POLI 30 D: Political Inquiry Professor Umberto Mignozzetti (Based on DSS Materials)

Lecture 14 | Hypothesis Testing

Before we start

Announcements:

- Quizzes and Participation: On Canvas.
- GitHub page: https://github.com/umbertomig/POLI30Dpublic
- ▶ Piazza forum: Not sure what the link is. Ask your TA!
- ► Note to self: Turn on the mic!

Before we start

Recap: We learned:

- ► The definitions of theory, scientific theory, and hypotheses.
- ▶ Data, datasets, variables, and how to compute means.
- ► Causal effect, treatments, outcomes, and randomization.
- Sampling, descriptive statistics, correlation, and prediction.
- Strengths and weaknesses of observational and experimental studies.
- Probability, law of large numbers, and central limit theorem.

Great job!

Do you have any questions about these contents?

Plan for Today

- Hypothesis Testing Intuition
 - Null Hypothesis
 - Alternative Hypothesis
 - Test Statistic
 - P-Values
- Hypothesis Testing Formal Procedure
- Example: Do Small Classes Improve Math Scores?
 - What Is the Estimated Average Treatment Effect?
 - Is the Effect Statistically Significant?

The Context

- ► Suppose we are estimating the average causal effect of a treatment on an outcome.
- ► In this context, *X* is the treatment variable, and *Y* is the outcome variable.
- ► What do we need to calculate to estimate the average causal effect?
 - ► The **difference-in-means** estimator
- We want to compute it by fitting a linear regression: $\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 X$.
- ▶ Which coefficient is equivalent to the difference-in-means estimator?

The Context

- ▶ What we can estimate is $\widehat{\beta}_1$, which is the average causal effect at the sample level
- ▶ What we care about is β_1 , which is the average causal effect at the population level
- ► As we discussed in the last class, samples often differ from population:
 - lacktriangle Noise produced by sampling makes $\widehat{eta}_1
 eq eta_1$

The Context

- ► The question we want to answer is:
 - ► Looking at the *sample*, do we have enough evidence to conclude that the *population* ATE differs from zero?
 - In other words, can we say that β_1 is unlikely to be zero?
- By the way, why do you think we focus on zero?
- To answer this question, we need to do something called a hypothesis testing

- ► We assume the contrary of what we want to prove and test if this leads to a contradiction.
- ► Suppose a person is on trial for murder. To be fair to the person, we assume that she is innocent.
 - ► Then, we look at the evidence:
 - ▶ **Person 1**: No good alibi, DNA, or footage.
 - ▶ Person 2: No good alibi, has blood in the crime scene with matched DNA, and footage showing the person leaving minutes after the crime.
- Which person is more likely to be innocent?

▶ By the way, **both** could. be *innocent*. Or **both** could be *guilty*. For a given person:

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Do not reject the null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

► This makes hypothesis testing hard: We use what we see to infer about something we did not see.

▶ **Person 1**: No good alibi, DNA, or footage.

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Do not reject the null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

▶ **Person** 2: No good alibi, has blood in the crime scene with matched DNA, and footage showing the person leaving minutes after the crime.

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Do not reject the null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

We have two powerful friends: LLN (Law of Large Numbers) and the CLT (Central Limit Theorem).

- ► We always assume **no** relationship between variables.
- ▶ This is called **null hypothesis**. It states that β_1 is zero:

$$H_0: \beta_1 = 0$$

• Our alternative hypothesis state that β_1 is different than zero: $H_1: \beta_1 \neq 0$

- ► Thanks to the LLN, we know that the larger the sample, the closer we are to the actual value.
- ▶ Thanks to CLT, we know that if H_0 is true, then the test statistic over multiple samples:

test-statistic =
$$\frac{\widehat{\beta}_1 - 0}{\text{standard error of }\widehat{\beta}_1} \sim N(0, 1)$$

If we were to draw multiple large samples from the same target population, $\frac{\widehat{\beta}_1 - 0}{\text{standard error of }\widehat{\beta}_1}$ would be distributed as a standard normal:

- ► In reality, we only draw one sample:
 - \blacktriangleright We will only observe one test statistic: z^{obs}
 - But we know the distribution of the test statistics if the null hypothesis is true.
- We can calculate the chance that we observe a test statistic as extreme or more extreme as the one we do observe if H_0 is true.
 - This is know as the p-value: $P(Z \le -|z^{obs}|) + P(Z \ge |z^{obs}|)$

p-value: $P(Z \le -|z^{obs}|) + P(Z \ge |z^{obs}|)$

- ▶ If the p-value is large: the probability that we observe z^{obs} or more extreme is large if H_0 is true
 - \triangleright z^{obs} is common relative to the distribution of test statistics under the null
- \triangleright Our evidence is consistent with H_0 being true
- ightharpoonup Conclusion: We fail to reject H_0 . This is called **not** statistically significant

Person 1 again: No good alibi, DNA, or footage.

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Do not reject the null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

► There is little evidence to reject this person's innocence (the null hypothesis in criminal justice)!

- ▶ If the p-value is small: the probability that we observe z^{obs} or more extreme is small if H_0 is true
 - \triangleright z^{obs} is extreme relative to the distribution of test statistics under the null
- ightharpoonup Our evidence is inconsistent with H_0 being true
 - ightharpoonup Either H_0 is not true, or we got unlucky by drawing a fringe sample
- **Conclusion:** We reject H_0 and conclude that the estimate is **statistically significant**

▶ Person 2 again: No good alibi, has blood in the crime scene with matched DNA, and footage showing the person leaving minutes after the crime.

	H ₀ is true Truly not guilty	H ₁ is true Truly guilty
Do not reject the null hypothesis Acquittal	Right decision	Wrong decision Type II Error
Reject null hypothesis Conviction	Wrong decision Type I Error	Right decision

Again, no certainty, but much more evidence that this person here may be guilty.

- How small does the p-value need to be to reject the null hypothesis?
 - ► No good answer to that. In fact, many (not so interesting) papers on the subject.
 - ► The smaller, the better. We will use the conventional 5% value.
 - ► When p-value > 5%: We conclude that the estimate is statistically insignificant (likely to be zero at the population level)
 - When p-value ≤ 5%: We conclude that the estimate is statistically significant (likely to not be zero at the population level)

Shortcut

- ► Recall: $P(-1.96 \le Z \le 1.96) \approx 0.95$
- Probability that Z takes a value less than or equal to -1.96 plus the probability that Z takes a value greater than or equal to 1.96 is approximately 5% (1-0.95=0.05)
- $P(Z \le -1.96) + P(Z \ge 1.96) \approx 0.05$

Shortcut

- ▶ In short, given the characteristics of Z:
 - ▶ When p-value > 5%, it means that $|z^{obs}| < 1.96$
 - ▶ When p-value \leq 5%, it means that $|z^{obs}| \geq 1.96$
- We can draw conclusions based on either the value of $|z^{obs}|$ or the value of p-value
 - ► Both procedures are mathematically equivalent and lead to the same conclusion

Algorithm:

- 1. Specify null and alternative hypotheses
- ► H_0 : $\beta_1 = 0$ (The true average causal effect at the population level is zero)
- ▶ H_1 : $\beta_1 \neq 0$ (The true average causal effect at the population level is either positive or negative)
- 2. Compute the observed value of the test statistic and (perhaps also) the associated p-value
- ▶ p-value = $2 \times P(Z \le -|z^{obs}|)$

3. Conclude

- ▶ If $|z^{obs}|$ < 1.96 or p-value > 0.05, we conclude that the estimate is not statistically significant
- ▶ If $|z^{obs}| \ge 1.96$ or p-value ≤ 0.05 , that the estimate is statistically significant

The importance of replication

- ▶ When an effect is statistically significant at the 5% level, do we know that the true estimate at the population level is not zero?
 - No, we do not
- ▶ But thanks to the LLN and the CLT, we know that if the null hypothesis is true, only in 5% of the samples drawn from the target population we will wrongly reject the null.

The importance of replication

- ▶ It is important to replicate social scientific studies:
 - Arriving at similar conclusions when analyzing different samples is reassuring.
- ▶ While the probability of falsely rejecting the null hypothesis in any one sample is 5%, the probability of falsely rejecting the null twice in a row is only 0.25%
- ► Let us return to the STAR dataset and estimate the average causal effect of attending a small class *on math test scores*.

