	EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO
	7839	KING	President		17-NOV-81	5000		10
	7698	BLAKE	MANAGER	7839	01-MAY-81	2850		30
	7782	CLARK	MANAGER	7839	09-JUN-81	1500		10
	7566	JONES	Manager	7839	02-APR-81	2975		20
	7654	MARTIN	Saleskan	7698	28-SEP-81	1250	1400	30
	7499	ALLEN	Salesman	7698	20-FEB-01	1600	300	30
		TURNER	Salebman	7698	00-SEP-81	1500	0	30
	7900	JAMES	CLERK	7698	03-DEC-61	950		30
	7521		Salesnan	7698	22-FEB-81	1250	500	30
	7902		ANALYST	7566	03-DEC-81	3000		20
	1	SKITH	CLERK	7902	17-DEC-80	800		20
	ı	SCOTT	ANALYST	7566	09-DEC-82	3000		20
T	7876	ADAMS	CLERK		12-JAN-83	1100		20
EPT	NO DNAME	LOC		7782	23-JAN-82	SALGRADE		10
						GRADE	LOSAL	HISAL
	10 ACCOUNTI	ng new	YORK					
	20 RESEARCE	DAL	LAS			1	700	1200
	30 SALES	CHI	CAGO			2	1201	1400
	40 OPERATIO	ns bos	TON I			. 3	1401	2000
						. 4	2001	3000
						-		

Tables Utilisées dans le Cours

Vous utiliserez principalement trois tables dans ce cours :

- La table EMP qui contient des informations sur tous les employés
- La table DEPT, qui contient des informations sur tous les départements
- La table SALGRADE, contenant des informations sur les différents niveaux de salaires en fonction de l'échelon

La structure et les données de chaque table sont données dans l'annexe B.

Exercices 1

- 1. Initialisez une session SQL*Plus avec votre ID et le mot de passe que votre instructeur vous a remis.
- 2. Les commandes SQL*Plus accèdent aux bases de données.
- L'ordre SELECT suivant sera convenablement exécuté.
 Vrai/Faux

```
SQL> SELECT ename, job, sal Salary
2 FROM emp;
```

4. L'ordre SELECT suivant sera convenablement exécuté. Vrai/Faux

```
SQL> SELECT *
2 FROM salgrade;
```

5. Cet ordre comporte trois erreurs-de code ; pouvez-vous les trouver ?

```
SQL> SELECT empno, ename
2 salary x 12 ANNUAL SALARY
3 FROM emp;
```

6. Affichez la structure de la table DEPT. Sélectionnez toutes les données de la table DEPT.

```
Name Null? Type

DEPTNO NOT NULL NUMBER(2)

DNAME VARCHAR2(14)

LOC VARCHAR2(13)
```

```
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON
```

Exercices 1

7. Affichez la structure de la table EMP. Créez une requête pour afficher le nom (enam e), le poste (job), la date d'embauche (hiredate) et le matricule (empno) de chaque employé, en plaçant le matricule en premier. Enregistrez votre ordre SQL dans un fic hier nommé p1q7.xql.

Name	Null	١?	Туре
EMPNO	NOT	NULL	NUMBER (4)
ENAME			VARCHAR2(10)
JOB			VARCHAR2(9)
MGR			NUMBER(4)
HIREDATE			DATE
SAL			NUMBER(7,2)
COMM			NUMBER (7,2)
DEPTNO			NOT NULL NUMBER (2)

8. Exécutez la requête que vous avez placée dans le fichier p1q7.sql.

EMPNO	O ENAME	JOB	HIREDATE	
7839	KING	PRESIDENT	17-NOV-81	
7698	BLAKE	MANAGER	01-MAY-81	
7782	CLARK	MANAGER		
7566	JONES	MANAGER		•
7654	MARTIN	SALESMAN	28-SEP-81	·
7499	ALLEN	SALESMAN	20-FEB-81	
7844	TURNER	SALESMAN	08-SEP-81	
7900	JAMES	CLERK	03-DEC-81	
7521	WARD	SALESMAN	22-FEB-81	
7902	FORD	ANALYST	03-DEC-81	
7369	SMITH	CLERK	17-DEC-80	
7788	SCOTT	ANALYST	09-DEC-82	
7876	ADAMS	CLERK	12-JAN-83	
7934	MILLER	CLERK	23-JAN-82	
14 row	vs selec		22 OAN-02	

Créez une requête pour afficher les différents types de poste existant dans la table EMP.

JOB
ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN

Si vous avez du temps, faites les exercices suivants :

Editez p1q7.sql. Donnez respectivement les noms suivants aux en-têtes de colonne :
 Emp #, Employee, Job, et Hire Date. Exécutez à nouveau votre requête.

Emp #	Employee	Job	Hire Date
7839	KING	PRESIDENT	17-NOV-81
769B	BLAKE	MANAGER	01-MAY-81
7782	CLARK	MANAGER	09-JUN-81
7566	JONES	MANAGER	02-APR-81
7654	MARTIN	SALESMAN	28-SEP-81
7499	ALLEN	SALESMAN	20-FEB-81
7844	TURNER	SALESMAN	08-SEP-81
7900	JAMES	CLERK	03-DEC-81
7521	WARD	SALESMAN	22-FEB-81
7902	FORD	ANALYST	03-DEC-81
7369	SMITH	CLERK	17-DEC-80
7788	SCOTT	ANALYST	09-DEC-82
7876	ADAMS	CLERK	12-JAN-83
7934	MILLER	CLERK	23-JAN-82
14 row	vs selected	ì.	
			23-JAN-82

Exercices 1

11. Affichez le nom concaténé avec le poste en les séparant par une virgule suivie d'un espace, puis donnez comme titre à la colonne Employee and Title.

Employee and Title KING, PRESIDENT BLAKE, MANAGER CLARK, MANAGER JONES, MANAGER MARTIN, SALESMAN ALLEN, SALESMAN TURNER, SALESMAN JAMES, CLERK WARD, SALESMAN FORD, ANALYST SMITH, CLERK SCOTT, ANALYST ADAMS, CLERK MILLER, CLERK 14 rows selected.

Si vous souhaitez aller plus loin dans la difficulté, faites l'exercice suivant :

. 12. Créez une requête pour afficher toutes les données de la table EMP dans une seule colonne d'affichage. Séparez chaque colonne par une virgule. Nommez la colonne d'affichage THE_OUTPUT.

```
THE_OUTPUT
7839, KING, PRESIDENT, , 17-NOV-81, 5000, , 10
7698, BLAKE, MANAGER, 7839, 01-MAY-81, 2850, , 30
7782, CLARK, MANAGER, 7839, 09-JUN-81, 2450, , 10
7566, JONES, MANAGER, 7839, 02-APR-81, 2975, , 20
7654, MARTIN, SALESMAN, 7698, 28-SEP-81, 1250, 1400, 30
7499, ALLEN, SALESMAN, 7698, 20-FEB-81, 1600, 300, 30
7844, TURNER, SALESMAN, 7698, 08-SEP-81, 1500, 0, 30
7900, JAMES, CLERK, 7698, 03-DEC-81, 950, ,30
7521, WARD, SALESMAN, 7698, 22-FEB-81, 1250, 500, 30
7902, FORD, ANALYST, 7566, 03-DEC-81, 3000,,20
7369, SMITH, CLERK, 7902, 17-DEC-80, 800, ,20
7788, SCOTT, ANALYST, 7566, 09-DEC-82, 3000, , 20
7876, ADAMS, CLERK, 7788, 12-JAN-83, 1100, , 20
7934, MILLER, CLERK, 7782, 23-JAN-82, 1300, ,10
14 rows selected.
```

Présentation des Exercices

- Interrogation de données et modification de l'ordre des lignes affichées
- Restriction des lignes avec la clause WHERE
- Utilisation des guillemets dans les alias de colonne

_-27

Présentation des Exercices

Vous allez effectuer differents exercices faisant appel aux clauses WHERE et ORDER BY.

Exercices 2

1., Créez une requête destinee à afficher le nom et le salaire des employes gagnant plus de

Enregistrez l'ordre SQL créé dans un fichier appele p2q1.sql. Exécutez votre requête.

		remer appete p2q1.sql. Exécutez votre requête.
ENAME	SAL	
KING	5000	
JONES	2975	
FORD	3000	
SCOTT	3000	

Créez une requête destinée à afficher le nom et le numéro de département de l'employé dont . 2.

	ENAME	DEPTNO		1
i				Į
	JONES	20	·	
1				

Modifiez p2qI.sqI de manière à afficher le nom et le salaire de tous les employés dont le 3. salaire n'est pas compris entre \$1500 et \$2850. Enregistrez de nouvel ordre SQL dans un fichier appelé p2q3.sql. Exécutez cette requête.

ENAME	SAL	
KING	5000	
JONES	2975	
MARTIN	1250	
JAMES	950	
WARD	1250	
FORD	3000	
SMITH	800	
SCOTT	3000	
ADAMS	1100	
MILLER	1300	
lo rows	selected.	
	· ·	

Exercices 2

Africhez le nom, le poste et la date d'entree (hiredate) des employés embauchés entre le 20 février 1981 et le 1 mai 1981. Classez le résultat par date d'embauche croissante.

	ENAME	JOE	HIREDATE
1	ALLEN	SALESMAN	20-FEB-81
1	WARD	SALESHAN	02-FEB-81
	_ONES	MANAGER	02-APR-81
	FLAKE	MANAGER	U1-MAY-81
-			

5. Affichez le nom et le numéro de département de tous les employés des départements 10 et 30 classés par ordre alphabétique des noms.

	···
ENAME	DEPTNO
ALLEN	30
BLAKE	30
CLARK	lu
JAMES	30
KING	10
MARTIN	30
MILLER	10
TURNER	30
WARD	30
9 rows	selected.

6. Modifiez p2q3.sql pour afficher la liste des noms et salaires des employés gagnant plus de \$1500 et travaillant dans le département 10 ou 30. Nommez les colonnes Employée et Monthly Salary, respectivement. Enregistrez à nouveau votre ordre SQL dans un fichier appelé p2q6.sql. Réexécutez votre requête.

1		
	Employee	Monthly Salary
	KING	5000
	BLAKE	2850
	CLARK	2450
	ALLEN	1600

					_
\vdash	Ye	rc	IC.	$\rho \varsigma$	- /

7. Affichez le nom et la date d'embauche de chaque employé entré en 1982.

	ENAME	HIREDATE
- {		En. (a) 6) (c) (c) (c) (c) (c) (c)
	SCOTT	09-DEC-82
	MILLER	23-JAN-82

8. Affichez le nom et le poste de tous les employés n'ayant pas de manager.

```
ENAME JOB
-----
KING PRESIDENT
```

9. Affichez le nom, le salaire et la commission de tous les employés qui perçoivent des commissions. Triez les données dans l'ordre décroissant des salaires et des commissions.

ENAME	SAL	COMM
ALLEN	1600	300
TURNER	1500	0
MARTIN	1250	1400
WARD	1250	500

Si vous avez le temps, faites les exercices suivants :

10. Affichez le nom de tous les employés dont la troisième lettre du nom est un A.

ENAME
BLAKE
CLARK
ADAMS

11. Affichez le nom de tous les employés dont le nom contient deux L et travaillant dans le département 30 ou dont le manager est 7782.

ENAME			
ALLEN			
MILLER			

Exercices 2

Si vous voulez afler plus loin dans la difficulte, faites les exercices suivants :

Affichez le nom, le poste et le salaire de tous les 'CLERK' ou 'ANALYST' dont le salaire est différent de \$1000, \$3000 ou \$5000.

EHAME	JOB	JAL
JAMES	CLERK	950
SMITH	CLERK	800
ADAMS	CLERK	1100
MILLER	CLERK	1300

 Afficher le noin, le salaire et la commission de tous les employés dont le montant de commission est de plus de 10% supérieur au salaire. Enregistrez votre requête sous le nom p2q13.sql.

ENAME	SAL	COMM
MALPIN	1250	1400

Fonctions Mono-Ligne

Objectifs

A la fin de ce chapitre, vous saurez :

- Décrire différents types de fonctions SQL
- Utiliser les fonctions caractère, numériques et date dans les ordres SELECT
- Expliquer les fonctions de conversion

3-2

Objectifs

Les fenctions tendent l'instruction SELECT plus puissante en permettant de manipuler des valeurs de données. Ce chapitre est le premier de deux consacrés aux fonctions. Il explique en particulier les fonctions caractère, numériques et date, ainsi que les fonctions qui convertissent des données d'un certain type en un autre type, par exemple, des données de type caractère en données numériques.

