

Lecture 6: Law of Large Numbers and Central Limit Theorem

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

June 12, 2021

Roadmap

- (1) Weak Law of Large Numbers: Result and Meaning
- (2) Central Limit Theorem: Result and Meaning
- (3) Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- (4) Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
 - Two most remarkable findings in probability theory

2 / 1

Roadmap

- (1) Weak Law of Large Numbers: Result and Meaning
- (2) Central Limit Theorem: Result and Meaning
- (3) Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- (4) Central Limit Theorem: Proof
 - Moment Generating Function (MGF)

L7(1) June 12, 2021 3 / 1

Our interest: Sum of Random Variables

- Example 1. *n* students who decides their presence, depending on their feeling. Each student is happy or sad at random, and only happy students will show their presence. How many students will show their presence?
- Example 2. I am hearing some sound. There are n noisy sources from outside.
- X_1, X_2, \ldots, X_n : i.i.d (independent and identically distributed) random variables
- $\mathbb{E}[X_i] = \mu$, $\operatorname{var}[X_i] = \sigma^2$
- Our interest is to understand how the following sum behaves:

$$S_n = X_1 + X_2 + \ldots + X_n$$

L7(1) June 12, 2021 4 / 1

What About Distribution of S_n ?

$$S_n = X_1 + X_2 + \ldots + X_n$$

• Figure out the distribution of S_n . Very challenging. Even just for Z = X + Y, finding the distribution, for example, requires the complex convolution.

$$p_Z(z) = \mathbb{P}(X + Y = z) = \sum_{x} p_X(x)p_Y(z - x)$$

- Easy case: Sum of normal rvs = a normal rv, however, generally very challenging.
- Possible apporach. Take a certain scaling with respect to n that corresponds to a new glass, and investigate the system for large n

L7(1) June 12, 2021 5 / 1

Sample Mean

• Consider the sample mean, and try to understand how S_n behaves:

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

- $\mathbb{E}(M_n) = \mu$, $\operatorname{var}(M_n) = \sigma^2/n$
- For large n, the variance $var(M_n)$ decays. We expect that, for large n, M_n looses its randomness and concentrates around μ .
- We call this law of large numbers (LLN).

L7(1) June 12, 2021 6 / 1

Let's Establish Mathematically

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

What about this? What's wrong?

$$M_n \xrightarrow{n \to \infty} \mu$$

• Ordinary convergence for the sequence of real numbers: $a_n \to L$

For every $\epsilon > 0$, there exists $N = N(\epsilon)$, such that for every $n \geq N$, $|a_n - L| \leq \epsilon$.

https://www.youtube.com/watch?v=4nBmsRA6eVw

- However, M_n is a random variable, which is a function from Ω to \mathbb{R} .
- Need to build up the new concept of convergence for the sequence of rvs.

L7(1) June 12, 2021 7 / 1

Convergence in Probability (1)

- What we want: a sequence of rvs $(Y_n)_{n=1,2,...}$ converges to a rv Y in some sense
- For any given $\epsilon > 0$, consider the sequence of events $A_n = \{|Y_n Y| \ge \epsilon\}$, and compute its sequence of probabilities $a_n = \mathbb{P}(A_n) = \mathbb{P}(|Y_n Y| \ge \epsilon)$.
- Now, $\{a_n\}$ are just the real numbers, and show that $a_n \to 0$ as $n \to \infty$.
- To show that $a_n \to 0$ as $n \to \infty$, which is just the ordinary convergence, we show:
 - For any $\delta > 0$, there exists $N = N(\delta)$, such that for all $n \geq N$, $|a_n 0| \leq \delta$
- Convergence in probability: $Y_n \xrightarrow{\text{in prob.}} Y$
 - For any $\epsilon > 0$ and for any $\delta > 0$, there exists $N = N(\delta)$, such that for all $n \geq N$, $\mathbb{P}(|Y_n Y| \geq \epsilon) \leq \delta$.
 - For any $\epsilon > 0$, $\mathbb{P}(\{|Y_n Y| \ge \epsilon\}) \xrightarrow{n \to \infty} 0$.

