Lab1.md

Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №1 «Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-53

Миронова Александра

Подпись и дата: 09.03.22

Проверил: Юрий Евгеньевич Гапанюк

Подпись и дата:

Москва, 2022 г.

Лабораторная работа №1

Задание:

1)Выбрать набор данных (датасет)

2)Создать ноутбук, который содержит следующие разделы:

- Текстовое описание выбранного Вами набора данных.
- Основные характеристики датасета.
- Визуальное исследование датасета.
- Информация о корреляции признаков.

1) Текстовое описание набора данных

В качестве набора данных я буду использовать набор данных о книгах бестлеллерах интернет-магазина амазон жанров фантастика и научная фантастика - https://www.kaggle.com/sootersaalu/amazon-top-50-bestselling-books-2009-2019

Мне стало интересно, какие книги выходят в бестселлеры и какие факторы влияют на возможность выхода книги в список бестселлеров.

Датасет состоит из файла: bestsellers_with_categories.csv

Файл содержит следующие колонки:

- Name название книги
- Author Автор книги
- User rating рейтинг книги
- Reviews количество отзывов о книге
- Price цена книги
- Year год получения статуса бестселлер
- Genre жанр

localhost:6419 2/11

2) Основные характеристики датасета

```
import numpy as np
  import pandas as pd
 import seaborn as sns
  import matplotlib.pyplot as plt
 %matplotlib inline
 sns.set(style="ticks")
 # Будем анализировать данные только на обучающей выборке
 data = pd.read_csv('bestsellers_with_categories.csv', sep=",")
 # Первые 5 строк датасета
 data.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

</style>

	Name	Author	User Rating	Reviews	Price	Year	Genre
0	10-Day Green Smoothie Cleanse	JJ Smith	4.7	17350	8	2016	Non Fiction
1	11/22/63: A Novel	Stephen King	4.6	2052	22	2011	Fiction
2	12 Rules for Life: An Antidote to Chaos	Jordan B. Peterson	4.7	18979	15	2018	Non Fiction
3	1984 (Signet Classics)	George Orwell	4.7	21424	6	2017	Fiction

localhost:6419 3/11

	Name	Author	User Rating	Reviews	Price	Year	Genre
4	5,000 Awesome Facts (About Everything!) (Natio	National Geographic Kids	4.8	7665	12	2019	Non Fiction

```
total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
Всего строк: 550
# Список колонок
data.columns
Index(['Name', 'Author', 'User Rating', 'Reviews', 'Price', 'Year', 'Genre'],
dtype='object')
# Список колонок с типами данных
data.dtypes
Name
                object
Author
               object
User Rating float64
Reviews
                int64
Price
                int64
Year
                int64
Genre
                object
dtype: object
# Проверим наличие пустых значений
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))
print('Видим, что пустых значений в датасете нет')
```

localhost:6419 4/11

```
Name - 0
 Author - 0
 User Rating - 0
 Reviews - 0
 Price - 0
 Year - 0
 Genre - 0
  Видим, что пустых значений в датасете нет
 # Основные статистические характеристки набора данных
 data.describe()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
  .dataframe tbody tr th {
      vertical-align: top;
  }
  .dataframe thead th {
      text-align: right;
  }
```

</style>

	User Rating	Reviews	Price	Year
count	550.000000	550.000000	550.000000	550.000000
mean	4.618364	11953.281818	13.100000	2014.000000
std	0.226980	11731.132017	10.842262	3.165156
min	3.300000	37.000000	0.000000	2009.000000
25%	4.500000	4058.000000	7.000000	2011.000000
50%	4.700000	8580.000000	11.000000	2014.000000
75%	4.800000	17253.250000	16.000000	2017.000000
max	4.900000	87841.000000	105.000000	2019.000000

3) Визуальное исследование датасета.

localhost:6419 5/11

[&]quot;Парные диаграммы"

Для начала построим комбинации гистограмм и диаграмм рассеивания для всего набора данных. Это поможет найти графики, зависимости которых могут быть интересны для дальнейшего исследования.

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x1a22357ca90>

Буду считать поле User Rating целевым признаком, тк он является основным показателем при выборе книги и выходе ее в с татус бестселлера. Посмотрим на влияние целевого признака.

sns.pairplot(data, hue="User Rating")

localhost:6419 6/11

<seaborn.axisgrid.PairGrid at 0x1a236e1a770>

Линейный график

Зависимость количества отзывов книг от их рейтинга

sns.lineplot(data=data, x="User Rating", y="Reviews")

<AxesSubplot:xlabel='User Rating', ylabel='Reviews'>

localhost:6419 7/11

Столбчатая диаграмма

Рассмотрим зависимость средней цены книги по значению рейтинга

```
MeanPprice = data.groupby(['User Rating']).mean()
print(MeanPprice)
sns.barplot( data=MeanPprice, x=MeanPprice.index, y=MeanPprice["Price"])
```

	Reviews	Price	Year
User Rating			
3.3	9372.000000	12.000000	2012.000000
3.6	14982.000000	19.000000	2015.000000
3.8	47265.000000	14.000000	2012.500000
3.9	24666.000000	17.666667	2013.333333
4.0	17376.142857	14.642857	2012.928571
4.1	32384.166667	11.666667	2013.000000
4.2	4283.500000	11.625000	2011.250000
4.3	8362.880000	13.280000	2013.680000
4.4	7038.973684	14.447368	2012.815789
4.5	9231.116667	20.933333	2013.416667
4.6	9260.038095	12.095238	2013.314286
4.7	13660.925926	12.990741	2013.833333
4.8	13840.110236	10.866142	2014.929134
4.9	12957.423077	10.288462	2016.096154

<AxesSubplot:xlabel='User Rating', ylabel='Price'>

localhost:6419 8/11

Гистограмма по видам

Построим гистограмму, демонстрирующую, какое количество книг каждого жанра вошло в список бестселлеров в каждом году

```
sns.histplot(data=data, x="Year", hue="Genre")
pdn = data[data['Genre'].isin(['Non Fiction'])]
pdf = data[data['Genre'].isin(['Fiction'])]
print(pdn.groupby('Year').count())
```

	Name	Author	User Rating	Reviews	Price	Genre
Year						
2009	26	26	26	26	26	26
2010	30	30	30	30	30	30
2011	29	29	29	29	29	29
2012	29	29	29	29	29	29
2013	26	26	26	26	26	26
2014	21	21	21	21	21	21
2015	33	33	33	33	33	33
2016	31	31	31	31	31	31
2017	26	26	26	26	26	26
2018	29	29	29	29	29	29
2019	30	30	30	30	30	30

localhost:6419 9/11

4) Информация о корреляции признаков

```
data.corr()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

	User Rating	Reviews	Price	Year
User Rating	1.000000	-0.001729	-0.133086	0.242383
Reviews	-0.001729	1.000000	-0.109182	0.263560
Price	-0.133086	-0.109182	1.000000	-0.153979
Year	0.242383	0.263560	-0.153979	1.000000

На основе корреляционной матрицы можно сделать следующие выводы:

Наиболее сильно кореллируют между собой нецелевые признаки Reviews и Year(0,26)

Наиболее сильно кореллирует с целевым признаком User Rating нецелевой признак Year(0,24)

localhost:6419 10/11

Однако во всей матрице корелляций все коэффициенты корелляции достаточно малы, из чего можно сделать вывод, что все признаки слабо коррелируют с целевым признаком, выбранный датасет плохо бы подошел для моделей машинного обучения.

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson') ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')
```


localhost:6419 11/11