Fonctions SQL

Fonctions SQL

Les fonctions représente it ue caractéristique très puissant de SQL et sont utilisées pour :

- Effectuer des calculs sur des données
- · Transformer des données
- Effectuer des calculs sur des groupes de lignes
- Formater des dates et des nombres pour l'affichage
- Convertir des types de données de colonnes

Les fonctions SQL acceptent les arguments et ramènent des valeurs.

Remarque: la plupart des fonctions SQL décrites dans ce chapitre sont spécifiques au SQL d'Oracle.

Deux Types de Fonctions SQL Fonctions Fonctions mono-ligne Fonctions multi-ligne

Fonctions SQL

Il existe deux types de fonctions :

- Les fonctions mono-ligne
- Les fonctions multi-ligne

Fonctions Mono-Ligne

Ces fonctions agissent sur une seule ligne à la fois et ramènent un seul résultat. Il existe plusieurs types de fonctions mono-ligne. Ce chapitre décrit les quatre suivantes :

- Caractère
- Numérique
- Date
- Conversion

Fonctions Multi-Ligne

Ces fonctions manipulent des groupes de lignes et ramènent un seul résultat par groupe de lignes.

Pour obtenir la syntaxe et la liste complète des fonctions disponibles, reportez-vous à Oracle 8 Server SQL Rejerence, Release 8

Fonctions Mono-Ligne

- Manipulent des éléments de données
- Acceptent des arguments et ramènent une valeur
- Agissent sur chacune des lignes rapportées
- Ramènent un seul résultat par ligne
- Peuvent modifier les types de données
- Peuvent être imbriquées

```
function_name (column expression, [arg1, arg2,...])
```

3-5

Fonctions Mono-Ligne

Les fonctions mono-ligne sont utilisées pour manipuler des éléments de données. Elles acceptent un ou plusieurs arguments et raménent une seule valeur par ligne issue de la requête. Un argument peut être l'un des éléments suivants :

- Une valeur constante utilisateur
- Une variable
- Un nom de colonne
- Une expression

uractéristiques des Fonctions Mono-Ligne

- Acceptent un ou plusieurs arguments.
- Agissent sur chacune des lignes issues de la requête.
- Ramènent un résultat par ligne.
- Peuvent ramener une valeur d'un type différent de celui mentionné.
- S'utilisent dans les clauses SELECT, WHERE, et ORDER BY.
- Peuvent être imbriquées.

Syntaxe:

function_name nom de la fonction

column nom d'une colonne de la base de données

expression chaîne de caractères ou expression calculée

arg1, arg2 argument utilisé dans la fonction

Le Langage SQL et l'Outil SQL*Plus 3-5

Fonction pno-Ligne

Ce chapitre présente les fonction mono-ligne suivantes :

- Fonctions caractère : elles acceptent des caractères en entrée et peuvent ramener des valeurs caractère ou numériques.
- Fonctions numériques : elles acceptent des nombres en entrée et ramènent des valeurs numériques.
- Fonctions date: elles opèrent sur des valeurs de type date et ramènent des valeurs de type date. Seule la fonction MONTHS_BETWEEN ramène une valeur numérique.
- Fonctions de conversion : elles convertissent une valeur d'un cortain type dans un autre type
- Fonctions générales
 - fonction NVL
 - fonction DECODE

Fonctions Caractère

Fonction caractère

Fonctions de conversion majuscules/minuscules

Fonctions de manipulation des caractères

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD ...

3-7

Fonctions caractère

Les fonctions mono-ligne caractère acceptent des données caractère en entrée et ramènent des données caractère ou numériques. Les fonctions caractère se divisent en deux groupes :

- Les fonctions de conversion majuscules/minuscules
- Les fonctions de manipulation des caractères

Fonction	Modification
LOWER(columnlexpression)	Convertit les caractères alphabétiques en minuscules
UPPER(columnlexpression)	Convertit les caractères alphabétiques en majuscules.
INITCAP(columnlexpression)	Convertit l'initiale de chaque mot en majuscule et les caractères suivants en minuscules.
CONCAT(column/lexpression/, column2lexpression2)	Concatène la première chaîne de caractère à la seconde. Equivaut à l'opérateur de concaténation (II).
SUBSTR(column\text{column\text{tenm},m[,n]})	Extrait une partie de la chaîne de caractères en commençant au caractère situé à la position <i>m</i> et sur une longueur de <i>n</i> caractères. Si <i>m</i> est une valeur négative, le décompte s'effectue dans le sens inverse (à partir du dernier caractère de la chaîne).
LENGTH(columnicspression) INSTR(columnicspression, n)	Si n est omis, tous les caractères jusqu'à la fin de la chaîne sont ramenés. Rangene le nombre de caractères d'une chaîne de caractères. Rangene une valeur égale à la position du caractère m.
LPAD(columnlespression, n, \(\frac{1}{2}\)string')	Complète une chaîne de caractère sur la gauche avec la chaîne 'xtring' pour parvenir à une longueur totale de n caractères.

Remarque : cette liste de fonctions caractère n'est pas complète :

Pour plus d'informations, reportez-vous à

Oracle8 Server SQL Reference, Release 8, "Character Functions."

Fonctions de Conversion Majuscules/Minuscules

Fonction	Résultat	
LOWER('Cours SQL')	cours sql Mirus an le	
UPPER('Cours SQL')	COURS SQL Maguale.	
INITCAP('Cours SQL')	Cours Sql	

3-8

Fonctions de Conversion Majorante de les

LOWER, UPPER, et INITCAP sold les des renedons qui modifient la casse.

- LOWER: Convertit tous les caractères d'une chaîne en minuscules
- UPPER : Convertit tous les caractères d'une chaîne en majuscules
- INITCAP : Convertit la première lettre de chaque mot en majuscule et les lettres suivantes en minuscules

```
The job title for King is president
The job title for Blake is manager
The job title for Clark is manager
```

14 rows selected.

- moderon des i onenons de

Conversion Majuscules/Minuscules

Afficher le matricule, le nom et le numéro de département de l'employé Blake.

```
SQL> SELECT empno, ename, deptno
2 FROM emp
3 WHERE ename = 'blake';
no rows selected
```

```
SQL> SELECT empno, ename, deptno
2 FROM emp
3 WHERE LOWER(ename) = 'blake';
```

EMPNO	ENAME	DEPTNO	
7698	BLAKE	30.	
	<u></u>		

3-9

Fonctions de Conversion Majuscules/Minuscules

L'exemple ci-dessus affiche le matricule, le nom et le numéro de département de l'employé BLAKE.

La clause WHERE du premier ordre SQL spécifie le nom de l'employé sous la forme 'blake'. Comme les données de la table EMP sont stockées en majuscules, il est impossible de trouver le nom correspondant dans la table EMP, et par conséquent de sélectionner des lignes.

La clause WHERE du second ordre SQL indique que le nom d'employé dans la table EMP doit être converti en minuscules pour être ensuite comparé à 'blake'. Les deux noms étant maintenant en minuscules, la ligne correspondante est ramenée. La clause WHERE, réécrite de la manière suivante, produit le même résultat :

```
... WHERE ename = 'BLAKE'
```

Le nom de l'employé apparaît à l'affichage tel qu'il est stocké dans la base de données. Pour obtenir le nom avec seulement l'initiale en majuscule, il suffit d'utiliser la fonction INITCAP dans l'ordre SELECT.

```
SQL> SELECT empno, INITCAP(ename), deptno
2 FROM emp
3 WHERE LOWER(ename) = 'blake';
```

Fonctions de Manipulation des Caractères

Manipulation de chaînes de caractères

Fonction	Résultat
CONCAT('Une', 'Chaîne')	UneChaîne
SUBSTR('Chaîne',1,3)	Cha
LENGTH('Chaîne')	6
INSTR('Chaîne', 'a')	3
LPAD(sal,10,'*')	*****5000

3-10

Fonctions de Manipulation des Caractères

CONCAT, SUBSTR, LENGTH, INSTR et LPAD sont les cinq fonctions de manipulatio. Jes caractères étudiées dans ce chapitre.

- CONCAT : Concatène des valeurs. Le nombre de paramètres avec CONCAT est limité à deux.
- SUBSTR : Extrait une chaîne de longueur déterminée.
- LENGTH: Fournit la valeur numérique correspondant au nombre de caractères d'une chaîne.
- INSTR: Fournit la valeur numérique correspondant à la position d'un caractère.
- LPAD : Ajoute des caractères de rempli sage à la gauche d'une valeur alphanumérique qui sera ainsi cadrée à droite.

Remarque : la fonction de manipulation des caractères RPAD ajoute des caractères de rampiissage à la droite d'une valeur al plus amérique qui sera ainsi cadrée à gauche.

Utilisation des Fonctions de Manipulation des Caractères

```
SQL> SELECT ename, CONCAT (ename, job), LENGTH(ename),

2 INSTR(ename, 'A')

3 FROM emp

4 WHERE SUBSTR(job, 1,5) = 'SALES';
```

CONCAT (ENAME, JOB) LENGTH (ENAME)	INSTR(ENAME, 'A')
MARTINSALESMAN 6	
	4
MINDSIDO OS E PORCESSO - COMO N	1
WARDSALESMAN 4	· · · · · · · · · · · · · · · · · · ·
	MARTINSALESMAN 6 ALLENSALESMAN 5 TURNERSALESMAN 6

3-11

Fonctions de Manipulation des Caractères

L'exemple ci-dessus affiche le nom des employés concaténé à leur poste, le nombre de caractères du nom, ainsi que la position de la lettre A dans leur nom et ce, pour tous les employés d'ait le poste commence par la chaîne 'SALES'.

Exemple

Modifier l'ordre SQL ci-dessus afin d'afficher les données concernant les employés dont le nom se termine par un N.

```
SQL> SELECT ename, CONCAT(ename, job), LENGTH(ename),
INSTR(ename, 'A')

2 FROM emp

3 WHERE SUBSTR(ename, -1, 1) = 'N';
```

ENAME	CONCAT(ENAME, JOB)	LENGTH (ENAME)	INSTR(ENAME,'A')	
MARTIN ALLEN	MARTINSALESMAN ALLENSALESMAN	ົ່ວ 5	2 1	

 ROUND : Arrondit la valeur à la précision spécifiée

HOLIOTIO EXAMINATION IN GUA

- TRUNC : Tronque la valeur à la précision spécifiée

3-12

Fonctions numériques

Les fonctions numériques utilisent et ramènent des valeurs numériques. Cette section décrit quelques-unes de ces fonctions.

Fonction	Modification
ROUND(columnlexpression, n)	Arrondit la valeur de la colonne ou de l'expression. précision de 10 ⁻ⁿ . Si n est positif, le nombre sera arrondi à n décimales.
	Si n est omis, il n'y aura pas de décimale.
	Si n est négatif, l'arrondi portera sur la partie du nombre subset a garobe de la virgul a taine, o intoine A
TRUNC(columnlexpression,n)	Tronque la valeur de la colonne ou de l'expression d'une précision de 10 m.
	Si n est positif, le nombre sera tronqué à n décimal is,
	Si n est omis, il n'y aura pas de décimals.
	Si n est négatif, ce sera la partie du nombre située à gauche
	de la virgule (dizaine, centaine) qui sera tronquée.
MOD(m,n)	Ramène le reste de la division de m par n .

Remarque: Cette liste de fonctions numériques n'est pas exhaustive.

Pour plus d'informations, reportez-vous à Oracle8 Server SQL Reference, Release 8, "Number Functions."

Utilisation de la Fonction ROUND

Affichage de la valeur 45.923 arrondie au centième, à 0 décimale et à la dizaine supérieure.

```
SQL> SELECT ROUND(45.923,2), ROUND(45.923,0),
2 ROUND(45.923,-1)
3 FROM DUAL;
```

```
ROUND(45.923,2) ROUND(45.923,0) ROUND(45.923,-1)
45.92 46 50
```

3-13

Fonction ROUND

La fonction ROUND arrondit la valeur d'une colonne ou d'une expression à une précision égale à 10th. Lorsque n vaut 0 ou est absent, la valeur est arrondie à zéro décimale. Si n vaut 2, la valeur est arrondie à deux décimales (soit au centième). Inversement, si n vaut 2, la valeur est arrondie de deux chiffres à gauche de la virgule, soit à la centaine.

