

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Martes 3 de noviembre de 2009 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

							t		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
	·			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
riódic				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
	_			25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			l	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 * Ac (227)	- !	++
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1. ¿Qué coeficientes ajustarán la ecuación?

$$\underline{\hspace{1cm}}$$
 MnO₂ + $\underline{\hspace{1cm}}$ HCl \rightarrow $\underline{\hspace{1cm}}$ MnCl₂ + $\underline{\hspace{1cm}}$ Cl₂ + $\underline{\hspace{1cm}}$ H₂O

	MnO ₂	HCl	MnCl ₂	Cl ₂	H ₂ O
A.	1	2	1	1	1
B.	1	3	1	1	1
C.	1	4	1	1	2
D.	1	4	1	2	2

2. ¿Qué volumen de dióxido de carbono, en dm³ en condiciones estándar, se forma cuando 7,00 g de eteno $(C_2H_4, M_r = 28,1)$ sufren combustión completa?

A.
$$\frac{22,4\times28,1}{7,00}$$

B.
$$\frac{22,4\times7,00}{28,1}$$

C.
$$\frac{2 \times 22,4 \times 28,1}{7,00}$$

D.
$$\frac{2 \times 22,4 \times 7,00}{28,1}$$

- 3. ¿Cuál será la concentración de iones sulfato, en mol dm $^{-3}$, cuando se disuelven 0,20 moles de $KAl(SO_4)_2$ en agua para dar 100 cm 3 de solución acuosa?
 - A. 0,2
 - B. 1,0
 - C. 2,0
 - D. 4,0

- 4. El volumen de un gas ideal a 27,0 °C se aumenta desde 3,00 dm³ hasta 6,00 dm³. ¿A qué temperatura, en °C, el gas tendrá la presión original?
 - A. 13,5
 - B. 54,0
 - C. 327
 - D. 600
- 5. ¿Cuál es el orden correcto de los procesos que ocurren en el espectrómetro de masas?
 - A. ionización deflexión aceleración
 - B. ionización aceleración deflexión
 - C. aceleración ionización deflexión
 - D. deflexión aceleración ionización
- **6.** ¿Entre cuáles energías de ionización del boro habrá mayor diferencia?
 - A. Entre la 1^a y la 2^a energía de ionización
 - B. Entre la 2^a y la 3^a energía de ionización
 - C. Entre la 3^a y la 4^a energía de ionización
 - D. Entre la 4^a y la 5^a energía de ionización

7. ¿Qué sucede cuando se añade sodio al agua	7.	¿Qué sucede	cuando se	añade so	odio al agua
--	----	-------------	-----------	----------	--------------

- I. Se desprende un gas
- II. La temperatura del agua aumenta
- III. Se forma una solución incolora transparente
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

8. ¿Qué especie tiene mayor radio?

- A. Cl
- B. K
- C. Na⁺
- D. K⁺
- 9. ¿Qué proceso es responsable del color de un complejo de un metal de transición?
 - A. La absorción de luz cuando los electrones se mueven entre orbitales s y orbitales d
 - B. La emisión de luz cuando los electrones se mueven entre orbitales s y orbitales d
 - C. La absorción de luz cuando los electrones se mueven entre diferentes orbitales d
 - D. La emisión de luz cuando los electrones se mueven entre diferentes orbitales d

8809-6125 Véase al dorso

- **10.** ¿En qué opción los compuestos están ordenados de forma creciente respecto de sus puntos de ebullición?
 - A. $CH_4 < CH_3Cl < SiH_4 < CH_3OH$
 - B. $CH_3OH < CH_4 < CH_3Cl < SiH_4$
 - C. $CH_3OH < CH_3Cl < SiH_4 < CH_4$
 - D. $CH_4 < SiH_4 < CH_3Cl < CH_3OH$
- 11. ¿Cuál es el ángulo de enlace en el ion H₃O⁺?
 - A. 104°
 - B. 107°
 - C. 109°
 - D. 120°
- 12. ¿Qué compuesto no forma enlace de hidrógeno entre sus moléculas?
 - A. CH₃NH₂
 - B. CH₃COCH₃
 - C. CH₃COOH
 - D. CH₃CH₂OH
- 13. ¿A cuántos átomos está directamente unido cada átomo de carbono en sus alótropos?

	Diamante	Grafito	C ₆₀ fulereno
A.	3	3	3
B.	4	3	3
C.	4	3	4
D.	4	4	3

14. ¿Qué tipo de hibridación presentan los átomos de silicio y oxígeno en el dióxido de silicio?

