Exercice 1. Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x-y,3x+y)$. Soit B=((1,1),(1,2)) une base de \mathbb{R}^2 . Donner la matrice $[T]_{BB}$.

Exercice 2. Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$,

$$(x, y, z, t) \mapsto (x - 2y + 3z, -x + z - t, y - 3z + 2t, 3y - 5z).$$

Soit B = ((1, 1, -1, 0), (0, 1, 1, -1), (0, 0, 1, 1), (0, 0, 0, 1)) une base de \mathbb{R}^4 et soit $C = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

- 1) Donner la matrice $[T]_{CC}$.
- 2) Donner une base de l'image de T.
- 3) Donner une base du noyau de T.
- 4) L'application T est-elle injective? Surjective? Bijective?
- 5) Donner la matrice $[T]_{CB}$.
- 6) Donner la matrice $[T]_{BC}$.
- 7) Donner la matrice $[T]_{BB}$.

Exercice 3. Soit A la matrice
$$A = \begin{pmatrix} 3 & 1 & 8 & 0 & 2 \\ -1 & -1 & 3 & 2 & 0 \\ -3 & -3 & -4 & 4 & 10 \\ 1 & 0 & -1 & 0 & 6 \end{pmatrix} \in M_{4\times 5}(\mathbb{R}), \text{ et soit } T : \mathbb{R}^5 \to \mathbb{R}^4$$

l'application linéaire définie par $T(x) = A \cdot x^T$

- 1) Soit $a = (13, 2, 3, 6) \in \mathbb{R}^4$. Est-ce que $a \in \text{Im}(T)$?
- 2) Soit $b = (-10, 2, 7, 0) \in \mathbb{R}^4$. Est-ce que $b \in \text{Im}(T)$?
- 3) Soit $c = (-2, 22, -2, 14, 0) \in \mathbb{R}^5$. Est-ce que $c \in \text{Ker}(T)$?

Exercice 4. Calculer le rang de
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 3 & 1 & 4 & -3 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \in M_{3\times 5}(\mathbb{R})$$
, et donner une base de l'espace ligne de A . Faire de même pour $B = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \in M_{3\times 4}(\mathbb{R})$. Quel est le rang de B^T ?

Exercice 5. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f((x,y,z)) = (x-y,x+z). Soit $g: \mathbb{R}^2 \to \mathbb{R}^4$ définie par g((x,y)) = (-x, x+3y, 2y, -x-y). Soit B_n la base canonique de \mathbb{R}^n , n=2,3,4.

- 1) Calculer $[f]_{B_2B_3}$.
- 2) Calculer $[g]_{B_4B_2}$.
- 3) En déduire $[g \circ f]_{B_4B_3}$.
- 4) Donner $g \circ f$ sous la forme $(g \circ f)(x, y, z) = \dots$ en utilisant le résultat précédent.

Exercice 6. Soient V, W des \mathbb{R} -espaces vectoriels et soit $T: V \to W$ une application linéaire injective. Soit $\{v_1,\ldots,v_k\}$ une famille libre de V. Montrer que $\{T(v_1),\ldots,T(v_k)\}$ est une famille libre de W. Est-ce toujours vrai si on ne suppose pas que T est injective?