La fonction ROUND peut aussi être utilisée avec les fonctions date. Nous verrons quelques exemples un peu plus loin dans ce chapitre.

La table DUAL est une table factice. Nous y reviendrons ultérieurement.

Utilisation de la Fonction TRUNC

Aftichage de la valeur 45.925 tronquée au centième, à 0 décimale et à la dizaine.

```
SQL> SELECT TRUNC(45.923,2), TRUNC(45.923),

2 TRUNC(45.923,-1)

3 FROM DUAL;
```

```
TRUNC (45.923,2) TRUNC (45.923) TRUNC (45.923,-1)
```

3-14

Fonction TRUNC

La fonction TRUNC tronque la valeur de la colonne ou de l'expression à une précision égale à 10⁻ⁿ.

La fonction TRUNC fonctionne avec des arguments identiques à ceux de la fonction ROUND. Lorsque n vaut 0 ou est absent, la valeur est tronquée à zéro décimale. Si n vaut 2, la valeur est tronquée à deux décimales (soit au centième). Inversement, si n vaut -2, la valeur est tronquée de deux chiffres à gauche de la virgule, soit à la centaine.

Comme la fonction ROUND, la fonction TRUNC peut anssi être utilisée avec les fonctions du ...

Utilisation de la Fonction MOD

Calculer le reste de la division salaire par commission pour l'ensemble des employés ayant un poste de vendeur.

```
SQL> SELECT ename, sal, comm, MOD(sal, comm)

2 FROM emp

3 WHERE job = 'SALESMAN';
```

ENAME	SAL	COMM MOD(SAL,COMM)
MARTIN	1250	1400 1250
ALLEN	1600	300 100
TURNER	1500	0 1500
WARD	1250	500 250

3-15

Fonction MOD

La fonction MOD calcule le reste de la division d'une valeur! par une valeur?. L'exemple cidessus donne le reste de la division du salaire par la commission, pour tous les employés occupant un poste de vendeur (SALESMAN).

Utilisation des Dates

- Oracle stocke les dates dans un format numérique interne : siècle, année, mois, jour, heures, minutes, secondes.
- Le format de date par défaut est DD-MON-YY.
- La fonction SYSDATE ramène la date et l'heure courante.
- DUAL est une table factice qu'on peut utiliser pour visualiser SYSDATE.

^·*;

Format de Date Oracle

Oracle stocke les dates dans un format numérique interne représentant le siècle, l'année, le mois, le jour, les heures, les minutes et les secondes.

Le format d'entrée et d'affichage par défaut des dates est DD-MON-YY. Les dates valides pour Oracle sont comprises entre le 1er janvier 4712 av.J.-C. et le 31 décembre 9999 apr.J.-C.

SYSDATE

SYSDATE est une fonction date qui permet d'obtenir la date et l'heure courante. S (SDAT même façon qu'un nom de colonne quelconque. Il est usuel d'interroger la table "factice" DUAL.

DUAL

La table DUAL appartient à l'utilisateur SYS, mais tous les utilisateurs peuvent y accéder. Olle conficut une seule colonice, DUMNON, et line à d'effique contenant la vileur N. La table DUAL est propose vous souhailes d'une valeur vile scule fois, par exemple, la vale d'une constante, d'une procedonne ou d'une expression qui ne dépend pas d'une table de données utilisateur.

Exemple

Afficher la date contante au rac yen de la table DUAL.

sç	2正>	SELECT	SYSDATE	
	2	FROM	DUAL;	

Opérations Arithmétiques sur les Dates

- Ajout ou soustraction d'un nombre à une date pour obtenir un résultat de type date.
- Soustraction de deux dates afin de déterminer le nombre de jours entre ces deux dates.
- Ajout d'un nombre d'heures à une date en divisant le nombre d'heures par 24.

3-17

Opérations Arithmétiques sur les Dates

Comme la base de donnée stocke les dates en tant que données numériques, il est possible d'effectuer des calculs tels que l'addition ou la soustraction au moyen d'opérateurs arithmétiques. Il est possible d'ajouter et soustraire des constantes numériques aussi bien que des dates.

Les opérations possibles sont les suivantes :

Opération	Résultat	Description
date + nombre de jours	Date	Ajoute un certain nombre de jours à une date
date - nombre de jours	Date	Soustrait un certain nombre de jours d'une date
date - date	Nombre de jours	Soustrait une date d'une autre
date + (nombre d'heures)/24	Date	Ajoute un certain nombre d'heures à une date

Utilisation d'Opérateurs Arithmétiques avec les Dates

```
SQL> SELECT ename, (SYSDATE-hiredate)/7 WEEKS
2 FROM emp
3 WHERE deptno = 10;
```

ENAME	WEEKS	
KING	830.93709	•
CLARK	853.93709	
MILLER	821.36566	

3-18

Opérations Arithmétiques sur les Dates (suite)

L'exemple de la diapositive affiche le nom et le nombre de semaines d'ancienneté de tous les employés du département 10. La date courante (SYSDATE) est soustraite de la date d'embauche de l'employé, puis le résultat est divisé par 7 pour obtenir le nombre de semaines d'ancienneté.

Remarque : SYSDATE est une fonction SQL qui donne l'heure et la date courantes. Vos résultats peuvent donc être différents de ceux de l'exemple

Fonctions Date

FONCTION	DESCRIPTION
MONTHS BETWEEN	Nombre de mois situés entre deux dates
ADD_MONTHS	Ajoute des mois calendaires à une date
NEXT_DAY	Jour qui suit la date spécifiée
LAST_DAY	Dernier jour du mois
ROUND	Arrondit une date
TRUNC	Tronque une date

3-19

Fonctions Date

Les fonctions date s'appliquent aux données de type DATE. Toutes les fonctions date ramènent une valeur de type DATE, à l'exception de MONTHS_BETWEEN qui ramène une valeur numérique.

- MONTHS_BETWEEN(date1, date2): Donne le nombre de mois situés entre une date (date1) et une autre date (date1). Le résultat peut être positif ou négatif. Si date1 est postérieure à date2, le résultat est positif; si date1 est antérieure à date2, le résultat est négatif. La partie non entière du résultat représente une portion de mois.
- ADD_MONTHS(date, n) : Ajoute un nombre n de mois à une date, n doit être un nombre entier et peut être négatif.
- NEXT_DAY(date, 'char'): Fournit la date de la première occurrence du jour spécifié ('char') après la date fournie, char peut être, soit un numéro de jour de semaine, soit une chaîne de caractères.
- LAST_DAY(date): Indique la date du dernier jour du mois auquel appartient la date indiquée.
- ROUND(date[.'fint']) : Ramène la date, arrondie à l'unité précisée par le modèle de format fint. Lorsque fint est omis, la date est arrondie est arrondie au jour le plus proche.
- TRUNC(date[, 'fnu']): Ramène la date, tronquée à l'unité précisée par le modèle de format fint. Lorsque fint est omis, la date est tronquée au jour.

Cette liste des fonctions date n'est pas exhaustive. Les modèles de format sont expliqués dans la suite de ce chapitre. Le mois ou l'année sont des exemples de modèles de format.

Utilisation des Fonctions Date

- MONTHS_BETWEEN ('01-SEP-95'.'11-JAN-54')
 19.6774194
- ADD_MONTHS ('11-JAN-94',6) → '11-JUL-94'
- NEXT_DAY ('01-SEP-95', 'FRIDAY') -- '08-SEP-95'
- LAST_DAY('01-SEP-95') → '30-SEP-95'

3-20

Fonctions Date (suite)

Pour tous les employés ayant moins de 200 mois d'ancienneté, affichez les données suivantes : le matricule, la date d'embauche, le nombre de mois d'ancienneté, la date correspondant à la révision de salaire après 6 mois , le premier vendredi suivant la date d'embauche et le dernier jour du mois d'embauche.

```
EMPNO HIREDATE TENURE REVIEW NEXT_DAY( LAST_DAY( 7639 17-NOV-81 192.24794 17-MAY-32 3)-NOV-81 30-NOV-81 7698 01-MAY-81 198.76407 01-NOV-81 08-MAY-81 31-MAY-81 ...

11 rows selected.
```

Utilisation des Fonctions Date

- ROUND('25-JUL-95', 'MONTH') → 0.1-AUG-95
- ROUND('25-JUL-95', 'YEAR') → 01-JAN-96
- TRUNC('25-JUL-95', 'MONTH') → 01-JUL-95
- TRUNC('25-JUL-95','YEAR') → 01-JAN-95

3-21

Fonctions Date (suite)

Les fonctions ROUND et TRUNC peuvent être utilisées avec des valeurs de type numérique ou date. Utilisées avec des dates, ces fonctions arrondissent ou tronquent au modèle de format spécifié. Vous pouvez par conséquent arrondir les dates au premier jour du mois ou de l'année les plus proches.

Exemple

Afficher les dates d'embauche de tous les employés ayant commencé en 1987. Affichez le matricule, la date d'embauche et le mois de début d'activité en utilisant les fonctions ROUND et TRUNC.

```
SQL> SELECT empno, hiredate,

2 ROUND(hiredate, 'MONTH'), TRUNC(hiredate, 'MONTH')

3 FROM emp

4 WHERE hiredate like '%87';
```

```
EMPNO HIREDATE ROUND(HIR TRUNC(HIR
7783 19-APR-87 01-MAY-8T 01-APR-87
7876 23-MAY-87 01-JUN-87 01-MAY-87
```

Fonctions de Conversion

3-44

Fonctions de Conversion

Il est possible d'utiliser des types de données ANSI, DB2 et SQL/DS, en plus des types de données Oracle, pour définir les colonnes d'une table dans une base de données Oracle8. Toutefois, Oracle8 Server convertit en interne ces types de données en types de données Oracle8.

Dans certains cas, OracleS peut accepter des données d'un type différent de celui normalement attendu, sous réserve qu'Oracle Sin er puisse affectuer une conversion unionatique de cap données. Cette conversion un passide d'année un tréalisée, soit de manière importue par Oracle? Server, soit de manière explicite par l'utilisateur.

Les conversions implicites de types de données fonctionnent selon des règles que nous allons expliquer dans les deux dia; chives suivantes.

Les conversions explicites de types de données en un autre type. En principe, le format de la convertissent une valeur d'un type de données en un autre type. En principe, le format de la fonction suit la convention datatype TO datatype, le premier datatype étant le type de données d'entrée, le second datatype étant le type de données restitué.

Remarque: Bien que la conversion implicite des types de données soit possible, il est recommandé d'effectuer des conversions explicites afin d'assurer une meilleure efficacité des ordres SQL.

Conversion de Types de Données Implicite

Pour les affectations, Oracle effectue automatiquement les conversions suivantes

De	Vers
VARCHAR2 ou CHAR	NUMBER
VARCHAR2 ou CHAR	DATE
NUMBER	VARCHAR2
DATE	VARCHAR2

3-23

Conversion de Types de Données Implicite

Pour les affectations, Oracle8 Server peut convertir automatiquement les types de données suivants :

- VARCHAR2 ou CHAR vers NUMBER
- VARCHAR2 ou CHAR vers DATE
- NUMBER vers VARCHAR2
- DATE vers VARCHAR2

L'affectation réussit si Oracle Server parvient à convertir le type de données de la valeur à affecter dans le type de données de la cible de l'affectation.

Conversion de Types de Données Implicite

Pour l'evaluation d'expressions, Oracle effectue automatiquement les conversions suivantes

De	Vers
VARCHAR2 ou CHAR	NUMBER
VARCHAR2 ou CHAR	DATE

3-74

Conversion de Types de Données Implicite

Pour l'évaluation d'expressions. Oracle Server peut convertir automatiquement les valeurs suivantes :

- VARCHAR2 ou CHAR vers NUMBER
- VARCHAR2 ou CHAR vers DATE

Pour des raisons de lisibilité, de paramore de d'évocation ultérieure des : misseus Ornele, il est recommandé d'utiliser la conversion explicite des types de données.

