Lenguaje matemático, conjuntos y números

Pregunta 1 (3 puntos)

Dados tres subconjuntos cualesquiera A, B y C de un conjunto no vacío U, demuestre que

- a) $A \triangle B = A \cap B \iff A = B = \emptyset$;
- b) $A \triangle B = \emptyset \iff A = B$;
- c) $A \triangle C = B \triangle C \iff A = B$.

Solución: a) \Rightarrow) Supongamos que $A \triangle B = A \cap B$. Veamos que $A = \emptyset$. En efecto, si $A \neq \emptyset$, entonces existe $a \in A$. Si $a \in B$ entonces $a \in A \cap B = A \triangle B$, que es una contradicción pues $(A \cap B) \cap (A \triangle B) = \emptyset$. Si $a \notin B$ entonces $a \in A \setminus B \subset A \triangle B$ y como por hipótesis $A \triangle B = A \cap B$, resulta que $a \in B$, que también es una contradicción. Por tanto, $A = \emptyset$. El caso $B = \emptyset$, es idéntico y no es necesario por la simetría en el ejercicio entre A y B.

- \Leftarrow) Si $A = B = \emptyset$ entonces $A \triangle B = \emptyset$ y $A \cap B = \emptyset$ y en consecuencia, $A \triangle B = A \cap B$.
- b) \Rightarrow) Probaremos el contrarrecíproco: Si $A \neq B$ entonces existe $a \in A$ tal que $a \notin B$ o existe $b \in B$ tal que $b \notin A$. En el primer caso, $a \in (A \setminus B) \subset A \triangle B$ mientras que en el segundo caso, $b \in (B \setminus A) \subset A \triangle B$. En ambos casos se concluye que $A \triangle B \neq \emptyset$.
- \Leftarrow) Si A = B entonces $A \triangle B = (A \cup B) \setminus (A \cap B) = A \setminus A = \emptyset$.
- c) \Rightarrow) Supongamos que $A \triangle C = B \triangle C$. Veamos que $A \subset B$. En efecto, $\forall x \in A$, puede ocurrir que $x \in C$ o $x \notin C$. En el primer caso, $x \notin A \triangle C$ pues $(A \cap C) \cap (A \triangle C) = \emptyset$. Por tanto $x \notin B \triangle C$ y como $x \in C$ resulta que $x \in B$. Si $x \notin C$ entonces $x \in A \setminus C \subset A \triangle C = B \triangle C$ y como $x \notin C$ resulta que $x \in B$. En ambos casos $x \in B$. Por tanto , $A \subset B$.

La demostración de $B \subset A$ es idéntica y no es necesaria por la simetría del ejercicio entre $A \setminus B$.

 \Leftarrow) Finalmente, si A = B entonces $A \triangle C = B \triangle C$.

Pregunta 2 (2 puntos) Se dice que un conjunto ordenado (U, \preceq) es un retículo si existen el supremo y el ínfimo de dos elementos cualesquiera a y b de U.

Dado los grafos dirigidos (V,G) y (V,G') de la figura, donde $V=\{1,2,3,4,5\},$ $G=\{21,32,42,53,54\}$ y $G'=\{21,42,53,54\}$, se consideran los pseudo-grafos obtenidos al añadir las aristas que unen cada punto con sí mismo. Se define en V las relaciones \leqslant_G y $\leqslant_{G'}$ mediante:

$$G: \qquad 5 \longrightarrow 4$$

$$\downarrow \qquad \qquad \downarrow$$

$$3 \longrightarrow 2 \longrightarrow 1$$

$$G': 5 \longrightarrow 4 \longrightarrow 2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$3 \qquad \qquad 1$$

 $x \leq_G y$ (respectivamente $x \leq_{G'} y$) si y sólo si existe un camino que empieza en x y termina en y en el pseudografo de G (respectivamente de G').

- a) Compruebe si (V, \leq_G) es un retículo.
- b) Compruebe si $(V, \leq_{G'})$ es un retículo.

Solución: Para comprobar si son retículos hay que comprobar que existen el supremo y el ínfimo de dos elementos cualesquiera a y b.

a) (V, \leq_G) es un retículo. A continuación se indican el supremo e ínfimo de cada par de elementos:

$$\sup(\{1,2\}) = 1$$
, $\sup(\{1,3\}) = 1$, $\sup(\{1,4\}) = 1$, $\sup(\{1,5\}) = 1$,

$$\sup(\{2,3\}) = 2$$
, $\sup(\{2,4\}) = 2$, $\sup(\{2,5\}) = 2$,

$$\sup(\{3,4\}) = 2, \sup(\{3,5\}) = 3,$$

$$\sup(\{4,5\}) = 4,$$

$$\inf(\{1,2\}) = 2$$
, $\inf(\{1,3\}) = 3$, $\inf(\{1,4\}) = 4$, $\inf(\{1,5\}) = 5$,

$$\inf(\{2,3\}) = 3$$
, $\inf(\{2,4\}) = 4$, $\inf(\{2,5\}) = 5$, $\inf(\{3,4\}) = 5$, $\inf(\{3,5\}) = 5$,

$$\inf(\{4,5\}) = 5.$$

Por otra parte, se cumple que $\sup(\{a,a\}) = \inf(\{a,a\}) = a$ para todo $a \in \{1,2,3,4,5\}$.

b) $(V, \leq_{G'})$ no es un retículo pues, por ejemplo, no existe el supremo de 3 y 4, sup.

