Math 110B Homework 7

Tom Slavonia

May 24, 2024

1.

Proof. By the first Sylow theorem G has a Sylow p-subgroup of order H of order p^k . The number of Sylow p-subgroups divides the order of G and $n_p \equiv 1 \pmod{p}$. Since (m,p) = 1, $n_p|m$ and thus since m < p there must be only one Sylow p-subgroup and by a corollary, since there is only one Sylow p-subgroup it must be a normal subgroup implying the group is not simple.

2.

Proof. Let $|G| = 48 = 2^4 \cdot 3$. Therefore, we have a at least one Sylow 2-subgroup of order 2^4 and a Sylow 3-subgroup of order 3. The number of Sylow 2-subgroups must be either $n_2 \in \{1,3\}$ otherwise Sylow theorem 3 would be broken.

Claim: For any two subgroups $H, K \leq G$ we have

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Note that $HK = \{hk : h \in H, k \in K\}$. For the selection of $h \in H$ we have |H| choices and for the selection of $k \in K$ we have |K| choices. Consider if $h_1k_1 = h_2k_2$ for $h_1, h_2 \in H$ and $k_1, k_2 \in K$. This implies that $k_1k_2^{-1} = h_1^{-1}h_2 \in K$, H so when we have this relationship, these elements are in the intersection of H and K. Therefore, we have

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Returning to the original problem, for the sake of contradiction, suppose $n_2 = 3$. Take H_1 and H_2 to be distinct Sylow 2-subgroups, both of these subgroups will have $|H_1| = |H_2| = 2^4 = 16$. Note that $H_1 \cap H_2$ is a subgroup of H_1 and thus by Lagrange's theorem $|H_1 \cap H_2|$ divides $|H_1|$. Since the subgroups must be distinct they can't have all the same elements, so $|H_1 \cap H_2| = 1, 2, 4$, or 8. We know that we must satisfy

$$|H_1H_2| = \frac{|H_1||H_2|}{|H_1 \cap H_2|} \le |G| = 60$$

as every element of H_1H_2 is in G. The only choice of $|H_1 \cap H_2|$ that satisfies this relation is $|H_1 \cap H_2| = 8$. This subgroup is index 2 in H_1 and H_2 by Lagrange's theorem, and is thus normal in

 H_1 and H_2 . Since $|H_1| = |H_2| = 16$ and $|H_1 \cap H_2| = 8$, we have $|N_G(H \cap K)| \ge 24$ but since $N_G(H \cap K)$ is a subgroup of G it must be that $|N_G(H \cap K)| = 24$ or 48 in order to divide the order of G. If $|N_G(H \cap K)| = 24$ it is index 2 and thus normal in G, otherwise $|N_G(H \cap K)| = 48$ which implies $N_G(H \cap K) = G$ and thus $H \cap K$ is a normal non-trivial subgroup of G.

3.

Proof. Let |G| = pqr where p, q, r are all primes. Without loss of generality, suppose p < q < r. Look at the Sylow q-subgroups, and Sylow r-subgroups which we know exist by the first Sylow theorem. Consider n_p we know that $n_p|qr$ but since q, r are coprime we ahve $n_p|q$ and $n_p|r$. Since q, r, p are all distinct primes it must be that $n_p = 1$ which implies that the Sylow p-subgroup is a normal subgroup.

4.

Proof. By definition we have $K \leq N(K) \leq N(N(K))$. Suppose $x \in N(N(K))$ and therefore $xKx^{-1} \leq xN(K)x^{-1} = N(K)$. The second Sylow theorem ensures that for every Sylow p-subgroup $\exists y \in N(K)$ such that

$$xKx^{-1} = yKy^{-1} = K$$

as $y \in N(K)$, and thus $x \in N(P)$. Thus, we have both inclusions and so N(K) = N(N(K)).

5.

Proof. Using the third Sylow theorem we have that $n_5 \equiv 1 \pmod{5}$ and $n_5|60$ implies that $n_5 = 1$ or 6. We have that $(12345) \in A_5$ and $(12354) \in A_5$ as unique elements that are 5-cycles. The cyclic groups ((12345)) and ((12354)) are both of order 5 and are unique as

$$(12354) \notin \langle (12345) \rangle = \{e, (12345), (13524), (14253), (15432)\}$$

so the cyclic subgroups are unique and thus there are at least 2 Sylow 5-subgroups, which implies that there are 6 Sylow 5-subgroups. \Box

6.

Proof. By the class equation, we have that for $a_i \in G$, $i \in [n]$,

$$|G| = |Z(G)| + [G : C(a_1)] + \dots + [G : C(a_n)].$$

For the sake of contradiction, suppose $Z(G) = \{e\}$. Then, $[G:C(a_i)] \neq 1$ for all $i \in [n]$ as otherwise they would've been included in the total for Z(G). Since $|G| = p^n$, the smallest nontrivial integer that divides |G| is p, and since $[G:C(a_i)]$ divides |G| by Lagrange's theorem, we must have that $p|[G:C(a_i)]$ for all $i \in [n]$. Therefore,

$$[G:C(a_i)] = pq_i, q_i \in \mathbb{Z}.$$

Using the class equation, we have

$$|Z(G)| = |G| - [G:C(a_1)] - \cdots [G:C(a_n)] = p^n - pq_1 - \cdots - pq_n = p(p^{n-1} - q_1 - \cdots - q_n)$$

implying p divides |Z(G)|, a contradiction. Thus, Z(G) is a nontrivial subgroup of G and Z(G) is normal. If $Z(G) \neq G$ then we are done as then Z(G) is a nontrivial normal subgroup. If Z(G) = G, then the group is abelian, but by the first Sylow theorem since $|G| = p^n = p \cdot p^{n-1}$ and $n \geq 2$, there exists a nontrivial Sylow p-subgroup of order p which will be an abelian group, since G is abelian under this assumption and thus the subgroup would be normal in G.