

MD-A131 636

ON THE OPTIMALITY OF INDIVIDUAL BEHAVIOR IN FIRST COME
LAST SERVED QUEUES. (U) STANFORD UNIV CA CENTER FOR
RESEARCH ON ORGANIZATIONAL EFFICI.. R HASSIN MAY 83

1/1

UNCLASSIFIED

TR-404 N00014-79-C-0685

F/G 12/2

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

ADA 1310836

1
THE INFLUENCE OF INDIVIDUAL BEHAVIOR IN
SHORDED QUEUES WITH PREEMPTION AND BALKING

by

REFael MASSIN

TECHNICAL REPORT NO. 404
May 1983

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA AT LOS ANGELES
LOS ANGELES, CALIFORNIA 90024

RECEIVED MAY 1983
BY COMPUTER SCIENCE LIBRARY

PCIC
PROJECT
COMPUTER
INSTITUTE
CALIFORNIA
INSTITUTE
OF TECHNOLOGY

A

THE COMPUTER CENTER

AND COMPUTER APPLICATIONS IN THE SOCIAL SCIENCES

FIFTH FLOOR, BRAVA HALL

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

This document has been approved
for public release and prior to
distribution to authorized

07-62 086

ON THE OPTIMALITY OF INDIVIDUAL BEHAVIOR IN
FIRST COME LAST SERVED QUEUES WITH PREEMPTION AND BALKING

by

Refael Hassin

Technical Report No. 404

May 1983

A REPORT OF THE
CENTER FOR RESEARCH ON ORGANIZATIONAL EFFICIENCY
STANFORD UNIVERSITY
Contract ONR-N00014-79-C-0685, United States Office of Naval Research

DTIC
ELECTED
S
AUG 23 1983

A
THE ECONOMICS SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Fourth Floor, Encina Hall
Stanford University
Stanford, California
94305

This document has been approved
for public release and sale; its
distribution is unlimited.

ON THE OPTIMALITY OF INDIVIDUAL BEHAVIOR IN
FIRST COME LAST SERVED QUEUES WITH PREEMPTION AND BALKING*

by

Refael Hassin**

1. Introduction

Naor, 1969, was the first to prove that individual behavior in queues is in general not socially optimal. In his paper he investigated the following queueing system: A single server facility operates on a First Come First Served (FCFS) basis with Poisson arrivals and exponential service distribution. An arriving customer may either join the end of the queue or he may choose to balk at no cost. It is assumed that a customer who balks never returns to the system. Customers are risk neutral, have identical cost per unit of service and waiting time, and receive a given identical benefit at the instant of their service completion. Since waiting time is an increasing function of the queue length, and since service time is exponentially distributed, customers' behavior is of a control limit type: There is a reservation length (equivalent to the reservation wage concept in Search Theory) such that an arriving customer joins the queue if and only if the queue is shorter than this value. Moreover, Naor's assumptions guarantee that a customer who joins the queue will not balk at a latter time since his position in the queue is secured and since the exponential distribution possesses the "memoryless property".

*This research was supported by the Office of Naval Research Grant ONR-N00014-79-C-0685 at the center for Research on Organizational Efficiency, Stanford University. The author wishes to thank Kenneth Arrow, Amihai Glazer, and Jon Strand for their helpful comments.

**Statistics Department, Tel Aviv University, Tel Aviv 69978, Israel.

IA

Naor proved that the socially optimal reservation length is smaller than that resulting from individual self-optimization. Yechiali, 1971, extended this result to the more general situation where the arrival process need not be Poisson.

Two possible strategies were suggested by Naor and Yechiali in order to close the gap between the individual and the socially-optimal reservation lengths: The obvious one is to limit the queue length to its socially optimal maximum length administratively. The other is to impose tolls on customers joining the queue, of an amount equivalent to the cost of waiting m service periods, where m is the size of the gap. The collected tolls can be redistributed among all customers in the population. Assuming very large population, this redistribution will not effect the individual's decision. Edelson and Hildebrand, 1975, proved that the optimal tolls will be imposed also by a profit maximizer who can impose a two-part tariff, selling rights to check the queue with an additional toll if service is rendered (see also Levhari and Sheshinski, 1974).

In this paper we offer a third possibility, that may appear quite surprising. We claim that if the queue discipline is changed to First Come Last Served with Preemption (FCLS) then individual self-optimization is socially optimal. Under a FCLS discipline, if it is ever worth while to join the queue then it is always worth while doing so. The coming customer immediately obtains service preempting by this possible service of another customer that has arrived earlier. At this instant, the last customer in line (the one who arrived first among all customers in the system) makes the decision whether to stay or balk.

It is intuitively clear that this change in the queue discipline decreases the individual's reservation length. For, consider the customer at the end of the queue when there are L other customers in front of him. While under FCFS he has to wait $L+1$ service periods before obtaining benefit from service, now this is just a lower bound on the number of service periods that he must wait.

To see why under FCLS the individual's strategy is identical to the socially-optimal one, we first must understand why this is not the case under the FCFS discipline. In deciding whether to join the queue or balk, a customer compares his own expected waiting cost with his benefit from the service. He does not take into account the additional waiting costs he imposes on other customers by joining the queue. Therefore, he may join also when it is socially preferable for him to balk. However, this is not the case under a FCLS discipline. Also there, it is the last customer in the queue who expects the largest waiting costs and thus will be the first to balk. But in contrast to the FCFS case, regardless of whether or not this person balks, the wait of future customers is the same. This is so since all future arrivals will join the queue ahead of this customer. A decision maker who wants to maximize social benefit, compares exactly the same quantities of waiting costs and benefit, and will reach the same conclusion as would the potential balker. Note the importance of preemption, without which the customer still imposes some waiting on future customers when deciding to stay in the system.

In the following section we formally describe a model and prove the optimality of individual behavior under a FCLS discipline. For readers

to whom the preceding arguments sound sufficiently convincing, this section can serve as an alternative derivation of the formula for the socially-optimal reservation length, as it appears in Naor's paper. The last section contains some concluding remarks concerning the possibility of administering FCLS queues and other implications of our observation.

2. Individual Optimization in a FCLS Queue

We adopt Naor's assumptions and notation:

- (i) A stationary Poisson stream of customers - with parameter λ - arrives at a single server station.
- (ii) The station renders service in such a way that the service times are independently, identically, and exponentially distributed with intensity parameter μ .
- (iii) On successful completion of service, the customer is endowed with a reward of R .
- (iv) The cost to a customer for staying in the system (either waiting or being served) is c per time unit.

