4. Computation Tree Logic (2)

Huixing Fang

School of Information Engineering Yangzhou University

Outline

- Counterexamples and Witnesses
- 2 Symbolic CTL Model Checking

In the case of LTL

A counterexample for $TS \not\models \varphi$ is a sufficiently long prefix of a path π that indicates why π refutes φ .

In the case of LTL

A counterexample for $TS \not\models \varphi$ is a sufficiently long prefix of a path π that indicates why π refutes φ .

Example 1

- **1** A counterexample for the LTL formula $\lozenge a$ is a finite prefix of just $\neg a$ -states that ends with a single cycle traversal,i.e., there is a $\Box \neg a$ -path
- **②** A counterexample for $\bigcirc a$ consists of a path π for which $\pi[1]$ violates a

In the case of CTL

- Counterexamples indicate the refutation of universally quantified path formulae
- Witnesses indicate the satisfaction of existentially quantified path formulae

From a path-based view (for a path π)

- **1** a sufficiently long prefix of π with $\pi \not\models \varphi$ is a **counterexample** for the CTL state formula $\forall \varphi$
- 2 a sufficiently long prefix of π with $\pi \models \varphi$ is a witness of the CTL state formula $\exists \varphi$

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a finite transition system without terminal states.

- ullet The Next Operator, CTL path formula $arphi = \bigcirc \Phi$
 - **① Counterexample**: (s, s') with $s \in I$ and s' = Post(s) such that

$$s' \not\models \Phi$$

2 Witness: (s, s') with $s \in I$ and s' = Post(s) such that

$$s' \models \Phi$$

- ullet The Until Operator, CTL path formula $arphi=\Phi {\sf U}\Psi$
 - **1** Witness: an initial path fragment $s_0s_1...s_n$ for which

$$s_n \models \Psi$$
 and $s_i \models \Phi$ for $0 \le i < n$.

2 Counterexample: an initial path fragment that indicates a path π :

$$\pi \models \Box(\Phi \land \neg \Psi)$$
 or $\pi \models (\Phi \land \neg \Psi) \mathbf{U}(\neg \Phi \land \neg \Psi)$

Counterexample for $\varphi = \Phi U \Psi$:

• For $\pi \models \Box(\Phi \land \neg \Psi)$, an initial path fragment:

$$\underbrace{s_0 s_1 ... s_{n-1} \underbrace{s_n s_1' ..., s_r'}_{\text{cycle}}}_{\text{satisfy } \Phi \land \neg \Psi} \quad \text{with} \quad s_n = s_r'.$$

2 For $\pi \models (\Phi \land \neg \Psi) \mathbf{U}(\neg \Phi \land \neg \Psi)$, an initial path fragment:

$$\underbrace{s_0 s_1 ... s_{n-1}}_{\text{satisfy } \Phi \land \neg \Psi} s_n \quad \text{with} \quad s_n \models \neg \Phi \land \neg \Psi$$

Counterexamples can be determined by an analysis of the digraph G = (S, E) where

$$E = \{(s, s') \in (S \times S) \mid s' \in Post(s) \land s \models \Phi \land \neg \Psi\}.$$

1 Each path in G that starts in an initial state $s_0 \in S$ and leads to a nontrivial SCC C in G provides a counterexample of the form

$$s_0 s_1 ... \underbrace{s_n s_1' ... s_r'}_{\in C}$$
 with $s_n = s_r'$

f 2 Each path in f G that leads from an initial state $f s_0$ to a trivial terminal SCC

$$C = \{s'\}$$
 with $s' \models \neg \Phi \land \neg \Psi$

provides a counterexample of the form $s_0s_1...s_n$ with $s_n \models \neg \Phi \land \neg \Psi$.

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a finite transition system without terminal states.

- ullet The Always Operator, CTL path formula $arphi=\Box\Phi$
 - ① Counterexample: an initial path fragment $s_0s1...s_n$ such that

$$s_i \models \Phi$$
 for $0 \le i < n$ and $s_n \not\models \Phi$

Counterexamples may be determined by a backward search starting in $\neg \Phi$ -states

2 Witness: an initial path fragment of the form

$$\underbrace{s_0s_1...s_ns_1'...s_r'}_{\text{satisfy }\Phi} \quad \text{with} \quad s_n = s_r'.$$

Witnesses can be determined by a simple cycle search in the digraph G = (S, E), with $E = \{(s, s') \mid s' \in Post(s) \land s \models \Phi\}$

Theorem 2 (Time Complexity of Counterexample Generation)

Let TS be a transition system with N states and K transitions and φ a CTL path formula.

