Este es un examen **individual**, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar su teléfono celular. Toda respuesta debe estar **justificada** matemáticamente.

Tiempo máximo para este examen: 2 horas.

Nombre: _____ Código: ____

- 1. Sea Ω el sólido comprendido entre la superficie $z=4-2\sqrt{x^2+y^2}$ y el plano z=0, cuya densidad de masa está dada por $\rho(x,y,z)=x^2+y^2$. Calcule la masa del sólido Ω .
- 2. Queremos construir una caja cilíndrica (con piso y tapa) con volumen de $0.25\,m^3$ y debemos encontrar las medidas (para la altura h y el radio r) que hacen que la caja tenga mínima área superficial.
 - i. Plantee el problema formulándolo como una optimización con restricciones en dos variables.
 - ii. Resuelva el problema mediante el método de multiplicadores de Lagrange.

(6 puntos)

- 3. Considere el campo vectorial $\vec{\mathbf{F}} = \langle x, 0, 0 \rangle$ en \mathbb{R}^3 .
 - i. A partir de la definición de integral de superficie, calcule el flujo del campo vectorial $\vec{\mathbf{F}}$ a través del paraboloide $z=1-x^2-y^2,\,z\geq0$, con respecto a la normal que apunta hacia arriba.
 - ii. Enuncie el Teorema de la Divergencia y úselo para calcular la integral del enunciado anterior.

(6 puntos)

- 4. Considere las superficies $S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$ y $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, z = 0\}$, ambas orientadas hacia arriba, y considere el campo vectorial $\vec{\mathbf{F}} = \langle -yz, y, z \rangle$.
 - i. Calcule $\vec{\nabla} \times \vec{\mathbf{F}}$, el rotacional del campo vectorial $\vec{\mathbf{F}}$.
 - ii. Explique por qué $\iint_{S_1} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S}.$
 - iii. Calcule la integral indicada en el enunciado anterior.

(6 puntos)

- 5. Reponda falso o verdadero, justificando matemáticamente su respuesta.
 - i. El campo vectorial $\vec{\mathbf{F}} = \langle y^2 z^3, 2xyz^3, 3xy^2z^2 \rangle$ es un campo vectorial conservativo y $f(x, y, z) = xy^2z^3$ es un potencial para $\vec{\mathbf{F}}$.
 - ii. Si Ω es un sólido en \mathbb{R}^3 que está contenido entre los planos z=-1 y z=1, y el área de los cortes transversales de Ω (dados por los planos perpendiculares al eje z) viene dada por $A(z)=z^4+z^2$, entonces el volumen Ω es $\frac{16}{15}$.
 - iii. Si $\vec{\mathbf{F}}$ es un campo vectorial conservativo entonces $\vec{\nabla} \cdot \vec{\mathbf{F}} = 0$.
 - iv. Si \mathbf{c} es una curva cerrada simple en el plano, que encierra un dominio D, entonces la integral $\int_{\mathbf{c}} x \, dy$ calcula el área de D.

(6 puntos)

Este es un examen **individual**, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar su teléfono celular. Toda respuesta debe estar **justificada** matemáticamente.

Tiempo máximo para esta examen: 2 horas.

Nombre: ______ Código: _____

- 1. Sea Ω el sólido comprendido entre la superficie $z=4-(x^2+y^2)$ y el plano z=0, cuya densidad de masa está dada por $\rho(x,y,z)=x^2+y^2$. Calcule la masa del sólido Ω . (6 puntos)
- 2. Queremos construir una caja cilíndrica (con piso y tapa) con volumen de $0.5 \, m^3$ y debemos encontrar las medidas (para la altura h y el radio r) que hacen que la caja tenga mínima área superficial.
 - i. Plantee el problema formulándolo como una optimización con restricciones en dos variables.
 - ii. Resuelva el problema mediante el método de multiplicadores de Lagrange.

(6 puntos)

- 3. Considere el campo vectorial $\vec{\mathbf{F}} = \langle 0, y, 0 \rangle$ en \mathbb{R}^3 .
 - i. A partir de la definición de integral de superficie, calcule el flujo del campo vectorial \mathbf{F} a través del paraboloide $z=1-x^2-y^2,\,z\geq0$, con respecto a la normal que apunta hacia arriba.
 - ii. Enuncie el Teorema de la Divergencia y úselo para calcular la integral del enunciado anterior.

(6 puntos)

- 4. Considere las superficies $S_1 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \geq 0\}$ y $S_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \leq 1, z = 0\}$, ambas orientadas hacia arriba, y considere el campo vectorial $\vec{\mathbf{F}} = \langle y, -x, z \rangle$.
 - i. Calcule $\vec{\nabla} \times \vec{\mathbf{F}}$, el rotacional del campo vectorial $\vec{\mathbf{F}}$.
 - ii. Explique por qué $\iint_{S_1} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S}$.
 - iii. Calcule la integral indicada en el enunciado anterior.

(6 puntos)

- 5. Reponda falso o verdadero, justificando matemáticamente su respuesta.
 - i. El campo vectorial $\vec{\mathbf{F}} = \langle y^2 z^3, 2xyz^3, 3xy^2z^2 \rangle$ es un campo vectorial conservativo y $f(x, y, z) = x^3y^2z$ es un potencial para $\vec{\mathbf{F}}$.
 - ii. Si Ω es un sólido en \mathbb{R}^3 que está contenido entre los planos z=-1 y z=1, y el área de los cortes transversales de Ω (dados por los planos perpendiculares al eje z) viene dada por $A(z)=z^4+z^2$, entonces el volumen Ω es $\frac{15}{16}$.
 - iii. Si $\vec{\mathbf{F}}$ es un campo vectorial conservativo entonces $\vec{\nabla} \cdot \vec{\mathbf{F}} = 0$.
 - iv. Si \mathbf{c} es una curva cerrada simple en el plano, que encierra un dominio D, entonces la integral $\int_{\mathbf{c}} y \, dx$ calcula el área de D.

(6 puntos)

Examen Final – Cálculo Vectorial

Solución

Тема А.

1. La integral (3 puntos)

$$\int_0^{2\pi} \int_0^2 \int_0^{4-2r} r(r^2 \cos^2 \theta + r^2 \sin^2 \theta) \, dz dr d\theta = \int_0^{2\pi} \int_0^2 \int_0^{4-2r} r^3 \, dz dr d\theta = 2\pi \int_0^2 (4r^3 - 2r^4) dr d\theta$$

calcula la masa del sólido Ω , se obtiene $M = \frac{32\pi}{5}$ (3 puntos).

2. Sean r y h el radio y la altura del cilindro respectivamente medidas en metros. Dado que el volumen del cilindro esta fijo la siguinte ecuación se satisface

$$0.25 = \pi r^2 h.$$

Por otro lado el área superficial S de la caja esta dada por la suma del área de piso y techo con el área de la pared, es decir

$$S = 2\pi r^2 + 2\pi rh$$

De ahí:

(i) El problema de optimización que queremos resolver es (3 puntos):

$$\min 2\pi r^2 + 2\pi r h \text{ sujeto a } 0.25 = \pi r^2 h$$

(ii) Buscamos entonces los puntos críticos de Lagrange, resolviendo el sistema en (λ, r, h) dado por

$$4\pi r + 2\pi h = 2\pi r h \lambda$$
$$2\pi r = \pi r^2 \lambda$$
$$0.25 = \pi r^2 h$$

Si r=0 la primera ecuación implica que h=0 lo cual es inconsistente con la tercera ecuación asi que podemos suponer que $r\neq 0$. De la segunda ecuación concluimos que $\lambda=2/r$ (asi que $\lambda\neq 0$) y reemplazando en la primera concluimos que h=2r. Reemplazando ambas ecuaciones en la restricción concluimos que $0.25=2^3$ asi que $r=\sqrt[3]{\frac{1}{8\pi}}\simeq 0.341392$ metros (3 puntos).

