This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

JP10286089A

[71] Applicant: OTSUKA PHARMACEUT

CO LTD

[72] Inventors: SHIMIZU FUMIO;;

SUZUKI MIKIO; HORIE MASATO . . .

[21] Application No.: JP09096908

[22] Filed: 19970415

[43] Published: 19981027

Ato lie Ago Glo Ala Mat And Yal Lee tie Glo Lys Hei dec Ang Ago
165 170 175
Ser Thr Glo Ago lie Mei Ser Leo Ser Thr Glo Gly Ago Tyr lie Ago
180 LeS 190
Leo Glo Thr Lys Ser Ser For To Ser Cys Cys
185 200

Retrieve Complete Document

[57] Abstract:

PROBLEM TO BE SOLVED: To obtain the subject new human rab 7GTP-bound similar protein gene containing a base sequence encoding a specific amino acid sequence and useful as an indicator for the condition clarification, prevention, diagnosis and treatment of genetic diseases, cancers, etc.

SOLUTION: This new human rab 7GTP-bound similar protein contains a basic sequence encoding an amino acid sequence of the formula, and is used for detecting the expressions of the gene in various tissues, for analyzing the structure and function of the gene, and for the genetic engineering production of a human protein encoding the gene, etc. The analysis of the expression product, etc., enables the condition clarification, diagnoses and treatments of genetic diseases, cancers, etc.

The gene is obtained by extracting a mRNA from each tissue such as human fetal brain, adult blood vessel or placenta, constructing a cDNA library with the extracted mRNA, chemically synthesizing a DNA sequence on the basis of information related to the DNA sequence of the gene, and subsequently screening the cDNA library by the use of the chemically synthesized DNA sequence as a probe.

[51] Int'l Class: C12N01509 C07H02104 C07K01447 C12N00121 C12P02102 C12P02108 C12Q00168 G01N03353 A61K04800 G01N033577 C12N01509 C12R00191 C12N00121 C12R00119 C12P02102 C12R00119

INTERNATIONAL SEARCH REPORT

nal Application No 00/06682

C12N5/10

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 CO7K14/715 C12N15/12 C12N15/63 C12N15/67 CO7K19/00 C12P21/00 A61P3/04 A61K38/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. RELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K C12P A61P A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, STRAND, BIOSIS

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 53840 A (SMITHKLINE BEECHAM CORP.) 3 December 1998 (1998-12-03) SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:258, SEQ ID NO:259	1-29
Α .	WO 97 20933 A (SCHERING CORP) 12 June 1997 (1997-06-12) SEQ ID NO:5	1-29
Τ	LONNQVIST F. ET AL.: "Leptin and its potential role in human obesity" JOURNAL OF INTERNAL MEDICINE, vol. 245, no. 6, June 1999 (1999-06), pages 643-652, XP000925953 the whole document	1-29
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority ctaim(s) or which is cated to establish the publication date of another citation or other special reason (as specified) O document reterring to an oral disclosure, use, exhibition or other means P document published prior to the International filing date but later than the priority date ctairned	"T" later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "8" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
9 January 2001	T 9 1 01 :
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Schönwasser, D

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Interactional	Application No
P	00/06682

	INION) DOCUMENTS CONSIDERED TO BE RELEVANT	T
egory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
, x	HILLIER L. ET AL.: "WashU-NCI human EST Project; ap33a07.x1 Schiller astrocytoma Homo sapiens cDNA clone IMAGE:1957140 3' similar to TR:043700 043700 CD33L2.; mRNA sequence" EMBL DATABASE ENTRY AI880327; ACCESSION NO. AI880327, 22 July 1999 (1999-07-22), XP002156744	1,4-8, 15,20,26
, х	BIRREN B. ET AL.: "Homo sapiens chromosome 15, clone RP11-300N24; Homo sapiens chromosome 15 clone RP11-300N24 map 15, LOW-PASS SEQUENCE SAMPLING" EMBL DATABASE ENTRY ACO21676; ACCESSION NO. ACO21676, 20 January 2000 (2000-01-20), XP002156745	1,4-8, 15,20,26
	JP 10 286089 A (OTSUKA PHARMACEUT CO LTD) 27 October 1998 (1998-10-27)	1,4-8, 11,12, 15-20, 26-29
	SEQ ID NO:7	
	TAKEI Y ET AL: "MOLECULAR CLONING OF A NOVEL GENE SIMILAR TO MYELOID ANTIGEN CD33 AND ITS SPECIFIC EXPRESSION IN PLACENTA" CYTOGENETICS AND CELL GENETICS, vol. 78, 1997, pages 295-300, XP002066897 ISSN: 0301-0171 figure 1	1,4-8, 11,12, 15-20, 26-29
•	CORNISH A L ET AL: "CHARACTERIZATION OF SIGLEC-5, A NOVEL GLYCOPROTEIN EXPRESSED ON MYELOID CELLS RELATED TO CD33" BLOOD, vol. 92, no. 6, 15 September 1998 (1998-09-15), pages 2123-2132, XP000913901 ISSN: 0006-4971 figure 2	1,4-8, 11,12, 15-20, 26-29

10

INFO #: 12188558 *

QUEEN THOMAS 1501

NB 01/22/2002 12:00 AM PT

SHIP VIA:

Airborne *

FILLED ON:

1/21/2002

Infotrieve, Inc. 7666 Market St. Canton, MI 48187

Phone 734-459-9699 x5 or 317-276-9278 Fax 734-459-5280 or 317-277-1977

Email

Rush PATENT: Post-1997

SHIP TO: 14629 / 165419

QUEEN THOMAS 1501

*, * * United States **United States**

Please contact us if you have questions or comments regarding this article

Email: michael_amie_a_nonlilly@lilly.com

Phone: (317) 276-8804

ARTICLE INFORMATION

PATENT

JP 10 286089(A): 1998

OTSUKA PHARMACEUT CO LTD(OCTOBER 27)

SHIP VIA

Airborne *

CUSTOMER INFO

DEPT

MC301,

FAX: 7-5172

PHONE: 7-8097

ORDERED ON FILLED ON

1/18/2002 1/21/2002

EMAIL: thomas_queen_e@lilly.com

NEED BY

1/22/2002

ATTENTION

QUEEN THOMAS 1501

INFO#

12188558

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-286089

(43)公開日 平成10年(1998)10月27日

(51) Int.Cl. ⁸	識別記号		FΙ				
C12N 15/0	9 ZNA		C12N I	5/00		ZNAA	
CO7H 21/0	14		C07H 2	1/04		В	
CO7K 14/4	17		C07K 1	4/47		•	
C12N 1/2	21		C12N	1/21			
C12P 21/0)2		C12P 2	1/02		С	
•		審査請求	未請求 請求項	頁の数3	OL	(全 35 頁)	最終頁に続く
(21)出願番号	特顧平9-96908		(71)出願人	000206	956		
				大塚製	薬株式	会社	•
(22)出顧日	平成9年(1997)4月15日			東京都	千代田	区神田司町2	丁目9番地
			(72)発明者	清水	文夫		
•				徳島県	鳴門市	撫養町南浜字	東浜261-302
	•		(72)発明者	鈴木	幹生		
				徳島県	徳島市	川内町加賀須	野463-30
			(72)発明者	堀江	正人		
				徳島県	鳴門市	鳴鬥町高島字	南159-1
			(72)発明者	武井	芳樹		
				東京都	文京区	大塚5-3-	10 マンション
				小石川	台307		
	,		(74)代理人	弁理士	三枝	英二 (外	.4名)
			1				

(54) 【発明の名称】 ヒト遺伝子

(57)【要約】

【課題】その利用により、遺伝子の各種組織での発現の 検出や、その構造、機能を解析でき、また、該遺伝子で コードされるヒト蛋白の遺伝子工学的製造が可能とな り、之等により、その発現物の解析等により、之等の関 与する疾患、例えば遺伝子病、癌等の病態解明や診断、 治療等が可能な新しいヒト遺伝子を提供する。

【解決手段】配列番号:1、:4、:7、:10、:1 3、:16及び:19で示されるアミノ酸配列をコード する塩基配列を含むことを特徴とする新規なヒト遺伝 子。

【特許請求の範囲】

【請求項1】配列番号:1で示されるアミノ酸配列をコードする塩基配列を含むことを特徴とするヒトrab7GTP結合類似タンパク遺伝子。

【請求項2】配列番号:2で示される塩基配列を含むことを特徴とするヒトrab7GTP結合類似タンパク遺伝子。

【請求項3】配列番号:3で示される塩基配列である請求項2に記載のヒトrab7GTP結合類似タンパク遺伝子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ヒトの疾患の予防、診断及び治療の指針として有用な遺伝子、より詳しくはラット、マウス、酵母、線虫、公知のヒト遺伝子等と類似性を有する新規なヒト遺伝子に関し、該遺伝子の c DN A 解析、染色体へのマッピング及び c DN A の機能解析により、該遺伝子を用いた遺伝子診断並びに新しい治療薬の開発に利用可能な遺伝子に関する。

[0002]

【従来の技術】生物の遺伝情報は、細胞の核内に存在するA、C、G及びTの4種の塩基の並び(DNA)として蓄積され、この遺伝情報は個々の生物の系統維持と個体発生のために保存されている。ヒトの場合、その塩基数は約30億(3×10⁹)といわれ、その中に5~10万の遺伝子があると推測されている。これらの遺伝情報は、遺伝子(DNA)からmRNAが転写され、次に蛋白質に翻訳されるという流れに沿って調節蛋白質、構造蛋白質、酵素等の創製を通して、生命現象の維持に関与している。

【0003】上記遺伝子から蛋白質翻訳までの流れの異常は、細胞の増殖・分化等の生命維持システムの異常を惹起し、各種疾患の原因となるとされている。これまでの遺伝子解析の結果から、インスリン受容体やLDL受容体等の各種受容体、細胞の増殖・分化に係わる例えばプロテアーゼやATPase、スーパーオキシドディスムターゼのような代謝酵素等の遺伝子が、医薬品開発にとって有用な素材となると考えられた。

【0004】しかしながら、ヒト遺伝子の解析や、かかる解析された遺伝子の機能と各種疾患との係わり等についての研究は、まだ始まったばかりであり、不明な点が多く、更なる新しい遺伝子の解析、それらの遺伝子の機能解析及び疾患との係わりの研究、ひいては解析された遺伝子の利用による遺伝子診断や該遺伝子の医薬用途への応用研究等が当業界で望まれている。

[0005]

【発明が解決しようとする課題】上記の如く、新たなし ト遺伝子が提供できれば、各細胞での発現レベルやその 構造及び機能を解析でき、またその発現物の解析等によ り、之等の関与する疾患、例えば遺伝子病、癌等の病態 解明や診断、治療等が可能となると考えられ、本発明 は、かかる新たなヒトの遺伝子の提供を目的としてい る。

[0006]

【課題を解決するための手段】本発明者らは、上記目的 より以下の如く鋭意研究を重ねた。即ち、本発明者ら は、まずヒト胎児脳、成人血管、胎盤の各種組織より抽 出したmRNAよりcDNAを合成し、これをベクター に組込んでライブラリーを構築し、該ライブラリーでト ランスフォームした大腸菌コロニーを寒天培地上に形成 させ、該コロニーをランダムにピックアップして96ウ ェルマイクロプレートに移し、各種のヒト遺伝子を含む 大腸菌クローンを作製、登録した。次いで、之等の各ク ローンを培養後、DNAを抽出精製し、得られるCDN Aを鋳型としてデオキシターミネーター法により4種の 塩基特異的に停止する伸長反応を行ない、自動DNAシ ークエンサーにより、登録された各クローンの有すると ト遺伝子の5'末端から約400塩基配列を決定し、か くして得られたヒト遺伝子の塩基配列情報より、公知の バクテリア、酵母、線虫、マウス、ヒト等の各種動植物 種に類似性を有する新規なファミリー遺伝子を検索し た。尚、上記cDNA解析方法については、本発明者の ひとりである藤原らの文献に細述されている(藤原 力,細胞工学,14,645-654(1995))。

【0007】その結果、検索されたグループ(レセプター、DNA結合ドメインを有する転写調節因子やシグナル伝達系因子、代謝酵素等)中に、既知の遺伝子と相同性を有する新規な遺伝子を見い出し、ここに本発明を完成するに至った。

【0008】即ち、本発明によれば、配列番号:1、:4、:7、:10、:13、:16及び:19で示されるアミノ酸配列をコードする塩基配列を含むことを特徴とする新規なヒト遺伝子、前記各アミノ酸配列をコードする配列番号:2、:5、:8、:11、:14、:17及び:20で示される塩基配列を含むことを特徴とするヒト遺伝子、並びに配列番号:3、:6、:9、:12、:15、:18及び:21で示される塩基配列であることを特徴とする新規なヒト遺伝子が提供される。【0009】以下、本明細書におけるアミノ酸、ペプチド、塩基配列、核酸等の略号による表示は、IUPAC、IUBの規定、「塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン」(特許庁編)及び当該分野における慣用記号に従うものとする。

[0010]

【発明の実施の形態】本発明遺伝子の一具体例としては、後述する実施例1-5に示される「GEN-502 C07」、「GEN-560D061」、「GEN-560D06s」、「GEN-128B10」、「GEN-506G10-a」、「GEN-506G10-b」及び「GEN-425G08」とそれぞれ名付けられた 各クローンの有するDNA配列から演繹されるものを挙 げることができ、それらの各塩基配列は、配列表に示さ れる通りである。

【0011】これら各クローンの有する遺伝子は、同配列表に示される各アミノ酸でコードされるヌクレオチド(核酸)のオープンリーディングフレームを有しており、それぞれ後記実施例に示される分子量を有していると計算された。従って、本明細書においては、以下本発明に係わる各ヒト遺伝子を、後記実施例1-5に示す名称にて表示することがある。

【0012】以下、本発明とト遺伝子につき詳述すれば、本発明とト遺伝子のそれぞれは、上述した通り、ラット、マウス、酵母、線虫及び他のとト遺伝子と類似性を有し、それら類似性ある遺伝子の情報に基づくとト遺伝子の解析と、それら解析された遺伝子の機能と各種疾患との係わりについての研究に利用でき、該遺伝子と関係ある疾患への遺伝子診断並びに該遺伝子の医薬用途への応用研究に用いることが可能である。即ち、本発明遺伝子によりコードされる蛋白質(遺伝子産物)の機能は、既知の相同性遺伝子のそれより類推でき、また本発明遺伝子の提供によれば、その候補遺伝子を発現ベクターに組込み、リコンビナントを作製し、酵素活性や結合活性等の機能を調べることもできる。

【0013】本発明遺伝子は、例えば配列番号:2で示されるように、一本鎖DNA配列で表されるが、本発明遺伝子には、かかる一本鎖DNA配列に相補的なDNA配列や之等の両者を含むコンポーネントもまた包含される。尚、配列番号:3n-1(n=1-7の整数)に示す本発明遺伝子の配列は、これによりコードされる各アミノ酸残基を示すコドンの一つの組合わせ例であり、本発明遺伝子はこれに限らず、各アミノ酸残基に対して任意のコドンを組合わせ選択したDNA塩基配列を有することも勿論可能である。尚、該コドンの選択は常法に従うことができ、例えば利用する宿主のコドン使用頻度を考慮することができる[Ncl.Acids Res., 9, 43-74(1981)]。

【0014】更に本発明遺伝子には、上記で示されるアミノ酸配列の一部のアミノ酸乃至アミノ酸配列を置換、欠失、付加等により改変してなり、同様の機能を有する同効物をコードするDNA配列もまた包含される。之等改変体の製造、改変(変異)等は天然に生じることもあり、また翻訳後の修飾により、或は遺伝子工学的手法により天然の遺伝子(本発明遺伝子)を、例えばサイトスペシフィック・ミュータゲネシス〔Methods in Enzymology、154、p350、367-382(1987);同100、p468(1983);Nucleic Acids Research、12、p9441(1984);続生化学実験講座1「遺伝子研究法II」、日本生化学会編、p105(1986)〕等の方法により改変したり、リン酸トリエステル法やリン酸アミダイト法等の化学合成手段〔J.Am. Chem. Soc.,89、p4801(1967);同91、p3350(19

69); Science, <u>150</u>, p178 (1968); Tetrahedron Lett., <u>22</u>, p1859 (1981); 同<u>24</u>, p245 (1983)〕により変異させたDNAを合成したり、それらの組合せにより収得することができる。

【0015】本発明遺伝子は、これを利用して、即ち例 えばこれを微生物のベクターに組込み、形質転換された 微生物を培養することによって、上記各遺伝子でコード される蛋白を容易にかつ安定して発現できる。

【0016】また本発明の遺伝子を利用して得られる各蛋白は、之等を用いて、特異抗体を作成することもできる。ここで抗原として用いられるコンポーネントは、上記遺伝子工学的手法に従って大量に産生される蛋白を用いることができ、得られる抗体はポリクローナル抗体及びモノクローナル抗体のいずれでもよく、之等抗体はそれぞれの蛋白の精製、測定、識別等に有利に利用できる。

【0017】本発明遺伝子の製造は、本発明によって開示された本発明遺伝子についての配列情報によれば、一般的遺伝子工学的手法により容易に実施できる[MolecularCloning 2nd Ed, Cold Spring Harbor Laboratory Press (1989); 続生化学実験講座「遺伝子研究法I、II、III」、日本生化学会編(1986)等参照〕。

【0018】これは例えばヒトcDNAライブラリー (各遺伝子の発現される適当な起源細胞より常法に従い 調製されたもの)から、本発明遺伝子に特有の適当なプローブや抗体を用いて所望クローンを選択することによ り実施できる〔Proc. Natl. Acad. Sci. USA., 78, 661 3 (1981); Science, 222, 778 (1983)等〕。

【0019】上記方法において、起源細胞としては、目的の遺伝子を発現する各種の細胞、組織や之等に由来する培養細胞等が例示され、これからの全RNAの分離、mRNAの分離や精製、cDNAへの変換(合成)とそのクローニング等はいずれも常法に従い実施できる。また、cDNAライブラリーは市販されてもおり、本発明においてはそれらcDNAライブラリー、例えばクローンテック社(ClontechLab. Inc.)より市販の各種cDNAライブラリー等を用いることもできる。

【0020】cDNAライブラリーからの本発明遺伝子のスクリーニングは、前記通常の方法に従い実施することができる。該スクリーニング方法としては、例えばcDNAの産生する蛋白質に対して、該蛋白質特異抗体を使用した免疫的スクリーニングにより、対応するcDNAクローンを選択する方法、目的のDNA配列に選択的に結合するプローブを用いたプラークハイブリダイゼーション、コロニーハイブリダイゼーション等や之等の組合せを例示できる。ここで用いられるプローブとしては、本発明遺伝子のDNA配列に関する情報をもとにして化学合成されたDNA配列等を用いるのが一般的であり、勿論既に取得された本発明遺伝子やその断片もかかるプローブとして利用できる。

【0021】更に各細胞、組織より抽出、単離精製された天然抽出物の部分アミノ酸配列情報に基づき、センス・プライマー、アンチセンス・プライマーをスクリーニング用プローブとして用いることもできる。

【0022】また、本発明遺伝子の取得に際しては、PCR法 [Science. 230, 1350-1354(1985)]によるDNA/RNA増幅法が好適に利用できる。殊にライブラリーから全長のcDNAが得られ難いような場合に、レース法(RACE: Rapid amplification of cDNA ends; 実験医学、12(6), 35-38 (1994))、殊に5′ーレース(5′ーRACE)法 [Frohman, M.A., et al., Proc.Natl.Acad.Sci., USA., 8. 8998-9002 (1988)]の採用が好適である。かかるPCR法の採用に際して使用されるプライマーは、既に本発明によって明らかにされた本発明遺伝子の配列情報に基づいて適宜設定することができ、これは常法に従い合成することができる。

