Introduction to Cryptography: Assignment 5

Group number 57

Elwin Tamminga s1013846

Lucas van der Laan s1047485

1

(a) Query m with $m_1 = m_2$, then $T = B_K(m_1)||B_K(B_K(m_1))||B_K(B_K(m_3))$. We can now make a forgery $m' = T_1||m_1||m_3$ with the corresponding tag $T' = T_2||T_2||T_3$. This verifies correctly because querying m' results in:

$$B_K(T_1)||B_K(B_K(m_1))||B_K(B_K(m_3)) = B_K(B_K(m_1))||B_K(B_K(m_1))||B_K(B_K(m_3)) = T'$$

(b) Query m with $m_1=\overline{m_2}$, then $T=(B_K(m_2)\oplus B_K(m_2))||B_K(\overline{m_2}\oplus \overline{m_2}\oplus m_3)=0^n||B_K(m_3).$

We can now make a forgery $m' = \overline{x}||x||m_3$ with $x = \{0, 1\}^n$ and T' = T. This verifies correctly because querying m' results in

$$(B_K(x) \oplus B_K(x))||B_K(\overline{x} \oplus \overline{x} \oplus m_3) = 0^n||B_K(m_3) = T = T'$$

(c) It is not PRF-secure, because when we query m with $m_2 = m_3$, then we can say that we are interacting with the MAC1 function when the output is a||b||c and b=c with |a|=|b|=|c|=n. And we are interacting with a random oracle if $b\neq c$.

2

- (a) Query m_1 which results in h_1 . We can now compute a valid forgery tag h' by using a message m_2 of 128 bits and h_1 in the compression function F, which results in the valid tag h' for $m' = m_1 || m_2$. This verifies correctly because $\mathrm{MAC}_K(m') = h(K||m_1||m_2) = h'$.
- (b) The inputs of the MAC function should all have a length of 128 bits, as the compression function inside of the MAC function requires two inputs of 128 bits to get a 128 bits answer.
- (c) We can create a forgery T_2 for $m'_1||m'_2|$ with the following steps:
 - first query the compression function with $m_{2,0}$ and T^\prime , which results in h_0

- then for each $m_{2,i}$ from $i \geq 1$ query the compression function with $m_{2,i}$ and h_{i-1} which results in h_i .
- the last compression function output will be the forgery T_2 , so $T_2 = h_{n'-1}$
- (d) It is not secure, because the Tag and the derived key are the same in keyed hashing and we proved that you can generate a new Tag after you obtained an existing Tag, which could be used as a key.