PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

| (51) Internationale Patentklassifikation <sup>6</sup> : |    | (11) Internationale Veröffentlichungsnummer  | WO 99/22021            |
|---------------------------------------------------------|----|----------------------------------------------|------------------------|
| C12Q 1/68                                               | A1 | (43) Internationales Veröffentlichungsdatum: | 6. Mai 1999 (06.05.99) |

(21) Internationales Aktenzeichen:

PCT/EP98/06756

(22) Internationales Anmeldedatum: 23. Oktober 1998 (23.10.98)

(30) Prioritätsdaten:

197 46 874.8

23. Oktober 1997 (23.10.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): QIA-GEN GESELLSCHAFT MIT BESCHRÄNKTER HAF-TUNG [DE/DE]; Max-Volmer-Strasse 4, D-40724 Hilden (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): BASTIAN, Helge [DE/DE]; Benrather Schloßallee 94a, D-40597 Düsseldorf (DE). GAUCH, Simone [DE/DE]; Benrather Schloßallee 43, D-40597 Düsseldorf (DE). OELMÜLLER, Uwe [DE/DE]; Mehlrather Weg 46, D-40699 Erkrath (DE). ULLMANN, Susanne [DE/DE]; Trills 19, D-40699 Erkrath (DE).
- (74) Anwälte: DIEHL, Hermann, O., Th. usw.; Augustenstrasse 46, D-80333 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: METHOD FOR ISOLATING AND PURIFYING NUCLEIC ACIDS ON SURFACES
- (54) Bezeichnung: VERFAHREN ZUR ISOLIERUNG UND REINIGUNG VON NUKLEINSÄUREN AN OBERFLÄCHEN

#### (57) Abstract

The invention relates to a method for isolating nucleic acids on surfaces, comprising at least the following steps: charging the nucleic acids on the surface in one same direction; immobilizing the nucleic acids on the surface; stripping the immobilized nucleic acids from the surface and withdrawing the stripped nucleic acids from the surface in the same direction of charging. Preferably, charging is carried out from the top.

#### (57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Isolierung von Nukleinsäuren an Oberflächen mit zumindest den Schritten: Beschicken einer Oberfläche aus einer Richtung mit Nukleinsäuren; Immobilisieren der Nukleinsäuren an der Oberfläche; Ablösen der immobilisierten Nukleinsäuren von der Oberfläche; und Abnehmen der abgelösten Nukleinsäuren von der Oberfläche in im wesentlichen der Richtung der Beschickung. Vorzugsweise erfolgt das Beschicken von oben.

## LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL  | Albanien                     | ES | Spanien                     | LS | Lesotho                     | SI                     | Slowenien                 |
|-----|------------------------------|----|-----------------------------|----|-----------------------------|------------------------|---------------------------|
| AM  | Armenien                     | FI | Finnland                    | LT | Litauen                     | SK                     | Slowakei                  |
| AT  | Österreich                   | FR | Frankreich                  | LU | Luxemburg                   | SN                     | Senegal                   |
| AU  | Australien                   | GA | Gabun                       | LV | Lettland                    | SZ                     | Swasiland                 |
| AZ  | Aserbaidschan                | GB | Vereinigtes Königreich      | MC | Monaco                      | TD                     | Tschad                    |
| BA  | Bosnien-Herzegowina          | GE | Georgien                    | MD | Republik Moldau             | TG                     | Togo                      |
| BB  | Barbados                     | GH | Ghana                       | MG | Madagaskar                  | TJ                     | Tadschikistan             |
| BE  | Belgien                      | GN | Guinea                      | MK | Die ehemalige jugoslawische | TM                     | Turkmenistan              |
| BF  | Burkina Faso                 | GR | Griechenland                |    | Republik Mazedonien         | TR                     | Türkei                    |
| BG  | Bulgarien                    | HU | Ungarn                      | ML | Mali                        | TT                     | Trinidad und Tobago       |
| B.J | Benin                        | IE | Irland                      | MN | Mongolei                    | UA                     | Ukraine                   |
| BR  | Brasilien                    | IL | Israel                      | MR | Mauretanien                 | UG                     | Uganda                    |
| BY  | Belarus                      | IS | Island                      | MW | Malawi                      | US                     | Vereinigte Staaten von    |
| CA  | Kanada                       | IT | Italien                     | MX | Mexiko                      |                        | Amerika                   |
| CF  | Zentralafrikanische Republik | JP | Japan                       | NE | Niger                       | $\mathbf{U}\mathbf{Z}$ | Usbekistan                |
| CG  | Kongo                        | KE | Kenia                       | NL | Niederlande                 | VN                     | Vietnam                   |
| СН  | Schweiz                      | KG | Kirgisistan                 | NO | Norwegen                    | YU                     | Jugoslawien <sup>13</sup> |
| CI  | Côte d'Ivoire                | KP | Demokratische Volksrepublik | NZ | Neuseeland                  | $\mathbf{z}\mathbf{w}$ | Zimbabwe                  |
| CM  | Kamerun                      |    | Korea                       | PL | Polen                       |                        |                           |
| CN  | China                        | KR | Republik Korea              | PT | Portugal                    |                        |                           |
| CU  | Kuba                         | KZ | Kasachstan                  | RO | Rumänien                    |                        |                           |
| CZ  | Tschechische Republik        | LC | St. Lucia                   | RU | Russische Föderation        |                        |                           |
| DE  | Deutschland                  | LI | Liechtenstein               | SD | Sudan                       |                        |                           |
| DK  | Dänemark                     | LK | Sri Lanka                   | SE | Schweden                    |                        |                           |
| EE  | Estland                      | LR | Liberia                     | SG | Singapur                    |                        |                           |
| l   |                              |    |                             |    |                             |                        |                           |

WO 99/22021 PCT/EP98/06756

- .1

# Verfahren zur Isolierung und Reinigung von Nukleinsäuren an Oberflächen

Die vorliegende Erfindung betrifft ein neues Verfahren zur Isolierung und Reinigung von Nukleinsäuren an Oberflächen.

5

10

15

Die Isolierung und Reinigung von Nukleinsäuren aus biologischen und klinischen Probenmaterialien ist von essentieller Bedeutung Nukleinsäure-basierende denen in Arbeitsbereiche. für Arbeitstechniken angewendet werden und in die Nukleinsäurebasierende Techniken gerade Einzug halten. Hierzu zählen zum Gewebetypisierungen, Vaterschaftsanalyse, die Beispiel Identifizierung von Erbkrankheiten, Genomanalyse, Bestimmung von Infektionskrankheiten, Tier- und Diagnostik, Pflanzenzucht, transgene Forschung, Grundlagenforschung auf dem Gebiet der Biologie und der Medizin sowie zahlreiche verwandte eine generelle Schwierigkeit Dabei besteht Arbeitsgebiete. Probenmaterialien klinische bzw. biologische aufzubereiten, daß die in ihr enthaltenen Nukleinsäuren direkt in die jeweilige Analysenmethode eingesetzt werden können.

20

25

30

Aus dem Stand der Technik sind bereits zahlreiche Verfahren zur Reinigung von DNA bekannt. So ist es bekannt, Plasmid-DNA beispielsweise zum Zwecke des Klonierens oder auch für andere Birnboim dem Verfahren von nach Vorhaben experimentelle [Methods in Enzymology 100 (1983) 243] zu reinigen. Nach diesem Verfahren wird ein geklärtes Lysat bakteriellen Ursprungs einem Caesiumchlorid Gradienten ausgesetzt und über einen Zeitraum von 4 bis 24 Stunden zentrifugiert. Diesem Verfahrensschritt folgt gewöhnlicherweise die Extraktion und die Praezipitation der DNA. Dieses Verfahren ist mit dem Nachteil verbunden, daß es zum einen apparativ sehr aufwendig und zum anderen sehr zeitaufwendig, kostenintensiv und nicht automatisierbar ist.

Andere Methoden, bei denen geklärte Lysate éingesetzt werden, um DNA zu isolieren, sind die Ionenaustauschchromatographie [Colpan et al., J. Chormatog. 296 (1984) 339] und die Gelfiltration [Moreau et al. Analyt. Biochem. 166 (1987) 188]. Diese Verfahren bieten sich in erster Linie als Ersatz für den Caesiumchlorid-Gradienten an, machen aber ein aufwendiges System für die Lösungsmittelversorgung sowie die Präzipitation der so gewonnenen DNA-Fraktionen erforderlich, da sie gewöhnlicherweise Salze in hoher Konzentration enthalten und sehr verdünnte Lösungen darstellen.

5

Marko et al. [Analyt. Biochem. 121 (1982) 382] sowie Vogelstein et al. [Proc. Nat. Acad. Sci. 76 (1979) 615] erkannten, daß, 10 falls die DNA aus Nukleinsäure-enthaltenden Extrakten hohen Natriumperchlorat Natriumiodid oder Konzentrationen von ausgesetzt wird, nur die DNA an mechanisch fein zerkleinerten Glasfaserzerkleinerten Glass-Scintillationsröhrchen sowie Glasfiberplatten bindet, während RNA membranen bzw. 15 Proteine nicht binden. Die so gebundene DNA kann ggf. Wasser eluiert werden.

Immobilisierung die 87/06621 der WO i.nwird an einer pvpr-Membran beschrieben. Nukleinsäuren 20 gebundenen Nukleinsäuren PVDF-Membran die die an werden sondern die Membran anschließend nicht eluiert, einen PCR-Ansatz in direkt Nukleinsäuren gebundener internationalen dieser Letztendlich wird in eingebracht. Patentanmeldung und in der weiteren Literatur jedoch die Lehre 25 daß hydrophobe Oberflächen Membranen bzw. offenbart, allgemeinen zuvor mit Wasser oder Alkohol benetzt befriedigenden Nukleinsäuren in halbwegs die um Ausbeuten immobilisieren zu können.

Für eine Reihe von modernen Applikationen, wie z. B. der PCR-, der Reversed -Transcription-PCR, SunRise, LCX- branched-DNA, NASBA, oder TaqMan-Technologie und ähnlichen Echtzeitquantifizierungsverfahren für PCR, ist es auf der anderen Seite jedoch absolut notwendig, die Nukleinsäuren direkt von der festen Phase lösen zu können. Hierzu ist der WO

87/06621 die Lehre zu entnehmen, daß die Nukleinsäure zwar von den dort eingesetzten Membranen wiedergewonnen werden kann, daß diese Wiedergewinnung jedoch sehr problematisch ist und bei weitem nicht zur quantitativen Isolierung von Nukleinsäuren geeignet ist. Daneben fallen die so gewonnenen Nukeinsäuren in vergleichsweise sehr hoher Verdünnung an - ein Umstand, der weitere Folgeschritte zwecks Konzentrierung und Isolierung zwangsläufig erforderlich macht.

5

20

25

30

35

Aus den oben genannten Gründen stellen die aus dem Stand der Technik bekannten Verfahren - insbesondere im Hinblick auf eine Automatisierung des Verfahrensablaufs zur Nukleinsäuregewinnung - keinen geeigneten Ausgangspunkt für eine verfahrenstechnisch möglichst einfache und quantitative Isolierung von Nukleinsäuren dar.

Es ist daher die Aufgabe der vorliegenden Erfindung, die Nachteile der aus dem Stand der Technik bekannten Verfahren zur Isolierung von Nukleinsäuren zu überwinden und ein Verfahren zur Verfügung zu stellen, welches dazu geeignet ist, ohne erheblichen technischen Mehraufwand vollautomatisch durchgeführt werden zu können.

Gelöst wird die Aufgabe erfindungsgemäß durch das Verfahren gemäß dem unabhängigen Patentanspruch 1, der Verwendung gemäß dem unabhängigegn Patentanspruch 51 und dem Automaten gemäß dem unabhängigen Patentanspruch 56. Weitere vorteilhafte Aspekte sich den aus ergeben Erfindung Ausgestaltungen der Beschreibung und den Patentansprüchen, der abhängigen beigefügten Zeichnungen.

Dabei ist die Erfindung auf ein Verfahren gerichtet, das Oberflächen, z.B. poröse Membranen verwendet, an welche die Nukleinsäuren auf einfache Weise aus der die Nukleinsäuren enthaltenden Probe immobilisiert und mittels ebenso einfacher Verfahrensschritte wieder abgelöst werden können, wobei es die

erfindungsgemäß einfache Prozeßführung ermöglicht, das Verfahren insbesondere vollautomatisch durchführen zu können.

Ein weiterer Aspekt der vorliegenden Erfindung ist darauf gerichet, Nukleinsäuren an eine immobile Phase, insbesondere an eine Membran, in der Art und Weise zu binden, daß sie in einem folgenden Reaktionsschritt ohne weiteres wieder von dieser Phase abgelöst werden können und ggf. in weiteren Anwendungen - wie z. B. Restriktionsverdauung, RT, PCR oder RT-PCR oder in jedweder anderen oben genannten geeigneten Analyse- bzw. Enzymreaktion eingesetzt werden können.

5

10

25

Die Erfindung stellt ein Verfahren zur Isolierung von Nukleinsäuren mit den folgenden Schritten bereit:

- 15 Beschicken einer Oberfläche aus einer Richtung mit Nukleinsäuren;
  - Immobilisieren der Nukleinsäuren an der Oberfläche;
  - Ablösen der immobilisierten Nukleinsäuren von der Oberfläche; und
- 20 Abnehmen der abgelösten Nukleinsäuren von der Oberfläche in im wesentlichen der Richtung der Beschickung.

Vorzugsweise erfolgt das Beschicken von oben. In diesem Fall kann die Gravitation zum Sammeln eines Puffers, der zum Ablösen verwendet wird, und zum Ablösen verwendet werden. Zwischen dem Immobilisierungs- und dem Ablöseschritt kann ein Waschen der immobilisierten Nukleinsäuren mit zumindest einem Waschpuffer erfolgen. Das Waschen umfasst für jeden Waschpuffer vorzugsweise folgende Schritte:

- 30 Aufbringen einer vorbestimmten Menge an Waschpuffer auf die Oberfläche, und
  - Durchsaugen des Waschpuffers durch die Oberfläche.

Das Beschicken und Immobilisieren der Nukleinsäuren kann 35 wiederum folgende Schritte umfassen:

- Mischen der Nukleinsäuren mit einem Immobilisierungspuffer,
- Beschicken der Nukleinsäuren mit dem Immobiliserungspuffer auf die Oberfläche, und
- Durchsaugen der füssigen Bestandteile durch die Oberfläche in im wesentlichen der Richtung der Beschickung.

5

- Das Verfahren weist den großen Vorteil auf, leicht automatisierbar zu sein, so daß zumindest einer der Schritte durch einen Automaten vollautomatisch durchgeführt werden kann. Ebenso ist es möglich, daß alle Schritte des Verfahrens durch einen Automaten in gesteuerter Abfolge durchgeführt werden.
- Speziell in diesen Fällen, aber auch bei manueller Bearbeitung ist es möglich, daß eine Mehrzahl von Nukleinsäuren gleichzeitig der Isolierung unterworfen werden.
- Schließlich können in dem erfindungsgemäßen Verfahren zwischen dem Ablöse- und dem Abnehmschritt zumindest einmal folgende Schritte durchgeführt werden:
  - Durchführen zumindest einer chemischen Reaktion an den Nukleinsäuren;
  - Immobilisieren der Nukleinsäuren an der Oberfläche; und
- 25 Ablösen der immobilisierten Nukleinsäuren von der Oberfläche.
- Nukleinsäure von die der Wie vorstehend skizziert, wird im wesentlichen in derselben Richtung eluiert Oberfläche (abgelöst), in der sie aufgetragen und immobilisiert worden 30 ist. Unter "derselben Richtung" ist dabei im Grunde genommen jede Richtung unter einem Winkel von kleiner oder gleich 180° zu verstehen, so daß bei der Eluierung die Nukleinsäuren jedenfalls nicht die Oberfläche, beispielsweise eine Membran, durchdringen, sondern in Gegenrichtung der Beschickungsrichtung 35 der Oberfläche entfernt werden, in der sie

bevorzugten In worden sind. aufgebracht Oberfläche Ausführungsformen werden demgegenüber die anderen Puffer, also derjenige Puffer, in dem sich die Nukleinsäuren beim Beschicken und ggfs. ein Waschpuffer, durch die Oberfläche befinden, durchgesaugt oder sonstwie transferiert. Wenn die Isolierung an einer in einem Gefäß befindlichen Membran erfolgt, wobei die Membran den gesamten Querschnitt des Gefässes ausfüllt, ist die bevorzugte Beschickung von oben. Der Abnahmeschritt erfolgt in diesem Fall wiederum nach oben. Fig. 2 zeigt beispielsweise ein trichterförmiges Isoliergefäss, das von oben beschickt wird und bei dem die Abnahme der Nukleinsäuren nach oben erfolgt.

