1(4) 3aucena $\ln x = -t$ $\times = e$ $\int \frac{x^{9} - x}{\ln x} dx$ Universal craner: $\int \frac{x^{9} - x}{\ln x} dx$ $\int \frac{x}{\ln x} dx = -dt$ Universal craner: $\int \frac{e^{-e}}{t} - \frac{e^{-t}}{t} dt = \int \frac{e^{-e}}{t} dt$ T. K. Universal $\int \frac{e}{t} dt$ $\int \frac{e^{-e}}{t} dt$ T. K. Universal $\int \frac{e^{-t}}{t} dt$ $\int \frac{e^{-t}}{t} dt$ The pywersal incx ognoring paber $\int \frac{e^{-t}}{t} dt$

$$\frac{8}{5} \frac{15}{3} \frac{3}{2}$$

$$\frac{1}{5} \frac{\sin x}{\sin x} \frac{\cos x}{\sin x} \frac{1}{3} \frac{\sin x}{\sin x} \frac{1}{3} \frac{\sin x}{\sin x} \frac{\cos x}{\sin x} \frac{1}{3} \frac{\sin x}{2} \frac{\cos x}{\sin x} \frac{\cos x}{\sin x} \frac{\sin x}{2} \frac{$$

315 5(2) = J d Sinx - Sindx dx, d>0 Bozbereier f(t) = 1 sint I = 2 | 3(x) - 3(2x) Thak kak YA>O Sint dt cr-ca no npuza Dupurue(† monor grob, Sint dt orp.), To npumeruma apopuruma Prymaru. Travus I= 2 f(0) ln d= 2 lnd 9(0)= lim 5 int = 1 (goonp 6 , 0 κακ 1 gus t=0) Orber: I lnd.

\$15 6(1, 4, 5)(1) $\int_{-\infty}^{\infty} 1 - \cos 3 \pm x = \int_{-\infty}^{\infty} 1 \times \int_{-\infty}^{\infty} 0$ $\lim_{x\to 0} 1 - \cos 3 \pm x = \int_{-\infty}^{\infty} 1 \times \int_{-\infty}^{\infty} 0$ 3 marux goonpegeeeuu nogovixerpauvriyo qp-4,410

6 1, x=0 f=0 - ona czaneż nenpepoibnoù na $[0,+\infty)$

SindxeBx X + O 2 (x, d) 0 THATUN: 1) $f(x, d) = \frac{f}{2d}(x, d)$ renpepoibreve na nparroy. [0, +00) x R 2) $\frac{2f}{2d}(x, d) \leq e^{-\frac{2}{3}x}$ $\frac{2f}{2d}(x, d) d x$ ex-ex-pabrio. meprio no LER npu courc B no npuzzi. Benepeurp. 3) | f(x,0) dx cx-ca, Значит пришенища т. о диорореренциро. barrell no nanametry I' = J Sindx e x x = -e x cosdx | - B J cosdx e dx = B (sindx e Bx + B) Sindx e Bx 1x In (2+3) + C

$$J'_{A} = \int_{0}^{\infty} \sin dx e^{i\beta x} dx = -e^{i\beta x} \cos dx e^{i\beta x} dx$$

$$= 0 - (-\frac{1}{4}) - \frac{1}{3} \left(\frac{\sin dx}{4} e^{i\beta x} \right) + \frac{13}{3} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} (1 + \frac{1}{3}) = \frac{1}{4} - \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} (1 + \frac{1}{3}) = \frac{1}{4} - \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} (1 + \frac{1}{3}) = \frac{1}{4} - \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \sin dx e^{i\beta x} dx$$

$$= \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{$$

3) you 7 = 0] (2, B, 0) = 5 e - e x x + 5 e - e x x Breakert J Cx-ca npy 200 ex-es In = $\int (e^{-Bx} - 4x) guapap.$ no napawex py $\int_{\lambda} - \int (e^{-Bx} - 4x) guapap.$ $\int_{\lambda} - \frac{\lambda}{\lambda^2 + \beta^2} - \frac{\lambda}{\lambda^2 + \beta^2} - \frac{\lambda}{\lambda^2 + \beta^2}$ как в прошения принеере (6.1) I = 2 Pn (2+13) - 12 Pn (2+2) + Q(13) I(L,B,0) = = 1 PnB- = Pnd + C(L,B) = Pn + C(L,B) If onpegenerus $J(\lambda, \beta, 0) = \int_{0}^{\infty} \frac{e^{-\lambda x} - \beta x}{x} = \frac{\beta}{n} \frac{\beta}{\lambda} - \frac{no}{p-ne}$ Other: $I = \frac{1}{2} \ln \frac{\chi^2 + \beta^2}{\chi^2 + d^2}$ 5 jarcig Lx x x x 1-x2 x lim arctg dx = d = goonp. 6 5.x-0 ap-upero Freez grear 2 f (x,d) = (1-(dx)2) \[1-x2 \$(x,d). " 2\$ (x,d) runpep. Ha [0,1) x 17 2) | df (x, L) | < TI-x2 ch-ca -> | df (x, L) dx ex-eq pabrir-reo no LEM no np. Beigo no np. Beigp 3)](x,0)=0 Traver rpuelle remea no napaelletry

