计算机组成原理 (第六讲-1)

厦门大学信息学院软件工程系 曾文华 2021年4月28日

第3篇 中央处理器

第6章 计算机的运算方法

第7章 指令系统

第8章 CPU 的结构和功能

第6章 计算机的运算方法

共81页

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元(ALU)

6.1 无符号数和有符号数

- 一、无符号数
- 二、有符号数
 - 1、原码
 - 2、补码
 - 3、反码
 - 4、移码

一、无符号数

寄存器的位数,反映无符号数的表示范围

8位 表示范围: 0~255(28-1)

二进制	十六进制	十进制
00000000	00H	O
0000001	01H	1
11111110	FEH	254
11111111	FFH	255

16 位 表示范围: 0~65535(216-1)

二进制	十六进制	十进制
0000000000000000000	0000H	O
0000000000000000	0001H	1
1111111111111110	FFFEH	65534
11111111111111111	FFFFH	65535

二、有符号数

 $\frac{1}{2}$ $\frac{1}{4}$ 1/8 1/16

0.5+0+0.125+0.0625

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+ 1100

- 1100

机器数

符号数字化的数

1 | 1100 | -12

小数点的位置

2. 原码表示法

$$[x]_{\mathbb{R}} = \left\{$$

$$2^n - x$$

$$2^n > x \ge 0$$

$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^{n} > x \ge 0 \\ 2^{n} - x & 0 \ge x > -2^{n} \end{cases}$$
 负数

真值

$$x = +1110$$

$$x = -1110$$

$$[x]_{\mathbb{R}} = 0$$
, 1110

$$[x]_{\text{g}} = 2^4 + 1110 = 1, 1110$$

小数

真值

如
$$x = +0.1101$$

$$x = -0.1101$$

$$x = +0.1000000$$

$$x = -0.1000000$$

$$[x]_{\mathbb{R}} = 0.1101$$

$$[x]_{\mathbb{R}} = 1 - (-0.1101) = 1.1101$$

$$[x]_{\mathbb{R}} = 0.1000000$$

$$[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$$

'."表示小数

(2) 举例

例 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 x?

解: 由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 已知 $[x]_{\mathbb{R}} = 1,1100$ 求 x?

解:由定义得

 $x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$

已知 $[x]_{\mathbb{R}} = 0.1101$ 求 x? 例

解: 根据 定义 : $[x]_{\mathbb{R}} = 0.1101$

$$x = +0.1101$$

解: 设
$$x = +0.0000$$

$$x = -0.0000$$

同理,对于整数

$$[+0.0000]_{\text{g}} = 0.0000$$

$$[-0.0000]_{\text{\tiny \bar{\tiny \mathbb{R}}$}} = 1.0000$$

$$[+0]_{\text{g}} = 0,0000$$
 $[-0]_{\text{g}} = 1,0000$

$$[-0]_{\mathbb{R}} = 1,0000$$

- 8位二进制数整数
 - 原码的表示范围是: -127 ~ +127

真值	原码
-127	1,111111
-126	1,1111110
-1	1,0000001
-0	1,0000000
+0	0,0000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

- 8位二进制数小数
 - 原码的表示范围是: -127/128 ~ +127/128

	ਹਿਵੀਂ ਵਾਂਦੀ
真值	原码
-127/128	1.1111111
-126/128	1.1111110
	······································
-1/128	1.0000001
-0	1.0000000
+0	0.000000
+1/128	0.0000001
	······································
+126/128	0.1111110
+127/128	0.1111111

3. 补码表示法

(1) 补数的概念

将时钟从6点拨回到3点有两种方法

顺时针

可见-3可用+9代替

称 + 9 是 - 3 以 12 为模的 补数

记作
$$-3 \equiv +9$$
 ($-3+12$) (mod 12)

一个负数加上"模"即得该负数的补数

(2) 正数的补数即为其本身

(3) 补码定义

正数

如 x = +1010

$$[x]_{\mbox{k}\mbox{\backslash}} = 0.1010$$

负数

$$[x]_{n} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

正数

如

$$x = +0.1110$$

$$[x]_{\nmid h} = 0.1110$$

负数

0.25 = -0.75 + 1

(4) 求补码的快捷方式

$$[x]_{\mathbb{R}} = 1,1010$$
 1010取反为0101,0101+1=0110

= 1,0110

当真值为负时,补码可用原码除符号位外每位取反,末位加1求得 ^{负数的补码为"取反加1"}

已知 $[x]_{*} = 0.0001$

由定义得
$$x = +0.0001$$

已知 $[x]_{*} = 1.0001$

由定义得 解:

$$x = [x]_{\nmid h} - 2$$

= 1.0001 - 10.0000

$$= -0.1111$$

取反加1

 $[x]_{36} = 1.0001$

取反: 1110

加1: 1110+1=1111

例 6.7

已知 $[x]_{i} = 1,1110$

求 x?

