Course Overview and Introduction

CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Soleymani

Course Info

- Instructor: M. Soleymani
 - Email: soleymani@sharif.edu
- Teacher Assistants:
 - Seyed Mohammad Chavoshian
 - Seyed Alireza Mir Mohammad Sadeghi
 - Alireza Sahaf
- Lectures: Sun-Tue (15:00-16:30), Room 202
- Website: http://ce.sharif.edu/cources/94-95/2/ce417-1

Text Book

Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig 3rd Edition, 2009

http://aima.cs.berkeley.edu/

Marking Scheme

	Mid Term Exam:	25%
	Final Exam:	35%
	Homeworks (written & programming):	20%
	Miniexams:	15%
•	Quizes:	5%

Class Target

- Getting a feeling of <u>Artificial Intelligence (AI)</u>, its aims, fields, abilities, some applications and open problems
- Learning fundamentals of Al
- Learning some basic tools for Al and a little experience with Al

Why AI?

- One of the newest fields in science (coined in 1956)
 - ▶ However, the quest for AI begins with dreams thousands of years ago
- One of the most preferred fields
- Still has openings for several full time Einsteins
- Huge variety of subfields
- Can be useful to any intellectual task (universal field)

What is Artificial Intelligence?

- ▶ What is **A!**?
- What is intelligence?
- What are features that make humans (animals, animate objects) intelligent?

Intelligence: Definitions

- ▶ The ability to carry out **abstract thinking** (Terman, 1921)
- ▶ The capacity for **knowledge**, and knowledge possessed (Henmon, 1921)
- ▶ The capacity to **learn** or to profit by experience (Dearborn, 1921)
- Intelligence is what is measured by **intelligence tests** (Boring, 1923)
- A global concept that involves an individual's ability to <u>act purposefully</u>, <u>think</u> rationally, and <u>deal effectively with the environment</u> (Wechsler, 1958)

Intelligence: Definitions

- A general factor that runs through all types of <u>performance</u> (Jensen)
- Intelligent activity consists of grasping the essentials in a given situation and responding appropriately to them (Heim 1970)
- A person possesses intelligence insofar as he had learned, or can learn, to adjust himself to his environment (Colvin 1982)
- Intelligence is <u>adaptation to the environment</u> (unknown)
- Intelligence is that <u>faculty of mind by which order is perceived</u> in a situation previously considered disordered (R.W.Young, 1999)
- Intelligence is the ability to <u>use optimally limited resources including time to achieve goals</u>. (Kurzweil, 1999)

Formal Definitions of Artificial Intelligence

"[The automation of] activities that we	"The study of mental faculties through
associate with human thinking, activ-	the use of computational models"
ities such as decision-making, problem	(Charniak+McDermott, 1985)
solving, learning" (Bellman, 1978)	
"The study of how to make computers	"The branch of computer science that
do things at which, at the moment, peo-	is concerned with the automation of in-
ple are better" (Rich+Knight, 1991)	telligent behavior" (Luger+Stubblefield,
	1993)

	Human intelligence	Rational
Thinking	Thinking humanly	Thinking rationally
Behavior	Acting humanly	Acting rationally

Rationality

- Rationality: doing the right thing
- Mathematical characterizations of rationality have come from diverse areas like:
 - Logic
 - Economics
 - Utility theory: how best to act under uncertainty
 - Game theory: how self-interested agents interact

Acting Humanly

- Turing Test (*Turing*, 1950): Operational test for intelligent behavior:
 - A human interrogator communicates (through a teletype) with a hidden subject that is either a computer system or a human. If the human interrogator cannot reliably decide whether or not the subject is a computer, the computer is said to have passed the Turing test.
 - ▶ 5 minutes test, it passes by fooling the interrogator 30% of time

- ▶ Turing predicted that by 2000 a computer could pass the test.
 - He was wrong.

Acting Humanly (Cont.)

