МАТЕМАТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРНОЙ БЕЗОПАСНОСТИ

УДК 004.056.52

ПРЕДСТАВЛЕНИЕ СИСТЕМЫ СЕМАНТИЧЕСКИ ОСМЫСЛЕННОГО РОЛЕВОГО УПРАВЛЕНИЯ ДОСТУПОМ В ВИДЕ ЦВЕТНОЙ СЕТИ ПЕТРИ

Н. А. Семенова

Московский государственный институт электроники и математики (TУ), г. Москва, Россия

E-mail: natasha sem@inbox.ru

Рассматривается механизм внесения изменений в систему семантически осмысленного ролевого управления доступом в рамках СК-РУД модели одновременно несколькими администраторами. С использованием математического аппарата сетей Петри описываются процессы перехода системы между состояниями и обосновывается условие безопасности переходов.

Ключевые слова: ролевое управление доступом, автоматизация управления ролями, сети Петри.

Введение

Система семантически осмысленного ролевого управления доступом основана на модели ролевого управления доступом с семантическим контекстом СК-РУД [1] и позволяет автоматизировать назначение и отзыв ролей пользователям при наступлении в системе ряда определённых событий. Классическая модель ролевого управления доступом RBAC [2], расширением которой является модель СК-РУД, содержит описание процессов внесения изменений в конфигурацию в предположении, что в каждый момент времени в системе действует не более одного субъекта с административными привилегиями. В системах ролевого управления доступом в компьютерных системах с десятками тысяч пользователей и тысячами привилегий администрирование, как правило, осуществляется несколькими пользователями. Данный подход получил название «распределённого администрирования» системы. Применение классического подхода для описания функционирования таких систем может привести к конфликтам между действиями различных администраторов. Примерами таких конфликтов могут быть ситуации, когда два администратора одновременно вносят изменения в учётную запись пользователя или заявка на назначение роли зарегистрирована и назначена одному из администраторов раньше, чем другому администратору назначена заявка на отзыв роли, взаимоисключающей первую роль. Исходя из этого, целесообразно рассмотреть вопрос формального описания процессов распределённого администрирования в системах ролевого управления доступом и определения условий безопасного перехода системы между состояниями.

1. Основные понятия и определения

В данной работе используются следующие обозначения для элементов СК-РУД модели:

Р — множество привилегий или полномочий;

A — множество атрибутов учетных записей пользователей;

 $V = \{(v_{ij})\}$, где i — номер атрибута из $A; j \in [1, N_i]; N_i$ — число возможных различных значений атрибута $a_i \in A;$

 $values: A \rightarrow 2^V$ — функция, задающая для каждого атрибута множество его допустимых значений:

U — множество атрибут-пользователей (множество векторов вида (ux_1, \dots, ux_{na}) , где $ux_i \in values(a_i)$);

R — множество ролей системы;

 $UA:U\to 2^R$ — функция, задающая для каждого пользователя множество ролей, на которые он может быть авторизован;

S — множество сессий пользователей системы;

 $PA: R \to 2^P$ —функция, задающая для каждой роли множество привилегий. При этом для каждой привилегии $p \in P$ существует роль $r \in R$, такая, что $p \in PA(r)$;

 $user:S\to U-$ функция, задающая для каждой сессии пользователя, от имени которого она авторизована;

 $roles: S \to 2^R$ — функция, задающая для пользователя множество ролей, на которые он авторизован в данной сессии. При этом в каждый момент времени для каждой сессии $s \in S$ выполняется условие $roles(s) \in UA(user(s))$;

CR — множество предварительных условий назначения ролей;

AP — множество административных привилегий;

 $AR \subseteq 2^{AP}$ — множество административных ролей;

 $APA:AR \to 2^{AP}$ — функция, задающая для каждой административной роли множество административных привилегий; при этом для каждой привилегии $p \in AP$ существует роль $r \in AR$, такая что $p \in APA(r)$;

 $can_assign:AR \to CR \times 2^R$ — функция, определяющая для каждой административной роли множество ролей, которые могут быть назначены пользователю с использованием данной административной роли при выполнении заданных предварительных условий CR;

 $can_revoke: AR \to 2^R$ — функция, определяющая для каждой административной роли множество ролей, которые могут быть отозваны у пользователя с использованием данной административной роли.

Определение 1. Две роли $r_1, r_2 \in R$ называются статически взаимоисключающими, если они не могут быть назначены пользователю одновременно: для $s \in S$ выполняется неравенство $|\{r_1, r_2\} \cap roles(s)| \le 1$.

Определение 2. Две роли $r_1, r_2 \in R$ называются динамически взаимоисключающими, если они не могут быть активированы сессией пользователя одновременно: для $u \in U$ выполняется неравенство $|\{r_1, r_2\} \cap UA(u)| \leq 1$.

Определение 3. Иерархией ролей «по предусловию» RH [1] будем называть заданное на множестве ролей R отношение строгого порядка «>». При этом по определению (для пользователя $u \in U$) если $(r_1, r_2) \in RH$, $r_1 > r_2$ и $c_{r_1}(u) = \text{true}$, то $c_{r_2}(u) = \text{true}$ и $c_{r_1}(u) = c_{r_1}(z_1(u), \ldots, c_{r_2}(u), \ldots, z_k(u))$. Роль r_1 будем называть предком r_2 «по предусловию».

Определение 4. Пусть $t_i: U \to \{ \texttt{false}, \texttt{true} \} - \text{функция},$ такая, что $t_i(u) = \texttt{true}$ тогда и только тогда, когда $t_i \in values(a_i)$ и для $u \in U$ выполняется условие $ux_i = t_i$, где $a_i \in A$, $1 \leq i \leq |A|$.

Пусть $ca_r: U \to \{ \text{false}, \text{true} \} - \text{функция}, \text{такая}, \text{что } ca_r (u) = ca_r (t_1 (u), \dots, t_{na} (u)), u \in U, r \in R, \text{где } ca_r (y_1, \dots, y_{na}) - \text{булева функция от } na$ переменных, $na \in \{1, \dots, |A|\}$. Тогда $CA = \{ca_{r1}, \dots, ca_{rt}\}$ — множество функций, определяющих, при каких ограничениях на атрибуты учетной записи пользователя ему может быть назначена некоторая роль $r_i \in R$.

