· Result: if Xn = X and Yn - Xn = 0, then Yn SX PP/ Let K be a closef set. Want to show that $\limsup_{n \to \infty} \mathbb{P}(Y_n \in K) \subseteq \mathbb{P}(X \in K)$ [Portmarkou , part (iv).] We have, for arbitrary Eso, ({ Ynek}) 1 { d (Xn, 4n) > 5}) where $d(K, x) = \inf_{y \in K} d(x, y)$ onsert point in \mathbb{R}^n $\{x : d(K, x) \leq E\}$ There fare $P(Y_n \in K) \leq P(X_n \in K_{\varepsilon}) + P(d(X_n, Y_n) > \varepsilon)$ linsup P(Yn e k) & linsup P(Xn & Kc) < P(X ∈ KE) by Portmonteon
part (N) We now let sto so that P(XEKE)

SDS 387 Linear Models

Fall 2024

Lecture 8 - Thu, Sep 19, 2024

Instructor: Prof. Ale Rinaldo

Lo
$$(\bar{X}_{n-m}) = \mathcal{O}_{\rho}(1)$$

The last statement implies $x_n - u = op(i)$ HW! which the oull. But we only get additional information, manely that by inflating $x_n - u$ by a factor of v_n , we obtain a sequence that is bounded in probability.

Rules for $O_{\rho} l_{\rho} p$ colculus, $o_{\rho}(1) + o_{\rho}(1) = o_{\rho}(1)$ \longrightarrow Sum of a fixed # of terms, that we op(1) $O_{\rho}(1) + O_{\rho}(1) = O_{\rho}(1)$ is obso op(1) $O_{\rho}(1) o_{\rho}(1) = o_{\rho}(1) = o_{\rho}(1)$ $O_{\rho}(o_{\rho}(1)) = o_{\rho}(1) = o_{\rho}(1)$ $O_{\rho}(o_{\rho}(1)) = o_{\rho}(1) = o_{\rho}(1)$

Op(1) what can you say about this?

Lost time I remarked that if $x_n = Op(1)$ we consist conclude that $x_n = 0$ onlything!

It only happens along subsequences.

Prox horovis Thm:

i) If $x_n = x_n \times x_n = x_n$

Xnx of y some y as K-S

2)

Bosic Form: Let X_1, X_2, \dots, X_d (x_1, X_2) in \mathbb{R}^d $\begin{bmatrix}
\mathbb{E}[X_1] = u \in \mathbb{R}^d & \text{and} & \mathbb{E}[(X_1 - u)(X_1 - u)^T] = X_1 > 0 \\
\text{dis}
\end{bmatrix}$ Then $\begin{bmatrix}
X_1 - u \\
X_2 - u
\end{bmatrix}$ or $\begin{bmatrix}
X_1 - u \\
X_1 - u
\end{bmatrix}$

Then, $\left(\sqrt{n} \left(\hat{x}_{n-n} \right) \right) = 4 \left(\frac{1}{2} \left(x_{n-n} \right) \right)$ $\left(\frac{1}{2} \left(x_{n-n} \right) \right) = 4 \left(\frac{1}{2} \left(x_{n-n} \right) \right)$

by inter = $(q/t/r_n)^n$ become xis

become xis

we identically = $(q/t/r_n)^n$ distributed

(x)

Next recall that (960) = 1, $\nabla(960) = 1 = 1 = 0$ Herrion $= \nabla^2(960) = 1^2 = 1 = -\frac{21}{3}$ By Taylor serie expansion of $\ell(tr_n)$ around 0.

(X) = $\left(1 + i t^T \nabla \ell(0) + \frac{1}{2} i^2 t^T \int \nabla \ell(u t) du t\right)$

$$= \left(1 + \frac{1}{n} + \frac{1}{2} + \frac{1}{n} + \frac{1}{2} + \frac{1}{n} + \frac{1}{2} + \frac{1}{n} + \frac{1}{2} + \frac{1}{2$$

Next

Next

an $\rightarrow -\frac{t}{2}$ The solution brung limit instead the integral

Because $(1 + Cn)^n = \exp \sum_{n=1}^{\infty} \lim_{n \to \infty} n \cdot Cn = \frac{2n}{n}$

here $c_n = \frac{a_n}{n}$ Ly $\ell_{Vn}(\bar{x}_{n-m})$ (t) $\Rightarrow \exp \{-\ell^T \underline{z}^t t\} \Rightarrow n \Rightarrow \infty$ oh. f. of $N_{\alpha}(0,\underline{z}^t)$

By Continuity Theorem for cu.f's $V_{n}\left(\bar{X}_{n}-u\right) \stackrel{d}{\longrightarrow} N(Q_{c} \leq 1)$

4

· CLT: Triongular away version. A triongular away is an infaute collection of rule { Xin, 1 ≤ n} organized in this nomer: X_{1,2} X₂₂ X1,3 X0,3 X3,3 X1,n X2,n rais of the array consist of undependent r.v.'s The Lindeberg-Feller CLT. Let { Xin } be a trangular array of r-vis in IR. s.t. E [Xin] = s tim Let $S_n = \frac{5!}{3!} X_{i,n}$ and $B_n = \frac{5!}{3!} G_{i,n}$ where 62, ~ = Var [Xin]. Then Sn N.Co, 1) if the LF (Lindeberg-Feller) condition (LF) $\forall E > 0$ $B_n = 1$ $E[X_{n,n} 1 \{ | X_{n,n} | > c B_n \}] \xrightarrow{0} 0$

Conversely, if Sn & N(011) and of osymptotote regligibility max 6200 conform then (LF) holds. after, it is easier to establish a CLT via Lyapunou's conditions HW $=\frac{1}{B^{2+\delta}}$ $=\frac{1}{B^{2+\delta}}$ $=\frac{1}{B^{2+\delta}}$ $=\frac{1}{B^{2+\delta}}$ Some 50.
This implies LF. it requires existence of moments higher than 2. The multivariate case Consider a triongular array of centered raman vectors in Rd with 2 moments (Cov [Xin] exists triin) Let $Y_{n,n} = \left(\frac{3!}{n!} \operatorname{Cov} \left[\times_{n,n} \right] \right) \times_{n,n}$ (LF) $\forall \epsilon > 0$, $|\epsilon = 1$ $|\epsilon = 0$ $|\epsilon = 0$ Z' Yin N(0, Id)