ICPC TEAM REFERENCE DOCUMENT NN br of NRU HSE 2

	оде	ржание		
1	Ша	блон	2	
2	Алгоритмы на строки			
	2.1	Префикс-функция	2	
	2.2	Z-функция	2	
	2.3	Хеширование	2	
	$\frac{2.3}{2.4}$	Нахождение всех подпалиндромов .	2	
			2	
	2.5	Суффиксный массив	2	
3	Алгоритмы на графах			
	3.1	Алгоритм Дейкстры $O(n^2)$	3	
	3.2	Алгоритм Дейкстры $O(log(n) \cdot m)$	3	
	3.3	Поток	3	
	3.4	Поиск компонент сильной связно-		
		сти, построение конденсации графа		
		O(N+M)	3	
	3.5	Поиск мостов $O(N+M)$	4	
	3.6	Поиск точек сочленения	4	
	3.7		4	
	3.1	Нахождение отрицательного цикла	4	
	0.0	в графе	4	
	3.8	Топологическая сортировка	5	
	3.9	Алгоритм Куна нахождения наи-		
		большего паросочетания в двудоль-		
		ном графе	5	
	3.10	Венгерский алгоритм решения за-		
		дачи о назначениях	5	
4	Простые алгоритмы 5			
	4.1	Решето Эратосфена $O(n)$	5	
	4.2	Решето Эратосфена		
		$O(n \cdot log(log(n)))$	5	
	4.3		5	
	4.4	Функция Эйлера	6	
	4.5	Алгоритм Евклида	6	
	4.6	Расширенный алгоритм Евклида	6	
	4.7	Обратный элемент в кольце по мо-		
		дулю	6	
	4.8	Нахождение всех простых по задан-		
		ному модулю за линейное время	6	
	4.9	Дискретное логарифмирование	6	
	4.10	Китайская теорема об остатках	6	
5	Cmp	уктуры данных	6	
J	5.1		6	
		Дерево отрезков	U	
	5.2	Дерево Фенвика для суммы для од-	-	
	. .	номерного случая	7	
	5.3	Дерево Фенвика для суммы для		
		двумерного случая	7	
	5.4	Система непересекающихся множеств	7	
		5.4.1 Поддержка расстояний до		
		пипро	7	

6	Геог	метрия	8
	6.1	Полярный угол	8
	6.2	Скалярное произведение, угол меж-	
		ду векторами	8
	6.3	Площадь многоугольника	8
	6.4	Площадь треугольника	8
	6.5	Расстояние от точки до прямой	8
	6.6	Нормальное уравнение по двум точ-	
		кам	8
	6.7	Построение выпуклой оболочки об-	
		ходом Грэхэма $O(NlogN)$	8
	6.8	Точка пересечения прямых по коэф-	
		фициентам	8
7	Чис	ла Фибоначчи	8
•	7.1		8
8	-	<u>.</u>	9
8	8.1	Постулат Бертрана	9
8	8.1 8.2	Постулат Бертрана	9
8	8.1 8.2 8.3	Постулат Бертрана	9 9
8	8.1 8.2 8.3 8.4	Постулат Бертрана	9 9 9
8	8.1 8.2 8.3 8.4 8.5	Постулат Бертрана	9 9 9
8	8.1 8.2 8.3 8.4	Постулат Бертрана	9 9 9
9	8.1 8.2 8.3 8.4 8.5 8.6	Постулат Бертрана Треугольное число Совершенные числа Числа Каталана Число и сумма делителей Биномиальные коэффициенты	9 9 9 9
	8.1 8.2 8.3 8.4 8.5 8.6	Постулат Бертрана	9 9 9 9 0
	8.1 8.2 8.3 8.4 8.5 8.6	Постулат Бертрана Треугольное число Совершенные числа Числа Каталана Число и сумма делителей Биномиальные коэффициенты намическое программирование Рюкзак 1	9 9 9 9 0
	8.1 8.2 8.3 8.4 8.5 8.6	Постулат Бертрана	9 9 9 9 0
9	8.1 8.2 8.3 8.4 8.5 8.6 Дин 9.1 9.2	Постулат Бертрана	9 9 9 9 0 0
9	8.1 8.2 8.3 8.4 8.5 8.6 Дин 9.1 9.2	Постулат Бертрана	999999 000
9	8.1 8.2 8.3 8.4 8.5 8.6 Дин 9.1 9.2	Постулат Бертрана	999999 000

1 Шаблон

```
#define USE MATH DEFINES
 /\#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <queue>
#include <utility>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
#include <numeric>
#include <cmath>
#include <stack>
\#include <map>
#include <deque>
#include <sstream>
using namespace std;
#define int long long
typedef vector<int> vi;
typedef vector<pair<int, int>> vii;
typedef long long ll;
typedef long double ld;
//#define pi M_PI
#define all(x) (x).begin(), (x).end()
#define pb push_back
#define re return
#define fr(x) for(int i = 0; i < (x); i++) const int inf = 10000000000 + 7;
signed main() {
    ios\_base::sync\_with\_stdio(0);
    \overline{\text{cin.tie}}(0);
    cout.tie(0);
```

2 Алгоритмы на строки

2.1 Префикс-функция

```
 \begin{array}{l} vector < int > prefix function (string s) \; \{ \\ int \; n = (int) \; s.length(); \\ vector < int > pi \; (n); \\ for \; (int \; i=1; \; i<n; \; ++i) \; \{ \\ int \; j = pi[i-1]; \\ while \; (j > 0 \; \&\& \; s[i] \; != s[j]) \\ j = pi[j-1]; \\ if \; (s[i] == s[j]) \; ++j; \\ pi[i] = j; \\ \} \\ return \; pi; \\ \} \end{array}
```

2.2 Z-функция

```
 \begin{array}{l} vector < int > z = function \ (string \ s) \ \{ \\ int \ n = (int) \ s.length(); \\ vector < int > z \ (n); \\ for \ (int \ i=1, \ l=0, \ r=0; \ i < n; \ ++i) \ \{ \\ if \ (i < = r) \\ z[i] = min \ (r-i+1, \ z[i-l]); \\ while \ (i+z[i] < n \ \&\& \ s[z[i]] = = s[i+z[i]]) \\ ++z[i]; \\ if \ (i+z[i]-1 > r) \\ l = i, \ r = i+z[i]-1; \\ \} \\ return \ z; \\ \} \end{array}
```

