Teoria de Carbeira de Markourtz
Para un portfolio com: « p abivos (peros wi)
o setomo para um período será: $R = \sum_{i} w_{i} R^{i}$
$k = 2$, $W_i K^i$ i=1
A midia e a revion via de R são dadas, respectivamente,
$\mu = E[R] = E\left[\sum_{i=1}^{p} w_i R^i\right] = \sum_{i=1}^{p} w_i E[R^i]$
2= Nor [R] = Nor [R'] +
G = Var[R] = lov[R,R] = lov[An] = wiw; lov[R;R]
Os peros wi satisfazem os requines vinculos:
$\sum_{i=0}^{p} W_i = 1 \text{(**)} 0 \leq w_i \leq 1 \text{(***)}$
Diversificaços: risco = desvio padrão do retorno do

1001.006

<u>ئ</u>

Haubba	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Se mal	When i, j (i = j) tais que $\begin{cases} \text{Cov}[R_i,R_j] = 0 \\ \text{Cov}[R_i,R_j] < 0 \end{cases}$
e įwiž	satisfizer (*) e (**) teremos:
	$\mathbf{g}^{2} + \sum_{i \neq j=1}^{p} w_{i}w_{j} \operatorname{lov}[R_{i}, R_{j}] \leqslant \sum_{i=1}^{p} w_{i}\sigma_{i}^{2} \leqslant \sum_{i=1}^{p} w_{i}\sigma_{i}^{2}$
Em partie	Cellar, para $w_i = 1/p$ I gually weighted portfol
e 52=	v ti teréamos:
° <	v o que é apenas uma fraça) P do veriância individual dos ativos
· para sec investica esperado	duzir o risco através da diversificação um los deve abrir mão de parte do retorno 2 dos ativos que possuem risco
· a leviño surpeilo medio a	à este trade-off otimo de Markourtz diz à este trade-off otimo entre a retorno la portfolio e sua variancia (volabile!)
	icad (**) pode su relaxada (short-selling) ar a koria mais simples.

1001.0065

(Ż

Geometria dos Conjuntos Elicientes
Consideremos o caso simples em que:
$p=2$ (μ_{1}, σ_{2}) midia e desvio dos retornos (μ_{2}, σ_{2}) $g = \frac{\text{Lov}(R_{1}, R_{2})}{\sigma_{1}\sigma_{2}}$
$g = \frac{\text{Cov}(R_1, R_2)}{\sigma_1 \sigma_2}$
Construinos un porfolio definido:
$w_1 = \alpha \longrightarrow w_2 = (1 - \alpha)$
(0 <x<1)< td=""></x<1)<>
O retorno médio do portfolio será:
$\mu(\alpha) = \alpha \mu_1 + (1-\alpha) \mu_2$
fá a volatilidade do portfolio será:
$\sigma^{2}(\alpha) = \alpha \sigma_{1}^{2} + (1-\alpha)^{2} \sigma_{2}^{2} + 2\alpha(1-\alpha) \sigma_{1} \sigma_{2} g$
Vamos analisar a curva $\{(\sigma(x), \mu(x)); 0 \le x \le 1\}$ para diferentes valores de g :
$ \begin{array}{cccc} \mu_1 & g = -2 & & & & & & & & & & & & \\ \mu_1 & g = -2 & & & & & & & & & & \\ & & & & & & & & &$
A *

→6

Q,

Ġ,

Ceneralizando para p ativos: o cito de pontos no plano (0, µ) que corresponde aos retornos do portfolio é chamado região factivel (feasible). Para p 3 a região é um conjunto conexo mi-dimen-sional. A que região fambem é convexa a esquerda (dados quaisques dois pontos ma região uma linha que os um mai) eruza a frontina esquerda da região) M no short-selling Minima Variancia e Franteira Eficiente · A frombeira esquerda da região é chamada conjunto de mínima variancia. · Para um dado valor do retorno midio u o ponho factivel com menor o está some o conjunto de minima variancia Este corresponde ao MVP pl o dado u - Para um dado valor de volatilédade o investidores preferem o portfolio el maior reformo, o qual é obbido pelo ponto superior do conjunto realizavel

Grantina advisende front eficiente C conj. de min. pho de minima Vaciancia 0 Rálula dos Porfálios Eficientes

