parameter (hexagonal phase), A                      |                             | a = 3.073                   |
| carbide     |                                                             |                             | c = 5.026                   |
|             | Lattice parameter (cubic phase), A                          |                             | 2.697                       |
|             | Molecular weight                                            |                             | 40.07                       |
|             | Melting point, °F                                           |                             | 4680 (sublimes at T>3600°F) |
|             | Thermal shock resistance                                    |                             | Good                        |
|             | Thermal conductivity, (cal)(cm)/(cm <sup>2</sup> )(sec)(°C) | 850 to 2000                 | 0.038                       |
|             | Compressive strength, psi                                   | 70                          | 82,000                      |
|             | Tensile strength, psi                                       | 400                         | 10,000                      |
|             |                                                             | 1400                        | 13,000                      |
|             |                                                             | 1900                        | 11,000                      |
|             |                                                             | 2000                        | 9,000                       |
|             | Modulus of rupture, psi                                     | 70 to 2200                  | ≅24 <b>,</b> 000            |
|             | Modulus of elasticity, psi                                  | 70                          | 68×10 <sup>6</sup>          |
|             |                                                             | 2192                        | 61.5                        |
|             |                                                             | 2732                        | 49.4                        |
|             | Density, g/cc                                               | 70                          | 3.217                       |
| Silicon     | Lattice parameter (diamond cubic), Kx                       |                             | 5.417                       |
|             | Atomic weight                                               |                             | 28.09                       |
|             | Melting point, <sup>O</sup> F                               |                             | 2570                        |
|             | Modulus of elasticity, psi                                  | 70                          | 16.35×10 <sup>6</sup>       |
|             | Density, g/cc                                               | 68                          | 2,33                        |
| Disilicon   | Molecular weight                                            |                             | 68.3                        |
| carbide     | Density, g/cc                                               | 70                          | 2.5                         |

### Self-Bonded Silicon Carbide

The chemical composition of this material according to the manufacturers data is 96.5 percent silicon carbide, 2.5 percent silicon, 0.4 percent carbon, 0.4 percent aluminum, and 0.2 percent iron.

Although a detailed fabrication procedure for this material was not available, a general fabrication procedure is presented. Three different grain sizes of silicon carbide are mixed with graphite powder. The mixture is pressed and baked. The blanks are put into a chamber that is evacuated, and pure silicon vapors are poured in at 2150°C. The silicon combines with the graphite in the grain boundaries to form silicon carbide.

The resulting microstructure of a specimen fabricated by this technique can be seen in figure 1. The light gray matrix is silicon carbide, while the



Figure 1. - Microstructure of self-bonded silicon carbide ball specimen. X140.

irregular white areas are unreacted silicon. The darker gray irregular areas are Si<sub>2</sub>C, while some grain boundaries are outlined by residual unreacted dark particles of graphite.

Some of the physical properties of each major constituent are listed in table I. These values are general literature data from a large variety of sources. For this reason they should be interpreted as average properties of the materials and are not specific values for the actual constituents of the material tested. In table II (ref. 9), the average properties of a self-bonded silicon carbide (hereinafter called silicon carbide) are presented.

From an examination of the microstructure it can be seen that the material investigated was extremely nonhomogeneous. Physical property data indicate that the primary phase of silicon carbide is hard and strong

and is filled with a weak second phase of silicon. Graphite is also present at the grain boundaries.

### Nickel-Bonded Titanium Carbide Cermet

The chemical analysis of this material is 70 percent titanium carbide (64 percent titanium carbide and 6 percent columbium, tantalum, titanium carbide solid solution), 25 percent nickel, and 5 percent molybdenum.

TABLE II. - PHYSICAL PROPERTIES OF SELF-BONDED SILICON CARBIDE (REF. 9)

| Property                                                   | Temperature, OF | Value                |
|------------------------------------------------------------|-----------------|----------------------|
| Coefficient of thermal expansion, in./(in.)(OF)            | 70 to 2500      | 2.8×10 <sup>-6</sup> |
| Thermal conductivity, (Btu)(ft)/(ft <sup>2</sup> )(hr)(°F) | 1140            | 720                  |
| (Btu)(it)/(it=)(ir)(°F)                                    | · <b>27</b> 82  | 94                   |
| Knoop hardness, 100-g scale                                | 70              | 2740                 |
| Compressive strength, psi                                  | · 70            | 150,000              |
| Modulus of elasticity, psi                                 | 70              | 69×10 <sup>6</sup>   |
|                                                            | 2200            | 49                   |
| Density, g/cc                                              | 70              | 3.10                 |
| Poisson's ratio                                            | 70              | 0.183                |

Cermets of this type are usually fabricated by either (1) hot pressing, (2) cold pressing and sintering, or (3) vacuum infiltration of a sintered carbide body by nickel. A typical microstructure of the actual material investigated is shown in figure 2. It can be seen that the very fine white carbide particles are dispersed in a gray nickel matrix.

The average physical properties of the constituents (see table III (ref. 10)) and the combined material system (see table IV (ref. 11)) are presented. These values are not measured properties of the actual batch of material investigated but are expected to be similar to its true properties.

The structure of this material is obviously different from that of the silicon carbide. Here a very large amount of a fine, uniformly dispersed hard phase of titanium carbide exists in a softer, ductile matrix of nickel. The molybdenum is in solid solution in the nickel in order to decrease the interfacial energy of the alloy and thus promote wetting of the carbide particles and subsequent bonding.



Figure 2. - Microstructure of nickel-bonded titanium carbide cermet ball specimen.

