What Is Claimed Is:

1	1. A method for detecting a thermal anomaly in a computer system,
2	comprising:
3	deriving an estimated signal for a thermal sensor in the computer system,
4	wherein the estimated signal is derived from correlations with other
5	instrumentation signals in the computer system;
6	comparing an actual signal from the thermal sensor with the estimated
7	signal to determine whether a thermal anomaly exists in the computer system; and
8	if a thermal anomaly exists, generating an alarm.
1	2. The method of claim 1, wherein generating the alarm involves
2	communicating the alarm to a system administrator so that the system
3	administrator can take remedial action.
1	3. The method of claim 2, wherein communicating the alarm to the
2	system administrator involves communicating information specifying the nature
3	of the thermal anomaly to the system administrator.
1	4. The method of claim 1, wherein comparing the actual signal with
2	the estimated signal involves using sequential detection methods to detect changes
3	in the relationship between the actual signal and the estimated signal.
1	5. The method of claim 4, wherein the sequential detection methods
2	include the Sequential Probability Ratio Test (SPRT).

1	6. The method of claim 1, wherein prior to deriving the estimated
2	signal, the method further comprises determining correlations between
3	instrumentation signals in the computer system, whereby the correlations can
4	subsequently be used to generate estimated signals for thermal sensors.
1	7. The method of claim 6, wherein determining the correlations
2	involves using a non-linear, non-parametric regression technique to determine the
3	correlations.
1	8. The method of claim 7, wherein the non-linear, non-parametric
2	regression technique can include a multivariate state estimation technique.
l	9. The method of claim 1, wherein the instrumentation signals can
2	include:
3	signals associated with internal performance parameters maintained by
1	software within the computer system;
5	signals associated with physical performance parameters measured
6	through sensors within the computer system; and
7	signals associated with canary performance parameters for synthetic user
3	transactions, which are periodically generated for the purpose of measuring
)	quality of service from and end user's perspective.
	10. The method of claim 1,
2	wherein deriving the estimated signal for the thermal sensor involves
3	deriving multiple estimated signals for multiple thermal sensors in the computer
ļ	system; and

5	wherein comparing the actual signal with the estimated signal involves
6	comparing multiple actual signals with the multiple estimated signals to determine
7	whether a thermal anomaly exists in the computer system.

- 1 11. A computer-readable storage medium storing instructions that 2 when executed by a computer cause the computer to perform a method for 3 detecting a thermal anomaly in a computer system, the method comprising: 4 deriving an estimated signal for a thermal sensor in the computer system. 5 wherein the estimated signal is derived from correlations with other 6 instrumentation signals in the computer system; 7 comparing an actual signal from the thermal sensor with the estimated 8 signal to determine whether a thermal anomaly exists in the computer system; and 9 if a thermal anomaly exists, generating an alarm.
 - 12. The computer-readable storage medium of claim 11, wherein generating the alarm involves communicating the alarm to a system administrator so that the system administrator can take remedial action.
- 1 13. The computer-readable storage medium of claim 12, wherein communicating the alarm to the system administrator involves communicating information specifying the nature of the thermal anomaly to the system administrator.
- 1 14. The computer-readable storage medium of claim 11, wherein 2 comparing the actual signal with the estimated signal involves using sequential 3 detection methods to detect changes in the relationship between the actual signal 4 and the estimated signal.

1

2

3

1	15. The computer-readable storage medium of claim 14, wherein the
2	sequential detection methods include the Sequential Probability Ratio Test
3	(SPRT).
1	16. The computer-readable storage medium of claim 11, wherein prior
2	to deriving the estimated signal, the method further comprises determining
3	correlations between instrumentation signals in the computer system, whereby the
4	correlations can subsequently be used to generate estimated signals.
1	17. The computer-readable storage medium of claim 16, wherein
2	determining the correlations involves using a non-linear, non-parametric
3	regression technique to determine the correlations.
1	18. The computer-readable storage medium of claim 17, wherein the
2	non-linear, non-parametric regression technique can include a multivariate state
3	estimation technique.
1	19. The computer-readable storage medium of claim 11, wherein the
2	instrumentation signals can include:
3	signals associated with internal performance parameters maintained by
4	software within the computer system;
5	signals associated with physical performance parameters measured
6	through sensors within the computer system; and
7	signals associated with canary performance parameters for synthetic user
8	transactions, which are periodically generated for the purpose of measuring

9 quality of service from and end user's perspective.

1	The computer-readable storage medium of claim 11,
2	wherein deriving the estimated signal for the thermal sensor involves
3	deriving multiple estimated signals for multiple thermal sensors in the computer
4	system; and
5	wherein comparing the actual signal with the estimated signal involves
6	comparing multiple actual signals with the multiple estimated signals to determin
7	whether a thermal anomaly exists in the computer system.
1	21. An apparatus that detects a thermal anomaly in a computer system.
2	comprising:
3	an estimation mechanism configured to derive an estimated signal for a
4	thermal sensor in the computer system, wherein the estimated signal is derived
5	from correlations with other instrumentation signals in the computer system;
6	a comparison mechanism configured to compare an actual signal from the
7	thermal sensor with the estimated signal to determine whether a thermal anomaly
8	exists in the computer system; and
9	an alarm generation mechanism, wherein if a thermal anomaly exists, the
10	alarm generation mechanism is configured to generate an alarm.
1	22. The apparatus of claim 21, wherein the alarm generation
2	mechanism is configured to communicate the alarm to a system administrator so
3	that the system administrator can take remedial action.
1	23. The apparatus of claim 22, wherein the alarm generation
2	mechanism is configured to communicate information specifying the nature of the
3	thermal anomaly to the system administrator.

24. The apparatus of claim 21, wherein the comparison mechanism is
configured to use sequential detection methods to detect changes in the
relationship between the actual signal and the estimated signal.
25. The apparatus of claim 24, wherein the sequential detection
methods include the Sequential Probability Ratio Test (SPRT).
26. The apparatus of claim 21, further comprising a correlation
determination mechanism configured to determine correlations between
instrumentation signals in the computer system, whereby the correlations can
subsequently be used to generate estimated signals.
27. The apparatus of claim 26, wherein the correlation determination
mechanism is configured to use a non-linear, non-parametric regression technique
to determine the correlations.
28. The apparatus of claim 27, wherein the non-linear, non-parametric
regression technique can include a multivariate state estimation technique.
29. The apparatus of claim 21, wherein the instrumentation signals can
include:
signals associated with internal performance parameters maintained by
software within the computer system;
signals associated with physical performance parameters measured

6

through sensors within the computer system; and

7	signals associated with canary performance parameters for synthetic user
8	transactions, which are periodically generated for the purpose of measuring
9	quality of service from and end user's perspective.
1	30. The apparatus of claim 21,
2	wherein the estimation mechanism is configured to derive estimated
3	signals for multiple thermal sensors in the computer system; and
4	wherein the comparison mechanism is configured to compare multiple
5	actual signals with the multiple estimated signals to determine whether a thermal
6	anomaly exists in the computer system.