Algebra lineal: Espais Vectorials

Laura Figueras

```
\subsection*{Exemples}
\begin{enumerate}[$\bullet$]
\item $\reals^n = \{ (x_1, ..., x_n) | x_i \in \reals\}$ amb:
\begin{enumerate}[-]
\item $(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$
\item$\lambda (x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n)$
\end{enumerate}
\item$\reals[x]$: polinomis en x (suma i producte per escalar).
\item$\reals[x]$: polinomis en x de grau més petit o igual que n (amb les mateixes operacions).
```

1 Cos

Definició. Un cos K (o bé \mathbb{K}) és un conjunt amb dues operacions:

Suma:

$$K \times K \longrightarrow K$$
$$(a,b) \longmapsto a+b$$

Producte:

$$K \times K \longrightarrow K$$

 $(a,b) \longmapsto a \cdot b$

Complint que:

- Propietat associativa: $\forall a, b, c \in K,$ (a+b)+c=a+(b+c)
- Propietat commutativa: $\forall a, b \in K$, a+b=b+a
- Existeix un element neutre: $\exists 0 \in K \text{ tal que}$ $a + 0 = a, \forall a \in K$
- Existència de l'oposat: $\forall a \in K, \exists b \text{ tal que}$ $a+b=0 \ (-a" \text{ oposat d'}a)$

- Propietat associativa: $\forall a, b, c \in K$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Propietat commutativa: $\forall a, b \in K$, $a \cdot b = b \cdot a$
- Existeix un element neutre: $\exists 1 \in K$, tal que $a \cdot 1 = a, \forall a \in K$
- Existència de l'invers: $\forall a \neq 0, \ a \in K, \ \exists b \ \text{tal que}$ $a \cdot b = 1 \ ("a^{-1}" \ \text{invers} \ \text{d}'a)$
- $0 \neq 1$
- Propietat distributiva: $\forall \, a,b,c \in K, \\ a \cdot (b+c) = ab + ac$

Exemples

- $\bullet \ \mathbb{Q}, \, \mathbb{R}$ i \mathbb{C} són cossos amb la suma i el producte que coneixem.
- $\bullet \ \mathbb Z$ amb la suma i producte que coneixem, no és un cos, ja que no té existència d'invers:

$$2 \neq 0$$
 i el 2 no té invers

Com definir un cos nou:

$$K = \{0,1\} + , \cdot$$

Definim la taula de la suma i la del producte:

1

Ara definim un cos amb tres elements, amb les seves taules corresponents: $K = \{0, 1, a\} + , \cdot$

+	0	1	a
0	0	1	\overline{a}
1	1	a	0
a	a	0	1

2 Espais Vectorials

Definició. Fixem \mathbb{K} un cos. Diem que un conjunt E és un espai vectorial sobre \mathbb{K} (o un \mathbb{K} -espai vectorial) si hi ha definides dues operacions:

Suma de vectors:

Multiplicació per escalar:

$$E \times E \longrightarrow E$$
$$(\vec{u}, \vec{v}) \longmapsto \vec{u} + \vec{v}$$

$$\mathbb{K} \times E \longrightarrow E$$
$$(\lambda, \vec{v}) \longmapsto \lambda \cdot \vec{v}$$

Complint que:

• Associativa: $\forall \vec{u}, \vec{v}, \vec{w} \in E,$ $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

• Commutativa: $\forall \ \vec{u}, \vec{v} \in E, \\ \vec{u} + \vec{v} = \vec{v} + \vec{u}$

• Element neutre: vector zero $\vec{0}$ $\vec{u} + \vec{0} = \vec{u}, \forall \vec{u} \in E$

• Element oposat: $\forall \ \vec{u} \in E, \ \exists \ \vec{v}$ tal que $\vec{u} + \vec{v} = \vec{0}$

• Associativa mixta: $\forall \ \lambda, \mu \in \mathbb{K}, \ \forall \ \vec{u} \in E, \\ \lambda \cdot (\mu \cdot \vec{u}) = (\lambda \cdot \mu) \cdot \vec{u}$

• Distributiva (1) $\forall \ \lambda, \mu \in \mathbb{K}, \ \forall \ \vec{u} \in E, \\ (\lambda + \mu) \cdot \vec{u} = \lambda \vec{u} + \mu \vec{u}$

• Distributiva (2) $\forall \lambda \in \mathbb{K}, \ \forall \ \vec{u}, \vec{v} \in E,$ $\lambda(\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$

• Unitat: $\forall \vec{u} \in E$, $1 \cdot \vec{u} = \vec{u}$

Anomenem vectors als elements de E i escalars als elements de K.

