Université de Genève Faculté des sciences Section de mathématiques

Travail de master

Deformation quantization algebroid in the equivariant setting

Artem Kalmykov

Sous la supervision de Pavol ŠEVERA

Deformation quantization algebroid in the equivariant setting

Artem Kalmykov

Abstract

In this work we show that non-equivariance of Kontsevich star-products is measured by the second non-abelian cohomology classes with some conditions on them.

1 Kontsevich's construction

For M a finite-dimensional manifold, denote by $A := C^{\infty}(M)$ its algebra of functions. A star-product on A is an associative product \star with values in A[[h]] that can be written in the form

$$f \star g = fg + hP_1(f,g) + h^2P_2(f,g) + \dots,$$

where all P_i are bidifferential operators. By linearity it can be extended to the product on $A[[\hbar]]$. One can easily see that the bivector $\pi(df, dg) := P_1(f, g) - P_1(g, f)$ gives a Poisson structure on M (for instance, the Jacobi identity follows from the associativity of the product). So, given a star-product, we can construct a Poisson structure. Vice versa, is it true that given a Poisson structure on M we can construct a star-product such that its first-order term is the given Poisson bracket?

This problem was positively solved in the paper [Kona]. The proof goes as follows.

There are considered two differential graded Lie algebras: the polyvector fields T_{poly} with the Schouten-Nijenhuis bracket and zero differential and the part D_{poly} of the Hochschild complex corresponding to the polydifferential operators with the usual differential and the Gerstenhaber bracket. The necessary data on both sides, i.e. Poisson brackets in T_{poly} and star-products in D_{poly} , is given just by the solutions to the Maurer-Cartan equations. Informally, we would like then to have a bijective (in a certain sense) map $T_{poly} \to D_{poly}$ commuting with dgLAs' structures.

There is an evident map between sending a polyvector to the corresponding polydifferential operator; by the Hochschild-Kostant-Rosenberg theorem, it is a quasi-isomorphism, however, it does not commute with the brackets. What Kontsevich proves is that it can be extended to a L_{∞} morphism between those dgLAs. The higher-order corrections are given by explicit formulas in coordinates as the certain integrals over configuration spaces, see [Kona].

For general manifolds (other than \mathbb{R}^d) quantization is more subtle. In fact, there is a canonical Q-equivariant map

$$T[1]\mathsf{Conn}_{\mathsf{M}} \times (T_{poly}(M)[1])_{formal} \to (D_{poly}(M)[1])_{formal}, \tag{1.1}$$

where $\mathsf{Conn}_{\mathsf{M}}$ is the space of connections on M and $T[1]\mathsf{Conn}_{\mathsf{M}}$ is the (graded) tangent bundle of $\mathsf{Conn}_{\mathsf{M}}$ (see [Konb]). Informally, it can be understood as follows: any connection defines infinitesimal geodesics giving rise to a (formal) coordinate system up to $GL(d,\mathbb{R})$ -action. Since the

formulas are also $GL(d,\mathbb{R})$ -invariant, we can apply the quantization procedure point-wise getting a well-defined *global* star-product. Therefore, Kontsevichs' star-products are parametrized (in the sense of the formula above) by the pairs (∇, π) for ∇ a connection and π a Poisson structure.

So canonically the described quantization procedure leads not to a single star-product, but to the bunch of them encoded in what is called *an algebroid* [Konb].

1.1 Quantization algebroid

The notion of an algebroid generalizes that of an algebra in a similiar way as "groupoid" does to "group". More precisely:

Definition 1.1.1. An algebroid over a commutative ring R is a small category A such that

- It is non-empty and all the objects of A are isomorphic;
- Morphism sets are endowed with a structure of R-modules;
- Composition are *R*-linear.

Similiar to groupoids, we can regard an algebroid as the data $A_1 \Rightarrow A_0$, where A_1 is the set of all morphisms, A_0 is that of objects, and the arrows correspond to the source and target maps. In these terms, we have the following

Theorem 1.1.2. There exists a natural (i.e. depending only on the manifold M) algebroid over $Conn_M$ parametrizing Kontsevichs' star-products.

