Importing Libraries

```
# Importing data processing and Linear Algebra libraries
import pandas as pd
import numpy as np
# Importing data visualization libraries
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading our Dataset

```
# Readin data from CSV file and loading into df varaible
df = pd.read_csv('/content/heart.csv')
df.head(10)
```

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	Exerci
0	40	М	ATA	140	289	0	Normal	172	
1	49	F	NAP	160	180	0	Normal	156	
2	37	M	ATA	130	283	0	ST	98	
3	48	F	ASY	138	214	0	Normal	108	
4	54	M	NAP	150	195	0	Normal	122	
5	39	М	NAP	120	339	0	Normal	170	
6	45	F	ATA	130	237	0	Normal	170	
7	54	М	ATA	110	208	0	Normal	142	
8	37	M	ASY	140	207	0	Normal	130	
9	48	F	ATA	120	284	0	Normal	120	>
									,

Preprocessing the dataset

0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
dtype	es: float64(1),	int64(6), object	(5)
	06.0	LCD	

memory usage: 86.2+ KB

df.describe(include='all')

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG
count	746.000000	746	746	746.000000	746.000000	746.000000	746
unique	NaN	2	4	NaN	NaN	NaN	3
top	NaN	M	ASY	NaN	NaN	NaN	Normal
freq	NaN	564	370	NaN	NaN	NaN	445
mean	52.882038	NaN	NaN	133.022788	244.635389	0.167560	NaN
std	9.505888	NaN	NaN	17.282750	59.153524	0.373726	NaN
min	28.000000	NaN	NaN	92.000000	85.000000	0.000000	NaN
25%	46.000000	NaN	NaN	120.000000	207.250000	0.000000	NaN
50%	54.000000	NaN	NaN	130.000000	237.000000	0.000000	NaN
75%	59.000000	NaN	NaN	140.000000	275.000000	0.000000	NaN
max	77.000000	NaN	NaN	200.000000	603.000000	1.000000	NaN
1							•

```
# Finding any missing values
missing_data = df.isnull().sum()
missing_data
```

Age	0
Sex	0
ChestPainType	0
RestingBP	0
Cholesterol	0
FastingBS	0
RestingECG	0
MaxHR	0
ExerciseAngina	0

```
Oldpeak 0
ST_Slope 0
HeartDisease 0
dtype: int64
```

Finding the count of unique values in each category
df.nunique()

```
50
Age
Sex
                    2
ChestPainType
                    4
RestingBP
                   67
Cholesterol
                  222
FastingBS
                    2
RestingECG
                    3
MaxHR
                  119
ExerciseAngina
                   2
Oldpeak
                   53
                   3
ST Slope
                    2
HeartDisease
dtype: int64
```

```
# categorical data
```

```
catg_lst = df.select_dtypes(include='object').columns
# pumprisel_date
```

numerical data

num_lst = df.select_dtypes(include=['int64','float64']).columns

```
#IQR for checking outliers
low_range = df[num_lst].quantile(0.25) #Q1
high_range = df[num_lst].quantile(0.75) #Q3
low_range
```

Age 47.00
RestingBP 120.00
Cholesterol 173.25
FastingBS 0.00
MaxHR 120.00
Oldpeak 0.00
HeartDisease 0.00

Name: 0.25, dtype: float64

high_range

Age 60.0
RestingBP 140.0
Cholesterol 267.0
FastingBS 0.0
MaxHR 156.0
Oldpeak 1.5
HeartDisease 1.0

Name: 0.75, dtype: float64

