

SECI 1013 - DISCRETE STRUCTURE

SECTION 02

SEM I 2023/2024

ASSIGNMENT 4

LECTURER: DR NOORFA HASZLINNA BINTI MUSTAFFA

NAME	MATRIC NUMBER
NUR FIRZANA BINTI BADRUS HISHAM	A23CS0156
DAMIYA AINA BINTI BASIR ABD SHAMMAD	A23CS0220
NURUL ADRIANA BINTI KAMAL JEFRI	A23CS0258

I not same edge more than once

a) construct the route for the security guard to patrol the entire neighbourhood starting from the guard house, labelled 4

A, 1, 8, 5, 6, 6, 0, 9, F, 11, G, 10, 0, 7, E, 8, G, 12, H, 4, B, 2, K, 3, T, 15, I)
(A, 1, 8, 5, C, 6, 0, 9, F, 11, G, 10, 0, 7, E, 8, G, 12, H, 14, I, 13, H, 4, B, 2, K, 3, J, 15, I)

No, the guard will not go back to the guard house A because:

- it is Euler trail (it start with A but End with I)
- tnere odd degree on versex I

M

- b) It is not possible because :
 - vertex 0 is visited twice
 - (n, 2, K, 3, J, 15, I, 13, H, 12, G, 11, F, 9, 0, 7, E, 7, 0, 6, C, 5, 8, 1, 4)

A: Mumbai

B : Bengalyry

C: Hyderbad

D: Kolkata

E : Lucknow

F : New Delni .

9)

S	N	L(B)	L(A)	L(C)	L(D)	L(E)	L(F)
१०३	{B,A,C,D,E,F}	ø	×	00	8	∞	00
{ Ø , B }	{A,c,D,E,F}		3	X	6	∞ _	Ø
₹ø,ø,c3	{A,D,E,F}	and the se	B		5	5	∞
€0,8,C,A3	{O,E,F}			1 1	Ħ	5	8 .
{ Ø, B, C, A, D }	{E,F}				1000	B	8
{0,8,C,A,D,E}	{F}		i.	3			7
{0,8,C,A,0,E,F}	{ ø }				+		7

b) shortest path

$$\mathbb{R} \longrightarrow \mathbb{C} \longrightarrow \mathbb{F} \longrightarrow \mathbb{F}$$

minimum hours to travel:

No:		

Date:

3. Consider the rooted tree T shown in Figure 3.

Figure 3 : Rooted Tree, T

a) what are the ancestors of p?

b) Perform inorder traversal.

a) Ancestor of node p: p, n, i, d, a

welbfc99hid

kelbfcm99hniodj

kelbfcmgghphiod

K,e,I,b,f,c,m,g,q,h,p,n,i,o,d,j

4.

. /	B 8	F ₇	1
A 4	1)	E 4	14
8	1	6	10

E = length of path in meters

Cost = RM100/meter

Find minimum network needed.

= 37 m

9) Explain why the staff's work which is highlighted is incorrect.

Because it formed a circuit and some path are not connected.

b) Help the staff to find the correct minimum network using Kruskal's

algorithm and states its length and total cost.

	Edge	Weight	Circuit	Select		V = 9
	CD	1	n _o	yes	V	E = 9-1 = 8
	DH	2	n.	yes	/	1
	FE	2	no	yes		٠
	HF	4	ho	yes		minimum & network
	AB	4	ho .	yes	4	= 1+2+2+4+4+7+8+
	ED	6	Ses	00		= 37
	EC	7	yes	no		Total Cost
	FJ	7	ηo	yes	-	= 100 x 37
/	BF	8	yes	00		= Rm 3700.00
	AC	8	ho	yes	~	
	JI	9	ho	yes	4	B 7
	IH	10	y es	ho		A E
	ВС	11	962	no		
	JH	14	y es	no		На
				-	_	

c) Is there any possibility, more than one distint mst obtained? If yes, justify your answer and show the network.

= 37 m

STANDARD

	No:	Date:						
	@let M = {S, I, w, fs, F} be the Di	PDFA such that $F = \{x, z\}$ and f_s is defined as in						
	TABLE 1							
		the set of states and initial state for DFA machine M-						
	Set of sta	tes, S= {v, w, n, y, z}						
		te = {w}						
	w v y							
	n w n	W (W) (W) (W) (W)						
	y z n							
	7 7 W							
	b] determine an input string with len	gth 4 and Start with 0 that will be accepted by the						
	machine. Show the sequence of t	consition of each state for the input string.						
3	$W \xrightarrow{0} V \xrightarrow{1} y \xrightarrow{1} \chi$	1 n find a (start at)						
	There is a 3-story elevator that can go to ground floor floor I and floor 2 and there are buttons for each floor. The initial state is the ground floor. The inputs to the elevator are the buttons for the ground first, and second floor. If the elevator is on the floor 1 and the button for: # floor 1 is pressed, nothing happens and the elevator remains on floor 1. # floor 2 is pressed, the elevator goes up until it has reached floor 2. # ground floor is pressed, the elevator goes down until it has reached ground floor. this situation also applies for elevator that is on floor 2 or ground floor. The FSM has 3 inputs which is for button ground floor is "0", button first is "1" and button							
	second floor is "2". Design the FSM which controls the operation of an elevator in ci							
	3-story building using the transit							
	use $m = \{S, I, O, q_0, f_0, f_0\}$ of gf gf fI $f2$ a b b							
	$I = \{0, 1, 2\}$ - button	f1 gf f1 f2 c a b						
	$S = \{qf, fl, f2\}$ — floor	0/a 0/c						
	qo = gf — initial state 1et a = remain, b = goes up } goes do	0/C 1/a						
	O= fa, b, c} - output	12/2/2/2						
	0. (0,0,0)	0/c 2/b 1/c 2/b						
								
		2/0						