

# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science PRO»

Слушатель: Филимонов Фёдор Игоревич



#### План работы

Ознакомление с поставленной задачей (Прогнозирование конечных свойств новых материалов (композиционных материалов)

2 Разбивка общей задачи, на под задачи.

3 Описание работы

4 Заключение





### Ознакомление с поставленной задачей

Тема данной работы - прогнозирование конечных свойств новых материалов (композиционных материалов).

При ознакомление с задачей были установлены следующие требования:

- 1. Провести разведочный анализ предложенных данных;
- 2. Провести предобработку данных;
- 3. Обучить нескольких моделей для прогноза нескольких параметров («модуля упругости при растяжении» и «прочности при растяжении»);
- 4. Написать нейронную сеть, которая будет рекомендовать параметр «соотношение матрица-наполнитель»;
- 5. Разработать приложение, которое будет выдавать прогноз, по одной из обученной модели.



### Разбивка общей задачи, на под задачи.

Самым важным аспектом в данной работе, для меня было это не пытается охватить всю задачу сразу и приступит к её решению. А поделить её на несколько подзадач и решать их по очереди. Для дисциплинированния себя в этом вопросе, после составления плана (который корректировался в процессе) была составлена диаграмма Ганта, которая помогала мне держаться во временных рамках (конечно же она тоже корректировалась в процессе работы). Правильная подготовка к работе первый шаг к успешному решению задачи. В ходе выполнения работы были использованы методы и навыки приобретённые за время курса.



#### Список задач и диаграмма Ганта

#### План работы:

- 1. Загрузка данных из исходных excel таблиц (X\_bp и X\_nup)
- Ознакомление с данными, кол-во строк и столбцов, вывод названия столбцов, вывод нескольких строк таблиц.
- 3. Удаление неинформативных данных ( столбец)
- 4. Производим объединение двух таблиц, по индексу, тип объединения INNER
- 5. Проверяем типы данных по каждому столбцу
- 6. Проверяем пропущенные значений
- 7. Проверяем на наличие дубликатов
- Поиск уникальных значений
- 9. Ознакомление с описательной статистикой данных.
- 10. Согласно заданию, получаем среднее, медианное значение для каждой колонки отдельно
- Визуализация корреляционной матрицы с помощью тепловых карт используя методы "Пирсона", "Кендалл", "Спирмена"
- 12. Создаём палитру для единообразной визуализации данных
- 13. Построение гистограмм распределения
- 14. Построение коробочной диограммы
- Определяем кол-во выбросов тремя методами (Метод межквартального размаха (IQR), Метод стандартного отклонения, Метод Z-оценка.)
- 16. Удаляем выбросы методом (IQR)
- 17. Проверяем, что осталось от данных.
- 18. Проводим нормализацию несколькими методами: MinMaxScaler, Normalizer,
- MaxAbsScaler, RobustScaler, сравниваем их точность и выберем лучший результат

  19. Сохраняем подготовленные данные (очищенные и нормализованные) двумя файлами
- сохраняем подготовленные данные (очищенные и нормализованные) двумя фаилами
   Начинаем процесс создания и обучения моделей согласно заданию. Задача: Обучить
- 20. Начинаем процесс создания и обучения моделеи согласно заданию. Задача: Обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении. При построении модели необходимо 30% данных оставить на тестирование модели, на остальных происходит обучение моделей. При построении моделей провести поиск гидерларамузгров модели с помощью поиска по сетке с перекрестной проверкой, количество блоков равно 10.
- Определяем какие методы будут использоваться для обучения моделей: 'Линейная регрессия', 'Хребет', 'Опорные вектора', 'Случайный лес', 'Градиентный бустинс'
- 22. Определяем гипперапараметры для каждого метода
- Начинаем поиск оптимальных <u>гипперпараметров</u> через <u>GridSearchCV</u> 10 блоков (согласно задаче)
- 24. Обучение моделей, получение оценок ( R2, MAE, MSE, MAPE)
- 25. Построение графиков сравнения тестовых и обученных данных для каждой модели
- Построение нейронной сети, которая будет рекомендовать соотношение матрицанаполнитель.
- 27. Определение кол-во слоёв, нейронов, настройка раннего прекращения обучения
- Обучение модели, получение оценки и построение графика сравнения тестовой и обученной модели.
- 29. Сохранение модели
- 30. Разработка приложения с графическим интерфейсом.
- 31. Т.к. в первоначальных вариантах обучения моделей я использовал нормализованные данные (лежат в диапазоне от 0 до 1), при тестировании графического приложения я не мог получить желаемого результата. Было принято решение взять подготовленные данные до нормализации и повторить операцию по созданию нейронной сети, сохранению её модели для дальнейшей работы.
- 32. Создание приложения с помощью tkinter
- Добавление функции определения ошибки (не верно введённых данных), а также «подсказку» в каких диапазонах нужно указывать значения для получения результата.

