FONCTIONS PART3 E02

EXERCICE N°1 (Le corrigé)

Déterminer le signe de la fonction f définie sur \mathbb{R} par :

$$f(x)=0.8(x+3)(x-5)(x-7)$$

f(x) est un produit de quatre facteurs, nous allons donc étudier le signe de chacun des facteurs puis dresser un tableau bilan à l'aide de la règle des signes.

- 0.8 > 0 est vrai quelque soit la valeur de x.
- $x+3 > 0 \Leftrightarrow x > -3$
- $x-5 > 0 \Leftrightarrow x > 5$
- $x-7 > 0 \Leftrightarrow x > 7$

x	$-\infty$		-3		5		7		+ ∞
0,8		+		+	- 1	+		+	
x+3		_	0	+		+		+	
x-5		_		_	0	+		+	
x-7		_		_		_	0	+	
f(x)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(x) en fonction de x

FONCTIONS PART3 E02

EXERCICE N°2 (Le corrigé)

Déterminer le signe de la fonction f définie sur \mathbb{R} par :

$$f(x) = -9(x+12)(x+7)(x-11)$$

f(x) est un produit de quatre facteurs, nous allons donc étudier le signe de chacun des facteurs puis dresser un tableau bilan à l'aide de la règle des signes.

- -9 > 0 est faux quelque soit la valeur de x.
- $x+12 > 0 \Leftrightarrow x > -12$
- $x + 7 > 0 \Leftrightarrow x > -7$
- $x-11 > 0 \Leftrightarrow x > 11$

x	$-\infty$		-12		-7		11		+∞
-9		_		_		_	T	_	
x+12		_	0	+	- [+	1	+	
x+7		_	-	_	0	+	1	+	
x-11		_		_		-	0	+	
f(x)		+	0	_	0	+	0	_	

La dernière ligne du tableau nous indique le signe de f(x) en fonction de x.

FONCTIONS PART3 E02

EXERCICE N°3 (Le corrigé)

On admet que les solutions de l'équation $4x^3 - 28x^2 + 19x + 105 = 0$ peuvent toutes s'écrire sous la forme $\frac{n}{2}$ où est un entier compris entre -100 et 100.

1) Trouver toutes les solutions de cette équation à l'aide d'un programme écrit en Python. def f(x):

```
def I(x):
    return 4*x**3-28*x**2+19*x+105

def recherche(f):
    solutions=[]
    for n in range(-100,101):
        if f(n/2) == 0:
            solutions+= [n/2]
    return solutions
```

remarques:

- 1) Commencer par définir f en premier rend notre programme plus facilement réutilisable
- 2) dans l'exemple présent le test f(n/2)=0 est pertinent, ce n'est malheureusement pas toujour le cas, il faut alors se contenter de : abs(f(n/2))<10**(-9)

qui signifie que l'on teste si la valeur absolue de f(n/2) est plus petite que 0.000000001

On décide alors que f(n/2) = 0 ...

11111

En utilisant notre programme, nous obtenons la liste [-1,5; 3,5; 5] qui représente les solutions de l'équation. On peut donc écrire que l'ensemble des solutions est {-1,5; 3,5; 5}

2) En déduire la forme factorisée de $4x^3 - 28x^2 + 19x + 105$

D'après la question précédente, la fonction $x \mapsto 4x^3 - 28x^2 + 19x + 105$ admet trois racines. Nous alors que $4x^3 - 28x^2 + 19x + 105 = 4(x+1,5)(x-3,5)(x-5)$ Rappelez-vous ce lien