Logic and Set Theory

March 9, 2018

CONTENTS	2
----------	---

Contents

0	Miscellaneous	3
1	Propositional logic	4
2	Syntactic implication	6
3	Well-Orderings and Ordinals	10
4	Ordinals	14
	4.1 Successors and limits	. 16
5	Posets and Zorn's lemma	18
	5.1 Zorn's Lemma	. 19
	5.2 Zorn's lemma and the axiom of choice	. 21
	5.3 The Bourbaki-Witt theorem	. 21
6	Predicate Logic	23
	6.1 Peano Arithmetic	. 30
7	Set Theory	32
	7.1 Zermelo-Fraenkel set theory	32

3

0 Miscellaneous

Some introductory speech

1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, $P = \{p_1, p_2, ...\}$.

Definition. The *language* or *set of propositions* L = L(P) is defined inductively by:

- (1) $p \in L \ \forall p \in P$;
- (2) $\perp \in L$, where \perp is read as 'false';
- (3) If $p, q \in L$, then $(p \implies q) \in L$. For example, $(p_1 \implies L)$, $((p_1 \implies p_2) \implies (p_1 \implies p_3))$.

Note that at this point, each proposition is only a finite string of symbols from the alphabet $(,), \Longrightarrow, \bot, p_1, p_2, ...$ and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set $L_1 = P \cup \{\bot\}$, and $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$, and then put $L = L_1 \cup L_2 \cup ...$

Each proposition is built up *uniquely* from 1) and 2) using 3). For example, $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$ came from $(p_1 \Longrightarrow p_2)$ and $(p_1 \Longrightarrow p_3)$. We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p \pmod{p}$, as an abbreviation for $p \Longrightarrow \bot$;
- $p \lor q \ (p \text{ or } q)$, as an abbreviation for $(\neg p) \implies q$;
- $p \wedge q$ (p and q), as an abbreviation for $\neg (p \implies (\neg q))$.

These definitions 'make sense' in the way that we expect them to.

Definition. A valuation is a function $v: L \to \{0, 1\}$ s.t. (1) $v(\bot) = 0$; (2)

$$v(p \implies q) = \left\{ \begin{array}{ll} 0 & v(p) = 1, v(q) = 0 \\ 1 & else \end{array} \right. \forall p,q \in L$$

Remark. On $\{0,1\}$, we could define a constant \bot by $\bot = 0$, and an operation \Longrightarrow by $a \Longrightarrow b = 0$ if a = 1, b = 0 and 1 otherwise. Then a valuation is a function $L \to \{0,1\}$ that preserves the structure (\bot and \Longrightarrow), i.e. a homomorphism.

Proposition. (1) If v, v' are valuations with $v(p) = v'(p) \ \forall p \in P$, then v = v' (on L).

(2) For any $w: P \to \{0,1\}$, there exists a valuation v with $v(p) = w(p) \ \forall p \in P$. In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have $v(p) = v'(p) \ \forall p \in L_1$. However, if v(p) = v'(p) and v(q) = v'(q) then $v(p \Longrightarrow q) = v'(p \Longrightarrow q)$, so v = v' on L_2 . Continue inductively we have v = v' on $L_n \forall n$.

(2) Set $v(p) = w(p) \ \forall p \in P \ \text{and} \ v(\bot) = 0$: this defines v on L_1 . Having defined v on L_n , use the rules for valuation to inductively define v on L_{n+1} so we can extend v to L.

5

Definition. We say p is a tautology, written $\vDash p$, if $v(p) = 1 \ \forall$ valuations v. Some examples:

(1) $p \implies (q \implies p)$: a true statement is implies by anything. We can verify this by:

So we see that this is indeed a tautology;

(2) $(\neg \neg p) \implies p$, i.e. $((p \implies \bot) \implies p$, called the "law of excluded middle";

(3) $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)]$. Indeed, if not then we have some v with $v(p \Longrightarrow (q \Longrightarrow r)) = 1$, $v(\Longrightarrow (p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)) = 0$. So $v(p \Longrightarrow q) = 1$, $v(p \Longrightarrow r) = 0$. This happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then $v(q \Longrightarrow r) = 0$, so $v(p \Longrightarrow (q \Longrightarrow r)) = 0$.

Definition. For $S \subset L$, $t \in L$, say S entails or semantically implies t, written $S \models t$ if $v(s) = 1 \forall s \in S \implies v(t) = 1$, for each valuation v. ("Whenever all of S is true, t is true as well.")

For example, $\{p \Longrightarrow q, q \Longrightarrow r\} \vDash (p \Longrightarrow r)$. To prove this, suppose not: so we have v with $v(p \Longrightarrow q) = v(q \Longrightarrow r) = 1$ but $v(p \Longrightarrow r) = 0$. So v(p) = 1, v(r) = 0, so v(q) = 0, but then $v(p \Longrightarrow q) = 0$.

If v(t) = 1 we say t is true in v or that v is a model of t.

For $S \subset L$, v is a model of S if $v(s) = 1 \ \forall s \in S$. So $S \vDash t$ says that every model of S is a model of t. For example, in fact $\vDash t$ is the same as $\phi \vDash t$.

2 Syntactic implication

For a notion of 'proof', we will need axioms and deduction rules. As axioms, we'll take:

1. $p \Longrightarrow (q \Longrightarrow p) \, \forall p, q \in L;$ 2. $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)] \, \forall p, q, r \in L;$ 3. $(\neg \neg p) \Longrightarrow p \, \forall p \in L.$

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as all of these are infinite sets of axioms.

As deduction rules, we'll take just modus ponens: from p, and $p \implies q$, we can deduce q.

For $S \subset L$, $t \in L$, a proof of t from S cosists of a finite sequence $t_1, ..., t_n$ of propositions, with $t_n = t$, s.t. $\forall i$ the proposition t_i is an axiom, or a member of S, or there exists j, k < i with $t_j = (t_k \implies t_i)$.

We say S is the *hypotheses* or *premises* and t is the *conclusion*.

If there exists a proof of t from S, we say S proves or syntactically implies t, written $S \vdash t$.

If $\phi \vdash t$, we say t is a theorem, written $\vdash t$.

Example. $\{p \implies q, q \implies r\} \vdash p \implies r$. we deduce by the following:

- $(1) [p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)]; (axiom 2)$
- (2) $q \implies r$; (hypothesis)
- $(3) \ (q \implies r) \implies (p \implies (q \implies r)); \ (\text{axiom 1})$
- $(4) p \implies (q \implies r); (mp on 2,3)$
- (5) $(p \implies q) \implies (p \implies r)$ (mp on 1,4);
- (6) $p \implies q$; (hypothesis)
- (7) $p \implies r$. (mp on 5,6)

Example. Let's now try to prove $\vdash p \implies p$. Axiom 1 and 3 probably don't help so look at axiom 2; if we make $(p \implies q)$ and $p \implies (q \implies r)$ something that's a theorem, and make $p \implies r$ to be $p \implies p$ then we are done. So we need to take $p = p, q = (p \implies p), r = p$. Now:

- $(1) [p \Longrightarrow ((p \Longrightarrow p) \Longrightarrow p)] \Longrightarrow [(p \Longrightarrow (p \Longrightarrow p)) \Longrightarrow (p \Longrightarrow p)];$ (axiom 2)
- $(2) p \implies ((p \implies p) \implies p); (axiom 1)$
- $(3) (p \implies (p \implies p)) \implies (p \implies p); (mp \text{ on } 1,2)$
- $(4) p \implies (p \implies p); (axiom 1)$
- (5) $p \implies p$. (mp on 3,4)

Proofs are made easier by:

Proposition. (2, deduction theorem) Let $S \subset L$, $p, q \in L$. Then $S \vdash (p \implies q)$ if and only if $(S \cup \{p\}) \vdash q$.

Proof. Forward: given a proof of $p \implies q$ from S, add the lines p (hypothesis), q (mp) to optaion a proof of q from $S \cup \{p\}$.

Backward: if we have proof $t_1, ..., t_n = q$ of q from $S \cup \{p\}$. We'll show that $S \vdash (p \implies t_i) \forall i$, so $p \implies t_n = q$.

If t_i is an axiom, then we have $\vdash t_i \implies (p \implies t_i)$, so $\vdash p \implies t_i$;

If $t_i \in S$, write down $t_i, t_i \implies (p \implies t_i), p \implies t_i$ we get a proof of $p \implies t_i$ from S;

If $t_i = p$: we know $\vdash (p \implies p)$, so done;

If t_i obtained by mp: in that case we have some earlier lines t_j and $t_j \implies t_i$. By induction, we may assume $S \vdash (p \implies t_j)$ and $S \vdash (p \implies (t_j \implies t_i))$. Now we can write down $[p \implies (t_j \implies t_i)] \implies [(p \implies t_j) \implies (t_i)]$ by axiom $2, p \implies (t_j \implies t_i), p \implies t_j) \implies (p \implies t_i)$ (mp), $p \implies t_j$, $p \implies t_i$ (mp) to obtain $S \vdash (p \implies t_i)$.

These are all of the cases. So $S \vdash (p \implies q)$.

This is why we chose axiom 2 as we did – to make this proof work.

Example. To show $\{p \implies q, q \implies r\} \vdash (p \implies r)$, it's enough to show that $\{p \implies q, q \implies r, p\} \vdash r$, which is trivial by mp.

Now, how are \vdash and \vDash related? We are going to prove the *completeness theorem*: $S \vdash t \iff S \vDash t$.

This ensures that our proofs are sound, in the sense that everything it can prove is not absurd $(S \vdash t \text{ then } S \vDash t)$, and are adequate, i.e. our axioms are powerful enough to define every semantic consequence of S, which is not obvious $(S \vDash t \text{ then } S \vdash t)$.

Proposition. (3)

Let $S \subset L$, $t \in L$. Then $S \vdash t \implies S \vDash t$.

Proof. Given a valuation v with $v(s) = 1 \ \forall s \in S$, we want v(t) = 1.

We have $v(p) = 1 \ \forall p$ axiom as our axioms are all tautologies (proven earier); $v(p) = 1 \ \forall p \in S$ by definition of v; also if v(p) = 1 and $v(p \Longrightarrow q) = 1$, then also v(q) = 1 (by definition of \Longrightarrow). So v(p) = 1 for each line p of our proof of t from S.

We say $S \subset L$ consistent if $S \not\vdash \bot$. One special case of adequacy is: $S \vDash \bot \Longrightarrow S \vdash \bot$, i.e. if S has no model then S inconsistent, i.e. if S is consistent then S has a model. This implies adequacy: given $S \vDash t$, we have $S \cup \{\neg t\} \vDash \bot$, so by our special case we have $S \cup \{\neg t\} \vdash \bot$, i.e. $S \vdash ((\neg t) \Longrightarrow t)$ by deduction theorem, so $S \vdash \neg \neg t$. But $S \vdash ((\neg \neg t) \Longrightarrow t)$ by axiom $S \vdash S \vdash T$, i.e.

Theorem. (4)

Let $S \subset L$ be consistent, then S has a model.

The idea is that we would like to define valuation v by $v(p) = 1 \iff p \in S$, or more sensibly, $v(p) = 1 \iff S \vdash p$.

But maybe $S \not\vdash p_3, S \not\vdash \neg p_3$, but a valuation maps half of L to 1, so we want to 'grow' S to contain one of p or $\neg p$ for each $p \in L$, while keeping consistency.

Proof. Claim: for any consistent $S \subset L$, $p \in L$, $S \cup \{p\}$ or $S \cup \{\neg p\}$ consistent. *Proof of claim.* If not, then $S \cup \{p\} \vdash \bot$ and $S \cup \{\neg p\} \vdash \bot$, then $S \vdash (p \Longrightarrow \bot)$ (deduction theorem), i.e. $S \vdash \not p$, so $S \vdash \bot$ contradiction.

Now L is countable as each L_n is countable, so we can list L as t_1, t_2, \ldots Put $S_0 = S$; set $S_1 = s_0 \cup \{t_1\}$ or $s_0 \cup (\neg t_1\}$ so that S_1 is consistent. Then set $S_2 = S_1 \cup \{t_2\}$ or $S_1 \cup \{\neg t_2\}$ so that S_2 is consistent, and continue likewise. Set $\bar{S} = S_0 \cup S_1 \cup S_2 \cup \ldots$ Then $\bar{S} \supset S$, and \bar{S} is consistent (as each S_n is, and each proof is finite). $\forall p \in L$, we have either $p \in S$ or $(\neg p) \in S$. Also, \bar{S} is deductively closed, meaning that is $\bar{S} \vdash p$ then $p \in \bar{S}$: if $p \notin \bar{S}$ then $(\neg p) \in \bar{S}$, so $\bar{S} \vdash p$, $\bar{S} \vdash (p)$ so $\bar{S} \vdash \bot$ contradiction.

Define $v: L \to \{0,1\}$ by $p \to 1$ if $p \in \bar{S}$, 0 otherwise. Then v is a valuation: $v(\bot) = 0$ as $\bot \notin \bar{S}$; for $v(p \Longrightarrow q)$:

If v(p) = 1, v(q) = 0: We have $p \in \bar{S}$, $q \notin \bar{S}$, and want $v(p \implies q) = 0$, i.e. $(p \implies q \notin \bar{S}$. But if $9p \implies q) \in \bar{S}$ then $\bar{S} \vdash q$ contradiction;

If v(q) = 1: have $q \in \bar{S}$, and want $v(p \implies q) = 1$, i.e. $(p \implies q) \int \bar{S}$. But $\vdash q \implies (p \implies q)$ so $\bar{S} \vdash (p \implies q)$;

If v(p) = 0: have $p \notin \bar{S}$, i.e. $(\neg p) \in \bar{S}$ and want $(p \implies q) \in \bar{S}$. So we need $(p \implies \bot) \vdash (p \implies q)$, i.e. $p \implies \bot, p \vdash q$ (deduction theorem). Thus it's enough to show that $\bot \vdash q$. But $(\neg \neg q) \implies q$, and $\vdash (\bot \implies (\neg \neg q))$ (axiom 3 and 1 – to see the second one, write \neg explicitly using \implies and \bot), so $\vdash (\bot \implies q)$, i.e. $\bot \vdash q$.

Remark. Sometimes this is called 'completeness theorem'. The proof used P being countable to get L countable; in fact, result still holds if P is uncountable (see chapter 3).

By remark before theorem 4, we have

Corollary. (5, adequacy) Let $S \subset L$, $t \in L$. Then if $S \models t$ then $S \vdash t$.

And hence,

Theorem. (6, completeness theorem) Let $S \subset L$, $t \in L$. Then $S \vdash t \iff S \models t$.

Some consequences:

Corollary. (7, compactness theorem) Let $S \subset L$, $t \in L$ with $S \models t$. Then \exists finite $S' \subset S$ with $S' \models t$. This is trivial if we replace \models by \vdash (as proofs are finite).

Special case for $t = \perp$: If S has no model then some finite $S' \subset S$ has no model. Equivalently,

Corollary. (7', compactness theorem, equivalent form) Let $S \subset L$. If every finite subset of S has a model then S has a model. This isi equivalent to corollary 7 because $S \vDash t \iff S \cup \{\neg t\}$ has no model and $S' \vDash t \iff S' \cup (\neg t)$ has no model.

Corollary. (8, decidability theorem)

There is an algorithm to determine (in finite time) whether or not, for a given finite $S \subset L$ and $t \in L$, we have $S \vdash t$.

This is highly non-obviuos; however it's trivial to decide if $S \vDash t$ just by drawing a truth table, and $\vDash \iff \vdash$.

3 Well-Orderings and Ordinals

Definition. A total order or linear order on a set X is a relation < on X, such that

- (1) Irreflexive: Not $x < x \ \forall x \in X$;
- (2) Transitive: $x < y, y < z \implies x < z \ \forall x, y, z \in X$;
- (3) Trichotomous: x < y or x = y or $y < x \ \forall x, y \in X$.

Note: two of (iii) cannot hold: if x < y, y < x then x < x by transitivity.

Write $x \le y$ if x < y or x = y, and y > x if x < y.

We can also define total order in terms of \leq :

- (1) Reflexive: $x \le x \ \forall x \in X$;
- (2) Transitive: $x \le y, y \le z \implies x \in z \ \forall x, y, z \in X$;
- (3) Antisymmetric: $x \le y, y \le x \implies x = y \ \forall x, y \in X$;
- (4) 'Tri'chotomous (although it's only two): $x \leq y$ or $y \leq x \ \forall x, y \in X$.

Example. $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ with the usual orders are all total orders.

 \mathbb{N}^+ the relation 'divides' is not a total order: for example we don't have any of 2|3,3|2 or 2=3.

 $\mathcal{P}(S)$ for some S (with $|S| \geq 2$ to be rigorous), with $x \leq y$ if $x \subseteq y$ is not a total order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element, i.e. $\forall S \subset X, S \neq \phi \implies \exists x \in S, x \leq y \forall y \in S$.

Example. 1. \mathbb{N} with the usual < is a well ordering.

 $2.\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ with the usual < are not well orderings.

 $3.\mathbb{Q}^+ \cup \{0\}$ with the usual < is not a well ordering (e.g. $(0, \infty) \subset \mathbb{Q}^+ \cup \{0\}$).

4.The set $\{1-\frac{1}{n}:n=2,3,...\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 5.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{1\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 6.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{2-\frac{1}{n}:n=2,3,...\}$ (same assumption) is a well ordering.

Remark. X is well-ordered iff there is no $x_1 > x_2 > x_3 > ...$ in X.

Clearly if there is such a sequence then $S = \{x_1, x_2, ...\}$ has no least element. Conversely, if $S \subset X$ has no least element, then for each element $x \in S$ there exists a $x' \in S$ with x' < x, so we can just pick x, x', ... inductively.

Definition. We say total orders X, Y are isomorphic if there exists a bijection $f: X \to Y$ that is order-preserving, i.e. $x < y \iff f(x) < f(y)$.

For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are not isomorphic (one has a greatest element, and the other doesn't).

Here comes the first reason why well orderings are useful:

Proposition. (1, Proof by induction)

Let X be well-ordered, and let $S \subset X$ be s.t. if $y \in S \ \forall y < x \ \text{then} \ x \in S$ (each $x \in X$). Then S = X.

Equivalently, if p(x) is a property s.t. $\forall x$: if $p(y)\forall y < x$ then p(x), then $p(x)\forall x$. (I think we must assert S to be non-empty here, but the lecturer didn't agree with me; need to check later.)

Proof. If $S \neq X$ then let x be the least element of $X \setminus S$. Then $x \notin S$. But $y \in S \ \forall y < x$, contradiction.

A typical use:

Proposition. Let X, Y be isomorphic well-orderings. Then there is a *unique* isomorphism from X to Y.

Proof. Let f,g be isomorphisms. We'll show $f(x) = g(x) \ \forall x$ by induction. Thus we may assume $f(y) = g(y) \ \forall y < x$, and want f(x) = g(x). Let a be the least element of $Y \setminus \{f(y) : y < x\}$. Then we must have f(x) = a: if f(x) > a, then some x' > x has f(x') = a by surjectivity, contradiction. The same shows g(x) =least element of $Y \setminus \{g(y) : y < x\}$, but this is the same as a. So f(x) = g(x).

Remark. This is false for total orders in general. One example is, consider from $\mathbb{Z} \to \mathbb{Z}$, we could either take identity, or $x \to x - 5$; or from \mathbb{R} to \mathbb{R} we could take identity or $x \to x - 5$ or $x \to x^3$...

Definition. In a total order X, an *initial segment* I is a subset of X such that $x \in I, y < x \implies y \in I$.

Example. For any $x \in X$, set $I(x) = \{y \in X : y < x\}$. Then this is an initial segment.

Obviously, not every initial segment is of this form: for example, in \mathbb{R} we can take $\{x:x\leq 3\}$; or in \mathbb{Q} , take $\{x:x^2< 2\}\cup \{x< 0\}$ (this cannot be written as above form as $\sqrt{2}\not\in\mathbb{Q}$.

Note: in a well-ordering, every proper initial segment is of the above form: let x be the least elemnt of $X \setminus I$. Then $y < x \implies y \in I$. Conversely, if $y \in I$, then we must have y < x: otherwise $x \in I$, contradiction.

Our aim is to show that every subset of a well-ordered X is isomorphic to an initial segment.

Note: this is very false for total orders: e.g. $\{1,5,9\} \subset \mathbb{Z}$, or $\mathbb{Q} \subset \mathbb{R}$. If we have $S \subset X$, Wwe would like to define $f: S \to X$ that sends the smallest of S to the smallest of X, then remove them from both sets and send the smallest of the remaining to the smallest of the remaining, etc... But to do this we need a theorem.

Theorem. (3, definition by recursion)

Let X be well-ordered, Y be a set, and $G: \mathcal{P}(X \times Y) \to Y$. Then $\exists f: X \to Y$ s.t. $f(x) = G(f|_{I_x})$ for all $x \in X$. Moreover, such f is unique.

Here we define the restriction as: for $f: A \to B$, and $C \subset A$, the restriction of f to C is $f|_C = \{(x, f(x)) : x \in C\}$. (I think the lecturer is regarding a function as subset of a cartesian product)

In defining f(x), make use of $f|_{I_x}$, i.e. the values of f(y), y < x.

Proof. Existence: define 'h is an attempt' to mean: $h: I \to Y$, some initial segment I of X, and $\forall x \in I$ we have $h(x) = G(h|_{I_X})$. Note that is h, h' are

attempts, both defined at x, then h(x) = h'(x) by induction on x. Since if $h(y) = h'(y) \forall y < x$ then h(x) = h'(x).

Also, $\forall x \in X$ there exists an attempt defined at x by induction on x: we want attempt definde at x, given $\forall y < x$ there exists attempt defined at y. For each y < x, we have unique attempt h_y defined on $\{z : z \le y\}$ (unique by what we just showed).

Let $h = \bigcup_{y < x} h_y$: an attempt defined on I_x . This is single-valued by uniqueness, so is indeed a function.

So $h' = h \cup \{(x, G(h))\}$ is an attempt defined at x.

Now set f(x) = y if \exists attempt h, defined at x, with h(x) = y (single-valued). Uniqueness: if f, f' suitable then $f(x) = f'(x) \forall x \in X$ (induction on X) – since if $f(y) = f'(y) \forall y < x$ then f(x) = f'(x).

A typical application:

Proposition. (4, subset collapse)

Let X be well-ordered, $Y \subset X$. Then Y is isomorphic to an initial segment of X. Moreover, such initial segment is unique.

Proof. To have f an isomorphism from y to an initial segment of X, we need precisely that $\forall x \in Y : f(x) = \min X \setminus \{f(y) : y < x\}$. So done (existence and uniqueness) by theorem 3.

Note that $X \setminus \{f(y) : y < x\} \neq \phi$, e.g. because $f(y) \leq y \ \forall y$ (induction), so $x \notin \{f(y) : y < x\}$.

In particular, a well-ordered X cannot be isomorphic to a proper initial segment of X – by uniqueness in subset collapse, as X is isomorphic to X.

How do different well-orderings relate to each other?

We say $X \leq Y$ if X is isomorphic to an initial segment of Y. For example, $\mathbb{N} \leq \{1 - \frac{1}{n} : n = 2, 3, ...\} \cup \{1\}.$

Theorem. (5)

Let X, Y be well-orderings. Then $X \leq Y$ or $Y \leq X$.

Proof. Suppose $Y \not\leq X$. To obtain $f: X \to Y$ that is an isomorphism with an initial segment of Y, need $\forall x \in X: f(x) = \min Y \setminus \{f(y): y < x\}$. So we are done by theorem 3.

Note that we cannot have $\{f(y) : y < x\} = X$, as then Y is isomorphic to I_x . \square

Proposition. (6)

Let X, Y be well-orderings with $X \leq Y$ and $Y \leq X$. Then X and Y are isomorphic.

Proof. We have isomorphism f from X to an isomorphism of Y, and g the other way round. Then $g \circ f : X \to X$ is an isomorphism from X to an initial segment of X (i.s. of i.s. is i.s.), but that is impossible unless the initial segment is X

itself. So $g \circ f$ is identity (by uniqueness in subset collapse). Similarly, $f \circ g$ is identity on Y.

New well-orderings from old:

Write X < Y if $X \le Y$ but X not isomorphic to Y. Equivalently, X < Y iff X is isomorphic to a proper initial segment of Y. For example, if $X = \mathbb{N}$, $Y = \{1 - \frac{1}{n}\} \cup \{1\}$ then X < Y.

Make a bigger one: given well-ordered X, choose $x \notin X$, and set x > y for all $y \in X$. This is a well-ordering on $X \cup \{x\}$: written X^+ . Clearly $X < X^+$.

Put some together:

Let $(X, <_X)$ and $(Y, <_Y)$ be well-orderings. Say Y extends X if $X \subset Y$, and $<_X$, $<_Y$ agree on X, and X an initial segment of $(Y, <_Y)$. Well-orderings $(X_i : i \in I)$ are nested if $\forall i, j \in I : X_i$ extends X_j or X_j extends

Proposition. (7)

 X_i .

Let $(X_i : i \in I)$ be a nested family of well-orderings. Then there exist well-ordering X with $X \geq X_i \ \forall i$.

Proof. Let $X = \bigcup_{i \in I} X_i$, with x < y if $\exists i$ with $x, y \in X_i$ and $x <_i y$, Then < is a well-defined total order on X. given $S \subset X$, $S \neq \phi$, choose i with $S \cap X_i \neq \phi$. Then $S \cap X_i$ has a minimal element (as X_i is well-ordered), which must also be a minimal element of S (as X_i an i.s. of X). Also, $X \geq X_i \forall i$.

4 Ordinals

Are the well-orderings themselves well-ordered?

An ordinal is a well-ordered set, with two sell-ordered sets regarded as the same if they are isomorphic. (Just as a rational is an expression $\frac{M}{N}$, with $\frac{M}{N}$, $\frac{M'}{N'}$ regarded as the same if MN' = M'N. But, unlike for \mathbb{Q} , we cannot formalise by equivalence classes – see later).

If X is a well-ordering corresponding to ordinal X, say X has order-type α .

Example. For each $k \in \mathbb{N}$, write k for the order-type of the (unique) well-ordering of a set of size k, and write ω for order-type of \mathbb{N} . So, in \mathbb{R} , $\{1,3,7\}$ has order-type 3. $\{1-\frac{1}{n}:n=2,3,...\}$ has order-type ω . For X of o-t α and Y of o-t β , write $\alpha \leq \beta$ if $X \leq Y$ (this is independent of choice of X,Y). Similarly for $\alpha < \beta$ etc.

We know: $\forall \alpha, \beta, \alpha \leq \beta$ or $\beta \leq \alpha$, and if $\alpha \leq \beta, \beta \leq \alpha$ then $\alpha = \beta$.

Theorem. Let α be an ordinal. Then the ordinals $< \alpha$ form a well-ordered set of order-type α . e.g. the ordinals $< \omega$ are 0, 1, 2, 3, ...

Proof. Let X have o-t α . the well-orderings < X are precisely (up to isomorphism) the proper initial segments of X, i.e. the $I_x, x \in X$. But these are isomorphic to X itself, via $x \to I_x$.

We often write I_{α} to be the set of ordinals less than α .

Proposition. (9)

Let S be a non-empty set of ordinals. Then S has a least element.

Proof. Choose $\alpha \in S$. If α minimal in S then done. If not, then $S \cap I_{\alpha} \neq \phi$, so have a minimal element of $S \cap I_{\alpha}$, which is therefore minimal in S.

Theorem. (10, Burali-Forti paradox): The ordinals do not form a set.

The ordinals do not form a set.

Proof. Suppose not, let X be set of all ordinals. Then X is a well-orderings, say order-type α . So X is isomorphic to I_{α} . But I_{α} is a proper i.s. of X.

Given α , we have $\alpha^+ > \alpha$. Also, if $\{\alpha_i : i \in I\}$ is a set of ordinals, then there exists α with $\alpha \ge \alpha_i \forall i$ (by applying prop 7 to the nested family of $I_{\alpha_i}; i \in I$).

In fact, there is therefore a least upper bound for $\{\alpha_i : i \in I\}$ by applying prop 9 to the set $\{\beta \leq \alpha : \beta \text{ an upper bound for the } \alpha_i\}$. This is written $\sup\{\alpha_i : i \in I\}$, e.g. $\sup\{2, 4, 6, 8, \ldots\} = \omega$.

Some ordinals: $0, 1, 2, ..., \omega, \omega + 1$ (officially ω^+), $\omega + 2, ..., \omega + \omega = \omega = \sup\{\omega + 1, \omega + 2, ..., \}, \omega^2 + 1, \omega^2 + 2, ...,$

However, although this thing looks quite magnificent, they are all just countable (as we have just done it). Is there an uncountable ordinal? In other words, is there an uncountable well-ordered set?

Theorem. (11)

There is an uncountable ordinal.

Proof.

IDEA: take sup of all countable ordinals. However, this might not be a set.

Let $R = \{A \in \mathcal{P}(\mathbb{N} \times \mathbb{N})\}$ s.t. A is a well-ordering of a subset of \mathbb{N} . Let S be image of R under 'order-type', i.e. S is the set of all order-types of well-orderings of some subset of \mathbb{N} . Then S is the set of all countable ordinals. Let ω_1 be $\sup S$. Then ω_1 is uncountable: otherwise, then $\omega_1 \in S$, so ω_1 would be the greatest member of S. But then $\omega_1 + 1$ is also in S.

Note that, by contradiction, ω_1 is the *least* uncountable ordinal. ω_1 has some strange properties, e.g.

- 1. ω_1 is uncountable, but for any $\alpha < \omega_1$, we have $\{\beta : \beta < \alpha\}$ countable.
- 2. If $\alpha_1, \alpha_2, ... < \omega_1$ is any sequence, then it is bounded in ω_1 : sup $\{\alpha_1, ..., \alpha_2\}$ is countable, so is less than ω_1 .

Similarly we have

Theorem. (11', Hartogs' lemma)

For any set X, there is an ordinal that does not inject into X.

To see that, just replace $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ by $\mathcal{P}(X \times X)$ in the previous proof.

Write $\gamma(X)$ for the least such ordinal – e.g. $\gamma(\omega) = \omega_1$.

4.1 Successors and limits

Given ordinal α , does α (any set of order-type α , e.g. I_{α}) have a greatest element?

If yes: say β is that greatest element. Then $\gamma < \beta$ or $\gamma = \beta \implies \gamma < \alpha$, and $\gamma < \alpha \implies \gamma < \beta$ or $\gamma = \beta$ (as we can't have $\gamma > \beta$). In other words, $\alpha = \beta^+$. In that case, we call α a *successor*;

If not: then $\forall \beta < \alpha$, $\exists \gamma < \alpha$ s.t. $\gamma > \beta$. So $\alpha = \sup\{\beta : \beta < \alpha\}$. (this is false in general, e.g. $\omega + 5$). We call α a *limit*.

For example, 5 is a successor, $\omega + 5$ is a successor, ω is a limit, $\omega + \omega$ is a limit. (0 is a limit as well).

For ordinals α, β , define $\alpha + \beta$ by recursion on β (α fixed) by: $\alpha + 0 = \alpha$, $\alpha + \beta^+ = (\alpha + \beta)^+$, $\alpha + \lambda = \sup{\alpha + \gamma : \gamma < \lambda}$ for λ a non-zero limit.

For example, $\omega + 1 = (\omega + 0)^+ = \omega^+$, $\omega + 2 = \omega^{++}$, $1 + \omega = \sup\{1 + \gamma : \gamma < \omega\} = \omega$ – so addition is not commutative.

Officially, by 'recursion on the ordinals', we mean: define $\alpha + \gamma$ on $\{\gamma : \gamma \leq \beta\}$ (a set) recursively, plus uniqueness. Similarly for induction: if know $p(\beta) \forall \beta < \alpha \implies p(\alpha)$ (for each α), then must have $p(\alpha) \forall \alpha$. If not, say $p(\alpha)$ false: then look at $\{\beta \leq \alpha : p(\beta) \text{ false }\}$.

Note that $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ (induction on γ). Also, $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$. Indeed, $\gamma \geq \beta^+$, so $\alpha + \gamma \geq \alpha + \beta^+ = (\alpha + \beta)^+ > \alpha + \beta$. However, 1 < 2, but $1 + \omega = 2 + \omega$.

Proposition. (12)

 $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \forall \alpha, \beta, \gamma \text{ ordinals.}$

Proof. Induction on γ :

0: $\alpha + (\beta + 0) = \alpha + \beta = (\alpha + \beta) + 0$.

Successors: $(\alpha + \beta) + \gamma^+ = ((\alpha + \beta) + \gamma)^+ = (\alpha + (\beta + \gamma))^+ = \alpha + (\beta + \gamma)^+ = \alpha + (\beta + \gamma)^+$

 λ a non-zero limit: $(\alpha+\beta)+\lambda=\sup\{(\alpha+\beta)+\gamma:\gamma<\lambda\}=\sup\{\alpha+(\beta+\gamma):\gamma<\lambda\}.$

Claim: $\beta + \lambda$ is a limit.

Proof of claim: We have $\beta + \gamma = \sup\{\beta + \gamma : \gamma < \lambda\}$. But $\gamma < \lambda \implies \exists \gamma' < \lambda$ with $\gamma < \gamma' \implies \beta + \gamma < \beta + \gamma'$. So $\{\beta + \gamma : \gamma < \lambda\}$ does not have a greatest element.

Back to the main proof, now $\alpha + (\beta + \gamma) = \sup\{\alpha + \delta : \delta < \beta + \lambda\}$. So want $\sup\{\alpha + (\beta + \gamma) : \gamma < \lambda\} = \sup\{\alpha + \delta : \delta < \beta + \lambda\}$.

 $\leq: \gamma < \lambda \implies \beta + \gamma < \beta + \lambda$, so LHS \subset RHS;

 \geq : $\delta < \beta + \lambda \implies \delta < \beta + \gamma$, some $\gamma < \lambda$ (definition of $\beta + \lambda$). So $\alpha + \delta \leq \alpha + (\beta + \gamma)$.

Alternative viewpoint:

Above is the 'inductive' definition of +. There is also a synthetic definition: $\alpha + \beta$ is the order-type of $\alpha \sqcup \beta$ (α disjoint union β), with all of α coming before all of β .

Clearly we have $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ with this definition (same order-type). We need:

Proposition. (13)

The synthetic and inductive definition of + coincide.

Proof. Write $\alpha + \beta$ for inductive, $\alpha + \beta$ for synthetic. Do induction on β (α fixed).

```
0: \alpha + 0 = \alpha = \alpha + ' 0:

Successors: \alpha + '\beta^+ = (\alpha + '\beta)^+ = (\alpha + \beta)^+ = \alpha + \beta^+;

\lambda a non-zero limit: \alpha + '\gamma = \text{order-type of } \alpha \sqcup \lambda = \sup of order-type of \alpha \sqcup \gamma,

\gamma < \lambda (nest union, so order-type of union = \sup – this was proved before) = \sup(\alpha + '\gamma : \gamma < \lambda) = \sup(\alpha + \gamma : \gamma < \lambda) = \alpha + \lambda.
```

Normally we prefer to use synthetic than inductive, if we do have a synthetic definition available.

Ordinal multiplication:

Define $\alpha\beta$ recursively by:

```
\begin{array}{l} \alpha 0=0,\,\alpha(\beta^+)=\alpha\beta+\alpha,\,\alpha\lambda=\sup\{\alpha\gamma:\gamma<\lambda\} \text{ for }\lambda\text{ a non-zero limit. e.g.}\\ \omega 1=\omega 0+\omega=0+\omega=\omega;\\ \omega 2=\omega 1+\omega=\omega+\omega;\\ \omega\omega=\sup\{0,\omega,\omega+\omega,\omega+\omega+\omega,\ldots\} \text{ (as in our big picture)}\\ 2\omega=\sup\{2\gamma:\gamma<\omega\}=\omega, \text{ so multiplication is not commutative.} \end{array}
```

Similarly, this also has a synthetic definition: $\alpha\beta$ is the order-type of $\alpha \times \beta$, with (x,y) < (z,t) if either y < t or y = t and x < z. We can check that these coincide on the previous examples. Also we can see $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ etc.

We can define ordinal exponentiation, powers, etc. Similarly. For example, let's define exponentiation:

$$\alpha^0 = 1$$
, $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$, $\alpha^{\lambda} = \sup\{\alpha^{\gamma} : \gamma < \lambda\}$ for λ a non-zero limit.

Note that $\omega^1 = \omega$, $\omega^2 = \omega \cdot \omega$, and $2^\omega = \sup\{2^\gamma : \gamma < \omega\} = \omega$ (and is countable). This is different to what we expect from cardinality, but the notation in cardinality and here is different.

5 Posets and Zorn's lemma

A Partially ordered set or poset is a pair (X, \leq) where X is a set and \leq is a relation on X that is reflexive, transitive and antisymmetric. Write x < y if $x \leq y, x \neq y$. In terms of <, a poset is irreflexive and transitive.

For example, any total order is a partial order; \mathbb{N}^+ with divides; for any set S, $\mathcal{P}(S)$, with $x \leq y$ if $x \subset y$; for any $X \subset \mathcal{P}(S)$, with same relation of $x \leq y$ if $x \subset y$ (e.g. all subspaces of a given vector space).

In general, a hasse diagram for a poset X consists of a drawing of the posets of X, with an upward line from x to y if y covers x, i.e. y > x, but no z that y > z > x.

Hasse diagrams can be useful to visualize a poset (e.g. \mathbb{N} , usual order), or useless (e.g. \mathbb{Q} , usual order).

In a poset X, a *chain* is a set $S \subset X$ that is totally ordered $(\forall x, y \in S : x \leq y \text{ or } y \leq x)$.

Note: chains can be uncountable, e.g. in (\mathbb{R}, \leq) take \mathbb{R} .

We say $S \subset X$ is an antichain if no two elmeent are related.

For $S \subset X$, an upper bound for S is an $x \in X$ s.t. $x \ge y \ \forall y \in S$.

Say X is a least upper bound, or supremum for S, if x is an upper bound for S, and $x \leq y$ for every upper bound y of S.

Write $x = \sup S$ or $x = \vee S$.

e.g. In \mathbb{R} , $\{x: x^2 < 2\}$ has 7 as least upper bound, and $\sup = \sqrt{2}$ (so $\sup S$ need not be in S). In \mathbb{R} , \mathbb{Z} has no upper bound. In \mathbb{Q} , $\{x: x^2 < 2\}$ has 7 as an upper bound, but no least upper bound.

We say a poset is *complete* if every subset has a sup.

e.g. (\mathbb{R}, \leq) is not complete: \mathbb{Z} has no sup (so different to notion of 'completeness' from analysis);

[0,1] is complete; (0,1) is not complete: itself has no sup;

 $\mathbb{P}(S)$ is always complete: $\{A_i : i \in I\}$ has $\sup \bigcup_{i \in I} A_i$.

A function $f: X \to X$, where X is any poset, is order-preserving if $f(x) \le f(y)$ $\forall x \le y$.

e.g. on \mathbb{N} : f(x) = x + 1; on [0,1]: $f(x) = \frac{1+x}{2}$ (halve the distance to 1); on $\mathbb{P}(S)$: $f(A) = A \cup \{i\}$ for some fixed $i \in S$.

not every order-preserving f has a fixed point (f(x) = x), e.g. f(x) = x + 1 on \mathbb{N} .

Theorem. (1, Knaster-Tarski fixed point theorem):

Let X be a complete poset. Then every order-preserving function $f: X \to X$ has a fixed point.

Proof. Let $E = \{x \in X : x \le f(x)\}$, and put $s = \sup E$. To show f(s) = s, we'll show that $s \le f(s)$ and $s \ge f(s)$. So so the show f(s) is an upper bound for E (as s the least upper bound). But $x \in E \implies x \le s \implies f(x) \le f(s) \implies x \le f(x) \le f(s)$. $s \ge f(s)$: Enough to show $f(s) \in E$ (as s an upper bound). We know $s \le f(s)$, and want $f(s) \le f(f(s))$. But that's true because f is order preserving. \square

Note: in any complete poset X, we have a greatest element $(xs.t.x \ge y \forall y)$, namely $\sup X$. A typical application of knaster-tarski:

Theorem. (2, schröder-bernstein theorem)

Let a, B be sets s.t. there exists injection $f: A \to B$ and an injection $g: B \to A$. Then there exists an bijection from A to B.

Proof. Seek partition $A = P \sqcup Q$, $B = R \sqcup S$ s.t. f(P) = R and g(S) = Q. Then we are done: set h to be f on P, y^{-1} on Q, then $h: A \to B$ is a bijection. i.e. we seek $P \subset A$ s.t. $A \setminus g(B \setminus f(P)) = P$. Define $\theta: \mathcal{P}(A) \to \mathcal{P}(A)$ via $P \to A \setminus g(B \setminus f(P))$. Then since $\mathcal{P}(A)$ is complete, θ order-preserving, there is a fixed point by K-T theorem.

5.1 Zorn's Lemma

An element x in poset X is Maximal if no $y \in X$ has y > x.

Posets need not have a maximal element, for example $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

Theorem. (3, Zorn's lemma)

Let X be a non-empty poset in which every chain has an u.b.. Then X has a maximal element.

Proof. Suppose not. Then for each $x \in X$ there is some $x' \in X$ with x' > x. Also, for any chain C we have an upper bound u(C). Pick $x \in X$. Define $x_{\alpha} \in X$, each $\alpha < \gamma(x)$ ($\gamma(x)$ is the u.b.?) recursively by: $x_0 = x$, $x_{\alpha+1} = x'_{\alpha}$, $x_{\lambda} = u(\{x_{\alpha} : \alpha < \lambda\})$ for λ a non-zero limit (this is a chain by induction). Then $\alpha \to x_{\alpha}$ is an injection from $\gamma(X)toX$.

A typical application of Zorn: does every vecotr space have a basis? Recall that a basis is a LI spanning set.

e.g. V = space of all real polynomials. We can take $1, x, x^2, ...$ Let V now be all real sequences. But $l_1 = (1, 0, 0, 0, ...), l_2 = (0, 1, 0, 0, ...)$, then l_1, l_2 LI but not spanning! (recall span must be a finite linear combination!) It's easy to check that there is no countable basis. Also, it turns out that there is no explicit basis.

 \mathbb{R} as a vector space over \mathbb{Q} . Basis is called a Hamel basis.

Theorem. (4) Every vector space V has a basis.

Proof. Let $X = \{A \subset V : A \text{ is LI}\}$, ordered by \subset . We seek a maximal element M of X (then we are done: if M does not span then choose $x \notin \langle M \rangle$, and now $M \cup \{x\}$ is LI, contradiction.

We have $X \neq \phi$, as $\phi \in X$.

Given a chain $\{A_i: i \in I\}$ in X, put $A = \bigcup_{i \in I} A_i$, then $A > A_i \ \forall i$, so just need $A \in X$, i.e. A LI. Suppose A is not LI, hten $\sum_{i=1}^n \lambda_i x_i = 0$ for some $x_1, ..., x_n \in A$, and λ_i scalars not all zero. We have $x_i \in A_{i_1}, ..., x_n \in A_{i_n}$ for some $i_1, ..., i_n \in I$. But $A_{i_1}, ..., A_{i_n} \in A_{i_k}$, some k (as they are nested), contradicting A_{i_k} being LI.

Note: the only actualy maths (i.e. linear alebra) in the proof was the 'then done' part.

Another application: completeness theorem when proposition language uncountable.

Theorem. (5)

Let $S \subset L(P)$, where P is any set. Then S consistent implies that S has a model.

Proof. We seek a maximal consistent $\bar{S} \supset S$. Then done: for each $t \in L(p)$ we have $\bar{S} \cup \{t\}$ or $\bar{S} \cup \{\neg t\}$ consistent (see chapter 1), hence $t \in \bar{S}$ or $\neg t \in \bar{S}$ by maximality of \bar{S} . Now define v(t) = 1 if $t \in \bar{S}$, 0 otherwise (as in chapter 1). Let X be the set of all consistent subsets of L(P), ordered by \subset . Then $X \neq \phi$, as $S \in X$. Given a non-empty chain $(T_i : i \in I)$ in X, put $T = \cup_{i \in I} T_i$. Then $T \supset T_i$ for each i, so we just need $T \in X$. We have $S \subset T$ as $T \neq \phi$. Also T is consistent: if $T \vdash \bot$, then $\{t_1, ..., t_n\} \vdash \bot$ for some $t_1, ..., t_n \in T$. We have $t_1 \in T_{i_1}, ..., t_n \in T_{i_n}$ for some $i_1, ..., i_n \in I$. But $T_{i_1}, ..., T_{i_n} \subset T_{i_k}$ for some k (nested), contradicting T_{i_k} being consistent.