Exemples

• $\mathbb{R}^n = \{(x_1, ..., x_n) \mid x_i \in \mathbb{R}\}$ amb:

- $(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$

- $\lambda(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n)$

 $\bullet \ \mathbb{Q}^n, \mathbb{C}^n$ de la mateixa manera.

• $\mathbb{R}[x]$: polinomis en x (suma i producte per escalar).

• $\mathbb{R}[x]_{\leq n}$: polinomis en x de grau més petit o igual que n (amb les mateixes operacions).

Observació. A l'estructura d'espai vectorial no podem multiplicar polinomis.

• $M_{m \times n}(\mathbb{R})$, suma de matrius i multiplicació per un escalar, també és un espai vectorial.

2

Propietats. E espai vectorial sobre \mathbb{K} :

A) El vector $\vec{0}$ és únic.

B) $\forall \vec{u} \in E$, el vector oposat és únic.

C)
$$0 \cdot \vec{u} = \vec{0}, \ \forall \vec{u} \in E$$

D)
$$\lambda \cdot \vec{0} = \vec{0}, \ \forall \lambda \in \mathbb{K}$$

E)
$$\lambda \cdot \vec{u} = \vec{0} \iff (\lambda = 0 \cup \vec{u} = \vec{0})$$

F)
$$-\vec{u} = (-1) \cdot \vec{u}$$

Ara demostrarem algunes de les propietats² mencionades anteriorment.

Demostració. Començarem per l'apartat A):

Suposem $\vec{0}$ i $\vec{0'}$ dos elements neutres per la suma i veiem que, al sumar-los, passa el següent:

$$\vec{0} = \vec{0} + \vec{0'} = \vec{0'}$$

Per una banda, si considerem $\vec{0'}$ l'element neutre, el resultat seria el vector $\vec{0}$. Per altra banda, si el que considerem neutre és el $\vec{0}$, el resultat seria el vector $\vec{0'}$. Per tant queda que:

$$\vec{0} = \vec{0'}$$

Demostració. Ara demostrarem l'apartat C): Sigui \vec{u} un vector i $-\vec{u}$ el seu oposat:

$$0 \cdot \vec{u} + \vec{u} = (0+1) \cdot \vec{u} = \vec{u}$$

Ens queda que $0 \cdot \vec{u} + \vec{u} = \vec{u}$, llavors si sumem el vector oposat de \vec{u} , ens queda que:

$$0 \cdot \vec{u} + \vec{u} + (-\vec{u}) = \vec{u} + (-\vec{u})$$
$$0 \cdot \vec{u} = \vec{0}$$

Exemples d'espais vectorials

A conjunt i E un K-espai vectorial:

$$f: A \longrightarrow E$$
 $g: A \longrightarrow E$ $a \longmapsto g(a)$

Tenim que:

$$(f+g): A \longrightarrow E$$

$$a \longmapsto f(a) + g(a)$$

$$(\lambda f): A \longrightarrow E$$

$$a \longmapsto \lambda f(a)$$

D'aquesta manera, les aplicacions d'A en E, tenen estructura d'espai vectorial.

