Name: Junesh Thap MAT 120 EXAM I Show relevant work, where appropriate, answers without support may receive little
or no credit. Total: 100 points + 20 points Extra Credits
1. Devise a logical statement that has the truth values shown in the table. (5 pts) (7 p → 7 q) P q Statement T T T T T F T F T F T F T F T F T F T F
 Symbolize each of the following quantified statements. Then form the negation, so that no negation appears to the left of a quantifier. Finally, express the negation in simple English. Use the letter appearing in bold to symbolize the embedded simple statement. (18 points) a) Some drivers do not obey the posted speed limits.
Negation in English: $\frac{AM}{A}$ people one enter not driver or they obey b) All foreign movies are subtitled.
Negation in English: There is a foreign movie that I was subtiled.
c) No one can k eep a secret.
Statement: $\neg \exists x k(x)$ Negation: $\exists x k(x)$
Negation in English: Someone can keep a secret
3. Determine the truth value of the following statements. Justify your answers (i.e. if false, provide a counter-example; if true, show or explain why). (5 points each)
a) $\forall n \in \mathbb{Z} \exists m \in \mathbb{Z} \ (n < m)$ True $b \in \mathbb{Z} \ for only the feel n there is a greater integer m.b \in \mathbb{Z} \ \forall m \in \mathbb{Z} \ (n < m)$
False, ble for an n not every possible integer m softifies. For instance for n=2, m=1 doesn't satisfy.
man - n-1 mstance for n= 1 doesn+ satisfy.

p-1 a = p-1 Fe-This is false of pisme.
This is false of p is false

po proof by contra position its is even.

Defroof IA n is cood, then notes is even.

Defroof IA n is cood, then notes is even.

Defroof IA n is cood to be a cood in the cood of the cood

So by contraors than it not is and of them in Town

(c) Prove or disprove for every nonnegative integer n that $2^n + 6^n$ is an even integer. $2^{n} + 6^{n} = 2^{n} + (2 \cdot 3)^{n} = 2^{n} + 2^{n}(3^{n}) = 2^{n}(1+3^{n})$ $=2[2^{n-1}(1+3^n)]$ = 2M where M = 2h - (1+3") = [since neZ So 2"+6" is an even integer pf by cases: n=0 (d) Let m and n be integers. If $m^3 + n^3$ is odd, then m is odd or n is odd. Try proof by contraposition. Need to show if m is even and nit even, then misting is even. m=2k n=21=k,l+21 $m^3 + n^3 = (2k)^3 + (2l)^3 = 8k^3 + 8l^3$ =2(4k3+4l3) =2M where M=4h3+4l3 = Z/Jha K, l=Z/ So by contaposition,

If with 13 is odd, then in is odd or n is odd.

(e) Let x and y be positive real numbers. If $x \neq y$, then $\frac{x}{y} + \frac{y}{x} > 2$. backwards reasoning X+ + >2 => x2 + x2 >2 => x2+y2>2+y $x^{2}-2xy+y>0 =)(x-y)^{2}>0$ Proof' Since x and y are distinct positive reals (x-y/50) $\begin{array}{c} x - y \neq 0 \\ b|c \times \pm y \end{array} \Rightarrow \begin{array}{c} x^2 - 2xy + y^2 > 0 \end{array} \Rightarrow \begin{array}{c} x^2 + y^2 > 2xy \Rightarrow x^2 + y^2 > 2 \end{array}$ valid b/c x‡0 and Since it fails for it m Bodel => m = 2 kH where k = 21 odd, the Statement m2= (2k+1)2=4k2+4k+1 = 8n+1 is false. 462+4k = 8n $L^2 + 4k = 2a$ K(k+4)=2n Gel: Kisodd Look odd (odd + 4) = odd (odd) = 2k+1+4== bach page odd \$ 2n 2(x+2)++= 2H4/2088 (2k+1 /2l+1) =-4kl+2k+2l+1= 2/2kl+k+l|+1 = 2P+1=0dd

(8) If m is odd, m is odd b/c (244)(2141) = 4k/+2k+2l+1 = 2(2kl+k+l)+1 = 2M+1=old. M== 8n+1 => m2-1 = 8n m²/13 even 1/c m² 13 02d $m^2=(2k+1)^2$ 8n=2(4n)=even by definition can't have (2k+1)(2k+1) So even = even the = original statement Another way to look of A B that $m^{2'}-1=(m+1)(m-1)=(even)(even)=even$ close. (2A)(2B) = 4AB $m^2 = (2k+1)^2$ =2(2AB) = 2M = ever =4K2+4K+1 =4K(K+1) +1 K(K+1) consecutive integers then one of them has to be even 50 k(k+1) = 21/2 n $n^2 = 4 \cdot \frac{2n}{4} + 1 = 8n + 1$