### **Chapter 9: Public Key Encryption**

**Information Security** 

Nguyễn Đăng Quang

Fall 2022

### Goals

- Modular Arithmetic,
- RSA Encryption,
- Discrete logarithm
- Diffie Hellman

### Introduction to Modular Arithmetic

Modulo

$$rac{A}{B}=Q ext{ remainder } R$$

A is the dividend

B is the divisor

Q is the quotient

R is the remainder

R = A mod B say: A modulo B is equal to R where B is modulus

Congruent Modulo

 $A \equiv B \pmod{C}$  A is congruent to B modulo C

# **Properties**

#### Addition

 $(a + b) \mod n = (a \mod n + b \mod n) \mod n$ 

#### **Subtraction**

 $(a - b) \mod n = (a \mod n - b \mod n) \mod n$ 

#### Multiplication

 $(a * b) \mod n = (a \mod n * b \mod n) \mod n$ 

#### Exponentiation

 $a^x \mod n = (a \mod n)^x \mod n$ 

### Euler's totient function

 $\varphi(n)$ : (Euler Phi function) – the number of integers smaller than n and relatively prime (coprime) to n

- Ex:  $\varphi(9)$  has 6 relatively prime to n: 1, 2, 4, 5, 7, 8
- If p is prime,  $\varphi(p) = p-1$
- If  $n = p \times q$  and p, q are primes,  $\varphi(n) = (p-1)x(q-1)$ 
  - Ex: Find  $\varphi(21)$ : 21 = 3 (p) x 7 (q) =>  $\varphi(21) = (3-1)$  x (7-1) = 12

### **Euler's Theorem**

If gcd(a,n) = 1 then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Example:

 $\varphi(10)=4$ , so if  $\gcd(\alpha,10)=$ , then  $\alpha^4\equiv 1 \pmod{10}$ 

# Extended Euclidean Algorithm

- GCD(a,b): a\*x + b\*y = gcd(a,b)
- If gcd(a,b) = 1 (a,b are coprime)  $\rightarrow$  mod b for both side:
- $a*x = 1 \pmod{b} \rightarrow x$  is the modular inverse of a

### Modular inverse

- The modular inverse of A (mod C) is A<sup>-1</sup>
- $(A * A^{-1}) \equiv 1 \pmod{C}$  or equivalently  $(A*A^{-1}) \pmod{C} = 1$
- Only the numbers coprime to C have a modular inverse (mod C)

Example: Find modular inverse for A (mod C):

for m in range©: if A \* m mod  $C = 1 \rightarrow m$  is modular inverse of A (mod C)

```
3*0 \equiv 0 \pmod{7}

3*1 \equiv 3 \pmod{7}

3*2 \equiv 6 \pmod{7}

3*3 \equiv 9 \equiv 2 \pmod{7}

3*4 \equiv 12 \equiv 5 \pmod{7}

3*5 \equiv 15 \pmod{7} \equiv 1 \pmod{7} < --------- FOUND INVERSE!

3*6 \equiv 18 \pmod{7} \equiv 4 \pmod{7}
```

### **RSA**

- · Named after its inventors (Rivest, Shamir, Adleman).
- RSA is the most widely used public key algorithm, supports both public key encryption and digital signature.
- The security strength of RSA is based on the hypothesis that, factoring a very large number into two primes is a very hard problem.

# Encryption, Decryption, and key generation in RSA



# RSA Algorithm

- · Select two prime numbers, p and q
- Compute RSA modulus  $n = p \times q$
- Compute  $\varphi(n) = (p-1) \times (q-1) (2048 \text{ bits})$
- Select an integer e that is relatively  $\label{eq:prime} \text{prime to } \phi(n)$
- Find d which is modular inverse of e  $\text{mod } \phi(n)$ .
- The public key is (e, n)
- The private key is (d, n)

#### **Key Generation by Alice**

Select p, q p and q both prime,  $p \neq q$ 

Calculate  $n = p \times q$ 

Calcuate  $\phi(n) = (p-1)(q-1)$ 

Select integer e  $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ 

Calculate  $d \equiv e^{-1} \pmod{\phi(n)}$ 

Public key  $PU = \{e, n\}$ 

Private key  $PR = \{d, n\}$ 

#### **Encryption by Bob with Alice's Public Key**

Plaintext: M < n

Ciphertext:  $C = M^e \mod n$ 

#### **Decryption by Alice with Alice's Public Key**

Ciphertext:

Plaintext:  $M = C^d \mod n$ 

### Example

- Select two prime numbers, p = 17 and q = 11.
- Calculate n = p\*q = 17 \* 11 = 187.
- Calculate  $\varphi(n) = (p 1)(q 1) = 16 * 10 = 160$ .
- Select *e* relatively prime to  $\varphi(n) = 160$  and less than  $\varphi(n) \rightarrow e = 7$ .
- Determine d such that  $de \equiv 1 \pmod{160}$  and d 6 160. The correct value is d = 23,

```
because 23 * 7 = 161 = (1 * 160) + 1;
```

- Public key  $PU = \{7,187\}$
- Private key  $PR = \{23,187\}$

#### **Key Generation by Alice**

Select p, q p and q both prime,  $p \neq q$ 

Calculate  $n = p \times q$ 

Calcuate  $\phi(n) = (p-1)(q-1)$ 

Select integer e  $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$ 

Calculate  $d \equiv e^{-1} \pmod{\phi(n)}$ 

Public key  $PU = \{e, n\}$ 

Private key  $PR = \{d, n\}$ 

# RSA Encryption & Decryption

#### **Encryption by Bob with Alice's Public Key**

Plaintext: M < n

Ciphertext:  $C = M^e \mod n$ 

#### **Decryption by Alice with Alice's Public Key**

Ciphertext: C

Plaintext:  $M = C^d \mod n$ 



# Step-by-step encryption process

Convert the message "Hello world" into ASCII values:

$$"H" = 72$$

"
$$e$$
" = 101

"l" = 
$$108$$

"l" = 
$$108$$

"o" = 
$$111$$

" " 
$$(space) = 32$$

$$"w" = 119$$

"o" = 
$$111$$

$$"r" = 114$$

"l" = 
$$108$$

$$"d" = 100$$

Encrypt each value using public key {7,187}

$$72 \rightarrow 72^7 \mod 187 = 1,028,071,702 \mod 187 = 66$$

$$101 \rightarrow 101^7 \mod 187 = 10,201,010,101 \mod 187 = 128$$

$$108 \rightarrow 108^7 \mod 187 = 1{,}782{,}969{,}984 \mod 187 = 121$$

$$108 \rightarrow 108^7 \mod 187 = 1,782,969,984 \mod 187 = 121$$

111: 
$$111^7 \mod 187 = 2,487,388,671 \mod 187 = 49$$

$$32 \rightarrow 32^7 \mod 187 = 1,073,741,824 \mod 187 = 1$$

$$119 \rightarrow 119^7 \mod 187 = 1,872,517,119 \mod 187 = 119$$

$$111 \rightarrow 111^7 \mod 187 = 2,487,388,671 \mod 187 = 49$$

$$114 \rightarrow 114^7 \mod 187 = 3,972,969,984 \mod 187 = 161$$

$$108 \rightarrow 108^7 \mod 187 = 1,782,969,984 \mod 187 = 121$$

$$100 \rightarrow 100^7 \mod 187 = 1,000,000,000 \mod 187 = 100$$

# RSA Example

RSA processing of multiple blocks



# Quiz

- 1. Given p = 3, q = 11
- 2. Compute n = ?
- 3. Compute  $\varphi(n) = ?$
- 4. Assume e = 7, compute d = ?
- 5. The public key (e, n) = ?
- 6. The private key (d, n) = ?
- 7. Suppose m = 2, what is the encryption of m. Enc(m) = ?
- 8. Check that the decryption of Enc(m) equals to m?

