ALGORITHM II LAB REPORT

Title: Algorithm II Lab Course code: CSE-258 2nd Year 2nd Semester Submitted to

Mohammad Ashraful Islam

Assistant Professor
Department of Computer Science and
Engineering

Bulbul Ahammad

Assistant Professor Department of Computer Science and Engineering

NAME	EXAM ROLL	CLASS ROLL	REGISTRATION NUMBER
Md Tanvir Hossain Saon	202200	388	20200650758

Sparse Table

```
#include<bits/stdc++.h>
using namespace std;
#define N 1000
int arr[]={0,2,6,1,4,9,4,6,1,7,3};
int Table[20][N];
void build(int n)
{
    for(int i=1;i<=n;i++)Table[0][i]=arr[i];</pre>
    for(int i=1;i<=3;i++)
        for(int j=1;j<=n;j++)</pre>
            Table[i][j]=Table[i-1][j];
            if(j+(1<<(i-1))<=n)Table[i][j] = min(Table[i][j], Table[i-1][j+(1<<(i-1))]);
    }
}
int query(int lft,int rgt)
    int range = rgt - lft + 1;
    int dg=31-__builtin_clz(range);
    return min (Table[dg][lft] , Table[dg][rgt - ( 1<<dg )+1 ]);</pre>
}
int main()
    build(10);
    cout<<" ";
    for(int j=1;j<=10;j++)
        {
            cout<<setw(3)<<fixed<<j<<" ";</pre>
        cout<<"\n=======\n";
    for(int i=0;i<=3;i++)
    {
        cout<<i<<": ";
        for(int j=1;j<=10;j++)</pre>
            cout<<setw(3)<<fixed<<Table[i][j]<<" ";</pre>
        cout<<endl;</pre>
    }
    cout<<"Min of 2 to 6 range is "<<query(2,6)<<endl;</pre>
}
```

```
"D:\202200_388_Algorithm II\SparseTable.exe"
           3
              4
                  5
                      6
                                 9 10
       2
                             8
        6
                          6
                              1
               4
                       4
1:
           1
               4
                   4
        1
                      4
2: 1 1 1
               4
                   1
                      1
    1
        1
           1
                   1
                       1
                          1
                              1
                                 3 3
Min of 2 to 6 range is 1
Process returned 0 (0x0) execution time : 0.078 s
Press any key to continue.
```

Robin Karp

```
#include<bits/stdc++.h>
using namespace std;
vector<int>RabinKarp(string const& s, string const& t) {
    const int p = 37;
    const int m = 1e9 + 7;
    int ls = (int)s.size(), lt = (int)t.size();
    int T = lt;
    vector<long long> p_pow(max(ls, lt));
    p_pow[0] = 1;
    for (int i = 1; i < (int)p_pow.size(); i++)</pre>
        p_pow[i] = (p_pow[i-1] * p) % m;
    vector<long long>h(lt + 1, 0);
    for (int i = 0; i < lt; i++)
        h[i+1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m;
    long long h_s = 0;
    for (int i = 0; i < ls; i++)
        h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m;
    vector<int>occurences;
    for (int i = 0; i + ls - 1 < T; i++) {
        long long cur_h = (h[i+ls] + m - h[i]) % m;
        if (cur_h == h_s * p_pow[i] % m)
            occurences.emplace_back(i);
    return occurences;
int main()
    string Text="abaabaaabaaab";
    string Pattern ="aba";
    vector<int>found = RabinKarp(Pattern, Text);
    cout<<found.size()<<" Place found\n";</pre>
    cout<<"Index : ";</pre>
    for(int i=0;i<found.size();i++)cout<<found[i]<<" ";</pre>
    cout<<endl;</pre>
}
```

MATRIX EXPONENTIATION

```
#include <bits/stdc++.h>
using namespace std;
void multiply(int F[2][2], int M[2][2])
   int a = F[0][0]%10001 * M[0][0]%10001 + F[0][1]%10001 * M[1][0]%10001;
   int b= F[0][0]%10001 * M[0][1]%10001 + F[0][1]%10001 * M[1][1]%10001;
   int c = F[1][0]%10001 * M[0][0]%10001 + F[1][1]%10001 * M[1][0]%10001;
   int d= F[1][0]%10001 * M[0][1]%10001 + F[1][1]%10001 * M[1][1]%10001;
   F[0][0] = a;
   F[0][1] = b;
   F[1][0] = c;
   F[1][1] = d;
}
void power(int F[2][2], int n)
   if (n == 1 || n == 2)
      return ;
   int M[2][2] = \{\{1,1\},\{1,0\}\};
   for(int i=2;i<n;i++)</pre>
   {
       multiply(F, M);
   }
}
int fib_mat(int n)
   int F[2][2] = \{\{1,1\},\{1,0\}\};
   if (n == 1)
      return 0;
   power(F, n - 1);
   return F[0][0];
   }
int main()
{
   int n;
   while (1)
          cout<<"Enter the integer n to find nth fibonacci(Enter 0 to exit):";</pre>
          cin>>n;
          if (n == 0)
          break;
          cout<<fib_mat(n)<<endl;</pre>
       }
   return 0;
}
```

```
Enter the integer n to find nth fibonacci(Enter 0 to exit):12
89
Enter the integer n to find nth fibonacci(Enter 0 to exit):345
13937
Enter the integer n to find nth fibonacci(Enter 0 to exit):0

Process returned 0 (0x0) execution time : 13.903 s

Press any key to continue.
```