- ▶ To pass the <u>basic Turing test</u>:
 - Natural Language Processing (communication)
 - Knowledge Representation (storing what it knows or hears)
 - Automated Reasoning (using the stored info to draw new conclusions or answer questions)
 - Learning (adapting to new circumstances)
- To pass the total Turing test (in addition to above):
 - Vision
 - Robotics
 - **...**

Anticipated most of Al major fields (60 years ago)

Problem: Turing test is not <u>reproducible</u>, <u>constructive</u>, or amenable to <u>mathematical analysis</u>

Thinking humanly: cognitive modeling

- ▶ Needs some way of determining how humans thinks
 - Brain imaging (observing brain in action)
 - Introspection (catching our thoughts as they go)
 - Psychological experiments (observing a person in action)
- Scientific theories of internal activities of the brain
 - Experimental investigation of actual human or animal behavior (top-down)
 - Direct identification from neurological data (bottom-up)
- Cognitive Science and Al are now distinct sciences (while continuing to fertilize each other)
- ▶ Precise theory of mind is not available and seems mysterious.

Thinking rationally: "laws of thought"

- Aristotle codified the right thinking and correct arguments/inference processes
 - "Socrates is a man, all men are mortal, therefore Socrates is mortal"
- Direct line through mathematics and philosophy to modern Al
 - However, intelligent behaviors are not necessarily mediated by logical deliberation
- Main obstacles:
 - Not easy to convert informal knowledge to formal ones
 - Reasoning usually needs high computational resource

Acting rationally: rational agent

- Rational agent does the right thing achieving the best outcome or expected outcome (given what it knows)
- Thinking rationality is <u>sometimes</u> <u>part</u> of being a rational agent (it is not all of rationality)
 - Rational behavior doesn't necessarily involve thinking (e.g., blinking reflex)
 - There may be no provable correct thing to do but something must be done
 - Acting rationally is more general than thinking rationally
- Compared to approaches based on human (behavior or thinking), it can be more scientific
 - Well-defined mathematically and completely general

Acting rationally: rational agent (cont.)

- Bounded rationality design best agent for given resources when not enough time available to do all computations
 - Perfect rationality as a good starting point
- We'll focus on <u>acting rationally</u> in this course.

Rational agents

- An agent is an entity that perceives and acts
- Abstractly, an agent is a function from percept histories to actions:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

For any given class of environments and tasks, we seek the agent (or agents) with the best performance

AI definition evolution

- Agents acting rationally have been gradually more popular than systems based on human intelligence (thinking or acting humanly)
- Definition of AI has also been changed during the time.
- Despite successes, founders of AI including McCarthy & Minsky have expressed discontent with the progress of AI
 - All should put less emphasis on creating ever-improved version of applications that are good at a specific task
 - Al should return to its roots "machines that **think**, that **learn**, and **create**" (Human-level Al)

Human Level Intelligence: Samples

- ▶ Game playing: Chess, Backgammon, Othello, Poker, ...
- Proving a mathematical theorem using a set of known axioms
- Planning to reach a set of goals
- Learning from previous experience to do a task better

Subareas of AI

- Problem solving
 - Search (focus of our course)
 - Planning (we talk also about it)
- Knowledge representation & reasoning (focus of our course)
 - Knowledge representation & Reasoning: logical, probabilistic
- Learning
- Perception (Vision, Speech, ...)
- Robotics (ability to move and manipulate objects)
- Natural Language Processing (communication)

Course Outline

- Intelligent agents (chapters 1-2)
- Search
 - ▶ Heuristic Search (Chapter 3,4)
 - Search spaces & heuristic guidance
 - ▶ Game tree search (Chapter 5)
 - Working against an opponent
 - Backtracking Search (Chapter 6)
 - Constraint Satisfaction Problems
- Reasoning and knowledge Representation (Chapter 7-9)
 - Logical agents and First Order Logic for more general knowledge
- Planning (Chapter 10)
 - Predicate representation of states, planning graphs, reachability heuristics
- Uncertainty (Chapter 13-14)
 - ▶ Probabilistic reasoning, Bayesian networks
 - Reinforcement learning