MScProject

Including library for dynamic factor model - MARSS, and for PCA and low-rank reduction - h2o.

```
library (MARSS)
 ## Warning: package 'MARSS' was built under R version 3.6.3
 library(h2o) # for fitting GLRMs
 ## Warning: package 'h2o' was built under R version 3.6.3
 ##
   ______
 ## Your next step is to start H2O:
 ##
       > h2o.init()
 ## For H2O package documentation, ask for help:
       > ??h2o
 ## After starting H2O, you can use the Web UI at http://localhost:54321
 ## For more information visit https://docs.h2o.ai
 ##
 ## Attaching package: 'h2o'
 ## The following objects are masked from 'package:stats':
 ##
 ##
      cor, sd, var
 ## The following objects are masked from 'package:base':
 ##
 ##
       %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
       colnames <-, ifelse, is.character, is.factor, is.numeric, log,
 ##
 ##
       log10, log1p, log2, round, signif, trunc
Other data manupulation libraries.
 library("dplyr")
```

```
## Warning: package 'dplyr' was built under R version 3.6.3
 ## Attaching package: 'dplyr'
 ## The following objects are masked from 'package:stats':
 ##
        filter, lag
 ##
 ## The following objects are masked from 'package:base':
 ##
 ##
        intersect, setdiff, setequal, union
 library (plyr)
 ## You have loaded plyr after dplyr - this is likely to cause problems.
 ## If you need functions from both plyr and dplyr, please load plyr first, then dply
 ## library(plyr); library(dplyr)
 ## Attaching package: 'plyr'
 ## The following objects are masked from 'package:dplyr':
 ##
        arrange, count, desc, failwith, id, mutate, rename, summarise,
 ##
        summarize
 ##
I have worked on multivariate time series data. Original data had daily observations for the concentration of
various pollutants. I have considered average weekly data to bring down the noise.
 df = read.csv("C:\\Users\\vishw\\Contents\\Semester 10\\M Sc Project\\city_weekly.cs
 v", header=T)
```

```
print(head(df))
```

```
##
          Date
                 PM2.5
                              NO
                                      NO2
                                               NOx
                                                         NH3
                                                                    CO Benzene
## 1 2015-01-04 184.6050 45.49750 34.12000 73.82500 66.39750 11.722500 8.270000
## 2 2015-01-11 196.0057 21.99714 41.18714 49.00000 133.79429 10.171429 4.744286
## 3 2015-01-18 187.6500 36.82286 49.24000 67.43429 138.23857 10.181429 7.085714
## 4 2015-01-25 156.3571 15.00000 24.63429 34.92714 74.57857 9.458571 3.674286
## 5 2015-02-01 162.7843 25.28571 37.27857 49.13714 63.97000 10.837143 4.037143
## 6 2015-02-08 149.7229 25.58286 44.22571 53.58857 63.38714 8.181429 4.285714
      Toluene
                   AQI
## 1 16.222500 347.0000
## 2 9.361429 358.4286
## 3 15.117143 360.0000
## 4 8.230000 326.1429
## 5 8.560000 324.1429
## 6 9.508571 316.1429
```

```
df$Date <- as.Date(df$Date, format = "%Y-%m-%d")
dim(df)</pre>
```

```
## [1] 288 10

rownames(df) <- df$Date
```

Initial plot of data.

