# Κρυπτοσυστήματα Διακριτού Λογαρίθμου

Παναγιώτης Γροντάς - Άρης Παγουρτζής

ΕΜΠ - Κρυπτογραφία (2017-2018)

21/11/2017

DLP 1/62

# Περιεχόμενα

- Διακριτός Λογάριθμος: Προβλήματα και Αλγόριθμοι
- Το κρυπτοσύστημα ElGamal
- Το κρυπτοσύστημα Cramer Shoup
- Σχήματα Δέσμευσης με βάση το DLP
- Ελλειπτικές Καμπύλες

DLP 2/62

# Προβλήματα Διακριτού Λογαρίθμου Ι

#### DLP - Το πρόβλημα του Διακριτού Λογαρίθμου

Δίνεται μια κυκλική ομάδα  $\mathbb{G}=\langle g \rangle$  τάξης q και ένα τυχαίο στοιχείο  $y \in \mathbb{G}$ 

Να υπολογιστεί  $x\in\mathbb{Z}_q$  ώστε  $g^x=y$  δηλ. το  $log_g y\in\mathbb{Z}_q$ 

#### CDHP - Το υπολογιστικό πρόβλημα Diffie Hellman

Δίνεται μια κυκλική ομάδα  $\mathbb{G}=\langle g \rangle$ , δύο στοιχεία  $y_1=g^{x_1},y_2=g^{x_2}$  Να υπολογιστεί το  $g^{x_1\cdot x_2}$ 

DLP 3/62

# Προβλήματα Διακριτού Λογαρίθμου ΙΙ

#### DDHP - Το πρόβλημα απόφασης Diffie Hellman

Δίνεται μια κυκλική ομάδα  $\mathbb{G}=\langle g \rangle$ , δύο στοιχεία  $y_1=g^{x_1},y_2=g^{x_2}$  και κάποιο  $y\in\mathbb{G}$  Να εξεταστεί αν  $y=g^{x_1\cdot x_2}$ 

ή ισοδύναμα

#### DDHP - Το πρόβλημα απόφασης Diffie Hellman

Δίνεται μια κυκλική ομάδα  $\mathbb{G}=\langle g \rangle$ , δύο στοιχεία  $y_1=g^{x_1},y_2=g^{x_2}$  και κάποιο  $y\in\mathbb{G}$  Μπορούμε να ξεχωρίσουμε τις τριάδες  $(g^{x_1},g^{x_2},g^{x_1x_2})$  και  $(g^{x_1},g^{x_2},y)$ ;

DLP 4/62

# Σχέσεις Προβλημάτων

#### $CDHP \leq DLP$

Αν μπορούμε να λύσουμε το DLP, τότε μπορούμε να υπολογίζουμε τα  $x_1, x_2$  από τα  $y_1, y_2$  και στην συνέχεια το  $g^{x_1 \cdot x_2}$ 

#### $DDHP \leq CDHP$

Αν μπορούμε να λύσουμε το CDHP, υπολογίζουμε το  $g^{x_1 \cdot x_2}$  και ελέγχουμε ισότητα με το y

 $\Delta$ ηλαδή:  $DDHP \leq CDHP \leq DLP$ 

DLP 5 / 62

# Επιλογή Ομάδας

- Καθορίζει τη δυσκολία του προβλήματος
- Δύο επιλογές:
  - lacksquare  $(\mathbb{Z}_p^*,\cdot)$  με p πρώτο (σε υποομάδα)
  - $\bullet$   $(\mathcal{E}(\mathbb{F}_p),+)$
- Διαφορετική πράξη, παρά το όνομα
- Διαφορετική τιμή για παράμετρο ασφάλειας

DLP 6/62

# Αλγόριθμοι DLP

### Brute Force

Για ομάδα  $\mathbb{G}=\langle g \rangle$  τάξης  $q \lambda$  bits

Δοκιμή όλων των  $x\in\mathbb{Z}_q$  μέχρι να βρεθεί τέτοιο ώστε  $g^x=y$ 

Πολυπλοκότητα  $O(2^{\lambda})$ 

Γενικευμένη μέθοδος - δεν εξαρτάται απο χαρακτηριστικά ομάδας

DLP 7/62

# Αλγόριθμος Baby step - Giant Step (Shanks)

Αλγόριθμος Meet-In-The Middle

- Ισχύει  $x = ak + b, k \in \mathbb{Z}, \forall x \in \mathbb{Z}$
- lacktriangle Για να μην χρειαστεί εύρεση αντιστρόφου: x=ak-b
- $y = g^{ak} \cdot g^{-b} \Rightarrow yg^b = g^{ak}$
- lacktriangle Θα υπολογίζουμε  $yg^b$  και  $g^{ak}$  μέχρι να συναντηθούν
  - $oxed{1}$  Ξεκινάμε στη 'μέση':  $k=\lfloor \sqrt{q} 
    floor$
  - **2 Giant steps μέγεθος** k: Υπολογίζουμε  $g^{ak}$ ,  $a \in \{0, \cdots, \lfloor q/k \rfloor\}$  και αποθηκεύουμε σε πίνακα
  - **3 Baby steps μέγεθος** 1: Υπολογίζουμε  $yg^b, b \in \{0, \cdots, \lfloor \sqrt{q} \rfloor\}$  και αναζητούμε στον πίνακα του Βημ. 2

8/62

4 Όταν βρεθεί: x = ak - b

Πολυπλοκότητα χώρου και χρόνου:  $O(2^{\frac{\lambda}{2}})$  Μείωση χώρου με αλγόριθμους Pollard  $(\rho, \lambda)$ 

