Heninger-Shacham

RSA

- •Secret random primes p and q
- Calculate public N = pq

- For all r, $N=pq \mod r$
 - Specifically for all m, $N=pq \mod 2^m$

- We know the LSB of p and q
 - Can we guess the next bit?

• What if we know the *m* LSBs? Can we guess the next bit?

Guessing bits

Let's try

N= 1 0 0 1 0 1 0 1 1 0 1 1 1 0 p = X X X X X X X X X X XBut wha

 No known bits ⇒ Guess one to determine other

q = X X X X

- p= x x x x One known \Rightarrow determine other
 - Two known ⇒ rule out prior wrong guesses

p=XXXXXXXX001

q=**XXXXXXX101**

q=XXXXXXXX001

(XXX11

K X X 1 1

q=XXXXXXXX011

RSA

- ullet Random primes p and q
- Calculate N = pq
- •Select a public exponent e(=65537)

Small $e \rightarrow$ fast computation

• Compute $d=e^{-1} \mod \varphi(N)$

•Encrypt: $C=M^e \mod N$

• Decrypt: $M = C^d \mod N$

Large $d \rightarrow \text{slow computation}$

CRT-RSA

- $d_p = d \mod (p-1)$, $d_q = d \mod (q-1)$
- • $m_p = m^{d_p} \bmod p$, $m_q = m^{d_q} \bmod q$
- • $h = q-1(m_p-m_q) \bmod p$
- $\bullet m = m_q + hq$

- Hence:
 - $\bullet N = pq$
 - $ed_p = k_p(p-1)+1$
 - $ed_q = k_q(q-1)+1$
- Moreover, $0 < k_p$, $k_q < e$, and they are all related

6

Heninger-Shacham (CRYPTO 2009)

 A technique for finding the RSA-CRT key from partial information

Sliding Window Exponentiation

• Represent the exponent d in a convenient form:

 $d = \Sigma d_i 2^i$ where d_i is either 0 or is odd $0 < d_i < 2^w$

• Precompute odd powers of the base b $b[i]=b^i \bmod p$ for odd $0 < i < 2^w$

$$B[1] = b$$
 $b_{sqr} = b^2 \mod p$
 $for i = 3, 5, ..., 2^w-1 do$
 $b[i] = b[i-2] \cdot b_{sqr} \mod p$

Sliding Window Exponentiation

Perform the exponentiation

```
r \leftarrow 1

for i = |d/-1, ..., 0 do

r \leftarrow r^2 \mod p

if d_i \neq 0 then

r \leftarrow r \cdot b[d_i] \mod p

return r
```

Sliding window representation revisited

 $d = \sum d_i 2^i$ where d_i is either 0 or is odd $0 < d_i < 2^w$

Another way of looking at this:

- Divide *d* into *windows*
 - Windows are at most w bits wide
 - Windows start and end with 1

$$d = 4312 = 100000111010000$$
 $d_i = 100000110000$
 $\Delta d_i = 100000110000$
 $\Delta d_i = 1.2^{12} + 1.2^{7} + 11.2^{3} = 4096 + 128 + 11.8 = 4312$

Sliding window representation revisited

 $d = \sum d_i 2^i$ where d_i is either 0 or is odd $0 < d_i < 2^w$

Not a unique representation

$$d = 4312 = \boxed{1} \ 0 \ 0 \ 0 \ \boxed{1} \ \boxed{1} \ 0 \ 0 \ 0$$

$$\boxed{1} \ 0 \ 0 \ 0 \ \boxed{1} \ \boxed{1} \ 0 \ 0 \ 0$$

$$\boxed{1} \ 0 \ 0 \ 0 \ \boxed{1} \ \boxed{1} \ 0 \ 0 \ 0$$

Minimise the number of windows for best performance

A greedy algorithm

- Scan the bits of d until finding a 1
- Open a window of length w bits
- Close the window at the last 1
- Repeat

The greedy algorithm is optimal

Analysis

- Successive open positions are at least w bits apart
- Assuming a random d

1 0 0 0 0 1 1 0 1 1 0 0 0

- w bits apart with probability 1/2
- w+1 bits apart with probability 1/4
- w+2 bits apart with probability 1/8
- Etc...
- On average, successive open positions are w+1 bits apart
 - Expected number of windows is |d|/(w+1)

Left-to-right vs. right-to-left

Previously, we ran the greedy algorithm from the right to the left.

Can also run from the left to the right

- The analysis still applies
 - We get the same number of windows

Can combine left-to-right with exponentiation

Recovering the exponent

We know the positions of the windows

Windows start with 1

Everything outside maximum window must be 0

• On average we get 2 bits per window or 2|d|/(w+1) per exponentiation

Heninger-Shacham and the side-channel results

- A technique for finding the RSA-CRT key from partial information
- ullet On average, needs one bit of $p,\ q,\ d_p,\ d_q$
- ullet In our case we do not know bits of p or q
- ullet For a successful attack we need to know half the bits of d_p and d_q
- We get 2 bits per window of size w+1
 - For w>3, we need more information

Left-to-right leaks more

• Right to left (*d*=8625):

• Left-to-right (*d*=8625):

```
      1
      0
      0
      0
      1
      1
      0
      1
      1
      0
      0
      0
      1

      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
      X
```

Results

- For w=4 can get 2.725 bits per window
 - Break all 1024-bit RSA keys in Libgcrypt