Observación: En un conjunto ordenado (U, \preceq) , la existencia del supremo y del ínfimo de U no implica que existan automáticamente el supremo e ínfimo de cada par de elementos y por tanto (U, \preceq) puede no ser un retículo. Se pueden buscar muchos ejemplos. En concreto:

- i) $U = \{(x, x) \in \mathbb{R}^2 \mid 1 < x \le 2\} \cup \{(0, 0), (0, 1)(1, 0)\}$ ordenado con la restricción a U del orden producto en \mathbb{R}^2 (ejemplo 3.23). En este caso $\sup(U) = (2, 2)$, $\inf(U) = (0, 0)$ pero sin embargo (U, \preceq) no es un retículo pues no existe $\sup(\{(0, 0), (1, 1)\})$.
- ii) $V = \{(x, x) \in \mathbb{R}^2 \mid 1 < x \le 2\}$ también ordenado con la restricción a U del orden producto en \mathbb{R}^2 . En este caso no existe el ínfimo de V y sin embargo, (V, \preceq) es un retículo. Basta observar que el orden en V es un orden total y por tanto existen el supremo y el ínfimo de dos elementos cualesquiera de V.

Pregunta 3 (2,5 puntos) Determine razonadamente si los siguientes conjuntos con la operación considerada forman un grupo.

- a) A = (-1, 1) y la operación * definida mediante $x * y = \frac{x + y}{1 + xy}$.
- b) $B = \{z \in \mathbb{C} \mid |z| = 2\}$ con el producto usual de números complejos.

Solución: a) Veamos que (A, *) es un grupo:

La operación * es una operación interna: hay que demostrar que $x * y \in A$ si $x, y \in A$. Observemos en primer lugar que si $x, y \in (-1, 1)$ entonces 1 + xy > 0.

$$x * y \in (-1,1) \iff -1 - xy < x + y < 1 + xy \iff \begin{cases} -1 - xy < x + y \\ x + y < 1 + xy \end{cases}$$

$$\iff \begin{cases} 0 < x + y + xy + 1 \\ 0 < 1 + xy - x - y \end{cases} \iff \begin{cases} (1+x)(1+y) > 0 \\ (1-x)(1-y) > 0 \end{cases}$$

Las últimas desigualdades son ciertas si $x, y \in (-1, 1)$ pues se cumple que 1 + x > 0, 1 - x > 0, 1 + y > 0 y 1 - y > 0.

La operación * es asociativa. En efecto:

$$(x*y)*z = \frac{x+y}{1+xy}*z = \frac{\frac{x+y}{1+xy}+z}{1+\frac{x+y}{1+xy}z} = \frac{x+y+z+xyz}{1+xy+xz+yz}$$

$$x*(y*z) = x*\frac{y+z}{1+yz} = \frac{x+\frac{y+z}{1+yz}}{1+x\frac{y+z}{1+yz}} = \frac{x+xyz+y+z}{1+yz+xy+xz}$$

0 es el elemento neutro pues $x * 0 = 0 * x = \frac{x}{1} = x$ para todo $x \in (-1,1)$.

El simétrico de
$$x \in (-1,1)$$
 es $-x$ pues $x * (-x) = (-x) * x = \frac{x + (-x)}{1 - x^2} = 0$.

b) (B,\cdot) no es un grupo pues ni siquiera el producto de dos elementos de B es un elemento de B, ya que si |z|=2 y |z'|=2 entonces |zz'|=4 y en consecuencia, $zz'\notin B$.

Pregunta 4 (2,5 puntos)

- a) Sean ω_1 , ω_2 y ω_3 las tres raíces cúbicas, distintas entre sí, de un mismo número complejo. Determine razonadamente ω_2 y ω_3 en función de ω_1 .
- b) Resuelva en \mathbb{C} la ecuación $z^6 (1+2i)z^3 + i 1 = 0$.

Solución: a) Observemos primero que si ω_1 , ω_2 y ω_3 son las tres raíces cúbicas, distintas entre sí, de un mismo número complejo necesariamente estas raíces son distintas de cero. Resolvemos la ecuación $z^3 = \omega_1^3$.

Si
$$z = r_{\alpha}$$
 y $\omega_{1} = s_{\beta}$ se obtiene, $r_{3\alpha}^{3} = s_{3\beta}^{3}$, es decir $r = s$ y $\alpha = \begin{cases} \beta & \longrightarrow z = \omega_{1} \\ \beta + 2\pi/3 & \longrightarrow z = \omega_{1} e^{2\pi i/3} \\ \beta + 4\pi/3 & \longrightarrow z = \omega_{1} e^{4\pi i/3} \end{cases}$

b) Para $x=z^3$ se obtiene la ecuación de grado 2,

$$x^2 - (1+2i)x + 1 - i = 0$$

cuyo discriminante es $\Delta = (1+2i)^2 - 4(i-1) = 1$. Se obtienen dos soluciones $x = \begin{cases} (1+2i+1)/2 = 1 + i = \sqrt{2}e^{\pi i/4} \\ (1+2i-1)/2 = i = e^{\pi i} \end{cases}$.

Resolviendo las correspondientes ecuaciones cúbicas $z^3 = x$ tenemos

$$z^{3} = \sqrt{2}e^{\pi i/4} \to \begin{cases} z = \sqrt[6]{2}e^{\pi i/12} \\ z = \sqrt[6]{2}e^{3\pi i/4} \\ z = \sqrt[6]{2}e^{17\pi i/12} \end{cases}$$

У

$$z^{3} = e^{\pi i/2} \rightarrow \begin{cases} z = e^{\pi i/6} \\ z = e^{5\pi i/6} \\ z = e^{3\pi i/2} \end{cases}$$