### **Tools**

Generate RSA keys: openssl genrsa –aes128 –out private.pem 1024

View the Private key: openssl rsa —in private.pem —noout —text

View keys in text: openssl rsa —in private.pem —text

Extract the Public key: openssl rsa -in private.pem -pubout > public.pem

View: openssl rsa –in public.pem –pubin –text

#### **Encrypt & Decrypt**

Encrypt: openssl rsautl -encrypt -inkey public.pem -pubin -in msg.txt -out msg.enc

Decrypt: openssl rsautl –decrypt –inkey private.pem –in msg.enc

### Performance measurement

#### Strength:

- 1024-bit RSA key = 80-bit symmetric key
- 2048-bit RSA key = 112-bit symmetric key
- 3072-bit RSA key = 128-bit symmetric key
  - openssl speed rsa
  - openssl speed aes-128-cbc

### **Hybrid Encryption**



# Digital Signature



### Digital signature with Openssl

Generating hash

openssl sha256 –binary msg.txt > msg.sha256

Signing and Verifying

Signing:

openssl rsautl –sign –inkey private.pem –in msg.sha256 –out msg.sig

Verify the signature:

openssl rsautl -verify -inkey public.pem -in msg.sig -pubin -raw | xxd

# Other applications

**Public-key based Authentication** 



### Github SSH keys

#### SSH keys

New SSH key

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

#### **Authentication Keys**



#### Mac mini M1

SHA256:YH3HGT5/Y98WnTJ7jJ1yRidXWuZUS9FH0U4oprFEV5k

Added on Nov 27, 2022

Never used — Read/write

Delete

Check out our guide to generating SSH keys or troubleshoot common SSH problems.

### **HTTPs**





# Credit Cards

### **Card Authentication**



### Transaction Authentication



### Diffie-Hellman Key Exchange

- First published public-key algorithm.
- By Diffie and Hellman in 1976 along with the public key concepts.
- Used in a number of commercial products.
- Practical method to exchange a secret key securely that can be used for subsequent encryption messages.
- Security relies on difficulty of computing discrete logarithm.

### Recall...

#### Arithmetic

- $y = 2^x$ : exponent
- $x = \log_2 y$ : logarithm (calculate the  $x \equiv \log_2 y \pmod{p}$ power x)

#### Modular arithmetic

(modulus p)

- $y \equiv 2^x \pmod{p}$

### Discrete logarithm

- Let p: the prime modulus
- Let g: the primitive root of p
- Calculate  $y = g^x \mod p$ , the result are all numbers in range  $1 \rightarrow p-1$
- Example:  $p = 11 \rightarrow g = 2$ , for x in range(1, p):  $g = 2^{**}x$  k = g % p  $print(k, end=',') \rightarrow 2, 4, 8, 5, 10, 9, 7, 3, 6, 1$ (all numbers in range  $1 \rightarrow 11$ )
- g is also called the generator
- Calculate x from y is the discrete logarithm problem. If p is chosen as a very long number, the time to calculate x is extremely long.

# Diffie and Hellman Key Exchange

- In the **Diffie-Hellman protocol** two parties create a symmetric session key without the need of a Key Distribution Center (KDC);
- The two parties need to choose two numbers *p* and *g*;
- p is a prime modulus, g is a generator
- These two numbers do not need to be confidential. They can be sent publicly through the Internet;

# Key Exchange protocol steps

- 1. Alice chooses a large random number x ( $0 \le x \le p-1$ ) and calculates  $R1 = g^x \mod p$ .
- 2. Alice sends R1 to Bob
- 3. Bob chooses another large random number y ( $0 \le y \le p-1$ ) and calculates  $R2 = g^y \mod p$ .
- 4. Bob sends R2 to Alice
- 5. Alice calculates  $K = (R2)^x \mod p$ . Bob also calculates  $K = (R1)^y \mod p$ . K is the symmetric key for the session

Alice: 
$$(R2)^x \mod p = (g^y \mod p)^x \mod p = (g^y)^x \mod p = KA$$
Bob:  $(R1)^y \mod p = (g^x \mod p)^y \mod p = (g^x)^y \mod p = KB$ 

$$KA = KB$$

# Symmetric-Key Agreement

Diffie-Hellman Key Agreement



# Turn DH to public-key encryption

- 1. Alice & Bob agree on g,p
- 2. Alice generates (public, private) key-pair: (g, p,  $g^x \mod p$ ), x. the public-key (g, p,  $g^x \mod p$ ) is sent to Bob
- Bob computes  $(g^x \mod p)^y \mod p = g^{xy} \mod p$  which is the common key to decrypt