Remarque : les conversions CHAN vers NUMBER de l'ont pour l'adjuste le requelle nérobre reput par la chaîne de caractères est deux l'encoprorps de l'ARA de PATE de fou donn chaîne de caractères est dans le forme, par dés det l'approprié de l'ARA de l'ARA de fou donn chaîne de caractères est dans le forme, par dés det l'approprié de l'ARA de l'

Données Explicite

3-25

Conversion de Types de Données Explicite

SQL offre trois fonctions pour convertir une valeur d'un certain type de données dans autre type.

Fonction	Résultat
TO_CHAR(numberldate,['fint'])	Convertit un nombre ou une date en une chaîne de
	caractères de type VARCHAR2 et de format fint.
TO_NUMBER(char)	Convertit une chaîne de caractères en un nombre.
TO_DATE(char,['fint'])	Convertit une chaîne de caractères représentant une
I.	date au format fint en une date Oracle. Lorsque fint est
	omis, le format est DD-MON-YY.

Remarque: cette liste de fonctions de conversion n'est pas exhaustive.

Pour plus d'informations, reportez-vous à

Oracles Server SQL Reference, Release 8, "Conversion Functions."

Utilisation de la Fonction TO_CHAR avec les Dates

TO_CHAR(date, 'fmt')

Le modèle de format :

- Doit être placé entre simples quotes et différencie les majuscules et minuscules.
- Peut inclure tout élément valide de format date
- Comporte un élément fm qui supprime les espaces de reinplissage ou les zéros de tete
- Est séparé de la valeur date par une virgule

Affichage d'une Date dans un Format Spécifique

Nous avons vu que Oracle Server affiche les dates au format DD-MON-YY. La fonction TO-CHAR permet de convertir ces dates en un autre format de votre choix.

Conseils

- Le modèle de format doit être placé entre simples quotes et différencie les majuscules et minuscules.
- Il peut comprendre tout élément valide de format date. N'oubliez pas de séparer la date et le modèle de format par une virgule.
- Les noms de jours et de mois sont a commiquen ont commiétés y at des comme.
- Pour supprimer les espates le remplisar genn l'esté de la les milleux l'élèmes, propriésage
 signifie fill mode, ou mode de emplisange
- La colonne résultante à une largeur par défaut de 80 caractères.
- Vous pouvez regimensionner la largeur de la colonne résultante avec la Communication SQL*Plus COLCMN.

```
SQL> SELECT empno, TO_CHAR(hiredate, 'MM/YY') Month_Hired
2 FROM emp
3 WHERE ename = 'BLAKE';
```

Wodeles de Format Date

YYYY	Année exprimée avec 4 chiffres
YEAR	Année exprimée en toutes lettres
ММ	Mois exprimé avec 2 chiffres
MONTH	Mois exprimé en toutes lettres
DY	3 premières lettres du nom du jour
DAY	Jour exprimé en toutes lettres

3-27

Eléments de Format de Date Valides

Elément	Description
SCC on CC	Siècle: le S fait précéder les dates av J.C. d'un signe -
YYYY ou SYYYY	Année: le S fait précéder les dates av. J.C. d'un signe -
YYY ou YY ou Y	Les 3, 2 ou 1 derniers chiffres de l'année
Y.YYY	Année avec une virgule insérée
TYYY, IYY, IY, I	Les 4, 3, 2 ou 1 derniers chiffres de l'année (norme ISO)
SYEAR on YEAR	Année en toutes lettres ; le S fait précéder les dates av. J.C. d'un signe -
BC ou AD	Respectivement, av. JC ou apr. JC
B.C. ou A.D.	Respectivement av J.C. ou apr. J.C.
0	Numéro du trimestre
ММ	Mois exprime avec 2 chiffres
MONTH	Mois en toutes lettres complété par des blanes à concurrence de 9 caractères
MON	3 premières leures du nom du mois
RM	Numéro du mois en chiffres romaios
WW on W	Numéro de la semaine dans l'année ou le mois
DDD on DD on D	Numéros du jour dans l'année, le mois ou la semaine
DAY	Nom du jour exprimé en toutes lettres et complété par des blancs à concurrence de 9 caractères
DY	3 premières lettres du nom du jour
J	Jour du calendrier Julien ; nombre de jours depuis le 31 décembre 4713 av J.C.

Le Langage SQL et l'Outil SQL*Plus 3-27

Modèles de Format pour les Dates

 Les éléments horaires formatent la partie horaire de la date.

HH24:MI:SS AM

15:45:32 PM

• Pour ajouter des chaînes de caractères, les placer entre guillemets.

DD "of" MONTH

12 of OCTOBER

 Différents suffixes existent pour les nombres.

ddspth

fourteenth

3-23

Formats Horaires

Utilisez les formats suivants pour afficher des informations et littéraux de type heure, et pour transformer des valeurs numériques en caractères.

Elément	Description
AM ou PM Respectivement, matin ou après-midi	
A.M. ou P.M.	Respectivement, matin ou après-midi avec points
HH ou HH12 ou HH24	iser Adujou, priver and à 12) ou heure (U.: 2
MI	Minutes (0 à 59)
SS	Secondes (0 à 59)
SSSSS	Secondes and Authority 30,36345

Autres Formats

Elément	Description
1:	La ponetuation est reproduite dans le résultat
" of the "	Les chaînes entre guillemets sont reproduites telles quelles

Ajout de Suffixes pour Modifier L'Affichage des Données Numériques

Elément	Description
TH	Nombre ordinal (per exemple, DDTH pour 4TH)
SP	Nombre en toutes lettres (par exemple, DDSP pour FOUR)
SPTH ou THSP	Nombres ordinaux en toutes lettres (par exemple, DDSPTH pour FOURTH)

Format de Date RR

Data Cartaini		
	Format RR	Format YY
27-OCT-95	1995	1995
27-OCT-17	2017	1
	1	1917
1 ' ' '		2017
27-001-95	1995	2095
	Date Spécifiée 27-OCT-95 27-OCT-17 27-OCT-17 27-OCT-95	27-OCT-95 1995 27-OCT-17 2017 27-OCT-17 2017

		Si l'année spécifiée	e est située entre
Cil		0-49	50-99
Si les 2 chiffres de l'année en cours sont	0-49	La nouvelle date appartient au siècle courant.	La nouvelle date appartient au siècle précédent.
	50-99	La nouvelle date appartient au siècle suivant.	La nouvelle date appartient au siècle courant.

3.29

Elément de Format de Date RR

Le format de date RR est identique à l'élément YY, mais permet en outre de changer de siècle. Vous pouvez l'utiliser à la place du format YY pour faire varier le siècle en fonction des 2 chiffres de l'année spécifiée et des deux derniers chiffres de l'année en cours. Le tableau de la diapositive résume le fonctionnement de l'élément RR.

Année en cours 1994	Date spécifiée 27-OCT-95	Interprétée RR 1995	Interprétée YY
1994	27-OCT-17	2017	1917
2001	27-OCT-17	2017	2017

Utilisation de la Fonction TO_CHAR avec les Dates

```
SQL> SELECT ename,

2 TO CHAR(hiredate, 'fmDD Month YYYY') HIREDATE

3 FROM emp;
```

ENAME	HIREDATE	
KING	17 November 1981	
BLAKE	1 May 1981	
CLARK	9 June 1981	
JONES	2 April 1981	
MARTIN	28 September 1981	
ALLEN	20 February 1981	
14 rows s	selected.	

3-30

Utilisation de la Fonction TO_CHAR avec les Dates

L'ordre SQL ci-dessus affiche le nom et la date d'embauche de tous les employés. La date est affichée sous la forme 17 November 1981.

Exemple

Modifier l'exemple ci-dessus afin d'obtenir l'affichage de la date dans le format suivant : Seventh of February 1981 08:00:00 AM.

```
SQL>SELECT ename,

2 TO_CHAR(hiredate, 'fmDdspth "of" Month YYYY fmHH:MI:SS AM')

3 HIREDATE

4 FRC.1 emp;
```

```
ENAME HIREONIA

-
KING Seventeenth of November 1981 12:00:00 AM
BLAKE First of May 1981 12:00:00 AM
...
14 rows selected.
```

Remarquez que le mois suit le modèle de format spécifié (INITCAP).

TO_CHAR avec les Nombres

TO_CHAR(number, 'fmt')

Utilisez les formats suivants avec TO_CHAR pour afficher un nombre sous la forme d'une chaîne de caractère.

9	Représente un chiffre
0	Force l'affichage du zéro
\$	Place un signe dollar flottant
L	Utilise le symbole monétaire local flottant
	Imprime un point décimal
,	Imprime un séparateur de milliers

3-31

Utilisation de la Fonction TO_CHAR avec les Nombres

Pour pouvoir afficher des valeurs numériques sous la forme de chaînes de caractères, il convient de convenir ces nombres en données de type caractère avec la fonction TO_CHAR, qui transforme une valeur de type NUMBER en un type VARCHAR2. Cette technique est très utile pour la concaténation.

Eléments de Format Numérique

Pour convertir un nombre en un type caractère, utilisez les éléments suivants :

Elément	Description	Exemple	Résultat
9	Le nombre de 9 désermine la largeur maximum de l'affichage	999999	1234
<u>n</u>	Africhage des zéros de gauche	000000	001234
\$	Signe dollar florran:	\$99999	\$1234
<u> </u>	Symbole monéraire local flottont	L999999	FF1234
	Point décimal à l'emplacement spécifié	999999 99	1234.00
·	Séparateur de milliers à l'emplacement spécifié	999,999	1.234
<u> </u>	Signe moins à droit : (valeurs négatives)	999999MI	1537-
PR	Place les nombres négatif : entre crochets angulaires.	999999PR	<1234>
EEEE	Notation scientifique (indiquer obligatoirement quatre E)	9999EEEE	1.234E-03
ν	Multiplie par 10 n fais n = nombre de chiffres après V)	9999V99	153700
3	N'affiche pas les réces non significatifs	B0000 00	1234.00

Utilisation de la Fonction TO_CHAR avec les Nombres

```
SQL> SELECT TO_CHAR(sal,'$99,999') SALARY
2 FROM emp
3 WHERE ename = 'SCOTT';
```

```
$3,000
```

3 ...

Conseils

- Oracle Server affiche une chaîne de signes dièse (#) lorsque le nombre de chiffres de la valeur excède le nombre de chiffres spécifié dans le modèle de format.
- Oracle Server arrondit la valeur décimale au nombre de décimales spécifié dans le modèle de format.

MUDELLOL TO DATE

 Conversion d'une chaîne de caractères en format numérique avec la fonction TO_NUMBER

TO_NUMBER (char)

 Conversion d'une chaîne de caractères en format date avec la fonction TO DATE

TO_DATE(char[, 'fmt'])

3-33

Fonctions TO_NUMBER et TO_DATE

Vous pouvez convertir une chaîne de caractères en format numérique ou date en utilisant respectivement les fonctions TO_NUMBER ou TO_DATE. Pour TO_DATE, le modèle de format à spécifier est basé sur les éléments de format déjà expliqués. Ce modèle de format doit décrire le format de la chaîne fournie en entrée,

Exemple

Afficher le nom et la date d'embauche de tous les employés entrés le "February 22, 1981".

```
SQL> SELECT ename, hiredate
 2
```

FROM emp

WHERE hiredate = TO_DATE('February 22, 1981', 'Month dd, YYYY')

EHAME HIREDATE WARD 22-FEB-81

Fonction NVL

Converill une valeur NULL et, une valeu, réelle

- Fonctionne avec les données de type date, caractère et numérique.
- Les types de données doivent correspondre
 - NVL(comm,0)
 - NVL(hiredate,'01-JAN-97')
 - NVL(job,'No Job Yet')

3-34

La fonction NVL

Pour transformer une valeur NULL en une valeur réelle, on utilise la fonction NVL.

Syntaxe

	NVL	(expr1,	expr2)	
•	où: une	exprl	est l'expression ou la valeur source suceptible de contenir valeur NULL	
		expr2	est la valeur de remplacement pour 's valeur NULL	

La fonction NVL permet de convertir n'importe quel type de données, mais toutefois, la valeur de remplacement doit être de même type que la valeur de l'expression expr1.

