(11) EP 0 968 291 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:28.01.2004 Bulletin 2004/05
- (21) Application number: 98911392.3
- (22) Date of filing: 20.02.1998

- (51) Int Cl.7: **C12N 15/13**, C07K 19/00, A61K 47/48, C07K 16/24, C12N 15/85, C12N 5/10
- (86) International application number: PCT/US1998/003337
- (87) International publication number: WO 1998/037200 (27.08.1998 Gazette 1998/34)

(54) ANTIBODY FRAGMENT-POLYMER CONJUGATES

ANTIKÖRPERFRAGMENT-POLYMERKONJUGATE
CONJUGUES DE POLYMERES ET DE FRAGMENTS D'ANTICORPS

- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: **21.02.1997 US 804444 22.01.1998 US 12116**
- (43) Date of publication of application: **05.01.2000 Bulletin 2000/01**
- (60) Divisional application: 03019832.9
- (73) Proprietor: Genentech, Inc. South San Francisco, CA 94080-4990 (US)
- (72) Inventors:
 - HSEI, Vanessa San Jose, CA 95129 (US)
 - KOUMENIS, Iphigenia, Apartment 6
 Palo Alto, CA 94306 (US)
 - LEONG, Steven, R. Berkeley, CA 94707 (US)
 - PRESTA, Leonard, G. San Francisco, CA 94109 (US)
 - SHAHROKH, Zahra San Francisco, CA 94116 (US)
 - ZAPATA, Gerardo, A.
 Foster City, CA 94404 (US)

- (74) Representative: Kiddle, Simon John et al Mewburn Ellis, York House,
 23 Kingsway
 London WC2B 6HP (GB)
- (56) References cited: WO-A-95/23865
 - N. KATRE: "The conjugation of proteins with polyethylene glycol and other polymers. Altering properties of proteins to enhance their therapeutic potential." ADVANCED DRUG DELIVERY REVIEWS, vol. 10, no. 1, 1993, pages 91-114, XP002084717 Amsterdam, The Netherlands
 - E. ENOAMOOQUAYE ET AL.: "Altered biodistribution of an antibody-enzyme conjugate modified with polyethylene-glycol." BRITISH JOURNAL OF CANCER, vol. 73, no. 11, June 1996, pages 1323-1327, XP002084718 London, GB
 - E. MAINOLFI ET AL. 'REDUCTION OF IMMUNOGENICITY OF A MURINE ANTI-ICAM-1 ANTIBODY THROUGH PEGYLATION CHEMISTRY.': "In: THE 9TH INTERNATIONAL CONGRESS OF IMMUNOLOGY (abstract book), " July 1995, SAN FRANCISCO, CA, USA XP002084720 see page 885, abstract 5247
 - C. CUNNINGHAM-RUNDLES ET AL.: "Biological activities of polyethylene-glycol immunoglobulin conjugates." JOURNAL OF IMMUNOLOGICAL METHODS, vol. 152, no. 2, 10 August 1992, pages 177-190, XP000471626 Amsterdam, The Netherlands

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

• C. DELGADO ET AL.: "Enhanced tumour specificity of an anti-carcinoembryonic antigen Fab' fragment by poly(ethylene glycol) (PEG) modification." BRITISH JOURNAL OF CANCER, vol. 73, no. 2, January 1996, pages 175-182, XP002084719 London, GB

Description

FIELD OF THE INVENTION

This application relates to the field of antibody fragments derivatized with polymers, and in particular to the use of such derivatization to increase the circulation half-lives of antibody fragment-polymer conjugates.

BACKGROUND

[0002] Modification of proteins with polyethylene glycol ("PEGylation") has the potential to increase residence time and reduce immunogenicity in vivo. For example, Knauf et al., J. Biol. Chem., 263: 15064-15070 (1988) reported a study of the pharmacodynamic behavior in rats of various polyoxylated glycerol and polyethylene glycol modified species of interleukin-2. Despite the known advantage of PEGylation, PEGylated proteins have not been widely exploited for clinical applications. In the case of antibody fragments, PEGylation has not been shown to extend serum half-life to useful levels. Delgado et al., Br. J. Cancer, 73: 175-182 (1996), Kitamura et al., Cancer Res., 51: 4310-4315 (1991), Kitamura et al., Biochem. Biophys. Res. Comm., 171: 1387-1394 (1990), and Pedley et al., Br. J. Cancer, 70: 1126-1130 (1994) reported studies characterizing blood clearance and tissue uptake of certain anti-tumor antigen antibodies or antibody fragments derivatized with low molecular weight (5 kD) PEG. Zapata et al., FASEB J., 9: A 1479 (1995) reported that low molecular weight (5 or 10 kD) PEG attached to a sulfhydryl group in the hinge region of a Fab' fragment reduced clearance compared to the parental Fab' molecule.

[0003] Interleukin-8 (IL-8) is neutrophil chemotactic peptide secreted by a variety of cells in response to inflammatory mediators (for a review see Hebert et al. <u>Cancer Investigation</u> 11(6):743 (1993)). IL-8 can play an important role in the pathogenesis of inflammatory disorders, such as adult respiratory distress syndrome (ARDS), septic shock, and multiple organ failure. Immune therapy for such inflammatory disorders can include treatment of an affected patient with anti-IL-8 antibodies.

[0004] Sticherling et al. (J. Immunol. 143:1628 (1989)) disclose the production and characterization of four monoclonal antibodies against IL-8. WO 92/04372, published March 19, 1992, discloses polyclonal antibodies which react with the receptor-interacting site of IL-8 and peptide analogs of IL-8, along with the use of such antibodies to prevent an inflammatory response in patients. St. John et al. (Chest 103:932 (1993)) review immune therapy for ARDS, septic shock, and multiple organ failure, including the potential therapeutic use of anti-IL-8 antibodies. Sekido et al. (Nature 365:654 (1993)) disclose the prevention of lung reperfusion injury in rabbits by a monoclonal antibody against IL-8. Mulligan et al. (J. Immunol. 150:5585 (1993)), disclose protective effects of a murine monoclonal antibody to human IL-8 in inflammatory lung injury in rats.

[0005] WO 95/23865 (International Application No. PCT/US95/02589 published September 8, 1995) demonstrates that anti-IL-8 monoclonal antibodies can be used therapeutically in the treatment of other inflammatory disorders, such as bacterial pneumonias and inflammatory bowel disease.

[0006] Anti-IL-8 antibodies are additionally useful as reagents for assaying IL-8. For example, Sticherling *et al.* (Arch. Dermatol. Res. 284:82 (1992)), disclose the use of anti-IL-8 monoclonal antibodies as reagents in immunohistochemical studies. Ko *et al.* (J. Immunol. Methods 149:227 (1992)) disclose the use of anti-IL-8 monoclonal antibodies as reagents in an enzyme-linked immunoabsorbent assay (ELISA) for IL-8.

SUMMARY OF THE INVENTION

[0007] The present invention provides a conjugate consisting essentially of one or more antibody fragments covalently attached to one or more polymer molecules as set out in claim 1.

BRIEF DESCRIPTION OF THE FIGURES

[8000]

50

55

35

Figure 1 is a graph depicting the blocking of IL-8 mediated elastase release from neutrophils by anti-IL-8 monoclonal antibody 5.12.14.

Figure 2 is a graph depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils by unlabeled IL-8.

Figure 3 demonstrates that a isotype matched negative control Fab (denoted as "4D5 Fab") does not inhibit the binding of ¹²⁵I-IL-8 to human neutrophils.

Figure 4 is a graph depicting the inhibition of binding of 125 I-IL-8 to human neutrophils by chimeric 5.12.14 Fab with an average IC₅₀ of 1.6 nM.

Figure 5 is a graph depicting the inhibition of binding of 125I-IL-8 to human neutrophils by chimeric 6G.4.25 Fab

with an average IC₅₀ of 7.5 nM.

5

10

15

20

25

30

35

40

45

50

55

Figure 6 demonstrates the inhibition of human IL-8 mediated neutrophil chemotaxis by chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab.

Figure 7 demonstrates the relative abilities of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit rabbit IL-8 mediated neutrophil chemotaxis.

Figure 8 depicts the stimulation of elastase release from human neutrophils by various concentrations of human and rabbit IL-8. The relative extent of elastase release was quantitated by measurement of absorbance at 405 nm. The data represent mean ± SEM of triplicate samples.

Figure 9 is a graph depicting the ability of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit elastase release from human neutrophils stimulated by human IL-8. The results were normalized to reflect the percentage of elastase release elicited by 100 nM IL-8 alone. The data represent the mean \pm SEM of three separate experiments performed on different days with different blood donors. IC₅₀ values were calculated by four parameter fit.

Figure 10 is a graph depicting the relative abilities of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit elastase release from human neutrophils stimulated by rabbit IL-8. The results were normalized to reflect the percentage of elastase release elicited by 100 nM IL-8 alone. The data represent the mean \pm SEM of three separate experiments performed on different days with different blood donors. IC₅₀ values were calculated by four parameter fit.

Figures 11A-11J are a set of graphs depicting the following parameters in a rabbit ulcerative colitis model: Figure 11A depicts myeloperoxidase levels in tissue; Figure 11B depicts IL-8 levels in tissue; Figure 11C depicts colon weight; Figure 11D depicts gross inflammation; Figure 11E depicts edema; Figure 11F depicts extent of necrosis; Figure 11G depicts severity of necrosis; Figure 11H depicts neutrophil margination; Figure 11J depicts mononuclear infiltration.

Figure 12 is a graph depicting the effect of anti-IL-8 monoclonal antibody treatment on the number of neutrophils in bronchoalveolar lavage (BAL) fluid in animals infected with <u>Streptococcus pneumoniae</u>, <u>Escherichia coli</u>, or <u>Pseudomonas aeruginosa</u>. Treatment with 6G4.2.5 significantly reduced the number of neutrophils present in the BAL fluid compared to animals treated with isotype control mouse IgG (Figure 12).

Figure 13 depicts the DNA sequences (SEQ ID NOS: 1-6) of three primers designed for each of the light and heavy chains. Multiple primers were designed in order to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis for cloning the variable light and heavy regions of monoclonal antibody 5.12.14.

Figure 14 depicts the DNA sequences (SEQ ID NOS: 7-10) of one forward primer and one reverse primer for the 5.12.14 light chain variable region amplification.

Figure 15 depicts the DNA sequences (SEQ ID NOS: 11-15) of one forward primer and one reverse primer for the 5.12.14 heavy chain variable region amplification.

Figure 16 depicts the DNA sequence (SEQ ID NO: 16) and the amino acid sequence (SEQ ID NO: 17) of the 5.12.14 light chain variable region and partial murine constant light region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Important restriction sites are indicated in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids I to 109. The partial murine constant light region is amino acids 110 to 123 (in italics)

Figure 17 depicts the DNA sequence (SEQ ID NO: 18) and the amino acid sequence (SEQ ID NO: 19) of the 5.12.14 heavy chain variable region and partial murine constant heavy region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Important restriction sites are indicated in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 120. The partial murine constant heavy region is amino acids 121 to 130. Figure 18 depicts the DNA sequences (SEQ ID NOS: 20-23) of amplification primers used to convert murine light

Figure 18 depicts the DNA sequences (SEQ ID NOS: 20-23) of amplification primers used to convert murine light and heavy chain constant region residues to their human equivalents.

Figure 19 depicts the DNA sequence (SEQ ID NO: 24) and the amino acid sequence (SEQ ID NO: 25) for the 5.12.14 light chain variable region and the human IgGI light chain constant region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 109. The human constant light region is amino acids 110 to 215. Figures 20A-20B depict the DNA sequence (SEQ ID NO: 26) and the amino acid sequence (SEQ ID NO: 27) for the 5.12.14 heavy chain variable region and the heavy chain constant region of human IgG1. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 120. The human constant heavy region is amino acids 121 to 229.

Figure 21 depicts the DNA sequences (SEQ ID NOS: 1-6) of three primers designed for each of the light and heavy

chains. Multiple primers were designed in order to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis for cloning the variable light and heavy regions of monoclonal antibody 6G4.2.5. Figure 22 depicts the DNA sequences (SEQ ID NOS: 28-31) of one forward primer and one reverse primer for the 6G4.2.5 light chain variable region amplification.

Figure 23 depicts the DNA sequences (SEQ ID NOS: 32,33,11,15,14, and 13) of one forward primer and one reverse primer for the 6G4.2.5 heavy chain variable region amplification.

5

10

15

20

25

30

35

40

45

50

55

Figure 24 depicts the DNA sequence (SEQ ID NO: 34) and the amino acid sequence (SEQ ID NO: 35) of the 6G4.2.5 light chain variable region and partial murine constant light region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Useful cloning sites are in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 114. The partial murine constant light region is amino acids 115 to 131.

Figure 25 depicts the DNA sequence (SEQ ID NO: 36) and the amino acid sequence (SEQ ID NO: 37) of the 6G4.2.5 heavy chain variable region and partial murine constant heavy region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Useful cloning sites are in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids I to 122. The partial murine constant heavy region is amino acids 123 to 135.

Figure 26 depicts the DNA sequences (SEQ ID NOS: 38-40) of primers to convert the murine light chain and heavy chain constant regions to their human equivalents.

Figures 27A-27B depict the DNA sequence (SEQ ID NO: 41) and the amino acid sequence (SEQ ID NO: 42) for the chimeric 6G4.2.5 light chain. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids I to 114. The human constant heavy region is amino acids 115 to 220.

Figures 28A-28B depict the DNA sequence (SEQ ID NO: 43) and the amino acid sequence (SEQ ID NO: 44) for the chimeric 6G4.2.5 heavy chain. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids I to 122. The human constant heavy region is amino acids 123 to 231.

Fig. 29 depicts an amino acid sequence alignment of murine 6G425 light chain variable domain (SEQ ID NO: 45), humanized 6G425 F(ab)-1 light chain variable domain (SEQ ID NO: 46), and human light chain κ1 consensus framework (SEQ ID NO: 47) amino acid sequences, and an amino acid sequence alignment of murine 6G425 heavy chain variable domain (SEQ ID NO: 48), humanized 6G425 F(ab)-1 heavy chain variable domain (SEQ ID NO: 49), and human lgG1 subgroup III heavy chain variable domain (SEQ ID NO: 50) amino acid sequences, used in the humanization of 6G425. Light chain CDRs are labeled L1, L2, L3; heavy chain CDRs are labeled H1, H2, and H3. = and + indicate CDR sequences as defined by X-ray crystallographic contacts and sequence hypervariability, respectively. # indicates a difference between the aligned sequences. Residue numbering is according to Kabat *et al.* Lower case lettering denotes the insertion of an amino acid residue relative to the humIII consensus sequence numbering.

Fig. 30 is a graph with three panels (A, B and C) depicting the ability of F(ab)-9 (humanized 6G4V11 Fab) to inhibit human wild type IL-8, human monomeric IL-8, and rhesus IL-8 mediated neutrophil chemotaxis, respectively. Panel A presents inhibition data for F(ab)-9 samples at concentrations of 0.06 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, and 100 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 2nM human wild type IL-8. Panel B presents inhibition data for F(ab)-9 samples at concentrations of 6.25 nM, 12.5 nM, 25 nM, and 50 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 4 nM human monomeric IL-8 (denoted as "BD59" and as "monomeric IL-8"). Panel C presents inhibition data for F(ab)-9 samples at concentrations of 1 nM, 12.5 nM, 25 nM, and 50 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 2 nM rhesus IL-8. In addition, all panels A, B an C each presents data for a no IL-8 buffer control sample (denoted as "Buffer") in the respective inhibition assav.

Fig. 31A depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V11 light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 51), the humanized anti-IL-8 6G4.2.5V11 heavy chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 52), and a peptide linker in a C-terminal fusion with M 13 phage gene-III coat protein (SEQ ID NO: 53).

Fig. 31B depicts the nucleic acid sequence (SEQ ID NO: 54) and the translated amino acid sequence (SEQ ID NO: 51) of the humanized anti-IL-8 6G4.2.5V11 light chain in an N-terminal fusion with the STII leader peptide. Fig. 31C depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V 19 light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 51), and the humanized anti-IL-8 6G4.2.5V 19 heavy chain in an

N-terminal fusion with the STII leader peptide (SEQ ID NO: 55).

5

10

15

20

25

30

40

45

50

55

Fig. 32 is a three dimensional computer model of the humanized anti-IL-8 6G4.2.5V 11 antibody-Heavy chain CDR loops and variable domain regions appear in purple, and CDR-H3 side chain residues appear in yellow. Heavy chain constant domain regions appear in red. Light chain CDR loops and variable domain regions appear in off-white, and the Asn residue at amino acid position 35 (N35) in CDR L1 appears in green. Light chain constant domain regions appear in amber.

Fig. 33 is a Scatchard plot depicting the inhibition of ¹²⁵I-IL-8 binding to human neutrophils exhibited by intact murine 6G4.2.5 antibody (denoted 6G4 murine mAb), 6G4.2.5 murine-human chimera Fab (denoted 6G4 chimera), humanized 6G4.2.5 Fab versions 1 and 11 (denoted V1 and V11), and variant 6G4.2.5V11N35A Fab (denoted V11N35A).

Fig. 34 is a graph with four panels (A, B, C, and D) depicting the ability of 6G4.2.5V11N35A Fab to inhibit human wild type IL-8, human monomeric IL-8, rabbit IL-8, and rhesus IL-8 mediated neutrophil chemotaxis, respectively. Panel A presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "HulL-8") sample, in the presence of 2 nM human wild type IL-8. Panel B presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "BD59") sample, in the presence of 2 nM human monomeric IL-8. Panel C presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "Rab IL-8") sample, in the presence of 2 nM rabbit IL-8. Panel D presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "Rhe IL-8") sample, in the presence of 2 nM rhesus IL-8. In addition, panels B, C and D each presents data for human wild type IL-8 control (denoted "HulL-8") samples at a concentration of 2 nM in the respective assay, and panels A, B, C, and D each presents data for a no IL-8 buffer control (denoted "Buffer") sample in the respective assay.

Fig. 35 depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V11N35A light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 56), the humanized anti-IL-8 6G4.2.5V11N35A heavy chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 52), and the GCN4 leucine zipper peptide (SEQ ID NO: 57). The Ala residue (substituted for the wild type Asn residue) at amino acid position 35 in the 6G4.2.5V11N35A light chain appears in bold case. A putative pepsin cleavage site in the GCN4 leucine zipper sequence is underlined.

Fig. 36 depicts the DNA sequence (SEQ ID NO: 58) and the amino acid sequence (SEQ ID NO: 56) of the humanized anti-IL-8 6G4.2.5V11N35A light chain in an N-terminal fusion with the STII leader peptide. Complementarity determining regions L1, L2, and L3 are underlined

Figs. 37A-37B depict the DNA sequence (SEQ ID NO: 59) and the amino acid sequence (SEQ ID NO: 60) of the humanized anti-IL-8 6G4.2.5V11N35A heavy chain in an N-terminal fusion with the ST11 leader peptide and in a C-terminal fusion with the GCN4 leucine zipper sequence. Complementarity determining regions H1, H2, and H3 are underlined.

Fig. 38 is a Scatchard plot depicting the inhibition of ¹²⁵I-IL-8 binding to human neutrophils exhibited by 6G4.2.5V11N35A Fab (denoted Fab), 6G4.2.5V11N35A F(ab')₂ (denoted F(ab')₂), and human wild type IL-8 control (denoted IL-8).

Fig. 39 is a graph depicting a comparison of the wild type human IL-8 mediated neutrophil chemotaxis inhibition activities of the 6G4.2.5V11N35A F(ab')₂ and 6G4.2.5V11N35A Fab. Inhibition data are presented for 6G4.2.5V11N35A Fab samples (denoted "N35A Fab") and 6G4.2.5V11N35A F(ab')₂ samples (denoted N35A F (ab')₂) at concentrations of 0.3, 1, 3, 10, 30, and 100 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 2 nM human wild type IL-8. In addition, inhibition data are presented for no IL-8 buffer control samples (denoted "Buffer").

Fig. 40 is a graph depicting the ability of 6G4.2.5V11N35A F(ab')₂ to inhibit human monomeric IL-8, rhesus IL-8, and rabbit IL-8 mediated neutrophil chemotaxis. Human monomeric IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at concentrations of 0.3, 1, 3, and 10 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 100 nM, and for a no antibody control sample (denoted as "BD59"), in the presence of human monomeric IL-8 (denoted as "BD59") at a concentration of 0.5 nM. Rhesus IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at concentration of 0.3, 1, 3, and 10 nM, and for a no antibody control sample, in the presence of rhesus IL-8 at a concentration of 2 nM. Rabbit IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at

concentrations of 0.3, 1, 3, and 10 nM, and for a no antibody control sample, in the presence of rabbit IL-8 at a concentration of 2 nM. In addition, inhibition data are presented for a no IL-8 buffer control sample (denoted as "Buffer") and for a 2 nM human wild type IL-8 (denoted as "HuIL-8").

Figs. 41A-41Q depict the nucleic acid sequence (SEQ ID NO: 61) of the p6G4V11N35A.F(ab')2 vector.

- Fig. 42 depicts the nucleic acid sequences of the stop template primer (SEQ ID NO: 63) and the NNS randomization primer (SEQ ID NO: 64) used for random mutagenesis of amino acid position 35 in variable light chain CDR-L1 of humanized antibody 6G4V11.
 - Fig. 43A is a table of data describing the frequencies of different phage display clones obtained from the randomization of amino acid position 35 in variable light chain CDR-L1 of humanized antibody 6G4V11.
- Fig. 43B contains graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by the 6G4V11N35A, 6G4V11N35D, 6G4V11N35E and 6G4V11N35G Fab's.
 - Fig. 44 contains a graph depicting the typical kinetics of an anti-IL-8 antibody fragment (6G4V11N35A F(ab')₂) binding to IL-8. Fig. 44 also contains a table of data providing the equilibrium constant for 6G4V11N35A Fab binding to IL-8 (rate constants were not determined "ND"), and the equilibrium and rate constants for 6G4V11N35A F(ab')₂ and 6G4V11N35E Fab binding to IL-8.
 - Fig. 45 depicts the DNA sequence (SEQ ID NO: 65) and amino acid sequence (SEQ ID NO: 62) of the 6G4V11N35E light chain in an N-terminal fusion with the STII leader peptide. Complementarity determining regions L1, L2 and L3 are underlined.
 - Fig. 46 is a graph depicting the ability of 6G4V11N35E Fab to inhibit human IL-8 (dark columns) and rabbit IL-8 (light columns) mediated neutrophil chemotaxis. Data are presented for 6G4V11N35E Fab samples at concentrations of 0.4, 1.2, 3.7, 11 and 33 nM, and for an isotype control antibody (4D5) sample at a concentration of 100 nM, in the presence of 2 nM human IL-8 or 2 nM rabbit IL-8. In addition, inhibition data are presented for a no IL-8 buffer control sample (denoted "Buffer") and for human and rabbit IL-8 control samples (denoted "IL-8").
 - Fig. 47 depicts the DNA sequence of the sense (SEQ ID NO: 66) and anti-sense (SEQ ID NO: 67) strands of a Pvull-Xhol synthetic nucleotide encoding amino acids Leu4 to Phe29 of the 6G4V11N35A heavy chain.
 - Figs. 48A-48T depict the DNA sequence (SEQ ID NO: 68) of plasmid p6G4V11N35A.choSD9.

15

20

25

30

35

45

55

- Fig. 49 contains graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by the full length IgG1 forms of variants 6G4V11N35A and 6G4V11N35E.
- Figs. 50A-50B are graphs depicting the ability of full length 6G4V11N35A IgG1 and 6G4V11N35E IgG1 to inhibit human IL-8 (Fig. 50A) and rabbit IL-8 (Fig. 50B) mediated neutrophil chemotaxis.
- Fig. 51 contains a graph depicting the typical kinetics of a full length anti-IL8 antibody (6G4V11N35A IgG1) binding to IL-8. Fig. 51 also contains a table of data providing the equilibrium and rate constants for full length murine 6G4.2.5 IgG2a, 6G4V11N35A IgG1 and 6G4V11N35E IgG1 binding to IL-8.
- Fig. 52 contains graphs of displacement curves depicting the results of an unlabeled IL-8/125I-IL-8 competition radioimmunoassay performed with full length 6G4V11N35A IgG1 and 6G4V11N35E IgG1.
- Fig. 53 depicts the DNA sequence (SEQIDNO: 69) and amino acid sequence (SEQIDNO: 70) of the 6G4V11N35A Fab' heavy chain (6G4V11N35A Fab heavy chain modified to contain a cysteine residue in the hinge region).
- Figs. 54A-54C contain graphs of displacement curves depicting the IL-8 binding and IC₅₀'s for PEG-maleimide modified 6G4V11N35A Fab' molecules.
- 40 Figs. 55A-55C are graphs depicting the ability of PEG-maleimide modified 6G4V11N35A Fab' molecules to inhibit human IL-8 and rabbit IL-8 mediated neutrophil chemotaxis.
 - Figs. 56A-56C are graphs depicting the ability of PEG-maleimide modified 6G4V11N35A Fab' molecules to inhibit IL-8 mediated release of β -glucuronidase from neutrophils.
 - Figs. 57A-57B contain graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by PEG-succinimide modified 6G4V11N35A Fab'₂ molecules.
 - Figs. 58A-58B are graphs depicting the ability of PEG-succinimide modified 6G4V 11N35A F(ab')₂ molecules to inhibit human IL-8 mediated neutrophil chemotaxis.
 - Figs. 59A-59B are graphs depicting the ability of PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules to inhibit human IL-8 mediated release of β -glucuronidase from neutrophils.
- Fig. 60 is a graph depicting the theoretical molecular weight (dotted bars) and effective size (solid bars) of PEG-maleimide modified 6G4V11N35A Fab' molecules as determined by SEC-HPLC.
 - Fig. 61 is an SDS-PAGE gel depicting the electrophoretic mobility of various PEG-maleimide modified 6G4V11N35A Fab' molecules.
 - Fig. 62 contains size exclusion chromatograms (SEC-HPLC) depicting the retention times and effective (hydrodynamic) sizes of various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules.
 - Fig. 63 is a graph depicting the theoretical molecular weight (open columns), effective size determined by SEC-HPLC (solid columns), and the actual molecular weight determined by SEC-light scattering (shaded columns) for various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules.

Fig. 64 is an SDS-PAGE gel depicting the electrophoretic mobility of various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules. From left to right, lane 1 contains unmodified F(ab')₂, lane 2 contains F(ab')₂ coupled to two 40 kD branched PEG-succinimide molecules (denoted "Br(2)-40kD(N)-F(ab')2"), lane 3 contains F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule (denoted "Br(I)-40kD-(N)-Fab'2"), lane 4 contains a mixture of F(ab')₂ coupled to four 20 kD linear PEG-succinimide molecules and F(ab')₂ coupled to five 20 kD linear PEG-succinimide molecules (denoted "L(4+5)-20kD-(N)-Fab'2"), lane 5 contains F(ab')₂ coupled to one 20 kD linear PEG-succinimide molecule (denoted "L(1)-20kD-(N)-Fab'2"), and lane 6 contains molecular weight standards.

Fig. 65 contains graphs comparing the serum concentration vs. time profiles of various PEG-maleimide modified 6G4V11N35A Fab' molecules (upper graph) and various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules (lower graph) in rabbits. In the upper graph, "bran.(1)40K(s)Fab' " denotes 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule, "lin.(1)40K(s)Fab' " denotes 6G4V11N35A Fab' coupled to one 40 kD linear PEG-maleimide molecule, "lin.(1)30K(s)Fab' " denotes 6G4V11N35A Fab' coupled to one 30 kD linear PEG-maleimide molecule, "lin.(1)20K(s)Fab' " . denotes 6G4V11N35A Fab' coupled to one 20 kD linear PEG-maleimide molecule. In the lower graph, "bran.(2)40K(N)Fab'2" denotes 6G4V11N35A F(ab')₂ coupled to two 40 kD branched PEG-succinimide molecules, "bran.(1)40K(N)Fab'2" denotes 6G4V11N35A F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule, and "Fab'2" denotes unmodified 6G4V11N35A F(ab')₂. In both graphs. "IgG" denotes a full length IgG1 equivalent of the human-murine chimeric anti-rabbit IL-8 Fab described in Example F below.

Fig. 66 contains graphs comparing the serum concentration vs. time profiles of 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule (denoted as "bran.(1)40K(s)Fab"), 6G4V11N35A F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule (denoted as "bran.(1)40K(N)Fab'2"), unmodified 6G4V11N35A F (ab')₂ (denoted as "Fab'2"), unmodified 6G4V11N35A Fab' (denoted as "Fab"), and a full length IgGI (denoted as "IgG") equivalent of the human-murine chimeric anti-rabbit IL-8 Fab described in Example F below.

Fig. 67 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on gross weight of entire lung in an ARDS rabbit model.

Fig. 68 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one branched 40 kD PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on BAL total leukocyte (light columns) and polymorphonuclear cell (dark columns) counts in an ARDS rabbit model. Untreated (no therapeutics) control animal data is denoted as "Control".

Fig. 69 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one branched 40 kD PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on PaO2/FiO2 ratio at 24 hours-post treatment (light columns) and 48 hours post-treatment (dark columns) in an ARDS rabbit model. Untreated (no therapeutics) control animal data is denoted as "Control".

DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. DEFINITIONS

5

10

15

20

25

30

35

40

50

[0009] In general, the following words or phrases have the indicated definition when used in the description, examples, and claims.

[0010] "Polymerase chain reaction" or "PCR" refers to a procedure or technique in which minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Patent No. 4,683,195 issued 28 July 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers can coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263 (1987); Erlich, ed., PCR Technology (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.

[0011] "Antibodies" (Abs) and "immunoglobulins" (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.

[0012] "Native antibodies and immunoglobulins" are usually heterotetrameric glycoproteins of about 150,000 daltons,

composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia *et al.*, J. Mol. Biol. 186:651 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985)).

[0013] The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat *et al.*, Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, MD (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.

[0014] Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

[0015] "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and - binding site. In a two-chain Fv species, this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species (scFv), one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. For a review of scFv see Pluckthun, in *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

[0016] The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

[0017] The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (k) and lambda (l), based on the amino acid sequences of their constant domains. [0018] Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these can be further divided into subclasses (isotypes), e.g., IgG₁, IgG₂, IgG₃, IgG₄, IgA₁, and IgA₂. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called α , δ , ϵ , γ , and γ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

[0019] The term "antibody" is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies) and antibody compositions with polyepitopic specificity.

[0020] "Antibody fragment", and all grammatical variants thereof, as used herein are defined as a portion of an intact antibody comprising the antigen binding site or variable region of the intact antibody, wherein the portion is free of the constant heavy chain domains (i.e. CH2, CH3, and CH4, depending on antibody isotype) of the Fc region of the intact antibody. Examples of antibody fragments include Fab, Fab', Fab'-SH, F(ab')₂, and Fv fragments; diabodies; any antibody fragment that is a polypeptide having a primary structure consisting of one uninterrupted sequence of contiguous amino acid residues (referred to herein as a "single-chain antibody fragment" or "single chain polypeptide"), including without limitation (1)single-chain Fv (scFv) molecules (2)single chain polypeptides containing only one light chain var-

iable domain, or a fragment thereof that contains the three CDRs of the light chain variable domain, without an associated heavy chain moiety and (3)single chain polypeptides containing only one heavy chain variable region, or a fragment thereof containing the three CDRs of the heavy chain variable region, without an associated light chain moiety; and multispecific or multivalent structures formed from antibody fragments. In an antibody fragment comprising one or more heavy chains, the heavy chain(s) can contain any constant domain sequence (e.g. CH1 in the IgG isotype) found in a non-Fc region of an intact antibody, and/or can contain . any hinge region sequence found in an intact antibody, and/or can contain a leucine zipper sequence fused to or situated in the hinge region sequence or the constant domain sequence of the heavy chain(s). Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney et al., J. Immunol., 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

10

15

20

35

40

[0021] Unless specifically indicated to the contrary, the term "conjugate" as described and claimed herein is defined as a heterogeneous molecule formed by the covalent attachment of one or more antibody fragment(s) to one or more polymer molecule(s), wherein the heterogeneous molecule is water soluble, i.e. soluble in physiological fluids such as blood, and wherein the heterogeneous molecule is free of any structured aggregate. In the context of the foregoing definition, the term "structured aggregate" refers to (1) any aggregate of molecules in aqueous solution having a spheroid or spheroid shell structure, such that the heterogeneous molecule is not in a micelle or other emulsion structure, and is not anchored to a lipid bilayer, vesicle or liposome; and (2) any aggregate of molecules in solid or insolubilized form, such as a chromatography bead matrix, that does not release the heterogeneous molecule into solution upon contact with an aqueous phase. Accordingly, the term "conjugate" as defined herein encompasses the aforementioned heterogeneous molecule in a precipitate, sediment, bioerodible matrix or other solid capable of releasing the heterogeneous molecule into aqueous solution upon hydration of the solid.

[0022] Unless specifically indicated to the contrary, the terms "polymer", "polymer molecule", "nonproteinaceous polymer", and "nonproteinaceous polymer molecule" are used interchangeably and are defined as a molecule formed by covalent linkage of two or more monomers, wherein none of the monomers is contained in the group consisting of alanine (Ala), cysteine (Cys), aspartic acid (Asp), glutamic acid (Glu), phenylalanine (Phe), glycine (Gly), histidine (His), isoleucine (Ile), lysine (Lys), leucine (Leu), methionine (Met), asparagine (Asn), proline (Pro), glutamine (Gln), arginine (Arg), serine (Ser), threonine (Thr), valine (Val), tryptophan (Trp), and tyrosine (Tyr) residues.

[0023] The term "monoclonal antibody" (mAb) as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each mAb is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they can be synthesized by hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler *et al.*, *Nature*, 256:495 (1975), or may be made by recombinant DNA methods (see, *e.g.*, U. S. Patent No. 4,816,567 to Cabilly *et al.*). The "monoclonal antibodies" also include clones of antigen-recognition and binding-site containing antibody fragments (Fv clones) isolated from phage antibody libraries using the techniques described in Clackson *et al.*, *Nature*, 352:624-628 (1991) and Marks *et al.*, *J. Mol. Biol.*, 222:581-597 (1991), for example.

[0024] The monoclonal antibodies herein include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-IL-8 antibody with a constant domain (e.g. "humanized" antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab')₂, and Fv), so long as they exhibit the desired biological activity. (See, e.g., U.S. Pat. No. 4,816,567 to Cabilly *et al.*; Mage and Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pp. 79-97 (Marcel Dekker, Inc., New York, 1987).)

[0025] The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly et al., supra; Morrison et al., Proc. Natl. Acad. Sci. U.S.A. 81:6851 (1984)).

[0026] "Humanized" forms of non-human (e.g., murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂, or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized

antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details see Jones et al., Nature 321:522 (1986); Reichmann et al., Nature 332:323 (1988); and Presta, Curr. Op. Struct. Biol. 2:593 (1992).

[0027] "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented.

[0028] "Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal herein is human.

[0029] As used herein, protein, peptide and polypeptide are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers.

[0030] As used herein, the term "inflammatory disorders" refers to pathological states resulting in inflammation, typically caused by neutrophil chemotaxis. Examples of such disorders include inflammatory skin diseases including psoriasis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); ischemic reperfusion; adult respiratory distress syndrome; dermatitis; meningitis; encephalitis; uveitis; autoimmune diseases such as rheumatoid arthritis, Sjorgen's syndrome, vasculitis; diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder, multiple organ injury syndrome secondary to septicaemia or trauma; alcoholic hepatitis, bacterial pneumonia, antigen-antibody complex mediated diseases; inflammations of the lung, including pleurisy, alveolitis, vasculitis, pneumonia, chronic bronchitis, bronchiectasis, and cystic fibrosis; etc. The preferred indications are bacterial pneumonia and inflammatory bowel disease such as ulcerative colitis.

[0031] The terms "hydrodynamic size", "apparent size", "apparent molecular weight", "effective size" and "effective molecular weight" of a molecule are used synonymously herein refer to the size of a molecule as determined by comparison to a standard curve produced with globular protein molecular weight standards in a size exclusion chromatography system, wherein the standard curve is created by mapping the actual molecular weight of each standard against its elution time observed in the size exclusion chromatography system. Thus, the apparent size of a test molecule is derived by using the molecule's elution time to extrapolate a putative molecular weight from the standard curve. Preferably, the molecular weight standards used to create the standard curve are selected such that the apparent size of the test molecule falls within the linear portion of the standard curve.

II. MODES FOR CARRYING OUT THE INVENTION

40

45

[0032] The invention arises from the surprising and unexpected discovery that antibody fragment-polymer conjugates having an effective or apparent size significantly greater than the antibody fragment-polymer conjugates described in the art confers an increase in serum half-life, an increase in mean residence time in circulation (MRT), and/or a decrease in serum clearance rate over underivatized antibody fragment which far exceed the modest changes in such biological property or properties obtained with the art-known antibody fragment-polymer conjugates. The present inventors have determined for the first time that increasing the effective size of an antibody fragment to at least about 500,000 D, or increasing the effective size of an antibody fragment by at least about 8 fold over the effective size of the parental antibody fragment, or derivatizing an antibody fragment with a polymer of at least about 20,000 D in molecular weight, yields a molecule with a commercially useful pharmacokinetic profile. The greatly extended serum half-life, extended MRT, and/or reduced serum clearance rate of the conjugates of the invention makes such conjugates viable alternatives to intact antibodies used for therapeutic treatment of many disease indications. Antibody fragments provide significant advantages over intact antibodies, notably the fact that recombinant antibody fragments can be made in bacterial cell expression systems. Bacterial cell expression systems provide several advantages over mammalian cell expression systems, including reduced time and cost at both the research and development and manufacturing stages of a product. [0033] Humanization of the 6G4.2.5 murine anti-rabbit IL-8 monoclonal antibody ("6G4.2.5") is described in WO 95/23865 (PCT/US95/02589 published September 8, 1995). The hybridoma producing antibody 6G4.2.5 was deposited on September 28, 1994 with the American Type Culture Collection and assigned ATCC Accession No. HB 11722 as described in the Examples below.

[0034] It will be understood that in the context of this Section (II) and all subsections thereof, every reference to "an antibody fragment" or "the antibody fragment" contained in a conjugate shall be a reference to one or more antibody fragment(s) in the conjugate (consistent with the definition of the term "conjugate" set forth in Section (I) above), except where the number of antibody fragment(s) in the conjugate is expressly indicated. It will be understood that in the context of this Section (II) and all subsections thereof, every reference to "a polymer", "a polymer molecule", "the polymer", or "the polymer molecule" contained in a conjugate shall be a reference to one or more polymer molecule (s) in the conjugate (consistent with the definition of the term "conjugate" set forth in Section (I) above), except where the number of polymer molecule(s) in the conjugate is expressly indicated.

1. LARGE EFFECTIVE SIZE ANTIBODY FRAGMENT-POLYMER CONJUGATES

10

15

35

[0035] The antibody fragment may be covalently attached to a polymer to form a conjugate having an effective or apparent size of at least about 500,000 Daltons (D). The antibody fragment may be covalently attached to a polymer to form a conjugate having an apparent size that is at least about 8 fold greater than the apparent size of the parental antibody fragment. The antibody fragment may be covalently attached to a polymer of at least about 20,000 D in molecular weight (MW). It will be appreciated that the unexpectedly and surprisingly large increase in antibody fragment serum half-life, increase in MRT, and/or decrease in serum clearance rate can be achieved by using any type of polymer or number of polymer molecules which will provide the conjugate with an effective size of at least about 500,000 D, or by using any type of polymer or number of polymer molecules which will provide the conjugate with an effective size that is at least about 8 fold greater than the effective size of the parental antibody fragment, or by using any type or number of polymers wherein each polymer molecule is at least about 20,000 D in M W. Thus, the invention is not dependent on the use of any particular polymer or molar ratio of polymer to antibody fragment in the conjugate.

[0036] In addition, the beneficial aspects of the invention extend to antibody fragments without regard to antigen specificity. Although variations from antibody to antibody are to be expected, the antigen specificity of a given antibody will not substantially impair the extraordinary improvement in serum half-life, MRT, and/or serum clearance rate for antibody fragments thereof that can be obtained by derivatizing the antibody fragments as taught herein.

[0037] The conjugate may have an effective size of at least about 500,000 D, or at least about 800,000 D, or at least about 900,000 D, or at least about 1,000,000 D, or at least about 1,200,000 D, or at least about 1,400,000 D, or at least about 1,500,000 D, or at least about 2,000,000 D, or at least about 2,500,000 D.

[0038] The conjugate may have an effective size of at or about 500,000 D to at or about 10,000,000 D, or an effective

size of at or about 500,000 D to at or about 8,000,000 D, or an effective size of at or about 500,000 D to at or about 5,000,000 D, or an effective size of at or about 500,000 D to at or about 2,500,000 D, or an effective size of at or about 2,500,000 D, or an effective size of at or about 2,500,000 D, or an effective size of at or about 500,000 D to at or about 500,000 D, or an effective size of at or about 5,000,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 500,000 D, or an effective size of at or about 5,000,000 D, or an effective size of at or about 5,000,000 D to at or about 1,500,000 D, or an effective size of at or about 500,000 D to at or about 1,000,000 D.

[0039] The conjugate may have an effective size of at or about 800,000 D to at or about 10,000,000 D, or an effective size of at or about 800,000 D to at or about 800,000 D, or an effective size of at or about 2,500,000 D, or an effective size of at or about 2,500,000 D, or an effective size of at or about 800,000 D to at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 800,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,

at or about 800,000 D to at or about 1,500,000 D, or an effective size of at or about 800,000 D to at or about 1,000,000 D. [0040] The conjugate may have an effective size of at or about 900,000 D to at or about 10,000,000 D, or an effective size of at or about 900,000 D to at or about 900,000 D to at or about 5,000,000 D, or an effective size of at or about 4,000,000 D, or an effective size of at or about 900,000 D to at or about 3,000,000 D, or an effective size of at or about 900,000 D to at or about 2,500,000 D, or an effective size of at or about 900,000 D to at or about 900,000 D to at or about 900,000 D to at or about 1,800,000 D, or an effective size of at or about 1,600,000 D, or an effective size of at or about 1,500,000 D, or an effective size of at or about 1,500,000 D, or an effective size of at or about 1,500,000 D, or an effective size of at or about 1,500,000 D.

[0041] The conjugate may have an effective size of at or about 1,000,000 D to at or about 10,000,000 D, or an effective size of at or about 1,000,000 D to at or about 1,000,000 D to at or about 5,000,000 D, or an effective size of at or about 4,000,000 D, or an effective size of at or about 1,000,000 D to at or about 4,000,000 D to at or about 2,000,000 D to at or about 2,500,000 D, or an effective size of at or about 1,000,000 D to at or about 2,500,000 D, or an effective size of at or about 1,000,000 D to at or about 1,000,000 D, or an effective size of at or about 1,000,000 D to at or about 1,000,000 D, or an effective size of at or about 1,000,000 D to at or about 1,000,000 D.

[0042] The conjugate may have an effective size that is at least about 8 fold greater, or at least about 10 fold greater,

or at least about 12 fold greater, or at least about 15 fold greater, or at least about 18 fold greater, or at least about 20 fold greater, or at least about 25 fold greater, or at least about 30 fold greater, or at least about 40 fold greater, than the effective size of the parental antibody fragment.

[0043] The conjugate may have an effective size that is about 8 fold to about 100 fold greater, or is about 8 fold to about 80 fold greater, or is about 8 fold to about 50 fold greater, or is about 8 fold to about 40 fold greater, or is about 8 fold to about 30 fold greater; or is about 8 fold to about 28 fold greater, or is about 8 fold to about 25 fold greater, or is about 8 fold to about 20 fold greater, or is about 8 fold to about 18 fold greater, or is about 8 fold to about 15 fold greater, than the effective size of the parental antibody fragment.

[0044] The conjugate may have an effective size that is about 12 fold to about 100 fold greater, or is about 12 fold to about 80 fold greater, or is about 12 fold to about 50 fold greater, or is about 12 fold to about 40 fold greater, or is about 12 fold to about 30 fold greater, or is about 12 fold to about 25 fold greater, or is about 12 fold to about 20 fold greater, or is about 12 fold to about 12 fold to about 12 fold to about 12 fold to about 15 fold greater, or is about 15 fold greater, than the effective size of the parental antibody fragment.

[0045] The conjugate may have an effective size that is about 15 fold to about 100 fold greater, or is about 15 fold to about 80 fold greater, or is about 15 fold to about 50 fold greater, or is about 15 fold to about 40 fold greater, or is about 15 fold to about 30 fold greater, or is about 15 fold to about 25 fold greater, or is about 15 fold to about 20 fold greater, or is about 18 fold greater, than the effective size of the parental antibody fragment.

[0046] The conjugate may have an effective size that is about 18 fold to about 100 fold greater, or is about 18 fold to about 80 fold greater, or is about 18 fold to about 40 fold greater, or is about 18 fold to about 30 fold greater, or is about 18 fold to about 30 fold greater, or is about 18 fold to about 25 fold greater, or is about 18 fold to about 20 fold greater, than the effective size of the parental antibody fragment.

[0047] The conjugate may have an effective size that is about 20 fold to about 100 fold greater, or is about 20 fold to about 80 fold greater, or is about 20 fold to about 50 fold greater, or is about 20 fold to about 40 fold greater, or is about 20 fold to about 30 fold greater, or is about 20 fold to about 20 fold to about 25 fold greater, than the effective size of the parental antibody fragment.

[0048] The conjugate may have an effective size that is about 25 fold to about 100 fold greater, or is about 25 fold to about 80 fold greater, or is about 25 fold to about 40 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 28 fold greater, than the effective size of the parental antibody fragment.

30

[0049] The conjugate may have an effective size that is about 28 fold to about 100 fold greater, or is about 28 fold to about 80 fold greater, or is about 28 fold to about 40 fold greater, or is about 28 fold to about 30 fold greater, than the effective size of the parental antibody fragment.

[0050] The conjugate may have an effective size that is about 30 fold to about 100 fold greater, or is about 30 fold to about 80 fold greater, or is about 30 fold to about 50 fold greater, or is about 40 fold greater, than the effective size of the parental antibody fragment.

[0051] The conjugate may have an effective size that is about 40 fold to about 100 fold greater, or is about 40 fold to about 80 fold greater, or is about 40 fold to about 50 fold greater, than the effective size of the parental antibody fragment.

40 [0052] The antibody fragment may be covalently attached to at least one polymer having an actual M W of at least about 20,000 D.

[0053] The antibody fragment may be covalently attached to at least one polymer having an actual MW of at least about 30,000 D.

[0054] The antibody fragment may be covalently attached to at least one polymer having an actual MW of at least about 40,000 D.

[0055] The antibody fragment may be covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 300,000 D, or is at or about 300,000 D to at or about 300,000 D. To at or about 300,000 D.

[0056] The antibody fragment may be covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D.

[0057] The antibody fragment may be covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D.

[0058] The antibody fragment may be covalently attached to at least one polymer having an actual M W that is at or about 20,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D.

[0059] The antibody fragment may be covalently attached to at least one polymer having an actual M W that is at or

about 20,000 D to at or about 40,000 D, or is at or about 30,000 D to at or about 40,000 D.

10

20

[0060] In one aspect, the invention encompasses a conjugate having any molar ratio of polymer to antibody fragment that endows the conjugate with an apparent size in the desired range as taught herein. The apparent size of the conjugate will depend in part upon the size and shape of the polymer used, the size and shape of the antibody fragment used, the number of polymer molecules attached to the antibody fragment, and the location of such attachment site (s) on the antibody fragment. These parameters can easily be identified and maximized to obtain the a conjugate with the desired apparent size for any type of antibody fragment, polymer and linkage system.

[0061] In another aspect, the invention encompasses a conjugate with a polymer to antibody fragment molar ratio of no more than about 10:1, or no more than about 5:1, or no more than about 4:1, or no more than about 3:1, or no more than about 2:1, or no more than 1:1.

[0062] In yet another aspect, the invention encompasses a conjugate wherein the antibody fragment is attached to about 10 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D. or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the conjugate contains an antibody fragment attached to about 5 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the conjugate contains an antibody fragment attached to about 4 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In a further embodiment, the conjugate contains an antibody fragment attached to about 3 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the conjugate contains an antibody fragment attached to about 2 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is a conjugate containing an antibody fragment attached to a single polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. [0063] In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

30 [0064] In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

[0065] In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

[0066] In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

[0067] In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 40,000 D, or is at or about 30,000 D to at or about 40,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

[0068] It is believed that the serum half-life, MRT and/or serum clearance rate of any antibody fragment can be greatly improved by derivatizing the antibody fragment with polymer as taught herein. In one embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH, Fv, scFv and F(ab')₂.

[0069] In one embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide

bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0070] In a further embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than I polymer molecule and the polymer is coupled to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0071] In a further embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at least about 20,000 D in molecular weight, or at least about 30,000 D in molecular weight, or at least about 40,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0072] In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

20

35

40

[0073] In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0074] In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0075] In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0076] In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0077] In yet another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at least about 20,000 D in molecular weight, or at least about 30,000 D in molecular weight, or at least about 40,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0078] In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than I polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight,

wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0079] In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0080] In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0081] In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0082] In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than I polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0083] Although any type of polymer is contemplated for use in constructing the conjugates of the invention, including the polymers and chemical linkage systems described in Section (II)(I)(b) below, polyethylene glycol (PEG) polymers are preferred for use herein.

[0084] In one embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W of at least about 20,000 D.

[0085] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW of at least about 30,000 D.

[0086] In yet another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W of at least about 40,000 D.

[0087] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W that is at or about 20,000 D to at or about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D.

[0088] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D.

[0089] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D.

[0090] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual M W that is at or about 20,000 D to at or about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D.

[0091] In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 40,000 D, or is at or about 30,000 D to at or about 40,000 D. [0092] In another aspect, the invention encompasses a conjugate with a PEG to antibody fragment molar ratio of no more than about 10:1, or no more than about 5:1, or no more than about 3:1, or no more than about 3:1, or no more than 1:1.

[0093] In yet another aspect, the invention encompasses a conjugate wherein the antibody fragment is attached to

about 10 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the conjugate contains an antibody fragment attached to about 5 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the conjugate contains an antibody fragment attached to about 4 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In a further embodiment, the conjugate contains an antibody fragment attached to about 3 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the conjugate contains an antibody fragment attached to about 2 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is a conjugate containing an antibody fragment attached to a single PEG molecule having a molecular weight of at least about 20,000 D, or at least about 40,000 D.

[0094] In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than I PEG molecule.

[0095] In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0096] In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than I PEG molecule.

[0097] In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0098] In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0099] In still another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')2, wherein the antibody fragment is attached to about 10 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the foregoing conjugate contains an antibody fragment attached to about 5 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the foregoing conjugate contains an antibody fragment attached to about 4 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In a further embodiment, the foregoing conjugate contains an antibody fragment attached to about 3 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the foregoing conjugate contains an antibody fragment attached to about 2 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is the foregoing conjugate that contains an antibody fragment attached to a single PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. [0100] In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or

50

about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0101] In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂ wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0102] In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0103] In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0104] In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

[0105] In yet another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at least about 20,000D in molecular weight, or at least about 30,000D in molecular weight, or at least about 40,000D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0106] In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 300,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

45

[0107] In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0108] In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by sub-

stituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0109] In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0110] In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0111] In still another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at least about 20,000 D in molecular weight, or at least about 30,000 in molecular weight, or at least about 40,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0112] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0113] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0114] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0115] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0116] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at

or about 40,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

[0117] It will be appreciated that all of the above-described embodiments of the invention utilizing PEG polymers include conjugates wherein the PEG polymer(s) is (are) linear or branched. In a preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and at least about 40,000 D in molecular weight. In a particularly surprising and unexpected finding, the inventors discovered that the foregoing conjugate exhibits a serum half-life, MRT and serum clearance rate approaching that of full length antibody as shown in Example X below.

[0118] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 300,000 D. [0119] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 100,000 D. [0120] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 70,000 D. [0121] In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 50,000 D. [0122] In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and at least 40,000D in molecular weight, and the PEG molecule is anached to the hinge region of the antibody fragment.

[0123] In one aspect, the invention provides any of the above-described conjugates wherein the conjugate contains no more than one antibody fragment. Additionally provided herein is any of the above-described conjugates wherein the conjugate contains one or more antibody fragment(s) covalently linked to one or more polymer molecule(s), such as conjugates containing two or more antibody fragments covalently linked together by polymer molecule(s). In one embodiment, a polymer molecule is used to link together two antibody fragments to form a dumbbell-shaped structure. Also encompassed herein are conjugates formed by more than two antibody fragments joined by polymer molecule (s) to form a rosette or other shapes. The antibody fragments in such structures can be of the same or different fragment type and can have the same antigen specificity or have different antigen specificities. Such structures can be made by using a polymer molecule derivatized with multiple functional groups permitting the direct attachment, or the attachment by means of bi- or multi-functional linkers, of two or more antibody fragments to the polymer backbone.

[0124] In another aspect, the invention encompasses any of the above-described conjugates utilizing an antibody fragment comprising an antigen recognition site that binds to rabbit IL-8 and/or human IL-8.

a. Production of Antibody Fragments

40

45

50

[0125] Antibody fragments can be produced by any method known in the art. Generally, an antibody fragment is derived from a parental intact antibody. The parental antibody can be generated by raising polyclonal sera against the desired antigen by multiple subcutaneous (sc) or intraperitoneal (ip) injections of antigen and an adjuvant, such as monophosphoryl lipid A (MPL)/trehalose dicrynomycolate (TDM) (Ribi Immunochem. Research, Inc., Hamilton, MT), at multiple sites. Two weeks later the animals are boosted. 7 to 14 days later animals are bled and the serum is assayed for anti-antigen titer. Animals are boosted until titer plateaus. Sera are harvested from animals, and polyclonal anti-bodies are isolated from sera by conventional immunoglobulin purification procedures, such as protein A-Sepharose chromatography, hydroxylapatite chromatography, gel filtration, dialysis, or antigen affinity chromatography. The desired antibody fragments can be generated from purified polyclonal antibody preparations by conventional enzymatic methods, e.g. F(ab')₂ fragments are produced by pepsin cleavage of intact antibody, and Fab fragments are produced by briefly digesting intact antibody with papain.

[0126] Alternatively, antibody fragments are derived from monoclonal antibodies generated against the desired antigen. Monoclonal antibodies may be made using the hybridoma method first described by Kohler *et al.*, *Nature*, 256: 495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

[0127] In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that

will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)).

