Analysis I Summary

Nicola Studer nicstuder@student.ethz.ch

August 5, 2022

Real numbers, euclidean spaces

Archimedes' principle. If $x \in \mathbb{R}$ with x > 0 and $y \in \mathbb{R}$, then $\exists n \in \mathbb{N} \ (y < n \cdot x)$

(i) $|x| > 0 \quad \forall x \in \mathbb{R}$ Thm.

- (ii) $|xy| = |x||y| \quad \forall x, y \in \mathbb{R}$
- (iii) $|x+y| < |x| + |y| \quad \forall x, y \in \mathbb{R}$
- (iv) $|x+y| > ||x| |y|| \quad \forall x, y \in \mathbb{R}$

Young's inequality. $\forall \epsilon > 0, \forall x, y \in \mathbb{R}$:

$$2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2$$

Sequences

Convergence

 $(a_n)_{n\geq 1}$ converges to $L=\lim_{n\to\infty}a_n$ $\iff \forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n > N \; (|a_n - L| < \epsilon)$

Def (Convergence). $(a_n)_{n\geq 1}$ converges $\iff \exists L \in \mathbb{R} \ \forall \epsilon > 0 \ (\{n \in \mathbb{N} \mid |a_n - L| \ge \epsilon\}) \text{ is finite.}$

Hint. Let $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ converge with limit a and b:

- 1. $(a_n + b_n)_{n \ge 1}$ converges with limit a + b
- 2. $(a_n \cdot b_n)_{n \ge 1}$ converges with limit $a \cdot b$.
- 3. $(\frac{a_n}{b})_{n>1}$ converges with limit $\frac{a}{b}$
- 4. $\exists K \geq 1 \ \forall n \geq K : a_n \leq b_n \implies a \leq b$

2.1.1 Tips & Tricks

- a_n convergent $\implies a_n$ bounded
- a_n convergent $\iff a_n$ bounded and $\liminf a_n = \limsup a_n$

Monotone Convergence. $(a_n)_{n\geq 1}$ monotone increasing and upper bounded $\implies \lim a_n = \sup\{a_n \mid n \ge 1\}$ $(a_n)_{n\geq 1}$ monotone decreasing and lower bounded \Longrightarrow $\lim a_n = \inf\{a_n \mid n \ge 1\}$

Lemma (Bernoulli Inequation).

$$(1+x)^n \ge 1 + nx \quad \forall n \in \mathbb{N}, x > -1$$

Def (Limit inferior / Limit superior).

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} (\inf\{a_k \mid k \ge n\})$$

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} (\sup\{a_k \mid k \ge n\})$$

Cauchy Criteria. a_n converges iff $\forall \epsilon > 0 \ \exists N \geq 1 \ \text{s.t.}$ $|a_n - a_m| < \epsilon \ \forall n, m \ge N$ (cauchy sequence).

- (i) Each Cauchy sequence is bounded
- (ii) $(a_n)_{n\geq 1}$ conv. $\Longrightarrow (a_n)_{n\geq 1}$ cauchy
- (iii) $(a_n)_{n\geq 1}$ cauchy $\implies (a_n)_{n\geq 1}$ conv.

Bolzano-Weierstrass. Each bounded sequence contains a convergent sub sequence.

Sandwich. If $\lim a_n = \alpha$, $\lim b_n = \alpha$, $k \in \mathbb{N}$ and $a_n \le c_n \le b_n \ \forall n \ge k$, then $\lim c_n = \alpha$

Cauchy-Cantor. Let $I_1 \supset I_2 \supset \cdots I_n \cdots$ be a sequence of proper intervals with $\mathcal{L} < +\infty$, then $\bigcap_{n>1} I_n \neq 0$. And if $\lim_{n\to\infty} \mathcal{L}(I_n) = 0$ then $|\bigcap_{n>1} I_n| = 1$

Cor. Let (a_n) be bounded, then for each subsequence (b_n) : $\liminf a_n < \lim b_n < \limsup a_n$.

Each subsequence (b_n) of a convergent (a_n) converges and $\lim b_n = \lim a_n$.

Series

Def. " $\sum_{k=1}^{\infty} a_k$ " converges, if the sequence $(S_n)_{n\geq 1}$ of partial sums converges and $\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$

- **Thm.** $\sum_{k=1}^{\infty} a_k$ and $\sum_{j=1}^{\infty} b_j$ convergent: $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$
 - $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \sum_{k=1}^{\infty} a_k$

Couchy Criteria. $\sum_{k=1}^{\infty} a_k \text{ conv.} \iff \forall \epsilon > 0 \ \exists N \geq 1: |\sum_{k=n}^{m} a_k| = |S_m - S_n| < \epsilon \ \forall m \geq n \geq N$

Zero Sequence Criteria. $\sum_{k=1}^{\infty} a_k \text{ conv.} \implies \lim a_k = 0$

Comparison Theorem. Let $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ series s.t. $0 < a_k < |a_k| < b_k \quad \forall k > 1$:

$$\sum_{k=1}^{\infty} b_k \text{ converges } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ converges absolute}$$

$$\sum_{k=1}^{\infty} a_k \text{ diverges } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ diverges}$$

Thm. Let $\sum_{k=1}^{\infty} a_k$ be a series with $a_k \geq 0 \quad \forall k \in \mathbb{N}^*$

$$\sum_{k=1}^{\infty} \text{ converges } \iff (S_n)_{n\geq 1} \text{ upper bounded}$$

Def (Asolute Convergence). $\sum_{k=1}^{\infty} a_k$ absolute converges if $\sum_{k=1}^{\infty} |a_k|$ converges.

$$\sum_{k=1}^{\infty} |a_k| \text{ converges } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ converges }$$

$$\sum_{k=1}^{\infty} a_k \text{ converges} \Rightarrow \sum_{k=1}^{\infty} |a_k| \text{ converges}$$

(**Dirichlet**) If a series converges absolute, then each permutation of the series converges with the same limit.

(Riemann) If a series only converges, then there exists a permutation such that:

$$\sum_{k=1}^{\infty} a_{\phi(k)} = x \quad \forall x \in \mathbb{R} \cup \{\infty\}$$

Thm.

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

Leibniz. (a_n) mon. dec. s.t. $a_n \ge 0 \,\forall n \ge 1 \wedge \lim a_n = 0$:

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ converges.}$$

Furthermore: $a_1 - a_2 \le S \le a_1$

Ratio Test. Let
$$(a_n)_{n\geq 1}$$
 with $a_n \neq 0 \quad \forall n \geq 1$:
 $\limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$ converges absolute.
 $\liminf_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n$ diverges

Lemma. $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L$:

- $L < 1 \implies \sum_{n=1}^{\infty} a_n$ converges absolute.
- $L > 1 \implies \sum_{n=1}^{\infty} a_n$ diverges.
- $L = 1 \implies no information$

Root Test. Let
$$(a_n)_{n\geq 1}$$
 with $a_n \neq 0 \quad \forall n \geq 1$:
 $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$ converges absolute.
 $\liminf_{n\to\infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} |a_n|$ diverge.

Lemma. $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$:

- $L < 1 \implies \sum_{n=1}^{\infty} a_n$ converges absolute.
- $L > 1 \implies \sum_{n=1}^{\infty} a_n$ diverges.
- $L = 1 \implies no information$

Def (Cauchy Product). $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{n-j} b_j \right) = a_0 b_0 + \left(a_0 b_1 + a_1 b_0 \right) + \left(a_0 b_2 + a_1 b_1 + a_2 b_0 \right) + \cdots$$

Thm. $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ conv. abs. \Rightarrow Couchy prod. conv. abs.:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_i b_j = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_i b_j$$

Hint (Strategy: Convergence of Series).

- 1. Check for known types. Telescope, Geometric, etc.
- 2. $\lim |a_n| \neq 0 \implies \text{divergence}$
- 3. Ratio Test

- 4. Root Test
- 5. Search convergent majors: $0 \le a_n \le b_n$
- 6. If divergent minors \implies divergence
- 7. Be creative

4 Functions

 $\mathbb{R}^D = \{ f : D \to \mathbb{R} \mid f \text{ is function} \}, (\mathbb{R}^D; +, \cdot) \text{ is V.R.}$

4.1 Continuity

Def (Continuity). A function f is continuous in x_0 if:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in D \; (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon)$$

 \Longrightarrow

$$\forall (a_n) \text{ with } \lim_{n \to \infty} a_n = x_0 : \lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(x_0)$$

Def. A function $f:D\to\mathbb{R}$ is continuous if it is continuous in all $x_0\in D$

Hint. To prove continuity try to filter $|x - x_0|$ out of $|f(x) - f(x_0)|$ and choose δ , such that the rest term disappears. Be aware that δ is part of ϵ and normally $|x_0|$ as well. But not x!

