JADAVPUR UNIVERSITY

Numerical Analysis

Imran Alam

Contents

1	Bisection Method 3 1.1 Code 3 1.2 Output 4
2	Regula Falsi Method 5 2.1 Code
3	Newton Raphson Method 7 3.1 Code
4	Fixed Point Iteration Method 9 4.1 Code 9 4.2 Output 10
5	Secant Method 10 5.1 Code 11 5.2 Output 12
6	Bairstow Method 12 6.1 Code
7	Gauss Elimination 14 7.1 Code 14 7.2 Output 17
8	Gauss Seidel 18 8.1 Code 18 8.2 Output 20
9	Gauss Jordan Elimination 21 9.1 Code 21 9.2 Output 23
10	Power Method 24 10.1 Code 24 10.2 Output 25
11	LU Decomposition 26 11.1 Code 26 11.2 Output 28

12	Jacobi	28
	12.1 Code	28
	12.2 Output	
13	Interpolation	30
	13.1 Code	30
	13.2 Output	32
14	Euler Method	33
	14.1 Code	34
	14.2 Output	
15	Modified Euler Method	35
	15.1 Code	35
	15.2 Output	
16	Trapezoidal Method	36
	16.1 Code	36
	16.2 Output	37
17	Simpson Method	37
	17.1 Code	38
	17.2 Output	

Numerical Method Assignment

Imran Alam, CSE Roll No. 33

November 15, 2018

1 Bisection Method

Date: August 3, 2018

For the following Equation,

$$xsinx + cosx = 0 (1)$$

```
#include <stdio.h>
#include <math.h>
double fun(double x)
   return x*sin(x)+cos(x);
double bisection(double first, double second,double error)
   double mid_second,mid_first,f_mid,f_first,f_second,abserr=0,abserr0;
   double relerr=0, order=0;
   f_first=fun(first);
   f_second=fun(second);
   mid_first=(first+second)/2;
   int i=1;
   f_mid=fun(mid_first);
   printf("Itr lower upper mid fun(midpoint) abserror relerror
       order\n");
   printf("%2d %.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
       %.61f\n",i++,first,second,mid_first,f_mid,abserr,relerr,order);
   while(second-first > error)
       if(f_mid*f_first>0)
       {
```

```
first=mid_first;
           f_first=fun(a);
       }
       else if(f_mid*f_second>0)
       {
           second=mid_first;
           f_second=fun(second);
       }
       else
       {
           break;
       }
       mid_second=(first+second)/2;
       f_mid=fun(mid_second);
       abserr=mid_second-mid_first;
       relerr=abserr0/mid_second;
       order=log(fabs(abserr0))/log(fabs(abserr));
       abserr0=abserr;
       mid_first=mid_second;
       printf("%2d %.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
           %.6lf\n",i++,first,second,mid_second,f_mid,abserr,relerr,order);
   }
   return mid_second;
}
int main(void)
   double first, second,f_first,f_second,root,error;
   printf("Enter the percision\n");
   scanf("%lf",&error);
   do
   {
       printf("Enter lower by upper bound");
       scanf("%lf%lf",&a,&b);
       f_first=fun(first);
       f_second=fun(second);
   } while(f_first*f_second>=0);
   root=bisection(first,second,error);
   printf("\nThe root is :%lf",root);
   return 0;
}
```

Table:

Itr	lower	upper	mid	fun(midpoint)	abserror	relerror	order
1	0.000000	3.140000	1.570000	1.570796	0.000000	0.000000	0.000000
2	1.570000	3.140000	2.355000	0.960963	0.785000	0.000000	3028.978928
3	2.355000	3.140000	2.747500	0.131614	0.392500	0.285714	0.258840
4	2.747500	3.140000	2.943750	-0.401886	0.196250	0.133333	0.574330
5	2.747500	2.943750	2.845625	-0.126550	-0.098125	0.068966	0.701424
6	2.747500	2.845625	2.796563	0.004802	-0.049062	-0.035088	0.770075
7	2.796563	2.845625	2.821094	-0.060321	0.024531	-0.017391	0.813057
8	2.796563	2.821094	2.808828	-0.027619	-0.012266	0.008734	0.842501
9	2.796563	2.808828	2.802695	-0.011373	-0.006133	-0.004376	0.863931
10	2.796563	2.802695	2.799629	-0.003277	-0.003066	-0.002191	0.880229
11	2.796563	2.799629	2.798096	0.000765	-0.001533	-0.001096	0.893039
12	2.798096	2.799629	2.798862	-0.001255	0.000767	-0.000548	0.903375
13	2.798096	2.798862	2.798479	-0.000245	-0.000383	0.000274	0.911888
14	2.798096	2.798479	2.798287	0.000260	-0.000192	-0.000137	0.919023
15	2.798287	2.798479	2.798383	0.000008	0.000096	-0.000068	0.925089
16	2.798383	2.798479	2.798431	-0.000119	0.000048	0.000034	0.930310
17	2.798383	2.798431	2.798407	-0.000056	-0.000024	0.000017	0.934850
18	2.798383	2.798407	2.798395	-0.000024	-0.000012	-0.000009	0.938835
19	2.798383	2.798395	2.798389	-0.000008	-0.000006	-0.000004	0.942361
20	2.798383	2.798389	2.798386	-0.000000	-0.000003	-0.000002	0.945502
21	2.798383	2.798386	2.798385	0.000004	-0.000001	-0.000001	0.948318
22	2.798385	2.798386	2.798385	0.000002	0.000001	-0.000001	0.950858
23	2.798385	2.798386	2.798386	0.000001	0.000000	0.000000	0.953160

The root of equation (1) is 2.798386

2 Regula Falsi Method

Date: August 3, 2018

For the following Equation,

$$xsinx + cosx = 0 (2)$$

```
#include<stdio.h>
#include<math.h>

double fun(double x)
{
    return x*sin(x)+cos(x);
}
double regula(double first,double second,double error)
```

```
{
   double
        mid_second,mid_first,f_mid,f_first,f_second,abserr=0,abserr0,relerr=0,order=0;
   f_first=fun(first);
   f_second=fun(second);
   mid_first=(first*f_second-second*f_first)/(f_second-f_first);
   f_mid=fun(mid_first);
   printf("Itr lower upper midpoint fun(midpoint) abserror relerror
        order\n");
   printf("%2d %.61f %.61f %.61f %.61f %.61f %.61f
        %.61f\n",i++,first,second,mid_first,f_mid,abserr,relerr,order);
   while(second-first > error)
       if(f_first*f_mid<0)</pre>
           second=mid_first;
       else if(f_first*f_mid>0)
          first=mid_first;
       else
           break;
       mid_second=(first*f_second-second*f_first)/(f_second-f_first);
       f_mid=fun(mid_second);
       abserr=mid_second-mid_first;
       relerr=abserr0/mid_first;
       order=log(fabs(abserr0))/log(fabs(abserr));
       abserr0=abserr;
       mid_first=mid_second;
       printf("%2d %.6lf %.6lf %.6lf %.6lf %.6lf %.6lf
           %.6lf\n",i++,first,second,mid_first,f_mid,abserr,relerr,order);
   }
   return mid_second;
}
int main(void)
   double first,second,f_first,f_second,ans,error;
   printf("Enter the percision\n");
   scanf("%lf", &error);
   do {
       printf("Enter initial lower and upper bound for the root");
       scanf("%lf%lf",&first,&second);
       f_first=fun(first);
       f_second=fun(second);
   } while(f_first*f_second>=0);
   ans=regula(first, second, error);
   printf("\nThe root is :%lf",ans);
   return 0;
}
```