TABLE III. - PHYSICAL PROPERTIES OF CONSTITUENTS OF NICKEL-BONDED

TITANIUM CARBIDE CERMET (REF. 10)

| Constituent | Property                                                    | Temperature, $^{\circ}_{\mathrm{F}}$ | Value                             |
|-------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------|
| Titanium    | Lattice parameter (NaCl structure), A                       |                                      | 4.318                             |
| carbide     | Molecular weight                                            |                                      | 59.91                             |
|             | Melting point, <sup>O</sup> F                               |                                      | 5700                              |
|             | Thermal shock resistance                                    |                                      | About 1/4 that of silicon carbide |
| ·           | Coefficient of thermal expansion, in./(in.)(°F)             | 80 to 1470                           | 4.1×10 <sup>-6</sup>              |
|             | Thermal conductivity, (cal)(cm)/(cm <sup>2</sup> )(sec)(°C) | 400                                  | 0.052                             |
|             |                                                             | 490                                  | .036                              |
|             |                                                             | 1100                                 | .022                              |
|             |                                                             | 1500                                 | .015                              |
|             |                                                             | 1850                                 | .011                              |
| 1           | Hardness, DPN, kg/mm <sup>2</sup>                           | 70                                   | 3200                              |
|             | Compressive strength, psi                                   | 70                                   | 190,000                           |
|             | Density, g/cc                                               | 70                                   | 4.93                              |
| Nickela     | Lattice parameter (face-centered cubic structure), A        |                                      | 3.5238                            |
|             | Atomic weight                                               |                                      | 58.7                              |
| ż           | Melting point, <sup>O</sup> F                               |                                      | 2647                              |
|             | Coefficient of thermal expansion, in./(in.)(°F)             | 70 to 1800                           | 7.39×10 <sup>-6</sup>             |
|             | Modulus of elasticity, psi                                  | 70                                   | 30×10 <sup>6</sup>                |
|             | Density, g/cc                                               | 70                                   | 8.9                               |

<sup>&</sup>lt;sup>a</sup>Data for pure nickel; however, the nickel-bonded titanium carbide cermet contains molybdenum in solid solution.

Both the silicon carbide and the nickel-bonded titanium carbide cermet (hereinafter called titanium carbide cermet) were fabricated into rough blanks and finished into 1/2-inch-diameter ball specimens of grade 25 specification (0.000025-in. sphericity, 0.000050-in. uniformity). Surface examination of the silicon-carbide balls indicated a much rougher "as-ground" surface (~2.0 to 6.0  $\mu in$ . rms) as compared to that of the cermet balls (~0.6 to 0.8  $\mu in$ . rms). The better finish on the titanium-carbide cermet balls can be traced to some smearing of the ductile nickel during grinding and to the greater homogeneity of the material.

### APPARATUS

### Five-Ball Fatigue Tester With Air-Bearing Support

The five-ball fatigue tester used in this investigation is described in detail in reference 12. Figure 3(a) is a section view of this tester. The

TABLE IV. - PHYSICAL PROPERTIES OF NICKEL-BONDED

TITANIUM CARBIDE CERMET (REF. 11)

| Property                                        | Temperature, | Value                                              |
|-------------------------------------------------|--------------|----------------------------------------------------|
| Coefficient of thermal expansion, in./(in.)(°F) | 70 to 1800   | 5.3×10 <sup>-6</sup>                               |
| Thermal conductivity                            |              | Higher than super<br>alloys by factor<br>of 2 or 3 |
| Hardness, Rockwell "A" scale                    | 70           | 89                                                 |
|                                                 | 1400         | 74                                                 |
| Compressive yield strength, psi                 | 70           | 450,000                                            |
|                                                 | 1200         | 296,000                                            |
|                                                 | 1600         | 147,000                                            |
| Modulus of elasticity, psi                      | 70           | 57×10 <sup>6</sup>                                 |
|                                                 | 1600         | 48                                                 |
| Density, g/cc                                   | 70           | 6                                                  |

test assembly (fig. 3(b)) consists of a test specimen pyramided upon four lower support balls, positioned by a separator, and free to rotate in an angular contact raceway. Specimen loading and drive are applied through a vertical spindle that is notched at its lower end to fit a tongue cut in the test specimen. Loading was accomplished by dead weights acting on the spindle through a load arm. Contact load is a function of this load and the contact angle. For every revolution of the drive shaft, the test specimen receives three stress cycles.

The test assembly is supported by an air

bearing that permits precise horizontal alinement. The test assembly was heated by electrical resistance elements heating the ambient air. Test temperatures were measured at the outside diameter of the race. In tests at  $80^{\circ}$  and  $700^{\circ}$  F, the ball specimens were lubricated with a mist of a highly refined naphthenic mineral oil containing an oxidation inhibitor, an antiwear additive, and an antifoam additive. The lubricant mist was heated to test specimen temperature by a resistance heater wrapped around the lubricator tube. The support ball material was SAE 52100 steel for the  $80^{\circ}$  F tests and AISI M-50 steel for the  $700^{\circ}$  F tests.

### High-Temperature Five-Ball Fatigue Tester

The modified five-ball tester used for the  $2000^{\circ}$  F tests is shown in figure 3(c). The nickel-base alloy housing is supported by rods held in flexible rubber mounts. Minor misalinements and vibrations are absorbed by these mounts. Operating temperatures up to  $2000^{\circ}$  F are maintained by induction heating coils wound around the test housing. Shaft speeds up to 450 rpm are con-



Figure 3. - Five-ball fatigue tester.

trolled by a variable-speed drive unit.

Lubrication is accomplished with dry powder lubricant ( $MoS_2$ ) suspended in an inert gas (high purity argon) injected into the test assembly. The support balls were of 1/2-inch-diameter grade 25 hot-pressed alumina. Race and separator materials were cold-pressed alumina and Hastelloy X, respectively.