Cor. $f, g: D \to \mathbb{R}$ continuous in $x_0 \in D$. Then:

- $fg, \lambda f, f \pm g$ continuous in x_0
- $\frac{f}{g}: D \setminus \{x \in D \mid g(x) = 0\} \to \mathbb{R} \text{ continuous in } x_0 \text{ (if } g(x_0) \neq 0)$
- $|f|, \max(f, g), \min(f, g)$ continuous in x_0
- $P(x) = a_n x^n + \dots + a_0$ continuous on \mathbb{R}
- $\frac{P(x)}{Q(x)}$ continuous on $\mathbb{R}\setminus\{x_1,\dots,x_m\}$ if x_1,\dots,x_m are roots of Q(x)

Thm. Let $f:D_1\to D2\subset\mathbb{R}, g:D_2\to\mathbb{R}$ be continuous $\Longrightarrow g\circ f:D_1\to\mathbb{R}$ continuous.

Bolzano (Intermediate value theorem). Let $I \subseteq \mathbb{R}$, $f: I \to \mathbb{R}$ continuous and $a, b \in I$. For each c between f(a) and f(b) there is a $z \in [a,b]$ with f(z) = c

Min-Max. Let $f: I = [a, b] \to \mathbb{R}$ be continuous.

$$\exists u, v \in I \ \forall x \in I \ (f(u) \le f(x) \le f(v))$$

In particular $f([a,b]) \subset [f(u),f(v)]$ is bounded.

Cor. $I = [a, b], f : I \to \mathbb{R}$ continuous, then Im(f) = f(I) is a compact interval $J = [\min f, \max f] = [f(u), f(v)]$

Inverse Mapping. Let $f:I\to\mathbb{R}$ be continuous and strict monotone increasing. Then $J:=f(I)\subseteq\mathbb{R}$ is an interval and $f^{-1}:J\to I$ is continuous and strict monotone.

4.2 Exponential function

 $\exp : \mathbb{R} \to]0, \infty[$ is continuous, strictly monotone increasing, surjective.

- $\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$
- For $x > 0, a \in \mathbb{R} : x^a := \exp(a \ln x)$
- $x^0 = 1 \quad \forall x > 0$

Def. The inverse mapping of $\exp(x)$ is called the natural logarithm:

$$\ln :]0, \infty[\to \mathbb{R}, \quad x \mapsto \ln x$$

It is strictly monotone increasing, continuous and bijective.

4.3 Converge of function sequences

$$\mathbb{N} \to \mathbb{R}^D = \{ f : D \to \mathbb{R} \}, \quad n \mapsto f(n)$$

Def (pointwise convergence). $(f_n)_{n\geq 0}$ converges pointwise to a function $f: D \to \mathbb{R}$, if $\forall x \in D: \lim_{n\to\infty} f_n(x) = f(x)$

$$\iff$$

$$\forall x \in D \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N \ (|f_n(x) - f(x)| < \epsilon)$$

Def (uniform convergence (Weierstrass)). $f_n: D \to \mathbb{R}$ converges uniformly in D to $f: D \to \mathbb{R}$ if:

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{s.t.} \ \forall n \ge N \ \forall x \in D \ (|f_n(x) - f(x)| < \epsilon)$$

$$\lim_{n \to \infty} \sup_{x \in D} |f_n(x) - f(x)| = 0$$

The function sequence (f_n) is uniformly convergent if for all $x \in D$ the limit $\lim_{n\to\infty} f_n(x) = f(x)$ exists and the sequence (f_n) uniformly converges to f. Furthermore if $\forall \epsilon > 0 \ \exists N \geq 1 \ \forall n, m \geq N \ \forall x \in D : |f_n(x) - f_m(x)| < \epsilon$.

The series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly (in D), if the function sequence $S_n(x) := \sum_{k=0}^n f_k(x)$ converges uniformly.

Thm. let $D \subseteq \mathbb{R}$ and $f_n : D \to \mathbb{R}$ a function sequence containing (in D) continuous functions which converge (in D) uniformly against a function $f : D \to \mathbb{R}$, then f (in D) is continuous.

Hint (not uniform convergent). $(f_n)_{n\geq 0}$ converges not uniformly if: $\forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists x \in D(|f_n(x) - f(x)| \geq \epsilon)$

Hint. Check the function and try to construct x (dependent on N in general), such that $|f_n(x) - f(x)|$ is always greater than a specific ϵ and afterwards choose the ϵ .

Def (Power Functions). $\sum_{k=0}^{\infty} c_k x^k$ has positive convergence radius if $\limsup_{k\to\infty} \sqrt[k]{|c_k|}$ exists.

$$\rho = \begin{cases} +\infty &, \text{ if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0\\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} &, \text{ if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

Thm. Let $\sum_{k=0}^{\infty} c_k x^k$ be a power series with positive convergence radius $\rho > 0$ and let $f(x) = \sum_{k=0}^{\infty} c_k x^k, |x| < \rho$ Then: $\forall 0 \leq r < \rho$ converges $\sum_{k=0}^{\infty} c_k x^k$ uniformly on [-r, r], furthermore $f:]-\rho, \rho[\to \mathbb{R}$ is continuous.

4.4 Trigonometric Functions

sin and cos are continuous functions $\mathbb{R} \to \mathbb{R}$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

Thm. 1. $\exp(iz) = \cos(z) + i\sin(z) \quad \forall z \in \mathbb{C}$

2.
$$\cos z = \cos(-z)$$
 und $\sin(-z) = -\sin(z) \quad \forall z \in \mathbb{C}$

3.
$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

4.
$$\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$
$$\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$$

5.
$$\cos(z)^2 + \sin(z)^2 = 1 \quad \forall z \in \mathbb{C}$$

Cor.

$$\sin(2z) = 2\sin(z)\cos(z)$$

$$\cos(2z) = \cos(z)^2 - \sin(z)^2$$

$$\sin(z) = \sin(z) + \sin(z) + \sin(z)$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

Def (π) . $\pi := \inf\{t > 0 \mid \sin t = 0\}$

- (i) $\sin \pi = 0, \pi \in]2, 4[$
- (ii) $\forall x \in]0, \pi[: \sin x > 0]$
- (iii) $e^{\frac{i\pi}{2}} = i$

Cor. $x \ge \sin x \ge x - \frac{x^3}{3!}$ $\forall 0 \le x \le \sqrt{6}$

Cor. 1.
$$e^{i\pi} = -1$$
, $e^{2i\pi} = 1$

- 2. $\sin(x + \frac{\pi}{2}) = \cos(x)$, $\cos(x + \frac{\pi}{2}) = -\sin(x) \quad \forall x \in \mathbb{R}$
- 3. $\sin(x+\pi) = -\sin(x)$, $\sin(x+2\pi) = \sin(x) \quad \forall x \in \mathbb{R}$
- 4. $cos(x+\pi) = -cos(x)$, $cos(x+2\pi) = cos(x)$ $\forall x \in \mathbb{R}$
- 5. Roots of sinus = $\{\pi \cdot k \mid k \in \mathbb{Z}\}\$ $\sin(x) > 0 \ \forall x \in]2k\pi, (2k+1)\pi[, k \in \mathbb{Z}$ $\sin(x) < 0 \ \forall x \in](2k+1)\pi, (2k+2)\pi[, k \in \mathbb{Z}$
- 6. Roots of $cosine = \{\frac{\pi}{2} + k \cdot \pi \mid k \in \mathbb{Z}\}\$ $cos(x) > 0 \ \forall x \in]-\frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, \quad k \in \mathbb{Z}$ $cos(x) < 0 \ \forall x \in]-\frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, \ k \in \mathbb{Z}$

4.5 Limit of Functions

Def (accumulation point). $x_0 \in \mathbb{R}$ is an accumulation point of D if $\forall \delta > 0$: $(|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) \cap D \neq \emptyset$

Def (Limit of Function). if $f: D \to \mathbb{R}, x_0 \in \mathbb{R}$ an accumulation point of D, then $A \in \mathbb{R}$ is the limit of f(x) for $x \to x_0$, written as $\lim_{x \to x_0} f(x) = A$. If $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{s.t.}$ $\forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$

Important Rules. Let $f: D \to \mathbb{R}$ and x_0 is an accumulation point of D.

- 1. $\lim_{x \to x_0} f(x) = A \iff \forall (a_n)_{n \ge 1} \text{ in } D \setminus \{x_0\} \text{ with }$ $\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = A.$
- 2. Let $x_0 \in D$. Then f is continuous in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$

3. $f, g: D \to \mathbb{R}$ and $\exists \lim_{x \to x_0} f(x), \exists \lim_{x \to x_0} g(x) \implies$

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

4. $f, g: D \to \mathbb{R}$ and $f \leq g$, then if both limit exists

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

5. If $g_1 \leq f \leq g_2$ and $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$ then $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$

Hint. Sometimes it can be really helpful to convert known functions to their power series to calculate a limit. E.g.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{x - \frac{x^3}{3!} + \dots}{x} = \lim_{x \to 0} 1 - \frac{x^2}{3!} + \dots = 1$$

Hint (e^{\log}) . Transform ugly function with this trick.

