QuadOpt v1.0

Generated by Doxygen 1.8.9.1

Tue May 26 2015 16:54:50

Contents

1	Data	Structu	ıre Index		1
	1.1	Data S	tructures		1
2	File	Index			3
	2.1	File Lis	t		3
3	Data	Structu	ıre Docun	nentation	5
	3.1	matrix	Struct Refe	erence	5
		3.1.1	Detailed	Description	5
		3.1.2	Field Doo	cumentation	5
			3.1.2.1	columns	5
			3.1.2.2	diagonals	5
			3.1.2.3	rows	5
			3.1.2.4	size	5
			3.1.2.5	start	5
	3.2	probler	n Struct R	eference	5
		3.2.1	Detailed	Description	6
		3.2.2	Field Doo	cumentation	6
			3.2.2.1	A	6
			3.2.2.2	accuracy	6
			3.2.2.3	active_set	6
			3.2.2.4	b	7
			3.2.2.5	check_time	7
			3.2.2.6	constraints_count	7
			3.2.2.7	E	7
			3.2.2.8	equality_count	7
			3.2.2.9	F	7
			3.2.2.10	g	7
			3.2.2.11	gk	7
			3.2.2.12	h	7
			3.2.2.13	has_solution	7
			3.2.2.14	has start point	7

iv CONTENTS

			3.2.2.15	inequality_count	7
			3.2.2.16	is_sparse	8
			3.2.2.17	lagrange	8
			3.2.2.18	max_iter	8
			3.2.2.19	max_micro_sec	8
			3.2.2.20	p	8
			3.2.2.21	Q	8
			3.2.2.22	q	8
			3.2.2.23	Q_inv	8
			3.2.2.24	solution	8
			3.2.2.25	solution_value	8
			3.2.2.26	sparse_A	8
			3.2.2.27	sparse_E	8
			3.2.2.28	sparse_F	8
			3.2.2.29	sparse_Q	8
			3.2.2.30	sparse_Q_inv	8
			3.2.2.31	step	8
			3.2.2.32	variable_count	8
			3.2.2.33	z	9
			3.2.2.34	z0	9
	3.3	sparse	_matrix St	ruct Reference	9
		3.3.1	Detailed	Description	9
		3.3.2	Field Doo	cumentation	9
			3.3.2.1	A	9
			3.3.2.2	cA	9
			3.3.2.3	columns	9
			3.3.2.4	rA	9
			3.3.2.5	rows	9
			3.3.2.6	size	9
	3.4	work_s	et Struct F	Reference	9
		3.4.1	Detailed	Description	10
		3.4.2	Field Doo	cumentation	10
			3.4.2.1	count	10
			3.4.2.2	data	10
			3.4.2.3	max_count	10
4	File	Docume	entation		11
•	4.1				11
		4.1.1			11
			4.1.1.1		11

CONTENTS

4.2	TDDD	77/matrixlil	brary/include/matLib.h File Reference	1
	4.2.1	Macro De	efinition Documentation	3
		4.2.1.1	DOUBLE	3
		4.2.1.2	FORMAT_STRING 1	3
		4.2.1.3	PRECISION	3
	4.2.2	Typedef I	Documentation	3
		4.2.2.1	matrix	3
		4.2.2.2	value	3
	4.2.3	Function	Documentation	3
		4.2.3.1	add_matrices	3
		4.2.3.2	add_matrices_with_return	4
		4.2.3.3	add_rows	4
		4.2.3.4	check_boundaries	4
		4.2.3.5	compare_elements	4
		4.2.3.6	compare_matrices	4
		4.2.3.7	create_identity_matrix	4
		4.2.3.8	create_matrix	4
		4.2.3.9	create_zero_matrix	4
		4.2.3.10	crout	4
		4.2.3.11	derivate_matrix_with_return	4
		4.2.3.12	divide_column_with_scalar	4
		4.2.3.13	divide_matrix_with_scalar	4
		4.2.3.14	divide_row_with_scalar	5
		4.2.3.15	dot_product	5
		4.2.3.16	first_nonezero_in_column_index	5
		4.2.3.17	first_nonezero_in_row_index	5
		4.2.3.18	forward_backward	5
		4.2.3.19	free_matrix	5
		4.2.3.20	gauss_jordan	5
		4.2.3.21	gauss_jordan_solver	5
		4.2.3.22	get_column_vector	5
		4.2.3.23	get_column_vector_with_return	5
		4.2.3.24	get_determinant	5
		4.2.3.25	get_diagonal	5
		4.2.3.26	get_inverse	6
		4.2.3.27	get_inverse_of_2x2	6
		4.2.3.28	get_inverse_of_2x2_with_return	6
		4.2.3.29	get_matrix_with_only_pivots	6
		4.2.3.30	get_row_vector	6
		4.2.3.31	get_row_vector_with_return	6

vi CONTENTS

4.2.3.32	get_sub_matrix	16
4.2.3.33	get_value	16
4.2.3.34	get_value_without_check	16
4.2.3.35	get_zero_matrix	16
4.2.3.36	insert_array	16
4.2.3.37	insert_column_vector	16
4.2.3.38	insert_row_vector	16
4.2.3.39	insert_sub_matrix	17
4.2.3.40	insert_value	17
4.2.3.41	insert_value_without_check	17
4.2.3.42	is_matrix	17
4.2.3.43	is_non_negative_diagonal_matrix	17
4.2.3.44	is_non_negative_matrix	17
4.2.3.45	is_zero_matrix	17
4.2.3.46	largest_element_in_column_index	17
4.2.3.47	least_square	17
4.2.3.48	matlib_fabs	17
4.2.3.49	matrix_contains	17
4.2.3.50	matrix_copy	17
4.2.3.51	matrix_copy_data	17
4.2.3.52	min	18
4.2.3.53	multiply_column_with_scalar	18
4.2.3.54	multiply_matrices	18
4.2.3.55	multiply_matrices_naive	18
4.2.3.56	multiply_matrices_optimized	18
4.2.3.57	multiply_matrices_with_return	18
4.2.3.58	multiply_matrix_with_scalar	18
4.2.3.59	multiply_row_with_scalar	18
4.2.3.60	print_matrix	18
4.2.3.61	product_of_column	18
4.2.3.62	product_of_row	18
4.2.3.63	smallest_element_in_column_index	18
4.2.3.64	solve_linear	18
4.2.3.65	solve_linear_with_return	19
4.2.3.66	strassen_matrices	19
4.2.3.67	strassen_matrices_with_return	19
4.2.3.68	subtract_matrices	19
4.2.3.69	subtract_matrices_with_return	19
4.2.3.70	sum_of_column	19
4.2.3.71	sum_of_row	19

CONTENTS vii

		4.2.3.72	switch_rows	19
		4.2.3.73	transform_to_reduced_row_echelon_form	19
		4.2.3.74	transpose_matrix	19
		4.2.3.75	transpose_matrix_with_return	19
4.3	TDDD	77/matrixlil	brary/include/sparse_lib.h File Reference	19
	4.3.1	Typedef I	Documentation	20
		4.3.1.1	sparse_matrix	20
	4.3.2	Function	Documentation	20
		4.3.2.1	conjugate_gradient	20
		4.3.2.2	copy_sparse_matrix	20
		4.3.2.3	create_empty_sparse_matrix	20
		4.3.2.4	create_sparse_matrix	20
		4.3.2.5	free_sparse_matrix	20
		4.3.2.6	matrix_sparsity	20
		4.3.2.7	multiply_sparse_matrix_matrix	20
		4.3.2.8	multiply_sparse_matrix_vector	21
		4.3.2.9	print_sparse_matrix	21
		4.3.2.10	sparse_to_normal	21
		4.3.2.11	transpose_sparse_matrix	21
		4.3.2.12	transpose_sparse_matrix_with_return	21
4.4	TDDD	77/matrixlil	brary/src/matLib.c File Reference	21
	4.4.1	Function	Documentation	23
		4.4.1.1	add_matrices	23
		4.4.1.2	add_matrices_with_return	23
		4.4.1.3	add_rows	23
		4.4.1.4	check_boundaries	23
		4.4.1.5	compare_elements	
			ocmparo_ciomente	23
		4.4.1.6	compare_matrices	23 23
		4.4.1.6 4.4.1.7	. –	
			compare_matrices	23
		4.4.1.7	compare_matrices	23 23
		4.4.1.7 4.4.1.8	compare_matrices	23 23 23
		4.4.1.7 4.4.1.8 4.4.1.9	compare_matrices	23 23 23 23
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10	compare_matrices	23 23 23 23 23
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.1.11	compare_matrices create_identity_matrix create_matrix create_zero_matrix crout derivate_matrix_with_return	23 23 23 23 23 23
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.1.11 4.4.1.12	compare_matrices create_identity_matrix create_matrix create_zero_matrix crout derivate_matrix_with_return divide_column_with_scalar	23 23 23 23 23 23 23
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.1.11 4.4.1.12 4.4.1.13	compare_matrices create_identity_matrix create_matrix create_zero_matrix crout derivate_matrix_with_return divide_column_with_scalar divide_matrix_with_scalar	23 23 23 23 23 23 23 24
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.1.11 4.4.1.12 4.4.1.13 4.4.1.14	compare_matrices create_identity_matrix create_matrix create_zero_matrix crout derivate_matrix_with_return divide_column_with_scalar divide_matrix_with_scalar divide_row_with_scalar	23 23 23 23 23 23 23 24 24
		4.4.1.7 4.4.1.8 4.4.1.9 4.4.1.10 4.4.1.11 4.4.1.12 4.4.1.13 4.4.1.14 4.4.1.15	compare_matrices create_identity_matrix create_matrix create_zero_matrix crout derivate_matrix_with_return divide_column_with_scalar divide_matrix_with_scalar divide_row_with_scalar dot_product	23 23 23 23 23 23 23 24 24 24