【0023】尚、増幅させたDNA/RNA断片の単離精製は、前記の通り常法に従うことができ、例えばゲル電気泳動法等によればよい。

【 O O 2 4】上記で得られる本発明遺伝子或は各種 D N A 断片等の塩基配列の決定も、常法に従うことができ、例えばジデオキシ法 [Proc. Natl. Acad. Sci. USA., 74.5463-5467 (1977)] やマキサムーギルバート法 [Method in Enzymology, 65, 499(1980)] 等により行なうことができる。かかる塩基配列の決定は、市販のシークエンスキット等を用いても容易に行ない得る。

【 O O 2 5 】本発明遺伝子の利用によれば、通常の遺伝子組換え技術〔例えば、Science, 224, p1431 (1984); Biochem. Biophys. Res. Comm., 130, p692 (1985); Proc.Natl. Acad. Sci., USA., 80, p5990 (1983)及び前記引用文献等参照〕に従うことにより各組換え体蛋白を得ることができる。該蛋白の製造は、より詳細には、本発明遺伝子が宿主細胞中で発現できる組換えDNAを作成し、これを宿主細胞に導入して形質転換し、該形質転換体を培養することにより行なわれる。

【0026】ここで宿主細胞としては、真核生物及び原核生物のいずれも用いることができる。該真核生物の細胞には、脊椎動物、酵母等の細胞が含まれ、脊椎動物細胞としては、例えばサルの細胞であるCOS細胞〔Cell、23、175-182(1981)〕やチャイニーズ・ハムスター卵巣細胞及びそのジヒドロ葉酸レダクターゼ欠損株〔Proc. Natl. Acad. Sci., USA., 77、4216-4220(1980)〕等がよく用いられているが、之等に限定される訳ではない。脊椎動物の発現ベクターとしては、通常発現しようとする遺伝子の上流に位置するプロモーター、RNAのスプライス部位、ボリアデニル化部位及び転写終了配列等を保有するものを使用でき、これは更に必要により複製起点を有していてもよい。該発現ベクターの例としては、例えば、SV40の初期プロモーターを保有するpSV2dhfr [Mol. Cell. Biol., 1,854 (1981)〕等を

例示できる。また、真核微生物としては、酵母が一般によく用いられ、中でもサッカロミセス属酵母を有利に利用できる。該酵母等の真核微生物の発現ベクターとしては、例えば酸性ホスフアターゼ遺伝子に対するプロモーターを有するpAM82(Proc. Natl. Acad. Sci., USA., 80, 1-5 (1983))等を利用できる。

【0027】また、本発明遺伝子の発現ベクターとしては、原核生物遺伝子融合ベクターを好ましく利用することができ、該ベクターの具体例としては、例えば分子量26000のGSTドメイン(S. japonicum 由来)を有するpGEX-2TKやpGEX-4T-2等を例示することができる。

【0028】原核生物の宿主としては、大腸菌や枯草菌が一般によく用いられる。之等を宿主とする場合、例えば該宿主菌中で複製可能なプラスミドベクターを用い、このベクター中に本発明遺伝子が発現できるように該遺伝子の上流にプロモーター及びSD(シヤイン・アンド・ダルガーノ)塩基配列、更に蛋白合成開始に必要な開始コドン(例えばATG)を付与した発現プラスミドを利用するのが好ましい。上記宿主としての大腸菌としては、エシエリヒア・コリ(Escherichia coli) K12株等がよく用いられ、ベクターとしては一般にpBR322及びその改良ベクターがよく用いられるが、之等に限定されず公知の各種の菌株及びベクターをも利用できる。プロモーターとしては、例えばトリプトファン(trp)プロモーター、lppプロモーター、lacプロモーター、PL/PRプロモーター等を使用できる。

【0029】かくして得られる所望の組換えDNAの宿主細胞への導入方法及びこれによる形質転換方法としては、一般的な各種方法を採用できる。また得られる形質転換体は、常法に従い培養でき、該培養により本発明遺伝子によりコードされる目的の蛋白が生産、発現される。該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択利用でき、その培養も宿主細胞の生育に適した条件下で実施できる。

【0030】上記により、形質転換体の細胞内、細胞外 乃至は細胞膜上に目的とする組換え蛋白が発現、生産、 蓄積乃至分泌される。

【0031】各組換え蛋白は、所望により、その物理的性質、化学的性質等を利用した各種の分離操作〔「生化学データーブックII」、1175-1259頁、第1版第1刷、1980年6月23日株式会社東京化学同人発行;Biochemistry、25(25)、8274-8277(1986);Eur. J. Biochem. 163、313-321(1987)等参照〕により分離、精製できる。該方法としては、具体的には例えば通常の再構成処理、蛋白沈澱剤による処理(塩析法)、遠心分離、浸透圧ショック法、超音波破砕、限外沪過、分子篩クロマトグラフィー(ゲル沪過)、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフ

ィー、高速液体クロマトグラフィー (HPLC)等の各種液体クロマトグラフィー、透析法、之等の組合せ等を例示でき、特に好ましい上記方法としては所望の蛋白を結合させたカラムを利用したアフィニティクロマトグラフィーを例示できる。

【OO32】また、本発明によって明らかにされた本発明遺伝子の配列情報を基にすれば、例えば該遺伝子の一部又は全部の塩基配列を利用することにより、各種とト組織における本発明遺伝子の発現の検出を行なうことができる。これは常法に従って行なうことができ、例えばRT-PCR (Reverse transcribed-Polymerase chain reaction) (Kawasaki, E.S., et al., Amplification of RNA. In PCR Protocol, A Guide to methods and a pplications, Academic, Press. Inc., SanDiego, 21-27 (1991)〕によるRNA増幅により、またノーザンブロッティング解析(Molecular Cloning, Cold Spring Harbor Laboratory(1989)〕等により、いずれも良好に実施し得る。

【0033】尚、前記PCR法を採用する場合において、用いられるプライマーは、本発明遺伝子のみを特異的に増幅できる本発明遺伝子に特有のものである限り何等限定はなく、本発明遺伝情報に基いてその配列を適宜設定することができる。通常これは常法に従って20~30ヌクレオチド程度の部分配列を有するものとすることができる。その好適な例は、後記実施例1-5に示す通りである。

【0034】しかして、本発明はかかる新規なヒト遺伝子に特有の検出に有用なプライマー及び/又はプローブをも提供するものである。

[0035]

【発明の効果】本発明によれば、新規なヒト遺伝子が提供され、該遺伝子を用いれば、該遺伝子の各種組織での発現の検出や、その構造及び機能を解析でき、また、該遺伝子でコードされるヒト蛋白の遺伝子工学的製造が可能となり、これらにより、その発現物の解析等により、之等の関与する疾患、例えば遺伝子病、癌等の病態解明や診断、治療等が可能となる。

[0036]

【実施例】以下、本発明を更に詳しく説明するため、実 施例を挙げる。

[0037]

【実施例1】ヒトrab7GTP結合類似タンパク遺伝 子

(1) ヒトrab7GTP結合類似タンパク遺伝子のクローニング及びDNAシークエンシング

ヒト胎児脳、成人血管、胎盤の各組織より抽出したmR NAをクローンテック社より購入して出発材料とした。 上記mRNAよりcDNAを合成し、ベクター入ZAP II (ストラタジーン社製) に挿入し、cDNAライブラ リーを構築した(大塚GENリサーチ・インスティチュ ート、大塚製薬株式会社)。インビボ・エキシジョン法 (in vivo excision: Short, J. M., et al., Nucleic Acids Res., 16, 7583-7600 (1988)) によって寒天培地 上にヒト遺伝子を含む大腸菌コロニーを形成させ、ラン ダムにそのコロニーをピックアップし、96ウエルマイ クロプレートにヒト遺伝子を含む大腸菌クローンを登録 した。登録されたクローンは、-80℃にて保存した。 【0038】次に登録した各クローンを1.5mlのし B培地で一昼夜培養し、プラスミド自動抽出装置PI-100(クラボウ社製)を用いてDNAを抽出精製し た。尚、コンタミした大腸菌のRNAは、RNase処理 により分解除去した。最終的に30μ1に溶解し、2μ 1はミニゲルによりおおまかにDNAのサイズ及び量を チェックした。その7μ1をシークエンス反応用に用 い、残りの21µ1は、プラスミドDNAとして4℃に 保存した。また、この方法は若干のプログラム変更によ って後記実施例で示されるFISH (fluoresence in s itu hybridization) のプローブ用としても使用可能な コスミドを抽出することができる。

【0039】続いてT3、T7、或は合成オリゴヌクレオチド・プライマーを用いるサンガーらのジデオキシターミネーター法(Sanger, F., et al., Proc. Natl. A cad. Sci., U.S.A., 74, 5463-5467(1977))或はジデオキシターミネーター法にPCR法を加味した方法であるサイクルシークエンス法(Carothers, A.M., et al., B io. Techniques, 7, 494-499(1989))を実施した。之等の方法は少量のプラスミドDNA(およそ0.1-0.5 μ g)をテンプレート(鋳型)として4種の塩基を特異的に停止する伸長反応させる方法である。

【0040】シークエンスプライマーとして、FITC (fluorescein isothiocyanate) 蛍光標識したものを使用し、Taqポリメラーゼにより約25サイクル反応させた。蛍光標識したDNA断片につき、自動DNAシークエンサー、ALFTMDNAシークエンサー(ファルマシア社製)によりcDNAの5、末端側から約400塩基の配列を決定した。

【0041】3、非翻訳領域は、各遺伝子の異質性(he terogeneity)が高く、個々の遺伝子を区別するのに適しているので、場合によっては、3、側のシークエンスも行なった。

【0042】DNAシークエンサーで得られた膨大な塩基配列情報を、64ビットのコンピューターDEC3400に転送し、コンピュターによるホモロジー解析を行なった。該ホモロジー解析は、UWGCGのFASTAプログラム(Pearson, W.R. and Lipman, D. J., Proc.Natl. Acad. Sci., USA., 85, 2444-2448 (1988))によるデーターベース(GenBank, EMBL)検索により行なった。

【0043】ヒト胎児脳cDNAライブラリーについての上記解析方法は、藤原ら〔Fujiwara, T., et al., DN

A Res., 2, 107-111 (1991)] に詳述されている。

【0044】上記と同様な方法で、構築されたヒト胎盤 cDNAライブラリーから無作為に選択したおよそ50 40のESTs (expressed sequence tags:発現遺伝子 断片の部分DNA配列)の配列決定を実施した。

【0045】FASTAプログラムによるGene Bankと EMBLの配列検索の中で、GEN-502C07と命 名したクローンが、ラットのrab7GTP結合タンパ ク(accession no. X96663)に対して、最も強く相同性 を示すことを発見した。

【0046】テンプレート(鋳型)としてベクター(pB luescript vector: ストラタジーン社製(Stratagen e))内に挿入された二本鎖DNAと、プライマーとしての合成オリゴヌクレオチドとを使用して、サンガーらのジデオキシ・チェーン・ターミネェーション法によって、全コード領域を含むcDNAの塩基配列を決定し、他のいくつかのrab関連遺伝子のDNA配列と比較した。

【0047】本発明遺伝子に関連するシグナル伝達分子 のRas関連ファミリーのメンバーであるRabタンパ クは、真核細胞内に存在するGTPに結合する低分子タ ンパクである。このタンパクは、エキソサイトーシス系 とエンドサイトーシス系の両経路の制御に重要な役割を 担っており、既に30種以上のRab関連タンパク質が 報告されている。それらはGTP/GDP結合とGTP 加水分解能に対する領域において、Rasタンパクと相 同性を有している。多くのRabタンパクは全ての細胞 に存在し、膜輸送の機能を有する。しかしながら、いく つかのRabタンパクは組織特異性を示す。例えばRa b3aは神経末端で神経伝達物質の遊離の調節に関与す ることが提唱され、脳に特異的発現が見られている〔Fi scher von Mollard, G., et al., Nature, 349, 79-81 (1991)〕。更に、脂肪細胞においてRab3d (Baldin i. G., et al., Proc. Natl. Acad. Sci., U.S.A., 89, 5049-5052 (1992)〕の、また上皮細胞においてRab 17 (Lutcke, A., et al., J. Cell Biol., <u>121</u>, 553-5 64 (1993)〕の、特異的発現もそれぞれ報告されてい る。

【0048】配列番号:3に、上記GEN-502C07と命名されたcDNAクローンの核酸配列を、配列番号:2に、そのクローンのコーディング領域の核酸配列を、また配列番号:1に、該核酸配列でコードされる推定アミノ酸配列を、それぞれ示す。

【0049】このcDNAは、2443塩基からなり、203アミノ酸をコードする609塩基のオープン・リーディング・フレームを含んでいた。上記核酸配列には、翻訳開始部位と思われる(Kozak, M., J. Biol. Chem., 266, 19867-19870(1991))配列、即ち(A/G) CCATGG配列が、その38-44番目の核酸残基の位置に認められ、また3、非翻訳領域にはAlu配列が

含まれていた。

【0050】また、このcDNAは、翻訳領域におい て、ラットrabGTP結合類似タンパク(X96663)と 89%相同性を示した。

【0051】本発明遺伝子でコードされる推定アミノ酸配列と、ラットRabGTP結合タンパク(X96663)とは、94%同一性を示した。更に、186アミノ酸においてRab関連GTP結合タンパク(M94043)と55%、Rab7結合タンパクとは178アミノ酸領域に亘り35%の同一性を示した。

【0052】本遺伝子産物の推定されたアミノ酸配列は、Ras タンパクにおけるGTP結合に重要な部位と同様に、4つの保存された領域(Pai, E. F., et al., Nature, 341, 209-214 (1989): Valencia, A., et al., Biochemistry, 30, 4637-4648(1991))を有していたが、2つのモチーフにおいて個々の残基の置換が検出された。

【0053】アミノ酸配列を示す配列番号:1の14-21番目の位置に示されるホスフェート結合ループを構築するモチーフI(GxxxxGKS/T、xは如何なる残基でもよい、以下同じ)及び125-128番目の位置に示されるグアニン特異領域(NKxD)と呼ばれるモチーフIIIは、保存されていた。しかしながら、62-68番目の位置に示されるモチーフIIにおいては、ラットrabGTPタンパク(X96663)と同様に、アーホスフェートと相互作用する一致領域(WDTAGQE)内のThrがIleによって置換されていた。

【0054】また、グアニン基とその側鎖が間接的に作用するExSA配列(モチーフIV)内の153-156番目の位置のAlaがValによって置換されていた。この置換はマウスRab23におけるRxSVの置換に類似している(Olkkonen, V.M., et al., Gene, 138, 207-211(1994))。

【0055】本発明遺伝子がGTP結合とGTPase 活性とを保有しているかどうかは不明ではある。RAB 5においては、保存領域のアミノ酸置換がエンドサイト ーシス活性を下げるという報告もあることから、上記ア ミノ酸の置換は、之等の活性になんらかの影響を及ぼす かも知れない。

【0056】更に本発明遺伝子の特徴は、C末端高可変 領域と2つの連続したシスティンをC末端に含んでいる ことである。

【0057】保存されたモチーフIVからの下流領域は、Ras関連タンパク間の配列と同様、その長さにおいて可変的であった。この領域は特異的な額的と膜との相互作用に係わっている(Chavrier, P., et al., Nature, 353, 769-772 (1991))。

【0058】全ての低分子量GTP結合タンパクは、C 末端付近に少なくとも一つのシスティン残基を含んでい て、膜相互作用に必要なC末端システィン・モチーフ は、Caax、CCax、CC或はCxC("a"は脂肪族残基)である。殆どのRabタンパクは、C末端にCxC(例としてRab3A)或はCC(例としてRab1A)のどちらかを所有している。

【0059】上記結果に鑑みて、本発明遺伝子はRab 7GTP結合類似タンパクをコードする新規なヒト遺伝 子であると結論付けられる。

【0060】(2)ノーザンブロット分析 正常ヒト組織におけるヒトrab7GTP結合類似タンパクmRNAの発現をランダム・オリゴヌクレオチド・プライミング法によって、標識したヒトcDNAクローンをプローブとするノーザンブロットにより評価した。 【0061】ノーザンブロット分析は、製品使用法に従い、ヒトMTNブロット(Human Multiple Tissue Nothern blot; クローンテック社製、ラ・ジョラ(La Jolla)、カリフォルニア、米国)を用いて実施した。

【0062】即ち、上記クローンGEN-502C07のcDNA挿入部は、3、非翻訳領域内にAlu配列を含んでいたので、他のmRNAに対する非特異的ハイブリダイゼーションを予防するために、ノーザンブロット分析用のプローブをベクター(pBluescript vector)のcDNA挿入部の5、末端の上流ベクター上に存在するEcoRIサイトと580番目(配列番号:3の配列番号に対応)に存在するEcoRVサイト内で割裂することによって、制限酵素断片を調製した。更に上記の特異的な制限酵素断片をPCRで増幅し、PCR増幅産物を[32P]ーdCTP(ランダムプライムドDNAラベリングキット、ベーリンガーマンハイム社)により標識してプローブとした。

【0063】ブロットを4時間プレハイブリ後、42℃で一晩、50%ホルムアミド/5×SSC/10×デンハルツ溶液/2%SDS溶液(100μg/m1変性サケ精子DNA含有)の溶液中でハイブリした。2×SSC/0.05%SDSにて室温下にて60分、2回洗浄後、次いで0.1×SSC/0.01%SDSにて65℃下に60分間で3回洗浄した。フィルターを-80℃下に3日間、X線フィルム(コダック社製)に対して露光した。

【0064】3日間の露光の結果、試験した全てのヒト組織(心臓、脳、胎盤、肺、肝臓、骨格筋、腎臓、膵臓、脾臓、甲状腺、膀胱、コウ丸、卵巣、大腸、小腸、末梢血リンパ球)内に、3.6kbのmRNAが発現していることが明らかとなった。しかしながら、脳、胎盤、骨格筋においては、わずかに検出された。

【0065】(3)ダイレクト・RーバンディングFISH (Fluoresence in situ hybridization) によるコスミド・クローンと染色体の局在

FISH分析用のプローブを調整するために、GEN-502C07遺伝子に相当する配列を含むコスミド・クローンを単離した。即ち、下記表1に示す塩基配列のプライマーP1とP2とを合成し、之等のプライマーを用いてPCRを行ない、コスミド・クローンのスクリーニングを行なった。反応条件としては、94C30秒、55C45秒及び72C45秒のサイクルを35サイクル行なった。

【0066】 【表1】

プライマー	塩基配列
P 1	5' -TAGGCCGTTGTTTCAGATTC-3'
P 2	5' -TACAGTGACTTCTGGGACAC-3'

【0067】かくして単離されたひとつのコスミド・クローンを複製プロメタフェーズRーバンドと組み合わせたFISHに基づく技術であるダイレクト・Rーバンディング・フルオレッセン・インサイチュー・ハイブリダイゼーション(FISH)によるマッピングのためのプローブとして使用し、該FISH法によって、GEN-502C07の染色体マッピングを行なった〔Takahashi、E., et al., Hum.Genet., 86, 14-16 (1990)〕。

【0068】また、該クローンに存在する反復配列の抑制のために、リクター〔Lichter P.et al., Proc. Nat 1. Sci. U.S.A., <u>87</u>, 6634-6638 (1990)〕の記載に従って、20倍過度のヒトCotーI DNA (BRL社製)を用いた。