Sketch of proof. According to [Konb], we have the following general procedure. Let X be a contractible manifold (maybe infinite-dimensional), and A a vector space with a distinguished vector 1. Consider the following dgLA:

$$\mathfrak{g} \coloneqq \Omega^{\bullet}(X) \otimes C^{\bullet}(A,A)[1]$$

Here $C^{\bullet}(A, A)$ is the Hochschild complex of A endowed with zero multiplication (hence trivial differential) and with the usual bracket. Let $\gamma \in \mathfrak{g}^1$ be a solution to the Maurer-Cartan equation:

$$\mathrm{d}\gamma + \frac{\left[\gamma,\gamma\right]}{2} = 0.$$

Let us decompose it as $\gamma = \gamma_0 + \gamma_1 + \gamma_2$, where $\gamma_i \in \Omega^i(X) \otimes C^{2-i}(A, A)$. Then the equation decomposes (according to the form degree) into the system:

- 1. $[\gamma_0, \gamma_0] = 0$;
- 2. $[\gamma_1, \gamma_0] + d\gamma_0 = 0;$
- 3. $[\gamma_2, \gamma_0] + (d\gamma_1 + \frac{[\gamma_1, \gamma_1]}{2}) = 0;$
- 4. $[\gamma_2, \gamma_1] + d\gamma_1 = 0$.

Also assume unitarity constraints:

(i)
$$\gamma_0|_x(\mathbf{1}, f) = f$$
 for any $f \in A, x \in X$;

(ii)
$$\gamma_1(1) = 0$$
.

Lemma 1.1.3. Given the triple (X, A, γ) as above, there is a natural algebroid over X.

Proof. Consider the trivial A-bundle over X with the connection $\nabla := d + \gamma_1$. Equations (1) and (i) give a family of products with unit elements on A parametrized by X; for $p \in X$ denote by A_p the algebra with the product $\gamma_0|_p$. Equations (2) and (ii) mean that the holonomy of ∇ along any path preserves the algebra structure. As for the equation (3) and (4), they can be understood as follows: for any disk $D \subset X$ with a marked point p on its boundary, the monodromy along ∂D is a conjugation by some element $a_{D,p} \in A_p$; equation (4) assures that this element depends only on the boundary ∂D .

Under these considerations we construct the following algebroid:

- Objects: points of X;
- Morphisms $(x, y \in X)$:
 - 1. Hom(x,x) is identified with A_x as an algebra;
 - 2. Hom(x,y): let I be a path between x and y. The holonomy along I provides an isomorphism between A_x and A_y . We identify Hom(x,y) with the diagonal bimodule in $A_x \times A_y$. By construction, it is isomorphic to A_x though not canonically. Namely, for any other path I' let D be any disk with the (oriented) boundary $I \cup (-I')$, then two identifications given by I, I' differ by the right multiplication by $a_{D,x}$. Equation (4) assures that Hom(x,y) is well-defined (i.e. depends only on the points x,y).

Now let us return to the quantization. We have the map (1.1). Take $\pi \in (T_{poly}(M)[1])^1$ a solution to the Maurer-Cartan equation (=Poisson structure). Then, putting $X := \mathbf{Conn_M}$ and $A := C^{\infty}(M)$, the restriction of the Kontsevich map

$$T[1]\mathsf{Conn}_{\mathsf{M}} \times \{\pi\} \to (D_{poly}(M)[1])_{formal} \tag{1.2}$$

gives a solution γ to the Maurer-Cartan equation in the sense above. Applying the construction, we obtain a quantization algebroid.

2 Equivariant things

Now let (M,π) be a Poisson manifold, but this time with a Lie group G acting by Poisson diffeomorphisms. Does there exist a star-product equivariant with respect to the G-action?

In terms of the map (1.1), the problem can be solved in the following way: since the map is natural (i.e. depends only on a manifold), it is also Diff(M)-equivariant. For instance, if \star, \star' are star-products for the pairs $(\nabla, \gamma), (g^*\nabla, g_*\gamma)$ for $g \in \text{Diff}(M)$, then for any two functions $a, b \in A$

$$g^*(a \star b) = (g^*a) \star' (g^*b). \tag{2.1}$$

Now consider the map (1.2) with an invariant π . If we could find a G-invariant connection, then by (2.1) we are done. Unfortunately, in general this can be guaranteed only for G a compact group.

Another useful point of view is to consider an algebroid over G.