viii CONTENTS

4.4.1.19	free_matrix	24
4.4.1.20	gauss_jordan	24
4.4.1.21	gauss_jordan_solver	24
4.4.1.22	get_column_vector	24
4.4.1.23	get_column_vector_with_return	24
4.4.1.24	get_determinant	24
4.4.1.25	get_diagonal	25
4.4.1.26	get_inverse	25
4.4.1.27	get_inverse_of_2x2	25
4.4.1.28	get_inverse_of_2x2_with_return	25
4.4.1.29	get_matrix_with_only_pivots	25
4.4.1.30	get_row_vector	25
4.4.1.31	get_row_vector_with_return	25
4.4.1.32	get_sub_matrix	25
4.4.1.33	get_value	25
4.4.1.34	get_value_without_check	25
4.4.1.35	get_zero_matrix	25
4.4.1.36	insert_array	25
4.4.1.37	insert_column_vector	25
4.4.1.38	insert_row_vector	26
4.4.1.39	insert_sub_matrix	26
4.4.1.40	insert_value	26
4.4.1.41	insert_value_without_check	26
4.4.1.42	is_matrix	26
4.4.1.43	is_non_negative_diagonal_matrix	26
4.4.1.44	is_non_negative_matrix	26
4.4.1.45	is_zero_matrix	26
4.4.1.46	largest_element_in_column_index	26
4.4.1.47	least_square	26
4.4.1.48	matlib_fabs	26
4.4.1.49	matrix_contains	26
4.4.1.50	matrix_copy	26
4.4.1.51	matrix_copy_data	27
4.4.1.52	min	27
4.4.1.53	multiply_column_with_scalar	27
4.4.1.54	multiply_matrices	27
4.4.1.55	multiply_matrices_naive	27
4.4.1.56	multiply_matrices_optimized	27
4.4.1.57	multiply_matrices_with_return	27
4.4.1.58	multiply_matrix_with_scalar	27

CONTENTS

		4.4.1.59	multiply_row_with_scalar	27
		4.4.1.60	print_matrix	27
		4.4.1.61	product_of_column	27
		4.4.1.62	product_of_row	27
		4.4.1.63	smallest_element_in_column_index	27
		4.4.1.64	solve_linear	28
		4.4.1.65	solve_linear_with_return	28
		4.4.1.66	strassen_matrices	28
		4.4.1.67	strassen_matrices_with_return	28
		4.4.1.68	subtract_matrices	28
		4.4.1.69	subtract_matrices_with_return	28
		4.4.1.70	sum_of_column	28
		4.4.1.71	sum_of_row	28
		4.4.1.72	switch_rows	28
		4.4.1.73	transform_to_reduced_row_echelon_form	28
		4.4.1.74	transpose_matrix	28
		4.4.1.75	transpose_matrix_with_return	28
4.5	TDDD	77/matrixlik	brary/src/sparse_lib.c File Reference	28
	4.5.1	Function	Documentation	29
		4.5.1.1	conjugate_gradient	29
		4.5.1.2	copy_sparse_matrix	29
		4.5.1.3	create_empty_sparse_matrix	29
		4.5.1.4	create_sparse_matrix	29
		4.5.1.5	free_sparse_matrix	29
		4.5.1.6	matrix_sparsity	29
		4.5.1.7	multiply_sparse_matrix_matrix	29
		4.5.1.8	multiply_sparse_matrix_vector	29
		4.5.1.9	print_sparse_matrix	30
		4.5.1.10	sparse_to_normal	30
		4.5.1.11	transpose_sparse_matrix	30
		4.5.1.12	transpose_sparse_matrix_with_return	30
4.6	TDDD	77/quadop	t/include/problem.h File Reference	30
	4.6.1	Typedef I	Documentation	31
		4.6.1.1	problem	31
	4.6.2	Function	Documentation	31
		4.6.2.1	create_problem	31
		4.6.2.2	free_problem	31
		4.6.2.3	get_active_conditions	31
		4.6.2.4	get_active_conditions_rhs	31
		4.6.2.5	get_solution_value	31

CONTENTS

		4.6.2.6	get_sparse_active_conditions	31
		4.6.2.7	is_feasible_point	31
		4.6.2.8	print_problem	31
		4.6.2.9	print_solution	31
		4.6.2.10	time_to_exit	31
4.7	TDDD7	77/quadop	t/include/simplex.h File Reference	31
	4.7.1	Function	Documentation	32
		4.7.1.1	simplex_phase_1	32
4.8	TDDD7	77/quadop	t/include/solver.h File Reference	32
	4.8.1	Function	Documentation	32
		4.8.1.1	quadopt_solver	32
		4.8.1.2	remove_constraint	32
4.9	TDDD7	77/quadop	t/include/subproblem.h File Reference	32
	4.9.1	Function	Documentation	32
		4.9.1.1	solve_subproblem	32
4.10	TDDD7	77/quadop	t/include/trans_con.h File Reference	32
	4.10.1	Function	Documentation	33
		4.10.1.1	create_objective	33
		4.10.1.2	trans_dyn_cons	33
		4.10.1.3	trans_ineq_cons	33
4.11	TDDD7	77/quadop	t/include/work_set.h File Reference	33
	4.11.1	Typedef [Documentation	33
		4.11.1.1	work_set	33
	4.11.2	Function	Documentation	33
		4.11.2.1	work_set_append	33
		4.11.2.2	work_set_clear	34
		4.11.2.3	work_set_contains	34
		4.11.2.4	work_set_create	34
		4.11.2.5	work_set_free	34
		4.11.2.6	work_set_print	34
		4.11.2.7	work_set_remove	34
4.12	TDDD7	77/quadop	t/src/problem.c File Reference	34
	4.12.1	Function	Documentation	34
		4.12.1.1	create_problem	34
		4.12.1.2	fill_constraint_matrices	35
		4.12.1.3	free_problem	35
		4.12.1.4	get_active_conditions	35
		4.12.1.5	get_active_conditions_rhs	35
		4.12.1.6	get_solution_value	35
		4.12.1.7	get_sparse_active_conditions	35

CONTENTS xi

	4.12.1.8 is_feasible_p	oint		 	35
	4.12.1.9 print_problem			 	35
	4.12.1.10 print_solution			 	35
	4.12.1.11 time_to_exit			 	35
4.13 TDDD	7/quadopt/src/simplex.c	File Reference		 	35
4.13.1	Function Documentation	ı		 	36
	4.13.1.1 convert_geq_	to_leq		 	36
	4.13.1.2 create_basis			 	36
	4.13.1.3 insert_constra	aints		 	36
	4.13.1.4 insert_objecti	ve_function		 	36
	4.13.1.5 insert_simple	x_variables		 	36
	4.13.1.6 is_neg_tablea	au_row		 	36
	4.13.1.7 min_test			 	36
	4.13.1.8 neg_equality			 	36
	4.13.1.9 remove_varia	bles		 	36
	4.13.1.10 set_variables			 	36
	4.13.1.11 simplex_min			 	36
	4.13.1.12 simplex_phas	se_1		 	36
	4.13.1.13 split_eq_varia	ables		 	36
	4.13.1.14 split_ineq_va	riables		 	36
4.14 TDDD	7/quadopt/src/solver.c F	le Reference		 	36
4.14.1	Function Documentation	າ		 	37
	4.14.1.1 copy_solution			 	37
	4.14.1.2 fill_active_set			 	37
	4.14.1.3 prefill_set			 	37
	4.14.1.4 quadopt_solv	er		 	37
	4.14.1.5 remove_cons	traint		 	37
	4.14.1.6 take_step			 	37
4.15 TDDD	7/quadopt/src/subproble	m.c File Reference	э	 	37
4.15.1	Function Documentation	1		 	37
	4.15.1.1 KKT_sub			 	37
	4.15.1.2 KKT_sub_spa	arse		 	37
	4.15.1.3 range_space			 	37
	4.15.1.4 range_space	_sparse		 	37
	4.15.1.5 solve_subpro	blem		 	37
4.16 TDDD	7/quadopt/src/trans_con	.c File Reference		 	37
4.16.1	Function Documentation	ı		 	38
	4.16.1.1 create_object	ive		 	
	4.16.1.2 fix_g			 	
	4.16.1.3 insert_A_mat	rices		 	

xii CONTENTS

		4.16.1.4	insert_B_matrices	. 38
		4.16.1.5	insert_fx	. 38
		4.16.1.6	insert_identity_matrices	. 38
		4.16.1.7	insert_u_identity_matrices	. 38
		4.16.1.8	insert_x_identity_matrices	. 38
		4.16.1.9	trans_dyn_cons	. 38
		4.16.1.10	0 trans_ineq_cons	. 38
4.17	TDDD7	77/quadop	ot/src/work_set.c File Reference	. 38
	4.17.1	Function	Documentation	. 39
		4.17.1.1	work_set_append	. 39
		4.17.1.2	work_set_clear	. 39
		4.17.1.3	work_set_contains	. 39
		4.17.1.4	work_set_create	. 39
		4.17.1.5	work_set_free	. 39
		4.17.1.6	work_set_print	. 39
		11717	work not romayo	20

Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

matrix	5
problem	5
sparse_matrix	9
work_set	9

Data Structure Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

TDDD77/matlab/quadopt.c
TDDD77/matrixlibrary/include/matLib.h
TDDD77/matrixlibrary/include/sparse_lib.h
TDDD77/matrixlibrary/src/matLib.c
TDDD77/matrixlibrary/src/sparse_lib.c
TDDD77/quadopt/include/problem.h
TDDD77/quadopt/include/simplex.h
TDDD77/quadopt/include/solver.h
TDDD77/quadopt/include/subproblem.h
TDDD77/quadopt/include/trans_con.h
TDDD77/quadopt/include/work_set.h
TDDD77/quadopt/src/problem.c
TDDD77/quadopt/src/simplex.c
TDDD77/quadopt/src/solver.c
TDDD77/quadopt/src/subproblem.c
TDDD77/quadopt/src/trans_con.c
TDDD77/quadopt/src/work_set.c

File Index

Chapter 3

Data Structure Documentation

3.1 matrix Struct Reference

```
#include <matLib.h>
```

Data Fields

- size_t columns
- size_t rows
- size_t size
- value * start
- bool diagonals

3.1.1 Detailed Description

Uncomment to allow parallel operations This is the core-struct in this library. All matrix-operations are based on this Struct.

3.1.2 Field Documentation

- 3.1.2.1 size_t columns
- 3.1.2.2 bool diagonals
- 3.1.2.3 size_t rows
- 3.1.2.4 size_t size
- 3.1.2.5 value* start

The documentation for this struct was generated from the following file:

• TDDD77/matrixlibrary/include/matLib.h

3.2 problem Struct Reference

```
#include problem.h>
```

Data Fields

- matrix * Q
- matrix * Q_inv
- sparse_matrix * sparse_Q
- sparse_matrix * sparse_Q_inv
- bool is_sparse
- matrix * q
- size_t variable_count
- size_t equality_count
- matrix * E
- sparse_matrix * sparse_E
- matrix * h
- size_t inequality_count
- matrix * F
- sparse_matrix * sparse_F
- matrix * g
- matrix * A
- sparse_matrix ** sparse_A
- matrix * b
- size_t constraints_count
- bool has_start_point
- matrix * z0
- matrix * z
- matrix * solution
- · value solution_value
- bool has_solution
- matrix * p
- matrix * gk
- · value step
- matrix * lagrange
- work_set * active_set
- value accuracy
- int max_iter
- int max_micro_sec
- bool check_time

3.2.1 Detailed Description

Allocates the problem and sets all necessary variables

3.2.2 Field Documentation

3.2.2.1 matrix* A

All constraints left-hand side coefficients.

- 3.2.2.2 value accuracy
- 3.2.2.3 work set* active_set

The active constraints.

3.2.2.4 matrix* b

All constraints right-hand side constraints.

3.2.2.5 bool check_time

3.2.2.6 size_t constraints_count

Total number of constraints.

3.2.2.7 matrix* E

Equality constraints left-hand side coefficient.

3.2.2.8 size_t equality_count

Number of equality constraints (Rows in the equality constraints matrices).

3.2.2.9 matrix* F

Larger-than constraints left-hand side coefficient.

3.2.2.10 matrix* g

Larger-than constraints right-hand side constraint.

3.2.2.11 matrix* gk

gk = Qz + q, help matrix for the subproblem.

See also

Q

Z

q

3.2.2.12 matrix* h

Equality constraints right-hand side constraint.

3.2.2.13 bool has_solution

3.2.2.14 bool has_start_point

3.2.2.15 size_t inequality_count

Number of larger-than constraints (Rows in the larger-than constraints matrices).

```
3.2.2.16 bool is_sparse
```

3.2.2.17 matrix* lagrange

The lagrange multipliers.

```
3.2.2.18 int max_iter
```

3.2.2.19 int max_micro_sec

3.2.2.20 matrix* p

Current step direction towards the solution.

3.2.2.21 matrix* Q

The matrix containing the quadratic optimization problem.

3.2.2.22 matrix* q

The matrix containing the linear optimization problem.

3.2.2.23 matrix* Q_inv

Q inverse.

3.2.2.24 matrix* solution

The final point in the solution.

3.2.2.25 value solution_value

The value of the solution point.

3.2.2.26 sparse_matrix** sparse_A

3.2.2.27 sparse_matrix* sparse_E

3.2.2.28 sparse_matrix* sparse_F

3.2.2.29 sparse_matrix* sparse_Q

3.2.2.30 sparse_matrix* sparse_Q_inv

3.2.2.31 value step

How far we will step towards the solution.

3.2.2.32 size_t variable_count

The number of variables in the problem.

```
3.2.2.33 matrix* z
```

The current point in the solution.

```
3.2.2.34 matrix* z0
```

The starting point for the solution.

The documentation for this struct was generated from the following file:

• TDDD77/quadopt/include/problem.h

3.3 sparse_matrix Struct Reference

```
#include <sparse_lib.h>
```

Data Fields

- size_t size
- size_t rows
- size_t columns
- value * A
- size_t * rA
- size t * cA

3.3.1 Detailed Description

Store sparse matrix using COO (coordinate list)

3.3.2 Field Documentation

```
3.3.2.1 value* A
```

3.3.2.2 size_t* cA

3.3.2.3 size_t columns

3.3.2.4 size_t* rA

3.3.2.5 size_t rows

3.3.2.6 size_t size

The documentation for this struct was generated from the following file:

• TDDD77/matrixlibrary/include/sparse_lib.h

3.4 work_set Struct Reference

```
#include <work_set.h>
```

Data Fields

- size_t max_count
- size_t count
- size_t * data

3.4.1 Detailed Description

Structure for storing different sets

3.4.2 Field Documentation

3.4.2.1 size_t count

Number of elements in the work set.

3.4.2.2 size_t* data

Array of elements in the work set.

3.4.2.3 size_t max_count

Maximum number of elements in the work set

The documentation for this struct was generated from the following file:

• TDDD77/quadopt/include/work_set.h

Chapter 4

File Documentation

4.1 TDDD77/matlab/quadopt.c File Reference

```
#include "mex.h"
#include "../quadopt/include/solver.h"
#include "../quadopt/include/problem.h"
```

Functions

• void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

4.1.1 Function Documentation

```
4.1.1.1 void mexFunction ( int nlhs, mxArray * plhs[], int nrhs, const mxArray * prhs[])
```

This functions creates an interface between MATLAB and the solver together with the matrixlibrary. It also converts MATLAB structured matrices into the matrixlibrary structure.

