TEOPBER MATCTATUSTUKA

и тщетные попытки понять что-нибудь из вышеперечисленного

Лектор: Р. С. Пусев Записал :ta_xus

18 января 2017 г.

Оглавление

1	Элемен	тарная теория вероятностей	2				
	§ 1	Аксиоматическое определение вероятности	2				
	$\S2$	Формула полной вероятности	3				
	$\S 3$	Теорема Байеса	3				
	§ 4	Независимые события	4				
	§ 5	Случайные величины и их распределения	4				
	§ 6	Моменты случайных величин	5				
	§ 7	Характеристическая функция	6				
	§ 8	Теорема Муавра-Лапласа	7				
2	Матстатистика						
	§ 9	Случайные векторы	7				
	§ 10	Функция от случайного вектора	8				
	§ 11	Матожидание и дисперсия суммы случайных величин	9				
	§ 12	Матожидание функции случайной величины	11				
	§ 13	Неравенство Шварца	11				
	§ 14	Характеристическая функция суммы случайных величин	11				
	§ 15	Суммирование большого числа случайных величин	12				
	§ 16	Центральная предельная теорема	13				
	§ 17	Обобщённая теорема Муавра-Лапласа	13				
	§ 18	Метод моментов	14				
	§ 19	Метод максимального правдоподобия	15				
	§ 20	Лемма Фишера	17				
	§ 21	Доверительны интервалы нормального распределения	19				
	$\S22$	Проверка гипотез по параметрам нормального распределения	20				
	§ 23	Линейная регрессия	21				
	$\S24$	Теорема Гаусса-Маркова	22				
	$\S25$	Оценка лисперсии погрешностей	22				
	§ 26	Критерий согласия Пирсона	23				
	§ 27	Непараметрические критерии	23				
3	Случайные процессы 2						
	§ 28	Процессы с независимыми приращениями	24				
	§ 29	Стационарные процессы	25				
	$\S30$	Цепи Маркова	25				
	§ 31	Марковские процессы	27				
A	Обозначения						
В	Стандартные распределения						
.П	Литература 28						

Глава 1: Элементарная теория вероятностей

§1 Аксиоматическое определение вероятности

Определение 1 (σ -алгебра). Алгеброй \mathcal{A} подмножеств множества Ω называется такой набор его подмножеств с заданными операциями объединения, пересечения и дополнения множеств, что

- 1. $\Omega \in \mathcal{A}$
- 2. $X \in \mathcal{A} \Rightarrow \overline{X} \in \mathcal{A}$
- 3. $X_1, X_2 \in \mathcal{A} \Rightarrow X_1 \cup X_2$

Сигма-алгеброй подмножеств называется всё тоже самое, только можно объединять счётное число подмножеств.

Определение 2 (Вероятностное пространство). Рассмотрим упорядоченную тройку (Ω, \mathcal{F}, P) , где

- Ω Множество (элементарных исходов). Чисел, например.
- $\mathcal{F}-\sigma$ алгебра подмножеств Ω
- P Собственно, вероятность

Определение 3 (Вероятность). $P \colon \mathcal{F} \to \mathbb{R}$ такая, что

- 1. $\forall A \ F(A) \geqslant 0$
- 2. $\forall \{A_i\}: A_i \cap A_j = \emptyset \ P(\bigcup_i A_i) = \sum_i P(A_i)$
- 3. $P(\Omega) = 1$

Как видно, сильно похоже на площадь. Что впрочем неслучано, вероятность — нормированная мера. Последнее условие как раз и означает нормированность.

Определение 4 (Тривиальные события). \varnothing , Ω .

Утверждение 1. Сейоства вероятности:

- 1. $P(\emptyset) = 0$
- 2. $0 \le P(A) \le 1$
- 3. $P(\overline{A}) = 1 P(A)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

А это очень важное и будет в отдельном утверждении.

Утверждение 2 (Непрерывность меры). Пусть $A_1 \subset \cdots A_n \subset \cdot, \bigcup_i A_i = A$. Тогда $P(A) = \lim_{n \to \infty} P(A_n)$.

. Пусть

$$B_1 = A_1$$

$$B_2 = A_2 \setminus A_1$$

$$\dots$$

Тогда

$$A = \bigcup_{i=1}^{\infty} B_i; \ A_n = \bigcup_{i=1}^{n} B_n$$

Следовательно,

$$P(A) = \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i) = \lim_{n \to \infty} P(A_n)$$

Всё работает, потому что в σ -алгебре можно объединять счётное число множеств.

lack

§ 2 Формула полной вероятности

Определение 1 (Условная вероятность). Пусть $A, B \in \mathcal{F}, P(A) > 0^1$. Тогда

$$P(B \mid A) := \frac{P(B \cap A)}{P(A)}$$

Утверждение 1. Пусть $\{A_i, H\} \subset \mathcal{F}$ и

- 1. $P(A_i) > 0$
- 2. $A_i \cap A_j = \emptyset$
- 3. $\bigcup_i A_i = \Omega$

(полная группа/система событий). Тогда

$$P(H) = \sum_{i} P(A_i) \cdot P(H \mid A_i)$$

§3 Теорема Байеса

Теорема 1. Пусть A_i — полная система событий, $H \in \mathcal{F} \colon P(H) > 0$. Тогда

$$P(A_k \mid H) = \frac{P(A_k) \cdot P(H \mid A_k)}{\sum_i P(A_i) \cdot P(H \mid A_i)}$$

¹ну мы же делим, нажо убедиться что неноль

§ 4 Независимые события

Определение 1. Пусть $A, B \in \mathcal{F}$. Они назывыются независимыми, если

$$P(A \cap B) = P(A) \cdot P(B)$$

Утверждение 1. События A, B независимы $\Leftrightarrow P(A \mid B) = P(A) \lor P(B \mid A) = P(B)$ (в зависимости от того, что определено, вдруг там ноль где-нибудь).

Утверждение 2. Если A, B несовместны, то нетривиальные A, B — зависимы.

Определение 2. Случайные величины $\{X_i\}$ попарно независимы, если

$$\forall i, j \ P(X_i \cap X_j) = P(X_i) \cdot P(X_j)$$

.

Определение 3. Случайные величины $\{X_i\}_{i=1}^n$ независимы по совокупности , если

$$\forall \{i_k \mid i_k, k \in (\mathbb{Z} \cap [1; n])\} \ P\left(\bigcap_{i_k} X_{i_k}\right) = \prod_{i_k} P(X_{i_k})$$

Замечание 1. Определения 1.4.3 и 1.4.3 правда разные. Конечно попарная независимость следует из независимости по совокупности, но обратное неверно.

Пример 1. Тетраэдр Бернштейна: ность выпадения всех 3 цветов — $\frac{1}{4}$, а через попарные — $\frac{1}{8}$

. Здесь вероят-

§ 5 Случайные величины и их распределения

Определение 1 (Случаная величина). Случайной величиной назовём произвольное хорошее отображение $X \colon \Omega \to \mathbb{R}$.

Тут нужно бы сказать про измеримость, это потребуется, чтобы говорить о вероятности попадания в интервал на прямой. Так что

$$X : (X^{-1}(B) = \{\omega \mid X(\omega) \in B\}) \in \mathcal{F},$$

где B — борелевское множество

Определение 2. Пусть $B \subset \mathbb{R}$, B — промежуток, или дополнение в нему (борелевское множество). ¹

$$P(X \in B) = P(\{\omega \mid X(\omega) \in B\})$$

Определение 3. Случайная величина называется дискретной, если

$$\exists (\{a_i\} \sim \mathbb{N}): \left(\sum_i P(X = a_i) = 1\right)$$

то есть

$$P(X \in B) = \sum_{\{i | a_i \in B\}} p_i, \ p_i = P(X = a_i)$$

 $^{^{1}}$ тут вроде концы могут входить, так что точка — тоже борелевское множество.

Определение 4. Случайная величина называется непрерывной, если

$$\exists (f_X \colon B \to \mathbb{R}) \colon \left(P(X \in B) = \int_B f_X(x) \, \mathrm{d}x \right)$$

Определение 5 (Распределение случайной величины). $F(B) = P(X \in B)$

Пример 1 (К непрерывному распределению). Пусть $X(\omega) = \omega, B = (0,1),$ $\Omega = (-1;1).$ Выберем $f_X \equiv \frac{1}{2}.$

$$F(B) = P(X \in B) = P(\{\omega \mid \omega \in (0,1)\}) = P((0,1)) = \frac{1-0}{1+1} = \frac{1}{2}$$
$$F(B) = \int_{(0,1)} \frac{1}{2} dx = \frac{1-0}{2} = \frac{1}{2}$$

Это всё верно, потому что на множестве интервалов вероятность — нормированная длина интервала.

Определение 6 (Функция распределения).

$$F_X : \mathbb{R} \to [0, 1] : F_X(x) = P(X < x) = P(\{\omega \mid X(\omega) < x\})$$

Утверждение 1. Про F(x) верно следущее:

- 1. $F \uparrow \mathbb{R}$
- 2. $\lim_{x \to -\infty} F(x) = 0$
- 3. $\lim_{x \to +\infty} F(x) = 1$
- 4. $\lim_{x \to x_0 0} F(x) = F(x_0)$

Утверждение 2. Верно и обратное: если существует функция с указанными свойствами, под неё найдётся случайная величина.

Замечание. Если рассматривать обобщённые функции, то любое распределение запишется как

$$\int_{-\infty}^{x} f_X(u) \, \mathrm{d}u$$

§ 6 Моменты случайных величин

Определение 1. Пусть X — случайная величина,

$$\int_{-\infty}^{\infty} |x| f_X(x) \, \mathrm{d}x < \infty$$

Тогда

$$\langle x \rangle \equiv \bar{x} \equiv M X = \int_{-\infty}^{\infty} x f_X(x) dx$$

Утверждение 1. Свойства матожидания:

1. $M < \infty$

2.
$$M(aX + bY) = a M X + b M Y$$

3.
$$P(X \ge 0) = 1 \Rightarrow MX \ge 0$$

4.
$$\begin{cases} P(X \ge 0) = 1 \\ MX = 0 \end{cases} \Rightarrow P(X = 0) = 1$$

5. если X, Y — независимы, то $M(XY) = MX \cdot MY$

Определение 2. Момент k-ого порядка относительно начала a:

$$\lambda_{k,a} = \int_{-\infty}^{\infty} (x - a)^k f(x) \, \mathrm{d}x$$

(если есть абсолютная сходимость)

Определение 3. Начальный момент: $\nu_k = \lambda_{k,0}$

Определение 4. Центральный момент: $\mu_k = \lambda_{k,\bar{x}}$

Утверждение 2.
$$\nu_k = \sum_{i=0}^k C_k^i a^i \, \lambda_{k-i,a}$$

Определение 5 (Дисперсия). $DX = M(X - MX)^2$, $\sigma = \sqrt{DX}$ — среднеквадратичное отклонение.

Утверждение 3.

$$D(aX+bY)=a^2\,D\,X+b^2\,D\,Y$$
 если X,Y — независимы, то $D(XY)=D\,X\cdot D\,Y$ $D(X+C)=D\,X$

§ 7 Характеристическая функция

Определение 1 (Характеристическая функция). $\Phi(t) = \mathrm{M}\,e^{itx}$

Утверждение 1. Свойства характеристической функции:

1. Всегда существует $u \mid \Phi(t) \mid \leqslant 1$.

2.
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \Phi(t) dt$$

3.
$$\Phi_{a+Xb}(t) = e^{ita}\Phi_X(tb)$$

4. Если
$$X,Y$$
 — независимы, то $\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t)$

5. Ecnu
$$M|X|^n < \infty$$
, mo $\Phi^{(k)}(0) = i^k M X^k$

Определение 2 (Сходимость по распределению). $X_n \xrightarrow{d} X \Leftrightarrow F_n(x) \to F(x)$

Теорема 2 (О непрерывном соответствии). $X_n \stackrel{d}{\to} X \Leftrightarrow \Phi_{X_n}(t) \underset{t}{\Longrightarrow} \Phi_X(t)$. Здесь на самом деле всё сложно. В разных книжках пишут равномерную сходимость на разных интервалах. У нас вроде было на всей вещественной прямой, но тогда это слишком сильное утверждение. К слову так же в [1] и [2]. А вот в [3] требуют только сходимости в каждом конечном интервале. Можно взять экспоненту, и понять, что эти условия разные.

Глава 2: Матстатистика

§ 9 Случайные векторы

Определение 1 (Случайный вектор). Случайным вектором назовём произвольное хорошее отображение $X: \Omega \to \mathbb{R}^n$. См. примечание про измеримость в § 5. Борелевские множества можно рассматривать и в \mathbb{R}^n , как наименьшую сигма-алгебру, содержащую все полуоткрытые параллелепипеды.

Так же можно считать, что случайный вектор — набор случайных величин.

Определение 2 (Функция распределения).

$$F_X: \mathbb{R}^n \to [0;1]: F_X(x) = P(X^1 < x^1, \dots, X^n < x^n)$$

То есть вероятность попадания в параллелепипед, уходящий в бесконечность.

Замечание 1. Тут как раз используется, что борелевские множества «прямоугольные».

Утверждение 1. Про F(x) верно следущее:

- 1. F не убывает по каждому аргументу.
- $2. \lim_{x_i \to -\infty} F(x) = 0$
- 3. $\lim_{x \to +\infty} F(x) = 1$
- 4. $\lim_{\substack{x \to x_0 0 \ u3 \ \text{непрерывности меры.}}} F(x) = F(x_0)$ (по совокупности переменных). Это просто следует

тоже важно, так что отдельно

Утверждение 2. Пусть $a^1 < b^1, \ldots, a^n < b^n$, тогда работает формула включений и исключений

$$F(b^1, \dots, b^n) - \sum_i F(b^1, \dots, a^i, \dots, b^n) + \dots + F(a^1, \dots, a^n) = P(x \in [a^1, b^1) \times [a^n, b^n))$$

По сути следствие формулки про вероятность объединения.

Определение 3. Векторная случайная величина называется дискретной, если

$$\exists (\{a_i \mid a_i \in \mathbb{R}^n\} \sim \mathbb{N}) \colon \left(\sum_i P(X = a_i) = 1\right)$$

то есть

$$P(X \in B) = \sum_{\{i | a_i \in B\}} p_i, \ p_i = P(X = a_i)$$

Определение 4. Векторная случайная величина называется непрерывной, если

$$\exists (f_X \colon B \to \mathbb{R}) \colon \left(P(X \in B) = \int_B f_X(x^1, \dots, x^n) \, \mathrm{d}x^1 \cdots \, \mathrm{d}x^n \right)$$

Замечание 1. Для функций распределения:

$$F(x^1,\ldots,x^n) = \int_{-\infty}^{x^n} \cdots \int_{-\infty}^{x^1} f_X(x^1,\ldots,x^n) dx^1 \cdots dx^n$$

Утверждение 3. Пусть X,Y — независимы. Тогда $p_{X+Y}(x,y)=p_X(x)\cdot p_Y(y)$

▼

По определению функции распределения

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(x,y) dxdy$$

Из независимости X, Y

$$F_{X,Y}(x,y) = P(X < x, Y < y) = P(\omega \mid X(\omega) \in (-\infty; x] \cap \omega \mid Y(\omega) \in (-\infty; y]$$

$$= P(\omega \mid X(\omega) \in (-\infty; x]) \cdot P(\omega \mid Y(\omega) \in (-\infty; y])$$

$$= P(X < x) \cdot P(Y < y) = F_X(x) \cdot F_Y(y)$$

А тогда из независимости подынтегральных функций

$$F_X(x) \cdot F_Y(y) = \int_{-\infty}^x p_X(x) \, \mathrm{d}x \cdot \int_{-\infty}^y p_Y(y) \, \mathrm{d}y = \int_{-\infty}^x \int_{-\infty}^y p_X(x) \cdot p_Y(y) \, \mathrm{d}x \mathrm{d}y$$

А дальше можно заметить, что нам неважно по какому множеству интегрировать.

$$\int_{B} (p(x,y) - p_X(x) \cdot p_Y(y)) \, dx dy = 0$$

Здесь правда всё ломается на отсутствии непрерывности у p. Но если она есть, то дальше стандартное рассуждение в окрестности точки где не 0.

lack

§ 10 Функция от случайного вектора

Определение 1 (Функция от случайного вектора). $g: \mathbb{R}^n \to \mathbb{R}^m$.

Здесь нужно снова говорить про измеримость g — прообраз борелевского множества должен быть борелевским множеством. Иначе g(X) может не получиться случайной величиной. Но всякие мерзкие отображения всё равно никому не нужны :.

Утверждение 1. Пусть $X - \partial u c \kappa p e m h a s c лучайна в величина, <math>f - o \delta p a m u m a$, Y = g(X), $b_j = f(a_j)$. Тогда $P(Y^i = b^i_j) = P(X^i = a^i_j)$.

 $P(Y^{i} = b_{i}^{i}) = P(f(X^{i}) = f(a_{i}^{i})) = P(\omega \mid f(X^{i}(\omega)) = f(a_{i}^{i}))$

Поскольку f — обратима, она биективна. Значит $f(X) = f(a_j) \Leftrightarrow X = a_j$. Собственно, всё.

▲

Утверждение 2. Пусть X — непрерывная случайная величина, f — обратима, $Y = g(X), f^{-1} = g$. Тогда $p_y(y) = p_X(g(y)) \left| \frac{\mathrm{d}g}{\mathrm{d}y} \right|$.

▼

Пусть D = f(B). Тогда $P(Y \in D) = P(X \in B)$ опять-таки в силу биективности f. Ну, ничего нового туда попасть не может и у всего есть прообраз. Так что (здесь будем рисовать один значок интеграла и дифференциала из экономии размера пдф-ки, хотя в этом замечании данных может и больше)

$$\int_{D} p_{Y}(y) dy = \int_{B} p_{X}(x) dx = \int_{D} p_{X}(g(y)) \left| \frac{dg}{dy} \right|$$

Якобиан тут под модулем, так как множество неориентированное. Я верю, что нам ещё про это расскажут на матане.

▲

§11 Матожидание и дисперсия суммы случайных величин

Утверждение 1. Пусть $X,Y,n\in (A\sim \mathbb{N})$ — две дискретные независимые случайные величины. Тогда

$$P(X+Y=n) = \sum_{k \in A} P(X=n-k) \cdot P(Y=k)$$

v

Из формулы полной вероятности $(Y = k, k \in A$ правда полная группа)

$$P(X + Y = n) = \sum_{k \in A} P(X + Y = n \mid Y = k) \cdot P(Y = k) = \sum_{k \in A} P(X = n - k \mid Y = k) \cdot P(Y = k)$$

А вот тут уже поможет независимость X, Y.

$$\cdots = P(X = n - k) \cdot P(Y = k)$$

•

Утверждение 2. Пусть $X_1, X_2, n \in \mathbb{R}$ — две непрерывные независимые случайные величины. Тогда

$$p_{X_1+X_2}(y) = \int_{\mathbb{R}} p_1(y-t)p_2(t) dt$$

Пусть $Y = X_1 + X_2$. Тут видно, что нет биекции, придется руками что-то делать.

$$F_Y(y) = \iint_{x_1 + x_2 < y} p(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{y - x_1} p(x_1, x_2) dx_2 = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{y} p(x_1, u - x_1) du$$

Переменные независимы, так что можно поменять местами интегралы (ещё же по области интегрируем, неважно как)¹ А тогда, убирая внешний интеграл из определения функции распределения, получаем

$$p_Y(y) = \int_{-\infty}^{\infty} p(t, y - t) dt$$

Поскольку X_1, X_2 независимы, то $p(t,y-t) = p_1(t) \cdot p_2(y-t)$. Нумерация никого не интересует, так что

$$p_Y(y) = \int_{-\infty}^{\infty} p_1(y-t) \cdot p_2(t) dt$$

Теперь можно перейти и к содержанию билета

Утверждение 3. $M(\sum_i X_i) = \sum_i M X_i$. Да и вообще оно линейно.

Пусть f(X,Y) = X + Y

$$M(X+Y) = \int_{-\infty}^{+\infty} f(x,y)p(x,y) \, dxdy = \int_{-\infty}^{+\infty} xp(x,y) \, dxdy + \int_{-\infty}^{+\infty} yp(x,y) \, dxdy$$
$$= \int_{-\infty}^{+\infty} x \left(\int_{-\infty}^{+\infty} p(x,y) \, dy \right) \, dx + \int_{-\infty}^{+\infty} y \left(\int_{-\infty}^{+\infty} p(x,y) \, dx \right) \, dy$$
$$= MX + MY$$

Покажем, что $\int_{-\infty}^{+\infty} p(x,y) \, \mathrm{d}y = p_X(x)$

$$\int_{-\infty}^{x} \left(\int_{-\infty}^{+\infty} p(x, y) \, dx \right) dy = F(x, +\infty) = P(X < x, Y < +\infty)$$

$$= P(\omega \mid X(\omega) \in (-\infty, x], Y \in \mathbb{R} \cup \{+\infty\})$$

$$= P(X < x) = F_X(x) = \int_{-\infty}^{x} p_X(x) \, dx$$

Опять-таки интервал можно сжать как угодно, правда снова проблемы с непрерывностью.

Часть про константу слишком очевидна, не будем её доказывать.

 $^{^{1}}$ слишком много раз пользовались на физике, так что оставим на 4 семестр

Утверждение 4 (Дисперсия суммы). $D(\sum_i X_i) = \sum_i DX_i$

▼

Сначала заметим, что D $X = M(X - MX)^2$, M(X - MX) = MX - MX = 0 D $(X + Y) = M(X + Y - M(X + Y))^2 = M((X - MX) + (Y - MY))^2$ = $M(X - MX)^2 + M(Y - MY)^2 + 2M(X - MX)M(Y - MY)$ = D X + DY

▲

Утверждение 5. Если X, Y — независимы, то MXY = MXMY

§ 12 Матожидание функции случайной величины

Определение 1 ($\stackrel{*}{\sim}$). Пусть f(X) — функция от случаной величины. Тогда $\operatorname{M} f(X) = \int\limits_{-\infty}^{+\infty} f(x) p(x) \, \mathrm{d}x$. В случае чего он многомерный, просто прикидывается. Существует, если есть абсолютная сходимость.

Замечание. я ещё подумаю, может это всё же утверждение.

Утверждение 1. Матожидание функции линейно

Утверждение 2. Если X, Y — независимы, то M $f_1(X_1)f_2(X_2) = M$ $f_1(X_1)$ M $f_2(X_2)$

§ 13 Неравенство Шварца

Утверждение 1. $(M XY)^2 \leq M X^2 M Y^2$

▼

 $M(X+tY)^2=t^2\,M\,Y^2+2t\,M\,XY+M\,X^2\geqslant 0$ из свойств матожидания. Ну там и подынтегральная функция положительна. Тогда квадратное уравнение в правой части может иметть не более одного корня.

$$(2 \operatorname{M} XY)^2 - 4 \operatorname{M} X^2 \operatorname{M} Y^2 \leqslant 0 \Leftrightarrow (\operatorname{M} XY)^2 \leqslant \operatorname{M} X^2 \operatorname{M} Y^2$$

A

§ 14 Характеристическая функция суммы случайных величин

Утверждение 1. Пусть X, Y — независимые случайные величины. Тогда

$$\Phi_{X+Y}(t) = \Phi_X(t) \cdot \Phi_Y(t)$$

▼

Из 2.14.1

$$\Phi_{X+Y}(t) = M e^{itX} e^{itY} = M e^{itX} \cdot M e^{itY} = \Phi_X(t) \cdot \Phi_Y(t)$$

▲

Следствие 1. Если все величины одинаково распределены, то $\Phi_{X_1+\dots+X_n}(t) = (\Phi(t))^n$,

$$p_{X_1 + \dots + X_n} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\Phi(t))^n dt$$

§ 15 Суммирование большого числа случайных величин

:set aflame**%**≈

Теорема 1 (ЦПТ Линдберга-Леви-Агекяна $\stackrel{\sim}{\sim}$). Пусть X_1, \ldots, X_n — независимые одинаково распределённые случайные величины. Пусть к тому же $S_n = X_1, \ldots, X_n, \ 0 < D \, X_k < \infty$. Пусть $M \, X_k = a, D \, X_k = \sigma$. Тогда при $n \to \infty$ $Z_n \sim N(0,1)$, в вариации из Агекяна $S_n \sim N(na, n\sigma^2)$

 \square Пусть М $X_k = a, DX_k = \sigma^2$. Рассмотрим характеристическую функцию $\Phi(t) = M e^{itX_k}$. Введём замену (которая z-преобразование.):

$$z_n = \frac{S_n - an}{\sigma\sqrt{n}}$$

Давайте ещё немного схитрим и положим $X_k \leftarrow X_k - a$. А то потом будет много возни с бедным a. При этом $z_n = \frac{S_n}{\sigma \sqrt{n}}$ Тогда

$$\Phi_{z_n}(t) = M\left(e^{\frac{itS_n}{\sigma\sqrt{n}}}\right) = \left(\Phi\left(\frac{t}{\sigma\sqrt{n}}\right)\right)^n$$

А характеристическая функция дифференцируема дважды из существования дисперсии.

$$\begin{split} \Phi'(0) &= 0 \\ \Phi''(0) &= -\sigma^2 \\ \Phi\left(\frac{t}{\sigma\sqrt{n}}\right) &= \Phi(0) + \Phi'(0)\frac{t}{\sigma\sqrt{n}} + \Phi''(0)\frac{t^2}{2\sigma^2n} + o\left(\frac{1}{n}\right) = 1 - \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right) \end{split}$$

A при $n \to \infty$

$$\Phi\left(\frac{t}{\sigma\sqrt{n}}\right)^n = \left(1 - \frac{1}{2}\frac{t^2}{n} + o\left(\frac{1}{n}\right)\right)^n \Rightarrow e^{-t^2/2}$$

Здесь сходимость есть на любом конечном интервале, но вот про всю прямую этого уже не скажешь. Так что снова поднимается вопрос какой теоремой о непрерывном соответствии пользоваться. Но если ей воспользоваться (тут потихому применили обратное преобразование Фурье), то

$$p_{z_n} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\frac{-s^2 + s^2 - 2its - t^2}{2} = \frac{e^{-s^2/2}}{\sqrt{2}\pi} \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{t + is}{\sqrt{2}}\right)^2\right) d\eta = \frac{e^{-s^2/2}}{\sqrt{2\pi}}$$
$$F_{Z_n}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-s^2/2} ds$$

Дальше — вариация из Агекяна. Используя утверждение 2.10.2 про замену переменной как раз получаем нормальное распределение. Только тут нужно поменять в процессе σ

$$Z_n = \frac{S_n}{\sigma\sqrt{n}}$$

$$F_{S_n}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma\sqrt{n}} e^{-\frac{u^2}{2\sigma^2 n}} du$$

Вернёмся обратно к ненулевому a

$$S_n \leftarrow S_n - na$$

$$F_{S_n} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma \sqrt{n}} \int_{-\infty}^x e^{-\frac{(u - na)^2}{2\sigma^2 n}} du$$

$$S_n \sim N(na, n\sigma^2)(n \to \infty)$$

§ 16 Центральная предельная теорема

Теорема 1 (ЦПТ Ляпунова). Пусть $\{X_k\}$ — независимые случаные величины (тут нет одинаковости расределений!). Введём гору обозначений:

$$S_n = \sum_i x_i$$

$$a_k = M X_k \qquad \sigma_k^2 = D x_k \qquad \gamma_k = M |X_k - a_k|^3$$

$$A_n = \sum_{k=1}^n a_k \qquad B_n^2 = \sum_{k=1}^n \sigma_k^2 \qquad C_n = \sum_{k=1}^n \gamma_k$$

Тогда

$$\frac{C_N}{B_n^3} \xrightarrow[n \to \infty]{} 0 \Rightarrow \frac{S_n - A_n}{B_n} \xrightarrow[n \to \infty]{} \mathcal{N}(0, 1)$$

Замечание. Тут какая-то жесть. Она мало где формулируется и нигде не доказывается. Что-то есть тут:[3], а здесь [1] так другую теорему обозвали :set aflame

§ 17 Обобщённая теорема Муавра-Лапласа

Определение 1. Пусть $X_1,\dots,X_n \sim \mathcal{N}(0,1)$ и независимы. Тогда говорят, что случайная величина $\chi^2_n = \sum_{k=1}^n X_k^2$ имеет распределение χ^2 с n степенями свободы.

Утверждение 1.
$$p_{\chi_b}(z) = \frac{1}{2^{n/2} \cdot \Gamma(\frac{n}{2})} z^{n/2-1} e^{-z/2}$$

Характеристическая функция χ может быть найдена из 1 Найдём сначала характеристическую функцию X_k^2 . Для этого было бы недурно найти плотность соответвующего распределения

$$P(y < X^{2} < y + dy) = P(\sqrt{y} < X < \sqrt{y + dy}) + P(-\sqrt{y} > X > -\sqrt{y + dy})$$

$$= \frac{2}{\sqrt{2\pi}} \int_{\sqrt{y}}^{\sqrt{y + dy}} e^{-u^{2}/2} du = \sqrt{\frac{2}{\pi}} \frac{e^{-y/2}}{2\sqrt{y}}$$

А теперь можно и фурье-образ найти

$$\int_{-\infty}^{+\infty} \frac{e^{-y/2}}{2\sqrt{y}} dy = \int_{0}^{+\infty} \frac{e^{-y/2}}{2\sqrt{y}} dy = \int_{0}^{+\infty} \exp\left(\frac{-\eta^2(1-2it)}{2}\right) d\eta = (1-2it)^{-1/2} \sqrt{\frac{\pi}{2}}$$

Вспоминая про коэффициент получим $\Phi_k(t) = (1-2it)^{-1/2}$.

$$\Phi_{\mathcal{X}}(t) = (\Phi_k(t))^n = (1 - 2it)^{-n/2}$$

Тогда

$$p_{\chi}(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (1 - 2it)^{-n/2} e^{-itz} dt$$

Дальше немного жесть

$$\int_{-\infty}^{+\infty} (1 - 2it)^{-n/2} e^{-itz} dt = \int_{-\infty}^{+\infty} e^{-l} \left(1 - 2\frac{l}{z} \right)^{-n/2} \frac{1}{iz} dl = 2 \cdot \frac{z^{n/2 - 1} e^{-z/2}}{2^{n/2}} \int_{0}^{\infty} s^{-n/2} e^{-s} ds$$
$$= 2\frac{z^{n/2 - 1} e^{-z/2}}{2^{n/2}} \cdot \Gamma\left(1 - \frac{n}{2} \right)$$

Из правила отражения для Γ -функции $\Gamma(1-n/2)\,\Gamma(n/2)=\frac{\pi}{\sin\frac{\pi n}{2}}$. А это почти что надо. \maltese там надо интеграл поаккуратнее брать.

Теорема 2 (Обобщённая теорема Муавра-Лапласа). Пусть X_1, \ldots, X_n — независимые случайные величины с дискретным распределением:

$$X_k : \frac{1 \mid \cdots \mid r}{p_1 \mid \cdots \mid p_r}$$

Рассмотрим $\nu_k = \#\{1 \leqslant i \leqslant n \mid X_i = k\}, \ 1 \leqslant k \leqslant r.$ Тогда

$$\sum_{k=1}^{r} \left(\frac{\nu_k - np_k}{\sqrt{np_k}} \right) \xrightarrow{d} \chi_{r-1}^2$$

§ 18 Метод моментов

Здесь походу нужно все статистические определения в одном параграфе :set aflame

Вводные слова В отличие от теорвера, матстатистике неизвестно распределение случайной величины. И нужно придумать, как его восстановить по конкретной реализации. Пусть X — та самая величина, про распределение которой очень хочется узнать

Главная героиня матстатистики — выборка

Определение 1. Выборка объёма n-

- 1. n независимых случайных величин, распределённых так же, как и X
- 2. набор чисел $X_i(\omega), \, \omega \in \Omega$ какой-то исход. Ещё называется реализацией выборки.

Собственно, первое определение — это до испытания, а второе — уже после.

Основные задачи Пусть $X_1,\dots,X_n\sim F(x,\theta),\,\theta\in\Theta\subset\mathbb{R}^d$ — множество параметров.

