

Existing Technologies Survey

Illustrative Examples: NVIDIA and AMD

Introduction

Why These Two?

- Illustrative, not exhaustive
- Represents a **demonstrative spread** across the problem space
 - O Different artefact types: reference values vs. endorsed values
 - Different data formats: TCG RIM, CoRIM, X.509
 - Class-level vs. instance-level addressing of artefacts
 - Some non-trivial querying patterns (e.g. stateful environment)
 - Different use cases: signature verification vs. appraisal
- These disparities are useful when seeking common abstractions that are functional and flexible

AMD Key Distribution Service (KDS)

Overview

Purpose

AMD KDS provides endorsement certificates (VCEKs) for SEV-SNP enabled AMD CPUs

Scope

Designed for confidential computing platforms, particularly in cloud environments

Goal

- Allow Verifiers to fetch chip-specific public keys required to validate attestation reports
- Allow Verifiers to establish trust in public keys by chaining them back to an AMD root certificate

Detail

- Discovery
 - O Base URL https://kdsintf.amd.com
 - No enumeration of resources caller must know what to request (based on Evidence)
- Fetch certificate chain for product family

GET vcek/v1/{product_name}/cert_chain

AMD root cert and product cert in PEM format

Fetch CRL for product family

GET vcek/v1/{product name}/crl

CRL in DER format (section 5 of RFC5280)

Fetch VCEK for CPU instance and TCB

GET vcek/v1/{product name}/{chip id}?{tcb parameters}

VCEK.CRT

- Fetch the Cert Chain for "Milan" Processors
 - Query

\$ curl -s https://kdsintf.amd.com/vcek/v1/Milan/cert chain

Output (abridged)

```
----BEGIN CERTIFICATE----
MIIGITCCBDigAwIBAgIDAQABMEYGCSqGSIb3DQEBCjA5oA8wDQYJYIZIAWUDBAIC
BQChHDAaBgkqhkiG9w0BAQgwDQYJYIZIAWUDBAICBQCiAwIBMKMDAgEBMHsxFDAS
...
-----END CERTIFICATE-----
BEGIN CERTIFICATE-----
MIIGYzCCBBKgAwIBAgIDAQAAMEYGCSqGSIb3DQEBCjA5oA8wDQYJYIZIAWUDBAIC
BQChHDAaBgkqhkiG9w0BAQgwDQYJYIZIAWUDBAICBQCiAwIBMKMDAgEBMHsxFDAS
...
-----END CERTIFICATE-----
```


Fetch A VCEK

Query (uses Content-Disposition header to save as vcek.crt)

\$ curl -s

 $https://kdsintf.amd.com/vcek/v1/Milan/3ac3fe21e13fb0990eb28a802e3fb6a29483a6b0753590c951bdd3b8e53786184ca39e359669a2b76a1936776b564ea464cdce40c05f63c9b610c5068b006b5d\\ -OJ$

O Display X.509

\$ openssl x509 -in vcek.crt -text -noout

Output (next slide)

Output (abridged)

```
Certificate:
 Data:
    Version: 3 (0x2)
    Serial Number: 0 (0x0)
    [...]
    Issuer: OU=Engineering, C=US, L=Santa Clara, ST=CA, O=Advanced Micro Devices, CN=SEV-Milan
    Validity
      Not Before: May 8 15:06:22 2025 GMT
      Not After: May 8 15:06:22 2032 GMT
    Subject: OU=Engineering, C=US, L=Santa Clara, ST=CA, O=Advanced Micro Devices, CN=SEV-VCEK
    Subject Public Key Info:
      [...]
    X509v3 extensions:
      1.3.6.1.4.1.3704.1.1:
      1.3.6.1.4.1.3704.1.2:
        ..Milan-B0
      1.3.6.1.4.1.3704.1.3.1:
      1.3.6.1.4.1.3704.1.3.2:
```


In Context

Overview

Purpose

 The NVIDIA RIM Service provides signed Reference Integrity Manifests (RIMs) to support platform attestation

Scope

Designed for NVIDIA DPUs, GPUs and related secure devices

Goal

 Allow Verifiers to validate attestation Evidence using known-good measurements and metadata signed by NVIDIA