# Παράδειγμα Baby step - Giant Step

### Θέλουμε το $2^x = 17 \pmod{29}$ στο $\mathbb{Z}_{29}^* = \langle 2 \rangle$

$$|\sqrt{29}| = 5$$

- $a \in \{0 \cdots 5\}$
- $2^{0.5} = 1 \pmod{29}$
- $2^{1 \cdot 5} = 3 \pmod{29}$
- $2^{2\cdot 5} = 9 \pmod{29}$
- $2^{3\cdot 5} = 27 \pmod{29}$
- $2^{4\cdot 5} = 23 \pmod{29}$
- $2^{5 \cdot 5} = 11 \pmod{29}$

- $b \in \{0 \cdots 5\}$
- $17 \cdot 2^0 = 17 \pmod{29}$
- $17 \cdot 2^1 = 5 \pmod{29}$
- $17 \cdot 2^2 = 10 \pmod{29}$
- $17 \cdot 2^3 = 20 \pmod{29}$
- $17 \cdot 2^4 = 11 \pmod{29}$

Άρα 
$$x = 5 \cdot 5 - 4 = 21$$
  
Πράγματι:  $2^{21} = 17 \pmod{29}$ 

DLP 9/62

# Αλγόριθμος Pohlig-Hellman - Ιδέα

#### Παρατήρηση

Η δυσκολία του DLP σε μια ομάδα  $\mathbb{G}$  εξαρτάται από τη δυσκολία του στις διάφορες υποομάδες της.

#### Συγκεκριμένα

Παραγοντοποίηση της τάξης (πχ. στο  $\mathbb{Z}_p^*$ :  $p-1=\prod_{i=1}^m p_i^{e_i}$  με  $p_i$  πρώτο)

Επίλυση σε κάθε υποομάδα και συνδυασμός με CRT

#### Smooth Number

Μπορεί να παραγοντοποιηθεί σε μικρούς πρώτους - Αν ισχύει για την τάξη επιτυχύνει τον αλγόριθμο

DLP 10/62

# Αλγόριθμος Pohlig-Hellman - Βήματα Ι

■ Για κάθε p<sub>i</sub> γράφουμε

$$x = a_0 + a_1 p_i + \dots + a_{e_i-1} p_i^{e_i-1} \pmod{p_i^{e_i}}$$

με

$$a_j \in \{0, \cdots, p_i - 1\}$$

■ Πχ. αν παράγοντας του p-1 είναι το 4:

$$x = a_0 + a_1 * 2 \pmod{4}$$

Με αντικατάσταση του x έχουμε:

$$y^{\frac{p-1}{p_i}} = g^{x^{\frac{p-1}{p_i}}} = g^{(a_0 + a_1 p_i + \dots + a_{e_i - 1} p_i^{e_i - 1}) \frac{p-1}{p_i}} = g^{(a_0 + Kp_i) \frac{p-1}{p_i}} = g^{a_0 \frac{p-1}{p_i}} \pmod{p}$$

■ Υπολογισμός *a*<sub>0</sub> (με αλγόριθμο Shanks)

DLP 11/62

# Αλγόριθμος Pohlig-Hellman - Βήματα ΙΙ

- lacktriangle Για υπολογισμό  $a_1,\cdots$  δημιουργούμε ακολουθία  $y_j$  με  $y_0=y$

$$y_j = y_{j-1} \cdot g^{-(a_0 + a_1 p_i + \cdot + a_{j-1} p_i^{j-1})} \pmod{p}$$

■ Γενικεύοντας έχουμε :

$$y_{j}^{\frac{p-1}{p_{i}^{j+1}}} = g^{a_{j}\frac{p-1}{p_{i}}}$$

υπολογίζουμε το  $a_j$  με αλγόριθμο Shanks

■ Υπολογισμός για κάθε p<sub>i</sub> :

$$a_0, y_1, a_1, y_2, \cdots a_{e_i-1}$$

Συνδυασμός λύσεων με CRT

# Παράδειγμα Pohlig-Hellman I

# Θέλουμε το $2^{\mathsf{x}} = \overline{17 \pmod{29}}$ στο $\mathbb{Z}_{29}^* = \overline{\langle 2 \rangle}$

$$28 = 2^2 7$$

$$x_2 = a_0 + 2a_1 \pmod{4} \text{ kal } x_7 = a_0 \pmod{7}$$

#### Υπολογισμός $a_0$ για το $x_2$

$$y^{\frac{p-1}{2}} = g^{a_0 \frac{p-1}{2}} \Rightarrow 17^{14} = 2^{14a_0} \Rightarrow 2^{14a_0} = 28 = -1 \pmod{29}$$

$$Aρα a_0 = 1$$

#### Υπολογισμός $y_1$ για το $x_2$

$$y_1 = yg^{-a_0} = 17 \cdot 2^{-1} = 17 \cdot 15 = 23 \pmod{29}$$

DLP 13/62

# Παράδειγμα Pohlig-Hellman II

### $\Upsilon$ πολογισμός $a_1$ για το $x_2$

$$y_1^{\frac{p-1}{4}} = g^{a_1 \frac{p-1}{2}} \Rightarrow 23^7 = 2^{14a_1} \Rightarrow 2^{14a_1} = 1 \pmod{29}$$

$$Άρα a_1 = 0$$

Άρα 
$$x_2 = 1 + 0 \pmod{4}$$

#### Υπολογισμός $a_0$ για το $x_7$

$$y^{\frac{p-1}{7}} = g^{a_0 \frac{p-1}{7}} \Rightarrow 17^4 = 2^{4a_0} \Rightarrow 2^{4a_0} = 1 \pmod{29}$$

$$Άρα a_0 = 0$$

$$Αρα x_7 = 0 \pmod{7}$$

**CRT**: 
$$x = 21$$

DLP 14/62

### Δυσκολία DDHP I

#### Θεώρημα

Το DDHP δεν είναι δύσκολο στην  $\mathbb{Z}_p^*$ 

Μπορεί να κατασκευαστεί αποδοτικός αλγόριθμος διαχωρισμού τριάδας DH  $g^a,g^b,g^{ab}$  από μια τυχαία τριάδα  $g^a,g^b,g^c$ .