We diverse from Naor's assumptions in the following ones:

- (v) A newly arrived customer joins the system and is immediately served, possibly preempting the service of another customer. At this instant each customer present in the facility (actually just the one at the end of the queue) chooses one of two alternatives: either (a) he stays in the system and incurs the losses associated with spending time in it; or (b) he balks at no additional cost, and never returns to obtain this service. The choice of one of these two alternatives will be made by the customer on comparing

the expected net gains associated with each of them. In case of a tie we assume that the customer will stay in the queue.

(vi) The queue discipline is First Come Last Served, so that the queue order is preserved while new arrivals join its head and customers leave it either by balking or when their service is completed.

Let n be the customers' reservation length, i.e., a customer balks whenever there are n other customers in front of him, including the one who is being served. Let $p = \lambda/\mu$, and $v(n) = [n(1 - p) - p(1 - p^n)](1 - p)^{-2}$.

We claim that if $v(n) \leq R\mu/c < v(n + 1)$ then customers reservation length is n . As proved by Naor, 1969, this is also the socially-optimal reservation length. The rest of this section is devoted to a proof of this claim.

Denote by $f(i)$ the expected net benefit of the customer at the i -th position in the queue (the first in the queue is the one obtaining service). Thus, $f(i)$ is defined for $i = 1, \dots, n$.

Consider the expected net benefit of the i -th customer. The next event to occur may be either a new arrival or a termination of service. Events occur according to a Poisson process with parameter $\lambda + \mu$ - as long as the server is busy - and thus the expected waiting time for the next event is $(\lambda + \mu)^{-1}$. The next event will be a new arrival with probability $\lambda/(\lambda + \mu)$, and a termination of service with probability $\mu/(\lambda + \mu)$. This leads to the following equations:

$$f(1) = -\frac{c}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} R + \frac{\lambda}{\lambda + \mu} f(2) ,$$

$$f(i) = -\frac{c}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} f(i-1) + \frac{\lambda}{\lambda + \mu} f(i+1) \quad i = 2, \dots, n-1 ,$$

$$f(n) = -\frac{c}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} f(n-1) .$$

The equation for $f(n)$ expresses the possibility of balking by the customer at the end of the queue.

We next prove that $f(n) \geq 0$ if and only if $R\mu/c \geq \sum_{k=1}^n k\rho^{n-k}$. Substituting $f(n) = 0$ and summing the equations for $f(i)$, $i = k, \dots, n$, we obtain

$$\sum_{i=k}^{n-1} f(i) = -\frac{n-k+1}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} \sum_{i=k-1}^{n-1} f(i) + \frac{\lambda}{\lambda + \mu} \sum_{i=k+1}^{n-1} f(i)$$

or,

$$0 = -\frac{n-k+1}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} f(k-1) - \frac{\lambda}{\lambda + \mu} f(k) .$$

Therefore,

$$f(k) = -\frac{n-k+1}{\lambda} + \frac{\mu}{\lambda} f(k-1) , \quad k = 2, \dots, n$$

and

$$f(1) = -\frac{n}{\lambda} + \frac{\mu}{\lambda} R .$$

The solution to these equations is given by

$$f(k) = \left(\frac{\mu}{\lambda}\right)^k R - \frac{c}{\lambda} \sum_{i=1}^k \left(\frac{\mu}{\lambda}\right)^{i-1} (n - k + i) , \quad k = 1, \dots, n .$$

For $f(n) = 0$ we obtain

$$0 = \left(\frac{\mu}{\lambda}\right)^n R - \frac{c}{\lambda} \sum_{i=1}^n i \left(\frac{\mu}{\lambda}\right)^{i-1}$$

or,

$$\frac{\mu R}{c} = \left(\frac{\lambda}{\mu}\right)^{n-1} \sum_{i=1}^n i \left(\frac{\lambda}{\mu}\right)^{i-1} = \sum_{i=1}^n i \left(\frac{\lambda}{\mu}\right)^{n-i} .$$

Therefore, $f(n) \geq 0$ if and only if

$$\frac{\mu R}{c} \geq \sum_{i=1}^n i \rho^{n-i} = (n - \sum_{i=1}^{n-1} \rho^i)(1 - \rho)^{-1} = \frac{n}{(1 - \rho)} - \frac{\rho^n + \rho}{1 - \rho^2} = v(n) .$$

Finally, for n to be the customers' reservation length it is necessary that both $f(n) \geq 0$ and $f(n+1) < 0$. In other words, $v(n+1) > \mu(R/c) \geq v(n)$.^{1/}

3. Discussion

A disadvantage inherited in FCLS queues is their increased variation of waiting times. A new arrival immediately obtains service, and with probability $\mu/(\lambda + \mu)$ this service terminates without any interruption. Thus many customers do not wait at all for service, while others incur long wait. Although the expected waiting time is as in a similar FCFS queue, risk averse customers are worse off. The feeling of unfairness that this discipline

discipline arises is made stronger when balking exists. Again, the expected waiting time is as in a similar FCFS queue, but now some customers are served without waiting while others wait for a long time and finally balk. Optimality of individual behavior in a FCLS queue with balking results, among other reasons, from the model's assumption that from social point of view it does not matter who waits and who obtains service, but just how many are served and how many are waiting in the queue.

An important assumption implicit in most queueing models which allow balking, is that a balker never returns to obtain the service. A question arises about the alternatives which the customer faces. He may give up the idea of obtaining this service, or may find another facility offering similar service. In both cases, if the search cost is low, the customer may find it worth while to return to the facility at a later time in order to check its new state.^{2/} This assumption is much more crucial in FCLS queues. Here, each customer except for the one obtaining service, will benefit by balking and immediately returning to the facility. He will pretend to be a new arrival and be assigned to the head of the queue. In order to have the customers behaving in a socially-optimal manner, customers' return must be administratively prevented.

While the practical usefulness of a strict FCLS queue is doubtful, our observation has an important application concerning a much more general class of queues. When the cost per unit time of keeping certain customers queueing is high, and when these customers can be distinguished from others, it may be reasonable to give them a high priority. On the other hand, if the cost per unit queueing time is constant, it will be desireable to reduce

the overall mean queueing time by giving high priority to customers expected to have a short service time. (These ideas are discussed in a survey about the economics of queues by Levhari and Sheshinski, 1974.)