- If $TS \not\models \forall \varphi$, then a counterexample for φ in TS can be determined in time O(N + K).
- **2** The same holds for a witness for φ , provided that $TS \models \exists \varphi$.

Outline

- Counterexamples and Witnesses
- 2 Symbolic CTL Model Checking

2 Symbolic CTL Model Checking

To attack the state explosion problem, the CTL model-checking procedure can be reformulated in a **symbolic** way:

- Binary encoding of the states, which permits identifying subsets of the state space
- Symbolic approach: operates on sets of states rather than single states and
- relay on a representation of transition systems by switching functions

- Counterexamples and Witnesses
- Symbolic CTL Model Checking
 - Switching Functions
 - Encoding Transition Systems by Switching Functions
 - Odered Binary Decision Diagrams

Evaluation

One evaluation is a function:

$$\eta: Var \rightarrow \{0,1\},$$

in which, $Var = \{z_1, ..., z_m\}$, z_i are **Boolean variables**.

- $Eval(z_1,...,z_m)$ denotes the set of evaluations for Boolean variables $z_1,...,z_m$
- ② Evaluations are written as $[z_1 = b_1, ..., z_m = b_m]$ for $b_i \in \{0, 1\}$
- **3** $[\bar{z} = \bar{b}]$ is short for the evaluation $[z_1 = b_1, ..., z_m = b_m]$ when $\bar{z} = (z_1, ..., z_m)$ and $\bar{b} = (b_1, ..., b_m)$

Switching function

A switching function for Var is a function

$$f: Eval(Var) \rightarrow \{0,1\}.$$

The special case $Var = \emptyset$ is allowed. The switching functions for \emptyset are just constants 0 or 1.

- Write f(z) or $f(z_1,...,z_m)$ to indicate the underlying set of variables
- ② Write $f(b_1,...,b_m)$ or f(b) instead of $f([z_1 = b_1,...,z_m = bm])$ when z_i is clear from the context
- Soolean connectives can be defined for switching functions

If f_1 , f_2 are switching functions, then

$$(f_1 \vee f_2)([z_1 = b_1, ..., z_k = b_k])$$

= $max\{f_1([z_1 = b_1, ..., z_m = b_m]), f_2([z_n = b_n, ..., z_k = b_k])\}.$

Projection function

We often simply write z_i for the **projection function**:

$$pr_{z_i}: Eval(\bar{z}) \rightarrow \{0,1\},$$

 $pr_{z_i}([\bar{z}=b])=b_i$ and 0 or 1 for the constant switching functions.

- Switching functions can be represented by Boolean connections of the variables z_i (viewed as projection functions) and constants
- ② For instance, $z_1 \lor (z_2 \land \neg z_3)$ stands for a switching function

Positive cofactor

Let $f: Eval(z, y_1, ..., y_m) \to \{0, 1\}$ be a switching function. The **positive cofactor** of f for variable z is the switching function

$$|f|_{z=1}: Eval(z, y_1, ..., y_m) \rightarrow \{0, 1\}$$

given by

$$f|_{z=1}(\zeta, b_1, ..., b_m) = f(1, b_1, ..., b_m)$$

where $(\zeta,b_1,...,b_m)\in\{0,1\}^{m+1}$ is short for $[z=\zeta,y_1=b_1,...,y_m=b_m]$

Negative cofactor

Let $f: Eval(z, y_1, ..., y_m) \to \{0, 1\}$ be a switching function. The **negative cofactor** of f for variable z is the switching function

$$f|_{z=0}: Eval(z, y_1, ..., y_m) \to \{0, 1\}$$

given by

$$f|_{z=0}(\zeta, b_1, ..., b_m) = f(0, b_1, ..., b_m)$$

where $(\zeta, b_1, ..., b_m) \in \{0, 1\}^{m+1}$ is short for $[z = \zeta, y_1 = b_1, ..., y_m = b_m]$

Cofactor

Let $f: Eval(z_1,...,z_k,y_1,...,y_m) \to \{0,1\}$ be a switching function. The **iterated cofactor** (also simply called **cofactor**) of f is the switching function

$$f|_{z_1=b_1,...,z_k=b_k}: (...(f|_{z_1=b_1})|_{z_2=b_2}...)|_{z_k=b_k}$$

given by

$$f|_{z_1=b_1,...,z_k=b_k}(\zeta_1,...,\zeta_k,a_1,...,a_m)=f(b_1,...,b_k,a_1,...,a_m).$$

Cofactor

Let $f: Eval(z_1,...,z_k,y_1,...,y_m) \to \{0,1\}$ be a switching function. The **iterated cofactor** (also simply called **cofactor**) of f is the switching function

$$f|_{z_1=b_1,...,z_k=b_k}:(...(f|_{z_1=b_1})|_{z_2=b_2}...)|_{z_k=b_k}$$

given by

$$f|_{z_1=b_1,...,z_k=b_k}(\zeta_1,...,\zeta_k,a_1,...,a_m)=f(b_1,...,b_k,a_1,...,a_m).$$

Essential Variable

Variable z is called **essential** for switching function f if $f|_{z=0} \neq f|_{z=1}$.

- **1** Variable z is **not essential** for the cofactors $f|_{z=0}$ and $f|_{z=1}$
- ② At most the variables in $Var \setminus \{z_1, ..., z_k\}$ are essential for $f|_{z_1=b_1,...,z_k=b_k}$ (f is a switching function for Var)

1 Let switching function $f(z_1, z_2, z_3) = (z_1 \vee \neg z_2) \wedge z_3$,

$$f|_{z_1=1}=z_3, \quad f|_{z_1=0}=\neg z_2 \wedge z_3,$$

variable z_1 is essential for f

1 Let switching function $f(z_1, z_2, z_3) = (z_1 \vee \neg z_2) \wedge z_3$,

$$f|_{z_1=1}=z_3, \quad f|_{z_1=0}=\neg z_2 \wedge z_3,$$

variable z_1 is essential for f

2 Let $Var = \{z_1, z_2, z_3\}$, z_2 and z_3 are not essential for the projection function $pr_{z_1} = z_1$

$$z_1|_{z_2=0}=z_1|_{z_2=1}=z_1,$$

but z_1 is essential for the projection function z_1 :

$$|z_1|_{z_1=1}=1\neq |z_1|_{z_1=0}=0.$$

• Let switching function $f(z_1, z_2, z_3) = (z_1 \vee \neg z_2) \wedge z_3$,

$$f|_{z_1=1}=z_3, \quad f|_{z_1=0}=\neg z_2 \wedge z_3,$$

variable z_1 is essential for f

2 Let $Var = \{z_1, z_2, z_3\}$, z_2 and z_3 are not essential for the projection function $pr_{z_1} = z_1$

$$|z_1|_{z_2=0}=|z_1|_{z_2=1}=|z_1|,$$

but z_1 is essential for the projection function z_1 :

$$z_1|_{z_1=1}=1\neq z_1|_{z_1=0}=0.$$

3 Variables z_1 and z_2 are essential for

$$f(z_1,z_2,z_3)=z_1\vee\neg z_2\vee(z_1\wedge z_2\wedge\neg z_3),$$

but z_3 is not,

$$f|_{z_3=1} = z_1 \vee \neg z_2 = f|_{z_3=0} = z_1 \vee \neg z_2 \vee (z_1 \wedge z_2)$$

Theorem 3 (Shannon Expansion)

If f is a switching function for Var, then for each variable $z \in Var$:

$$f = (\neg z \wedge f|_{z=0}) \vee (z \wedge f|_{z=1}).$$

 The Shannon expansion is inherent in the representation of switching functions by binary decision trees

Binary decision tree for $f(z_1, z_2, z_3) = z_1 \wedge (\neg z_2 \vee z_3)$:

- 1 The paths from the root to a leaf represent the evaluations
- 2 The leaves stand for the function values 0 or 1 of f
- **1** The subtree of node v yields a representation of the iterated cofactor $f|_{z_1=b_1,...,z_m=b_m}$

Existential and Universal Quantification

Let f be a switching function for Var and $z \in Var$.

• $\exists z$. f is the switching function give by:

$$\exists z. \ f = f|_{z=0} \lor f|_{z=1}$$

and $\exists \bar{z}. f = \exists z_1. \exists z_2. ... \exists z_k. f$

Existential and Universal Quantification

Let f be a switching function for Var and $z \in Var$.