Дадим основные понятия и определения теории цветных сетей Петри (ЦСП), которые потребуются для дальнейшего описания результатов исследования [3]:

 Q_c — множество цветов;

TK— множество токенов. По определению токен— это кортеж вида $tk=(x_1,\ldots,x_n)$, где x_i — переменная некоторого заданного цвета. Цвета токенов могут быть простыми или составными. Множество допустимых значений для токенов составных цветов— это декартово произведение множеств допустимых значений для входящих в его состав простых цветов;

 $C_{tk}: TK \to Q_c$ — функция окрашивания, задающая для каждого токена его цвет; Pl — множество мест (элементов $pl \in Pl$, каждый из которых содержит один или несколько токенов определенного цвета);

 $C_{pl}: Pl \to Q_c$ — функция, определяющая множество допустимых цветов для данного места.

Множество цветов токенов, которые могут содержаться на месте pl, называется типом места pl. Множество токенов на месте pl называется содержимым места и обозначается tk(pl).

Определение 5. Пусть Pl — конечное множество мест. Пусть $N_j(pl_i)$ — количество токенов каждого из цветов на месте $pl_i \in Pl$ в момент времени j, где $1 \le i \le |Pl|$. Пусть в момент времени j+1 существует такое $1 \le k \le |Pl|$, что $N_{j+1}(pl_k) \ne N_j(pl_k)$. Тогда будем говорить, что количество токенов на месте pl_k изменилось в результате активации перехода. Множество переходов будем обозначать T.

Определение 6. Дуга — это пара вида (pl_i, t_j) , где $pl_i \in Pl$, $t_i \in T$. Множество всех дуг будем обозначать Ac.

Каждый переход инцидентен некоторой дуге, задающей правила его активации в зависимости от токенов, расположенных на местах, инцидентных той же дуге.

Дуги могут принадлежать к одному из следующих трех типов:

- -NA нормальные дуги;
- -RA ингибиторные дуги;
- IA только чтение.

Дугу типа i будем обозначать ac_i .

Будем различать два направления дуг:

- входящие дуги, соединяющие место $pl \in Pl$ и переход $t \in T$;
- исходящие дуги, соединяющие переход $t \in T$ и место $pl \in Pl$.

Входящие дуги могут принадлежать к любому из трёх перечисленных типов и связаны с функциями чтения или удаления токена с места pl. Исходящие дуги всегда имеют тип NA и связаны с функциями добавления токенов на место pl.

Определение 7. Для каждой дуги $ac \in Ac$ определим значение количественной функции E, задающей для каждых места $pl \in Pl$ и перехода $t \in T$, инцидентных

дуге ac, количество токенов заданных цветов для возможности активации перехода t, которое либо должно содержать место pl, когда ac — входящая дуга, либо размещается на месте pl, когда ac — исходящая дуга:

$$E(ac) = m_1 \cdot tk_1 + m_2 \cdot tk_2 + \dots + m_n \cdot tk_n,$$

где m_i — целые неотрицательные числа; tk_i — токены цвета $i \in C_{pl}(pl)$; $n = |C_{pl}(pl)|$.

Пример 1. Количественная функция $E(ac) = 3 \cdot \langle tk_1 \rangle + 2 \cdot \langle tk_2 \rangle$ задаёт для дуги ac условие активации перехода, инцидентного данной дуге: место $pl \in Pl$, инцидентное дуге, должно содержать три токена цвета tk_1 и два токена цвета tk_2 .

 Π р и м е ч а н и е. Если коэффициент m_i количественной функции равен 1, то вместо $1 \cdot tk$ будем писать tk.

2. Представление системы семантически осмысленного ролевого управления доступом в виде ЦСП

В работе используются следующие цвета для обозначения элементов СК-РУД молели:

- $USER\langle u \rangle$ идентификатор пользователя. Допустимыми значениями для токенов данного цвета являются все пользователи $u \in U$;
- $ROLE\langle r \rangle$ идентификатор роли. Допустимыми значениями для токенов данного цвета являются все роли $r \in R$;
- $ADMROLE\langle ar \rangle$ идентификатор административной роли. Допустимые значения: $ar \in AR$;
- $SESSION\langle s \rangle$ идентификатор сессии. Допустимые значения: $s \in S$;
- $ACOND\langle ca_r\rangle$ идентификатор атрибут-условия назначения роли. Допустимые значения: $ca_r\in CA$;
- $COMMAND\langle command\rangle$ идентификатор действия. Допустимые значения: $command \in \{assign_role, revoke_role, auto_assign_role, auto_revoke_role, take_role, remove_role, auto_recalculate\};$
- $ROLE_ACOND\langle ca_r,r\rangle$ сопоставление роли и правила ее автоматического назначения. Множество допустимых значений декартово произведение $ACOND \times ROLE$;
- $USER_ROLE\langle u,r\rangle$ назначение роли пользователю. Множество допустимых значений $USER \times ROLE$;
- $UAS\langle u,r,s\rangle$ текущая роль пользователя в сессии. Множество допустимых значений $USER \times ROLE \times SESSION$;
- $USER_ADMROLE\langle u, ar \rangle$ назначение административной роли. Множество допустимых значений $USER \times ADMROLE;$
- $CMD\langle command, u_1, u_2, r, s \rangle$ токен действия, выполняемого сессией s от имени пользователя u_1 . Множество допустимых значений декартово произведение $COMMAND \times USER \times USER \times ROLE \times SESSION$. Если $u_1 = u_2$, то сессия выполняет операцию над пользователем, от имени которого она активирована.

Рассмотрим цвета мест и токенов, которые могут на них содержаться:

- ETG- генератор токенов. Хранит множество действий, разрешённых в текущем состоянии системы. Для выполнения каждого перехода необходимо, чтобы в ETG содержался токен соответствующего действия. Допустимым цветом токенов для данного места является CMD;

- UA авторизованные роли. Токен $\langle u, r \rangle$ на этом месте означает, что пользователь u авторизован на роль r. Допустимый цвет токенов USER ROLE;
- AUA авторизованные административные роли. Токен $\langle u, ar \rangle$ на этом месте означает, что пользователь u авторизован на административную роль ar. Допустимый цвет токенов USER ADMROLE;
- UAS активация роли сессией пользователем. Каждый токен $\langle u, r, s \rangle$ на этом месте означает, что сессия s активирована от имени пользователя u, обладающего ролью r. Допустимый цвет токенов UAS;
- RCA правила назначения ролей. Токен $\langle ca_r, r \rangle$ означает, что роли r соответствует условие назначения ca_r . Допустимый цвет токенов ROLE ACOND.

2.2. Количественные и ограничительные функции

Количественная и ограничительная функции дуг используются для представления системы ролевого управления доступом в виде ЦСП, так как данные функции представляют возможность моделировать ограничения взаимного исключения ролей и иерархические связи между ролями, задавая пред- и постусловия переходов системы между состояниями.

