

GPS/北斗定位模块

型号: HS6601-485

使用说明书

山东互信智能科技有限公司

地址:济南市高新区新泺大街 1766 号齐鲁软件园大厦 A 座 701 室

网址: www. husin. cn 电话: 0531-88799107

尊敬的用户:

感谢您选用本公司设计生产的产品!

在您使用本产品之前,请务必仔细阅读此使用说明书,并注意以下几点:

- 1、保证产品正常使用的电源及环境条件。
- 2、严格按照产品说明书正确使用,避免出现不必要的故障或损坏。
- 3、对产品进行维护、调整或更换易损件时,确保产品及其回路可靠断电。
- 4、请用户严格按照产品说明书的说明指导进行正确的安装和使用,以获得最佳使用效果。对于未按说明书使用所造成的产品损坏、人身伤害等,公司不予承担任何责任。
 - 5、保修期内禁止非公司授权的专业人士对产品进行维修,以免扩大故障。

著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由山东互信智能科技有限公司拥有,但注明引用其他方的内容除外。未经公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。

目录

1.	产品介绍1
	1.1 产品概述 1
	1.2 产品型号 1
	1.3 产品特点 1
	1.4 技术指标 1
	1.5 产品尺寸
	1.6 硬件接口2
2.	通信协议3
	2.1 通信协议 3
	2.2 寄存器定义 4
3.	协议详解5
	3.1 读保持寄存器5
	3.1.1 读取版本号5
	3.1.2 读取设备地址6
	3.1.3 读取设备波特率6
	3.1.4 读取奇偶校验位6
	3.1.5 读取定位数据 (RMC)7
	3.1.6 定位数据 (RMC) 解析7
	3.2 写保持寄存器8
	3.2.1 修改设备地址(广播)8
	3.2.2 修改波特率8
	3.2.3 修改奇偶校验位8
4.	配置工具9
5.	保修期限10
6.	技术支持10
7	联系方式 10

1. 产品介绍

1.1 产品概述

互信智能 HS6601 GPS/北斗定位模块(以下简称: HS6601 定位模块),是一款具有 GPS 定位和北斗定位的双模定位终端,可以快速、精确定位位置。

HS6601 定位模块内含双模定位芯片,快速定位位置,并且将定位信息以 RS485 接口和 Modbus 协议的方式提供给用户使用,串口波特率最高可达 115200 bps,可以通过 PC 机设置软件或串口命令轻松控制,使用方便快捷。

1.2 产品型号

目前互信智能 HS6601 系列有两款产品,型号如表 1-1 产品型号。

表 1-1 产品型号

序号	产品型号	说明
1	HS6601- 485	RS485 接口
2	HS6601- 232	RS232 接口

1.3 产品特点

- ◆ 同时支持 GPS 定位和北斗定位
- ◆ 串口波特率自定义,支持 2400 ~ 115200 bps
- ◆ 串口支持全双工和半双工串口通讯,支持 RS485 收发自动切换
- ◆ 模块串口波特率等参数可通过 PC 机或串口命令配置
- ◆ RS485 带 TVS、过流等保护
- ◆ 提供天线状态诊断,提供天线开路、短路等状态信息

1.4 技术指标

◇ 环境参数

- 工作温度: -40°C~80°C
- 工作湿度: 5%~95% RH, 无凝露

◆ 供电

- 工作电压: DC 5~28 V
- 功耗: ≤0.3W

1.5 产品尺寸

产品尺寸长 x 宽 x 高为: 95 mm x 50 mm x30 mm,其中 95mm 包含长度 80mm 和两个 安装孔 15mm。

图 1-1 产品尺寸

1.6 硬件接口

图 1-2 硬件接口

硬件接口定义见表 1-2 硬件接口定义。

表 1-2 硬件接口定义

编号	端子定义	说明
1)	电源适配器接口	输入 5~28V 直流电源
2	天线	SMA 天线接口
3	VCC	输出电源正极,与电源适配器接口联通
4	GND	输出电源负极
5	485 A	RS485 总线的 A
6	485 B	RS485 总线的 B
7	PWR 指示灯	电源指示灯,上电常亮
8	RUN 指示灯	运行指示灯,正常运行时亮1秒,灭1秒
9	TXD 指示灯	发送指示灯,向 RS485/RS232 总线接发送数据时闪烁
100	RXD 指示灯	接收指示灯,从 RS485/RS232 总线接收到数据时闪烁
11)	PPS 秒脉冲指示灯	定位无效时常亮;定位有效后,每秒闪烁一次
		长按 5 秒,开始恢复出厂设置,同时 RUN 运行指示灯
12	按键	快闪,完成后,运行指示灯正常闪烁。
		出厂设置为:地址为1,串口通信 9600/8/One/None。