2.1 G-equivariant algebroids over G

In what follows, the G-action on the manifold is assumed to be left, hence that on the space of connections is right:

$$(f \circ g)(m) = f(g(m)), \text{ but } (\nabla)(f \circ g)^* = ((\nabla)f^*)g^*,$$

but for simplicity we make it left by taking inverses.

Definition 2.1.1. Let G be a group. A G-equivariant algebroid $A: A_1 \Rightarrow A_0$ is the following data:

- A left G-action on A_0 ,
- A left G-action on A_1 respecting compositions:

$$g.(a \cdot b) = g.a \cdot g.b,$$

• such that the source and the target maps are equivariant.

Let us take any connection and consider its G-orbit. It can regarded as a map $G \to \mathbf{Conn_M}$. Then we take the pull-back to G of the Kontsevich algebroid over $\mathbf{Conn_M}$.

It is not hard to see that

Proposition 2.1.2. The constructed algebroid over G is equivariant with respect to the natural action.

Proof. For any $g, x \in G$ the algebras A_x and A_{gx} are identified via (2.1).

Given a path I between x and y, we can consider the path gI between gx and gy, holonomy over which provides an isomorphism between A_{gx} and A_{gy} . Since Hom(x,y) is identified with the diagonal bimodule in $A_x \times A_y$, for any element $f \in Hom(x,y)$ its translation g.f is the image of all the isomorphisms described above.

Finally, for any two paths I, I' and a disk D between them, we can consider the translations g.I, g.I', g.D. Since the elements $a_{D,p}$ depend only on the boundary, the differences between identifications also behave well with respect to the G-action.

This allows us to describe the algebroid in different terms.

Proposition 2.1.3. A G-equivariant algebroid over G is equivalent to an associative G-graded algebra such that: 1). There is an action of G on degree 1 component; 2). Each homogeneous component contains an invertible element.

Proof. • G-equivariant algebroid \Rightarrow G-graded algebra:

Consider a G-equivariant algebroid over G. Denote by $V_g := Hom(1, g)$ the corresponding morphism space. By G-equivariance any other morphism space is identified with V_g for some g.

Consider the G-graded vector space $\mathcal{V} := \bigoplus_{g \in G} V_g$. We define the multiplication rule as follows: say, for $a \in Hom(1, g_1), b \in Hom(1, g_2)$, take $g_1.b \in Hom(g_1, g_1g_2)$ and then define the product $a \cdot b$ as the composition $a \circ g_1.b$ (from left to right!). One can easily check that it indeed defines an associative product.

Now let us fix the isomorphisms between 1 and g for all $g \in G$ as objects of the category (for instance, in the quantization algebroid we fix the paths between 1 and g and consider the holonomies along them) and identify $V_g \cong A_1 \cdot \langle g \rangle$ by composition of paths (see picture). Then it is clear how we can describe the multiplication rule in terms of that of A_1 . First, by symbol $\langle g_1 \rangle \langle g_2 \rangle$ we always understand $\langle g_1 \rangle \circ (g_1 \cdot \langle g_2 \rangle)$ Then, let $a \langle g_1 \rangle$, $b \langle g_2 \rangle$ be the elements of V_{g_1}, V_{g_2} respectively. Then their composition is $a \cdot (\langle g_1 \rangle^{-1} g_1.b) \langle g_1 \rangle \langle g_2 \rangle$ — we simply translate the loop $g_1.b$ along the arrow $\langle g_1 \rangle^{-1}$:

Now define $c_{g_1g_2}$ by the following formula:

$$\langle g_1 \rangle \langle g_2 \rangle = c_{g_1,g_2} \langle g_1 g_2 \rangle.$$

One can see that c_{g_1,g_2} lies in A_1 . Indeed, $\langle g_1 \rangle \langle g_2 \rangle$ and $\langle g_1 g_2 \rangle$ provide two different identifications of $V_{g_1g_2}$ with A_1 hence they differ by the right multiplication by an element of A_1 . Upgrading the formula above, the composition reads

$$a\langle g_1\rangle \circ b\langle g_2\rangle = a \cdot (\langle g_1\rangle^{-1}g_1.b)c_{q_1,q_2}\langle g_1g_2\rangle$$

• G-graded algebra $\Rightarrow G$ -equivariant algebroid:

Essentially, everything is done in the first part. Consider a G-graded algebra $\mathcal{V} = \bigoplus_{g \in G} V_g$. Given invertible elements $\langle g \rangle \in V_g$ for any $g \in G$, we identify $V_g \cong V_1 \cdot \langle g \rangle$. We regard $\langle g \rangle$ as invertible arrows between 1 and g. The translated arrows $g_1 \cdot \langle g_2 \rangle$ are defined from the multiplication rule $\langle g_1 \rangle \cdot \langle g_2 \rangle$ (see the picture).

