Transformation de la matière – chapitre 3

TD application : Cinétique des transformations

I Pour s'échauffer

I/A Énergie d'activation et constante de vitesse

1) Calculer l'énergie d'activation de la conversion du cyclopropane en propène à partir des données suivantes :

T(K)	750	800	850	900
$k(s^{-1})$	1.8×10^{-4}	2.7×10^{-3}	3.0×10^{-2}	0,26

2) Quelle est la valeur de la constante de vitesse à 500 °C?

I/B Utilisation du temps de demi-réaction

Soit la réaction

$$A \longrightarrow B + C$$

3) Déterminer son ordre sachant que lorsqu'on multiplie par 10 la concentration initiale de A, on divise le temps de demi-réaction par 10.

II Étude d'un mélange stœchiométrique

On étudie à 25 °C l'action d'une solution de soude diluée sur le bromoéthane ; la réaction totale a pour équation :

$$CH_3CH_2Br + HO^- \longrightarrow CH_3CH_2OH + Br^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit c_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de c_0 .

$c_0(\mathrm{mmol}\cdot\mathrm{L}^{-1})$	10	25	50	75	100
$ au_{1/2}(\min)$	1100	445	220	150	110

- 1) Démontrer que ces données sont compatibles avec une réaction d'ordre partiel 1 par rapport à chacun des réactifs.
- 2) Déterminer la constante de vitesse de la réaction.

III Intérêt de la dégénérescence de l'ordre

On considère la réaction suivante :

$$2 \operatorname{Hg}^{2+} + 2 \operatorname{Fe}^{2+} \longrightarrow \operatorname{Hg}_{2}^{2+} + 2 \operatorname{Fe}^{3+}$$

On suit deux expériences à 80 °C par spectrophotométrie. On définit $\alpha = \frac{[Hg^{2+}]}{[Hg^{2+}]_0}$

 \diamond Expérience 1 : $[Fe^{2+}]_0 = 0.100 \, \text{mol} \cdot L^{-1}$ et $[Hg^{2+}]_0 = 0.100 \, \text{mol} \cdot L^{-1}$

$t(10^5 {\rm s})$	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

 \diamond **Expérience 2** : $[Fe^{2+}]_0 = 0.100 \, \text{mol} \cdot L^{-1}$ et $[Hg^{2+}]_0 = 0.001 \, \text{mol} \cdot L^{-1}$

$t(10^5\mathrm{s})$	0,0	0,5	1,0	1,5	2,0	∞
$\alpha(t)$	1,000	0,585	0,348	0,205	0,122	0,000

- 1) On considère que la réaction est d'ordre partiel p par rapport à Fe^{2+} et q par rapport à Hg^{2+} . Écrire l'expression de la vitesse de réaction.
- 2) Déterminer l'ordre global de la réaction à l'aide de l'expérience 1.
- 3) Déterminer q à l'aide de l'expérience 2. En déduire p.
- 4) Déterminer la constante de vitesse de la réaction.