

Aula 10

Vetor

- Coordenadas
 - (a, b)
 - -(x, y, z)
 - vector<tipo> X

Vetor

Soma de vetores

$$a + b = (a.x + b.x, a.y + b.y)$$

Subtração de vetores

$$a - b = (a.x - b.x, a.y - b.y)$$

Vetor

- Multiplicação por escalar * Divisão por escalar
- a * k = (a.x * k, a.y * k)

- a / k = (a.x / k, a.y / k)

Vetor

Magnitude

$$\sqrt{x^2 + y^2}$$
 // Vetores 2D
 $\sqrt{x^2 + y^2 + z^2}$ // Vetores 3D

Vetor

❖ Ângulo

 Θ = atan2(y, x)

// Retorna de $-\pi$ a π

Vetor

Produto Escalar

$$a \cdot b = (a.x * b.x) + (a.y * b.y)$$

Vetor

Produto Vetorial

$$a x b = (a.x * b.y) - (a.y * b.x)$$


```
ld x, y;
PT(ld x = 0, ld y = 0): x(x), y(y) {}

PT operator + (const PT P){
    return PT(x + P.x, y + P.y);}

PT operator - (const PT P){
    return PT(x-P.x, y-P.y);}
```



```
PT operator * (const ld d){
    return PT(x*d, y*d);}
PT operator / (const ld d){
    return PT(x/d, y/d);}
ld operator * (const PT P){
    return x*P.x + y*P.y;}
ld operator ^ (const PT P){
    return x*P.y - y*P.x;}
```



```
ld dist(){
    return sqrt(x*x+y*y);}

ld angle(){
    ld a = atan2l(y, x);
    if(a<0) a += 2*PI;
    return a;}</pre>
```


Ponto

Distância euclidiana entre P e Q

(P-Q).dist()

Ponto

Distância de Manhattan entre P e Q

abs(P.x-Q.x) + abs(P.y-Q.y)

Ponto

Distância euclidiana

Distância de Manhattan

Reta

- Dois pontos distintos
 - A
 - E

Reta

Ponto C sobre a Reta A, B ?

$$(C - A) \wedge (B - A) = 0$$

Reta

- Ponto C à esquerda da Reta A, B ?
 - $(C A) \wedge (B A) > 0$
- Ponto C à direita da Reta A, B ?

$$(C - A) \wedge (B - A) < 0$$

Reta

Projeção de C na Reta A, B

$$A + (B-A) * ((C-A)*(B-A))/((B-A)*(B-A))$$

Reta

Reta A, B paralela à Reta C, D?

$$(B-A)^{(C-D)} = 0$$

Reta

Cruzamento Reta A, B e Reta C, D

$$B = B-A$$
 $D = C-D$

$$D = C - D$$

$$C = C-A$$

$$A + B*(C^D)/(B^D)$$

Círculo

- Centro
 - P
- Raio
 - R

Círculo

Ponto Q dentro do círculo C ?

D < R

Círculo

Ponto Q dentro do círculo C ?

$$D = R$$

Círculo

Ponto Q dentro do círculo C ?

D > R

Triângulo

- 3 pontos
 - A
 - B
 - C

Triângulo

Ponto dentro do triângulo ?

À direita ou esquerda das retas

que compõem os lados.

В

Triângulo

- Área
 - |(B-A)^(C-A)| /2

Triângulo

- Área
 - |(B-A)^(C-A)| /2

Polígonos

- Pontos que formam o polígono
 - Vetor de pontos P

Polígonos

Convexos x Côncavos

Polígonos

Convexos x Côncavos

Polígonos

- Ponto dentro do polígono convexo ?
 - Mesma estratégia do triângulo

Polígonos

Ponto dentro do polígono convexo ?

Polígonos

Ponto dentro do polígono ?

Polígonos

Considerações finais

- Erros de precisão
 - Sempre que possível, use int ou long long
 - Caso precise usar double, adicione um I nas funções

Ex: senl(x), cosl(x), atan2l(y,x)