Table:

Itr	lower	upper	midpoint	fun(midpoint)	abserror	relerror	order
1	0.000000	3.000000	1.914935	1.465269	0.000000	0.000000	0.000000
2	1.914935	3.000000	2.607545	0.466543	0.692610	0.000000	1996.329581
3	2.607545	3.000000	2.858054	-0.160516	0.250509	0.265617	0.265332
4	2.607545	2.858054	2.767448	0.080618	-0.090606	0.087650	0.576479
5	2.767448	2.858054	2.825283	-0.071552	0.057835	-0.032740	0.842490
6	2.767448	2.825283	2.804364	-0.015787	-0.020918	0.020470	0.737022
7	2.767448	2.804364	2.791012	0.019381	-0.013352	-0.007459	0.895987
8	2.791012	2.804364	2.799535	-0.003029	0.008523	-0.004784	0.905786
9	2.791012	2.799535	2.796452	0.005092	-0.003083	0.003044	0.824113
10	2.796452	2.799535	2.798420	-0.000089	0.001968	-0.001102	0.927951
11	2.796452	2.798420	2.797708	0.001786	-0.000712	0.000703	0.859687
12	2.797708	2.798420	2.798163	0.000589	0.000454	-0.000254	0.941673
13	2.798163	2.798420	2.798327	0.000156	0.000164	0.000162	0.883291
14	2.798327	2.798420	2.798386	-0.000001	0.000059	0.000059	0.895489
15	2.798327	2.798386	2.798365	0.000056	-0.000021	0.000021	0.905378
16	2.798365	2.798386	2.798379	0.000020	0.000014	-0.000008	0.959905
17	2.798379	2.798386	2.798383	0.000007	0.000005	0.000005	0.916734
18	2.798383	2.798386	2.798385	0.000002	0.000002	0.000002	0.923135

The root of equation (2) is 2.798385

3 Newton Raphson Method

Date: August 10, 2018

For the following Equation,

$$e^x = 2x + 1 \tag{3}$$

```
#include<stdio.h>
#include<math.h>

double function(double x) //the given function
{
    return exp(x)-2*x-1;
}
double function1(double x) //differentiation of the given function
{
    return exp(x)-2;
```

```
void newton_raphson(double first,int num_iteration)
   double second,absolute_error0,absolute_error1 =0,order;
   int index=0;
   printf("Itr xi f(xi) absolute_error order\n");
   while(index<num_iteration)</pre>
      second=first-((function(first))/function1(first));
      absolute_error1=second-first;
      if(fabs(absolute_error1) <= 0.00005)</pre>
          break;
      order=fabs(log(fabs(absolute_error1))/log(fabs(absolute_error0)));
          //to find the order of convergence
      absolute_error0=absolute_error1;
      printf("%2d %.4lf %.4lf %.4lf
          first=second;
      index++;
   }
}
int main()
   double first;
   int num_iteration;
   printf("Enter the first root: \n");
   scanf("%lf",&first);
   printf("Enter the number of iteration: \n");
   scanf("%d",&num_iteration);
   newton_raphson(first,num_iteration);
   return 0;
}
```

Table:

Itr	xi	f(xi)	$absolute_{e}rror$	order
1	5.0000	137.4132	0.9385	0.0001
2	4.0615	48.9366	0.8729	2.1420
3	3.1885	16.8757	0.7584	2.0354
4	2.4302	5.5004	0.5876	1.9223
5	1.8426	1.6276	0.3774	1.8328
6	1.4652	0.3979	0.1709	1.8128
7	1.2943	0.0598	0.0363	1.8777
8	1.2580	0.0024	0.0016	1.9483

The root of equation (3) is 1.2580

4 Fixed Point Iteration Method

Date: August 3, 2018

For the following Equation,

$$e^x - 4x^2 = 0 \tag{4}$$

Initial Root Guess = 1No. Of Iterations = 10

```
#include<stdio.h>
#include<math.h>
#define E 0.000005 //Precision
double Gfunction(double x) //function in terms of {\tt x}
   return sqrt(exp(x)/4);
}
double Gdiff(double x) //first derivative of Gfunction
{
   return (\exp(x/2)/4);
}
double Ffunction(double x) //the given function
{
   return exp(x)-4*x*x;
double fixed_point(double first,int num_iteration)
   double second1,second2,absolute_error0,absolute_error1=0,order;
   int index=0;
   second1=Gfunction(first);
   printf("Itr \t xi \t |g'(xi)| \t f(xi) \t absolute_error \t
        order\n");
   while(index<num_iteration)</pre>
       second2=Gfunction(second1);
       absolute_error1=second2-second1; //to find absolute error
       if(fabs(absolute_error1)<=E)</pre>
       order=log(fabs(absolute_error0))/log(fabs(absolute_error1));
       absolute_error0=absolute_error1; //to find the order of
           convergence
       printf("%2d %.6lf %.6lf %.6lf %.6lf
           %.61f\n",index+1,second1,fabs(Gdiff(second1)),Ffunction(second1),fabs(absolute_error1),ord
       second1=second2;
       index++;
```

```
}
int main()
{
    double first;
    int num_iteration;
    printf("Enter the first approximate root\n");
    scanf("%lf",&first);
    while(fabs(Gdiff(first))>1)
    {
        printf("Enter the first approximate root\n");
        scanf("%lf",&first);
    }
    printf("Enter the total no. of iteration\n");
    scanf("%d",&num_iteration);
    fixed_point(first,num_iteration);
    return 0;
}
```

Table:

Itr	xi	abs(g'(xi))	f(xi)	absolute error	order
1	0.824361	0.377527	-0.437860	0.069307	270.570501
2	0.755053	0.364668	-0.152697	0.025717	0.729172
3	0.729336	0.360009	-0.054021	0.009318	0.782884
4	0.720018	0.358336	-0.019233	0.003347	0.820351
5	0.716671	0.357736	-0.006864	0.001198	0.847310
6	0.715473	0.357522	-0.002452	0.000429	0.867409
7	0.715044	0.357446	-0.000876	0.000153	0.882890
8	0.714891	0.357418	-0.000313	0.000055	0.895154
9	0.714836	0.357408	-0.000112	0.000020	0.905099
10	0.714817	0.357405	-0.000040	0.000007	0.913323

