Задания к лабораторной работе №7

Синтез корректирующих устройств в MATLAB

МАТЬАВ можно использовать для проверки правильности расчета корректирующих устройств путем построения переходных характеристик, ЛАЧХ и ФЧХ синтезированных систем и корректирующих звеньев. Но для автоматизации синтеза корректирующих устройств в составе МАТЬАВ для устройств используется SISO Design Tool — графический интерфейс, который позволяет анализировать и настраивать одномерные системы автоматического управления (SISO) с обратной связью. Запуск графического интерфейса SISO-Design Tool осуществляется командой sisotool или выбором соответствующего пункта в окне Launch Pad.

Рассмотрим его работу на примере синтеза системы, описываемой передаточной функцией $G(s)=\frac{1}{s+1}$, которая должна удовлетворять следующим требованиям:

- 1) время установления переходного процесса $t_{\rm nn}$ < 2c, 80% времени нарастания <1c
- 2) перерегулирование σ < 20%
- 3) частота среза $\omega_{\rm c} < 5~{}^1\!/_{\rm C}$
- 4) нулевая ошибка в установившемся режиме при подаче на вход ступенчатого воздействия.

Запустим SISO Design Tool следующей командой:

>> sisotool(tf(1,[1,1]))

Откроется окно Control System Designer – Bode Editor for LoopTransfer_C

Для того, чтобы посмотреть реакцию замкнутой системы посмотрим на график Step. Кликнув правой кнопкой мыши на графике и выбрав Design Requirements -> New, добавим заданные требования к переходной характеристике. Эти действия приведут к появлению на графике переходного процесса ограничений, задающих желаемое положение кривой.

Настройка временных требований к системе

Желаемый вид переходной характеристики

Теперь кликнув правой кнопкой мыши на графике ЛАЧХ, установим частотные требования к системе. Помимо частоты среза здесь также можно установить значение требуемых запасов устойчивости по амплитуде и фазе в графе Design requirement type.

Настройка требований к ЛАЧХ системы

B окне Control and Estimation Tools на вкладке SISO Design Task, выбрав Compensator Editor, в окне Dynamics добавляем интегратор и вещественный нуль -2 к системе.

Настройка корректирующих звеньев

Далее в окне Control System находим вкладку Tuning metods и выбираем метод Internal Model Control (IMC) Tuning

и нажимаем Update Compensator, после чего получаем необходимую передаточную функцию компенсатора, корневой годограф, ЛАЧХ передаточной функции разомкнутой системы и переходную функцию скорректированной САУ. На вкладке Compensators после оптимизации будут указаны найденные значения параметров корректирующих звеньев.

Результат оптимизации

- 1) Провести синтез корректирующего устройства в SisoToolDesigner.
- 2) В отчет вставить систему до коррекции и каждый шаг настройки системы, а также новые параметры из вкладки Compensator.
- 3) Обязательно вставить в отчет команду задания Tf.

No॒	W ₀ (s)	Требования к системе
1	1	$\omega_{\rm c}$ < 5 1/c
	$\overline{4s+1}$	σ < 20 %
		$t_{\Pi\Pi}$ < 4 c
2	s + 1	$\omega_{\rm c} < 3 1/{\rm c}$
	$\overline{4s^2+s}$	σ < 15 %
		$t_{\Pi\Pi}$ < 6 c
3	<u>s+4</u>	$\omega_{\rm c}$ < 10 1/c
	$3s^2 + 2s + 1$	σ < 10 %
		$t_{\Pi\Pi}$ < 5 c
4	1	$\omega_{\rm c}$ < 7 1/c
	$2s^2 + s$	σ < 25 %
		$t_{\Pi\Pi}$ < 4 c
5	s + 2	$\omega_{\rm c}$ < 4 1/c
	$4s^2 + 2s + 1$	σ < 15 %
		$t_{\Pi\Pi}$ < 6 c
6	<u>s + 10</u>	$\omega_{\rm c}$ < 5 1/c
	$100s^2 + 10s + 1$	σ < 12 %
		$t_{\Pi\Pi} < 19 \text{ c}$
7	<u>s + 50</u>	$\omega_{\rm c}$ < 3 1/c
	$0.04s^2 + 0.2s + 1$	σ < 25 %
		$t_{\Pi\Pi}$ < 4 c
8	1	$\omega_{\rm c}$ < 6 1/c
	0.01s + 1	σ < 15 %
		$t_{\Pi\Pi} < 0.02 \text{ c}$
9	0.5s + 1	$\omega_{\rm c}$ < 2 1/c
	$s^2 + 11s + 1$	σ < 20 %
		$t_{\Pi\Pi}$ < 8 c
10	10s + 500	$\omega_{\rm c}$ < 4 1/c
	$\overline{0,1s^2+1,1s+1}$	σ < 5 %
		$t_{\Pi\Pi}$ < 1 c