#### **Transduction and Output**

Jason Farquhar

## The BCI Cycle

- 1) Signal Production: Get the person to produce a strong brain signal, either by performing an explicit mental-task, or through normal mental processes (2,6,7,8)
- 2) Detection: Build a machine able to directly measure the properties of someone's brain, e.g. EEG, MEG, fMRI (3)
- 3) Decoding: Build a machine able to decode the measurements to deduce the users mental state (4)
- 4) Transduction: Communicate the mental-state to the outside world (5)



## **Learning Goals**

- Understand the purpose of the output stage of BCI
- Understand how the key properties of BCI based communication, i.e. unreliable, low-bit-rate, high-latency, influence the design of the output system
- Understand how contextual information can be used to overcome these limitations
- Be able to describe the output-designs which have been developed for spelling systems, including; p300-visual-speller, TTD, Graz-virtual-keyboard, etc.
- Know what a systems bit-rate is, why it's important for BCI, and what the important characteristics of the Wolpaw Information Transfer Rate are.

## Output, System Integeration and HCI

- In principle output is easy
  - Simply transform the decoded intentions into the requested task
- However, practical BCI does not exist in isolation
- It just provides the pipe which allows the user to communicate with the computer....
- ... to achieve some higher level use objective, e.g. Send a letter, turn-on-a-light

BCI must be integerated within the larger Human Computer Interaction system to build a practially useful system

### **Human Computer Interaction**

- User has some request/task in mind
- How can the user (learn to) communicate this to the computer?
- How can the computer understand the actions of the user?



#### What is interaction?



## Human (Brain) Computer interaction?



#### **BCI/HCI**

- HCl not usually the focus of BCl research...
  - ... HCI specialists are much better at it!
  - ... just getting signals out of users heads is hard enough.
- However, being aware of the HCI issues can help to;
  - Make best use of limited communication possible
  - Make communication as easy as possible

#### Goals of good HCI

- Easy to use
  - For the target user group!
- Easy to learn
  - Stimulus-response compatability → (when possible) select mental tasks which corrospond well to the task the user wishs to perform
- Efficient and effective
  - Few actions necessary to perform task → use contextual information to reduce the number of possible messages

#### **Potential User Groups**

- The healthy
  - Occupational or for entertainment
  - Useability more important than strictly using brain signals
- The handicapped
  - Specific deficits: prosthetic limbs vs communication
  - Varying durations of use
- The completely locked in
  - End-stage ALS, Guillain-Barré syndrom
  - Generally not a long life expectancy
  - Benefits of early exposure to the paradigm/ system

## Target users: ALS patients

- Cognitive function in ALS patients:
- 50% show signs of fronto-temporal dementia (FTD):
  - attention deficits
- Depends on type of ALS (bulbar onset: 50% more likely)
- Altered ERP responses
- Visual P1 absent, BAEP's appear normal
- Altered motor processing
  - Long immobility
- Higher incidence of mood disturbance/ depression

Abe et al (1997), Haganasi et al (2002), Münte et al (1998), Onofrj et al (1997)



## Stimulus Response Compatibility

- Feedback should in some way be compatiable with the user actions (mental tasks),
- Makes the intentional encoding easier for the user to remember
  - e.g. Left-hand=move left, right-hand=move right, foot=move forward
  - Concentrate on the intended letter
- Note: Limited number of mental tasks available to particular user makes this difficult in many cases.

#### **Contextual Information**

- Contextual information can be used to reduce the bit-rate requirements on the communications channel
- Allowing the system to infer likely intentions...
- .. hence reducing the effective number of messages to be sent

#### **Contextual Information**

- Language models in spelling systems, e.g. T9
- Pointer momentum in 2D cursor control
- Interaction dialog (invalid states) in button navigation
- Conservation tree in dialog systems, e.g. Rephrase

## Context and shared autonomy

- Does the user intend to hit the object (gently)?
- Should the wheel-chair take-over?
- Mental Augmentation through Determination of Intended Action (MAIA)





#### **BCI** limitations

- Unreliable, high noise
  - 1 mistake every 10 yes/no decisions is very good (90%)
- High latency
  - <3s per yes/no decision is considered good</p>
- Low bit-rate
  - 90% @ 3s = ~3cpm

Similar limitations as other comminication systems, e.g. Disabled users, PDAs.

Hence, use interfaces developed for these systems

#### **Bit-Rate / Information Transfer Rate**

- ITR is a more useful measure of BCI performance than just classification rate.
- It also takes the time per classification and number of classes into account.
- Many definitions used for ITR, but for BCI, the Wolpaw definition is mostly used (Wolpaw, Rosamer, McFarland, & Pfurtscheller, 1998).

#### **Information Transfer Rate**

$$B = VR$$
  
 $R = \log_2(N) + P \log_2(P) + (1 - P) \log_2\left(\frac{1 - P}{N - 1}\right)$ 

- B = bit rate in bits per second
- V = classification rate, classifications per second.
- R = Bits per classification
- N = number of classes
- P = probability that the classifier is correct

## Example Information Transfer Rates

- Keyboard: 60wpm = 240cpm
- Mouse: ~80cpm
- Phone Keyboard (multitap): ~25cpm
- Phone Keyboard (T9): ~50cpm

- BCI (best ever!): ~40cpm (Geuger p300)
- BCI (average): 2-5cpm

# Example BCI/HCI designs: Speller systems

- User Task: Write sentences in natural language
- Design Characteristics
  - Character encoding decision tree?
  - Intentional encoding?
  - Contextual Information language model?
  - BCI specific?
  - ITR?