### PROCEDURE

Rolling-contact life tests were conducted with titanium-carbide cermet and self-bonded silicon carbide balls in the five-ball fatigue tester described previously. Tests were performed at a shaft speed of 950 rpm, a contact angle of  $20^{\circ}$ , and race temperatures of  $80^{\circ}$  and  $700^{\circ}$  F. Step load tests at the afore-



Figure 3. - Concluded. Five-ball fatigue tester.

mentioned conditions were made with each material to determine the stresses at which the specimens could be tested to produce failure in a reasonable time. In order to determine the stress-life relation for these materials, three stresses were chosen for each material based on the step load test results. An intermediate stress was chosen for each material for tests at 700° F.

Before testing, the test specimens were kept in a clean, dry atmosphere. Immediately prior to testing, the test specimens were inspected at a magnification of 15, and the size and number of initial surface pits in the running track area,



Figure 4. - Rolling-contact life of 1/2-inch-diameter ball specimens in five-ball fatigue tester. Shaft speed, 950 rpm; contact angle, 20°; race temperature, 80° F; lubricant, mineral oil.

if any, were recorded.

At the start of a test, the test specimens and support balls were coated with lubricant and installed in the test assembly. Load was subsequently applied, and the test shaft was brought up to operating speed. In tests at 700° and above, the raceway was heated to operating temperature before the test was started. Periodic inspections of the test specimen running track were made at a magnification of 15, and observations were recorded. The time interval between inspections varied with the stress level at which the test was run and

TABLE V. - LIFE AND LOAD CAPACITY RESULTS WITH NICKEL-BONDED TITANIUM CARBIDE CERMET AND SELF-BONDED SILICON CARBIDE BALL SPECIMENS AT  $80^{\circ}$  and  $700^{\circ}$  F

| Material            | Maximum<br>Hertz<br>stress,<br>psi | Race<br>tempera-<br>ture, | 10-Percent<br>life,<br>stress<br>cycles | 50-Percent<br>life,<br>stress<br>cycles | Stress-<br>life<br>relation<br>at 80° F | Ball<br>normal<br>load,<br>lb | Load<br>capacity,<br>lb | Average<br>load<br>capacity<br>at 80° F |
|---------------------|------------------------------------|---------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|-------------------------|-----------------------------------------|
| Nickel-             | 400,000                            | 80                        | 1.5×10 <sup>6</sup>                     | 5.6×10 <sup>6</sup>                     | 9.7 to 10.5                             | 11.7                          | 13.1                    | )                                       |
| titanium<br>carbide | 450,000                            | 80                        | .19                                     | .72                                     | 1                                       | 16.8                          | 10.4                    | 12.6                                    |
| cermet              | 550,000                            | 80                        | .064                                    | .20                                     |                                         | 30.5                          | 14.3                    | )                                       |
|                     | 400,000                            | 700                       | . 39                                    | 1.65                                    | *                                       | 11.7                          | 8.9                     |                                         |
| Self-<br>bonded     | 300,000                            | 80                        | 1.75×10 <sup>6</sup>                    | 4.7×10 <sup>6</sup>                     | 6.9 to 8.6                              | 4.48                          | 5.7                     | )                                       |
| silicon<br>carbide  | 350,000                            | 80                        | . 54                                    | 2.1                                     |                                         | 7.00                          | 5.4                     | 5.6                                     |
| Carbide             | 400,000                            | 80                        | .24                                     | .43                                     |                                         | 10.6                          | 5.7                     | J                                       |
|                     | 350,000                            | 700                       | . 28                                    | • 69                                    | <b>y</b>                                | 7.00                          | 4.1                     |                                         |

with the observed rate of growth of a failure pit. A specimen was considered failed when a pit reached the full width of the running track. The entire test assembly was cleaned and inspected between tests, and new support balls were installed before the start of another test.

### RESULTS AND DISCUSSION

### Rolling-Contact Life Result

The rolling-contact life data from the five-ball fatigue tester were treated statistically according to the methods of reference 13 and plotted on Weibull coordinates. A straight line was drawn through each array of points by means of the method of least squares. The results at  $80^{\circ}$  F are shown in figure 4. The 10- and 50-percent lives are tabulated in table V for both the  $80^{\circ}$  and  $700^{\circ}$  F tests. The life data show an expected decrease in life with increasing contact stress.

Figure 5 is a plot of the log of stress against the log of the 10- and



Figure 5. - Stress-life relation of 1/2-inch-diameter ball specimens in fiveball fatigue tester. Shaft speed, 950 rpm; contact angle, 20°; race temperature, 80° F; lubricant, mineral oil.

50-percent lives for both materials. Life varies inversely with stress raised to a power of 9.7 to 10.5 for the titanium-carbide cermet and 6.9 to 8.6 for the silicon carbide. (A commonly accepted range for this exponent for point contact in bearing steels is 9 to 10.) Thus, the titanium-carbide cermet shows a sensitivity to stress equal to that of bearing steels; however, the silicon carbide appears less sensitive to stress than either the cermet or bearing steels. A similar stresslife relation (6.0 to 8.1) was found to exist with coldpressed-and-sintered alumina (ref. 14). Hot-pressed alumina exhibited a stress-life relation of 9.4 to 10.8 or about the same as that of steel and the titaniumcarbide cermet. A major difference between the two types of alumina discussed in reference 14 was the original surface condition of the test specimens. The finishes on

the hot- and cold-pressed specimens were 0.3 to 0.5 and 3 to 8 microinch root mean square, respectively. The silicon carbide had a surface finish similar to that for cold-pressed alumina, about 2 to 6 microinch root mean square. Thus, the lower apparent stress sensitivity of the silicon carbide and the cold-pressed alumina may be due to their poorer surface conditions. The surface pits and irregularities may cause such high stresses to exist in the zone of contact that the effect of increased stress due to a nominal increase in load (table V) is minimized; that is, the actual contact stress on these materials may not be changed to the extent that calculations show for a given change in normal load. The effect would be an apparent stress sensitivity or stress-life exponent less than that of a material with a better surface finish. This phenomenon was also observed by the authors of reference 15, where an increased surface roughness on SAE 52100 steel rollers exhibited lower load-life exponents.



