ASE3093 Automatic Control: Homework #5

- 1) Complementary Filter in the Frequency Domain. Suppose two sensors, $x_1(t)$ and $x_2(t)$, are both measuring the same underlying physical signal (e.g., an orientation angle), but with different error characteristics across the frequency spectrum:
 - $x_1(t)$ is obtained from an accelerometer accurate at low frequencies but dominated by high-frequency noise,
 - $x_2(t)$ is obtained from a gyroscope reliable at high frequencies but subject to low-frequency drift.

To fuse these signals in a frequency-sensitive manner, a *complementary filter* is used. The estimated signal $\hat{x}(s)$ is formed as:

$$\hat{x}(s) = G_{LP}(s)x_1(s) + G_{HP}(s)x_2(s)$$

where:

$$G_{\mathrm{LP}}(s) = \frac{1}{\tau s + 1}, \qquad G_{\mathrm{HP}}(s) = \frac{\tau s}{\tau s + 1}$$

These filters are complementary, satisfying:

$$G_{LP}(s) + G_{HP}(s) = 1$$

- a) Show that $G_{LP}(s) + G_{HP}(s) = 1$ for all s.
- b) Sketch or plot the Bode magnitude plots of $G_{LP}(s)$ and $G_{HP}(s)$ for $\tau = 0.1$.
- c) Describe the behavior of both filters in the following frequency regimes:
 - Low frequencies $(\omega \ll \frac{1}{\tau})$,
 - High frequencies $(\omega \gg \frac{1}{\tau})$,
 - Crossover frequency $(\omega = \frac{1}{\tau})$.
- d) Explain how the complementary filter leverages the strengths of both x_1 and x_2 to provide a more robust and accurate estimate $\hat{x}(t)$ across the entire frequency range.

2) Bode plots. For each of the following systems, sketch the Bode magnitude and phase plots by hand. Then verify your results using a computer-based tool (e.g., python or MATLAB).

a)
$$G(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$

b)
$$G(s) = \frac{1000(s+1)}{s(s+2)(s^2+8s+64)}$$

c)
$$G(s) = \frac{4s(s+10)}{(s+50)(4s^2+5s+4)}$$

d)
$$G(s) = \frac{s+2}{s^2(s+20)}$$

e)
$$G(s) = \frac{(s+0.5)(s+1.5)}{s(s^2+2s+2)(s+5)(s+15)}$$

f)
$$G(s) = \frac{s+1}{(s+2)(s+10)}$$

g)
$$G(s) = \frac{s-1}{(s-2)(s+10)}$$