Jose Rodriguez Villarreal

Objetivo

Entender que es un sistema de ecuaciones lineales y como obtener resolución, para sistemas de 2×2 y 3×3 .

Un sistema de ecuaciones lineales 3×3 es de la siguiente forma:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

donde $a_{ij}, b_i \in \mathbb{R}, i = 1, 2 \text{ y } j = 1, 2.$

Una ecuación del tipo $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$ se dice que es una ecuación lineal. En las incógnitas x_1 , x_2 , se consideran que a_{11} , a_{12} , a_{13} , b_1 son constantes conocidas.

Una solución de una ecuación lineal es una lista de números (s_1,s_2,s_3) tales que la ecuación se satisface cuando se hace la sustitución $x_1 = s_1$, $x_2 = s_2$, $x_3 = s_3$. El conjunto de todas las soluciones de la ecuación es su **conjunto solución**.

Un conjunto finito de ecuaciones lineales en las variables x_1 , x_2 , x_3 se conoce como **sistema de ecuaciones lineales**. Una **solución** es un conjunto de números s_1 , s_2 , s_3 tal que al sustituir $x_1 = s_1$, $x_2 = s_2$ y $x_3 = s_3$ se obtiene la igualdad de manera *simultánea*.

Ejemplo Considere el sistema de ecuaciones 2×2 .

Por ejemplo, el sistema

$$4x_1 - x_2 + 3x_3 = -1$$
$$3x_1 + x_2 + 9x_3 = -4$$

Un conjunto finito de ecuaciones lineales en las variables x_1 , x_2 , x_3 se conoce como **sistema de ecuaciones lineales**. Una **solución** es un conjunto de números s_1 , s_2 , s_3 tal que al sustituir $x_1 = s_1$, $x_2 = s_2$ y $x_3 = s_3$ se obtiene la igualdad de manera *simultánea*.

Ejemplo Considere el sistema de ecuaciones 2×2 .

Por ejemplo, el sistema

$$4x_1 - x_2 + 3x_3 = -1$$
$$3x_1 + x_2 + 9x_3 = -4$$

tiene la solución $x_1=1$, $x_2=2$, $x_3=-1$, puesto que estos valores cumplen las dos ecuaciones. Sin embargo, $x_1=1$, $x_2=8$, $x_3=1$ no es una solución, ya que estos valores sólo satisfacen la primera de las dos ecuaciones del sistema.

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

las rectas son paralelas

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

las rectas son paralelas

El sistema tiene más de una solución si:

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

las rectas son paralelas

El sistema tiene más de una solución si:

las ecuaciones representan al mismo conjunto o a la misma recta.

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

las rectas son paralelas

El sistema tiene más de una solución si:

las ecuaciones representan al mismo conjunto o a la misma recta.

El sistema tiene una solución sí

Un sistema de ecuaciones puede no tener una solución. Ver https://www.geogebra.org/m/e7hzJEGf.

Ejercicio

- ▶ ¿Que tipo de ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 no tenga solución?
- ▶ ¿Que ecuación lineal hace que el sistema formado por dicha ecuación y x + 3y = 7 tenga más de una solución?

El sistema no tiene una solución sí:

las rectas son paralelas

El sistema tiene más de una solución si:

las ecuaciones representan al mismo conjunto o a la misma recta.

El sistema tiene una solución sí - las ecuaciones representan rectas distintas y no paralelas

Ejemplo

Por inspección del sistema de ecuaciones lineales determinar si existe una solución única, no existe solución o tiene una infinidad de soluciones

$$3x_1 + 2x_2 = -1$$

$$-x_1 + x_2 = -4$$

Métodos de solución de sistemas 2×2

De matemáticas elementales se conocen los siguientes métodos de solución de un sistema de ecuaciones lineales

- ► Método gráfico
- Sustitución
- Igualación
- Eliminación

Ejemplo

Resolver usando el método de eliminación los siguientes sistemas de ecuaciones

$$\begin{array}{rcl} \frac{1}{2}x_1 - \frac{1}{3}x_2 & = 1 \\ -2x_1 + \frac{4}{3}x_2 & = -4 \\ -x_1 + 3x_2 & = 17 \\ 4x_1 + x_2 & = 7 \end{array}$$

Sistemas de ecuaciones de 3×3

Las definiciones que hemos realizado en los sistemas de ecuaciones de 2×2 aplican directamente. Ahora, buscamos una terna de números que cumplan con la ecuación de manera *simultánea*.

- ► El método gráfico puede servir pero no siempre es la mejor alternativa.
- Los métodos conocidos de solución de sistemas de ecuaciones lineales 2 × 2 suelen ser más laboriosos
- Usando la fórma de punto-pendiente
- ► Método gráfico
- ▶ Solucionando el sistema de ecuaciones lineales directamente

Ejemplo

Resolver el sistema

$$x_1$$
 $-2x_2$ $+3x_3$ $= 9$
 $-x_1$ $+3x_2$ $= -4$
 $2x_1$ $-5x_2$ $+5x_3$ $= 17$