(a) Race temperature,  $80^{\circ}$  F; maximum Hertz stress, 400,000 psi; specimen life,  $0.39 \times 10^{6}$  stress cycles.

(b) Race temperature,  $700^{\circ}$  F; maximum Hertz stress, 350,000 psi; specimen life,  $0.43 \times 10^6$  stress cycles.

Figure 6. - Typical failure pits on self-bonded silicon carbide ball specimens. x50.



(a) Race temperature, 80° F; maximum Hertz stress, 400, 000 psi; specimen life, 9.4x10<sup>6</sup> stress cycles. (b) Race temperature, 700° F; maximum Hertz stress, 400,000 psi; specimen life, 0.86x10<sup>6</sup> stress cycles.

Figure 7. - Typical failure pits on nickel-bonded titanium carbide cermet ball specimens. X50.

### Surface Failure at 80° F

Failure appearance. - Typical failure pits in the self-bonded silicon carbide and the titanium-carbide cermet are shown in figures 6 and 7. These failures were unlike the deeper fatigue spalls observed in bearing steels (fig. 8) and a crystallized glass ceramic (ref. 12).

The surface failures in the titanium-carbide cermet were very shallow, eroded areas less than 1 mil deep and were similar to those found in hot-



Figure 8. - Failure pit in steel (ref. 12).

pressed alumina (ref. 14) and those described in titanium-carbide cermet races in references 3 and 6. The failures in the silicon-carbide were from 3 to 5 mils deep and resembled the more ragged appearance of the cold-pressed alumina failure pits described in reference 14.

In all tests with the silicon carbide and several of the tests with the titanium carbide cermet, the failure started at a small pit in the original ball surface and progressed in size to the full track width. These original surface pits in the silicon carbide can be seen in figure 6 in the areas outside the running track. No pits other than the failure can be seen in the titanium-carbide cermet in figure 7; however, a few pits did exist on the as-received surface.

Since the test specimens were inspected periodically during a test, it was possible to observe the progression of the failure pit to full track width. When the failure pit width was equal to the width of the running track, the test specimen was considered failed and the test was terminated.

The progression of the pores or pits to full-track-width pits was a slow, erosive process frequently consuming one-half the total running time of the specimen. In all tests with the silicon-carbide, several smaller failure pits on the running track were at various stages of progression when the largest pit reached the width of the running track. Only a few of the tested titanium-carbide cermet balls exhibited pits on the running track other than the pit that produced failure. Figure 9 shows a sequence of photographs of a preliminary test with titanium-carbide cermet taken from the time a failure pit was first observed (fig. 9(a)) to the time when the pit was about full track width (fig. 9(c)). Figure 9(d) is an intentional overrun.



Figure 9. - Sequence of failure pit growth in nickel-bonded titanium carbide cermet. Shaft speed, 2600 rpm; contact angle, 20°; race temperature, 80° F; maximum Hertz stress, 535,000 psi.

<u>Failure mechanism</u>. - There are a number of factors that affect the mechanical properties of a two-phase composite material. These have been enumerated in a report on dispersion strengthened alloys (ref. 16) and those pertinent to this investigation are as follows:

- (1) Particle size, interparticle spacing, and volume fraction of the dispersed phase
- (2) Particle morphology
- (3) Hardness or strength of the dispersed phase
- (4) Characteristics of fracture

The two materials systems examined in this investigation are markedly different. The self-bonded silicon carbide involves a brittle primary phase containing approximately 12 V/O of silicon, which is soft and has a low modulus of elasticity. The silicon particles are large irregularly shaped areas concentrated at the grain boundaries and corners of the silicon-carbide matrix. On the other hand, the nickel-bonded titanium-carbide cermet involves a ductile matrix that is loaded with fine, evenly dispersed, hard, brittle particles. In this system there is about 29 V/O of the softer, more ductile nickel matrix.

This matrix exists as a thin film completely surrounding each particle. (Average property values are shown in table IV, p. 8.)

Since cermets, in general, are extremely structure dependent, it can be seen that the well-dispersed, small titanium-carbide particles in nickel produce a stronger material than that which arises when large irregular silicon particles are present in the silicon-carbide matrix.

Since the possibility of crystallographic coherency is negligible, interfacial energy considerations become important. The molybdenum addition to the nickel matrix in the cermet promotes complete wetting of the carbide by the matrix. This factor enhances bonding between these two materials and promotes uniform dispersion of the carbide particles. Both better bonding and uniform dispersion contribute to improved physical properties and to resistance to failure under repeated stresses. In the case of the titanium-carbide - nickel cermet, the exact mode of surface failure is difficult to specify. It is generally accepted, however, that when a moving dislocation passes between obstacles such as the dispersed carbide particles, a dislocation loop is left behind encircling the obstacle. Subsequent dislocations passing by the obstacles encounter ever increasing resistance (i.e., back stress) until a point is reached where the required shear stress for deformation exceeds the shear stress of the particle or of the matrix. The cermet investigated contained such a high volume of carbide particles that it is believed that local failure occurred in the carbide obstacles as well as in the matrix. The determination of the exact mode of failure under the conditions of cyclic stress present in rolling contact would require a detailed electron-microscopy analysis, which is beyond the scope of this report.