Es versteht sich jedoch, daß auch andere Anordnungen denkbar sind, so z. B. eine Abnahme der Nukleinsäuren von unten. Es ist beispielsweise vorstellbar, daß ein Nukleinsäuren enthaltender Puffer wie ein Lysatpuffer mittels einer Saugvorrichtung aus einem Reaktionsgefäß unmittelbar in ein Isoliergefaß gesaugt wird, so daß sich die Nukleinsäuren an die Unterseite einer Membran in dem Isoliergefäß binden. In einem solchen Fall könnte die Abnahme der Nukleinsäuren von der Oberfläche dadurch erfolgen, daß ein Eluierpuffer von unten aufgesaugt wird und nach Ablösen der Nukleinsäuren wiederum nach unten in ein Gefäss abgelassen wird. Hierbei erfolgt also die Abnahme der Nukleinsäuren nach unten.

25

30

35

5

10

15

20

Auch eine seitliche Abnahme der Nukleinsäuren ist möglich, beispielsweise wenn eine flachliegende Säule mit einer darin angeordneten Membran im Durchflußverfahren mit einem Lysat beshickt wird und im Anschluß die liegende Säule auf der Seite der Membran, an der die Nukleinsäuren binden, mit Eluierpuffer gespült wird.

Ein Beispiel für den maximal möglichen Winkel von 180° ist eine Schräge mit einer zur Bindung von Nukleinsäuren geeigneten Oberfläche, über welche die verschiedenen Lösungen bzw. Puffer herabfließen. Wie alle Puffer, kommt auch der Eluierpuffer von

einer Seite und fließt zur anderen Seite ab. In diesem Fall bilden Einströmrichtung des Puffers und Abströmrichtung des Puffers mit den darin aufgenommenen Nukleinsäuren einen Winkel von 180°, die Abnahme erfolgt jedoch immer noch auf derselben Seite der Oberfläche wie die Immobilisierung.

5

Unter Nukleinsäure im Sinne der vorliegenden Erfindung sollen dabei alle wäßrigen oder sonstigen Lösungen von Nukleinsäuren enthaltenden Nukleinsäuren biologischen alle Materialien und biologischen Proben verstanden werden. Dabei 10 wird im Sinne der vorliegenden Erfindung eine Nukleinsäure enthaltende Probe oder ein Material durch eine Probe bzw. einen Probenansatz definiert, die bzw. der Nukleinsäuren enthält, die geeignete Edukte für in vitro Transkriptionen, PCRoder cDNA-Synthesen dienen können 15 Reaktionen, biologischem Material bzw. biologischer Probe sollen dabei z. Körperflüssigkeiten - wie beispielsweise Sperma, -, Zellen, Serum, Faeces, Urin, Sputum, Crusta Phlogistica, Leukozytenfraktionen, Gewebeproben jeder Art, Pflanzen und Pflanzenteile, Bakterien, 20 Viren, Hefen etc., wie sie beispielsweise in der Europäischen Patentanmeldung Nr. 95909684.3 offenbart sind, auf die hiermit inhaltlich Bezug genommen wird - oder auch freie Nukleinsäuren fallen. Unter Nukleinsäuren fallen im Sinne der vorliegenden Erfindung alle möglichen Arten von Nukleinsäuren, wie z. B. 25 Ribonukleinsäuren (RNA) und Desoxyribonukleinsäuren (DNA) wie Doppelstrang, Konfigurationen, und Längen Einzelstrang, circulär und linear, verzweigt etc.; monomere Nukleotide, Oligomere, Plasmide, virale und bakterielle DNA und RNA, sowie genomische oder sonstige nichtgenomische DNA und RNA 30 aus Tier- und Pflanzenzellen oder anderen Eukaryoten, t-RNA, mRNA in prozessierter und unprozessierter Form, hn-RNA, rRNA und cDNA sowie alle anderen, denkbaren Nukleinsäuren.

Nach dem erfindungsgemäßen Verfahren nimmt man die oben beschriebene, Nukleinsäuren enthaltende Probe in einer Lösung

auf, die geeignete Salze und/oder Alkohol(e) enthält, anschließend ggf. den Ansatz aufschließt und mischt und die so erhaltene Mischung mittels eines Vakuums, auf dem Wege einer Zentrifugation, mittels Überdruck, durch Kapillarkräfte oder durch andere geeignete Verfahren durch eine poröse Oberfläche führt, wobei die Nukleinsäuren an der Oberfläche immobilisiert werden.

5

15

20

Als Salze für das Immobilisieren von Nukleinsäuren an Membranen oder anderen Oberflächen kommen Salze von Alkalioder Erdalkalimetallen mit Mineralsäuren in Frage; insbesondere Alkalioder Erdalkalihalogenide bzw. -sulfate worunter die Halogenide des Natriums oder Kaliums oder Magnesiumsulfat besonders bevorzugt werden.

Ferner sind zur Durchführung des erfindungsgemäßen Verfahrens Salze von ein- oder mehrbasischen oder auch polyfunktionellen organischen Säuren mit Alkali- oder Erdalkalimetallen geeignet. Darunter fallen insbesondere Salze des Natriums, des Kaliums oder des Magnesiums mit organischen Dicarbonsäuren - wie z. B. Oxal-, Malon- oder Bernsteinsäure - oder mit Hydroxy- bzw. Polyhydroxycarbonsäuren - wie z. B. bevorzugterweise mit Zitronensäure.

Als besonders zweckmäßig hat sich dabei der Einsatz von sog. 25 chaotropen Agenzien herausgestellt. Chaotrope Substanzen sind der dreidimensionale Struktur Lage, die Wasserstoffbrückenbindung zu stören. Hierdurch werden auch die intramolekularen Bindungskräfte geschwächt, bei die Strukturen, wie z. B. Ausbildung der räumlichen 30 Tertiär- oder Quartärstrukturen, bei biologischen Molekülen beteiligt sind. Geeignete chaotrope Agenzien sind dem Fachmann aus dem Stand der Technik hinlänglich bekannt [Römpp, Lexikon der Biotechnologie, Herausgeber. H. Dellweg, R.D. Schmid u. W.E. Fromm, Thieme Verlag, Stuttgart 1992]. 35

Als bevorzugte chaotrope Substanzen gelten gemäß der vorliegenden Erfindung beispielsweise Salze aus der Gruppe der Trichloracetate, Thiocyanate, Perchlorate, Jodide oder Guanidinium-Hydrochlorid und Harnstoff.

5

10

15

20

Die chaotropen Substanzen werden dabei in 0,01 bis 10 molarer wässeriger Lösung, bevorzugt in 0,1 bis 7 molarer wässeriger Lösung und besonders bevorzugt in 0,2 bis 5 molarer wässeriger die vorbezeichneten Hierbei können Lösung eingesetzt. Agenzien allein oder in Kombinationen verwandt chaotropen Insbesondere werden 0,01 bis 10 molare wässerige Lösungen, bevorzugt 0,1 bis 7 molare wässerige Lösungen und besonders bevorzugt in 0,2 bis 5 molare wässerige Lösungen von Natriumperchlorat, Guanidinium-Hydrochlorid, Guanidinium-isothiocyanat, Natriumiodid und/oder Kaliumiodid eingesetzt.

Als Alkohole kommen für die Durchführung des erfindungsgemäßen Verfahrens zunächst alle Hydroxylderivate von aliphatischen gesättigten oder ungesättigten acyclischen oder Betracht. zunächst in Dabei ist es Kohlenwasserstoffen unerheblich, ob diese Verbindung eine, zwei, drei oder mehr  $C_1-C_5-Alkanole,$ wie mehrwertige \_ Hydroxylgruppen beispielsweise Ethylenglykol, Propylenglykol oder Glycerin enthalten.

25

Daneben zählen ebenfalls die Zuckerabkömmlinge, die sog. Aldite, wie auch die Phenole - beispielsweise Polyphenole - zu den erfindungsgemäß einsetzbaren Alkoholen.

Unter den vorgenannten Hydroxyverbindungen werden die  $C_1$ - $C_5$ -Alkanole - wie Methanol, Ethanol, n-Propanol, tert.-Butanol und die Pentanole besonders bevorzugt.

Die Immobilisierung kann unter sauren, neutralen oder basischen 35 Bedingungen durchgeführt werden. So kann der pH bei der Immobilisierung zwischen 3 und 11 liegen, vorzugsweise wird bei 5

15

20

einem pH von 4 bis 8 immobilisiert. Wenn RNA isoliert werden soll, liegt der pH vorzugsweise eher im neutralen Bereich, während bei DNA-Isolierungen ein saurer pH günstiger sein kann. So kann der pH für RNA-Isolierungen beispielsweise bei 6 bis 8 liegen, bevorzugterweise bei 6,5 bis 7,5. Für DNA-Isolierungen liegt der pH günstigerweise bei 4 bis 8, vorzugsweise bei 4 bis 6.

Als hydrophil gelten im Sinne der vorliegenden Erfindung solche Stoffe bzw. Membranen, die von ihrem chemischen Charakter her sich leicht mit Wasser mischen bzw. Wasser aufnehmen.

Als hydrophob gelten im Sinne der vorliegenden Erfindung solche Stoffe bzw. Membranen, die von ihrem chemischen Charakter her nicht in Wasser eindringen - bzw. vice versa - und die nicht darin zu bleiben vermögen.

Unter einer Oberfläche wird im Sinne der vorliegenden Erfindung jede mikroporöse Trennschicht verstanden. Im Falle einer Membran wird die Oberfläche durch eine Folie aus einem polymeren Material gebildet. Das Polymer wird bevorzugt aus Monomeren mit polaren Gruppen aufgebaut.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfaßt der Begriff Oberfläche im weiteren Sinne auch eine Schicht von Partikeln bzw. auch ein Granulat sowie auch Fasern, wie z.B. Silicagelvliese.

Bei Verwendung hydrophober Membranen gelten als bevorzugt im Sinne der vorliegenden Erfindung Membranen, die aus einem hydrophilen Grundmaterial bestehen und die durch eine entsprechende chemische Nachbehandlung, die an sich aus dem Stand der Technik bekannt ist - hydrophobisiert wurden, wie z. B. hydrophobisierte Nylon-Membranen, die kommerziell erhältlich sind.

erfindungsgemäß hydrophobisierten Membranen werden allgemein solche Membranen verstanden, die als unter Umständen erwähnten unten den mit hydrophile Membran ursprünglich wurden. Hydrophobisierungsmitteln überzogen Hydrophobisierungsmittel überziehen hydrophile Substanzen mit 5 einer dünnen Schicht hydrophober Gruppen, wozu beispielsweise Siloxangruppen gehören. Geeignete längere Alkylketten oder Hydrophobisierungsmittel sind aus dem Stand der Technik in großer Zahl bekannt und stellen erfindungsgemäß Paraffine, Wachse, Metallseifen etc. ggf. mit Zusätzen an Aluminium bzw. 10 Verbindungen, organische quartäre Zirkoniumsalzen, Melaminharze, fettstoffmodifizierte Harnstoffderivate, zinkorganische Verbindungen, Glutardialdehyde Silicone, ähnliche Verbindungen dar.

15

20

25

30

35

Daneben gelten als erfindungsgemäß einsetzbare hydrophobe Membranen solche Membranen, die hydrophobisiert sind und deren Grundmaterial polare Gruppen aufweisen kann. Gemäß dieser Kriterien eignen sich beispielsweise – insbesondere hydrophobisierte – Materialien aus der folgenden Gruppe für den erfindungsgemäßen Einsatz:

Polycarbonate, Polyethersulfone, Polysulfone, Nylon, Polyurethane, Acrylsäurecopolymere, sowie Polyacrylate Polytetra-Polyfluorocarbonate, Polyamide, Polyvinylchlorid, Polyvinylidendifluorid, Polyvinylidenfluorid, fluoroethylen, Polyethylentetrafluoroethylen-Copolymerisate, Polvethylenchlorotrifluoroethylen-Coplymerisate Polyphenylensulfid oder sowie Cellulose und Cellulose-Mischester oder Nitrocellulosen Glasfasermembranen, hydrophobisierte wie auch hydrophobisierte Nylon-Membrane besonders bevorzugt sind.

Bevorzugte hydrophile Oberflächen umfassen per se hydropile Materialien und auch hydrophobe Materialien, die hydrophilisiert worden sind. Beispielsweise können verwendet werden hydrophiles Nylon, hydrophile Polyethersulfone,

Polyester, hydrophile Polycarbonate, hydrophile Polypropylengeweben, hydrophile Polytetrafluoroethylene auf Polypropylenvliesen, auf Polytetrafluoroethylene Polyvinylidenfluoride, hydrophilisierte hydrophilisierte Polyvinylidendifluoride, Polytetrafluorethylene und hydrophile Polyamide.

5

10

15

Die Membranen, die im erfindungsgemäßen Verfahren eingesetzt werden, haben dabei beispielsweise einen Porendurchmesser von 0,001 bis 50  $\mu\text{m}$ , vorzugsweise 0,01 bis 20  $\mu\text{m}$  und besonders bevorzugt 0,05 bis 10  $\mu\text{m}$ .

Als Waschpuffer kommen ebenfalls die oben beschriebenen Salze oder Alkohole bzw. Phenole oder Polyphenole in Frage. Die Temperaturen liegen im Waschschritt in einem Intervall von üblicherweise 10° bis 30°C, wobei auch höhere Temperaturen erfolgreich angewandt werden können.

sich Nukleinsäure eignen gebundenen der Elution Zur als Salzlösungen wässerige oder Wasser erfindungsgemäß 20 Pufferlösungen werden Salzlösungen Elutionsmittel. Als eingesetzt, die aus dem Stand der Technik bekannt sind, wie Morpholinopropansulfonsäure (MOPS), beispielsweise Tris(hydroxymethyl)aminomethan (TRIS), 2-[4-(2-Hydroxyethyl)-1piperazino]ethansulfonsäure (HEPES) in einer Konzentration von 25 0,001 bis 0,5 Mol/Liter, bevorzugt 0,01 bis 0,2 Mol/Liter, besonders bevorzugt 0,01 bis 0,05 molare Lösungen. Daneben Alkalivon wässerige Lösungen bevorzugt werden Halogenide, insbesondere deren Erdalkalimetallsalzen, eingesetzt, darunter 0,001 bis 0,5 molare, bevorzugt 0,01 bis 30 0,2 molare, besonders bevorzugt 0,01 bis 0,05 molare wässerige Lösungen von Natriumchlorid, Lithiumchlorid, Kaliumchlorid oder Magnesiumdichlorid. Daneben können bevorzugt auch Lösungen von Salzen der Alkalimetalle oder Erdalkalimetalle mit Carbon- oder Dicarbonsäuren wie Oxalsäure oder Essigsäure, wie Lösungen von 35 Wasser eingesetzt werden, Natriumacetat oder -oxalat in

beispielsweise in dem zuvor genannten Konzentrationsbereich, wie z. B. 0,001 bis 0,5 molare, bevorzugt 0,01 bis 0,2 molare, besonders bevorzugt 0,01 bis 0,05 molare Lösungen.

Ganz besonders wird reines Wasser als Elutionsmittel bevorzugt, beispielsweise demineralisiertes, bidestiliertes, oder Millipore-Wasser.

Die Eluierung kann bei Temperaturen von 10° bis 70°C, bespielsweise bei 10° bis 30°C oder auch bei höheren Temperaturen erfolgreich durchgeführt werden. Auch ein Eluieren mit Wasserdampf ist möglich.