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{g(x)\log(f(x))} = e^{\lim_{x \to x_0} g(x)\log(f(x))}$$

5 Differentiable Functions

Def (Differentiable). f is in x_0 differentiable, if the limit $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$ exists. f is differentiable if $\forall x_0 \in D$ f is differentiable.

Weierstrass. $f: D \to \mathbb{R}, x_0 \in D$ accumulation point. Equivalent statements:

- 1. f is in x_0 differentiable
- 2. It exists $c \in R$ $(c = f'(x_0))$ and $r : D \to \mathbb{R}$ s.t.:

2.1
$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$

2.2
$$r(x_0) = 0$$
 and r continuous in x_0 .

Cor. f diff. in $x_0 \implies f$ continuous in x_0

Thm. f diff. in $x_0 \iff \exists \phi : D \to \mathbb{R}$ continuous in x_0 s.t. $\forall x \in D : f(x) = f(x_0) + \phi(x)(x - x_0)$. Then $\phi(x_0) = f'(x_0)$.

Derivative rules.

Linearity: $(\alpha \cdot f(x) + g(x))' = \alpha \cdot f'(x) + g'(x)$ Product rule: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

Quotient rule: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$

Chain rule: $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$

Cor. f bijective and in x_0 differentiable s.t. $f'(x_0) \neq 0$. f^{-1} is continuous in $y_0 = f(x_0)$. Then f^{-1} is differentiable in y_0 and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$.

5.1 Derivative Implications

- 1. x_0 is local minimum if $f'(x_0) = 0 \land f''(x_0) > 0$ or the sign of f' changes from to +.
- 2. x_0 is local maximum if $f'(x_0) = 0 \land f''(x_0) < 0$ or the sign of f' changes from + to -.
- 3. x_0 is local extremum if $f'(x_0) = 0 \land f''(x_0) \neq 0$
- 4. x_0 is a saddle point if $f'(x_0) = 0$ and $f''(x_0) = 0$
- 5. x_0 is a inflection point if $f''(x_0) = 0 \land f^{(3)}(x_0) \neq 0$
- 6. $f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n)}(x_0) = 0$
 - 6.1 n odd and $f^{(n+1)}(x_0) > 0 \implies x_0$ strict local minimum
 - 6.2 n odd and $f^{(n+1)}(x_0) < 0 \implies x_0$ strict local maximum

5.2 Derivative Theorems

Rolle. Let $f:[a,b]\to\mathbb{R}$ continuous and in]a,b[differentiable. If f(a)=f(b), then there exists $\xi\in]a,b[$ with $f'(\xi)=0.$

Mean Value / Lagrange. Let $f:[a,b] \to \mathbb{R}$ continuous and in]a,b[differentiable, then there exists $\xi \in]a,b[$ with $f(b)-f(a)=f'(\xi)(b-a).$

There exists points ξ with $f'(\xi)$ equal to the gradient of the secant between a to b.

Cor. Let $f, g : [a, b] \to \mathbb{R}$ cont. and diff. in]a, b[.

- 1. $\forall \xi \in]a, b[: f'(\xi) = 0 \implies f \text{ is constant}$
- 2. $\forall \xi \in]a, b[: f'(\xi) = g'(x) \implies \exists c \in \mathbb{R} \forall x \in [a, b] : f(x) = g(x) + c$

- 3. $\forall \xi \in]a,b[:f'(\xi) \geq 0 \implies f \text{ in } [a,b] \text{ mon. inc.}$
- 4. $\forall \xi \in]a,b[:f'(\xi)>0 \implies f \text{ in } [a,b] \text{ str. mon. inc.}$
- 5. $\forall \xi \in]a, b[: f'(\xi) \leq 0 \implies f \text{ in } [a, b] \text{ mon. dec.}$
- 6. $\forall \xi \in]a,b[:f'(\xi)<0 \implies f \text{ in } [a,b] \text{ str. mon. dec.}$
- 7. $\exists M \ge 0 \ \forall \xi \in]a, b[: |f'(\xi)| \le M \implies \forall x_1, x_2 \in [a, b]: |f(x_1) f(x_2)| \le M|x_1 x_2|$

Cauchy. $f,g:[a,b]\to\mathbb{R}$ continuous and in]a,b[diff. Then there exists $\xi\in]a,b[$ with

 $g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a)).$

If $\forall x \in]a, b[: g'(x) \neq 0$ it implies that $g(a) \neq g(b)$ and $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

l'Hôspital. $f,g:]a,b[\to \mathbb{R} \text{ diff. with } \forall x\in]a,b[:g'(x)\neq 0.$ If $\lim_{x\to b^-}f(x)=0,\lim_{x\to b^-}g(x)=0$ and

 $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=:\lambda \text{ exists, then } \lim_{x\to b^-}\frac{f(x)}{g(x)}=\lim_{x\to b^-}\frac{f'(x)}{g'(x)}.$

Hint. Only use l'Hospital if either $\frac{0}{0}$ or $\frac{\infty}{\infty}$!

Def. 1. (strictly) convex: $(x \le y)$: $f(\lambda x + (1 - \lambda)y)$ (<) $\le \lambda f(x) + (1 - \lambda)f(y)$

2. (strictly) concave: $(x \le y)$: $f(\lambda x + (1 - \lambda)y) (>) \ge \lambda f(x) + (1 - \lambda)f(y)$

Lemma. $f: I \to \mathbb{R}$. f is $convex \iff \forall x_0 < x < x_1 \in I: \frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$. Strictly convex if <.

Lemma. $f:]a, b[\rightarrow \mathbb{R} \ diff.$

- f' (strictly) mon. inc. dec. $\Rightarrow f$ (strictly) conv. conc.
- $f'' \ge (>) 0 \implies f \text{ (strictly) conv. } (</ \le for \text{ conc.})$

5.3 Higher Derivatives

- 1. For $n \geq 2$ is f n-times differentiable in D if $f^{(n-1)}$ in D is differentiable. Then $f^{(n)} := (f^{(n-1)})'$ and is the n-th derivative of f
- 2. f is n-times continuous differentiable in D if f is n-times differentiable and if $f^{(n)}$ is continuous in D
- 3. f is in D smooth if $\forall n \geq 1$, f is n-times differentiable.

Smooth Functions. exp, sin, cos, sinh, cosh, tanh, ln, arcsin, arccos, arccot, arctan and all polynomials. tan is smooth on $\mathbb{R} \setminus \{\pi/2 + k\pi\}$ and cot on $\mathbb{R} \setminus \{k\pi\}$

Thm. $f, g: D \to \mathbb{R}$ are *n*-times diff. in D.

- 1. $(f+g)^{(n)} = f^{(n)} + g^{(n)}$
- 2. $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$
- 3. $(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$ with $A_{n,k}$ as polynomial in the functions $f', f^{(2)}, \ldots, f^{(n+1-k)}$

5.4 Power Series and Taylor approximation

Thm. Let $f_n:]a, b[$ be a function sequence with f_n one time in]a, b[continuous diff. $\forall n \geq 1$. Assume that $(f_n)_{n \geq 1}$, $(f'_n)_{n \geq 1}$ uniformly convergent in]a, b[with $\lim_{n \to \infty} f_n =: f$ and $\lim_{n \to \infty} f'_n =: p$, then f is continuously diff. and f' = p.

Thm. Let $\sum_{k=0}^{\infty} c_k x^k$ be a power series with convergent radius $\rho > 0$. Then $f(x) = \sum_{k=0}^{\infty} c_k (x-x_0)^k$ is differentiable on $]x_0 - \rho, x_0 + \rho[$ and $\forall x \in]x_0 - \rho, x_0 + \rho[$: $f'(x) = \sum_{k=0}^{\infty} k c_k (x-x_0)^{k-1}$

Cor. $f^{(j)} = \sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{k-j}$. Furthermore $c_j = \frac{f^{(j)}(x_0)}{j!}$. Power series can be differentiated part by part in their converge area.