The root of equation (4) is 0.714817

5 Secant Method

Date: August 3, 2018

For the following Equation,

$$e^x - 2x - 1 = 0 (5)$$

Intial Root Guess = 2, 3

```
#include<stdio.h>
#include<math.h>
double function(double x) // the given function
  return exp(x)-2*x-1;
}
double function1(double x) //first derivative of given function
  return exp(x)-2;
double function2(double x) //second derivative of given function
{
  return exp(x);
}
double convergence_condition(double x) //conditon for the convergence
{
  return (fabs(function(x)*function2(x)))/(function1(x)*function1(x));
}
double secant(double x0,double x1) //finding root of function using
    secant method
  double x2,absolute_error0,absolute_error1=0,order;
  int index=1;
  printf("itr\t x0\t x1\t x2\t f(x2)\t abs_error\t order\n");
     x2= x1-(((x1-x0)*function(x1))/(function(x1)-function(x0)));
     printf("%d %.6f %.6f %.6f %.6f %.6f
         %.6f\n",index,x0,x1,x2,function(x2),absolute_error1,order);
     absolute_error0 = fabs(x1-x0);
     absolute_error1 = fabs(x2-x1);
     order=log(absolute_error1)/log(absolute_error0); //calculating the
         order of convergence
     x0=x1;
     x1=x2;
     index++;
  }while(fabs(absolute_error0)>0.000005);
  return x0; //returning the final root
int main()
{
  double first, second;
   do
     printf("Enter the two approximate root\n");
     scanf("%lf %lf",&first,&second);
```

Table:

Itr	x0	x1	x2	f(x2)	abs error	order
101				` '		
1	2.000000	3.000000	1.776650	1.356726	0.000000	0.000000
2	3.000000	1.776650	1.635140	0.859895	1.223350	\inf
3	1.776650	1.635140	1.390219	0.235291	0.141511	-9.699660
4	1.635140	1.390219	1.297956	0.065892	0.244921	0.719460
5	1.390219	1.297956	1.262068	0.008583	0.092263	1.693975
6	1.297956	1.262068	1.256693	0.000396	0.035888	1.396217
7	1.262068	1.256693	1.256433	0.000003	0.005375	1.570614
8	1.256693	1.256433	1.256431	0.000000	0.000260	1.579698
9	1.256433	1.256431	1.256431	0.000000	0.000002	1.609030

Final root is 1.256431

6 Bairstow Method

Date: August 25, 2018

For the following Equation,

$$x^4 - 5x^3 + 10x^2 - 10x + 4 = 0 (6)$$

Parameters:

$$r = 0.5, s = -0.5(initial values) \tag{7}$$

$$e = 0.01(precisionvalue)$$
 (8)

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main()
{
    double r,s,e,er=99,es=99;
    printf("Enter initial values of r, s and e\n");
```

```
scanf("%lf",&r);
scanf("%lf",&s);
scanf("%lf",&e); //precision value
printf("Enter the highest power of the polynomial equation\n");
scanf("%d",&n);
double a[n+1];
printf("Enter the coefficients of polynomial equation\n");
for (int i = 0; i < n+1; ++i)</pre>
    scanf("%lf",&a[i]);
}
double b[n+1],c[n+1];
double delr,dels;
int i=0,j=0;
printf("Iter R S\n");
while(fabs(er)>=e || fabs(es)>=e) //condition to be checked
{
   b[n]=a[n];
   b[n-1]=a[n-1]+r*b[n];
   for(i=n-2; i>=0; i--)
   {
       b[i]=a[i]+r*b[i+1]+s*b[i+2]; //updating values of array b
   }
   c[n]=b[n];
   c[n-1]=b[n-1]+r*c[n];
   for(i=n-2; i>=1; i--)
   {
       c[i]=b[i]+r*c[i+1]+s*c[i+2]; //updating value of array c
   }
   delr=(-b[1]*c[2]+b[0]*c[3])/(c[2]*c[2]-c[1]*c[3]);
   dels=(b[1]*c[1]-b[0]*c[2])/(c[2]*c[2]-c[1]*c[3]);
   r=r+delr; //new r
   s=s+dels; //new s
   printf("%d %lf %lf\n",++j,r,s);
   er=fabs(delr/r);
   es=fabs(dels/s);
}
printf("Two out of four roots are %lf and
    \frac{1}{n}, (r+sqrt(r*r+4*s))/2, (r-sqrt(r*r+4*s))/2);
return 0;
```

Table:

}

Iter	R	S
1	1.618037	-0.203581
2	3.898011	0.121352
3	2.936255	1.418393
4	2.787267	-0.204441
5	2.783626	-1.155663
6	2.883139	-1.711455
7	2.983940	-1.964652
8	2.999809	-1.999534
9	3.000000	-2.000000

The roots of equation (6) are 2, 1.

7 Gauss Elimination

Date: August 31, 2018

Solve for the following Equations,

$$x_1 + x_2 - x_3 + x_4 = 2 (9)$$

$$2x_1 + x_2 + x_3 - 3x_4 = 1 (10)$$

$$3x_1 - x_2 - x_3 + x_4 = 2 (11)$$

$$5x_1 + x_2 + 3x_3 - 2x_4 = 7 (12)$$

```
#include <stdlio.h>
#include <stdlib.h>
#include <math.h>

void print_matrix(double **matrix, int size) //function to print the
    matrix in the form of equations
{
    int i,j;
    for(i=0; i<size; i++)
    {
        if(j!=size-1)
            printf("(%2.21f) x%d + ",matrix[i][j],i+1);
        else
            printf("(%2.21f) x%d",matrix[i][j],i+1);
    }
    printf(" = %2.21f\n",matrix[i][size]); //printing the RHS of the
        equations</pre>
```

```
}
}
int finding_pivot(double **matrix,int indx,int n) //function to get the
    partial pivot (the maximum value in each column)
   int row,pivot=indx;
   double max=fabs(matrix[indx][indx]);
   for(row=indx+1; row<n; row++)</pre>
       if(fabs(matrix[row][indx])>max) { //row containing the largest
           element is selected as pivot
           max=matrix[row][indx];
           pivot=row;
       }
   }
   return pivot;
}
void swap_rows(double **p2Row1,double **p2Row2)
  // function to swap pivotal row & current row
   double *temp=*p2Row1; // pointers pointing to respective rows are
        swapped
   *p2Row1=*p2Row2;
   *p2Row2=temp;
}
void gaussian_elimination(double **matrix, int n, int curIndx) //using
    gaussian elimination method, to find the upper triangular matrix
{
   if(curIndx==n-1)
   \{\ //\ {\it reached\ last\ row\ of\ augmented\ matrix\ so\ no\ more\ elimination\ is}
       printf("The elimination is completed\n");
   }
   else
   {
       printf("\nSTEP %d:\n\n",curIndx+1);
       int row,col;
       int pivot=finding_pivot(matrix,curIndx,n); // finding the pivot
           row(row having maximum element in the current column)
       double multiplier;
       if(pivot!=curIndx)
           printf("Swapping row %d and %d\n",curIndx,pivot);
           swap_rows(&matrix[pivot],&matrix[curIndx]); //we are swapping
               two rows when pivot (max) is found
       for(row=curIndx+1; row<n; row++)</pre>
       {
```

