### 第二章 単回帰(続き)1

劉慶豊2

小樽商科大学

November 20, 2009

劉慶豊 (小樽商科大学)

<sup>&</sup>lt;sup>1</sup>第二章からの資料は森棟公夫先生著「基礎コース 計量経済学」をもとに作成した ものである。

### 検定の根拠

#### 一定の条件のもとでは

$$z = (\widehat{\beta} - \beta) / \sqrt{V(\widehat{\beta})} = \frac{\widehat{\beta} - \beta}{\sqrt{\sigma^2 / \{(n-1)s_{xx}\}}}$$
(1)

が標準正規分布に従う。

$$V(\widehat{\beta}) = \frac{\sigma^2}{\sum_{i=1,n}(x_i - \overline{x})^2} = \frac{\sigma^2}{(n-1)s_{xx}}$$
(2)

### 検定の根拠(続き)

 $V(\widehat{eta})$ を計算するために $\sigma^2$ の値が必要、しかし、 $\sigma^2$ は母集団に関するパラメーターで未知である代わりに以前説明した残差分散  $s^2=rac{1}{n-1}\sum_{i=1}^2 \hat{u}^2$ を利用する。そうすることで $V\left(\hat{eta}\right)$ が $s^2_{eta}$ となる。

 $s_{eta}$ は $\hat{eta}$ の標準誤差

$$s_{eta}=\sqrt{s^2/\{(n-1)s_{\scriptscriptstyle{
m XX}}\}}$$

t 値

$$t_{eta} = rac{\widehat{eta} - eta}{s_{eta}}$$

 $t_{\beta}$ は自由度n-2のt分布に従う。

### 回帰係数に関するt検定

真の $\beta$ が $\beta_0$ であるかどうかを調べる。ただし、 $\beta_0$ が定数である。 $\beta_0$ を0にする場合が多い。

片側検定  $H_0: \beta = \beta_0, H_1: \beta > \beta_0$  と  $H_0: \beta = \beta_0, H_1: \beta < \beta_0$  二種類。 両側検定  $H_0: \beta = \beta_0, H_1: \beta \neq \beta_0$ 。

$$t_{\beta} = \frac{\widehat{\beta} - \beta_0}{\sqrt{s^2/\{(n-1)s_{xx}\}}} \tag{3}$$

帰無仮説のもとで  $t_{\beta}$  は自由度 n-2の t 分布に従う。  $t_{\beta}$  と自由度 n-2の t 分布の有意水準点と比較する。

### 区間推定

信頼区間  $P\{c_1 \le \beta \le c_2\} = 0.95$  となるような $c_1$  と $c_2$  を求め、 $\beta$ が 95%の確率で入る空間が95%信頼区間。

信頼空間の求め方 95%の信頼空間を例に。有意水準95%のt値を $t_{\beta}$ とする。 $P\{t_{2.5} \leq t_{\beta} \leq t_{97.5}\}=0.95$ ,ただし、 $t_{2.5}$ と $t_{97.5}$ はそれぞれt分布の2.5%と97.5%分位点である。

$$P\{t_{2.5} \le t_{\beta} \le t_{97.5}\} = 0.95$$

$$P\{-t_{97.5} \le t_{\beta} \le t_{97.5}\} = 0.95$$

$$P\{-t_{97.5} \le \frac{\widehat{\beta} - \beta}{s_{\beta}} \le t_{97.5}\} = 0.95$$

$$P\left\{\{\widehat{\beta}-t_{97.5}\times s_{\beta}\leq \beta\leq \widehat{\beta}+t_{97.5}\times s_{\beta}\right\}=0.95$$

95%の信頼区間は $\left(\widehat{eta}-t_{97.5} imes s_{eta},\widehat{eta}+t_{97.5} imes s_{eta}
ight)$ である。

