

Registri e Contatori

Registri Contatori

- Circuiti sequenziali speciali
 - Esiste una classe di circuiti sequenziali la cui progettazione potrebbe seguire il processo "classico" di sintesi ma che è più conveniente analizzare in altro modo.
 - · La regolarità della struttura facilità la progettazione.
 - A questa classe appartengono:
 - Registri
 - Memorizzano una definita quantità di informazione
 - Possono operare sul contenuto una o più semplici trasformazioni.
 - » Shift destro/sinistro
 - » Caricamento parallelo/seriale
 - Contatori
 - Attraversano ripetutamente un numero definito di stati
 - » Contatori sincoroni
 - » Contatori asincorni
 - · Gestori di Code
 - FIFO, LIFO

- 2 -

Registri

- Un registro è un elemento di memoria in grado di conservare un insieme di bit, denominato parola, su cui può eventualmente operare una o più semplici trasformazioni.
 - Benché si possa utilizzare un qualunque tipo di bistabile, per realizzare i registri si preferisce utilizzare *FF D* (*master-slave* o *edge-triggered*).
- I registri si distinguono sulla base dei seguenti aspetti:
 - Modalità di caricamento dati
 - · Parallelo
 - · Seriale
 - Modalità di lettura dati
 - Parallelo
 - Seriale
 - Operazioni di scorrimento sui dati:
 - a destra e/o a sinistra (aritmetico o non aritmetico) e circolare.

- 3

Registri

- Registro parallelo-parallelo
 - Esempio di registro a 4 bit.

- 4 -

Registri

- Registro serie-serie (Shift Register Registro a Scorimento)
 - Esempio di registro a 4 bit

- 5 -

Registri

- Registro serie-parallelo
 - Esempio di registro a 4 bit

- 6 -

Registri

- Registro parallelo-serie
 - Esempio a 4 bit con shift-aritmetico (Shift Destro)
 - In fase di traslazione, ricopia il bit più significativo nella posizione più significativa (estensione del segno)

- 7 -

Registri

- Registro circolare a 4 bit
 - Esempio a 4 bit con rotazione a destra
 - In fase di traslazione, trasferisce il bit meno significativo al posto di quello più significativo, spostando i rimanenti di una posizione a destra.

- 8 -

Contatori

- Un contatore è una rete sequenziale che, solitamente, riceve in ingresso solamente un evento di conteggio che sposta la posizione corrente in avanti - upwards - (o indietro - downwards) di una unità.
 - Il valore raggiunto è associato allo stato presente.
 - · Possono esistere altri ingressi di controllo per la realizzazione di contatori bidirezionali; il metodo di progetto cambia di poco.
- Il contatore appartiene ad una famiglia di reti seguenziali "omogenee" caratterizzate da:
 - Specifiche di funzionamento analoghe per l'intera famiglia;
 - Ripetitività e località della struttura (in molto casi).
 - Metodologia di specifica semplificata rispetto alla generica tabella degli stati e metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali;

Contatori

- Un contatore può anche essere visto come una generica rete sequenziale dove, a meno di particolari specifiche, il valore d'uscita coincide con il valore di stato.
 - A meno di casi particolari, non sono presenti reti di transcodifica
 - Si utilizzano Flip-flop (master slave o a commutazione sul fronte)

Segnale di conteggio

- In pratica, adottare le tecniche generali di progetto delle reti sequenziali risulta eccessivamente oneroso; si ricorre a tecniche specifiche, più semplici, secondo criteri tipici della classe di circuiti.
 - consentono buona ottimizzazione.