2. 通信协议

2.1 通信协议

GPS/北斗定位模块物理层为 RS485/ RS232 总线,1 位起始位,8 位数据位,1 位停止位,1 位奇偶校验位。

GPS/北斗定位模块协议层为标准 ModBus 通信协议,符合国家标准 GBT 19582.1-2008 <<基于 Modbus 协议的工业自动化网络规范>>,采用 ModBusRTU 通讯协议,通过接收、解析数据总线上的帧数据,根据解析结果返回数据。

帧格式如下:

图 2-1 ModBus 帧格式

GPS/北斗定位模块模块支持寄存器读写、广播写、通用寄存器读的功能,协议帧数据遵循图 2-1 ModBus 帧格式的命令格式,采用如下功能码:

0x03: 读保持寄存器; 0x06: 写单个寄存器。

2.2 寄存器定义

表 2-1 保持寄存器定义

序	寄存器	器地址	会数点粉	*** H3 +\psi -P	备注
号	(十进制)	(16 进制)	参数名称	数据格式	金 社
					低字节有效,其中高4位代表
1	40001	0001	版本号	Int16	主版本号,低4位代表次版本
	10001	0001	//X/T	mito	号。0x0010 代表 1.0 版本。
					版本号只读。
2	40002	0002	从站地址	Int16	1-255, 默认: 1。
					数值范围为 0~7;
		0: 1200 bps; 1: 2400 bps;			
3	40003	0003	波特率	Int16	2: 4800 bps; 3: 9600 bps;
3	40003	0003	火1年	Intro	4: 19200 bps; 5: 38400 bps;
					6: 57600 bps; 7: 115200 bps;
					默认: 3(9600 bps)。
					数值范围为 0~4;
					0: 无校验; 1: 奇校验;
4	40004	0004	奇偶校验	Int16	2: 偶校验; 3: MARK 校验;
					4: SPACE 校验;
					默认: 0(无校验)。
5	40005	0005	定位数据	Int16	
39	40039	0039	定位数据	Int16	

3. 协议详解

3.1 读保持寄存器

功能码 0x03 用于读取保持寄存器的值,命令帧和响应帧遵循如下格式,其中 CRC 校验数据低字节在前,高字节在后。

命令帧:

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
(1字节)	(1 字节)	(2 字节)	(2 字节)	(2 字节)
0x01-0xFE	0x03			CRC16

响应帧:

地址	功能码	数据长度	数据	CRC 校验
(1字节)	(1 字节)	(1 字节)		(2 字节)
0x01-0xFE	0x03			CRC16

以下为 GPS/北斗定位模块模块的 ModBus 命令举例,举例中采用默认的设备地址 0x01,用户重新设置设备地址后,应以设置的地址为准,重新打包命令数据。

3.1.1 读取版本号

命令帧: 01 03 00 01 00 01 D5 CA

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x01	0x00 0x01	0xD5 0xCA

响应帧: 01 03 02 00 10 B9 88

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x10	0xB9 0x88

说明:

返回数据中版本号为 0x0010, 表示版本号为 V1.0。

3.1.2 读取设备地址

命令帧: FF 03 00 02 00 01 30 14

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0xFF	0x03	0x00 0x02	0x00 0x01	0x30 0x14

响应帧: 01 03 02 00 01 79 84

地址	功能码	数据长度	数据	CRC 校验
0xFF	0x03	0x02	0x00 0x01	0x79 0x84

说明:

该命令为地址的通用读命令,使用广播命令,为了避免与系统中其他设备的冲突,读取时保证总线上只连接要读取设备。

3.1.3 读取设备波特率

命令帧: 01 03 00 03 00 01 74 0A

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x03	0x00 0x01	0x74 0x0A

响应帧: 01 03 02 00 03 F8 45

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x03	0xF8 0x45

说明:

返回波特率为 0x03, 代表 9600 bps。

3.1.4 读取奇偶校验位

命令帧: 01 03 00 04 00 01 C5 C8

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x04	0x00 0x01	0xC5 0xC8

响应帧: 01 03 02 00 00 B8 44

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x00	0xB8 0x44

说明:返回校验位为0x00,代表无奇偶校验。

3.1.5 读取定位数据(RMC)

命令帧: 01 03 00 05 00 23 14 12

;	地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
	0x01	0x03	0x00 0x05	0x00 0x23	0x14 0x12

