복소해석학 연습문제 풀이 A Friendly Approach to Complex Analysis

염용진,허재성 譯

Update on January 3, 2023

연습문제 풀이

머리말 - 연습문제 풀이

연습문제 ??

0에서 f'의 미분이 존재하고 그 값이 L이라고 가정하자. $\epsilon:=1>0$ 으로 잡으면, $0<|x-0|<\delta$ 이면

$$\left| \frac{f'(x) - f'(0)}{x - 0} - L \right| < \epsilon$$

을 만족하는 $\delta>0$ 가 존재한다. 특히 $x:=\delta/2$ 로 잡으면 $0<|x-0|=\delta/2<\delta$ 이므로

$$\left| \frac{f'(x) - f'(0)}{x - 0} - L \right| = \left| \frac{2(\delta/2) - 0}{(\delta/2) - 0} - L \right| = |2 - L| < \epsilon. \tag{0.1}$$

한편 $x:=-\delta/2$ 로 잡아도 $0<|x-0|=\delta/2<\delta$ 이므로

$$\left| \frac{f'(x) - f'(0)}{x - 0} - L \right| = \left| \frac{-2(-\delta/2) - 0}{(-\delta/2) - 0} - L \right| = |2 + L| < \epsilon. \tag{0.2}$$

식 (0.1)와 (0.2)으로부터 실수 절대값에 대한 삼각부등식을 이용하면

$$4=|2+L+2-L|\leq |2+L|+|2-L|<\epsilon+\epsilon=2\epsilon=2$$

가 되어 모순이다. 따라서 f'은 0에서 미분이 불가능하다.

1장 - 연습문제 풀이

연습문제 ??

 $(x,y) \neq 0$ 이므로, x,y 중 적어도 하나는 0이 아니다. 따라서 $x^2 + y^2 \neq 0$ 이고,

$$\left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right) \in \mathbb{R}^2.$$

또한,

$$\begin{split} (x,y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2} \right) \\ &= \left(x \cdot \frac{x}{x^2 + y^2} - y \cdot \left(\frac{-y}{x^2 + y^2} \right), x \cdot \left(\frac{-y}{x^2 + y^2} \right) + y \cdot \frac{x}{x^2 + y^2} \right) \\ &= \left(\frac{x^2 + y^2}{x^2 + y^2}, \frac{-xy + xy}{x^2 + y^2} \right) = (1,0). \end{split}$$

따라서 $(x,y) \neq (0,0)$ 에 대하여 $(x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$ 이다.

연습문제 ??

 $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 이므로, $\tan \theta \in \mathbb{R}$ 이고,

$$\frac{1}{1 - i \tan \theta} = \frac{1}{1^2 + (\tan \theta)^2} + i \left(\frac{\tan \theta}{1^2 + (\tan \theta)^2} \right)$$

$$= \frac{(\cos \theta)^2}{(\cos \theta)^2 + (\sin \theta)^2} + i \left(\frac{\frac{\sin \theta}{\cos \theta} \cdot (\cos \theta)^2}{(\cos \theta)^2 + (\sin \theta)^2} \right)$$

$$= \frac{(\cos \theta)^2}{1} + i \frac{(\sin \theta)(\cos \theta)}{1} = (\cos \theta)^2 + i(\sin \theta)(\cos \theta).$$

따라서

$$\frac{1+i\tan\theta}{1-i\tan\theta} = (1+i\tan\theta)((\cos\theta)^2 + i(\sin\theta)(\cos\theta))
= (\cos\theta)^2 - \frac{\sin\theta}{\cos\theta} \cdot (\sin\theta)(\cos\theta)
+ \left((\sin\theta)(\cos\theta) + \frac{\sin\theta}{\cos\theta} \cdot (\cos\theta)^2\right)
= (\cos\theta)^2 - (\sin\theta)^2 + i2(\sin\theta)(\cos\theta) = \cos(2\theta) + i\sin(2\theta).$$

연습문제 ??

 $P\subset\mathbb{C}$ 가 \mathbb{C} 의 양의 부분집합이라고 하자. 그러면, $i\neq 0$ 이므로 조건 (P3)에 의해 $i\in P$ 이거나 $(i\neq P)$ 이고 $-i\in P$)이다. 조건 (P2)에서

$$-1 = i \cdot i = (-i) \cdot (-i) \in P$$
 (0.3)

이고, 다시 (P2)에서

$$1 = (-1) \cdot (-1) \in P \tag{0.4}$$

가 된다. 그런데 $1 \neq 0$ 이고 x = 1이라고 하면 (P3)에서 (0.3), (0.4)는 동시에 만족될 수 없기에 모순이다.

연습문제 ??

아래 그림 0.1과 같다.

Fig. 5.2 Location of the complex numbers 0, 1, -3/2, i, $-\sqrt{2}i$, $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$.

Figure 0.1: 복소수 0, 1,
$$-3/2$$
, i , $-\sqrt{2}i$, $\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$ 의 위치

연습문제 ??

 $\theta \in \mathbb{R}$ 에 대하여 $(\cos \theta + i \sin \theta)^3 = \cos(3\theta) + i \sin(3\theta)$ 이다.

$$(\cos \theta + i \sin \theta)^3 = (\cos \theta + i \sin \theta) \left((\cos \theta)^2 - (\sin \theta)^2 + i2(\cos \theta)(\sin \theta) \right)$$
$$= (\cos \theta) \left((\cos \theta)^2 - (\sin \theta)^2 \right) - (\sin \theta)2(\cos \theta)(\sin \theta)$$

$$+i(\cdots).$$

따라서 양변의 실수부가 같다는 것을 이용하면,

$$\cos(3\theta) = \operatorname{Re}((\cos\theta + i\sin\theta))$$

$$= (\cos\theta) ((\cos\theta)^2 - (\sin\theta)^2) - 2(\cos\theta)(\sin\theta)^2$$

$$= (\cos\theta) ((\cos\theta)^2 - 1 + (\cos\theta)^2) - 2(\cos\theta)(1 - \cos\theta)^2$$

$$= (\cos\theta)^3 - \cos\theta + (\cos\theta)^3 - 2\cos\theta + 2(\cos\theta)^3$$

$$= 4(\cos\theta)^3 - 3\cos\theta$$

다른 방법으로, 이항정리 공식 $(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}$ 이 복소수 $a,b\in\mathbb{C}$ 와 자연수 $n\in\mathbb{N}$ 에 대하여 성립한다는 것을 이용하면,

$$\cos(3\theta) = \operatorname{Re}((\cos\theta + i\sin\theta))$$

$$= \operatorname{Re}((\cos\theta)^3 + 3(\cos\theta)^2(i\sin\theta) + 3(\cos\theta)(i\sin\theta)^2 + (i\sin\theta)^3)$$

$$= (\cos\theta)^3 - 3(\cos\theta)(\sin\theta)^2$$

$$= 4(\cos\theta)^3 - 3\cos\theta.$$

연습문제 ??

$$\begin{split} 1+i &= \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \vec{\Xi} \stackrel{\mathcal{L}}{=} \ \, \dot{\gamma} \ \, \text{있다. 따라서,} \\ (1+i)^{10} &= (\sqrt{2})^{10} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)^{10} = 2^5 \left(\cos \left(10 \cdot \frac{\pi}{4} \right) + i \sin \left(10 \cdot \frac{\pi}{4} \right) \right) \\ &= 32 \left(\cos \left(2\pi + \frac{\pi}{2} \right) + i \sin \left(2\pi + \frac{\pi}{2} \right) \right) \\ &= 32 \left(\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right) = 32(0+i\cdot 1) = 32i. \end{split}$$

연습문제 ??

2+i가 실수축의 양의 방향과 이루는 각도는 $\tan^{-1}(1/2)$ 이고 3+i가 실수축의 양의 방향과 이루는 각도는 $\tan^{-1}(1/3)$ 이다. 따라서, (2+i)(3+i)가 실수축의 양의 방향과 이루는 각도는 $\tan^{-1}(1/2)+\tan^{-1}(1/3)$ 이다. 한편,

$$(2+i)(3+i) = 6 - 1 + i(2+3) = 5 + 5i$$

이므로 (2+i)(3+i)가 실수축의 양의 방향과 이루는 각도는

$$\tan^{-1}(5/5) = \tan^{-1} 1 = \pi/4$$

이다. 결론적으로, $\frac{\pi}{4} = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$ 이다.

정삼각형의 꼭지점 A, B, C의 위치가 반시계방향의 순서로 복소수 z_A , z_B , z_C 에 있다고 하자. $\ell(AC) = \ell(AB)$ 이고 $\angle CAB = \pi/3$ 이므로,

$$z_C - z_A = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)(z_B - z_A).$$
 (0.5)

귀류법을 쓰기위해 $p, q, m, n \in \mathbb{Z}$ 가

$$z_C - z_A = p + iq$$
, $z_B - z_A = m + in$

을 만족한다고 하자. 그러면, 식 (0.5)에서 $p+iq=\left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)(m+in)$ 을 다시 쓰면,

$$p = \frac{m}{2} - \frac{\sqrt{3}}{2}n,\tag{0.6}$$

$$q = \frac{m\sqrt{3}}{2} + \frac{n}{2}. (0.7)$$

식 (0.6)에 -n을 곱하고, 식 (0.7)에 m을 곱하여 더하면

$$qm - pn = \frac{\sqrt{3}}{2}(m^2 + n^2)$$

을 얻는다. 그런데 $m^2 + n^2 \neq 0$ 이므로 $(z_B \neq z_A$ 이므로),

$$\sqrt{3} = \frac{2(qm - pn)}{m^2 + n^2} \in \mathbb{Q}$$

를 얻어 모순이 생긴다.

연습문제 ??

 $-1 = 1 \cdot (\cos \pi + i \sin \pi)$ 로 쓸 수 있다. $w = \rho(\cos \alpha + i \sin \alpha)$ 가

$$w^4 = \rho^4(\cos(4\alpha) + i\sin(4\alpha)) = 1 \cdot (\cos \pi + i\sin \pi)$$

를 만족해야 하므로, $\rho^4=1$ 에서 $\rho=1$ 이다. 또한, $4\alpha\in\{\pi,\pi\pm2\pi,\pi\pm4\pi,\ldots\}$ 에서

$$\alpha \in \left\{ \frac{\pi}{4}, \frac{\pi}{4} \pm \frac{\pi}{2}, \frac{\pi}{4} \pm \pi, \ldots \right\}.$$

따라서 $w=
ho(\cos\alpha+i\sin\alpha)=1\cdot((\cos\alpha+i\sin\alpha)$ 는 다음 집합에 속한다.

$$\left\{\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}, \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}, \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}, \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right\} \\
= \left\{\frac{1+i}{\sqrt{2}}, \frac{-1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}\right\}.$$

네 개의 해를 복소평면에 그려보면 그림 0.2와 같다.

Fig. 5.3 Location of the complex numbers w that satisfy $w^4 = -1$.

Figure 0.2:
$$w^4 = -1$$
을 만족하는 복소수 w 의 위치

방정식으로부터

$$0 = z^6 - z^3 - 2 = (z^3)^2 - 2z^3 + z^3 - 2 = (z^3 - 2)(z^3 + 1)$$

이므로 $z^3=2$ 또는 $z^3=-1$ 이다. $z^3=2$ 를 만족하는 해를 구하면

$$z \in \left\{ \sqrt[3]{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right), \sqrt[3]{2} \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right), \sqrt[3]{2} \right\}$$

로부터

$$z \in \left\{ \sqrt[3]{2} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2} \right\}$$

이다. 한편, $z^3 = -1$ 의 해는

$$z \in \left\{ \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}, \cos \pi + i \sin \pi, \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right\}$$

로부터

$$z \in \left\{ \frac{1}{2} + i\frac{\sqrt{3}}{2}, -1, \frac{1}{2} - i\frac{\sqrt{3}}{2} \right\}$$

이다. 결론적으로 $z^6 - z^3 - 2 = 0$ 일 필요충분조건은 $[z^3 = 2$ 또는 $z^3 = -1]$ 이다. 즉,

$$z \in \left\{ \sqrt[3]{2} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2} \right\}$$

$$\bigcup \left\{ \frac{1}{2} + i\frac{\sqrt{3}}{2}, -1, \frac{1}{2} - i\frac{\sqrt{3}}{2} \right\}.$$

따라서 구하는 해는

$$z \in \left\{ \sqrt[3]{2} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right), \sqrt[3]{2}, \frac{1}{2} + i\frac{\sqrt{3}}{2}, -1, \frac{1}{2} - i\frac{\sqrt{3}}{2} \right\}.$$

연습문제 ??

 $\omega^3=1$ 을 만족하는 $\omega\in\mathbb{C}\setminus\mathbb{R}$ 을 생각하자. 그러면, $(\omega-1)(\omega^2+\omega+1)=0$ 이고, $\omega\neq1$ 이므로 $\omega^2+\omega+1=0$ 이다. 따라서,

$$((b-a)\omega + (b-c))((b-a)\omega^2 + b - c)$$

$$= (b-a)^2\omega^3 + (b-a)(b-c)(-1) + (b-c)^2$$

$$= (b-a)^2 \cdot 1 + (b-a)(b-c)(-1) + (b-c)^2$$

$$= (b-a)(b-a-b+c) + (b-c)^2$$

$$= (bc-ca-ab+a^2+b^2-2bc+c^2)$$

$$= a^2+b^2+c^2-ab-bc-ca=0.$$

따라서 $(b-a)\omega=c-b$ 이거나 $(b-a)\omega^2=c-a$ 이다. 두번째 식은 $(b-a)\omega^3=(c-a)\omega$ 와 동치이므로 $(c-b)\omega=b-a$ 이다. 이로부터 |b-a|=|c-b|를 얻고 a와 b, a와 c를 잇는 두 선분의 사잇각은 $\pi/3$ 이다. 그림 0.3을 참고하라.

Fig. 5.4 a, b, c form an equilateral triangle.

Figure 0.3: 정삼각형을 이루는 세 점 a, b, c

두 가지 그림 모두 세 점 a, b, c는 정삼각형을 이룬다. a, b, c가 실수인 경우는 한점 $r \in \mathbb{R}$ 로 모이게 되어 a = b = c = (= r)이 되어 실수의 경우도 원하는 결과를 얻는다.

연습문제 ??

 $\omega \in \mathbb{C} \setminus \mathbb{R}$ 이 $\omega^3 = 1$ 을 만족한다고 하자. $(\omega - 1)(\omega^2 + \omega + 1) = 0$ 이고, $\omega \neq 1$ 이므로 $\omega^2 + \omega + 1 = 0$ 이다. 또한, $1 + \omega^2 + \omega^4 = 1 + \omega^2 + \omega \cdot \omega^3 = 1 + \omega^2 + \omega = 0$ 이므로,

$$(1+1)^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n} = \sum_{k=0}^{3n} {3n \choose k} (1+\omega^k + \omega^{2k}).$$

그런데,

$$(1 + \omega^k + \omega^{2k}) = \begin{cases} 1 + 1 + 1, & k \equiv 0 \mod 3, \\ 1 + \omega + \omega^2, & k \equiv 1 \mod 3, \\ 1 + \omega^2 + \omega^4, & k \equiv 2 \mod 3 \end{cases}$$
$$= \begin{cases} 3, & k \equiv 0 \mod 3, \\ 0, & k \equiv 1 \mod 3, \\ 0, & k \equiv 2 \mod 3. \end{cases}$$

에서

$$(1+1)^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n} = 3 \cdot \left(\binom{3n}{0} + \binom{3n}{3} + \dots + \binom{3n}{3n} \right).$$

다른 방법으로 보면,

$$(1+1)^{3n} + (1+\omega)^{3n} + (1+\omega^2)^{3n} = 2^{3n} + (-\omega^2)^{3n} + (-\omega)^{3n}$$
$$= 2^{3n} + (-1)^n + (-1)^n$$
$$= 2^{3n} + 2 \cdot (-1)^n$$

이므로 워하는 결과를 얻는다.

연습문제 ??

그림 0.4와 같이 평면위의 네 점 A, B, C, D를 복소수 a, b, c, d에 각각 대응시키자. AB'은 A를 중심으로 하여 AB를 반시계방향으로 90° 회전한 것이므로 B'은 복소수 a-i(b-a)에 대응된다. P는 BB'의 중점이므로 다음 복소수에 대응된다.

$$\frac{a+b-i(b-a)}{2}.$$

같은 방법으로 Q, R, S는 각각 다음 복소수에 대응된다.

$$\frac{b+c-i(c-b)}{2}$$
, $\frac{c+d-i(d-c)}{2}$, $\frac{d+a-i(a-d)}{2}$.

Fig. 5.5 RP and SQ have equal lengths and meet at right angles.

Figure 0.4: RP와 SQ는 길이가 같고 수직으로 만난다

점 P,Q,R,S에 대응되는 복소수를 각각 p,q,r,s라 하면,

$$i(q-s) = i\left(\frac{b+c-i(c-b)}{2} - \frac{d+a-i(a-d)}{2}\right)$$

$$= \frac{-b+c-a+d+i(b+c-d-a)}{2}$$

$$= \frac{-a-b+i(b-a)}{2} + \frac{c+d-i(d-c)}{2} = -p+r$$

이므로, |q-s|=|p-r|이 되어 $\ell(QS)=\ell(PR)$ 이다. 또한, i를 곱하는 것은 원점을 중심으로 90° 회전을 의미하기 때문에 $PR\perp QS$ 이다.

연습문제 ??

실수 x_1, x_2, y_1, y_2 에 대하여 $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$ 라 하자. 그러면 $z_1z_2 = x_1x_2 - y_1y_2 = i(x_1y_2 + y_1x_2)$ 이고,

$$|z_1 z_2|^2 = (x_1 x_2 - y_1 y_2)^2 + (x_1 y_2 + y_1 x_2)^2$$

= $x_1^2 x_2^2 - 2x_1 x_2 y_1 y_2 + y_1^2 y_2^2 + x_1^2 y_2^2 + 2x_1 y_2 y_1 x_2 + y_1^2 x_2^2$

$$= x_1^2(x_2^2 + y_2^2) + y_1^2(y_2^2 + x_2^2) = (x_1^2 + y_1^2)(x_2^2 + y_2^2)$$

= $|z_1|^2 |z_2|^2$.

 $|z_1|, |z_2|, |z_1z_2|$ 는 모두 음이 아닌 실수 이므로 $|z_1||z_2| = |z_1||z_2|$ 가 성립한다.

연습문제 ??

z = x + iy $(x, y \in \mathbb{R})$ 이라 하자. 그러면,

$$\overline{(\bar{z})} = \overline{x - iy} = x - i(-y) = x + iy = z.$$

또한,

$$z\bar{z} = (x+iy)(x-iy) = x^2 + y^2 + i(-xy + xy) = x^2 + y^2 = |z|^2$$
.

끝으로,

$$\frac{z+\bar{z}}{2} = \frac{x+\cancel{y} + x-\cancel{y}}{2} = \frac{2x}{2} = x = \operatorname{Re}(z),$$
$$\frac{z-\bar{z}}{2i} = \frac{\cancel{x} + iy - \cancel{x} + iy}{2i} = \frac{2iy}{2i} = y = \operatorname{Im}(z).$$

연습문제 ??

 $z = x + iy (x, y \in \mathbb{R})$ 이라 하면,

$$|z| = |x + iy| = \sqrt{x^2 + y^2} = \sqrt{x^2 + (-y)^2} = |x - iy| = |\bar{z}|,$$

$$|\operatorname{Re}(z)| = |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} = |x + iy| = |z|,$$

$$|\operatorname{Im}(z)| = |y| = \sqrt{y^2} \le \sqrt{x^2 + y^2} = |x + iy| = |z|.$$

 \overline{z} 는 z를 실수축에 대칭시켜 얻어지며, $0 \in \mathbb{R}$ 이므로 원점과 z와의 거리는 \overline{z} 와의 거리와 같다. 즉, $|z|=|\overline{z}|$. 부등식 $|\operatorname{Re}(z)| \leq |z|$ 와 $|\operatorname{Im}(z)| \leq |z|$ 는 아래 그림에서 직각삼각형에서 빗변의 길이가 가장 길다는 것을 의미한다.

연습문제 ??

우선 $|\bar{a}z| = |\bar{a}||z| = |a||z| < 1 \cdot 1 = 1$ 이므로, $\bar{a}z \neq 1$ 이고,

$$\frac{z-a}{1-\bar{a}z} \cdot \overline{\left(\frac{z-a}{1-\bar{a}z}\right)} = \frac{z-a}{1-\bar{a}z} \cdot \frac{\bar{z}-\bar{a}}{1-a\bar{z}} = \frac{z\bar{z}-a\bar{z}-\bar{a}z+a\bar{a}}{1-a\bar{z}-\bar{a}z+a\bar{a}z\bar{z}} \\
= \frac{|z|^2 - a\bar{z} - \bar{a}z + |a|^2}{1-a\bar{z} - \bar{a}z + |a|^2|z|^2}$$

$$= \frac{1 - a\bar{z} - \bar{a}z + |a|^2|z|^2 + |z|^2 + |a|^2 - 1 - |a|^2|z|^2}{1 - a\bar{z} - \bar{a}z + |a|^2|z|^2}$$

$$= 1 + \frac{|z|^2 + |a|^2 - 1 - |a|^2|z|^2}{1 - a\bar{z} - \bar{a}z + |a|^2|z|^2}$$

$$= 1 + \frac{|z|^2 + |a|^2 - 1 - |a|^2|z|^2}{|1 - \bar{a}z|^2}$$

$$= 1 - \frac{(1 - |z|^2)(1 - |a|^2)}{|1 - \bar{a}z|^2}.$$

따라서
$$\left| \frac{z-a}{1-\bar{a}z} \right|^2 = 1 - \underbrace{\frac{(1-|z|^2)(1-|a|^2)}{|1-\bar{a}z|^2}}_{>0 \; (|z|<1,|a|<1 \, ^{\circ}) 므로)} \leq 1-0=1.$$

 $w \in \mathbb{C}$ 가 p(w) = 0, 즉, $c_0 + c_1 w + \cdots + c_d w^d = 0$ 을 만족한다고 하자. 그러면,

$$\overline{c_0 + c_1 w + \dots + c_d w^d} = \overline{0} = 0$$

이고, 모든 c_k ($0 \le k \le d$)가 실수이므로

$$0 = \overline{c_0 + c_1 w + \dots + c_d w^d} = \overline{c_0} + \overline{c_1 w} + \dots + \overline{c_d w^d}$$
$$= \overline{c_0} + \overline{c_1 w} + \dots + \overline{c_d} \overline{w^d} = c_0 + c_1 \overline{w} + \dots + c_d (\overline{w})^d.$$

마지막 등식에서

$$\overline{w^k} = \underbrace{\overline{w \cdots w}}_{k \, \forall i} = \underbrace{\overline{w} \cdots \overline{w}}_{k \, \forall i} = (\overline{w})^k, \quad 1 \le k \le d$$

를 사용하였다. 따라서, $0 = c_0 + c_1 \overline{w} + \dots + c_d(\overline{w})^d = p(\overline{w})$.

 $a=|a|(\cos\alpha+i\sin\alpha),\,b=|b|(\cos\beta+i\sin\beta)$ 라고 하자. 단, $\alpha,\beta\in[0,2\pi)$. 그러면,

$$a\bar{b} = |a|(\cos\alpha + i\sin\alpha) \cdot |b|(\cos\beta - i\sin\beta)$$
$$= |a||b|(\cos\alpha + i\sin\alpha)(\cos\beta - i\sin\beta)$$

이고 $\operatorname{Im}(a\bar{b}) = |a||b|(-(\cos\alpha)(\sin\beta) + (\sin\alpha)(\cos\beta)) = |a||b|\sin(\alpha-\beta)$. 0, a, b를 꼭지점으로 하는 ΔOAB 의 면적은 $(O \equiv 0, A \equiv a, B \equiv b)$

$$\frac{1}{2}\ell(OA)\ell(OB) \cdot \sin \angle AOB = \frac{1}{2}|a| \cdot |b| \cdot |\sin(\alpha - \beta)| = \frac{1}{2}|\operatorname{Im}(a\bar{b})| = \left|\frac{\operatorname{Im}(a\bar{b})}{2}\right|.$$

Fig. 5.6 The area of $\triangle OAB$ formed by the triangle with vertices at 0, a, b.

Figure 0.5: 0, a, b를 꼭지점으로 하는 ΔOAB 의 면적

연습문제 ??

 $z_1, z_2, z_3 \in \mathbb{C}$ 에 대하여,

$$w := i \cdot \det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix} = -i \cdot \det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix}.$$

한편, 정사각행렬 $M = [m_{ij}]$ 에 대하여,

$$\det M = \sum_{\sigma \in S_n} (\operatorname{sgn} \sigma) \cdot m_{i\sigma(i)},$$

여기서, S_n 은 $\{1,\ldots,n\}$ 에 대한 모든 치환(permutation)의 집합이다.

$$\overline{\det M} = \sum_{\sigma \in S_n} (\operatorname{sgn} \sigma) \cdot \overline{m_{i\sigma(i)}} = \det \overline{M},$$

여기서, \overline{M} 은 M의 모든 원소에 대하여 켤레복소수를 취한 것이다. 따라서,

$$\frac{1}{\det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix}} = \det \begin{bmatrix} 1 & \overline{z_1} & z_1 \\ 1 & \overline{z_2} & z_2 \\ 1 & \overline{z_3} & z_3 \end{bmatrix} = -\det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix},$$

마지막 등식은 두번째 열과 세번째 열을 바꾼 것이다. 종합하면,

$$\frac{1}{i \cdot \det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix}} = -i \cdot \det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix}} = -i \cdot \left(-\det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix} \right)$$

$$= i \cdot \det \begin{bmatrix} 1 & z_1 & \overline{z_1} \\ 1 & z_2 & \overline{z_2} \\ 1 & z_3 & \overline{z_3} \end{bmatrix}.$$

따라서, w는 켤레복소수와 동일하므로 실수이다.

연습문제 ??

$$|z_{1} + z_{2}|^{2} + |z_{1} - z_{2}|^{2}$$

$$= (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}}) + (z_{1} - z_{2})(\overline{z_{1}} - \overline{z_{2}})$$

$$= z_{1} \cdot \overline{z_{1}} + z_{1} \cdot \overline{z_{2}} + z_{2} \cdot \overline{z_{1}} + z_{2} \cdot \overline{z_{2}}$$

$$+ z_{1}\overline{z_{1}} + z_{1} \cdot (-\overline{z_{2}}) + (-z_{2}) \cdot \overline{z_{1}} + (-z_{2})(-\overline{z_{2}})$$

$$= |z_{1}|^{2} + z_{1} \cdot \overline{z_{2}} + z_{2} \cdot \overline{z_{1}} + |z_{2}|^{2} + |z_{1}|^{2} - z_{1} \cdot \overline{z_{2}} - z_{2} \cdot \overline{z_{1}} + |z_{2}|^{2}$$

$$= 2(|z_{1}|^{2} + |z_{2}|^{2}).$$

복소평면에서 $0, z_1, z_2, z_1 + z_2$ 를 꼭지점으로 하는 평행사변형 P를 생각하자. 그러면, $|z_1 + z_2|$ 는 P의 한쪽 대각선의 길이가 되고, $|z_1 - z_2|$ 는 다른쪽 대각선의 길이가 된다. 또한, $|z_1|, |z_2|$ 는 P의 두변의 길이다. 따라서 위의 식이 의미하는 것은 "평행사변형에서 대각선 길이의 제곱의 합은 변의 길이의 제곱의 합의 두배와 같다" 이다.

연습문제 ??

 $z_1, z_2 \in \mathbb{C}$ 에 대하여, $|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|$ 이므로

$$|z_1| - |z_2| \le |z_1 - z_2|. (0.8)$$

모든 $z_1, z_2 \in \mathbb{C}$ 에 대하여, 식 (0.8)에서 z_1 과 z_2 의 역할을 바꾸어도 성립하므로

$$|z_2| - |z_1| \le |z_2 - z_1| = |-(z_1 - z_2)| = |-1||z_1 - z_2| = |z_1 - z_2|.$$
 (0.9)

식 0.8과 0.9로부터 $||z_1| - |z_2|| \le |z_1 - z_2|$ 이다.

연습문제 ??

(1),(2),(3):

Fig. 5.7 Left to right: The set of points described by |z - (1-i)| = 2, |z - (1-i)| < 2 and 1 < |z - (1-i)| < 2, respectively.

Figure 0.6: 왼쪽부터
$$|z-(1-i)|=2$$
, $|z-(1-i)|<2$, $1<|z-(1-i)|<2$

(4): z = x + iy $(x, y \in \mathbb{R})$ 이라 하면, Re(z - (1 - i)) = 3은 x - 1 = 3과 동치이므로, x = 4이다.

- (5): z = x + iy $(x, y \in \mathbb{R})$ 이라 하면, $|\operatorname{Im}(z (1 i))| < 3$ 은 |y + 1| < 3, 즉, -4 < y < 2와 같다.
- (6): $\{z \in \mathbb{C} : |z (1-i)| = |z (1+i)|\}$ 는 1-i와 1+i에서 같은 거리에 있는 복소수 z의 집합이다. 따라서, 1-i와 1+i을 잇는 선분의 수직이등분선이 된다. 즉, 실수축이다.
- (7): 방정식 |z (1 i)| + |z (1 + i)| = 2는 z에서 1 + i까지의 거리와 1 i까지의 거리의 합이 2가 됨을 의미한다. 그런데 1 i와 1 + i의 거리가 2이므로 z는 1 i와 1 + i를 잇는 선분에 있다.

Fig. 5.8 The set of points z satisfying |z - (1 - i)| = |z - (1 + i)| is \mathbb{R} .

Figure 0.7:
$$|z - (1 - i)| = |z - (1 + i)|$$
를 만족하는 집합은 \mathbb{R}

직접 계산하는 방식으로도 같은 결과를 얻을 수 있다. z=x+iy $(x,y\in\mathbb{R})$ 이면

$$2 = \sqrt{(x-1)^2 + (y+1)^2} + \sqrt{(x-1)^2 + (y-1)^2}$$

$$\geq |y+1| + |y-1| \geq 1 + y + 1 - y = 2$$

이므로 |y+1| + |y-1| = 2이고, x = 1이다.

Fig. 5.9 The set of points z satisfying |z-(1-i)|+|z-(1+i)|=2 is the line segment joining 1-i to 1+i.

Figure 0.8: |z - (1-i)| + |z - (1+i)| = 2를 만족하는 집합은 1-i와 1+i를 잇는 선분이다.

(8): 방정식 |z-(1-i)|+|z-(1+i)|=3을 만족하는 집합은 초점이 1+i와 1-i인 타원 E이 된다. 따라서, $\{z\in\mathbb{C}:|z-(1-i)|+|z-(1+i)|<3\}$ 은 타원 E의 내부가 된다.

Fig. 5.10 The set of points z satisfying |z-(1-i)|+|z-(1+i)|<3 is the interior of the ellipse E.

Figure 0.9: |z - (1 - i)| + |z - (1 + i)| < 3을 만족하는 집합은 타원 E의 내부이다.

연습문제 ??

 $z \neq 0$ 에 대하여 $p(z) = z^d \left(c_d + \frac{c_{d-1}}{z} + \dots + \frac{c_1}{z^{d-1}} + \frac{c_0}{z^d} \right)$.

$$\lim_{n \to \infty} \left(\frac{|c_{d-1}|}{n} + \dots + \frac{|c_1|}{n^{d-1}} + \frac{|c_0|}{n^d} \right) = 0$$

이므로, 다음을 만족하도록 충분히 큰 N을 잡을 수 있다.

$$\frac{|c_{d-1}|}{N} + \dots + \frac{|c_1|}{N^{d-1}} + \frac{|c_0|}{N^d} < \frac{|c_d|}{2}.$$

그러면 |z| > N =: R에 대하여

$$\begin{aligned} |p(z)| &= |z^d| \left| c_d + \frac{c_{d-1}}{z} + \dots + \frac{c_1}{z^{d-1}} + \frac{c_0}{z^d} \right| \\ &\geq |z|^d \left(|c_d| - \left| \frac{c_{d-1}}{z} + \dots + \frac{c_1}{z^{d-1}} + \frac{c_0}{z^d} \right| \right) \\ &\geq |z|^d \left(|c_d| - \left(\frac{|c_{d-1}|}{|z|} + \dots + \frac{|c_1|}{|z|^{d-1}} + \frac{|c_0|}{|z|^d} \right) \right) \\ &\geq |z|^d \left(|c_d| - \left(\frac{|c_{d-1}|}{N} + \dots + \frac{|c_1|}{N^{d-1}} + \frac{|c_0|}{N^d} \right) \right) \\ &\geq |z|^d \left(|c_d| - \frac{|c_d|}{2} \right) = \underbrace{\frac{|c_d|}{2}}_{=:M} |z|^d. \end{aligned}$$

연습문제 ??

 (\Leftarrow) :

실수열 $(\text{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(\text{Im}(z_n))_{n\in\mathbb{N}}$ 가 각각 Re(L)과 Im(L)로 수렴한다고 하자. 그러면, 주어진 $\epsilon>0$ 에 대하여, 충분히 큰 N이 존재하여 n>N이면

$$|\operatorname{Re}(z_n) - \operatorname{Re}(L)| < \frac{\epsilon}{\sqrt{2}}, \quad |\operatorname{Im}(z_n) - \operatorname{Im}(L)| < \frac{\epsilon}{\sqrt{2}}$$

을 만족하게 할 수 있고,

$$|z_n - L| = \sqrt{(\operatorname{Re}(z_n) - \operatorname{Re}(L))^2 + (\operatorname{Im}(z_n) - \operatorname{Im}(L))^2}$$

$$< \sqrt{\left(\frac{\epsilon}{\sqrt{2}}\right)^2 + \left(\frac{\epsilon}{\sqrt{2}}\right)^2} = \epsilon.$$

따라서 $(z_n)_{n\in\mathbb{N}}$ 은 L로 수렴한다.

 (\Rightarrow) :

 $(z_n)_{n\in\mathbb{N}}$ 이 L로 수렴한다고 가정하자. n>N이면 $|z-L|<\epsilon$ 이 되도록 하는 N을 잡을 수 있다. 그러면 모든 n>N에 대하여,

$$|\operatorname{Re}(z_n) - \operatorname{Re}(L)| = |\operatorname{Re}(z_n - L)| \le |z_n - L| < \epsilon,$$

$$|\operatorname{Im}(z_n) - \operatorname{Re}(L)| = |\operatorname{Im}(z_n - L)| \le |z_n - L| < \epsilon$$

이 되어 $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 이 각각 $\operatorname{Re}(L)$ 과 $\operatorname{Im}(L)$ 로 수렴한다.

연습문제 ??

 (\Rightarrow) :

 $(z_n)_{n\in\mathbb{N}}$ 이 L로 수렴한다고 가정하자. 그러면 $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 이 각각 $\operatorname{Re}(L)$ 과 $\operatorname{Im}(L)$ 로 수렴한다. 따라서 $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(-\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 은 각각 $\operatorname{Re}(L)$ 과 $-\operatorname{Im}(L)$ 로 수렴한다. 즉, $(\operatorname{Re}(\overline{z_n}))_{n\in\mathbb{N}}$ 의 각각 $\operatorname{Re}(\overline{L})$ 과 $\operatorname{Im}(\overline{L})$ 로 수렴한다. 결론적으로 $(\overline{z_n})_{n\in\mathbb{N}}$ 이 \overline{L} 로 수렴한다.

 (\Leftarrow) :

 $(\overline{z_n})_{n\in\mathbb{N}}$ 이 \overline{L} 로 수렴한다고 하자. 앞의 증명에서 $(\overline{(\overline{z_n})})_{n\in\mathbb{N}}$ 이 (\overline{L}) 로 수렴한다. 다시 쓰면, $(z_n)_{n\in\mathbb{N}}$ 이 L로 수렴한다.

연습문제 ??

 $(z_n)_{n\in\mathbb{N}}$ 이 \mathbb{C} 의 코시수열이라고 하자.

$$|\operatorname{Re}(z_n) - \operatorname{Re}(z_m)| = |\operatorname{Re}(z_n - z_m)| \le |z_n - z_m|,$$

 $|\operatorname{Im}(z_n) - \operatorname{Im}(z_m)| = |\operatorname{Im}(z_n - z_m)| \le |z_n - z_m|,$

이므로 $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 도 코시수열이다. \mathbb{R} 의 완비성으로부터 두 수열은 수렴한다. 각 $a,b\in\mathbb{R}$ 로 수렴한다고 하자. 그러면 $(z_n)_{n\in\mathbb{N}}$ 은 \mathbb{C} 에서 a+ib로 수렴한다. 따라서 \mathbb{C} 는 완비공간이다.

 $z_0 \in \mathbb{C}$ 와 $\epsilon > 0$ 이 주어졌다고 하자. $\delta = \epsilon > 0$ 으로 잡으면, $|z - z_0| < \delta$ 일 때,

$$|\operatorname{Re}(z) - \operatorname{Re}(z_0)| = |\operatorname{Re}(z - z_0)| \le |z - z_0| < \delta = \epsilon$$

을 만족한다. 따라서 $z\mapsto \mathrm{Re}(z)$ 는 z_0 에서 연속이고, $z_0\in\mathbb{C}$ 는 임의로 선택할 수 있으므로 $z\mapsto \mathrm{Re}(z)$ 는 \mathbb{C} 에서 연속이다.

연습문제 ??

 $U:=\{z\in\mathbb{C}:\operatorname{Re}(z)\cdot\operatorname{Im}(z)>1\}$ 이라 하자. U의 여집합을 $F:=U^C$ 로 쓰자. F에 정의된 수열 $(z_n)_{n\in\mathbb{N}}$ 이 \mathbb{C} 에서 L로 수렴한다면,

$$\operatorname{Re}(z_n) \cdot \operatorname{Im}(z_n) \le 1 \quad (n \in \mathbb{N})$$
 (0.10)

이고 $(\operatorname{Re}(z_n))_{n\in\mathbb{N}}$ 과 $(\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 이 각각 $\operatorname{Re}(L)$ 과 $\operatorname{Im}(L)$ 로 수렴한다. 따라서, $(\operatorname{Re}(z_n)\cdot\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ 도 수렴하며 극한은 $\operatorname{Re}(L)\cdot\operatorname{Im}(L)$ 이 된다. 식 (0.10)으로부터 $\operatorname{Re}(z)\cdot\operatorname{Im}(z)\leq 1$ 이므로 $L\in F$ 이다. 결론적으로 F는 닫힌집합이고, 그 여집합인 U는 열린집합이 된다.

이제 U가 영역이 아님을 보이자. 우선 영역이라고 가정하자. 그러면 $\gamma(a)=2+2i\in U$ 와 $\gamma(b)=-2-2i\in U$ 을 잇는 (계단형) 경로 $\gamma:[a,b]\to U$ 가 존재한다. 함수 $z\mapsto \mathrm{Re}(z):\mathbb{C}\to\mathbb{R}$ 가 연속이므로, $t\stackrel{\varphi}\mapsto \mathrm{Re}(\gamma(t)):[a,b]\to\mathbb{R}$ 도 연속이다.

$$\varphi(a) = \text{Re}(\gamma(a)) = \text{Re}(2+2i) = 2,$$

 $\varphi(b) = \text{Re}(\gamma(b)) = \text{Re}(-2-2i) = -2.$

그런데, $\varphi(a)=2>0>-2=\varphi(b)$ 이므로, 중간값정리에 의해 $0=\varphi(t_*)=\mathrm{Re}(\gamma(t_*))$ 를 만족하는 $t_*\in[a,b]$ 가 존재한다. 한편, $\mathrm{Re}(\gamma(t_*))\cdot\mathrm{Im}(\gamma(t_*))=0\cdot\mathrm{Im}(\gamma(t_*))=0\not>1$ 이므로 $\gamma(t_*)\not\in U$ 이다. 이는 U가 경로연결된 집합이라는 가정에 모순이 되어, U는 영역이 될 수 없다.

연습문제 ??

D가 열린집합이므로 이를 실수축에 대칭시킨 D^* 도 열린집합이다. $w_1, w_2 \in D^*$ 라 하면, $\overline{w_1}, \overline{w_2} \in D$ 이다. D가 영역이므로 $\gamma(a) = \overline{w_1}, \gamma(b) = \overline{w_2}$ 이고 모든 $t \in [a,b]$ 에 대하여 $\gamma(t) \in D$ 인 계단 형 경로 $\gamma:[a,b] \to \mathbb{C}$ 가 존재한다. 이제 $\gamma^*:[a,b] \to \mathbb{C}$ 를 $\gamma^*(t) = \overline{\gamma(t)}$ 로 정의하자. 그러면 $\gamma^*(a) = \overline{w_1} = w_1, \gamma^*(b) = \overline{w_2} = w_2$ 이고, 모든 $t \in [a,b]$ 에 대하여 $\gamma^*(t) \in D^*$ 이다. γ^* 는 연속함수 γ 와 $z \mapsto \overline{z}$ 의 합성함수이므로 연속이다. γ 가 계단형 경로이므로, $k = 0,1,\ldots,n$ 에 대하여 $\gamma|_{[t_k,t_{k+1}]}$ 는 실수부 또는 허수부가 상수인

$$t_0 = a < t_1 < \dots < t_n < t_{n+1} = b$$

가 존재한다. 마찬가지로 $\gamma^*|_{[t_k,t_{k+1}]}$ 도 실수부 또는 허수부가 상수이다. (실수부는 $\gamma|_{[t_k,t_{k+1}]}$ 의 실수부와 같고 허수부는 $\gamma|_{[t_k,t_{k+1}]}$ 의 허수부에 마이너스 부호를 붙인 것과 같다.) 따라서, γ^* 도 계단형 경로이고, D^* 는 경로연결된 집합이다.

D*는 열린집합이고 경로연결된 집합이므로 영역이 된다.

연습문제 ??

$$\exp\left(i\frac{9\pi}{2}\right) = \exp\left(i\left(4\pi + \frac{\pi}{2}\right)\right) = e^{0}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 1(0 + i \cdot 1) = i,$$

$$\exp(3 + \pi i) = e^{3}(\cos\pi + i\sin\pi) = e^{3}(-1 + i \cdot 0) = -e^{3}.$$

연습문제 ??

z=x+iy $(x,y\in\mathbb{R})$ 이라 하면, $e^x(\cos y+i\sin y)=\pi i$ 를 만족해야 한다. 양변의 절대값을 취하면 $e^x=\pi$ 이므로 $x=\log\pi$ 이다. 따라서 $\cos y+i\sin y=i$ 가 되어 $\sin y=1$, $\cos y=0$ 을 만족한다. 따라서 $y=\frac{\pi}{2}+2\pi k$ $(k\in\mathbb{Z})$ 이다. 그림 0.10을 참고하라.

Fig. 5.11 Possible values of y when $\cos y + i \sin y = i$ are given by $y = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$.

Figure 0.10: $\cos y + i \sin y = i$ 를 만족하는 y는 $y = \frac{\pi}{2} + 2\pi k \ (k \in \mathbb{Z})$ 로 주어진다.

 $\exp z = \pi i$ 라면,

$$z \in \left\{ \log \pi + i \left(\frac{\pi}{2} + 2\pi k \right), k \in \mathbb{Z} \right\}.$$

역으로 어떤 $k \in \mathbb{Z}$ 에 대하여 $z \in \log \pi + i\left(\frac{\pi}{2} + 2\pi k\right)$ 라면,

$$\exp z = e^{\log \pi} \left(\cos \left(\frac{\pi}{2} + 2\pi k \right) + i \sin \left(\frac{\pi}{2} + 2\pi k \right) \right) = \pi (0 + i \cdot 1) = \pi i.$$

결론적으로 $\exp z = \pi i$ 일 필요충분조건은 $z \in \left\{\log \pi + i\left(\frac{\pi}{2} + 2\pi k\right), k \in \mathbb{Z}\right\}$ 이다.

 $\gamma(t) := \exp(it), t \in [0, 2\pi]$ 라고 하자. 그러면,

$$\gamma(t) = \exp(it) = e^{0} (\cos t + i \sin t) = \cos t + i \sin t.$$

점 $(\cos t, \sin t)$ 는 중심이 (0,0)이고 반지름이 1인 원 위에 있고 t가 증가함에 따라 반시계방향으로 움직인다. 따라서 곡선 $t\mapsto \gamma(t)$ 는 반시계방향으로 도는 원이 된다. 그림 0.11을 참고하라.

Fig. 5.12 The curve $t \mapsto \gamma(t) := \exp(it), t \in [0, 2\pi].$

Figure 0.11: 곡선 $t \mapsto \gamma(t) := \exp(it), t \in [0, 2\pi]$

연습문제 ??

 $\exp(t+it)=e^t(\cos t+i\sin t)$ 이므로 곡선은 $t\mapsto (e^t\cos t,e^t\sin t)$ 로 주어진다. 대강의 그림을 그려 보면 0.12와 같다. 나선형 곡선이 되며, $t\searrow -\infty$ 일 때 $(e^t\cos t,e^t\sin t)$ 는 0으로 수렴하고, $t\nearrow +\infty$ 일 때 나선형의 바깥으로 발산한다.

연습문제 ??

$$\exp\left(z^2\right) = \exp\left((x+iy)^2\right) = \exp\left(x^2-y^2+2xyi\right) = e^{x^2-y^2}(\cos(2xy)+i\sin(2xy))$$
이므로 $|\exp(z^2)| = e^{x^2-y^2}$, $\operatorname{Re}(\exp(z^2)) = e^{x^2-y^2}\cos(2xy)$, $\operatorname{Im}(\exp(z^2)) = e^{x^2-y^2}\sin(2xy)$ 이다. $z \neq 0$ 에 대하여

$$\exp \frac{1}{z} = \exp\left(\frac{1}{x+iy}\right) = \exp\left(\frac{x-iy}{x^2+y^2}\right)$$
$$= e^{\frac{x}{x^2+y^2}} \left(\cos\left(\frac{-y}{x^2+y^2}\right) + i\sin\left(\frac{-y}{x^2+y^2}\right)\right)$$

Fig. 5.13 The image of the line y = x under the map $z = x + iy \mapsto \exp z$.

Figure 0.12: 함수
$$z = x + iy \mapsto \exp z$$
에 의한 직선 $y = x$ 의 상

이므로

$$\left| \exp \frac{1}{z} \right| = e^{\frac{x}{x^2 + y^2}},$$

$$\operatorname{Re}\left(\exp \frac{1}{z} \right) = e^{\frac{x}{x^2 + y^2}} \cos \left(\frac{-y}{x^2 + y^2} \right),$$

$$\operatorname{Im}\left(\exp \frac{1}{z} \right) = e^{\frac{x}{x^2 + y^2}} \sin \left(\frac{-y}{x^2 + y^2} \right).$$

연습문제 ??

 $z_1, z_2 \in \mathbb{C}$ 에 대하여,

$$(\sin z_1)(\cos z_2) + (\cos z_1)(\sin z_2)$$

$$= \left(\frac{\exp(iz_1) - \exp(-iz_1)}{2i}\right) \left(\frac{\exp(iz_2) + \exp(-iz_2)}{2}\right)$$

$$+ \left(\frac{\exp(iz_1) + \exp(-iz_1)}{2}\right) \left(\frac{\exp(iz_2) - \exp(-iz_2)}{2i}\right)$$

$$= \frac{2\exp(i(z_1 + z_2)) - 2\exp(-i(z_1 + z_2))}{4i} = \sin(z_1 + z_2).$$

연습문제 ??

 $z = x + iy (x, y \in \mathbb{R})$ 이라 하면,

$$\cos z = \cos(x + iy) = (\cos x)(\cos(iy)) - (\sin x)(\sin(iy))$$
$$= (\cos x) \left(\frac{e^{-y} + e^y}{2}\right) - (\sin x) \left(\frac{e^{-y} - e^y}{2i}\right)$$

$$= (\cos x)(\cosh y) - (\sin x) \left(-\frac{\sinh y}{i}\right)$$
$$= (\cos x)(\cosh y) - i(\sin x)(\sinh y).$$

따라서

$$|\cos z|^2 = (\cos x)^2 (\cosh y)^2 + (\sin x)^2 (\sinh y)^2$$

$$= (1 - (\sin x)^2)(\cosh y)^2 + (\sin x)^2 \left(\frac{e^{2y} - 2 + e^{-2y}}{4}\right)$$

$$= (\cosh y)^2 - (\sin x)^2 (\cosh y)^2 + (\sin x)^2 \left(\frac{e^{2y} + 2 + e^{-2y}}{4} - 1\right)$$

$$= (\cosh y)^2 - (\sin x)^2 (\cosh y)^2 + (\sin x)^2 ((\cosh y)^2 - 1)$$

$$= (\cosh y)^2 - (\sin x)^2 (\cosh y)^2 + (\sin x)^2 (\cosh y)^2 - (\sin x)^2$$

$$= (\cosh y)^2 - (\sin x)^2.$$

연습문제 ??

z = x + iy $(x, y \in \mathbb{R})$ 이라 하면, $\cos z = 3$ 은 다음과 동치이다.

$$(\cos x)(\cosh y) = 3, (0.11)$$

$$(\sin x)(\sinh y) = 0. \tag{0.12}$$

여기서 $\sinh y = 0$ 는 y = 0와 동치이다. 그런데 y = 0는 불가능하다. 왜냐하면, z = x + iy = x가 실수가 되는데 $\cos x = 3$ 을 만족하는 실수 x는 없기 때문이다. 그러므로 식 (0.12)에서 $\sin x = 0$ 이다. 따라서 $x \in \{n\pi: n \in \mathbb{Z}\}$. 한편, $\cos x = \pm 1$ 이고, 모든 $y \in \mathbb{R}$ 에 대하여

$$\cosh y = \frac{e^y + e^{-y}}{2} > 0$$

이므로 식 (0.11)에서 $\cos x$ 는 -1이 될 수 없다. 결론적으로 $x \in \{2n\pi : n \in \mathbb{Z}\}$ 이고 $\cos x = 1$ 이다. 이제 $\cosh y = 3$ 에서

$$\frac{e^y + y^{-y}}{2} = 3.$$

 $\stackrel{\mathbf{Z}}{\mathbf{\neg}}$, $(e^y)^2 - 6e^y + 1 = 0$.

$$e^y = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm \sqrt{9 - 1} = 3 \pm 2\sqrt{2}$$

에서 $y = \log(3 + 2\sqrt{2})$ 또는

$$y = \log(3 - 2\sqrt{2}) = \log\frac{9 - 8}{3 + 2\sqrt{2}} = \log\frac{1}{3 + 2\sqrt{2}} = -\log(3 + 2\sqrt{2})$$

이므로 $z \in \{2\pi n \pm i \log(3 + 2\sqrt{2}), n \in \mathbb{Z}\}.$

역으로, 어떤 $n \in \mathbb{Z}$ 에 대하여 $z = 2\pi n \pm i \log(3 + 2\sqrt{2})$ 라면,

$$\cos z = \underbrace{(\cos(2\pi n))}_{=1} (\cosh(\pm(3\pm 2sqrt2))) - i\underbrace{(\sin(2\pi n))}_{=0} (\sinh\cdots)$$

$$= \cosh\left(\pm(3\pm 2\sqrt{2})\right) = \frac{e^{\log(3+2\sqrt{2})} + e^{-\log(3+2\sqrt{2})}}{2}$$

$$= \frac{3+2\sqrt{2}+(3+2\sqrt{2})^{-1}}{2} \frac{3+2\sqrt{2}+3-2\sqrt{2}}{2} = 3.$$

종합하면, $\cos z = 3$ 일 필요충분조건은 $z \in \{2\pi n \pm i \log(3 + 2\sqrt{2}), n \in \mathbb{Z}\}$ 이다.

연습문제 ??

Fig. 5.14 The set $\left\{z\in\mathbb{C}:z\neq0,\ \frac{\pi}{4}<|\mathrm{Arg}(z)|<\frac{\pi}{3}\right\}$.

Figure 0.13:
$$\left\{z\in\mathbb{C}\,:\,z\neq0,\frac{\pi}{4}<|\operatorname{Arg}(z)|<\frac{\pi}{3}\right\}$$

연습문제 ??

$$\operatorname{Log}(1+i) = \operatorname{Log}\left(\sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)\right) = \operatorname{Log}\left(\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right) \\
= \operatorname{Log}\left(\sqrt{2}\exp\left(i\frac{\pi}{4}\right)\right) = \operatorname{log}\sqrt{2} + i\frac{\pi}{4}.$$

연습문제 ??

$$Log(-1) = Log(1 \cdot exp(i\pi)) = log 1 + i\pi = 0 + i\pi = i\pi,$$

$$Log(1) = Log(1 \cdot \exp(i0)) = \log \sqrt{2} + i\frac{\pi}{4}.$$

z=-1이면, $\mathrm{Log}(z^2)=\mathrm{Log}((-1)^2)=\mathrm{Log}(1)=0$ 인 반면, $2\cdot\mathrm{Log}(z)=2\cdot\mathrm{Log}(-1)=2\cdot i\pi$. 따라서 z=-1일 때,

$$Log(z^2) = 0 \neq 2 \cdot i\pi = 2 \cdot Log(z).$$

연습문제 ??

 $\mathbb{A}:=\{z\in\mathbb{C}\,:\,1< z< e\}$ 라 하면, $z\in\mathbb{A}$ 일 필요충분조건은 $z=r\exp(i\operatorname{Arg}(z))$ 이고 1< r< e, $\operatorname{Arg}(z)\in(-\pi,\pi]$ 이다. 이런 z에 대하여

$$Log(z) = Log(r \exp(i \operatorname{Arg}(z))) = \log r + i \operatorname{Arg}(z)$$

이고 $0 = \log 1 < \log r < \log e = 1$ 이다. 따라서 상은 직사각형

$$\mathbb{I} := \{ x + iy : 0 < x < 1, -\pi < y < \pi \}$$

가 된다.

역으로, $x+iy\in\mathbb{I}$ 이면, $z:=\exp(x+iy)=e^x\exp(iy)\in\mathbb{A}$ 이다. 왜냐하면, $|z|=e^x\in(1,e)$ 이고 $\log(z)=\log(e^x\exp(iy))=\log e^x+iy=x+iy$ 이기 때문이다. 따라서 \mathbb{A} 의 \log 함수에 대한 상은 정확히 \mathbb{I} 와 일치한다.

연습문제 ??

 $(1+i)^{1-i}$ 의 주치는 $\exp((1-i)\log(1+i))$ 이다.

$$Log(1+i) = Log\left(\sqrt{2}\exp\left(i\frac{\pi}{4}\right)\right) = \log\sqrt{2} + i\frac{\pi}{4}.$$

따라서 $(1+i)^{1-i}$ 의 주치를 계산하면,

$$\exp((1-i)\operatorname{Log}(1+i)) = \exp\left((1-i)\left(\log\sqrt{2} + i\frac{\pi}{4}\right)\right)$$

$$= e^{\log\sqrt{2} + \frac{\pi}{4}}\exp\left(i\left(\frac{\pi}{4} - \log\sqrt{2}\right)\right)$$

$$= \sqrt{2}e^{\frac{\pi}{4}}\frac{(1+i)}{\sqrt{2}}\exp\left(-i\log\sqrt{2}\right)$$

$$= e^{\frac{\pi}{4}}(1+i)\left(\cos\left(\log\sqrt{2}\right) - i\sin\left(\log\sqrt{2}\right)\right).$$

2장 - 연습문제 풀이

연습문제 ??

 $z \neq 0$ 에 대하여

$$\frac{f(z) - f(0)}{z - 0} - 0 = \frac{|z|^2 - 0}{z - 0} = \frac{|z|^2}{z}.$$

주어진 $\epsilon>0$ 에 대하여 $\delta=\epsilon$ 으로 잡으면, $0<|z-0|=|z|<\delta$ 일 때

$$\left| \frac{f(z) - f(0)}{z - 0} - 0 \right| = \left| \frac{|z|^2}{z} \right| = \frac{|z|^2}{|z|} = |z| < \delta = \epsilon.$$

따라서 f는 0에서 복소미분가능하고 f'(0) = 0이다.

연습문제 ??

 $w_0 \in \mathbb{D}^*$ 라 하자. 그러면 $\overline{w_0} \in D$ 이다. f가 D에서 복소해석함수이므로, 주어진 $\epsilon > 0$ 에 대응하는 $\delta > 0$ 가 존재하여, $0 < |z - \overline{w_0}| < \delta$ 이면 $z \in D$ 와

$$\left| \frac{f(z) - f(\overline{w_0})}{z - \overline{w_0}} - f'(\overline{w_0}) \right| < \epsilon \tag{0.13}$$

를 만족한다. 이제 w를 $0<|w-w_0|<\delta$ 로 잡으면

$$0 < |w - w_0| = |\overline{w - w_0}| = |\overline{w} - \overline{w_0}| < \delta$$

이 되어 $w \in D^*$ 이다. 또한,

$$\left| \frac{f^*(w) - f^*(w_0)}{w - w_0} - \overline{f'(\overline{w_0})} \right| = \left| \frac{\overline{f(\overline{w})} - \overline{f(\overline{w_0})}}{w - w_0} - \overline{f'(\overline{w_0})} \right|$$
$$= \left| \frac{\overline{f(\overline{w})} - f(\overline{w_0})}{w - w_0} - f'(\overline{w_0}) \right|$$

$$= \left| \frac{f(\overline{w}) - f(\overline{w_0})}{w - w_0} - f'(\overline{w_0}) \right| < \epsilon \text{ (식 (0.13)을 이용하여)}$$

이 되므로, f^* 는 w_0 에서 복소미분가능하며 $(f^*)'(w_0) = \overline{f'(\overline{w_0})}$ 이다. $w_0 \in D^*$ 를 임의로 선택할 수 있으므로 f^* 는 D^* 에서 복소미분가능함수이다.

연습문제 ??

f가 z_0 에서 복소미분가능하므로, 상수 r>0과 함수 $h:D(z_0,r)\to\mathbb{C}$ 가 존재하여 $|z-z_0|< r$ 에 대하여

$$f(z) = f(z_0) + (f'(z_0) + h(z))(z - z_0)$$

로쓸수 있고

$$\lim_{z \to z_0} h(z) = 0$$

이다. 여기서, $D(z_0, r) := \{z \in \mathbb{C} : |z - z_0| < r\} \subset D$ 이다.

 $D(z_0,r'):=\{z\in\mathbb{C}:\,|z-z_0|< r'\}\subset D(z_0,r)\subset D$ 과 |h(z)|<1이 되도록 r'< r을 잡자. 이제 주어진 $\epsilon>0$ 에 대하여

$$\delta = \min\left\{\frac{\epsilon}{|f'(z_0)| + 1}, r'\right\}$$

로 선택하면, $0 < |z - z_0| < \delta$ 일 때, $z \in D(z_0, r')$ 이고,

$$|f(z) - f(z_0)| = |f'(z_0) + h(z)||z - z_0| \le (|f'(z_0)| + |h(z)|) \frac{\epsilon}{|f'(z_0)| + 1}$$
$$< (|f'(z_0)| + 1) \frac{\epsilon}{|f'(z_0)| + 1} = \epsilon.$$

따라서 f는 z_0 에서 연속이다.

연습문제 ??

 $f,g:U o\mathbb{C}$ 가 $z_0\in U$ 에서 복소미분가능함을 이용하면, 보조정리 **??**로부터 r>0과 $h_f,h_g:D(z_0,r) o\mathbb{C}$ 가 존재하여 (단, $D(z_0,r):=\{z\in\mathbb{C}:|z-z_0|< r\}$)

 $|z-z_0| < r$ 이면,

$$f(z) = f(z_0) + (f'(z_0) + h_f(z))(z - z_0),$$
(0.14)

$$g(z) = g(z_0) + (g'(z_0) + h_a(z))(z - z_0),$$
(0.15)

와 $\lim_{z \to z_0} h_f(z) = 0 = \lim_{z \to z_0} h_g(z)$ 를 만족한다.

(1) 식 (0.14)와 (0.15)를 더하면, $|z-z_0| < r$ 에 대하여

$$(f+g)(z) = (f+g)(z_0) + (f'(z_0) + g'(z_0) + h_{f+g}(z))(z-z_0)$$

를 만족한다. 단, $D(z_0, r)$ 에서 $h_{f+q}(z) := h_f(z) + h_g(z)$ 로 정의한다. 또한,

$$\lim_{z \to z_0} h_{f+g}(z) = \lim_{z \to z_0} (h_f(z) + h_g(z)) = \lim_{z \to z_0} h_f(z) + \lim_{z \to z_0} h_g(z) = 0 + 0 = 0.$$

보조정리 **??**에 의하여 f + g는 복소미분가능하며 $(f + g)'(z_0) = f'(z_0) + g'(z_0)$ 이다.

(2) 식 (0.14)에 α 를 곱하면, $|z-z_0| < r$ 에 대하여

$$(\alpha \cdot f)(z) = (\alpha \cdot f)(z_0) + (\alpha \cdot f'(z_0) + h_{\alpha \cdot f}(z))(z - z_0),$$

단, $D(z_0, r)$ 에서 $h_{\alpha \cdot f}(z) := \alpha \cdot f(z)$ 이다. 또한,

$$\lim_{z \to z_0} h_{\alpha \cdot f}(z) = \lim_{z \to z_0} (\alpha \cdot h_f(z)) = \alpha \cdot \lim_{z \to z_0} h_f(z) = \alpha \cdot 0 = 0.$$

보조정리 ??에 의하여 $\alpha \cdot f$ 는 복소미분가능하며 $(\alpha \cdot f)'(z_0) = \alpha \cdot f'(z_0)$ 이다.

(3) 식 (0.14)와 (0.15)를 곱하면, $|z-z_0| < r$ 에 대하여

$$(fg)(z) = (fg)(z_0) + (f'(z_0)g(z_0) + f(z_0)g'(z_0) + h_{fg}(z))(z - z_0),$$

단, $D(z_0, r)$ 에서

$$h_{fg}(z) := f(z_0)h_g(z) + g(z_0)h_f(z) + (z - z_0)(f'(z_0) + h_f(z))(g'(z_0) + h_g(z))$$

또한,

$$\lim_{z \to z_0} h_{fg}(z) = f(z_0) \cdot 0 + g(z_0) \cdot 0 + 0 \cdot (f'(z_0) + 0) \cdot (g'(z_0) + 0) = 0$$

이므로 fg는 zo에서 복소미분가능하며

$$(fg)'(z) = f'(z_0)g(z_0) + f(z_0)g'(z_0).$$

연습문제 ??

 $\mathrm{Hol}(\mathbb{D})$ 가 d차의 유한차원이라고 하자. 그러면 d+1개의 벡터 $1,z,z^2,\ldots,z^d\in\mathrm{Hol}(\mathbb{D})$ 는 일차종속이다. 따라서 모두 0은 아닌 α_0,\ldots,α_d 가 존재하여

$$\alpha_0 \cdot 1 + \alpha_1 \cdot z + \dots + \alpha_d \cdot z^d = 0 \quad (z \in \mathbb{D})$$

을 만족한다. $k \in \{0,1,\ldots,d\}$ 를 $\alpha_k \neq 0$ 인 가장 작은 값이라 하자. 그러면, k번 미분한 값을 $0 \in \mathbb{D}$ 에서 계산하면

$$0 + \alpha_k \cdot k! + 0 = 0$$

이므로 $\alpha_k = 0$ 이 되어 모순이다.

 $z_0 \in U$ 라 하자. f는 z_0 에서 복소미분가능하므로 r>0과 $D(z_0,r):=\{z\in\mathbb{C}:|z-z_0|< r\}\subset U$ 에 정의된 복소함수 h가 존재하여

$$f(z) = f(z_0) + (f'(z_0) + h(z))(z - z_0), \quad z \in D(z_0, r)$$

과

$$\lim_{z \to z_0} h(z) = 0 \tag{0.16}$$

을 만족한다. g := 1/f라 하면,

$$\frac{1}{g(z)} = \frac{1}{g(z_0)} + (f'(z_0) + h(z))(z - z_0)$$

이므로 $g(z_0)=g(z)+(f'(z_0)+h(z))g(z_0)g(z)\cdot(z-z_0)$. 정리하면

$$g(z) = g(z_0) + (-f'(z_0)g(z_0)g(z) - h(z)g(z_0)g(z))) \cdot (z - z_0)$$

$$= g(z_0) + \left(-\frac{f'(z_0)}{(f(z_0))^2} + \frac{f'(z_0)}{(f(z_0))^2} - \frac{f'(z_0)}{f(z_0)f(z)} - \frac{h(z)}{f(z_0)f(z)}\right) (z - z_0)$$

$$= g(z_0) + \left(-\frac{f'(z_0)}{(f(z_0))^2} + \varphi(z)\right) \cdot (z - z_0),$$

 $z \in D(z_0, r)$ 에서

$$\varphi(z) := \frac{f'(z_0)}{(f(z_0))^2} - \frac{f'(z_0)}{f(z_0)f(z)} - \frac{h(z)}{f(z_0)f(z)}.$$

 z_0 에서 f의 연속성과 식 (0.16)으로부터

$$\lim_{z \to z_0} \varphi(z) = \frac{f'(z_0)}{(f(z_0))^2} - \frac{f'(z_0)}{f(z_0)f(z_0)} - \frac{0}{f(z_0)f(z_0)} = 0.$$

따라서 *q*가 z₀에서 복소미분가능하며

$$g'(z_0) = -\frac{f'(z_0)}{(f(z_0))^2}.$$

연습문제 ??

 $m\geq 0$ 인 경우는 이미 증명했으므로, m=-n $(n\in\mathbb{N})$ 인 경우를 생각하자. $f(z):=z^n$ $(z\in\mathbb{C}\setminus\{0\})$ 에 대하여 함수

$$z \mapsto z^m = z^{-n} = \frac{1}{z^n} = \frac{1}{f(z)}$$

는 복소해석함수이고 $\mathbb{C}\setminus\{0\}$ 에서 함수값이 0은 아니므로 1/f도 복소해석함수이고, 미분은

$$\left(\frac{1}{f}\right)'(z) = -\frac{f'(z)}{(f(z))^2} = -\frac{nz^{n-1}}{(z^n)^2} = -n\frac{1}{z^{n+1}} = m \cdot \frac{1}{z^{-m+1}} = mz^{m-1}$$

이 되어 증명이 끝난다.

 $f: \mathbb{D} \to \mathbb{C}$ 를

$$f(z) = -\frac{1+z}{1-z}, \quad z \in \mathbb{D}$$

로 정의하고, $f:\mathbb{C}\to\mathbb{C}$ 를 $g(z)=\exp z$ 로 정의하자. 그러면, $f(\mathbb{D})\subset\mathbb{C}=D_g$. 따라서 $g\circ f$ 는 \mathbb{D} 에서 복소해석함수이고,

$$(g \circ g)'(z) = g'(f(z)) \cdot f'(z) = \exp\left(-\frac{1+z}{1-z}\right) \cdot \frac{d}{dz} \left(-\frac{1+z}{1-z}\right)$$

$$= \exp\left(-\frac{1+z}{1-z}\right) \cdot \left(-(1+z)\frac{d}{dz} \left(\frac{1}{1-z}\right) - \frac{1}{1-z}\frac{d}{dz}(1+z)\right)$$

$$= \exp\left(-\frac{1+z}{1-z}\right) \cdot \left(-\frac{1+z}{(1-z)^2} - \frac{1}{1-z}\right)$$

$$= -\frac{2}{(1-z)^2} \exp\left(-\frac{1+z}{1-z}\right).$$

따라서, $z \in \mathbb{D}$ 에 대하여, $\frac{d}{dz} \left(\exp \left(-\frac{1+z}{1-z} \right) \right) = -\frac{2}{(1-z)^2} \exp \left(-\frac{1+z}{1-z} \right)$.

연습문제 ??

z = x + iy $(x, y \in \mathbb{R})$ 라 하면, $|z|^2 = x^2 + y^2$. 따라서, u, v를 각각 $|z|^2$ 의 실수부와 허수부라 하면, $u = x^2 + y^2, v = 0$ 이다. 따라서,

$$\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial v}{\partial y} = 0,$$
$$\frac{\partial u}{\partial y} = 2y, \quad \frac{\partial v}{\partial x} = 0.$$

 $z \neq 0$ 이므로, x 또는 y중 하나는 0이 아니다. 즉, 코시-리만 방정식 중 적어도 하나는 만족되지 않는다.

결론적으로 $|z|^2$ 은 0이 아닌 점에서 미분이 불가능하다.

연습문제 ??

 $z = x + iy (x, y \in \mathbb{R})$ 라 하면,

$$z^{3} = (x+iy)^{3} = x^{3} + 3x^{2}(iy) + 3x(iy)^{2} + (iy)^{3}$$

$$= x^3 - 3xy^2 + i(3x^2y - y^3).$$

u, v를 각각 z^3 의 실수부와 허수부라 하면,

$$u(x, y) = x^3 - 3xy^2,$$

 $v(x, y) = 3x^2y - y^3.$

u, v는 연속미분가능하고 (즉, $u, v \in C^1$)

$$\frac{\partial u}{\partial x} = 3x^2 - 2y^2 = \frac{\partial v}{\partial y}$$
 \bigcirc \boxed{x} ,
$$\frac{\partial u}{\partial y} = -6xy = -\frac{\partial v}{\partial x}.$$

즉, \mathbb{R}^2 의 모든 점에서 코시-리만 방정식을 만족하므로, $z\mapsto z^3$ 은 전해석함수이다.

연습문제 ??

z=x+iy $(x,y\in\mathbb{R})$ 라 하면, $\mathrm{Re}(z)=\mathrm{Re}(x+iy)=x$. 따라서, u,v를 각각 $\mathrm{Re}(z)$ 의 실수부와 허수부라 하면,

$$u = x,$$
$$v = 0.$$

따라서, 모든 $(x,y) \in \mathbb{R}^2$ 에서

$$\frac{\partial u}{\partial x} = 1 \neq 0 = \frac{\partial v}{\partial y}.$$

즉, 코시-리만 방정식은 \mathbb{R}^2 의 어떤 점에서도 만족되지 않는다. 결론적으로 \mathbb{C} 의 모든 점에서 $\mathrm{Re}(z)$ 는 복소미분가능하지 않다.

연습문제 ??

u,v를 각각 f의 실수부와 허수부라 하자. 그러면, v=0이고,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$$
 \bigcirc $\boxed{\exists} \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0.$

따라서 $(x_0, y_0) \in D$ 과 $(x, y_0) \in D$ 를 잇는 직선이 D 내부에 있을 때, 이 직선을 따라 적분하면

$$u(x, y_0) - u(x_0, y_0) = \int_{x_0}^x \frac{\partial u}{\partial x}(\xi, y_0) d\xi = 0.$$

같은 방법으로 $(x_0, y_0) \in D$ 과 $(x_0, y) \in D$ 를 잇는 직선이 D 내부에 있을 때,

$$u(x_0, y) - u(x_0, y_0) = \int_{y_0}^{y} \frac{\partial u}{\partial y}(x_0, \eta) d\eta = 0.$$

즉, D의 내부에서 수평선 또는 수직선을 따라 움직이는 동안 u의 값은 변하지 않는다. 그런데 D가 경로연결 집합이므로 u는 D에서 상수이다. (왜냐하면, D에 속하는 임의의 두점은 계단형 경로로 연결할 수 있기 때문이다.) 따라서 f=u+i0=u는 D에서 상수이다.

연습문제 ??

u,v가 각각 f의 실수부와 허수부라고 하자. $f'(z)=rac{\partial u}{\partial x}+irac{\partial v}{\partial x}=0$ 이면 D에서

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = 0$$

이고 코시-리만 방정식을 이용하면

$$\frac{\partial u}{\partial y}\left(=-\frac{\partial v}{\partial x}\right)=0, \frac{\partial v}{\partial y}\left(=\frac{\partial u}{\partial x}\right)=0.$$

따라서 $(x_0, y_0) \in D$ 과 $(x, y_0) \in D$ 를 잇는 직선이 D 내부에 있을 때, 이 직선을 따라 적분하면

$$u(x, y_0) - u(x_0, y_0) = \int_{x_0}^x \frac{\partial u}{\partial x}(\xi, y_0) d\xi = 0.$$

같은 방법으로 $(x_0, y_0) \in D$ 과 $(x_0, y) \in D$ 를 잇는 직선이 D 내부에 있을 때,

$$u(x_0, y) - u(x_0, y_0) = \int_{y_0}^{y} \frac{\partial u}{\partial y}(x_0, \eta) d\eta = 0.$$

연습문제 ??에서와 같이 D의 내부에서 수평선 또는 수직선을 따라 움직이는 동안 u의 값은 변하지 않는다. 그런데 D가 경로연결 집합이므로 u는 D에서 상수이다. (왜냐하면, D에 속하는 임의의 두점은 계단형 경로로 연결할 수 있기 때문이다.) 따라서 f=u+iv는 D에서 상수이다.

연습문제 ??