```
multiplier=matrix[row] [curIndx]/matrix[curIndx] [curIndx];//
               generating the multiplier for each row below the current
               row
           printf("row %d --> row %d -(%lf)*row
               %d\n",row,row,multiplier,curIndx);
           for(col=curIndx; col<n+1; col++)</pre>
           {
               matrix[row][col] -=multiplier*matrix[curIndx][col];//
                   eliminating the column elements with the
                   transformation Rj=Rj-mj*Ri;i<j<n</pre>
           }
       }
       printf("Equations after Step %d :\n",curIndx+1);
       print_matrix(matrix,n); //printing the matrix in the form of
            equations
       gaussian_elimination(matrix,n,curIndx+1); //recursive call to
            the function to eliminate next column elements
   }
}
void backsubstitution(double **M, double *X, int n) //function for
    performing back substitution
   int i,j;
   double sum;
   X[n-1]=M[n-1][n]/M[n-1][n-1];
   for(i=n-2; i>=0; i--)
   {
       sum=0;
       for(j=i+1; j<n; j++) sum+=X[j]*M[i][j];</pre>
       X[i]=(M[i][n]-sum)/M[i][i];
   }
}
int main()
   int size,i,j;
   double **matrix,*roots;
   printf("Enter Order of matrix: ");
   scanf("%d",&size);
   matrix=(double **)(malloc(size*sizeof(int *)));
   for(i=0; i<size; i++)</pre>
       matrix[i]=(double *)(malloc((size+1)*sizeof(double)));
   printf("Enter the elements of augmented matrix row-wise:\n");
   for(i=0; i<size; i++)</pre>
       for(j=0; j<size+1; j++)</pre>
           scanf("%lf",&matrix[i][j]);
```

```
printf("The given set of equations are :\n");
print_matrix(matrix,size);
gaussian_elimination(matrix,size,0);
roots=(double *)(malloc(size*sizeof(double)));
backsubstitution(matrix,roots,size);
printf("The Roots Of the Given Set of Equation are :\n");
for(i=0; i<size; i++)
    printf("x%d = %2.21f\n",i+1,roots[i]);
for(i=0; i<size; i++)
    free(matrix[i]);
free(matrix); //deallocating memory
free(roots);
return 0;
}</pre>
```

Augmented Matrix is:

$$A = \begin{bmatrix} 1 & 1 & -1 & 1 & 2 \\ 2 & 1 & 1 & -3 & 1 \\ 3 & -1 & -1 & 1 & 2 \\ 5 & 1 & 3 & -2 & 7 \end{bmatrix}$$

STEP 1:

 $\begin{array}{c} {\rm Swapping} \; {\rm R0} \leftrightarrow {\rm R3} \\ {\rm R1} \to {\rm R1} \; \hbox{-} (0.400000) \hbox{*} {\rm R0} \\ {\rm R2} \to {\rm R2} \; \hbox{-} (0.600000) \hbox{*} {\rm R0} \\ {\rm R3} \to {\rm R3} \; \hbox{-} (0.200000) \hbox{*} {\rm R0} \end{array}$

$$A = \begin{bmatrix} 5 & 1 & 3 & -2 & 7 \\ 0 & 0.6 & -0.2 & -2.2 & -1.8 \\ 0 & -1.6 & -2.8 & 2.2 & -2.2 \\ 0 & 0.8 & -1.6 & 1.4 & 0.6 \end{bmatrix}$$

STEP 2:

Swapping R1 \leftrightarrow R3 R2 \rightarrow R2 -(-2.000000)*R1 R3 \rightarrow R3 -(0.750000)*R1

$$A = \begin{bmatrix} 5 & 1 & 3 & -2 & 7 \\ 0 & 0.8 & -1.6 & 1.4 & 0.6 \\ 0 & 0 & -6 & 5 & -1 \\ 0 & 0 & -1 & -3.25 & -2.25 \end{bmatrix}$$

STEP 3:

 $R3 \rightarrow R3 - (-0.166667)*R2$

$$A = \begin{bmatrix} 5 & 1 & 3 & -2 & 7 \\ 0 & 0.8 & -1.6 & 1.4 & 0.6 \\ 0 & 0 & -6 & 5 & -1 \\ 0 & 0 & 0 & -2.42 & -2.42 \end{bmatrix}$$

The elimination is completed.

Using Backsubstitution we get the Roots Of the Given Set of Equation : $x_1=1.00,\,x_2=1.00,\,x_3=1.00,\,x_4=1.00$

8 Gauss Seidel

Date: August 31, 2018

Solve for the following Equations,

$$5x_1 - x_2 + x_3 = 10 (13)$$

$$2x_1 + 8x_2 - x_3 = 11\tag{14}$$

$$-x_1 + x_2 + 4x_3 = 3 (15)$$

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float** interchangeRow(float** matrix,int range,int n,int
    m){//interchanging two given rows
   int i;
  float temp;
  if(n==m) return matrix;
  for(i=0;i<range;i++){</pre>
     temp=matrix[n][i];
     matrix[n][i]=matrix[m][i];
     matrix[m][i]=temp;
  }
  return matrix;
}
float** maxRowPivot(float** matrix,int range,int n){//pivoting the row
  int i,pos=n;
  float max=fabs(matrix[n][n]);
  for(i=n;i<(range-1);i++){</pre>
```

```
if(max<fabs(matrix[i][n])){//max in a column</pre>
        max=matrix[i][n];
        pos=i;
     }
  }
  matrix=interchangeRow(matrix,range,n,pos);
  return matrix;
}
void display(float** matrix,int range){
  int i,j;
  for(i=0;i<(range-1);i++){</pre>
     for(j=0;j<(range);j++){</pre>
        printf("%6.3f\t",matrix[i][j]);
     printf("\n");
  }
  return;
}
int main()
  float **matrix,term,*answers;
  int range,i,j;
  printf("Enter the number of variables\t");
  scanf("%d",&range);
  range++;
  matrix=(float**)malloc(sizeof(float*)*(range-1));
  answers=(float*)malloc(sizeof(float)*(range-1));
  for(i=0;i<range;i++){</pre>
     matrix[i]=(float*)malloc(sizeof(float)*range);
  printf("Enter the coefficients separated with spaces\n");
  for(i=0;i<(range-1);i++){</pre>
     printf("Enter equation number %d\n",(i+1));
     for(j=0;j<range;j++){</pre>
        scanf("%f",&matrix[i][j]);
     }
  }
  float xprev[range],x[range];
  printf("Enter initial guess of variables satisfying the equations\n");
  for(i=0;i<range-1;i++)</pre>
     scanf("%lf",&xprev[i]);
     x[i]=0;
  }
  xprev[range-1]=1;
  float max;
  float e[range-1];
  int iter=1;
```

```
printf("i x1 x2 x3 MaxError\n");
  do
  {
     for(i=0;i<range-1;i++)</pre>
        x[i]=xprev[i];
     for(i=0;i<range-1;i++)</pre>
        xprev[i]=matrix[i][range-1]/matrix[i][i];
        for(j=0;j<range-1;j++)</pre>
           if(i!=j)
              xprev[i]=xprev[i]-(matrix[i][j]*xprev[j]/matrix[i][i]);
     }
     max=-1;
     printf("%d\t",iter);
     iter++;
     for(i=0;i<range-1;i++)</pre>
        printf("%lf\t",x[i]);
     }
     for(i=0;i<range-1;i++)</pre>
     {
           e[i]=(-x[i]+xprev[i]);
           if(max<fabs(e[i]))</pre>
              max=fabs(e[i]);
     printf("%lf\t",max);//maximum error
     printf("\n");
  for(i=0;i<range-1;i++)</pre>
     printf("%lf\n",xprev[i]);
  return 0;
}
```