x= sinu (1/2 cos 4 d 4) (1+12 sinu) costi 1 1 - 2 + g² 4 cos² 4 1 + 12 Sin24 Sosu (+gu+1+12+qu) du +qu=+ (12+1) l2+1 I = 1 Pn(1+12)+C I(0)=0 (> C=0. Orber: I = 2 Pn (1+ 11+ 22)

815 13 (4) $\int e^{-4x^{2}} \cosh 3x \, dx = \sqrt{1} e^{3^{2}/4x^{2}}, \quad \lambda > 0$ $\int e^{-4x^{2}} \cosh 3x \, dx = 2 \int e^{-4x^{2}} \cosh 3x \, dx = \int (e^{-4x^{2}+xy^{3}} - 4x^{2}-xy^{3}) \, dx = e^{4x^{2}} \int (e^{-(\sqrt{1}x^{2}-x^{2}y^{2})^{2}} - (\sqrt{1}x^{2}-x^{2}y^{2})^{2}) \, dx = 1 e^{4x^{2}} e^{4x^{2}}$ $= e^{4x^{2}} \int (e^{-(\sqrt{1}x^{2}-x^{2}y^{2})^{2}} - (\sqrt{1}x^{2}-x^{2}y^{2})^{2}) \, dx = 1 e^{4x^{2}} e^{4x^{2}}$ $= e^{4x^{2}} \int (e^{-(\sqrt{1}x^{2}-x^{2}y^{2})^{2}} - (\sqrt{1}x^{2}-x^{2}y^{2})^{2}) \, dx = 1 e^{4x^{2}} e^{4x^{2}} e^{4x^{2}}$ $= e^{4x^{2}} \int (e^{-(\sqrt{1}x^{2}-x^{2}y^{2})^{2}} - (\sqrt{1}x^{2}-x^{2}y^{2})^{2}) \, dx = 1 e^{4x^{2}} e^{$

815 15(4) $\lim_{x \to \infty} \frac{\sin^2 \Delta x}{x^2(1+x^2)} = \Delta^2 - \frac{1}{2}$ 9-4,40 67. X=0 этим значением of Sin 2 dx , x +0 2 d, x = 0 1) f(x, d) u $\frac{\partial f}{\partial d}(x, d)$ renjegrosobress ma $[0, +\infty) \times \mathbb{R}$ 2)) 2 (x,d) d x 14 - cx-ex pabrious, no np Benepulary, Tak Kak (3) (x, d) (x 3 3) \ \ \(\(\times \) \ \ \d \times \ + 0 пришенина теорена о дидар по I' (1) =) Sin 2 d x d x X (1+x2) d x $\frac{\partial^2 f}{\partial d^2} = \frac{2 \cos 2 dx}{1 + x^2}$ 1) 3 x (x, d) u 3 x (x, d) reenpep HG LO, +00) x 1/2 2) $\left|\frac{\partial^2 f}{\partial L^2}\right| \leq \frac{2}{1+\chi^2} - cx - c\alpha \qquad \int \frac{\partial^2 f}{\partial L^2}(x,L)dx \quad cx - c\alpha$ равнения по приды Вейеринтрасся

3) 100 24 (x,0) = 0
Приненина теорена о диорор. по парашетру
I"(2) = 5 2 cos 2 dx Jx = 51 e
I'(1) = - 3 P + C
$I'(0) = 0 \longrightarrow C_1 = \frac{J_1}{2} \longrightarrow I'(1) = \frac{J_1}{2}(1 - e^{- 2d })$
$\bar{I}(\lambda) = \frac{\pi}{2} \lambda + \frac{\pi}{4} e^{-12\lambda 1} + C_2$
1(0) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oiber: I = 3 (2 2 -1 + e)

$$\frac{3}{16} \frac{7(4)}{7(4)}$$

$$\frac{1}{16} \frac{1}{16} \frac{1}{16}$$

$$\frac{3}{16} \frac{9(3)}{9(3)}$$

$$\int_{0}^{4} x^{2} \sqrt{a^{2} - x^{2}} dx = \frac{1}{2} \int_{0}^{4} \frac{a^{2} t}{2 \sqrt{1 t}} \int_{0}^{4} \frac{a^{2}$$

 $\frac{316}{\sqrt{2}} \frac{12(9)}{\sqrt{2}}$ $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$