数理逻辑课后题/考题答案

作者: 杨森

2017年9月13日

课后题

- 1. 略
- 2. 解:
 - 1) => 利用结构归纳法证明
 - (a) Y 是命题变元,此时 Y 的生成序列即为自身;
 - (b) Y = A, A 的生成序列为 $A_1, A_2, \dots, A_m (= A)$, 则 Y 的生成序列为 A_1, A_2, \dots, A_m, Y ;
 - (c) $Y = B \lor C$, B 的生成序列为 $B_1, B_2, \dots, B_m (= B)$, C 的生成序列为 $C_1, C_2, \dots, C_n (= C)$, 则 Y 的生成序列为 $B_1, B_2, \dots, B_m, C_1, C_2, \dots, C_n$ $Y = (B \lor C)$
 - 2) <= 利用第二归纳法证明

假设 Y 的生成序列为 $Y_1, Y_2, \dots, Y_m (= Y)$, 证明 $Y_i (1 \le i \le m)$ 是合式公式

- (a) Y_i 是命题变元,则 Y_i 是合适公式;
- (b) $Y_i = \sim Y_i (j < i)$, 因为 Y_i 是合式公式, 故 Y_i 也是合式公式;
- (c) $Y_i = Y_i \vee Y_k(j, k < i)$, 因为 Y_i, Y_k 是合式公式, 故 Y_i 也是合式公式。

综上, Y 为合式公式当且仅当 Y 有一个生成序列。

- 3. 略 (根据公式定义进行证明)
- 4. 略
- 5. 解: 用结构归纳法证明
 - 1) A 为命题变元 p, 显然结论成立;
 - 2) $A = \sim B$, 因为 B 满足条件,则 $\sim (B)$ 即 A 也满足条件;
 - 3) $A = B \lor C$, 因为 B, C 满足条件, 则 $(B) \lor (C)$ 也满足条件

综上, 若表达式 A 为合式公式, 则最终计数为 0.

- 6. 略
- 7. 略
- 8. 解: 用公式结构归纳法证明
 - 1) A 为命题变元 p
 - (a) $p \in \{p_1, p_2, \cdots, p_n\}$ 且 $p = p_i$, 则 $S_{B_1, B_2, \cdots, B_n}^{p_1, p_2, \cdots, p_n} A = B_i$, 即 $S_{B_1, B_2, \cdots, B_n}^{p_1, p_2, \cdots, p_n} A$ 为合式公式;
 - (b) $p \notin \{p_1, p_2, \dots, p_n\}, \text{ } \bigcup S_{B_1, B_2, \dots, B_n}^{p_1, p_2, \dots, p_n} A = A;$
 - 2) $A = \sim B$, 则 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}B$ 为合式公式,所以 $\sim S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}B = S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n} \sim B$ 为合式公式,即 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}A$ 为合式公式;
 - 3) $A = B \lor C$, 则 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}B$, $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}C$ 为合式公式,所以 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}B \lor S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}C = S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}(B \lor C)$ 为合式公式,即 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}A$ 为合式公式;

综上, 若 A 是合式公式, 则 $S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n}$ A 为合式公式。

9. 解: 若 C 为永真式,根据 Godel 完全性定理则 \vdash C,设 C 的证明序列为 C_1, C_2, \cdots, C_n ,用第二 归纳法证明, $\vdash S_{q_1,q_2,\cdots,q_n}^{p_1,p_2,\cdots,p_n}C_i, 1 \leq i \leq n$:

- 1) $C_i \in Aoxims$, 显然 $S_{q_1,q_2,\ldots,q_n}^{p_1,p_2,\ldots,p_n}C_i$ 也为公理
- 2) 存在 j,k < i 使 $C_k = C_j \supset C_i$,因为 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_j$ 且 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_k$,即 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_j \supset S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_i$,有 MP 规则可推出 $\vdash S_{q_1,q_2,\dots,q_n}^{p_1,p_2,\dots,p_n}C_i$ 。

综上 $\vdash S_{q_1,q_2,\cdots,q_n}^{p_1,p_2,\cdots,p_n}C$, 即 $\vdash D$, 再由 Godel 完全性定理推出 $\models D$, 即 D 为永真式。

$$10.(\sim (\sim (q \lor r) \lor \sim p) \lor \sim \sim (q \lor r))$$

11. 暂无

12. 解:

- 1. $A \lor (B \lor C) \vdash A \lor (B \lor C)$
- 2. $A \lor (B \lor C) \vdash (B \lor C) \lor A$ 1, *i*)
- 3. $A \lor (B \lor C) \vdash B \lor (C \lor A)$ 2, ii)
- 4. $A \lor (B \lor C) \vdash (C \lor A) \lor B$ 3, i)
- 5. $A \lor (B \lor C) \vdash C \lor (A \lor B)$ 4, ii)
- 6. $A \lor (B \lor C) \vdash (A \lor B) \lor C$ 5, *i*)

13. 暂无

14. 可满足的

其否定对应的合取范式为 $(\sim p \lor q) \land (\sim r \lor s) \land (\sim s \lor q) \land \sim p \land r$, 令 $S = \{\sim p \lor q, \sim r \lor s, \sim s \lor q, \sim p, r\}$, 对 S 应用消解规则如下:

- 1. S
- 2. $\{ \sim r \lor s, \sim s \lor q, r \}$
- 1, 关于 ~ p纯文字规则

3. $\{s, \sim s \lor q\}$

2, 关于 ~ r单文字规则

4. $\{q\}$

3, 关于 ~ s单文字规则

 $5. \{qed\}$

4,关于~q纯文字规则

15. 永真式

对应的析取范式为 $(\sim r \lor \sim s \lor r \lor \sim q \lor p) \land (q \lor \sim p \lor s \lor \sim s \lor r \lor \sim q \lor p)$,每个短句都包含互补文字,故为永真式。

- 16. 永真式,用真值表
- 17. 可满足, $\varphi(p) = t$, $\varphi(q) = f$ 时为真, $\varphi(p) = f$, $\varphi(q) = t$ 时为假。
- 18. 永真式,用真值表
- 19. 解 P' 系统可以看做 P 系统由 $\sim (p \supset q)$ 出发进行的证明

方法一: 先证明在 P 系统下若 Γ 协调, 且 $\sim A \notin Th(\Gamma)$, 则 $\Gamma \cup \{A\}$ 协调。若 $\Gamma \cup \{A\}$ 不协

调,则存在 B 使得 Γ , $A \vdash B$ 且 Γ , $A \vdash \sim B$, 则

1. $\Gamma, A \vdash B$	hyp
2. $\Gamma, A \vdash \sim B$	hyp
3. $\Gamma, A \vdash \sim A$	1,2,DR
4. $\Gamma \vdash A \supset \sim A$	3, CP
5. $\Gamma \vdash \sim A \supset \sim A$	
6. $\Gamma \vdash \sim A$	$4, 5, DR_3$

这与 $\sim A \notin Th(\Gamma)$ 矛盾,故 $\Gamma \cup \{A\}$ 协调。因为 $\sim (p \supset q)$ 不为永真式,而 P 系统的定理都为永真式,故 $\sim (p \supset q) \notin Th(P)$,所以 $Axiom \cup \{\sim (p \supset q)\}$ 协调,即 P'系统是协调的。

方法二: 假设 P' 系统不协调,则在 P 系统下存在 B 使得 $\sim (p \supset q) \vdash B$ 且 $\sim (p \supset q) \vdash \sim B$,根据 Godel 完全性定理, $\sim (p \supset q) \models B$ 且 $\sim (p \supset q) \models \sim B$,明显矛盾,故 P' 系统协调。

20. 解不协调,记公理模式 $A \supset B$ 为 AS'

1.	$\vdash A \lor A \supset A$	AS_1
2.	$\vdash (A \lor A \supset A) \supset \sim (A \lor A \supset A)$	AS'
3.	$\vdash \sim (A \lor A \supset A)$	$1,2,\overline{MP}$
4.	$\vdash B$	3, DR

故在 P 系统中增加 $A \supset B$ 做为公理所得系统不协调。

21. 解:

不存在不含 "\" 的定理。用反证法证明:若 A 为满足条件的公式,易知 A 中只有一个命题变元,设为 p,如果辖域中包含 p 的 "~" 的个数为偶数,令指派 $\varphi(p)=f$,否则 $\varphi(p)=t$,则 $\varphi(A)=f$,而 P 系统的定理都为永真式,所以 P 系统中不存在不含 "\" 的定理。