Un cas particular: $\begin{cases} A = \mathbb{R} \\ E = \mathbb{R} \text{ com } \mathbb{R}\text{-espai vectorial} \end{cases}$

$$\{f: \mathbb{R} \longrightarrow \mathbb{R}\}$$
 (1)

$$\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ \'es contínua}\}$$
 (2)

$$\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ és derivable}\}$$
 (3)

3 Subespais vectorials

Definició. Si E és un \mathbb{K} -espai vectorial, diem que $F \subseteq E$ un subconjunt no buit és un subespai si es compleix:

- (i) $\forall \vec{u}, \vec{v} \in F, \vec{u} + \vec{v} \in F$
- (ii) $\forall \vec{u} \in F \text{ i } \forall \lambda \in \mathbb{K}, \ \lambda \vec{u} \in F$

Observació. Si $F \subseteq E$ és un subespai, $\vec{0} \in F$:

$$F \neq \varnothing \iff \begin{cases} \exists \ \vec{u} \in F \\ 0 \in \mathbb{K} \end{cases} \quad \overset{(ii)}{\Longleftrightarrow} \quad \begin{cases} 0 \cdot \vec{u} \in F \\ 0 \cdot \vec{u} = \vec{0} \end{cases}$$

Proposició. Si E és un \mathbb{K} -espai vectorial i $F \subseteq E$ és un conjunt no buit, llavors F és un subespai si i només si:

(a) $\forall \vec{u}, \vec{v} \in F \text{ i } \forall \lambda, \mu \in \mathbb{K}, \text{ tenim que } \lambda \vec{u} + \mu \vec{v} \in F$

Demostració. Demostrem que $(i) + (ii) \iff (a)$:

 \Rightarrow Siguin:

$$\begin{cases} \vec{u}, \vec{v} \in F \\ \lambda, \mu \in \mathbb{K} \end{cases}$$

Per la segona propietat de la definició de subespais vectorials³, sabem que:

$$\begin{cases} \lambda \vec{u} \in F & \stackrel{(i)}{\Longrightarrow} \lambda \vec{u} + \mu \vec{v} \in F \end{cases}$$

 \Leftarrow Sigui $\vec{u}, \vec{v} \in F$, per la propietat de la proposició³, sabem que $\vec{u} + \vec{v} \in F$ quan $\lambda = \mu = 0$. Ara, veiem la segona propietat. Sigui $\vec{u} \in F$, $\lambda \in \mathbb{K}$. Per la propietat de la proposició, sabem que $\lambda \vec{u} \in F$ quan $\mu = 0$.

Exemples

• E qualsevol, $F = \{\vec{0}\}\$

• Si $\{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\} \subset E$, considerem:

$$\langle \vec{v_1}, \vec{v_2}, ..., \vec{v_n} \rangle = \{ \lambda_1 \cdot \vec{v_1} + \lambda_2 \cdot \vec{v_2} + ... + \lambda_n \cdot \vec{v_n} \mid \lambda_i \in \mathbb{K}, \ i = 1...n \}$$

Vegem que és un subespai:

(i)
$$\vec{u} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + \dots + \lambda_n \vec{v_n} \in \langle \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \rangle$$

 $\vec{v} = \mu_1 \vec{v_1} + \mu_2 \vec{v_2} + \dots + \mu_n \vec{v_n} \in \langle \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \rangle$
 $\vec{u} + \vec{v} = (\lambda_1 + \mu_1) \vec{v_1} + (\lambda_2 \mu_2) \vec{v_2} + \dots + (\lambda_n \mu_n) \vec{v_n} \in \langle \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \rangle$

(ii)
$$\vec{u} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} + \dots + \lambda_n \vec{v_n}, \qquad \mu \in \mathbb{K}$$

 $\mu \vec{u} = (\mu \lambda_1) \vec{v_1} + (\mu \lambda_2) \vec{v_2} + \dots + (\mu \lambda_n) \vec{v_n} \in \langle \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \rangle$

 \diamond Solucions d'equacions lineals homogenies: Suposem A una matriu m×n i $X=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}$ incògnites.

$$AX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 sistema d'equacions homogenia.

Observació. Les solucions d'aquest sistema són subespais de \mathbb{K}^n

Demostració. Hi ha tres casos:

$$\cdot X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \text{ és una solució, solucions } \neq \varnothing$$

$$\begin{cases} X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{cases} \text{ solució} \qquad A(X+Y) \stackrel{?}{=} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \\ Y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{cases} \text{ solució} \qquad AX + AY = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\begin{cases} X \text{ solució} \qquad A(\lambda X) \stackrel{?}{=} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \\ \lambda \in \mathbb{K} \qquad \lambda(AX) = \lambda \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$