Рассмотрим, каким образом происходит активация перехода, связанного с дугой заданного типа и направления.

Для возможности активации перехода t по входящей дуге $ac_{NA}=(pl,t)$ каждое место pl, соединённое с переходом t дугой ac_{NA} , должно содержать токенов заданных цветов не меньше, чем указано количественной функцией дуги E(ac), т. е. не менее m_i токенов цвета tk_i . Переход в момент времени j возможен, если для всех мест pl, инцидентных дуге ac, и для всех цветов i выполняется неравенство $N_j(pl,i) \geqslant m_i$, где $N_j(pl,i)$ количество токенов цвета i на месте pl в момент времени j, а коэффициенты m_i задаются количественной функцией дуги E(ac). В результате активации перехода токены удаляются из места pl: для всех $1 \leqslant i \leqslant n$ выполняется $N_{j+1}(pl,i) = N_j(pl,i) - m_i$.

Пример 2. Необходимым условием перехода, в результате которого сессия s от имени администратора admin назначит роль r пользователю u, является наличие токена цвета $CMD\langle assign_role, admin, u, r, s \rangle$ на месте ETG. После активации перехода соответствующий токен удаляется, предотвращая повторное назначение роли. Таким образом, значение количественной функции для входящей нормальной дуги, соединяющей место ETG и переход $assign_role$, равно $\langle CMD \rangle$.

Переход по исходящей дуге ac_{NA} в момент времени j активируется в результате завершения всех входящих переходов, инцидентных данной дуге. В результате активации перехода по исходящей дуге $ac_{NA} = (t, pl)$ соответствующее количество токенов, равное $m_1 \cdot tk_1 + m_2 \cdot tk_2 + \cdots + m_n \cdot tk_n$, добавляется на место $pl \colon N_{j+1}(pl, i) = N_j(pl, i) + m_i$.

Пример 3. Результатом перехода, в рамках которого сессия от имени администратора admin назначает роль r пользователю u, является помещение токена цвета $USER_ROLE\langle u,r\rangle$ на место UA, означающее, что данный пользователь авторизован на роль r. Таким образом, значение количественной функции для соответствующей исходящей нормальной дуги равно $\langle USER_ROLE\rangle$.

Для возможности активации перехода t по входящей дуге $ac_{RA} = (pl,t)$ в момент времени j каждое место pl, соединённое с переходом t, должно содержать токенов заданного цвета и значения не меньше, чем указано количественной функцией дуги $E(ac_{RA})$. Переход в момент времени j возможен, если для всех мест, инцидентных дуге ac, и для всех цветов i выполняется неравенство $N_j(pl,i) \geqslant m_i$. В результате активации перехода количество токенов на месте pl не изменяется: $N_{j+1}(pl,i) = N_j(pl,i)$.

Пример 4. Если для некоторой роли $r \in R$ существует роль $r' \geqslant r$, то необходимым условием перехода, в результате которого сессия от имени администратора назначит роль r пользователю u, является наличие токенов цвета $USER_ROLE\langle u,r\rangle$ на месте UA для каждой из ролей-предков r. Каждый из токенов означает, что данный пользователь авторизован на соответствующую роль. После завершения перехода токены $USER_ROLE$ остаются на месте UA. Таким образом, значение количественной функции для дуги RA равно | $\{r': r' \geqslant r\} \mid \cdot \langle USER_ROLE \rangle$.

Для входящей дуги ингибиторного типа $ac_{IA} = (pl,t)$ все коэффициенты m_i , за исключением одного m_j , равны нулю. Для возможности активации перехода t по входящей дуге $ac_{IA} = (pl,t)$ типа IA каждое место входа pl, соединённое с переходом t, должно содержать не более m_j токенов заданного цвета j. В результате активации перехода по дуге ac_{IA} количество токенов на месте pl не изменяется: $N_{j+1}(pl,i) = N_j(pl,i)$.

Пример 5. Пусть для роли r существуют статически взаимоисключающие роли. Тогда необходимым условием перехода, в результате которого сессия от имени администратора назначит роль r пользователю u, является отсутствие токенов цвета $USER_ROLE\langle u,r\rangle$ на месте UA, означающее, что данный пользователь не авторизован на роли, взаимоисключающие с r. Таким образом, значение количественной функции для соответствующей входящей ингибиторной дуги равно $\langle USER_ROLE\rangle$.

Введём определение ограничительной функции дуги G.

Определение 8. Множество ограничительных функций дуги G— это множество, включающее в себя ограничения на значения токенов, которые должны находиться на местах, инцидентных входящей дуге, для того чтобы стала возможна инициация перехода, инцидентного дуге. Пусть $v_p: TK \to \{\mathtt{true}, \mathtt{false}\}$ — одна из следующих функций:

- $assigned_r: U \to \{\texttt{true}, \texttt{false}\}$ функция, такая, что $assigned_r(u) = \texttt{true}$ тогда и только тогда, когда $r \in UA(u)$;
- $ca_r: U \to \{\text{true}, \text{false}\}$ функция, такая, что $ca_r(u) = \text{true}$ тогда и только тогда, когда атрибуты пользователя $u \in U$ соответствуют атрибут-условию назначения роли $r \in R$;
- $static_conflict_role_r: R \to \{ true, false \}$ функция, такая, что $static_conflict_role_r(r') = true$ тогда и только тогда, когда r' является статически взаимоисключающей для r;
- $dynamic_conflict_role_r: R \rightarrow \{true,false\}$ функция, такая, что $dynamic_conflict_role_r(r') = true$ тогда и только тогда, когда r' является динамически взаимоисключающей для r;
- $can_assign_{ar}: R \to \{\text{true}, \text{false}\} \text{функция}, \text{ такая}, \text{ что } can_assign_{ar}(r) = \text{true}$ тогда и только тогда, когда для $r \in R$ и $ar \in AR$ выполняется условие $r \in can_assign(ar)$;
- $can_revoke_{ar}: R \to \{\text{true}, \text{false}\} \text{функция}, \text{ такая}, \text{ что } can_revoke_{ar}(r) = \text{true}$ тогда и только тогда, когда для $r \in R$ и $ar \in AR$ выполняется условие $r \in can revoke(ar)$;
- $prec_role_r: R \to \{\text{true}, \text{false}\}$ функция, такая, что $prec_role_r(r') = \text{true}$ тогда и только тогда, когда r > r' в иерархии RH.

