Comparison of simulations with expected values

Bjarki Eldon Leibniz Institute for Evolution and Biodiversity Science Museum für Naturkunde Berlin FB1 Berlin, Germany myfirstname.mylastname@mfn.berlin

September 12, 2020

Here we compare the normalised expected branch lengths $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ to estimated values from simulations under various coalescents. In the graphs below, the circles represent exact values of $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$, and the + the estimated values from simulating the corresponding coalescent process.

The recursions for the exact values are described in Birkner et al (2013): Statistical properties of the site-frequency spectrum associated with Λ -coalescents. Genetics 195: 1037–1053,

https://doi.org/10.1534/genetics.113.156612

and in

Blath et al (2016): The site-frequency spectrum associated with Ξ -coalescents. Theoretical Population Biology 10: 36–50.

https://doi.org/10.1016/j.tpb.2016.04.002

The C++ code for the simulations can be found at

https://github.com/eldonb/coalescents/

The scripts therein are part of a manuscript currently undergoing peer-review. Citation details will appear in due course.

Figure 1: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Λ -Beta(2- α , α)-coalescent for sample size n=10 and $\alpha=1.1$ with estimates (+) obtained from 10^6 trials.

sample size n=10, α = 1.1

Figure 2: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Λ -Beta(2 – α , α)-coalescent for sample size n=10 and $\alpha=1.25$ with estimates (+) obtained from 10^6 trials.

sample size n=10, α = 1.25

Figure 3: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Kingman(β)-coalescent for sample size n = 10 and $\beta = 1.0$ with estimates (+) obtained from 10^6 trials.

sample size n=10, β = 1.0

Figure 4: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Kingman(β)-coalescent for sample size n = 200 and $\beta = 100.0$ with estimates (+) obtained from 10^6 trials. Shown are values with indexes $i \in \{1, 2, 3, 5, 15, ..., 185, 199\}$.

sample size n=200, $\beta = 100.0$

Figure 5: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Ξ -Beta(2- α , α)-coalescent for sample size n = 50 and $\alpha = 1.1$ with estimates (+) obtained from 10^6 trials.

sample size n=50, α = 1.1

Figure 6: Comparison of the normalised expected values $\mathbb{E}[B_i(n)]/\mathbb{E}[B(n)]$ computed exactly (circles) under the Ξ -Beta(2 – α , α)-coalescent for sample size n = 100 and $\alpha = 1.1$ with estimates (+) obtained from 10^6 trials.

sample size n=100, α = 1.1