Hinsichtlich der einzelnen Schritte wird das erfindungsgemäße Verfahren wie folgt durchgeführt:

15

20

25

30

35

Das Lysat der zur Gewinnung der Nukleinsäuren dienenden Probe oder die ursprünglich freie(n) Nukleinsäure(n) wird/werden beispielsweise in eine (Plastik-)Säule pipettiert, in der beispielsweise auf dem Boden - die Membran fixiert Zweckmäßigerweise kann die Membran auf einer Fritte fixiert werden, die als mechanische Unterstützung dient. Anschließend wird das Lysat durch die Membran geführt, was durch Anlegen eines Vakuums am Ausgang der Säule erreicht werden kann. Auf der anderen Seite kann der Transport durch einen Lysat-seitigen Überdruck erfolgen. Daneben kann - wie schon zuvor erwähnt der Lysattransport auf dem Wege der Zentrifugation oder durch Einwirkung von Kapillarkräften bewerkstelligt werden; letzteres kann zum Beispiel mit einem schwammartigen Material geschehen, das unterhalb der Membran mit dem Lysat bzw. Filtrat in Kontakt gebracht wird.

Der in bevorzugten Ausführungsformen eingefügte Waschschritt, kann erfolgen, indem der Waschpuffer durch die Oberfläche bzw. Membran hindurchtransportiert wird oder auf derselben Seite der Oberfläche verbleibt wie die Nukleinsäuren. Wird der

Waschpuffer hindurchtansportiert bzw. gesaugt, so kann dies auf unterschiedliche Weisen geschehen, z.B. durch einen auf der anderen Seite der Membran angeordneten Schwamm, eine Saug- oder oder Zentrifugation Überdruckvorrichtung oder durch Gravitation.

5

10

15

20

25

30

Der Vorteil einer Anordnung mit einem schwammartigen Material besteht in einer einfachen, sicheren und bequemen Möglichkeit der Filtrat-Entsorgung - es muß in diesem Fall nur der Schwamm, der nunmehr mit dem Filtrat mehr oder weniger vollgesogen ist, ausgetauscht werden. Es wird an dieser Stelle deutlich, daß die Säule kontinuierlich oder auch batch-weise betrieben werden Betriebsarten vollautomatisiert beide daß durchgeführt werden können, bis die Membran mit Nukleinsäure gesättigt ist. Im letzten Schritt erfolgt die Elution der beispielsweise von der welche Nukleinsäure, abpipettiert bzw. abgehoben oder in sonstiger Weise nach oben Maßgeblich für den Eluierschritt im entfernt werden kann. die jedenfalls, ist Verfahren erfindungsgemäßen Membran abgenommen Seite der derselben Nukleinsäuren von werden, von der sie der Membran auch zugeführt wurden, daß also kein Durchtritt der Nukleinsäuren durch die Membran zu erfolgen hat Eine solche Verfahrensanordnung ermöglicht es, alle nicht mehr benötigten Flüssigkeiten, wie den urspünglichen Lysepuffer und die Waschpuffer, auf eine "Abfallseite" zu saugen oder durch Gravitation dorthin zu bringen, während das Eluat auf der anderen Seite bleibt. Eine solche Anordnung ermöglicht Automatisierung des eine Weise einfacher besonders erfindungsgemäßen Verfahrens, da für Zugabe des Lysates und Abnahme des Eluats nur auf einer Seite der Oberflächen eine Pipettiervorrichtung vorgesehen sein muß, die andere Seite der Oberfläche hingegen keinen "Reinbereich" enthalten muß. Somit eine räumliche die durch auch kontaminationsfreie Isolierung von Nukleinsäuren, insbesondere RNase-Freiheit, in einfachster Weise sicherstellen. Zudem 35 Isoliergefäße, z. B. Reinigungssäulen, nicht müssen die

repositioniert werden, um einerseits Abfall verwerfen zu können, andererseits das Eluat durch dieselbe Öffnung des Gefässes aufzufangen. Auch dies bedeutet eine Vereinfachung der Automatisierung.

5

10

15

20

25

30

35

Das Auffangen von Fraktionen, welche in großer Verdünnung die gewünschten Nukleinsäuren enthalten, und das anschließende Konzentrierung erfordert, entfällt bei dem erfindungsgemäßen Verfahren völlig. Vielmehr fallen die gewünschten Nukleinsäuren in schwach oder nicht-salzhaltigen Lösungen in sehr kleinen Vorteil großem von was Volumina an, molekularbiologischen Analyseverfahren ist, da hier gewünscht reine Nukleinsäuren in möglichst kleinen Volumina bei gleichzeitig hoher Konzentration einzusetzen. Um möglichst kleine Volumina an Eluat erzielen zu können, werden als Oberflächen insbesondere Membranen bevorzugt, die möglichst dünn sind, so daß sich nur wenig Flüssigkeit in ihnen ansammeln sind hingegen Vliese wie Weniger bevorzugt Silicagelvliese, da diese ein relativ großes Volumen an Eluat aufzunehmen vermögen, was das Abnehmen des Eluats nach oben erschwert und das notwendige Eluatvolumen in ungünstiger Weise steigert.

Ferner bietet die vorliegende Erfindung den Vorteil, daß bei (Membran Gefässes Anordnung des vertikalen horizontal orientiert) das über der Membran befindliche Volumen als Reaktionsraum genutzt werden kann. So ist es z. B. möglich, nach dem Isolieren und Ablösen der nach dem erfindungsgemäßen Nukleinsäuren, diese zunächst nicht Verfahren gewonnenen abzunehmen, sondern im Isoliergefäß zu belassen und molekularbiologischen Applikation - wie Restriktionsverdauung, RT, PCR, RT-PCR oder Enzymreaktionen - zu unterwerfen, die aus diesen Reaktionen hervorgehenden Nukleinsäuren gemäß erfindungsgemäßen Verfahren erneut an die Membran zu binden, ggfs. wie beschrieben zu waschen und anschließend zu eluieren, zu isolieren, bzw. zu analysieren, beispielsweise mittels Spektroskopie, Fluorometrie oder ähnlichen Meßverfahren.

Die erfindungsgemäß isolierten Nukleinsäuren sind frei von nukleinsäureabbauenden Enzymen und haben eine derartig hohe Reinheit, daß sie unmittelbar in verschiedensten Weisen weiterbehandelt und bearbeitet werden können.

Die erfindungsgemäß hergestellten Nukleinsäuren können für für Substrate werden als und verwendet Klonierungen 10 DNAbeispielsweise wie dienen, verschiedenste Enzyme DNA-Restriktionsenzyme, DNA-Ligase und reverse Polymerasen, Transkriptase.

Die durch das erfindungsgemäße Verfahren bereitgestellten Nukleinsäuren eignen sich in besonders guter Weise zur Amplifikation, insbesondere für die PCR, Strand Displacement Amplifikation, Rolling Circle Verfahren, Ligase Chain Reaction (LCR) und ähnlicher Verfahren.

20

25

30

5

sich weiterhin in erfindungsgemäße Verfahren eignet besonders guter Weise zur Bereitstellung von Nukleinsäuren für insbesondere ein Diagnostik, der Verwendung in Diagnoseverfahren, welches dadurch gekennzeichnet ist, daß die durch das erfindungsgemäße Verfahren gereinigte Nukleinsäure in einem Folgeschritt amplifiziert wird und anschließend und/oder gleichzeitig die so amplifizierte Nukleinsäure detektiert wird (z. B. Holland, P.M. et al., 1991. Proc. Natl. Acad. Sci. 88, 7276 - 7280. Livak, K.J. et al., 1995. PCR Methods Applic. 4, 357 - 362; Kievits, T. et al., 1991. J. Virol. Meth. 35, 273 -286; Uyttendaele, M. et al., 1994. J. Appl. Bacteriol. 77, 694 - 701).

Desweiteren eignet sich das erfindungsgemäße Verfahren in 35 besonders guter Weise zur Bereitstellung von Nukleinsäuren, welche in einem Folgeschritt einem auf einer Hybridisierungsreaktion basierenden Signalamplifikationsschritt unterzogen werden, insbesondere dadurch gekennzeichnet, daß die Verfahren bereitgestellten erfindungsgemäße das durch Nukleinsäuren mit "Verzweigten Nukleinsäuren", insbesondere und/oder Branched RNA und/oder entsprechende Branched DNA Dendrimer Nukleinsäuren, wie in den folgenden Literaturstellen beschrieben (z. B. Bresters, D. et al., 1994. J. Med. Virol. 43 (3), 262 - 286; Collins M.L. et al., 1997. Nucl. Acids Res. 25 (15), 2979 - 2984; ), in Kontakt gebracht werden und das entstehende Signal detektiert wird.

5

10

15

25

Im folgenden wird ein Beispiel für die Automatisierbarkeit des erfindungsgemäßen Verfahrens erläutert und werden Beispiele für die Durchführung des Verfahrens mit verschiedenen Oberflächen und Nukleinsäuren angegeben. Hierbei wird Bezug genommen auf die beigefügten Zeichnungen, in denen folgendes dargestellt ist.

- Fig. 1 zeigt einen zur Durchführung des erfindungsgemäßen 20 Verfahrens geeigneten Automaten in einer schematisierten Darstellung.
  - Fig. 2 zeigt eine erste Ausführungsform eines Isoliergefässes und Abfallbehälters zur Durchführung des erfindungsgemäßen Verfahrens.
    - Fig. 3 zeigt eine zweite Ausführungsform eines Isoliergefässes und Abfallbehälters zur Durchführung des erfindungsgemäßen Verfahrens.
- Fig. 4 zeigt eine dritte Ausführungsform eines Isoliergefässes und Abfallbehälters zur Durchführung des erfindungsgemäßen Verfahrens.
- Fig. 5 zeigt die Absorption einer Probe im Bereich von 220 bis 320 nm.

Ethidiumbromid-gefärbte Gel einer das zeigt Fiq. 6 elektrophoretischen Auftrennung verschiedener Proben nach dem erfindungsgemäßen Verfahren.

5

35

Fig. 7 zeigt ein weiteres Ethidiumbromid-gefärbtes Gel einer elektrophoretischen Auftrennung verschiedener Proben nach dem erfindungsgemäßen Verfahren.

Das erfindungsgemäße Verfahren wird vorzugsweise teilweise oder 10 vollständig, d.h. in allen seinen Schritten, automatisiert durchgeführt. Ein Beispiel für einen geeigneten Automaten ist Hauptteil mit ein dargestellt, bei dem Fig. 1 mit Antriebsmotoren Steuerungselektronik und Arbeitsplattform 3 und einem fahrbaren Arm 2 ausgestattet ist. 15 verschiedene Arbeitsplattform sind positioniert, so Bereiche 4 zur Halterung von verschiedenen Gefässen. Eine Absaugvorrichtung 5 dient zum Absaugen von Flüssigkeiten aus darüber positionierten, nach unten offenen Absaugvorrichtung mit der sonst oder Isoliergefässen, 20 verbundenen Gefässen. Ein Rüttler 6 ist ebenfalls vorgesehen, zum Lysieren von biologischen beispielsewise verwendeten Anordnungen Die werden kann. verwendet Spritzgußteile beispielsweise Isoliergefässen sind erfindungsgemäße die Isoliergefässen, in integrierten 25 Oberflächen eingelegt sind. Es können typischerweise 8, 12, 24, 48, 96 oder bis zu 1536 Isoliergefässe vorgesehen sein, wie sie z.B. in den Formaten moderner Multi-Well-Platten zur Verfügung gestellt werden. Auch noch höhrere Isoliergefäßzahlen in einer Anordnung sind vorstellbar, wenn entsprechende Standards zur 30 Verfügung stehen. Mit Hilfe von Luer-Adaptern ist es jedoch auch möglich, die Böden der Anordnungen separat bereitzustellen und je nach Bedarf mit einem oder mehreren Isoliergefässen zu bestücken. Auch einzeln gearbeitete Isoliergefässe ohne Luer-Adapter werden von der Erfindung miterfasst.

Unter eine Saug- und Dispensiervorrichtung 8 werden die Anordnungen von Isoliergefässen in den Automaten eingesetzt und über diese können Flüssigkeiten aufgenommen und abgegeben werden. Hierbei können mehrere einzelne Saugrohre vorgesehen sein, um mehr als ein Isolier- oder Reaktionsgefäß gleichzeitig bearbeiten zu können. Die Saug und Dispensiervorrichtung 8 erfüllt also die Funktion einer Pipette. Sog und Druck werden der Saug- und Dispensiervorrichtung 8 über Schläuche 9 vermittelt.

10

15

5

beispielsweise Nukleinsäureisolierung können Reaktionsgefässe mit Zellen in den Rüttler/Halter 6 eingesetzt werden, in die mit der Dispensiervorrichtung 8 Lysepuffer Nach Mischen die Zelllysate werden eingefüllt wird. Isoliergefässe überführt. Die Anordnung von Isoliergefässen wird daraufhin auf die Absaugvorrichtung 5 aufgesetzt und der Isoliergefässen Oberflächen in den die durch Lysepuffer kann die Oberfläche mit einem Anschluß Ιm durchgesaugt. der Zelllysate Waschpuffer gespült werden, um Reste entfernen, wobei auch der Waschpuffer nach unten abgesaugt wird. Schließlich wird Eluat in die Isoliergefässe dispensiert und nach eventuelllem nochmaligem Rütteln werden die abgelöste Nukleinsäuren nach oben entnommen und in Aufbewahrungsgefässe überführt.

25

35

20

Üblicherweise werden Wechselspitzen an der Saug- und Dispensiervorrichtung 8 verwendet, um eine Kontamination der Proben zu verhindern.

Die Fig. 2 bis 4 zeigen verschiedene Beispiele für geeignete Isoliergefässe zur Verwendung in der vorliegenden Erfindung.

In Fig. 2 ist ein trichterförmiges Isoliergefäß 10 mit einer Oberfläche 11, beispielsweise einer Membran, versehen, die auf einen Auffangbehälter 12 aufgesetzt ist, der ein schwammartiges Material 13 enthält, das der Aufnahme von Lysepuffer und

In den Trichter wird Lysat oder eine Waschpuffer dient. Nukleinsäuren 14 gegeben. Das von sonstige Aufbereitung schwammartige Material 13 saugt die aufgetragene Flüssigkeit durch die Membran 11 hindurch. Vor der Zugabe des Eluierpuffer Membran beabstandet, etwas von der Schwamm beispielsweise durch eine im Auffangbehälter 12 angeordnete Mechanik (nicht dargestellt). So wird beim letzten Schritt verhindert, daß der Eluatpuffer auch durch die Membran gesaugt wird. Dieser verbleibt vielmehr auf der Oberfläche (Fig. 1b) und kann zusammen mit den Nukleinsäuren nach oben die Mit dieser Anordnung wird werden. Absaugvorrichtung 5 im Automaten nicht benötigt.

5

10

30

- Fig. 3 zeigt ein weiteres Beispiel eines Isoliergefässes, daß über einen an seinem unteren Ende angeordneten Luer-Anschluß 15 mittels eines Luer-Adapters 17 mit einem Aufffangbehälter 16 verbunden ist, der in diesem Fall keinen Schwamm enthält, sondern mittels eines Stutzen 18 mit einer Absaugvorrichtung verbunden ist. Lyse- und Waschpuffer können hier also durch Anlegen eines Vakuums durch die Membran 11 durchgesaugt werden. 20 Beim Auftragen des Eluatpuffers bleibt das Vakuum abgeschaltet, so daß sich das Eluat nach oben entnehmen lässt. Durch die Luer-Anschlusses sind individuelle Verwendung eines Isoliergefässe der Anordnung von Isoliergefässen entnehmbar. Es versteht sich jedoch, daß der Vakuumauffangbehälter auch mit 25 fest angebrachtetn Isoliergefässen kombinierbar ist.
  - 4 zeigt schließlich eine Ausführungsform, bei der in den die Puffer mittels Auffangbehälter vorgesehen ist, Eluatpuffer, Schwerkraft hineingesaugt werden. Der hinreichendes hat kein verwendet wird, Volumen 11 zu durchdringen und kann um die Membran Eigengewicht, wiederum nach oben abgenommen werden.
- 35 Die vorbeschriebene Erfindung wird durch die nachfolgenden Beispiele erläutert. Hierbei sind Beispiele 1 bis 17 im

auf die Verwendung hydrophober Oberflächen wesentlichen Verwendung 1b bis 2b auf die Beispiele gerichtet und Verschiedenartige, andere Oberflächen. hydrophiler Ausgestaltungen der Verfahren werden für den Fachmann aus der vorstehenden Beschreibung und den Beispielen ersichtlich. hingewiesen, ausdrücklich darauf jedoch Beispiele und die diesen zugeordnete Beschreibung lediglich zum Zweck der Erläuterung vorgesehen und nicht als Einschränkung der Erfindung anzusehen sind.

