计算方法第一次上机作业程序文档

yawning-lion

一、任务介绍

给定区间[0,6]上的函数 e^{-2x} ,将区间n等分,编写程序实现

- 全区间拉格朗日插值
- 分段线性插值
- 三次样条插值 (固支边界条件)

利用插值函数计算各节点中点处的函数值并与准确值比较,给出各插值函数的最大误差。

二、公式说明[1]

1、拉格朗日插值

利用重心加权公式

$$l_k(x) = rac{\omega_n(x)}{(x-x_k)\omega_n^{'}}$$

令

$$\hat{\omega_k} = \prod_{i=0}^n (x_k - \hat{x_i})$$

其中

$$\hat{x_i} = egin{cases} x_i & i
eq k \ x & i = k \end{cases}$$

则拉格朗日插值函数化为

$$\sum_{k=0}^n -rac{\omega_n(x)}{\hat{\omega_k}(x)}y_k$$

累加由循环体实现

算法时间复杂度为 $O(n^2)$ 空间复杂度为O(n)

2、分段线性插值

在区间 $[x_k, x_{k+1}]$ 上,经化简插值函数表达式为

$$y_k+(y_k-y_{k+1})(-rac{x}{h}+k)$$

算法时间复杂度为O(1)空间复杂度为O(n)

3、三次样条插值

在区间 $[x_k, x_{k+1}]$ 上, 经化简插值函数表达式为

$$rac{(1+2rac{x-x_k}{h})(x-x_{k+1})^2}{h^2} imes y_k + rac{(1+2rac{x-x_{k+1}}{h})(x-x_k)^2}{h^2} imes y_{k+1}$$

$$+rac{(x-x_k)(x-x_{k+1})^2}{h^2} imes m_k + rac{(x-x_{k+1})(x-x_k)^2}{h^2} imes m_{k+1}$$

 m_i 的值用追赶法计算得,追赶法由循环体实现

算法时间复杂度为O(n)空间复杂度为O(n)

三、程序说明

1、运行环境

程序编译环境为mingw-w64-v8.0.0,g++,IDE为vscode,程序文档利用markdown写作。

2、使用说明

• 输入规范

本程序运行开始时会打印 please enter the value of n, 在这之后输入区间等分的份数n的值即可。一次运行仅能输入一次。输入的数据为不大于 $700^{[2]}$ 的正整数,当输入不合法时程序停止运行,并打印 illegal input, please run again 提醒输入不合法,需要再次运行程序。

• 输出格式

本程序将运行数据输入到文件名为"output.txt"的文本文件里。本程序一次运行仅输出一次,输出结果为在以输入n为区间等分份数时的运行数据。

输出第一部分为函数值。数据间以制表符隔开。按列依次为拉格朗日插值函数、分段线性插值 函数、三次样条插值函数、原函数的函数值。按行依次为变量值,以节点中点的值给出。 输出第二部分为最大误差。依次为拉格朗日插值函数、分段线性插值函数、三次样条插值函数与原函数相比的最大误差。

输出完成后程序关闭。程序再次运行时,输出结果继续输入到output.txt里,并不覆盖原有数据。

3、程序结构

本程序包含四个头文件

```
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
```

包含六个函数,每个函数具体介绍见下一节

```
double Omega

double Lagrange

double PieceLinear

int Make_M

double Spline

int main
```

• 函数简介

lagrange 为拉格朗日插值函数,计算利用重心加权公式,公式中 ω 函数的计算利用 Omega 函数实现。

PieceLiear 为分段线性插值函数。

Spline 为三次样条函数,计算用到固支边界条件,其中每个节点上的一阶导数值利用 Make_M 函数计算得到。

• 主函数结构

主函数 main 中,以变量 num 读入区间份数后,直接计算节点值、待计算函数值的变量值,节点处原函数值,并依次用数组 pX_K, pX_M, E_Y 存储。

定义数组 M_DIF,利用函数 Make_M 算三次样条插值时的各节点一阶导数值,存储在数组 M_DIF 里。

定义误差数组 error 和最大误差数组 M_error, 并置初值0。

定义文件指针 pFile 以 "a" 打开文件"output.txt".

开始一个运行num次的循环体,在循环体内利用函数 lagrange, PieceLinear, Spline 分别计算当变量取序号为i的值,即

$$x_{i+rac{1}{2}}=rac{6(i+rac{1}{2})}{num}$$

处的函数值。同时可以利用函数 abs 计算与原函数值的绝对误差并依次存储到数组 error 里,利用语句

```
M_error[k]=(M_error[k])?M_error[k]:error[k];
```

将每次得到的绝对误差值与目前的最大误差值比较,M_error 取较大值,由此保证M_error 始终取到最大的绝对误差。

每一次循环向"output.txt"里输出各插值函数在 $x_{i+\frac{1}{2}}$ 处的函数值。

循环结束后各函数最大函数值存储在数组 M_error 里,向文件里输出。

最后打印 END 标志本次程序运行结束。

4、函数说明^[3]

Omega 函数

double Omega(int num,double x,double *pX_K)

• 函数输入

 num 确定 $\omega(x)$ 的零点个数

×为变量值

 pX_K 为指向存储了 $\omega(x)$ 所有零点信息的数组

• 运行结构

for 循环内 (x-pX_K[k]) 的累乘,实际上为公式

$$\prod_{k=0}^n (x-x_k)$$

• 运行结果

返回累乘结果,为函数值

lagrange 函数

double Lagrange(int num,double *pX_K,double x)

• 函数输入

num 确定插值函数阶数

pX_K 为指向存储了所有节点值的数组

×为变量值

• 运行结构

for 循环内插值基函数的累加

利用重心加权公式,分母可利用 Omega 函数计算,在公式中为 $\hat{\omega}_i$ 。定义数组 pX_I 存储 $\hat{\omega}_i$ 所有零点信息,实际上是把数组 pX_K 中 pX_K[i] 替换为变量值 x 。

而分子同样可利用 Omega 函数计算,即为 $\omega_i(x)$,零点由数组 pX_K 确定。

实际上累加过程为公式

$$\sum_{i=0}^n -rac{\omega_n(x)}{\hat{\omega_i}(x)}y_i$$

节点函数值 y_i 由 $\exp(-2*pX_K[i])$ 计算得。

• 运行结果

返回累加的结果,为拉格朗日插值函数在变量 x 下的值

PieceLinear 函数

double PieceLinear(int x_k,double *pX_M,double *pX_K)

• 函数输入

x_k 确定分段函数的区间范围

pX_K 指向存储所有节点值的数组

pX_M 指向存储所有变量值的数组

• 运行结构

函数变量x通过 $x=pX_M[x_k]$ 由 x_k 和 pX_M 共同确定。

区间范围由 pX_K[x_k] 和 pX_K[x_k+1] 确定。

在区间 $[x_k, x_{k+1}]$ 上,实际上插值函数表达式为

$$y_k+(y_k-y_{k+1})(-rac{x}{h}+k)$$

步长h即 $pX_K[1]$,节点函数值 y_i 由 $exp(-2*pX_K[i])$ 计算得。公式由区间等分的性质做了简化。

• 运行结果

返回该段函数值,变量值为 pX_M[x_k]。

Make_M 函数

int Make_M(int num,double *pX_K,double *E_Y,double *M_DIF)

• 函数输入

num 为区间被等分的份数

pX_K 指向存储所有节点值的数组

E_Y 指向存储所有节点函数值的数组

M_DIF 指向存储样条函数各节点处一阶导数值的数组,函数运行前还未初始化

• 运行结构

区间等分时,由 ALPHA 存储的 α 相应简化为 $\frac{1}{2}$,数组 BETA 存储各 β_i 的值。由固支边界条件可确定 β_0 , A_0 , B_0 。创建数组 A 和 B 存储递推式中 A_i 和 B_i 的值。

for 循环中, 递推地确定每一个 β_i, A_i, B_i 。

计算过程实际上为公式

$$eta_i = rac{3}{2} imes rac{y_{i+1} - y_{i-1}}{h}$$

$$A_i=-rac{1}{2(2+rac{A_i}{2})}$$

$$B_i=rac{eta_i-rac{B_i}{2}}{2+rac{A_{i-1}}{2}}$$

结束 for 循环后,利用固支边界条件确定 m_n 即 $M_DIF[num]$ 。再根据递推关系

$$m_i = A_i m_{i+1} + B_i$$

向前求出各 m_i 值,由此确定数组 $M_DIF[i]$ 各值。

• 运行结果

函数返回0,其实无意义,本函数运行结果是完成对数组 M_DIF 的处理,使之存储样条函数中各节点一阶导数值。

Spline 函数

double Spline(int num,int x_k ,double $*pX_M$,double $*pX_K$,double $*M_DIF$,double $*E_Y$)

