Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

{lefb.eng,ronety} @uea.edu.br

February 26, 2018

Overview

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
 - Curvas B-spline
 - Geração Paramétrica de Cascos de Planeio
 - Python + OpenGL
- Resultados Parciais
 - Vista Lateral
 - Vista Superior
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

Introdução

- Para prestar socorro à população em atendimentos de urgência e emergência em saúde, as regiões sem acesso terrestre contam com o serviço de SAMU Fluvial.
- Atendimento similar às ambulâncias terrestres.

Figure: Ambulâncias Fluviais

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para meios marítimos.
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
 - Estrutura suporte as cargas
 - ► Ergonomia e bem-estar da tripulação
- Modelo atual representa um projeto desenvolvido para meios marítimos.
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para meios marítimos
 - Distancia-se da realidade Fluvial do Amazonas
 - Diferença da via e variações da água contribuem no desconforto
- Propor modelo que possa atender a população da melhor maneira possível

- Atributos em relação à integridade estrutural devem ser atendidos
- Modelo atual representa um projeto desenvolvido para meios marítimos
- Propor modelo que possa atender a população da melhor maneira possível

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos Específicos

- Identificar métodos de construção de embarcações;
- Desenhar o casco da embarcação através dos parâmetros de construção;
- Propor algoritmo evolutivos para a otimização de variáveis do projeto
- Implementar uma ferramenta computacional com interface amigável para auxiliar os projetistas desse tipo de embarcação.
- Sugerir modelos de embarcações otimizadas.

Objetivos

Objetivo Geral

Propor um modelo de otimização multiobjetivo baseado em Algoritmos Evolutivos para auxiliar no projeto de embarcações de alta velocidade, como as ambulanchas.

Objetivos Específicos

- Identificar métodos de construção de embarcações;
- Desenhar o casco da embarcação através dos parâmetros de construção;
- Propor algoritmo evolutivo para a otimização de variáveis do projeto
- Implementar uma ferramenta computacional com interface amigável para auxiliar os projetistas desse tipo de embarcação.
- Sugerir modelos de embarcações otimizadas.

Figure: Modelo proposto para otimização da embarcação

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
 - Curvas B-spline
 - Geração Paramétrica de Cascos de Planeio
 - Python + OpenGL
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Referencial Ribliográfico

Curvas B-spline

- Comumente usada na Engenharia Naval
- Trata-se de uma curva formada por partes polinomiais
- Polígono de Controle

Definição

$$S(u) = \sum_{j=0}^{n} P_j B_j^n(u) = \sum_{j=0}^{n} X_j B_j^n(u), Y_j B_j^n(u)$$
 (1)

Figure: Exemplo de Curva B-spline

Geração Paramétrica de Cascos de Planeio

- Artigo de F. Pérez-Arribas.
- Método para desenvolver a curva apenas utilizando os parâmetros de construção do barco.
- Dado os Parâmetros da Embarcação, as Restrições das Curvas e Equação da Curva de B-spline pode-se determinar os pontos de controle.

Figure: Exemplo das vistas geradas utilizando o método de F.Pérez-Arribas

Python + OpenGL

- OpenGL é uma API livre utilizada na computação gráfica
- GLUT Interface para desenho das curvas.

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
 - Vista Lateral
 - Vista Superior
- 6 Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

Vista Lateral

- Formada por 3 curvas principais:
 - Linha Central
 - ▶ Linha Sheer
 - ► Linha *Chine*

Figure: Exemplo de Curva B-spline

Vista Lateral - Central

Linha Central

$$c(u) = B_0^3 K_0 + B_1^3 P_1 + B_2^3 P_2 + B_3^3 K_2$$
 (2)