Пусть $G_{ac}: Pl \to \{\text{true}, \text{false}\} - \Phi$ ункция, такая, что $G_{ac}(pl) = G_{ac}(v_p(tk_1, tk'_1), \ldots, v_p(tk_m, tk'_m)), ac \in Ac, pl \in Pl, pl$ инцидентно $ac, tk_1, \ldots, tk_m, tk'_1, \ldots, tk'_m \in TK, C_{tk}(tk_1) \subseteq C_{pl}(pl)$, где $1 \leq i \leq m$ и $G_{ac}(y_1, \ldots, y_m)$ — булева функция от m перемен-

ных. Тогда $\{G_{ac}(pl_1), \ldots, G_{ac}(pl_t)\}$ — множество функций, определяющих, при каких условиях может быть активирован переход, инцидентный соответствующей дуге.

Если с некоторой входящей дугой $ac \in Ac$ связана ограничительная функция G_{ac} , то соответствующий дуге переход t может быть активирован только в том случае, если для всех мест, инцидентных данной дуге, $G_{ac}(pl) = \text{true}$. Количественная и ограничительная функции для i-й дуги j-го типа обозначаются как Ei_j и G_i соответственно.

Пример 6. Пусть для некоторой роли $r \in R$ существует $r' \geqslant r$. Тогда необходимым условием перехода, в результате которого сессия от имени администратора admin назначит роль r_j пользователю u, является наличие на месте UA токена цвета $USER_ROLE$, имеющего значение $\langle u, r_i \rangle$, для которого $assigned_{r_i}(u) = true$. После завершения перехода токен $\langle u, r_i \rangle$ остается на месте UA. Таким образом, значение ограничительной функции входящей дуги RA равно $G_{ac} = assigned_{r_i}(u)$.

Пример 7. Пусть $r_i, r_j \in R$ —две статически взаимоисключающие роли. Тогда необходимым условием перехода, в результате которого сессия от имени администратора admin назначит роль r_j пользователю u, является отсутствие на месте UA токена цвета $USER_ROLE$ со значением $\langle u, r_i \rangle$, для которого $assigned_{r_i}(u) = \texttt{true}$. Таким образом, значение ограничительной функции входящей ингибиторной дуги равно $G_a(\neg assigned_{r_i}(u))$, где \neg —оператор логического отрицания.

По определению [3], цветная сеть Петри (ЦСП) — это кортеж $CPN = (Q_c, TK, Pl, T, Ac, C_{tk}, C_{pl}, G, E)$. Состояние ЦСП в каждый момент времени задается размещением токенов на каждом из Pl мест.

Определение 9. Состояние ЦСП M_n называется достижимым из состояния M_0 , если существует конечная последовательность переходов $t_0, t_1, \ldots, t_{n-1} \in T$, переводящая ЦСП из состояния M_0 в состояние M_n . Начальное состояние M_0 является достижимым по определению.

Переход сети в новое состояние может быть активирован только в том случае, если хотя бы для одного из переходов $t \in T$ выполнены все предусловия, задаваемые ограничительными и количественными функциями дуг.

В данной работе для описания системы СК-РУД используются следующие функции дуг и ограничений:

```
E1_{NA} = CMD\langle assign \ role, u, u', r, s \rangle;
E2_{RA} = E11_{RA} = E40_{RA} = E43_{RA} = E58_{RA} = USER \ ADMROLE(u', ra);
E3_{IA} = E19_{IA} = USER\_ROLE\langle u, r_c \rangle;
E4_{RA} = E20_{RA} = USER\_ROLE\langle u, r_{pc} \rangle;
E5_{IA} = E6_{NA} = E9_{NA} = E14_{IA} = E15_{IA} = E17_{NA} = E21_{IA} = E22_{NA} = E24_{NA} = E24_{NA} = E18_{NA} = E
= E28_{IA} = E29_{IA} = E31_{NA} = E45_{IA} = E55_{IA} = E63_{IA} = USER\langle u \rangle;
E7_{NA} = E8_{RA} = E12_{RA} = E16_{NA} = E23_{NA} = E26_{RA} = E30_{NA} = E33_{RA} = E41_{RA} = 
= E48_{RA} = E53_{IA} = E59_{RA} = USER \quad ROLE\langle u, r \rangle;
E10_{NA} = E39_{NA} = E57_{RA} = CMD\langle revoke\_role, u, u', r, s \rangle;
E13_{IA} = E27_{IA} = E42_{RA} = E60_{RA} = USER\_ROLE\langle u, r_d \rangle;
E18_{NA} = E56_{NA} = CMD \langle auto\_assign\_role, u, system, r, s \rangle;
E25_{NA} = CMD\langle auto revoke role, u, system, r, s \rangle;
E32_{NA} = CMD\langle take \ role, u, u, r, s \rangle;
E34_{IA} = UAS\langle u, r_{dc}, s \rangle;
E35_{NA} = E37_{NA} = E38_{NA} = E61_{RA} = UAS\langle u, r, s \rangle;
E36_{NA} = CMD\langle remove role, u, u, r, s \rangle;
E44_{IA} = E46_{NA} = CMD\langle revoke\_role, u, u', rd, s \rangle;
```

```
E47_{RA} = E51_{RA} = CMD \langle auto \ recalculate, u, system, r, s \rangle;
E49_{IA} = E50_{NA} = CMD\langle auto\_revoke\_role, u, system, r, s \rangle;
E52_{RA} = ROLE\_ACOND\langle ca_r, r \rangle;
E54_{IA} = USER\_ROLE\langle u, r_{old} \rangle;
E62_{IA} = CMD\langle revoke \ role, u, u, r, s \rangle + CMD\langle auto \ revoke \ role, u, system, r, s \rangle;
G_2 = \langle u', r_a \rangle : can \ assign_{r_a}(r) = true;
G_3 = \langle u, r_c \rangle : static\_conflict\_role_r(r_c) = false;
G_4 = \langle u, r_{pc} \rangle: prec\ role_r(u) = true;
G_{11} = \langle u', r_a \rangle : can \ revoke_{r_a}(r) = true;
G_{13} = \langle u, r_d \rangle : prec \ role_r(r_d) = false;
G_{19} = \langle u, r_c \rangle : static\_conflict\_role_r(r_c) = false;
G_{20} = \langle u, r_{pc} \rangle : prec\_role_r(u) = true;
G_{27} = \langle u, r_d \rangle : prec \ role_r(r_d) = false;
G_{33} = \langle u, r \rangle : assigned_r(u) = \mathtt{true};
G_{34} = \langle u, r_{dc}, s \rangle : dynamic\_conflict\_role_r(r_{dc}) = false;
G_{40} = \langle u', r_a \rangle : can \ revoke_{r_a}(r) = true;
G_{42} = \langle u, r_d \rangle : prec\_role_r(r_d) = \texttt{true};
G_{43} = \langle u', r'_a \rangle : can\_revoke_{r'_a}(r_d) = true;
G_{48} = \langle u, r \rangle : ca_r(u) = false;
G_{52} = \langle ca_r, r \rangle : ca_r(u) = true;
G_{53} = \langle u, r \rangle : ca_r(u) = true;
G_{54} = \langle u, r_{old} \rangle : ca_{r_{old}}(u) = false.
```

