Ciência da Computação

Análise Assintótica de Algoritmos Iterativos

André Luiz Brun

Introdução

- Para descobrirmos a complexidade assintótica de um algoritmo é necessário analisar seu código (ou pseudocódigo) e construir sua função de complexidade
- Essa função determinará então, a complexidade assintótica do algoritmo
- O processo de análise pode ser iterativo ou recursivo. nessa aula trabalharemos com o primeiro.

• Exemplo: busca por um elemento em um conjunto

• Exemplo: busca por um elemento em um conjunto

- Melhor caso: encontrar o elemento já no primeiro teste (posição 0)
- nº Testes: 1
- Complexidade seria O(1)

• Exemplo: busca por um elemento em um conjunto

- Pior caso: encontrar o elemento no último teste (posição 7) ou não encontrar o elemento.
- Seria necessário executar a consulta n vezes
- nº Testes: 8 → n
- Complexidade seria O(n)

• Exemplo: busca por um elemento em um conjunto

 Caso médio: podemos pensar nele como o custo médio para todos os casos de busca

$$\frac{1+2+3+\dots+8}{8} = \frac{36}{8} = 4,5$$

 O numerador pode ser interpretado como a soma dos termos de uma PA:

$$S = \frac{(a_1 + a_n) * n}{2}$$

$$S = \frac{(1+8) * 8}{2}$$

$$S = 36$$

$$S = \frac{(1+n)*n}{2}$$
$$S = \frac{n^2 + n}{2}$$

$$\frac{Custo \ de \ Todos}{N^{\circ} \ de \ Posiç\~oes} = \frac{\frac{n^2 + n}{2}}{n}$$

$$\frac{Custo\ de\ Todos}{N^{\underline{o}}\ de\ Posiç\~oes} = \frac{n^2+n}{2}*\frac{1}{n} = \frac{n^2+n}{2n}$$

$$\frac{Custo\ de\ Todos}{N^{\underline{o}}\ de\ Posiç\~oes} = \frac{n+1}{2}$$

• nº Testes: 4,5 $\rightarrow \frac{n+1}{2}$

$$\frac{Custo\ de\ Todos}{N^{\underline{o}}\ de\ Posiç\~oes} = \frac{n^2+n}{2}*\frac{1}{n} = \frac{n^2+n}{2n}$$

$$\frac{Custo\ de\ Todos}{N^{\circ}\ de\ Posiç\~oes} = \frac{n+1}{2}$$

- nº Testes: 4,5 $\rightarrow \frac{n+1}{2}$
- Complexidade seria O(n)

- 1) O tempo de execução de operações básicas é considerado o mesmo:
 - Atribuição
 - Soma / Subtração / Multiplicação / Divisão
 - Indexação
 - Retorno
 - Teste lógico
 - Entrada
 - Saída
 - Chamadas

2) O tempo de execução de uma sequência de comandos é o maior tempo de execução de qualquer comando da sequência

2) O tempo de execução de uma sequência de comandos é o maior tempo de execução de qualquer comando da sequência

$$O(f(n)) + O(g(n)) = O(Max(O(f(n)), O(g(n))))$$

$$n * \log_2 n + n^2 + n = Max(n * \log_2 n, n^2, n)$$

2) O tempo de execução de uma sequência de comandos é o maior tempo de execução de qualquer comando da sequência

3) O tempo de execução de uma sequência de comandos aninhada à outra é obtida pelo produto das complexidades

3) O tempo de execução de uma sequência de comandos aninhada à outra é obtida pelo produto das complexidades

$$O(f(n)) * O(g(n)) = O(f(n) * g(n))$$
$$n * n^2 = n^3$$

3) O tempo de execução de uma sequência de comandos aninhada à outra é obtida pelo produto das complexidades

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas em cada um

Exemplo:

Sequência 1

$$3 \quad C = (A + B)$$

4
$$Vet[A] = C*A$$

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas em cada um

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas em cada um

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas em cada um

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas em cada um

4) Como obter o custo de cada trecho de código? Contando o número de operação básicas executadas

em cada um

Exemplo com condicionais

Quando houver uma estrutura condicional, devese "pagar" o teste lógico e considerar o trecho que levar ao major custo

Neste caso, o comando do else tem mais operações, logo, ele seria o pior caso

- Funções puras
 - Complexidade fixa
 - Determinística
 - Exemplos
 - raiz(n)
 - potencia(base,expoente)
 - maior(A,B)