解: 由定义得

$$x = [x]_{\frac{1}{2}} - 2^{4+1}$$

$$= 1,1110 - 100000$$

$$= -0010$$

取反加1

 $[x]_{3} = 1,1110$

取反: 0001

加1: 0001+1=0010

练习 求下列真值的补码

真值	$[x]_{ eqh}$	[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = 0.0000 [+ 0]_{3} = [-$	0.0000 _∤ ≰[0	0.0000
x = -0.0000	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]**	$= \begin{cases} x & 1 > x \\ 2+x & 0 > x \end{cases}$	$z \ge 0$ $z \ge -1 \pmod{2}$

 $[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$

■ 8位二进制数整数

■ 原码的表示范围是: -127 ~ +127

▶ 补码的表示范围是: -128 ~ +127

真值	原码
-127	1,111111
-126	1,1111110
-1	1,0000001
-0	1,0000000
+0	0,0000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

真值	补码
-128	1,000000
-127	1,000001
-126	1,0000010
-1	1,111111
-0	0,000000
+0	0,000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

■ 8位二进制数小数

■ 原码的表示范围是: -127/128 ~ +127/128

▶ 补码的表示范围是: -1 ~ +127/128

真值	原码
-127/128	1.1111111
-126/128	1.1111110
-1/128	1.0000001
-0	1.0000000
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

真值	补码
-1	1.000000
-127/128	1.000001
-126/128	1.0000010
••••••	
-1/128	1,1111111
-0	0.0000000
+0	0.0000000
+1/128	0.000001
+126/128	0.1111110
+127/128	0 1111111

4. 反码表示法

如
$$x = +1101$$
 $x = -1101$
$$[x]_{\overline{\bowtie}} = 0,1101$$

$$[x]_{\overline{\bowtie}} = (2^{4+1}-1)-1101$$

$$= 11111-1101$$

$$= 1,0010$$

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

如
$$x = +0.1101$$
 $x = -0.1010$ $[x]_{\overline{\bowtie}} = 0.1101$ $[x]_{\overline{\bowtie}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ $= 1.0101$

例 已知
$$[x]_{\mathbb{Z}} = 0,1110$$
 求 x

解: 由定义得 x = + 1110

例 已知
$$[x]_{\nabla} = 1,1110$$
 求 x

解: 由定义得
$$x = [x]_{\mathbb{Z}} - (2^{4+1} - 1)$$

= 1,1110 -11111

= -0001

例 求 0 的反码

解: 设
$$x = +0.0000$$

$$[+0.0000]_{\mathbb{R}} = 0.0000$$

x = -0.0000 $[-0.0000]_{\Xi} = 1.1111$

同理,对于整数
$$[+0]_{\mathbb{Z}} = 0,0000$$
 $[-0]_{\mathbb{Z}} = 1,1111$

$$\therefore \quad [+0]_{\mathbb{Z}} \neq [-0]_{\mathbb{Z}}$$

■ 8位二进制数整数

■ 原码的表示范围是: -127 ~ +127 ■ 补码的表示范围是: -128 ~ +127 ■ 反码的表示范围是: -127 ~ +127

真值	原码
-127	1,111111
-126	1,1111110
-1	1,0000001
-0	1,0000000
+0	0,0000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

真值	补码
-128	1,0000000
-127	1,000001
-126	1,0000010
-1	1,111111
-0	0,000000
+0	0,000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

古法	長 朝
真值 -127	反码 1,0000000
-126	1,0000001
•••••••	••••••
-1	1,1111110
-0	1,1111111
+0	0,0000000
+1	0,0000001
	······································
+126	0,1111110
+127	0,1111111

■ 8位二进制数小数

■ 原码的表示范围是: -127/128 ~ +127/128

■ 补码的表示范围是: -1 ~ +127/128

■ 反码的表示范围是: -127/128 ~ +127/128

真值	原码
-127/128	1.1111111
-126/128	1.1111110
-1/128	1.0000001
-0	1.0000000
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

