Beszámoló az Anyag- és Molekulaszerkezeti Munkabizottság (AMMB) 2008. évi tevékenységéről

2008-ban folytattuk a Kémiai Kutatóközpontban tartott "Szerkezeti Kémiai Előadások" sorozatunkat, melyen több magyar és külföldi kutató számolt be eredményeiről. Emellett az MTA Kémiai Tudományok Osztály november 11-i "Molekulák térben és időben" c. ülésén kollégánk, Czugler Mátyás tartott előadást.

Rendezvények listája

Február 5.	Prof. Kim A. Burkov St. Petersburg State University	Speciation of metal ions in aqueous solutions and corresponding solids
Február 12.	Nagy Nóra MTA KK Szerkezeti Kémiai Intézet ESR Laboratórium	Pulzus ESR spektroszkópiai módszerek alkalmazása átmenetifém-komplexek szerkezetkutatásában
Február 19.	Korányi Tamás MTA KK Szerkezeti Kémiai Intézet Lézerspektroszkópia Laboratórium	A finomító hidrogénezés katalizátorainak aktiválása c. akadémiai doktori értekezés munkahelyi vitája
Március 4.	Hamza Andrea MTA KK Szerkezeti Kémiai Intézet Simon Ágnes	Diszperziós erők: Amikor a másodlagos elsődleges Idegi célfehérje-ligandum kölcsönhatások
	MTA KK Biomolekuláris Kémiai Intézet Neurokémiai Osztály	modellezése
Április 16.	Marosi György BME Szerves Kémia és Technológia Tanszék	Spektrometriával támogatott technológiák
Szeptember 9.	Czugler Mátyás MTA KK SZKI Kristálydiffrakciós Laboratórium Az AMMB Tisztségújító ülése	Szupramolekuláris kémia a szilárd fázisban
Október 7.	Professor SUSAN A. BOURNE University of Cape Town, South Africa	Robust supramolecular synthons – melting point, Wallach's rule and the Zöllner illusion

November 4.	Hollóné Sitkei Eszter MTA KK SZKI Lézerspektroszkópia Laboratórium	Sztérikus hatások palládiumkomplexek önszerveződési reakciójában
November 24.	Győr Miklós NKTH	Japán kívülről-belülről
November 28	Dr. Jesús González- Vazquez, Friedrich- Schiller University Jena, Németország	Laser catalysis of simple photochemical reactions
	Prof. Thomas Weinacht, Stony Brook University, New York, USA	Using strong laser fields to control molecular dissociation
	Prof. Thomas Feurer, University of Bern, Svájc	Coherent control at the single photon limit

Az AMMB területén 2008-ban elért fontosabb új eredmények

Az MTA Kémiai Kutatóközpont és a Műegyetem Fizikai Kémia Tanszéke 2000 óta üzemeltet közös oktató-kutató laboratóriumot. Az optikai spektroszkópia, főként elektrongerjesztési spektroszkópia területén dolgozunk. Az alábbi eredményeket elért AMMB tagok: Baranyai Péter, Kállay Mihály, Kubinyi Miklós, Vidóczy Tamás, Pál Krisztina, Varga Olívia.

- A sejtmembránokban a víz érzékelésére alkalmas, új fluoreszcens próbákat terveztünk szintetizáltunk, és vizsgáltunk spektroszkópiai módszerekkel. Kvantumkémiai számításokkal felderítettük a dezaktíválódási mechanizmust. (A 2008 évi kémiai Nobeldíjasok biológiai minták fluoreszcenciás vizsgálatára szolgáló módszert dolgoztaki ki.)
- A fény hatására reverzibilisen átalakuló ún. fotokróm vegyületeket tanulmányoztunk, amelyek koronaéter makrociklust tartalmaztak, s ezért képesek fémionokat megkötni. Spektroszkópiai mérések alapján jellemeztük a szabad fotokróm vegyületek és a komplexek fotokémiai tulajdonságait.
- CD-spektroszkópiai mérések és kvantumkémiai számítások alapján meghatároztuk többféle vegyületcsaládhoz tartozó molekulák (epoxidok, foszfolén oxidok, ciklohexánszármazékok, fenil-pirrolok) abszolút konfigurációját. Míg korábban a CD spektroszkópia csak speciális vegyületcsaládok esetében volt alkalmas az abszolút konfiguráció meghatározására, napjainkban alkalmazása kibővült, mivel a kvantumkémiai számítások alkalmassá váltak a CD-spektrumok értelmezésére.