Augmented Matrix is:

$$A = \begin{bmatrix} 5 & -1 & 1 & 10 \\ 2 & 8 & -1 & 11 \\ -1 & 1 & 4 & 3 \end{bmatrix}$$

Table:

i	x1	x2	x3	MaxError
1	0.000000	0.000000	0.000000	2.000000
2	2.000000	0.875000	1.031250	0.136719
3	1.968750	1.011719	0.989258	0.035742
4	2.004492	0.997534	1.001739	0.005333
5	1.999159	1.000428	0.999683	0.000990
6	2.000149	0.999923	1.000056	0.000176
7	1.999973	1.000014	0.999990	0.000031
8	2.000005	0.999998	1.000002	0.000006

$$x_1 = 2.000005, x_2 = 0.999998, x_3 = 1.000002$$

9 Gauss Jordan Elimination

Date: September 14, 2018

Find Inverse of the Followong Matrix

$$A = \begin{bmatrix} 1 & 5 & 3 \\ 1 & 3 & 2 \\ 2 & 4 & -6 \end{bmatrix}$$

```
#include<stdio.h>
#include<stdlib.h>
#include <math.h>
void display(float** matrix,int range){
  int i,j;
  for(i=0;i<(range);i++){</pre>
     for(j=0;j<(range);j++){</pre>
        printf("%6.3f\t",matrix[i][j]);
     printf("\n");
  }
  printf("\n");
  return;
}
float** interchangeRow(float** matrix,int range,int n,int m){
   int i;
  float temp;
   if(n==m) return matrix;
  for(i=0;i<range;i++){</pre>
     temp=matrix[n][i];
     matrix[n][i]=matrix[m][i];
     matrix[m][i]=temp;
```

```
}
  return matrix;
}
void maxRowPivot(float** matrix,float** inverse,int range,int n){
  int i,pos=n;
  float max=fabs(matrix[n][n]);
  for(i=n;i<(range);i++){</pre>
     if(max<fabs(matrix[i][n])){</pre>
        max=matrix[i][n];
        pos=i;
     }
  }
  matrix=interchangeRow(matrix,range,n,pos);
  inverse=interchangeRow(inverse,range,n,pos);
  return ;
}
float** allocate(float** matrix,int range){//allocates matrix of n*n size
  matrix=(float **)malloc(range*sizeof(float *));
  for(i=0;i<range;i++){</pre>
     matrix[i]=(float *)malloc(range*sizeof(float));
  return matrix;
}
float** matrixMult(float** a,float** b,float** newm,int range){
  int i,j,k;
  for(i=0;i<range;i++){</pre>
     for(j=0;j<range;j++){</pre>
        newm[i][j]=0;
        for(k=0;k<range;k++){</pre>
           newm[i][j]+=(a[i][k]*b[k][j]);
        }
     }
  }
  return newm;
}
int main(){
  float **matrix,**inverse,**original,**newm,temp;
  int i,j,k,range;
  printf("Enter the size of the matrix(i.e. value of 'n' as size is
       nxn):\t");
  scanf("%d",&range);
  matrix=(float **)allocate(matrix,range);
  inverse=(float **)allocate(inverse,range);
  original=(float **)allocate(original,range);
  newm=(float **)allocate(newm,range);
  printf("Enter the matrix:\n");
  for(i=0;i<range;i++){</pre>
```

```
printf("Row number %d\n",(i+1));
     for(j=0;j<range;j++){</pre>
        scanf("%f",&matrix[i][j]);
        original[i][j]=matrix[i][j];
     }
  }
  for(i=0;i<range;i++){</pre>
     for(j=0;j<range;j++){</pre>
        if(i==j) inverse[i][j]=1;
        else inverse[i][j]=0;
     }
  }
  for(k=0;k<range;k++){</pre>
     maxRowPivot(matrix,inverse,range,k);
     temp=matrix[k][k];
     for(j=0;j<range;j++){</pre>
        matrix[k][j]/=temp;
        inverse[k][j]/=temp;
     }
     for(i=0;i<range;i++){</pre>
        temp=matrix[i][k];
        for(j=0;j<range;j++){</pre>
           if(i==k) break;
           matrix[i][j]-=matrix[k][j]*temp;
           inverse[i][j]-=inverse[k][j]*temp;
        }
     }
     display(inverse, range);
  printf("The inverse of the matrix is:\n");
  display(inverse, range);
  return 0;
}
```

Matrix After Each Iteration:

$$A^{-1} = \begin{bmatrix} 0.000 & 0.000 & 0.500 \\ 0.000 & 1.000 & -0.500 \\ 1.000 & 0.000 & -0.500 \end{bmatrix}$$
$$= \begin{bmatrix} -0.667 & 0.000 & 0.833 \\ 0.333 & 0.000 & -0.167 \\ -0.333 & 1.000 & -0.333 \end{bmatrix}$$
$$= \begin{bmatrix} -1.444 & 2.333 & 0.056 \\ 0.556 & -0.667 & 0.056 \\ -0.111 & 0.333 & -0.111 \end{bmatrix}$$

Therefore, the inverse of the matrix A is:

$$A^{-1} = \begin{bmatrix} -1.444 & 2.333 & 0.056 \\ 0.556 & -0.667 & 0.056 \\ -0.111 & 0.333 & -0.111 \end{bmatrix}$$