• 函数输入

num 为区间被等分的份数

x_k 确定分段函数的区间范围

pX_K 指向存储所有节点值的数组

pX_M 指向存储所有变量值的数组

M_DIF 指向存储样条函数各节点处一阶导数值的数组

E_Y 指向存储所有节点函数值的数组

• 运行结构

利用等分条件简化后,直接利用公式

$$rac{(1+2rac{x-x_k}{h})(x-x_{k+1})^2}{h^2} imes y_k + rac{(1+2rac{x-x_{k+1}}{h})(x-x_k)^2}{h^2} imes y_{k+1}$$

$$+rac{(x-x_k)(x-x_{k+1})^2}{h^2} imes m_k + rac{(x-x_{k+1})(x-x_k)^2}{h^2} imes m_{k+1}$$

• 运行结果

返回函数值,为样条插值函数在 pX_M[x_k] 处的函数值。

三、算例与结果

1、算例展示

"output.txt"中包含四个算例,是n分别取20,30,50,80时的结果,这里仅取 n=20,30,80时分析

$$n = 20$$

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=0.150	0.740818	0.774406	0.740524	0.740818
x=0.450	0.40657	0.425003	0.406462	0.40657
x=0.750	0.22313	0.233247	0.223057	0.22313
x=1.050	0.122456	0.128008	0.12242	0.122456

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=1.350	0.0672055	0.0702525	0.0671845	0.0672055
x=1.650	0.0368832	0.0385554	0.0368719	0.0368832
x=1.950	0.0202419	0.0211596	0.0202357	0.0202419
x=2.250	0.011109	0.0116127	0.0111056	0.011109
x=2.550	0.00609675	0.00637316	0.00609487	0.00609675
x=2.850	0.00334597	0.00349767	0.00334494	0.00334597
x=3.150	0.0018363	0.00191956	0.00183574	0.0018363
x=3.450	0.00100779	0.00105348	0.00100748	0.00100779
x=3.750	0.000553084	0.00057816	0.000552914	0.000553084
x=4.050	0.000303539	0.000317301	0.000303446	0.000303539
x=4.350	0.000166586	0.000174139	0.000166534	0.000166586
x=4.650	9.14242e-05	9.55693e-05	9.13961e-05	9.14242e-05
x=4.950	5.01747e-05	5.24495e-05	5.01592e-05	5.01747e-05
x=5.250	2.75364e-05	2.87849e-05	2.7528e-05	2.75364e-05
x=5.550	1.51123e-05	1.57975e-05	1.51076e-05	1.51123e-05
x=5.850	8.29365e-06	8.66985e-06	8.29167e-06	8.29382e-06

三种插值函数的最大绝对误差分别为

拉格朗日插值	分段线性插值	三次样条插值
2.84478e-10	0.0335876	0.000293785

n = 30

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=0.100	0.818731	0.83516	0.818669	0.818731
x=0.300	0.548812	0.559825	0.548779	0.548812
x=0.500	0.367879	0.375262	0.367855	0.367879
x=0.700	0.246597	0.251545	0.246581	0.246597
x=0.900	0.165299	0.168616	0.165288	0.165299
x=1.100	0.110803	0.113027	0.110796	0.110803
x=1.300	0.0742736	0.075764	0.0742688	0.0742736
x=1.500	0.0497871	0.0507861	0.0497839	0.0497871

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=1.700	0.0333733	0.034043	0.0333711	0.0333733
x=1.900	0.0223708	0.0228197	0.0223693	0.0223708
x=2.100	0.0149956	0.0152965	0.0149946	0.0149956
x=2.300	0.0100518	0.0102535	0.0100512	0.0100518
x=2.500	0.00673795	0.00687316	0.00673752	0.00673795
x=2.700	0.00451658	0.00460721	0.00451629	0.00451658
x=2.900	0.00302755	0.00308831	0.00302736	0.00302755
x=3.100	0.00202943	0.00207015	0.0020293	0.00202943
x=3.300	0.00136037	0.00138767	0.00136028	0.00136037
x=3.500	0.000911882	0.00093018	0.000911824	0.000911882
x=3.700	0.000611253	0.000623519	0.000611214	0.000611253
x=3.900	0.000409735	0.000417957	0.000409709	0.000409735
x=4.100	0.000274654	0.000280165	0.000274636	0.000274654
x=4.300	0.000184106	0.0001878	0.000184094	0.000184106
x=4.500	0.00012341	0.000125886	0.000123402	0.00012341
x=4.700	8.27241e-05	8.43841e-05	8.27188e-05	8.27241e-05
x=4.900	5.54516e-05	5.65643e-05	5.5448e-05	5.54516e-05
x=5.100	3.71703e-05	3.79162e-05	3.71679e-05	3.71703e-05
x=5.300	2.4916e-05	2.5416e-05	2.49144e-05	2.4916e-05
x=5.500	1.67017e-05	1.70368e-05	1.67006e-05	1.67017e-05
x=5.700	1.11955e-05	1.14201e-05	1.11948e-05	1.11955e-05
x=5.900	7.50456e-06	7.65515e-06	7.50413e-06	7.50456e-06

