1 Group

1.1 Law of Composition

Definition 1.1 (Composition). Composition (or Law of composition) on a set S is to combine two element $a, b \in S$, to get another element p in S:

$$S \times S \to S$$
.

Here, \times means Cartesian product of two sets. We can denote the composition in several ways:

$$p = ab$$
 $p = a \cdot b$ $p = a \circ b$ $p = a + b$.

We will often use ab (or $a \cdot b$ when neccessary) to denote the composition of a and b in this document.

Example

- In the set \mathbb{N} , operation "add" + is a law of composition. It takes two elements of $a, b \in \mathbb{N}$ and gives an element $a + b \in \mathbb{N}$. e.g. $(2,3) \mapsto 5$, $(5,1) \mapsto 6$
- In the set \mathbb{R} , operation "multiply" \cdot is a law of composition. It takes two elements of $a, b \in \mathbb{R}$ and gives an element $a \cdot b \in \mathbb{R}$. e.g. $(-1, 4) \mapsto -4$, $(2, 3.5) \mapsto 7$

Note that the definition of composition naturally brings out the property of closure — the composition of two element of S is still in the same set.

A way of defining composition is using functions. $f: S \times S \to S$, so for $a, b \in S$, f(a, b) is the composition of a and b.

Definition 1.2 (Associativity). For element a, b and c, if the composition satisfies (ab)c = a(bc), then the composition is **associative**.

For multiple element a_1, a_2, \ldots, a_n , there's only one distinct way to define the composition of them:

$$a_1a_2\cdots a_n=(a_1\cdots a_i)(a_i\cdots a_n),$$

where $1 \leq i < n$. For instance,

$$a_1a_2a_3a_4 = a_1(a_2a_3a_4) = (a_1a_2)(a_3a_4) = (a_1a_2a_3)a_4 = a_1(a_2a_3)a_4$$
.

Definition 1.3 (Commutativity). The composition of two element a and b is called commutative if ab = ba.

1.2 Special elements

Definition 1.4 (Identity element). If $\forall s \in S$, $\exists e \in S$ such that es = s, then e is the **left identity** of S. Likewise, e is the **right identity** if se = s. If e is both left identity and right identity, then it's called a **two-sided identity** or simply **identity**.

If we use multiplication to represent composition, then 1 is commonly used as the symbol of identity. And 0 is often identity for addition representation.

Example

- Concider zero in \mathbb{Z} . For all $a \in \mathbb{Z}$, 0 + a = a, so 0 is the left identity. And by commutativity we also have a + 0 = a, so 0 is also the right identity. Therefore, 0 is the identity of addition on \mathbb{Z}
- 1 is the identity of multiplication on \mathbb{R} , because $\forall a \in \mathbb{Z}, 1 \cdot a = a \cdot 1 = a$

Definition 1.5 (Inverse). Let 1 be the identity. If $\forall a \in S$, $\exists l \in S$ such that la = 1, then l is called the **left inverse** of a. Likewise, ar = 1 then r is called the **right** inverse of a. If b is both left and right inverse of a, then it's called the **two-sided** inverse or simply inverse of a, denoted by a^{-1} .

Example

- -3 is the additive inverse of 3 in \mathbb{R} , because (-3) + 3 = 3 + (-3) = 0 and 0 is the identity of addition.
- 1/2 is the multiplicative inverse of 2 in \mathbb{R} , because $(1/2) \times 2 = 2 \times (1/2) = 1$ and 1 is the identity of multiplication.

A fraction $\frac{a}{b}$ is exactly the composition of a and b^{-1} . And the notation $\frac{a}{b}$ is not recommended, because sometimes the composition is not commutative, therefore ab^{-1} and $b^{-1}a$ are different.

The notations like a^n or a^{-n} , $n \in \mathbb{N}$ can be recursively defined as below:

$$a^{n+1} := a^n a$$
,
 $a^{-n-1} = a^{-n} a^{-1}$,
 $a^0 = 1$.