真值	补码
-1	1.0000000
-127/128	1.000001
-126/128	1.0000010
-1/128	1.111111
-0	0.0000000
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

真值	反码
-127/128	1.0000000
-126/128	1.0000001
-1/128	1.1111110
-0	1.1111111
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

三种机器数的小结

- 录 最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
 - ▶ 对于正数,原码 = 补码 = 反码
 - > 对于负数,符号位为1,其数值部分:

原码除符号位外每位取反末位加1→补码 原码除符号位外每位取反一反码

例6.1 设机器数字长为8位(其中1位为符号位)对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	± 0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
•	•	•	•	•
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
•	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

机器数

真值 (无符号数)

真值(原码)

真值(补码)

真值(反码)

例6.1 设机器数字长为8位(其中1位为符号位)对于小数,当其分别代表无符号数、原码、补码和 反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
0.0000000	0	+0	± 0	+0
0.0000001	1/128	+1/128	+1/128	+1/128
			_	_
0.0000010	2/128	+2/128	+2/128	+2/128
:	•	•	•	•
•	•	•	:	•
0.1111111	127/128	+127/128	+127/128	+127/128
1.0000000	1	-0	-1	-127/128
1.0000001	129/128	-1/128	-127/128	-126/128
•	•	•	•	•
:	•	•	•	•
1.1111101	253/128	-125/128	-3/128	-2/128
1.1111110	254/128	-126/128	-2/128	-1/128
1.1111111	255/128	-127/128	-1/128	-0

机器数

真值 (无符号数)

真值 (原码)

真值(补码)

真值(反码)

例如: [y]_补=0,1111010, 求[-y]_补

解: y=1111010, -y=-1111010, $[-y]_{*}=1,0000110$

 $[-y]_{*}=[y]_{*}$ 的每位求反+1=1,0000101+1=1,0000110

例如: [y]_补=1,0000110, 求[-y]_补

解: y=-1111010, -y=1111010, $[-y]_{*}=0,1111010$

 $[-y]_{i}=[y]_{i}$ 的每位求反+1=0,1111001+1=0,1111010

5. 移码表示法

补码表示很难直接判断其真值大小

如土进

二进制

补码

$$x = +21$$
 $+10101$
 $0,10101$
 \ddagger
 $x = -21$
 -10101
 $1,01011$
 \ddagger

如果:

$$x + 2^{5}$$

(1) 移码定义

$$[x]_{38} = 2^n + x \quad (2^n > x \ge -2^n)$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如 x = 10100

$$[x]_{38} = 2^5 + 10100 = 1,10100$$

如 x = -10100

$$[x]_{38} = 2^5 - 10100 = 0,01100$$

(2) 移码和补码的比较

$$-$$
设 $x = +1100100$

$$[x]_{8} = 2^{7} + 1100100 = 1,1100100$$

$$[x]_{?} = 0,1100100$$

设
$$x = -1100100$$

$$[x]_{38} = 2^7 - 1100100 = 0,0011100$$

$$[x]_{36} = 1,0011100$$

补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

4	真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-32	-100000	100000	00000	0
-31	- 11111	$1\ 0\ 0\ 0\ 0\ 1$	000001	1
-30	- 11110	100010	000010	2
	:	•		
-1	- 00001	111111	011111	31
0	± 00000	000000	100000	32
1	+ 00001	$0\ 0\ 0\ 0\ 0\ 1$	100001	33
2	+ 00010	$0\ 0\ 0\ 0\ 1\ 0$	100010	34
	•	•		
+30	+ 11110	$0\ 1\ 1\ 1\ 1\ 0$	111110	62
+31	+ 11111	011111	111111	63

(4) 移码的特点

当
$$x = 0$$
时 $[+0]_{8} = 2^{5} + 0 = 1,00000$ $[-0]_{8} = 2^{5} - 0 = 1,00000$

∴
$$[+0]_{8} = [-0]_{8}$$

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全 0 用移码表示浮点数的阶码 能方便地判断浮点数的阶码大小