Considerenos novamente pativos

P=(R1,...,Rp)T-

e sejam $\overline{W} = (W_2, ..., W_p)^T$ $\vec{v} = (1, \dots, 1)^T$

podemos enter escurer:

 $\vec{\mu} = (\mu_1, \dots, \mu_p)^T = (E[R_1], \dots, E[R_p])^T$

Z;= Zij = Cov [Ri, Rj]

Nesa notaces seremos, para o portfolio:

 $M_{\pi} = \vec{\mu}^{\mathsf{T}} \vec{W}$ e On = WTZW

· No caro em que short-selling é permitido existe uma solução explícita para os peros do portfolio

Dado um retorno alvo μ_* para o retorno do portfolio o vetor de peros de um portfo ciénte porte ser caracterizado como: $\vec{W}_* = arg min \vec{V}^T \vec{Z} \vec{V}$	r mèdio lio effi-
sujeibre a $\overline{W}^{T}\overline{z} = \mu_{*}$ $\overline{W}^{T}\overline{z} = 1 \qquad (short-selling)$	
Método dos multiplicadores de hagrange: Problemas gerais de obinização:	
min $f(\vec{x}) = f(x_1,, x_n)$ \vec{x} variàncis de decisar funcces objetivo { Sujetifo a $(g_1(\vec{x})) < \int b_1$	a qual mizar maninizar)
restrições (gm (7)) > bm (vinculos) designal dades ou ignal 1/5	
Algums problemas são mais határies como minimizad octoros como manimizados De um tipo p/o octro:	290::001
max f(x) = -min(-f(x)) $min f(x) = -man(-f(x))$	

mão modifica o valor éfine de α : max $(a+bf(x)) = a+b max f(x)$ [mão esqueer de surerber a hans f obter o valor correto da función objetivo] Ofinização Investida: min f(as, nn) (cálculo plain-vanilla!) o valor minimo de $f(\vec{x})$ i um extremo de funça: su $\vec{x}_{**} = (x_{**}^{**}$		hansformacos afin : f(n) - bf(n) + a
max $(a+bf(x)) = a+b max f(x)$ [mod esqueen the severter a hans $f(x)$ observe or valor correlo de fundado objetivo] Ofinização Investida: min f(as, nn) (cálculo plain-zamilla[] o valor minimo de $f(\vec{x})$ i um extremo de fundado: N $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entado: $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entado: $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entado: $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entado: $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entado: $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entador $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entador $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa entador $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$ i um minimo globa $\vec{x}_{+} = (\vec{x}_{+},,\vec{n}_{n})$ i tal que $f(\vec{x}_{+})$		
Mode esqueer ch weeker a hans plater o valor correlo da función objetivo] Ofinisach Investrita: min flas, n_n) il (cálculo plain-vanvilla!) o valor minimo de f(\vec{x}) é um extremo de funço: St $\vec{x}_{+} = (\vec{x}_{+}^{*}, \vec{x}_{n}^{*})$ é tal que $f(\vec{x}_{+}^{*})$ é um minimo globa entad: $\vec{x}_{+} = (\vec{x}_{+}^{*}, \vec{x}_{n}^{*})$ é tal que $f(\vec{x}_{+}^{*})$ é um minimo globa entad: $\vec{x}_{+} = \vec{x}_{+}^{*} = \vec{x}_{+}^{*}$ (necessaria mas nad suficiente, ondition . herriano de f em \vec{x}_{+}^{*} deux ser pontiva f definida (negativa definida pl maximizaco) oudition (condicion suficiente) Otimizaco de restricões de igualdade: min $f(\vec{x}_{+}^{*})$ sujata a $g_{+}(\vec{x}_{+}^{*}) = b_{+}$		
(cálculo plain-vanilla!) o valor mínimo de $f(\vec{x})$ é um extremo de funça: st $\vec{x}_* = (\vec{x}_*,, \vec{x}_*)$ é (al que $f(\vec{x}_*)$ é um mínimo globa en $f(\vec{x}_*)$ é valor \vec{x}_* order \vec{x}_* order \vec{x}_* order ondition o herriano de f em \vec{x}_* deve ser pontiva definida pominingação) order order order (condica) suficiente) Olimização el restrições de igualdade: min $f(\vec{x})$ sujata a $g_*(\vec{x}) = b_*$ \vec{x}		
o valor minimo de $f(\vec{x})$ é um extremo de funça : st. $\vec{x}_* = (x_*^*,, x_m^*)$ é tal que $f(\vec{x}_*)$ é um minimo globa entad: $\vec{x}_* = (x_*^*,, x_m^*)$ é tal que $f(\vec{x}_*)$ é um minimo globa entad: $\vec{x}_* = 0$ (necessària mas nad suficiente ondition o helviano de f em \vec{x}_*^* dere ser ponitiva definida pomorimização) $\vec{x}_*^* = 0$ (necessària mas nad suficiente ondition ondition o de f em \vec{x}_*^* dere ser ponitiva definida pomorimização) $\vec{x}_*^* = 0$ (conditado suficiente) Otimização el restrições de igualdade: min $f(\vec{x}_*)$ sujeita a $g_*(\vec{x}_*) = b_*$		
entas: $ \vec{x} = 0 $ (necessária mas nad suficiente) ondihon . herriano de f em \vec{x}' deve ser pontiva phoder definida (negativa definida p/ monimização) ondihon (condiado suficiente) Olimização c/ restrictors de igualdade: min $f(\vec{x})$ sujata a $g_1(\vec{x}) = b_1$ \vec{x}		o valor minimo de f(2) é um extremo de funça:
ondition (condicate sufficient) Obinizaço de restrictor de igual dade: min $f(\vec{x})$ sujeita a $g_1(\vec{x}) = b_1$ \vec{x}	! 3+ orde	entas: 7 = 0 (necessária mas nai) suliciente.
ondition (condicate sufficiente) Obinizaço d' restrictor de ignaldade: min $f(\vec{n})$ sujeita a $g_2(\vec{n}) = b_2$ \vec{n}		heriano de fem n' deve ser positiva f definida (megabiva definida p/ maximisago)
$\min_{\vec{x}} f(\vec{x}) \text{sujeita a} g_1(\vec{x}) = b_1$. 1	
-70		Obinização d' restrições de igualdade:
$q_{na}\left(\overline{y_{i}}\right) = b_{na}$		30
Solução: mélodo do la sagraga		$g_m(\vec{n}) = b_m$