4.2 TDDD77/matrixlibrary/include/matLib.h File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
```

Data Structures

struct matrix

Macros

- #define DOUBLE
- #define FORMAT_STRING "%f"
- #define PRECISION 0.0001

Typedefs

- · typedef double value
- · typedef struct matrix matrix

Functions

- matrix * create matrix (size t row, size t col)
- matrix * create zero matrix (size t row, size t col)
- matrix * create_identity_matrix (size_t row, size_t col)
- value dot product (matrix *r, matrix *v)
- void free_matrix (matrix *mat)
- void print matrix (matrix *mat)
- bool check boundaries (size t row, size t col, matrix *mat)
- bool insert_array (value arr[], matrix *mat)
- bool compare matrices (matrix *a, matrix *b)
- bool is matrix (matrix *a, matrix *b)
- bool insert_value (value insert, size_t row, size_t col, matrix *mat)
- void insert value without check (value insert, size t row, size t col, matrix *mat)
- value get value (size t row, size t col, matrix *mat)
- value get value without check (size t row, size t col, matrix *mat)
- bool add_matrices (matrix *a, matrix *b, matrix *c)
- matrix * add_matrices_with_return (matrix *a, matrix *b)
- bool subtract matrices (matrix *a, matrix *b, matrix *c)
- matrix * subtract_matrices_with_return (matrix *a, matrix *b)
- bool multiply matrices (matrix *a, matrix *b, matrix *c)
- bool multiply matrices naive (matrix *a, matrix *b, matrix *c)
- bool multiply_matrices_optimized (matrix *a, matrix *b, matrix *c)
- matrix * strassen_matrices_with_return (matrix *a, matrix *b)
- bool strassen_matrices (matrix *a, matrix *b, matrix *c)
- matrix * multiply_matrices_with_return (matrix *a, matrix *b)
- value get_determinant (matrix *a)
- bool get_inverse (matrix *a, matrix *c)
- matrix * get_inverse_of_2x2_with_return (matrix *a)
- bool get_inverse_of_2x2 (matrix *a, matrix *b)
- bool solve_linear (matrix *a, matrix *x, matrix *b)
- matrix * solve_linear_with_return (matrix *a, matrix *b)
- bool crout (matrix *a, matrix *I, matrix *u)
- void forward_backward (matrix *I, matrix *u, matrix *x, matrix *b)
- void least_square (matrix *a, matrix *x, matrix *b)
- bool gauss_jordan (matrix *a)
- bool gauss jordan solver (matrix *a, matrix *x, matrix *b)
- matrix * get_matrix_with_only_pivots (matrix *a)
- value min (value a, value b)
- size_t largest_element_in_column_index (size_t column, size_t start, matrix *a)
- size_t smallest_element_in_column_index (size_t column, size_t start, matrix *a)
- size_t first_nonezero_in_column_index (size_t column, size_t start, matrix *a)
- size_t first_nonezero_in_row_index (size_t row, size_t start, matrix *a)
- void add_rows (size_t row1, size_t row2, matrix *a)
- bool transpose_matrix (matrix *a, matrix *b)
- matrix * transpose_matrix_with_return (matrix *a)
- value sum_of_row (size_t row, matrix *mat)
- value sum of column (size t column, matrix *mat)
- value product_of_row (size_t row, matrix *mat)

- value product_of_column (size_t column, matrix *mat)
- void multiply_matrix_with_scalar (value scal, matrix *mat)
- void divide_matrix_with_scalar (value scal, matrix *mat)
- void multiply row with scalar (value scal, size t row, matrix *mat)
- void divide_row_with_scalar (value scal, size_t row, matrix *mat)
- void multiply column with scalar (value scal, size t col, matrix *mat)
- void divide_column_with_scalar (value scal, size_t col, matrix *mat)
- bool get row vector (size t row, matrix *a, matrix *b)
- matrix * get row vector with return (size t row, matrix *a)
- bool insert_row_vector (size_t row, matrix *a, matrix *b)
- bool switch rows (size t row1, size t row2, matrix *a)
- bool get_column_vector (size_t column, matrix *a, matrix *b)
- matrix * get_column_vector_with_return (size_t column, matrix *a)
- bool insert column vector (size t column, matrix *a, matrix *b)
- bool get sub matrix (size t start row, size t end row, size t start col, size t end col, matrix *a, matrix *b)
- bool insert_sub_matrix (size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix *b, matrix *a)
- matrix * matrix_copy (matrix *source)
- void matrix_copy_data (matrix *A, matrix *B)
- bool is_zero_matrix (matrix *v)
- bool is_non_negative_matrix (matrix *v)
- bool is_non_negative_diagonal_matrix (matrix *A)
- bool get_diagonal (matrix *a, matrix *b)
- matrix * derivate_matrix_with_return (size_t var, matrix *a)
- void transform_to_reduced_row_echelon_form (matrix *M)
- bool matrix contains (value a, matrix *b)
- int compare elements (value a, value b)
- matrix * get_zero_matrix (size_t rows, size_t columns)
- value matlib_fabs (value a)

4.2.1 Macro Definition Documentation

4.2.1.1 #define DOUBLE

Only standardlibraries Uncomment which mode you want the library to run in

- 4.2.1.2 #define FORMAT_STRING "%f"
- 4.2.1.3 #define PRECISION 0.0001
- 4.2.2 Typedef Documentation
- 4.2.2.1 typedef struct matrix matrix
- 4.2.2.2 typedef double value

Setup for the preprocessor depending on mode

4.2.3 Function Documentation

4.2.3.1 bool add_matrices (matrix * a, matrix * b, matrix * c)

Adds a and b into c

```
4.2.3.2 matrix* add_matrices_with_return ( matrix * a, matrix * b )
Adds a and b by returning a pointer a matrix with a+b
4.2.3.3 void add_rows ( size_t row1, size_t row2, matrix * a )
Adds each element in row1 and row 2 and puts the result on row2
4.2.3.4 bool check_boundaries ( size_t row, size_t col, matrix * mat )
Checks if the position exists in the matrix
4.2.3.5 int compare_elements ( value a, value b )
Compare two element values
4.2.3.6 bool compare_matrices ( matrix * a, matrix * b)
Returns true if matrices a and b look the same
4.2.3.7 matrix* create_identity_matrix ( size_t row, size_t col )
Creates a identity matrix
4.2.3.8 matrix* create_matrix ( size_t row, size_t col )
Create a matrix
4.2.3.9 matrix* create_zero_matrix ( size_t row, size_t col )
Is normally not needed for this implementation but might be needed on others
4.2.3.10 bool crout ( matrix * a, matrix * l, matrix * u )
Crout algorithm to divide matrix a into I and u that holds a=lu
4.2.3.11 matrix* derivate_matrix_with_return ( size_t var, matrix * a )
Returns a pointer to a matrix with the derivative of var if the a matrix second order coefficiants
4.2.3.12 void divide_column_with_scalar ( value scal, size_t col, matrix * mat )
Divides a column with a scalar
4.2.3.13 void divide_matrix_with_scalar ( value scal, matrix * mat )
Divides matrix mat with scalar
```

```
4.2.3.14 void divide_row_with_scalar ( value scal, size_t row, matrix * mat )
Divides a row with a scalar
4.2.3.15 value dot_product ( matrix * r, matrix * v )
Calculate the dot product
4.2.3.16 size_t first_nonezero_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the first nonezero element is in the column is after start returns -1 if no nonezero element is
found
4.2.3.17 size_t first_nonezero_in_row_index ( size_t row, size_t start, matrix * a )
Returns on which column the first nonezero element is in the column is after start returns -1 if no nonezero element
is found
4.2.3.18 void forward_backward ( matrix * l, matrix * u, matrix * x, matrix * b )
Solves lux=b using backward and forward substitution
4.2.3.19 void free_matrix ( matrix * mat )
Destroy a matrix
4.2.3.20 bool gauss_jordan ( matrix * a )
Gauss eliminates the matrix a
4.2.3.21 bool gauss_jordan_solver ( matrix * a, matrix * x, matrix * b )
Solves the system of linear equations using gauss jordan
4.2.3.22 bool get_column_vector ( size_t column, matrix * a, matrix * b )
Takes column vector from matrix a and puts it into b
4.2.3.23 matrix* get_column_vector_with_return ( size_t column, matrix * a )
Takes column vector from matrix a and return a pointer to the row vector
4.2.3.24 value get_determinant ( matrix * a )
Returns the determinant of matrix a
4.2.3.25 bool get_diagonal ( matrix * a, matrix * b )
Takes the diagonal in a and puts it into b
```

```
4.2.3.26 bool get_inverse ( matrix * a, matrix * c )
Calculates the inverse of a and puts it into c
4.2.3.27 bool get_inverse_of_2x2 ( matrix * a, matrix * b )
4.2.3.28 matrix* get_inverse_of_2x2_with_return ( matrix * a )
4.2.3.29 matrix* get_matrix_with_only_pivots ( matrix * a )
Returns a matrix with only pivots elements from a
4.2.3.30 bool get_row_vector ( size_t row, matrix * a, matrix * b )
Takes row vector from matrix a and puts it into b
4.2.3.31 matrix* get_row_vector_with_return ( size_t row, matrix * a )
Returns row vector row from matrix a with a pointer to a matrix
4.2.3.32 bool get_sub_matrix ( size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix * a, matrix * b )
Get a sub matrix from a
4.2.3.33 value get_value ( size_t row, size_t col, matrix * mat )
Get a value from matrix
4.2.3.34 value get_value_without_check ( size_t row, size_t col, matrix * mat )
As get value without check
4.2.3.35 matrix* get_zero_matrix ( size_t rows, size_t columns )
Creates new matrix with zero values
4.2.3.36 bool insert_array ( value arr[], matrix * mat )
Insert a array into the matrix
4.2.3.37 bool insert_column_vector ( size_t column, matrix * a, matrix * b )
Inserts column vector a into matrix b at position column
4.2.3.38 bool insert_row_vector ( size_t row, matrix * a, matrix * b )
Inserts row vector a into b:s row
```

```
4.2.3.39 bool insert_sub_matrix ( size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix * b, matrix * a )
4.2.3.40 bool insert_value ( value insert, size_t row, size_t col, matrix * mat )
Insert a value into matrix
4.2.3.41 void insert_value_without_check ( value insert, size_t row, size_t col, matrix * mat )
As insert value without check
4.2.3.42 bool is_matrix ( matrix * a, matrix * b )
Return true if the matrix are the same
4.2.3.43 bool is_non_negative_diagonal_matrix ( matrix * A )
Checks if all elements along the diagonal in a symmetric matrix is positive
4.2.3.44 bool is_non_negative_matrix ( matrix * v )
Checks if all elements in a matrix is positive
4.2.3.45 bool is_zero_matrix ( matrix * v )
Checks if all elements in a matrix is equal to zero
4.2.3.46 size_t largest_element_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the largest element in the column is after start
4.2.3.47 void least_square ( matrix * a, matrix * x, matrix * b )
If no solution can be found with solve_linear, this function finds the closest one
4.2.3.48 value matlib_fabs (value a)
Returns the absolute value of a
4.2.3.49 bool matrix_contains ( value a, matrix * b )
Return true if b contains value a
4.2.3.50 matrix* matrix_copy ( matrix * source )
Copy and return new matrix.
4.2.3.51 void matrix_copy_data ( matrix * A, matrix * B )
Copies all the data from matrix A into matrix B
```

