5.261 min_width_valley

DESCRIPTION LINKS AUTOMATON

Origin derived from valley

Constraint min_width_valley(MIN_WIDTH, VARIABLES)

Synonym min_base_valley.

Arguments MIN_WIDTH : dvar

VARIABLES : collection(var-dvar)

Restrictions $MIN_WIDTH \ge 0$

 $MIN_WIDTH \le |VARIABLES| - 2$ required(VARIABLES, var)

Purpose

Given a sequence VARIABLES constraint MIN_WIDTH to be fixed to the width of the smallest valley, or to 0 if no valley exists.

Example

```
\begin{array}{l} (5, \langle 3, 3, 5, 5, 4, 2, 2, 3, 4, 6, 6, 5, 5, 5, 5, 5, 5, 6 \rangle) \\ (0, \langle 3, 8, 8, 5, 0, 0 \rangle) \\ (4, \langle 9, 8, 8, 0, 0, 2 \rangle) \end{array}
```

The first min_width_valley constraint holds since the sequence $3\ 3\ 5\ 5\ 4\ 2\ 2\ 3\ 4\ 6\ 6\ 5\ 5\ 5\ 5\ 5\ 6$ contains two valleys of respective width 5 and 6 (see Figure 5.550) and since its argument MIN_WIDTH is fixed to the smallest value 5.

Figure 5.550: Illustration of the first example of the **Example** slot: a sequence of eighteen variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_{10} , V_{11} , V_{12} , V_{13} , V_{14} , V_{15} , V_{16} , V_{17} , V_{18} respectively fixed to values 3, 3, 5, 5, 4, 2, 2, 3, 4, 6, 6, 5, 5, 5, 5, 5, 5, 6 and its two valleys of width 5 and 6.

Typical

$$\begin{split} & \texttt{MIN_WIDTH} > 1 \\ & | \texttt{VARIABLES} | > 2 \end{split}$$

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: MIN_WIDTH determined by VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for min_width_valley : domains 0..n

Solution density for min_width_valley

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	9	50	295	1792	11088	69498	439791
	1	-	14	230	3205	56637	1174398	26327058
	2	-	-	100	2100	28420	424928	9363060
	3	-	-	-	679	17024	268722	3413256
	4	-	-	-	-	4480	130452	2345982
	5	-	-	-	-	-	29154	968946
	6	-	-	-	-	-	-	188628

Solution count for min_width_valley : domains 0..n

Parameter value as fraction of length

Solution density for min_width_valley

Parameter value as fraction of length

See also

common keyword: valley (sequence).

Keywords

characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.constraint arguments: reverse of a constraint, pure functional dependency.filtering: glue matrix.modelling: functional dependency.

Automaton

Figure 5.551 depicts the automaton associated with the min_width_valley constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \land (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \land (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

Figure 5.551: Automaton of the min_width_valley constraint: the start of the first potential valley is discovered while triggering the transition from s to j, the bottom of a valley is discovered while triggering the transition from j to k, the end of a valley and the start of the next potential valley are discovered while triggering the transition from k to k; the counters k and k respectively stand for k for k and k respectively stand for k for k and k respectively stand for k for

Glue matrix where \overrightarrow{W} , \overrightarrow{C} , \overrightarrow{F} and \overleftarrow{W} , \overleftarrow{C} , \overleftarrow{F} resp. represent the counters values W, C, F at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES; $\overrightarrow{\text{MIN_WIDTH}}$ (resp. $\overrightarrow{\text{MIN_WIDTH}}$) stands for $\min(\overrightarrow{W},\overrightarrow{C})$ (resp. $\min(\overleftarrow{W},\overleftarrow{C})$).

	$s\left(\{<\mid=\}^*\right)$	$j (> \{> =\}^*)$	$k (< \{< =\}^*)$
$s\;(\{<\mid=\}^*)$	0	MIN_WIDTH	MIN_WIDTH
$j (> \{> =\}^*)$	MIN_WIDTH	$\min\left(\begin{array}{c}\overrightarrow{W},\\ n-\overrightarrow{F}-\overleftarrow{F},\\ \overrightarrow{W}\end{array}\right)$	$\min \left(\begin{array}{c} \overline{\text{MIN_WIDTH}}, \\ n - \overline{F} - \overline{F}, \\ \overline{\text{MIN_WIDTH}} \end{array}\right)$
$k \ (<\{< =\}^*)$	MIN_WIDTH	$\min \left(\begin{array}{c} \overrightarrow{\text{MIN_WIDTH}}, \\ n - \overrightarrow{F} - \overleftarrow{F}, \\ \overrightarrow{\text{MIN_WIDTH}} \end{array} \right)$	$\min\left(\begin{array}{c} \overrightarrow{\text{min_width}}, \\ \overleftarrow{\text{min_width}} \end{array}\right)$

Figure 5.552: Glue matrix associated with the automaton of the min_width_valley constraint, where n stands for |VARIABLES|

Figure 5.553: Illustrating the use of the state pair (j,j) of the glue matrix for linking MIN_WIDTH with the counters variables obtained after reading the prefix 6,4,3,1 and corresponding suffix 1,2,5,6 of the sequence 6,4,3,1,2,5,6; note that the suffix 1,2,5,6 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i=0) and the evolution (for i>0) of the state of the automaton and its counters W,C and F upon reading the prefix 6,4,3,1 (resp. the reverse suffix 6,5,2,1).

Figure 5.554: Hypergraph of the reformulation corresponding to the automaton of the min_width_valley constraint