When balking is allowed, priority assignment -on a random or irrelevant basis - may be beneficial even when all customers have identical service distributions and waiting costs per unit time. Such a priority system increases customers uncertainty about the number of service periods they must wait to obtain benefit, and therefore it decides their reservation length towards its optimal value. FCFS and FCLS are just the two extreme possibilities, while random priority systems are the intermediate cases. The best discipline depends on the customers' attitude towards risk and the cost of implementation. We note that a certain solution is particularly inexpensive; just do nothing to assure a FCFS order, and let the customers themselves take care of the discipline. In many cases the result will be far from FCFS.

A case where FCLS has negative externalities is when several queues exist for the same type of service. Suppose that customers can check upon arrival the lengths of these queues, and have to make an irrevocable decision - which queue to join. In this case, the socially-optimal rule is to join the shortest queue, and this will be the customer's choice when the service order is FCFS. However, under FCLS the coming customer is totally indifferent about what queue to join, and equilibrium is attained when each newly arrived customer chooses any of the queues with equal probabilities. 3/

Optimality of the individual behavior in FCLS queues, is preserved

also for the general arrival process analysed by Yechiali, 1971. As proved there, the optimal strategy is still characterized by a single reservation length, and we observe that since the last customer in the queue imposes no externalities, his decision is the socially optimal decision. This is not necessarily true for more general service distributions, which do not have the memoryless property. There, although the last customer imposes no externalities, others do. It is possible that from social point of view it is required that the last person in the queue will stay there and that another customer, positioned ahead of him, will balk. This may happen when the latter's residual service time is larger. However, since the individual customer does not take into account the waiting he imposes on others, the customers' behavior in this case will be different from the optimal. The same is true when the service distributions are exponential but customers have different parameter μ .

Reflection on the above discussion leads to an interesting observation. The important fact in a FCLS queue is that the person at the end of the queue remains the last one as long as he stays in the queue, and therefore imposes no externalities. This property of the queue discipline can be achieved by any policy of positioning new arrivals, as long as the newly arrived customer is never assigned to the end of the queue (unless he is the only customer there). A particularly appealing policy is to assign him to the position before the last, whenever the server is busy. This policy reduces much of the increased variation in waiting times caused by a FCLS discipline. Moreover, it reduces the customers' incentive to balk and immediately return as new arrivals; nobody, except for the last one will benefit

from doing so. Also the last customer's incentive to balk and immediately return is much weaker now. Another difficulty arises however; if the customer at the end of the queue balks, the customer positioned before him will become the last one, and all future arrivals will be positioned ahead of him. To prevent this, the later may offer the last customer a payment so that he does not balk. Such side payments must be prevented to preserve the optimal reservation length. This problem does not exist in a FCLS queue, and this can be viewed as an advantage of the discipline. Finally, we mention another advantage of FCLS queues observed by Professor Arrow: Rather than administratively forcing this discipline, we can allow the newly arriving customer to choose the position he desires in the queue!

Footnotes

- 1/ The newly arrived customer will join the system if $\mu R/c \geq v(1) = 1$, that is, $R \geq c/\mu$. This rule is independent of the arrival rate since the customer compares only his benefit and cost rates per unit time, knowing that in case of an arrival before his service terminates, he has the option of balking.
- 2/ As a matter of fact, if there is no search cost, and $\lambda < \mu$, then a customer who has no time preference concerning his service will keep balking and returning until he finds the server idle.
- 3/ The customer is concerned about the decisions of future arrivals and a nonuniform distribution will not be preserved in equilibrium.

References

Edelson, N.M. and D.K. Hildebrand [1975], "Congestion Tolls for Poisson Queueing Processes," Econometrica, 43, pp.81-92.

Levhari, D. and E. Sheshinski [1974], "The Economics of Queues: A Brief Survey," in M.S. et al.(eds) Essays on Economic Behavior under Uncertainty, pp. 195-212. North-Holland Publishing Co. New-York.

Naor, P. [1969], "The Regulation of Queue Size by Levying Tolls," Econometrica, 37, pp. 15-24.

Yechiali, U. [1971], "On Optimal Balking Rule and Toll Charges in the GI/M/1 Queueing Process," Operations Research, 19, pp. 349-370.

REPORTS IN THIS SERIES

190 "Price Selection and Security of Competitive Banking Systems," by Bradford G. and Karl Sheff

191 "Monopolistic Competition and the Capital Markets," by F. E. Stiglitz

192 "Evaluations of Losses in Life Insurance," by L. L. Siegel

193 "Measures of Risk and Return in Mutual Fund Securities," by David A. Sperling

194 "An Analysis of the Relative Efficiency of Mutual Funds," by Michael J. Higgins

195 "Risk and Return under Non-Gaussian Distributions," by Joseph E. Stiglitz

196 "An Application of the Theory of Statistical Decision Functions to Mutual Fund Prices and Quotas," by Steven D. Sosebee

197 "The Specification and Estimation of a Multivariate Logit Model," by David A. Sperling

198 "Conditions for Strong Consistency of Maximum Likelihood Estimates," by J. W. Vittersen and J. W. Gallo

199 "Information and Horizontal Equity," by David A. Sperling

200 "Simple Economic Incentive-Based Allocation Mechanisms," by David A. Sperling

201 "Empirical Response of Unemployment Duration Choice Behavior to Unemployment Benefits," by David M. Katz and David P. Sosa

202 "The Literature of National Labor Signatory Functionality," by Steven D. Sosebee, Michael Higgins, and David A. Sperling

203 "Wholly Bad Banks: A Case Study of the Commercial Bank of the Commonwealth of Massachusetts," by F. E. Stiglitz

204 "Keynesian Economics and General Equilibrium Theory," by Robert W. Jones

205 "The Case of an Isolated Economy with Differential Income Tax Rates," by Robert W. Jones

206 "A Competitive Model of Exchange," by Robert W. Jones

207 "Intermediate Preferences and the Marginal Rate of Transformation," by David A. Sperling

208 "The Fixed Price Model and Some Results in Local Commodity Markets," by David A. Sperling

209 "On the Existence of Uniqueness in Making Production an Efficient Decision," by Steven D. Sosebee

210 "Selection of Regimes," by David A. Sperling

211 "A Note on a Random Coefficients Model," by Lakeshia A. Williams

212 "Second Best Welfare Economics in the Fixed Income Model," by David A. Sperling

213 "Welfare Measurement for Local Public Utilities," by David A. Sperling

214 "Existence of the Distribution of the Maximum Likelihood Statistic," by David A. Sperling

215 "F.W. Anderson and Takanishi Sato"

216 "Partial Equilibrium with Random Preferences," by W.P. Horvitz and R.M. Solow