```
iqr = high_range - low_range
igr
                    13.00
    Age
    RestingBP
                   20.00
    Cholesterol
                   93.75
                   0.00
    FastingBS
    MaxHR
                   36.00
    Oldpeak
                    1.50
    HeartDisease
                     1.00
    dtype: float64
lower_limit = low_range - 1.5*iqr
lower_limit
    Age
                    27.500
    RestingBP
                   90.000
    Cholesterol
                   32.625
                   0.000
    FastingBS
    MaxHR
                   66.000
    Oldpeak
                    -2.250
    HeartDisease
                    -1.500
    dtype: float64
upper_limit = high_range + 1.5*iqr
upper limit
    Age
                    79.500
    RestingBP
                   170.000
    Cholesterol
                   407.625
    FastingBS
                    0.000
                    210.000
    MaxHR
    01dpeak
                     3.750
    HeartDisease
                      2.500
    dtype: float64
```

Skewness of the Data

skewness

Age -0.008090
RestingBP 0.221929
Cholesterol 0.283054
FastingBS 0.000000
MaxHR -0.177518
Oldpeak 0.953711
HeartDisease dtype: float64

Using Boxplot to check outliers

```
num_lst = df_cleaned.select_dtypes(include=['int64', 'float64'])
plt.figure(figsize=(12, 8))
sns.boxplot(data=num_lst)
plt.title("Boxplot of Numerical Attributes")
plt.xticks(rotation=0)
plt.show()
```


Removing OUtliers

```
#to remove the outliers
(df[['Cholesterol','RestingBP']]==0).sum()

Cholesterol 172
  RestingBP 1
  dtype: int64
```

```
# removing the unnecessary datapoints from dataset
old_data = df.copy()
df = df[ (df['Cholesterol']!=0) & (df['RestingBP']!=0) ]
print('Old Data Shape: ',old_data.shape)
print('New Data Shape: ',df.shape)

Old Data Shape: (918, 12)
    New Data Shape: (746, 12)
```

Checking the distribution of patients who have heart disease in our dataset

```
#Proportion of patients who have heart disease in our dataset
plt.figure(figsize=(8, 6))
ax = sns.countplot(data=df, x='HeartDisease')

# Set labels and title
plt.xlabel("Heart Disease (1 = Yes, 0 = No)")
plt.ylabel("Count")
plt.title("Proportion of Heart Disease Cases")

# Show the plot
plt.show()
```


Heart Disease (1 = Yes, 0 = No)

Converting Categorical to Numerical Values

```
#data preprocessing
# one hot encoding
df_scalled = pd.get_dummies(df,drop_first = True)
df_scalled.head()
```

	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease	Sex_M	ChestPai
0	40	140	289	0	172	0.0	0	1	
1	49	160	180	0	156	1.0	1	0	
2	37	130	283	0	98	0.0	0	1	
3	48	138	214	0	108	1.5	1	0	
4	54	150	195	0	122	0.0	0	1	

```
x = df_scalled.drop(['HeartDisease'],axis=1)
y = df_scalled['HeartDisease']
```

Splitting the dataset into 2 partitions - Test & Training Set

```
# splitting the data
# Importing data spliting data library for training and testing from given dataframe
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.2)

# Scaling the data
# Module for Scaling the data
from sklearn.preprocessing import StandardScaler

# Normalize the data
sc = StandardScaler()
X_train = sc.fit_transform(x_train)
X_test = sc.transform(x_test)

X_train = pd.DataFrame(X_train, columns=x.columns)
X_test = pd.DataFrame(X_test, columns=x.columns)

display(X_train.head())
display(X_test.head())
```

	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex_M	ChestPain ⁻
0	0.244090	0.390043	0.392867	-0.446313	-0.491015	0.524183	0.543739	_
1	1.723166	1.543717	-0.191002	2.240581	-0.370634	-0.755075	0.543739	-
2	-0.495448	1.543717	0.392867	-0.446313	-1.494184	0.067305	0.543739	-
3	-0.918041	-0.763632	-0.465764	-0.446313	-1.012663	-0.846450	-1.839117	-
4	-0.706744	-1.340469	-0.087966	-0.446313	-0.009493	-0.846450	0.543739	-
	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex_M	ChestPainTy
0	Age 0.138442	-0.071427	Cholesterol 0.736319	FastingBS 2.240581	MaxHR 0.752916	Oldpeak -0.846450	Sex_M -1.839117	ChestPainTy 1
0								
0 1 2	0.138442	-0.071427	0.736319	2.240581	0.752916	-0.846450	-1.839117	1
1	0.138442 0.561035	-0.071427 0.390043	0.736319	2.240581	0.752916 0.793043	-0.846450 -0.846450	-1.839117 0.543739	1 -0

Logistic Regression