```
4.2.3.52 value min (value a, value b)
Returns the lowest of the two values
4.2.3.53 void multiply_column_with_scalar ( value scal, size_t col, matrix * mat )
Multiplies a column with a scalar
4.2.3.54 bool multiply_matrices ( matrix * a, matrix * b, matrix * c )
Multiply a and b into c. c=a*b
4.2.3.55 bool multiply_matrices_naive ( matrix * a, matrix * b, matrix * c )
4.2.3.56 bool multiply_matrices_optimized ( matrix * a, matrix * b, matrix * c )
4.2.3.57 matrix* multiply_matrices_with_return ( matrix * a, matrix * b )
Multiply a and b by returning a pointer to a new matrix with a*b
4.2.3.58 void multiply_matrix_with_scalar ( value scal, matrix * mat )
Multiplies matrix mat with scalar
4.2.3.59 void multiply_row_with_scalar ( value scal, size_t row, matrix * mat )
Multiplies a row with a scalar
4.2.3.60 void print_matrix ( matrix * mat )
Prints the matrix
4.2.3.61 value product_of_column ( size_t column, matrix * mat )
Return the product of a column in matrix mat
4.2.3.62 value product_of_row ( size_t row, matrix * mat )
Return the product of a row in matrix mat
4.2.3.63 size_t smallest_element_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the smallest element in the column is after start
4.2.3.64 bool solve_linear ( matrix * a, matrix * x, matrix * b )
Solves Ax=B
```

```
4.2.3.65 matrix* solve_linear_with_return ( matrix * a, matrix * b )
Solves ax=b by returning a pointer to x
4.2.3.66 bool strassen_matrices ( matrix * a, matrix * b, matrix * c )
4.2.3.67 matrix* strassen_matrices_with_return ( matrix * a, matrix * b )
4.2.3.68 bool subtract_matrices ( matrix * a, matrix * b, matrix * c )
Subtract a and b into c. c=a-b
4.2.3.69 matrix* subtract_matrices_with_return ( matrix * a, matrix * b )
Subtracts a and b by returning a pointer a matrix with a-b
4.2.3.70 value sum_of_column ( size_t column, matrix * mat )
Return the sum of a column in matrix mat
4.2.3.71 value sum_of_row ( size_t row, matrix * mat )
Return the sum of a row in matrix mat
4.2.3.72 bool switch_rows ( size_t row1, size_t row2, matrix * a )
Switches rows in a
4.2.3.73 void transform_to_reduced_row_echelon_form ( matrix * M )
4.2.3.74 bool transpose_matrix ( matrix * a, matrix * b )
Transposes matrix a into b
4.2.3.75 matrix* transpose_matrix_with_return ( matrix * a )
Transposes matrix a by returning a pointer to a:s transpose
```

4.3 TDDD77/matrixlibrary/include/sparse_lib.h File Reference

```
#include <matLib.h>
```

Data Structures

· struct sparse_matrix

Typedefs

typedef struct sparse_matrix sparse_matrix

Functions

```
• sparse_matrix * create_sparse_matrix (matrix *Ain, int size)
    • sparse_matrix * create_empty_sparse_matrix (size_t size)

    matrix * sparse_to_normal (sparse_matrix *S)

    size_t matrix_sparsity (matrix *A)

    bool multiply sparse matrix vector (sparse matrix *A, matrix *x, matrix *Ax)

    matrix * multiply_sparse_matrix_matrix (sparse_matrix *A, matrix *B)

    sparse_matrix * copy_sparse_matrix (sparse_matrix *Ain)
    • void transpose_sparse_matrix (sparse_matrix *Ain)
    • sparse_matrix * transpose_sparse_matrix_with_return (sparse_matrix *Ain)
    void print_sparse_matrix (sparse_matrix *S)
    void free_sparse_matrix (sparse_matrix *S)

    bool conjugate_gradient (sparse_matrix *A, matrix *x, matrix *b)

4.3.1 Typedef Documentation
4.3.1.1 typedef struct sparse_matrix sparse_matrix
4.3.2 Function Documentation
4.3.2.1 bool conjugate_gradient ( sparse_matrix * A, matrix * X, matrix * b )
Solves Ax = b, x should be set to 0 Is not used, due to not working with MATLAB gate.
4.3.2.2 sparse_matrix* copy_sparse_matrix ( sparse_matrix * Ain )
Copies a sparse matrix and returns it
4.3.2.3 sparse_matrix * create_empty_sparse_matrix ( size_t size )
Creates an empty sparse matrix
4.3.2.4 sparse_matrix* create_sparse_matrix ( matrix * Ain, int size )
Creates a sparse matrix out of a normal matrix
4.3.2.5 void free_sparse_matrix ( sparse_matrix * S )
Frees allocated memory of the sparse matrix
4.3.2.6 size_t matrix_sparsity ( matrix * A )
Returns number of elements != 0
4.3.2.7 matrix* multiply_sparse_matrix_matrix ( sparse_matrix * A, matrix * B)
```

Multiplies sparse matrix with a normal matrix. Returns a normal matrix.

```
4.3.2.8 bool multiply_sparse_matrix_vector ( sparse_matrix * A, matrix * x, matrix * Ax )
Multiplies sparse matrix with normal vector, stores result in normal matrix Ax
4.3.2.9 void print_sparse_matrix ( sparse_matrix * S )
Prints sparse matrix
4.3.2.10 matrix* sparse_to_normal ( sparse_matrix * S )
Converts sparse matrix to normal matrix
4.3.2.11 void transpose_sparse_matrix ( sparse_matrix * Ain )
Transposes input sparse matrix
4.3.2.12 sparse_matrix* transpose_sparse_matrix_with_return ( sparse_matrix * Ain )
```

TDDD77/matrixlibrary/src/matLib.c File Reference

Transposes a sparse matrix and returns it in a new sparse matrix

```
#include <matLib.h>
```

Functions

4.4

- matrix * create_matrix (size_t row, size_t col)
- matrix * create_zero_matrix (size_t row, size_t col)
- matrix * create_identity_matrix (size_t row, size_t col)
- void free_matrix (matrix *mat)
- value dot_product (matrix *r, matrix *v)
- void print_matrix (matrix *mat)
- bool check_boundaries (size_t row, size_t col, matrix *mat)
- bool insert_array (value arr[], matrix *mat)
- bool compare_matrices (matrix *a, matrix *b)
- bool is matrix (matrix *a, matrix *b)
- bool insert_value (value insert, size_t row, size_t col, matrix *mat)
- void insert_value_without_check (value insert, size_t row, size_t col, matrix *mat)
- value get_value (size_t row, size_t col, matrix *mat)
- value get_value_without_check (size_t row, size_t col, matrix *mat)
- bool add matrices (matrix *a, matrix *b, matrix *c)
- matrix * add matrices with return (matrix *a, matrix *b)
- bool subtract_matrices (matrix *a, matrix *b, matrix *c)
- matrix * subtract_matrices_with_return (matrix *a, matrix *b)
- bool multiply_matrices (matrix *a, matrix *b, matrix *c)
- bool multiply_matrices_naive (matrix *a, matrix *b, matrix *c)
- bool multiply_matrices_optimized (matrix *a, matrix *b, matrix *c)
- matrix * strassen_matrices_with_return (matrix *a, matrix *b)
- bool strassen_matrices (matrix *a, matrix *b, matrix *c)
- matrix * multiply_matrices_with_return (matrix *a, matrix *b)

- value get determinant (matrix *a)
- bool get_inverse (matrix *a, matrix *c)
- matrix * get inverse of 2x2 with return (matrix *a)
- bool get inverse of 2x2 (matrix *a, matrix *b)
- bool solve linear (matrix *a, matrix *x, matrix *b)
- matrix * solve linear with return (matrix *a, matrix *b)
- bool crout (matrix *a, matrix *l, matrix *u)
- void forward_backward (matrix *I, matrix *u, matrix *x, matrix *b)
- void least square (matrix *a, matrix *x, matrix *b)
- bool gauss_jordan (matrix *a)
- bool gauss jordan solver (matrix *a, matrix *x, matrix *b)
- matrix * get matrix with only pivots (matrix *a)
- value min (value a, value b)
- size_t largest_element_in_column_index (size_t column, size_t start, matrix *a)
- size_t smallest_element_in_column_index (size_t column, size_t start, matrix *a)
- size t first nonezero in column index (size t column, size t start, matrix *a)
- size t first nonezero in row index (size t row, size t start, matrix *a)
- void add rows (size t row1, size t row2, matrix *a)
- bool transpose_matrix (matrix *a, matrix *b)
- matrix * transpose matrix with return (matrix *a)
- value sum of row (size t row, matrix *mat)
- value sum of column (size t column, matrix *mat)
- value product of row (size t row, matrix *mat)
- value product of column (size t column, matrix *mat)
- void multiply matrix with scalar (value scal, matrix *mat)
- void divide_matrix_with_scalar (value scal, matrix *mat)
- void multiply_row_with_scalar (value scal, size_t row, matrix *mat)
- void divide row with scalar (value scal, size t row, matrix *mat)
- void multiply column with scalar (value scal, size t col, matrix *mat)
- void divide column with scalar (value scal, size t col, matrix *mat)
- bool get row vector (size t row, matrix *a, matrix *b)
- matrix * get row vector with return (size t row, matrix *a)
- bool insert_row_vector (size_t row, matrix *a, matrix *b)
- bool switch_rows (size_t row1, size_t row2, matrix *a)
- bool get_column_vector (size_t column, matrix *a, matrix *b)
- matrix * get_column_vector_with_return (size_t column, matrix *a)
- bool insert column vector (size t column, matrix *a, matrix *b)
- bool get sub matrix (size t start row, size t end row, size t start col, size t end col, matrix *a, matrix *b)
- bool insert_sub_matrix (size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix *b, matrix
 *a)
- matrix * matrix copy (matrix *source)
- void matrix copy data (matrix *a, matrix *b)
- bool is zero matrix (matrix *v)
- bool is non negative matrix (matrix *v)
- bool is_non_negative_diagonal_matrix (matrix *A)
- bool get_diagonal (matrix *a, matrix *b)
- matrix * derivate_matrix_with_return (size_t var, matrix *a)
- void transform_to_reduced_row_echelon_form (matrix *M)
- bool matrix_contains (value a, matrix *b)
- int compare elements (value a, value b)
- matrix * get zero matrix (size t rows, size t columns)
- value matlib_fabs (value a)

