

Analisis Algoritma

Bahasan

A. Konsep Dasar Penjumlahan

- 1. Konsep Penting Penjumlahan
- 2. Rumus Deret Untuk Menghitung Efisiensi

B. Analisa Algoritma

- 1. Analisis Algoritma
- 2. Analisis Efisiensi Algoritma
- 3. Order Of Growth

A. Konsep Dasar Penjumlahan

1.
$$\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2} n(n+1)$$

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Geometrik Series

For real $x \neq 1$, the summation

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

is a *geometric* or *exponential series* and has the value

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1} \,. \tag{A.5}$$

When the summation is infinite and |x| < 1, we have the infinite decreasing geometric series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \,. \tag{A.6}$$

A. Konsep Dasar Penjumlahan

Harmonik Series

For positive integers n, the nth harmonic number is

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$
$$= \sum_{k=1}^{n} \frac{1}{k}$$
$$= \ln n + O(1).$$

Product

We can write the finite product $a_1 a_2 \cdots a_n$ as

$$\prod_{k=1}^{n} a_k$$

If n = 0, the value of the product is defined to be 1. We can convert a formula with a product to a formula with a summation by using the identity

$$\lg\left(\prod_{k=1}^n a_k\right) = \sum_{k=1}^n \lg a_k$$

Rumus Deret Untuk Hitung Efisiensi

Deret Aritmatika

- Suku pertama (a)
- Suku Ke-n (U_n)
- Beda (b)
- Jumlah sampai suku ke-n (S_n)

Contoh:
$$1 + 2 + 3 + 4 + ... + 100$$

 $a = 1$, $b = 1$

$$U_n = a + (n-1)b = 1 + (n-1)$$

$$b = U_n - U_{n-1} = U_2 - U_1 = 2 - 1 = 1$$

$$S_n = \frac{n}{2}(a + U_n) = \frac{n}{2}(1 + 1 + (n-1)) = \frac{n}{2}(2 + (n-1)) = \frac{n}{2}(n+1)$$

$$U_n = a + (n-1)b$$

$$b = U_n - U_{n-1}$$

$$S_n = \frac{n}{2} (a + U_n)$$

Rumus Deret Untuk Hitung Efisiensi

Deret Geometri

- Suku pertama (a)
- Suku Ke-n (U_n)
- Rasio (r)
- Jumlah sampai suku ke-n (S_n)

Contoh:
$$1 + 2 + 4 + 8 + ...$$
 $a = 1, r = 2$

$$U_n = 2^{n-1}$$

$$S_n = \frac{(2^n - 1)}{2 - 1} = 2^n - 1$$

$$U_{n} = ar^{n-1}$$

$$r = \frac{U_{n}}{U_{n-1}}, r \neq 1$$

$$S_{n} = \begin{cases} \frac{a(r^{n} - 1)}{r - 1} & r > 1 \\ \frac{a(1 - r^{n})}{1 - r} & r < 1 \end{cases}$$

Rumus Deret Untuk Hitung Efisiensi

Deret Persegi

Contoh:
$$1^2 + 2^2 + 3^2 + 4^2 + ... + 100^2$$

$$U_n = n^2$$

$$S_n = \frac{n(n+1)(2n+1)}{6}$$

Deret Kubik

Contoh:
$$1^3 + 2^3 + 3^3 + 4^3 + ... + 100^3$$

$$U_n = n^3$$

$$S_n = \frac{n^2(n+1)^2}{4}$$

Latihan 1

1. Hitunglah hasil penjumlahan operasi berikut :

a.
$$1+3+5+7+...+999$$

b.
$$2 + 4 + 6 + 8 + ... + 1024$$

$$\sum_{i=3}^{n+1} 1; \sum_{i=3}^{n+1} i; \sum_{i=0}^{n-1} i(i+1); \sum_{j=1}^{n} 3^{j+1}; \sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