```
# Logistic Regression Model
from sklearn.linear_model import LogisticRegression
# Library module to check performance evaluation measures.
from sklearn.metrics import accuracy_score, roc_curve ,confusion_matrix,classification_repor
log_reg = LogisticRegression()
# Training the data
log_reg.fit(x_train,y_train)
# Testing the data
y_pred = log_reg.predict(x_test)
# Model Scores
log_train_accuracy = round(log_reg.score(x_train, y_train) * 100, 2)
log_accuracy = round(accuracy_score(y_pred, y_test) * 100, 2)
log_f1_score = round(f1_score(y_pred, y_test) * 100, 2)
print("Training Accuracy :",log_train_accuracy,"%")
print("Model Accuracy Score :",log accuracy,"%")
print("Classification_Report: \n",classification_report(y_test,y_pred))
     Training Accuracy : 87.25 %
    Model Accuracy Score : 81.33 %
    Classification_Report:
```

	precision	recall	f1-score	support	
0	0.81 0.81	0.84 0.79	0.82 0.80	79 71	
1	0.01	0.75	0.80	/ _	
accuracy			0.81	150	
macro avg	0.81	0.81	0.81	150	
weighted avg	0.81	0.81	0.81	150	

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Converger STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(

```
#Plotting of Confusion Matrix
cm=confusion_matrix(y_pred, y_test)
conf_matrix =sns.heatmap(cm,annot=True)
print("Confusion Matrix:\n")
plt.show()
```

Confusion Matrix:


```
from sklearn.metrics import roc_curve, roc_auc_score

# Calculate the false positive rate, true positive rate, and thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_pred)

# Calculate the AUC score
auc_score = roc_auc_score(y_test, y_pred)

# Plot the ROC curve
plt.plot(fpr, tpr, label='Logistic Regression (AUC = %0.2f)' % auc_score)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```



```
sns.regplot(x=y_test, y=y_pred, logistic=True)
plt.xlabel('Actual Labels')
plt.ylabel('Predicted Probabilities')
plt.title('Logistic Regression Line')
plt.show()
```


0.4

0.6

Actual Labels

0.8

1.0

KNN Algorithm

0.0

0.0

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.metrics import accuracy_score
KNN_model = KNeighborsClassifier(n_neighbors=7)
KNN_model.fit(X_train, y_train)
```

0.2

KNeighborsClassifier
KNeighborsClassifier(n_neighbors=7)

```
# Model Scores
knn_train_accuracy = round(KNN_model.score(x_train, y_train) * 100, 2)
knn_accuracy = round(accuracy_score(y_pred_k, y_test) * 100, 2)
knn_f1_score = round(f1_score(y_pred_k, y_test) * 100, 2)
print("Training Accuracy :",knn_train_accuracy,"%")
print("Model Accuracy Score :",knn_accuracy,"%")
print("Classification_Report: \n",classification_report(y_test,y_pred_k))
```

Training Accuracy : 54.7 % Model Accuracy Score : 83.33 %

Classification_Report:

	precision	recall	f1-score	support
0	0.86	0.82	0.84	79
1	0.81	0.85	0.83	71
accuracy			0.83	150
macro avg	0.83	0.83	0.83	150
weighted avg	0.83	0.83	0.83	150

Confusion Matrix for KNN

cm=confusion_matrix(y_pred_k, y_test)
conf_matrix =sns.heatmap(cm,annot=True)
print("Confusion Matrix:\n")
plt.show()

Confusion Matrix:

Selection of K value using Elbow Method

Text(0, 0.5, 'Error Rate')

Error Rate vs. K Value