• $\exists z$. f is the switching function give by:

$$\exists z. \ f = f|_{z=0} \lor f|_{z=1}$$

and
$$\exists \bar{z}$$
. $f = \exists z_1. \exists z_2. ... \exists z_k. f$

The universal quantification is defined by

$$\forall z. \ f = f|_{z=0} \wedge f|_{z=1}$$

and
$$\forall \bar{z}. f = \forall z_1. \forall z_2. ... \forall z_k. f$$

Existential and Universal Quantification

Let f be a switching function for Var and $z \in Var$.

• $\exists z. f$ is the switching function give by:

$$\exists z. \ f = f|_{z=0} \lor f|_{z=1}$$

and $\exists \bar{z}$. $f = \exists z_1. \exists z_2. ... \exists z_k. f$

The universal quantification is defined by

$$\forall z. \ f = f|_{z=0} \wedge f|_{z=1}$$

and $\forall \overline{z}$. $f = \forall z_1. \forall z_2. ... \forall z_k. f$

• Let
$$f(z, y_1, y_2) = (z \lor y_1) \land (\neg z \lor y_2)$$
, then $\exists z. \ f = f|_{z=0} \lor f|_{z=1} = y_1 \lor y_2$, $\forall z. \ f = f|_{z=0} \land f|_{z=1} = y_1 \land y_2$

- Counterexamples and Witnesses
- Symbolic CTL Model Checking
 - Switching Functions
 - Encoding Transition Systems by Switching Functions
 - Odered Binary Decision Diagrams

Encoding State of Transition Systems

Let $TS = (S, \rightarrow, I, AP, L)$ and $\bar{x} = (x_1, ..., x_n)$, for each state $s \in S$, the encoding of s is an evaluation

$$[x_1 = b_1, ..., x_n = b_n] \in Eval(\bar{x}),$$

 x_i are Boolean variables, $b_i \in \{0,1\}$

Characteristic Function

The characteristic function χ_B is the switching function give by

$$\chi_B: \mathit{Eval}(ar{x}) o \{0,1\}, \quad \chi_B(s) = egin{cases} 1 & \text{if } s \in B \\ 0 & \text{otherwise}. \end{cases}$$

Encoding of Satisfaction Set

For any $a \in AP$, the satisfaction set $Sat(a) = \{s \in S \mid s \models a\}$ can be represented by the switching function

$$f_a = \chi_{Sat(a)}$$
.

Encoding of Labeling Function

A family $(f(a))_{a \in AP}$ of switching functions can be used as a symbolic representation of the labeling function L.

Encoding of Transition Relation

The transition relation \rightarrow of TS can be represented by the switching function

$$\Delta: \mathit{Eval}(ar{x}, ar{x}')
ightarrow \{0, 1\}, \quad \Delta(s, t\{ar{x}'/ar{x}\}) = egin{cases} 1 & \text{if } s
ightarrow t \ 0 & \text{otherwise} \end{cases}$$

- **1** s and t are elements of the state space $S = Eval(\bar{x})$
- ② $\bar{x} = (x_1, ..., x_n)$ and $\bar{x}' = (x'_1, ..., x'_n)$
- **1** Unprimed variables x_i serve to encode the current state
- Primed variables x_i' serve to encoding the next state
- **1** $t\{\bar{x}'/\bar{x}\}$ is the evaluation after applying the replacement of x_i by x_i'

Example 4 (Symbolic Representation of Transition Relation)

Just one Boolean variable x can be used for encoding, the transition relation \rightarrow is represented by $\Delta : Eval(x, x') \rightarrow \{0, 1\}$:

$$\Delta = \neg x \vee \neg x'$$

 $TS: \subset (S_0)$

- Satisfying assignment [x = 0, x' = 0] denotes the transition $s_0 \rightarrow s_0$
- ② Satisfying assignment [x=0,x'=1] denotes the transition $s_0 \rightarrow s_1$
- lacktriangledown Satisfying assignment [x=1,x'=0] denotes the transition $s_1 o s_0$

Example 5 (Symbolic Representation of a Ring)

Consider a transition system TS with states $\{s_0, ..., s_{k-1}\}$ where $k = 2^n$ that are organized in a ring, TS has the transitions

$$s_i \rightarrow s_{(i+1) \text{ mod } k}, \quad \text{for } 0 \leq i < k$$

Encoding any state s_i with the binary encoding of its index i:

- if k = 16, then n = 4 and state s_1 is identified with 0001
- ② *n* Boolean variables $x_1, ..., x_n$ are used for encoding, evaluation $[x_1 = b_1,, x_n = b_n]$ stands for state $\sum_{1 \le i \le n} b_i 2^{i-1}$
- The switching function is

$$\sum_{1 \le i \le n} x_i' \cdot 2^{i-1} \equiv \left(\left(1 + \sum_{1 \le i \le n} x_i \cdot 2^{i-1} \right) \mod k \right)$$

Switching Function $\chi_{Post(s)}$

If $s = [x_1 = b_1, ..., x_n = b_n]$, then a switching function $\chi_{Post(s)}$ for the successor set $Post(s) = \{s' \in S \mid s \to s'\}$ is obtained from Δ by building the cofactor for the variables $x_1, ..., x_n$:

$$\chi_{Post(s)} = \Delta|_{s}\{\bar{x}/\bar{x}'\}$$

- **1** $\Delta|_s$ stands for the iterated cofactor $\Delta|_{x_1=b_1,\dots,x_n=b_n}$
- ② The renaming operator $\{\bar{x}/\bar{x}'\}$ yields a representation of Post(s) by the variables $x_1,...,x_n$

Example 6

Symbolic encoding of the successor set $Post(s_0) = \{s_0, s_1\}$ for TS:

$$\Delta|_{x=0}\{x/x'\} = \underbrace{(\neg x \lor \neg x')|_{x=0}}_{=1}\{x/x'\} = 1.$$

For state $s_1 = [x = 1]$, $Post(s_1) = \{s_0\} = \{[x = 0]\}$, a symbolic representation of $Post(s_1)$ is:

$$\Delta|_{x=1}\{x/x'\} = \underbrace{(\neg x \vee \neg x')|_{x=1}}_{\neg \neg x'}\{x/x'\} = \neg x .$$

2.2 Encoding Transition Systems by Switching Functions

Computing $Pre^*(B)$

We can now describe the backward BFS-based reachability analysis to compute all states in $Pre^*(B) = \{s \in S \mid s \models \exists \Diamond B\}$.

- Start with the switching function $f_0 = \chi_B$ that characterizes the set $T_0 = B$;
- ② Then, compute the characteristic functions $f_{j+1} = \chi_{T_{j+1}}$ of

$$T_{j+1} = T_j \cup \{s \in S \mid \exists s' \in S. \ s' \in Post(s) \land s' \in T_j\}$$

③ The set of states s where the condition $\exists s' \in S$. $s' \in Post(s) \land s' \in T_j$ holds is given by the switching function:

$$\exists \bar{x}'. \ (\underbrace{\Delta(\bar{x}, \bar{x}')}_{s' \in Post(s)} \land \underbrace{f_i(\bar{x}')}_{s' \in T_i}), \quad \text{where } f_j(\bar{x}') = f_j\{\bar{x}'/\bar{x}\}.$$

2.2 Encoding Transition Systems by Switching Functions

This BFS-based technique can easily be adapted to treat constrained reachability properties $\exists (C \cup B)$ for subsets B, C of S:

Algorithm 1: Symbolic computation of $Sat(\exists (CUB))$

```
1 f_0(\bar{x}) := \chi_B(\bar{x});

2 j := 0;

3 repeat

4 | f_{j+1}(\bar{x}) := f_j(\bar{x}) \lor (\chi_C(\bar{x}) \land \exists \bar{x}'. (\Delta(\bar{x}, \bar{x}') \land f_j(\bar{x}')));

5 | j := j+1;

6 until f_j(\bar{x}) = f_{j-1}(\bar{x});

7 return f_i(\bar{x});
```

$$Sat(\exists \bigcirc B) = \exists \overline{x}'. \ (\underbrace{\Delta(\overline{x}, \overline{x}')}_{s' \in Post(s)} \land \underbrace{\chi_B(\overline{x}')}_{s' \in B})$$

2.2 Encoding Transition Systems by Switching Functions

The set $Sat(\exists \Box B)$ of all states s that have an infinite path consisting of states in a given set B can be computed symbolically

