单元1.6

巻合語が利

内容提要

集合恒等式

半形式化方法

推导集合等式和包含式

集合恒等式(①~④)

- ① 幂等律: $A = A \cup A$, $A = A \cap A$
- ② 交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- ③ 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- ④ 分配律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

基本的等值式(5~6)

⑤ 德●摩根律:

绝对形式:
$$\sim (A \cup B) = \sim A \cap \sim B$$

$$\sim (A \cap B) = \sim A \cup \sim B$$

相对形式:
$$E-(A\cup B)=(E-A)\cap(E-B)$$

$$E - (A \cap B) = (E - A) \cup (E - B)$$

⑥ 吸收律:
$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

基本的等值式(7)~(13))

- ⑦ 零律: $A \cup E = E$, $A \cap \phi = \phi$
- 9 排中律: $A \cup \sim A = E$
- ① 矛盾律: A ∩ ~A = φ
- ① $\mathbf{1}$ 余补律: $\sim \phi = E$, $\sim E = \phi$
- 12) 双重否定律: $\sim (\sim A) = A$
- 13) 补交转换律: $A B = A \cap \sim B$

分配律的证明

对于任意的X

$$x \in A \cup (B \cap C)$$

$$\Leftrightarrow x \in A \lor x \in (B \cap C)$$

$$\Leftrightarrow x \in A \lor (x \in B \land x \in C)$$

$$\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) \quad (?)$$

$$\Leftrightarrow x \in (A \cup B) \land x \in (A \cup C)$$

$$\Leftrightarrow x \in (A \cup B) \cap (A \cup C)$$

因而,
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

零律的证明

$$x \in A \cap \emptyset$$

$$\Leftrightarrow x \in A \land x \in \emptyset$$

$$\Leftrightarrow x \in A \land 0$$

$$\Leftrightarrow 0$$

(?)

$$\Leftrightarrow x \in \emptyset$$

因而,
$$A \cap \emptyset = \emptyset$$

排中律的证明

对于任意的X

$$x \in A \cup \sim A$$

$$\Leftrightarrow x \in A \lor x \in \sim A$$

$$\Leftrightarrow x \in A \lor x \notin A$$

$$\iff x \in A \lor \neg x \in A \tag{?}$$

$$\Leftrightarrow$$
 1

$$\Leftrightarrow x \in E$$

因而,
$$A \cup \sim A = E$$

用其他恒等式证明吸收律

$$A \cup (A \cap B) = A$$

$$A \cup (A \cap B)$$

$$= (A \cap E) \cup (A \cap B)$$

$$=A\cap (E\cup B)$$
 分配律

同一律

$$=A\cap E$$
 零律

证明对称差的结合律

思考

是否存在集合A, B, C, 使得 $A \cap B \neq \emptyset$,

$$A \cap C = \emptyset$$
,并且 $(A \cap B) - C = \emptyset$?

下式哪些正确?

$$(A \cup B) - C = (A - C) \cup B$$

$$(A \cap B) - C = (A - C) \cap B$$

$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

将恒等式推广到集族上

设 $\{A_{\alpha}\}_{\alpha \in S}$ 为集族, B为一集合:

分配律:

$$B \cup (\bigcap \{A_{\alpha}\}_{\alpha \in S}) = \bigcap_{\alpha \in S} (B \cup A_{\alpha})$$

$$B\cap (\bigcup \{A_{\alpha}\}_{\alpha\in S})=\bigcup_{\alpha\in S}(B\cap A_{\alpha})$$

将恒等式推广到集族上

德●摩根律:

$$\sim (\bigcup \{A_{\alpha}\}_{\alpha \in S}) = \bigcap_{\alpha \in S} (\sim A_{\alpha})$$

$$(\sim \bigcap \{A_{\alpha}\}_{\alpha \in S}) = \bigcup_{\alpha \in S} (\sim A_{\alpha})$$

$$B - (\bigcap \{A_{\alpha}\}_{\alpha \in S}) = \bigcap_{\alpha \in S} (B - A_{\alpha})$$

$$B - (\bigcup \{A_{\alpha}\}_{\alpha \in S}) = \bigcup_{\alpha \in S} (B - A_{\alpha})$$

集族的性质

设品, B 为集族

1. 若
$$\mathcal{A} \subseteq \mathcal{B}$$
,则 $\cup \mathcal{A} \subseteq \cup \mathcal{B}$

2. 若
$$\mathcal{A} \neq \emptyset$$
 且 $\mathcal{A} \subseteq \mathcal{B}$,则 $\cap \mathcal{B} \subseteq \cap \mathcal{A}$

3. 若
$$\mathcal{A} \in \mathcal{B}$$
,则 $\mathcal{A} \subseteq \bigcup \mathcal{B}$