An element $f \in Hom(g_1, g_3)$ is defined by the property that there exists an element $b \in V_{g_3}$ such that $b = \langle g_1 \rangle \circ f$ (see the picture; we need to take $g_2 = g_1^{-1}g_3$). Thanks to the invertibility of $\langle g \rangle$, it is well-defined. The G-action is specified by the isomorphisms $V_g \cong A_1 \cdot \langle g \rangle$ (apply G to A_1 and $\langle g \rangle$).

The claim is that c represents a certain non-abelian cohomology class of G with values in the group A_1^* of invertible elements of A_1 . Let me remind general formulae. Let G,H be groups.

Definition 2.1.4. ([Gir71]; see also the discussion at **nlab** "nonabelian group cohomology"). The second nonabelian cohomology of the group G with H-coefficients $\mathcal{H}^2(G; H)$ is defined as the factor $\mathcal{Z}^2(G; H)/\sim$, where $\mathcal{Z}^2(G; H)$ is the set of degree 2 cocycles defined by the following data:

- 1. a map $\psi: G \to \operatorname{Aut}(H)$,
- 2. a map $\chi: G \times G \to H$,

5

3. such that for all $g_1, g_2 \in G$

$$\psi(g_1)\psi(g_2)\psi(g_1g_2)^{-1} = \mathrm{Ad}(\chi(g_1,g_2)),$$

4. subject to the cocycle condition

$$\chi(g_1,g_2)\chi(g_1g_2,g_3) = \psi(g_1)(\chi(g_2,g_3))\chi(g_1,g_2g_3)$$

and the equivalence relation: $(\psi, \chi) \sim (\psi', \chi')$ if there is a map $h: G \to A_1^{\times}$ such that

- (i) $\psi'(g) = \operatorname{Ad}(h(g))\psi(g)$,
- (ii) $\chi'(g_1, g_2) = h(g_1)(\psi(g_1)(h(g_2)))\chi(g_1, g_2)h(g_1g_2)^{-1}$.

In our case we can define $\psi(g)(a) = \langle g \rangle^{-1}(g.a)$ for $a \in A_1, \chi(g_1, g_1) = c_{g_1, g_2}$.

Proposition 2.1.5. The data (ψ, χ) defined above satisfies the cocycle conditions; moreover, two different choices of $\langle \bullet \rangle$ give equivalent cocycles.

Proof. The LHS of Condition (3) applied to $a \in A_1$:

$$\psi(g_1)\psi(g_2)\psi(g_1g_2)^{-1}(a)$$

is by construction equal to the monodromy operator along the loop $\langle g_1 \rangle - \langle g_2 \rangle - \langle g_1 g_2 \rangle^{-1}$ (see the picture) applied to a; but, as it was discussed earlier, it is precisely the conjugation by the element c_{g_1,g_2} .

To prove relation (4), we consider the triple product $\langle g_1 \rangle \langle g_2 \rangle \langle g_3 \rangle$. Namely,

$$\langle g_1 \rangle \langle g_2 \rangle \langle g_3 \rangle = c_{g_1,g_2} \langle g_1 g_2 \rangle \langle g_3 \rangle = c_{g_1,g_2} c_{g_1 g_2,g_3} \langle g_1 g_2 g_3 \rangle = = \langle g_1 \rangle c_{g_2,g_3} \langle g_2 g_3 \rangle = \psi(g_1) (c_{g_2,g_3}) c_{g_1,g_2 g_3} \langle g_1 g_2 g_3 \rangle.$$
(2.2)

