Web-Based Supporting Materials for "RNN-based counterfactual prediction" by Jason Poulos

Table of contents

1	Implementation details	1
2	Hypothesis testing 2.1 Randomization confidence intervals	2
3	Supporting Figures	3

1 Implementation details

The networks are implemented with the Keras neural network library (Chollet, 2015) in Python on top of a TensorFlow backend. When implementing encoder-decoder networks, the encoder takes the form of a two-layer Long Short-Term Memory (LSTM) network (Schmidhuber and Hochreiter, 1997), each with 128 hidden units, and the decoder is a single-layer Gated Recurrent Unit (GRU) (Chung et al., 2014) also with 128 hidden units. Each recurrent layer uses a linear activation function (f_1) with weights initialized using Xavier initialization (Glorot and Bengio, 2010). The loss function internally computes the predicted outputs as a linear function (f_2) of the log probabilities.

RNN weights are learned with mini-batch gradient descent on the WMSE using Adam stochastic optimization with the learning rate set to $5 \cdot 10^{-4}$ (Kingma and Ba, 2014). As a regularization strategy, I apply dropout to the inputs and L2 regularization losses to the network weights. The networks are trained for 1,000 epochs, which takes 10 minutes to run on a laptop CPU. The model is validated on the last 20% of the training set input-out pairs.

The RVAE is implemented similarly, but with the following differences: the encoder takes the form of a single-layer LSTM with 32 hidden units and the decoder is a two-layer LSTM with the number of hidden units equal to 32 and the number of predictors, respectively. The latent space z is implemented as a densely-connected layer with a dimension of 200 units and $f_3(\cdot)$ takes the form of a log-normal distribution. The RVAE is trained with stochastic gradient descent for 5,000 epochs, which takes seven minutes to run on the same CPU.

2 Hypothesis testing

Abadie et al. (2010) propose a randomization inference approach for calculating the exact distribution of placebo effects under the sharp null hypothesis of no effect. Cavallo et al. (2013) extends the placebo-based testing approach to the case of multiple (placebo) treated units by constructing a distribution of *average* placebo effects under the null hypothesis. Firpo and Possebom (2018) derive the conditions under which the randomization inference approach is valid from a finite sample perspective and Hahn and Shi (2017) analyze the approach from a repeated sampling perspective.

Randomization p-values are obtained following these steps:

- 1. Estimate the observed test static $\boldsymbol{\phi}$ from (3). Averaging over the time dimension results in a T_{\star} -length array of observed average treatment effects.
- 2. Calculate every possible average placebo treated effect μ by randomly sampling without replacement which J-1 control units are assumed to be treated. There are $\mathcal{Q} = \sum_{g=1}^{J-1} \binom{J}{g}$ possible average placebo effects. Since calculating \mathcal{Q} can be computationally burdensome for relatively high values of J, I artificially set $\mathcal{Q} = 10,000$ in cases when J > 16. The result is a matrix of dimension $\mathcal{Q} \times T_{\star}$
- 3. Sum over the time dimension the number of μ that are greater than or equal to $\hat{\Phi}$.

Each element of the vector obtained from Step 3 is divided by Q to estimate a T_{\star} -length vector of exact two-sided p values, \hat{p} .

2.1 Randomization confidence intervals

Under the assumption that treatment has a constant additive effect Δ , I construct an interval estimate for Δ by inverting the randomization test. Let δ_{Δ} be the test statistic calculated by subtracting all possible μ by Δ . I derive a two-sided randomization confidence interval by collecting all values of δ_{Δ} that yield \hat{p} values greater than or equal to significance level $\alpha = 0.05$. I find the endpoints of the confidence interval by randomly sampling 500 values of Δ .

3 Supporting Figures

Figure 1: Placebo tests on Basque Country terrorism data: \bigcirc , DID; \triangle , ED; +, MC-NNM; +, RVAE; \rightarrow , SCM; -, VT-EN.

Figure 2: Placebo tests on West German reunification data: \bigcirc , DID; \triangle , ED; +, MC-NNM; -, RVAE; \diamondsuit , SCM; \neg , VT-EN.

Figure 3: Pre-period densities of log per-capita state government education spending by treatment status: \Box , Control; \blacksquare , Treated

Figure 4: Placebo tests on education spending data: \bigcirc , DID; \triangle , ED; +, MC-NNM; \times , RVAE; \diamondsuit , SCM; \triangledown , VT-EN.

References

- Abadie, A., Diamond, A. and Hainmueller, J. (2010) Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. *Journal of the American Statistical Association*, **105**, 493–505.
- Cavallo, E., Galiani, S., Noy, I. and Pantano, J. (2013) Catastrophic natural disasters and economic growth. *Review of Economics and Statistics*, **95**, 1549–1561.
- Chollet, F. (2015) Keras. Available at: https://github.com/fchollet/keras.
- Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv e-prints, arXiv:1412.3555.
- Firpo, S. and Possebom, V. (2018) Synthetic control method: Inference, sensitivity analysis and confidence sets. *Journal of Causal Inference*, **6**.
- Glorot, X. and Bengio, Y. (2010) Understanding the difficulty of training deep feedforward neural networks. In *Artificial Intelligence and Statistics*, vol. 9, 249–256.
- Hahn, J. and Shi, R. (2017) Synthetic control and inference. *Econometrics*, 5, 52.
- Kingma, D. P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv e-prints, arXiv:1412.6980.
- Schmidhuber, J. and Hochreiter, S. (1997) Long short-term memory. *Neural Computation*, **9**, 1735–1780.