

ATA BOOK

The Leader In Well Control.

wildwell.com +1.281.784.4700

TECHNICAL DATA BOOK

A quick reference book of formulas, charts, and tables

A Superior Energy Services Company © 2020 Wild Well Control, Inc.

The information contained herein has been collected from various sources. Accordingly, Wild Well Control, Inc. cannot and does not guarantee, warrant or represent the accuracy of or accept any responsibility for the use of any information contained herein.

Table of Contents

Ac	ronyms & Abbreviations	3
Co	mmon Formulas & Equations	
	Capacities & Volumes for Downhole	
	Capacities & Volumes of Tanks	
	Pump Output & Rate Formulas	
	Pump Pressure Relationships	
	Equivalent Circulating Density	
	Trip Calculations	
	Pressure & Gradient Formulas	8
Ki	ck Related Formulas & Equations	
	Kill Sheet Calculations	
	Kick Related Formulas	
	Kick Related Engineering Calculations	
	Volumetric Method Calculations	
	Lubricate & Bleed Calculations	
	Bullheading Calculations.	
	Stripping / Snubbing Calculations	
	Subsea Formulas	
	Accumulator Sizing	
	Mud & Cement Formulas	
	Hydraulics Formulas	. 18
Es	timates & Rules of Thumb	
	Tripping	
	Stuck Pipe	
	Free Point and Stretch Estimates	
	Temperature Drop Across Choke or Orifice	
	Bit Nozzle Pressure Loss	
	Gas Well Flow Rates	
	Area of a Circle	
	Force and Pressure	
	Weight of Spiral Drill Collars	
	Buoyancy Factor	
	Surface and Bottom Hole Pressures in Full Gas Column	
ь.	Pipe Elongation Due to Temperature	. 24
Pij	pe, BOP & Other Data Tables	20
	Drillpipe – Range II	
	Drillpipe Capacity & Displacement	
	Drill Collars	
	Drill Collar Capacity & Displacement	
	KILL SHEET	
	API Tubing	
	Premium Connection Tubing.	
	Casing Strength	
	Casing Capacity	
	Hole Capacity	
	Triplex Pumps at 100% Efficiency	
	Mud Weight Adjustments	
	Mud Weights	
	Specifications for BOP Flanges, etc.	
	Gate Valve Data	
	API Ring Joint Flanges	
	BOP Fluid Operating Volumes	
	Coiled Tubing Data	
	Coiled Tubing Dimensions	
	Electric Line	
	Wireline Data	
		71

Acronyms & Abbreviations

Unless otherwise defined, the following abbreviated terms are used in this book. Units are identified within specific formulas and equations.

Term	Description
bbl	Barrel
bpm	Barrels per minute
Cap	Capacity
Csg	Casing
DC	Drill collar
Disp	Displacement
DP	Drillpipe
DS	Drillstring
ECD	Equivalent circulating density
Eff	Efficiency
EMW	Equivalent mud weight
EOB	End of build
FCP	Final circulating pressure
FMDPP	Final maximum drillpipe pressure
FP	Formation pressure
ft	Foot
gal	Gallon
gpm	Gallons per minute
HP	Hydrostatic pressure
ICP	Initial circulating pressure
ID	Internal diameter
IMDPP	Initial maximum drillpipe pressure
KOP	Kick off point
KWM	Kill weight mud
MD	Measured depth
min	Minutes
MW	Mud weight
OD OMW	Outer diameter Original mud weight
pcf	Pounds per cubic foot
PP	Pump pressure
ppf	Pounds per foot
ppg	Pounds per gallon
psi	Pounds per square inch
PV	Plastic viscosity
Q	Flow rate
SF	Safety factor
SICP	Shut in casing pressure
SIDPP	Shut in drillpipe pressure
sk, sx	Sack, sacks
SPM	Strokes per minute
SPP	Slow pump pressure
stk	Stroke
TVD	True vertical depth
V	Velocity
Vol	Volume
YP	Yield point

4 Formulas & Equations

Capacities & Volumes for Downhole

Capacities

Open Hole Capacity_{bbl/ft} (OHCap) =
$$\frac{\text{(Hole Diameterinches)}^2}{1,029.4}$$

Casing Capacity_{bbl/ft} (CsgCap) =
$$\frac{(Casing ID_{inches})^2}{1.029.4}$$

Drill String Capacity_{bbl/ft} (DSCap) =
$$\frac{\text{(Pipe ID_inches)}^2}{1.029.4}$$

Csg x DS Annular Capacity_{bbl/ft} (Csg x DSCap) =
$$\frac{(Casing|D_{inches})^2 - (ODString_{inches})^2}{1029.4}$$

Multiple String Annular Capacity_{bbl/ft} (MSACap) = $\frac{(\text{Casing ID}_{\text{inches}})^2 - \left[(\text{ODPipe1}_{\text{inches}})^2 + (\text{ODPipe2}_{\text{inches}})^2\right]}{1,029.4}$

Volumes per Section

Open Hole Volumebbl (OHVol) = OHCapbbl/ft x Lengthft

Casing Volumebbl (CsgVol) = CsgCapbbl/ft x Lengthft

Drill String Volumebbl (DSVol) = DSCapbbl/ft x Lengthft

OH x DS Annular Volume_{bbl} (OH x DSVol) = $(OH \times DSCap)_{bbl/ft} \times Length_{ft}$

 $Csg \times DS Annular Volume_{bbl} (Csg \times DSVol) = (Casg \times DSCap)_{bbl/ft} \times Length_{ft}$

Multiple String Annular Volume_{bbl} (MSAVol) = MSACap_{bbl/ft} x Length_{ft}

Formulas & Equations

Capacities & Volumes of Tanks

Vertical Cylindrical Tanks

Capacity_{bbl/ft} =
$$\frac{(Tank \, Diameter_{ft})^2}{7.148}$$

Capacity_{bbl/ft} =
$$\frac{(Tank \, Diameter_{inches})^2}{1,029.4}$$

Capacity_{bbl/inch} =
$$\frac{(Tank Diameter_{ft})^2}{85.78}$$

Capacity_{bbl/inch} =
$$\frac{(\text{Tank Diameterinches})^2}{12,352.9}$$

Volumebbl = Capacitybbl/ft x Heightft
Volumebbl = Capacitybbl/inch x Heightinches

Rectangular Tanks

Capacity_{bbl/inch} = 0.178 x Length_{ft} x Width_{ft}
Capacity_{bbl/inch} = 0.0148 x Length_{ft} x Width_{ft}
Volume_{bbl} = Capacity_{bbl/inch} x Height_{ft}
Volume_{bbl} = Capacity_{bbl/inch} x Height_{inches}

Horizontal Cylindrical Tanks

Volume of Tank_{bbl} = Length_{ft} ×
$$\frac{\text{(Tank Diameterinches)}^2}{1,029.4}$$

Content from Volume (for Horizontal Tanks)

FIND VOLUME FACTOR FROM TABLE USING CALCULATED HEIGHT RATIO:

Content in Tankbbl = Vol of Tankbbl x Volume Factor

OOMON IN	armobil vereri	aringpl x voiairi	10 1 40 (0)
Height Ratio	Volume Factor	Height Ratio	Volume Factor
0.05	0.019	0.55	0.560
0.10	0.052	0.60	0.626
0.15	0.092	0.65	0.690
0.20	0.142	0.70	0.747
0.25	0.195	0.75	0.800
0.30	0.252	0.80	0.857
0.35	0.310	0.85	0.900
0.40	0.373	0.90	0.948
0.45	0.430	0.95	0.980
0.50	0.500	1.00	1.000

Pump Output & Rate Formulas

Pump Outputs

FOR TRIPLEX PUMPS:

Output_{bbl/stk} =

0.000243 x (Liner IDinches)2 x Strokeinches x Eff%

FOR DUPLEX PUMPS (DOUBLE ACTING):

Output_{bbl/stk} = $0.000162 \text{ x } [2 \text{ x } (\text{Liner } ID_{\text{inches}})^2 - (\text{Rod } OD_{\text{inches}})^2]$ $\text{x } \text{Stroke}_{\text{inches}} \text{ x } \text{Eff}\%$

Pump Rates

Rate_{bpm} = Output_{bbl/stk} x SPM

Rate_{gpm} = 42 x Output_{bbl/stk} x SPM

Pumping/Spotting/Displacing

$$Time_{min} = \frac{BBL \text{ to Pump}}{Output_{bbl/stk} \times SPM}$$

Pump Pressure Relationships

New Pump Pressure (PP) for Rate Change

New PP_{psi} =
$$\left(\frac{\text{New Ratebpm}}{\text{Old Ratebpm}}\right)^2 \times \text{Old PP}_{psi}$$

New PP_{psi} =
$$\left(\frac{\text{New SPM}}{\text{Old SPM}}\right)^2 \times \text{Old PP}_{psi}$$

New Pump Pressure (PP) for Density Change

New
$$PP_{psi} = \frac{New MW_{ppg}}{Original MW_{ppg}} \times Original PP_{psi}$$

Equivalent Circulating Density (ECD)

Equivalent Circulating Density (ECD_{ppg}) using Pressure Loss

0.052 × Depthtvoft

Where:

Annular Friction Pressure Loss in psi is approximately equal to 10% of the pump pressure for normal hole geometries (i.e., no liners or tapered strings).

Equivalent Circulating Density (ECD_{ppg}) using Yield Point (YP) for MW ≤ 13 ppg

ECD_{ppg} = MW_{ppg} + HoleDiameterinches - PipeOD_{inches}

Where:

YP = Fann 300 reading - PV

PV = Fann 600 reading - Fann 300 reading

Equivalent Circulating Density (ECD_{ppg}) using Yield Point (YP) for MW > 13 ppg

 $ECD_{ppg} = MW_{ppg} + \frac{0.1}{HoleDiameter_{inches} - PipeOD_{inches}}$

 $\times \left(YP + \frac{PV \times V_{ft/min}}{300 \times \left(HoleDiameter_{inches} - PipeOD_{inches} \right)} \right)$

Trip Calculations

Trip Margin_{ppg}

 $Trip\ Margin_{ppg} = \frac{YP_{mud}}{11.7 \times \left(\text{Hole Diameter inches} - Pipe\ OD inches}\right)}$

 $Trip\ Margin_{ppg} = \ \frac{Annular\ Pressure\ Loss_{psi}}{0.052 \times DepthtvDft}$

Slug Mud Weight_{ppg} for a given Length of Dry Pipe

Slug Weight_{ppg} =

MWppg + (MWppg × Length Dry Pipeft × DP Сарьы/ft)

Volume of Slugьы

Slug Volumebbl for a given Length of Dry Pipe

Slug Volume_{bbl} = $\frac{MW_{ppg} \times LengthDry Pipeft \times DP Capbbl/ft}{Slug MW_{ppg} - MW_{ppg}}$

Trip Calculations, continued

Pit Gain from Slugbbl

 $Pit \ Gain_{bbl} = \ Slug \ Volume_{bbl} \times \frac{Slug \ Weight_{ppg} - MW_{ppg}}{MW_{ppg}}$

Depth Slug Fallsft

Depth Slug Falls_{ft} = Pit Gain from Slugьы
DP Сарьы/ft

Hydrostatic Pressure Drop per Vertical Foot (ΔP_{psi/R}) when Pulling Dry Pipe

 $\Delta P_{psi/ft} = \frac{0.052 \text{ x MW}_{ppg} \text{ x DP Displbbl/ft}}{\text{Annulus Capbbl/ft} + \text{DP Capbbl/ft}}$

Hydrostatic Pressure Drop per Vertical Foot (ΔP_{psi/ft}) when Pulling Wet Pipe

 $\Delta P_{psi/ft} = 0.052 \text{ x MW}_{ppg} \text{ x} \frac{\left(DP Capbbl/ft + DP Displbbl/ft\right)}{Annulus Capbbl/ft}$

Length of Dry Pipe Pulled Before Fill-Up for Desired Pressure Drop ΔP

 $Length_{ft} = \frac{\Delta P_{psi} \times (Annulus Capbbl/ft + DP Capbbl/ft)}{0.052 \times MW_{ppg} \times DP Displbbl/ft}$

Length of Wet Pipe Pulled Before Fill-Up for Desired Pressure Drop AP

 $Length_{ft} = \frac{\Delta P_{psi} \times Annulus \, Capbbl/ft}{0.052 \times MW_{ppg} \times \left(DP \, Capbbl/ft + DP \, Displbbl/ft\right)}$

Pressure & Gradient Formulas

Fluid Gradient (Gradient_{psi/ft})

Gradient_{psi/ft} = 0.052 x Fluid Density_{ppg}

Gradient_{psi/ft} = 0.007 x Fluid Density_{pcf}

Gradient_{psi/ft} = 0.433 x Specific Gravity (SG)

Hydrostatic Pressure (HP_{psi})

$$\begin{split} HP_{psi} &= Gradient_{psi/ft} \ x \ Depth_{TVDft} \\ HP_{psi} &= 0.052 \ x \ MW_{ppg} \ x \ Depth_{TVDft} \\ HP_{psi} &= 0.007 \ x \ MW_{pcf} \ x \ Depth_{TVDft} \end{split}$$

 $HP_{psi} = 0.433 \text{ x SG x Depth}_{TVDft}$

Formulas & Equations

Kill Sheet Calculations

(All formulas based on single bubble in water based mud.)

SEE SAMPLE KILL SHEET ON PAGE 32/33.

Kill Weight Mud (KWM_{ppg}) from Original Mud Weight (OMW_{ppg})

$$KWM_{ppg} = \frac{SIDPP_{psi}}{(0.052 \times Depth_{TVDft})} + OMW_{ppg}$$

Initial Circulating Pressure (ICP_{psi})

Final Circulating Pressure (FCP_{psi})

$$FCP_{psi} = \frac{SPP_{psi} \times KWM_{ppg}}{OMW_{ppg}}$$

Strokes to Bit (STB)

$$STB = \frac{Drillstring\ Volumebbl}{Outputbbl/stk}$$

Strokes for KWM to Shoe

$$Strokes \ to \ Shoe = \ \frac{Openhole \ Annular \ Volume \ bbl}{Output \ bbl/sik} + STB$$

Strokes for KWM to Surface

Strokes to Surface =
$$\frac{\text{Total Annular Volumebbl}}{\text{Outputbbl/stk}} + \text{STB}$$

Time for KWM to Bit

Time to Bit_{min} =
$$\frac{STB}{SPM}$$

Time for KWM to Shoe

Time to Shoe_{min} =
$$\frac{\text{Strokes to Shoe}}{\text{SPM}}$$

Time for KWM to Surface

Time to Surface =
$$\frac{\text{Strokes to Surface}}{\text{SPM}}$$

Kick Related Formulas

(All formulas based on single bubble in water based mud.)

Length of Influx

 $Influx Length_{ft} = \frac{Influx Sizebbl}{Lower Annulus Capbbl/ft}$

Maximum Expected Pit Gain (MPG_{bbl}) with a Gas Kick in Water-Based Mud Systems

 $MPG_{bbl} = \ 4 \times \sqrt{\frac{FP_{psi} \times Original\ Gainbbl}{KWM_{ppg}}}$

Maximum Expected Surface Pressure (MSP_{psi}) from a Gas Kick in Water-Based Mud Systems

 $MSP_{psi} = 0.20 \times \sqrt{\frac{FP_{psi} \times Original \ Gainbbl \times KWM_{ppg}}{Annular \ Cap_{bbl/ft} \ at \ top \ of \ hole}}$

Maximum Allowable Mud Weight (MAMWppg)

 $MAMW_{ppg} = \frac{Applied Pressure_{psi}}{0.052 \times Shoe DepthtyDeft} + Test MW_{ppg}$

Note: Applied Pressure from Integrity or Leak-Off test.

Maximum Allowable Shut-In Casing Pressure (MASP_{psi})

MASP_{psi} = 0.052 x (MAMW_{ppg} - MW_{ppg}) x ShoeDepth_{TVDft}

Kick Tolerance (KT_{ppg}) with Influx

$$KT_{ppg} = \left[\left(MAMW_{ppg} - MW_{ppg} \right) \times \frac{Shoe DepthrvDft}{TotalDepthrvDft} \right]$$

<u>Where:</u> $MWI_{ppg} = Density of influx_{ppg}$

Estimated Kick Density

Kick Density_{ppg} = $MW_{ppg} - \frac{SICP_{psi} - SIDPP_{psi}}{0.052 \times Kick LengthtvDft}$

Kick Gradient_{psi/ft}

 $\label{eq:Kick Gradient} \mbox{Kick Gradient}_{psi/ft} = \left(\mbox{MW}_{ppg} \times 0.052\right) - \frac{\mbox{SICP}_{psi} - \mbox{SIDPP}_{psi}}{\mbox{Kick Length}_{tvbft}}$

Gas Migration Distance

Distance_{TVDft} = $\frac{\text{Rise in SICP}_{psi}}{\text{MW}_{ppq} \times 0.052}$

Rate of Gas Migration

Migration Rate_{TVDft/min} = Distance of Rise_{TVDft}

Time for Rise_{min}

Kick Related Engineering

(All formulas based on single bubble in water based mud.)

Bottom Hole Pressure (BHP_{psi}) while Circulating on the Choke

BHP_{psi} = Hydrostatic Pressure_{psi} Mud in Drillstring + SIDPP_{psi}

Equivalent Mud Weight (EMW_{ppg)} at Bottom Hole while Circulating out a Kick

 $EMW_{ppg} = \frac{BHP_{psi}}{0.052 \times DepthrvDft}$

Shut-In Casing Pressure (SICP_{psi})

 $SICP_{psi} = SIDPP_{psi} + [0.052 \times (MW_{ppg} - Kick Density_{ppg})]$ x Length of Influx_{VDft}]

Formation Pressure (FP_{psi})

FP_{psi} = SIDPP_{psi} + [0.052 x OMW_{ppg} x Depth_{TVDft}]

 $\begin{aligned} FP_{psi} &= SICP + 0.052 \ x \ [(Kick \ Length_{VDft} \ x \ Kick \ Density_{ppg}) \\ &+ \ (Mud \ Column_{ft} \ x \ OMW_{ppg})] \end{aligned}$

% Reduction in Hydrostatic Pressure Due to Gas-Cut Mud (GCMW) % Pgcm (for water-base mud)

 $\%\Delta P_{gcm} = \frac{100 \times (OMW_{ppg} - GCMW_{ppg})}{GCMW_{ppg}}$

Leak-Off Test Pressure (LOT_{psi}) and Equivalent Mud Weight (EMW_{LOT}) at Shoe

LOT_{psi} = (0.052 x Test MW_{ppg} x TVD_{shoe}) + Applied Pressure to Leak-Off_{psi}

 $EMW_{LOT ppg} = \frac{LOT_{psi}}{0.052 \text{ x ShoeDepthrvDft}}$

Formation Integrity Test Pressure (FIT_{psi}) and Equivalent Mud Weight (EMW_{FIT}) at Shoe

FIT_{psi} = (0.052 x Test MW_{ppg} x TVD_{shoe}) + Applied Integrity Pressure_{psi}

 $EMW_{FIT ppg} = \frac{FIT_{psi}}{0.052 \text{ x ShoeDepthtvDft}}$

Maximum Formation Pressure that can be Controlled with a Well Shut-In

Max FP_{psi} = 0.052 x (KT_{ppg} + MW_{ppg}) x Depth_{TVDft}

Kick Related Engineering Calculations, continued

(All formulas based on single bubble in water based mud.)