- Exemplo com comandos de repetição
 - Contabiliza todos os custos de execução de cada linha, tanto internas quanto externas às estruturas de repetição
 - Aquelas que estiverem aninhadas, serão executadas uma quantidade de vezes de acordo com o controle da estrutura de repetição
 - Importante destacar que mesmo as operações usadas no comando de repetição devem ser consideradas

Exemplo com comandos de repetição

Exemplo com comandos de repetição

Exemplo com comandos de repetição

Exemplo com comandos de repetição

2 for(i=0;i<n;i++)

O for começa com zero e é executado n vezes (0..n-1)

Último teste lógico

Cada vez que ele é executado, deve-se fazer um incremento em direção ao limite e um teste lógico para saber se este limite já foi alcançado ou não

A operação de inicializar o valor do iterador (neste caso, i=0) é realizada apenas no início do laço de repetição

Ou seja, o comando i=0 é executado uma única vez Os comandos i<n e i++ são executados n vezes Quando execução deixa o laço, realizou-se um último teste lógico

Exemplo com comandos de repetição

Assim, o custo de execução do for seria:

1 atri (n=1) + (1 teste lógico (1<n) + 1 incremento)*n +1 teste lógico = 2n + 2

Exemplo com comandos de repetição

Exemplo com comandos de repetição

A linha 3, no entanto, está aninhada à estrutura de repetição, ou seja, cada vez que houver uma repetição do laço, os comandos da linha 3 serão executados. Como o for é executado n vezes, o custo da linha 3 será 3*n

Exemplo com comandos de repetição

Assim, a função de custo da Sequência 3 seria:

$$f(n) = 1 + 2n + 2 + 3n + 2$$

$$f(n) = 5n + 5$$

Exemplo com comandos de repetição

Assim, a função de custo da Sequência 3 seria:

$$f(n) = 1 + 2n + 2 + 3n + 2$$

$$f(n) = 5n + 5$$

Complexidade linear O(n)

Exemplo com comandos de repetição aninhados

A linha 4 está aninhada à estrutura de repetição do j, ou seja, cada vez que houver uma repetição do laço, os comandos da linha 4 serão executados.

Como o for do j é executado n vezes, o custo da linha 4 será 5 * n

Exemplo com comandos de repetição aninhados

Além disso, a linha 4 está aninhada ao for do iterador i, ou seja, cada vez que o laço é executado a linha 4 também é. Como o laço é executado n vezes, o custo da linha será 5n * n

Exemplo com comandos de repetição aninhados

A linha 3 está aninhada ao for do iterador i, ou seja, cada vez que o laço é executado a linha 3 também é. Como o custo da linha 3 já é 2n+1, seu custo final será $n*(2n+2) \rightarrow 2n^2 + 2n$

Exemplo com comandos de repetição aninhados Assim, a função de custo da Sequência 4 seria:

$$f(n) = 1 + (2n + 2) + (2n^2 + 2n) + 5n^2 + 1$$

$$f(n) = 7n^2 + 4n + 4$$

Exemplo com comandos de repetição aninhados Assim, a função de custo da Sequência 4 seria:

$$f(n) = 1 + (2n + 2) + (2n^2 + 2n) + 5n^2 + 1$$
$$f(n) = 7n^2 + 4n + 4$$

$$f(n) = \max(n^2, n, 4)$$

Exemplo com comandos de repetição aninhados Assim, a função de custo da Sequência 4 seria:

$$f(n) = 1 + (2n + 2) + (2n^2 + 2n) + 5n^2 + 1$$
$$f(n) = 7/n^2 + 4/n + 4$$

Complexidade quadrática O(n²)


```
Sequência 5

1 A = -1
2 for(i=0;i<n;i++)
3 if (A < Vetor[i])
4 A = Vetor[i]
5 Imprime("Maior",A)

1 atrib = 1
1 atrib + n(1 tes log + 1 incr) + 1 tlog= 2n + 2
1 index + 1 teste log = 2
1 index + 1 atrib = 2
1 print = 1
```


Assim, a função de custo da Sequência 5 seria:

$$f(n) = 1 + (2n + 2) + 2n + 2n + 1$$

$$f(n) = 6n + 4$$

Complexidade linear O(n)

Assim, a função de custo da Sequência 6 seria:

$$f(n) = 2 + (2n) + (2n - 2) + (2n - 2) + 1$$

$$f(n) = 6n - 1$$

Complexidade linear O(n)

Exemplo combinando laços

```
Sequência 7

1 for(i=1;i<n;i++)
2 for(j=1;j<n;j++)
3 A = VetA[i] + VetB[j]
4 Imprime("Soma: ",A)
```


Exemplo combinando laços

Neste caso, temos 3 níveis de identação. Uma forma interessante de analisar é começar daquela mais interna e ir expandindo. Neste caso, a linha 3.