Conversions NVL pour Divers Types de Données

Type de données	Exemple de conversion
NUMBER	NVL(number_column,9)
DATE	NVL(date_column, '01-JAN-95')
CHAR ou VARCHAR2	NVL(character column, 'Unavailable')

Utilisation de la Fonction NVL

```
SQL> SELECT ename, sal, comm, (sal*12)+NVL(comm,0)
2 FROM emp;
```

ENAME	SAL	COMM (SAL*12)+NVL(COMM,0))
KING BLAKE CLARK JONES MARTIN ALLEN 14 rows	5000 2850 2450 2975 1250 1600 selected.	60000 34200 29400 35700 1400 300))):)

3-35

Fonction NVL

Pour calculer la rémunération annuelle de chaque employé, il faut multiplier son salaire mensuel par 12 puis ajouter la commission au résultat obtenu.

2 FROM	emp;
ENAME	JOB (SAL*12)+COMM
KING BLAKE CLARK JCHES	PRESIDENT MANAGER MANAGER MANAGER
MARIIN 14 rows sel	SALESMAN 15400 lected.

Notez que le résultat de ce calcul de rémunération annuelle est renseigné uniquement pour les employés qui perçoivent une commission. Lorsqu'un argument dans une expression arithmétique est NULL, le résultat de cette expression sera NULL. Pour calculer la rémunération annuelle de tous les employés, il faut convertir la valeur NULL en une valeur numérique avant d'appliquer l'opérateur arithmétique. Dans l'exemple ci-dessus, la fonction NVL est utilisée pour convertir les valeurs NULL en zéro.

Le Langage SQL et l'Outil SQL*Plus 3-35

Fonction DECODE

Facilite les recherches conditionnelles en jouant le rôle de CASE ou IF-THEN-ELSE

La Fonction DECODE

La fonction DECODE permet de décoder les expressions de la même manière que l'ordre logique IF-THEN-ELSE utilisé dans de nombreux langages. Elle décode l'expression après l'avoir comparée à chacune des valeurs de recherche (search). Si l'expression est identique à search, le résultat (result) est ramené.

Si la valeur par défaut (definit) est omina un librient une valeur NULL chaque fois qui la colonne ou expression ne correspond a la cui la meur search.

Utilisation de la Fonction DECODE

```
SQL> SELECT job, sal,
 2
            DECODE (job, 'ANALYST'
                                     SAL*1.1,
 3
                         'CLERK',
                                    SAL*1.15,
 4
                         'MANAGER', SAL*1.20,
 5
                                  SAL)
 б
                   REVISED_SALARY
 7
    FROM
            emp;
```

JOB	SAL	REVISED_SALARY	
PRESIDENT MANAGER MANAGER	5000 2850 2450	5000 3420 2940	
14 rows sele	cted. *		

3-37

Utilisation de la Fonction DECODE

Dans l'ordre SQL ci-dessus, la valeur de JOB est décodée. Si la valeur de JOB correspond à ANALYST, alors l'augmentation de salaire est de 10%; si elle correspond à CLERK, elle est de 15% et si elle correspond à MANAGER, elle est de 20%. Il n'y a aucune augmentation de salaire pour toutes les autres valeurs de JOB.

Cette instruction correspondrait à l'ordre IF-THEN-ELSE suivant :

```
IF job = 'ANALYST' THEN sal = sal*1.1

IF job = 'CLERK' THEN sal = sal*1.15

IF job = 'MANAGER' THEN sal = sal*1.20

ELSE sal = sal
```

Imbrication des Fonctions

- Le niveau d'imbrication des fonctions mono-ligne est illimité
- Les fonctions imbriquées sont évaluées de l'intérieur vers l'extérieur

Imbrication des Fonctions

Le niveau d'imbrication des fonctions mono-ligne est illimité. L'évaluation se fait du niveau le plus interne vers le niveau le plus externe. Les exemples qui suivent montrent la flexibilité de ces fonctions.

Imbrication des Fonctions

```
SQL> SELECT ename,

2 NVL(TO_CHAR(mgr),'No Manager')

3 FROM emp

4 WHERE mgr IS NULL;
```

```
ENAME NVL(TO_CHAR(MGR),'NOMANAGER')

KING No Manager
```

3-39

Imbrication des Fonctions

L'exemple ci-dessus affiche le nom du directeur de l'entreprise (qui n'a pas de manager). L'évaluation de l'ordre SQL se fait en deux temps :

- 1. Evaluation de la fonction interne qui convertit une valeur numérique en chaîne de caractères.
 - Result1 = TO_CHAR(mgr)
- 2. Evaluation de la fonction externe qui remplace la valeur NULL par une chaîne de texte.
 - NVL(Result1, 'No Manager')

L'expression entière devient l'en-tête de colonne puisqu'aucun alias de colonne n'a été donné.

Exemple

Afficher la date correspondant au premier vendredi qui tombe six mois après la date d'embauche. La date résultante doit se présenter comme suit : Friday, March 12th, 1982. Classer les résultats par date d'embauche.

```
SQL> SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS

(hiredate, 6), 'FRIDAY'),

'fmDay, Month ddth, YYYY')

"Next 6 Month Review"

FROM emp

ORDER BY hiredate;
```

Résumé

Utilisez des fonctions mono-ligne pour :

- Transformer des données
- Formater des dates et des nombres pour l'affichage
- Convertir des types de données de colonnes

3-39

Fonctions Mono-Ligne

Les fonctions mono-ligne peuvent être imbriquées à l'infini. Elles peuvent manipuler :

- · Des données caractères
 - LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
- Des données numériques
 - ROUND, TRUNC, MOD
- Des dates
 - MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY, LAST_DAY_ROUND, TRUNC
 - Il est aussi possible d'utiliser les opérateurs arithmétiques + et sur des données de type DATE.
- Les fonctions de conversion agissent sur les données de type paracible. Les examiériques
 - TO_CHAR, TO_DATE, TO_NUMBER

SYSDATE et DUAL

SYSDATE est une fonction date qui ramène la date et l'heure courantes. SYSDATE est généralement sélectionnée dans une table factice appelée DUAL.

i resemation des exercices

- Création de requêtes utilisant les fonctions numériques, caractère et date
- Utilisation de la concaténation avec les fonctions
- Ecriture de requêtes insensibles à la casse pour illustrer l'utilité des fonctions de type caractère
- Calcul des années et mois d'ancienneté d'un employé
- Détermination de la date de révision de salaire d'un employé

3-41

Présentation des Exercices

La variété des exercices qui suivent est destinée à vous permettre de mettre en pratique les différentes fonctions utilisables avec des données de type caractère, numérique et date.

Rappelez-vous que dans les fonctions imbriquées, l'évaluation se fait de la fonction la plus interne vers la fonction la plus externe.

1. Ecrivez une requête pour afficher la date courante. Nommez la colonne Date.

Date	
28-OCT-97	

- 2. Pour chaque employé, affichez le matricule, le nom, le salaire et le salaire augmenté de 1 5% sous la forme d'un nombre entier. Nommez cette colonne New Salary. Enregistrez votre ordre SQL dans un fichier appelé p3q2.sql.
- 3. Exécutez votre requête à partir du fichier p3q2.sql.

EMPNO	ENAME	SAL	New Salary
7839	KING	5000	5750
7698	BLAKE	2850	3278
7782	CLARK	2450	2818
7566	JONES	2975	3421
7654	MARTIN	1250	1438
7499	ALLEN	1600	1840
7844	TURNER	1500	1725
7900	JAMES	950	1093
		1250	1438
7902	FORD	3000	3450
	SMITH	800	920
	SCOTT	3000	3450
	ADAMS	1100	1265
	MILLER	1300	1495
14 row	s select	ced.	

4. Modifiez votre requête p3q2.sql en ajoutant une colonne dans laquelle l'ancien salaire est soustrait du nouveau salaire. Nommez cette colonne Increase. Exécuter à nouveau votre requête.

EMPNO	ENAME	SAL	New Salary	Incresse	
			balary	THUTEDSE	
7839	KING	5000	5750	750	
7600	BLAKE	2050			
		2850	3278	428	
7782	CLARK	2450	2818	368	
7566	701777	2000		200	
/300	JONES	2975	3421	446	

5. Attichez le nonret la date d'embauche de chaque employe ainsi que la date de révision du salaire qui sera le premier fundi tombant après 6 mois d'activité. Nommez la colonne REVIEW. Les dates devront apparaître dans le format suivant : "Sunday, the Seventh of September, 1981."

CLARK 09-JUN-8 JONES 02-APR-8 MARTIN 28-SEP-8 ALLEN 20-FEB-8 TURNER 08-SEP-8 JAMES 03-DEC-8 WARD 22-FEB-8	1 Monday,	the Twenty-Fourth of May, 1982 the Second of November, 1981 the Fourteenth of December, 1981 the Fifth of October, 1981 the Twenty-Ninth of March, 1982 the Twenty-Fourth of August, 1981 the Fifteenth of March, 1982 the Seventh of June, 1982 the Twenty-Fourth of August, 1981
MARTIN 28-SEP-8 ALLEN 20-FEB-8 TURNER 08-SEP-8 JAMES 03-DEC-8 WARD 22-FEB-8 FORD 03-DEC-8 SMITH 17-DEC-8 SCOTT 09-DEC-8 ADAMS 12-JAN-8	Monday,	the Fifth of October, 1981 the Twenty-Ninth of March, 1982 the Twenty-Fourth of August, 1981 the Fifteenth of March, 1982 the Seventh of June, 1982 the Twenty-Fourth of August, 1981 the Seventh of June, 1982

6. Affichez le nom de chaque employé et calculez le nombre de mois travaillés depuis la date d'embauche. Nommez la colonne MONTHS_WORKED. Classez les résultats en fonction du nombre de mois d'ancienneté. Arrondissez le nombre de mois à l'entier le plus proche.

ENAME MONTHS_WORKED ADAMS 177 SCOTT 178 MILLER 188 JAMES 190 FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199			
SCOTT 178 MILLER 188 JAMES 190 FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	ENAME	MONTHS_WORKED	
SCOTT 178 MILLER 188 JAMES 190 FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	ADAMS	177	
MILLER 188 JAMES 190 FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	1	- · ·	
JAMES 190 FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	MILLER		
FORD 190 KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	JAMES		
KING 191 MARTIN 192 TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	FORD		
TURNER 193 CLARK 196 BLAKE 197 JONES 198 WARD 199	KING		
CLARK 196 BLAKE 197 JONES 198 WARD 199	MARTIN	192	
BLAKE 197 JONES 198 WARD 199	TURNER	193	
JONES 198 WARD 199	CLARK	196	
WARD 199	BLAKE	197	
	JONES	198	
ATTEN 100	WARD	199	
vonga 123	ALLEN	199	
SMITH 202	SMITH	202	
14 rows selected	14 rows	selected	

Le Langage SQL et l'Outil SQL*Plus 3-43

7. Ecrivez une requête affichant les informations suivantes pour chaque employé :
<employee name> earns <salary> monthly but wants <3 times salary>. Nommez la colo nne
Dream Salaries.

Si vous avez le temps, faites les exercices suivants :

8. Créez une requête pour afficher le nom et le salaire de tous les employés. Le salaire sera formaté de façon à avoir 15 caractères de long, la valeur du salaire étant complétée à gauche par des \$. Nommez la colonne SALARY.

ENAME	SALARY	
SMITH	\$\$\$\$\$\$\$\$\$\$\$\$800	
ALLEN	\$\$\$\$\$\$\$\$\$\$1600	
WARD	\$\$\$\$\$\$\$\$\$\$\$1250	
JONES	\$\$\$\$\$\$\$\$\$\$2975	
MARTIN	\$\$\$\$\$\$\$\$\$\$\$1250	
BLAKE	\$\$\$\$\$\$\$\$\$\$\$2850	
CLARK	\$\$\$\$\$\$\$\$\$\$2450	
SCOTT	\$\$\$\$\$\$\$\$\$\$3000	
KING	\$\$\$\$\$\$\$\$\$\$5000	
TURNER	\$\$\$\$\$\$\$\$\$\$\$1500	
ADAMS	\$\$\$\$\$\$\$\$\$\$\$1100	
JAMES	\$\$\$\$\$\$\$\$\$\$\$950	
FORD	\$\$\$\$\$\$\$\$\$\$3000	
MILLER	\$\$\$\$\$\$\$\$\$\$\$1300	
14 rows	selected.	

Lerryez une requête pour afficher tous les noms d'employé commençant par les lettres J, A, ou M, ainsi que la longueur du nom. Le nom doit apparaître en minuscules, sauf l'initi ale qui sera en majuscules. Donnez à chaque colonne un nom approprié.