Maximum Kick Height Possible not to Exceed MASP

Kick Height_{VDft} = Mud Gradient_{psl/ft} - Kick Gradient_{psl/ft}

Maximum Kick Volume Possible not to Exceed MASP

Kick Volumebbl = Kick Heightft x Annulus Capbbl/ft

Volumetric Method Calculations

(All formulas based on single bubble in water based mud.)

Initial Pressure Build Increment (△IP)

ΔIP_{psi} = Safety Margin_{psi} + Range_{psi}

Cycle Pressure Build Increment (△CP)

ΔCP_{psi} = Range_{psi}

Hydrostatic Pressure (ΔHPL_{psi/bbl}) Loss per **Barrel of Mud Bled in Upper Annulus**

$$\Delta HPL_{psi/bbl} = \frac{ (Gradient\,Mud - 0.104)_{psi/ft} }{ Annulus\,Cap_{bbl/ft} \,\,at\,top\,of\,hole }$$

Bleed Volume (bbl) per Cycle

 $VOI_{bleed} = \frac{\Delta C. F.}{\Delta HPLpsi/bbI}$

Lubricate & Bleed Calculations

(All formulas based on single bubble in water based mud.)

Cycle Hydrostatic Pressure Gain (ΔHP_{psi/bbl}) per **Barrel of Mud Pumped in Upper Annulus**

(Gradient Lube Mud - 0.104)psi/ft

$\Delta HP_{psi/bbl}$ = Annulus Cap_{bbl/ft} at top of hole

Cycle Hydrostatic Pressure Increase (AHPIpsi) or Lubricated Volume (△VOLbbl) to be Bled Off

ΔΗΡΙ_{psi} = (Gradient Lube Mud - 0.104)_{psi}/π x ΔVOLbbi Annulus Capbbl/ft at top of hole

ΔVOL_{bbl} = ΔHPl_{psi} x Annulus Caрыля at top of hole (Gradient Lube Mud - 0.104) psi/ft

Lubricate & Bleed Calculations

(All formulas based on single bubble in water based mud.)

Simplified Equation for Lubrication

$$P_{3 psi} = \frac{(P_{1psi})^2}{P_{2 psi}}$$

Where:

P₁ = Original shut in pressure

P₂ = Pressure increase due to pumping lubricating fluid into the wellbore.

P₃ = pressure to bleed down after adding the hydrostatic of the lubricating fluid

Procedure:

- Select a working pressure range. For example, Pw = 50 - 100 psi.
- Pump lubricating fluid through the kill line to increase the casing pressure by the working pressure, so that P₂ = P₁ + P_W.
- Allow the pressure to stabilize. The pressure may drop by a substantial amount.
- 4. Calculate the pressure (P₃) to bleed down to by using the formula above.
- Repeat steps 2 through 4 until all the gas is bled out of the well.

Bullheading Calculations

Kill Weight Mud (KMW_{ppg})

$$KWM_{ppg} = \frac{Formation Pressure_{psi}}{0.052 \times Perfs Depthtvoft}$$

Formation Integrity Pressure (FIT_{psi}) at Perfs Depth

FIT_{psi} = 0.052 x (EMW_{FIT ppg} at perf) x Perfs_{TVDft}

$\ \, Hydrostatic\ Pressure\ (HP_{psi})\ in\ Drillpipe$

HPpsi = Formation Pressurepsi - SIDPPpsi

Initial Maximum Drillpipe Pressure (IMDPP_{psi})

$$IMDPP_{psi} = FIT_{psi} - HP_{psi}$$

Hydrostatic Pressure from KWM_{ppg} (KMHP_{psi})

 $KMHP_{psi} = 0.052 x KWM_{ppg} x Perfs_{TVDft}$

$Final\ Maximum\ Drillpipe\ Pressure\ (FMDPP_{psi})$

$$FMDPP_{psi} = FIT_{psi} - KMHP_{psi}$$

14 Formulas & Equations

Stripping/Snubbing Calculations

Breakover Point Between Stripping & Snubbing

Snub Force_{lb} = Wellbore Pressure_{psi} x (DP or DC OD_{in})² x 0.7854 + Friction Force_{lb}

DC Weight_{lb} = DC Weight_{lb/ft} x DC Length_{ft} x Buoyancy Factor

DP Weight Required for Breakover_{lb}
= Snub Force_{lb} - DC Weight_{lb}

Length of DP Required for Breakover_{it} =

DP Weight Required for Breakover_{ib}

DP Weight_{in/fr} × Buoyancy Factor

Friction Force_{lb} = Friction Through Pressure Control Elements

Influx Height Gain from Stripping Into

 Δ Height_{ft} =

Pipe Length Strippedft x (DPСарьы/ft + DPDisplьы/ft)
Annulus Сарьы/ft

Casing Pressure Increase (△SICP) from Stripping into an Influx

 $\Delta SICP_{psi} =$

ΔHeight_{ft} x (Gradient Mud - Gradient Influx)_{psi/ft}

Mud Volume to Bleed to Maintain Constant Bottom Hole Pressure

 $BleedMud_{bbl} = \frac{Csg\, Pressure\, Increment_{psi}\, x\, Annulus\, Cap_{bbl/ft}}{Mud\, Gradient_{psi/ft}}$

Subsea Formulas

Hydrostatic Pressure in Riser (HPR_{psi})

HPR_{psi} = (Water Depth_{ft} + Air Gap_{ft}) x .052 x MW_{ppq}

Hydrostatic Pressure from Seawater (HPSpsi)

HPS_{psi} = .052 x Water Depth_{ft} x Seawater Weight_{ppg}

Riser Differential_{psi}

Riser Differential_{psi} = HPR_{psi} - HPS_{psi}

Riser Margin_{ppg}

Riser Margin_{ppg} = $\frac{\text{Riser Differential}_{psl}}{0.052 \times (\text{TVDrt} - \text{Water Depthrt} - \text{Air Gaprt})}$

Pump Start-Up Pressure on Casing Side

Pump Start-Uppsi = SICPpsi - CLFPpsi

Where: CLFP_{psi} = Choke Line Friction Pressure

Initial Circulating Pressure (ICP_{psi})

ICP_{psi} = SIDPP_{psi} + SPP_{psi} through the riser

Final Circulating Pressure (FCP_{psi})

 $FCP_{psi} = SPP_{psi}$ (through the riser) $\times \frac{KWM_{ppg}}{OMW_{ppg}}$

Accumulator Sizing

API Minimum Requirements

100% (S.F.= 1) of fluid volume required to close and hold closed all preventers and open an HCR valve and have a system pressure of 200 psi above minimum recommended precharge pressure remaining on the accumulator with pumps off.

Standard Recommendation

150% (S.F.= 1.5) of fluid volume required to close and hold closed all preventers and open an HCR valve and have 1,200 psi system pressure remaining on the accumulator with pumps off.

Fluid Volume Required (Vol_{req})

Volreq = S.F. x (CloseVol_{annular} + CloseVol_{bop1} + CloseVol_{bop2} + CloseVol_{bop3} + CloseVol_{bop4} + OpenVol_{bor})

Accumulator Sizing, continued

Accumulator Volume Required

Usable hydraulic fluid for operation of blowout preventer equipment is affected by system pressure and nitrogen precharge. If the nitrogen precharge is at the correct (recommended) precharge, multiply the sizing factor from the table below times the fluid volume required to operate a specified number of BOP functions (Vol_{req}) will provide the required total accumulator volume.

Accumulator	Minimum Recommended	Useable	Accumulator
System Pressure	Precharge Pressure	Fluid	Size Factor*
3,000	1,000 1	50.0%*	2
5,000	1,500 ¹	58.2%*	1.72

^{*} Based on minimum system pressure of 200 psi over precharge.

Precharge Pressure: The accumulator bottles filled with only precharge gas at its initial pressure and ambient temperature. The precharge pressure should be specified with a temperature. Precharge pressure is not to exceed the working pressure of the accumulator. Any precharge pressure less than the working pressure of the accumulator may be used as long as the functional requirements of pressure and volume and minimum design factors are satisfied

Accumulator Volume Example

If the total fluid required for a BOP stack is 33 gallons, including the safety factor, and the accumulator has an operating pressure of 3,000 psi with a 1,000 psi minimum precharge, the accumulator volume required is 33 gallons times the size factor of 2, or 66 gallons.

Accumulator Usable Fluid Volume

Usable Volume = VR(Volume Required) x Bottle Volume Where VR

Precharge Presspsi Precharge Presspsi Min operating Pressosi Max operating Pressosi

Mud & Cement Formulas

Barite (100 lb sx) Per 100 bbl Required for Weight-Up

Sacks per 100 bbl = 1,470× KWMppg - OMWppg 35 - KWMppg

Hematite (100 lb sx) Per 100 bbl Required for Weight-Up

Sacks per 100 bbl = 1,680× KWM_{ppg} - OMW_{ppg} 40 - KWMppa

All precharge pressures should be in compliance with API 16D.

Mud & Cement Formulas, continued

Pit Volume Increase per 100 bbl (ΔV_{100bbl}) due to Weight-Up with Barite

$$\Delta V_{100bbl} = 100 \times \frac{KWM_{ppg} - OMW_{ppg}}{35 - KWM_{ppg}}$$

Final Mud Weight (MWppg) when Mixing Two Densities of Mud

$$MW_{ppg} = \frac{(Vol1bbl \times MW1ppg) + (Vol2bbl \times MW2ppg)}{Vol1bbl + Vol2bbl}$$

Initial Mud Volume Required (IVolbbl) to Build a Final Volume of Mud with Barite

$$IVOl_{bbl} = Final Vol_{bbl} \times \frac{35 - KWM_{ppg}}{35 - OMW_{ppg}}$$

Sacks of (94 lb) Cement Required

Sacks_{94lb} =
$$\frac{5.615 \text{cf/bbl x Capbbl/ft x Lengthft x %Excess}}{\text{Yieldcf/sk}}$$

Mix Fluid Requirement

$$Mix Fluid_{bbl} = \left(No. Sacks to Mix\right) \times \frac{Mix Fluid Req_{gal/sk}}{42gal/bbl}$$

Balanced Plug (Cement, Barite, etc.)

- A) Calculate volume of plug:
 - PlugVolbbl = Plug Lengthft X Hole Capbbl/Ft
- B) Calculate length of balanced column: PlugVolы
- Column Length_{ft} = Annulus Capbbl/ft + DP Capbbl/ft C) Calculate total string volume to balance:
- VolBalancebbl = (Plug Bottom Depthft Column Lengthft) X DPcapbbl/Ft
- D) Calculate ratio of spacer inside and outside of string:

Spacer Ratio =
$$\frac{Annular Capbbl/ft}{DPCapbbl/ft}$$

E) Calculate displacement volume:

DisplVolbbl = VolBalancebbl - Spacer Behindbbl

Hydraulics Formulas

Annular Velocity (AV_{ft/min})

$$V_{ft/min} = \frac{24.51 \times Pump Rate_{gpm}}{HoleOD_{in}^2 - PipeOD_{in}^2}$$

Hydraulic Horsepower (HHP)

$$HHP = \frac{Q_{gpm} \times Pump \, Pressurepsi}{1.714}$$

$$HHP = \frac{Q_{bpm} x Pump Pressurepsi}{40.8}$$

Rules of Thumb

Tripping Rules of Thumb

Ideally, drillers would like to keep bottomhole hydrostatic pressure constant during the trip out (POOH) and the trip in (RIH). However, this is impossible from the operational standpoint because of swab and surge pressures. Most tripping rules-of-thumb are closely associated with maintaining a safe hydrostatic overbalance that neither causes a kick nor lost circulation.

Slug Mud Weight Rule of Thumb

Slug mud weight is generally one ppg higher than the hole mud weight, with the objective being to unbalance the DP/annulus U-tube by enough to pull dry pipe. The condition of the mud, related to drill solids, and/or the mud weight range could influence the driller to accept less than one ppg.

Stuck Pipe

The causes of stuck pipe are broadly classified as differential or mechanical, and good monitoring and operating practices will minimize both types of pipe sticking. Differential sticking is caused by mud pressure overbalance and is influenced by drilling practices, type mud solids, permeability, bottom-hole assembly clearance, coefficient of friction and the lubricating characteristics of mud. Mechanical sticking is caused by deterioration of hole stability (shale problems, hole cleaning, etc.) and/or directional (crooked-hole) problems.

Rule of Thumb for Differentially Stuck Pipe

The estimated force required to pull free is equal to the contact force per unit length, times the length of pipe in contact with permeable formation times the coefficient of friction. This estimate tends to be more accurate in a straight hole than in a directional well.

Estimating Formula for Differential Sticking

$$F_{diff} = K (\Delta P) Area$$

Where:

K = Sticking coefficient (0.2 water base mud)

 (ΔP) = Differential pressure (psi)

d = Diameter (inches)

L = Permeable zone length (feet)

Area = Contact area (inches 2)

Area = $L \times \left(\frac{12\text{in.}}{\text{ft}}\right) \times \left(\frac{\pi \times d}{3}\right)$

(assume $\frac{1}{3}$ of the drill collar circumference is buried)

Circumference = π x Diameter

<u>Conclusion:</u> Force to pull free increases as the length of pipe in contact with permeable formation increases, and as the coefficient of friction between pipe and wall increases.

Example

Given 6 1/4" DC:

$$\frac{\pi \times d}{3} = \frac{3.1416 \times 6.25}{3} = 6.545$$
 (round to 6.5)

 $\Delta P = 200 \text{ psi (approx. 0.5 ppg overbalance at 8,000 ft)}$

L = 200 ft (of permeable zone)

 $F_{\text{diff}} = 0.2 \text{ x } 200_{\text{psi}} \text{ x } 200_{\text{ft}} \text{ x } 12_{\text{in./ft}} \text{ x } 6.5_{\text{in.}} = 624,000_{\text{lbs}}$

Free Point and Stretch Estimates

When the drill string is stuck, the free point method can be used to estimate the amount of free pipe in the hole.

Begin by pulling on the pipe with an initial force (F_i) that is at least 1,000 pounds more than the hanging weight of the string, and make a reference mark on the string. Increase the pull by increments (for example, 5,000 lbs) to final force (F_i) to determine a measurable stretch. Mark the string again, measure the distance between the marks and record as the stretch (S_i) in inches. Record the difference between F_f and F_i as the pull increment (S_i). The amount of free pipe (S_i) in 1,000's of feet below the rotary can then be estimated. These estimates tend to be more accurate in straight holes than in directional wells.

Estimating Formula

The formula for free pipe length L is:

$$L = 1.9635 \times S \times \frac{OD^2 - ID^2}{PI}$$

The formula for pipe stretch S is:

$$S = \frac{PI \times L}{1.9635 \times (OD^2 - ID^2)}$$

Where:

L = Length of free pipe (1,000s ft)

S = Stretch (inches)

OD = OD of the pipe (inches)

ID = ID of the pipe (inches)

PI = Pull increment (1,000s lbs) = $F_f - F_i$

Example

Given:

ID = 4.276" S = 12"

Calculate:

$$PI = 35 - 5 = 30$$

$$L = 1.9635 \times 12 \times \frac{25 - 18.284}{30} = 5.27$$
 thousand feet

Estimating Temperature Drop Across a Choke or Orifice

Rule of Thumb

The temperature drop across a choke or orifice is about one degree Fahrenheit (F) per each pressure drop of one atmosphere (rounded at 15 psi).

Estimating Formula

$$T_{drop} = \frac{(P_h - P_L)}{atm} \times 1^{\circ}F$$

Where:

T_{drop} = Temperature drop (degrees)

P_h = Gas pressure before the choke (psi)

P_L = Gas pressure after the choke (psi)

atm = Atmospheric pressure (15 psi)

Example

Calculate temperature drop if the gas pressure is reduced from 1,000 psi to 500 psi across a choke.

$$T_{drop} = \frac{(1,000-500)}{atm} \times 1^{\circ}F$$

= 33 x 1°F = 33°F temperature drop

Bit Nozzle Pressure Loss

$$\Delta P = \frac{\rho \times Q^2}{10858 \times \Delta^2}$$

Where:

 ΔP = Pressure (psi)

 ρ = Density (ppg)

Q = Circulation rate (gal/min)

A = Area of the nozzle (in²)

Estimating Gas Well Flow Rates

Rule of Thumb

The approximate flow rate (in mmscfd) of a gas well through a blowdown line choke can be estimated by multiplying 24 hours/day, times the tubing pressure plus 15, times the square of the choke size in inches and divide by 1,000.

Estimating Formula

$$Q = \frac{24 \, x \, (PL + 15) \, x \, (Dch)^2}{1.000}$$

Where:

Q = Flowrate (mmscfd)

P_L = Pressure upstream of choke (psi)

D_{ch} = Choke size (inches)

Example

Calculate the estimated flowrate of a gas well, given that tubing pressure is 3,500 psi, and choke size is 1/4.

$$Q = \frac{24 \times (3,500 + 15) \times (0.25)^2}{1,000} = 5.273 \text{ mmscfd}$$

Area of a Circle (in2)

 $0.7854 \times D^2$

or π D²/4

or πR^2

Where:

D = diameter (inches)

R = radius (inches)

Force and Pressure

Force Ib = Pressurepsi x Areasa in

or Force _{lb} = Pressure_{psi} x (Diameter² x 0.7854)

Weight of Spiral Drill Collars

ppf for spiral DC

= 0.96 x ppf for smooth DC of same OD & ID

Buoyancy Factor (BF)

$$BF = \frac{65.4 - MW_{ppg}}{65.4}$$

Surface & Bottom Hole Pressures in Full Gas Column

Method A – Approximate gas gradient is 0.1 psi/ft SP = BHP – (0.1psi/ft x TVDft)

Method B - Exact equation

$$SP = BHP \times e^{-\left(\frac{0.01875 \times SG \times D}{Z_{avg} \times T_{avg}}\right)}$$

Where:

SP = Surface Pressure (psi)

BHP = Bottom hole pressure (psi)

SG = Specific gravity of the gas

D = Depth in TVD (feet)

Z_{avg} = Average compressibility factor of the gas

T_{avg} = Average gas temp in degrees Rankine(°F + 460)

Pipe Elongation Due to Temperature

Since the well has higher temperatures than the air above ground, an elongation will take place.

Rule of Thumb

Pipe will elongate about 0.83 inches, per 100 feet of length, per 100 degree F increase in temperature. Knowing the surface temperature and the average temperature of the well, the elongation can be estimated.

Note: Elongation (stretch) is also caused by the hanging weight of pipe.