Do Small Classes Improve Math Scores?

CONTROL: REGULAR-SIZE CLASS

(Based on Mosteller. 1995. "The Tennessee Study of Class Size in the Early School Grades," *Future of Children* 5 (2): 113–27.)

Do Small Classes Improve Math Scores?

- ► The data come from a randomized experiment conducted in Tennessee:
 - Students were randomly assigned to attend either a small class or a regular-size class
- ► To estimate the average causal effect, what estimator can we use?

0. Get Ready for the Analysis

Load the data and create any variables needed

0. Get Ready for the Analysis

Look at the data

```
## make sure the variable was created correctly
head(star) # shows first observations
    classtype reading math graduated small
        small
                578
                     610
    regular
                612 612
    regular
             583 606
    small
                661 648
    small
                614 636
## 6
     regular
                610
                     603
```

- ► The treatment variable is?
- ► The outcome variable is?
- ▶ What is the outcome's unit of measurement?

- ► Fit a linear model so that the estimated slope coefficient is equivalent to the difference-in-means estimator.
- ▶ In this case, the fitted line is: $\widehat{math} = \widehat{\beta}_0 + \widehat{\beta}_1 small$
- ► R code?

```
mod <- lm(math ~ small, data = star) # fits linear model
mod # shows the contents of the object
##
## Call:
## lm(formula = math ~ small, data = star)
##
## Coefficients:
## (Intercept) small
## 628.84 5.99</pre>
```

- $\widehat{\beta}_1 = 5.99$
- ▶ Direction, size, and unit of measurement of the effect?
 - ► An increase of about 6 (or 5.99) points

CONCLUSION STATEMENT

Assuming that [the treatment and control groups are comparable] (a reasonable assumption because ...), we estimate that [the treatment] [increases/decreases] [the outcome] by [size and unit of measurement of the effect], on average.

Assuming that students who attended a small class were comparable to students who attended a regular-size class (a reasonable assumption because the data come from a randomized experiment), we estimate that attending a small class increases math test scores by about 6 points, on average.

2. Is the Effect Statistically Significant?

- ► Is the average treatment effect statistically distinguishable from zero at the population level?
- 1. Specify null and alternative hypotheses
- ▶ H_0 : $\beta_1 = 0$ (attending a small class has no average causal effect on math test scores at the population level)
- ▶ H_1 : $\beta_1 \neq 0$ (attending a small class either increases or decreases math test scores at the population level)

2. Is the Effect Statistically Significant?

R computes the coefficient and the p-value by running summary():

```
summary (mod)
##
## Call:
## lm(formula = math ~ small, data = star)
## Residuals:
       Min
                 10 Median
                                  30
                                          Max
## -119.827 -27.585 -0.827 26.163 145.163
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 628.837
                           1.476 426.09 < 2e-16 ***
## small
              5.990
                            2.178
                                    2.75 0.00604 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 38.74 on 1272 degrees of freedom
## Multiple R-squared: 0.005911, Adjusted R-squared: 0.00513
## F-statistic: 7.564 on 1 and 1272 DF, p-value: 0.006039
```

2. Is the Effect Statistically Significant?

▶ Is the effect statistically significant at the 5% level?

```
summary(mod)
##
## Call:
## lm(formula = math ~ small, data = star)
## Residuals:
                 10 Median
       Min
                                           Max
## -119.827 -27.585 -0.827 26.163 145.163
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 628.837
                           1.476 426.09 < 2e-16 ***
## small
                 5.990
                            2.178
                                     2.75 0.00604 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38.74 on 1272 degrees of freedom
## Multiple R-squared: 0.005911, Adjusted R-squared: 0.00513
## F-statistic: 7.564 on 1 and 1272 DF, p-value: 0.006039
```

Summary

- ► Today's Class:
 - Hypothesis Testing with Estimated Regression Coefficients
 - Example: Do Small Classes Improve Math Scores?
 - ► What Is the Estimated Average Treatment Fffect?
 - ► Is the Effect *Statistically Significant?*
- ► Next class:
 - Do's and do not's in political methodology.

See you in the next class!