

## **Art of Problem Solving** 2003 USAMO

## USAMO 2003

| Day 1 | April 29th                                                                                                                                                                                                                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Prove that for every positive integer $n$ there exists an $n$ -digit number divisible by $5^n$ all of whose digits are odd.                                                                                                                                                                                           |
| 2     | A convex polygon $\mathcal{P}$ in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon $\mathcal{P}$ are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers. |
| 3     | Let $n \neq 0$ . For every sequence of integers                                                                                                                                                                                                                                                                       |
|       | $A = a_0, a_1, a_2, \dots, a_n$                                                                                                                                                                                                                                                                                       |
|       | satisfying $0 \le a_i \le i$ , for $i = 0,, n$ , define another sequence                                                                                                                                                                                                                                              |
|       | $t(A) = t(a_0), t(a_1), t(a_2), \dots, t(a_n)$                                                                                                                                                                                                                                                                        |
|       | by setting $t(a_i)$ to be the number of terms in the sequence $A$ that precede the term $a_i$ and are different from $a_i$ . Show that, starting from any sequence $A$ as above, fewer than $n$ applications of the transformation $t$ lead to a sequence $B$ such that $t(B) = B$ .                                  |
| Day 2 | April 30th                                                                                                                                                                                                                                                                                                            |
| 4     | Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$ , respectively. Lines $AB$ and $DE$ intersect at $F$ , while lines $BD$ and $CF$ intersect at $M$ . Prove that $MF = MC$ if and only if $MB \cdot MD = MC^2$ .                                         |
| 5     | Let $a, b, c$ be positive real numbers. Prove that                                                                                                                                                                                                                                                                    |
|       | $\frac{(2a+b+c)^2}{2a^2+(b+c)^2} + \frac{(2b+c+a)^2}{2b^2+(c+a)^2} + \frac{(2c+a+b)^2}{2c^2+(a+b)^2} \le 8.$                                                                                                                                                                                                          |
| 6     | At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003 <sup>2003</sup> . Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the                                                             |



## **Art of Problem Solving** 2003 USAMO

difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.



These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4501 Contributors: MithsApprentice, April, rrusczyk