

MPE Test Report

On Model Name: 2.4G RF Wireless Digital Audio

Transmitter and Receiver

Model Numbers: ELPWA01T, ELPWA02R

Trade Marks: Original

FCC ID : UN9ETNRJPELPWA

Prepared for

Shenzhen Ether Electronics Ltd

According to FCC Part 2 subpart J ,Section 2.1091

Test Report #: FCC06-8072-MPE

Prepared by: Ravin Su

Reviewed by: Ivan Wen

QC Manager: Paul Chen

Test Report Released by:

2007, Feb, 02

Paul Chen

Date

Maximum Permissible Exposure

1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is nox exposed to radio frequency with 47 CFR FCC Part 2 Subpart J, Section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

(a). Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E)(V/m)	Magnetic Field Strength (H)(A/m)	Power Density (S) (Mw/cm2)	Averaging Times (Minutes)
0.3-3.0	614	1.63	100*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100000			5	6

(b). Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E)(V/m)	Magnetic Field Strength (H)(A/m)	Power Density (S) (Mw/cm2)	Averaging Times (Minutes)
0.3-1.34	614	1.63	100*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100000			1	30

Note: f=frequency in MHz;Plane-wave equivalent power density

2. MPE Calculation Method

 $E(V/m) = 30*P*G \frac{1}{2}/D$

Power density : Pd $(W/m^2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT antenna numeric gain (numeric)

D = Separation distance between radiator and human body (m)

The Formula can be changed to

 $Pd = (30*P*G) / (377*D^2)$

From the peak EUT RF output power , the minimum mobile separation distance, $D=0.2\ m$, as well as the gain of the used antenna , the RF power density can be obtained .

3. Calculated Result and Limit

Low Ch---2402MHz

Antenna	Peak output	Peak output	Power	Limit of	Test
Gain	power	power	density (S)	power	Result
(Numeric)	(dBm)	(mW)	(Mw/cm2)	density	
1.5	0.30	1.073	0.0003	1	Complies
					•

Mid CH---2441 MHz

Antenna Gain (Numeric)	Peak output power (dBm)	Peak output power (mW)	Power density (S) (Mw/cm2)	Limit of power density	Test Result
1.5	0.33	1.079	0.0003	1	Complies

High CH---2480MHz

Antenna Gain (Numeric)	Peak output power (dBm)	Peak output power (mW)	Power density (S) (Mw/cm2)	Limit of power density	Test Result
1.5	-1.80	0.660	0.0002	1	Complies