Proposition 1.1. $(ab)^{-1} = b^{-1}a^{-1}$.

proof. $(ab)^{-1}(ab) = 1$ is true, multiply b^{-1} on the right for both sides. $(ab)^{-1}(ab)b^{-1} = 1 \cdot b^{-1}$, which is $(ab)^{-1}a(bb^{-1}) = (ab)^{-1}a \cdot 1 = b^{-1}$. This time multiply a^{-1} on the right for both sides: $(ab)^{-1}aa^{-1} = b^{-1}a^{-1}$, the left-hand side is exactly $(ab)^{-1}$.

And this can be easily generalized to n elements (using associativity and induction):

$$(a_1 a_2 \dots a_n)^{-1} = a_n^{-1} \dots a_2^{-1} a_1^{-1}$$
.

1.3 Group

Definition 1.6. A group (G, \cdot) is a set G equipped with a binary operation \cdot which follows four axioms, namely closure, associativity, identity and invertibility.

Remark. If a group is commutative, then it's called **abelian group**.

The four axioms are explained below:

closure For all a, b in G, the result of operation \cdot is still in G. This can be written in the form: $\forall a, b \in G, a \cdot b \in G$.

associativity $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c).$

identity $\exists e \in G$ such that, $\forall a \in G$, the equation $e \cdot a = a \cdot e = a$ holds. Such an element is unique and is called the **identity element**.

invertibility For each $a \in G$, $\exists b$ in G, commonly denoted a^{-1} , such that $a \cdot b = b \cdot a = e$, where e is the identity element.

We use ordered pair to denote (G,\cdot) a set G equipped with operation \cdot . So the two parts — set and its operation — together forms the algebraic structure. This is critical, because strictly speaking, a set on its own can not be a group. But informally, it's common to say that a set G is a group, if no ambiguity is caused.

Example These are some familiar abelian groups: $(\mathbb{Z}, +)$, $(\mathbb{R}, +)$, (\mathbb{R}^+, \times) , $(\mathbb{C}, +)$, (\mathbb{C}, \times) . Take $(\mathbb{R}^+, +)$ for example.

- 1. Two the addition of positive real numbers a, b is still a real number (closure)
- 2. (a+b)+c=a+(b+c), which is associativity

- 3. For any given $a \in \mathbb{R}^+$, $1 \times a = a \times 1 = a$ holds, which indicates that 1 is the multiplicative identity of \mathbb{R}^+
- 4. For any given $a \in \mathbb{R}^+$, $\exists a^{-1}$ such that $a^{-1} \times a = a \times a^{-1} = 1$ holds, which indicates all $a \in \mathbb{R}^+$ is invertable

Therefore, (\mathbb{R}^+, \times) is a group. Also, for any positive real number a and b, $a \times b = b \times a$. So (\mathbb{R}^+, \times) is also an abelian group.

Remark. Note that (\mathbb{R}, \times) is not a group, because 0 is not invertable: $\not\exists r \in \mathbb{R}$ such that $r \times 0 = 0 \times r = 1$.

Since groups are sets equipped with operations, and we have cardinality to describe how many elements we have in a set, it's natural to have a similar concept to describe the number of elements contained in a group.

Definition 1.7 (Order of a group). The order of a group describe the number of elements contained in this group. Suppose we have group (G, \cdot) , the order of this group equals the cardinality of G, denoted by |G|.

Example The previous example, abelian group $(\mathbb{Z}, +)$ is an infinite group, because \mathbb{Z} is an infinite set.

Because of invertibility property, a group has follows cancellation law.

Proposition 1.2. Let a, b, c be elements of a group G:

- if ac = bc or ca = cb then a = b
- if ac = c or ca = c then a = 1

proof. Proofs of all cases are analogous — by multiplying c^{-1} to both sides.

Concider matrices. Not all matrices are invertable, so we can't just say matrix with multiplication operation is or is not a group.

Definition 1.8 (General linear group). The general linear group of degree n is the set of $n \times n$ invertable matrices:

 $GL_n := \{n \times n \text{ invertable matrices}\}.$

And enable to distinguish what kind of elements we are having in the matrices, notations like $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ are used.