Inverse Probability Weighting Estimation

Miguel Hernán, Barbra Dickerman, Joy Shi DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Estimate IP weights nonparametrically and parametrically
- Discuss violations of positivity and its consequences
- Understand the relation between IP weighting and standardization

☐ Key concepts

- IP weights
- Structural non-positivity
- Random non-positivity

□ 1629 c	igarette smokers
□ Aged 2 (baseli	5-74 years when interviewed in 1971-75 ne)
□ Intervi	ewed again in 1982
alcohol and fol	sex, age, race, weight, height, education, use, and smoking intensity at both baseline low-up visits, and who answered the general history questionnaire at baseline

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Dichotomous outcome D	Death by 1992 1: yes, 0: no
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight

Causal questions of interest

- 1. What is the effect of smoking cessation on weight gain?
- ☐ This is an informal statement of the questions
- 2. What is the effect of smoking cessation on risk of death?

IP weighting

A more formal version of causal question #1 First define the counterfactual means

if everybody had quit smoking

- \blacksquare $E[Y^{a=1}]$
- Y^{a=1} is an individual's outcome under a=1

if nobody had quit smoking

- \blacksquare $E[Y^{a=0}]$
- $Y^{a=0}$ is an individual's outcome under a=0

Then the formal question is:

 \square What is the average causal effect $E[Y^{a=1}] - E[Y^{a=0}]$?

IP weighting

Plan for today

- A. Estimation of the causal effect by IP weighting
 - Nonparametric estimation of IP weights
 - Parametric estimation of IP weights
 - Positivity
- B. IP weighting vs. standardization

IP weighting

What if this were an ideal randomized experiment...

- □ ... in which individuals had been randomly assigned to "smoking cessation" with a probability that depends on their age group?
 - Randomization is **conditional** on age group, rather than unconditional (or marginal)
- ☐ Probability of being assigned to smoking cessation is
 - 33.3% if age>50 years (L=1)
 - 22.5% if age \leq 50 years (L=0)

We need to estimate $E[Y^{a=1}]$ and $E[Y^{a=0}]$

 $E[Y^{a=1}]$: the mean outcome had everyone been treated

■ consistently estimated by the IP weighted mean in the treated

 $E[Y^{a=0}]$: the mean outcome had everyone been untreated

■ consistently estimated by the IP weighted mean in the untreated

Under

✓ Exchangeability: expected

✓ Positivity: guaranteed

✓ Consistency: guaranteed

IP weighting

Reminder: IP weights

$$W^A = \frac{1}{f(A|L)}$$

For the treated

- \blacksquare 1 / Pr[A=1|L]
- One over the probability of smoking cessation

For the untreated

- \blacksquare 1 / Pr[A=0|L] = 1 / (1 Pr[A=1|L])
- One over the probability of no smoking cessation
- \square Each individual in the population is weighted to create W^A individuals in the pseudo-population
 - The denominator of your W^A is (informally) the probability of having your observed treatment value given your L value

IP weights for smoking cessation

- ☐ If the study were a randomized experiment conditional on age group
 - These 2 probabilities (and thus the weights) are known because they were chosen by the investigators
- ☐ If the study were observational
 - These 2 probabilities (and therefore the weights) need to be estimated from the data
 - Let's estimate these 2 probabilities both without and with models

Nonparametric estimation

of IP weights using sample proportions

- □ Older age
 - the estimate of Pr[A=1|L=1] is 156/468 = 0.3333
 - Treated W^A : 1 / 0.3333 = 3.000
 - Untreated W^A : 1 / (1 0.3333) = 1.500
- □ Younger age
 - the estimate of Pr[A=1|L=0] is 247/1098 = 0.2250
 - Treated W^A : 1 / 0.2250 = 4.444
 - Untreated W^A : 1 / (1 0.2250) = 1.290

See ipw_weightestimation.R, lines 12-18

IP weighting

13

The pseudo-population

- \square We assign a weight W^A to each individual in the population
- ☐ Mathematically, the weighting simulates a (pseudo-)population in which the relation between variables change

IP weighting

Is treatment indep	endent of the measured confounders <i>L</i> in the pseudo-population?	₩0
(A) Yes		0%
(B) No		0%
(C) Don't know		
		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