2. Hitung order of growth dari sigma penjumlahan berikut:

$$\sum_{i=0}^{n-1} (i^2 + 1)^2; \quad \sum_{i=2}^{n-1} \lg i^2; \quad \sum_{i=1}^{n} (i+1)2^{i-1};$$

B. Analisa Algoritma

- 1. Analisis Algoritma
- 2. Analisis Efisiensi Algoritma Non-Rekursif
- 3. Order Of Growth

1. Analisis Algoritma

- Analisis Algoritma bertujuan memeriksa efisiensi algoritma dari dua segi : waktu eksekusi dan penggunaan memori
- Efisiensi waktu seberapa cepat algoritma dieksekusi
- Efisiensi memori berapa banyak memori yang dibutuhkan untuk menjalankan algoritma

- Best Case, Worst Case dan Average Case
 - Best case :?
 - Worst case :?
 - Average case :?
 - Apakah setiap algoritma selalu ada ketiga kasus tersebut ?
 - Kapan suatu algoritma mengandung ketiga kasus tersebut ?

Untuk apa kita mencari T(n)?

Apakah untuk mengestimasi running time algoritma?

- ➤ Tujuan utama mencari T(n) bukan mencari waktu eksak yang dibutuhkan untuk mengeksekusi sebuah algoritma
- ➤ Tetapi untuk mengetahui tingkat pertumbuhan waktu eksekusi algoritma jika ukuran input bertambah (order of growth)

Contoh 1

Algoritma	Cost	Time
Sum = 0	C1	1
For (j=1; j <= n; j++) {	C2	n+1
sum = sum + 1;	С3	n
For (j=1; j < <u>j</u> ; <u>j++</u>) {	C4	(n+ <u>1)n</u>
Sum = sum + j;	C5	n*n
}		
}		

```
Total cost = \sum Cost * Time

= C_1 + C_2n + C_2 + C_3n + C_4n^2 + C_4n + C_5n^2

= C_1 + C_2 + C_2n + C_3n + C_4n + C_4n^2 + C_5n^2

= A + Bn + Dn^2
```

Algoritma	Cost	Time
j =1	C1	1
Sum = 0	C2	1
while (<u>i</u> <= n) {	С3	n+1
j = 1;	C4	n
<u>while(j</u> <= n) {	C5	(n+ <u>1)n</u>
sum = sum + 1;	C6	n*n
j = j + 1;	C7	n*n
}		
į = <u>i</u> + 1;	C8	n
}		

Contoh 2

```
For (i=1; i <= n*n; i++) {
    For (j=0; j < i; j++) {
        Proses()
     }
}</pre>
```

$$\sum_{i=1}^{n^2} \sum_{i=0}^{i} 1 = \sum_{i=1}^{n^2} i = \frac{n^2(n^2+1)}{2}$$

• Catatan:

•
$$\sum_{i=0}^{i-1} 1 = 1 - 1 + 1 = 0 = 1$$

$$\bullet \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Contoh 3

```
for (i = 0; i \le n-1; i++) {
   for (j = i+1; j \le n-1; j ++) \{
          //Stm
```

• Catatan:

$$\sum_{i=0}^{n} i = \sum_{1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=m}^{n} 1 = n - m + 1$$

$$\sum_{i=m}^{n} 1 = n - m + 1$$

Kompleksitas Waktu

$$\sum_{i=9}^{n-1} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-1} ((n-1) - (i+1) + 1 =$$

$$\sum_{i=0}^{n-1} ((n-1-i) = \sum_{i=0}^{n-1} n - \sum_{i=0}^{n-1} 1 - \sum_{i=0}^{n-1} i =$$

$$n^2 - n - \frac{(n+1)n}{2} = \frac{n^2 - n}{2}$$

Latihan 2

Tentukan Kompleksitas algoritma berikut:

1.

```
tot = 0
for (i=1; i <= n*n; i++) {
  for (j=1; j <= i; j++) {
    for (k=1; i <= 4; k++) {
      tot = tot + 1
    }
  }
}</pre>
```

2.

```
c \leftarrow 0
for j \leftarrow 3 \underline{to n} do
for j \leftarrow 0 to j
C \leftarrow C + 1
```



```
2)
1)
a = 1;
                                        for (i=n; i 2 1; i = i/2)
while (a < b)
                                            Stmt;
       stm;
      a = a * 2;
```


3. Orders of Growth

 Order of Growth adalah Tingkat pertumbahan waktu eksekusi algoritma jika ukuran input bertambah

$T_1(n) = n^2$	T ₁ (10) = 100	T ₁ (100) = 10,000
$T_2(n) = n^3$	T ₂ (10) = 1,000	T ₂ (100) = 1,000,000
T ₃ (n) = n	T ₃ (10) = 10	T ₃ (100) = 100
$T_4(n) = \log_2 n$	T ₄ (10) = 3.3	T ₄ (100) = 6.6

• Contoh 4

```
times
                           cost
INSERTION-SORT (A)
1 for j = 2 to A. length
                 c_2 \qquad n-1
2 key = A[j]
3 // Insert A[j] into the sorted
        sequence A[1...j-1]. 0 n-1
               c_4 \qquad n-1
4 	 i = j - 1
5 while i > 0 and A[i] > key c_5 \sum_{i=2}^{n} t_i
6 A[i+1] = A[i] c_6 \sum_{i=2}^{n} (t_i - 1)
7  i = i - 1  c_7 \sum_{j=2}^{n} (t_j - 1)
  A[i+1] = key
                         c_8 \qquad n-1
```

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

The Best Case

- the best case occurs if the array is already sorted
- For each j = 2,3, ...,n, we then find that $A[i] \le key$ in line 5 when i has its initial value of j 1.

• Thus
$$t_j = 1$$
 for $j = 2, 3, ..., n$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) = C_1 n + C_2(n-1) + C_4(n-1) + C_5(n-1) + C_8(n-1)$$

$$= (C_1 + C_2 + C_4 + C_5 + C_8)n + (C_2 + C_4 + C_5 + C_8)$$

$$= An + B$$

```
INSERTION-SORT (A)
   for j = 2 to A. length
     key = A[j]
     // Insert A[j] into the sorted
          sequence A[1...j-1].
     i = j - 1
     while i > 0 and A[i] > key
         A[i+1] = A[i]
6
          i = i - 1
     A[i+1] = key
```


The worst case

- If the array is in reverse sorted order
- We must compare each element A[j] with each element in the entire sorted subarray A[1...j-1], so t_i = j for j = 2,3,...,n.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

•
$$T(n) = An^2 + Bn + C$$

```
INSERTION-SORT (A)
   for j = 2 to A. length
2 	 key = A[j]
3 // Insert A[j] into the sorted
         sequence A[1...j-1].
    i = j - 1
     while i > 0 and A[i] > key
         A[i+1] = A[i]
         i = i - 1
     A[i+1] = key
```


3. Orders of Growth

Membandingkan OOG

Algoritma A dan B merupakan algoritma untuk menyelesaikan permasalahan yang sama.

Untuk *input* berukuran n, waktu eksekusi algoritma A adalah $T_A(n)$ sedangkan waktu eksekusi algoritma B adalah $T_B(n)$.

Orders of growth mana yang paling besar?

$$\lim_{n\to\sim}\frac{T_A(n)}{T_B(n)}$$

- 0 maka OoG T_A(n) < OoG T_B(n)
- C maka OoG $T_A(n) = OoG T_B(n)$
- ~ maka OoG T_A(n) > OoG T_B(n)

3. Orders of Growth

Contoh 1.

