Зимний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год Дата последнего обновления: 04.12.2016

Билет 1

Совместное распределение двух случайных величин. Свойства функции распределения.

Совместное распределение двух случайных величин

Для начала напомним определение случайной величины.

Определение 1. ξ называется *случайной величиной*, если

$$\{\omega : \xi(\omega) \in \langle a, b \rangle\} \in \mathfrak{A},$$

то есть множество исходов таких, что случайная величина принадлежит некоторому промежутку, является событием. Можно доказать, что это верно не только для промежутков, но и для любых элементов из $\mathcal{B}(\mathbb{R})$.

Ранее мы рассматривали распределения и функции распределения случайных величин, взятых по отдельности. Теперь мы подросли, стали большими и сильными и поэтому можем перейти к более серьезным вещам. Рассмотрим вероятностное пространство (Ω,\mathfrak{A},P) и две случайные величины $\xi:\Omega\to\mathbb{R}$ и $\eta:\Omega\to\mathbb{R}$.

Пусть $B_1, B_2 \in \mathcal{B}(\mathbb{R})$, рассмотрим множество $\{(\xi, \eta) \in B_1 \times B_2\} = \{(\xi \in B_1)\&(\eta \in B_2)\} = \{\xi \in B_1\} \cap \{\eta \in B_2\}$, а так как $\{\xi \in B_1\} \in \mathfrak{A}$ и $\{\eta \in B_2\} \in \mathfrak{A}$, то и $\{(\xi \in B_1)\&(\eta \in B_2)\} \in \mathfrak{A}$, то есть $\{(\xi, \eta) \in B_1 \times B_2\}$ является событием.

Так как $\mathcal{B}(\mathbb{R}^2)$ порождена всеми множествами вида $B_1 \times B_2$, где $B_1, B_2 \in \mathcal{B}(\mathbb{R})$, то $\{\omega : (\xi(\omega), \eta(\omega)) \in B\} \in \mathfrak{A}$, то есть для него можно определить вероятность.

Определение 2. Для любых $B \in \mathcal{B}(\mathbb{R}^2)$ мы можем определить вероятностную меру

$$\mu_{\varepsilon_n}(B) = P(\{\omega : (\xi(\omega), \eta(\omega)) \in B\}).$$

Такую меру называют совместным распределением случайных величин ξ и η .

Доказательство. Докажем, что $\mu_{\xi\eta}$ является вероятностной мерой:

- (a) $\mu_{\xi\eta}(\mathbb{R}^2)=P(\Omega)=1$, очевидно
- (b) Пусть $B_1 \cap B_2 = \varnothing$, тогда $P(\omega: (\xi(\omega), \eta(\omega)) \in B_1 \cup B_2) = \mu_{\xi\eta}(B_1 \cup B_2) = \mu_{\xi\eta}(B_1) + \mu_{\xi\eta}(B_2) = P(B_1) + P(B_2)$

Определение 3. Функцию

$$F_{\xi\eta}(x,y) = P(\xi \leqslant x, \eta \leqslant y) = \mu_{\xi\eta}((-\infty, x], (-\infty, y])$$

называют функцией совместного распределения случайных величин ξ и η или функцией распределения случайного вектора (ξ,η) .

ДИСКРЕТНЫЙ АКА ЕБУЧИЙ СЛУЧАЙ

Если случайная величина принимает конечное число значений, то совместным распределением является функция

$$\mu_{\xi\eta}(x_0, y_0) = P(\{\omega : (\xi(\omega), \eta(\omega)) = (x_0, y_0)\}),$$

или же можно определить распределение через индикаторную функцию:

$$\mu_{\xi\eta}(x,y) = \sum_{i,j} p_{ij} \cdot I_{(x=x_i,y=y_j)}(x,y),$$

где p_{ij} - вероятность, что случайный вектор (ξ, η) примет значение (x_i, x_j) .

Свойства функции распределения

Функция совместного распределения обладает рядом свойств, аналогичных свойствам функции распределения одной случайной величины:

Свойство 1. Для любых $a < c \ u \ b < d \ верно$

$$F_{\xi\eta}(c,d) - F_{\xi\eta}(a,d) - F_{\xi\eta}(c,b) + F_{\xi\eta}(a,b) \ge 0$$

Доказательство. $P((\xi,\eta) \in (a,c] \times (b,d]) = F_{\xi\eta}(c,d) - F_{\xi\eta}(a,d) - F_{\xi\eta}(c,b) + F_{\xi\eta}(a,b)$ есть вероятность попадания в прямоугольник, а вероятность неотрицательна, что и требовалось доказать.