22. 解:

不存在不含 "~"的定理。用反证法证明: 若 A 为满足条件的公式,其中出现的命题变元为 p_1, p_2, \cdots, p_n ,另 $\varphi(p_1) = \varphi(p_2) = \cdots = \varphi(p_n) = f$,则 $\varphi(A) = f$,而 P 系统的定理都为永真式,所以 P 系统中不存在不含 "~"的定理。

23. 解:

1.	$\vdash A \lor A \supset A \lor A$	Axiom
2.	$\vdash (A \lor A \supset A \lor A) \supset (A \lor A \supset \sim (A \lor A))$	Axiom
3.	$\vdash A \lor A \supset \sim (A \lor A)$	1,2,MP
4.	$\vdash (A \lor A \supset \sim (A \lor A)) \supset \sim (A \lor A) \lor A$	Axiom
5.	$\vdash \sim (A \lor A) \lor A$	3,4,MP
6.	$\vdash \sim (A \lor A) \lor A \supset A \lor A$	Axiom
7.	$\vdash A \lor A$	5,6,MP
8.	$\vdash A$	5,7,MP

可以看出 s 的公式皆为定理, 故 s 不协调。

24. 解:

A 是 R 的定理

1.
$$\vdash A * A$$
 Axiom
2. $\vdash A * (A * A)$ Axiom
3. $\vdash A$ 1,2, $< A, (B * A), B >$

25. 解: $\Diamond \Gamma = {\sim P}(P 为命题变元)$ 。

- 1) P' 是协调的对于 P 系统, Γ 是可满足的,且存在唯一的指派 $\varphi:P\to f$ 满足 Γ ,则 $\Gamma\not\models p$,根据完全性定理 $\Gamma\not\vdash p$,所以在 P' 中,命题变元 p 不是定理,故 P' 是协调的。
- 2) 利用 1) 中的指派判断 A 的真值,若 $\varphi(A)=t$,则 A 是 P' 的定理。构造过程为 P 系统下从 Γ 出发的证明序列。

26. 解: 设命题变元 p 在 A 中不出现。

1.	$\vdash p \supset S^p_A p$	Axiom
2.	$\vdash p \supset A$	1
3.	$\vdash p \supset A \supset S^p_{p \supset A}(p \supset A)$	Axiom
4.	$\vdash p \supset A \supset (p \supset A \supset A)$	3.
5.	$\vdash p \supset A \supset A$	2,4,MP
6.	$\vdash A$	2, 5, MP

所以对任意公式 A 都可以构造出证明序列, 所以 P'不协调, 但同时是完全的。

27. 解:

定义 ψ 如下:

$$\begin{cases} \psi(p) = p & \text{若 p 为命题变元} \\ \psi(\land) = \lor \\ \psi(\lor) = \land \\ \psi(\sim) = \sim \\ \psi(\alpha\beta) = \psi(\alpha)\psi(\beta) \end{cases}$$

易知

- $A \in L(P)$, \emptyset $\psi(A) \in L(Q)$;
- $\stackrel{\cdot}{Z}$ $A \in L(Q)$, $\stackrel{\cdot}{M} \psi(A) \in L(P)$;
- $\psi(\psi(A)) = A$.

首先利用第二归纳法证明必要性: 假设 A 为 Q 系统的定理, 且证明序列为 A_1, A_2, \cdots, A_n (= A), 下面证明 A_i 为永假式:

- $A_i \in Axiom$, 显然 A_i 为永假式;
- 存在 j,k < i 使得 $A_k = \sim A_j \wedge A_i$,根据归纳假设,因为 A_k,A_j 皆为永假式,所以 A_i 为永假式。

必要性得证。

下面分两步进行证明充分性:

- 1) 用第二归纳法证明: 若 A 为 P 系统的定理,即 $\vdash_P A$,则 $\vdash_Q \psi(A)$,设 A 在 P 系统下的证明序列为 $A_1,A_2,\cdots,A_n (=A)$
 - (a) A 为 P 系统的公理, 易知 $\psi(A)$ 为 Q 的公理, $\vdash_Q \psi(A)$ 成立
 - (b) 存在 j,k < i 使得 $A_k = A_j \supset A_i$,则 $\vdash_Q \psi(A_k)$ 即 $\vdash_Q \sim \psi(A_j) \land \psi(A_i)$ 且 $\vdash_Q \psi(A_j)$,根 据 Q 系统的规则,可知 $\vdash \psi(A_i)$ 成立
- 2) 证明若 $A \equiv B$, 则 $\psi(A) \equiv \psi(B)$

若 $A \equiv B$, 则 $\vdash_P A \equiv B$, 由第一步知 $\vdash_Q \psi(A \equiv B)$, 即 $\vdash_Q \psi(A) \equiv \sim \psi(B)$, 所以 $\psi(A) \equiv \sim \psi(B)$ 为永假式, $\psi(A) \equiv \psi(B)$ 为永真式

综上,若 $A \in L(Q)$ 且 A 为永假式,则 $A \equiv p \land \sim p$,根据充分性第二步证明,则 $\psi(A) \equiv \psi(p \land \sim p)$ 为永真式,则 $\models_P \psi(A)$,根据完全性定理有 $\vdash_P \psi(A)$,根据充分性证明的第一步有 $\vdash_Q \psi(\psi(A))$,即 $\vdash_Q A$ 。充分性得证。

28. 解: 用公式结构结构归纳法证明:

- 1) A 为命题变元, 易知 $V_{\varphi}(A) = V_{\psi}(A)$;
- 2) A = B, 由归纳假设知 $V_{\varphi}(B) = V_{\psi}(B)$, 所以 $V_{\varphi}(A) = V_{\varphi}(B) = V_{\psi}(B) = V_{\psi}(A) = V_{\psi}(A)$;
- 3) $A = B \vee C$,由归纳假设知 $V_{\varphi}(B) = V_{\psi}(B)$ 且 $V_{\varphi}(C) = V_{\psi}(C)$,所以 $V_{\varphi}(A) = V_{\varphi}(B \vee C) = V_{\varphi}(B) \vee V_{\varphi}(C) = V_{\psi}(B) \vee V_{\psi}(C) = V_{\psi}(B \vee C) = V_{\psi}(A)$ 。

综上, $V_{\varphi}(A) = V_{\psi}(A)$ 。

29. 解: 不是,参考 27 题

30. 解:

1)

1.	$\vdash p \lor p \supset p$	AS_1
2.	$\vdash A \lor A \supset A$	1, sub
3.	$\vdash p \supset q \lor p$	AS_2
4.	$\vdash A \supset B \lor A$	3, sub
5.	$\vdash p \supset q \supset (r \lor q \supset q \lor r)$	AS_3
6.	$\vdash A \supset B \supset (C \lor A \supset B \lor C)$	5, sub

由 2,4,6 知 P 的定理比为 p' 的定理。下面用第二归纳法证明 P' 的定理也为 P 的定理,设 A 为 P' 的定理,且证明序列为 $A_1, A_2, \dots, A_n (= A)$,则 $\vdash_P A_i$

- (a) $A_i \in Axiom$, 显然 $\vdash_P A_i$ 成立;
- (b) 存在 j,k < i 使得 $A_k = A_j \supset A_i$,根据归纳假设 $\vdash_P A_j$ 且 $\vdash_P A_k$,根据 P 系统的 MP 规则知 $\vdash_P A_i$ 成立;
- (c) 存在 j < i 使得 $A_i = S_{B_1,B_2,\cdots,B_n}^{p_1,p_2,\cdots,p_n} A_j$,根据归纳假设 $\vdash_P A_j$,由 P 系统的代入规则 sub 知 $\vdash_P A_i$ 成立。

所以 P 系统和 P'系统具有相同的定理。

2) 若无 sub 规则,则不能推出 $s \lor s \supset s$ (不能推出包含除 p,q,r 之外命题变元的公式),故 sub 规则独立;若无 MP 规则,则不能推出 $s \lor \sim s$ (不能推出长度小于 5 的公式),故 MP 规则独立。

31. 与 30 题重复 32. 解:

令 $AS_4 = \sim A \lor A$, $AS_5 = A \lor \sim A$ 。下面证明 $AS_1 - AS_3$ 的独立性。

1) 给每个命题变元以 0, 1,2 三个可能的值, ~ 和 ∨ 的真值表定义如下:

		\vee	0	1	2
0	1	0	0	0	0
1	0	1	0	1	2
2	2	2	0	2	0

 $AS_2 - AS_5$ 在此数值解释下恒为 0, 而 AS_1 不常为 0, 故 $AS_2 - AS_5$ 不能表示出 AS_1 。

2) 定义 ~ 和 ∨ 的真值表定义如下:

 AS_1 , $AS_3 - AS_5$ 在此数值解释下永不为 2,而 AS_2 可能为 2,故 AS_1 , $AS_3 - AS_5$ 不能表示出 AS_2 。

3) 定义 ~ 和 \ 的真值表定义如下:

 AS_1, AS_2, AS_4, AS_5 在此数值解释下恒为 0, AS_3 不恒为 0, 故 AS_1, AS_2, AS_4, AS_5 不能表示 出 AS_3 。

综上,结论成立。

33. 解:

构造如下的数值解释:

在此数值解释下, AS_1-AS_3 恒为 1, $P\supset \sim \sim P$ 不恒为 1,且两个恒为 1 的公式经 MP 规则 必得到一个恒为 1 的公式,故不能从 P^* 系统导出 $P\supset \sim \sim P$ 。

34. 解:

设 p,q 为命题变元,A 为由 $\{\sim,\equiv\},p,q$ 构成的公式。用公式结构归纳法证明若 A_i 不是永真式或永假式,则 A_i 的真值表中取值为真的个数与取值为假的个数相等。

- 1) A = p 或者 A = q,显然成立;
- 2) $A = \sim B$, 显然成立;
- 3) $A = B \equiv C$,若 $\varphi(B) = \varphi(C)$ 或 $\varphi(B) \neq \varphi(C)$ 时,则 A 为永真式或永假式,当 $\varphi(B), \varphi(C)$ 不完全一样或完全相反时 (φ 为任意指派),通过枚举可知结论同样成立。

所以,A 为永真式或者永假式或 A 的真值表中 t 的个数与 f 的个数相等,而 v 的真值表中 t 的个数与 f 的个数不等,因此 $\{\sim, \equiv\}$ 不能表示出 \vee ,则 $\{\sim, \equiv\}$ 不完全。

35. 解:

先证明对于每个 n 元真值函数 h: $\{t,f\}^n \to \{t,f\}$,存在一个合取范式 A 以及 n 个命题变元: p_1,p_2,\cdots,p_n ,使得 $h=[\lambda p_1,\cdots \lambda p_n A]$:

1) 若 h 恒取 t, 则令 $A = p_1 \lor \sim p_1$;

	~		\vee	0	1	2
0	2	_	0	0	0	0
1	1		1	0	1	2
2	0		2	0	2	2
	\sim	_	\vee	0	1	2
0	1		0	0	0	0
1	2		1	0	1	0
2	0		2	0	0	2
	\sim		\	/ () [L
0	1				1 :	L
1	0		1	. () [L
,				'		

2) 若 h 不恒为 t, 对 P 系统中的每个指派 φ , 令:

$$A^{\varphi} = p_1^{\varphi} \vee p_2^{\varphi} \vee \dots \vee p_n^{\varphi}$$

$$p_i^{\varphi} = \begin{cases} \sim p_i & \text{若}\varphi(p_i) = t \\ p_i & \text{否则} \end{cases}$$

则 $\varphi(A^{\varphi}) = \varphi(p_1^{\varphi}) \vee \cdots \vee \varphi(p_n^{\varphi}) = f$,因此 $[\lambda p_1, \cdots \lambda p_n A](x_1, x_2, \cdots, x_n) = f$ 当且仅当 $x_1 = p_1^{\varphi}, \cdots, x_n = p_n^{\varphi}$ 。所以 $A = \wedge_{h(\varphi(p_1), \varphi(p_2), \cdots, \varphi(p_n)) = f} A^{\varphi}$ 满足要求。

对于公式 B,都存在一个 n 元真值函数 $h = [\lambda p_1, \cdots \lambda p_m B]$, $p_1, p_2 \cdots , p_m$ 为 B 中出现的所有命题变元,则由上述证明可知,存在一个合取范式 A 使得 $[\lambda p_1, \cdots \lambda p_m A] = h = [\lambda p_1, \cdots \lambda p_m B]$,故 $A \Leftrightarrow B$,即每个公式都有合取范式。

36. 解: {∨,∧,⊃,≡} 不是完全集

下面用公式结构归纳法证明,由命题变元 p 和 $\{\lor,\land,\supset,\equiv\}$ 构成的公式没有永假式,也不能有 $\{\lor,\land,\supset,\equiv\}$ 定义出 \sim :

- 1) A 为命题变元 p, 既不是永假式, 其真值表也不具备 ~ 的形式;
- 2) $A = B \equiv C$ 或 $A = B \supset C$ 或 $A = B \lor C$ 或 $A = B \land C$, 由归纳假设知 B 和 C 的真值表具有以下两种形式:

无论 $A = B \equiv C$ 或 $A = B \supset C$ 或 $A = B \lor C$ 或 $A = B \land C$ 都不能使 A 为永假式或者具备与 ~相同的真值表,所以 $\{\lor,\land,\supset,\equiv\}$ 表达不出 ~,即不完全。

37. 解:

首先用归纳法证明: 若 A 为仅由 \equiv 构成的合式公式 (且其中的命题变元为 p_1, p_2, \cdots, p_n),则 任意改变 p_1, p_2, \cdots, p_n 的出现顺序所形成的新公式 B 与 A 等价,用 #A 表示 A 中命题变元和 \equiv 出现的次数,则 $\#A = 2i + 1(i = 0, 1, \cdots)$,

- 1) i=0,1 时显然成立;
- 2) i=k (k>1), $A_k = A_{k-1} \equiv P_k$, 设 $A_{k-1} = B \equiv C$, 则 $A_k = B \equiv C \equiv P_k$, 显然 A_k 与 $C \equiv P_k \equiv B$ 、 $P_k \equiv B \equiv C$ 、 $B \equiv P_k \equiv C$ 等价

故仅由 \equiv 构成的命题合式公式 $A(且其中的命题变元为 <math>p_1, p_2, \cdots, p_n)$ 与下式等价:

$$\underbrace{(p_1 \equiv p_1 \equiv \cdots \equiv p_1)}_{l_1} \equiv \underbrace{(p_2 \equiv p_3 \equiv \cdots \equiv p_2)}_{l_2} \equiv \cdots \equiv \underbrace{(p_n \equiv p_n \equiv \cdots \equiv p_n)}_{l_n}$$

其中 l_i 表示 p_i 在 A 中出现的次数, 易知若 l_i 为偶数,则该项对应与 t,否则为 p_i 。所以结论成立。

38. 略

39. 参考 37

40. 解:

易知由 \land , \neq , t, f 构成的公式只能为永真式或者永假式用结构归纳法证明:

1) A 为 t 显然成立;

2) $A = B \wedge C$,

- 若 A 能变换到 1,则 B 和 C 都能变换到 1,根据归纳假设,B 和 C 都是永真式,所以 A 也为永真式;
- 若 A 为永真式,则 B, C 都是永真式,根据归纳假设, B 和 C 都能变换到 1, 所以 A 也能变换到 1;

3) $A = B \not\equiv C$

- (a) 若 A 能变换到 1, 则 B 能变换到 0、C 能变换到 1, 或者 B 能变换到 1、C 能变换到 0, 根据归纳假设, B、C 中有一个为永真式, 另一个不为永真式, 故 A 为永真式。
- (b) 若 A 为永真式,根据归纳假设, B 和 C 中只能有一个永真式,所以 A 能变换到 1(根据 归纳假设, B 和 C 中的永假式只能变换到 0。

综上,结论得证。

41. 解:

设 C(A) 中所有合适的公式的析取为 B,因为 C(A) 的所有元素均为合取项,所以 B 是析取范式。根据定理 2.6.7, $\models_{\varphi} A$ 当且仅当有 $D \in C(A)$ 使得 $\models_{\varphi} D$ 成立。则对任意指派 φ ,若 $\models_{\varphi} A$,则存在 $D \in C(A)$ 满足 $\models_{\varphi} D$,又因为 B 为所有 C(A) 元素的析取,所以 $\models_{\varphi} B$,必要性成立;

