3.4 Images and inverse images

Exercise 3.4.1

Let $f: X \to Y$ be a bijective function, and let $f^{-1}: Y \to X$ be its inverse. Let V be any subset of Y. Prove that the forward image of V under f^{-1} is the same set as the inverse image of V under f; thus the fact that both sets are denoted by $f^{-1}(V)$ will not lead to any inconsistency.

Proof. Suppose $f: X \to Y$ is a bijective function, and $f^{-1}: Y \to X$ is its inverse, where V is any subset of Y. Let $f^{-1}(V)$ denote the inverse image of V, and let $(f^{-1})(V)$ denote the forward image of V under f^{-1} . We define

$$f^{-1}(V) = \{ x \in X \mid f(x) \in V \}$$
$$(f^{-1})(V) = \{ f^{-1}(y) \mid y \in V \}$$

- First we show $f^{-1}(V) \subseteq (f^{-1})(V)$.
- Let $z \in f^{-1}(V)$. 2.
- Then $z \in X$ and $f(z) \in V$. 3.
- Since f is bijective, for all y in $V \subseteq Y$, $y = f(x) = f(f^{-1}(y))$. 4.
- Thus $f(z) \in V \implies y \in V$.
- Since f is bijective, for all x in X, $x = f^{-1}(y) = f^{-1}(f(x))$.
- Thus $z \in X \implies z = f^{-1}(y)$. 7.

Exercise 3.4.2

Let $f: X \to Y$ be a function from one set X to another set Y, let S be a subset of X, and let U be a subset of Y.

a. What, in general, can one say about $f^{-1}(f(S))$ and S?

Answer: S is a subset of $f^{-1}(f(S))$, but S may not be equal to $f^{-1}(f(S))$.

Proof. (informal) Let x be an element of X. We have $f(S) = \{f(x) \mid x \in S\}$, and therefore $f^{-1}(f(S)) = \{ x \in X \mid f(x) \in f(S) \}.$

Suppose $x \in S$, then $x \in X$ and $f(x) \in f(s)$, thus $x \in f^{-1}(f(S))$ for all $x \in S$, so S is a subset of $f^{-1}(f(S))$. Now instead suppose $x \notin S$. Since we have not stated that f is injective, it is still possible

that $f(x) \in f(S)$. Once again $x \in X$ and $f(x) \in f(s)$, thus for some x not in S, x may still be in $x \in f^{-1}(f(S))$. Thus $f^{-1}(f(S))$ may contain more members of X than S does, so they may not be equal. \square

b. What about $f(f^{-1}(U))$ and U?

Answer: $f(f^{-1}(U))$ is a subset of U, but the two sets may not be equal.

Proof. (informal) Let x be an element of X. We have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$. Then $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$. Since f is not stated to be surjective, there may be some y in U for which $y \neq f(x)$ for all x. So when we take the forward image of $f^{-1}(U)$, every element of $f^{-1}(U)$ is in U, but there may be some y in U that are not in $f^{-1}(U)$.

c. What about $f^{-1}(f(f^{-1}(U)))$ and $f^{-1}(U)$?

Answer:

Proof. (informal) As before we have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$, and $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$.

$$\begin{split} f^{-1}(f(f^{-1}(U))) &= \{ \, x \in X \mid f(f^{-1}(U)) \in U \, \} \\ &= x \in X \text{ and } f(f^{-1}(U)) \in U \\ &= x \in X \text{ and } \{ \, f(x) \mid x \in f^{-1}(U) \, \} \in U \\ &= x \in X \text{ and } (\exists x \text{ such that } y = f(x) \text{ and } x \in f^{-1}(U)) \in U \end{split}$$

$$\begin{split} f^{-1}(f(f^{-1}(U))) &= \{\, x \in X \mid f(f^{-1}(U)) \in U \,\} \\ &= \{\, x \in X \mid \{\, f(x) \mid x \in f^{-1}(U) \,\} \in U \,\} \\ &= \{\, x \in X \mid \{\, f(x) \mid x \in \{\, x \in X \mid f(x) \in U \,\} \,\} \in U \,\} \\ &= (x \in X) \text{ and } (f(x) \text{ is true and } (x \in (x \in X \text{ and } f(x) \in U)) \in U). \\ &= x \in X \text{ and } f(x) \in U(incomplete) \end{split}$$

(good lord...)

Exercise 3.4.3

Let A, B be two subsets of a set X, and let $f: X \to Y$ be a function. Show that

a. $f(A \cap B) \subseteq f(A) \cap f(B)$,

Proof. We prove this statement by showing every element of $f(A \cap B)$ is an element of $f(A) \cap f(B)$.

- 1. Let y be an arbitrary element of $f(A \cap B)$.
- 2. $A \subseteq X$ and $B \subseteq X \implies A \cap B \subseteq X$.
- 3. By definition the image of $A \cap B$ under f is $\{f(x) \mid x \in A \cap B\}$.
- 4. By the axiom of replacement (3.7) y = f(x) for some $x \in A \cap B$.
- 5. $x \in A \cap B \implies x \in A$
- 6. y = f(x) for some $x \in A$
- 7. $x \in A \cap B \implies x \in B$
- 8. y = f(x) for some $x \in B$
- 9. y = f(x) for some $x \in A$ and y = f(x) for some $x \in B$
- 10. $y \in \{ f(x) \mid x \in A \} \text{ and } y \in \{ f(x) \mid x \in B \}$
- 11. $y \in f(A) \cap f(B)$, as desired.

b. $f(A) \setminus f(B) \subseteq f(A \setminus B)$,

Proof. We prove this statement by showing every element of $f(A) \setminus f(B)$ is an element of $f(A \setminus B)$.

1. Let $y \in f(A) \setminus f(B)$ be arbitrary.

Conditional introduction

- 2. $y \in f(A)$ and $y \notin f(B)$.
- $\exists x \in A \ y = f(x)$
- 4. Suppose x such that $x \in A$ and y = f(x)
 - $4.1. \quad x \in A$
 - 4.2. y = f(x)
 - 4.3. $\forall z \in B \ y \neq f(z)$
 - 4.4. $\forall z \ z \in B \implies y \neq f(z)$
 - 4.5. $\forall z \ y = f(z) \implies z \notin B$
 - 4.6. $y = f(x) \implies x \notin B$
 - $4.7. \quad x \notin B$
 - 4.8. $x \in A, x \notin B, \text{ and } y = f(x).$
 - 4.9. y = f(x) and $x \in A \setminus B$.
- 4.10. $y \in \{ y \mid y = f(x) \text{ for } x \in A \setminus B \}.$
- 5. $y \in f(A \setminus B)$

6. $y \in f(A) \setminus f(B) \implies y \in f(A \setminus B)$

Existential elimination Conditional elimination

Thus $f(A) \setminus f(B) \subseteq f(A \setminus B)$.

c. $f(A \cup B) = f(A) \cup f(B)$.

Proof. We prove this statement by showing every element of $f(A \cup B)$ is an element of $f(A) \cup f(B)$ and vice versa. First we do the forward direction:

- 1. Let $y \in f(A \cup B)$ be arbitrary.
- $2. A \in X$
- $B \in X$
- $A \cup B \in X$
- 5. $y \in \{ f(x) \mid x \in A \cup B \}$

```
6. \exists x \text{ such that } x \in A \cup B \text{ and } y = f(x)
```

7. Suppose
$$x$$
 such that $x \in A \cup B$ and $y = f(x)$

$$7.1. y = f(x)$$

7.2.
$$x \in A \cup B$$

7.3.
$$x \in A \text{ or } x \in B$$

7.4.
$$(x \in A \text{ and } y = f(x)) \text{ or } (x \in B \text{ and } y = f(x))$$

7.4.1. test

7.5.
$$y \in \{ f(x) \mid x \in A \} \text{ or } y \in \{ y = f(x) \mid x \in B \}$$

7.6.
$$y \in f(A)$$
 or $y \in f(B)$

7.7.
$$y \in f(A) \cup f(B)$$

8.
$$y \in f(A \cup B) \implies y \in f(A) \cup f(B)$$

9.
$$f(A \cup B) \subseteq f(A) \cup f(B)$$

Now in the backwards direction.