Свойство 2. $F_{\xi\eta}$ непрерывна справа по совокупности переменных, то есть

$$\lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi\eta}(x, y) = F_{\xi\eta}(x_0, y_0)$$

Сначала докажем лемму

Лемма 1. В вероятностном пространстве $(\Omega, \mathfrak{A}, P)$ верно:

(a)
$$C_1 \subseteq C_2 \subseteq \ldots \subseteq C_n \subseteq C_{n+1} \subseteq \ldots$$

 $C = \bigcup C_n \Rightarrow P(C_n) \to P(C)$

(b)
$$C_1 \supseteq C_2 \supseteq \ldots \supseteq C_n \supseteq C_{n+1} \supseteq \ldots$$

 $C = \bigcap_{n} C_n \Rightarrow P(C_n) \to P(C)$

Доказательство.

(a) Пусть $A_1=C_1$ и $A_n=C_n\setminus C_{n-1}$ для n>1.Тогда $C = \bigcup_n A_n$ и $P(C) = \sum_{n=1}^{\infty} P(A_n)$.

Но тогда $P(C_n)=\sum_{n=1}^n P(A_n)$ стремится к P(C) как частичная сумма ряда $\sum_{n=1}^\infty P(A_n)$. (b) Сведем к первому случаю, пусть $A_1=\Omega\setminus C_1$ и $A_n=\mathrm{C}_{n-1}\setminus C_n$ для n>1.

Тогда $C=\Omega\setminus\bigcup_n A_n$ и все рассуждения аналогичны.

Используя лемму, сможем доказать свойство

Доказательство. Так как функция распределения монотонна по обеим переменным (первое свойство) и ограничена (так как является вероятностью), то существует предел

$$\lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi \eta}(x, y) = L.$$

Тогда требуется доказать, что $L=F_{\xi\eta}(x_0,y_0)$. Пусть $C_n=\{\omega:\xi(\omega)\leqslant x_0+\frac{1}{n},\eta(\omega)\leqslant y_0+\frac{1}{n}\}$ и пусть $C=\bigcap_n C_n=\{\omega:\xi(\omega)\leqslant x_0,\eta(\omega)\leqslant y_0\}$, тогда из леммы 1 следует, что

$$L = \lim_{\substack{x \to x_0 + 0 \\ y \to y_0 + 0}} F_{\xi\eta}(x, y) = \lim_{n \to \infty} P(C_n) = P(C) = F_{\xi\eta}(x_0, y_0)$$

Свойство 3. Если хотя бы одно из a или b равно $-\infty$, то

$$\lim_{\substack{x \to a \\ y \to b}} F_{\xi\eta}(x, y) = 0$$

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} F_{\xi\eta}(x,y) = 1$$

 \mathcal{A} оказательство. С очевидностью следует из леммы, в первом случае последовательность множеств C_n стремится к пустому множеству, тогда вероятность пересечения равна $P(\varnothing)=0$, а во втором случае C_n стремится ко всей плоскости, поэтому вероятность объединения равна $P(\Omega) = 1$.

Замечание 1. Если функция $F_{\xi\eta}(x,y)$ удовлетворяет свойствам 1-3, то существует единственная вероятностная мера $\mu_{\xi\eta}$ на $\mathcal{B}(\mathbb{R}^2)$ такая, что

$$F_{\xi\eta}(x,y) = \mu_{\xi\eta}((-\infty,x],(-\infty,y]).$$

Билет 2

Независимые случайные величины. Характеризация независимости в терминах функций распределения и плотностей. Плотность распределения суммы двух независимых случайных величин.

Независимые случайные величины, характеризация независимости в терминах функций распределения и плотностей

Определение 1. Случайные величины ξ_1, \dots, ξ_n называются независимыми, если выполняется

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_n \in B_n)$$

Замечание 1. Если у нас есть меры $\mu_{\xi}(B_1)$ и $\mu_{\eta}(B_2)$, где B_1, B_2 — полуинтервалы, то мы можем определить новую меру $\mu(B_1 \times B_2) = \mu_{\xi}(B_1) \cdot \mu_{\eta}(B_2) = \mu_{\xi} \otimes \mu_{\eta}$ и такую меру можно продолжить на $\mathcal{B}(\mathbb{R}^2)$.