	Silicio	Oxígeno
A.	sp ³	sp^3
B.	sp ³	sp^2
C.	sp ²	sp ³
D.	sp ²	sp ²

- 15. Una reacción se produce en solución acuosa, su masa es de 50 g, y la temperatura de la mezcla de reacción aumenta 20°C. Si se consumen 0,10 moles del reactivo limitante, ¿cuál es la variación de entalpía (en kJ mol⁻¹) de la reacción? Suponga que la capacidad calorífica específica de la solución = 4,2 kJ kg⁻¹ mol⁻¹.
 - A. $-0.10 \times 50 \times 4.2 \times 20$
 - B. $-0.10 \times 0.050 \times 4.2 \times 20$
 - C. $\frac{-50 \times 4,2 \times 20}{0.10}$
 - D. $\frac{-0.050 \times 4.2 \times 20}{0.10}$

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

Enlace	Energía de enlace / kJ mol ⁻¹
Н–Н	440
I–I	150
H–I	300

- A. +290
- B. +10
- C. -10
- D. -290

17. ¿Qué compuesto iónico tiene la entalpía de red más endotérmica?

- A. NaCl
- B. KCl
- C. NaF
- D. KF

18. ¿Qué cambio conduce a un aumento de entropía?

- A. $CO_2(g) \rightarrow CO_2(s)$
- B. $SF_6(g) \rightarrow SF_6(l)$
- C. $H_2O(l) \rightarrow H_2O(s)$
- $D. \quad NaCl(s) \rightarrow NaCl(aq)$

19. Se hace reaccionar ácido clorhídrico con trozos grandes de carbonato de calcio, luego se repite la reacción usando carbonato de calcio en polvo. ¿Cómo afecta este cambio a la energía de activación y a la frecuencia de las colisiones?

	Energía de activación	Frecuencia de las colisiones
A.	aumenta	aumenta
B.	se mantiene constante	aumenta
C.	aumenta	se mantiene constante
D.	se mantiene constante	se mantiene constante

20. Dos especies, P y Q, reaccionan de acuerdo con la siguiente ecuación.

$$P + Q \rightarrow R$$

El mecanismo aceptado para esta reacción es

$$P + P \rightleftharpoons P_2$$
 rápida

$$P_2 + Q \rightarrow R + P$$
 lenta

¿Cuál es el orden con respecto a P y a Q?

2

	P	Q
A.	1	1
B.	1	2
C.	2	1

D.

- **21.** La energía de activación de una reacción se puede determinar estudiando el efecto de una variable particular sobre la velocidad de reacción. ¿Qué variable se debe modificar?
 - A. pH
 - B. Concentración
 - C. Área superficial
 - D. Temperatura
- 22. Un aumento de temperatura causa un aumento de la cantidad de cloro presente en el siguiente equilibrio.

$$PCl_5(s) \rightleftharpoons PCl_3(l) + Cl_2(g)$$

¿Cuál es la mejor explicación de este hecho?

- A. El aumento de temperatura, sólo aumenta la velocidad de la reacción directa.
- B. El aumento de temperatura, sólo aumenta la velocidad de la reacción inversa.
- C. El aumento de temperatura, aumenta la velocidad de ambas reacciones, pero la reacción directa se modifica más que la inversa.
- D. El aumento de temperatura, aumenta la velocidad de ambas reacciones, pero la reacción inversa se modifica más que la directa.
- **23.** ¿Cuál de los siguientes afecta la presión de vapor en equilibrio de un líquido contenido dentro de un recipiente sellado, suponiendo que siempre hay algo de líquido presente?
 - A. La temperatura del líquido
 - B. El área superficial del líquido
 - C. El volumen del líquido
 - D. El volumen del recipiente

24. De acuerdo con la teoría de Brønsted-Lowry, ¿cómo actúa cada una de las especies en el equilibrio siguiente?

$$CH_3COOH + H_2SO_4 \rightleftharpoons CH_3COOH_2^+ + HSO_4^-$$

	CH ₃ COOH	H_2SO_4	CH ₃ COOH ₂ ⁺	HSO ₄
A.	ácido	base	base	ácido
B.	ácido	base	ácido	base
C.	base	ácido	base	ácido
D.	base	ácido	ácido	base

- **25.** Si se toman muestras de 20 cm³ de soluciones 0,1 mol dm⁻³ de los ácidos que se indican a continuación, ¿cuál ácido necesitaría distinto volumen de solución de hidróxido de sodio 0,1 mol dm⁻³ para su neutralización completa?
 - A. Ácido nítrico
 - B. Ácido sulfúrico
 - C. Ácido etanoico
 - D. Ácido clorhídrico
- **26.** ¿Qué mezcla de ácido y álcali formará una solución tampón (buffer)?