1		
Name	Length	
Jones	5	
Martin	6	
Allen	5	
James	5	
Adams	5	
Miller	6	
6 rows	selected.	
L		

Affichez le nom, la date d'embauche ainsi que le jour de la semaine où l'employé à débuté.
 Nommez la colonne DAY. Classez les résultats dans l'ordre des jours de la semaine à partir du lundi (monday).

ENAME	HIREDATE	DAY
MARTIN	28-SEP-81	MONDAY
CLARK	09-JUN-81	TUESDAY
KING	17-NOV-81	TUESDAY
TURNER	08-SEP-81	TUESDAY
SMITH	17-DEC-80	WEDNESDAY
ADAMS	12-JAN-83	WEDNESDAY
JONES	02-APR-81	THURSDAY
FORD	03-DEC-81	THURSDAY
SCOTT	09-DEC-82	THURSDAY
JAMES	03-DEC-81	THURSDAY
ALLEN	20-FEB-81	FRIDAY .
BLAKE	01-MAY-81	FRIDAY
MILLER	23-JAN-82	SATURDAY
WARD	22-FEB-81	SUNDAY
14 rows	selected	

Si vous souhaitez aller plus loin dans la difficulté, faites les exercices suivants :

11. Créez une requête pour afficher le nom et le montant de la commission de chaque employé. (
Pour les employés ne touchant aucune commission, affichez "No Commission". Nommez la colonne COMM.

ENAME	COMM
SMITH	No Commission
ALLEN	300
WARD	500
JONES	No Commission
MARTIN	1400
BLAKE	No Commission
CLARK	No Commission
SCOTT	No Commission
KING	No Commission
TURNER	0
ADAMS	No Commission
JAMES	No Commission
FORD	No Commission
MILLER	No Commission
4 rows	selected.

Ecrivez une requête pour afficher le nom, le numéro de département et le département de tous les employés.

ENAME	DEPTNO	DNAME
CLARK	10	ACCOUNTING
KING	10	ACCOUNTING
MILLER	10	ACCOUNTING
SMITH	20	RESEARCH
ADAMS	20	RESEARCH
FORD	20	RESEARCH
SCOTT	20	RESEARCH
JONES	20	RESEARCH
ALLEN	30	SALES
BLAKE	30	SALES
MARTIN	30	SALES
JAMES	30	SALES
TURNER	30	SALES
WARD	30	SALES
14 rows	select	ed.

2. Créez une liste unique de tous les postes du département 30. avec 6 localmentes

JOB	LOC
CLERK	CHICAGO
MANAGER	CHICAGO
SALESMAN	CHICAGO

3. Ecrivez une requête pour afficher le nom, le nom du département et la localisation de tous les employés qui touchent une commission.

- 1				
	ENAME	DNAME	LOC	
-				
-	ALLEN	SALES	CHICAGO	
1	WARD	SALES	CHICAGO	
	MARTIN	SALES	CHICAGO	
	TURNER	SALES	CHICAGO	
_				

4.) Affichez le nom et le nom du département pour tous les employés dont le nom contient la lettre A. Enregistrez votre ordre SQL dans un fichier que vous nommerez p4q4.sql.

ENAME	DNAME		
CLARK	ACCOUNTING		
ADAMS	RESEARCH		
]			
ALLEN	SALES		
WARD	SALES		
JAMES	SALES		
1	201163		
MARTIN	SALES		
BLAKE	SALES		
7 rows	selected.		

5.) Ecrivez une requête pour afficher le nom, le poste, le numéro de département et le nom du département de tous les employés basés à DALLAS.

ENAME	JOB	DEPTNO	DNAME
			*
SMITH	CLERK	20	RESEARCH
ADAMS	CLERK	20	RESEARCH
FORD	ANALYST	20	RESEARCH
SCOTT	ANALYST	20	RESEARCH
JONES	MANAGER	20	RESEARCH

(6. Affichez le nom et le matricule des employés et de leur manager. Nommez les colonnes Employee, Emp#, Manager, et Mgr#, respectivement. Enregistrez votre ordre SQL dans un fichier nommé p4q6.xql.

Employee	Emp#	Manager	Mgr#	
SCOTT	7788	JONES	7566	
FORD	7902	JONES	7566	
ALLEN	7499	BLAKE	7698	
WARD	7521	BLAKE	7698	
JAMES	7900	BLAKE	7698	
TURNER	7844	BLAKE	7698	
MARTIN	7654	BLAKE	7698	
MILLER	7934	CLARK	7782	
ADAMS	7876	SCOTT	7788	
JONES	7566	KING	7839	
CLARK	7782	KING	7839	
BLAKE	7698	KING	7839	
SMITH	7369	FORD	7902	
13 rows s	elected.			
	<u>.</u>			

7. Modifiez le fichier *p4q6.sql* pour afficher tous les employés, y compris King, n'ayant pas de manager. Enregistrez à nouveau dans un fichier *p4q7.sql*. Exécutez *p4q7.sql*.

Employe	Emp#	Manager	Mgr#
SCOTT	7788	JONES	7566
FORD	7902		7566
ALLEN	7499	BLAKE	7698
WARD ·	7521		7698
JAMES	7900	BLAKE	7698
TURNER	7844	BLAKE	7698
MARTIN	7654	BLAKE	7698
MILLER	7934	CLARK	7782
ADAMS	7876	SCOTT	7788
JONES	7566	KING	7839
CLARK		KING	7839
BLAKE	7698	KING	7839
SMITH	7369	FORD	7902
KING	7839		
14 rows	selected		

Si vous avez le temps, saites les exercices suivants :

8.) Créez une requête pour afficher le numéro de département et le nom de tous les employés qui travaillent dans le même département qu'un certain employé. Donnez à chaque colonne un en-tête approprié.

- 1					
	DE	PARTMEN	TV	EMPLOYEE	COLLEAGUE
		1	10	CLARK	KING
		1	lΟ	CLARK	MILLER
		1	LO	KING	CLARK
		1	L O	KING	MILLER
		1	.0	MILLER	CLARK
		1	. 0	MILLER	KING
		2	0	ADAMS	FORD
		2	0	ADAMS	JONES
		2	0	ADAMS	SCOTT
		3	0	ADAMC	OMITH .
ĺ		2	0	FORD	ADAMS
		2	0	FORD	JONES
		2	0	FORD	SCOTT
-	56	rows s	el	ected.	

Affichez la structure de la table SALGRADE. Créez une requête pour afficher le nom, le poste, le département, le salaire et l'échelon de tous les employés.

Name	NULL?	Туре
		m
GRADE		NUMBER
LOSAL		NUMBER
HISAL		NUMBER

ENAMÉ	JOB	DNAME	SAL	GRADE
MILLER	CLERK	ACCOUNTING	1300	2
CLARK	MANAGER		2450	4
KING	PRESIDENT	ACCOUNTING	5000	5
SMITH	CLERK	RESEARCH	800	1
SCOTT	ANALYST	RESEARCH	3000	4
FORD	ANALYST	RESEARCH	3000	4
ADAMS	CLERK	RESEARCH	1100	1
JONES	MANAGER	RESEARCH	2975	4
JAMES	CLERK	SALES	950	1
BLAKE	MANAGER	SALES	2850	4
TURNER	SALESMAN	SALES	1500	3
ALLEN	SALESMAN	SALES	1600	3
WARD	SALESMAN	SALES	1250	2
MARTIN	SALESMAN	SALES	1250	2
14 rows	selected.			

Si vous souhaitez aller plus loin dans la difficulté, faites les exercices suivants :

10. Créez une requête pour afficher le nom et la date d'embauche de tous les employés arrivés après l'employé Blake.

_	
ENAME	HIREDATE
	M-N-0
SMITH	17-DEC-80
ALLEN	20-FEB-81
WARD	22-FEB-81
JONES	02-APR-81

(11...) Affichez les noms et date d'embauche des employés et de leur manager, pour tous les employés ayant été embauchés avant leur manager. Nommez les colonnes Employee, Emp Hiredate, Manager et Mgr Hiredate, respectivement.

Employee	Emp Hiredate	Manager	Mgr Hiredate
ALI.EN WARD JONES CLARK BLAKE	20-FEB-81 22-FEB-81 02-APR-81 09-JUN-81 01-MAY-81 17-DEC-80	BLAKE BLAKE KING KING KING FORD	Mgr Hiredate 01-MAY-81 01-MAY-81 17-NOV-81 17-NOV-81 17-NOV-81 03-DEC-81

12. Créez une requête pour afficher le nom des employés et leur salaire indiqué par des astérisques. Chaque astérisque représente cent dollars. Triez les données dans faires. Nommez la colonne EMPLOYEE_AND_THEIR_SALARIES.

Déterminez si les affirmations suivantes sont vraies ou fausses et entourez la réponse correspondante.

- 1. Les fonctions de groupe agissent sur plusieurs lignes pour produire un seul résultat. Vrai/Faux
- 2. Les fonctions de groupe intègrent les valeurs NULL dans leurs calculs. Vrai/Faux
- La clause WHERE restreint les lignes avant qu'elles soient incluses dans un calcul de groupe.
 Vrai/Faux
- 4. Affichez le salaire maximum, le salaire minimum, la somme des salaires et le salaire moyen de tous les employés. Nommez respectivement les colonnes Maximum, Minimum, Sum et Average. Arrondissez les résultats à zéro décimale. Enregistrez votre ordre SQL dans un fichier nommé p5q4.sql.

Maximum	Minimum	Sum	Average		-	
5000	800	29025	2073			

 Modifiez le fichier p5q4.sql pour afficher le salaire maximum, le salaire minimum, la somme des salaires et le salaire moyen pour chaque type de poste.
 Enregistrez votre fichier sous p5q5.sql. Exécutez à nouveau votre requête.

JOB	Maximum	Minimum	Sum	Average
ANALYST	3000	3000	6000	3000
CLERK	1300	800	4150	1038
MANAGER	2975	2450	8275	2758
PRESIDENT	5000	5000	5000.	5000
SALESMAN	. 1600	1250	5600	1400

6. Ecrivez une requête pour afficher le nombre de personnes qui occupent le même poste.

TOD			
JOB	COUNT(*)		
ANALYST	2		
CLERK	4		
MANAGER	3		
PRESIDENT	1		
SALESMAN	4		

Le Langage SQL et l'Outil SQL*Plus 5-27

7. Déterminez le nombre de managers sans en donner la liste. Nommez la colonne Number of Managers.

```
Number of Managers

-----
6
```

8. Ecrivez une requête pour afficher la différence existant entre le salaire maximum et le salaire minimum. Nonnez la colonne DIFFERENCE.

DIFFERENCE	- "
4200	·

Si vous avez le temps, faites les exercices suivants :

9. Affichez le matricule des différents managers et le niveau de salaire le plus bas de leurs employés.

Excluez toute ligne où le manager n'est pas identifié. Excluez tout groupe dans lequel le salaire minimum est inférieur à \$1000. Triez les résultats par ordre décroissant des salaires.

M	IGR	MIN(SAL)
75	66	3000
78	339	2450
77	82	1300
77	88	1100

10. Ecrivez une requête pour afficher le nom du département, la localisation, le nombre d'employés et le salaire moyen pour tous les employés de ce département. Nommez les colonnes dname, loc, Number of People et Salary, respectivement.

DNAME	LOC	Number of People Salary
ACCOUNTING	NEW YORK	3 2916.67
RESEARCH	DALLAS	5 2175
SALES	CHICAGO	6 1566.67

Le Langage SQL et l'Outil SQL*Plus 5-28

A. A. action with modified interest and a

THE PROPERTY OF SHAPE AND

3-13

Si vous souhaitez aller plus loin dans la difficulté, faites les exercices suivants :

11. Créez une requête pour afficher le nombre total d'employés puis, parmi ces employés, ceux qui ont été embauchés en 1980, 1981, 1982 et 1983. Nommez les colonnes de façon appropriée.

	TOTAL	1980	1981	1982	1983	
-						l
[14	1	10	2	1	
						 1

12. Créez une requête pour afficher les postes, le salaire de ces postes par numéro de département et le salaire total de ces postes incluant tous les départements.

Nommez les colonnes de façon appropriée.

Job	Dept 10	Dept 20	Dept 30	Total
ANALYST		6000		6000
CLERK MANAGER	1300	1900	950	4150
PRESIDENT	2450 . 5000	. 2975	2850	8275 5000
SALESMAN			5600	5600

Présentation des Exercices

Dans ces exercices, vous allez écrire des requêtes en incluant des opérateurs ensemblistes.

