# **Import Libraries**

# In [1]:

```
import pandas as pd
import numpy as np
```

## In [3]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

### **Import Dataset**

## In [5]:

```
data = pd.read_csv('Iris.csv')
data.head()
```

# Out[5]:

|   | ld | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---|----|---------------|--------------|---------------|--------------|-------------|
| 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
| 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |

## In [6]:

```
data.drop(['Id'] , axis = 1 , inplace = True)
```

## In [7]:

```
data.head()
```

## Out[7]:

|   | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---|---------------|--------------|---------------|--------------|-------------|
| 0 | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 1 | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
| 2 | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 3 | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 4 | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |

```
In [8]:
```

```
data['Species'] = data['Species'].str.replace('Iris-' , '')
```

# In [9]:

```
data.head()
```

### Out[9]:

|   | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species |
|---|---------------|--------------|---------------|--------------|---------|
| 0 | 5.1           | 3.5          | 1.4           | 0.2          | setosa  |
| 1 | 4.9           | 3.0          | 1.4           | 0.2          | setosa  |
| 2 | 4.7           | 3.2          | 1.3           | 0.2          | setosa  |
| 3 | 4.6           | 3.1          | 1.5           | 0.2          | setosa  |
| 4 | 5.0           | 3.6          | 1.4           | 0.2          | setosa  |

### In [13]:

```
data.Species.unique()
```

## Out[13]:

array(['setosa', 'versicolor', 'virginica'], dtype=object)

## In [10]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

| # | Column        | Non-Null Count | Dtype   |
|---|---------------|----------------|---------|
|   |               |                |         |
| 0 | SepalLengthCm | 150 non-null   | float64 |
| 1 | SepalWidthCm  | 150 non-null   | float64 |
| 2 | PetalLengthCm | 150 non-null   | float64 |
| 3 | PetalWidthCm  | 150 non-null   | float64 |
| 4 | Species       | 150 non-null   | object  |
|   |               |                |         |

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [11]:
```

```
data.describe()
```

### Out[11]:

|       | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-------|---------------|--------------|---------------|--------------|
| count | 150.000000    | 150.000000   | 150.000000    | 150.000000   |
| mean  | 5.843333      | 3.054000     | 3.758667      | 1.198667     |
| std   | 0.828066      | 0.433594     | 1.764420      | 0.763161     |
| min   | 4.300000      | 2.000000     | 1.000000      | 0.100000     |
| 25%   | 5.100000      | 2.800000     | 1.600000      | 0.300000     |
| 50%   | 5.800000      | 3.000000     | 4.350000      | 1.300000     |
| 75%   | 6.400000      | 3.300000     | 5.100000      | 1.800000     |
| max   | 7.900000      | 4.400000     | 6.900000      | 2.500000     |

#### In [12]:

```
data.isnull().sum()
```

### Out[12]:

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

### In [14]:

```
data['Species'] = data['Species'].str.replace('setosa' , '1')
data['Species'] = data['Species'].str.replace('versicolor' , '2')
data['Species'] = data['Species'].str.replace('virginica' , '3')
```

### In [18]:

```
data["Species"] = pd.to_numeric(data["Species"], downcast = "integer")
```

### In [19]:

```
data.head()
```

### Out[19]:

|   | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species |
|---|---------------|--------------|---------------|--------------|---------|
| 0 | 5.1           | 3.5          | 1.4           | 0.2          | 1       |
| 1 | 4.9           | 3.0          | 1.4           | 0.2          | 1       |
| 2 | 4.7           | 3.2          | 1.3           | 0.2          | 1       |
| 3 | 4.6           | 3.1          | 1.5           | 0.2          | 1       |
| 4 | 5.0           | 3.6          | 1.4           | 0.2          | 1       |

### **Heat map**

## In [20]:

```
plt.figure(figsize = (19,5))
sns.heatmap(data.corr() , annot = True)
plt.show()
```



## In [21]:

```
data.drop(['SepalWidthCm'] , axis = 1 , inplace = True)
```

## In [22]:

data.head()

### Out[22]:

|   | SepalLengthCm | PetalLengthCm | PetalWidthCm | Species |
|---|---------------|---------------|--------------|---------|
| 0 | 5.1           | 1.4           | 0.2          | 1       |
| 1 | 4.9           | 1.4           | 0.2          | 1       |
| 2 | 4.7           | 1.3           | 0.2          | 1       |
| 3 | 4.6           | 1.5           | 0.2          | 1       |
| 4 | 5.0           | 1.4           | 0.2          | 1       |

## Modelling

```
In [23]:
X = data.drop(['Species'] , axis = 1)
y = data['Species']
In [24]:
from sklearn.model_selection import train_test_split
In [25]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=4
In [26]:
from sklearn.tree import DecisionTreeClassifier
In [27]:
dt_model = DecisionTreeClassifier()
In [28]:
dt_model.fit(X_train, y_train)
Out[28]:
▼ DecisionTreeClassifier
DecisionTreeClassifier()
In [29]:
y_pred = dt_model.predict(X_test)
In [30]:
from sklearn.metrics import classification report, confusion matrix, accuracy score
In [31]:
print("Accuracy Score:", accuracy_score(y_test, y_pred))
Accuracy Score: 1.0
In [32]:
from sklearn.model_selection import cross_val_score
```

```
In [33]:
cv_scores = cross_val_score(estimator=dt_model, X = X_train, y = y_train, cv=10)
cv_scores.mean()
Out[33]:
0.918181818181818
In [34]:
cv_scores
Out[34]:
array([1.
                                                      , 0.63636364,
       0.81818182, 1.
                             , 0.90909091, 0.90909091, 0.90909091])
In [35]:
print(confusion_matrix(y_test, y_pred))
[[15 0 0]
[ 0 11 0]
 [ 0 0 12]]
Decision Tree
In [36]:
from sklearn import tree
In [38]:
list(data.columns[:-1])
Out[38]:
['SepalLengthCm', 'PetalLengthCm', 'PetalWidthCm']
In [39]:
features = list(data.columns[:-1])
targets = ["setosa", "versicolor", "virginica "]
print(features)
print(targets)
['SepalLengthCm', 'PetalLengthCm', 'PetalWidthCm']
['setosa', 'versicolor', 'virginica ']
```

### In [43]:

```
plt.figure(figsize=(20,20))
tree2 = tree.plot_tree(dt_model, filled = True , feature_names=features , class_names
```



## In [ ]: