2a Avaluació Global

Tecnologia industrial

2n Batxillerat Data:

Nom i cognoms:_____

Qualificació:_____

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

Exercici 1

U ₁ = 46 V	U ₂ = 48 V
$R_1 = 2 \Omega$	$R_2 = 4 \Omega$
$R_3 = 10 \Omega$	$R_4 = 40 \Omega$

Per al circuit de la figura, determineu:

a) La resistència equivalent de R_3 i R_4 .

[0,5 punts]

b) Els corrents subministrats per les fonts de tensió.

[1 punt]

c) Les potències subministrades per les fonts de tensió.

[0,5 punts]

d) La diferència de tensió entre els extrems de la resistència R_4 . [0,5 punts]

Exercici 2

Per al circuit de la figura, determineu:

a) El valor de la resistència R_2 .	[0,5 punts]
b) El valor de la resistència R_3 .	[0,5 punts]
c) El valor de la resistència R_1 .	[0,5 punts]
d) El corrent subministrat per la font de tensió.	[0,5 punts]
e) La potència subministrada per la font de tensió.	[0,5 punts]

Exercici 3 (2 pts) Connectades a la instal·lació d'un taller mecànic amb V = 220 V, f = 50 Hz, trobem les següents càrregues:

- 40 fluorescents de potència 100 W i $\cos \varphi = 0, 6$
- un motor de potència $30\,kW$ i $\cos\varphi=0,75$
- un motor de potència $50 \, kW$ i $\cos \varphi = 0, 7$
- ullet un refrigerador de potència $3\,kW$
- 75 leds d'il·luminació de potència $35\,W$

Es demana fer els càlculs necessaris per trobar les característiques de la bateria de condensadors que permet establir el factor de potència de la instal·lació a $\cos \varphi' = 0,98$

Exercici 4

Un aerogenerador consta bàsicament d'un rotor amb les pales, un multiplicador de la velocitat de gir i un generador amb les característiques indicades a la figura. El sistema de control permet que la potència elèctrica generada es mantingui constant, $P_{\rm elec}$ = 600 kW, per a una velocitat de gir del rotor $13\,{\rm min}^{-1} \le n_{\rm rotor} \le 28\,{\rm min}^{-1}$. Determineu, en aquestes condicions:

a) La potència P_{sub} subministrada pel rotor al multiplicador.

[0,5 punts]

b) El parell màxim a l'eix d'entrada $\Gamma_{entrada}$ i a l'eix de sortida $\Gamma_{sortida}$ del multiplicador.

[1 punt]

[1 punt]

c) La potència dissipada en el multiplicador P_{mult} i en el generador P_{gen} .

Exercici 5

Un motor-reductor està format per un motor elèctric de rendiment $\eta_{\rm mot}$ = 0,85 i un reductor de rendiment $\eta_{\rm red}$ = 0,62 i de relació de transmissió $\tau = \omega_{\rm s}/\omega_{\rm e}$ = 1/54. En règim de funcionament nominal consumeix una potència elèctrica $P_{\rm elec}$ = 3,3 kW i l'eix de sortida gira a $n_{\rm s}$ = 26,5 min⁻¹. Determineu:

a) La potència P_{motor} i el parell Γ_{motor} a l'eix de sortida del motor. [1 punt]

b) La potència P_{sortida} i el parell Γ_{sortida} a l'eix de sortida del reductor. [1 punt]

c) La potència total dissipada $P_{\text{dissipada}}$ en el motor-reductor. [0,5 punts]

Exercici 6 (1 pt)

La velocitat de sincronisme en una màquina de corrent altern de quatre parells de pols (p = 4) connectada a una xarxa de 50 Hz és:

- a) 1000 min⁻¹
- b) 750 min⁻¹
- c) 1200 min⁻¹
- d) 900 min⁻¹