One more:

Theorem. (6, well-ordering principle)

Every set S can be well-ordered.

Note that this is very surprising for e.g $S = \mathbb{R}$.

Proof. Let $X = \{(A, R) : A \subset S \text{ and } R \text{ is a well-ordering of } A\}$. We order this by: $(A, R) \leq (A', R')$ if (A', R') extends (A, R). Then $X \neq \phi$, as $(\phi, \phi) \in X$. Given a chain $((A_i, R_i) : i \in I)$, we have $(\bigcup_{i \in I} A_i, \bigcup_{i \in I} R_i) \in X$, and extends each (A_i, R_i) from chapter 2. So by Zorn's lemma, X has a maximal element (A, R). We must have A = S: otherwise choose $x \in S \setminus A$ and take 'successor': well-order $A \cup \{x\}$ by putting $x > a \ \forall a \in A$, contradicting maximality of (A, R).

Remark. Proof of zorn was easy, but we used a lot of machinery there (ordinals, recursion, hartog's lemma).

5.2 Zorn's lemma and the axiom of choice

In proof of Zorn's kemma, we chose, for each $x \in X$, and $x' \supset x$, i.e. we made infinitely many arbitrary choices, even by time we get to x_{ω} . We did the same in part IA, to prove that a countable union of countable sets is countable. This is appealing to the axiom of choice, saying that we may choose an element of each set in a family of non-empty sets.

More precisely, the axiom of choice states that, if $(A_i : i \in I)$ is a family of sets, we have a choice function, meaning a function $f : I \to \bigcup_{i \in I} A_i$ s.t. $f(i) \in A_i \ \forall i$. This is of a different character to the other set-building rules in that the object whose existence is asserted is not uniquely specified by its properties (unlike ,e.g., $A \cup B$).

So often one points out when one has used axiom of choice.

Note that AC is trivial |I| = 1 ($A \neq \phi$ means $\exists x \in A$). Similarly for I finite by induction. However, there is no derivation of AC from the other set-building rules for general I.

Also, we cannot prove ZL without AC because we can deduce AC from ZL: Given family $(A_i:i\in I)$ of non-empty sets, a partial choice function is an $f:J\to \cup_{i\in I}A_i$ for some $J\subset I$, s.t. $f(j)\in A_j \forall j\in J$. Put $(J,f)\le (J',f')$ if $J\subset J'$ and f'|J=f. This poset is not empty. Also, given a chain we have an upper bound being the union of them. So by ZL, there is a maximal of such. We must have J=I in that case, as if not we can choose (???) $i\in I\setminus J, x\in A_i$ and put $J'=J\cup\{i\}, f'=f\cup\{(i,x)\}$. Contradiction.

Conclusion: ZL \iff AC (in presence of the other set-building rules).

Also, we had $ZL \implies WO$, and $WO \implies AC$ trivially (well order $\cup i \in IA_i$ and let f(i) be the least element of A_i). So we get $ZL \iff AC \iff WO$.

5.3 The Bourbaki-Witt theorem

Poset X is chain-complete if $X \neq \phi$ and every non-empty chain has a sup. For example, any complete poset is chain-complete; any finite poset is chain-complete; and $\{A \subset V : A \text{ is LI}\}$, for a vector space V is also.

We say $f: X \to X$ is inflationary if $f(x) \ge x \ \forall x$.

Theorem. (Bourbaki-Witt)

X chain-complete, $f: X \to X$ inflationary. Then f has a fixed point.

Note that BW follows instantly from ZL: take maximal x, and now $f(x) \ge x$ $\implies f(x) = x$.

However, we can prove BW without AC: we pick some $x_0 \in X$, then let $x_1 = f(x_0), x_2 = f(x_1), ...,$ and let x_{ω} be the sup of them.

In chapter 2, we did not use AC, except in remark that well-ordering \iff no decreasing sequence, and that ω_1 is not a countable sup.

In fact, it's easy to deduce ZL from BW (using AC). So we can view BW as the choice-free version of ZL.

6 Predicate Logic

Recall that a group is a set equipped with functions:

 $M: A^2 \to A$ ('arity' (slots) 2) and inverse $iA \to A$ ('arity' 1), and a constant $e \in A$ (kind of 'arity' 0), s.t.

$$(\forall x,y,z\in A)(M(x,M(y,z))=M(M(x,y),z)),$$

$$(\forall x\in A)(M(x,e)=x\wedge M(e,x)=x),$$

$$(\forall x\in A)(M(x,i(x))=e\wedge M(i(x),x)=e)$$

And a poset is a set A equipped with a predicate (relation) \leq (arity 2) \subset A² s.t

$$(\forall x \in A)(x \le x),$$

$$(\forall x, y, z \in A)((x \le y) \land (y \le z) \implies x \le z),$$

$$(\forall x, y \in A)((x \le y \land y \le x) \implies x = y)$$

We try to establish these correspondence between propositional logic and predicate logic: Language \rightarrow e.g. language of groups (thinks like the definitions above);

Valuation \rightarrow structure (set equipped with functions and relations of given arities);

Model of S (valuation making each $s \in S$ true) \rightarrow model of S (structure in which each $s \in S$ holds);

 $S \vDash t \to \text{same (e.g. In language of groups, should have the above 3 definitions}$ $\vDash M(e,e) = e \text{ etc.)};$

 $S \vdash t \rightarrow \text{same (but a bit more complicated)}.$

Let Ω (function symbols) and Π (relation symbols) be disjoint sets, and α (arity) : $\Omega \cup \Pi \to \mathbb{N}$. The language $L = L(\Omega, \Pi, \alpha)$ is the set of formulae, defined by:

- variables: x_1, x_2, x_3, \dots (can use x, y, etc);
- terms: defined inductively by:
- (i) each variable is a term;
- (ii) If $f \in \Omega$, $\alpha(f) = n$, and $t_1, ..., t_n$ are terms, then $ft_1...t_n$ is a term (and as always, we can add brackets, commas, etc). For example, in the language of groups: $\Omega = \{m, i, e\}$ of arities 2,1,0, $\Pi = \phi$. Some terms: $x_1, m(x_1, x_2), e, m(e, e), m(x_1, i(x_1))$, etc.
- Atomic formulae, consists of:
- (i) ⊥;
- (ii) (s = t), any terms s, t;
- (iii) $\phi(t_1,...,t_n)$, any $\phi \in \Pi$, $\alpha(\phi) = n$, and terms $t_1,...,t_n$.

Again use the language of groups as example: m(x,y) = m(y,x), m(x,i(x)) = e; In language of posets: $\Omega = \phi, \Pi = \{\leq\}$ of arity 2. We could take $x = y, x \leq y, x \leq x$.

- Formulae: defined inductively by:
- (i) Each atomic formula is a formula;
- (ii) If p, q are formulae, then so is $(p \implies q)$;
- (iii) If p is a formulae, x is a variable, then $(\forall x)$ p is a formula.
- e.g. in language of groupsL $(\forall x)(m(x,x)=e), (\forall x)((m(x,x)=e) \implies$

 $(\exists y)(m(y,y)=x))$ (note that we have not talked about \exists yet; we'll do that later).

In language of posets: $(\forall x)(x \leq x)$.

Notes:

- 1. A formula is just a string of symbols.
- 2. We can now write $\neg p$ for $p \implies \bot$, and similarly for $p \land q$, $p \lor q$ etc, and $(\exists x)p$ for $\neg(\forall x)(\neg p)$.

A term is *closed* if it contains no variables. For example, e, m(e, e), m(e, m(e, e)). However, m(x, i(x)) is *not* closed.

An occurrence of variable x in formular p is bound if it is inside the brackets of $\forall x'$ quantifier. Otherwise, it is free.

For example, in $m(x, x) = e \implies (\exists y)(m(y, y) = x)$, each x is free and each y is bound.

Note that in some cases we can make a variable both free and bound: $(m(x,x) = e) \implies (\forall x)(\forall y)(m(x,y) = m(y,x))$. We see that x in LHS is free, but in RHS is bound (although it's not a very helpful expression).

A sentence is a formula without free variables: e.g., $(\forall x)(m(x,e) = x)$. For formula p, variable x, term t, the substitution p[t/x] is obtained by replacing each free occurrence of x with t.

For example, if p is $(\exists y)(m(y,y)=x)$, then p[e/x] is $(\exists y)(m(y,y)=e)$.

Semantic entailment: An *L*-structure consists of a non-empty (see later wfor why) set A equipped with, for each $f \in \Omega$ with $\alpha(f) = m$, a function $f_A : A^m \to A$, and for each $\phi \in \Pi$, with $\alpha(\phi) = n$, a relation $\phi_A \subset A^n$.

For example, let L be the language of groups: an L-structure is a set A with functions $m_A: A^2 \to A$, $i_A: A \to A$, e_A an element of A (need not be a group! These have no 'meaning' yet).

Another example: L be the language of posets: an L-structure is a set A with a relation $\leq_A \subset A^2$.

We want to define the interpretation $p_A \in \{0,1\}$ of a sentence p in structure A, e.g. $(\forall x)(m(x,x)=e)$ shold be 'true in A' if $\forall a \in A : m_A(a,a)=e_A$. So: 'insert $\in A$ subsubscript A and say it aloud'.

Formal bit: For L-structure A, define interpretation of a closed term t to be $t_A \in A$, defined inductively by:

 $(ft_1...t_n)_A = f_A(t_{1A},...,t_{nA})$ for any $f \in \Omega$, $\alpha(f) = n$, closed terms $t_1,...,t_n$. e.g. $m(e,i(e))_A = m_A(e_A,i_A(e_A))$ (and e_A already defined).

Atomic formulae: define $p_A \in \{9,1\}$ for p atomic by:

(i) $\perp_A = 0$;

(ii)

$$(s=t)_A = \left\{ \begin{array}{ll} 1 & s_A = t_A \\ 0 & else \end{array} \right.$$

for s, t closed terms;

(iii)
$$\phi(t_1...t_n)_A = \begin{cases} 1 & (t_{1A},...,t_{nA}) \in \phi_A \\ 0 & else \end{cases}$$

for $\phi \in \Pi$, $\alpha(\phi) = n$, closed terms $t_1, ..., t_n$.

Sentences: p_A defined inductively by:

(i)

$$(p \implies q)_A = \begin{cases} 0 & p_A = 1, q_A = 0 \\ 1 & else \end{cases}$$

(ii)
$$((\forall i)_p)_A = \left\{ \begin{array}{ll} 1 & p[\bar{a}/x]_A = 1 \text{ for all } a \in A \\ 0 & else \end{array} \right.$$

where, for any $a \in A$, add constant symbol \bar{a} to L, obtaining L', and make A an L'-structure by setting $\bar{a}_A = a$.