Segment Tree

```
#include<bits/stdc++.h>
using namespace std;
int arr[]={4, 9, 2, 4, 2, 9, 3, 7, 8, 0, 5, 3, 9};
struct node
{
    int st,ed;
    int mn;
    node *1,*r;
    node(){}
    node(int _x, int _y){st=_x,ed=_y;l=r=NULL; mn = 10000000; }
};
void build(node *ob )
{
    if(ob->st==ob->ed)
        int ind = ob->st;
        ob->mn = arr[ind];
        return ;
    }
    int mid = (ob->st + ob->ed)/2;
    if(ob->l==NULL)ob->l = new node(ob->st, mid);
    if(ob->r==NULL)ob->r = new node (mid+1, ob->ed);
        build(ob->1);
        build(ob->r);
    ob->mn = min(ob->l->mn, ob->r->mn);
}
void insert(node *ob , int ind , long long val)
{
    if(ob->st==ob->ed)
        ob->mn = val;
        return ;
    int mid = (ob->st + ob->ed)/2;
    if(ob->l==NULL)ob->l = new node(ob->st, mid);
    if(ob->r==NULL)ob->r = new node (mid+1, ob->ed);
    if(ind<=mid)</pre>
        insert(ob->1, ind, val);
    else
    {
```

```
insert(ob->r,ind, val);
    }
    ob->mn = min(ob->l->mn, ob->r->mn);
}
long long query(node *ob , int x , int y)
    if(ob\rightarrow st==x \&\& ob\rightarrow ed==y)
    {
         return ob->mn;
    }
    int mid = (ob->st + ob->ed)/2;
    if(y<=mid)</pre>
    {
         return query(ob->1,x,y);
    }
    else if(x>mid)
         return query(ob->r,x,y);
    }
    {
         int a = query(ob->1, x, mid);
         int b = query(ob->r, mid+1, y);
         return min(a,b);
    }
}
int main()
    int n = 13;
    node *root =new node(0,n-1);
    cout << "Starting Node: ";</pre>
    cout<<root->st<<endl;</pre>
    cout << "Ending Node: ";</pre>
    cout<<root->ed<<endl;</pre>
    build(root);
    cout<<"query(1,1) provides "<<query(root, 1,1)<<endl;</pre>
    cout<<"query(1,10) provides "<<query(root, 1,10)<<endl;</pre>
    cout<<"query(2,8) provides "<<query(root,2,8)<<endl;</pre>
    cout<<"query(10,12) provides "<<query(root,10,12)<<endl;</pre>
    return 0;
}
```

```
Starting Node: 0
Ending Node: 12
query(1,1) provides 9
query(2,8) provides 2
query(10,12) provides 3

Process returned 0 (0x0) execution time: 0.328 s
Press any key to continue.
```

Square Root Decomposition

```
#include<bits/stdc++.h>
using namespace std;
int A[]=\{0,2,4,3,1,6,7,8,9,10,7\};
int Rn, N=10;
int Block[10];
int Query(int L, int R)
    int Lb = (L-1)/Rn + 1;
    int Rb = (R-1)/Rn + 1;
    int res = 1000000;
    for(int i=Lb+1;i<=Rb-1;i++)res = min(res, Block[i]);</pre>
    for(int i=L;i<=min(R,Lb*Rn );i++)res = min(res,A[i]);</pre>
    for(int i= max( (Rb-1)*Rn +1, L ); i <= R; i++ ) res = min(res, A[i]);
    return res;
void preProcessing()
    int numberofBlock = 10/Rn;
    for(int i=1;i<=numberofBlock;i++)</pre>
        Block[i]=1000000;
        for(int j = (i-1)*Rn + 1; j <= i*Rn; j++)
             Block[i] = min( Block[i],A[j]);
    }
}
int bruteForceSolution(int L, int R)
    int res = 100000;
    for(int i=L;i<=R;i++)res = min(res,A[i]);</pre>
    return res;
}
int main()
    Rn = sqrt(N);
    int numberofBlock = 10/Rn;
    int L,R;
    if(N%Rn)numberofBlock++;
    preProcessing();
    cout << "Enter Range: ";</pre>
    while(cin>>L>>R)
    cout<<"Min within the range "<<L<<" to "<< R<<" is "<<Query(L,R)<<endl;</pre>
    assert(Query(L,R)==bruteForceSolution(L,R));
```

```
return 0;
}
```

```
"D:\202200_388_Algorithm II\SQRT_Segmentation.exe"

Enter Range: 2 5
Min within the range 2 to 5 is 1

1 3
Min within the range 1 to 3 is 2

5 8
Min within the range 5 to 8 is 6

4 9
Min within the range 4 to 9 is 1