[0128] The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

[0129] Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and M.C.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, *J. Immunol.*, 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York. 1987)).

[0130] Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzymelinked immunoabsorbent assay (ELISA).

[0131] The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).

[0132] After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal.

[0133] The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

[0134] DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of antibody-encoding DNA include Skerra et al., <u>Curr. Opinion in Immunol.</u>, <u>5</u>: 256 (1993) and Pluckthun, <u>Immunol. Revs.</u>, <u>130</u>: 151 (1992).

[0135] In a preferred embodiment, the antibody fragment is derived from a humanized antibody. Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. It will be appreciated that variable domain sequences obtained from any non-human animal phage display library-derived Fv clone or from any non-human animal hybridoma-derived antibody clone provided as described herein can serve as the "import" variable domain used in the construction of the humanized antibodies of the invention. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522 (1986); Riechmann et al., Nature, 332: 323 (1988); Verhoeyen et al., Science, 239: 1534 (1988)), by substituting non-human animal, e.g. rodent, CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (Cabilly et al., supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in non-human animal, e.g. rodent, antibodies.

[0136] The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a non-human animal, e.g. rodent, antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the non-human animal is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151: 2296 (1993); Chothia and Lesk, J. Mol. Biol., 196: 901 (1987)). Another method uses a particular framework derived from the consensus sequence of all

human antibodies of a particular subgroup light or heavy chains. The same framework can be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad Sci USA, 89: 4285 (1992); Presta et al., J. Immunol., 151: 2623 (1993)). It is also important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind to its antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.

10

15

[0137] In addition, antibody fragments for use herein can be derived from human monoclonal antibodies. Human monoclonal antibodies against the antigen of interest can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor *J. Immunol.*, 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boemer et al., J. Immunol., 147: 86 (1991).

[0138] It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad Sci USA, 90: 2551 (1993); Jakobovits et al., Nature, 362: 255 (1993); Bruggermann et al., Year in Immunol., 7: 33 (1993).

[0139] Alternatively, phage display technology (McCafferty et al., Nature 348:552 (1990)) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson et al., Current Opinion in Structural Biology 3:564 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature 352:624 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581 (1991), or Griffith et al., EMBO J. 12:725 (1993).

[0140] In a natural immune response, antibody genes accumulate mutations at a high rate (somatic hypermutation). Some of the changes introduced will confer higher affinity, and B cells displaying high-affinity surface immunoglobulin are preferentially replicated and differentiated during subsequent antigen challenge. This natural process can be mimicked by employing the technique known as "chain shuffling" (Marks et al., Bio/Technol. 10:779 (1992)). In this method, the affinity of "primary" human antibodies obtained by phage display can be improved by sequentially replacing the heavy and light chain V region genes with repertoires of naturally occurring variants (repertoires) of V domain genes obtained from unimmunized donors. This technique allows the production of antibodies and antibody fragments with affinities in the nM range. A strategy for making very large phage antibody repertoires has been described by Waterhouse et al., Nucl. Acids Res. 21:2265 (1993).

[0141] Gene shuffling can also be used to derive human antibodies from non-human, e.g. rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody. According to this method, which is also called "epitope imprinting", either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described above is replaced with a repertoire of human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras. Selection with antigen results in isolation of a non-human chain/human chain chimeric scFv or Fab wherein the human chain restores the antigen binding site destroyed upon removal of the corresponding non-human chain in the primary phage display clone, i.e. the epitope governs (imprints) the choice of the human chain partner. When the process is repeated in order to replace the remaining non-human chain, a human antibody is obtained (see PCT WO 93/06213 published April 1, 1993). Unlike traditional humanization of non-human antibodies by CDR grafting, this technique provides completely human antibodies, which have no FR or CDR residues of non-human origin.

[0142] The invention also encompasses the use of bispecific and heteroconjugate antibody fragments having specificities for at least two different antigens. Bispecific and heteroconjugate antibodies can be prepared as full length antibodies or as antibody fragments (e.g. F(ab')₂ bispecific antibody fragments). Antibody fragments having more than two valencies (e.g. trivalent or higher valency antibody fragments) are also contemplated for use herein. Bispecific antibodies, heteroconjugate antibodies, and multi-valent antibodies can be prepared as described in Section (II)(3)(C) below.

[0143] As described above, DNA encoding the monoclonal antibody or antibody fragment of interest can be isolated from its hybridoma or phage display clone of origin, and then manipulated to create humanized and/or affinity matured constructs, In addition, known techniques can be employed to introduce an amino acid residue or residues into any desired location on the polypeptide backbone of the antibody fragment, e.g. a cysteine residue placed in the hinge region of the heavy chain, thereby providing a site for specific attachment of polymer molecule(s). In one embodiment, the native cysteine residue in either the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains is substituted with another amino acid, such as serine, in order to leave the partner cysteine residue in the opposite chain with a free suflhydryl for specific attachment of polymer molecule.

[0144] Upon construction of the desired antibody or antibody fragment-encoding clone, the clone can be used for recombinant production of the antibody fragment as described in Section (II)(4) below. Finally, the antibody or antibody fragment product can be recovered from host cell culture and purified as described in Section (II)(4)(F) below. In the case of embodiments utilizing an antibody fragment engineered to lack a cysteine residue that ordinarily forms the disulfide bridge between the light and heavy chains as described above, preferred recombinant production systems include bacterial expression and product recovery procedures utilizing the low pH osmotic shock method described in the "Alternative Fab'-SH Purification" section of Example T below. If a full length antibody is produced, the desired antibody fragment can be obtained therefrom by subjecting the intact antibody to enzymatic digestion according to known methods, e.g. as described in Section (II)(4)(G) below.

b. Construction of Antibody Fragment-Polymer Conjugates

15

25

40

45

[0145] The antibody fragment-polymer conjugates of the invention can be made by derivatizing the desired antibody fragment with an inert polymer. It will be appreciated that any inert polymer which provides the conjugate with the desired apparent size or which has the selected actual MW as taught herein is suitable for use in constructing the antibody fragment-polymer conjugates of the invention.

[0146] Many inert polymers are suitable for use in pharmaceuticals. See, e.g., Davis et al., Biomedical Polymers: Polymeric Materials and Pharmaceuticals for Biomedical Use, pp.441-451 (1980). In all embodiments of the invention, a non-proteinaceous polymer is used. The nonproteinaceous polymer ordinarily is a hydrophilic synthetic polymer, i. e., a polymer not otherwise found in nature. However, polymers which exist in nature and are produced by recombinant or in vitro methods are also useful, as are polymers which are isolated from native sources. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g. polyvinylalcohol and polyvinylpyrrolidone. Particularly useful are polyalkylene ethers such as polyethylene glycol (PEG); polyoxyalkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene (Pluronics); polymethacrylates; carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers D-mannose, D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid, sialic acid, D-galacturonic acid, D-mannuronic acid (e.g. polymannuronic acid, or alginic acid), D-glucosamine, D-galactosamine, D-glucose and neuraminic acid including homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch, hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as polysorbitol and polymannitol; heparin or heparon. The polymer prior to crosslinking need not be, but preferably is, water soluble, but the final conjugate must be water soluble. Preferably, the conjugate exhibits a water solubility of at least about 0.01 mg/ml, and more preferably at least about 0.1 mg/ml, and still more preferably at least about I mg/ml. In addition, the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if the conjugate is intended to be administered by such routes.

[0147] In one embodiment, the polymer contains only a single group which is reactive. This helps to avoid cross-linking of protein molecules. However, it is within the scope herein to maximize reaction conditions to reduce cross-linking, or to purify the reaction products through gel filtration or ion exchange chromatography to recover substantially homogenous derivatives. In other embodiments, the polymer contains two or more reactive groups for the purpose of linking multiple antibody fragments to the polymer backbone. Again, gel filtration or ion exchange chromatography can be used to recover the desired derivative in substantially homogeneous form.

[0148] The molecular weight of the polymer can range up to about 500,000 D, and preferably is at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. The molecular weight chosen can depend upon the effective

size of the conjugate to be achieved, the nature (e.g. structure, such as linear or branched) of the polymer, and the degree of derivatization, i.e. the number of polymer molecules per antibody fragment, and the polymer attachment site or sites on the antibody fragment.

[0149] The polymer can be covalently linked to the antibody fragment through a multifunctional crosslinking agent which reacts with the polymer and one or more amino acid residues of the antibody fragment to be linked. However, it is also within the scope of the invention to directly crosslink the polymer by reacting a derivatized polymer with the antibody fragment, or vice versa.

[0150] In addition to the cysteine residue described in claim 1, the covalent crosslinking site on the antibody fragment may include the N-terminal amino group and epsilon amino groups found on lysine residues, as well as other amino, imino, carboxyl, sulfhydryl, hydroxyl or other hydrophilic groups. The polymer may be covalently bonded directly to the antibody fragment without the use of a multifunctional (ordinarily bifunctional) crosslinking agent. Covalent binding to amino groups is accomplished by known chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, activated succinimidyl esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylcloroformate or P-nitrophenylctoroformate activated PEG.) Carboxyl groups are derivatized by coupling PEG-amine using carbodiimide. Sulfhydryl groups are derivatized by coupling to maleimido-substituted PEG (e.g. alkoxy-PEG amine plus sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) as described in WO 97/10847 publistied March 27, 1997, or PEG-maleimide commercially available from Shearwater Polymers, Inc., Huntsville, AL). Alternatively, free amino groups on the antibody fragment (e.g. epsilon amino groups on lysine residues) can be thiolated with 2-imino-thiolane (Traut's reagent) and then coupled to maleimide-containing derivatives of PEG as described in Pedley et al., Br. J. Cancer, 70: 1126-1130 (1994).

[0151] The polymer will bear a group which is directly reactive with an amino acid side chain, or the Nor C-terminus of the polypeptide linked, or which is reactive with the multifunctional cross-linking agent. In general, polymers bearing such reactive groups are known for the preparation of immobilized proteins. In order to use such chemistries here, one should employ a water soluble polymer otherwise derivatized in the same fashion as insoluble polymers heretofore employed for protein immobilization. Cyanogen bromide activation is a particularly useful procedure to employ in crosslinking polysaccharides.

[0152] "Water soluble" in reference to the starting polymer means that the polymer or its reactive intermediate used for conjugation is sufficiently water soluble to participate in a derivatization reaction.

[0153] The degree of substitution with such a polymer will vary depending upon the number of reactive sites on the antibody fragment, the molecular weight, hydrophilicity and other characteristics of the polymer, and the particular antibody fragment derivatization sites chosen. In general, the conjugate contains from 1 to about 10 polymer molecules, but greater numbers of polymer molecules attached to the antibody fragments of the invention are also contemplated. The desired amount of derivatization is easily achieved by using an experimental matrix in which the time, temperature and other reaction conditions are varied to change the degree of substitution, after which the level of polymer substitution of the conjugates is determined by size exclusion chromatography or other means known in the art.

[0154] The polymer, e.g. PEG, is cross-linked to the antibody fragment by a wide variety of methods known *per se* for the covalent modification of proteins with nonproteinaceous polymers such as PEG.

40

45

50

[0155] Certain of these methods, however, are not preferred for the purposes herein. Cyanuronic chloride chemistry leads to many side reactions, including protein cross-linking. In addition, it may be particularly likely to lead to inactivation of proteins containing sulfhydryl groups. Carbonyl diimidazole chemistry (Beauchamp et al., Anal Biochem. 131, 25-33 [1983]) requires high pH (>8.5), which can inactivate proteins. Moreover, since the "activated PEG" intermediate can react with water, a very large molar excess of "activated PEG" over protein is required. The high concentrations of PEG required for the carbonyl diimidazole chemistry also led to problems in purification, as both gel filtration chromatography and hydrophilic interaction chromatography are adversely affected. In addition, the high concentrations of "activated PEG" may precipitate protein, a problem that per se has been noted previously (Davis, U.S. Patent No. 4,179,337). On the other hand, aldehyde chemistry (Royer, U.S. Patent No. 4,002,531) is more efficient since it requires only a 40-fold molar excess of PEG and a 1-2 hr incubation. However, the manganese dioxide suggested by Royer for preparation of the PEG aldehyde is problematic "because of the pronounced tendency of PEG to form complexes with metal-based oxidizing agents" (Harris et al., J. Polym. Sci. Polym. Chem. Ed. 22, 341-52 [1984]). The use of a Moffatt oxidation, utilizing DMSO and acetic anhydride, obviates this problem. In addition, the sodium borohydride suggested by Royer must be used at high pH and has a significant tendency to reduce disulfide bonds. In contrast, sodium cyanoborohydride, which is effective at neutral pH and has very little tendency to reduce disulfide bonds is preferred. In another preferred embodiment, maleimido-activated PEG is used for coupling to free thiols on the antibody fragment. [0156] Functionalized PEG polymers to modify the antibody fragments of the invention are available from Shearwater Polymers, Inc. (Huntsville, AL). Such commercially available PEG derivatives include, but are not limited to, amino-PEG, PEG amino acid esters, PEG-hydrazide, PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionic acid, PEG amino acids, PEG succinimidyl succinate, PEG succinimidyl propionate, succinimidyl ester of carboxymeth-

ylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulfide, heterofunctional PEGs, PEG vinyl derivatives, PEG silanes, and PEG phospholides. The reaction conditions for coupling these PEG derivatives will vary depending on the protein, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (such as lysine or cysteine R-groups), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer.

[0157] The conjugates of this invention are separated from the unreacted starting materials by gel filtration or ion exchange HPLC. Heterologous species of the conjugates are purified from one another in the same fashion.

[0158] The conjugates may also be purified by ion-exchange chromatography. The chemistry of many of the electrophilically activated PEG's results in a reduction of amino group charge of the PEGylated product. Thus, high resolution ion exchange chromatography can be used to separate the free and conjugated proteins, and to resolve species with different levels of PEGylation. In fact, the resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids. In one embodiment, species with difference levels of PEGylation are resolved according to the methods described in WO 96/34015 (International Application No. PCT/US96/05550 published October 31, 1996).

[0159] In a preferred embodiment, the conjugate is generated by utilizing the derivatization and purification methods described in Section (T) of the Examples below.

[0160] In one aspect, the invention provides any of the above-described conjugates formed by its component parts, i.e. one or more antibody fragment(s) covalently attached to one or more polymer molecule(s), without any extraneous matter in the covalent molecular structure of the conjugate.

c. Other Derivatives of Large Effective Size Conjugates

25

[0161] In another aspect, any of the above-described conjugates can be modified to contain one or more component (s) in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate, namely, the substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived. In one embodiment, the invention provides any of the above-described conjugates modified to incorporate one or more nonproteinaceous functional group(s). For example, the conjugate can be modified to incorporate nonproteinaceous labels or reporter molecules, such as radiolabels, including any radioactive substance used in medical treatment or imaging or used as an effector function or tracer in an animal model, such as radioisotopic labels ⁹⁹Tc, ⁹⁰Y,¹¹¹ln, ³²P, ¹⁴C, ¹²⁵I, ³H, ¹³¹I, ¹¹C, ¹⁵O, ¹³N, ¹⁸F, ³⁵S, ⁵¹Cr, ⁵⁷To, ²²⁶Ra, ⁶⁰Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, ²³⁴Th, ⁴⁰K, and the like, non-radioisotopic labels such as ¹⁵⁷Gd, ⁵⁵Mn, ⁵²Tr, ⁵⁶Fe, etc., fluroescent or chemiluminescent labels, including fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phycoerythrin, phycocyanin, allophycocyanin, o-phthaladehyde, fluorescamine, ¹⁵²Eu, dansyl, umbelliferone, luciferin, luminal label, isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridimium salt label, an oxalate ester label, an aequorin label, 2,3-dihydrophthalazinediones, biotin/avidin, spin labels, stable free radicals. and the like.

[0162] Conventional methods are available to bind these labels covalently to the polypeptide antibody fragment or polymer component of the conjugate. In one aspect, any conjugate of the invention is modified by derivatizing the antibody fragment component with any of the above-described non-proteinaceous labels, wherein the label is directly or indirectly (through a coupling agent) attached to the antibody fragment, and wherein such derivatization of the antibody fragment does not contribute or introduce any polymer moiety into the molecular structure of the conjugate. For instance, coupling agents such as dialdehydes, carbodiimides, dimaleimides, bis-imidates, bis-diazotized benzidine, and the like can be used to tag the antibody fragment with the above-described fluorescent or chemiluminescent labels. See, for example, U.S. Pat. No. 3,940,475 (fluorimetry), Morrison, Meth. Enzymol., 32b, 103 (1974), Svyanen et al., J. Biol. Chem., 284, 3762 (1973), and Bolton and Hunter, Biochem. J., 133, 529 (1973).

[0163] In the case of embodiments utilizing radiolabels, both direct and indirect labeling can be used to incorporate the selected radionuclide into the conjugate. As used herein in the context of radiolabeling, the phrases "indirect labeling" and "indirect labeling approach" both mean that a chelating agent is covalently attached to the antibody fragment moiety or polymer moiety of the conjugate and at least one raidonuclide is inserted into the chelating agent. Preferred chelating agents and radionuclides are set forth in Srivagtava, S.C. and Mease, R.C., "Progress in Research on Ligands, Nuclides and Techniques for Labeling Monoclonal Antibodies," Nucl. Med. Bio., 18(6): 589-603 (1991). A particularly preferred chelating agent is 1-isothiocycmatobenzyl-3-methyldiothelene triaminepent acetic acid ("MX-DTPA"). As used herein in the context of radiolabeling, the phrases "direct labeling" and "direct labeling approach" both mean that a radionuclide is covalently attached directly to the antibody fragment moiety (typically via an amino acid residue)

or to the polymer moiety of the conjugate. Preferred radionuclides for use in direct labeling of conjugate are provided in Srivagtava and Mease, supra. In one embodiment, the conjugate is directly labeled with ¹³¹I covalently attached to tyrosine residues. In another embodiment, the antibody fragment component of the conjugate is directly or indirectly labeled with any of the above-described radiolabels, wherein such labeling of the antibody fragment does not contribute or introduce any polymer moiety into the molecular structure of the conjugate.

d. Therapeutic Compositions and Administration of Large Effective Size Conjugates

[0164] The conjugate of the invention is useful for treating the disease indications that are treated with the parent intact antibody. For example, a conjugate derived from an anti-IL-8 antibody or fragment is useful in the treatment of inflammatory disorders as described in Section (II)(5)(B) below. Therapeutic formulations of the conjugate of the invention can be prepared by utilizing the same procedures described for the formulation of the anti-IL-8 antibodies and fragments of the invention in Section (II)(5)(B) below. The conjugate of the invention can be administered in place of the parent antibody for a given disease indication by modifying the formulation, dosage, administration protocol, and other aspects of a therapeutic regimen as required by the different pharmacodynamic characteristics of the conjugate and as dictated by common medical knowledge and practice.

e. Reagent Uses for Large Effective Size Conjugates

[0165] The conjugate of the invention also finds application as a reagent in an animal model system for in vivo study of the biological functions of the antigen recognized by the conjugate. The conjugate would enable the practitioner to inactivate or detect the cognate antigen in circulation or in tissue for a far greater period of time than would be possible with art-known constructs while removing any Fc interaction (which could attend the use of an intact antibody) from the system. In addition, the increased half-life of the conjugate of the invention can be applied advantageously to the induction of tolerance for the underivatized antibody fragment in a test animal by employing the Wie et al., Int. Archs. Allergy Appl. Immunol., 64: 84-99 (1981) method for allergen tolerization, which would permit the practitioner to repeatedly challenge the tolerized animal with the underivatized parental antibody fragment without generating an immune response against the parental fragment.

30 3. VARIANTS OF HUMANIZED MONOCLONAL ANTIBODIES AND ANTIBODY FRAGMENTS

[0166] An antibody fragment may comprise a heavy chain that is fused to or contains a leucine zipper sequence. The leucine zipper can increase the affinity or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney *el al.*, <u>J. Immunol.</u>, <u>148</u>: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

Bispecific Antibodies

[0167] Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities may be for IL-8, the other one for any other antigen. For example, bispecific antibodies specifically binding a IL-8 and neurotrophic factor, or two different types of IL-8 polypeptides are within the scope of the present invention.

[0168] Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature 305:537 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829 published 13 May 1993, and in Traunecker et al., EMBO J. 10: 3655 (1991).

[0169] According to a different and more preferred approach, antibody-variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant-domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1), containing the site necessary for light-chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the

maximum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the production of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. This asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. For further details of generating bispecific antibodies, see, for example, Suresh *et al.*, Methods in Enzymology 121:210(1986).

[0170] According to another approach, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

10

40

[0171] Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/00373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.

[0172] Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan *et al.*, *Science*, **229**: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

[0173] Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. *coli*, which can be chemically coupled to form bispecific antibodies. Shalaby *et al.*, *J. Exp. Med.*, 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

[0174] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

[0175] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).

4. Production of Humanized Monoclonal Antibody, Antibody Fragments, and Variants

[0176] The antibody fragments of the invention can be produced using any convenient antibody manufacturing process known in the art. Typical, are antibody or antibody fragment is made using recombinant expression systems. A multiple polypeptide chain antibody or antibody fragment species can be made in a single host cell expression system wherein the host cell produces each chain of the antibody or antibody fragment and assembles the polypeptide chains

into a multimeric structure to form the antibody or antibody fragment in vivo, followed by recovery of the antibody or antibody fragment from the host cell. For example, suitable recombinant expression systems for the production of complete antibody or antibody fragment are described in Lucas et al., Nucleic Acids Res., 24: 1774-1779 (1996). Alternatively, the separate polypeptide chains of the desired antibody or antibody fragment can be made in separate expression host cells, separately recovered from the respective host cells, and then mixed in vitro under conditions permitting the formation of the multi-subunit antibody or antibody fragment of interest. For example, U.S. Pat. No. 4,816,567 to Cabilly et al. and Carter et al., Bio/Technolog, 10: 163-167 (1992) provide methods for recombinant production of antibody heavy and light chains in separate expression hosts followed by assembly of antibody from separate heavy and light chains in vitro.

[0177] The following discussion of recombinant expression methods applies equally to the production of single chain antibody polypeptide species and multi-subunit antibody and antibody fragment species. All recombinant procedures for the production of antibody or antibody fragment provided below shall be understood to describe: (1) manufacture of single chain antibody species as the desired end-product; (2) manufacture of multi-subunit antibody or antibody fragment species by production of all subunits in a single host cell, subunit assembly in the host cell, optionally followed by host cell secretion of the multi-subunit end-product into the culture medium, and recovery of the multi-subunit endproduct from the host cell and/or culture medium; and (3) manufacture of multi-subunit antibody or antibody fragment by production of subunits in separate host cells (optionally followed by host cell secretion of subunits into the culture medium), recovery of subunits from the respective host cells and/or culture media, followed by in vitro subunit assembly to form the multi-subunit end-product. In the case of a multi-subunit antibody or antibody fragment produced in a single host cell, it will be appreciated that production of the various subunits can be effected by expression of multiple polypeptide-encoding nucleic acid sequences carried on a single vector or by expression of polypeptide-encoding nucleic acid sequences carried on multiple vectors contained in the host cell.

A. Construction of DNA Encoding Humanized 6G4.2.5 Monoclonal Antibodies, Antibody Fragments, and Variants

20

25

50

[0178] Following the selection of the humanized antibody or antibody fragment of the invention according to the methods described above, the practitioner can use the genetic code to design DNAs encoding the desired antibody or antibody fragment. In one embodiment, codons preferred by the expression host cell are used in the design of a DNA encoding the antibody or antibody fragment of interest. DNA encoding the desired antibody or antibody fragment can be prepared by a variety of methods known in the art. These methods include, but are not limited to, chemical synthesis by any of the methods described in Engels et al., Agnew. Chem. Int. Ed. Engl., 28: 716-734 (1989), the entire disclosure of which is incorporated herein by reference, such as the triester, phosphite, phosphoramidite and H-phosphonate methods. A variation on the above procedures contemplates the use of gene fusions, wherein the gene(s) encoding the antibody or antibody fragment is associated, in the vector, with a gene encoding another protein or a fragment of another protein. This results in the antibody or antibody fragment being produced by the host cell as a fusion with another protein. The "other" protein is often a protein or peptide which can be secreted by the cell, making it possible to isolate and purify the desired protein from the culture medium and eliminating the necessity of destroying the host cells which arises when the desired protein remains inside the cell. Alternatively, the fusion protein can be expressed intracellularly. It is advantageous to use fusion proteins that are highly expressed.

[0179] The use of gene fusions, though not essential, can facilitate the expression of heterologous proteins in E. coli as well as the subsequent purification of those gene products (Harris, T. J. R. in Genetic Engineering, Williamson, R., Ed., Academic, London, Vol. 4, p. 127(1983); Uhlen, M. & Moks, T., Methods Enzymol. 185:129-143 (1990)). Protein A fusions are often used because the binding of protein A, or more specifically the Z domain of protein A, to IgG provides an "affinity handle" for the purification of the fused protein (Nilsson, B. & Abrahmsen, L. Methods Enzymol. 185:144-161 (1990)). It has also been shown that many heterologous proteins are degraded when expressed directly in E. coli, but

are stable when expressed as fusion proteins (Marston, F. A. O., Biochem J. 240: 1 (1986)).

[0180] Fusion proteins can be cleaved using chemicals, such as cyanogen bromide, which cleaves at a methionine, or hydroxylamine, which cleaves between an Asn and Gly. Using standard recombinant DNA methodology, the nucleotide base pairs encoding these amino acids may be inserted just prior to the 5' end of the antibody or antibody fragment

[0181] Alternatively, one can employ proteolytic cleavage of fusion proteins, which has been recently reviewed (Carter, P. (1990) in Protein Purification: From Molecular Mechanisms to Large-Scale Processes, Ladisch, M. R., Willson, R. C., Painton, C. C., and Builder, S. E., eds., American Chemical Society Symposium Series No. 427, Ch 13, 181-193). [0182] Proteases such Factor Xa, thrombin, subtilisin and mutants thereof, have been successfully used to cleave fusion proteins. Typically, a peptide linker that is amenable to cleavage by the protease used is inserted between the "other" protein (e.g., the Z domain of protein A) and the protein of interest, such as humanized anti-IL-8 antibody or antibody fragment. Using recombinant DNA methodology, the nucleotide base pairs encoding the linker are inserted between the genes or gene fragments coding for the other proteins. Proteolytic cleavage of the partially purified fusion

protein containing the correct linker can then be carried out on either the native fusion protein, or the reduced or denatured fusion protein.

[0183] Various techniques are also available which may now be employed to produce variant humanized antibodies or antibody fragments, which encodes for additions, deletions, or changes in amino acid sequence of the resultant protein(s) relative to the parent humanized antibody or antibody fragment.

[0184] By way of illustration, with expression vectors encoding humanized antibody or antibody fragment in hand, site specific mutagenesis (Kunkel et al., Methods Enzymol. 204:125-139 (1991); Carter, P., et al., Nucl. Acids. Res. 13:4331 (1986); Zoller, M. J. et al., Nucl. Acids Res. 10:6487 (1982)), cassette mutagenesis (Wells, J. A., et al., Gene 34:315 (1985)), restriction selection mutagenesis (Wells, J. A., et al., Philos. Trans. R. Soc. London SerA 317, 415 (1986)) or other known techniques may be performed on the antibody or antibody fragment DNA. The variant DNA can then be used in place of the parent DNA by insertion into the aforementioned expression vectors. Growth of host bacteria containing the expression vectors with the mutant DNA allows the production of variant humanized antibodies or antibody fragments, which can be isolated as described herein.

B. Insertion of DNA into a Cloning Vehicle

15

40

[0185] The DNA encoding the antibody or antibody fragment is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector will depend on (1) whether it is to be used for DNA amplification or for DNA expression, (2) the size of the DNA to be inserted into the vector, and (3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

(i) Signal Sequence Component

[0186] In general, a signal sequence may be a component of the vector, or it may be a part of the antibody or antibody fragment DNA that is inserted into the vector. Preferably, a heterologous signal sequence selected and fused to the antibody or antibody fragment DNA such that the signal sequence in the corresponding fusion protein is recognized, transported and processed (i.e., cleaved by a signal peptidase) in the host cell's protein secretion system. In the case of prokaryotic host cells, the signal sequence is selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. In a preferred embodiment, the STII signal sequence is used as described in the Examples below. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, α factor leader (including Saccharomyces and Kluyveromyces α-factor leaders), or acid phosphatase leader, the C. albicans glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gO signal, are available.

(ii) Origin of Replication Component

[0187] Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

[0188] Most expression vectors are "shuttle" vectors, i.e. they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

[0189] DNA may also be amplified by insertion into the host genome. This is readily accomplished using *Bacillus* species as hosts, for example, by including in the vector a DNA sequence that is homologous to a sequence found in *Bacillus* genomic DNA. Transfection of *Bacillus* with this vector results in homologous recombination with the genome and insertion of the antibody or antibody fragment DNA.

(iii) Selection Gene Component

10

[0190] Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g. ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for *Bacilli*.

[0191] One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al., J. Molec. Appl. Genet., 1: 327 (1982)), mycophenolic acid (Mulligan et al., Science, 209: 1422 (1980)) or hygromycin (Sugden et al., Mol. Cell. Biol., 5: 410-413 (1985)). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug (G418 or neomycin (geneticin), xgpt (mycophenolic acid), and hygromycin, respectively.)

[0192] Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody or antibody fragment nucleic acid, such as dihydrofolate reductase (DHFR) or thymidine kinase. The mammalian cell transformants are placed under selection pressure which only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes the antibody or antibody fragment. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of the antibody or antibody fragment are synthesized from the amplified DNA.

[0193] For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding the antibody or antibody fragment. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060). Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding the antibody or antibody fragment, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3' phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pat. No. 4,965,199.

[0194] A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7. Stinchcomb *et al.*, Nature, 282: 39 (1979); Kingsman *et al.*, Gene, 7: 141 (1979); or Tschemper *et al.*, Gene, 10: 157 (1980). The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85: 12 (1977). The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu2*-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu2* gene.

(iv) Promoter Component

45

50

[0195] Expression vectors usually contain a promoter that is recognized by the host organism and is operably linked to the antibody or antibody fragment nucleic acid. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, such as the antibody or antibody fragment encoding sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g. the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known.

[0196] Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang *et al.*, Nature, 275: 615 (1978); and Goeddel *et al.*, Nature, 281: 544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 (1980) and EP 36,776) and hybrid promoters such as

30

the tac promoter (deBoer *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, <u>80</u>: 21-25 (1983)). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker to operably ligate them to DNA encoding the antibody or antibody fragment (Siebenlist *et al.*, <u>Cell</u>, <u>20</u>: 269 (1980)) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also generally will contain a Shine-Dalgamo (S.D.) sequence operably linked to the DNA encoding the antibody or antibody fragment.

[0197] Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman *et al.*, <u>J. Biol. Chem.</u>, <u>255</u>: 2073 (1980)) or other glycolytic enzymes (Hess *et al.*, <u>J. Adv. Enzyme Reg., 7</u>: 149 (1968); and Holland, <u>Biochemistry</u>, <u>17</u>: 4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

[0198] Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al., EP 73,657A. Yeast enhancers also are advantageously used with yeast promoters.

[0199] Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into mammalian expression vectors.

[0200] Vector driven transcription of antibody or antibody fragment encoding DNA in mammalian host cells can be controlled by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g. the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

[0201] The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al., Nature, 273: 113 (1978); Mulligan and Berg, Science, 209: 1422-1427 (1980); Pavlakis et al., Proc. Natl. Acad. Sci. USA, 78: 7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Greenaway et al., Gene, 18: 355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. 4,419,446. A modification of this system is described in U.S. 4,601,978. See also Gray et al., Nature, 295: 503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells, Reyes et al., Nature, 297: 598-601 (1982) on expression of human -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus, Canaani and Berg, Proc. Natl. Acad. Sci. USA, 79: 5166-5170 (1982) on expression of the human interferon 1 gene in cultured mouse and rabbit cells, and Gorman et al., Proc. Natl. Acad. Sci. USA, 79: 6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

(v) Enhancer Element Component

40

55

[0202] Transcription of a DNA encoding antibody or antibody fragment by higher eukaryotic host cells is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10-300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent having been found 5' (Laimins et al., Proc. Natl. Acad. Sci. USA, 78: 993 (1981)) and 3' (Lusky et al., Mol. Cell Bio., 3: 1108 (1983)) to the transcription unit, within an intron (Banerji et al., Cell, 33: 729 (1983)) as well as within the coding sequence itself (Osborne et al., Mol. Cell Bio., 4: 1293 (1984)). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, -fetoprotein and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297: 17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody or antibody fragment DNA, hut is preferably located at a site 5' from the promoter.

(vi) Transcription Termination Component

15

20

40

[0203] Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) can also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the antibody or antibody fragment. The 3' untranslated regions also include transcription termination sites.

[0204] Suitable vectors containing one or more of the above listed components and the desired coding and control sequences are constructed by standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.

[0205] For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing *et al.*, <u>Nucleic Acids Res.</u>, <u>9</u>: 309 (1981) or by the method of Maxam *et al.*, Methods in Enzymology, 65: 499 (1980).

[0206] Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding the antibody or antibody fragment. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector.

[0207] Other methods, vectors, and host cells suitable for adaptation to the synthesis of the antibody or antibody fragment in recombinant vertebrate cell culture are described in Gething et al., Nature, 293: 620-625 (1981); Mantei et al., Nature, 281: 40-46 (1979); Levinson et al., EP 117,060; and EP 117,058. A particularly useful plasmid for mammalian cell culture expression of the IgE peptide antagonist is pRK5 (EP pub. no. 307,247) or pSV16B (PCT pub. no. WO 91/08291 published 13 June 1991).

C. Selection and Transformation of Host Cells

[0208] Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for example, E. coli, Bacilli such as B. subtilis, Pseudomonas species such as P. aeruginosa, Salmonella typhimurium, or Serratia marcescens. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli 1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes. In a preferred embodiment, the E. coli strain 49D6 is used as the expression host as described in the Examples below. Review articles describing the recombinant production of antibodies in bacterial host cells include Skerra et al., Curr. Opinion in Immunol., 5: 256 (1993) and Pluckthun, Immunol. Revs., 130: 151 (1992).

[0209] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for vectors containing antibody or antibody fragment DNA. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as S. pombe (Beach and Nurse, Nature, 290: 140 (1981)), Kluyveromyces lactis (Louvencourt et al., J. Bacteriol., 737 (1983)), yarrowia (EP 402,226), Pichia pastoris (EP 183,070), Trichoderma reesia (EP 244,234), Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76: 5259-5263 (1979)), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112: 284-289 (1983); Tilbum et al., Gene, 26: 205-221 (1983); Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 (1984)) and A. niger (Kelly and Hynes, EMBO J., 4: 475-479 (1985)).

[0210] Host cells derived from multicellular organisms can also be used in the recombinant production of antibody or antibody fragment. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosophila melanogaster* (fruiffly), and *Bombyx mori* host cells have been identified. See, e.g., Luckow *et al.*, Bio/Technology, 6: 47-55 (1988); Miller *et al.*, in Genetic Engineering, Setlow, J.K. *et al.*, 8: 277-279 (Plenum Publishing, 1986), and Maeda *et al.*, Nature, 315: 592-594 (1985). A variety of such viral strains are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spudoptera frugiperda* cells.

[0211] Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts.

Typically, plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens, which has been previously manipulated to contain the antibody or antibody fragment DNA. During incubation of the plant cell culture with A. tumefaciens, the DNA encoding antibody or antibody fragment is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the antibody or antibody fragment DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al., J. Mol. Appl. Gen., 1: 561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. See EP 321,196 published 21 June 1989. [0212] Vertebrate cell culture is preferred for the recombinant production of full length antibodies. The propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36: 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23: 243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W 138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci., 383: 44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma cell line (Hep G2). Preferred host cells are human embryonic kidney 293 and Chinese hamster ovary cells. Myeloma cells that do not otherwise produce immunoglobulin protein are also useful host cells for the recombinant production of full length antibodies.

[0213] Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

[0214] Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

[0215] Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra, is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23: 315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method described in sections 16.30-16.37 of Sambrook et al., supra, is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. 4,399,216 issued 16 August 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130: 946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells such as by nuclear injection, electroporation, or by protoplast fusion may also be used.

D. Culturing the Host Cells

20

30

35

40

[0216] Prokaryotic cells used to produce the antibody or antibody fragment are cultured in suitable media as described generally in Sambrook et al., supra.

[0217] The mammalian host cells used to produce the antibody or antibody fragment can be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham and Wallace, Meth. Enz., 58: 44 (1979), Barnes and Sato, Anal. Biochem., 102: 255 (1980), U.S. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; U.S. Pat. Re. 30,985; or U.S. 5,122,469, the disclosures of all of which are incorporated herein by reference, may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temper-

ature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

[0218] The host cells referred to in this disclosure encompass cells in *in vitro* culture as well as cells that are within a host animal.

E. Detecting Gene Amplification/Expression

5

25

40

45

55

[0219] Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77: 5201-5205 (1980)), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

[0220] Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu *et al.*, Am. J. Clin. Path., 75: 734-738 (1980).

F. Purification of the Antibody or Antibody Fragment

[0221] In the case of a host cell secretion system, the antibody or antibody fragment is recovered from the culture medium. Alternatively, the antibody can be produced intracellularly, or produced in the periplasmic space of a bacterial host cell. If the antibody is produced intracellularly, as a first step, the host cells are lysed, and the resulting particulate debris is removed, for example, by centrifugation or ultrafiltration. Carter et al., Biol Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

[0222] The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human γ1, γ2, or γ4 heavy chains (Lindmark *et al.*, *J. Immunol. Meth.* 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss *et al.*, *EMBO J.* 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C_H3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SepharoseTM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

[0223] Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between

G. Production of Antibody Fragments

[0224] Various techniques have been developed for the production of the humanized antibody fragments of the

about 2.5-4.5, preferably performed at low salt concentrations (e.g. from about 0-0.25M salt).

invention, including Fab, Fab', Fab'-SH, or F(ab')₂ fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992) and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')₂ fragments (Carter et al., Bio/Technology, 10:163-167 (1992)). According to another approach, F(ab')₂ fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.

5. Uses of Anti-IL-8 Antibodies

A. Diagnostic Uses

10

[0225] For diagnostic applications requiring the detection or quantitation of IL-8, the antibodies or antibody fragments of the invention typically will be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety can be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g., ¹²⁵I, ³²P, ¹⁴C, or ³H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.

[0226] Any method known in the art for separately conjugating the antibody or antibody fragment to the detectable moiety can be employed, including those methods described by Hunter et al., Nature 144:945 (1962); David et al., Biochemistry 13:1014 (1974); Pain et al., J. Immunol. Meth. 40:219 (1981); and Nygren, J. Histochem. and Cytochem. 30:407 (1982).

[0227] The antibody fragments of the present invention can be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. For example, see Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc., 1987).

[0228] Competitive binding assays rely on the ability of a labeled standard (which can be a IL-8 or an immunologically reactive portion thereof) to compete with the test sample analyte (IL-8) for binding with a limited amount of antibody or antibody fragment. The amount of IL-8 in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies or antibody fragments generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies can conveniently be separated from the standard and analyte which remain unbound.

[0229] Sandwich assays involve the use of two antibodies, each capable of binding to a different antigenic portion, or epitope, of the protein (IL-8) to be detected. In a sandwich assay, the test sample . analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex (U.S. Patent No. 4,376,110). The second antibody can itself be labeled with a detectable moiety (direct sandwich assays) or can be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme (e.g., horseradish peroxidase).

[0230] IL-8 antibody fragments also are useful for the affinity purification of IL-8 from recombinant cell culture or natural sources. For example, they can be fixed to a solid support by techniques well known in the art so as to purify IL-8 from a source such as culture supernatant or tissue.

B. Therapeutic Compositions and Administration of Anti-IL-8 Antibody

[0231] The humanized anti-IL-8 antibody fragments of the invention are useful in the treatment of inflammatory disorders, such as adult respiratory distress syndrome (ARDS), hypovolemic shock, ulcerative colitis, and rheumatoid arthritis.

[0232] Therapeutic formulations of the humanized anti-IL-8 antibody fragments are prepared for storage by mixing the antibody fragment having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, supra), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).

[0233] The humanized anti-IL-8 antibody fragment to be used for in vivo administration must be sterile. This is readily

accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The humanized anti-IL-8 antibody fragment ordinarily will be stored in lyophilized form or in solution.

[0234] Therapeutic humanized anti-IL-8 antibody fragment compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

[0235] The route of humanized anti-IL-8 antibody fragment administration is in accord with known methods, e.g., inhalation, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, by enema or suppository, or by sustained release systems as noted below. Preferably it is given systemically or at a site of inflammation.

[0236] Suitable examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers 22:547 (1983)), poly (2-hydroxyethyl-methacrylate) (Langer et al., J. Biomed. Mater. Res. 15:167 (1981) and Langer, Chem. Tech. 12:98 (1982)), ethylene vinyl acetate (Langer et al., supra) or poly-D-(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release humanized anti-IL-8 antibody fragment compositions also include liposomally entrapped antibody or antibody fragment. Liposomes containing an antibody fragment are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. U.S.A. 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. U.S.A. 77:4030 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Patent Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mole percent cholesterol, the selected proportion being adjusted for the most efficacious antibody or antibody fragment therapy.

[0237] An "effective amount" of the humanized anti-IL-8 antibody fragment to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the humanized anti-IL-8 antibody fragment until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.

[0238] In the treatment and prevention of an inflammatory disorder with a humanized anti-IL-8 antibody fragment of the invention, the composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the inflammatory disorder, including treating acute or chronic respiratory diseases and reducing inflammatory responses. Such amount is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections.

[0239] As a general proposition, the initial pharmaceutically effective amount of the antibody fragment administered parenterally per dose will be in the range of about 0.1 to 50 mg/kg of patient body weight per day, with the typical initial range of antibody used being 0.3 to 20 mg/kg/day, more preferably 0.3 to 15 mg/kg/day.

40 [0240] As noted above, however, these suggested amounts of antibody fragment are subject to a great deal of therapeutic discretion. The key factor in selecting an appropriate dose and scheduling is the result obtained, as indicated above.

[0241] The antibody fragment need not be, but is optionally formulated with one or more agents currently used to prevent or treat the inflammatory disorder in question. For example, in rheumatoid arthritis, it can be given in conjunction with a glucocorticosteroid. The effective amount of such other agents depends on the amount of antibody fragment present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.

[0242] Some of the following examples illustrate the invention. Others provide useful background. They are offered by way of illustration and not by way of limitation.

EXAMPLES

10

20

35

50

55

A. GENERATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST HUMAN IL-8

[0243] Balb/c mice were immunized in each hind footpad or intraperitoneally with 10 µg of recombinant human IL-8 (produced as a fusion of (ser-IL-8)₇₂ with ubiquitin (Hebert et al. J. Immunology 145:3033-3040 (1990)); IL-8 is available commercially from PeproTech, Inc., Rocky Hill, NJ) resuspended in MPL/TDM (Ribi Immunochem. Research Inc.,

Hamilton, MT) and boosted twice with the same amount of IL-8. In these experiments, "IL-8" is intended to mean (ser-IL-8)₇₂ unless otherwise specified. A final boost of 10 μ g of IL-8 was given 3 days before the fusion. Spleen cells or popliteal lymph node cells were fused with mouse myeloma P3X63Ag8U.1 (ATCC CRL1597), a non-secreting clone of the myeloma P3X63Ag8, using 35% polyethylene glycol as described before. Ten days after the fusion, culture supernatant was screened for the presence of monoclonal antibodies to IL-8 by ELISA.

[0244] The ELISA was performed as follows. Nunc 96-well immunoplates (Flow Lab, McLean, VA) were coated with 50 μ l/well of 2 μ g/ml IL-8 in phosphate-buffered saline (PBS) overnight at 4°C. The remaining steps were carried out at room temperature. Nonspecific binding sites were blocked with 0.5% bovine serum albumin (BSA) for 1 hour (hr). Plates were then incubated with 50 μ l/well of hybridoma culture supernatants from 672 growing parental fusion wells for 1 hr, followed by the incubation with 50 μ l/well of 1:1000 dilution of a 1 mg/ml stock solution of alkaline phosphatase-conjugated goat anti-mouse 1g (Tago Co., Foster City, CA) for I hr. The level of enzyme-linked antibody bound to the plate was determined by the addition of 100 μ l/well of 0.5 mg/ml of r-nitrophenyl phosphate in sodium bicarbonate buffer, pH 9.6. The color reaction was measured at 405 nm with an ELISA plate reader (Titertrek Multiscan, Flow Lab, McLean, VA). Between each step, plates were washed three times in PBS containing 0.05% Tween 20.

[0245] As a general proposition, the initial pharmaceutically effective amount of the antibody or antibody fragment administered parenterally per dose will be in the range of about 0.1 to 50 mg/kg of patient body weight per day, with the typical initial range of antibody used being 0.3 to 20 mg/kg/day, more preferably 0.3 to 15 mg/kg/day.

[0246] As noted above, however, these suggested amounts of antibody or antibody fragment are subject to a great deal of therapeutic discretion. The key factor in selecting an appropriate dose and scheduling is the result obtained, as indicated above.

[0247] The antibody or antibody fragment need not be, but is optionally formulated with one or more agents currency used to prevent or treat the inflammatory disorder in question. For example, in rheumatoid arthritis, the antibody can be given in conjunction with a glucocorticosteroid. The effective amount of such other agents depends on the amount of antibody or antibody fragment present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.

[0248] The following examples are offered by way of illustration and not by way of limitation. The disclosures of all references cited in the specification, and the disclosures of all citations in such references, are expressly incorporated herein by reference.

EXAMPLES

20

30

A. GENERATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST HUMAN IL-8

[0249] Balb/c mice were immunized in each hind footpad or intraperitoneally with 10 μg of recombinant human IL-8 (produced as a fusion of (ser-IL-8)₇₂ with ubiquitin (Hebert *et al.* <u>J. Immunology</u> 145:3033-3040 (1990)); IL-8 is available commercially from PeproTech, Inc., Rocky Hill, NJ) resuspended in MPL/TDM (Ribi Immunochem. Research Inc., Hamilton, MT) and boosted twice with the same amount of IL-8. In these experiments, "IL-8" is intended to mean (ser-IL-8)₇₂ unless otherwise specified. A final boost of 10 μg of IL-8 was given 3 days before the fusion. Spleen cells or popliteal lymph node cells were fused with mouse myeloma P3X63Ag8U.1 (ATCC CRL1597), a non-secreting clone of the myeloma P3X63Ag8, using 35% polyethylene glycol as described before. Ten days after the fusion, culture supernatant was screened for the presence of monoclonal antibodies to IL-8 by ELISA.

[0250] The ELISA was performed as follows. Nunc 96-well immunoplates (Flow Lab, McLean, VA) were coated with 50 μ l/well of 2 μ g/ml IL-8 in phosphate-buffered saline (PBS) overnight at 4°C. The remaining steps were carried out at room temperature. Nonspecific binding sites were blocked with 0.5% bovine serum albumin (BSA) for 1 hour (hr). Plates were then incubated with 50 μ l/well of hybridoma culture supernatants from 672 growing parental fusion wells for I hr, followed by the incubation with 50 μ l/well of 1:1000 dilution of a 1 mg/ml stock solution of alkaline phosphatase-conjugated goat anti-mouse 1g (Tago Co., Foster City, CA) for I hr. The level of enzyme-linked antibody bound to the plate was determined by the addition of 100 μ l/well of 0.5 mg/ml of r-nitrophenyl phosphate in sodium bicarbonate buffer, pH 9.6. The color reaction was measured at 405 nm with an ELISA plate reader (Titertrek Multiscan, Flow Lab, McLean, VA). Between each step, plates were washed three times in PBS containing 0.05% Tween 20.

[0251] Culture supernatants which promoted 4-fold more binding of IL-8 than did control medium were selected as positives. According to this criterion, 16 of 672 growing parental fusion wells (2%) were positive. These positive hybridoma cell lines were cloned at least twice by using the limiting dilution technique.

[0252] Seven of the positive hybridomas were further characterized as follows. The isotypes of the monoclonal antibodies were determined by coating Nunc 96-well immunoplates (Flow Lab, McLean, VA) with IL-8 overnight, blocking with BSA, incubating with culture supernatants followed by the addition of predetermined amount of isotype-specific alkaline phosphatase-conjugated goat anti-mouse 1g (Fisher Biotech, Pittsburgh, PA). The level of conjugated anti-

bodies bound to the plate was determined by the addition of r-nitrophenyl phosphate as described above.

[0253] All the monoclonal antibodies tested belonged to either IgG_1 or IgG_2 immunoglobulin isotype. Ascites fluid containing these monoclonal antibodies had antibody titers in the range of 10,000 to 100,000 as determined by the reciprocal of the dilution factor which gave 50% of the maximum binding in the ELISA.

[0254] To assess whether these monoclonal antibodies bound to the same epitopes, a competitive binding ELISA was performed. At a ratio of biotinylated mAb to unlabeled mAb of 1:100, the binding of biotinylated mAb 5.12.14 was significantly inhibited by its homologous mAb but not by mAb 4.1.3, while the binding of biotinylated mAb 4.1.3 was inhibited by mAb 4.1.3 but not by mAb 5.12.14. Monoclonal antibody 5.2.3 behaved similarly to mAb 4.1.3, while monoclonal antibodies 4.8 and 12.3.9 were similar to mAb 5.12.14. Thus, mAb 4.1.3 and mAb 5.2.3 bind to a different epitope(s) than the epitope recognized by monoclonal antibodies 12.3.9, 4.8 and 5.12.14.

[0255] Immunodot blot analysis was performed to assess antibody reactivity to IL-8 immobilized on nitrocellulose paper. All seven antibodies recognized IL-8 immobilized on paper, whereas a control mouse IgG antibody did not.

[0256] The ability of these monoclonal antibodies to capture soluble 125I-IL-8 was assessed by a radioimmune pre-

cipitation test (RIP). Briefly, tracer ¹²⁵I-IL-8 (4 x 10⁴ cpm) was incubated with various dilutions of the monoclonal anti-IL-8 antibodies in 0.2 ml of PBS containing 0.5% BSA and 0.05% Tween 20 (assay buffer) for I hr at room temperature. One hundred microliters of a predetermined concentration of goat anti-mouse 1g antisera (Pel-Freez, Rogers, AR) were added and the mixture was incubated at room temperature for 1 hr. Immune complexes were precipitated by the addition of 0.5 ml of 6% polyethylene glycol (M.W. 8000) kept at 4°C. After centrifugation at 2,000 x g for 20 min at 4°C, the supernatant was removed by aspiration and the radioactivity remaining in the pellet was counted in a gamma counter. Percent specific binding was calculated as (precipitated cpm - background cpm)/ (total cpm - background cpm). Monoclonal antibodies 4.1.3, 5.2.3, 4.8, 5.12.14 and 12.3.9 captured ¹²⁵I-IL-8 very efficiently, while antibodies 9.2.4 and 8.9.1 were not able to capture soluble ¹²⁵I-IL-8 in the RIP even though they could bind to IL-8 coated onto ELISA plates (Table 1).

[0257] The dissociation constants of these monoclonal antibodies were determined using a competitive binding RIP assay. Briefly, competitive inhibition of the binding each antibody to 125 I-IL-8 (20,000-40,000 cpm per assay) by various amounts of unlabeled IL-8 was determined by the RIP described above. The dissociation constant (affinity) of each mAb was determined by using Scatchard plot analysis (Munson, *et al.*, <u>Anal. Biochem.</u> 107:220 (1980)) as provided in the VersaTerm-PRO computer program (Synergy Software, Reading, PA). The K_d 's of these monoclonal antibodies (with the exception of 9.2.4. and 8.9.1) were in the range from 2 x $^{10-8}$ to 3 x $^{10-10}$ M. Monoclonal antibody 5.12.14 with a K_d of 3 x $^{10-10}$ M showed the highest affinity among all the monoclonal antibodies tested (Table 3).

Table 3.

30

35

40

45

50

	Table	••				
Characterization of Anti-tL-8 Monoclonal Antibodies						
Antibody	%Specific Binding to IL-8	K _d (M)	Isotype	pl		
4.1.3	58	2 X 10 ⁻⁹	IgG ₁	4.3-6.1		
5.2.3	34	2 X 10 ⁻⁸	IgG₁	5.2-5.6		
9.2.4	1	•	IgG ₁	7.0-7.5		
8.9.1	2	•	IgG ₁	6.8-7.6		
4.8	62	3 X 10 ⁻⁸	IgG _{2a}	6.1-7.1		
5.12.14	98	3 X 10 ⁻¹⁰	IgG _{2a}	6.2-7.4		
12.3.9	86	2 X 10 ⁻⁹	IgG _{2a}	6.5-7.1		

[0258] To assess the ability of these monoclonal antibodies to neutralize IL-8 activity, the amount of 125 I-IL-8 bound to human neutrophils in the presence of various amounts of culture supernatants and purified monoclonal antibodies was measured. Neutrophils were prepared by using Mono-Poly Resolving Medium (M-PRM) (Flow Lab. Inc., McLean, VA). Briefly fresh, heparinized human blood was loaded onto M-PRM at a ratio of blood to medium, 3.5:3.0, and centrifuged at 300 x g for 30 min at room temperature. Neutrophils enriched at the middle layer were collected and washed once in PBS. Such a preparation routinely contained greater than 95% neutrophils according to the Wright's Giemsa staining. The receptor binding assay was done as follows. 50 μ l of 125 I-IL-8 (5 ng/ml) was incubated with 50 μ l of unlabeled IL-8 (100 μ g/ml) or monoclonal antibodies in PBS containing 0.1% BSA for 30 min at room temperature. The mixture was then incubated with 100 μ l of neutrophils (107 cells/ml) for 15 min at 37°C. The 125 I-IL-8 bound was separated from the unbound material by loading mixtures onto 0.4 ml of PBS containing 20% sucrose and 0.1% BSA and by centrifugation at 300 x g for 15 min. The supernatant was removed by aspiration and the radioactivity associated with the pellet was counted in a gamma counter.

[0259] Monoclonal antibodies 4.1.3, 5.2.3, 4.8, 5.12.14, and 12.3.9 inhibited greater than 85% of the binding of IL-8 to human neutrophils at a 1:25 molar ratio of IL-8 to mAb. On the other hand, monoclonal antibodies 9.2.4 and 8.9.1 appeared to enhance the binding of IL-8 to its receptors on human neutrophils. Since a control mouse IgG also enhanced the binding of IL-8 on neutrophils, the enhancement of IL-8 binding to its receptors by mAb 9.2.4 and 8.9.1 appears to be nonspecific. Thus, monoclonal antibodies, 4.1.3, 5.1.3, 4.8, 5.12.14, and 12.3.9 are potential neutralizing monoclonal antibodies while monoclonal antibodies 8.9.1 and 9.2.4 are non-neutralizing monoclonal antibodies.