217 "A History of Competitive Equilibrium in Stock Market," by David A. Sperling

218 "An Application of Stein's Methods to the Problem of Stock Price Control," by R. D. Rosen

219 "Second Best Welfare Economics in the Fixed Income Model," by David A. Sperling

220 "The Logic of the Fixed Price Method," by John Michael Grindrod

221 "Existence of the Distribution of the Maximum Likelihood Statistic," by David A. Sperling

222 "F.W. Anderson and Takanishi Sato"

223 "Further Results on the International Efficiency of Financial Compartments," by W. P. Horvitz, R. M. Solow, and F. W. Anderson

224 "The Existence of a Simultaneous Equilibrium Price Model," by David A. Sperling

225 "The Existence of a Simultaneous Equilibrium Price Model," by David A. Sperling

226 "The Consistency of the Maximum Likelihood Statistical Decision Function," by David A. Sperling

227 "Numerical Evaluation of the Local and Average Optimal Decision Function," by David A. Sperling

228 "Risk Aversion and Price Theory," by F. W. Anderson and Takanishi Sato

229 "Optimal Capitalization Decisions in Closed Economies," by R. M. Solow

230 "On the Uniqueness of the Representations of Commodity Prices," by R. M. Solow

231 "The Property Right Doctrines and the Need for Regulation," by David A. Sperling

232 "A Note on the Uniqueness of the Representations of Commodity Prices," by R. M. Solow

233 "Optimal Capital Transfers Under Capital Controls," by R. M. Solow

234 "Stagnation and Inflation: Business Cycles in a Fixed Income Model," by Peter J. Hansen

235 "On the Rate of Convergence of the Central Limit Theorem," by R. M. Solow

236 "Quasistochastic Equilibrium," by Frank Hahn

237 "Quasistochastic Equilibrium," by Frank Hahn

238 "Existence Conditions for Asymmetric Demand Functions," by David A. Sperling

239 "Existence Conditions for Asymmetric Demand Functions," by David A. Sperling

240 "Price of Mobility: Implications for Taxes," by Lawrence J. Lau

241 "A Note on Stock Index Numbers," by Lawrence J. Lau

242 "Linear Regression Using Stock Temporally Aggregated Data," by George H. Bass

243 "The Existence of Economic Equilibrium: Continuity and Mixed Strategies," by David A. Sperling and Peter J. Hansen

244 "A Complete Class Theorem for the Central Problem and Further Results on Ambiguity and Incompleteness," by David A. Sperling

245 "Measure Based Valuation of Market Games," by Steven Hart

246 "Affiliation as an Outcome of Social Interaction," by Michael Katz

247 "A Representation Theorem for Preferences for Flexibility," by David M. Katz

248 "The Existence of Thinnest and Largest Compatible Equilibria," by David A. Sperling

249 "John O. Leyland

250 "Optimal Collective Securities with Compensation," by Theodore Groves

251 "On the Impossibility of Internationally Efficient Markets," by Samuel J. Grossman and Lewis F. Shostak

252 "Optimal Consumption Securities for Competitive Markets," by Lawrence J. Lau

253 "Optimal Consumption Securities in a Risk-Free World," by Robert D. Willig

254 "Optimal Consumption Securities in a Risk-Free World," by Robert D. Willig

REPORTS IN THIS SERIES

1. "A Theory of Resource Allocation under Nonlinear Constraints," by Alvin R. Roth
and Michael J. Rosenthal, *Review of Economics and Statistics*, Vol. 61, No. 1, March, 1979.
322

2. "Comparison of the Box-Cox Maximum Likelihood Estimator and the Nonlinear Two Stage Least Squares Estimator," by Lakesh Antenucci and James L. Powell
323

3. "Comparison of the Densities of the TUSL and LMIF Estimates for Simultaneous Equations," by J. W. Anderson,
Naoto Kunitomo, and Takamitsu Sawa
324

4. "Admissibility of the Bayes Procedure Corresponding to the Uniform Prior Distribution for the Control Parameters
Four Dimensions but Not in Five," by Charles Stein and Asad Zaman
325

5. "Some Recent Developments on the Distributions of Single Equation Estimators," by J. W. Anderson
326

6. "On Inflation," by Frank Hahn
327

7. "Joe Peden on Money Rule," "Contingent Properties of Money Rule and Incomplete Preferences," by Paul A. Samuelson
and Kahn Pan Lin, and "Electoral Outcomes with Probabilistic Voting and Nash Social Welfare," *American Economic Review*
328

8. "On the Independence Condition of Conditions," by Segio Hart and Michael Katz
329

9. "Controllability, Boundary Alternatives, and Optimal Location," by David Stacoff
330

10. "Nonlinear Regression Models," by Jack de Ancunha
331

11. "Statistical Results from India's Conditions for Majority Rule," by Heriberto Raymund
332

12. "On Welfare Economics with Incomplete Information and the Social Value of Patch Information," by Peter J. Gagnon
333

13. "Equilibrium Policy Proposals with Asymmetric Costs," Peter J. Gagnon
334

14. "Ultimate Incentive and Incentive Measures," by Michael I. Lakat
335

15. "The Life-Cycle Hypothesis and the Effect of Social Security and Private Pension on Life-Cycle Savings," by Michael I. Lakat
336

16. "Optimal Retirement Age," by Michael I. Lakat
337

17. "Bayesian Incentive Compatible Beliefs," by Charles F. Vining and Leon A. Gorin
338

18. "Qualitative Response Models: A Survey," by László Lovász
339

19. "The Social Costs of Monopolies and Regulation," by George Horwitz, Peter J. Gagnon
340

20. "Segmentation of Spending Patterns," by Michael I. Lakat
341

21. "Formation and Formation of Domains: Methodology and Data," by J. W. Anderson, Michael J. Rosenthal, and Leon A. Gorin
342

22. "The Past Optimality of Distortionary Consumption Tax Rates," by Charles F. Vining
343

23. "Three Lectures in Monetary Theory," by Frank H. Hahn
344

24. "Socially Optimal Bequest Rules and the Problem of Bequests," by Michael I. Lakat, David M. Kreps, and Robert Wilson
345

25. "Frank Mino and David A. Sternoff
346

26. "Approximate Partitioned Mixed Strategies," by Robert A. Pollak, Leon A. Gorin, R. R. Haider, R. W. Rosenthal, and Robert Wilson
347

27. "Conditions for Existence of Majority Rule with Asymmetric Beliefs," by H. H. Reiter
348

28. "How Receptive Are Individuals to Alternative Consumption Tax Rates," by Leon A. Gorin
349

