Lehrstuhl für Mathematik VIII Julius-Maximilians Universität Würzburg Vorlesung Stochastik 1 Wintersemester 2024/25 Markus Bibinger / Adrian Grüber

Übungsblatt 6

Klausurübung 6.1

Es sei U eine auf dem Intervall (0,1) uniform verteilte Zufallsvariable, $U \sim \mathcal{U}((0,1))$, sowie

$$X = -\ln(U)$$
, $Y = -\ln(1 - U)$,

mit dem natürlichen Logarithmus ln.

- (a) Bestimmen Sie die Verteilungen von X und von Y.
- (b) Was können Sie über die Wahrscheinlichkeit $\mathbb{P}(X=Y)$ aussagen, was über $\mathbb{P}(X>Y)$?

Übung 6.2

Sei X eine reellwertige Zufallsvariable, deren Verteilungsfunktion durch

$$F_X(t) = \begin{cases} 0 & \text{falls } t < 0, \\ c \cdot t^2 & \text{falls } t \in [0, 1) \\ 1 & \text{falls } t \geqslant 1, \end{cases}$$

mit einer reellen Konstante c, gegeben ist.

- (a) Welche Werte kommen für c in Frage?
- (b) Für welche Werte von c ist die Verteilung absolutstetig, für welche diskret? Was ist im absolutstetigen Fall die zugehörige Dichte?
- (c) Skizzieren Sie $F_X(t)$ für c = 1/2.
- (d) Bestimmen Sie $\mathbb{P}(1/4 < X \le 1/2)$, also die Wahrscheinlichkeit für $\{X \le 1/2\} \cap \{X > 1/4\}$, abhängig von c.

Aufgabe 6.3 (keine Abgabe)

- (a) Sei $X \sim \mathcal{N}(0,1)$ standardnormalverteilt. Leiten Sie die Dichte der Verteilung von $Y = X^2$ her.
- (b) Sei $U \sim \mathcal{U}((0,1))$ uniform auf (0,1) verteilt. Leiten Sie die Dichte der Verteilung von $Z_1 = -2\log(U)$, sowie von $Z_2 = \sqrt{Z_1}$ her.

Aufgabe 6.4 (keine Abgabe)

Wir spielen Darts und die runde Dartscheibe habe Radius r=1. Modellieren Sie die folgenden Szenarien.

(a) Angenommen, eine Spielerin trifft immer die Scheibe, aber der Treffpunkt ihres Pfeils ist rein zufällig, uniform* über die Scheibe verteilt. Eine Zufallsvariable Y beschreibe den Abstand des Treffpunktes vom Mittelpunkt der Scheibe. Geben Sie die Verteilungsfunktion F_Y von Y an und bestimmen Sie die zugehörige Wahrscheinlichkeitsdichte f_Y . Mit welchen Wahrscheinlichkeiten ist $Y \leq 1/2$ und $1/2 \leq Y \leq 3/4$?

(b) Angenommen, die Dartscheibe ist nun mittig auf einem quadratischen Brett mit einer Länge und Höhe von 4 platziert und wir nehmen an, dass die Spielerin das Brett immer trifft. Der Treffpunkt ihres Pfeils ist rein zufällig, uniform über das Brett verteilt. Eine Zufallsvariable Z beschreibe den Abstand des Treffpunktes vom Mittelpunkt der Scheibe. Geben Sie die Verteilungsfunktion F_Z von Z an. Mit welcher Wahrscheinlichkeit ist $1/2 \le Z \le 3/4$? Mit welcher Wahrscheinlichkeit trifft die Spielerin die Dartscheibe?

*Hinweis: d.h. jede (Borel-)Teilmenge A des Einheitskreises mit Fläche |A| hat unter dieser Verteilung \mathbb{P}_T die Wahrscheinlichkeit $\mathbb{P}_T(A) = |A|/\pi$. Sie können für Teil (b) ohne Beweis verwenden, dass $\int \sqrt{a^2 - x^2} \, \mathrm{d}x = a^2/2 \arcsin(x/|a|) + x/2\sqrt{a^2 - x^2}$ ist.

Bearbeitung bis Donnerstag, den 28.11.2024.