| A ) | C                                                                  | D        | Е    | F                        | G           | Н    | I I                                                                                                                                      | KL           | M     | N C    | PQ     | RS     | TU               | V W              | X   Y   Z                  |
|-----|--------------------------------------------------------------------|----------|------|--------------------------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|--------|--------|--------|------------------|------------------|----------------------------|
| 3   | План организации ежегодной<br>инвентаризации СК                    |          |      | Girlyin 5 den 24 Aned 12 |             |      |                                                                                                                                          | CTAPT CTOPHR |       |        |        | тынка  |                  |                  |                            |
| 6   | Описание                                                           | Старт    | Дней | Финиш                    | Статус      | %    | Комментарии                                                                                                                              | 7 дек        | 9 дек | 10 дек | 12 дек | 14 gex | 16 дек<br>17 дек | 18 дек<br>19 дек | 20 дек<br>21 дек<br>22 дек |
| 7 8 | Начало работы по подготовке ВКР                                    | 07.12.24 | 1    | 08.12.24                 | closed      | 100% | Ознакомится с задачей и тебованиям к ВКР.                                                                                                |              |       |        |        |        | لمالمال          |                  |                            |
| 9   | Изучить тему "Компазитов"                                          | 07.12.24 | 2    | 09.12.24                 | closed      | 100% | Почитать в интеренете, что это за "зверь"<br>такой, какие проблемы сейчас актуальны по<br>данном у вопросу.                              |              |       |        |        |        |                  |                  |                            |
| 10  | Приступаем к написанию кода (загрузка DF и начинаем его "крутить") | 09.12.24 | 1    | 10.12.24                 | closed      | 100% | Начать с подготовки данных: Загрузить,<br>ознакомится с их содержанием, (читай/<br>смотри ноутбуки лекций)                               |              |       |        |        |        |                  |                  |                            |
| 11  | Обучаем модели.                                                    | 10.12.24 | 1    | 11.12.24                 | closed      | 100% | Почитать про нормализацию и выбросы,<br>определить методы и сделать                                                                      |              |       |        |        |        |                  |                  |                            |
| 12  | Построение нейро сети                                              | 12.12.24 | 2    | 14.12.24                 | closed      | 100% | Всё то же самое                                                                                                                          |              |       |        |        |        |                  |                  |                            |
| 13  | Разработка приложения                                              | 13.12.24 | 3    | 16.12.24                 | closed      | 100% | Выбрать: модель на которой будешь делать<br>приложение, Вы брать графический или<br>текстовый ( Внимание: помни лучшее враг<br>хорошего) |              |       |        |        |        |                  |                  |                            |
| 14  | Написать Записку                                                   | 17.12.24 | 2    | 19.12.24                 | in progress | 0%   | Описать свою проделанную работу                                                                                                          | 1            |       |        |        |        |                  |                  |                            |
| 15  | Сделать призентацию                                                | 17.12.24 | 2    | 19.12.24                 | in progress | 0%   | Визуализировать и сжато предоставить<br>информацию о проделанной работе                                                                  |              |       |        |        |        |                  |                  |                            |
| 16  | Отправить файлы до 19/12/24                                        | 18.12.24 | 1    | 19.12.24                 | open        | 096  | Почто reception@edubmstu.ru                                                                                                              |              |       |        |        |        |                  |                  |                            |
| 17  | ЗАЩИТА!!!!!                                                        | 20.12.24 | 1    | 21.12.24                 | open        | 0%   | КРЕПИСЬ!                                                                                                                                 | ]            | T     |        |        |        |                  |                  |                            |

| Трекер вопросов             |            |              |              |                                                                                                                                          |  |  |  |  |  |
|-----------------------------|------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Вопрос                      | Статус     | Дата открыть | Дата закрыти | Комментарии                                                                                                                              |  |  |  |  |  |
| Разработка приложения       | Сделано    | 13.12.24     | 16.12.24     | Выбрать: модель на которой будешь<br>делать приложение, Вы брать графический<br>или текстовый ( Внимание: помни лучшее<br>враг хорошего) |  |  |  |  |  |
| Написать Записку            | В процессе | 17.12.24     | 19.12.24     | Описать свою проделанную работу                                                                                                          |  |  |  |  |  |
| Сделать призентацию         | В процессе | 17.12.24     | 10 12 24     | Визуализировать и сжато предоставить информацию о проделанной работе                                                                     |  |  |  |  |  |
| Опправить файлы до 19/12/24 | Не сделано | 18.12.24     | 19.12.24     | Почто reception@edubmstu.ru                                                                                                              |  |  |  |  |  |
| ЗАЩИТА!!!!!                 | Не сделано | 20.12.24     | 21.12.24     | КРЕПИСЬ!                                                                                                                                 |  |  |  |  |  |



## Описание работы (объединение данных и их анализ)



Производим объеденение двух таблиц по индексу, тип объединения — INNER. озакомления.

