

d	lf.info()								
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 2500 entries, 0 to 2499 Data columns (total 13 columns): # Column Non-Null Count Dtype</class></pre>									
0	Area	2500 non-null	int64						
1		2500 non-null							
2	Major Axis Length								
3	Minor Axis Length								
4	~	2500 non-null							
5	Equiv Diameter	2500 non-null	float64						
6		2500 non-null							
7		2500 non-null							
		2500 non-null	float64						
9	Roundness	2500 non-null	float64						
10	Aspect Ration	2500 non-null	float64						
11	Compactness	2500 non-null	float64						
12	Class	2500 non-null	object						
dtypes: float64(10), int64(2), object(1)									
memory usage: 254.0+ KB									

```
df.shape

(2500, 13)

df.isnull().sum()

Area 0
Perimeter 0
Major_Axis_Length 0
Minor_Axis_Length 0
Convex_Area 0
Equiv_Diameter 0
Eccentricity 0
Solidity 0
Extent 0
Roundness 0
Aspect_Ration 0
Compactness 0
Class 0
dtype: int64
```



```
# removing the outlier
# calculate the first and third quartiles
Q1 = df["Area"].quantile(0.25)
Q3 = df["Area"].quantile(0.75)

#calculate the interquartile range(IQR)
IQR = Q3 - Q1

#Define the lower and upper bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
#filter out outliers
df = df[(df["Area"] >= lower_bound) & (df["Area"] <= upper_bound)]</pre>
```

```
# removing the outlier
# calculate the first and third quartiles
Q1 = df["Area"].quantile(0.25)
Q3 = df["Area"].quantile(0.75)

#calculate the interquartile range(IQR)
IQR = Q3 - Q1

#Define the lower and upper bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
#filter out outliers
df = df[(df["Area"] >= lower_bound) & (df["Area"] <= upper_bound)]</pre>
```



```
from sklearn.preprocessing import MinMaxScaler
columns_to_scale= ['Area','Perimeter','Major_Axis_Length']

# Apply MinMaxScaler only to selected columns
scaler = MinMaxScaler()
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
```

df.describe()													
	Area	Perimeter	Major_Axis_Length	Minor_Axis_Length	Convex_Area	Equiv_Diameter	Eccentricity	Solidity	Extent	Roundness	Aspect_Ration	Compactness	
count	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	2482.000000	
mean	0.463459	0.442677	0.411127	225.505553	81179.048751	318.748695	0.860620	0.989479	0.693502	0.791838	2.039858	0.704435	
std	0.188186	0.180938	0.167586	23.094748	13249.936542	26.081716	0.045183	0.003499	0.060676	0.055916	0.315819	0.053053	
	0.000000	0.000000	0.000000	152.171800	48366.000000	247.058400	0.492100	0.918600	0.468000	0.554600	1.148700	0.560800	
25%	0.325145	0.307016	0.285968	211.110100	71449.500000	299.953675	0.831525	0.988300	0.659300	0.752325	1.800325	0.663900	
50%	0.443448	0.433898	0.391094	224.478400	79802.500000	317.017300	0.863500	0.990300		0.798200	1.982850	0.707900	
75%	0.592092	0.567014	0.522056	240.022600	90430.250000	337.235300	0.896675	0.991500	0.740275	0.834575	2.258775	0.743700	
max	1.000000	1.000000	1.000000	305.818000	118597.000000	387.333300	0.948100	0.994400	0.829600	0.939600	3.144400	0.904900	

```
#counting the class values
plt.figure(figsize=(6,6))
sns.countplot(data=df,x='Class')
plt.show()
```



```
plt.figure(figsize=(6,6))
plt.scatter(df['Area'],df['Perimeter'])
plt.title(f'Scatter Plot of area vs Perimeter')
plt.xlabel("Area")
plt.ylabel("Perimeter")
plt.grid(True)
plt.show()
```



```
numeric_df = df.select_dtypes(include=[np.number])
sns.heatmap(numeric_df.corr(), annot=True, linewidths=0.2)
fig = plt.gcf()
fig.set_size_inches(10, 8)
plt.show()
```

```
df=df.drop(['Convex_Area', 'Equiv_Diameter'],axis=1)
 df.head()
      Area Perimeter Major_Axis_Length Minor_Axis_Length Eccentricity Solidity Extent Roundness Aspect_Ration Compactness
                                                                                                                     0.8207 Çerçevelik
                                                                                                                     0.7487 Çerçevelik
2 0.338866 0.365983
                              0.351048
                                                              0.8749 0.9857 0.7400
                                                                                                                     0.6929 Çerçevelik
3 0.264966 0.210828
                                                                                          0.8486
                                                                                                                     0.7624 Çerçevelik
4 0.259944 0.221228
                              0.192467
                                                220.4545
                                                              0.8187 0.9850 0.6752
                                                                                                                     0.7557 Çerçevelik
```

```
#splitting the data into X and Y
X=df.drop('Class',axis = 1)
         Area Perimeter Major_Axis_Length Minor_Axis_Length Eccentricity Solidity Extent Roundness Aspect_Ration Compactness