If p has free variables, we can define $p_A \subset A^{\text{number of free variables of } p}$. e.g. if p is $(\exists y)(m(y,y)=x)$, then $p_A=\{a\in A: \exists b\in A \text{ with } m_A(b,b)=a\}$.

If $p_A = 1$, say p true in A, or p holds in A, or A is a model of p. For T a theoy (set of sentences), say T semantically entails p, written $T \vDash p$, if every model of T is a model of p.

p is a tautology if $\phi \models p$ (or just $\models p$), i.e. p holds in every L-structure. For example, $\models (\forall x)(x=x)$.

Examples: theory of groups: $\Omega = (m, i, e), \Pi = \phi$. Let

$$T = \{(\forall x)(\forall y)(\forall z)(m(x,m(y,z)) = m(m(x,y),z), (\forall x)(m(x,e) = x \land m(e,x) = x), (\forall x)(m(x,i(x)) = e \land m(e,x) = x\}\}$$

Then an L-structure is a model of $T \iff$ it is a group.

Say T 'axiomatises' the class of groups or 'axiomatises the theory of groups'.

Sometimes call the elements of T the 'axioms' of T.

Theory of fields: $\Omega = \{+, \times, -, 0, 1\}$. T is: abelian group under (+, -, 0); X is commutative, associative, distributive under +; $(\forall x)(1x = x)$, $\neg (1 = 0)$, $(\forall x)((\neg (x = 0)) \implies (\exists y)(xy = 1))$. Then T axiomatises the class of fields. E.g., $T \vDash$ inverses are unique: $(\forall x)((\neg (x \neq 0)) \implies ((\forall y)(\forall x)((yx = 1 \land zx = 1) \implies y = z))$.

Theory of posets: $\Omega = \phi, \Pi = \{\leq\}.$

 $T \text{ is: } (\forall x)(x \leq x), \ (\forall x)(\forall y)(\forall z)((x \leq y \land y \leq z) \implies x \leq z), \ (\forall x)(\forall y)((x \leq y \land y \leq x) \implies x = y).$

Theory of graphs: $\Omega = \phi$, $\Pi = \{a\}$ ('is adjacent to').

$$T \text{ is } (\forall x)(\neg a(x,x)), (\forall x)(\forall y)(a(x,y) \implies a(y,x)).$$

Proofs:

Logical axioms:

```
(1) p \implies (q \implies p) (any formulae p, q);
```

- $(2) p \implies (q \implies r)) \implies ((p \implies q) \implies (p \implies r))$ (any formulae p, q, r);
- (3) $(\neg \neg p) \implies p$ (any formula p);
- (4) $(\forall x)(x = x)$; (any variable x);
- (5) $(\forall x)(\forall y)(x=y) \implies (p \implies p[y/x])$) (any variables x, y, formula p where y is a bound);
- (6) $((\forall x)p) \implies p[t/x]$ (any variable x, term t, formula p with no variable in t occurring bound in p)
- (7) $((\forall x)(p \implies q)) \implies (p \implies (\forall x)q)$ (any variable x, formulae p,q with x not occurring free in p).

As rules of deduction, we take:

Modus Ponens: From $p, p \implies q$ can deduce q;

Generalisation: From p can deduce $(\forall x)p$, if x does not occur free in any premise used to prove p.

For $S \subset L$, $p \in L$, a proof of p from S is a finite sequence of formulae, ending with p, s.t. each line is a logical axiom, or a member of S, or follows from earlier lines by MP or GEN. Write $S \vdash p$ ('S proves P') if there exists a proof of p from S

Example: $\{x = y, x = z\} \vdash \{y = z\}$ (use axiom 5, with p being x = z').

- 1. $(\forall x)(\forall y)(x=y \implies (x=z \implies y=z))$ (axiom 5);
- 2. $(\forall x)(\forall y)(x=y \implies (x=z \implies y=z)) \implies (\forall y)(x=y \implies (x=z \implies y=z))$ (axiom 6, t='x');
- 3. $(\forall y)(x=y \implies (x=z \implies y=z))$ (MP on 1,2);
- 4. $(\forall y)(x=y \implies (x=z \implies y=z)) \implies (x=y \implies (x=z \implies y=z))$ (axiom 6);
- 5. $x = y \implies (x = z \implies y = z)$ (MP on 3,4);
- 6. x = y (hypothesis)
- 7. $x = y \implies y = z \pmod{5,6}$
- 8. $x \implies z$ (hypothesis)
- 9. y = z (mp on 7.8).

Aim: $T \vdash p \iff T \vDash p$.

e.g. if p holds in every group then p can be proved from the three group axioms (completely obvious).

Proposition. (1, deduction theorem) Let $S \subset L$, $p, q \in L$. Then $S \vdash (p \implies q) \iff S \cup \{p\} \vdash q$.

Proof. Forward: as for propositional logic, from $p \implies q$ write down p and apply MP to obtain $S \cup \{p\} \vdash q$;

Backward: as for propositional logic: the only new case is 'generalisation'. So in proof of q from $S \cup \{p\}$ we have something like r then $(\forall x)r$ (Gen), and have a proof of $p \implies r$ from S (induction), and we want $S \vdash p \implies (\forall x)r$. In proof of r from $S \cup \{p\}$, no premise had x free. So in proof of $p \implies r$ from S, no premise had x free. Hence $S \vdash (\forall x)(p \implies r$ (gen).

- If x does not occur free in p: we have $S \vdash p \implies (\forall x)r$ by axiom 6 and MP;
- If x does occur free in p: proof of r from $S \cup \{p\}$ cannot have used p. So in fact $S \vdash (\forall x)r$ whence $S \vdash (p \implies (\forall x)r)$ by axiom 1.

Proposition. (2, soundness)

Let S be a set of sentences, p a sentence. Then if $S \vdash p$ then $S \models p$.

Proof. We have proof of p from S, and a model A of S, and we want $p_x = 1$. This is an induction down the lines of the proof.

For adequacy, we want if $S \vDash p$, i.e. that if $S \cup \{\neg p\} \vDash \bot$, then $S \cup \{\neg p\} \vdash \bot$.

Theorem. (3, model existence lemma, or completeness theorem) Let $S \subset L$ be a set of setences. Then S consistent implies that S have a model. Ideas:

- 1. Build model out of language: let A be the set of closed terms of L, with operation line $(1+1) +_A (1+1) = (1+1) + (1+1)$;
- 2. Say for S be the theory of fields: $(1+1) + 1 \neq 1 + (1+1)$, but $S \vdash (1+1) + 1 = 1 + (1+1)$. So quotient out by $s \sim t$ if $S \vdash s = t$;
- 3. Suppose s is the fields of characteristic 2 or 3, i.e. field axioms, and the statement $1+1=0 \lor 1+1+1=0$. Then $S \not\vdash 1+1=0$. So $[1+1] \neq [0]$, where $[\cdot]$ denotes the equivalent class unrder \sim . Also, $S \not\vdash 1+1+1=0$, so $[1+1+1] \neq [0]$.

So our structure does not satisfy $1+1=0 \lor 1+1+1=0$. Then we need to extend S to maximal consistent.

• 4. If S is 'fields with a square root of 2': field axioms $+ (\exists x)(xx = 1 + 1)$. Maybe no closed term t has [tt] = [1 + 1]. So s lacks 'witnesses'.

Solution: for each $(\exists x | p \text{ in } S, \text{ add new constant } c \text{ to language, and add } p[c/x]$ to S. (e.g. cc = 1 + 1).

Now no longer maximal consistent, so go back to step 3.

Problem: this might not terminate.

Proof. We have consistent S in language $L_0 = L(\Omega, \Pi)$. Extend to maximal consistent S_1 (zorn), so for each sentence $p \in L$, we have $p \in S_1$, or $(\neg p) \in S_1$. Thus S_1 is complete (for every p, $S_1 \vdash p$ or $S_1 \vdash (\neg p)$). Add witnesses: for each $(\exists x)p$ in S_1 , add new constant c and axiom p[c/x]. We obtain T_1 in language $L_1 = L(\Omega \cup C_1, \Pi)$ that has witnesses for S_1 (if $(\exists x)p \in S$, then some closed term t has $p[t/x] \in T_1$). It's easy to check T_1 consistent. Now extend T_1 to maximal consistent S_2 (in L). Add witnesses, obtaining T_2 in language $L_2 = L(\Omega \cup C_1 \cup C_2, \Pi)$.

Continue inductively.

Put $\bar{S} = S_1 \cup S_2 \cup ...$ In language $\bar{L} = L(\Omega \cup C_1 \cup C_2 \cup ...)$.

- \bar{S} is consistent: If $\bar{S} \vdash \perp$, then some $S_n \vdash \perp$ (as proofs are finite), contradiction;
- \bar{S} is complete: given sentence $p \in \bar{L}$, we have $p \in L_n$ for some n (as p mentions only finitely many constants), so $S_{n+1} \vdash p$ or $S_{n+1} \vdash (\neg p)$ (choice of S_{n+1}).
- \bar{S} has witnesses (for itself): given $(\exists x)p \in \bar{S}$, we have $(\exists x)p \in S_n$ for some n. So $p[t/x] \in T_n$ for some closed term t (choice of T_n), whence $p[t/x] \in \bar{S}$.

On set of closed terms of \bar{L} , define $s \sim t$ if $\bar{S} \vdash (s = t)$.

This is clearly an equivalent relationship. let A be the set of equivalent clases. Make A into an \bar{L} -structure by setting $f_A([t_1],...,[t_2]) = [ft_1...t_n]$ (each $f \in \bar{\Omega}, \alpha(f) = n$, closed terms $t_1...t_n$), $\varphi_A = \{([t_1],...,[t_n]) : \bar{S} \vdash \phi(t_1,...,t_n)\}$ (each $\phi \in \Pi$, $\alpha(\phi) = n$, closed terms $t_1...t_n$).

Claim: $\phi_A = 1 \iff \bar{S} \vdash p$ for each setnence $p \in \bar{L}$. (Then done: A is a model of \bar{S} , so A is a model of S.

Proof. An easy induction:

 $Atomic\ sentences:$

 \perp : $\perp_A = 0$ and $\bar{S} \not\vdash \perp$.

s = t:

$$\bar{S} \vdash (s = t) \iff [s] = [t]$$
$$\iff s_A = t_A$$
$$\iff (s = t)_A = 1$$

 $\phi(t_1...t_n)$: same.

Induction step:

 $p \implies q$:

$$\bar{S} \vdash (p \implies q) \iff \bar{S} \vdash (\neg p) \text{ or } \bar{S} \vdash q$$

 $\iff p_A = 0 \text{ or } q_A = 1(induction)$
 $\iff (p \implies q)_A = 1$

where the second step is because, say if the forward direction doesn't hold, then $\bar{S} \vdash p$, $\bar{S} \vdash (\neg q)$ (since \bar{S} is complete), but then $\bar{S} \vdash \neg (p \implies q)$, contradiction).

 $(\exists x)p$:

$$\bar{S} \vdash (\exists x) p \iff \bar{S} \vdash p[t/x]$$
$$\iff p[t/x]_A = 1$$
$$\iff ((\exists x) p)_A = 1$$

for some closed term t. The last line is because A is the set of equivalent classes of closed terms. \Box

By remark before theorem 3 we have

Corollary. (4,adequacy) If $S \vDash p$, then $S \vdash o$.

