## **DNA Sequencing and Data Analysis**

## Prof Noam Shomron Hadas Volkov

Lecture 11, January 12, 2023

## **DNA Sequencing and Data Analysis**

Friday 8:45 AM to 11:15 AM Arazi-Ofer Building, C.LO3

<u>nshomron@gmail.com</u> <u>hadas.volkov@post.runi.ac.il</u>

## **DNA Sequencing and Data Analysis**

Introduction to Third Generation Sequencing

| Class    | Title                                                       | Content/assignments                                                                | Activity, location                  |
|----------|-------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|
| 1, 4.11  | Introduction to Cells and DNA                               | Basic knowledge of biology                                                         | In the lecture hall, Noam           |
| 2, 11.11 | DNA Sequencing past and present                             | Basic knowledge of molecular DNA                                                   | In the lecture hall, Noam           |
| 3, 18.11 | Genomics technologies                                       | DNA, RNA, technologies                                                             | In the lecture hall, Noam           |
| 4, 25.11 | Introduction to Bioinformatics challenges in reading DNA    | Focus on three methods: WES/WGS, RNA-seq, cell-free DNA                            | In the lecture hall, Noam           |
| 5, 2.12  | Modern DNA Sequencing, 2nd wave File Formats, tools.        | Analysis approaches for WES/WGS, RNA-seq, cell-free DNA                            | In the lecture hall, Hadas and Noam |
| 6, 9.12  | De novo Shotgun Assembly                                    | The algorithms and methods behind the assembly problem                             | In computer class, Hadas and Noam   |
| 7, 16.12 | Sequence Mapping and Alignment                              | The algorithms behind mapping and alignment, fast and heuristics                   | In computer class, Hadas and Noam   |
| 8, 23.12 | Variant Calling and Somatic Variant Analysis                | The bioinformatics behind discovery of novel mutations in cancer                   | In computer class, Hadas and Noam   |
| 9, 30.12 | RNA-Seq                                                     | The bioinformatics behind RNA-Seq and Differential Gene Expression                 | In computer class, Hadas and Noam   |
| 10, 6.1  | Practice molecular biology techniques                       | Pipetting, transferring small amounts of fluids, running a dry Nanopore experiment | In biology class, Meitar and Noam   |
| 11, 13.1 | Nanopore DNA sequencing Nanopore data analysis introduction | Nanopore DNA sequencing, experimental run                                          | In biology class, Meitar, Hadas     |
| 12, 20.1 | Nanopore data analysis                                      | Nanopore DNA analysis, experimental run                                            | In computer class, Hadas and Noam   |
| 13, 27.1 | Nanopore data analysis and presentations                    | Groups present their results                                                       | In the lecture hall, Hadas and Noam |

## HW 8 - Variant Calling

gatk FilterMutectCalls -R genome.fa -V somatic.vcf.gz -O somatic filtered.vcf.gz

```
(base) __hadas at HADASTAU in /mnt/c/Users/hadas/Documents/Projects/RUNI/CompGenomicsWS/Lesson8-VC/output on main/
: zcat somatic filtered.vcf.qz | grep -v ^# | awk -v OFS='\t' '{print $1,$2,$4,$5,$7}' | head
chr1
       926008 C
       944021 C
                               PASS
chr1
       965175 C
chr1
                               PASS
chr1
       979160 C
                               strand_bias;weak_evidence
chr1
       980456 C
                               PASS
chr1
       1047656 C
                               strand_bias
chr1
       1049316 C
                               PASS
chr1
       1234903 C
                               PASS
chr1
       1254707 C
                               PASS
chr1
       1260983 C
                               PASS
```

Q8: How many filtered candidates are present in the final VCF?

```
(base) __hadas at HADASTAU in /mnt/c/Users/hadas/Documents/Projects/RUNI/CompGenomicsWS/Lesson8-VC/output on main ✓ .: zcat somatic filtered.vcf.gz | grep -v ^# | awk -v OFS='\t' '{print $1,$2,$4,$5,$7,$8}' | wc -l 10701
```

