

Protocolos.

Conjunto de normas, convenciones y procedimientos que regulan la comunicación de datos y el comportamiento de procesos entre diferentes equipos, bien totalmente o bien en alguno de sus aspectos.

- Para establecer las normas que afectan a gran variedad de elementos implicados en la comunicación, se ha decidido dividir el problema en otros más pequeños.
- Determinándose subconjuntos denominados "Niveles de Comunicación", ó "Capas".

Protocolos.

- Requerimientos y convenciones de cada nivel se abordan de forma independiente.
- Las modificaciones realizadas en un nivel no afectan a otro nivel.
- Organismos que dictan las normas.
 - ISO (International Standard Organization) a escala mundial.
 - CCITT (Consultive Committee for International Telephone and Telegraph) ambito europeo.

Arquitectura de Red.

 La información que se desplaza por una red recibe el nombre de datos o paquete.

Origen

Destino

Paquete de Datos.

Modelos: OSI y TCP/IP

- Se dividen en capas.
- Difieren en la cantidad y la función de las capas.
- A medida que los datos atraviesan las capas, cada capa agrega información. (posibilita una comunicación eficaz en su correspondiente par de la otra capa).
- Ventajas de un modelo en capas:
 - Reduce la complejidad
 - Estandariza Interfaces (Conexión entre dos componentes de "hardware" entre dos aplicaciones o entre un usuario y una aplicación).
 - Facilita la Ingeniería modular (construcción en módulos)
 - Asegura una tecnología inter-operable
 - Acelera la enseñanza y el aprendizaje

Modelo de referencia: OSI-ISO (Open System Interconnetion)

- Lanzado en 1984 por la ISO.
- No es algo tangible.
- Es un marco conceptual que especifica que función deberá realizarse en cada capa.
- Es la manera de imaginar como viaja la información a través de las redes.
- Está compuesto por 7 siete capas.
- Cada capa tiene su protocolo "protocolo de capa".

Modelo de referencia: OSI-ISO (Open System Interconnetion)

- 1. Física: Es la que conecta el computador con el medio de comunicaciones
 - a. Define especificaciones eléctricas, mecánicas, de procedimiento y funcionales sobre el enlace.
 - b. Elementos: cables, conectores, voltajes.
 - c. Señales y medios.

- 2. Enlace de Datos: estable, mantiene y activa el enlace entre el equipo emisor y receptor.
 - a. Proporciona un transito confiable de datos.
 - b. Se ocupa
 - del direccionamiento físico,
 - de la topología de red
 - de la detección de errores.
 - c. Acceso a los medios.

- 3. Red: Establece el camino o ruta que los paquetes deben seguir. Utiliza la dirección física del equipo.
 - a. dirección de red
 - b. Determinación de la mejor ruta.
 - c. Selección de ruta.

- 4. Transporte: Su función es lograr un transporte sin errores entre 2 hosts.
 - a. segmenta los datos del hosts remitente, los reordena en el hosts receptor.
 - b. Conexión de extremo a extremo
 - c. Confiabilidad en el transporte de datos
 - d. Establece, mantiene y determina circuitos virtuales
 - e. Detección de fallas y control de flujo de información de recuperación
 - f. Control y confiabilidad.

- 5. Sesión: Establece, gestiona, y termina sesiones entre hosts.
 - a. Sincroniza el diálogo y administra el intercambio de datos.
 - b. Verifica (de ser necesario) la autenticidad del usuario y el tipo de diálogo (simplex, half-duplex, dúplex).
 - c. Comunicación entre hosts.
 - d. Establece, administra y termina sesiones entre aplicaciones.
 - e. Diálogos y conversaciones.

- 6. Presentación: Se ocupa de la sintaxis de los datos la conversión de códigos, la compresión y descompresión de la información.
 - a. Representación de datos
 - b. Garantiza la legibilidad de los datos.
 - c. Formato de datos
 - d. Negocia la sintaxis de transferencia de datos para la capa de aplicación.
 - e. Formato de datos

- 7. Aplicación: genera o recibe la información procesada por los usuarios.
 - a. Es la capa de aplicación más cercana al usuario.
 - b. No proporciona servicio a ninguna otra capa OSI.
 - c. Facilita la transferencia de archivos y mensajes de correo.
 - d. Permite el acceso a Base de Datos remotas.
 - e. Navegadores.