```
from sklearn.metrics import roc_curve, roc_auc_score

# Calculate the false positive rate, true positive rate, and thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_pred_k)

# Calculate the AUC score
auc_score = roc_auc_score(y_test, y_pred_k)

# Plot the ROC curve
plt.plot(fpr, tpr, label='KNN Classifier (AUC = %0.2f)' % auc_score)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


Decision Tree Classification

```
#decision tree classifier
from sklearn.tree import DecisionTreeClassifier
Decision_model = DecisionTreeClassifier()
Decision_model = DecisionTreeClassifier(criterion="entropy",max_depth=7)
Decision_model.fit(X_train, y_train)
```

DecisionTreeClassifier DecisionTreeClassifier(criterion='entropy', max_depth=7)

```
y_pred_d = Decision_model.predict(X_test)

#increase accuracy by using k folds cross-validation

from sklearn.model_selection import cross_val_score
scores = cross_val_score(Decision_model, X_train, y_train, cv=5)

from sklearn.tree import plot_tree, export_text

text_rep = export_text(Decision_model)

fig = plt.figure(figsize=(20,20))
graph = plot_tree(Decision_model, feature_names=list(x.columns), filled=True, fontsize=8)
```



```
# Model Scores
from sklearn.metrics import accuracy_score, roc_curve ,confusion_matrix,classification_repor
dec train accuracy = round(Decision model.score(x train, y train) * 100, 2)
dec_accuracy = round(accuracy_score(y_pred_d, y_test) * 100, 2)
dec_f1_score = round(f1_score(y_pred_d, y_test) * 100, 2)
print("Training Accuracy :",dec_train_accuracy,"%")
print("Model Accuracy Score :",dec_accuracy,"%")
print("Classification_Report: \n",classification_report(y_test,y_pred_d))
     Training Accuracy
                       : 16.11 %
    Model Accuracy Score : 76.67 %
    Classification Report:
                   precision recall f1-score
                                                   support
               0
                       0.76
                                 0.82
                                           0.79
                                                       79
                1
                       0.78
                                 0.70
                                           0.74
                                                       71
                                           0.77
                                                      150
         accuracy
                       0.77
                                 0.76
                                           0.76
                                                      150
        macro avg
    weighted avg
                       0.77
                                 0.77
                                           0.77
                                                      150
```

cm=confusion_matrix(y_pred_d, y_test)
conf matrix =sns.heatmap(cm,annot=True)

print("Confusion Matrix:\n")

plt.show()

Confusion Matrix:

from sklearn.metrics import roc_curve, roc_auc_score

```
# Calculate the false positive rate, true positive rate, and thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_pred_d)
# Calculate the AUC score
auc_score = roc_auc_score(y_test, y_pred_d)

# Plot the ROC curve
plt.plot(fpr, tpr, label='Decision Tree (AUC = %0.2f)' % auc_score)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()
```


Random Forest Classifier

```
# Create a Random Forest model
from sklearn.ensemble import RandomForestClassifier
RandomForest_model = RandomForestClassifier(n_estimators=50, criterion='entropy', random_state
# Train the model
RandomForest_model.fit(X_train, y_train)
```

```
RandomForestClassifier
RandomForestClassifier(criterion='entropy', n_estimators=50, random_state=40)
```

```
# Make predictions on the test set
y_pred_r = RandomForest_model.predict(X_test)
```

```
# Visualize individual trees
for i in range(min(4, len(RandomForest_model.estimators_))):
    plt.figure(figsize=(10, 7))
    plot_tree(RandomForest_model.estimators_[i], filled=True, feature_names=[f'feature_{i}'
    plt.title(f"Decision Tree {i+1}")
    plt.show()
```