Contatori

- Un contatore si distingue per:
 - II modulo M
 - il contatore conterà da 0 a M-1 e, al successivo impulso, torna a 0;
 - Il codice
 - Il contatore presenta all'esterno il valore del conteggio secondo un codice stabilito
 - A numero minimo di bit: Il numero di tali bistabili è [log₂ M]. (es: Gray, Binario Naturale)
 - La codifica
 - Definisce la successione degli M valori associati allo stato attraverso cui il contatore evolve.
 - Nota: la codifica dello stato è definita a priori
 - Es: M=4 codice Gray(codice a numero minimo di bit) codifica: S0=00 S1=01 S2=11 S3=10
 - Es: M=4 codice Parità Pari (codice a numero non minimo di bit): codifica: S0=000 S1=011 S2=101 S3=110

- 11 -

Contatori

- Oltre che per modulo, codice e codifica, i contatori si distinguono in sincroni e asincroni:
 - Contatore *sincrono*:
 - Tutti i bistabili ricevono simultaneamente in ingresso l'evento di conteggio;
 Clock oppure Gated Clock (clock attraversa una rete combinatoria).
 - Le eventuali commutazioni sono tutte simultanee (sincrone), a parte modeste variazioni dovute alla propagazione attraverso le reti di eccitazione dei bistabili;
 - Contatore asincrono:
 - · Almeno un bistabile non riceve in ingresso il segnale di conteggio
 - La sua eventuale commutazione è comandata da quella degli altri bistabili e avverrà con un ritardo dovuto alla propagazione attraverso tali bistabili (oltre che alle reti combinatorie eventualmente presenti);
- Nel seguito si tratterà in dettaglio il progetto dei contatori, essenzialmente quelli sincroni.

- 12 -

Contatori sincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: 2ⁿ; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 2¹

Q_0	Q_0 :	Q_0	T_0
0	1	\ 0	1
1	0	-/ ₁	1

Tabella delle transizioni e delle eccitazioni per M= 2²

	Q ₀		*Q	*	Q_1	Q ₀	T_1	T_0
0	0	0	1		0	0	0	1
0	1	1	0		0	1	1	1
1	0	1	1	-/	1	0	0	1
1	1	0	0		1	1	1	1

Tabella delle transizioni e delle eccitazioni per M= 2³

Q_2	Q_1	Q_0	Q_2	Q ₁	*Q	0	Q_2	Q_1	Q_0	T_2	T_1	Γ_0
0	0	0	0	0	1		0	0	0	0	0	1
0	0	1	0	1	0		0	0	1	0	1	1
0	1	0	0	1	1		0	1	0	0	0	1
0	1	1	1	0	0	$ -\rangle$	0	1	1	1	1	1
1	0	0	1	0	1		1	0	0	0	0	1
1	0	1	1	1	0		1	0	1	0	1	1
1	1	0	1	1	1		1	1	0	0	0	1
1	1	1	0	0	0		1	1	1	1	1	1

- 13 -

Contatori sincroni: Contatore Binario Naturale

 L'analisi delle tabelle delle eccitazioni evidenzia la seguente regolarità (M=2⁴):

Q.	Q,	Q ₁ Ç	2,	Т,	T,:	Γ_1	0
0	0	Ō	0	0	0	0	1
0	0	0	1	0	0	1	1
0 0 0	0	1	0	0	0	0	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
0 0 0 1 1 1 1 1 1	0	0	1	0	0	1	1
1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	1	1
		T_{\cap}	=	1			