[0260] The ability of the anti-IL-8 antibodies to block neutrophil chemotaxis induced by IL-8 was tested as follows. Neutrophil chemotaxis induced by IL-8 was determined using a Boyden chamber method (Larsen, et al. Science 243: 1464 (1989)). One hundred µl of human neutrophils (10⁶ cells/ml) resuspended in RPMI containing 0.1% BSA were placed in the upper chamber and 29 µl of the IL-8 (20 nM) with or without monoclonal antibodies were placed in the lower chamber. Cells were incubated for 1 hr at 37°C. Neutrophils migrated into the lower chamber were stained with Wright's Giemsa stain and counted under the microscope (100x magnification). Approximately 10 different fields per

neutrophil chemotactic activity of IL-8 at 1:10 ratio of IL-8 to mAb.

[0261] The isoelectric focusing (IEF) pattern of each mAb was determined by applying purified antibodies on an IEF polyacrylamide gel (pH 3-9, Pharmacia) using the Fast gel system (Pharmacia, Piscataway, NJ). The IEF gel was pretreated with pharmalyte containing 1% Triton X100 (Sigma, St. Louis, MO) for 10 min before loading the samples. The IEF pattern was visualized by silver staining according to the instructions from the manufacturer. All of the monoclonal antibodies had different IEF patterns, confirming that they originated from different clones. The pl values for the antibodies are listed in Table 3.

20

experimental group were examined. Neutralizing monoclonal antibodies 5.12.14 and 4.1.3 blocked almost 70% of the

[0262] All these monoclonal antibodies bound equally well to both (ala-IL-8)77 and (ser-IL-8)72 forms of IL-8. Because IL-8 has greater than 30% sequence homology with certain other members of the platelet factor 4 (PF4) family of inflammatory cytokines such as β -TG (Van Damme *et al.*, <u>Eur. J. Biochem.</u> 181:337(1989); Tanaka *et al.*, <u>FEB</u> 236 (2):467 (1988)) and PF4 (Deuel *et al.*, <u>Proc. Natl. Acad. Sci. U.S.A.</u> 74:2256 (1977)), they were tested for possible cross reactivity to β -TG and PF4, as well as to another neutrophil activating factor, C5a. No detectable binding to any of these proteins was observed, with the exception of mAb 4.1.3, which had a slight cross reactivity to β -TG.

[0263] One of the antibodies, mAb 5.12.14, was further studied to determine whether it could block the IL-8 mediated release of elastase by neutrophils. Briefly, human neutrophils were resuspended in Hanks balanced salt solution (Gibco, Grand Island, NY) containing 1.0% BSA, Fraction V (Sigma, St. Louis, MO), 2 mg/ml alpha-D-glucose (Sigma), 4.2 mM sodium bicarbonate (Sigma) and 0.01 M HEPES, pH 7.1 (JRH Bioscience, Lenexa, KS). A stock of cytochalasin B (Sigma) was prepared (5 mg/ml in dimethylsulfoxide (Sigma) and stored at 2-8°C. Cytochalasin B was added to the neutrophil preparation to produce a final concentration of 5 µg/ml, and incubated for 15 min at 37°C. Human IL-8 was incubated with mAb 5.12.14 (20 μl), or a negative control antibody, in 1 ml polypropylene tubes (DBM Scientific, San Femando, CA) for 30 min at 37°C. The final assay concentrations of IL-8 were 50 and 500 nM. The monoclonal antibodies were diluted to produce the following ratios (IL-8:Mab): 1:50, 1:10, 1:2, 1:1, and 1:0.25. Cytochalasin B-treated neutrophils were added (100 µl/tube) and incubated for 2 hours at 25°C. The tubes were centrifuged (210 X g, 2-8°C) for 10 min, and supernatants were transferred to 96 well tissue culture plates (30 μl/well). Elastase substrate stock, 10 mM methoxysuccinyl-alanyl-propyl-valyl-p-nitroanilide (Calbiochem, La Jolla, CA) in DMSO was prepared and stored at 2-8°C. Elastase substrate solution (1.2 mM substrate, 1.2 M NaCl (Mallinckrodt, Paris, Kentucky), 0.12 M HEPES pH 7.2 in distilled water) was added (170 μl/well) to the supernatants and incubated for 0.5 to 2 hours at 37°C (until control O.D. of 1.0 was reached). Absorbance was measured at 405 nm (SLT 340 ATTC plate reader, SLT Lab Instruments, Austria).

[0264] The results are shown in Figure 1. At a 1:1 ratio of IL-8 to mAb 5.12.14, the antibody was able to effectively block the release of elastase from neutrophils.

[0265] The hybridoma producing antibody 5.12.14 was deposited on February 15, 1993 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. HB 11553.

B. GENERATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST RABBIT IL-8

[0266] Antibodies against rabbit IL-8 were generated in essentially the same process as anti-human IL-8 antibodies using rabbit IL-8 as immunogen (kindly provided by C. Broaddus; see also Yoshimura et al. J. Immunol. 146:3483 (1991)). The antibody was characterized as described above for binding to other cytokines coated onto ELISA plates; no measurable binding was found to MGSA, fMLP, C5a, b-TG, TNF, PF4, or IL-1.

[0267] The hybridoma producing antibody 6G4.2.5 was deposited on September 28, 1994, with the American Type
Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. HB 11722.
[0268] Recombinant human-murine chimeric Fabs for 5.12.14 and 6G4.2.5 were constructed as described below. A chimeric 6G.4.25 Fab is compared with a chimeric 5.12.14 Fab in detail below.

1. INHIBITION OF IL-8 BINDING TO HUMAN NEUTROPHILS BY 5.12.14-FAB AND 6G4 2.5-FAB

[0269] The ability of the two chimeric Fabs, 5.12.14-Fab and 6G4.2.5-Fab, to efficiently bind IL-8 and prevent IL-8 from binding to IL-8 receptors on human neutrophils was determined by performing a competition binding assay which allows the calculation of the IC_{50} - concentration required to achieve 50% inhibition of IL-8 binding.

[0270] Human neutrophils (5 X 10⁵) were incubated for I hour at 4°C with 0.5nM ¹²⁵I-IL-8 in the presence of various concentrations (0 to 300 nM) of 5.12.14-Fab, 6G4.2.5-Fab, an isotype control (4D5-Fab) or unlabeled IL-8. After the incubation, the unbound ¹²⁵I-IL-8 was removed by centrifugation through a solution of 20% sucrose and 0.1% bovine serum albumin in phosphate buffered saline and the amount of ¹²⁵I-IL-8 bound to the cells was determined by counting the cell pellets in a gamma counter. Figure 2 demonstrates the inhibition of ¹²⁵I-IL-8 binding to neutrophils by unlabeled IL-8. Figure 3 demonstrates that a negative isotype matched Fab does not inhibit the binding of ¹²⁵I-IL-8 to human neutrophils. Both the anti-IL-8 Fabs, 5.12.14 Fab (Figure 4) and 6G.4.25 Fab (Figure 5) were able to inhibit the binding of ¹²⁵I-IL-8 to human neutrophils with an average IC₅₀ of 1.6 nM and 7.5 nM, respectively.

2. INHIBITION OF IL-8-MEDIATED NEUTROPHIL CHEMOTAXIS BY 5.12.14-FAB AND 6G4.2.5-FA B

15

35

40

[0271] Human neutrophils were isolated, counted and resuspended at 5×10^6 cells/ml in Hank's balanced salt solution (abbreviated HBSS; without calcium and magnesium) with 0.1% bovine serum albumin. The neutrophils were labeled by adding calcein AM (Molecular Probe, Eugene, OR) at a final concentration of 2.0 μ M. Following a 30 minute incubation at 37°C, cells were washed twice with HBSS-BSA and resuspended at 5×10^6 cells/ml.

[0272] Chemotaxis experiments were carried out in a Neuro Probe (Cabin John, MD) 96-well chamber, model MBB96. Experimental samples (buffer only control, IL-8 alone or IL-8 + Fabs) were loaded in a Polyfiltronics 96-well View plate (Neuro Probe Inc.) placed in the lower chamber. 100 µl of the calcein AM-labeled neutrophils were added to the upper chambers and allowed to migrate through a 5 micrometer porosity PVP free polycarbonate framed filter (Neuro Probe Inc.) toward the bottom chamber sample. The chemotaxis apparatus was then incubated for 40 to 60 minutes at 37°C with 5% CO₂. At the end of the incubation, neutrophils remaining in the upper chamber were aspirated and upper chambers were washed three times with PBS. Then the polycarbonate filter was removed, non-migrating cells were wiped off with a squeegee wetted with PBS, and the filter was air dried for 15 minutes.

[0273] The relative number of neutrophils migrating through the filter (Neutrophil migration index) was determined by measuring fluorescence intensity of the filter and the fluorescence intensity of the contents of the lower chamber and adding the two values together. Fluorescence intensity was measured with a CytoFluor 2300 fluorescent plate reader (Millipore Corp. Bedford, MA) configured to read a Coming 96-well plate using the 485-20 nm excitation filter and a 530-25 emission filter, with the sensitivity set at 3.

[0274] The results are shown in Figures 6 and 7. Figure 6 demonstrates the inhibition of human IL-8 mediated neutrophil chemotaxis by chimeric 6G4.2.5 and 5.12.14 Fabs. Figure 7 demonstrates the relative abilities of chimeric 6G4.2.5 and 5.12.14 Fabs to inhibit rabbit IL-8 mediated neutrophil chemotaxis.

3. INHIBITION OF IL-8-MEDIATED NEUTROPHIL ELASTASE RELEASE BY VARIOUS CONCENTRATIONS OF 6G4.2.5 AND 5.12.14 FABS

[0275] Blood was drawn from healthy male donors into heparinized syringes. Neutrophils were isolated by dextran sedimentation, centrifugation over Lymphocyte Separation Medium (Organon Teknika, Durham, NC), and hypotonic lysis of contaminating red blood cells as described by Berman *et al.* (J. Cell Biochem. 52:183 (1993)). The final neutrophil pellet was suspended at a concentration of 1 x 10⁷ cells/ml in assay buffer, which consisted of Hanks Balanced Salt Solution (GIBCO, Grand Island, NY) supplemented with 1.0% BSA (fraction V, Sigma, St. Louis, MO), 2 mg/ml glucose, 4.2 mM sodium bicarbonate, and 0.01 M HEPES, pH 7.2. The neutrophils were stored at 4°C for not longer than 1 hr.

[0276] IL-8 (10 μl) was mixed with anti-IL-8 Fab, an isotype control Fab, or buffer (20 μl) in 1 ml polypropylene tubes and incubated in a 37°C water bath for 30 min. IL-8 was used at final concentrations ranging from 0.01 to 1000 nM in dose response studies (Figure 8) and at a final concentration of 100 nM in the experiments addressing the effects of the Fabs on elastase release (Figures 9 and 10). Fab concentrations ranged from approximately 20 nM to 300 nM, resulting in Fab:IL-8 molar ratios of 0.2: 1 to 3:1. Cytochalasin B (Sigma) was added to the neutrophil suspension at a concentration of 5 μg/ml (using a 5 mg/ml stock solution made up in DMSO), and the cells were incubated for 15 min in a 37°C water bath. Cytochalasin B-treated neutrophils (100 μl) were then added to the IL-8/Fab mixtures. After a 3 hr incubation at room temperature, the neutrophils were pelleted by centrifugation (200 x g for 5 min), and aliquots of the cell-free supernatants were transferred to 96 well plates (30 μl/well). The elastase substrate, methoxysuccinylalanyl-prolyl-valyl-p-nitroanilide (Calbiochem, La Jolla, CA), was prepared as a 10 mM stock solution in DMSO and stored at 4°C. Elastase substrate working solution was prepared just prior to use (1.2 mM elastase substrate, 1.2

M NaCl, 0.12 M HEPES, pH 7.2), and 170 μ l was added to each sample-containing well. The plates were placed in a 37°C tissue culture incubator for 30 min or until an optical density reading for the positive controls reached at least 1.0. Absorbance was measured at 405 nm using an SLT 340 plate reader (SLT Lab Instruments, Austria).

[0277] Figure 9 demonstrates the ability of the chimeric anti-IL-8 Fabs to inhibit elastase release from human neutrophils stimulated by human IL-8; Figure 10 demonstrates the relative abilities of the chimeric anti-IL-8 Fabs to inhibit elastase release from human neutrophils stimulated by rabbit IL-8.

C. MOLECULAR CLONING OF THE VARIABLE LIGHT AND HEAVY REGIONS OF THE MURINE 5.12.14 (ANTI-IL-9) MONOCLONAL ANTIBODY

[0278] Total RNA was isolated from 1 X 108 cells (hybridoma cell line ATCC HB-11722) using the procedure described by Chomczynski and Sacchi (Anal. Biochem. 162:156 (1987)). First strand cDNA was synthesized by specifically priming the mRNA with synthetic DNA oligonucleotides designed to hybridize with regions of the murine RNA encoding the constant region of the kappa light chain or the IgG2a heavy chain (the DNA sequence of these regions are published in Sequences of Proteins of Immunological Interest, Kabat, E. A. et al. (1991) NIH Publication 91-3242, V 1-3.). Three primers (SEQ ID NOS: 1-6) were designed for each of the light and heavy chains to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis (Figure 13). Amplification of the first strand cDNA to doublestranded (ds) DNA was accomplished using two sets of synthetic DNA oligonucleotide primers: one forward primer (SEQ ID NOS: 7-9) and one reverse primer (SEQ ID NO: 10) for the light chain variable region amplification (Figure 14) and one forward primer (SEQ ID NOS: 11-14) and one reverse primer (SEQ ID NOS: 11, 15, 14 and 13) for the heavy chain variable region amplification (Figure 15). The N-terminal sequence of the first eight amino acids of either the light or heavy chains of 5.12.14 was used to generate a putative murine DNA sequence corresponding to this region. (A total of 29 amino acids was sequenced from the N-terminus of both the light chain and heavy chain variable regions using the Edman degradation protein sequencing technique.) This information was used to design the forward amplification primers which were made degenerate in the third position for some codons to increase the chances of primer hybridization to the natural murine DNA codons and also included the unique restriction site, Mlul, for both the light chain variable region forward primer and the heavy chain variable region forward primer to facilitate ligation to the 3' end of the STII element in the cloning vector. The reverse amplification primers were designed to anneal with the murine DNA sequence corresponding to a portion of the constant region of the light or heavy chains near the variable/ constant junction. The light chain variable region reverse primer contained a unique BstBI restriction site and the heavy chain variable region reverse primer contained a unique Apal restriction site for ligation to the 5' end of either the human IgG1 constant light or IgGI constant heavy regions in the vectors, pB 13.1 (light chain) and pB 14 (heavy chain). The polymerase chain reaction using these primer sets yielded DNA fragments of approximately 400 bp. The cDNA encoding the 5.12.14 light chain variable region was cloned into the vector pB13.1, to form pA51214VL and the 5.12.14 heavy chain variable region was cloned into the vector, pB14, to form pA51214VH. The cDNA inserts were characterized by DNA sequencing and are presented in the DNA sequence (SEQ ID NO: 16) and amino acid sequence (SEQ ID NO: 17) of Figure 16 (murine light chain variable region) and in the DNA sequence (SEQ ID NO: 18) and amino acid (SEQ ID NO: 19) of Figure 17 (murine heavy chain variable region).

D. CONSTRUCTION OF A 5.12.14 FAB VECTOR

10

40

[0279] In the initial construct, pA51214VL, the amino acids between the end of the 5.12.14 murine light chain variable sequence and the unique cloning site, BstBI, in the human IgG1 constant light sequence were of murine origin corresponding to the first 13 amino acids of the murine IgG1 constant region (Figure 16). Therefore, this plasmid contained a superfluous portion of the murine constant region separating the 5.12.14 murine light chain variable region and the human light chain IgG1 constant region. This intervening sequence would alter the amino acid sequence of the chimera and most likely produce an incorrectly folded Fab. This problem was addressed by immediately truncating the cDNA clone after A109 and re-positioning the BstBI site to the variable/constant junction by the polymerase chain reaction. Figure 18 shows the amplification primers used to make these modifications. The forward primer, VL.front (SEQ ID NO: 20), was designed to match the last five amino acids of the STII signal sequence, including the Mlul cloning site, and the first 4 amino acids of the 5.12.14 murine light chain variable sequence. The sequence was altered from the original cDNA in the third position of the first two codons D1 (T to C) and 12 (C to T) to create a unique EcoRV cloning site which was used for later constructions. The reverse primer, VL.rear (SEQ ID NO: 21), was designed to match the first three amino acids of the human IgG1 constant light sequence and the last seven amino acids of the 5.12.14 light chain variable sequence which included a unique BstBl cloning site. In the process of adding the BstBl site, the nucleotide sequence encoding several amino acids were altered: L106 (TTG to CTT), K107 (AAA to CGA) resulting in a conservative amino acid substitution to arginine, and R108 (CGG to AGA). The PCR product encoding the modified 5.12.14 light chain variable sequence was then subcloned into pB13.1 in a two-part ligation. The Mlul-BstBl digested

5.12.14 PCR product encoding the light chain variable region was ligated into Mlul-BstBl digested vector to form the plasmid, pA51214VL¹. The modified cDNA was characterized by DNA sequencing. The coding sequence for the 5.12.14 light chain is shown in Figure 19.

[0280] Likewise, the DNA sequence between the end of the heavy chain variable region and the unique cloning site, Apal, in the human IgG1 heavy chain constant domain of pA51214VH was reconstructed to change the amino acids in this area from murine to human. This was done by the polymerase chain reaction. Amplification of the murine 5.12.14 heavy chain variable sequence was accomplished using the primers shown in Figure 18. The forward PCR primer (SEQ ID NO: 22) was designed to match nucleotides 867-887 in pA51214VH upstream of the ST11 signal sequence and the putative cDNA sequence encoding the heavy chain variable region and included the unique cloning site Spel. The reverse PCR primer (SEQ ID NO: 23) was designed to match the last four amino acids of the 5.12.14 heavy chain variable sequence and the first six amino acids corresponding to the human IgGI heavy constant sequence which also included the unique cloning site, Apal. The PCR product encoding the modified 5.12.14 heavy chain variable sequence was then subcloned to the expression plasmid, pMHM24.2.28 in a two-part ligation. The vector was digested with Spel-Apal and the Spel-Apal digested 5.12.14 PCR product encoding the heavy chain variable region was ligated into it to form the plasmid, pA51214VH'. The modified cDNA was characterized by DNA sequencing. The coding sequence for the 5.12.14 heavy chain is shown in the DNA sequence (SEQ ID NO: 26) and amino acid sequence (SEQ ID NO: 27) of Figures 20A-20B.

[0281] The first expression plasmid, pantilL-8.1, encoding the chimeric Fab of 5.12.14 was made by digesting pA51214VH' with EcoRV and Bpu11021 to replace the EcoRV-Bpu11021 fragment with a EcoRV-Bpu11021 fragment encoding the murine 5.12.14 light chain variable region of pAS1214VL'. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 5.12.14.

[0282] Preliminary analysis of Fab expression using pantilL-8.1 showed that the light and heavy chains were produced intracellularly but very little was being secreted into the periplasmic space of <u>E. coli</u>. To correct this problem, a second expression plasmid was constructed.

[0283] The second expression plasmid, pantilL-8.2, was constructed using the plasmid, pmy187, as the vector. Plasmid pantilL-8.2 was made by digesting pmy187 with Mlul and Sphl and the Mlul (partial)-Sphl fragment encoding the murine 5.12.14 murine-human chimeric Fab of pantilL-8.1 was ligated into it. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 5.12.14.

[0284] The plasmid pantilL-8.2 was deposited on February 10, 1995 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. ATCC 97056.

E. MOLECULAR CLONING OF THE VARIABLE LIGHT AND HEAVY REGIONS OF THE MURINE 6G4.2.5 MONOCLONAL ANTIBODY

[0285] Total RNA was isolated from 1x108 cells (hybridoma cell line 6G4.2.5) using the procedure described by Chomczynski and Sacchi (Anal. Biochem. 162:156 (1987)). First strand cDNA was synthesized by specifically priming the mRNA with synthetic DNA oligonucleotides designed to hybridize with regions of the murine RNA encoding the constant region of the kappa light chain or the IgG2a heavy chain (the DNA sequence of these regions are published in Sequences of Proteins of Immunological Interest, Kabat et al. (1991) NIH Publication 91-3242, V 1-3). Three primers 40 (SEQ ID NOS: SEQ ID NOS: 1-6) were designed for each the light and heavy chains to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis (Figure 21). Amplification of the first strand cDNA to doublestranded (ds) DNA was accomplished using two sets of synthetic DNA oligonucleotide primers: one forward primer (SEQ ID NOS: 28-30) and one reverse primer (SEQ ID NO: 31) for the light chain variable region amplification (Figure 22) and one forward primer (SEQ ID NOS: 32-33) and one reverse primer (SEQ ID NOS: 11,15,14 and 13) for the heavy chain variable region amplification (Figure 23). The N-terminal sequence of the first eight amino acids of either the light or heavy chains of 6G4.2.5 was used to generate a putative murine DNA sequence corresponding to this region. (A total of 29 amino acids were sequenced from the N-terminus of both the light chain and heavy chain variable regions using the Edman degradation protein sequencing technique.) This information was used to design the forward amplification primers which were made degenerate in the third position for some codons to increase the chances of primer hybridization to the natural murine DNA codons and also included the unique restriction site, Nsil, for the light chain variable region forward primer and the unique restriction site, Mlul, for the heavy chain variable region forward primer to facilitate ligation to the 3' end of the STII element in the vector, pchimFab. The reverse amplification primers were designed to anneal with the murine DNA sequence corresponding to a portion of the constant region of the light or heavy chains near the variable/constant junction. The light chain variable region reverse primer contained a unique Muni restriction site and the heavy chain variable region reverse primer contained a unique Apal restriction site for ligation to the 5' end of either the human IgG1 constant light or IgG1 constant heavy regions in the vector, pchimFab. The polymerase chain reaction using these primer sets yielded DNA fragments of approximately 400 bp and were cloned individually into the vector, pchimFab, to form p6G425VL and p6G425VH. The cDNA inserts were characterized

by DNA sequencing and are presented in the DNA sequence (SEQ ID NO: 34) and amino acid sequence (SEQ ID NO: 35) of Figure 24 (murine light chain variable region) and the DNA sequence (SEQ ID NO: 36) and amino acid sequence (SEQ ID NO: 37) of Figure 25 (murine heavy chain variable region).

F. CONSTRUCTION OF A 6G4.2.5 CHIMERIC FAB VECTOR

[0286] In the initial construct, p6G425VL, the amino acids between the end of the 6G4.2.5 murine light chain variable sequence and the unique cloning site, Munl, in the human lgG1 constant light sequence were of murine origin. These amino acids must match the human lgG1 amino acid sequence to allow proper folding of the chimeric Fab. Two murine amino acids, D115 and S121, differed dramatically from the amino acids found in the loops of the β -strands of the human lgG1 constant domain and were converted to the proper human amino acid residues, V115 and F121, by site-directed mutagenesis using the primers (SEQ ID NOS: 38,39,40) shown in Figure 26. These specific mutations were confirmed by DNA sequencing and the modified plasmid named p6G425VL'. The coding sequence is shown in the DNA sequence (SEQ ID NO: 41) and amino acid sequence (SEQ ID NO: 42) of Figures 27A-27B.

[0287] Likewise, the DNA sequence between the end of the heavy chain variable region and the unique cloning site, Apal, in the human IgG1 heavy chain constant domain of p6G425VH was reconstructed to change the amino acids in this area from murine to human. This process was facilitated by the discovery of a BstE11 site near the end of the heavy chain variable region. This site and the Apal site were used for the addition of a synthetic piece of DNA encoding the corresponding IgG human amino acid sequence. The synthetic oligo-nucleotides shown in Figure 26 were designed as complements of one another to allow the formation of a 27 bp piece of ds DNA. The construction was performed as a three-part ligation because the plasmid, p6G425VH, contained an additional BstE11 site within the vector sequence. A 5309 bp fragment of p6G425VH digested with Mlul-Apal was ligated to a 388 bp fragment carrying the 6G4.2.5 heavy chain variable region and a 27 bp synthetic DNA fragment encoding the first six amino acids of the human IgG1 constant region to form the plasmid, p6G425VH. The insertion of the synthetic piece of DNA was confirmed by DNA sequencing. The coding sequence is shown in the DNA sequence (SEQ ID NO: 43) and amino acid sequence (SEQ ID NO: 44) of Figures 28A-28B.

[0288] The expression plasmid, p6G425chim2, encoding the chimeric Fab of 6G4.2.5 was made by digesting p6G425chimVL' with Mlul and Apal to remove the STII-murine HPC4 heavy chain variable region and replacing it with the Mlul-Apal fragment encoding the STII-murine 6G4.2.5 heavy chain variable region of p6G425chimVH'. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 6G4.2.5. [0289] The plasmid p6G425chim2 was deposited on February 10, 1995 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. 97055.

G. CONSTRUCTION OF HUMANIZED VERSIONS OF ANTI-IL-8 ANTIBODY 6G4.2.5

[0290] The murine cDNA sequence information obtained from the hybridoma cell line, 6G4.2.5, was used to construct recombinant humanized variants of the murine anti-IL-8 antibody. The first humanized variant, F(ab)-1, was made by grafting synthetic DNA oligonucleotide primers encoding the murine CDRs of the heavy and light chains onto a phagemid vector, pEMX1 (Werther et al., J. Immunol, 157: 4986-4995 (1996)), which contains a human 6-subgroup I light chain and a human IgG1 subgroup III heavy chain (Fig. 29). Amino acids comprising the framework of the antibody that were potentially important for maintaining the conformations necessary for high affinity binding to IL-8 by the complementarity-determining regions (CDR) were identified by comparing molecular models of the murine and humanized 6G4.2.5 (F(ab)-1) variable domains using methods described by Carter et al., PNAS 89:4285 (1992) and Eigenbrot, et. al., J. Mol. Biol. 229:969 (1993). Additional humanized framework variants (F(ab) 2-9) were constructed from the information obtained from these models and are presented in Table 2 below. In these variants, the site-directed mutagenesis methods of Kunkel, Proc. Natl. Acad. Sci USA), 82:488 (1985) were utilized to exchange specific human framework residues with their corresponding 6G4.2.5 murine counterparts. Subsequently, the entire coding sequence of each variant was confirmed by DNA sequencing. Expression and purification of each F(ab) variant was performed as previously described by Werther et. al., supra, with the exception that hen egg white lysozyme was omitted from the purification protocol. The variant antibodies were analyzed by SDS-PAGE, electrospray mass spectroscopy and amino acid analysis.

20

35

Table 4 -

		Hu	manized 6G425	Variants			
						-	IC50
							++
Variant	Version	Template	Changes	Purpose ^b	Mean	S.D.	N
F(ab)-1	version 1		CDR Swap		63.0	12.3	4
F(ab)-2	version 2	F(ab)-1	PheH67Ala	packaging w/ CDR H2	106.0	17.0	2
F(ab)-3	version 3	F(ab)-1	ArgH71 Val	packaging w/CDRsH1, H2	79.8	42.2	4
F(ab)-4	version 6	F(ab)-1	lleH69 <i>Leu</i>	packaging w/ CDR H2	44.7	9.0	3
F(ab)-5	version 7	F(ab)-1	LeuH78 <i>Ala</i>	packaging w/CDRsH1, H2	52.7	31.0	9
F(ab)-6	version 8	F(ab)-1	lleH69 <i>Leu</i> LeuH78 <i>Ala</i>	combine F (ab)-4 and -5	34.6	6.7	7
F(ab)-7	version 16	F(ab)-6	LeuH80 Val	packaging w/ CDR H1	38.4	9.1	2
F(ab)-8	version 19	F(ab)-6	ArgH38 <i>Lys</i>	packaging w/ CDR H2	14.0	5.7	2
F(ab)-9	version I 1	F(ab)-6	GluH6 <i>Gln</i>	packaging w/ CDR H3	19.0	5.1	7
Chimeric (ab)	qE				11.4	7.0	13
rhu4D5el (ab)	F				>200µ M		5

a Amino acid changes made relative to the template used. Murine residues are in bold italics and residue numbering is according to Kabat et al.

40

[0291] The first humanized variant, F(ab)-1, was an unaltered CDR swap in which all the murine CDR amino acids defined by both x-ray crystallography and sequence hypervariability were transferred to the human framework. When the purified F(ab) was tested for its ability to inhibit ¹²⁵I-IL-8 binding to human neutrophils according to the methods described in Section (B)(1) above, a 5.5 fold reduction in binding affinity was evident as shown in Table 4 above. Subsequent versions of F(ab)-1 were engineered to fashion the 3-dimensional structure of the CDR loops into a more favorable conformation for binding IL-8. The relative affinities of the F(ab) variants determined from competition binding experiments using human neutrophils as described in Section (B)(1) above are presented in Table 4 above. A slight decrease in IL-8 binding (<2 fold) was observed for F(ab)-2-3 while only slight increases in IL-8 binding were noted for F(ab)3-5. Variant F(ab)-6 had the highest increase in affinity for IL-8 (approximately 2 fold), exhibiting an IL-8 binding affinity of 34.6nM compared to the F(ab)-1 IL-8 binding affinity of 63nM. The substitutions of murine Leu for Ile at H69 and murine Ala for Leu at H78 are predicted to influence the packing of CDRs H1 and H2. Further framework substitutions using the F(ab)-6 variant as template were made to bring the binding affinity closer to that of the chimeric F (ab). *In-vitro* binding experiments revealed no change in affinity for F(ab)-7 (38.4nM) but a significant improvement in affinity for F(ab)-8/9 of 14nM and 19 nM, respectively. By analysis of a 3-D computer-generated model of the anti-IL-8 antibody, it was hypothesized that the substitution of murine Lys for Arg at H38 in F(ab)-8 influences CDR-H2 while

b Purpose for making changes based upon interactions observed in molecular models of the humanized and murine variable domains.

c nM concentration of variant necessary to inhibit binding of iodinated IL-8 to human neutrophils in the competitive binding assay.

d Chimeric F(ab) is a (F(ab) which carries the murine heavy and light chain variable domains fused to the human light chain k1 constant domain and the human heavy chain subgroup III constant domain I respectively.

e. rhu4D5F(ab) is of the same isotype as the humanized 6G425 F(ab)s and is a humanized anti-HER2 F(ab) and therefore should not bind to IL8.

a change at H6 of murine Gln for Glu in F(ab)-9 affects CDR-H3. Examination of the human antibody sequences with respect to amino acid variability revealed that the frequency of Arg at residue H38 is >99% whereas residue H6 is either Gln \sim 20% or Glu \sim 80% (Kabat *et. al.*, Sequences of Proteins of Immunological Interest 5th Ed. (1991)). Therefore, to reduce the likelihood of causing an immune response to the antibody, F(ab)-9 was chosen over F(ab)-8 for further affinity maturation studies. Variant F(ab)-9 was also tested for its ability to inhibit IL-8-mediated chemotaxis (Fig. 30). This antibody was able to block neutrophil migration induced by wild-type human IL-8, human monomeric IL-8 and Rhesus IL-8 with IC $_{50}$ =s of approximately 12nM, 15nM, and 22nM, respectively, in IL-8 mediated neutrophil chemotaxis inhibition assays performed as described in Section (B)(2) above. The amino acid sequence for variant F (ab)-8 is provided in Fig. 31c. The F(ab)-8 was found to block human and rhesus IL-8-mediated chemotaxis with IC $_{50}$ =s of .12nM and 10nM, respectively, in IL-8 mediated neutrophil chemotaxis inhibition assays performed as described in Section (B)(2) above.

H. <u>CONSTRUCTION OF AN ANTI-IL-8-GENE III FUSION PROTEIN FOR PHAGE DISPLAY AND ALANINE SCANNING MUTAGENESIS</u>

15

30

[0292] An expression plasmid, pPh6G4.V11, encoding a fusion protein (heavy chain of the humanized 6G4.2.5 version 11 antibody and the M 13 phage gene-III coat protein) and the light chain of the humanized 6G4.2.5 version 11 antibody was assembled to produce a monovalent display of the anti-IL-8 antibody on phage particles. The construct was made by digesting the plasmid, pFPHX, with EcoRV and Apal to remove the existing irrelevant antibody coding sequence and replacing it with a 1305bp EcoRV-Apal fragment from the plasmid, p6G4.V11, encoding the humanized 6G4.2.5 version 11 anti-IL-8 antibody. The translated sequence of the humanized 6G4.2.5 version 11 heavy chain (SEQ ID NO: 52), peptide linker and gene III coat protein (SEQ ID NO: 53) is shown in Fig. 31A. The pFPHX plasmid is a derivative of phGHam-3 which contains an in-frame amber codon (TAG) between the human growth hormone and gene-III DNA coding sequences. When transformed into an amber suppressor strain of E. coli, the codon (TAG) is read as Glutamate producing a growth hormone (hGH)-gene III fusion protein. Likewise, in a normal strain of E. coli , the codon (TAG) is read as a stop preventing translational read-through into the gene-III sequence and thus allowing the production of soluble hGH. The pGHam-3 plasmid is described in Methods: A Companion to Methods in Enzymology, 3:205 (1991). The final product, pPh6G4.V11, was used as the template for the alanine scanning mutagenesis of the CDRs and for the construction of randomized CDR libraries of the humanized 6G4.V11 antibody.

I. ALANINE SCANNING MUTAGENESIS OF HUMANIZED ANTIBODY 6G4.2.5 VERSION 11

[0293] The solvent exposed amino acid residues in the CDRs of the humanized anti-IL-8 6G4.2.5 version 11 antibody (h6G4V11) were identified by analysis of a 3-D computer-generated model of the anti-IL-8 antibody. In order to determine which solvent exposed amino acids in the CDRs affect binding to interleukin-8, each of the solvent exposed amino acids was individually changed to alanine, creating a panel of mutant antibodies wherein each mutant contained an alanine substitution at a single solvent exposed residue. The alanine scanning mutagenesis was performed as described by Leong et. al., J. Biol. Chem., 269: 19343 (1994)).

[0294] The IC_{50} 's (relative affinities) of h6G4V11 wt and mutated antibodies were established using a Competition Phage ELISA Assay described by Cunningham et. al., (EMBO J. 13:2508 (1994)) and Lee et. al., (Science 270:1657 (1995)). The assay measures the ability of each antibody to bind IL-8 coated onto a 96-well plate in the presence of various concentrations of free IL-8 (0.2 to 1 uM) in solution. The first step of the assay requires that the concentrations of the phage carrying the wild type and mutated antibodies be normalized, allowing a comparison of the relative affinities of each antibody. The normalization was accomplished by titering the phage on the IL-8 coated plates and establishing their EC₅₀. Sulfhydryl coated 96-well binding plates (Corning-Costar; Wilmington, MA) were incubated with a 0. 1mg/ ml solution of K64C IL-8 (Lysine 64 is substituted with Cysteine to allow the formation of a disulfide bond between the free thiol group of K64C IL-8 and the sulfhydryl coated plate, which results in the positioning of the IL-8 receptor binding domains towards the solution interface) in phosphate buffered saline (PBS) pH 6.5 containing 1mM EDTA for 1 hour at 25EC followed by three washes with PBS and a final incubation with a solution of PBS containing 1.75mg/ml of Lcysteine-HCl and 0.1M NaHCO3 to block any free reactive sulfhydryl groups on the plate. The plates were washed once more and stored covered at 4EC with 200ul of PBS/well. Phage displaying either the reference antibody, h6G4V11, or the mutant h6G4V11 antibodies were grown and harvested by PEG precipitation. The phage were resuspended in 500ul 10mM Tris-HCl pH 7.5, 1mM EDTA and 100mM NaCl and held at 4EC for no longer than 3 hours. An aliquot of each phage was diluted 4-fold in PBS containing 0.05% Tween-20 (BioRad, Richmond, Ca.) and 0.5% BSA RIA grade (Sigma, St. Louis, Mo.) (PBB) and added to IL-8 coated plates blocked for at least 2 hours at 25EC with 50mg/ml skim milk powder in 25mM Carbonate Buffer pH 9.6. The phage were next serially diluted in 3 fold steps down the plate from well A through H. The plates were incubated for 1 hour at 25EC followed by nine quick washes with PBS containing 0.05% Tween-20 (PBST). The plates were then incubated with a 1:3200 dilution of rabbit anti-phage antibody and a

1:1600 dilution of secondary goat-anti-rabbit Fc HRP-conjugated antibody for 15 minutes at 25EC followed by nine quick washes with PBST. The plates were developed with 80ul/well of 1mg/ml OPD (Sigma, St. Louis, Mo) in Citrate Phosphate buffer pH 5.0 containing 0.015% H $_2O_2$ for 4 minutes at 25EC and the reaction stopped with the addition of 40ul of 4.5M H $_2SO_4$. The plates were analyzed at wavelength 8_{492} in a SLT model 340ATTC plate reader (SLT Lab Instruments). The individual EC $_{50}$ =s were determined by analyzing the data using the program Kaleidagraph (Synergy Software, Reading, Pa.) and a 4-parameter fit equation. The phage held at 4EC were then immediately diluted in PBB to achieve a final concentration corresponding to their respective EC $_{50}$ or target 00_{492} for the competition segment of the experiment, and dispensed into a 96 well plate containing 4-fold serial dilutions of soluble IL-8 ranging from 1uM in well A and ending with 0.2uM in well H. Using a 12-channel pipet, 100ul of the phage/IL-8 mixture was transferred to an IL-8 coated 96-well plate and executed as described above. Each sample was done in triplicate - 3 columns/ sample.

		Table 5	-	
15	Relative	Affinities (IC50) for Alanine Mutants		V11 CDR
	CDR	Amino Acid Residue	Avg IC50 (nM)	Std Dev
	V11	Reference	11.5	6.4
20	CDR-L1	S26	6.3	2.9
		Q27	10.2	2.4
		S28	14.2	5.2
		V30	29.1	12.3
25		H31	580.3	243.0
		133	64.2	14.6
		N35	3.3	0.7
30		T36	138.0	nd
		Y37	NDB	nd
	CDR-L2	K55	24.2	14.9
		V56	15.5	3.8
35		S57	12.4	4.0
		N58	17.6	3.7
		R59	nd	nd
40	CDR-L3	S96	10.8	4.4
		T97	70.6	55.2
		H98	8.0	1.2
•		V99	19.6	1.9
45	CDR-H1	S28	8.6	3.1
		S30	nd	nd
50		S31	7.8	2.5
		H32	13.3	5.8
		Y53	48.2	15.8
	CDR-H2	Y50	35.6	13.0
55		D52	13.3	7.5
		S53	6.0	3.4

Table 5 - (continued)

Relative I	Affinities (IC50) for Alanin Mutant		IV11 CDR
CDR	Amino Acid Residue	Avg IC50 (nM)	Std Dev
	N54	96.0	5.8
	E56	15.8	4.5
	T57	8.4	1.6
	T58	11.3	1.8
	Y59	9.1	3.7
	Q61	12.6	6.4
	K64	18.5	12.1
CDR-H3	D96	NDB	nd
	Y97	NDB	nd
	R98	36.6	15.3
	Y99	199.5	nd
	N100	278.3	169.4
	D102	159.2	44
	W103	NDB	nd
	F104	NDB	nd
	F105	209.4	72.3
	D106	25.3	21.7

Each sample performed in triplicate/experiment.

5

10

15

20

25

30

40

45

55

NDB = No Detectable Binding /nd = value not determined*

Residue numbering is according to Kabat et al.

[0295] The results of the alanine-scan are summarized in Table 5 above. The alanine substitutions in of many of the mutant antibodies had little or no adverse effects (<3 fold) on the binding affinity for IL-8. Mutants that were found to exhibit no detectable binding of IL-8 (NDB) presumably contained disruptions in the conformational structure of the antibody conferred by crucial structural or buried amino acids in the CDR. Based on the results of the scan, CDR-H3 (heavy chain, 3rd CDR) was identified as the dominant binding epitope for binding IL-8. Alanine substitutions in this CDR resulted in a 3 to >26 fold decrease in binding affinity. The amino acids, Y597, Y599 and D602 are of particular interest because it was determined from the computer generated model of the anti-IL-8 antibody that these residues are solvent exposed and that these residues might participate in hydrogen bonding or charge interactions with IL-8 or other amino acids of the antibody that influence either binding to IL-8 or the conformation of the CDR-H3 loop structure. (See the model depicted in Fig. 32). Unexpected increases in binding affinity (1.8 > 2.7 fold) were noted for S528 and S531 of CDR-H1 and S553 of CDR-H2.

[0296] Surprisingly, a significant increase in binding affinity was observed in the alanine mutant N35A located in CDR-L1 (light chain, 1st CDR). A 3-6 fold increase in affinity was observed compared to the wild-type h6G4V11 antibody. This augmentation of IL-8 binding could be the result of the close proximity of N35A to CDR-H3. The alanine substitution may have imparted a slight change in the conformation of CDR-L1 which alters the packing interaction of neighboring amino acid residues on CDR-H3, thereby tweaking the loop of CDR-H3 into a conformation that facilitates more appropriate contacts with IL-8. Similarly, N35A may also influence the orientation of amino acids in CDR-L1 or its interaction directly with IL-8. Unexpected increases in affinity (-2 fold) were also observed for S26 of CDR-L1 and H98 of CDR-L3.

J. CHARACTERIZATION OF HUMANIZED ANTI-IL-8 ANTIBODY 6G4V11N35A

[0297] Soluble 6G4V11N35A Fab antibody was made by transforming an amber non-suppressor strain of *E. coli*, 34B8, with pPh6G4.V11 and growing the culture in low phosphate medium for 24 hours. The periplasmic fraction was

collected and passed over a Hi-Trap Protein-G column (Pharmacia, Piscataway, NJ.) followed by a desalting and concentration step. The protein was analyzed by SDS-PAGE, mass spectrometry and amino acid analysis. The protein had the correct size and amino acid composition (Fig. 35). The 6G4V11N35A Fab was tested for its ability to inhibit ¹²⁵I-IL-8 binding to human neutrophils and to inhibit IL-8 mediated neutrophil chemotaxis as described in Section (B)(1) and (B)(2) above. As shown in Fig. 33, hybridoma-derived intact murine antibody (6G4 murine mAB), recombinant 6G4 murine-human chimera Fab, recombinant humanized Fab versions 1 and 11, and 6G4V 11N35A Fab were found to inhibit ¹²⁵I-IL-8 binding to human neutrophils with an average IC₅₀ of 5nM, 8nM, 40nM, 10nM and 3nM, respectively. The 6G4V11N35A Fab had at least a 2-fold higher affinity than the 6G4.2.5 chimera Fab and a 3-fold higher affinity than 6G4V11. As shown in Fig. 34, the 6G4V11N35A Fab was found to inhibit IL-8 mediated neutrophil chemotaxis induced by both wild type and monomeric human IL-8, and by two different animal species of IL-8, namely, rabbit and rhesus. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration. The average IC₅₀ values were 3nM (wt IL-8), 1 nM (monomeric IL-8), 5nM (Rabbit IL-8), and 10nM (Rhesus IL-8).

K. CONSTRUCTION OF A 6G4V11N35A F(ab'), LEUCINE ZIPPER

15

[0298] Production of a F(ab')₂ version of the humanized anti-IL-8 6G4V11N35A Fab was accomplished by constructing a fusion protein with the yeast GCN4 leucine zipper. The expression plasmid p6G4V11N35A.F(ab')₂ was made by digesting the plasmid p6G425chim2.fab2 with the restriction enzymes bsal and apal to remove the DNA sequence encoding the 6G4.2.5 murine-human chimeric Fab and replacing it with a 2620bp bsal-apal fragment from pPh6G4.V11N35A. The plasmid p6G425chim2.fab2 is a derivative of pS1130 which encodes a fusion protein (the GCN4 leucine zipper fused to the heavy chain of anti-CD18) and the light chain of anti-CD18 antibody. The expression plasmid p6G4V11N35A.F(ab')₂ was deposited on February 20, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATCC Accession No. 97890. A pepsin cleavage site in the hinge region of the antibody facilitates the removal of the leucine zipper leaving the two immunoglobin monomers joined by the cysteines that generate the interchain disulfide bonds. The DNA and protein sequence of the h6G4V11N35A.F(ab')₂ are depicted in Figs. 35-37.

[0299] An expression host cell was obtained by transforming E. coli strain 49D6 with p6G4V11N35A.F(ab')₂ essentially as described in Section (II)(3)(C) above. The transformed host E. coli 49D6 (p6G4V11N35A.F(ab')₂) was deposited on February 20, 1997 at the ATCC and assigned ATCC Accession No. 98332. Transformed host cells were grown in culture, and the 6G4V11N35A F(ab')₂ product was harvested from the host cell periplasmic space essentially as described in Section (II)(3)(F) above.

L. CHARACTERIZATION OF THE HUMANIZED 6G4V11N35A F(ab'), LEUCINE ZIPPER

[0300] The 6G4V11N35A Fab and F(ab')₂ were tested for their ability to inhibit ¹²⁵I-IL-8 binding to neutrophils according to the procedures described in Section (B)(1) above. The displacement curves from a representative binding experiment performed in duplicate is depicted in Fig. 38. Scatchard analysis of this data shows that 6G4V11N35A F (ab')₂ inhibited ¹²⁵I-IL-8 binding to human neutrophils with an average IC₅₀ of 0.7 nM (+/- 0.2). This is at least a 7 fold increase in affinity compared to the hybridoma-derived intact murine antibody (average IC₅₀ of 5 nM) and at least a 2.8 fold increase in affinity over the Fab version (average IC₅₀ of 2 nM).

[0301] The 6G4V 11N35A F(ab')₂ was also tested for its ability to inhibit IL-8 mediated neutrophil chemotaxis according to the procedures described in Section (B)(2) above. The results of a representative chemotaxis experiment performed in quadruplicate are depicted in Fig. 39. As shown in Fig. 39, the 6G4V11N35A F(ab')₂ inhibited human IL-8 mediated neutrophil chemotaxis. The 6G4V11N35A F(ab')₂ exhibited an average IC₅₀ value of 1.5nM versus 2.7nM for the 6G4V11N35A Fab, which represents an approximately 2 fold improvement in the antibody's ability to neutralize the effects of IL-8. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration. Furthermore, the 6G4V11N35A F(ab')₂ antibody retained its ability to inhibit IL-8 mediated neutrophil chemotaxis by monomeric IL-8 and by two different animal species of IL-8, namely rabbit and rhesus, in neutrophil chemotaxis experiments conducted as described above. An individual experiment is shown in Fig. 40. The average IC₅₀ values were 1nM (monomeric IL-8), 4nM (Rabbit IL-8), and 2.0nM (Rhesus IL-8).

M. <u>BANDOM MUTAGENESIS OF LIGHT CHAIN AMINO ACID (N35A) IN CDR-L1 OF HUMANIZED ANTIBODY</u> 6G4V11

[0302] A 3-fold improvement in the IC₅₀ for inhibiting ¹²⁵I-IL-8 binding to human neutrophils was observed when alanine was substituted for asparagine at position 35 in CDR-L1 (light chain) of the humanized 6G4V11 mAb as described in Section (1) above. This result might be attributed to an improvement in the contact between the antigenantibody binding interfaces as a consequence of the replacement of a less bulky nonpolar side chain (R-group) that

may have altered the conformation of CDR-L1 or neighboring CDR-H3 (heavy chain) to become more accessible for antigen docking. The acceptance of alanine at position 35 of CDR-L1 suggested that this position contributed to improved affinity and that an assessment of the re-modeling of CDR loops / antigen-binding region(s) by other amino acids at this location was warranted. Selection of an affinity matured version of the humanized 6G4. V11 mAB (Kunkel, T. A., Proc. Natl. Acad. Sci. USA, 82:488 (1995)) was accomplished by randomly mutagenizing position 35 of CDR-L1 and constructing an antibody-phage library. The codon for Asparagine (N) at position 35 of CDR-L1, was targeted for randomization to any of the 20 known amino acids.

[0303] Initially, a stop template, pPh6G4.V11-stop, was made to eliminate contaminating wild-type N35 sequence from the library. This was accomplished by performing site-directed mutagenesis (Muta-Gene Kit, Biorad, Ricmond, CA) of pPH6G4V11 (described in Section (H) above) to replace the codon (AAC) for N35 with a stop codon (TAA) using the primer SL.97.2 (SEQ ID NO:63) (Figure 42). The incorporation of the stop codon was confirmed by DNA sequencing. Subsequently, uracil containing single-stranded DNA derived from E. coli CJ236 transformed with the stop template was used to generate an antibody-phage library following the method described by Lowman (Methods in Molecular Biology, 87 Chapter 25: 1-15 (1997). The variants generated from this library were predicted to produce a collection of antibodies containing one of the 20 known amino acids at position N35 in CDR-L1. The amino acid substitutions were accomplished by site-directed mutagenesis using the degenerate oligonucleotide primer (SL.97.3) with the sequence NNS (N = A/G/T/C; S = G/C;) (SEQ ID NO: 64)(Figure 42). This codon usage should allow for the expression of any of the 20 amino acids - including the amber stop codon (TAG). The collection of antibody-phage variants was transfected into E. coli strain XL-1 blue (Stratagene, San Diego, CA) by electroporation and grown at 37°C overnight to amplify the library. Selection of tight binding humanized 6G4V11 Fab's were accomplished by panning the library on IL-8 coated 96-well plates as described in Section (1) above. Prior to panning, the number of phage/library was normalized to 1.1x10¹³ phage/ml (which produces a maximum OD₂₇₀ reading = 1 OD unit) and IL-8 coated plates were incubated with blocking solution (25mN Carbonate buffer containing 50mg/ml skim milk) for 2 hours before the addition of phage (each sort used eight IL-8 coated wells/library). After the blocking and washing steps, every sort began with the addition of 100ul of antibody-phage (titered at 1.1x1013 phage/ml) to each of eight IL-8 coated wells followed by an I hour incubation at 25°C. The non-specifically bound antibody-phage were removed by 10 quick washes with PBS-0.05% Tween 20 (PBS-Tween). For sort #1, a low stringency wash (100ul PBS-Tween/well for 10 minutes at 25°C) was employed to capture the small proportion of tight binding antibody-phage bound to the immobilized IL-8. The antibody-phage variants specifically bound to IL-8 were eluted with 100ul/well of 200mM Glycine pH 2.0 for 5 minutes at 25°C. The eluted antibody-phage variants from the 8 wells were then pooled and neutralized with 1M Tris-HCl pH 8.0 (1/3 the elution volume). The phage were titered and propagated as described in Section (I) above. The stringency of the washes were successively increased with each round of panning depending upon the percent recovery of phage at the end of a sort. The wash conditions were as follows: sort #2 (4 x 15 minute intervals; total time = 60 minutes) and sort #3 (either #3a: 8 x 15 minute intervals or #3b: 12 x 10 minute intervals; total time = 120 minutes). The total number of phage recovered was progressively reduced after each sort suggesting that non- or weak- binders were being selected against. The recovery of the negative control (the antibody-phage stop variant) was constant throughout the panning (approximately 0.000 1 to 0.0000 1 percent).

35

[0304] Eighteen random variants from sort #3 were analyzed by DNA sequencing to look for an amino acid consensus at position 35 of CDR-L1. The data presented in Figure 43A showed that Glycine occupied position 35 in 33% of the variants sequenced. However, after correcting for the number of NNS codon combinations/amino acid, the frequency of Glycine was reduced to 16.6%. Glutamic Acid was represented with the highest frequency (22%) followed by Aspartic Acid and Glycine (16.6%). The frequencies of recovery of the wild-type Asparagine and substituted Alanine were only 5.6%. Interestingly, the high frequency of Glycine may suggest that a much wider range of conformations might be allowed for the loop of CDR-L1 which may be attributed to the reduction in steric hindrance of bond angle (φ-ψ) pairing as a result of the single hydrogen atom as the side chain. Conversely, Glutamic Acid at position 35 might restrict the flexibility of the loop by imposing less freedom of rotation imposed by the more rigid and bulky charged polar side chain. [0305] Soluble Fab's of the affinity marured variants (N35G, N35D, N35E and N35A) were made as described in Section (J) above for evaluating their ability to block IL-8 binding. As shown in Figure 43B, variants N35A, N35D, N35E and N35G were found to inhibit 125I-IL-8 binding to human neutrophils with an approximate IC50 of 0.2nM, 0.9nM, 0.1nM and 3.0nM, respectively. All of the affinity matured variants showed an improvement in binding IL-8 ranging from 3 - 100 fold compared to the humanized 6G4V 11 mAb. The affinity-matured variant, 6G4V 11N35E, was 2-fold more potent in blocking IL-8 binding to human neutrophils than the alanine-scan variant, 6G4V11N35A. Equilibrium and kinetic measurements of variants 6G4V11N35A and 6G4V11N35E were determined using KinEXA™ automated immunoassay system (Sapidyne Instruments Inc., Idaho City, ID) as described by Blake et al., J. Biol. Chem. 271: 27677 (1996). The procedure for preparing the antigen-coated particles was modified as follows: 1 ml of activated agarose beads (Reacti-Gel 6X; Pierce, Rockford, IL) were coated with antigen in 50mM Carbonate buffer pH 9.6 containing 20ug/ml of human IL-8 and incubated with gentle agitation on a rocker overnight at 25°C. The IL-8 coated beads were then washed twice with 1M Tris-HCl pH 7.5 to inactivate any unreactive groups on the beads and blocked with Super-

block (Pierce, Rockford, IL) for I hour at 25C to reduce non-specific binding. The beads were resuspended in assay buffer (0.1% bovine serum albumin in PBS) to a final volume of 30 ml. A 550ul aliquot of the IL-8 coated bead suspension was used each time to pack a fresh 4mm high column in the KinEXA observation cell. The amount of unbound antibody from the antibody-antigen mixtures captured by the IL-8-coated beads in both the equilibrium and kinetic experiments was quantified using a fluorescently labeled secondary antibody. Murine 6G4.2.5 was detected with a R-PE AffiniPure F(ab')₂ goat anti-mouse IgG, Fc fragment specific 2° antibody (Jackson Immuno Research Laboratories, West Grove, PA) and humanized affinity matured N35A (Fab and F(ab')₂) and N35E Fab were detected with a R-PE AffiniPure F (ab')₂ donkey anti-human IgG (H+L) 2° antibody (Jackson Immunoresearch Laboratories, West Grove, PA); both at a 1:1000 dilution.