3. (i.) Parametrizamos la superficie como el gráfico de una función, esto es

$$\begin{cases} x = u \\ y = v \\ z = 1 - u^2 - v^2, \end{cases}$$

con $u^2 + v^2 \le 1$. Calculamos entonces

$$T_u \times T_v = 2u\mathbf{i} + 2v\mathbf{j} + \mathbf{k}.$$

Por lo tanto, el flujo viene dado por (3 puntos)

$$\int \int_{u^2 + v^2 \le 1} u \mathbf{i} \cdot (2u \mathbf{i} + 2v \mathbf{j} + \mathbf{k}) dA = \int \int_{u^2 + v^2 \le 1} 2u^2 dA
= 2 \int_0^{2\pi} \int_0^1 r^3 \cos^2 \theta dr d\theta
= \frac{1}{2} \int_0^{2\pi} \cos^2 \theta d\theta = \frac{\pi}{2}.$$

(ii.) Por el Teorema de la Divergencia, la integral anterior es igual a (3 puntos)

$$\int \int_{x^2+y^2 \le 1} \int_0^{1-x^2-y^2} dV = \int_0^{2\pi} \int_0^1 \int_0^{1-r^2} r \, dz \, dr \, d\theta$$
$$= \int_0^{2\pi} \int_0^1 r \left(1 - r^2\right) \, dr \, d\theta$$
$$= \int_0^{2\pi} \frac{1}{4} \, d\theta = \frac{\pi}{2}.$$

4.

i. El rotacional del campo vectorial $\vec{\mathbf{F}}$ es (2 puntos)

$$\mathbf{rot}\,\vec{\mathbf{F}} = \left| \left(\begin{array}{ccc} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -yz & y & z \end{array} \right) \right| = \langle 0, -y, z \rangle.$$

ii. Por el teorema de Stokes, dado que S es una superficie orientada, parametrizada como una gráfica cuya frontera es una curva cerrada c, y $\vec{\mathbf{F}}$ un campo vectorial C^1 definido sobre S,

$$\iint_{S} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \int_{C} \vec{\mathbf{F}} \cdot d\vec{s}.$$

Como en el caso de las superficies S_1 y S_2 ambas están orientadas hacia arriba y tienen como frontera común el círculo c de ecuación $x^2 + y^2 = 9$ en el plano x-y, tenemos que (2 puntos)

$$\iint_{S_1} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \int_c \vec{\mathbf{F}} \cdot d\vec{s}.$$

iii. Podemos entonces calcular tal integral, según la ecuación anterior, usando la superficie S_2 (es la opción más fácil, ya que el vector normal unitario a la superficie $\vec{n} = \langle 0, 0, 1 \rangle$ es constante) como (2 puntos)

$$\iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot \vec{n} \ dS = \iint_{S_2} 0 \ dS = 0.$$

5.

i. Verdadero.

ii. Verdadero.

iii. Falso.

iv. Verdadero.

Тема В.

1. La integral (3 puntos)

$$\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r(r^2 \cos^2 \theta + r^2 \sin^2 \theta) \, dz dr d\theta = \int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r^3 \, dz dr d\theta = 2\pi \int_0^2 (4r^3 - r^5) dr dr d\theta$$

calcula la masa del sólido Ω , se obtiene $M = \frac{32\pi}{3}$ (3 puntos).

2. Sean r y h el radio y la altura del cilindro respectivamente medidas en metros. Dado que el volumen del cilindro esta fijo la siguiente ecuación se satisface

$$0.5 = \pi r^2 h.$$

Por otro lado el área superficial S de la caja esta dada por la suma del área de piso y techo con el área de la pared, es decir

$$S = 2\pi r^2 + 2\pi rh$$

De ahí:

(i) El problema de optimización que queremos resolver es (3 puntos):

$$\min 2\pi r^2 + 2\pi r h$$
 sujeto a $0.5 = \pi r^2 h$

(ii) Buscamos entonces los puntos críticos de Lagrange, resolviendo el sistema en (λ, r, h) dado por

$$4\pi r + 2\pi h = 2\pi r h \lambda$$
$$2\pi r = \pi r^2 \lambda$$
$$0.5 = \pi r^2 h$$

Si r=0 la primera ecuación implica que h=0 lo cual es inconsistente con la tercera ecuación asi que podemos suponer que $r\neq 0$. De la segunda ecuación concluimos que $\lambda=2/r$ (asi que $\lambda\neq 0$) y reemplazando en la primera concluimos que h=2r. Reemplazando ambas ecuaciones en la restriccion concluimos que $0.5=2\pi r^3$ asi que $r=\sqrt[3]{\frac{1}{4\pi}}\simeq 0.430127$ metros (3 puntos).

3. (i.) Parametrizamos la superficie como el gráfico de una función, esto es

$$\begin{cases} x = u \\ y = v \\ z = 1 - u^2 - v^2, \end{cases}$$

con $u^2 + v^2 \le 1$. Calculamos entonces

$$T_u \times T_v = 2u\mathbf{i} + 2v\mathbf{j} + \mathbf{k}.$$

Por lo tanto, el flujo viene dado por (3 puntos)

$$\int \int_{u^2+v^2 \le 1} v \mathbf{i} \cdot (2u \mathbf{i} + 2v \mathbf{j} + \mathbf{k}) dA = \int \int_{u^2+v^2 \le 1} 2v^2 dA
= 2 \int_0^{2\pi} \int_0^1 r^3 \sin^2 \theta dr d\theta
= \frac{1}{2} \int_0^{2\pi} \sin^2 \theta d\theta = \frac{\pi}{2}.$$

(ii.) Por el Teorema de la Divergencia, la integral anterior es igual a (3 puntos)

$$\int \int_{x^2+y^2 \le 1} \int_0^{1-x^2-y^2} dV = \int_0^{2\pi} \int_0^1 \int_0^{1-r^2} r \, dz \, dr \, d\theta$$
$$= \int_0^{2\pi} \int_0^1 r \left(1 - r^2\right) \, dr \, d\theta$$
$$= \int_0^{2\pi} \frac{1}{4} \, d\theta = \frac{\pi}{2}.$$

4.

i. El rotacional del campo vectorial $\vec{\mathbf{F}}$ es (2 puntos)

$$\mathbf{rot}\,\vec{\mathbf{F}} = \left| \left(\begin{array}{ccc} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -x & z \end{array} \right) \right| = \langle 0, 0, -2 \rangle.$$

ii. Por el teorema de Stokes, dado que S es una superficie orientada, parametrizada como una gráfica cuya frontera es una curva cerrada c, y $\vec{\mathbf{F}}$ un campo vectorial C^1 definido sobre S,

$$\iint_{S} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \int_{C} \vec{\mathbf{F}} \cdot d\vec{s}.$$

Como en el caso de las superficies S_1 y S_2 ambas están orientadas hacia arriba y tienen como frontera común el círculo c de ecuación $x^2+y^2=9$ en el plano x-y, tenemos que (2 puntos)

$$\iint_{S_1} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \int_c \vec{\mathbf{F}} \cdot d\vec{s}.$$

iii. Podemos entonces calcular tal integral, según la ecuación anterior, usando la superficie S_2 (es la opción más fácil, ya que el vector normal unitario a la superficie $\vec{n} = \langle 0, 0, 1 \rangle$ es constante) como (2 puntos)

$$\iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot d\vec{S} = \iint_{S_2} \vec{\nabla} \times \vec{\mathbf{F}} \cdot \vec{n} \, dS = \iint_{S_2} (-2) \, dS = -2A(S_2) = -2\pi.$$

5.

- i. Falso.
- ii. Falso.
- iii. Falso.
- iv. Falso.