Heyawake

Heyawake rules:

- Shade some cells on the grid.
- No two shaded cells are adjacent.
- All unshaded cells form a horizontally/vertically connected area.
- A number in a region tells how many shaded cells are in the region.
- (Border rule) There cannot be a horizontal or vertical line of unshaded cells that passes through 2+ borders.

Heyawake example

Note that numbers may be shaded.

Puzzle 1 (by Kaz)

2	3			5	
2		1			
		4			

Puzzle 2 (by Kaz)

Puzzle 3 (by Kaz)

0		2		
3				
0			3	
			0	

There are so, so many Heyawake techniques. For a comprehensive 100-page guide, see <u>tinyurl.com/HeyawakeGuide</u> (written by Teal). Here's the sparknotes version:

Commonalities

Out of all the different ways to resolve a region, mark all the cells that are always shaded or always unshaded. Example:

Subdivision

Given a large region, break it up into smaller pieces you can understand. For example, here we can break up this region into a 2x4 on the edge (convince yourself this has ≤ 3 shaded cells) and a 2x3 on the edge (which also has ≤ 3 shaded cells).

You can also do the opposite, and combine two smaller regions into a large region that's easier to understand.

Now it's your turn! Try to complete 2 puzzles.

Puzzle 4 (by Kaz) 🤳

Puzzle 5 (by Kaz)

Puzzle 6 (by 3766th_prime)

Puzzle 7 (by K.N.Y.)

2		2		3	3	
3					2	
3			2			
					2	
	3				2	
					_	

Puzzle 8 (by mlph)

Puzzle 9 (by Teal)

2		1				
				<u> </u>		
4	ď		4	3	3	
					٥	
				1		

Puzzle 10 (by Teal)

Puzzle 11 (by Teal)

2				4		
	1					
	1					2
1						
			2			
2						

If it wasn't clear, I am a fan of Teal's puzzles.

Also a reminder that all puzzles on these handouts are solvable without trial and error-feel free to look back at the page of techniques if you're stuck.

Puzzle 12 (by Quadrangle)

Puzzle 13 (by Teal)

0		0		2		0
2						0
<u> </u>						
1	0		2			1
				0		
0						

Puzzle 14 (by Sam Cappleman-Lynes)

Cycle Counting ("Penalty Theory") Zone

Counting cycles of unshaded cells allows solving some impossible-seeming puzzles. For a much better tutorial, see tinyurl.com/HeyawakeGuide. Also, thanks to @agnomy, @chaotic_iak, greenturtle3141, tckmn, and redstonerodent for writing great explanations.

Formula: Optimal number of cycles is
$$(m-1)(n-1)+2\left\lceil \frac{m}{2}\right\rceil+2\left\lceil \frac{n}{2}\right\rceil$$

where m, n are the side lengths of the grid. Divide this by 3 to get the maximum number of shaded cells you can place, assuming you shade all 4 corners, and put the maximum number of shaded cells possible on each edge of the grid.

Puzzle 15 (by greenturtle3141) " 🜙 🌙 "

Optimal number of cycles is (5 * 5) + 6 + 6, which is 37. 37 - (12 * 3) = 1, so there is exactly 1 cycle of unshaded cells in the final solution. We can already see the cycle: it's the 2x2 of unshaded cells in the 0 region. Thus:

- There are no more cycles of unshaded cells
- All 4 corners are shaded
- The edges of the grid are filled with the maximum number of shaded cells possible.

Puzzle 16 (by redstonerodent)

Puzzle 17 (by agnomy) \checkmark