3. Переходы сети Петри между состояниями

Рассмотрим переходы следующих типов:

- назначение роли $(assign_role)$: сессия s администратора u' назначает пользователю $u \in U$ роль r;
- отзыв роли $(revoke_role)$: роль r отзывается у пользователя u сессией s администратора u';
- автоматическое назначение роли $(auto_assign_role)$: роль r назначается пользователю u по атрибут-условию ca_r ;
- автоматический отзыв ($auto_revoke_role$): роль r отзывается у пользователя u, если он более не удовлетворяет условию ca_r ;
- перерасчёт списка ролей пользователя при изменении его атрибутов ($auto_recalculate$): в системе создаётся очередь команд на отзыв и назначение ролей в соответствии с новыми атрибутами учётной записи пользователя;
- активация $(take_role)$: активация роли r сессией s от имени пользователя u;
- деактивация $(remove_role)$: роль r удаляется из списка активных ролей для заданной сессии s пользователя u.

Переход может быть совершён в любой момент, если он разрешён в данном состоянии действующими ограничениями. Любой из данных переходов переводит систему в новое состояние. Рассмотрим подробнее переходы в системе ролевого управления доступом, представленной в виде ЦСП.

Каждый из рассматриваемых переходов в ЦСП описывается следующим образом: сначала перечисляются входящие дуги с указанием в скобках их типа и связанных количественных и ограничительных функций. Результат перехода описывается с помощью перечисления исходящих дуг с указанием их количественных функций.

3.1. Переход «Назначение роли»

Правила активации перехода:

- (Дуга с количественной функцией $E1_{NA}$.) Существует токен $\langle assign_role, u, u', r, s \rangle$ на месте ETG, означающий, что необходимо выполнить назначение роли r пользователю u сессией от имени администратора u'.
- $(E2_{RA})$. На месте AUA должен существовать токен $\langle u', r_a \rangle$, для которого $can_assign_{r_a}(r) = {\tt true}$ (ограничительная функция G_2).
- $(E3_{IA})$. Место UA не содержит токенов $\langle u, r_c \rangle$, для которых $static_conflict_-role_r(r_c) = true (G_3:$ пользователю не назначены роли, взаимоисключающие с ролью r).
- $(E4_{RA})$. Место UA содержит токены $\langle u, r_{pc} \rangle$, для которых $prec_role_r(r_{pc}) = true$ $(G_4$: пользователю назначены все роли, необходимые для назначения роли r).
- $(E5_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход $(E7_{NA})$ помещает токен $\langle u,r \rangle$ на место UA, что означает авторизацию пользователя u на роль r. На время выполнения перехода на место UB помещается токен $\langle u \rangle$ $(E6_{NA})$, чтобы блокировать одновременное выполнение любых других действий над пользователем u. После активации перехода команда $\langle assign, u, u', r, s \rangle$ удаляется с места ETG $(E1_{NA})$. После выполнения перехода $(E8_{RA})$ токен $\langle u \rangle$ удаляется с места UB $(E9_{NA})$.

3.2. Переход «Отзыв роли»

Правила активации перехода:

- $(E10_{NA})$. Существует токен $\langle revoke_role, u, u', r, s \rangle$ на месте ETG, означающий, что необходимо выполнить отзыв роли r у пользователя u сессией от имени администратора u'.
- $(E11_{RA})$. На месте AUA существует токен $\langle u', r_a \rangle$, для которого $can_revoke_{r_a}(r) =$ = true (G_{11}) .
- $(E12_{RA})$. Место UA содержит токен $\langle u, r \rangle$ (нельзя отозвать роль, если она не назначена).
- $(E13_{IA})$. Место UA не содержит множество токенов $\{\langle u, r_d \rangle\}$, таких, что $prec_role_r(r_d) = \texttt{true}\ (G_{13}$: нельзя отозвать роль, предварительно не отозвав роли, которые от неё зависят).
- $(E14_{IA})$. Место UAS не содержит токена $\langle u, r, s \rangle$ $(G_{14}$: нельзя отозвать роль, если она активирована сессией пользователя).
- $(E15_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никакой операции).

Результат перехода: данный переход $(E17_{NA})$ удаляет токен $\langle u,r \rangle$ с места UA, что означает отзыв роли r у пользователя u. На время выполнения перехода на место UB помещается токен $\langle u \rangle$ $(E16_{NA})$, чтобы блокировать одновременное выполнение любых других действий над пользователем u. После активации перехода команда $\langle revoke_role, u, u', r, s \rangle$ удаляется с места ETG $(E10_{NA})$. После выполнения перехода токен $\langle u \rangle$ удаляется с места UB.

3.3. Переход «Автоматическое назначение роли»

Правила активации перехода:

- $(E18_{NA})$. Существует токен $\langle auto_assign_role, u, system, r, s \rangle$ на месте ETG, означающий, что необходимо выполнить назначение роли r пользователю u сессией от имени пользователя system.
- $(E19_{IA})$. Место UA не содержит токенов $\langle u, r_c \rangle$, для которых $static_conflict_-role_r(r_c) = true$ $(G_{19}$: пользователю не назначены роли, взаимоисключающие с ролью r).
- $(E20_{RA})$. Место UA содержит токены $\langle u, r_{pc} \rangle$, для которых $prec_role_r(r_{pc}) = true$ $(G_{20}$: пользователю назначены все роли, необходимые для назначения роли r).
- $(E21_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход $(E23_{NA})$ помещает токен $\langle u, r \rangle$ на место UA, что означает авторизацию пользователя u на роль r. На время выполнения перехода на место UB помещается токен $\langle u \rangle$ $(E22_{NA})$, чтобы блокировать одновременное выполнение любых других действий над пользователем u. После активации перехода команда $\langle auto_assign_role, u, system, r, s \rangle$ удаляется с места ETG $(E18_{NA})$. После выполнения перехода токен $\langle u \rangle$ удаляется с места UB $(E24_{NA})$.