10

5

### Beispiel 1

Isolierung von Gesamt-RNA aus HeLa-Zellen

- In einer Plastiksäule werden kommerziell erhältliche hydrophobe Nylon-Membranen (Beispielsweise ein Material der Fa. MSI: Magna SH mit einem Porendurchmesser von 1,2 μm oder ein Material der Fa. Pall GmbH: Hydrolon mit einem Porendurchmesser von 1,2 μm), die durch chemische Nachbehandlung hydrophobisiert wurden, einlagig eingebracht. Die Membranen werden auf einer Polypropylenfritte, die als mechanische Unterstützung dient, plaziert. Die Membranen werden in der Plastiksäule durch einen Spannring fixiert.
- Die so vorbereitete Säule wird über eine Luerverbindung mit einer Vakuumkammer verbunden - alle Isolierungschritte werden mit Hilfe eines angelegten Vakuums durchgeführt.
- Zur Isolierung werden  $5\times10^5$  HeLa-Zellen durch Zentrifugation pelletiert und der Überstand entfernt. Die Zellen werden durch Zugabe von 150  $\mu$ l eines handelsüblichen Guanidinium-isothiocyanat-Puffer wie z. B. RLT-Puffer der Fa. Qiagen auf an sich aus dem Stand der Technik bekannte Weise lysiert. Dabei wird die Lyse durch mehrmaliges Auf- und Abpipettieren oder vortexen über einen Zeitraum von ca. 5 s unterstützt. Anschließend werden 150  $\mu$ l 70 %-iges Ethanol zugefügt und durch

20

25

30

Auf- und Abpipettieren oder durch vortexen über einen Zeitraum von ca. 5 s gemischt.

Das Lysat wird anschließend in die Plastiksäule pipettiert und durch Evakuierung der Vakuumkammer durch die Membran gesaugt. 5 Unter den so eingestellten Bedingungen bleibt die RNA an der einem Anschließend mit wird gebunden. Membran handelsüblichen Guanidinium-iso-thiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Fa. Qiagen - und danach mit einem zweiten Tris-haltigen bzw. TRIS- und alkohol-haltigen 10 B. mit dem Puffer RPE der Fa. Qiagen -Waschpuffer - z. Waschpuffer jeweils die werden Dabei gewaschen. Evakuierung der Vakuumkammer durch die Membran gesaugt. Nach dem letzten Waschschritt wird das Vakuum über einen Zeitraum von ca. 10 min aufrechterhalten, um die Membran zu trocknen. 15 danach wird die Vakuumkammer belüftet.

Zur Elution werden 70  $\mu$ l RNase-freies Wasser auf die Membran pipettiert, um die gereinigte RNA von der Membran abzulösen. Nach einer Inkubation über einen Zeitraum von 1 min bei einer Temperatur im Bereich von 10° bis 30°C wir das Eluat mittels einer Pipette von oben von der Membran abpipettiert und der Elutionsschritt wird zum Zweck einer vollständigen Elution noch einmal wiederholt.

Die Menge an isolierter Gesamt-RNA wird anschließend durch Lichtabsorption bei einer Messung der photometrische Qualität so ermittelt. Die nm Wellenlänge von 260 gewonnenen RNA wird durch die photometrische Bestimmung Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt (vgl. Fig. 5: Gesamt-RNA über Hydrolon 1.2 isoliert)

Die Ergebnisse der zwei Isolierungen mit hydrophoben 35 Nylonmembranen (Nr. 1 und 2) sind in der nachfolgenden Tabelle 1 Vergleichsversuche, in denen zum einen hydrophiles Nylon

(Nyaflo) (Nr. 3) sowie eine Silica-Membran eingesetzt wurde (Nr. 4), gegenübergestellt. Die dort wiedergegebenen Werte liefern einen überzeugenden Beleg für die beeindruckende sowie Trennwirkung der erfindungsgemäß Isolierungsleistung eingesetzten Materialien. Sie zeigen weiterhin, daß Silica-gel-Vliese eine deutlich geringe Ausbeute erbringen, was vermutlich verbundene die damit ihre vlisartige Struktur und auf Absorption des größten Teiles des Eluatpuffers zurückzuführen ist.

10

5

Tabelle 1: RNA-Ausbeute und -Reinheit der nach Beispiel 1 isolierten Gesamt-RNA

15

| Nr           | Membrantypus                        | Ausbeute an<br>Gesamt-RNA<br>[µg] | E <sub>260</sub> /E <sub>280</sub> |
|--------------|-------------------------------------|-----------------------------------|------------------------------------|
| 1            | Magna SH 1,2 μm (hydrophobes Nylon) | 6.0                               | 1.97                               |
| <del>.</del> | Hydrolon 1,2 μm (hydrophobes Nylon) | 7.1                               | 2.05                               |
| <del>-</del> | Nyaflo (hydrophiles Nylon)          | < 0.2                             | nicht bestimmt                     |
| 4            | Hydrophile Silica-Membran           | < 0.2                             | nicht bestimmt                     |

Die isolierte RNA kann ferner auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert werden. Hierzu werden beispielsweise 1,2 %-ige Formaldehyd-Agarose-Gele angefertigt. Das Ergebnis ist in Fig. 6 wiedergegeben.

In Fig. 6 verkörpert Spur 1 eine Gesamt-RNA, die über eine hydrophobe Nylon-Membran des Ursprungs Magna SH mit einem Porendurchmesser von 1,2  $\mu \mathrm{m}$  isoliert wurde.

Spur 2 stellt eine Gesamt-RNA dar, die über eine hydrophobe Nylon-Membran des Ursprungs Hydrolon mit einem Porendurchmesser von 1,2  $\mu m$  isoliert wurde.

25

20

Spur 3 stellt das Chromatogramm einer Gesamt-RNA dar, die über eine Silica-Membran isoliert wurde.

Dabei wurden jeweils 50  $\mu$ l der Gesamt-RNA Isolate analysiert. Fig. 6 liefert einen deutlichen Beleg dafür, daß unter Verwendung der Silica-Membran kein meßbarer Anteil an Gesamt-RNA isoliert werden kann.

# Beispiel 2

5

15

30

Isolierung freier RNA durch Bindung der RNA an hydrophobe Membranen mittels verschiedener Salz/Alkohol-Gemische. Bei diesem Beispiel werden Lysat und Waschlösungen durch Anlegen eines Vakuums über die hydrophobe Membran geführt.

In Plastiksäulen, die mit einer Vakuumkammer in Verbindung stehen, werden hydrophobe Nylon-Membranen (beispielsweise Hydrolon 1.2  $\mu$ m der Fa. Pall) analog Beispiel 1 eingebracht.

100  $\mu$ l einer Gesamt-RNA enthaltenden wässerigen Lösung werden jeweils mit 350  $\mu$ l eines kommerziell erhältlichen Guanidinium-iso-thiocyanat enthaltenden Lysepuffers (beispielsweise Puffer RLT der Fa. Qiagen), 350  $\mu$ l 1.2 M Natriumacetat-Lösung, 350  $\mu$ l 2 M Natriumchlorid-Lösung, 350  $\mu$ l 4 M Lithiumchlorid-Lösung durch Auf- und Abpipettieren gemischt.

250  $\mu$ l Ethanol zugegeben und Anschließend werden jeweils ebenfalls durch Auf- und Abpipettieren gemischt. Die RNAdie Plastiksäulen in danach Lösungen werden haltigen einpipettiert und durch Evakuierung der Vakuumkammer durch die Membran gesaugt. Unter den beschriebenen Bedingungen bleibt die werden Membranen Die Membranen gebunden. den anschließend - wie in Beispiel 1 beschrieben - gewaschen.

2.01

4.0

Abschließend wird die RNA - ebenfalls wie in Beispiel 1 beschrieben - von oben - von der Membran mittels einer Pipette entnommen.

Die Menge an isolierter Gesamt-RNA wirde durch photometrische Messung der Lichtabsorption bei 260 nm ermittelt. - Die Qualität der so gewonnenen RNA wird durch die photometrische Bestimmung der Verhältnisse der Lichtabsorption bei 260 nm zu der bei 280 nm bestimmt.

10

15

5

Tabelle 2: Isolierung freier RNA durch Bindung der RNA an hydrophobe Membranen mittels verschiedener Salz/Alkohol-Gemische

| Nr           | Salz/Alkohol-Gemisch                     | Ausbeute ar<br>Gesamt-RNA | E <sub>260</sub> /E <sub>280</sub> |
|--------------|------------------------------------------|---------------------------|------------------------------------|
|              |                                          | [µg]                      |                                    |
| 1            | RLT-Puffer Qiagen / 35 %-iges Ethanol    | 9.5                       | 1.92                               |
| <del>.</del> | 0.6 M Natriumacetat / 35 %-iges Ethanol  | 8.5                       | 1.98                               |
| 3            | 1.0 M Natriumchlorid / 35 %-iges Ethanol | 7.9                       | 1.90                               |
| _            | 1.0 1/1 1/441.41.41.4                    |                           |                                    |

## Beispiel 3

20

25

30

Isolierung von Gesamt-RNA aus HeLa-Zellen

2 M Lithiumchlorid / 35 %-iges Ethanol

In einer Plastiksäule werden kommerziell erhältliche hydrophobe Membranen, die aus verschiedenen Materialien bestehen, einlagig eingebracht. Die Membranen werden auf einer Polypropylenfritte, die als mechanische Unterstützung dient, plaziert und durch fixiert. in Plastiksäule der Spannring vorbereitete Säule wird in ein Collection Tube gesetzt, die einer werden mittels Isolierungsschritte folgenden Zentrifugation durchgeführt.

5

10

15

20

25

30

35

Zur Isolierung werden  $5 \times 10^5$  HeLa-Zellen durch Zentrifugation pelletiert und der Überstand abgenomen. Die Zellen werden durch Zugabe von 150  $\mu$ l eines handelsüblichen Guanidinium-Isothiocyanat-Puffers - wie z. B. RLT-Puffer der Fa. Qiagen - auf an sich aus dem Stand der Technik bekannte Weise lysiert. Dabei wird die Lyse durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von 5 s unterstützt. Anschließend werde 150  $\mu$ l 70 %-iges Ethanol zugefügt und durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von 5 s gemischt.

Das Lysat wird anschließend in die Plastiksäule pipettiert und durch Zentrifugation bei 10000 x g für 1 min durch die Membran geführt. Anschließend wird mit einem handelsüblichen Guanidinium-Isothiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Fa. Qiagen - und danach mit einem zweiten Tris- und alkoholhaltigen Waschpuffer - beispielsweise Puffer RPE der Fa. Qiagen - gewaschen. Dabei werden die Waschpuffer jeweils durch Zentrifugation durch die Membran geführt. Der letzte Waschschritt wird bei 20000 x g für 2 min durchgeführt, um die Membran zu trocknen.

Zur Elution werden 70  $\mu$ l RNase-freies Wasser auf die Membran pipettiert, um die gereinigte RNA von der Membran zu lösen. Nach einer Inkubation von 1 - 2 min bei einer Temperatur im Bereich von 10 - 30 °C wird das Eluat mittels einer Pipette von oben von der Membran abpipettiert. Der Elutionsschritt wird einmal wiederholt, um eine vollständige Elution zu erreichen.

Die Menge an isolierter Gesamt-RNA wird anschließend durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Qualität der RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt.

Die Ergebnisse der Isolierungen mit den verschiedenen hydrophoben Membranen sind in der nachfolgenden Tabelle 3 aufgeführt. Es werden 3 - 5 Parallelversuche pro Membran durchgeführt und jeweils der Mittelwert errechnet. Durch die Verwendung einer Silica-Membran kann kein meßbarer Anteil an

5

Gesamt-RNA isoliert werden, wenn das Eluat durch eine Abnahme von oben von der Membran gewonnen wird.

Tabelle 3: RNA-Ausbeute der nach Beispiel 3 isolierten Gesamt-RNA durch Bindung an hydrophobe Membranen

| Hersteller           | Membran                   | Material                                             | RNA<br>(µg) | 260 nm/<br>280 nm |
|----------------------|---------------------------|------------------------------------------------------|-------------|-------------------|
| Pall Gelman Sciences | Hydrolon, 1,2 µm          | hydrophobes Nylon                                    | 6,53        | 1,7               |
| Pall Gelman Sciences | Hydrolon, 3 µm            | hydrophobes Nylon                                    | 9,79        | 1,72              |
| Pall Gelman Sciences | Fluoro Trans G            | hydrophobes, caboxyliertes<br>Polyvinylidendifluorid | 6,16        | 1,72              |
| Pall Gelman Sciences | NFWA                      | Acrylpolymer auf Nylongewebestützkörper              | 2.91        | 1.73              |
| Pall Gelman Sciences | Hemasep V Medium          | modifiziertes Polyester                              | 4.16        | 1.74              |
| Pall Gelman Sciences | Hemadyne                  | modifiziertes Polyester                              | 6.67        | 1,65              |
| Pall Gelman Sciences | V-800 R                   | leicht hydrophobes modifiziertes Acryl-<br>Copolymer | 6,26        | 1,72              |
| Pall Gelman Sciences | Supor-450 PR              | hydrophobes Polyethersulfon                          | 3.96        | 1,76              |
| Pall Gelman Sciences | Versapor - 1200R          | leicht hydrophobes modifiziertes Acryl-<br>Copolymer | 6,23        | 1,68              |
| Pall Gelman Sciences | Versapor - 3000R          | leicht hydrophobes modifiziertes Acryl-<br>Copolymer | 3.54        | 1.74              |
| Pall Gelman Sciences | Zefluor                   | Polytetrafluorethylen                                | 5.19        | 1.65              |
| Pall Gelman Sciences | Polypro - 450             | Polyesterfaser                                       | 4,58        | 1.77              |
| GORE - TEX           | Polypropylen-Lochfolie 93 | hydrophobes Polytetrafluorethylen                    | 3,6         | 1.59              |
| GORE - TEX           | Polypropylen-Lochfolie 93 | hydrophobes Polytetrafluorethylen                    | 2.15        | 1.65              |
| GORE - TEX           | Polypropylen-Lochfolie 93 | hydrophobes Polytetrafluorethylen                    | 1.59        | 1,72              |
| GORE - TEX           | Polyester-Vlies 9316      | hydrophobes Polytetrafluorethylen                    | 3.61        | 1.69              |
| GORE - TEX           | PolypropVlies 9317        | hydrophobes Polytetrafluorethylen                    | 2.87        | 1,70              |
| Millipore            | Mitex Membrane            | hydrophobes Polytetrafluorethylen                    | 1.98        | 1.62              |
| Millipore            | DVHP                      | hydrophobes Polyvinylidenfluorid                     | 7,45        | 1.72              |
| MSI                  | Magna-SH, 1,2 μm          | hydrophobes Nylon                                    | 4.92        | 1,69              |
| MSI                  | Magna-SH, 5 μm            | hydrophobes Nylon                                    | 10,2        | 1,71              |
| MSI                  | Magna-SH, 10 μm           | hydrophobes Nylon                                    | 7.36        | 1.76              |
| MSI                  | Magna-SH, 20 µm           | hydrophobes Nylon                                    | 7.04        | 1,65              |

# 10 Beispiel 4

Isolierung freier RNA aus wäßriger Lösung

Entsprechend dem Beispiel 3 werden Plastiksäulen mit verschiedenen hydrophoben Membranen hergestellt. WO 99/22021

5

10

15

20

25

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines kommerziell erhältlichen Guanidinium-Isothiocyanat enthaltenden Lysepuffers - z. B. RLT-Puffer der Fa. Qiagen vermischt. Anschließend werden 250  $\mu$ l Ethanol zugegeben und durch Auf- und Abpipettieren gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und durch Zentrifugation (10000 x g; Die Membranen werden durch die Membran geführt. min) z. B. RPE der Fa. anschließend zweimal mit einem Puffer durch Puffer wird ieweils gewaschen. Der geführt. Der Membranen die Zentrifugation durch Waschschritt wird bei 20000 x g durchgeführt, um die Membranen zu trocknen.