29. "Optimal Disutility in the Study of Budget Constraints," by Leon A. Gorin
350

30. "Tax Capitalization and Real Estate Prices," by Leon A. Gorin
351

31. "Risk Perception and Perception of Risk," by Leon A. Gorin
352

32. "Spurious Correlations," by Leon A. Gorin
353

33. "Predictor Response and Predictor Bias," by Leon A. Gorin
354

34. "Social and Personal Problems of Optimal Retirement," by Leon A. Gorin
355

35. "Retirement Response," by Leon A. Gorin
356

36. "Least Absolute Deviations: Properties of the Generalized Median," by Leon A. Gorin
357

37. "Relatively Resistant Regression," by Leon A. Gorin
358

38. "An Alternative Approach to the Theory of Consumer Welfare," by Peter J. Gagnon
359

39. "Optimal Investment Under Risk," by Leon A. Gorin
360

40. "Optimal Investment Under Risk," by Leon A. Gorin
361

41. "Optimal Retirement Age," by Leon A. Gorin
362

42. "Optimal Retirement Age," by Leon A. Gorin
363

43. "Optimal Retirement Age," by Leon A. Gorin
364

44. "Optimal Retirement Age," by Leon A. Gorin
365

45. "Optimal Retirement Age," by Leon A. Gorin
366

46. "Optimal Retirement Age," by Leon A. Gorin
367

47. "Optimal Retirement Age," by Leon A. Gorin
368

48. "Optimal Retirement Age," by Leon A. Gorin
369

49. "Optimal Retirement Age," by Leon A. Gorin
370

50. "Optimal Retirement Age," by Leon A. Gorin
371

51. "Optimal Retirement Age," by Leon A. Gorin
372

52. "Optimal Retirement Age," by Leon A. Gorin
373

53. "Optimal Retirement Age," by Leon A. Gorin
374

54. "Optimal Retirement Age," by Leon A. Gorin
375

55. "Optimal Retirement Age," by Leon A. Gorin
376

56. "Optimal Retirement Age," by Leon A. Gorin
377

57. "Optimal Retirement Age," by Leon A. Gorin
378

58. "Optimal Retirement Age," by Leon A. Gorin
379

59. "Optimal Retirement Age," by Leon A. Gorin
380

60. "Optimal Retirement Age," by Leon A. Gorin
381

61. "Optimal Retirement Age," by Leon A. Gorin
382

62. "Optimal Retirement Age," by Leon A. Gorin
383

63. "Optimal Retirement Age," by Leon A. Gorin
384

64. "Optimal Retirement Age," by Leon A. Gorin
385

65. "Optimal Retirement Age," by Leon A. Gorin
386

66. "Optimal Retirement Age," by Leon A. Gorin
387

67. "Optimal Retirement Age," by Leon A. Gorin
388

68. "Optimal Retirement Age," by Leon A. Gorin
389

69. "Optimal Retirement Age," by Leon A. Gorin
390

70. "Optimal Retirement Age," by Leon A. Gorin
391

71. "Optimal Retirement Age," by Leon A. Gorin
392

72. "Optimal Retirement Age," by Leon A. Gorin
393

73. "Optimal Retirement Age," by Leon A. Gorin
394

74. "Optimal Retirement Age," by Leon A. Gorin
395

75. "Optimal Retirement Age," by Leon A. Gorin
396

76. "Optimal Retirement Age," by Leon A. Gorin
397

77. "Optimal Retirement Age," by Leon A. Gorin
398

78. "Optimal Retirement Age," by Leon A. Gorin
399

79. "Optimal Retirement Age," by Leon A. Gorin
400

80. "Optimal Retirement Age," by Leon A. Gorin
401

81. "Optimal Retirement Age," by Leon A. Gorin
402

82. "Optimal Retirement Age," by Leon A. Gorin
403

83. "Optimal Retirement Age," by Leon A. Gorin
404

84. "Optimal Retirement Age," by Leon A. Gorin
405

85. "Optimal Retirement Age," by Leon A. Gorin
406

86. "Optimal Retirement Age," by Leon A. Gorin
407

87. "Optimal Retirement Age," by Leon A. Gorin
408

88. "Optimal Retirement Age," by Leon A. Gorin
409

89. "Optimal Retirement Age," by Leon A. Gorin
410

90. "Optimal Retirement Age," by Leon A. Gorin
411

91. "Optimal Retirement Age," by Leon A. Gorin
412

92. "Optimal Retirement Age," by Leon A. Gorin
413

93. "Optimal Retirement Age," by Leon A. Gorin
414

94. "Optimal Retirement Age," by Leon A. Gorin
415

95. "Optimal Retirement Age," by Leon A. Gorin
416

96. "Optimal Retirement Age," by Leon A. Gorin
417

97. "Optimal Retirement Age," by Leon A. Gorin
418

98. "Optimal Retirement Age," by Leon A. Gorin
419

99. "Optimal Retirement Age," by Leon A. Gorin
420

100. "Optimal Retirement Age," by Leon A. Gorin
421

101. "Optimal Retirement Age," by Leon A. Gorin
422

102. "Optimal Retirement Age," by Leon A. Gorin
423

103. "Optimal Retirement Age," by Leon A. Gorin
424

104. "Optimal Retirement Age," by Leon A. Gorin
425

105. "Optimal Retirement Age," by Leon A. Gorin
426

106. "Optimal Retirement Age," by Leon A. Gorin
427

107. "Optimal Retirement Age," by Leon A. Gorin
428

108. "Optimal Retirement Age," by Leon A. Gorin
429

109. "Optimal Retirement Age," by Leon A. Gorin
430

110. "Optimal Retirement Age," by Leon A. Gorin
431

111. "Optimal Retirement Age," by Leon A. Gorin
432

112. "Optimal Retirement Age," by Leon A. Gorin
433

113. "Optimal Retirement Age," by Leon A. Gorin
434

114. "Optimal Retirement Age," by Leon A. Gorin
435

115. "Optimal Retirement Age," by Leon A. Gorin
436

116. "Optimal Retirement Age," by Leon A. Gorin
437

117. "Optimal Retirement Age," by Leon A. Gorin
438

118. "Optimal Retirement Age," by Leon A. Gorin
439

119. "Optimal Retirement Age," by Leon A. Gorin
440

120. "Optimal Retirement Age," by Leon A. Gorin
441

121. "Optimal Retirement Age," by Leon A. Gorin
442

122. "Optimal Retirement Age," by Leon A. Gorin
443

123. "Optimal Retirement Age," by Leon A. Gorin
444

124. "Optimal Retirement Age," by Leon A. Gorin