In the case of the silicon carbide and its undesirable excess of silicon, however, little quantative information is available on the interfacial energy. Figure 1 (p. 5) qualitatively indicates complete filling of the vacant spaces in the silicon carbide matrix by the silicon poured over it (i.e., low interfacial energy between the two materials). This condition would indicate good bonding. During testing, however, large pieces of the soft, weak silicon came out of the running track. The preceding information indicates that, although the bonding of the silicon to the matrix was adequate, the inherent weakness of this second phase was responsible for its removal. Where silicon was removed, cracks were initiated in the matrix at the points of sharp irregularity vacated by the silicon. Fractures appeared to occur by a brittle fracture mechanism, and at the time the failure criteria were met, these pits were from 0.003 to 0.005 inch deep.

### Effect of Temperature

One group of specimens of each material was run to failure at a race temperature of 700° F to determine the effect of a higher temperature on their life and surface failure characteristics. This temperature was chosen because it is the highest temperature at which adequate lubrication could be provided by the mineral oil lubricant. These tests were run at maximum Hertz stresses of 400,000 and 350,000 psi for the titanium-carbide cermet and the silicon car-

bide, respectively. The results of these tests are plotted on Weibull coordinates in figure 10.

In addition to the experimental life at  $700^{\circ}$  F, figure 10 shows the experimental life at  $80^{\circ}$  F (at the same stress) and the predicted life at  $700^{\circ}$  F. The accepted relation between life L and lubricant viscosity  $\mu$  is L =  $\mathrm{K}\mu^{\mathrm{n}}$ , where K is a constant and n = 0.2 to 0.3 (refs. 17 and 18). If the  $80^{\circ}$  F



(a) Self-bonded silicon carbide. Maximum Hertz stress, 350,000 psi. (b) Nickel-bonded titanium carbide cermet. Maximum Hertz stress, 400,000 psi.

Figure 10. - Effect of 700° F race temperature on life of 1/2-inch-diameter ball specimens in five-ball fatigue tester. Shaft speed, 950 rpm; contact angle, 20°; lubricant, highly refined naphthenic mineral oil; viscosity at 80° F, 150 centistokes; viscosity at 700° F, 0.6 centistoke.

life were adjusted to  $700^{\circ}$  F by means of the relation

$$\frac{L_{80}}{L_{700}} = \left(\frac{\mu_{80}}{\mu_{700}}\right)^{n}$$

a life within the range indicated in figure 10 would be expected. Although the viscosity-life relation was obtained in fatigue tests with steels where the failures were largely subsurface in origin, the relation appears to apply to surface-failure life, such as that of alumina (ref. 14).

The experimental lives of both the titanium-carbide cermet and the silicon carbide at  $700^{\circ}$  F approached the predicted life range. Thus, the decrease in life at  $700^{\circ}$  F for the titanium-carbide cermet may be accounted for by changes in the viscosity of the lubricant. These results could be expected since the physical properties of these materials do not change appreciably in this temperature range. Silicon carbide, however, exhibited a life at  $700^{\circ}$  F considerably higher than the predicted range (fig. 10(a)). Here, as with the stress-life relation, the effect of surface pits and irregularities on these specimens may minimize the effect of lubricant viscosity change due to the increase in



Figure 11. - Rolling-contact fatigue life of AISI M-1 steel ball specimens in five-ball fatigue tester. Shaft speed, 10,000 rpm; contact angle, 20°; race temperature, 145° F; lubricant, synthetic diester; maximum Hertz stress, 800,000 psi; failure index. 13 out of 21 (data from ref. 19).

temperature. In general, for both materials, the appearance of the failure pits in the  $700^{\circ}$  F tests (fig. 6(b) and 7(b), p. 12) was similar to that at  $80^{\circ}$  F.

### Load Capacity

The lives of materials tested in a bench-type tester such as the NASA five-ball fatigue tester are frequently compared on the basis of load capacity. Load capacity is the contact load in pounds that will produce failure of 10 percent of a group of test specimens in 1 million stress cycles. This basis of comparison is most useful when a number of materials have been tested at different stress levels.

The experimental capacity of 1/2-inch-daimeter balls at 80° F (table V, p. 10) averaged 12.6 pounds for the titanium carbide cermet and 5.6 pounds for the silicon carbide. The rolling-contact fatigue life of a typical vacuum melt M-1 bearing steel tested under similar conditions is shown in figure 11 (ref. 19). This series of steel balls exhibited a load capacity of about

TABLE VI. - LOAD CAPACITY OF SEVERAL MATERIALS TESTED
UNDER SIMILAR CONDITIONS IN FIVE-BALL FATIGUE TESTER

[Race temperature, 80° F; contact angle, 20°; specimen, 1/2-in.-diam. balls.]

| Material                              | Load capacity as<br>percent of load<br>capacity of AISI<br>M-1 steel | Reference |
|---------------------------------------|----------------------------------------------------------------------|-----------|
| AISI M-l <sup>a</sup>                 | 100                                                                  | 19        |
| Hot-pressed alumina                   | 7                                                                    | 14        |
| Crystallized glass ceramic            | 6                                                                    | 12        |
| Nickel-bonded titanium carbide cermet | 3                                                                    |           |
| Self-bonded silicon carbide           | 1                                                                    |           |
| Cold-pressed-and-<br>sintered alumina | 1                                                                    | 14        |

Race temperature, 140° F.

