12 - Vector Semantics

Word Meaning

- in N-gram or text classification methods, words are just strings
 - not very satisfactory
- from lexical semantics, the linguistic study of word meaning
- sense/concept meaning component of a word
- lemmas can be polysemous have multiple senses

Word Relation

- synonyms words that have the same meaning in some or all contexts
 - there are probably no examples of perfect synonymy, even if many aspects of meaning are identical
 - still may differ bassed on politeness, slang, register, genre, etc
- similarity words with similar meanings
 - o not synonyms, but sharing some element of meaning
- word relatedness/association relation of words in any way, such as via a semantic frame or field
 - o coffee, tea are similar
 - o coffee, cup are related, but not similar
- semantic field words that
 - o cover a particular semantic domain
 - bear structured relations with each other
 - o hospitals surgeon, scalpel, nurse, hospital
 - o restaurants waiter, menu, plate, food, chef
 - o houses door, roof, kitchen, family, bed
- antonymy senses that are opposite with respect to only one feature of meaning
 - otherwise they are very similar
 - o dark/light, short/long, fast/slow, rise/fall, hot/cold, etc
 - o more formally, anyonymy can
 - define a binary opposition or be at opposite ends of a scale (i.e. long/short, fast/slow)
 - be reversives (i.e. rise/fall, up/down)
- connotation words have affective meanings
 - positive or negative
 - o can be subtle
 - evaluation is the sentiment
 - words seem to vary along 3 affective dimensions
 - valence the pleasantness of the stimulus

- arousal the intensity of emotion provoked by the stimulus
- dominance the degree of control exerted by the stimulus
- summary so far
 - concepts or word senses have a complex many-to-many association with words
 - have relations with each other

Vector Semantics

- vector semantics model in language processing
- define words by their **usage** defined by their environments (words around them)
- if A and B have almost identical environments we say that they are synonyms
- idea 1 define meaning by linguistic distribution
 - distribution in language use = neighboring words or grammatical environments
- idea 2 define meaning as a point in space
 - 3 affective dimensions for a word
 - connotation of a word is a vector in 3-space
 - each word is a **vector**
 - similar words are nearby in semantic space
 - build this space automatically by seeing which words are nearby in text
- define meaning of a word as a **vector**
 - o called an **embedding** because it is embedded into a space
 - standard way to represent meaning in NLP
 - fine-grained model of meaning for similarity

• but why vectors?

- consider sentiment analysis
 - with **words** a feature is a word identity
 - feature 5: "the previous word was "terrible"" requires exact same word to be in training and test
 - with **embeddings** feature is a word vector
 - "the previous word was vector [35, 22, 17...]
 - now in the test set we might see a similar vector [34, 21, 14...]
 - we can generalize to similar but unseen words
- 2 kinds of embeddings
 - o tf-idf
 - information retrieval workhorse
 - common baseline model
 - sparse vectors
 - words are represented by the counts of nearby words
 - word2vec
 - dense vectors
 - representation is created by training a classifier to *predict* whether a word is likely to

appear nearby

• now we are computing with meaning representations instead of string representations

Words and Vectors

• term-document matrix - each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	\Box	0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- o can visualize with a graph where one word is x axis and another is y
- vectors are the basis of information retrieval
 - in previous matrix, vectors are similar for the two comedies, but comedies are different than the other two
 - comedies have more fools and wit and fewer battles
- words can be vectors too

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13)
good	114	80	62	89
fool	36	58	1	4)
wit	20	15	2	3

- o battle is the kind of word that occurs in Julius Caesar and Henry V
- o fool is the kind of word that occurs in comedies, especially Twelfth Night
- word-word/term-context matrix two words are similar in meaning if their context vectors are similar
 - more commonly used

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

• if context is a document, cells represent the number of times both the words appeared in the same document

Computing Word Similarity

- dot product between two vectors is a scalar
 - $egin{aligned} \circ \ dot \ product(v,w) = v \cdot w = v_1 w_1 + v_2 w_2 + ... + v_N w_N \end{aligned}$
- dot product tends to be high when the two vectors have large values in the same dimensions
- dot product can thus be a useful similarity metric between two vectors
- **problem** with raw dot-product

