Solution 1 (Exercise 4.29). Let SL(2,5) denote the group of 2×2 matrices over \mathbb{Z}_5 with determinant 1.

(i) To compute |SL(2,5)|, recall that

$$|GL_2(\mathbb{F}_5)| = (5^2 - 1)(5^2 - 5) = 24 \cdot 20 = 480.$$

The determinant map $\det: \operatorname{GL}_2(\mathbb{F}_5) \to \mathbb{F}_5^*$ is a surjective group homomorphism with kernel SL(2,5). Since $|\mathbb{F}_5^*| = 4$, we get

$$|SL(2,5)| = \frac{|GL_2(\mathbb{F}_5)|}{|\mathbb{F}_5^*|} = \frac{480}{4} = 120.$$

(ii) We know that SL(2,5) has center $Z(SL(2,5)) = \{\pm I\}$. Note that -I is the only element of order 2 in this group, i.e., the only involution. Indeed, any other matrix with determinant 1 and square equal to the identity must lie in the center, but the center has only two elements. Thus, there is a unique involution.

Let P be a Sylow 2-subgroup of SL(2,5). Then |P|=8, and it must contain the unique involution -I. But the quaternion group Q_8 is the only group of order 8 with a unique involution. Hence, $P \cong Q_8$.

- (iii) In contrast, consider S₅. Let it act naturally on {1,2,3,4,5}. The symmetries of a square (say, acting on {1,2,3,4}) form a subgroup isomorphic to the dihedral group D₄ of order 8. This subgroup lies inside S₅ and is a Sylow 2-subgroup, since 8 divides 120 = |S₅|, and no larger power of 2 does. All Sylow 2-subgroups are conjugate, so every Sylow 2-subgroup of S₅ is isomorphic to D₄. Therefore, SL(2,5) and S₅ cannot be isomorphic, since one has a Sylow 2-subgroup isomorphic to Q₈ and the other to D₄.
- (iv) Since |SL(2,5)| = 120 and $|A_5| = 60$, it is natural to ask whether A_5 embeds into SL(2,5). But we already know that

$$SL(2,5)/Z(SL(2,5)) \cong PSL(2,5) \cong A_5.$$

Thus, if A_5 were to embed into SL(2,5), the composition with the projection would give an automorphism of A_5 . This would split the short exact sequence

$$1 \to Z(SL(2,5)) \to SL(2,5) \to A_5 \to 1$$
,

giving a section $A_5 \hookrightarrow SL(2,5)$. But this sequence does not split, so no such embedding exists. Hence, A_5 cannot be embedded in SL(2,5).