University of California, Los Angeles Department of Statistics

Instructor: Nicolas Christou

Statistics C173/C273

Block kriging exampe

We will use the 7-point data from earlier lectures. Here they are:

s_i	\boldsymbol{x}	y	$z(s_i)$
s_1	61	139	477
s_2	63	140	696
s_3	64	129	227
s_4	68	128	646
s_5	71	140	606
s_6	73	141	791
s_7	75	128	783

Here is the x - y plot:

For these data, let's assume that we use the exponential semivariogram model with parameters $c_0 = 0, c_1 = 10, \alpha = 3.33, \gamma(h) = 10(1 - e^{-\frac{h}{3.33}})$. The corresponding covariance function is:

$$C(h) = \begin{cases} 10 & h = 0\\ 10e^{-\frac{h}{3.33}} & h > 0 \end{cases}$$

Suppose we want to estimate the average of the block defined by the coordinates shown on the figure of page 1: (64, 132), (64, 138), (70, 132), (70, 138) (see figure on page 1).

One way to do this is to "krige" many points inside the block and at the end average these estimates. Let's use only 4 points inside the block defined by the following coordinates: A(66, 134), B(66, 136), C(68, 134), D(68, 136).

Predicting point A:

$$\boldsymbol{W} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.196 \\ 1.334 \\ 1.985 \\ 1.497 \\ 0.958 \\ 0.512 \\ 0.388 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.130 \\ 0.146 \\ 0.240 \\ 0.164 \\ 0.136 \\ 0.072 \\ 0.112 \\ -1.077 \end{pmatrix}$$

Therefore,

$$\hat{z}(s_A) = 0.130(477) + 0.146(696) + 0.240(227) + 0.164(646) + 0.136(606) + 0.072(791) + 0.112(783) \Rightarrow \hat{z}(s_A) = 551.036.$$

Predicting point B:

$$\boldsymbol{W} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.736 \\ 2.228 \\ 1.123 \\ 0.841 \\ 1.462 \\ 0.755 \\ 0.269 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.143 \\ 0.227 \\ 0.161 \\ 0.117 \\ 0.181 \\ 0.068 \\ 0.104 \\ -1.050 \end{pmatrix}$$

Therefore,

$$\hat{z}(s_B) = 0.143(477) + 0.227(696) + 0.161(227) + 0.117(646) + 0.181(606) + 0.068(791) + 0.104(783) \Rightarrow \hat{z}(s_B) = 582.733.$$

Predicting point C:

$$\boldsymbol{W} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.755 \\ 0.958 \\ 1.462 \\ 1.650 \\ 1.334 \\ 0.755 \\ 0.627 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.100 \\ 0.125 \\ 0.183 \\ 0.197 \\ 0.176 \\ 0.081 \\ 0.137 \\ -1.120 \end{pmatrix}$$

Therefore.

$$\hat{z}(s_C) = 0.100(477) + 0.125(696) + 0.183(227) + 0.197(646) + 0.176(606) + 0.081(791) + 0.137(783) \Rightarrow \hat{z}(s_C) = 582.293.$$

Predicting point D:

$$\boldsymbol{W} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1.016 \\ 1.462 \\ 0.888 \\ 0.905 \\ 2.228 \\ 1.196 \\ 0.411 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.101 \\ 0.168 \\ 0.139 \\ 0.0263 \\ 0.078 \\ 0.120 \\ -1.090 \end{pmatrix}$$

Therefore.

$$\hat{z}(s_D) = 0.101(477) + 0.168(696) + 0.139(227) + 0.132(646) + 0.263(606) + 0.078(791) + 0.120(783) \Rightarrow \hat{z}(s_D) = 596.347.$$

Note: All the covariances above are shown on the next page.

We can now average these 4 estimates to get an estimate of the mean of the block:

$$\hat{Z}_{BLOCK} = \frac{551.036 + 582.733 + 582.293 + 596.347}{4} = 578.102.$$

Comment: As we observe we need to run kriging 4 times. And if there are many points within the block we will have to run kriging many times. This may be computationally expensive. The other way to do this is to use block kriging. With block kriging you need only to run kriging once. Here are the details: The covariance matrix Σ which constructed using the observed data points will be the same as shown above. What changes, are the entries of the vector c. Each entry of this vector is the average of the covariances between each observed data point with every point in the block.