2.3 Хеширование

```
\begin{array}{l} {\rm const\ int\ mod} = 1000000000 + 7; \\ {\rm const\ int\ } q = 1009; \\ {\rm vector} < ll > ph; \\ {\rm vector} < ll > pq; \\ {\rm void\ } pq\_put() \\ \{ & pq.pb(1); \\ {\rm for\ } (size\_t\ i = 1;\ i < 100000;\ ++i) \\ {\rm pq.pb((pq[i-1]\ *\ } q)\ \%\ mod); \\ \} \end{array}
```

```
 \begin{cases} & \text{ll } h = 0; \\ & \text{if } (ph.size())h = ph.back(); \\ & \text{for } (int \ i = 0; \ i < s.size(); \ i++) \end{cases} \\ \begin{cases} & h = (h \ ^*q + s[i]) \ \% \ mod; \\ & ph.pb(h); \end{cases} \\ \} \\ & \text{re } h; \end{cases} \\ \} \\ ll \ get(int \ l, \ int \ r) \\ \{ & \quad \\ & \quad \\
```

2.4 Нахождение всех подпалиндромов

Для случая подпалиндромов нечётной длины

```
 \begin{array}{l} vector < int > d1 \ (n); \\ int \ l = 0, \ r = -1; \\ for \ (int \ i = 0; \ i < n; \ + + i) \ \{ \\ int \ k = \ (i > r \ ? \ 0 : min \ (d1[l + r - i], \ r - i)) \ + \ 1; \\ while \ (i + k < n \ \&\& \ i - k > = 0 \ \&\& \ s[i + k] \ = = \ s[i - k]) \ + + k; \\ d1[i] = k - . ; \\ if \ (i + k > r) \\ l = i - k, \ r = i + k; \\ \} \end{array}
```

Для подпалиндромов чётной длины

```
 \begin{array}{l} vector\!<\!int\!>\;d2\;(n);\\ l\!=\!0,\,r\!=\!-1;\\ for\;(int\;i\!=\!0;\;i\!<\!n;\;+\!+\!i)\;\{\\ int\;k\!=\;(i\!>\!r\;?\;0:min\;(d2[l\!+\!r\!-\!i\!+\!1],\,r\!-\!i\!+\!1))\;+\;1;\\ while\;(i\!+\!k\!-\!1\;<\;n\;\&\&\;i\!-\!k\;>\!=\;0\;\&\&\;s[i\!+\!k\!-\!1]\;==\;s[i\!-\!k])\\ +\!+\!k;\\ d2[i]=-\!-\!k;\\ if\;(i\!+\!k\!-\!1\;>\;r)\\ l\!=\;i\!-\!k,\,r\;=\;i\!+\!k\!-\!1;\\ \} \end{array}
```

2.5 Суффиксный массив

Построение O(nlogn)

```
char *s; // input sting
int n; // size s
const int maxlen = ...:
const int alphabet = 256;
int p[maxlen], cnt[maxlen], c[maxlen];
memset (cnt, 0, alphabet * sizeof(int));
for \ (int \ i{=}0; \ i{<}n;
                                 ++i
               ++cnt[s[i]];
for (int i=1; i<alphabet; ++i)

cnt[i] += cnt[i-1];

for (int i=0; i<n; ++i)
              p[-cnt[s[i]]] = i;
c[p[0]] = 0;
int\ classes=1;
Int classes -1, for (int i=1; i<n; ++i) {
    if (s[p[i]] != s[p[i-1]]) ++classes;
              c[p[i]] = classes-1;
\begin{array}{c} \text{int pn[maxlen], cn[maxlen];} \\ \text{for (int h=0; (1<< h)< n; ++h) } \\ \text{for (int i=0; i< n; ++i) } \end{array} 
                            pn[i] = p[i] - (1 << h);

if (pn[i] < 0) pn[i] += n;
               memset (cnt, 0, classes * sizeof(int));
```

for (int i=0; i<n; ++i)

for (int i=1; i<classes;

++cnt[c[pn[i]]];

 $\begin{array}{c} \operatorname{cnt}[i] \mathrel{+}{=} \operatorname{cnt}[i\text{-}1];\\ \operatorname{for}\; (\operatorname{int}\; i\text{=}n\text{-}1;\; i\text{>}{=}0;\; \text{--}i) \end{array}$

```
p[\text{--}cnt[c[pn[i]]]] = pn[i];
         \operatorname{cn}[\mathbf{p}[0]] = 0;
         classes = 1:
         for (int i=1; i<n; ++i) { int mid1 = (p[i] + (1<<h)) % n, mid2 = (p[i-1] + (1<<h)) % n;
                    if (c[p[i]] != c[p[i-1]] || c[mid1] != c[mid2])
                              ++classes;
                    cn[p[i]] = classes-1;
         memcpy (c, cn, n * sizeof(int));
}
Наибольший общий префикс двух подстрок
int lcp (int i, int j) {
         int ans = 0;
          for (int k=log
                            n; k>=0; --k)
                   if (c[k][i] == c[k][j]) 
                             ans += 1 << k;
                             i += 1 < < k:
                             j += 1 << k;
         return ans;
```

3 Алгоритмы на графах

}

3.1 Алгоритм Дейкстры $O(n^2)$

was - брали вершину или нет v - список смежности d - массив расстояний для точки x

```
int d[2001];
int was[2001];
vector < pair < int, int >> v[2001];
int n:
void dijkstra(int x) {
for (int i = 0; i < n; i++)
                        d[i] = inf;
            d[x] = 0;
            for (int it = 0; it < n; it++)
            {
                        int id = -1;
                        \begin{array}{l} \text{for } (id = -1, \\ \text{for } (int \ i = 0; \ i < n; \ i++) \\ \text{if } (!was[i]) \text{if } (id == -1 \ || \ d[id] > d[i]) \end{array}
                                                id = i;
                        was[id] = -1;
                        for (auto p : v[id]) {
                                    int y = p.first;
                                    int t = p.second;
                                    d[y] = \min(d[y], d[id] + t);
                        }
            }
}
```

3.2 Алгоритм Дейкстры $O(log(n) \cdot m)$

d - массив расстояний для точки х

```
int d[3001];
vector<pair<int, int>> v[3001];
bool f(int x, int y) {

if (d[x] != d[y])
                       \operatorname{return} d[x] < d[y];
            \mathrm{return}\ x < y;
\operatorname{set} < \operatorname{int}, \operatorname{bool}(*)(\operatorname{int}, \operatorname{int}) > \operatorname{s}(f);
void dijkstra(int x) {
            for (int i = 0; i <= n; i++)
                        d[i] = inf;
            d[x] = 0;
            s.insert(x);
            while (!s.empty()) {
int x = *s.begin();
                         s.erase(x);
                         for (auto p : v[x]) {
                                     int y = p.first;
                                     int\ t=p.second;
```

```
\begin{array}{c} {\rm if}\; (d[y]>d[x]+t)\; \{\\ {\rm s.erase}(y);\\ {\rm d}[y]={\rm d}[x]+t;\\ {\rm s.insert}(y);\\ \}\\ \}\\ \end{array}\}
```