3.4. Переход «Автоматический отзыв роли»

Правила активации перехода:

- $(E25_{NA})$. Существует токен $\langle auto_revoke_role, u, system, r, s \rangle$ на месте ETG, означающий, что сессии от имени пользователя system необходимо выполнить отзыв роли r у пользователя u.
- $(E26_{RA})$. Место UA содержит токен $\langle u,r \rangle$ (нельзя отозвать роль, если она не назначена).
- $(E27_{IA})$. Место UA не содержит множество токенов $\{\langle u, r_d \rangle\}$, таких, что $prec_role_r(r_d) = {\tt true}$ (нельзя отозвать роль, предварительно не отозвав роли, которые от неё зависят).
- $(E28_{IA})$. Место UAS не содержит токена $\langle u, r, s \rangle$ $(G_{14}$: нельзя отозвать роль, если она активирована одной из сессий пользователя).
- $(E29_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход $(E31_{NA})$ удаляет токен $\langle u,r \rangle$ с места UA, что означает отзыв роли r у пользователя u. На время выполнения перехода на место UB помещается токен $\langle u \rangle$ $(E30_{NA})$, чтобы блокировать одновременное выполнение любых других действий над пользователем u. После активации перехода команда $\langle auto_revoke_role, u, system, r, s \rangle$ удаляется с места ETG $(E25_{NA})$. После выполнения перехода токен $\langle u \rangle$ удаляется с места UB.

3.5. Переход «Активация роли»

Правила активации перехода:

- $(E32_{NA})$. Существует токен $\langle take_role, u, u, r, s \rangle$ на месте ETG, означающий, что сессия s от имени пользователя u активирует роль r.
- $(E33_{RA})$. Место UA содержит токен $\langle u, r \rangle$ (сессия пользователя может активировать только те роли, на которые он авторизован).
- $(E34_{IA})$. Место UAS не содержит множество токенов $\{\langle u, r_{dc}, s \rangle\}$, таких, что $dynamic_conflict_role_r(r_{dc}) = true (G_{34}$: сессия пользователя не может активи-

ровать роль r, если для этой сессии в настоящий момент активированы роли, динамически взаимоисключающие с ролью r).

Результат перехода: данный переход $(E35_{NA})$ помещает токен $\langle u, r, s \rangle$ на место UAS, что означает активацию роли r сессией s от имени пользователя u.

Правила активации перехода:

- $(E36_{NA})$. Существует токен $\langle remove, u, u, r, s \rangle$ на месте ETG, означающий, что сессия s пользователя u деактивирует роль r.
- $(E37_{NA})$. Место UAS содержит токен $\langle u, r, s \rangle$ (сессия пользователя не может деактивировать роль, которая не активирована для данной сессии).

Результат перехода: данный переход $(E38_{NA})$ удаляет токен $\langle u, r, s \rangle$ с места UAS, что означает деактивацию роли r сессией s от имени пользователя u.

Правила активации перехода:

- $(E39_{NA})$. Существует токен $\langle revoke_role, u, u', r, s \rangle$ на месте ETG, означающий, что необходимо выполнить команду отзыва роли r у пользователя u сессией от имени администратора u'.
- $(E40_{RA})$. На месте AUA существует токен $\langle u', r_a \rangle$, для которого $can_revoke_{r_a}(r) =$ = true (G_{40}) .
- $(E41_{RA})$. Место UA содержит токен $\langle u, r \rangle$ (нельзя отозвать роль, если она не назначена).
- $(E42_{RA})$. Место UA содержит хотя бы один токен $\langle u, r_d \rangle$, такой, что $prec_role_r(r_d) =$ = true.
- $(E43_{RA})$. На месте AUA существует токен $\langle u', r'_a \rangle$, для которого $can_revoke_{r'_a}(r_d) =$ = true (G_{43}) .
- ($E44_{IA}$). Не существует токена $\langle revoke_role, u, u', r_d, s \rangle$ на месте ETG.
- $(E45_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход $(E46_{NA})$ добавляет токен $\langle revoke, u, u', r_d, s \rangle$ на место ETG, что означает команду на отзыв роли r_d , зависимой от роли r, у пользователя u.

Правила активации перехода:

- $(E47_{RA})$. Существует токен $\langle auto_recalculate, u, system, r, s \rangle$ на месте ETG, означающий, что атрибуты учётной записи пользователя u были изменены и требуется перерасчет его ролей.
- $(E48_{RA})$. Место UA содержит хотя бы один токен $\langle u,r \rangle$, такой, что $ca_r(u) = \mathtt{false}$.
- $(E49_{IA})$ Не существует токена $\langle auto revoke role, u, system, r, s \rangle$ на месте ETG.

Результат перехода: данный переход $(E50_{NA})$ добавляет токен $\langle auto_revoke_role, u, system, r, s \rangle$ на место ETG, что означает команду на автоматический отзыв роли r у пользователя u.

3.9. Переход «Перерасчет ролей для назначения при изменении атрибутов»

Правила активации перехода:

- $(E51_{RA})$. Существует токен $\langle auto_recalculate, u, system, r, s \rangle$ на месте ETG, означающий, что атрибуты учётной записи пользователя u были изменены и требуется перерасчет его ролей.
- $(E52_{RA})$. Место RCA содержит хотя бы один токен $\langle ca_r, r \rangle$, такой, что $ca_r(u) = \texttt{true}$.
- $(E53_{IA})$. Место UA не содержит токен $\langle u, r \rangle$, такой, что $ca_r(u) = \mathsf{true}$.
- $(E54_{IA})$. Место UA не содержит ни одного токена $\langle u, r_{old} \rangle$, такого, что $ca_{r_{old}}(u) =$ = false (данное условие гарантирует, что расчет назначений ролей начнётся только после окончания отзыва всех старых ролей).
- $(E55_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход $(E56_{NA})$ добавляет токен $\langle auto_assign_role, u, system, r, s \rangle$ на место ETG, что означает переход «Автоматическое назначение роли» r пользователю u.