Abschließend wird die RNA wie bereits im Beispiel 3 beschrieben mit RNase-freiem Wasser eluiert und mittels einer Pipette von der Membran abgenommen.

Die Menge an isolierter Gesamt-RNA wird anschließend durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt und die Qualität der RNA durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt.

Die Ergebnisse der Isolierungen mit den verschiedenen hydrophoben Membranen sind in der nachfolgenden Tabelle 4 aufgeführt. Es werden 3 - 5 Parallelversuche pro Membran durchgeführt und jeweils der Mittelwert errechnet. Durch die Verwendung einer Silica-Membran kann kein meßbarer Anteil an Gesamt-RNA isoliert werden, wenn das Eluat durch eine Abnahme von oben von der Membran gewonnen wird.

Tabelle 4: Isolierung freier RNA aus wäßriger Lösung durch Bindung an hydrophobe Membranen

| Hersteller                    | Membran                     | Material                                             | RNA (µg | .g 260 nm/ |  |
|-------------------------------|-----------------------------|------------------------------------------------------|---------|------------|--|
| nerstener                     | TVICINO CALL                |                                                      |         | 280 nm     |  |
| Pall Gelman                   | Hydrolon, 1,2 μm            | hydrophobes Nylon                                    | 5,15    | 1,75       |  |
| Sciences<br>Pall Gelman       | Hydrolon, 3 µm              | hydrophobes Nylon                                    | 0,22    | 1,79       |  |
| Sciences                      |                             |                                                      | 15.03   | 1.70       |  |
| Pall Gelman<br>Sciences       | Fluoro Trans G              | hydrophobes, caboxyliertes Polyvinylidendifluorid    | 5,83    | 1,79       |  |
| Pall Gelman                   | NFWA                        | Acrylpolymer auf Nylongewebestützkörper              | 1,85    | 1,72       |  |
| Sciences<br>Pall Gelman       | Hemasep V Medium            | modifiziertes Polyester                              | 4       | 1,79       |  |
| Sciences Pall Gelman          | Hemadyne                    | modifiziertes Polyester                              | 0,47    | 2.1        |  |
| Sciences Pall Gelman          | V-800 R                     | leicht hydrophobes modifiziertes Acryl-<br>Copolymer | 2,74    | 1,77       |  |
| Sciences Pall Gelman          | Supor-450 PR                | hydrophobes Polyethersulfon                          | 5,97    | 1.71       |  |
| Sciences Pall Gelman Sciences | Zefluor                     | Polytetrafluorethylen                                | 8,67    | 1,69       |  |
| Pall Gelman<br>Sciences       | Polypro - 450               | Polyesterfaser                                       | 5,09    | 1,78       |  |
| GORE - TEX                    | Polypropylen-Lochfolie 9337 | hydrophobes Polytetrafluorethylen                    | 5,96    | 1.62       |  |
| GORE - TEX                    | Polypropylen-Lochfolie 9336 | hydrophobes Polytetrafluorethylen                    | 7,43    | 1,71       |  |
| GORE - TEX                    | Polypropylen-Lochfolie 9335 | hydrophobes Polytetrafluorethylen                    | 4,35    | 1.63       |  |
| GORE - TEX                    | Polyester-Vlies 9316        | hydrophobes Polytetrafluorethylen                    | 5,92    | 1.67       |  |
| GORE - TEX                    | PolypropVlies 9317          | hydrophobes Polytetrafluorethylen                    | 8,7     | 1,66       |  |
| Millipore                     | Fluoropore PTFE             | hydrophobes Polytetrafluorethylen                    | 8.46    | 1,70       |  |
| Millipore                     | DVHP                        | hydrophobes Polyvinylidenfluorid                     | 4,23    | 1,8        |  |
| MSI                           | Magna-SH, 1,2 μm            | hydrophobes Nylon                                    | 1,82    | 1,76       |  |

5

10

# Beispiel 5

Isolierung von Gesamt-RNA aus HeLa-Zellen in Abhängigkeit von der Porengröße der Membran

Entsprechend dem Beispiel 3 werden Plastiksäulen mit verschiedenen hydrophoben Membranen unterschiedlicher Porengröße hergestellt.

Nach Beispiel 1 wird ein Zell-Lysat aus  $5 \times 10^5$  HeLa-Zellen hergestellt und über die Säulen geführt. Anschließend werden die Membran mit den kommerziell erhältlichen Puffern RW1 und RPE der Fa. Qiagen mittels Zentrifugation gewaschen. Der letzte Zentrifugationsschritt wird bei 20000 x g für 2 min durchgeführt, um die Membranen zu trocknen. Die Elution wird wie in Beispiel 1 beschrieben durchgeführt.

Die Ergebnisse sind in der nachfolgenden Tabelle 5 aufgeführt. Es werden 3 - 5 Parallelversuche pro Membran durchgeführt und jeweils der Mittelwert errechnet.

15

<u>Tabelle 5:</u> RNA-Ausbeute der isolierten Gesamt-RNA durch
Bindung an hydrophobe Membranen unterschiedlicher
Porengröße

| Hersteller              | Membran        | Material                                          | Porengr. | RNA<br>(µg) | 260 nm/<br>280 hm |
|-------------------------|----------------|---------------------------------------------------|----------|-------------|-------------------|
| Infiltec                | Polycon 0.01   | Hydrophiles Polycarbonat                          | 0.01     | 0,17        | 1.64              |
| Pall Gelman<br>Sciences | Fluoro Trans G | hydrophobes, caboxyliertes Polyvinylidendifluorid | 0,2      | 6,16        | 1.72              |
| Pall Gelman Sciences    | Supor-450 PR   | hydrophobes Polyethersulfon                       | 0,45     | 3.96        | 1,76              |
| Millipore               | DVHP           | hydrophobes Polyvinylidenfluorid                  | 0.65     | 7,45        | 1.72              |
| MSI                     | Magna-SH       | hydrophobes Nylon                                 | 1.2      | 4.92        | 1.69              |
| MSI                     | Magna-SH       | hydrophobes Nylon                                 | 5        | 10.2        | 1.71              |
| MSI                     | Magna-SH       | hydrophobes Nylon                                 | 10       | 7.36        | 1,76              |
| MSI                     | Magna-SH       | hydrophobes Nylon                                 | 20       | 7.04        | 1.65              |

20

5

10

Isolierung von genomischer DNA aus wäßriger Lösung

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben der Fa. MSI) 5  $\mu$ m (beispielsweise Magna-SH, wird mit der Aufreinigung Durchführung hergestellt. Die 5 handelsüblichen Puffern der Fa. Qiagen durchgeführt. 200  $\mu$ l einer wäßrigen Lösung genomischer DNA aus Lebergewebe wird in PBS-Puffer hergestellt. Zu dieser Lösung werden 200  $\mu$ l eines Guanidinium-Hydrochlorid-haltigen Puffers - z. B. AL der Firma Qiagen - gegeben und vermischt. Anschließend werden 210 10  $\mu$ l Ethanol zugegeben und durch Vortexen vermischt. Das Gemisch wird entsprechend Beispiel 3 auf die Säule getragen und durch Zentrifugation durch die Membran geführt. Die Membran wird anschließend mit einem alkoholhaltigen Puffer - z. B. RW der Fa. Qiagen - gewaschen und getrocknet. Die Elution wird wie in 15 Es werden durchgeführt. beschrieben Beispiel 3 Parallelversuche durchgeführt und der Mittelwert errechnet. anschließend DNA wird isolierter Die Menge Lichtabsorption bei einer Messung der photometrische Wellenlänge von 260 nm ermittelt und beträgt ca. 30 % der 20 Ausgangsmenge. Das Verhältnis der Absorption bei 260 nm zu derjenigen bei 280 nm beträgt 1,82.

## 25 Beispiel 7

Isolierung von genomischer DNA aus Gewebe

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben MSI) der 5  $\mu$ m (beispielsweise Magna-SH, Membranen 30 Aufreinigung wird mit der Durchführung hergestellt. Die handelsüblichen Puffern der Fa. Qiagen durchgeführt. 10 mg Nierengewebe (Maus) wird mit 180  $\mu$ l ATL versetzt ünd durch einen mechanischen Homogenisator zermahlen. Anschließend wird Proteinase K (ca. 0,4 mg gelöst in 20  $\mu$ l Wasser) zum 35 Ansatz gegeben und bei 55 °C für 10 min inkubiert. Nach Zusatz

von 200  $\mu$ l eines Guanidinium-Hydrochlorid-haltigen Puffers - z. B. AL der Firma Qiagen - Mischen und einer 10 minütigen Inkubation bei 70 °C wird 200  $\mu$ l Ethanol unter den Ansatz gemischt. Dieses Gemisch wird auf die Säule getragen und durch Zentrifugation über die Membran geführt. Die Membran wird mit einem alkoholhaltigen Puffer - z. B. RW der Fa. Qiagen - gewaschen und anschließend durch Zentrifugation getrocknet. Die Elution wird wie in Beispiel 3 beschrieben durchgeführt. Es werden drei Parallelversuche durchgeführt und der Mittelwert errechnet.

anschließend durch DNA wird isolierter an Menge Die bei einer Lichtabsorption der Messung photometrische Wellenlänge von 260 nm ermittelt und beträgt im Durchschnitt 9,77  $\mu$ g. Das Verhältnis der Absorption bei 260/280 nm beträgt 1,74.

### Beispiel 8

5

10

15

20 Immobilisierung von Gesamt-RNA aus wäßriger Lösung mittels unterschiedlicher chaotroper Agenzien

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 25 350  $\mu$ l eines Lysepuffers, der Guanidinium-Isothiocyanat bzw. Guanidinium-Hydrochlorid in unterschiedlichen Konzentrationen enthält, vermischt. Anschließend werden  $\mu$ l Ethanol 250 zugegeben und durch Auf- und Abpipettieren gemischt. Dieses Säule aufgetragen und auf die wird dann 30 Zentrifugation (10000 x g; 1 min) durch die Membran geführt. mit anschließend zweimal werden Membranen alkoholhaltigen Puffer - z. B. RPE der Fa. Qiagen - gewaschen. Zentrifugation durch jeweils durch wird Membranen geführt. Der letzte Waschschritt wird bei 20000 x g 35 durchgeführt, um die Membranen zu trocknen. Die Elution wird WO 99/22021 33 PCT/EP98/06756

wie in Beispiel 3 durchgeführt. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben. Die Ergebnisse sind in Tabelle 6 aufgeführt.

5 <u>Tabelle 6:</u> RNA-Ausbeute aus wäßriger Lösung mittels chaotroper Agenzien

| Membran          | chaotropes Agens und Konzentration im Bindeansatz | Ausbeute an Gesamt-RNA (μg |
|------------------|---------------------------------------------------|----------------------------|
| Hydrolon, 1,2 μm | GITC, 500 mM                                      | 2.3                        |
| Hydrolon, 1,2 μm | GITC, I M                                         | 0.8                        |
| Hydrolon, 1,2 μm | GITC, 3 M                                         | 0.9                        |
| Fluoro Trans G   | GITC, 500 mM                                      | 0,4                        |
| Fluoro Trans G   | GITC. I M                                         | 1.25                       |
| Fluoro Trans G   | GITC. 3 M                                         | 0.6                        |
| Hydrolon, 1,2 μm | GuHCl, 500 mM                                     | 2.6                        |
| Hydrolon, 1.2 μm | GuHCl. I M                                        | 6.7                        |
| Hydrolon, 1,2 μm | GuHCl, 3 M                                        | 2.9                        |
| Fluoro Trans G   | GuHCl, 500 mM                                     | 0.4                        |
| Fluoro Trans G   | GuHCl, 1 M                                        | 1.25                       |
| Fluoro Trans G   | GuHCl, 3 M                                        | 0.6                        |

# 10 Beispiel 9

Immobilisierung von Gesamt-RNA aus wäßriger Lösung mittels unterschiedlicher Alkohole

- 15 Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.
- 100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines Guanidinium-Isothiocyanat enthaltenden Lysepuffers Anschließend vermischt. 4 M) (Konzentration unterschiedliche Mengen an Ethanol bzw. Isopropanol zugegeben 20 und mit RNase-freiem Wasser auf 700  $\mu$ l aufgefüllt und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und die Membran geführt und entsprechend Beispiel durch gewaschen. Die Elution erfolgte ebenfalls wie in Beispiel 3. Es Doppelbestimmungen durchgeführt und jeweils der werden 25 Mittelwert angegeben.

WO 99/22021 34 PCT/EP98/06756

Die Ergebnisse sind in Tabelle 7 aufgeführt.

Tabelle 7: RNA-Ausbeute aus wäßriger Lösung mit unterschiedlichen Alkoholen im Bindeansatz

| Membran          | Alkohol und Konzentration im Bindeans | Ausbeute an Gesamt-RNA (µg |
|------------------|---------------------------------------|----------------------------|
| Hydrolon, 1,2 μm | Ethanol, 5 %                          | 0,7                        |
| Hydrolon, 1,2 μm | Ethanol, 30 %                         | 2,85                       |
| Hydrolon, 1,2 μm | Ethanol, 50 %                         | 4,5                        |
| DVHP             | Ethanol, 5 %                          | 0,4                        |
| DVHP             | Ethanol, 30 %                         | 1,25                       |
| DVHP             | Ethanol, 50 %                         | 0,6                        |
| Hydrolon, 1,2 μm | Isopropanol, 5 %                      | 0.35                       |
| Hydrolon, 1,2 µm | Isopropanol, 30 %                     | 4.35                       |
| Hydrolon, 1,2 µm | Isopropanol. 50 %                     | 3.2                        |
| DVHP             | Isopropanol, 10 %                     | 1.35                       |
| DVHP             | Isopropanol, 30 %                     | 4,1                        |
| DVHP             | Isopropanol, 50 %                     | 3.5                        |

#### Beispiel 10

10

15

20

25

5

Immobilisierung von Gesamt-RNA aus wäßriger Lösung mit unterschiedlichen pH-Werten

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines Guanidinium-Isothiocyanat enthaltenden Lysepuffers (Konzentration 4 M) vermischt. Der Puffer enthält 25 mM Natrium-Citrat und wird auf unterschiedliche pH-Werte mittels HCl bzw. NaOH eingestellt. Anschließend wird 250  $\mu$ l Ethanol zugegeben und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 4 durch die Membran geführt und gewaschen. Die Elution erfolgte ebenfalls wie in Beispiel 3. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

Die Ergebnisse sind in Tabelle 8 aufgeführt.

Tabelle 8: RNA-Ausbeute aus wäßriger Lösung mit unterschiedlichen pH-Werten im Bindeansatz

5

15

20

| Membran          | pH-Wert im Bindeansatz | Ausbeute an Gesamt-RNA (μg |
|------------------|------------------------|----------------------------|
| Hydrolon, 1,2 µm | pH 3                   | 0,15                       |
| Hydrolon, 1,2 µm | pH 9                   | 1,6                        |
| Hydrolon, 1,2 μm | pH 11                  | 0,05                       |
| Fluoro Trans G   | pH l                   | 0,45                       |
| Fluoro Trans G   | pH 9                   | 2,85                       |
| Fluoro Trans G   | pH 11                  | 0.25                       |

### 10 Beispiel 11

Immobilisierung von Gesamt-RNA aus wäßriger Lösung mittels unterschiedlicher Salze

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines salzhaltigen Lysepuffers (NaCl, KCl, MgSO<sub>4</sub>) vermischt. Anschließend wird 250  $\mu$ l H<sub>2</sub>O oder Ethanol zugegeben und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 4 durch die Membran geführt, gewaschen und eluiert. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

Die Ergebnisse sind in Tabelle 9 aufgeführt.

