METODOLOXÍA PARA CREAR CLASES DE EQUIVALENCIA

1 Crear as clases de equivalencia

Cando nos dispoñemos a crear unha táboa de clases de equivalencia temos que **analizar cada un dos parámetros de entrada** do código sobre o que imos a facer o test.

Cada un dos parámetros de entrada pode ter uns valores posibles, entre eses valores hai **algúns que terá un efecto positivo no algoritmo a probar e outros terán no un efecto negativo**.

Particiones de equivalencia

Ilustración 1 Imaxe tomada de https://educandocontic.com/particiones-de-equivalencia/

Por exemplo, se analizamos un método que tome unha clave para acceder a un servicio e esa clave ten que ter 5 díxitos para que funcionen, teremos que crear unha clase de equivalencia válida para os que cumpran as condicións e outra para aqueles valores que non as cumpran, que pode ser por ter máis posicións ou por ter menos posicións.

Condición de Entrada	Tipo	Clase Equivalencia Válida	Clase Equivalencia No Válida
Clave	Valor	caracteres alfanuméricos de 5	13: Cadena de menos de cinco posiciones 14: Cadena de más de cinco posiciones

Á hora de definir clases de equivalencia deberemos ter en conta o dominio ao que ten que pertencer o valor a analizar:

Rangos: se unha entrada está condicionada a un rango de valores (por exemplo, ingresos entre 1000 e 2000 €, ambos inclusive), teremos que definir as clases de equivalencia válidas para todos os valores que pertencen ao rango e dúas non válidas, unha para os valores menores ao límite inferior do rango e outra para os valores maiores ao límite superior.

Por exemplo, se temos especificado o código da sucursal ten que ser un número de 4 díxitos, e o primeiro deles ten que ser maior que o, as clases de equivalencia correspondentes quedarían:

Condición de Entrada	Tipo	Clase Equivalencia Válida	Clase Equivalencia No Válida
Código	Rango	6: 1000 <= Código sucursal <=	7: Código sucursal < 1000
sucursal		9999	8: Código sucursal >= 9999

- Valor específico: no caso de que a entrada teña que ser un valor específico, por exemplo, que os ingresos sexan 1500 €. Crearase unha clase válida que sexa igual a ese valor e outra dúas inválidas, para un valor menor e para un valor maior.
- **Pertenza a un conxunto.** Cando un valor é válido se pertence a un grupo de valores (días da semana, tipo de empregado, etc.) definiremos unha clase de equivalencia válida para cada un dos valores do conxunto e unha non válida para un valor que non pertenza ao mesmo.

Por exemplo, se temos especificado que a orde nunha operación bancaria ten que darse mediante o texto "Talonario", "Movementos" ou espazo en branco " ", teremos que crear as seguintes clase válidas e non válidas:

Condición de Entrada	Tipo		Clase Equivalencia Válida	Clase Equivalencia No Válida
Orden	Conjunto, comportamiento distinto	con	15: "" 16: "Talonario" 17: "Movimientos"	18: Cadena distinto de blanco y de las válidas

- Valor lóxico. Neste caso analizamos un valor implicado nunha condición. Por exemplo, que a idade ten que ser maior ou igual a 18. Teremos que establecer unha clase de equivalencia para o caso de que se cumpra a condición e outra clase non válida para o caso de que non se cumpra.
- **Tipo de datos**. Neste caso analizarase nas clases de equivalencia válidas, un valor que pertenza ao tipo e nas clases de equivalencia non válidas, poderemos analizar un valor nulo, un alfanumérico e un fracionario.

1.1 Exemplo1. Elementos a ter en conta para calcular as clases de equivalencia

Condición entrada	Ejemplo	Clases de equivalencia válidas	Clases de equivalencia no válidas
Un valor específico	"Introducir cinco valores"	1 clase que contemple dicho valor	2 clases que representen un valor por encima y otro por debajo
Un rango de valores	Valores entre 0 y 10	1 Clase que contemple los valores del rango	2 clases fuera del rango, una por encima y otra por debajo
Valor que pertenezca a un conjunto	Introducir un día de la semana	1 Clase que contemple un valor del conjunto	1 clase que comtemple un valor fuera del conjunto
Un tipo de dato	Introducir un número entero	1 clase que contemple los elemento de ese tipo	N clases que representen tipos distintos(Nulo, alfanuméricos, fraccionarios)
Condición lógica	Introducir un número par	1 clase que cumpla la condición	1 clase que no cumpla