```
4.4.1 Function Documentation
4.4.1.1 bool add_matrices ( matrix * a, matrix * b, matrix * c )
Adds a and b into c
4.4.1.2 matrix* add_matrices_with_return ( matrix * a, matrix * b )
Adds a and b by returning a pointer a matrix with a+b
4.4.1.3 void add_rows ( size_t row1, size_t row2, matrix * a )
Adds each element in row1 and row 2 and puts the result on row2
4.4.1.4 bool check_boundaries ( size_t row, size_t col, matrix * mat )
Checks if the position exists in the matrix
4.4.1.5 int compare_elements ( value a, value b )
Compare two element values
4.4.1.6 bool compare_matrices ( matrix * a, matrix * b )
Returns true if matrices a and b look the same
4.4.1.7 matrix* create_identity_matrix ( size_t row, size_t col )
Creates a identity matrix
4.4.1.8 matrix* create_matrix ( size_t row, size_t col )
Create a matrix
4.4.1.9 matrix* create_zero_matrix ( size_t row, size_t col )
Is normally not needed for this implementation but might be needed on others
4.4.1.10 bool crout ( matrix * a, matrix * l, matrix * u )
Crout algorithm to divide matrix a into I and u that holds a=lu
4.4.1.11 matrix* derivate_matrix_with_return ( size_t var, matrix * a )
Returns a pointer to a matrix with the derivative of var if the a matrix second order coefficiants
4.4.1.12 void divide_column_with_scalar ( value scal, size_t col, matrix * mat )
Divides a column with a scalar
```

```
4.4.1.13 void divide_matrix_with_scalar ( value scal, matrix * mat )
Divides matrix mat with scalar
4.4.1.14 void divide_row_with_scalar ( value scal, size_t row, matrix * mat )
Divides a row with a scalar
4.4.1.15 value dot_product ( matrix * r, matrix * v )
Calculate the dot product
4.4.1.16 size_t first_nonezero_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the first nonezero element is in the column is after start returns -1 if no nonezero element is
found
4.4.1.17 size_t first_nonezero_in_row_index ( size_t row, size_t start, matrix * a )
Returns on which column the first nonezero element is in the column is after start returns -1 if no nonezero element
is found
4.4.1.18 void forward_backward ( matrix * l, matrix * u, matrix * x, matrix * b )
Solves lux=b using backward and forward substitution
4.4.1.19 void free_matrix ( matrix * mat )
Destroy a matrix
4.4.1.20 bool gauss_jordan ( matrix *a )
Gauss eliminates the matrix a
4.4.1.21 bool gauss_jordan_solver ( matrix * a, matrix * x, matrix * b )
Solves the system of linear equations using gauss jordan
4.4.1.22 bool get_column_vector ( size_t column, matrix * a, matrix * b )
Takes column vector from matrix a and puts it into b
4.4.1.23 matrix* get_column_vector_with_return ( size_t column, matrix * a )
Takes column vector from matrix a and return a pointer to the row vector
4.4.1.24 value get_determinant ( matrix * a )
Returns the determinant of matrix a
```

```
4.4.1.25 bool get_diagonal ( matrix * a, matrix * b )
Takes the diagonal in a and puts it into b
4.4.1.26 bool get_inverse ( matrix * a, matrix * c )
Calculates the inverse of a and puts it into c
4.4.1.27 bool get_inverse_of_2x2 ( matrix * a, matrix * b )
4.4.1.28 matrix* get_inverse_of_2x2_with_return ( matrix * a )
4.4.1.29 matrix* get_matrix_with_only_pivots ( matrix * a )
Returns a matrix with only pivots elements from a
4.4.1.30 bool get_row_vector ( size_t row, matrix * a, matrix * b )
Takes row vector from matrix a and puts it into b
4.4.1.31 matrix* get_row_vector_with_return ( size_t row, matrix * a )
Returns row vector row from matrix a with a pointer to a matrix
4.4.1.32 bool get_sub_matrix ( size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix * a, matrix * b )
Get a sub matrix from a
4.4.1.33 value get_value ( size_t row, size_t col, matrix * mat )
Get a value from matrix
4.4.1.34 value get_value_without_check ( size_t row, size_t col, matrix * mat )
As get_value without check
4.4.1.35 matrix* get_zero_matrix ( size_t rows, size_t columns )
Creates new matrix with zero values
4.4.1.36 bool insert_array ( value arr[], matrix * mat )
Insert a array into the matrix
4.4.1.37 bool insert_column_vector ( size_t column, matrix * a, matrix * b )
Inserts column vector a into matrix b at position column
```

```
4.4.1.38 bool insert_row_vector ( size_t row, matrix * a, matrix * b )
Inserts row vector a into b:s row
4.4.1.39 bool insert_sub_matrix ( size_t start_row, size_t end_row, size_t start_col, size_t end_col, matrix * b, matrix * a )
4.4.1.40 bool insert_value ( value insert, size_t row, size_t col, matrix * mat )
Insert a value into matrix
4.4.1.41 void insert value without check ( value insert, size t row, size t col, matrix * mat )
As insert value without check
4.4.1.42 bool is_matrix ( matrix * a, matrix * b )
Return true if the matrix are the same
4.4.1.43 bool is_non_negative_diagonal_matrix ( matrix * A )
Checks if all elements along the diagonal in a symmetric matrix is positive
4.4.1.44 bool is_non_negative_matrix ( matrix * v )
Checks if all elements in a matrix is positive
4.4.1.45 bool is_zero_matrix ( matrix * v )
Checks if all elements in a matrix is equal to zero
4.4.1.46 size_t largest_element_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the largest element in the column is after start
4.4.1.47 void least_square ( matrix * a, matrix * x, matrix * b )
If no solution can be found with solve_linear, this function finds the closest one
4.4.1.48 value matlib_fabs ( value a )
Returns the absolute value of a
4.4.1.49 bool matrix_contains ( value a, matrix * b )
Return true if b contains value a
4.4.1.50 matrix* matrix_copy ( matrix * source )
```

Copy and return new matrix.

```
4.4.1.51 void matrix_copy_data ( matrix * A, matrix * B )
Copies all the data from matrix A into matrix B
4.4.1.52 value min ( value a, value b )
Returns the lowest of the two values
4.4.1.53 void multiply_column_with_scalar ( value scal, size_t col, matrix * mat )
Multiplies a column with a scalar
4.4.1.54 bool multiply_matrices ( matrix * a, matrix * b, matrix * c )
Multiply a and b into c. c=a*b
4.4.1.55 bool multiply_matrices_naive ( matrix * a, matrix * b, matrix * c )
4.4.1.56 bool multiply_matrices_optimized ( matrix * a, matrix * b, matrix * c )
4.4.1.57 matrix* multiply_matrices_with_return ( matrix * a, matrix * b )
Multiply a and b by returning a pointer to a new matrix with a*b
4.4.1.58 void multiply_matrix_with_scalar ( value scal, matrix * mat )
Multiplies matrix mat with scalar
4.4.1.59 void multiply_row_with_scalar ( value scal, size_t row, matrix * mat )
Multiplies a row with a scalar
4.4.1.60 void print_matrix ( matrix * mat )
Prints the matrix
4.4.1.61 value product_of_column ( size_t column, matrix * mat )
Return the product of a column in matrix mat
4.4.1.62 value product_of_row ( size_t row, matrix * mat )
Return the product of a row in matrix mat
4.4.1.63 size_t smallest_element_in_column_index ( size_t column, size_t start, matrix * a )
Returns on which row the smallest element in the column is after start
```

```
4.4.1.64 bool solve_linear ( matrix * a, matrix * x, matrix * b )
Solves Ax=B
4.4.1.65 matrix* solve_linear_with_return ( matrix * a, matrix * b )
Solves ax=b by returning a pointer to x
4.4.1.66 bool strassen_matrices ( matrix * a, matrix * b, matrix * c )
4.4.1.67 matrix* strassen_matrices_with_return ( matrix * a, matrix * b )
4.4.1.68 bool subtract_matrices ( matrix * a, matrix * b, matrix * c )
Subtract a and b into c. c=a-b
4.4.1.69 matrix* subtract_matrices_with_return ( matrix * a, matrix * b )
Subtracts a and b by returning a pointer a matrix with a-b
4.4.1.70 value sum_of_column ( size_t column, matrix * mat )
Return the sum of a column in matrix mat
4.4.1.71 value sum_of_row ( size_t row, matrix * mat )
Return the sum of a row in matrix mat
4.4.1.72 bool switch_rows ( size_t row1, size_t row2, matrix * a )
Switches rows in a
4.4.1.73 void transform_to_reduced_row_echelon_form ( matrix * M )
4.4.1.74 bool transpose_matrix ( matrix * a, matrix * b )
Transposes matrix a into b
4.4.1.75 matrix* transpose_matrix_with_return ( matrix * a )
Transposes matrix a by returning a pointer to a:s transpose
```

4.5 TDDD77/matrixlibrary/src/sparse_lib.c File Reference