WO 99/22021 36 PCT/EP98/06756

<u>Tabelle 9:</u> RNA-Ausbeute aus wäßriger Lösung mit verschiedenen Salzen im Bindeansatz

| Membran          | Salz-Konzentration im Bindeansatz        | Ausbeute an Gesamt-RNA (μg |
|------------------|------------------------------------------|----------------------------|
| Hydrolon, 1,2 μm | NaCl, 100 mM; ohne Ethanol               | 0,1                        |
| Hydrolon, 1,2 µm | NaCl. 1 M; ohne Ethanol                  | 0,15                       |
| Hydrolon, 1,2 μm | NaCl. 5 M; ohne Ethanol                  | 0,3                        |
| Hydrolon, 1.2 μm | KCl, 10 mM; ohne Ethanol                 | 0,2                        |
| Hydrolon, 1,2 µm | KCl, 1 M; ohne Ethanol                   | 0,1                        |
| Hydrolon, 1,2 µm | KCl, 3 M: ohne Ethanol                   | 0,25                       |
| Hydrolon, 1,2 μm | MgSO <sub>4</sub> , 100 mM; ohne Ethanol | 0,05                       |
| Hydrolon, 1.2 μm | MgSO <sub>4</sub> , 750 mM; ohne Ethanol | 0,15                       |
| Hydrolon, 1,2 μm | MgSO <sub>4</sub> , 2 M; ohne Ethanol    | 0,48                       |
| Hydrolon, 1,2 μm | NaCl, 500 mM; mit Ethanol                | 2,1                        |
| Hydrolon, 1,2 µm | NaCl, 1 M; mit Ethanol                   | 1,55                       |
| Hydrolon, 1,2 µm | NaCl, 2.5 M: mit Ethanol                 | 1.35                       |
| Hydrolon, 1,2 μm | KCl, 500 mM: mit Ethanol                 | 1,6                        |
| Hydrolon, 1,2 µm | KCl, 1 M; mit Ethanol                    | 2,1                        |
| Hvdrolon, 1,2 μm | KCI, 1,5 M; mit Ethanol                  | 3,5                        |
| Hydrolon, 1,2 µm | MgSO <sub>4</sub> , 10 mM; mit Ethanol   | 1,9                        |
| Hydrolon, 1,2 µm | MgSO <sub>4</sub> , 100 mM; mit Ethanol  | 4.6                        |
| Hydrolon, 1,2 µm | MgSO <sub>4</sub> , 500 M; mit Ethanol   | 2                          |

### 5 Beispiel 12

15

Immobilisierung von Gesamt-RNA aus wäßriger Lösung mittels unterschiedlicher Pufferbedingungen

- 10 Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.
  - 100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines Guanidinium-Isothiocyanat enthaltenden Lysepuffers (Konzentration 2,5 M) vermischt. Der Lysepuffer wird mit verschiedenen Konzentrationen an Natrium-Citrat, pH 7, bzw. Natrium-Oxalat versetzt. Anschließend wird 250  $\mu$ l Ethanol zugegeben und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 4 durch die Membran geführt, gewaschen und eluiert.
- Die Ergebnisse sind in Tabelle 10 aufgeführt. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

WO 99/22021 37 PCT/EP98/06756

Tabelle 10: RNA-Ausbeute aus wäßriger Lösung mit verschiedenen Pufferkonzentrationen im Bindeansatz

| Membran          | Natrium-Citrat im Lysepuffer | Ausbeute an Gesamt-RNA (ug |
|------------------|------------------------------|----------------------------|
| Hydrolon, 1,2 μm | Na-Citrat, 10 mM             | 2,2                        |
| Hydrolon, 1,2 µm | Na-Citrat, 100 mM            | 2,4                        |
| Hydrolon, 1,2 μm | Na-Citrat, 500 mM            | 3,55                       |
| Supor-450 PR     | Na-Citrat. 10 mM             | 1,1                        |
| Supor-450 PR     | Na-Citrat, 100 mM            | 1,15                       |
| Supor-450 PR     | Na-Citrat, 500 mM            | 0,2                        |
| Hydrolon 1,2 μm  | Na-Oxalat, 1 mM              | 1,5                        |
| Hydrolon 1,2 μm  | Na-Oxalat, 25 mM             | 1,05                       |
| Hydrolon 1,2 μm  | Na-Oxalat, 50 mM             | 0,9                        |
| Supor-450 PR     | Na-Oxalat. 1 mM              | 1,9                        |
| Supor-450 PR     | Na-Oxalat, 25 mM             | 1,3                        |
| Supor-450 PR     | Na-Oxalat. 50 mM             | 1,7                        |

5

### Beispiel 13

Immobilisierung von Gesamt-RNA aus wäßriger Lösung durch Phenol

10

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen (beispielsweise Hydrolon, 1,2  $\mu m$  der Fa. Pall Gelman Sciences) hergestellt.

15

Wäßrige RNA-Lösung wird mit 700  $\mu$ l Phenol vermischt und über die Membranen mittels Zentrifugation geführt. Entsprechend Beispiel 4 werden die Membranen gewaschen und die RNA eluiert. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

20

anschließend durch wird isolierter RNA Die Menge an Lichtabsorption bei einer der photometrische Messung Wellenlänge von 260 nm ermittelt und beträgt im Durchschnitt 10,95  $\mu$ g. Das Verhältnis der Absorption bei 260/280 nm beträgt 0,975.

Waschen der immobilisierten Gesamt-RNA unter verschiedenen Salzkonzentrationen

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines Guanidinium-Isothiocyanat enthaltenden Lysepuffers (Konzentration 4 M) vermischt. Anschließend wird 250  $\mu$ l Ethanol zugegeben und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 4 durch die Membran geführt. Die Membranen werden anschließend zweimal mit einem Puffer, der unterschiedliche Konzentrationen an NaCl und 80 % Ethanol enthält, gewaschen. Der Puffer wird jeweils durch geführt. Der die Membranen Zentrifugation durch Waschschritt wird bei 20000 x g durchgeführt, um die Membranen zu trocknen. Die Elution erfolgt ebenfalls wie in Beispiel 3. werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

Die Ergebnisse sind in Tabelle 11 aufgeführt.

<u>Tabelle 11:</u> RNA-Ausbeute aus wäßriger Lösung mit NaCl im Waschpuffer

| Membran          | NaCl im Waschpuffer | Ausbeute an Gesamt-RNA (µg |
|------------------|---------------------|----------------------------|
| Hydrolon, 1,2 μm | NaCl, 10 mM         | 1,4                        |
| Hydrolon, 1,2 µm | NaCl, 50 mM         | 3,15                       |
| Hydrolon, 1,2 μm | NaCl, 100 mM        | 3                          |
| DVHP             | NaCl, 10 mM         | 2,7                        |
| DVHP             | NaCl, 50 mM         | 2,85                       |
| DVHP             | NaCl. 100 mM        | 2,7                        |

## 25 Beispiel 15

5

10

15

20

Elution der immobilisierten Gesamt-RNA unter verschiedenen Salz- und Pufferbedingungen

WO 99/22021 39 PCT/EP98/06756

Entsprechend Beispiel 3 werden Plastiksäulen mit hydrophoben Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines Guanidinium-Isothiocyanat enthaltenden Lysepuffers (Konzentration 4 M) vermischt. Anschließend wird 250  $\mu$ l Ethanol zugegeben und gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 3 durch die Membran geführt und gewaschen.

Zur Elution werden 70 μl einer NaCl-haltigen Lösung, eines Tris/HCl-Puffers (pH 7) oder einer Natrium-Oxalat Lösung (pH 7,2) auf die Membran pipettiert, um die gereinigte RNA von der Membran zu lösen. Nach einer Inkubation von 1 - 2 min bei einer Temperatur im Bereich von 10 - 30 °C wird das Eluat mittels einer Pipette von oben von der Membran abpipettiert. Der Elutionsschritt wird einmal wiederholt, um eine vollständige Elution zu erreichen. Es werden Doppelbestimmungen durchgeführt und jeweils der Mittelwert angegeben.

Die Ergebnisse sind in Tabelle 12 zusammengefaßt.

5

Tabelle 12: RNA-Ausbeute aus wäßriger Lösung mit NaCl bzw.
Tris/HCl im Elutionspuffer

| Membran          | NaCl bzw. Tris im Elutionspuffer | Ausbeute an Gesamt-RNA (µg) |
|------------------|----------------------------------|-----------------------------|
| Hydrolon, 1.2 μm | NaCl, 1 mM                       | 1,35                        |
| Hydrolon, 1,2 µm | NaCl, 50 mM                      | 1,2                         |
| Hydrolon, 1,2 µm | NaCl, 250 mM                     | 0,45                        |
| DVHP             | NaCl, 1 mM                       | 0,9                         |
| DVHP             | NaCl, 50 mM                      | 0,35                        |
| DVHP             | NaCl, 500 mM                     | 0.15                        |
| Hydrolon, 1,2 μm | Tris, 1 mM                       | 0,35                        |
| Hydrolon, 1,2 µm | Tris, 10 mM                      | 0.75                        |
| DVHP             | Tris, 1 mM                       | 1,5                         |
| DVHP             | Tris, 50 mM                      | 1                           |
| DVHP             | Tris, 250 mM                     | 0,1                         |
| Hydrolon 1,2 µm  | Na-Oxalat, 1 mM                  | 0,45                        |
| Hydrolon 1.2 μm  | Na-Oxalat, 10 mM                 | 0.65                        |
| Hydrolon 1.2 um  | Na-Oxalat. 50 mM                 | 0.3                         |
| DVHP             | Na-Oxalat, 1 mM                  | 2                           |
| DVHP             | Na-Oxalat, 10 mM                 | 1,55                        |
| DVHP             | Na-Oxalat, 50 mM                 | 0,15                        |

40 WO 99/22021 PCT/EP98/06756

### Beispiel 16

5

10

15

20

25

Einsatz von Gesamt-RNA in einer "Real Time" Quantitativen RT-5'-Nuklease PCR-Assays zur des Verwendung PCR unter Amplifikation und Detektion von ß-Aktin mRNA

Entsprechend dem Beispiel 3 werden Plastiksäulen mit einer (Pall-Gelman Sciences, erhältlichen Membran kommerziell Hydrolon 1,2  $\mu$ m) hergestellt. Zur Isolierung von RNA werden 1 x  $10^5$  HeLa-Zellen eingesetzt und die Aufreinigung der Gesamt-RNA wird wie in Beispiel 3 beschrieben durchgeführt. Die Elution erfolgt mit 2 x 60  $\mu$ l  $\mathrm{H_2O}$  wie in Beispiel 3 beschrieben. Zur vollständigen Entfernung restlicher geringer Mengen an DNA wird die Probe mit einer DNase vor der Analyse behandelt. Es wird Quantitative 'Real Time' "Ein-Gefäß eine Verwendung des kommerziell erhältlichen Reagenzsystems Perkin-Elmer (Taq $Man^{(TM)}$  PCR Reagent Kit) unter Einsatz einer M-MLV Reversen Transkriptase durchgeführt. Durch den Einsatz spezifischer Primer und einer spezifischen TaqMan-Sonde für ß-Aktin (Taq $Man^{(TM)}$  ß-Actin Detection Kit der Firma Perkin Elmer) werden die ß-Aktin mRNA-Moleküle in der Gesamt-RNA Probe zunächst in ß-Aktin cDNA umgeschrieben und anschließend direkt in dem gleichen Gesamtreaktion der Unterbrechung detektiert. Die amplifiziert und Reaktionsgefäß Reaktionsansätze werden entsprechend den Anweisungen Herstellers hergestellt. Es werden drei verschiedene Mengen an der isolierten Gesamt-RNA verwendet (1, 2, 4  $\mu$ l Eluat) und eine dreifache Bestimmung durchgeführt. Als Kontrolle werden drei Ansätze ohne RNA mitgeführt. Die cDNA Synthese findet für 1 30 Stunde bei 37 °C statt, direkt gefolgt von einer PCR, die 40 Zyklen umfaßt. Die Reaktionen und die Analysen werden auf einem ABI  $PRISM^{(TM)}$  7700 Sequence Detector der Firma Perkin Elmer Applied Biosystems durchgeführt. Jedes während eines PCR-Zyklus entstehende Amplikon erzeugt ein lichtemmitierendes Molekül, 35

das durch Abspaltung von der TaqMan-Sonde entsteht. Damit ist das insgesamt entstehende Lichtsignal direkt proportional zur entstehenden Amplikonmenge und damit zur ursprünglich in der Gesamt-RNA Probe vorhandenen Transkriptmenge. Das emmitierte und durch gemessen dem Gerät von bei das Der PCR-Zyklus, ausgewertet. Computerprogramm des oberhalb Mal sicher erste · das Lichtsignal als "Threshold detektiert wird, wird Hintergrundrauschens Cycle" (ct) bezeichnet. Dieser Wert ist ein Maß für die in der Probe vorhandene Menge an der spezifisch amplifizierter RNA. dem  $\mu$ l an mit eingesetzte Menge von 1 beschriebenen Verfahren isolierter Gesamt-RNA ergibt sich ein durchschnittlicher ct-Wert von 17,1, für 2  $\mu$ l an Gesamt-RNA ein ct-Wert von 16,4 und für 4  $\mu$ l an Gesamt-RNA ein ct-Wert von linearer Zusammenhang ergibt sich ein Hieraus eingesetzter Gesamt-RNA und dem ct-Wert. Dies zeigt, daß die Gesamt-RNA frei Substanzen ist, die die Amplifikationsreaktion hemmen könnten. Die Kontrollansätze, die keine RNA enthalten, erzeugen keine Signale.

20

30

35

5

10

15

### Beispiel 17

Einsatz von Gesamt-RNA in einer RT-PCR zur Amplifikation und Detektion von  $\beta$ -Aktin mRNA.

Entsprechend dem Beispiel 3 werden Plastiksäulen mit einer kommerziell erhältlichen Membran (Fa. Pall Gelman Sciences, Hydrolon der Porengröße 1,2 bzw. 3  $\mu m$ ; Fa. Sartorius, Sartolon der Porengröße 0,45  $\mu m$ ) hergestellt.

- Zur Isolierung von RNA werden zwei verschiedene Ausgangsmaterialien eingesetzt;
- 1) Gesamt-RNA aus Leber (Maus) in wäßriger Lösung,
  Aufreinigung und Elution erfolgt wie in Beispiel 4
  beschrieben und

WO 99/22021 42 PCT/EP98/06756

- 2) 5 X 10<sup>5</sup> HeLa-Zellen, die Aufreinigung der Gesamt-RNA sowie die Elution wird wie in Beispiel 3 beschrieben durchgeführt.
- Es werden jeweils 20 ng der isolierten Gesamt-RNA eingesetzt.

  Als Kontrolle wird RNA, die mittels des RNeasy-Kits (Fa.

  Qiagen) aufgereinigt wurde, und ein Ansatz ohne RNA

  mitgeführt.
- Es wird eine RT-PCR unter Standardbedingungen mit diesen 10 durchgeführt. Für die Amplifikation werden verschiedene Primerpaare für das  $\beta$ -Aktin verwendet. Ein 150 Bp großes Fragment dient als Nachweis der Sensitivität, ein 1,7 kBp großes Fragment dient der Integrität der RNA. Aus der RT-Reaktion wird 1  $\mu$ l entnommen und in der anschließenden PCR 15 eingesetzt. Es werden für das kleine Fragment 25 Zyklen, für Die durchgeführt. Zyklen Fragment 27 große Anlagerungstemperatur beträgt 55°C. Die Amplifikate werden anschließend auf einem nicht denaturierenden Gel aufgetragen und analysiert. 20
  - Für die eingesetzte Menge von 20 ng an mit dem hier beschriebenen Verfahren isolierter Gesamt-RNA lassen sich in der RT-PCR die entsprechenden DNA-Fragmente nachweisen. Bei Verwendung von Gesamt-RNA aus Mausleber läßt sich kein Transkript nachweisen, die hier verwendeten Bedingungen sind auf humanes  $\beta$ -Aktin angepaßt. Die Kontrollansätze, die keine RNA enthalten, erzeugen keine Signale.

- 30 Fig. 7 zeigt Ethidiumbromid-gefärbte Gele einer elektrophoretischen Auftrennung der RT-Reaktionen.
- A: Spur 1 bis 8: RT-PCR eines 150 Bp-Fragmentes; Spur 1, 2:

  RNA aus wäßriger Lösung mit der Membran Hydrolon 1,2 µm

  aufgereinigt; Spur 3, 4: RNA aus HeLa-Zellen mit der

  Membran Sartolon aufgereinigt; Spur 5, 6: RNA aus HeLa-

WO 99/22021 43 PCT/EP98/06756

Zellen mit der Membran Hydrolon 3  $\mu m$  aufgereinigt; Spur 7: RNA aufgereinigt mittels RNeasy-Mini-Kit; Spur 8: Kontrolle ohne RNA.