[0306] Equilibrium measurements were determined by incubating a constant amount of anti-IL-8 antibody (0.005ug/ml) with various concentrations of human IL-8 (0, 0.009, 0.019, 0.039, 0.078, 0.156, 0.312, 0.625, 1.25, 2.5nM). The antibody-antigen mixture was incuabted for 2 hours at 25°C to allow the molecules to reach equilibrium. Subsequently, each sample was passed over a naive IL-8 coated bead pack in the KinEXA observation cell at a flow rate of 0.5ml/minute for a total of 9 minutes/sample. The equilibrium constant (Kd) was calculated using the software provided by Sapidyne Instruments Inc.

[0307] Rates of association (ka) and dissociation (kd) were determined by incubating together a constant amount of antibody and antigen, and measuring the amount of uncomplexed anti-IL-8 bound to the IL-8 coated beads over time. The concentration of antibody used in the kinetic experiments was identical to that used in the equilibrium experiment described above. Generally, the amount of human IL-8 used was the concentration derived from the binding curves of the equilibrium experiment that resulted in 70% inhibition of anti-IL-8 binding to the IL-8 coated beads. Measurements were made every 15 minutes to collect approximately nine data points. The ka was calculated using the software provided by Sapidyne Instruments, Inc. The off rate was determined using the equation: kd = Kd/ka.

[0308] Figure 44 shows the equilibrium constants (Kd) for the affinity matured variants 6G4V11N35E and 6G4V11N35A Fab's were approximately 54pM and 114pM, respectively. The improvement in affinity of 6G4V11N35E Fab for IL-8 can be attributed to a 2-fold faster rate of association (K_{on}) of 4.7x 10⁶ for 6G4V11N35E Fab versus 2.0x10⁶ for 6G4V11N35A F(ab')₂. (The Kd of the 6G4V11N35A F(ab')₂ and 6G4V11N35A Fab are similar.) The dissociation rates (K_{off}) were not significantly different. Molecular modeling suggests that substitution of Aspargine with Glutamic Acid might either affect the antibody's interaction with IL-8 directly or indirectly by neutralizing the charge of neighboring residues R98 (CDR-H3) or K50 (CDR-L2) in the CDR's to facilitate contact with IL-8. Another effect might be the formation of a more stable loop conformation for CDR-L1 that could have facilitated more appropriate contacts of other CDR-L 1 loop residues with IL-8. The DNA (SEQ ID NO: 65) and amino acid (SEQ ID NO:62) sequences of p6G4V 11N35E.Fab showing the Asparagine to Glutamic Acid substitution in the light chain are presented in Figure 45.

N. CHARACTERIZATION OF HUMANIZED ANTI-IL-8 VARIANT 6G4V11N35E Fab

35

45

[0309] The affinity matured Fab variant, 6G4V11N35E, was tested for its ability to inhibit IL-8 mediated neutrophil chemotaxis as described in Section (B)(2) above. The reuseable 96-well chemotaxis chamber described in Section (B)(2) was replaced with endotoxin-free disposable chemotaxis chambers containing 5-micron PVP-free polycarbonate filters (ChemoTx101-5, Neuro Probe, Inc. Cabin John, MD). As illustrated in Figure 46, variant N35E effectively blocks IL-8 mediated neutrophil chemotaxis induced by a 2nM stimulus of either rabbit or human IL-8. In fact, the level of inhibition at antibody concentrations between 3.7nM - 33nM was not significantly different from the buffer control indicating variant N35E could completely inhibit this response. The IC₅₀'s for both rabbit and human IL-8 were approximately 2.8nM and 1.2nM, respectively. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migation indicating the results observed for the affinity matured variant, N35E, is IL-8 specific.

O. CONSTRUCTION OF HUMANIZED 6G4V11N35E F(ab'), LEUCINE ZIPPER

[0310] A F(ab')₂ expression plasmid for 6G4V11N35E was constructed using methods similar to those described in Section (K) above. The expression plasmid, p6G4V11N35E.F(ab')₂, was made by digesting the plasmid p6G4V 11N35A.F(ab')₂ (described in Section (K) above) with the restriction enzymes Apal and Ndel to isolate a 2805 bp fragment encoding the heavy chain constant domain -GCN4 leucine zipper and ligating it to a 3758 bp Apal-Ndel fragment of the pPH6G4V11N35E phage display clone (encoding 6G4V11N35E Fab) obtained as described in Section (M) above. The integrity of the entire coding sequence was confirmed by DNA sequencing.

55 P. CONSTRUCTION OF THE FULL LENGTH HUMANIZED 6G4V11N35A IgG EXPRESSION PLASMID

[0311] The full length IgG₁ version of the humanized anti-IL8 variant 6G4V11N35A was made using a dicistronic DHFR-Intron expression vector (Lucas et al., Nucleic Acids Res., 24: 1774-1779 (1996)) which contained the full length

recombinant murine-human chimera of the 6G4.2.5 anti-IL8 mAb. The expression plasmid encoding the humanized variant 6G4V11N35A was assembled as follows. First an intermediate plasmid (pSL-3) was made to shuttle the sequence encoding the variable heavy chain of humanized anti-IL-8 variant 6G4V11N35A to pRK56G4chim.2Vh - which contains the variable heavy region of the chimeric 6G4.5 anti-IL8 antibody. The vector pRK56G4chim. Vh was digested with Pvull and Apal to remove the heavy chain variable region of the chimeric antibody and religated with an 80bp Pvull - Xhol synthetic oligonucleotide (encoding Leu4 to Phe29 of 6G4V11N35A) (Fig. 47) and a 291bp Xhol - Apal fragment from p6G4V11N35A.7 carrying the remainder of the variable heavy chain sequence of 6G4V11N35A to create pSL-3. This intermediate plasmid was used in conjunction with 2 other plasmids, p6G4V11N35A.F(ab')2 and p6G425chim2.choSD, to create the mammalian expression plasmid, p6G4V11N35AchoSD.9 (identified as p6G425V11N35A.choSD in a deposit made on December 16, 1997 with the ATCC and assigned ATCC Accession No. 209552). This expression construct was assembled in a 4-part ligation using the following DNA fragments; a 5,203bp Clal - Blpl fragment encoding the regulatory elements of the mammalian expression plasmid (p6G425 chim2.choSD), a 451bp Clal - Apal fragment containing the heavy chain variable region of the humanized 6G4V11N35A antibody (pSL-3), a 1,921bp Apal - EcoRV fragment carrying the heavy chain constant region of 6G4V11N35A (p6G425chim2.choSD) and a 554bp EcoRV - Blpl fragment encoding the light chain variable and constant regions of 6G4V11N35A (p6G4V11N35A.F(ab')₂). The DNA sequence (SEQ ID NO: 68) of clone p6G4V11N35A.choSD.9 was confirmed by DNA sequencing and is presented in Figure 48.

Q. CONSTRUCTION OF THE FULL LENGTH HUMANIZED 6G4V11N35E IQG EXPRESSION PLASMID

[0312] A mammalian expression vector for the humanized 6G4V11N35E was made by swapping the light chain variable region of 6G4V11N35A with 6G4V11N35E as follows: a 7,566bp EcoRV - Blpl fragment (void of the 554bp fragment encoding the light chain variable region of 6G4V11N35A) from p6G4V11N35A.choSD.9 was ligated to a 554bp EcoRV - Blpl fragment (encoding the light chain variable region of 6G4V11N35E) from pPH6G4 V 11N35E.7. The mutation at position N35 of the light chain of p6G4V11N35E.choSD.10 was confirmed by DNA sequencing.

R. STABLE CHO CELL LINES FOR VARIANTS N35A AND N35E

20

35

40

50

[0313] For stable expression of the final humanized IgG1 variants (6G4V11N35A and 6G4V11N35E), Chinese hamster ovary (CHO) DP-12 cells were transfected with the above-described dicistronic vectors (p6G4V11N35A.choSD.9 and p6G4V11N35E.choSD.10, respectively) designed to coexpress both heavy and light chains (Lucas et al., Nucleic Acid Res. 24:1774-79 (1996)). Plasmids were introduced into CHO DP12 cells via lipofection and selected for growth in GHT-free medium (Chisholm, V. High efficiency gene transfer in mammalian cells. In: Glover, DM, Hames, BD, DNA Cloning 4. Mammalian systems. Oxford Univ. Press, Oxford pp 1-41 (1996)). Approximately 20 unamplified clones were randomly chosen and reseeded into 96 well plates. Relative specific productivity of each colony was monitored using an ELISA to quantitate the full length human IgG accumulated in each well after 3 days and a fluorescent dye, Calcien AM, as a surrogate marker of viable cell number per well. Based on these data, several unamplified clones were chosen for further amplification in the presence of increasing concentrations of methotrexate. Individual clones surviving at 10, 50, and 100 nM methotrexate were chosen and transferred to 96 well plates for productivity screening. One clone for each antibody (clone#1933 alL8.92 NB 28605/12 for 6G4V11N35A; clone#1934 alL8.42 NB 28605/14 for 6G4V11N35E), which reproducibly exhibited high specific productivity, was expanded in T-flasks and used to inoculate a spinner culture. After several passages, the suspension-adapted cells were used to inoculate production cultures in GHT-containing, serum-free media supplemented with various hormones and protein hydrolysates. Harvested cell culture fluid containing recombinant humanized anti-IL8 was purified using protein A-Sepharose CL-4B. The purity after this step was approximately 99%. Subsequent purification to homogeneity was carried out using an ion exchange chromatography step. Production titer of the humanized 6G4V11N35E IgG1 antibody after the first round of amplification and 6G4V11N35A IgG1 after the second round of amplification were 250mg/L and 150mg/L, respectively.

S. CHARACTERIZATION OF THE HUMANIZED 6G4V11N35A/E IgG VARIANTS

[0314] The humanized full length IgG variants of 6G4.2.5 were tested for their ability to inhibit 125 I-IL-8 binding and to neutralize activation of human neutrophils; the procedures are described in Sections (B)(1) and (B)(2) above. As shown in Figure 49, the full length IgG1 forms of variants 6G4V11N35A and 6G4V11N35E equally inhibited 125 I-IL-8 binding to human neutrophils with approximate IC₅₀'s of 0.3nM and 0.5nM, respectively. This represents a 15 - 25 fold improvement in blocking binding of IL-8 compared to the full length murine mAb (IC₅₀ = 7.5nM). Similarly, the two anti-IL-8 variants showed equivalent neutralizing capabilities with respect to inhibiting IL-8 mediated human neutrophil chemotaxis (Figures 50A-50B). The IC₅₀'s of 6G4V11N35A IgG1 and 6G4V11N35E IgG1 for human IL-8 were 4.0nM and 6.0nM, respectively, and for rabbit IL-8 were 4.0nM and 2.0nM, respectively. The irrelevant isotype control Fab

(4D5) did not inhibit neutrophil migration.

[0315] The affinity for IL-8 of these variants relative to the murine 6G4.2.5 mAb was determined using KinExA as described in Section (M). Figure 51 shows the equilibrium constant (Kd) for the full length affinity matured variants 6G4V11N35E IgG1 and 6G4V11N35A IgG1 were approximately 49pM and 88pM, respectively. The Kd for 6G4V11N35A IgG1 was determined directly from the kinetic experiment. As reported with their respective Fabs, this improvement in affinity might be attributed to an approximate 2-fold increase in the on-rate of 6G4V 11N35E IgG1 (ka = 3.0x10⁶) compared to that of 6G4V11N35A IgGI (ka = 8.7x10⁵). In addition, these results were confirmed by a competition radio-immune assay using iodinated human IL-8. 50pM of 6G4V11N35A IgG1 or 6G4V 11N35E IgG1 was incubated for 2 hours at 25°C with 30-50pM of ¹²⁵I-IL-8 and varying concentrations (0 to 100nM) of unlabeled IL-8. The antibody-antigen mixture was then incubated for I hour at 4C with 10ul of a 70% slurry of Protein-A beads (preblocked with 0.1% BSA). The beads were briefly spun in a microcentrifuge and the supernatant discarded to remove the unbound ¹²⁵I-IL-8. The amount of ¹²⁵I-IL-8 specifically bound to the anti-IL-8 antibodies was determined by counting the protein-A pellets in a gamma counter. The approximate Kd values were similar to those determined by KinEXA. The average Kd for 6G4V11N35A IgG1 and 6G4V11N35E IgG1 were 54pM (18-90pM) and 19pM (5-34pM), respectively (Figure 52).

T. CONSTRUCTION OF HUMANIZED 6G4V11N35A/E Fab's FOR MODIFICATION BY POLYETHYLENE GLYCOL

[0316] A Fab' expression vector for 6G4V11N35A was constructed by digesting p6G4V11N35A.F(ab')₂ with the restriction enzymes Apal and Ndel to remove the 2805 bp fragment encoding the human IgG₁ constant domain fused with the yeast GCN4 leucine zipper and replacing it with the 2683bp Apal-Ndel fragment from the plasmid pCDNA.18 described in Eigenbrot et al., Proteins: Struct. Funct. Genet., 18: 49-62 (1994). The pCDNA.18 Apal-Ndel fragment carries the coding sequence for the human constant IgG1 heavy domain, including the free cysteine in the hinge region that was used to attach the PEG molecule. The 3758bp Apal-Ndel fragment (encodes the light chain and heavy variable domain of 6G4V11N35A) isolated from p6G4V11N35A.F(ab')₂ was ligated to the 2683bp Apal-Ndel fragment of pCD-NA.18 to create p6G4V11N35A.PEG-1. The integrity of the entire coding sequence was confirmed by DNA sequencing. The nucleotide and translated amino acid sequences of heavy chain constant domain with the cysteine in the hinge are presented in Figure 53.

[0317] A Fab' expression plasmid for 6G4V11N35E was made similarly by digesting pPH6G4V11N35E (from Section (O) above) with the restriction enzymes Apal and Ndel to isolate the 3758bp Apal-Ndel DNA fragment carrying the intact light chain and heavy variable domain of 6G4V 11N35E and ligating it to the 2683 bp Apal-Ndel DNA fragment from p6G4V11N35A.PEG-1 to create p6G4V11N35E.PEG-3. The integrity of the entire coding sequence was confirmed by DNA sequencing.

[0318] Anti-IL-8 6G4V11N35A Fab' variant was modified with 20 kD linear methoxy-PEG-maleimide, 30 kD linear methoxy-PEG-maleimide, 40 kD linear methoxy-PEG-maleimide as described below. All PEG's used were obtained commercially from Shearwater Polymers, Inc.

a. MATERIALS AND METHODS

40 Fab'-SH Purification

55

[0319] A Fab'-SH antibody fragment of the affinity matured antibody 6G4V 11N35A was expressed in *E. coli* grown to high cell density in the fermentor as described by Carter *et al.*, *BiolTechnology* 10, 163-167 (1992). Preparation of Fab'-SH fragments was accomplished by protecting the Fab'-SH fragments with 4',4'-dithiodipyridine (PDS), partially purifying the protected Fab'-PDS fragments, deprotect the Fab'-PDS with dithiothreitol (DTT) and finally isolate the free Fab'-SH by using gel permeation chromatography.

Protection of Fab'-SH with PDS

[0320] Fermentation paste samples were dissolved in 3 volumes of 20mM MES, 5mM EDTA, pH 6.0 containing 10.7mg of 4',4'-dithiodipyridine per gram fermentation paste, resulting in a suspension with a pH close to 6.0 The suspension was passed through a homogenizer followed by addition of 5% PEI (w/v), pH 6 to the homogenate to a final concentration of 0.25%. The mixture was then centrifuged to remove solids and the clear supernatant was conditioned to a conductivity of less than 3mS by the addition of cold water.

Partial purification of the Fab'-SH molecule using ion exchange chromatography

[0321] The conditioned supernatant was loaded onto an ABX (Baker) column equilibrated in 20 mM MES, pH 6.0.

The column was washed with the equilibration buffer followed by elution of the Fab'-SH with a 15 column volume linear gradient from 20 mM MES, pH 6.0 to 20 mM MES, 350 mM sodium chloride. The column was monitored by absorbance at 280nm, and the eluate was collected in fractions.

5 Deprotection of the Fab'-SH antibody fragments with DTT

[0322] The pH of the ABX pool was adjusted to 4.0 by the addition of dilute HCl. The pH adjusted solution was then deprotected by adding DTT to a final concentration of 0.2mM. The solution was incubated for about 30 minutes and then applied to a gel filtration Sephadex G25 column, equilibrated with 15mM sodium phosphate, 25mM MES, pH 4.0. After elution, the pH of the pool was raised to pH 5.5 and immediately flash frozen at -70°C for storage or derivatized with PEG-MAL as described below.

Alternative Fab'-SH Purification

15 [0323] Alternatively Fab'-SH fragments can be purified using the following procedure. 100 g fermentation paste is thawed in the presence of 200 ml 50 mM acetic acid, pH 2.8, 2 mM EDTA, 1 mM PMSF. After mixing vigorously for 30 min at room temperature, the extract is incubated with 100 mg hen egg white lysozyme. DEAE fast flow resin (approximately 100 mL) is equilibrated with 10 mM MES, pH 5.5, 1 mM EDTA on a sintered glass funnel. The osmotic shock extract containing the Fab'-SH fragment is then filtered through the resin.

[0324] A protein G Sepharose column is equilibrated with 10 mM MES, pH 5.5, 1 mM EDTA and then loaded with the DEAE flow-through sample. The column is washed followed by three 4 column volume washes with 10 mM MES, pH 5.5, 1 mM EDTA. The Fab'-SH antibody fragment containing a free thiol is eluted from the column with 100 mM acetic acid, pH 2.8, 1 mM EDTA. After elution, the pH of the pool is raised to pH 5.5 and immediately flash frozen at -70°C for storage or derivatized with PEG-MAL as described below.

Preparation of Fab'-S-PEG

[0325] The free thiol content of the Fab'-SH preparation obtained as described above was determined by reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) analysis according to the method of Creighton in Protein Structure: A Practical Approach, Creighton, T.E., ed, IRL Press (Oxford, UK: 1990), pp. 155-167. The concentration of free thiol was calculated from the increase on absorbance at 412 nm, using $e_{412} = 14,150 \text{ cm}^{-1} \text{ M}^{-1}$ for the thionitrobenzoate anion and a $M_r = 48,690$ and $e_{280} = 1.5$ for the Fab'-SH antibody. To the Fab'-SH protein G Sepharose pool, or the deprotected Fab'-SH gel permeation pool, 5 molar equivalents of PEG-MAL were added and the pH was immediately adjusted to pH 6.5 with 10% NaOH.

35 [0326] The Fab'-S-PEG was purified using a 2.5 x 20 cm cation exchange column (Poros 50-HS). The column was equilibrated with a buffer containing 20 mM MES, pH 5.5. The coupling reaction containing the PEGylated antibody fragment was diluted with deionized water to a conductivity of approximately 2.0 mS. The conditioned coupling reaction was then loaded onto the equilibrated Poros 50 HS column. Unreacted PEG-MAL was washed from the column with 2 column volumes of 20 mM MES, pH 5.5. The Fab'-S-PEG was eluted from the column using a linear gradient from 0 to 400 mM NaCl, in 20 mM MES pH 5.5, over 15 column volumes.

[0327] Alternatively a Bakerbond ABX column can be used to purify the Fab'-S-PEG molecule. The column is equilibrated with 20 mM MES, pH 6.0 (Buffer A). The coupling reaction is diluted with deionized water until the conductivity equaled that of the Buffer A (approximately 2.0 mS) and loaded onto the column. Unreacted PEG-MAL is washed from the column with 2 column volumes of 20 mM MES, pH 6.0. The Fab'-S-PEG is eluted from the column using a linear gradient from 0 to 100 mM (NH₄)₂SO₄, in 20 mM MES pH 6.0, over 15 column volumes.

Size Exclusion Chromatography

[0328] The hydrodynamic or effective size of each molecule was determined using a Pharmacia Superose-6 HR 10/30 column (10x300mm). The mobile phase was 200 mM NaCl, 50 mM sodium phosphate pH 6.0. Flow rate was at 0.5 ml/min and the column was kept at ambient temperature. Absorbance at 280 nm was monitored where PEG contributed little signal. Biorad MW standards containing cyanocobalamin, myoglobin, ovalbumin, IgG, Thyroglobulin monomer and dimer were used to generate a standard curve from which the effective size of the pegylated species was estimated.

45

20

b. RESULTS

Size Exclusion Chromatography

[0329] The effective size of each modified species was characterized using size exclusion chromatography. The results are shown in Fig. 60 below. The theoretical molecular weight of the anti-IL8 Fab fragments modified with PEG 5kD, 10kD, 20kD, 30kD, 40kD (linear), 40kD (branched) or 100,000kD is shown along with the apparent molecular weight of the PEGylated fragments obtained by HPLC size exclusion chromatography. When compared to the theoretical molecular weight of the Fab'-S-PEG fragments, the apparent molecular weight (calculated by size exclusion HPLC) increases dramatically by increasing the size of the PEG attached to the fragments. Attachment of a small molecular weight PEG, for example PEG 10,000D only increases the theoretical molecular weight of the PEGylated antibody fragment (59,700 D) by 3 fold to an apparent molecular weight of 180,000D. In contrast attachment of a larger molecular weight PEG for example 100,000D PEG to the antibody fragment increases the theoretical molecular weight of the PEGylated antibody fragment (158,700 D) by 12 fold to an apparent molecular weight of 2,000,000D.

SDS-PAGE

15

20

30

35

[0330] In Fig. 61, the upper panel shows the size of the anti-IL-8 Fab fragments modified with PEG of molecular weight 5kD (linear), 10kD (linear), 20kD (linear), 30kD (linear), 40kD (linear), 40kD (branched) or 100kD (linear) under reduced conditions. The unmodified Fab is shown in lane 2 from right to left. Both the heavy and light chains of the Fab had a molecular weight of approximately 30kD as determined by PAGE. Each PEGylated fragment sample produced two bands: (1) a first band (attributed to the light chain) exhibiting a molecular weight of 30kD; and (2) a second band (attributed to the heavy chain to which the PEG is attached specifically at the hinge SH) exhibiting increasing molecular weights of 40, 45, 70, 110, 125, 150 and 300kD. This result suggested that PEGylation was specifically restricted to the heavy chain of the Fab's whereas the light chain remained unmodified.

[0331] The lower panel is non-reduced PAGE showing the size of the anti-IL-8 Fab fragments modified with PEG of molecular weight 5kD (linear), 20kD (linear), 30kD (linear), 40kD (linear), 40kD (branched), or 100kD (linear). The PEGylated fragments exhibited molecular weights of approximately 70kD, 115kD, 120kD, 140kD, 200kD and 300kD. [0332] The SDS PAGE gels confirm that all Fab'-S-PEG molecules were purified to homogeneity and that the molecules differed only with respect to the size of the PEG molecule attached to them.

U. AMINE SPECIFIC PEGYLATION OF ANTI-IL-8 F(ab'), FRAGMENTS

[0333] Pegylated F(ab')₂ species were generated by using large MW or branched PEGs in order to achieve a large effective size with minimal protein modification which might affect activity. Modification involved N-hydroxysuccinamide chemistry which reacts with primary amines (lysines and the N-terminus). To decrease the probability of modifying the N-terminus, which is in close proximity to the CDR region, a reaction pH of 8, rather than the commonly used pH of 7, was employed. At pH 8.0, the amount of the reactive species (charged NH₃+) would be considerably more for the ε-NH2 group of lysines (pK_a=10.3) than for the α-NH2 group (pK_a of approximately 7) of the amino-terminus. For the linear PEGs, a methoxy-succinimidyl derivative of an NHS-PEG was used because of the significantly longer half-life in solution (17 minutes at 25°C at pH 8.0) compared to the NHS esters of PEGs (which have 5-7 minute half life under the above conditions). By using a PEG that is less prone to hydrolysis, a greater extent of modification is achieved with less PEG. Branched PEGs were used to induce a large increase in effective size of the antibody fragments.

45 a. MATERIALS

[0334] All PEG reagents were purchased from Shearwater Polymers and stored at -70°C in a desiccator. branched N-hydroxysuccinamide-PEG (PEG2-NHS-40KDa) has a 20 kDa PEG on each of the two branches, methoxy-succinimidyl-propionic acid-PEG (M-SPA-20000) is a linear PEG molecule with 20 kDa PEG. Protein was recombinantly produced in *E. coli* and purified as a (Fab)'₂ as described in Sections (K) and (O) above.

b. METHODS

[0335] IEX method: A J. T. Baker Wide-Pore Carboxy-sulfone (CSX), 5 micron, 7.75 x 100 mm HPLC column was used for fractionation of the different pegylated products, taking advantage of the difference in charge as the lysines are modified. The column was heated at 40°C. A gradient as shown in Table 7 below was used where Buffer A was 25 mM sodium Borate/25 mM sodium phosphate pH 6.0, and Buffer B was I M ammonium sulfate, and Buffer C was 50 mM sodium acetate pH 5.0.

Table 7

Time (min)	%B	%C	flow m∐min
0	10	10	1.5
20	18	7.5	1.5
25	25	7.5	1.5
27	70	3.0	2.5
29	70	3.0	2.5
30	10	10	2.5
33	10	10	2.5

5

10

15

20

25

30

35

40

55

[0336] SEC-HPLC: The hydrodynamic or effective size of each molecule was determined using a Pharmacia Superose-6 HR 10/30 column (10x300mm). The mobile phase was 200 mM NaCl, 50 mM sodium phosphate pH 6.0. Flow rate was at 0.5 ml/min and the column was kept at ambient temperature. Absorbance at 280 nm was monitored where PEG contributed little signal. Biorad MW standards containing cyanocobalamin, myoglobin, ovalbumin, IgG, Thyroglobulin monomer and dimer were used to generate a standard curve from which the effective size of the pegylated species was estimated.

[0337] SEC-HPLC-Light Scattering: For determination of the exact molecular weight, this column was connected to an on-line light scattering detector (Wyatt Minidawn) equipped with three detection angles of 50° , 90° , and 135° C. A refractive index detector (Wyatt) was also placed on-line to determine concentration. All buffers were filtered with Millipore $0.1~\mu$ filters; in addition al $0.02~\mu$ Whatman Anodisc 47 was placed on-line prior to the column.

[0338] The intensity of scattered light is directly proportional to the molecular weight (M) of the scattering species, independent of s hape, according to:

$M = R_0/K.c$

where R_0 is the Rayleigh ratio, K is an optical constant relating to the refractive index of the solvent, the wavelength of the incident light, and dn/dc, the differential refractive index between the solvent and the solute with respect to the change in solute concentration, c. The system was calibrated with toluene (R_0 of 1.406x10⁻⁵ at 632.8 nm); a dn/dc of 0.18, and an extinction coefficient of 1.2 was used. The system had a mass accuracy of ~5%.

[0339] SDS-PAGE: 4-12% Tris-Glycine Novex minigels were used along with the Novex supplied Tris-Glycine running buffers. 10-20 ug of protein was applied in each well and the gels were run in a cold box at 150 mV/gel for 45 minutes. Gels were then stained with colloidal Coomassie Blue (Novex) and then washed with water for a few hours and then preserved and dried in drying buffer (Novex)

[0340] Preparation of a linear(1)20KDa-(N)-(Fab')2: A 4 mg/ml solution of anti-IL8 formulated initially in a pH 5.5 buffer was dialyzed overnight against a pH 8.0 sodium phosphate buffer. 5 mL protein was mixed at a molar ratio of 3:1. The reaction was carried out in a 15mL polypropylene Falcon tube and the PEG was added while vortexing the sample at low speed for 5 seconds. It was then placed on a nutator for 30 minutes. The extent of modification was evaluated by SDS-PAGE. The whole 5 ml reaction mixture was injected on the IEX for removal of any unreacted PEG and purification of singly or doubly pegylated species. The above reaction generated a mixture of 50% singly-labeled anti-IL8. The other 50% unreacted anti-IL8 was recycled through the pegylation/purification steps. The pooled pegylated product was dialyzed against a pH 5.5 buffer for in vitro assays and animal PK studies. Endotoxin levels were measured before administration to animals or for the cell based assays. Levels were below 0.5 eu/ml. The fractions were also run on SDS-PAGE to confirm homogeneity. Concentration of the final product was assessed by absorbance at 280 nm using an extinction coefficient of 1.34, as well as by amino acid analysis.

[0341] Preparation of a branched(1)40KDa-(N)-(Fab')2: A 4 mg/mL solution of anti-IL8 (Fab')₂ formulated in a pH 5.5 buffer was dialyzed overnight against a pH 8.0 phosphate buffer. Solid PEG powder was added to 5 mL protein in two aliquots to give a final PEG:protein molar ratio of 6:1. Each solid PEG aliquot was added to the protein in a 15 mL polypropylene Falcon tube while vortexing at low speed for 5 sec, and then placing the sample on a nutator for 15 minutes. The extent of modification was evaluated by SDS-PAGE using a 4-12% Tris-Glycine (Novex) gel and stained with colloidal Coomasie blue (Novex). The 5 mL PEG-protein mixture was injected on the ion exchange column for removal of any unreacted PEG. The above reaction generated a mixture of unreacted (37%), singly-labelled (45%), doubly and triply-labeled (18%) species. These were the optimal conditions for obtaining the greatest recovery of the protein with only 1 PEG per antibody rather than the higher molecular weight adducts. The unmodified anti-IL8 was recycled. The pegylated products were separated and fractionated in falcon tubes and then dialyzed against a pH 5.5

buffer for assays and animal PK studies. Endotoxin levels were below 0.5 eu/ml. The fractions were also run on SDS-PAGE to confirm homogeneity. The concentration of the final product was assessed by absorbance at 280 nm using an extinction coefficient of 1.34, as well as by amino acid analysis.

[0342] Preparation of branched(2)-40KDa-(N)(Fab')2: This molecule was most efficiently made by adding three times in 15 minute intervals a 3:1 molar ratio of PEG to the already modified branched(1)-40KDa-(N)-(Fab')2. The molecule was purified on IEX as 50% branched(2)-40KDa-(N)-(Fab')2. The unmodified molecule was recycled until ~20 mg protein was isolated for animal PK studies. The product was characterized by SEC-light scattering and SDS-PAGE.

10 c. RESULTS

25

[0343] PEGs increased the hydrodynamic or effective size of the product significantly as determined by gel filtration (SEC-HPLC). Figure 62 shows the SEC profile of the pegylated F(ab')₂ species with UV detection at 280 nm. The hydrodynamic size of each molecule was estimated by reference to the standard MW calibrators. As summarized in Figure 62, the increase in the effective size of (Fab')₂ was about 7-fold by adding one linear 20 kDa PEG molecule and about 11-fold by adding one branched ("Br(1)") 40 kDa PEG molecule, and somewhat more with addition of two branched ("Br(2)") PEG molecules.

[0344] Light scattering detection gave the exact molecular weight of the products and confirmed the extent of modification (Figure 63). The homogeneity of the purified material was shown by SDS-PAGE (Figure 64). Underivatized F (ab')₂ migrated as a 120 kDa species, the linear(1)20KD-(N)-F(ab')₂ migrated as a band at 220kDa, the Br(1)-40KD (N)-F(ab')₂ migrated as one major band at 400 kDa, and the Br(2)-40KD-(N)-F(ab')₂ migrated as a major band at around 500 kDa. The proteins appeared somewhat larger than their absolute MW due to the steric effect of PEG.

V. IN VITRO ACTIVITY CHARACTERIZATION OF PEG MODIFIED Fab' FRAGMENTS OF 6G4V 11N35A (MALEIMIDE CHEMICAL COUPLING METHOD)

[0345] Anti-IL-8 6G4V 11N35A Fab' variants modified with 5-40kD linear PEG molecules and a 40kD branched PEG molecule were tested for their ability to inhibit both IL-8 binding and activation of human neutrophils; the procedures were described in Sections (B)(1), (B)(2) and (B)(3) above. The binding curves and IC_{50} 's for PEG-maleimide modified 6G4V 11N35A Fab' molecules are presented in Figures 54A-54C. The IC50 of the 5kD pegylated Fab' (350pM) and the average IC50 of the Fab control (366pM) were not significantly different, suggesting that the addition of a 5kD MW PEG did not affect the binding of IL-8 to the modified Fab' (Figure 54A). However, a decrease in the binding of IL-8 to the 10kD and 20kD pegylated Fab' molecules was observed as depicted by the progressively higher IC50's (537pM and 732pM, respectively) compared to the average IC_{50} of the native Fab. These values represent only a minimal loss of binding activity (between 1.5- and 2.0-fold). A less pronounced difference in IL-8 binding was observed for the 30kD and 40kD linear PEG antibodies (Figure 54B). The IC₅₀'s were 624pM and 1.1nM, respectively, compared to the 802pM value of the Fab control. The 40kD branched PEG Fab' showed the largest decrease in IL-8 binding (2.5 fold) relative to the native Fab (Figure 54C). Nevertheless, the reduction in binding of IL-8 by these pegylated Fab's is minimal. [0346] The ability of the pegylated antibodies to block IL-8 mediated activation of human neutrophils was demonstrated using the PMN chemotaxis (according to the method described in Section B(2) above) and β-glucuronidase release (according to the method described in Lowman et al., J. Biol. Chem., 271: 14344 (1996)) assays. The IC₅₀'s for blocking IL-8 mediated chemotaxis are shown in Figures 55A-55C. The 5-20kD linear pegylated Fab' antibodies were able to block IL-8 mediated chemotaxis within 2-3 fold of the unpegylated Fab control (Figure 55A). This difference is not significant because the inherent variation can be up to 2 fold for this type of assay. However, a significant difference was detected for the 30kD and 40kD linear pegylated Fab' antibodies as illustrated by the higher IC50's of the 30kD linear PEG-Fab' (2.5nM) and 40kD linear PEG-Fab' (3.7nM) compared to the Fab control (0.8nM) (Figure 55B). The ability of the 40kD branched PEG Fab' molecule to block IL-8 mediated chemotaxis was similar to that of the 40kD linear PEG Fab' (Figure 55C). At most, the ability of the pegylated Fab' antibodies to block IL-8 mediated chemotaxis was only reduced 2-3 fold. Furthermore, release of β-glucuronidase from the granules of neutrophils was used as another criteria for assessing IL-8 mediated activation of human PMNs. Figure 56A (depicting results obtained with 5 kD, 10 kD and 20 kD linear PEGs), Figure 56B (depicting results obtained with 30 kD and 40 kD linear PEGs), and Figure 56C (depicting results obtained with 40 kD branched PEG) show that all the pegylated Fab' antibodies were able to inhibit IL-8 mediated release of 8-glucuronidase as well as or better than the unpegylated Fab control. The data collectively shows that the pegylated Fab' variants are biological active and are capable of inhibiting high amounts of 55 exogenous IL-8 in in-vitro assays using human neutrophils.

W. IN VITRO ACTIVITY CHARACTERIZATION OF PEG MODIFIED F(ab') FRAGMENTS OF 6G4V11N35A (SUCCINIMIDYL CHEMICAL COUPLING METHOD)

[0347] The anti-IL-8 variant 6G4V11N35A F(ab')₂ modified with (a) a single 20kD linear PEG molecule per F(ab')₂, (b) a single 40kD branched PEG molecule per F(ab')₂, (c) with three, four, or five 20 kD linear PEG molecules per F(ab')₂; (a) species having four 20 kD linear PEG molecules per F(ab')₂; and (3) species having five 20 kD linear PEG molecules per F(ab')₂; denoted as "20 kD linear PEG (3,4,5) F(ab')₂"), or (d) with two 40kD branched PEG molecules per F(ab')₂ (denoted as "40 kD branch PEG (2) F(ab')₂"), were tested for their ability to inhibit ¹²⁵I-IL-8 binding and to neutralize activation of human neutrophils. The procedures used are described in Sections (B)(1), (B)(2) and (B)(3) above. The binding curves for pegylated F(ab')₂ variants are shown in Figures 57A-57B. No significant differences were observed amongst the F(ab')₂ control, the single 20kD linear PEG-modified F(ab')₂, and the single 40kD branched PEG-modified F(ab')₂ (Figure 57A). However, the F(ab')₂ variants containing multiple PEG molecules showed a slight reduction (less than 2-fold) in their ability to bind IL-8. The IC₅₀'s of the 20kD linear PEG (3,4,5) F(ab')₂ and 40kD branch PEG (2) F(ab')₂ variants were 437pM and 510pM, respectively, compared to 349pM of the F(ab')₂ control (Figure 57B).

[0348] The ability of these pegylated F(ab')₂ variants to block IL-8 mediated neutrophil chemotaxis is presented in Figures 58A-58B. Consistent with the PMN binding data, the single linear and branched PEG F(ab')₂ variants were able to block IL-8 mediated chemotaxis similar to the unpegylated F(ab')₂ control (Figure 58A). The ability of the 40kD branch PEG (2) F(ab')₂ variant to inhibit PMN chemotaxis was identical to the control F(ab')₂ while the 20kD linear PEG (3,4,5) F(ab')₂ mixture was able to inhibit within 3-fold of the control antibody (Figure 58B).

[0349] Shown in Figures 59A and 59B are the results of the β -glucuronidase release assay which is a measure of degranulation by IL-8 stimulated human neutrophils. The single 20kD linear PEG-modified F(ab')₂ and the single 40kD branched PEG-modified F(ab')₂ variants were able to inhibit release of β -glucuronidase as well as the F(ab')₂ control (Figure 59A). The 40kD branch PEG (2) F(ab')₂ inhibited this response within 2-fold of the F(ab')₂ control (Figure 59B).

The 20kD linear PEG (3,4,5) molecule was not tested. Overall, the F(ab')₂ pegylated anti-IL-8 antibodies were biologically active and effectively prevented IL-8 binding to human neutrophils and the signaling events leading to cellular activation.

X. PHARMACOKINETIC AND SAFETY STUDY OF EIGHT CONSTRUCTS OF PEGYLATED ANTI-IL-8 (HUMANIZED) F(AB')2 AND FAB' FRAGMENTS IN NORMAL RABBITS FOLLOWING INTRAVENOUS ADMINISTRATION

35

40

45

50

55

[0350] The objective of this study was to evaluate the effect of pegylation on the pharmacokinetics and safety of six pegylated humanized anti-IL-8 constructs (pegylated 6G4V 11N35A.Fab' and pegylated 6G4V11N35A.F(ab')₂ obtained as described in Sections (T) and (U) above) relative to the non-pegylated fragments in normal rabbits. Eight groups of two/three male rabbits received equivalent protein amounts of pegylated 6G4V11N35A.Fab' or pegylated 6G4V11N35A.F(ab')₂ constructs (2 mg/kg) via a single intravenous (IV) bolus dose of one anti-IL8 construct. Serum samples were collected according to the schedule shown in Table 8 below and analyzed for anti-IL8 protein concentrations and antibody formation against anti-IL8 constructs by ELISA.

Table 8

	Group No.	Dose level/ Route	Material	Blood Collection
5	1	2 mg/kg (protein conc.) IV bolus	Fab' control	0,5,30 min; 1,2,3,4,6,8,10, 14,20,24,360 hr
	2		linear(1)20K(s)Fab'	
	3		linear(1)40K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12,
10	4		branched(1)40K(N)F(ab') ₂	24,28,32,48,72,96,168,216, 264,336,360 hr
	5		F(ab') ₂ control	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,52,56,336 hr
15	6		branched(2)40K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,96,168,216,264,3 36 hr; Day 17,21, 25
20	7		branched(2)40K(N)F(ab') ₂	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,144,192,240 hr; Day 13, 16, 20, 23
	8		linear(1)30K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,96,168,216,264,3 36 hr; Day 17,21,25

a. METHODS

25

35

40

[0351] Three male New Zealand White (NZW) rabbits per group (with exception to Group 7, n=2) received an equivalent amount of 6G4V11N35A protein (Fab' or F(ab')₂) construct at 2 mg/kg via an IV bolus dose in a marginal ear vein. Amino acid composition analysis and absorbance at 280 nm using extinction coefficients of 1.26 for 6G4V11N35A Fab' constructs and 1.34 for 6G4V11N35A F(ab')₂ constructs were performed to determine the protein concentration. Whole blood samples were collected via an ear artery cannulation (ear opposing dosing ear) at the above time points. Samples were harvested for serum and assayed for free 6G4V11N35A Fab' or F(ab')₂ constructs using an IL-8 Binding ELISA. Assays were conducted throughout the study as samples became available. All animals were sacrificed following the last blood draw, and necropsies were performed on all animals in Groups 1, 4-8. Due to the development of antibodies against the 6G4V11N35A constructs, non-compartmental pharmacokinetic analysis was conducted on concentration versus time data only up to 168 hours.

b. RESULTS

[0352] In four animals (Animals B, P, Q, V), interference to rabbit serum in the ELISA assay was detected (i.e. measurable concentrations of anti-IL8 antibodies at pre-dose). However, because these values were at insignificant levels and did not effect the pharmacokinetic analysis, the data were not corrected for this interference.

[0353] One animal (Animal G; Group 3) was exsanguinated before the termination of the study and was excluded from the pharmacokinetic analysis. At 4 hours, the animal showed signs of a stroke that was not believed to be drug related, as this can occur in rabbits following blood draws via ear artery cannulation.

[0354] The mean concentration-time profiles of the eight anti-IL8 constructs in normal rabbits are depicted in Fig. 65, and the pharmacokinetic parameters for the eight constructs are summarized in Table 9 below. Significant antibodies to the anti-IL-8 constructs were present at Day 13/14 in all dose groups except Group 1 (Fab' control).

Table 9. Pharmacokinetic parameters.

Molecule	I		Fab'			1	F(ab')2	
Group No.	1	2	. 8	3	6	5	4	7
PEG	_	linear	linear	linear	branched	_	branched	branched
structure		1			l	1	1	
Number of	_	1	1	1	1		1	2
PEGs			1				l	
PEG MW		20K	30K	40K	40K		40K	40K
Dose	2	2	2	2	2	2	2	2
(mg/kg)	j	•					_	. 1
v _c	58±3	36±3	35±1	34	44±1	45±5	36±1	32
(mL/kg) ^a	{	l	(
V _{ss}	68±8	80±8	110±15	79	88±21	59±4	50±3	52
(mL/kg) ^b		l			ĺ			
Cmax	35±1	58±3.	57±1	60	45±1	45±6	56±2	62
(µg/mL) ^c								
Tmax	5	5	5	5	5	5	5	5
(min) ^d								
t _{1/2} term	3.0±0.9	44±2	43±7	50	105±11	8.5±2.1	45±3	48
(hr) ^e	}					[
AUC ₀ .	18±3	80±74	910±140	1600	3400±1300	140±3	2200±77	2500
(hr•µg/mL) ^f								j
CL	110±17	2.5±0.2	2.2±0.4	1.3	0.63±0.20	14±0	0.92±0.03	0.83
(mL/hr/kg) ^g								
MRT (hr) ^h	0.61±0.15	32±2	45±9	63	140±18	4.2±0.3	55±3	64
No. of	3	3	3	2	3	3	3	2
Animals								

a Initial volume of distribution.

5

10

15

20

25

30

35

40

45

b Volume of distribution at steady state.

^c Observed maximum concentration.

d Observed time to Cmax.

e t1/2 term= half-life associated with the terminal phase of the concentration vs. time profile.

Area under the concentration versus time curve (extrapolated to infinity).

g CL= serum clearance.

h MRT= Mean residence time.

The initial volume of distribution approximated the plasma volume for both the Fab' and F(ab')2.

Pegylation decreased serum CL of anti-IL8 fragments and extended both the terminal half-life and MRT as shown in Table 10 below.

Table 10.

5

10

15

40

45

anti-IL8 fragment		Fab'					F(ab') ₂		
Group No.	1	2	8	3	6	5	4	7	
PEG structure	-	linear	linear	linear	bran.	-	bran.	bran.	
No. of PEGs	-	1	1	1		-	1 1	2	
PEG MW	-	20K	30K	40K	40K	-	40K	40K	
CL: mean (mL/hr/kg)	110	2.5	2.2	1.3	0.63	14	0.92	0.83	
fold decrease	1	46	51	90	180	1	15	17	
t1/2 term : mean (hr)	3.0	44	43	50	110	8.5	45	48	
fold increase	1	14	14	17	35	1	5.3	5.7	
MRT: mean (hr)	0.61	32	45	63	140	4.2	55	64	
fold increase	1	53	73	100	240	1 1	13	15	

[0355] For the pegylated anti-IL8 Fab' fragments, CL decreased by 46 to 180-fold. Terminal half-life and MRT increased 14 to 35-fold and 53 to 240-fold, respectively. For pegylated anti-IL8 F(ab')₂ molecules, CL decreased 15 to 17-fold with pegylation, and terminal half-life and MRT increased by greater than 5-fold and 13-fold, respectively. The changes in these parameters increased for both pegylated Fab' and F(ab')₂ molecules with increasing PEG molecular weight and approached the values of the full-length anti-IL8 (terminal half-life of 74 hours, MRT of 99 hours and CL of 0.47 mL/hr/kg). In comparing the branched(1)40K Fab' (Group 6) and branched(1)40K F(ab')₂ (Group 4), unexpected pharmacokinetics were observed. The pegylated Fab' molecule appeared to remain in the serum longer than the pegylated F(ab')₂ (see Figure 66). The mean CL of branched(1)40K Fab' was 0.63 mL/hr/kg, but a higher CL was observed for branched(1)40kD F(ab')₂ (CL 0.92 mL/hr/kg). The terminal half-life, likewise, was longer for the Fab' than the F(ab')₂ pegylated molecule (110 vs 45 hours).

[0356] The pharmacokinetic data demonstrated that pegylation decreased CL and increased terminal t1/2 and MRT of anti-IL8 fragments (Fab' and F(ab')₂) to approach that of the full-length anti-IL8. Clearance was decreased with pegylation 46 to 180-fold for the Fab' and approximately 16-fold for the F(ab')₂. The terminal half-life of the Fab' anti-IL8 fragment was increased by 14 to 35-fold and approximately 5-fold for the F(ab')₂ anti-IL8. MRT, likewise, were extended by 53 to 240-fold for the Fab' and approximately 14-fold for the F(ab')₂. The branched(1) 40kD Fab' had a longer terminal half-life and lower clearance compared to the branched(1) 40kD F(ab')₂.

Y. IN VIVO EFFICACY TESTING OF ANTI-IL-8 ANTIBODY REAGENTS IN RABBIT MODEL OF ISCHEMIA/ REPERFUSION AND ACID ASPIRATION-INDUCED ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

[0357] Full length murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5, 40 kD branched PEG-6G4V11N35A Fab', and control antibody (anti-HIV gp120 monoclonal antibody 9E3.1F10) were tested in a rabbit ARDS model. The animals were weighed and anaesthetized by intramuscular injection of ketamine (50 mg/kg body weight), xylazine (5 mg/kg body weight), and acepromazine (0.75 mg/kg body weight). A second dose (20% of the first dosage) was given 1M 15 minutes before removal of vascular clip, and third dose (60% of the first dosage) was given at tracheotomy. Intra-arterial catheter (22G, 1 in. Angiocath) and intra-venous catheter (24G, 1 in. aneiocath) were be placed in the ear central artery and posterior marginal ear vein for blood samplings (arterial blood gases and CBC) and anti-IL-8 and fluid administration, respectively. The anaesthetized animals were transferred in a supine position to an operating tray; the abdominal area was shaved and prepared for surgery. Via a midline laparotomy, the superior mesenteric artery (SMA) was isolated and a microvascular arterial clip applied at the aortic origin. Before the temporary closure of the abdomen using 9 mm wound clip (Autoclip, Baxter), 15 ml of normal saline was given intraperitoneally as fluid supplement. After 110 minutes of intestinal ischemia, the abdominal incision was reopened and the arterial clip was released to allow reperfusion. Before closure, 5 ml of normal saline was given intraperitoneally for fluid replacement. The laparotomy incision was closed in two layers and the animals allowed to awaken.

[0358] After surgery, the animals were placed on a heating pad (38°C) and continuously monitored for up to 6 hours post reperfusion and lactated Ringer's 8-12 ml/kg/hr IV was given as fluid supplement.

[0359] At 22-24 hr post-reperfusion, a tracheotomy was performed under anesthesia. Normal physiologic saline was diluted 1:3 with water and adjusted to pH 1.5 (adjusted by using IN HCL); 3 ml/kg body weight was then instilled intratracheally. Rectal temperature was maintained at 37 +/- 1 degree C using a homeothermic heat therapy pad (K-Mod

II, Baxter). Fluid supplements (LRS) at a rate of 5 ml/kg/hour IV were given. Blood gases were monitored every hour. The rabbits were returned to the cage after 6 hr of continuous monitoring.

[0360] Just prior to aspiration, animals were treated with saline, the control monoclonal antibody (anti-HIV gp-120 IgG 9E3.IF10), the full length murine anti-rabbit IL8 (6g4.2.5 murine IgG2a anti-rabbit IL8) or the pegylated 6G4V11N35A Fab' (6G4V 1N35A Fab' modified with 40kD branched PEG-maleimide as described in Section T above, denoted as "40 kD branched PEG-6G4V11N35A Fab' "). Data from saline or control antibody treated animals was combined and presented as "Control". Arterial blood gases and A-a PO2 gradient measurements were taken daily, and IV fluid supplementation was performed daily. A-a PO2 gradient was measured at 96 hr of reperfusion. The A-a PO2 gradient was calculated as:

A-a PO2 = [FIO2(PB - PH2O) - (PaCO2/RQ)] - PaO2.

[0361] PaO2/FiO2 ratios were measured at 24hr and 48hr in room air and 100% oxygen.

10

15

20

30

35

40

55

[0362] After the final A-a PO2 gradient measurement, the animals were anesthetized with Nembutal 100mg/kg i.v. and the animals were euthanized by transecting the abdominal aorta in order to reduce red blood cell contamination of bronchoalveolar lavage fluid (BAL). The lungs were removed en bloc. The entire lung was weighed and then lavaged with an intratracheal tube (Hi-Lo tracheal tube, 3mm) using 30 ml of HBSS and lidocain. Total and differential leukocyte counts in the BAL were determined. Lesions/changes were verified by histological examination of each lobe of the right lung of each animal.

[0363] The gross lung weight, total leukocyte and polymorphonuclear cell counts in BAL, and PaO2/FiO2 data obtained are depicted in Figs. 67, 68 and 69, respectively. Treatment with 40 kD branched PEG-6G4V11N35A Fab' exhibited no effect on the biological parameters measured in the model as compared to the "Control" group. However, the data do not contradict the pharmacokinetic analysis or the in vitro activity analysis for the 40 kD branched PEG-6G4V11N35A Fab' presented in Sections (V) and (X) above. In addition, these data do not contradict the ability of the 40 kD branched PEG-6G4V11N35A Fab' to reach and act on disease effector targets in circulation or other tissues. [0364] The following biological materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

Material	ATCC Accession No.	Deposit Date
hybridoma cell line 5.12.14	HB 11553	February 15, 1993
hybridoma cell line 6G4.2.5	HB 11722	September 28, 1994
pantilL-8.2, E. coli strain 294 mm	97056	February 10, 1995
p6G425chim2, E. coli strain 294 mm	97055	February 10, 1995
p6G4V11N35A.F(ab') ₂	97890	February 20, 1997
E. coli strain 49D6(p6G4V 11N35A.F(ab') ₂)	98332	February 20, 1997
p6G425V11N35A.choSD	209552	December 16, 1997
clone#1933 alL8.92 NB 28605/12	CRL-12444	December 11, 1997
clone#1934 alL8.42 NB 28605/14	CRL-12445	December 11, 1997

[0365] These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable deposit for 30 years from the date of deposit. These cell lines will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the cell lines to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the cell lines to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

[0366] The assignee of the present application has agreed that if the deposited cell lines should be lost or destroyed when cultivated under suitable conditions, they will be promptly replaced on notification with a specimen of the same cell line. Availability of the deposited cell lines is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

Claims

30

35

- 1. A conjugate consisting essentially of one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, said antibody fragments comprising the antigen binding site or variable region of the intact antibody but free of the constant heavy chain domains of the Fc region of the intact antibody, wherein the antibody fragment comprises a heavy chain and a light chain derived from a parental antibody, wherein in the parental antibody the heavy and light chains are covalently linked by a disulfide bond between a cysteine residue in the light chain and a cysteine residue in the heavy chain, wherein in the antibody fragment the cysteine residue in the light or heavy chain is substituted with another amino acid and the cysteine residue in the opposite chain is covalently linked to a nonproteinaceous polymer molecule, and wherein the apparent size of the conjugate is at least about 500 kD.
 - 2. The conjugate of claim 1, wherein the apparent size of the conjugate is at least about 800 kD.
- 15 3. The conjugate of claim 1, wherein the apparent size of the conjugate is at least about 1,400 kD.
 - 4. The conjugate of claim 1, wherein the apparent size of the conjugate is at least about 1,800 kD.
- 5. The conjugate of claim 1, wherein the apparent size of the conjugate is at least 8 fold greater than the apparent size of the antibody fragment.
 - 6. The conjugate of claim 5, wherein the apparent size of the conjugate is at least 15 fold greater than the apparent size of the antibody fragment.
- 7. The conjugate of claim 6, wherein the apparent size of the conjugate is at least 25 fold greater than the apparent size of the antibody fragment.
 - 8. The conjugate of claim 1, wherein the conjugate contains no more than one antibody fragment, and wherein the antibody fragment is selected from the group consisting of Fab, Fab', Fab', Fb, scFv and F(ab')₂.
 - 9. The conjugate of claim 8 wherein the antibody fragment is F(ab')2.
 - 10. The conjugate of claim 1 wherein the antibody fragment is covalently attached to no more than 10 nonproteinaceous polymer molecules.
 - 11. The conjugate of claim 10 wherein the antibody fragment is covalently attached to no more than 5 nonproteinaceous polymer molecules.
- 12. The conjugate of claim 11 wherein the antibody fragment is covalently attached to no more than 2 nonproteinaceous polymer molecules.
 - 13. The conjugate of claim 12 wherein the antibody fragment is attached to no more than 1 nonproteinaceous polymer molecule.
- 45 14. The conjugate of claim 8 wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH.
 - 15. The conjugate of claim 14 wherein the antibody fragment is covalently attached to no more than 1 nonproteinaceous polymer molecule.
 - 16. The conjugate of claim 1 wherein the nonproteinaceous polymer is a polyethylene glycol (PEG).
 - 17. The conjugate of claim 16 wherein the PEG has an average molecular weight of at least 20kD.
- 55 18. The conjugate of claim 17 wherein the PEG has an average molecular weight of at least 40kD.
 - 19. The conjugate of claim 18 wherein the PEG is a single chain molecule.