DS3=pd.merge(DS1,DS2,left\_index = True, right\_index = True, how = 'inner')

<class 'pandas.core.frame.DataFrame'> Index: 1023 entries, 0 to 1022 Data columns (total 13 columns) Non-Null Count Dtype Соотношение матрица-наполнитель 1023 non-null float64 Плотность, кг/м3 1023 non-null float64 модуль упругости, ГПа 1023 non-null 1023 non-null float64 ypes: float64(12), int64(1)

| DS3.nunique() # поиск уникальных     | значений |
|--------------------------------------|----------|
| ✓ 0.0s                               |          |
| Соотношение матрица-наполнитель      | 1014     |
| Плотность, кг/м3                     | 1013     |
| модуль упругости, ГПа                | 1020     |
| Количество отвердителя, м.%          | 1005     |
| Содержание эпоксидных групп,%_2      | 1004     |
| Температура вспышки, С_2             | 1003     |
| Поверхностная плотность, г/м2        | 1004     |
| Модуль упругости при растяжении, ГПа | 1004     |
| Прочность при растяжении, МПа        | 1004     |
| Потребление смолы, г/м2              | 1003     |
| Угол нашивки, град                   | 2        |
| Шаг нашивки                          | 989      |
| Плотность нашивки                    | 988      |
| dtype: int64                         |          |

| наличия | пропущенных                                                                                 |
|---------|---------------------------------------------------------------------------------------------|
|         |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| ГПа 0   |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
| 0       |                                                                                             |
|         |                                                                                             |
|         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

#### Объединение данных:

- •Импортируем необходимые библиотеки:
- •Загружаем файлы;
- •Ознакомимся с содержимым;
- •Произведём объединение двух файлов.

### Разведочный анализ данных:

- •Изучим информацию о датасете;
- •Проверим типы данных в каждом столбце;
- •Проверим пропуски;
- •Проверим уникальные значения.



# Описание работы (ознакомимся с описательной статистикой наших данных.)

| наименование столбца | Значение                           |
|----------------------|------------------------------------|
| ount                 | количество значений                |
| mean                 | среднее значение                   |
| std                  | стандартное отклонение             |
| min                  | минимум                            |
| 25%                  | верхнее значение первого квартиля  |
| 50%                  | медиана                            |
| 75%                  | верхнее значение третьего квартиля |
| max                  | максимум                           |

|                                      |         |               | ~            |             |             |             |             |             |
|--------------------------------------|---------|---------------|--------------|-------------|-------------|-------------|-------------|-------------|
| description = DS3.describe() # ∏     | олучени | е описательно | ои статистик | И           |             |             |             |             |
| description.T # Поворот таблицы      |         |               |              |             |             |             |             |             |
| ✓ 0.0s                               |         |               |              |             |             |             |             |             |
|                                      | count   | mean          | std          | min         | 25%         | 50%         | 75%         | max         |
| Соотношение матрица-наполнитель      | 1023.0  | 2.930366      | 0.913222     | 0.389403    | 2.317887    | 2.906878    | 3.552660    | 5.591742    |
| Плотность, кг/м3                     | 1023.0  | 1975.734888   | 73.729231    | 1731.764635 | 1924.155467 | 1977.621657 | 2021.374375 | 2207.773481 |
| модуль упругости, ГПа                | 1023.0  | 739.923233    | 330.231581   | 2.436909    | 500.047452  | 739.664328  | 961.812526  | 1911.536477 |
| Количество отвердителя, м.%          | 1023.0  | 110.570769    | 28.295911    | 17.740275   | 92.443497   | 110.564840  | 129.730366  | 198.953207  |
| Содержание эпоксидных групп,%_2      | 1023.0  | 22.244390     | 2.406301     | 14.254985   | 20.608034   | 22.230744   | 23.961934   | 33.000000   |
| Температура вспышки, С_2             | 1023.0  | 285.882151    | 40.943260    | 100.000000  | 259.066528  | 285.896812  | 313.002106  | 413.273418  |
| Поверхностная плотность, г/м2        | 1023.0  | 482.731833    | 281.314690   | 0.603740    | 266.816645  | 451.864365  | 693.225017  | 1399.542362 |
| Модуль упругости при растяжении, ГПа | 1023.0  | 73.328571     | 3.118983     | 64.054061   | 71.245018   | 73.268805   | 75.356612   | 82.682051   |
| Прочность при растяжении, МПа        | 1023.0  | 2466.922843   | 485.628006   | 1036.856605 | 2135.850448 | 2459.524526 | 2767.193119 | 3848.436732 |
| Потребление смолы, г/м2              | 1023.0  | 218.423144    | 59.735931    | 33.803026   | 179.627520  | 219.198882  | 257.481724  | 414.590628  |
| Угол нашивки, град                   | 1023.0  | 44.252199     | 45.015793    | 0.000000    | 0.000000    | 0.000000    | 90.000000   | 90.000000   |
| Шаг нашивки                          | 1023.0  | 6.899222      | 2.563467     | 0.000000    | 5.080033    | 6.916144    | 8.586293    | 14.440522   |
| Плотность нашивки                    | 1023.0  | 57.153929     | 12.350969    | 0.000000    | 49.799212   | 57.341920   | 64.944961   | 103.988901  |

