Lecture 8 Camera Models

Professor Silvio Savarese

Computational Vision and Geometry Lab

Silvio Savarese Lecture 8 - 15-Oct-14

Lecture 8 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
- Other camera models

Reading: [FP] Chapter 1 "Cameras"

[FP] Chapter 2 "Geometric Camera Models"

[HZ] Chapter 6 "Camera Models"

Some slides in this lecture are courtesy to Profs. J. Ponce, S. Seitz, F-F Li

Silvio Savarese Lecture 8 - 15-Oct-14

How do we see the world?

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture

Milestones:

Leonardo da Vinci (1452-1519):

first record of camera obscura

observauimus, inuenimusq; deficere paulò plus q dex-

Milestones:

• Leonardo da Vinci (1452-1519):

first record of camera obscura

Johann Zahn (1685): first

portable camera

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera *obscura*
- Johann Zahn (1685): first portable camera
- Joseph Nicephore Niepce (1822):
 first photo birth of photography

Photography (Niepce, "La Table Servie," 1822)

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera *obscura*
- Johann Zahn (1685): first portable camera
- Joseph Nicephore Niepce (1822):
 first photo birth of photography

- Daguerréotypes (1839)
- Photographic Film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)

Photography (Niepce, "La Table Servie," 1822)

Let's also not forget...

Motzu (468-376 BC) Oldest existent book on geometry

in China

Aristotle (384-322 BC) Also: Plato, Euclid

Al-Kindi (c. 801–873) Ibn al-Haitham (965-1040)

f = focal length o = aperture = pinhole = center of the camera

Derived using similar triangles

0

P'=[x', f]

Common to draw image plane in front of the focal point.

What's the transformation between these 2 planes?

Is the size of the aperture important?

Shrinking aperture size

- Rays are mixed up

- -Why the aperture cannot be too small?
 - -Less light passes through
 - -Diffraction effect

Adding lenses!

A lens focuses light onto the film

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Related to the concept of depth of field

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Related to the concept of depth of field

- A lens focuses light onto the film
 - All parallel rays converge to one point on a plane located at the focal length f
 - Rays passing through the center are not deviated

From Snell's law:

$$\begin{cases} x - z - \overline{z} \\ y' = z' - \overline{z} \end{cases}$$

$$z'=f+Z_{o}$$

$$f = \frac{R}{2(n-1)}$$

Thin Lenses

$$z'=f+z_{o}$$

$$f = \frac{R}{2(n-1)}$$

Snell's law:

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Focal length

Small angles:
$$n_1 \alpha_1 \approx n_2 \alpha_2$$

$$n_1 = n \text{ (lens)}$$

$$n_1 = 1 \text{ (air)}$$

$$x' = z' \frac{x}{z}$$

$$y'=z'\frac{y}{z}$$

Issues with lenses: Radial Distortion

 Deviations are most noticeable for rays that pass through the edge of the lens

No distortion

Pin cushion

Image magnification decreases with distance from the optical axis

Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Intrinsic
 - Extrinsic
- Other camera models

Silvio Savarese Lecture 8 - 15-Oct-14

f = focal lengtho = center of the camera

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

 $\Re^3 \stackrel{E}{\rightarrow} \Re^2$

From retina plane to images

Pixels, bottom-left coordinate systems

Coordinate systems

Converting to pixels

Converting to pixels

- 1. Off set
- 2. From metric to pixels

$$(x, y, z) \rightarrow (f k \frac{x}{z} + c_x, f l \frac{y}{z} + c_y)$$
 $\alpha \beta z$

Units: k,I: pixel/m

f : m

Non-square pixels

 $oldsymbol{lpha},\,oldsymbol{eta}$: pixel

Converting to pixels

Matrix form?

A related question:

• Is this a linear transformation?

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Is this a linear transformation?

No — division by z is nonlinear

How to make it linear?

Homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y,z) \Rightarrow \left[egin{array}{c} x \ y \ z \ 1 \end{array}
ight]$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Camera Matrix

Perspective Projection Transformation

$$X' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad X' = M X$$

$$\mathfrak{R}^4 \xrightarrow{H} \mathfrak{R}^3$$

$$X_{i}' = \begin{bmatrix} f \frac{X}{-} \\ z \\ f \frac{Y}{-} \end{bmatrix}$$

Camera Matrix

$$X' = M X$$
$$= K[I \quad 0] X$$

Finite projective cameras

Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Intrinsic
 - Extrinsic
- Other camera models

Silvio Savarese Lecture 8 - 15-Oct-14

World reference system

- •The mapping so far is defined within the camera reference system
- What if an object is represented in the world reference system

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

World reference system

In 4D homogeneous coordinates: $X = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}$

$$X = \begin{vmatrix} R & T \\ 0 & 1 \end{vmatrix}_{A \bowtie A} X_{w}$$

Internal parameters
$$X' = K\begin{bmatrix} I & 0 \end{bmatrix} X = K\begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}_{4 \times 4} X_w = K\begin{bmatrix} R & T \end{bmatrix} X_w$$

Projective cameras

$$X'_{3\times 1} = M_{3\times 4} X_w = K_{3\times 3} [R \ T]_{3\times 4} X_{w4\times 1} K = \begin{vmatrix} \alpha & s & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{vmatrix}$$

How many degrees of freedom?

$$5 + 3 + 3 = 11!$$

Camera calibration

More details in CS231A

Estimate intrinsic and extrinsic parameters from 1 or multiple images

$$X'_{3\times 1} = M_{3\times 4} X_w = K_{3\times 3} [R \ T]_{3\times 4} X_{w4\times 1} K = \begin{vmatrix} \alpha & s & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{vmatrix}$$

How many degrees of freedom?

$$5 + 3 + 3 = 11!$$

Projective cameras

Properties of Projection

- Points project to points
- Lines project to lines
- Distant objects look smaller

Properties of Projection

Angles are not preserved

•Parallel lines meet!

Parallel lines in the world intersect in the image at a "vanishing point"

Horizon line (vanishing line)

Horizon line (vanishing line)

One-point perspective

Masaccio, *Trinity*,
 Santa Maria
 Novella, Florence,
 1425-28

Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Intrinsic
 - Extrinsic
- Other camera models

Silvio Savarese Lecture 8 - 15-Oct-14

Projective camera

When the relative scene depth is small compared to its distance from the camera

When the relative scene depth is small compared to its distance from the camera

$$M = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Instead of

$$M = K \begin{bmatrix} R & T \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{M} \ \mathbf{P}_{\mathbf{w}} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix} \mathbf{P}_{\mathbf{w}} = \begin{bmatrix} \mathbf{m}_{1} \mathbf{P}_{\mathbf{w}} \\ \mathbf{m}_{2} \mathbf{P}_{\mathbf{w}} \\ \mathbf{m}_{3} \mathbf{P}_{\mathbf{w}} \end{bmatrix} \qquad M = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix}$$

$$M = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix} = \begin{vmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{vmatrix}$$

$$\stackrel{\mathbf{E}}{\rightarrow} (\frac{\mathbf{m}_1 P_w}{\mathbf{m}_3 P_w}, \frac{\mathbf{m}_2 P_w}{\mathbf{m}_3 P_w})$$

Perspective

$$\mathbf{P'} = \mathbf{M} \; \mathbf{P}_{\mathbf{W}} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix} \mathbf{P}_{\mathbf{W}} = \begin{bmatrix} \mathbf{m}_{1} \; \mathbf{P}_{\mathbf{W}} \\ \mathbf{m}_{2} \; \mathbf{P}_{\mathbf{W}} \\ 1 \end{bmatrix}$$

$$\mathbf{E}$$

$$\rightarrow (\mathbf{m}_{1} \; \mathbf{P}_{w}, \mathbf{m}_{2} \; \mathbf{P}_{w})$$
magnification

$$M = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Weak perspective

Orthographic (affine) projection

Distance from center of projection to image plane is infinite

Pros and Cons of These Models

- Weak perspective much simpler math.
 - Accurate when object is small and distant.
 - Most useful for recognition.
- Pinhole perspective much more accurate for scenes.
 - Used in structure from motion.

The Kangxi Emperor's Southern Inspection Tour (1691-1698) By Wang Hui

Things to remember

- Vanishing points and vanishing lines
- Pinhole camera model and camera projection matrix M
 - Intrinsic parameters
 - Extrinsic parameters
- Homogeneous coordinates

Slide inspiration: J. Hayes

What we have learned today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Projection matrix
 - Intrinsic parameters
 - Extrinsic parameters

Reading:

[FP] Chapters 1 – 3 [HZ] Chapter 6