

IS-NEAR: IMPLICIT SEMANTIC NEURAL ENGINE AND MULTI-SENSOR DATA RENDERING WITH 3D GLOBAL FEATURE

{ ¹Tiecheng Sun, ^{2,3}Wei Zhang, ¹Xingliang Dong, ¹Tao Lin}

¹Huawei 2012 Laboratories ²UNIVERSITY OF STUTTGART, ³Huawei Munich Research Center

Universität Stuttgart

IMPLICIT DATA ENGINE

The contributions of this paper:

- IS-NEAR is the first to associate all independent NeRF rays with 3D global features, which improves the geometry, color, semantics and labeling efficiency.
- We customize the back-propagation to eliminate the differences between geometric and semantic inferences.
- The carefully loss and network design makes a trade-off among efficiency, semantics, color and geometry, superior to the SOTA methods.
- The engine can be applied to indoor, outdoor and objects semantic labeling, texture rerendering, and robot simulation.

3D GLOBAL FEATURES

The point-to-surface representation is expressed as:

$$d = \boldsymbol{\pi}^T \cdot \boldsymbol{X},\tag{1}$$

where π is the coefficients vector of the quadratic terms \boldsymbol{X} , namely the global feature, \boldsymbol{X} is expressed as:

$$\mathbf{X} = (x^2, y^2, z^2, xy, xz, yz, x, y, z),$$
 (2)

x, y, z is the sampling points on each ray.

$$\boldsymbol{\omega} = L_{emb}(1 - (sigmoid(\boldsymbol{\pi}^T \cdot \boldsymbol{X}))). \tag{3}$$

 ω is related to the distance between the point and the global surface.

IMPLICIT FIELDS

The point density σ , semantics s and color c are defined as:

$$[\sigma, \mathcal{F}_{sc}] = \boldsymbol{\omega}_{\sigma\mathcal{F}} \cdot D_{\sigma\mathcal{F}}(\mathcal{F}),$$
 (4)

$$s = D_s(\mathcal{F}_{sc}), \tag{5}$$

$$c = D_c([\mathcal{F}_{sc}, \mathcal{E}_{dir}]),$$
 (6)

LOSSES

$\mathcal{L}_c = \frac{1}{B} \sum_{b=1}^B \ \boldsymbol{c}_b - \hat{\boldsymbol{c}_b}\ ^2,$	(7)
---	-----

$$\mathcal{L}_s = -\sum_{r \in \mathcal{R}} \sum_{k=1}^{N_c} w_k \hat{p}_k(r) \log p_k(r), \tag{8}$$

$$w_k = \left\lfloor l \frac{n_k}{\sum_{i=0}^{N_c} n_i} \right\rceil^h, \tag{9}$$

$$\lfloor l x \rceil^h = \begin{cases} l, & x < l \\ x, & l \le x \le h \\ h, & x > h \end{cases}$$
 (10)

$$\mathcal{L}_d = \sqrt{\frac{1}{N_d} \sum_{i} g_i^2 + \frac{\lambda}{N_d^2} (\sum_{i} g_i)^2},$$
 (11)

COMPARISON RESULT

Performance Method	Effici			Color		micii	(0/ \	Semantics	
Method	T_t	T_r	PSNR	(ab)	551IVI	miou	(%)	ACC_t (%)	ACC_a (%)
SS-NeRF Semantic-NeRF Ours	9 h 8 h 15 min	 4.82 s 0.1 s	30.3 31.3 35.9	39	 0.930 0.970	92. 93.6 94. 7	68	99.00 99.29	96.53 97.68
		Perform Meth		Abs		metry qRel I	RMSE	<u>-</u>	
	Se	SS-Ne emantic Our	-NeRF	0.0		- 0.007 . 0006	— 0.096).012 2		
							5		
			4						
					W. FL		C		
						N. A.			
G	T			ours			So	emantic-NeRF	
	T			ours			Se	emantic-NeRF	
	T			ours			Sol	emantic-NeRF	
				ours			Se	emantic-NeRF	

SPARSE VIEW WITH GEOMETRIC PRIORS

For sparse view, the geometry is supervised by depth.

ROBUSTNESS TO SPARSE LABELS

The proposed IS-NEAR with point-to-surface global feature is robust to the sparse labels.

R	PSNR (dB)	SSIM	mIoU (%)	ACC_t (%)	ACC_a (%)
10%	40.7	0.989	93.1	99.1	96.1
20%	40.5	0.988	93.1	99.1	96.2
25%	40.3	0.988	92.4	99.0	96.2
50%	40.7	0.989	92.6	99.0	96.1
100%	40.6	0.989	92.3	99.0	95.9
10%w/o PS	39.6	0.985	83.6	97.3	91.0
20%w/o PS	39.1	0.983	89.3	98.5	94.5
25%w/o PS	39.1	0.982	89.4	98.6	94.6

TRUNCATED-WEIGHTS SEMANTIC LOSS

SEMANTIC RENDERING WITHOUT DIRECTION EMBEDDING

APPLICATION-LABELING

Rendering detailed semantics

APPLICATION-TEXTURE RERENDERING

Update specific semantic region textures

APPLICATION-SIMULATION

The monocular and binocular sequence data generated by IS-NEAR are used for SLAM simulation.

FOR PAPER, RESULTS, CODE AND MORE

stereo

{suntiecheng1,lintao879,dongxingliang}@huawei.com wei.zhang@ifp.uni-stuttgart.de