响应帧:

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x46	70 字节数据	两字节校验

3.1.6 定位数据 (RMC) 解析

读取定位数据 (RMC) 返回的 70 字节数据符合 NMEA0183 协议, ASCII 显示如下: \$GNRMC, 072905. 00, A, 3640. 46260, N, 11707. 54950, E, 000. 0, 000. 0, 050119, 0K*24

表 3-1 GNRMC解析

字段	符号	含义	取值范围	举例	备注	
1	\$	语句起始符	МЕЮН	T V 3	H	
2	GNRMC	RMC协议头			RMC协议头, GNRMC表示联合定位	
3	hhmmss.ss	UTC 时间	时时分分秒秒.秒秒	072905.00	北京东八区需要时+8	
4	A	定位状态	A/V		A-有效, V-无效	
5	ddmm.mmmmm	纬度	度度分分.分分分分分分分	3640.46260	计算要转为度: 36度 + 40.46260分。 40.46260/60=0.67438度,所以为36.67438度	
6	a	纬度方向	N/S		N-北纬,S-南纬	
7	dddmm.mmmmm	经度	度度度分分.分分分分分分分	11707.54950	计算要转为度: 117度 + 07.54950分。 07.54950/60=0.12583度,所以为117.12583度	
8	a	经度方向	E/W		E-东经,W-西经	
9	x.xxx –xxx.x	对地速度	节	123.2	地速率 节单位 地面速率 000.0~999.9节, Knot	
10	x.xxx -xxx.x	对地航向	度	000.0~359.9	地面航向(000.0~359.9度,以真北为参考基 准)	
11	xxxxxx	日期	日月年	050119	2019年那1月5日	
12	aa	天线状态	OK/OP/OR		OK 代表天线正常 OK; OP 代表开路 OPEN; OR 代表天线短路 SHORT	
13	*	语句结束符				
14	24	校验和	对 '\$'和 '*'之间的数据(7	对 '\$'和 '*'之间的数据 (不包括这两个字符) 按字节进行异或运算, 用十六进制数值表示		

3.2 写保持寄存器

3.2.1 修改设备地址(广播)

命令帧: 00 06 00 02 00 01 18 1B

,	地址	功能码	寄存器地址	寄存器数值	CRC 校验
	0x00	0x06	0x00 0x02	0x00 0x01	0x18 0x1B

响应帧: 01 06 00 02 00 01 E9 CA

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x02	0x00 0x01	0xE9 0xCA

说明:

该条命令用于设置设备地址,使用 0x00 作为广播地址,将设备地址修改为 0x01。

3.2.2 修改波特率

命令帧: 01 06 00 03 00 03 39 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

响应帧: 01 06 00 03 00 03 39 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

说明:

该条命令用于设置设备的波特率为9600。

设备出厂时默认为9600波特率无校验,用户可根据实际需求设置波特率与校验方式。

3.2.3 修改奇偶校验位

命令帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x06	0x00 0x04	0x09 0xCB

响应帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x04	0x00 0x04	0x09 0xCB

说明:

该条命令用于设置设备的校验位为奇校验。

4. 配置工具

PC 机配置工具软件见图 4-1 配置软件,功能说明见表 4-1 功能说明。

图 4-1 配置软件

表 4-1 功能说明

编号	功能项	说明
1)	串口连接设置	电脑串口的参数设置
2	打开/关闭串口	打开或者关闭串口
3	搜索设备	当终端设备波串口特率未知时,对设备进行搜索,搜 索到之后,在④显示设备地址,然后可以进行波 特率等参数的修改。
4	更改连接信息	终端设备地址,串口通信的一般设置

山东互信智能科技有限公司

编号	功能项	说明
5	CRC 校验	选中之后,软件自动添加 Modbus 校验和到发送数据
6	发送	点击发送按钮,将发送区数据发出
7	清除发送	点击清除发送按钮,将发送区数据清除
8	清除接收	点击清除接收按钮,将接收区数据清除
9	清除日志	点击清除日志,清空日志
(10)	日志显示	显示通信日志

5. 保修期限

自售出之日起1年内,在用户遵守使用规定要求,且出厂标志完整的条件下,给予免费 修理或更换。

6. 技术支持

本说明书主要用来指导用户更好地使用该系列产品,如果在使用中有不明之处,请与我司联系,技术人员会给您满意的答复。

7. 联系方式

公司: 山东互信智能科技有限公司

地址:济南市高新区新泺大街 1766 号齐鲁软件园大厦 A座 701室

网址: www.husin.cn

电话: 0531-88799107