3.3 Поток

```
ll c[102][102];
ll f[102][102];
int was[102];
int p[102];
vector <vector<int>> v(102);
int t;
ll dfs(int x, ll capacity) {
           if (x == t) {
                      return capacity;
           was[x] = 1;
            \begin{array}{l} \operatorname{was}[x] = 1, \\ \text{for (auto } y : v[x]) \ \{ \\ & \text{ll flow} = \min(c[x][y] - f[x][y], \text{ capacity}); \\ & \text{if (!was}[y] \&\& \text{ flow } > 0) \ \{ \\ & \text{ll flow} = df_{S}(y, flow); \end{array} 
                                  ll delta = dfs(y, flow);
                                  if (delta == 0)
                                            continue:
                                  p[x] = y;
                                  return delta;
           return 0:
}
void calc(int x, ll cap) {
           int y = x;
           while (y != t) \{
                      f[y][p[y]] += cap;
                      f[p[y]][y] = cap;
                      y = p[y];
int main() {
           int n, k;
           cin>>n>>k;
           for (int i = 0; i < k; i++) {
                      1 = 0, 1 < k, 1++) (int a, b; ll w; cin >> a >> b >> w;
                      c[a][b] = w;
                      c[b][a] = w;
v[a].push_back(b);
                      v[b].push_back(a);
           }
           ll ans = 0;
           while (ll cap = dfs(1, 100000000000000000)) {
                      calc(1, cap);
                      ans += cap;
                      memset(was, 0, sizeof(was));
                      memset(p, 0, sizeof(p));
           cout << ans;
           return 0:
}
```

3.4 Поиск компонент сильной связности, построение конденсации графа O(N+M)

Дан ориентированный граф G, множество вершин которого V и множество рёбер — E. Петли и кратные рёбра допускаются. Обозначим через n коли-

чество вершин графа, через m — количество рёбер.

Компонентой сильной связности (strongly connected component) называется такое (максимальное по включению) подмножество вершин С, что любые две вершины этого подмножества достижимы друг из друга, т.е. для $\forall u,v \in C$:

```
u\mapsto v,v\mapsto u
vector < vector < int > > g, \ gr;
vector<char> used;
vector<int> order, component;
void dfs1 (int v) {
           used[v] = true;
           for (size_t i=0; i< g[v].size(); ++i)
                     \overline{if}\ (!used[\ g[v][i]\ ])
                                 dfs1(g[v][i]);
           order.push back (v);
}
void dfs2 (int v) \{
           used[v] = true:
           \begin{array}{c} \text{component.push\_back (v);} \\ \text{for (size\_t i=0; i<gr[v].size(); ++i)} \\ \text{if (!used[ gr[v][i] ])} \end{array}
                                 dfs2 (gr[v][i]);
}
int main() {
           int n;
           ... read n ...
           for (;;) {
                      int a, b;
                      ... read edge (a,b) ...
                      g[a].push_back (b);
gr[b].push_back (a);
           used.assign (n, false);
           for (int i=0; i< n; ++i)
if (!used[i])
                                 dfs1 (i);
           used.assign (n, false);
           for (int i=0; i < n; ++i)
                      int v = order[n-1-i];
                      if (!used[v]) {
                                 dfs2 (v);
                                 ... cout component ...
                                 component.clear();
                      }
           }
```

3.5 Поиск мостов O(N + M)

Пусть дан неориентированный граф. Мостом называется такое ребро, удаление которого делает граф несвязным (или, точнее, увеличивает число компонент связности). Требуется найти все мосты в заданном графе.

```
 \begin{array}{l} {\rm const\ int\ MAXN} = ...; \\ {\rm vector} < {\rm int} > {\rm g[MAXN]}; \\ {\rm bool\ used[MAXN]}; \\ {\rm int\ timer,\ tin[MAXN],\ fup[MAXN]}; \\ \\ {\rm void\ dfs\ (int\ v,\ int\ p = -1)\ \{} \\ {\rm used[v] = true;} \\ {\rm tin[v] = fup[v] = timer} + +; \\ {\rm for\ (size\_t\ i = 0;\ i < g[v].size();\ + + i)\ \{} \\ {\rm int\ to = g[v][i];} \\ {\rm int\ to = g[v][i];} \\ {\rm if\ (to = = p)\ continue;} \\ {\rm if\ (tosed[to])} \\ {\rm fup[v] = min\ (fup[v],\ tin[to]);} \\ {\rm else\ \{} \\ {\rm dfs\ (to,\ v);} \\ {\rm fup[v] = min\ (fup[v],\ fup[to]);} \\ {\rm if\ (fup[to] > tin[v])} \\ {\rm IS\_BRIDGE(v,to);} \\ \\ \\ {\rm \}} \\ \\ \end{array}
```

```
 \begin{tabular}{ll} $\} \\ void $ find\_bridges() $ \{ \\ timer = 0; \\ for $ (int i=0; i< n; ++i) $ \\ used[i] = false; \\ for $ (int i=0; i< n; ++i) $ \\ if $ (!used[i]) $ \\ dfs $ (i); $ \} \\ \end{tabular}
```

3.6 Поиск точек сочленения

Пусть дан связный неориентированный граф. Точкой сочленения (или точкой артикуляции, англ. "cut vertex"или "articulation point") называется такая вершина, удаление которой делает граф несвязным.

```
vector<int> g[MAXN];
bool used[MAXN];
int timer, tin[MAXN], fup[MAXN];
void dfs (int v, int p = -1) {
          used[v] = true;

tin[v] = fup[v] = timer++;
          int children = 0;
          for (size_t i=0; i<g[v].size(); ++i) {
    int to = g[v][i];
                   if (to == p) continue;
                   if (used[to])
                             fup[v] = min (fup[v], tin[to]);
                   else {
                             dfs (to, v);
                             fup[v] = min (fup[v], fup[to]);
if (fup[to] >= tin[v] && p != -1)
                                       IS_CUTPOINT(v);
                              ++children;
          if (p == -1 \&\& children > 1)
                   IS_CUTPOINT(v);
int main() {
          int n;
          ... read n & g ...
          timer = 0;
          for (int i=0; i< n; ++i)
                   used[i] = false;
          dfs (0);
}
```

3.7 Нахождение отрицательного цикла в графе

```
struct edge {
          int a, b, cost;
};
int n, m;
vector<edge> e;
const int INF = 10000000000;
void solve() {
           vector<int> d (n);
           vector < int > p(n, -1);
           int x;
          for (int i=0; i<n; ++i) {
                     x = -1:
                     for (int j=0; j< m; ++j)
                               \begin{array}{l} if \ (d[e[j].b] > d[e[j].a] + e[j].cost) \ \{\\ d[e[j].b] = \max \ (-INF, \ d[e[j].a] + e[j].cost) \end{array}
                                          p[e[j].b] = e[j].a;
                                          x = e[j].b;
          if (x == -1)
```

