第二章 随机变量及其分布函数

学号:

姓名:

一、选择题(每小题10分,共计30分)

1. 设随机变量 $X \sim B(4,0.2)$, 则 $P(X>3) = (\triangle)$

A 0.0016

C 0.4096 D 0.8192

2. 设随机变量 $X \sim N(\mu, 2^2), Y \sim N(\mu, 3^2)$, 记 $P_1 = P\{X \le \mu - 2\}, P_2 = P\{Y \ge \mu + 3\}$, 则

A 对于任意实数 μ ,有 p_1 = p_2 B 对于任意实数 μ ,有 p_1 < p_2

C 对于任意实数 μ ,有 $p_1 > p_2$ D 对于 μ 的个别值,有 $p_1 = p_2$

3. 设随机变量 $X \sim U(2,4)$,则P(3 < X < 4) = (人)

A P(2.25 < X < 3.25)

B P(1.5 < X < 2.5)

 $C P(3, 5 \le X \le 4, 5)$

 $p P(4, 5 \le X \le 5, 5)$

二、填空题 (每小题 10 分, 共计 20 分)

1. 设离散型随机变量 X 的分布律为

X	-1	0	1
Р	2c	0.4	С

则常数 c= 0·2.

三、解答题(第1题20分,第2题30分,共计50分)

- 1. 设打电话所用时间 X (分钟) 服从参数 $\lambda = 0.1$ 的指数分布, 如某人刚好在你前 面走进电话间, 求你等待的时间:
- (1) 超过10分钟的概率;
- (2) 在 10 分钟到 20 分钟之间的概率. 解: (1) 周为 $\times \sim E[0,1)$, 例 + $\% = \begin{cases} i e^{-\frac{1}{6}} & 370 \\ 0 & 5 \neq 0 \end{cases}$ $F(3) = \begin{cases} 1 - e^{-\frac{1}{6}} & 370 \\ 0 & 5 \neq 0 \end{cases}$ $\phi = \begin{cases} 1 - e^{-\frac{1}{6}} & 370 \\ 0 & 5 \neq 0 \end{cases}$

(2)
$$P\{10< + <20\} = \int_{10}^{20} f(s)ds = F(20) - F(40)$$

= $e^{-1} - e^{-2}$

- **2.**连续性随机变量 **X** 的概率密度函数为 $f(x) = \begin{cases} \frac{c}{\sqrt{1-x^2}}, & 0 < x < 1 \\ 0, & \text{其它} \end{cases}$, 求
 - (1) 常数 C;
 - (2) 随机变量 X 的分布函数;
 - (3) 计算 $p\{-1 \le x \le \frac{\sqrt{2}}{2}\}$.

解: 11) 图为 Start的的一, 市 Start的 的= 50 5000 ds = 50 5000 ds

12) $F(h) = \int_{0}^{h} f(h) dh = \begin{cases} 0 & \frac{2}{\pi} \frac{2}{\pi \sqrt{1 + 2}} dh \\ \frac{2}{\pi} \frac{2}{\pi \sqrt{1 + 2}} dh \end{cases}$ $\frac{3 \pm 0}{371}$ $\frac{2}{\pi \sqrt{1 + 2}} \frac{1}{371}$