Πώς: Χρησιμοποιώντας το σύμβολο Legendre.

#### Το σύμβολο Legendre διαρρέει το DLP parity

Από τον ορισμό:  $(\frac{g^x}{p}) = (g^x)^{\frac{p-1}{2}}$ 

Όμως:  $g^{p-1} = 1 \pmod{p}$ 

Άρα:  $g^{\frac{p-1}{2}} = -1 \pmod{p}$ 

 $\Delta$ ηλαδή:  $\left(\frac{g^x}{p}\right) = (-1)^x$ 

Αν x μονός τότε  $(\frac{g^x}{p}) = -1$   $(g^x \notin QR)$ 

Aν x ζυγός τότε  $(\frac{g^x}{p}) = 1$   $(g^x \in QR)$ 

DLP 15/62

#### Δυσκολία DDHP II

Για τυχαία τριάδα  $Prob[(\frac{g^c}{p})=1]=\frac{1}{2}$  ανεξάρτητο από τα  $(\frac{g^a}{p}),(\frac{g^b}{p})$  Για τριάδα DH:  $Prob[(\frac{g^{ab}}{p})=1]=\frac{3}{4}$ 

#### Ο αλγόριθμος

Υπολόγισε  $(\frac{g^a}{p}), (\frac{g^b}{p}), (\frac{g^c}{p})$ 

 $\mathsf{Aν}\;(\frac{\mathit{g}^{\mathit{c}}}{\mathit{p}})=1$  και  $((\frac{\mathit{g}^{\mathit{s}}}{\mathit{p}})=1$  ή  $(\frac{\mathit{g}^{\mathit{b}}}{\mathit{p}})=1))$  τότε

Επιστροφή "Diffie Hellman"

Αλλιώς

Επιστροφή "Τυχαία"

Πλεονέκτημα:  $\frac{3}{8}$  (γιατί;)

ΜΗ ΑΜΕΛΗΤΕΟ

DLP 16/62

# Επιλογή του $\mathbb{G}$

#### Συνέπειες

 $\Delta$ ουλεύουμε σε μεγάλη υποομάδα του  $\mathbb{Z}_p^*$  με τάξη πρώτο q

#### Για παράδειγμα:

Επιλογή safe prime: p = 2q + 1 με q πρώτο

Δουλεύουμε στην υποομάδα τετραγωνικών υπολοίπων τάξης q

Επιλογή schnorr primes  $p = k \cdot q + 1$  με q πρώτο

Παρ' όλα αυτά: Υποεκθετικοί αλγόριθμοι (index calculus)

#### Μεγέθη

| Symmetric Security | p    | q   |
|--------------------|------|-----|
| 80 bits            | 1024 | 160 |
| 112 bits           | 2048 | 224 |
| 128 bits           | 3072 | 256 |

Εναλλακτικά: Ελλειπτικές καμπύλες

DLP 17/62

# Ορισμός ElGamal

### Δημιουργία Κλειδιών: $KeyGen(1^{\lambda}) = (y = g^{x}, x)$

- lacksquare Επιλογή δύο μεγάλων πρώτων p,q ώστε  $q\mid (p-1)$
- lacksquare  $\lacksquare$  υποομάδα τάξης q του  $\mathbb{Z}_p^*$  γεννήτορας g
- lacksquare Ιδιωτικό κλειδί: τυχαίο  $x\in\mathbb{Z}_q$
- Δημόσιο κλειδί:  $y = g^x \mod p$
- Επιστροφή (y, x)

#### Κρυπτογράφηση

- Επιλογή τυχαίου  $r \in \mathbb{Z}_q$
- $Encrypt_y(r, m) = (g^r \mod p, m \cdot y^r \mod p)$

#### Αποκρυπτογράφηση

■  $Decrypt_x(a,b) = \frac{b}{a^x}$ 

#### Ορθότητα

$$\mathtt{Decrypt}_{\mathsf{X}}(\mathtt{Encrypt}_{\mathsf{y}}(\mathit{r},\mathit{m})) = \frac{\mathit{my}^{\mathit{r}}}{(\mathit{g}^{\mathit{r}})^{\mathsf{X}}} = \mathit{m}$$

DLP To kpuntoovotnuu ElGanal 18/62

# Πρακτικά Θέματα

Πιθανοτική Κρυπτογράφηση: Ένα μήνυμα έχει πολλά πιθανά κρυπτοκείμενα

Message expansion Κρυπτοκείμενο διπλάσιο του μηνύματος

### Επιτάχυνση Κρυπτογράφησης

Κόστος: 2 υψώσεις σε δύναμη - 1 πολλαπλασιασμός Ύψωση σε δύναμη: Δεν εξαρτάται από το μήνυμα (precomputation)

DLP 19/62

# Ασφάλεια Κρυπτογράφησης

### Μυστικότητα ElGamal $\equiv CDHP$

Αντιστοιχία δημοσίων στοιχείων

$$g^{x_1} \equiv g^r$$
 $g^{x_2} \equiv y = g^x$ 
 $g^{x_1 x_2} \equiv y^r$ 

 $EG \leq \mathit{CDHP}$  Υπολογισμός  $g^{x_1x_2} \to \alpha$ ποκρυπτογράφηση (με εύρεση αντιστρόφου)

