PSALTer results panel

 $\mathcal{S} = \\ \int \int \int \int \left(\frac{1}{6}\left(2\left(t_{1}-2t_{3}\right)\mathcal{A}^{\alpha_{i}}\mathcal{A}^{\theta}_{i}+6\right.\mathcal{A}^{\alpha\beta\chi}\right)\mathcal{A}^{\alpha_{i}}\mathcal{A}^{\theta}_{i}+6\left.\mathcal{A}^{\alpha\beta\chi}\right)\mathcal{A}^{\alpha_{i}}\mathcal{A}^{\theta}_{i}+8t_{3}\mathcal{A}^{\theta$

Wave operator

	${}^{0^+}\mathcal{H}^{\parallel}$	$0.^{+}f^{\parallel}$	$0.^+f^{\perp}$	$^{0}\mathcal{A}^{\parallel}$	_									
${\stackrel{0^+}{\cdot}}\mathcal{R}^\parallel$ †	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
^{0,+} f †	$i\sqrt{2} kt$.	$2k^2t$.	0	0										
0.+f ⁺ †	0	0	0	0										
^{0.} Æ∥†	0	0	0	$k^2 rt.$	$1^+_{\cdot}\mathcal{A}^{\parallel}_{\alpha\beta}$	$^{1^{+}}\mathcal{F}^{\perp}_{\alpha\beta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^1\mathcal{A}^{\scriptscriptstyle\perp}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$		$-\frac{\frac{t}{1}}{\sqrt{2}}$	$-\frac{i kt}{\sqrt{2}}$	0	0	0	0			
				$^{1.^{+}}\mathcal{H}^{\perp}$ lphaeta	V 2	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0	0	0	0	0	0			
				$\frac{1}{2}\mathcal{A}^{\parallel} \uparrow^{\alpha}$	0	0	0	$\frac{1}{6}(t_1+4t_1)$	$\frac{t2t.}{\frac{1}{3}\sqrt{2}}$	0	$\frac{1}{3}$ i k (t ₁ - 2t ₁)			
				$^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{t2t.}{\frac{1}{3}\sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	0	$\frac{1}{3}i\sqrt{2}k(t_1+t_2)$			
				$\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_1)-\frac{1}{3}$	$\frac{1}{3} i \sqrt{2} k (t_1 + t_2)$) 0	$\frac{2}{3}k^2(t_1+t_2)$	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{t}{2}$	$-\frac{i k t}{\sqrt{2}}$	0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0
											$\mathcal{F}^{\mathcal{F}}\mathcal{H}^{\parallel}$	0	0	t. 1/2

Saturated propagator

	$0.^{+}\sigma^{\parallel}$	0.+ 1	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
0. ⁺ σ †	$\frac{1}{(1+2k^2)^2t_{.3}}$	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
0.+ τ∥ †	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{2 k^2}{(1+2 k^2)^2 t}$	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰ σ †	0	0	0	$\frac{1}{k^2 rt.}$	$^{1^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$1^+ \sigma^{\perp}_{\alpha\beta}$	$1^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	1 ⁻ τ α	$\frac{1}{2}\tau_{\alpha}^{\perp}$	_		
				$1.^{+}\sigma^{\parallel} \uparrow^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t.+k^2t.}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t}$	$\frac{ik}{(1+k^2)^2t.}$	0	0	0	0			
				$1.^+\tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t\cdot +k^2t\cdot 1}$	$-\frac{i k}{(1+k^2)^2 t}$	$\frac{k^2}{(1+k^2)^2 t.}_{1}$		0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2(t.+t.)}{3\atop 3t.t.\atop 13}$	$-\frac{\sqrt{2} (t2t.)}{3 (1+2k^2) t. t.}_{1 \ 3}$	0	$-\frac{2ikt4ikt.}{1}$ $\frac{3}{3t.t.+6k^2t.t.}$ 1 3			
				$\frac{1}{2}\sigma^{\perp} \uparrow^{\alpha}$	0	0	0		$\frac{t.+4t.}{3(1+2k^2)^2t.t.}_{13}$		$\frac{i\sqrt{2} k(t.+4t.)}{3(1+2k^2)^2 t.t.}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{2ikt4ikt.}{3}$ 3t.t.+6k ² t.t. 1 3	$-\frac{i\sqrt{2} k(t.+4t.)}{3(1+2k^2)^2 t.t.}$	0	$\frac{2k^{2}(t.+4t.)}{3(1+2k^{2})^{2}t.t.}$	2. ⁺ σ [∥] αβ	$2^+ \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
				!							$^{2^+}\sigma^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	0
											$^{2^+}\tau^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$

Source constraints

Spin-parity form	Covariant form	Multiplicities				
0 ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1				
$-2 i k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta}$	1				
$2ik \cdot 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3				
1. _τ " == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3				
$\bar{l} k 1_{\cdot O^{\perp}}^{+} \alpha^{\beta} + 1_{\cdot T}^{+} ^{\alpha \beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3				
$-2 i k 2^{+}_{\cdot} \sigma^{\parallel}^{\alpha\beta} + 2^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda$	5				
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta} \delta^{\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} = 0$					
Total expected gauge of	Total expected gauge generators:					

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\dot{2}}} > 0$
Square mass:	$\frac{\frac{t}{1}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $r_{.} < 0 \&\& t_{.} < 0$