第八章 聚合方法 Polymerization Methods

本章重难点

- >本体聚合
- ▶溶液聚合
- ▶悬浮聚合
- >乳液聚合

第八章 聚合方法 Polymerization Methods

主要教学内容

- 8.1 概述
- 8.2 本体聚合
- 8.3 溶液聚合
- 8.4 悬浮聚合
- 8.5 乳液聚合

8.1 聚合方法概述

(一) 按单体在介质中的分散状态分类

本体聚合

不加任何其它介质(如溶剂或稀释剂或分散介质),仅是单体在引发剂、热、光或辐射源作用下引发的聚合反应。

溶液聚合

单体和引发剂溶于适当溶剂中进行的聚合反应。

大多数情况下,

生成的聚合物也溶于同一溶剂,整个聚合过程呈均相溶液。

悬浮聚合

借助机械搅拌和悬浮剂的作用,

使油溶性单体以小液滴(一般0.05~2 mm)悬浮在水介质中, 形成稳定的悬浮体进行的聚合。

借助机械搅拌和乳化剂的作用, 使单体分散在水或非水介质中

乳液聚合

形成稳定的乳液(粒子直径0.05~0.2 um)而聚合的反应。

它在形式上和悬浮聚合同属非均相聚合体系,

但由于乳液聚合有胶束存在,

使其聚合机理和聚合反应特征均与悬浮聚合显著不同。

(二)按单体和聚合物的溶解状态分类

均相体系

在聚合反应过程中, 单体,引发剂和形成的聚合物均能完全溶解在反应介质中, 或引发剂和形成的聚合物均溶于单体的本体聚合或熔融缩聚反应, 整个聚合体系始终为均相的反应, 如大多数本体聚合和溶液聚合。

非均相体系

单体或聚合物不溶于介质,反应体系存在两相或多相,如悬浮聚合和乳液聚合一般为非均相聚合。

(三) 按单体的物理状态分类

气相聚合

只有极少量稀释剂(或溶剂)作催化剂的分散介质, 并在单体沸点以上的温度下进行的聚合。 如丙烯的高压气相聚合, 这种聚合实际上是气相单体在固体催化剂上的本体聚合。

固相聚合

固体(或晶相)单体在其熔点以下发生的聚合反应, 或是在单体熔点以上,但在形成的聚合物的熔融温度以下进行的聚合反应。 前者是"真正"的固相聚合,实质上它也是不添加其它介质的本体聚合。

(四) 从聚合过程的控制分类

间歇法半连续法连续法

(五) 其它聚合反应

熔融缩聚

一般均不加任何溶剂,实质上它也是本体聚合。

界面缩聚

属于非均相聚合体系, 但聚合场所既不是在悬浮小液滴(悬浮聚合), 也不是在胶束中(乳液聚合), 而是在互不相溶的两相界面上发生。

沉淀聚合

生成的聚合物不溶于单体和溶剂, 在聚合过程中形成的聚合物不断沉淀析出的聚合反应。 通常非均相聚合即为沉淀聚合,但两者并不完全等同。

淤浆聚合

催化剂(引发剂)和形成的聚合物 均不溶于单体和溶剂(稀释剂)的聚合反应。 由于催化剂在稀释剂中呈分散体, 形成的聚合物也呈细分散体析出, 整个聚合体系呈淤浆状,故专称淤浆聚合。 由于聚合时使用了溶剂(稀释剂), 一般也常列入溶液聚合的范畴。

聚合体系和实施方法示例

单体—介质体系	聚合方法	聚合物—单体—溶剂体系		
		均相聚合	沉淀聚合	
均相体系	本体聚合 (气相、液 相、固相)	乙烯高压聚合、苯乙烯、丙 烯酸酯	氯乙烯、丙烯腈、 丙烯酰胺	
	溶液聚合	苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺	氯乙烯—甲醇、 丙烯酸—己烷、 丙烯腈—水	
非均相体系	悬浮聚合	苯乙烯、甲基丙烯酸甲酯	氯乙烯	
	乳液聚合	苯乙烯、丁二烯、丙烯酸酯	氯乙烯	

8.2 本体聚合 (Bulk Polymerization)