Exemplo combinando laços

A linha 3 está aninhada ao for da linha 2, assim, cada vez que a linha dois for executada, a linha 3 também será. Uma vez que a linha 2 será executada n-1 vezes, o custo da linha 3 será 4n-1

Exemplo combinando laços

As linhas 2 e 3 estão aninhadas ao for da linha 1, assim, cada vez que ele for executado, as duas linhas também serão. Como o for é executado n-1 vezes...

Assim, a função de custo da Sequência 7 seria:

$$f(n) = (2n) + (2n^2 - 2n) + (4n^2 - 8n + 4) + 1$$

$$f(n) = 6n^2 - 8n + 5$$

Complexidade quadrática O(n²)

Exemplo combinando laços dependentes

Exemplo combinando laços dependentes

Nestes casos especiais, o for interno não rodará as n vezes, mas um número variado de vezes, dependendo do laço mais externo.

Uma forma de levantar esse custo é trabalhar com os dois laços de forma conjunta

Exemplo combinando laços dependentes

Considere que n tem valor 5

Cada vez que o laço externo é executado (e incrementado), o laço interno executa uma vez a menos:

- Quando i=0, laço interno executa 5x
- Quando i=1, laço interno executa 4x
- Quando i=2, laço interno executa 3x
- Quando i=3, laço interno executa 2x
- Quando i=4, laço interno executa 1x

Exemplo combinando laços dependentes

Considere que n tem valor 5

Cada vez que o laço externo é executado, o laço interno executa uma vez a menos:

- Quando i=0, laço interno executa 5x
- Quando i=1, laço interno executa 4x
- Quando i=2, laço interno executa 3x
- Quando i=3, laço interno executa 2x
- Quando i=4, laço interno executa 1x

Soma dos termos de uma PA de razão 1 com n termos (neste caso, 5 termos)

O primeiro elemento é 1 O último elemento é 5

$$S = 5 + 4 + 3 + 2 + 1 = 15$$

$$S = \frac{(a_1 + a_n) * n}{2}$$

$$S = \frac{(1+n) * n}{2} \to S = \frac{n^2 + n}{2}$$

$$S = \frac{5^2 + 5}{2} = \frac{25 + 5}{2} = 15$$

Assim, o número de vezes que o trecho é executado será $\frac{n^2+n}{2}$

Exemplo combinando laços dependentes

Exemplo combinando laços dependentes

A linha 4 está aninhada aos laços das linhas 2 e 3 que são dependentes. Assim, ele será executado o número de vezes que os laços forem executados: $\frac{n^2+n}{2}$

Exemplo combinando laços dependentes

Da mesma forma, os comandos de teste lógico e incremento do for interno estão condicionados ao número de execução dos laços dependentes: $\frac{n^2+n}{2}$

Exemplo combinando laços dependentes

No entanto, o comando de atribuição do laço da linha 3 só ocorre no início dos ciclos, ou seja, quando o valor de i é incrementado no laço da linha 2. O mesmo ocorre para o último teste lógico (aquele que confirma a saído do laço)

$$f(n) = 1 + (2n + 2) + (n^2 + 3n) + \frac{n^2 + n}{2} + 1$$
$$f(n) = \frac{3n^2}{2} + \frac{11n}{2} + 4$$

$$f(n) = \frac{2^{n^2}}{7^2} + \frac{1/1n}{7^2} + 4$$

$$f(n) = O(n^2)$$

Qual o custo (em número de operações) para executar o seguinte algoritmo?

```
1 for(i=1;i<n;i++)
2 for(k=2;k<=n;k++)
```

$$S[i][k] = S[i][k] - S[i][k] * S[i][i] / S[i][i];$$

Exemplo 2 Calcular O para pior e melhor caso

```
void OrdenaSort (int *Vet, int n)
     int i, j, aux;
     for (i=0;i<n;i++)</pre>
          for (j=0;j<n-1;j++)</pre>
              if (Vet[j] > Vet[j+1])
                  aux = Vet[j];
                  Vet[j] = Vet[j+1];
10
                  Vet[j+1] = aux;
11
12
13
}
```


Exemplo 2 Calcular O para pior e melhor caso

• Suponha um algoritmo A e um algoritmo B, com funções de complexidade de tempo $a(n) = n^2 - n + 549$ e b(n) = 49n + 49, respectivamente. Determine quais valores de n pertencentes ao conjunto dos números naturais para os quais A leva menos tempo para executar do que B.

