Differential Equations

- 1. What are they and why do we solve them?
- 2. Terminology
- 3. Graphical intuition and the direction field

- 1. What are they and why do we solve them?
- 2. Terminology
- 3. Graphical intuition and the direction field

What is a Differential Equation?

Task: Find the function(s) y(t).

Tools:

A differential equation (DE) is an equation involving an unknown function y and atleast one derivative of y w.r.t. an independent variable.

Given: A DE with an unknown function
$$y(t)$$
.

e.x., $\frac{dy}{dt} = -3y(t)$
 $y' = -3y$

Task: Find the function(s) $y(t)$.

Solution: $y(t) = C_1 e^{-3t}$

- Calculus (i.e., integration/differentiation)
- Guess and check (does some function f(t) make LHS=RHS?)

Geometry/Linear Algebra (useful for systems of DEs)

• Specialized procedures (informed by experience geussing)

A differential equation (DE) is an equation involving an unknown function y and atleast one derivative of y w.r.t. an independent variable.

Given: A DE with an unknown function
$$y(t)$$
.

Task: Find the function(s) y(t).

- Guess and check (does some function f(t) make LHS=RHS?)
- Specialized procedures (informed by experience geussing) Geometry/Linear Algebra (useful for systems of DEs)

Example: Skydiving

Newton's Second Law:

$$F = ma$$

$$ma = \underbrace{-mg}_{\text{gravitational force}} \underbrace{-\mu v}_{\text{drag force}}$$
 $a = v'$
 $mv' = -mg - \mu v$
DE for $v(t)$

Newton's Second Law:

$$F = ma$$

$$ma = \underbrace{-mg}_{\text{gravitational force}} \underbrace{-\mu v}_{\text{drag force}}$$
 $a = v'$
 $\boxed{mv' = -mg - \mu v}$
DE for $v(t)$

Example: Epidemiology

Kermack & McKendrick's SIR model

• Susceptible \rightarrow Infected \rightarrow Recovered

System of 3 ordinary differential equations:

Reproduction number: $R_0 = \frac{\beta}{\mu + \gamma}$

- 1. $R_0 > 1$: endemic equilibrium
- 2. $R_0 < 1$: disease dies out basic idea behind "flatten the curve"

Kermack & McKendrick's SIR model

Susceptible → Infected → Recovered

of 3 ordinary differential equations:
$$\frac{dS}{dt} = \mu(I+R) - \beta SI$$
 $t = \text{time}$
$$\beta = \text{infection rate}$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\gamma = \text{recovery rate}$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$\mu = \text{birth/death rate}$$

Reproduction number:
$$R_0 = \frac{\beta}{\mu + \gamma}$$

- 1. $R_0 > 1$: endemic equilibrium
- 2. $R_0 < 1$: disease dies out basic idea behind "flatten the curve"

Terminology: ODEs vs PDEs

- Ordinary differential equation (ODE) (covered in this course)
 - A DE with derivatives w.r.t. only one independent variable.

•
$$\frac{dy}{dt} = y(t) + 3$$
 or $\frac{dy}{dt} = \sin(y) + \cos(t)$

- Partial differential equation (PDE) (not covered in this course)
 - A DE with derivatives w.r.t multiple independent variable.

• Heat/Diffusion eq:
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

- Wave eq: $\frac{\partial^2 u}{\partial t^2} = c \frac{\partial^2 u}{\partial x^2}$
- Partial derivatives are necessary for solutions to agree when changing coordinate systems (e.g., switch from cartesian to polar coordinates)

- Ordinary differential equation (ODE) (covered in this course)
 - A DE with derivatives w.r.t. only one independent variable.

$$-\frac{dy}{dt} = y(t) + 3$$
 or $\frac{dy}{dt} = \sin(y) + \cos(t)$

- Partial differential equation (PDE) (not covered in this course)
 - A DE with derivatives w.r.t multiple independent variable.

- Heat/Diffusion eq:
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

- Wave eq:
$$\frac{\partial^2 u}{\partial t^2} = c \frac{\partial^2 u}{\partial x^2}$$

- Partial derivatives are necessary for solutions to agree when changing coordinate systems (e.g., switch from cartesian to polar coordinates)

Terminology: Order of a DE

The highest derivative that appears in the DE.

