

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Abschlussarbeit in Informatik

Effiziente statistische Methoden für Datenbanksysteme

Thomas Heyenbrock

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Abschlussarbeit in Informatik

Effiziente statistische Methoden für Datenbanksysteme

Efficient statistical methods for database systems

Autor: Thomas Heyenbrock Supervisor: Prof. Alfons Kemper

Advisor: Maximilian E. Schüle, M.Sc.

Datum: 15.01.2017

Ich versichere, dass ich diese Diploma Quellen und Hilfsmittel verwendet ha	oeit selbständig verfasst und nur die angegebenen e.
München, den 5. Dezember 2017	Thomas Havanbrock
Mancher, dell J. Dezeillbei 2017	Thomas Heyenbrock

Abstract

An abstracts abstracts the thesis!

Contents

At	ostract	vii
Οι	utline of the Thesis	xi
1.	Einführung und typische statistische Problemstellungen 1.1. Latex Introduction	1 1
2.	Grundlagen statistischer Methoden 2.1. Lineare Regression	3 4 5 5
3.	Anwendung statistischer Methoden 3.1. Latex Introduction	7
4.	Statistische Methoden in Datenbanken 4.1. Latex Introduction	9 9
5.	Erweiterungspotenzial in Datenbanksystemen 5.1. Latex Introduction	11 11
6.	Fazit 6.1. Latex Introduction	13 13
Aj	ppendix	17
Α.	Detailed Descriptions	17
Bi	bliography	19

Outline of the Thesis

Teil I: Introduction and Theory

CHAPTER 1: INTRODUCTION

This chapter presents an overview of the thesis and it purpose. Furthermore, it will discuss the sense of life in a very general approach.

CHAPTER 2: THEORY No thesis without theory.

Teil II: The Real Work

CHAPTER 3: OVERVIEW

This chapter presents the requirements for the process.

1. Einführung und typische statistische Problemstellungen

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

1.1. Latex Introduction

1. Einführung und typische statistische Problemstellungen				

2. Grundlagen statistischer Methoden

Bei der Regressionsanalyse geht es im Allgemeinen darum, das Verhalten einer Größe Y in Abhängigkeit einer oder mehrerer anderer Größen X_1, X_2, \ldots, X_n zu modellieren. Die Größe Y wird abhängig genannt, die Größen X_i nennt man unabhängig. Für diese Arbeit wollen wir zunächst einige Annahnmen über diese voraussetzen. Diese Punkte gelten immer, falls nicht explizit etwas anderes festgelegt wird.

- Die genannten Größen sind Zufallsvariablen. Das sind Funktionen deren Werte die Ergebnisse eines Zufallsvorgangs darstellen.
- Die Zufallsvariablen sind auf der Menge $M = \{1, \dots, m\}$ definiert und bilden in die reellen Zahlen ab:

$$Y: M \to \mathbb{R}, \ X_1: M \to \mathbb{R}, \ \dots, \ X_n: M \to \mathbb{R}$$

Das bedeutet die Zufallsvariablen sind metrisch skaliert. Die m Zahlen in der Menge M entsprechen den m Datenpunkten, die wir als Datenbasis für die Regressionsanalyse besitzen.

• Wir verwenden die folgenden Abkürzungen für die Werte der Zufallsvariablen:

$$y_i := Y(i) \quad \text{für alle } i \in M,$$

$$x_{i,j} := X_j(i) \quad \text{für alle } i \in M \ \text{ und } 1 \leq j \leq n$$

• Einen Datenpunkt aus unserer Datenbasis fassen wir als Vektor der Länge (n + 1) auf. Damit lässt sich die Datenbasis schreiben als:

$$(y_1, x_{1,1}, \ldots, x_{1,n}), \ldots, (y_m, x_{m,1}, \ldots, x_{m,n})$$

Das Modell definieren wir anhand einer Funktion f, welche für Werte der unabhängigen Variablen einen geschätzten Wert für die abhängige Variable liefert. Idealerweise existiert eine Funktion, die zum Einen eine einfache Darstellung (z.B. durch eine arithmetische Formel) besitzt und zum Anderen alle unabhängigen Werte der Datenmenge exakt prognostiziert. Das bedeutet:

$$y_i = f(x_{i,1}, \dots, x_{i,n})$$
 für alle $1 \le i \le m$

Falls eine Formel wie hier für alle Datenpunkte gelten soll, verwenden wir als Abkürzung auch die Zufallsvariablen selbst, also:

$$Y = f(X_1, \ldots, X_N)$$

Im Allgemeinen ist es nicht möglich eine Funktion f zu finden, die beide Eigenschaften erfüllt. Man versucht also eine Funktion mit einer möglichst einfachen Form zu finden, die die Datenmenge möglichst gut approximiert. Wir definieren für jeden Datenpunkt den Fehler e_i , der sich durch die nicht exakte Modellfunktion f ergibt:

$$e_i = y_i - f(x_{i,1}, \dots, x_{i,n})$$

Ziel der Regressionsanalyse ist es nun eine Funktion f zu finden, die diese Fehlerterme minimiert. Diese Optimierung geschieht global, also für die gesamte Datenmenge und nicht nur für einzelne Datenpunkte.