 $\mathit{CDHP} \leq \mathit{EG}$ αποκρυπτογράφηση  $(\mathit{g}^r, \mathit{b})$  (χωρίς το κλειδί)  $\rightarrow$ υπολογισμός  $\frac{\mathit{b}}{\mathit{m}} \rightarrow$  επίλυση CDFH

DLP To approximate ElGana 20 / 62

### Επανάληψη τυχαιότητας $\rightarrow$ Επίθεση ΚΡΑ

ΚΡΑ: Γνωρίζουμε ζεύγη μηνυμάτων - κρυπτοκειμένου για τα οποία έχει χρησιμοποιηθεί η ίδια τυχαιότητα

#### Επίθεση

$$(c_r, c_1) = \mathtt{Encrypt}_y(r, m_1) = (g^r \bmod p, m_1 \cdot y^r \bmod p)$$
  
 $(c_r, c_2) = \mathtt{Encrypt}_y(r, m_2) = (g^r \bmod p, m_2 \cdot y^r \bmod p)$ 

Αν γνωρίζω το 
$$(m_1,c_1)$$
:  $c_1=m_1\cdot y^r mod p \Rightarrow y^r=c_1\cdot m_1^{-1}$ 

Μπορώ να υπολογίσω το 
$$m_2$$
 ως:  $m_2=rac{c_2}{y'}=rac{c_2}{c_1\cdot m_1^{-1}}$ 

DLP 21/62

# Ασφάλεια σε επιθέσεις CPA Ι

### Θεώρημα

Αν το DDHP είναι δύσκολο, τότε το κρυπτοσύστημα El Gamal διαθέτει ασφάλεια IND-CPA.

#### Απόδειξη:

Έστω ότι το ElGamal δεν διαθέτει ασφάλεια IND-CPA.

Άρα  $\exists$   $\mathcal{A}$  , ο οποίος μπορεί να νικήσει στο παιχνίδι CPA με μη αμελητέα πιθανότητα.

 $Κατασκευή <math>\mathcal{B}$ :

- Είσοδος: τριάδα στοιχείων
- $\blacksquare$  Εσωτερικά: Προσομοίωση του  $\mathcal C$  στο παιχνίδι CPA και χρήση  $\mathcal A$
- Αποτέλεσμα: Ξεχωρίζει DH τριάδα από τυχαία

DLP To Kpuntoovotnuu ElGamal 22/62

# Ασφάλεια σε επιθέσεις CPA ΙΙ

- **E**ίσοδος:  $g^{\alpha}, g^{\beta}, g^{c}$
- lacksquare Στο CPA-GAME δημόσιο κλειδί  $y=g^{lpha}$
- lacksquare Ο  $\mathcal B$  απαντά στις κρυπτογραφήσεις του  $\mathcal A$
- Όταν ο Α προκαλέσει με δύο μηνύματα
  - lacksquare ο  $\mathcal C$  διαλέγει τυχαίο  $\mathit{bit} \in \{0,1\}$ ,
  - κρυπτογραφεί το  $M_b$  με τυχαιότητα το  $g^\beta$  και πολλαπλασιάζει με  $g^c$
  - Τελικά στέλνει το:  $(g^{\beta}, M_b \cdot g^c)$
- lacksquare Ο  $\mathcal A$  επιστρέφει την τιμή του  $\mathit{bit}^*$
- Ο Β εξάγει το bit\*

DLP To appundod on the El Ganal 23 / 62

# Ασφάλεια σε επιθέσεις CPA ΙΙΙ

#### Ανάλυση

- Για τριάδα DH:  $g^c = (g^\alpha)^\beta = y^\beta$
- ο Α θα λάβει ένα έγκυρο κρυπτοκείμενο ElGamal.
- Η πιθανότητα να μαντέψει σωστά είναι τουλάχιστον:  $1/2 + \text{non-negl}(\lambda)$ .
- Για τυχαία τριάδα: ο A θα πρέπει να μαντέψει τυχαία
- Πιθανότητα επιτυχίας:  $\frac{1}{2}$ .
- Τελική πιθανότητα επιτυχίας για  $\mathcal B$  τουλάχιστον non-negl( $\lambda$ )
- Μπορεί να ξεχωρίσει μία DH τριάδα από μία τυχαία με μη αμελητέα πιθανότητα.

DLP 24/62

# Ασφάλεια σε επιθέσεις CPA IV



DLP To reputation of the ElGana 25 / 62

# Ομομορφικές Ιδιότητες Ι

### Πολλαπλασιαστικός Ομομορφισμός

$$\begin{split} \texttt{Encrypt}_{y}(\textit{r}_{1}, \textit{m}_{1}) \cdot \texttt{Encrypt}_{y}(\textit{r}_{2}, \textit{m}_{2}) &= \\ (\textit{g}_{1}^{\textit{r}}, \textit{m}_{1} \textit{y}^{\textit{r}_{1}}) \cdot (\textit{g}_{2}^{\textit{r}}, \textit{m}_{2} \textit{y}^{\textit{r}_{2}}) &= \\ (\textit{g}^{\textit{r}_{1} + \textit{r}_{2}}, (\textit{m}_{1} \cdot \textit{m}_{2}) \cdot \textit{y}^{\textit{r}_{1} + \textit{r}_{2}}) &= \\ \texttt{Encrypt}_{y}(\textit{r}_{1} + \textit{r}_{2}, \textit{m}_{1} \textit{m}_{2}) \end{split}$$

DLP To Kpuntoovotnus ElSama 26 / 62

# Ομομορφικές Ιδιότητες ΙΙ

#### Reencryption

$$\mathtt{Encrypt}_{y}(r_{1},m) \cdot \mathtt{Encrypt}_{y}(r_{2},1) = \\ (g^{r_{1}},my^{r_{1}}) \cdot (g^{r_{2}},y^{r_{1}}) = \\ (g^{r_{1}+r_{2}},my^{r_{1}+r_{2}}) = \mathtt{Encrypt}_{y}(r_{1}+r_{2},m)$$