10 Power Method

Date: September 14, 2018

Find Eigen Value and Vector of the Followong Matrix

$$A = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ 4 & 26 & -10 \end{bmatrix}$$

```
#include <stdio.h>
#include <math.h>
void powerMethod(int n,float arr[n][n]); //function prototype
int main()
{
   int i,j,n;
   printf("\nEnter the order of matrix:");
   scanf("%d",&n);
   float arr[n][n];
   printf("Enter elements of matrix:-\n");
   for(i=0; i<n; i++)</pre>
       for(j=0; j<n; j++)</pre>
           scanf("%f",&arr[i][j]); //input the matrix
   powerMethod(n,arr);
   return 0;
}
void powerMethod(int n,float arr[n][n]) //function to calculate using
    power method
{
   int i,j,iteration=1;
   float x[n],z[n],error[n],zmax,emax;
   printf("Enter approximation:\n");
   for(i=0; i<n; i++)</pre>
       scanf("%f",&x[i]);
   printf("Iteration\tEigenvalue\t");
   for(i=1; i<=n; i++)</pre>
       printf("x%d\t\t",i);
   printf("error\n");
   do
```

```
for(i=0; i<n; i++)</pre>
        {
            z[i]=0;
            for(j=0; j<n; j++)</pre>
                z[i]=z[i]+arr[i][j]*x[j]; //putting the value of z[i]
        }
        zmax=fabs(z[0]);
        for(i=1; i<n; i++)</pre>
            if((fabs(z[i]))>zmax)
                zmax=fabs(z[i]); //calculating the <math>zmax
        for(i=0; i<n; i++)</pre>
            z[i]=z[i]/zmax;
        for(i=0; i<n; i++)</pre>
        {
            error[i]=0;
            \verb|error[i]=fabs((fabs(z[i]))-(fabs(x[i]))); //calculating errors|\\
        }
        emax=error[0];
        for(i=1; i<n; i++)</pre>
            if(error[i]>emax)
                emax=error[i];
        printf("%d\t\t%f\t",iteration,zmax);
        for(i=0; i<n; i++)</pre>
            printf("%f\t",x[i]);
        printf("%f\n",emax);
        for(i=0; i<n; i++)</pre>
            x[i]=z[i];
        iteration++;
    } while(emax>0.0001);
   printf("\nThe required eigen value is %f",zmax);
   printf("\n\nThe required eigen vector is :\n");
   for(i=0; i<n; i++)</pre>
        printf("%f\n",z[i]);
}
```

Table:

Iteration	Eigenvalue	x1	x2	х3	error
1	12.000000	1.000000	1.00000	1.000000	0.500000
2	5.333334	0.500000	0.66666	1.000000	0.062500
3	4.500002	0.437500	0.62500	1.000000	0.020833
4	4.222221	0.416667	0.61111	1.000000	0.008772
5	4.105259	0.407895	0.60526	1.000000	0.004048
6	4.051280	0.403846	0.60256	1.000000	0.001947
7	4.025314	0.401899	0.60126	1.000000	0.000955
8	4.012577	0.400943	0.60062	1.000000	0.000473
9	4.006268	0.400470	0.60031	1.000000	0.000235
10	4.003129	0.400235	0.60015	1.000000	0.000118
11	4.001569	0.400117	0.60007	1.000000	0.000059

The required eigen value is 4.001569

The required eigen vector is :

$$\begin{pmatrix} 0.400059 \\ 0.600039 \\ 1.000000 \end{pmatrix}$$

11 LU Decomposition

Date: October 5, 2018

Decompose the following Matrix into Lower and Upper triangle Matrix:

$$A = \begin{bmatrix} 1 & 5 & 3 \\ 1 & 3 & 2 \\ 2 & 4 & -6 \end{bmatrix}$$

```
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int main()
{
    float **A,**L,**U,sum=0;
    int n,i,j,k,p;
    printf("\n\tPlease enter the size of the matrix: ");
    scanf("\d",&n);
    A=(float **)malloc(n*sizeof(float *));
    for(i=0; i<n; i++)
        A[i]=(float *)malloc(n*sizeof(float));</pre>
```

```
printf("\n\t Please entry the coefficient matrix: \n\n");
for(i=0; i<n; i++)</pre>
    for(j=0; j<n; j++)</pre>
        scanf("%f",&A[i][j]);
L=(float **)calloc(n,sizeof(float *));
for(i=0; i<n; i++)</pre>
    L[i]=(float *)calloc(n,sizeof(float));
U=(float **)calloc(n,sizeof(float *));
for(i=0; i<n; i++)</pre>
    U[i]=(float *)calloc(n,sizeof(float));
for(j=0; j<n; j++) //Decomposition</pre>
    for(i=0; i<n; i++)</pre>
    {
        if(i>=j)
        {
            L[i][j]=A[i][j];
            for(k=0; k<=j-1; k++)</pre>
                L[i][j]=L[i][k]*U[k][j];
            if(i==j)
                U[i][j]=1;
        }
        else
        {
            U[i][j]=A[i][j];
            for(k=0; k<=i-1; k++)</pre>
                U[i][j]=L[i][k]*U[k][j];
            U[i][j]/=L[i][i];
        }
    }
printf("\nL matrix:");
for(i=0; i<n; i++)</pre>
    printf("\n\t");
    for(j=0; j<n; j++)</pre>
        printf("%f ",L[i][j]);
}
printf("\n\n");
printf("\nU matrix:");
for(i=0; i<n; i++)</pre>
    printf("\n\t");
    for(j=0; j<n; j++)</pre>
```

```
printf("%f ",U[i][j]);
}
return 0;
}
```

Decomposing the Matrix A, such that A=L*U

$$A = \begin{bmatrix} 5 & -1 & 1 \\ 2 & 8 & -1 \\ -1 & 1 & 4 \end{bmatrix}$$

$$L = \begin{bmatrix} 5.000000 & 0.000000 & 0.000000 \\ 2.000000 & 8.400000 & 0.000000 \\ -1.000000 & 0.800000 & 4.333333 \end{bmatrix}$$

$$U = \begin{bmatrix} 1.000000 & -0.200000 & 0.200000 \\ 0.000000 & 1.000000 & -0.166667 \\ 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