自由基本体聚合:不加其它介质,只有单体,

在引发剂、热、光等作用下进行的聚合反应。

■基本组分

- ●单 体:包括气态、液态和固态单体
- ●引发剂:一般为油溶性
- (助 剂):增塑剂、润滑剂、抗氧剂、色料等

■聚合场所:本体内

8.2 本体聚合

按聚合物是否能溶于单体,分为两种:

均相聚合:

苯乙烯、甲基丙烯酸甲酯等

非均相聚合/沉淀聚合:

乙烯、氯乙烯、偏氯乙烯、丙烯腈等

8.2 本体聚合

■优点:

- ●产品纯净,尤其适用于制透明板材、型材;
- ●聚合设备相对简单,可连续生产。

■缺点: 体系很粘

- ●聚合热不易扩散, 轻则造成局部过热(聚合物分子量分布变宽), 重则聚合温度失调,引起爆聚。
- ●产生凝胶效应, 出现自动加速现象, 更易使聚合反应失控。

8.2 本体聚合

工业上多采用两段聚合工艺:

(i) 预聚合:

转化率控制在10%~40%,体系粘度较低,散热较容易;可在反应釜中进行。

(ii) 后聚合:

转化率提高,体系粘度增大,产生凝胶效应,自动加速; 更换聚合设备,分步提高聚合温度,使单体转化率>90%。

本体聚合的工业实例

高聚物	工艺过程要点
PMMA	预聚阶段转化率控制在10%左右,制备黏稠
	浆液,然后浇模分段升温聚合,最后脱模成材。
PS	在80~85℃下预聚至转化率为33%~35%的
	聚合物,流入聚合塔,温度从100℃递增至
	220℃,最后熔体挤出造粒。
PVC	制备转化率为7%~11%的预聚物,形成颗粒
	骨架,继续进行沉淀聚合,最后以粉状出料。
LDPE	选用管式或釜式反应器,连续聚合,控制单
	程转化率约为15%~20%,最后熔体挤出造粒。

●聚甲基丙烯酸甲酯 PMMA 板材的制备(间歇操作)

将MMA单体,引发剂BPO或AIBN,增塑剂和脱模剂置于搅拌釜内,90~95℃下反应至10~20%转化率,成为粘稠的液体,停止反应。

将预聚物灌入无机玻璃平板模具中,移入热空气浴或热水浴中, 升温至45~50℃,反应数天,使转化率达到90%左右。

然后在100~120℃高温下处理一至两天,使残余单体充分聚合。

PMMA为非晶体聚合物, $T_g=105$ °C,机械性能、耐光耐候性均十分优异,透光性达90%以上,俗称"有机玻璃"。

广泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌等。

8.3 溶液聚合(Solution Polymerization)

单体和引发剂溶于适当溶剂中的聚合,称为溶液聚合。

自由基溶液聚合:

■基本组分: 单体,引发剂,溶剂。

■优 点: 体系粘度低,减弱了凝胶效应,易混合与传热。

■缺 点: 单体浓度低,使聚合速率慢,设备生产能力及

利用率低:易向溶剂链转移,使分子量偏低;

溶剂分离、回收麻烦, 能耗高。

■聚合场所:溶液内

工业上,溶液聚合多用于聚合物溶液直接使用的场合,如涂料、胶粘剂、合成纤维纺丝液、继续化学反应等。

8.3 溶液聚合

关键: 溶剂的选择

●溶剂对聚合活性的影响

溶剂是介质,对引发剂有诱导分解作用(极性溶剂),有链转移反应,会影响聚合速率和分子量分布。

●溶剂对聚合物的溶解性能及凝胶效应的影响「选用良溶剂时,均相聚合,有可能消除凝胶效应;

选用沉淀剂时,沉淀聚合,凝胶效应显著;

不良溶剂的影响介于两者之间。

有凝胶效应时,反应自动加速,分子量增大。

自由基溶液聚合的工业实例

单体	溶剂	引发剂	聚合 温度/℃	聚合液用途
丙烯腈与 丙烯酸甲酯	二甲基甲酰 胺或硫氰化 钠水溶液	AIBN	75-80	纺丝液
醋酸乙烯酯	甲醇	AIBN	50	醇解制聚乙烯醇
丙烯酸酯类	醋酸乙酯	BPO	回流	涂料、黏合剂
丙烯酰胺	水	过硫酸铵	回流	涂料、黏合剂