Estimating Formulas

BHT =
$$\left(\frac{1^{\circ}F}{100ft} \times TVD\right) + ST^{\circ}F$$

$$T_{a} = \frac{BHT + ST}{2}$$

$$\Delta T = T_a - Surface Temp$$

$$\Delta L \tau = 12 in / ft \times 0.0000069 \frac{in / in}{\circ F} \times L \times \Delta T$$

$$\Delta L_T = \frac{L}{100 \text{ ft}} \times \frac{\Delta T}{100^{\circ}F} \times 0.83$$

Where:

BHT = Bottomhole temperature (°F)

Depth = True vertical depth (ft)

ST = Surface temperature (°F) T_a = Average temperature (°F)

 ΔT = Change in average temperature (°F)

 ΔL_{T} = Elongation (inches)

L = Length of pipe (ft)

Rules of Thumb

My Rules of Thumb

																						<u> </u>
ool Joint	Displ. Bbls/Ft		0.00353	0.00742 0.00448	0.00532		0.00652		0.00471	0.01422 0.00545		0.00680	0.00652	0.00874	0.00874	0.00721		0.00721	0.00820	0.00773	0.00807	0.00881
without Tool Joint	Capacity Bbls/Ft		0.00449	0.00742	0.00658		0.01776		0.01084	0.01422		0.01287	0.01776	0.01554	0.01554	0.02218		0.02218	0.02119	0.02579	0.03456	0.03383
	Displ. Bbls/Ft		0.00389 0.00449	0.00515	90900'0		0.00784			0.00663		0.00830	0.00827	0.01075	0.01066	0.00925		0.00925	0.01042	0.00971	0.01078	0.01194
with Tool Joint	Capacity Bbls/Ft		0.00451	61.10 0.00741	0.00658 0.00606		0.01745 0.00784		0.01082 0.00587	0.01421		0.01252	0.01719 0.00827	0.01523 0.01075	179.97 0.01535 0.01066 0.01554 0.00874	0.02162 0.00925 0.02218		199.19 0.02172 0.00925 0.02218	0.02067	0.02521	0.03385	0.03297 0.01194
	Weight Lb		34.99	61.10	74.82		120.23		108.76	113.10 0.01421		142.46	157.37	188.17	179.97	184.41		199.19	210.15		240.81	284.15
oint	Length Ft.		1.29	1.54	1.59		1.65		1.70	1.67		1.71	1.70	1.82	1.82	1.79		2.33	2.31		2.35	2.39
Tool Join	ID In.		2.156	2.688	2.563	le X	3.500		3.250	3.750	le G	2.500	2.750	3.250	3.500	7.250 3.500	le S	4.000	3.750	4.25	5.000	4.750
	OD In.	rade E	3.875	4.750	5.000	t – Grad	6.375	rade G	9.000	6.375	t – Grad	6.250	6.625	7.250	7.250	7.250	et – Grac	7.000	7.000	7.000	8.000	8.000
ADI	Designation	External Upset – Grade E	НО	NC 38 (IF)	NC 38 (IF)	internal External Upset – Grade X	5.188 NC 50 (EH)	External Upset – Grade G	NC 46 (IF)	NC 50 (IF)	internal External Upset – Grade G	NC 46 (EH)	NC 50 (IF)	5 ½ FH	5 ½ FH	5 ½ FH	Internal External Upset - Grade S	HT 55	HT 55		HT 65	HT 65
Pipe	End Dia. OD	Exter	3.219	3.824	3.824	internal E	5.188	Exter	4.625	5.188	internal E	4.250	5.188	5.188	5.188	5.563	Internal E	5.563	2.563		6.929	6.929
Pipe	End Dia. ID		2.151	2.602	2.602	I	3.653		3.063	3.563	I	2.813	3.563	3.313	3.313	3.813		3.813	3.813		5.315	5.315
Upset	Ŵt. Lb		2.40	4.00	2.80		16.80		14.40	17.20		17.60	16.80	15.40	15.40	21.00		21.00	18.40		25.87	24.00
Plain	End Wt. Lb/Ft		6.72	12.31	14.63		17.93		12.93	14.98		18.69	17.93	24.03	24.03	18'61		18'61	22.54		22.19	24.21
Pipe	ID In.		2.151	2.764	2.602		4.276		3.340	3.826		3.640	4.276	4.000	4.000	4.778		4.778	4.670	5.153	5.965	5.901
Wall	Thick. In.		0.362	0.368	0.449		0.362		0.330	0.337		0.430	0.362	0.500	0.500	0.361		0.361	0.415	0.361	0.330	0.362
Nom.	Wt. Lb/Ft		10.40	13.30	15.50		19.50		14.00	16.60		20.00	19.50	25.60	25.60	21.90		21.90	24.70	23.40	25.20	27.70
Pipe	Size In.		2 7/8	3 1/2	3 1/2		2		4	4 1/2		4 1/2	2	2	5	5 1/2		5 1/2	5 1/2	5 1/8	9/5 9	6 %

DP OD (In).	Weight (ppf)	ID Tube (In.)	DP Capacity (bbl/ft)	Displacement (bbl/ft)	Closed- End (bbl/ft)
2 3/8	4.85	1.995	0.00387	0.0016	0.0055
Z 78	6.65	1.815	0.00320	0.0023	0.0055
	6.45	2.469	0.00592	0.0021	0.0080
2 7/a	6.85	2.441	0.00579	0.0022	0.0080
∠ /8	8.35	2.323	0.00524	0.0028	0.0080
	10.40	2.151	0.00449	0.0035	0.0080
	8.50	3.063	0.00911	0.0028	0.0119
	9.50	2.992	0.00870	0.0032	0.0119
3 ½	11.20	2.900	0.00817	0.0037	0.0119
	13.30	2.764	0.00742	0.0045	0.0119
	15.50	2.602	0.00658	0.0053	0.0119
	11.85	3.476	0.01174	0.0038	0.0155
4	14.00	3.340	0.01084	0.0047	0.0155
	15.70	3.240	0.01020	0.0053	0.0155
	12.75	4.000	0.01554	0.0041	0.0197
4 1/2	13.75	3.958	0.01522	0.0045	0.0197
4 72	16.60	3.826	0.01422	0.0055	0.0197
	20.00	3.640	0.01287	0.0068	0.0197
	16.25	4.408	0.01888	0.0054	0.0243
5	19.50	4.276	0.01776	0.0065	0.0243
	20.50	4.214	0.01725	0.0070	0.0243
5 ½	21.90	4.778	0.02218	0.0072	0.0294
J 72	24.70	4.670	0.02119	0.0082	0.0294
	23.40	5.153	0.02579	0.0077	0.0335
5 %	26.30	5.045	0.02472	0.0088	0.0335
	28.67	4.875	0.02309	0.0104	0.0335
	22.20	6.065	0.03573	0.0069	0.0426
6 ⁵ / ₈	25.20	5.965	0.03456	0.0081	0.0426
	31.90	5.761	0.03224	0.0104	0.0426
7 ⁵ / ₈	29.25	6.969	0.04718	0.0093	0.0565

Note: Capacity and displacement value are without tool joint.

Nomi	nal Tu	Nominal Tube Dimensions	10t	Tool Joint		Approx.	Makeum		
1	Inside Dia. In.	Wall Thickness In.	Connection Size In.	Outside Dia. In.	Inside Dia. In.	Weight Tube & Joints lb/ft	Torque (ft-1b)	Capacity Dbls/ft	Displacement bbls/ft
	2 1/16	0.719	NC 38 (3 ½ IF)	4 3/4	2 3/16	25.3	006'6	0.0042	0.0092
	2 1/4	0.625	NC 38 (3 ½ IF)	4 3/4	2 %	23.2	006'6	0.0050	0.0084
	2 9/16	0.719	NC 40 (4 FH)	5 1/4	2 11/16	27.2	13,250	0.0073	0.0100
	2 3/4	0.875	NC 46 (4 IF)	6 1/4	2 7/8	41.0	21,800	0.0074	0.0149
	3	1.000	NC 50 (4 ½ IF)	8½ 9	3 1/16	49.3	29,400	8800'0	0.0179
	3 %	1.063	H 3 1/4 S	7	3 1/2	57.0	33,200	0.0111	0.0207
	4 1/2	1.063	H3 % 9	8	4 1/2	70.8	46,900	0.0196	0.0257

	:	1 1/2	1%"	2".	2 1/4"	2 1/2"	2 34"	3"	3 1/4"	3 1/2"	3.4"
	Capacity	0.0022	0.0030	0.0039	0.0049	0.0061	0.0073	0.0087	0.0103	0.0119	0.0137
=	Wt Ib/ft	36.7	34.5	32.0	29.2	-	-	-	-	-	-
	Disp bbl/ft	0.0133	0.0125	0.0116	0.0106	1	1	,	-	-	
17.11	Wt Ib/ft	42.2	40.0	37.5	34.7	-	1		Snira	Spiral Drill Collars	
* 4 * 4 - 7	Disp bbl/ft	0.0153	0.0145	0.0136	0.0126	-	1	1			<u> </u>
17.11	Wt Ib/ft	48.1	45.9	43.4	40.6	1	1	1	Approx. [Approx. Displacement of	nt of
	Disp bbl/ft	0.0175	0.0167	0.0158	0.0148	1	1		Spiral Drill	Spiral Drill Collar in bbls/ft	ls/ft
37.11	Wt Ib/ft	54.3	52.1	49.6	46.8	43.6	1	1	,	,	
4,4	Disp bbl/ft	0.0197	0.0189	0.0181	0.0170	0.0159	1		(OD^2)	$(OD^2 - ID^2) \times 2.56$	
-	Wt Ib/ft	8.09	58.6	56.1	53.3	50.1	1	1			
	Disp bbl/ft	0.0221	0.0213	0.0204	0.0194	0.0182	1	1		2,747	
E 17.11	Wt Ib/ft	9.79	65.4	62.9	60.1	6'99	53.4	-	_	-	
¥	Disp bbl/ft	0.0246	0.0238	0.0229	0.0219	0.0207	0.0194	1	-		1
17.11	Wt Ib/ft	74.8	72.6	70.1	67.3	64.1	9:09	26.8	-	-	1
2, 6	Disp bbl/ft	0.0272	0.0264	0.0255	0.0245	0.0233	0.0221	0.0207	1	1	1
E 37."	Wt Ib/ft	82.3	80.1	77.6	74.8	71.6	68.1	64.3	-	1	1
	Disp bbl/ft	0.0299	0.0291	0.0282	0.0272	0.0261	0.0248	0.0234	1		1
= "	Wt Ib/ft	90.1	87.9	85.4	82.6	79.4	75.9	72.1	6.79	63.4	
	Disp bbl/ft	0.0328	0.0320	0.0311	0.0301	0.0289	0.0276	0.0262	0.0247	0.0231	1
17.11	Wt Ib/ft	0.86	95.8	93.3	90.5	87.3	83.8	80.0	75.8	71.3	-
4, 0	Disp bbl/ft	0.0356	0.0349	0.0339	0.0329	0.0318	0.0305	0.0291	0.0276	0.0259	1
1/ 11	Wt Ib/ft	107.0	104.8	102.3	96.5	6.3	92.8	0.68	84.8	80.3	1
2, 0	Disp bbl/ft	0.0389	0.0381	0.0372	0.0362	0.0350	0.0338	0.0324	0.0308	0.0292	1

1	£	11//1	1 3//"	2''	2 1/4"	2 1//"	2 3/4"	3,,	3 1/4"	31//1	3 3/11
OD	Capacity	0.0022	0.0030	0.0039	0.0049	0.0061	0.0073	0.0087	0.0103	0.0119	0.0137
1176 /	1J/ql1M	116.0	113.8	111.3	108.5	105.3	101.8	0.86	93.8	89.3	
0 %	Disp bbl/ft	0.0422	0.0414	0.0405	0.0395	0.0383	0.0370	0.0356	0.0341	0.0325	
ī	Wt Ib/ft	125.0	122.8	120.3	117.5	114.3	110.8	107.0	102.8	98.3	93.4
`	Disp bbl/ft	0.0455	0.0447	0.0438	0.0427	0.0416	0.0403	0.0389	0.0374	0.0358	0.0340
1 1/ 1	Wt Ib/ft	134.0	131.8	129.3	126.5	123.3	119.8	116.0	111.8	107.3	102.4
¥.	Disp bbl/ft	0.0487	0.0479	0.0470	0.0460	0.0449	0.0436	0.0422	0.0407	0.0390	0.0372
7 17.11	Wt1b/ft	144.0	141.8	139.3	136.5	133.3	129.8	126.0	121.8	117.3	112.4
1 72	Disp bbl/ft	0.0524	0.0516	0.0507	0.0497	0.0485	0.0472	0.0458	0.0443	0.0427	0.0409
13/11	Wt Ib/ft	154.0	151.8	149.3	146.5	143.3	139.8	136.0	131.8	127.3	122.4
1.74	Disp bbl/ft	0.0560	0.0552	0.0543	0.0533	0.0521	0.0509	0.0495	0.0479	0.0463	0.0445
"0	Wt Ib/ft	165.0	162.8	160.3	157.5	154.3	150.8	147.0	142.8	138.3	133.4
0	Disp bbl/ft	0.0600	0.0592	0.0583	0.0573	0.0561	0.0549	0.0535	0.0520	0.0503	0.0485
11.71.0	Wt Ib/ft	176.0	173.8	171.3	168.5	165.3	161.8	158.0	153.8	149.3	144.4
0 %	Disp bbl/ft	0.0640	0.0632	0.0623	0.0613	0.0601	0.0589	0.0575	0.0560	0.0543	0.0525
171 0	Wt Ib/ft	187.0	184.8	182.3	179.5	176.3	172.8	169.0	164.8	160.3	155.4
0 72	Disp bbl/ft	0.0680	0.0672	0.0663	0.0653	0.0641	0.0629	0.0615	0.0600	0.0583	0.0565
11.7E O	Wt Ib/ft	199.0	196.8	194.3	191.5	188.3	184.8	181.0	176.8	172.3	167.4
0 k	Disp bbl/ft	0.0724	0.0716	0.0707	0.0697	0.0685	0.0672	0.0658	0.0643	0.0697	6090.0
,,	Wt Ib/ft	210.2	208.0	205.6	202.7	199.6	196.0	192.2	188.0	183.5	178.7
,	Disp bbl/ft	0.0765	0.0757	0.0748	0.0738	0.0726	0.0714	0.0700	0.0685	0.0668	0.0651
	Wt Ib/ft	260.9	258.8	256.3	253.4	250.3	246.8	242.9	238.8	234.3	229.4
2	Disp bbl/ft	0.0950	0.0942	0.0933	0.0923	0.0911	0.0898	0.0884	6980.0	0.0853	0.0835

DC OD (In.)	DC ID (In.)	DC Capacity (bbl/ft)	Steel Displ. (bbl/ft)	Closed-End (bbl/ft)
3 1/8	1.250	0.00152	0.0080	0.0095
3 3/4	1.500	0.00219	0.0115	0.0137
4 1/8	2.000	0.00389	0.0126	0.0165
4 3/4	2.000	0.00389	0.0181	0.0219
6	2.250	0.00492	0.0301	0.0350
6 1/4	2.500	0.00607	0.0318	0.0379
6 ½	2.500	0.00607	0.0350	0.0410
8	2.813	0.00768	0.0545	0.0622
8 1/4	2.875	0.00803	0.0589	0.0661
8 ½	2.875	0.00803	0.0622	0.0629
9	2.875	0.00803	0.0707	0.0787
9 ½	2.875	0.00803	0.0796	0.0877
10	2.875	0.00803	0.0891	0.0971
10 ½	2.875	0.00803	0.0991	0.1071
11	2.875	0.00803	0.1095	0.1175
11 ½	2.875	0.00803	0.1204	0.1285
12	2.875	0.00803	0.1319	0.1399

Well Data	Data	Kick Data	
ate		SIDP psi SICP psi	
_	TVD	Volume gained bbl	
1ud weight pk	bdd	Old mud weight (OMW) ppg	
sd dwnd wo	psi @sPM	Bit at ft ft	
ast pump ps	psi @sPM		
ump output	bbl/stk	Kill Data ("Wait & Weight" Method)	_
		Kill rate (slow or fast pump) = SPM	
Drill String Capacity	Annulus Capacity	\ \	
ec. A bbl	Sec. Fbbl		
ec. B bbl	Sec. G bbl	Initial circulation pressure (ICP) = SIDP + Kill rate pressure = psi	
Sec. C bbl	Sec. H bbl	Final circulation pressure (FCP) = Kill rate pressure $x = \frac{KWM}{}$ = psi	
ec. D bbl	ldd		
Sec. E bbl	Iqq	Surface to bit strokes Bit to surface strokes	
ldd	Total bbl	One circulation strokes	

Date

Slow pump Fast pump Pump output

Mud weight ___

Sec. D Sec. E

Sec. C Sec. B

Sec. A

Total

ubing Size	Size	Norma	Normal Weight					Threaded	Threaded Coupling	70	1	Internal	Joint Yiel	Joint Yield Strength		Displacement	ement
Nominal		T&C Non-	T&C	Grade	Wall Thick	Inside	Drift	Coup	Coupling Outside dia.	de dia.	Collapse Resistance	Yield	T&C		Capacity	T&C	T&C
In.	OD In.	Upset Ib/ft	Upset lb/ft		ij.	i i	Dia In.	Non- Upset In.	Upset Rea. In.	Upset Spec In.	PSI	PSI	Non-Upset Lb	Upset Lb	11/100	Non-Upset bbl/ft	Upset bbl/ft
	1.050	1.14	1.20	H-40	0.113	.824	.730	1.313	1.660		089'L	7,530	098'9	13,300	99000:0	0.00041	0.00044
3%	1.050	1.14	1.20	J-55	0.113	.824	.730	1.313	1.660		10,560	10,560	8,740	18,290	0.00066	0.00041	0.00044
ŧ	1.050	1.14	1.20	C-75	0.113	.824	.730	1.313	1.660		14,410	14,130	11,920	24,940	0.00066	0.00041	0.00044
	1.050	1.14	1.20	N-80	0.113	.824	.730	1.313	1.660		15,370	15,070	12,710	26,610	99000:0	0.00041	0.00044
	1.315	1.70	1.80	H-40	0.133	1.049	926.	1.660	1.900		7,270	7,080	10,960	19,760	0.00107	0.00062	0.00065
,	1.315	1.70	1.80	J-55	0.133	1.049	.955	1.660	1.900		10,000	9,730	15,060	27,160	0.00107	0.00062	0.00065
-	1.315	1.70	1.80	C-75	0.133	1.049	.955	1.660	1.900		13,640	13,270	20,540	37,040	0.00107	0.00062	0.00065
	1.315	1.70	1.80	N-80	0.133	1.049	.955	1.660	1.900		14,550	14,160	21,910	39,510	0.00107	0.00062	0.00065
	1.660	2.30	2.40	H-40	0.125	1.410	1.286	2.054	2.200		5,570	5,270			0.00193		
	1.660	2.30	2.40	H-40	0.140	1.380	1.286	2.054	2.200		6,180	2,900	15,530	26,740	0.00185	0.00084	0.00087
1 1/4	1.660	2.30	2.40	J-55	0.140	1.380	1.286	2.054	2.200		8,490	8,120	21,360	36,770	0.00185	0.00084	0.00087
	1.660	2.30	2.40	C-75	0.140	1.380	1.286	2.054	2.200		11,580	11,070	29,120	50,140	0.00185	0.00084	0.00087
	1.660	2.30	2.40	N-80	0.140	1.380	1.286	2.054	2.200		12,360	11,810	31,060	53,480	0.00185	0.00084	0.00087

Tubing	ubing Size	Normal Weight	Weight		:			Threaded	Threaded Coupling		;	Internal	Joint Yield Strength	d Strength		Displa	Displacement
Nominal		T&C	T&C	Grade	Wall Thick.	Inside	DG		Coupling Outside dia.	e dia.	Collapse Resistance	Yield	T&C	T&C	Capacity	T&C	T&C
In.	OD In.	Upset Ib/ft	Upset lb/ft		Ë	Dia. In.	Dia In.	Non- Upset In.	Non- Upset Upset Upset In. Rea. In. Spec In.	Upset Spec In.	PSI	Pressure PSI	Non-Upset Lb	Upset Lb	11/IGG	Non-Upset bbl/ft	Upset bbl/ft
	1.900	2.75	2.90	H-40	0.145	1.610	1.516	2.200	2.500		5,640	5,340	19,090	31,980	0.00252	0.00100	0.00106
	1.900	2.75	2.90	J-55	0.145	1.610	1.516	2.200	2.500		7,750	7,350	26,250	43,970	0.00252	0.00100	0.00106
11/2	1.900	2.75	2.90	C-75	0.145	1.610	1.516	2.200	2.500		10,570	10,020	35,800	29,960	0.00252	0.00100	0.00106
	1.900	2.75	2.90	08-N	0.145	1.610	1.516	2.200	2.500		11,280	10,680	38,130	63,950	0.00252	0.00100	0.00106
	2.063			H-40	0.156	1.751		_			0/1/1	7,630			0.00298		
,	2.063			J-55	0.156	1.751					069'L	7,280			0.00298		
7.716	2.063			C-75	0.156	1.751					10,480	9,920			0.00298		
	2.063			N-80	0.156	1.751					11,180	10,590			0.00298		