【0069】標識、ハイブリダイゼーション、洗浄、検出は、通常の方法に従い実施した。プロビア100フィルム(フジISO100;ブシ・フィルム社製)を顕微

鏡写真撮影のために用いた(フィルター・コンビネーション、ニコンB-2A)。

【0070】試験した100のR-バンド分裂前中期プレートの47%が、第1染色体のバンドq32.1の位置で相同染色体上に完全な1対のスポットを示した。また、プレートの41%がどちらか或は相同染色体上に不完全な単一又は一対のスポットを明らかにした。残りの12%は、検出可能なスポットを示さなかった。上記の結果から、GEN-502C07は、染色体バンド1q32上にマップされた。

【0071】本実施例によれば、新規なヒトrab7G TP結合類似タンパク遺伝子が提供され、該遺伝子を用いれば、該遺伝子の各種組織での発現の検出や、ヒトrab7GTP結合類似タンパクの遺伝子工学的製造が可能となり、これらにより、発現タンパクとrabによる細胞内小胞輸送の制御機構の解明の研究や之等の関与す る疾患、例えば癌、神経性疾患、等の病態解明や診断、 治療等が可能となると考えられる。

[0072]

【実施例2】ミエロイド抗原CD33関連蛋白遺伝子 (GEN-560D061及びGEN-560D06 s)

(1) ミエロイド抗原CD33関連蛋白遺伝子のクローニング及びDNAシークエンシング

イムノグロブリン(Ig)・スーパーファミリーに属するメンバーは、細胞ー細胞間相互作用を介在している分子として働く(Williams, A.F., Annu. Rev. Immunol., 6, 381 (1988)]。

【 O O 7 3】近年、シアル酸結合蛋白として特徴付けられているシアロアドヘシンファミリーが、I gスーパーファミリーのサブ・グループのメンバーとして、B 細胞特異的マーカー (Wilson, G.L., et al., J. Exp. Med., 173, 137 (1991): Stamenkovic, I., and Seed, B., Nature, 345, 74 (1990)〕、オリゴデンドロサイトとシュワン細胞上に発現されているミエリン関連糖蛋白 (MAG) (Fujita, N., et al., B.B.R.C., 165, 1162 (1989)〕、ミエロイド分化抗原CD33 [Peiper, S.C., et al., Blood, 72, 314 (1988): Simmons, D.L., and Seed, B., J.Immunol., 141, 2797 (1988): Tchilian, E.Z., et al., Blood, 83, 3188 (1994))及び組織マクロファージの個体群中に発現されているシアロアドヘシン〔Crocker, P.R., et al., Embo., 13, 4490 (1994)〕等が報告されている。

【0074】これまでは、このファミリーがCD22に属していると考えられており、上記4つのメンバーがIgスーパーファミリーのサブ・グループ制定された〔Crocker, P.R., et al., Embo., 13, 4490 (1994): Mucklow, S., et al., Genomics, 28, 344 (1995): Kelm, S., et al., Curr. Biol., 4, 965 (1994): Freeman, S. D., et al., Blood, 85, 2005 (1995)〕。

【0075】之等の分子は、細胞表面上の特異的シアル化したグリカンの認知を通して、シアル酸を含む [Kelm, S., et al., Curr. Biol., 4, 965 (1994)] 細胞表面グリカンに結合することによって細胞接着を媒介することができる。上記特異的認知によって好中球に対するシアロアドへシン、ニューロンに対するミエリン関連糖蛋白、リンパ球に対するCD22及び赤血球に対するCD33の選択的結合に導くとされている [Kelm, S., et al., Curr. Biol., 4, 965 (1994): Freeman, S.D., et al., Blood, 85, 2005 (1995)]。

【0076】上記の蛋白は、この区別可能なサブ・グループ間の配列類似性を共有するが、Ig様領域の隣接したC2-セットと同様にN末端V-セットIg様領域ドメインのIgスーパーファミリーの他のメンバーとシアロアドヘシンのメンバーのある程度の相同性が維持されていた〔Freeman, S.D., et al., Blood, 85, 2005 (19

95)).

【0077】本例では、実施例1-(1)に準じて、ヒト胎盤cDNAライブラリーから無作為に選択したcDNAクローンのDNA配列を決定し、公知の遺伝子とDNA配列を比較することによって、GEN-560D06と名付けられた1.9kbのcDNAクローンがミエロイド抗原CD33に対して高い相同性を有することを明らかにする。

【0078】尚、このクローンは遺伝子の5² 末端部分が欠失していたので、欠けているセグメントを単離するために、新たにヒト胎盤cDNAライブラリーのスクリーニングを行なった。

【0079】即ち、プローブとして[32P] ランダムー 標識 c D N A を持つラムダ・ t r p l E X ベクターを用いて胎盤のm R N A (ストラトジーン社製) から構築された c D N A ライブラリー (約100万のプラーク)をスクリーニングし、12の付加的な c D N A クローンを得た。それらの中から、3つのクローンが全体のオープン・リーディング・フレームをカバーしていることが後に判明した。

【0080】それらのDNA配列を[35S] dATPを 用いるジデオキシ・ターミネーション法によって決定し た〔Sanger, F., et al., Proc. Natl. Acad. Sci. U. S.A., 74, 560 (1977)〕。

【0081】その結果、GEN-560D06遺伝子について、配列番号:6に2809塩基の核酸配列からなる全長配列、配列番号:5に1326塩基のオープン・リーディング・フレームを含む核酸配列並びに配列番号:4に核酸配列によってコードされる442アミノ酸残基からなる推定アミノ酸配列を示す。

【0082】GEN-560D06遺伝子の5³ 非コード配列は、236のGCリッチ配列から成っていて、ポリAティルによって続く4つの可能性あるポリアデニレーション・シグナル(AATAAA)が3³ 非コード領域上に見られた。

【0083】上記完全なフォームに加えて、このcDN Aクローンがおそらくオールターナティブ・(二者択一的な)スプライシングによってオリジナルなクローンのヌクレオチド配列の1216-1391塩基目の間の176塩基対が欠けていることが分かった。該176塩基対欠失は、リーディング・フレームのシフトの結果としてであって、この転写体から推定タンパクの計算されたサイズは、342アミノ酸であった。

【0084】従って、前記長い方のcDNAクローンであるGEN-560D06遺伝子をGEN-560D061遺伝子とし、該クローンより176塩基対が欠失した遺伝子をGEN-560D06s遺伝子とした。

【0085】上記GEN-560D06s遺伝子について、配列番号:9に1741塩基からなる全配列を、配列番号:8に1026塩基のオープン・リーディング・

フレームを含む核酸配列を、また配列番号:7に上記核酸配列によってコードされる342アミノ酸残基からなるアミノ酸配列を、それぞれ示す。

【0086】データ・ベースの公知のタンパクと推定蛋白のコンピュータ分析により、本発明遺伝子によってコードされる推定タンパク配列は、ミエロイド抗原CD33の膜貫通に対して高い相同性を示していて(56%)、配列的に25の疎水性残基(333-357塩基)を含んでいた。該領域は膜貫通領域をもコードしているようであった。

【0087】加えてタンパクの推定された成熟体は、細胞外領域(配列番号:4に示す20-333の314アミノ酸残基)と85アミノ酸残基の細胞質領域からなっている。

【0088】本発明遺伝子の細胞外領域において、配列 番号:4の20-131アミノ酸残基、132-224 アミノ酸残基及び225-326アミノ酸残基の3つの Igに関連したセグメントと、Igスーパーファミリー に属しているメンバーにおいて観察されたIg様ドメイ ンのV-セットとの2つのC2-セットに対する類似性 が明らかになった [Williams, A.F., Annu. Rev. Immun ol., 6, 381 (1988): Williams, A.F., Immunol. Today, 8, 298 (1987): Williams, A. F., et al., Cold Sprin g Harbor Symp. Quant. Biol., 54, 637 (1989)). 【0089】シアロアドヘシンファミリーの他のメンバ ーと同様に、CD33の所望の構造と、この新規な遺伝 子のアミノ酸配列の比較に基づき、推定されたタンパク はN末端Vドメインと膜貫通領域と細胞質の尾部に続く 2つの隣接C2様ドメインの構造を有すると考えられ、 特に、このタンパクの第1と第2の1g様のドメイン は、CD33のそれと高い相同性(72%アミノ酸同 一)を示した。

【0090】 I gスーパーファミリーを定義するペプチドの特異的なモチーフの保存より、この新規な分子がCD33と同様に I g遺伝子スーパーファミリーのメンバーとして分類することができると提言された [Williams, A.F., Annu. Rev. Immunol., 6, 381 (1988)]。【0091】(3)ノーザンブロット分析種々の組織においてこの遺伝子の発現を試験するために、ヒトMTNブロット・システム (クローンテック社製)を用い、実施例1-(2)と同様にしてGEN-560D06cDNAクローン全領域をプローブとするノーザンブロット分析を行なった。

【0092】ブロットを6時間プレハイブリダイズさせた後、42℃で18時間、50%ホルムアミド/5×SSPE/10×デンハルツ溶液/2%SDS溶液(100μg/ml変性サケ精子DNA含有)の溶液中でハイブリダイズした。ブロットは2×SSC/0.05%SDSにて室温下に2回溶液を交換し、40分間洗浄した後、0.1×SSC/0.1%SDSにて50℃下に4

0分間で2回洗浄した。フィルターは-80℃下、18時間、X線フィルム (コダック社製) に対して露光した。

【 0093】心臓、脳、胎盤、肺、肝臓、骨格筋、腎臓、膵臓、脾臓、甲状腺、卵巣、前立腺、コウ丸、小腸、大腸及び末梢血リンパ球の16の成人組織と、胎児心臓、胎児脳、胎児肺、胎児肝臓及び胎児腎臓の5つの胎児組織とから、mRNAを使用するノーザン・ブロット分析の結果、この遺伝子は胎盤に特異的に発現することが明らかになった。

【0094】4つの異なるサイズからなる7.5kb、5.0kb、4.1kb及び1.9kbの転写体が観察されたので、プローブとしてcDNA配列の一部を使用してそれらの更なる特徴付けを行なった。

【0095】その結果、配列番号:6の1216-1391番目のヌクレオチドで推定膜貫通領域に相同するPCR産物の176塩基対が、プローブとして使用された全体のcDNAと同様に、同じバンドで検出された。最も短い転写体は、1891-1896番目の位置でポリアデニレーション・シグナルに使用されているようである。なぜなら、オリジナルなcDNA(配列番号:6の2491-2805番目に相当)の3、末端側の315塩基対のPCR産物をプローブとして使用した時、1.9kbの最も小さい転写体は検出されず、従って、この1.9kbの産物は1つの異なるポリAサイトの使用のように見えることを示しているからである。事実、本発明者らは、オリジナル・クローンの1918番目(配列番号:6)でポリAを含んでいるcDNAクローンを得ている。

【0096】更に、おそらくオールターナティブ(二者 択一的)・スプライシングによる膜貫通領域と細胞質尾部を欠く342のアミノ酸をコードするスプライスした転写体を、2つのクローンのうちの1つから単離した。【0097】このクローンは3番目のIg様ドメインの末端に相同する1215番目(配列番号:6)のヌクレオチドまで膜貫通型と同一であるオープン・リーディング・フレームを持っていた。その後、176塩基対の欠失は、リーディング・フレームのシフトを生じている。【0098】更なる16アミノ酸をコードする別のフレームと1439番目(配列番号:6)のヌクレオチドのTGAターミネーション・コドンは、膜貫通フォームを提供していない。膜貫通型の所望の構造との比較に基づいて、オールターナティブ(二者択一的)にスプライスしたフォームの産物は、膜貫通領域と細胞質尾部を欠いている。

【0099】3つの大きな転写体は、更に下流にオールターナティブ(二者択一的)なポリAシグナルによってもたらされているかも知れない。かわりとして、2つ又はそれ以上の細胞質変異体を産生するIgー遺伝子スーパーファミリーに属するMAG、CEA或はマウスCD

33のような他の接着分子 (Tchilian, E.Z., et al., Blood, <u>83</u>, 3188 (1994): Williams, A.F., Immunol. Today, <u>8</u>, 298 (1987):Williams, A. F., et al., Cold Spring Harbor Symp. Quant. Biol., <u>54</u>, 637(1989)) のように、この新規な遺伝子は、オールターナティブ・(二者択一的な)スプライシングによって細胞質領域において異なった同位体を産生するかもしれない。

【0100】MAGは、シアロアドヘシンのメンバーであると報告されている。これは細胞質領域において区別される2つの型の同位体を産生するミエリン形成において重要な役割を持っており、それらの発現は進化の段階の特別な方法において調節されることが提言される〔Lai. C., et al., Proc. Natl. Acad. Sci. U.S.A., 84, 4337(1987)〕。MAGに対するこの証拠から、本発明者らは胎盤の進化の段階はおそらく本発明遺伝子の発現

を調節する一つの重要な因子であって、それが胎盤の成 長において重要な役割を演ずると考える。

【0101】また、得られた配列がキメラでないことの 確認及びスプライシング産物を確認する目的で、以下に 示す逆転写-PCR(RT-PCR)法を実施した。

[0102] (4) RT-PCR

正常に分娩された胎盤から抽出されたPoly(A)+RNAの1μgをランダム・プライマーp(dN)6(ベーリンガー・マインハイムGmbH社製)で逆転写してcDNAを得、これを下記表2に示す塩基配列の遺伝子特異的プライマーF7及びRを用いたPCRにより増幅させた。

【0103】。 【表2】

プライマー	塩基配列
F 7	5' -GCTGGTTCCAGGGCTTCC-8'
R 6	5' -TGTGGAAGTGTAGGACAGCG-3'

【0104】尚、ここで用いたF7及びR6プライマーは常法に従い合成されたものであり、上記PCRの反応条件は、94℃30秒、55℃30秒、72℃30秒のサイクルを25サイクル行なった。RT-PCR産物は2%アガロース・ゲル電気泳動により分析した。その結果、両転写体が胎盤内に発現したが、オールターナティブ(二者択一的)にスプライシングしたフォームに相同する転写体が膜貫通型のそれより、発現量が少ないと考えられた。

【0105】上記のことから、本発明者らの示すデータはCD33のような細胞ー細胞間相互作用と関連しているらしい胎盤特異的遺伝子産物の存在を示唆している。【0106】本例によれば、新規なヒトGEN-560D06遺伝子が提供され、該遺伝子を用いれば、該遺伝子の胎盤組織での発現の検出や、ヒトGEN-560D06遺伝子の遺伝子工学的製造が可能となり、これらにより、前述したようにCD33のような細胞ー細胞間相互作用と関連の研究や胎盤の進化及び機能の解析や、これが関与する各種疾患、例えば、欠損により不妊症等の診断等を行なうことができ、またこれらの治療及び予防薬のスクリーニングや評価等をも行なうことができる。

[0107]

【実施例3】脳脂肪酸結合蛋白遺伝子

(1) 脳脂肪酸結合蛋白遺伝子のクローニング及びDN Aシークエンシング

長鎖脂肪酸やそのCoA誘導体又は小分子の疎水性のリガンドに対して高い親和性で結合する脂肪酸結合蛋白 (FABP)は、いくつかの組織の細胞質において豊富に発現されている。

【0108】該FABPは脂肪酸の細胞内への取り込み

を高めて、 β -酸化、リン脂質のような脂肪酸代謝の過程に関連する酵素に関して刺激的な効果を持っている(Veerkamp, J. H., and Matman, R. G., Prog. Lipid Res., 34, 17-52(1995))。

【0109】小分子14-16kDa蛋白であるFABPは、単離された臓器の由来から命名されている。FABPの少なくとも8つの構造的に異なったタイプが存在し、脳、肝臓、心臓又は筋肉、そして腸の、表皮の、回腸の肥満細胞とミエリンから単離されている。細胞質性のレチノール酸結合蛋白IとIIもFABPファミリーのメンバーである。ヒトFABPsは腸、心臓、骨格筋、肝臓、及び脂肪から単離されているが、未だ脳からは単離されていない。

【0110】実施例1-(1)と同様の方法でもト胎児脳cDNAライブラリーから任意に選択したcDNAクローンの配列解析とデータ・ベースの検索の結果、脂肪酸結合蛋白のメンバーに対してその最も強い相同性を示した一つのクローンを見つけ出し、該クローンをGEN-128B10と命名した。

【0111】上記該GEN-128B10クローンの塩基配列は、配列番号:12で示されるように754塩基からなり、配列番号:11で示される396塩基のオープン・リーディング・フレームを含んでいた。また、配列番号:10に前記核酸配列でコードされる132のアミノ酸残基からなる推定アミノ酸配列を示す。開始コドンは、配列番号:12の塩基配列番号の52番目から始まり、448番目が終始コドンを示していた。

【 O 1 1 2 】 F A S T A プログラムの相同性検索によって、単離された遺伝子がラット脳(Bennett, E., et a l., J. Neurochem., 63, 1616-1624(1994))、マウス脳

(Feng, L., et al., Neuron, 12(4) 895-908 (1994))、トリ網膜(Godbout, R., Exp. Eye Res., 56, 95-106(1993))、FABPをコードする遺伝子と81-86%相同性を示した。また推定された産物は、ヒト骨格筋FABP(Peeters, R. A., et al., Biochem. J., 276, 203-207(1991))と65%、そしてヒトミエリン蛋白P2(Hayasaka, K., et al., Biochem. Biophys. Res. Commun., 181(1)、204-207(1991))と59%相同性を示した。ラット、マウス脳、やトリ網膜FABPと87から91%アミノ酸配列の同一性を示した。

【 O 1 1 3】 ヒト筋FABPに関連する部位特異的突然 変異(Prinsen, C. F.M. and Veerkamp, J. H., Bioche m. J., 314, 253-260 (1996))やクリオ・スタログラフィー(Zanotti, G., et al., J. Biol. Chem., 267, 185 41-18550 (1992))により、Phe-17、Arg-107、Arg-127又 はTyr-129のアミノ酸がオレイン酸に結合する能力と重 要な役割を演じることを示している。これらのアミノ酸 は他の種のFABPと同様にヒト脳FABPにおいても 厳格に保存されている。

【0114】(2)ノーザンブロット分析

正常ヒト成人組織におけるヒト脳FABPmRNAの発現を、GEN-128B10cDNAクローンの3 非翻訳領域に相当する部位をPCRにより増幅し、該PCR産物を精製し、[32P]ーdCTP(ランダムプライムドDNAラベリングキット、ベーリンガーマンハイム社)により標識してプローブとし、実施例1-(2)に準じてノーザンブロッティングを行なった。

【0115】ノーザンブロット分析の結果、脳においておよそ1.2Kbの転写物と骨格筋において小さなmRNAが検出されたが、試験した他の組織の心臓、胎盤、肺、肝臓、腎臓及び膵臓では検出されなかった。骨格筋に発現されたmRNAはDNAシークエンスにより今回単離された脳FABPcDNAと同一であることが示され、脳に発現されているmRNAより小分子の転写物が骨格筋にも存在していることが判明した。さらにヒト胎児脳において成人に比べ多量に発現されていることが判明した。このことは、胎児脳においてFABPが重要な役割を果たしていることを伺わせるものである。加えてトリ網膜FABPと同じく、マウスとラット脳FABPsはそれ組織発達の早期段階で必要であると考えられており、それはヒト脳も同様に胎生期の期間中FABPが必要と考えられる。

【0116】本発明ヒト脳FABP遺伝子は、ヒト脳FABP蛋白の発現及び検出に利用でき、かくして該蛋白の関与する各種の疾患の診断、病態解明、例えば、脳発育不全、神経性疾患等の各種疾患の診断等を行なうことができ、また上記疾患の治療及び予防薬のスクリーニングや評価に利用できる。

[0117]