- 1. Let $y \in f(A) \cup f(B)$ be arbitrary.
- 2. $y \in f(A) \text{ or } y \in f(B)$
- 3. Case $y \in f(A)$

3.1.
$$y \in \{ f(x) \mid x \in A \}$$

3.2.
$$\exists x \text{ such that } (x \in A \text{ and } y = f(x))$$

3.3. Suppose
$$x$$
 such that $(x \in A \text{ and } y = f(x))$

3.3.1.
$$x \in A \text{ and } y = f(x)$$

4. Case $y \in f(B)$

4.1.
$$y \in \{ y = f(x) \mid x \in B \}$$

4.2.
$$\exists x \text{ such that } (x \in B \text{ and } y = f(x))$$

4.3. Suppose x such that
$$(x \in B \text{ and } y = f(x))$$

4.3.1.
$$x \in B \text{ and } y = f(x)$$

5.
$$(x \in B \text{ and } y = f(x)) \text{ or } (x \in A \text{ and } y = f(x))$$

6.
$$y = f(x)$$
 and $(x \in A \text{ or } x \in B)$

7. y = f(x) and $(x \in A \cup B)$

8.
$$y \in \{ fx \mid x \in A \cup B \}$$

9.
$$y \in f(A) \cup f(B) \implies y \in \{f(x) \mid x \in A \cup B\}$$

10. $f(A) \cup f(B) \subseteq f(A \cup B)$

Thus we have $f(A \cup B) = f(A) \cup f(B)$.

For the first two statements, is it true that the \subseteq relation can be improved to =?

Answer:

Proof. I want to first try to prove $f(A \cap B) = f(A) \cap f(B)$. Since I already have $f(A \cap B) \subseteq f(A) \cap f(B)$, I just need $f(A) \cap f(B) \subseteq f(A \cap B)$.

- 1. Suppose $y \in f(A) \cap f(B)$
- 2. $y \in f(A)$ and $y \in f(B)$
- 3. $y \in \{ f(x) \mid x \in A \}$

- 4. $\exists x \text{ st. } y = f(x) \text{ and } x \in A$
- 5. Suppose x st. y = f(x) and $x \in A$
- 6. $y \in \{ f(x) \mid x \in B \}$
- 7. $\exists x \text{ st. } y = f(x) \text{ and } x \in A$

Next I'm going to try to prove $f(A) \setminus f(B) = f(A \setminus B)$. I already have $f(A) \setminus f(B) \subseteq f(A \setminus B)$ and I just need $f(A \setminus B) \subseteq f(A) \setminus f(B)$.

- 1. Suppose $y \in f(A \setminus B)$.
- 2. $\exists x \text{ such that } y = f(x) \text{ and } x \in A \setminus B.$
- 3. Suppose x such that y = f(x) and $x \in A \setminus B$.
 - 3.1. y = f(x)
 - 3.2. $x \in A \setminus B$
 - 3.3. $x \in A \text{ and } x \notin B$
 - 3.4. y = f(x) and $x \in A$
 - 3.5. $y \in \{ f(x) \mid x \in A \}$
 - 3.6. $y \in f(A)$
 - 3.7. y = f(x) and $x \notin B$
 - 3.8. $y \in \{ f(x) \mid x \notin B \}$ (not useful!)

not sure where to go from here

Exercise 3.4.5

Let $f: X \to Y$ be a function from one set X to another set Y.

a. Show that $f(f^{-1}(S)) = S$ for every $S \subseteq Y$ if and only if f is surjective.

b. Show that $f^{-1}(f(S)) = S$ for every $S \subseteq X$ if and only if f is injective.

Exercise 3.4.9

Show that if β and β' are two elements of a set I, and to each $\alpha \in I$ we assign a set A_{α} , then

$$\{x \in A_{\beta} : x \in A_{\alpha} \text{ for all } \alpha \in I\} = \{x \in A_{\beta'} : x \in A_{\alpha} \text{ for all } \alpha \in I\},$$

and so the definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Proof.

Also explain why (3.4) is true.

Proof.

Exercise 3.4.10

Suppose that I and J are two sets, and for all $\alpha \in I \cup J$ let A_{α} be a set. Show that

$$\bigcup_{\alpha \in I} A_\alpha \cup \bigcup_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in I \cup J} A_\alpha.$$

Proof. We need to show that every element of $\bigcup_{\alpha \in I} A_{\alpha} \cup \bigcup_{\alpha \in J} A_{\alpha}$ is also in $\bigcup_{\alpha \in I \cup J} A_{\alpha}$ and vice versa. We begin in the forward direction.

1.

Now in reverse:

1.

If I and J are non-empty, show that

$$\bigcap_{\alpha \in I} A_{\alpha} \cap \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in I \cup J} A_{\alpha}.$$

Proof.