```
#include <sparse_lib.h>
#include <math.h>
```

Functions

```
    sparse_matrix * create_sparse_matrix (matrix *Ain, int size)

    sparse_matrix * create_empty_sparse_matrix (size_t size)

    matrix * sparse_to_normal (sparse_matrix *S)

    size_t matrix_sparsity (matrix *A)

    • bool multiply_sparse_matrix_vector (sparse_matrix *A, matrix *x, matrix *Ax)

    matrix * multiply_sparse_matrix_matrix (sparse_matrix *A, matrix *B)

    sparse_matrix * copy_sparse_matrix (sparse_matrix *Ain)

    void transpose_sparse_matrix (sparse_matrix *Ain)

    • sparse_matrix * transpose_sparse_matrix_with_return (sparse_matrix *Ain)

    void print_sparse_matrix (sparse_matrix *S)

    void free_sparse_matrix (sparse_matrix *S)
    • bool conjugate_gradient (sparse_matrix *A, matrix *x, matrix *b)
4.5.1 Function Documentation
4.5.1.1 bool conjugate_gradient ( sparse_matrix * A, matrix * X, matrix * b )
Solves Ax = b, x should be set to 0 Is not used, due to not working with MATLAB gate.
4.5.1.2 sparse_matrix* copy_sparse_matrix ( sparse_matrix * Ain )
Copies a sparse matrix and returns it
4.5.1.3 sparse_matrix* create_empty_sparse_matrix ( size_t size )
Creates an empty sparse matrix
4.5.1.4 sparse_matrix* create_sparse_matrix ( matrix * Ain, int size )
Creates a sparse matrix out of a normal matrix
4.5.1.5 void free_sparse_matrix ( sparse_matrix * S )
Frees allocated memory of the sparse matrix
4.5.1.6 size_t matrix_sparsity ( matrix * A )
Returns number of elements != 0
4.5.1.7 matrix* multiply_sparse_matrix_matrix ( sparse_matrix * A, matrix * B)
Multiplies sparse matrix with a normal matrix. Returns a normal matrix.
```

4.5.1.8 bool multiply_sparse_matrix_vector (sparse_matrix * A, matrix * X, matrix * X)

Multiplies sparse matrix with normal vector, stores result in normal matrix Ax

```
4.5.1.9 void print_sparse_matrix ( sparse_matrix * S )
Prints sparse matrix
4.5.1.10 matrix* sparse_to_normal ( sparse_matrix * S )
Converts sparse matrix to normal matrix
4.5.1.11 void transpose_sparse_matrix ( sparse_matrix * Ain )
Transposes input sparse matrix
4.5.1.12 sparse_matrix* transpose_sparse_matrix_with_return ( sparse_matrix * Ain )
```

4.6 TDDD77/quadopt/include/problem.h File Reference

Transposes a sparse matrix and returns it in a new sparse matrix

```
#include <matLib.h>
#include <work_set.h>
#include <sparse_lib.h>
```

Data Structures

struct problem

Typedefs

• typedef struct problem problem

- problem * create_problem (matrix *Q, matrix *q, matrix *E, matrix *h, matrix *F, matrix *g, matrix *z0, int max_iter, int max_micro_sec)
- void print problem (problem *prob)
- void free_problem (problem *prob)
- matrix * get_active_conditions (problem *prob)
- sparse_matrix * get_sparse_active_conditions (problem *prob)
- matrix * get_active_conditions_rhs (problem *prob)
- bool get_solution_value (problem *prob)
- void print_solution (problem *prob)
- bool time_to_exit (problem *prob, double time_spent)
- bool is_feasible_point (matrix *z, problem *prob)

```
4.6.1
       Typedef Documentation
4.6.1.1 typedef struct problem problem
4.6.2 Function Documentation
4.6.2.1 problem * create_problem ( matrix * Q, matrix * q, matrix * E, matrix * F, matrix * F, matrix * g, matrix *
        z0, int max_iter, int max_micro_sec )
Puts matrices to a problem struct
4.6.2.2 void free_problem ( problem * prob )
Deallocates all the problems resources
4.6.2.3 matrix* get_active_conditions ( problem * prob )
Returns a matrix with the currently active constraints
4.6.2.4 matrix* get_active_conditions_rhs ( problem * prob )
Returns a matrix with the right hand side of the currently active constraints
4.6.2.5 bool get_solution_value ( problem * prob )
Calculates the optimum value given by the solution point
4.6.2.6 sparse_matrix* get_sparse_active_conditions ( problem * prob )
4.6.2.7 bool is_feasible_point ( matrix * z, problem * prob )
4.6.2.8 void print_problem ( problem * prob )
Prints the matrices defined in the problem struct
4.6.2.9 void print_solution ( problem * prob )
Prints optimal point and optimal value
4.6.2.10 bool time_to_exit ( problem * prob, double time_spent )
```

4.7 TDDD77/quadopt/include/simplex.h File Reference

Exits solver if maximal iterations or microseconds have been fullfilled

```
#include <problem.h>
```

Functions

```
bool simplex_phase_1 (problem *prob)
```

4.7.1 Function Documentation

```
4.7.1.1 bool simplex_phase_1 ( problem * prob )
```

4.8 TDDD77/quadopt/include/solver.h File Reference

```
#include problem.h>
#include <matLib.h>
```

Functions

- bool remove_constraint (problem *prob)
- matrix * quadopt solver (problem *prob)

4.8.1 Function Documentation

```
4.8.1.1 matrix* quadopt_solver ( problem * prob )
```

Solves a quadratic problem using the active set method

```
4.8.1.2 bool remove_constraint ( problem * prob )
```

Removes the active constraint with the most negative lagrange multiplier

4.9 TDDD77/quadopt/include/subproblem.h File Reference

```
#include problem.h>
```

Functions

void solve_subproblem (problem *prob)

4.9.1 Function Documentation

```
4.9.1.1 void solve_subproblem ( problem * prob )
```

Solves the subproblem for active set

4.10 TDDD77/quadopt/include/trans_con.h File Reference

```
#include <matLib.h>
#include <stdbool.h>
```

Functions

- bool trans_dyn_cons (matrix *A, matrix *B, matrix *k, matrix *E, matrix *h, size_t card_x)
- bool trans_ineq_cons (matrix *Fx, matrix *gx, matrix *F, matrix *g, size_t card_x, size_t card_u, size_t N, matrix *x_lim, matrix *u_lim)
- bool create objective (int n, matrix *Qin, matrix *P, matrix *R, matrix *Q)

4.10.1 Function Documentation

```
4.10.1.1 bool create_objective ( int n, matrix * Qin, matrix * P, matrix * P,
```

```
4.10.1.2 bool trans_dyn_cons ( matrix * A, matrix * B, matrix * E, matrix * E, matrix * H, size_t card_x )
```

Dynamic constraints (A and B with initial values K) transforms to equality constraints (E and h).

4.10.1.3 bool trans_ineq_cons (matrix * Fx, mat

4.11 TDDD77/quadopt/include/work_set.h File Reference

```
#include <stdbool.h>
```

Data Structures

struct work set

Typedefs

• typedef struct work_set work_set

Functions

- work_set * work_set_create (size_t ws_max)
- bool work_set_free (work_set *ws)
- bool work_set_append (work_set *ws, size_t val)
- bool work set remove (work set *ws, size t val)
- void work set print (work set *ws)
- bool work_set_contains (work_set *ws, size_t item)
- void work set clear (work set *ws)

4.11.1 Typedef Documentation

4.11.1.1 typedef struct work_set work_set

4.11.2 Function Documentation

4.11.2.1 bool work_set_append (work_set * ws, size_t val)

Adds an element to the set

```
4.11.2.2 void work_set_clear( work_set * ws )
Clears the set
4.11.2.3 bool work_set_contains( work_set * ws, size_t item )
Checks if the set is containing the item
4.11.2.4 work_set* work_set_create( size_t ws_max )
Creates a new work set
4.11.2.5 bool work_set_free( work_set * ws )
Removes and deallocates the set
4.11.2.6 void work_set_print( work_set * ws )
Prints all current elements in the set
4.11.2.7 bool work_set_remove( work_set * ws, size_t val )
Removes an element from the set
```

4.12 TDDD77/quadopt/src/problem.c File Reference

