Active Clustering: Robust and Efficient Hierarchical Clustering

Brian Eriksson¹

Gautam Dasarathy² Aarti Singh³

Robert Nowak²

dasarathy@wisc.edu

1. Department of Computer Science, Boston University 2. Department of Electrical Engineering, UW-Madison 3. Department of Machine Learning, Carnegie Mellon University

1. Introduction

Hierarchical Clustering from pairwise similarities is an important tool in a wide range of problems.

- Gene behavior from microarrays
- Network topology discovery
- Community structure in social networks etc.,

Obtaining similarities might be expensive!

(resource intensive experiments, expert judgments)

While usual hierarchical clustering techniques require $O(N^2)$ pairwise similarities, we propose an algorithm which, under certain assumptions, requires only O(N log N) actively selected similarities. Further, we propose another algorithm which requires only O(N log² N) pairwise similarities even if there is some "noise" in the similarity values.

2. Problem Setup

 $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ is a set of N objects and $S = \{s_{ij}\}$ is the set of $\binom{N}{2}$ pairwise similarities

Any subset \mathcal{C} of \mathcal{X} is called a cluster and a collection of clusters \mathcal{T} is called a hierarchical clustering if every pair of clusters are either disjoint or one is contained in the other. Assume that there is a true hierarchical clustering ${\mathcal T}$ associated with ${\mathcal X}$

w.l.o.g hierarchical clustering \(\bigcup_{\top}\) binary tree

Goal: Recover T using as few pairwise similarities as possible

This requires some notion of consistency. This is our other assumption about the problem.

Tight Clustering Condition

The triple $(\mathcal{X}, \mathcal{T}, S)$ is said to satisfy the Tight Clustering (TC) condition, if for any three objects $x_i, x_j, x_k \in \mathcal{X}$ such that $x_i, x_j \in \mathcal{C}$ and $x_k \notin \mathcal{C}$ for some $\mathcal{C} \in \mathcal{T}$, the following holds

$$s_{ij} > \max\{s_{ik}, s_{jk}\}$$

Before we proceed, does randomly selecting similarities work?

- We show that picking similarities at random does not generally work
- In fact, simple arguments show that $O(N^2/m)$ similarities are required to reconstruct a cluster of size m.

3. Efficient Hierarchical Clustering

This method adaptively selects the most informative pairwise similarities in order to reconstruct the hierarchical clustering T.

It was inspired by an algorithm proposed in [1] for learning graphical models of binary random variables and is based on the following "outlier" test

outlier $(x_i, x_j, x_k) = x_i$ if $s_{jk} > \max\{s_{ik}, s_{ij}\}$, similarly for x_j and x_k

Inserting a new object into" a tree with i leaves

- Pick an internal v node with $\approx i/2$ objects as descendants
- Find two leaves x_k and x_i whose common ancestor is v
- Find $outlier(x_k, x_i, v)$ and discard a portion of the tree
- Proceed till there are only two leaves left and insert using a final outlier test.

Theorem I: If (X,T,S) satisfies the TC condition, then T can be recovered using no more than 3N log_{1.5} N adaptively selected pairwise similarities.

Efficient Hierarchical Clustering: Performance							
Topology	Size (N)	n _{agg}	n _{outlier}	n _{outlier} /n _{agg}			
	128	8,128	876	10.78%			
Balanced	256	32,640	2,206	6.21%			
Binary Tree	512	130,816	5,561	4.25%			
Synthetic Internet	768	294,528	8,490	2.88%			

Fragility

The algorithm is greedy. Therefore it is highly sensitive to any errors in the outlier test. Size of the smallest resolved

n_{agg}: Number of pairwise similarities

similarities required by our method

n_{outlier}: Number of pairwise

required by Hierarchical Agglomerative

4. Robust and Efficient Hierarchical Clustering

Model:

Assume that a subset of the similarities S_c are consistent wrt to the TC condition on T. Further, assume that any given similarity fails to be consistent with probability $q < \frac{1}{2}$.

Strategy: Top-Down Recursive Splitting

To split a cluster C reliably, we roughly do the following

- Pick a "seed" object and pick m "reinforcement" objects.
- For every other object in C, measure how similar it is with respect to the seed object using outlier tests on the reinforcement objects.
- If similar, put in the same cluster as the seed. Else put in the other cluster. Repeat on each resulting cluster till no cluster has more than m objects

Simplified Illustration of Robust Cluster Splitting

Theorem 2: Under certain assumptions on q and η (which controls how unbalanced clusters can be), for any $0<\delta<I$, there exists a constant $k_0(\eta,\delta,q)$ such that our algorithm recovers all clusters in T such that

- The size of the cluster is bigger than $2m = k_0 log(8N/\delta)$
- All clusters that contain this cluster should not be too imbalanced

Further the procedure requires no more than $O(N \log^2 N)$ pairwise similarities

Synthetic Experiments (N=512)

	Agglomerative Clustering		Robust (m=40)		Robust (m=80)		
q	△-Entropy	r _{min}	△-Entropy	r _{min}	△-Entropy	r _{min}	
0.05	0.3666	460.8	1.0178	6.8	1.0178	7.2	
0.15	0.0899	512	1.0161	16	1.0161	15.2	
0.25	0.0133	512	0.09360	384	1.0119	57.6	

Gene Microarray Experiments

	Agglo.	Robust (m=10)		Robust (m=80)	
Dataset [2]	∆-Entropy	∆- Entropy	n _{robust} / n _{agg}	∆- Entropy	n _{robust} / n _{agg}
Gene (N=512)	0.1417	0.1912	27%	0.2035	53%
Gene (N=1024)	0.0761	0.1325	18%	0.1703	36%

 Δ -Entropy quantifies how good the clustering is. Bigger the better. **r**_{min} is the smallest cluster that can be resolved. **Smaller the better.**

5. References

- [1] J. Pearl and M. Tarsi, "Structuring Causal Trees," in Journal of Complexity, vol. 2, 1986, pp. 60–77.
- [2] J. DeRisi, V. Iyer, and P. Brown, "Exploring the metabolic and genetic control of gene expression on a genomic scale," in Science,
- vol. 278, October 1997, pp. 680-686.