8位二进制数整数

原码的表示范围是: -127 ~ +127
补码的表示范围是: -128 ~ +127
反码的表示范围是: -127 ~ +127

■ 移码的表示范围是: -128 ~ +127

,, c. ===	
真值	原码
-127	1,111111
-126	1,1111110
-1	1,0000001
-0	1,0000000
+0	0,0000000
+1	0,0000001
+126	0,1111110
+127	0,1111111

真值 -128 -127 -126	补码 1,0000000 1,000001 1,0000010	
-120	1,111111	
-0 +0 +1	0,0000000 0,0000000 0,0000001	
+126 +127	0,1111110 0,1111111	

		具伹
真值	反码	-128
-127	1,0000000	-127
-126	1,0000001	-126
	,	
•••••		
-1	1,1111110	-1
- -0	1,1111111	-0
T.	•	
+O	0,0000000	+0
-1	0,0000001	+1
-126	0,1111110	+126
-127	0,1111111	+127
	•	

真值	移码
-128	0,0000000
-127	0,000001
-126	0,0000010
-1	0,111111
-0	0,000000
+0	0,000000
+1	1,0000001
+126	1,1111110
+127	1,1111111

■ 8位二进制数小数

■ 原码的表示范围是: -127/128 ~ +127/128

■ 补码的表示范围是: -1 ~ +127/128

■ 反码的表示范围是: -127/128 ~ +127/128

小数没有移码

真值	原码
-127/128	1.1111111
-126/128	1.1111110
-1/128	1.0000001
-0	1.0000000
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

真值	补码
-1	1,0000000
-127/128	1.0000001
-126/128	1.0000010
-120/120	1.0000010
-1/128	1,1111111
-0	0.0000000
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111
.12//120	0.111111

真值	反码
-127/128	1.0000000
-126/128	1.0000001
-1/128	1.1111110
-0	1.1111111
+0	0.0000000
+1/128	0.0000001
+126/128	0.1111110
+127/128	0.1111111

有符号数

■ 真值(十进制、二进制、十六进制)

$$+10 = +1010$$

$$-10 = -1010$$

$$+0.625 = 0.1010$$

$$-0.625 = -0.1010$$

■ 机器数(二进制、十六进制)

$$+0.1010 = 0.1010$$

$$+0.1010 = 0.1010$$

$$-0.1010 = 1.1010$$

$$-1010 = 1,0110$$

$$-0.1010 = 1.0110$$

$$-1010 = 1,0101$$

$$-0.1010 = 1.0101$$

$$-1010 = 0,0110$$

小数没有移码

6.2 数的定点表示和浮点表示

- 一、定点表示(定点数)
- 二、浮点表示(浮点数)
- 三、定点数和浮点数的比较
- 四、举例
- 五、IEEE 754 标准

一、定点表示

小数点按约定方式标出

纯小数

或

定点机

小数定点机

整数定点机

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

$$-1 \sim +(1-2^{-n})$$

$$-2^n \sim +(2^n-1)$$

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

二、浮点表示

电子的质量=9.1X10⁻²⁸g=0.91X10⁻²⁷g 太阳的质量=1.989X10³³g =0.1989X10³⁴g

 $N = S \times r^{j}$

浮点数的一般形式

5尾数 *j* 阶码 r 基数 (基值)

计算机中 r 取 2、4、8、16 等

当
$$r=2$$
 $N=11.0101$

= 0.110101×2¹⁰ 规格化数

 $= 1.10101 \times 2^{1}$

 $= 1101.01 \times 2^{-10}$

 $= 0.00110101 \times 2^{100}$

计算机中 S 小数、可正可负 i 整数、可正可负

0.110101×2^{10}

1. 浮点数的表示形式

0 10 0 110101

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

本章的重点(1)

上溢 阶码 > 最大阶码

下溢 阶码 < 最小阶码 按 机器零 处理

上溢 下溢 负数区 最大正数 最小负数(绝对值最大负数) $-2^{(2^{m}-1)}\times (1-2^{-n})$ $2^{(2^{m}-1)} \times (1-2^{-n})$ 最小正数 $2^{15} \times (1-2^{-10})$ $-2^{15} \times (1-2^{-10})$ $2^{-(2^m-1)} \times 2^{-n}$ $2^{-15} \times 2^{-10}$

最大负数(绝对值最小负数)

$$-2^{-(2^{m}-1)} \times 2^{-n}$$
 $-2^{-15} \times 2^{-10}$

设 m=4 n=10

练习

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

$$-2^{(2^{m}-1)}\times(1-2^{-n})$$
 $2^{(2^{m}-1)}\times(1-2^{-n})$

$$2^{m}-1=15$$
 m=4

$$n = 24 - 4 - 1 - 1 = 18$$

阶码、尾数分别取4位和18位

X,XXXX

X . XXXXXXXXXXXXXXXXX

1位 3位

1位

19位

表示范围不够

X,XXXX

X . XXXXXXXXXXXXXXXXX

1位 5位

1位

17位

精度减少

3. 浮点数的规格化形式

本章的重点(2)

电子的质量=9.1X10⁻²⁸g

非规格化表示

电子的质量=0.91X10-27q

规格化表示

太阳的质量=0.01989X1035g

非规格化表示

太阳的质量=0.1989X10³⁴g

规格化表示

N = 11.0101

非规格化表示

 $N = 0.110101 \times 2^{10}$

规格化表示

M = 0.0110101

非规格化表示

 $M = 0.110101 \times 2^{-1}$

规格化表示

十进制数

尾数为[0.1 1)

二进制数

尾数为[0.5 1)

本章的重点(2)

4. 浮点数的规格化

右规 尾数右移 1 位, 阶码加 1

左规 尾数左移 1 位, 阶码减 1

例:

右规 尾数右移 2 位, 阶码加 2

N = 11.0101

非规格化表示

 $N = 0.110101 \times 2^{10}$

规格化表示

例:

左规 尾数左移1位,阶码减1

M = 0.0110101

非规格化表示

 $M = 0.110101 \times 2^{-1}$

规格化表示

例如:

设
$$m=4$$
, $n=10$, $r=2$

尾数规格化后的浮点数表示范围

最大正数

$$2^{+1111} \times 0.11111111111$$

$$=2^{15}\times(1-2^{-10})$$

最小正数

$$2^{-1111} \times 0.10000000000$$

$$=2^{-15}\times 2^{-1}=2^{-16}$$

最大负数
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

$$-(1-2^{-10})$$

 $2^{+1111} \times (-0.111111111111) = -2^{15} \times (1-2^{-10})$

X,XXXX

X . XXXXXXXXXX

1位 4位

1位

10位

尾数规格化后的浮点数表示范围

X,XXXX

X . XXXXXXXXXX

1位 4位

1位

10位

非规格化的浮点数表示范围

浮点数规格化

■尾数:

■十进制数: 绝对值 >= 0.1 [0.1 1)

■二进制数:绝对值 >= 0.5 [0.5 1)

■尾数:

■正数:

■原码、反码、补码: **O**(符号位) **1**(最高有效位) 相反

X=0.1100 $X_{ij}=0.1100$ $X_{ij}=0.1100$ $X_{ij}=0.1100$

■负数:

■原码: **1**(符号位) **1**(最高有效位) ^{相同}

■反码、补码: 1 (符号位) O (最高有效位) 相反

X = -0.1100 $X_{\bar{g}} = 1.1100$ $X_{\bar{\chi}} = 1.0100$ $X_{\bar{\zeta}} = 1.0011$

三、定点数和浮点数的比较

- 浮点数的表示范围比定点数大
- 浮点数的精度比定点数高
- 浮点运算步骤比定点运算步骤多、运算速度比定点运算低、运算线路比定点运算的复杂
- 溢出判断:浮点数是对规格化数的阶码进行判断,定点数是对数值本身进行判断

四、举例

例 6.3 将 $+\frac{19}{128}$ 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

例6.4 将 -58 表示成二进制定点数和浮点数,并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

二进制形式

x = -111010

定点表示

x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中 11位

 $[x]_{\text{ff}} = 1,0000111010$

 $[x]_{3} = 1,1111000110$

 $[x]_{\overline{\bowtie}} = 1, 1111000101$

移码为补码的符号位取反

浮点机中 井16位

 $[x]_{\text{\text{\overline{B}}}} = 0,0110; 1.1110100000$

 $[x]_{3} = 0,0110; 1.0001100000$

 $[x]_{\mathbf{x}} = 0,0110; 1.0001011111$

 $[x]_{\text{max}} = 1,0110; 1.0001100000$

例6.5 写出对应下图所示的浮点数的补码形式。设n=10, m=4, 阶符、数符各取 1位。

解:

真值

最大正数 $2^{15} \times (1-2^{-10})$

最小正数 2⁻¹⁵× 2⁻¹⁰

最大负数 $-2^{-15} \times 2^{-10}$

最小负数 $-2^{15} \times (1-2^{-10})$

阶码和尾数均为补码

0,1111; 0.1111111111

1,0001; 0.0000000001

1,0001; 1.1111111111

0,1111; 1.0000000001

■ 例6.6: 设浮点数字长为16位,其中阶码为5位(含1位阶符),尾数为11位(含1位数符),写出

-53/512对应的浮点规格化数的原码、补码、反码和 阶码用移码、尾数用补码的形式。

解: x=-53/512=-0.000110101

 $=2^{-11}X(-0.1101010000)$

左移3位,阶码减3

[x]_原 =1,0011; 1.1101010000

 $[x]_{k}$ =1,1101; 1.0010110000

 $[x]_{\bar{x}}$ =1,1100; 1.0010101111

[x]_{移码,尾补} =0,1101; 1.0010110000

共16位

机器零

- 当浮点数尾数为0时,不论其阶码为何值 按机器零处理
 - 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

$$\times, \times \times \times \times;$$
 0.00 ··· 0

(阶码 = -16) 1, 0 0 0 0;
$$\times . \times \times$$
 ··· ×

当阶码用移码, 尾数用补码表示时, 机器零为 0,0000; 或 0.00 ··· 0

有利于机器中"判0"电路的实现

这就是为什么阶码要 用移码表示的原因

五、IEEE 754 标准

尾数为规格化表示

非 "0"的有效位最高位为 "1"(隐含)

	名	号位 S	阶码	尾数	总位数
単精度	豆实数	1	8	23	32
双精度	ć 实数	1	11	52	64
扩展精度	岛时实数	1	15	64	80

双精度(长实数): 偏移的阶码是"+1023"(011 1111 1111)

扩展精度(临时实数): 偏移的阶码是"+16383"(011 1111 1111 1111)

实数178.125的表示:

单精度(短实数) 32位

- 二进制数: 10110010.001
- 二进制浮点表示: 1.0110010001X2¹¹¹

右移7位,阶码加7

■ 短实数表示:

7FH=127

- 符号: 0
- 偏移的阶码: 10000110 (=00000111+01111111)

隐含

IEEE 754 标准与前面的浮点数表示方式不一样!

例子: -9.625用单精度(短实数)IEEE 754怎么表示(十六进 制)?

7FH=127

解: -9.625表示为二进制数:

 $-1001.101 = -1.001101*2^{11}$

短实数表示:

符号位:1

偏移的阶码: 11+0111 1111=1000 0010

隐含

1000 0010 00110100000000000000000

1 Δ 0 0

 $-9.625 = 0 \times C11A0000H$

定点数(定点机)

- 定点整数(纯整数)
- 定点小数(纯小数)

■ 浮点数的表示形式

■ 浮点数的规格化 本章的重点

■尾数:

■十进制数: 绝对值 >= 0.1

[0.1 1)

■二进制数: 绝对值 >= 0.5

0.5 1

■尾数:

■原码、反码、补码: **0** (符号位) **1** (最高有效位)

X=0.1100 X_№=0.1100 X₁=0.1100 X₁=0.1100

■负数:

■原码:

1 (符号位) 1 (最高有效位)

1 (符号位) 0 (最高有效位) ■反码、补码:

X=-0 1100

X_E=1.1100 X_k=1.0100 X_E=1.0011

第10次作业——习题(P289-293)

- **6.4**
- **6.5**
- **6.9**
- **6.11**
- **6.12**
- **6.14**

- **6.15**
- **6.16**

关于作业的提交

- **1**周内必须提交(上传到学院的FTP服务器上),否则认为是迟交作业;如果期末仍然没有提交,则认为是未提交作业
 - 作业完成情况成绩=第1次作业提交情况*第1次作业评分+第2次作业提交情况*第2次作业评分+……+第N次作业提交情况*第N次作业评分
 - 作业评分: A(好)、B(中)、C(差)三挡
 - 作业提交情况:按时提交(1.0)、迟交(0.5)、未提交(0.0)
- 请采用电子版的格式(Word文档)上传到FTP服务器上,文件 名取"学号+姓名+第X次作业.doc"
 - 例如: 11920192203642+袁佳哲+第8次作业.doc
- 第10次作业提交的截止日期为: 2021年5月7日晚上24点

Thanks