Tubing Size	g Size	Normal Weigh	Weight		: ::			Threaded	Threaded Coupling	ne.	:	Internal	Joint Yield Strength	d Strength		Displacement	ement
Mominal		T&C	T&C	Grade	Wall Thick	Inside	9-10	Coupli	Coupling Outside dia.	le dia.	Collapse Resistance		T&C		Capacity	T&C	T&C
In.	OD In.	Upset Ib/ft	Upset lb/ft		Ë	Dia. In.	Dia In.	Non- Upset In.	Upset Rea. In.	Upset Spec In.	PSI	Pressure PSI	Non-Upset Lb	Upset Lb	DDI/IT	Non-Upset bbl/ft	Upset bbl/ft
	2.375	4.00		H-40	0.167	2.041	1.947	2.875			5,230	4,920	30,130		0.00405	0.00146	
	2.375	4.60	4.70	H-40	0.190	1.995	1.901	2.875	3.063	2.910	2,890	5,600	35,960	52,170	0.00387	0.00167	0.00171
	2.375	4.60	4.70	J-55	0.190	1.995	1.901	2.875	3.063	2.910	8,100	7,700	49,450	71,730	0.00387	0.00167	0.00171
	2.375	4.60	4.70	C-75	0.190	1.995	1.901	2.875	3.063	2.910	11,040	10,500	67,430	97,820	0.00387	0.00167	0.00171
2 3/8	2.375	5.80	5.95	C-75	0.254	1.867	1.773	2.875	3.063	2.910	14,330	14,040	099'96	126,940	0.00339	0.00211	0.00216
	2.375	4.60	4.70	N-80	0.190	1.995	1.901	2.875	3.063	2.910	11,780	11,200	71,930	104,340	0.00387	0.00167	0.00171
	2.375	5.80	5.95	N-80	0.254	1.867	1.773	2.875	3.063	2.910	15,280	14,970	102,990	135,400	0.00339	0.00211	0.00216
	2.375	4.60	4.70	P-105	0.190	1.995	1.901	2.875	3.063	2.910	15,460	14,700	94,410	136,940	0.00387	0.00167	0.00171
	2.375	5.80	5.95	P-105	0.254	1.867	1.773	2.875	3.063	2.910	20,060	19,650	135,180	177.710	0.00339	0.00211	0.00216

Tubin	Tubing Size	Normal Weight	Weight		: ::			Threaded	Threaded Coupling	200	;	Internal	Joint Yiel	Joint Yield Strength		Displa	Displacement
Nominal		T&C Non-	T&C	Grade	Wall Thick	Inside Dia In	Drift	Coupl	Coupling Outside dia.	le dia.	Collapse Resistance	Yield	T&C	T&C	Capacity bbl/ft	T&C	T&C
Ή	OD In.	Upset lb/ft	Upset Ib/ft		Ä.		Dia In.	Non- Upset In.	Upset Rea. In.	Upset Spec In.	PSI	PSI	Non-Upset Lb	Upset Lb		Non- Upset bbl/ft	Upset bbl/ft
	2.875	6.40	6.50	H-40	0.217	2.441	2.347	3.500	3.668	3.460	089'9	5,280	52,780	72,480	0.00579	0.00233	0.00236
	2.875	6.40	6.50	J-55	0.217	2.441	2.347	3.500	3.668	3.460	7,680	7,260	72,580	099'66	0.00579	0.00233	0.00236
	2.875	6.40	6.50	C-75	0.217	2.441	2.347	3.500	3.668	3.460	10,470	9,910	08,970	135,900	0.00579	0.00233	0.00236
277.	2.875	8.60	8.70	C-75	0.308	2.259	2.165	3.500	3.668	3.460	14,350	14,060	149360	185,290	0.00496	0.00313	0.00317
8/ 7	2.875	6.40	6.50	08-N	0.217	2.441	2.347	3.500	3.668	3.460	11,170	10,570	105,570	144,960	0.00579	0.00233	0.00236
	2.875	8.60	8.70	08-N	0.308	2.259	2.165	3.500	3.668	3.460	15,300	15,000	159,310	198,710	0.00496	0.00313	0.00317
	2.875	6.40	6.50	P-105	0.217	2.441	2.347	3.500	3.668	3.460	14,010	13,870	138,560	190,260	0.00579	0.00233	0.00236
	2.875	8.60	8.70	P-105	0.308	2.259	2.165	3.500	3.668	3.460	20,090	19,690	209,100	260,810	0.00496	0.00313	0.00317
	3.500	7.70		04-H	0.216	3.068	2.943	4.250			4,630	4,320	020'59		0.00914	0.00280	
,	3.500	9.20	9.30	H-40	0.254	2.992	2.867	4.250	4.500	4.180	5,380	5,080	79,540	103,810	0.00870	0.00335	0.00338
2 . /2 2	3.500	10.20		H-40	0.289	2.922	2.797	4.250			090'9	5,780	92,550		0.00829	0.00371	
	3.500	7.70		J-55	0.215	3.068	2.943	4.250			5,970	5,940	89,470		0.00914	0.00262	

Tubing Size	g Size	Normal Weigh	Weight					Threader	Threaded Coupling	,	: ,	Internal	Joint Yield Strength	d Strength		Displae	Displacement
Nominal		T&C	T&C	Grade	Wall Thick.	Inside	90	Coupl	Coupling Outside dia.	le dia.	Collapse Resistance	Yield	T&C	T&C	Capacity	T&C	T&C
In.	OD In.	Upset Ib/ft	Upset lb/ft		ij.	Dia. In.	Dia In.	Non- Upset In.	Upset Rea. In.	Upset Spec In.	PSI	Pressure PSI	Non-Upset Lb	Upset Lb	DDI/II	Non-Upset bbl/ft	Upset bbl/ft
	3.500	9.20		J-55	0.254	2.922	2.867	4.250			7,400	066'9	127,250		0.00829	0.00371	
	3.500	10.20		J-55	0.289	2.922	2.797	4.250			8,330	7,950	127,250		0.00829	0.00371	
	3.500	7.70		C-75	0.216	3.068	2.943	4.250			7,540	8,100	122,010		0.00914	0.00280	
	3.500	10.20		C-75	0.289	2.922	2.797	4.250			11,360	10,840	173,530		0.00829	0.00371	
3%	3.500	12.70	12.95	C-75	0.375	2.750	2.625	4.250	4.500	4.180	14,350	14,060	230,990	276,120	0.00735	0.00462	0.00471
	3.500	7.70		N-80	0.216	3.068	2.943	4.250			7,870	8,640	130,140		0.00914	0.00280	
_	3.500	10.20		N-80	0.289	2.922	2.797	4.250			12,120	11,560	185,100		0.00829	0.00371	
	3.500	12.70	12.95	N-80	0.375	2.750	2.625	4.250	4.500	4.180	15,310	15,000	246,390	294,530	0.00735	0.00462	0.00471
	3.500	9.20	9.30	P-105	0.254	2.992	2.867	4.250	4.500	4.180	13,050	13,340	208,800	271,970	0.00870	0.00335	0.00338
	3.500	12.70	12.95	P-105	0.375	2.750	2.625	4.250	4.500	4.180	20,090	19,690	323,390	386,570	0.00735	0.00462	0.00471

Tubing Size	ş Size	Normal	Normal Weight					Threaded	Threaded Coupling			Internal	Joint Yiel	Joint Yield Strength		Displa	Displacement
		T&C	T&C	Grade	Wall Thick		3.	Coupl	Coupling Outside dia.	e dia.	Collapse Resistance	Yield	T&C	T&C	Capacity	T&C	T&C
Nominal In.	OD In.	Non- Upset Ib/ft	Upset lb/ft		Ä	Dia. In.	Dia In.	Non- Upset In.	Upset Rea. In.	Upset Spec In.	PSI	Pressure PSI	Non-Upset Lb	Upset Lb	#/lag	Non-Upset bbl/ft	Upset bbl/ft
	4.000	09'6		H-40	0.226	3.548	3.423	4.750			4,050	3,960	72,000		0.01223	0.00346	
	4.000		11.00	H-40	0.262	3.476	3.351		5.000		4,900	4,590		123,070	0.01174		0.00400
_	4.000	9.50		J-55	0.226	3.548	3.423	4.750			5,110	5,440	99,010		0.01223	0.00346	
r	4.000		11.00	J-55	0.262	3.476	3.351		5.000		069'9	6,300		169,220	0.01174		0.00400
	4.000	9.50		C-75	0.226	3.548	3.423	4.750			6,350		135,010		0.01223	0.00346	
	4.000		11.00	C-75	0.262	3.476	3.351		5.000		8,410	8,600		230,750	0.01174		0.00400
	4.000	9.50		N-80	0.226	3.548	3.423	4.750			069'9	7,910	144,010		0.01223	0.00346	
	4.000		11.00	08-N	0.262	3.476	3.351		5.000		8,800	9,170		246,140	0.01174		0.00400
	4.500	12.60	12.75	H-40	0.271	3.958	3.833	5.200	5.563		4,490	4,220	104,360	144,020	0.01522	0.00458	0.00464
71,7	4.500	12.60	12.75	J-55	0.271	3.958	3.833	5.200	5.563		5,730	5,800	143,500	198,030	0.01522	0.00458	0.00464
4 ./2	4.500	12.60	12.75	C-75	0.271	3.958	3.833	5.200	5.563		7,200	7,900	195,680	270,040	0.01522	0.00458	0.00464
	4.500	12.60	12.75	N-80	0.271	3.958	3.833	5.200	5.563		7,500	8,430	208,730	288,040	0.01522	0.00458	0.00464

40 Premium Connection Tubing

		Connection Date	Oala									1000							
Tubing Size D	Juter Dia. In.	Inner Dia. In.	Make- up Torque	Grade	Outer Dia. In.	Inner Dia. In.	Drift	Wall Thick	Cross Section	100% Yield	Ult. Strength	Depth 100%	Pull 100%	PSI Burst 100%	Collapse 100%	Cap. Disp Gals/1000 fr	Disp.	Capacity bbls/ft	Disp. ft
34" CS HYDRIL 1.5# P-110	.327	0.687	300	P-110	1.050	0.742	0.648	0.154	0.433	110,000	125,000	31,700	47,600	32,200	26,200	22.5	15.3	0.00054	0.00036
1" CS HYDRIL 2.25# C-75	009:	0.864	400	C-75	1.315	0.957	0.848	0.179	0.639	75,000	000'56	21,300	48,000	20,400	17,600	37.4	34.4	0.00089	0.00082
1" CS HYDRIL 2.25# N-80/L-80	009.	0.864	400	08-T-N	1.315	0.957	0.848	0.179	0.639	80,000	100,000	22,600	51,000	21,800	18,800	37.4	34.4	0.00089	0.00082
1" CS HYDRIL 2.25# T-95	009	0.864	400	96-1	1.315	0.957	0.848	0.179	0.639	000'56	105,000	27,000	60,700	25,900	22,300	37.4	34.4	0.00089	0.00082
1" CS HYDRIL 2.25# P-110	009.	0.864	400	P-110	1.315	0.957	0.848	0.179	0.639	110,000	125,000	31,200	70,300	29,900	25,900	37.4	34.4	0.00089	0.00082
1" CS HYDRIL 2.25# S-135	009.	0.864	200	S-135	1.315	0.957	0.848	0.179	0.639	135,000	145,000	38,300	86,200	36,700	31,700	37.4	34.4	0.00089	0.00082
1	.927	1.218	009	C-75	1.660	1.278	1.184	0.191	0.881	75,000	000'56	21,800	000'99	17,200	15,200	9.99	46.2	0.00159	0.00110
1-1/4" CS HYDRIL 3.02# N-80/L-80	.927	1.218	009	08-T-N	1.660	1.278	1.184	0.191	0.881	80,000	100,000	23,500	71,000	18,400	16,200	9.99	46.2	0.00159	0.00110
1-%" CS HYDRIL 3.02# T-95	.927	1.218	009	26-1	1.660	1.278	1.184	0.191	0.881	000'56	105,000	27,700	83,700	21,900	19,300	9.99	46.2	0.00159	0.00110
1-1/4" CS HYDRIL 1.93.02# P-110	.927	1.218	009	P-110	1.660	1.278	1.184	0.191	0.881	110,000	125,000	32,000	009'96	25,300	22,400	9.99	46.2	0.00159	0.00110
1	.927	1.218	009	S-135	1.660	1.278	1.184	0.191	0.881	135,000	145,000	39,400	119,000	31,000	27,500	9.99	46.2	0.00159	0.00110
1-1/2" CS HYDRIL 3.64# N-80/L-80	2.162	1.440	800	08-T-N	1.900	1.500	1.406	0.200	1.068	80,000	100,000	23,300	85,000	16,800	15,000	91.8	55.7	0.00219	0.00133
1-1/2" CS HYDRIL 2. 3.64# P-110	2.162	1.440	800	P-110	1.900	1.500	1.406	0.200	1.068	110,000	125,000	32,300	117,500	23,000	20,700	91.8	55.7	0.00219	0.00133
1-1/2" CS HYDRIL 3.64# S-135	2.162	1.440	800	S-135	1.900	1.500	1.406	0.200	1.068	135,000	145,000	39,600	144,199	28,421	25,429	91.8	55.7	0.00219	0.00133
3.25# N-80/L-80	2.330	1.700	006	08-T-N	2.063	1.751	1.657	0.156	0.935	80,000	100,000	23,000	75,000	12,100	11,200	125.0	49.7	0.00298	0.00118
2-%" EUE 8RD 4.7# N-80/L-80	3.063	1.995	1,500	08-T-N	2.375	1.995	1.901	0.190	1.304	000'08	100,000	22,200	104,300	12,800	11,770	162.3	71.9	0.00386	0.00171

Premium Connection Tubing 41

	Com	Connection Data	Data								Tul	Tube Data							
Tubing Size	Outer Dia. In.	Inner Dia. In.	Make- up Torque	Grade	Outer Dia. In.	Inner Dia. In.	Drift	Wall	Cross Section	100% Yield	Ult. Strength	Depth 100%	Pull 100%	PSI Burst 100%	Collapse 100%	Cap. Gals/1	Cap. Disp. Gals/1000 ft	Capacity bbs/ft	Disp.
2-3/6" PH-6 HYDRIL 5.95# N-80/L-80	2.906	1.805	2,200	N-L-80	2.375	1.867	1.773	0.254	1.692	000'08	100,000	22,700	135,000	17,100	15,300	142.2	91.0	0.00339	0.00217
2-3/6" PH-6 HYDRIL 5.95# RY-85	2.906	1.805	2,200	RY-85	2.375	1.867	1.773	0.254	1.692	85,000	100,000	24,100	143,800	18,200	16,240	142.2	91.0	0.00339	0.00217
2-3/8" PH-6 HYDRIL 5.95# T-95	2.906	1.805	2,200	26-1	2.375	1.867	1.773	0.254	1.692	000'56	110,000	27,000	160,740	19,665	17,595	142.2	91.0	0.00339	0.00217
2-3/4" PH-6 HYDRIL 5.95# P-110	2.906	1.805	2,700	P-110	2.375	1.867	1.773	0.254	1.692	105,000	120,000	29,900	178,000	22,500	20,060	142.2	91.0	0.00339	0.00217
2-%" EUE 8RD 6.5# N-80/L-80	3.668	2.441	2,300	08-T-N	2.875	2.441	2.347	0.217	1.812	000'08	100,000	22,300	145,000	12,100	11,160	243.0	96.5	0.00579	0.00237
2-7 ₈ " PH-6 HYDRIL 8.7# N-80/L-80	3.500		2.200 3,000	08-T-N	2.875	2.259	2.165	0.308	2.484	80,000	100,000	22,800	198,700	17,140	15,300	208.1	133.1	0.00495	0.00317
2-%" PH-6 HYDRIL 7.9# N-80/L-80	3.437		2.265 3,000	08-T-N	2.875	2.323	2.229	0.276	2.254	000'08	100,000 22,800	22,800	180,000	15,300	13,900	220.0	120.9	0.00524	0.00288
2-76" PH-6 HYDRIL 7.9# T-95	3.437		2.265 3,200	26-1	2.875	2.323	2.229	0.276	2.254	95,000	110,000 27,098	27,098	214,082	18,000	16,000	220.0	220.0 120.9	0.00524	0.00288
2-%" PH-6 HYDRIL 7.9# P-110	3.437		2.265 3,500	P-110	2.875	2.323	2.229	0.276	2.254	105,000	120,000	29,900	236,000	20,100	18,200	220.0	120.9	0.00524	0.00288
3-½" EUE 8RD 9.3# N-80/L-80	4.500	2.992	2,400- 3,200	N-L-80	3.500	2.992	2.867	0.254	2.590	80,000	100,000	22,200	207,200	11,600	10,700	365.2	134.5	0.00870	0.00320
3-½" EUE 8RD 9.3# P-110	4.500	2.992	3,000- 4,000	P-110	3.500	2.992	2.867	0.254	2.590	110,000	125,000	30,600	284,900	15,900	14,800	365.2	134.5	0.00870	0.00320
3-½" PH-6 HYDRIL 12.95# N-80/L-80	4.312	2.687	5,500	N-L-80	3.500	2.750	2.625	0.375	3.682	000'08	100,000	22,700	294,500	17,100	15,310	308.4	198.1	0.00734	0.00472
3-½" PH-6 HYDRIL 12.95# T-95	4.313	2.687	000'9	26-1	3.500	2.750 2.625	2.625	0.375	3.682	000'56	105,000 27,000	27,000	386,600	20,300	18,100	308.4	198.1	0.00734	0.00472
3-½" PH-6 HYDRIL 12.95# P-110	4.312	2.687	7,000	P-110	3.500	2.750	2.625	0.375	3.682	105,000	120,000	29,800	386,600	22,500	20,090	308.4	198.1	0.00734	0.00472
4-½" PH-6 HYDRIL 15.50# P-110	5.125		3.765 8,500	P-110	4.500	3.826	3.701	0.337	4.407	110,000	110,000 125,000 31,300	31,300	485,000	16,480	14,340	598.0	229.2	0.01424	0.00546

