EC502 Macroeconomics

Week 17 Seminar: Consumption Theory

Malavika Thirumalai Ananthakrishnan

Contact: mt593@kent.ac.uk

University of Kent - School of Economics Spring Term 2020

February 17, 2024

1. Explain...

- a) Intertemporal Marginal Rate of Substitution
- ► Trade-off between consuming more today or saving more today and consuming more tomorrow
- IMRS: Rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility.
- ▶ Gain in utility from $\uparrow C_1$ compared to the loss of utility of consuming less tomorrow $\downarrow C_2$
- Measures willingness to give up future consumption to consume more today

$$IMRS \equiv \frac{U'(C_1)}{U'(C_2)}$$

b) Borrowing constraints

- Agents cannot borrow as much as they want only up to a certain amount
- **Extreme case:** $C_1 > Y_1 = T_1 \longleftrightarrow C_1 \leq Y_1 T_1$
- ▶ It may lead to a sub-optimal consumption bundle: lower utility
- Example: exercise 3 (graph)

1. Explain...

- d) Effect of a fall in the real interest rate r in the case of a net lender
 - A net lender is an agent that saves today's income to consume more tomorrow
 - ▶ Optimal consumption C_1^* , C_2^* : where the slope of the indifference curve is equal to the slope of budget constraint: IMRS = 1 + r

$$C_1 < Y_1 - T_1$$

- It implies a 'flatter' budget constraint
- It implies lower utility via a lower indifference curve
- Income effect: lower future interest earnings imply lower lifetime wealth: ↓ C₁, ↓ C₂
- ▶ Substitution effect: future consumption is more expensive, or the rewards from saving are lower: $\uparrow C_1$, $\downarrow C_2$
- ▶ In this example: **INCOME** effect dominates: $\downarrow C_1$
- It implies lower utility via a lower indifference curve
- Income effect: lower future interest earnings imply lower lifetime wealth: ↓ C₁, ↓ C₂
- ▶ <u>Substitution</u> effect: future consumption is more expensive, or the rewards from saving are lower: $\uparrow C_1$, $\downarrow C_2$
- ▶ In this example: **SUBSTITUTION** effect dominates: $\uparrow C_1$

3/18

Frame Title

Income effect dominates

a) Find the household's total wealth¹

In terms of today's consumption:

$$W = Y_1 + \frac{Y_2}{1+r} = 5,000 + \frac{10,000}{1.05} = 14,523.81$$

In terms of future's consumption:

$$W = Y_1(1+r) + Y_2 + = 5,000(1.05) + 10,000 = 15,250$$

b) Find the optimal level of consumption today and tomorrow

$$\max U(C_1, C_2) = \sqrt{C_1 C_2}$$
 s.t. $C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$

¹Assume no taxes, i.e. $T_i = 0 \quad \forall i$

$$\max U(C_1, C_2) = \sqrt{C_1 C_2}$$
 s.t. $C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$

Two ways to solve it²

- 1. Substitution method
- 2. Optimality condition

²Use the one you feel easier

$$\max U(C_1, C_2) = \sqrt{C_1 C_2}$$
 s.t. $C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$

Two ways to solve it²

1. Substitution method

From IBS, given that $C_1 = Y_1 + \frac{Y_2 - C_2}{1+r}$, substitute into utility function:

$$\max U(C_2) = \left[\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right) \cdot C_2 \right]^{1/2}$$
$$= \left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} \cdot C_2^{1/2}$$

Which is an unconstrained maximization problem

²Use the one you feel easier

$$\max U(C_2) = \left[Y_1 + \frac{Y_2 - C_2}{1 + r} \right]^{1/2} \cdot C_2^{1/2}$$

³continues next slide

³continues next slide

$$\max U(C_2) = \left[Y_1 + \frac{Y_2 - C_2}{1 + r}\right]^{1/2} \cdot C_2^{1/2}$$

- ▶ Calculate the first-order condition (FOC): $\partial U/\partial C_2 = 0$
- Use the chain rule

$$\frac{\partial U}{\partial C_2} = \frac{C_2^{-1/2}}{2} \cdot \left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} + C_2^{1/2} \cdot \frac{1}{2} \cdot \frac{-\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right)^{-1/2}}{1+r} = 0$$

³continues next slide

³continues next slide

$$\max U(C_2) = \left[Y_1 + \frac{Y_2 - C_2}{1 + r} \right]^{1/2} \cdot C_2^{1/2}$$