L7(1) June 12, 2021 8 / 1

Convergence in Probability (2)

- For any $\epsilon > 0$, $\mathbb{P}\left(\{|Y_n Y| \ge \epsilon\}\right) \xrightarrow{n \to \infty} 0$.
- For any $\epsilon > 0$, $\mathbb{P}\left(\{|Y_n a| \ge \epsilon\}\right) \xrightarrow{n \to \infty} 0$.
- A special case: when Y = a for some constant $a: Y_n \xrightarrow{\text{in prob.}} a$
- https://youtu.be/Ajar_6MAOLw?t=248

L7(1) June 12, 2021 9 / 1

Example 1: Convergence in Probability

- For any $\epsilon > 0$, $\mathbb{P}\left(\{|Y_n \mathbf{a}| \ge \epsilon\}\right) \xrightarrow{n \to \infty} 0$.
- A sequence of iid rvs $X_n \sim \mathcal{U}[0,1]$, and let

$$Y_n = \min\{X_1, X_2, \dots, X_n\}$$

- Our intuition: Y_n converges to 0, as $n \to 0$. Why?
- Proof. For any $\epsilon > 0$,

$$\mathbb{P}(|Y_n - 0| \ge \epsilon) = \mathbb{P}(X_1 \ge \epsilon, \dots, X_n \ge \epsilon) = \mathbb{P}(X_1 \ge \epsilon) \times \dots \times \mathbb{P}(X_n \ge \epsilon)$$
$$= (1 - \epsilon)^n \xrightarrow{n \to \infty} 0$$

L7(1) June 12, 2021 10 / 1

Example 2: Convergence in Probability

- For any $\epsilon > 0$, $\mathbb{P}\left(\{|Y_n a| \ge \epsilon\}\right) \xrightarrow{n \to \infty} 0$.
- Y: exponential rv with the parameter $\lambda=1$ (Remind: $\mathbb{P}(Y>y)=e^{-\lambda y}$)
- a sequence of rvs $Y_n = Y/n$ (note that these are dependent)
- Our intuition: Y_n converges to 0
- Proof. For any $\epsilon > 0$,

$$\mathbb{P}(|Y_n - 0| \ge \epsilon) = \mathbb{P}(Y \ge n\epsilon) = e^{-n\epsilon} \xrightarrow{n \to \infty} 0$$

L7(1) June 12, 2021 11 / 1

Example 3: Convergence in Probability

12 / 1

- For any $\epsilon > 0$, $\mathbb{P}(\{|Y_n a| \ge \epsilon\}) \xrightarrow{n \to \infty} 0$.
- Consider a sequence of rvs Y_n with the following distribution:

$$\mathbb{P}(Y_n = y) = \begin{cases} 1 - \frac{1}{n}, & \text{for } y = 0\\ \frac{1}{n}, & \text{for } y = n^2\\ 0, & \text{otherwise} \end{cases}$$

• For any $\epsilon > 0$,

$$\mathbb{P}(|Y_n| \ge \epsilon) = \frac{1}{n} \xrightarrow{n \to \infty} 0$$

• Thus, Y_n converges to 0 in probability.

L7(1) June 12, 2021

Weak Law of Large Numbers (WLLN)

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

• Roughly, M_n concetrates around μ

Weak law of large numbers

 M_n converges to μ in probability, i.e., $M_n \xrightarrow{\text{in prob.}} \mu$

- Why "Weak"? There exists a stronger version, which we call "strong" law of large numbers. We will not cover the strong law of large numbers in this class.
- The proof requires some knowledge about useful inequalities, which we will cover later.

L7(1) June 12, 2021 13 / 1

WLLN: Why Useful?

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

- If we take the scaling of S_n by 1/n, it behaves like a deterministic number. This significantly simplifies how we understand the world.
- For example, assume that a large number of identically distributed noises come to you. Then, you can roughly approximate it as $(n \times \text{average noise})$
- Provides an interpretation of expectations (as well as probabilities) in terms of a long sequence of identical independent experiments. For example, what is the probability of head of a coin? Toss 1000 times, and count the number of heads.