Def (Taylor Polynomial). The *n*-th Taylor-polynomial of cont. n+1 times diff. in [c,d] f is defined as $T_n(f,x,a)$ with center $a \in]c,d[$ and error $R_n(f,x,a)$. $\forall x \in [a,b] \exists \xi \in]x,a[\cup]a,x[$:

$$T_n(f, x, a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \cdot (x - a)^k$$

$$R_n(f, x, a) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$

$$f(x) = T_n(f, x, a) + R_n(f, x, a)$$

Hint. The error can be approximated as

$$|R_n(f,x,a)| \le \sup_{a < c < x} \left| \frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!} \right|$$

Def (Taylor Series). $T_{\infty}(f, x, x_0) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

6 Riemann Integral

$$a < b, I = [a, b], \mathcal{P}(I) = \{P \mid P \subsetneq I \land \{a, b\} \in P \land |P| \in \mathbb{N}\}$$

Def (Partition). • Partition: $P \in \mathcal{P}(I)$

- $\delta_i := x_i x_{i-1}$ length of $I_i := [x_{i-1}, x_i], i \ge 1$
- Mesh of partition: $\delta(P) := \max_{1 \le i \le n} (x_i, x_{i-1})$
- $\xi := \{\xi_1, \dots, \xi_n\}, \, \xi_i \in I_i$
- P' refines P if $P \subseteq P'$

Def (Riemann Sums). $S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$

- Lower sum: $\underline{S}(f,P) := \sum_{i=1}^{n} (\inf_{x \in I_i} f(x))(x_i x_{i-1})$
- Upper sum: $\overline{S}(f,P) := \sum_{i=1}^{n} (\sup_{x \in I_i} f(x))(x_i x_{i-1})$

It holds: $-M(b-a) \le \underline{S}(f,P) \le \overline{S}(f,P) \le M(b-a)$

Lemma. $P \subseteq P' : \underline{S}(f, P) \leq \underline{S}(f, P') \leq \overline{S}(f, P') \leq \overline{S}(f, P)$

Lemma. $\forall P_1, P_2 \in \mathcal{P}(I) : S(f, P_1) \leq \overline{S}(f, P_2)$

Def (Lower Riemann Integral). $\underline{S}(f) := \sup_{P \in \mathcal{P}(I)} \underline{S}(f, P)$

Def (Upper Riemann Integral). $\overline{S}(f) := \inf_{P \in \mathcal{P}(I)} \overline{S}(f, P)$

6.1 Integrability criteria

Def (Integrable). Bounded $f:[a,b]\to\mathbb{R}$ is integrable if $\underline{S}(f)=\overline{S}(f)$ and the shared value is $\int_a^b f(x)\,dx$.

Riemann Criteria. Bounded $f: I \to \mathbb{R}$ is integrable. Let $\mathcal{P}_{\delta}(I) := \{P \in \mathcal{P}(I) \mid \delta(P) < \delta\}.$

- $\Leftrightarrow \quad \forall \epsilon > 0 \; \exists P \in \mathcal{P}(I) : \overline{S}(f, P) \underline{S}(f, P) < \epsilon$
- $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \forall P \in \mathcal{P}_{\delta}(I) : \overline{S}(f, P) \underline{S}(f, P) < \epsilon$
- $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 \; \forall P \in \mathcal{P} \text{ with } \delta(P) < \delta :$

$$\left| A - \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \right| < \epsilon$$

Hint. Bounded $f:[a,b]\to\mathbb{R}$ is int. if $\lim_{\delta(P)\to 0}S(f,P,\xi)$ exists for all P with $\delta(P)\to 0$. It follows that $\lim_{\delta(P)\to 0}S(f,P,\xi)=\int_a^bf(x)\,dx$

6.2 Integrable Functions

- 1. f (bounded) cont. in $[a, b] \implies f$ int. over [a, b]
- 2. f monotone in $[a,b] \implies f$ int. over [a,b]
- 3. If f, g bounded and int., then integrable as well:

$$f + g, \lambda \cdot f, f \cdot g, |f|, \min(f, g), \max(f, g), \frac{f}{g}$$

4. All polynomials are integrable, even $\frac{P(x)}{Q(x)}$ if Q(x) has no root in [a, b]

Hint. Let $V := \{f : I \to \mathbb{R} \mid f \text{ is a mapping}\}$. $(V, +, \cdot)$ is a vector space. Then it implies that $W := \{f : I \to \mathbb{R} \mid f \text{ is integrable}\}$ is a subspace of V.

6.3 Integration Inequalities and Theorems

Def (Uniform continuous).

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x,y \in D: |x-y| < \delta \implies |f(x)-f(y)| < \epsilon$$

Thm. $f:[a,b] \to \mathbb{R}$ cont. $\Longrightarrow f$ is uni. cont. in [a,b].

Thm. f uni. cont. $\implies f$ cont.

Thm. $f,g:[a,b]\to\mathbb{R}$ bounded and integrable and $\forall x\in[a,b]:f(x)\leq g(x)\implies\int_a^bf(x)\,dx\leq\int_a^bg(x)\,dx$

Cauchy-Schwarz.

$$\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$$

Hint. $\langle f, g \rangle := \int_a^b f(x)g(x) dx$ is a scalar product. $||f||^2 = \langle f, f \rangle = \int_a^b f^2(x) dx$.

Mean Value Theorem. $f:[a,b]\to\mathbb{R}$ continuous $\Longrightarrow \exists \xi\in[a,b]:\int_a^b f(x)\,dx=f(\xi)(b-a)$

Cauchy. $f,g:[a,b]\to\mathbb{R}$ with f continuous and g bounded and integrable with $g(x)\geq 0, \ \forall x\in[a,b]$

$$\implies \exists \xi \in [a,b]: \int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx$$

6.4 Integration Properties

Additive Property.

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Linearity.

$$\int_{a}^{b} (\alpha f_1 + \beta f_2) \, dx = \alpha \int_{a}^{b} f_1(x) \, dx + \beta \int_{a}^{b} f_2(x) \, dx$$

Preservation of Order.

$$\forall x \in [a,b]: f(x) \leq g(x) \implies \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$$

Triangle Inequality.

$$\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$$

6.5 Primitive Functions

Def (Primitive Function). $F:[a,b]\to\mathbb{R}$ is a primitive function of f if F is cont. diff. and F'=f.

Hint. f is integrable \Rightarrow exists a primitive function for f.

HID. Let $a < b, f : [a, b] \to \mathbb{R}$ continuous. The function

$$F(x) := \int_{a}^{x} f(t)dt \quad a \le x \le b$$

is cont. diff. in [a, b] and $F'(x) = f(x) \ \forall x \in [a, b]$.

Fundamental theorem of calculus. $f:[a,b] \to \mathbb{R}$ continuous. Then there exists a unique (except a constant term) primitive function F of f, such that

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

6.6 Integration Methods

Partial Inegration.

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx$$
$$\int_{a}^{b} f(x)g'(x) dx = (f \cdot g)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx$$
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

- Choose $g': \exp \to \operatorname{trig} \to \operatorname{poly} \to \operatorname{inverse} \operatorname{trig} \to \operatorname{logs}$
- Choose $f: \log \to \text{inverse trig.} \to \text{poly} \to \text{trig} \to \exp$
- Sometimes it is necessary to multiply by 1. E.g.: $\int \ln x \ dx = \int \ln x \cdot 1 \ dx \implies f(x) = \ln x, \ g'(x) = 1.$
- Sometimes it is necessary to do it multiple times

Substitution. Let $a < b, \phi : [a,b] \to \mathbb{R}$, cont. diff, $I \subseteq \mathbb{R}$ with $\phi([a,b]) \subseteq I$ and $f:I \to \mathbb{R}$ a cont. function. Then it follows:

$$\int_{\phi(a)}^{\phi(b)} f(x) \, dx = \int_{a}^{b} f(\phi(t))\phi'(t) dt = (F \circ \phi)(b) - (F \circ \phi)(a)$$

since F' = f then $f(\phi(t))\phi'(t) = (F \circ \phi)'(t)$.

Partial Fraction Decomposition. Let P(x), Q(x) be two polynomials. $\int \frac{P(x)}{Q(x)}$ can be calculated as follows:

- 1. If $deg(P) \ge Q(P) \Rightarrow poly$. div. $\frac{P(x)}{Q(x)} = a(x) + \frac{r(x)}{Q(x)}$
- 2. Calculate all roots of Q(x)
- 3. Create a partial fraction per root
- Simple real root: $x_1 \to \frac{A}{x-x_1}$
- *n*-fold real root: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
- Simple i-root: $x^2 + px + q \rightarrow \frac{Ax+B}{x^2+nx+q}$
- *n*-fold *i*-root: $x^2 + px + q \to \frac{A_1x + B_1}{x^2 + px + q} + \ldots + \frac{A_rx + B_r}{(x^2 + px + q)^r}$
- 4. Calculate parameters A_1, \ldots, A_n . (Insert the root as s, transform and solve)

Hint (Odd functions). $\int_{-\lambda}^{\lambda} f(x) dx = 0$.