450 pounds. Thus, at 80° F the load capacities of the titanium carbide cermet and silicon carbide balls are about 3 and 1 percent, respectively, that of M-1 bearing steel and 41 and 18 percent, respectively, that of the hot-pressed alumina used in reference 14. Table VI shows relative load capacities at 80° F of several materials that have been tested under similar conditions in the five-ball fatigue tester.

Increasing the race temperature from 80° to 700° F in the five-ball fatigue tester resulted in a reduction in load capacity of 29 and 27 percent for the titanium carbide cermet and the silicon carbide, respectively. This reduction results from the effect of the change in

viscosity of the lubricant with temperature on life, as discussed previously.

### Rolling-Contact Tests From 1100° to 2000° F

Several ball specimens of each material were run in a modified five-ball fatigue tester with MoS<sub>2</sub>-argon mist lubrication. Tests were performed at a shaft speed of 450 rpm, a contact angle of  $20^{\circ}$ , maximum Hertz stresses of 310,000 and 400,000 psi, and temperatures from  $1100^{\circ}$  to  $2000^{\circ}$  F. The results of these tests are shown in table VII.

TABLE VII. - RESULTS OF TESTS IN MODIFIED FIVE-BALL TESTER AT TEMPERATURES UP TO 2000° F

[Shaft speed, 450 rpm; contact angle, 20°; lubrication, molybdenum disulfide - argon mist; support balls, hot-pressed alumina, race material, cold-pressed-and-sintered alumina.]

| Test ball material                | Test<br>ball | Temper-<br>ature,<br>o <sub>F</sub> | Maximum<br>Hertz<br>stress,<br>psi | Test<br>time,<br>min | Change in surface condition of track                                         | Track width, in. | Track depth, µin. | Total<br>stress<br>cycles<br>at end<br>of test |
|-----------------------------------|--------------|-------------------------------------|------------------------------------|----------------------|------------------------------------------------------------------------------|------------------|-------------------|------------------------------------------------|
| Self-bonded<br>silicon<br>carbide | 1            | 2000                                | 400,000                            | 5                    | Some plastic deformation; one area of greater plastic flow                   | 0,011            | 70                | 6700                                           |
|                                   | 2            | 2000                                | 400,000                            | 5                    | Some plastic deformation                                                     | 0.012            | 95                | ,                                              |
|                                   |              |                                     |                                    | 15                   | Excessive plastic deformation and wear; considerable surface pitting         | .015             | 200               | 20,200                                         |
|                                   | 3            | 1600                                | 400,000                            | 10                   | Some plastic deformation                                                     |                  |                   |                                                |
|                                   |              |                                     |                                    | 25                   | Increased plastic deformation                                                | 0.012            | 70                | 33,800                                         |
| Nickel-<br>bonded                 | 1            | 1600                                | 310,000                            | 19                   | Considerable plastic deformation and some wear                               |                  |                   | 25,600                                         |
| titanium<br>carbide<br>cermet     | 2            | 1350                                | 310,000                            | 15                   | Gross pitting or welding and wear around entire length of track <sup>b</sup> |                  |                   | 20,200                                         |
|                                   | 3            | 1100                                | 310,000                            | 10                   | Same as test ball 2 <sup>c</sup>                                             |                  |                   | 13,500                                         |
|                                   | 4            | 1100                                | 310,000                            | 10                   | Slight plastic deformation; no wear                                          | 0.008            | 40                |                                                |
|                                   |              |                                     |                                    | 25                   | Increased plastic deformation                                                | .010             | 70                |                                                |
|                                   |              |                                     |                                    | 50                   | Increased plastic deformation                                                | .010             | 90                |                                                |
|                                   |              |                                     |                                    | 75                   | Increased plastic deformation                                                | .010             | 100               | 101,000                                        |

a Measured from profile trace.

 $<sup>{}^{\</sup>mathrm{b}}\mathrm{Nickel}\text{-bonded}$  titanium carbide cermet support balls and race.

<sup>&</sup>lt;sup>c</sup>Nickel-bonded titanium carbide cermet support balls.

Failure of silicon carbide ball specimens at a 400,000-psi maximum Hertz stress was by excessive plastic deformation at both 1600° and 2000° F. Some random surface pitting was observed accompanying the plastic deformation in specimens run at 2000° F. Tests with titanium carbide cermet at 310,000-psi maximum Hertz stress and hot-pressed alumina support balls resulted in excessive plastic deformation at temperatures as low as 1100° F. Tests with support balls of titanium-carbide cermet at 1350° and 1100° F exhibited gross pitting or welding and wear of the titanium-carbide cermet test balls and support balls.

These tests show that excessive plastic deformation will limit the use of self-bonded silicon carbide to temperatures less than  $1600^{\circ}$  F at a stress of 400,000 psi and nickel-bonded titanium carbide cermet to temperatures less than  $1100^{\circ}$  F at a stress of 310,000 psi. The importance of using dissimilar materials for bearing components in contact under these conditions is also shown.

