In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]:
 df=pd.read_csv(r"C:\Users\Admin\Downloads\11_winequality-red - 11_winequality-r

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
	63	(-)	

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [4]: df.describe()

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000

In [5]: df.columns

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x21fb67e2a00>


```
In [7]: sns.distplot(df['quality'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x21fbcbd70d0>

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

```
In [9]: sns.heatmap(df1.corr())
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x21fbdfe1af0>


```
In [11]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [12]: from sklearn.linear_model import LinearRegression
lr= LinearRegression()
lr.fit(x_train,y_train)
```

Out[12]: LinearRegression()

```
In [13]: print(lr.intercept_)
```

[22.61662826]

```
mdl.wine - Jupyter Notebook
In [14]:
         prediction= lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[14]: <matplotlib.collections.PathCollection at 0x21fbe446940>
          7.0
          6.5
          6.0
          5.5
          5.0
In [15]:
         print(lr.score(x_test,y_test))
         0.33993421063834894
In [16]: print(lr.score(x_train,y_train))
         0.36613729345061574
In [17]:
         from sklearn.linear_model import Ridge,Lasso
In [18]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[18]: Ridge(alpha=10)
In [19]: |rr.score(x_test,y_test)
Out[19]: 0.3278779220835216
In [20]:
         la=Lasso(alpha=10)
```

la.fit(x_train,y_train)

Out[20]: Lasso(alpha=10)

In [21]: la.score(x_test,y_test)