Αλλαγή της τυχαιότητας - Αλλαγή της μορφής του μηνύματος ...χωρίς γνώση του ιδιωτικού κλειδιού Malleability

DLP 27/62

# Ομομορφικές Ιδιότητες ΙΙΙ

### Προσθετικός Ομομορφισμός - Εκθετικό ElGamal

Κρυπτογράφηση του  $g^m$ Encrypt $_{y}(, r, m) = (g^r, g^m y^r)$ 

$$ext{Encrypt}_{y}(r_{1}, m_{1}) \cdot ext{Encrypt}_{y}(r_{2}, m_{2}) = \ (g_{1}^{r}, g^{m_{1}} y^{r_{1}}) \cdot (g_{2}^{r}, g^{m_{2}} y^{r_{2}}) = \ (g^{r_{1} + r_{2}}, g^{m_{1} + m_{2}} \cdot y^{r_{1} + r_{2}}) = \ ext{Encrypt}_{y}(r_{1} + r_{2}, (m_{1} + m_{2}))$$

Αποκρυπτογράφηση: Λαμβάνουμε το  $g^m$  Επίλυση 'εύκολου' διακριτού λογαρίθμου.

DLP To spurso dompo. E Camal 28 / 62

# Ασφάλεια σε επιθέσεις CCA

#### Το παραδοσιακό ElGamal δεν διαθέτει CCA-security

Έστω ότι ο  $\mathcal{A}$  μπορεί να αποκρυπτογραφήσει μηνύματα επιλογής του, εκτός του c.

- lacksquare Στόχος: Αποκρυπτογράφηση του  $c=(\mathit{G},\mathit{M})=(\mathit{g^r},\mathit{m_by^r})$
- **ν** Κατασκευή  $c'=(G',M')=(G\cdot g^{r'},M\cdot ay^{r'})=(g^{r+r'},a\cdot m_b\cdot y^{r+r'}), \text{ όπου } a$  επιλέγεται από τον  $\mathcal A$
- lacksquare Η αποκρυπτογράφηση του  $M'\left(rac{M'}{G'^{ imes}}
  ight)$  δίνει το  $am_b$  και κατά συνέπεια το  $m_b$
- lacksquare Αν  $m_b=m_0$  επιστρέφει  $b^*=0$  αλλιώς επιστρέφει  $b^*=1$

DLP To appuntood on page El Gama 29 / 62

# ElGamal CCA2: Cramer-Shoup cryptosystem I

- Ronald Cramer, Victor Shoup, Crypto 1998
- Επέκταση του ElGamal
- Χρηση συνάρτησης σύνοψης Η με collision resistance (δεν είναι απαραίτητη)
- Αν ισχυει η υπόθεση DDH, τότε παρέχει IND-CCA2

DLP 30 / 62

# ElGamal CCA2: Cramer-Shoup cryptosystem II

#### Δημιουργία Κλειδιών

- **Ε**πιλογή πρώτων p, q με p = 2q + 1
- lacksquare G ειναι η υποομάδα ταξης q στο  $\mathbb{Z}_p^*$
- $\blacksquare$  Επιλογή random generators  $g_1, g_2$
- lacksquare Επιλογή τυχαίων στοιχείων  $x_1, x_2, y_1, y_2, z \in \mathbb{Z}_q$
- Υπολογισμός
  - $c = g_1^{x_1} g_2^{x_2}$
  - $d = g_1^{y_1} g_2^{y_2}$
  - $b=g_1^z$
- Δημόσιο Κλειδί: (c, d, h)
- Μυστικό Κλειδί: (x<sub>1</sub>, x<sub>2</sub>, y<sub>1</sub>, y<sub>2</sub>, z)

DLP Gamer Shoup couptosystem 31 / 62

# ElGamal CCA2: Cramer-Shoup cryptosystem III

#### Κρυπτογράφηση

- Κωδικοποίηση μηνύματος *m* στο *G*
- lacksquare Επιλογή τυχαίου  $r\in\mathbb{Z}_q$
- Υπολογισμός
  - $u_1 = g_1^r, u_2 = g_2^r$
  - $e = mh^r$
  - $\bullet \ \alpha = \mathcal{H} \ (u_1||u_2||e)$
  - $\mathbf{v} = \mathbf{c}^{\mathbf{r}} \mathbf{d}^{\mathbf{r}\alpha}$
- Κρυπτογράφημα: (u<sub>1</sub>, u<sub>2</sub>, e, v)

DLP Gener Show compassion 32 / 62

# ElGamal CCA2: Cramer-Shoup cryptosystem IV

#### Αποκρυπτογράφηση

- lacktriangle Υπολογισμός  $lpha=\mathcal{H}\;\left(u_1||u_2||e
  ight)$
- Έλεγχος αν  $u_1^{x_1}u_2^{x_2}(u_1^{y_1}u_2^{y_2})^{\alpha}=v$ . Σε περίπτωση αποτυχίας έξοδος χωρίς αποκρυπτογράφηση
- lacksquare Σε περιπτωση επιτυχίας υπολογισμός  $m=rac{e}{u_1^z}$

DLP Cramer Shoup cryptosystem 33 / 62

# ElGamal CCA2: Cramer-Shoup cryptosystem V

#### Ορθότητα

$$\frac{e}{u_1^{\mathsf{Z}}} = \frac{mh^{\mathsf{r}}}{u_1^{\mathsf{Z}}} = m \cdot \frac{g_1^{\mathsf{Z}\mathsf{r}}}{g_1^{\mathsf{r}\mathsf{Z}}} = m$$