Q9: Are all mutations found in the database are also present in our current case? Give one assumption on why this is so?

```
(base) _hadas at HADASTAU in /mnt/c/Users/hadas/Documents/Projects/RUNI/CompGenomicsWS/Lesson8-VC/output on main√
└ .: zcat somatic filtered.vcf.qz | grep -v ^# | awk '{print $1,$2,$4,$5}' > coords.txt
(base) _hadas at HADASTAU in /mnt/c/Users/hadas/Documents/Projects/RUNI/CompGenomicsWS/Lesson8-VC/output on main/
∟.: ipython
Python 3.9.15 | packaged by conda-forge | (main, Nov 22 2022, 15:55:03)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.7.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: import pandas as pd
In [2]: vcf = pd.read_csv('coords.txt', sep=' ', header=None)
In [3]: cosmic = pd.read_csv('../hg38_cosmic70_cervix.txt', sep='\t', header=
In [4]: vcf
                  chr1 926008
                  chr1 944021
                  chr1 965175
                   chr1 979160
                        980456
                   chr1
                    ...
10696 chrUn_GL000224v1
                         55511
                               CA
10697 chrUn_GL000224v1
                         55515
10698 chrUn_GL000224v1
                         55562
10699 chrUn_KI270746v1
                         33494
10700 chrUn_KI270746v1 33500
[10701 rows x 4 columns]
In [5]: cosmic
                           2 3 4
                                                    ID=COSM460103;OCCURENCE=1(cervix)
           926010
                      926010 G C
                                                    ID=COSM458661;OCCURENCE=1(cervix)
          1267918
                     1267918 C G
          1267963
                     1267963 C T
                                            ID=COSM395758;OCCURENCE=1(lung),1(cervix)
          1636742
                     1636742 C T
                                                    ID=COSM458535;OCCURENCE=1(cervix)
          1636952
                     1636952 G T
                                                    ID=COSM458534;OCCURENCE=1(cervix)
        155261217 155261217 G A ID=COSM462274;OCCURENCE=1(cervix),1(large_inte...
     X 155774100 155774100
                                                    ID=COSM462273;OCCURENCE=1(cervix)
4695 X 156004525 156004525 G T ID=COSM1645589,COSM1645588,COSM462272;OCCURENC...
4696 X 156010055 156010055 G A
                                        ID=COSM462271,COSM1645590;OCCURENCE=1(cervix)
4697 Y 13422363
                   13422363 A G ID=COSN177308,COSN177319;OCCURENCE=1(cervix),3...
[4698 rows x 6 columns]
```

Q9: Are all mutations found in the database are also present in our current case? Give one assumption on why this is so?

### Exome

Low frequency mutations

Variant caller

```
In [31]: vcf[0] = vcf[0].str.split("chr").str[-1]
In [32]: cosmic = cosmic[[0,1,3,4]].rename(columns={0:0,1:1,3:2,4:3})
In [33]: vcf
                  1 926008
                  1 944021
                    965175
                    979160
                    980456
10696 Un_GL000224v1
                     55511 CA GC
10697 Un_GL000224v1
                     55515
10698 Un_GL000224v1
                     55562
10699 Un_KI270746v1
                     33494
10700 Un_KI270746v1
                     33500
[10701 rows x 4 columns]
In [34]: cosmic
               1 2 3
           926010 G C
          1267918 C G
          1267963 C T
          1636742 C T
     X 155261217 G A
    X 155774100 C T
    X 156010055 G A
4697 Y 13422363 A G
[4698 rows x 4 columns]
In [35]: pd.merge(vcf, cosmic, how='inner', on=[0,1,2,3])
      38001750 G T
  20 34768494 C A
```

### **Lesson Goals**

Be familiar with the main 3<sup>rd</sup> generation sequencing technologies:

- PacBio SMRT sequencing
- ONT sequencing
- 10X linked reads

Understand various applications of long and linked reads

- RNA-seq
- De novo assembly
- Structural variant calling

## What is 3rd Gen Sequencing

Sequencing technologies other than Illumina sequencing

Focus on producing long-distance information

- Long reads
- Linked reads

Developed or matured in the last decade

Actively being developed

Main technologies:

- Pacific Biosciences SMRT sequencing PacBio
- Oxford Nanopore Technology ONT
- 10X Genomics Chromium 10X

## PacBio SMRT Sequencing



### **Single Molecule Real Time**

No amplification step

Based on the ability to analyze very small volumes

Sequencing by synthesis

Sequel II





# PacBio Library Prep



# PacBio Sequencing



## Properties of PacBio Sequencing

### Read length

- Non-uniform
- Depends on selected insert size
- Usually 10-100kb

No paired-end option

One run can produce 4-5M reads - ~40Gb

Runs take several hours

Mostly uniform coverage - no GC-content bias

Raw reads error rate - ~10%



## Dealing With High Error Rates

Working with 10% error rate is impractical

### Option 1:

Polymerase Read —

**CLR** - continuous long read

Polymerase read length ~= sub-read length

Align CLRs to a reference genome and correct errors

Find the consensus of multiple molecules

Accuracy increases with sequencing depth

## **CLR Error Correction**



## Dealing With High Error Rates

### Option 2:

**CCS** - circular consensus read

Also called **HiFi reads** 

Polymerase read length > sub-read length

Align CCSs to one another and correct errors

Find the consensus of a single molecule

Accuracy >99%

Shorter reads (<20kb)