- For w=5 can get 2.766 bits per window
 - Break 13% of the 2048-bit RSA keys

For more information see

Bernstein et al. "Sliding Right Into Disaster: Left-to-Right Sliding Windows Leak", CHES 2017

Attack Life Cycle

Round 1

Round 1

The RSA Encryption System

The RSA encryption is a public key cryptographic scheme

- Select random primes p and q
- Calculate N = pq
- Select a public exponent e(=65537)
- Compute $d=e^{-1} \mod \varphi(N)$
- (*N*, *e*) is the public key
- (p, q, d) is the private key

Fixed Window Exponentiation

- Divide exponent into *windows* of size *w*
- Precompute $b_i = b^i \mod m$:

$$b_0 \leftarrow 1$$

 $b_1 \leftarrow b$
for $i = 2, 3, ..., 2^w-1$ **do**
 $b_i \leftarrow b_{i-1} \cdot b \mod m$

Calculating the exponent

$$r \leftarrow 1$$

for $i = \lceil n/w \rceil - 1, ..., 0$ do

for $j = 1, ..., w$ do

 $r \leftarrow r \cdot r \mod m$
 $r \leftarrow r \cdot b_{d_i} \mod m$

return r

Prime+Probe against RSA (Percival 2005)

Why we can identify multipliers

- Each multiplier occupies consecutive cache lines
- Accessed throughout the multiplication

Round 1

Scatter-Gather

- Mitigate Prime+Probe
 - Sequence of accesses to cache lines does not depend on secret data

OpenSSL's Layout

Round 1

Tsur Mir Miy ma info

Cache-timing attacks on AES

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)

The University of Illinois at Chicago
Chicago, IL 60607-7045
djb@cr.yp.to

Abstract. This paper demonstrates complete AES key recovery from known-plaintext timings of a network server on another computer. This attack should be blamed on the AES design, not on the particular AES

Denial

Cache Attacks and Countermeasures: the Case of AES (Extended Version)

revised 2005-11-20

Dag Arne Osvik¹, Adi Shamir² and Eran Tromer²

1 dag.arn

act te d

te of for cryptans allow an ur despite per

ess leakage through s, which can be used ookups. The attacks the same processor, uslization. Some of

er attack off

Exploit

Bernstein 2005, Osvik
Shamir & Tromer 2006

– Scatter Gather may
leak information

Paper

Fix

Brickell, Graunke & Seifert 2006 – Use Scatter Gather

Cache banks

- To support superscalar processing the cache is divided into cache banks
 - Bits 2-5 of the address determine the bank

Cache Banks

- In Sandy Bridge, each bank can serve only one request per cycle.
 - Concurrent access to different banks is always possible
 - Concurrent access to the same bank causes delays

Round 2

CacheBleed Operation

 Spy generate a long sequence of accesses to the same cache bank

CacheBleed Operation

- Spy generate a long sequence of accesses to the same cache bank
- Victim accesses to a different cache bank do not affect speed

CacheBleed Operation

- Spy generate a long sequence of accesses to the same cache bank
- Victim accesses to a different cache bank do not affect speed
- Victim accesses to same cache bank cause delays

Implementation

```
1
       rdtscp
2
               %rax, %r10
      movq
4
            addl
                    0x000(%r9), %eax
5
            addl
                    0x040(%r9), %ecx
6
                    0x080(%r9), %edx
            addl
7
            addl
                    0x0c0(%r9), %edi
8
            addl
                    0x100(%r9), %eax
9
            addl
                    0x140(%r9), %ecx
10
            addl
                    0x180(%r9), %edx
                    0x1c0(%r9), %edi
11
            addl
                    0xf00(%r9), %eax
256
            addl
257
            addl
                    0xf40(%r9), %ecx
                    0xf80(%r9), %edx
258
            addl
259
            addl
                    0xfc0(%r9), %edi
261
            rdtscp
262
            subq
                    %r10, %rax
```

CacheBleed timing

 Need multiple samples to determine cachebank conflicts

CacheBleed on OpenSSL

- Average of 1,000 sequences on each bin
- Odd and even bins have different timing characteristics

CacheBleed on OpenSSL - Details

Clock Drift

Low-pass filter

Normalised + resampled

Results

- 16,000 decryptions (1,000 sequences per bin per exponentiation)
 - Less than 5 minutes online attack
- Recover three bits of each multiplier
 - Miss the first and last one or two multipliers

Recovering missing bits

- We know 60% of the bits (3 bits in each 5) in both d_p and d_q
 - Heninger-Shacham requires 50% of the bits
 - Complete key recovery requires two CPU hours less than 3 minutes on a high-end server

OpenSSL Proposed "Fix"

- Use 128-bit reads with masking
 - Only leaks 2 bits per multiplier not enough for Heninger-Shacham
- Read at a different offset in each of the four cache lines
 - Order depends on the multiplier
 - Too fast for our attack

CacheBleed

- Fixed in the SkyLake microarchitecture
 - Multiple cache ports

- MemJam false dependencies
 - Moghimi et al. "MemJam: A False Dependency Attack against Constant-Time Crypto Implementations", CT-RSA 2018

- Port contention
 - Aldaya et al. "Port Contention for Fun and Profit", IEEE SP 2019

Summary

- Microarchitectural attacks often return partial information
- Can use redundancy to reconstruct key
- Heninger-Shacham algorithm

- Next: lower-level caches and eviction sets
 - Read: Vila et al. "Theory and Practice of Finding Eviction Sets", IEEE S&P 2019

MAD - 04 - HS 55