Prova Totale di **Ottimizzazione Combinatoria** 24 Settembre 2008

Cognome	
Nome	
Matricola	

Domanda 1

Descrivere un algoritmo per il calcolo della soluzione del Knapsack continuo

$$max\{\sum_{j=1,...n} c_j x_j : \sum_{j=1,...n} a_j x_j \le b, \ 0 \le x_j \le 1, \ j=1,...,n\}$$

e dimostrarne la correttezza.

Domanda 2

Disegnare due grafi $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ tali che

- 1. $9 \le |V_1| = |V_2|$;
- 2. $\mu(G_1) = \tau(G_1)$;
- 3. $\mu(G_2) = \alpha(G_1) < \tau(G_2)$.

Esercizio 1

Dato il seguente problema di Knapsack 0-1

$$\max 20x_1 + 8x_2 + 30x_3 + 22x_4 6x_1 + 4x_2 + 5x_3 + 6x_4 \le 16 x \in \{0, 1\}^4$$

descrivere l'algoritmo di Branch & Bound e risolvere il problema con tale algoritmo.

Esercizio 2

Dato il grafo in figura G, a partire dal matching $M = \{23, 48, 67, 910\}$ determinare il massimo matching e il minimo vertex cover su G. Spiegare nel dettaglio i passi degli algoritmi utilizzati.

Cognome	
Nome	
Matricola	

Esercizio 3

Un'azienda deve pianificare gli investimenti per il prossimo anno. Sono stati selezionati i seguenti investimenti (le cifre sono espresse in milioni di Euro)

I_1 :	Redditività: 10	Cash Flow = $\{+12, +6, -5, -13\}$
I_2 :	Redditività: 8	Cash Flow = $\{-12, -11, +5, +7\}$
I_3 :	Redditività: 16	Cash Flow = $\{-3, -4, -6, -2\}$
I_4 :	Redditività: 9	Cash Flow = $\{-8, -11, -12, -21\}$
I ₅ :	Redditività: 4	Cash Flow = $\{+7, +5, -2, -5\}$
I_6 :	Redditività: 7	Cash Flow = $\{-3, -7, -9, -10\}$

Sapendo che:

- a) Il budget trimestrale a disposizione dell'azienda è di $B = \{20, 23, 12, 22\}$ milioni di euro per trimestre.
- b) L'investimento I5 può essere attivato solo se è stato attivato l'investimento I4.
- c) Al più uno tra gli investimenti I2, I3, I6 può essere attivato.
- 1. Formulare come PL-{0,1} il problema di massimizzare la redditività rispettando il vincolo sul budget trimestrale.
- 2. Sapendo che la soluzione ottima del rilassamento lineare del problema al punto 1. è $x_{PL}^* = \{1; 0; 1; 0.428; 0.428; 0\}$, rafforzare la formulazione con l'aggiunta di una disequazione valida calcolata rispetto al vincolo sul budget del terzo trimestre (B(3) = 12) oppure concludere che non esiste una disequazione valida violata da x_{PL}^* .

N.B.: Risolvere il problema di separazione tramite l'algoritmo di Programmazione Dinamica.