Out[21]: -0.008380755702723786

In [24]: print(en.predict(x_test))

```
[5.49960095 5.57395135 5.78213248 5.6371492 5.75610984 5.67804192
5.6371492 5.7114996 5.6557368 5.40294543 5.77097992 5.7300872
5.51075351 5.75239232 5.76354488 5.7672624 5.72636968 5.6371492
5.60740904 5.58510392 5.77841496 5.38435783 5.69662952 5.6557368
5.52934111 5.692912
                      5.7672624 5.59625648 5.75982736 5.34346511
5.58882144 5.77841496 5.77097992 5.71521712 5.68175944 5.77097992
5.72636968 5.57766888 5.78213248 5.6557368 5.55536375 5.68919448
5.55908127 5.57395135 5.46614327 5.74123976 5.6185616 5.71521712
5.72636968 5.7486748 5.78956752 5.7672624 5.78585
                                                       5.75610984
5.58510392 5.68919448 5.7672624 5.74495728 5.76354488 5.51075351
5.70778208 5.44012063 5.79328504 5.52934111 5.53677615 5.78956752
5.72636968 5.58882144 5.64086672 5.75239232 5.74495728 5.72636968
5.7486748 5.77469744 5.6743244 5.75610984 5.51447103 5.77841496
5.43640311 5.71521712 5.75239232 5.49960095 5.72636968 5.78213248
5.72265216 5.66688936 5.692912 5.7300872 5.75982736 5.61484408
5.66317184 5.75239232 5.41781551 5.6743244 5.78213248 5.54421119
5.51818855 5.77097992 5.72636968 5.599974
                                            5.64830176 5.66317184
5.45870823 5.60740904 5.74495728 5.56279879 5.80072008 5.62971416
5.5813864 5.78956752 5.50703599 5.66688936 5.47357831 5.78585
5.7672624 5.62227912 5.77097992 5.77469744 5.64830176 5.62599664
5.67804192 5.74123976 5.76354488 5.80072008 5.78956752 5.72636968
5.65201928 5.71521712 5.68919448 5.7486748 5.7300872 5.7672624
5.62971416 5.76354488 5.67804192 5.36577023 5.7672624 5.7672624
5.69662952 5.77469744 5.79700256 5.68919448 5.76354488 5.51818855
5.73380472 5.57766888 5.62971416 5.50331847 5.56279879 5.58510392
5.76354488 5.7486748 5.26539719 5.74495728 5.65945432 5.70406456
5.49216591 5.52562359 5.7486748 5.70406456 5.74123976 5.7486748
5.38807535 5.7114996 5.66688936 5.79328504 5.73380472 5.70034704
5.64830176 5.74123976 5.59253896 5.48844839 5.70778208 5.72636968
5.692912
           5.76354488 5.57766888 5.74123976 5.79328504 5.74495728
5.60740904 5.77097992 5.64830176 5.8044376 5.72265216 5.74123976
5.72636968 5.61484408 5.63343168 5.6743244 5.7114996 5.70406456
5.7300872 5.70034704 5.73380472 5.7114996 5.77469744 5.692912
5.72265216 5.77469744 5.62971416 5.62971416 5.25424463 5.68547696
5.68175944 5.64086672 5.7300872 5.76354488 5.50703599 5.77841496
5.72636968 5.51447103 5.36948775 5.78585
                                            5.47729583 5.692912
5.75610984 5.49216591 5.7300872 5.57766888 5.77841496 5.73380472
5.80072008 5.34346511 5.66688936 5.76354488 5.72265216 5.63343168
5.77097992 5.45127319 5.77469744 5.62971416 5.75982736 5.55536375
5.55164623 5.37692279 5.61112656 5.28398479 5.65201928 5.68919448
5.78213248 5.33231255 5.72636968 5.46242575 5.692912
5.72265216 5.62227912 5.71521712 5.7114996 5.70034704 5.58882144
5.57395135 5.72636968 5.48101335 5.60369152 5.74123976 5.70034704
5.68175944 5.77469744 5.40294543 5.7114996 5.42896807 5.73752224
5.54792871 5.74495728 5.70406456 5.29141983 5.7672624 5.66317184
5.77469744 5.64086672 5.48101335 5.70778208 5.55908127 5.67060688
5.73752224 5.6743244 5.7672624 5.57023383 5.78213248 5.47729583
5.6557368 5.62971416 5.55536375 5.63343168 5.40666295 5.75610984
5.7114996 5.77841496 5.60740904 5.70034704 5.64086672 5.68175944
5.33603007 5.7114996 5.48844839 5.56651631 5.58882144 5.73752224
5.77469744 5.78585
                      5.68919448 5.35090015 5.75239232 5.73752224
5.59625648 5.7486748 5.50331847 5.61484408 5.75610984 5.71893464
5.77841496 5.64086672 5.75982736 5.57023383 5.73380472 5.692912
5.6743244 5.21706943 5.692912
                                 5.70778208 5.75982736 5.80072008
5.79328504 5.45499071 5.71521712 5.73752224 5.75982736 5.6557368
5.67060688 5.7300872 5.7300872 5.54792871 5.5813864 5.64830176
5.54049367 5.64830176 5.59625648 5.46242575 5.54421119 5.76354488
```

```
5.55908127 5.76354488 5.29513735 5.7300872 5.32487751 5.56279879
5.75239232 5.7114996 5.68547696 5.44383815 5.42153303 5.77469744
5.79328504 5.61112656 5.50331847 5.6557368 5.60740904 5.55536375
5.74495728 5.65201928 5.70034704 5.33231255 5.66317184 5.79328504
           5.68919448 5.62599664 5.61112656 5.77841496 5.74123976
5.63343168 5.7114996 5.62227912 5.56651631 5.76354488 5.28398479
5.6557368 5.6743244 5.38807535 5.64830176 5.75982736 5.7486748
5.73752224 5.32859503 5.78585
                                5.79328504 5.79328504 5.54049367
5.66688936 5.66317184 5.80072008 5.60740904 5.60369152 5.78956752
5.7114996 5.73380472 5.68919448 5.54421119 5.74123976 5.51818855
5.50703599 5.77469744 5.51447103 5.75239232 5.58882144 5.692912
5.76354488 5.76354488 5.44012063 5.75610984 5.78585
                                                       5.58882144
5.72265216 5.46242575 5.34718263 5.73380472 5.64830176 5.79328504
5.64458424 5.46242575 5.60369152 5.74495728 5.46614327 5.77841496
5.60740904 5.64830176 5.6743244 5.7672624 5.60369152 5.46614327
5.57023383 5.64830176 5.65201928 5.64830176 5.70034704 5.79700256
5.76354488 5.75239232 5.75239232 5.71521712 5.71893464 5.77841496
5.7486748 5.64830176 5.48844839 5.59625648 5.57766888 5.80072008
5.5813864 5.52934111 5.51447103 5.70778208 5.75982736 5.73752224
5.77469744 5.7486748 5.70406456 5.80072008 5.77097992 5.65945432
5.56651631 5.32859503 5.76354488 5.67060688 5.50331847 5.48101335
5.53305863 5.66688936 5.58882144 5.70034704 5.77097992 5.78585
5.57023383 5.71893464 5.64458424 5.66317184 5.692912
```

```
In [25]: print(en.score(x_test,y_test))
```

0.033163424256753005

Evaluation

```
In [26]: from sklearn import metrics
    print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
    print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))

Mean Absolute Error 0.5178352605495445
    Mean Squared Error 0.4464611658598944

In [27]: print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test, prediction))

Root Mean Squared Error: 0.6681774957748087
In []:
```