20. The conjugate of claim 18 wherein the PEG is a branched chain molecule.

5

15

20

25

30

35

40

45

- 21. The conjugate of claim 17, wherein the conjugate contains no more than one antibody fragment, and wherein the antibody fragment is a F(ab')₂ and is covalently attached to no more than 2 PEG molecules.
- 22. The conjugate of claim 17, wherein the conjugate contains no more than one antibody fragment, and wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH and is covalently attached to no more than one PEG molecule.
- 23. The conjugate of claim 1 wherein the antibody fragment has an antigen binding site that binds to human IL-8.
 - 24. The conjugate of claim 23, wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a polyethylene glycol having an actual molecular weight of at least 30 kD.
 - 25. The conjugate of claim I wherein the antibody fragment is humanized.
 - 26. The conjugate of claim I wherein the conjugate contains no more than one antibody fragment.
 - 27. A conjugate formed by one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, said antibody fragments comprising the antigen binding site or variable region of the intact antibody but free of the constant heavy chain domains of the Fc region of the intact antibody, wherein the antibody fragment comprises a heavy chain and a light chain derived from a parental antibody, wherein in the parental antibody the heavy and light chains are covalently linked by a disulfide bond between a cysteine residue in the light chain and a cysteine residue in the heavy chain, wherein in the antibody fragment the cysteine residue in the light or heavy chain is substituted with another amino acid and the cysteine residue in the opposite chain is covalently linked to a nonproteinaceous polymer molecule, wherein the apparent size of the conjugate is at least 500 kD, and wherein the molecular structure of the conjugate is free of other matter.
 - 28. A conjugate formed by one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, said antibody fragments comprising the antigen binding site or variable region of the intact antibody but free of the constant heavy chain domains of the Fc region of the intact antibody, wherein the antibody fragment comprises a heavy chain and a light chain derived from a parental antibody, wherein in the parental antibody the heavy and light chains are covalently linked by a disulfide bond between a cysteine residue in the light chain and a cysteine residue in the heavy chain, wherein in the antibody fragment the cysteine residue in the light or heavy chain is substituted with another amino acid and the cysteine residue in the opposite chain is covalently linked to a nonproteinaceous polymer molecule, wherein the apparent size of the conjugate is at least 500 kD, wherein the antibody fragment incorporates a nonproteinaceous label free of any polymer, and wherein the molecular structure of the conjugate is free of other matter.
 - 29. The conjugate of claim 28 wherein the nonproteinaceous label is a radiolabel.
 - 30. A composition comprising the conjugate of claim 1 and a carrier.
 - 31. The composition of claim 29 that is sterile.
 - **32.** A conjugate according to any one of claims 1 to 29, or a composition according to claim 30 or 31, for use in a method of medical treatment.
 - 33. The use of a conjugate according to claim 23 or 24 in the preparation of a medicament for the treatment of an inflammatory disorder.
- **34.** Use according to claim 33 wherein the inflammatory disorder is adult respiratory distress syndrome, hypovolemic shock, ulcerative colitis or rheumatoid arthritis.

Patentansprüche

5

15

25

45

- 1. Konjugat, das im Wesentlichen aus einem oder mehreren Antikörperfragmenten besteht, das bzw. die kovalent an ein oder mehrere nicht-proteinartige Polymermoleküle gebunden ist bzw. sind, wobei die Antikörperfragmente die Antigen-Bindungsstelle oder variable Region des intakten Antikörpers umfassen, aber frei von den konstanten Schwerketten-Domänen der Fc-Region des intakten Antikörpers sind, worin das Antikörperfragment eine Schwerkette und eine Leichtkette umfasst, die von einem elterlichen Antikörper stammen, worin im elterlichen Antikörper die Schwer- und die Leichtketten durch eine Disulfid-Bindung zwischen einem Cysteinrest in der Leichtkette und einen Cysteinrest in der Schwerkette kovalent verbunden sind, worin im Antikörperfragment der Cysteinrest in der 10 Leicht- oder der Schwerkette durch eine andere Aminosäure substituiert ist und der Cysteinrest in der gegenüberliegenden Kette kovalent an ein nicht-proteinartiges Polymermolekül gebunden ist und worin die scheinbare Größe des Konjugats zumindest etwa 500 kD beträgt.
 - 2. Konjugat nach Anspruch 1, worin die scheinbare Größe des Konjugats zumindest etwa 800 kD beträgt.
 - Konjugat nach Anspruch 1, worin die scheinbare Größe des Konjugats zumindest etwa 1.400 kD beträgt.
 - Konjugat nach Anspruch 1, worin die scheinbare Größe des Konjugats zumindest etwa 1.800 kD beträgt.
- Konjugat nach Anspruch 1, worin die scheinbare Größe des Konjugats zumindest acht Mal größer als die schein-20 bare Größe des Antikörperfragments ist.
 - 6. Konjugat nach Anspruch 5, worin die scheinbare Größe des Konjugats zumindest fünfzehn Mal größer als die scheinbare Größe des Antikörperfragments ist.
 - 7. Konjugat nach Anspruch 6, worin die scheinbare Größe des Konjugats zumindest 25-mal größer als die scheinbare Größe des Antikörperfragments ist.
- Konjugat nach Anspruch 1, worin das Konjugat nicht mehr als ein Antikörperfragment enthält und worin das An-30 tikörperfragment aus der aus Fab, Fab', Fab'-SH, Fv, scFv und F(ab'), bestehenden Gruppe ausgewählt ist.
 - 9. Konjugat nach Anspruch 8, worin das Antikörperfragment F(ab'), ist.
- 10. Konjugat nach Anspruch 1, worin das Antikörperfragment kovalent an nicht mehr als 10 nicht-proteinartige Poly-35 mermoleküle gebunden ist.
 - 11. Konjugat nach Anspruch 10, worin das Antikörperfragment kovalent an nicht mehr als 5 nicht-proteinartige Polymermoleküle gebunden ist.
- 12. Konjugat nach Anspruch 11, worin das Antikörperfragment kovalent an nicht mehr als 2 nicht-proteinartige Poly-40 mermoleküle gebunden ist.
 - 13. Konjugat nach Anspruch 12, worin das Antikörperfragment an nicht mehr als 1 nicht-proteinartiges Polymermolekül gebunden ist.
 - 14. Konjugat nach Anspruch 8, worin das Antikörperfragment aus der aus Fab, Fab' und Fab'-SH bestehenden Gruppe ausgewählt ist.
- 15. Konjugat nach Anspruch 14, worin das Antikörperfragment kovalent an nicht mehr als 1 nicht-proteinartiges Po-50 lymermolekül gebunden ist.
 - 16. Konjugat nach Anspruch 1, worin das nicht-proteinartige Polymer ein Polyethylenglykol (PEG) ist.
 - 17. Konjugat nach Anspruch 16, worin das PEG ein mittleres Molekulargewicht von zumindest 20 kD aufweist.
 - 18. Konjugat nach Anspruch 17, worin das PEG ein mittleres Molekulargewicht von zumindest 40 kD aufweist.
 - 19. Konjugat nach Anspruch 18. worin das PEG ein Einzelketten-Molekül ist.

20. Konjugat nach Anspruch 18, worin das PEG ein Molekül mit verzweigter Kette ist.

5

15

20

25

30

35

40

- 21. Konjugat nach Anspruch 17, worin das Konjugat nicht mehr als ein Antikörperfragment enthält und worin das Antikörperfragment F(ab')₂ ist und kovalent an nicht mehr als 2 PEG-Moleküle gebunden ist.
- 22. Konjugat nach Anspruch 17, worin das Konjugat nicht mehr als ein Antikörperfragment enthält und worin das Antikörperfragment aus der aus Fab, Fab' und Fab'-SH bestehenden Gruppe ausgewählt ist und kovalent an nicht mehr als ein PEG-Molekül gebunden ist.
- 23. Konjugat nach Anspruch 1, worin das Antikörperfragment eine Antigen-Bindungsstelle aufweist, die an Human-IL-8 bindet.
 - 24. Konjugat nach Anspruch 23, worin das Konjugat nicht mehr als ein Antikörperfragment enthält, worin das Antikörperfragment aus der aus Fab, Fab' und Fab'-SH bestehenden Gruppe ausgewählt ist, worin das Antikörperfragment kovalent an nicht mehr als ein nicht-proteinartiges Polymermolekül gebunden ist und worin das nicht-proteinartige Polymermolekül ein Polyethylenglykol mit einem tatsächlichen Molekulargewicht von zumindest 30 kD ist.
 - 25. Konjugat nach Anspruch 1, worin das Antikörperfragment humanisiert ist.
 - 26. Konjugat nach Anspruch 1, worin das Konjugat nicht mehr als 1 Antikörperfragment enthält.
 - 27. Konjugat, das aus einem oder mehreren Antikörperfragmenten gebildet ist, das bzw. die kovalent an ein oder mehrere nicht-proteinartige Polymermoleküle gebunden ist bzw. sind, wobei die Antikörperfragmente die Antigen-Bindungssteile oder variable Region des intakten Antikörpers umfassen, aber frei von den konstanten Schwerkettendomänen der Fc-Region des intakten Antikörpers sind, worin das Antikörperfragment eine Schwerkette und eine Leichtkette umfasst, die von einem elterlichen Antikörper stammen, worin im elterlichen Antikörper die Schwer- und die Leichtketten durch eine Disulfidbindung zwischen einem Cysteinrest in der Leichtkette und einem Cysteinrest in der Schwerkette kovalent verbunden sind, worin im Antikörperfragment der Cysteinrest in der Leichtoder der Schwerkette durch eine andere Aminosäure substituiert ist und der Cysteinrest in der gegenüberliegenden Kette kovalent an ein nicht-proteinartiges Polymermolekül gebunden ist, worin die scheinbare Größe des Konjugats zumindest 500 kD beträgt und worin die Molekülstruktur des Konjugats frei von anderen Substanzen ist.
 - 28. Konjugat, das aus einem oder mehreren Antikörperfragmenten gebildet ist, das bzw. die kovalent an ein oder mehrere nicht-proteinartige Polymermoleküle gebunden ist bzw. sind, wobei die Antikörperfragmente die Antigen-Bindungsstelle oder variable Region des intakten Antikörpers umfassen, aber frei von den konstanten Schwerkettendomänen der Fc-Region des intakten Antikörpers sind, worin das Antikörperfragment eine Schwerkette und eine Leichtkette umfasst, die von einem elterlichen Antikörper stammen, worin im elterlichen Antikörper die Schwer- und die Leichtketten durch eine Disulfidbindung zwischen einem Cysteinrest in der Leichtkette und einem Cysteinrest in der Schwerkette kovalent verbunden sind, worin im Antikörperfragment der Cysteinrest in der Leichtoder Schwerkette durch eine andere Aminosäure substituiert ist und der Cysteinrest in der gegenüberliegenden Kette kovalent an ein nicht-proteinartiges Polymermolekül gebunden ist, worin die scheinbare Größe des Konjugats zumindest 500 kD beträgt, worin das Antikörperfragment eine nicht-proteinartige Markierung umfasst, die frei von Polymer ist, und worin die Molekülstruktur des Konjugats frei von anderen Substanzen ist.
 - 29. Konjugat nach Anspruch 28, worin die nicht-proteinartige Markierung eine Radiomarkierung ist.
 - 30. Zusammensetzung, die das Konjugat nach Anspruch 1 und einen Träger umfasst.
- 50 31. Zusammensetzung nach Anspruch 29, die steril ist.
 - 32. Konjugat nach einem der Ansprüche 1 bis 29 oder eine Zusammensetzung nach Anspruch 30 oder 31 zur Verwendung bei einem Verfahren zur medizinischen Behandlung.
- 33. Verwendung eines Konjugats nach Anspruch 23 oder 24 bei der Herstellung eines Medikaments zur Behandlung einer Entzündungserkrankung.
 - 34. Verwendung nach Anspruch 33. worin die Entzündungserkrankung Atemnotsyndrom beim Erwachsenen, hypo-

volämischer Schock, ulzeröse Kolitis oder rheumatische Arthritis ist.

Revendications

5

10

1. Conjugué consistant essentiellement en un ou plusieurs fragments d'anticorps attachés de manière covalente à une ou plusieurs molécules de polymère non protéique, lesdits fragments d'anticorps comprenant le site de liaison de l'antigène ou la région variable de l'anticorps intact mais sans les domaines constants chaîne lourde de la région Fc de l'anticorps intact, où le fragment d'anticorps comprend une chaîne lourde et une chaîne légère dérivées d'un anticorps parent, où dans l'anticorps parent, les chaînes lourde et légère sont enchaînées de manière covalente par une liaison disulfure entre un résidu de cystéine dans la chaîne légère et un résidu de cystéine dans la chaîne lourde, où, dans le fragment d'anticorps, le résidu de cystéine dans la chaîne lourde ou légère est substitué par un autre acide aminé et le résidu de cystéine dans la chaîne opposée est enchaîné de manière covalente à une molécule de polymère non protéique, et où la dimension apparente du conjugué est d'au moins environ 500 kD.

15

2. Conjugué de la revendication 1, où la dimension apparente du conjugué est d'au moins environ 800 kD.

3. Conjugué de la revendication 1, où la dimension apparente du conjugué est d'au moins environ 1 400 kD.

20

Conjugué de la revendication 1, où la dimension apparente du conjugué est d'au moins environ 1 800 kD.

5. Conjugué de la revendication 1, où la dimension apparente du conjugué est au moins 8 fois plus grande que la dimension apparente du fragment d'anticorps.

25

Conjugué de la revendication 1, où la dimension apparente du conjugué est au moins 15 fois plus grande que la dimension apparente du fragment d'anticorps.

30

7. Conjugué de la revendication 6, où la dimension apparente du conjugué est au moins 25 fois plus grande que la dimension apparente du fragment d'anticorps.

Conjugué de la revendication 1, où le conjugué ne contient pas plus d'un fragment d'anticorps et où le fragment d'anticorps est sélectionné dans le groupe consistant en Fab, Fab', Fab'-SH, Fv, scFv, et F(ab')2.

35

9. Conjugué de la revendication 8, où le fragment d'anticorps est F(ab').

10. Conjugué de la revendication 1, où le fragment d'anticorps est attaché de manière covalente à pas plus de 10 molécules de polymère non protéique.

40

11. Conjugué de la revendication 10, où le fragment d'anticorps est attaché de manière covalente à pas plus de 5 molécules de polymère non protéique.

45

12. Conjugué de la revendication 11, où le fragment d'anticorps est attaché de manière covalente à pas plus de 2 molécules de polymère non protéique.

13. Conjugué de la revendication 12, où le fragment d'anticorps est attaché à pas plus d'1 molécule de polymère non protéique.

14. Conjugué de la revendication 8, où le fragment d'anticorps est sélectionné dans le groupe consistant en Fab, Fab' et Fab'-SH.

50

15. Conjugué de la revendication 14, où le fragment d'anticorps est attaché de manière covalente à pas plus d'1 molécule de polymère non protéique.

55

Conjugué de la revendication 1, où le polymère non protéique est un polyéthylène glycol (PEG).

17. Conjugué de la revendication 16, où le PEG a un poids moléculaire moyen d'au moins 20 kD.

- 18. Conjugué de la revendication 17, où le PEG a un poids moléculaire moyen d'au moins 40 kD.
- 19. Conjugué de la revendication 18, où le PEG est une molécule monocaténaire.
- 5 20. Conjugué de la revendication 18, où le PEG est une molécule à chaîne ramifiée .
 - 21. Conjugué de la revendication 17, où le conjugué ne contient pas plus d'un fragment d'anticorps et où le fragment d'anticorps est un F(ab')₂ et est attaché de manière covalente à pas plus de 2 molécules de PEG.
- 22. Conjugué de la revendication 17, où le conjugué ne contient pas plus d'un fragment d'anticorps et où le fragment d'anticorps est sélectionné dans le groupe consistant en Fab, Fab' et Fab'-SH et est attaché de manière covalente à pas plus d'une molécule de PEG.
 - 23. Conjugué de la revendication 1, où le fragment d'anticorps a un site de liaison d'antigène qui se lie à IL-8 humaine.
 - 24. Conjugué de la revendication 23, où le conjugué ne contient pas plus d'un fragment d'anticorps, où le fragment d'anticorps est sélectionné dans le groupe consistant en Fab, Fab' et Fab'-SH, où le fragment d'anticorps est attaché de manière covalente à pas plus d'une molécule de polymère non protéique, et où la molécule de polymère non protéique est un polyéthylène glycol ayant un poids moléculaire réel d'au moins 30 kD.
 - 25. Conjugué de la revendication 1, où le fragment d'anticorps est humanisé.

15

20

35

40

45

- 26. Conjugué de la revendication 1, où le conjugué ne contient pas plus d'un fragment d'anticorps.
- 27. Conjugué formé par un ou plusieurs fragments d'anticorps attachés de manière covalente à une ou plusieurs molécules de polymère non protéique, lesdits fragments d'anticorps comprenant le site de liaison de l'antigène ou la région variable de l'anticorps intact, mais sans les domaines constants de chaîne lourde de la région Fc de l'anticorps intact, où le fragment d'anticorps comprend une chaîne lourde et une chaîne légère dérivée d'un anticorps parent, où dans l'anticorps parent, les chaînes lourde et légère sont enchaînées de manière covalente par une liaison disulfure entre un résidu de cystéine dans la chaîne légère et un résidu de cystéine dans la chaîne lourde, où dans le fragment d'anticorps, le résidu de cystéine dans la chaîne légère ou lourde, est substitué par un autre acide aminé et le résidu de cystéine dans la chaîne opposée est enchaîné de manière covalente à une molécule de polymère non protéique, où la dimension apparente du conjugué est d'au moins 500 kD, et où la structure moléculaire du conjugué est exempte d'autre matière.
 - 28. Conjugué formé par un ou plusieurs fragments d'anticorps attachés de manière covalente à une ou plusieurs molécules de polymère non protéique, lesdits fragments d'anticorps comprenant le site de liaison de l'antigène ou la région variable de l'anticorps intact, mais sans les domaines constants de chaîne lourde de la région Fc de l'anticorps intact, où le fragment d'anticorps comprend une chaîne lourde et une chaîne légère dérivée d'un anticorps parent, où dans l'anticorps parent, les chaînes lourde et légère sont enchaînées de manière covalente par une liaison disulfure entre un résidu de cystéine dans la chaîne légère et un résidu de cystéine dans la chaîne lourde, où, dans le fragment d'anticorps, le résidu de cystéine dans la chaîne légère ou lourde est substitué par un autre acide aminé et le résidu de cystéine dans la chaîne opposée est enchaîné de manière covalente à une molécule de polymère non protéique, où la dimension apparente du conjugué est d'au moins 500 kD, où le fragment d'anticorps incorpore un marqueur non protéique exempt de tout polymère, et où la structure moléculaire du conjugué est exempte de toute autre matière.
 - 29. Conjugué de la revendication 28, où le marqueur non protéique est un radiomarqueur.
- 50 30. Composition comprenant le conjugué de la revendication 1 et un support.
 - 31. Composition de la revendication 29 qui est stérile.
 - 32. Conjugué selon l'une quelconque des revendications 1 à 29, ou composition selon la revendication 30 ou 31 pour une utilisation dans une méthode de traitement médical.
 - 33. Utilisation d'un conjugué selon la revendication 23 ou 24 dans la préparation d'un médicament pour le traitement d'un trouble inflammatoire.

	34.	34. Utilisation selon la revendication 33 où le trouble inflammatoire est l'adulte, un choc hypovolémique, une colite ulcérative ou une arthrite	un syndrome de détresse respiratoire chez rhumatoïde.
5			
10			•
15			
20			
25			
30			
35			
40			
45			
50			
55			

FIG. 6

FIG. 7

Absorbance (405 nm)

% IL-8-Stimulated Elastase Release

75

Absorbance (405 nm)

EP 0 968 291 B1

right Ci	nain Primers			
MKLC-1,	22mer	FIG.	13	
5'	CAGTCCAACTG	TCAGGACG(CC 3'	
MKLC-2,	22mer			
5' ·	GTGCTGCTCAT	GCTGTAGGT	3C 3'	
MKLC-3,	23mer	٠		
5'	GAAGTTGATGT	CTTGTGAGT	GC	3 '
Heavy Ch	nain Primers	:		
IGG2AC-1	l, 24mer			
5'	GCATCCTAGAG	TCACCGAGG	AGCC	3
IGG2AC-2	2, 22mer			
5'	CACTGGCTCAG	GGAAATAAC	CC 3'	
IGG2AC-	3, 22mer			
E 1	CCACACCTCCC	እ እ <i>ርርጥርጥርር</i>	20 3 I	

FIG. 14

Light chain forward primer

SL001A-2 35 mer

5' ACAAACGCGTACGCT GACATCGTCATGACCCAGTC 3'

A

Light chain reverse primer

SL001B 37 mer

5' GCTCTTCGAATG GTGGGAAGATGGATACAGTTGGTGC 3'

Heavy chain forward primer

FIG. 15

SL002B 39 mer

5' CGATGGGCCCGG ATAGACCGATGGGGCTGTTGTTTTGGC 3'

T C
G
A

Heavy chain reverse primer

SL002B 39-MER

5' CGATGGGCCCGG ATAGACCGATGGGGCTGTTGTTTTGGC 3'

T
A
G

EP 0 968 291 B1

CAGGGTCAGC GTCCCAGTCG > œ GACATTGICA TGACACAGIC TCAAAAAITC AIGICCACAI CAGIAGGAGA CTGTAACAGT ACTGTGTCAG AGTTTTTAAG TACAGGTGTA GTCATCCTCT Ω Ö > H ß Σ ſz, × œ S ø H Σ > H Δ -Н

GICACCIGCA AGGCCAGICA GAATGIGGGT ACTAAIGIAG CCIGGIAICA ACAGAAACCA TGTCTTTGGT × a TGATTACATC GGACCATAGT O^r × 3 Ø > * Z * CTTACACCCA N V G * CDR #1 * CAGTGGACGT TCCGGTCAGT 0 **4** * ¥ U H > 61 21

TCAGGGACTA AGTCCCTGAT > 121 GGGCAATCTC CTAAAGCACT GATTTACTCG TCATCCTACC GGTACAGTGG CCATGTCACC O **S** * **>+** * CTAAATGAGC AGTAGGATGG CDR #2 > vi + S **⊁** GATTTCGTGA J 4 CCCGTTAGAG ល ø Ö 41

ACACGTCAGA TGTGCAGTCT ø > TGGGACAGAT TTCACTCTCA CCATCAGCCA GGTAGTCGGT S Н ACCCTGTCTA AAGTGAGAGT G T D F T L T CGTCACCTAG 181 CGCTTCACAG GCAGTGGATC ហ Ö GCGAAGTGTC ø 61

CAAGCCAGGA Gricegicci Ö Ŋ CTGTCAGCAA TATAACATCT ATCCTCTCAC GACAGTCGTT ATATTGTAGA TAGGAGAGTG F * N CDR o + υ GTCTGATAAA CAGACTATTT Ω GAAGACTTGG CTTCTGAACC J Ω 回 241 81

CATCTTCCCA GTAGAAGGGT Œ, ACGGCTGAT GCTGCACCAC CAACTGTATC CGACGTGGTG GTTGACATAG SA E 4 4 Ą 4 TGCCCGACTA ٩ 4 ĸ GGGACCAAGC TGGAGTTGAA CCCTGGTTCG ACCTCAACTT × H D × H Ö 301 101

BStBI 361 CCATTCGAA GGTAAGCTT

ы

Ŀ,

۵,

121

1		ACAAACGCGT TGTTTGCGCA				
1			E V		E S G G	
61		GGGTCCCTGA				
12		G S L K			G F I F	
13	F F .	G D L	ы з с	n n s	<u>u r r</u>	<u>s s y</u>
					CDR	#1
121		TGGGTTCGCC				
	ACCGTACAGA	ACCCAAGCGG	TCTGAGGTCC	GTTCTCGGAC	CTCAACCAGC	GTTGGTAATT
33		WVRQ		KSL	ELVA	
	• • •	-				• • •
181		GATAGCACCT				
E 2		CTATCGTGGA	-			
23	N N G	_D S T Y	Y P D	S V K	GRFT	ISR
		CDR #		* * *		
241		AAGAACACCC				
	TCTGTTACGG	TTCTTGTGGG	ACATGGACGT	TTACTCGTCA	GACTTCAGAC	TCCTGTGTCG
73	D N A	K N T L	Y L Q	M S S	L K S E	D T A
301		TGTGCAAGAG ACACGTTCTC				
02		C A R A		S A T		
33	M F I	CARA	<u> </u>	SAT	W F G Y	W G Q
		*		OR #3	* * * *	
			•			
361		GTCACTGTCT CAGTGACAGA				
113	G T L	V T V S	A A K	TTA	P S V Y	
	Apa]	C				
411	ATCCGGG TAGGCCC				30 47	
130	P			r	FIG. 17	

VL	.front	31-MER	•	
	ACAA <u>ACGCGT</u> rear 31-ME	ACGCT <u>GATATC</u> GTCATGACAG R	3'	
5 '	GCAGCATCAG	CTC <u>TTCGAA</u> GCTCCAGCTTGG	3 '	
VH.	front.SPE	21-MER		
5 '	CCACTAGTAC	GCAAGTTCACG	3 '	
VH.	rear 33-ME	ir.	,	
5 '	GAT <u>GGGCCC</u> T	TGGTGGAGGCTGCAGAGACAGT	G	3

EP 0 968 291 B1

_																				
1					TATA															
					TATA									-			-			TTTG
-23	M	K	K	N	I	A	F	L	Ļ	A	S	M	F	V	F	S	I	A	T	N
61	G	ነርጥ:) (באדי	ATAT	YC:T	ሮ ልጥ	GAC	מיזמי	_{ርጥ} ርጥ	CA		N TOTAL	C N	mc:mc	~~~~	3.00	N COT		
V.	CY	CAT	rcc	SAC	TATA	CCA	GTA	CTG	TCT	CACA YAGA	CT	غمامان سعم	ידוניי אממייי	CM CT	ACAC	CAC	TAC	WC I	TO C	AGAC MCMC
-3		Y				v				S				M		T	S	A TCU	_	D
_	••	-		_	_	•		_	-	•	*	••	•	••		•	•	•	•	U
121	AC	GG1	CAC	3CG	TCAC	CTG	CAA	GGC	CAG	TCAG	AA	TGT	GGG,	TA	CTAA	TGT	AGC	CTG	GTA	TCAA
					AGTG															
18	R	v	S	V	T	C	K	A	<u>s</u>	0	N	V.	G	T	N	v.	A	W	Y	0
							*	*	*	*	*	*	*	*	*	*	*			-
											CD	R#	1							
					•															
181	CA	GAP	LACC	CAG	GGCA	ATC	rcc	TAA	AGC	ACTG	AT	TTA	CTC	GT	CATC	CTA	CCG	GTA	CAG	TGGA
					CCGT											GAT	GGC	CAT	GTC.	ACCT
38	Q	K	P	G	Q	S	P	K	A	L	I	Y	S_	_S_	s	Y	R	Y	S	G
	•												*	*	*	*	*	*	•	
															C	DR	#2			
241	СT	~~~	TY:	ישרי	GCTT	CAC	NGG	CAG	TCC	א מעריימוי	ĊC	280	2025	T	mas a	-	C. C.	C 3 m	~~	
241					CGAA															
58					F			S							T		T	GIA T	S	
	•	-	_	••	•	•	•	_	•	•	•	•	.	•	•	u	•	•	3	
301	GT	GCA	GTC	TG:	AAGA	CTT	GC	AGA	CTA	TTTC	TG'	rca	GCA	ΑT	ATAA	CAT	CTA	TCC	TCT	CACG
	CA	CGT	CAG	AC	TTCT	GAA	CCG	TCT	GAT.	AAAG	AC	AGT	CGT	ΓA	TATT	GTA	GAT	AGG.	AGA	GTGC
78	V	Q	S	E	D	L	A	D	Y	F	C	Q	Q	Y_	N	I	Y	P	L	T
												*	*	*	*	*	*	*	*	*
																CDR	#3			
									_	stBI										
361	TT	CGG	TCC	TG	GGAC	CAAC	3CT	GGA	3CT	TCGA	AG	AGC'	TGT	3 G	CTGC	ACC	ATC	TGT	CTT	CATC
					CCTG															-
98	F	G	P	G	Т	K	L	E	L	R	R	A	V	A	A	P	S	V	F	I
A21	WT.	ccc	CCC	'ልጥ	CTGA!	TCAC	200	CIVITY	233	አመሮመ	CC		maan	nm	omom.		cmc			~~~
441	AA	ccc ೧୯୯	CCC	ጥል	GACT	T GWY	יתטינ יינטיני	CAA	امامالاد محمد	TACE	661	PTC:	ycc:	r.T.	CACA	TGT	CAC	CCN	CCT	JAA'I'
118	F	P	P	S	D	E	0	L	ĸ	S	G	T.	ACG/ A	S	UACA	NCA V			L	
					-	_	-	_		-		-	••	_	٠.	٠	•	-	~	44
481	AA	CTT	CTA	TC	CCAG	AGAC	3GC	CAA	AGT	ACAG	TGO	AAC	GGTG	3G	ATAA	CGC	CCT	CCA	ATC	GGGT
	TT	GAA	GAT	'AG	GGTC	ICI(CCG	GTT'	rca'	TGTC	ACC	TT	CCAC	CC	TATT	GCG	GGA	GGT	TAG	CCCA
138	N	F	Y	P	R	E	. A	K	V	Q	W	K	V	D	N	A	L	Q	S	G
541	AA	CIC	CCA	GG	AGAG'	IGIY	CAC	AGA	GCA	GGAC	AGO	AA	GGAC	CA	GCAC	CTA	CAG	CCT	CAG	CAGC
150	TT	GAG	GGT	.CC	TCTC	ACA(FIG	TCT	CGT	CCTG	TC	TT.	CCTC	3T	CGTG	GAT	GTC	GGA	GTC	GTCG
128	M	S	Q	E	S	V	T	E	Q	D	S	K	D	S	T	Y	S	L	S	5
601	30		@2.C	20	mara.	7221		101	- 4 M	~~~			~			~~~		~~:		
901	WC.	こじょ	CTC CTC	- CC	TGAG	2MM	10C	AGA(T'A(CCEC	AA	ACA(iG nc	TCTA	CGC	CIG	CGA	AGT(CACC
178	T	J.	ጥ ጉ፲ઉ	T.	ACTC	R. 27.1.	. CG	ע זכזו	A N.Y	B LIC	117	ונטון ע	1779ع 18	1°C	AGAT	GCG A	GAC	GCT	TCA(STGG T
_,,	-	_	•			~	~		-	E	Λ.	.п	Λ.	V	I	A	C.	5	V	7
661	CA	TCA	GGG	CC	TGAG	CTC	3CC	CGT	CAC	AAAG	AGO	TT	CAAC	2A	GGGG	AGA	GTG			
	GT.	AGT	CCC	GG	ACTC	GAG	CGG	GCA	GTG	TTTC	TCC	BAA	GTTC	T	cccc	TCT	CAC			
198	H	Q	G	L	5	5	P	V	T	K	5	F	N	R	G	E	C			
		 -																		
711		ATT												2	4	\bigcirc				
		AAT	T.									- 1		3.	. 1	7				

89

```
1 ATGAAAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT TGCTACAAAC
   TACTTTTCT TATAGCGTAA AGAAGAACGT AGATACAAGC AAAAAAGATA ACGATGTTTG
-23 M K K N I A F L L A S M F V F S I A T N
 61 GCGTACGCTG AGGTGCAGCT GGTGGAGTCT GGGGGAGGCT TAGTGCCGCC TGGAGGGTCC
   CGCATGCGAC TCCACGTCGA CCACCTCAGA CCCCCTCCGA ATCACGGCGG ACCTCCCAGG
 -3 A Y A E V Q L V E S G G G L V P P G G S
121 CTGAAACTCT CCTGTGCAGC CTCTGGATTC ATATTCAGTA GTTATGGCAT GTCTTGGGTT
   GACTTTGAGA GGACACGTCG GAGACCTAAG TATAAGTCAT CAATACCGTA CAGAACCCAA
 18 L K L S C A A S <u>G F I F S S Y</u> G M S W V
                                    CDR #1
181 CGCCAGACTC CAGGCAAGAG CCTGGAGTTG GTCGCAACCA TTAATAATAA TGGTGATAGC
   GCGGTCTGAG GTCCGTTCTC GGACCTCAAC CAGCGTTGGT AATTATTATT ACCACTATCG
 38 R Q T P G K S L E L V A T I N N N G D S
241 ACCTATTATC CAGACAGTGT GAAGGGCCGA TTCACCATCT CCCGAGACAA TGCCAAGAAC
   TGGATAATAG GTCTGTCACA CTTCCCGGCT AAGTGGTAGA GGGCTCTGTT ACGGTTCTTG
58 T Y Y P D S V K G R F T I S R D N A K N
       CDR #2
301 ACCCTGTACC TGCAAATGAG CAGTCTGAAG TCTGAGGACA CAGCCATGTT TTACTGTGCA
   TGGGACATGG ACGTTTACTC GTCAGACTTC AGACTCCTGT GTCGGTACAA AATGACACGT
78 T L Y L Q M S S L K S E D T A M F Y C A
361 AGAGCCCTCA TTAGTTCGGC TACTTGGTTT GGTTACTGGG GCCAAGGGAC TCTGGTCACT
   TCTCGGGAGT AATCAAGCCG ATGAACCAAA CCAATGACCC CGGTTCCCTG AGACCAGTGA
98 R A L I S S A T W F G Y W G Q G T L V T
      . . . . . . . . . .
                 CDR #3
                      ApaI
421 GTCTCTGCAG CCTCCACCAA GGGCCCATCG GTCTTCCCCC TGGCACCCTC CTCCAAGAGC
   CAGAGACGTC GGAGGTGGTT CCCGGGTAGC CAGAAGGGGG ACCGTGGGAG GAGGTTCTCG
118 V S A A S T K G P S V F P L A P S S K S
481 ACCTCTGGGG GCACAGCGGC CCTGGGCTGC CTGGTCAAGG ACTACTTCCC CGAACCGGTG
   TGGAGACCCC CGTGTCGCCG GGACCCGACG GACCAGTTCC TGATGAAGGG GCTTGGCCAC
138 T S G G T A A L G C L V K D Y F P E P V
541 ACGGTGTCGT GGAACTCAGG CGCCCTGACC AGCGGCGTGC ACACCTTCCC GGCTGTCCTA
   TGCCACAGCA CCTTGAGTCC GCGGGACTGG TCGCCGCACG TGTGGAAGGG CCGACAGGAT
158 T V S W N S G A L T S G V H T F P A V L
601 CAGTCCTCAG GACTCTACTC CCTCAGCAGC GTGGTGACCG TGCCCTCCAG CAGCTTGGGC
   GTCAGGAGTC CTGAGATGAG GGAGTCGTCG CACCACTGGC ACGGGAGGTC GTCGAACCCG
178 Q S S G L Y S L S S V V T V P S S S L G
                         FIG. 20A
```

- 661 ACCCAGACCT ACATCTGCAA CGTGAATCAC AAGCCCAGCA ACACCAAGGT GGACAAGAAA TGGGGTCTGGA TGTAGACGTT GCACTTAGTG TTCGGGTCGT TGTGGTTCCA CCTGTTCTTT 198 T Q T Y I C N V N H K P S N T K V D K K
- 721 GTTGAGCCCA AATCTTGTGA CAAAACTCAC ACATGA CAACTCGGGT TTAGAACACT GTTTTGAGTG TGTACT
- 218 V E P K S C D K T H T O

FIG. 20B

Light Cl	nain Primers:	
MKLC-1,	22mer	
5 '	CAGTCCAACTGTTCAGGACGCC 3'	
MKLC-2,	22mer	
5 '	GTGCTGCTCATGCTGTAGGTGC 3'	
MKLC-3,	23mer	
5'	GAAGTTGATGTCTTGTGAGTGGC	3
Heavy Ch	nain Primers:	
IGG2AC-1	., 24mer	
5'	GCATCCTAGAGTCACCGAGGAGCC	3
IGG2AC-2	2, 22mer	
5 '	CACTGGCTCAGGGAAATAACCC 3'	
IGG2AC-3	, 22mer	
5'	GGAGAGCTGGGAAGGTGTGCAC 3'	
	FIG. 21	

Light chain forward primer

6G4.light.Nsi 36-MER

5' CCAATGCATACGCT GAC ATC GTG ATG ACC CAG ACC CC 3'
T T T T
A A

Light chain reverse primer

6G4.light.Mun 35-MER

5' AGA TGT CAA TTG CTC ACT GGA TGG TGG GAA GAT GG 3'

5' CTTGGTGGAGGCGGAGGACG 3'

Mutagenesis Primer for 6G425VL

DS/VF 38MER

5' GAAACGGGCTGTTGCTGCACCAACTGTATTCATCTTCC 3'

SYN.BstEII 31 MER

5' GTCACCGTCT CCTCCGCCTC CACCAAGGGC C 3'

SYN.Apa 22 MER

5' CTTGGTGGAGGCGGAGACG 3'

```
1 ATGAAGAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT TGCTACAAAT
   TACTTCTTCT TATAGCGTAA AGAAGAACGT AGATACAAGC AAAAAAGATA ACGATGTTTA
-23 M K K N I A F L L A S M F V F S I A T N
61 GCATACGCTG ATATCGTGAT GACACAGACA CCACTCTCCC TGCCTGTCAG TCTTGGAGAT
   CGTATGCGAC TATAGCACTA CTGTGTCTGT GGTGAGAGGG ACGGACAGTC AGAACCTCTA
 -3 A Y A D I V M T Q T P L S L P V S L G D
121 CAGGCCTCCA TCTCTTGCAG ATCTAGTCAG AGCCTTGTAC ACGGTATTGG AAACACCTAT
  GTCCGGAGGT AGAGAACGTC TAGATCAGTC TCGGAACATG TGCCATAACC TTTGTGGATA
18 Q A S I S C R S S O S L V H G I G N T Y
                         * * * *
                                  CDR #1
181 TTACATTGGT ACCTGCAGAA GCCAGGCCAG TCTCCAAAGC TCCTGATCTA CAAAGTTTCC
   AATGTAACCA TGGACGTCTT CGGTCCGGTC AGAGGTTTCG AGGACTAGAT GTTTCAAAGG
38 L H W Y L Q K P G Q S P K L L I Y <u>K V S</u>
                                                     * *
                                                    CDR #2
241 AACCGATTTT CTGGGGTCCC AGACAGGTTC AGTGGCAGTG GATCAGGGAC AGATTTCACA
   TTGGCTAAAA GACCCCAGGG TCTGTCCAAG TCACCGTCAC CTAGTCCCTG TCTAAAGTGT
58 N R F S G V P D R F S G S G T D F T
301 CTCAGGATCA GCAGAGTGGA GGCTGAGGAT CTGGGACTTT ATTTCTGCTC TCAAAGTACA
   GAGTCCTAGT CGTCTCACCT CCGACTCCTA GACCCTGAAA TAAAGACGAG AGTTTCATGT
78 L R I S R V E A E D L G L Y
                                           FCS QST
                                                  CDR #3
361 CATGTTCCGC TCACGTTCGG TGCTGGGACC AAGCTGGAGC TGAAACGGGC TGTTGCTGCA
   GTACAAGGCG AGTGCAAGCC ACGACCCTGG TTCGACCTCG ACTTTGCCCG ACAACGACGT
98 H V P L T F G A G T K L E L K R A V A A
421 CCAACTGTAT TCATCTTCCC ACCATCCAGT GAGCAATTGA AATCTGGAAC TGCCTCTGTT
   GGTTGACATA AGTAGAAGGG TGGTAGGTCA CTCGTTAACT TTAGACCTTG ACGGAGACAA
118 P T V F I F P P S S E Q L K S G T A S V
481 GTGTGCCTGC TGAATAACTT CTATCCCAGA GAGGCCAAAG TACAGTGGAA GGTGGATAAC
   CACACGGACG ACTTATTGAA GATAGGGTCT CTCCGGTTTC ATGTCACCTT CCACCTATTG
138 V C L L N N F Y P R E A K V Q W K V D N
541 GCCCTCCAAT CGGGTAACTC CCAGGAGAGT GTCACAGAGC AGGACAGCAA GGACAGCACC
   CGGGAGGTTA GCCCATTGAG GGTCCTCTCA CAGTGTCTCG TCCTGTCGTT CCTGTCGTGG
158 A L Q S G N S Q E S V T E Q D S K D S T
601 TACAGCCTCA GCAGCACCCT GACGCTGAGC AAAGCAGACT ACGAGAAACA CAAAGTCTAC
   ATGTCGGAGT CGTCGTGGGA CTGCGACTCG TTTCGTCTGA TGCTCTTTGT GTTTCAGATG
178 Y S L S S T L T L S K A D Y E K H K V Y
```

FIG. 27A

661 GCCTGCGAAG TCACCCATCA GGGCCTGAGC TCGCCCGTCA CAAAGAGCTT CAACAGGGGA CGGACGCTTC AGTGGGTAGT CCCGGACTCG AGCGGGCAGT GTTTCTCGAA GTTGTCCCCT 198 A C E V T H Q G L S S P V T K S F N R G

99

721 GAGTGTTAA CTCACAATT 218 E C O

```
1 ATGAAAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT TGCTACAAAC
   TACTTTTTCT TATAGCGTAA AGAAGAACGT AGATACAAGC AAAAAAGATA ACGATGTTTG
-23 M K K N I A F L L A S M F V P S I A T N
 61 GCGTACGCTG AGATTCAGCT GCAGCAGTCT GGACCTGAGC TGATGAAGCC TGGGGCTTCA
   CGCATGCGAC TCTAAGTCGA CGTCGTCAGA CCTGGACTCG ACTACTTCGG ACCCCGAAGT
 -3 A Y A E I Q L Q Q S G P E L M K P G A S
121 GTGAAGATAT CCTGCAAGGC TTCTGGTTAT TCATTCAGTA GCCACTACAT GCACTGGGTG
   CACTICIATA GGACGITCCG AAGACCAATA AGTAAGTCAT CGGTGATGTA CGTGACCCAC
 18 V K I S C K A S G Y S F S S H Y M H W V
                                      CDR #1
181 AAGCAGAGCC ATGGAAAGAG CCTTGAGTGG ATTGGCTACA TTGATCCTTC CAATGGTGAA
   TTCGTCTCGG TACCTTTCTC GGAACTCACC TAACCGATGT AACTAGGAAG GTTACCACTT
 38 K Q S H G K S L E W I G Y I D P S N G E
                                      * *
                                          . . .
                                                     * * *
                                            CDR #2
241 ACTACTTACA ACCAGAAATT CAAGGGCAAG GCCACATTGA CTGTAGACAC ATCTTCCAGC
   TGATGAATGT TGGTCTTTAA GTTCCCGTTC CGGTGTAACT GACATCTGTG TAGAAGGTCG
 58 T T Y N Q K F K G K A T L T V D T S S S
301 ACAGCCAACG TGCATCTCAG CAGCCTGACA TCTGATGACT CTGCAGTCTA TTTCTGTGCA
   TOTCGGTTGC ACGTAGAGTC GTCGGACTGT AGACTACTGA GACGTCAGAT AAAGACACGT
78 T A N V H L S S L T S D D S A V Y F C A
361 AGAGGGGACT ATAGATACAA CGGCGACTGG TTTTTCGATG TCTGGGGCGC AGGGACCACG
   TCTCCCCTGA TATCTATGTT GCCGCTGACC AAAAAGCTAC AGACCCCGCG TCCCTGGTGC
98 R G D Y R Y N G D W P P D V W G A G T T
                 CDR #3
421 GTCACCGTCT CCTCCGCCTC CACCAAGGGC CCATCGGTCT TCCCCCTGGC ACCCTCCTCC
   CAGTGGCAGA GGAGGCGGAG GTGGTTCCCG GGTAGCCAGA AGGGGGACCG TGGGAGGAGG
118 V T V S S A S T K G P S V F P L A P S S
481 AAGAGCACCT CTGGGGGCAC AGCGGCCCTG GGCTGCCTGG TCAAGGACTA CTTCCCCGAA
   TTCTCGTGGA GACCCCCGTG TCGCCGGGAC CCGACGGACC AGTTCCTGAT GAAGGGGCTT
138 K S T S G G T A A L G C L V K D Y F P E
541 CCGGTGACGG TGTCGTGGAA CTCAGGCGCC CTGACCAGCG GCGTGCACAC CTTCCCGGCT
   GGCCACTGCC ACAGCACCTT GAGTCCGCGG GACTGGTCGC CGCACGTGTG GAAGGGCCGA
158 P V T V S W N S G A L T S G V H T F P A
601 GTCCTACAGT CCTCAGGACT CTACTCCCTC AGCAGCGTGG TGACCGTGCC CTCCAGCAGC
   CAGGATGTCA GGAGTCCTGA GATGAGGGAG TCGTCGCACC ACTGGCACGG GAGGTCGTCG
178 V L Q S S G L Y S L S S V V T V P S S S
                         FIG. 28A
```

661 TIGGGCACCC AGACCTACAT CTGCAACGTG AATCACAAGC CCAGCAACAC CAAGGTGGAC AACCCGTGGG TCTGGATGTA GACGTTGCAC TTAGTGTTCG GGTCGTTGTG GTTCCACCTG $198\ L$ G T Q T Y I C N V N H K P S N T K V D

721 AAGAAAGTIG AGCCCAAATC TTGTGACAAA ACTCACACAT GA TICTITICAAC TCGGGTITAG AACACTGTTT TGAGTGTGTA CT 218 K K V E P K S C D K T H T O

Variable Light Chain Domain

Variable Heavy Chain Domain

		•					
•	10	20	30	40			
6G425	EIQLQOSGPELMKPGA	SVKISCKASG	YSFSSHYM	WVKQSHG	KSLEWI		
					# #		
F(ab)-1	EVQLVESGGGLVQPGG	SLRLSCAASG	YSFSSHYM	WVRQAPG	KGLEWV		
				1			
humIII	EVQLVESGGGLVQPGG	SLRLSCAASG	PSPTGHWM	WVRQAPG	KGLEWV		•
	•	=	***			•	
			++++	•			
•			H1				
•	50 a	70	80	abc	90	100	110
6G425	Gyidpsngettynokf	KGKATLTVDI	SSSTANVHI	LSSLTSDD	SAVYFCAA	RGDYRYNGDW	PFDVWGAGT
		98 998 8			# #		#
F(ab)-1	GYIDPSNGETTYNQKF	KGRPTISRDN	iskntly lqi	E NSLRAED	TAVYYCAA	RGDYRYNGDW	FFDVWGQGT
	* * * * # # ####						9 8
humIII	GMIHPSDSETRYADSV	KGRFTISRDN	iskntlylqi	MNSLRAED	TAVYYCAA	RGIYFY-GTT	YFDYWGQGT
	====					******	322
	+++++++++++	++				*****	++++
	199					#3	

FIG. 30A

IC50~12nM

FIG. 30B

IC50~15nM

FIG. 30C

IC50~22nM

Amino Acid Sequence of the humanized anti-IL-8 6G4.2.5V11 Light Chain

HVPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN **ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG** LHWYQQKPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCSQST MKKNIAFLLASMFVFSIATNAYADIQMTQSPSSLSASVGDRVTITCRSSQSLVHGIGNTY

Amino Acid Sequence of the humanized anti-IL-8 6G4.2.5V11 Heavy Chain

WVRQAPGKGLEWVGYIDPSNGETTYNQKFKGRFTLSRDNSKNTAYLQMNSLRAEDTAVYY CARGDYRYNGDWFFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK MKKNIAFLLASMFVFSIATNAYAEVQLVQSGGGLVQPGGSLRLSCAASGYSFSSHYMH VDKKVEPKSCDKTHT

Amino Acid Sequence of the peptide linker and M13 Phage Coat (gene-III)

SGGGSGSGDFDYEKMANANKGAMTENADENALQSDAKGKLDSVATDYGAAIDGFIGDVS GLANGNGATGDFAGSSNSQMAQVGDGDNSPLMNNFRQYLPSLPQSVECRPFVFSAGKPY **EFSIDCDKINLFRGVFAFLLYVATFMYVFSTFANILRNKES**

FIG. 31A

1	ATGA	AAA	AGA	ATAT	'CGC	ATT	TCT	TCT ^e	TGCA	TC	ТАТ	टापा	CG	והנהנהנ	איייייי	ጥልጥ	TGC	ጥልሮ	2444
				TATA															-
·-23	M F	C F	C N	I	A	F	L	L	A	S	M	F	V	F	s	I	A	T	N
61				ATAT															
•				TATA															
				I													V	_	D
121				TCAC															
18	R V		ľ	Т		R		S			L			G	I	G			Y
101	mm> -																:		
101				ATCA															
20				TAGT															
36	ם ה	l W	, X	Q	Q	Λ.	,	G	K	A	P	K	L	L	. 1	Y	K	V	5
241				CTGG															
	TTAG	CTA	AGA	GACC	TCA	GGG	AAG	AGC	GAAG	AG.	ACC'	TAG	GC	CAAG	ACC	CTG	CCT	AAA	GTGA
58	N R	F	S	G	V	P	s	R	F	s	G	s	G	S	G	T	D	F	T
301	CTGA	CCA	TCA	GCAG	TCT	GCA	GCC	AGA	AGAC	TT	CGC.	AAC	TT	ATTA	CTG	TTC	ACA	GAGʻ	ГАСТ
•				CGTC															
78	L T	, I	S	S	L	Q	P	E	Ď	F	A	T	Y	Y	С	S	Q	s	T
361	CATG	TCC	CGC	TCAC	ር ጥፕ'	rgg	ACA	GGG	TACC	AA	CU	GGA	GA	тсаа	ACG	AAC	יוניבעו	300	TGCA
•••				AGTG															
98	H V													K			V		
				_			_			-			_				•		•
421				TCAT															
				AGTA															ACAA
118	PS	V	F	I	F	P	P	S	D	E	Q	L	K	S	G	T	A	S	V
481				TGAA				_											
	CACA	CGG	ACG	ACTT	ATT	GAA	GAT	AGG	GTCT	CT	CCG	GTT	TC	ATGT	CAC	CTT	CCA	CCT.	ATTG
138	V C	L	L	N	N	F	Y	P	R	E	A	K	V	Q	W	K	V	D	N
541	GCCC	TCC	:AAT	CGGG	TAA	CTC	CCA	GGA	GAGT	GT	CAC	AGA	GC	AGGA	CAG	CAA	GGA	CAC	CACC
				GCCC															
158	A L						Q		5			E	Q		s	K	D	s	T
601				GCAG															
	ATGT	CGG	AGT	CGTC															
178	Y S	I	S	S	T	L	T	L	S	K	A	D	Y	E	K	Н	K	V	Y
661	GCCI	'GCG	SAAG	TCAC	CCA	TCA	GGG	ССТ	GAGC	TC	GCC	CGI	CA	CAAA	GAG	CTT	CAA	CAG	GGGA
	CGGA	CGC	TTC	AGTG	GGT	AGT	CCC	GGA	CTCG	AG	CGG	GCA	GT	GTTI	CTC	GAA	GTT	GTC	СССТ
198	A C	: E	E V	T	н	Q	G	L	S	s	P	V	T	K	s	F	N	R	G
721				CTGA															
				GACT	'AGG	AGA	TGC	GGC	CTGC	GT	AGC	ACC	:GG	GATC	CATG	CGT	TGA	TCA	GCAT
218	E C	: 0)					_			_	4 -							

FIG. 31B

Amino Acid Sequence of the humanized anti-IL-8 6G4.2.5V19 Light Chain

HVPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLINNFYPREAKVQWKVDN LHWYQQKPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCSQST **ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG** MKKNIAFLLASMFVFSIATNAYADIQMTQSPSSLSASVGDRVTITCRSSQSLVHGIGNTY

Amino Acid Sequence of the humanized anti-IL-8 6G4.2.5V19 Heavy Chain

wvkoapckclewvcyidpsncettynokfkcrftlsrdnskntaylomnslraedtavyy CARGDYRYNGDWFFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF PEPVTVSWNSGAL TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK MKKNIAFLLASMFVFSIATNAYAEVQLVESGGGLVQPGGSLRLSCAASGYSFSSHYMH VDKKVEPKSCDKTHT

FIG. 31C

F16.32

FIG. 34B

anti-IL-8 6G4.2.5V11N35A Light Chain Amino Acid Sequence of the humanized

LHWYQQKPGKAPKLLIYKVSNRFSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCSQST **ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG** MKKNIAFLLASMFVFSIATNAYADIQMTQSPSSLSASVGDRVTITCRSSQSLVHGIGATY HVPLTFGOGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN

Amino Acid Sequence of the humanized anti-IL-8 6G4.2.5V11N35A Heavy Chain

WVRQAPGKGLEWVGYIDPSNGETTYNQKFKGRFTLSRDNSKNTAYLQMNSLRAEDTAVYY CARGDYRYNGDWFFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYF PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK MKKNI AFLLASMFVFSI ATNAYAEVQLVQSGGGLVQPGGSLRLSCAASGYSFSSHYMH VDKKVEPKSCDKTHT Amino Acid Sequence of the putative Pepsin Cleavage Site and GCN4 Leucine Zipper