Casing OD	Weight			Burst Pressure (psi)	sure (psi)				C	ollapse Pr	Collapse Pressure (psi)	ij	
(In.)	(bbbf)	H40	J/K 55	C75	N80	C95	P110	H40	J/K 55	C75	08N	C95	P110
	9.5		4,380						3,310				
71 1/2	11.6		5,350	7,290	7,780	9,240	10,690		4,960	6,100	6,350	7,030	7,580
4 72	13.5		6,200	8,460	9,020	10,710	12,410		6,420	8,140	8,540	099'6	10,680
	15.1		7,210	9,830	10,480		14,420		7,620	10,390	11,080		14,350
	11.5		4,240						3,060				
ш	13.0		4,870	6,640	7,090				4,140	4,990	5,140		
n	15.0		5,700	077,7	8,290	9,840	11,400		5,500	0/6'9	7,250	8,090	8,830
	18.0		0/6'9	9,500	10,140	12,040	13,940		7,390	10,000	10,490	12,010	13,470
	14.0		4,270	5,820					3,120	3,560			
	15.5		4,810	099'9	7,000		9,620		3,860	4,860	4,990		5,620
5 1/2	17.0		5,320	7,250	7,740	9,190	10,640		4,910	6,070	5,890	6,930	8,520
	20.0		6,310	8,610	9,190	10,910	12,640		6,610	8,440	8,830	10,000	11,100
	23.0		7,270	006'6	10,560	12,540	14,520		7,670	10,400	11,160	12,920	14,520
	20.0		4,180		060'9	7,230			3,060		3,480	3,830	
8/, 9	24.0		5,110	0/6'9	7,440	8,830	10,230		4,560	5,550	5,550	6,310	6,730
	28.0		090'9	8,260	8,810	10,460	12,120		6,170	7,830	8,170	9,200	10,140
	20.0	2,720	3,740	5,100				1,920	2,500	2,660			
	23.0		4,360	5,940	6,340	7,530			3,270	3,770	3,830	4,150	
-	26.0		4,980	06′.9	7,240	8,600	096'6		4,320	5,250	5,320	5,870	7,220
	29.0		5,610	7,650	8,160	069'6	11,220		5,400	6,760	7,020	7,820	8,510
	32.0		6,230	8,490	090'6	10,760	12,460		6,460	8,230	8,600	9,730	10,760
	35.0		6,850	9,340	096'6	11,830	13,700		7,270	9,710	10,180	11,640	13,020

Casing OD	Weight			Burst Pressure (psi)	sure (psi)				S	Collapse Pressure (psi)	ssure (psi	(1	
(In.)	(ppf)	H40	J/K 55	C75	08N	C95	P110	H40	J/K 55	C75	N80	C95	P110
	26.4		4,140	2,650	6,020	7,150	8,280		3,010	3,280	3,930	3,710	3,900
7 5/-	29.7			6,450	068'9	8,180	9,470			4,670	4,790	5,120	6,180
8/ /	33.7		5,430	7,400	7,900	8,180	10,860		2,090	6,320	9'290	7,260	7,870
	39.0			8,610	9,180	086'6	12,620			8,430	8,820	086'6	11,060
	24.0		2,950						026				
0 5/-	32.0	2,860	3,930	5,360	5,710	098' L		2,210	2,530	2,950	3,050		3,430
8/ O	36.0		4,460	060'9	6,490	7,710	8,930		3,450	4,020	4,470	4,360	4,700
	40.0		5,020	6,850	7,300	8,670	10,040		4,400	5,350	5,520	6,010	7,420
	36.0	2,560	3,520	4,800	5,120		7,040	1,710	2,220	2,320	2,370		2,470
	40.0		3,950	5,390	5,750	6,820	7,900		2,570	2,980	3,530	3,330	3,480
% 6	43.5		4,350	5,930	6,330	7,510	8,700		3,250	3,750	3,810	4,130	4,760
	47.0		4,720	6,440	6,870	8,150	9,440		3,880	4,630	4,760	5,080	5,310
	53.5			7,430	7,930	9,410	10,900			6,380	6,620	7,330	7,930
	40.5	2,280	3,130	4,270				1,420	1,730	1,720			
	45.5		3,580	4,880	5,210	7,160			2,090	2,410	2,480		2,610
	51.0		4,030	5,490	2,860	096'9	8,060		2,700	3,100	3,750	3,490	3,750
10 %	55.5		4,430	6,040	6,450	099' L	8,860		3,320	3,950	4,020	4,300	4,630
	60.7		4,880	6,650	7,100	8,436	092'6		4,160	5,020	5,160	5,566	5,860
	65.7		5,330	7,260	7,750	9,200	10,650		4,920	080'9	6,300	6,950	7,490
	71.1					10,050	11,640					8,470	9,280
	47.0		3,070	4,190					1,630	1,620			
11 %	54.0		3,560	4,860					2,070	2,380			
	0.09		4,010	5,460	5,830	6,920	8,010		2,660	3,070	3,680	3,440	3,610

Casing OD	1			Burst Pressure (psi)	sure (psi)				3	Collapse Pressure (psi)	essure (psi	i)	
(In.)	(ppf)	H40	J/K 55	C75	N80	C95	P110	H40	J/K 55	C75	08N	C95	P110
	48.0	1,730						770					
	54.5		2,730	3,980	5,470				1,140				
	61.0		3,090	4,220	4,500				1,540	1,660	1,670		
13 %	68.0		3,450	4,710	5,020	5,970			1,950	2,220	2,270	2,330	
	72.0		3,700	5,040	5,380	9'390	7,400		2,230	2,590	2,880	2,820	2,880
	77.0			5,400	5,760					2,990	3,100		
	85.0			5,970	6,360	8,750				3,810	3,870	4,490	
	65.0	1,640						0/9					
17	75.0		2,630						1,010				
<u>o</u>	84.0		2,980						1,410				
	109.0		3,950				7,890		2,560				3,470
10.5/	87.5	1,530	2,110					520	520				
8/ 0	106.0		2,740						1,140				
	94.0	1,530	2,110					520	520				
20	106.5		2,410						770				
	133.0		3,060						1,500				
24	156.0	X-42	1,910					098					
26	202.0	X-42	2,120					1,100					
30	310.0	X-42	2,450					1,480					
36	374.0	X-42	2,040					1,010					

Casing Capacity

Casing OD	Weight	•	Capacity	Displacement
(In.)	(ppf)	(In.)	(bbl/ft)	(bbl/ft)
	9.5	4.090	0.0163	0.0035
4 1/2	11.6	4.000	0.0155	0.0042
7 /2	13.5	3.920	0.0149	0.0049
	15.1	3.826	0.0142	0.0055
	11.5	4.560	0.0202	0.0042
5	13.0	4.494	0.0196	0.0047
3	15.0	4.408	0.0189	0.0055
	18.0	4.276	0.0178	0.0066
	14.0	5.012	0.0244	0.0051
	15.5	4.950	0.0238	0.0056
5 ½	17.0	4.892	0.0233	0.0062
	20.0	4.778	0.0222	0.0073
	23.0	4.670	0.0212	0.0084
	20.0	6.049	0.0355	0.0071
6 ⁵ /8	24.0	5.921	0.0341	0.0087
	28.0	5.791	0.0326	0.0102
	20.0	6.456	0.0405	0.0073
	23.0	6.366	0.0394	0.0084
7	26.0	6.276	0.0383	0.0095
,	29.0	6.184	0.0372	0.0106
	32.0	6.094	0.0361	0.0116
	35.0	6.004	0.0350	0.0127
	26.4	6.969	0.0472	0.0096
7 ⁵ /s	29.7	6.875	0.0459	0.0108
/ 78	33.7	6.765	0.0445	0.0123
	39.0	6.624	0.0426	0.0142
	24.0	8.098	0.0637	0.0086
8 ⁵ /s	32.0	7.921	0.0610	0.0116
8 78	36.0	7.825	0.0595	0.0131
	40.0	7.725	0.0580	0.0146
	36.0	8.921	0.0773	0.0131
	40.0	8.835	0.0758	0.0146
9 5/8	43.5	8.755	0.0745	0.0158
	47.0	8.681	0.0732	0.0171
	53.5	8.535	0.0708	0.0195

Casing Capacity

Casing OD (In.)	Weight (ppf)	Casing ID (In.)	Capacity (bbl/ft)	Displacement (bbl/ft)
(111.)	40.5	10.050	0.0981	0.0147
	45.5	9.950	0.0962	0.0147
	51.0	9.850	0.0962	0.0186
	55.5	9.760	0.0943	0.0180
10 ¾	60.7	9.660	0.0923	0.0202
10 %	65.7	9.560	0.0907	0.0216
	71.1	9.300	0.0868	0.0255
	76.0	9.350	0.0849	0.0273
	81.0	9.250	0.0831	0.0291
44.01	47.0	11.000	0.1175	0.0171
11 ¾	54.0	10.880	0.1150	0.0197
	60.0	10.772	0.1127	0.0218
	48.0	12.715	0.1571	0.0175
	54.5	12.615	0.1546	0.0198
	61.0	12.515	0.1522	0.0219
13 ¾	68.0	12.415	0.1497	0.0247
	72.0	12.347	0.1481	0.0262
	77.0	12.275	0.1464	0.0274
	85.0	12.159	0.1436	0.0302
	65.0	15.250	0.2259	0.0237
	75.0	15.124	0.2222	0.0273
16	84.0	15.010	0.2189	0.0306
	109.0	14.688	0.2096	0.0391
	118.0	14.570	0.2062	0.0425
	87.5	17.755	0.3062	0.0307
18 %	109.0	17.491	0.2972	0.0398
	122.0	17.385	0.2936	0.0434
	94.0	19.124	0.3553	0.0342
20	106.5	19.000	0.3507	0.0388
	133.0	18.730	0.3408	0.0484
24 x 5/8" tin	156.0	22.750	0.5028	0.0568
30 x 1" t _{in}	310.0	28.000	0.7616	0.1127
36 x 1" t _{in}	374.0	34.000	1.1230	0.1360
48 x 1" t _{in}	502.0	46.000	2.0556	0.1826

Note: To find casing weight for other wall thicknesses:

Weight of Casing_{Ib/ft} = 10.68 x (OD_{in} – t_{in}) x t_{in}

Where:

tin = Wall thickness (inches)

Hole Diameter	Hole Capacity
(In.)	(bbl/ft)
3	0.0087
3 ½	0.0119
4	0.0155
4 ½	0.0197
5	0.0243
5 ½	0.0294
6	0.0350
6 ½	0.0410
7	0.0476
7 ½	0.0546
8	0.0622
8 ½	0.0702
9	0.0787
9 ½	0.0877
10	0.0971
10 ½	0.1071
11	0.1175
11 ½	0.1285
12	0.1399
12 ½	0.1518
13	0.1642
13 ½	0.1770
14	0.1904
14 ½	0.2042
15	0.2086
15 ½	0.2334
16	0.2487
16 ½	0.2645
17	0.2807
17 ½	0.2975
18	0.3147
18 ½	0.3325
19	0.3507
19 ½	0.3694
20	0.3886
20 ½	0.4082
21	0.4284
21 ½	0.4490
22	0.4702
22 ½	0.4918

Hole	Hole
Diameter	Capacity
(In.)	(bbl/ft)
23	0.5139
23 ½	0.5365
24	0.5595
24 1/2	0.5831
25	0.6071
25 ½	0.6317
26	0.6567
26 ½	0.6822
27	0.7082
27 ½	0.7347
28	0.7616
28 ½	0.7891
29	0.8170
29 ½	0.8454
30	0.8743
30 ½	0.9037
31	0.9336
31 ½	0.9639
32	0.9948
32 ½	1.0261
33	1.0579
33 ½	1.0902
34	1.1230
34 ½	1.1563
35	1.1900
35 ½	1.2243
36	1.2590
36 ½	1.2942
37	1.3299
37 ½	1.3661
38	1.4028
38 ½	1.4399
39	1.4776
39 ½	1.5157
40	1.5543
40 ½	1.5934
41	1.6330
41 ½	1.6731
42	1.7136
42 ½	1.7547
16 /6	1.7577

48 Triplex Pumps 100% Efficiency

																T 1 24
Diameter	2	2 1/2	3	4	2	9	7	7 1/2	8	8 1/2	6	6 1/2	10	11	12	Onits
7	0.0005	900000	0.0007	0.0010	0.0012	0.0015	0.0017	0.0018	0.0019	0.0021	0.0022	0.0023	0.0024	0.0027	0.0029	BBLS/STK
_	0.0204	0.0255	0.0306	0.0408	0.0510	0.0612	0.0714	0.0765	0.0816	0.0868	0.0919	0.0970	0.1021	0.1123	0.1225	Gal/STK
1 3/ "	600000	0.0011	0.0014	0.0018	0.0023	0.0028	0.0032	0.0034	0.0037	0.0039	0.0041	0.0044	0.0046	0.0051	0.0055	BBLS/STK
8/.	0.0386	0.0482	0.0579	0.0772	0.0965	0.1158	0.1351	0.1447	0.1544	0.1640	0.1737	0.1833	0.1930	0.2123	0.2315	Gal/STK
1.17.11	0.0011	0.0014	0.0016	0.0022	0.0027	0.0033	0.0038	0.0041	0.0044	0.0046	0.0049	0.0052	0.0055	0900'0	9900.0	BBLS/STK
1 72	0.0459	0.0574	0.0689	0.0919	0.1148	0.1378	0.1607	0.1722	0.1837	0.1952	0.2067	0.2182	0.2296	0.2526	0.2756	Gal/STK
1 57 1	0.0013	0.0016	0.0019	0.0026	0.0032	0.0039	0.0045	0.0048	0.0051	0.0055	0.0058	0.0061	0.0064	0.0071	7.00.0	BBLS/STK
8/,	0.0539	0.0674	0.0809	0.1078	0.1348	0.1617	0.1887	0.2021	0.2156	0.2291	0.2426	0.2560	0.2695	0.2965	0.3234	Gal/STK
1 3/	0.0015	0.0019	0.0022	0.0030	0.0037	0.0045	0.0052	0.0056	0900.0	0.0063	0.0067	0.0071	0.0074	0.0082	6800.0	BBLS/STK
*	0.0625	0.0781	0.0938	0.1250	0.1563	0.1875	0.2188	0.2344	0.2500	0.2657	0.2813	0.2969	0.3126	0.3438	0.3751	Gal/STK
ē	0.0019	0.0024	0.0029	0.0039	0.0049	0.0058	8900'0	0.0073	0.0078	0.0083	0.0087	0.0092	0.0097	0.0107	0.0117	BBLS/STK
7	0.0816	0.1021	0.1225	0.1633	0.2041	0.2449	0.2858	0.3062	0.3266	0.3470	0.3674	0.3878	0.4082	0.4491	0.4899	Gal/STK
" 17 "	0.0025	0.0031	0.0037	0.0049	0.0062	0.0074	9800'0	0.0092	0.0098	0.0105	0.0111	0.0117	0.0123	0.0135	0.0148	BBLS/STK
2 74	0.1033	0.1292	0.1550	0.2067	0.2583	0.3100	0.3617	0.3875	0.4133	0.4392	0.4650	0.4908	0.5167	0.5683	0.6200	Gal/STK
: 1/	0.0030	0.0038	0.0046	0.0061	0.0076	0.0091	0.0106	0.0114	0.0122	0.0129	0.0137	0.0144	0.0152	0.0167	0.0182	BBLS/STK
7.75	0.1276	0.1595	0.1914	0.2552	0.3189	0.3827	0.4465	0.4784	0.5103	0.5422	0.5741	0909.0	0.6379	0.7017	0.7655	Gal/STK
"7£ C	0.0037	0.0046	0.0055	0.0074	0.0092	0.0110	0.0129	0.0138	0.0147	0.0156	0.0165	0.0175	0.0184	0.0202	0.0221	BBLS/STK
2 74	0.1544	0.1930	0.2315	0.3087	0.3859	0.4631	0.5403	0.5789	0.6175	0.6561	0.6946	0.7332	0.7718	0.8490	0.9262	Gal/STK
-	0.0044	0.0055	9900:0	0.0087	0.0109	0.0131	0.0153	0.0164	0.0175	0.0186	0.0197	0.0208	0.0219	0.0241	0.0262	BBLS/STK
r	0.1837	0.2296	0.2756	0.3674	0.4593	0.5511	0.6430	0.6889	0.7348	0.7808	0.8267	0.8726	0.9185	1.0104	1.1022	Gal/STK
3 1/ "	0.0051	0.0064	0.0077	0.0103	0.0128	0.0154	0.0180	0.0193	0.0205	0.0218	0.0231	0.0244	0.0257	0.0282	0.0308	BBLS/STK
3 74	0.2156	0.2695	0.3234	0.4312	0.5390	0.6468	0.7546	0.8085	0.8624	0.9163	0.9702	1.0241	1.0780	1.1858	1.2936	Gal/STK
3 17:"	0900.0	0.0074	0.0089	0.0119	0.0149	0.0179	0.0208	0.0223	0.0238	0.0253	0.0268	0.0283	0.0298	0.0327	0.0357	BBLS/STK
3 72	0.2500	0.3126	0.3751	0.5001	0.6251	0.7501	0.8752	0.9377	1.0002	1.0627	1.1252	1.1877	1.2502	1.3753	1.5003	Gal/STK
3 37	8900.0	0.0085	0.0103	0.0137	0.0171	0.0205	0.0239	0.0256	0.0273	0.0290	0.0308	0.0325	0.0342	0.0376	0.0410	BBLS/STK
3 74	0.2870	0.3588	0.4306	0.5741	0.7176	0.8611	1.0047	1.0764	1.1482	1.2199	1.2917	1.3635	1.4352	1.5787	1.7223	Gal/STK

