AULA 7 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS (ALGORITMOS SIMPLES)

Implemente os seguintes algoritmos recursivos e calcule o número de operações aritméticas (multiplicações ou divisões) executadas por cada algoritmo:

Cálculo da potência xⁿ usando os seguintes métodos:

$$1^o \text{ m\'etodo} \longrightarrow x^n = x \times x^{n-1} \qquad \qquad 2^o \text{ m\'etodo} \longrightarrow x^n = \begin{cases} 1, \text{ se } n = 0 \\ \left(x^{n/2}\right)^2, \text{ se } n \text{ \'e par} \\ x \times \left(x^{n/2}\right)^2, \text{ se } n \text{ \'e impar} \end{cases}$$

 Preencha a tabela com o valor da função (para x = 0.5) e o número de multiplicações para os sucessivos valores de n.

N	1º método (N)	Nº de Multiplicações	2º método (N)	Nº de Multiplicações
1	0.5	1	Igual	6
2	0.25	2	an método	2
3	0.125	3	1	3
4	0.0625	4		U
5	0.03125	S		4
6	0.015625	6		5
7	0.061813	7		5
8	0.003906	80		6
9	0.001953	9		5
10	0.000933	10		6
11	0.000488	ID.	/	6
12	0.000244	12		٦
13	0.000122	13		6
14	0.000061	14		2
15	0 0000031	10		7
16	0.000018	16		8
O(N)	N		100 2 1	1

- Analisando os dados da tabela qual é a ordem de complexidade de cada algoritmo? Ha tabela
- Determine formalmente a ordem de complexidade de cada algoritmo, obtendo uma expressão que corresponda aos valores obtidos experimentalmente.

• Verificação de potência a = bⁿ

Implemente uma função recursiva eficiente para determinar se um número inteiro positivo é uma potência de outro número inteiro positivo.

O número a é uma potência do número b se a for múltiplo de b e o quociente da divisão inteira de a por b também for uma potência de b. Tenha em consideração que a unidade e o próprio b são potências de b $(1 = b^0 e b = b^1)$.

Determine a ordem de complexidade do algoritmo desenvolvido.

 Logoritmo de Comalife
 Ma fracima fasima)

NOME: Pedro Veloco Teixeira

Nº MEC: 84715

· Calculo da Potemio

 $\frac{1}{1 + 16(115)^{2}} = \frac{1}{1 + 16(115)^{2}} = \frac{1$

2+10 (4/2), och impar

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) + 1 = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 1 + 16(h - 5) = 1$$

$$= 1 + 16(h - 5) = 1$$

Arrálise para 1 par

-> nees acuerdo.

$$H_2(D) = 1 + R\left(\frac{D}{2!}\right) = 2 + R\left(\frac{D}{2^2}\right) = 3 + R\left(\frac{D}{2^2}\right) = 4 + R\left(\frac{D}{2^4}\right)$$

Arralise four Mimpan

= Amalogamente à anális hava 1º han

$$R_2(N) = 2 + 10\left(\frac{N}{2!}\right) = 2 + 2 + 10\left(\frac{N}{2!}\right) = --$$

60 utilizando o Rasper Theorem

- Per analise empiriea vougica de que 10, (4) é eventralmente mão de custerne

NOME: Pedro valoso Teixeira

N. WEC: 8A±12 = P (12 h)

Cogaritmicon

· Verificação da Potêmeia

- -> Best case: Bre (+)=1, o que ocone quando vouframos se retotensia de
- -> world ease: UE (N) = 108 (N), analo gamente à ferquisce numa Binary Search Tree (ande termos 6(N) = 105, (N) propue our coda chamada recursiva *1

• Uma generalização dos Números de Fibonacci

Implemente uma função recursiva para calcular uma generalização dos Números de Fibonacci usando a definição recorrente:

$$P(0) = 0$$

$$P(1) = 1$$

$$P(n) = 3 \times P(n-1) + 2 \times P(n-2)$$
, para n >1

Implemente um programa para executar a função para sucessivos valores de n e que permita determinar experimentalmente a **ordem de complexidade das operações de multiplicação** do seu algoritmo. Efetue a análise empírica da complexidade construindo uma tabela com o número de operações efetuadas para diferentes valores de n. Qual é a ordem de complexidade da função recursiva?

Uma forma de resolver problemas recursivos de maneira a evitar o cálculo repetido de valores, consiste em calcular os valores de baixo para cima, ou seja, de P(0) para P(n) e utilizar um *array* para manter os valores entretanto calculados. Este método designa-se por **programação dinâmica** e reduz o tempo de cálculo à custa da utilização de mais memória para armazenar valores intermédios.

- Usando a técnica de programação dinâmica, implemente uma função repetitiva alternativa e efetue a análise empírica da sua complexidade. Qual é a ordem de complexidade da função repetitiva?
- Faça a análise formal (no verso da folha) da complexidade de cada uma das funções e confirme as ordens de complexidade obtidas experimentalmente.

N	F. Recursiva	Nº de Multiplicações	P. Dinâmica	Nº de Multiplicações
0	0	0	[guo0	0
1	1	0	aF.	0
2	3	2	วงเขณายาก	2
3	11	4		G
4	39	8		6
5	139	14		8
6	495	24		10
7	1763	40		12
8	6279	66	-/-	14
9	22363	108		16
10	79647	176		18
11	283667	286		20
12	1010295	464		22

· Usando Teonica de Programação Dimárnica

$$re(\nu) = \sum_{i=2}^{N} a = 2\sum_{i=3}^{N} = 2 \times (\nu - 2 + 1) = 2 \times (\nu - 1) = 2\nu - 2$$

· Vujos recusiva

- Equação característica

$$x^{2}-3x-2=0$$
 (a) $x=\frac{3\pm\sqrt{9+2x4}}{2}$ (b) $x=\frac{3\pm\sqrt{14}}{2}$ $x=\frac{3\pm\sqrt{14}}{2}$

$$R_2(V) = C_1(3.5^m) - C_2 0.5^m \rightarrow (0.3.5^m)$$
 Extonencial

Versão recursiva (for Indução))					
- vomos allumin que T(N.	-1) - (1)	124-1.	1114545	000	word	200
	0	()	+111000	· co	111000	don
			7111000		0	don
- Condigate imicial					0	- free
					3	- Jane
- Condigue imicial N= 1. T(N-1) = 6	(2°)					- June
- Condigue imicial N= 1. T(N-1) = 6	(2°)			/		che
- Condigate imicial	(2°)		14 Rieachie	/		Com

TCH) = T (H-1) + T(H-2) = 6 (2 H-1) + 6 (2 Y-2) = 6 (2 M) ged