 $T_3 = Q_2 * Q_1 * Q_0 = Q_2 * T_2$

- 14 -

Contatori sincroni: Contatore Binario Naturale

- Sono evidenti due possibili implementazioni per le funzioni di eccitazione:
 - Contatore serie: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*T_{n-1}$
 - Tutti gli stadi, ad esclusione dei primi due, risultano perfettamente identici.
 - La regolarità della struttura è "pagata" con un maggior ritardo di propagazione (limita la frequenza di funzinamento).
 - Nota: la frequenza di funzionamento si riduce linearmente con la dimensione del contatore poiché T_i diventa stabile solo dopo che lo è diventato T_{i-1}.
 - Contatore parallelo: $T_0=1$; $T_1=Q_0$; $T_n=Q_{n-1}*Q_{n-2}*Q_{n-3}...*Q_0$
 - Schema molto semplice e regolare.
 - Minor ritardo di propagazione rispetto al caso precedente (frequenza di funzionamento maggiore rispetto al caso precedente).
 - Nota: la frequenza di funzionamento si riduce all'aumentare delle dimensioni del contatore a causa dell'aumento del numero degli ingressi alle porte AND.
- In generale, la regolarità deriva dal ciclo di conteggio: cambiando tipo di bistabile (es: FFD) le funzioni di eccitazione cambiano, ma la regolarità resta.

- 15

Contatori sincroni: Contatore Binario Naturale

Contatore binario (modulo 2ⁿ) serie:

Contatore binario (modulo 2ⁿ) parallelo:

- 16 -

Contatori sincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: 2ⁿ; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: D

Tabella delle eccitazioni per M= 21

 $D_{\underline{0}}$ Q_0 1

Tabella delle eccitazioni per M= 22 $Q_1Q_0 D_1D_0$ 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

- 17 -

Contatori sincroni: Contatore Binario Naturale

L'analisi delle tabelle delle eccitazioni evidenzia la seguente regolarità (M=24):

Parallelo: $D_0 = Q_0 \oplus 1 = Q_0$ $D_0=Q_0\oplus 1=Q_0$

 $D_1 = Q_1 \oplus Q_0$

 $D_2 = Q_2 \oplus \overline{(Q_1 * Q_0)}$ $\mathsf{D_2} \! = \; \mathsf{Q_2} \! \oplus \! (\, \mathsf{Q_1} \! * \! \mathsf{Q_0} \,) \! = \; \mathsf{Q_2} \! \oplus \! (\, \mathsf{Q_1} \! * \! \mathsf{K_0} \,) \; \; \mathsf{D_3} \! = \! \mathsf{Q_3} \! \oplus \! (\, \mathsf{Q_2} \! * \! \mathsf{K_1} \,)$

 $D_3 = Q_3 \oplus (Q_2 * Q_1 * Q_0)$

Due casi diversi:

- Progetto di contatori con modulo libero (2ⁿ o diverso da 2ⁿ), codice a numero **non** minimo bit e codifica **non** binaria naturale;
 - · Struttura regolare.
 - Contatori ad anello (codice one-hot)
 - Contatore ad anello incrociato;
 - A struttura non regolare.
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali;
- Progetto di contatori con modulo diverso da 2ⁿ, codice a numero minimo bit e codifica binaria naturale;
 - · A struttura non regolare.
 - Si applica una metodologia di progetto semplificata rispetto a quella generale per le reti sequenziali;

- 19

Contatori sincroni: codici e moduli liberi

- Contatore "ad anello"
 - Modulo: n; Codice: One hot; Codifica: 2^k
 - Bistabile utilizzato: D
 - Codice one-hot:
 - In ogni codifica valida uno e un solo bit assume valore 1, tutti gli altri valgono 0;
 - Per codificare n informazioni diverse occorrono n bit
 - il codice non è a numero minimo di bit.
 - · Esempio: i numeri da 0 a 3 sono codificati come:
 - $-0 = 0001 (2^0)$
 - $-1 = 0010 (2^1)$
 - $-2 = 0100 (2^2)$
 - $-3 = 1000 (2^3)$
 - esiste una corrispondenza 1-a-1 fra l'entità codificata e la posizione dell'unico 1 nella codifica.

- 20 -

- Contatore "ad anello" (ring counter) modulo n:
 - È un registro a scorrimento con riporto tra stadio iniziale e finale

- Il valore del FFD0 viene posto a 1 prima dell'inzio del conteggio; i rimanenti FFD vengono posti a 0.