L7(1) June 12, 2021 14 / 1

Roadmap

- (1) Weak Law of Large Numbers: Result and Meaning
- (2) Central Limit Theorem: Result and Meaning
- (3) Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- (4) Central Limit Theorem: Proof
 - Moment Generating Function (MGF)

L7(2) June 12, 2021 15 / 1

Central Limit Theorem: Start with Scaling (1)

Loosely speaking, WLLG says:

$$(M_n-\mu) \xrightarrow{n\to\infty} 0$$

- However, we don't know how $M_n \mu$ converges to 0. For example, what's the speed of convergence?
- Question. What should be "something"? Something should blow up for large n.

- What's α for our magic?
- The answer is $\frac{1}{2}$

L7(2)

Central Limit Theorem: Start with Scaling (2)

• Reshaping the equation:

$$\frac{\sqrt{n}}{\sigma} \times (M_n - \mu) = \sqrt{n} \left(\frac{S_n - n\mu}{\sigma n} \right) = \frac{S_n - n\mu}{\sigma \sqrt{n}}.$$

- Let $Z_n = \frac{S_n n\mu}{\sigma\sqrt{n}}$. Then, $\mathbb{E}[Z_n] = 0$ and $\text{var}(Z_n) = 1$.
- Z_n is well-centered with a variance irrespective of n.
- We expect that Z_n converges to something meaningful as $n \to \infty$, but what?
- Some deterministic number just like WLLG?
- Interestingly, it converges to some well-known random variable.
 - Need a new concept of convergence: "convergence in distribution"

L7(2) June 12, 2021 17 / 1

Convergence in Distribution

• Consider a sequence of rvs $(Y_n)_{n=1,2,...}$ and a rv Y.

Convergence in Distribution:
$$Y_n \xrightarrow{\text{in dist.}} Y$$

For every y,

$$\mathbb{P}(Y_n \leq y) \xrightarrow{n \to \infty} \mathbb{P}(Y \leq y)$$

- Another type of convergence of rvs
- Comparison with convergence in probability?
 - \circ Convergence in probability \Longrightarrow Convergence in distribution, but the reverse is not true.
 - The proof is beyond what this class covers, but it will be interesting to find an example that shows convergence in distribution, which is not convergence in probability.

L7(2) June 12, 2021 18 / 1

Example: in Distribution, but not in Probability

- $X_n \sim \text{Bernoulli}(1/2)$, for all $n \geq 1$.
- $X = 1 X_n$.
- Note that $X \sim \text{Bernoulli}(1/2)$. It means that the distributions of X_n and X are equal. It is trivial that X_n converges to X in distribution.
- What about convergence in probability?

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}(|X_n - 1 + X_n| \ge \epsilon) = \mathbb{P}(|2X_n - 1| \ge \epsilon)$$

= $\mathbb{P}(1 \ge \epsilon)$ (because $|2X_n - 1| = 1$)

• We can find ϵ small enough so that the above does not go to zero.

L7(2) June 12, 2021 19 / 1

Central Limit Theorem: Formalism

•
$$S_n = X_1 + X_2 + \cdots + X_n$$
, $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$

Central Limit Theorem

 Z_n convergens to Z in distribution, where $Z \sim \mathcal{N}(0,1)$.

- Very surprising!
- Irrespecitive of the distribution of X_i , Z is normal.

L7(2) June 12, 2021 20 / 1

LLG vs. CLT: Different Scaling Glasses

- For simplicity, assume that $\mathbb{E}(X_i) = 0$ and $\text{var}(X_i) = 1, i = 1, 2, \dots, n$
- Law of Large Numbers

Scaling S_n by 1/n, you go to a deterministic world.

Central Limit Theorem

Scaling S_n by $1/\sqrt{n}$, you still stay at the random world, but not an arbitrary random world. That's the normal random world, not depending on the distribution of each X_i .

L7(2) June 12, 2021 21 / 1

Practical Use of CLT

$$Z_n = rac{S_n - n\mu}{\sigma\sqrt{n}}, \qquad \qquad \mathbb{P}(Z_n \leq z) \xrightarrow{n o \infty} \mathbb{P}(Z \leq z), \ \ Z \sim \mathcal{N}(0,1)$$

- Can approximate Z_n with a standard normal rv
- Can approximate S_n with a normal $rv \sim (n\mu, n\sigma^2)$

-
$$S_n = n\mu + Z_n \sigma \sqrt{n}$$

- How large should n be?
 - \circ A moderate n (20 or 30) usually works, which is the power of CLT.
 - If X_i resembles a normal rv more, smaller n works: symmetry and unimodality¹

22 / 1

¹Only unique mode. A single maximum or minimum.