对任意指派 φ ,若 $\models_{\varphi} B$,则必然存在一个 B 的合取项 D 满足 $\models_{\varphi} D$,而 $D \in C(A)$,所以 $\models_{\varphi} A$,充分性成立。

42. 解:

| 表示与非, $p \supset q = \sim p \lor q = \sim (p \land \sim q)$, 所以用 | 表示为 p|(q|q)。

43. 解:

| 不是可结合的,因为 $f|f|t \neq f|(f|t)$ 为永真式。

44. 解:

此系统并不协调,下面给出简要的证明序列,为了减小公式长度,做以下表示: $\Diamond A_p =$

 $A|(A|A), A_r = S|Q \blacksquare A|S \blacksquare A|S,$ 其中 A, S, Q 均为任意公式。

$$1. \vdash p|(p|r)| \blacksquare p|(r|p)| \blacksquare s|q \blacksquare p|s \blacksquare p|s$$

$$2. \vdash A|(A|A)| \blacksquare A|(A|A)| \blacksquare S|Q \blacksquare A|S \blacksquare A|S$$

$$3. \vdash A_p|(A_p|A_r)| \blacksquare A_p|(A_r|A_p)| \blacksquare S|Q \blacksquare A_p|S \blacksquare A_p|S$$

$$4. \vdash S|Q \blacksquare A_p|S \blacksquare A_p|S$$

$$5. \vdash S'|Q' \blacksquare A_p|S' \blacksquare A_p|S'$$

$$6. \vdash A_p|(S'|Q')$$

$$7. \vdash A_p|A_p \blacksquare A_p|A_p \blacksquare A_p|A_p$$

$$8. \vdash Q'$$

$$1, Rule \ i)$$

$$2, 3, Rule \ ii)$$

$$4, 5, Rule \ ii)$$

$$6, 7, Rule \ ii)$$

45. 此题可能存疑

若
$$S = \bigcup_{\varphi} \{ p_1^{\varphi} \wedge p_2^{\varphi} \wedge \cdots \}, \$$
其中

$$p_i^{\varphi} = \begin{cases} p_i, & \Xi \varphi(p_i) = t \\ \sim p_i, & \Xi \varphi(p_i) = f \end{cases}$$

因此,S 中的每一个元素只有一个指派使其为真,所以 S 是析取有效的,但其任意有限子集不是析取有效的。

46.

47.

1.
$$A \supset B, \sim (B \supset C) \supset \sim A, A \vdash A$$
 \in
2. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash A \supset B$ \in
3. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash B$ 1, 2, \overline{MP}
4. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash \sim (B \supset C) \supset \sim A$ \in
5. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash A \supset (B \supset C)$ 4
6. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash B \supset C$ 1, 5, \overline{MP}
7. $A \supset B, \sim (B \supset C) \supset \sim A, A \vdash C$ 3, 6, \overline{MP}
8. $A \supset B, \sim (B \supset C) \supset \sim A \vdash A \supset C$ 7, CP

48.

1.	$\vdash B \lor B \supset B$	AS_1
2.	$\vdash B \supset B \vee B$	AS_2
3.	$\vdash B \lor B$	$1,2,\overline{MP}$
4.	$A\supset \sim (B\supset B)\vdash \sim A\vee \sim (B\supset B)$	\in
5.	$A\supset \sim (B\supset B)\vdash (B\supset B)\vee A$	4, commu
6.	$A\supset \sim (B\supset B)\vdash \sim A$	$3, 5, \overline{MP}$

49.

1.
$$(A \lor B) \supset C, A \vdash A$$
 \in 2. $(A \lor B) \supset C, A \vdash (A \lor B) \supset C$ 3. $(A \lor B) \supset C, A \vdash A \lor B$ \lor_{+} 4. $(A \lor B) \supset C, A \vdash C$ 2. $3\overline{MP}$ 5. $(A \lor B) \supset C \vdash A \lor C$ 4. C 4. C 6. $(A \lor B) \supset C \vdash B \lor C$ 同理 7. $(A \lor B) \supset C \vdash (A \lor C) \land (B \lor C)$ 5. $(A \lor C) \land (B \lor C) \vdash (A \lor C) \land (B \lor C)$ \in 9. $(A \lor C) \land (B \lor C) \vdash (A \lor C) \land (B \lor C)$ \land_{-} 10. $(A \lor C) \land (B \lor C) \vdash (A \lor B) \supset (C \lor C)$ \lor_{-} 11. $(A \lor C) \land (B \lor C) \vdash (A \lor B) \supset (C \lor C)$ \lor_{-} 12. \vdash_{-} $(C \lor C) \supset C$ AS_{1} 13. $(A \lor C) \land (B \lor C) \vdash (A \lor B) \supset C$ 11, $12, \overline{MP}$

50.

1. $(A \wedge B) \supset C, \sim (A \supset C) \vdash A \land \sim C$	\in	
2. $(A \land B) \supset C, \sim (A \supset C) \vdash A$	$1, \land -$	
3. $(A \wedge B) \supset C, \sim (A \supset C) \vdash \sim C$	$1, \wedge -$	
4. $(A \land B) \supset C, \sim (A \supset C) \vdash \sim C \supset \sim (A \land B)$	$1, \in, \supset \sim$	
5. $(A \wedge B) \supset C, \sim (A \supset C) \vdash \sim (A \wedge B)$	$3,4,\overline{MP}$	
6. $(A \land B) \supset C, \sim (A \supset C) \vdash A \supset \sim B$	5	
7. $(A \land B) \supset C, \sim (A \supset C) \vdash \sim B$	$2,6,\overline{MP}$	
8. $(A \wedge B) \supset C, \sim (A \supset C) \vdash \sim B \vee C$	$7, \lor +$	
9. $(A \land B) \supset C, \sim (A \supset C) \vdash B \supset C$	8	
10. $A \lor B \supset C \vdash \sim (A \supset C) \supset (B \supset C)$	9, CP	
11. $A \lor B \supset C \vdash (A \supset C) \lor (B \supset C)$	10	
12. $A \supset C, A \land B \vdash A \land B$	\in	
13. $A \supset C, A \land B \vdash A$	$12, \land -$	
14. $A\supset C, A\wedge B\vdash A\supset C$	\in	
15. $A \supset C, A \land B \vdash C$	$13, 14, \overline{MP}$	
16. $A \supset C \vdash A \land B \supset C$	15, CP	
17. $B \supset C \vdash A \land B \supset C$	同理	
18. $(A \supset C) \lor (B \supset C) \vdash A \land B \supset C$	$16,17, \lor \supset \lor$	

51. 解:

1. $A \supset (B \lor C), \sim (A \supset B) \vdash A \land \sim B$	\in
2. $A\supset (B\vee C), \sim (A\supset B)\vdash A$	$1, \wedge -$
3. $A \supset (B \lor C), \sim (A \supset B) \vdash \sim B$	$1, \land -$
4. $A\supset (B\vee C), \sim (A\supset B)\vdash A\supset (B\vee C)$	\in
5. $A \supset (B \lor C), \sim (A \supset B) \vdash B \lor C$	$2, 4\overline{MP}$
6. $A\supset (B\vee C), \sim (A\supset B)\vdash \sim B\supset C$	5
7. $A\supset (B\vee C), \sim (A\supset B)\vdash c$	$3, 6, \overline{MP}$
8. $A\supset (B\vee C), \sim (A\supset B)\vdash \sim A\vee C$	$7, DR_4$
9. $A\supset (B\vee C), \sim (A\supset B)\vdash A\supset C$	8
10. $A\supset (B\vee C)\vdash (A\supset B)\vee (A\supset C)$	9, CP
11. $A \supset B \vdash A \supset B$	\in
12. $A \supset B \vdash A \supset (B \lor C)$	$11, DR_4$
13. $A \supset C \vdash A \supset (B \lor C)$	同理
14. $(A \supset B) \lor (A \supset C) \vdash A \supset (B \lor C)$	

52. 解:

1.	$A\supset (B\wedge C), A\vdash A$	\in
2.	$A\supset (B\wedge C), A\vdash A\supset (B\wedge C)$	\in
3.	$A\supset (B\wedge C), A\vdash B\wedge C$	$1,2,\overline{MP}$
4.	$A\supset (B\wedge C), A\vdash B$	$3, \land -$
5.	$A\supset (B\wedge C)\vdash A\supset B$	4, CP
6.	$A\supset (B\wedge C)\vdash A\supset C$	同理
7.	$A\supset (B\land C)\vdash (A\supset B)\land (A\supset C)$	$5, 6, \wedge +$
8.	$A\supset B\vdash A\supset (B\vee C)$	DR_4
9.	$A\supset C\vdash A\supset (B\vee C)$	DR_4
10.	$(A\supset B)\wedge (A\supset C), A\vdash A\supset B, A\supset C, A$	$\in \land -$
11.	$(A\supset B)\wedge (A\supset C), A\vdash B, C, B\wedge C$	$10, \overline{MP}, \wedge +$
12.	$(A\supset B)\wedge (A\supset C)\vdash A\supset (B\wedge C)$	12, CP

53. 解:

1.	$(A\supset B)\land (B\supset A), \sim A\lor \sim B\vdash A\supset \sim B$	\in
2.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash A\supset B$	$\in, \land -$
3.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash B\supset A$	$\in, \land -$
4.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash B\supset \sim A$	\in
5.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash B\supset \sim B$	$1, 3, \overline{MP}$
6.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash A\supset \sim A$	$2,4,\overline{MP}$
7.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash \sim A$	5
8.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash \sim B$	6
9.	$(A\supset B)\wedge (B\supset A), \sim A\vee \sim B\vdash \sim A\wedge \sim B$	$7,8 \wedge +$
10.	$A \equiv B \vdash \sim (A \supset \sim B) \lor \sim (A \lor B)$	9, CP
11.	$A \equiv B \vdash \sim (A \equiv \sim B)$	10
12.	$\vdash (A \equiv B) \supset \sim (A \equiv \sim B)$	11, CP
13.	$\vdash (A \equiv \sim B) \supset (A \equiv B)$	$12,\supset\sim$

54. 解:

1.	$A\supset (B\supset C), A\wedge B\vdash A, B$	$\in, \land -$
2.	$A\supset (B\supset C), A\wedge B\vdash C,$	$1,\overline{MP}$
3.	$A\supset (B\supset C)\vdash (A\land B)\supset C,$	2, CP
4.	$(A \land B) \supset C, A, B \vdash A, B$	\in
5.	$(A \wedge B) \supset C, A, B \vdash A \wedge B$	$4, \wedge +$
6.	$(A \land B) \supset C, A, B \vdash C$	$5, \in, \overline{MP}$
7.	$(A \land B) \supset C \vdash A \supset (B \supset C)$	6, MP, MP

55. 参考 50

56. 参考 51

57. 参考 36

58.

对于将公式化成 | 或 ↓ 的形式,可以先化成 \sim ($a \land b$) 或 \sim ($a \lor b$) 的形式,然后用 | 或 ↓ 做替换。

59. 解:

1) 因为 C_1, C_2, \dots, C_m 互异,且排序关系是全序的,所以 C_1, C_2, \dots, C_m 排序后的结果是唯一的。

则 $\varphi(x_1^{\varphi} \wedge x_2^{\varphi} \wedge \cdots \wedge x_n^{\varphi}) = t$, 令 $C_i' = x_1^{\varphi_i} \wedge x_2^{\varphi_i} \wedge \cdots \wedge x_n^{\varphi_i}$, 对 C_1', C_2', \cdots, C_n' 进行排序得到 C_1, C_2, \cdots, C_n , 则 $B = C_1 \vee C_2 \vee \cdots \vee C_n$ 即为 A 的唯一的完全解析式。

再证 $\varphi(A) = \varphi(B)$ 。对于任意指派 φ

- 若 $\varphi(A) = t$, 故存在一个 C'_i , 满足 $\varphi(C'_i) = t$, 又 C'_i 为 B 的一个合取项,故 $\varphi(B) = t$ 。
- $\Xi \varphi(B) = t$, 故 B 存在一个析取项 C 使得 $\varphi(C) = t$, 所以 $\varphi \in T$, 所以 $\varphi(A) = t$.
- 2) A 为永真式,则 $\#T = 2^n$,故有 2^n 个短句,则 $m = 2^n$ 。

60. 解:

• 析取范式:

$$(\sim p \land q \land r) \lor (p \land \sim q \land \sim r) \lor (p \land \sim q \land r) \lor (p \land q \land \sim r)$$

合取范式:

$$(p \lor q \lor r) \land (p \lor q \lor \sim r) \land (p \lor \sim q \lor r) \land (\sim p \lor \sim q \lor \sim r)$$

• 析取范式:

$$(\sim p \land \sim r \land \sim q) \lor (\sim p \land r \land q)$$

合取范式:

$$(p \lor r \lor \sim q) \land (p \lor \sim r \lor q) \land (\sim p \lor r \lor q) \land (\sim p \lor r \lor \sim q) \land (\sim p \lor \sim r \lor q) \land (\sim p \lor \sim r \lor \sim q)$$

• 析取范式:

 $(\sim p \land \sim r \land \sim q) \lor (\sim p \land \sim r \land q) \lor (\sim p \land r \land q) \lor (p \land \sim r \land q) \lor (p \land r \land q)$

合取范式:

 $(p \vee \sim r \vee q) \wedge (\sim p \vee r \vee q) \wedge (\sim p \vee \sim r \vee q)$

61. 解:

- 1) $(p \land \sim q) \lor p$
- 2) $p \wedge (q \vee r)$
- 3) $\sim q$
- 4) p
- 62. 解:
 - 1. S
 - $2. \quad \{r,s,\sim r \vee \sim s,q \vee r\} \& \{\sim q,q \vee s,\sim r \vee \sim s,q \vee r\}$

关于 p 的分裂规则

3. $\{r, q, \sim r, q \lor r\} \& \{s, \sim r \lor \sim s, r\}$

关于 s 和 $\sim q$ 的单文字规则

4. $\{ \Box \} \& \{ \Box \}$

- 63. 解:
- 1. S
- 2. $\{p \lor q, p \lor \sim r, q \lor \sim r \lor p, \sim r \lor q\}$

1, 重言式规则

3. $\{\sim r \vee q\}$

2, 关于 p 的纯文字规则

4. Ø

3, 关于 q 的纯文字规则

64. 解:

- 1. S
- 2. $\{ \sim r, q \lor r \} \& \{ q, \sim q \lor \sim r, q \lor r \}$

1, 关于 p 的分裂规则

3. $\{q\}\&\{r, \sim r\}$

2, 关于 $\sim r$, q的单文字规则

4. $\emptyset \& \{ \Box \}$

3, 关于 q 的纯文字规则, 关于 r 的单文字规则

65. 解:

- 1. S
- 2. $\{q \lor r, \sim q \lor s, \sim r \lor s, \sim s, q \lor \sim r\}$

 $1, 关于 \sim p$ 的单文字规则

3. $\{q \lor r, \sim q, \sim r, q \lor \sim r\}$

2, 关于 ~ s的单文字规则

4. $\{r, \sim r\}$

3,关于~q的单文字规则

 $5. \{ \Box \}$

4, 关于 ~ r的单文字规则

66-68 可以先化为否定范式,画出平面图,求合取支集合,对合取支元素进行取反,然后消解,如能消解出空短句,则原式为永真式;也可以直接取反,化为析取范式,进行消解。

66. 解: 合取支集合为 $\{ \sim p, q \land \sim r, s \land r, s \land \sim q, p \land r, p \land \sim q \}$, 令 $S = \{ p, \sim q \lor r, \sim s \lor \sim r, \sim s \lor q, \sim p \lor \sim r, \sim p \lor q \}$

对 S 进行消解:

- 1. S
- $2. \quad \{ \sim q \lor r, \sim s \lor \sim r, \sim s \lor q, \sim r, q \}$

1, 关于 p 的单文字规则

3. $\{\sim q, \sim s, \sim s \lor q, q\}$

2,关于~r的单文字规则

 $4. \{ \Box \}$

3, 关于 q 的单文字规则, 关于 $\sim s$ 的纯文字规则

故原式为永真式。

- 67. 解:原公式取反后的短句集为 $S = \{p \lor q, \sim p \lor r, \sim p \lor \sim s, \sim r \lor s, r \lor \sim q, \sim q \lor \sim s\}$ 对 S 进行消解:
- 1. S
- 2. $\{q, \sim r \lor s, r \lor \sim q, \sim q \lor \sim s\}$ & $\{r, \sim s, \sim r \lor s, r \lor \sim q, \sim q \lor \sim s\}$ 1,关于 p 的单文字规则
- 3. $\{\sim r \lor s, r, \sim s\} \& \{\sim s, s, \sim q, \sim q \lor \sim s\}$

