PROBLEM STATEMENT:- TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

IMPORTING THE ESSENTIAL LIBRARIES:-

Out[95]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NO
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231

4116 rows × 19 columns

DATA PREPROCESSING:-

In [96]: ► df.head()

Out[96]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	D
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	16
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	22
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	4
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	34

In [97]: ► df.tail()

Out[97]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0

```
    df.isnull().any()

In [98]:
    Out[98]: SUBDIVISION
                             False
              YEAR
                             False
              JAN
                              True
              FEB
                              True
                              True
              MAR
              APR
                              True
              MAY
                              True
              JUN
                              True
                              True
              JUL
              AUG
                              True
              SEP
                              True
              OCT
                              True
              NOV
                              True
             DEC
                              True
              ANNUAL
                              True
              Jan-Feb
                              True
             Mar-May
                              True
              Jun-Sep
                              True
              Oct-Dec
                              True
              dtype: bool
           In [99]:

    df.isnull().sum()

In [100]:
   Out[100]: SUBDIVISION
                             0
              YEAR
                             0
              JAN
                             0
              FEB
                             0
              MAR
                             0
              APR
                             0
             MAY
                             0
              JUN
                             0
              JUL
                             0
              AUG
                             0
              SEP
                             0
              OCT
                             0
              NOV
                             0
             DEC
                             0
              ANNUAL
                             0
              Jan-Feb
                             0
             Mar-May
                             0
              Jun-Sep
                             0
              Oct-Dec
                             0
              dtype: int64
```

Out[101]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2

In [102]: ► df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4116 non-null	float64
3	FEB	4116 non-null	float64
4	MAR	4116 non-null	float64
5	APR	4116 non-null	float64
6	MAY	4116 non-null	float64
7	JUN	4116 non-null	float64
8	JUL	4116 non-null	float64
9	AUG	4116 non-null	float64
10	SEP	4116 non-null	float64
11	OCT	4116 non-null	float64
12	NOV	4116 non-null	float64
13	DEC	4116 non-null	float64
14	ANNUAL	4116 non-null	float64
15	Jan-Feb	4116 non-null	float64
16	Mar-May	4116 non-null	float64
1 7	Jun-Sep	4116 non-null	float64
18	Oct-Dec	4116 non-null	float64
dtype	es: float64(17	7), int64(1), obj	ject(1)

memory usage: 611.1+ KB

```
In [103]: ▶ df.columns
```

```
'Jun-Sep', 'Oct-Dec'],
     dtype='object')
```

```
Out[104]: (4116, 19)
In [105]: ► df['ANNUAL'].value counts()
   Out[105]: ANNUAL
              790.5
                       4
              770.3
                       4
              1836.2
                       4
              1024.6
                       4
              1926.5
                       3
             443.9
                       1
              689.0
                       1
              605.2
                       1
              509.7
                       1
              1642.9
                       1
             Name: count, Length: 3712, dtype: int64
In [106]:  df['Jan-Feb'].value_counts()
   Out[106]: Jan-Feb
             0.0
                     238
             0.1
                      80
             0.2
                      52
             0.3
                      38
             0.4
                      32
              23.3
                       1
             95.2
                       1
             76.9
                       1
              66.5
                       1
              69.3
                       1
             Name: count, Length: 1220, dtype: int64
In [107]:  df['Mar-May'].value_counts()
   Out[107]: Mar-May
             0.0
                      29
             0.1
                      13
             0.3
                      11
              8.3
                      11
              11.5
                      10
                       . .
              246.3
                       1
              248.1
                       1
              151.3
                       1
             249.5
                       1
              223.9
                       1
             Name: count, Length: 2262, dtype: int64
```

```
M df['Jun-Sep'].value_counts()
In [108]:
   Out[108]: Jun-Sep
              434.3
                        4
              334.8
                        4
              573.8
                        4
              613.3
              1082.3
                        3
              301.6
                        1
              380.9
                        1
              409.3
                        1
              229.4
                        1
              958.5
                        1
              Name: count, Length: 3683, dtype: int64
In [109]:  df['Oct-Dec'].value_counts()
   Out[109]: Oct-Dec
              0.0
                       16
              0.1
                       15
              0.5
                       13
              0.6
                       12
              0.7
                       11
              191.5
                        1
              124.5
                        1
              139.1
                        1
              41.5
                        1
              555.4
              Name: count, Length: 2389, dtype: int64
```

EXPLORATARY DATA ANALYSIS:-

LINEAR REGRESSION:-

FEB

0.442278

0.1793580786264921

In [116]: ▶ predictions=reg.predict(X_test)

In [117]: plt.scatter(y_test,predictions)

Out[117]: <matplotlib.collections.PathCollection at 0x273d4306410>

Out[119]:

LinearRegression
LinearRegression()

R2 Score: 0.1867699729364467

RIDGE MODEL:-

Ridge Model:

the train score for ridge model is0.9999999999874192 the test score for ridge model is0.9999999998833

In [126]: Ir=LinearRegression()

▶ plt.figure(figsize= (10,10)) In [127]: plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green") plt.xticks(rotation = 90) plt.legend() plt.show() $lasso; \alpha = grid$ DEC Linear Regression APR MAR FEB -JAN

LASSO MODEL:-

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is 0.9999206791315256

In [129]:

pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")

Out[129]: <Axes: >

- 0.99999999999991
- 0.999999999999921

plt.figure(figsize= (10,10)) In [131]: plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color= plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green") plt.xticks(rotation = 90) plt.legend() plt.show() Ridge; $\alpha = 10$ DEC Ridge;\$Ridge;\$\alpha=100\$ Linear Regression APR MAR FEB JAN

ELASTIC NET:-

DEC

0.0008816302333966198

CONCLUSION:-