df = subset(df, select = -c(Date))

```
plot.ts(df)
```


Decomposing all individual time series of all pollutants except AQI series.

```
dfDecom.PM2.5 <- decompose(ts(df[, 1], frequency = 52))
dfDecom.NO <- decompose(ts(df[, 2], frequency = 52))
dfDecom.NO2 <- decompose(ts(df[, 3], frequency = 52))
dfDecom.NOx <- decompose(ts(df[, 4], frequency = 52))
dfDecom.NH3 <- decompose(ts(df[, 5], frequency = 52))
dfDecom.CO <- decompose(ts(df[, 6], frequency = 52))
dfDecom.Benzene <- decompose(ts(df[, 7], frequency = 52))
dfDecom.Toluene <- decompose(ts(df[, 8], frequency = 52))</pre>
```

```
print(dfDecom.PM2.5)
```

```
## $x
## Time Series:
## Start = c(1, 1)
## End = c(6, 28)
## Frequency = 52
##
    [1] 184.60500 196.00571 187.65000 156.35714 162.78429 149.72286 161.09429
    [8] 155.09429 129.80429 82.48571 85.57571 69.44857 93.74714 71.27286
##
        92.57143 93.61286 110.25000 77.63857 120.33286 89.70571 73.66857
##
   [22] 107.67714 66.46429 97.80571 106.39714 82.33571 73.90286 50.77000
##
##
   [29]
        62.66286 40.78429 32.75571 60.74571 63.74286 48.58857 58.94000
                  68.17429 86.36857 62.79571 90.26571 144.83429 109.29714
         79.71571
##
   [36]
   [43] 157.71429 150.76000 236.74143 236.73286 222.77714 199.59000 216.25571
##
##
   [50] 216.27857 129.05143 181.33714 226.91429 290.92714 194.99143 272.09143
   [57] 271.96143 160.92143 146.91000 136.73714 131.82714 134.36714 89.56714
##
##
         77.62143 87.71857 112.15857 116.63857 98.47571 110.90857 145.14000
   [71]
         90.76429 93.10143 87.84000 99.15714 95.83857
                                                         70.86714 81.25286
##
##
   [78]
        76.76286 67.28857 60.72286 60.72571 48.36714 52.09571
                                                                  44.70286
         42.09714 48.84286 46.37143 45.36286 56.83143 67.04286 65.76286
##
   [85]
##
   [92]
        90.33286 121.87571 119.09857 153.06857 258.64857 495.15286 318.20714
##
   [99] 274.34286 198.74857 222.44143 243.45143 200.69143 246.53857 230.71429
## [106] 207.45286 196.74571 238.02714 159.20571 177.61857 133.16857 139.42143
  [113] 244.81143 115.93714 87.95000 106.63429 136.82286 110.33714 90.86000
## [120] 154.83714 133.07000 96.78857 167.48286 142.72714 144.90429 94.82286
## [127]
        90.08143 58.47714 58.12714 57.14286 32.95000 58.00000 31.55571
## [134] 31.48286 21.16000 35.28143 36.93000 33.62429 43.39857 26.42857
        47.17714 59.26286 44.02714 72.08571 76.91286 122.44714 198.32714
## [148] 183.89429 187.99571 438.44714 202.21143 185.72000 205.89714 173.34571
## [155] 130.51143 191.21714 251.98143 247.29857 188.26000 197.46000 148.48857
## [162] 137.04714 169.39000 103.70857 158.08286 104.86000 96.94857 102.21429
        90.97000 97.72857 94.45286 75.25000 92.28000 103.69000 68.93714
## [169]
## [176] 99.39286 83.68286 98.57714 80.00143 64.88286 152.40429 68.25857
## [183] 38.87571
                  51.74429 43.47000 36.80857 34.58286 59.50429 39.05429
## [190]
        38.74143
                  31.80714 37.85429 41.95000 33.33000
                                                         49.20857 57.55857
## [197] 83.38714 96.91143 140.48286 171.15429 202.76143 283.14857 173.08857
## [204] 168.86714 186.70857 201.87286 175.70143 261.53571 287.39286 282.41143
## [211] 215.72000 239.19571 116.32714 166.56714 134.56429 152.75857 90.08714
## [218] 80.32000 86.03000 82.42143 79.07571 87.09143 104.12286 72.85857
## [225]
        61.77000 88.33000 85.77429 129.04857 86.87000 67.29143 78.26000
## [232]
        70.20857
                  69.01286 53.53857 56.73286 46.77429 62.93857 42.65000
                  34.18857 28.48714 20.78143 45.11857 39.64143 46.80571
## [239]
        42.49000
        50.56857 39.85143 25.55000 43.25571 87.52286 111.85143 140.25571
## [246]
## [253] 353.36857 176.22286 297.92714 152.52143 86.82571 204.55429 184.09143
## [260] 185.57857 234.32857 271.12143 139.47714 134.74571 150.86714 115.56571
## [267] 149.54571 129.76429 106.28000 90.53571 62.04429 60.51714 77.45286
## [274] 38.48286 36.53143 44.01857 48.34857 48.89000 43.19143 46.70000
## [281]
        62.76571 79.43286 38.33571 46.19571 58.95714 41.85857 41.01429
## [288]
         46.22333
##
## $seasonal
## Time Series:
## Start = c(1, 1)
```

```
## End = c(6, 28)
## Frequency = 52
##
    [1] 127.664773 141.312764 74.779381 112.538519 49.812777 36.396074
    [7] 22.014305
                    9.314113 32.459896 -14.741619 -33.341062 -31.104709
##
   [13] -24.539568 -21.146704 -21.057316 -21.924009 -22.609634 -13.494136
##
   [19] -18.996739 -6.303779 -21.582185 -32.511831 -36.004342 -55.601457
##
   [25] -31.615224 -58.031299 -67.303281 -67.891070 -69.274598 -81.392397
##
   [31] -84.729634 -74.373315 -79.107705 -82.983356 -75.877977 -75.174790
##
   [37] -68.757875 -61.568590 -68.505507 -53.581686 -26.516287 -13.310859
##
   [43] 32.136985 60.965026 175.430089 171.008855 114.630240 61.725523
##
   [49] 64.370218 88.798419 45.097756 94.498828 127.664773 141.312764
##
##
   [55] 74.779381 112.538519 49.812777 36.396074 22.014305
                                                               9.314113
   [61] 32.459896 -14.741619 -33.341062 -31.104709 -24.539568 -21.146704
##
##
   [67] -21.057316 -21.924009 -22.609634 -13.494136 -18.996739 -6.303779
   [73] -21.582185 -32.511831 -36.004342 -55.601457 -31.615224 -58.031299
##
##
   [79] -67.303281 -67.891070 -69.274598 -81.392397 -84.729634 -74.373315
   [85] -79.107705 -82.983356 -75.877977 -75.174790 -68.757875 -61.568590
##
   [91] -68.505507 -53.581686 -26.516287 -13.310859 32.136985 60.965026
##
   [97] 175.430089 171.008855 114.630240 61.725523 64.370218 88.798419
##
## [103] 45.097756 94.498828 127.664773 141.312764 74.779381 112.538519
## [109] 49.812777 36.396074 22.014305 9.314113 32.459896 -14.741619
## [115] -33.341062 -31.104709 -24.539568 -21.146704 -21.057316 -21.924009
## [121] -22.609634 -13.494136 -18.996739 -6.303779 -21.582185 -32.511831
## [127] -36.004342 -55.601457 -31.615224 -58.031299 -67.303281 -67.891070
## [133] -69.274598 -81.392397 -84.729634 -74.373315 -79.107705 -82.983356
## [139] -75.877977 -75.174790 -68.757875 -61.568590 -68.505507 -53.581686
## [145] -26.516287 -13.310859 32.136985 60.965026 175.430089 171.008855
## [151] 114.630240 61.725523 64.370218 88.798419 45.097756 94.498828
## [157] 127.664773 141.312764 74.779381 112.538519 49.812777 36.396074
## [163] 22.014305 9.314113 32.459896 -14.741619 -33.341062 -31.104709
## [169] -24.539568 -21.146704 -21.057316 -21.924009 -22.609634 -13.494136
## [175] -18.996739 -6.303779 -21.582185 -32.511831 -36.004342 -55.601457
## [181] -31.615224 -58.031299 -67.303281 -67.891070 -69.274598 -81.392397
## [187] -84.729634 -74.373315 -79.107705 -82.983356 -75.877977 -75.174790
## [193] -68.757875 -61.568590 -68.505507 -53.581686 -26.516287 -13.310859
## [199] 32.136985 60.965026 175.430089 171.008855 114.630240 61.725523
## [205] 64.370218 88.798419 45.097756 94.498828 127.664773 141.312764
## [211] 74.779381 112.538519 49.812777 36.396074 22.014305 9.314113
## [217] 32.459896 -14.741619 -33.341062 -31.104709 -24.539568 -21.146704
## [223] -21.057316 -21.924009 -22.609634 -13.494136 -18.996739 -6.303779
## [229] -21.582185 -32.511831 -36.004342 -55.601457 -31.615224 -58.031299
## [235] -67.303281 -67.891070 -69.274598 -81.392397 -84.729634 -74.373315
## [241] -79.107705 -82.983356 -75.877977 -75.174790 -68.757875 -61.568590
## [247] -68.505507 -53.581686 -26.516287 -13.310859 32.136985 60.965026
## [253] 175.430089 171.008855 114.630240 61.725523 64.370218 88.798419
## [259] 45.097756 94.498828 127.664773 141.312764 74.779381 112.538519
## [265] 49.812777 36.396074 22.014305 9.314113 32.459896 -14.741619
## [271] -33.341062 -31.104709 -24.539568 -21.146704 -21.057316 -21.924009
## [277] -22.609634 -13.494136 -18.996739 -6.303779 -21.582185 -32.511831
## [283] -36.004342 -55.601457 -31.615224 -58.031299 -67.303281 -67.891070
##
```

```
## $trend
## Time Series:
## Start = c(1, 1)
## End = c(6, 28)
  Frequency = 52
##
     [1]
##
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
                NA
                          NA
                                    NA
##
     [8]
                NA
                          NA
                                    NA
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
##
    [15]
                NA
                          NA
                                    NA
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
                                               NA
                                                         NA 117.43933 118.75886
##
    [22]
                NA
                          NA
                                    NA
##
    [29] 119.74216 120.92558 123.08819 124.24565 124.21694 123.90404 123.74698
    [36] 124.26529 124.80253 124.91949 124.94011 125.27527 125.89982 126.17799
##
##
    [43] 126.23109 126.88647 127.25121 126.99955 127.16846 127.22280 127.42332
    [50] 127.44674 126.94595 126.65059 126.53341 126.56551 126.64258 126.69687
##
##
    [57] 126.95574 126.98745 126.62505 126.41937 126.30096 125.84979 125.41041
    [64] 125.11552 124.95823 124.98740 124.76729 124.64078 124.69036 125.68308
##
    [71] 129.20519 132.47332 133.75255 134.24029 134.29168 134.61243 135.56255
##
    [78] 136.87834 137.54181 136.77571 135.98995 135.67927 134.26754 133.34390
##
##
    [85] 133.37232 133.26600 134.37820 135.28738 135.09462 135.35804 136.10916
   [92] 136.56380 136.29842 136.59249 137.34751 137.09569 137.36845 138.58330
##
   [99] 139.60916 140.11618 140.01915 139.84466 139.50316 139.09214 138.57331
##
   [106] 138.21695 137.91029 137.46746 137.00765 136.61960 136.47933 136.28331
##
   [113] 136.10839 135.89775 135.62286 135.45522 135.17141 134.78696 134.17918
   [120] 133.77904 134.24641 133.96280 130.29058 128.49330 128.95588 128.13703
   [127] 127.85268 127.01951 125.67060 124.46386 124.13641 124.72404 125.02558
   [134] 124.55391 124.06080 123.56764 123.52581 123.53070 122.35338 121.41294
  [141] 121.39295 121.43698 120.95359 120.39146 120.30477 119.57405 118.41658
## [148] 118.09073 117.20953 115.84530 114.83996 114.28739 114.22657 114.19124
  [155] 115.15934 116.17273 116.33659 116.33342 116.38783 116.55360 116.73387
  [162] 117.09585 117.34919 117.41882 117.35657 117.35497 117.41457 117.11496
  [169] 116.91543 116.82556 116.74813 116.56485 115.76312 115.08442 115.10390
## [176] 113.75262 111.97934 111.53727 111.19071 111.28051 111.98933 113.09999
  [183] 114.11662 114.79474 115.39640 116.06174 116.15380 116.12841 116.07739
  [190] 116.21416 116.03199 115.14223 114.80128 114.50598 114.20129 113.98464
## [197] 113.97534 114.04533 113.72897 113.28791 113.30212 113.74916 114.06496
  [204] 113.79478 113.47721 113.51168 112.76104 111.81766 111.84783 111.97174
  [211] 112.11115 112.35452 112.48672 112.31933 111.97430 111.70000 111.65530
## [218] 111.80048 111.86435 112.07680 112.15258 111.75484 111.06118 110.58503
## [225] 110.21945 109.64705 110.79809 111.21810 111.39034 112.43354 111.31596
## [232] 110.38133 110.48779 109.83810 108.59751 107.97872 107.13706 105.39963
## [239] 104.72742 104.56913 104.22279 104.14574 104.08034 104.33427 104.20187
## [246] 103.76062 103.53440 103.05140 101.93409 101.00687 100.60051 100.09223
## [253]
         99.30354
                   98.10228
                             97.07870
                                        96.96367
                                                  96.69652
                                                             96.08174
                                                                       95.75416
          95.54516
                    95.28172
                              95.12528
## [260]
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
## [267]
                NA
                          NA
                                    NA
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
## [274]
                NA
                          NA
                                    NA
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
## [281]
                NA
                          NA
                                    NA
                                               NA
                                                         NA
                                                                   NA
                                                                             NA
  [288]
##
                NA
##
## $random
## Time Series:
## Start = c(1, 1)
```

##	End =	c(6, 28)				
		ency = 52				
##	[1]	NA	NA	NA	NA	NA
##	[6]	NA	NA	NA	NA	NA
##	[11]	NA	NA	NA	NA	NA
##	[16]	NA	NA	NA	NA	NA
##	[21]	NA	NA	NA	NA	NA
##	[26]	NA	23.76680395	-0.09778946	12.19529846	1.25110615
##	[31]	-5.60283891	10.87338362	18.63362538	7.66788911	11.07099901
##	[36]	30.62521604	12.12963362	23.01766933	6.36111164	18.57212538
##	[41]	45.45075175	-3.56999275	-0.65378396	-37.09149550	-65.93986913
##	[46]	-61.27554495	-19.02155869	10.64167483	24.46217208	0.03340835
##	[51]	-42.99227572	-39.81227572	-27.28389385	23.04887080	-6.43053465
##	[56]	32.85604159	95.19290972	-2.46209028	-1.72936020	1.00366178
##	[61]	-26.93371459	23.25896741	-2.50220704	-16.38938424	-12.70008822
##	[66]	8.31787194	12.92859310	-4.24106006	8.82784791	32.95105876
##	[71]	-19.44416789	-33.06811707	-24.33036981	-2.57131418	-2.44876267
##	[76]	-8.14383135	-22.69447352	-2.08418163	-2.94996116	-8.16178671
##	[81]	-5.98963286	-5.91973176	2.55780670	-14.26772902	-12.16747352
##	[86]	-1.43978946	-12.12879495	-14.74972902	-9.50531143	-6.74658891
##	[91]	-1.84079770	7.35073802	12.09358142	-4.18305594	-16.41592682
##	[96]	60.58785890	182.35432043	8.61499076	20.10345505	-3.09313286
##	[101]	18.05206219	14.80835340	16.09051274	12.94760065	-35.52379770
##	[106]	-72.07685722	-15.94395498	-11.97883479	-27.61471391	4.60289598
##	[111]	-25.32506075	-6.17599481	76.24313980	-5.21898589	-14.33179495
##	[116]	2.28377510	26.19101068	-3.30311707	-22.26186020	42.98211302
##	[121]	21.43321879	-23.68009509	56.18901892	20.53762469	37.53059172
##	[126]	-0.80234440	-1.76690828	-12.94090553	-35.92823726	-9.28970360
##	[131]	-23.88313424	1.16703197	-24.19526473	-11.67866034	-18.17116308
##	[136]	-13.91289385	-7.48810539	-6.92305869	-3.07683067	-19.80957792
##	[141]	-5.45793506	-0.60553121	-8.42093506	5.27594406	-16.87562187
##	[146]	16.18394955	47.77357868	4.83853197	-104.64390759	151.59298527
##	[151]	-27.25877023	9.70708692	27.30035890	-29.64394056	-29.74566858
##	[156]	-19.45441858	7.98006219	-10.34761272	-2.90721047	-31.63211775
##	[161]	-18.05807929	-16.44478259	30.02650519	-23.02436020	8.26639530
##	[166]	2.24664598	12.87505944	16.20403609	-1.40585745	2.04971260
##	[171]	-1.23795910	-19.39084028	-0.87348451	2.09971260	-27.17001954
##	[176]	-8.05598795	-6.71429839	19.55170780	4.81505601	9.20380601
	[181]	72.03018307	13.18988431	-7.93762599		-2.65180319
	[186]	2.13922428	3.15868582	17.74919406		5.51062263
	[191]	-8.34687187	-2.11314935	-4.09340209		3.51278747
	[196]	-2.84438561	-4.07191308	-3.82304220	-5.38309715	-3.09865209
	[201]	-85.97077572	-1.60944605	-55.60662737		8.86114186
	[206]	-0.43723726	17.84262813	55.21922153	47.88025450	29.12692025
	[211]	28.82946535	14.30267620	-45.97235127		0.57568101
	[216]	31.74445848	-54.02805525	-16.73886226	7.50670780	1.44933829
	[221]	-8.53729976	-3.51670223	14.11899145		-25.83981693
	[226]	-7.82291102	-6.02706624	24.13424557	-2.93815828	-12.63028396
	[231]	2.94838019	15.42869612	-9.85970704	1.73176618	15.43862401
	[236]	6.68663362	25.07610890	18.64276824		3.99275175
##	[241]	3.37205944	-0.38095704	16.91620505	10.48194681	11.36172153

```
## [246] 8.37654296
                       4.82254021 -23.91971528 -32.16209165
                                                                -0.17315209
## [251] -20.88606418 -20.80153671 78.63493857 -92.88827847 86.21820780
## [256] -6.16776198 -74.24102847 19.67412263 43.23950999
                                                               -4.46542132
## [261] 11.38208142
                      34.68338545
                                              NA
                                                           NA
                                                                         NA
## [266]
                                              NA
                                                            NA
                                                                         NA
                  NA
                                NA
## [271]
                                                                         NA
                  NA
                                NA
                                              NA
                                                           NA
## [276]
                   NA
                                NA
                                              NA
                                                            NA
                                                                         NA
## [281]
                  NA
                                NA
                                              NA
                                                           NA
                                                                         NA
## [286]
                  NA
                                NA
                                              NA
##
## $figure
## [1] 127.664773 141.312764 74.779381 112.538519 49.812777 36.396074
## [7] 22.014305 9.314113 32.459896 -14.741619 -33.341062 -31.104709
## [13] -24.539568 -21.146704 -21.057316 -21.924009 -22.609634 -13.494136
## [19] -18.996739 -6.303779 -21.582185 -32.511831 -36.004342 -55.601457
## [25] -31.615224 -58.031299 -67.303281 -67.891070 -69.274598 -81.392397
## [31] -84.729634 -74.373315 -79.107705 -82.983356 -75.877977 -75.174790
## [37] -68.757875 -61.568590 -68.505507 -53.581686 -26.516287 -13.310859
## [43] 32.136985 60.965026 175.430089 171.008855 114.630240 61.725523
## [49] 64.370218 88.798419 45.097756 94.498828
##
## $type
## [1] "additive"
##
## attr(,"class")
## [1] "decomposed.ts"
```

```
plot(dfDecom.PM2.5)
```


plot(dfDecom.NO)

plot(dfDecom.NO2)

plot(dfDecom.NOx)

plot(dfDecom.NH3)

plot(dfDecom.CO)

plot(dfDecom.Benzene)

plot(dfDecom.Toluene)

Grouping up of trend, seasonal and random components of decomposed time series.

Grouping of trend data

Grouping of seasonal data

Grouping of random data

Decomposition of time series produces NaNs. So we need to remove rows of data corresponding to NaNs.

```
st <- 27
en <- 262
num \leftarrow en - st + 1
ratio <- 0.7
mid <- as.numeric(num*ratio)</pre>
df <- df[st:en, ]</pre>
df aqi <- df[, c("AQI")]</pre>
df = subset(df, select = -c(AQI))
df_aqi_train <- df_aqi[1:mid]</pre>
df_aqi_test <- df_aqi[(mid+1):num]</pre>
df train <- df[1:mid, ]</pre>
df test <- df[(mid+1):num, ]</pre>
dfDecom.trend <- dfDecom.trend[st:en, ]</pre>
dfDecom.seasonal <- dfDecom.seasonal[st:en, ]</pre>
dfDecom.random <- dfDecom.random[st:en, ]</pre>
print(head(df_aqi_train))
```

```
## [1] 217.8571 223.2857 204.4286 178.4286 171.1429 222.4286
```

```
print(head(df_aqi_test))
```

```
## [1] 103.2857 108.5714 107.1429 131.2857 140.1429 199.1429
```

```
y <- df_aqi_train
y0 <- df_aqi_test</pre>
```

Original LM

This is regression model on base data.

Warning: 'newdata' had 70 rows but variables found have 165 rows

```
test.err.1 = mean((y0-y0hat.1)^2)
```

Warning in y0 - y0hat.1: longer object length is not a multiple of shorter
object length

```
print(summary(lm.1))
```

```
##
## Call:
## lm(formula = df aqi train ~ df train[, 1] + df train[, 2] + df train[,
       3] + df_train[, 4] + df_train[, 5] + df_train[, 6] + df_train[,
       7] + df train[, 8])
##
##
## Residuals:
                1Q Median 3Q
## -162.115 -20.504 -0.627 21.106 145.763
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 98.42864 13.51399 7.283 1.51e-11 ***
## df train[, 1] 1.14984 0.08175 14.066 < 2e-16 ***
## df train[, 2] 0.10748 0.22488 0.478 0.633347
## df_train[, 3] 0.69751 0.30567 2.282 0.023845 *
## df_train[, 4] 0.40967 0.10705 3.827 0.000187 ***
## df_train[, 5] -1.17214 0.36740 -3.190 0.001718 **
## df_train[, 6] 3.31026 2.98399 1.109 0.268989
## df train[, 7] 3.64903 2.77912 1.313 0.191106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 39.61 on 156 degrees of freedom
## Multiple R-squared: 0.8816, Adjusted R-squared: 0.8755
## F-statistic: 145.2 on 8 and 156 DF, p-value: < 2.2e-16
```

end Original LM

PCA on random part

```
h2o.no_progress()  # turn off progress bars
h2o.init(max_mem_size = "5g")  # connect to H2O instance
```

```
Connection successful!
##
## R is connected to the H2O cluster:
     H2O cluster uptime: 3 days 17 hours
##
      H2O cluster timezone: Asia/Kolkata
##
##
     H2O data parsing timezone: UTC
     H2O cluster version: 3.32.0.1
##
##
      H2O cluster version age: 6 months and 15 days !!!
                          H2O_started_from_R_vishw_pcl701
##
     H2O cluster name:
##
      H2O cluster total nodes: 1
      H2O cluster total memory: 4.98 GB
##
     H2O cluster total cores: 12
##
##
     H2O cluster allowed cores: 12
     H2O cluster healthy:
                                TRUE
##
##
     H2O Connection ip:
                                 localhost
##
    H2O Connection port:
                                 54321
##
    H2O Connection proxy:
                                NA
     H2O Internal Security:
##
                                FALSE
##
     H2O API Extensions:
                                 Amazon S3, Algos, AutoML, Core V3, TargetEncoder,
Core V4
     R Version:
                                 R version 3.6.1 (2019-07-05)
##
## Warning in h2o.clusterInfo():
## Your H2O cluster version is too old (6 months and 15 days)!
## Please download and install the latest version from http://h2o.ai/download/
dfDecom.random.h2o <- as.h2o(dfDecom.random)</pre>
# run basic pca on random component
pca random <- h2o.prcomp(</pre>
 training frame = dfDecom.random.h2o,
 pca method = "GramSVD",
 k = ncol(dfDecom.random.h2o),
 transform = "STANDARDIZE",
 impute missing = TRUE,
 max runtime secs = 1000
```

```
23 of 54 29-04-2021, 13:22
```