## Accuracy CLR consensus Vs. CCS



# Oxford Nanopore Sequencing (ONT)



Single molecule

Real time

**Not** SBS

Palm-sized machine





## **Properties of ONT Sequencing**

Read length - theoretically unlimited

In practice depends on DNA fragmentation - can produce reads > 2Mb

Yield - depends on machine model - 50Gb to 10Tb

Accuracy - ~10% error





## **Comparing Technologies**

|                    | Illumina   | PacBio CLR | PacBio CCS | ONT       |
|--------------------|------------|------------|------------|-----------|
| Read length        | 150-250 bp | 50 kb      | 30 kb      | 10-30 kb  |
| Overall error rate | 0.1 %      | 10-15 %    | <1 %       | <5 %      |
| Mismatch           | ~ 100 %    | 37 %       | 4 %        | 41 %      |
| InDel              | ~ 0 %      | 63 %       | 96 %       | 59 %      |
| Cost               | \$29/Gb    | \$85/Gb    |            | \$30/Gb*  |
| Throughput         | 7 Gb/h     | 2.5 Gb/h   |            | 0.5 Gb/h* |

### **10X Genomics**



Not a long read technology

But provides long-range information through linked reads

Short reads originating from the same long molecule



Based on standard short read Illumina technology





### **Linked Reads**

Reads with the same barcode likely come from the same gDNA fragment gDNA fragment size is usually 50-60kb

If ~x3 depth is used - we can produce "synthetic long reads"

Usually each molecule is sequenced at ~x0.2

We can still get useful long-range information

Non-trivial computational analysis is needed





## Applications of 3rd Gen Sequencing

Transcriptomics

Genome assembly

Structural variation detection

## RNA-Seq and Long Reads

Read length is usually larger than mRNA size

Full-length transcripts

No transcript assembly is needed

Easier to detect and quantify isoforms



## 10X for Single Cell RNA-Seq

#### GemCode<sup>™</sup> Technology for Single Cell Partitioning

Utilize an efficient droplet-based system to encapsulate up to 100-80,000+ cells in a single 10-minute run.



### Single Cell Digital Gene Expression

Enable digital quantification of transcripts in every cell, for single cell digital gene expression analysis.



# Long and Linked Reads in Genome Assembly

Many modern assemblers can work with 3<sup>rd</sup> generation reads

- Falcon PacBio reads
- Canu, SPAdes PacBio and ONT reads
- Supernova 10X reads

Most assemblers take a "hybrid" approach - long + short reads

Long/linked reads can help link contigs by bridging over difficult regions

Long reads can help solve long repeats

# **Different Assembly Strategies**



## Haplotype Phasing

Many interesting eukaryote genomes are diploid or polyploid

Still, most assemblies are haploid

Heterozygosity is "squished" into consensus sequences

A haplotype is a group of alleles arising from the same molecule

Splitting an assembly into haplotypes is called phasing





### Structural Variant Detection

SVs are generally hard to detect with short reads

Many SVs are located in regions that are hard to sequence

SV detection is usually based on mapping reads to a reference

Long reads are useful because:

- They can cross long repeats
- They are not affected by GC-bias
- They can span large insertions



1. Tattini, L., D'Aurizio, R., & Magi, A. (2015). Detection of genomic structural variants from next-generation sequencing data. *Frontiers in bioengineering and biotechnology*, 3, 92.

## How Do we Detect Variants



|     | Sequencing  | Mapping  | Variant calling |
|-----|-------------|----------|-----------------|
| SNP | short reads | BWA      | GATK            |
| CV/ | short reads | BWA      | Manta           |
| SV  | long reads  | Minimap2 | Sniffles        |

## Read Mapping With Minimap2

Minimap2 is a generic sequence mapping software

There are various mapping modes like:

- PacBio CLR to genome
- PacBio CCS to genome
- cDNA / PacBio Iso-Seq (transcripts) to genome
- ONT reads to genome
- PacBio reads to PacBio reads
- Short reads to genome (alternative to BWA)

Modes accounts for the specific biases of each technology Input format is fasta/fastq



### HYPE!

In recent years there have been lots of talk about long (an linked) reads

Many publications about data analysis and dedicated tools

Long reads are great! ... for some things

Don't trust everything you read

Always read the "small letters" (usually supplementary materials)

Vast majority of sequencing is still done with short reads

One technology can't solve all problems in biology!