Pesquisa e Ordenação de Dados

Unidade 5.1:

Busca Linear Busca Binária

Busca

- Uma busca consiste em recuperar um ou mais itens armazenados em um repositório de dados.
- Depende:
 - De como os dados estão estruturados
 - Vetor, lista, árvore, arquivo
 - Se os dados estão ou não ordenados
 - Se há duplicidade de chaves

- Método mais simples de pesquisa
- Varredura serial do conjunto de dados, da primeira até a última posição, comparando a chave de pesquisa com a chave de cada entrada
 - pesquisa bem-sucedida: é encontrada uma chave igual
 - pesquisa malsucedida: o final da lista é atingido sem que a chave procurada seja encontrada.
- Pode-se retornar:
 - o próprio elemento encontrado; ou
 - o índice do elemento (no caso de um vetor).

43	82	99	14	21	30	3	51	9	27
0	1	2	3	4	5	6	7	8	9

43	82	99	14	21	30	3	51	9	27
0	1	2	3	4	5	6	7	8	9

• Chave de pesquisa: **35**

	43	82	99	14	21	30	3	51	9	27
ĺ		1								
					4		_			

35?

43	82	99	14	21	30	3	51	9	27
					5				

43	82	99	14	21	30	3	51	9	27
0	1	2	3	4	5	6	7	8	9

• Chave de pesquisa: **35**

Não encontrou. Retorna **-1**

Busca Linear Pseudocódigo

```
Algoritmo BuscaLinear
Inicio
  para i de 0 ate n-1
    se A[i] = procurado então
       retorne i // elemento encontrado
     fimSe
  fimPara
  retorne -1 // elemento não encontrado
fimAlgoritmo
```

Busca Linear Análise

- Melhor caso:
 - O(1) a chave procurada é o primeiro elemento;
- Pior caso:
 - O(n) a chave procurada é o último elemento ou não foi encontrada;
- Caso médio:
 - (n+1)/2
- Portanto, é um algoritmo linear.

- Num vetor ordenado, podemos adotar uma estratégia mais sofisticada e eficiente: busca binária
- Divisão e conquista: a cada passo, analisa o elemento do meio do vetor.
 - Caso 1. O elemento do meio corresponde à chave procurada
 - a busca termina com sucesso.
 - Caso 2. A chave buscada é menor do que o elemento do meio
 - a busca continua na primeira metade do vetor.
 - Caso 3: A chave buscada é maior do que o elemento do meio
 - a busca continua na segunda metade do vetor.

Busca Binária Pseudocódigo

```
Algoritmo BuscaBinaria
Inicio
  inicio = 0
  fim = n-1
  enquanto inicio <= fim faca
    meio = (inicio + fim) / 2
    se chave = A[meio] então
       retorne meio
    senão se chave < A[meio] então
       fim = meio - 1 // busca na primeira metade
    senão
       inicio = meio + 1 // busca na segunda metade
    fimSe
  fimEnquanto
  retorne -1 // elemento não encontrado
fimAlgoritmo
```

Busca Binária Análise

- Melhor caso:
 - O(1) a chave procurada é o elemento do meio (primeiro a ser acessado).
- Pior caso e caso médio:
 - O(log n) a lista vai sendo dividida ao meio sucessivamente.