Terdapat dua algoritma yang menyelesaikan permasalahan yang sama. Untuk input berukuran n, Algoritma 1 menyelesaikan dalam

$$T_1(n) = 30n^2 + 2n + 5$$
. Algoritma 2 dalam

$$T_2(n) = n^3 + n$$

- Mana yang lebih besar, OoG T₁ atau T₂? Mengapa?
- Untuk n kecil, mana yang anda pilih? Mengapa?
- Untuk n besar, mana yang anda pilih? Mengapa?

Contoh 1

• Membandingkan OoG dari ½n(n-1) dan n².

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

- Hasil limit = $c \rightarrow \frac{1}{2}n(n-1) \in \Theta(n^2)$
- Membandingkan OoG dari log₂n dan √n

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n \to \infty} \frac{\sqrt{n}}{n} = 0$$

• Hasil limit = $0 \rightarrow \log_2 n \in O(\sqrt{n})$

Contoh 2

Membandingkan OoG dari n! dan 2ⁿ.

$$\lim_{n\to\infty} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n\to\infty} \sqrt{2\pi n} \frac{n^n}{2^n e^n} = \lim_{n\to\infty} \sqrt{2\pi n} \left(\frac{n}{2e}\right)^n = \infty$$

• Hasil limit = $\infty \rightarrow n! \in \Omega(2^n)$

$$\frac{n!}{2^n} = \frac{n}{2} \cdot \frac{n-1}{2} \cdot \frac{n-2}{2} \cdot \dots \cdot \frac{3}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} > \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot \frac{1}{2} = \frac{n}{4}$$

Latihan 3

Tentukan kelas orders of growth dari

•
$$T_1(n) = 2n^3 + 4n + 1$$

•
$$T_2(n) = 0.5 n! + n^{10}$$

•
$$T_3(n) = n^3 + n \log n$$

•
$$T_4(n) = 2^n + 4n^3 + logn + 10$$

Konsep Penting Turunan

Contoh-contoh turunan :

$$y = x^{n} \rightarrow y' = n.x^{n-1}$$

$$y = a \log x \rightarrow y' = \left(a \log e\right) \frac{1}{x}$$

$$y = a \log x \rightarrow y' = \left(\frac{e \log e}{e \log a}\right) \frac{1}{x}$$

$$= \left(\frac{1}{e \log a}\right) \frac{1}{x} = \frac{1}{\ln(a)x} = \frac{1}{x \ln(a)}$$

$$y = 2^{n} \rightarrow y' = 2^{n}.\ln(2)$$

$$y = \ln(x) \rightarrow y' = \frac{1}{x}$$

$$y = e^{f(x)} \rightarrow y' = e^{f(x)}.f'(x) = e^{x}.1 = e^{x}$$

$$y = u.v \rightarrow y' = u'v + uv'$$

$$y = u/v \rightarrow y' = (u'v - uv')/v^{2}$$

Manipulasi operasi matematika :

•
$$y = n! \rightarrow y = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

•
$$a \log \left(\lim_{\Delta x \to 0} \left(1 + \frac{\Delta x}{x} \right)^{\frac{1}{\Delta x}} \right) = \dots?$$

misal
$$n = \frac{1}{\Delta x} \rightarrow \sim \text{ maka } \Delta x = \frac{1}{n} \rightarrow 0$$

$$= {}^{a}\log\left(\lim_{\Delta x \to 0} \left(1 + \frac{\Delta x}{x}\right)^{\frac{1}{\Delta x}}\right) = {}^{a}\log\left(\lim_{\Delta x \to 0} \left(1 + \frac{x^{-1}}{n}\right)^{n}\right)$$

$$= {}^{a}\log e^{x^{-1}} = {}^{a}\log e^{\frac{1}{x}} = \frac{{}^{e}\log e^{\frac{1}{x}}}{{}^{e}\log a} = \frac{1}{x} \frac{{}^{e}\log e}{{}^{e}\log a} = \frac{1}{x\ln(a)}$$

Thank You !