Cor.
$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

Cor.
$$\int_a^b f(ct)dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

6.7 Integration of convergent series

Thm. Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of bounded, integrable functions which converge uniformly against a function $f : [a, b] \to \mathbb{R}$. Then f is bounded and integrable and

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx = \int_a^b f(x) \, dx$$

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) dx \right)$$

Thm. Let $f(x) := \sum_{k=0}^{\infty} c_k x^k$ be a power series with positive convergence radius p > 0. Then $\forall 0 \le r < p$ f is integrable on [-r, r] and $\forall x \in]-p, p[: \int_0^x f(t)dt = \sum_{k=0}^{\infty} c_k \frac{x^{k+1}}{k+1}$

6.8 Improper Integral

$$f:[a,\infty)\to\mathbb{R}, f:[-\infty,a]\to\mathbb{R}, f:(-\infty,\infty)\to\mathbb{R}$$

Def. Let $f:[a,\infty[\to\mathbb{R}]$ be bounded and integrable on [a,b] for all b>a. If $\lim_{b\to\infty}\int_a^b f(x)\,dx$ exists, the limit is defined as $\int_a^\infty f(x)\,dx$ and one can say that f is integrable on $[a,+\infty[$. If the limit does not exists, one can say that $\int_a^\infty f(x)\,dx$ diverges.

Comparison Theorem. Let $f:[a,\infty[\to \mathbb{R}]]$ be bounded and integrable on [a,b] $\forall b\in\mathbb{R},b>a$.

- 1. If $\forall x \geq a : |f(x)| \leq g(x)$ and g(x) is integrable on $[a, \infty[$ $\Longrightarrow f$ is integrable on $[a, \infty[$.
- 2. If $0 \le g(x) \le f(x)$ and $\int_a^\infty g(x) dx$ diverges $\Longrightarrow \int_a^\infty f(x) dx$ diverges.

Hint. Sometimes an integral can be split into a normal integral and an improper integral:

$$\int_0^\infty e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^\infty e^{-x^2} dx$$

McLaurin. Let $f:[1,\infty[\to [0,\infty[$ be mon. dec.

$$\sum_{n=1}^{\infty} f(n) \text{ converges } \iff \int_{1}^{\infty} f(x) dx \text{ converges.}$$

The following holds:

$$0 \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x) \, dx \le f(1)$$

Def. Let f be a function which is bounded and integrable on all intervals $[a+\epsilon,b] \ \forall \epsilon>0.$ $f:]a,b] \to \mathbb{R}$ is integrable if $\lim_{\epsilon\to 0}\int_{a+\epsilon}^b f(x)\,dx$ exists. In this case the limit is defined as $\int_a^b f(x)\,dx$. (The comparison theorem can be used for such integrals as well.)

6.9 Indefinite Integrals

Let $f: I \to \mathbb{R}$ be defined on the interval $I \subseteq \mathbb{R}$. If f is continuous there exists a primitive function F.

$$\int f(x) \, dx = F(x) + C$$

The indefinite integral is the inverse of the derivative.

Hint.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) dx + \lim_{c \to \infty} \int_{a}^{c} f(x) dx.$$

$$\int_{-\infty}^{\infty} f(x) dx \text{ conv.} \iff \int_{-\infty}^{a} f(x) dx \text{ conv.} \wedge \int_{a}^{\infty} f(x) dx \text{ conv.}$$

In general: Let $f:]a,b[\to\mathbb{R}$ such that it is integrable on each compact interval $[\tilde{a},\tilde{b}]$. Then

$$\int_{a}^{b} f(x) dx := \lim_{\tilde{a} \searrow a} \lim_{\tilde{b} \nearrow b} \int_{\tilde{a}}^{\tilde{b}} f(x) dx$$

6.10 Euler Gamma Function

Def. For s > 0:

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} \, dx.$$

The gamma function interpolates the function $n \mapsto (n-1)!$. It converges for all s > 0.

Useful Listings

 $\lim x \ln x = 0$

Limits

Limits	
$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to \infty} 1 + \frac{1}{x} = 1$
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$
$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to 0} \ln(x) = -\infty$
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to \infty} (1 \pm \frac{1}{x})^{\lambda} = 1$	$\lim_{x \to \infty} (1 + \frac{\lambda}{x})^x = e^{\lambda}$
$\lim_{x \to \infty} x^{\lambda} q^x = 0, \forall 0 \le q < 1$	$\lim_{x \to \infty} \sqrt[x]{x} = 1$
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} (1 + \frac{\lambda}{x})^{\alpha x} = e^{\lambda \alpha}$	$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
$\lim_{x \to 0} \frac{1}{\cos(x)} = 1$	$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$
$\lim_{x \to 0} \frac{\log(1) - x}{x} = -1$	$\lim_{x \to \infty} \frac{\sin(x)}{x} = 0$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{x}{\arctan(x)} = 1$	$\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}$
$\lim_{x \to \infty} \left(\frac{x}{x+\lambda}\right)^x = e^{-\lambda}$	$\lim_{h \to 0} (1 + \frac{h}{x})^{\frac{x}{h}} = e$
$\lim_{x \to 0} \frac{\lambda^x - 1}{x} = \ln(\lambda), \lambda > 0$	$\lim_{x \to 0} \frac{e^{\lambda x} - 1}{x} = \lambda$
$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$	$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$
$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0$	$\lim_{x \to \infty} \frac{\log(x)}{x^{\lambda}} = 0$
$\lim_{x \to \infty} \frac{\lambda x}{\lambda^x} = 0$	$\lim_{x \to \frac{\pi}{2}^{-}} \tan(x) = +\infty$
$\lim_{x \to \frac{\pi}{2}^+} \tan(x) = -\infty$	$\lim_{x \to 0} x \log x = 0$
2	

Stirling Formula

 $\lim_{x \to \infty} \frac{x!}{(\frac{x}{e})^x \sqrt{2\pi x}} = 1$

Series

- \bullet Geometric: $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}$ if |q|<1
- Harmonic: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
- Telescope: $\sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 1$
- $\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} = \lim_{n \to \infty} (1 + \frac{z}{n})^n = e^z$
- $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ converges s > 1 $(\frac{1}{1 \frac{1}{2^{s-1}}})$
- $p(z) = \sum_{k=0}^{\infty} c_k z^k$ conv. abs. $|z| < \rho = \frac{1}{\limsup |c_k|^{1/k}}$

$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Taylor Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{5})$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \mathcal{O}(x^{7})$$

$$\sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \mathcal{O}(x^{6})$$

$$\cosh(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \mathcal{O}(x^{6})$$

$$\tan(x) = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \mathcal{O}(x^{7})$$

$$\tanh(x) = x - \frac{x^{3}}{3} + \frac{2x^{5}}{15} - \mathcal{O}(x^{7})$$

$$\log(1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \mathcal{O}(x^{5})$$

$$\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} - \mathcal{O}(x^{4})$$

Parity of Functions

Even: $f(-x) = f(x) \quad \forall x \in D$ $|x|, \cos x, x^2$ Odd: $f(-x) = -f(x) \quad \forall x \in D$ x, \sin, \tan, x^3

Hint. Chaining odd functions results in an odd function.

Tips and Tricks from PVW script

(Inductive sequences) $a_1 := C, \ a_{n+1} := f(a_n) \ (\forall n > 1)$

- 1. Show monotonicity (either by induction over \mathbb{N} or show $b_n = a_{n+1} a_n$ (strictly) pos/neg $\forall n > 1$)
- 2. Show that the sequence is bounded (by induction)
- 3. Monotone convergence theorem $\implies \exists \lim_{n \to \infty} a_n$
- 4. $\lim_{n \to \infty} a_n = a \implies \forall \text{subseq. } l(n) : \lim_{n \to \infty} a_{l(n)} = a$ $\text{Choose } l(n) = n + 1 \implies \lim_{n \to \infty} a_{n+1} = a$ And thus $a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n)$

Hint. Do no forget to write: f as composition of two continuous functions is continuous when using MVT.

(Change of variables) Let f and g be functions with f continuous in y_0 and g continuous in x_0 with $y_0 = \lim_{x \to x_0} g(x)$:

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y)$$

(Powerrule) Let $f, g: D \to \mathbb{R}$ be cont. in x_0 with $\lim_{x \to x_0} f(x) = f(x_0) > 0$ and $\lim_{x \to x_0} g(x) = g(x_0)$ (both exist), then:

$$\lim_{x \to x_0} f(x)^{g(x)} = f(x_0)^{g(x_0)}$$

(Taylor Polynomial sin(4) with precision d)

- 1. Choose a fitting center and denote the new function
 - $f(x) = \sin(x)$ with $x_0 = 4$, $a = \pi$ or
 - $f(x) = \sin(\pi + x)$ with $x_0 = 4 \pi$, a = 0
- 2. Calculate the (N+1)-th derivative of f(x)
- 3. Calculate the error $|R_n(f, x_0, a)|$
- 4. Solve the inequality $|R_n(f, x_0, a)| < d$ to N.
- 5. Solve the taylor polynomial for the given N.

