QGIS plugin for Drainage Tool Tutorial

2018.03

1. 교육용 샘플 데이터

- C:\Drainage 폴더 생성
- <u>https://github.com/floodmodel/Drainage/tree/master/DownloadDocument</u> 에서 <u>Drainage Tutorial Sample.zip</u> 파일을 C:\Drainage에 다운로드
 - DEM500_ND.TIF
 - 수치 표고 모형(DEM:Digital Elevation Model)
 - 좌표 : EPSG 5186해상도 : 500m
 - OutletPoint_1.shp
 - OutletPoint_2.shp

2. Drainage - Batch Processor

- 1) DEM500_ND.TIF 파일 불러오기
 - \circ 레이어 ightarrow 레이어 추가 ightarrow 래스터 레이어 추가 ightarrow
 - DEM500 ND.TIF 선택후 열기
 - DEM500_ND.TIF 레이어가 지도창에 나타남.

2) Batch Processor 실행

Elevation Grid에서 DEM 파일을 선택하면, Fill Sink, Flow Direction, Flow Accumulation, Slope, Stream, Catchment 등의 파일명이 일괄 입력된다. Stream 임계치인 Threshold는 2000을 입력한다. 이 수치는 흐름누적수의 수치와 비교되며, 수치가 크면 큰 본류 위주로 자료를 생성하게 된다.

○ Drainage → Batch Processor 더블 클릭

○ Elevation : DEM500 ND.TIF 파일 선택

o Threshold Value: 2000 입력

○ [OK] 버튼 클릭

○ Batch Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ 일괄 생성한 결과물이 자동으로 지도창에 표시됨.

3. Drainage - Watershed

유출구 개 수에 따라 유역이 분할된다. 이번 교육에서는 유출구 1개(OutletPoint_1.shp)와 유출구 2개(OutletPoint_2.shp)로 만들어놓은 샘플 파일을 이용하여 각각 유역을 분할해본다. 그리고 직접 유출구 포인트를 신규 생성하여 유역을 생성한다. 이때, 유출구는 Stream 위에 반드시 배치되어 있어야 한다.

3.1 OutletPoint_1.shp으로 유역 만들기

1) OutletPoint_1.shp 파일 불러오기

 \circ 레이어 \rightarrow 레이어 추가 \rightarrow 벡터 레이어 추가

- OutletPoint 1.shp 파일 선택후 열기
- OutletPoint_1.shp 레이어가 지도창에 나타남.

화면을 확대하여 OutletPoint_1.shp 레이어 객체가 Stream 위에 배치되어 있는지 확인한다.

- Layers Panel에서 OutletPoint_1.shp, DEM500_ND_Stream.tif 레이어만 화면에 출력하고, 나머지 레이어는 모두 OFF 함.
- 지도창에 1개 레이어만 표시됨.

DEM500_ND_Stream.tif 레이어를 살펴보면, Cell의 최소/최대값 1 이 '0' 으로 되어 있다. 레이어의 스타일을 재설정하여, 하천망이 육안으로 구분되도록 한다.

○ Layers Panel에서 DEM500_ND_Stream.tif 레이어를 마우스 우클릭한 다음 [속성] 메뉴 선택

7

QGIS 2.18 버전에서는 최소/최대값 인식에서 부정확한 경우가 있으므로, 이때는 레이어 속성 다이알로그에서 최소/최대값을 확인하여 주제도를 재설정한다.

- [레이어 속성] 다이알로그의 [스타일] 항목 선택
- 밴드 렌더링 그룹에서 "최소/최대값 불러오기" 선택하여 확장함.
- [최소값/최대값] 라디오 버튼 선택후 [불러오기] 버튼 선택하면, 최소값: 0, 최대값: 1 로 설정됨.
- 컬러 그래디언트에서 "흰색에서 검은색으로" 선택
- [확인] 버튼 클릭

○ DEM500_ND_Stream 레이어 스타일이 변경된것을 확인할 수 있음.

- 화면 확대 아이콘 을 선택한 다음 유출구 지점을 확대 함.
- Stream 위에 OutletPoint가 위치해 있는것을 확인함.

○ 전체 보기 아이콘 5 선택

2) Watershed 실행

OutletPoint_1.shp 레이어를 이용하여 유역이 1개인 Watershed를 생성한다.

○ Drainage → Watershed 더블 클릭

○ Flow direction : DEM500_Fdr.TIF 레이어 선택

○ Outlet point : OutletPoint_1.shp 레이어 선택

o Output : C:/Drainage/Watershed_1.tif 입력

○ [OK] 버튼 클릭

○ Watershed Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ Watershed 생성 결과물이 자동으로 지도창에 표시됨.

3.2 OutletPoint_2.shp으로 유역 만들기

1) OutletPoint_2.shp 파일 불러오기

○ 레이어 → 레이어 추가 → 벡터 레이어 추가 📗

- OutletPoint 2.shp 파일 선택후 열기
- OutletPoint_2.shp 레이어가 지도창에 나타남.