Triplex Pumps 100% Efficiency 49

Liner						S	STROKE LENGTH (INCHES	ENGTH	(INCHES							T1
Diameter	2	2 1/2	3	4	2	9	7	7 1/2	8	8 1/2	6	6 1/2	10	11	12	CHIES
",	0.0078	0.0097	0.0117	0.0156	0.0194	0.0233	0.0272	0.0292	0.0311	0.0330	0.0350	0.0369	0.0389	0.0428	0.0467	BBLS/STK
4	0.3266	0.4082	0.4899	0.6532	0.8165	0.9798	1.1431	1.2247	1.3064	1.3880	1.4697	1.5513	1.6330	1.7963	1.9596	Gal/STK
1 1/ 11	8800'0	0.0110	0.0132	0.0176	0.0219	0.0263	0.0307	0.0329	0.0351	0.0373	0.0395	0.0417	0.0439	0.0483	0.0527	BBLS/STK
4 74	0.3687	0.4609	0.5530	0.7374	0.9217	1.1061	1.2907	1.3826	1.4748	1.5669	1.6591	1.7513	1.8435	2.0278	2.2122	Gal/STK
4 12.11	8600'0	0.0123	0.0148	0.0197	0.0246	0.0295	0.0344	0.0369	0.0394	0.0418	0.0443	0.0467	0.0492	0.0541	0.0590	BBLS/STK
4 72	0.4133	0.5167	0.6200	0.8267	1.0334	1.2400	1.4467	1.5500	1.6534	1.7567	1.8600	1.9634	2.0667	2.2734	2.4801	Gal/STK
4 37 11	0.0110	0.0137	0.0164	0.0219	0.0274	0.0329	0.0384	0.0411	0.0439	0.0466	0.0493	0.0521	0.0548	0.0603	0.0658	BBLS/STK
4 %	0.4605	0.5757	0.6908	0.9211	1.1514	1.3816	1.6119	1.7270	1.8422	1.9573	2.0725	2.1876	2.3027	2.5330	2.7633	Gal/STK
E	0.0122	0.0152	0.0182	0.0243	0.0304	0.0365	0.0425	0.0456	0.0486	0.0516	0.0547	0.0577	8090.0	8990.0	0.0729	BBLS/STK
ი	0.5103	0.6379	0.7655	1.0206	1.2758	1.5309	1.7861	1.9136	2.0412	2.1688	2.2964	2.4239	2.5515	2.8067	3.0618	Gal/STK
11.11	0.0134	0.0167	0.0201	0.0268	0.0335	0.0402	0.0469	0.0502	0.0536	0.0569	0.0603	0.0636	0.0670	0.0737	0.0804	BBLS/STK
v 74	0.5626	0.7033	0.8439	1.1252	1.4065	1.6878	1.9691	2.1098	2.2504	2.3911	2.5317	2.6724	2.8130	3.0943	3.3756	Gal/STK
17.1	0.0147	0.0184	0.0221	0.0294	0.0368	0.0441	0.0515	0.0551	0.0588	0.0625	0.0662	8690.0	0.0735	6080.0	0.0882	BBLS/STK
3 72	0.6175	0.7718	0.9262	1.2349	1.5437	1.8524	2.1611	2.3155	2.4699	2.6242	2.7786	2.9329	3.0873	3.3960	3.7048	Gal/STK
1 37 11	0.0161	0.0201	0.0241	0.0321	0.0402	0.0482	0.0562	0.0603	0.0643	0.0683	0.0723	0.0763	0.0803	0.0884	0.0964	BBLS/STK
5 %	0.6749	0.8436	1.0123	1.3497	1.6872	2.0246	2.3621	2.5308	2.6995	2.8682	3.0369	3.2056	3.3744	3.7118	4.0492	Gal/STK
"7	0.0175	0.0219	0.0262	0.0350	0.0437	0.0525	0.0612	9990'0	0.0700	0.0744	0.0787	0.0831	0.0875	0.0962	0.1050	BBLS/STK
0	0.7348	0.9185	1.1022	1.4697	1.8372	2.2045	2.5719	2.7556	2.9393	3.1230	3.3067	3.4905	3.6742	4.0416	4.4090	Gal/STK
11/1/	0.0190	0.0237	0.0285	0.0380	0.0475	0.0570	0.0664	0.0712	0.0759	0.0807	0.0854	0.0902	0.0949	0.1044	0.1139	BBLS/STK
6 74	0.7973	1966.0	1.1960	1.5947	1.9934	2.3920	2.7907	2.9900	3.1894	3.3887	3.5880	3.7874	3.9867	4.3854	4.7841	Gal/STK
11/11/	0.0205	0.0257	0.0308	0.0411	0.0513	0.0616	0.0719	0.0770	0.0821	0.0873	0.0924	0.0975	0.1027	0.1129	0.1232	BBLS/STK
0 72	0.8624	1.0780	1.2936	1.7248	2.1560	2.5872	3.0184	3.2340	3.4496	3.6652	3.8808	4.0964	4.3120	4.7432	5.1744	Gal/STK
H7E 7	0.0221	0.0277	0.0332	0.0443	0.0554	0.0664	0.0775	0.0830	9880.0	0.0941	9660.0	0.1052	0.1107	0.1218	0.1329	BBLS/STK
0 74	0.9300	1.1625	1.3950	1.8600	2.3251	2.7901	3.2551	3.4876	3.7201	3.9526	4.1851	4.4176	4.6501	5.1151	5.5801	Gal/STK
""	0.0238	0.0298	0.0357	0.0476	0.0595	0.0714	0.0833	0.0893	0.0953	0.1012	0.1072	0.1131	0.1191	0.1310	0.1429	BBLS/STK
_	1.0002	1.2502	1.5003	2.0004	2.5005	3.0006	3.5007	3.7507	4.008	4.2508	4.5008	4.7509	5.0009	5.5010	6.0011	Gal/STK

Initial								DESIRE	D MUD	DESIRED MUD WEIGHT (PPG)	r (PPG)								
Mud Wt (ppg)	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	
0.6	56	69	06	123	156	192	229	268	308	350	395	442	490	542	969	653	714	778	
9.5		29	09	92	125	160	196	234	273	315	359	405	452	503	557	612	672	735	
10.0	43		30	61	93	128	164	201	239	280	323	368	414	464	516	571	630	691	
10.5	82	30		31	62	96	131	167	205	245	287	331	376	426	479	531	588	648	
11.0	128	09	23		31	64	86	134	171	210	251	294	339	387	437	490	546	909	
11.5	171	06	46	19		32	99	101	137	175	215	258	301	348	397	449	504	562	
12.0	214	120	69	37	16		33	. 67	103	140	179	221	263	310	357	408	462	518	
12.5	256	150	92	26	32	14		34	89	105	144	184	226	271	318	367	420	475	
13.0	299	180	115	75	48	27	12		34	70	108	147	188	232	278	327	378	432	
13.5	342	210	138	94	63	41	24	1		35	72	111	150	194	238	286	336	389	
14.0	385	240	161	112	76	54	36	21	10		36	74	113	155	199	245	294	345	
14.5	427	270	185	131	95	89	48	32	19	6		37	75	116	159	204	252	302	•
15.0	470	300	208	150	110	82	09	43	29	18	œ		37	77	119	163	210	259	
15.5	513	330	231	169	126	95	72	54	39	26	16	ω		39	79	122	168	216	
16.0	929	360	254	187	142	109	84	64	48	35	24	15	7		40	81	126	172	
16.5	268	390	277	206	158	123	96	75	28	44	32	23	14	7		41	84	129	
17.0	641	420	300	225	174	136	108	98	89	53	40	30	21	13	9		42	98	
17.5	684	450	323	244	189	150	120	96	77	62	49	38	28	20	12	9		43	
18.0	726	480	346	262	205	163	132	107	87	71	22	45	35	26	18	12	2		
Dilution or Cut Back:	Cut Back		ay sectio	n of the	The gray section of the chart shows the number of	ws the n	umber o	barrels	of	Mud We	Mud Weight Increase:	ease: The	e yellow	The yellow section of the chart indicates the number	of the cha	art indica	ates the I	number	
water which must be added	ch must k	be added	to 100	obls of m	bbls of mud to produce the desired weight	duce the	e desirec	weight		of 100 lb	sacks of	barite w	Ib sacks of barite which must	st be add	be added to 100	00 bbls of mud	f mud to		
rodicitor)		produce	produce desired weight increases	i thoion	2020000						

Mud Weights

				Pressure	Pressure
lb/gal	lb/ft³	kg/m³	Specific	Gradient	Gradient
8		8	Gravity	(psi/ft)	(kPa/m)
8.34	62.38	999.3	1.00	0.434	9.8
8.5	63.58	1018.5	1.02	0.442	10.0
8.6	64.32	1030.5	1.03	0.447	10.1
8.7	65.07	1042.4	1.04	0.452	10.2
8.8	65.82	1054.4	1.05	0.458	10.4
8.9	66.57	1066.4	1.07	0.463	10.5
9.0	67.31	1078.4	1.08	0.468	10.6
9.1	68.06	1090.4	1.09	0.473	10.7
9.2	68.81	1102.3	1.10	0.478	10.8
9.3	69.56	1114.3	1.12	0.484	10.9
9.4	70.31	1126.3	1.13	0.489	11.1
9.5	71.05	1138.3	1.14	0.494	11.2
9.6	71.80	1150.3	1.15	0.499	11.3
9.7	72.55	1162.3	1.16	0.504	11.4
9.8	73.30	1174.2	1.18	0.510	11.5
9.9	74.05	1186.2	1.19	0.515	11.6
10.0	74.79	1198.2	1.20	0.520	11.8
10.1	75.54	1210.2	1.21	0.525	11.9
10.2	76.29	1222.2	1.22	0.530	12.0
10.3	77.04	1234.2	1.24	0.536	12.1
10.4	77.79	1246.1	1.25	0.541	12.2
10.5	78.53	1258.1	1.26	0.546	12.4
10.6	79.28	1270.1	1.27	0.551	12.5
10.7	80.03	1282.1	1.28	0.556	12.6
10.8	80.78	1294.1	1.29	0.562	12.7
10.9	81.53	1306.0	1.31	0.567	12.8
11.0	82.27	1318.0	1.32	0.572	12.9
11.1	83.02	1330.0	1.33	0.577	13.1
11.2	83.77	1342.0	1.34	0.582	13.2
11.3	84.52	1354.0	1.36	0.588	13.3
11.4	85.27	1366.0	1.37	0.593	13.4
11.5	86.01	1377.9	1.38	0.598	13.5
11.6	86.76	1389.9	1.39	0.603	13.6
11.7	87.51	1401.9	1.40	0.608	13.8
11.8	88.26	1413.9	1.41	0.614	13.9
11.9	89.01	1425.9	1.43	0.619	14.0
12.0	89.75	1437.8	1.44	0.624	14.1
12.1	90.50	1449.8	1.45	0.629	14.2
12.2	91.25	1461.8	1.46	0.634	14.4
12.3	92.00	1473.8	1.48	0.640	14.5
12.4	92.74	1485.8	1.49	0.645	14.6
12.5	93.49	1497.8	1.50	0.650	14.7
12.6	94.24	1509.7	1.51	0.655	14.8
12.7	94.99	1521.7	1.52	0.660	14.9
12.8	95.74	1533.7	1.53	0.666	15.1
12.9	96.48	1545.7	1.55	0.671	15.2
13.0	97.23	1557.7	1.56	0.676	15.3
13.1	97.98	1569.6	1.57	0.681	15.4
13.2	98.73	1581.6	1.58	0.686	15.5

Mud Weights

				Pressure	Pressure
lb/gal	lb/ft³	kg/m³	Specific Gravity	Gradient	Gradient
			Gravity	(psi/ft)	(kPa/m)
13.3	99.48	1593.6	1.60	0.692	15.6
13.4	100.22	1605.6	1.61	0.697	15.8
13.5	100.97	1617.6	1.62	0.702	15.9
13.6	101.72	1629.6	1.63	0.707	16.0
13.7	102.47	1641.5	1.64	0.712	16.1
13.8	103.22	1653.5	1.65	0.718	16.2
13.9	103.96	1665.5	1.67	0.723	16.4
14.0	104.71	1677.5	1.68	0.728	16.5
14.1	105.46	1689.5	1.69	0.733	16.6
14.2	106.21	1701.5	1.70	0.738	16.7
14.3	106.96	1713.4	1.72	0.744	16.8
14.4	107.70	1725.4	1.73	0.749	16.9
14.5	108.45	1737.4	1.74	0.754	17.1
14.6	109.20	1749.4	1.75	0.759	17.2
14.7	109.95	1761.4	1.76	0.764	17.3
14.8	110.70	1773.3	1.78	0.770	17.4
14.9	111.44	1785.3	1.79	0.775	17.5
15.0	112.19	1797.3	1.80	0.780	17.6
15.1	112.94	1809.3	1.81	0.785	17.8
15.2	113.69	1821.3	1.82	0.790	17.9
15.3	114.44	1833.3	1.84	0.796	18.0
15.4	115.18	1845.2	1.85	0.801	18.1
15.5	115.93	1857.2	1.86	0.806	18.2
15.6	116.68	1869.2	1.87	0.811	18.3
15.7	117.43	1881.2	1.88	0.816	18.5
15.8	118.18	1893.2	1.90	0.822	18.6
15.9	118.92	1905.1	1.91	0.827	18.7
16.0	119.67	1917.1	1.92	0.832	18.8
16.1	120.42	1929.1	1.93	0.837	18.9
16.2	121.17	1941.1	1.94	0.842	19.1
16.3	121.91	1953.1	1.96	0.846	19.2
16.4	122.66	1965.1	1.97	0.853	19.3
16.5	123.41	1977.0	1.98	0.858	19.4
16.6	124.16	1989.0	2.00	0.863	19.5
16.7	124.91	2001.0	2.01	0.868	19.6
16.8	125.65	2013.0	2.02	0.874	19.8
16.9	126.40	2015.0	2.02	0.879	19.9
17.0	127.15	2036.9	2.03	0.884	20.0
17.0	127.13	2048.9	2.04	0.889	20.0
17.1	128.65	2060.9	2.06	0.894	20.1
17.2	129.39	2072.9	2.08	0.900	20.2
17.4	130.14	2072.9	2.08	0.905	20.5
17.4	130.14	2096.9	2.10	0.903	20.5
17.6	131.64	2108.8	2.10	0.910	20.0
17.7 17.8	132.39 133.13	2120.8 2132.8	2.12	0.920 0.926	20.8
17.9	133.88	2144.8	2.15	0.931	21.1
18.0	134.63	2156.8	2.16	0.936	21.2
18.1	135.38	2168.8	2.17	0.941	21.3

lb/gal	lb/ft³	kg/m³	Specific Gravity	Pressure Gradient (psi/ft)	Pressure Gradient (kPa/m)
18.2	136.13	2180.7	2.18	0.946	21.4
18.3	136.87	2192.7	2.20	0.952	21.5
18.4	137.62	2204.7	2.21	0.957	21.6
18.5	138.37	2216.7	2.22	0.962	21.8
18.6	139.12	2228.7	2.23	0.967	21.9
18.7	139.87	2240.6	2.24	0.972	22.0
18.8	140.61	2252.6	2.26	0.978	22.1
18.9	141.36	2264.6	2.27	0.983	22.2
19.0	142.11	2276.6	2.28	0.988	22.3
19.1	142.86	2288.6	2.29	0.993	22.5
19.2	143.61	2300.6	2.30	0.998	22.6
19.3	144.35	2312.5	2.32	1.004	22.7
19.4	145.10	2324.5	2.33	1.009	22.8
19.5	145.85	2336.5	2.34	1.014	22.9
19.6	146.60	2348.5	2.35	1.019	23.1
19.7	147.34	2360.5	2.36	1.024	23.2
19.8	148.09	2372.4	2.38	1.030	23.3
19.9	148.84	2384.4	2.39	1.035	23.4
20.0	149.59	2396.4	2.40	1.040	23.5

Specifications for BOP Flanges, Ring Gaskets, and Flange Bolts & Nuts

Stack	Approved Flanges	Approved	Bolt	Nut
Rating		Ring Gaskets	Spec.	Spec.
2000 psi	API type 6B with	API Type RX	ASTM	ASTM
and	type R flat		Grade	Grade
3000 psi	Bottom Groove		B-7	2-H
5000 psi	API Type 6B with Type R Flat Bottom groove or API Type 6BX with Type BX Groove	API Type RX or API Type BX with Type 6BX Flange	ASTM Grade B-7	ASTM Grade 2-H
10,000 psi	API Type 6BX with Type BX Groove	API Type BX	ASTM Grade B-7	ASTM Grade 2-H

Bolt Size (In.)	Torque (Ft-Lb)
3/4 - 10 UNC	200
% - 9 UNC	325
1 - 8 UNC	475
1 1/8 - 8 UN	600
1 ½ - 8 UN	1400
1 % - 8 UN	1700
1 ¾ - 8 UN	2040
1 % - 8 UN	3220

NOTE: Acceptable flange ring gasket material for sweet oil applications is low-carbon steel and for sour oil or gas is type 316 stainless or type 304 stainless steel. ASTM A-193 Grade B/M with a maximum Rockwell Hardness of 22 may be acceptable but should be derated as per Table 1.4B of API Spec 6A. Specifications as per API Spec 6A "Wellhead Equipment".

Size, Working Pressure and Number of Turns to Operate

	Cameron			W-K-M	
Cameron	valves hav	e a round	W-K-M val	ves have a	unique
handwhee	el with the i	name		aped hand	
	ı" embosse			V-K-M valve	
	Cameron V			II close, the	n jam
	ll close, the	en back off	tight.		
½ turn.	00/5,000 psi	WD	2.00	00/5,000 psi	WD
Model	Inches	Turns	Model	Inches	Turns
Wodel	2 1/16	12 1/2	Model	2 1/16	13
	2 9/16	15 ¹ / ₄		2 9/16	16
F, FC & FL	3 1/8	18 1/4	М	3 1/8	20
	4 1/16	23 1/2		4 1/16	25
1	0,000 psi W		10.00	0 - 15,000 p	
	1 ¹³ / ₁₆	12 ¹ / ₂	10,00	1 13/16	14
	2 1/16	12 1/2		2 1/16	12
FC, FL &	2 9/16	15 ¹ / ₄	M-1 &	2 9/16	
FLS			M-2		15
	3 1/16	18 1/4		3 1/16	17 1/2
45.55	4 1/16	23 1/2		4 1/16	23
15,00	0 - 20,000 p		2	20,000 psi WI	
	1 13/16	12 1/2		1 13/16	15
	2 1/16	12 1/2		2 1/16	16 ¹ / ₂
FLS	2 9/16	15 ³ / ₄	M-3	2 9/16	19 ¹ / ₂
	3 1/16	22 7/8		3 1/16	23
	4 1/16	29 ¹ / ₂		4 ¹ / ₁₆	29
15,00	0 – 20,000 p				
	1 ¹³ / ₁₆	12 ¹ / ₂			
	2 1/16	12 ¹ / ₂			
F, FC & FL	2 9/16	15 ³ / ₄			
	3 1/16	15 ¹ / ₄			
	4 1/16	29 1/2			
1	0,000 psi W	Р			
	1 ¹³ / ₁₆	12			
	2 1/16	12			
J & JS	2 ⁹ / ₁₆	17 ¹ / ₄			
	3 1/16	21 1/2			
	4 1/16	23			
1	5,000 psi W				
	1 13/16	15 ³ / ₄			
	2 1/16	15 ³ / ₄			
J & JS	2 9/16	19 ¹ / ₂			
	3 1/16	135 Torque Multiplier			
2	20,000 psi W	P			
	1 ¹³ / ₁₆	15 ³ / ₄			
	2 1/16	15 ³ / ₄			
J & JS	2 9/16	117 Torque Multiplier			
	3 1/16	135 Torque Multiplier			
	3 716	133 Multiplier			

Size, Working Pressure and Number of Turns to Operate

In	gram Cac	tus		McEvoy	
a round h three spo "Ingram C on it. Op Cactus va and 215 f close, the Operate	actus valv nandwhee kes and th Cactus" er erate Ingra alves Mod ull open o in jam tig Model 405 or full close turn.	I with the name the n	handwhe "McEvoy' Operate	ralves have eel with the " embosse McEvoy va ull close, th	e name d on it. alves full
2,0	00/5,000 psi	WP	2,000/	3,000/5,000	psi WP
Model	Inches	Turns	Model	Inches	Turns
	2 1/16	13		2 1/16	13
	2 9/16	16	_	2 9/16	16
205	3 1/8	20	С	3 1/8	18
	4 1/16	25		4 1/16	17
2.0	00/5,000 psi			10,000 psi WI	D
	2 1/16	16		1 ¹³ / ₁₆	11
	2 9/16	19		2 1/16	13
405	3 1/8	23	Е	2 9/16	10 ¹ / ₂
	4 1/16	24 1/2		3 1/16	12 1/2
				4 1/16	17
10.00	00 – 15,000 p	si WP		15,000 psi WI	
	1 13/16	14		1 13/16	11
	2 1/16	12		2 1/16	9
215	2 9/16	15	Е	2 9/16	10 ¹ / ₂
	3 1/16	17 1/2		3 1/16	26
	4 1/16	23		4 1/16	
10,00	00 – 15,000 p	si WP	1	0,000 psi WI	P
	1 13/16	16		1 13/16	11
	2 1/16	18		2 1/16	9
315	2 9/16	17	E-2	2 9/16	10 ¹ / ₂
	3 1/16	24		3 1/16	12 ³ / ₄
	4 1/16	21		4 1/16	17 ¹ / ₈
			1	5,000 psi WI	P
				1 ¹³ / ₁₆	7 3/4
				2 1/16	9
			E-2	2 ⁹ / ₁₆	10 1/2
				3 1/16	12 ³ / ₄
				4 1/14	17 1/0