- y' = y + 3 first order
- $y' = y^2 + 9$ first order
- $\bullet \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \tan(t) \qquad \text{first order}$
- y'' = -y second order
- $\frac{d^4y}{dx^4} = ky$ fourth order

The highest derivative that appears in the DE.

- y' = y + 3 first order
- $y' = y^2 + 9$ first order
- $\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \tan(t)$ first order
- y'' = -y second order
- $\frac{d^4y}{dx^4} = ky$ fourth order

Terminology: Operator Form \Rightarrow L[y(t)] = f(t)

$$\Rightarrow \qquad \mathsf{L}\left[y(t)\right] = f(t)$$

Everything that depends on the unknown function goes on one side of the equal sign and everything else on the other.

$$\bullet \frac{dy}{dt} = y(t) + 3 \rightarrow \frac{dy}{dt} - y(t) = 3$$

$$\bullet L[y] = f' - y, \quad f(t) = 3$$

•
$$\frac{dy}{dt} = \sin(y) + \cos(t)$$
 \rightarrow $\frac{dy}{dt} - \sin(y) = \cos(t)$
• $L[y] = f' - \sin(y)$, $f(t) = \cos(t)$

The operator L[·], encodes the "intrinsic" dynamics that the ODE is modelling.

- Force-displacement relationship of a spring.
- Velocity-drag relationship of a viscous fluid.

Everything that depends on the unknown function goes on one side of the equal sign and everything else on the other.

•
$$\frac{dy}{dt} = y(t) + 3$$
 \rightarrow $\frac{dy}{dt} - y(t) = 3$
• $L[y] = f' - y$, $f(t) = 3$

•
$$\frac{dy}{dt} = \sin(y) + \cos(t)$$
 \rightarrow $\frac{dy}{dt} - \sin(y) = \cos(t)$
- $L[y] = f' - \sin(y)$, $f(t) = \cos(t)$

The operator L [·], encodes the "intrinsic" dynamics that the ODE is modelling.

- Force-displacement relationship of a spring.
- Velocity-drag relationship of a viscous fluid.

Terminology: Linearity of DEs

-
$$L[y(t)] = f(t)$$

If the operator $L[\cdot]$ is linear, then the DE is linear.

Conditions for linearity:

Given any two functions f and g and a constant c, a linear operator satisfies

1.
$$L[f + g] = L[f] + L[g]$$

$$2. \ \mathsf{L}[cf] = c\mathsf{L}[f]$$

In practice: does the operator have any nonlinear functions?

ex:
$$L[y] = y'' + y$$

ex:
$$L[y] = y' + \sin(y)$$

If the operator $L[\cdot]$ is linear, then the DE is linear.

Conditions for linearity:

Given any two functions f and g and a constant c, a linear operator satisfies

1.
$$L[f + g] = L[f] + L[g]$$

2.
$$L[cf] = cL[f]$$

In practice: does the operator have any nonlinear functions?

ex:
$$L[y] = y'' + y$$

ex:
$$L[y] = y' + \sin(y)$$

Nonlinear

Terminology: Autonomous DEs

-
$$L[y(t)] = f(t)$$

If both $L[\cdot]$ and f(t) do not explicitly depend on the independent variable, then the DE is autonomous.

$$\bullet \ y' = y \ \rightarrow \ y' - y = 0$$

Autonomous

$$y' = y^2 + 3 \rightarrow \frac{dy}{dt} - y^2 = 3$$

Autonomous

•
$$\frac{dy}{dt} = y + \tan(t) \rightarrow \frac{dy}{dt} - y = \tan(t)$$

Non-autonomous

$$\bullet$$
 $\frac{dy}{dt} = -3ty \rightarrow \frac{dy}{dt} + 3ty = 0$

Non-autonomous

f(t) is often called the (external) forcing term.

constant or zero-forcing ⇒ Autonomous DE

If both $L[\cdot]$ and f(t) do not explicitly depend on the independent variable, then the DE is autonomous.