#### Описательная статистика:

•Получаем значения по датасету.

### **Первое выполнение задания**:

•Для каждой колонке получаем среднее, медианное значение.

```
DS3.mean() # среднее значение в отдельной колонке
Соотношение матрица-наполнитель
                                           2.930366
Плотность, кг/м3
                                        1975.734888
модуль упругости, ГПа
                                         739.923233
                                         110.570769
Количество отвердителя, м.%
Содержание эпоксидных групп, 2
                                          22.244390
Температура вспышки, С_2
                                         285.882151
Поверхностная плотность, г/м2
                                         482.731833
                                          73.328571
Модуль упругости при растяжении, ГПа
Прочность при растяжении, МПа
                                        2466.922843
                                         218.423144
Потребление смолы, г/м2
Угол нашивки, град
                                          44.252199
                                           6.899222
Шаг нашивки
Плотность нашивки
                                          57.153929
dtype: float64
```

| DS3.median()# медиана в отдельной    | колонке     |
|--------------------------------------|-------------|
| ✓ 0.0s                               |             |
| Соотношение матрица-наполнитель      | 2.906878    |
| Плотность, кг/м3                     | 1977.621657 |
| модуль упругости, ГПа                | 739.664328  |
| Количество отвердителя, м.%          | 110.564840  |
| Содержание эпоксидных групп,%_2      | 22.230744   |
| Температура вспышки, С_2             | 285.896812  |
| Поверхностная плотность, г/м2        | 451.864365  |
| Модуль упругости при растяжении, ГПа | 73.268805   |
| Прочность при растяжении, МПа        | 2459.524526 |
| Потребление смолы, г/м2              | 219.198882  |
| Угол нашивки, град                   | 0.000000    |
| Шаг нашивки                          | 6.916144    |
| Плотность нашивки                    | 57.341920   |
| dtype: float64                       |             |



# Описание работы (визуализация наших данных.)











### Визуализация данных до нормализации и очистки от выбросов:

- Пример тепловых карт корреляций;
- Гистограммы распределения;
- Примеры коробочной диаграммы ;
- Пример попарного графика рассеяния точек.



### Описание работы (выявляем выбросы)

|    | Column                               | IQR | Standard Deviation | Z-Score |
|----|--------------------------------------|-----|--------------------|---------|
| 0  | Соотношение матрица-наполнитель      | 6   | 0                  | 0       |
| 1  | Плотность, кг/м3                     | 9   | 3                  | 3       |
| 2  | модуль упругости, ГПа                | 2   | 2                  | 2       |
| 3  | Количество отвердителя, м.%          | 14  | 2                  | 2       |
| 4  | Содержание эпоксидных групп,%_2      | 2   | 2                  | 2       |
| 5  | Температура вспышки, С_2             | 8   | 3                  | 3       |
| 6  | Поверхностная плотность, г/м2        | 2   | 2                  | 2       |
| 7  | Модуль упругости при растяжении, ГПа | 6   | 0                  | 1       |
| 8  | Прочность при растяжении, МПа        | 11  | 0                  | 0       |
| 9  | Потребление смолы, г/м2              | 8   | 3                  | 3       |
| 10 | Угол нашивки, град                   | 0   | 0                  | 0       |
| 11 | Шаг нашивки                          | 4   | 0                  | 0       |
| 12 | Плотность нашивки                    | 21  | 7                  | 7       |