Nominal Flange Size (In.)	Service Rating (psi)	Standard Ring Gasket Number	Energized Ring Old API Series Through Number Designation Bore ID (In.)	Old API Series Designation	Through Bore ID (In.)	Number of Bolts	Bolt Size (In.)	Bolt Circle (In.)	Flange Diameter (In.)	Flange Thickness (In.)
	10M		BX151		1 13/16	8	3/4	5 3/4	7 %	1 21/32
1 13/16	15M		BX151		1 13/16	00	7/8	6 5/16	8 3/16	1 25/32
	20M		BX151		1 13/16	œ	_	∞	10 1/8	2 1/2
	2M	R23	RX23	2" 600	2 1/16	8	8/8	5	6 1/2	1 5/16
	2M	R24	RX24	2" 1,500	2 1/16	œ	7/8	6 1/2	8 1/2	1 13/16
2 1/16	10M		BX152		2 1/16	∞	3%	6 1/4	7 7/8	1 47/64
	15M		BX152		2 1/16	∞	7/8	6 7/8	8 34	2
	20M		BX152		2 1/16	80	1 1/8	9 1/16	11 5/16	2 13/16
	2M	R26	RX26	2 1/2" 600	2 9/16	8	3/4	5 7/8	7 1/2	1 7/16
	2M	R27	RX27	2 1/2" 1,500	2 9/16	∞	_	7 1/2	9 %	1 15/16
2 %/16	10M		BX153		2 9/16	œ	7/8	7 1/4	9 1/8	2 1/64
	15M		BX153		2 9/16	œ	_	7 7/8	10	2 1/4
	20M		BX153		2 9/16	8	1 1/4	10 5/16	12 13/16	3 1/8
	10M		BX154		3 1/16	œ	1	8 1/2	10 %	2 19/64
3 1/16	15M		BX154		3 1/16	œ	1 1/8	9 1/16	11 5/16	2 17/32
	20M		BX154		3 1/16	8	1 %	11 5/16	14 1/16	3 %
	2M	R31	RX31	3" 600	3 1/8	8	3/4	8/5 9	8 1/4	1 %16
3 1/8	3M	R31	RX31	3" 900	3 1/8	œ	7/8	7 1/2	9 1/2	1 13/16
	2M	R35	RX35	3" 1,500	3 1/8	œ	1 1/8	∞	10 1/2	2 3/16

Nominal Flange Size (In.)	Service Rating (psi)	Standard Ring Gasket Number	Energized Ring Old API Series Number Designation	Old API Series Designation	Through Bore ID (In.)	Number of Bolts	Bolt Size (In.)	Bolt Circle (In.)	Flange Diameter (In.)	Flange Thickness (In.)
	2M	R37	RX37	4" 600	4 1/16	8	2/8	8 1/2	10 34	1 13/16
	3M	R37	RX37	4" 900	4 1/16	ω	1 1/8	9 1/4	11 1/2	2 1/16
4.17	2M	R39	RX39	4" 1,500	4 1/16	∞	1 1/4	9 1/2	12 1/4	2 7/16
4 / 16	10M		BX155		4 1/16	œ	1 1/8	10 3/16	12 7/16	2 49/64
	15M		BX155		4 1/16	80	1 %	11 7/16	14 3/16	3 3/32
	20M		BX155		4 1/16	80	1 34	14 1/16	17 9/16	4 3/16
	2M	R41	RX41		5 1/8	8	1	10 1/2	13	2 1/16
71 1	3M	R41	RX41		5 1/8	80	1 1/4	11	13 34	2 5/16
8/. C	2M	R44	RX44		5 1/8	8	1 1/2	11 1/2	14 34	3 3/16
	10M		BX169		5 1/8	12	1 1/8	11 13/16	14 1/16	3 1/8
	2M	R45	RX45	009 "9	7 1/16	12	1	11 1/2	14	2 3/16
	3M	R45	RX45	0069	7 1/16	12	1 1/8	12 1/2	15	2 1/2
71,	2M	R46	RX46	6" 1,500	7 1/16	12	1 %	12 ½	15 ½	3 %
917.7	10M		BX156		7 1/16	12	1 1/2	15 %	18 7/8	4 1/16
	15M		BX156		7 1/16	16	1 1/2	16 7/8	19 7/8	4 11/16
	20M		BX156		7 1/16	16	2	21 13/16	25 13/16	6 1/2
	2M	R49	RX49	009 "8	6	12	1 1/8	13 34	16 1/2	2 1/2
	3M	R49	RX49	8" 900	6	12	1 %	15 ½	18 1/2	2 13/16
6	2M	R50	RX50	8" 1,500	6	12	1 5/8	15 ½	19	4 1/16
	10M		BX157		6	16	1 1/2	18 34	21 34	4 7/8
	15M		BX157		6	16	1 7/8	21 34	25 ½	5 %

Nominal	Committee	Standard	Promoting Ding	Old A DI Contag	Thurstock	Number	Dolt Cine	Dolt Cinolo	Florida	Plance
Flange Size (In.)	Rating (psi)	Ring Gasket Number	Number	Designation	Bore ID (In.)	of Bolts	(In.)	(In.)	Diameter (In.)	Thickness (In.)
	2M	R53	RX53	10" 600	11	16	1 1/4	17	20	2 13/16
	3M	R53	RX53	10" 900	11	16	1 %	18 ½	21 1/2	3 1/16
7	2M	R54	RX54	10" 1,500	11	12	1 7/8	19	23	4 11/16
	10M		BX158		11	16	1 3/4	22 1/4	25 34	5 %16
	15M		BX158		11	20	2	28	32	7 3/8
	2M	R57	RX57	12" 600	13 %	20	1 1/4	19 1/4	22	2 15/16
	3M	R57	RX57	12" 900	13 %	20	1 3/8	21	24	3 7/16
13 %	2M		BX160		13 %	16	1 5/8	23 1/4	26 1/2	4 7/16
	10M		BX159		13 %	20	1 7/8	26 1/2	30 1/4	9/5 9
	15M		BX159		13 %	20	2 1/4	30 %	34 %	7 7/8
	2M	R65	RX65	16" 600	16 %	20	1 1/2	23 3/4	27	3 5/16
17. 37	3M	R66	RX66	16" 900	16 %	20	1 %	24 1/4	27 34	3 15/16
0 %	2M		BX162		16 %	16	1 7/8	26 %	30 %	5 1/8
	10M		BX162		16 %	24	1 7/8	30 % 16	34 5/16	9/5 9
10 3/	PMS		BX163		18 34	20	2	31 %	35 %	6 17/32
0 %	10M		BX164		18 34	24	2 1/4	36 7/16	40 15/16	8 25/32
20 ¾	WE	R74	RX74	20" 900	20 34	20	2	29 1/2	33 3/4	4 3/4
21 1/4	2M	R73	RX73	20" 600	21 1/4	24	1 5/8	28 1/2	32	3 1/8
21 1/4	2M		BX165		21 1/4	24	2	34 %	39	7 1/8
21 1/4	10M		BX166		21 1/4	24	2 1/2	40 1/4	45	9 1/2
12 70	2M		BX167		26 34	20	1 3/4	37 1/2	41	4 31/32
74 74	3M		BX168		26 34	24	2	39 %	43 %	6 11/32

	Camero	n BOPs	
Cam	eron Type 'D'	Annular Preve	nter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
7.17	5,000	1.69	1.39
7 ¹ / ₁₆	10,000	2.94	2.55
44	5,000	5.65	4.69
11	10,000	10.15	9.06
12.5/	5,000	12.12	10.34
13 5/8	10,000	18.10	16.15

Can	neron Type 'Ul	M' Ram Prever	iter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
	3,000	2.3	2.2
7.17	5,000	2.3	2.2
7 ¹ / ₁₆	10,000	2.3	2.2
	15,000	2.3	2.2
44	10,000	6.2	6.2
11	15,000	7.3	7.3
12.5/	5,000	7.5	7.5
13 5/8	10,000	7.5	7.5

Ca	meron Type 'U	J' Ram Prevent	ter
BOP Nom. Size (Old API Series Designation) In.	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
71/ (/)	3,000	1.3	1.3
7 1/16 (6)	5,000	1.3	1.3
7 1/16	10,000	1.3	1.3
7 1/16	15,000	1.3	1.3
11 (10)	3,000	3.5	3.4
11 (10)	5,000	3.5	3.4
11	10,000	3.5	3.4
11	15,000	5.8	5.7
13 5/8 (12)	3,000	5.8	5.5
	5,000	5.8	5.5
13 ⁵ / ₈	10,000	5.8	5.5
	15,000	10.6	10.4
	3,000	10.6	9.8
16 ³ / ₄	5,000	10.6	9.8
	10,000	12.5	11.6
18 ³ / ₄	10,000	23.1	21.3
20 3/4 (20)	3,000	8.7	8.1
	2,000	8.7	9.0
21 ¹ / ₄	5,000	30.0	27.3
	10,000	26.9	24.5
26 ³ / ₄	3,000	10.8	10.1

Can	ieron Type 'QF	RC' Ram Preve	nter
BOP Nom. Size (Old API Series Designation) In.	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
7.17 (7)	3,000	0.81	0.95
7 1/16 (6)	5,000	0.81	0.95
0 (0)	3,000	2.36	2.70
9 (8)	5,000	2.36	2.70
11 (10)	3,000	2.77	3.18
11 (10)	5,000	2.77	3.18
13 5/8 (12)	3,000	4.42	5.10
16 ³ / ₄ (16)	2,000	6.00	7.05
17 ³ / ₄ (18)	2,000	6.00	7.05

	Cameron l	Hydraulic G	ate Valves	
Туре	Valve Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
HCR	4	3,000	0.52	0.61
HCR	4	5,000	0.52	0.61
HCR	6	3,000	1.95	2.25
HCR	6	5,000	1.95	2.25
F	4	3,000	0.30	0.30
F	4	5,000	0.30	0.30
F	4	10,000	0.59	0.59
F	6	3,000	0.84	0.84
F	6	5,000	0.84	0.84

	Sha	ffer BOP	s	
\$	Shaffer Spher	rical Annular	Preventer	r
BOP Nom. Size (In.)	Working Pressure (psi)	Cover Type	Fluid to Close (gal)	Fluid to Open (gal)
	3,000	Bolted	4.57	3.21
7 1/16	5,000	Bolted	4.57	3.21
	10,000	Bolted	17.11	13.95
9	3,000	Bolted	7.23	5.03
9	5,000	Bolted	11.05	8.72
	3,000	Bolted	11.00	6.78
11	5,000	Bolted	18.67	14.59
	10,000	Wedge	30.58	24.67
	3,000	Bolted	23.50	14.67
13 5/8	5,000	Bolt/Wedge	23.58	17.41
	10,000	Wedge	40.16	32.64
16 ³ / ₄	5,000	Wedge	33.26	25.61
18 ³ / ₄	5,000	Wedge	48.16	37.61
21 ¹ / ₄	2,000	Bolted	32.59	16.92
	5,000	Wedged	61.37	47.76

	Shaffer Type 'I	XT' Ram Preve	nter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
-	3,000	0.32	0.33
,	5,000	0.32	0.33
11	3,000	2.80	2.46
11	5,000	2.80	2.46

	Shaffer Type	'NXT' Ram l	Preventer	
BOP Nom. Size (In.)	Working Pressure (psi)	Туре	Fluid to Close (gal)	Fluid to Open (gal)
	5,000	Poslock	14.04	12.74
	5,000	Booster (Poslock)	31.22	29.92
	5,000	Manual-Lock	13.14	12.84
	5,000	Ultralock IIB	16.74	15.44
	10,000	Poslock	14.04	13.02
18 ³ / ₄	10,000	Booster (Poslock)	31.22	29.92
	10,000	Manual-Lock	13.14	13.14
	10,000	Ultralock IIB	16.74	15.72
	15,000	Poslock	14.04	13.02
	15,000	Booster (Poslock)	31.22	29.92
	15,000	Manual-Lock	13.14	13.14
	15,000	Ultralock IIB	16.74	15.72

	Shaffer Type	'LWS' Ram	Preventer	
BOP Nom. Size (In.)	Working Pressure (psi)	Piston Size (In.)	Fluid to Close (gal)	Fluid to Open (gal)
4.17	5,000	6	0.59	0.52
4 ¹ / ₁₆	10,000	6	0.59	0.52
7.17	5,000	6 ½	1.45	1.18
7 ¹ / ₁₆	10,000	14	5.18	5.25
9	5,000	8 ½	2.58	2.27
	3,000	6 ½	1.74	1.45
11	5,000	8 ½	2.98	2.62
	5,000	14	9.50	8.90
	3,000	8 ½	5.07	4.46
20 3/4	3,000	10	7.80	6.86
	3,000	14	14.50	13.59
	2,000	8 ½	5.07	4.46
21 ¹ / ₄	2,000	10	7.80	6.86
	2,000	14	14.50	13.59

BOP Fluid Operating Volumes

5	Shaffer Type 'S	SL/SLX' Ra	m Prevente	r
BOP Nom. Size (In.)	Working Pressure (psi)	Piston Size (In.)	Fluid to Close (gal)	Fluid to Open (gal)
	10,000	10	2.72	2.34
71/	10,000	14	6.00	5.57
7 ¹ / ₁₆	15,000	10	2.72	2.34
	15,000	14	6.00	5.57
11	10,000	14	9.45	7.00
11	15,000	14	9.40	8.10
	3,000	10	5.44	4.46
	5,000	10	5.44	4.46
13 ⁵ / ₈	5,000	14	11.00	10.52
	10,000	14	10.58	10.52
	15,000	14	11.56	10.52
	5,000	10	6.07	4.97
16 ³ / ₄	5,000	14	11.76	10.67
	10,000	14	14.47	12.50
18 ³ / ₄	10,000	14	14.55	13.21
18 3/4	15,000	14	14.62	13.33
21 ¹ / ₄	10,000	14	16.05	13.86

SI	naffer Type 'DB'	Hydraulic Gate	Valves
Valve Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
	5,000	0.15	0.20
2 1/16	10,000	0.15	0.20
	15,000	0.26	0.29
3 ¹ / ₈	5,000	0.20	0.25
3 1/16	10,000	0.35	0.40
3 '/16	15,000	0.35	0.40
	5,000	0.35	0.40
4 ¹ / ₁₆	10000	0.45	0.50
	15000	0.45	0.50

	Hydri	l BOPs	
	Hydril Type 'GK'	Annular Preve	nter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
	3,000	2.85	2.24
	5,000	3.86	3.30
7 1/16	10,000	9.42	7.08
	15,000	11.20	7.50
	20,000	10.90	7.20
	3,000	4.33	3.41
9	5,000	6.84	5.80
	10,000	15.90	11.95
	3,000	7.43	5.54
11	5,000	9.81	7.98
	10,000	25.10	18.97
	15,000	26.67	20.45
	3,000	11.36	8.94
13 ⁵ / ₈	5,000	17.98	14.16
	10,000	37.18	12.59
	2,000	17.46	15.80
16 ³ / ₄	3,000	28.70	19.93
	5,000	28.70	19.93

_	- 1 11 m - 12 con:		
	Iydril Type 'MSP'		
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
7 1/16	2,000	2.85	1.98
9	2,000	4.57	2.95
11	2,000	7.43	5.23
20 3/4	2,000	31.05	18.93
21 ¹ / ₄	2,000	31.05	18.93
29 ¹ / ₂	500	60.00	n/a
30	1,000	87.60	27.80

	Hydril Type 'GX'	Annular Preve	nter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
44	10,000	17.90	17.90
11	15,000	24.10	24.10
42.57	5,000	15.50	15.50
13 ⁵ / ₈	10,000	24.10	24.10
18 ³ / ₄	10,000	58.00	58.00

64 BOP Fluid Operating Volumes

	Hydril Type 'C	GL' Annulai	r Preventer	
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)	Secondary Fluid (gal)
13 ⁵ / ₈	5,000	19.76	19.76	8.24
16 ³ / ₄	5,000	33.80	33.80	17.30
18 ³ / ₄	5,000	44.00	44.00	20.00
21 ¹/ ₄	5,000	58.00	58.00	29.50

	Hydril Manual	Lock Ram Prev	enter
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
	3,000	1.00	0.93
71/	5,000	1.00	0.93
7 1/16	10,000	1.90	1.80
	15,000	3.70	3.40
0	3,000	1.90	1.90
9	5,000	1.90	1.90
	3,000	3.30	3.20
11	5,000	3.30	3.20
	10,000	5.20	5.00
	3,000	5.40	4.90
13 5/8	5,000	5.40	4.80
	10,000	12.20	11.60
18 3/4	5,000	17.10	16.10
20 3/4	3,000	8.10	7.20
24.17	2,000	8.10	7.20
21 ¹ / ₄	5,000	17.50	16.60

	Hydril MPI	Ram Prevente	r
BOP Nom. Size (In.)	Working Pressure (psi)	Fluid to Close (gal)	Fluid to Open (gal)
	3,000	1.20	0.93
7 1/16	5,000	1.20	0.93
7 '716	10,000	2.00	1.80
	15,000	3.90	3.40
11	10,000	5.70	5.00
1.1	20,000	12.50	11.50
	3,000	5.90	4.90
13 ⁵ /8	5,000	5.90	5.20
13 3/8	10,000	12.80	11.60
	15,000	12.60	11.00
	5,000	17.90	16.10
18 ³ / ₄	10,000	17.10	15.60
	15,000	19.40	16.70
20 3/4	3,000	18.00	16.30
21 ¹ / ₄	2,000	18.00	16.30
21 '/4	5,000	19.30	16.60

Coi	led Tubing	Stretch T	able
Size (In) OD	Wall Thickness (In)	Cross Sectional Area (Sq In)	Free Point Constant
	.087	.304	760.0
	.095	.328	820.0
	.102	.351	877.5
1.250	.109	.374	935.0
	.125	.420	1050.0
	.134	.451	1127.5
	.156	.512	1280.0
	.095	.399	997.5
	.102	.428	1070.0
4.500	.109	.456	1140.0
1.500	.125	.512	1280.0
	.134	.552	1380.0
	.156	.629	1572.5
	.109	.538	1345.0
	.125	.605	1512.5
1.750	.134	.652	1630.0
	.156	.745	1862.5
	.175	.831	2077.5
	.109	.619	1547.5
	.125	.698	1745.0
2.0	.134	.753	1882.5
	.156	.861	2152.5
	.175	.962	2405.0
	.125	.837	2092.5
	.134	.904	2260.0
2.375	.156	1.035	2587.5
	.175	1.158	2895.5
	.190	1.241	3102.5