【実施例4】SRE-ZBP関連ジンクフィンガー遺伝

子

(1) SRE-ZBP関連ジンクフィンガー遺伝子のク ローニング及びDNAシークエンシング c-fos遺伝子の5'上流域に存在する血清反応エレ メント(SRE)は、核蛋白であるc-fosの転写を制 御する血清反応因子(SRF)の標的結合部位である(Gil man, M.Z., et al., Mol Cell Biol., 6, 4305-4316 (1 986); Norman, C., et al., Cell, <u>55</u>, 989-1003(1988); Kadonaga, J.T., et al., Cell, 51, 1079-1090(198 7))。c-fosSREはプロテイン・カイネースCに 対する反応(Gilman, M.Z., Genes Devel., 2, 394-402 (1988))と成長因子によって誘導される介在シグナル(Gr eenberg, M.E., et al., Mol. Cell Biol., 6, 1050-10 57(1986))の為に必要である。加えてグルココルチコイ ド・レセプターは、c-fosSREに対して結合し、 c-fosプロモーターの活性化を抑制することによっ て、線維芽細胞の成長を抑制する(Karagianni, N. and Tsawdaroglou, N., Oncogene, 9, 2327-2334(1994)). これらの知見はSREが複数のSRE結合蛋白の標的と なる多機能のエレメントであることを提言している。 【0118】SRE-ZBP(血清反応エレメント結合 ジンクフィンガー蛋白:Attar, R.M. and Gilman, M.Z., Mol. Cell Biol., 12, 2432-2443(1992))は、クラペル ・タイプの保存された配列を含んでいるC2H2ジンクフ ィンガー蛋白のファミリーのメンバーである。SRE-ZBPのジンクフィンガー領域は、c-fosSREに 直接的に結合する(Rosenberg, U.B., et al., Nature, 319, 336-339(1986))。ジンクフィンガー・モチーフは 当初アフリカツメガエルの転写因子IIIAのアミノ酸配列 内で同定された(Miller, J. et al., EMBO J., 4, 1609 -1614(1985))、このループ様のモチーフは、亜鉛イオン を持つシスティンとヒスチジンの2つのペアの相互作用 によって形作られており、そしてRNAと/或はDNA 分子に結合することによって転写を制御すると考えられ ている(Kadonaga, J.T., et al., Cell, <u>51</u>, 1079-1090 (1987); Stanojevic, D., et al., Nature, <u>341</u>, 331-3 35(1989))。本発明者らは、SRE-ZBPに対する相 同物であると推定される新規なヒトジンクフィンガー遺 伝子の単離と染色体座位を報告する。

【0119】実施例1-(1)と同様の方法でヒト胎児脳cDNAライブラリーから任意に選択したcDNAクローンの配列と公知の遺伝子とのホモロジーをデータ・ベースの検索によって比較した。その経過において、本発明者らは、c-fos血清反応エレメントに結合する蛋白であるSRE-ZBPをコードする遺伝子に対して核酸配列において65.2%の同一性を呈した1つのクローンを見つけ、該クローンをGEN-506G10と命名した。該クローンは5'と3'末端配列が欠けていたので、本発明者らは前記で得られたcDNAクローンを(32P)ランダムプライミング法により標識し、これを

プローブとして、ヒト膵臓のmRNAから構築されたcDNAライブラリー(ZAP ExpressIMEcoRI/XholcDNAライブラリー; ストラトジーン社製)に対してスクリーニングした。得られたクローンのDNA配列をABI PRISMIM377自動DNAシークエンサーで配列決定した。

【0120】上記方法によって、本発明者らは2つのcDNAクローンを得、5、非翻訳領域が171塩基で、3、非翻訳領域が290塩基であって、562アミノ酸をコードする1686塩基の蛋白質翻訳領域を含んでいるクローンをGEN-506G10-aと命名した。【0121】GEN-506G10-a遺伝子について、配列番号:15に2168塩基の核酸配列からなる全配列、配列番号:14に1683塩基のオープン・リーディング・フレームを含む核酸配列並びに配列番号:13に該核酸配列でコードされる561アミノ酸の推定アミノ酸配列を示す。

【0122】開始コドンは、配列番号:15の塩基配列番号の172-174番目であり、1836-1838番目が終始コドンを示していた。

【0123】GEN-506G10-a遺伝子に存在するポリAテイルを続ける可能性をもつポリアデニレーション・シグナルが、終始コドンから261塩基下流に見られた。推定された産物はSRE-ZBPに対して67%の相同性が明らかになった。モチーフ・ライブラリーPROSITE(Bairoch, A., Nucleic Acids Res., $\underline{20}$, $\underline{2013-2018(1992)}$)を使用するMotifFinderプログラムでの分析は、推定されたGEN-506G10-a蛋白がC X_2 C X_3 F X_5 L X_2 H X_3 Hの共通配列を持つATP/GTP結合部位モチーフ(Pループ)と7つのC $_2$ H $_2$ ジンクフィンガー領域を保有することを指摘した。

【0124】もう一方のcDNAクローンは、GEN-506G10-bと命名され、該クローンは、5'非翻訳領域が157塩基で、3'非翻訳領域が265塩基である201アミノ酸をコードする603塩基のオープン・リーディング・フレームを含んでいた。

【0125】GEN-506G10-b遺伝子について、配列番号:18に1051塩基の核酸配列からなる全配列、配列番号:17に603塩基のオープン・リーディング・フレームを含む核酸配列並びに配列番号:16に該核酸配列でコードされる201アミノ酸の推定アミノ酸配列を示す。

【0126】GEN-506G10-b遺伝子にあるポリAテイルを続ける可能性をもつポリアデニレーション・シグナルが、終始コドンから247塩基下流に見られた。

【0127】このcDNAによって推定された蛋白は、ATP-GTP結合部位と7つの C_2H_2 ジンクフィンガー領域のどちらも含んでいなかった。2つのcDNAの

3' 非翻訳領域は同じコスミドクローンに含まれていることが確認されたので、本発明者らは2つのタイプの転写物が二者択一的なスプライシングによって産生されたと考えた。両クローンは、SRE-ZBPの5'領域に対して塩基配列で65%とアミノ酸配列で67%の同一性を明らかした。より大きなcDNAによって推定された蛋白のジンクフィンガー領域は、c-fos血清反応エレメントに直接結合する分子であるSRE-ZBPのそれらに対して54%の相同性を示した。

【0128】(2)ノーザンブロット分析 正常ヒト組織におけるGEN-506G10-amRN Aの発現を実施例1-(2)と同様にして、ランダム・オリゴヌクレオチド・プライミング法によって標識した ヒトcDNAクローンをプローブとするノーザンブロットにより評価した。

【0129】ノーザンブロット分析は、製品使用法に従い、ヒトMTNブロット (Human Multiple Tissue Nothern blot; クローンテック社製、パロ・アルト、カリフォルニア、米国)を用いて実施した。

【 O 1 3 O 】即ち、上記ジンクフィンガー領域を含むG E N - 5 O 6 G 1 O c D N A クローンの P C R 増幅産物を [32 P] - d C T P ランダムプライムド D N A ラベリングキット (ベーリンガーマンハイム社) により標識してプローブとした。

【0131】ブロッティングメンブランは、42℃で一 晩、50%ホルムアミド/5×SSPE/10×デンハ ルツ溶液/2%SDS溶液(100μg/ml変性サケ 精子DNA含有)溶液中でハイブリダイズされた。2× SSC/0.01%SDSにて室温下にて2回洗浄後、 次いで0.1×SSC/0.05%SDSにて50℃下 に40分間で1回洗浄した。メンブランは-70℃下に 18時間、X線フィルム(コダック社製)に対して露光し た。

【0132】その結果、2.3kbの転写物が試験した全てのヒト組織内に発現していることが明らかとなった。加えて、1.3kbの転写物が心臓、脳、胎盤及び肺に特異的に観察された。小さな転写物はおそらくGEN-506G10-aの3、部分が欠失したGEN-506G10-bに相同していると考えられた。

【0133】(3) FISHによるコスミド・クローンと染色体の局在

GEN-506G10遺伝子の染色体の局在を調べるために実施例1-(3)と同様に、FISHによって染色体の局在を調べた。

【0134】本発明者らは、ヒト膵臓 c D N A ライブラリーから得られた前記のG E N - 506G 10 - a c D N A クローンを [32P] - ランダム標識してプローブとして用い、正常ヒト染色体 D N A から構築されたヒト・コスミド・ライブラリーをスクリーニングした。その結果、2つのコスミド・クローンを単離した。本発明者ら

は、新規な遺伝子の染色体の局在を決定するためにこれらの2つのコスミドの各々でFISH試験を実施した。 【0135】100のRーバンド染色体を試験し、2つの両クローンが第7染色体のバンド q22.1-22.3上の位置で特にシグナルが明らかになることが分かった。従ってGEN-506G10は、7番目染色体、バンド q22.1-22.3上にマップされた。

【O136】上記の如く、本発明者らは、推定された産物が血清反応エレメント結合蛋白、SRE-ZBPに対する相同物である新規なジンクフィンガーcDNAの単離と局在について記載した。しかしながら、SRE-ZBPはSRFsのような他のSRE結合蛋白と高い程度の相同性を示さなかったが、そのジンクフィンガーモチーフはc-fosSREの3'部分に直接結合することが知られている(Atter, R.M. and Gilman, V.Z., Mol. Cell Biol., 12, 2432-2443(1992))。というのは、ジンクフィンガーモチーフは、アフリカツメガエルの転写因子IIIAで当初同定され、数百の C_2H_2 ジンクフィンガー蛋白が単離されている(Becker, K.G., et al., Hum. Mol. Genet., 4, 685-691(1994))。これらの蛋白は、RNAと、又はDNAに結合することによって転写を制御すると考えられている。

【0137】推定された蛋白は7つのうちの6つがCX $_2$ CX $_3$ FX $_5$ LX $_2$ HX $_3$ Hの共通配列からなる7つのC $_2$ H $_2$ ジンクフィンガー領域を保有することが報告されている。共通配列「 H_2 /C $_2$ 」リンクによってつなげられた4つは、TGEKPYX配列である(Becker, K.G., et al., Hum. Mol. Genet., 4, 685-691(1994))。

【0138】ノーザンブロット分析より、確認された 2.3kb転写物によって推定された蛋白のジンクフィンガー領域が、MMZFPR、HSHF、HUMZNF 7及びRNU27186のような他のジンクフィンガー 蛋白のそれらに対して48-57%同一であることを明らかにした。

【0139】MMZFPRは、精子形成の調整の役割を 持つと考えられているネズミの蛋白である(Burke, P.S. and Wolgemuth, D.J., Nucl. Acids Res., 20, 2827-2 834(1992))。試験管内においてヒト・ミエロイド細胞株 の最終分化を誘導するHSHFは、おそらく細胞の分化 の過程に関連する(Pannute, A., et al., Nucl. Acids Res., 16, 4227-4237(1988))。HUMZNF7も試験管 内おいてヒト・ミエロイド細胞株の最終分化を誘導する かもしれない(Lania, L., et al., Genomics, 6, 333-34 0(1990))。ラットのオリゴデンドロサイトに見つけられ たRNU27186は、ミエリン誘導グリア細胞内の配 列特異的転写の抑制物として作用する(Pott, U., et a 1., J. Neurochem., 65, 1955-1966(1995))。 転写の抑 制物としてこれらの遺伝子産物の機能がショウジョウバ エのクラッペル遺伝子のそれに対して類似しているので (Licht, J.D., et al., Nature, 346, 76-79(1990)),

GEN-506G10-aの産物は類似の役割を演じるかもしれない。さらにこの推定された蛋白は、共通配列A/GX4GKS/Tに相同するATP/GTP結合部位を含んでいて、Pループと呼ばれている(Saraste, M., et al., Trends Biochem. Sci., 15, 430-434(1990))。ATP或はGTPとの結合を通して、この産物は細胞内のシグナル伝達を促進しているようである。

【0140】本発明ヒトSRE-ZBP関連ジンクフィンガー遺伝子は、ヒトSRE-ZBP関連ジンクフィンガー蛋白の発現及び検出に利用でき、かくして該蛋白の関与する各種の疾患の診断、病態解明、例えば、悪性腫瘍のような各種疾患の診断等を行なうことができ、また上記疾患の治療及び予防薬のスクリーニングや評価に利用できる。

[0141]

【実施例5】ヒトNMLY6遺伝子

(1) ヒトNMLY6遺伝子のクローニング及びDNA シークエンシング

実施例1-(1)と同様の方法でヒト胎児脳cDNAラ イブラリーから任意に選択したcDNAクローンの配列 解析と公知の遺伝子とのホモロジーをデータ・ベースの 検索の結果、マウスレy-6ファミリー蛋白質と高い相 同性を有するヒトNMLY6遺伝子と考えられるアミノ 酸配列をコードするcDNA配列を有するクローンを見 つけ、該クローンをGEN-425G08と命名した。 【0142】上記で得られたクローンのCDNA配列 は、ABI PRISMTM377自動DNAシークエ ンサーによる配列決定の結果、447塩基の推定アミノ 酸翻訳領域を含んでおり、これによってコードされるア ミノ酸配列は、149アミノ酸残基を有し、全長 c D N Aクローンの核酸配列は、901塩基からなっていた。 その全配列は、配列番号:21に示す通りであり、オー プン・リーディング・フレームを含む核酸配列は配列番 号:20に、該酸配列でコードされるアミノ酸の推定ア ミノ酸配列は配列番号:19に示す通りであった。

【0143】他のLy-6ファミリー蛋白質と本ヒトNMLY6とのアミノ酸配列を比較検討し、またアミノ酸翻訳開始領域に保存されている塩基配列(Kozak, M., J. Biol. Chem., 266, 19867-19870 (1991))と該ヒトNMLY6遺伝子の5、領域の比較より決定された開始コドンは、配列番号: 24の塩基配列の2番号のATGトリプレットである147-149番目に位置していた。また、ポリアデニレーション・シグナル(AATAAA)は、同塩基配列番号の879-884番目に位置していた。

【0144】(2)ノーザンブロット分析 正常ヒト組織におけるGEN-425G08-mRNA の発現を実施例1-(2)と同様にして、ランダム・オ リゴヌクレオチド・プライミング法によって標識したヒ

により評価した。

【O145】ノーザンブロット分析は、製品使用法に従い、ヒトMTNブロット(HumanMultiple Tissue Nothern blot: クローンテック社製、パロ・アルト、カリフォルニア、米国)を用いて実施した。

【 0 1 4 6 】 即ち、上記GEN-4 2 5 G 0 8 c D N A クローンの P C R 増幅産物を [32 P] - d C T P (ランダムプライムド D N A ラベリングキット、ベーリンガーマンハイム社) により標識してプローブとした。

【0147】ブロッティングは、65℃で一晩、1MNaC1/50mMトリスHC1(pH7.5)/2×デンハルツ溶液/10%デキストランサルフェート/1%SDS溶液(100μg/m1変性サケ精子DNA含有)の溶液中でハイブリダイズした。2×SSC/0.1%SDSにて室温下にて2回洗浄後、次いで0.1×SSC/0.1%SDSにて65℃下に40分間で1回洗浄した。フィルターは-70℃下に18時間、X線フィルム(コダック社製)に対して露光した。

【0148】その結果、約1kbの転写体が試験した全て(16)のヒト成人組織内に発現していることが明らかとなった。

【0149】(3) FISHによるコスミド・クローン と染色体の局在

GEN-425G08遺伝子の染色体の局在を調べるために実施例1-(3)と同様に、FISHによって染色体の局在を調べた。

【0150】その結果、ヒトNMLY6遺伝子は、第8 染色体のバンドq24.3上に位置することが分かった。即ちGEN-425G08は、染色体バンド8q2 4.3上にマップされた。

【0151】Ly-6ファミリーに属する蛋白質に対す る抗体は、遺伝子治療のターゲットとなる血液幹細胞の 精製 (van de Rijn, M., et al., proc.Natl.Acad.Sc i., USA., 86, 4634-4638 (1989))、血液細胞の分化の 研究 (van de Rijn, M., et al., proc.Natl.Acad.Sc i., USA., 86, 4634-4638 (1989); Classon, B.J. and Coverdale, L., Proc. Natl. Acad. Sci., USA., 91, 5296 ~5300(1994))、免疫細胞の活性化 (Malek, T.R., et al., J.Exp.Med., 164, 709-722 (1986))、活性型免疫 細胞の産生抑制 (Haque, A., et al., Immunology, 69, 558-563 (1990)) 等に利用されており、また、抗腫瘍効 果も認められている (Lu, L., et al., J.Immunol., 14 2.719-725(1989))。本実施例により提供されるヒト NMLY6遺伝子の利用によれば、該遺伝子の各組織で の発現の検出や、ヒトNMLY6蛋白の遺伝子工学的製 造及びそれを用いた抗体の作成が可能となり、これによ り、上記のような血液幹細胞の精製、血液細胞の分化の 研究、免疫細胞の活性化、免疫細胞の活性化の抑制、腫 瘍の治療等が可能となる。また、ヒトNMLY6蛋白を ターゲットとした化合物のスクリーニングも可能となっ り、かくして得られる化合物には、抗ヒトNMLY6蛋 白抗体と同様の有用性がある。

[0152]

【配列表】

【0153】配列番号:1

配列の長さ:203

配列の型:アミノ酸

トポロジー:直線状

配列の種類:蛋白

配列:

Met Gly Ser Arg Asp His Leu Phe Lys Val Leu Val Val Gly Asp Ala 1 10 Ala Val Gly Lys Thr Ser Leu Val Gln Arg Tyr Ser Gln Asp Ser Phe Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Val 40 Leu Gln Trp Ser Asp Tyr Glu lle Val Arg Leu Gln Leu Trp Asp lle Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg Asp 70 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Phe 90 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Leu 105 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys Asp 120 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Lys 130 135

Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Lys

145 150	155 160
Asn Ile Asn Glu Ala Met Arg Val Lei	
165	170 175
Ser Thr Glu Asp Ile Met Ser Leu Ser	Thr Gln Gly Asp Tyr Ile Asn
180 189	5 190
Leu Gln Thr Lys Ser Ser Ser Trp Ser	· Cys Cys
195 200	
【0154】配列番号: 2	鎖の数:一本鎖
配列の長さ:609	トポロジー:直線状
配列の型:核酸	配列の種類:DNA(cDNA)
配列: ATGGGCAGCC GCGACCACCT GTTCAAAGTG C	rggtggtgg gggacgccgc agtgggcaag 60
ACGT CGCTGG TGCAGCGATA TTCCCAGGAC A	
GGAGTGGATT TTGCTCTGAA GGTTCTCCAG TI	
CTGTGGGATA TTGCAGGGCA GGAGCGCTTC A	
GCCTCTGCCT GTGTTATTAT GTTTGACGTT A	
AGGTGGAAAC AGGACCTAGA CAGCAAGCTC A	
CTGCTCTTGG CCAACAAGTG TGATCTGTCC C	CTTGGGCAG TGAGCCGGGA CCAGATTGAC 420
CGGTTCAGTA AAGAGAACGG TTTCACAGGT T	GGACAGAAA CATCAGTCAA GGAGAACAAA 480
AATATTAATG AGGCTATGAG AGTCCTCATT G	AAAAGATGA TGAGAAATTC CACAGAAGAT 540
ATCATGTCTT TGTCCACCCA AGGGGACTAC A	TCAATCTAC AAACCAAGTC CTCCAGCTGG 600
TCCTGCTGC	609
【0155】配列番号:3	配列の種類: DNA (cDNA)
配列の長さ:2443	配列の特徴:
配列の型:核酸	特徴を表わす記号: CDS
鎖の数:一本鎖	存在位置: 41649
トポロジー:直線状	特徴を決定した方法:E
配列:	CCCCT ACCC ATC CCC ACC CCC CAC
CCACACTTCC CGCCTCCCTA AAACGCACAC C	CCGCTAGCC ATG GGC AGC CGC GAC 55 Met Gly Ser Arg Asp
·	1 5
CAC CTG TTC AAA GTG CTG GTG GG	-
His Leu Phe Lys Val Leu Val Val Gl	•
10	15 20
TCG CTG GTG CAG CGA TAT TCC CAG GA	
Ser Leu Val Gln Arg Tyr Ser Gln As	
25 3	0 35
TCC ACG GTG GGA GTG GAT TTT GCT CT	G AAG GTT CTC CAG TGG TCT GAC 199
Ser Thr Val Gly Val Asp Phe Ala Le	u Lys Val LeuGln Trp Ser Asp
40 45	50
TAC GAG ATA GTG CGG CTT CAG CTG TG	
Tyr Glu Ile Val Arg Leu Gln Leu Tr	
55 60	65
TTC ACC TCT ATG ACA CGA TTG TAT TA	
Phe Thr Ser Met Thr Arg Leu Tyr Ty 70 75	r Arg Asp Ala Ser Ala Cys Val 80 85
ATT ATG TTT GAC GTT ACC AAT GCC AC	
	1 1000 110 DUC DUC DUC VOU DUU 343
lle Met Phe Asp Val Thr Asp Ala Th	
lle Met Phe Asp Val Thr Ash Ala Th	r Thr Phe Ser Asn Ser Gln Arg 95 100

rp Lys Gln Asp Leu Asp Ser Lys Leu Thr Leu Pro Asn Gly Glu Pro)
105 110 115	
TIG CCC TIGC CTG TTG GCC AAC AAG TGT GAT CTG TCC CCT TGG GC	439
'al Pro Cys Leu Leu Leu Ala Asn Lys Cys Asp Leu Ser Pro Trp Ala	
120 125 130	
TTG AGC CGG GAC CAG ATT GAC CGG TTC AGT AAA GAG AAC GGT TTC AC	A 487
al Ser Arg Asp Gln lle Asp Arg Phe Ser Lys Glu Asn Gly Phe Th	
135 140 145	•
GT TGG ACA GAA ACA TCA GTC AAG GAG AAC AAA AAT ATT AAT GAG GC	r · 535
ily Trp Thr Glu Thr Ser Val Lys Glu Asn Lys Asn Ile Asn Glu Al	
150 155 160 16	_
ATG AGA GTC CTC ATT GAA AAG ATG ATG AGA AAT TCC ACA GAA GAT AT Ang Nol Lou Ilo Clu Lug Mot Mot Ang Ago Son The Clu Ago Il	
Met Arg Val Leu Ile Glu Lys Met Met Arg Asn Ser Thr Glu Asp II	e
170 175 180	c (21
ATG TCT TTG TCC ACC CAA GGG GAC TAC ATC AAT CTA CAA ACC AAG TC	
Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile Asn Leu Gln Thr Lys Se	r
185 190 195	(70
TCC AGC TGG TCC TGC TGC TAGTAGTGTT TGGCTTATTT TCCATCCCAG	. 679
Ser Ser Trp Ser Cys Cys	
200	~=. =0.
TTCTGGGAGG TCTTTTAAGT CTCTTCCCTT TGGTTGCCCA CCTGACCATT TTATTA	
CATTIGAATT GICTCCTGAC TACTGTCCAG TAAGGAGGCC CATTGTCACT TAGAAAA	
ACCTGGAACC CATGTGCATT TCTGCATCTC CTGGATTAGC CTTTCACATG TTGCTG/	
ACATTAGTGC CAGTTAGTGC CTTCGGTGTA AGATCTTCTC ATCAGCCCTC AATTTGT	GAT 919
CCGGAATTTT GTGAGAAGGA TTAGAAATCA GCACCTGCGT TTTAGAGATC ATAATTO	
CCTACTTCTG AGCTTATTTT TCCATTTGAT ATTCATTGAT ATCATGACTT CCAATTO	GAGA 1039
GGAAAATGAG ATCAAATGTC ATTTCCCAAA TTTCTTGTAG GCCGTTGTTT CAGATTO	
CTGTCTTGGA ATGTAAACAT CTGATTCTGG AATGCAGAAG GAGGGGTCTG GGCATC	IGTG 1159
GATTTTTGGC TACTAGAAGT GTCCCAGAAG TCACTGTATT TTTGAAACTT CTAACG	TCAT 1219
AATTAAGTTT CTCTTGTCTT GGCATCAAGA ATAGTCAAGT TTTTTGGCCG GGCATG	STGG - 1279
CTCATGCCTG TAATCCCAGC ACTTGGGGAG GCCAAGGCAG GCGGATCACA TGAGGC	CAGG 1339
AATTCGAGAC CAACCTGGTC AGCATGGCAA AACCCCGTCT CTACTAAAAG TACAAA	A ATT. 1399
AGCCAGGCGT GATGGCACGT GTCTGTAATC CCAGCTACTC TGGAGACTGA GGTGGG	AGAA 1459
TCGCTTGAGA CTGGGAGGCA GAGGTTGCAG TGAACCGAGA TCATGCCACC GCACTT	CAGC 1519
CTGGGTGACA GAGAAGGACT CCGTCTCAAA AAAAAAAGAA AAAAGAATAG TCATTT	TTAA 1579
ACTACCTATC TCATGCAATG AAAGCATTTT CTTCCACAAA GAGCTTAATC CTCATG	ATAG 1639
GATTGCCTAG TGTCTCCCAT TTGCAGGTTT CTGGGTTGAT GTCTTAATGC ATAATA	CTGC 1699
AAGTGACATC AGCTGGCTGT GATGCTTCGA AATAGGTCTG CTCCTCACAG CTTTGG	GAAT 1759
CTGAATGGAA GAAGAAAAGA GAGAAGTTAA CAACCTCCAC TGGGGCAACT TTGTGA	ACAT 1819
GTAGGCACTT AGTCATAGGA AACATATTAT GTGCAGGTCC TAGCCTGGGG TAGGAA	AGTA 1879
GATAGACAGA AAATCATTAG GTAATTTAAG TACTAAATTG GGCAGGGCTT TTTAGT	
AATCACTACT AGACCGTTTA ATTTGTTAAA TTATCTCTAG GATGGTGATT TATAAC	
CCAAAGTTAT CGATATTCTT ACTAAACTCT GAGGCCTGAA GTTCTGTGAT AGACCT	
TAAGTGTCCT AAGTCAGTGG TTCCCAAATC TGGCTGGTCG GGAATACCTG GGAAGT	
TAAAATTTTT TAAAAATGTT TTAAGATTTT TGGGTCCTGA GCCAGGCGTG GTGGCT	
CCTGTAATCC CAGCACTTTG GGAGGCTGAG GCAGGTGGAT CGCCTGAGGT CAGGAG	
AGATCAACCT GGCCAACATA CTGAAACCCC GTCTCTACTA AAAATAAGAA AAATTA	
GCGTGGTGG CGGGCACCTG TAATCCCAGC TACTTGGGAG GCTGAGGCAG GAGAAT	
TGAACCTGGG AGTTAGAGGT TGCAGTGAGC TGAGATCACA CCATTGCGCT TCAGCC	
CAACAAGAGT GAAACTCCAT CTCC	244
CHACAAGAGI GAAACICCAI CICC	244

【0156】配列番号: 4 トポロジー:直線状 配列の長さ:442 配列の種類:蛋白

配列の型:アミノ酸

配列:

355

Met Leu Pro Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala Gln 10 Glu Arg Arg Phe Gln Leu Glu Gly Pro Glu Ser Leu Thr Val Gln Glu Gly Leu Cys Val Leu Val Pro Cys Arg Leu Pro Thr Thr Leu Pro Ala Ser Tyr Tyr Gly Tyr Gly Tyr Trp Phe Leu Glu Gly Ala Asp Val Pro 55 Val Ala Thr Asn Asp Pro Asp Glu Glu Val Gln Glu Glu Thr Arg Gly 70 Arg Phe His Leu Leu Trp Asp Pro Arg Arg Lys Asn Cys Ser Leu Ser Ile Arg Asp Ala Arg Arg Asp Asn Ala Ala Tyr Phe Phe Arg Leu 105 Lys Ser Lys Trp Met Lys Tyr Gly Tyr Thr Ser Ser Lys Leu Ser Val 120 Arg Val Met Ala Leu Thr His Arg Pro Asn Ile Ser Ile Pro Gly Thr 135 Leu Glu Ser Gly His Pro Ser Asn Leu Thr Cys Ser Val Pro Trp Val 150 155 Cys Glu Gln Gly Thr Pro Pro Ile Phe Ser Trp Met Ser Ala Ala Pro 170 165 Thr Ser Leu Gly Pro Arg Thr Thr Gln Ser Ser Val Leu Thr Ile Thr 180 185 Pro Arg Pro Gln Asp His Ser Thr Asn Leu Thr Cys Gln Val Thr Phe 200 Pro Gly Ala Gly Val Thr Met Glu Arg Thr Ile Gln Leu Asn Val Ser 215 Tyr Ala Pro Gln Lys Val Ala Ile Ser Ile Phe Gln Gly Asn Ser Ala Ala Phe Lys Ile Leu Gln Asn Thr Ser Ser Leu Pro Val Leu Glu Gly Gln Ala Leu Arg Leu Leu Cys Asp Ala Asp Gly Asn Pro Pro Ala His 265 Leu Ser Trp Phe Gln Gly Phe Pro Ala Leu Asn Ala Thr Pro Ile Ser 280 Asn Thr Gly Val Leu Glu Leu Pro Gln Val Gly Ser Ala Glu Glu Gly Asp Phe Thr Cys Arg Ala Gln His Pro Leu Gly Ser Leu Gln Ile Ser 315 310 -Leu Ser Leu Phe Val His Trp Lys Pro Glu Gly Arg Ala Gly Gly Val 330 Leu Gly Ala Val Trp Gly Ala Ser Ile Thr Thr Leu Val Phe Leu Cys 345 Val Cys Phe Ile Phe Arg Val Lys Thr Arg Arg Lys Lys Ala Ala Gln

360

-365

 Pro Val Gln Asn Thr Asp Sap Val Asn Pro Val Met Val Ser Gly Ser 370
 375
 380
 380
 380
 380
 380
 400
 400
 400
 400
 400
 400
 400
 400
 410
 415
 415
 400
 415
 430
 430
 430
 430
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440

【0157】配列番号:5

配列の長さ:1326 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状 配列の種類:DNA (cDNA)

配列:

ATGCTACCGC TGCTGCTGCC CCTGCTGTGG GGGGCCC TGGCTCAGGA GCGGAGATTC 60 CAGCTGGAGG GGCCAGAGTC ACTGACGGTG CAG GAGGGTC TGTGCGTCCT CGTACCCTGC 120 AGATTGCCCA CTACCCTTCC AGCCTCGTAC TAT GGTTATG GCTACTGGTT CCTGGAAGGG 180 GCTGATGTTC CAGTGGCCAC AAACGACCCA GAC. GAAGAAG TGCAGGAGGA GACCCGGGGC 240 CGATTCCACC TCCTCTGGGA TCCCAGAAGG AAG AACTGCT CCCTGAGCAT CAGAGATGCC 300 CGGAGGAGGG ACAATGCTGC ATACTTCTTT CGG TTGAAGT CCAAATGGAT GAAATACGGT 360 TATACATCTT CCAAGCTCTC TGTGCGTGTG ATG GCCCTGA CCCACAGGCC CAACATCTCC 420 ATCCCAGGGA CCCTGGAGTC TGGCCATCCC AGC AATCTGA CCTGCTCTGT GCCCTGGGTC 480 TGTGAGCAGG GGACGCCCCC CATCTTCTCC TGG ATGTCAG CTGCCCCCAC CTCCCTGGGC CCCAGGACCA CCCAGTCCTC GGTGCTCACA ATC ACCCCAC GGCCCCAGGA CCACAGCACC AACCTCACCT GTCAGGTGAC GTTCCCTGGA GCC GGTGTGA CCATGGAGAG AACCATCCAG 660 CTCAATGTCT CCTATGCTCC ACAGAAAGTG GCC ATCAGCA TCTTCCAAGG AAACAGCGCA 720 GCCTTCAAAA TCCTGCAAAA CACCTCGTCC CTC CCTGTCC TGGAGGGCCA GGCTCTGCGG 780. CTGCTCTGTG ATGCTGACGG CAACCCCCCT GCA CACCTGA GCTGGTTCCA GGGCTTCCCC 840 GCCCTGAACG CCACCCCCAT CTCCAATACC GGG GTCCTGG AGCTGCCTCA AGTAGGGTCT 900 GCAGAAGAAG GAGATTTCAC CTGCCGTGCT CAG CATCCTC TGGGCTCCCT GCAAATCTCT 960 CTGAGTCTCT TTGTGCATTG GAAACCAGAA GGC AGGGCTG GTGGTGTCCT GGGAGCAGTC 1020 TGGGGAGCTA GCATCACAAC CCTGGTTTTC CTC TGTGTTT GCTTCATCTT CAGAGTGAAG

ACTAGAAGGA AGAAAGCAGC CCAGCCAGTG CAA
AACACGG ATGATGTGAA CCCCGTCATG 1140
GTCTCAGGCT CCAGGGGTCA TCAGCACCAG TTC
CAGACAG GCATAGTTTC AGACCACCCT 1200
GCTGAGGCTG GCCCCATCTC AGAAGATGAG CAG
GAGCTCC ACTACGCTGT CCTACACTTC 1260
CACAAGGTGC AACCTCAGGA ACCAAAGGTC ACC
GACACTG AGTACTCAGA AATCAAGATA 1320
CACAAG

1326

【0158】配列番号:6

配列の長さ:2809

配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:DNA (cDNA)

配列の特徴:

特徴を表わす記号: CDS

存在位置:237..1562

特徴を決定した方法:E

配列:

GCGGGACACA GTCTCTTCTC C	TCTGCTCTT CTTTGGGCAG	AGGGTCTCAA AGTTTCCGTC	60
TGCTCTGTGC AGAGGGAGTG GA	AGCTCCGAG GGCTTGTGGC	TTCGCAGTTC CTCTTCTGTG	120
AACAGCCGAG ATCACGCGCT CO	CTCCCCAGC CACCCGTTCC	TCCCCGCAGT CCTTCCCCTC	180
CACTCCCTTC CCCTTCTCTG C	TCATGCAGG GAGCCCAGAA	AGCCTCCGCC TCAGAG	236
ATG CTA COG CTG CTG CTG	CCC CTG CTG TGG GCA	GGG GCC CTG GCT CAG	284
Met Leu Pro Leu Leu Leu	Pro Leu Leu Trp Ala	Gly Ala Leu Ala Gln	
1 5	10	15	•
GAG CGG AGA TTC CAG CTG	GAG GGG CCA GAG TCA	CTG ACG GTG CAG GAG	332
Glu Arg Arg Phe Gln Leu	Glu Gly Pro Glu Ser	Leu Thr Val Gln Glu	
20	25	30	
GGT CTG TGC GTC CTC GTA			380
Gly Leu Cys Val Leu Val	Pro Cys Arg Leu Pro	Thr Thr Leu Pro Ala	
35	40	45	
TCG TAC TAT GGT TAT GGC	•		428
Ser Tyr Tyr Gly Tyr Gly	Tyr Trp Phe Leu Glu	Gly Ala Asp Val Pro	•
50	55	60	
GTG GCC ACA AAC GAC CCA			476
Val Ala Thr Asn Asp Pro			,
65 70		. 80	
CGA TTC CAC CTC CTC TGG			524
Arg Phe His Leu Leu Trp	Asp Pro Arg Arg Lys		
85	90	95	
ATC AGA GAT GCC CGG AGG			572
lle Arg Asp Ala Arg Arg	Arg Asp Asn Ala Ala	Tyr Phe Phe Arg Leu	
100	105	110	
AAG TCC AAA TGG ATG AAA			620
Lys Ser Lys Trp Met Lys	Tyr Gly Tyr Thr Ser		
115	120	125	
CGT GTG ATG GCC CTG ACC			668
Arg Val Met Ala Leu Thr	His Arg Pro Asn Ile	Ser Ile Pro Gly Thr	
130	135	140	
CTG GAG TCT GGC CAT CCC			716
Leu Glu Ser Gly His Pro		Ser Val Pro Trp Val	
145 150	155	160	
•		•	

TGT GAG CAG GGG ACG CCC CC	CC ATC TTC TCC TGG	ATG TCA GCT GCC CCC 764
Cys Glu Gln Gly Thr Pro Pr		
165	170	175
ACC TCC CTG GGC CCC AGG AG	CC ACC CAG TCC TCG	GTG CTC ACA ATC ACC 812
Thr Ser Leu Gly Pro Arg Th	nr Thr Gln Ser Ser	Val Leu Thr lle Thr
180	185	190
CCA CGG CCC CAG GAC CAC AC		
Pro Arg Pro Gln Asp His So		
195	200 CC CAC ACA ACC ATC	205
Pro Gly Ala Gly Val Thr Me		
	15	220
TAT GCT CCA CAG AAA GTG G	-	
Tyr Ala Pro Gln Lys Val A	•	
225 230	235	240
GCC TTC AAA ATC CTG CAA A	AC ACC TCG TCC CTC	CCT GTC CTG GAG GGC 1004
Ala Phe Lys Ile Leu Gln A	sn Thr Ser Ser Leu	Pro Val Leu Glu Gly
245	250	255
CAG GCT CTG CGG CTG CTC TO	GT GAT GCT GAC GGC	AAC CCC CCT GCA CAC 1052
Gln Ala Leu Arg Leu Leu C	ys Asp Ala Asp Gly	Asn Pro Pro Ala His
260	265	270
CTG AGC TGG TTC CAG GGC T		- -
Leu Ser Trp Phe Gln Gly Pl		
275	280	285
AAT ACC GGG GTC CTG GAG C		
Asn Thr Gly Val Leu Glu L 290 2	eu rro din vai diy 95	300
GAT TTC ACC TGC CGT GCT C	-	
Asp Phe Thr Cys Arg Ala G		
305 310	315	
CTG AGT CTC TTT GTG CAT TO		
Leu Ser Leu Phe Val His T	rp Lys Pro Glu Gly	Arg Ala Gly Gly Val
325	330	335
CTG GGA GCA GTC TGG GGA G	CT AGC ATC ACA ACC	CTG GTT TTC CTC TGT 1292
Leu Gly Ala Val Trp Gly A	la Ser Ile Thr Thr	Leu Val Phe Leu Cys
340	345	350
GTT TGC TTC ATC TTC AGA G		
Val Cys Phe Ile Phe Arg V	•	
355	360	365
CCA GTG CAA AAC ACG GAT G		
Pro Val Gln Asn Thr Asp A 370 3	sp var Asii Pro var 75	380
AGG GGT CAT CAG CAC CAG T		
Arg Gly His Gln His Gln P	· ·	
385 390	395	
GCT GAG GCT GGC CCC ATC T		
Ala Glu Ala Gly Pro Ile S		
405	410	415
GTC CTA CAC TTC CAC AAG G	TG CAA CCT CAG GAA	CCA AAG GTC ACC GAC 1532
Val Leu His Phe His Lys V	al Gln Pro Gln Glu	Pro Lys Val Thr Asp

	42	0	425	430	
	ACT GAG TAC TO	A GAA ATC AAG A	ITA CAC AAG TGA	GGAATTG TCCAAAGCCA	1582
	Thr Glu Tyr Se	r Glu lle Lys l	le His Lys		
	435	4	140		
	TAACCTTGAT TGG	AGAGAAC ATGGTAC	CTC TCAGTGTATT	GGTTACTAGG GCTGCCACAG	1642
	CAATGTACCA CAA	ACCGAGT GACATA	AACA CAGAACTTTA	TTTTCGTATA GTTTCAGATG	1702
	TTAGAGGTCT GAG	AACAAGG TGTTATO	CAGG GTTGGTCCCT	TCTAAGGCCT CTCTTGTTGG	1762
	CTTGTAGATG GCT	GTCTCCT CCTTGT(TCT TCACATGGTC	TTTCCTCTGA GTGTGTTTGT	1822
	GTCCTAATCT TCT	CTTCTTA TAAAGAG	CACT AGTCATATTG	GATTAGGGCC TCCCCATGAC	1882
	CTAATTTAAA TAA	ATTAACT ATTTAA	AGAC CCTCCAAATA	CAGTAACCTT CTGGATATTA	1942
	GATTTAGGAC TTC	CAACATA TAAT T T	AGA AGGGAACAAT	TTAGCCCATA ACACTGTGTC	2002
	CAATTCTTTT AAA	ATTAATG TTTTTG	TTGT AAATGGACTA	TATAAATACC TTCGTATATA	2062
	TGGCAGACCG CAG	ACTICTG TCCAAG	AGAA CTGAGTTCAA	CTCCATCTAT GCCAGCCTGG	2122
	GCAACAGAGC GAG	ACTCCAA CTCAGA	aaa gcaaaacaaa	ACAAACAAAC AAGCAAAAAA	2182
	CCACAATTAG ACT	GACAGCT GACTTT	TTTA GGAGCAATAT	TGGAAGGCTA AATGCAATAG	2242
	AAAGATGTCT TTG	GATGCCTT AAGAGA/	AATA AATGTTGTTT	TAGAAAGCCT ACTCAATGAA	2302
	AACACATTTT AAG	GACTGAAA GTGAAA	TATA GATATTTTAA	GGAAAACCAA AATATGTGAG	2362
	TGTTAATAAA GAA	AAAGATTT CTCAAA	raaa ttctaaaaca	TATAATTCAG GTATTAGGAA	2422
	AGTGATCCCA GAT	TAGATTT TTGAGA	rcca aaaaaaatgc	AAAACCTAGG AAAGTAGCAA	2482
	ATATGTGAGC AAA	AATGAAAĊ AAATAC	TTGT TGT AAAAATG	ATGGTTTGTA GAGGGGTCAA	2542
	ACATCAAATG TAA	ATATTGAA ATACCA	ATAT TATATAGCCC	AGAAACTATA ATAACATAAA	2602
	GTT CAGAAGA GTG	GTAAATAG AATTTA	TATT ACCATAAAGT	CCTTTATATT TTTCCAGAGA	2662
	AAATTAAATG TTA	ATGATGAA TGTTAC	ATTT GGATAATTTA	A TTATTGTAAT CTCGAGGAAA	2722
	TTTACTTAAA GAA	ATCGAAGC CAAGTT	TACC ACCTGTGAAC	TAGAGGAAGT ATAAAAGGTG	2782
	ATAGAAACAT TAT	TTCAGTCA AACCAG	4		2809
ß	号:7		トポロ	コジー:直線状	

【0159】配列番

配列の長さ:342

配列の型:アミノ酸

配列の種類:蛋白

配列 .

此列	•															
Met 1	Leu	Pro	Leu	Leu 5	Leu	Pro	Leu	Leu	Trp 10	Ala	Gly	Ala	Leu	Ála 15	Gln	
Glu	Arg	Arg	Phe	_	Leu	Glu	Gly.	Pro		Ser	Leu	Thr	Val		Glu	
			20					25					30			
Gly	Leu		Val	Leu	Val	Pro		Arg	Leu	Pro	Thr	Thr	Leu	Pro	Ala	
		35					40					45				
Ser		Tyr	Gly	Tyr	Gly		Trp	Phe	Leu	Glu		Ala	Asp	Val	Pro	
	50					55					60					
Val	Ala	Thr	Asn	Asp	Pro	Asp	Glu	Glu	Val	Gln	Glu	Glu	Thr	Arg	Gly	
65					70					75					80	
Arg	Phe	His	Leu	Leu	Trp	Asp	Pro	Arg	Arg	Lys	Asn	Cys	Ser	Leu	Ser	
				85					90					95		
Ile	Arg	Asp	Ala	Arg	Arg	Arg	Asp	Asn	Ala	Ala	Tyr	Phe	Phe	Arg	Leu	
			100					105					110			
Lys	Ser	Lys	Trp	Met	Lys	Tyr	Gly	Tyr	Thr	Ser	Ser	Lys	Leu	Ser	Val	
		115					120	•				125				
Arg	Val	Met	Ala	Leu	Thr	His	Arg	Pro	Asn	He	Ser	He	Pro	Gly	Thr	
	130					135					140					
Leu	Glu	Ser	Gly	His	Pro	Ser	Asn	Leu	Thr	Cys	Ser	Val	Pro	Trp	Val	
145					150					155					160	
Cys	Glu	Gln	Gly	Thr	Pro	Pro	lle	Phe	Ser	Trp	Met	Ser	Ala	Ala	Pro	

	165		170	175
Thr Ser Leu (Gly Pro Arg	Thr Thr Gln	Ser Ser Val Leu	Thr lle Thr
1	180	185		190
Pro Arg Pro (Gln Asp His	Ser Thr Asn	Leu Thr Cys Glr	Val Thr Phe
195		200	205	;
Pro Gly Ala (Gly Val Thr	Met Glu Arg	Thr Ile Gln Led	ı Asn Val Ser
210		215	220	
Tyr Ala Pro (Gln Lys Val	Ala Ile Ser	He Phe Gln Gly	Asn Ser Ala
225	230		235	240
Ala Phe Lys 1	lle Leu Gln	Asn Thr Ser	Ser Leu Pro Val	Leu Glu Gly
•	245		250	255
Gln Ala Leu /	Arg Leu Leu	Cys Asp Ala	Asp Gly Asn Pro	Pro Ala His
4	260	265		270
Leu Ser Trp I	Phe Gln Gly	Phe Pro Ala	Leu Asn Ala Th	Pro Ile Ser
275		280	289	5
Asn Thr Gly	Val Leu Glu	Leu Pro Gln	Val Gly Ser Ala	a Glu Glu Gly
290		295	300	
Asp Phe Thr (Cys Arg Ala	Gln His Pro	Leu Gly Ser Le	ı Gln Ile Ser
305	310		315	320
Leu Ser Leu I	Phe Val His	Trp Ser Ser	Ala Pro Val Pro	Asp Arg His
	325		330	335
Ser Phe Arg 1	Pro Pro Cys			
•	340			

【0160】配列番号:8

鎖の数:一本鎖

配列の長さ:1026

トポロジー:直線状

配列の型:核酸

配列の種類: DNA (cDNA)

配列:

ATGCTACCGC	TGCTGCTGCC	CCTGCTGTGG	GCAGGGGCCC	TGGCTCAGGA	GCGGAGATTC	60
CAGCTGGAGG	GGCCAGAGTC	${\tt ACTGACGGTG}$	${\sf CAGGAGGGTC}$	TGTGCGTCCT	CGT ACCCTGC	120
AGATTGCCCA	CTACCCTTCC	AGCCTCGTAC	TATGGTTATG	GCTACTGGTT	CCTGGAAGGG	180
GCTGATGTTC	CAGTGGCCAC	AAACGACCCA	GACGAAGAAG	TGCAGGAGGA	GACCCGGGGC	240
CGATTCCACC	TCCTCTGGGA	TCCCAGAAGG	AAGAACTGCT	CCCTGAGCAT	CAGAGATGCC	300
CGGAGGAGGG	ACAATGCTGC	ATACTTCTTT	CGGTTGAAGT	CCAAATGGAT	GAAATACGGT	360
TATACATCTT	CCAAGCTCTC	TGTGCGTGTG	ATGGCCCTGA	CCCACAGGCC	CAACATCTCC	420
ATCCCAGGGA	CCCTGGAGTC	TGGCCATCCC	AGCAATCTGA	CCTGCTCTGT	GCCCTGGGTC	480
TGTGAGCAGG	GGACGCCCCC	CATCTTCTCC	TGGATGTCAG	CTGCCCCCAC	CTCCCTGGGC	540
CCCAGGACCA	CCCAGTCCTC	GGTGCTCACA	ATCACCCCAC	GGCCCCAGGA	CCACAGCACC	600
AACCTCACCT	${\tt GTCAGGTGAC}$	GTTCCCTGGA	${\tt GCCGGTGTGA}$	CCATGGAGAG	AACCATCCAG	660
CTCAATGTCT	CCTATGCTCC	ACAGAAAGTG	GCCATCAGCA	TCTTCCAAGG	AAACAGCGCA	720
GCCTTCAAAA	TCCTGCAAAA	CACCTCGTCC	CTCCCTGTCC	TGGAGGGCCA	GGCTCTGCGG	780
CTGCTCTGTG	ATGCTGACGG	CAACCCCCCT	GCACACCTGA	GCTGGTT CCA	GGGCTTCCCC	840
GCCCTGAACG	CCACCCCAT	CTCCAATACC	GGGGTCCTGG	AGCTGCCTCA	AGTAGGGTCT	900
GCAGAAGAAG	GAGATTT CAC	CTGCCGTGCT	CAGCATCCTC	TGGGCTCCCT	GCAAATCTCT	960
CTGAGTCTCT	TTGTGCATTG	GTCATCAGCA	CCAGTTCCAG	ACAGGCATAG	TTTCAGACCA	1020
CCCTGC						1026

【0161】配列番号:9

配列の種類: DNA (cDNA)

配列の長さ:1741

配列の特徴:

配列の型:核酸

特徴を表わす記号: CDS

鎖の数:一本鎖

存在位置:237..1262

トポロジー:直線状

特徴を決定した方法:E

配列	:															
GCGG	GACA	CA (TCTC	TTCI	ic ct	CTGC	TCTT	CTT	TGGG	CAG	AGGG	TCTC	AA A	GTTT	CCGTC	60
TGCT	CTGT	GC A	AG AGG	GAGT	rg ga	GCTC	CGAG	GGC	TTGT	GGC	TTCG	CAGT	TC (TCT1	CTGTG	120
AACA	GCCC	AG A	ATCAC	GCGC	T CO	TCCC	CAGO	CAC	CCGT	TCC	TCCC	CGCA	GT (CTT	CCCTC	180
CACT	CCCT	TC (CCCTT	CTC	rg ct	CATG	CAGO	GAG	CCCA	GAA	AGCC	TCCC	CC 1	'CAG!	∖G	236
ATG	CTA	CŒ	CTG	CTG	CTG	CCC	CTG	CTG	TGG	GCA	GGG	GCC	CTG	GCT	CAG	284
Met	Leu	Pro	Leu	Leu	Leu	Pro	Leu	Leu	Trp	Ala	Gly	Ala	Leu	Ala	Gln	
1				5					10					15		
	•		TTC													332
Glu	Arg	Arg	Phe 20	Gln	Leu	Glu	Gly	Pro 25	Glu	Ser	Leu	Thr	Va1 ⋅30	Gln	Glu	
GGT	CTG	TGC	GTC	CTC	GTA	CCC	TGC	AGA	TTG	CCC	ACT	ACC	CTT	CCA	GCC	380
Gly	Leu	Cys	Val	Leu	Val	Pro	Cys	Arg	Leu	Pro	Thr	Thr	Leu	Pro	Ala	
		35					40					45				
TCG	TAC	TAT	GGT	TAT	GGC	TAC	TGG	TTC	CTG	GAA	GGG	GCT	GAT	GTT	CCA	428
Ser	Tyr	Tyr	Gly	Tyr	Gly	Tyr	Trp	Phe	Leu	Glu	Gly	Ala	Asp	Val	Pro	
	50					55					60					
			AAC													476
	Ala	Thr	Asn	Asp		Asp	Glu	Glu	Val		Glu	Glu	Thr	Arg		
65	mm.c		CT C	~	70	C+ 111			100	75		m.c.c	m.c.c	om c	80	
	_		CTC													524
Arg	rne	nıs	Leu	Leu 85	ıгр	ASP.	Pro	Arg	90	Lys	ASN	tys	ser	ьеи 95	Ser	
ATC	AGA	GAT	GCC	CGG	AGG	AGG	GAC	AAT	GCT	GCA	TAC	TTC	TTT	ŒG	TTG	572
He	Arg	Asp	Ala	Arg	Arg	Arg	Asp	Asn	Ala	Ala	Tyr	Phe	Phe	Arg	Leu	
			100	•				105					110			
AAG	TCC	AAA	TGG	ATG	AAA	TAC	GGT	TAT	ACA	TCT	TCC	AAG	CTC	TCT	GTG	620
Lys	Ser		Trp	Met	Lys	Tyr	Gly	Tyr	Thr	Ser	Ser			Ser	Val	
	cm c	115		cm.c			120					125		o o o		
			GCC													668
Arg	va: 130	met	Ala	Leu	inr	ніs 135	-	Pro	Asn	116	Ser 140		Pro	ыу	ınr	
CTG		ፐርፕ	GGC	CAT				CTG	۸۲۲	ፐርር			רננ	TGG	GTC	716
			Gly													110
145					150				• • • • • • • • • • • • • • • • • • • •	155					160	
	GAG	CAG	GGG	ACG			ATC	TTC	TCC			TCA	GCT	GCC		764
			Gly													
•				165					170					175		
ACC	TCC	CTG	GGC	CCC	AGG	ACC	ACC	CAG	TCC	TCG	GTG	СТС	ACA	ATC	ACC	812
Thr	Ser	Leu	Gly	Pro	Arg	Thr	Thr	Gln	Ser	Ser	Val	Leu	Thr	Ile	Thr	
			180					185					190)		
CCA	CGG	CCC	CAG	GAC	CAC	AGC	ACC	AAC	CTC	ACC	TGT	CAG	GTG	ACG	TTC	860
Pro	Arg	Pro	Gln	Asp	His	Ser	Thr	Asn	Leu	Thr	Cys	Gln	Val	Thr	Phe	
		195					200)				205	i			
															TCC	908
Pro			Gly	Val	Thr			Arg	Thr	Ile			Asn	Val	Ser	
	210					215					220					
															GCA	956
	Ala	Pro	Gln	Lys			Ile	Ser	· Ile			Gly	Asn	Ser	Ala	
225					230	1				235	Ò	•			240	

	GCC	TTC	AAA	ATC	CTG	CAA	AAC	ACC	TCG	TCC	СТС	CCT	GTC	CTG	GAG	GGC	1004
	Ala	Phe	Lys	He	Leu	Gln	Asn	Thr	Ser	Ser	Leu	Pro	Val	Leu	Glu	Gly	
					245					250					255		
	CAG	GCT	CTG	CGG	CTG	CTC	TGT	GAT	GCT	GAC	GGC	AAC	CCC	CCT	GCA	CAC	1052
	Gln	Ala	Leu	Arg	Leu	Leu	Cys	Asp	Ala	Asp	Gly	Asn	Pro	Pro	Ala	His	
				260					265					270			
	CTG	AGC	TGG	TTC	CAG	GGC	TTC	CCC	GCC	CTG	AAC	GCC	ACC	CCC	ATC	TCC	1100
	Leu	Ser	Trp	Phe	Gln	Gly	Phe	Pro	Ala	Leu	Asn	Ala	Thr	Pro	Ile	Ser	
			275					280					285				
	AAT	ACC	GGG	GTC	CTG	GAG	CTG	CCT	CAA	GTA	GGG	TCT	GCA	GAA	GAA	GGA	1148
	Asn	Thr	Gly	Val	Leu	Glu	Leu	Pro	Gln	Val	Gly	Ser	Ala	Glu	Glu	Gly	
		290					295					300					
	GAT	TTC	ACC	TGC	CGT	GCT	CAG	CAT	CCT	CTG	GGC	TCC	CTG	CAA	ATC	TCT	1196
	Asp	Phe	Thr	Cys	Arg	Ala	Gln	His	Pro	Leu	Gly	Ser	Leu	Gln	He		
	305					310					315					320	
											CCA						1244
	Leu	Ser	Leu	Phe	Val	His	Trp	Ser	Ser	Ala	Pro	Val	Pro	Asp			
•					325					330					335		
							TGA	GGCT	GGC	CCCA	TCTC	AG A	AGAT	GAGC	A		1292
•	Ser	Phe	Arg	Pro		Cys											
	ccu	c cen c	C.L.C.	340		CC T		TT CC		A CCT	CCAA	CCT	CACC		C 4 4 4	CCTCAC	1252
																GGTCAC	1352
																TAACCT	1412 1472
																CAATGT	1532
																TTAGAG CTTGTA	1592
•																GTCCTA	1652
																CTAATT	1712
				AACT						IGUA		·		,ccn	lunc	CIANII	1741
【0162】配列番				AACI	חווו	nn n	uncc	CICC		ŀ	・ポロ	-رز: ۱	- ・ 確	ree i	F	,	
配列の長さ:132		10									列の				•		
配列の型:アミノ酸		•									L) 1 .	1=.70	ų · =	~ Ш			
10/11/22:/ 12</td <td>配歹</td> <td>ĭI :</td> <td></td>	配歹	ĭI :															
			Glu	Ala	Phe	Cvs	Ala	Thr	Tre	Lvs	Leu	Thr	- Asr	. Ser	- Glr	n Asn	
	1				5					10					15		
	Phe	Asp	Glu	Tyr	Met	Lys	Ala	Leu	Gly	, Val	Gly	Phe	e Ala	Thi	· Ar	g Gln	
				20		-			25					30			
	Val	Gly	Asn	Val	Thr	Lys	Pro	Thr	· Val	Πe	: Ile	Ser	Glr	ı Glı	ı Gly	/ Asp	
			35					40					45				
	Lys	Val	Val	He	Arg	Thr	Leu	Ser	Thr	- Phe	e Lys	Asr	Th	r Gli	ı Ile	e Ser	
		50	ı				55	i				60)				
	Phe	Gln	Leu	Gly	Glu	Glu	Phe	Asp	Glu	ı Thi	Thr	Ala	a Ası	As ₁	o Ara	g Asn	
	_					_										~ ~	

Cys Lys Ser Val Val Ser Leu Asp Gly Asp Lys Leu Val His IIe Gln \$85\$ Lys Trp Asp Gly Lys Glu Thr Asn Phe Val Arg Glu Ile Lys Asp Gly

\$100\$ Lys Met Val Met Thr Leu Thr Phe Gly Asp Val Val Ala Val Arg His

115 120 125

70

Tyr Glu Lys Ala

558

618

130 鎖の数:一本鎖 【0163】配列番号:11 トポロジー:直線状 配列の長さ:396 配列の種類: DNA (cDNA) 配列の型:核酸 配列: 60 ATGGTGGAGG CTTTCTGTGC TACCTGGAAG CTGACCAACA GTCAGAACTT TGATGAGTAC ATGAAGGCTC TAGGCGTGGG CTTTGCCACT AGGCAGGTGG GAAATGTGAC CAAACCAACG 120 GTAATTATCA GTCAAGAAGG AGACAAAGTG GTCATCAGGA CTCTCAGCAC ATTCAAGAAC 180 ACGGAGATTA GTTTCCAGCT GGGAGAAGAG TTTGATGAAA CCACTGCAGA TGATAGAAAC 240 TGTAAGTCTG TTGTTAGCCT GGATGGAGAC AAACTTGTTC ACATACAGAA ATGGGATGGC 300 AAAGAAACAA ATTTTGTAAG AGAAATTAAG GATGGCAAAA TGGTTATGAC CCTTACTTTT 360 GGTGATGTGG TTGCTGTTCG CCACTATGAG AAGGCA 396 【0164】配列番号:12 配列の種類:DNA (cDNA) 配列の長さ:754 配列の特徴: 配列の型:核酸 特徴を表わす記号: CDS 鎖の数:一本鎖 存在位置:52..448 トポロジー:直線状 特徴を決定した方法:E 配列: ATTAGACCAG AAGATCCCCG CTCCTGTCTC TAAAGAGGGG AAAGGGCAAG G ATG GTG Met Val 1 GAG GCT TTC TGT GCT ACC TGG AAG CTG ACC AAC AGT CAG AAC TTT GAT 105 Glu Ala Phe Cys Ala Thr Trp Lys Leu Thr Asn Ser Gln Asn Phe Asp 10 GAG TAC ATG AAG GCT CTA GGC GTG GGC TTT GCC ACT AGG CAG GTG GGA 153 Glu Tyr Met Lys Ala Leu Gly Val Gly Phe Ala Thr Arg Gln Val Gly 20 30 25 AAT GTG ACC AAA CCA ACG GTA ATT ATC AGT CAA GAA GGA GAC AAA GTG 201 Asn Val Thr Lys Pro Thr Val IIe IIe Ser Gln Glu Gly Asp Lys Val 35 40 GTC ATC AGG ACT CTC AGC ACA TTC AAG AAC ACG GAG ATT AGT TTC CAG 249 Val Ile Arg Thr Leu Ser Thr Phe Lys Asn Thr Glu Ile Ser Phe Gln 55 60 CTG GGA GAA GAG TTT GAT GAA ACC ACT GCA GAT GAT AGA AAC TGT AAG 297 Leu Gly Glu Glu Phe Asp Glu Thr Thr Ala Asp Asp Arg Asn Cys Lys TCT GTT GTT AGC CTG GAT GGA GAC AAA CTT GTT CAC ATA CAG AAA TGG 345 Ser Val Val Ser Leu Asp Gly Asp Lys Leu Val His Ile Gln Lys Trp GAT GGC AAA GAA ACA AAT TTT GTA AGA GAA ATT AAG GAT GGC AAA ATG 393 Asp Gly Lys Glu Thr Asn Phe Val Arg Glu Ile Lys Asp Gly Lys Met 105 110 GTT ATG ACC CTT ACT TTT GGT GAT GTG GTT GCT GTT CGC CAC TAT GAG 441 Val Met Thr Leu Thr Phe Gly Asp Val Val Ala Val Arg His Tyr Glu 125 498 AAG GCA T AAAAATGTTC CTGGTCGGGG CTTGGAAGAG CTCTTCAGTT TTTCTGTTTC Lys Ala

CTCAAGTCTC AGTGCTATCC TATTACAACA TGGCTGATCA TTAATTAGAA GGTTATCCTT
GGTGTGGAGG TGGAAAATGG TGATTTAAAA ACTTGTTACT CCAAGCAACT TGCCCAATTT

TAATCTGAAA ATTTATCATG TTTTATAATT TGAATTAAAG TTTTGTCCCC CCCCCCCTTT 678 TTTTTATAAA CAAGTGAATA CATTTTATAA TTTCTTTTGG AATGTAAATC AAATTTGAAT 738 AAAAATCTTA CACGTG 754

【0165】配列番号:13

トポロジー:直線状

配列の長さ:561

配列の種類:蛋白

配列の型:アミノ酸

配列:

日じグリ	١.															
	Asn	Ser	Ser	Leu 5	Thr	Ala	Gln	Arg		Gly	Ser	Asp	Ala	Glu	Leu	
1	D	Т	V- 1		A1.	A1.	A	۲	10	A	A1.	A 1 -	D	15	C1-	
GIY	PTO	irp ·	20	met	Ala	Ala	Arg	Ser 25	Lys	ASP	Ala	Ala	30	Ser	GIN	
Arg	Asp	Gly 35	Leu	Leu	Pro	Val	Lys 40	Val	Glu	Glu	Asp	Ser 45	Pro	Gly	Ser	
Тrр	G1 u 50	Pro	Asn	Tyr	Pro	Ala 55	Ala	Ser	Pro	Asp	Pro 60	Glu	Thr	Ser	Arg	
Leu 65	His	Phe	Arg	Gln	Leu 70	Arg	Tyr	Gln	Glu	Va1 75	Ala	Gly	Pro	Glu	Glu 80	
	1	c	A			C1	1	C	A		Т	1	A	D		
Ald	Leu	ser	Arg	85	AFg	GIU	Leu	cys	90	Arg	ırp	Leu	Arg	Pro 95	GIU	
Leu	Leu	Ser	Lys 100	Glu	Gln	Ile	Leu	Glu 105	Leu	Leu	Val	Leu	Glu 110	Gln	Phe	
Leu	Thr	I le 115	Leu	Pro	Glu	Glu	Leu 120	Gln	Ala	Trp	Val	Arg 125	Glu	His	Cys	
Pro	Glu		Glv	Glu	Glu	Ala		Ala	Val	Val	Arg		Leu	Gln	Arg	
	130					135					140					
145	Leu	ASP	ыу	inr	5er 150	Ser	GIN	GIY	met	va i 155	ınr	Pne	GIU	Asp	160	
Ala	Val	Ser	Leu	Thr 165	Тrр	Glu	Glu	Trp	Gl u 170		Leu	Asp	Pro	Al a 175	Arg	
Arg	Asp	Phe	Cys 180	Arg	Glu	Ser	Ala	Gln 185		Asp	Ser	Gly	Ser 190	Thr	Val	
Pro	Pro	Ser		C111	Ser	Ara	Val			lve	Glu	ررم آ		Pro	Mot	
		195					200					205	•			
Gln	Gl n 210	He	Leu	Glu	Glu	Ala 215		Pro	Gln	Gly	Gln 220	Leu	Gln	Glu	Ala	
Phe 225	Gln	Gly	Lys	Arg	Pro 230	Leu	Phe	Ser	Lys	Cys 235	Gly	Ser	Thr	His	G1u 240	
	Arg	Val	Glu	Lvs		Ser	Glv	Asp	Pro		Pro	Leu	Lvs	Leu	Glu	
		<u>.</u>		245					250					255		
Asn	Ser	Pro	61u 260		Glu	Gly	Leu	Asn 265		He	Ser	Asp	val 270	Asn	Lys	
Asn	Gly	Ser 275	He	Glu	Gly	Glu	Asp 280		Lys	Asn	Asn	G1u 285		G1n	Asn	
Ser	Al a 290	Arg	Cys	Ser	Asn	Leu 295		Leu	Cys	Gln	His 300		Pro	Lys	Ala	
Glu		Pro	Thr	Asp	Ser			His	Glv	Asn			Lvs	Gln	Ser	
305	3				310				,	315		-,,	_,		320	
	His	Met	Val	Thr 325	Trp		Val	Leu	Lys 330	Pro		Lys	Ser	Asp 335	Ser	
Gly	Asp	Ser	Phe			Ser	Ser	Leu			Thr	Gln	Arg	Gln		ļ

			340					345					350		
His	Glu	G1u 355	Arg	Pro	Tyr	Lys	Cys 360	Gly	Asn	Cys	Gly	Lys 365	Ser	Phe	Lys
	Arg 370	Ser	Asp	Leu	Phe	Arg 375	His	Gln	Arg	He	His 380	Thr	Gly	Glu	Lys
Pro 385	Tyr	Gly	Cys	Gln	Glu 390	Cys	Gly	Lys	Ser	Phe 395	Ser	Gln	Ser	Ala	Ala 400
Leu	Thr	Lys	His	Gl n 405	Arg	Thr	His	Thr	Gly 410	Glu	Lys	Pro	Tyr	Thr 415	Cys
Leu	Lys	Cys	Gly 420	Glu	Arg	Phe	Arg	Gl n 425	Asn	Ser	His	Leu	Asn 430	Arg	His
Gln	Ser	Thr 435	His	Ser	Arg	Asp	Lys 440	His	Phe	Lys	Cys	Glu 445	Glu	Cys	Gly
Glu	Thr 450	Cys	His	lle	Ser	Asn 455	Leu	Phe	Arg	His	Gl n 460	Arg	Leu	His	Lys
Gly 465	Glu	Arg	Pro	Tyr	Lys 470	Cys	Glu	Glu	Cys	G1u 475	Lys	Ser	Phe	Lys	Gl n 480
Arg	Ser	Asp	Leu	Phe 485	Lys	His	His	Arg	11e 490		Thr	Gly	Glu	Lys 495	
Tyr	Gly	Cys	Ser 500		Cys	Gly	Lys	Arg 505		Asn	Gln	Ser	Ala 510		Leu
lle	Lys	His 515	Gln	Arg	lle	His	Thr 520		Glu	Lys	Pro	Tyr 525		Cys	Leu
Glu	Cys 530		Glu	Arg	Phe	Arg 535		Ser	Thr	His	Leu 540		Arg	His	Gln
Arg 545			Gln	Asn	Lys 550		Leu	Ser	Ala	. Gly 555		Gly	Gly	Ser	Arg 560
Leu 番号:									釕	当の劉	7:-	-本領	ř		

【0166】配列番号:14

配列の長さ:1683

配列の型:核酸

鎖の数:一本鋇

トポロジー:直線状

配列の種類: DNA (cDNA)

配列:

ATGAATTCCA GCTTGACCGC CCAGAGGCGC GGCAGTGACG CCGAGTTGGG ACCCTGGGTG 60 ATGGCTGCGA GGTCCAAGGA CGCGGCGCCG TCCCAACGCG ACGGACTTTT GCCCGTGAAA 120 GTGGAGGAAG ACTCACCCGG AAGTTGGGAG CCCAACTATC CCGCGGCTTC GCCGGACCCC 180 GAAACTTCTC GACTGCACTT TAGGCAGCTG CGTTACCAGG AGGTGGCTGG ACCGGAAGAG 240 GCGCTGAGCC GGCTCCGAGA ACTCTGTCGT CGGTGGCTGA GACCCGAGCT GCTCTCCAAG 300 GAGCAGATCC TGGAGCTGCT GGTGCTGGAG CAGTTCCTCA CCATCCTGCC CGAGGAGCTT 360 CAAGCCTGGG TGCGAGAGCA CTGCCCAGAG AGCGGGGAGG AGGCGGTGGC CGTGGTGCGG 420 GCTCTGCAGC GAGCGCTCGA TGGAACCTCA TCCCAGGGGA TGGTGACTTT CGAGGACACG 480 GCTGTGTCTC TAACCTGGGA GGAGTGGGAG CGCCTGGACC CAGCACGGAG GGACTTCTGC 540 AGAGAGAGTG CGCAGAAGGA TTCCGGGAGC ACAGTTCCGC CGAGTTTGGA AAGCAGAGTG 600 GAGAACAAAG AGTTGATTCC AATGCAACAA ATTTTAGAAG AAGCGGAGCC ACAGGGGCAA 660 CTACAAGAAG CGTTCCAGGG GAAGCGCCCC CTGTTTTCTA AGTGTGGCAG TACCCATGAG 720 GACAGGGTGG AAAAGCAGTC CGGAGACCCC TTGCCCCTGA AACTTGAAAA TTCTCCTGAA 780 GCAGAAGGAC TCAACAGCAT CTCAGATGTC AATAAGAATG GTTCCATAGA AGGGGAAGAC 840 TCTAAAAATA ATGAATTGCA GAACAGTGCC AGGTGTTCCA ACCTTGTTCT ATGTCAGCAC 900 ATCCCGAAAG CAGAGAGGCC CACTGACAGT GAGGAACACG GGAACAAGTG CAAGCAAAGT 960 TTCCACATGG TGACGTGGCA CGTGCTGAAA CCTCACAAGT CTGACAGTGG AGACAGTTTC 1020 CATCATTCCA GCCTTTTTGA GACCCAGAGG CAGCTCCATG AAGAAAGACC TTATAAATGT

(28)

	GGTAACTGTG GGAAGAGTTT CAAACAACGC TCTGACCTCT TTAGACACCA GAGAATCCAC 114 ACAGGTGAGA AACCCTATGG CTGCCAAGAA TGTGGGAAAA GCTTCAGCCA GAGTGCTGCC 120 CTGACCAAGC ACCAGAGGAC ACACACAGGC GAGAAGCCGT ACACCTGTCT GAAATGTGGG 126	Ю.
	GAGCGCTTCA GGCAGAATTC ACACCTAAAT CGTCATCAAA GTACCCACAG TAGAGACAAA 132	:0
	CATTITAAAT GTGAGGAATG CGGGGAAACC TGTCATATTT CCAACCTTTT TAGACATCAG 138	0
	AGACTACATA AAGGGGAAAG ACCCTATAAG TGTGAAGAAT GCGAGAAGAG CTTCAAACAG 144	0
	CGCTCTGACC TCTTTAAACA CCACAGAATC CACACTGGGG AGAAGCCCTA TGGATGTTCC 150	Ю
	GTCTGTGGGA AACGCTTCAA TCAGAGTGCA ACCCTCATTA AACACCAGAG AATTCACACT 156	Ю
	GGGGAAAAGC CTTACAAATG TCTTGAATGT GGGGAAAGAT TTAGACAAAG TACACACCTT 162	
	ATCCGACACC AAAGAATTCA TCAAAATAAA GTGCTGTCGG CTGGGCGTGG TGGCTCGCGC 168	
[0177] 新河平	CTG 168	13
【 0 1 6 7 】配列番 配列の長さ: 2 1 6		
配列の長さ、210 配列の型:核酸	8 配列の特徴 : 特徴を表わす記号 : CDS	
鎖の数:一本鎖	存在位置: 172 1857	
	特徴を決定した方法:E	
· · · · · · · · · · · · · · · · · · ·	配列:	
	•	50
		20
•	TTCTTCACCT GAAAAGAAGA CTCCAGGAAG GGCAGCACAT GCCGGAGAAA G ATG AAT 17	77
	Met Asn	
	· 1	
	TCC AGC TTG ACC GCC CAG AGG CGC GGC AGT GAC GCC GAG TTG GGA CCC 2	25
	Ser Ser Leu Thr Ala Gln Arg Arg Gly Ser Asp Ala Glu Leu Gly Pro	
	5 10 15	
		73
	Trp Val Met Ala Ala Arg Ser Lys Asp Ala Ala Pro Ser Gln Arg Asp	
	20 25 30	
•		21
	Gly Leu Leu Pro Val Lys Val Glu Glu Asp Ser Pro Gly Ser Trp Glu	
	35 40 45 50 CCC AAC TAT CCC GCG GCT TCG CCG GAC CCC GAA ACT TCT CGA CTG CAC 30	۲۵۰
	Pro Asn Tyr Pro Ala Ala Ser Pro Asp Pro Glu Thr Ser Arg Leu His	פט
	55 60 65	
		17
	Phe Arg Gin Leu Arg Tyr Gin Glu Val Ala Gly Pro Glu Glu Ala Leu	
	70 75 80	
	AGC CGG CTC CGA GAA CTC TGT CGT CGG TGG CTG AGA CCC GAG CTG CTC 4	65
	Ser Arg Leu Arg Glu Leu Cys Arg Arg Trp Leu Arg Pro Glu Leu Leu	
•	85 90 95	
•	TCC AAG GAG CAG ATC CTG GAG CTG CTG GTG CTG GAG CAG TTC CTC ACC 5	13
	Ser Lys Glu Gln IIe Leu Glu Leu Leu Val Leu Glu Gln Phe Leu Thr	
	100 105 110	
		61
•	Ile Leu Pro Glu Glu Leu Gln Ala Trp Val Arg Glu His Cys Pro Glu	
	115 120 125 130	••
		09
	Ser Gly Glu Glu Ala Val Ala Val Val Arg Ala Leu Gln Arg Ala Leu	
	135 140 145	E77
	GAT GGA ACC TCA TCC CAG GGG ATG GTG ACT TTC GAG GAC ACG GCT GTG 6	57

Ası	Gly	Thr	Ser 150	Ser	Gln	Gly	Met	Val 155	Thr	Phe	Glu	Asp	Thr 160	Ala	Val	٠
TC	r cta	ACC		GAG	GAG	TGG	GAG	CGC	CTG	GAC	CCA	GCA	CGG	AGG	GAC	705
	r Leu															
		165					170					175				
TT	C TGC	AGA	GAG	AGT	GCG	CAG	AAG	GAT	TCC	GGG	AGC	ACA	GTT	CCG	cœ	753
	e Cys															
	180		*			185					190					
AG	TTG	GAA	AGC	AGA	GTG	GAG	AAC	AAA	GAG	TTG	ATT	CCA	ATG	CAA	CAA	801
Se	r Leu	Glu	Ser	Arg	Val	Glu	Asn	Lys	Glu	Leu	He	Pro	Met	Gln	Gln	
19	5				200					205					210	
AT'	TT A	GAA	GAA	GCG	GAG	CCA	CAG	GGG	CAA	CTA	CAA	GAA	GCG	TTC	CAG	849
I 1	e Leu	Glu	Glu	Ala	Glu	Pro	Gln	Gly	Gln	Leu	Gln	Glu	Ala	Phe	Gln	
				215					220					225		
	G AAG															897
G1;	/ Lys	Arg	Pro	Leu	Phe	Ser	Lys	Cys	Gly	Ser	Thr	His	Glu	Asp	Arg	
			230					235					240			
	G GAA															945
٧a	l Glu		GIn	Ser	Gly	Asp		Leu	Pro	Leu	Lys			Asn	Ser	
cc	r	245	CAA	CCA	CTC		250	ATI C	TC.	CAT	CT C	255		4.40	CCT	000
	GAA															993
111	Glu 260		Giu	diy	Leu	265		He	Ser	ASP	270	ASII	Lys	ASII	uly	
TO	CATA		ຕຕຕ	GΔΔ	GAC			ΔΔΤ	ΔΔΤ	GΔΔ		CAG	ልልሮ	ACT	ccc	1041
	: Ile															1041
27			4.,	u.u	280	501	2,3	11011	1511	285		0111	non.	501	290	
	TGT	TCC	AAC	CTT		СТА	TGT	CAG	CAC			AAA	GCA	GAG		1089
	g Cys															
				295					300					305		
CC	CACT	GAC	AGT	GAG	GAA	CAC	GGG	AAC	AAG	TGC	AAG	CAA	AGT	TTC	CAC	1137
Pre) Thr	Asp	Ser	Glu	Glu	His	Gly	Asn	Lys	Cys	Lys	Gln	Ser	Phe	His	
			310					315					320			
	GTG															1185
Me	t Val			His	Val	Leu	Lys	Pro	His	Lys	Ser	Asp	Ser	Gly	Asp	
. ~		325					330					335				
	TTC															1233
Sei	Phe		HIS	Ser	Ser			Glu	Thr	Gin			Leu	His	Glu	
GA.	340 A AGA		ТАТ		ጥርጥ	345		ጥርጥ	ccc	A A C	350			CAA	ccc	1201
	ı Arg															1281
35!		. 110	ı yı	LyS	360		ASII	Cys	UI y	365		rile	LyS	GIII	370	
	r GAC	ርፐር	ттт	ΔGΔ			ΔGΔ	ΔΤՐ	CΔC			GAG	ΔΔΔ	rrr	_	1329
_	Asp															1,02,0
				375		~			380		-1,		_,_	385		
GG	CTGC	CAA	GAA			AAA	AGC	TTC			AGT	GCT	GCC			1377
	Cys															
	•		390		-			395					400			
AAG	CAC	CAG			CAC	ACA	GGC			ccs	TAC	ACC			AAA	1425
	s His															
		405					410			•		415	;			