- 1. Оценивание параметров:
 - Точечные оценки: $\hat{\theta} = T(X_1, \dots, X_n)$
 - Доверительные интервалы: $P_{\alpha}(T_1 < \theta < T_2) = \alpha$
- 2. Проверка гипотез

Пусть $\Theta = \Theta_0 \cup \Theta_1$. А мы хотим узнать чему принадлежит θ .

 H_0 : $\theta \in \Theta_0$ — основная гипотеза

 H_1 : $\theta \in \Theta_1$ — альтернативная гипотеза

Выборочные характеристики Выберем реализацию случайной величины (выборку во втором смысле) X_1, \ldots, X_n . Рассмотрим новую случайную величину:

$$\widetilde{X}$$
: $X_1 \mid \cdots \mid X_n \atop \frac{1}{n} \mid \cdots \mid \frac{1}{n}$

Ну а дальше все выборочные характеристики определяются уже для этой случайной величины. Напомним следующее

Определение 2 (Индикатор).
$$I_A(X) = \begin{cases} 1, & X \in A \\ 0, & X \not\in A \end{cases}, I(X < x) = \begin{cases} 1, & X < x \\ 0, & X \geqslant x \end{cases}$$

Определение 3. Если X_1, \ldots, X_n можно упорядочить, то $X_{(1)} \leqslant \cdots \leqslant X_{(n)}$ называется вариационным рядом.

☆Свойства оценок

Метод моментов

Определение 4. Пусть $F(x,\theta)$ — семейство распределений, $m(x) = \mathrm{M}\,g(x)$ — какой-то момент этого распределения. Пусть известно, что $h(\theta) = m(x)$. Тогда собственно сам метод состоит в том, чтобы оценить θ как решение уравнения выше.

$$\hat{\theta} = h^{-1}(m(x))$$

В случае чего там векторы, но особо не страшно.

Пример 1. <+примеры про непрерывные распределения+>

§ 19 Метод максимального правдоподобия

Определение 1. За $p(x, \theta)$ обозначим плотность функции распределения $F(x, \theta)$ в точке x в случае непрерывного распределения и P(X = x) в случае дискретного.

Определение 2. Пусть $\{X_k\}$ —n независимых случайных величин. Тогда $L(\theta):=\prod_{k=1}^n f_{\theta}(X_k)$ — функция правдоподобия. Ещё берут её логарифм.

Генераль	ьная совокупность	Выборка	
Матожида- ние	MX	$\overline{X} = \frac{1}{n} \sum_{k} X_k$	Выбороч- ное среднее
Дисперсия	$\mathrm{D}X$	$S^2 = \frac{1}{n} \sum_{k} (X_k - \overline{X})$	Выбороч- ная дисперсия
Момент порядка <i>l</i>	$M X^k$	$m_l = \frac{1}{n} \sum_k X_k^l$	
Ковариация	M(X - MX)(Y - MY)	$\frac{1}{n}\sum_{k}(X_{k}-\overline{X})(Y_{k}-\overline{Y})$	
(γ_3)	$M(X - MX)^3/\sigma^3$	$\frac{1}{n}\sum (X-\overline{X})^3/S^3$	
Эксцесс (γ_4)	$\frac{M(X-MX)^4}{\sigma^4} - 3$		
Функция распределе- ния		$\frac{1}{n} \sum_{k} I(X_k < y)$	эмпириче- ская
Квантиль порядка $p \in (0;1)$	$\sup\{x \mid F(x) \leqslant p\}$	$X_{([pn]+1)}$	член вари- ационного ряда

Определение 3. Сам метод состоит в следующем:

$$\hat{\theta} \colon L(\hat{\theta}) = \max_{\theta} L(\theta)$$

Однако проще искать максимум у $\ln L(\theta)$. Так можно в силу монотонности логарифма.

$$\left(\ln L(\theta)\right)' = \frac{L'(\theta)}{L(\theta)}$$

<+гора примеров+>

§* Эффективные оценки

Утверждение 1 (Неравенство Рао-Крамера). Пусть $\theta, \hat{\theta}$ — параметр и его оценка, $b(\theta) = \mathrm{M}(\hat{\theta} - \theta)$ — смещение оценки, $I(\theta)$ — информация Фишера, $F(x,\theta)$ — параметрическое семейство распределений.

$$I(\theta) = M \left(\frac{\partial}{\partial \theta} \ln p(X, \theta) \right)^2,$$

где $p(X,\theta)$ из определения 2.19.1. Если выполнены условия регулярности

- 1. Cymecmsyem $C \subset \mathbb{R} : \forall \theta \in \Theta P(X_1 \in C) = 1 \ u \ \forall y \in C\sqrt{p(X,\theta)} \in C^1_{\theta}(\Theta)$
- 2. $I(\theta) \in C_{\theta}(\Theta), I \geqslant 0$

и $D \hat{\theta}$ ограничена на любом компакте $\subset \Theta$, то

$$M(\hat{\theta} - \theta)^2 \geqslant \frac{(1 + b'(\theta))}{nI(\theta)} + b^2(\theta)$$

Замечание 1. Всякая регулярность нужна, чтобы можно было законно запихивать производную по параметру по интеграл.

Определение 4. Оценка называется эффективной, если для неё неравенство Рао-Крамера обращатся в равенство.

§ 20 Лемма Фишера

Определение 1. Пусть X_1, \ldots, X_n — независимые случайные величины с распределением $\mathcal{N}(0,1)$. Тогда $\sum_i X_i^2$ имеет распределение χ^2 с n степенями свободы. Ещё так обозначается: K_n

Утверждение 1. Плотность распределения χ_n^2 ищется по формуле

$$k_n = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma\left(\frac{n}{2}\right)}$$

Определение 2. Пусть X_1,\dots,X_n — независимые случайные величины с распределением $\mathcal{N}(0,1)$. Тогда $\frac{x}{\sqrt{\frac{1}{n}\sum_i X_i^2}}$ имеет распределение Стьюдента с n сте-

пенями свободы.

Утверждение 2. Плотность распределения T_n ищется по формуле

$$t_n = \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

Определение 3. Пусть $C \colon V_1 \to V_1$. Тогда C — ортгональный, если $CC^T = E$

Следствие 1. $\det C = 1$

Следствие 2. ||Cx|| = ||x||

Утверждение 3. Оператор ортогональный ⇔ строки его матрицы (как векторы линейного пространсва наборов чисел) образуют ортонормированный базис.

Утверждение 4. Пусть $\{X_i\} \sim \mathcal{N}(0,1), \ C$ — ортогональный линейный оператор. Тогда $u \ Y = CX \sim \mathcal{N}(0,1).$

▼

Докажется через утверждение о пребразовании плотности при замене переменных 2.10.2 и следствие 2. Независимость получится просто из того, что вышло нормальное распределение. А σ -у можно сначала засунуть в случайные величины, а потом вытащить обратно.

 \blacktriangle

Лемма 5 (Фишера). Пусть X_1, \ldots, X_n независимы и $X_i \sim \mathcal{N}(\theta, \sigma^2)$. Тогда

1.
$$\sqrt{n} \frac{\overline{X} - \theta}{\sigma} \sim \mathcal{N}(0, 1)$$

2. \overline{X} , S^2 независимы 1

¹Здесь смещённая дисперсия

3.
$$\frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$$

4.
$$\sqrt{n-1} \frac{\overline{X} - \theta}{S} \sim t_{n-1}$$

1. Заменим $Z_i = \frac{X-\theta}{\sigma}, \, Z_i \sim \mathcal{N}(0,1)$ Найдем распределение $\sum_i Z_i = \Sigma$.

$$\Phi_i(t) = e^{-t^2/2}$$

$$\Phi_{S_n}(t) = \frac{1}{n} \cdot \exp\left(-n\frac{t^2}{2}\right) = \exp\left(-\left(\frac{\sqrt{n}\,t}{\sqrt{2}}\right)^2\right) \Rightarrow p_{\Sigma}(z) = \frac{1}{\sqrt{2\pi}\sqrt{n}} \exp\left(-\frac{x^2}{2n}\right)$$
$$\frac{S_n - n\theta}{\sigma} \sim \mathcal{N}(0, \sqrt{n}) \Rightarrow \frac{n}{\sqrt{n}} \frac{\overline{X} - \theta}{\sigma} = \sqrt{n} \frac{\overline{X} - \theta}{\sigma} \sim \mathcal{N}(0, 1)$$