2, 关于 q,r 的单文字规则

4. $\{ \Box \} \& \{ \Box \}$

故原式为永真式。

- 68. 解:原公式取反后短句集为 $S=\{p\vee q, s\vee \sim q\vee r, \sim r\vee q, \sim s\vee q, \sim q\}$ 对 S 进行消解:
 - 1. S
 - $2. \quad \{p, \vee \sim q \vee r, \sim r, \sim s\}$

 $1, 关于 \sim q$ 的单文字规则

3. $\{p, s \lor \sim p, \sim s\}$

- 2, 关于~r的单文字规则
- 4. $\{s, \sim s\}$ 3,关于 p 的单文字规则
- $5. \{ \Box \}$

故原公式为永真式。

- 69. 略 (太长,可以用平面图) 70. 解:
 - 1) P 中 z,Q 中 u
 - 2) z,u
 - 3) u,x,z
 - 4) g(x) 对公式中 u 不自由
 - 5) h(x,y) 对公式中 u 不自由

6) u 对公式中 x 自由

71. 解:

- 1) $\forall x \in H(B(x) \land W(t(x)) \supset K(m(x)))$
- 2) $\forall xy \in H(H(y) \land W(x) \land K(m(y)) \supset \sim L(x,y))$
- 3) $\sim \exists x \in H(B(x) \land W(t(x)))$
- 4) 在牲口棚中有一匹马和牲口棚中所有的黑尾巴马相像
- 5) 在牲口棚中不存在没有白尾巴的马

72. 解:

- 1) $\forall x(C(x, f(r)) \supset U(x, r))$
- 2) 如果两个人的父亲是兄弟, 那么这两个人就是堂兄弟
- 3) $\exists xy(C(x,r) \land B(y,r) \supset Y(x,y))$

73. 解:

- 1) 自由变元:x,约束变元:x,任意项都可以代入
- 2) 自由变元:y,约束变元:x,y,x不出现的项可以代入

74. 解:

n+1,n-1 都有可能

75. 解:

用结构归纳法证明

- 1) 若 A 为命题变元
 - (a) A=m,则 $S_{x_1,x_2,...,x_n}^{u_1,u_2,...,u_n}S_B^mA = S_{x_1,x_2,...,x_n}^{u_1,u_2,...,u_n}B$,因为 $B = S_{u_1,u_2,...,u_n}^{x_1,x_2,...,x_n}C$ 且 u_1,u_2,\cdots,u_n 不 在 C 中出现,故 $S_{x_1,x_2,...,x_n}^{u_1,u_2,...,u_n}B = C = S_C^mA$
 - (b) A 为命题变元,且 $A=p\neq m,$ 则 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n}S^m_BA=S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n}p=p=S^m_CA$
- 2) A 为原子公式, $A = P(t_1, t_2, \cdots, t_k), t_i = f(y_1, y_2, \cdots, y_j), 1 \le i \le k$,则 m 不在 A 中出现, 所以 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B A = A = S^m_C A$
- 3) $A = \sim D$, 因为 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = S^m_C D$, 所以 $\sim S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = \sim S^m_C D$, 即 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B A = S^m_C A$
- 4) $A = D \lor E$, 因为 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D = S^m_C D$, 且 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B E = S^m_C E$, 则 $S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B D \lor S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B E = S^{u_1,u_2,\cdots,u_n}_{x_1,x_2,\cdots,x_n} S^m_B A = S^m_C D \lor S^m_C E = S^m_C (D \lor E) = S^m_C A$
- 5) $A = \forall y D$, 则 $y \notin \{u_1, u_2, \cdots, u_n\}$, 则 B 对 A 中 m 是自由的, 且 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B D = S^m_C D$,,所 以 $S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B A = S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B \forall y D = \forall y S^{u_1, u_2, \cdots, u_n}_{x_1, x_2, \cdots, x_n} S^m_B D = \forall y S^m_C D = S^m_C \forall y D = S^m_C A$

综上, 结论成立.

76. 解:

相同公式中,运算符的运算顺序也是相同的,若 $B \neq D$,假设 B 是 D 的前缀,令 $D = B \vee F$,则 $D \vee E = B \vee F \vee E$,故 $C = F \vee E$,这就导致 $B \vee C$ 中的 " \vee " 与 $D \vee E$ 中的 " \vee " 运算次序不同,故 B 不为 D 的前缀,同理 D 不为 B 的前缀,从而 B=D。同理得 C=E。

77. 解:

用公式结构归纳法证明:

- 1) C 为原子公式,显然 y 在 C 中不出现, $S_x^y S_y^x C = C$;
- 2) $C = \sim A$, 因为 $S_x^y S_y^x A = A$, 所以 $S_x^y S_y^x C = S_x^y S_y^x \sim A = \sim S_x^y S_y^x A = \sim A = C$;
- 3) $C = B \lor D$, 因为 $S_x^y S_y^x B = B$ 且 $S_x^y S_y^x D = D$, 所以 $S_x^y S_y^x C = S_x^y S_y^x (B \lor D) = S_x^y S_y^x B \lor S_x^y S_y^x D = B \lor D = C$;
- 4) $C = \forall zB$
 - 若 z=x, 则 $S_y^x C = S_y^x \forall x B = \forall x B = C$,y 在 C 中不自由, $S_y^y C = C$, 所以 $S_y^y S_y^x C = C$;
 - 若 z=y, 则 $S_y^x C = S_y^x \forall y B$, 因为 y 对 C 中 x 是自由的, 所以 x 不在 C 中出现, 故 $S_y^x C = C, S_y^x C = C$, 所以 $S_y^x S_y^x C = C$;

综上, 若 y 在 C 中不自由, 且 y 对 C 中 x 是自由的, 则 $S_x^y S_y^x C = C$ 。

78. 解:

令 $A = (p \equiv q) \land (p \equiv \sim (r \supset q)) \supset (q \supset \sim r)$,则 A 为 P 永真。

 $\Rightarrow B = (\forall x (G(x) \supset H(x)) \equiv \exists x H(x)) \land (\forall x (G(x) \supset H(x)) \equiv \sim (\forall x G(x) \supset \exists x H(x))) \supset (\exists x H(x) \supset \sim \forall x G(x))$

则 $B=S^{p,q,r}_{\forall x(G(x)\supset H(x)),\exists xH(x),\forall xG(x)}A$,故 B 为 P 用真的,则通过 P 规则可以导出 $\exists xH(x)\supset\sim \forall xG(x)$ 。

79. 解:

1.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash \forall x (R(x) \supset P(x)), \forall x (\sim Q(x) \supset R(x))$$
 $\in, \land -$

2.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash R(x) \supset P(x)$$
 1, AS_4

3.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash \sim Q(x) \supset R(x)$$
 1, AS_4

4.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash \sim Q(x) \supset P(x)$$
 2, 3, trans

5.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash P(x) \lor Q(x)$$
 4. $\equiv subiii$

6.
$$\forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \vdash \forall x (P(x) \lor Q(x))$$
 5, gen

7.
$$\vdash \forall x (R(x) \supset P(x)) \land \forall x (\sim Q(x) \supset R(x)) \supset \forall x (P(x) \lor Q(x))$$
 6, CP

80. 解:

1.
$$P(x) \vdash P(x)$$
 \in
2. $\vdash P(x) \supset P(x)$ 1, CP
3. $\vdash S_x^y(P(x) \supset P(y))$ 2
4. $\vdash \exists y(P(x) \supset P(y))$ 3, $x \forall P(x) \supset P(y)$ 中 y 自由
5. $\vdash \forall x \exists y(P(x) \supset P(y))$ 4, gen