445

125. "Optimal Retirement Age," by Leon A. Gorin
446

126. "Optimal Retirement Age," by Leon A. Gorin
447

127. "Optimal Retirement Age," by Leon A. Gorin
448

128. "Optimal Retirement Age," by Leon A. Gorin
449

129. "Optimal Retirement Age," by Leon A. Gorin
450

130. "Optimal Retirement Age," by Leon A. Gorin
451

131. "Optimal Retirement Age," by Leon A. Gorin
452

132. "Optimal Retirement Age," by Leon A. Gorin
453

133. "Optimal Retirement Age," by Leon A. Gorin
454

134. "Optimal Retirement Age," by Leon A. Gorin
455

135. "Optimal Retirement Age," by Leon A. Gorin
456

136. "Optimal Retirement Age," by Leon A. Gorin
457

137. "Optimal Retirement Age," by Leon A. Gorin
458

138. "Optimal Retirement Age," by Leon A. Gorin
459

139. "Optimal Retirement Age," by Leon A. Gorin
460

140. "Optimal Retirement Age," by Leon A. Gorin
461

141. "Optimal Retirement Age," by Leon A. Gorin
462

142. "Optimal Retirement Age," by Leon A. Gorin
463

143. "Optimal Retirement Age," by Leon A. Gorin
464

144. "Optimal Retirement Age," by Leon A. Gorin
465

145. "Optimal Retirement Age," by Leon A. Gorin
466

146. "Optimal Retirement Age," by Leon A. Gorin
467

147. "Optimal Retirement Age," by Leon A. Gorin
468

148. "Optimal Retirement Age," by Leon A. Gorin
469

149. "Optimal Retirement Age," by Leon A. Gorin
470

150. "Optimal Retirement Age," by Leon A. Gorin
471

151. "Optimal Retirement Age," by Leon A. Gorin
472

152. "Optimal Retirement Age," by Leon A. Gorin
473

153. "Optimal Retirement Age," by Leon A. Gorin
474

154. "Optimal Retirement Age," by Leon A. Gorin
475

155. "Optimal Retirement Age," by Leon A. Gorin
476

156. "Optimal Retirement Age," by Leon A. Gorin
477

157. "Optimal Retirement Age," by Leon A. Gorin
478

158. "Optimal Retirement Age," by Leon A. Gorin
479

159. "Optimal Retirement Age," by Leon A. Gorin
480

160. "Optimal Retirement Age," by Leon A. Gorin
481

161. "Optimal Retirement Age," by Leon A. Gorin
482

162. "Optimal Retirement Age," by Leon A. Gorin
483

163. "Optimal Retirement Age," by Leon A. Gorin
484

164. "Optimal Retirement Age," by Leon A. Gorin
485

165. "Optimal Retirement Age," by Leon A. Gorin
486

166. "Optimal Retirement Age," by Leon A. Gorin
487

167. "Optimal Retirement Age," by Leon A. Gorin
488

168. "Optimal Retirement Age," by Leon A. Gorin
489

169. "Optimal Retirement Age," by Leon A. Gorin
490

170. "Optimal Retirement Age," by Leon A. Gorin
491

171. "Optimal Retirement Age," by Leon A. Gorin
492

172. "Optimal Retirement Age," by Leon A. Gorin
493

173. "Optimal Retirement Age," by Leon A. Gorin
494

174. "Optimal Retirement Age," by Leon A. Gorin
495

175. "Optimal Retirement Age," by Leon A. Gorin
496

176. "Optimal Retirement Age," by Leon A. Gorin
497

177. "Optimal Retirement Age," by Leon A. Gorin
498

178. "Optimal Retirement Age," by Leon A. Gorin
499

179. "Optimal Retirement Age," by Leon A. Gorin
500

180. "Optimal Retirement Age," by Leon A. Gorin
501

181. "Optimal Retirement Age," by Leon A. Gorin
502

182. "Optimal Retirement Age," by Leon A. Gorin
503

183. "Optimal Retirement Age," by Leon A. Gorin
504

184. "Optimal Retirement Age," by Leon A. Gorin
505

185. "Optimal Retirement Age," by Leon A. Gorin
506

186. "Optimal Retirement Age," by Leon A. Gorin
507

187. "Optimal Retirement Age," by Leon A. Gorin
508

188. "Optimal Retirement Age," by Leon A. Gorin
509

189. "Optimal Retirement Age," by Leon A. Gorin
510

190. "Optimal Retirement Age," by Leon A. Gorin
511

191. "Optimal Retirement Age," by Leon A. Gorin
512

192. "Optimal Retirement Age," by Leon A. Gorin
513

193. "Optimal Retirement Age," by Leon A. Gorin
514

194. "Optimal Retirement Age," by Leon A. Gorin
515

195. "Optimal Retirement Age," by Leon A. Gorin
516

196. "Optimal Retirement Age," by Leon A. Gorin
517

197. "Optimal Retirement Age," by Leon A. Gorin
518

198. "Optimal Retirement Age," by Leon A. Gorin
519

199. "Optimal Retirement Age," by Leon A. Gorin
520

200. "Optimal Retirement Age," by Leon A. Gorin
521

201. "Optimal Retirement Age," by Leon A. Gorin
522

202. "Optimal Retirement Age," by Leon A. Gorin
523

203. "Optimal Retirement Age," by Leon A. Gorin
524

204. "Optimal Retirement Age," by Leon A. Gorin
525

205. "Optimal Retirement Age," by Leon A. Gorin
526

206. "Optimal Retirement Age," by Leon A. Gorin
527

207. "Optimal Retirement Age," by Leon A. Gorin
528

208. "Optimal Retirement Age," by Leon A. Gorin
529

209. "Optimal Retirement Age," by Leon A. Gorin
530

210. "Optimal Retirement Age," by Leon A. Gorin
531

211. "Optimal Retirement Age," by Leon A. Gorin
532

212. "Optimal Retirement Age," by Leon A. Gorin
533

213. "Optimal Retirement Age," by Leon A. Gorin
534

214. "Optimal Retirement Age," by Leon A. Gorin
535

215. "Optimal Retirement Age," by Leon A. Gorin
536

216. "Optimal Retirement Age," by Leon A. Gorin
537

217. "Optimal Retirement Age," by Leon A. Gorin
538

218. "Optimal Retirement Age," by Leon A. Gorin
539

219. "Optimal Retirement Age," by Leon A. Gorin
540

220. "Optimal Retirement Age," by Leon A. Gorin
541

221. "Optimal Retirement Age," by Leon A. Gorin
542

222. "Optimal Retirement Age," by Leon A. Gorin
543