### SUMMARY OF RESULTS

Surface failure tests in rolling contact were conducted with groups of nickel-bonded titanium-carbide cermet and self-bonded silicon-carbide ball specimens in the five-ball fatigue tester. These tests were performed at a contact angle of 20°, a shaft speed of 950 rpm, race temperatures of 80° and 700° F, and maximum Hertz stresses of 300,000 to 550,000 psi with a mineral oil lubricant. Support balls were SAE 52100 and AISI M-50 steel in the 80° and 700° F tests, respectively. Preliminary tests were conducted at temperatures to 2000° F in the modified five-ball fatigue tester using hot-pressed alumina support balls and molybdenum disulfide lubrication. The following results were obtained:

- 1. The load-carrying capacity at 80° F of the titanium-carbide cermet was more than twice that of the silicon carbide; however, the capacity of the titanium-carbide cermet was only ~3 percent that of M-l bearing steel tested under similar conditions.
- 2. The life of the titanium-carbide cermet at 80° F varied inversely with stress to a power that ranges from 9.7 to 10.5, and thus exhibited about the same stress-life sensitivity as that for bearing steels. In contrast, the life of the silicon carbide was found to vary inversely with stress raised to a power that ranges from 6.9 to 8.6.
- 3. Increasing the race temperature from 80° to 700° F resulted in a reduction in load capacity for the titanium-carbide cermet and silicon carbide of approximately 27 and 29 percent, respectively. The reduction was attributed to the decrease in viscosity of the lubricating fluid at the elevated temperature. Failure appearance at 700° F was similar to that at room temperature for both materials.
- 4. The surface failures in the titanium-carbide cermet were very shallow, eroded areas less than 1 mil deep and were similar to failures found in alumina but unlike fatigue pits found in bearing steels.

- 5. The failures in the silicon carbide were from 3 to 5 mils deep and were unlike those failures found in either the titanium-carbide cermet or bearing steels.
- 6. Progression of an incipient failure to a full size failure for both the titanium-carbide cermet and the silicon carbide was a slow process that frequently consumed one-half of the total running time of the specimen.
- 7. Failure of self-bonded silicon carbide ball specimens in preliminary tests run at 400,000-psi maximum Hertz stress with molybdenum disulfide argon mist lubrication was by excessive plastic deformation at temperatures above  $1600^{\circ}$  F.
- 8. Preliminary tests to temperatures of  $1600^{\circ}$  F and a maximum Hertz stress to 310,000 psi with molybdenum disulfide argon mist lubrication indicate that the titanium-carbide cermet is limited to temperatures below  $1100^{\circ}$  F and stresses less than 300,000 psi for reliable operation. Failure in the titanium-carbide cermet was due to excessive cumulative plastic deformation.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, June 15, 1964

### REFERENCES

- 1. Bisson, Edmond E., and Anderson, William J.: Advanced Bearing Technology. NASA SP-38, 1964.
- 2. Wilson, Donald S.: Evaluation of Unconventional Lubricants at 1200° F in High-Speed-Rolling Contact Bearings. Paper 61-LUBS-9, ASME, 1961.
- 3. Gray, S., Macks, F., Sibley, L. B., and Wilson, D. S.: The Development of Lubricants and Rolling Contact Bearings for Operation at 1200° F Temperature and 1×10° DN. Stratos Div., Fairchild Engine and Airplane Corp., Aug. 1959.
- 4. Sibley, L. B., and Allen, C. M.: Friction and Wear Behavior of Refractory Materials at High Sliding Velocities and Temperatures. Paper 61-LUBS-15, ASME, 1961.
- 5. Bradley, R. H.: Extreme-Temperature Bearing Development 1600° F. Paper 62-LUB-12, ASME, 1962.
- 6. Taylor, K. M., Sibley, L. B., and Lawrence, J. C.: Development of a Ceramic Rolling Contact Bearing for High Temperature Use. Paper 61-LUB-12, ASME, 1961.

- 7. Baughman, R. A., and Bamberger, E. N.: Unlubricated High Temperature Bearing Studies. Jour. Basic Eng., vol. 85, (Trans. ASME), ser. D, no. 2, June 1963, pp. 265-272.
- 8. Rabinowicz, Ernest: Friction and Wear at Elevated Temperatures. TR 59-603, WADC, Jan. 1960.
- 9. Anon.: Materials for Advanced Technology. Carborundum Co., 1960.
- 10. Bradshaw, Wanda G., and Matthews, Clayton O.: Properties of Refractory Materials: Collected Data and References. LMSD-2466, Lockheed Aircraft Corp., Jan. 1959.
- 11. Tinklepaugh, J. R., and Crandall, W. B., eds.: Cermets. Reinhold Pub. Corp., 1960.
- 12. Carter, Thomas L., and Zaretsky, Erwin V.: Rolling-Contact Fatigue Life of a Crystallized Glass Ceramic. NASA TN D-259, 1960.
- 13. Johnson, L. G.: The Statistical Treatment of Fatigue Experiments. GMR 202, Res. Labs., General Motors Corp., Apr. 1959.
- 14. Parker, R. J., Grisaffe, S. J., and Zaretsky, E. V.: Surface Failure of Alumina Balls due to Repeated Stresses Applied in Rolling Contact at Temperatures to 2000° F. NASA TN D-2274, 1964.
- 15. Utsumi, Tatsus, and Okamoto, Junzo: Effect of Surface Roughness on the Rolling Fatigue Life of Bearing Steels. Jour. Japan Soc. of Lubrication Engineers, vol. 5, no. 5, 1960, pp. 291-296.
- 16. Bunshah, R. F., and Goetzel, C. G.: A Survey of Dispersion Strengthening of Metals and Alloys. TR-59-414, WADC, July, 1959.
- 17. Anderson, W. J., and Carter, T. L.: Effect of Lubricant Viscosity and Type on Ball Fatigue Life. ASLE Trans., vol. 1, no. 2, Oct. 1958, pp. 266-272.
- 18. Scott, D.: The Effect of Lubricant Viscosity on Ball Bearing Fatigue Life. Rep. LDR 44/60, Dept. Sci. and Ind. Res., National Engineering Lab., Dec. 1960.
- 19. Zaretsky, E. V., Anderson, W. J., and Parker, R. J.: The Effect of Contact Angle on Rolling-Contact Fatigue and Bearing Load Capacity. ASLE Trans., vol. 5, no. 1, Apr. 1962, pp. 210-219.