연쇄법칙으로부터 다음 관계식을 얻는다.

$$\frac{\partial u}{\partial x}(x,y) = h'(v(x,y))\frac{\partial v}{\partial x}(x,y), \quad \frac{\partial u}{\partial y}(x,y) = h'(v(x,y))\frac{\partial v}{\partial y}(x,y).$$

코시-리만 방정식을 적용하면

$$\frac{\partial u}{\partial y}(x,y) = h'(v(x,y))\frac{\partial v}{\partial y}(x,y) = h'(v(x,y))\frac{\partial u}{\partial x}(x,y)$$

$$= h'(v(x,y)) \cdot \left(h'(v(x,y))\frac{\partial v}{\partial x}(x,y)\right) = (h'(v(x,y))^2 \cdot \frac{\partial v}{\partial x}(x,y))$$
$$= -(h'(v(x,y))^2 \cdot \frac{\partial u}{\partial y}(x,y))$$

이므로 $(1+(h'(v(x,y)))^2)\frac{\partial u}{\partial y}(x,y)=0.$ $(1+(h'(v(x,y)))^2)\geq 0>1$ 로부터

$$\frac{\partial u}{\partial y}(x,y) = 0.$$

코시-리만 방정식을 다시 적용하면

$$\frac{\partial v}{\partial x}(x,y) = -\frac{\partial u}{\partial y}(x,y) = 0$$

도 얻으며, 이로부터

$$\frac{\partial u}{\partial x}(x,y) = h'(v(x,y))\frac{\partial v}{\partial x}(x,y) = h'(v(x,y)) \cdot 0 = 0$$

이고 코시-리만 방정식을 한번 더 적용하면,

$$\frac{\partial v}{\partial y}(x,y) = \frac{\partial u}{\partial x}(x,y) = 0.$$

이제 모든 편도함수가 0이 되므로, u는 수평, 수직방향을 따라 상수이다. D가 영역이므로, 경로연결 집합이고, 임의의 두 점이 계단형 경로로 연결가능하다. 따라서 u는 D에서 상수함수이다. 같은 방법이로, v도 D에서 상수함수이며, f=u+iv도 상수함수가 된다.

연습문제 ??

 (\Leftarrow)

k=2라고 하면,

$$f(z) = x^2 - y^2 + 2xyi = x^2 + (iy)^2 + 2x(iy) = (x+iy)^2 = z^2.$$

예제 ??에 의하여 f는 전해석함수이다.

 (\Rightarrow)

이제 f가 전해석함수라고 가정하자. 그러면 모든 점에서 코시-리만 방정식을 만족해야 하므로, 모든 $x,y\in\mathbb{R}$ 에 대하여

$$\frac{\partial u}{\partial x} = 2x = kx = \frac{\partial v}{\partial y}.$$

특히 x=1로 잡으면, k=2을 얻는다.

 $z-z_0$ 의 길이가 $|z_0|\tan(d\theta)\approx |z_0|d\theta$ 이므로 $z^n-z_0^n$ 의 길이는 $|z_0|^n\tan(nd\theta)\approx |z_0|^nnd\theta$ 이다. 따라서 국소적으로 $z\mapsto z^n$ 에 의한 확대비율은

$$\frac{|z^n - z_0^n|}{|z - z_0|} \approx \frac{|z_0|^n n d\theta}{|z_0| d\theta} = n|z_0|^{n-1}$$

이고, 그림에 따르면 반시계방향으로 $(n-1)\theta$ 만큼 회전한 변환이다.

$$f'(z_0) = n|z_0|^{n-1}(\cos((n-1)\theta) + i\sin((n-1)\theta))$$

= $n(|z_0|(\cos\theta + i\sin\theta))^{n-1} = nz_0^{n-1}$.

결론적으로, 모든 \mathbb{C} 에 대하여 $\frac{d}{dz}z^n=nz^{n-1}$.

연습문제 ??

Fig. 5.15 Calculation of the amount of local magnification produced by exp.

Figure 0.14: exp 함수에 의한 국소적인 확대비율

그림 0.14에서 확대비율은

$$\frac{e^x \cdot \delta}{\delta} = e^x$$

이다. 아래 그림과 같이 반시계방향으로 y만큼 회전하는 변환이므로 z_0 에서 복소미분은 $e^x(\cos y + i\sin y) = \exp(x + iy)$, 즉, $\exp' z = \exp z$ 이다.

연습문제 ??

 $z_0 \in \mathbb{C}$ 에 대하여, z_0 를 기울기 1인 직선을 따라 δ 만큼 움직인 점을 z라고 하자. 유사한 방법으로 z_0 를 수평선을 따라 왼쪽으로 δ 만큼 이동한 점을 \tilde{z} 라고 하자. 실수부를 취하는 함수 $\mathrm{Re}(\cdot)$ 가 z_0 에서 미분가능하다고 가정하자. 그림 0.15에서 z 와 \tilde{z} 를 $\mathrm{Re}(\cdot)$ 로 보낸 점을 보면 국소적으로 각각 45° 와 0° 회전한 것으로 다른 회전량을 갖는다. 이는 일어날 수 없는 경우로 복소미분가능하다는 가정에 모순이다. $z_0 \in \mathbb{C}$ 의 선택을 임의로 할 수 있으므로 이 함수는 모든 점에서 복소미분불가능하다.

Fig. 5.16 Non complex differentiability of $Re(\cdot)$.

Figure 0.15: 함수 Re(·)의 복소미분 불가능성

 $u,v \in C^2$ 인 f = u + iv는 두번 연속미분가능하므로

$$\begin{split} 4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}}f &= \cancel{A} \cdot \frac{1}{\cancel{2}}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) \cdot \frac{1}{\cancel{2}}\left(\frac{\partial u}{\partial x} + i\frac{\partial u}{\partial y} + i\left(\frac{\partial v}{\partial x} + i\frac{\partial v}{\partial y}\right)\right) \\ &= \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)\left(\frac{\partial u}{\partial x} + i\frac{\partial u}{\partial y} + i\left(\frac{\partial v}{\partial x} + i\frac{\partial v}{\partial y}\right)\right) \\ &= \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 v}{\partial x \partial y} + i\frac{\partial^2 u}{\partial x \partial y} + i\frac{\partial^2 v}{\partial x^2} - i\frac{\partial^2 u}{\partial y \partial x} + i\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial y \partial x} \\ &= \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + i\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + i\left(\frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y \partial x}\right) + \frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 v}{\partial x \partial y} \\ \Rightarrow 2 \\ \Rightarrow 1 \\ \Rightarrow$$

3장 - 연습문제 풀이

연습문제 ??

 $\gamma_1 = \cos t + i \sin t, \ \gamma_2 = \cos(2t) + i \sin(2t), \ \gamma_3 = \cos t - i \sin t$ 이므로 k = 1, 2, 3 각각의 경우모두 $(\operatorname{Re}(\gamma_k(t)))^2 + (\operatorname{Im}(\gamma_k(t)))^2 = 1$ 이다. γ_k 의 상은 중심이 0이고 반지름이 1인 원 T에 있다. $\theta \in [0, 2\pi)$ 에 대하여 $z = \exp(i\theta)$ 이면, $z = \gamma_1(\theta) = \gamma_2(\theta/2) = \gamma_3(2\pi - \theta)$ 이다. 따라서 T위의 모든 점은 $\gamma_1, \gamma_2, \gamma_3$ 각각에 의한 상에 속한다.

$$\int_{\gamma_1} \frac{1}{z} dz = \int_0^{2\pi} \frac{1}{\exp(it)} \cdot i \exp(it) dt = 2\pi i,$$

$$\int_{\gamma_2} \frac{1}{z} dz = \int_0^{2\pi} \frac{1}{\exp(2it)} \cdot 2i \exp(2it) dt = 4\pi i,$$

$$\int_{\gamma_3} \frac{1}{z} dz = \int_0^{2\pi} \frac{1}{\exp(-it)} \cdot (-i) \exp(-it) dt = -2\pi i.$$

연습문제 ??

실함수 x,y에 대하여 $\gamma(t)=x(t)+iy(t), t\in[0,1]$ 라 하자. 또한, u,v를 각각 함수 f의 실수부와 허수부라 하면,

$$f'(\gamma(t)) \cdot \gamma'(t) = \left(\frac{\partial u}{\partial x}(x(t), y(t)) + i\frac{\partial v}{\partial x}(x(t), y(t))\right) (x'(t) + iy'(t))$$

$$= \frac{\partial u}{\partial x}(x(t),y(t)) \cdot x'(t) - \frac{\partial v}{\partial x}y'(t)$$

$$+ i\left(\frac{\partial u}{\partial x}(x(t),y(t)) \cdot y'(t) + \frac{\partial v}{\partial x}x'(t)\right)$$

$$= \frac{\partial u}{\partial x}(x(t),y(t)) \cdot x'(t) + \frac{\partial u}{\partial y}y'(t)$$

$$+ i\left(\frac{\partial v}{\partial y}(x(t),y(t)) \cdot y'(t) + \frac{\partial v}{\partial x}x'(t)\right)$$

$$(코시-리만 방정식을 적용함)$$

$$= \frac{d}{dt}u(x(t),y(t)) + i\frac{d}{dt}v(x(t),y(t)) \quad (연쇄법칙을 적용함)$$

$$= \frac{d}{dt}(u(x(t),y(t)) + iv(x(t),y(t))) = \frac{d}{dt}f(\gamma(t)).$$

원형경로 γ 를 $\gamma(t) = 2\exp(it), t \in [0, 2\pi]$ 라 하자.

(1)

$$\int_{\gamma} (z + \bar{z}) dz = \int_{0}^{2\pi} (2\exp(it) + 2\exp(-it)) \cdot 2i \cdot \exp(it) dt$$
$$= 4i \int_{0}^{2\pi} (\exp(2it) + 1) dt - 4i \cdot 0 + 4i \cdot 2\pi = 8\pi i.$$

(2)

$$\int_{\gamma} (z^2 - 2z + 3) dz = \int_{0}^{2\pi} (4\exp(2it) - 4\exp(it) + 3) \cdot 2i \cdot \exp(it) dt$$
$$= \int_{0}^{2\pi} i(8\exp(3it) - 8\exp(2it) + 6\exp(it)) dt = 0 + 0 + 0 = 0.$$

(3)

$$\int_{\gamma} xydz = \int_{0}^{2\pi} 2\cos t \cdot 2\sin t \cdot 2i \cdot (\cos t + i\sin t)dt$$

$$= 4i \int_{0}^{2\pi} (\sin(2t))(\cos t + i\sin t)dt$$

$$= 4i \int_{-\pi}^{\pi} \underbrace{(\sin(2t))\cos t}_{7|\hat{\Phi}\hat{\uparrow}\hat{\Phi}} dt - 2 \int_{0}^{2\pi} (\cos t - \cos(3t))dt$$

$$= 0 - 2(0 - 0) = 0.$$