Fémhalogenidek szerkezetvizsgálata területén (Hargittai Magdolna, MTA-BME Anyagszerkezeti és Modellezési Kutatócsoport) elektrondiffrakció és/vagy kvantumkémiai módszerek alkalmazásával a következő fontosabb eredményeket értük el:

- "Unrestricted Kohn-Sham" sűrűségfunkcionál számításokkal meghatároztuk a CrCl₂ kisebb oligomerjeinek (Cr₂Cl₄, Cr₃Cl₆, Cr₄Cl₈) gázfázisbeli szerkezetét, melyek antiferromágnesesen csatolt CrCl₂ egységekből épülnek fel. A kétdimenziós láncokban a pszeudo Jahn-Teller effektus eredményeként enyhén torzult négytagú Cr₂Cl₂ gyűrűk alakulnak ki. A kombinált elektrondiffrakciós és kvantumkémiai analízis alapján a CrCl₂ monomer szerkezete enyhén hajlított a Renner-Teller effektus hatására.

Kvantumkémiai modellezéssel meghatároztuk a 12. csoport dihalogenidjeinek (MX₂: M=Zn, Cd, Hg and X=F, Cl, Br, I) és dimerjeinek jellemző szerkezeti paramétereit.
 Modelleztük emellett a szilárd fázis szerkezetét is, melyre vonatkozóan kapcsolatot mutattunk ki a megfelelő monomerek és dimerek szerkezetével.

Rezgési spektroszkópia területén a monoszacharidok tanulmányozása során értünk el fontos eredményeket (Kovács Attila, MTA-BME Anyagszerkezeti és Modellezési Kutatócsoport). Elvégeztük a β-D-glükuronsav, N-acetil-α-D-glükózamin és α-D-glükóz monoszacharidok teljes rezgési analízisét. Az FT-IR kísérleti adatokat szelektíven skálázott kvantummechanikai erőtér alapján értelmeztük. Meghatároztuk a molekulák erőállandó készletét. Az α-D-glukózra ukrán kooperációban végzett matrix-izolációs FT-IR kísérletek alkalmazásával kimutattuk a gázfázisban levő domináns (2) és még megkülönböztethető kisebbségi (4) konformereket.

Magas szintű kvantumkémiai számításokkal kis molekulák fiziko-kémiai paramétereit sikerült nagy pontossággal meghatározni (Császár Attila G., ELTE TTK Kémiai Intézet, Fizikai Kémia Tanszék).

- Részt vettünk a több mint 80 éve keresett hidroxi-metilén (HCOH) gyök előállítását igazoló spektroszkópiai azonosításban és vizsgálatban, ahol a kísérleti eredményeket pontos kvantumkémiai (elektronszerkezet es magmozgás) számításaink támasztották alá. Igazoltuk a HCOH gyök alagúteffektussal formaldehiddé történő átrendeződését.
- Folytatva a víz molekula spektroszkópiájának vizsgálatát, több éves nemzetközi együttműködés eredményeként egy minden eddiginél pontosabb, még a relativisztikus hatásokat is figyelembe vevő dipólus momentum felületet állítottunk elő, s erre alapozva variációs magmozgás számítások segítségével számítottuk a víz rezgési-forgási vonalainak intenzitását. Ezek a kísérletileg többnyire hozzá nem férhető vonalas intenzitás adatok határozzák meg a víz elnyelési színképét, mely a földi üvegházhatás tudományos magyarázatának alapját képezi.
- Többnyire saját fejlesztésen alapuló nagypontosságú elektronszerkezet és magmozgás számítások segítségével minden eddigi mérési és számítási adatnál pontosabb becslést sikerült adni a CO és NH₃ molekulák proton affinitására mind 0 mind 298.15 K-en, ezzel rögzítve a szabad molekulák protonaffinitási skáláját, melynek nagy jelentősége van MS/MS vizsgálatokban.

Budapest, 2008. november 27.

titkár

Louis St

elnök

Kue: yi e hef