Hence:

 $\textbf{Theorem.} \ (5, \, G\ddot{o}del's \, \, completeness \, \, theorem \, \, for \, \, first-order \, \, logic)$

Let S be a set of sentences and p a sentence (in language L). Then $S \vDash p \iff S \vdash p$.

The proof is just soundness + adequacy.

Note:

- If L is countable (i.e. Ω, Π countable), then we don't need Zorn's lemma;
- 'First-order' means variables range over elements of our structure (not, e.g., subsets).

Theorem. (6, compactness)

Let $S \subset L$ be a set of sentences. Then if every finite subset of S has a model, then S has a model.

Proof. This is trivial if we replace \vDash with \vdash (as proofs are finite).

Note: we have no decidability theorem – how to check if $S \models t$?

Some consequences of completeness/compactness:

Can we axiomatise the class of finite groups? In other words, we want some sentences S (in language of groups) s.t. a structure is a model for $S \iff$ it is a finite group.

However, this is not possible.

Corollary. (7)

the class of finite groups cannot be axiomatised (in language of groups).

Proof. Suppose S axiomatises finite groups. We add to S the sentences:

$$(\exists x_1)(\exists x_2)(\neg(x_1 = x_2))$$
$$(\exists x_1)(\exists x_2)(\exists x_3)(\neg(x_1 = x_2) \land \neg(x_1 = x_3) \land \neg(x_2 = x_3))$$

which stands for $|G| \geq 2$, $|G| \geq 3$, etc.

Then ever finite subset has a model (e.g. \mathbb{Z}_n , n large). However, the set itself has no model – contradicting compactness.

Similarly,

Corollary. (7')

Let S be a theory in a language L. Then if S has arbitrarily large finite models, then it has an infinite model.

Proof. Add sentences as in corollary 7, and apply compactness theorem. \Box

So we know finiteness is not a first-order property.

Corollary. (8, upward Löwenheim-Skolem theorem)

If a theory S has an infinite model, then it has an uncoutnable model.

Proof. Add uncoutnably many constrants $\{c_i : i \in I\}$ to the language, and add to S the set of sentences $c_i \neq c_j$ (for each distinct $i, j \in I$). Then any finite subset has a model. So the whole set has a model by compactness.

Similarly, we could find a model into which P(P(R)) injects (choose I = P(P(R))). E.g., there exists an infinite field (\mathbb{Q}) , so there exists field as big as P(P(R)).

Corollary. (9, downward Löwenheim-Skolem theorem):

Let S be a theory in countable language L. If S has a model, then it has a countable model.

Proof. The model constructed in theorem 3 is countable.

6.1 Peano Arithmetic

We try to make the usual axioms for \mathbb{N} into a first-order theory.

```
L: \Omega = \{0, s, +, \times\}, \Pi = \phi, \text{ axioms:}
```

- 1. $(\forall x)(\neg s(x) = 0);$
- 2. $(\forall x)(\forall y)(s(x) = s(y) \implies x = y);$
- 3. $(\forall y_1)...(\forall y_n)[(p[0/x]\cap (\forall x)(p\implies p[s(x)/x]))\implies (\forall x)p].$

 $(y_i \text{ in 3 are parameters}).$

- 4. $(\forall x)(x + 0 = x)$;
- 5. $(\forall x)(\forall y)(x + s(y) = s(x + y));$
- 6. $(\forall x)(x+0=0)$;
- 7. $(\forall x)(\forall y)(x \times (y) = (x+y) + x)$.

These axioms are called Peano Arithmetic or Formal Number Theory.

Note on axiom 3: first guess shold have been

$$(p[0/x] \cap (\forall x | (p \implies p[s(x)/x])) \implies (\forall x)p$$

But then missing properties like $x \geq y$ (y chosen earlier).

Then PA has an infinite model, so by upward L-S, PA has an uncountable model that is not isomorphic to \mathbb{N} trivially. Doesn't this contradict the fact that the usual axioms characterise \mathbb{N} uniquely?

Answer: axiom 3 is only 'first-order induction' – even in \mathbb{N} itself, it refers to only countably many subsets (as opposed to true induction).

A subset $S \subset \mathbb{N}$ is called *definable* if there exists $p \in L$, free variable x, s.t. $\forall m \in \mathbb{N}$ we have: $m \in S \iff p[m/x]$ holds in \mathbb{N} (where by m we mean $1+1+\ldots+1$ (m times)).

```
e.g. set of squares: p(x) is (\exists y)(yy=x); set of primes: p(x) is: \neg(x=0) \cap \neg(x=1) \neg (\forall y)(y|x) \Longrightarrow ((y=1) \vee (y=x)), where y|x is a short hand for (\exists z)(yz=x), and by 1 we mean s(0). Powers of 2: p(x) is (\forall y)((y|x \land y \ prime) \Longrightarrow (y=2)).
```

Exercise: powers of 4; challenge: powers of 6.

Is PA complete? in other words, for each sentence p, PA $\vdash p$ or PA $\vdash \neg p$?

Theorem. (Gödel's incompleteness theorem)

PA is not complete.

Take p with PA $\not\vdash p$, $PA \not\vdash \neg p$. We have p holding in \mathbb{N} or $(\neg p)$ holding in \mathbb{N} . Conclution: \exists sentence p s.t. p is true in \mathbb{N} , but $PA \not\vdash p$.

This does not contradict completeness; it shows that if p true in all models of PA, then PA $\vdash p$.

7 Set Theory

Aim: what does 'the universe of sets' look like?

Key starting point: view set theory as 'just another finite-order theory'.

7.1 Zermelo-Fraenkel set theory

```
We have L: \Omega = \phi, \Pi = \{\varepsilon\}, \alpha(\epsilon) = 2.
```

We'll have the ZF axioms: 2 to get started, 4 to build things, and 3 you might not think of at first.

Then a 'universe of sets' will mean a model (V, ϵ) of the ZF axioms.

1. Axiom of extension:

If two sets have the same mebmers, then they are equal:

$$(\forall x)(\forall y)((\forall z)(z \in x \iff z \in y) \implies (x = y)).$$

Note: converse is an instance of a logical axiom.

2. Axiom of separtion:

We can form a subset of a set, or precisely, given set x and property p(z), we can form the set of all $z \in x$ such that p(z) holds:

$$(\forall t_1)...(\forall t_n)(\forall x)(\exists y)(\forall z)(z \in y \iff (z \in x \land p))$$

This is actually an axiom scheme: for each formula p and free variables t_i .

Note: we do want parameters, e.g. to have $\{z \in x : t \in z\}$, t chosen earlier.

3. Axiom of empty-set:

There is a set with no members.

$$(\exists x)(\forall y)(\neg y \in x).$$

We write ϕ for the unique (by extension axiom) such set x. This is just an abbreviation: so $p(\phi)$ means $(\exists x)((\forall y)(\neg y \in x) \land p(x))$.

Similarly, write $\{z \in x : p(z)\}$ for the set guaranteed by separation.

4. Axiom of pair-set:

```
We can form \{x, y\}. (\forall x)(\forall y)(\exists z)(\forall t)(t \in z \iff t = x \lor t = y).
```

We write $\{x, y\}$ for this set, and $\{x\}$ for $\{x, x\}$.

We can now define the 'ordered pair' (x, y) to be $\{\{x\}, \{x, y\}\}.$

It's easy to check that $(x, y) = (t, u) \implies x = t \land y = u$ (follows from axiom so far).

Say x is an ordered pair if $(\exists y)(\exists z)(x=(y,z))$, and we say f is a function to mean $(\forall x)(x \in f \implies x$ is an ordered pair) $\land (\forall x)(\forall y)(\forall z)((x,y) \in f \land (x,z) \in f \implies y=z)$.

Can now define the domain of a function as follows: write x = Dom f if $(f \text{ is a function}) \land (\forall z)(z \in x \iff (\exists t)((z,t) \in f)))$.

And write $f: x \to y$ for $(f \text{ is a function}) \land (x = Dom f | \land (\forall z)((\exists t)((t, z) \in f) \implies z \in y)).$

5. Axiom of union:

We can form unions.

$$(\forall x)(\exists y)(\forall z)(z \in y \iff (\exists t)(z \in t \land t \in x)).$$

6. Axiom of power-set:

We can form power-sets.

$$(\forall x)(\exists y)(\forall z)(z \in y \iff z \subset x).$$

Here by $z \subset x$ we mean $(\forall t)(t \in z \implies t \in x)$.

Notes:

- 1. write $\cup x$ and $\mathcal{P}(x)$ for these two sets. We can write $x \cup y$, etc.
- 2. No extra axiom needed for interseionts: we can form $\cap x$ $(x \neq \phi)$ as a subset of y any $y \in x$. So ok by separation.
- 3. We can now form $x \times y$ as a suitable subset of $\mathcal{PP}(x \cup y)$ since if $t \in x, u \in y$, then $(t, u) = \{\{t\}, \{t, u\}\} \in \mathcal{PP}(x \cup y)$. And then we can form the set of all functions from x to y, as a subset of $\mathcal{P}(x \times y)$.

The next three are more subtle:

7. Axiom of infinity:

So far, V (the branch symbol) must be inifinite. For example, write $x^+ = x \cup \{x\}$, then easy to check that $\phi, \phi^+, \phi^{++}, \dots$ are all distinct. We often write 0 for ϕ , 1 for $\phi^+, 2$ for ϕ^{++} , etc. So $1 = \{0\}, 2 = \{0, 1\}, 3 = \{0, 1, 2\}$, etc. But does the structure (V, ϵ) have an infinite set - e.g. x with $\phi \in x, \phi^+ \in x, \dots$?

We say x is a successor set if $(\phi \in x) \land (\forall y)(y \in x \implies y^+ \in x)$.

Now let's state the axiom:

There is an infintie set/there is a successor set.

 $(\exists x)(x \text{ is a successor set}).$

Note that any intersection of successor sets is a successor set, so there exists a least one, called ω . This will be our version, in V, of the natural numbers.

Thus $(\forall x)(x \in \omega \iff (\forall y)(y \text{ a successor set } \implies x \in y)).$

Note that if $x \subset \omega$ is a successor set then $x = \omega$ by definition: $(\forall x)(x \subset \omega \land \phi \in x \land (\forall y)(y \in x \implies y^+ \in x)) \implies x = \omega)$. This is induction: genuine induction, over all $x \subset \omega$ (as opposed to in PA).

Also, it's easy to check $(\forall x \in \omega)(\neg x^+ = \phi)$, and $(\forall x \in \omega)(\forall y \in \omega)(x^+ = y^+ \implies x = y)$.

Thus: ω satisfies (in V) all the usual axioms for the natural numbers.

Say x is finite if $(\exists y)(y \in \omega \land x \text{ bijects with } y)$.

And then x is countable if x is finite or x bijects with y.