### 信頼区間と検定

帰無仮説の $\beta_0$ が信頼区間に入れば、帰無仮説は棄却できない、入らなければ、棄却する。

# 例2.8 車のスピードと停止距離の例の結果の続き。スピードが停止距離に影響を与えないかどうかを調べる。

•  $H_0: \beta = 0, H_1: \beta \geq 0$ 。有意水準を5%とする。( )の中はt値である(慣例として帰無仮説が係数=0のときのt統計量を示す)。

$$\hat{y} = -1.8294(-0.527) + 0.1643(2.881)x$$

$$t_{\beta} = \frac{(\hat{\beta} - \beta_0)}{s_{\beta}} = \frac{(0.1643 - 0)}{s_{\beta}} = 2.881$$

- 自由度 n-2=7-2=5の t 分布の右側 5% 有意水準点は 2.02。  $t_{\beta} > 2.02$  なので  $H_0$  を棄却する。
- 練習問題 車のスピードと停止距離の例に関して、テキストの表 2-2,2-3 の結果を用いて、 $\alpha$ ,  $\beta$  の推定量、 $s^2$ ,  $s_{xx}$  を求めな さい。そして t 値を計算しなさい。

November 20, 2009

### 例題

例2.8の続き  $\beta$ の90%信頼区間を求める。

#### 信頼空間は

$$\widehat{\beta} - t_{97.5} \times s_{\beta} \le \beta \le \widehat{\beta} + t_{97.5} \times s_{\beta}$$

- 自由度 n-2=7-2=5のt分布の右側5%有意水準点(95%分位 点)は2.02.
- $\hat{\beta}$ の標準誤差 $s_{\beta} = \sqrt{s^2/\{(n-1)s_{xx}\}} = 0.057$ .
- 90%信頼区間は $(0.1643 2.02 \times 0.057, 0.1643 + 2.02 \times 0.057)$ .

### ジップ(Ziph)の法則 都市人口×都市人口順位=定数 データ

#### 表 2.4 京都12市の人口とその順位

| 順位     | 1    | 2   | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|--------|------|-----|----|----|----|----|----|----|----|----|----|----|
| 人口(千人) | 1390 | 186 | 94 | 94 | 85 | 77 | 73 | 67 | 53 | 53 | 40 | 25 |

モデル cを定数として、

$$P_i \times i = c$$

$$\log(P_i) = c - \log(i)$$

$$\log(P_i) = c + \beta \log(i) + u_i, i = 1, 2, \dots, n$$



推定結果 ( )の中は帰無仮説が $\beta = 0$ のt値である。

$$\widehat{\log(P_i)} = 6.53(23.7) - 1.235(-8.1)\log(i)$$

検定  $H_0: \beta = -1, H_1: \beta \neq -1$  (両側検定)。有意水準を10%とする。帰無仮説が $\beta = 0$ のt値の公式から逆算して標準誤差を求めて、そしてt値を求める。

$$s_{\beta} = -1.235 \times \frac{1}{-8.1} = 0.152$$

$$t = \frac{-1.235 - (-1)}{0.152} = -1.55.$$

検定結果 自由度10の右側5%有意水準点(95%分位点) $t_{95}=1.81$ 。  $|t|< t_{95}$ 、 $H_0$ は棄却できない。 $\beta=-1$ であろうと認識する。

### CAPM式の推定

#### 株価の収益率

$$r = \frac{x_t - x_{t-1}}{x_{t-1}}$$
$$r = \log(\frac{x_t}{x_{t-1}})$$

市場ポートフォリオ 市場全体を一つのポートフォリオと見なす。その収益率が r<sub>M</sub>.

安産資産の収益率 rf

CAPM (資産価格決定モデル)

$$r - r_f = \beta(r_M - r_f)$$

#### CAPMの計量モデル

$$r - r_f = \alpha + \beta(r_M - r_f) + u$$

### NTTに関するCAPM式の推定例

設定 日経平均の収益率を市場ポートフォリオの収益率とする  $(r_M)$  とする。郵便貯金の利息を $r_f$  とする。n=239.