3.8 Топологическая сортировка

3.9 Алгоритм Куна нахождения наибольшего паросочетания в двудольном графе

```
 \begin{array}{l} \operatorname{int\ main}() \; \{ \\ \operatorname{read\ graf} \\ \\ \operatorname{mt.assign\ }(k, \text{-}1); \\ \operatorname{vector}<\operatorname{char}>\operatorname{used1\ }(n); \\ \operatorname{for\ }(\operatorname{int\ }i=0; \, i< n; \, ++i) \\ \operatorname{if\ }(\operatorname{mt[g[i][j]]}=-1) \; \{ \\ \operatorname{mt[g[i][j]]}=i; \\ \operatorname{used1[i]}=\operatorname{true}; \\ \operatorname{break}; \\ \\ \operatorname{for\ }(\operatorname{int\ }i=0; \, i< n; \, ++i) \; \{ \\ \operatorname{if\ }(\operatorname{used1[i]}) \operatorname{continue}; \\ \operatorname{used.assign\ }(n, \, \operatorname{false}); \\ \operatorname{try\ }_k\operatorname{uhn\ }(i); \\ \} \\ \operatorname{for\ }(\operatorname{int\ }i=0; \, i< k; \, ++i) \\ \operatorname{if\ }(\operatorname{mt[i]\ }!=-1) \\ \operatorname{printf\ }("\%d\ \%d\ n", \, \operatorname{mt[i]}+1, \, i+1); \\ \} \\ \end{array}
```

3.10 Венгерский алгоритм решения задачи о назначениях

```
do {
                             used[j0] = true;
                              \begin{array}{l} \text{int } i0 = p[j0], \text{ delta} = \text{INF, } j1; \\ \text{for } (\text{int } j{=}1; j{<}{=}m; +{+}j) \\ \text{if } (!\text{used}[j]) \ \{ \end{array} 
                                                          int cur = a[i0][j]-u[i0]-v[j];
                                                          if (cur < minv[j])
                                                                        minv[j] = cur,
way[j] = j0;
                                                          if (minv[j] < delta)
                                                                         delta = minv[j], j1 = j;
                             for (int j=0; j<=m; ++j)
                                           if (used[j])
                                                          \mathbf{u}[\mathbf{p}[\mathbf{j}]] += \mathbf{delta}, \, \mathbf{v}[\mathbf{j}] -= \mathbf{delta};
                                           else
                                                          minv[j] -= delta;
                             j0 = j1;
               } while (p[j0]!=0);
              do {
                             \mathrm{int}\ \mathrm{j} 1 = \mathrm{way}[\mathrm{j} 0];
                             p[j0] = p[j1];
                             j0 = j1;
              } while (j0);
}
```

4 Простые алгоритмы

4.1 Решето Эратосфена O(n)

```
рг - все простые числа до n lp - минимальный простой делитель числа i const int N = 10001000; int lp[N + 1]; vector<int> pr; void pcalc() { for (int i = 2; i <= N; ++i) { lp[i] == 0) { lp[i] = i; pr.push_back(i); } for (int j = 0; j < (int) pr.size() && pr[j] <= lp[i] && i * pr[j] <= N; ++j) lp[i * pr[j]] = pr[j]; } }
```

4.2 Решето Эратосфена

 $O(n \cdot log(log(n)))$

d[i] == 0 если число і простое

long long d[10000000];

```
\begin{tabular}{lll} void calc_p(int \ n) & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

4.3 Умножение чисел по модулю

4.4 Функция Эйлера

Количество таких чисел в отрезке [1; n], наибольший общий делитель которых с n равен единице.

Если р — простое число, то ϕ (p)=p-1. (Это очевидно, т.к. любое число, кроме самого p, вза-имно просто с ним.)

Если р — простое, а — натуральное число, то $\phi(p^a)=p^a-p^{a-1}$. (Поскольку с числом p^a не взачимно просты только числа вида $pk(k\in\mathcal{N})$, которых $p^a/p=p^{a-1}$ штук.)

Если а и b взаимно простые, то $\phi(ab) = \phi(a)\phi(b)$

Самое известное и важное свойство функции Эйлера выражается в теореме Эйлера:

```
a^{\phi(m)} \equiv 1 \pmod{m},
```

где a и m взаимно просты. В частном случае, когда m простое, теорема Эйлера превращается в так называемую малую теорему Ферма:

```
\begin{array}{l} a^{m-1} \equiv 1 \pmod{m} \\ & \text{int result = n;} \\ & \text{for (int i=2; i*i<=n; ++i)} \\ & \text{if (n \% i == 0) } \{ \\ & \text{while (n \% i == 0)} \\ & & \text{n /= i;} \\ & \text{result -= result / i;} \\ & \text{if (n > 1)} \\ & \text{return result;} \\ \} \end{array}
```

4.5 Алгоритм Евклида

```
int gcd (int a, int b) { return b ? gcd (b, a \% b) : a;
```

4.6 Расширенный алгоритм Евклида

```
\begin{split} a \cdot x + b \cdot y &= \gcd(a,b). \\ &\text{int gcd (int a, int b, int \& x, int \& y) } \{ \\ &\text{ if (a == 0) } \{ \\ & \text{ x = 0; y = 1; } \\ & \text{ return b; } \\ \} \\ &\text{ int x1, y1; } \\ &\text{ int d = gcd (b\%a, a, x1, y1); } \\ & \text{ x = y1 - (b / a) * x1; } \\ & \text{ y = x1; } \\ & \text{ return d; } \} \end{split}
```

4.7 Обратный элемент в кольце по модулю

Обратным к числу а по модулю m называется такое число b, что:

4.8 Нахождение всех простых по заданному модулю за линейное время

```
 \begin{array}{l} r[1] = 1; \\ \text{for (int i=2; i< m; ++i)} \\ r[i] = (m - (m/i) * r[m\%i] \% m) \% m; \end{array}
```

4.9 Дискретное логарифмирование

Задача дискретного логарифмирования заключается в том, чтобы по данным целым a, b, m решить уравнение:

```
a^x = b \pmod{m},
    где а и т — взаимно просты
int solve (int a, int b, int m) {
         int n = (int) \text{ sqrt } (m + .0) + 1;
         int an = 1:
        for (int i=0; i<n; ++i)
an = (an * a) % m;
         map<int,int> vals;
         for (int i=1, cur=an; i<=n; ++i) \{
                 if\ (!vals.count(cur))
                 vals[cur] = i;
cur = (cur * an) % m;
         }
         for (int i=0, cur=b; i<=n; ++i) \{
                  if\ (vals.count(cur))\ \{\\
                          int ans = vals[cur] * n - i;
                          if (ans < m)
                                   return ans:
                  cur = (cur * a) % m;
         return -1:
}
```

4.10 Китайская теорема об остатках