81. 解:

$$\begin{array}{llll} 1. & p \supset \forall x \sim Q(x), p \vdash p \supset \forall x \sim Q(x) & \in \\ 2. & p \supset \forall x \sim Q(x), p \vdash p & \in \\ 3. & p \supset \forall x \sim Q(x), p \vdash \forall x \sim Q(x) & 1, 2, \overline{MP} \\ 4. & \vdash (p \supset \forall x \sim Q(x)) \supset \forall x (p \supset \sim Q(x)) & 3, AS_4, CP, Gen, CP \\ 5. & \vdash \sim \forall x (p \supset \sim Q(x)) \supset \sim (p \supset \forall x \sim Q(x)) & 4, \supset \sim \\ 6. & \vdash \exists x (p \land Q(x)) \supset (p \land \exists x Q(x)) & 5, \equiv sub \ iii) \\ 7. & \forall x (p \supset \sim Q(x)), p \vdash \forall x (p \supset \sim Q(x)), p & \in \\ 8. & \forall x (p \supset \sim Q(x)), p \vdash \sim Q(x) & 7, AS_4, \overline{MP} \\ 9. & \forall x (p \supset \sim Q(x)) \vdash p \supset \forall x \sim Q(x) & 8, Gen, CP \\ 10. & \vdash \sim (p \supset \forall x \sim Q(x)) \supset \sim \forall x (p \supset \sim Q(x)) & 9, CP, \supset \sim \\ 11. & \vdash p \land \exists x Q(x) \supset \exists x (p \land Q(x)) & 10, \equiv sub \ iii) \\ 12. & \vdash \exists x (p \land Q(x)) \equiv (p \land \exists x Q(x)) & 6, 11 \\ \end{array}$$

82. 解:

1.
$$\forall y P(y) \vdash \forall x P(x)$$
 $\in, \alpha \beta$
2. $\vdash \forall y P(y) \supset \forall x P(x)$ CP

 $\forall y P(y) \supset \forall x P(x)$ 的前東范式为 $\exists y \forall x (P(y) \supset P(x))$,根据前東范式定理, $\forall y P(y) \supset \forall x P(x) \equiv \exists y \forall x (P(y) \supset P(x))$ 。所以

3.
$$\vdash \exists y \forall x (P(y) \supset P(x))$$
 2, $\equiv sub \ iii)$

也可以演绎证明 $\vdash \forall y P(y) \supset \forall x P(x) \supset \exists y \forall x (P(y) \supset P(x))$.

83. 解:

1.
$$\forall x P(x) \land \forall x \sim Q(x) \vdash P(x), \sim Q(x)$$
 $\land \neg, AS_4$
2. $\forall x P(x) \land \forall x \sim Q(x) \vdash \forall x (P(x) \land Q(x))$ 1, $\land +$, Gen
3. $\vdash \exists x (P(x) \supset Q(x)) \supset (\forall x P(x) \supset \exists x Q(x))$ 2, $CP, \supset \sim, \equiv sub \ iii)$
4. $\forall x (p(x) \land \sim Q(x)) \vdash \forall x P(x), \forall x \sim Q(x)$ $\in, AS_4, \land \neg, Gen$
5. $\forall x (p(x) \land \sim Q(x)) \supset \forall x P(x) \land \forall x \sim Q(x)$ 4, $\land +$, CP
6. $\vdash (\forall x P(x) \supset \exists x Q(x)) \supset \exists x (P(x) \supset Q(x))$ 5, $\supset \sim, \equiv sub \ iii)$
7. $\vdash \exists x (P(x) \supset Q(x)) \equiv (\forall x P(x) \supset \exists x Q(x))$ 3, 6

84. 解:

$$\exists x \forall y (P(x) \equiv P(y)) \equiv \exists x ((\sim P(x) \lor \forall y P(y)) \land (\sim \exists y P(y) \lor P(x)))$$

$$\equiv \exists x ((\sim P(x) \land \sim \exists y P(y)) \lor (\forall y P(y) \land P(x)))$$

$$\equiv (\sim \forall x P(x) \land \sim \exists y P(y)) \lor (\forall y P(y) \land \exists x P(x))$$

$$\equiv (\forall x P(x) \supset \forall y P(y)) \land (\exists y P(y) \supset \forall y P(y)) \land (\exists y P(y) \supset \exists x P(x))$$

$$\equiv (\exists y P(y) \supset \forall y P(y))$$

由换名规则可得 $\exists y P(y) \supset \forall y P(y) \equiv \exists x P(x) \supset \forall y P(y)$, 且 $\forall y P(y) \supset \exists x P(x)$ 为永真式, 故

$$\exists y P(y) \supset \forall y P(y) \equiv (\exists x P(x) \supset \forall y P(y)) \land (\forall y P(y) \supset \exists x P(x))$$
$$\equiv (\exists x P(x) \equiv \forall y P(y))$$

85. 解:

 $\forall x(P(x) \equiv \exists y P(y))$ 同样等价于 $\exists y P(y) \supset \forall y P(y)$, 后续证明参考 84 题。

86. 解:

由 84 题知 $\exists x \forall y (P(x) \equiv P(y)) \equiv (\exists x P(x) \supset \forall x P(x))$,而 $(\exists x P(x) \supset \forall x P(x)) \equiv (\forall x P(x) \lor \forall x \sim P(x))$

87. 略

88. 解:

- 1) $\exists xyz (\sim R(x,u) \land (\sim R(y,z) \supset Q(u,y)))$
- 2) $\exists x \forall y \exists u \forall v \sim (Q(x,y) \supset \sim (P(u,y,z) \supset \sim R(v)))$

3)

89. 解:

- 1) 由 84 题知, $\exists y \forall x (P(x) \equiv Q(y))$ 是 $\forall x P(x) \equiv \exists y P(y)$ 的前束范式, 另外 $\exists x y \forall a b (P(x) \supset P(y) \land P(a) \supset P(b))$ 也是。
- 2) $\exists a, b, x, y (\sim P(a, b) \supset \sim (P(x, y) \supset P(u, y)))$

90. 解:

1) 必要性

因为 $\models_{(I,\sigma)} \exists x A$,所以 $I(\exists x A)(\sigma) = t$,即 $I(\forall x \sim A)(\sigma) = f$,所以存在 a 使得 $I(\sim A)(\sigma[x|a]) = f$ 则 $I(A)(\sigma[x|a]) = t$ 。

令 $\varphi = \sigma[x|a]$, 则满足条件 $\varphi(y) = \sigma(y)$ $(x \neq y)$, 且 $I(A)(\varphi) = t$, 故 $\models_{(I,\varphi)} A$.

2) 充分性

因为 $\models_{(I,\varphi)} A$,所以 $I(A)(\varphi) = t$,又 $\varphi(y) = \sigma(y)$ $(x \neq y)$,则 $I(A)(\sigma[x|\varphi(x)]) = t$,即 $I(\sim A)(\sigma[x|\varphi(x)]) = f$,故 $I(\forall x \sim A)(\sigma) = f$,所以 $I(\exists xA)(\sigma) = t$,即 $\models_{(I,\sigma)} \exists xA$ 。

对于91题来说,需要先将量词移到括号中去进行证明。

91. 解:

1)

1. $\forall xzP(z,x) \vdash \forall zP(z,y)$	AS_4
$2. \ \forall z P(z,y) \vdash P(y,y)$	AS_4
$3. \ \forall xzP(z,x) \vdash P(y,y)$	1,2, trans
4. $\forall xz P(z,x) \vdash \exists x \forall y (P(x,y) \supset P(y,y))$	$3, \vee +, Gen, \exists +$
5. $\vdash \sim \forall xz P(z,x) \vee \exists x \forall y (\sim P(x,y) \vee P(y,y))$	4, CP
6. $\vdash \exists x \forall y \exists z (\sim P(z, x) \lor (\sim P(x, y) \lor P(y, y)))$	$5, \equiv sub~iii)$
7. $\vdash \exists x \forall y \exists z (P(z, x) \land P(x, y) \supset P(y, y))$	$6, \equiv sub \ iii)$

2)

$$\begin{aligned} 1. \ \forall x Q(x) \vdash \forall y Q(y) & \alpha \beta \\ 2. \ \forall x Q(x) \vdash \exists x P(x) \lor \forall y Q(y) & 2, \lor + \\ 3. \ \vdash \sim \forall x Q(x) \lor (\exists x P(x) \lor \forall y Q(y)) & 2, CP \\ 4. \ \vdash \exists x \forall y (Q(x) \supset (P(x) \lor Q(y))) & 3, \equiv sub \ iii) \end{aligned}$$

92. 解: $A = p \lor \sim p$ 93. 解: P(x) 94. 解:

设 $I = \langle D, I_0 \rangle$, $\sigma \in \sum_I$ 为解释 I 下的任意指派;

若对于任意的 $a \in D$, $I(C)(\sigma[x|a]) = t$, 则 $I(\forall xC)(\sigma) = t$, 所以 $I(C \supset \forall xC)(\sigma) = t$, 即 $C \supset \forall xC$ 在 I 下可满足;

