N.I. Lobachevsky State University of Nizhni Novgorod

Probability theory and mathematical statistics:

Variance and friends — Practice

Associate Professor A.V. Zorine **Problem.** From the table of joint probability distribution of random variables *X* and *Y* compute

- i) **E** *X*, Var *X*;
- ii) **E** *Y*, Var *Y*;
- iii) $\mathbf{E}(X 2Y)$, Var(X 2Y);
- iv) cov(X, Y).

$X \setminus Y$	-1	0	1
-1	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{7}{24}$
1	$\frac{5}{24}$	$\frac{1}{6}$	$\frac{1}{8}$

Problem. From the table of joint probability distribution of random variables *X* and *Y* compute

- i) **E** *X*, Var *X*;
- ii) **E** *Y*, Var *Y*;
- iii) E(X 2Y), Var(X 2Y);
- iv) cov(X, Y).

Solution: see example in the lecture

Problem. One shot hits the target with probability $\frac{3}{5}$. Three shots were made. Find the expected value and the variance of the number of hits.

Problem. One shot hits the target with probability $\frac{3}{5}$. Three shots were made. Find the expected value and the variance of the number of hits.

Solution. We recognize Bernoulli trials. The number of hits follows binomials distribution with parameters n = 3, $p = \frac{3}{5}$. By formulas from Lecture 11 we have

$$\mathbf{E}X = np = 3 \cdot \frac{3}{5} = 1.8,$$

 $Var X = np(1 - p) = 0.72$

Problem. A target is hit with probability $\frac{3}{5}$ with a single shot. Shots are made until the first hit. Only four shells are available. Find the expected value and the variance of the number of shots before hit.

Problem. A target is hit with probability $\frac{3}{5}$ with a single shot. Shots are made until the first hit. Only four shells are available. Find the expected value and the variance of the number of shots before hit.

Solution. Let us denote by B_i the event "the target is hit at i-th shot". Let X be the number of shots before hit. Then

$$P(X = 0) = P(B_1) = \frac{3}{5}, \quad P(X = 1) = P(\bar{B}_1 \cap B_2) = \frac{2}{5} \cdot \frac{3}{5},$$

$$P(X = 2) = P(\bar{B}_1 \cap \bar{B}_2 \cap B_3) = \left(\frac{2}{5}\right)^2 \cdot \frac{3}{5},$$

$$P(X = 3) = P(\bar{B}_1 \cap \bar{B}_2 \cap \bar{B}_3) = \left(\frac{2}{5}\right)^2$$

Then $\mathbf{E}X$ and $\operatorname{Var}X$ can be found by regular formulas.

Problem. Let $P(X = 0) = \frac{1}{3}$, $P(X = 1) = \frac{1}{2}$, $P(X = -1) = \frac{1}{6}$. Find the correlation coefficient of X and X^2 .

Problem. Let $P(X = 0) = \frac{1}{3}$, $P(X = 1) = \frac{1}{2}$, $P(X = -1) = \frac{1}{6}$. Find the correlation coefficient of X and X^2 .

Solution. We have

$$\mathbf{E}X = -1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{2} = \frac{1}{3},$$

$$\mathbf{E}X^{2} = (-1)^{2} \cdot \frac{1}{6} + 0^{2} \cdot \frac{1}{3} + 1^{2} \cdot \frac{1}{2} = \frac{2}{3},$$

$$\mathbf{E}(X \cdot X^{2}) = \mathbf{E}X^{3} = \mathbf{E}X, \qquad \mathbf{E}X^{4} = \mathbf{E}X^{2}.$$

$$\operatorname{Var}(X^{2}) = \mathbf{E}(X^{2})^{2} - (\mathbf{E}X^{2})^{2} = \mathbf{E}(X^{4}) - (\mathbf{E}X^{2})^{2} = \dots,$$

$$\operatorname{cov}(X, X^{2}) = \mathbf{E}(X \cdot X^{2}) - (\mathbf{E}X)(\mathbf{E}X^{2}) = \dots,$$

$$\operatorname{corr}(X, X^{2}) = \frac{\operatorname{cov}(X, X^{2})}{\sqrt{\operatorname{Var}X \cdot \operatorname{Var}X^{2}}}.$$

Problem. Let *X* and *Y* be independent random variables,

$$P(X = 1) = P(X = -1) = \frac{1}{2}, P(Y = 1) = P(Y = -1) = \frac{1}{4},$$

 $P(Y = 0) = \frac{1}{2}$. Are the random variables XY and Y

- i) independent?
- ii) uncorrelated?

Solution. XY can be -1, 0, or 1. For instance,

$$P(XY = -1, Y = -1) = P(X = 1, Y = -1) = P(X = 1)P(Y = -1) = \frac{1}{8},$$

etc. The joint distribution of XY and Y is

Since $P(XY = -1, Y = 0) = 0 \neq P(XY = -1)P(Y = 0) = \frac{2}{8} \cdot \frac{1}{2} > 0$, the random variables XY and Y are statistically dependent.

Then compute the

$$cov(XY, Y) = \mathbf{E}(XY \cdot Y) - \mathbf{E}(XY) \mathbf{E} Y = \mathbf{E} X \mathbf{E}(Y^2) - \mathbf{E} X(\mathbf{E} Y)^2 =$$
$$= \mathbf{E} X \mathbf{E} Y(1 - \mathbf{E} Y) = \dots$$

If this equals zero then XY and Y are uncorrelated, otherwise correlated.

Problem. A coin is tossed three times. Random variables are:

X — the total number of Heads,

Y — the total number of Tails,

Z — the total number of faces changes (for example, the sequence HTH contains 2 faces changes).

Compute $\operatorname{Var} X$, $\operatorname{Var} Y$, $\operatorname{Var} Z$, $\operatorname{cov}(X,Y)$, $\operatorname{cov}(X,Z)$.

Problem. A coin is tossed three times. Random variables are:

X — the total number of Heads,

Y — the total number of Tails,

Z — the total number of faces changes (for example, the sequence HTH contains 2 faces changes).

Compute $\operatorname{Var} X$, $\operatorname{Var} Y$, $\operatorname{Var} Z$, $\operatorname{cov}(X, Y)$, $\operatorname{cov}(X, Z)$.

With three tosses there are 8 elementary outcomes: HHH, HHT, ..., TTT. Calculate the values of X, Y, and Z for each outcome. It gives you the possible values of the random variables and favorable cases. Then write down tables with single-variable probability distributions and joind probability distributione. From these compute finally what is required.