Замечание 2. Определение независимости можно переписать в терминах распределения (для двух случайных величин):

$$\mu_{\xi\eta}(B_1 \times B_2) = \mu_{\xi}(B_1) \cdot \mu_{\eta}(B_2)$$

а значит, мы можем переписать определение, как

Теорема 1. Случайные величины ξ и η независимы $\Leftrightarrow F_{\xi\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$

Доказательство. В одну сторону (⇒):

$$F_{\mathcal{E}_n}(x,y) = P(\xi \leqslant x, \eta \leqslant y) = P(\xi \leqslant x) \cdot P(\eta \leqslant y) = F_{\mathcal{E}}(x) \cdot F_n(y)$$

В другую сторону (\Leftarrow) :

Пусть $\mu(B) = \mu_{\xi} \otimes \mu_{\eta}(B)$, где B — углы, учитывая при этом, что определив такую меру на углах, можно определить с ее помощью прямоугольники, а после продолжить на любые множества из $\mathcal{B}(\mathbb{R}^2)$. Тогда

$$F_{\xi\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y) = \mu_{\xi}((-\infty,x]) \cdot \mu_{\eta}((-\infty,y]) = \mu((-\infty,x] \times (-\infty,y]) = \mu_{\xi} \otimes \mu_{\eta}((-\infty,x] \times (-\infty,y]),$$

а так как для $F_{\xi\eta}(x,y)$ существует единственная вероятностная мера $\mu_{\xi\eta}$ такая, что

$$F_{\varepsilon_n}(x,y) = \mu_{\varepsilon_n}((-\infty,x],(-\infty,y]),$$

то $\mu=\mu_{\xi\eta}$, а значит, ξ и η независимы.

Теорема 2. Пусть случайные величины ξ и η имеют плотности ρ_{ξ} и ρ_{η} соответственно, тогда ξ и η независимы $\Leftrightarrow \rho_{\xi\eta}(x,y) = \rho_{\xi}(x) \cdot \rho_{\eta}(y)$.

Доказательство. В одну сторону (⇒):

$$\rho_{\xi\eta}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi\eta}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi}(x) \cdot F_{\eta}(y) = \rho_{\xi}(x) \cdot \rho_{\eta}(y)$$

В другую сторону (\Leftarrow) :

$$F_{\xi\eta}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \rho_{\xi}(u)\rho_{\eta}(v)dudv = \int_{-\infty}^{x} \rho_{\xi}(u)du \cdot \int_{-\infty}^{y} \rho_{\eta}(v)dv = F_{\xi}(x) \cdot F_{\eta}(y)$$

Плотность распределения суммы двух независимых случайных величин

Теорема 3. Пусть случайные величины ξ и η имеют плотности ρ_{ξ} и ρ_{η} соответственно и являются независимыми. Тогда

$$\rho_{\xi+\eta}(t) = \int_{-\infty}^{+\infty} \rho_{\xi}(x) \rho_{\eta}(t-x) dx.$$

Доказательство.

$$F_{\xi+\eta}(t) = P(\xi+\eta \leqslant t) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{t-x} \rho_{\xi}(x) \rho_{\eta}(y) dy \right) dx = \int_{-\infty}^{+\infty} \rho_{\xi}(x) \left(\int_{-\infty}^{t-x} \rho_{\eta}(y) dy \right) dx = \left\{ \begin{aligned} y &= v-x \\ dy &= dv \end{aligned} \right\} = \\ &= \int_{-\infty}^{+\infty} \rho_{\xi}(x) \left(\int_{-\infty}^{t} \rho_{\eta}(v-x) dv \right) dx = \int_{-\infty}^{t} \left(\int_{-\infty}^{+\infty} \rho_{\xi}(x) \rho_{\eta}(v-x) dx \right) dv$$

Тогда

$$\rho_{\xi+\eta}(t) = F_{\xi+\eta}^{'}(t) = \int_{-\infty}^{+\infty} \rho_{\xi}(x)\rho_{\eta}(y)dx.$$