Introduction

Zebra Finch song learning

Characteristic of zebra finch song learning

- Learn one song for its whole life, Close-end learner (opposition open-end learer)
- Learn the song of father
- Song divided in motifs, syllables and notes
- subsong (babbling), plastic song, cristallysation
- Sensory phase (memorisation of tutor song), sensory motor phase
- If no auditory feedback, cannot learn.

Why is zebra finch song learning studied

- Model of Human speech learning
 - Actual song learning, not innate
 - Song with complex structures
- Well studied Neuroanatomy
- Easy to study experimentally
 - Easily domesticated
 - Learn one song
 - Learn quickly (90DPH)
 - Easy to track song development

Neurobiology of the Zebra Finch

Neuroanatomy of the Zebra Finch song system

• Connection between RA, HVC, Area X, ... Inhibition, excitation

Pattern of activation in RA and HVC

- HVC clock like, temporal structure (Ali et al.)
- RA activation while singing at very precise time and sparse coding
 - Motor control (Ali et al.) Ali et al. shows real two different learning: spectral and temporal

Models of song learning

Only very few models have been created. Even less are actual computational models.

Reinforcement learning

- Proposed but no real explanation of what could be the state space, the action space, the reward function (Dave&Margoliash).
- Used in paradigm to test different hypothesis (averse reward to force change in behaviour of the bird)

Song preferences in selection (Marler)

- Behavioural model to explain how the bird select its template
- TODO: Add more

Coen's model

- Clustering technique with babbling (multimodal)
 - Cluster the tutor song syllables thanks to their characteristics
 - Babbling, create a mapping between the motor space and the identified cluster
- Use of a real synthesizer but not actually built to model zf vocal apparatus
- No quantitative means to see how good is the song reproduction
- The learning is only babbling, nothing is driving the model in a specific direction.

Song synthesizer

Description of Perl song synthesizer to reproduce Zebra Finch song

- Presentation of anatomy simulation, mass and spring...
- Parameters
 - Air sac pressure
 - Syringeal Labial Tension
- Parameters are close to actual motor actions, so close to actual motor command

Zebra Finches are sensible to song produced by the synthesizer

• Show results of Amador where RA neurons were activated by Synth song but not by conspecific song.

Gestures and song structure

- Boari's Gesture concept and automatic extraction of the gestures
- Could have been correlated to HVC activation but in fact no.

Influence of Sleep in the Zebra Finch song development

Margoliash results with song replay

- RA neurons activated while singing
- Also activated when the bird is asleep and listen to his own song
- Spontaneous activity with part of the song: Replays
- Replays can be consolidation of memory
- Replays can have another role

Derégnaucourt results about positive impact of sleep for development

- Extraction of syllables characteristics and track over time
- Global trend for the trajectory of a syllable over time
- Each day, the syllables characteristics are closer

A computational model of birdsong learning to explain the sleep influence

Interest of a computational model of birdsong learning

- \bullet Computational model helps understanding what are the implementation constraints of the learning mechanisms
 - Use of synthesizer
 - Realistic computational budget
- Easily make hypotheses that can be tested experimentally afterwards
- Abstracted and controlled environment

Goal: Build a modular two-step learning model and look for learning algorithm that can account for Derégnaucourt's results.

Our Model

Global Architecture

Usage of Boari's implementation of the birdsong synthesizer

Measurement of song quality with standard measures

- Entropy, Pitch, Goodness, Amplitude, Frequency Modulation, Amplitude Modulation
- Imported from Matlab implementation, with qualitatively similar results

Two-step learning model

- Bird has several song models it trains to reach tutor
- tutor song is known
- day algorithm for parameters optimisation
- night algorithm for structure optimisation
- Hypothesis: structure optimisation yield unlearning short term, better learning long term

Song Model

Song Model

Gesture paradigm inherited from synthesizer

Song structure

- List of gestures and their duration
- Fixed duration of the song because of measurement

Gesture composed of two generators for the motor commands

• Abstracted in sum of sin & linear func

Day learning algorithm

goal

• Optimise gestures parameters

Hillclimbing

- really simple
- Choose song model, choose gesture
- Choose close parameters, if better keep, if worse trash
- Knows if better by comparison of weighted standard measurements
- Not whole song but only gesture trained to make faster computations
 - Actually creates unlearning

Prediction

 Should improve song production but get stuck in local maximum because bad structure

Night learning algorithms

Goal

• Find better structure to describe song motor command

Several variations of algorithm have been tested

- Evolutionary algorithm
 - Simple solution for structure variation
- with or without diversity

Algorithm

- Evolutionary algorithm Microbial GA
- Increase population size and add variation in structure
 - Remove, add, change, copy gesture
 - Song always the same length for comparison reasons.
- Compare by tournament
 - The winner put a variation of itself in place of the loser
 - Compare number of neighbour * score, lower the better

Predictions

- Structure variation yields unlearning short term but positive impact long term
- Diversity will increase this

Parameters

- Tried to be realistic
- \bullet most are fit through gridsearch
- Realistics: Number of days, number of syllables sung during all dev
- Gridsearch optimisation
- Default value for gesture parameters
- Learning rate
 - Prevent part of unlearing
 - Could be fitted to match real song learning rate
 - Coefficient for score optimisation
- Algorithm way better in score than Boari but qualitatively very different to the ear

- $\bullet\,$ Look at which parameters boari's method was better than algo and put priority on them
- Amplitude and entropy
- Diversity threshold to maximise variance in diversity score
 - Value: 5000
 - Other parameters
- Number of song models during day and night: Depend of runs
- Boundaries for parameters values: Fixed
- Number of tournaments during night: depend of runs
 - Correlated with replay? By how much?

Analyses and results

Learning method is as good Boari's method or better

- Using standard measure criteria in the birdsong community
- Simple description of motor params sufficient to produce good songs
- Qualitatively same amount of gestures
 - Can be due to luck

Too little training per model cause divergence

• maybe due to global vs local error

Derégnaucourt results not reproduced

- Syllables extracted by time of begin and end
- Without or with diversity
- No night deterioration
- Night deterioration has no impact in overall learning

Discussion

The synthesizer which cannot produce every sounds

• Our score really close to boari's method (not way better or way worst), maybe we reached synthesizer limits

The parameters description we choose

• more simple/complexe possible than sum of sin and affine?

The unlearning during day due to the gesture learning

Fixed duration of songs in learning

• Dynamic Time Warping can correct that

Big artificial separation between structuration and gestures optimisation

Diversity not strong enough? What if only diversity during night?

- Maybe not convergence
- Maybe what we are looking for

Conclusion

Learning algorithm with two step learning

- Very few of them
- Working with realistic synthesizer
- modular architecture, easy to test new models

Restructuration didn't yield the expected effect

• More parameters search might be able to fix it