

A. Carnival General

Problem Name	Carnival General
Time Limit	1 second
Memory Limit	1 gigabyte

Á fjögurra ára fresti hittast nemendurnir í Lund til að skipuleggja Tívólí Lund. Í nokkra daga fyllist garðurinn með tjöldum þar sem allskonar hátíðleg starfsemi á sér stað. Manneskjan í stjórn á þessum framkvæmdum er tívólí höfðinginn.

Samtals hafa verið N tívólí, sérhvert með sinn eiginn höfðingja. Höfðingjarnir eru númeraðir frá 0 til N-1 í tímaröð. Hver einasti höfðingi i hefur gefið sína skoðun á hversu góðir forverar þeirra voru, með því að gefa út röðun á höfðingjunum $0,1,\ldots,i-1$ sem byrjar á besta forvera og endar á versta forvera.

Næsta Tívólí Lund verður haldið árið 2026. Á meðan hafa höfðingjarnir safnast saman fyrir hópmyndatöku. Það væri frekar vandræðalegt ef höfðingjar i og j (þar sem i < j)\$ væru hlið við hlið ef höfðingi \$i\$ væri **stranglega** í seinni helming röðunnar höfðingja j.

Til dæmis:

- Ef höfðingi 4 hefði gefið röðunina $3\ 2\ 1\ 0$, þá gæti 4 staðið við hliðina á 3 eða 2, en ekki 1 eða 0.
- Ef höfðingi 5 hefði gefið röðunina $4\ 3\ 2\ 1\ 0$, þá gæti 5 staðið við hliðina á 4, 3, eða 2, en ekki 1 eða 0. Taktu eftir hér að það er í lagi ef höfðingi er nákvæmlega í miðjunni á röðun annars höfðingja.

Eftirfarandi mynd sýnir sýnidæmi 1. Hér stendur höfðingi 5 við hliðina á höfðingjum 2 og 3, og höfðingi 4 stendur aðeins við hliðina á höfðingja 2.

Þú færð raðanirnar sem höfðingjarnir gáfu út. Verkefnið þitt er að raða höfðingjunum $0,1,\ldots,N-1$ í röð þannig að ef i og j eru hlið við hlið (þar sem i< j) þá er i **ekki** stranglega í seinni helming röðunar höfðingja j.

Inntak

Fyrsta línan inniheldur heiltöluna N, fjölda höfðingja.

Næstu N-1 línur innihalda raðanirnar. Af þessum línum inniheldur fyrsta þeirra röðun höfðingja 1, önnur inniheldur röðun höfðingja 2, og svo framvegis þar til komið er að höfðingja N-1. Höfðingi 0 kemur ekki fyrir þar sem höfðingi 0 hafði enga forvera til að raða.

Röðunin frá höfðingja i er listi af i heiltölum $p_{i,0}, p_{i,1}, \ldots, p_{i,i-1}$ þar sem hver heiltala á bilinu 0 til i-1 kemur fyrir nákvæmlega einu sinni. Þá sérstaklega má segja að $p_{i,0}$ sé besti höfðinginn og $p_{i,i-1}$ sé versti höfðinginn samkvæmt höfðingja i.

Það er hægt að sanna að lausn sé alltaf til.

Úttak

Skrifaðu út lista af heiltölum, röðun á tölunum $0,1,\ldots,N-1$ þannig að fyrir hvert par af aðliggjandi tölum er önnur hvor þeirra ekki í seinni helming lista hinnar tölunnar. Ef það eru til margar lausnir máttu skrifa út einhverja þeirra.

Skorður og Stigagjöf

- $2 \le N \le 1000$.
- $0 \leq p_{i,0}, p_{i,1}, \ldots, p_{i,i-1} \leq i-1$ fyrir sérhvert $i=0,1,\ldots,N-1$.

Lausnin þín verður prófuð á safni af prufuhópum og er hver hópur virði einhvers fjölda stiga. Hver prufuhópur inniheldur safn af prufutilvikum. Til að fá stigin fyrir prufuhóp þarftu að leysa sérhvert prufutilvik í prufuhópnum.

Hópur	Stig	Skorður
1	11	Röðun höfðingja i mun vera $i-1,i-2,\ldots,0$ fyrir öll i þar sem $1\leq i\leq N-1$
2	23	Röðun höfðingja i mun vera $0,1,\ldots,i-1$ fyrir öll i þar sem $1\leq i\leq N-1$
3	29	$N \leq 8$
4	37	Engar frekari skorður

Sýnidæmi

Fyrsta sýnidæmið tilheyrir prufuhópi 1. Í þessu sýnidæmi má hvorki höfðingi 2 né 3 standa við hliðina á höfðingja 0, og hvorki höfðingi 4 né 5 mega standa við hliðina á höfðingjum 0 og 1. (Sýnidæmið var sýnt með mynd að ofan.)

Annað sýnidæmið tilheyrir prufuhópi 2. Í þessu sýnidæmi má höfðingi 2 ekki standa við hliðina á höfðingja 1, höfðingi 3 má ekki standa við hliðina á höfðingja 2, og höfðingi 4 má hvorki standa við hliðina á höfðingja 3 né höfðingja 2.

Þriðja sýnidæmið tilheyrir prufuhópi 3. Í þessu sýnidæmi eru einu pörin sem mega ekki standa hlið við hlið (1,3) og (0,2). Þannig það eru engir árekstrar við skilyrðin ef þeim er raðað sem $3\ 0\ 1\ 2$. Annað mögulegt svar er $0\ 1\ 2\ 3$.

Inntak	Úttak
6 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0	4 2 5 3 1 0
5 0 0 1 0 1 2 0 1 2 3	2 0 4 1 3
4 0 1 0 0 2 1	3 0 1 2