CPPCPAPE<u>LL</u>GGRMKQLEDKVEELLSKNYHLENEVARLKKLVGER

1	AT	GAA	AAA	GA	ATAT	יכפכ	ልጥጥ	TCT	тст	MCC V	TC	ጥልጥ	CTT.	rc	արդող	יאישי	ጥልጥ	TICC	ጥአሮ	8880
_	TA	CTT	TTT	CT	TATA	.GCG	TAA	AGA	AGA	ACGT	AG	ATA	CAA	GC	AAAA	LAAG	ATA	ACG	ATG	TTTG
-23					I.															
61					ATAT															
-3		TAT Y			TATA I										ACAG					
																				_
121	AG	GGT CCA	CAC GTG	CA GT	TCAC AGTG	CTG	CAG	GTC	AAG TTC	TCAA AGTT	AG TC	CTT Gaa	AGT. TCA	AC TG	ATGG	TAT: ata'	AGG TCC	TGC	TAC	GTAT
18		V			T	C	R_	s	S	0	s	Ţ.	v	H	G	Ţ	G	_A_	T	_X
181	тт	ACA	CTG	GТ	ATCA	ACA	GAA	ACC	AGG	AAAA	GC	ጥርር	CAA	A C	ጥልሮባ	ሃጋል ጥ	Turn B	CAA	ልርጥ	8 TCC
	AA	TGT	GAC	CA	TAGT	TGT	CTT	TGG	TCC	TTTT	CG	AGG	CTT	TG	ATGA	CTA	AAT	GTT	TCA:	TAGG
38	<u>.</u>	_Н	W	Y	Q	Q	, K	P,	G	K	A	P	K	L	L	I	Y	K	V	S
241	AA	TCG	ATT	СТ	CTGG	AGT	ccc	TTC	TCG	CTTC	TC	TGG.	ATC	CG	GTTC	TGG	GAC	GGA	TTT(CACT
	TT	AGC	TAA	GA	GACC	TCA	GGG	AAG	AGC	GAAG	AG.	ACC'	TAG	GC	CAAG	ACC	CTG	CCT	AAA	GTGA
58	N_	R	<u> </u>	<u>s</u>	G	V	P	S	R	F	S	G	s	G	s	G	T	D	F	T
301	CT	GAC	CAT	CA	GCAG	TCT	GCA	GCC	AGA	AGAC	TT	CGC.	AAC'	TT	ATTA	CTG	TTC	ACA	GAG'	PACT
70	GA	CTG	GTA +	GT	CGTC S	AGA	CGT	CGG	TCT	TCTG	AA	ece.	TTG.	AA	TAAT	GAC	AAG	TGT	CIC	ATGA
•																				
361	CA	TGT	CCC	GC	TCAC AGTG	GTT	TGG	ACA	GGG	TACC	AA	GGT	GGA	GA	TCAA	ACG.	AAC	TGT	GGC'	rgca
98					AGIG															
																			•	
421					TCAT AGTA															
118															S					
401		~~~		~~											•					
481	CA	CIG	CCT	CC	TGAA ACTT	ገ'AA' እጥጥ	CIT	CIA	TCC	CAGA CTCT	GA	GGC	CAA	AG TC	TACA	GTG	GAA	GGTY	GGA:	raac ammo
138					N										Q					
									•						_					
541	GC	CCT	CCA	AT	CGGG	TAA	CTC	CCA	GGA	GAGT	GT	CAC	AGA	GC	AGGA	CAG	CAA	GGA	CAG	CACC
150	N CG	GGA	GG.T.	TA	GCCC G	ATTY	GAG	GGT	CCT	CTCA	CA	GTG —	ICI(CG	TCCT	GTC	GTT	CCI		
																			_	_
601					GCAG															
					CGTC															
178	Y	5	L	S	S	T	L	T	L	Ş	K	A	D	Y	E	K	Н	X.	V	Y
661	GC	CTG	CGA	AG	TCAC	CCA	TCA	GGG	CCT	GAGC	TC	GCC	CGT	CA	CAAA	GAG	CTT	CAA	CAG	GGA
198					AGTG T															
721					CTGA															
218				ıc	GACT	AGG	AGA	TGC	GGC	CTGC	GT.	AGC.	ACC	GG	GATC	ATG	CGT	TGA	ICY(SCAT
9	_	-	-						_		_									

FIG. 36

EP 0 968 291 B1

781 -1					CTAG GATC						TA	CII	TT	CT		.GCG	taa	AGA	AGA.	ACGT
_															_		_		_	
841	TC	TAT ata	GTT Caa	92'	TTTT AAAA	TTC:	TAT ATA	TGCT	CACI COTE	AAAC MWG	GC(GTA Can	CGC	TG	AGGT	TCA	GCT CGA	AGTY	GCA(GTCT
-11	\$	M	F	V	P	s	I	A	T	N	A	Y	A	E	v	Q	L	v	Q.	S
901					TGGT															
8					ACCA V															
-																				
301	AG	can Baa	cac Gag	GA CT	GTCA CAGT	cta: Gati	rat A t a	CGT	SAC(3GTC CAG	GC	TCA AGT	GGC CCG	CC GG	CGGG	ጴልፓ ፖፒል	CCC	CCTY	GAA CCT	RTGG TACC
28																				
1021																				
A 0	CA	ACC C	TAT	TA	AACT	AGG	AAG	GTT	/CC	CTT	TG	ATG	CAT	TA	TAGT	TTT	CÃA	GTT	CCC	GCA
*0	٧	G	<u> </u>				_د_		_عر	<u></u>	<u> </u>	<u> </u>	X		_ο	_8_	<u>, , , , , , , , , , , , , , , , , , , </u>	_8_	<u> </u>	R
1081	TT	CAC	TTT	Ϋ́	CTCG	CGA	CAA	CTC	AA	AAAC	AC	AGC.	ata	CC	TGCA	GAT	GAA	CAG	CT	GCGT
60					GAGC R															
00	£	7.	ш	3	R	ע	14	3	K	14	T	A	Z	11	ñ	M	W	>	Ļ	ĸ
1161																				
					GACG															
88	A	ĸ	ע	Л.	A	V	¥	X	C	A	R	<u>G</u>	_0_	<u> </u>		<u></u>	M	. G_	_0_	_YAY
1201																				
					AGAC															
108	<u>k.</u>	F.	Ď		M	G	Ö	G	T	L	V	T	V	S	S	A	S	T	K	G
1261																				
					AGGG															
128	P	S	V	F	P	L	A	P	5	S	K	S	T	S	G	G	T	A	A	L
1321	GG	ctg	CCT	SG.	TCAA	GGA	CTA	CTT	ccc	CGAA	CC	GGT	GAC	GG	TGTC	GTG	gaa	CTC	AGG	CGCC
					agtt															
148	G	С	L	V	K	D	Y	P	B	E	P	V	Ţ	V	S	M	n	S	G	A
1381																				
168					CGCA V															
700	_	4	3	G	٧	n	۵	•	8	an.	٧	u	Ä	3	. 3	G	u	•	3	
1661				_	TGAC	-										-				
					ACTG												-			
188	S	\$	V	V	T	V	P	S	S	\$	L	G	T	ß	T	¥	I	С	M	V
1501				_	CCAG															
225				_	GGTC	-														
308	N	H	ĸ	₽	S	И	T	K	Ą	D	K	K	V	E	ß	K	\$	С	Ø	K
1561					GCCC															
228					CGGG	_														
	7	-•	•.	•	•	•	•								_	••		••	펀	-

FIG. 37A

1621 GAGGACAAGG TCGAAGAGCT ACTCTCCAAG AACTACCACC TAGAGAATGA AGTGGCAAGA
CTCCTGTTCC AGCTTCTCGA TGAGAGGTTC TTGATGGTGG ATCTCTTACT TCACCGTTCT
248 E D K V E E L L S K N Y H L E N E V A R

1681 CTCAAAAAGC TTGTCGGGGA GCGCTAA GAGTTTTTCG AACAGCCCCT CGCGATT 268 L K K L V G E R O

FIG. 37B

			I B d
_ 55	- 9 H88	46	alui ssti saci bgial/aspai bgial/aspai belikai bwyi qi qi cacc
tagi up632 up632 ufi srcca	orr (de r+) m-) .] mo) raga(rcag	·
pleI mboli taqi eari/ksp632i mboli hinfi GAAGA AGAGTCGAA	sau3al mbol/udeil(dam-) dpul(dam+) dpul[dam-) bcll(dam-) moli rgar caccracacc	abli ii ii ii ii ii ii ii	
pleI mboII taqI earI/ksp632I mboII hinfI AMAMAGAGA AGAGCGAAT TITITCTICI TCTCAGCTTA	sau3AI mboJ/udeII[dam dpul[dam+] acil dpul[dam-] nspBII bcll[dam-] ACCAACAGG GITGATIGAT CAGGIAGGG	EDII foki sfani TTGAAGCATC CTOGICAGTA AAGTTCGTAG GAGCAGTCAT	rmal maeil maeili CATTGAT
AAAA	. CANC	TTGA	TTTG PAAC
11 81 FGCCC ACGGG	acil nspbii CAGGG GTCGC	AGTTA	91 NYGEA FRCAT
alui hindili ddel tru91 bsrDi msel cac81 TCATTGCTGA GTNGTTATIT AAGCTHGCCC AGTAACGACT CAACAATAAA TTCGAACGGG	sau3AI mbol/deil[dam dpul[dam+] acil dpul[dam-] nspBII bcll[dam-] ACCAACAGG GTTGATTGAT CAGGTAGGG TGGTTGTCGT CAGCTACTCC	AAAGA	rmal mael trugi bfal msel maelli TTTTAARGEA TTTGTAAGEA
a. bis trugi msei eatt AA	ifoi UMATG	maeli maeli snabi 6i bsaal ol	TATT
GTIGT	hinpi hbai/cfoi gcgchaaatg ggcgttttac	thai fnuDi/mvni (4Hi PFI mae I bstdi snaB bshl236i hinPi bsaA hhai/cfoi GG GGGTAAGG	TGTTT NGAYE
ddel I SCTGA SGACT	TATG	thai faudi faudi bsori bbvi faudi bshiz bbvi himri lui hhai/c	II SCCTT
bsrDI ICATTG NGIAAO	TCGCAATATG AGCGTATAC	fau bac bbv fau481 bsoFI bbvI aluI Gacrec	LXI PM110: NTAGTC
		thai fuuDI/mvnI fuudHI bsoFI bbvI maelI bsoFI snaBI bsoFI bsh12361 bsmI hbal/cfoI gcaffccfG cGacaffaccf Aargaacffa TfGaacacfc CTCGACGACG CGCTAATGCA TTTCTFCAAT AACTACTACTACTACTACTACTACTACTACTACTACTACT	haeIII/pali mcri eagi/xmalii/ecixi eagi/xmalii/ecixi caei ul cfri ul bfizi ahdi/eamil05i tru9i bfai Bli maeili bsmal decretara Atarcaccit Tettitaret Tittaret Tittaret Carcacact Carcacacaca Acada Aca
BLBIII FEGGAIAAGG ABATACAGAC ATGAAAAATC AACCTAITCC FTTATGTCTG TACFTTFTAG	alui melii berDi AGCITIGGAG ATTANCGICA CTGCAARGCT TCGAAACCTC TAATAGCAGT GACGTTACGA	COCC	haeIII/palI cri agi/xmaiii/ aei fri ahdi i bsmAi G GCCGACTC
AGAC 7	melli prelii prch c	area c	hael mcri eagl/ eagl cfri belEl maelli GTCACG GC
AATAC	TTATO	cacel sfaul bemi cocearecca gcaffoctea GGGCTACGGT CGTAGGACT	ha mcs eac eac iui cac ili baj bili maelli GCTGTCATA AGTGTCACG CGACAGTATT TCAACAGTGC
AGG A	GAG A	cac81 GCCA G	HAPA ATT
KGGATA	aluI indIII AGCTFTG TCGAAAC	cac81 sfaN1 CCCATGCCA GGGCTACGG	TOTCA
			~4 D Ca
pfimi bsli Tctccatact Agaggtatga	bapMI hinPI hhal/cfoI mstI aviII/fspI rc cccccTA	al I AGGTA FCCAFF	PP
5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	binpi hinpi hhai/ msti aviii/ irc ccci	rsal Cefol m csp61 CCTA CG	
ecori pfini apol bsli gaattcaact tcrccatact cttaagttga agaggiatga	bspMI hisPI hhal/cfoI mstI avii/fspI hi chacterer cecadetaca	rsal hlopi hhal/cfol moli haeli cspél gegegetera Gerecettere	trugi pa Erugi pa Esel asi
ecoRI apol 1 GAATTO CTTAAG	bspMI hisPI hisPI hhal/cfoI mstI avii/fspI h 101 GAACTGROG CGCAGGTAGA CTTGACACA GGGTCCATCT	rsal hinpl hhal/cfol mall hasl/cspcl 201 GGGGGCTGTA CCCGGGGATAT CCCGGGGATAT	trugi msel 301 Kaaagitaar
	10	70	30

```
nlairi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      401 TOGINCOCG GGGNICCTCT CGAGGTTGAG GTGATTTTAT GAAAAGAAT ATCGCATTC TTCTTGCATT TTTTCTATTG CTACAAACGC
AGCCATGGGC CCCTAGGAGA GCTCCAACTC CACTAAAATA CTTTTCTTA TAGCGTAAG AAGAACGTAG ATACAAGCAA AAAAGATAAC GATGTTTGCG
-23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  beri avai alui maelli bepni datui temi temi sont thililaspi bari acti beteri hphi begi historesor thililaspi bani acti beteri hphi begi historesor thililaspi bani acti sectoresor congresor congresor congresor congresor congresor congresor congresor congresor song song the sectoresor congresor co
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  The penultimate nucleotide was changed fr G tor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ddeI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   sse8387I
bspMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           bspMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  scfi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 pstI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         sfani
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       hphī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Ilodm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              a mutation was found that inactivated the mluI site.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hgiAI/aspRI
ecl136II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  bsp1286
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bsiekaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          hgiJII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       bmyI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               8stI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Baci
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 hphi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MDLI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   bsmFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                sau3AI taqI
mbo1/ndeII(dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                alwI(dam-) mplI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            plaIV pacR7I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       kpal cauli dpall[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                 xhoI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          dpn1 (dam+)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bstYI/xhoII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              bamHI aval
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               bani bsaJi alwi[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             m li
                                                                                                                                                                                                                   xma I/pspAI
                                                                                  mspi
hpaii
dsav
BCLFI
                                              actr
                                                                                                                                                                                                                                                                                                  BCTFI
                                                                                                                                                                                                                                                                                                                                                                                                                                          CaulI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         beaJI
                                                                                                                                                                                                                                                                  gma I
                                                                                                                                                                                                                                                                                                                                                                                            dsav
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                aval
                                                                                                                                                                                                                                                                                                                                                    nctr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 asp718
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Csp6I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                acc651
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         plaIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hgici
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   rsai
```

	Control of the contro	
FI [dcm-] pleI hini Gadrecerr CCTCAGGGAA G V P S	real csp61 scal bl/ AGGTACTCA rCTCATGAGT S T B	GCAGTTGAAA CGTCAACTTT Q L K
5 	real cape scal Acactac	GCAGTT CGTCAJ 0 L
I bsu I/gsu p106 am-) TCTCT AGAGA	TACTGTTCAC ATGACAGTG Y C S 0	GATGA CTACT D E
tfii boni poni poni poni poni poni poni poni p	TACTG	CATCT GTAGA S
scrPI mval ecoRII daav daav bstl aluI clal/bspl06 bstl apyl[dcm+] ACACTGGTAT CAACAGAAAC TCCGAAACTA CTGATTTACA AAGTATCCA TCGATACTCT TGTGACCATA GTGTCTTG GTCCTTTCG AGGCTTTGAT GACTAAATGT TCATAGGTT AGCTAAGAGA B W Y Q Q K P G K A P K L L I Y K V S N R F S	mboli bpual bbsi CAGAAGACTTAT TACTGTTCAC AGAGTACTCA GTCTTCTGAA GCGTTGAATA ATGACAAGG CCCATGAATA	acii mboli Arcticccc Calcigatga Gcagitgaaa Tagaagggcg Gtagactact Cctcaactif I F P P S D E Q L K
AAGE	7 000 A 8 000 A	
SCIFI mval ecoRII daav batul aluI apyI(dcm+) CAACAGAAAC CAGGAAACTA CTGATTTACA GTTGTCTTTG GTCCTTTTCG AGGCTTTGAT GACTAAATGT Q Q K P G K A P K L L I Y K	mboli ppual bbsi cagaagactt greftegaa B D F	sau 3 AI mbol/ndeII[dam-] fnu4HI mbolI dpnI[dam+] bsoFI bpuAI dpnI[dam-] bbvI bbsI bbsI ccaccrcrag frectrance accaccaccacc accaccaccaccaccaccaccaccac
A CTGA F GACTU	P C C C C C C C C C C C C C C C C C C C	a TAGA
HAAACE STITGA	mspi hpair hpair bsall bsall aaulAi apol(dam+) dpol(dam+) alv[dam-) alv[dam-] alv[dam-] bsti/xhoir bamHi alv[dam-] bsmFi bsmHi alv[dam-] bsmFi bsmHi alv[dam-] bsmFi bsgi rccarccar rcrcacacca Artrcacter Gaccatcacac accasacca Agacctcacca Tanagraga Artrcacter Gaccatcacacacacacacacacacacacacacacacaca	[dam-] fnu4HI bsoFI bsoFI bbvI shace recencence rreac acceaeces
uI C TCCC G AGGC	0 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 29 × C
aluI alux+ shahage crttreg	PATCAG STAGTO	mbol/ndell[dam-] dpn[[dam+] dpnI[dam-] carc rrrccrrcc r
SCIPI mval ecorii daav batui a apyi(dcm+) c CAGGAAAA G GTCCTTT	T GACC	sau3Ai mbol/ndeli[dpol[dam+] dpol[dam-] GATC AACGA CTAG TTTGCT I K R
ACAGAAA KGTCTTT	mspl hpall bsll bsavl saulal abol(dam+) dpol(dam+) dpol(dam-) alvl(dam-) bstl/xholl bankl alvl(dam-) bsnFl alvl(dam-) bsnFl alvl(dam-) bsnFl alvl(dam-) bsnFl alvl(dam-) bsnFl alvl(dam-) bsnFl	sau mbo dpn dpn GGGAT
A GTTC	G ATT P P	H
bsri ACACTGGTAT TGTGACCATA B W Y	iam-] bsmFI rcccacc	Styl bsajl rail csp61 csp661 c
	II II I I dell[dam+] am-] holi GT TCTC CA AGA S C	
XCTATE XCATAN	mspl hpall bsall bsaulal aulal dam+] dpul[dam+] dpul[dam-] alvI[dam-] bstl/xholl batl/xholl batl/xholl cgarccgg TcTcGGG CCTAGGCCA AGACCT G S G S G 7	II TITGGA AACCT
C CTAC		
346G	CTCGCTTCTC GAGCGAAGAG R F S	styl bsaj rsai rsai csp6i blaiv kpii hgiCi bgiCi bgiCi bgiCi ccccCC cccCCCC cccCCCC cccCCCC cccCCCC cccCCC cccCCCC cccCCCCC cccCCCC cccCCCCC cccCCCC cccCCCCC cccCCCCC cccCCCC cccCCCCC cccCCCCCC
	1 CTC	
601	701	801

```
bell maeili apyi[dcm+]
CCTCCAATCG GGTAACTCCC
GGAGGTTAGC CCATTGAGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                haeIII/palI
             ecoRII
dsav
bstNI
                                                                                                                                                                                                                   cac81
mvaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mael
                                                                  bsaJI
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Legg
                                                                                                                                                                                                                             1001 AGGAGAGTGT CACAGAGCA GACAGCAAGG ACAGCACCTA CAGCACCAGÁ CGCTGAGCAA AGGAACAAA AAGTCTACGC
TCCTCTCACA GTGTCTCGTC CTGTCGTGCGTGT GTCGGAGTCG TCGTGGGACT GCGACTCGTT TCGTCTATGTGT TTCAGATGCG
166 E S V T E Q D S K D S T Y S L S S T L T L S K A D Y E K H K V Y A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                196nes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1101 CTGCGAAGTC ACCCATCAGG GCCTGAGCTC GCCCGTCACA AAGAGCTTCA ACAGGGAGA GIGTTAAGCT GATCCTCTAC GCCGGACGCA TCGTGGCCCT GACGCTTCAG GAGGTAGTC CGGACTCGAG CGGCCTGCGT ACACCAGAA ACACCAGAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TICTCGAAGT IGICCCCTCT CACAATICGA CTAGGAGATG CGGCCTGCGT AGCACCGGGA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                aguI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             hpall sfaNI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                hgaI
                                                                                                                                 a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             dpnII(dam- | mspl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mpol/adeII[dam-]
                                                               mali
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         alwI[dam-]
                                                                                amp700 cac81 amp700 mnl1 cmp61
901 TCTGGAACTG CTTCTGTTGT GTGCCTGCTG AATAACTTCT ATCCCAGAGA GGCCAAAGTA CAGTGGAAGG TGGATAACGC AGACCTTGAC GAAGACAACA CACGGACGAC TTATTGAAGA TAGGGTCTCT CCGGTTTCAT GTCACCTTCC ACCTATGCG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            alul dpnI(dam+)
                                                                                                                                 M
N
O
                                                                                                                                                                                                                                                                                                                                                                                                                                                           moli
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             sau3AI
                                                                                                                                                                               celli/espi
blpi/bpull021
                                                                                                                                 >
%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         tru9I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             nsel
                                                                                                                                                                                                              hgar dder
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 υ
                                                                rsal
                                               haeIII/palI
                                                                                                                                 PREAKV
                                                                                                                                                                foutBI
                                                               haei
                                                                                                                                                                                  DSOFI
                                                                                                                                                                                                                  mall bbvI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               N
L
                                                                                                                                                                                                ddeI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             aluI
                                                                                                                                                                                                                  scfI
                                                                                                                                 A & X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             maelil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E
A
                                                                                                                                                                                                                                                                                                                                                                        hgiJII
hgiAI/aspHI
                                                                  XmpI
                                                                                                                                                                                                                                                                                                                                                                                                        ec1136II
                                                                                                                                                                                                                                                                                                                                                                                                                         bsp1286
                                                                                                                                                                                                                                                                                                                                                                                                                                          DS1BKAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         eco01091/drail
                                                                                                                                                                                                                                                                                                                           aluI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               L
S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          haeIII/pall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Bau96I banII
                                                                                                                                                                                                                                                                                                                                                                                                                                                          bmyI
                                                                                                                                                                                                                                                                                                                                          Bati
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             asul ddel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            alwnI[dcm-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ဖ
ဇ
                                                                                                                                    >
>
s
                                                                                                                                                                                                                     maeIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            maeIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               >
                                                                                                                                  S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 U
```

```
1201 AGTACGCAAC TAGTCGTAAA AAGGGTATCT AGAGGTTGAG GTGATTTTAT GAAAAAGAAT ATCGCATTTC TTCTTGCATC TATGTTCGTT TTTTCTATTG FCATGCGTTG ATCAGCATTT TTCCCATAGA TCTCCAAGCA AAAGATAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      afilii ddei alui acagterg egingecerg egeneceae egeneceae egeneceae restretee reserancee saceranese eateraceae eateraceae eateraceae careceae eateraceae careceae eateraceae careceae eateraceae eatera
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GYS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     alvil[dcm-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     fautBI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              bsoFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A A O
                                                                                                                                                                       sfant
                                                                                                                                                                                                                                                                                              LAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        R L S
                                                                                                                                                                   Iloqu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  bsp1286
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           apyr (dcm+) bsaJI bmyl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       haeIII/pall apy1[dcm+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           dsav bstNI hglJII
                                                                                                                                                                                                                                                                                                                                                                                   BCIFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     U
                                                                                                                                                                                                                                                                                                                                                                                                                         nvaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  dsay
                                                                                                                                                                                                                                                                                       K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                fon # BI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              bstNI bsoFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       scrFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mval
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .
.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      xmaI/pspAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        hpaII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              cauII
                                                                                                                                                            xbal mull mull
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dsaV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ncil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Idsm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          bslI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ဗ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     a
rmal
                                                                       mael
                                                                                                             bfaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              mael
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    bfai
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A 0 V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       bsh12361
mluI csp61 mnlI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             bstWI/spli
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  fauDII/mvaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       rsaI
                                                                                                             bfaI
                                                                       mael
                           Imai
                                                                                                                                                         apel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  bstol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     z
H
                                                                                                                                                            cap6I
```

ecorii SCLFI

MVAI

cauli bell

BCTFI dsav

Smal ncil

		/palI	'draII
maeli bsaal TACGTATAAT ATGCATATA	GCCGTCTAIT CGGCAGAIAA A V Y Y	sau961 haeIII/palI sau961 nlaIV hgiJII bspl286 bspl201	I asul asul apai styl asul styl asul apai styl asul haelii/pali ecol091/drali rcGccrcca ccaacgccc agccGadGr GcTrcccGG S A S T K G P 25chim2.fab2 ^
bsaji dsav aval bstni bsaji bstni bsaji bsli bsaji bsli sau961 apyl[dcm+] mbol/ndell[dam-] haelil/pali asul dpnl[dam+] snaBi ecol091/draI haelil/pali alwi[dam-] hphi bsaAi TCAGGCCCG GGTAAGGCC TGGAATGGT TGGATAATAT GATCCTTCCA ATGGTGAAAC TACGTATAAT AGTCCGGGC CCATTCCCG ACCTTACCA ACGTGAAAATAAT Q A P G K G L E W V G I I D P S N G E T Y N	thal foudi/mvni scfi bacil/palf bstU1 sau961 bst12161 bsh12161 bspNi cac81 mnli asu1 AGGCCCGTT CACTITATCT CGCGACAACT CCAAAAACAC AGCATACCTG CAGATGAACA GCCTGCTGT TGAGGACACT GCCGTCTATT TCCCGCCAAA GTGAAATAGA GCGCTGTTTTTGTG TCGTATGGAC GTCTACTTGT CGGACGACG ACTCCTGTGA CGCCAAAAAAA G R F I L S R D N S R N T A Y L Q M N S L R A E D T A V Y Y	ì	H . 5 4 2 2
ball sau3AI mbol/ndell[dam-] dpnl[dam-] alw1[dam-] ATATT GATCCTTCCA IATAT CATCGAAGGT I D P S N	cac8I cac8I dccrccGrcc	maeiii bstEii	maell mall mall mall mall mall mall mall
mbol/u dpn11[r rccaratara	II II I CAGATGAACA G GCCTACTTGT	ma bet	mval mail ecorli bsaji dsav bseri bstvi espji bsaji hphi bsmBi olaiv apyi[dcm+] bsmRi G GAACCTGGT CACCGTCTC C CTTGGGACCA GTGGCAGAG G T L V T V S seq right is from p6
bsaJI dsaV avaI bstNI bsaJI bslII sau96I apyI[dcm+] nlaIV sau96I haelII/pall asuI ecoll09I/draII haeIII/palI TCAGGCCCG GGTAAGGGC TGGAATGGT AGTCCGGGC CCATTCCCGG ACCTTACCCA Q A P G K G L E W V	scfi psti bsgi bspNi c AGCATACCTG of G TCGTATGGAC G		maeli hibli/acyi ahali/bsaği qi aatli GACGTC TGGGGTCAAG CTGCAG ACCCCAGTTC D V W G Q G
beaji deav avai betni bsaji betni saugei apyi[dom+inlaty saugei asui accol091/drail asui eccol091/drail haeili/pali AGGCCCG GGTAAGGCC TGGAATY TCCGGGG CCATTCCCGG ACCTTA	DI T CCAAAAACA(B GGITITIGIC S R N T		maell hibli/acyl ahali/bsag tagi mboll aatli T CTTCGACGTC TGG IA GAAGCTGCAG ACC
	thal fouDII/mvoI bstUI bshl236I nruI T CGCGACAACT		maelli hphi bsri r rg Grgacyggry AC Cacygaccal G D W F
sau96I avali asul nlarv bsri rcrccccccccccccccccccccccccccccccccc	Palí CACTTATCI A GTGAATAGA T L S		r ccctacaate A ccctacaate R r N c
pleI hinfI sau96I tagI xhoI paeRI avaII avaI avaI avaI avaI avaI avaI a			mpli AG AGGGATTAT FC YCCCTAATA R G D Y
pleI hinfI taqI xhoI paeR7I avaI maeIII cTTCTCGAGT CAC GAAGAGCTCA GTG	1501 CAAAGTTCA GTTTTCAAGT 62 Q R F K		ACTGTGCAAG TGACACGTTC
1401	1501		1601

123

```
ddel aball acil apall/snol dsav eco811 hinfl ddel hphr bsp1286

ddel ahall/baaBl bspBli alw441/snol cauli scfi bsu361/mstIf/saul mnli bbvi bstEll bmyl bpm1/gsu1(dcm-)

1801 TCGTGGAACT CAGCCGCCCT GACCAGCGC GTGCACACCT TCCCGGCTGT CCTACAGTCT TCTCCCTCAG CAGCGGGGG GTGCTCCCT

AGCACCTTGA GTCCGCGGGA CTGGTCGTGGA AGGCCGGACA GGATGTCAGG AGTCCTGAGA TGAGGGAGTC GTCGCACCAC TGGCACGGA

162 S W N S G A L T S G V B T F P A V L Q S S G L Y S L S S V V T V P S
                                                                                                                                                                                 bsaWI tthllll/aspI
                                                                                                                                                                                                                                                                                                                                                                               molI
                                                                                                                                                                                                          GGGGGCACAG CGGCCTGGG CTGCCTGGTC AAGGACTACT TCCCCGAACC GGTGACGGTG CCCCCGTGTC GCGGGACCC GACGGACCAG TTCCTGATGA AGGGCTTGG CCACTGCCAC G G T A A L G C L V K D Y F P R P V T V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DABLI DABLI BABLI BABLI BABLI SCOLAGOCA AGCAACACA AGGTCGACAA GAAAGTIGAG CCCAAATCTT GTGACAAAAC CCCGTGGGTC TGGATGTAGA GATGTTCGG TGGTTGGG TGGTTGGG TGCTGGTGT CTTTCAACTC GGGTTTAGAA CACTGTTTTG G T Q T Y I C N V N R K P S N T K V D K K V E P K S C D K T
                                                                                                                                                                   cfr101/bsrFI
                                                                                                                                                                                              ball aget maerir
                                                                                                                        hphī
                                                                                                                                                                                                                                                                                                                                                                               maelll
                                                                                                                                      mspI
hpaii
                                                                                                                                                                                                                                                                                                                                                                 fou4BI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hgijii
bsp1286
bmyi
                                                                                                                                                                                                                                                                                                                                                                             bsofi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                hincii/hindii
                                                                                                                                                                               bsp1286 asul bsoFI:
bmyI nspBII bsaJI bbvI apyI[dcm+]
                                            ecoRII
SCLFI
MV&I
                                                                                                                                                                                                                                                                                                                                                                             pleI
                                                                                                                        bathI
                                                                                           econi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      tagi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 styl hincl
bsall acci
                                                                                                                                                                   acil apyI[dcm+]
                                                                                                                                                                                                                                                                                                                                                                 dder
                                                                                                                    haeIII/pall
                                                                                                                                                                                                                                                                                                                                                                             mp j I
                                                                                                                                                    DSII
                                                           ecoRII
                                                                                        bstNI
                                                                                                                                        for4HI
                                                                          dsav
                                            mvaI
                                                                                                         gau961 dsaV
                                                                                                                                                   bsoFI bsaJI
                                                                                                                                     foudBI
                                                                                                                                                                                                                                                                                                                                                hpall
                                                                                                                                                                                                                                                                                                                                   Idsm
                                                                                                                                                                                                                                                                                                                                                                             ncil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                bingr
                                                                                                                                                                                                                                                                                                    hgiai/aspHi
bsp1286
bsiHKAI
                                                                                                                                                                                                          DSIBEAI
DmyI moli
                                                                                                                                                                   bsp1286
                                                                                                                                                      hgial/aspHI
                                                                                                                                                                                                                                                                                                                                                                             bsoft bayr
                                                                                                                                                                                                                                                                                                                                                 cacel
                                                                                                                                                                                                                                                                                                                                                               foutBI
                                                                                                                                                                                                             CCCTGGCAC OCTOCTCCAA
GGGGACCGTG GGAGGGTT
                                                                                                                                                                                                                                             SS
                                                                                                                                                                               apyl(dcm+) mplf
bsaJI mplI
                                                                                                                                                                    bseRI
                                                                                                                                                                                                                                                                        hinPI
hhai/cfoi
nlaiv
                                                                                                                                                                                                                                                                                                                                                 hinli/acyi
                                                           nlaIV
hgiCI
babi
                                                                                                                                                                                                                                             PLAP
                                                                                                                                        ecorii
                                                                                                           SCIFI
                                                                                                                                                                    DBENI
                                                                                                                                                                                                                                                                                                                                                                             haeII
                                                                                                                                                                                                                                                                                                                                                                 hgici
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                bsp1286
                                                                                                                                                      dsav
                                                                                                                         MVAI
                                                                                                                                                                                                                                                                                                                      nari
                                                                                                                                                                                                                                                                                                                                    kasī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     hgici
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       plaIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   bani
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CCAGCAGCTT C
                                                                                                                                                                                                                1701 ATCGGTCTTC
                                                                                                                                                                                                                               TAGCCAGAAG
                                                                                                                                                                     Ebol1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   aluI
fnu4HI
bsofI
bbvI
                                                                                                                                                                                  bpuAI
bbsI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SSL
                                                                                                                                                                                                                                            ۵
ک
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 batxI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1901
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            196
```

	rmal maer bfar raccaccta rracracar r r r	TITITATE Arratar
	DOLI TMAI MDOII foutHI mae! earl/ksp6321 bsoFi blaii bfai tthlli/asp1 acil acil acil alui mbli taqi alui CAGCACCAGA ACTGCTGGGG GGCCGCATGA AACAGCTAGA GGACAGGTG GAGGGTAC TCTCCAAGAA CTACCACCAT STCGTGGTCT TGACGACCC CCGGCGTACT TTGTCGATCT CCTGTTCCAG CTTCTCGATG AGAGGTTCTT GATGGTGGAA A P E L L G G R M K Q L E D K V E E L L S K N Y B L	ddel blaili celli/espl rma! blpi/bpull021 mae1 bhal/cfol sau961 ple1 ceo47111 cac81 asul hinf1 chinfi hindili eco47111 cac81 asul hinf1 crciacte accrectes cetaccetes cetacetes accrecit accetes cetacetes accreticates accr
I des	mboli eari/ksp63ži i/aspi taqi alui GCC GAAGACCTAC T CCAG CTTCTCGATG A V E E L L	ACCTCGGT
	rmal mbo mae! eax bfa! tth!!!/asp! alu! mb!! taq! CAGCTAGA GGACAAGGTC GAA STCGATCT CCTGTTCCAG	rmai maei bfai bsmFi sau96i plei haeiii/pali asui hinfi GGCCCT AGAGTCCCTA
11 [/eclxi	rmal maei III bfai alui mi AACAGCTAGI TTGTCGATCI R Q L E	L DIII DIIOZI EN I BRUJ6 HI BAGII NG CGACGGCCC
fnu4EI bsoFI haeIII/palI mcrI eagI/xmaIII/eclXI eaeI cfrI bsiEI	notI fnu4BI bsorI nlaIII aciI aciI GC GGCGCATGA CC CCGCGTACT G G R M K	sphi ddel nlaili celli/espi blpi/bpull021 hinPl nspi hhai/cfoi haell nspHi eco47111 cac81 iAGC GCTAACCATG CG:
	AGA ACTGCTGG TCT TGACGACC E L L G body and leu	ui h diii e crt grossca saa cascccr
	bap1286 bmyi GTGCC CAGCACCI CACGG GTCGTGG' C P A P C P A P	plet alul hinfi hindili NGACT CAMANGCTT FUTGA GTTTTTCGAA
	cacel nlaili bepli nspi acii bmyi ACATGC CCGCCGTGC TCTACG GGCGCACG T C P C 1	pi hi nag tggcaagi ttc accettci v a r
	cac81 nlaIII nspI nspI sepI acil bmyI 2001 TCACACATGC CCGCCGTGCC CAGCACCAGA ACTGCTGGGG GGCCGCATG AGTGTAACG GGCGGACG GTCGTGGTT TGACGACCG CCGCCGTAC AGTGTTACG GGCGGACG GTCGTGGTT TGACGACCG CCGCGTAC AGTGTTACG GGCGGACG GTCGTGGTT TGACGACCG CCGCGTAC AGTGTTACG GGCGGACG GTCGTGGTT TGACGACCG CCGCGTAC AGTGTTACG GGCGCACG GTCGTGGTT TGACGACCG CCGCGTAC AGTGTTACACACACACACACACACACACACACACACACAC	2101 GAGAATG CTCTTAC

FIG. 41H

tru91
msel taq1 hindili
hpai nlaili clai/bsp106 tru91
hincil/hindii alui bspD1[dam-] msel msel bani
2201 GTTAACTCAT GTTGACAGC TTATCATCACATTA TGCGGTAGTT TATCACAGTT AAATTGCTAA CGCAGTCAG CACCGTGTAT GAAATCTAAC
CAATTGAGTA CAAACTGCG AATAGTAGCT ATTCGAAATT ACGCCATCAA TTTAACGATT GCGCCAGTCC GTGGCACATA CTTAAGATTG

```
haelii/pali
                                                                                                                                                                                                                                     foutBI
                                                                                                                                                                                                                                                  DSOFI
                                                                                                                                                                                                                                                                                          cfrI
                                                                                                                                                                                                                                                                              eaeI
                                                                                                                                                                                                                                                                                       2401 CCGACAGCAT CGCCAGTCAC TGCTAGCGTT ATAGGGTTG ATGCAATTC TATGCGTAC CGTTCTCGA GCACTGTCG ACCGTTTGG GCCTGTCGA ATACCGCAC ACGATAGCA TATGCGAAC TACGTTAAAG ATACGCGTG ATACCGCAC ACGATAGCGAA TATAGGCAAC TACGTTAAAA ATACGCGTGG GCAAGAGCCT CGTGACAGGC TGCGAAAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                           hhal/cfol foki bani maelli foki sofi
AATGCGCTCA TCGTCATCCT CGGCACCGTC ACCTGGATG CTGTAGGCAT AGGCTTGGTT ATGCCGGTAC TGCGGGGCCT CTTGCGGGAT ATGGTCCAFT
TTACGCGAGT AGCAGTAGGA GCCGTGGCAG TGGGACCTAC GACATCCGTA TCGGCCCATG AGGCCCGGA GAACGCCCTA TAGGAGTAA
                                                                                                                                                                                                                                                                acii
                                                                                                                                                                                                                                                                                                                                                                         mbol/ndeII[dam-]
dpol[dam+]
dphll[dam-]
                                                                                                                                                                                                                                                                           MCLI
                                                                                                  ecoRV
                                                                                                                                                                                                                                                hgiAl/aspHI
bspl286
bsiHKAI m
                                                                                                                                                                                                                                                                                                                                                                                                                                                bstYI/xhoII
                                                                                                                                                                                                                                                                                                                                                                                                                     alwI[dam-]
                                                                                                                                                                                                                                                                                                                                                Itam
haeIII/palI
                                                                                                                                                                                                                                                                                                                                                              gau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                 nlaIV
                                                                                   dsav bslI
                             SCIFI
                                                                      csp6I hpaII
                                                                                                 CauII
                                                        Ilam Iqem
           sau96I
                                                                                                                                                                                                                                                              hhal/cfol
msti bsli
                                           ncil
                                                                                               hpall
                                                                                                                                                                                                                                                  hinPI
                                                                                   nspl
                                                                                                                                                                                                                                                                                                                                                                                        mbol/ndell[dam-]
dpnl[dam+]
                                                      rsaI
                                                                                                                                                                                                                                                                                                                                                                                                                   dpnII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                              fauDII/mvnI
                                                                                                                                                                                                                                                                                                                                                                           sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                  thaI
                                                                                                                                                                           hinfi
hhai/cfoi
                                                                                                                                                                                                                                                             bsoFI eco47III
                                                                                               . hphi apyi[dcm+]
                                                                                                                                                                                                                                                  fou4BI haeII
                                           ecoRII
            SCIFI
                                                                      DBtNI
                            mvaľ
                                                          dsav
                                                                                   beaJI
                                                                                                                                                                                                           rmaľ
                                                                                                                                                                                                                                                                         bbvI bfaI
                                                                                                                                                                                                                        mael
                                                                                                                                                                                                                                     pheI
                                                                      plaIV
                                                                                   mall bgici
                                                                                                   bsaJI
                                                                                                                                                                                                                                                                               maeIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                 fou4BI
                                                                                                                                                                                                                                                                                                                                                                                                                                    acti
                                                                                                                               2301
```

126

hinPI	BOTH HAIPT H
hgiJII bap1286 bmyI banII sau3AI cac8I mboI/ndeII[dam-] dpuI[dam+] dpuI[dam-] cGATGGGGAAG ATCGGGCTCC CCA	hinpI hhal/cfol nlarv nari kasi hinli/acyl hagiCl haeli banI cccccarcr ccrrccaccc cccccarcr ccrrccacc cccccarcr ccrrccacc cccccarcr ccrrccacc cccccarcr ccrrccacc cccccarcr ccrrccacc cccccarcr ccrrccacc accaraccar
hinp! hhal/cfo! hhal/cfo! nar! kas! hinl!/acy! hac!! ban! shall/bsai! bacccccacarcacccccccccccccccccccccccccc	scrFI acii bali bali cauli bali cauli il bacili/pali bali basi li cfri bari li cfri bani li cfri bani li cfri bani ccccccarce cccccccrcc cccccccrcc ccccccarce ccccccarce ccccccarce ccccccarce ccccccarce ccccccarce ccccccarce ccccccarce cccccccrcc cccccccc cccccccc cccccc
cfor hinps half half half acyl nari kasi kasi hinli/ hgici basi crei acii cacsi creccicc creccicc c	scrFI acii asuje bsii cali daav bsii alaiv esuje baii asuje baii asuje baii cacgi bsii efri bsmr reccaece cerecce egen recologi/draii cacgi bsii efri bsmr reccrecce egeneceeeeeeeeeeeeeeeeeeeeeeeeeeeee
hinPl hhal/cfol hhal/cfol hal/cfol hasel hal/cfol hasel hasel ha	### STEPT Decil
	•

FIG. 41)

thai thai thai thai fuuDII/mwbi batuI nlaili acii mboli hailcici bbvi bhai/cfoi bsoFi basi haili bani hai/cfoi mali toccoccc ccarcacata corcecca caratacaa garcacaca caratacaa garcacacaca caratacaa garcacaca caratacaa garcacacaca caratacaa garcacacaa garcacacaca garatacaa garcacacaca garatacaa garcacaa garc	thal fnuDII/mvoI bstUI haelII/pall acil bshl2361 sau3AI sau961 hinPl mbol/ndeII[dam-] avaII avaII asu1 bpmI/gsuI[dcm-] dpnI[dam-) cac81 hinf! cac81 mnl1 maeIII bsmFI Accaccccrr rccrocacc ccaccarcarca rcccrocac ccaccarcarca ccacccarcarcarcarcarcarcarcarcarcarcarca	mcri eagi/xmalil/eclXi eagi/xmalil/eclXi eagi/xmalil/eclXi eagi/xmalil/eclXi eagi/xmalil/eclXi eagi/xmalil/eclXi eagi/xmalil/eclXi
mboli Wai TCTCTTTAT CATGCA AGAAGAATA GTACGT	11 -) acil cac81 GCTGCGGTA TTCC	mcri eagl/marill/eclXi eagl/marill/eclXi eagl hinPi cfri hhal/cfoI bsiEi thai fnu4Hi fnuDil/mvni Fi batUi bsoFi bsh1236i acii hgai I haeIII/paii GCGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
thai thai fauDII/mvbi batUI acii mboli bill bcgi fau4H bpuai hhip! corcacca crratgacta crictitat accccccc carctar carcaccac crictitat accccccc carctar carcaccac caractar	haeIII/pali sau3AI mbol/ndeII[dam-] dpnI[dam-] ca dpnI[dam-] ca	mcri eagl/xmalll/ eael hinp cfri hhal mspi bsiEi thal nael fnutHI fnuDi cfri01/bsrFi bstUI haelII/pali hpali bsoFi bshl2 ael cac8! acil hgal GCCCATTAT CGCCGCCATG CGCCGCCCCCCCCCCCCCC
I acii foutHi bsofi CTAT CGTCGCCGCA	thai fouDII/mvoi batUI haeIII, bahl336I sau3AI hinPI mboi/ndeII(hbai/cfoi dpoi[dam+) bpmi/gsul[dcm-] dpoii[dam-) crogacc cccaccarca rccccroc	haeIII/p haeI cacBI NGC AGCCATIN
acil thai fauDil/mvai batui alaili laPi bcgi hal/cfoi ccccc ccarcac	bpm TT TCGCTG	ie re gecana la cecre
acil thai fauDII/m batui bahi136i hiapi TGGCGGGGG	• •	maell psp14061 CANACGITIC
2901	3001	3101

FIG. 41K

thal screin bapwi foutHI foutDII/mvol mval bacor cace by the form of the cace	mali bsaji hgial/aspHi I bsp1286 HI bsiHKAI I bmyi I cacHI alaIII alaIII C CTCGGCGAC ACATGGAACG GGTTGCCAIG	haeIII/pall sau961 sau961 sau961 sau961 thaI thaI thaI thaI thaI thaI thaI thaI
bspMI scrFI mvaI ecoRII dsaV /PalI bstMI III apyI(dcm+) GCTG TCCAGGCAGG	mn bs bs acii fnu4Bi bsoFi bgi bgCG TTTATGCGG	haeIII/pali sau961 scrFI ncil mspl hpali dsav nlar asul taq iII cauII mnli rGGAG CCGGCCACC TCGI
thal fubli/mvni fubli/mvni fil bstul hael nasi sfani bshl2361 haelil/pali sfani bshl2361 haelil/pali sfani foki acii cacli naili sCATCCCATCC CCCCATCCA CCCATCCCCCCCCCCCC	sau96I avaII bsrI sau3AI sau3AI asuI mbol/ndeII[dam-] dpoI[dam-] dpoI[dam+] taq[[dam-] aciI dpoII[dam-] T CGATCACTGG ACCGCTGATC: GTCACGCGGA A GCTACTGG ACCGCTAG CAGTGCCGTA	thai fuuDII/mvni fuuDII/mvni fuuDII/mvni batui batui batui bahi236i bahi236i nlaimni acii hgai acii nlaiii cerecece Incorece Grecaresas
fou4HI bsoFI bsoFI mboII acil cac tfil mspI mslI sfaNI hinfI hpaII sfaNI foki 3201 CCCATTAFGA TTCTTCTCGC TTCCGCGGC ATCGGGATGC GGGTAATACT AAGAAGAGC AAGCCCGCC TAGCCCTACG	fnu4BI bsoFI acii thai thai fbuDII/mvni bstGI fbuDII/mvni bstGI avali avali avali bstGI avali bstGI avali bstGI avali bstGI avali bstGI acii dpnii dpnii(dam+) dpn	fnu4BI bsoPI hinPi hinPi hal/cfoI alalV aari kasi hinli/acyl hgiCI bari acil abali/bsaHI atil ahali/bsaHI CTAACATCCG CGGCGGATA TGGAACAGAC

hgal thal acii fuuDii/mvbi bstuli bshl236i ATATCCA TCGCGTCCGC	mspl hpall scrPl scrPl dsav sau961 iv cac81 ii mal cac0101/drall au11.bfal acil iGAGGACCG GCTAGGCTGG	ddel CTGAGCA ACAACAYGAA GACTCGT TGTTGTACTT
oi pfini pi bsii bsaji Accaa ccettggcag aacatateca Iggtt gggaaccgtc ttgtataggt	h indell(dam-) avall spHI asul ppuMI siHKAI mblI ca TC CTCCTGTCGT TG AC GAGGACAGCA AC	maeii Abacctcc Gac TTTGCAGACG CTG
hinpi hhal/cfol- msti pi avill/fspi bsmi GA ACTGTGAATG GGCAAACC	haeIII/pall haeI haeI haeI haeI haeI haeI haeI haeI	
r CCAATCAATT CTTGCGGA GGTTAGTTAA GAACGCCT	fnu4RI bsof1 bbvI GGGCAGGTT CCCGTCGCAA	hphi fubli/mybi L bstUi Eff bstUi TCACCGATAC GCGCGCGAA AGTGGCTATG CGCTCGCTA
hhal/cfol hhal film pflMI alalv acil bsml bsml bsml bsml bsml styl styl styl styl bsml caccactcca agantecca agantecc	fnu48I thai hinPI thai hinPI sPI fnuDI/mvnI bstUI cac8I hhai/cfoI cil bsh1236I aval m-] acil sfaNI SGCACGC GGGGAAGGG	hphi fnuDII/mvbI tfil bstUI bstI hif! bstUI 3701 CGGGGTTGCC TTACTGGTTA GCAGAGATA TCACCGATAC GCGAGCGAAC GTGAAGCGAC GCCCCAACGG AATGACCAAT CGTCTTACTT AGTGGCTATG CGCTCGCTTG CACTTCGCTG
hphi tfii hibii 3501 CTAACGGATT CA GATTGCCTAA GT	for backi backi bayi ac bpmI/gsul[dc 3601 CATCTCCAGC AGCC GTAGAGGTCG TCGC	3701 CGGGGTTGCC T GCCCCAACGG A

```
apol ball
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    psp14061 magIII bspBI naeIII apoI bs
Chacgttcca gtarccagc atcttcatca fcagtarcc gtatcgtag catcctct cattcatca gtatcattac ccccatgaac agalattccc
gtaccaaggt cattgaccca tacaagtagt agtcattaga catagcactc gtaggagaaa gcaaagtagc catagtaata gaggtacttg tetttaaggg
                                                                                                                                                                                                                        FGGFCTFGGG TITCCGFGFT TCGIAAAGIC TGGAAACGCG GAAGTCAGCG CCCFGCACCA TIATGTTCCG GAICTGCATC GCAGGAFGCT GCFGGCFAAC
Accagaagcc aaaggcacaa agcaftfcag accfffgcgc cttcagtcgc gggacgfggf aatacaaggc ctagacgtag cgtcctacga ogaccgatgg
                                                                                                                                                                                                                                                                                                                                                                                    CTGTGGAACA CCTACATCTG TATTAACGAA GCGCTGGCAT TGACCCTGAG TGATTTTTCT CTGGTCCCGC CGCATCCATA CCGCCAGTTG TTTACCCTCA
GACACCTTGT GGATGTAGAC ATAATTGCTT CGCGACCGTA ACTGGGACTC ACTAAAAAGA GACCAGGGCG GCGTAGGTAT GGCGGTCAAC AAATGGGAGT
                                                                                                                                                                                                                                                                                                                                                                        moll
                                                                                                                                                                                                             cacel
                                                                                                                                             fnutBI
                                                                                                                                                             bsofi
bbvi
                                                                                                                                                                                            BfaNI
                                                                                                                                                                                                           foki
                                                                                                                                                                                                                                                                                                                                                         barī
                                                                                                                                                                                                                                                                                                                                                                       acti
                mpol/ndeII[dam-]
                                                              dpnII[dam-]
bstYI/xhoII
                                                                                                                                            mroI bsaBI[dam-]
                                                                                                                                                                                            BfaNI
                               mam [dam-]
                                                 dpoI[dam+]
                                                                                              alvI (dam-)
                                                                                                                                                                                                                                                                                                                    stanı
                                                                                                                                                                                                         accIII[dam-]
                                                                                                                                                                                                                                                                                                         foki
sau3AI
                                                                                                                                                                          bspEI [dam-]
                                                                                                                                                                                                                                                                                                                                                      avall foutBI
                                                                                                                                                                                                                                                                                                                                        acil
                                                                                                                                                                                                                                                                                                                                                                       asul bsoFI
                                                                                                                            hpaII
                                                                                                                                                       DSPMII
                                                                                                                                                                                         bsaWI
                                                                                                                nepl
                                                                                                                                                                                                                                                                                         acti
                                                                                                                                                                                                                                                                                                     bsmFI
sau96I
                                                                                                                                                                                                                                                                                                                                       nlaIV
                                                                                                                                                                                                           malI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      m) I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   fokI
                                                                                                                                                                                             hha1/cfoI
                                                                                                                                          acil
thai
fuuDii/mvni hinPi
                                                                                                                                                                                                           haeII
                                                                                                                                                                                                                                                                                                                                                                      ddeI
                                                                                                                                                                                                           bsh1236I
                                                                                                                                                                                          bstul
                                                                                                                                                                                                                                                                                                                                       hha1/cfoI
                                                                                                                                                                                                                                                                                                       cac8I
hinPI
                                                                                                                                                                                                                                                                                                                                                                    eco47111
                                                                                                                                                                                                                                                                                                                                                       haell
                                                                                                                                                                                                                                                                                                                                                      tru9I
                                                                                                                                                                                                                                                                                                                                                                       nsel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   dsav plaili
                                                                                                                                                                                                                                                                                                                                                                                                                                       Ideu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hpall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CauII
                                                                                                                                                                                                                                                                                                                                                                                                                                                     SCLPI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Idem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      nclI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   bell
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      bari
                                                                                                                                                                             HOOT
                                                                                                                                                                                             bpuAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     maell
                                                                                                                                                                                                              ppar
                                                                                                                                                                                                                                    3801
                                                                                                                                                                                                                                                                                                                                                                                        3901
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4001
```

1-) 2AC 1TTG	hphi xcars	acti rec acc
bpmI/gsuI[dcm-] CTGGA GAAACTCA GACCT CTYTGAGFT	phi by Carcaco Ca Cracraco Cracraco Ca Cra	binFi bepali hhal/cfol gcccccrcac ccccrcrrcc ccccccacr ccccacaacc
bpmI/c TTCTGGA	thai fauDil/mvai batti inpi hai/cfoi hai/cfoi bahi236i hai236i hai236i hai236i hai236i hai236i hai236i hai236i hai236i thai thai thai thai batti acii batti acii	ninfi napbii hhai/cfoi GCGCGTCAG CG CGCGCAGTC GC
trugi msei NTAA OGC	HI thal I faudil/mv batui hine! hine! hhal/cfoi thal faudil/mvoi batui bah1336! CCTCCC CCGTTC KGAGCC CCCAAG	Che 660
CAGACAT GTCTGTA	fnuthi backi alui peuli naphil fuuthi backi backi ca GCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGCCCG1 TCGGGCA
CAGAAGC	alu alu pvul psyl bsogi bbyi acli bl rracocca G	drdi NGCAGACA NCGTCTGT
cac81 sau961 haeIII/pal1 asuI II aci1 GGCCGCTT TA)	alui TGAG CTI ACTC GAI SCIFI BOLI MPAII	fort desavil cauli GGATGCCG GGACCTACGCC CCT
cac81 sau961 hae111 sau1 laili aci	mali CA CGCTGATG GT GCGACTAC Br	acii A GCGGAT T CGCCTA
cac81 8au961 tru91 haelII/pall msell sau1 coffrence accatonal acil bell nlali acil acil meel bell bell bell acil acil bell bell bell bell bell bell bell be	acil hall thai batul hall thai batul thai batul thai batul thai thai thai thai thai thai thai thai	maelii acii cauli didi CGGTCACAGC TTGTCTGTAA GCGGATGCCG GGAGCAGACA AGCCCGTCAG GCCAGTGTCG AACAGACATT CGCCTACGGC CCTCGTCTGT TCGGGCAGTC
acii MAACC G	xmnI tfili hinfi asp700 asp700 CTTAGCG T	alul maeIII GTCACAGC T
A GGAAA	carc rereaded to the part of t	HA CGGTC
III Grccaaa Crggtt	CCACACACA CCTCTGI esp ban mapi hpali scrfi	BSP1 BSP1 BSP1 BSP1 ACACAGGGG CTCCCGGAGA TGTGTACGTC GAGGGCCTCT
sfani maeli gcarcaag tga	61 ki Archaca G TACTIGE C TACTIGE C FoutBI backi halili	nspi nspii alui ACATGCAG CI TGTACGTC GI
sfa mali SG AGGC	acii thai fnuDii/mvni bstui bshi336i iai foki cc cccracrr cc cccracrr bs	DSPI DSPET TG ACACAT
cac81 sau961 tru91 hae!!!/pal! mpli mae!!!/pali mpli acii bs!! nla!!! acii bs!! nla!!! acii 4101 CCTRCNGG AGGCRCCAAC GGAAAAAAAC GCCTTAACA TGCCCCCTT TATCAGAAGC CAGACATAA CCCTTCTGGA GAAACTCAAC GGAATTGT ACCGGCGAA ATACTCTTCG GTCTGTAATT GCGAAGACCT CTTTGAGTTG	### ### ##############################	DBPI CAULL BEBLIA MD1 DBPE ALUE DBPE ALUE DBPE ALUE DBPE ACTE CAULE ACTE ACTE ACCCCCCCCC ACCCCCCCCCC CCCCCCCCCC
4101	4201	4301