2) Watershed 실행

OutletPoint_2.shp 레이어를 이용하여유역이 2개로 분할된 Watershed를 생성한다.

- Drainage → Watershed 더블 클릭
- Flow direction : DEM500_Fdr.TIF 레이어 선택
- Outlet point : OutletPoint_2.shp 레이어 선택
- o Output: C:/Drainage/Watershed 2.tif 입력
- [OK] 버튼 클릭

○ Watershed Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ Watershed 생성 결과물이 자동으로 지도창에 표시됨.

Cell Value=1, Cell Value=2인 유역이 생성 되었다. Cell Value=2인 래스터 색상이 배경생인 흰색과 동일하여 구분이 안되므로, 레이어 속성에서 스타일을 재설정한다.

○ Layers Panel에서Watershed_2.tif 레이어를 마우스 우클릭한 다음 [속성] 메뉴 선택

- [레이어 속성] 다이알로그의 [스타일] 항목 선택
- 밴드 렌더링 그룹에서 렌더(Render) 유형은 "**단일 밴드 가상색채**" 선택.
- 색상에서 "BrBG" 선택
- 모드에서 **"등간격**" 선택
- 클래스에서 "2"로 설정
- [확인] 버튼 클릭

○ Watershed_2.tif 레이어 스타일이 변경된것을 확인할 수 있음.

3.3 유출구를 신규 생성하여 유역 만들기

1) DEM500_ND_Fdr.tif 좌표계 확인

Watershed 를 만들기 위해서는 Flow direction과 Outlet Point 데이터를 이용한다. 이때, 서로 동일한 좌표계가 적용되어 있어야 한다. Outlet Point 레이어를 신규 생성하기에 앞서 Flow direction 좌표계를 확인하여 좌표계를 일치시키도록 한다.

- DEM500 ND Fdr.tif 레이어를 마우스 우클릭한 다음 [속성] 선택
- 일반정보 탭에서 USER:100000² 좌표계가 정의된 것을 확인함.

2) Create OutletPoint Layer and Draw OutletPoint 실행

- 화면에서 DEM500 ND Stream.tif 레이어만 남기고 모두 Layer Off 함.
- Drainage → Create OutletPoint Layer and Draw OutletPoint 더블 클릭
- Info 창이 나타나면, [확인] 선택

○ New Shapefile Layer 창이 나타나면, 유형은 "점" 선택

○ 파일 인코딩에서 CRS 아이콘 선택

○ 좌표계 선택창이 열리면 최근 이용한 좌표계에서 권한 ID가 "USER:100000" 좌표를 선택한 다음 [확인]버튼 누름.

² +proj=tmerc +lat_0=38.00000000000000 +lon_0=127.00000000000 +k=1 +x_0=200000

⁺y 0=600000 +ellps=GRS80 +units=m +no defs

- New Shapefile Layer 창의 다른 정보는 Default 상태로 두고, [확인]버튼 클릭
- 새 이름으로 레이어 저장창에서 "C:\Drainage" 경로로 이동한 다음 "OutletPoint_3.shp" 입력하고 [저장]버튼 선택
- 편집 모드가 자동 실행됨.

- Point 객체 추가 아이콘 을 선택하여 해당 지점을 마우스로 클릭함.
- 피처 속성창에서 ID에 숫자 "1" ³ 을 입력함.

Layer Panel 창에 OutletPooint_3.shp 레이어가 추가되고, 지도창에 Point 객체가 생성된것을 확인할 수 있음.

³ 입력된 ID 정수 값이, 유역분할시 유역 영역의 래스터 값으로 사용된다.

다른 두 곳도 화면 이동/확대하여 Point를 생성함.

- Point 객체 추가 아이콘 을 선택하여 해당 지점을 마우스로 클릭함.
- 피처 속성창에서 ID에 숫자 "2" 를 입력함.

- Point 객체 추가 아이콘 을 선택하여 해당 지점을 마우스로 클릭함.
- 피처 속성창에서 ID에 숫자 "3" 을 입력함.

- 레이어 수정사항 저장 아이콘을 선택하여, 편집 내용을 저장함.
- 편집을 종료하기 위해 아이콘 선택함.

3) Watershed 실행

OutletPoint_3.shp 레이어를 이용하여 유역이 3개로 분할된 Watershed를 생성한다.

- Drainage → Watershed 더블 클릭
- Flow direction : DEM500 Fdr.TIF 레이어 선택
- Outlet point : OutletPoint_3.shp 레이어 선택
- o Output: C:/Drainage/Watershed_3.tif 입력
- [OK] 버튼 클릭

○ Watershed Processor 완료 정보가 나타나면, [확인] 버튼 클릭

○ 3개로 유역분할된Watershed 생성 결과물이 자동으로 지도창에 표시됨. 해당 결과물의 스타일이 육안으로 구분하기 힘들 경우 속성 창에서 스타일을 재설정함.