Is treatment inde	pendent of all confounders in the pseudo-population?	% 0
15 treatment mae	pendent of an comounders in the pseudo-population.	
Yes		
		0%
No		0%
		0 %
Don't know		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

IP weighted averages

- ☐ Compute the IP weighted average (that is, the average in the pseudo-population) of the outcome in the
 - treated: 4.87 kg ■ untreated: 1.87 kg
- □ Difference: 3.0 kg See ipw_weightestimation.R, lines 20-21
 - causal interpretation if treatment had been conditionally randomized within levels of age group
 - ☐ if conditional exchangeability given age group

IP weighting 17

Nonparametric estimation

of IP weights using a saturated model

- \square Logistic model logit $Pr[A=1|L] = \theta_0 + \theta_1 L$
 - Older age: the estimate of Pr[A=1|L=1] is 0.3333
 - Younger age: the estimate of Pr[A=1|L=0] is 0.2250
- ☐ A saturated model because
 - 2 parameters, 2 quantities to be estimated
 - No restrictions
- ☐ The estimates from the model are equal to the nonparametric estimates we obtained before
 - Same IP weighted means

See ipw_weightestimation.R, lines 24-28

IP weighting

Plan for today

- A. Estimation of the causal effect by inverse probability (IP) weighting
 - Nonparametric estimation of IP weights
 - Parametric estimation of IP weights
 - Positivity
- B. IP weighting vs. standardization

IP weighting

19

This is an observational study

- ☐ Smoking cessation *A* was *not* conditionally randomized by the investigators
- ☐ However, we may believe that *A* occurred at random within levels of
 - L: sex, M: race, N: age group
 - and use IP weighting to adjust for them
- ☐ If our assumption of conditional exchangeability given those 3 covariates is correct, then
 - the IP weighted means equal the counterfactual means

Estimating IP weighted averages with several confounders

- \square Estimate the probability of treatment A for every combination of values of the variables in L,M,N
- \Box Then calculate each individual's corresponding IP weight, and the IP weighted averages of Y in the treated and the untreated
 - i.e., the averages in the pseudo-population
- \square The difference of IP weighted averages consistently estimates the average causal effect $E[Y^{a=1}] E[Y^{a=0}]$

IP weighting 21

Nonparametric estimation

of IP weights with 3 dichotomous confounders

- \square We need to estimate $2 \times 2 \times 2 = 8$ quantities
 - Pr[A=1|L=1, M=1, N=0], Pr[A=1|L=1, M=0, N=0]
 - Pr[A=1|L=0, M=1, N=0], Pr[A=1|L=0, M=0, N=0]
 - Pr[A=1|L=1, M=1, N=1], Pr[A=1|L=1, M=0, N=1]
 - Pr[A=1|L=0, M=1, N=1], Pr[A=1|L=0, M=0, N=1]
- ☐ Can calculate the sample proportions or fit a saturated logistic model with 8 parameters

logit Pr[
$$A=1|L,M,N$$
]=
 $\theta_0 + \theta_1 L + \theta_2 M + \theta_3 N + \theta_4 L M + \theta_5 L N + \theta_6 M N + \theta_7 L M N$

Parametric estimation of IP weights □ Now suppose the variable 'age' takes 50 values from 25 to 74 years □ need to estimate 2×2×50=200 probabilities Pr[A=1|L,M,N] □ Either by calculating sample proportions or fitting a logistic model with 200 parameters? ■ I don't think so. We have only ~1500 individuals □ Typical logistic model in this setting logit Pr[A=1|L,M,N] = θ₀ + θ₁L + θ₂M + θ₃N

Estimating IP weighted averages with many confounders (I)

- \square In our study, L is a vector of 9 confounders (4 continuous)
- \square Impossible to nonparametrically estimate the probability of treatment A for each combination of values of the variables in L
- ☐ We will need to use a nonsaturated model
 - e.g., a logistic regression model with a few parameters

IP weighting 25

Estimating IP weighted averages with many confounders (II)

- ☐ For example, a logistic model with
 - indicators for discrete variables
 - linear+quadratic terms for continuous variables
 - no product terms
- ☐ The predicted values from this model are estimates of the probability of treatment in each combination of values of the confounders
 - Then calculate each individual's corresponding IP weight, and the IP weighted averages of Y in the treated and the untreated