推定結果 ( )の中はt値である。

$$\hat{r} - r_f = -0.00053(-0.44) + 0.874(10.8)(r_M - r_f)$$

 $\alpha$ の検定 自由度が $n-2=237, |-0.44| < t_{95}$ なので $\alpha=0$ の帰無仮説が棄却できない。NTTの期待(平均)収益率は0に近いと認識する。

### NTTに関するCAPM式の推定例

etaの検定 帰無仮説がeta=0のt値の公式から逆算して標準誤差を求める

$$s_{\beta} = 0.874 \times \frac{1}{10.8} = 0.081$$

 $H_0:eta=1$ ,  $H_1:eta<1$ の検定を有意水準5%で行う。t値が

$$t = \frac{0.874 - 1}{0.081} = -1.56$$

右側5%有意水準点が1.65となり、|t| < 1.65なので、 $H_0: \beta = 1$ を棄却できない。NTTの安定さは日経平均と殆ど変わらないと結論を付ける。



### 最小2乗推定量の導出(1)

$$\Phi = RSS = \sum_{i=1}^{n} \left( y_i - \widehat{\alpha} - \widehat{\beta} x_i \right)^2$$

最小化の為の1次条件  $\frac{\partial \Phi}{\partial \widehat{\alpha}} = 0$ ,  $\frac{\partial \Phi}{\partial \widehat{\beta}} = 0$ .

$$\frac{\partial \Phi}{\partial \widehat{\alpha}} = \sum_{i=1}^{n} \frac{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)^{2}}{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)} \frac{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)}{\partial \widehat{\alpha}}$$

$$= \sum_{i=1}^{n} \left\{ (-2) \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right) \right\} = 0$$
(4)

$$\frac{\partial \Phi}{\partial \widehat{\beta}} = \sum_{i=1}^{n} \frac{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)^{2}}{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)} \frac{\partial \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right)}{\partial \widehat{\beta}}$$

$$= \sum_{i=1}^{n} \left\{ (-2) \left( y_{i} - \widehat{\alpha} - \widehat{\beta} x_{i} \right) x_{i} \right\} = 0$$
(5)

# 最小2乗推定量の導出(2)

#### 正規方程式

$$\sum_{i=1}^{n} \left( y_i - \widehat{\alpha} - \widehat{\beta} x_i \right) = 0$$

$$\sum_{i=1}^{n} \left( y_i - \widehat{\alpha} - \widehat{\beta} x_i \right) x_i = 0$$

### 最小化の為の2次条件

$$\frac{\partial^2 \Phi}{(\partial \widehat{\beta})^2} = 2 \sum_{i=1}^n (x_i)^2$$

## 最小2乗推定量の導出(3)

### 正規方程式を解いて最小二乗(OLS)推定量を求める

$$\widehat{\beta} = \frac{s_{xy}}{s_{xx}} = r_{xy} \frac{s_y}{s_x} \tag{6}$$

$$=\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}$$
(7)

$$=\frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}}$$
 (8)

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \tag{9}$$

### 最小2乗法の性質(証明はテキストを参照)

#### 性質1.残差和は0である

$$\sum_{i=1}^{n} \widehat{u}_i = 0. \tag{10}$$

#### 性質2.残差とxiは直交する

$$\sum_{i=1}^{n} \widehat{u}_i x_i = 0.$$

#### 性質3. 観測値の和は,回帰値の和に等しい

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \widehat{y}_i. \tag{11}$$

#### 性質4.観測値の平均は,回帰値の平均に等しい

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} \widehat{y}_i. \tag{12}$$

#### 性質5.残差と回帰値は直交する

$$\sum_{i=1}^{n} \widehat{u}_i \widehat{y}_i = 0. \tag{13}$$

性質 $\mathbf{6}$ . 座標 $(\overline{x},\overline{y})$ は,回帰直線上に位置する

$$\overline{y} = \widehat{\alpha} + \widehat{\beta}\overline{x}. \tag{14}$$

性質7.観測値と回帰値の積和は,回帰値の平方和に等しい

$$\sum_{i=1}^{n} y_i \widehat{y}_i = \sum_{i=1}^{n} \widehat{y}_i^2.$$
 (15)

性質 $\mathbf{8}.R^2$ は,回帰値 $\hat{y}_i$ と観測値 $y_i$ の相関係数の2乗に等しい 回帰値 $\hat{y}_i$ と観測値 $y_i$ の相関係数は,重相関係数とよばれる.