- Utilisation d'autres méthodes de jointure
- Ecriture de requêtes composées sous forme d'ordres IF

6-17

Remarque: Pour créer la table EMP_HISTORY, exécuter le script emphis.sql.

1. Affichez le département qui ne comprend aucun employé.

	DEPTNO	DNAME
İ		
	40	OPERATIONS

2. Retrouvez le poste qui était en gays de la l'inoitié des années 1981 et 1982. 4 % 106-1

	 ·
JOB	
ANALYST	

3. Ecrivez une requête composée pour produire une liste de produits indiquant les pourcentages de remise, les identifiants des produits, ainsi que les prix réels nouveaux et anciens. Les produits dont le prix est inférieur à \$10 sont réduits de 10%, ceux dont le prix est compris entre \$10 et \$30 sont réduits de 15%, ceux dont le prix est supérieur à \$30 sont réduits de 20%, et ceux dont le prix est supérieur à \$40 ne sont pas réduits.

DISCOUNT	PRODID	STDPRICE	ACTPRICE
10% off	100870	2.4	2.16
10% off	100870	2.8	2.52
10% off	100871	4.8	4.32
10% off	100871	5.6	5.04
10% off	102130	3.4	3.06
10% off	200376	2.4	2.16
10% off	200380	4	3.6
15% off	100860	30	25.5
15% off	101860	24	20.4
15% off	101863	12.5	10.625
20% off	100860	32	25.6
20% off	100860	35	28
20% off	100861	39	31.2
no disc	100861	42	42
no disc	100861	45	45
no'disc	100890	54	54
no disc	100890	58	58

4. Affichez la liste des postes dans les départements 10, 30 et 20, en conservant cet ordre. Affichez le poste et le numéro du département.

Note: La commande SQL*Plus suivante permet de ne pas afficher la colonne DUMMY (DUMMY est le nom d'une colonne ramenée par le SELECT) : COL dummy NOPRINT PAS LEMBRE

- Canally NOTKINI	- PAS CONSUCE
DEPTNO	
10	
10	
10	
30	
30	
30	
20	
20	
20	
	10 10 10 30 30 30 20

5. Affichez le numéro des départements dans lesquels on ne trouve pas de poste ANALYST.

	<u> </u>	 	 	
DEPTNO				
,				-
10				- 1
30				
40				İ

6. Affichez tous les postes des départements 10 et 20 qui n'existent que dans l'un ou l'autre de ces départements.

JOB		
ANALYST		
PRESIDENT		
		

1 Créez une requête pour afficher le nom et la date d'embauche de tous les employés travaillant dans le même département que Blake, à l'exclusion de Blake.

```
ENAME HIREDATE

MARTIN 28-SEP-81

ALLEN 20-FEE-81

TURNER 08-SEP-81

JAMES 03-DEC-81

WARD 22-FEB-81
6 rows selected.
```

 Créez une requête pour afficher le matricule et le nom de tous les employés qui gagnent plus que le salaire moyen. Triez les résultats par ordre décroissant des salaires.

```
EMPNO ENAME

7839 KING
7902 FORD
7788 SCOTT
7566 JONES
7698 BLAKE
7782 CLARK
6 rows selected.
```

3. Ecrivez une requête pour afficher le matricule et le nom de tous les employés qui travaillent dans le même département que tout employé dont le nom contient un *T*. Enregistrez votre ordre SQL dans un fichier nommé p6q3.sql.

```
EMPNO ENAME

7566 JONES
7788 SCOTT
7876 ADAMS
7369 SMITH
7902 FORD
7698 BLAKE
7654 MARTIN
7499 ALLEN
7844 TURNER
7900 JAMES
7521 WARD
```

4. Affichez le nom, le numéro de département et le poste de tous les employés dont le département est situé à Dallas.

ENAME	DEPTNO	JOB
	~	
JONES	20	MANAGER
FORD	20	ANALYST
SMITH	20	CLERK
SCOTT	20	ANALYST
ADAMS	20	CLERK

5. Affichez le nom et le salaire de tous les employés dont le manager est King.

BLAKE 2850 CLARK 2450 JONES 2975	ENAME	SAL
CLARK 2450		
1	BLAKE	2850
JONES 2975	CLARK	2450
J.	JONES	2975

6. Affichez le numéro de département, le nom et le poste de tous les employés travaillant dans le département des ventes ('SALES').

Si vous avez le temps, faites les exercices suivants.

7. Modifiez p6q3.sql afin d'afficher le matricule, le nom et le salaire de tous les employés qui gagnent plus que le salaire moyen et qui travaillent dans un département avec tout employé dont le nom contient un T. Enregistrez à nouveau votre requête sous le nom p6q7.sql, puis réexécutez-la.

1	EMPNO	ENAME	SAL
ĺ			
	7566	JONES	2975
-	7788	SCOTT	3000
	7902	FORD	3000
	7508	BLAKE	2850

Création de sous-interrogations multi-colonne

8-13

Présentation des Exercices

Au cours de cette série d'exercices, vous allez écrire des sous-interrogations multi-colonne.

1. Ecrivez une requête pour afficher le nom, le numéro de département et le salaire de tout employé dont le numéro de département et le salaire sont tous les deux à la fois équivalents au numéro de département et au salaire de n'importe quel employé touchant une commission.

ENAME	DEPTNO	SAL
MARTIN	30	1250
WARD	30	1250
TURNER	30	1500
ALLEN	30	1600

2. Affichez le nom, le numéro de département et le salaire de tout employé dont le numéro de département et le salaire sont tous les deux à la fois équivalents au salaire et à la

ENAME	DNAME	<u>Lemployé bas</u>	s a Dantas.	
ENAME	DINAME	SAL		
SMITH	RESEARCH	800		
ADAMS	RESEARCH	1100		
JONES	RESEARCH	2975		
FORD	RESEARCH	3000		
SCOTT	RESEARCH	3000		

3. Créez une requête pour afficher le nom, la date d'embauche et le salaire pour tous les employés touchant le même salaire et la même commission que Scott.

4. Créez une requête pour afficher les employés qui perçoivent un salaire supérieur à tout employé dont le poste est CLERK. Triez le résultat par ordre décroissant des salaires.

Tara Mari	TOP	~
ENAME	ĴOB	SAL
KING	PRESIDENT	5000
FORD	ANALYST	3000
SCOTT	ANALYST	3000
JONES	MANAGER	2975
BLAKE	MANAGER	2850
CLARK	MANAGER	2450
ALLEN	SALESMAN	1600
TURNER	SALESMAN	1500
8 rows	selected.	

1. Ecrivez une requête pour afficher les trois meilleurs salaires dans la table EMP. Affichez les noms des employés et leur salaire.

ENAME	SAL	
ING	5000	
'ORD	3000	
COTT	3000	

- 2. Recherchez tous les employés qui ne sont pas des responsables.
 - a. Utilisez d'abord l'opérateur EXISTS.

b. Pouvez-vous effectuer cette opération à l'aide de l'opérateur IN ? Pourquoi ?
no rows selected

3. Ecrivez une requête pour rechercher tous les employés dont le salaire est supérieur au salaire moyen de leur département. Affichez le numéro de chaque employé, son salaire, son numéro de département et le salaire moyen du département. Triez le résultat en fonction du salaire moyen.

ENAME		SALARY	DEPTNO	DEPT_AVG
ALLEN		1600	30	1566.6667
BLAKE	,	2850	30	1566.6667
JONES		2975	20	2175
FORD		3000	20	2175
SCOTT		3000	20	2175
KING		5000	10	2916.6667

4.	Ecrivez une requête pour afficher-les employés dont le salaire est inférieur à la moitié du salaire moyen de leur département.	
	ENAME	
1		
	SMITH	
	MILLER	

5. Ecrivez une requête pour afficher les employés ayant un ou plusieurs collègues de leur département dont les dates d'embauche sont postérieures aux leurs et dont les salaires sont plus élevés que les leurs.

ENAME	
CLARK	
JONES	
ALLEN ·	
WARD	
SMITH	
U	

2. Créez un état représentant l'organigramme du département de Jones. Imprimez les noms des employés, leur salaire et leur numéro de département.

ENAME	SAL	DEPTNO
JONES	2975	20
FORD	3000	20
SMITH	800	20
SCOTT	3000	20
ADAMS	1100	20

 Créez un état dans lequel figurent les noms de tous les responsables pour lesquels travaille Adams.

ENZ	AME			7.	
		•	•		ļ
300	TT				
ON	īES				- 1
1 · 5N	I G				
				_	
		•		7/	

ij.

 Créez un état représentant la hiérarchie des dirigeants par une indentation. Affichez les noms des employés, le numéro de leur département ainsi que le numéro de leur responsable. Commencez par l'employé ayant le grade le plus élevé.

NAME	MGR DEPI	'NO
KING		10
BLAKE	7839	30
MARTIN	7698	30
ALLEN	7698	30
TURNER	7698	30
JAMES	7698	30
WARD	7698	30
CLARK	7839	10
MILLER .	7782	10
JONES	7839	20
FORD	7566	20
SMITH	7902	20
SCOTT	7566	20
ADAMS	7788	20

S'il vous reste encore du temps, effectuez l'exercice suivant :

5. Créez l'organigramme d'une société représentant la hiérarchie des dirigeants. Commencez par

la personne ayant le grade le plus élevé et excluez tous les employés occupant le poste

	ainci que le départe	
ENAME	EMPNO	MGR
KING	7839	<u></u>
BLAKE	7698	7839
MARTIN	7654	7698
ALLEN	7499	7698
TURNER	7844	7698
JAMES	7900	7698
WARD	7521	7698
JONES	7566	7839
SMITH	7369	7902
ADAMS	7876	7788

- Insertion de lignes dans une table.
- Mise à jour et suppression de lignes dans une table.
- Contrôle des transactions.

12-39

Présentation des Exercices

Au cours des exercices qui suivent, vous allez ajouter des lignes dans la table MY_EMPLOYEE, mettre à jour et supprimer des données de cette table, et contrôler vos transactions.

Insérez des données dans la table MY_EMPLOYEE.

 Exécutez le script \LABS\lab9_1.sql pour créer la table MY_EMPLOYEE qui va servir pour cette série d'exercices.

2. Affichez la structure de la table MY_EMPLOYEE pour trouver les noms de colonnes.

Name	NULL?	Туре
ID	NOT NULL	NUMBER (4)
LAST_NAME		VARCHAR2(25)
FIRST_NAME		VARCHAR2(25)
USERID		VARCHAR2(8)
SALARY		NUMBER (9,2)

Ajoutez la première figne de données du tableau ci-dessous dans la table MY_EMPLOYEE.
 N'énumérez pas les colonnes dans la clause INSERT.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY
1	Patel	Ralph	rpatel	795
2	Danes	Betty	bdanes	860
3	Biri	Ben	bbiri	1100
4	Newman	Chad	cnewman	750
5	Ropeburn	Audry	aropebur	1550

- Continuez à remplir la table MY_EMPLOYEE en insérant la seconde ligne des données cidessus. Cette fois, mentionnez explicitement les colonnes dans la clause INSERT.
- 5. Vérifiez vos ajouts.

ID LAST_NAME FIRST_NAME USERID SALARY 1 Patel Ralph rpatel 795 2 Dancs Betty bdancs 860						
Tpacci //J	ID	LAST_NAME	FIRST_NAME	USERID	SALARY	
Tpacci //J		~		_		
2 Dancs Betty bdancs 860	1	Patel	Ralph	rpatel	795	
	2	Dancs	Betty	bdancs	860	

- 6. Créez un script nommé *loademp.sql* pour charger les l'ignes dans la table MY_EMPLOYEE en mode interactif. Demandez à l'utilisateur de saisir le prénom (first name), le nom (last-name) et le salaire de chaque employé. Concaténez la première lettre du prénom et les sept premières lettres du nom pour former l'ID utilisateur.
- 7. Insérez les deux lignes de données suivantes dans la table en exécutant le script que vous avez créé.

8. Vérifiez vos ajouts dans la table.

ID	LAST_NAME	FIRST_NAME	USERID	SALARY	
1	Patel	Ralph	rpatel	79 5	
2	Dancs	Betty	bdancs	86 0	
3	Biri	Ben	bbiri	1100	
4	Newman	Chad	cnewman	750	

9. Validez vos ajouts.

Mettez à jour et supprimez des données de la table MY_EMPLOYEE.