若存在 $a \in D$, $I(C)(\sigma[x|a]) = f$, 令 $\varphi = \sigma[x|a]$, 则 $I(C)(\varphi) = f$, $I(\sim C)(\varphi) = t$, 所以 $I(C \supset \forall xC)(\varphi) = I(\sim C \lor \forall xC)(\varphi) = t$, 即 $C \supset \forall xC$ 在 I 下可满足;

综上,若 C 是任意合式公式, I 是任意解释,则 $C \supset \forall x C$ 在 I 下是可满足的。

95. 解:

必要性成立, $\models A$,根据完全性定理, $\vdash A$ 成立, 根据 Gen 规则有 $\vdash \forall xA$,根据 $\lor +$ 规则 $\vdash (A \supset \forall xA)$,根据可靠性定理 $\models (A \supset \forall xA)$ 成立。

充分性不成立, $A = p \land \sim p$ 即为反例。

96. 解:

对任意项 t,取解释 $I=<\{a,b\},I_0>$,指派 $\sigma\in\sum_I$,使得 I(P(a))=t,I(P(b))=f 且 $\sigma(t)=a$,则 $I(P(t)\supset P(a)\land P(b))=f$,即不存在项 t 使得 $\models A(t)$ 。

97. 解:

1) 可满足的。

若 M, N 皆为永真式, $\exists x(M \equiv N) \supset (\exists xM \supset \exists xN)$ 为有效的; 令 $M = \forall y(x \times y = 0), N = p \land \sim p$, 则 $\exists M \equiv N$ 为 t, $\exists xM$ 为 t, $\exists xN$ 为 f, 故 $\exists x(M \equiv V) \supset (\exists M \equiv \exists N)$ 为 f。

2) 有效的

1.
$$\forall x(M \equiv N), \forall xM \vdash M, M \supset N$$
 $\in AS_4, \land -$
2. $\forall x(M \equiv N), \forall xM \vdash \forall xN$ 1, \overline{MP}, Gen
3. $\forall x(M \equiv N) \vdash \forall xM \supset \forall xN$ 2, CP
4. $\forall x(M \equiv N) \vdash \forall xN \supset \forall xM$ 同理
5. $\vdash \forall x(M \equiv N) \supset (\forall xM \equiv \forall xN)$ 3, 4, $\land +$, CP

98. 解:

以下的解法对题目做了稍微的修改: $A = \exists z (\exists x \forall y P(x, y, z) \supset \exists W Q(w, z))$ 。

A 的前東范式为 $\exists z \forall x \exists x \exists w (P(x,y,z)) \supset Q(w,z)$)

- B 的前東范式为 $\exists z \exists y \forall x \exists w (P(x, y, z)) \supset Q(w, z)$)
- C 的前東范式为 $\exists z \exists y \forall x \exists w (P(x,y,z)) \supset Q(w,z)$)

故 $B \equiv C, B \supset A, C \supset A$ 为有效的,下面对 $B \supset A$ 进行简要的证明: 设 $D = \forall x \exists x \exists w (P(x,y,z) \supset Q(w,z)), E = \exists y \forall x \exists w (P(x,y,z) \supset Q(w,z))$

$$\begin{array}{lll} 1. & \vdash E \supset D \\ \\ 2. & \vdash \sim D \supset \sim E \\ \\ 3. & \forall z \sim D \vdash \sim D \\ \\ 4. & \forall z \sim D \vdash \forall z \sim E \\ \\ 5. & \vdash \forall z \sim D \supset \forall z \sim E \\ \\ 6. & \vdash \exists zE \supset \exists zD \\ \\ 7. & \vdash B \supset A \end{array}$$

$$\begin{array}{ll} 1, \supset \sim \\ AS_4 \\ 2, 3, \overline{MP}, Gen \\ 2, 3, \overline{MP}, Gen \\ 5, \supset \sim \\ 6. & \vdash \exists zE \supset \exists zD \\ 5, \supset \sim \\ 6. & \vdash \exists zE \supset \exists zD \\ \end{array}$$

99. 解:

有效的。

1.
$$\exists x P(x) \supset \forall x Q(x), P(x) \vdash Q(x)$$
 $\in, \exists +, \overline{MP}, AS_4$
2. $\vdash \exists x P(x) \supset \forall x Q(x) \supset \forall x (P(x) \supset Q(x))$ 1, CP, Gen, CP

100. 解:

不是有效的,令解释 $I = \langle N, J_0 \rangle$,其中 N 表示自然数集,Q(x)、P(x) 在解释 I 和指派 $\sigma \in \sum_I$ 下都为 "x 是奇数",显然 $I(\forall x(P(x) \supset Q(x)) \supset (\exists xP(x) \supset \forall xQ(x)))(\sigma) = f$ 。

101. 解:

不是有效的,令解释 $I=< N, J_0>$,其中 N 表示自然数集,Q(x)、P(x) 在解释 I 和指派 $\sigma\in\sum_I$ 下都为 "x 是奇数"、"x 是偶数",显然 $I(\forall x(P(x)\supset Q(x))\equiv(\forall xP(x)\supset\exists xQ(x)))(\sigma)=f$ 。

102. 解:

不是有效的,由 84 题知 $\exists x \forall y (P(x) \equiv P(y)) \equiv (\exists x P(x) \equiv \forall y P(y))$,显然 $\exists x P(x) \equiv \forall y P(y)$ 不是有效的,故 $\exists x \forall y (P(x) \equiv P(y))$ 也不是有效的。

103. 解:

不是有效的, 令解释 $I = \langle N, I_0 \rangle$, 其中 N 为自然数集, R(x,y) 在 I 下表示为 " $\frac{x}{y} = 0$ "。

104. 解:

- 1) $I(x+y=1)(\sigma[x|1][y|1]) = f$,所以 $I(\forall x \forall y(x+y=1))(\sigma) = f$,I' 下同理。
- 2) a 为任意自然数

$$I(x+y=1)(\sigma[x|2][y|a]) = f$$

$$I(\sim (x+y=1))(\sigma[x|2][y|a]) = t$$

$$I(\forall y \sim (x+y=1))(\sigma[x|2]) = t$$

$$I(\sim \forall y \sim (x+y=1))(\sigma[x|2]) = f$$

$$I(\forall x \exists y (x+y=1))(\sigma) = f$$

• a 为任意实数

$$\begin{split} &I(x+y=1)(\sigma[x|a][y|1-a])=t\\ &I(\sim(x+y=1))(\sigma[x|a][y|1-a])=f\\ &I(\forall y\sim(x+y=1))(\sigma[x|a])=f\\ &I(\sim\forall y\sim(x+y=1))(\sigma[x|a])=t\\ &I(\forall x\exists y(x+y=1))(\sigma)=t \end{split}$$

3) 设 a 为任意整数

$$I(x+y=1)(\sigma[x|a][y|a+2]) = f$$

$$I(\forall y(x+y=1))(\sigma[x|a]) = f$$

$$I(\sim \forall y(x+y=1))(\sigma[x|a]) = t$$

$$I(\forall x \sim \forall y(x+y=1))(\sigma) = t$$

$$I(\exists x \sim \forall y(x+y=1))(\sigma) = f$$

26

I'下同理。

4) 有 2),3) 可直接推出

5)

$$I(O(x))(\sigma[x|1]) = t$$

$$I(\sim O(x))(\sigma[x|1]) = f$$

$$I(\forall x \sim O(x))(\sigma) = f$$

$$I(\exists x \sim O(x))(\sigma) = t$$

$$I(O(x))(\sigma[x|2]) = f$$
$$I(\forall x O(x))(\sigma) = f$$

故
$$I(\exists x O(x) \supset \forall x O(x))(\sigma) = f$$

105. 解:

存在, $A = P(x) \lor \sim P(x)$ 即满足条件。

106. 解:

不一定,若 A = B = P(x) 则 A,B 是协调的,若 A = B = P(x),则 A,B 不协调。

107. 解:

不一定成立,
$$M = P, N = \sim P, C = P \land \sim P$$
。

108. 解:

不一定成立,
$$M = N = P \lor \sim P, C = (P \lor \sim P) \land (\sim (P \lor \sim P))$$
。

110. 解:

不一定成立, 令
$$A = \sim \forall x P(x)$$
, 则 $A' = \sim \exists x P(x)$, 则 $\vdash A \supset A'$ 不成立。

111. 解: