The language of the computers

CMPT-2!X

The Language of the Computers

Computer (binary) arithmetic

Digital computers use two states

- 0 and 1 = Binary System
- Bi in Latin is 2

Binary system

0 and 1 = Binary System

$$\geq$$
 0 = OFF, 1 = ON

$$> 0 = Down, 1 = Up$$

$$> 0 = 0$$
 volts, $1 = 5$ volts

Actual Binary signal or sequence

It is all voltage ... electricity

Digital ... Binary

Digital & Analog ... analogy

Number systems

- Decimal
- Binary
- Octal
- · Hexadecimal.

Binary System

• Binary numbers: base2

 $\{0, 1\}$

Octal System

• Binary numbers: base2

$$\{0, 1\}$$

Octal numbers: bases

Hex System

Binary numbers: base2

$$\{0, 1\}$$

Octal numbers: base8

• Hexadecimal numbers: base₁₆

{0 1 2 3 4 5 6 7 8 9 A B C D E F}

Binary 1...0...1

```
0010011110111101111111111111100000
1010111110111111100000000000010100
101011111010010000000000000100000
101011111010010100000000000100100
1010111110100000000000000000011000
101011111010000000000000000011100
100011111010111000000000000011100
100011111011100000000000000011000
00000001110011100000000000011001
001001011100100000000000000000001
00101001000000010000000001100101
101011111010100000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
000101000010000011111111111111111
101011111011100100000000000011000
100011111010010100000000000011000
00001100000100000000000011101100
```

Decimal (Base-10) ... Binary (Base-2)

Decimal (Base 10)	Binary (Base 2)
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
1000	1111101000

Number conversions

- Our aim is to learn how to convert:
- Decimal numbers to Binary numbers and back
- $(xxxx)_{10} \iff (yyyy)_2$

Number with Base-10 (Decimal)

NumberWithBase₁₀

$$(9 5 3)_{10}$$

$$= 900 +50 +3$$

$$= 9*100 +5*10 +3*1$$

$$= 9*10^2 +5*10^1 +3*10^0$$

Multiply by the proper power of 10

NumberWithBase₁₀

$$(9 5 3)_{10}$$

$$= 900 +50 +3$$

$$= 9*100 +5*10 +3*1$$

$$= 9*10^2 +5*10^1 +3*10^0$$

We multiply each digit by the appropriate power of 10

Convert binary number to decimal number

NumberWithBase₁₀

$$(953)_{10}$$
 = 9 * 10² + 5 * 10¹ + 3 * 10⁰

Convert: From base-2 to base-10

$$-(1110)2=(?)10$$

Convert binary number to decimal number

NumberWithBase₁₀

$$(953)_{10}$$

= 9 * 10² + 5 * 10¹ + 3 * 10⁰

Convert: From base-2 to base-10

We multiply each binary digit by the appropriate power of 2

Perform the simple arithmetic operations

NumberWithBase₁₀

$$(953)_{10}$$

= 9 * 10² + 5 * 10¹ + 3 * 10⁰

Convert: From base-2 to base-10

$$\rightarrow$$
 (1110)2=(?)10

$$= 1 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$$

$$= 8 + 4 + 2 + 0$$

$$= 12 + 2$$

$$= (14)_{10}$$

The result

• (1110)2 = (14)10

Another view

 $(14)_{10}$

Another example

Convert: From base₂ to base₁₀

Therefore the result is: $(11011)_2 = (27)_{10}$

One more example

$$(1011)_2 = (?)_{10}$$

$$= 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0$$

$$= 8 + 0 + 2 + 1$$

$$= (11)_{10}$$

 \triangleright Therefore the result is: (1011)₂ = (11)₁₀

Convert: From base-10 ⇒ base-2

The inverse ...

Binary to Decimal, use multiplications Decimal to Binary, use divisions

Convert: From base-10 ⇒ base-2

- $(27)_{10} = (?)_2$
- Divide decimal 27 by 2

$$-27/2 = 13$$
 remainder 1

$$\blacksquare$$
 13 / 2 = 6 remainder 1

$$\bullet$$
 6 / 2 = 3 remainder 0

$$\blacksquare$$
 3 / 2 = 1 remainder 1

$$\blacksquare$$
 1/2 = 0 remainder 1

When the result of the division is ZERO. We stop

The result ...

•
$$(27)_{10} = (?)_2$$

Divide decimal 27 by 2

■
$$27/2 = 13$$
 remainder 1

$$\blacksquare$$
 13 / 2 = 6 remainder 1

$$\bullet$$
 6 / 2 = 3 remainder 0

$$\blacksquare$$
 3 / 2 = 1 remainder 1

$$-1/2 = 0$$
 remainder 1

Write remainders of division (bottom to top)

The result ...

• $(27)_{10} = (?)_2$

Write remainders of division (bottom to top)

- Divide decimal 27 by 2
 - **27** / 2 = **13**
 - -13/2 = 6 remainder
 - \bullet 6 / 2 = 3 remainder
 - \blacksquare 3 / 2 = 1 remainder
 - \blacksquare 1 / 2 = 0 remainder

remainder

The result

• $(27)_{10} = (11011)_2$

Another example

- $(2 \ 8)_{10} = (?)_2$
- Divide decimal 28 by 2

■
$$28 / 2 = 14$$
 remainder 0

$$-14/2 = 7$$
 remainder 0

$$-7/2 = 3$$
 remainder 1

$$\blacksquare$$
 3 / 2 = 1 remainder 1

$$\blacksquare$$
 1/2 = 0 remainder 1

When the result of the division is ZERO. We stop

Another example ...

• $(2 8)_{10} = (?)_2$

Write remainders of division (bottom to top)

- Divide decimal 28 by 2
 - **28** / 2 = **14**
- remainder
- \blacksquare 14 / 2 = 7 remainder
- 7/2 = 3 remainder
- \blacksquare 3 / 2 = 1 remainder
- \blacksquare 1 / 2 = 0 remainder

The result

• $(2 \ 8)_{10} = (11100)_2$

Conclusion: Binary and Decimal conversion

- 1. Converting a binary (base-2) to decimal (base-10), form the appropriate sum of powers in base "2"
- 2. Converting a decimal integer (base-10) to binary (base-2), divide by "2", use the remainders as coefficients. Collect the coefficients bottom-top.