2.1. Lineare Regression

Bei der linearen Regression geht man von einem linearen Zusammenhang zwischen der abhängigen und den unabhängigen Variablen aus. Die Funktion f ist also von folgender Form:

$$f(x_1, \dots, x_n) = \alpha + \sum_{i=1}^n \beta_i \cdot x_i \text{ mit } \beta_i \in \mathbb{R}$$

Das Maß für die Qualität einer Funktion f definiert durch die Parameter $\alpha, \beta_1, \dots, \beta_n$ ist die Summe der quadrierten Fehlerterme:

$$E(\alpha, \beta_1, \dots, \beta_n) = \sum_{j=1}^m e_j^2 = \sum_{j=1}^m (y_j - f(x_{j,1}, \dots, x_{j,n}))^2 = \sum_{j=1}^m \left(y_j - \alpha - \sum_{i=1}^n \beta_i \cdot x_{i,j} \right)^2$$

Wir suchen also die Parameter $\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_n$ für die gilt:

$$E(\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_n) = min\{E(\alpha, \beta_1, \dots, \beta_n) \mid \alpha \in \mathbb{R}, \beta_1 \in \mathbb{R}, \dots, \beta_n \in \mathbb{R}\}$$

Um dieses Minimierungsproblem zu lösen berechnen wir die partiellen Ableitungen von *E*.

$$\frac{\partial E}{\partial \alpha} = -2 \cdot \sum_{j=1}^{m} (y_j - f(x_{j,1}, \dots, x_{j,n})) = -2 \cdot \sum_{j=1}^{m} \left(y_j - \alpha - \sum_{i=1}^{n} \beta_i \cdot x_{i,j} \right)$$

$$\frac{\partial E}{\partial \beta_k} = -2 \cdot \sum_{j=1}^{m} x_{k,j} \cdot (y_j - f(x_{j,1}, \dots, x_{j,n}))$$

$$= -2 \cdot \sum_{j=1}^{m} x_{k,j} \cdot \left(y_j - \alpha - \sum_{i=1}^{n} \beta_i \cdot x_{i,j} \right) \quad \text{für } 1 \le k \le n$$

Durch Nullsetzen der partiellen Ableitungen erhält man ein lineares Gleichungssystem mit (n+1) Gleichungen und ebensovielen Unbekannten.

$$\frac{\partial E}{\partial \alpha} = 0, \quad \frac{\partial E}{\partial \beta_1} = 0, \quad \dots, \quad \frac{\partial E}{\partial \beta_n} = 0$$

Die Lösung dieses Gleichungssystems (falls eine existent) ist das gesuchte Minimum.

2.1.1. Einfache lineare Regression

Man spricht von einfacher linearer Regression, wenn man mit nur eine unabhängige Variable arbeitet. Anschaulich möchte mann hier die bestmögliche Schätzgerade durch eine gegebene Punktwolke legen.

Wir nennen die unabhängige Variable in diesem Kapitel statt X_1 einfach nur X. Ebenso schreiben wir $\beta_1 = \beta$ und $x_{1,j} = x_j$. Dann können wir das lineare Gleichungssystem zum Auffinden des Minimums explizit aufschreiben:

$$0 = -2 \cdot \sum_{j=1}^{m} (y_i - \alpha - \beta \cdot x_j)$$
$$0 = -2 \cdot \sum_{j=1}^{m} x_j \cdot (y_i - \alpha - \beta \cdot x_j)$$

Für dieses Gleichungssystem kann die Lösung explizit angegeben werden, wobei wir hier nicht näher auf die Herleitung dieses Ergebnisses eingehen wollen:

$$\beta = \frac{\sum_{j=1}^{m} (x_j - \bar{x})(y_j - \bar{y})}{\sum_{j=1}^{m} (x_j - \bar{x})^2}$$
$$\alpha = \bar{y} - \beta \bar{x}$$

Dabei bezeichnen \bar{x} und \bar{y} die Mittelwerte von X respektive Y.

2.1.2. Multible lineare Regression

Bei multibler linearer Regression existieren mindestens zwei unabhängige Variablen. Hier ist es nicht mehr zweckmäßig eine explizite Lösung anzugeben. Auch bei maschineller Berechnung werden hier häufig alternative Methoden zur Berechnung der Parameter eingesetzt.

2.	Grundlagen	statistischer	Methoden
	OI MIIMING CIT	Dear the the tree t	TITC CITC CIT

3. Anwendung statistischer Methoden

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

3.1. Latex Introduction

3.	Anwendung	statistischer	Methoden
<i>O</i> .	miwendung	Statististici	MEHIOUEII

4. Statistische Methoden in Datenbanken

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

4.1. Latex Introduction

5. Erweiterungspotenzial in Datenbanksystemen

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

5.1. Latex Introduction

5.	Erweiterungs	ootenzial in	Datenbanks	vstemen
\sim .	LI W CICCI GIIGO	occiiziai iii	Duttibuille	ybtchitch

6. Fazit

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

6.1. Latex Introduction

Appendix

A. Detailed Descriptions

Here come the details that are not supposed to be in the regular text.

Bibliography

[1] Leslie Lamport. *LaTeX*: A Documentation Preparation System User's Guide and Reference Manual. Addison-Wesley Professional, 1994.