- favors long vectors
- higher if a vector is longer (has higher values in many dimensions)
- \circ vector length $|v| = \sqrt{\Sigma(i=1:N) \ v_i^2}$
- frequent words (of, the, you) have long vectors, since they occur many times with other words
- o therefore, dot product overly favors frequent words
- alternative use cosine for computing word similarity
 - $\circ \frac{a \cdot b}{|a| \, |b|} = \cos \theta$
 - -1 = vectors point in opposite directions
 - +1 = vectors point in the same directions
 - = vectors are orthogonal (perpendicular, form 90 degrees)
 - but since raw frequency values are non-negative, the cosine for term-term matrix vectors range from 0-1

TF-IDF

- raw frequency is a bad representation
 - o co-occurrence matrices we have seen represent each cell by word frequencies
 - o frequency is clearly useful, if sugar appears a lot near apricot, that is useful information
 - o but overly frequent words like the, it, or they are not very informative about the context
 - o how can we balance these two conflicting constraints?
- solutions for word weighting
 - tf-idf turn-frequency-inverse document frequency (tf-idf) for word t in document d
 - $ullet w_{t,d} = t f_{t,d} imes i d f_t$
 - words like the or it have very low idf
 - pointwise mutual information (PMI) see if words like good appear more often with great than we would expect by chance
 - ullet $PMI(w_1,w_2)=\lograc{p(w_1,w_2)}{p(w_1)p(w_2)}$
- turn frequency (tf) $tf_{t,d} = count(t,d)$
 - \circ instead of using raw count, we can squash it a bit: $tf_{t,d} = \log base10 \; (count(t,d)+1)$
- document frequency (df)
 - $\circ \ df_t$ is the number of documents t occurs in
 - o this is not collection frequency total count across all documents
- inverse document frequency (idf)
 - $\circ~idf_t = \log base10~(rac{N}{df_t})$, N is the total number of documents in the collection
- document can be anything, often call each paragraph a document
- final tf-idf weighted value for a word
 - $w_{t,d} = tf_{t,d} \times idf_t$

Sparse vs. Dense Vectors

- tf-idf or PMI vectors are
 - long length |V| = 20,000 to 50,000
 - sparse most elements are 0
- alternative learn vectors which are
 - o short length 50 to 1,000
 - dense most elements are non-zero
- why dense vectors?
 - short vectors may be easier to use as features in ML fewer weights to tune
 - dense vectors may generalize better than explicit counts
 - dense vectors may do better at capturing synonymy
 - car and automobile are synonyms, but are distinct dimensions
 - a word with car as a neighbor and a word with automobile as a neighbor should be similar, but are not
 - o in practice, they work better
- common methods for getting short dense vectors
 - "neural language model" inspired models word2vec, GloVe
 - singular value decomposition (SVD) special case is Latent Semantic Analysis (LSA)
 - alternatives to these static embeddings
 - contextual embeddings (ELMo, BERT)
 - compute distinct embeddings for a word in its context
 - separate embeddings for each token of a word

Word2vec

- popular embedding method
- very fast to train
- code available on the web provided by Google
- idea predict rather than count
- provides various options, such as skip-gram or continuous bag of words (CBOW)
 - we will use skip-gram
- ullet instead of *counting* how often each word w occurs near apricot, train a **classifier** on a **binary** prediction task
 - is w likely to show up near apricot?
 - don't actually care about this task, but we will take the learned classifier weights as the word embeddings
- big idea self supervision
 - a word c that occurs near apricot in the corpus acts as the gold correct answer for supervised learning
 - o no need for human labels
- approach predict if candidate word c is a *neighbor*
 - 1. treat the target word t and a neighboring context word c as **positive examples**

- 2. randomly sample other words in the lexicon to get negative examples
- 3. use logistic regression to train a classifier to distinguish those two cases
- 4. use the learned weights as the embeddings
- skip-gram training data assume a +/- 2 word window, given training sentence

...lemon, a [tablespoon of apricot jam, a] pinch... c1 [target] c3 c4

- o target is apricot, google slides didn't make it go under right word -_-
- goal train a classifier that is given a candidate (word, context) pair and assigns each pair a
 probability

•
$$P(+|w,c), P(-|w,c) = 1 - P(+|w,c)$$

- similarity is computed from dot product
 - two vectors are similar if they have a high dot product
 - o cosine is just a *normalized* dot product
 - \circ $similarity(w,c) \propto w \cdot c$
 - similarity is proportional to the dot product
 - o have to normalize to get a probability, cosine is not a probability either
 - use the sigmoid from *logistic regression*
 - and there is where I don't think we went over anything more