2. Пусть

$$C = \begin{pmatrix} \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

Первая строка как вектор имеет норму 1. А значит можно вспомнить процесс Грамма-Шмидта и набрать ортонормированный базис. Тогда C будет ортогональным. Пусть Y = CX. Из горы утверждений выше мы получим:

$$Y_{1} = \frac{X_{1} + \dots + X_{n}}{\sqrt{n}} = \overline{X}\sqrt{n}$$

$$\|Y\| = \|X\| \Rightarrow \sum_{i} X_{i}^{2} = \sum_{i} Y_{i}^{2}$$

$$S^{2} = \frac{1}{n} \sum_{i} X_{i}^{2} - (\overline{X})^{2} = \frac{1}{n} \sum_{i=2}^{n} Y_{i}$$

А дальше надо честно посчитать $\operatorname{cov}\left(\frac{Y_1}{\sqrt{n}},\sum_{i=2}^nY_i\right)$. Правда ноль получается. Если что,

$$cov(X,Y) = M(X - MX)(Y - MY) = M(XY) - MXMY$$

3.
$$\frac{nS^2}{\sigma^2} = \sum_{i=2}^{n} \left(\frac{Y_i}{\sigma}\right) = \chi_{n-1}^2$$

4. Мы там порешили, что $\theta = 0$, так что

$$\sqrt{n-1} \frac{\overline{X}}{S} = \frac{Y_1}{\sqrt{\frac{n}{n(n-1)} \sum_{i=2}^n Y_i}} = \frac{Y_1}{\sqrt{\frac{1}{n-1} \sum_{i=2}^n Y_i}} \sim t_{n-1}$$

§ 21 Доверительны интервалы нормального распределения

Здесь собственно перешли к более интересной части — от точечных оценок параметров к построению для доверительных интервалов.

Определение 1. (T_1, T_2) — доверительный интервал уровня γ , если $P(T_1 < \theta < T_2) = \gamma$

Дальше всюду ведутся рассуждения про доверительные интервалы (уровня γ) параметров нормального распределения.

Утверждение 1. Доверительный интервал для θ при известном σ равен $\left(\overline{X} - \sigma \frac{z_{(1+\gamma)/2}}{\sqrt{n}}; \overline{X} + \sigma \frac{z_{(1+\gamma)/2}}{\sqrt{n}}\right)$

Интервал ищем явно симметричный, так что посчитаем

$$P\left(\sqrt{n}\,\frac{|\overline{X} - \theta|}{\sigma} < z\right)$$

Поскольку величина внутри подчиняется стандартному нормальному распределению,

$$P\left(-z < \sqrt{n} \frac{(\overline{X} - \theta)}{\sigma} < z\right) = F_n(z) - F_n(-z) = 2F_n(z) - 1 = \gamma$$

По дороге сделали замену переменной, не пугайтесь. А дальше $z=F_n(\frac{1+\gamma}{2})$, что как раз соответствует определению $\frac{1+\gamma}{2}$ квантили. Ну а дальше всё уже очевидно из преобразования неравенства выше. Мы умеем это делать, можно порассматривать $\{\omega \mid X(\omega) \cdots \}$ как уже делали раньше.

Утверждение 2. Доверительный интервал для θ при неизвестном σ равен $\left(\overline{X} - S \frac{t_{n-1,(1+\gamma)/2}}{\sqrt{n}}; \overline{X} + S \frac{t_{n-1,(1+\gamma)/2}}{\sqrt{n}}\right)$

аналогично 2.21.4, только пользуемся 4 пунктом леммы Фишера 2.20.5.

Утверждение 3. Доверительный интервал для σ^2 при неизвестном θ равен $\left(\frac{nS^2}{v^2}; \frac{nS^2}{u}\right)$. Чиселки u, v определяются c помощью χ^2 .

Утверждение 4. Доверительный интервал для σ^2 при неизвестном θ нормально не выражается. Проще численно.

1.
$$\frac{\sum_{i=1}^{n} (X_i - \theta)^2}{\sigma^2} \sim \chi_n^2$$

2.
$$\frac{n(\overline{X} - \theta)^2}{\sigma^2} \sim \chi_1^2$$

§ 22 Проверка гипотез по параметрам нормального распределения

Будем рассматривать здесь простую гипотезу:

$$H_0: \theta = \theta_0$$
$$H_1: \theta \neq \theta_0$$

1. Пусть $X_1,\dots,X_n\sim\mathcal{N}(\theta,\sigma^2),\,\sigma^2$ известно. Примем $H_0\colon\theta=\theta_0.$ Но тогда

$$\sqrt{n} \frac{\overline{X} - \theta_0}{\sigma} \sim \mathcal{N}(0, 1)$$

из 1 пункта леммы Фишера (2.20.5).

Рассмотрим α — уровень значимости — какое-нибудь маленькое число. Часто берут 0.05.

$$P\left(\sqrt{n} \frac{|\overline{X} - \theta_0|}{\sigma} > z\right) = \alpha \Leftrightarrow \sqrt{n} \frac{|\overline{X} - \theta_0|}{\sigma} > z_{1-\alpha/2}$$

Таким образом можно найти границы критической области.

Если H_0 верна, то $P\left(\sqrt{n}\,\frac{|\overline{X}-\theta|}{\sigma}>z_{1-\alpha/2}\right)$ мала. Можно выбрать, меньше чего мы хотим её сделать, и объявить сие критерием проверки. Собственно, так и делали на практике.

2. σ^2 неизвестна. Здесь всё то же самое, только с распределением Стьюдента.

А здесь такую

$$H_0: \theta_1 = \theta_2$$

 $H_1: \theta_1 \neq \theta_2$

Будем считать, что X_i, Y_i независимы, и нормально распеделены:

$$X_1, \dots, X_{n_1} \sim \mathcal{N}(\theta_1, \sigma_1^2)$$

 $Y_1, \dots, Y_{n_2} \sim \mathcal{N}(\theta_2, \sigma_2^2)$

1. σ_1^2, σ_2^2 — известны.

$$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2^2}}} \sim \mathcal{N}(0, 1)$$

2. $\sigma_1^2 = \sigma_2^2$, но не известны

$$\sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}} \cdot \frac{\overline{X} - \overline{Y}}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \sim S_{n_1 + n_2 - 2}$$

Это как раз тот самый t-тест

3. σ_1^2, σ_2^2 неизвестны. Тут вообще ничего не понятно. (Проблемы Беренса-Фишера)

§ 23 Линейная регрессия

Определение 1 (Регрессия). Пусть Y, X_1, \ldots, X_m — случайные векторы. Тогда если определено уравнение $y(x_1, \ldots, x_m) = M(Y \mid X_1 = x_1, \ldots, X_m = x_m)$, то y называется регрессией Y по X_1, \ldots, X_n .

Определение 2 (Линейная регрессия). Пусть Y, X_1, \ldots, X_m — случайные векторы. Тогда если определено уравнение $y(x) = \mathrm{M}(Y \mid X_i = x_i \, \forall \, i)$, и $y(x) = x \cdot \theta$ то y называется линейной регрессией Y по X.

Здесь x — матрица $n \times m$, $\theta \in \mathbb{R}^m$, $\epsilon \in \mathbb{R}^n$, $y \in \mathbb{R}^n$

Замечание 1. Можно с тем же успехом написать $Y = y(X) + \varepsilon$, если М $\varepsilon = 0$

Определение 3. Y называется откликом, X — регрессоры (предикторы), ε — шум, θ — параметры.

Основной метод поиска оптимальных параметров — по функции максимального правдоподобия. Если не сильно расписывать, то это выльется в $\mathop{\arg\min}_{\hat{x}}(Y-x)$

$$(X\hat{\theta})^T(Y-X\hat{\theta})$$

А если расписывать, то получается следущее: раз все ε_i независимы и нормально распределены, то функция максимального правдоподобия будет выглядеть так:

$$L(\theta_1, \dots, \theta_m) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{j=1}^n (y_j - \sum_{k=1}^m x_{jk}\theta_k)^2\right)$$

Как видно, условие максимума такой функции совпадает с минимумом суммы квадратов.