FIG. 410

		fou48I bsoFI bbvI	na. Tien	naell Ti			88	sfanı	;	hgiAI, bsp12(bs18K
4401	4401 CGGGTGTCGG GCCCACAGCC		tthiii tchiii TGACCCA ACTGGGT	iaal Pet Acctacceat Tccatcceta	bst acil acc Acccactct TCCCTCACA	batilo71 tru91 acci bari maei GT atactGCCTF AN	inuthi 191 bsofi 11 acii AACTATGCGG CJ TTGATACGCC GG	Adel batil071 tru91 bsoF1 rsaI acil acil acil mseI acil csp61 AGCGGAGTGT ATACTATGCGG CATCAGAGCA GATTGTACTG TCGCCTCACA TATGATACGCC GTAGTCTGGT CTAACAGAC		bmyl ndel apaLI/snoi alw44I/snoi AGAGTGCACC TCTCACGTGG
4501	acil acil sfani 4501 Airigcegte Tgaaaiacce Cacagaigce Tairigcegae acttiatege Gigiciacee	acii YGAAATACCG (ACTETATGGC (TAAGGAGAAA ATTCCTCTTT	sfani acii Ataccgcatc tatggcgtag		mboli earl/ksp632i sapl hinPl hhal/cfol haell acil mnli aggcgcrcrt cogcrtccrc	mboli earl/ksp632i hinpl sapl hhal/c hinpl hinpl fuu4Bl hhal/cfol pleI baoPl haeli acil mnli hinfl bbvI AGGCGCTCCTC GCTCACTGAC TGGCTGCGT TCCGCGAGGAG GGAGTGACTG AGCACGCGGA		foI mcri baiEi ccrecarcs
4601	fnutEI bsoFI acil fnutHI bsoFI bbvI cac@I ccacccccr	acti bersi c8i c6 cccaractccc	fnu4EI bsoFI acii fnu4EI bsoFI bsrEI bbvI cac8I GCTGCGGCGA GCGCTATCAG CGACCCGCT CGCCATAGTC GGTGGGGTTT	acii GGGGGTAATA CCGCCAFTAT	CGGTTATCCA	tfii hinfi Cagaatcagg ggataacgca GTCTTAGTCC CCTATTGCGT	GGATAACGCA CCTATTGCGT	elelli bepl tfil bibfl GGCGCTAATA CGGTAATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA TGTGAGCAAA CCGCCATTAT GCCAATAGGT GTCTTAGTCC CCTATTGCGT CCTTTCTTGT ACACTCGTT	III I II KGTGAGCAAA KGACTCGTTT	bsli cacsi haelli/pali haei AGGCCACCA
4701	scrFI mval ecoRII dsav bstNI bs apyI[dcm+] haeIII/palI haeI nlaIv I AAGGCCAGGA ACC	scrFi thai mval ecoRII bstU dsaV batNI bslI apyl[dcm+] haeIII/palI haeI nlaIV AAGGCCAGGA ACCGTAAAAA G	scrfi thai fnuDII/mvni ecoRI batui fnuDII/mvni batui batui batui batui daa' bah13361 hgai acii acii apyi[dcm+] fnu4BI acii hacii/pali baori cacBI nlaiv sfaNi taqi mnli hacicogga accedent regerescratar genegescrate cacecara accinata accinata acii sfaNi taqi mnli taqi mnli taqi taqi mnli taqi taqi mnli taqi taqi mnli taqi taqi mnli taqi taqi taqi mnli taqi taqi taqi taqi taqi mnli taqi taqi taqi taqi taqi taqi taqi taq	/mwbl cac81 il c crccccrrr	plaiv TCCATAGGCT AGGTATCCGA	acii V CCCCCCCT GCCGGGGGA	B fani Gacgagcatc Ctgctcgtag	fnuDII/mvbI 112361 acil hgai bsoFl cac81 acil acil hgai haeIII/pali nlaIV sfaNI taqi mnli gccGcGTTG CTGGCGTTT TCCATAGGCT CCGCGCGTG ACCTCCAGG GCCGCGTAG GCCGGGGGGG CTGCTCGTAG TGTTTTAGC TGCAGTTCA GTCTCCACCG	ai di AGGTCAAGT FGCGAGTTCA	meli Cagagorgo GTCTCCACCS

		Ħ	ifoi
acii ACCTGTCCGC TGGACAGGCG	hgial/aspBI bspi286 bsiBKAI bmyI apaLI/snoI alw441/sboI TGTGCACGAA	alwn!(dcm-) fnu4HI bsoFI bsoPI bsrI bsrI bsrI bsrI cccccccccccccccccccccccccccccccccccc	hinpi hhai/cfoi GTATCTGCGC CATAGACGOG
SCIFI ENVAI ECORII DA ECORII DA ECORII ECORII DE ECORIE	alui Agcressere Tecaecesae		bsli rmal haeti/pali mael hinp hinp hinp acil scfl haeti/pali mael haeti haeti hau
acil msp fnu4BI bsofi GACCCTGCCG C	ddel Arctcagtic ggigtaggic gficgefeca tagagtcaag ceacafocag caagogaggt	fnu4HI bsoFI nspBII mcri bbvI bsaWI sccience Crecectar Acceptate Acceptate Acceptant Acceptate Acceptat	rmaI maeI bfaI CACTAGAAGG
ofol GECCTGTTCC GAGGACAAGG	GGTGTAGGTC	mspI hpali scrPl ncil pleI dsaV hinfI cauli ATCGTCTTGA GTCCACCCG	bsli haeiii/pali haei rggrggccta actacggcta Accaccggat rgargccgat
ecorii hinpi apyi[dcm+] basSi bsaJi aluI mbli hhai/cfoi ccc rccaAccrc crcrccccr crc	ddel ATCTCAGTTC ATAGAGTCAAG	mspI hpaII scrFI nciI pleI dsaV hinfI cauII rGA GTCCAACCCG GI	bsli haeiii/pali haei rGGGGCCTA ACTA
ecorii apyi[dcm+] saji alui m CC rGGAAGCTCGG ACCTTCGAGG	scfI CGCTGTAGGT GGGACATCCA	Pi Bi Bi TACGECTEGA TAGGAGGAACI	A GTTCTTGAAG F CAAGAACTTC
mval ec ecoRII dsav dsav bstNI a bpstNI apy [dcm+] bsi	J alui TCATAGCTC3 AGTATCGAG3	maelli mspl bsawi n hpali r TCGGTAACT	II scfI Grgctacag: Caccatgroi
scrfi mval ecorii dsav bstni bstni Agaraccagi (d	hinPI hhal/cfol haeli alui 4901 CTTCCCCT TCGGGNGCG TGGCGCTTTC TCNTAGCTCA GAANGAGGA AGCCCTCGC ACCGCGAAAG AGTATCGAGT	fnu4BI bsoFI bsoFI nspBII acII hinFI mspI mcrI bbvI bsaWI bs1EI hhal/cfoI hpaII ccccccTTC AGCCCGACG CTGCGCGTA TCCGGTACT	mbli acii scfi Acaccaftag cagagcgagg tatgfaggcg gfgcfacaga Tgfccfaatc gfcfcgcfcc afacafccgc caccafgfcf
AGGACTATAA	TCGGGAAGCG	fnut bsor nspBII acii mcri bbvi bsiEi	mbli 5101 ACAGGATTAG CAGAGCGAGG TA TGTCCTAATC GTCTCGCTCC AT
GANACOCGAC	CTTTCTCCCT	COCCOGETIC	. ACAGGATTAG TGTCCTAATC
4801	4901	5001	5101

SCIFI

FIG. 410

```
DISIL
                                                                                                                                                                                                                                                                                                                        bspar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Maelil
                                                                                                                                                                                                                                                                                                           rcal
                                                                                                               5201 ICTGCTGAAG CCAGTTACCT TOGGAAAAAG AGTTGGTAGC TCTTGATCOG GCAAACAAAC CACCGCTGGT AGCGGTGGTT TTTTGTTTG CAAGCAGCAG
AGACGACTTC GGTCAATGGA AGCCTTTTC TCAACCATCG AGAACTAGGC CGTTGTTTG GTGGCGACCA TCGCCACCAA AAAAACAAAC GTTGGTCGTC
                                                                                                                                                                                                                                                                                                                                        5301 ATTACCOCCA GAAAAAAAGG ATCTCAAGAA GATCCTTTGA TCTTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAACTC ACGTTAAGGG ATTTTGGTCA
TAATGCGGGT CTTTTTTCC TAGAGTTCTT CTAGGAAACT AGAAAAGATG CCCCAGACTG CGAGTCACCT TGCTTTTGAG TGCAATTCCC TAAAAACAGT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5401 IGAGATTATC AAAAAGGATC TICACCIAGA ICCIITTAAA ITAAAAAIGA AGIITTAAAF CAATCIAAAG IAIAIGAG IAAACIIGGI CIGACAGIIA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 actctaatag titticctag aagtggaict aggaaaitt aattittact tcaaaattta gttagattic atatatacte attgaacca gactgicaat
                                                       fou4BI
                                                                        beofI
                                                                                        PPAI
                                                                                                          cacel
                                                                                                                                                                                                                                                                                          tru9I
                                                                                                                                                                                                                                                                                                        nsel
                                                                                                                                                                                                                                                                                                                           maell
                                                                                                        acti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    hinfi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    pleI
                                                                                     DSPBII
                                                                                                       acii
                                                                                                                                                                                                                                                                                                                       hgar ddel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ahaIII/draI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        tru9I
                                                 mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           nsel
                                                                                  dpnII[dam-]
                                                                 dpnI[dam+]
                                                                                                    alwi[dam-]
                                                                                                                                                                                        sau3AI mbol/ndeII[dam-]
               hpail
Idem
                               gau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 mbol/ndeII[dam-]
                                                                                                                                                                                                                            mboli[dam-] dpni[dam+]
[I[dam-] dpnii[dam-]
                                                                                                                                                                                                              mbol/ndell[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           nsel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ahaIII/draI
                                                                                                                                                                           sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                            mpol/ndell[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 dpnI[dam+]
                                                                                                                                                                                                                                                                                    dpnII (dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    tru91
                                                                                                                                                                                                                                                               dpnI[dam+]
                                                                                                                                                                                                                                                                                                       alvI[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     nsel
                                                                                                                                                                                                                                                                                                                       alwi[dam-] bstri/xhoii
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dpnI(dam+) dpnII(dam-)
dpnII(dam-) alwI(dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 dpnI[dam+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        bstYI/xhoII bstYI/xhoII
                                                                                                                                                                                                                                            mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                               sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         alwi[dam-] bfai
                                                                                                                                                                                                                                                                                     dpnII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     maeI
                                                                                                                                                                                                                                                                                                                                                                                                                                     rmaI
                                                                                                                                                                                                                                                                                                       batYl/xhoII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 mboII[dam-]
                                                                                                                                                                                                                                                                  dppI[dam+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                  hphi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               nlaIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               hgici
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    banI
                                                                               maeIII
                                                                                                 eco571 bsrI
                                                                                                                                                                                                                                                                                     fouDII/mvoI
                                                                                                                                                                                                                                            hha I/cfoI
                                                                                                                                                                                                                                                                                                                        bsh12361
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    tru91
                                                                                                                                                                                                                                                                                                        batul
                                                                                                                                                                                                                                                                 thaI
```

mspi hpali haelil/pali bgli saugei hinpi cac@l sau! hhal/cfol chalhancca gccagcogca agggccgagg	maell hinpl hhal/ofol tru9l matl psp14061 bsrl msel avill/fspl rAGTCCCCA GTTAATAGTT TGCCCAACGT	sau3AI mbol/ndeII[dam-] dpnI[dam+] dpnI[dam-] dpnI[dam-] dpnII[dam-] dpnII[dam-] shCGACTAC AFGATCCCCC 3TGCTAGT CCCTCAATG TACTAGGGGG	fnu4HI nlaIII bsofi msli bbvi Tatcactcat ggtatggca gcactgcata
bsmai bsai thai thai fnuDil/mvni mspi bstui hpaii bsh1336i cfr101/bsrFi acii hphi nlaiv ATACCGCGC ACCCACGCTC ACCGCTCCA GATTATATCAG TATTGGCCTC TGGGTGCGAGGT CTAAATAGGCTA	scrfi ncii mspi hpali rmai tru9i dsav maei cauli bfai foki asei/asni/vspi alui ccarccaGrc faftharaff toccoccan ctantacta ggraggtag Atharaca Acgeccette Garcterate arcaagcag Caatharaca	cac81 scfi scfi psti fuu4B1 bsoF1 bsoF1 bsrD1 bsg sfaNI maeIII tGTTGCCATT GCTGCTCGTC TTTGGTATGC CTCATTCAG CTCCGTTC CACGTTCA GCGCGAGTAC ACGACGGGGGGGGGG	sau3AI mbol/dell(dam-) dpol(dam+) ll dpoll(dam+) ll dpoll(dam-) ll pvul/bspCl bsoFl bslEl carl carl carl carl carl carl carl carl
bsri sau961 fnu4HI inlaly bsoPi hadil/pall bsrDi sau1 bbvi actiocat crecced fecterate at a consteers and consteers are consteered and consteer	sau961 avali mull bs asul acti foki 5701 GCAGAAGG TCCTGCAACT TTATCGGCGT CCATCG CGTCTTCACC AGGACGTTGA AATAGGCGGA GGTAGG	cac8I scfi psti fnu4BI bsoFI bbvI msli bsrDlbsgI sfaNI maeIII \$801 TGTTGCCATT GCTGCTGGC TGGTGTG ACGCT ACACGGTAA CGACGTCGT AGGCGT AGGCGTAAGGTAAG	mbli sau96I avali s901 argytgrgca aaaaagcggy fagctccyt c ggtocyt facaacacgy tyttrcgcca atcaagaag ccaggag

,	<pre>aau3AI mbol/ndeII{dam-} dpnI{dam+} dpnII{dam-} abtII/xhoII alwI{dam-} GGATC CCTAG</pre>		
r CGAGTTGCTC GCTCAACGAG	hinil/acyi ahall/bsaHi bhal/cfol hhal/cfol hpali hpali ppali acrfi bstol bstol cauli hincii/hindii recceece renacacee alaracee centrane crifenant centredece centrales correrate and interpreted coeffered co	beri belia heial/aspei eco571 sau3Ai taqi bep1286 mbol/odeli[dam-] beierai mboli[dam-] dpol[dam+] bmyl sau3Ai sfaNi dpol[dam+] alw[dam-] alw[dam-] alw4ai/snoi mbol/odeli[dam-] bstYl/xhoii maelli bssSi dpol[dam-] #GAGATCCAG FTCGATGTAA CCCACTGGTGACCAG ACTTTTACTT TCACCAGGGTAA GCNAAAACAG ACTCTAGGTC AAGCTACAT GGGTGAGCAC TAGAAATGAA AGACCCACT CGTTTTTGTC	acii fnu4BI bsopi TGCCGCAAAA AAGGGAATAA GGGCGACACG GAATGTTGA AIACTCAIAC TCTTCCTTT TCAAIATAT TGAAGCAIT ATCAGGGTTA ACGCCGTITT TCCCTIAIT CCCGCTGTGC CTTTACAACT TATGAGTAAG AGAAGGAAAA AGTTATAATA ACTTCGIAAA TAGTCCCAAT
mcrI bsiEI bcgI fnu4BI bcoFI acil ATGCGGCGAC CCAGTTGCTC TACGCCGCTG GCTCAACGAG	GGCGAAAACT	hph I TPCTGGGGA AAGACCCACT	89PI TCAATATTAT TGAAGCATTT ATCAGGGTTA AGTTATAATA ACTTCGTAAA TAGTCCCAAT
i Agaatagtgt Tcttatgaga	maell psp14061 11 7700 mboll NA CSTTCTEGG	hphi Tcaccaggst Agiggtogca	sspi TCAATATTAT AGTTATAATA
mcrI bsiEI bsiEI coll atrictitat reteared accattete cancere accepted accorded concrete accated accorded concrete accated accorded concrete accated accorded accated ac	PI I/cfol hgiAl/aspHI maeli mbol, dpn! II/mvni tru91 bsiHRAI psp14061 dpn! 13361 ahalil/draI asp700 mboli alwit crcacaracc accarance coccarance coccarance crcacacaracce coccarance crcacacacce and controlling and coccarance coccarance crcacacacacce coccarance co	beri belia heial/aspei ecos7i sau3al taqi bepi286 mboli[dam-] dpol[dam+] beiEKal mboli[dam-] dpol[dam+] bmyl sau3al sfaNi dpol[dam+] alwidal/snol mbol/ndell[dam-] alwi[dam-] alwidal/snol dpol[dam-] bstyl/xholi maelli bssSi dpol[dam+] hphl hphl fcacarccac fccacrccac caccaccc fcccaccc facacaccc facacacccc facacacccc facacacccc facacacccc facacacccc facacacccc facacacccc facacacccc facacaccccc facacaccccc facacacccccccc	mboli earl/ksp6321 GAAATGTTGA ATACTCATAC TCTTCCTTT CTTTACAACT TATGAGTATG AGAAGGAAAA
rsal scal csp61 AG TACTCAACCA TC ATGAGTTGGT	hgial/aspBI bsp1286 tru9I bsiBKAI mseI bmyI ahaIII/draI TTTAA AAGTGCTCAT CA	eco571 mboll[dam-] sau3Al sfaNl mbol/ndell[dam-] dpul[dam+] G ATCTTCAGCA ICI	A ATACTCATAC
rsal bsri scal maelii hphi csp6i GT GACTGGTGAG TAC	tru9I mseI ahaIII AGAACTITAA	hgial/aspHi bspl286 bsiHKAI bmyI apali/snol i alw441/snol o SI GTG CACCCAACT	S GAAATGTTG
NI BB CCTTTCTGT CGAAAAGACA	hinpl hhal/cfol thal funDII/mvnI bstUI bshl2361 cil ccc GCCACATAGG	hgial bsp12 bsi88 bmyI apali III bss2 A CCCACTCGTG	acil fnu481 bsofi rgccgcaaa Aaggaaraa GGGCGACCG Acgccoffff FTCCCTAAT CCCGCTGGC
foki I [.] CA TCCSTAAGAT G GT AGGCATTCTA C	hine hhal thai fuub bstq bshi II acii C ATAATACGC	bsri sau3Al taqi mbol/ndeii[dam-] dpni[dam+] dpni[dam-] alwi[dam-] stvi/xhoii maelii garccac frccargraa c	a aagggaata F etccetat
fo blaiii TGTCATGCCA	hgar hiall/acyr ahall/bsaBl mspl hpall scrPl ncil dsaV caull hiacll/hiadlr cccccc rchachccc cccccc rchachccc		
AİTCICTAC	hgaI hinil/acyI ahaII/bsaHI hini mspI hpaII bpaII scrPI crifI bstU dsaV cauII hincII/hindII aciI cauII hincII/hindII aciI aciI aciI	nspBII acii 6201 TTACCGCTGT AATGGCGACA	6301 GAAGGCAAAA CTTCCGTTTT
6001	6101	6201	630)

FIG. 41T

137

bspBI acil aball/acyl acil aball/bsaBI acil acil bsrBI bsrBI bsrBI bsrBI bsrBI bsrBI bsrBI bsrBI bsrBI bsrCCCATG ACCGCATACT TATTTGAATG TATTTAGAAA AATAAACAAA TAGGGGTTCC GCGCACATTT CCCCGAAAAG TGCCACCTGA CGTCTAAGAA AATAAACAAA TAGGGGTTCC GCGCACATTT CCCCGAAAAG TGCCACCTGA CGTCCTAAGAAA AATAAACATTT TAATTTGTTT ATCCCCAAGG CGCGTGTAAA GGGGCTTTTC ACGGTGGACT GCAGATTCTT maell fouDII/mvoI bstUI bsh1236I plairi rcal

binpr

thal

ICAL tru91 bpuAl bspBI msel bssSI bssSI bbsI bbsI carcatatta tcatgacatt aacctataaa aatagcogta tcacgaggc ctttcgtctt caa tcgtaataat agtactctaa ttggatattt ttatccgcat agtcctccg gaaagcagaa gtt eccol091/drall

Iloqu

DIAIII

sau96I haeIII/palI asuI ml

```
2628 2781 2784 2787 2906 2926 3005 3045 3094 3141 3226 3241 3309 3342 3367 3412 3436 3448 3490 3544 3597 3613 3619 3700 3838 3967 3970 3981 4139 4155 4210 4266 4351 4390 4400 4442 4467 4505 4518 4544 4561 4604 4611 4632 4723 4751 4878 4897 5018 5128 5263 5272 5634 5725 5916 5962 6083 6127 6204 6313 6412 6459
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2218 2233 2889 3292 4202 4259 4270 4319 4338 4619 4845 4935 4981 5238 5759 5859
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1119 1195 1425 1434 1446 1512 1695 1696 1752 2155 2375 2727 3002 3090 3339 3463
                                                                                                                                                                                                                                                                                                                                                                                                    ahdi/eamilo5i(GACNNNNGTC): 346 5566
alui(AGCT):
                                                                                                                                             178 542 805 877 1340 1750 1826 2011 2039 2043 2182 2242 2384 2492 2501 2504
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              412 413 712 713 1171 1471 2578 2579 3300 3870 5245 5319 5331 5416 5429 5893
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      640 999 1347 1357 1449 1665 1713 1755 1764 2333 3262 3645 4705 4826 4839
                                                                                                                                                                                                                                                                                                                                                   1645 1813 2616 2637 2751 3408 6107 6489
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1831 4494 4992 6238
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1831 4494 4992 6238
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 905 930 4234 6166
                                                                                                                                                                                                                                                                                                                                                                          5435 5454 6146
                                                                                                1093 1963 4449
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1117 1385 5089
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              see tthlllI
                                                                                                                          3867 [dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 391 4093
                                               1645 6489
                                                                                                                                                                                                                                                                                                     1307 4678
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  see hgiAI
                                                                                                                                                                                                                                                                            see hinli
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6196 6214
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             see aseI
                                                                     403 823
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               403 823
                                                                                                                                                                                                                                                                                                                           1788
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5922
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1695
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5742
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 alwni (dcm-) (CAGNNNCTG):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  asel/asnl/vspl(ATTAAT):
                                                                                                                                                                                                                                                                                                                                                         ahall/bsaHI(GRCGYC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         alw441/sbol(GTGCAC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     apali/snoi(GTGCAC):
                                                                                                                                                                                                                                                                                                                                                                                ahaiii/drai(TTTAAA)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ASP700 (GAANNNITTC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                alwI[dam-](GGATC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    apy1 (dcm+) (CCWGG):
                                                                        acc651 (GGTACC):
                                                                                                                        SCCIII (TCCGGA):
                                                                                                                                                                                                                                                                                                     aflii(ACRYGT):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             asp718(GGTACC):
                                               aatII(GACGTC):
                                                                                                    BCCI (GINKAC):
>length: 6563
                                                                                                                                                                                                                                                                                                                               ageI(ACCGGT):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             apaI(GGGCCC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  apol (RAATTY):
                                                                                                                                                   actI(CCGC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      asuI (GGNCC):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    aspar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 asoI
```

Stop Template Primer

5' CAT GGT ATA GGT TAA ACT TAT TTA CAC 3' SL.97.2

NNS Randomization Primer

5' CAT GGT ATA GGT NNS ACT TAT TTA CAC 3' SL.97.3

FIG 42

Randomization of Position N35 of Variable Light Chain CDR-1 Amino Acid Frequency

Phage Display (NNS Codon Library) Sort #3

Amino Acid	Frequency % Total	% Total	IC50 (nM)
Asparagine (wt)		9.6	4.9
Glycine	9	16.6	3.1
Aspartic Acid	8	16.6	3.1
Glutamic Acid	4	22.2	0.1
Alanine	7	5.6	0.2
Lysine		5.6	N N
Serine	1	1.9	ND

FIG. 43A

FIG. 43B-3

143

Representative Conc versus Time Plot. Shown is the kinetic data for 6G4V11N35A.F(ab')2.

Kd 114pM	109pM	54pM
ND Kd	2.1x10 ⁻⁴	2.6x10-4
ka ND	$2.0x10^6$	4.7×10°
SAMPLE 6G4V11N35A-Fab	6G4V11N35A-F(ab'),	6G4V11N35E-Fab

1	ATGAAAAAGA					
-23	M K K N		L L A		AAAAAAGATA F S I	ACGATGTTTG A T N
61	GCATACGCTG					
-3	A Y A D				ACAGGCGGAG S A S	
121	AGGGTCACCA					
18	R V T I				TACCATATCC G I G	
181	TTACACTGGT					
38	AATGTGACCA L_H W Y				ATGACTAAAT L I Y	
241	AATCGATTCT	CTGGAGTCCC	TTCTCGCTTC	TCTGGATCCG	GTTCTGGGAC	GGATTTCACT
58	N R F S		S R F	AGACCTAGGC S G S G	CAAGACCCTG S G T	D F T
301	CTGACCATCA					
78	L T I S				TAATGACAAG Y C <u>S</u>	
361	CATGTCCCGC				TCAAACGAAC AGTTTGCTTG	
98	H V P L					
421	CCATCTGTCT				AATCTGGAAC TTAGACCTTG	
118	P S V F					A S V
481	GTGTGCCTGC				TACAGTGGAA ATGTCACCTT	
138	V C L L					
541	GCCCTCCAAT				AGGACAGCAA TCCTGTCGTT	
158	A L Q S		- · · - · · ·			D S T
601	TACAGCCTCA ATGTCGGAGT				ACGAGAAACA TGCTCTTTGT	
178	Y S L S					
661	GCCTGCGAAG CGGACGCTTC				CAAAGAGCTT GTTTCTCGAA	
198	A C E V					N R G
721	GAGTGTTAAG CTCACAATTC				CTAGTACGCA GATCATGCGT.	
218	E C O				. ,	

FIG. 45

5'-CTAGTGCAGTCTGGCGGTGGCCTGGTGCAGCCAGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTACTCCTTC-3' N35AH1upr

5-TCGAGAGGAGTAGCCAGAAGCTGCACAGGACAAACGGAGTGAGCCCCCTGGCTGCACCAGGCCACGCCAGGCCAGGCTGCACT N35AH1lwr AG-3'

Bold indicates nucleotide change destroying Pvull site.

FIG. 47

```
> length: 8120 (circular)
>This has the pSVI backbone with the pRK7 cloning linker (pSVI7) and the intron DHFR(ID)
>made from pSVI.WTSD.D by adding a linearization linker(LL) into the Hpal site
> Wed May 7 18:27:36 1997
> /home/ruby/vc/lmmbio/efan/ss.p6G425v11.N35A.choSD
> sites: std
                                                                                                                                                                                                                                                 cacel
```

Tate		
BBtI		
Baci	seu3AI eluI	
hgtJII	mbol/ndell[dam-]	BCLFI
hglal/aspHI	. dpn1{dem+}	nval
ec1136II	pvuI/bspCI	ecoRII
bsp1286	pleI dpnII(dam-)	Vasb
bel HKAI	hinfi tagi[dam-]	bstni
bmyI	rmal mori pvull	apyI[dcm+]
DanII	mael beill naphli	Lasd
Agi	bfal taq1[dam-]	bamPl nlalv cac

taqi
1 TTCGAGCTCG CCGACATIG ATTATTGACT AGAGTCGATG GACGCTCTG GAATGTGTG CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGCAGGCA
AAGCTCGAGC GGGCTGTAAC TAATAACTGA TCTCAGCTAG CTGTCGACA CTTACACACA GTCAATCCCA GAGTCCGAGG GGTCCGAGG GGTCCGTAG

sfani	ppul01	nsil/avall1	nlalli	sphī	Idau	INDOU	Cac81
	•						Cac8I
SCLFI	nvaI	ecoRII	isav	batni	apyI (dcm+)	DeaJI	bemFI nlaIv
	BCFFI	E S S S S S S S S S S S S S S S S S S S	ecoRII	deav	batni	apyI[dcm+]	sexAI bsmFI nlaIV ca
							cac8I

101 GNAGTATGCA ANGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGGAAAG TCCCCAGGCT CCCCAGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATTA
CTTCATAGGT TTCGTACGTA GAGTTAATCA GTCGTTGGTC CACACGTTTC AGGGGTCGCA GGGGTCGTCC GTCTTCATAC GTTTCGTAGG TAGAGTTAAT

nlaIII

		GCTGACTAAT TTTTTTATT	CGACTGATTA AAAAAATAA
bell deal	actI beaJI	CCGCCCCATG	GGCGGGGTAC
acil	acil foki acil bari acil	GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG CCCCTAACTC CGCCCAGTTC CGCCCATTC CCGCCCCATG GCTGACTAAT TTTTTAAT	CAGTCGTTGG TATCAGGGCG GGGATTGAGG CGGGTAGGGC GGCGATTGAG GCGGGTAAGA GCGGGGTAC CGACTGATTA AAAAAATAA
Itop	bemFI	X ATAGICCCCC C	S TATCAGGGCG G
		GTCAGCAAC	CAGTCGTTG

201

FIG. 48A

haeIII/pali mori eagl/xmalii/eclxi esei ofri balki ippi pali	: t f	2 g
Pack Pack	hinfi binfi thal thal thal thal fundi/mynl macil bstul bstul bstul macil ccccchafc cccrccang acrecacta transcent acrecact ccatarget ccccchafc gcccctarc ccataccat carcactar arcacetar acrecact ccataract ccccchafc cccrccang acrecact transcent arcacetar acrecact ccataract ccccchafc gcccctarg donor blife donor	real cep61 cep61 cep61 cep700 ccaAccacat caagaactcaacacacacacacacacacacacacacacac
	fnu bac bby nepbb acii catty catty catty	
rmai maei atyi bsaji bsaji avrii(dam- haeii/pali atui haei mnli bfai rrcgaggcc faggcrri	anli Agaggara Agagg Tcrogcraf Tcrcc	taqi sfani bsmpi bsmpi aquidden trocactac cornantata decrease accepting to the cornantation of the cornantation of the cornaction of the c
mnli bseri G AGGAGGCTTT T	acii maeli rsai elii cspći scfi GACGTAA GTACCGCCTA I CTGCATT CATGGCGGAT A	bemai beai a agaacceaca T TCTTGCCTCT
rcc Agaagtagte	maeii maeiii aag agtgacgia trc icactgcat	NTG GGGATTGGC TAC CCCTAACCG
ii ddei i mpli alui haeili/pali SGCCTCT GAGCTAT	tfii hinfi 11 Dii/mvni 011/mvni 011 12361 GGATTCC CCGTGCC CCTAAGG GGCACGC	PÉLMI beli bempi Soforo Corabat Scroro Gotteta
fnu4HI beofi beofi beofi selii selii/pali mali mali haelii/pali beaji mali beaji acii ha GAGG CCGACCCG CTCG		efani crechrcg rese gaegrage ages
fnu4H1 beofi beli sfil sfil sfil hetii/ mnli mn heelii/pali be mnli beaji acii TATGCAGAG CGAGGCGC	BOLFI noti bbii hpali dsav cauli ccccarcc recatrcar	
301	401	501

FIG. 48B

drai		
tru91 mseI ehmII/dreI ACCTITAA FGGAAATT	r I Cttaftga Gaataact	pleI hinfi Gactett
tfii hinfi II tagi GAAT CG	tru91 mf111/bfr1 mmeel corram Gact	aei aei i ddei plei [dom+] hinf GCCACCT TAGACT
tf11 hinfl ddel mboll tagi C TGAGAGAAT CG G ACTCTTCTTA GC	tru9 aflii sfani maei gargccytra	haeili haei nvai betni apyi (dom+) c CaGCCAC
b+] CCTCCATTCC NGAGGTAAGG	for I Tagategat	BCCFI ECORII III dBaV DBIII b H hinfi B C ATGAATCAAC
ecoRII ecoRII mbolI tf11 bpt bstNI dcm+ hinfl hph sexAI ddel mbolI tag! eheli e01 CAAAGAATGA CCACAACCTC TTCAGTGGAA GGTAAACAGTA TATGGGTAGG AAAACCTGGT TCTCCATTCC TGAGAAGAAT CGACCATTAA GTTCTTACT GGTGTTGCT TAGACCACTA ATACCCATCC TTTTGGACA AGAGGTAAGG ACTCTTCTTA GCTGAAAATTA GCTGGAAATT	sati saci hgiJII hgiJII hgiJII acil36II bspl186 bsiHKAI bayI mnli alui bssl banII bssl banII bssl banII bssl banII tcTCCCACTAT TCTTCCCAA AAGTTTGGAT GATGCCTTATTGA	haeil/pali haei haei avai ecoRii daav tfii daav batNi nlaili batNi ddei plei apyi[dcm+] hinfi apyi[dcm+] hinfi ccAGGAAGCC ATGAATCAAC CAGGCCACCT TAGACTTTT GGTCCTTCGG TACTTAGTTG GTCCGTGGA ATCTGAAA
Tategetage	sati saci hgiJII hgiJII/aspHI ecll36II bsp1286 bsh1KAI bsh1 bsh1 bsh1 bseNI bsl1 bseNI ACCACCAGA GGAGCTCATT T	GTCTGTTTA
tfii hinfi hphi alwn[dcm-] caga atcrecrear	mnll best per	, acci plaiii TIGGCAAGTA AAGTAGACAF GETTTGGATA GFCGGAGGCA GTTCTGTTTA AACCGTCAT TTCATCTGTA CAGACGAGAT
tf11 hinf1 alwilfde GGTAAACAGA ATC	AACTCAAAGA TTGAGTTTCT	1.1. GGTTGGATA CCAACCTAT
eco571 mboli earl/ksp63,21 n11 crc trcagregaa Gag Aagreacet	tru9I msel asel/asnl/wspl AGGACAGAAT TAATATAGTT CTCAGTAGAG	ACCIAGTA AAGTAGACAT GGTTTGGATA
eco5 mboli earl/k mnli ccacaaccre tr	trugi msei asei/ashi/vspi AT TAATAGET	
Caargaatga Gittcitact	tru91 mse1 ase1/ssp1/vsp1 701 AGGACAGAT TANTATAGTT CTCAGTAGAGA TCCTGTCTTA ATTATATAGA	mspI hpsII bssMI ROI ACNACCGGAA FGTTGCCCTT
601	101	801

```
maeili alwiidam-) apoi meeili beli ddei gacacatit teeergaaat teattregeg aaatataaac etereerga ataceeagg geeereerg cactetrege cactetrect actaceteer taaacttica etergeaaaa aggetetta actaaacce ttaaatte gagagete cagagagagac
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           nsii/avaiii bsaji cac8i bstyi/xhoii bbvi asei/asni/vspi
1101 atccattiti ataagaccat gggacttitg ctggcttag atcccttag cttcgttaga acgcagctac aattaataca taaccttatg tatcatacac
Tacgtaaaaa tattctggta ccctgaaaac gaccgaaatc taggggaacc gaagcaatct tgcgtcgatg ttaattatgt attggaatac atagtatgtg
                                                                                                                                                                                                                                                                                                                                                                                                              alui mnli sfani mnli somanandec atcarcatata actiticadadang aangactaac aggagatge titcaagite tetectecee tectaaget
1001 aggiccagga ggaaaaagge atcarcatat teaaactica gaigetetie titetgatig fecticiaeg aaagiteaag agacgagggg aggaitega
tecaggicei cetititeeg tagticatat teaaactica gaigetetie titetgatig fecticiaeg aaagiteaag agacgagggg aggaitega
                                                                                                                        ecoNI
                ahall/bsaHI
                                                           mn 11
hinll/acyl
                                                                             BCORII
                                       BCLFI
                                                                                                                     bethi
                                                                                                 dsav
                                                           BVaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       tru91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               nseI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                196nes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        avall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               asul
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  aluI
fnu4HI
bsoFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SCLFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        nval
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            mbol/ndeII[dam-]
dpnI[dem+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      styl
bsøJI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dpnII(dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             alwI (dam-)
                                                                                                          maell
aflili
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 dsal bemfI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nlalII
                                                                                  mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ncol
                                                                                                                          dpn I I (dam-)
                                             nlalii
                                                                                                      dpnI (dam+)
                                                               6au3AI
                                                                                                                                                                                                                                                                                                                                                      apy1[dcm+]
                                                                                                                                                                                                                                                                              ecoRII
                                                                                                                                                                                                                                                                                                                             bethi
                                                                                                                                                                                                                               scrFI
                                                                                                                                                                                                                                                                                                   dsev
                                                                                                                                                                                                                                                   EVAI
                                                                                                                                                                                                                                                                                                                                                                               sau96I
                                                                                                                                                                                                                                                                                                                                                                                                     avall
```

```
fnudHI
                                                                                                                                                                                                                                                                                                               ecc01091/drall
                                                                                                betwi beofi
                                                                                                                bbvi
            aval macili
gecaggege teacteegt istected activise iacteette caastaria iales greeteas eccessia eggetigaa
eggeeece actaaggaa acagacac icaagace atsaggaas citaataai alacteac eaggeaste gegeeent eccesacti
                                                                                              ecoR11
                                                                                                                                                                                                                                                                deav
                                                                                                                                                                                                                                                 mva]
                                                                                                                                                                                                                                                                                ball
                                                                                 ecoRI I
                                                                                                                                                                                                                                                                                       apyI [dcm+)
                                                                  SCLF1
                                                                                                                                                                                                                                                                                                heelll/pall
                                                                                                                                                                                                                                                                                                        hacili/pali sau961
                                                                                          daav
                                                                                                                                                                                                                                                                                                                        ecool091/drall asul
                                                                                                                                                                                                                                                                         bstni
                                                                                                                                                                                                cauli
xmal/pspAl
                                                                                                                                                                           mspl
hpali
dsav
                                                                                                                                                            BCLFI
                                                                                                                                                                                                                                                                                                                asul ball
                                                                                                                                                                    ncil
                                                                                                                                                                                                                          BCLFI
                                                                                                                                                                                                                                                Ceuli
                                                                                                                                                                                                                                                                bsaJI
                                                                                                                                                                                                                  8me I
                                                                                                                                                                                                                                 ncli
                                                                                                                                                                                                                                         deav
                                                                                                                                                                                                                                                                                beaJI
                                                                                                                                                                                                                                                                         aval
                                                                                                                                                                                                                                                                                        Bau96I
                                                                                                                                                                                                                                                                                                nlaIV
                                                                                             rmel
meel
bfel
                                                                                                                                                                                                                                                                                                               nlaIV
                                                                                                                                                                                                                                                                                                        aBul
                                                                                                                                                                                                                                                                                       196nee
                                                                                                                                                                                                                                                                                                                        beri
                                                                                                                                                                                                                                                                                                BVall
       bethi
dsav
                                                                                                                                                                                                                                                                                 plel
                                                                                                                                                                                                                                                                                                               Pac R71
                                                                                                                                                                                                                                                                                                        xhoI
                                                                                                                                                                                                                                                                                        hinfi
                                                                                                                                                                                                                                                                                                 taqī
                                                                                                                                                                                                                                                                                                 alvni (dcm-)
                                                                                                                                                                                                                                                                                                        fnu4HI
                                                                                                                                                                                                                                                                                                                 DSOFI
                                                                                                                                                                                                                                                                                         alul
       maeIII
                                                                                                                                                                                                                                                 hgijii
bapi286
bayi
                                                                                                                                                                                                                                                                                mval banil
                                                           nlalII
                                                                          PLIMI
                                                                                                                                                                                                                                                                                          ecoRII
                                                                    atyI
                                                                                  ncol
                                                                                                                                                                                                                                                                         ecrF1
                                                                                           dsaI
                                                                                                                                                                                                                                                                                                          betNI
                                                                                                                                                                                                                                                                                                                  beall
                                                                                                                                                                                                                                                                                                   deev
```

```
bsaji maelii bseRi mnli bsaji asui bbsi apyi[dcm+] mnli bsiHKAi bsp1286 acii bsaji
nlaiv bstEli bsmAi haelii/pali ecool091/drali bsaji mnli bmyi mnli bmyi nspBli apyi[dcm+]
1701 TCAAGGAACC CYGGTCACG TCTCCTCGGC CTCCACCAACG GGCCAACGC TCTTCCCCCT GGACCCTCC TCCAAGAGC CACAGGGGC CACAGCGCC
AGTTCCTTGG GACCAGTGGC AGAGGAGCCG GAGGTGTTC CCGGGTAGC AGAAGGGGGA CCGTGGGAGG AGGTTCTCGT GGAGACCCC GTGTCCCCG
                                                                                                                                                                                                                                                                                                                                           ecorii
                                                                                                                                                                                                                                                                                                              BCrFI
                                                                                                                                                                                                                                                                                                                                                                             bethI
                                                                                                                                                                                                                                                                                                                                                             dsav
                                                                                                                                                                                                                                                                                                                            IOAE
                                                                                                                                                                                                                                                                                                                                                                                                                            haeIII/palI
                                                                                                                                                                                                                          1601 ACCTGCAGAT GAACAGCCTG CGTGCTGAGG ACACTGCCGT CTATTACTGT GCAAGAGGGG ATTATCGCTA CAATGGTGAC TGGTTCTTCG ACGTCTGGGG
TGGACGTCTA CTTGTCGGAC GCACGACTCC TGTGAGGGCA GATAATGACA CGTTCTCCCC TAATAGCGAT GTTACCACTG ACCAAGAAGC TGCAGACCCC
81 L O M N S L R A E D T A V Y Y C A R G D Y R Y N G D W F F D V W G
                                                                                     TATCTCGCGA CAACTCCAAA AACACAGCAT
                                                                                              CANGITICACE GCAAAGTGAA ATAGAGGGCT GTTGAGGTTT TTGTGTCGTA

F K G R F T L B R D N S K N T A Y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             bsoPI
                                                                                                                                                                            ahaII/bsaHI
                                                                                                                                                             hinli/acyi
                                                                                                                                                                                                                                                                                                                                                                                                           I96nes
                                                                                                                                                                                                                                                                                                                                                                                                                                                            fnu4HI
                                                                                                                                                                                          aatii
                                                                                                                                                                                                        tagi
                                                                                                                                                                                                                                                                                                                                                                                                                                             asul
                    fouDII/mvnI
                                                      bsh1236I
                                                                                                                                                                                         berl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D8p1286
                                                                                                                                                                                                          maelii
                                        batui
                                                                                                                                                                                                                                                                                                                                                                                                                                                            hgiAI/aspHI
                                                                        nruI
                                                                                                                                                                                                                         hohi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            bseRI
                                                                                  GTICAAGGGC CGTITCACIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S &
                                  haeIII/pall
Sau961
                                                                                                                                                                                                                                                                                                                                                           nlaIV
hgiCI
                                                                                                                                                                                                                                                                                                                                                                                                       BCIFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DBtNI
                                                                                                                                                                                                                                                                                                                                                                                                                                                         deav
                                                                  asul
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 4 4 5 6 5
                                                                                                                                                                                                                                                                                                                                                                                         bani
                                                                                                                                                                                                                      anli
                                                                                                                                                                                                                                                                                                                                                                                                                                          ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                         DpuAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       styl haeIII/pall
                                                                         1501 TGGTTGGAT ATATTGATCC TTCCAATGGT GAACTACGT ATAATCAAA
                                                                                          ACCCAACCIA TATAACIAGG AAGGTTACCA CTTTGATGCA TATTAGTTTT
W V G Y I D P 8 N G E T T Y N Q K
                                                                                                                                                                                                                                                                                                                                                                                                                                            II OQU
                                                                                                                                                                                                                                                                                                        Bau96I
                                                                                                                                                                                                                                                                                                                                                                         bep1286
                                                                                                                                                                                                                                                                                                                        196nes
                                                                                                                                                                                                                                                                                                                                                           hglJII
                                                                                                                                                                                                                                                                                                                                                                                                                                                        apaI
                                                                                                                                                                                                                                                                                                                                         nlaIV
                                                                                                                                                                                                                                                                                                                                                                                                          bmyI
                                              BuaBI
                                                                                                                                                                                                                                                                                                                                                                                       bsp1201
                                                              bsaAI
                                                                                                                                                                                                                                                                                                                                                                                                                         banlI
                                                                                                                                                                                                                                                                                                                                                                                                                                            apul
                                                                                                                                                                                                                  ddeI drdI
                                                              hphI
             mbol/ndell[dam-]
                                                                                                                                                                                                mnll
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            beaJI
                                                                                                                                                                                                                                                                                                                                                                                                                                                           Bull
                                            dpnII (dam-
                                                           alw! [dam-]
                           dpnI [dam+]
                                                                                                                                                                                                cacel
                                                                                                                                                                                                                                                                                                                                                                          esp31
                                                                                                                                                                                                                                                                                                                                                                                                         benBI
6au3AI
                                                                                                                                                                                                               cacei
                                                                                                                                                                                                                                                                                                                                                                                                                                                         betwi hphi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            apy1[dcm+]
                                                                                                                                                                                                                                                                                                                                                                                                                           ecorii
                                                                                                                                                                                                                                                                                                                                                                                         BCIFI
                                                                                                                                                                                                                                                                                                                                                                                                          mval
                                                                                                                                                                                                                                                                                                                                                                                                                                            deav
                                                                                                                                                                                          begI
                                                                                                                                                                           pati
                                                                                                                                                                                                               DBPHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            o
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            114
```

hglal/aapHI bap1286 baihkal cac0l mepl fnutHI mclI bsoFI nciI aciI apal/snoI caulI GCGCCTGCA CACCTTCCG CCTGTCTAC GCCCCACGT GTGCAAGGTG G V H T F P A V L Q	tfil hinfi magii Calttgcaac Gtgaattaca Agcccaccaa GTAGACGTG CACTTAGTG TCGCGTGTT I C N V N B K P S N	abdi/essilo51 asu961 avaII avaII avaII avaII avaII avaII avaII avaII by11 bspl286 bstNI nlsIV mboII bspl286 bstNI nlsIV mboII bspl286 bstNI nlsIV mboII bspl286 bstNI nlsIV mboII bspl286 bstNI cccccccccccccccccccccccccccccccccccc
hinpi nari kasi hinli/acyi hgici hacii bani chali/beali ddei hhai/qfoi nap GAACTCAGGC GCCCTGACCA CTTGAGTCCC CGGCACGT	nlarv hgici bani I bapi286 bmyi Trogoca occacacta Aaccost occacata	
meelii hphi mspl hpali cfrloi/bsrFi bsali agel tthlill/aspl cracrcccc GAACCGGTGA CGGTGTCGTG GATGAAGGG CTTGCCCCTG		hgiJII bsp1286 bsp1286 bsnII napli AG TTGAGCCCAA ATCTTGTGAC AAACTCACA CATGCCCACC TC AACTCGGGT TAGAACACT TTTTCAGTGT GTAGGGTGG V & P K & C D K T H T C P P
scrFI scoRII ecoRII ecoNI deav betNI bell spyl[dcm+] fnutRI beoFI beoFI booFI 1801 CFGGGCFGCC FGGTCCT GI 147 L G C L V K D	ddel plei fnu4Hi mnli hinfi baofi eco8li bali bbvi bsu361/mstII/saui ddei 1901 AGTCCTCAGG ACTCTATCC CTCAGGAGGG TCAGGAGTC TGAGATGAGG GAGTGGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCG	hgiJII bsaJI bsp1286 bsaJI bmyI msl msl 2001 CACCAAGGAAG TYGAGCCCAA GTGGTTCCAC CYGTYCTTC AACTCGGGTT 214 T K V D K K V E P K

```
bsof1
bbv1
                                                                                                     mboli ddel
bpuAl eco811
bbs1 bsu361/mst11/sau1
                                                                                                                                                                                                                                                                                                                                                                                                                              AGCCAAAGGG
TCGGTTTCCC
                                                                                                                                                Crccagrrca
B V K P
                                                                                                                                                                                                                                                                                                                      1CCTCACCGT
AGGAGTGGCA
                                                                                                                                       CGAAGACCCT GAGGTCAAGT
                                                                                                                                                                                                                                                                                                              mpli
                                                                                              moli
                                                                                                                                                                                                                                                                                                                                CACCAGTCGC
                                                                                                                                                                                                                                                                                                                        GTGGTCAGCG
                                                                                                                                                                                                                                                                                                                                                                                                                              CCATCTCCAA
                                                                                                                                                GCTTCTGGGA
E D P
                                                                                              drdi
                                                                                                                ospól tagí
GTACAAGTGC AAGGTCTCCA ACAAAGCCCT CCCAGCCCCC ATCGAGAAAA
CATGTTCACG TTCCAGAGGT TGTTTCGGGA GGGTCGGGG TAGCTCTTTT
                                                                                                                                                                                                                                                                                                                      GACAAAGCCG CGGGAGGAGC AGTACAACAG CACGTACCGT
CTGTTTCGGC GCCCTCCTCG TCATGTTGTC GTGCATGGCA
                                                                                                                                                                                                                                                                                       csp6I
maeII
                                                                                                                                                                                                                                                                                                                                            œ
                                                                                                                                                                                                                                                                                                                                          H
                                                                                                                                                                                                                                                                                                             Deal
                                                                                                                                                                                                                                                                                                                                          .
S
X
X
                                                                                                                                                                                                                                                                                                                                                                                                                                                  ۵.
ح
                                                                                                                                                                                                                                                                                                             aspél
                                                                                                                                                                                                                                                                                                    real
                                                                       nlaIII
                                                                                   nsp.I
nsp.HI
                                                                                                                                                                                   acil
thai
fnuDil/mvni
                                                                                                                                                                                                                                                                                                             bseri
                                                                                                                                                                                                                                                                                                                                           64)
64)
                                                                                                                                                                                                                                     Bacil/Satil
                                                                                                                                                                                                                                                                                                   mull
                                                                                                                                                                                                                  betüi
behl236I
                                                                                                                                                                                                                                                                                      acii
fnutHi
bsofi
                                                                                                                                                                                                                                                nepBII
                                                                                                                                                                                                                                                                    deal
                                                                                                                                                                                                                                                           kepi
                                                                                                                                                                                                                                                                                                                                          F
K
                                                                                                                                                                                                                                                                                                                                                                                                           bemAI
seu96I
nleiv
                                                                                mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                   >
×
                                                                        sau3AI avaII
                 nspi
hpali
scrfi
ncii
deav
                                                                                                   rcal dpn1[den+]
                                                                                             coull
                                                                                                                                                                                                                                                                                                                     2201 TCAACTGGIA CGTGGACGCC GTGGAGGTGC ATAATGCCAA
AGTTGACCAI GCACCTGCCG CACCTCCACG TATTACGGTT
281 N W Y V D G V E V B N A K
                                                                                             nlaiii
                                                                                                                                                                                                                                                                                                                                                                                                         econi betni beri
beli epyl[dcm+]
ccrccacca Gacregcica arggcaagga
Ggacgregro Crgacceact Taccerrot
                                                                                                                                                                                                                                                                                                                                                                                                                                                   يد
ن
                                                                                                                                                                                                                                                                                                             mnll
                                                                                                                                                                                                                                                                                                              berI beall
                                                                                                                                                                                                                                                                                                                                                                                       ecoRII
                                                                                                                                                                                                                                                                                                     csp6I
                                                                                                                                                                                                                                                                                           real
                                                                                                                                                                                                                                                                                                                                                                            Bval
                                                                                                                                                                                                                                                                                                                                                                                                 daav
                                                                                                                                                                                                                                                                                                                                                                                                                                                    J
                                                                                                                                                         247
                                                                                                                                                                                                                                                                                                                                                                                                                                 2301
```

```
pleI mnlI mnlI hisfI nlaIV mbolI scfI cac81 GAACAACTAC AAGACCACG CTCCCGGCT GGACTCCGAC GGCTCCTTCT TCCTCTACAG CTTGTTGATG TCTGGTGCG GAGGCCACGA CCTGAGGCTG CCGAGGAAGA AGGAGATGTC N N Y K T T P P V L D S D G S F F L Y S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          earl/ksp6321
Gaagagccrc
CTTCTCGGAG
                                                                                                                                                                                                                                       AAGATAGGGT
F Y P B
                                                                                                                                                                                                                                                                                                                                                                                                                                                Gapi
mboli mali
                                                                                                                                                                                                                           TTCTATCCCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A CHECKCHACE ACTACACISM.
                                                                                                                                                                                                                  2401 CAGCCCCGAG AACCAAGGT GTACACCTG CCCCCATCCC GGGAAGAGAT GACCAAGAAC CAGGTCAGCC TGACCTGCCT GGTCAAAGGC GTCGGGGTAGG CCCTTCTCTA CTGGTTCTTG GTCCAGTCGG ACTGGACGGA CCAGTTTCCG 347 Q P R R P Q V S L T C L V K G
                                                                                                                                                                                             apyI (den+)
                                                                                                                                                                              DetNI
                                                                                                                                                  ecoRII
                                                                                                                                                                                                          bapMI
                                                                                                                     BOLFI
                                                                                                                                                                 deav
                                                                                                                                                                                                                                                                                                                                                                                                                                                        baofi xmol bbai halli asti/avalli bapMi bbvi asp700 blalli sfaNi mbli GCAGGTGGCA GCAGGGAAC GTCTTCTCAT GCTCGGTGAT GCATCAGGT CGTCCTG CAGAAGAGTA CGAGGCACTA CGTACTCCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4
3
                                                                                                                                                                                                                                                                                                                                                                                                                              nlalii
ppuloi
                                                                                                                                                                                         apy I [dcm+]
                                                                                                                                               SCORII
                                                                                                                  SGLFI
                                                                                                                                                                            BBCNI
                                                                                                                                                               deav
                                                                                                                                  BVaI
                                                                                                                                                                                                         BexAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  × × ×
                                                                                                                                                                                                   bapli071/barGI ball aval ear1/ksp6321
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ball baaJI mbolI
                                                                                     xma I /pspAI
                                                                                                                                                                                                                                                                                                                                                                                                                  HOOLE
                                                                                                                                                                                                                                                                                                                                                                                                                              bpuAI
scrFI
nctI
mspI
hpsII
dssV
                                                                    Cauli
                                                                                                                                                                                                                                                                                                                                                                                                                                            Beell
                                                                                                  Smal
Scrfi
                                                                                                                                                         CAUII
                                                                                                                                             deav
                                                                                                                                ncil
                                                                                                                                                                                                                                                                                              hpall
foutbl
                                                                                                                                                                                                                                                                                                                                                  2501 GCGACATCGC CGTGGAGTGG GAGAGCAATG GGCAGCCGGA
CGCTGTAGCG GCACCTCACC CTCTCGTTAC CCGTCGGCCT
381 D I A V E W E 8 N G Q P E
                                                                                                                                                                        fokī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   z
                                                                                                                                                                                                                                                                                                                        bsofi
bbvi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                                                                                                                                            fnutHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0
2
2
                                                                                                                                                                                                                                                                                                                                       bardi
                                                                                                                                                                                      cepél
                                                                                                                                                                       real
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GITCGAGTGG CACCTGITCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CAAGCTCACC GTGGACAAGA
                                                                                                                                                                                                                                                                                                                                       mell bead!
                                                                                                                                                                                                                                                                                                            dseI
beli
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        alui beaJi
                                                                                                                                                                                                                                                                                                                                                                                                                                              Ieep
                                                                                                                                                                                                                                                                                                                                                                                                                                                           hphi
```