●丙烯腈连续溶液聚合

- ◆重要的合成纤维,产量居第三位,仅次于涤纶和聚酰胺。 均聚物中氰基(-CN)极性强,分子间力大,加热时不熔融, 只有少数强极性溶剂才能使其溶解。
- ◆均聚物难成纤维,纤维性脆不柔软,难染色。 因此,聚丙烯腈纤维都是丙烯腈和第二、第三单体的共聚物, 其中,丙烯腈含量为90-92%,;
- ◆丙烯酸甲酯常用作第二单体,降低分子间作用力,提高加工性,增加柔性和手感,有利于染料分子的扩散。含量7-10%;
- ◆第三单体一般含有酸性或碱性基团,如衣糠酸,有利于染色。 含量约1%。

●醋酸乙烯酯溶液聚合

以甲醇为溶剂,AIBN为引发剂,65℃聚合,转化率60%。 过高会引起链转移,导致支链。

聚醋酸乙烯酯的 $T_g = 28$ °C,有较好的粘结性。

在酸性或碱性条件下醇解,可得到聚乙烯醇PVA。

- ◆用作合成纤维时,聚合度1700,醇解度98%~100%(1799);
- ◆用作分散剂和织物助剂时,聚合度1700,醇解度88%左右(1788)。

$$H_3C$$
 O
 CH_2
 CH_2
 OH
 OH
 OH
 OH

8.4 悬浮聚合(Suspension Polymerization)

将不溶于水的单体,以小液滴状悬浮在水中聚合。 单体中溶有引发剂,一个单体小液滴相当于一个小本体聚合单元。 这是自由基聚合特有的聚合方法。

- ■基本组分
- ●単体
- ●引发剂[油溶性]
- ●水

■聚合场所:单体液滴

分散剂的作用: 防止已经剪切分散的单体液滴和聚合物颗粒重新聚集。

剪切力 ◆ 界面张力

●剪 切 力: 使单体液层分散成液滴 搅拌,即施以剪切力,

●界面张力: 使微小液滴聚集 加分散剂,一定程度上降低界面张力。

在一定搅拌剪切力和界面张力的共同下, 液滴通过一系列分散、合并过程,构成动平衡, 最后达到一定的粒径及其分布。 除聚合动力学外,还存在着聚合物颗粒形态等科学问题。 颗粒形态:指聚合物粒子的外观形状和内部结构状况。

- ●形状:
- ◆粉粒状(粒径:~0.01 mm): 如PVC
- ◆珠状(粒径:~1mm):如PMMA,PS
- ●内部结构: 呈紧密型或疏松型

■颗粒形态的影响因素

- ●搅拌强度(一般强度愈大,颗粒愈细)
- ●分散剂种类和浓度
- ●水与单体比例(水油比)
- ●聚合温度
- ●引发剂种类和用量
- ●单体种类

■分散剂/悬浮剂

吸附在液滴表面,形成一层保护膜, 降低表面张力和界面张力,使液滴变小

- ◆聚乙烯醇
- ◆聚丙烯酸钠
- ◆马来酸酐-苯乙烯共聚物
- ◆明胶
- ◆纤维素类
- ◆淀粉
- ●不溶于水的无机物 □ □ □ □ □ 吸附在液滴表面,起机械隔离作用
 - ◆碳酸盐
 - ◆硫酸盐
 - ◆滑石粉
 - ◆高岭土

8.4 悬浮聚合

悬浮聚合可以看做是改善本体聚合传热能力的一种特殊的方法。

■优点:

- ●聚合热易扩散,聚合反应温度易控制,聚合产物分子量分布窄;
- ●聚合产物为固体珠状/粒状颗粒,易分离,干燥。

■缺点:

- ●存在自动加速作用;
- ●必须使用分散剂,且在聚合完成后,很难从聚合产物中除去, 会影响聚合产物的性能(如外观,老化性能等);
- ●难以实现连续化。

目前主要用于PVC、PVDC的生产,也有少量的用于PS的生产。

8.5 乳液聚合 (Emulsion Polymerization)