Hint (Convergence of integrals). An integral does not converge if it is not bounded in the given interval.

$$\lim_{x \to 2} \frac{1}{(x-2)^2} = \infty \implies \int_0^\infty \frac{1}{(x-2)^2} \, dx \text{ diverges}$$

Trigonometry

Periodicity

$$\sin(x) = \sin(x + 2\pi) \qquad \cos(x) = \cos(x + 2\pi)$$

$$tan(x) = tan(x + \pi)$$
 $cot(x) = cot(x + \pi)$

Parity

$$\sin(-x) = -\sin(x) \qquad \qquad \cos(-x) = \cos(x)$$

$$\tan(-x) = -\tan(x) \qquad \cot(-x) = -\cot(x)$$

Complement

$$\sin(\pi - x) = \sin(x) \qquad \qquad \cos(\pi - x) = -\cos(x)$$

$$\tan(\pi - x) = -\tan(x) \qquad \cot(\pi - x) = -\cot(x)$$

Multiple-angles formulae

$$\sin(2x) = 2\sin x \cos x \qquad \cos(2x) = \cos^2 x - \sin^2 x$$

$$\tan(2x) = \frac{2\tan x}{1-\tan^2 x} \qquad \cot(2x) = \frac{\cot x - \tan x}{2}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x$$
 $\cos(3x) = 4\cos^3 x - 3\cos x$

Addition Theorems

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y + \cot x}$$

Multiplication

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y))$$

Powers

$$\sin^2 x = \frac{1 - \cos(2x)}{2} \qquad \qquad \sin^3 x = \frac{3\sin x - \sin(3x)}{4}$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
 $\cos^3 x = \frac{3\cos x + \cos(3x)}{4}$

$$\tan^2 x = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

Sum of functions

$$\sin x + \sin y = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = 2\sin \frac{x+y}{2}\sin \frac{x-y}{2}$$

Miscellaneous

$$\sin^2 x + \cos^2 x = 1 \qquad \qquad \cosh^2 x - \sinh^2 x = 1$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sin x^{(n)} = \sin \left(x + \frac{n\pi}{2}\right) \qquad \cos x^{(n)} = \cos \left(x + \frac{n\pi}{2}\right)$$

$$\cos x^{(n)} = \cos \left(x + \frac{n\pi}{2} \right)$$

Angles

Important Functions

Useful bound for sin

$$\forall x \in \mathbb{R}_0^+ : \sin(x) \le x$$

Proof. Let $g(x) = x - \sin(x)$ with $g'(x) = 1 - \cos(x) \ge 0$

Natural Logarithm Rules

$$ln(1) = 0 \qquad \qquad ln(e) = 1$$

$$ln(xy) = ln(x) + ln(y) \qquad ln(x/y) = ln(x) - ln(y)$$

$$\ln(x^y) = y \cdot \ln(x) \qquad \qquad x^{\alpha} \cdot x^{\beta} = x^{\alpha + \beta}$$

$$(x^{\alpha})^{\beta} = x^{\alpha \cdot \beta}$$

$$\frac{x-1}{x} \le \ln(x) \le x - 1$$

$$\ln(1+x^{\alpha}) \le \alpha x$$
 $\log_{\alpha}(x) = \frac{\ln(x)}{\ln(\alpha)}$

Function Properties

For the following section consider an arbitrary function f: $X \to Y$.

Def (Well defined). f is well defined if f(x) exists $\forall x \in D$.

Def (Injective). $\forall x, y \in X : f(x) = f(y) \implies x = y$ Proof strategies:

- Assume f(x) = f(y) and then show that x = y
- Assume $x \neq y$ and show that $f(x) \neq f(y)$

Def (Surjective). $\forall y \in Y \ \exists x \in X : f(x) = y$ Proof strategies:

• Take arbitrary $y \in Y$ and show that there is an element $x \in X$. Consider f(x) = y and solve for x and check whether or not $x \in X$.

Def (Bijective). f injective and surjective $\implies f$ bijective

(Show monotonicity) Calculate f'(x) of $f: I \to \mathbb{R}$. If $\forall x \in I : f'(x) \leq (\geq) \ 0 \implies f \text{ is monotone dec. (inc.)}$

Stirling Formula

$$n! \approx \frac{\sqrt{2\pi n}n^n}{e^n}$$

Can be used to approximate binomial coefficients e.g.

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Derivatives ar	d Integrals	(src:	dcamenisch))
----------------	-------------	-------	-------------	---

	integrals (src: dcamenisci
$\mathbf{F}(\mathbf{x})$	f(x)
c	0
x^a	$a \cdot x^{a-1}$
$\frac{1}{a+1}x^{a+1}$	x^a
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$
$\frac{x^{a+1}}{a+1}$	$x^a, a \neq -1$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sqrt[n]{x}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
$\frac{2}{3}x^{\frac{3}{2}}$	\sqrt{x}
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$
e^x	e^x
$\ln(x)$	$\frac{1}{x}$
$\log_a(x)$	$\frac{1}{x\ln(a)} = \log_a(e^{\frac{1}{x}})$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
$\cot(x) = \frac{\cos(x)}{\sin(x)}$	$\frac{1}{-\sin^2(x)}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\sinh(x) = \frac{e^x + e^{-x}}{2}$	$\cosh(x)$
$\cosh(x) = \frac{e^x - e^{-x}}{2}$	$\sinh(x)$
$ tanh(x) = \frac{\sinh(x)}{\cosh(x)} $	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$
$\frac{1}{f(x)}$	$\frac{-f'(x)}{(f(x))^2}$
a^{cx}	$a^{cx} \cdot c \ln(a)$
x^x	$x^x \cdot (1 + \ln(x)), \ x > 0$
$(x^x)^x$	$(x^x)^x(x+2x\ln(x)), \ x>0$
x^{x^x}	$x^{x^{x}}(x^{x-1} + \ln(x) \cdot x^{x}(1 + \ln(x)))$

c: dcamenisch)	$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	
$f(\mathbf{x})$	$\frac{\frac{1}{a}\ln(ax+b)}{}$	$\frac{1}{ax+b}$	${x(\ln x)}$
0	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln(cx + d)$	$\frac{ax+b}{cx+d}$	$\frac{1}{n+1}(\ln x)$
x^{a-1}	$\frac{1}{2a} \ln \left(\left \frac{x-a}{x+a} \right \right)$	$\frac{1}{x^2 - a^2}$	$\frac{1}{2n}(\ln x)$
x^a	$\frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\ln(x+\sqrt{a^2+x^2})$	$\sqrt{a^2 + x^2}$	$\ln(\ln(x))$
$(a+b)^n$	$\frac{x}{2}\sqrt{a^2-x^2}-\frac{a^2}{2}\arcsin\left(\frac{x}{ a }\right)$	$\sqrt{a^2-x^2}$	\overline{b}
$a \neq -1$	$\frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln(x+\sqrt{x^2-a^2})$	$\sqrt{x^2 - a^2}$	<u>C</u> 2
$-\frac{1}{x^2}$	$\ln(x + \sqrt{x^2 \pm a^2})$	$\frac{1}{\sqrt{x^2\pm a^2}}$	
$\frac{1}{2\sqrt{x}}$	$\arcsin\left(\frac{x}{ a }\right)$	$\frac{1}{\sqrt{a^2-x^2}}$	$\frac{x^{n+1}}{n+1} \left(\ln(x) \right)$
$x^{\frac{1}{n}-1}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$	$\frac{1}{x^2+a^2}$	$e^{cx}(c\sin(as))$
\sqrt{x}	$-\frac{1}{a}\cos(ax+b)$	$\sin(ax+b)$	$e^{cx}(c\cos(a))$
$\sqrt[n]{x}$	$\cos(ax+b)$	$-a\sin(ax+b)$	sin
e^x	$\frac{1}{a}\sin(ax+b)$	$\cos(ax+b)$	$\frac{1}{2}$
$\frac{1}{x}$	$\sin(ax+b)$	$a\cos(ax+b)$	
$= \log_a(e^{\frac{1}{x}})$	$-\ln(\cos(x))$	$\tan(x)$	$\frac{1}{a(n+1)}$
os(x)	$\ln(\sin(x))$	$\cot(x)$	$\frac{(ax+b)^{n+1}}{(n+2)a^2}$
$\sin(x)$	$\ln\left(\left \tan\left(\frac{x}{2}\right)\right \right)$	$\frac{1}{\sin(x)}$	$\frac{(a)}{a}$
$1 + \tan^2(x)$	$\ln\left(\left \tan(\frac{x}{2} + \frac{\pi}{4})\right \right)$	$\frac{1}{\cos(x)}$	$\frac{1}{ap}$ l
$\frac{1}{\sin^2(x)}$	$\frac{1}{2}(x-\sin(x)\cos(x))$	$\sin^2(x)$	$\frac{ax}{c} - \frac{ad}{c}$
$\frac{1}{1-x^2}$	$\frac{1}{2}(x+\sin(x)\cos(x))$	$\cos^2(x)$	
$\frac{-1}{1-x^2}$	$\frac{1}{4}(\frac{1}{3}\cos(3x) - 3\cos(x))$	$\sin^3(x)$	
$\frac{1}{x^2}$	$\frac{1}{4}(\frac{1}{3}\sin(3x) + 3\sin(x))$	$\cos^3(x)$	
sh(x)	$\tan(x) - x$	$\tan^2(x)$	
h(x)	$-\cot(x)-x$	$\cot^2(x)$	
$1 - \tanh^2(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$	
$\frac{f'(x)}{f(x)^2}$	$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$	
$c\ln(a)$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$	$\arctan(x)$	
n(x)), x > 0	$\ln(\cosh(x))$	tanh(x)	
$x\ln(x)$, $x > 0$	$\ln(f(x))$	$\frac{f'(x)}{f(x)}$	
r(1+1())			