- **1** $T_0 = B$

Algorithm 2: Symbolic computation of $Sat(\exists \Box B)$

```
1 f_0(\bar{x}) := \chi_B(\bar{x});

2 j := 0;

3 repeat

4 | f_{j+1}(\bar{x}) := f_j(\bar{x}) \wedge \exists \bar{x}'. (\Delta(\bar{x}, \bar{x}') \wedge f_j(\bar{x}'));

5 | j := j + 1;

6 until f_j(\bar{x}) = f_{j-1}(\bar{x});

7 return f_i(\bar{x});
```

- Counterexamples and Witnesses
- 2 Symbolic CTL Model Checking
 - Switching Functions
 - Encoding Transition Systems by Switching Functions
 - Odered Binary Decision Diagrams

Ordered Binary Decision Diagrams

Ordered binary decision diagrams (OBDD), a data structure for switching functions that relies on a compactification of binary decision trees

- Collapsing constant subtrees (i.e., subtrees where all terminal nodes have the same value) into a single node
- Identifying nodes with isomorphic subtrees

Binary decision diagram for $z_1 \wedge (\neg z_2 \vee z_3)$:

Binary decision diagram for $z_1 \wedge (\neg z_2 \vee z_3)$:

Binary decision tree for $f=(z_1\wedge z_3)\vee (\neg z_2\vee z_3)$: The three subtrees of the z3-nodes for the cofactors $f|_{z_1=0,z_2=1}$, $f|_{z_1=1,z_2=0}$ and $f|_{z_1=1,z_2=1}$ are isomorphic and can thus be collapsed

Binary decision diagram for $f=(z_1 \wedge z_3) \vee (\neg z_2 \vee z_3)$: now the z_2 -node for the cofactor $f|_{z_1=1}$ becomes redundant, as regardless whether $z_2=0$ or $z_2=1$,

Binary decision diagram for $f = (z_1 \land z_3) \lor (\neg z_2 \lor z_3)$:

Variable Ordering

Let Var be a finite set of variables. A **variable ordering** for Var denotes any tuple $\wp = (z_1, ..., z_m)$ such that $Var = \{z_1, ..., z_m\}$ and $z_i \neq z_j$ for $1 \leq i < j \leq m$.

$$z_i <_{\wp} z_j$$
 iff $i < j$
 $z_i \leq_{\wp} z_j$ iff $i < j$ or $i = j$

Definition 7 (Ordered Binary Decision Diagram (OBDD))

Let \wp be a variable ordering for Var. A \wp -ordered binary decision diagram (\wp -OBDD for short) is a tuple

$$\mathfrak{B} = (V, V_I, V_T, succ_0, succ_1, var, val, v_0)$$

- $V = V_I \cup V_T$: a finite set V of **nodes**, V_I : set of **inner** nodes, V_T : set of **terminal** nodes
- ② $succ_0$, $succ_1: V_I \to V$, assign to each inner node v a **0-successor** $succ_0(v) \in V$ and **1-successor** $succ_1(v) \in V$
- **3** $var: V_I \rightarrow Var$, assigns to each **inner** node v a **variable** $var(v) \in Var$
- **1** val : $V_T \rightarrow \{0,1\}$, assigns to each **terminal** node a **function value**
- lacksquare a root node $v_0 \in V$

For each path $v_0v_1...v_n$ in $\mathfrak B$ we have $v_i \in V_I$ for $1 \le i < n$ and

$$var(v_0) <_{\wp} var(v_1) <_{\wp} ... <_{\wp} var(v_n),$$

where for the terminal nodes we put $var(v) = \bot$ (undefined) and extend $<_{\wp}$ by $z<_{\wp}\bot$ for all variables $z\in Var$, and

$$var: V \rightarrow Var \cup \{\bot\}$$

This yields that the underlying graph of an OBDD is acyclic.

Semantics of OBDDs

Let $\mathfrak B$ be an \wp -OBDD. The semantics of $\mathfrak B$ is the switching function $f_{\mathfrak B}$ for Var:

• $f_{\mathfrak{B}}([z_1 = b_1, ..., z_m = b_m])$ is the value of the terminal node that will be reached from the root

Sub-OBDD, Switching Function for the Nodes

Let \mathfrak{B} be a \wp -OBDD,

- **1** If v is a node in \mathfrak{B} , then the **sub-OBDD** induced by v, denoted \mathfrak{B}_v arises from \mathfrak{B} by declaring v as the root node and removing all nodes that are not reachable from v
- ② The switching function for node, denoted f_v , is the switching function for Var that is given by the sub-OBDD \mathfrak{B}_v .