三种插值函数的最大绝对误差分别为

拉格朗日插值	分段线性插值	三次样条插值
2.89657e-13	0.0164293	6.1274e-05

n = 80

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=0.037	328.034	0.930354	0.927742	0.927743
x=0.113	-5.35934	0.800763	0.798515	0.798516

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=0.188	0.801989	0.689223	0.687288	0.687289
x=0.263	0.584671	0.59322	0.591555	0.591555
x=0.338	0.509177	0.510589	0.509156	0.509156
x=0.412	0.438304	0.439468	0.438234	0.438235
x=0.487	0.377194	0.378254	0.377192	0.377192
x=0.562	0.324652	0.325566	0.324652	0.324652
x=0.637	0.279431	0.280217	0.279431	0.279431
x=0.713	0.240508	0.241185	0.240508	0.240508
x=0.787	0.207008	0.20759	0.207007	0.207008
x=0.863	0.178173	0.178674	0.178173	0.178173
x=0.938	0.153355	0.153786	0.153355	0.153355
x=1.012	0.131994	0.132365	0.131994	0.131994
x=1.087	0.113608	0.113928	0.113608	0.113608
x=1.163	0.0977834	0.0980586	0.0977833	0.0977834
x=1.238	0.084163	0.0843998	0.0841629	0.084163
x=1.312	0.0724398	0.0726436	0.0724397	0.0724398
x=1.387	0.0623495	0.0625249	0.0623494	0.0623495
x=1.462	0.0536647	0.0538157	0.0536646	0.0536647
x=1.538	0.0461896	0.0463196	0.0461896	0.0461896
x=1.613	0.0397558	0.0398676	0.0397557	0.0397558
x=1.688	0.0342181	0.0343144	0.0342181	0.0342181
x=1.762	0.0294518	0.0295347	0.0294518	0.0294518
x=1.837	0.0253494	0.0254207	0.0253494	0.0253494
x=1.913	0.0218184	0.0218798	0.0218184	0.0218184
x=1.988	0.0187793	0.0188321	0.0187793	0.0187793
x=2.062	0.0161635	0.016209	0.0161635	0.0161635
x=2.138	0.013912	0.0139512	0.013912	0.013912
x=2.212	0.0119742	0.0120079	0.0119742	0.0119742
x=2.288	0.0103063	0.0103353	0.0103063	0.0103063
x=2.362	0.00887071	0.00889567	0.0088707	0.00887071

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=2.438	0.00763509	0.00765658	0.00763508	0.00763509
x=2.513	0.00657159	0.00659008	0.00657158	0.00657159
x=2.587	0.00565622	0.00567213	0.00565621	0.00565622
x=2.663	0.00486835	0.00488205	0.00486834	0.00486835
x=2.737	0.00419023	0.00420202	0.00419022	0.00419023
x=2.812	0.00360656	0.00361671	0.00360656	0.00360656
x=2.888	0.0031042	0.00311293	0.00310419	0.0031042
x=2.962	0.00267181	0.00267933	0.0026718	0.00267181
x=3.038	0.00229965	0.00230612	0.00229964	0.00229965
x=3.112	0.00197932	0.00198489	0.00197932	0.00197932
x=3.188	0.00170362	0.00170841	0.00170362	0.00170362
x=3.263	0.00146632	0.00147045	0.00146632	0.00146632
x=3.337	0.00126207	0.00126562	0.00126207	0.00126207
x=3.413	0.00108628	0.00108933	0.00108627	0.00108628
x=3.487	0.000934966	0.000937597	0.000934965	0.000934966
x=3.562	0.000804733	0.000806997	0.000804732	0.000804733
x=3.638	0.00069264	0.000694589	0.000692639	0.00069264
x=3.712	0.000596161	0.000597838	0.00059616	0.000596161
x=3.788	0.00051312	0.000514564	0.00051312	0.00051312
x=3.862	0.000441647	0.00044289	0.000441646	0.000441647
x=3.938	0.000380129	0.000381199	0.000380128	0.000380129
x=4.013	0.00032718	0.000328101	0.00032718	0.00032718
x=4.088	0.000281606	0.000282399	0.000281606	0.000281606
x=4.162	0.000242381	0.000243063	0.000242381	0.000242381
x=4.237	0.000208619	0.000209206	0.000208619	0.000208619
x=4.312	0.00017956	0.000180065	0.00017956	0.00017956
x=4.388	0.000154549	0.000154984	0.000154549	0.000154549
x=4.463	0.000133021	0.000133396	0.000133021	0.000133021
x=4.537	0.000114493	0.000114815	0.000114492	0.000114493
x=4.612	9.85447e-05	9.8822e-05	9.85446e-05	9.85447e-05