B: Spur 1 bis 8: RT-PCR eines 1,7 kBp-Fragmentes; Spur 1, 2: RNA aus wäßriger Lösung mit der Membran Hydrolon 1,2 μm aufgereinigt; Spur 3, 4: RNA aus HeLa-Zellen mit der Membran Sartolon aufgereinigt; Spur 5, 6: RNA aus HeLa-Zellen mit der Membran Hydrolon 3 μm aufgereinigt; Spur 7: RNA aufgereinigt mittels RNeasy-Mini-Kit; Spur 8: Kontrolle ohne RNA.

### Beispiel 1b

20

Isolierung von Gesamt-RNA aus HeLa-Zellen durch Bindung an hydrophile Membranen

In einer Plastiksäule werden kommerziell erhältliche hydrophile Membranen, die aus verschiedenen Materialien bestehen, einlagig eingebracht. Entsprechend Beispiel 3 werden die Membranen auf einer Polypropylenfritte plaziert und durch einen Spannring fixiert.

Zur Isolierung werden  $5 \times 10^5$  HeLa-Zellen eingesetzt. Die folgenden Isolierungsschritte und die Elution der Nucleinsäure werden wie in Beispiel 3 beschrieben durchgeführt.

- Die Menge an isolierter Gesamt-RNA wird anschließend durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Qualität der RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt.
- Die Ergebnisse der Isolierungen mit den verschiedenen hydrophilen Membranen sind in der nachfolgenden Tabelle 1b aufgeführt. Es werden 2 5 Parallelversuche pro Membran durchgeführt und jeweils der Mittelwert errechnet. Durch die Verwendung einer Silica-Membran kann kein meßbarer Anteil an Gesamt-RNA isoliert werden, wenn das Eluat durch eine Abnahme von oben von der Membran gewonnen wird.

Tabelle 1b: RNA-Ausbeute der nach Beispiel 1b isolierten Gesamt-RNA durch Bindung an hydrophile Membranen

| Hersteller              | Membran                    | Material                                                     | RNA<br>(µg) | 260 nm/<br>280nm |
|-------------------------|----------------------------|--------------------------------------------------------------|-------------|------------------|
| Pall Gelman             | I.C.E450                   | hydrophiles Polyethersulfon                                  | 6.36        | 1,8              |
| Sciences                | 1.C.L430                   | ., 2.0                                                       |             |                  |
| Pall Gelman             |                            | hydrophiles Polyethersulfon auf einem<br>Polyestergewebe     | 3,07        | 1,71             |
| Sciences<br>Pall Gelman |                            | hydrophile Polyestermembran                                  | 1,66        | 1,63             |
| Sciences Pall Gelman    | Supor - 800                | hydrophiles Polyethersulfon                                  | 4,12        | 1.7              |
| Sciences Pall Gelman    | Supor - 450                | hydrophiles Polyethersulfon                                  | 4,69        | 1.69             |
| Sciences Pall Gelman    | Supor - 100                | hydrophiles Polyethersulfon                                  | 3.25        | 1.71             |
| Sciences<br>GORE - TEX  | Polypropylen 9339          | hydrophiles Polytetrafluorethylen auf<br>Polypropylen Gewebe | 1.08        | 1.65             |
| GORE - TEX              | Polypropylen-Vlies<br>9338 | hydrophiles Polytetrafluorethylen auf<br>Polypropylen-Vlies  | 3,97        | 1.67             |
| GORE - TEX              | Polyester-Vlies 9318       | hydrophiles Polytetrafluorethylen auf<br>Polypropylen-Vlies  | 3,61        | 1.69             |
| Millipore               | Durapore PVDF              | hydrophilisiertes Polyvinylidenfluorid                       | 5.6         | 1.69             |
| Millipore               | hydrophylisierte<br>PTFE   | hydrophilisiertes Polytetrafluorethylen                      | 3.14        | 1.66             |
| Millipore               | Durapore PVDF              | hydrophilisiertes Polyvinylidenfluorid                       | 3.12        | 1.68             |
| Sartorius               | Membranfilter Typ          | hydrophiles Polyamid                                         | 4,3         | 1,66             |
| Infiltec                | Polycon 0.01               | hydrophiles Polycarbonat                                     | 0,17        | 1.64             |
| Infiltec                | Polycon 0,1                | hydrophiles Polycarbonat                                     | 0,73        | 1.68             |
| Infiltec                | Polycon 1                  | hydrophiles Polycarbonat                                     | 3,33        | 1.86             |

WO 99/22021 45 PCT/EP98/06756

# Beispiel 2b

5

10

20

25

Isolierung freier RNA aus wäßriger Lösung durch Bindung an hydrophile Membranen

Entsprechend dem Beispiel 1b werden Plastiksäulen mit verschiedenen hydrophilen Membranen hergestellt.

100  $\mu$ l einer Gesamt-RNA enthaltenden wäßrigen Lösung wird mit 350  $\mu$ l eines kommerziell erhältlichen Guanidinium-Isothiocyanat enthaltenden Lysepuffers – z. B. RLT-Puffer der Fa. Qiagen – vermischt. Anschließend werden 250  $\mu$ l Ethanol zugegeben und durch Auf- und Abpipettieren gemischt. Dieses Gemisch wird dann auf die Säule aufgetragen und entsprechend Beispiel 4 durch die Membran geführt, gewaschen und getrocknet.

Abschließend wird die RNA wie bereits im Beispiel 3 beschrieben mit RNase-freiem Wasser eluiert und mittels einer Pipette von der Membran abgenommen.

Die Menge an isolierter Gesamt-RNA wird anschließend durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt und die Qualität der RNA durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt.

Die Ergebnisse der Isolierungen mit den verschiedenen hydrophilen Membranen sind in der nachfolgenden Tabelle 2b aufgeführt. Es werden 2 - 5 Parallelversuche pro Membran durchgeführt und jeweils der Mittelwert errechnet. Durch die Verwendung einer Silica-Membran kann kein meßbarer Anteil an Gesamt-RNA isoliert werden, wenn das Eluat durch eine Abnahme von oben von der Membran gewonnen wird.

Tabelle 2b: Isolierung freier RNA aus wäßriger Lösung durch Bindung an hydrophile Membranen

| Hersteller              | Membran                  | Material                                                     | RNA  | 260 nm/ |
|-------------------------|--------------------------|--------------------------------------------------------------|------|---------|
| Hersteller              | Memoran                  |                                                              | (µg) | 280nm   |
| Pall Gelman             | I.C.E450                 | hydrophiles Polyethersulfon                                  | 1,92 | 1.82    |
| Sciences Pall Gelman    | I.C.E450sup              | hydrophiles Polyethersulfon auf einem<br>Polyestergewebe     | 0,87 | 1,67    |
| Sciences<br>Pall Gelman | Supor - 800              | hydrophiles Polyethersulfon                                  | 3,93 | 1.74    |
| Sciences<br>Pall Gelman | Supor - 450              | hydrophiles Polyethersulfon                                  | 1.78 | 1.74    |
| Sciences Pall Gelman    | Supor - 100              | hydrophiles Polyethersulfon                                  | 1,04 | 1,68    |
| Sciences<br>GORE - TEX  | Polypropylen<br>9339     | hydrophiles Polytetrafluorethylen auf<br>Polypropylen Gewebe | 0,43 | 1.48    |
| GORE - TEX              | Polypropylen-Vlies       | hydrophiles Polytetrafluorethylen auf<br>Polypropylen-Vlies  | 3,63 | 1.64    |
| GORE - TEX              | Polyester-Vlies          | hydrophiles Polytetrafluorethylen auf<br>Polypropylen-Vlies  | 5,92 | 1.67    |
| Millipore               | Durapore PVDF            | hydrophilisiertes Polyvinylidenfluorid                       | 1,18 | 1.79    |
| Millipore               | hydrophylisierte<br>PTFE | hydrophilisiertes Polytetrafluorethylen                      | 2,84 | 1.72    |
| Sartorius               | Membranfilter Typ 250    | hydrophiles Polyamid                                         | 2,7  | 1.7     |

WO 99/22021 47 PCT/EP98/06756

### Patentansprüche

- 1. Verfahren zur Isolierung von Nukleinsäuren mit den folgenden Schritten:
- Beschicken einer Oberfläche aus einer Richtung mit Nukleinsäuren;
  - Immobilisieren der Nukleinsäuren an der Oberfläche;
- Ablösen der immobilisierten Nukleinsäuren von der Oberfläche; und
  - Abnehmen der abgelösten Nukleinsäuren von der Oberfläche in im wesentlichen der Richtung der Beschickung.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Beschicken von oben erfolgt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen dem Immobilisierungs- und dem Ablöseschritt ein Waschen der immobilisierten Nukleinsäuren mit zumindest einem Waschpuffer erfolgt.
- 25 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Waschen für jeden Waschpuffer folgende Schritte umfasst:
- Aufbringen einer vorbestimmten Menge an Waschpuffer auf die Oberfläche; und
  - Durchsaugen des Waschpuffers durch die Oberfläche.
- 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Beschicken und Immobilisieren der Nukleinsäuren folgende Schritte umfasst:

- Mischen der Nukleinsäuren mit einem Immobilisierungspuffer,
- 5 Beschicken der Nukleinsäuren mit dem Immobiliserungspuffer auf die Oberfläche
  - Durchsaugen der füssigen Bestandteile durch die Oberfläche in im wesentlichen der Richtung der Beschickung.
    - 6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zumindest einer der Schritte durch einen Automaten vollautomatisch durchgeführt wird.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß alle Schritte des Verfahrens durch einen Automaten in gesteuerter Abfolge durchgeführt werden.
- 20 8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß eine Mehrzahl von Nukleinsäureisolierungen gleichzeitig durchgeführt werden.
- 9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Ablöse- und dem Abnehmschritt zumindest einmal folgende Schritte durchgeführt werden:
- Jurchführen zumindest einer chemischen Reaktion an den Nukleinsäuren;
  - Immobilisieren der Nukleinsäuren an der Oberfläche; und

WO 99/22021 49 PCT/EP98/06756

- Ablösen der immobilisierten Nukleinsäuren von der Oberfläche.
- 10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren wässerige Lösungen von Salzen der Alkali- oder Erdalkalimetalle mit Mineralsäuren eingesetzt werden.

5

- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß 10 zum Immobilisieren der Nukleinsäuren Alkali- oder Erdalkalihalogenide -oder -sulfate eingesetzt werden.
  - 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren Halogenide des Natriums oder Kaliums oder Magnesiumsulfat eigesetzt werden.
- 13. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren wässerige Lösungen von Salzen von ein- oder mehrbasischen oder polyfunktionellen organischen Säuren mit Alkalioder Erdalkalimetallen eingesetzt werden.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren wässerige Lösungen von Salzen des Natriums, des Kaliums oder des Magnesiums mit organischen Dicarbonsäuren eingesetzt werden.
- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die organische Dicarbonsäure Oxalsäure, Malonsäure und/oder Bernsteinsäure ist.
- 16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren wässerige Lösungen von Salzen des Natriums oder des Kaliums mit einer Hydroxy- oder Polyhydroxycarbonsäure eingesetzt werden.

PCT/EP98/06756 WO 99/22021

- 17. Verfahren nach Anpspruch 16, dadurch gekennzeichnet, daß die Polyhydroxycarbonsäure Zitronensäure ist.
- 18. Verfahren nach einem der Ansprüche 1 bis 9, dadurch 5 gekenneichnet, daß zum Immobilisieren der Nukleinsäuren aliphatischen Hydroxylderivate von oder acyclischen oder ungesättigten Kohlenwasserstoffen gesättigten eingesetzt werden.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, als Hydroxylderivate C1-C5-Alkanole eingesetzt werden.

10

- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß als C1-C5-Alkanole Methanol, Ethanol, n-Propanol, tert.-15 Butanol und/oder Pentanole eingesetzt werden.
  - 21. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß als Hydroxylderivat ein Aldit eingesetzt wird.
  - 22. Verfahren nach einem der Ansprüche 1 bis 9, gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren ein Phenol oder Polyphenol eingesetzt wird.
- 23. Verfahren Ansprüche 3 bis 25 nach 22, immobilisierten gekennzeichnet, daß zum Waschen der Nukleinsäuren eine Salzlösung oder eine Pufferlösung gemäß einem der Ansprüche 4 bis 22 eingesetzt wird.
- 24. Verfahren nach einem der vorstehenden Ansprüche, dadurch 30 gekennzeichnet, daß Ablösen der Nukleinsäuren wässerige Salz- oder Pufferlösung eingesetzt wird.
- 25. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß zum Ablösen der Nukleinsäuren Wasser 35 eingesetzt wird.

- 26. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren chaotrope Agenzien eingesetzt werden.
- 27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß das chaotrope Agenz ein Salz aus der Gruppe der Trichloracetate, Thiocyanate, Perchlorate, Jodide oder Guanidin-Hydrochlorid, Guanidinium-iso-thiocyanat oder Harnstoff ist.

5

10

15

20

- 28. Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, daß 0,01 molare bis 10 molare wässerige Lösungen der chaotropen Agenzien allein oder in Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.
- 29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß 0,1 molare bis 7 molare wässerige Lösungen der chaotropen Agenzien allein oder in Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.
- 30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß 0,2 molare bis 5 molare wässerige Lösungen der chaotropen Agenzien allein oder in Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.
  - 31. Verfahren nach einem der Ansprüche 26 bis 30, dadurch gekennzeichnet, daß eine wässerige Lösung von Natriumperchlorat, Guanidinium-Hydrochlorid, Guanidinium-iso-thiocyanat, Natriumiodid und/oder Kaliumiodid zum Immobilisieren der Nukleinsäuren eingesetzt wird.
- 32. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Oberfläche eine Membran ist.

WO 99/22021 52 PCT/EP98/06756

- 33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß die Membran eine hydrophobe Membran ist.
- 34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß die hydrophobe Membran aus einem Polymer mit polaren Gruppen aufgebaut ist.
  - 35. Verfahren nach Anspruch 32 oder 33, dadurch gekennzeichnet, daß die Membran eine hydrophile Membran mit einer hydrophobisierten Oberfläche ist.

10

25

- 36. Verfahren nach einem der Ansprüche 33 bis 35, dadurch die Membran aus Nylon, einem gekennzeichnet, daß Polyethersulfon, Polycarbonat, Polyacrylat Polysulfon, sowie einem Acrylsäurecopolymeren, Polyurethan, Polyamid, 15 Polyfluorocarbonat, Polyvinylchlorid, Polyvinylidenfluorid, Polytetrafluoroethylen, Polyethylentetrafluoroethylen-Polyvinylidendifluorid, Polyethylenchlorotrifluoroethylen-Copolymerisat, einem Coplymerisat oder Polyphenylensulfid besteht. 20
  - 37. Verfahren nach Anspruch 35 oder 36, dadurch gekennzeichnet, daß Oberfläche oder die Membran aus einem hydrophobisierten Nylon besteht.
  - 38. Verfahren nach einem der Ansprüche 35 bis 37, dadurch mit daß die Membran gekennzeichnet, Hydrophobisierungsmittel aus der Gruppe der Paraffine, Wachse, Metallseifen ggf. mit Zusätzen an Aluminium bzw. quartären organische Verbindungen, Zirkoniumsalzen, fettstoffmodifizierten Melaminharze, Harnstoffderivate, zinkorganischen Verbindungen und/oder mit Silicone, Glutardialdehyd beschichtet ist.

WO 99/22021 53 PCT/EP98/06756

- 39. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß die Membran eine hydrophile oder hydrophilisierte Membran ist.
- 40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß die Membran aus hydrophilisiertem Nylon, Polyethersulfon, sowie einem Polycarbonat, Polyacrylat Polyurethan, Polyamid, Acrylsäurecopolymeren, Polyfluorocarbonat, Polyvinylchlorid, Polyvinylidenfluorid, Polytetrafluoroethylen, 10 Polyethylentetrafluoroethylen-Polyvinylidendifluorid, einem Polyethylenchlorotrifluoroethylen-Copolymerisat, Copolymerisat oder Polyphenylensulfid besteht.
- 15 41. Verfahren nach einem der Ansprüche 32 bis 40, dadurch gekennzeichnet, daß die Membran einen Porendurchmesser von 0,001 bis 50 Mikrometer, vorzugsweise 0,01 bis 20 Mikrometer, besonders bevorzugt 0,05 bis 10 Mikrometer besitzt.
- 20
  42. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß die Oberfläche ein hydrophobes Vlies ist.
- 25 43. Verfahren nach Anspruch 42, dadurch gekennzeichnet, daß das Vlies ein Silica-Gel-Vlies ist.
- 44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß zum Immobilisieren der Nukleinsäuren chaotrope Agenzien eingesetzt werden.
- 45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, daß das chaotrope Agenz ein Salz aus der Gruppe der Trichloracetate, Thiocyanate, Perchlorate, Jodide oder Guanidin-Hydrochlorid, Guanidin-iso-thiocyanat oder Harnstoff ist.