- n, z αντιστοιχούν σε δημόσιο ιδιωτικό κλειδί ElGamal
- u<sub>1</sub>, e αντιστοιχούν στο κρυπτογράφημα του ElGamal

#### Παρατηρήσεις

- u<sub>2</sub>, ν λειτουργούν ως έλεγχος ακεραιότητας, ώστε να μπορεί να αποφευχθεί το malleability
- Διπλάσια πολυπλοκότητα από ElGamal τόσο σε μέγεθος κρυπτοκειμένου, όσο και σε υπολογιστικές απαιτήσεις

DLP 34/62

# **DLP-based Commitment Schemes**

#### Coin Flipping over the telephone

- Η Alice και ο Bob διαφωνούν (τηλεφωνικά) για το πού θα πάνε
- Αποφασίζουν να ρίξουν δύο νομίσματα (απομακρυσμένα)
- Ίδιο αποτέλεσμα: διαλέγει η Alice
- Διαφορετικό Αποτέλεσμα: διαλέγει ο Bob
- Προβλήματα;

DLP 35 / 62

#### **DLP-based Commitment Schemes**

### Λύση: Commitment Schemes

- Ιδιότητες
  - Hiding Προστατεύει αποστολέα καθώς δεν μπορεί να διαρρεύσει η τιμή του
  - Binding Προστατεύει παραλήπτη καθώς ο αποστολέας δεν μπορεί να αλλάξει την τιμή του εκ των υστέρων
- Χρήση randomisation για προστασία από brute-force επιθέσεις

### Pedersen commitment

- Επιλογή ομάδας με δύσκολο DLP από TTP
  - lacktriangle Επιλογή πρώτου  $m{q}$  ώστε  $m{p}=2m{q}+1$  πρώτος
  - lacksquare  $\mathbb{G}=\langle g
    angle$  υπομάδα τάξης q του  $\mathbb{Z}_p^*$
  - $\blacksquare$  Επιλογή  $x \in \mathbb{Z}_q$  και  $h = g^x$
  - lacksquare Δημοσιοποίηση  $g, \mathbb{G}, p, q, h$
- **Δ**έσμευση:  $c = commit(m, r) = g^m \cdot h^r \mod p$
- Αποκάλυψη: Αποστολή m, r
- Επαλήθευση:  $c = g^m \cdot h^r$

DLP 37/62

# Ιδιότητες Ι

### Information Theoretically Hiding

$$c = g^m \cdot h^r \mod p = g^{m+xr} \mod p$$

Ακόμα και ένας παντοδύναμος αντίπαλος να μπορεί να λύσει το DLP θα έχει μία εξίσωση της μορφής

$$d = m + xr \pmod{q}$$

(2 άγνωστοι <math>m, r - 1 εξίσωση)

DLP DLP based Communion Schemes 38 / 62

# Ιδιότητες ΙΙ

#### Computationally Binding αν το DLP είναι δύσκολο

Έστω c = commit(m, r) = commit(m', r') με  $m \neq m'$ 

$$g^{m} \cdot h^{r} = g^{m'} \cdot h^{r'} \Rightarrow$$

$$g^{m+xr} = g^{m'+xr'} \Rightarrow$$

$$m + xr = m' + xr' \pmod{q} \Rightarrow$$

$$x = \frac{m' - m}{r - r'}$$

ΑΤΟΠΟ

DLP 39/62

# Ελλειπτικές καμπύλες

#### Γενικά

- Πλούσιο σε ιστορία μαθηματικό αντικείμενο (200 έτη)
- Κρυπτογραφία: 80s
- Βασίζονται στο πρόβλημα DLP
  - Αντικατάσταση του  $\mathbb{Z}_p$  με σημεία τους
  - Μόνο γενικευμένοι αλγόριθμοι DLP  $O(2^{\frac{\lambda}{2}})$  όχι υποεκθετικοί
  - Ίδια επίπεδα ασφάλειας με μικρότερη παράμετρο ασφάλειας και καλύτερη απόδοση

RSA EC 1024 160

2048 224

3072 256

# Γενική μορφή

Έστω  $\mathbb{F}$  ένα σώμα.

### Ορισμός $\mathcal{E}(\mathbb{F})$

Μια ελλειπτική καμπύλη  $\mathcal E$  πάνω από το  $\mathbb F$  είναι το σύνολο των σημείων  $(x,y)\in\mathbb{F}$ , που ικανοποιούν την εξίσωση Weierstrass

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
  
 $a_1, a_2, a_3, a_4, a_5, a_6 \in \mathbb{F}$ 

και ένα στοιχείο Ο, - σημείο στο άπειρο

#### Πρακτικά

$$y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}$ 

DLP 41 / 62

# Ελλειπτικές καμπύλες στο $\mathbb R$ Ι





$$v^2 - v^3 - 1$$



$$y^2 = x^3 - x + \frac{1}{2}$$



$$y^2 = x^3 + 1$$



$$y^2 = x^3 - \frac{3}{2}x$$

# Ελλειπτικές καμπύλες στο $\mathbb{R}$ $\Pi$

#### Παρατηρήσεις:

- Συμμετρία ως προς άξονα x
- Συμπίεση σημείου (x,0) ή (x,1) για πάνω ή κάτω από τον άξονα των x

Προς αποφυγή Singular καμπύλες: Πολλαπλές ρίζες, σημεία τομής



Πρέπει  $4a^3 + 27b^2 \neq 0$ 

DLP Externatives requirély se 43 / 62

# Αντίθετο Σημείου

P σημείο στην  $\mathcal{E}(\mathbb{R})$ .