Since $\langle g_1 g_2 g_3 \rangle$ is invertible, we get

$$c_{g_1,g_2}c_{g_1g_2,g_3} = \psi(g_1)(c_{g_2,g_3})c_{g_1,g_2g_3}.$$

For any other choice $\langle g \rangle'$ there exist an element a_g such that $\langle g \rangle' = a_g \langle g \rangle$ (it corresponds to the choice of a path), so condition (i) is fulfilled by the same reasons as condition (3). Now we just use the definition of c:

$$\langle g_1 \rangle' \langle g_2 \rangle' = a_{g_1} \langle g_1 \rangle a_{g_2} \langle g_2 \rangle = a_{g_1} \psi(g_1) (a_{g_2}) \langle g_1 \rangle \langle g_2 \rangle = a_{g_1} \psi(g_1) (a_{g_2}) c_{g_1, g_2} \langle g_1 g_2 \rangle = c'_{g_1, g_2} \langle g_1 g_2 \rangle' = c'_{g_1, g_2} a_{g_1 g_2} \langle g_1 g_2 \rangle.$$
(2.3)

Again, since $\langle g_1 g_2 \rangle$ is invertible, we get

$$a_{g_1}\psi(g_1)(a_{g_2})c_{g_1,g_2}a_{g_1g_2}^{-1}=c'_{g_1,g_2},$$

as (ii) requires. \Box

Therefore, to every G-equivariant algebroid over G we can associate a cohomology class in $\mathcal{H}^2(G; A_1^{\times})$. Vice versa, if we are given an action of G on A_1 (just as a vector space), then for every cohomology class we can define the G-equivariant algebroid over G. Indeed, all we need is to specify isomorphisms $\langle g \rangle$; let us take a representative given by the maps ψ, c as above. Then we simply put $\langle g \rangle(a) \coloneqq g^{-1}.(\psi(g)^{-1}(a))$. It is well-defined by all the considerations above.

2.2 G-equivariant algebroids over G/K

Now we return back to the question of existence a G-invariant star-product. As we mentioned, it can be guaranteed just for compact Lie groups. So what we can do is to gain a G-invariance "as much as possible". Namely, let choose a maximal compact subgroup $K \subset G$. We can find a K-invariant connection and then take its G-orbit. It can considered as a map $G/K \to \mathsf{Conn}_M$. We may take pull-back algebroid.

Proposition 2.2.1. The constructed algebroid over G/K is equivariant with respect to the natural G-action.

Proof. See the proof of Proposition 2.1.2.

To describe it in more algebraic terms as we did in the previous subsection we can pull it back to G under the natural map $G \to G/K$. Again, we obtain a G-equivariant algebroid over G, but now with some triviality conditions on the K-action. Consider the following toy example.

Example 2.2.2. Let us take the Kontsevich algebroid \mathcal{A} with compact G, i.e. G = K. Then \mathcal{A}_0 is just a point, and the pull-back algebroid over K is trivial. However, the group still acts on the space of morphisms \mathcal{A}_1 by pull-backs:

$$k.f = (k^{-1})^* f, k \in K, f \in A_1.$$

Therefore, after the pull-back to K, the isomorphisms $\langle k \rangle$ are trivial, but the automorphisms $\psi(k)$ are not. Moreover, they are *canonical* (depend only on the action on the algebroid) and satisfy $\psi(k_1)\psi(k_2) = \psi(k_1k_2)$. Therefore, as expected, the corresponding cohomology class is trivial.

The general case (G not compact) does not differ that much.

Proposition 2.2.3. The cohomology class representing a G-equivariant algebroid over G/K is characterized by the following conditions: 1). $c_{g,k} = 1$ for any $g \in G, k \in K$; 2). The coboundary condition map is trivial on K.

Proof. More or less obvious:

- $c_{g,k} = 1$: since all the points of the form gk, $g \in G$ fixed, $k \in K$ varies, are identified in G/K, the isomorphisms $\langle gk \rangle$ are equal. However, the automorphisms ψ differ by the action of k: $\psi(gk)(a) = \psi(g)(k.a) = \psi(g)\psi(k)(a)$ for $a \in A_1$. Therefore, the cocycles $c_{g,k}$ are trivial for any $g \in G$, $k \in K$.
- $h|_{K} = 1$: the choice of $\langle k \rangle$ is unique, so the coboundary condition map $h: G \to A_{1}^{\times}$ (see (2.1.4)) is indeed trivial on K.

References

[Gir71] J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, 1971.

[Kona] M. Kontsevich, Deformation quantization of Poisson manifolds, I, available at arXiv:q-alg/9709040.

[Konb] _____, Deformation quantization of algebraic varieties, available at arXiv:math/0106006.