CLT: Examples of Required *n*

L7(2) June 12, 2021 23 / 1

Examples of CLT (1)

 $\mathbb{P}(S_n \leq a) \approx b$: Given two parameters, find the third

- Package weights X_i : iid exponential $\lambda = 1/2$ ($\mu = 1/\lambda = 2$ and $\sigma^2 = 1/\lambda^2 = 4$)
- Load container with n = 100 packages

$$\mathbb{P}(S_{100} \geq 210) = \mathbb{P}\Big[rac{S_{100} - 100 \cdot 2}{2\sqrt{100}} \geq rac{210 - 200}{20}\Big] = \mathbb{P}(Z_{100} \geq 0.5) \ pprox \mathbb{P}(Z \geq 0.5) = 1 - \mathbb{P}(Z \leq 0.5) = 1 - \Phi(0.5)$$

L7(2) June 12, 2021 24 / 1

Examples of CLT (2)

$\mathbb{P}(S_n \leq a) \approx b$: Given two parameters, find the third

- Package weights X_i : iid exponential $\lambda = 1/2$ ($\mu = 1/\lambda = 2$ and $\sigma^2 = 1/\lambda^2 = 4$)
- n=100 packages, and choose the "capacity" a, so that $\mathbb{P}(S_n \geq a) \approx 0.05$

$$\mathbb{P}(S_{100} \ge a) = \mathbb{P}\Big[\frac{S_{100} - 100 \cdot 2}{2\sqrt{100}} \ge \frac{a - 200}{20}\Big] = \mathbb{P}(Z_{100} \ge \frac{a - 200}{20})$$

$$\approx \mathbb{P}(Z \ge \frac{a - 200}{20}) = 1 - \mathbb{P}(Z \le \frac{a - 200}{20}) = 1 - \Phi(\frac{a - 200}{20}) = 0.05$$

• The value of a such that $\Phi(\frac{a-200}{20}) = 0.95$? $\frac{a-200}{20} = 1.645$ and a = 232.9

L7(2) June 12, 2021 25 / 1

Examples of CLT (3)

$\mathbb{P}(S_n \leq a) \approx b$: Given two parameters, find the third

- Package weights X_i : iid exponential $\lambda = 1/2$ ($\mu = 1/\lambda = 2$ and $\sigma^2 = 1/\lambda^2 = 4$)
- How large n, so that $\mathbb{P}(S_n \geq 210) \approx 0.05$?

$$\mathbb{P}(S_n \ge 210) = \mathbb{P}\Big[\frac{S_n - 2n}{2\sqrt{n}} \ge \frac{210 - 2n}{2\sqrt{n}}\Big] \approx 1 - \Phi(\frac{210 - 2n}{2\sqrt{n}}) = 0.05$$

• The value of *n* such that $\frac{210-2n}{2\sqrt{n}} = 1.645$? n = 89

L7(2) June 12, 2021 26 / 1

Roadmap

- (1) Weak Law of Large Numbers: Result and Meaning
- (2) Central Limit Theorem: Result and Meaning
- (3) Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- (4) Central Limit Theorem: Proof
 - Moment Generating Function (MGF)

L7(3) June 12, 2021 27 / 1

Markov Inequality

- (Q) Knowing $\mathbb{E}(X)$, can we say something about the distribution of X?
- Intuition: small $\mathbb{E}(X) \Longrightarrow \text{small } \mathbb{P}(X \geq a)$

Markov Inequality

If
$$X \geq 0$$
 and $a > 0$, then $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$.

Proof. For any a > 0, define Y_a as:

$$Y_a \triangleq \begin{cases} 0, & \text{if } X < a, \\ a, & \text{if } X \ge a \end{cases}$$

Then, using non-negativity of X, $Y_a \leq X$, which leads to $\mathbb{E}[Y_a] \leq \mathbb{E}[X]$.

Note that we have:

$$\mathbb{E}[Y_a] = a\mathbb{P}(Y_a = a) = a\mathbb{P}(X \ge a).$$

Thus,
$$a \cdot \mathbb{P}(X \geq a) \leq \mathbb{E}[X]$$
.