单体在乳化剂和搅拌作用下,在水中分散成乳液状态进行的聚合反应。

- ■基本组分【传统/经典的乳液聚合】
 - ●单体:一般为油溶性单体,在水中形成水包油(O/W)型

 - ●水: 去离子水
 - ●乳化剂: 为水溶性

8.5 乳液聚合

■聚合场所:胶束内

水作分散介质,环保安全,粘度低,传热控温容易

■优点 〈聚合速率快,产物分子量高,可在低温下聚合

可直接用于聚合物乳胶的场合

■缺点 {得到固体聚合物后处理麻烦(破乳、洗涤、干燥等),成本较高难以除尽乳化剂残留物,影响性能

■重要特点:

前三种聚合方法中,使聚合速率提高一些的因素往往使分子量降低。

乳液聚合中,聚合速率和分子量可同时提高。

8.5 乳液聚合

■与悬浮聚合区别:

●粒径:

悬浮聚合物50~2000 μm 乳液聚合物0.1~0.2 μm

●引发剂:

悬浮聚合采用油溶性引发剂 乳液聚合采用水溶性引发剂(传统乳液聚合)

●聚合机理:

悬浮聚合相当于本体聚合,聚合发生在单体液滴中 乳液聚合发生在胶束中

■乳化剂

使互不相容的油和水转变成难以分层的乳液的一类物质,属于表面活性剂。

乳化剂分子通常由两部分组成

一亲水的极性基团

、亲油的非极性基团

如长链脂肪酸钠盐:

●亲水亲油平衡值 (HLB):

衡量亲水基和亲油基对乳化剂(表面活性剂)性质的贡献。 HLB值越大,表明亲水性越大。

HLB值不同,用途也不同。

HLB值范围	应用		
1.5~3.0	消泡剂		
3.0~6.0	W/O型乳化剂		
7∼9	润湿剂、渗透剂		
8~18	O/W型乳化剂		

油包水

水包油

乳液聚合体系一般呈O/W, HLB值在 8~18范围内

O/W:油溶性单体、水溶性引发剂、水溶性乳化剂

W/O (反相乳液聚合): 如丙烯酰胺等。

水溶性单体、油溶性引发剂、油溶性乳化剂

■乳化剂在水中的情况:

●乳化剂浓度很低时:

是以分子分散状态溶解在水中,并在水面上定向排列。 亲水基团伸向水中,亲油基团指向空气层,使水的表面张力急剧下降。 有利于单体分散成细小的液滴。

●达到一定浓度时:

乳化剂分子开始形成聚集体(约50~150个分子),称为胶束。

形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC)。不同乳化剂的CMC不同;CMC愈小,表示乳化能力愈强。

在乳液聚合中,乳化剂浓度约为CMC的100倍, 因此,大部分乳化剂分子处于胶束状态。

●胶束的形状

球状(低浓度时)

直径 4~5 nm

棒状(高浓度时)

直径100~300nm

胶束的大小和数目取决于乳化剂的用量;

乳化剂用量多,胶束的粒子小,数目多。

胶束中乳化剂分子的亲水基伸向水层,疏水基伸向胶束内部。

●在形成胶束的水溶液中,加入单体(油溶性)后

◆极小部分单体 以分子分散状态 溶于水中 ◆小部分单体 可进入胶束的 疏水层内

粒径增至 6~10 nm

◆大部分单体 经搅拌形成细 小的单体液滴

> 粒径约为 1-10 μm

相似相溶,等于增加了单体在水中的溶解度,将这种溶有单体的胶束称为增溶胶束

周围吸附了一层 乳化剂分子,形 成带电保护层, 乳液得以稳定

在乳液聚合体系中, 存在

- ◆胶束10¹⁷~10¹⁸ 个/cm³
- ◆单体液滴10¹⁰~10¹²个/cm³
- ◆极少量溶于水中的单体

乳化剂的作用

- ◆降低界面张力,使单体分散成细小液滴。
- ◆液滴保护层,防止聚集,稳定乳液。
- ◆形成胶束,使单体增溶。

乳液聚合体系示意图

■乳化剂的分类:

按乳化剂分子在水中离解后,活性部分(极性基团)的状态分为:

●阴离子乳化剂:活性部分(极性基团)为阴离子

常用的阴离子,乳化剂

烷基、烷基芳基的羧酸盐,如硬脂酸钠

烷基、烷基芳基的硫酸盐,如十二烷基硫酸钠

烷基、烷基芳基的磺酸盐,如十二、十四烷基磺酸钠

●阴离子乳化剂

阴离子乳化剂体系在碱性溶液中较稳定,

但遇酸、金属盐、硬水会失稳,形成不溶于水的脂肪酸盐或金属皂,且在三相平衡点以下将以凝胶析出,失去乳化能力。

三相平衡点:

指乳化剂处于分子溶解状态、胶束及凝胶三相平衡时的温度。

- ◆高于此温度,溶解度突增,凝胶消失, 乳化剂只以分子溶解和胶束两种状态存在,起到乳化作用。
- ◆低于此温度,将有凝胶析出,乳化能力减弱。

典型阴离子乳化剂的CMC值和三相平衡点见表5-8/P156。

●阳离子乳化剂:活性部分(极性基团)为阳离子

极性基团为胺盐,乳化能力较弱,在自由基聚合中不常用

●两性乳化剂:如氨基酸盐、内铵盐

●非离子乳化剂:活性部分(极性基团)呈分子状态,如环氧乙烷聚合物,或与环氧丙烷共聚物、PVA等。

- ◆非离子乳化剂对pH变化不敏感,较稳定;
- 但乳化能力仍不如阴离子乳化剂,
- 一般不单独使用,常与阴离子乳化剂合用,
- 以改善纯阴离子乳化体系对pH值、电解质等的敏感性。
- - (非离子乳液体系随温度升高,开始分相时的温度,称为浊点)
- ◆选用非离子乳化剂时的聚合温度应在浊点以下。

■乳液聚合机理

单体和乳化剂在聚合前呈三种状态:

- ●极少量单体和少量乳化剂以分子分散状态溶解在水中,构成水溶液连续相
- ●大部分乳化剂形成胶束,约4~5 nm,10¹⁷⁻¹⁸个/cm³; 小部分单体增溶在胶束内,直径增大至6-10 nm,构成增溶胶束相
- ●大部分单体分散成液滴,约1-10 μm,10¹⁰⁻¹²个/cm³,构成液滴相

■聚合场所

- ●单体液滴数量少,表面积小;聚合中采用水溶性引发剂,不可能进入单体液滴。因此,单体不是聚合的场所。
- 水相中单体浓度很小,反应成聚合物则沉淀,停止增长,因此,也不是聚合的主要场所。
- ●因增溶胶束具有比单体液滴更大的比表面积, 且内部单体浓度很高,因而成为聚合场所。 液滴中的单体则通过水相进入胶束内,以补充聚合消耗。 液滴只是作为存储单体的"仓库"。

■成核机理

成核: 形成聚合物乳胶粒的过程。

乳胶粒: 胶束内的单体进行聚合反应后的胶束。

●胶束成核:单体大多为油溶性,如苯乙烯等。

水相中产生自由基(经典乳液聚合采用水溶性引发剂), 引发溶于水中的微量单体,在水相中增长成短链自由基。 由于疏水,短链自由基只增长几个单元就沉淀出来, 由于胶束的总表面积比单体液滴大百倍, 故,短链自由基与初级自由基一起被增溶胶束捕获, 引发其中的单体聚合而成核,即形成聚合物乳胶粒的过程。

■成核机理

●水相/均相成核:单体大多为水溶性,如醋酸乙烯酯等。

水相中产生的自由基引发溶于水中的单体进行增长, 形成短链自由基(其亲水性较大)后, 聚合度上百之后在水相中沉淀出来, 沉淀粒子从水相和单体液滴上吸附了乳化剂分子而稳定, 接着单体又不断扩散进入,聚合成胶粒。 胶粒形成后,就在胶粒中引发,增长形成与胶束成核过程 同样的乳胶粒子,这一过程叫<mark>均相成核</mark>。

单体水溶性大以及乳化剂浓度低,容易均相成核,如醋酸乙烯酯;反之,则胶束成核,如苯乙烯。

[M]<15 mmol/L, 胶束成核为主; [M]>170 mmol/L, 均相成核为主。

■成核机理

●液滴成核:

有两种情况导致液滴成核:

◆液滴小而多,表面积与增溶胶束相当,

可参与吸附水中形成的自由基,引发成核,而后发育成胶粒。

◆油溶性引发剂,溶于单体液滴内,引发聚合,类似液滴内的本体聚合。

根据聚合物乳胶粒的数目和单体液滴是否存在, 乳液聚合分为三个阶段:

• I 乳胶粒生成期(加速阶段, M/P乳胶粒的形成): 从开始引发到胶束消失为止,聚合速率递增。

当聚合反应开始时,

溶于水相中的引发剂分解产生的初级自由基

由水相扩散到增溶胶束内,引发增溶胶束内的单体进行聚合

从而形成含有聚合物的增溶胶束,称单体-聚合物M/P乳胶粒

使聚合反应持续进行。

胶束不断减少, 胶粒不断增加, 速率则相应增加。 单体液滴数不变, 只是体积不断缩小。

时间,b

单体液液

1000 nm

II 恒速期(单体液滴与M/P乳胶粒并存阶段):从胶束消失到单体液滴消失为止,聚合速率恒定。

随着引发剂和单体增溶胶束的消耗,

M/P乳胶粒数量不再增加,

乳胶内单体浓度恒定,因此聚合速率保持恒定。

胶料不断长大,最终直径可达约50-150 nm。

而随着单体逐渐消耗,单体液滴不断缩小,

单体液滴数量不断减少。

结束时,单体转化率可达10%~50%。

与单体种类有关,单体水溶性大的,则转化率较低,这一阶段可能由于凝胶效应,聚合速率有加速现象。

III 降速期:

从单体液滴消失到聚合结束,聚合速率下降。

单体液滴消失,

单体-聚合物M/P乳胶粒内单体得不到补充,

聚合速率逐渐下降, 直至反应结束。

粒径变化不大,最终形成约100-200nm聚合物粒子。

●乳液聚合三个阶段的特点

	I 阶段	Ⅱ阶段	Ⅲ阶段
乳胶粒	不断增加	恒定	恒定
胶束	直到消失		_
单体液滴	数目不变, 但体积缩小	直到消失	
R_{P}	不断增加	恒定	下降

传统乳液聚合的机理特征:

水相中引发产生初级自由基和短链自由基,

胶束成核, 在胶束或胶粒的隔离环境下增长,

另一自由基进入胶粒后才终止;

自由基寿命长,兼具高聚合速率和高分子量。

■乳液聚合动力学

1) 聚合速率

动力学研究多着重于第二阶段——即恒速阶段,自由基聚合速率可表示为:

$$R_p = k_p [M^{\bullet}][M]$$

在乳液聚合中,[M]表示乳胶粒中的单体浓度,mol/L [M·]与乳胶粒数有关

考虑1升的乳胶粒中的自由基浓度:

$$[M \cdot] = \frac{10^3 N\overline{n}}{N_A}$$

式中,N:乳胶粒数,单位为个/cm³

NA: 阿佛伽德罗常数

 \overline{n} : 每个乳胶粒内的平均自由基数

103N/NA是将粒子浓度化为mol/L

乳液聚合恒速期的聚合速率表达式:

$$R_p = \frac{10^3 N \,\overline{n} \, k_p[M]}{N_A}$$

假定:

- (1) 乳胶粒中的自由基的解吸与吸收自由基的速率相比可忽略不计;
- (2)乳胶粒尺寸太小,不能容纳一个以上自由基。 也即,一个胶束内通常只能允许容纳一个自由基, 第二个自由基进入时,就将发生双基终止。

则
$$\bar{n} = 0.5$$

$$R_{p} = \frac{10^{3} N k_{p} [M]}{2 N_{A}}$$

苯乙烯的乳液聚合基本符合上述假定。

讨论:

$$R_p = \frac{10^3 N k_p[M]}{2N_A}$$

●对于第I阶段:

自由基不断进入胶束引发聚合,成核的乳胶粒数 N 从零不断增加。 因此,Rp不断增加。

●对于第II阶段:

胶束已消失,不再有新的胶束成核,N恒定; 单体液滴存在,不断通过水相向乳胶粒补充单体, 使乳胶粒内单体浓度恒定。因此,Rp恒定。

●对于第III阶段:

单体液滴消失,乳胶粒内单体浓度[M]不断下降。 因此,Rp不断下降。

$$R_p = \frac{10^3 N k_p[M]}{2N_A}$$

- 乳液聚合速率正比于乳胶粒数N,表观上与引发速率无关。
- 乳胶粒数N高达10^{13~15} 个/cm³, [M·]可达10⁻⁷ mol/L, 比典型自由基聚合高一个数量级。
- 乳胶粒中单体浓度[M]高达5 mol/L, 故乳液聚合速率较快。