	Ácido	Álcali
A.	40 cm ³ de HCl 0,1 mol dm ⁻³	60 cm ³ de NaOH 0,1 mol dm ⁻³
B.	60 cm ³ de HCl 0,1 mol dm ⁻³	40 cm³ de NaOH 0,1 mol dm⁻³
C.	40 cm ³ de HCl 0,1 mol dm ⁻³	60 cm ³ de NH ₃ 0,1 mol dm ⁻³
D.	60 cm ³ de HCl 0,1 mol dm ⁻³	40 cm ³ de NH ₃ 0,1 mol dm ⁻³

8809-6125 Véase al dorso

- **27.** ¿Qué solución acuosa tendrá pH > 7?
 - A. Sulfato de sodio
 - B. Nitrato de amonio
 - C. Etanoato de sodio
 - D. Nitrato de aluminio
- **28.** ¿Qué indicador sería el más apropiado para valorar etilamina acuosa, CH₃CH₂NH₂, con ácido nítrico, HNO₃?
 - A. Azul de bromofenol ($pK_a = 4,1$)
 - B. Azul de bromotimol (p $K_a = 7.3$)
 - C. Rojo de fenol ($pK_a = 8.0$)
 - D. Timolftaleína (p $K_a = 10,0$)
- **29.** ¿En qué compuesto el número de oxidación del nitrógeno es +3?
 - A. NH₄Cl
 - B. HNO₃
 - $C. N_2O_4$
 - D. KNO₂

30. En la celda electrolítica que se muestra, ¿en qué electrodo se forma el cloro y qué proceso está ocurriendo allí?

	Electrodo	Proceso
A.	P	reducción
B.	Q	reducción
C.	Р	oxidación
D.	Q	oxidación

- 31. ¿Cuáles son las condiciones necesarias para que el valor de E^{\ominus} del electrodo estándar de hidrógeno sea exactamente igual a cero?
 - I. Temperatura = 298 K
 - II. $[H^+] = 1 \text{ mol dm}^{-3}$
 - III. $[H_2] = 1 \text{ mol dm}^{-3}$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

32. ¿Cómo son los productos en cada electrodo cuando se electrolizan, una solución acuosa 1 mol dm⁻³ de bromuro de magnesio y bromuro de magnesio fundido?

	Electrodo positivo (Ánodo)	Electrodo negativo (Cátodo)
A.	iguales	iguales
B.	iguales	diferentes
C.	diferentes	iguales
D.	diferentes	diferentes

- **33.** ¿Cuántos isómeros **estructurales** de fórmula C₃H₅Cl₃ existen?
 - A. 3
 - B. 4
 - C. 5
 - D. 6
- **34.** ¿Qué reacción transcurre por medio de un mecanismo de radicales libres?
 - A. $C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$
 - B. $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$
 - $\mathrm{C.} \quad \mathrm{C_4H_9I} + \mathrm{OH}^- \rightarrow \mathrm{C_4H_9OH} + \mathrm{I}^-$
 - D. $(CH_3)_3CI + H_2O \rightarrow (CH_3)_3COH + HI$
- **35.** ¿Qué sustancia se produce por reacción de hidrógeno con un aceite vegetal?
 - A. Margarina
 - B. Nylon
 - C. Polipropeno
 - D. Jabón

36. El propeno se convierte en propanona en un proceso de dos etapas.

Propeno \rightarrow X \rightarrow Propanona

¿Cuál es la fórmula del compuesto X?

- A. CH₃CHBrCH₃
- B. CH₃CH₂CH₂Br
- C. CH₃CHOHCH₃
- D. CH₃CH₂CH₂OH
- 37. ¿Qué compuesto hace rotar el plano de polarización de la luz polarizada?
 - A. (CH₃)₂CHCH₂Cl
 - B. CH₃CH₂CH₂CH₂Cl
 - C. CH₃CH₂CHClCH₃
 - D. $(CH_3)_3CC1$
- **38.** ¿Cuál es el nombre del éster formado cuando reacciona CH₃CH₂COOH con CH₃OH?
 - A. Metanoato de etilo
 - B. Etanoato de metilo
 - C. Metanoato de propilo
 - D. Propanoato de metilo

- **39.** ¿Qué fórmula representa una poliamida?
 - A. $-(-CH_2-CHC1-)_n$
 - B. $-(-NH-(CH_2)_6-NH-CO-(CH_2)_4-CO-)_n$
 - C. $-(-CF_2-CF_2-)_n$
- **40.** ¿Cuál de los siguientes es más probable que se reduzca cuando un experimento se repite varias veces?
 - A. Errores aleatorios
 - B. Errores sistemáticos
 - C. Ambos, errores aleatorios y sistemáticos
 - D. Ni errores aleatorios ni sistemáticos