FIG. 481

	vi (den-)	
mae I I I Aatgettaca Ttaccaatg	nlaiii elwi(dem-) Atcatgtoto Tagtacagac	ACCATCTGTG
alui fnudki bsofi bbvi TGCAGCTTAT	aatgtatett Ttacatagaa	I acii gecganaga cccctttet
Peli Actestitat Tgaacaata	Caaactcatc Gtttgagtag	real cap61 nlalV kpn1 hgiCI asp718 mn11 acc651 ddel acili cc ArgGAAGACT CCGCC
acil haelii/pali fuutHi asul bsoFi nlaili fii styi el ncol ri dsai seIII/pali bgli bsaJi ccc ccarcccca Actr	GTGGTTTGTC CAAACTCATC AATGTATCTT CACCAAACAG GTTTGAGTAG TTACATAGAA	real cap6I nlaIV kpnI hgiCI bani asp718 mnlI acc65I ddeI aciI cTTGGTTAGG TACCTTCTGTG GAACCAATCC ATGGAAGAT ACCATCTGTG
find h find h find h bsoFI nlai sfil styl eas! dssi cfr! dssi aluf hasIII/pali hind III bgll bsoJI h Acctresces cears	rmal magic - magic - pami biai biai piai piai piai piai piai pia	mpli GNAGAGGAA CTTTCTCCTT
taqi plei mmai.sali ecfi mmai.hlodi/hlndii i.hlnfi psti l/pali bsgi bfal acci bspMI h ctAGAGTC GACCTGCAGA	bi TTTTCACTG AAAAAGTGAC	fnudHI hael baoFI styl bbvi ncol nPI daal haelII/palI al/cfol nlaIII pl beaJI mnlI GCAGCAC CATGGCCTGA ANTAGCTCT
taqi plei rmsi sali ect mael hindii/hin sau96i hinfi pet hesIII/pali beg asul bfal acci bspMI GG CCCTAGAGTC GACCTG	ataaagcatt Tatttcctaa	HI hael ncol deal haell/pali deal naelI/pali cor carccorca aar
BBI had AGTGCGACGG TCACGCTGCC	poi aatttcacaa ttaaagtgtt	fnu4HI hael baofi styl bbvi ncol hinpi dsai hae hhai/cfoi nlaili //vspl bsaji GGCGCAGCAC
### ### ##############################	rmal sections apoi best best best best best best best best	saulal mbol/ndell[dam-] dpol[dam-] dpol[dam-] pvul/bspCl mcri bslEl tagl[dam-] tru9l clal/bspl06[dam-] fn bspbl[dam-] msel bs dsulal xmnl bb dpol[dam+] asp700 hhal dpol[dam+] asel/asnl/vspl GATCGATCG GAATTAATTC GGCGC CTAGCTAGCC CTTAATTAGC CCGCG
taqi bacil haelil/pali boli fuu4Hi asul boli bacil malii bali caul bsml bash bash bash bash bash bash bash bash	sígni gpoi 1801 aataaagcaa fagcatcaca aatttcacaa ataaagcatt Ttatttcgtt atcgtagtgt ttaaagtgtt tatttcgtaa	bolidam+] dpn[dam+] dpn[dam+] dpn[dam-] pvur/bspcI mcri bslEI tag[[dam-] tru9] tag[[dam-] mseI bsoFI styl bspl[dam-] mseI bsoFI styl bspl[dam-] mseI bsoFI styl bspl[dam-] asp700 hhal/cfoI nlaII dpn[[dam-] aseI/asnI/vspI bssJI mnlI mnlI acc65I ddeI aciI dpn[[dam-] aseI/asnI/vspI bssJI mnlI mnlI acc65I ddeI aciI claCATCGC CTAATTAATTC GCCGCACCAC TTATTGGAGA CTTCTCCTT GAACCAATCC ATGGAAGACT CCCCTTTCT TGGTAGACAC
2701	2801	2901

							14	1									×								_	ä		
	sorFI	Bval	ecoRII	AssV	betNI	apyI [dcm+]	BEXAI	AAGCATGCAT CTCMTTAGT CAGCAACCAG GTGTGGAAAG	cacciticas sesteogres estestenta etteriacet ticsiaceta sastiaatea stestigete cacaccitie							acti	acil foki	CAGAMGIAIG CARACCAIGE AICHCANIIA GICAGCANCE AIAGIACCE COLIAACICE GOCCAIOCEG COCCIAACIC GICTICAIAC GIIICGIACG IAGAGIIAAI CAGICGIIGG TAICAGGGCG GGGATIGAGG CGGGTAGGGC GGGATIGAG			•				alul mall	I beeri	CCCCCCCAIG GCTGACTAAT ITITITATT TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC AGAAGAAGTG	GCCGGGGTAC CGACTGATTA AAAAAATAA ATACGTCTCC GGCTCCGGCG GAGCCGAGA CTCGATAAGG TCTTCATCAC
	_		0					r crcantiagt ca	a gagttaatca Gt			•					acti	s eggattened co	H	_			haelll/pall	noll ddel	JI mall	I haelii/pali	CTCGGCCTCT GA	S GAGCCGGAGA CT
INGIO	ppu10I	DB11/avall1	DISII	sphI	Idea	INdea	cacell.	PGCA AAGCATGCAT	acet trestacety							acti	beaFI	TIGG TATCAGGGCC	fnutHI	DeoPI	Ilpd	Ofil	heelli	Ilam Ilam	haelll/pall baall	mpli beals acts	BAGG CCGAGGCCGC	Tre Gerreege
							cacel	GCAGGCA GAAGTA	cercest effeat			111		-				AGTTAAT CAGTOG			•					-	TITIATI TATGCA	AAAATAA ATACGT
BOTFI	Bval	ecoRII	dsav	bathi	apyI (dcm+)	baali	nlaIV	GTGGNANGTC CCCAGGTCC CCAGCAGGCA GAAGTATGCA	GGGTCCGAGG GGT	efani	ppu101	neil/availl	nlaili	•phī		IHdeu	cac81	CAMAGCATEC ATC				11					GCTGACTAAT TTT	CCACTGATTA MAR
							Denfi							•								IIIala	etyl	ncol	bell deel			
								POT CAGTTAGGG	CITACACACA GICAATCOCA	Viela			=======================================		_	dcm+)	cac81	PCCCAGGCT CCCCAGCAGG AGGGGTCCGA GGGGTCGTCC								berl acil	3201 GGCCAGTTC CGCCCATTCT	GCGGGTCAAG GCGGGTAAGA
								3001 GAATGTGTGT CAGTTAGGGT	CITACAC	Ē	BOTFI	BVAI	GCORII	deav	betwi	apyI	Dead	3101 FCCCAGGCT CCCCAGCAGG AGGGTCCGA GGGGTCGTCC								berl	3201 CGCCCAG	GCGGGTC

FIG. 48K

scrfi ncii napi hpali dsav haelii/pali cegi/xmali/eclXi hafi	MaeIII/pali bfai cfri thai thai	### BELXI #### PAIN ###################################
rmal mael atyl baajl blui avrilidam-l mael avrilidam-l	HaeIII/Pali bfai cfri stul haei haei haei haei cacfi mspi cauli mnli mnli bfai alui hpaii 3101 AGGAGGCTT TITCGAGGC TAGGCTTTG CAAAAAGCTA GCTTATCGG CCGGGAACGG TGCATTGGAA TCCTCCGAA AAACCTCCGG ATCCGAAAAC GTTTTTCGAT CGATATGGCC GGCCCTTGCC ACGTAACCTT TCCTCCGAAA AAACCTCGG ATCCGAAAAAC GTTTTTTCGAT ACAATAGGCC GGCCCTTGCC ACGTAACCTT TCTCCGAAA AAACCTCGG ATCCGAAAAAC GTTTTTCGAT ACAATAGGCC GGCCCTTGCC ACGTAACCTT TCTCCGAAA AAACCTCGG ATCCGAAAAAC GTTTTTTTTTT	fnutHI becki acii sau961 etyi thali real pla! hacii/pali betui betui mesi cep61 acf1 hinf1 asu1 beau1 beh12361 ase1/asu1/vep1 GATGGGGAT ATCTCAGATA TCCGGTGG GGAACCGAAG CAATCTTGG CCGATGTTAA TTATGTATTA

FIG. 48L

Styl styl dsal bsall fokl bsall caccardeda Gregracer	I TCTGTGGGCG AGACACCCGC S V G D	alui h+} AAGCTCCGAA TTCGAGGCTT A P K
nlaili 6 pflhi ncol ecori d 1 apol b 1(dem-) b GATTGAATTC CAC	spHI I m macii ccrcrcccc sGACAGGGGG	scrfi mvai ecoRii dsav bstN alui apyi(dcm+) AAACCGGAA AAGCTCGAA TTTGGTCCTT TTCGAGGCTT K P G K A P K
nlaili etyi olai/bapl06 pflMi sfaNi ncol dsai fnu4Hi ecoRi dsai baori taqi apoi bali fok bbvi bapDi(dam-) baaji GGGCTGCATC GATTGAATTC CACCATGGGA		GTATCAACAG CATAGTTGTC Y Q Q
rmel bfal cacel fi alui alui ccatocat	H TA	bel ATTACACTG TAAATGTCAC L H W
mael thal nhel funDil/avni batul batul basi nrul acc recenteec a) ecorv agatatccag tctataggtc D I Q	
E BELL ENTER E E E E E E E E E E E E E E E E E E	·rsal bpml/gsul[dcm-] bsrl csp61 ACTGCAACTG GAGTACATTC TGAGGTTGAC CTCATGTAAG	real ddei alui csp61 hindiii nlaiii AAAGCTTAGT ACATGGTATA TTTCGAATCA TGTACCATAT S L V B G I
avali avali aval aval ecoRII dsay batNI apyl[dcm+] . CTCCCAGGTC CA	b Actgcaa Tgacgtt	
· ·	rmel maei bfel rctagtagca	PHI PHI PGETCAAGTC TCCAGTTCAG R S S Q
CCACTITITC ITTITCTCCA	foki Tcatccttt	ecfi peti begi meelli bepui beteli hphi bepui atagggtac Catchacyc ag Tarccang Gracyccag
3501 CCACTITITIC GGTGARARG	niaiii foki 3601 tggtcatgta tcatcctttt accagtacat agtaggaaaa	
3501	3601	3701

```
fnu4RI
bsoFI
bbvI
                                                                                                                                                                                                                                                                                                                                                                                                                                          haeIII/palI
                                                                                                                                                                                                                                                                                                                                    mbol/adell[dam-] fnu4HI
                                                                                                                                                      scfi
psti
bsgl
                                                                                                                                                                                                                                                                                                                                                    beof
                                                                                                                                                                                              3801 ACIACTGAIT FACAAAGTAT CCAATGGAIT CYCTGGAGTC CCTTCTCGCT TCTCTGGATC CGGTTCTGGG ACGGATTCA CTCTGACCAT CAGCAGTCTG
TGATGACTAA ATGTTTCAIA GGTTAGCTAA GAGACCTCAG GGAAGAGCGA AGAGACCTAG GCCAAGACCC TGCCTAAAGT GAGACTGGTA GTCGTCAGAC
                                                                                                                                                                                                                                                                                                                                                                                            CTAGITIGCI IGACACCGAC
I K R T V A A A
                                                                                                                                                                                                                                                                                                                                                               dpoll(dem-) bbvI
GATCAAACGA ACTGTGGCTG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CACCATOTGT CTTCATOTTC CGCCATCTG ATGAGGAGTT GAAATOTGGA ACTGCTTOTG TTGTGTGCCT GCTGATAAC TTCTATOCCA GAGGGCAA
GTGGTAGACA GAAGTAGAAG GGCGGTAGAC TACTCGTCAA CTTTAGACCT TGACGAAGAC AACACGGA CGACTTATTG AAGATAGGGT CTCTCCGGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                           haeĭ
                                                                                                                                                                                                                               œ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        moli
                                                                                                                                                                                                                                                                                                                                                   dpnI (dam+)
                                                                                                                                                                                                                                                                                                                       Bau3AI
                                                                                                                                                                                                                                                                                                                                                                          TIATTACTGT TCACAGAGTA CTCATGTCCC GCTCAGGTTT GGACAGGGTA CCAAGGTGGA
                                                                                                                                                                                                                                                                                                                                                                                          GEOGGETTIC TGAAGCGTTG AATAATGACA AGTGTCTCAT GAGTACAGGG CGAGTGCAAA CCTGTCCCAT GGTTCCACCT
Q P E D F A T Y Y C 8 Q 8 T H V P L T F G Q G T K V E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        asp700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                           XBD.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                                                                                                                                                                                                                                                                                                                    hgici
bani beaji
                                                                                                                                                                                                                                                                                                        kpnI styI
                                                                                                                                                                                                                                                                           cepéi
                                                                                                                                                                                                                                                                                                                                                  asp718
                                                                                                                                                                                                                                                                                                                                                                  acc651
                                                                                                                                                                                                                                                                                        DlaIV
                                                                                                                                                                                   bamFI
                                                                                                                                                                                                                                                            real
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        cacel
                                                                          mpol/ndell[dam:]
                                                                                                                                                                                                                               O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   U
                                                                                                                                                                                                                               တ
(၁
                                                                                                       dpnII (dam - )
                                                                                     dpn [ dam+]
                                                                                                                                                  batYI/xhoII
                                                                                                                       alwI [dam-]
                                                                                                                                                                                 alwi[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   >
mspi
hpali
bsli
                                           DBaWI
                                                           Bau3AI
                                                                                                                                      nlaIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TASV
                                                                                                                                                                   banki
                                                                                                                                                                                                                               ග
ප
                                                                                                                                                                                                                                                                                                                                                                  Bacil
                                                                                                                                                                                                                                ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      asp700
                                                                                                                                                                                                                                                                                                                      barBI
                                                                                                                                                                                                                                                                                                                                   acli
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Xmn
                                                                                                                                                                                                                                                                                                                                                                scal nlaili
                                                                                                                                                                                                                               œ,
                                                                                                                                                                                                                                                                                                                                                   bamPI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                  pbul/genI[dom-]
                                                                                                                                                                                                                               Ø
                                                                                                                                                                                                                                                                                                                                                   cap6I
                                                                                                                                   Demfi
                                                                                                                                                                                                             TGATGACTAA ATGTTTCATA GGTTAGCTAA GAGACCTCAG
L L I Y K V S N R F S G V
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CACCATCTGT CTTCATCTTC CCGCCATCTG ATGAGCAGTT
                                                                                                                                                                                 bapDI (dam-) hinfi
                                                                                                                                                               pleI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  02
                                                                                                                                                              clai/beplo6
                                                                                                                     tf11
hinf1
                                                                                                                                                   taqī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       mboll acil
                                                                                                                                                                                                                                                                                                                                                                              CAGCCAGNAG ACTTCGCAAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   <u>.</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                          mbo I I
                                                                                                                                                                                                                                                                                                                                                                                                                                                        bpuAI
bbsI
                                                                                                                                                                                                                                                                                                                                                    bpuAI
                                                                                                                                                                                                                                                                                                                                    IIOQ
                                                                                                                                                                                                                                                                                                                                                                Iøqq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ø
                                                                                                                                                                                                                                 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   118
                                                                                                                                                                                                                                                                                                                                                                                                            84
```

```
blpi/bpull021
hgbl
creaccing chall elwNf[dcm-] maell1 alul
creaccing chalcentl chall cach cach cach cach chall
creaccing chalcentl chalcent chalcent chalcent chalced catheren chalcent chalcent chalced chalcent 
                                                                                                                                                                                                                                                                             CAPOI ACTACACTGG AAGGTGGATA ACGCCTCCA ATCGGGTAAC TCCCAGGAGA GTGTCACAGA GCAGGACAGC AAGGACAGCA CCTACAGCCT CAGCAGCACC TCCACAGGT TAGCCCATTG AGGTCCTCT CACAGTCTC CGTCCTGTCG TTCCACAGT TAGCCCATTG AGGTCCTCT CACAGTCTCT CGTCCTGTCG TTCCTGTCGT GGATGTCGCA GTCGTCGTGG TTCTGTCT GAATGTCGCA GTCGTCGTGG TTCTTGT GAATGTCGCA GTCGTCGTGG TTCTTGT GAATGTCGCA GTCGTCCTGG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   mael cfri beaji bbvi maelii aacitgggggg ccatggggggg acttgffat atgggfaca ataaaggaa taggatgaca aattfcacaa ataaaggatt
ctctcacaat tcgaacggg ggtacggggt tgaacaaata aggtcgaata ttaccaatgt ttatttggft atggtagtgt ttaaagtgft tatttggtaa
                                                                                                                                                                                                                                                  foutHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           saci
hgijii
hgiai/asphi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ecl136II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ddel cacBI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DSP1286
DSIHKAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       heeIII/pall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Inte 196nus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                asul banil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    88tI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  bayı
                                                                                                                                                                                                                                                           apyl(dcm+)
scrfi
aval
ecolii
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  inle
fout BI
                                                                                                                                                                                                         bethi
                                                                                                                                                      deav
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DBOFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                haelll/pall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              196nee
                                                                                                                                                                                                                                                  mnli
bali
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Boul
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         bsofI nlaIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         hindili ball nool
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                deal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            sfil styl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         fnutHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                acil
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                tru91 eael
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                celli/espi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         M
```

FIG. 480

```
deal hacili/pall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        apy1 [dcm+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      bemi bfmi bfmi bfmi asp300 hhmi/ofoi mimilali masp300 hhmi/ofoi mimilali masp300 hhmi/ofoi mimilali dator categocida anamangidae categocida anamangidae cinadateae cacentange categocida anamangidae cinadateae cacentange categocida categocidae compandidae categocidae cate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    nell/avallI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               mbli mbli access ddes ecil nepbli nepbli bardtraggr Grachagr Cochagoric Cochagoric Cochagoric Cochagoric Cochagoric Cochagoric Transferic Grachagr Cochagoric Cochagoric Transferic Cochagoric Cochago
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Bfani
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               dpnI(dam+) xmu.
dpnII(dam-) asel/asnI/vspl bsaJl
hal/cfol nlallI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     betni
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    haeI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BCFFI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       deav
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     mval
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           bsaJI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             baofi styl
bbvi acol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BphI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               fuu4HI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ^sv40 origin
                                                              mbol/ndell[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               bspDI(dam-) tru9I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             nseI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           clai/bsp106[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            mbol/ndell(dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          dpn1(dam+) xmn1
                                                                                                                                                                                     dpnII[dam-]
                                                                                                                       dpnI (dam+)
                                                                                                                                                                                                                                              Pvul/bapci
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               apyI[dcm+]
                                                                                                                                                                                                                                                                                                                                                                                                                                             tagI[dam-]
Sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ecorii
                                                                                                                                                                                                                                                                                                                                                                               DB1EI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BCLFI
                                                                                                                                                                                                                                                                                                                      BCLI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BAU3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HVAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Betni
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        deav
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  pvuII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ecoRII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            BOLFI
EVAI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               betNI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 deav
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ddel acti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 mnll
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            asp718
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ppulOI
nell/avalII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  rsal
csp61
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nlaiv
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  kpn1
hgici
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   banI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              efani
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nlall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 aphī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ideu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     rmaï
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   nael
```

FIG. 48P

CTGACTAAT CGACTGATTA	maeIII alui Aaaaagere FTTTTCGAC	scrfi mval mval ecorii dsav bstul apyi (dcm+) bsaji ccrttrggg
nlalli styl ncol benel acil acil fokl acil berl acil acil benel coccocato gordanar	fnu4HI bsoFI bsoFI bsoFI bsoFI bsoFI bsoFI bsoFI bsoFI bsoFI mnli mnli ddel mnli mnli atul mbli bsoFI mnli bsoFI mcii haeIII/pali bsoFI mnli bsoFI mcii haeIII/pali bsoFI mnli bsoFI mcii haeIII/pali alui mbli haeI mnli bsoFI mcii haeIII/pali alui mbli haeI mnli bsoFI mciccocc croccocc cc croccocc croccoccocc cc croccoccoccoccoccoccoccoccoccoccoccoccoc	fnuthI hall/pall hinpI morI eagl/xmalII/eclXI thaI eagl/xmalII/eclXI thaI eagl/xmalII/eclXI thaI eagl/xmalII/eclXI thaI eagl cfil fnubII/mvil barbl bacfI hinpI bepHI tagl cfil hhal/cfol scfl xhol fnutHI tru9I cac@l tru9I patI paeR71 bacfI asci ahaIII/draI eagl paeR71 bacfI maeI bachI swaI see@3871 aluI barI mil acil acil maeI basHII swaI see@3871 aluI barI mil acil acil maeI backTTTACA CGCATTTACA CGCACACT GGGAAAACC AATGGACT GCCCCCAT TAATTCCCC CGCTAAATT AGACGTCCA TGTCGAACC GTACCGCCA GCAAAATGT GCACACTGA CCTTTTGGA AATGGACT GCCCCCAAATTT AGACGTCCA TTGTCGAAC GTACCGCCA GCAAAATGT GCACACTGA CCTTTTGGA AATGGACT GCCCCCCAAATTT AGACGTCCA TTGTCGAAC GTACCGCCA GCAAAATGT GCACACTGA CCTTTTGGA AATGGACT GCCCCCCAAATTT AGACGTCCA TTGTCGAAC GTACCGCCA GCAAAATGT GCACACTGA CCTTTTGGG AATGGACT GCCCCCCAAATTT AGACGTCCA TTGTCGAAC GTACCGCCA GCAAAATGT GCACCACTGA CCTTTTGGG AATGGACT GCCCCCAAATTT AGACGTCCA TTGTCGAACC GTCACACTGA CCTTTTTGGG AATGGACT GCCCCCAAATTT AGACGTCCA TTGTCGAAC GCAAAATGT GCACCACTGA CCTTTTGGG AATGGACT GCCCCCAAATTTAA TCATACTCAACTCA TGTCGAACCCCAAATGT GCACCACCACAATGT GCACCACTCA TGTCGAACTCA TGTCGAACTCA CGACACACTCA CCCTTTTTGGG AATGGACT GCCCCCAAATTTAAA TCATACACTTGA CCCTTTTACACTCA TGTCGAACTCA TGTCGAACTTA CCTTTTACACTCAAATGTT GCACCACCACAATTTACACTCAACTCA
acii bemfi acii foki acii beri acii 4701 atctcaatta gtcagcaacc atastcccgc ccctaactcc gcccatoccs ccctaactc cgcccagttc cgcccaftc tagagttaat castcsttgg tatcagggcg gggattgagg cgcgtagggc ggggattgag gcgggtcaag gcgggtaaga		haelli/pall eael ofri beri TGG CACTGGCCGT CGTT
acii foki CC GCCATCCG CCCTAA GG CGGTAGGG GGGATT	il alui abli Gagctaftoc agaagta CTCGATAAGG TCTTCATA	bspMI scfI pstI dral bsgI maeIII see83871 aluI recrecagGT AACAGCT AGGACGTCCA TTGTCGA
Bell berl Asteces cetaates reases seatteag	fnu4HI bsoFi bgli sfli haelII/pali mnli mnli ddel mnli bsoJi mnli alui mbli mnli bsoJi haeIII/pali bseRi AAAAAAAA ATACGTCTCC GGCTCCGGAG CTCCGTAAGG TCTTCCAAA	hinp! hhal/cfol hhal/cfol foullimvni batul hinp! cacil tru9! ps! asc! ahall/dra! tru9! bsh1236! mse! bssHII sva! asse! wryangGCC GCCATATANA TCCTCATATTCCCCC GCCANATTT AGGNC: inserted into Hpal site
 PTA GTCAGCAACC ATA LAT CAGTCGTFGG TATA	fnu4HI bsoFi bgli sfli stli haeIII/ mll be mnll beall ecii it tatgcagagg ccGaggcGC	fnu4HI heelII/pall mori eagl/xmalII/eclXI eagl/xmalII/eclXI eagl noti tagl ofri xhol fnu4HI tru9I of paeR71 batEI pagl aval baoFI mael tru9I mnll acil acil meel tru9I ACCTCCAG CGGCCGCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCTTA ATTAAGGTGGCCCCCCCCCC
4701 ATCTCAAT TAGAGTTA	4601 TITITTA Ararari	tag xhol xhol paeR aval mall 4901 TTACCTCG AATGGAGC

FIG. 48Q

	4	
) ACAGTTGCGT TGTCAACGCA	hlapi thai thubijavni batuj sefi bahlasi rsai hhai/efoi cspéi bali GT ACGCCCTC	mboli T chyccyrcc A gaagggaagg
sau341 mbol/ndell[dam-] sau961 dpn1[dam+] hae1II/pall asuI dpn11[dam-] mnll acil pvul/bspCl mboll cac81 mcrl earl/ksp6321 bs1El cGAAGAGGCC GGCACGATGCCT	hinplithay thai thai thai fundil/my batul acfi bah12361 raal hhal/cfo maeli cap61 bsli TACGTCAAG CAACCATAGT ACGCGCGGAC	m CTTTCGCTTT GAAAGCGAAA
sau3AI mbol/ndeI: mbol/ndeI: haeIII/palI asuI dpnII(dam- asuI dpnII/bspCI cac8I mcrI ksp632I bs1EI GGCC CGCACCGATC GCCC	maeii Tacstcaag Atgcagtttc	hinpi hhal/cfoi eli barbi acii cacii GCGCCCGCTC
sau961 hae111/ asu1 mboll cac81 ear1/ksp6321 cGAAGGGC CG	acii TCACACGGCA	hin rmai hinpi haeii hhai/cfoi haeii maei a GAGGGCCTA GGG
	acii GTGCGGTATT CACGCCATAA	oaogi CTACACTICC CAN
	Bfani Ttacgcatct Aatgcgtaga	fnu4HI bsoFI nPI al/cfoI I DII/mvnI UI 12361 acil bbvi maeili GC AGGGTGACG
foki Acatecece Tgtagggggg	/efol /acyl sfani /beal /beall cctGatGGG TATTITCTCC TTACGCATCT GTGCGGTATT TCACACCGCA GGACTACGCC ATAMAAGAGG AATGCGTAGA CACGCCATAA AGTGTGGCGT	fnu4HI baofI hhal/cfoI thal thal fnublI/mvnI batUI batUI maelII bbvI maeilI GGTANGGG TGGCCTA GGGCGAG GAAAGCGAAA GAAGGGAAGG
fnu4HI bboFI bbvI GCCTTGCAGC CGGAACGTCG	hinp! hhal/cfoI laly ar! asi inll/acyI giCI aciI an! hall/bsaHI icc CCTGATGCGC	vni GGTGTGGT CCACACCA
tru9I msel caacttaatc	hinp hhai nlaiv nari kasi hinli haici haici bani abaii gcgantgccg	fnud baofi tha! fnuDij batui batui hai/ci hai/ci hacci recece
tru91 maelli msel 5001 TGCGTTACC CAACTTAATC	bgli F101 AGCCTGAATG	hinpi hhal/cfol fnu4HI beopi tru' acii msei 5201 TACCGCGCA TAAT
5001	5101	5201

FIG. 48R

nlaiv hgiJii bspl286 bspl286 bmyI hgiCi taqi banii nlaiv ATCGGGGCT CCTTTAGG TCCGATTTA GTCCTTAGG GCACCTCGAC TAGCCCCGA GGGAATCC AAGCTAAAT CACAAAATGC CGTGGAGCTG GGGTTTTTG	trugi plei maeli msei hinfi ccacgrc trratagic Gacretrer GGTGCAAG ALATTATCAC CTGAGAACAA	tru91 bbli avel ACCCIATCIC GGGCTATTCT TITGATITAT AAGGGATTIT GCCGATTTCG GCCTATGGT TAAAAAATGA GCTGATTTAA TGGGATAGAG CCCGATAAGA AAACTAAATA ITCCCTAAAA GGGCTAAAGC CGGATAACCA ATTITTTACT CGACTAAATT	acli fnutHI bsoFi tru91 sfaNI m8e1 aclI GCTCTGATGC CGCATAGTTR AGCCAACTCC CGAGACTACG GCGTATCAAT TCGGTTGAGG	sfaNI mspl hpali bpali scrFI acrII dsaV fokI caulI aciI GCTTGTCTGC TCCCGGCATC CGCTTACAGA CGAACAGACG AGGCCGTAG GCGAATGTCT
nlalv hgiJil bap1286 bmyi nlalv GGGCT COCTTTAGGG TTCCGATTTA G	meell plei drdi hinfi maeli GGTT TTTGGCCCTT TGACGTTGGA GTCCACGTTC CCAA AAAGGGGGAA ACTGCAACCT CAGGTGCAAG	hre: Ttat aagggatttt gccgatttcg g aata ttccctaara cgcctaaagc c	hgial/asphi bsp1286 bsiHKAI bmyl ddel apall/snol rsal alw441/snol csp61 GTGCACTCTC AGTACAATCT	hinpi hhal/cfoi thal fauDil/avni batui nspBil bsh1316i acii acii hgal drdi ccccaacac cccrcaccc c
	nell haelli/pall ill sau961 hai sau1 ccractcccc aragacccrr trrccccrr ccractcccc carccccrr aragacccrr	bsli beli aval Accepatere ggetativet titeati Tgggatagae cecgataaga aaactai	maeli psp14061 tru91 sspi msel Mata Ttaacgitta caatittatg	
mapl hpall nael cfrl01/barFl maelI cac8I 5301 TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA AAAGGCGGT GCAAGCGCCC GAAAGGCGCA GTTCGAATT	maell haelli/pall dralli sau961 hphi bsani asul 5401 TTGATTTGGG TGATGGTTGG CATGGGGG CATGGGGGG ATAGACGGTT TTTCGCCCTT AACTAAACCC ACTACTGAGGG GAGGGGGG TATCGCCAA AAGCGGGAA	beli beri beli 5501 ccaactega acaacactea acceta Getttgacet tetteteagt teggar	thal fnuDII/mvnI tru9I apol tru9I mseI bstUI mseI apol bsh1236I sspI 5601 CAANATITA ACCCAATIT TAACAAATA	hinpi fnu4Hi maelli bsoFi bsali bsri nlalli hhal/cfoi bsal tthll1/aspi bbvi 5701 GCTATCGCTA CGTGACTGG TCATGGCTGC GCCCCGACAC
5301 17T AAA	5401 TTG AAC	5501 CCA GGT	5601 CAA	5701 GCT

FIG. 48S

thal funDII/mvnI battol battol hisp! hhal/cfol thal mall hphI battol tTTCACCGTC ATCACCGAAA CGCGCGCCCCCCCCCCCCC	acii thai thai thai thai thai thai hinli/acyi batui ablili ablili ablili ddel meeli batui happi hal/cfol Argccctaff fitatacff atatalacet atatacca actecaccet citacccac citacccac citacccat and cach and actecaccet citaccac citacccat and cach and analyses argcccata fitataccata and analyses argcccata fitataccata and analyses argcccata fitataccata and cach and analyses argcccata fitatacta and cach and analyses argcccata fitatacata and cach and analyses argcccata fitatacta analyses	mboli esti/ksp6321 traccctgat aaatgcttca atatattca aaaagcaaga gtrtgagtat tcaacattc attgggacta ttrcgaagt tattataact ttttccttct catactcata agttgtaaag	hgial/aspBI bsp186 sau3AI bsiRKAI bsiRKAI mbol/ndeil(dam-) dpn1[dam-] hpvI eco57I apaLi/anoi sfaNI mbol1 dam-) apaLi/anoi cTGTTTTTGC TCACCCAGAA ACGTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGGTG GACAAAAAG AGTGGTCTT TGCGACCAC TTCATTTTCT ACGACTTCTA GTCAACCAC
sorFI ncii ncii nspi hpaii nspi dsav nspBi dsav nspBi bsaBi bsoli nseili bshi bbvi alui bsli cauli alui nlaili mnli hphi GTTCGAGCTGTGA CCCTCCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC GTTCGACACTCCCA AAAGTGGCAG	nlaili tru91 rosi msei bspHi 8901 TACGCCTATT TTTATAGGT AATGATGGT 1	rcal bephi bethi bemai acii nlaili amgaittat cattcaaata tctatcccct catcacacaa taaccctca anatccttca	fouthi beofi acti 6101 cetercecc tiatrocet titticegea titticectic cetitities teacecaan nocetiges genericege antargean analogees anancegang grenamag referent technology

hgiai/asphi bspi286 tru91 bsiHKai msei bmyi ahaiii/drai tGAGCACTT TTAAAGTTCT	real csp61 bsr1 scal hph1 mseIII GGTGAGTA CTCACCAGTC	haelli/pali mbol/ndell[dam-] ael dpn[dam+] fri dpn[dam+] orl/bapCl pvul/bapCl oFI mcri balEl GGC CAACTTACTT CTGACAACGA CCG GTTGAATGAA GACTGTTGCT	Tgaatgaag ccataccaaa Acttacttc ggtatggttt
mbol/ndell[dam-] mbol/ndell[dam-] maell dpnl[dam+] dpnl[dam+] dpnl[dam+] batYl/xholl dpnl[dam-] xmnl bspl286 tru91 batYl/xholl alwl[dam-] acid bstYl/xholl msel basSI maelll tagI alwl[dam-] acid bstYl/xholl mbol CACGAGTGGG TRACATCGAA CTGGATCTCA ACAGGAGGAA GATCTTGGC CCGAAGAACG TTTTCCAATG ATGAGCACTT TTAAAGTTCG GTGCTCACCC AATGTAGCTT GACGAACTC TCAAAAGGGG GGCTTCTTGC AAAAGGTTAC TACTCGTGAA AATTTCAAGA	acii csal cepii boli pari pacii pari cepii pari podel pari segii podececenta segii pari segii segii concececenta segii s	e fo bs GTGATA ACACTGC CACTAT TGTGACG	mspl sau3Al nlalV mbol/ndell[dam-] alu1 dpnl[dam+] hpall dpnll[dam-] bseWl TTGATCGTTG GGAACCGGAG CTGAATGAAG CCATACCAAA
sau3AI mbol/ndeII[dam-] dpnI[dam+] dpnII[dam-] alwI[dam-] bstYI/xholI A GATCCTTGAG AGTTTTCGCC	acii mcri fnu4Hi bcgi balgi bsofi A GAGCAACICG GTCGCCGCTA	fnu4HI bsoFI bbvI mell nlaIII r tatgcagtgc tgcCathacc atga	nlalli saulai maelli mbol/ndellidam-] dpni[dam+] acti nlalii alw[dam-] ACCGCTTTT TGCACAACAT GGGGGATCAT GTAACTCGCC TGGCGBAAAA ACGTGTTGTA CCCCCTAGTA CATTGAGCGG
seulai nepBii mbol/ndeii[dam-] dpni[dam+] bstxi/xhoii bsri dpnii[dam-] alvi[dam-] acii] A CTGGATCTCA ACAGCGGTA	scift thai thai thai funDil/mvni mspi bstui bstui hinPi hinPi hgai cauli hhal/cfoi ahai/bsahi GCTATGTGC GCGCATAATA GGGCATACT GCGGGCAT	I nlaiii TGGCATGACA GTAAGAGAN ACCGTACTGT CATTCTCTT	acii Accsctttt TGGCGAAAA
Beau3AI nepBII seu3AI mbol/ndeII[dam-] maeII pep1406I hg1AI/aspHI dpn1[dam+] dpn1[dam+] dpn1[dam+] hg1AI/aspHI pep1406I bstXI/xhoII dpn1[dam-] xmnI bstXI/xhoII dpnII[dam-] alwI[dam-] asp700 bsiHKAI mseI bsiKAI mseI bsiKI/xhoII bstXI/xhoII mboII bolXI antIdam-] alwI[dam-] alwI[dam-] asp700 bsiHKAI mseI alwI[dam-] aciI bstXI/xhoII mboII bolXI antIdam-] aciI bstXI/xhoII mboII bsiXI ahaIII/draI caccacaca caccacacacacacacacacacacaca	scil noil thal thal funDI/mvnI mspl bstUI hpall bstUI hinPI hgaI cauli hhal/cfoI aball/bsaH cGATACACC GCCATATA GGGCACTT GGGGCCAT CGATACACC GCCCATATA GGGCACTACT GCGGGCCAT	efani foki nlaiii 6401 Acagaaage Atctaega Tegeatgaca Tetettiteg tagaatgeet Accetaetet	sau96I svali asul mpli aluI 6501 TCGGAGGACC GAAGGAGCTA AGCCTCGGG

trugi maei asei/ashi/vapi attatta	bsmal Sei Gr		_	IVENUS	mbol/ndeli[dam·] dpnI[dam·] dpnII[dam·] GA
15	mapl pali pali mpl mpl mpl pali pal	AACGAAATAG	trugi mbeli ahalil/drai mbel ATTTAAAACT TCATTTITAA TAAATTTTGA AGTAAAAATT	9 (dpu dpu dpu GTAGAAAGA CATCTTTTCT
hinp! hinp! hinpli hal/cfoi hal/cfoi hpail bati avii/fspi bsri rmai acrri cdi maeli tru9i mael daav pspi406i msel asel bfai cauli AATGGCAACA ACGTTGGGA ACTATTAAC TGGCGAACTA CTTACTCTAG CTTCCGGGCA TTACCGTTGT TGGAACGCGT TTGATAATTG ACCGCTTGAT GAATGAGGCCGT	mspi hpsii cfiloi/bs nlalv hphi bpmi/gsul(dcm-) c rGGAGCCGGT GA	ple! hinf! mnl! mnli andI/eamilO5! fok! ATGGTANGCC CTCCCGTATC GTAGTTATCT ACACGNCGGG GAGTCAGGCA ACTATGGATG			tru91 ddel msei cccTraacs castrics tecacics gegaries creaasses
alu rmei maei bfai cttactctag	b CTGATAAATC GACTATTTAG	pleI hinfI ahdI/eam11051 GACGGG GAGTCAGGCA	accaagitta ctcaratata ctttagattg Tggttchaat gagtatatat gaaatctaac		hgel ddel TCCACTGAGC 67 AGGTGACTCG .C2
bbri 191 11 TGGGANCT TG ACGGTIGAT	TGGTTATTG R ACCAMTARG	ahdI/e r acacaacses	CTCMENTATA		GAGTTTTCGT
hinp! hhal/cfo! stl. vill/fspl bs tru9! I mse! GGGCA AACTALTAAC	bgli sau961 cac81 haeIII/pali asuI mspI ol hpali GGCCT TCCGCTGC	C GTAGTTATCS	ACCAAGTTA		tru9I mseI cccTraacGT GGGAATTGCA
hinpi hhal/cfoi mati/fspi maeli pspi406i a accrrccca accrr recrace	bgli sau961 avail hinpi asul asul hhal/cfol rccAGGA CCACTTCTGC GCTCGGCCCT	mnli cc crecestate se caegecatate	maeiii 36 Tractgycag 32 Attgacagt	F	HI TGACCAAAT ACTGGTTTTA
HI I SrDI C AATGGGAAC G TTACCGTTG	sau961 h. sauI h. sauI h. GGA CCACTICTG	I/Pali i s atggtaage c taccattege	tru9I msel AT TAAGCATTG		rcal baphi gataatctca to ctattagagt ao
fouthi bsori cacel bsrbi sfani bbvi ga recegeace av	84U9 84AI. A AGTIGCAGGA	II haeIII/pali sau961 nlaIV bsrI asuI A CTGGGGCAG ATGG	plaiv hgici bani mpli GGTG CCTCACTGAN	<pre>eau3AI nbol/ndeII{dam-} im-} dpnI{dam+} dpnI{dam-} nlr{dam-} nlr{dam-} </pre>	betri/xholl oll[dam-] a GATCCTTTT T CTAGGAAAA
hal/cfol hal/cfol foutHI matl/fol barI bsoFI avii/fapl barI maell sfaNI bbvI pap14061 mael sfaNI bbvI pap14061 mael mael cacacaca cacacacacacacacacacacacacacac	bgli sau961 hae111/pali sau961 hae111/pali hae1101/bsrFi hae1 mspl hae1 hae11/pali hae1/cfoi hae1/cfoi hae1 hae11 hae1 hae11 hae1 hae1 hae1 ha	TAGO STORY	des TAT	rmal maei sa sau3Al hphi mb mbol/ndeil[dam-] dpnil[dam-] dp setvi/whii al	4 5 5
m CGACGAGCG GCTGCTCGC	foki beri 1 gactgartsc CTGACCTACC		ddel eau3AI mbol/ndell[dpnl[dam+] dpnl[dam-] 1 ACAGATCGCT GAG TGTCTAGCGA CTC		
999	6701	6801	6901	·	7001

saujāi mbol/ndeli[dam-] dpni[dam+] dpni[dam+] acii mspi acii napBii hpali alui AAA AACCACCGCT ACCAGCGGG GTTGTTGC CGGATCAAGA	mael haelli/pall bfal ball hael CAAATACTGT CCTTCTAGT TAGGCCACCA CTTCAAGAAC GTTTATGACA GGAAGATCAC ATCGGCATCA ATCCGGTGGT GAAGTTCTTG	sorFI ncii nspl hpali dsav plei cauli hinfi AGT GCCATANGT CGTGTCTTAC CGGTTYCGAC TCAAGACGAT	hgial/asphi bspi286 bsiHkai bmyi apali/snoi alwii/snoi alwiisnoi alwiisnoi alwiisnoi alwiisnoi alwiisnoi alwiiisnoi alwii
eau3AI mbol/ndeII[dem-] thaI fhubII/mvnI dpnI[dam+] bstUI cac8I alwI[dam-] bsh1236I fnu4HI I alwI[dam-] hinPI bsoFI bstXi/xhoII hhaI/cfoI bbvI TGAGAT CCTTTTTTTC TGCGCGTAAT CTCTGCTTG CAAACAAAAA	hinpi eco57i hhal/cfoi cttcagcaga gcgcagatac gaagtcgtct cgcgtctatg	fnu4HI bsoFI bbvI fnu4HI bbvI fnu4HI acii acii mnli psrI bsoFI brictgracac caccracata corcacte craatecter iaccage gecanast agacatecte gecgatege cecenation	nspBii hgial/aspHi fuldHi bsp1286 bsofi bsofi bbvi mcri bmyl appli/snoi alui hal/cfoi appli/snoi alui hal/cfoi adciccec anceccence carcecere crecerre crecerre crecerre crecerre respected arrececer and alval/snoi alui Arrececere cenercece anceccere respected arrececere crecerre crecerre crecerre respected arrececere and alua alui alui alui alui alui alui alui
mboli[dam-] sau3Al mbol/ndell[dam-] dpnl[dam-] dpnl[dam-] dpnl[dam-] batxl/xholl alw1[dam-] alw1[dam-] batxl/xholl alw1[dam-] Alw1[d	bsil maelli 7201 gctaccaact ctttttcca aggtaactgg cgatggttga gaaaaaggct tccattgacc	ecfl acil 7301 TCTGTAGCAC GGCC	mspi hpaii bsawi maeiii 7401 AGTTACCGGA TAA(

(tom+)			
scrfi mvai ecoRII dsav bstNI bsaJI iI apyl dom+	PATGGA	PAACCG	GCAAA
alui GGAGCTJ	NGCC7 TOGGZ	TGGA1	OI AATAC TTATC
mos mos most most most most most most mo	taqi mli drdi hgai TTAȚAGȚUCȚ GTCGGGȚTTC GCCACCTCTG ACTTATAGT GATGCTCGTC AGGGGGGGG AGCTATGGA AATATCAGGA CAGCCCAAAG CGGGGGAGAC TGAACTCGCA GCTAAAAACA CTACGAGGAG TCCCCCGGC TCGGATACCT	haeIII/pali haeIII/pali fnu4Ni scrfi bsoFi mval bsli acii thal bsli dsav fnuDII/mvni bstNi haeI nspli bstUI apylidcm+) haeI nspNi cac8I bsh1236I nlaIV haeI cac8I TTGCTCAC CACGCGC TTTTTACGC TCCTGCCTT TTGCTCACA TGTTCTTTCC TGCGTTANCC CCTGATTCTG TGATAACCGTTTTTCCGCTC GTTGCGCCGC AAAAATGCCA AACGACGGA AAACGGGTA AAACGAGTGT ACAGAAAGG ACGCAATAGG GGACTAAAGAC ACCTATTGGC	sapi hinpi mboli hhal/cfoi eari/ksp632i mnli acii haeli GAGGAAGCGC AATACGCAAA CTCCTTCGCC TTCTCGCGGG TTATGCGTTT
mspl hpall fnutfil bsli bsofi bsewi acii ArccGTAAG CGCAGGGTC GGAACAGGAG	sfani Gatgeteste Ctaegagag	TGCGTTATCC ACGCAATAGG	
fnutfil beofi acti G CGCAGGGTC C GCCGTCCCAG	taqi i ocantitigi a gctammaca	I HI TOTTCTTTCC ACAAGAAGG	fnu4HI bsoFI bbvI pleI hlnPI hinfI hhsl/cfoI rGCCRGCG GTCACTCG
mspl hpsll f bsll b bsewl a ATCCGTAAG	to rdi hgai Acttgaccgi TGAACTCGCA	nlall! haelll/pall nspl ael nspll 81 GCCCT TTTCCTCACA TG	
acii Geggaege Geototoe	mnli drdi GCCACCTCTG ACI CGGTGGAGAC TG		meri bsiri ccarcacce ccitectese
AGGAGAAAG TCCCTCTTTC	GTCGGGTTTC	haell/pall scrfl mval bsll ecoRll dsav bstNl apylidcm+) nlalv hael oa	fnutHI bacFI bbvI cacHI acil rBI fnutHI 11 bacFI GC TCGCCGCAC
foi GCCTTCCCGA AGGGAGAAAG GCGAAGGGCT TCCCTCTTTC	TTATAGTCCT ANTATCAGGA	I/pall I I I I I I I I I I I I I I I I I I	cac berBI I acil CTCATACCGC GACTATGCCG
hinpi hhal/cfoi haeli TGAGCATTGA GAAAGCGCCA CG	scrfi mvai ecoRii dsav bstni apyi[dcm+] gGGGGAAACG CCTGGTATCT TTATAGTCCT CCCCTTTGC GGACCATAGA AATATCAGGA	haeIII/ fnu4NI baofI aclI thaI balI fnuDII/mvn batUI bah1236I cAACGCGGC TF	fnu4HI bsoFI bsoFI bbvI cac8I ac1I bsrBI fnu4HI ac1I ac1I TATTACCGCC TTTGACTGGG CTCATAGGGG AGCGGCGTCG
hinpi hhal/cfol haeli 7501 TGAGCATTGA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG ACTCGTAACT CTTTCGCGGT GCGAAGGGCT TCCCTCTTTC	acrfi mval ecoRii daav daav bstNI apyl(dcm+) 7601 GGGGGAAACG CCTGGTATCT	haeIII/pall haeIII, fnu4NI scrFI bsoFI mvaI bslI aclI aclI ecoRII thaI bslI dsav fnuDII/mvnI bstNI bstUI bsh1336I nlaIv haeI 7701 AAAACGCGCC TTTTTACGCT TCCTGGCCTT TTTTGCGGTC GTTGCGCGAA	*****
7501	7601	7701	7803

FIG. 48X

171

```
Beelii
                                                                                                                 mnli beni benji benji
8001 acceptete tergeserce caggettac actitatget tergesercet atgitetete gaatteterg cgritaaca titeacage gaaacageta
16gagtgagt aatcesteg stecgaaate tgaaataca aggeegage tacaacace citaacacte sectatisti aaaststee cittstegat
                                                                                                           tru91
                                                                                                                                                                                                                                                     acil
                                                                             cac81
|| alul
| tru91 pvull
                                                                                           batul haelli/pall
bah12361
                                                                                                                                                                                                                                                  hgici apyi[dcm+]
                                                                                                                                                                                                mvai
ecorii
dsav
                                                                                                                                                                                     scrFl
fnuDII/mvn1
                                                                                                                                                                                                                                     nlaIV bstNI
                                                                              fnuDII/mvnI
                         beh1236I
hinpi
                                                   hhal/cfol
              betül
                                                                 thaI
                                                                                                             mnli
acii
```

```
agei(ACCGET):
abali/basH(GRCGYC):
988 1690 1858 5117 5947 6329
abali/basH(GRCGYC):
988 1690 1858 5117 5947 6329
abali/basH(GRCGYC):
598 1690 6982 7001
abdi/eamil051(GACNNNNGTC): 2087 6865
alui(AGCT):
54 332 386 390 753 1097 1165 1370 1431 1951 2603 2751 2784 3282 3336 3340
5803 8822 6516 6579 6679 7200 7457 7593 7819 7937 8096
                                                          823 1039 2738 4237
217 229 238 250 260 271 317 422 454 485 574 1385 1795 1871 2248 2250 2758 2982
3167 3179 3188 3200 3210 3221 3267 3372 3404 3449 3686 3949 4021 4318 4542 4727
4739 4748 4760 4770 4781 4827 4910 4914 5070 5127 5153 5166 5203 5217 5220 5248
5275 5680 5699 5741 5751 5790 5979 6026 6125 6234 6311 6355 6476 6522 6713 6804
7166 7175 7310 7420 7541 7560 7687 7715 7806 7827 7834 7877 7901 7911 7967 8070
                                2969 3967 4529
                                                                                                                                                                                                                                                                   see hinli
786
932 7758
                                                                                                                                                                                                                                                                                                 afili/bfri(cTTAAG):
aflii(ACRYGT):
                                acc651 (GGTACC):
BBtII(GACGTC):
                                                                  acci (GTMKAC):
                                                                                                     aci I (CCCC):
```

asel/asnl/vspl

8101 TGACCATGAT TACGAATTAA ACTGGTACTA ATGCTTAATT

>length: 8120

xmnI asp700

nlaIII

tru9I msel FIG. 48Z

FIG. 49C

FIG. 49D

Representative Conc versus Time Plot. Shown is the kinetic data for 6G4V11N35A.IgG1

	***************************************	(FIG. 5
Kd	350pM	88pM	49pM
kd	2.9x10-4	7.7x10 ⁻⁵	1.4x10 ⁻⁴
ka	8.3×105	8.7×10 ⁵	3.0x10 ⁶
SAMPLE	Murine 6G4.2.5 IgG2a	6G4V11N35A-IgG1	6G4V11N35E-IgG1

761 -1	aaaa Petet									TA	CTT	M	T		&GCC	aate	AGA	LAGA	ACGT
	TCTA' AGATI S M	ACA <i>A</i>	GC	aaaa	aac	ata		atc	MAC	CG	CAT		C	TCC		CGA	TCA		CAGA
	CCCC	CACC	CG	ACCA	CCT	CCG	TCC	ccc	gagt	GA	GGC.	AAAC	A	GGAC	:ACG	TCG	AAG	ACC	GATG
8	GG	G	L	٧	ď	Р	G	G	S	L	R	X.	S	С	A	A	S	<u></u>	
961	TCCT:																		
28	<u>s</u> f	s_	_\$_	К		M_		w	A	R	Õ	A	P	G	K	G	L	E	W
1021	GTTC																		
48	V G	<u>X</u> _	_ĭ_		<u> </u>	_S	_N_	<u>G</u>	<u>E</u>	<u>T</u>	Ţ	<u> </u>	N	0_	<u>K</u>	F	K	G	R
1081	TTCAC AAGT F T	aaae	TA	GAGC	GCT			M	TTTC	W	TCG'		G	acct		CIT	GTC		CGCA
			_		_	••	_		••			_		-			_	_	
1161	CCAC		CT	GACG	GCM	gat	TAA	BAC.	acct	TC	TCC	KT)	JA,	TAGC	GAT:	GIT	ACC	ACT	BACC
88	a e	Ø	Ţ	A	., A	A	Å	С	A	R	<u>G</u>	<u> </u>	<u> </u>	R_	<u> </u>	N_	<u> </u>	<u>.r_</u>	Ħ
1201	TTCT:	rcga Agct		TCTG AGAC	CCC.	TCA AGT	AGG!	rac Itc	CCTG SGAC	GT CA	CAC GTG	CTC CAC	T A	CCTC CGAG		CTC GAG	CAC	Car GTT	3000 3000
108_	<u>f</u>	<u> </u>	<u>_v</u>	M	G	Ø	G	Ţ	L	A	Ţ	A	S	S	A	s	T	K	G
1261	CCAT																		
128	PS														G			A	
1321																			
148	CCGA G C																	TCC(
1381	CTGA GACT																		
168	L T		G		R			b					S		G	<u>L</u>	X GYT	S	l L
1661	AGCA TCGT																		
188	S S																		
1501	AATC																		
208	TTAG N H																		
1561	ACTO						-												-
228	TCAC T H			b CGGG			ľ			\ 	5	3							
								u	J (3	~ 0		_							

180

189

195

FIG. 64

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.