Protocolo TCP/IP

(Transfer Control Protocol / Interconection Protocol)

- Es el lenguaje establecido para la Red Internet.
 También denominado IP (Internet Protocol).
- Esta familia ó suite de protocolos genera un modelo llamado Internet.
 - Combina las funciones de la capa de presentación y de sesión en la capa de aplicación.
 - Combina la capa de enlace de datos y la capa física en la capa de Acceso a red.
 - ✓ Proporciona una conexión fiable.
 - ✓ Interconexión de redes de diferentes arquitecturas.

Protocolo TCP/IP

(Transfer Control Protocol / Interconection Protocol)

IP Dinámicas: cada vez que un dispositivo se conecta a la red se le asignará una IP diferente.

IP Estáticas: no cambian con el tiempo. Es asignada por el administrador de la red en forma manual.

Los servidores de correo, DNS, FTP públicos, y servidores de páginas web deben contar con una dirección IP fija o estática. Las direcciones también se pueden clasificar en públicas ó privadas, según quién las administra y el ámbito en que se utilizan. Las direcciones privadas son comunes en esquemas LAN.

Direcciones IIP

- Es un número de 32 bits que está asociado a un ordenador cuando se conecta a Internet.
 - Está dividido en 2 partes.
 - a. Dirección de red (asignada por el NIC)
 - b. Dirección de host (asignada por el Adm de red).
 - Los 32 bits de una dirección IP se agrupan en 4 bytes de 8 bits cada uno. (octetos)
 - Las direcciones se representan con números decimales separados por un punto. (máximo representable es 255)

Clases de Redes.

 Depende entre otras cosas del número de máquinas que forman la red.

 Existen clases D, E y F experimentales o se reservan para el futuro.

Clases de Redes.

Ejemplo:

```
Valor de la IP en Decimal
      Valor de la IP en Binario
               32 bits
                                       200 . 127. 29 . 170
Octeto 1 Octeto 2 Octeto 3 Octeto 4
              32 bits
                                        10 . 190. 16 . 100
00001010 . 10111110 . 00010000 . 01100100
                   Octeto 3
         Octeto 2
                                      Octeto 1 Octeto 2 Octeto 3 Octeto 4
               32 bits
                                       172 . 118. 200 .
10101100 . 01110110 . 11001000 . 00000001
                                             Octeto 2 Octeto 3 Octeto 4
```

 Existen clases D, E y F experimentales o se reservan para el futuro.

Clases de Redes.

Clase	Bits de mayor peso	1er Intervalo de dir. De octeto	Cantidad de dir de redes	Cantidad de dir de hosts.
Α	0	0126	2 ⁷	2 ²⁴
В	10	128191	2 ¹⁶	2 ¹⁶
С	110	192223	28	2 ²⁴

Direcciones especiales:

 Difusión dirigida (broadcast): permite direccionar a todas las máquinas dentro de la red especificada.

Dirección de red	Todos unos.

 Loopback: para realizar pruebas y comunicaciones entre procesos de un misma red.

127

Cualquier combinación

Direcciones utilizadas en Internet.

- Establece una comunicación
- Se utiliza un nombre
- · Se transforma a una dirección IP.
- Ese nombre consta de 2 partes:
 - Identificación del usuario.
 - Nombre de la máquina. Dominio.
 - Se divide en subdominio.

Subdominio de 1er nivel

Subdominio de 1er nivel Organizaciones

Subdominio de 2do nivel Geográficos

Subdominios de 1er nivel.

Organizaci ones.	Significado
.com	Comercial
.edu	Educativa
.gov	Gobierno
.int	Internacional
.mil	Militar
.net	De redes
.org	No lucrativa

Ejemplos de direcciones:

unlam.edu.ar google.com.ar afip.gov.ar

Geográficos	Significado
.ar	Argentina
.at	Austria
.au	Australia
.br	Brasil
.ca	Canadá
.cl	Chile
.de	Alemania
.es	España
.fr	Francia
.uk	Reino Unido

- Cable de par no trenzado
- Cable de par trenzado blindado (STP)
- Cable de par trenzado no blindado (UDP)
- Cable coaxial.
- ADSL
 - (Asymetric Digital Subscriber Line) Línea de abonado digital asimétrica. Conecta nuestro domicilio con la central telefónica.
- Fibra óptica.
 - No transporta información como señales eléctricas, utiliza variaciones de un haz de luz a través de una fibra de vidrio.

