本试卷满分100分,考试用时75分钟。

注意事项:

- 1. 答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。
 - 4. 可能用到的相对原子质量: O 16 Cu 64 Ba 137 Hg 201
- 一、选择题:本题共 10 小题,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 化学与生活息息相关。下列有关物质在生活中的应用错误的是
- A. 制作豆腐时用石膏作凝固剂
- B. 做胃镜时用 BaCO₃ 作"钡餐"
- C. 酚醛树脂常用于制作电器插座
- D. 用汽油洗涤衣服上油漆污迹
- 2. 化学实验中的颜色变化,可将化学抽象之美具体为形象之美。下列叙述错误的是
- A. 溶有足量 SO₂ 的品红溶液受热:呈红色
- B. 甲基橙溶液遇 0.1 mol·L⁻¹ Na₂CO₃ 溶液:呈蓝色
- C. 在鸡皮上滴 12 mol·L⁻¹ 硝酸:呈黄色
- D. 在焰色试验中,灼烧 CuCl2:呈绿色
- 3. "雷雨肥庄稼"涉及的主要反应之一是 $N_2(g)+O_2(g)$ ——2NO(g) △ $H=+181 \text{ kJ} \cdot \text{mol}^{-1}$ 。已 知: N≡N、O—O 的键能分别是 946 kJ · mol⁻¹、497. 3 kJ · mol⁻¹。下列叙述正确的是
- A. N₂、O₂和 NO 都是非极性分子
- B. NO 中的键能为 631. 15 kJ·mol⁻¹
- C. 键能大小决定 N2 和 O2 沸点高低
- D. 该反应断裂极性键和形成非极性键
- 4.1774年舍勒用软锰矿和盐酸反应制得了氯气。在此启发下,某兴趣小组利用如下装置进行实验。其中难以达到预期目的的是

【高三化学 第1页(共6页)】

5. 硼酸主要用于制造光学玻璃。以盐湖中的卤水为原料提取硼酸的流程如图所示。第一阶段: 卤水经蒸馏得到富硼老卤(主要含 Na₂B₄O₇)。第二阶段:提取硼酸。硼酸的溶解度与温度的关系如表所示。下列叙述错误的是

溶解度	/% 温度	€/°C	溶解度/%	温度/℃	溶解度/%	温度/℃
2. 46	-0	. 76	6. 3	30	19.11	80
2. 6		0	8.02	40	23. 3	90
3.6	1	.0	10.35	50	28. 7	100
4.8	2	20	12. 9	60	38. 7	110
5.5	2	25	15.7	70	52.4	120
124		Model				·

- A. "酸化"中只发生非氧化还原反应
- B. "分离"采用蒸发溶剂,趁热过滤提取硼酸
- C. "母液"循环利用体现绿色化学要求
- D. 可用 AgNO₃ 溶液确认硼酸是否洗涤干净
- 6. 聚噻吩(丙)常用于制备有机发光二极管,一种合成原理如图所示(一Ar代表芳基)。下列叙述正确的是

- A. 甲、乙、丙中官能团种类相同
- B. 甲为小分子, 乙、丙为高分子
- C. 熔点:丙>乙>甲
- D. 乙、丙的链节相同
- 7. W、X、Y、M 为原子序数依次增大的前 20 号主族元素,牙齿表面一层保护层 Q 的组成为 $M_{10}(YX_4)_6(XW)_2$ 。 W_2X_2 、 W_2X 分子分别为 18 电子、10 电子分子。基态 Y 原子最外层电子占据 M 层,Y 原子的质子数等于最外层电子数的 3 倍,Q 中阳离子有 18 个电子。下列叙述错误的是
- A. YW₃ 分子的 VSEPR 模型为四面体形
- B. 基态 M 原子的 4s 电子云轮廓图为球形
- C. MW2 和 MX2 中阳离子、阴离子个数比相同
- D. M(XW)₂、M₃(YX₄)₂ 都是强电解质

【高三化学 第2页(共6页)】

8. 中美大学的教授合作:通过高能辐射首次在低温(5 K)、甲醇-分子氧(CH₃OH-O₂)混合冰中制得(1)原甲酸、(2)羟基过氧甲烷和(3)羟基过氧甲醇(如图)。下列叙述错误的是