3.10. Переход «Удаление роли из списка активных в результате её отзыва у пользователя»

Правила активации перехода:

- $(E57_{RA})$. Существует токен $\langle revoke_role, u, admin, r, s \rangle$ на месте ETG, означающий, что необходимо выполнить команду отзыва роли r у пользователя u сессией от имени администратора admin.
- $(E58_{RA})$. На месте AUA существует токен $\langle admin, r_a \rangle$, для которого $can_revo-ke_{r_a}(r)=$ true (G_{58}) .
- $(E59_{RA})$. Место UA содержит токен $\langle u, r \rangle$ (нельзя отозвать роль, если она не назначена).
- $(E60_{RA})$. Место UA не содержит токенов $\langle u, r_d \rangle$, таких, что $prec\ role_r(r_d) = true$.
- $(E61_{RA})$. Место UAS содержит токен $\langle u, r, s \rangle$ (роль в данный момент времени активирована).
- ($E62_{IA}$). Не существует токенов $\langle remove_role, u, u, r, s \rangle$ и $\langle remove_role, u, system, r, s \rangle$ на месте ETG.
- $(E63_{IA})$. Место UB не содержит токена $\langle u \rangle$ (над пользователем в данный момент не выполняется никаких действий).

Результат перехода: данный переход ($E64_{NA}$) добавляет токен ($remove_role, u, system, r, s$) на место ETG, что означает команду на деактивацию роли r, активированной пользователем u в рамках сессии s.

Таким образом, описаны переходы между состояниями в системе семантически осмысленного ролевого управления доступом, заданной в рамках СК-РУД-модели. В отличие от системы, основанной на классической модели RBAC, возможность осуществления перехода зависит не только от текущего состояния системы, но и от переходов, выполненных на предыдущих шагах.

4. Доказательство безопасности системы семантически осмысленного ролевого управления доступом, представленной в виде ЦСП

Представление системы ролевого управления доступа в виде ЦСП позволяет осуществить формальное доказательство безопасности системы. Назовём состояние системы безопасным в рамках СК-РУД-модели, если оно не противоречит ограничениям, на-

кладываемым на составляющие её множества и функции, и каждому пользователю $u \in U$ назначены только роли, не противоречащие условиям CR и CA.

Переформулируем определение с учётом перечисленных в п. 1 элементов СК-РУД-модели.

Определение 10. Состояние системы в рамках СК-РУД-модели называется безопасным, если в нем выполняются следующие свойства:

- P_1 : у каждого пользователя активны только те роли, на которые он авторизован: в каждый момент времени для каждой сессии $s \in S$ выполняется условие $roles(s) \subseteq UA(user(s))$ (условие определения функции roles);
- P_2 : если $prec_role_r(r') = true$, то роль r может быть назначена пользователю u только в том случае, если он также авторизован на роль r' (определение 3 иерархии «по предусловию» и определение предусловий CR [4]);
- P_3 : пользователь может быть авторизован только на те атрибут-роли, атрибутусловиям которых соответствуют значения его атрибутов: для любого пользователя $u \in U$ если $r \in UA(u)$, то $ca_r(u) = \text{true}$ (ограничение в определении 4 атрибутусловия);
- P_4 : пользователь не может быть одновременно авторизован на две статически взаимоисключающие роли: для любого пользователя $u \in U$ если $r_1, r_2 \in UA(u)$, то $static_conflict_role_{r_1}(r_2) = false$ (определение 1 статически взаимоисключающих ролей);
- P_5 : у любой сессии пользователя не могут быть одновременно активированы две динамически взаимоисключающие роли: для сессии любого пользователя $s \in S$ если $r_1, r_2 \in roles(s)$, то $dynamic_conflict_role_{r_1}(r_2) = false$ (определение 2 динамически взаимоисключающих ролей).

Определение 11. Переход системы из состояния в состояние называется безопасным, если он удовлетворяет следующим ограничениям:

- T_1 : переход «Активация роли» сессией пользователя может быть осуществлён только для тех ролей, на которые соответствующий пользователь авторизован в настоящий момент времени;
- T_2 : переход «Назначение роли» r пользователю u сессией от имени администратора admin может произойти только в том случае, если $can_assign_r(admin) = \texttt{true};$
- T_3 : переход «Назначение роли» r пользователю u может быть осуществлён только в том случае, если $prec_role_r(r_2) =$ true и пользователь в настоящий момент времени авторизован на роль r_2 ;
- T_4 : переход «Назначение роли» r пользователю u может быть осуществлён только в том случае, если он в настоящий момент времени не авторизован на одну или более статически взаимоисключающих ролей;
- T_5 : переход «Активация роли» r пользователю u может быть осуществлён только в том случае, если в настоящий момент времени в этой сессии не активны роли, динамически взаимоисключающие с r;
- T_6 : переход «Отзыв роли» r у пользователя u сессией от имени администратора admin может быть осуществлён только в том случае, если $can_revoke_r(admin) =$ = true;
- T_7 : переход «Отзыв роли» r_2 у пользователя u может быть осуществлён только в том случае, если $prec_role_r(r_2) = {\tt true}$ и пользователь в настоящий момент времени авторизован на роль r.

Утверждение 1. Для системы ролевого управления доступом, начальное состояние M_0 которой является безопасным, все состояния M, достижимые из M_0 в результате конечного числа переходов, удовлетворяют свойству P_1 . Для пользователя могут быть активными только те роли, на которые он авторизован.

Доказательство. Входящая дуга A_{33} между UA и переходом $take_role$ даёт возможность выполнить переход $take_role$ для пользователя u только в том случае, если токен $\langle u, r_y \rangle$ находится на месте UA (гарантирует выполнение ограничения T_1). Наличие токена $\langle u, r_y \rangle$ на месте UA означает, что пользователь u авторизован на роль r_y . Следовательно, множество ролей, активированных сессией пользователя, является подмножеством множества ролей, на которые он авторизован. ■

Утверждение 2. Для системы ролевого управления доступом, начальное состояние M_0 которой является безопасным, все состояния M, достижимые из M_0 , удовлетворяют свойству P_2 .

Доказательство. Рассмотрим ограничение последовательного назначения ролей, согласно которому, если некоторая роль r_x имеет зависимость от назначения подмножества ролей, то роль r_x может быть назначена пользователю только в том случае, если все роли r_y , такие, что $prec_role_{r_x}(r_y) = true$, назначены данному пользователю. Предположим, что ограничение не выполняется для некоторого состояния M, достижимого из M_0 . Предположим, что $\{r_1, r_2, \ldots, r_n\}$ — такие роли, что $prec_role_{r_x}(r_i) = true$, $1 \le i \le n$. Согласно предположению, в состоянии M место UA содержит токен $\langle u, r_x \rangle$, но не содержит все токены множества $\{\langle u, r_i \rangle : 1 \le i \le n\}$. Предположим, что M — первое состояние, в котором роль r_x назначена пользователю. Это означает, что состояние M было достигнуто при выполнении перехода $assign_role$ ($auto_assign_role$) из состояния M', в котором токены $\langle u, r_i \rangle$ также отсутствовали на месте UA. Однако дуга A_3 (A_{19}) и соответствующее ограничение G_3 (G_{19}) $prec_role_{r_x}(r_i)$ не позволяет активировать переход $assign_role$ ($auto_assign_role$), гарантируя выполнение ограничения T_3 . Следовательно, состояние M не может быть достигнуто. Противоречие. \blacksquare

Утверждение 3. Для системы ролевого управления доступом, начальное состояние M_0 которой является безопасным, все состояния M, достижимые из M_0 , удовлетворяют свойству P_3 .

