Contents

0.1	Inequa	ality constraints	1
		Lagrangians with inequality constraints	1
	0.1.2	Affinity of the Lagrangian	1

0.1 Inequality constraints

0.1.1 Lagrangians with inequality constraints

We can add constraints to an optimisation problem. These constraints can be equality constraints or inequality constraints. We can write constrained optimisation problem as:

Minimise f(x) subject to

$$g_i(x) \leq 0 \text{ for } i = 1, \dots, m$$

$$h_i(x) = 0 \text{ for } i = 1, \dots, p$$

We write the Lagrangian as:

$$\mathcal{L}(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

If we try and solve this like a standard Lagrangian, then all of the inequality constraints will instead by equality constraints.

0.1.2 Affinity of the Lagrangian

The Lagrangian function is affine with respect to λ and ν .

$$\mathcal{L}(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

$$\mathcal{L}_{\lambda_i}(x,\lambda,\nu) = g_i(x)$$

$$\mathcal{L}_{\nu_i}(x,\lambda,\nu) = h_i(x)$$

As the partial differential is constant, the partial differential is an affine function.