L7(3) June 12, 2021 28 / 1

Chebyshev Inequality

- (Q) Knowing both $\mathbb{E}(X)$ and var(X), can we say something about the distribution of X?
- Intuition: small $var(X) \Longrightarrow X$ is unlikely to be too far away from its mean.
- $\mathbb{E}(X) = \mu$, $\operatorname{var}(X) = \sigma^2$.

Chebyshev Inequality

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2}$$
, for all $c > 0$

Proof.

$$\mathbb{P}\left(|X-\mu|\geq c\right)=\mathbb{P}\left((X-\mu)^2\geq c^2\right)\leq \frac{\mathbb{E}\left[(X-\mu)^2\right]}{c^2}=\frac{\mathsf{var}(X)}{c^2}$$

L7(3) June 12, 2021 29 / 1

Example: MI vs. CI

- $X \sim \exp(1)$. Then, $\mathbb{E}[X] = 1/\lambda = 1$ and $\operatorname{var}[X] = 1/\lambda^2 = 1$.
- Exact CCDF: $\mathbb{P}(X \geq a) = e^{-a}$
- Markov inequality

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a} = \frac{1}{a}$$

• Chebyshev inequality
$$\mathbb{P}(X \geq a) = \mathbb{P}(X - 1 \geq a - 1)$$

$$\leq \mathbb{P}(|X - 1| \geq a - 1) \leq \frac{1}{(a - 1)^2}$$

- For reasonably large a, CI provides much better bound.
- Knowing the variance helps
- Both bounds are the ones that bound the probability of rare events.

L7(3)

Back to WLLN Proof

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

Weak law of large numbers

 M_n converges to μ in probability.

Proof. For any given $\epsilon > 0$,

$$\mathbb{P}\left(|M_n - \mu| \ge \epsilon\right) \le \frac{\operatorname{var}(M_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \xrightarrow{n \to \infty} 0$$

L7(3) June 12, 2021 31 / 1

Comparison: WLLN vs. CLT

We ask the same question, and try to answer it, using WLLN or CLT.

See how the answers becomes different.

L7(3) June 12, 2021 32 / 1

Example: Polling using WLLN

- p: fraction of voters who support "Yung".
- Interview n randomly selected voters and record the result in $M_n = \frac{X_1 + ... + X_n}{n}$ which is an estimate of p, where the Bernoulli rv $X_i = 1$ if i-th interviewee answers "yes", and 0 otherwise.
- $\mathbb{P}(|M_n-p|\geq\epsilon)\leq rac{\sigma^2}{n\epsilon^2}=rac{p(1-p)}{n\epsilon^2}\leq rac{1}{4n\epsilon^2}$ (because $p(1-p)\leq 1/4$)
- Question. What is *n* so that the probability that our estimate is incorrect by more than 0.1 is no larger than 0.25?
 - $\circ \ \epsilon = 0.1 \ \text{and} \ \frac{1}{4n\epsilon^2} \le 0.25 \implies n \ge 100$
- Question. What is n so that the probability that our estimate is incorrect by more than 0.01 is no larger than 0.05?
 - $\circ \ \epsilon = 0.01 \ \text{and} \ \frac{1}{4n\epsilon^2} \le 0.05 \implies n \ge 50000$

L7(3) June 12, 2021 33 / 1

Example: Polling using CLT

$$\mathbb{P}(|M_n - p| \ge \epsilon) = \mathbb{P}\left[\left|\frac{S_n - np}{n}\right| \ge \epsilon\right] = \mathbb{P}\left[\left|\frac{S_n - np}{\sigma\sqrt{n}}\right| \ge \frac{\epsilon\sqrt{n}}{\sigma}\right]$$

$$\leq \mathbb{P}\left[\left|\frac{S_n - np}{\sigma\sqrt{n}}\right| \ge 2\epsilon\sqrt{n}\right] = 2\left(1 - \Phi(2\epsilon\sqrt{n})\right) \text{ (because } \sigma = \sqrt{p(1-p)} \le 1/2\text{)}$$

• Question. What is *n* so that the probability that our estimate is incorrect by more than 0.01 is no larger than 0.05?

