Storage Models and Compression

Consider a database with a single table $R(q_id, txns, total, failed)$, where q_id is the *primary key*, and all attributes are the same fixed width. Suppose R has 20,000 tuples that fitinto 100 pages, Ignore any additional storage overhead for the table (e.g., page headers, tupleheaders). Additionally, you should make the following assumptions:

- The DBMS does not have any additional meta-data (e.g., sort order, zone maps).
- Rdoes not have any indexes (including for primary key q id)
- None of the pages are in the buffer pool.

Consider the following query:

```
SELECT total - failed FROM R
WHERE q_id = 96 AND txns > 420;
```

- (a) Suppose the DBMS uses the decomposition storage model (DSM):
 - i. What is the *minimum* number of pages that the DBMS will potentiallyhave to read from disk to answer this query?
 - 1
 - 2-10
 - 11 50
 - 51 100
 - > 100
 - ii. What is the *maximum* number of pages that the DBMS will potentiallyhave to read from disk to answer this query?
 - 1
 - 2-10
 - 11 50
 - 51 100
 - > 100
- (b) Suppose the DBMS uses the N-ary storage model (NSM)
 - i. What is the *minimum* number of pages that the DBMS will potentiallyhave to read from disk to answer this query?
 - 1
 - 2 10

- 11 50
- 51 100
- > 100
- ii. What is the *maximum* number of pages that the DBMS will potentiallyhave to read from disk to answer this query?
 - 1
 - 2 10
 - 11 50
 - 51 100
 - > 100