1.2 Exemplo 2. Crear táboa de equivalencia e casos de proba

- 1. **Días da semana en formato numérico** → A condición de entrada sería que o número pertencese ao rango 1..7.
 - a. Clases válidas -> Habería unha, que o número estivese dentro do rango, por exemplo 4
 - b. Clases inválidas → Habería dúas, que o número non pertencese ao rango por enriba nin por baixo, por exemplo, o e 8.
- 2. **Cores RGB en formato String e minúscula** → O valor da entrada so pode corresponder a un dos cores de RGB escrito en minúscula: "red", "green" e "blue".
 - a. Clases válidas → Habería tres, unha para cada un dos valores "red", "green" e "blue".
 - b. Clases no válidas -> Habería unha, que o valor non fose un deles.
- 3. Nome coa primeira letra en maiúscula
 - a. Clases válidas > Habería unha, que a primeira letra fose en minúsculas.
 - b. Clases no válidas > Habería unha, que a primeira letra fose en minúsculas.

A partir das clases válidas en non válidas creamos unha táboa coas clases de equivalencia:

Entrada	Tipo	Clases Válidas	ID	Clases no Válidas	ID
Día de la semana	Rango	1 <= día <= 7	v_dia	día < 1	nv_dia_menor
				día > 1	nv_dia_mayor
Colores	Conjunto	color = "red"	v_color_r	color distinto de los	nv_color
		color = "green"	v_color_g	válidos	
		color = "blue"	v_color_b		
Nombre de usuario	Condición lógica	Empieza por mayúscula	v_mayúscula	No empieza por mayúscula	nv_mayúscula

2 Crear os casos de proba

Cada entrada na columna de casos de equivalencia válida ten que se identificada por un código que vai dar utilizado á hora de implementar os casos de proba.

A partir da táboa de casos de equivalencia teremos que xerar:

- o menor número de casos de proba que cubran todas as clases de equivalencia válidas
- un caso de proba por cada unha das clases de equivalencia inválidas

A partir dos casos de proba xerados deberemos construír a seguinte táboa:

Caso de Prueba	Clases de equivalencia	Cond	diciones de	e Entrada	Resultado esperado
		Día	Color	Nombre	
CP1	v_dia, v_color_r, v_mayúscula	3	red	User	R1
CP2	v_dia, v_color_g, v_mayúscula	1	green	USER	R2
CP3	v_dia, v_color_b, v_mayúscula	7	blue	UseR	R3
CP4	nv_dia_menor, v_color_r, v_mayúscula	0	red	User	E1
CP5	nv_dia_mayor, v_color_r, v_mayúscula	8	red	User	E2
CP6	nv_dia_menor, v_color_g, v_mayúscula	-1	green	USeR	E1

Cando elabores a táboa de casos de proba trata de ter en conta o seguinte:

- Sempre que poidas, trata de utilizar todos os valores límite das túas clases válidas e se é posible das inválidas. Desta forma estas matando dous paxaros dun tiro.
- Cobre mediante os casos de proba válidos tantas clases de proba como sexa posible. No caso do exemplo era obrigatorio facer un mínimo de 3 casos de proba, debido ao conxunto da entrada 'cor'. Se elixes ben os valores, o número obrigatorio pode ser o número máximo de casos de proba necesarios.
- Nunca o esquezas: os casos de proba para clases non válidas unicamente poden cubrir unha destas á vez, se non poida que enmascares posibles erros.

3 Exercicio resolto

Imos construír unha batería de probas para detectar posibles error na construción dos identificadores dunha linguaxe de programación. As regras que determinan a construción sintáctica son:

- Non deben ter máis de 15 caracteres nin menos de 5.
- O xogo de caracteres que se pode utilizar é:
 - o Letras (maiúsculas e minúsculas).
 - Díxitos (0..9).
 - o Guión (-)
- O guión non pode estar nin ao principio nin ao final, pero pode haber varios consecutivos.
- Debe conter ao menos un carácter alfabético.
- Non pode ser unha das palabras reservadas da linguaxe.

Condición de	Clases de equivalencia	Clases de equivalencia
entrada	válidas	non válidas
Número de caracteres entre 5	5 <= n° de caracteres <=15 (1)	n° de caracteres < 5 (2)
e 15.		n° de caracteres > 15 (3)
O identificador ten que estar	Todos os caracteres pertencen ao	Algún dos caracteres non per-
formado por letras, díxitos e	conxunto (letras, díxitos, guión) (4)	tence ao conxunto (letras, dí-
guión.		xitos, guión) (5)
O guión non pode estar ao	Identificador sen guións nos extre-	Identificador con guión no
principio nin ao final. Pode	mos e con varios consecutivos no	principio (7)
haber varios guións seguidos	medio (6)	Identificador con guión no fi-
polo medio.		nal (8)
Debe conter ao menos un ca-	Ao menos un carácter de identifica-	Ningún carácter é alfabético
rácter alfabético.	ción debe ser alfabético (9)	(10)
Non pode usar palabras re-	Usar un identificador que non sexa	Un caso por cada palabra re-
servadas	unha palabra reservada (11)	servada (12, 13, 14)

