IPESUP 2022/2023

Kholle 19 filière MP* Planche 1

- 1. Si f est différentiable en a, alors f est \dots en a et \dots en a selon tout vecteur.
- 2. Montrer que l'équation $x'' 2x' + x = \frac{1}{\sqrt{\pi t}}$ possède une unique solution définie sur \mathbb{R}^{+*} , telle que, par prolongement x(0) = 0 et x'(0) = 0.
- 3. Soit (f,g) une base de solutions de l'équation différentielle homogène :

$$x''(t) + p(t)x'(t) + q(t)x(t) = 0$$

avec p et q des fonctions continues sur un intervalle ouvert l=]a,b[de \mathbb{R} . Montrer que les zéros de f sont isolés. En déduire qu'entre deux zéros consécutifs de f, il y a un unique zéro de g.

IPESUP 2022/2023

Kholle 19 filière MP* Planche 2

- 1. Lien entre différentielle et dérivées partielles
- 2. Résoudre le système différentiel

$$\begin{cases} x'' = 2x - 3y \\ y'' = x - 2y \end{cases}$$

3. Soit f une application continue non constante de $\mathbb R$ dans $\mathbb R$. Montrer que l'équation différentielle y''-y=f admet au plus une solution périodique.

IPESUP 2022/2023

Kholle 19 filière MP* Planche 3

- 1. Lorsque f définie sur un intervalle ouvert de \mathbb{R} , lien entre différentiabilité et dérivabilité.
- 2. Résoudre l'équation différentielle

$$xy'' + 2y' + xy = 0$$

3. Soit f une fontion de classe C^1 sur \mathbb{R}^+ telle que $\lim_{t\to 0} f(t) = 0$ et $f'\in L^2(\mathbb{R}^+)$. Montrer que toute solution de l'équation différentielle

$$x^{\prime\prime} + (1+f)x = 0$$

est bornée.

