Math 221

Class Exercises: Feb. 2

$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 8 \\ 2 \\ -1 \end{bmatrix}$ $x_3 = \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}$

Find a linear combination of x_1 , x_2 , and x_3 with the last entry in the vector equal to 2.

$$c_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 8 \\ 2 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix} = \begin{bmatrix} * \\ * \\ 2 \end{bmatrix}$$

Can you find a linear combination x_1 , x_2 , and x_3 such that all the entries are equal to 2?

Is the vector b in the subspace spanned by v_1 and v_2 ?

$$v_1 = \begin{bmatrix} 5\\2\\-1 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$ $b = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$