- 10. Remplacez le nom de l'employé 3 par Drexler.
- 11. Saisissez un salaire de 1000 pour tous les employés ayant un salaire inférieur à 900.
- 12. Vérifiez vos modifications.

ተ.አ ፍጥ	NAME SALARY
	NAME SAUAKI
Patel	1000
Dancs	1000
Biri	1100
Newma	n 1000

- 13. Supprimez Betty Dancs de la table MY_EMPLOYEE.
- 14. Vérifiez vos modifications.

ID	LAST_NAME	FTRST_NAME	USERID	SALARY	
1	Patel	Ralph	rpatel	1000	
3	Drexler	Ben	bbiri	1100	
4	Newman	Chad	cnewman	1000	

- Validez toutes les modifications en instance.
 Contrôlez la transaction de données effectuée dans les tables MY_EMPLOYEE.
- 16. Insérez la dernière ligne des données d'exemple dans la table en exécutant le script que vous avez créé à l'étape 6.
- 17. Vérifiez l'ajout.

1					
	ID	LAST_NAME	FIRST_NAME	USERID	SALARY
	1	Patel	Ralph	rpatel	1000
	3	Drexler	Ben	bbiri	1100
	4	Newman	Chad	cnewman	1000
	5	Ropeburn	Audry	aropebur	1500

1. -

- 18. Définissez une étiquette intermédiaire dans le traitement de la transaction.
- 19. Videz entièrement la table.
- 20. Vérifiez que la table est vide.
- 21. Rejetez la dernière opération DELETE sans annuler l'opération INSERT précédente.
- 22. Vérifiez que la dernière ligne est restée intacte.

ID LAST_NAN	ME FIRST_NA	AME USERID S	ALARY	
l Patel	Raiph	rpatel	795	***
3Biri	Ben	bbiri	0011	
4Newman	Chad	cnewman	750	
5Ropeburn	Audry	aropebur	1500	

23. Rendez les ajouts définitifs.

1 1. Créez la table DEPARTMENT d'après le tableau suivant. Saisissez la syntaxe dans un script que vous nommerez p10q1.sql, puis exécutez ce script pour créer la table. Vérifiez la création de la table.

Colonne	łd	Name
Type de clé		
Null/Unique		
Table FK		
Colonne FK		
Type de données	Number	Varchar2
Longueur	7	25

Name	NULL?	Туре
ID		NUMBER (7)
NAME		VARCHAR2 (25)

2. Remplissez la table DEPARTMENT avec les données de la table DEPT. N'utilisez que les colonnes dont vous avez besoin.

3. Créez la table EMPLOYEE d'après le tableau suivant. Saisissez la syntaxe dans un script que vous nommerez p10q3.sql, puis exécutez ce script pour créer la

table. Vérifiez la	création de la	table.		
Colonne	ID	LAST_NAME	FIRST_NAME	DEPT_ID
Type de clé				
Null/Unique				
Table FK				
Colonne FK				
Type de données	Number	Varchar2	Varchar2	Number
Longueur	7	25	25	7

ſ				\neg
1				
I				
١	Name	NULL?	Туре	
l				1
Ì				
ł	ID		NUMBER (7)	
ļ	LAST_NAME		VARCHAR2 (25)	
Ĺ	FIRST_NAME		VARCHAR2 (25)	
_	DEPT ID		MIMBER (7)	

Modifiez la table EMPLOYEE pour pouvoir allonger les noms de famille des employés.
 Vérifiez votre modification.

Name	NULL?	Туре
ID LAST_NAME FIRST_NAME DEPT_ID		NUMBER (7) VARCHAR2 (50) VARCHAR2 (25) NUMBER (7)

()

5. Vérifiez que les tables DEPARTMENT et EMPLOYEE sont bien enregistrées dans le dictionnaire de données. (*Utiliser*: USER_TABLES)

- 6. Créez la table EMPLOYEE2 sur la base de la structure de la table EMP et n'incluez que les colonnes EMPNO, ENAME et DEPTNO. Nommez les colonnes de votre nouvelle table respectivement ID, LAST_NAME et DEPT_ID,.
- 7. Supprimez la table EMPLOYEE.
- 8. Renommez la table EMPLOYEE2 en EMPLOYEE.
- 9. Ajoutez un commentaire aux définitions de tables DEPARTMENT et EMPLOYEE pour décrire chaque table. Vérifiez vos ajouts dans le dictionnaire de données.

- Ajout de contraintes à des tables existantes
- Ajout de colonnes supplémentaires à une table
- Affichage d'informations des vues du dictionnaire de données

14-25

Présentation des Exercices

Dans les exercices qui suivent, vous allez ajouter des contraintes et des colonnes supplémentaires dans une table en utilisant les ordres étudiés dans ce chapitre.

- 1. Ajoutez une contrainte PRIMARY KEY de niveau table dans la table EMPLOYEE en utilisant la colonne ID.
 - La contrainte devrait être activée dès sa création.
- 2. Créez une contrainte PRIMARY KEY sur la table DEPARTMENT en utilisant la colonne ID. La contrainte devrait être activée dès sa création.
- 3. Ajoutez une clé étrangère dans la table EMPLOYEE qui permettra de contrôler que l'employé n'est pas associé à un département inexistant.
- 4. Vérifiez que les contraintes ont été ajoutées en les recherchant dans USER_CONSTRAINTS. Prenez note des types et des noms des contraintes. Enregistrez votre ordre dans un fichier nommé p11q4.sql.

			• • • • • • • • • • • • • • • • • • • •		
COV	NSTRAINT_NAME .	0			
	SIRAINI_NAME	C			
DET	DARMANT TO DE			,	
	PARTMENT_ID_PK	Ь			
EME	PLOYEE_ID_PK	P			
EME	PLOYEE_DEPT_ID_FK	R			

Recherchez le nom et le type des objets dans la vue USER_OBJECTS du dictionnaire de données correspondant aux tables EMPLOYEE et DEPARTMENT. Vous pouvez mettre les colonnes en forme pour qu'elles soient plus lisibles. Remarquez que pour chaque nouvelle table un nouvel index a été créé.

OBJECT_NAME	OBJECT_TYPE
DEPARTMENT	TABLE
DEPARTMENT_ID_PK	INDEX
EMPLOYEE	TABLE
EMPLOYEE_ID_PK	INDEX
<u>i</u>	

Si vous avez le temps, faites l'exercice suivant :

Modifiez la table EMPLOYEE. Ajoutez une colonne SALARY dont le type de donnée est NUMBER, avec une longueur 7.

- 1. Créez la vue EMP_VU à partir de la table EMP contenant des numéros et des noms d'employés avec leur numéro de département. Modifiez l'en-tête de la colonne des noms d'employés en la nommant EMPLOYEE.
- 2. Affichez le contenu de la vue EMP_VU.

EMPNO EMPLOYEE F	ORPTNO
7839 KING	10
7698 BLAKE	30
7782 CLARK	10
7566 JONES	20
7654 MARTIN	30
7499 ALLEN	30
7844 TURNER	30
7900 JAMES	30
7521 WARD	30
7902 FORD	20
7369 SMITH	20
7788 SCOTT	3.0
7876 ADAMS	3.0
7934 MILLER	10
14 rows selected	l.

 Sélectionnez le nom de la vue (view_name) et le texte correspondant dans la table USER_VIEWSdu dictionnaire de données.

VIEW_NAME	TEXT
EMP_VU	SELECT empno, ename employee, deptno FROM emp

4. A partir de votre vue EMP_VU, faites une requête pour afficher tous les noms des employés et le numéro de leur département.

EMPLOYEE	DEPTNO
KING	10
BLAKE	3.0
CLARK	10
JONES	20
MARTIN	30
14 rows sele	ected.

- 5. Créez la vue DEPT20 avec les numéros et les noms de tous les employés du département 20. Nommez les colonnes de la vue respectivement EMPLOYEE_ID, EMPLOYEE et DEPARTMENT_ID. Cette vue ne doit pas autoriser l'affectation d'un employé à un autre département.
- 6. Affichez la structure et le contenu de la vue DEPT20.

		
Name	Null?	Type
EMPLOYEE_ID	NOT NULL	NUMBER (4)
EMPLOYEE		VARCHAR2(10)
DEPARTMENT_ID	NOT NULL	NUMBER (2)

		-	
EMPLOYEE_ID	EMPLOYEE	DEPARTMENT_ID	
7566	JONES	20	
7 902	FORD	20	
7 369	SMITH	20	
7788	SCOTT	20	
7 876	ADAMS	20	

7. Essayez d'affecter l'employé Smith au département 30.

S'il vous reste du temps, effectuez l'exercice suivant.

8. Créez la vue SALARY_VU de façon à afficher le nom de tous les employés, le nom de leur département, leur salaire et leur barème de salaire. Nommez les colonnes respectivement Employee, Department, Salary et Grade.

- Création de séquences
- Utilisation des séquences
- Création d'index non uniques
- Affichage des informations du dictionnaire de données relatives aux séquences et aux index
- Suppression d'index

16-25

 \bigcirc

Présentation des Exercices

Dans ces exercices, vous allez créer une séquence pour remplir votre table DEPARTMENT, ainsi que des index implicites et explicites.

- 1. Créez une séquence pour l'utiliser avec la clé primaire de la table DEPARTMENT. Cette séquence doit commencer avec le numéro 60 et avoir une valeur maximale de 200. Attrib uez un pas d'incrémentation de 10 et nommez la séquence DEPT_ID_SEQ.
- 2. Ecrivez un script pour afficher les informations suivantes relatives à vos séquences : nom de la séquence, valeur maximale, pas d'incrémentation et dernier numéro de séquence. Nommez le script p13q2.sql puis exécutez-le.

SEQUENCE_NAME	MAX_VALUE	INCREMENT_BY	LAST_NUMBER
CUSTID	1.000E+27	1	109
DEPT_ID_SEQ	200	1	60
ORDID	1.000E+27	1	622
PRODID	1.000E+27	. 1	200381

- 3. Ecrivez un script interactif pour insérer une ligne dans la table DEPARTMENT. Nommez votre script p13q3.sql. Veillez à utiliser la séquence que vous avez créé pour la colonne ÎD. Créez une invite personnalisée pour la saisie du nom du département. Exécutez votre script. Ajoutez les deux départements Education et Administration, puis validez-les.
- 4. Créez un index non unique dans la colonne FOREIGN KEY de la table EMPLOYEE.
- 5. Affichez les index et l'unicité en utilisant le dictionnaire de données pour la table EMPLOYEE. Enregistrez l'ordre dans le script p13q5.sql.

	INDEX_NAME	TABLE_NAME	UNIQUENES	
J. B.	EMPLOYEE_DEPT_ID_IDX	EMPLOYEE	NONUNIQUE	
	EMPLOYEE_ID_PK	EMPLOYEE	UNIQUE	

- 1. Quel privilège doit avoir un utilisateur pour se connecter à Oracle8 Server ? S'agit-il d'un privilège système ou objet ?
- 2. Quel privilège doit avoir un utilisateur pour créer des tables ?
- 3. Si vous créez une table, qui peut transmettre à d'autres utilisateurs les privilèges liés à votre table ?
- 4. Vous êtes administrateur de base de données et vous devez créer un grand nombre d'utilisateurs qui exigent les mêmes privilèges système. Comment pouvez-vous simplifier cette tâche ?
- 5. Quelle commande pouvez-vous utiliser pour modifier votre mot de passe ?
- 6. Autorisez un autre utilisateur à lire votre table DEPT. Demandez à un utilisateur de vous accorder un droit de lecture sur sa table DEPT.
- 7. Interrogez toutes les lignes de votre table DEPT.

	DEPTNO	DNAME	LOC
Ì	10	ACCOUNTING	NEW YORK
	20	RESEARCH	DALLAS
	30	SALES	CHICAGO
	40	OPERATIONS	BOSTON

- 8. Ajoutez une nouvelle ligne à votre table DEPT. L'équipe 1 doit ajouter le département Education portant le numéro 50, et l'équipe 2 le département Administration portant le numéro 50. Enregistrez vos modifications.
- 9. Créez un synonyme pour la table DEPT de l'autre équipe.