200 000

Z

Escrevendo a função lagrangeana	
Esta mada mais é do que a funça a aumentada pelas funções de vinade por uma variável q "chamada mu	objetivo inicial la multiplicadas eltiplicador de lagrang
$L(\vec{n}, \vec{\lambda}) = f(\vec{x}) + \sum_{j=1}^{m} \lambda_j (g_j(\vec{x}) - b_j)$	$= f(\vec{a}) + \vec{\lambda} \cdot (\vec{a} - \vec{b})$
	(m+n) rauá veis sem vrnculos na,,nn, λ,, λm)
Problema reformulado: min XX	7 L (元,ス)
Uhlezando a condução de 1º ordem: $\frac{\partial L(\vec{x})}{\partial x_i} = \frac{\partial L(\vec{x})}{\partial x_i} + \frac{m}{2} \lambda_i \frac{\partial g_{\dot{x}}(\vec{x})}{\partial x_i} = \frac{\partial L(\vec{x})}{\partial x_i} + \frac{m}{2} \lambda_i \frac{\partial g_{\dot{x}}(\vec{x})}{\partial x_i} = \frac{\partial L(\vec{x})}{\partial x_i} + \frac{\partial L(\vec{x})}{\partial x_i} + \frac{\partial L(\vec{x})}{\partial x_i} = \frac{\partial L(\vec{x})}{\partial x_i} + \frac{\partial L(\vec{x})}{$, ,
3 0 07	por uma soma de 1,, n funiões parametri- zada por l. 1,, m vinculor originais
Resolve-se o sistema e venifica-s chedece (sabizfaz a condição de	5005

Aplicação: maximizando a ana de um refaingulo. Codaciamos de encontrar as dimensões x e y dos lados de um retingulo tal que sua área é manimizada P(x,y) = (n+y).2 = p Problema de ofinização: man A(x,y) sujeito a P(x,y)-1p=2(x+y)-p=C Apenas uma restrico - um multiplicador de lagrange L(x,y) = xy - \(\lambda(2(x+y)-p) land de 1º orden: $\frac{\partial L}{\partial x} = y - 2\lambda = 0$ 21 = 2x + 2y -p = 0 Luja soluca) é and de 2º ordem

H mas é mu nem pontiva nem negativa definida

E agora fosé?? Obtivemos um mánimo, um mínino ou neuhum dos dois?

