

Data Science in Medicine

Lecture 8: Introduction to Graph Data and Ontologies

Dr Areti Manataki

Usher Institute
The University of Edinburgh

Data integration

- The analysis of genomic, imaging or other types of data allows us to investigate different facets of human health.
- But in order to gain a comprehensive understanding of human health, we need to integrate such data.

Challenges to data integration

- 1. Biomedical and healthcare datasets sit in silos.
- 2. Linking entities between different datasets is not a trivial task.
 - In Scotland, we use CHI Numbers to uniquely identify patients.
 - But how about sharing data between different countries?
- 3. Ambiguity around the meaning of different terms.

The RDF graph data model

 Data is represented in the form of triples, i.e. statements consisting of a subject, a predicate and an object.

RDF triple visualisation

RDF triple visualisation

RDF triple visualisation

Unique identifiers: URIs

- In RDF, we use URIs (Uniform Resource Identifiers) to uniquely identify concepts and entities.
- Examples:
 - http://dbpedia.org/resource/Edinburgh
 - http://xmlns.com/foaf/0.1/age
- URIs are used for both resources and properties.

Unique identifiers: URIs

How to use URIs

- 1st approach (recommended): use existing URIs
 - DBPedia (http://dbpedia.org) is a very good source of URIs.
 - Every resource that is the subject of a page in Wikipedia has a corresponding URI in DBpedia.
 - URI forEdinburgh:

http://dbpedia.org/resource/Edinburgh

- 2nd approach: create your own URIs
 - If you don't own a domain name, you can use http://example.com/

http://example.com/id/EwanMcGregor

Keep it simple

Merging RDF data is easy!

- By uniquely identifying resources with the use of URIs, we can easily link data about the same resource.
- Merging different RDF datasets is simply a matter of bringing the two sets of RDF statements together.

Merging RDF data is easy!

http://www.ed.ac.uk/res/Lucy http://xmlns.com/foaf/0.1/knows

http://www.ed.ac.uk/res/James

http://www.ed.ac.uk/res/Peter

Merging RDF data is easy!

Dataset3 = Dataset1 + Dataset2

Writing RDF statements in Turtle

- Turtle (Terse RDF Triple Language): One of the most popular forms of syntax for expressing RDF.
- General form:

subject predicate object.

Writing RDF statements in Turtle

- Turtle (Terse RDF Triple Language): One of the most popular forms of syntax for expressing RDF.
- General form:

Writing RDF statements in Turtle

- Turtle (Terse RDF Triple Language): One of the most popular forms of syntax for expressing RDF.
- General form:
 subject predicate object.
- When using URIs, these should be enclosed in angle brackets, e.g.
 - http://dbpedia.org/resource/Edinburgh

Example RDF statements in Turtle

http://xmlns.com/foaf/0.1/based_near http://dbpedia.org/resource/Edinburgh.

http://www.ed.ac.uk/res/Peter http://xmlns.com/foaf/0.1/age 22 .

Example RDF statements in Turtle

 $< http://www.ed.ac.uk/res/Lucy> < http://xmlns.com/foaf/0.1/based_near> < http://dbpedia.org/resource/Edinburgh> .$

http://www.ed.ac.uk/res/Peter http://xmlns.com/foaf/0.1/age 22 .

Ontologies

- Ontology definition: A formal, explicit specification of a shared conceptualisation.
- Essentially, a way of encoding domain knowledge.
- Something like an enhanced dictionary, where you can look up the meaning of different concepts and find relations between them.

Ontology Components

- Possible components include:
 - Classes (e.g. Woman)
 - Individuals (e.g. Lucy)
 - Attributes (e.g. Age)
 - Relations (e.g. MotherOf)
- Ontologies often contain a class taxonomy.
- Formal definitions of classes may also be included.

Why are ontologies useful?

- They allow us to attach meanings to data.
 - e.g. when a dataset uses the term "Viral pneumonia", we know what is meant
- They enable the standardisation of terminology.
 - e.g. the same term "Viral pneumonia" is used across different datasets for the same disease
- They allow us to infer new knowledge from existing data.
 - If we know that James is suffering from viral pneumonia, and our ontology specifies that Viral pneumonia is a subclass of Lung disease, then we can infer that James is suffering from a lung disease.

Medical Ontologies

- Gene Ontology:
 - http://www.geneontology.org/
 - It represents information about biological processes, cellular components and molecular functions.
- Disease Ontology:
 - http://disease-ontology.org/
 - It provides descriptions of human disease terms, phenotype characteristics and related medical vocabulary disease concepts.

Medical Ontologies

- SNOMED-CT:
 - https://www.snomed.org/snomed-ct
 - It is a collection of medical terms. It includes codes, terms, synonyms and definitions used in clinical documentation and reporting.
 - It is considered to be the most comprehensive, multilingual clinical healthcare terminology in the world.

Conclusions

- Ontologies allow for a common and unambiguous understanding of different concepts in the datasets. This is crucial when sharing medical data.
- The RDF data model makes it possible to easily link data and discover previously unknown relationships between different concepts.
- The RDF data model is very flexible, allowing us to add new nodes, new kinds of relationships, and new subgraphs to an existing structure without disturbing existing functionality.