223. "Optimal Retirement Age," by Leon A. Gorin
544

224. "Optimal Retirement Age," by Leon A. Gorin
545

225. "Optimal Retirement Age," by Leon A. Gorin
546

226. "Optimal Retirement Age," by Leon A. Gorin
547

227. "Optimal Retirement Age," by Leon A. Gorin
548

228. "Optimal Retirement Age," by Leon A. Gorin
549

229. "Optimal Retirement Age," by Leon A. Gorin
550

230. "Optimal Retirement Age," by Leon A. Gorin
551

231. "Optimal Retirement Age," by Leon A. Gorin
552

232. "Optimal Retirement Age," by Leon A. Gorin
553

233. "Optimal Retirement Age," by Leon A. Gorin
554

234. "Optimal Retirement Age," by Leon A. Gorin
555

235. "Optimal Retirement Age," by Leon A. Gorin
556

236. "Optimal Retirement Age," by Leon A. Gorin
557

237. "Optimal Retirement Age," by Leon A. Gorin
558

238. "Optimal Retirement Age," by Leon A. Gorin
559

239. "Optimal Retirement Age," by Leon A. Gorin
560

240. "Optimal Retirement Age," by Leon A. Gorin
561

241. "Optimal Retirement Age," by Leon A. Gorin
562

242. "Optimal Retirement Age," by Leon A. Gorin
563

243. "Optimal Retirement Age," by Leon A. Gorin
564

244. "Optimal Retirement Age," by Leon A. Gorin
565

245. "Optimal Retirement Age," by Leon A. Gorin
566

246. "Optimal Retirement Age," by Leon A. Gorin
567

247. "Optimal Retirement Age," by Leon A. Gorin
568

248. "Optimal Retirement Age," by Leon A. Gorin
569

249. "Optimal Retirement Age," by Leon A. Gorin
570

250. "Optimal Retirement Age," by Leon A. Gorin
571

251. "Optimal Retirement Age," by Leon A. Gorin
572

252. "Optimal Retirement Age," by Leon A. Gorin
573

253. "Optimal Retirement Age," by Leon A. Gorin
574

254. "Optimal Retirement Age," by Leon A. Gorin
575

255. "Optimal Retirement Age," by Leon A. Gorin
576

256. "Optimal Retirement Age," by Leon A. Gorin
577

257. "Optimal Retirement Age," by Leon A. Gorin
578

258. "Optimal Retirement Age," by Leon A. Gorin
579

259. "Optimal Retirement Age," by Leon A. Gorin
580

260. "Optimal Retirement Age," by Leon A. Gorin
581

261. "Optimal Retirement Age," by Leon A. Gorin
582

262. "Optimal Retirement Age," by Leon A. Gorin
583

263. "Optimal Retirement Age," by Leon A. Gorin
584

264. "Optimal Retirement Age," by Leon A. Gorin
585

265. "Optimal Retirement Age," by Leon A. Gorin
586

266. "Optimal Retirement Age," by Leon A. Gorin
587

267. "Optimal Retirement Age," by Leon A. Gorin
588

268. "Optimal Retirement Age," by Leon A. Gorin
589

269. "Optimal Retirement Age," by Leon A. Gorin
590

270. "Optimal Retirement Age," by Leon A. Gorin
591

271. "Optimal Retirement Age," by Leon A. Gorin
592

272. "Optimal Retirement Age," by Leon A. Gorin
593

273. "Optimal Retirement Age," by Leon A. Gorin
594

274. "Optimal Retirement Age," by Leon A. Gorin
595

275. "Optimal Retirement Age," by Leon A. Gorin
596

276. "Optimal Retirement Age," by Leon A. Gorin
597

277. "Optimal Retirement Age," by Leon A. Gorin
598

278. "Optimal Retirement Age," by Leon A. Gorin
599

279. "Optimal Retirement Age," by Leon A. Gorin
600

280. "Optimal Retirement Age," by Leon A. Gorin
601

281. "Optimal Retirement Age," by Leon A. Gorin
602

282. "Optimal Retirement Age," by Leon A. Gorin
603

283. "Optimal Retirement Age," by Leon A. Gorin
604

284. "Optimal Retirement Age," by Leon A. Gorin
605

285. "Optimal Retirement Age," by Leon A. Gorin
606

286. "Optimal Retirement Age," by Leon A. Gorin
607

287. "Optimal Retirement Age," by Leon A. Gorin
608

288. "Optimal Retirement Age," by Leon A. Gorin
609

289. "Optimal Retirement Age," by Leon A. Gorin
610

290. "Optimal Retirement Age," by Leon A. Gorin
611

291. "Optimal Retirement Age," by Leon A. Gorin
612

292. "Optimal Retirement Age," by Leon A. Gorin
613

293. "Optimal Retirement Age," by Leon A. Gorin
614

294. "Optimal Retirement Age," by Leon A. Gorin
615

295. "Optimal Retirement Age," by Leon A. Gorin
616

296. "Optimal Retirement Age," by Leon A. Gorin
617

297. "Optimal Retirement Age," by Leon A. Gorin
618

298. "Optimal Retirement Age," by Leon A. Gorin
619

299. "Optimal Retirement Age," by Leon A. Gorin
620

300. "Optimal Retirement Age," by Leon A. Gorin
621

301. "Optimal Retirement Age," by Leon A. Gorin
622

302. "Optimal Retirement Age," by Leon A. Gorin
623

303. "Optimal Retirement Age," by Leon A. Gorin
624

304. "Optimal Retirement Age," by Leon A. Gorin
625

305. "Optimal Retirement Age," by Leon A. Gorin
626

306. "Optimal Retirement Age," by Leon A. Gorin
627

307. "Optimal Retirement Age," by Leon A. Gorin
628

308. "Optimal Retirement Age," by Leon A. Gorin
629

309. "Optimal Retirement Age," by Leon A. Gorin
630

310. "Optimal Retirement Age," by Leon A. Gorin
631

311. "Optimal Retirement Age," by Leon A. Gorin
632

312. "Optimal Retirement Age," by Leon A. Gorin
633

313. "Optimal Retirement Age," by Leon A. Gorin
634

314. "Optimal Retirement Age," by Leon A. Gorin
635

315. "Optimal Retirement Age," by Leon A. Gorin
636

316. "Optimal Retirement Age," by Leon A. Gorin
637

317. "Optimal Retirement Age," by Leon A. Gorin
638

318. "Optimal Retirement Age," by Leon A. Gorin
639

319. "Optimal Retirement Age," by Leon A. Gorin
640

320. "Optimal Retirement Age," by Leon A. Gorin
641

321. "Optimal Retirement Age," by Leon A. Gorin
642

322. "Optimal Retirement Age," by Leon A. Gorin
643

323. "Optimal Retirement Age," by Leon A. Gorin
644

324. "Optimal Retirement Age," by Leon A. Gorin
645

325. "Optimal Retirement Age," by Leon A. Gorin
646

326. "Optimal Retirement Age," by Leon A. Gorin
647

327. "Optimal Retirement Age," by Leon A. Gorin
648

328. "Optimal Retirement Age," by Leon A. Gorin
649

329. "Optimal Retirement Age," by Leon A. Gorin
650

330. "Optimal Retirement Age," by Leon A. Gorin
651

331. "Optimal Retirement Age," by Leon A. Gorin
652

332. "Optimal Retirement Age," by Leon A. Gorin
653

333. "Optimal Retirement Age," by Leon A. Gorin
654

334. "Optimal Retirement Age," by Leon A. Gorin
655

335. "Optimal Retirement Age," by Leon A. Gorin
656

336. "Optimal Retirement Age," by Leon A. Gorin
657

337. "Optimal Retirement Age," by Leon A. Gorin
658

338. "Optimal Retirement Age," by Leon A. Gorin
659

339. "Optimal Retirement Age," by Leon A. Gorin
660

340. "Optimal Retirement Age," by Leon A. Gorin
661

341. "Optimal Retirement Age," by Leon A. Gorin
662

342. "Optimal Retirement Age," by Leon A. Gorin
663

343. "Optimal Retirement Age," by Leon A. Gorin
664

344. "Optimal Retirement Age," by Leon A. Gorin
665

345. "Optimal Retirement Age," by Leon A. Gorin
666

346. "Optimal Retirement Age," by Leon A. Gorin
667

347. "Optimal Retirement Age," by Leon A. Gorin
668

348. "Optimal Retirement Age," by Leon A. Gorin
669

349. "Optimal Retirement Age," by Leon A. Gorin
670

350. "Optimal Retirement Age," by Leon A. Gorin
671

351. "Optimal Retirement Age," by Leon A. Gorin
672

352. "Optimal Retirement Age," by Leon A. Gorin
673

353. "Optimal Retirement Age," by Leon A. Gorin
674

354. "Optimal Retirement Age," by Leon A. Gorin
675

355. "Optimal Retirement Age," by Leon A. Gorin
676

356. "Optimal Retirement Age," by Leon A. Gorin
677

357. "Optimal Retirement Age," by Leon A. Gorin
678

358. "Optimal Retirement Age," by Leon A. Gorin
679

359. "Optimal Retirement Age," by Leon A. Gorin
680

360. "Optimal Retirement Age," by Leon A. Gorin
681

361. "Optimal Retirement Age," by Leon A. Gorin
682

362. "Optimal Retirement Age," by Leon A. Gorin
683

363. "Optimal Retirement Age," by Leon A. Gorin
684

364. "Optimal Retirement Age," by Leon A. Gorin
685

365. "Optimal Retirement Age," by Leon A. Gorin
686

366. "Optimal Retirement Age," by Leon A. Gorin<br

Reports in this Series

376. "Necessary and Sufficient Conditions for Single-Peakedness Along a Linearly Ordered Set of Policy Alternatives" by P.J. Coughlin and M.J. Hinich.
377. "The Role of Reputation in a Repeated Agency Problem Involving Information Transmission" by W. P. Rogerson.
378. "Unemployment Equilibrium with Stochastic Rationing of Supplies" by Ho-mou Wu.
379. "Optimal Price and Income Regulation Under Uncertainty in the Model with One Producer" by M. I. Taksar.
380. "On the NTU Value" by Robert J. Aumann.
381. "Best Invariant Estimation of a Direction Parameter with Application to Linear Functional Relationships and Factor Analysis" by T. W. Anderson, C. Stein and A. Zaman.
382. "Informational Equilibrium" by Robert Kast.
383. "Cooperative Oligopoly Equilibrium" by Mordecai Kurz.
384. "Reputation and Product Quality" by William P. Rogerson.
385. "Auditing: Perspectives from Multiperson Decision Theory" By Robert Wilson.
386. "Capacity Pricing" by Oren, Smith and Wilson.
387. "Consequentialism and Rationality in Dynamic Choice Under Uncertainty" by P.J. Hammond.
388. "The Structure of Wage Contracts in Repeated Agency Models" by W. P. Rogerson.
389. "1982 Abraham Wald Memorial Lectures, Estimating Linear Statistical Relationships" by T.W. Anderson.
390. "Aggregates, Activities and Overheads" by W.M. Gorman.
391. "Double Auctions" by Robert Wilson.
392. "Efficiency and Fairness in the Design of Bilateral Contracts" by S. Honkapohja.
393. "Diagonality of Cost Allocation Prices" by L.J. Mirman and A. Neyman
394. "General Asset Markets, Private Capital Formation, and the Existence of Temporary Walrasian Equilibrium" by P.J. Hammond
395. "Asymptotic Normality of the Censored and Truncated Least Absolute Deviations Estimators" by J.L. Powell
396. "Dominance-Solvability and Cournot Stability" by Herve Moulin
397. "Managerial Incentives, Investment and Aggregate Implications" by B. Holmstrom and L. Weiss

Reports in this Series

- 398 "Generalizations of the Censored and Truncated Least Absolute Deviations Estimators" by J.L. Powell.
- 399. "Behavior Under Uncertainty and its Implications for Policy" by K.J. Arrow.
- 400. "Third-Order Efficiency of the Extended Maximum Likelihood Estimators in a Simultaneous Equation System" by K. Takeuchi and K. Morimune.
- 401. "Short-Run Analysis of Fiscal Policy in a Simple Perfect Foresight Model" by K. Judd.
- 402. "Estimation of Failure Rate From A Complete Record of Failures and a Partial Record of Non-Failures" by K. Suzuki.
- 403. "Applications of Semi-Regenerative Theory to Computations of Stationary Distributions of Markov Chains" by W.K. Grassmann and M.I. Taksar.
- 404. "On the Optimality of Individual Behavior in First Come Last Served Queues With Preemption and Balking" by Refael Hassin.

END

FILMED

9-83

DTEC