Lecture 1

Brennan Becerra

2024-01-08

Differential Geometry of curves & surfaces

$$f(x,y)=0$$

$$x^2 + y^2 - a^2 = 0$$

$$y=\pm\sqrt{a^2-x^2}$$

 $when \ its \ working, its \ beautiful...$

Sec 1.1 - Parameterized Curves

$$\gamma:I o\mathbb{R}^n$$

Component Form

$$\gamma(t) = (\underbrace{x_1(t), x_2(t), \ldots, x_n(t)}_{ ext{Component (coordinate) functions}})$$

Another name for this is the *position vector*.

 $\gamma(t)$ is smooth (C^{∞}) meaning its infinitely differentiable.

$$egin{aligned} & ext{In } \mathbb{R}^2: \gamma(t) = (x_1(t), x_2(t)) \ & ext{In } \mathbb{R}^3: \gamma = (x_1(t), x_2(t), x_3(t)) \end{aligned}$$

Examples:

Circle: $\gamma(t) = (2\cos(t), 2\sin(t))$

Spiral: $\gamma(t) = (2\cos(t), 2\sin(t), t)$

Parabola: $\gamma(t)=(t,t^2)$

Definition 1.6

The *derivative* of a curve, $\gamma(t)=(x_1(t),x_2(t),\ldots,x_n(t))$ is:

$$\gamma'(t) = (x_1'(t), x_2'(t), \dots, x_n'(t)).$$

Ex:

$$\gamma(t) = (2\cos(t), 2\sin(t)), \, \gamma'(t) = (-2\sin(t), 2\cos(t))$$

$$\gamma(t)=(t,t^2), \gamma'(t)=(1,2t)$$

 $\gamma(t)=(t,|t|)=(t,\sqrt{t^2})$ (Try showing that γ is not differentiable at the origin)

Proposition 1.7

$$\gamma'(t) = \lim_{h o 0} rac{\gamma(t+h) - \gamma(t)}{h}$$

 $\gamma'(t)$ is tangent to $\gamma(t)$. $\gamma'(t) = \frac{d \text{ position}}{d \text{ time}}$, otherwise known as velocity.

Definition 1.8 Speed and Arclength

For a curve $\gamma:I o\mathbb{R}^n,$

- Speed is $|\gamma'(t)|$
- Arclength of $\gamma(t)$ between $t_1,t_2:S=\int_{t_1}^{t_2}|\gamma'(t)|\,dt$

Ex.

$$egin{aligned} \gamma(t) &= (\cos(t), \sin(t)), t \in [0, 2\pi) \ \gamma'(t) &= (-\sin(t), \cos(t)) \ |\gamma'(t)| &= \sqrt{(-\sin)^2 + (\cos(t))^2} = 1. \end{aligned}$$

$$S=\int_0^{2\pi}1\,dx=2\pi.$$

$$egin{aligned} \gamma(t) &= (x(t), y(t), z(t)) \ |\gamma(t)| &= [x(t)^2 + y(t)^2 + z(t)^2]^{1/2} \end{aligned}$$

Definition 1.9

A curve, $\gamma:I o\mathbb{R}^n$ is:

- $\textit{Regular} ext{ if } |\gamma'(t)|
 eq 0 ext{ for any } t.$
- ullet Unit Speed (aka parameterized by arclength) if $|\gamma'(t)|=1$ for all t.