```
\begin{array}{l} \mbox{for (int $i{=}0$; $i{<}k$; $+{+}i$) {} \\ x[i] = a[i]; \\ \mbox{for (int $j{=}0$; $j{<}i$; $+{+}j$) {} \\ x[i] = r[j][i] * (x[i] - x[j]); \\ \\ x[i] = x[i] \; \% \; p[i]; \\ \mbox{if } (x[i] < 0) \; x[i] += p[i]; \\ \mbox{\}} \end{array}
```

5 Структуры данных

5.1 Дерево отрезков

```
ll t[4*100000];
void build(int v, int vl,int vr, vi& a){
    \begin{array}{c} if(vl == vr) \{\\ t[v] = a[vl]; \end{array}
         return;
    int c = vl + (vr - vl)/2;
build(2*v+1,vl,c,a);
    build(2^{v+1},v_1,v_3);

build(2^{v}v+2,c+1,v_7a);

t[v] = \max(t[2^{v}v+1], t[2^{v}v+2]);
il sum(int v, int vl, int vr, int l, int r){
     if(l>vr\mid\mid r< vl)\{
         return -inf - 1;
     if(l <= vl && vr <= r)
    return t[v];

int c = vl + (vr \cdot vl)/2;

il q1 = sum(2*v+1, vl, c, l,r);

il q2 = sum(2*v+2,c+1,vr,l,r);
     return max(q1, q2);
void modify(int v, int vl, int vr, int pos, int x){
    if(vl == vr) \{ t[v] = x;
          return;
     int c = vl + (vr - vl)/2;
     if(c >= pos)
         modify(2*v + 1, vl, c, pos,x);
          modify(2*v + 2,c +1,vr,pos,x);\\
     t[v] = \max(t[2*v+1], t[2*v+2]);
}
Прибавление на отрезке
void update (int v, int vl, int vr, int l, int r, int add) {
    if(l > r)
         return;
     if (l == vl && vr == r)
         t[v] \mathrel{+}{=} add;
          int c = vl + (vr - vl)/2;
          update \; (v^*2+1, \, vl, \, c, \, l, \, min(r,c), \, add);
          update (v^*2+2, c+1, vr, max(l,c+1), r, add);
int get (int v, int vl, int vr, int pos) {
    if (vl == vr)
         return t[v];
    int c = vl + (vr - vl)/2; if (pos \le c)
         return t[v] + get (v*2+1, vl, c, pos);
          return t[v] + get (v*2+2, c+1, vr, pos);
}
Присвоение на отрезке
void push (int v) {
         if (t[v] \stackrel{!}{:} = -1) {
 t[v^*2+1] = t[v^*2+2] = t[v];
                    t[v] = -1;
void update (int v, int vl, int vr, int l, int r, int color) {
          if (l > r)
                   return;
         if\ (l == vl\ \&\&\ vr == r)
                    t[v] = color;
          else {
                    push (v);
                    int c = vl + (vr - vl)/2;
                    update (v^*2+1, vl, c, l, min(r,c), color);
                    update (v^*2+2, c+1, vr, max(l,c+1), r, color);
          }
int get (int v, int vl, int vr, int pos) {
          if (vl == vr)
                    return t[v];
          push (v);
          int c = vl + (vr - vl)/2;
          if (pos \le c)
                    return get (v*2+1, vl, c, pos);
                    return get (v*2+2, c+1, vr, pos);
}
```

5.2 Дерево Фенвика для суммы для одномерного случая

```
vector<int> t;
int n;
void init (int nn)
            n = nn;
           t.assign (n, 0);
}
int sum (int r)
{
            int result = 0;
           for (; r>=0;\, r=(r\ \&\ (r{+}1)) - 1)
                      result += t[r];
           return result;
}
void inc (int i, int delta)
           for (; i < n; i = (i \mid (i+1)))
                       t[i] += delta;
int sum (int l, int r)
{
           return sum (r) - sum (l-1);
void init (vector<int> a)
           \begin{array}{l} \mbox{init } ((\mbox{int} \ (\mbox{int} \ (\mbox{a.size}());\\ \mbox{for } (\mbox{unsigned} \ i=0; \ i<\mbox{a.size}(); \ i++) \end{array}
                       inc (i, a[i]);
}
```

5.3 Дерево Фенвика для суммы для двумерного случая

```
 \begin{array}{l} vector <\!\!vector <\!\!int\!\!>> t;\\ int n, m;\\ \\ int sum (int x, int y)\\ \{ & int \ result = 0;\\ for (int \ i = x; \ i >= 0; \ i = (i \ \& \ (i+1)) - 1)\\ for (int \ j = y; \ j >= 0; \ j = (j \ \& \ (j+1)) - 1)\\ result += t[i][j];\\ return \ result;\\ \}\\ \\ void \ inc \ (int \ x, \ int \ y, \ int \ delta)\\ \{ & for \ (int \ i = x; \ i < n; \ i = (i \mid (i+1)))\\ for \ (int \ j = y; \ j < m; \ j = (j \mid (j+1)))\\ t[i][j] += delta;\\ \}\\ \end{array}
```

5.4 Система непересекающихся множеств

```
\begin{split} &\inf \, \operatorname{root}[101]; \\ &\inf \, \operatorname{get}(\operatorname{int} \, x) \{ \\ &\operatorname{if}(\operatorname{root}[x] == x) \\ &\operatorname{re} \, x; \\ &\operatorname{re} \, \operatorname{root}[x] = \operatorname{get}(\operatorname{root}[x]); \\ \} \\ &\operatorname{void} \, \operatorname{merge}(\operatorname{int} \, a, \, \operatorname{int} \, b) \{ \\ &\operatorname{a} = \operatorname{get}(a); \\ &\operatorname{b} = \operatorname{get}(b); \\ &\operatorname{if}(\operatorname{rand}() \% \ 2) \\ &\operatorname{swap}(a,b); \\ &\operatorname{root}[a] = b; \\ \} \\ &\operatorname{for}(\operatorname{int} \, i = 0; \, i < n; \, i++) \\ &\operatorname{root}[i] = i; \end{split}
```

5.4.1 Поддержка расстояний до лидера

```
\label{eq:condition} \begin{array}{ll} void \; make\_set \; (int \; v) \; \{ \\ & parent[v] = make\_pair \; (v, \; 0); \\ & rank[v] = 0; \\ \} \end{array}
```

```
\begin{array}{l} pair < int, int > find\_set \ (int \ v) \ \{ \\ if \ (v != parent[v].first) \ \{ \\ int \ len = parent[v].second; \\ parent[v] = find\_set \ (parent[v].first); \\ parent[v].second += len; \\ \} \\ return \ parent[v]; \\ \} \\ \\ void \ union\_sets \ (int \ a, \ int \ b) \ \{ \\ a = find\_set \ (a) .first; \\ b = find\_set \ (a) .first; \\ b = find\_set \ (b) .first; \\ if \ (a != \overline{b}) \ \{ \\ if \ (rank[a] < rank[b]) \\ swap \ (a, \ b); \\ parent[b] = make\_pair \ (a, \ 1); \\ if \ (rank[a] == rank[b]) \\ ++rank[a]; \\ \} \\ \} \end{array}
```

6 Геометрия

6.1 Полярный угол