### Το αντίθετο σημείο -P

- 1 Αν  $P = \mathcal{O}$ , τότε  $-P = \mathcal{O}$
- 2 Αλλιώς αν P=(x,y) τότε -P=(x,-y) (ανήκει στην  $\mathcal E$  λόγω συμμετρίας)

# (Γεωμετρική) Πρόσθεση Σημείων Ι

#### Το άθροισμα P+Q

Aν 
$$P = \mathcal{O}$$
, τότε  $\mathcal{O} + Q = Q$   
Aν  $Q = -P$ , τότε  $P + Q = \mathcal{O}$ .



Το σημείο Ο. υπάρχει σε κάθε κατακόρυφη

DLP Exhaustic sound/sec 45 / 62

# (Γεωμετρική) Πρόσθεση Σημείων ΙΙ

### Aν $P \neq Q$ τότε:

- Θεωρούμε την PQ
- Bρίσκουμε το σημείο τομής R με την  $\mathcal{E}$ .
- Βρίσκουμε το αντίθετο



DLP

# (Γεωμετρική) Πρόσθεση Σημείων ΙΙΙ

Aν P = Q τότε:

- Θεωρούμε την εφαπτομένη
   στο P
- Bρίσκουμε το σημείο τομής R με την  $\mathcal{E}$ .
- Βρίσκουμε το αντίθετο



Αλγεβρική αναπαράσταση: Τριτοβάθμιες εξισώσεις με συντεταγμένες

DLP Ελλα πεικές καμπόλες 47 / 62

# Ομάδα Σημείων Ελλειπτικής καμπύλης

Τα σημεία μιας ελλειπτικής καμπύλης αποτελούν αβελιανή ομάδα ως προς την πρόσθεση

- lacktriangle ουδέτερο στοιχείο  $\mathcal O$
- lacksquare αντίθετο στοιχείο -P
- πρόσθεση προσεταιριστική και αντιμεταθετική

DLP EXAmple (composition 48 / 62

# Πολλαπλασιασμός σημείου με ακέραιο $nP = P + P + \cdots + P$



DLP E) λε παικές κομπόλες 49 / 62

### Double and add

### Υπολογισμός ηΡ

Απαιτούνται n-1 προσθέσεις

Λύση: Square and multiply - Double and add

$$17P = P + 16P$$
$$2P = P + P$$
$$4P = 2P + 2P$$
$$8P = 4P + 4P$$
$$16P = 8P + 8P$$

# Ελλειπτικές καμπύλες πάνω από το $\mathbb{F}_p$

Ορισμός  $\mathcal{E}(\mathbb{F}_p)$ 

$$\mathcal{E} = \mathcal{O} \cup \{ y^2 = x^3 + ax + b \pmod{p},$$
  
$$(x, y) \in \mathbb{F}_p^2, (a, b) \in \mathbb{F}_p^2 : 4a^3 + 27b^2 \neq 0 \pmod{p} \}$$

Παράδειγμα:  $y^2 = x^3 + 1 \pmod{997}$ 



από Discrete Elliptic Curve Plotter

DLP

51 / 62

# Η ομάδα των σημείων $\mathcal{E}(\mathbb{F}_p)$ Ι

Εύρεση τάξης ομάδας

#### Εκθετικός αλγόριθμος

Δοκιμές όλων των  $x \in \{0, \cdots, p-1\}$ 

Έλεγχος ποια ικανοποιούν την εξίσωση της καμπύλης

#### Θ. Hasse

$$p+1-2\sqrt{p} \le |\mathcal{E}(\mathbb{F}_p)| \le p+1+2\sqrt{p}$$

Υπολογισμός: αλγόριθμος Schoof  $\in$  P με βελτιώσεις Elkiens, Atkin (SEA)

DLP 52/62

# Η ομάδα των σημείων $\mathcal{E}(\mathbb{F}_p)$ ΙΙ

### Κυκλικές υποομάδες

Κάθε σημείο μιας καμπύλης  $\mathcal{E}(\mathbb{F}_p)$  παράγει μια κυκλική υποομάδα

### Υπολογισμός τάξης υποομάδας $\mathcal{E}(\mathbb{F}_p)$

Θεώρημα Lagrange:Η τάξη κάθε υποομάδας διαιρεί την τάξη της ομάδας

Τάξη υποομάδας με σημείο βάσης (γεννήτορα) Ρ

- Εύρεση τάξη ομάδας με αλγόριθμο Schoof
- Εύρεση των διαιρετών της τάξης, d
- Για σημείο βάσης P εύρεση  $min\{d: dP = \mathcal{O}\}$

DLP 53/62

# Η ομάδα των σημείων $\mathcal{E}(\mathbb{F}_p)$ ΙΙΙ

#### Εύρεση σημείων βάσης

Θέλουμε γεννήτορες μεγάλων υποομάδων

- lacksquare Ευρεση μεγάλου πρώτου  $q\mid |\mathcal{E}|$
- lacksquare Υπολογισμός  $h=rac{|\mathcal{E}|}{q}$
- Επιλογή τυχαίου σημείου P
- $\blacksquare$  Υπολογισμός G = hP
- **A**  $\mathbf{G} = \mathcal{O}$  επανάληψη

DLP 54/62

# Πρόβλημα ECDLP

#### $\Delta$ ίνονται:

- Μία ελλειπτική καμπύλη  $\mathcal E$  ορισμένη πάνω από το  $\mathbb F_p$   $(p,a,b,\#\mathcal E)$
- Μία μεγάλη υποομάδα της με τάξη q
- ένα σημείο βάσης G και
- ένα σημείο Υ.

