Neural Networks for NLP

Yan Song

Outline

- Basic Concepts
- MLP
- RNN (LSTM)
- CNN
- Seq2Seq
- Attention
- Optimizers
- Implementation with Keras

- Multi-node graph structure
- Multiple intermediate layers (Deep learning)
- Connections are weighted (Parameters to be learned)

- Parameters are organized in matrices
- Matrices are stacked
- Convert complicated problems into matrix computation
- Automatic extracting salient input information
- Easy to scale up and down

- Back-propagation
 - Key to neural model learning
 - Can be done layer-wisely

- Important for representation learning
 - Updating input layer
 - Adjustable during learning

- Important factors for representation learning
 - Different layers can be utilized, esp. the input and output layer
 - The representation power depends on the layer depth
 - Input layer normally for words
 - Ouptut layer for sentences
 - ...
 - Representation capability can be different from the network learning objective

- Normal NLP tasks
 - Word Segmentation
 - POS Tagging
 - Text Classification
 - Sentiment Analysis
 - Machine Translation
 - •
- How many types of model required?
 - Classification
 - Sequence Labeling

MLP

- Multi-layer Perceptron
- Layer-wise information flow
- +/- layer activation
- Can be trained in a parallel way

MLP

- For classification-style tasks
 - Language modeling
 - Document categorization
 - Sentiment analysis
 - •
- The structure for word2vec
 - Context-to-target prediction
 - Efficient output layer design

MLP

- Advantage and Disadvantage
 - Easy structure
 - Efficient in parallel training
 - Cannot handle langauge structures
 - Require a vocabulary-size input dimension
- Some tricks (esp. for NLP)
 - For most tasks, use 1-2 hidden layers
 - Use linear activation among layers
 - Best use as an ensemble model

RNN

- Recurrent model
- The node is an MLP
- Captures structure
- Stateful

- Problems
 - Gradient vanishing
 - Not easy to be paralleled

Why RNN?

The trophy would not fit in the brown suitcase because it was too big.

Trophy

The trophy would not fit in the brown suitcase because it was too **small**.

Suitcase

- Language is in a time-sequence form
- Being able to model structure information (MLP cannot)
- Remembers some information step-wise

LSTM

- Long short-term
- Additive connections between time steps
- Gates to control information flow

LSTM

- Advantages
 - No gradient vanishing (Gradient go through "+" rather than "×")
 - Long distance dependency
 - Modeling structures (like RNN)
- Tricks
 - Always try RMSProp, not Adam
 - Use batch size to control training
 - Always use Dropout
 - How to handle long sequences? ----->

CNN

- (Normally) 1-D CNN for NLP
- Enhanced bag-of-word model
- Capture local dependencies
 - Window size matters
- Efficient than recursive models
 - Can be paralleled
- More flexible possibilities in designing particular structures
 - More controllable parameters without structure change

CNN

- Pooling
 - Max pooling: a very important feature appears at somewhere
 - Averaged pooling: frequent patterns of features appear in the entire range
 - k-Max pooling: an important feature has more than one time appearance
 - Dynamic pooling: an important feature may appear with arbitrary values

Seq2seq

- Sequence-to-sequence
- RNN-based structure
 - Can CNN do it?
- Decoder is a dynamic process (output + state)
- Why it works?
 - Thanks to recursive process
 - Generalization ability of neural networks
 - Representation of the input (encoder) is very powerful

Attention

- Feed-forward attention
- Why we need attention
 - Break the equal contribution of each input (state)
 - Do not want to change the original network
 - Automatically learn the salient feature
- Tricks
 - Layer normalization
 - Control learning rate

Optimizers

- SGD
- 1st Order Momentum
 - SGD-M
 - NAG
- 2nd Order Momentum
 - AdaGrad
 - AdaDelta
 - RMSProp
 - Adam
 - Nadam

Optimizers

- Visualization
- SGD
 - slow
 - easy to be entrapped
- RMSProp
 - momentum
 - adjustable delta (in a window)
- Adam
 - averaged momentum
 - bias correction

Examples in Codes

• Go to Keras :-)

Hw3

- Using Keras to train a classifier for ATIS intent classification
- Due at Monday noon
- Define your own model
- Using the provided Training and Test data
- File format, each line has three parts
 - words tokenized + EOS
 - tab delimiter
 - tags of each word and the intent

Hw3

- Try two input embeddings
 - The GloVe one you trained in Hw2
 - Onehot through an Embedding layer
- Submit a model.py and a readme.txt
 - model.py: the code file (should follow the course policy, compile and run)
 - readme.txt: describe what model structure and hyper-parameters you use and the result analysis on different input embeddings
- Send the two files to me via Email or Canvas mail