print(summary(pca random))

```
## Model Details:
## ========
## H2ODimReductionModel: pca
## Model Key: PCA model R 1618906539228 122
## Importance of components:
##
                              pc1
                                     pc2 pc3
                                                        pc4
## Standard deviation
                       1.781358 1.165017 1.059244 0.860642 0.752150 0.675197
## Proportion of Variance 0.396655 0.169658 0.140250 0.092588 0.070716 0.056986
## Cumulative Proportion 0.396655 0.566313 0.706563 0.799151 0.869867 0.926853
                              pc7
## Standard deviation
                       0.555054 0.526391
## Proportion of Variance 0.038511 0.034636
## Cumulative Proportion 0.965364 1.000000
## H2ODimReductionMetrics: pca
## No model metrics available for PCA
##
##
## Scoring History for GramSVD:
              timestamp duration iterations
## 1 2021-04-24 07:08:15 0.003 sec
##
## NULL
```

```
print(pca_random@model$importance)
```

```
pca_random_pred <- h2o.predict(pca_random, dfDecom.random.h2o)</pre>
```

end PCA on random part

PCA on original data

```
print(head(df))
```

```
##
                PM2.5
                           NO
                                    NO2
                                               NOx
                                                        NH3
                                                                  CO Benzene
## 2015-07-05 73.90286 13.54571 42.29143 80.54143 46.94143 1.062857 1.208571
## 2015-07-12 50.77000 19.41429 47.53143 149.97429 45.21000 2.110000 2.052857
## 2015-07-19 62.66286 20.15000 42.81000 117.79429 41.75286 1.384286 2.098571
## 2015-07-26 40.78429 12.50286 43.93857 141.57857 36.80714 1.474286 2.921429
## 2015-08-02 32.75571 20.38714 35.87286 128.27714 27.17857 0.990000 1.124286
## 2015-08-09 60.74571 24.30143 47.20286 173.10857 36.79714 1.440000 2.065714
              Toluene
## 2015-07-05 4.047143
## 2015-07-12 7.458571
## 2015-07-19 7.642857
## 2015-07-26 7.975714
## 2015-08-02 4.117143
## 2015-08-09 8.697143
```

```
dfDecom.df.h2o <- as.h2o(df)
```

```
pca_orig <- h2o.prcomp(
    training_frame = dfDecom.df.h2o,
    pca_method = "GramSVD",
    k = ncol(dfDecom.random.h2o),
    transform = "STANDARDIZE",
    impute_missing = TRUE,
    max_runtime_secs = 1000
)</pre>
```

```
print(summary(pca_orig))
```

```
## Model Details:
## ========
## H2ODimReductionModel: pca
## Model Key: PCA model R 1618906539228 123
## Importance of components:
##
                              pc1
                                     pc2 pc3 pc4
## Standard deviation 2.111503 1.103672 0.944229 0.773621 0.566483 0.495016
## Proportion of Variance 0.557305 0.152262 0.111446 0.074811 0.040113 0.030630
## Cumulative Proportion 0.557305 0.709567 0.821013 0.895824 0.935937 0.966567
                              pc7
## Standard deviation
                       0.383648 0.346811
## Proportion of Variance 0.018398 0.015035
## Cumulative Proportion 0.984965 1.000000
## H2ODimReductionMetrics: pca
## No model metrics available for PCA
##
##
## Scoring History for GramSVD:
             timestamp duration iterations
## 1 2021-04-24 07:08:19 0.001 sec
##
## NULL
```

```
print(pca_orig@model$importance)
```

```
pca_orig_pred <- h2o.predict(pca_orig, dfDecom.df.h2o)</pre>
```

end PCA on original data

GLRM on original data

dimension = 6

```
dfDecom.df.h2o <- as.h2o(df)
```

```
glrm_orig6 <- h2o.glrm(
    training_frame = dfDecom.df.h2o,
    k = 6,
    loss = "Quadratic",
    regularization_x = "None",
    regularization_y = "None",
    transform = "STANDARDIZE",
    max_iterations = 2000,
    seed = 123
)</pre>
```

```
print(summary(glrm_orig6))
```

```
## Model Details:
## ========
##
## H2ODimReductionModel: glrm
## Model Key: GLRM model R 1618906539228 124
## Model Summary:
    number of iterations final step size final objective value
                   1000
                             0.00131
## 1
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
##
## Sum of Squared Error (Numeric): 106.7449
## Misclassification Error (Categorical): 0
## Number of Numeric Entries: 1888
## Number of Categorical Entries: 0
##
##
##
## Scoring History:
      timestamp duration iterations step size objective
## 1 2021-04-24 07:08:24 0.017 sec 0 0.66667 157.86765
## 2 2021-04-24 07:08:24 0.018 sec
                                         1 0.44444 157.86765
## 3 2021-04-24 07:08:24 0.018 sec
                                         2 0.22222 157.86765
## 4 2021-04-24 07:08:24 0.019 sec
                                         3 0.07407 157.86765
## 5 2021-04-24 07:08:24 0.019 sec
                                         4 0.01852 157.86765
##
## ---
##
                timestamp duration iterations step size objective
## 995 2021-04-24 07:08:25 0.681 sec 994 0.00103 106.75160
## 996 2021-04-24 07:08:25 0.682 sec
                                         995 0.00108 106.74996
## 997 2021-04-24 07:08:25 0.682 sec
                                         996 0.00113 106.74860
## 998 2021-04-24 07:08:25 0.683 sec
                                         997 0.00119 106.74732
## 999 2021-04-24 07:08:25 0.684 sec
                                         998 0.00125 106.74609
## 1000 2021-04-24 07:08:25 0.685 sec
                                         999 0.00131 106.74490
##
## NULL
```

```
print(glrm_orig6@model$importance)
```

```
glrm_orig6_pred <- h2o.predict(glrm_orig6, dfDecom.df.h2o)</pre>
```

dimension = 5

```
dfDecom.df.h2o <- as.h2o(df)
```

```
glrm_orig5 <- h2o.glrm(
    training_frame = dfDecom.df.h2o,
    k = 5,
    loss = "Quadratic",
    regularization_x = "None",
    regularization_y = "None",
    transform = "STANDARDIZE",
    max_iterations = 2000,
    seed = 123
)</pre>
```

```
print(summary(glrm_orig5))
```

```
## Model Details:
## ========
##
## H2ODimReductionModel: glrm
## Model Key: GLRM model R 1618906539228 126
## Model Summary:
    number of iterations final step size final objective value
## 1
                   1000
                             0.04330
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
##
## Sum of Squared Error (Numeric): 120.4387
## Misclassification Error (Categorical): 0
## Number of Numeric Entries: 1888
## Number of Categorical Entries: 0
##
##
##
## Scoring History:
      timestamp duration iterations step size objective
## 1 2021-04-24 07:08:30 0.015 sec 0 0.66667 1475.73545
## 2 2021-04-24 07:08:30 0.016 sec
                                         1 0.44444 1475.73545
## 3 2021-04-24 07:08:30 0.016 sec
                                         2 0.22222 1475.73545
                                         3 0.07407 1475.73545
## 4 2021-04-24 07:08:30 0.017 sec
## 5 2021-04-24 07:08:30 0.017 sec
                                         4 0.01852 1475.73545
##
## ---
##
                timestamp duration iterations step size objective
## 995 2021-04-24 07:08:31 0.585 sec 994 0.05344 120.43872
## 996 2021-04-24 07:08:31 0.586 sec
                                         995 0.05611 120.43872
## 997 2021-04-24 07:08:31 0.586 sec
                                         996 0.05891 120.43872
## 998 2021-04-24 07:08:31 0.587 sec
                                         997 0.03928 120.43872
## 999 2021-04-24 07:08:31 0.588 sec
                                         998 0.04124 120.43872
## 1000 2021-04-24 07:08:31 0.588 sec
                                         999 0.04330 120.43872
##
## NULL
```

print(glrm_orig5@model\$importance)

```
glrm_orig5_pred <- h2o.predict(glrm_orig5, dfDecom.df.h2o)</pre>
```

end GLRM on original data

GLRM on trend data

dimension = 3

seed = 123

)

```
dfDecom.trend.h2o <- as.h2o(dfDecom.trend)

glrm_trend3 <- h2o.glrm(
    training_frame = dfDecom.trend.h2o,
    k = 3,
    loss = "Quadratic",
    regularization_x = "None",
    regularization_y = "None",
    transform = "STANDARDIZE",
    max_iterations = 2000,</pre>
```

```
print(summary(glrm_trend3))
```

```
## Model Details:
## ========
##
## H2ODimReductionModel: glrm
## Model Key: GLRM model R 1618906539228 128
## Model Summary:
    number of iterations final step size final objective value
                     57
                              0.00003
## 1
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
##
## Sum of Squared Error (Numeric): 103.8481
## Misclassification Error (Categorical): 0
## Number of Numeric Entries: 1888
## Number of Categorical Entries: 0
##
##
## Scoring History:
      timestamp duration iterations step size objective
## 1 2021-04-24 07:08:36 0.011 sec 0 0.66667 652.59620
## 2 2021-04-24 07:08:36 0.011 sec
                                         1 0.44444 652.59620
## 3 2021-04-24 07:08:36 0.012 sec
                                         2 0.22222 652.59620
## 4 2021-04-24 07:08:36 0.012 sec
                                         3 0.07407 652.59620
## 5 2021-04-24 07:08:36 0.012 sec
                                         4 0.07778 413.61394
##
## ---
              timestamp duration iterations step size objective
##
                                   51 0.02035 103.84812
## 52 2021-04-24 07:08:36 0.025 sec
## 53 2021-04-24 07:08:36 0.026 sec
                                         52 0.01017 103.84812
## 54 2021-04-24 07:08:36 0.026 sec
                                         53 0.00339 103.84812
                                         54 0.00085 103.84812
## 55 2021-04-24 07:08:36 0.026 sec
## 56 2021-04-24 07:08:36 0.026 sec
                                         55 0.00017 103.84812
## 57 2021-04-24 07:08:36 0.027 sec
                                         56 0.00003 103.84812
##
## NULL
```

```
print(glrm_trend3@model$importance)
```

```
glrm_trend3_pred <- h2o.predict(glrm_trend3, dfDecom.trend.h2o)</pre>
```