A derivación dos casos de proba a partir das clases de equivalencia vese na seguinte táboa:

Caso de proba	Clases de equivalencia	Condicións de entrada	Resultado esperado
C1	1, 4, 6, 9, 11 (todas válidas)	Num-1d3	O sistema acepta o identificador
C2	2	Nd3	Mensaxe de erro
с3	3	Num-1-letr3d32	Mensaxe de erro
C 4	5	Nu%m-1d3	Mensaxe de erro
c 5	7	-um-1d3	Mensaxe de erro
c6	8	num-1d3-	Mensaxe de erro
с7	10	456-123	Mensaxe de erro
c8	12	Integer	Mensaxe de erro
c9, c10	13, 14	O resto de palabras reservadas	Mensaxe de erro

4 Exercicio

Facer a táboa de clases de equivalencia e a táboa de casos de proba a partir das seguintes especificacións.

O pago retrasado de certas facturas mensuais implican as seguintes recargas

- Se se paga entre os días 1 e 10 non teñen ningunha recarga.
- Se se paga entre os días 11 e 20 teñen unha recarga do 2%
- Se se paga despois do día 20 teñen unha recarga do 4%

Destas condicións podemos extraer que hai un rango de valores posibles (teñen que ser >1) e dentro dos datos que cumpren coa pertenza ao rango temos que avaliar unha serie de subrangos que dan valor a datos diferentes.

Condición de entrada	Clases de equivalencia válidas	Clases de equivalencia non válidas
Número > 1	número >= 1 (1)	n° = 0 (2)
Número entre os días 1 e 10	número = 3 (3)	
Número entre os días 11 e 20	número = 15 (4)	
Número > 20	número = 30 (5)	
Tipo de datos Enteiro	número = 1 (6)	número real = 4.7 (7)
		cadea = "4" (8)

Caso de proba	Clases de equivalencia	Condicións de entrada	Resultado esperado
C1	1, 3, 6	3	sen recarga
C2	1, 4, 6	15	recarga do 2%
с3	1, 5, 6	30	recarga do 4%
C4	2	0	erro
c 5	7	4.7	erro
c6	8	"4"	erro

5 Proba de valores límite

A proba de valores límite baséase na evidencia experimental de que os erros soen aparecer con maior probabilidade nos extremos dos campos de entrada.

Un análise das condicións límite das clases de equivalencia incrementa a eficiencia das probas.

Teremos que xerar tantos casos de proba como sexan necesarios para poñer a proba as condicións límite das clases de equivalencia válidas.

Aínda que este é un proceso heurístico podemos seguir uns criterios que facilitan a obtención dos valores límite.

Condición entrada	Ejemplo	Caso de prueba
Un valor específico	"Introducir tres valores"	1 caso que ejercite el valor numérico (15,3,4) 1 caso que ejercite el valor justo por encima (15,3,4,4) 1 caso que ejercite el valor justo por debajo(15,3)
Un rango de valores	Valores entre 0 y 10	1 caso que ejercite el valor mínimo (0) 1 caso que ejercite por encima del mínimo (1) 1 caso que ejercite por debajo del mínimo (-1) 1 caso que ejercite el valor máximo (10) 1 caso que ejercite un valor por encima del máximo (11) 1 caso que ejercite un valor por debajo del máximo (9)
Elementos de un conjunto tratados diferente por el programa	Las personas menores de 25 años tendrán una bonificación del 10%	1 caso que cumpla la condición (25) 1 caso que ejercite el valor justo por encima (26) 1 caso que ejercite el valor justo por debajo(24)

5.1 Exemplo. Probas de valores límite

Seguindo o exemplo dos identificadores dunha linguaxe, analizando a condición de que o identificador debe ter entre 5 e 15 caracteres, o análise de valores límite daría lugar aos seguintes casos a analizar.

Identificador	Clases de equivalencia cubiertas	Resultado
N123456789ABCDE	20	El sistema acepta el identificador
N123456789ABCDEF	21	Mensaje error
N123456789ABCD	22	El sistema acepta el identificador
N1234	23	El sistema acepta el identificador
N12345	24	Mensaje error
N123	25	El sistema acepta el identificador

5.2 Referencias

http://www.cs.uns.edu.ar/~prf/teaching/VVS11/downloads/Practica1/VVS_Ejercicios-Tema_I_2011_3.pdf

https://www.studocu.com/es/document/universidad-politecnica-de-madrid/fundamentos-de-ingenieria-del-software/ejercicios-vcon-particion-equivalencia-3final/6238641

https://www.youtube.com/watch?v=mlj2HDcnLBM