•
$$v' = v \rightarrow v' - v = 0$$

Autonomous

$$\bullet \ y' = y^2 + 3 \ \rightarrow \ \frac{\mathrm{d}y}{\mathrm{d}t} - y^2 = 3$$

Autonomous

•
$$\frac{dy}{dt} = y + \tan(t) \rightarrow \frac{dy}{dt} - y = \tan(t)$$

Non-autonomous

•
$$\frac{dy}{dt} = -3ty \rightarrow \frac{dy}{dt} + 3ty = 0$$

Non-autonomous

f(t) is often called the (external) forcing term.

constant or zero-forcing ⇒ Autonomous DE

Classifying ODEs

•
$$x'' + x^2 = t$$

- Order: 2
- Linear: No
- Autnomous: No

$$\bullet \frac{d^4x}{dx^4} = 0$$

- Order: 4
- Linear: Yes
- Autnomous: Yes

$$\bullet \ x'' + x^2 = t$$

- Order: 2
- Linear: No
- Autnomous: No

- Order: 4
- Linear: Yes
- Autnomous: Yes

Terminology

Terminology: Solution to an ODE

A solution of an ODE is a function that satisfies the ODE.

ex: Is
$$y = Ce^{-t} + t - 1$$
 a solution to $y' + y = t$?

$$y' = -Ce^{-t} + 1$$

$$y' + y = -Ce^{-t} + 1 + Ce^{-t} + t - 1$$

$$= t \quad \checkmark$$

Here C is an arbitrary constant that can have any value.

Any solution with an arbitrary constant is called a general solution

We can obtain a unique solution by imposing some constaint, a solution with no arbitrary constants is called a particular solution

A solution of an ODE is a function that satisfies the ODE.

ex: Is
$$y = Ce^{-t} + t - 1$$
 a solution to $y' + y = t$?

$$y' = -Ce^{-t} + 1$$

$$y' + y = -Ce^{-t} + 1 + Ce^{-t} + t - 1$$

$$= t \quad \checkmark$$

Here C is an arbitrary constant that can have any value.

Any solution with an arbitrary constant is called a general solution

We can obtain a unique solution by imposing some constaint, a solution with no arbitrary constants is called a particular solution

Initial Value Problems

ODEs of the form

$$L[y] = f(t)$$
, with $y(t_0) = y_0$,

where t_0 and y_0 are numerical values (usually real-valued).

ex: Find the particular solution to y' + y = t with y(0) = 0?

Start with the general solution

$$y(t) = Ce^{-t} + t - 1$$

evaluate at $t = t_0 = 0$, make that equal to $y_0 = 0$

$$y(0) = C - 1 = 0$$
 $\Rightarrow C = 1$
 $y(t) = e^{-t} + t - 1$

ODEs of the form

where t_0 and y_0 are numerical values (usually real-valued).

L[y] = f(t), with $y(t_0) = y_0$,

ex: Find the particular solution to
$$y' + y = t$$
 with $y(0) = 0$?

Start with the general solution

$$y(t) = Ce^{-t} + t - 1$$

evaluate at $t=t_0=0$, make that equal to $y_0=0$

$$y(0) = C - 1 = 0 \Rightarrow C = 1$$
$$y(t) = e^{-t} + t - 1$$

Summary

1. What are DEs?

- Equations involving unknown function(s) and function derivatives.
- Specify rates of change of certain quantities.
- Useful for modelling many natural phenomena.

2. Terminology

- ODEs (& PDEs).
- Order of DEs, Linear DEs, Autonomous DEs, Solutions to DEs

3. Initial Value Problems

- The most "standard" way to obtain a unique solution
- Specify solution value at some initial time

1. What are DFs?

- Equations involving unknown function(s) and function derivatives.
- Specify rates of change of certain quantities.
 - Useful for modelling many natural phenomena.

2. Terminology

- ODEs (& PDEs).
- Order of DEs, Linear DEs, Autonomous DEs, Solutions to DEs

Initial Value Problems

- The most "standard" way to obtain a unique solution
- Specify solution value at some initial time