**Ζητείται**: Να βρεθεί, αν υπάρχει, ακέραιος x τέτοιος ώστε xG = Y.

#### Εικασία

Το πρόβλημα ECDLP είναι υπολογιστικά απρόσιτο (όχι σε κάθε καμπύλη)

DLP 55 / 62

# Ανταλλαγή Κλειδιού ECDH I

#### Στόχοι

- Κατασκευή κοινού κλειδιού πάνω από δημόσιο κανάλι επικοινωνίας
- Σε ΕC: Το κοινό κλειδί είναι σημείο της καμπύλης
- Δημόσια επικοινωνία και συμφωνία σε σημείο P μιας ελλειπτικής καμπύλης  $\mathcal{E}$

Δημόσια Διαθέσιμες Παράμετροι:  $(p, a, b, \#\mathcal{E}, q, G)$ 

DLP Education to the property of the property

# Ανταλλαγή Κλειδιού ECDH II

#### Πρωτόκολλο

- lacksquare Η Alice επιλέγει έναν ακέραιο  $a\in\{1,\cdots,q-1\}$
- lacktriangle Υπολογίζει το  $aG \in \mathcal{E}$  και το δημοσιοποιεί.
- $\blacksquare$  Ο Bob επιλέγει έναν ακέραιο  $b \in \{1, \cdots, q-1\}$  και δημοσιοποιεί το  $bG \in \mathcal{E}$
- Το δημόσιο κλειδί που θα χρησιμοποιούν στη συνέχεια είναι το  $P = a(bG) = b(aG) \in \mathcal{E}$

DLP 57/62

# Κρυπτογραφία Δημοσίου Κλειδιού

#### Παραλλαγή Κρυπτοσυστήματος ElGamal

#### Δημιουργία κλειδιών

- lacktriangle Δημόσια Διαθέσιμες Παράμετροι:  $(p,a,b,\#\mathcal{E},q,\mathit{G})$
- lacktriangle Ιδιωτικό κλειδί: Ένας τυχαίος ακέραιος  $x \in \{1, \cdots, q-1\}$
- lacksquare Δημόσιο κλειδί: Το σημείο  $Y=xG\in\mathcal{E}$

#### Κρυπτογράφηση

- Κωδικοποίηση μηνύματος ως σημείο  $P_m$  της  $\mathcal E$
- lacksquare Επιλέγεται ένας τυχαίος ακέραιος  $k \in \{1, \cdots, q-1\}$
- Κρυπτογράφημα: Encrypt $(Y, P_m) = (kG, P_m + kY)$

#### Αποκρυπτογράφηση

■ Υπολογισμός

$$P_m + kY - x(kG) = P_m$$

DLP 58 / 62

### Κωδικοποίηση μηνύματος σε σημείο

- Hashed Elgamal
  - 1ος τρόπος
    - **Σ** Χρήση συνάρτησης  $\mathcal{H}: \mathcal{E} \Rightarrow \mathcal{M}$
    - Κρυπτογράφηση: Encrypt $(Y, P_m) = (kG, m \oplus \mathcal{H}(kY))$
  - 2ος τρόπος
    - Επιλογή τυχαίου α και αντικατάσταση των bits χαμηλής τάξης του με το m
    - Επιλογή ενός από τα δύο πιθανά σημεία της καμπύλης

DLP 59/62

# Πρότυπες καμπύλες

#### Πρότυπο

15 ελλειπτικές καμπύλες. Για παράδειγμα:

- NIST P-256  $y^2=x^3-3x+41$  058 363 725 152 142 129 326 129 780 047 268 409 114 441 015 993 725 554 835 256 314 039 467 401 291  $\operatorname{mod}(2^{256}-2^{224}+2^{192}+2^{96}-1)$  Χρήση στην γεννήτρια τυχαιότητας Dual\_EC\_DRBG.
- NIST P-384  $y^2 = x^3 3x + 27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575<math>\mod(2^{384} 2^{128} 2^{96} + 2^{32} 1)$

#### Φόβοι για υπονόμευση

Εναλλακτικά:

**Secp256k1** (OpenSSL, Bitcoin)  $y^2 = x^3 + 0x + 7 \mod (2^{256} - 2^{32} - 977)$ **Curve25519** (OpenSSH)  $y^2 = x^3 + 486662 \cdot x^2 + x \mod (2^{255} - 19)$ 

DLP 60/62

# Επιλογή Καμπύλης

#### Το ECDLP δεν είναι δύσκολο σε όλες τις καμπύλες

Δίνεται μια καμπύλη  $(p, a, b, \#\mathcal{E}, q, G)$ 

Πρόβλημα: Είναι ασφαλής (;)

### Επαληθευσιμότητα

- Επιλογή τυχαίου αριθμού s
- $\blacksquare$  Υπολογισμός  $h = \mathcal{H}(s)$
- Παραγωγή των a, b από το h
- Επαληθευσιμο, αλλιώς a, b από αντιστροφή της σύνοψης

Αλλά: Πρέπει το s να είναι πραγματικά τυχαίο!

#### Nothing up my sleeve

Το s προέρχεται από ψηφία του  $\pi$ , e,τριγωνομετρικών αριθμών

DLP 61/62

# Βιβλιογραφία Ι

- St. Zachos and Aris Pagourtzis. Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία.
   Πανεπιστημιακές Σημειώσεις
- Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, 2007
- Nigel Smart. Introduction to cryptography
- Paar, Christof, and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science-Business Media, 2009.
- Kiayias, Aggelos Cryptography primitives and protocols, UoA, 2015
- Dan Boneh, Introduction to cryptography, online course
- Neal Koblitz and Alfred J. Menezes, A riddle wrapped in an enigma
- Jeremy Kun Introducing Elliptic Curves
- Andrea Corbellini Elliptic Curve Cryptography: a gentle introduction
- Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO '91, pages 129–140, 1991
- Victor Shoup Why chosen ciphertext security matters, 1998
- DR Stinson The Pohlig Hellman Algorithm

DLP 62/62