Examples of optimal mechanismo Optimal mechanism design problem:

max $\int_{i \in \mathbb{N}} \left(\sum_{i \in \mathbb{N}} w_i(t_i) f_i(t) \right) g(t) dt$, s.t. $f \in \mathbb{NDE}$

Solution for regular Wi's:

$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) > w_j(t_j) \neq j \\ 0 & \text{ow} \end{cases}$$

We wanted to find an allocation that is NDE, but found an f that is non-decreasing. Also, it is deterministic.

Space of regular vintual valuations

Theorem: Suppose every agent's valuation is negular. Then, for every type profile t,

otherwise,
$$f_i(t) = \begin{cases} 1 & \text{if } w_i(t_i) > w_j(t_j) & \text{if } t \neq 0 \end{cases}$$

ties are broken arbitrarily. Payments are given by

$$p_{i}(t) = \begin{cases} 0 & \text{if } f_{i}(t) = 0 \\ \max \{ w_{i}^{-1}(0), K_{i}^{*}(t_{i}) \} \text{ if } f_{i}(t) = 1 \end{cases}$$

then (f, t) is an optimal mechanism.

$$W_{i}^{-1}(0)$$
: The value of t_{i} where $W_{i}(t_{i}) = 0$.
 $K_{i}^{*}(t_{i}) = \inf \{ t_{i} : f_{i}(t_{i}, t_{i}) = 1 \}$

The minimum value of ti where i begins to be the winner

Example 1: Two buyers:
$$T_1 = [0,12]$$
, $T_2 = [0,18]$
Uniform, independent prior.

$$W_1(t_1) = t_1 - \frac{1 - G_1(t_1)}{g_1(t_1)} = t_1 - \frac{1 - \frac{t_1}{12}}{\frac{1}{12}} = 2t_1 - 12$$

$$W_2(t_2) = 2t_2 - 18$$
 t_1
 t_2
action
 t_1
 t_2
 t_3
 t_4
 t_5
 t_6
 t_7
 t_8
 t_8
 t_8
 t_8
 t_8
 t_8
 t_8
 t_8
 t_9
 t_9

Example 2: Symmetric bidders: The valuations are drawn from the same distribution, $g_i = g$, $T_i = T$, $\forall i \in N$ virtual valuation: $W_i = W$.

$$W(t_i) > W(t_j) \text{ iff } t_i > t_j$$

the object goes to the highest bidder. Not sold if $\bar{w}(0) > t_i$ $\forall i \in \mathbb{N}$. Payment $i = \max_i \{ \bar{w}'(0), \max_{i \neq i} t_j \}$

Second price auction with a reserve price, and is efficient when the object is Ald.

Unsold is inefficient, also in The negion of The plane.