-
```

KMP

Source Code: #include<iostream> #include<vector> #include<map> #include<algorithm> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<queue> #include<fstream> #include<sstream> #include<stack> #include<list> #include<deque> #include<bitset> #include<utility> #include<climits> #include<iomanip> #include<ctime> #include<complex> using namespace std; #define FOR(i,a,b) for (int i=(a);i<(b);i++) #define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--) #define REP(i,n) for (int i=0;i<(n);i++) #define RREP(i,n) for (int i=(n)-1;i>=0;i--) #define inf INT_MAX/3 #define pb push_back #define MP make_pair #define all(a) (a).begin(),(a).end() #define SET(a,c) memset(a,c,sizeof a) #define CLR(a) memset(a,0,sizeof a) #define pii pair<int,int> #define pcc pair<char,char> #define pic pair<int,char> #define pci pair<char,int> #define VS vector<string> #define VI vector<int> #define debug(x) cout<<#x<<": "<<x<<endl</pre> #define MIN(a,b) (a>b?b:a) #define MAX(a,b) (a>b?a:b) #define pi 2*acos(0.0) #define INFILE() freopen("in0.txt","r",stdin)

#define OUTFILE()freopen("out0.txt","w",stdout)

#define in scanf
#define out printf
#define ll long long

```
#define ull unsigned long long
#define eps 1e-9
#define mod 10007
template<typename T>inline T S(T a){return a*a;}
template<typename T>inline string tostring(T a){ostringstream os("");os << a;return os.str();}</pre>
template<typename T>inline 11 tolong(T a){11 res;istringstream os(a);os>>res;return res;}
template<typename T>inline T gcd(T a, T b){if (b == 0)return a;else return gcd(b, a % b);}
template<typename T>inline ull bigmod(T a, T b, T m){if (b == 0)return 1;else if (b % 2 ==
0)return S(bigmod(a, b / 2, m)) % m;else return (a % m*bigmod(a, b - 1, m)) % m;}
template<typename T>inline VS parse(T str){VS res;string s;istringstream
os(str); while(os>>s)res.pb(s); return res;}
template<typename T>inline ull dist(T A,T B){ull
res=(A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y);return res;}
char T[1000009];
char P[1000009];
int tlen,plen;
int match[1000009];
void build()
{
    match[0]=-1;
    match[1]=0;
    int i,q;
      q=0;
  for(i=2;i<=plen;)</pre>
        if(P[i-1]==P[q])
        {
            q++;
            match[i]=q;
            i++;
        else if(q>0)q=match[q];
        else
        {
            match[i]=0;
            i++;
        }
  }
}
void kmp()
{
    int cnt=0;
    for(int i=0,m=0; i+m<tlen;)</pre>
    {
        if(P[i]==T[i+m])
        {
            if(i%plen==0)cnt++;
```

```
else
         {
             m=m+i-match[i];
             if(m<0)m=0;
             if(match[i]>0)i=match[i];
             else i=0;
         //cout<<i<" "<<ple><<endl;</pre>
    }
    cout<<cnt<<endl;</pre>
}
int main()
{
    int ks,cas;
    cout<<"How Many Test Case: ";</pre>
    cin>>ks;
    for(cas=1;cas<=ks;cas++)</pre>
    {
         cout << "\nEnter the Text: ";</pre>
         scanf("%s",T);
         cout << "\nEnter the Pattern: ";</pre>
         scanf("%s",P);
         tlen=strlen(T);
         plen=strlen(P);
         cout<<"Case "<<cas<<": ";</pre>
         build();
        kmp();
    }
   return 0;
}
```

"D:\202200_388_Algorithm II\KMP.exe"

```
How Many Test Case: 2

Enter the Text: abbaabaabcc

Enter the Pattern: aba
Case 1: 1

Enter the Text: dfsdfsccfbfs

Enter the Pattern: scc
Case 2: 1

Process returned 0 (0x0) execution time: 35.935 s

Press any key to continue.
```

Binary Index Tree

```
#include <bits/stdc++.h>
using namespace std;
vector<int> bit(1000);
void update(int i, int val) {
    while (i < bit.size()) {</pre>
        bit[i] += val;
        i += i & -i;
    }
}
int query(int i) {
    int res = 0;
    while (i > 0) {
        res += bit[i];
        i -= i & -i;
    return res;
}
int main() {
    int n,q;
    cout<<"Enter number of elements & query : "<<endl;</pre>
    cin>>n>>q;
    for(int i=0;i<n;i++){</pre>
        int x;
        cin>>x;
        update(i+1,x);
    }
   while(q--){
        int p,x,y;
        cout<<endl;</pre>
        cout<<endl;</pre>
        cout<<"Press 1 For update\nPress 2 for Query"<<endl;</pre>
        cin>>p>>x>>y;
        if(p==1){
             update(x,y);
        else{
             int ans = query(y)-query(x-1);
             cout<<ans<<endl;</pre>
    return 0;
}
```

```
The provided Here of the state of the state
```