Екзаменаційний білет № 17

I. Теоретична частина

1. Інтерполяційний многочлен Ньютона.

8. Інтерполяційний багаточлен Ньютона

Нехай $x_0, x_1, \dots x_n$ – довільні попарно не співпадаючі вузли, у яких відомі значення функції f.

Алгебраїчний багаточлен п-й ступеня

$$l_n(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + \dots + (x - x_0)(x - x_1)\dots(x - x_{n-1}) f(x_0, x_1, \dots x_n)$$
(13)

 ϵ інтерполяційним, тобто

$$l_n(x_i) = f(x_i), \qquad i = 0, 1, ... n$$

Багаточлен (13) називається інтерполяційним багаточленом Ньютона для нерівних проміжків. Він тотожно збігається з інтерполяційним багаточленом Лагранжа, тобто

$$l_n(x) \equiv L_n(x)$$

В інтерполяційному багаточлені Лагранжа існує залежність кожного його коефіцієнту від кожного значення функції f_i , i=0,1...n... Це, у багатьох випадках буває корисно. Однак, при зміні n інтерполяційний багаточлен Лагранжа потрібно будувати заново. Це його істотній недолік.

Інтерполяційний багаточлен Ньютона будується не основі значень функції, а за допомогою її розподілених різниць. При зміні ступеня n, у інтерполяційному багаточлені Ньютона потрібно додати або відкинути відповідне число доданків.

Приклад 5.

Побудувати інтерполяційні багаточлени Ньютона $l_2(x)$ і $l_3(x)$ для функції f, визначеної за допомогою таблиці.

X	F	$f(x_i, x_{i+1})$	$f(x_i, x_{i+1}, x_{i+2})$	$F(x_i, x_{i+1}, x_{i+2}, x_{i+3})$
0	1			

2	3	1		
3	2	- 1	- 2/3	
5	5	3/2	5/6	3/10

При використанні трьох вузлів $x_0 = 1$, $x_1 = 2$, $x_2 = 3$ (n = 2) маємо

$$l_2(x) = 1 + 1 \cdot x + 2/3 \cdot x(x-2)$$

Приєднання вузла $x_3 = 5$ дозволяє обчислити ще один доданок $3/10 \cdot x(x-2)(x-3)$, і тоді

$$l_3(x) = l_2(x) + 3/10 \cdot x(x-2)(x-3)$$

- 2. Розв'язок задачи Коши для систем ЗДР і ЗДР вищіх порядків.
- 5. Розв'язання задачі Коші для ДР вищих порядків і систем ДР.

Розглянуті методи розв'язання задачі Коші можуть бути використані для інтегрування систем ДР першого порядку. Наприклад, для системи

$$y' = f(x, y, z);$$

$$z' = g(x, y, z)$$

з ПУ $y(x_0) = y_0$, $z(x_0) = z_0$ розрахункові формули для методу Ейлера мають вигляд

$$y_{k+1} = y_k + hf(x_k, y_k, z_k);$$

$$z_{k+1} = z_k + hg(x_k, y_k, z_k);$$

$$x_{k+1} = x_k + h ,$$

тобто знаходження розв'язків виконується паралельно за ідентичними формулами.

Похибка розв'язку системи для наведеного прикладу визначається як

$$\max(\left|y_i^h - y_i^{2h}\right|, \left|z_i^h - z_i^{2h}\right|).$$

Для розв'язання ДР вищих порядків їх необхідно привести до системи ДР першого порядку, розв'язання якої виконується одним із розглянутих методів. Наприклад, рівняння другого порядку y'' = f(x, y, y') з допомогою заміни y' = t зводиться до системи вигляду

$$y'=t$$
;

$$t'=f(x,y,t).$$

Приклад 2.

Отримати розрахункові формули за методом Ейлера для ДР другого порядку

$$y'' + y'/x + y = 0$$
.

Зробивши заміну y' = t, матимемо

$$y' = y$$
;

$$t' = -t / x - y$$

і далі

$$y_{k+1} = y_k + ht_k ;$$

$$t_{k+1} = t_k + h(-t_k / x_k - y_k)$$
;

$$x_{k+1} = x_k + h.$$

II. Практична частина

За допомогою узагальненої формули трапецій обчислити визначений інтеграл

$$\int_{2}^{7} (1 + \ln(x)) * \sin(x) + \ln(x) * x * \cos(x) dx$$

з точністю не гірше за 10-4.