Detail

- Discovery
 - Base URL https://rim.attestation.nvidia.com
 - O RIM naming convention:
 - NV GPU DRIVER {PRODUCT} {DRIVER VERSION}
 - NV_GPU_VBIOS_{BOARD_NUMBER}_{SKU}_{BOARD_ID}
 - NV_SWITCH_{BIOS}_{VERSION}_{PROJECT}_{SKU}_{CHIP}_{SKU}

Enumeration

GET v1/rim/ids?{rim_format}

JSON response listing IDs of known RIMs in the requested format (TCG or CORIM)

Fetch Specific RIM

GET v1/rim/{id}

JSON-wrapped, base64-encoded TCG RIM (XML) file or CoRIM file

- Enumerate RIMs
 - Query

```
$ curl -s 'https://rim.attestation.nvidia.com/v1/rim/ids | jq .
```

Output (abridged JSON)

```
{
  "ids":[
  "NV_GPU_DRIVER_GH100_535.104.05",
  "...",
  "NV_GPU_VBIOS_1010_0200_882_96005E0001",
  "...",
  "NV_NIC_FIRMWARE_CX7_28.39.4082-LTS_MCX713104AC-ADA",
  "...",
  "NV_SWITCH_BIOS_5612_0002_890_96105E0001",
  "..."
],
  "request_id": "54922519-b87e-4057-b323-33b9a2bb9743",
  "last_updated": "2025-04-08T09:05:11.595000"
}
```


- Fetch A GPU Driver RIM (TCG Format)
 - Query

```
$ curl -s 'https://rim.attestation.nvidia.com/v1/rim/NV_GPU_DRIVER_GH100_535.104.05' \
| jq -r '.rim' \
| base64 -D -o rim.xml
```

Output (abridged rim.xml)

- Fetch A CONNECTX-7 NIC Firmware RIM (CoRIM Format)
 - Query

```
$ curl -s 'https://rim.attestation.nvidia.com/v1/rim/NV_NIC_FIRMWARE_CX7_28.39.4082-LTS_MCX713104AC-ADA' \
| jq -r '.rim' \
| base64 -d \
| cbor2pretty.rb \
| egrep -v 'tag\(500\)|tag\(502\)' \
| pretty2cbor.rb \
> corim.cbor
```

Display using cocli - https://github.com/veraison/cocli

```
$ cocli corim display –f corim.cbor –-show-tags
```


• **CoRIM Structure**

Top-Level

```
Meta:
{
    "signer": {
        "name": "NVIDIA"
    }
}
Corim:
{
    "corim-id": "ConnectX-7_28.39.4082",
```

o CoMID

```
"tags": [
"2QH6ogGhAHgdMTViMzEwMjExNWIzMDAzMzAwLTI4LjM5..."
],
```

Comparison and Discussion

	NVIDIA RIM Service	AMD KDS
Distributes	Reference values + endorsements	Endorsements only
Output Format	TCG RIM or CoRIM	X.509
Includes Hashes	✓ yes	× no
Query Input	Device model, firmware version	Chip ID + TCB versions
Target Devices	NVIDIA GPUs, DPUs	AMD SEV-SNP CPUs
Attestation Use Case	Appraisal (firmware validation)	Signature verification
API Style	HTTP GET URL path	HTTP GET URL path + parameters

https://wiki.ietf.org/group/rats/referencevalues/nvidia-endorsement-distribution-api

https://wiki.ietf.org/group/rats/referencevalues/amd-key-distribution-service

Thoughts/Discussion

- Endorsements/RVs are not always addressable by a taxonomic path dynamic query parameters are sometimes needed (as in the case of AMD, where TCB patch levels help to address the certificate).
- Fragmentation is horizontal, convenience is vertical
 - Vendor-specific evidence is naturally geared towards fetching the same vendor-specific endorsements
 if you have a SEV-SNP attestation report, it's easy to call the AMD KDS with the correct parameters
 - Commonality may result in more conversions and less convenience, unless it is embraced by the whole ecosystem
- Other comments/questions?