12 Jacobi

Date: November 2, 2018

Find Eigen Value and Vector of the following symmetric matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$

```
#include<stdio.h>
#include<math.h>
#include<stdlib.h>

int main()
{

    printf("Jacobi eigen method\n");
    int n;
    printf("Enter order of symmetric matrix\n"); //scans matrix
    scanf("%d",&n);
    float **a=(float **)malloc(n*sizeof(float *));
    for (int i = 0; i < n; ++i)
    {
}</pre>
```

```
a[i]=(float *)malloc(n*sizeof(float));
printf("Scan matrix rowwise\n");
int i,j,r,s;
float max=0.0,sum=0.0;
for (i=0;i<n;i++)</pre>
 {
            for (j=0; j< n; j++)
            {
                        scanf("%f",&a[i][j]);
            }
}
for (i=0;i<n;i++)</pre>
{
            for (j=0;j<n;j++)</pre>
            {
                        if(j>i)
                        {
                                     sum+=a[i][j];
                                     if(fabs(a[i][j])>=max)
                                     {
                                                max=a[i][j];
                                                r=i;
                                                 s=j;
                                    }
                       }
            }
}
while(sum>=0.0001)
            float ang=atan((2*a[r][s])/(a[r][r]-a[s][s]))/2;
            for (i=0;i<n;i++)</pre>
                        for (j=0;j<n;j++)</pre>
                        {
                                     if(j>i &&j!=r&&j!=s)
                                    {
                                                a[j][r]=a[j][r]*cos(ang)+a[j][s]*sin(ang);
                                                a[r][j]=a[j][r];
                                                a[j][s]=a[j][s]*cos(ang)-a[j][r]*sin(ang);
                                                a[s][j]=a[j][s];
                                    }
                        }
            a[r][r] = a[r][r] * \cos(ang) * \cos(ang) + 2*a[r][s] * \cos(ang) * \sin(ang) + a[s][s] * \sin(ang) * \sin(an
            a[s][s]=a[s][s]*cos(ang)*cos(ang)-2*a[r][s]*cos(ang)*sin(ang)+a[r][r]*sin(ang)*sin(ang);
            a[r][s]=0;a[s][r]=0;
            max=0,sum=0;
            for(i=0;i<n;i++)</pre>
                        for(j=0;j<n;j++)</pre>
```

```
{
    if(j>i)
    {
        sum+=a[i][j];
        if(max<fabs(a[i][j]))
        {
            max=a[i][j];r=i;s=j;
        }
    }
}
printf("The eigen values are:\n");
for(i=0;i<n;i++)
{
    printf("%f\n",a[i][i]);
}
return 0;
}</pre>
```

Eigen Vector is: $\begin{pmatrix} 1.785970 \\ -1.042065 \\ 9.414134 \end{pmatrix}$

13 Interpolation

Date: October 5, 2018

Function Used:

$$f(x) = 3.14159x^2$$

Inputs Used

Enter number of records: 7 Enter x0 and interval for x:0 1 Enter x for finding f(x): 2.5

```
#include<stdio.h>
#include <math.h>

void input(int n,float x[n],float y[n][n],float* f);
void difference(int n,float y[n][n]);
```

```
float forwardInterpolation(int n,float x[n],float y[n][n],float f);
float backwardInterpolation(int n,float x[n],float y[n][n],float f);
float func(float n); //function prototypes
int main()
{
  int i,j,n;
  printf("Enter number of records : ");
  scanf("%d",&n);
  float x[n],y[n][n],f,forward,backward,fx;
  input(n,x,y,&f);
  difference(n,y);
  fx=func(f);
  printf("\nTable for Forward Interpolation Method :\n");
  for(i=0;i<n;i++)</pre>
       printf("\t%.2f",x[i]);
       for(j=0;j<(n-i);j++)</pre>
           printf("\t%.2f",y[i][j]);
       printf("\n");
  printf("Using Newton's Forward Interpolation :\n");
   printf("f(%f) = %f\nError = %f\n",f,forward,fabs(forward-fx));
  forward=forwardInterpolation(n,x,y,f);
  backward=backwardInterpolation(n,x,y,f);
  printf("\nTable for Forward Interpolation Method :\n");
  for(i=0;i<n;i++)</pre>
       printf("\t%.2f",x[i]);
       for(j=0;j<=i;j++)</pre>
           printf("\t%.2f",y[i][j]);
       printf("\n");
   }
   printf("Using Newton's Backward Interpolation :\n");
   printf("f(%f) = %f\nError = %f\n",f,backward,fabs(backward-fx));
   return 0;
}
void input(int n,float x[n],float y[n][n],float* f) //function to input
    data
{
  int i;
  float interval;
  printf("Enter x0 and interval for x :");
  scanf("%f %f",&x[0],&interval);
  y[0][0]=func(x[0]);
  for(i=1;i<n;i++)</pre>
     x[i]=x[i-1]+interval;
     y[i][0]=func(x[i]);
  printf("Enter x for finding f(x) : ");
```

```
scanf("%f",f);
}
void difference(int n,float y[n][n]) //function to calculate the
    difference
   int i,j;
   for(i=1;i<n;i++)</pre>
     for(j=0;j<n-i;j++)</pre>
        y[j][i]=y[j+1][i-1]-y[j][i-1];
float forwardInterpolation(int n,float x[n],float y[n][n],float f)
    //function to calculate using forward interpolation method
   int i,j;
   float h=x[1]-x[0],p=(f-x[0])/h,sum=y[0][0],term=1;
  for(i=1;i<n;i++)</pre>
     term*=(p--)/i;
     sum+=term*y[0][i];
   }
  return sum;
}
float backwardInterpolation(int n,float x[n],float y[n][n],float f)
    //function to calculate using backward interpolation method
   int i,j;
   float h=x[1]-x[0], p=(f-x[n-1])/h, sum=y[n-1][0], term=1;
       for(i=1;i<n;i++)</pre>
       {
               term*=(p++)/i;
               sum+=term*y[n-i-1][i];
       }
   return sum;
}
float func(float n)//circle
  return 3.14159*n*n;
}
```

Table for Forward Interpolation Method :

x(i)	y1(i)	y2(i)	y3(i)	y4(i)	y5(i)	y6(i)	y7(i)
0.00	0.00	3.14	6.28	-0.00	0.00	-0.00	0.00
1.00	3.14	9.42	6.28	0.00	-0.00	0.00	
2.00	12.57	15.71	6.28	-0.00	0.00		
3.00	28.27	21.99	6.28	0.00			
4.00	50.27	28.27	6.28				
5.00	78.54	34.56					
6.00	113.10						

Table for Backward Interpolation Method :

x(i)	y1(i)	y2(i)	y3(i)	y4(i)	y5(i)	y6(i)	y7(i)
0.00	0.00						
1.00	3.14	3.14					
2.00	12.57	9.42	6.28				
3.00	28.27	15.71	6.28	0.00			
4.00	50.27	21.99	6.28	0.00	-0.00		
5.00	78.54	28.27	6.28	0.00	-0.00	0.00	
6.00	113.10	34.56	6.28	0.00	0.00	0.00	0.00

Using Newton's Forward Interpolation :

f(2.500000) = 19.634937

 $\mathrm{Error} = 0.000000$

Using Newton's Backward Interpolation:

f(2.500000) = 19.634939

Error = 0.000002

14 Euler Method

Date: November 2, 2018

The given differential equation is

$$dy/dx = x + 2y$$

The actual equation is

$$y = 0.25e^{2x} - 0.5x - 0.25$$

Given:

$$y(0) = 0$$

$$h = 0.1$$

Find the value y'(1)