$$\circ$$
 $\epsilon=0.01$ and $2\left(1-\Phi(2\epsilon\sqrt{n})\right)=0.05$, i.e., $\Phi(2\epsilon\sqrt{n})=0.975 \Longrightarrow 2\times0.01\times\sqrt{n}=1.96$ and thus $n=9604$

Compare: 50,000 from LLN vs. 9604 from CLT

L7(3) June 12, 2021 34 / 1

Roadmap

- (1) Weak Law of Large Numbers: Result and Meaning
- (2) Central Limit Theorem: Result and Meaning
- (3) Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- (4) Central Limit Theorem: Proof
 - Moment Generating Function (MGF)

L7(4) June 12, 2021 35 / 1

Moment Generating Function (MGF)

- For a rv X, it is a kind of transform
- The moment generating function (MGF) $M_X(s)$ of a rv X is a function of a scalar parameter s, defined by:

$$M_X(s) = \mathbb{E}[e^{sX}]$$

$$M(s) = \sum_{x} e^{sx} p_X(x)$$
 (discrete) $M(s) = \int e^{sx} f_X(x) dx$ (continuous)

• If the context is clear, we omit X and use just M(s).

L7(4) June 12, 2021 36 / 1

Examples

Ex1) Let $p_X(x)$ is given as:

$$p_X(x) = \begin{cases} 1/2, & \text{if } x = 2\\ 1/6, & \text{if } x = 3\\ 1/3, & \text{if } x = 5 \end{cases}$$

$$M(s) = \mathbb{E}(e^{sX}) = \frac{1}{2}e^{2s} + \frac{1}{6}e^{3s} + \frac{1}{3}e^{5s}$$

Ex2)
$$X \sim \exp(\lambda), f_X(x) = \lambda e^{-\lambda x}, x \ge 0$$

$$M(s) = \lambda \int_0^\infty e^{sx} e^{-\lambda x} dx$$

$$= \lambda \frac{e^{(s-\lambda)x}}{s-\lambda} \Big|_0^\infty \quad (\text{if } s < \lambda) = \frac{\lambda}{\lambda - s}$$

Ex3) Let a rv Y = aX + b.

$$M_Y(s) = \mathbb{E}(e^{sY}) = \mathbb{E}(e^{s(aX+b)})$$

= $e^{sb}\mathbb{E}(e^{saX}) = e^{sb}M_X(sa)$

Ex4) $X \sim \mathcal{N}(0,1)$

$$\begin{split} M(s) &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} e^{sy} dy + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2} + sy} dy \\ &= e^{\frac{s^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(y-s)^2} dy \\ &= e^{s^2/2} \text{ (because it is the pdf of } \mathcal{N}(s,1)) \end{split}$$

• Question. MGF of $\mathcal{N}(\mu, \sigma^2)$?

L7(4)

Useful Properties of MGF

1.
$$M'(0) = \mathbb{E}[X]$$

$$\frac{d}{ds}M(s) = \frac{d}{ds} \int_{-\infty}^{\infty} e^{sx} f_X(x) dx = \int_{-\infty}^{\infty} \frac{d}{ds} e^{sx} f_X(x) dx = \int_{-\infty}^{\infty} x e^{sx} f_X(x) dx$$

$$= \frac{d}{ds}M(s) \Big|_{s=0} = \mathbb{E}[X]$$

2. Similarly, $M''(0) = \mathbb{E}[X^2]$

$$3. \left. \frac{d^n}{ds^n} M(s) \right|_{s=0} = \mathbb{E}[X^n]$$

4. MGF provides a convenient way of generating moments. That's why it is called moment generating function.

L7(4) June 12, 2021 38 / 1

Example

- Exponential rv with parameter λ . We know that $\mathbb{E}(X) = 1/\lambda$ and $\text{var}(X) = 1/\lambda^2$, which we will compute using the MGF.
- Remind: $M(s) = \frac{\lambda}{\lambda s}$
- The first and the second moments are:

$$M'(s) = rac{\lambda}{(\lambda - s)^2}
ightarrow \mathbb{E}(X) = M'(0) = 1/\lambda$$
 $M''(s) = rac{2\lambda}{(\lambda - s)^3}
ightarrow \mathbb{E}(X^2) = M''(0) = 2/\lambda^2$

• Thus, $var(X) = 2/\lambda^2 - 1/\lambda^2 = 1/\lambda^2$

L7(4) June 12, 2021 39 / 1

Inversion Property

Inversion Property

The transform $M_X(s)$ associated with a random variable X uniquely determines the CDF of X, assuming that $M_X(s)$ is finite for all s in some interval [-a,a], where a is a positive number.