```
#include problem.h>
```

Functions

- void fill_constraint_matrices (problem *prob)
- problem * create_problem (matrix *Q, matrix *q, matrix *E, matrix *h, matrix *F, matrix *g, matrix *z0, int max_iter, int max_micro_sec)
- void print_problem (problem *prob)
- void free problem (problem *prob)
- matrix * get_active_conditions (problem *prob)
- sparse_matrix * get_sparse_active_conditions (problem *prob)
- matrix * get active conditions rhs (problem *prob)
- bool get_solution_value (problem *prob)
- void print solution (problem *prob)
- bool time_to_exit (problem *prob, double time_spent)
- bool is_feasible_point (matrix *z, problem *prob)

4.12.1 Function Documentation

4.12.1.1 problem* create_problem (matrix * Q, matrix * q, matrix * E, matrix * h, matrix * F, matrix * g, matrix * z0, int max_iter, int max_micro_sec)

Puts matrices to a problem struct

```
4.12.1.2 void fill_constraint_matrices ( problem * prob )
4.12.1.3 void free_problem ( problem * prob )
Deallocates all the problems resources
4.12.1.4 matrix* get_active_conditions ( problem * prob )
Returns a matrix with the currently active constraints
4.12.1.5 matrix* get_active_conditions_rhs ( problem * prob )
Returns a matrix with the right hand side of the currently active constraints
4.12.1.6 bool get_solution_value ( problem * prob )
Calculates the optimum value given by the solution point
4.12.1.7 sparse_matrix* get_sparse_active_conditions ( problem * prob )
4.12.1.8 bool is_feasible_point ( matrix * z, problem * prob )
4.12.1.9 void print_problem ( problem * prob )
Prints the matrices defined in the problem struct
4.12.1.10 void print_solution ( problem * prob )
Prints optimal point and optimal value
4.12.1.11 bool time to exit ( problem * prob, double time spent )
```

Exits solver if maximal iterations or microseconds have been fullfilled

4.13 TDDD77/quadopt/src/simplex.c File Reference

```
#include <simplex.h>
```

- bool is_neg_tableau_row (int row, matrix *tableau)
- int min_test (int column, matrix *tableau)
- void neg_equality (problem *prob, work_set *virtual_vars)
- void convert_geq_to_leq (problem *prob, work_set *virtual_vars, matrix **Fr, matrix **gr)
- matrix * split_ineq_variables (problem *prob, matrix *Fr)
- matrix * split_eq_variables (problem *prob)
- work_set * create_basis (problem *prob)
- void insert_constraints (problem *prob, matrix *tableau, matrix *Et, matrix *Ft, matrix *gr)
- void insert_simplex_variables (problem *prob, work_set *virtual_vars, matrix *tableau)

```
    void insert_objective_function (problem *prob, matrix *tableau)
```

- void remove_variables (problem *prob, matrix *tableau)
- bool simplex_min (problem *prob, matrix *tableau, work_set *basis)
- void set variables (problem *prob, work set *basis, matrix *tableau)
- bool simplex_phase_1 (problem *prob)

4.13.1 Function Documentation

```
4.13.1.1 void convert_geq_to_leq ( problem * prob, work_set * virtual_vars, matrix *** Fr, matrix *** gr )

4.13.1.2 work_set* create_basis ( problem * prob )

4.13.1.3 void insert_constraints ( problem * prob, matrix * tableau, matrix * Et, matrix * Ft, matrix * gr )

4.13.1.4 void insert_objective_function ( problem * prob, matrix * tableau )

4.13.1.5 void insert_simplex_variables ( problem * prob, work_set * virtual_vars, matrix * tableau )

4.13.1.6 bool is_neg_tableau_row ( int row, matrix * tableau )

4.13.1.7 int min_test ( int column, matrix * tableau )

4.13.1.8 void neg_equality ( problem * prob, work_set * virtual_vars )

4.13.1.9 void remove_variables ( problem * prob, matrix * tableau )

4.13.1.10 void set_variables ( problem * prob, matrix * tableau, work_set * basis )

4.13.1.11 bool simplex_min ( problem * prob, matrix * tableau, work_set * basis )

4.13.1.12 bool simplex_phase_1 ( problem * prob )

4.13.1.13 matrix* split_eq_variables ( problem * prob, matrix * Fr )
```

4.14 TDDD77/quadopt/src/solver.c File Reference

```
#include <stdio.h>
#include <solver.h>
#include <math.h>
#include <subproblem.h>
#include <time.h>
#include <simplex.h>
```

- bool fill active set (problem *prob)
- bool take_step (problem *prob)
- void copy_solution (problem *prob)
- void prefill set (problem *prob)
- bool remove_constraint (problem *prob)
- matrix * quadopt_solver (problem *prob)

4.14.1 Function Documentation

```
4.14.1.1 void copy_solution ( problem * prob )
4.14.1.2 bool fill_active_set ( problem * prob )
4.14.1.3 void prefill_set ( problem * prob )
4.14.1.4 matrix* quadopt_solver ( problem * prob )
Solves a quadratic problem using the active set method
4.14.1.5 bool remove_constraint ( problem * prob )
Removes the active constraint with the most negative lagrange multiplier
```

4.14.1.6 bool take_step (problem * prob)

4.15 TDDD77/quadopt/src/subproblem.c File Reference

```
#include <subproblem.h>
#include <matLib.h>
#include <solver.h>
#include <assert.h>
```

Functions

- void range space sparse (sparse matrix *A, problem *prob)
- void range_space (matrix *A, problem *prob)
- void KKT_sub_sparse (sparse_matrix *A, problem *prob)
- void KKT_sub (matrix *A, problem *prob)
- void solve_subproblem (problem *prob)

4.15.1 Function Documentation

```
4.15.1.1 void KKT_sub ( matrix * A, problem * prob )
4.15.1.2 void KKT_sub_sparse ( sparse_matrix * A, problem * prob )
4.15.1.3 void range_space ( matrix * A, problem * prob )
4.15.1.4 void range_space_sparse ( sparse_matrix * A, problem * prob )
4.15.1.5 void solve_subproblem ( problem * prob )
```

4.16 TDDD77/quadopt/src/trans_con.c File Reference

```
#include <trans_con.h>
#include <assert.h>
```

Solves the subproblem for active set

Functions

```
• bool insert_x_identity_matrices (matrix *F, size_t card_x, size_t N)
```

- bool insert_fx (matrix *F, matrix *Fx, size_t card_x, size_t N)
- bool insert_u_identity_matrices (matrix *F, size_t card_u, size_t N)
- bool fix g (matrix *g, matrix *gx, matrix *x lim, matrix *u lim, size t N)
- bool insert_identity_matrices (matrix *E, size_t card_x)
- bool insert_A_matrices (matrix *E, matrix *A)
- bool insert_B_matrices (matrix *E, matrix *B, size_t N)
- bool trans_dyn_cons (matrix *A, matrix *B, matrix *k, matrix *E, matrix *h, size_t card_x)
- bool trans_ineq_cons (matrix *Fx, matrix *gx, matrix *F, matrix *g, size_t card_x, size_t card_u, size_t N, matrix *x_lim, matrix *u_lim)
- bool create objective (int n, matrix *Qin, matrix *P, matrix *R, matrix *Q)

4.16.1 Function Documentation

```
4.16.1.1 bool create_objective ( int n, matrix * Qin, matrix * P, matrix * R, matrix * Q )
4.16.1.2 bool fix_g ( matrix * g, matrix * gx, matrix * x_lim, matrix * u_lim, size_t N )
4.16.1.3 bool insert_A_matrices ( matrix * E, matrix * A )
4.16.1.4 bool insert_B_matrices ( matrix * E, matrix * B, size_t N )
4.16.1.5 bool insert_fx ( matrix * F, matrix * Fx, size_t card_x, size_t N )
4.16.1.6 bool insert_identity_matrices ( matrix * E, size_t card_x )
4.16.1.7 bool insert_u_identity_matrices ( matrix * F, size_t card_u, size_t N )
4.16.1.8 bool insert_x_identity_matrices ( matrix * F, size_t card_x, size_t N )
4.16.1.9 bool trans_dyn_cons ( matrix * A, matrix * B, matrix * k, matrix * E, matrix * h, size_t card_x )
Dynamic constraints (A and B with initial values K) transforms to equality constraints (E and h).
4.16.1.10 bool trans_ineq_cons ( matrix * Fx, matrix * gx, matrix * F, matrix * g, size_t card_x, size_t card_u, size_t N, matrix * x_lim, matrix * u_lim )
```

4.17 TDDD77/quadopt/src/work_set.c File Reference

```
#include <stdlib.h>
#include <stdio.h>
#include <work_set.h>
```

- work_set * work_set_create (size_t ws_max)
- bool work set append (work set *ws, size t val)
- bool work_set_remove (work_set *ws, size_t val)

```
bool work_set_free (work_set *ws)
```

- void work_set_print (work_set *ws)
- bool work_set_contains (work_set *ws, size_t item)
- void work_set_clear (work_set *ws)

4.17.1 Function Documentation

```
4.17.1.1 bool work_set_append ( work_set * ws, size_t val )
```

Adds an element to the set

4.17.1.2 void work_set_clear (work_set * ws)

Clears the set

4.17.1.3 bool work_set_contains (work_set * ws, size_t item)

Checks if the set is containing the item

4.17.1.4 work_set* work_set_create (size_t ws_max)

Creates a new work set

4.17.1.5 bool work_set_free (work_set * ws)

Removes and deallocates the set

4.17.1.6 void work_set_print (work_set * ws)

Prints all current elements in the set

4.17.1.7 bool work_set_remove (work_set * ws, size_t val)

Removes an element from the set