- 21 -

Contatori sincroni: codici e moduli liberi

- Il contatore "ad anello" ha una struttura ad alto costo ma molto semplice, compatta e veloce
 - il numero di bistabili è molto più elevato del minimo e cresce linearmente.
- Viene utilizzato in applicazioni nelle quali si deve abilitare uno e un solo sottosistema; il contatore svolge il ruolo di unità di controllo.
 - Lo stato di ogni bistabile del contatore costituisce immediatamente il segnale di controllo e non occorre alcuna rete di transcodifica.
 - Se gli stati del contatore sono n, le linee di segnale che si inviano ai sottosistemi controllati sono ancora n.
 - Nota: I'uso di un contatore con un codice a numero minimo bit es., binario naturale richiede una rete di transcodifica che per ogni stato del contatore generi un valore attivo su una sola delle n linee di segnale in uscita (rete combinatoria con k = log n ingressi e n uscite); la rete di transcodifica, al crescere di n, ha costi crescenti e introduce crescenti ritardi di propagazione

- 22 -

- Contatore "ad anello incrociato"
 - Modulo: 2*n (nota: sempre pari);
 - Codice e Codifica (esempio):

			-,.							_	_			_	_	_	_
$Q_1Q_0 \ Q_1^*Q_0^*$		Q,	Q ₁	Q_0	Q_2	⁺Q₁	٠Q,	*		Q_3	Q_2	Q_1	50	Q ₃ *	Q_2	Q_1	Q
0 0 0 0 1	0	0	. 0	0	0	0	1		0	0	0	0	0	0	0	0	1
1 0 1 1 1	1	0	n	1	n	1	1		1	0	0	0	1	0	0	1	1
	2	0	1	1	1	1	1		2	0	0	1	1	0	1	1	1
2 1 1 1 0	2	1	1	1	1	1	Τ		3	0	1	1	1	1	1	1	1
3 1 0 0 0	3	<u>_</u>	Τ	Т	1	Τ	U		4	1	1	1	1	1	1	1	0
	4	1	1	0	1	0	0		_	<u>+</u>				1			_
	5	1	0	0	0	0	0		5	<u> </u>	Τ	Τ	U	Τ	Т	0	0
D									6	1	1	0	0	1	0	0	0
 Bistabile utilizzato: D)								7	1	0	0	0	0	0	0	0

- Bistabile utilizzato: D
- Per codificare 2^*n informazioni diverse occorrono n bit
 - · Il codice non è a numero minimo di bit.
- Svantaggi principali: modulo sempre pari, codice e codifica senza particolare campo di applicabilità
- Vantaggio principale: distanza di Hamming unitaria, prestazioni elevate, meno elementi di memoria rispetto al contatore ad anello

- Contatore modulo diverso da 2ⁿ: Esempio1.
 - Modulo: 6; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 6

Q_2	Q_1	Q_0	Q_2	•Q ₁	٠Q,
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0

Nota: le equazioni derivano dalla sintesi delle tre funzioni combinatorie T₀, T₁ e T₂

- 25

Contatori sincroni: codici e moduli liberi

- Contatore modulo diverso da 2ⁿ: Esempio2.
 - Modulo: 10; Codice: A numero minimo bit; Codifica: Binaria Naturale (Contatore *BCD* o *Decadico*)
 - Bistabile utilizzato: T

Tabella delle transizioni e delle eccitazioni per M= 10

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ta	bel	la	dell	le t		
0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1	Q ₃	Q_2	Q_1	2ο	Q ₃ *	Q_2	Q_1	Q_0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	1
0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1	0	0	0	1	0	0	1	0
0 1 0 0 0 1 0 1	0	0	1	0	0	0	1	1
	0	0	1	1	0	1	0	0
0 1 0 1 0 1 1 0	0	1	0	0	0	1	0	1
0 1 0 1 0 1 1 0	0	1	0	1	0	1	1	0
0 1 1 0 0 1 1 1	0	1	1	0	0	1	1	1
0 1 1 1 1 0 0 0	0	1	1	1	1	0	0	0
1 0 0 0 1 0 0 1	1	0	0	0	1	0	0	1
1 0 0 1 0 0 0 0	1	0	0	1	0	0	0	0

$$\begin{array}{c} T_3 = Q_3 * Q_0 + Q_2 * Q_1 * Q_0 \\ T_2 = Q_1 * Q_0 \\ T_1 = Q_3 ' * Q_0 \\ T_0 = 1 \end{array}$$

