- 1. 求函数 $y = \frac{3x-1}{x+1}$ 的值域.
- 2. 求函数 $y = \frac{4x+3}{2x-1}$ 的值域.
- 3. 求函数 $y = \frac{x^2 1}{x^2 + 2}$ 的值域.
- 4. 求函数 $y = \frac{x^2 x + 1}{2x^2 2x + 3}$ 的值域.
- 5. 求函数 $y = \frac{x^2 + 4x + 3}{x^2 + x 6}$ 的值域.
- 6. 若实数 x, y 满足 $x^2 + 4y^2 = 4x$, 求 $S = x^2 + y^2$ 的值域.
- 7. 已知函数 $y = f(x) = x^2 + ax + 3$ 在区间 $x \in [-1, 1]$ 上的最小值为 -3, 求实数 a 的值.
- 8. 求函数 $y = 3x^2 12x + 18\sqrt{4x x^2} 23$ 的值域.
- 9. 求函数 y = |x-2| |x+1| 的值域.
- 11. 已知定义域为 R 的函数 f(x) 满足: ① $f(x+y)=f(x)\cdot f(y)$ 对任何实数 x,y 都成立; ② 存在实数 x_1,x_2,y_3 使 $f(x_1) \neq f(x_2)$. 求证:
 - (1) f(0) = 1;
 - (2) f(x) > 0.
- 12. 设映射 $f: X \to Y$, 其中 X, Y 是非空集合, 则下列语句中正确的是 (
 - A. Y 中每一个元素必有原像

- B. Y 中的各元素只能有一个原像
- C. X 中的不同元素在 Y 中的像也不同
- D. Y 中至少存在一个元素, 它有原像
- 13. 集合 $M=\{a,b,c\}$ 与 $P=\{x,y,z\}$ 之间建立起四种对应关系 (如图), 则下列结论中正确的是 (

- A. 只有 f_2, f_3 是从 M 到 P 的映射
- B. 只有 f_2 , f_4 是从 M 到 P 的映射
- C. 只有 f_3, f_4 是从 M 到 P 的映射
- D. f_1, f_2, f_3, f_4 都是从 M 到 P 的映射
- 14. 设 (x,y) 在映射 f 下的像是 $(\frac{x+y}{2},\frac{x-y}{2})$, 则在 f 下 (-5,2) 的原像是 ().
 - A. (-10, 4)
- B. (-3, -7)
- C. (-6, -4) D. $(-\frac{3}{2}, -\frac{7}{2})$
- 15. 在给定的映射 $f:(x,y)\mapsto (2x+y,xy)(x,y\in {\bf R})$ 下, 点 $(\frac{1}{6},-\frac{1}{6})$ 的原像是 ().
 - A. $(\frac{1}{6}, -\frac{1}{36})$

- B. $(\frac{1}{3}, -\frac{1}{2})$ 或 $(-\frac{1}{4}, \frac{2}{3})$ C. $(\frac{1}{36}, -\frac{1}{6})$ D. $(\frac{1}{2}, -\frac{1}{3})$ 或 $(-\frac{2}{3}, \frac{1}{4})$

16.	. 已知集合 $M = \{x 0 \le x \le 6\}, \ P = \{0 \le y \le 3\},$ 则下列对应关系中, 不能作为从 M 到 P 的映射的是				
	().				
	$A. f: x \mapsto y = \frac{1}{2}x$	$B. f: x \mapsto y = \frac{1}{3}x$	C. $f: x \mapsto y = x$	$D. f: x \mapsto y = \frac{1}{6}x$	
17.	设 $M = \mathbf{R}$, 从 M 到 P 的映	射 $f: x \mapsto y = \frac{1}{x^2 + 1}$,则像	集 P 为 ().		
	A. $\{y y \in \mathbf{R}\}$	B. $\{y y \in \mathbf{R}\}$	C. $\{y 0 \le y \le 2\}$	D. $\{y 0 < y \le 1\}$	
18.	若映射 $f:A\to B$ 的像象是	otin E Y,原像的集合是 X , $ otin S$	则 X 与 A 的关系是	, Y 和 B 的关系	
19.	若 (x,y) 在映射 f 下的像是	(2x-y,x+2y), 则 $(-1,2)$	在 f 下的原像是	·	
20.	已知 (a,b) 在映射 f 的像是	(a-b,ab),则(2,3)的原像。	탄		
21.	已知 $f:x\mapsto y=x^2$ 是从集合 R 到集合 $M=\{x x\geq 0\}$ 的一个映射,则 M 中的元素 1 在 R 中的原像是				
22.	从集合 $\{a\}$ 到 $\{b,c\}$ 的不同	映射有 个.			
23.	. 从集合 {1,2} 到 {5,6} 的不同映射有 个.				
24.	. 已知集合 $A={\bf Z},B=\{x x=2n+1,n\in{\bf Z}\},C={\bf R},$ 且从 A 到 B 的映射是 $x\mapsto 2x-1,$ 从 B 到 C 的映射是 $x\mapsto \frac{1}{3x+1},$ 则从 A 到 C 的映射是				
25.	f 是集合 $X = \{a, b, c\}$ 到集	合 $Y=\{d,e\}$ 的一个映射, 则	J满足映射条件的"f"共有().	
	A. 5 个	B. 6 个	C. 7 个	D. 8 个	
26.	5. 若 $f: y = 3x + 1$ 是从集合 $A = \{1, 2, 3, k\}$ 到集合 $B = \{4, 7, a^4, a^2 + 3a\}$ 的一个映射, 求自然数 a, k 的值及集合 A, B .				
27.	函数 $f(x) = \frac{\sqrt{x^2 - 5x + 6}}{x - 2}$ I	的定义域是 ().			
	A. $\{x 2 < x < 3\}$	B. $\{x x < 2x > 3\}$	$C. \{x x \le 2x \ge 3\}$	D. $\{x x < 2$ 或 $x \ge 3\}$	
28.	若函数 $f(x)$ 的定义域是 $[-1]$	[0,1], 则函数 $f(x+1)$ 的定义	域是 ().		
	A. [-1,1]	B. [0, 2]	C. [-2,0]	D. [0, 1]	
29.	A. $[-1,1]$ 在① $y=x$ 与 $y=\sqrt{x^2}$; ② $y=1$ 这五组函数中, 表示	$y = \sqrt{x^2} - y = (\sqrt{x})^2; \ \Im y$	C. $[-2,0]$		
29.	在① $y=x$ 与 $y=\sqrt{x^2}$; ② $y=\sqrt{x^2}$	$y = \sqrt{x^2} - y = (\sqrt{x})^2; \ \Im y$	C. $[-2,0]$		
	在① $y = x$ 与 $y = \sqrt{x^2}$; ② $y = 1$ 这五组函数中, 表示	$y = \sqrt{x^2}$ 与 $y = (\sqrt{x})^2$; ③ y 民同一函数的组数是 (). B. 1	C. $[-2,0]$ $= x 与 y = \frac{x^2}{x}; ④ y = x $	与 $y = \sqrt{x^2}$; ⑤ $y = x^0$	

31. 已知镭经过 100 年后剩下原来质量的 95.76%, 若质量为 l 克的镭经过 x 年后的剩余质量为 y 克, 则 y 与 x 之间的解析式是 ().

A.
$$y = (\frac{0.9576}{100})^x$$

B.
$$y = (0.9576)^{100x}$$

C.
$$y = (0.9576)^{\frac{x}{100}}$$

D.
$$y = 1 - (1 - 0.9576)^{\frac{x}{100}}$$

32. 函数 $y = x + \frac{|x|}{x}$ 的图像是 ().

- 33. 函数 $y = \sqrt{1 x^2} + \sqrt{x + 1}$ 的定义域为_____
- 34. 函数 $y = \frac{1}{\sqrt{2x^2 + 3}}$ 的定义域为______.
- 35. 函数 $y = \frac{x+5}{3x^2-2x-1}$ 的定义域为_____.
- 36. 函数 $y = \sqrt{6x x^2 9}$ 的定义域为______
- 37. 函数 $y = \sqrt{4 x^2} + \frac{1}{|x| 1}$ 的定义域为_____.
- 38. 函数 $y = \frac{x^3 1}{x + |x|}$ 的定义域为______.
- 39. 函数 $y = \frac{1}{|x| x^2}$ 的定义域为_____.
- 40. 函数 $y = \sqrt{1 (\frac{x-1}{x+1})^2}$ 的定义域为_____.
- 41. 函数 $y = \frac{\sqrt{x^2 2x 15}}{|x + 3| 8}$ 的定义域为_____.
- 42. 函数 $y = 1 \frac{1}{x+2}$ 的值域为_____.
- 43. 函数 $y = \frac{3}{2x}$ 的值域为______.
- 44. 函数 $y = \frac{x+3}{x-3}$ 的值域为_____.
- 45. 函数 $y = \frac{5x+3}{x-3}$ 的值域为_____.
- 46. 函数 $y = 4 + \sqrt{2x+1}$ 的值域为______.
- 47. 函数 $y = \sqrt{x \frac{1}{2}x^2}$ 的值域为______.
- 48. 函数 $y = \sqrt{-x^2 + x + 2}$ 的值域为_____.
- 49. 函数 $y = \frac{2x^2 + 2x + 3}{x^2 + x + 1}$ 的值域为______.

- 50. 若函数 f(x) 满足 $f(2x) = (1 \sqrt{2}x)(1 + \sqrt{2}x)$, 则 f(x) =_____.
- 51. 若函数 f(x) 满足 $f(\sqrt{x}+1) = x + 2\sqrt{x}$, 则当 $x \ge 1$ 时, f(x) =______
- 52. 若函数 f(x) 满足 $f(\frac{1}{x}) = \frac{x}{1-x^2}$, 则当 $x \neq 0$ 时, $f(x) = \underline{\hspace{1cm}}$
- 53. 若函数 f(x) = 2x + 1, $g(x) = x^2 + 2$, 满足 f(g(x)) = g(f(x)), 则 x =_____.
- 54. 若函数 f(x) 满足 $f(x+1) = 2x^2 + 1$, 则 f(x-1) =_____.
- 55. 若一次函数 f(x) 满足 f(f(x)) = 1 + 2x, 则 f(x) =_____.
- 57. 函数 $f(x) = \frac{x}{\sqrt{1+x^2}}$,则 $f(f(x)) = \underline{\hspace{1cm}}$, $f(f(f(x))) = \underline{\hspace{1cm}}$.
- 58. 若 -b < a < 0, 且函数 d(x) 的定义域是 [a, b], 则函数 F(x) = f(x) + f(-x) 的定义域是 (
 - A. [a,b]

- B. [-b, -a]
- C. [-b, b]
- D. [a, -a]
- 59. 若 f(x) 的定义域是 [0,1], 且 f(x+m)+f(x-m) 的定义域是 \varnothing , 则正数 m 的取值范围是 ().

 - A. 0 < m < 1 B. $0 < m \le \frac{1}{2}$ C. $0 < m < \frac{1}{2}$
- D. $m > \frac{1}{2}$

- 60. 函数 $y = \frac{x^2 1}{x^2 + 1}$ 的值域是 (
 - A. (-1,1)
- B. [-1, 1]
- C. [-1,1)
- D. (-1,1]

- 61. 若 $2x^2 3x \le 0$, 则函数 $f(x) = x^2 + x + 1$).
 - A. 有最小值 $\frac{3}{4}$, 但无最大值
- B. 有最小值 $\frac{3}{4}$, 有最大值 1
- C. 有最小值 1 有最大值 $\frac{19}{4}$

- D. 既无最小值, 也无最大值
- 62. 函数 $f(x) = |1 x| |x 3| (x \in \mathbf{R})$ 的值域是 ().
 - A. [-2, 2]
- B. [-1, 3]
- C. [-3, 1]
- D. [0, 4]
- 63. 若函数 f(x) 的定义域是 [0,1], 分别求函数 f(1-2x) 和 f(x+a)(a>0) 的定义域.
- 64. 若函数 f(x+1) 的定义域是 [-2,3), 求函数 $f(\frac{1}{x}+2)$ 的定义域.
- 65. 求函数 $y = \frac{2x}{x^2 + x + 1}$ 的值域.
- 66. 求函数 $y = \frac{x^2 + x 1}{x^2 + x + 1}$ 的值域.
- 67. 求函数 $y = \frac{x^2 1}{x^2 5x + 4}$ 的值域
- 68. 若实数 x, y 满足 $3x^2 + 2y^2 = 6x$, 分别求 $x 与 x^2 + y^2$ 的取值范围.
- 69. 若实数 x, y 满足 $x^2 + y^2 = 2x$, 求 $x^2 y^2$ 的取值范围.

- 70. 求函数 $y = 3x 2 + \sqrt{3 2x}$ 的值域.
- 71. 求函数 $y = 2x + \sqrt{2x 1}$ 的值域.
- 72. 求函数 y = (x-1)(x-2)(x-3)(x-4) + 15 的值域.
- 73. 已知函数 $f(x) = x^2 2x + 3$ 在 [0, m] 上有最大值 3, 最小值 2, 求正数 m 的取值范围.
- 74. 已知函数 $y = x^2 + mx 1$ 在区间 [0,3] 上有最小值 -2, 求实数 m 的值.
- 75. 当 $x \ge 0$ 时, 求函数 $f(x) = x^2 + 2ax$ 的最小值.
- 76. 已知函数 $f(x) = \frac{ax}{2x+3} (x \neq -\frac{3}{2})$ 满足 f(f(x)) = x, 求实数 a 的值.
- 77. 已知 f(x) 是二次函数, 且满足 $f(2x) + f(3x+1) = 13x^2 + 6x 1$, 求 f(x) 的表达式.
- 78. 已知函数 f(x) 的定义域是一切非零实数, 且满足 $3f(x) + 2f(\frac{1}{x}) = 4x$, 求, f(x) 的表达式.
- 79. 作出函数 $y = 1 + \frac{|x|}{x}$ 的图像.
- 80. 作出函数 y = x |1 x| 的图像.
- 81. 作出函数 $y = |x^2 4x + 3|$ 的图像.
- 82. 作出函数 $y = \frac{x^3 + x}{|x|}$ 的图像.
- 83. 作出函数 $y = \frac{(x + \frac{1}{2})^0}{|x| x}$ 的图像.
- 84. 已知 $f(x) = -x^2 + 2x + 3$, 画出函数 $y = \frac{1}{2}[f(x) + |f(x)|]$ 的图像.
- 85. 已知 $f(x) = |x|, x \in [-1,1]$, 作出函数 y = f(x+1) + 1 的图像.
- 86. 将进货单价为 40 元的商品按每件 50 元出售时, 每月能卖出 500 个, 已知这批商品在销售单价的基础上每涨 价 1 元, 其月销售数就减少 10 个, 为了每月赚取最大利润, 销售单价应定为多少?
- 87. 飞机飞行 1 小时的耗费由两部分组成: 固定部分 4900 元, 变动部分 P 与飞机飞行速度 v(千米/时) 的函数关 系是 $P=0.01v^2$. 已知甲、乙两地相距为一常数 $a(\mathbf{f}.\mathbf{k})$, 试写出飞机从甲地飞到乙地的总耗费 y 与飞机速 度 v 的函数关系式, 并写出耗费最小时飞机的飞行速度.
- 88. 求证: 函数 $f(x) = x^3$ 在 $x \in \mathbf{R}$ 上是增函数.
- 89. 已知奇函数 y = f(x) 在 x < 0 时是减函数, 求证: y = f(x) 在 x > 0 时也是减函数.
- 90. 已知 f(x) 是奇函数, 且当 x > 0 时 f(x) = x(1-x), 求 f(x) 在 x < 0 时的表达式.
- 91. 已知函数 y = f(x) 满足 $f(x) = f(4-x)(x \in \mathbf{R})$, 且 f(x) 在 x > 2 时为增函数, 记 $a = f(\frac{3}{5})$, $b = f(\frac{6}{5})$, c = f(4), 则 a, b, c 之间的大小关系是 ().

A.
$$c > a > b$$

B.
$$c > b > a$$

C.
$$b > a > c$$

C.
$$b > a > c$$
 D. $a > c > d$

- 92. 画出函数 $y = x^2 2|x| 1$ 的图像.
- 93. 求函数 $y = \frac{x-2}{2x+1}$ 的值域.
- 94. 已知函数 $f(x)=(x-1)^2(x\leq 1)$, 又 f(x) 和 $\varphi(x)$ 的图像关于直线 y=x 对称, 求 $\varphi(x)$ 的表达式.
- 95. 求实数 m 的范围, 使关于 x 的方程 $x^2 + 2(m-1)x + 2m + 6 = 0$:
 - (1) 有两个实数根, 且一个比 2 大, 另一个比 2 小;
 - (2) 有两个实数根, 且都比 1 大;
 - (3) 有两个实数根 α, β , 且满足 $0 < \alpha < 1 < \beta < 4$;
 - (4) 至少有一个正根.
- 96. 就参数 m 讨论方程 $x^2 2|x| m = 0$ 的解的情况.
- 97. 下列记数中, 符合科学记数法的是 ().

A.
$$35.6 \times 10^{-25}$$

B.
$$0.356 \times 10^{-23}$$

C.
$$3.56 \times 10^{-24}$$

D.
$$356 \times 10^{-26}$$

98. 计算 $3^{-1} \times 2^{-2} \div 4^{-2}$ 的结果是 ().

A.
$$\frac{1}{192}$$

B.
$$\frac{4}{3}$$

C.
$$\frac{1}{12}$$

D.
$$-\frac{4}{3}$$

99. 下列各式中, 正确的是().

A.
$$(-1)^0 = -1$$
 B. $(-1)^{-1} = 1$

B.
$$(-1)^{-1} = 1$$

C.
$$3a^{-2} = \frac{1}{3a^2}$$

D.
$$(-x)^5 \div (-x)^3 = x^2$$

100. 下列各式中, 计算正确的是().

A.
$$(-0.125) \div (-0.5)^{-3} = 1$$

C.
$$(\frac{1}{3})^0 \div 3^{-1} = 3$$

B.
$$10^{-4}(\sqrt{5})^0 = -10000$$

D.
$$(\sqrt{3} - \sqrt{2})^0 - (\sqrt{3})^2 - (-\sqrt{2})^2 = 1 - 3 + 2 = 0$$

101. 化简 $\frac{1}{3}x\sqrt{9x} - x^2\sqrt{\frac{1}{x}}$ 的结果是 ().

A.
$$\sqrt{x}$$

B.
$$x(1-x^2)\sqrt{x}$$

C.
$$x^2(1 - x\sqrt{x})$$

102. 化简 $\frac{a^{-2}-b^{-2}}{a^2-b^2}$ 的结果是 ().

B.
$$-\frac{1}{a^2b^2}$$

C.
$$a^{-1} + b^{-1}$$

D.
$$\frac{1}{a^2b^2}$$

103. 已知 $x = 1 - 2^s$, $y = 1 - 2^{-s}$, 则 y 等于 ().

A.
$$\frac{x-1}{x}$$
 B. $\frac{2-x}{1-x}$

B.
$$\frac{2-x}{1-x}$$

C.
$$\frac{x}{x-1}$$

D.
$$\frac{x-2}{x-1}$$

104. 计算 $\sqrt{(3-\pi)^2}$ 的结果是 ().

A.
$$3 - \pi$$

B.
$$\pi - 3$$

C.
$$\pi + 3$$

D.
$$-\pi - 3$$

- 105. 若 $(\sqrt[n]{-3})^n$ 有意义, 则 n 一定是 ().
 - A. 正偶数
- B. 自然数
- C. 正奇数
- D. 整数

- 106. 已知 $n \in \mathbb{N}$, 在① $\sqrt[4]{(-4)^{2n}}$; ② $\sqrt[4]{(-4)^{2n+1}}$; ③ $\sqrt[5]{-x^2}$; ④ $\sqrt[5]{-x^2}$ 这四个式子中,有意义的 ().
 - A. 是①②③④
- B. 只有③④
- C. 只有①③④
- D. 只有④

- 107. 若 $\sqrt[4]{4a^2 4a + 1} = \sqrt[3]{1 2a}$, 则实数 a 的取值范围是 ().
- B. $a = \frac{1}{2}$ **或** 0
- C. $a > \frac{1}{2}$
- D. R
- 108. 在① 0^{-1} ; ② $0^{-\frac{1}{2}}$; ③ 0^{0} ; ④ $0^{0.2}$ 这四个式子中, 有意义的个数是(
 - A. 0

B. 1

C. 2

D. 3

- 109. 下列各式中正确的是().

 - A. $-4^0 = 1$ B. $(5^{-\frac{1}{2}})^2 = 5$
- C. $(-3^{m-n})^2 = 9^{m-n}$
- D. $(-2)^{-1} = \frac{1}{2}$

- 110. 计算 $[(-3)^2]^{\frac{1}{2}} (-10)^0$ 的值等于 (

C. -4

D. 4

- 111. 下列计算中正确的是().
 - A. $a^{\frac{8}{3}} \cdot a^{\frac{3}{8}} = a$ B. $a^{\frac{8}{3}} \cdot a^{-\frac{8}{3}} = 0$
- C. $a^{\frac{8}{3}} \div a^{\frac{1}{3}} = a^{8}$
- D. $a^{\frac{1}{2}} \div a^{\frac{1}{3}} = a^{\frac{1}{6}}$

- 112. 下列计算中正确的是().
 - A. $a^{\frac{3}{4}} \cdot a^{\frac{4}{3}} = a$ B. $a^{\frac{3}{4}} \div a^{\frac{3}{4}} = a$
- C. $a^{-4} \div a^4 = 0$
- D. $(a^{\frac{3}{4}})^{\frac{4}{3}} = a$

- 113. 化简 $(a^{\frac{2}{3}}b^{\frac{1}{2}})(-3a^{\frac{1}{2}}b^{\frac{1}{3}})\div(\frac{1}{3}a^{\frac{1}{6}}b^{\frac{5}{6}})$ 的结果是 ().
 - A. 6a

B. -a

C. -9a

D. 9a

- 114. 将 $\sqrt[3]{-2\sqrt{2}}$ 化成不含根号的式子是 (
 - A. $-2^{\frac{1}{2}}$

- B. $-2^{-\frac{1}{2}}$
- C. $-2^{\frac{1}{3}}$

D. $-2^{\frac{2}{3}}$

- 115. 将 $(a^{\frac{1}{n}} + b^{\frac{1}{n}})^{\frac{1}{3}}$ 表示成根式的形式是 (
 - A. $\sqrt[3]{a^{\frac{1}{n}} + b^{\frac{1}{n}}}$
- B. $(\sqrt[n]{a} + \sqrt[n]{b})^{\frac{1}{3}}$
- C. $\sqrt[3]{\sqrt[n]{a} + \sqrt[n]{b}}$
- D. $(\sqrt[n]{a} + \sqrt[n]{b})^3$

- 116. 计算: $\sqrt{12} \sqrt{3} \div (2 + \sqrt{3}) = \underline{\hspace{1cm}}$.
- 117. 计算: $(\sqrt{12} \sqrt{\frac{1}{2}} 2\sqrt{\frac{1}{3}}) (\sqrt{\frac{1}{8}} \sqrt{18}) = \underline{\hspace{1cm}}$
- 118. 计算: $(\sqrt{3}+2)^{1997} \times (\sqrt{3}-2)^{1988} =$ ______.
- 119. 计算: $\frac{2\sqrt{10}-5}{4-\sqrt{10}} =$ ______.
- 120. 计算: $4\sqrt{\frac{2}{5}} \sqrt{1000} + 2\sqrt{10} =$ ______.
- 121. 计算: $\frac{1}{(2+\sqrt{3})^2} + \frac{1}{(2-\sqrt{3})^2} = \underline{\hspace{1cm}}$.
- 122. 计算: $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}=$ ______.

- 123. 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $3x^{-\frac{3}{2}} =$ _____.
- 125. 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式): $(a+b)^{\frac{1}{2}}\cdot (a-b)^{-\frac{4}{3}} =$ ______.
- 126. 将根式改写成分数指数幂的形式: $\sqrt[4]{a^3}$ =_____.
- 127. 将根式改写成分数指数幂的形式: ⁵√b⁸ =_____.
- 128. 将根式改写成分数指数幂的形式: $\sqrt[4]{x^2 + y^2} =$ _____.
- 129. 将根式改写成分数指数幂的形式: $\frac{\sqrt{x}}{\sqrt[3]{y^4}} =$ ______.
- 130. 将根式改写成分数指数幂的形式: $\sqrt{2\sqrt{2}} =$ ______.
- 131. 将根式改写成分数指数幂的形式: $-\frac{1}{\sqrt{27x}} = _____.$
- 132. 将根式改写成分数指数幂的形式: $\sqrt{\frac{4}{3ab^3}} =$ _____.
- 133. 已知 m < n, 将根式改写成分数指数幂的形式: $2\sqrt[6]{(m-n)^{-2}} =$ ______.
- 134. 判断命题: $2^{\frac{3}{2}} \cdot 2^{\frac{2}{3}} = 2$ 是否正确, ______.
- 135. 判断命题: $(\frac{1}{8})^{-\frac{1}{2}} = -2\sqrt{2}$ 是否正确, _____.
- 136. 判断命题: 若 $a \in \mathbb{R}$, 则 $(a-1)^0 = 1$ 是否正确, ______.
- 137. 判断命题: $a^x + a^y = a^{x+y}$ 是否正确, _____.
- 138. 判断命题: $\sqrt[3]{-5} = \sqrt[6]{(-5)^2} = \sqrt[6]{25}$ 是否正确, ______.
- 139. 计算: $(\frac{81}{625})^{-\frac{3}{4}} =$ _____.
- 140. 计算: $(0.064)^{-\frac{1}{3}} =$ _____.
- 141. 计算: $(2\sqrt{2})^{-\frac{1}{3}} =$ _____.
- 142. 计算: $[(-3)^2]^{\frac{3}{2}} =$ _____.
- 143. 计算: $(-0.027)^{-\frac{2}{3}} =$ _____.
- 144. 计算: $(-0.001)^{-\frac{4}{3}} =$ _____.
- 145. 计算: $5^{\frac{4}{5}} \times 125 \times 25^{-0.4} =$ ______.
- 146. 计算: $(8+2\times15^{\frac{1}{2}})^{\frac{1}{2}} =$ ______.
- 147. 计算: $(4-12^{\frac{1}{2}})^{\frac{1}{2}} =$ _____.

148. 计算:
$$(0.25)^{-0.5} + (\frac{1}{27})^{-\frac{1}{3}} - 625^{0.25} =$$
______.

149. 化筒:
$$2x^{-\frac{1}{3}}(\frac{1}{2}x^{\frac{1}{3}}-2x^{-\frac{2}{3}})-(-3.5)^0=$$
_____.

150. 化简:
$$(x^{\frac{1}{3}} + y^{\frac{1}{3}})(x^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}}) = _____.$$

151. 化简:
$$(\frac{b^3}{2a^2}) \div (-\frac{4b^3}{a^{-7}}) \times (-\frac{b^2}{a})^3 = \underline{\hspace{1cm}}.$$

152. 化简:
$$(2a^{\frac{1}{4}}b^{-\frac{1}{3}})(-3a^{-\frac{1}{2}}b^{\frac{2}{3}}) \div (-\frac{1}{4}a^{-\frac{1}{4}}b^{-\frac{2}{3}}) =$$
_____.

153. 若
$$a = 1.5^{-\frac{1}{2}}$$
, $b = 0.5^{-\frac{1}{2}}$, $c = 1$, 则它们的大小顺序是 ().

A.
$$a < c < b$$

B.
$$a < b < c$$

C.
$$c < b < a$$

D.
$$b < c < a$$

154. 若
$$a = \frac{1}{\sqrt{2}}$$
, $b = \frac{1}{\sqrt[3]{2}}$, 则 $[a^{-\frac{3}{2}}b(ab^{-2})^{-\frac{1}{2}}(a^{-1})^{-\frac{2}{3}}]^3 =$ ______.

155. 若
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 2$$
, 则:

(1)
$$a + a^{-1} = ___;$$

(2)
$$a^2 + a^{-2} = ____;$$

(3)
$$a^4 + a^{-4} = \underline{\hspace{1cm}}$$

156. 若
$$10^{\alpha} = 2^{-\frac{1}{2}}$$
, $10^{\beta} = \sqrt[3]{32}$, 则 $10^{2\alpha - \frac{3}{4}\beta} =$ ______.

157. 计算:
$$(\frac{1}{125})^{-\frac{1}{3}} + (-2)^{-2} + (-2)^{0}$$
.

158. 计算:
$$(2\frac{7}{9})^{\frac{1}{2}} - (-0.027)^{-\frac{1}{3}} - (-\sqrt{3})^{-2} + \pi^0$$
.

159. 计算:
$$5-3 \times [(-3\frac{3}{8})^{-\frac{1}{3}} + 1031 \times (0.25 - 2^{-2})] \div 9^{0}$$
.

160. 计算:
$$(0.027)^{\frac{1}{3}} - (-\frac{1}{6})^{-2} + 256^{0.75} - |-3^{-1}| + (-5.555)^{0}$$
.

161. 计算:
$$(2.25)^{0.5} + (-4.3)^0 - (3\frac{3}{8})^{-\frac{2}{3}} + \frac{3^{-2} - 2^{-2}}{3^{-1} - 2^{-1}}$$
.

162. 计算:
$$(0.25)^{-2} + (\frac{8}{27})^{\frac{1}{3}} + (\frac{1}{8})^{-\frac{2}{3}} - (\frac{1}{16})^{-0.75}$$
.

163. 计算或化简:
$$\sqrt[3]{m^{\frac{9}{2}}\cdot\sqrt{m^{-3}}}\div\sqrt[3]{m^{-7}}\cdot\sqrt[3]{m^{13}}(m>0).$$

164. 计算或化简:
$$(x-y) \div (x^{\frac{1}{2}} + y^{\frac{1}{2}}) - (x+y-2x^{\frac{1}{2}}y^{\frac{1}{2}}) \div (x^{\frac{1}{2}} - y^{\frac{1}{2}})(x>y>0).$$

165. 计算或化简:
$$(8y^{-\frac{1}{3}}\sqrt{x^{-\frac{1}{3}}y\sqrt{x^{\frac{4}{3}}}})^{\frac{1}{3}}$$
.

166. 计算或化简:
$$\frac{x+y}{\sqrt{x}+\sqrt{y}}+\frac{2xy}{x\sqrt{y}+y\sqrt{x}}$$

167. 计算或化简:
$$(5+\sqrt{6}+\sqrt{10}+\sqrt{15}) \div (\sqrt{2}+\sqrt{3}+\sqrt{5})$$
.

168. 计算或化简:
$$(2+3^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}})$$
.

169. 化简:
$$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}}$$
.

- 170. 化简: $(x^{\frac{a+b}{c-a}})^{\frac{1}{b-c}} \cdot (x^{\frac{x+a}{b-c}})^{\frac{1}{a-b}} \cdot (x^{\frac{b+c}{a-b}})^{\frac{1}{c-a}}$.
- 171. 化筒: $\frac{a^2-b^2}{a^2+b^2}(\frac{a-b}{a+b})^{\frac{p+q}{p-q}}\cdot[(\frac{a+b}{a-b})^{\frac{2p}{p-q}}+(\frac{a+b}{a-b})^{\frac{2q}{p-q}}].$
- 172. 当 a=0.001 时,求 $\frac{a^{\frac{4}{3}}-8a^{\frac{1}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\div(1-2\sqrt[3]{\frac{b}{a}})$ 的值.
- 173. 求证: $\frac{1}{1+x^{a-b}+x^{a-c}}+\frac{1}{1+x^{b-c}+x^{b-a}}+\frac{1}{1+x^{c-a}+x^{c-b}}=1.$
- 174. 已知幂函数 f(x) 的图像经过点 $(2, \frac{\sqrt{2}}{2})$, 则 f(4) 的值等于 ().
 - A. 16

B. $\frac{1}{16}$

C. $\frac{1}{2}$

D. 2

- 175. 下列幂函数中, 定义域为 $\{x|x>0\}$ 的是 ().
 - A. $y = x^{\frac{2}{3}}$
- B. $y = x^{\frac{3}{2}}$
- C. $y = x^{-\frac{2}{3}}$
- D. $y = x^{-\frac{3}{2}}$

- 176. 幂函数 $y = x^n (n \in \mathbf{Z})$ 的图像一定不经过 ().
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

177. 函数 $f(x) = x^{\frac{2}{3}}$ 的图像是 ().

В.

С.

178. 幂函数 $y=x^m$ 和 $y=x^n$ 在第一象限内的图像 C_1 和 C_2 图像所示, 则 m,n 之间的关系是 ().

A. n < m < 0

B. m < n < 0

C. n > m > 0

D. m > n > 0

179. 图中, C_1, C_2, C_3 为幂函数 $y = x^a$ 在第一象限的图像, 则解析式中的指数 α 依次可以取 ().

A.
$$\frac{4}{3}$$
, -2 , $\frac{3}{2}$

A.
$$\frac{4}{3}$$
, -2 , $\frac{3}{4}$ B. -2 , $\frac{3}{4}$, $\frac{4}{3}$

C.
$$-2, \frac{4}{3}, \frac{3}{4}$$

D.
$$\frac{3}{4}, \frac{4}{3}, -2$$

- 183. 函数 $y = x^{-\frac{5}{4}}$ 的定义域为 , 值域为
- 185. 函数 $y = x^{-\frac{2}{3}}$ 的定义域为 , 值域为 .
- 187. 函数 $y = 5(2x-1)^{\frac{3}{4}}$ 的定义域为 , 值域为 .
- 188. 将下列函数图像的标号, 填在相应函数后面的横线上:
 - (1) $y = x^{\frac{2}{3}}$:_____; (2) $y = x^{-2}$:_____; (3) $y = x^{\frac{1}{2}}$:____;
 - (4) $y = x^{-1}$:_____; (5) $y = x^{\frac{1}{3}}$:_____; (6) $y = x^{\frac{3}{2}}$:_____;
 - $(7)y = x^{\frac{4}{3}}$: ; $(8)y = x^{-\frac{1}{2}}$: ; $(9)y = x^{\frac{5}{3}}$:

- 189. 若幂函数 $y = x^n$ 的图像在 0 < x < 1 时位于直线 y = x 的下方, 则 n 的取值范围是_
- 190. 若幂函数 $y = x^n$ 的图像在 0 < x < 1 时位于直线 y = x 的上方, 则 n 的取值范围是_
- 191. 函数 $f(x) = x^{k^2 2k 3} (k \in \mathbf{Z})$ 的图像如图所示, 则 $k = \underline{\hspace{1cm}}$

- 应满足的条件是_____.
- 193. 若实数 a 满足 $2.4^a > 2.5^a$, 求 a 的取值范围.
- 194. 若实数 a 满足 $(\frac{3}{4})^{-a} > (\frac{4}{3})^{-a}$, 求 a 的取值范围.
- 195. 若实数 a 满足 $a^{-2} > 3^{-2}$, 求 a 的取值范围.
- 196. 若实数 a 满足 $0.01^{-3} > a^{-3}$, 求 a 的取值范围.
- 197. 将 $2.5^{\frac{2}{3}}$, $(-1.4)^{\frac{2}{3}}$, $(-3)^{\frac{1}{3}}$ 从小到大排列:
- 198. 将 $4.1^{\frac{2}{5}}$, $3.8^{-\frac{2}{3}}$, $(-1.9)^{\frac{3}{5}}$ 从小到大排列:_____.
- 199. 将 $0.16^{-\frac{3}{4}}$, $0.5^{-\frac{3}{2}}$, $6.25^{\frac{3}{8}}$ 从小到大排列:______.
- 200. 已知函数 $y=x^{n^2-2n-3}(n\in {f Z})$ 的图像与两坐标轴都无公共点, 且其图像关于 y 轴对称, 求 n 的值, 并画出相 应的函数图像.
- 201. 函数 $y = \sqrt{x^2 + 2x 3}$ 为减函数的区间是 ().

A.
$$(-\infty, -3]$$

B.
$$[-1, +\infty)$$

A.
$$(-\infty, -3]$$
 B. $[-1, +\infty)$ C. $(-\infty, -1]$

D.
$$[1, +\infty)$$

202. 若函数 y = (2k+1)x + b 在 $(-\infty, +\infty)$ 上是减函数,则().

A.
$$k > \frac{1}{2}$$

B.
$$k < \frac{1}{2}$$

A.
$$k > \frac{1}{2}$$
 B. $k < \frac{1}{2}$ C. $k > -\frac{1}{2}$

D.
$$k < -\frac{1}{2}$$

203.	若函数 $f(x) = 4x^2 - mx + 5$ 在区间 $[-2, +\infty)$ 上是增函数, 在区间 $(-\infty, -2]$ 上是减函数, 则 $f(1)$ 等于 ().				
	A7	B. 1	C. 17	D. 25	
204.	若函数 $y = x^2 + 2(a-2)x +$	- 5 在区间 (4,+∞) 上是增	函数, 则实数 a 的取值范围是	().	
	A. $a \leq -2$	B. $a \ge -2$	C. $a \le -6$	D. $a \ge -6$	
205.	下列函数中, 在区间 (0,2) 上	:为增函数的是 ().			
	A. $y = -3x + 1$	B. $y = \sqrt[3]{x}$	C. $y = x^2 - 4x + 3$	$D. y = \frac{4}{x}$	
206.	若函数 $f(x)$ 在定义域 R 上	为增函数, 且 $f(x) < 0$, 则了	下列函数在 R 上为增函数的是	: ().	
	A. $y = f(x) $	$B. y = \frac{1}{f(x)}$	C. $y = [f(x)]^2$	D. $y = [f(x)]^3$	
207.	函数 $y = \frac{1}{\sqrt{x^2 - 4x + 5}}$ 为掉	曾函数的区间是	为减函数的区间是	<u> -</u>	
208.	函数 $y = \frac{1}{\sqrt{3+2x-x^2}}$ 为掉	曾函数的区间是			
209.	函数 $y = 3x - 5 $ 为减函数的	的区间是			
210.). 函数 $y= x^2-2x-3 $ 为增函数的区间是				
211.	函数 $y = \frac{1-x}{1+x}$ 为减函数的区间是				
212.	. 定义在 $[1,3]$ 上的函数 $f(x)$ 为减函数, 求满足不等式 $f(1-a)-f(3-a^2)>0$ 的解集.				
213.	. 已知 $f(x) = -x^3 - x + 1(x \in \mathbf{R})$, 求证 $y = f(x)$ 在定义域上为减函数.				
214.	4. 求证: 函数 $f(x) = x + \frac{1}{x}$ 在 $(0,1)$ 上是减函数, 在 $(1,+\infty)$ 上是增函数.				
215.	. 求证: $f(x) = \sqrt{x} - \frac{1}{x}$ 在定义域上是增函数.				
216.	5. 已知常数 m, n 满足 $mn < 2$,求证: 函数 $f(x) = \frac{mx+1}{2x+n}$ 在 $(-\frac{n}{2}, +\infty)$ 上为减函数.				
217.	. 已知 $f(x) = x^2 + 1$, $g(x) = x^4 + 2x^2 + 2$, 是否存在实数 λ , 使得 $F(x) = g(x) - \lambda f(x)$ 在 $(-\infty, -1)$ 上是减				
	函数,在(-1,0)上是增函数	? 说明理由.			
218.	已知函数 $f(x)$ 在区间 $(-\infty$,	$+\infty$) 上是增函数, 又实数 a	a, b 满足 $a+b \ge 0$, 求证: $f(a)$	$+f(b) \ge f(-a)+f(-b).$	
219.	$f(x)$ 是定义在 \mathbf{R}^+ 的增函数	f, H. $f(\frac{x}{y}) = f(x) - f(y)$.			
	(1) 求 f(1) 的值;(2) 若 f(6) = 1, 解不等式 f	$(x+3) - f(\frac{1}{2}) < 2$			
000		w.	=>= (
220.	若 $f(x) = (m-1)x^2 + 3mx$				
	A. 是增函数 C. 先是增函数后是减函数		B. 是减函数 D. 先是减函数后是增函数		

234. 若函数 $y=f(x)$ 是偶函数, 其图像与 x 轴有四个交点, 则方程 $f(x)=0$ 的所有实数根之和为 ().					
A. 4	B. 2	C. 1	D. 0		
235. 函数 $f(x) = \frac{1}{2^1}$	$\frac{x}{x+x+2^{1-x}}(\qquad).$				
A. 是奇函数,	但不是偶函数	B. 是偶函数, 但不是奇函数	ά		
C. 既是奇函数	1, 又是偶函数	D. 既不是奇函数, 也不是個	昌函数		
236. 已知奇函数 f(x	f(x) 在 $x > 0$ 时的表达式为 $f(x) = 0$	$=2x-rac{1}{2}$,则当 $x\leq -rac{1}{4}$ 时,恒有().		
A. $f(x) > 0$	B. $f(x) < 0$	C. $f(x) - f(-x) \le 0$	D. $f(x) - f(-x) > 0$		
237. $f(x) + f(2-x)$	x + 2 = 0 对任何实数 x 都成立,	则 $f(x)$ 的图像 ().			
A. 关于直线 <i>x</i>	=1 成轴对称图形	B. 关于直线 $x=2$ 成轴对	 你图形		
C. 美于点 (1,	-1) 成中心对称图形	D. 关于点 (-1,1) 成中心系	才称图形		
238. 已知 $f(x), g(x)$	都是定义在 R 上的函数, $f(x)$ 为	g 奇函数, $g(x)$ 为偶函数, 且 $f(x) \cdot g(x)$	x) 恒不为 0, 判断下列函数		
的奇偶性: (1)f	$(x)+g(x)$:; $(2)f(x)\cdot g(x)$	(x):; $(3)f[f(x)]$:	(4)f[g(x)]:		
$(5)g[f(x)]:\underline{\hspace{1cm}}$	(6)g[g(x)]:				
239. 判断函数 $f(x)$	= 5 的奇偶性:				
240. 判断函数 $f(x)$	$=\sqrt{x^2-1}+\sqrt{1-x^2}$ 的奇偶性:	:			
241. 判断函数 $f(x)$	$=x^2-2x^2+3$ 的奇偶性:	·			
242. 判断函数 x ∈ [-	242 . 判断函数 $x \in [-4,4)$ 的奇偶性:				
243. 判断函数 $f(x) = 3x + 2 - 3x - 2 $ 的奇偶性:					
244. 判断函数 $f(x)$	$=rac{x^2(x-1)}{x-1}$ 的奇偶性:	·			
245. 判断函数 $f(x)$	$=rac{1}{2}[g(x)-g(-x)]$ 的奇偶性:				
246. 求证: 函数 f(x	$=\frac{x+1+\sqrt{1+x^2}}{x-1+\sqrt{1+x^2}}$ 是奇函数.				
247. 求证: 函数 f(x	$y = egin{cases} x(1-x), & x > 0, \\ x(1+x), & x < 0 \end{cases}$ 是奇函数	数.			
248. 已知奇函数 f(x	c) 在定义域 (-l,l) 上是减函数,	求满足 $f(1-m) + f(1-m^2) < 0$	的实数 m 的取值范围.		
249. 已知偶函数 f(a	⑵ 在 [0,+∞) 上是增函数. 求不管	等式 $f(2x+5) < f(x^2+2)$ 的解集			
250. 是否存在既是奇	F函数又是偶函数的函数 ? 说明理	里由			

. 求证: 定义域为 (-l,l) 的任何函数都能表示成一个奇函数与一个偶函数之和.

252. 下列函数中有反函数的是().

A.
$$y = 3 + \sqrt{x^2 + 5}$$
 B. $y = \frac{1}{x^2 + 1}$

B.
$$y = \frac{1}{x^2 + 1}$$

C.
$$y = \sqrt[3]{2x - 1} + 2$$

C.
$$y = \sqrt[3]{2x - 1} + 2$$
 D. $y = \begin{cases} x^2 - 3, & x \ge 0, \\ 3x, & x < 0 \end{cases}$

253. 函数 $y = \sqrt{x^2 - 2x + 3}(x < 1)$ 的反函数的定义域是(

A.
$$[0, +\infty)$$

B.
$$(2, +\infty)$$

C.
$$(-\infty, 1]$$

D.
$$[\sqrt{2}, +\infty)$$

254. 设 $f(x) = \frac{2x+1}{4x+3} (x \in \mathbf{R}, \; \coprod \; x \neq -\frac{3}{4}), \; 则 \; f^{-1}(2)$ 的值等于 ().

A.
$$-\frac{5}{6}$$
 B. $-\frac{2}{5}$

B.
$$-\frac{2}{5}$$

C.
$$\frac{2}{5}$$

D.
$$\frac{5}{11}$$

255. 函数 $y = x^2 + 2x(x < -1)$ 的反函数是 ().

A.
$$y = \sqrt{x+1} - 1(x < -1)$$

B.
$$y = \sqrt{x+1} - 1(x > -1)$$

C.
$$y = -\sqrt{x+1} - 1(x < -1)$$

D.
$$y = -\sqrt{x+1} - 1(x > -1)$$

256. 若函数 y=g(x) 的图像与函数 $f(x)=(x-1)^2(x\leq 1)$ 的图像关于直线 y=x 对称. 则 g(x) 的表达式是 ().

A.
$$g(x) = 1 - \sqrt{x}(x \ge 0)$$

B.
$$q(x) = 1 + \sqrt{x}(x > 0)$$

C.
$$g(x) = \sqrt{1 - x} (x \le 1)$$

D.
$$g(x) = \sqrt{1+x}(x \ge -1)$$

257. 函数 $y = \frac{ax+b}{cx+1}(a \neq bc)$ 的反函数是 $y = \frac{x+2}{3x+1}$, 则的 a,b,c 值依次为 ().

A.
$$1, -2, -3$$

B.
$$-1, 2, 3$$

$$C. -1, 2, -3$$

258. 若函数 $f(x) = \frac{x-2}{x+m}$ 的反函数 $f^{-1}(x) = f(x)$, 则 m 的值是 ().

D.
$$-2$$

259. 若函数 f(x) 的图像经过点 (0,-1), 则函数 f(x+4) 的反函数的图像必经过点 (

B.
$$(-4, -1)$$

C.
$$(-1, -4)$$

D.
$$(1, -4)$$

- 260. 已知函数 $y = -\sqrt{1-x^2}$ 的反函数是 $y = -\sqrt{1-x^2}$, 则原函数的定义域 "最大" 可以是______.
- 262. 若点 (1,2) 既在函数 $y = \sqrt{ax+b}$ 的图像上. 又在其反函数的图像上, 则 $a = _____, b = _____$
- 263. 若 $y = \frac{1+x}{1-x} (x \neq 1)$, 则其反函数 $f^{-1}(x) =$ _____.
- 264. 若 $f(x) = x^{\frac{2}{3}}(x < 0)$, 则其反函数 $f^{-1}(x) = 0$.
- 265. 若 $f(x) = -\sqrt{1-x^2}(0 < x < 1)$,则其反函数 $f^{-1}(x) = 1$
- 266. 若 $f(x) = \sqrt{x^2 4}(x \le -2)$,则其反函数 $f^{-1}(x) = -2$

- 270. 已知函数 $f(x) = \frac{x+1}{x-1}$, $g(x) = f^{-1}(-x)$, 则 g(x)().
 - A. 在 $(-\infty, +\infty)$ 上是增函数

B. 在 $(-\infty, -1)$ 上是增函数

C. 在 $(1,+\infty)$ 上是减函数

- D. 在 $(-\infty, -1)$ 上是减函数
- 271. 若函数 $y = \sqrt{x-m}$ 与其反函数的图像有公共点, 则 m 的取值范围是 ().
 - A. $m \geq \frac{1}{4}$
- B. $m \le \frac{1}{4}$
- D. m < 0
- 272. 已知 y = g(x) 是函数 y = f(x) 的反函数, 又 y = h(x) 与 y = g(x) 的图像关于原点 O(0,0) 对称, 则 h(x) 的 表达式是().
 - A. $y = f^{-1}(x)$
- B. $y = -f^{-1}(x)$

- 273. 若幂函数 f(x) 是奇函数,则 $f^{-1}(1) = _____, f^{-1}(-1) = ____.$
- 274. 若 $f(x) = \frac{2x-1}{x+a}$ 存在反函数, 则实数 a 的取值范围是______.
- 275. 若 $f(x) = 2x^2 4x + 9(x \ge 1)$, 且满足 $f^{-1}(a+1) = 3$, 则 f(a) =
- 276. 已知定义域为 $(-\infty,0]$ 的函数 f(x) 满足 $f(x-1)=x^2-2x$, 则 $f^{-1}(-\frac{1}{2})=$ ______
- 277. 求函数 $f(x) = \begin{cases} x+1, & x>0, \\ x-1, & x<0 \end{cases}$ 的反函数, 并作出其反函数的图像.
- 278. 已知函数 $f(x) = x^2 + 2x + 1$.
 - (1) 若函数的定义域是 $(-\infty, +\infty)$, 这个函数有没有反函数?
 - (2) 若函数的定义域是 $[0,+\infty)$, 求其反函数;
 - (3) 若函数的定义域是 $(-\infty, -1]$, 求其反函数.
- 279. 若关于 x 的方程 $x^2 + 2(m+3)x + 2m + 14 = 0$ 有两个实数根, 且一个比 4 大, 另一个比 4 小, 求实数 m 的 取值范围.
- 280. 若关于 x 的方程 $x^2 + 2mx (m-12) = 0$ 的两根都大于 2, 求实数 m 的取值范围

- 281. 若关于 x 的方程 $7x^2 (m+13)x + m^2 m 2 = 0$ 的两实数根 α, β 满足 $0 < \alpha < 1 < \beta < 2$, 求实数 m 的取值范围.
- 282. 若关于 x 的方程 $2x^2 3x + 2m = 0$ 的两根均在 [-1, 1] 之间, 求实数 m 的取值范围.
- 283. 若关于 x 的方程 $x^2 + 2mx + 2m^2 1 = 0$ 至少有一负根, 求实数 m 的取值范围.
- 284. 若在区间 [-2,2] 内恰有一个 x 的值满足方程 $2mx^2 x 1 = 0$, 求实数 m 的取值范围.
- 285. 若关于 x 的方程 $x^2 + x = m + 1$ 在 $0 < x \le 1$ 内有解, 求实数 m 的取值范围.
- 286. 就实数 k 的取值讨论下列关于 x 的方程解的情况:
 - (1) $x^2 + 2|x| k = 0$;
 - (2) $|x^2 2x 3| = k$.
- 287. 将下列各数从小到大排列: $(\frac{2}{3})^{-\frac{1}{3}}$, $(\frac{3}{5})^{\frac{1}{2}}$, $(\frac{2}{5})^{\frac{1}{2}}$, $(\frac{3}{3})^{\frac{2}{3}}$, $(\frac{3}{2})^{\frac{2}{3}}$, $(-2)^3$, $(\frac{5}{3})^{-\frac{1}{3}}$.

解答在这里(1)与零比,负数有(-2)³.(2)与 1 比,小于 1 的数有($\frac{3}{5}$) $\frac{1}{2}$,($\frac{5}{5}$) $\frac{1}{2}$,($\frac{5}{3}$) $-\frac{1}{3}$.利用幂函数 $x^{\frac{1}{2}}$ 的性质,得($\frac{2}{5}$) $\frac{1}{2}$ < ($\frac{3}{5}$) $\frac{1}{3}$ = ($\frac{5}{3}$) $-\frac{1}{3}$,所以($\frac{2}{5}$) $\frac{1}{2}$ < ($\frac{3}{5}$) $\frac{1}{2}$ < ($\frac{5}{3}$) $-\frac{1}{3}$; (3)与 1 比,大于 1 的数有($\frac{2}{3}$) $-\frac{1}{3}$,3 $\frac{1}{3}$,($\frac{3}{2}$) $\frac{2}{3}$.利用指数函数($\frac{3}{2}$) x 的性质,得($\frac{2}{3}$) $-\frac{1}{3}$ = ($\frac{3}{2}$) $\frac{1}{3}$ < ($\frac{3}{2}$) $\frac{2}{3}$. 再利用幂函数 $x^{\frac{2}{3}}$ 的性质,得($\frac{3}{2}$) $\frac{2}{3}$ < ($\sqrt{3}$) $\frac{2}{3}$ = 3 $\frac{1}{3}$, ... ($\frac{2}{3}$) $-\frac{1}{3}$ < ($\frac{3}{2}$) $\frac{2}{3}$ < 3 $\frac{1}{3}$. 综上所述,得(-2) 3 < ($\frac{2}{3}$) $\frac{1}{2}$ < ($\frac{3}{5}$) $-\frac{1}{3}$ < ($\frac{2}{3}$) $-\frac{1}{3}$ < ($\frac{3}{2}$

288. 求函数 $y = (\frac{1}{2})^{-x^2+2x}$ 为增函数的区间.

解答在这里,解法一: $0 < \frac{1}{2} < 1$,所以 $-x^2 + 2x$ 为减函数的区间为 $[1, +\infty)$,也就是 y 为增函数的区间.解法二因为 $y = (\frac{1}{2})^{-x^2+2x} = 2^{x^2-2x} = 2^{(x-1)^2-1}$,所以 y 为增函数的区间就是 $x^2 - 2x$ 为增函数的区间,即 $[1, +\infty)$.

289. 求函数 $y = 9^x - m \cdot 3^x + 1$ 的最小值.

解答在这里令 $t=3^x$ 则函数为 $y=t^2-mt+1=(t-\frac{m}{2})^2+1-\frac{m^2}{4}$,其图像的对称轴方程为 $t=\frac{m}{2}$. (1) 如下图左,若 $\frac{m}{2}>0$,则当 $t=\frac{m}{2}$ 时, $y_{\min}=1-\frac{m^2}{4}$.

(2) 如上图右, 若 $\frac{m}{2} \leq 0$, 则由于 t > 0, 函数无最小值.

- 290. 填写下表: $x f(x) = x^2 f(x) f(x-1) g(x) = 2^x g(x) g(x-1) 0 1 2 3 4 5 6 7 8 9 10 (1) 比较 <math>f(x) = x^2$ 与 $g(x) = 2^x$ 的函数值的大小. (2) 比较 $f(x) = x^2$ 与 $g(x) = 2^x$ 的函数值递增的快慢. 解经计算得下表: $x f(x) = x^2 f(x) f(x-1) g(x) = 2^x g(x) g(x-1) 0 0 1 1 1 1 2 1 2 2 1 4 2 3 9 7 8 4 4 16 7 16 8 5 25 9 32 16 6 36 11 64 32 7 49 13 128 64 8 64 15 256 128 9 81 17 512 256 10 100 19 1024 512 并描点得出函数 <math>f(x) = x^2$ 与 $g(x) = 2^x$ 在同一个平面直角坐标系下的图像如图 13 所示. (图 13) 由表和图 4 知: (1) 当 0 < x < 2 时, g(x) > f(x); 当 $g(x) = 2^x$ 的函数值递增的速度较 $g(x) = 2^x$ 慢.
- 291. 已知函数 f(x) = 2x + 1, $g(x) = 1.5^x$, $h(x) = x^{1.5}$, 试用数值计算比较三个函数在 $[0, +\infty)$ 上的函数值的大小、 图像递增的快慢. 并说明在函数图像上的表现. 解列表并计算得: x f(x) f(x) - f(x-1) g(x) g(x) - g(x-1) $h(x) \ h(x) - h(x-1) \ 0 \ 1 \ 1 \ 0 \ 1 \ 3 \ 2 \ 1.5 \ 0.5 \ 1 \ 1 \ 2 \ 5 \ 2 \ 2.25 \ 0.75 \ 2.82842712 \ 1.82842712 \ 3 \ 7 \ 2 \ 3.375 \ 1.125$ $5.19615242\ 2.3677253\ 4\ 9\ 2\ 5.0625\ 1.6875\ 8\ 2.80384758\ 5\ 11\ 2\ 7.59375\ 2.53125\ 11.1803399\ 3.18033989\ 6$ $13\ 2\ 11.390625\ 3.796875\ 14.6969385\ 3.51659857\ 7\ 15\ 2\ 17.085938\ 5.6953125\ 18.5202592\ 3.82332072\ 8\ 17\ 2$ $25.628906\ 8.5429688\ 22.627417\ 4.10715782\ 9\ 19\ 2\ 38.443359\ 12.814453\ 27\ 4.372583\ 10\ 21\ 2\ 57.665039\ 19.22168$ $31.6227766 \ 4.6227766 \ 11 \ 23 \ 2 \ 86.497559 \ 28.83252 \ 36.4828727 \ 4.86009609 \ 12 \ 25 \ 2 \ 129.74634 \ 43.248779$ $41.5692194 \ \ 5.08634669 \ \ 13 \ \ 27 \ \ 2 \ \ 194.61951 \ \ 64.873169 \ \ 46.8721666 \ \ 5.3029472 \ \ 14 \ \ 29 \ \ 2 \ \ 291.92926 \ \ 97.309753$ $52.3832034 \ 5.51103683 \ 15 \ 31 \ 2 \ 437.89389 \ 145.96463 \ 58.0947502 \ 5.71154678 \ 16 \ 33 \ 2 \ 656.84084 \ 218.94695$ $64\ 5.90524981\ 17\ 35\ 2\ 985.26125\ 328.42042\ 70.0927956\ 6.09279564\ 18\ 37\ 2\ 1477.8919\ 492.63063\ 76.3675324$ $6.27473673\ 19\ 39\ 2\ 2216.8378\ 738.94594\ 82.8190799\ 6.45154756\ 20\ 41\ 2\ 3325.2567\ 1108.4189\ 89.4427191$ $6.62363917\ 21\ 43\ 2\ 4987.8851\ 1662.6284\ 96.2340896\ 6.79137049\ 22\ 45\ 2\ 7481.8276\ 2493.9425\ 103.189147$ $6.95505712\ 23\ 47\ 2\ 11222.741\ 3740.9138\ 110.304125\ 7.11497832\ 24\ 49\ 2\ 16834.112\ 5611.3707\ 117.575508$ $7.27138262\ 25\ 51\ 2\ 25251.168\ 8417.0561\ 125\ 7.42449235\ 26\ 53\ 2\ 37876.752\ 12625.584\ 132.574507\ 7.57450735$ $27\ 55\ 2\ 56815.129\ 18938.376\ 140.296115\ 7.72160806\ 28\ 57\ 2\ 85222.693\ 28407.564\ 148.162073\ 7.86595801$ $29\ 59\ 2\ 127834.04\ 42611.346\ 156.169779\ 8.00770599\ 30\ 61\ 2\ 191751.06\ 63917.02\ 164.316767\ 8.14698784$ …………x y = 2x + 1 增加量 $y = 1.5^x$ 增加量 $y = x^{1.5}$ 增加量得点 A, B, C, D 的横坐标分别为 1.5, 4.8, 6.5, 7.4, (1) 三个函数的函数值的大小情况如下: ① 当 0 < x < 1.5 时, f(x) > g(x) > h(x); ② 当 1.5 < x < 4.5 时, f(x) > h(x) > g(x); ③ 由 4.8 < x < 6.5 时, h(x) > f(x) > g(x); ④ 当 6.5 < x < 7.4时, h(x) > g(x) > f(x); ⑤ 当 7.4 < $x < +\infty$ 时, g(x) > h(x) > f(x); 当 x = 1.5, 4.8, 6.5, 7.4 时, f(x) = g(x) = h(x). (2) 它们在同一个平面直角坐标系下的图像如图 14 所示. (图 14) 由表格及图像可看出, 三个函数的函数值变化及相应增量规律为: 随着 x 的增大, 直线型均匀上升, 增量恒定; 指数型急剧上升, 在 区间 $[0,+\infty)$ 上递增增量快速增大; 幂函数型虽上升较快, 但随着 x 的不断增大上升趋势远不如指数型, 几乎 微不足道, 其增量缓慢递增. 注意一般地, 线性函数 y = ax + b(a > 0) 直线上升、指数函数 $y = a^x(a > 1)$ 爆炸增长, 幂函数 $y=x^{\alpha}(\alpha\in\mathbf{Q}^{+})$ 缓慢递增. 无论 α 比 a 大多少, 在 x 的一定变化范围内 $a^{x}< x^{\alpha}$, 但随 着 x 的增大, 由于的增长速度最终快于 $y=x^{\alpha}(\alpha \in \mathbf{Q}^{+})$ 的增长速度, 因此总存在一个 x_{0} , 当 $x>x_{0}$ 时, 有 $a^{x} > x^{\alpha}$. 133. 已知函数 $f(x) = 4 + a^{x-1}$ 的图象恒过记点 P, 则点 P 的坐标是 (

A. (1, 5) B. (1, 4) C. (0, 4) D. (4, 0)

292. 下列函数中, 值域为 $(0,+\infty)$ 的函数是 (

A.
$$y = (\frac{1}{8})^{2-x}$$

B.
$$y = \sqrt{1 - 3^x}$$

C.
$$y = \sqrt{(\frac{1}{3})^x - 1}$$
 D. $y = 2^{\frac{1}{3-x}}$

D.
$$y = 2^{\frac{1}{3-a}}$$

293. 若 0 < a < 1, 记 $m = a^{-1}$, $n = a^{-\frac{4}{3}}$, $p = a^{-\frac{1}{3}}$, 则 m, n, p 的大小关系是 ().

A.
$$m < n < p$$
 B. $m C. $n < m < p$ D. $p < m < n$$

B.
$$m$$

C.
$$n < m < p$$

D.
$$p < m < n$$

294. 下列函数式中, 满足 f(x+1) = 2f(x) 的 f(x) 是 ().

A.
$$\frac{1}{2}(x+1)$$

B.
$$x + \frac{1}{4}$$

C.
$$2^x$$

D.
$$2^{-x}$$

295. 若 $f(x) = \frac{e^x - e^{-x}}{2}$, $g(x) = \frac{e^x + e^{-x}}{2}$. 则下列关系式中不正确的是 ().

A.
$$[g(x)]^2 - [f(x)]^2 = 1$$
 B. $f(2x) = 2f(x) \cdot g(x)$

$$B. f(2x) = 2f(x) \cdot g(x)$$

C.
$$g(2x) = [f(x)]^2 + D.$$
 $f(-x)g(x)$

$$D. f(-x)g(x) =$$

$$[g(x)]^{2}$$

$$f(x)g(-x)$$

296. 若 a>b 且 $ab\neq 0$. 则在"① $a^2>b^2$,② $2^a>2^b$,③ $\frac{1}{a}<\frac{1}{b}$,④ $a^{\frac{1}{3}}>b^{\frac{1}{3}}$,⑤ $(\frac{1}{3})^a<(\frac{1}{3})^b$ " 这五个关系式中, 恒成立的有().

B. 2 个

C. 3 个. (1)4 个

297. 在同一平面直角坐标系

中, 函数
$$f(x) = ax$$

与
$$g(x) = a^x$$
 的

图象可能是 ().

298. 下列各式中, 正确的是(

A.
$$(\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}}$$

B.
$$(\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}}$$
.

$$\text{A. } (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}}. \quad \text{B. } (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}}. \quad \text{C. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}}. \quad \text{D. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}}.$$

D.
$$(\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}}$$

299. 若 f(x) 在 $(0,+\infty)$ 上是减函数,而 $f(a^x)$ 在 $(-\infty,+\infty)$ 上是增函数,则实数 a 的取值范围是 () .

B.
$$(0,1) \cup (1,+\infty)$$

C.
$$(0,+\infty)$$

D.
$$(1, +\infty)$$

300. 函数 $y=(\frac{1}{2})^{\sqrt{-x^2+x+x}}$ 为增函数的区间是 ().

A.
$$[-1, \frac{1}{2}]$$

B.
$$(-\infty, -1]$$
 C. $[2, +\infty)$

C.
$$[2, +\infty)$$

D.
$$\left[\frac{1}{2}, 2\right]$$

301. 若函数 $f(x)=(a^2-1)^x$ 在 $(-\infty,+\infty)$ 上是减函数, 则 a 的取值范围是 ().

A.
$$|a| > 1$$

B.
$$|a| < \sqrt{2}$$

C.
$$a > \sqrt{2}$$

C.
$$a > \sqrt{2}$$
 D. $1 < |a| < \sqrt{2}$

302. 若函数 $f(x) = a^x - (b+1)(a > 0$ 且 $a \neq 1$) 的图象在第 、 三、四象限, 则必有 ().

A.
$$0 < a < 1 \perp b > 0$$
 B. $0 < a < 1 \perp b < 0$ C. $a > 1 \perp b < 1$ D. $a > 1 \perp b > 0$

C.
$$a > 1 \ \exists b < 1$$

D.
$$a > 1 \ \exists b > 0$$

303. 用不等号">"或"<"填空: $(1)1.2^{0.3}$ ______1. $(2)0.3^{5.1}$ ______1. $(3)(\frac{2}{3})^{-\frac{1}{3}}$ _____ $(\frac{3}{2})^{-\frac{1}{3}}$. $(4)9^{\frac{1}{3}} \underline{\hspace{1cm}} 3^{\frac{4}{3}}. \ (5)2^{\frac{2}{3}} \underline{\hspace{1cm}} 3.6^{-\frac{3}{4}}. \ (6)0.8^{-2} \underline{\hspace{1cm}} (\frac{5}{3})^{-\frac{1}{2}}.$

- 304. 将下列各数从小到大排列: $(1)0.9^{\frac{3}{4}}$, $1.2^{\frac{3}{4}}$, 1:______. $(2)2.5^{\frac{2}{3}}$, $(-1.4)^{\frac{2}{3}}$, $(-3)^{\frac{1}{3}}$:______. $(3)4.1^{\frac{2}{3}}$, $3.8^{-\frac{2}{3}}$, $(-1.9)^{\frac{3}{5}}$:
- 305. 根据条件确定实数 x 的取值范围: $(1)2^x > 0.5$:______. $(2)2^x < 1$:_____. $(3)0.2^{2x-1} > \frac{1}{25}$:_____. $(4)8 < (\frac{1}{2})^{2x+1}$:_____. $(5)(a^2+a+2)^x > (a^2+a+2)^{1-x}$:_____. $(6)(\frac{1}{2})^{x^2+x-2} < 1$:_____.
- 306.~(1) 函数 $f(x) = \sqrt{1-6^{x^2+x-2}}$ 的定义域是______. (2) 若函数 f(x) 的定义域是 (0,1), 则函数 $f(2^{-x})$ 的定义域是______.
- 307. (1) 函数 $y=3^{x^2-3x-2}$ 为增函数的区间是______. (2) 函数 $y=(0.2)^{x^2-6x+9}$ 为增函数的区间是_____. (3) 函数 $y=2^{-|x|}$ 为增函数的区间是______. (4) 函数 $y=(\frac{1}{2})^{|1+2x|}$ 为增函数的区间是______, 为减函数的区间是______, 为减函数的区间是______.
- 308. (1) 若 $1 \le x \le 2$,则函数 $y = (\frac{1}{2})^{x^2 6x + 10}$ 的最大值为______. (2) 函数 $f(x) = a^{2x} 3a^x + 2(a > 0$ 且 $a \ne 1$)的最小值为_____. (3) 对于函数 $y = a^{x^2 4}(a > 0$ 且 $a \ne 1$),① 若 0 < a < 1,则 y 有最大值______.
- 309.~(1) 函数 $f(x)=rac{1}{3^x-1}$ 的值域是______.(2) 函数 $f(x)=rac{3^x}{3^x+1}$ 的值域是_____.(3) 若关于 x 的方程 $5^x=rac{a+3}{5-a}$ 有负根, 则实数 a 的取值范围是_____.
- 310. (1) 若 0 < a < 1, x > y > 1,则 a^x, x^a, a^y, y^a 从小到大的排列顺序是______. (2) 若 0.9 < a < 1,则 a, a^a, a^a 从小到大的排列顺序是_____.
- 311. 已知 $f(x) = a^{2x^2 3x + 1}$, $g(x) = a^{x^2 + 2x 5} (a > 0$ 且 $a \neq 1$), 确定 x 的取值范围, 使得 f(x) > g(x).
- 312. (1) 若 $f(x) = a + \frac{1}{4^x + 1}$ 奇函数, 求常数 a 的值. (2) 若 $f(x) = x^2(\frac{1}{a^x 1} + m)(a > 0$ 且 $a \neq 1)$ 为奇函数, 求常数 m 的值.
- 313. 已知函数 $f(x)=(rac{1}{2^x-1}+rac{1}{2})x^3$. (1) 求函数的定义域. (2) 讨论 f(x) 的奇偶性. (3) 求证: f(x)>0.
- 314. 已知 $f(x) = \frac{a^x 1}{a^x + 1}(a > 1)$. (1) 判断函数 f(x) 的奇偶性. (2) 求函数 f(x) 的值域. (3) 求证: f(x) 在区间 $(-\infty, +\infty)$ 上是增函数.
- 315. 若 $0 \le x \le 2$, 求函数 $y = 4^{x-\frac{1}{2}} 3 \cdot 2^x + 5$ 的最大值和最小值.
- 316. 若函数 $f(x) = a^{2x} + 2a^x 1(a > 0$ 且 $a \neq 1$) 在 [-1, 1] 上的最大值为 14, 求实数 a 的值.
- 317. 已知函数 $f(x) = \frac{a}{a^2-2}(a^x-a^{-x})(a>0$ 且 $a\neq 1)$ 在 $(-\infty,+\infty)$ 上是增函数, 求实数 a 的取值范围.
- 318. 已知 $(a+1)^{-\frac{1}{3}} < (3-2a)^{-\frac{1}{3}}$, 求实数 a 的取值范围.
- 319. 已知集合 $M = \{x | (x+1)^2 \le 1\}$, $P = \{y | y = 4^x a \cdot 2^{x+1} + 1, x \in M, \frac{3}{4} < a \le 1\}$, 且全集 U = R, 求 $\mathcal{C}_U(M \cup P)$.

- 320. (1) 求方程 $x^{\frac{1}{3}} + 2^x = 0$ 的实根个数. (2) 求关于 x 的方程 $a^x + 1 = -x^2 + 2x + 2a(a > 0$ 且 $a \neq 1$) 的实数解 的个数.
- 321. 在同一个平面直角坐标系中, 作出 t(x) = 0.5x 与 $g(x) = 0.2 \times 2^x$ 的图象, 并比较它们的增长情况.
- 322. 某地区不同身高的未成年男性的体重平均值如下表 (身高: cm; 体重: kg): 身高 60 70 80 90 100 110 体重 6.13 7.90 9.99 12.15 15.02 17.05 身高 120 130 140 150 160 170 体重 20.92 26.86 31.11 38.85 47.25 55.05 为了 揭示未成年男性的身高与体重的规律, 甲选择了模型 $y = ax^2 + bx + c(a > 0)$, 乙选择了模型 $y = ba^x(a > 1)$, 其中 y 表示体重, x 表示身高. 你认为谁选择的模型较好?
- 323. 用计算器计算并填写下表: $x f(x) = x^{\frac{1}{2}} g(x) = x^{0.6} h(x) = 2.1^x s(x) = 2.2^x 0 1 2 3 4 5 6 7 8 9 10 从表中$ 变化的现象可以归纳出哪些函数递增的规律? (1) 幂函数 f(x) 与 g(x) 之间比较得出的规律. (2) 指数函数 h(x) 与 s(x) 之间比较得出的规律. (3) 幂函数 $f(x) = x^{\frac{1}{2}}$ 与指数函数 h(x) 之间比较得出的规律. 四、对数 【典型题型和解题技巧】
- 324. 利用对数的定义解题.
- 325. 求 $\log_9 27$ 的值. 解设 $\log_9 27 = x$, 根据对数的定义有 $9^x = 27$. 即 $3^{2x} = 3^3$, $\therefore 2x = 3$, $x = \frac{3}{2}$, 即 $\log_9 27 = \frac{3}{2}$ 注意 $\log_a N$ 的定义至关重要, 它始终是解对数问题的首要手段. 根据定义, 显然有 $\log_a 1 = 0$, $\log_a a = 1$, $\log_a a^m = m$, $a^{\log_a N} = N(a > 0$ 且 $a \neq 1$, N > 0). 学习了换底公式后, 本例还可按以下方法求值: $\log_9 27 = \frac{\log_3 27}{\log_3 9} = \frac{3\log_3 3}{2\log_3 3} = \frac{3}{2}, \; \not \boxtimes \log_9 27 = \log_{3^2} 3^3 = \frac{3}{2}\log_3 3 = \frac{3}{2}.$
- 326. 取对数的技巧.
- 327. 设 $3^a = 4^b = 36$, 求 $\frac{2}{a} + \frac{1}{b}$ 的值. 解对已知条件取以 6 为底的对数, 得 $\frac{2}{a} = \log_6 3$, $\frac{1}{b} = \log_6 2$, 于是 $\frac{2}{a} + \frac{1}{b} = \log_6 3 + \log_6 2 = \log_6 6 = 1$. 注意在一个等式的两边取对数, 是一种常用的技巧. 一般当给出的等式 是以指数形式出现时,常用此法.值得 提的是,在取对数时,要注意底数的合理选取.
- 328. 已知 $x = a^{\frac{1}{1 \log_a y}}$, $y = a^{\frac{1}{1 \log_a z}}$ 求证: $z = a^{\frac{1}{1 \log_a x}}$ 证明由 $x = a^{\frac{1}{1 \log_a y}}$, 得 $\log_a x = \frac{1}{1 \log_a z}$. 同理 $\log_a y = \frac{1}{1 \log_a z}$, 代入上式,消去 $\log_a y$,得 $\log_a x = \frac{1}{1 \frac{1}{1 \log_a z}} = \frac{1 \log_a z}{-\log_a z}$,即 $\log_a z = \frac{1}{1 \log_a x}$, $\therefore z = a^{\frac{1}{1 - \log_a x}}.$
- 329. 对数换底公式.
- 330. 已知 $\log_{12} 27 = a$, 求 $\log_6 16$. 解由已知, 得 $a = \log_{12} 27 = \frac{\log_3 27}{\log_3 12} = \frac{3}{1 + 2\log_3 2}$, $\therefore \log_3 2 = \frac{3 a}{2a}$. 于是 $\log_6 16 = \frac{\log_3 16}{\log_3 6} = \frac{4\log_3 2}{1 + \log_3 2} = \frac{4(3-a)}{3+a}.$ 注意 (1) 对于对数换底公式 $\log_a N = \frac{\log_b N}{\log_a a}$, 既要善于 "正用", 也要注意它的"逆用". 如 $\frac{\log_3 5}{\log_3 2} = \log_2 5$, $a^{\frac{\log_b c}{\log_b a}} = a^{\log_a c} = c$. (2) 根据对数换底公式. 并结合对数运算法则, 可以得如下推论 $\log_{a^{m^{b^n}}} = \frac{\check{n}}{m} \log_a b$. 【训练题】(-) 对数
- 331. 若 $a = b^2(b > 0, b \neq 1)$, 则有 ().

A.
$$\log_2 a = b$$
 B. $\log_2 b = a$

$$3. \log_2 b = a$$

C.
$$\log_a b = 2$$

C.
$$\log_a b = 2$$
 D. $\log_b a = 2$

333. 2 ^{log₄ 3} 的值等于 ().					
A. 3	B. $\sqrt{3}$	C. $\frac{\sqrt{3}}{3}$	D. $\frac{1}{3}$		
334. $\log_a b \cdot \log_3 a = 5$,则 b	=().				
A. a^3	B. a^5	C. 3^5	D. 5^3		
335. 若点 $P(\lg a, \lg b)$ 关于:	金轴的对称点的坐标是 (0, -1)	, 则 a 和 b 的值是)().			
A. $a = 1, b = 10$	B. $a = 1, b = \frac{1}{10}$	C. $a = 10, b = 1$	D. $a = \frac{1}{10}, b = 1$		
	$ \exists a > 0, \ a \neq 1, \ x > y > 0) $ $ = \log_a(x - y); \ \textcircled{4} \ \log_a(x - y) $		$(x+y); \ \textcircled{2} \log_a x + \log_a y = 0$		
A. 0 个	B. 1 个	C. 2 个	D. 3 个		
337. 若 $m > 0$, 且 $10^x = \lg 1$	$0m + \lg \frac{1}{m}$,则 x 的值为 ().			
A. 2	B. 1	C. 0	D1		
338. 若 $\lg x = a$, $\lg y = b$, 则	$\lg \sqrt{x} - \lg(\frac{y}{10})^2$ 的值等于 ().			
A. $\frac{1}{2}a - 2b - 2$	B. $\frac{1}{2}a - 2b + 2$	C. $\frac{1}{2}a - 2b - 1$	D. $\frac{1}{2}a - 2b + 1$		
339. 如果方程 $\lg^2 x + (\lg 2 + (k + $	$-\lg 3)\lg x + \lg 2 \cdot \lg 3 = 0$ 的两	有个根为 x_1, x_2 , 那么 $x_1 \cdot x_2$	的值为 ().		
A. $\lg 2 \cdot \lg 3$	$B. \lg 2 + \lg 3$	C. $\frac{1}{6}$	D6		
340. 若 $x = t^{\frac{1}{t-1}}, y = t^{\frac{t}{t-1}}(t)$	$>0,t \neq 1)$, 则 x,y 之间的关	系是 ().			
$A. y^x = x^{\frac{1}{y}}$	B. $y^{\frac{1}{x}} = x^y$	C. $y^x = x^y$	D. $x^x = y^y$		
x = (4) 若	$x = $ (2) 若 $\log_x x$ $\log_2(\lg x) = 1$, 则 $x = $ $\log_3[\log_4(\log_2 y)] = \log_4[\log_4(\log_2 y)]$	(5) 若 $\log_2[\log_3(\log_5 2)]$	$[x] = 0, \; \mathbf{M} \; x = \underline{\qquad}.$		
342. $(1)2^{\log_4(2-\sqrt{3})^2}+3^{\log_9(2+\sqrt{3})^2}$	$-\sqrt{3}h^2 =$ (2)2 ^{1+\frac{1}{2}}	$\log_2 5 =$ (3)9 \log_3	$^{2} =$ $(4)5^{3-2\log_{25}125} =$		
343. 计算下列各题: $(1)\log_{(2)}$ $(7+\log_{(2+\sqrt{3})}(7+\log_{($	$(7 + 4\sqrt{3}) = $ $(4)-2^2 \div$	$ (2)\log_6(\sqrt{2+\sqrt{3}}+\sqrt{2-4}) + (-\frac{27}{8})^{-\frac{1}{3}} - (0.7)^{\lg 1} + \log_3 $	$\sqrt{3}$) = (3)(2 + $\frac{1}{4} + \log_3 12 =$		
	则 $\frac{1}{x} - \frac{1}{y} =$ (2) c 之间的关系式是	æ	$+\frac{1}{y} =$ (3) 若		

A. $y^7 = x^z$ B. $y = x^{7z}$ C. $y = 7x^z$ D. $y = z^{7x}$

332. 若 $\log_x \sqrt[7]{y} = z$, 则 x, y, z 之间满足 ().

- 345. (1) 已知正数 a,b 满足 $a^2+b^2=7ab$, 求证: $\log_m\frac{a+b}{3}=\frac{1}{2}(\log_m a+\log_m b)(m>0,\ m\neq 1)$. (2) 已知 $\log_a(x^2+1)+\log_a(y^2+4)=\log_a 8+\log_a x+\log_a y(a>0,\ a\neq 1)$, 求 $\log_8(xy)$ 的值.
- 346. (1) 已知只有一个 x 的值满足方程 $(1-\lg^2 a)x^2 + (1-\lg a)x + 2 = 0$, 求实数 a 的值. (2) 设方程 $x^2 \sqrt{10}x + 2 = 0$ 的两个根为 α, β , 求 $\log_4 \frac{\alpha^2 \alpha\beta + \beta^2}{(\alpha \beta)^2}$ 的值. (3) 已知 $\lg a$ 和 $\lg b$ 是关于 x 的方程 $x^2 x + m = 0$ 的两个根,且关于 x 的方程 $x^2 (\lg a)x (1 + \lg a) = 0$ 有两个相等的实数根,求实数 a, b 和 m 的值. (4) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值为 3, 求实数 a 的值. (5) 已知函数 $f(x) = x^2 + (\lg a + 2)x + \lg b$, 满足 f(-1) = -2, 且对一切实数 x 都有 $f(x) \geq 2x$, 求实数 a, b 的值.
- 347. (1) 已知 $2\lg \frac{x-y}{2} = \lg x + \lg y$,求 $\frac{x}{y}$ 的值. (2) 设 A > B > 0, $A^2 + B^2 = 6AB$,求证: $\log_a \frac{A-B}{2} = \frac{1}{2}(\log_a A + \log_a B)(a > 0$ 且 $a \neq 1$).
- 348. 已知集合 $M = \{x, xy, \lg(xy)\}, P = \{0, |x|, y\},$ 且满足 M = P, 求实数 x, y 的值.
- 349. 已知 $12^x = 3$, $12^y = 2$, 求 $8^{\frac{1-2x}{1-x+y}}$ 的值.
- 350. (1) 已知不相等的两个正数 a,b 满足 $a^{\lg ax} = b^{\lg bx}$, 求 $(ab)^{\lg abx}$ 的值. (2) 已知 x,y,z>0, 且 $\lg x + \lg y + \lg z = 0$, 求 $x^{\frac{1}{\lg y} + \frac{1}{\lg z}} \cdot y^{\frac{1}{\lg z} + \frac{1}{\lg x}} \cdot z^{\frac{1}{\lg x} + \frac{1}{\lg y}}$ 的值. (3) 求 7 啦. .(+ 广的值. (4) 求 $y^{\lg 20} \cdot (\frac{1}{2})^{\lg 0.7}$ 的值. (二) 换底 公式
- 351. 化简 $\frac{\log_5 8}{\log_5 2}$ 可得 ().

A. $\log_5 4$

B. $3\log_5 2$

C. $\log_3 6$

D. 3

352. $\frac{\log_8 9}{\log_2 3}$ 的值是 ().

A. $\frac{2}{3}$

B. 1

C. $\frac{3}{2}$

D. 2

353. 若 $\log_a b = \log_b a (a \neq b, a \neq 1, b \neq 1)$, 则 ab 等于 (.)

Δ 1

B S

C. $\frac{1}{4}$

D. 4

 $354. \ \frac{1}{\log_{rac{1}{2}} rac{1}{3}} + \frac{1}{\log_{rac{1}{5}} rac{1}{3}}$ 的值所属区间是 ().

A. (-2, -1)

B. (1, 2)

C. $(-\infty, -2)$

D. (2, 3)

355. 若 $\log_3 7 \cdot \log_2 9 \cdot \log_{49} m = \log_4 \frac{1}{2}$, 则 m 的值等于 ().

A. $\frac{1}{4}$

B. $\frac{\sqrt{2}}{2}$

C. $\sqrt{2}$

D. 4

356. 若 $x \neq 1$, 则与 $\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}$ 相等的式子是 ().

A.
$$\frac{1}{\log_{60} x}$$
 B. $\frac{1}{\log_3 x \cdot \log_4 x \cdot \log_5 x}$. C. $\frac{3pq}{1+3pq}$ D. p^2+q^2 (B) $\frac{1}{\log_x 60}$. (D) $\frac{12}{\log_3 x + \log_4 x + \log_5 x}$. 357. 若 $\log_8 3 = p$, $\log_3 5 = q$, 则 $\lg 5(用 p, q 表示)$ 等于 (). (A) $\frac{3p+q}{p+q}$. (B) $\frac{1+3pq}{p+q}$

- 358. 已知 x, y, z 都是大于 1 的正数, m > 0, 且 $\log_x m = 24$, $\log_y m = 40$, $\log_{xyz} m = 12$, 则 $\log_z m$ 的值为 ().
 - A. $\frac{1}{60}$

B. 60

- C. $\frac{200}{3}$
- D. $\frac{3}{20}$
- 359. 计算(化简)下列各式: $(1)\log_{64}32 =$ ______. $(2)\log_{\frac{1}{2}}b + \log_{a}b =$ _____. $(3)\log_{6}25 \cdot \log_{5}3 \cdot \log_{9}6 =$ _____. $(4)(\log_{2}5 + \log_{4}0.2)(\log_{5}2 + \log_{25}0.5) =$ _____. $(5)\log_{2}\frac{1}{25}\cdot\log_{3}\frac{1}{8}\cdot\log_{5}\frac{1}{9} =$ _____. $(6)a^{\frac{\log_{b}(\log_{b}a)}{\log_{b}a}} =$ _____. $(7)a^{\frac{\log_{m}a \log_{m}b}{\log_{m}a}} =$ _____. $(8)(\log_{2}3 + \log_{4}9 + \log_{8}27 + \cdots + \log_{2^{n}}3^{n}) \cdot \log_{9}\sqrt[n]{32}(n \in \mathbb{N}) =$ _____.
- 360. (1) 已知 $\log_a x = 2$, $\log_b x = 1$, $\log_c x = 4$, 则 $\log_{abc} x =$ ______. (2) 已知 $m = \log_2 5$, 则 $2^m m \lg 2 4 =$ _____. (3) 已知 $\lg(3x^3) \lg(3y^3) = 9$, 则 $\frac{x}{y} =$ _____.
- 361. (1) 记 $\log_8 27 = m$, 用 m 表示 $\log_6 16$. (2) 已知 $\log_3 7 = a$, $\log_3 4 = b$, 求 $\log_{12} 21$. (3) 已知 $\log_2 3 = a$, $\log_3 5 = b$, 求 $\log_{15} 20$.
- 362. (1) 已知 a > b > 1, $\log_a b + \log_b a = \frac{10}{3}$, 求 $\log_a b \log_b a$ 的值. (2) 已知 $\log_{2a} a = m$, $\log_{3a} 2a = n$, 求证: $2^{1-mn} = 3^{n-mn}$.
- 363. 已知关于 x 的方程 $x^2 (\log_2 b + \log_a 2)x + \log_a b = 0$ 的两根为-1 和 2, 求实数 a, b 的值.
- 364. 已知 $a^2+b^2=c^2$, 求证 $\log_{(c+b)}a+\log_{(c-b)}a=2\log_{(c+b)}a\cdot\log_{(c-b)}a$.
- 365. 已知正实数 x, y, z 满足 $3^x = 4^y = 6^z$. (1) 求证 $\frac{1}{z} \frac{1}{x} = \frac{1}{2y}$. (2) 比较 3x, 4y, 6z 的大小. 五、对数函数【典型题型和解题技巧】
- 366. 函数的定义域. 函数的定义域, 即函数自变量的取值范围. 迄今为止, 我们学过的有: 分式的分母不等于零; 偶次根式的被开方式大于或等于零; 对数函数式的真数大于零, 底数大于零, 且底数不等于 1.
- 367. 求函数 $y=rac{\sqrt{\log_{0.8}x-1}}{2x-1}$ 的定义域。解函数的定义域应满足: $\begin{cases} 2x-1
 eq 0, & \text{即} \ \begin{cases} x
 eq rac{1}{2}, & \text{log}_{0.8}x-1 \geq 0, \\ x > 0, & \text{volume} \end{cases} \end{cases}$ 中 $\begin{cases} x \neq rac{1}{2}, & \text{production} \end{cases}$ 有 $0 < x \leq rac{4}{5}$ 且 $x \neq rac{1}{2}$. 故函数的定义域为 $\{x | 0 < x \leq rac{4}{5}x \neq rac{1}{2}\}$.

368. 解不等式
$$\log_{0.2}(x^2+2x-3)>\log_{0.2}(3x+1)$$
. 解由已知,得
$$\begin{cases} x^2+2x-3>0,\\ 3x+1>0,\\ x^2+2x-3<3x+1, \end{cases}$$
,即
$$\begin{cases} (x+3)(x-1)>0,\\ x^2-x-4<0. \end{cases}$$

解得 $\begin{cases} x<-3x>1,\\ \frac{1-\sqrt{17}}{2}< x<\frac{1+\sqrt{17}}{2}.\end{cases}$: 不等式的解集为 $\{x|1< x<\frac{1+\sqrt{17}}{2}\}$. 注意 (1) 对数函数的定义域很容易被忽略,解题时切莫忘记. (2) 类似此例问题,要以不等式组的形式来解,这样既可以防止遗漏,又可以省略其中某些不等式,使解题简化. (3) 应特别留心对数函数 $\log_a x$ 的底数: 当 a>1 时,在 R^- 上是增函数;

369. 比较数的大小. 比较两个数的大小, 可用的工具除上一节中所述的幂函数、指数函数的性质外, 还有对数函数的单调性. 对于函数 $f(x) = \log_a x (a>0$ 且 $a\neq 1)$, 若 a>1 则在 $(0,+\infty)$ 上是增函数; 若 0< a<1, 则在 $(0,+\infty)$ 上是减函数.

当 0 < a < 1 时, 在 R^+ 上是减函数.

- 370. 将 $\log_{0.7} 0.8$, $\log_{1.1} 0.9$, $1.1^{0.9}$ 由小到大排列. 解利用对数函数的单调性. $: \log_{1.1} 0.9 < \log_{1.1} 1 = 0$, $\log_{0.7} 0.8 > \log_{0.7} 1 = 0$, $: \log_{1.1} 0.9 < \log_{0.7} 0.8$. 又 $: \log_{0.7} 0.8 < \log_{0.7} 0.7 = 1$, 由指数函数的单调性 知, $1.1^{0.9} > 1.1^0 = 1$, $: \log_{0.7} 0.8 < 1.0^{0.9}$. 于是从小到大的排列是 $\log_{1.1} 0.9 < \log_{0.7} 0.8 < 1.1^{0.9}$. 注意对于 $\log_a b$ 的正负性,可直接利用下列性质来判断: 若 a > 1, b > 1 或 0 < a < 1, 0 < b < 1, 则 $\log_a b > 0$; 若 a > 1, 0 < b < 1 或 0 < a < 1, b > 1 或 0 < a < 1, b > 1 或 0 < a < 1, b > 1 以 b >
- 371. 若 0 < x < 1, a > 0, $a \ne 1$, 比较 $p = |\log_a(1-x)|$ 和 $q = |\log_a(1+x)|$ 的大小. 解法一 : 0 < x < 1, $\therefore 1-x \in (0,1), \ 1+x \in (1,2), \ 1-x^2 \in (0,1).$ 若 a > 1, 则 $\log_a(1-x) < 0$, $\log_a(1+x) > 0$, $\therefore q-p = \log_a(1+x) + \log_a(1-x) = \log_a(1-x^2) < 0$, $\therefore q < p$; 若 0 < a < 1, 则 $\log_a(1+x) < 0$, $\log_a(1-x) > 0$, $\therefore q-p = -\log_a(1+x) \log_a(1-x) = -\log_a(1-x^2) < 0$, $\therefore q < p$. 故恒有 p > q. 解法二 $\because \frac{p}{q} = |\frac{\log_a(1-x)}{\log_a(1+x)}| = |\log_{(1+x)}(1-x)| = -\log_{(1+x)}(1-x) = \log_{(1+x)}(1-x) = \log_{(1+x)} \frac{1}{1-x} = \log_{(1+x)} \frac{1+x}{1-x^2} = 1 \log_{(1+x)}(1-x^2)$, 且 1+x > 1, $0 < 1-x^2 < 1$, $\therefore \log_{(1+x)}(1-x^2) < 0$, 于是 $\frac{p}{q} > 1$. 又 p > 0, q > 0, 故 p > q. 解法三 $p^2 q^2 = \log_a^2(1-x) \log_a^2(2+x) = \log_a(1-x^2) \cdot \log_a \frac{1-x}{1+x}$, 且 $0 < 1-x^2 < 1$, $0 < \frac{1-x}{1+x} < 1$, 故无论 a > 1 还是 0 < a < 1, $\log_a(1-x^2)$ 和 $\log_a \frac{1-x}{1+x}$ 一定同号, $\therefore p^2 q^2 > 0$. 又 p > 0, q > 0, $\therefore p > q$. 解法四 $\therefore p q = |\log_a(1-x)| |\log_a(1+x)| = \frac{1}{|\lg a|}(|\lg(1-x)| |\lg(1+x)|) = \frac{1}{|\lg a|}[-\lg(1-x) \lg(1+x)] = \frac{1}{|\lg a|}[-\lg(1-x^2) \log_a(1+x)] = \frac{1}{|\lg a|}[-\lg(1-x^2) \log_a(1+x)] = \frac{1}{|\lg a|}(-1+x)$ 异 只要 q 和 q
- 372. 对数与二次函数. 前面已经提及, 高中阶段的函数常以比较基本的符合函数形式出现, 在对数函数中, 此类问题更为常见. (1) 复合函数的单调区间. 对于函数 $y=f[\varphi(x)]$, 若 f(x) 与 $\varphi(x)$ 在区间 [a,b] 上都有意义, 则当 f(x) 在 [a,b] 上为增函数时, $f[\varphi(x)]$ 与 $\varphi(x)$ 在 [a,b] 上的单调性一致; 当 f(x) 在 [a,b] 上为减函数时, $f[\varphi(x)]$ 与 $\varphi(x)$ 在 [a,b] 上的单调性相反.

- 373. 求函数 $f(x) = \log_{0.2}(x-1)(x+2)$ 为增函数的区间. 解函数的定义域为 x < -2 或 x > 1, 且 (x-1)(x+2) = -2 $x^2 + x - 2 = (x + \frac{1}{2})^2 - \frac{9}{4}$,它在 $(-\infty, -\frac{1}{2})$ 上为减函数. \therefore 函数 f(x) 为增函数的区间是 $(-\infty, -2)$. 注意学 习对数函数时, 特别要注意函数的定义域和底数的取值范围. (2) 复合函数的值域. 对于函数 $f[\varphi(x)]$, 在定义 域的范围内: 若 f(x) 是增函数, 且 $\varphi(x)$ 的值域是 [m,M], 则 $f[\varphi(x)]$ 的值域是 [f(m),f(M)]; 若 f(x) 是减 函数, 且 $\varphi(x)$ 的值域是 [m, M], 则 $f[\varphi(x)]$ 的值域是 [f(M), f(m)].
- 374. 求函数 $f(x) = \log_{\frac{1}{2}}(x^2 6x + 17)$ 的值域. 解令 $t = x^2 6x + 17 = (x 3)^2 + 8 \ge 8$, $\therefore f(x) \le \log_{\frac{1}{2}}8 = -3$, 即函数的值域是 $(-\infty, -3]$. (3) 其他题型.
- 375. 已知关于 x 的方程 $ax^2-4ax+1=0$ 的两个实数根 α,β 满足不等式 $|\lg\alpha-\lg\beta|\leq 1$, 求实数 a 的取 值范围. 解由题设,应有 $\begin{cases} \triangle = 4(4a^2 - a) \geq 0, \\ \alpha + \beta = 4 > 0, \\ \alpha\beta = \frac{1}{a} > 0, \\ |\lg \frac{\alpha}{\beta}| \leq 1, \end{cases} \qquad \text{即 } \begin{cases} a \leq 0a \geq \frac{1}{4}, \\ \alpha + \beta = 4, \\ a > 0, \\ -1 \leq \lg \frac{\alpha}{\beta} \leq 1. \end{cases}$ 由第四式,得 $\frac{1}{10} \leq \frac{\alpha}{\beta} \leq 10$,即 $\frac{11}{10} \leq \frac{\alpha + \beta}{\beta} \leq 11; \text{由 } \alpha + \beta = 4, \text{得 } \frac{11}{10} \leq \frac{4}{\beta} \leq 11, \text{即 } \frac{4}{11} \leq \beta \leq \frac{40}{11}. \text{ 于是 } \frac{1}{a} = \alpha\beta = \beta(4 - \beta) = -(\beta - 2)^2 + 4.$ 如图 15 所示, $\frac{1}{a} \in [\frac{160}{121}, 4], \therefore a$ 的取值范围是 $\frac{1}{4} \leq a \leq \frac{121}{160}.$ (图 15) 注意凡涉及对数函数和二次函数的问

题,"配方、画图、截断"三步总是很有效的. 【训练题】

376. 与函数 y = x 为同一个函数的是 (

A.
$$y = \sqrt{x^2}$$

A.
$$y = \sqrt{x^2}$$
 B. $y = \frac{x^2}{x}$

C.
$$y = a^{\log_a x} (a > 0)$$

С.
$$y = a^{\log_a x} (a > 0 \text{ д.}$$
 D. $y = \log_a a^x (a > 0 \text{ д.}$ $a \neq 1)$ $a \neq 1)$

- 377. 若函数 y = f(x) 的反函数是 $y = \lg(x 1) + 3(x > 1)$, 则 f(x) 等于 (). A. $10^{x+3} + 1$ B. $10^{x-3} - 1$ C. $10^{x+3} - 1$ D. $10^{x-3} + 1$

$$\Delta = 10^{x+3} \perp 1$$

$$R = 10^{x-3} - 10^{x-3}$$

$$C = 10^{x+3} - 1$$

D
$$10^{x-3} + 1$$

378. 若函数 $f(x) = \log_2 x + 3(x \ge 1)$, 则其反函数 $f^{-1}(x)$ 的定义域是 ().

A.
$$R$$

B.
$$\{x | x > 1\}$$

B.
$$\{x | x \ge 1\}$$
 C. $\{x | 0 < x < 1\}$ D. $\{x | x \ge 3\}$

D.
$$\{x | x > 3\}$$

379. 图中图象所对应的函数可能是().

A.
$$y = 2^{x}$$

B.
$$y = 2^x$$
 的反函数 C. $y = 2^{-x}$

$$C_{-a} = 2^{-a}$$

D.
$$y = 2^{-x}$$
 的反函数

(第 204 题) 205 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的偶函数, 且它在 $[0, +\infty)$ 上是增函数, 记 $a = f(-\log_{\sqrt{2}}\sqrt{3})$,

$$b=f(-\log_{\sqrt{3}}\sqrt{2}),\,c=f(-2),$$
则 $\,a,b,c$ 的大小关系是().

A.
$$a > b > c$$

B.
$$b > c > a$$

B.
$$b > c > a$$
 C. $c > a > b$ D. $c > b > a$

D.
$$c > b > a$$

380. 下列函数图象中, 不正确的是(),,

A.
$$y = \log_{\frac{1}{2}} x^2$$

A.
$$y = \log_{\frac{1}{3}} x^2$$
 B. $y = \log_{\frac{1}{3}} (-x)$ C. $y = |\log_3 x|$ D. $y = |x^{-\frac{1}{3}}|$

C.
$$y = |\log_3 x|$$

D.
$$y = |x^{-\frac{1}{3}}|$$

381.	在同一平面直角坐标系中画出函数 $y=x+a$ 与 $y=\log_a x$ 的图象, 可能是 ()				
	A.	В.	C.	D.	
382.	函数 $y = f(x)$ 的图象如图所示, 则 $y = \log_{0.2} f(x)$ 的示意图是 (). (第 208 题)				
	A.	В.	C.	D.	
383.	由关系式 $\log_x y = 3$ 所确定的	內函数 $y = f(x)$ 的图象是 ()		
	A.	В.	C.	D.	
384.	若函数 $f(x) = \frac{1-2^x}{1+2^x}$, 则 f^-	$-1(\frac{3}{5})$ 等于 ().			
	A. 3	B. 2	C. 1	D2	
385.	写出下列函数的定义域: (1)y	3	$(2)y = \frac{\sqrt{x^2 - 4}}{\lg(x^2 + 2x - 4)}$	$\overline{3}$:	
386.	$\log_{(2x-1)}(32-4^x)$:写出下列函数的值域: $(1)y=$		$ (2)y = \log_{\frac{1}{2}} \frac{1}{x^2 - 2x + 1} $	$-\frac{1}{5}$: (3) $y =$	
	$\frac{\log_1 \sqrt{3 - 2x - x^2}}{2}$:	·			
387.	(1) 函数 $y = \log_{\frac{1}{3}}(x^2 - 5x + 6)$				
	是 $\overset{\overline{3}}{(3)}$ 函数 $y = -\log_1(-x)$ 为减函数的区间是 (4) 若函数 $y = \log_a(1-x)$ 在 $[0,1)$				
	上是增函数,则 a 的取值范围]是 (5) 函数 y =	$\log_{\frac{1}{2}}^2 x - \log_{\frac{1}{2}} x + 1$ 为增函 $\frac{1}{2}$	数的区间是	
388.	(1) 函数 $y = (0.2)^{-x} + 1$ 的员 $10^{x} + 1$	反函数是 (2) 函数	数 $y = 1 + \lg(x+2)(x \ge 8)$ 月 $\lg x = 1$	的反函数是 1	
	(3) 若 $f(x) = \frac{10^x + 1}{10^x - 1}(x > 1)$,则 $f^{-1}(\frac{101}{99}) =$. (4) 若 $f(x) = \frac{\lg x - 1}{\lg x + 1}(x > 1 且 x \neq \frac{1}{10})$,则				
	$f^{-1}(\frac{1}{10}) =$ (5) 若函数 $f(x) = a^x - k$ 的图象过点 $(1, 3)$, 其反函数 $f^{-1}(x)$ 的图象过点 $(2, 0)$, 则 $f(x)$ 的表达式是				
389.	函数 $y = \lg \frac{1-x}{1+x}$ ().				
	A. 是奇函数, 且在 (-1, 1) 是增函数	B. 是奇函数, 且在 (-1, 1) 上是减函数	C. 是偶函数, 且在 (-1, 1) 是增函数	D. 是偶函数, 且在 (-1, 1) 上是减函数	
390.	函数 $f(x) = \ln(e^x + 1) - \frac{x}{2}$ ().			
	A. 是奇函数, 但不是偶函	B. 是偶函数, 但不是奇函	C. 既是奇函数, 又是偶函	D. 没有奇偶性	
	数	数	数		
391.	求函数 $f(x) = \lg(1+x) + \lg(x)$	$(1-x) \ (-rac{1}{2} < x < 0)$ 的反语	函数.		
392.	已知 $f(x) = \frac{a^x - 1}{a^x + 1}(a > 1).$	(1) 求 $f(x)$ 的值域. (2) 求证	E: f(x) 在 R 上是增函数. (3	s) 求 $f(x)$ 的反函数.	

- 393. 已知 $f(\log_a x) = \frac{a(x^2-1)}{x(a^2-1)}(x>0,\, 0< a<1),$ 求证: 函数 f(x) 在 $(-\infty,+\infty)$ 上是增函数.
- 394. 若函数 $f(x) = \log_a |x+1|$ 在 (-1, 0) 上有 f(x) > 0, 则 f(x)().

A. 在 $(-\infty,0)$ 上是增函 B. 在 $(-\infty,0)$ 是减函数 C. 在 $(-\infty, -1)$ 上是增函 D. 在 $(-\infty, -1)$ 是减函数

395. 若 0 < b < 1, $\log_a b < 1$ 则 ().

A. 0 < a < b

B. 0 < b < a

C. 0 < b < a < 1 D. $0 < a < b \neq a > 1$

396. 若函数 $f(x) = |\log_a x|$, 其中 0 < a < 1, 则下列各式中成立的是 ().

 $\text{A. } f(\frac{1}{3}) > f(2) > f(\frac{1}{4}) \qquad \text{B. } f(\frac{1}{4}) > f(\frac{1}{3}) > f(2) \qquad \text{C. } f(2) > f(\frac{1}{3}) > f(\frac{1}{4}) \qquad \text{D. } f(\frac{1}{4}) > f(2) > f(\frac{1}{2}) > f(\frac{1}{4}) > f(2) > f(2$

397. 若 1 < x < 2, 则下列各式正确的是 ().

A. $2^{x} > \log_{\frac{1}{2}} x > \sqrt[3]{x}$ B. $2^{x} > \sqrt[3]{x} > \log_{\frac{1}{2}} x$ C. $\sqrt[3]{x} > 2^{x} > \log_{\frac{1}{2}} x$ D. $\log_{\frac{1}{2}} > x\sqrt[3]{x} > 2^{x}$

398. 若函数 $f(x) = \log_a x$ 在 $x \in [3, +\infty)$ 上恒有 |f(x)| > 1, 则实数 a 的取值范围是 ().

A. $0 < a < \frac{1}{3}$ 或 1 < a < B. $0 < a < \frac{1}{3}$ 或 a > 3 C. $\frac{1}{3} < a < 3$ 且 $a \ne 1$ D. $\frac{1}{3} < a < 1$ 或 a > 3

399. 若 $a > a^2 > b > 0$, 并记 $p = \log_a b$, $q = \log_b a$, $r = \log_a \frac{a}{b}$, $s = \log_b \frac{b}{a}$, 则 p, q, r, s 的大小关系是 ().

A. r < q < p < s B. r C. <math>r D. <math>r < q < s < p

400. 若 $\log_a \frac{1}{3} > \log_b \frac{1}{3} > 0$, 则 a, b 的关系是 ().

B. 1 < a < b C. 0 < a < b < 1 D. 0 < b < a < 1

- 401. 将下列各数按从小到大排列: $(1)a = |\log_{\frac{1}{3}}\frac{1}{4}|, \ b = |\log_{\frac{1}{2}}\frac{3}{2}|, \ c = |\log_{2}5|$:_______. $(2)\log_{0.1}0.4, \log_{\frac{1}{2}}0.4, \log_{3}0.4, \log_{3}0.4, \log_{1}0.4$:______. $(3)\frac{3}{2}, \log_{2}3$:______. $(4)\frac{2}{\lg 2}, \frac{3}{\lg 3}, \frac{5}{\lg 5}$:______. $(5)\lg^{2}x, \lg x^{2}, \lg(\lg x), \log_{3}x + \log_{3}$ 其中 1 < x < 10:_____
- 402. (1) 若 $\log_a \frac{4}{5} < 1 (a > 0, \ a \neq 1)$, 则 a 的取值范围是______. (2) 若 $0 < a < 1, \ 0 < b < 1$, 且 $a^{\log_b(x-3)} < 1$, 则 x 的取值范围是
- 403. (1) 求函数 $y = (\log_{\frac{1}{4}}x)^2 \log_{\frac{1}{4}}x^2 + 5(2 \le x \le 4)$ 的值域. (2) 若 $-3 \le \log_{\frac{1}{4}}x \le -\frac{1}{2}$, 求 $y = (\log_{\frac{x}{2}})(\log_{\frac{x}{4}}x)$ 的最大 (小) 值及其相应的 x 值,
- 404. (1) 已知 a, b 是两个不相等的正数, 且 $\log_m \frac{x}{a} \cdot \log_m \frac{x}{b}$ 的最小值是 $-\frac{1}{4} (m > 0$ 且 $m \neq 1)$, 求 m 的值. (2) 已 知实数 x,y 满足 $(\log_4 y)^2 = \log_{\frac{1}{x}} x$, 求 $u = \frac{x}{y}$ 的最大值及其相应的 x,y 的值.
- 405. (1) 已知抛物线 $y = x^2 \log_2 a + 2x \log_a 2 + 8$ 位于 x 轴的上方, 求实数 a 的取值范围. (2) 已知函数 f(x) = $(\log_a b)x^2 + 2(\log_b a)x + 8$ 的图象在 x 轴的上方, 求 a, b 的取值范围.

- 406. 根据条件求实数 a 的值: (1) 只有一个 x 的值满足方程 $(1 \lg^2 a)x^2 + (1 \lg a)x + 2 = 0$. (2) 关于 x 的方程 $x^2 + 2(\log_3 a + 1)x \log_9 a = 0$ 有两个相等实根. (3) 二次函数 $f(x) = (\lg a)x^2 + 2x + 4\lg a$ 有最小值-3.
- 407. 已知 $f(x) = \log_a |\log_a x|$ (0 < a < 1). (1) 解不等式: f(x) > 0. (2) 判断 f(x) 在 $(1, +\infty)$ 上的单调性, 并证明之.
- 408. 实数 a 为何值时, 函数 $f(x) = 2^x 2^{-x} \lg a$ 为奇函数?
- 409. 已知函数 $f(x) = \sqrt{\log_a x 1} (a > 0$ 且 $a \neq 1)$ (1) 求 f(x) 的定义域. (2) 当 a > 1 时, 求证: f(x) 在 $[a, +\infty)$ 上是增函数.
- 410. (1) 已知函数 $f(x) = 1 + \log_x 3$, $g(x) = 2\log_x 2(x > 0)$, 且 $x \neq 1$, 比较 f(x) 与 g(x) 的大小. (2) 当 a > 1 时, 比较 $\log_b a$ 与 $\log_{2b} a$ 的大小. (3) 已知 $\log_m a > \log_n a(a > 1)$, 讨论 m 与 n 的大小关系.
- 411. 根据条件, 求实数 a 的取值范围: $(1)\log_{1+a}(1-a) < 1$. $(2)|\lg(1-a)| > |\lg(1+a)|$.
- 412. 已知函数 $f(x) = \log_{\frac{1}{2}}(x^2 2x)$. (1) 求它的单调区间. (2) 求 f(x) 为增函数时的反函数. $\frac{1}{2}$
- 413. 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a>0, b>0$ 且 $a\neq 1$). (1) 求 f(x) 的定义域. (2) 讨论 f(x) 的奇偶性. (3) 讨论 f(x) 的单调性. (4) 求 f(x) 的反函数 $f^{-1}(x)$.
- 414. 已知函数 $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a>1)$. (1) 是否存在一个实数 a 使得函数 y = f(x) 的图 象关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实数 a; 若不存在, 说明理由. (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值. 六、指数方程和对数方程【典型题型和解题技巧】
- 415. 指数方程的主要类型. 指数方程主要有以下类型: $(1)a^x = b$ 型 $(a > 0, a \neq 1, b > 0)$. 此类方程的解为 $x = \log_a b$.
- 416. 解方程 $9^{2x-1}=4^x$. 解由题意. 可得 $(\frac{9}{2})^{2x}=9$, $\therefore 2x=\log_{\frac{9}{2}}9$, 故 $x=\frac{1}{2}\log_{\frac{9}{2}}9$. $(2)a^{f(x)}=a^{\varphi(x)}$ 型 $(a>0,a\neq 1)$. 此类方程的解可由 $f(x)=\varphi(x)$ 求得.
- 417. 解方程 $(\frac{1}{27})^x = 9^{1-x}$. 解方程即为 $3^{-3x} = 3^{2-2x}$, $\therefore -3x = 2 2x$, 故 x = -2. $(3)A \cdot a^{2x} + B \cdot a^x + C = 0$ 型 $(a > 0, a \neq 1)$. 可令 $y = a^x$ (即换元), 便得到关于 y 的一元二次方程 $Ay^2 + By + C = 0$, 由此求得 y, 从而易得 x 的值.
- 418. 解方程 $9^x 2 \cdot 3^{x+1} 27 = 0$. 解令 $y = 3^x > 0$, 则原方程可化为 $y^2 6y 27 = 0$. 由此得 y = 9(另一解 y = -3 舍去). 从而由 $3^x = 9$,解得 x = 2. 注意当 $b \le 0$ 时,方程 $a^x = b$ 无实数解. $(4)A \cdot a^{2x} + B \cdot a^x \cdot b^x + C \cdot b^{2x} = 0$ 型 $(a, b > 0, a, b \ne 1, a \ne b)$. 此类方程可称之为 "关于的 a^x , b^x 的齐二次型",可先变形为 $A \cdot (\frac{a}{b})^{2x} + B \cdot (\frac{a}{b})^x + C = 0$,再换元求解.
- 419. 解方程 $9^x + 4^x = \frac{5}{2} \times 6^x$. 解方程即为 $2 \times 3^{2x} 5 \times 3^x \times 2^x + 2 \times 2^{2x} = 0$, 即 $2(\frac{3}{2})^{2x} 5 \times (\frac{3}{2})^x + 2 = 0$. 令 $y = (\frac{3}{2})^x$,方程又化为 $2y^2 5y + 2 = 0$,解得 $y_1 = 2$, $y_2 = \frac{1}{2}$,于是便可得 $x_1 = \log_2 2$, $x_2 = \log_2 2$.

- 420. 对数方程的主要类型. 这里着重介绍以下两种类型: $(1)A\log_a^2 x + B\log_a x + C = 0$ 型 $(a > 0, a \neq 1)$.
- 421. 解方程 $\log_3(3^x-1)\cdot\log_3(3^{x-1}-\frac{1}{3})=2$. 解方程即为 $\log_3(3^x-1)\cdot\log_3[\frac{1}{3}(3^x-1)]=2$. 令 $t=\log_3(3^x-1)$, 则方程可化为 t(t-1)-2=0,解得 $t_1=2,\,t_2=-1$. 于是由 $\log_3(3^x-1)=2$,得 $3^x=10,\,$ $x=\log_310$. 由 $\log_3(3^x-1)=-1$,得 $3^x=\frac{4}{3}$, $x=\log_3\frac{4}{3}$ 故原方程的解为 $x_1=\log_310,\,x_2=\log_3\frac{4}{3}$ (2) $\log_af(x)=\frac{4}{3}$

 $\log_a \varphi(x)$ 型 $(a>0,\,a\neq 0)$. 此类方程与条件方程 $\begin{cases} f(x)>0,\\ \varphi(x)>0, \end{cases}$ 同解. $f(x)=\varphi(x)$

422. 已知关于 x 的方程 $\lg(kx)=2\lg(x+1)$ 有且只有一个实数解, 求实数 k 的取值范围. 解显然, x 需满足 $\begin{cases} kx > 0, \\ x+1 > 0, \\ (x+1)^2 = kx, \end{cases}$ 即 $\begin{cases} x > -1, \\ x^2 + (2-k)x + 1 = 0. \end{cases}$ ① (1) 若上述方程① 有两个相等实根, 则必有 $\triangle = 0$, 即

k = 0 或 k = 4. 若 k = 0, 得实根 x = -1 应舍去; 若 k = 4, 得实根 x = 1 符合题意. (2) 若上述方程① 有两个不等实根 x_1, x_2 , 则必有 $x_1 > -1$, $x_2 < -1$. 考虑函数 $f(x) = x^2 + (2-k)x + 1$. 如 图 16, 只需 $f(-1) \le 0$, 即 $1 + (2 - k)(-1) + 1 \le 0$, $k \le 0$. 由 (1) 知, k = 0 不合题意. 综上所述, 实数 k 的取值范围是 k=4 或 k<0. (图 16) 注意此类对数方程形式简单, 但综合性很强, 往往要归为对一元二 次方程的根的讨论. 解题时需注意以下三点. (1) 根据定义域, 列出条件方程, 一般总可省略其中的一个条件. (2) 如果转化为一次方程, 问题比较简单, 只要得到的 x 满足取值范围即可. 如果转化为二次方程, 那么: (i) 当 $\triangle < 0$ 时, 方程无解. (ii) 当 $\triangle = 0$ 时, 所得的 x 值, 若在取值范围内, 则有一解; 若不在取值范围内, 则 无解. (iii) 当 $\triangle > 0$ 时, 所得的两个 x 值, 若均在取值范围内, 则有两解; 若恰有一个在取值范围内, 则有一 解; 若均不在取值范围内, 则无解. (3) 对数方程常常归结为对一元二次方程的根的讨论, 而讨论的方法, 一般 有运用求根公式、根与系数的关系及二次函数图象三种. 【训练题】(一) 指数方程

- 423. 若 $2^{2x} + 4 = 5 \times 2^x$, 则 $x^2 + 1$ 等于 (
 - A. 1

- C. 5 或 1
- D. 3 或 2

424. 方程 $2^{|x+1|} = 3$ 的解集是 (

A.
$$\{\log_{\frac{1}{2}} \frac{2}{3}\}$$
 B. $\{\log_{\frac{2}{3}} \}$

$$B. \{ \log_2 \frac{2}{3} \}$$

C.
$$\{\log_2 \frac{3}{2}, \log_2 \frac{1}{6}\}$$

C.
$$\{\log_2 \frac{3}{2}, \log_2 \frac{1}{6}\}$$
 D. $\{\log_2 \frac{1}{3}, -\log_{\frac{1}{2}} 6\}$

- 425. 方程 $2x^2 + 2^x 3 = 0$ 的实数根有 (
 - A. 0 个

C. 2 个

D. 无数个

- 426. 满足 $(x-2)^{5-|x|}=1$ 的实数根存 ().
 - A. 4 个 B. 3 个

- C. 2 个
- D. 无数个

- 427. 方程 $6 \cdot 7^{|x|} 7^{-x} = 1$ 的解集是 ().
 - A. $\{\log_7 \frac{1}{2}\}$ B. $\{\log_7 5\}$
- C. $\{\log_7 \frac{1}{2}, \log_7 5\}$
- D. \emptyset

428.	若对十任意实数 p , 函数 y =	$=(p-1)2^x-rac{1}{2}$ 的图象恒过	一定点,则这个点的坐标是().	
	A. $(1, -\frac{1}{2})$	B. (0, -1)	C. $(-1, -\frac{1}{2})$	D. $(-2, -\frac{1}{4})$	
429.	方程 $2^{2x+1} - 33 \cdot 2^{x-2} + 1$	= 0 的解是 ().			
	A. $\{-2, -3\}$	B. $\{2, -3\}$	C. {2,3}	D. $\{-2,3\}$	
430.	写出下列指数方程的解: (1	$3^{x^2} = (3^x)^2$:	$(2)3^x = 2^x: (3)^{\frac{1}{2}}$	$\frac{3^{x^2+1}}{3^{x-1}} = 81:\underline{\qquad}.$	
431.	求下列方程的解: (1)2 · 4* -	$-7 \cdot 2^x + 3 = 0$:	$(2)9^x - 3^{x+2} - 10 = 0:\underline{\hspace{1cm}}$	$ (3)3^{x+1} - 3^{-x} = $	
	$2:$ $(4)a(a^x+1)$	$= a^{-x} + 1$, 其中 $a > 0$ 且 a	$n \neq 1$:		
432.	解下列方程: $(1)3 \times 16^{x} + (4)4^{x+\sqrt{x^{2}-2}} - 5 \times 2^{x-1+\sqrt{x^{2}-2}}$		$(2\sqrt{6})^x + (\sqrt{5 - 2\sqrt{6}})^x = 1$	$0. (3)\sqrt[x]{9} - \sqrt[x]{6} = \sqrt[x]{4}.$	
433.	. 已知关于 x 的方程 $2a^{2x-2} - 7a^{x-1} + 3 = 0$ 有一个根是 2 , 求实数 a 的值, 并求方程其余的根.				
434.	. 解关于 x 的方程 $\frac{a^x - a^{-x}}{a^x + a^{-x}} = b$ (实数 $a > 0, a \neq 1, b \in \mathbf{R}$).				
435.	. (1) 若关于 x 的指数方程 $9^x + (a+4)3^x + 4 = 0$ 有实数解, 试求实数 a 的取值范围. (2) 若关于 x 的方程 $2a \cdot 3^{- x-1 } - 3^{-2 x-1 } - 2a - 1 = 0$ 有实数解, 求实数 a 的取值范围. (二) 对数方程				
436.	方程 $\lg(x-1)^2 = 2$ 的解集	是 ().			
	A. {11}	B. {-9}	C. $\{11, -9\}$	D. {-11,9}	
437.	关于 x 的方程 $\log_a x^2 = \log_a(\sqrt{a+1} - \sqrt{a}) - \log_a(\sqrt{a+1} + \sqrt{a})(a > 0$ 且 $a \neq 1)$ 的解为 ().				
	A. $\sqrt{a+1} + \sqrt{a}$	B. $\sqrt{a+1} - \sqrt{a}$	C. $\pm(\sqrt{a+1}+\sqrt{a})$	D. $\pm(\sqrt{a+1}-\sqrt{a})$	
438.	若 $f(x) = 1 + \lg x$, $g(x) = x^2$, 则使 $2f[g(x)] = g[f(x)]$ 成立的 x 值等于 ().				
	A. $10^{1+\sqrt{2}}$ 或 $10^{1-\sqrt{2}}$	B. $1 + \sqrt{2}$ 或 $1 - \sqrt{2}$	C. $10^{1+\sqrt{3}}$ 或 $10^{1-\sqrt{3}}$	D. $1 + \sqrt{3}$ 或 $1 - \sqrt{3}$	
439.	方程 $\log_5(x-8)^2 = 2 + \log_5(x-8)^2$	$x_5(x-2)$ 的解是 ().			
	A. 3 或 $\frac{1}{2}$	B. $\frac{1}{2}$	C. 3 或 38	D. 2	
440.	方程 $\sqrt{\lg x - 4} = 4 - \lg x$ 的	的解集是 ().			
	A. {100}	B. {1000}	C. {10000}	D. $\left\{ \frac{1}{10000} \right\}$	
441.	写出下列方程的解: $(1)\log_2(x-1) - \log_4(x+5) = 0$: $(2)\log_4(2-x) = \log_2(x-1) - 1$:				
			$2) = \log_8 2\sqrt{2}: _{}. (5$		
	0: (6) $\lg^2 x + \lg \frac{1}{2} \log_2 x - 2 = 0$:		$(7)\lg^2 x + \lg x^2 - 3 = 0:\underline{\hspace{1cm}}$	$(8)(\log_4 x)^2$ –	

- 442. (1) 已知方程 $\ln^2 x \ln x^2 2 = 0$ 的两个根为 $\alpha, \beta,$ 求 $\log_{\alpha} \beta + \log_{\beta} \alpha$ 的值. (2) 已知集合 $A = \{x | x^2 ax + a^2 19 = 0\}$, $B = \{x | \log_2(x^2 5x + 8) = 1\}$, $C = \{x | x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, 求实数 a 的值. (3) 已知 $f(x) = \log_a(a^x 1)(a > 0, a \neq 1)$, 解方程 $f(2x) = f^{-1}(x)$.
- 443. 解下列方程 (组): $(1)\log_1(9^{x-1}-5) = \log_1(3^{x-1}-2)-2$. $(2)\log_{0.5x}2 \log_{0.5x^3}x^2 = \log_{0.5x^3}4$. $(3)(\sqrt{x})^{\log_5x-1} = \frac{1}{2}$

5.
$$(4)10^{\lg^2 x} + x^{\lg x} = 20$$
. $(5)|\log_2 x| = |\log_2(2x^2)| - 2$. $(6)\begin{cases} \log_y x - 3\log_x y = 2, \\ (2^x)^y = (\frac{1}{2})^{-16}. \end{cases}$

- 444. 解下列关于 x 的方程: $(1)\lg(x+a)+1=\lg(ax-1)$. $(2)\lg(ax-1)-\lg(x-3)=1$. $(3)2\lg x-\lg(x-1)=\lg a$.
- 445. (1) 已知函数 $f(x) = a^{x-\frac{1}{2}}$ 满足 $f(\lg a) = \sqrt{10}$, 求实数 a 的值. (2) 已知函数 $f(x) = x^2 x + k$ 满足 $\log_2 f(a) = 2$, $f(\log_2 a) = k(a > 0$ 且 $a \neq 1$), 求 $f(\log_2 x)$ 在什么区间上是减函数, 并求出 $a \neq k$ 的值.
- 446. (1) 若关于 x 的方程 $\lg 2x \cdot \lg 3x = -a^2$ 有两个相异实根,求实数 a 的取值范围,并求此方程两根之积. (2) 若关于 x 的方程 $(\lg ax)(\lg ax^2) = 4$ 所有的解都大于 1,求实数 a 的取值范围. (3) 若关于 x 的方程 $\lg(ax) \cdot \lg(ax^2) = 4$ 有两个小于 1 的正根 α, β ,且满足 $|\lg \alpha \lg \beta| \le 2\sqrt{3}$,求实数 a 的取值范围. (4) 已知函数 $f(x) = x^2 \lg a + 2x + 4 \lg a$ 的最大值是 3,求实数 a 的值. (5) 若关于 x 的方程 $\log_2 x + 1 = 2 \log_2 (x a)$ 恰有一个实数解,求实数 a 的取值范围.
- 447. 已知函数 f(x) = log_a(a ka^x)(a > 0, a ≠ 1, k ∈ R). (1) 当 0 < a < 1, 且 1 ≤ x < +∞ 时, f(x) 都有意义, 求实数 k 的取值范围. (2) 当 a > 1 时, f(x) 的反函数就是它自身, 求 k 的值. (3) 在 (2) 的条件下, 求 f⁻¹(x²-2) = f(x) 的解.
- 448. (1) 已知 A = {0,1}, B = {x|x ⊆ A}, 问: A 与 B 是什么关系,并用列举法写出 B. (2) 已知 f(x) = x² + ax + b(a,b 均为实数),集合 A = {x|x = f(x), x ∈ R} = {-1,3}, B = {x|x = f[f(x)], x ∈ R},用列举法求集合.
- 449. 已知实数集 R 的子集 P 满足两个条件: ① $1 \notin P$; ② 若实数 $a \in P$, 则 $\frac{1}{1-a} \in P$. 求证: (1) 若 $2 \in P$, 则 P 中必含有其他两个数, 并求出这两个数. (2) 集合 P 不可能是单元素集.
- 450. (1) 已知集合 A, B, C 满足 $A \cap B = A, B \cap C = B,$ 求证: $A \subseteq C$. (2) 已知集合 $A = \{x | x = a^2 + 1, a \in \mathbf{N}\},$ $B = \{y | y = b^2 4b + 5, b \in \mathbf{N}\},$ 求证: $A \subset B$. (3) 已知集合 $A = \{x | x = 12a + 8b, a, b \in \mathbf{Z}\},$ $B = \{x | x = 20c + 16d, c, d \in \mathbf{Z}\},$ 求证: A = B. 注意要证明集合 $P \subseteq Q$, 可先设任一 $x_0 \in P$, 再证明 $x_0 \in \mathbf{Q}$; 要证明集合 $P \subset Q$, 可先证明 $P \subseteq Q$, 再证明 $Q \subseteq P$.
- 451. (1) 某班学生期中考试数学得优秀的有 18 人,物理得优秀的有 14 人,其中数学、物理两科中至少有一科得优秀的有 22 人,求两科都得优秀的学生人数. (2) 由某班学生组成的篮球队、排球队、乒乓球队分别有 14,15,13 名队员.已知同时参加这三个队的有 3 人,既参加篮球队又参加排球队的有 5 人,仅参加乒乓球队的有 4 人,仅参加排球队的有 5 人,问:仅参加篮球队的有几人. (3)某地区先后举行中学生数、理、化三科

竞赛,参加竞赛的学生人数依次是 807 人、739 人、437 人,其中参加数学、物理两科竞赛的有 513 人,参加物理、化学竞赛的有 267 人,参加数学、化学竞赛的有 371 人,三科竞赛都参加的有 213 人,求参加竞赛的学生总人数。注意在利用集合计算有限集的元素个数时,设有限集 A 的元素个数为 n(A),则有如下公式: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

- 452. (1) 已知集合 $A = \{(x,y) | \frac{y-3}{x-2} = a+1\}$, $B = \{(x,y) | (a^2-1)x + (a-1)y = 15\}$ 满足 $A \cap B = \emptyset$, 求实数 a 的值. (2) 已知集合 $A = \{x | x^2 (a+1)^2 x + 2a^3 + 2a \le 0, x \in \mathbf{R}\}$, $B = \{x | x^2 3(a+1)x + 6a + 2 \le 0, x \in \mathbf{R}\}$ 满足 $A \subseteq B$, 求实数 a 的取值范围.
- 453. (1) 从集合 $A = \{1,2,3\}$ 到集合 $M = \{0,1\}$ 可以建立几个不同的映射? (2) 从集合 $P = \{1,2\}$ 到集合 $Q = \{3,4,5\}$ 可以建立几个不同的映射?
- 454. (1) 若函数 f(x) 的定义域为 R^+ , 且满足 f(xy) = f(x) + f(y), f(8) = 3, 求 $f(\sqrt{2})$ 的值. (2) 若函数 f(x) 的 定义域为 R, 且满足 $f(x) + 2f(-x) = -x^3 + 6x^2 3x + 3$, 求 f(0) 的值, 并求 f(x) 的表达式.
- 455. (1) 已知 f(x + y) = f(x) + f(y) 对于任何实数 x, y 都成立, ① 求证: f(2x) = 2f(x); ② 求 f(0) 的值; ③ 求证: f(x) 为奇函数. (2) 已知函数 f(x) 对任何实数 x, y 满足 f(x + y) + f(x y) = 2f(x)f(y), 且 f(0) ≠ 0, 求证: f(x) 是偶函数.
- 456. 已知函数 $f(x)(x \neq 0)$ 满足 f(xy) = f(x) + f(y). (1) 求证: f(1) = f(-1) = 0. (2) 求证: f(x) 为偶函数. (3) 若 f(x) 在 $(0, +\infty)$ 上是增函数, 解不等式 $f(x) + f(x \frac{1}{2}) \leq 0$.
- 457. 已知函数 f(x) 对一切实数 x, y 满足 $f(0) \neq 0$, $f(x+y) = f(x) \cdot f(y)$, 且当 x < 0 时, f(x) > 1. 求证: (1) 当 x > 0 时, 0 < f(x) < 1. (2) f(x) 在 $x \in \mathbb{R}$ 上是减函数.
- 458. (1) 求函数 $y = 2x + \sqrt{1-2x}$ 的最大值. (2) 求函数 $y = 2x + \sqrt{1-x^2}$ 的值域. (3) 求函数 $y = \frac{\sqrt{x+1}}{x+2}$ 的值域.
- 459. 求函数 g(t) = (t+3)(1+|t-1|) 的值域, 其中实数 t 的取值范围是使函数 $f(x) = x^2 4tx + 2t + 30$ 对任一 $x \in \mathbb{R}$ 都取非负值.
- 460. 已知函数 f(x) 的定义域是 [0, 1], 求函数 f(x+m) + f(x-m) 的定义域 (其中 m > 0).
- 461. (1) 已知集合 $A = \{x|x^2 5x + 4 \le 0\}$, $B = \{x|x^2 2ax + a + 2 \le 0\}$ 满足 $A \supseteq B \ne \varnothing$, 求实数 a 的取值范围. (2) 已知函数 $f(x) = x^2 2mx + m + 6$. ① 若对任意实数 x 都有 f(x) > 0, 求实数 m 的取值范围; ② 若实数 α , β 满足 $f(\alpha) = f(\beta) = 0$, 求 $\alpha^2 + \beta^2$ 的最小值. (3) 已知函数 $f(x) = x^2 2kx + 2$ 在 $x \ge -1$ 时恒有 $f(x) \ge k$, 求实数 k 的取值范围. (4) 已知 $f(x) = -9x^2 6ax + 2a a^2$ 在 $-\frac{1}{3} \le x \le \frac{1}{3}$ 内有最大值-3, 求实数 a 的值.
- 462. 已知 y = f(x) 在其定义域上是增函数, 求证: y = f(x) 的反函数 $y = f^{-1}(x)$ 在其定义域上也是增函数.
- 463. 已知函数 $f(x) = x^3 + x + 1(x \in \mathbf{R})$, 求证: (1)f(x) 是 R 上的增函数. (2) 方程 $x^3 + x + 1 = 0$ 只有一个实数解.

- 464. 已知函数 $f(x) = \frac{x}{1+x^2} (x \in \mathbf{R})$. (1) 求 f(x) 的值域. (2) 讨论 f(x) 的单调性.
- 465. (1) 若二次函数 $f(x) = ax^2 + bx + c$ 满足 $f(x_1) = f(x_2)$, $(x_1 \neq x_2)$ 求证: 直线 $x = \frac{x_1 + x_2}{2}$ 是该二次函数 图象的对称轴. (2) 若对于任何实数 x, 函数 y = f(x) 始终满足 f(a+x) = f(a-x), 求证: 函数 y = f(x) 的 图象关于直线 x = a 对称. (3) 已知函数 f(x) 满足 $f(x+2) = f(2-x)(x \in \mathbf{R})$, 且 f(x) 的图象与 x 轴有 15个不同的交点, 求方程 f(x) = 0 的所有解的和.
- 466. (1) 已知函数 f(2x+1) 是偶函数, 求函数 f(2x) 的图象的对称轴. (2) 求函数 $y=\frac{3x-1}{x+2}(x\neq -2)$ 的图象的对称点. (3) 已知函数 f(x) 满足 $f(x)+f(2-x)+2=0(x\in {\bf R})$, 求 f(x) 的图象的对称中心.
- 467. 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m>1, m \in \mathbf{R}\}$. (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbf{R}$; 反之,若 f(x) 对一切实数 x 都有意义,则 $m \in M$. (2) 当 $m \in M$ 时, 求 f(x) 的最小值. (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.
- 468. 已知函数 $f(x) = \frac{4^x}{4^x + 2}$, 求 $f(\frac{1}{101}) + f(\frac{2}{101}) + \dots + f(\frac{100}{101})$ 的值.
- 469. 已知函数 $f(x) = 1 + \log_x 5$, $g(x) = \log_{x^2} 9 + \log_{x^2} 8$, 比较 f(x) 与 g(x) 的大小.
- 470. (1) 求方程 $x^2 4|x| \log_2 x 5 = 0$ 的实数解的个数. (2) 求使方程 $|x^2 2x + 1 + a| = a^2 6$ 恰有两相异实数解时 a 的取值范围.
- 471. 已知 f(x) 在 $(-\infty, +\infty)$ 上有单调性,且满足 f(1) = 2 和 f(x+y) = f(x) + f(y). (1) 求证: f(x) 为奇函数. (2) 若 f(x) 满足 $f(k \log_2 t) + f(\log_2 t \log_2^2 t 2) < 0$, 求实数 k 的取值范围.
- 472. 已知函数 f(x) 在定义域 x ∈ R⁺ 上是增函数,且满足 f(x · y) = f(x) + f(y)(x, y ∈ R⁺). (1) 求 f(x) 在 (1,+∞) 上的值域. (2) 若 f(2) = 1, f(x) 图象上三点 A,B,C 的横坐标分别为 a,a + 2,a + 4(a > 0),且 △ABC 的面积小于 1, 求实数 a 的取值范围.
- 473. (1) 求关于 x 的方程 $9^{-|x-2|} 4 \cdot 3^{-|x-2|} a = 0$ 有实根的条件. (2) 解方程 $|\log_2 x| = |\log_2 2x^2| 2$.
- 474.~(1) 分别求实数 a 的取值范围,使关于 x 的方程 $\log_{(x+a)} 2x = 2$ 有唯一解、两解、无解.(2) 分别求实数 a 的范围,使关于 x 的方程 $1 + \frac{\log_2(2\lg a x)}{\log_2 x} = 2\log_x 2$ 有两解、一解.