4. 若
$$\mathcal{A} \in \mathcal{B}$$
,则 $\cap \mathcal{B} \subseteq \mathcal{A}$

5. 若
$$\mathcal{A} \neq \emptyset$$
,则 $\cap \mathcal{A} \subseteq \cup \mathcal{A}$

$$\mathcal{A} = \big\{ \{a\}, \{a, b\} \big\}$$

$$\mathcal{B} = \left\{ \left\{ \{a\}, \{a, b\} \right\}, \{a\} \right\}$$

$$\cup \mathcal{B} = \{\{a\}, \{a, b\}, a\}$$

集族性质(1)(3)的证明

(1) 对于任意的 x

$$x \in \bigcup \mathcal{A}$$

- $\Leftrightarrow \exists A(A \in \mathcal{A} \land x \in A)$
- $\Rightarrow \exists A(A \in \mathcal{B} \land x \in A) \qquad (\mathbf{Z} \not\Rightarrow \mathcal{A} \subseteq \mathcal{B})$
- $\Leftrightarrow x \in \bigcup \mathcal{B}$
- 所以, $\cup A \subseteq \cup B$
- (3) 若 $\mathcal{A} \in \mathcal{B}$, 由广义并集定义可知 $\mathcal{A} \subseteq \bigcup \mathcal{B}$

寨族性质(2)的证明

(2) 由 $A \neq \emptyset$, 知 $B \neq \emptyset$, 故 $\cap A$ 与 $\cap B$ 均有意义 对于任意的x

$$x \in \cap \mathcal{B}$$

$$\Leftrightarrow \forall y (y \in \mathcal{B} \to x \in y)$$

$$\Rightarrow \forall y (y \in \mathcal{A} \to x \in y) \qquad (\mathcal{A} \subseteq \mathcal{B})$$

$$\Leftrightarrow x \in \cap \mathcal{A}$$

所以,
$$\cap B \subseteq \cap A$$

集合幂集运算的性质

$$A \subseteq B \iff P(A) \subseteq P(B)$$

 \Longrightarrow

对于任意的χ

$$x \in P(A)$$

$$\Leftrightarrow x \subseteq A$$

$$\Rightarrow x \subseteq B \qquad (A \subseteq B)$$

$$\Leftrightarrow x \in P(B)$$

故有
$$P(A) \subseteq P(B)$$

 \Leftarrow

对于任意的y

$$y \in A$$

$$\Leftrightarrow \{y\} \in P(A)$$

$$\Rightarrow \{y\} \in P(B) \quad (P(A) \subseteq P(B))$$

$$\Leftrightarrow y \in B$$

所以
$$A \subseteq B$$

集合幂集运算的性质

$$P(A - B) \subseteq (P(A) - P(B)) \cup {\phi}$$

对于任意的集合X

若
$$x = \phi$$
, $x \in P(A) \cup P(B)$ 且 $x \in (P(A) - P(B)) \cup \{\phi\}$

巻
$$x \neq \phi$$
, $x \in P(A - B)$

$$\Leftrightarrow x \subseteq A - B$$

$$\Rightarrow x \subseteq A \land x \not\subseteq B$$

$$\Leftrightarrow x \in P(A) \land x \notin P(B)$$

$$\Leftrightarrow x \in (P(A) - P(B))$$

综上所述,可知
$$P(A-B)\subseteq \big(P(A)-P(B)\big)\cup\{\phi\}$$

小结

(1)集合恒等式13组最基本的集合恒等式

(2) 半形式化方法 推导集合等式和包含式

集合列极限

(1) 属于集合列 $\{A_k\}$ 中**无限多个集合**的元素的全体组成的集合就是集合列 $\{A_k\}$ 的上限集,即:

$$\overline{\lim_{k \to \infty}} A_k = \{x |$$
对任一自然数 j ,存在 $k(k \ge j), x \in A_k\}$

(2) 除去集合列 $\{A_k\}$ 中的**有限多个集合**外,被其余集合均包含的元素的全体组成的集合就是集合列 $\{A_k\}$ 的下限集,即:

$$\lim_{k \to \infty} A_k = \{x |$$
存在自然数 j ,当 $k \ge j$ 时 $, x \in A_k\}$

集合列极限

$$\Omega = \{\omega | \omega$$
是革命党 $\}$

 $A_i = \{\omega \mid$ 参加第i次起义的革命党成员 $\}$

 $\{$ 参加无数次起义的成员 $\}$ = $\{$ 有限次不参加起义的成员 $\}$ \bigcup

{无数次参加也无数次不参加起义的成员}

上极限:
$$\lim_{k\to\infty} \sup A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

下极限:
$$\lim_{k \to \infty} \inf A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$