```
\begin{array}{l} ld\ u=atan2(b,\,a);\\ if\ (u<0)\ u\ +=\ 2\ *\ PI; \end{array}
```

6.2 Скалярное произведение, угол между векторами

```
\begin{split} \vec{a} \cdot \vec{b} &= |\vec{a}| \cdot |\vec{b}| \cdot cos\varphi \\ \vec{a} \cdot \vec{b} &= x_1 \cdot x_2 + y_1 \cdot y_2 \\ |\vec{a}| &= \sqrt{x^2 + y^2} \\ \\ \text{double ans} &= \text{acos}((\text{x1 * x2 + y1 * y2}) / \text{sqrt}((\text{x1 * x1 + y1 * y1}) * (\text{x2 * x2 + y2 * y2}))); \end{split}
```

6.3 Площадь многоугольника

```
\begin{split} & \text{int } n; \\ & \text{cin} >> n; \\ & \text{vector} < \text{pair} < \text{int, int} >> a(n); \\ & \text{for (int } i = 0; \ i < n; \ i++) \ \{ \\ & \text{cin} >> a[i].X >> a[i].Y; \\ \} \\ & \text{double } s = 0; \\ & \text{for (int } i = 0; \ i < n - 1; \ i++) \ \{ \\ & \text{s} += (a[i+1].X - a[i].X)*(a[i+1].Y + a[i].Y); \\ \} \\ & \text{s} += (a[0].X - a[n-1].X)*(a[0].Y + a[n-1].Y); \end{split}
```

6.4 Площадь треугольника

```
ld ans = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1); labs(ans) / 2.0;
```

6.5 Расстояние от точки до прямой

а b с коэффициенты нормального уравнения прямой

```
\begin{array}{l} ld \; ans = a^*x + b \; ^*y + c; \\ ans \; / = sqrt(a^*a + b^*b); \end{array}
```

6.6 Нормальное уравнение по двум точкам

```
int a=y1 - y2; int b=x2 - x1; int c=x1*y2 - x2*y1;
```

6.7 Построение выпуклой оболочки обходом Грэхэма O(NlogN)

```
struct pt \{
         double x, y;
};
bool cmp (pt a, pt b) {
        return a.x < b.x || a.x == b.x && a.y < b.y;
bool cw (pt a, pt b, pt c) {    return a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y) < 0;    }
}
bool ccw (pt a, pt b, pt c) \{
         return a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y) > 0;
void convex hull (vector<pt> & a) {
         if (a.size() == 1) return;
         sort (a.begin(), a.end(), &cmp);
         pt p1 = a[0], p2 = a.back();
        !cw (up[up.size()-2], up[up.size()-1], a[i]))
                          up.pop_back();
up.push_back (a[i]);
                  if (i==a.size()-1 || ccw (p1, a[i], p2)) {
                           while (down.size()>=2 &&
                           !ccw (down[down.size()-2],
                          down[down.size()-1], a[i]))
down.pop_back();
down.push_back (a[i]);
         a.clear();
        for (size_t i=0; i<up.size(); ++i)
        a.push_back (up[i]);
for (size_t i=down.size()-2; i>0; --i)
                  a.push_back (down[i]);
```

6.8 Точка пересечения прямых по коэффициентам

```
\begin{array}{l} \mbox{pair} < \mbox{double}, \mbox{double} > \mbox{linesIntetseptionPoint}(\mbox{double a1, double b1,} \\ \mbox{double c1, double a2, double b2, double c2}) \\ \{ & \mbox{pair} < \mbox{double}, \mbox{double} > \mbox{xy;} \\ \mbox{if } (\mbox{a1} == 0) \\ \{ & \mbox{xy.second} = \mbox{c1} / \mbox{b1;} \\ \mbox{xy.first} = (\mbox{c2} - \mbox{b2} * \mbox{xy.second}) / \mbox{a2;} \\ \mbox{return xy;} \\ \} \\ \mbox{if } (\mbox{a2} == 0) \\ \{ & \mbox{xy.second} = \mbox{c2} / \mbox{b2;} \\ \mbox{xy.first} = (\mbox{c1} - \mbox{b1} * \mbox{xy.second}) / \mbox{a1;} \\ \mbox{return xy;} \\ \} \\ \mbox{xy.second} = (\mbox{c2*a1} - \mbox{a2} * \mbox{c1}) / (\mbox{b2*a1} - \mbox{a2} * \mbox{b1}); \\ \mbox{xy.first} = (\mbox{c1} - \mbox{b1} * \mbox{xy.second}) / \mbox{a1;} \\ \mbox{return xy;} \\ \} \end{array}
```

7 Числа Фибоначчи

7.1 Свойства чисел Фибоначчи