                                                                                               0.8963
                                                                                                             1.4809
                                                                   0.8749 0.9857 0.7400
                                                                                                                           0.6929
   3 0.264966 0.210828
                                                                   0.8123 0.9902 0.7396
                                                                                               0.8486
                                                                                                             1.7146
                                                                           0.9850 0.6752
2495 0.453528 0.607791
                                                                   0.9340 0.9907 0.4888
2496 0.310593 0.368254
                                  0.433809
                                                                   0.9101 0.9919 0.6002
                                                                                                                           0.7104
2499 0.529317 0.497268
                                  0.433667
                                                                   0.8621 0.9901 0.7360
```

```
Y=df['Class']
           Çerçevelik
           Çerçevelik
           Çerçevelik
           Çerçevelik
           Çerçevelik
4
2495
        Ürgüp Sivrisi
2496
        Ürgüp Sivrisi
        Ürgüp Sivrisi
2497
        Ürgüp Sivrisi
        Ürgüp Sivrisi
2499
Name: Class, Length: 2482, dtype: object
```

```
#splitting into training and testing dataset
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=30)

print(X_train.shape)
print(X_train.shape)
print(Y_train.shape)
print(Y_test.shape)

(1985, 10)
(497, 10)
(1985,)
(497,)
```

```
from sklearn.linear model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report
   logistic_regression=LogisticRegression()
   logistic_regression.fit(X_train,Y_train)
   Y_pred=logistic_regression.predict(X_test)
   acc_lr=accuracy_score(Y_test,Y_pred)
c_lr=classification_report(Y_test,Y_pred)
   print('Accuracy Score:',acc_lr)
print(c_lr)
Accuracy Score: 0.869215291750503
                  precision recall f1-score support
  Çerçevelik
                        0.85
                                                  0.88
Ürgüp Sivrisi
                        0.89
                                                                 240
                                                  0.86
    macro avg
                                     0.87
weighted avg
                        0.87
                                     0.87
                                                  0.87
                                                                497
```

```
random_forest=RandomForestClassifier()
random_forest=RandomForestClassifier()
random_forest.fit(X_train,Y_train)
Y_pred=random_forest.predict(X_test)

acc_rf=accuracy_score(Y_test,Y_pred)
c_rf=classification_report(Y_test,Y_pred)

print('Accuracy Score:',acc_rf)
print(c_rf)

Accuracy Score: 0.8752515090543259
    precision recall f1-score support

Cercevelik 0.86 0.91 0.88 257
Ürgüp Sivrisi 0.90 0.84 0.87 240

accuracy 0.88 497
macro avg 0.88 0.87 0.87 497
weighted avg 0.88 0.88 0.87 497
```

```
from sklearn.naive bayes import MultinomialNB

NB=MultinomialNB()
NB.fit(X_train,Y_train)
Y_pred=NB.predict(X_test)

acc_nb=accuracy_score(Y_test,Y_pred)
c_nb=classification_report(Y_test,Y_pred)

print('Accuracy Score:',acc_nb)
print(c_nb)

Accuracy Score: 0.8148893360160966
precision recall f1-score support

Cercevelik 0.75 0.95 0.84 257
Ürgüp Sivrisi 0.93 0.67 0.78 240

accuracy 0.81 497
macro avg 0.84 0.81 0.81 497
weighted avg 0.84 0.81 0.81 497
```

```
GBC=GradientBoostingClassifier()
   GBC.fit(X_train,Y_train)
   Y_pred=GBC.predict(X_test)
   acc_gbc=accuracy_score(Y_test,Y_pred)
   c_gbc=classification_report(Y_test,Y_pred)
   print('Accuracy Score:',acc_gbc)
   print(c_gbc)
Accuracy Score: 0.8832997987927566
             precision recall f1-score support
  Çerçevelik
Ürgüp Sivrisi
                                                240
                                      0.88
                  0.89
                           0.88
   macro avg
                                      0.88
 weighted avg
                  0.88
                           0.88
                                      0.88
```

```
prediction=random_forest.predict([[ 0.410519,0.340661,0.294143,234.2289,77280,312.3614,0.8275,0.9916,0.7151,0.8440]])

c:\Users\LENOVO\anaconda3\Lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names warnings.warn(

prediction[0]

'Urgüp sivrisi'
```

```
if prediction[0]==0:
    print("Your seed lies in cercevelik class")
elif prediction[0]==1:
    print("Your seed lies in Urgup Sivrisi class")
```