- In easy words, we can recover the distribution if we know the MGF.
- Thus, each rv has its own unique MGF.

L7(4) June 12, 2021 40 / 1

Example 1

Given the following MGF of rv X, what is the distribution of X?

$$M(s) = \frac{1}{4}e^{-s} + \frac{1}{2} + \frac{1}{8}e^{4s} + \frac{1}{8}e^{5s}$$

- Note that $M(s) = \sum_{x} e^{sx} p_X(x)$
- We can see that

$$p_X(-1) = \frac{1}{4}, \ p_X(0) = \frac{1}{2}, \ p_X(4) = \frac{1}{8}, \ p_X(5) = \frac{1}{8}$$

L7(4) June 12, 2021 41 / 1

Example 2

Given the following MGF of rv X, what is the distribution of X?

$$M(s) = \frac{pe^s}{1 - (1 - p)e^s}$$

- Note that $M(s) = \sum_{x} e^{sx} p_X(x)$
- M(s) can be reexpressed as the following geometric sum: when $(1-p)e^s < 1$, $M(s) = pe^s \left(1 + (1-p)e^s + (1-p)^2e^{2s} + (1-p)^3e^{3s} + \cdots\right)$
- $p_X(k)$: coefficient of the term e^{ks} , which means:

$$p_X(1) = p, \ p_X(2) = p(1-p), \ p_X(3) = p(1-p)^2, \ p_X(4) = p(1-p)^3, \dots$$

X is a geometric rv with parameter p

L7(4) June 12, 2021 42 / 1

Back to CLT Proof (1)

- Without loss of generality, assume $\mathbb{E}(X_i) = 0$ and $\text{var}(X_i) = 1$
- $Z_n = \frac{S_n}{\sqrt{n}} = \frac{X_1 + X_2 + \dots X_n}{\sqrt{n}}$
- We will show: MGF of Z_n converges to MFG of $\mathcal{N}(0,1)$ (using inversion property)
- Proof.

$$\mathbb{E}\left[e^{sS_n/\sqrt{n}}\right] = \mathbb{E}\left[e^{sX_1/\sqrt{n}}\right] \times \cdots \times \mathbb{E}\left[e^{sX_n/\sqrt{n}}\right]$$
$$= \left(\mathbb{E}\left[e^{sX_1/\sqrt{n}}\right]\right)^n = \left(M_{X_1}\left(\frac{s}{\sqrt{n}}\right)\right)^n$$

• For simplicity, let $M(\cdot) = M_{X_1}(\cdot)$

June 12, 2021 43 / 1

Back to CLT Proof (2)

- M(0) = 1, M'(0) = 0, M''(0) = 1
- $\left(M\left(\frac{s}{\sqrt{n}}\right)\right)^n \xrightarrow{n\to\infty} \text{what???}$
- Taking log, $n \log M\left(\frac{s}{\sqrt{n}}\right) \xrightarrow{n \to \infty}$ what???
- For convenience, do the change of variable $y = \frac{1}{\sqrt{n}}$. Then, $\lim_{y \to 0} \frac{\log M(ys)}{y^2}$
- If we apply l'hopital's rule twice (please check), we get

$$\lim_{y\to 0}\frac{\log M(ys)}{y^2}=\frac{s^2}{2}$$

Questions?

L7(4) June 12, 2021 45 / 1

Review Questions

- 1) What's the practical value of LLN and CLT?
- 2) Explain LLN and CLT from the scaling perspective.
- 3) Why are LLN and CLT great?
- 4) Why do we need different concepts of convergence for random variables?
- 5) Explain what is convergence in probability.
- 6) Explain what is convergence in distribution.
- 7) Why is MGF useful?

L7(4) June 12, 2021 46 / 1