\mathbf{x})	$\mathbf{F}(\mathbf{x})$	f(x)
$\frac{1}{+b}$	$x(\ln(x) - 1)$	$\ln(x)$
$\frac{+b}{+d}$	$\frac{1}{n+1}(\ln x)^{n+1} \qquad n \neq -1$	$\frac{1}{x}(\ln x)^n$
$\frac{1}{-a^2}$	$\frac{1}{2n}(\ln x^n)^2 \qquad n \neq 0$	$\frac{1}{x} \ln x^n$
$+x^2$	$\ln(\ln(x)) \qquad x > 0, x \neq 1$	$\frac{1}{x\ln(x)}$
$\overline{-x^2}$	$\frac{1}{b\ln(a)}a^{bx}$	a^{bx}
$\overline{-a^2}$	$\frac{cx-1}{c^2} \cdot e^{cx}$	$x \cdot e^{cx}$
$\frac{1}{2\pm a^2}$	$\frac{1}{c}e^{cx}$	e^{cx}
$\frac{1}{-x^2}$	$\frac{x^{n+1}}{n+1} \left(\ln(x) - \frac{1}{n+1} \right) n \neq -1$	$x^n \ln(x)$
$\frac{1}{+a^2}$	$\frac{e^{cx}(c\sin(ax+b)-a\cos(ax+b))}{a^2+c^2}$	$e^{cx}\sin(ax+b)$
(x+b)	$\frac{e^{cx}(c\cos(ax+b)+a\sin(ax+b))}{a^2+c^2}$	$e^{cx}\cos(ax+b)$
ax + b)	$\sin(x)\cos(x)$	$\frac{\sin^2(x)}{2}$
(x+b)	$\frac{1}{2}(f(x))^2$	f'(x)f(x)
ax + b	$\sqrt{\pi}$	$\int_{-\infty}^{\infty} e^{-x^2} dx$
$\mathbf{L}(x)$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$	$(ax+b)^n$
(x)	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$	$x(ax)^n$
$\frac{1}{(x)}$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$	$(ax^p + b)^n x^{p-1}$
$\frac{1}{\mathbf{c}(x)}$	$\frac{1}{ap}\ln ax^p + b $	$(ax^p + b)^{-1}x^{p-1}$
$f^{2}(x)$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $	$\frac{ax+b}{cx+d}$
2(x)		

Multiple Choice Questions

This section contains only the correct answers.

Sequences and Series

 $\sum_{k=1}^{\infty}$ converges absolute and $\sum_{k=1}^{\infty}$ converges:

- $\diamond \sum_{k=1}^{\infty} |a_k|^2$ converges **always** absolute.
- $\diamond \sum_{k=1}^{\infty} a_k b_k$ converges always absolute.

Functions

Let f, g be monotonically increasing functions

- $\Rightarrow f \cdot g$ monotonically increasing
- $\Rightarrow \frac{f}{g}$ or $\frac{g}{f}$ monotonically increasing

 $f: X \to Y, g: Y \to Z$ and $g \circ f: X \to Z$ bijective:

 \diamond f is injective, g is surjective

Let $a, b \in \mathbb{R}$ with a < b and $f :]a, b[\to \mathbb{R}$:

- $\diamond |f| \text{ cont. } \not\Rightarrow f \text{ cont. } (\mathbf{CE} \ f : -1 \ x \le 0, \ 1 \ x > 0)$
- ♦ If f^2 and f^3 diff. in]a,b[and $f(x) \neq 0 \forall x \implies f$ diff. since $\frac{h}{g}$ is diff. if both $h=f^3$ and $g=f^2$ are diff.

Let $f:[a,b]\to\mathbb{R}$ be a function and f_n a function sequence with converges uniformly to f:

- \diamond If f_n for all $n \geq 1$ in $x_0 \in [a, b]$ bounded, then for all partitions P der limit of lower sums exists $\lim_{n\to\infty} \underline{S}(f_n, P) = \underline{S}(f, P)$
- \diamond If f_n for all $n \geq 1$ in x_0 is continuous, then f is uniformly continuous
- \diamond If f_n for all $n \geq 1$ in x_0 convex, then f is convex.
- \diamond If f_n for all n > 1 is diff. in $x_0 \not\Rightarrow f$ is diff. in x_0

Let $f:[-1,1]\to\mathbb{R}$ be an even, two times diff. function. Does $\forall x\in]0,1[\exists \mu\in]0,x[:f(x)-f(0)=\frac{f''(\mu)x^2}{2}$ hold?

♦ Yes. f' is diff. and cont. on]-1,1[. Thus using MVT $\forall x \in]0,1[$ $\exists \mu \in]0,x[$: $f'(x)-f'(0)=f''(\mu)(x-0)\Longrightarrow f'(x)=f''(\mu)x.$ Thus $\int_0^x f'(x)\,dx=f''(\mu)\int_0^x x\,dx.$ Using fundamental theorem of calculus, we have $f(x)-f(0)=\frac{f''(\mu)x^2}{2}$.

Let
$$g(x) = \begin{cases} \ln(x)\sin(2\pi x), & 0 < x \le 1\\ 0, & x = 0 \end{cases}$$
 and let $g(n)_{n \ge 1}$ be

a sequence in [0,1] defined as

$$g_{1} = \inf_{0 \leq t \leq 1} g(t)$$

$$g_{n} = \begin{cases} \inf_{0 \leq t < \frac{1}{n}} g(t), & 0 \leq x < \frac{1}{n} \\ \inf_{\frac{1}{n} \leq t < \frac{2}{n}} g(t), & \frac{1}{n} \leq x < \frac{2}{n} \\ \dots & \forall k \geq 2 \\ \inf_{\frac{j}{n} \leq t < \frac{j+1}{n}} g(t), & \frac{j}{n} \leq x < \frac{j+1}{n} \\ \dots & \inf_{\frac{n-1}{n} \leq t \leq 1} g(t), & \frac{n-1}{n} \leq x \leq 1 \end{cases}$$

- $\diamond~g$ is not smooth since $\lim_{x\to 0^+}\frac{g(x)-g(0)}{x}=-\infty$
- $\Rightarrow \exists x_0 \in]0,1[$ with $g'(x_0)=0$ since intermediate value theorem between $g'(\frac{1}{2})>0$ and $g'(\frac{3}{4})<0$.
- \diamond The sequence $(g_n)_{n\geq 1}$ converges uniformly to g(x)
- $\Leftrightarrow g(n)_{n\geq 1}$ and g are integrable and $\int_0^1 g_n(x) \, dx \leq \int_0^1 g(x) \, dx$ for each $n\geq 1$
- $\Leftrightarrow (g_n)_{n\geq 1}$ and g are integrable and $\lim_{n\to\infty} \int_0^1 g_n(x)\,dx = \int_0^1 g(x)\,dx$

General Exercises

Sequences and Series

Investigate if $\sum_{n=1}^{\infty} \log(\frac{n}{n+1})$ converges:

Let $\sum_{k=1}^{\infty} a_k$ be abs. conv. and $\sum_{k=1}^{\infty} b_k$ conv. does $\sum_{k=1}^{\infty} b_k \sin(a_k)$ converge?