- Restrições:
 - $c_z'(0) = 0$
 - 2 $c'_{z}(1) = tg(a_{k})$
 - 3 $c(u*) = K_1$
- Tal que $u* = \frac{Dist(K_0, K_1)^k}{Dist(K_0, K_1)^k + Dist(K_1, K_2)^k}$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -tg(a_k) & 1 \\ B_1^3(u*) & 0 & B_2^3(u*) & 0 \\ 0 & B_1^3(u*) & 0 & B_2^3(u*) \end{bmatrix} \begin{bmatrix} XP_1 \\ ZP_1 \\ XP_2 \\ ZP_2 \end{bmatrix} = \begin{bmatrix} 0 \\ H_s - tg(a_k).L_s \\ L_c - B_0^3(u*)L_0 \\ H_c - B_3^3(u*).H_s \end{bmatrix}$$

Vista Lateral - Sheer

Linha Sheer

$$s_L(u) = B_0^2 S_0' + B_1^2 P_1 + B_2^2 S_2'$$
 (3)

- Restrições:
 - \bullet $s_L(0) = S_0'$
 - $s_L(1) = S_2'$
 - $s_{i}(0) = tg(B_{s})$
 - $s'_{L}(1) = tg(a'_{s})$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} \mathsf{tg}(\mathsf{B'}_s) & -1 \\ -\mathsf{tg}(\mathsf{a'}_s) & 1 \end{bmatrix} \begin{bmatrix} \mathsf{XP}_1 \\ \mathsf{ZP}_1 \end{bmatrix} = \begin{bmatrix} -\mathsf{h}_s \\ \mathsf{H}_s - \mathsf{tg}(\mathsf{a}_s') . L_s \end{bmatrix}$$

Vista Lateral - Chine

Linha Chine

$$c_L(u) = B_0^3 C_0' + B_1^3 P_1 + B_2^3 P_2 + B_3^3 C_2'$$
 (4)

- Restrições:
 - $c_z'(0) = 0$
 - $c_z'(1) = tg(a_k)$
 - 3 $c(u*) = K_1$
- Tal que $u* = \frac{Dist(K_0, K_1)^k}{Dist(K_0, K_1)^k + Dist(K_1, K_2)^k}$
- Com as restrições acima podemos montar a matriz:

$$\begin{bmatrix} -\mathsf{tg}(\mathsf{B'}_c) & 1 & 0 & 0 \\ 0 & 0 & -\mathsf{tg}(\mathsf{a'}_c) & 1 \\ \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) & 0 \\ 0 & \mathsf{B}_1^3(u*) & 0 & \mathsf{B}_2^3(u*) \end{bmatrix} \begin{bmatrix} \mathsf{XP}_1 \\ \mathsf{ZP}_1 \\ \mathsf{XP}_2 \\ \mathsf{ZP}_2 \end{bmatrix} = \begin{bmatrix} \mathsf{h}_c \\ \mathsf{H}_c - \mathsf{tg}(\mathsf{a'}_c) . L_c \\ \mathsf{Xc}1 - \mathsf{B}_3^3(u*) L_c \\ \mathsf{Zc}1 - \mathsf{B}_0^3(u*) . H_c \end{bmatrix}$$

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

Trabalhos Futuros

Cronograma

Mês	Atividades
Março	Implementação do Algoritmo Genético
	Desenvolvimento do Artigo para CSBC
	Estudar Operadores Genéticos
Abril	Implementar novos Operadores
	Desenvolver Componentes Híbridos
	Implementação de novas restrições do problema geral <i>Scheduling</i>
Maio	Desenvolvimento do Artigo para SBPO
	Execução de Testes com instâncias maiores
	Teste das novas restrições
Junho	Aperfeiçoar AG
	Teste de novas instâncias
Julho	Apresentação Final

Referencial Bibliográfico

R. F. Pacheco and M. C. Santoro.

A adoção de modelos de *Scheduling* no brasil: deficiências do processo de escolha.

Gestão & Produção, 8(2):128-138, 2001.

M. Pinedo.

Scheduling.

Springer, 2015.

Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

{lefb.eng,ronety} @uea.edu.br

February 26, 2018