dimension = 2

```
glrm_trend2 <- h2o.glrm(
    training_frame = dfDecom.trend.h2o,
    k = 2,
    loss = "Quadratic",
    regularization_x = "None",
    regularization_y = "None",
    transform = "STANDARDIZE",
    max_iterations = 2000,
    seed = 123
)</pre>
```

```
print(summary(glrm_trend2))
```

```
## Model Details:
## =======
## H2ODimReductionModel: glrm
## Model Key: GLRM model R 1618906539228 130
## Model Summary:
    number of iterations final_step_size final_objective_value
##
## 1
                              0.00009
                                               1009.88442
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
##
## Sum of Squared Error (Numeric): 1009.884
## Misclassification Error (Categorical): 0
## Number of Numeric Entries: 1888
## Number of Categorical Entries: 0
##
##
##
## Scoring History:
             timestamp duration iterations step size objective
## 1 2021-04-24 07:08:40 0.011 sec 0 0.66667 1009.88442
## 2 2021-04-24 07:08:40 0.011 sec
                                         1 0.44444 1009.88442
                                         2 0.22222 1009.88442
## 3 2021-04-24 07:08:40 0.011 sec
## 4 2021-04-24 07:08:40 0.012 sec
                                         3 0.07407 1009.88442
## 5 2021-04-24 07:08:40 0.012 sec
                                         4 0.01852 1009.88442
## 6 2021-04-24 07:08:40 0.012 sec
                                         5 0.00370 1009.88442
## 7 2021-04-24 07:08:40 0.013 sec
                                         6 0.00062 1009.88442
                                    7 0.00009 1009.88442
## 8 2021-04-24 07:08:40 0.013 sec
##
## NULL
```

```
print(glrm_trend2@model$importance)
```

```
glrm_trend2_pred <- h2o.predict(glrm_trend2, dfDecom.trend.h2o)</pre>
```

dimension = 1

```
glrm_trend1 <- h2o.glrm(
    training_frame = dfDecom.trend.h2o,
    k = 1,
    loss = "Quadratic",
    regularization_x = "None",
    regularization_y = "None",
    transform = "STANDARDIZE",
    max_iterations = 2000,
    seed = 123
)</pre>
```

```
print(summary(glrm_trend1))
```

```
## Model Details:
## ========
## H2ODimReductionModel: glrm
## Model Key: GLRM model R 1618906539228 132
## Model Summary:
    number of iterations final step size final objective value
## 1
                             0.00009
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
## Sum of Squared Error (Numeric): 1692.644
## Misclassification Error (Categorical): 0
## Number of Numeric Entries: 1888
## Number of Categorical Entries: 0
##
##
## Scoring History:
      timestamp duration iterations step size objective
## 1 2021-04-24 07:08:44 0.008 sec 0 0.66667 1692.64425
## 2 2021-04-24 07:08:44 0.008 sec
                                        1 0.44444 1692.64425
                                        2 0.22222 1692.64425
## 3 2021-04-24 07:08:44 0.008 sec
## 4 2021-04-24 07:08:44 0.009 sec
                                        3 0.07407 1692.64425
## 5 2021-04-24 07:08:44 0.009 sec
                                        4 0.01852 1692.64425
                                        5 0.00370 1692.64425
## 6 2021-04-24 07:08:44 0.009 sec
## 7 2021-04-24 07:08:44 0.009 sec
                                        6 0.00062 1692.64425
                                        7 0.00009 1692.64425
## 8 2021-04-24 07:08:44 0.010 sec
## NULL
```

```
print(glrm_trend1@model$importance)
```

```
glrm_trend1_pred <- h2o.predict(glrm_trend1, dfDecom.trend.h2o)</pre>
```

end GLRM on trend data

DFA on original data

dimension = 6

```
dfDecom.df.t <- t(df[, 1:8])
```

Standardizing seasonal data.

```
dfDecom.df.t.mean <- apply(dfDecom.df.t, 1, mean, na.rm = TRUE)
dfDecom.df.t.std <- dfDecom.df.t - dfDecom.df.t.mean</pre>
```

```
# create loading matrix
Z vals <- list("z11", 0, 0, 0, 0, "z21", "z22", 0, 0, 0, 0, "z31", "z32", "z33",
0, 0, 0, "z41", "z42", "z43", "z44", 0, 0,
                "z51", "z52", "z53", "z54", "z55", 0, "61", "z62", "z63", "64", "z65",
"z66", "z71", "z72", "z73", "z74", "z75", "z76", "z81", "z82", "z83", "z84", "z85",
ZZ <- matrix(Z vals, nrow = 8, ncol = 6, byrow = TRUE)
## 'aa' is the offset/scaling
aa <- "zero"
## 'DD' and 'd' are for covariates
DD <- "zero" # matrix(0,mm,1)</pre>
dd <- "zero" # matrix(0,1,wk last)</pre>
## 'RR' is var-cov matrix for obs errors
RR <- "diagonal and unequal"
## number of processes
mm < - 6
## 'BB' is identity: 1's along the diagonal & 0's elsewhere
BB <- "identity" # diag(mm)
## 'uu' is a column vector of 0's
uu <- "zero" # matrix(0, mm, 1)
## 'CC' and 'cc' are for covariates
CC <- "zero" # matrix(0, mm, 1)</pre>
cc <- "zero" # matrix(0, 1, wk_last)</pre>
## 'QQ' is identity
QQ <- "identity" # diag(mm)
## list with specifications for model vectors/matrices
mod list \leftarrow list(Z = ZZ, A = aa, D = DD, d = dd, R = RR, B = BB,
                  U = uu, C = CC, c = cc, Q = QQ)
## list with model inits
init list \langle - \text{ list}(x0 = \text{matrix}(\text{rep}(0, \text{mm}), \text{mm}, 1))
## list with model control parameters
con list <- list(maxit = 3000, allow.degen = TRUE)</pre>
```

Fitting the model.

```
## Warning! Abstol convergence only. Maxit (=3000) reached before log-log convergenc
е.
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## WARNING: Abstol convergence only no log-log convergence.
## maxit (=3000) reached before log-log convergence.
## The likelihood and params might not be at the ML values.
## Try setting control$maxit higher.
## Log-likelihood: -6076.605
## AIC: 12247.21 AICc: 12249.66
##
##
                        Estimate
## Z.z11
                        4.26e+01
## Z.z21
                        1.31e+01
## Z.z31
                        8.39e+00
## Z.z41
                        1.40e+01
## Z.z51
                        5.76e+00
## Z.61
                        3.64e-01
## Z.z71
                        1.19e+00
## Z.z81
                        5.11e+00
## Z.z22
                       6.40e+00
## Z.z32
                        4.53e+00
## Z.z42
                       1.11e+01
## Z.z52
                       -7.18e-01
## Z.z62
                       -1.64e-02
## Z.z72
                      -2.03e-02
## Z.z82
                       1.22e+00
## Z.z33
                       2.69e+00
## Z.z43
                      -4.10e+00
## Z.z53
                       2.72e+00
## Z.z63
                       1.28e-01
## Z.z73
                       -2.54e-01
## Z.z83
                      -1.61e+00
## Z.z44
                       8.25e+00
## Z.z54
                       2.76e-01
## Z.64
                       9.92e-02
## Z.z74
                      -2.99e-03
## Z.z84
                      -1.50e-01
## Z.z55
                       2.33e+00
## Z.z65
                       5.72e-02
## Z.z75
                      -4.21e-01
## Z.z85
                       -1.06e+00
## Z.z66
                       6.57e-02
## Z.z76
                        1.33e-01
## Z.z86
                        3.16e+00
## R.(PM2.5,PM2.5)
                      1.09e+03
## R.(NO,NO)
                        7.35e+01
## R. (NO2, NO2)
                        3.55e+01
## R. (NOx, NOx)
                        4.96e-01
```

```
## R.(NH3,NH3)
                       2.04e+01
## R.(CO,CO)
                      6.84e-01
## R.(Benzene, Benzene) 1.30e-01
## R.(Toluene, Toluene) 1.96e+00
## x0.X1
                     -1.50e+00
## x0.X2
                     -2.21e+00
## x0.X3
                      2.40e+00
## x0.X4
                      9.09e+00
## x0.X5
                       2.39e-01
## x0.X6
                       4.12e-01
## Initial states (x0) defined at t=0
##
## Standard errors have not been calculated.
## Use MARSSparamCIs to compute CIs and bias estimates.
##
## Convergence warnings
## Warning: the Z.z74 parameter value has not converged.
## Warning: the R.(NOx,NOx) parameter value has not converged.
## Warning: the logLik parameter value has not converged.
## Type MARSSinfo("convergence") for more info on this warning.
```

```
dfa_pred_orig6 <- t(dfa_orig6$states)
print(head(dfa_pred_orig6))</pre>
```

```
## X1 X2 X3 X4 X5 X6

## [1,] -1.4996663 -2.2098419 2.4028117 9.091306 0.2387484 0.4123392

## [2,] -0.8877632 0.3538429 0.9200842 12.225819 0.3198465 -0.5810277

## [3,] -1.3073919 -0.9929412 0.8161257 10.848227 -0.4568604 -0.1751335

## [4,] -1.1926095 -0.1038362 -0.1821277 11.816507 -0.9645685 -0.8304217

## [5,] -2.2424930 0.2996105 -0.4010850 11.358874 -0.6837383 -0.8748221

## [6,] -1.3525276 1.9800380 -0.9897810 12.702857 -0.2125205 -1.4806423
```