性質 $9.R^2$ は, $y_i$ と $x_i$ の相関係数の2乗に等しい(単回帰だけの性質)

#### 予測の方法

$$\widehat{y}_i = \widehat{\alpha} + \widehat{\beta} x_i \tag{16}$$

$$y_{n+1} = \alpha + \beta x_{n+1} + u_{n+1} \tag{17}$$

ただし $x_{n+1}$ は将来値である。

$$\widehat{y}_{n+1} = \widehat{\alpha} + \widehat{\beta} x_{n+1} \tag{18}$$

#### 予測分散

$$V(y_{n+1} - \widehat{y}_{n+1}) = \sigma^2 \left\{ 1 + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right\}$$

### 予測値の信頼空間(95%)

$$\widehat{y}_{n+1} - t_{97.5} \sqrt{\widehat{V}} < y_{n+1} < \widehat{y}_{n+1} + t_{97.5} \sqrt{\widehat{V}}$$



### Excelで単回帰分析

ツール $\rightarrow$ 分析ツール $\rightarrow$ 回帰分析 $\rightarrow$ OK $\rightarrow$ 入力Y範囲に非説明変数(分析したいまたは予測したい変数)の範囲、入力X範囲に説明変数(非説明変数の変化を説明できる変数)の範囲を指定 $\rightarrow$ OK。

#### 出力結果の見方

#### 概要

| 回帰統計   |          |  |  |  |  |  |  |  |
|--------|----------|--|--|--|--|--|--|--|
| 重相関 R  | 0.641785 |  |  |  |  |  |  |  |
| 重決定 R2 | 0.411887 |  |  |  |  |  |  |  |
| 補正 R2  | 0.390883 |  |  |  |  |  |  |  |
| 標準誤差   | 20.70401 |  |  |  |  |  |  |  |
| 観測数    | 30       |  |  |  |  |  |  |  |

#### 分散分析表

|    | 自由度 | 変動       | 分散       | リされた分髎   | 有意 F     |
|----|-----|----------|----------|----------|----------|
| 回帰 | 1   | 8405.914 | 8405.914 | 19.60993 | 0.000132 |
| 残差 | 28  | 12002.37 | 428.656  |          |          |
| 合計 | 29  | 20408.28 |          |          |          |

|       | 係数       | 標準誤差     | t        | P-値      | 下限 95%   | 上限 95%   | 下限 95.0%. | 上限 95.0% |
|-------|----------|----------|----------|----------|----------|----------|-----------|----------|
| 切片    | 94.39179 | 171.995  | 0.548805 | 0.587489 | -257.924 | 446.7081 | -257.924  | 446.7081 |
| X 値 1 | 20.47776 | 4.624284 | 4.42831  | 0.000132 | 11.00534 | 29.95019 | 11.00534  | 29.95019 |

#### 出力結果の見方

- 重相関:決定係数の平方根R。重決定:決定係数R<sup>2</sup>
- 上段にある標準誤差:s
- 回帰変動:ESS
- 係数:一つ目はâ,二番目はβ
- ・ 下段にある標準誤差:一つ目は $\hat{\alpha}$ の標準誤差 $s_a$ 、二番目は $\hat{\beta}$ の標準誤差 $s_b$
- 残差変動:残差二乗和RSS。合計:ESS+RSS=TSS
- P値: t値が対応する点より外側のt分布の両裾の確率(面積)

演習課題5(提出締め切り:12月11日) DATA03をダウンロードし、ま ずデータの基本統計量と共分散および相関係数をExcelで計 算して下さい。ビールの消費量と平均気温の間はどのよう な関係があるのかを計算の結果を持って説明しよう。そし て、さらに、その関係を厳密に分析するため、Excelで分析 ツールで単回帰分析を行って、推定式を求めなさい。仮に 2007年の5月に生産計画を立てることになっているとする。 2007年7月の平均気温の予測値は37度として、2007年にこ のブランドのビールをどのぐらい生産すればいいでしょう? (メールのタイトルを学籍番号,5の形式(例えば、 190000.5) でgliu@res.otaru-uc.ac.jpまで提出してくだ さい。)