目录

第一章	线性空间与线性变换	2
1.1	线性空间	2
	1.1.1 集合、数域与映射	2
1.2	线性变换	3
1.3	应用案例	3
第二章	内积空间	4
第三章	范数理论	5
第四章	矩阵的标准形	6
第五章	矩阵分析	7
第六章	矩阵分解	8
第七章	矩阵的广义逆	9
第八章	特殊矩阵	10
第九章	矩阵的 Kronecker 积与 Hadamard 积	11

第一章 线性空间与线性变换

线性空间是集合空间与n维向量空间的推广。线性变换反映了现行空间中元素的一种联系。线性空间和线性变换的概念比较抽象。

几何方法与代数方法的融合是数学自身的需要和数学统一性的体现,也是处理工程问题的有力手段。学习本章时一定要注意思想的来源,并联系所讨论的问题在平面和空间指教坐标系中的原型,将抽象的代数概念几何直观化。

1.1 线性空间

线性空间是矩阵论最基本的概念之一,是对各种具体线性系统的一种统一的抽象。下面 首先介绍基础概念。

1.1.1 集合、数域与映射

设给定 n 个集合 A_1, A_2, \ldots, A_n ,由 A_1, A_2, \ldots, A_n 的所有元素组成的集合称为这些集合的**并集**,记为 $A_1 \cup A_2 \cdots \cup A_n$ 。由 A_1, A_2, \ldots, A_n 的公共元素组成的集合称为这些集合的**交集**,记为 $A_1 \cap A_2 \cdots \cap A_n$ 。

设 A, B 是两个集合,由所有属于 A 但不属于 B 的元素组成的集合称为集合 A 与 B 的 **差**,记作 A – B。

设 A, B 是两个集合, 集合 $A \times B = \{(a, b) | a \in A, b \in B\}$ 称为 $A \ni B$ **积**。

定义 1.1.1. 设 P 至少包含一个非零数的数集,如果 P 中任意两个数的和、差、积、商(分母不为零)仍属于 P, 称数集 P 为一个数域。

显然,全体整数集不构成数域。全体有理数集 \mathbf{Q} ,全体实数集 \mathbf{R} ,全体复数集 \mathbf{C} 都构成数域,其中实数域 \mathbf{R} 和复数域 \mathbf{C} 是工程上较常用的两个数域。

定义 1.1.2. 设 A, B 是两个非空集合,A 到 B 的一个**映射** T 是指一个对应法则,通过该法则,集合 A 中的任一元素 x,都有集合 B 中唯一确定的元素 y 与之相对应,记作 $T: x \to y$ 或者 T(x) = y,y 则称为 x 在映像 T 下的**像**,x 称为 y 在映射 T 下的原像。集合 A 的所有元素的像的集合记作 $T(A) = \{T(x) | x \in A\}$ 。

定义 1.1.3. 设 T 是集合 A 到 B 的一个映射,如果对任意的 $x_1, x_2 \in A$,当 $x_1 \neq x_2$ 时,有 $T(x_1) \neq T(x_2)$,称 T 是**单射**。如果对任意的 $y \in B$,有 $x \in A$,使得 T(x) = y,称 T 是满**射**。如果 T 既是单射又是满射,称为一一对应,又称为双射。

例 1.1.1. 实数域 **R** 上的 $n \times n$ 阶矩阵全体 $\mathbf{R}^{n \times n}$, 定义

$$T_1(\mathbf{A}) = \det(\mathbf{A}), T_2(\mathbf{A}) = a\mathbf{I}_n, T_3(\mathbf{A}) = \mathbf{A} + \mathbf{I}_n$$

- 1.2 线性变换
- 1.3 应用案例

第二章 内积空间

第三章 范数理论

第四章 矩阵的标准形

第五章 矩阵分析

第六章 矩阵分解

第七章 矩阵的广义逆

第八章 特殊矩阵

第九章 矩阵的 Kronecker 积与 Hadamard 积