При этом нужны условия Гаусса-Маркова:

- 1. X^TX обратима
- 2. $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ и независимы

Утверждение 1. Явное выражение для $\hat{\theta}$ при минимизации выражения выше выглядит так: $\hat{\theta} = (X^T X)^{-1} X^T Y$

V

Пусть

$$Q(\theta) = (Y - X\theta)^T (Y - X\theta) = Y^T Y - \theta^T X^T Y - Y^T X\theta + \theta^T X^T X\theta \in \mathbb{R}$$

В координатах это перепишется так (как обычно, суммирование по повторяющимся индексам)

$$Q(\theta) = y_i y_i - 2 y_j \theta_i X_{ji} + (X_{si} \theta_i) (X_{sj} \theta_j)$$

Тогда можно и продифференцировать

$$\frac{\partial Q}{\partial \theta_j} = 2X_{si}X_{sj}\theta_j - 2X_{ji}y_j = 0 \Leftrightarrow 2X^TX\theta - 2X^TY = 0 \Leftrightarrow \hat{\theta} = (X^TX)^{-1}X^TY$$

$$\frac{\partial^2 Q}{\partial \theta_i \partial \theta_i} = X_{si}X_{sj}\delta_{ij}$$

Как видно, там и правда мимимум. Здесь второй дифференциал просто сразу приведён к диагональному виду, и все числа на диагонали его матрицы положительны.

Δ

§ 24 Теорема Гаусса-Маркова

Определение 1. Ковариационная матрица случайных векторов X, Y — матрица ковариаций их компонент

$$cov(X,Y)_{ij} = cov(X_i,Y_j) = M(X - MX)(Y - MY)^T$$

Определение 2. cov X = cov(X, X)

Определение 3 (Эффективность оценок). Оценка параметра $\hat{\theta}_1$ эффективнее оценки $\hat{\theta}_2$, если матрица соу $\hat{\theta}_1 - \cos \hat{\theta}_2$ отрицательно определена.

Теорема 1. Пусть

- 1. $X^T X$ обратима
- 2. $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ и независимы

Tог ∂a

- 1. $\hat{\theta} = (X^T X)^{-1} X^T Y$ несмещённая оценка θ ,
- 2. $\hat{\theta}$ наиболее эффективная среди линейных несмещённых оценок

- 1. $\hat{\theta} = (X^T X)^{-1} X^T (X \theta + \varepsilon) = \theta + (X^T X)^{-1} X^T \varepsilon$. Так как М $\varepsilon = 0$, ε не зависит от X, последнее слагаемое обращается в ноль
- 2. Пусть $\widetilde{\theta}=HY$. Такая оценка тоже будет несмещённой, если HX=E. Тогда

$$\operatorname{cov} HY = (\operatorname{M} HY - \theta)(HY - \theta)^{T} = \operatorname{M}((HX - E)\theta + \varepsilon)((HX - E)\theta + \varepsilon)^{T} = \operatorname{M} H\varepsilon\varepsilon^{T}H^{T} = \sigma^{2}HH$$

Для изначальной оценки $H_0 = (X^T X)^{-1} X^T$, так что $H_O H_O^T = (X^T X)^{-1} X^T X (X^T X)^{-1} = (X^T X)^{-1}$.

Покажем, что матрица $HH^T-(X^TX)^{-1}$ положительно определена. Пусть $C=H-(X^TX)^{-1}.$ Тогда

$$CX = CH - E = 0$$

 $HH^{T} = (C + (X^{T}X)^{-1}X^{T})(C^{T} + X(X^{T}X)^{-1}) = CC^{T} + (X^{T}X)^{-1}$

А матрицы вида CC^T обычно (над $\mathbb R$) положительно определены.

§ 25 Оценка лисперсии погрешностей

Теорема 1. Пусть $S^2 = \frac{1}{n-m} (Y - X\hat{\theta})(Y - X\hat{\theta})^T$. Тогда S^2 — несмещённая оценка σ^2

$$Y - X\hat{\theta} = (E_n - X(X^T X)^{-1} X^T)(X\theta + \varepsilon) = (E_n - X(X^T X)^{-1} X^T)\varepsilon = B\varepsilon$$

Тогда $S^2=\frac{1}{n-m}\varepsilon^2B^TB\varepsilon$, причём B — симметрична. Так что $B^TB=B^2=B$ (лень расписывать). Так что

$$M S^2 = \frac{1}{n-m} M(\varepsilon^T B \varepsilon) = \frac{\sigma^2}{n-m} Tr B$$

потому что всё, что не на главной диагонали обратится в ноль в силу независимости ε_i .

Осталось доказать, что $\text{Tr}(X(X^TX)^{-1}X^T)$. Покажем, что след произведения матриц не зависит от порядка сомножителей.

$$\operatorname{Tr} AB = (ab)_i = a_{is} bsi = b_{si} a_{is} = (ba)_s$$

Так что просто переставим X^T в самое начало и получим E_m .

§ 26 Критерий согласия Пирсона

Определение 1. Пусть $X_1, \ldots, X_n \sim F$. Будем проверять гипотезу

$$H_0: F = F_0 H_1: F \neq F_0$$

Пусть существует функция $\rho(X)$, такая что

- 1. H_0 верна $\Rightarrow \rho(X) \xrightarrow{d} G$, G некоторое непрерывное распределение.
- 2. если H_0 неверна, то $|\rho(X)| \stackrel{p}{\to} \infty$

Выберем критическую область по распределению G из равенства $P(|xg| \ge C) = \gamma, g \sim G$. Тогда критерий введём так: будум отвергать H_0 , если $|\rho(X)| \ge C$.

Определение 2 (Критерий согласия Пирсона). Разобъем всю область значений X_i на интервалы I_i , с заданными вроятностями — p_i , $\sum_i p_i = 0$. Будем проверять гипотезу $\forall i P(X_1 \in I_i) = p_i$. Этакая дискретизация распределения.

Ещё обозначим $\nu_k = \#\{i \mid X_i \in I_k\}$. Пусть

$$\rho = \sum_{k=1}^{r} \frac{(\nu_k - np_k)^2}{np_k}$$

А сам критерий основывается на сходимости распределения выше к распределению χ^2 , и критическая область выбирается из этого распределения.

Теорема 1. При справедливости H_0 $\rho(X) \xrightarrow[n \to \infty]{d} \chi^2_{r-1}$.

§ 27 Непараметрические критерии

Условия на X_1, \ldots, X_n те же

Утверждение 1 (Критерий Колмогорова-Смирнова). Пусть F_n — эмпирическая функция распределения,

$$D_n^+ = \sup_{x} (F_n(x) - F_0(x))$$
$$D_n^- = \sup_{x} (F_0(x) - F_n(x))$$

Тогда
$$P(\sqrt{n}D_n^+ < z) \to \begin{cases} \sum_{k \in \mathbb{Z}} (-1)^k e^{-2k^2 z^2}, & z \geqslant 0 \\ 0, & z < 0 \end{cases}$$

Здесь функция $\rho = \grave{D}_n^+$. Чтобы доказать, что она — критерий согласия, можно воспользоваться теоремой Гливенко-Кантелли

$$P(|F_n(x) - F_0(x)| \to 0) = 1$$

Распределение в которому всё сошлось — распределение Колмогорова.

Утверждение 2 (Критерий Смирнова). $\rho = \max(D_n^+, D_n^-)$

Утверждение 3 (Критерий Койгера). $\rho = (D_n^+ + D_n^-)$

Утверждение 4 (Критерий Крамера—фон-Мизеса). $\rho = \omega^2 = \int_{-\infty}^{+\infty} (F_n(x) - F_0(x))^2 dF_0(x)$

Утверждение 5 (Критерий Андерсона-Дарлинга).
$$\rho = \int\limits_{-\infty}^{+\infty} \frac{(F_n(x) - F_0(x))^2}{F_n(x)(1 - F_0(x))} \, \mathrm{d}F_0(x)$$

Здесь ещё была теорема почему они непараметрические, но на неё похоже забили.

