KNN Model Training Report

1. Dataset Used

The dataset used in this project is the Housing.csv file from

(https://raw.githubusercontent.com/sorif95/ML-Assignment/main/Housing.csv) . This dataset contains various attributes related to housing properties, such as price, area, number of bedrooms, bathrooms, parking spaces, and other categorical features. The goal was to apply K-Nearest Neighbors (KNN) for both classification (binary classification of parking availability) and regression (predicting house prices).

2. Data Preprocessing Steps

To ensure the dataset was suitable for training the KNN models, the following preprocessing steps were performed:

Handling Missing Values

- price 22
 area 54
 bedrooms 54
 bathrooms 54
 stories 54
 parking 54
- # Handle missing values
- Mean imputation for price.
- Median imputation for area and stories.
- Mode imputation for bedrooms and parking.
- KNN imputation for bathrooms.

Encoding Categorical Variables

Categorical features were label-encoded using LabelEncoder.

Feature Scaling

Standardisation was applied to numerical features using StandardScaler to normalise the dataset.

Binary Classification Target

The parking feature was converted into a binary variable:

- 0 for properties with 0 or 1 parking spaces.
- 1 for properties with more than 1 parking space.

Data Splitting

The dataset was split into training (80%) and testing (20%) sets separately for classification and regression tasks.

3. Model Training

KNN Classifier (Binary Classification of Parking)

The KNN Classifier was trained using KNeighborsClassifier(n_neighbors=5). The trained model was used to predict labels for the test set.

KNN Regressor (Predicting House Prices)

The KNN Regressor was trained using KNeighborsRegressor(n_neighbors=5). The trained model was used to predict house prices on the test set.

4. Model Performance & Evaluation

Classification Results

Accuracy, Precision, Recall, and F1-score were used as evaluation metrics.

Metric	Score
Accuracy	0.89
Precision	0.93
Recall	0.54
F1-score	0.68

Regression Results

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R² Score were used as evaluation metrics.

Metric	Score
MSE	0.49
RMSE	0.70
R ² Score	0.64

5. Observations on Performance Changes

Effect of Changing K (Number of Neighbors):

- Lower values of K resulted in more variance (overfitting).
- Higher values of K resulted in more bias (underfitting).
- The optimal value of K=5 was chosen as it provided a balance between bias and variance.

Impact of Feature Scaling:

- Without standardization, KNN performed poorly because distance-based algorithms are sensitive to different feature magnitudes.

Performance with Imputation Strategies:

- Using KNN imputation for bathrooms improved classification accuracy compared to

median imputation.

- Different imputation strategies had minor effects on regression performance.

6. Conclusion

The KNN classifier successfully categorized parking availability with high accuracy. The KNN regressor provided a reasonable approximation of house prices but is sensitive to feature selection and scaling.