```
Соотношение Кассини: F_{n+1}F_{n-1}-F_n^2=(-1)^n. Правило "сложения": F_{n+k}=F_kF_{n+1}+F_{k-1}F_n. Из предыдущего равенства при \mathbf{k}=\mathbf{n} вытекает:
```

$$F_{2n} = F_n(F_{n+1} + F_{n-1}).$$

Из предыдущего равенста по индукции можно получить, что

 F_{nk} всегда кратно F_n .

Верно и обратное к предыдущему утверждение:

если F_m кратно F_n , то m кратно n.

НОД-равенство:

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}.$$

Теорема Цекендорфа утверждает, что любое натуральное число n можно представить единственным образом в виде суммы чисел Фибоначчи:

$$N=F_{k_1}+F_{k_2}+\ldots+F_{k_r}$$
 где $k_1\geq k_2+2, k_2\geq k_3+2,\ldots,k_r\geq 2$ (т.е. ваписи нельзя использовать два соседних числа

в записи нельзя использовать два соседних числа Фибоначчи).

Нетрудно получить и правило прибавления

Нетрудно получить и правило прибавления единицы к числу в фибоначчиевой системе счисления: если младшая цифра равна 0, то её заменяем на 1, а если равна 1 (т.е. в конце стоит 01), то 01 заменяем на 10. Затем "исправляем" запись, последовательно исправляя везде 011 на 100. В результате за линейное время будет получена запись нового числа.

Перевод числа в фибоначчиеву систему счисления осуществляется простым "жадным"алгоритмом: просто перебираем числа Фибоначчи от больших к меньшим и, если некоторое $F_k \leq n$, то F_k входит в запись числа n, и мы отнимаем F_k от n и продолжаем поиск.

8 Теория чисел

8.1 Постулат Бертрана

Постулат Бертрана гласит, что для любого n>1 найдется простое число p в интервале n< p<2n

8.2 Треугольное число

Треугольное число — один из типов фигурных чисел, определяемый как число точек, которые могут быть расставлены в форме правильного треугольника (см. рисунок). Очевидно, с чисто арифметической точки зрения, n-е треугольное число — это сумма n первых натуральных чисел.

$$T_n = \frac{1/2}{n}(n+1)$$

8.3 Совершенные числа

Натуральное число, равное сумме всех своих собственных делителей

6, 28, 496, 8128, 33 550 336, 8 589 869 056, $137\ 438\ 691\ 328,$

2 305 843 008 139 952 128,

2 658 455 991 569 831 744 654 692 615 953 842 176, 191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216

8.4 Числа Каталана

n-е число Каталана C_nC_n можно определить несколькими эквивалентными способами, такими как:

Количество разбиений выпуклого (n+2)-угольника на треугольники непересекающимися диагоналями.

Количество способов соединения 2n точек на окружности n непересекающимися хордами.

Количество правильных скобочных последовательностей длины 2n, то есть таких последовательностей из n левых и n правых скобок, в которых количество открывающих скобок равно количеству закрывающих, и в любом её префиксе открывающих скобок не меньше, чем закрывающих.

Например, для n=3 существует 5 таких последовательностей: ((())), ()(()), ()(()), (())(), (())() то есть $C_3=5C_3=5$.

Количество кортежей

 $(x_1,x_2,\ldots,x_n)(x_1,x_2,\ldots,x_n)$ из п натуральных чисел, таких, что $x_1=1x_1=1$ и $x_i\leqslant x_{i-1}+1x_i\leqslant x_{i-1}+1$ при $2\leqslant i\leqslant n2\leqslant i\leqslant n.$

Количество неизоморфных упорядоченных бинарных деревьев с корнем и n+1 листьями.

Количество всевозможных способов линеаризации декартова произведения 2 линейных упорядоченных множеств: из 2 и из n элементов.

8.5 Число и сумма делителей

Число делителей $r(\alpha)=(\alpha_1+1)(\alpha_2+1)...(\alpha_k+1)$ Сумма делителей $S(\alpha)=\frac{p_1^{\alpha_1+1}-1}{p_1-1}\frac{p_2^{\alpha_2+1}-1}{p_2-1}...\frac{p_k^{\alpha_k+1}-1}{p_k-1}$

8.6 Биномиальные коэффициенты

```
 \begin{array}{ll} & \text{int } C \text{ (int } n, \text{ int } k) \; \{ \\ & \text{ int } res = 1; \\ & \text{ for (int } i=n\text{-}k+1; \; i <=n; \; ++i) \\ & \text{ } res \; *= i; \\ & \text{ for (int } i=2; \; i <=k; \; ++i) \\ & \text{ } res \; /= i; \\ \} \\ & \text{ int } C \text{ (int } n, \text{ int } k) \; \{ / / \text{better} \\ & \text{ } \text{ double } res = 1; \\ & \text{ for (int } i=1; \; i <=k; \; ++i) \\ & \text{ } res = res \; * \; (n\text{-}k+i) \; / \; i; \\ & \text{ } \text{ return (int) (res + 0.01); } \\ \} \\ / / \text{Pascal triangle} \\ & \text{ const int } \max = \dots; \\ & \text{ int } C[\max +1][\max +1]; \\ & \text{ for (int } n=0; \; n <=\max ; \; ++n) \; \{ \\ & C[n][0] = C[n][n] = 1; \\ & \text{ for (int } k=1; \; k < n; \; ++k) \\ & C[n][k] = C[n\text{-}1][k\text{-}1] \; + \; C[n\text{-}1][k]; \\ \} \\ \end{array}
```

9 Динамическое программирование

9.1Рюкзак

Задача из семейства, в которой стоимость предмета совпадает с его весом.

```
for (int i = 1; i <= n; i++) {
          for (int w = 1; w <= s; w++) {
dp[i][w] = dp[i-1][w];
if (w >= a[i]) \{
                      dp[i][w] = max(dp[i][w], dp[i - 1][w - a[i]] + a[i]);
           }
     }
```

9.2Наибольшая возрастающая подпоследовательность

```
for (int i = 0; i < n; i++) {
          dp[i] = 1;
for (int j = 0; j < i; j++)
if (v[j] < v[i])
                     dp[i] = max(dp[i], 1 + dp[j]);
     int max = 0;
for (int i = 0; i < n; i++)
          if (dp[i] > max) max = dp[i];
```

Геометрия 2 10

```
double sqr(double a) {return a * a;}
bool double Equal(double a, double b)
{return fabs(a - b) < 1e-9;}
bool doubleLessOrEqual(double a, double b)
{return a < b || doubleEqual(a, b);}
bool doubleLess(double a, double b)
             {return a < b && !doubleEqual(a, b);}
bool doubleGreaterOrEqual(double a, double b)
 \begin{cases} \text{return a} > b \mid \text{doubleEqual(a, b);} \\ \text{bool doubleGreater(double a, double b)} \\ \text{freturn a} > b \&\& \text{!doubleEqual(a, b);} \end{cases} 
double mySqrt(double a){
            if(doubleLess(a, 0))
             {
                         throw "sqrt(-1)";
             if(a < 0) return 0;
             return sqrt(a);
struct Point{
private: double x, y;
public:
            \begin{array}{l} Point()\colon x(0),\,y(0)\ \{\}\\ Point(double\ x,\ double\ y)\colon x(x),\,y(y)\ \{\} \end{array}
             void scan() ...
             void print() ...
                          operators...
            // vector multiplication
double operator*(const Point & p) const {
    return x * p.y - y * p.x;}
double length() const {return mySqrt(*this % *this);}
                               destination between 2 points
             double distTo(const Point & p) const
             {return (*this - p).length();}
            // between point and line(A, B)
double distTo(const Point & A, const Point & B) const
                          double d = A.distTo(B);
                          // double triangle square double s = (*this - A) * (*this - B);
                                                     // method of squares
                          return abs(s) / d;
             }
             Point normalize(double k = 1) const
```