WO 99/22021 54 PCT/EP98/06756

- 45, 44 oder 46. Verfahren Anspruch nach gekennzeichnet, daß 0,01 molare bis 10 molare wässerige chaotropen oder Agenzien allein Lösungen der Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.
- 47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, daß 0,1 molare bis 7 molare wässerige Lösungen der chaotropen Agenzien allein oder in Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.

5

15

- 48. Verfahren nach Anspruch 47, dadurch gekennzeichnet, daß 0,2 molare bis 5 molare wässerige Lösungen der chaotropen Agenzien allein oder in Kombination mit anderen Salzen zum Immobilisieren der Nukleinsäuren eingesetzt werden.
- 49. Verfahren nach einem der Ansprüche 44 bis 48, dadurch gekennzeichnet, daß eine wässerige Lösung von Natriumperchlorat, Guanidinium-Hydrochlorid, Guanidinium-iso-thiocyanat, Natriumiodid und/oder Kaliumiodid zum Immobilisieren der Nukleinsäuren eingesetzt wird.
- 50. Verfahren nach einem der vorstehenden Ansprüche, dadurch ekennzeichnet, daß die Immobillisierung bei einem pH von 3 bis-11 erfolgt.
  - 51. Verwendung zumindest einer Membran zum Immobilisieren von Nukleinsäuren auf einer Seite der Membran und Ablösen der Nukleinsäuren an derselben Seite zu deren Isolierung.
- 52. Verwendung nach Anspruch 51, dadurch gekennzeichnet, daß Polyethersulfon, Nylon, Polysulfon, Membran aus Polyacrylat sowie Acrylsäurecopolymer, Polycarbonat, Polyvinylchlorid, Polyamid, Polyurethan, 35 Polytetrafluoroethylen, Polyfluorocarbonat,

WO 99/22021 55 PCT/EP98/06756

Polyvinylidenfluorid, Polyvinylidendifluorid, Polyethylentetrafluoroethylen-Copolymerisat, Polyethylenchlorodifluoroethylen-Copolymerisat oder Polyphenylensulfid besteht.

5

- 53. Verwendung nach Anspruch 52, dadurch gekennzeichnet, daß die Membran eine hydrophobisierte Nylon-Membran ist.
- 54. Verwendung nach einem der Ansprüche 51 bis 53, dadurch gekennzeichnet, daß die Oberfläche oder Membran 10 hydrophile Oberfläche oder Membran ist, die mit einem Hydrophobisierungsmittel aus der Gruppe der Paraffine, Wachse, Metallseifen ggf. mit Zusätzen an Aluminium bzw. organische Verbindungen, Zirkoniumsalzen, guartären Harnstoffderivate, fettstoffmodifizierten Melaminharze, 15 zinkorganischen Verbindungen und/oder mit Silicone, Glutardialdehyd überzogen ist.
- 55. Verwendung nach einem der Ansprüche 51 bis 54, dadurch gekennzeichnet, daß eine Mehrzahl von Membranen in Isoliergefässen auf einer Multiwellplatte angeordnet sind.
- 56. Automat, dadurch gekennzeichnet, daß er das Verfahren 25 eines der Ansprüche 1 bis 49 ausführen kann.
  - 57. Automat nach Anspruch 55, dadurch gekennzeichnet, daß er mit zumindest eine Saugvorrichtung ausgestattet ist, die das Zugeben von Puffern und Lösungen auf die Oberfläche und von der Oberfläche weg ausführt oder ausführen kann.
  - 58. Verfahren nach einem der Ansprüche 1 bis 50, dadurch gekennzeichnet, daß das Immobilisieren der Nukleinsäuren bei einem pH von 3 bis 11 erfolgt.



Fig. 1





Fig. 3 a

Fig. 3 b



Fig. 4 a

Fig. 4 b



Fig. 5



Fig. 6

5/5

A



Fig. 7 a

В



Fig. 7 b

# INTERNATIONAL SEARCH REPORT

inte onal Application No PCT/EP 98/06756

| Α. | CLA | SSIFIC | ATION | OF  | SUBJECT | MATTER |
|----|-----|--------|-------|-----|---------|--------|
| ΤP | C.  | 6      | C120  | 11/ | '68     |        |

According to International Patent Classification (IPC) or to both national classification and IPC

### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  $IPC \ 6 \ C12Q$ 

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                | Relevant to claim No.                       |
|------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| <b>X</b>   | EP 0 649 853 A (BECTON DICKINSON AND CO.) 26 April 1995 see the whole document, in particular Example 2, claim 10 | 1-4                                         |
| X          | WO 87 06621 A (GILLESPIE D.) 5 November 1987 cited in the application                                             | 1-3,<br>10-12,<br>23,24,<br>26-33,<br>51-53 |
|            | see page 14, column 13 - page 17, column<br>15<br>see page 44, line 19 - page 45, line 21                         |                                             |
| X          | EP 0 487 028 A (SHIMADZU CORPORATION) 27 May 1992 see claims                                                      | 56,57                                       |
| i          | -/                                                                                                                |                                             |

| X Further documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Special categories of cited documents:</li> <li>"A" document defining the general state of the art which is not considered to be of particular relevance</li> <li>"E" earlier document but published on or after the international filing date</li> <li>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</li> <li>"O" document referring to an oral disclosure, use, exhibition or other means</li> <li>"P" document published prior to the international filing date but later than the priority date claimed</li> </ul> | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "&" document member of the same patent family |
| Date of the actual completion of the international search  1 February 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date of mailing of the international search report  05/02/1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Name and mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Authorized officer  Luzzatto, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# INTERNATIONAL SEARCH REPORT

Into onal Application No
PCT/EP 98/06756

| A EP 0 389 063 A (AKZO N.V.) 26 September 1990 see page 2, line 33 - page 3, line 54 see page 5, line 40 - page 8, line 25; claims  A B. VOGELSTEIN ET AL.: "Preparative and analytical purification of DNA from agarose" PROC. NAT. ACAD. SCI. USA, vol. 76, February 1979, pages 615-619, XP000607195 USA cited in the application see abstract see page 616, column 1, line 49 - page 617, column 1, line 7                                                                                                                                                      |              | 98/06/56              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| A EP 0 389 063 A (AKZO N.V.)  26 September 1990  see page 2, line 33 - page 3, line 54 see page 5, line 40 - page 8, line 25; claims  A B. VOGELSTEIN ET AL.: "Preparative and analytical purification of DNA from agarose" PROC. NAT. ACAD. SCI. USA, vol. 76, February 1979, pages 615-619, XP000607195 USA cited in the application See abstract see page 616, column 1, line 49 - page 617, column 1, line 7  P,X EP 0 814 156 A (THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) 29 December 1997 see page 2, line 35 - page 3, line 55 see claims; example 2 | (Continuatio | - A bandy large       |
| 26 September 1990 see page 2, line 33 - page 3, line 54 see page 5, line 40 - page 8, line 25; claims  A B. VOGELSTEIN ET AL.: "Preparative and analytical purification of DNA from agarose" PROC. NAT. ACAD. SCI. USA, vol. 76, February 1979, pages 615-619, XP000607195 USA cited in the application see abstract see page 616, column 1, line 49 - page 617, column 1, line 7  P,X EP 0 814 156 A (THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) 29 December 1997 see page 2, line 35 - page 3, line 55 see claims; example 2                                | ategory ° C  | Relevant to claim No. |
| analytical purification of DNA from agarose" PROC. NAT. ACAD. SCI. USA, vol. 76, February 1979, pages 615-619, XP000607195 USA cited in the application see abstract see page 616, column 1, line 49 - page 617, column 1, line 7 P,X EP 0 814 156 A (THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) 29 December 1997 see page 2, line 35 - page 3, line 55 see claims; example 2                                                                                                                                                                                 |              | 1                     |
| AND CHEMICAL RESEARCH) 29 December 1997 see page 2, line 35 - page 3, line 55 see claims; example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 1-53                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , X          | 1-51                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | D                     |

# INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ional Application No
PCT/EP 98/06756

| Patent document<br>cited in search report | : | Publication<br>date     |                                                                | atent family<br>member(s)                                                                                                                                                                                                 | Publication date                                                                                                                                                                                                             |
|-------------------------------------------|---|-------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 649853                                 | А | 26-04-1995              | US<br>JP<br>JP<br>US<br>US<br>US                               | 5438127 A<br>2566383 B<br>7177887 A<br>5650506 A<br>5616701 A<br>5606046 A<br>5610290 A                                                                                                                                   | 01-08-1995<br>25-12-1996<br>18-07-1995<br>22-07-1997<br>01-04-1997<br>25-02-1997<br>11-03-1997                                                                                                                               |
| WO 8706621                                | А | 05-11-1987              | AT<br>AU<br>AU<br>CA<br>DE<br>DE<br>EP<br>JP<br>JP<br>US       | 5610291 A<br>114334 T<br>613870 B<br>7432987 A<br>1301606 A<br>3750774 D<br>3750774 T<br>0305399 A<br>2552691 B<br>1502317 T<br>5482834 A                                                                                 | 11-03-1997<br>15-12-1994<br>15-08-1991<br>24-11-1987<br>26-05-1992<br>05-01-1995<br>27-04-1995<br>08-03-1989<br>13-11-1996<br>17-08-1989<br>09-01-1996                                                                       |
| EP 487028                                 | Α | 27-05-1992              | JP                                                             | 4187077 A                                                                                                                                                                                                                 | 03-07-1992                                                                                                                                                                                                                   |
| EP 389063                                 | A | 26-09-1990              | NL<br>AU<br>CA<br>DE<br>DE<br>DK<br>EP<br>GR<br>JP<br>JP<br>US | 8900725 A<br>156830 T<br>641641 B<br>5215390 A<br>2012777 A<br>69031237 D<br>69031237 T<br>389063 T<br>389063 T<br>0819696 A<br>2085245 T<br>96300019 T<br>3025351 T<br>2289596 A<br>2680462 B<br>10072485 A<br>5234809 A | 16-10-1990<br>15-08-1997<br>30-09-1993<br>27-09-1990<br>23-09-1997<br>02-01-1998<br>10-10-1996<br>30-03-1998<br>21-01-1998<br>01-06-1996<br>31-03-1996<br>27-02-1998<br>29-11-1990<br>19-11-1997<br>17-03-1998<br>10-08-1993 |
|                                           |   | <br>29 <b>-</b> 12-1997 | CA                                                             | 2207852 A                                                                                                                                                                                                                 | <br>18-12-1997                                                                                                                                                                                                               |

## INTERNATIONALER RECHERCHENBERICHT

onales Aktenzeichen Inte PCT/EP 98/06756

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C12Q1/68

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

#### **B. RECHERCHIERTE GEBIETE**

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C12Q

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

| Kategorie° | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                  | Betr. Anspruch Nr.                          |
|------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| X          | EP 0 649 853 A (BECTON DICKINSON AND CO.) 26. April 1995 siehe das ganze Dokument, insbesondere Beisp. 2, Anspr. 10 | 1-4                                         |
| X          | WO 87 06621 A (GILLESPIE D.) 5. November 1987 in der Anmeldung erwähnt                                              | 1-3,<br>10-12,<br>23,24,<br>26-33,<br>51-53 |
|            | siehe Seite 14, Spalte 13 - Seite 17,<br>Spalte 15<br>siehe Seite 44, Zeile 19 - Seite 45, Zeile<br>21              |                                             |
| X          | EP 0 487 028 A (SHIMADZU CORPORATION) 27. Mai 1992 siehe Ansprüche                                                  | 56,57                                       |

lχ Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Χ Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidlert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) ausgerunt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 05/02/1999 1. Februar 1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

4

Luzzatto, E

### INTERNATIONALER RECHERCHENBERICHT

Inte onales Aktenzeichen
PCT/EP 98/06756

|            | ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN  Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden T                                                                                                                                       | Feile Betr. Anspruch Nr. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Kategorie° | Bezeichnung der Veröffentlichung, soweit enorderlich unter Angabe der III Betracht kömmenden i                                                                                                                                                                                  | Coll. Alloptuon VI.      |
| A          | EP 0 389 063 A (AKZO N.V.) 26. September 1990 siehe Seite 2, Zeile 33 - Seite 3, Zeile 54 siehe Seite 5, Zeile 40 - Seite 8, Zeile 25; Ansprüche                                                                                                                                | 1                        |
| A          | B. VOGELSTEIN ET AL.: "Preparative and analytical purification of DNA from agarose" PROC. NAT. ACAD. SCI. USA, Bd. 76, Februar 1979, Seiten 615-619, XP000607195 USA in der Anmeldung erwähnt siehe abstract siehe Seite 616, Spalte 1, Zeile 49 - Seite 617, Spalte 1, Zeile 7 | 1-53                     |
| P,X        | EP 0 814 156 A (THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) 29. Dezember 1997 siehe Seite 2, Zeile 35 - Seite 3, Zeile 55 siehe Ansprüche; Beispiel 2                                                                                                                      | 1-51                     |
|            |                                                                                                                                                                                                                                                                                 | <b>,</b>                 |

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int: onales Aktenzeichen
PCT/EP 98/06756

| lm Recherchenbericht<br>ngeführtes Patentdokument |   | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie                                                                       |                                                                                                                                                                                                                           | Datum der<br>Veröffentlichung                                                                                                                                                                                                |
|---------------------------------------------------|---|-------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 649853                                         | Α | 26-04-1995                    | US 5438127 A JP 2566383 B JP 7177887 A US 5650506 A US 5616701 A US 5606046 A US 5610290 A US 5610291 A |                                                                                                                                                                                                                           | 01-08-1995<br>25-12-1996<br>18-07-1995<br>22-07-1997<br>01-04-1997<br>25-02-1997<br>11-03-1997<br>11-03-1997                                                                                                                 |
| WO 8706621                                        | Α | 05-11-1987                    | AT<br>AU<br>CA<br>DE<br>DE<br>EP<br>JP<br>JP<br>US                                                      | 114334 T<br>613870 B<br>7432987 A<br>1301606 A<br>3750774 D<br>3750774 T<br>0305399 A<br>2552691 B<br>1502317 T<br>5482834 A                                                                                              | 15-12-1994<br>15-08-1991<br>24-11-1987<br>26-05-1992<br>05-01-1995<br>27-04-1995<br>08-03-1989<br>13-11-1996<br>17-08-1989<br>09-01-1996                                                                                     |
| EP 487028                                         | Α | 27-05-1992                    | JP                                                                                                      | 4187077 A                                                                                                                                                                                                                 | 03-07-1992                                                                                                                                                                                                                   |
| EP 389063                                         | Α | 26-09-1990                    | NL<br>AU<br>CA<br>DE<br>DE<br>DK<br>EP<br>ES<br>GR<br>JP<br>JP<br>US                                    | 8900725 A<br>156830 T<br>641641 B<br>5215390 A<br>2012777 A<br>69031237 D<br>69031237 T<br>389063 T<br>389063 T<br>0819696 A<br>2085245 T<br>96300019 T<br>3025351 T<br>2289596 A<br>2680462 B<br>10072485 A<br>5234809 A | 16-10-1990<br>15-08-1997<br>30-09-1993<br>27-09-1990<br>23-09-1990<br>18-09-1997<br>02-01-1998<br>10-10-1996<br>30-03-1998<br>21-01-1998<br>01-06-1996<br>31-03-1996<br>27-02-1998<br>29-11-1990<br>19-11-1997<br>17-03-1998 |
| EP 814156                                         | Α | 29-12-1997                    | CA<br>JP                                                                                                | 2207852 A<br>10155481 A                                                                                                                                                                                                   | 18-12-1997<br>16-06-1998                                                                                                                                                                                                     |