Lemma 8 (Bottom-up Characterization of the Functions f_{ν})

Let \mathfrak{B} be a \wp -OBDD. The switching functions f_v for the nodes $v \in V$ are given as follows:

- If v is a terminal node, then f_v is the constant switching function with $value\ val(v).$
- 2 If v is a z-node (var(v) = z), then

$$f_{V} = \underbrace{\left(\neg z \wedge f_{succ_{0}(V)}\right) \vee \left(z \wedge f_{succ_{1}(V)}\right)}_{Shannon \ Expansion}$$

 \bullet $f_{\mathfrak{B}} = f_{v_0}$ for the root v_0 of \mathfrak{B}

This yields that

$$f_{\mathcal{V}} = f_{\mathfrak{B}}|_{z_1 = b_1, \dots, z_i = b_i}$$

where $[z_1=b_1,...,z_i=b_i]$ leads from the root v_0 of $\mathfrak B$ to node v.

℘-Consistent Cofactor

Let f be a switching function for Var and $\wp = (z_1, ..., z_m)$ a variable ordering for Var. A switching function f' for Var is called a \wp -consistent cofactor of f if such that $f' = f|_{z_1 = b_1, ..., z_i = b_i}$ for some $i \in \{0, 1, ..., m\}$.

Example 9

If
$$f = z_1 \wedge (z_2 \vee \neg z_3)$$
 and $\wp = (z_1, z_2, z_3)$

• f, $f|_{z_1=1}=z_2 \vee \neg z_3$, $f|_{z_1=1,z_2=0}=\neg z_3$ and constants 0 and 1 are \wp -consistent cofactors of f

℘-Consistent Cofactor

Let f be a switching function for Var and $\wp = (z_1, ..., z_m)$ a variable ordering for Var. A switching function f' for Var is called a \wp -consistent cofactor of f if such that $f' = f|_{z_1 = b_1, ..., z_i = b_i}$ for some $i \in \{0, 1, ..., m\}$.

Example 9

If $f = z_1 \wedge (z_2 \vee \neg z_3)$ and $\wp = (z_1, z_2, z_3)$

- f, $f|_{z_1=1}=z_2 \vee \neg z_3$, $f|_{z_1=1,z_2=0}=\neg z_3$ and constants 0 and 1 are \wp -consistent cofactors of f
- ② The cofactors $f|_{z_3=0}=z_1$ and $f|_{z_2=0}=z_1 \wedge \neg z_3$ are not \wp -consistent

℘-Consistent Cofactor

Let f be a switching function for Var and $\wp = (z_1, ..., z_m)$ a variable ordering for Var. A switching function f' for Var is called a \wp -consistent cofactor of f if such that $f' = f|_{z_1 = b_1, ..., z_i = b_i}$ for some $i \in \{0, 1, ..., m\}$.

Example 9

If $f = z_1 \wedge (z_2 \vee \neg z_3)$ and $\wp = (z_1, z_2, z_3)$

- f, $f|_{z_1=1}=z_2 \vee \neg z_3$, $f|_{z_1=1,z_2=0}=\neg z_3$ and constants 0 and 1 are \wp -consistent cofactors of f
- ② The cofactors $f|_{z_3=0}=z_1$ and $f|_{z_2=0}=z_1 \land \neg z_3$ are not \wp -consistent
- **3** The cofactor $f|_{z_2=0,z_3=1}$ is \wp -consistent as it agrees with the cofactors $f|_{z_1=0}$ or $f|_{z_1=1,z_2=0,z_3=1}$

Lemma 10 (Nodes in OBDDs and ℘-Consistent Cofactors)

- For each node v of an \wp -OBDD \mathfrak{B} , the switching function f_v is a \wp -consistent cofactor of $f_{\mathfrak{B}}$
- **2** Vice versa, for each \wp -consistent cofactor f' of $f_{\mathfrak{B}}$ there is at least one node v in \mathfrak{B} such that $f_v = f'$.
 - Given a \wp -OBDD $\mathfrak B$ and a \wp -consistent cofactor f' of $f_{\mathfrak B}$ there **could** be more than one node in $\mathfrak B$ representing f'
 - e.g., $f|_{z_1=0}=f|_{z_1=0,z_2=b}=f|_{z_1=0,z_2=n,z_3=c}=0$ for all $b,c\in\{0,1\}$ (for $f=z_1\wedge(\neg z_2\vee z_3)$)