```
double len = length();
                     if(doubleEqual(len, 0))
                                if(doubleEqual(k, 0))
                                           return Point();
                                throw "zero-size vector";
                     return *this * (k / len);
           }
                        / height from point to line
           Point getH(const Point & A, const Point & B) const
                     Point C = *this;
                     Point v = B - A;
Point u = C - A;
                     double k = v \% u / v.length();
                      v = v.normalize(k);
                     Point H = A + v;
                     return H:
           Point rotate() const // counterclockwise
           {return Point(-y, x);}
                      // turn to an angle of alpha counterclockwise
                      //(or clockwise if alpha < 0)
           Point rotate(double alpha) const
           { return rotate(cos(alpha), sin(alpha) ); }
           Point rotate(double cosa, double sina) const
                     Point v = *this;
                     Point u = v.rotate();
Point w = v * cosa + u * sina;
                     return w;
           }
           bool isZero() const
          { return doubleEqual(x, 0) && doubleEqual(y, 0);}
// is point on line(A, B)
bool isOnLine(const Point & A, const Point & B) const
{return doubleEqual( (A - *this) * (B - *this), 0);}
           bool isInSegment(const Point & A, const Point & B) const
           { return isOnLine(A, B) && doubleLessOrEqual( (A - *this) % (B - *this), 0 );}
           bool isInSegmentStrictly(const Point & A, const Point & B) const
           // angle between vector and OX
           double getAngle() const { return atan2(y, x); }
// oriented angle between 2 vectors
           double getAngle(Point u) const
           {
                     \begin{array}{l} Point \; v = \; ^*this; \\ return \; atan2(v \; ^*u, \; v \; \% \; u); \end{array}
int getIntersection // between line(A,B) and line(C, D)
                     const Point & A,
                     const Point & B,
                     const Point & C
                      const Point & D,
                     Point & O
          \begin{array}{l} \mbox{Point } v = B \mbox{ - } A; \\ \mbox{double } s1 = (C \mbox{ - } A) * (D \mbox{ - } A); \\ \mbox{double } s2 = (D \mbox{ - } B) * (C \mbox{ - } B); \end{array}
           double s = s1 + s2;
          if(doubleEqual(s, 0))
                     if
(!A.isOnLine(C, D) ) // lines are collinear
                                return 0; // intersection is empty
                     return 2; //intersection is not empty
           \begin{tabular}{l} $v=v \ / \ s; \\ $v=v \ * \ s1; \end{tabular}
```

};

{

O = A + v;

```
return 1; // one intersection point
}
  / between two circles with centers A and B and rasius rA and rB
int getIntersection
     ( const Point & A, double rA, const Point & B, double rB,
Point & M, Point & N)
         double\; d = A.distTo(B);
                  //circles do not touch
         if(doubleLess(rA+rB,\,d) \mid\mid doubleLess(d,\,fabs(rA-rB))\ )
                  return 0;
         }
                  // proection length
         double a = (sqr(rA) - sqr(rB) + sqr(d)) / 2 / d;
                  // dist between intersection point and line (A, B)
         double h = mySqrt(sqr(rA) - sqr(a));
         Point v = B - A;
         Point u = v.rotate();
         v = v.normalize(a):
         u = u.normalize(h);
         Point H = A + v;
         M\,=\,H\,+\,u;
         N = H - u;
                 //if u = 0, circles have intersection in 1 point
        if(u.isZero^{'}()\ )\ return\ 1;
         return 2;
}
int getIntersection // between line and circle
                  const Point & A,
                  const Point & B,
                  const Point & O,
                  double r,
                  Point & M,
                  Point & N
{
         double h = O.distTo(A, B);
         if(doubleLess(r,\,h)\,\,)
                 return 0:
         Point H = O.getH(A, B);
         Point v = B - A;
         \label{eq:double_k} double \; k = \; \underset{}{\text{mySqrt}}(\operatorname{sqr}(r) \; \text{-} \; \operatorname{sqr}(h) \; );
         v = v.normalize(k);
        M = H + v;
         N = H - v;
        if(v.isZero()) return 1;
         return 2;
}
int getTangent // from point to cicle
                  const Point & A,
                  const Point & O,
                  double r,
                  Point & M,
                  Point & N
{
         Point v = O - A;
         double d = v.length();
         if(doubleLess(d,\,r)\,\,)\,\,return\,\,0;\,//\,\,point\,\,is\,\,inside\,\,circle
         double \ alpha = asin(r \ / \ d);
        double L = mySqrt(sqr(d) - sqr(r));

v = v.normalize(L);
         M = A + v.rotate(alpha);
         N = A - v.rotate(alpha);
         if(double Equal(r,\,d)\ )\ return\ 1;
         return 2;
}
void getOutTangent // between two circles
                  Point A,
                  double rA
                  Point B,
                  double rB,
                  pair<Point, Point> & P.
                  pair<Point, Point> & Q
```

```
 \begin{cases} & & \text{if}(rA > rB) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

10.1 Формулы

Площадь треугольника через две стороны и угол между ними $S=\frac{1}{2}ab\cdot siny$

Площадь треугольника через радиус описанной окружности $S=\frac{abc}{4R}$

Формула медианы $m=\frac{1}{2}\sqrt{2(b^2+c^2)-a^2}$ Формула высоты $h=\frac{2}{a}\sqrt{p(p-a)(p-b)(p-c)}$ Теорема косинусов $a^2=b^2+c^2-2bc\cdot cosa$

Радиус окружности, вписанной в правильный треугольник $r = \frac{a\sqrt{3}}{3}$

Радиус окружности, вписанной в прямоугольный треугольник $r=\frac{a+b-c}{2}$

Радиус окружности, описанной около прямоугольного треугольника $R=\frac{c}{2}$

Площадь правильного треугольника $S=\frac{a^2\sqrt{3}}{4}$ Объем шарового сегмента $V=\pi h^2(R-\frac{1}{3}h)$ Площадь сегмента круга $S=\frac{1}{2}R^2(\frac{\pi\alpha}{180^\circ}-sina)$

10.2 Тригонометрия

```
\begin{split} \sin^2\alpha + \cos^2\alpha &= 1 \\ \operatorname{tg}^2\alpha + 1 &= \frac{1}{\cos^2\alpha} = \sec^2\alpha \\ \operatorname{ctg}^2\alpha + 1 &= \frac{1}{\sin^2\alpha} = \csc^2\alpha \\ \operatorname{tg}\alpha \cdot \operatorname{ctg}\alpha &= 1 \\ \sin\left(\alpha \pm \beta\right) &= \sin\alpha\cos\beta \pm \cos\alpha\sin\beta \\ \cos\left(\alpha \pm \beta\right) &= \cos\alpha\cos\beta \mp \sin\alpha\sin\beta \\ \operatorname{tg}\left(\alpha \pm \beta\right) &= \frac{\tan\alpha\sin\beta}{1 \mp \tan\beta} \\ \sin\alpha\sin\beta &= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2} \\ \sin\alpha\cos\beta &= \frac{\sin(\alpha-\beta) + \sin(\alpha+\beta)}{2} \\ \cos\alpha\cos\beta &= \frac{\sin(\alpha-\beta) + \sin(\alpha+\beta)}{2} \\ \cos\alpha\cos\beta &= \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2} \\ \sin\alpha \pm \sin\beta &= 2\sin\frac{\alpha\pm\beta}{2}\cos\frac{\alpha\mp\beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \operatorname{tg}\alpha \pm \operatorname{tg}\beta &= \frac{\sin(\alpha\pm\beta)}{\cos\alpha\cos\beta} \end{split}
```