(10 minutes ion for discussion) problems)

A CB

Suppose have a directed acyclic graph G and we want to find out if there is a simple path that visits every vertex. Give a *linear time* algorithm that determines if a given graph has such a path.

· P

Topological Sort/Order on G

If P is a path, return P

Else veturn false

//should explain why

The graph K_n is defined as a simple undirected graph with n vertices and nC_2 edges. Note that this means that every pair of vertices has one edge between them.

- 1. What does a breadth-first search tree look like for K_n ?
- 2. What does a depth-first search tree look like for K_n ?

Warm-Up

*! largest &

for each interval i binary search for si in finish times

Give an $O(n \log n)$ time algorithm that computes p(i) for all intervals. You may assume that the intervals are already sorted by finish time.

Solve "The Big Problem" recursively

```
Goal: OPT(n)
                                Tantology:

friend either

friend class won't
      OPT(i) // optimal # credits obtainable among intervals 1 \dots i.
         Does your friend take class i or not?
   if i < 1:

return 0

Value_if_ not_ taken = OPT(i-1) < taken

Value_if_ taken = OPT(p(i)) + Vi

return 0

Value_if_ taken = OPT(p(i)) + Vi

return 0

taken
           return max(valueif_not_taken,
value_if_taken)
```

Free Food Exercise


```
So let's be careful. (1)

declare OPT[1... n] (array of ints)

Set OPT(i)=-1 for all i (sentinel value)

Call Modified OPT(n).
+ precompte if it | return opt(i) + precompte if opt(i) = -1, return opt(i) else opt(i) = max(-----)

return opt(i)
```

```
lteratively.
  · compute p(i) values //o(nlozn)
declare of T[a..n] } o(n)

OPT[a]=0 // base case

for i=1 to n

// fill in OPT[i) as per recursion

OPT[i]= max(OPT[i-1], Vi + OPT[P(i)])//o(i)
      O(n) + O(n\log n) \longrightarrow O(n\log n)
```

Filling in the table

i	p(i)	Vi	$OPT(p(i)) + v_i$	OPT(i-1)	OPT(i)	Take
0	N/A	N/A	N/A	N/A	0	
1	0	2	2	0	2	
2	0	4	4	2	4	
3	I	4	2+4=6	4	6	
4	0	7	0+7=7	6	7	
5	3	2	6+Z= g	7	8	
6	3	1	6+しこえ	Š	8	X

Reconstruct the solution

Something very important

Dynamic Programming is not about filling in tables.

Dynamic Programming is about smart recursion.

Free Food Exercise: Recursive Solution

Free Food Exercise: Iterative Solution

Free Food Exercise: Output

Subset Sum

ex:
$$\{2,3,4\}$$
 T=8 NO $\{2,3,4\}$ T=7 yes $\{2,3,4\}$ T=5

Recursive Solution Take One

Iterative Solution

Visualizing

Review Weighted Interval Scheduling Free Food Exercise Subset Sums

Something very important

Something very important

Dynamic Programming is not about filling in tables.

Dynamic Programming is about smart recursion.

Finding the right subset

Review Weighted Interval Scheduling Free Food Exercise Subset Sums

Start the homework!