Here is the distance matrix. This is an 11×11 matrix (4 points to be estimated plus the 7 observed points).

_						•					_
		12.042									
s_6	9.899	8.602	8.602	7.071	12.166	10.050	15.000	13.928	2.236	0.000	13.153
s_5	7.810	6.403	6.708	5.000	710.050	8.000	13.038	12.369	0.000	2.236	12.649
		8.246									
s_3	5.385	7.280	6.403	8.062	10.440	11.045	0.000	4.123	13.038	15.000	11.045
		5.000									
		5.831									
		2.000									
C	2.000	2.828	0.000	2.000	8.602	7.810	6.403	6.000	6.708	8.602	9.220
		0.000									
A	0.000	2.000	2.000	2.828	7.071	6.708	5.385	6.325	7.810	9.899	10.817
	A	B	\mathcal{O}	D	s_1	s_2	S_3	s_4	s_5	9s	$\langle s_7 \rangle$
	Distance =										

And here are the covariances between all the points:

s_6	0.958 0.512 0.388	0.755				0.061	0.363	1.222	0.224	0.000	0.000
			0.755	196	69						П
	0.958	2		H	0.25	0.489	0.1111	0.153	5.109	10.000	0.193
$S_{\mathbf{I}}$	_	1.46	1.334	2.228	0.489	0.905	0.199	0.244	10.000	5.109	0.224
S_4	1.497	0.841	1.650	0.905	0.199	0.202	2.899	10.000	0.244	0.153	1.222
s_3	1.985	1.123	1.462	0.888	0.435	0.363	10.000	2.899	0.199	0.111	0.363
s_2	1.334	2.228	0.958	1.462	5.109	10.000	0.363	0.202	0.905	0.489	0.061
s_1	1.196	1.736	0.755	1.016	10.000	5.109	0.435	0.199	0.489	0.259	0.048
D	4.277	5.485	5.485	10.000	1.016	1.462	0.888	0.905	2.228	1.196	0.411
S	5.485	4.277	10.000	5.485	0.755	0.958	1.462	1.650	1.334	0.755	0.627
	5.485										
A	10.000	5.485	5.485	4.277	1.196	1.334	1.985	1.497	0.958	0.512	0.388
	A	B	\mathcal{O}	D	s_1	s_2	s_3	s_4	s_5	9s	S_7

The block kriging system:

$$\begin{pmatrix} c(s_1, s_1) & c(s_1, s_2) & c(s_1, s_3) & \cdots & c(s_1, s_n) & 1 \\ c(s_2, s_1) & c(s_2, s_2) & c(s_2, s_3) & \cdots & c(s_2, s_n) & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \cdots & 1 \\ c(s_n, s_1) & c(s_n, s_2) & c(s_n, s_3) & \cdots & c(s_n, s_n) & 1 \\ 1 & 1 & \cdots & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ -\lambda \end{pmatrix} = \begin{pmatrix} c(s_1, A) \\ c(s_2, A) \\ \vdots \\ c(s_n, A) \\ -\lambda \end{pmatrix}$$

$$\boldsymbol{W} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.176 \\ 1.495 \\ 1.365 \\ 1.223 \\ 1.495 \\ 0.805 \\ 0.424 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.118 \\ 0.166 \\ 0.181 \\ 0.152 \\ 0.189 \\ 0.075 \\ 0.118 \\ -1.084 \end{pmatrix}$$

Therefore,

 $\hat{z}_{BLOCK} = 0.118(477) + 0.166(696) + 0.181(227) + 0.152(646) + 0.189(606) + 0.075(791) + 0.118(783) \Rightarrow \hat{z}_{BLOCK} = 578.102.$

Note: Each element of the vector c is the average of the covariances between each observed point with each point in the block. For example the first entry 1.176 was computed as follows (from the covariance matrix on page 4):

$$\frac{1.196 + 1.736 + 0.755 + 1.016}{4} = 1.176$$

We can also observe that the weights of the block kriging system are the averages of the weights of the four ordinary kriging systems from pages 2-3.