14.1 Code

```
#include<stdio.h>
#include<math.h>
float f(float a,float b)
{ //function for first order derivative at a and b
   return a+2*b;
float Y(float a)
  //the given function
   return 0.25*exp(2*a)-0.5*a-0.25;
int main(){
   float x,y,h;
   x = 0; y = 0; h = 0.1;
   printf("\tEULER METHOD\n");
   printf("x\t\tycomputed\tyactual\t\tAbs.error\n");
   y += f(x,y)*h;
                                               //Euler iterative Formula
   printf("\%f\t\%f\t\%f\n",x,y,Y(x),fabs(Y(x)-y));
   int i = 1;
   do{
       x += h;
       y += f(x,y)*h;
       printf("\%f\t\%f\t\%f\t^",x,y,Y(x),fabs(Y(x)-y));
   while(x <= 1);</pre>
   return 0;
}
```

14.2 Output

X	ycomputed	yactual	Abs.error
0.000000	0.000000	0.000000	0.000000
0.100000	0.010000	0.005351	0.004649
0.200000	0.032000	0.022956	0.009044
0.300000	0.068400	0.055530	0.012870
0.400000	0.122080	0.106385	0.015695
0.500000	0.196496	0.179570	0.016926
0.600000	0.295795	0.280029	0.015766
0.700000	0.424954	0.413800	0.011154
0.800000	0.589945	0.588258	0.001687
0.900000	0.797934	0.812412	0.014478
1.000000	1.057521	1.097264	0.039743

15 Modified Euler Method

Date: November 2, 2018

The given differential equation is

$$dy/dx = x + 2y$$

The actual equation is

$$y = 0.25e^{2x} - 0.5x - 0.25$$

Given:

$$y(0) = 0$$

$$h = 0.1$$

Find the value y'(1)

```
#include<stdio.h>
#include<math.h>
float f(float a,float b)
  //function for first order derivative at a and b
   return a+2*b;
}
float Y(float a)
   //the given function
   return 0.25*exp(2*a)-0.5*a-0.25;
int main(){
   float x,y1,y,y00,h;
   x = 0; y = 0; h = 0.1;
   printf("\tMODIFIED EULER METHOD\n");
   printf("x\t\tycomputed\tyactual\t\tAbs.error\n");
   y00 = y + h*f(x,y);
   y1 = y + (f(x,y)+f(x+h,y00))/2*h; //formula for Modified Euler's
       Method.
   //In this case final slope will be the average of f(x,y) and f(x+h,y)
   printf("%f\t%f\t%f\tn",x,y1,Y(x),fabs(Y(x)-y1));
   int i = 1;
   do{
       y = y1;
       y00 = y + h*f(x,y);
```

```
y1 = y + (f(x,y)+f(x+h,y00))/2*h;
x += h;
printf("%f\t%f\t%f\t%f\n",x,y1,Y(x),fabs(Y(x)-y1));
i++;
}
while(x <= 1);
return 0;
}</pre>
```

X	ycomputed	yactual	Abs.error
0.100000	0.005000	0.005351	0.000351
0.200000	0.022100	0.022956	0.000856
0.300000	0.053962	0.055530	0.001568
0.400000	0.103834	0.106385	0.002552
0.500000	0.175677	0.179570	0.003893
0.600000	0.274326	0.280029	0.005703
0.700000	0.405678	0.413800	0.008122
0.800000	0.576927	0.588258	0.011331
0.900000	0.796851	0.812412	0.015561
1.000000	1.076158	1.097264	0.021106

16 Trapezoidal Method

Date: November 2, 2018

Find the value of Definite Integral of the following equation using trapezoidal method $\,$

$$\int_0^1 \frac{1}{1+x} \ dx$$

```
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
float function(float x) //the given function
{
    return 1/(1+x);
}
float trapezoidal(float a,float b,float precision) //function to find
    the value of the integral using trapezoidal method
{
    int iteration=1; //to show the iteration
```

```
float x,h=b-a,term=(function(a)+function(b))/2,sum0,sum1,err;
   sum1=h*term; //current sum
   printf("Iteration\tInterval\tPrevious_sum\tCurrent_sum\tError\n");
       sum0=sum1; // putting the value of current sum to previous sum
       sum1=0; //making current sum zero
       h/=2;
       for(x=a+h;x<b;x+=h)
           sum1+=function(x);
       sum1+=term;
       sum1*=h;
       err=fabs(sum1-sum0);
       printf("\%d\t\t\%f\t\%f\t\%f\n",iteration++,(long)((b-a)/h),sum0,sum1,err);
   }while(err>precision);
   return sum1;
}
int main()
{
   float lower,upper,precision,sum;
   printf("Enter the lower bound, upper bound and precision:\n");
   scanf("%f%f%f",&lower,&upper,&precision);
   sum=trapezoidal(lower,upper,precision);
   printf("\nValue of integral= %f",sum);
   return 0;
}
```

Iteration	Interval	Previous sum	Current sum	Error
1	2	0.750000	0.708333	0.041667
2	4	0.708333	0.697024	0.011310
3	8	0.697024	0.694122	0.002902
4	16	0.694122	0.693391	0.000731
5	32	0.693391	0.693208	0.000183
6	64	0.693208	0.693163	0.000046
7	128	0.693163	0.693151	0.000012
8	256	0.693151	0.693148	0.000003
9	512	0.693148	0.693147	0.000001

Value of integral = 0.693147

17 Simpson Method

Date: November 2, 2018

Find the value of Definite Integral of the following equation using Simpson

method

$$\int_0^1 \frac{1}{1+x} \ dx$$

```
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
float function(float x) //the given function
{
   return 1/(1+x);
}
float simpsons(float a,float b,float precision) //function to find the
    value of the integral using simpson method
{
  int iteration=1; //to show the iteration
  float x,width,h=b-a,sum0,sum1,error;
  width=h;
  sum1=(h/6)*(function(a)+4*function((a+b)/2)+function(b)); //current
  printf("\n");
  printf("Iterations\tPartitions\tPrevious Sum\tCurrent Sum\tError\n");
  printf("\n");
  do
     sum0=sum1; // putting the value of current sum to previous sum
     sum1=0; //making current sum zero
     width/=2;
     for(x=a;x<=b-width;x+=width)</pre>
        sum1+=function(x)+4*function(x+(width/2))+function(x+width);
     sum1=sum1*width/6;
     error=fabs(sum1-sum0);
     printf("\%d\t\t\%f\t\%f\t\%f\t\n",iteration++,(long)((b-a)/width),sum0,sum1,error);
  }while(error>precision);
  printf("\n");
  return sum1;
}
int main()
{
   float lower,upper,precision,sum;
   printf("Enter the lower bound, upper bound and precision:\n");
   scanf("%f%f%f",&lower,&upper,&precision);
   sum=simpsons(lower,upper,precision);
   printf("\nValue of the integral =%f",sum);
   return 0;
}
```

Iterations	Partitions	Previous Sum	Current Sum	Error
1	2	0.694445	0.693254	0.001191
2	4	0.693254	0.693155	0.000099
3	8	0.693155	0.693148	0.000007
4	16	0.693148	0.693147	0.000000

Value of the integral = 0.693147