

HCC/HCF4067B HCC/HCF4097B

ANALOG MULTIPLEXER/DEMULTIPLEXER

4067B-SINGLE 16-CHANNEL 4097B-DIFFERENTIAL 8-CHANNEL

- LOW ON RESISTANCE: 125Ω (typ.) OVER 15 Vp-p SIGNAL INPUT RANGE FOR Vpp - Vss = 15V
- HIGH OFF RESISTANCE: CHANNEL LEAK-AGE OF ±10pA (typ.) @ V_{DD} - V_{SS} = 10V
- MATCHED SWITCH CHARACTERISTICS: $\Delta R_{ON} = 5\Omega$ (typ.) FOR $V_{DD} V_{SS} = 15V$
- VERY LOW QUIESCENT POWER DISSIPATION UNDER A DIGITAL CONTROL INPUT AND SUPPLY CONDITIONS: 0.2μW (typ.) @ V_{DD} -V_{SS} = 10V
- BINARY ADDRESS DECODING ON CHIP
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD No 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIE CMOS DEVICES"

PIN CONNECTIONS

September 1988 1/16

DESCRIPTION

The HCC4067B, HCC4097B (extended temperature range) and HCF4067B, HCF4097B (intermediate temperature range) are monolithic integrated circuits available in 24-lead dual in line plastic or ceramic package.

The HCC/HCF4067B and HCC/HCF4097B COS/MOS analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance, low OFF leakage current and internal

address decoding. in addition, the ON resistance is relatively constant over the full input-signal range.

The **HCC/HCF4067B** ia a 16-channel multiplexer with four binary control inputs A, B, C, D, and an inhibit input, arranged so that any combination of the inputs selects one switch.

The **HCC/HCF4097** is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

LOGIC DIAGRAM

TRUTH TABLES FOR HCC/HCF4067B

Α	В	С	D	INH	SELECTED CHANNEL
Х	Х	X	Х	1	None
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

TRUTH TABLE FOR HCC/HCF4097B

Α	В	C	INH	SELECTED CHANNEL
Χ	Х	Χ	1	None
0	0	0	0	0X 0Y
1	0	0	0	1X 1Y
0	1	0	0	2X 2Y
1	1	0	0	3X 3Y
0	0	1	0	4X 4Y
1	0	1	0	5X 5Y
0	1	1	0	6X 6Y
1	1	1	0	7X 7Y

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
II	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
T _{op}	for Top = Full Package Temperature Range Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to Vss pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	°C

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Tes	t Con	<u>ditios</u>					Value					
Symbol	Paramete	er	Vıs	VEE	Vss	V _{DD}	TLC	w *		25 °C		Тни	GH *	Unit	
			(V)	(V)	(V)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.		
ΙL	Quiescent					5		5		0.04	5		150		
	Supply	HCC				10		10		0.04	10		300		
	Current	types				15		20		0.04	20		600		
						20		100		0.08	100		3000	<u> —</u> па	
						5		20		0.04	20		150		
		HCF				10		40		0.04	40		300		
		types				15		80		0.04	80		600		
SWITCH						13		_ 00		1 0.04	00		1 000 1		
Ron	On					5		800		470	1050		1300		
IXON	Resistance	HCC	$0 \leq V_{I}$	0	0	10		310		180	400				
	resistance	types	$\leq V_{DD}$		~								580		
						15		200		125	240		320	Ω	
		HCF	$0 \leq V_{I}$	0	0	5		850		470	1050		1200		
		types	$\leq V_{DD}$	"	"	10		330		180	400		520		
	<u> </u>					15		210		125	240		300		
ΔΟΝ	Resistance ΔF					5				10				0	
	(Between any	two		0	0	10				10				Ω	
	channels)					15				5					
OFF(•)	Any	HCC		0	0	18		100		±0.1	100		1000		
Channel	Channel OFF	types		<u> </u>				100			100		1000		
Leakage	All Channel														
Current	OFF	HCC		0	0	18		100		±0.1	100		1000		
	(common	types													
	OUT/IN)	1105												μΑ	
	Any	HCF		0	0	15		300		±0.1	300		1000		
	Channel OFF	types													
	All Channel OFF	HCF													
	(common	types		0	0	15		300		±0.1	300		1000		
	OUT/IN)	types													
С	Capacitance														
	Input									5					
	Output for 406	67			-5	5				55				рF	
	Output for 409									35				•	
	Feedthrough									0.2					
CONTRO															
V _{IL}	Input Low		$= V_{DD}$		=V _{SS}	5		1.5			1.5		1.5		
	Voltage		thru	R _L =	:1KΩ	10		3			3		3	V	
			1ΚΩ	to \		15		4			4		4		
V _{IH}	Input High				2μΑ	5	3.5		3.5			3.5			
	Voltage				I OFF	10	7		7			7			
	-			i char	nels)	15	11		11			11			
In a To	Input	HCC		<u> </u>					- 			- ' '			
I _{IH} I _{IL}	Input Leackage	types	$V_I =$	0/18\	1	18		±0.1		±10 ⁻³	±0.1		±1		
	Current	HCF								_			\vdash	μΑ	
	Janont	types	V _I =	0/15\	1	15		±0.3		±10 ⁻³	±0.3		±1		
Cı	Input Capacita		Any A	ddraec	or					5	7.5				
Ο Ι	input Capacito	11100		it Inpu							'.5			рF	

Determined by minimum feasible leakage measurement for automatic testing
 TLOW = -55 °C for HCC device: -40 °C for HCF device.
 THIGH = +125 °C for HCC device: +85 °C for HCF device.
The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

					Test	Conc	litions	3		Va	lue	
Symbol	Parameter	V c (V)	R _L (KΩ)	f _i (KHz)	V _I (V)	V _{SS}	V _{DD} (V)			Тур.	Max.	Unit
SWITC	Н	, ,	,		, ,		, ,					
t _{pd}	Propagation Delay						5			30	60	
	Time (Signal Input to	= V _{DD}	200		\prod	0	10			15	30	ns
	Output)						15			11	20	
	Frequency Response							V _O at	4067B	14		
	Channel "ON" (Sine Wave Input) at	= V _{DD}	1		5 (•)	0	10	Common OUT/IN	4097B	20		ns
	$20 Log \frac{V_O}{V_I} = -3 dB$							V _O at Any	Channel	60		
	Feedthrough (All							V _O at	4067B	20		
	Channels OFF) at $20 Log \frac{V_O}{V_I} = -40 dB$	= V _{SS}	1		5 (•)	0	10	Common OUT/IN	4097B	12		MHz
	$V_I = 40 \text{ ub}$							V _O at Any	Channel	8		
	Frequency Signal Crosstalk at							Between A and B) Cha		1		
	$20Log \frac{V_{O(B)}}{V_{I(A)}} = -40dB$	$V_{C(A)}=V_{DD}$ $V_{C(B)}=V_{SS}$	1		5 (•)	0	10	Between Sections (A and B)	Measured on common	10		MHz
								4097B only	Measured on Any Channel	18		
t _W	Sine Wave Distortion	5	10	1	2 (•)	0	5			0.3		
	(f _{is} = 1KHz sine	10	10	1	3 (•)	0	10			0.2		%
	wave)	15	10	1	5 (•)	0	15			0.12		
CONTR	OL (address or Inhibit)	ı		1		1	I			ı		
t _{PLH}	Propagation Delay Time: Address or	V _{DD}				0	5			325	650	
t _{PHL}	Inhibit to Signal OUT	0	1			0	10			135	270	ns
	(Channel Turning ON)					0	15			95	190	
t _{PLH}	Propagation Delay					0	5			220	440	
t _{PHL}	Time: Address or	V _{DD}	0.0			0	10			90	180	
	Inhibit to Signal OUT (Channel Turning OFF)	<u>o</u> _	0.3			0	15			65	130	ns
	Address or Inhibit to Signal Crosstalk	v _{DO}	10*			0	10			75		mV peak

^(•) Peak to peak voltage symmetrical about $\frac{V_{DD}-V_{SS}}{2}$

^(*) Both ends of channel

Typical ON Resistance vs Input Signal Voltage (All Types)

Typical ON Resistance vs Input Signal Voltage

(All Types)

TEST CIRCUITS

OFF Channel Leakage Current Any Channel OF

Typical ON Resistance vs Input Signal Voltage (All Types)

Typical ON Resistance vs Input Signal Voltage (All Types)

OFF Channel Leakage Current Any Channel OFF

OFF Channel Leakage Current All Channels OFF

Input Voltage Measure $< 2 \mu A$ an All OFF Channels (e.g. Channel 12)

Quiescent Device Current

Turn-on and Turn-off Propagation Delay Address Select Input to Signal Output (e. g. Channel 0)

Turn-on and Turn-off Propagation Delay-Inhibit Input to Signal Output (e. g. Channel 1)

Channel ON Resistance Measurement Circuit

Propagation Delay Waveform Channel Being Turned ON ($R_L = 10 \text{ K}\Omega$, $C_L = 50 \text{ pF}$)

Propagation Delay Waveform Channel Being Turned OFF ($R_L = 300 \Omega$, $C_L = 50 pF$)

APPLICATIONS INFORMATION

In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the **HCC/HCF4067B** or **HCC/HCF4097B**.

When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also when a channel is turned ON or OFF by an address input, there is a momentary conductive path from the channel to VSS, which will drump some charge from any capacitor connected to the input or output of the channel. The inhibit input turning on a channel will similarly drump some charge to V_{SS} .

The amount of charge dumped is mostly a function of the signal level above V_{SS} .

Typically, ay V_{DD} - V_{SS} = 10V, a 100 pF capacitor connected to the input or output of the channel will

lose 3-4% of its voltage at the moment the channel turns ON or OFF. This loss of voltage is essentially independent of the address or inhibit signal trnasition time, if the transition time is less than 1- 2 μs . When the inhibit signal turns a channel off, there is no change dumping of Vss. Rather, there is a slight rise in the channel voltage level (65 mV typ.) due to the capacitance coupling from inhibit input to channel input or output. Address input also couple some voltage steps onto the channel signal levels.

In certain applications, the external load-resistor current may include both V_{DD} and signal line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 V (calculated from R_{ON} values shown in ELECTRICAL CHARACTERISTICS CHART). No VDD current will flow through R_L if the switch current flows into terminal 1 on the **HCC/HCF4067B**, terminals 1 and 17 on the **HCC/HCF4097B**.

Plastic DIP24 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1		0.63			0.025			
b		0.45			0.018			
b1	0.23		0.31	0.009		0.012		
b2		1.27			0.050			
D			32.2			1.268		
E	15.2		16.68	0.598		0.657		
е		2.54			0.100			
e3		27.94			1.100			
F			14.1			0.555		
I		4.445			0.175			
L		3.3			0.130			

Ceramic DIP24 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			32.3			1.272
В	13.05		13.36	0.514		0.526
С	3.9		5.08	0.154		0.200
D	3			0.118		
Е	0.5		1.78	0.020		0.070
e3		27.94			1.100	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
I	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
M	1.52		2.49	0.060		0.098
N1	4° (min.), 15°	(max.)				
Р	15.4		15.8	0.606		0.622
Q			5.71			0.225

SO24 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1		•	45° ((typ.)	•	
D	15.20		15.60	0.598		0.614
E	10.00		10.65	0.393		0.420
е		1.27			0.05	
e3		13.97			0.55	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