A. (1)(2)(3) 互为同分异构体

B. (2)和(3)具有强氧化性

- C. 甲醇和原甲酸含不同官能团
- D. 反应 3、4 和 5 均有 π 键形成
- 9. 某课题组用直接液态 N_2H_4/H_2O_2 燃料电池(DHHPFC)驱动 OHzS 装置组装自供电制氢系统(如图,4 M表示 4 mol·L⁻¹)。在电场作用下,双极膜中水电离出的离子向两极迁移。下列叙述错误的是

- A.b极为正极,d极发生还原反应
- B. DHHPFC 池的总反应: N₂H₄+2H₂O₂ ===N₂↑+4H₂O
- C. 双极膜中, H⁺向b极移动
- D. 一段时间后,OHzS池中KOH浓度减小
- 10. 某小组设计实验测定 AgAc 的 K_{sp} ,实验步骤如下:

步骤 1:常温下,在干燥的锥形瓶中加入 20.00 mL 0.2 mol·L⁻¹ AgNO₃ 溶液,再加入 40.00 mL 0.2 mol·L⁻¹ NaAc 溶液,轻轻摇动锥形瓶约 30 min。

步骤 2:过滤后滤液完全澄清。准确量取 20.00 mL 滤液于洁净的锥形瓶中,加入 1 mL HNO₃ 溶液(6 mol·L⁻¹)和 1 mL Fe(NO₃)₃ 溶液,若溶液显红色(Fe³⁺水解),再加硝酸直至无色,用 c mol·L⁻¹KSCN 溶液滴定至恒定浅红色,消耗滴定液 V mL。

已知: Ag⁺+Ac⁻ → AgAc ↓ ,Ag⁺+SCN⁻ → AgSCN ↓ ,Fe³⁺+SCN⁻ → [Fe(SCN)]²⁺。 下列叙述错误的是

【高三化学 第3页(共6页)】

- A. 步骤 1 中, 轻轻摇动约 30 min 的目的是确保完全反应
- B. 步骤 2 中, 加入硝酸的目的是抑制 Fe3+水解
- C. 步骤 2 中, 如果用湿润的滤纸过滤, 测得的结果会偏低
- D. 常温下, $K_{sp}(AgAc) = \frac{cV}{20} \times (\frac{0.2}{3} + \frac{cV}{20})$

二、非选择题:本题共4小题,共60分。

- 11.(15分)某小组设计实验探究勒夏特列原理。回答下列问题:
- 实验(一)制备 CuCl2。设计如图装置制备 CuCl2。已知 CuCl2 遇水蒸气易潮解。

- (1)E装置的作用是 ,脱脂棉的作用是
- (2)装置 A 中发生反应的离子方程式为
- (3)D装置中采用铜粉,不用铜片,其原因是
- (4)B装置中试剂宜选择____(填标号)(若无答案,该题可以不答)。
 - ①浓硫酸 ②稀硫酸 ③NaOH溶液

用勒夏特列原理解释:

实验(二)探究温度对平衡的影响。

将制得的 CuCl₂ 粉末溶于水,溶液中存在下列平衡:

 $[Cu(H₂O)₄]²⁺(蓝色)+4Cl⁻ = [CuCl₄]²⁻(黄色)+4H₂O \Delta H>0$

配制 100 mL 0.5 mol·L⁻¹CuCl₂溶液,甲、乙、丙三支试管各取 2 mL 0.5 mol·L⁻¹CuCl₂ 溶液,进行实验:将甲试管放置在空气中,乙试管放入热水中,丙试管放入冷水中。

- (5)设计甲试管的目的是
- (6)实验结果:乙试管中溶液呈黄色,丙试管中溶液蓝色比甲的深。实验结论是____
- 12. (15 分) 钡的化合物在生产、生活中有广泛的应用。以含钛废渣(主要含 TiO2,含少量 Fe₂O₃、CaO、SiO₂)为原料生产 BaTiO₃的工艺流程如图。回答下列问题:

常温下,相关离子浓度 $c(M^{n+})=0.1 \text{ mol} \cdot L^{-1}$ 时,形成氢氧化物沉淀的 pH 如表所示。

相关离子	TiO ²⁺	$\mathrm{Fe^{2+}}$	Fe ³⁺
开始沉淀的 pH	0.5	6. 3	1.5
完全沉淀的 pH	2. 5	8. 3	2.8