- ▶ Calculate the first-order condition (FOC): $\partial U/\partial C_2 = 0$
- ► Use the chain rule

$$\frac{\partial U}{\partial C_2} = \frac{C_2^{-1/2}}{2} \cdot \left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} + C_2^{1/2} \cdot \frac{1}{2} \cdot \frac{-\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right)^{-1/2}}{1+r} = 0$$

$$\frac{C_2^{-1/2}}{2} \cdot \left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} = C_2^{1/2} \cdot \frac{1}{2} \cdot \frac{\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right)^{-1/2}}{1+r}$$

$$\left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} = C_2 \frac{\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right)^{-1/2}}{1+r} \longleftrightarrow 3$$

³continues next slide

³continues next slide

2b. Find optimal consumption (continued)

$$\longleftrightarrow \left[Y_1 + \frac{Y_2 - C_2}{1+r} \right]^{1/2} = C_2 \frac{\left(Y_1 + \frac{Y_2 - C_2}{1+r} \right)^{-1/2}}{1+r}$$

$$Y_1 + \frac{Y_2 - C_2}{1+r} = \frac{C_2}{1+r}$$

$$Y_1 + \frac{Y_2}{1+r} = \frac{2C_2}{1+r}$$

$$C_2^* = \frac{Y_1 \cdot (1+r) + Y_2}{2}$$

▶ Then substitute C_2^* into the budget constraint (IBC)

2b. Find optimal consumption (continued)

▶ Then substitute C_2^* into the budget constraint (IBC)

$$C_{1} + \frac{\left[\frac{Y_{1} \cdot (1+r) + Y_{2}}{2}\right]}{1+r} = Y_{1} + \frac{Y_{2}}{1+r}$$

$$C_{1} + \left[\frac{Y_{1} \cdot (1+r) + Y_{2}}{2(1+r)}\right] = Y_{1} + \frac{Y_{2}}{1+r}$$

$$C_{1} = Y_{1} + \frac{Y_{2}}{1+r} - \frac{Y_{1} \cdot (1+r)}{2(1+r)} - \frac{Y_{2}}{2(1+r)}$$

$$C_{1} = \frac{Y_{1}}{2} - \frac{Y_{2}}{2(1+r)}$$

$$C_{1}^{*} = \frac{Y_{1}(1+r) - Y_{2}}{2(1+r)}$$

This implies the agent will consume half of its wealth in each period as preferences are homothetic

$$\max U(C_1, C_2) = \sqrt{C_1 C_2}$$
 s.t. $C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$

Two ways to solve it⁴

- 1. Substitution method
- 2. Optimality condition

⁴Use the one you feel easier

max
$$U(C_1, C_2) = \sqrt{C_1 C_2}$$
 s.t. $C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$

Two ways to solve it⁴

- 1. Substitution method
- 2. Optimality condition

Optimal allocation where slope of indifference curve = slope of budget constraint

$$IMRS \equiv \frac{U'(C_1)}{U'(C_2)} = 1 + r$$

$$\frac{\frac{1}{2} \cdot C_1^{-1/2} \cdot C_2^{1/2}}{\frac{1}{2} \cdot C_1^{1/2} \cdot C_2^{-1/2}} = 1 + r$$

$$\frac{C_2}{C_1} = 1 + r$$

⁴Use the one you feel easier

$$\frac{C_2}{C_1} = 1 + r$$

- ▶ This is the **Euler Equation**: the rate at which consumer is willing to substitute tomorrow's consumption with today's consumption
- ► Substitute C₁ into budget constraint (IBC)⁵

$$\frac{\frac{C_2}{1+r} + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}}{2 \cdot \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}}$$
$$C_2^* = \frac{Y_1(1+r) + Y_2}{2}$$

▶ Then substitute C_2^* into optimal Euler equation:

$$C_1^* = \frac{C_2^*}{1+r} = \frac{Y_1(1+r) + Y_2}{2(1+r)}$$

⁵You can substitute whichever you prefer

▶ Substitute for the values of Y_1 , Y_2 , r

$$C_1^* = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.05) + 10,000}{2(1+0.05)} = 7,261.9$$

$$C_2^* = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.05) + 10,000}{2} = 7,625$$

What is the type of the consumer?

$$C_1 \leq Y_1$$
?

▶ Substitute for the values of Y_1 , Y_2 , r

$$C_1^* = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.05) + 10,000}{2(1+0.05)} = 7,261.9$$

$$C_2^* = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.05) + 10,000}{2} = 7,625$$

What is the type of the consumer?

$$C_1 \lessgtr Y_1? \longleftrightarrow 7,261.9 > 5,000$$

► This is a **net borrower**: uses future income to consume more in the present

c) What if $\uparrow Y_1' = 5,500$ and Y_2 constant?

$$C_1^{*'} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,500(1+0.05) + 10,000}{2(1+0.05)} = 7,511.9$$

$$C_2^{*'} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,500(1+0.05) + 10,000}{2} = 7,887.5$$

Compare with previous result:

$$C_{1}^{*'} = 7,511.9 > C_{1}^{*} = 7,261.9$$
 $C_{2}^{*'} = 7,887.5 > C_{2}^{*} = 7,625$

c) What if $\uparrow Y_1' = 5,500$ and Y_2 constant?

$$C_1^{*'} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,500(1+0.05) + 10,000}{2(1+0.05)} = 7,511.9$$

$$C_2^{*'} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,500(1+0.05) + 10,000}{2} = 7,887.5$$

Compare with previous result:

$$C_1^{*'} = 7,511.9 > C_1^* = 7,261.9$$
 $C_2^{*'} = 7,887.5 > C_2^* = 7,625$

- ▶ C_1 increased **LESS** than the increase in income Y_1 : $\Delta C_1 = 250$
- Agent smoothes consumption across both periods
- Note still $C^{*'} > Y_1$, so net borrower. The net borrower position is reduced

12/18

d) What if $\uparrow Y_1' = 5,500$ AND $Y_2 = 10,500$, i.e., same increase?

$$C_1^{*''} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{\frac{5,500(1+0.05) + 10,500}{2(1+0.05)}}{2(1+0.05)} = 7750$$

$$C_2^{*''} = \frac{Y_1(1+r) + Y_2}{2} = \frac{\frac{5,500(1+0.05) + 10,500}{2}}{2} = 8137.5$$

Compare with previous result:

$$C_1^{*''} = 7750 > C_1^* = 7,261.9$$
 $C_2^{*''} = 8137.5 > C_2^* = 7,625$

d) What if $\uparrow Y_1' = 5,500$ AND $Y_2 = 10,500$, i.e., same increase?

$$C_1^{*''} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{\frac{5,500(1+0.05) + \frac{10,500}{200}}{2(1+0.05)} = 7750$$

$$C_2^{*''} = \frac{Y_1(1+r) + Y_2}{2} = \frac{\frac{5,500(1+0.05) + \frac{10,500}{200}}{2} = 8137.5$$

Compare with previous result:

$$C_1^{*''} = 7750 > C_1^* = 7,261.9$$
 $C_2^{*''} = 8137.5 > C_2^* = 7,625$

▶ BOTH consumptions increase proportionally

$$\Delta C_1 = 488.1 = \Delta C_2 = 512.5/1.05$$

- ▶ Agent smoothes consumption across both periods
- ▶ Note still $C^{*''} > Y_1$, so net borrower.

e) What if $\uparrow r' = 0.1$?

$$C_1^{*e} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.1) + 10,000}{2(1+0.1)} = 7045.5$$

$$C_2^{*e} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.1) + 10,000}{1+0.1} = 7750$$

Because agent is net borrower we would expect

e) What if $\uparrow r' = 0.1$?

$$C_1^{*e} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.1) + 10,000}{2(1+0.1)} = 7045.5$$

$$C_2^{*e} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.1) + 10,000}{1+0.1} = 7750$$

- Because agent is net borrower we would expect
 - ▶ $\downarrow C_1$, $\downarrow C_2$: higher r implies she faces higher future payments on the loan \rightarrow Income effect
 - ↑ C_2 : higher r implies higher willingness to exchange C_2 and C_1 (Euler) → Substitution effect

e) What if $\uparrow r' = 0.1$?

$$C_1^{*e} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.1) + 10,000}{2(1+0.1)} = 7045.5$$

$$C_2^{*e} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.1) + 10,000}{1+0.1} = 7750$$

Compare with previous result:

$$C_1^{*e} = 7045.5 < C_1^* = 7,261.9$$
 $C_2^{*e} = 7750 > C_2^* = 7,625$

▶ Big decrease in C_1 , small increase in C_2

$$\Delta C_1 = -216.5 < 0$$
 $\Delta C_2 = 125 > 0$

e) What if $\uparrow r' = 0.1$?

$$C_1^{*e} = \frac{Y_1(1+r) + Y_2}{2(1+r)} = \frac{5,000(1+0.1) + 10,000}{2(1+0.1)} = 7045.5$$

$$C_2^{*e} = \frac{Y_1(1+r) + Y_2}{2} = \frac{5,000(1+0.1) + 10,000}{1+0.1} = 7750$$

Compare with previous result:

$$C_1^{*e} = 7045.5 < C_1^* = 7,261.9$$
 $C_2^{*e} = 7750 > C_2^* = 7,625$

▶ Big decrease in C_1 , small increase in C_2

$$\Delta C_1 = -216.5 < 0$$
 $\Delta C_2 = 125 > 0$ substitution effect dominate:

e) What if $\uparrow r' = 0.1$?

e) What if $\uparrow r' = 0.1$?

- f) What if lifetime utility is $U = \log(C_1) + \beta \log(C_2)$?
- ► Follow the same steps as before:

IMRS
$$\equiv \frac{U'(C_1)}{U'(C_2)} = \frac{1/C_1}{\beta/C_2} = 1 + r$$

$$\frac{C_2}{C_1} = (1+r)\beta$$

$$\frac{C_2}{C_1} = (1+0.05) \cdot 0.952 \approx 1$$

- ▶ The optimal condition implies that $C_1 = C_2$: consumption smoothing
- ▶ Note if $\downarrow \beta$, then $C_2 << C_1$: bias towards today's consumption
- Substitute into budget constraint (IBC)

$$C_1 + \frac{C_1}{1+r} = Y_1 + \frac{Y_2}{1+r} \longleftrightarrow \frac{(1+r+1)C_1}{1+r} = Y_1 + \frac{Y_2}{1+r} \longleftrightarrow C_1^* = C_2^* = \frac{Y_1(1+r) + Y_2}{2+r}$$

3. Borrowing constraints

- d) Effect of an increase in current income $\uparrow Y_1$
 - Overall wealth increase → shift IBC
 - If net <u>lender</u>, does not need borrowing → ↑ consumption both periods

3. Borrowing constraints

- d) Effect of an increase in current income $\uparrow Y_1$
 - lackbox Overall wealth increase ightarrow shift IBC
 - If net <u>lender</u>, does not need borrowing → ↑ consumption both periods
 - It net <u>borrower</u>, C₁ > Y₁.
 Facing borrowing constraints agent can only consume up to their income, Y₁ = C₁
 - ↑ Y₁ results in only ↑ C₁ as cannot smooth consumption by borrowing

17/18

3. Borrowing constraints

- d) Effect of an increase in current income $\uparrow Y_1$
 - lackbox Overall wealth increase ightarrow shift IBC
 - If net <u>lender</u>, does not need borrowing → ↑ consumption both periods
 - It net <u>borrower</u>, $C_1 > Y_1$. Facing borrowing constraints agent can only consume up to their income, $Y_1 = C_1$
 - ▶ $\uparrow Y_1$ results in only $\uparrow C_1$ as cannot smooth consumption by borrowing
 - ▶ Optimal consumption theory predicts $C_1 = C_2$ (from previous exercise). Borrowing constraints might explain why $C_1 \neq C_2$ (volatility)

17/18

Exercise 2: $U = \log(C_1) + \beta \log(C_2)$

▶ Optimal condition implies that $C_1 = C_2$: consumption smoothing

IMRS
$$\equiv \frac{U'(C_1)}{U'(C_2)} = \frac{1/C_1}{\beta/C_2} = 1 + r$$

$$\frac{C_2}{C_1} = (1+r)\beta = (1+0.05) \cdot 0.952 \approx 1$$

Substitute into budget constraint (IBC)

$$C_1 + \frac{C_1}{1+r} = Y_1 + \frac{Y_2}{1+r} \longleftrightarrow \frac{(1+r+1)C_1}{1+r} = Y_1 + \frac{Y_2}{1+r} \longleftrightarrow$$

$$C_1^* = C_2^* = \frac{Y_1(1+r) + Y_2}{2+r} = 7,439.02$$

- ▶ If $\uparrow Y_1 = 500$, then $C_1 = C_2 = 7,595.12$
- ▶ If $\uparrow Y_1 = \uparrow Y_2 = 500$, then $C_1 = C_2 = 7,939.02$
- ▶ If $\uparrow r = 0.1$, then $C_1 = C_2 = 7,380.95$

INCOME effect dominates: $\Delta C_1 = \Delta C_2 = -58.07 < 0$