	TGT	GGG	GAG	CGC	TTC	AGG	CAG	AAT	TCA	CAC	СТА	AAT	CGT	CAT	CAA	AGT	1473
	Cys	Gly	Glu	Arg	Phe	Arg	Gln	Asn	Ser	His	Leu	Asn	Arg	His	Gln	Ser	
		420					425					430					
	ACC	CAC	AGT	AGA	GAC	AAA	CAT	TTT	AAA	TGT	GAG	GAA	TGC	GGG	GAA	ACC	1521
	Thr	His	Ser	Arg	Asp	Lys	His	Phe	Lys	Cys	Glu	Glu	Cys	Gly	Glu	Thr	
	435					440					445					450	
	TGT	CAT	ATT	TCC	AAC	CTT	TTT	AGA	CAT	CAG	AGA	CTA	CAT	AAA	GGG	GAA	1569
	Cys	His	He	Ser	Asn	Leu	Phe	Arg	His	Gln	Arg	Leu	His	Lys	Gly	Glu	
					455					460					465		
	AGA	CCC	TAT	AAG	TGT	GAA	GAA	TGC	GAG	AAG	AGC	TTC	AAA	CAG	ŒС	TCT ·	1617
	Arg	Pro	Tyr	Lys	Cys	Glu	Glu	Cys	Glu	Lys	Ser	Phe	Lys	Gln	Arg	Ser	•
				470	•				475					480			
				AAA													1665
	Asp	Leu		Lys	His	His	Arg		His	Thr	Gly	Glu	Lys	Pro	Tyr	Gly	
	m.c.m	maa	485					490					495				
																AAA	1713
	lys		Val	Cys	Gly	Lys		Phe	Asn	Gln	Ser		Thr	Leu	He	Lys	
	CAC	500		4 m m	C+ C	.~	505				m . o	510		~			.=
				ATT													1761
			Arg	He	HIS		Gly	Glu	Lys	Pro		Lys	Cys	Leu	Glu	Cys	
	515		ACA	ጥጥጥ	40.4	520	ACT	464		C-TT-TT	525	CC 4	CAC			530	1000
•																ATT	1809
•	uly	GIU	Arg	rne		GIN	Ser	ınr	HIS			Arg	HIS	uin		He	
	CAT	CAA	A AT		535	CTC	TCC	CCT	ccc	540		ccc	Troc	ccc	545		4.057
																TAA	1857
	1115	OIII	HOII	Lys 550	Val	Leu	Ser		- 555	_	uly	ціў	ser	560		. *	
	ፐርር	ՐձՇՐՀ	ለርጥ '		CACC	rr .	ACCC.				ሞፐር ለ	САТ	ርልሮር			AACCAG	1917
																CATGGT	1977
																AACCCA	2037
																ACAGAG	2097
•																AAAAAA	2157
		AAAA												•••	0.4.11.		2168
【0168】配列番	_			•						· ト	ポロ	ジー	·:禕	線状	.		2100
配列の長さ:201		-									列の				•		
配列の型:アミノ酸				,							• •						
	配列	IJ:															
	Met	Asn	Ser	Ser	Leu	Thr	Ala	Gln	Arg	Arg	Gly	Ser	Asp	Ala	G1 u	Leu	
	1				5					10					15		•

Gly Pro Trp Val Met Ala Ala Arg Ser Lys Asp Ala Ala Pro Ser Gln 25 Arg Asp Gly Leu Leu Pro Val Lys Val Glu Glu Asp Ser Pro Gly Ser Trp Glu Pro Asn Tyr Pro Ala Ala Ser Pro Asp Pro Glu Thr Ser Arg Leu His Phe Arg Gln Leu Arg Tyr Gln Glu Val Ala Gly Pro Glu Glu Ala Leu Ser Arg Leu Arg Glu Leu Cys Arg Arg Trp Leu Arg Pro Glu 90 Leu Leu Ser Lys Glu Gln Ile Leu Glu Leu Leu Val Leu Glu Gln Phe

			100					105					110			
	Leu T	hr Ile	Leu	Pro	Glu	Glu			Ala	Trp	Val	Arg	Glu	His	Cys	
		115					120			-		125				
	Pro G	lu Ser	Gly	Glu	Glu	Ala	Val	Ala	Val	Val	Arg	Ala	Leu	Gln	Arg	
	1	30				135					140					
	Ala D	eu Asp	Gly	Thr	Ser	Ser	Gln	Gly	Met	Val	Thr	Phe	Glu	Asp	Thr	
	145				150					155					160	
	Ala V	al Ser	Ľeu	Thr	Trp	Glu	Glu	Trp	Glu	Arg	Leu	Asp	Pro	Ala	Arg	
				165					170					175		
	Arg A	sp Phe	Cys	Arg	Glu	Ser	Ala	Gln	Lys	Asp	Ser	Gly	Ser	Thr	Val	
			180					185					190			
	Pro P	ro Ser	Asp	Thr	Val	Tyr	Gly	Pro								
		195					200									
【0169】配列番	号:1	7.							鎖	の数	: -	本鎖				
配列の長さ:603									ト	ポロ	ジー	: 直	線状			
配列の型:核酸									配	列の	種類	: DN	A (c	DNA)		
	配列:	:														
	ATGAA	TTCCA	GCTTO	GACCO	ж со	CAGAC	GCG	C GG(CAGTO	GACG	CCG	AGTT	GGG	ACCC'	TGGGTG	60
	ATGGC	TGCGA	GGTC	CAAGO	A CO	CGGG	CGCC	G TCC	CCAA	œα	ACG	GACT'	TTT (GCCC	GTGAAA	120
	GTGGA	GGAAG	ACTC	ACCCC	G A/	AGTTO	GGGA	G CCO	CAAC'	TATC	CCG	CGGC	TTC (GCCG	GACCCC	180
·	GAAAC	TTCTC	GACTO	GCACT	T T/	AGG CA	AGCT	G CG1	TAC	CAGG	AGG	rggc'	TGG	ACCG	GAAGAG	240
	GCGCT	GAGCC	GGCT	CCGAC	A AG	СТСТО	GT CG'	T CGO	GTGG	CTGA	GAC	CCGA	GCT	GCTC	TCCAAG	300
	GAGCA	GATCC	TGGA	GCTG	T GO	STGC	TGGA	G CA	GTTC	CTCA	CCA'	T C CT	GCC	CGAG	GAGCTT	360
	CAAGC	CCTGGG	TGCG	AGAGO	CA CT	rgcc	CAGA	G AG	CGGG	GAGG	AGG	CGGT	GGC	CGTG	GTGCGG	420
	GCTCT	GCAGC	GAGO	GCTC	GA TO	GGAA	CCTC	A TC	CCAG	GGGA	TGG	TGAC	TTT	CGAG	GACACG	480
	GCTGT	GTCTC	TAAC	CTGG(GA GO	GAGTO	GGGA	G CG	CCTG	GACC	CAG	CACG	GAG	GGAC	TTCTGC	540
	AGAGA	AGAGTG	CGCA	GAAGO	GA T	rccg	GGAG	C AC	AGT T	CCGC	CGA	GTGA	CAC	TGTT	TATGGA	600
	CCG															603
【0170】配列番	号:1	. 8							Ē	列の	種類	į:DM	NA (d	:DNA))	
配列の長さ:105	1								Ē	列の	特徵	: 3			-	
配列の型:核酸									特	徴を	表社	す証	号:	CDS		
鎖の数:一本鎖									存	在位	置:	1 5	8.	. 7	60	
トポロジー:直線状									料	徴を	決定	した	方法	; : E	2	
	配列	:														
	GCGCA	AAAGCT	GAGG	AAAG	GA G	AGTG	TGGA	G AG	GGGC	CTGG	TGT	GGTG	GGG	CCCG	GTGTTT	60
	GGGAC	CCGGAG	GGTG	TTGA	CG G	CTGA	TGAG	T TC	CTTG	GGTT	TGC	TCTT	TCT	TCAC	CTGAAA	120
	AGAAG	GACTCC	AGGA	AGGG	CA G	CACA	TGCC	G GA	GAAA	G AT	G AA	T TC	C AG	C TT	G ACC	175
										Me	t As	n Se	r Se	r Le	u Thr	
											1				5	
	GCC C	CAG AGO	CGC	GGC	AGT	GAC	GCC	GAG	TTG	GGA	CCC	TGG	GTG	ATG	GCT	223
	Ala G	Gln Arg	Arg	Gly	Ser	Asp	Ala	Glu	Leu	Gly	Pro	Trp	Val	Met	Ala	
			10					15					20)		
	GCG A	AGG TCC	AAG	GAC	GCG	GCG	CCG	TCC	CAA	CGC	GAC	GGA	CTI	TTG	CCC	271
	Ala A	Arg Sei	Lys	Asp	Ala	Ala	Pro	Ser	Gln	Arg	Asp	Gly	Leu	Leu	ı Pro	
		25	5				30	1				35	j			
	GTG A	AAA GTO	GAG	GAA	GAC	TCA	CCC	GGA	AGT	TGG	GAG	CCC	: AAC	CTAT	CCC	319
	Val L	Lys Val	Glu	Glu	Asp	Ser	Pro	Gly	Ser	Trp	Gli	Pro	Asr	Tyr	· Pro	
		40				45					50					
		CT TO														367
	Ala A	Ala Sei	Pro	Asp	Pro	Glu	Thr	Ser	Arg	Leu	His	Phe	Ar ₈	Glr	1 Leu	

	55					60					65					70	
	CGT	TAC	CAG	GAG	GTG	GCT	GGA	$c \infty$	GAA	GAG	GŒ	CTG	AGC	CGG	CTC	CGA	415
	Arg	Tyr	Gln	Glu	Val	Ala	Gly	Pro	Glu	Glu	Ala	Leu	Ser	Arg	Leu	Arg	
					75					80					85		
	GAA	CTC	TGT	CGT	CGG	TGG	CTG	AGA	CCC	GAG	CTG	CTC	TCC	AAG	GAG	CAG	463
	Glu	Leu	Cys	Arg	Arg	Trp	Leu	Arg	Pro	Glu	Leu	Leu	Ser	Lys	Glu	Gln	
				90					95					100			
									CAG								511
	He	Ļeu		Leu	Leu	Val	Leu		Gln	Phe	Leu	Thr		Leu	Pro	Glu	
	CAC	CTT	105	ccc	ፐርር	CTC	C.A	110	CVC	TCC	CCY	CAC	115	cċc	CAC	CAC	. 550
									CAC								559
	uiu	120	um	MIG	пр	441	125	Olu	His	CyS	rio	130	361	GIY	uiu	uiu	
	GCG		GCC	GTG	GTG	CGG		CTG	CAG	ŒΑ	GCG		GAT	GGA	ACC	TCA	607
									Gin								001
	135					140				0	145					150	
		CAG	GGG	ATG	GTG	ACT	TTC	GAG	GAC	ACG		GTG	TCT	CTA	ACC		655
	Ser	Gln	Gly	Met	Val	Thr	Phe	Glu	Asp	Thr	Ala	Val	Ser	Leu	Thr	Trp	
					155					160					165		
	GAG	GAG	TGG	GAG	CGC	CTG	GAC	CCA	GCA	CGG	AGG	GAC	TTC	TGC	AGA	GAG	703
	Glu	Glu	Trp	Glu	Arg	Leu	Asp	Pro	Ala	Arg	Arg	Asp	Phe	Cys	Arg	Glu	
				170					175					180			
	AGT	GCG	CAG	AAG	GAT	TCC	GGG	AGC	ACA	GTT	CCG	CCG	AGT	GAC	ACT	GTT	751
	Ser	Ala		Lys	Asp	Ser	Gly	Ser	Thr	Val	Pro	Pro			Thr	Val	
	m .m	00.1	185					190	ma .		wa a a		195				
					GAGC	TGA	casc	rgrc	TG A	AGGC	rrge	CA	CAGA	CCTT			800
	ıyr		Pro														
	ACA	.200 CTCA	•	ሮሮ ለሞ	TCTC	ጥል ል	۸۸۸۲	TC AA	ሞ ጥ(~	የተጥረ	ATCT	ጥ ር ል'	ኮ ሮ ለ ለ	ACC.	ATCC	CTTACG	860
																TCGCTC	920
																GCCCTG	980
																AAAAAA	1040
			AAA														1051
【0171】配列番	号:	19								١	ボロ	ジー	· : 頂	線状	t		
配列の長さ:149								•		面	列の	種類	[:蛋	白			
配列の型:アミノ酸																	
	配列	IJ:															
•	Met	Leu	Pro	Ala	Ala	Met	Lys	Gly	Leu	Gly	Leu	Ala	Leu	Leu	Ala	Val	
	1				5	;				10					15	5	
	Leu	Leu	Cys	Ser	Ala	Pro	Ala	His			Trp	Cys	G1n	Asp	Cys	Thr	
	_			20					25		_			30		_	
	Leu	Thr			Ser	Ser	His			Pro	Lys	Gln			Pro	Ser	
		an.	35			~	υ.	40		Tr.			45				
	ASP			Lys	Ala	. Ser			He	Thr	Asp			Ser	Ser	- Arg	
•	1,,,,	50		د ^~	Val	۸	55 . Lvc		Cuc	A1 ~	S	60 Sor		. A~-	, Dh	. Val	
,	65	nsp	1115	Jer	101	70		nie C	cys	nid	зег 75	ær	cys	(cn	rue	e Val 80	
•		Ara	Hic	Pho	Pha			Tur	l en	Mot		Pho	Tie	Δer	Sei	Gly	
	LJJ	in 8			85		нэр	1 71	LCu	90		1 110		, noi	95		
					0.	•				,,,					٠,	-	

lle Leu Lys Val Asp Val Asp Cys Cys Glu Lys Asp Leu Cys Asn Gly

配列の型:核酸

配列の型:核酸

鎖の数:一本鎖

105

110

100

Ala Ala Gly Ala Gly His Ser Pro Gly Pro Trp Pro Gly Gly Ser Cys 120 125 Ser Ala Trp Gly Leu Pro Ser Ser Gly Leu Gly Pro Asp Val Ser Ser 130 135 140 Phe Pro Arg Gly Phe 【0172】配列番号:20 鎖の数:一本鎖 配列の長さ:447 トポロジー:直線状 配列の種類: DNA (cDNA) 配列: ATGCTGCCTG CAGCCATGAA GGGCCTCGGC CTGGCGCTGC TGGCCGTCCT GCTGTGCTCG GCGCCCGCTC ATGGCCTGTG GTGCCAGGAC TGCACCCTGA CCACCAACTC CAGCCATTGC ACCCCAAAGC AGTGCCAGCC GTCCGACACG GTGTGTGCCA GTGTCCGAAT CACCGATCCC AGCAGCAGCA GGAAGGATCA CTOGGTGAAC AAGATGTGTG CCTCCTCCTG TGACTTCGTT AAGCGACACT TTTTCTCAGA CTATCTGATG GGGTTTATTA ACTCTGGGAT CTTAAAGGTC GACGTGGACT GCTGCGAGAA GGATTTGTGC AATGGGGCGG CAGGGGCAGG GCACAGCCCT 360 GGGCCCTGGC CGGGGGGCTC CTGCTCAGCC TGGGGCCTGC CCTCCTCTGG GCTGGGCCCT 420 GATGTCTCCT CCTTCCCACG GGGCTTC 447 【0173】配列番号:21 配列の種類: DNA (cDNA) 配列の長さ:901 配列の特徴: 特徴を表わす記号: CDS 存在位置:147..593 トポロジー:直線状 特徴を決定した方法:E 配列: CGGATTCCGG TCCGCAGGAG ACCGAAGGCA CAG CTCCCCG CGCCGCGCAC GCCGCCCGAG CCCGGAGTGC GGACACCCCC GGGATGCTTG CGC CCCAGAG GACCCGCGCC CCAAGCCCCC GCGCCGCCC CAGGCCCACC CGGAGC ATG CTG CCT GCA GCC ATG AAG GGC CTC 173 Met Leu Pro Ala Ala Met Lys Gly Leu 5 GGC CTG GCG CTG CTG GCC GTC CTG CTG TGC TCG GCG CCC GCT CAT GGC Gly Leu Ala Leu Leu Ala Val Leu Leu Cys Ser Ala Pro Ala His Gly 10 15 20 25 CTG TGG TGC CAG GAC TGC ACC CTG ACC ACC AAC TCC AGC CAT TGC ACC 269 Leu Trp Cys Gln Asp Cys Thr Leu Thr Thr Asn Ser Ser His Cys Thr 30 35 40 CCA AAG CAG TGC CAG CCG TCC GAC ACG GTG TGT GCC AGT GTC CGA ATC 317 Pro Lys Gln Cys Gln Pro Ser Asp Thr

								•
Val	Суs	Ala		Val	Arg	Ile		
			45					50
				55				
ACC	GAT	ccc	AGC	AGC	AGC	AGG	AAG	GAT
CAC	TCG	GTG	AAC	AAG	ATG	TGT		365
Thr	Аsр	Pro	Ser	Ser	Ser	Arg	Lуs	Asp
His	Ser	Val	Asn	Lуs	Met	Суs		
		60					65	
			70					
GCC	тсс	TCC	TGT	GAC	TTC	GTT	AAG	CGA
CAC	TTT	TTC	TCA	GAC	TAT	CTG		413
Ala	Ser	Ser	Суѕ	Asp	Рhе	Val	Lуs	Arg
His	Рhе	Phe	Ser	Аsр	Туr	Leu		
	75					80		
		85						
ATG	GGG	TTT	ATT	AAC	тст	GGG	ATC	TTA
AAG	GTC	GAC	GTG	GAC	TGC	TGC		461
Met	Gly	Рhе	Ile	Asn	Ser	Gly	Ιlе	Leu
Lуs	Val	Asp	Val	Asp	Суѕ	Суѕ		
90					95			
	100					105		
GAG	AAG	GAT	TTG	TGC	AAT	GGG	GCG	GCA
GGG	GCA	GGG	CAC	AGC	CCT	GGG		509
Glu	Lуs	Asp	Leu	Суѕ	Asn	Gly	Ala	Ala
Gly	Ala	Gly	His	Ser	Pro	Gly		
		•		110				
115				-	120			
CCC	TGG	CCG	GGG	GGC	TCÇ	TGC	TCA	GCC
TGG	GGC	CTG.		TCC	ТСТ	GGG		557
Pro	Тrр	Pro	Gly	Gly	Ser	Суѕ	Ser	Ala
Trp	Gly	Leu	Pro	Ser	Ser	Gly		•
			125					130
				135			•	
CTG	GGC	CCT	GAT	GTC	TCC	TCC	TTC	CCA
CGG	GGC	TTC		GCTT				603
Leu	Gly	Pro	Asp	Val	Ser	Ser	Phe	Pro
Arg	Gly	Phe						
		140					145	

CCCCTGAGCC TGTGGCTGCC CTCTCCCCAG CCT
GGCGTGG CTGGGGCTGG GGGCAGCCTT 663
GGCCCAGCTC CGTGGCTGTG GCCTGTGGCT CTC
ACTCCTC CCCCGACGTG AAGCCTCCCT 723
GTCTCTCCGC CAGCTCTGAG TCCCAGGCAG CTG
GACATCT CCAGGAAACC AGGCCATCTG 783
GGCAGGAGGC CTGGGGATGA GGGTGGGGGG GGA
CCCCCAG GTCCCGGAGG GGAAGTGAAG 843
CAACAGCCCA GCTGGAAGGG CGTCTTCTGC GGA
GAAATAA AGTCACTTTT GAGTCCTG 901

フロントページの続き

(51) Int. Cl. ⁶		識別記号	FI		
C 1 2 P	21/08		C12P	21/08	
C12Q	1/68		C12Q	1/68	A
G01N	33/53		G01N	33/53	D
// A61K	48/00		A 6 1 K	48/00	
G01N	33/577	•	G01N	33/577	В
(C12N	15/09	ZNA			
C12R	1:91)				
(C12N	1/21	•			
C12R	1:19)				
(C12P	21/02				
C12R	1:19)				