Seja no lado menor e y o menor do retangulo Seja agora E E (0, P/4) tal que definisdo:

 $\begin{cases}
n = p - E \\
4 & \text{respeitames a restricted do} \\
y = p + E & \text{perimetro}
\end{cases}$

=> A(n,y)=(P/4-E)(P/4+E)=P/16-E2<p/16

- result de x e y pels mit de hagrange maximiza a àrea e resolve o problema

Olimizaços com restrições de desigualdade:

min $f(\vec{n})$ rujeito a $g_s(\vec{n}) \leq b_s$

gm (2) < bm

Endicois recessárias (teorema de Kuhn-Tricker) p/a

 $\frac{\partial \partial f}{\partial x_i} + \frac{\sum_{j=1}^{N} \lambda_j \partial (g_j(\vec{x}) - b_j)}{\partial x_i} = 0, \quad i = 1, ..., n$

 $\lambda_{i}(g_{i}(\vec{n})-b_{j})=0$; i=1,...,m $\lambda_{i} \geq 0$; i=0,...m

10.11.005.

As a defined by the Thirty of the terms of t
As condicos de huna-vicher san mecessarias e suprilujes
para a existencia de solução apenas ado a leurção
As condicões de Kuha-Tucker sai necessárias e suficientes para a existência de solução apenas goto a feurcap objetivo é convera e as restricões sai lineares.
J = = = = = = = = = = = = = = = = = = =

Voltando ao porfolio...

$$\vec{W}^* = \underset{\vec{W}}{\text{arg min}} \frac{1}{2} \vec{\sigma}_{\vec{W}}^2 = 1 \vec{W}^{T} \vec{z} \vec{W}$$

sujeito a $\mu^* = \vec{W}^{T} \vec{\mu}$ $1 = \vec{W}^{T} \vec{i}$

reshiedes de izeall.

$$L(\vec{w}, \vec{\lambda}, \vec{y}) = \frac{1}{2} \vec{w}^{T} \sum \vec{w} + \lambda (\mu^{*} - \vec{\mu}^{T} \vec{w}) + \gamma (1 - \vec{\imath}^{T} \vec{w})$$

londicipe de 1º ordem: derivando el resperto ao velor w

$$\frac{\partial L}{\partial w} = \vec{w}^{T} Z - \lambda \mu^{T} - \gamma \vec{z}^{T} = 0$$

$$(****)$$

Calculando a matriz herriana encontramos Z a qual é positiva de finida.

$$\vec{w}^* = Z^{-1}(\lambda \vec{\mu} + \gamma \vec{z}) \qquad (Z\vec{w} = \lambda \mu - \gamma \vec{z})$$

12

Das derivadas d relação a	2 e gr termos:
$\vec{\mu}^{T}\vec{w} = \mu^{*}$ e $\vec{w}^{T}\vec{2} = 1$	
substituindo a solución i	-7 * · () :
$\frac{\vec{\mu} \vec{z}^{-1}(\lambda \vec{\mu} + \gamma \vec{z}) = \lambda \vec{\mu}}{1 + 2^{-1}(\lambda \vec{\mu} + \gamma \vec{z}) = \lambda \vec{z}^{T}}$	$\frac{\vec{z} - \mu + \gamma \mu \vec{z} - \vec{z} = \mu^*}{\vec{z} - \mu + \gamma \vec{z} - \vec{z} - \vec{z}} = 1$
Revolution : $C R = \vec{z}^T \vec{z}$ A $B = \vec{\mu}^T$	$\frac{2}{2} \cdot \vec{z} = \vec{z} \cdot \vec{z} \cdot \vec{z}$
•	Ξ-μ
temos entero: $\lambda = \frac{C}{A\mu^* - \frac{1}{2}}$ CB	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$= b \overrightarrow{W}^* = \underbrace{\sum_{i=1}^{n} \frac{C}{\mu A \overrightarrow{\mu}^T - B \overrightarrow{\mu}^T + C \overrightarrow{z}}}_{AC - B^2}$ $CB - A^2 = D$	(AC-B ² >0) = D - \(\mu^* \ \B \(\bar{7}\)\)
e a variancia do porto	lio eficiente será:
0= (B-24*A+12°C)/	D

,	
Itaú	BBA

eborno alvo que $M_{mv} = \frac{A}{C}$			
$\Rightarrow O_{mv} = 1$			
		Ventique	