■乳液聚合动力学

2) 聚合度

设: p — 体系中的总引发速率,

即单位时间生成的自由基个数。

则:一个乳胶粒中的引发速率ri

(即单位时间自由基进入乳胶粒的速率,

也即,单位时间乳胶粒吸收自由基的个数)为:

$$r_i = \frac{\rho}{N}$$

因每个乳胶粒内只能容纳一个自由基,则 一个乳胶粒中的聚合速率:

$$r_p = k_p [M]$$

其所得聚合物的平均聚合度,

等于聚合物的链增长速率除以初级自由基进入乳胶粒的速率:

$$\overline{X_n} = \frac{r_p}{r_i} = \frac{k_p[M]N}{\rho}$$

$$R_p = \frac{10^3 N k_p[M]}{2N_A}$$

平均聚合度与N、[M]的一次方均成正比(与聚合速率一样), 与引发速率ρ成反比。

(实际上,ρ增加,N增加,则聚合速率和分子量增加。

乳液聚合的平均聚合度就等于动力学链长。

因为虽然是偶合终止,

但一条长链自由基和一个初级自由基偶合并不影响产物的聚合度。这是无链转移的情况。

$$R_p = \frac{10^3 N \, k_p[M]}{2N_A}$$

$$\overline{X_n} = \frac{r_p}{r_i} = \frac{k_p[M]N}{\rho}$$

己知胶粒数N:

$$N = k \left(\frac{\rho}{u}\right)^{2/5} (a_s \cdot S)^{3/5}$$

k: 常数

u: 胶粒体积增加速率

as: 一个乳化剂分子所具有的的表面积

S: 乳化剂的总浓度

因此,在恒定的引发速率ρ下,

增加乳化剂浓度(S)以增加N,可同时提高 Rp和 Xn。

这也就是乳液聚合速率快,同时分子量高的原因。

■而对于其它自由基聚合方法,有:

$$R_p = k_p \left(\frac{fk_d}{k_t}\right)^{1/2} [I]^{1/2} [M]$$

$$v = \frac{k_p}{2(fk_dk_t)^{1/2}} \times \frac{[M]}{[I]^{1/2}}$$

$$R_p \propto [I]^{1/2}$$

·聚合速率: $R_p \propto [I]^{1/2}$ 上因聚合活化能为正,

$$T \uparrow \Rightarrow R_p \uparrow$$

$$\frac{1}{\overline{X_n}} \infty [I]^{1/2}$$

. 分子量: $\frac{1}{X_n} \propto [I]^{1/2}$ \longleftrightarrow 且因表观活化能为负, $T \uparrow \to X_n \downarrow$

$$T \uparrow \overrightarrow{\Rightarrow} X_n \downarrow$$

升高温度, 但分子量降低。

■自由基聚合实施方法比较

实施方法	本体聚合	溶液聚合	悬浮聚合	乳液聚合
配方主要成分	单体、引发剂	单体、引发剂、 溶剂	单体、引发剂、分 散剂、水	单体、引发剂、 乳化剂、水
聚合场所	単体内	溶剂内	単体内	胶束内
聚合机理	自由基聚合一般机 理,聚合速度上升 聚合度下降	容易向溶剂转移, 聚合速率和聚合度 都较低	类似本体聚合	能同时提高聚合速 率和聚合度
生产特征	设备简单,易制备 板材和型材,一般 间歇法生产,热不 容易导出	传热容易,可连续 生产。产物为溶液 状。	传热容易。间歇法 生产,后续工艺复 杂	传热容易。可连续 生产。产物为乳液 状,制备成固体后 续工艺复杂
产物特性	聚合物纯净。分子 量分布较宽	分子量较小,分布 较宽。聚合物溶液 可直接使用	较纯净,留有少量 分散剂	留有乳化剂和其他 助剂,纯净度较差

■聚合方法新进展

新型乳液聚合

- ●种子聚合
- ●核壳乳液聚合
- ●无皂乳液聚合
- ●微乳液聚合
- ●细乳液聚合
- ●反相乳液聚合:油包水W/O,聚丙烯酰胺

•.....