- \Leftrightarrow Proof $\lim_{k\to\infty}b_k=0$ by using c_k where $c_1=0$ and $c_k=b_{k-1}$ for $k\geq 2$.
- $\diamond \lim_{n \to \infty} \sum_{k=1}^{n} b_k = \lim_{n \to \infty} \sum_{k=1}^{n} c_k \implies \\
 \lim_{n \to \infty} b_k = \lim_{n \to \infty} \left(\sum_{k=1}^{n} b_k \sum_{k=1}^{n} c_k \right) = 0$

- \diamond Since $|\sin(x)| \le |x|$, then by comparison theorem $\sum_{k=1}^{\infty} \sin(a_k)$ converges absolutely.
- \diamond Since b_k is bounded by constant C: $|b_n \sin(a_n)| \leq C|a_n|$.

Calculate $\lim_{x\to 0} x^4 \sin(\frac{1}{x})$

- $\diamond x \mapsto |\sin(\frac{1}{x})|$ is bounded by 1
- $0 \le |x^4 \cdot \sin(\frac{1}{x})| \le x^4$
- \diamond Both left and right handside functions have limit 0.
- \diamond Thus by sandwich theorem it converges to 0.

Show that $\lim_{n\to\infty} \left(\cos\left(\frac{t}{\sqrt{n}}\right)^n = e^{-\frac{t^2}{2}}\right)$

 $\diamond \cos(x) = 1 - \frac{x^2}{2} + \mathcal{O}(x^4) \text{ and } \log(1+x) = x + \mathcal{O}(x^2) \text{ hold}$ $\forall t \in \mathbb{R} \text{ if } n \to \infty$

$$\cos\left(\frac{t}{\sqrt{n}}\right)^n = \exp\left(n\log\left(\cos\left(\frac{t}{\sqrt{n}}\right)\right)\right)$$

$$= \exp\left(n\log\left(1 - \frac{t^2}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)\right)$$

$$= \exp\left(n\left(-\frac{t^2}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)\right)$$

$$= \exp\left(-\frac{t^2}{2} + \mathcal{O}\left(\frac{1}{n}\right)\right)$$

$$\xrightarrow[n \to \infty]{} \exp\left(-\frac{t^2}{2}\right) = e^{-\frac{t^2}{2}}$$

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{\cos(x) - \sin(x)^2}{4}$.

- $\Rightarrow \text{ Show that } |f'(x)| \leq \frac{3}{4} \text{ for all } \in \mathbb{R}. \text{ Since } f'(x) = \frac{\sin(x)(-1-2\cos(x))}{4} \Longrightarrow |f'(x)| \leq \frac{|-1|+|2\cos(x)|}{4} \leq \frac{3}{4}$
- ♦ Let $(x_n)_{n\geq 1}$ be a sequence such that $x_1 = 0$ and $x_{n+1} = f(x_n)$. Show that $|x_{n+1} x_n| \leq (\frac{3}{4})^{n-1} \frac{1}{4}$. Since $x_2 = f(x_1) = f(0) = \frac{1}{4}$ we have $|x_2 x_1| = \frac{1}{4}$. That means it hold for n = 1. Per induction we assume $|x_{n+1} x_n| \leq (\frac{3}{4})^{n-1} \frac{1}{4} \quad \forall n < N$. Because of the mean value theorem of diff. it exists a t between x_N and x_{N-1} such that $|x_{N+1} x_N| = |f(x_N) f(x_{N-1})| \leq f'(t)|x_N x_{N-1}| \leq \frac{3}{4}|x_N x_{N-1}| \leq (\frac{3}{4})^{N-1} \frac{1}{4}$.

- ♦ Show that x_n is a cauchy sequence. For $m \ge 0$ we have because of the triangle inequality: $|x_{n+m} x_n| \le \sum_{k=1}^m |x_{n+k} x_{n+k-1}| \le \sum_{k=1}^m \left(\frac{3}{4}\right)^{n+k-2} \frac{1}{4} = \left(\frac{3}{4}\right)^{n-2} \frac{1}{4} \sum_{k=1}^m \left(\frac{3}{4}\right)^k \le \left(\frac{3}{4}\right)^{n-2} \frac{1}{4} \left(-1 + \sum_{k=0}^{\infty} \left(\frac{3}{4}\right)^k\right) = \left(\frac{3}{4}\right)^{n-2} \frac{1}{4} \left(-1 + \frac{1}{1-\frac{3}{4}}\right)$
 - $=(\frac{3}{4})^{n-1}$ That means for a given $\epsilon>0$ we choose $N(\epsilon)\in\mathbb{N}$, such that $(\frac{3}{4})^{n+1}<\epsilon$ $\forall n\geq N$. Then it holds that $|x_{n+m}-x_n|\leq\epsilon$ $\forall n\geq N, m\geq0$. Which implies that it is indeed a cauchy sequence.
- \diamond Show that $x_n \to y$ for $n \to \infty$. Since the sequence is cauchy, it converges and because of continuity it follows $y = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f(y)$.

Functions

Show that
$$f(x) = \begin{cases} x^x, & x > 0\\ 1, & x = 0 \text{ is continuous.} \\ (-x)^{-x} & x < 0 \end{cases}$$

- \diamond Because x^x is cont. for x > 0 and $(-x)^{-x}$ is cont. for x < 0 it suffices to prove $\lim_{x \to 0} f(x) = 1$.
- $\diamond \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln(x)}{1/x} \stackrel{H}{=} \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = 0 \Rightarrow x^x \stackrel{\lim}{\to} 1$
- \diamond Since the function is even, we have $\lim_{x\to 0^-} x^x = 1$.

Show that $f(x) = \tan(x^3), x \in]((-\frac{\pi}{2})^{\frac{1}{3}}), (\frac{\pi}{2})^{\frac{1}{3}})[$ is monotone and calculate its inverse:

Calculate all cont. points of $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) := \begin{cases} 1 - 2x, & x \in \mathbb{Q} \\ x - 3, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- ♦ The graphs for intersect in only one point: $1 2x = x 3 \iff x_0 = \frac{4}{3}$
- $\Rightarrow \text{ Proof continuity of } x_0 \text{ with } y \in \mathbb{R} \setminus \mathbb{Q} \text{ by } |f(x_0) f(y)| = |1 \frac{8}{3} y + 3| = |\frac{4}{2} y| = |x_0 y| < \delta$
- \diamond Set $\delta = \epsilon$ then it shows that f is continuous at x_0 .
- \diamond To proof that it is the only continuous point in the function an each $x \in \mathbb{Q}$ lies between irrational numbers, we can take ϵ as the half of the distance between

f(x) = 1 - 2x and x - 3 and then it is clear that for δ small we have that if $y \in (x - \delta, x + \delta) \cap \mathbb{R} \setminus \mathbb{Q}$ then $|f(x) - f(y)| \ge \epsilon$. The existence of δ follows from the fact that the distance between the two lines varies continuously.

Derivatives and integrals

$$f(x) = \int_x^2 \frac{e^{t^2}}{t} dt + \log(\frac{x}{2})$$
. Calculate $f'(x)$:

$$\diamond$$
 Let $g(x) = \frac{e^{t^2}}{t}$ thus $f(x) = G(2) - G(x) + \log(\frac{x}{2})$

- \diamond It follows $f'(x) = G'(x) + \frac{1}{x}$ since $G(2) = C \in \mathbb{R}$
- \diamond Thus $f'(x) = g(x) \frac{1}{x} = \frac{-e^{x^2} + 1}{x}$

Let $f:[a,b] \to \mathbb{R}$, $G:[a,b] \to \mathbb{R}$ be integrable with G continuous and F > 0. Show that $c \in [a,b]$ exists such that $\int_a^b F(x)G(x) dx = G(c) \int_a^b F(x) dx$:

- \diamond Thus by monotonicity of integrals: $(\inf_{[a,b]} G) \int_a^b F(x) \, dx \leq \int_a^b G(x) F(x) \, dx \leq (\sup_{[a,b]} G) \int_a^b F(x) \, dx$
- \diamond because F > 0, it follows $\int_a^b F(x) \, dx > 0$ and thus we can write $\inf_{[a,b]} G \leq \frac{\int_a^b G(x) F(x) \, dx}{\int_a^b F(x) \, dx} \leq \sup_{[a,b]} G$.
- \diamond Because G is continuous we can use the mean value theorem such that $\exists c \in [a,b]: G(c) = \frac{\int_a^b G(x)F(x)\,dx}{\int_c^b F(x)\,dx}$

Undergraduate approved theorems

$$\dagger$$
: $\cos(1) = 1$

$$\ddagger: e^0 = 0$$

$$\dagger, \$: \frac{\ln(x)}{\ln(y)} = \ln(x - y)$$

$$\dagger$$
, $\$$: $x^{\alpha} \cdot x^{\beta} = x^{\alpha \cdot \beta}$

$$\ddagger: x = \lambda \implies x^2 = |x^2| = \lambda^2 \implies |x| = \lambda$$

$$x \cdot \alpha y = \alpha(x \cdot y)$$

\$:
$$\cos(x^2) = \cos(x + \pi)$$