Глава 3: Случайные процессы

§ 28 Процессы с независимыми приращениями

Определение 1. Случайный процесс — измеримое отображение $X \colon \Omega \to L(T)$, L(T) — пространство функций над T

Пример 1. $T = t_0$, тогда X — случайная величина

Определение 2. X — процесс с независимыми приращениями, если $\forall t_0 < \cdots t_n \in T$ случайные величины

$$X(t_0), X(t_1) - X(t_0), \dots, X(t_n) - X(t_n - t_{n-1})$$

Пример 1. $T = \mathbb{N}$, а сам независимый процесс $X(n) = \sum_{i=1}^{n} Y_i$, Y_i — независимы.

Определение 3. Пусть $T = \mathbb{R}$ (время) и при этом:

$$X(0) = 0$$

$$X(t) - X(s) \sim \Pi(\lambda(t-s))$$

$$X - \text{процесс c независимыми приращениями}$$

Определение 4 (Винеровский процесс(броуновское движение)). Пусть $T = \mathbb{R}$ (время) и при этом:

$$X(0)=0$$

$$X(t)-X(s)\sim \mathcal{N}(0,t-s)$$
 X — процесс с независимыми приращениями

§ 29 Стационарные процессы

Определение 1 (Стационарные в узком смысле). X(t) называется стационарным в узком смысле, если

$$\forall t_1, \dots, t_n \in T, \forall \tau > 0 \ \left(t_1 + \tau, \dots, t_n + \tau \in T\right)$$
$$\Rightarrow \left(X(t_1 + \tau), \dots, X(t_n + \tau)\right) \stackrel{d}{=} \left(X(t_1), \dots, X(t_n)\right)$$

Короче, можно двигать начало отсчёта времени, распределение не изменится.

Следствие 1.

$$m(t) = MX(t) = \text{const}$$

$$\sigma^{2}(t) = DX(t) = \text{const}$$

$$\text{cov}(X(s), X(t)) = \text{cov}(X(0), X(t-s)) =: R(t-s)$$

3 десь определена величина <math>R(t-s), если что.

Определение 2 (Стационарные в широком смысле). X(t) называется стационарным в широком смысле, если $MX(t) = \text{const} \ u \ \text{cov}(X(s), X(t)) = R(t-s)$.

Сделаем теперь из процессов (пока любых) линейное пространство со скалярным произведением.

$$H_0 = \left\{ \sum_{k=1}^n c_k X(t_k) \middle| n \in \mathbb{N}, t_i \in T, c_i \in \mathbb{R} \right\}$$
 (3.1)

$$\langle X(s), X(t) \rangle = \operatorname{cov}(X(s), X(t)) \tag{3.2}$$

Теперь сделаем из него гильбертово пространство, пополнив по метрике, соотвествующей скалярному произведению Дальше надо бы доказать, что оно вообще расстояние

<+Здесь дальше какая-то жесть про спектральную меру. Я её не понимаю+>

§ 30 Цепи Маркова

Определение 1. Пусть \mathfrak{X} — дискретное множество состояний. Тогда ξ_i образуют цепь Маркова, если

$$P(\xi_n = i_n \mid \xi_{n-1} = i_{n-1}, \xi_1 = i_1) = P(\xi_n = i_n \mid \xi_{n-1} = i_{n-1})$$

(Цепь помнит только свое предыдущее состояние)

Определение 2. Если известны $q_i = P(\xi_1 = i)$ и $p_{ij} = \frac{1}{n}P(\xi_n = j \mid \xi_{n-1} = i)$, то цепь называется полностью определённой. $P = (p_{ij})$ ещё называется стохастической матрицей.

Определение 3. Если np_{ij} не зависит от n, то цепь называется однородной.

Определение 4. $p_{ij}^{(n)} = P(\xi_{k+n} = j \mid \xi_k = k)$ (вероятность перейти за n шагов).

Утверждение 1. Для однородной цепи:

$$p_{ij}^{(n+m)} = \sum_{k} p_{ik}^{(m)} \cdot p_{kj}^{(n)} P^{(n)} = P^{n}$$

Оно всё следует из независимости от старых состояний и формулы полной вероятности 1.2.1.

Пример 1. Если ξ_i независимы, то они образуют цепь Маркова

Пример 2. Если ξ_i независимы, то η_n : $\eta_n = f(\eta_{n-1}, \xi_n)$ образуют цепь Маркова.

Определение 5 (Случайные блуждания). Случайное блуждание — процесс с дискретным временем вида $\eta_0 + \sum_i \xi_i$, где $\xi_n \in \mathbb{R}^d$ — независимые случайные величины , ξ_k принимает значения $\pm e_i$ — ортонорморованный базис \mathbb{Z}^d

Случайные блуждания тоже можно считать цепью Маркова

Определение 6. $f_{ii}^{(n)} = P(\xi_{n+1} = i \mid \xi_n \neq i, \dots, \xi_1 = i)$. Состояние i возратное, если $\sum_{n=1}^{\infty} f_{ii}^n = 1$ и невозратное иначе.

Но надо ещё подумать над вероятностью вернуться в какое-то состояние, идя не важно как.

$$p_{ii}^{(n)} = f_{ii}^{(n)} + f_{ii}^{(n-1)} p_{ii} + \dots + f_{ii}^{(1)} p_{ii}^{(n-1)}$$

С таким можно разобраться при помощи производящих функций

$$P(z) = \sum_{n=0}^{\infty} p_{ii}^{(n)} z^n, \ p_{ii}(0) = 1$$
$$F(z) = \sum_{n=1}^{\infty} f_{ii}^{(n)} z^n$$
$$P(z) = P(z)F(z) + 1$$

Получить последнюю формулу можно честно перемножив два ряда. Только нужно ещё не забыть, что один из них начинается с z^1 . А дальше член при z^n как раз и оказывается суммой выше

Утверждение 2 (Критерий возрата). i- возратное $\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = +\infty$

Из формулы выше

$$P(z) = \frac{1}{1 - F(z)}$$

a
$$F(1) = \sum_{n=1}^{\infty} f_{ii}^{(n)} = 1$$

§ 31 Марковские процессы

Здесь будем брать и сурово строить сигма-алгебры на заданных множествах.

Определение 1. $\sigma(Y_1,\ldots,Y_n)$ — наименьшая сигма-алгебра, относительно которой Y_i измеримы. Короче, порождённая набором $\{Y_i\}$.

Замечание. Индекс i может быть и непрерывным: $\sigma(X(t) \mid t \in T)$

Пример 1. $F_a^b = \sigma(X(t), t \in [a, b])$ — сигма-алгебра интервала.

Пример 2. $F_{\infty}^t = \sigma(X(\zeta), \zeta \in (-\infty, t])$ — сигма-алгебра прошлого. Можно так же и будущего. И настоящего $(\zeta \in \{t\}.$

Определение 2 (Марковский процесс). X(t) — марковский процесс, если

$$\forall A \in F_{-\infty}^t, B \in F_t^{\infty} \ P(AB) = P(A)P(B)$$

Короче говоря, прошлое не зависит от будущего.

Глава А: Обозначения

 Ω — пространство элементарных исходов

 ω — элемент пространства элементарных исходов

 \mathcal{A} — алгебра множеств

 $\mathcal{F} - \sigma$ -алгебра множеств (случайные события)

P — вероятность

 $p(x_1,\ldots,x_n)$ — плотность вероятности

 $X(\omega),Y(\omega),\xi(\omega)$ — случайная величина

 $F_X(x_1,\ldots,x_n)$ — функция распределения случайной величины X

 $\Phi_X(t)$ — характеристическая функция случайной величины X.

★ — ещё правится. Впрочем, относится почти ко всему.

 $\square \cdots \blacksquare$ — начало и конец доказательства теоремы

▼ · · · ▲ — начало и конец доказательства более мелкого утверждения

:set aflame — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

Глава В: Стандартные распределения

Распределение	Плотность
Бернулли	P(x = 1) = p, P(x = 0) = 0
Пуассона	$P(x=k) = \frac{\lambda^k e^{-\lambda}}{k!}, k \in \mathbb{N} \cup 0$
Биномиальное	$P(x = k) = C_n^{k} p^{k} (1 - p)^{n - k}$

Литература

- [1] Чернова Н.И. Теория вероятностей.
- [2] Ширяев А.Н. Вероятность. М.: Наука, 1980.
- [3] Пономаренко Л.С. Прохоров Ю.В. Лекции по теории вероятности и математической статистике. 2-е изд., испр. и доп. М.: Издательство Московского университета, 2012.