

Norges miljø- og biovitenskapelige universitet

Voltmeter og amperemeter

Bård Tollef Pedersen og Erik Lykke Trier

Innholdsfortegnelse

- Innledning
- Teori og metoder
- Resultater
- Diskusjon
- Konklusjon
- Reslutater

Innledning

- Elektronikk
- Strøm, spenning og motstand
- Analogt aperatur
- Multimeter
- Feilforplantning
- Indre motstand i aperaturet

https://shorturl.at/dhpG2

Teori og metoder

- Teori
- Metode
- Formler

https://shorturl.at/amnvQ

Metode

Krets oppsett av krets 1 og krets 2

Hentet fra oppgaveteksten til rapporten.

Formler

- Ohms lov
- Gauss' feilforplantningslov
- Krets 1
- Krets 2

$$V = RI$$

Ohms lov, hvor V er spenningen, I er strømmen og R er motstanden.

$$\delta f = \sqrt{\left(\frac{\partial f}{\partial x_1} \delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \delta x_2\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \delta x_n\right)^2}$$

Gauss' feilforplantningslov, hvor δf er den totale usikkerheten, δx_i er usikkerheten i variabel x_i , og $\partial f/\partial x_i$ er den partielle deriverte av funksjonen f med hensyn til variabelen x_i .

$$\frac{\delta R_{ukorr}}{R_{ukorr}} = \sqrt{\left(\frac{\delta V}{V}\right)^2 + \left(\frac{\delta I}{I}\right)^2}$$

Formelen for den relative usikkerheten til den ikke korrigerte motstanden,

hvor R_{ukorr} er den ukorrigerte motstanden, δR_{ukorr} er usikkerheten til den ukorrigerte motstanden, δV er usikkerheten til spenningen og δI er usikkerheten til strømmen.

Formler for korrigert motstand, krets 1

$$R = \frac{V}{I - \frac{V}{R_V}}$$

Formelen for den korrigert motstand, Her er R_V motstanden gjennom voltmeteret.

$$\frac{\delta R}{R} = \frac{1}{1 - \frac{R_{ukorr}}{R_V}} \sqrt{\left(\frac{\delta V}{V}\right)^2 + \left(\frac{\delta I}{I}\right)^2 + \left(\frac{\delta R_V}{R_V}\right)^2 \left(\frac{R_{ukorr}}{R_V}\right)^2}$$

Formelen for den relativ usikkerheten til korrigert motstand,

Her er δR usikkerheten til den korrigerte motstanden, δR_V er usikkerheten til motstanden gjennom voltmeteret.

Formler for korrigert motstand, krets 2

$$\delta R = \sqrt{\left(\frac{\partial R}{\partial V}\delta V\right)^2 + \left(\frac{\partial R}{\partial I}\delta I\right)^2 + \left(\frac{\partial R}{\partial R_{\alpha}}\delta R_{\alpha}\right)^2}$$

$$R = \frac{V - R_{\alpha}I}{I} = \frac{V}{I} - R_{\alpha} = R_{ukorr} - R_{\alpha}$$

Formelen for den korrigert motstand her er R_{α} den indre motstanden I amperemeteret.

$$\frac{\partial R}{\partial V} = \frac{1}{I}$$
 $\frac{\partial R}{\partial I} = -\frac{V - R_{\alpha}I}{I^2} = -\frac{R}{I}$ $\frac{\partial R}{\partial R_{\alpha}} = -1$

$$\partial R = \sqrt{\left(\frac{\partial V}{I}\right)^2 + \left(-\frac{R}{I}\partial I\right)^2 + \left(-\partial R_{\alpha}\right)^2}$$

$$\partial RR_{2,ukorr} = R_{2,ukorr} \sqrt{\left(\frac{\partial V}{I}\right)^2 + \left(-\frac{R}{I}\partial I\right)^2 + \left(-\partial R_{\alpha}\right)^2}$$

$$\partial R = R_{2,ukorr} \sqrt{\left(\frac{\partial V}{V}\right)^2 + \left(\frac{\partial I}{I}\right)^2 + \left(\frac{\partial R_{\alpha}}{R_{2,ukorr}}\right)^2}$$

Formelen for den relativ usikkerhet til korrigert motstand.

Resultater

- Krets 1
- Krets 2

Teoretiske verdier mot målte verdier fra multimeteret

Komponent	Oppgittverdi	Målt Verdi
Motstand 1	330 Ω	329.3±3.2 Ω
Motstand 2	680 Ω	678.0±6.3 Ω
Amperemeter 6 mA	32 Ω	31.7±0.5 Ω
Amperemeter 12 mA	16 Ω	16.2±0.3 Ω
Voltmeter	3000 Ω	3001±27 Ω
Batteri	3.0 V	2.9±0.2 V

Målte verdier

Motstand(Ω)	Strøm(mA)	Spenning(V)
329.3±3.2	9.4±0.1	2.8±0.1
678.0±6.3	5.1±0.1	2.8±0.1

Motstand(Ω)	Ukorrigert Verdi(Ω)	Korrigert Verdi(Ω)
329.3±3.2	297.9±2.5	330.7±3.0
678.0±6.3	554.5±4.4	680.1±6.2

Målte verdier

Motstand(Ω)	Strøm(mA)	Spenning(V)
329.3±3.2	8.5±0.1	3.0±0.1
678.0±6.3	4.2±0.1	3.0±0.1

Motstand(Ω)	Ukorrigert Verdi(Ω)	Korrigert Verdi(Ω)
329.3±3.2	347.1±3.0	330.9±3.1
678.0±6.3	710.8±6.3	679.1±6.3

Diskusjon

- Feilkilder
 - Måleinstrument
 - Usikkerhet I koblingene
 - Indre motstand
 - Feilforplanting
 - Avlesningsfeil
- Krets 1
- Krets 2

Målte verdier

Motstand(Ω)	Strøm(mA)	Spenning(V)
329.3±3.2	9.4±0.1	2.8±0.1
678.0±6.3	5.1±0.1	2.8±0.1

Motstand(Ω)	Ukorrigert Verdi(Ω)	Korrigert Verdi(Ω)
329.3±3.2	297.9±2.5	330.7±3.0
678.0±6.3	554.5±4.4	680.1±6.2

Målte verdier

Motstand(Ω)	Strøm(mA)	Spenning(V)
329.3±3.2	8.5±0.1	3.0±0.1
678.0±6.3	4.2±0.1	3.0±0.1

Motstand(Ω)	Ukorrigert Verdi(Ω)	Korrigert Verdi(Ω)
329.3±3.2	347.1±3.0	330.9±3.1
678.0±6.3	710.8±6.3	679.1±6.3

Konklusjon

- Krets 1
 - 0.4%, 330Ω
 - 0.3%, 680Ω
- Krets 2
 - $0.5\%, 330\Omega$
 - 0.2%, 680Ω
- Vellykket

Kilder

- Paul Bjørn Andersen. Ohms lov. https://snl.no/Ohms lov, 2021.
- Achim Kohler. *Ampermeter og voltmeter*. Norges miljø- og biovitenskapelige universitet, 2023.
- John R Taylor. Error analysis. *Univ. Science Books, Sausalito,* California, 20, 1997.
- Øyvind Grøn. Elektrisk strøm.
 https://snl.no/elektrisk strm, 2021.

Takk for oss.