8. Axiom of Foundation:

"Sets are build up from simpler sets". We want to disallow $x \in x$: note that $\{x\}$ has no ε -minimal member; and also disallow $x \in y \in x$: note $\{x,y\}$ has no ε -minimal element, etc. And we also want to disallow the infinite sequence $x_1 \in x_0, x_2 \in x_1, x_3 \in x_2,...$, in which case $\{x_0, x_1, ...\}$ has no ε -minimal element.

```
The axiom: every (non-empty) set has an \varepsilon-minimal element. (\forall x)(x \neq \phi \implies (\exists y)(y \in x \land (\forall z)(z \in x \implies z \notin y)).
```

Bonus lecture on next Wednesday 1pm (proof of incompleteness theorem, consistency of ZF)

9. Axiom of Replacement:

We often say "for each $i \in I$ have A_i – take $\{A_i : i \in I\}$. However, how do we know they form a set? Alternatively, how do we know that $i \to A_i$ is a function? We want to say "the image of a set under something that looks like a function is a set".

A digression on classes:

Idea: $x \to \{x\}$ (for all x). This looks like a function, but it isn't: e.g. every function has a domain as functions are sets of ordered pairs, and the domain is just the left element of all those pairs. However, the 'domain' of $x \to \{x\}$ is not a set (the universal 'set').

For an L-structure V, a collection C of elements of V is called a *class* if there is a formula p, free variables x (and maybe more) s.t. $x \in C \iff p(x)$ holds in V. E.g. V is a class: take p(x) to be x = x.

```
For any t, \{x : t \in x\} is a class: take p(x) to be t \in x.
Note that every set y is a class: take p(x) to be x \in y.
```

If C is not a set (in V), i.e. $(\exists y)(\forall x)(x \in y \iff p(x))$, say C is a proper class. E.g., V is a proper class, as is $\{x : x \text{ infinite}\}$, where by infinite we mean not finite.

Similarly, a function-class is a collection F of ordered pairs from V, s.t. for some formula p, free variables x,y (and maybe more), have $(x,y) \in F \iff p(x,y)$, and if $(x,y) \in F$, $(x,z) \in F$, then y=z.

For example, $x \to \{X\}$ is a function class: take p(x, y) to be $y = \{x\}$.

—End of digression—

Let's now state the axiom of replacement: "the image of a set under a functionclass is a set.

```
(\forall t_1)...(\forall t_n)([(\forall x)(\forall y)(\forall z)((p \land p[z/y]) \implies y = z)] \implies [(\forall x)(\exists y)(\forall z)(z \in y \iff (\exists t)(t \in x \land p[t/x, z/y])])
```

For each formula p, free variables $x, y, t_1, ..., t_n$, i.e., the image of x under p is a set.

Eg. for any set x, we can form $\{\{t\}: t \in x\}$ using function class $t \to \{t\}$.

This is a 'bad' example, as it didn't need replacement – see later for 'good' examples.

Those are the ZF axioms.

Note:

- 1: Sometimes separation is called 'comprehension', and sometimes fundation is called 'regularity'.
- 2. ZF axioms do not include AC: ZF + AC is called ZFC, where axiom of choice is: "every family of (non-empty) sets has a choice function" $-(\forall f)(f)$ is a function $\wedge(\forall x)(x \in Domf \implies f(x) \neq \phi)) \implies (\exists y)(y)$ is a function $\wedge Domy = Domf \wedge (\forall x)(x \in Domf \implies g(x) \in f(x)))$.

Goal: what does a model (V, ϵ) of ZF look like?

Remark: we haven't proved ZF consistent (i.e. \exists model of ZF). Sadly, ZF $\not\vdash$ "ZF has a model", i.e. it cannot be proved in ordinary maths (ZF or ZFC).

Say x is transitive if every member of x is itself a member of x: $(\forall y)((\exists z)(y \in z \land z \in x) \implies (y \in x)$, i.e. $\cup x \subset x$.

E.g. $2 = \{\phi, \{\phi\}\}\$ is transitive; ω is transitive as $n = \{0, 1, ..., n-1\}\ \forall n \in \omega$.

Lemma 1: every set x is contained in a transitive set.

Remarks: 1. Officially, let (V, ϵ) be a model of ZF. Then in V, ... holds, or equivalently, $ZF \vdash ...$.

2. Any \cap of transitive sets is transitive, so we'll then know that there exists a least transitive set containing x, called the transitive closure of x, written TC(x).

Proof. We'll take $x \cup (\cup x) \cup (\cup \cup x) \cup \cup \cup \cup x) \cup ...$ which is a set by union axiom, which is a set by replacement (a good example of replacement): $0 \to x, 1 \to \cup x$, etc. But why is this a function class?

To show that, define f is a an attempt to mean (recall we've done similar things before in chapter 2) (f is a function $) \cap (Dom f \in \omega) \cap (Dom f \neq \phi) \cap (f(0) = x) \cap (\forall n) (n \in Dom f \cap n \neq 0 \implies f(n) = \cup f(n-1))$. Then $(\forall n \in \omega)(\forall f)(\forall f')((f, f' \text{ attempts } \land n \in Dom f') \implies f(n) = f'(n))$ (by ω -induction). And $(\forall n \in \omega)(\exists f)(f \text{ an attempt } \cap n \in Dom f)$ (again, by ω -induction). So take p(y, z) to be $(\exists f)(f \text{ an attempt } \cap y \in Dom f \cap f(y) = z)$. \square

We want foundation to be saying 'sets are built out of simpler sets'. If so, we would want: suppose $p(y) \forall y \in x$ implies p(x), then $p(x) \forall x$.

Theorem. (2, principle of ϵ -induction): let p be a formula with free variables $t_1, ..., t_n, x$. Then $(\forall t_1)...(\forall t_n)((\forall x)((\forall y)(y \in x \implies p(y) \implies p(x)) \implies (\forall x)p(x))$. Note that formally, p(y) should be p[y/x], and p(x) should just be p.

Proof. Given $t_1, ..., t_n$, have $p(y) \forall y \in x \implies p(x)$, and suppose $(\forall x) p(x)$ not true. So $(\exists x)(\neg p(x))$. We want ot say 'choose ϵ -minimal member of $\{x : \neg p(x)\}$, then contradiction'; however, this might not be a set – e.g. if p(x) is $x \neq x$.

Let $t = TC(\{x\})$. So $x \in t$, and $\neg p(x)$. Let $u = \{y \in t : \neg p(y)\}$, and let y be an *epsilon*-minimal element of u. Then $\neg p(y)$. But $(\forall z \in y)p(z)$ (as $z \in y \implies z \in t$ and y is ϵ -minimal in u).

Remarks: 1. we used existence of transitive closures (i.e. lemma 1).

2. In fact, ϵ -induction equivalent to foundation: as can deduce foundation from ϵ -induction (in the presence of the other ZF axioms): say x is regular if $(\forall y)(x \in y \implies y \text{ has an } \epsilon\text{-minimal element})$. Foundation says every set is regular. To prove this by ϵ induction, given y regular $\forall y \in x$, we want to prove x is regular. For $x \in z$, if x minimal then done. Otherwise, some $y \in x$ has $y \in z$. But y is regular. So z has a minimal element.

How about recursion? we want f(x) defined in terms of the f(y), $y \in x$.

Theorem. (3, ϵ -recursion theorem)

Let G be a function-class $((x,y) \in G \iff p(x,y))$ for some formula p), everywhere defined. Then there is a function-class $F((x,y) \in F \iff q(x,y))$, for some formula q) s.t. $(\forall x)(F(x) = G(F|x))$. Moreover, F is unique. Note: $F|x = \{(z, f(z)) : z \in x\}$ is a set, by replacement.

Proof. Say f is an attempt if: (f is a function $) \land (Domf$ transitive $) \land (\forall x)(x \in Domf) \implies f(x) = G(f|x))$ (f|x) is defined, as Domf is transitive). Then $(\forall x)(f,f')$ attempts defined at $x \implies f(x) = f'(x)$ by ϵ -induction. Since, if f,f' agree at all $g \in x$, then they agree at g. Also, $(\forall x)(\exists$ attempt g defined at g by g-induction. Indeed, suppose $|forally \in x \exists$ attempt defined at g. So g is g unique attempt g defined on g of g is an attempt g and now put g is g induction. So done: take g is g in g

Note: ϵ -induction and ϵ -recursion proofs look very similar to induction and recursion from chapter 2.

What properties of the 'relation-class' ϵ (i.e. the formula $p(x,y)=x\epsilon y$) have we used?

- 1. p is well-founded: every non-empty set has a p-minimal element;
- 2. p is local: (y:p(y,x)) is a set, for each x.

So in fact we have p-induction and p-recursion for any p(x, y) that is well-founde and local.

For a relation r on a set a, trivially r is local (as a is a set). So to have r-induction and r-recursion, just need r to be well-founded.

Thus induction and recursion from chapter 2 are special cases of this.

Can we 'model' a relation by ε ?

E.g. let $a = \{a_1, a_2, a_3\}$ and $r = \{(a_1, a_2), (a_2, a_3)\}.$

Put $b = \{b_1, b_2, b_3\}$, where $b_1 = \phi$, $b_2 = \{\phi\}$, $b_3 = \{\{\phi\}\}$. Then $a_i r a_j \iff b_i r b_i \forall i, j$. Moreover, b transitive.

Say relation r on set a is extensional if $(\forall x, y \in a)((\forall z \in a)(zrx \iff zry) \implies x = y)$, e.g. above relation on above a, or relation ϵ on any transitive set.

Analogue of subset collapse is:

Theorem. (4, Mostowski's collapse theorem):

Let r be a relation on a set a that is well-founded and extensional. Then \exists transitive b and bijection $f: a \to b$ s.t. $(\forall x, y \in a)(x \lor y \iff f(x) \in f(y))$. Moreover, b and f are unique.

Proof. Define $f(x) = \{f(y) : yrx\}$ a definition by r-recursion on the set a. (f is a function, not just a function-class, as it is an image of the set a).

Let $b = \{f(x) : x \in a\}$ (a set, by replacement).

Then b transitive (definition of f), and f surjective (definition of b). We need f injective, then also have $xry \iff f(x) \in f(y)$.

We'll show that $(\forall y)(f(y) = f(x) \implies y = x)$ holds $\forall x \in a$, by r-induction on x.

So given y with f(y) = f(x), we want y = x, and may assume that $(\forall t)(\forall n)((t, n \in a \land trx \land f(y) = f(t)) \implies n = t)$.

From f(y) = f(x), we have $\{f(n) : nry\} = \{f(t) : trx\}$, whence $\{n : nry\} = \{t : trx\}$.

Thus x = y as r extensional.

Existence: if f, f' suitable then $(\forall x \in a)(f(x) = f''(x))$ by r-induction.

An ordinal or Von Neumann ordinal is a transitive set that is well-orderd by ϵ . (or 'totally ordered, thanks to foundation)

e.g. ϕ , $\{\phi\}$, any $n \in \omega$ (as $n = \{0, 1, 2, ..., \{n-1\})$, ω itself.

So mostowski tells us: any well-ordered X is order-isomorphic to a unique ordinal α . Say X has order-type α . (this was owed from chapter 2).

Remark (irrelevant): we know that for any ordinal α , have $\{\beta : \beta < \alpha\}$ is a well-ordered set of order-type α .

Hence, by definition of f in theorem 4, we have: $\alpha < \beta \iff \alpha \in \beta$.

So
$$\alpha = \{\beta : \beta < \alpha\}.$$

So e.g. $\alpha^+ = \alpha \cup \{\alpha\}$, and $\sup\{\alpha_i : i \in I\} = \cup \{\alpha_i : i \in I\}$.