(1)BaTiO(C₂O₄)₂ • 4H₂O 中钛的化合价为_____价。

【高三化学 第4页(共6页)】

(2)检验"滤液 1"中含有 Fe²⁺的试剂为__ (填标号)。

A. KSCN 溶液

B. 酸性 KMnO₄ 溶液

C. K₃[Fe(CN)₆]溶液

- D. NH₄SCN 溶液、酸化的 H₂O₂ 溶液
- (3)"还原"时的离子方程式为____。
- (4)将气体 R 依次通入甲(无水 CuSO₄)、乙(澄清石灰水)、丙(浓硫酸)、丁(赤热 CuO)中,观 察到乙中变浑浊,丁中黑色粉末变为红色粉末,甲中现象是_____,"焙烧"时总反 应的化学方程式为
- (5)工业上曾将 BaCO₃ 和 TiO₂ 在 1 500 ℃下反应 24 h 制备 BaTiO₃,该工艺的缺点是___
- (6)某钡的超导材料的晶体结构属四方晶系,其晶胞结构如图所示。

- ①汞和锌位于同族,则 Hg 位于元素周期表 区。

②与 Ba^{2+} 等距离且最近的 Cu^{2+} 有______个。该晶体的密度为______g • cm⁻³。

- 13. (15 分)利用热解 H₂S 和 CH₄ 制备 H₂,发生的反应如下:
 - $\textcircled{1}2H_2S(g) \rightleftharpoons S_2(g) + 2H_2(g)$ $\Delta H = +169.8 \text{ kJ} \cdot \text{mol}^{-1}$
 - $\textcircled{2}CH_4(g) + S_2(g) \longrightarrow CS_2(g) + 2H_2(g)$ $\Delta H = +63.7 \text{ kJ} \cdot \text{mol}^{-1}$
 - 在一密闭容器中通入体积比为 2:1 的 H₂S 和 CH₄,并用 N₂ 稀释。在常压和不同温度下, 一段时间后,测得 H_2 、 S_2 和 CS_2 的体积分数与温度的关系如图。回答下列问题:

- (1)CS₂分子的空间结构是___。已知:C、S原子半径依次为77 pm、102 pm。键能: C—H (填">""<"或"=")S—H。
- $(2)CH_4(g)+2H_2S(g)\Longrightarrow CS_2(g)+4H_2(g)$ $\Delta H=$ _____,该反应在____(填"较 高温度""较低温度"或"任何温度")下能自发正向进行。
- (3)在常压、1 000 ℃时,保持通入的 H₂S 浓度不变,增大 CH₄ 通入体积,反应一段时间后 H₂S的转化率不变,其原因是
- (4)950 ℃~1 150 ℃内,其他条件不变,随着温度升高,S₂(g)的体积分数先增大,后减小,原
- (5)1 100 ℃时,H₂的体积分数为____,其他条件不变,升高温度,H₂S的转化率____ (填"增大""减小"或"不变")。

【高三化学 第5页(共6页)】

- (6)一定温度下,保持总压强为 100 kPa,向体积可变的密闭容器中仅充入 2 mol H₂S(g)和 1 mol CH₄(g),发生上述反应,达到平衡时测得 H₂S 的平衡转化率为 60%, H₂ 体积分 数为 42.1%。此温度下,反应①的平衡常数 $K_p = ____k Pa(结果保留 2 位小数)。$ 提示:用分压代替浓度计算的平衡常数为压强平衡常数 (K_p) ,分压一总压×物质的量 分数。
- 14. (15 分)某药物中间体viii的一种合成路线如图所示。回答下列问题:

- (1) i 的名称是
- (2)下列有关说法错误的是 (填标号)。

A. 反应 Vi→Vii过程中, Vi 断裂 H—O键, EtOH 断裂 C—O键

- B. 反应 $Vii \longrightarrow Viii$ 过程中,形成了极性键(或 σ 键)
- C. Vi 分子中存在由 p 轨道"头碰头"形成的 π 键
- D. 化合物viii含酯基和醚键,且难溶于水
- (3) X 是有机物 V 的同分异构体, X 能发生银镜反应, 且 X 中含一个六元环, 符合条件的 X 有
- (4)根据化合物vii的结构特征,预测其可能的化学性质,完成下表。

序号	反应试剂、条件	产物中官能团的结构简式	反应类型
a	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		加成反应(产物含3种元素)
b	16.30 ± 6		取代反应(产物只含3种元素)

(5)以苯甲醇、乙醛为原料,利用上述原理合成食品添加剂ix。回答下列问题:

a. 相关步骤涉及醇制醛的反应,其化学方程式为_____

b. 从苯甲醇出发,第二步反应的化学方程式为 (注明反应条件)。