Coiled Tubing Dimensions

66			_	UI.	<u>.</u>	u	_ L L	10	_	ıg	ע	1 I)	е		51 (OI	12	_	_	
nal	ppls	.00219	.00219	.00219	.00219	.00219	.00219	.00219	.00298	.00298	.00298	.00298	.00298	.00298	.00298	.00298	.00298	.00389	.00389	.00389
External Displacement	Gallons	.09180	.09180	.09180	.09180	.09180	.09180	.09180	.12495	.12495	.12495	.12495	.12495	.12495	.12495	.12495	.12495	.16320	.16320	.16320
ment	bbls	.00062	79000.	.00071	9/0000.	.00081	06000.	76000.	000070	.00074	62000	.00084	06000	76000.	.00107	.00114	.00115	08000	.00085	.00091
Displacement Of Steel	Gallons	02970	02805	.02987	.03206	.03422	.03784	.04062	02919	.03093	.03315	.03534	03798	04058	04498	.04792	.04837	.03364	.03567	.03825
apacity	bbls	001562	001518	.001474	001422	001371	001285	001219	002280	002238	002186	.002134	002071	00200	001904	001834	001823	003085	003037	.002975
Internal Capacity	Gallons	09290	06375	06193	0.5974	05758	05396	05118	09576	09402	09180	08961). 76980	08437). 79970	07703	07658	.12956	.12753	.12495
Nom Wt		1.719	1.840	1.960	2.104	2.245	2.483	2.665	1.915	2.029	2.175	2.318	2.492	2.662	2.951	3.140	3.173	2.207	2.340	2.509
ID I		1.268	1.250	1.232	1.210	1.188	1.150	1.120	1.532	1.518	1.500	1.482	1.460	1.438	1.400	1.374	1.370	1.782	1.768	1.750
Wall		.116	.125	.134	.145	.156	.175	.190	.109	.116	.125	.134	.145	.156	.175	.188	.190	.109	.116	.125
OD Specified		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	2.00	2.00	2.00
nal ment/ft	bbls	76000.	76000.	76000.	76000.	.00097	.00152	.00152	.00152	.00152	.00152	.00152	.00152	.00152	.00152	.00152	.00152	.00219	.00219	.00219
External Displacement/ft	Gallons	04080	04080	04080	04080	04080	06375	06375	06375	06375	06375	06375	06375	06375	06375	06375	06375	180	09180	.09180
		0.	Ó	Ö	ب	O.	Ō.	Ō,	90.	90.	õ	9	0	Õ.	Õ.	90.	90.	.091	O.	ب
ment of I/ft	ppls	.00029	.00031	0.00033	0. 00036	.00038	0. 08000.	0. 06000.	.00043 .06	.00046 .06	.00048	.00051 .06	.000055 .0	.00058 .04	.00062 .06	90. 99000.	.00073 .06	.00052 .09	.00055	.00059
Displacement of Steel/ft	_	•										_	_				_			_
	ppls	.00029	.00031	.00033	.00036	.00038	.00036	.00039	.00043	.00046	.00048	.00051	.00055	.00058	.00062	. 99000.	.00073	.00052	.00055	.00059
internal Capacity/ft Displacement of Steel/ft	Gallons bbls	.01201 .00029	.01296 .00031	.01403 .00033	.01495 .00036	.01585 .00038	.01528 .00036	.01651 .00039	.01791 .00043	.01911 .00046	.02030 .00048	. 02147 .00051	.02295 .00055	.02441 .00058	.02615 .00062	.02785 .00066	.03070 .00073	.02178 .00052	.02327 .00055	.02474 .00059
Internal Capacity/ft	bbls Gallons bbls	. 000685 .01201 .00029	. 000663 .01296 .00031	. 000637 .01403 .00033	. 000616 .01495 .00036	. 000594 .01585 .00038	.001154 .01528 .00036	.001125 .01651 .00039	. 001091 .01791 .00043	. 001063 .01911 .00046	.001035 .02030 .00048	. 001007 100100.	. 000971 .02295 .00055	. 000937 .02441 .00058	.000895 .02615 .00062	. 000855 .02785 .00066	. 000787 .03070 .00073	. 001667 .02178 .00052	.001632 .02327 .00055	.001597 .02474 .00059
Nom. Internal Capacity/ft Wt	lbs/ft Gallons bbls Gallons bbls	. 02879 .000685 .01201 .00029	. 02784 .000663 .01296 .00031	. 02677 .000637 .01403 .00033	. 02585 .000616 .01495 .00036	. 02495 . 000594 . 01585 . 00038	. 04847 .001154 .01528 .00036	. 04724 .001125 .01651 .00039	. 04584 .001091 .01791 .00043	. 04464 .001063 .01911 .00046	.04345 .001035 .02030 .00048	. 04228 .001007 .02147 .00051	. 04080 .000971 .02295 .00055	.03934 .000937 .02441 .00058	.03760 .000895 .02615 .00062	.03590 .000855 .02785 .00066	. 03305 .000787 .03070 .00073	. 07002 .001667 .02178 .00052	.06853 .001632 .02327 .00055	.06706 .001597 .02474 .00059
Nom. Internal Capacity/ft Wt	Day (ft Gallons bbls Gallons bbls	. 788 .02879 .000685 .01201 .00029	. 1850 .02784 .000663 .01296 .00031	. 920 . 02677 . 000637 . 01403 . 00033	. 981 .02585 .000616 .01495 .00036	1.040 02495 000594 01585 00038	1.002 .04847 .001154 .01528 .00036	1.083 .04724 .001125 .01651 .00039	1.175 .04584 .001091 .01791 .00043	1.254 .04464 .001063 .01911 .00046	1.332 .04345 .001035 .02030 .00048	1.408 .04228 .001007 .02147 .00051	1.506 .04080 .000971 .02295 .00055	1.601 .03934 .000937 .02441 .00058	1.715 .03760 .000895 .02615 .00062	1.827 .03590 .000855 .02785 .00066	2.014 .03305 .000787 .03070 .00073	. 1.429 .07002 .001667 .02178 .00052	1.527 .06853 .001632 .02327 .00055	282 1.623 .06706 .001597 .02474 .00059

Coiled Tubing Dimensions

OD	Wall	ID Calculated	Nom. Wt	Internal C	Internal Capacity/ft	Displacement of Steel/ft	ment of 1/ft	External Displacement/ft	rnal ment/ft	OD	Wall	ID	Nom Wt	Internal Capacity	Capacity	Displacement Of Steel	ement leel	External Displacement	nal
namade	named c		lbs/ft	Gallons	spple	Gallons	ppls	Gallons	ppls		namade			Gallons	sppp	Gallons	sldd	Gallons	ppls
2.00	.134	1.732	2.677	.12239	.002914	.04081	76000.	.16320	.00389	2.875	.156	2.563	4.541	.26801	.006381	.06922	.00165	.33724	.00803
2.00	.145	1.710	2.880	.11930	.002841	.04390	.00105	.16320	.00389	2.875	.175	2.525	5.059	.26013	.006193	.07711	.00184	.33724	.00803
2.00	.156	1.688	3.080	.11625	.002768	.04695	.00112	.16320	.00389	2.875	0.188	2.499	5.400	.25480	790900.	.08244	.00196	.33724	.00803
2.00	.175	1.650	3.419	.11108	.002645	.05212	.00124	.16320	.00389	2.875	0.190	2.495	5.462	.25398	.006047	.08326	.00198	.33724	.00803
2.00	.188	1.624	3.640	.10760	.002562	.05560	.00132	.16320	.00389	2.875	0.203	2.469	5.790	.24872	.005922	.08852	.00211	.33724	.00803
2.00	.190	1.620	3.682	.10708	.002549	.05612	.00134	.16320	.00389	2.875	0.204	2.467	5.834	.24831	.005912	.08893	.00212	.33724	.00803
2.00	.203	1.594	3.900	.10367	.002468	.05953	.00142	.16320	.00389	3.500	0.134	3.232	4.820	.42619	.010147	.07361	.00175	.49980	.01190
2.00	.204	1.592	3.923	.10341	.002462	.05979	.00142	.16320	.00389	3.500	0.156	3.188	5.570	.41466	.009873	.08514	.00203	.49980	.01190
2.375	.125	2.125	3.011	.18424	.004387	.04590	.00109	.23014	.00548	3.500	0.175	3.150	6.230	.40484	.009639	.09496	.00226	.49980	.01190
2.375	.134	2.107	3.215	.18113	.004313	.04901	.00117	.23014	.00548	3.500	0.188	3.124	6.650	.39818	.009481	.10162	.00242	.49980	.01190
2.375	.145	2.085	3.462	.17737	.004223	.05277	.00126	.23014	.00548	3.500	0.190	3.120	6.733	.39716	.009456	.10264	.00244	.49980	.01190
2.375	.156	2.063	3.706	.17364	.004134	.05649	.00135	.23014	.00548	3.500	0.203	3.094	7.150	.39057	.009299	.10923	.00260	.49980	.01190
2.375	.175	2.025	4.122	.16731	.003983	.06283	.00150	.23014	.00548	3.500	0.204	3.092	7.199	.39007	.009287	.10973	.00261	.49980	.01190
2.375	.188	1.999	4.390	.16304	.003882	.06710	.00160	.23014	.00548	3.500	0.224	3.052	7.857	.38004	.009049	.11976	.00285	.49980	.01190
2.375	.190	1.995	4.445	.16239	.003866	.06775	.00161	.23014	.00548	3.500	0.250	3.000	8.699	.36720	.008743	.13260	.00316	.49980	.01190
2.375	.203	1.969	4.710	.15818	.003766	.07196	.00171	.23014	.00548	4.500	0.204	4.092	9.383	.68317	.016266	.14303	.00341	.82620	.01967
2.375	.204	1.967	4.742	.15786	.003759	.07228	.00172	.23014	.00548	4.500	0.224	4.052	10.255	88699	.015950	.15632	.00372	.82620	.01967
2.875	.125	2.625	3.670	.28114	.006694	.05610	.00134	.33724	.00803	4.500	0.250	4.000	11.376	.65280	.015543	.17340	.00413	.82620	.01967

Cable Type	Size (In.)	Diameter (In.)	Breaking Strength (Ibs)	Weight (lbs) 1000ft	Armor Wires (Out/In)	Wire BS – Ibs (Out/In)	CDR Resistance (Ohms/Mft)	Maximum Temp (°F)
1-H-100-A	1/10	.101	1,000	19	18/12	41/41	25.2	300
1-H-125-A	1/8	.123	1,500	27	18/12	09/09	25.2	300
1-H-125-K	1/8	.123	1,500	28	18/12	09/09	25.2	500
1-H-181-A	3/16	.185	3,900	63	15/12	198/127	8.6	300
1-H-181-D	3/16	.185	3,900	99	15/12	198/127	9.6	420
1-H-181-K	3/16	.185	3,900	99	15/12	198/127	9.8	200
1-H-181-M	3/16	.187	3,600	89	15/12	198/132	12.5	009
4-H-181-A	3/16	.186	3,300	09	18/18	143/76	26.0	300
1-H-203-A	13/64	.203	4,500	62	16/10	212/212	6.9	300
1-H-203-D	13/64	.203	4,500	79	16/10	212/212	6.9	420
1-H-203-K	13/64	.203	4,500	80	16/10	212/212	6.9	200
1-H-220-A	7/32	.223	2,500	92	18/12	212/212	4.5	300
1-H-220-D	7/32	.223	5,500	95	18/12	212/212	4.5	420
1-H-220-K	7/32	.223	5,500	95	18/12	212/212	4.5	200
1-H-226-K	7/32	.222	5,000	66	18/12	196/196	7.7	200
1-H-281-A	9/32	.288	10,000	153	18/12	352/352	2.8	300
1-H-281-K	9/32	.288	10,000	158	18/12	352/352	2.8	500
1-H-314-A	5/16	.316	11,200	183	18/12	426/426	2.8	300
1-H-314-D	5/16	.316	11,200	187	18/12	426/426	2.8	420
1-H-314-K	5/16	.316	11,200	190	18/12	426/426	2.8	200
7-H-314-A	5/16	.323	009'6	180	18/18	426/225	16.6	300

Electric Line

Cable Type	Size (In.)	Diameter (In.)	Breaking Strength (lbs)	Weight (lbs) 1000ft	Armor Wires (Out/In)	Wire BS – Ibs (Out/In)	CDR Resistance (Ohms/Mft)	Maximum Temp (°F)
1-H-375-A	3/8	.375	14,600	253	18/12	295/595	2.9	300
1-H-375-D	3/8	.375	14,600	260	18/12	595/595	2.9	420
1-H-375-K	3/8	.375	14,600	261	18/12	595/595	2.9	500
3-H-375-A	3/8	.372	13,500	235	20/16	486/397	7.1	300
4-H-375-A	3/8	.372	13,500	239	20/16	572/301	10.5	300
7-H-375-A	3/8	.372	12,800	243	18/18	572/301	10.5	300
1-H-422-A	7/16	414	17,800	307	18/12	727/727	2.9	300
1-H-422-D	7/16	.414	17,800	316	18/12	727/727	2.9	420
1-H-422-K	7/16	.414	17,800	317	18/12	727/727	2.9	500
7-H-422-A	7/16	.426	18,300	314	18/18	766/397	10.9	300
7-H-422-D	7/16	.426	18,300	324	18/18	766/397	10.0	420
7-H-422-K	7/16	.426	18,300	326	18/18	766/397	10.0	500
7-H-464-A	15/32	.462	18,300	326	24/24	539/335	10.0	300
7-H-464-D	15/32	.462	18,300	333	24/24	539/335	10.0	420
7-H-464-K	15/32	.462	18,300	347	24/24	539/335	10.0	500
7-H-520-A	17/32	.522	26,000	462	20/16	958/778	10.5	300
7-H-520-D	17/32	.522	26,000	467	20/16	958/778	10.5	420
7-H-472-A	Slammer	.472	22,200	379	18/18	929/486	10.0	300
7-H-472-D	Slammer	.472	22,200	386	18/18	929/486	10.0	420
7-H-472-K	Slammer	.472	22,200	394	18/18	929/486	10.0	500

Sinker Bar Weight Needed			Carbon Steel - API 9A Breaking Strengths	PI 9A Break	ing Strengths			
720 880 840 800 560 400 360 360 360 360 360 360 360 3	Material (n)		.072	.082	.092	.105	.108	.125
	Br. Steel API Level 3 or improved plow (lbs)	(sql) w	961	1239	1547	1966	2109	2794
	API Ex. Impr. Plow, Hi-Str, or Mon. AA (Ibs)	A (Ibs)	1150	1460	1830	2360	2490	3300
				Austenitic 5	Stainless Steel	Austenitic Stainless Steel - Breaking Strengths	ths	
0002		Mate	Material (In)	.082	.092	.105	.108	.125
	For wirelne to fall against well	316 Sta	316 Stainless (lbs)	1083	1363	1732	1786	2270
3000	pressure, find desired line		dns	er Austenit	ic Stainless Ste	Super Austenitic Stainless Steel - Breaking Strengths	engths	
	versus well pressure and		Material (in)		.092	.105	.108	.125
	weight needed	Sar	Sandvik Sanicro 28 (lbs)	(sq	1445	1885	1995	2675
See				6 Moly Sta	ainless Steel – I	6 Moly Stainless Steel - Breaking Strengths	SI	
	All "Ibs" are breaking		Material (In)		.092	.105	.108	.125
00	strength. These vary with the	Ŕ	Avesta 254 SMO (bs)	(S)	1462	1818	1924	2454
	manufacturer.		Bridon Supa (Ibs)		1550	2030	2030	2560
00			25-6MO (lbs)		1475	N/A	2050	2550
				Cobalt B	ased Alloy - B	Cobalt Based Alloy - Breaking Strengths	9	
314		-	Material (In)		.092	.105	.108	.125
3118			MP35N (lbs)		1582	2009	2080	2724
ine ine				Braid	ed Line – Brea	Braided Line - Breaking Strengths		
ne			Size (In)		3/16"	3/16"	7/32"	7/32"
00 Lin 182 Lin			Construction		1 x 16	1x 19 (Dycan/Dyform)	1 x 16	1x 19 (Dycan/Dyform)
		U	Galv. Carbon Steel	_	4500	6170	0009	8370
			15-6Mo (Supa 75)		4320	4960	5842	2990

Conversion Factors

Field Units	to Metric	: Conversion
If You Have:	Multiply By:	To Get:
Feet	x 0.3048	Meters (M)
Inches	x 2.54	Centimeters (cm)
Inches	x 25.4	Millimeters (mm)
Pounds (Lbs)	x 0.0004536	Metric Tons
Pounds (Lbs)	x 0.44482	Decanewtons (daN)
Pounds	x 0.4536	Kilograms
Weight (Lbs/ft)	x 1.4882	Kg/M
Pounds per Barrel	x 2.85307	Kg/M ³
Barrels	x 158.987	Liters
Barrels	x 0.15898	Cubic Meters
Gallons	x 3.7854	Liters
Gallons	x 0.0037854	Cubic Meters
Barrels/Stroke	x 158.987	Liters/Stroke
Barrels/Stroke	x 0.158987	Cubic Meters/Stroke
Gallons/Minute	x 3.7854	Liters/Minute
Barrels/Minute	x 158.987	Liters/Minute
Barrels/Minute	x 0.158987	Cubic Meters/Minute
bbl/ft. Capacity	x 521.612	Liters/Meter (L/M)
bbl/ft. Capacity	x 0.521612	Cubic Meters/Meter
Bbl Displacement	x 521.612	Liters/Meter (L/M)
Bbl Displacement	x 0.521612	Cubic Meters/Meter
Gradient psi/ft	X 22.6206	KPa/M
Gradient psi/ft	x 0.226206	Bar/M
Mud Weight PPG	x 0.119826	Kilograms/Liter (Kg/L)
Mud Weight PPG	x 119.826	Kilograms/Cubic Meter
Mud Weight PPG	x 0.119826	Specific Gravity (SG)
Mud Weight (Lb/Ft ³)	x 1.60185	Kg/M ³
Fahrenheit Degrees	x 0.56 – 17.8	Celsius Degrees
PSI	x 6894.8	Pascals (Pa)
PSI	x 6.8948	Kilopascals (KPa)
PSI	x 0.06895	Bar
BWPD @ 8.9 ppg	X 0.118	Kg/Min
BOPD @ 7.74 ppg	X 0.099	Kg/Min
mmCFD @ 0.6 sp. gr.	X 14.1	Kg/Min

Metric to Fi	eld Units (Conversion
If You Have:	Multiply By:	To Get:
Meters (m)	x 3.2808	Feet
Centimeters (cm)	x 0.3937	Inches
Millimeters (mm)	x 0.03937	Inches
Metric Tons	x 2204.6	Pounds (Lbs)
Decanewtons (daN)	x 2.2481	Pounds (Lbs)
Kilograms	x 2.2046	Pounds
Kg/m	x 0.67196	Weight (Lbs/Ft)
Kg/m³	x 0.3505	Pounds per Barrel
Liters	x 0.00629	Barrels
Cubic Meters	x 6.2898	Barrels
Liters	x 0.2642	Gallons
Cubic Meters	x 264.173	Gallons
Liters/Stroke	x 0.00629	Barrels/Stroke
Cubic Meters/Stroke	x 6.2898	Barrels/Stroke
Liters/Minute	x 0.2642	Gallons/Minute
Liters/Minute	x 0.00629	Barrels/Minute
Cubic Meters/Minute	x 6.2898	Barrels/Minute
Liters/Meter (I/m)	x 0.0019171	BBL/Ft. Capacity
Cubic Meters/Meter	x 1.917	BBL/Ft. Capacity
Liters/Meter (I/m)	x 0.0019171	BBL Displacement
Cubic Meters/Meter	x 1.9171	BBL Displacement
KPa/m	x 0.044207	Gradient PSI/Ft
Bar/m	x 4.4207	Gradient PSI/Ft
Kilograms/Liter (Kg/L)	x 8.3454	Mud Weight PPG
Kilograms/Cubic Meter	x 0.0083454	Mud Weight PPG
Specific Gravity (SG)	x 8.3454	Mud Weight PPG
Kg/m ³	x 6.24279	Mud Weight Lb/Ft ³)
Celsius Degrees	x 1.8 + 32	Fahrenheit Degrees
Pascals (Pa)	x 0.000145	PSI
Kilopascals (KPa)	x 0.14504	PSI
Bar	x 14.50377	PSI
Kg/Minute	X 8.475	BWPD @ 8.9 ppg
Kg/Minute	X 10.105	BOPD @ 7.74 ppg
Kg/Minute	X 0.071	mmCFD @ 0.6 sp.gr.

74 Notes & Calculations

76 Notes & Calculations

Consider it covered.

wildwell.com +1.281.784.4700

