CS 498 VR

Lecture 14 - 3/14/2018

qo.illinois.edu/VRlect14

Review Questions

- 1. What are the two types of photoreceptors?
- 2. How much display resolution is enough in VR?
- 3. Which area has cone peak?

Rods and Cones Placement

Sanity Check: DOFs

Sanity Check: DOFs

Figure 5.21: The head and eyes rotate together to fixate on moving or new targets.

Eye Motion Modes

	Conjugate	Disjunctive
Voluntary	Saccades Pursuit	Vergence (Convergence + divergence)
Involuntary	Vestibulo-ocular reflex (VOR) Optokinetic Microsaccades	N/A

Eye Motion Modes

Eye Motion Modes: Saccades

Saccades are rapid "jerks" motions

- Last for < 45ms, and 900° /s

Saccadic masking is

- Transsaccadic memory
- Perceptual constancy

Examples: Reading, looking at pics, faces or movies

Purpose: maintain high resolution and wide FOV

Relevance to VR: Diagnosing ADHD, Schizophrenia and other eye problems.

Eye Motion Modes: Saccades

Eye Motion Modes: Smooth Pursuit

- Smooth Pursuit is < 30 degrees per second, otherwise saccades are inserted
- Examples: Watching a car or a bicycle move
- Purpose: Keep object motionless on retina to reduce blur
- Relevance to VR: Blurring behind moving objects.

Eye Motion Modes: VOR

VOR = Vestibulo-Ocular reflex

Delay: 10ms

Purpose: Keep image stability when head

moves

Eye Motion Modes: Optokinetic

Example: Train

Purpose: Image stability, alternation between Smooth Pursuit and

Saccades

Eye Motion Modes: Convergence/Divergence

Eye Motion Modes: Microsaccades

Eye Motion & VR: 1, Lens Aberration

- Focus
- Optical distortion

Eye Motion & VR: 2, VOR Gain Adaption

Eye Motion & VR: 3, Interaction with Photoreceptors

- 1. Pixels on the display switch their color/intensity at some non-zero rate.
- 2. There is RGB sub pixel structure.
- 3. Frames might be off (black) at particular times.
- 4. Asynchronous (line-by-line) display scan out.
- 5. Photoreceptors are slow to respond. It takes them about 0.1-0.2 seconds to respond.
- 6. All of the eye movements shift the image on the retina.

7. Perception

Switching Gears: Human Perception

Retinal Circuitry

Hierarchical Processing: Receptive Field Model

Ganglion Cells Response to Edges

Input image (cornea)

"Neural image" (retinal ganglion cells)

Center-surround receptive fields: emphasize edges.

Receptive Fields of Ganglion Cells

Ganglion Cells Preprocessing of an Image

Hierarchical Processing: Visual Pathways

Single Unit Recording

Single Unit Recording

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Hubel and Wiesel Experiments

Review

- What are the six kinds of eye movements?
- A single eye has how many DOF?
- What is Hubel and Wiesel's experiment about?