dimension = 5

```
# create loading matrix
Z vals <- list("z11", 0, 0, 0, 0, "z21", "z22", 0, 0, 0, "z31", "z32", "z33", 0, 0, "
z41", "z42", "z43", "z44", 0,
               "z51", "z52", "z53", "z54", "z55", "61", "z62", "z63", "64", "z65", "z
71", "z72", "z73", "z74", "z75", "z81", "z82", "z83", "z84", "z85")
ZZ <- matrix(Z vals, nrow = 8, ncol = 5, byrow = TRUE)
## 'aa' is the offset/scaling
aa <- "zero"
## 'DD' and 'd' are for covariates
DD <- "zero" # matrix(0,mm,1)</pre>
dd <- "zero" # matrix(0,1,wk_last)</pre>
## 'RR' is var-cov matrix for obs errors
RR <- "diagonal and unequal"
## number of processes
mm <- 5
## 'BB' is identity: 1's along the diagonal & 0's elsewhere
BB <- "identity" # diag(mm)
## 'uu' is a column vector of 0's
uu <- "zero" # matrix(0, mm, 1)
## 'CC' and 'cc' are for covariates
CC <- "zero" # matrix(0, mm, 1)</pre>
cc <- "zero" # matrix(0, 1, wk last)</pre>
## 'QQ' is identity
QQ <- "identity" # diag(mm)
## list with specifications for model vectors/matrices
mod list \leftarrow list(Z = ZZ, A = aa, D = DD, d = dd, R = RR, B = BB,
                 U = uu, C = CC, c = cc, Q = QQ)
## list with model inits
init list <- list(x0 = matrix(rep(0, mm), mm, 1))
## list with model control parameters
con list <- list(maxit = 3000, allow.degen = TRUE)</pre>
```

Fitting the model.

```
## Warning! Abstol convergence only. Maxit (=3000) reached before log-log convergenc
е.
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## WARNING: Abstol convergence only no log-log convergence.
## maxit (=3000) reached before log-log convergence.
## The likelihood and params might not be at the ML values.
## Try setting control$maxit higher.
## Log-likelihood: -6094.453
## AIC: 12274.91 AICc: 12276.96
##
##
                        Estimate
## Z.z11
                         42.6144
## Z.z21
                         13.1223
## Z.z31
                         8.4699
## Z.z41
                         13.6294
## Z.z51
                          5.9015
## Z.61
                         0.3679
## Z.z71
                         1.1814
## Z.z81
                          5.0979
## Z.z22
                         6.3005
## Z.z32
                          4.0907
## Z.z42
                         11.2763
## Z.z52
                         -1.1942
## Z.z62
                         -0.0299
## Z.z72
                          0.0359
## Z.z82
                         1.5499
## Z.z33
                          1.2070
## Z.z43
                          3.7884
## Z.z53
                         1.8764
## Z.z63
                          0.0778
## Z.z73
                         -0.3326
## Z.z83
                         -3.1382
## Z.z44
                          8.8555
## Z.z54
                         -0.9919
## Z.64
                          0.0960
## Z.z74
                          0.2712
## Z.z84
                         1.7431
## Z.z55
                          2.1221
## Z.z65
                         0.0699
## Z.z75
                         -0.3629
## Z.z85
                          0.5134
## R.(PM2.5, PM2.5)
                      1194.5269
## R.(NO,NO)
                        67.3047
## R.(NO2, NO2)
                         60.0944
## R. (NOx, NOx)
                         0.5676
## R.(NH3,NH3)
                         20.9649
## R. (CO, CO)
                          0.7362
## R.(Benzene, Benzene) 0.1201
```

```
## R.(Toluene, Toluene)
                        1.9237
## x0.X1
                        -1.3994
## x0.X2
                        -2.7013
## x0.X3
                         4.5824
## x0.X4
                         5.8498
## x0.X5
                         2.0435
## Initial states (x0) defined at t=0
## Standard errors have not been calculated.
## Use MARSSparamCIs to compute CIs and bias estimates.
## Convergence warnings
  Warning: the Z.z72 parameter value has not converged.
## Warning: the Z.z85 parameter value has not converged.
## Warning: the R.(NOx,NOx) parameter value has not converged.
## Warning: the logLik parameter value has not converged.
## Type MARSSinfo("convergence") for more info on this warning.
```

```
dfa_pred_orig5 <- t(dfa_orig5$states)
print(head(dfa_pred_orig5))</pre>
```

```
## X1 X2 X3 X4 X5

## [1,] -1.3993515 -2.7013236 4.582352 5.849679 2.04358012

## [2,] -0.9538943 -0.0760575 6.601955 8.741472 1.59166330

## [3,] -1.3892863 -1.2972903 5.164682 7.998145 0.96869300

## [4,] -1.3963677 -0.3095947 5.665842 9.194415 0.04796077

## [5,] -2.4529139 0.2151170 5.512999 8.739080 0.21931789

## [6,] -1.6418129 1.9175287 6.742903 9.834732 0.26073066
```

end DFA on original data

DFA on seasonal data

```
dfDecom.seasonal.t <- t(dfDecom.seasonal[, 1:8])</pre>
```

Standardizing seasonal data.

```
dfDecom.seasonal.t.mean <- apply(dfDecom.seasonal.t, 1, mean, na.rm = TRUE)
dfDecom.seasonal.t.std <- dfDecom.seasonal.t - dfDecom.seasonal.t.mean</pre>
```

dimension = 3

```
# create loading matrix
Z vals <- list("z11", 0, 0, "z21", "z22", 0, "z31", "z32", "z33", "z41", "z42", "z4
               "z51", "z52", "z53", "61", "z62", "z63", "z71", "z72", "z73", "z81",
"z82", "z83")
ZZ <- matrix(Z vals, nrow = 8, ncol = 3, byrow = TRUE)
## 'aa' is the offset/scaling
aa <- "zero"
## 'DD' and 'd' are for covariates
DD <- "zero" # matrix(0,mm,1)</pre>
dd <- "zero" # matrix(0,1,wk_last)</pre>
## 'RR' is var-cov matrix for obs errors
RR <- "diagonal and unequal"
## number of processes
mm <- 3
## 'BB' is identity: 1's along the diagonal & 0's elsewhere
BB <- "identity" # diag(mm)
## 'uu' is a column vector of 0's
uu <- "zero" # matrix(0, mm, 1)
## 'CC' and 'cc' are for covariates
CC <- "zero" # matrix(0, mm, 1)</pre>
cc <- "zero" # matrix(0, 1, wk last)</pre>
## 'QQ' is identity
QQ <- "identity" # diag(mm)
## list with specifications for model vectors/matrices
mod list \leftarrow list(Z = ZZ, A = aa, D = DD, d = dd, R = RR, B = BB,
                 U = uu, C = CC, c = cc, Q = QQ)
## list with model inits
init list <- list(x0 = matrix(rep(0, mm), mm, 1))
## list with model control parameters
con list <- list(maxit = 3000, allow.degen = TRUE)</pre>
```