变量值	拉格朗日插值	分段线性插值	三次样条插值	原函数值
x=4.688	8.48182e-05	8.50569e-05	8.48181e-05	8.48182e-05
x=4.763	7.30037e-05	7.32092e-05	7.30036e-05	7.30037e-05
x=4.838	6.28349e-05	6.30117e-05	6.28348e-05	6.28349e-05
x=4.912	5.40825e-05	5.42347e-05	5.40824e-05	5.40825e-05
x=4.987	4.65492e-05	4.66802e-05	4.65492e-05	4.65492e-05
x=5.062	4.00653e-05	4.0178e-05	4.00652e-05	4.00653e-05
x=5.138	3.44844e-05	3.45816e-05	3.44845e-05	3.44845e-05
x=5.213	2.96815e-05	2.97646e-05	2.96811e-05	2.96811e-05
x=5.287	2.5543e-05	2.56186e-05	2.55467e-05	2.55468e-05
x=5.362	2.20213e-05	2.20502e-05	2.19883e-05	2.19883e-05
x=5.438	1.8796e-05	1.89788e-05	1.89255e-05	1.89255e-05
x=5.513	1.56753e-05	1.63352e-05	1.62893e-05	1.62893e-05
x=5.588	4.51625e-05	1.40598e-05	1.40203e-05	1.40204e-05
x=5.662	-2.40543e-05	1.21014e-05	1.20674e-05	1.20674e-05
x=5.737	0.00210786	1.04158e-05	1.03865e-05	1.03865e-05
x=5.812	0.179478	8.96493e-06	8.93976e-06	8.93978e-06
x=5.888	0.244315	7.71619e-06	7.69453e-06	7.69454e-06
x=5.963	60.3599	6.64138e-06	6.62274e-06	6.62275e-06

三种插值函数的最大绝对误差分别为

拉格朗日插值	分段线性插值	三次样条插值
327.106	0.0026105	1.28292e-06

2、结果分析

• 拉格朗日插值函数

当n较小(如 n < 50)时,拉格朗日插值函数的拟合效果都非常优越,是三种函数里最好的,最大绝对误差随n增大呈现先减小后增大的趋势,但是当n继续增大(如 n > 80)时,拉格朗日插值函数的荣格效应将变得非常显著,当 n增大到 800甚至更大时,拉格朗日插值函数的边界值甚至大到了超过 double 型数据的表示范围。

而且拉格朗日插值函数算法时间复杂度为 $O(n^2)$,因为有循环嵌套,n越大程序运行越缓慢

• 分段线性插值函数

分段线性插值函数的拟合效果较为稳定,可以预见精度是随n增大而递增的,但是递增得很慢,只有当n较大时才会有比较好的精度,在n < 50时精度远不如其他两个插值函数。

还有一个优点是算法运行非常快。

• 三次样条插值

三次样条函数的精度有随n增大而迅速递增的特点,在n=80时达到了三种函数种的最高精度,同时运行速度也不慢,在n比较大时是一个非常使用的插值函数。

综上所述,n不太大(如 n < 50)时,用拉格朗日插值函数运行速度不低,同时具有很高的精度,最佳;当n较大(如 n > 80)时,用三次样条插值函数运行速度不低,精度较高,最佳,而此时拉格朗日插值函数因为荣格现象拟合效果很差。

而不管何时,分段线性插值函数的运行速度最快,误差稳定但不是最低。但三次样条插值具有很好(光滑)的性质,故多优先考虑使用三次样条插值。

- 1. 公式算法的详细说明请见二4、函数说明←
- 2. 当n较大时,程序仍能保持运行速度,但当n取[700,800]间一个值时,因Runge现象,拉格朗日函数边界值以超出双精度数的表示范围。 \hookleftarrow
- 3. 以下函数说明中包含大量公式,在对于不同函数说明中公式里出现的相同字母,含义是相同的,不重复说明。 ←