## **Graz Virtual Keyboard**

- Character encoding: decision tree
- Intentional encoding:
  - left-hand=left box, right-hand=right box
- Contextal awarness: none
- ITR: 0.67-1.02 cpm (healthy subjects)











Obermaier et al. 2003

## Hex-O-Spell

- Character encoding decision tree
- Intentional encoding
  - right-hand=rotate arrow
  - foot=extend arrow
- Contextual Information
  - Prediction by partial match (PPM) to order level two letters
- Adapted from PDA speller interfaces
- ITR 2.3 to 7.7 (healthy subjects)





#### Thought Translation Device (TTD)

- Character encoding decision tree
- Intentional encoding
  - SCP voltage = cursor position
- Contextual Information none
- ITR 0.5 cpm (locked in patients)



#### Dasher

- Developed for PDAs
- Character encoding decision tree
- Intentional encoding
  - LH=cursor up, RH=cursor down
- Contextual Information
  - Language model → character size
- ITR 5-6 cpm (healthy users),
   0cpm (patients)



## Dasher



Interface

## Bremen BCI Speller

- Developed for BCIs
- Character encoding
  - decision tree(ish)
- Intentional encoding
  - Visual SSEP
  - Attend L/R/T/B=move L/R/T/B
- Contextual Information
  - Letter frequency → character positio
- ITR 2.1 cpm (healthy users)



## Classic P300 Visual Speller

- Developed for BCIs
- Character encoding direct
- Intentional encoding
  - Visual p300 response
  - Attend symbol=select symbol
- Contextual Information none



- ITR 2.3 cpm (orginal healthy users),
- Many refinements; language model, stimulus type, flash sequence, etc. → ITR up to ~30cpm (fast best subject)

## P300 Visual Speller



#### Summary

- The output stage of the BCI is primarly concerned with HCI issues, e.g. Ease of use, ease of learning, stimulus compatability
- The unreliable, low-bit-rate, high-latency, nature of BCI mean the system must be designed for these properties
- Contextual information can be used to reduce bit-rates
- BCI designs used for spelling include; p300-visual-speller, TTD, Graz-virtual-keyboard, Hex-o-spell, etc.
- Information Transfer Rate (ITR) gives a better idea of a BCIs usefulness than classification rate alone

#### References

- Birbaumer, N., Kuebler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iverson, I.,
   Kotchoubey, B., Neumann, N., Flor, H., 2000. The thought translation device (TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation Engineering 8 (2), 190–193.
- Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Mueller, K.-R., 2007.
   Universal Access in Human-Computer Interaction. Ambient Interaction. Vol. 4555. Springer Verlag,
   Ch.A Note on Brain Actuated Spelling with the Berlin Brain-Computer Interface, pp. 759–768.
- Farwell, L., Dochin, E., 1988. Talking off the top of your head: toward a mental prothesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology 70, 510–512.
- Friman, O., Luth, T., Volosyak, I., Graeser, A., May 2007. Spelling with steady-state visual evoked potentials. In: 3rd International IEEE/EMBS Conference on Neural Engineering. pp. 354–357.
- Obermaier, B., Mueller, G., Pfurtscheller, G., 2003. "virtual keyboard" controller by spontaneous
   EEG activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11 (4), 422–426.
- Ward, D. J., Blackwell, A. F., MacKay, D. J., 2000. Dasher a data entry interface using continuous gestures and language models. CHI Letters 2 (2), 129–137.

## Postscript: BCI Paradigms – most common

- SCP's: trained features
  - Much training needed
  - Arbitrary feature can be chosen
- Motor imagery (lecture 6)
  - Arms/ hands, feet, tongue
  - Self-paced vs cued
- Selective attention (lecture 7)
  - P300
  - SSEP
  - Different modalities

#### BCI paradigms: the more creative

- Spatial navigation
  - Focus on navigation & details in surroundings, not walking
- Auditory imagery
  - Generally used irrespective of which song is imagined
- Internal arithmetic
  - Non-trivial calculations
- Word generation
- Sensorimotor attention
  - Attend to a body part without thinking of moving it
- Visual imagery
  - Geometric figure rotation

#### BCI paradigms: the radical

- Approach/ reject
  - Either empathize (out-of body sensation) with the avatar or want it to go away
- Imagined letter-writing
- Imagery of words/ concepts
- Meditative states?
- Emotions?
- Etc..!

## **EEG/MEG** mental signatures

- ERPs: event-related potentials, low frequency effects
  - Polarity (@ certain position)
  - Latency
  - Amplitude
  - Distribution over the scalp
- · Time-frequency responses, high(er) frequency effects
  - Range ( $\alpha$ -,  $\mu$ -,  $\beta$ -,  $\gamma$ -band, subdivisions)
  - Evoked/ induced
  - Direction of relative change (ERD/ ERS)
  - Latency
- Coherence: phaselock without amplitude change

#### **ERPs**

- Some known components:
- Pre-stimulus:
  - Readiness potential (RP)
  - Contingent Negative Variation (CNV)
- Post-stimulus:
  - Early 'physical' & later cognitive processing
  - Modality-specific
    - N 100
    - P200
    - N200 / MMN (Nd)
    - P300 (P3a and P3b)
    - N400
- Post-response:
  - Error Related Negativity



## Time-Frequency Responses

- $\delta$ -,  $\theta$ -,  $\alpha$ -rhythms
  - slow-wave sleep, meditation, idling
- $\mu$ -,  $\beta$ -rhythms
  - Normal waking consciousness
  - Motor activity/ imagination, general concentration
  - In excess: anxiety
- Y- rhythms
  - REM-sleep
  - Perception, perceptual binding
  - Short-term memory
  - Attentional processes
  - Etc...
  - BUT: Increasing evidence for artifact sensitivity
    - (Yuval-Greenberg et al '08, Whitham et al '08)

#### Additional

## Inforediction by Partial Match

PPM(n) uses the n previous characters to predict the next.