Zusammenfassung für Projekt:

Oberflächeneigenschaften vermitteln durch Sound und Vibration

Team AVR2025 - TextureSound

April 2025

Inhaltsverzeichnis

- Einleitung
- Wahrnehmung und Ziel
- Materialien und Feedback
- 4 Lichtkonzept und Implementierung
- Technik und Umsetzung
- Open Projektmanagement
- Beispielvergleich
- Weiterführende Ideen
- Fazit

Einleitung

 Das Projekt entsteht im Rahmen des Seminars "Augmented and Virtual Reality" und wird von einem vierköpfigen Team gemeinsam durchgeführt.

▶ Link zum GitHub-Projekt

Einleitung

- Kombination aus visuellen, auditiven und haptischen Reizen beeinflusst das VR-Erlebnis.
- Fokus auf identische Objekte mit variierenden Sinnesreizen (z.B. Holz, Stein).
- Theoretische Grundlage: Dörner et al., Multisensorische Wahrnehmung.

Wahrnehmung in VR

- Wahrnehmung ist subjektiv und kontextabhängig.
- Einflussfaktoren: kognitive Verzerrungen, crossmodale Wahrnehmung, situativer Kontext.
- Ziel: realistisches Materialerlebnis und differenzierte Sinnesintegration.

Ziele, Zweck und Zielgruppe

Ziel:

 Erforschung der Wirkung von Haptik, Klang und Textur auf Immersion.

Zweck:

- Ermittlung der realistischen Materialwahrnehmung.
- Beitrag zum Design immersiver Erlebnisse.

Zielgruppe:

- UX/HCI-Studierende
- VR-Designer:innen
- Forschende im Bereich multisensorische Wahrnehmung

Materialien und Interaktionen

Materialien:

- Glatt: Glas, Metall
- Rau: Holz, Sandpapier
- Weich (optional): Moos, Stoff

Interaktionen:

- Greifen, Streichen, Drücken
- Vergleich zweier Flächen

Feedbackarten

- Haptisch: Vibrationsfeedback (Controller)
- Auditiv: Materialspezifische Klänge
- Visuell: Texturwechsel, Leuchteffekte

Technische Umsetzung

Tools:

- Unity + XR Toolkit
- Meta Haptics Studio
- Blender
- Audacity

Hardware:

- Meta Quest 2
- Laptop mit 8 GB RAM

Optimierung:

- Low-Poly
- einfache Shader
- gezieltes Feedback

UX & Interaktion

- Controller- oder Handtracking
- Visuelle Hinweise: Pfeile, Leuchtflächen
- Kurzes Onboarding, konsistente Rückmeldungen
- Tests: A/B, Likert-Skalen

Lichtkonzept und Implementierung

Das Lichtdesign ist ein integraler Bestandteil der multisensorischen Erfahrung und wird je nach Szene und Materialtyp angepasst. Im Unity erfolgt die Umsetzung mithilfe von Baked Lighting.

Projektmanagement - Meilensteine

Woche	Aufgabe	Datum
1	Konzept & Tool-Einrichtung	30.04.2025
2–3	Erste Prototypen in Unity	14.05.2025
4–6	Integration von Sound & Haptik	04.06.2025
7–9	Usability-Tests & Feinschliff	25.06.2025
10	Abgabe & Abschlusspräsentation	07.07.2025

Projektmanagement - Team

 Die nachfolgende Aufgabenverteilung stellt eine erste Orientierung dar und dient dazu, dass alle Teammitglieder grundlegende Erfahrungen in verschiedenen Bereichen sammeln.

Α	3D-Modellierung & Texturierung
	(Obj 1, Szene 1), Verantwortung und
	Lichtgestaltung Szene 1
В	3D-Modellierung & Texturierung
	(Obj 1, Szene 2), Verantwortung und
	Lichtgestaltung Szene 2
С	3D-Modell. & Textur. (Obj 2, Sz 1),
	Haptik-Feedback, UI/UX-Design
D	3D-Modell. & Textur. (Obj 2, Sz 2),
	Sound-Design, UI/UX-Design
A & B & C & D	GitHub-Pflege, Dokumentation, Tests

Projektmanagement - Risiken

Risiko	Lösung
Asset-Verzögerung	Nutzung freier Quellen,
	Notfall: Eigenmodellierung
Performance-Probleme	Low-Poly-Assets,
	Lichtquellen reduzieren,
	regelmäßiges Testen
Unsynchrones Feedback	Exakte Trigger-Logik,
	Debugging
Zeitverzug	Pufferzeiten einplanen,
	Kernfunktionen priorisieren

Tabelle: Projektrisiken und Lösungsansätze

Materialvergleich

Beispiel: Holz vs. Metall

• Holz: rau, knarzend, warm

• Metall: glatt, metallisch, kühl

Weiterführende Ideen

- Cybersickness bei Reizinkongruenz
- Vergleich der Einflüsse einzelner Sinne auf Materialerkennung
- Integration von k\u00fcnstlicher Intelligenz zur adaptiven Feedbacksteuerung
- Multimodales Design für Barrierefreiheit in VR-Anwendungen

Fazit

- Multisensorisches Design steigert Realismus in VR.
- Kombination aus Klang, Haptik und Textur ist entscheidend.
- Modularer Aufbau ermöglicht flexible Weiterentwicklung.