Доказательство. Рассмотрим ограничение последовательного отзыва ролей, согласно которому, если для ролей из множества $\{r_1, r_2, \ldots, r_n\}$ роль r_x входит в предварительное условие их назначения, то роль r_x может быть отозвана только в том случае, если все роли $\{r_1, r_2, \ldots, r_n\}$, такие, что $prec_role_{r_i}(r_x) = true$, отозваны у пользователя. Предположим противное: ограничение не выполняется для некоторого состояния M, достижимого из M_0 . Пусть $\{r_1, r_2, \ldots, r_n\}$ — такие роли, что $prec_role_{r_i}(r_x) = true$, $1 \le i \le n$. Согласно предположению, в состоянии M место UA содержит токен $\langle u, r_x \rangle$, но не содержит всех токенов из множества $\{\langle u, r_i \rangle\}$, где $1 \le i \le n$. Предположим, что M — первое состояние, в котором роль r_i , $1 \le i \le n$, отозвана у пользователя. Это означает, что состояние M было достигнуто при выполнении перехода $revoke_role$ ($auto_revoke_role$) из состояния M', в котором все токены $\langle u, r_i \rangle$ присутствовали на месте UA. Однако дуга A_{13} (A_{27}) и соответствующее ограничение G_{13} (G_{27}) $prec_role_{r_i}(r_x)$ не позволяет активировать переход $revoke_role$ ($auto_revoke_role$), гарантируя выполнение ограничения T_7 . Следовательно, состояние M не может быть достигнуто. Противоречие. \blacksquare

Утверждение 4. Для системы ролевого управления доступом, начальное состояние M_0 которой является безопасным, все состояния M, достижимые из M_0 , удовлетворяют свойству P_4 .

Доказательство. Предположим противное: в системе существует пользователь u, для которого ограничение на запрет одновременного назначения статически взаимоисключающих ролей не выполняется, т. е. u может быть одновременно авторизован на роли r_x и r_y , такие, что $static_conflict_role_{r_x}(r_y) = true$. Следовательно, токены $\langle u, r_x \rangle$ и $\langle u, r_y \rangle$ могут одновременно находиться на месте UA. Пусть M_0 — состояние системы непосредственно перед выполнением перехода $assign_role$, добавляющего токен $\langle u, r_y \rangle$ на место UA. Пусть также в состоянии M_0 пользователь u авторизован на роль r_x (токен $\langle u, r_x \rangle$ находится на месте UA, а токен $\langle u, r_y \rangle$ отсутствует на данном месте). Пусть r_y — первая роль, для которой не выполняется ограничение P_4 . Ингибиторная дуга A_3 связана с функцией E_3 : $\langle u, r_c \rangle$ и ограничением перехода G_3 : $static_conflict_role_r(r_c)$ = true, отсюда следует, что выполняется условие T_4 и переход $assign_role$ не может быть активирован. Следовательно, свойство P_4 выполняется для любого состояния M, достижимого из M_0 . \blacksquare

Утверждение 5. Для системы ролевого управления доступом, начальное состояние M_0 которой является безопасным, все состояния M, достижимые из M_0 , удовлетворяют свойству P_5 .

Доказательство. Предположим противное: в системе существует пользователь u, для которого ограничение на запрет одновременного назначения взаимоисключающих ролей не выполняется, т. е. u может одновременно активировать роли r_x и r_y , такие, что $dynamic_conflict_role_{r_x}(r_y) = {\tt true}$. Следовательно, токены $\langle u, r_x, s \rangle$ и $\langle u, r_y, s \rangle$ могут одновременно находиться на месте UAS. Пусть M_0 — состояние системы непосредственно перед выполнением перехода $assign_role$, добавляющего токен $\langle u, r_y, s \rangle$ на место UAS. Пусть также в состоянии M_0 сессия от имени пользователя u активирует роль r_x (токен $\langle u, r_x, s \rangle$ находится на месте UAS, а токен $\langle u, r_y, s \rangle$ отсутствует на данном месте). Пусть r_y — первая роль, для которой не выполняется ограничение P_5 . Ингибиторная дуга A_{34} связана с функцией E_{34} : $\langle u, r_{dc}, s \rangle$ и ограничением перехода G_{34} : $dynamic_conflict_role_r(r_{dc}) = {\tt true}$, отсюда следует, что выполняется условие T_5 и переход $take_role$ не может быть активирован. Противоречие. Следовательно, свойство P_5 выполняется для любого состояния M, достижимого из M_0 . \blacksquare

Теорема 1. Если начальное состояние системы M_0 , представленной в виде ЦСП, безопасно, то все состояния M, достижимые из M_0 посредством безопасных переходов, безопасны.

Доказательство. Из утверждений 1–5 следует, что все безопасные переходы между состояниями сохраняют свойства P_1 – P_5 . Следовательно, по определению 10, любое достижимое состояние является безопасным. ■

Таким образом, теоретически обоснованы достаточные условия безопасности систем, реализующих автоматизированное назначение ролей в рамках СК-РУД-модели.

Заключение

Представление системы семантически осмысленного ролевого управления доступом в рамках модели СК-РУД в виде сети Петри позволяет адаптировать её к условиям функционирования реальных компьютерных сетей предприятий, допускающих распределённое администрирование, а также проводить анализ переходов между состояниями, состоящих из двух и более операций. Безопасность системы ролевого управления доступом, построенной на основе предложенной модели СК-РУД, подтверждается проведённым анализом переходов между состояниями.

ЛИТЕРАТУРА

- 1. Семенова Н. А. Семантическая ролевая модель управления доступом // Прикладная дискретная математика. 2012. № 2(16). С. 50–64.
- 2. http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf National Institute of Standards and Technology, Proposed Standard for Role-Based Access Control.
- 3. Котов В. Е. Сети Петри. М.: Наука, 1984. 160 с.
- 4. Девянин П. Н. Модели безопасности компьютерных систем. Управление доступом и информационными потоками: учеб. пособие для вузов. М.: Горячая линия-Телеком, 2011. $320\,\mathrm{c}$.