Parametric estimation of IP weights

Nonsaturated logistic model

Estimates of IP weighted average

of the outcome

- 5.2 kg in the treated
- 1.8 kg in the untreated

95% confidence interval can be obtained via bootstrapping or other methods

Difference: 3.4 kg See ipw_weightestimation.R, lines 44-57

- This difference would have a causal interpretation as $E[Y^{a=1}] E[Y^{a=0}]$ if
 - □ all confounders had been included in the IP weighting procedure
 - ☐ the model for treatment is correctly specified

IP weighting 27

Plan for today

- A. Estimation of the causal effect by inverse probability (IP) weighting
 - Nonparametric estimation of IP weights
 - Parametric estimation of IP weights
 - Positivity
- B. IP weighting vs. standardization

What about positivity? ☐ There are 4 white women aged 66 yrs ■ None of them quit smoking ☐ The nonparametric estimate of the probability of quitting is 0 ■ The weight W⁴ = 1/0 is undefined ☐ Positivity is violated: ■ Nonparametric IP weighting cannot be used to estimate average causal effect ■ Stratification and standardization cannot be used either See ipw_weightestimation.R, lines 60-61 IP weighting 29

Two types of violations of positivity □ Structural ■ Individuals with certain confounder values cannot possibly be treated (untreated) □ e.g., those off work cannot receive occupational exposures □ always zero cells at those values when conditioning on confounders □ Random ■ Our sample is not infinite so, if we stratify on many confounders, we'll start finding zero cells □ At different places in different samples

What can be done about positivity violations? □ Structural ■ No causal inferences for subsets with structural zeroes ■ Need to restrict the study population to the others □ Random ■ Use parametric models to smooth over the zeros ■ That is, to borrow information from other individuals

IP weighting

In our example ☐ Our nonsaturated logistic model will estimate the probability of quitting in white women aged 66 by using data from white women age 65 and 67, etc. ☐ If we go ahead with parametric estimation of IP weights in the presence of zero cells, we are effectively assuming random non-positivity

If we find no zero	on in our data atmentural positivity holds	~// O
if we find no zero	es in our data, structural positivity holds	₩0
True		
		0%
False		
		0%
	IP weighting Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	33

Plan for today

- A. Estimation of the causal effect by inverse probability (IP) weighting
 - Nonparametric estimation of IP weights
 - Parametric estimation of IP weights
 - Positivity
- B. IP weighting vs. standardization

IP weighting 35

IP weighting vs. standardization

- \square Both methods provide consistent estimators of the difference $E[Y^{a=1}] E[Y^{a=0}]$
 - under exchangeability, positivity, consistency
- ☐ Both methods are algebraically equivalent
 - when using nonparametric estimates
- ☐ The standardized averages are equal to the IP weighted averages
 - when using nonparametric estimates

IP weighting = Standardization

- ☐ But only in the nonparametric case
 - That is, only when saturated models are used
- ☐ Each method computes a different component of the joint distribution
 - IP weighting: f[A|L]
 - Standardization: f[L], f[Y|A,L]
- ☐ Even slight model misspecification will result in different estimates
 - because misspecification of different models will generally have different effects on the final estimate

IP weighting 37

IP weighting ≠ Standardization when modeling high-dimensional data

- ☐ Data may be high-dimensional because
 - many categorical variables
 - continuous variables
 - (time-varying variables)
 - all of the above
- ☐ We need to use parametric models to obtain effect estimates
 - IP weighting: estimate f[A|L]
 - Standardization: estimate f[Y|A,L], f[L]

So what's better? IP weighting or standardization?	
□ Not a simple answer	
We'll come back to this question after describing marginal structural models in the next lecture	
☐ But anyway, why choose?	
Use both methods to triangulate estimates	
IP weighting	39

What If. Chapter 12	
	What If. Chapter 12

n observation	nal studies, (conditional) exchangeability is	8
Expected		
		0%
Guaranteed		
		0%
Neither		
		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com	n/app

Progress report

- 1. Introduction to modeling
- 2. Stratified analysis:
 - outcome regression
 - propensity scores
- 3. Standardization
- 4. IP weighting

IP weighting