Vía satélite

Enlace de microondas

- Línea de vista física entre antenas.
- Máx distancia de enlace aprox. 50 Km.

Luz infrarroja

- Transmisión de información muy alta.
- Emisión /recepción de un haz de luz.
- Contacto visual en línea recta.
- Pueden usarse espejos para modificar la dirección de la luz transmitida.
- Enlace de radio
 - Tx mediante ondas de radio (estaciones terrestres)
- Wireless
 - Tecnología inalámbrica.
 - No posee mecanismos reales que garanticen la calidad del servicio
 - Tx con baja potencia.

- Wimax
 - Tecnología más sofisticada
 - Su función es complementar a WI-FI para cubrir mayores distancias.
- Convergencia móvil fija.
 - Es la unión homogénea de servicios de:
 - Telefonía móvil
 - Accesos de Banda Ancha
 - · LAN inalámbrica.

Hubs (concentradores)

- Interconecta los hosts dentro de una red.
- Muchos puertos de entrada y de salida.
- Centraliza conexiones
 - Activos: funciones de amplificación y repetición
 - Pasivos: simples armarios de conexión.

Bridges (puentes)

- · Conectan 2 ó más redes entres sí.
- Deben utilizar el mismo protocolo de red.
- Puede segmentar una red en subredes.
- Amplían extensiones de redes.
- Trabajan en el nivel de enlace.

Repetidores

- Dispositivo que se usa para regenerar la señal
- Regenerar señales analógicas o digitales.
- No toma decisiones inteligentes sobre el envío de paquetes.
- Conectan a nivel físico 2 intranets o segmentos
- Permiten resolver problemas de distancia

- Gateways (pasarelas)
 - Permiten interconectar redes de diferentes arquitecturas.
 - Distintas topologías y protocolos.
 - Trabaja a nivel de aplicación (OSI)
 - Pueden traducir información de una aplicación a otra.
 - Ej: pasarelas de correo electrónico.

Switchs (enlazadores)

- Enlazan redes LAN separadas
- Proveen un filtrado de paquetes entre ellas.
- Diferencia entre un puente y un switch, es que un switch no convierte formatos de tx de datos.
- Actúa como un bridge multi-puerto con filtrado de paquetes.
- · Cada puerto posee un ancho de banda dedicado.

Resumiendo.

САРА	FUNCIÓN	DISPOSITIVO
1. Física	Conecta al computador con el medio	HUB, REPETIDOR
2. Enlace	Establece, mantiene y desactiva el enlace entre el equipo fuente y colector.	BRIDGES, SWITCH
3. Red	Establece el camino o ruta de los paquetes. Utiliza la dirección física del equipo.	ROUTER
4. Transporte	Lograr un transporte sin errores entre 2 hosts.	
5. Sesión	Establece, gestiona y termina sesiones entre hosts.	
6. Presentación	Se ocupa de la sintaxis de datos, conversión de códigos, compresión y descompresión de datos.	
7. Aplicación	Interactúa con el equipo terminal procesada o recibida por el usuario.	GATEWAY

- Topología Física.
- Se ocupa de la forma en la que el cableado se

realiza en una red.

- Topología en bus
 - No existen elementos centrales
 - Fácil de instalar y mantener.
- En anillo
 - Utilizan el acceso al medio (paso testigo)
 - Se rompe el cable se paraliza la red.
 - Difícil de instalar
 - Requiere mantenimiento.

- Topología Física.
 - · En estrella.
 - Utiliza un concentrador (hub)
 - Consulta permanente para saber si ha llegado un mensaje (pooling)
 - Si se rompe un cable solo se pierde la conexión de ese nodo.
 - Fácil de detectar y localiza un Problema en la red.

- Topología Lógica.
- Trata la forma de conseguir el funcionamiento de una topología cableando la red de una forma más eficiente.
 - Anillo estrella.
 - Se instala una configuración anillo de forma lógica, de forma física se utiliza configuración estrella. (A simple vista la red parece estrella pero internamente funciona como anillo.)
 - Cuando el dispositivo central (concentrador o servidor de red) detecta un que un nodo se desconecta, puentea su entra y su salida. (cierra el anillo).

- Topología Lógica.
 - Bus estrella.
 - Es en realidad una estrella que funciona como si fuese un bus.
 - Concentrador pasivo (hub) como punto central.