Fitting the model.

```
## Warning! Reached maxit before parameters converged. Maxit was 3000.
## neither abstol nor log-log convergence tests were passed.
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## WARNING: maxit reached at 3000 iter before convergence.
## Neither abstol nor log-log convergence test were passed.
## The likelihood and params are not at the ML values.
## Try setting control$maxit higher.
## Log-likelihood: -4695.14
## AIC: 9454.279 AICc: 9455.418
##
##
                            Estimate
## Z.z11
                            2.37e+01
## Z.z21
                            5.76e+00
## Z.z31
                            3.66e+00
## Z.z41
                            3.66e+00
## Z.z51
                            3.24e+00
## Z.61
                            2.11e-01
## Z.z71
                            4.78e-01
## Z.z81
                            1.79e+00
## Z.z22
                            5.09e+00
## Z.z32
                            2.27e+00
## Z.z42
                            6.69e+00
## Z.z52
                           -1.49e+00
## Z.z62
                           -8.98e-02
## Z.z72
                            2.41e-01
## Z.z82
                            2.43e+00
## Z.z33
                            1.07e+00
## Z.z43
                            5.48e-01
## Z.z53
                           -3.56e-04
## Z.z63
                            9.37e-03
## Z.z73
                            4.15e-02
## Z.z83
                           -9.49e-01
## R.(PM2.5.s, PM2.5.s)
                            3.59e+02
## R.(NO.s, NO.s)
                            2.05e+01
## R.(NO2.s, NO2.s)
                            1.36e+01
## R.(NOx.s, NOx.s)
                            3.12e+01
## R.(NH3.s,NH3.s)
                            9.75e+00
## R.(CO.s,CO.s)
                            1.17e-01
## R.(Benzene.s, Benzene.s) 4.67e-02
## R.(Toluene.s, Toluene.s) 5.47e-03
## x0.X1
                           -2.87e+00
## x0.X2
                           -1.61e+00
## x0.X3
                           -2.59e+00
## Initial states (x0) defined at t=0
## Standard errors have not been calculated.
## Use MARSSparamCIs to compute CIs and bias estimates.
##
```

```
## Convergence warnings
## 15 warnings. First 10 shown. Type cat(object$errors) to see the full list.
## Warning: the Z.z51 parameter value has not converged.
## Warning: the Z.z42 parameter value has not converged.
## Warning: the Z.z52 parameter value has not converged.
## Warning: the Z.z62 parameter value has not converged.
## Warning: the Z.z43 parameter value has not converged.
## Warning: the Z.z53 parameter value has not converged.
## Warning: the Z.z63 parameter value has not converged.
## Warning: the R.(NOx.s,NOx.s) parameter value has not converged.
## Warning: the R.(NH3.s,NH3.s) parameter value has not converged.
## Warning: the R.(Toluene.s,Toluene.s) parameter value has not converged.
```

```
dfa_pred_seasonal3 <- t(dfa_seasonal3$states)
print(head(dfa_pred_seasonal3))</pre>
```

```
## X1 X2 X3

## [1,] -2.865785 -1.60837069 -2.588218

## [2,] -2.844794 -1.16044236 -2.649078

## [3,] -2.985927 -1.16547012 -2.591991

## [4,] -2.932459 -0.39046971 -2.562785

## [5,] -3.454262 -0.23642561 -2.878204

## [6,] -3.461719 -0.05189357 -2.815201
```

dimension = 2

```
# create loading matrix
Z vals <- list("z11", 0, "z21", "z22", "z31", "z32", "z41", "z42",
                "z51", "z52", "61", "z62", "z71", "z72", "z81", "z82")
ZZ <- matrix(Z vals, nrow = 8, ncol = 2, byrow = TRUE)
## 'aa' is the offset/scaling
aa <- "zero"
## 'DD' and 'd' are for covariates
DD <- "zero" # matrix(0,mm,1)</pre>
dd <- "zero" # matrix(0,1,wk_last)</pre>
## 'RR' is var-cov matrix for obs errors
RR <- "diagonal and unequal"
## number of processes
mm < -2
## 'BB' is identity: 1's along the diagonal & 0's elsewhere
BB <- "identity" # diag(mm)
## 'uu' is a column vector of 0's
uu <- "zero" # matrix(0, mm, 1)
## 'CC' and 'cc' are for covariates
CC <- "zero" # matrix(0, mm, 1)</pre>
cc <- "zero" # matrix(0, 1, wk_last)</pre>
## 'QQ' is identity
QQ <- "identity" # diag(mm)
## list with specifications for model vectors/matrices
mod list \leftarrow list(Z = ZZ, A = aa, D = DD, d = dd, R = RR, B = BB,
                 U = uu, C = CC, C = cc, Q = QQ)
## list with model inits
init list \leftarrow list(x0 = matrix(rep(0, mm), mm, 1))
## list with model control parameters
con list <- list(maxit = 3000, allow.degen = TRUE)</pre>
```

Fitting the model.

```
## Success! abstol and log-log tests passed at 210 iterations.
## Alert: conv.test.slope.tol is 0.5.
## Test with smaller values (<0.1) to ensure convergence.
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 210 iterations.
## Log-likelihood: -5257.849
## AIC: 10565.7 AICc: 10566.4
##
##
                            Estimate
## Z.z11
                              0.0756
## Z.z21
                              5.0930
## Z.z31
                              3.3298
## Z.z41
                              3.8810
## Z.z51
                              2.1641
## Z.61
                              0.1459
## Z.z71
                              0.4010
## Z.z81
                              1.4719
## Z.z22
                              4.6927
## Z.z32
                              3.0681
## Z.z42
                              3.5761
## Z.z52
                              1.9940
## Z.z62
                              0.1344
## Z.z72
                              0.3695
## Z.z82
                              1.3563
## R.(PM2.5.s, PM2.5.s) 5226.6293
## R.(NO.s, NO.s)
                            22.6009
## R.(NO2.s, NO2.s)
                            17.5011
## R.(NOx.s,NOx.s)
                            53.4017
## R.(NH3.s,NH3.s)
                            22.2160
## R.(CO.s,CO.s)
                             0.1601
## R.(Benzene.s, Benzene.s)
                             0.0817
## R.(Toluene.s, Toluene.s)
                             9.0965
                            -46.3994
## x0.X1
## x0.X2
                             45.2436
## Initial states (x0) defined at t=0
## Standard errors have not been calculated.
## Use MARSSparamCIs to compute CIs and bias estimates.
```

```
dfa_pred_seasonal2 <- t(dfa_seasonal2$states)
print(head(dfa_pred_seasonal2))</pre>
```

```
## X1 X2

## [1,] -46.39365 45.23854

## [2,] -46.25078 45.35902

## [3,] -46.28142 45.31876

## [4,] -45.95916 45.60277

## [5,] -46.24403 45.32631

## [6,] -46.21545 45.33755
```

end DFA on seasonal data

Experiments on dimension = 6

Building Im on PCA of original data.

```
df pred pca <- as.data.frame(pca orig pred[, 1:6])</pre>
df_pred_pca_train <- as.data.frame(df_pred_pca[1:mid, ])</pre>
df pred pca test <- as.data.frame(df pred pca[(mid+1):en, ])</pre>
lm.2 = lm(df aqi train ~ df pred pca train[, 1] + df pred pca train[, 2] + df pred pc
a train[, 3] + df pred pca train[, 4] + df pred pca train[, 5] + df pred pca train[,
61)
yhat.2 = predict(lm.2, data.frame(df pred pca train))
train.err.2.m = mean((y-yhat.2)^2)
y0hat.2 = predict(lm.2, data.frame(df pred pca test))
## Warning: 'newdata' had 96 rows but variables found have 165 rows
test.err.2.m = mean((y0-y0hat.2)^2)
## Warning in y0 - y0hat.2: longer object length is not a multiple of shorter
## object length
train.err.2.m / train.err.1
## [1] 1.329139
test.err.2.m/ test.err.1
## [1] 0.9897094
```

Building Im on DFA of original data.

```
df_pred_dfa <- as.data.frame(dfa_pred_orig6[, 1:6])
df_pred_dfa_train <- as.data.frame(df_pred_dfa[1:mid, ])
df_pred_dfa_test <- as.data.frame(df_pred_dfa[(mid+1):en, ])

lm.3 = lm(df_aqi_train ~ df_pred_dfa_train[, 1] + df_pred_dfa_train[, 2] + df_pred_dfa_train[, 3] + df_pred_dfa_train[, 4] + df_pred_dfa_train[, 5] + df_pred_dfa_train[, 6])

yhat.3 = predict(lm.3, data.frame(df_pred_dfa_train))
train.err.3.m = mean((y-yhat.3)^2)
yOhat.3 = predict(lm.3, data.frame(df_pred_dfa_test))

## Warning: 'newdata' had 96 rows but variables found have 165 rows

test.err.3.m = mean((y0-yOhat.3)^2)

## Warning in y0 - yOhat.3: longer object length is not a multiple of shorter
## object length

train.err.3.m / train.err.1

## [1] 1.851442</pre>
```

```
test.err.3.m/ test.err.1
```

```
## [1] 0.9507366
```

Building Im on GLRM of original data.

```
df_pred_glrm <- as.data.frame(glrm_orig6_pred[, 1:6])
df_pred_glrm_train <- as.data.frame(df_pred_glrm[1:mid, ])
df_pred_glrm_test <- as.data.frame(df_pred_glrm[(mid+1):en, ])</pre>
```

```
lm.4 = lm(df_aqi_train ~ df_pred_glrm_train[, 1] + df_pred_glrm_train[, 2] + df_pred_
glrm_train[, 3] + df_pred_glrm_train[, 4] + df_pred_glrm_train[, 5] + df_pred_glrm_tr
ain[, 6])

yhat.4 = predict(lm.4, data.frame(df_pred_glrm_train))
train.err.4.m = mean((y-yhat.4)^2)
y0hat.4 = predict(lm.4, data.frame(df_pred_glrm_test))
```

```
## Warning: 'newdata' had 96 rows but variables found have 165 rows
```