- 26 -

Contatori sincroni: Composizione di contatori

- É possibile realizzare contatori per moduli elevati partendo da contatori più semplici
 - Esempio: realizzare un contatore a k cifre decimali utilizzando K blocchi del contatore decadico (Mod-10 ([0..9]));
- Ogni sotto-contatore genera un segnale di traboccamento (carry) che, quando raggiunge valore 1, consente al clock di attivare il sotto-contatore collegato ad esso in cascata.
- La condizione di traboccamento è quella indicata dalla ultima configurazione di stato presente prodotta dal contatore a valle.
 - Esempio: nel contatore BCD, la condizione di traboccamento è 1001 che corrisponde a $f(Q_3, Q_2, Q_1, Q_0) = Q_3 * Q_2' * Q_1' * Q_0$
- Il modulo del contatore complesso è il prodotto dei moduli.
 - Esempio: Due contatori Mod-2 e Mod-5 possono produrre un contatore decadico.

- 27 -

Contatori sincroni: Composizione di contatori

Esempio: contatore BCD a 3 Cifre (Mod-1000).

 Esempio: contatore Mod-12 mediante composizione di un contatore Mod-2 e un contatore Mod-6 (la versione a destra è più costosa e lenta).

- 28 -

Contatori asincroni: Generalità

- Contatore asincrono:
 - Almeno un bistabile non riceve in ingresso il segnale di conteggio ne in modo diretto ne in modo indiretto;
 - Indiretto: clock in AND con una funzione logica che ha, come supporto, alcune/tutte le variabili di stato (gated clock).
 - La sua commutazione dei bistabili che non sono collegati al clock è comandata da quella degli altri bistabili e avverrà con un ritardo dovuto alla propagazione attraverso tali FF (oltre che alle eventuali reti combinatorie);
 - La commutazione è generata dall'opportuno fronte di commutazione sull'uscita di almeno uno degli altri bistabili coinvolti.
- Modulo, codice e codifica possono anche essere specificati arbitrariamente; purtrppo, può accadere che un contatore asincrono con queste caratteristiche non sia realizzabile.
- Ipotesi: uso di bistabili T che commutano sul fronte ed in cui T viene posto ad 1.

- 29

Contatori asincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: 2n; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T
 - · Il contatore è ottenuto collegando in cascata i bistabili.
 - Con FFT che commutano sul fronte di salita il contatore conta indietro.
 - » conta avanti con FF che commutano sul fronte di discesa.
 - Funzionamento: il fronte di salita del clock modifica lo stato di ${\sf FF_T_0}$ che passa da 0 ad 1; questo fronte di salita modifica lo stato di ${\sf FF_T_1}$ che, a sua volta, genera un fronte di salita che modifica modifica lo stato di ${\sf FF_T_2}$;
 - » 000...00, 111...11, 111..10, ...

- 30 -

Contatori asincroni: Contatore Binario Naturale

- Contatore binario (modulo 2ⁿ)
 - Modulo: diverso da 2^n ; Codice: A numero minimo bit; Codifica: Binaria Naturale
 - Bistabile utilizzato: T
 - Contatore indietro (conta in avanti se il fronte di commutazione è quello di discesa)
 - II fronte di salita del clock modifica lo stato di FF_T0 che passa da 0 ad 1; questo fronte di salita modifica lo stato di FF_T1;
 - La configurazione successiva all'ultima valida pone lo stato di tutti i FF a 000...00.
 - Esempio: contatore in avanti MOD5

- 31