NASA-Langley, 1964 E-2543

## NASA TN D-2459

excessive plastic deformation at temperatures as low as 1600° F. Similar results were obtained with nickel-bonded titanium carbide tested at 310,000-psi maximum Hertz stress at temperatures as low as 1100° F. show that self-bonded silicon carbide will exhibit

excessive plastic deformation at temperatures as low as 1600° F. Similar results were obtained with nickel-bonded titanium carbide tested at 310,000-psi maximum Hertz stress at temperatures as low as 1100° F.

show that self-bonded silicon carbide will exhibit

NASA TN D-2459

NASA

## NASA TN D-2459

excessive plastic deformation at temperatures as low as  $1600^{\circ}$  F. Similar results were obtained with nickel-bonded titanium carbide tested at 310,000-psi maximum Hertz stress at temperatures as low as  $1100^{\rm O}$  F. show that self-bonded silicon carbide will exhibit

NASA

# NASA TN D-2459

show that self-bonded silicon carbide will exhibit excessive plastic deformation at temperatures as low as 1600° F. Similar results were obtained with nickel-bonded titanium carbide tested at 310,000-psi maximum Hertz stress at temperatures as low as 1100° F.

NASA

NASA

| STIPEACE FAIT TRE OF TITANTIM CARRIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II. Grisaite, Salvatore J.                                                             | NASA IN D-2408 National Aeronautics and Space Administration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II. Grisaffe, Salvatore J.                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| risaffe,<br>OTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | SURFACE FAILURE OF TITANIUM CARBIDE CERMET AND SILICON CARBIDE BALLS IN ROLLING CONTACT AT TEMPERATURES TO 2000° F. Richard J. Parker, Salvatore J. Grisaffe, and Erwin V. Zaretsky. August 1964. 21p. OTS price, S0.75.  (NASA TECHNICAL NOTE D-2459)                                                                                                                                                                                                                                                                                                                            | III. Zaretsky, Erwin V.<br>IV. NASA TN D-2459                                               |
| The five-ball fatigue tester was used to study the behavior of nickel-bonded titanium carbide cermet and self-bonded silicon carbide balls under repeated stresses applied in rolling contact. The failures observed on the surface of the balls were shallow, eroded areas unlike fatigue pits found in bearing steels. The load capacity of the titanium carbide cermet and the silicon carbide were 3 and 1 percent, respectively, of that of a typical bearing steel.  Preliminary tests with molybdenum disulfide lubrication at a maximum Hertz stress of 400,000 psi (over) | NASA                                                                                   | The five-ball fatigue tester was used to study the behavior of nickel-bonded titanium carbide cermet and self-bonded silicon carbide balls under repeated stresses applied in rolling contact. The failures observed on the surface of the balls were shallow, eroded areas unlike fatigue pits found in bearing steels. The load capacity of the titanium carbide cermet and the silicon carbide were 3 and 1 percent, respectively, of that of a typical bearing steel. Preliminary tests with molybdenum disulfide lubrication at a maximum Hertz stress of 400,000 psi (over) | NASA                                                                                        |
| NASA TN D-2459  National Aeronautics and Space Administration.  II. National Aeronautics and Space Administration.  SURFACE FAILURE OF TITANIUM CARBIDE III.  SERMET AND SILICON CARBIDE BALLS IN  ROLLING CONTACT AT TEMPERATURES TO 20000 F. Richard J. Parker, Salvatore J. Grisaffe, and Erwin V. Zaretsky. August 1964. 21p. OTS price, \$0.75.  (NASA TECHNICAL NOTE D-2459)                                                                                                                                                                                                 | Parker, Richard J.<br>Grisaffe, Salvatore J.<br>Zaretsky, Erwin V.<br>. NASA TN D-2459 | NASA TN D-2459 National Aeronautics and Space Administration. SURFACE FAILURE OF TITANIUM CARBIDE CERMET AND SILICON CARBIDE BALLS IN ROLLING CONTACT AT TEMPERATURES TO 20000 F. Richard J. Parker, Salvatore J. Grisaffe, and Erwin V. Zaretsky. August 1964. 21p. OTS price, \$0.75. (NASA TECHNICAL NOTE D-2459)                                                                                                                                                                                                                                                              | I. Parker, Richard J. II. Grisaffe, Salvatore J. III. Zaretsky, Erwin V. IV. NASA TN D-2459 |
| The five-ball fatigue tester was used to study the behavior of nickel-bonded titanium carbide cermet and self-bonded silicon carbide balls under repeated stresses applied in rolling contact. The failures observed on the surface of the balls were shallow, eroded areas unlike fatigue pits found in bearing steels. The load capacity of the titanium carbide cermet and the silicon carbide were 3 and 1 percent, respectively, of that of a typical bearing steel. Preliminary tests with molybdenum disulfide lubrication at a maximum Hertz stress of 400,000 psi         |                                                                                        | The five-ball fatigue tester was used to study the behavior of nickel-bonded titanium carbide cermet and self-bonded silicon carbide balls under repeated stresses applied in rolling contact. The failures observed on the surface of the balls were shallow, eroded areas unlike fatigue pits found in bearing steels. The load capacity of the titanium carbide cermet and the silicon carbide were 3 and 1 percent, respectively, of that of a typical bearing steel.  Preliminary tests with molybdenum disulfide lubrication at a maximum Hertz stress of 400,000 psi       |                                                                                             |
| (over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NASA                                                                                   | (over)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NASA                                                                                        |

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

### NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546