29-04-2021, 13:22

[1] 1.561224

[1] 0.9492149

49 of 54

test.err.5.m/ test.err.1

```
test.err.4.m = mean((y0-y0hat.4)^2)
 ## Warning in y0 - y0hat.4: longer object length is not a multiple of shorter
 ## object length
 train.err.4.m / train.err.1
 ## [1] 1.434882
 test.err.4.m/ test.err.1
 ## [1] 0.9552111
Building mixed model tdim = 1, sdim = 3, rdim = 2
 df_pred_t1_s3_r2 <- bind_cols(as.data.frame(glrm_trend1_pred[, 1:1]), as.data.frame(p
 ca random pred[, 1:2]), as.data.frame(dfa pred seasonal3))
 df pred t1 s3 r2 train <- as.data.frame(df pred t1 s3 r2[1:mid, ])</pre>
 df pred t1 s3 r2 test <- as.data.frame(df pred t1 s3 r2[(mid+1):en, ])</pre>
 lm.5 = lm(df aqi train \sim df pred t1 s3 r2 train[, 1] + df pred t1 s3 r2 train[, 2] +
 df pred t1 s3 r2 train[, 3] + df pred t1 s3 r2 train[, 4] + df pred t1 s3 r2 train[,
 5] + df_pred_t1_s3_r2_train[, 6])
 yhat.5 = predict(lm.5, data.frame(df pred t1 s3 r2 train))
 train.err.5.m = mean((y-yhat.5)^2)
 y0hat.5 = predict(lm.5, data.frame(df pred t1 s3 r2 test))
 ## Warning: 'newdata' had 96 rows but variables found have 165 rows
 test.err.5.m = mean((y0-y0hat.5)^2)
 ## Warning in y0 - y0hat.5: longer object length is not a multiple of shorter
 ## object length
 train.err.5.m / train.err.1
```

Building mixed model tdim = 2, sdim = 2, rdim = 2

```
df pred t2 s2 r2 <- bind cols(as.data.frame(glrm trend2 pred[, 1:2]), as.data.frame(p
ca random pred[, 1:2]), as.data.frame(dfa pred seasonal2))
df pred t2 s2 r2 train <- as.data.frame(df pred t2 s2 r2[1:mid, ])</pre>
df_pred_t2_s2_r2_test <- as.data.frame(df_pred_t2_s2_r2[(mid+1):en, ])</pre>
lm.6 = lm(df_aqi_train ~ df_pred_t2_s2_r2_train[, 1] + df_pred_t2_s2_r2_train[, 2] +
df pred t2 s2 r2 train[, 3] + df pred t2 s2 r2 train[, 4] + df pred t2 s2 r2 train[,
5] + df_pred_t2_s2_r2_train[, 6])
yhat.6 = predict(lm.6, data.frame(df_pred_t1_s3_r2_train))
## Warning in predict.lm(lm.6, data.frame(df pred t1 s3 r2 train)): prediction from
## a rank-deficient fit may be misleading
train.err.6.m = mean((y-yhat.6)^2)
y0hat.6 = predict(lm.6, data.frame(df pred t2 s2 r2 test))
## Warning: 'newdata' had 96 rows but variables found have 165 rows
## Warning in predict.lm(lm.6, data.frame(df_pred_t2_s2_r2_test)): prediction from
## a rank-deficient fit may be misleading
test.err.6.m = mean((y0-y0hat.6)^2)
## Warning in y0 - y0hat.6: longer object length is not a multiple of shorter
## object length
train.err.6.m / train.err.1
## [1] 1.532629
test.err.6.m/ test.err.1
## [1] 0.97918
```

end Experiments on dimension = 6

Experiments on dimension = 5

Building Im on PCA of original data.

```
df_pred_pca <- as.data.frame(pca_orig_pred[, 1:5])</pre>
df_pred_pca_train <- as.data.frame(df_pred_pca[1:mid, ])</pre>
df pred pca test <- as.data.frame(df pred pca[(mid+1):en, ])</pre>
lm.11 = lm(df aqi train ~ df pred pca train[, 1] + df pred pca train[, 2] + df pred p
ca train[, 3] + df pred pca train[, 4] + df pred pca train[, 5])
yhat.11 = predict(lm.11, data.frame(df pred pca train))
train.err.11.m = mean((y-yhat.11)^2)
y0hat.11 = predict(lm.11, data.frame(df pred pca test))
## Warning: 'newdata' had 96 rows but variables found have 165 rows
test.err.11.m = mean((y0-y0hat.11)^2)
## Warning in y0 - y0hat.11: longer object length is not a multiple of shorter
## object length
train.err.11.m / train.err.1
## [1] 1.727229
test.err.11.m/ test.err.1
## [1] 0.9574493
```

Building Im on DFA of original data.

```
df_pred_dfa <- as.data.frame(dfa_pred_orig5[, 1:5])
df_pred_dfa_train <- as.data.frame(df_pred_dfa[1:mid, ])
df_pred_dfa_test <- as.data.frame(df_pred_dfa[(mid+1):en, ])</pre>
```

```
lm.12 = lm(df_aqi_train ~ df_pred_dfa_train[, 1] + df_pred_dfa_train[, 2] + df_pred_d
fa_train[, 3] + df_pred_dfa_train[, 4] + df_pred_dfa_train[, 5])

yhat.12 = predict(lm.12, data.frame(df_pred_dfa_train))
train.err.12.m = mean((y-yhat.12)^2)
y0hat.12 = predict(lm.12, data.frame(df_pred_dfa_test))
```

Warning: 'newdata' had 96 rows but variables found have 165 rows

```
test.err.12.m = mean((y0-y0hat.12)^2)
```

```
## Warning in y0 - y0hat.12: longer object length is not a multiple of shorter
 ## object length
 train.err.12.m / train.err.1
 ## [1] 1.888433
 test.err.12.m/ test.err.1
 ## [1] 0.9510507
Building Im on GLRM of original data.
 df pred glrm <- as.data.frame(glrm orig5 pred[, 1:5])</pre>
 df pred glrm train <- as.data.frame(df pred glrm[1:mid, ])</pre>
 df pred glrm test <- as.data.frame(df pred glrm[(mid+1):en, ])</pre>
 lm.13 = lm(df aqi train ~ df pred glrm train[, 1] + df pred glrm train[, 2] + df pred
 _glrm_train[, 3] + df_pred_glrm_train[, 4] + df_pred_glrm_train[, 5])
 yhat.13 = predict(lm.13, data.frame(df pred glrm train))
 train.err.13.m = mean((y-yhat.13)^2)
 y0hat.13 = predict(lm.13, data.frame(df pred glrm test))
 ## Warning: 'newdata' had 96 rows but variables found have 165 rows
 test.err.13.m = mean((y0-y0hat.13)^2)
 ## Warning in y0 - y0hat.13: longer object length is not a multiple of shorter
 ## object length
 train.err.13.m / train.err.1
 ## [1] 1.727255
 test.err.13.m/ test.err.1
 ## [1] 0.9574462
```

Building mixed model tdim = 1, sdim = 3, rdim = 1

```
df_pred_t1_s3_r1 <- bind_cols(as.data.frame(glrm_trend1_pred[, 1:1]), as.data.frame(p
    ca_random_pred[, 1:1]), as.data.frame(dfa_pred_seasonal3))
df_pred_t1_s3_r1_train <- as.data.frame(df_pred_t1_s3_r1[1:mid, ])
df_pred_t1_s3_r1_test <- as.data.frame(df_pred_t1_s3_r1[(mid+1):en, ])

lm.14 = lm(df_aqi_train ~ df_pred_t1_s3_r1_train[, 1] + df_pred_t1_s3_r1_train[, 2] +
df_pred_t1_s3_r1_train[, 3] + df_pred_t1_s3_r1_train[, 4] + df_pred_t1_s3_r1_train[, 5])

yhat.14 = predict(lm.14, data.frame(df_pred_t1_s3_r1_train))
train.err.14.m = mean((y-yhat.14)^2)
y0hat.14 = predict(lm.14, data.frame(df_pred_t1_s3_r1_test))</pre>
```

```
## Warning: 'newdata' had 96 rows but variables found have 165 rows
```

```
test.err.14.m = mean((y0-y0hat.14)^2)
```

```
## Warning in y0 - y0hat.14: longer object length is not a multiple of shorter
## object length
```

```
train.err.14.m / train.err.1
```

```
## [1] 1.662598
```

```
test.err.14.m/ test.err.1
```

```
## [1] 0.9458615
```

Building mixed model tdim = 1, sdim = 2, rdim = 2

```
df_pred_t1_s2_r2 <- bind_cols(as.data.frame(glrm_trend1_pred[, 1:1]), as.data.frame(p
ca_random_pred[, 1:2]), as.data.frame(dfa_pred_seasonal2))
df_pred_t1_s2_r2_train <- as.data.frame(df_pred_t1_s2_r2[1:mid, ])
df_pred_t1_s2_r2_test <- as.data.frame(df_pred_t1_s2_r2[(mid+1):en, ])

lm.15 = lm(df_aqi_train ~ df_pred_t1_s2_r2_train[, 1] + df_pred_t1_s2_r2_train[, 2] +
df_pred_t1_s2_r2_train[, 3] + df_pred_t1_s2_r2_train[, 4] + df_pred_t1_s2_r2_train[, 5])

yhat.15 = predict(lm.15, data.frame(df_pred_t1_s3_r2_train))
train.err.15.m = mean((y-yhat.15)^2)
y0hat.15 = predict(lm.15, data.frame(df_pred_t1_s2_r2_test))</pre>
```

```
## Warning: 'newdata' had 96 rows but variables found have 165 rows
```

```
test.err.15.m = mean((y0-y0hat.15)^2)

## Warning in y0 - y0hat.15: longer object length is not a multiple of shorter
## object length

train.err.15.m / train.err.1

## [1] 1.560261

test.err.15.m/ test.err.1

## [1] 0.9653939
```

end Experiments on dimension = 5