Zadania domowe

Ćwiczenie 3

Budowa modeli obiektów 3-D

Zadanie 3.1

Model terenu na bazie fraktala plazmowego

Założenia:

Należy wykorzystać opracowany w poprzednim ćwiczeniu algorytm i program do generacji fraktala plazmowego

Algorytm generacji modelu terenu:

Krok 1

Wygenerować fraktal plazmowy przypisując punktom "wysokości" z dowolnie wybranej, skali.

Krok 2

Zbudować model w postaci siatki czworoboków lub trójkątów według zasady z rysunku..

Zadanie do wykonania

Napisać program rysujący powstały na bazie fraktala plazmowego fragment terenu w postaci siatki i wieloboków (trójkątów) wypełnionych interpolacyjnie losowo wybranymi kolorami.

Symulacja ruchu planet

Ruch planet w układzie słonecznym opisany jest przez trzy prawa sformułowane przez Keplera.

Pierwsze prawo opisuje **kształt toru**, po którym porusza się planeta i mówi, że każda planeta porusza się wokół słońca po elipsie, w której w jednym z ognisk jest usytuowane słońce.

Drugie prawo określa **reguły ruchu planety po torze** i stwierdza, że w równych odstępach czasu promień wodzący o początku w ognisku, w którym znajduje się słońce zakreśla równe pola.

Trzecie prawo podaje <u>relacje pomiędzy ruchami dwóch planet</u> i mówi, że dla obu planet stosunek kwadratów okresów obiegu do sześcianów wielkich półosi orbit jest stały, czyli

$$\frac{T_1^2}{\alpha_1^3} = \frac{T_2^2}{\alpha_2^3}$$

gdzie:

 T_1 , T_2 – okresy obiegu planet,

 α_1 , α_2 – długości wielkich półosi orbit.

Zadanie do wykonania

Napisać program symulujący ruch jednej lub kilku planet. Jako model planety wykorzystać aproksymację powierzchni sfery przy pomocy siatki trójkątów, wykonaną podobnie jak model jajka z instrukcji ćwiczenia.

Torus

Założenia:

Torus w przestrzeni 3-D jest powierzchnią opisaną równaniem uwikłanym:

$$\left(R - \sqrt{x^2 + y^2}\right)^2 + z^2 = r^2$$

lub równaniem parametrycznym w postaci:

$$x(u,v) = (R + r\cos 2\pi v)\cos 2\pi u$$

$$y(u,v) = (R + r\cos 2\pi v)\sin 2\pi u$$

$$z(u,v) = r\sin 2\pi v$$

$$0 \le u \le 1$$

$$0 \le v \le 1$$

gdzie znaczenie parametrów R i r zostało wyjaśnione na rysunku przekroju torusa.

Zadanie do wykonania

Napisać program rysujący łańcuch wykonany z torusów. Łańcuch powinien być ukształtowany według jakiejś krzywej.

Powierzchnia Beziera

Założenia:

W przestrzeni 3-D dany jest zbiór (siatka) (m+1)x(n+1) tak zwanych punktów kontrolnych. Każdy punkt kontrolny opisany jest przy pomocy trzech współrzędnych

$$P_{jk} = (P_{jkx} \quad P_{jky} \quad P_{jkz}) \ j = 0,1,..., m \quad k = 0,1..., n$$

gdzie P_{jkx} , P_{jky} , P_{jkz} są współrzędnymi x, y, z punktu.

Powierzchnia Beziera (patrz wykład nr 7) opisana jest układem następujących równań parametrycznych:

$$x(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} P_{jkx} B_{j,m}(u) B_{k,n}(v)$$

$$y(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} P_{jky} B_{j,m}(u) B_{k,n}(v)$$

$$0 \le u \le 1$$

$$0 \le v \le 1$$

$$z(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} P_{jkz} B_{j,m}(u) B_{k,n}(v)$$

gdzie:

$$B_{j,m}(u) = {m \choose j} u^{j} (1-u)^{m-j} \quad j = 0,1,...,m$$

$$B_{k,n}(v) = \binom{n}{k} v^k (1-v)^{n-k} \quad k = 0,1,...,n$$

przy czym

$$\binom{m}{j} = \frac{m!}{j!(m-j)!} \qquad \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Ideę budowy powierzchni pokazują poniższe rysunki.

$$[P_{jk}] = \begin{bmatrix} (0,0,4) & (1,0,4) & (2,0,4) & (3,0,4) & (4,1,4) \\ (0,0,3) & (1,1,3) & (2,1,3) & (3,1,3) & (4,1,3) \\ (0,1,2) & (1,2,2) & (2,6,2) & (3,2,2) & (4,1,2) \\ (0,0,1) & (1,1,1) & (2,1,1) & (3,1,1) & (4,1,1) \\ (0,0,0) & (1,0,0) & (2,0,0) & (3,0,0) & (4,1,0) \end{bmatrix}$$

Siatka z podanymi współrzędnymi punktów kontrolnych

Powierzchnia zbudowana na podanej siatce

Zadanie do wykonania

Napisać program rysujący zadaną siatkę punktów kontrolnych w postaci małych kuleczek połączonych cienkimi liniami. Po naciśnięciu klawisza na rysunku ma się pojawić aproksymacja powierzchni Beziera złożona z wypełnionych przez interpolację kolorów trójkątów. Sprawdzić jak zmiana położenia punktu kontrolnego wpływa na kształt powierzchni.

Trójkat Sierpińskiego – wersja 3-D

Algorytm budowy tego obiektu geometrycznego jest podobny do metody tworzenia trójkąta Sierpińskiego.

• dany jest ostrosłup czworokątny prawidłowy,

• boki ostrosłupa dzielone są na pół i z wnętrza bryły usuwany jest taki fragment, że powstaje pięć nowych mniejszych o połowę ostrosłupów,

• dla powstałych w ten sposób ostrosłupów powtarzane są wykonane w poprzednim punkcie czynności

• i tak dalej

Zadanie do wykonania

Napisać program rysujący obraz bryły powstającej po wykonaniu zadanej liczby iteracji algorytmu. Czworościany powinny być zbudowane z trójkątów wypełnionych metodą interpolacji koloru.

Powierzchnia oparta na funkcji Weierstrassa

Założenia:

Funkcja Weierstrassa zadana jest przy pomocy zależności:

$$f(x,a) = \sum_{k=1}^{\infty} \frac{\sin(\pi k^a x)}{\pi k^a}$$

Nie wnikając zbytnio w subtelności matematyczne, można powiedzieć, że jest to bardzo dziwna funkcja, bowiem jest wszędzie ciągła i nigdzie różniczkowalna. Przykładowe wykresy funkcji dla wybranych wartości parametru *a* pokazano na rysunku.

Przebiegi funkcji dla a = 2 (czerwony), a = 3 (zielony), a = 4 (niebieski),

Zadanie do wykonania

Zaproponować algorytm i napisać program do budowy i wizualizacji modelu wzniesienia (góry) z wykorzystaniem funkcji Weierstrassa.