| <cla< th=""><th colspan="7"><class 'pandas.core.frame.dataframe'=""></class></th></cla<> | <class 'pandas.core.frame.dataframe'=""></class> |                |         |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|---------|--|--|--|--|--|
| Inde                                                                                     | Index: 921 entries, 1 to 1022                    |                |         |  |  |  |  |  |
| Data                                                                                     | columns (total 13 columns):                      |                |         |  |  |  |  |  |
| #                                                                                        | Column                                           | Non-Null Count | Dtype   |  |  |  |  |  |
|                                                                                          |                                                  |                |         |  |  |  |  |  |
| 0                                                                                        | Соотношение матрица-наполнитель                  | 921 non-null   | float64 |  |  |  |  |  |
| 1                                                                                        | Плотность, кг/м3                                 | 921 non-null   | float64 |  |  |  |  |  |
| 2                                                                                        | модуль упругости, ГПа                            | 921 non-null   | float64 |  |  |  |  |  |
| 3                                                                                        | Количество отвердителя, м.%                      | 921 non-null   | float64 |  |  |  |  |  |
| 4                                                                                        | Содержание эпоксидных групп,%_2                  | 921 non-null   | float64 |  |  |  |  |  |
| 5                                                                                        | Температура вспышки, С_2                         | 921 non-null   | float64 |  |  |  |  |  |
| 6                                                                                        | Поверхностная плотность, г/м2                    | 921 non-null   | float64 |  |  |  |  |  |
| 7                                                                                        | Модуль упругости при растяжении, ГПа             | 921 non-null   | float64 |  |  |  |  |  |
| 8                                                                                        | Прочность при растяжении, МПа                    | 921 non-null   | float64 |  |  |  |  |  |
| 9                                                                                        | Потребление смолы, г/м2                          | 921 non-null   | float64 |  |  |  |  |  |
| 10                                                                                       | Угол нашивки, град                               | 921 non-null   | int64   |  |  |  |  |  |
| 11                                                                                       | Шаг нашивки                                      | 921 non-null   | float64 |  |  |  |  |  |
| 12                                                                                       | Плотность нашивки                                | 921 non-null   | float64 |  |  |  |  |  |
| dtyn                                                                                     | es: float64(12) int64(1)                         |                |         |  |  |  |  |  |





### Визуализация данных до нормализации и очистки от выбросов:

- Определяем кол-во выбросов тремя методами (Метод межквартильного размаха (IQR), Метод стандартного отклонения, Метод Z-оценка.)
- Визуальный контроль через «ящик с усам»
- Проведение очистки от выбросов до полного устранения и получения конечного результата (было удалено приблизительно 10% данных)



### Описание работы (Нормализация данных)

```
# Нормализация данных MinMaxScaler
scaler_minmax = MinMaxScaler()
DS3_normalized_1= pd.DataFrame(scaler_minmax.fit_transform(DS3_cleaned), columns=DS3_cleaned.columns)
/ 0.0s
```

```
# Hopмaлизация данных RobustScaler
scaler_robust = RobustScaler()
DS3_normalized_2 = pd.DataFrame(scaler_robust.fit_transform(DS3_cleaned), columns=DS3_cleaned.columns)

/ 0.0s
```



### Нормализация очищенных данных:

• Мы опробуем несколько вариантов НОРМАЛИЗАЦИИ: MinMaxScaler, Normalizer, MaxAbsScaler, RobustScaler, сравним их точность и выберем лучший результат.

```
scaler_maxabs = MaxAbsScaler()
DS3_normalized_3 = pd.DataFrame(scaler_maxabs.fit_transform(DS3_cleaned), columns=DS3_cleaned.columns)

/ 0.0s
```







normalizer = Normalizer(norm='12')

DS3\_normalized\_4 = pd.DataFrame(normalizer.fit\_transform(DS3\_cleaned), columns=DS3\_cleaned.columns)

V 0.0s





# Описание работы (процесс создания и обучения моделей)

```
# Создаём словарь для хранения моделей и их результатов models = {
    'Линейная регрессия': LinearRegression(),
    'Хребет': Ridge(),
    'Опорные вектора': SVR(),
    'Случайный_лес': RandomForestRegressor(),
    'Градиентный бустинг ': GradientBoostingRegressor()}

✓ 0.0s
```

```
#Запускаем поиск через GridSearchCV 10 блоков, если таковые есть
best_models = {}
for name, model in models.items():
    if name in param_grids: # Если есть гиперпараметры для поиска
        grid = GridSearchCV(model, param_grids[name], cv=10, scoring='neg_mean_squared_error')
        grid.fit(X_train, y_train)
        best_models[name] = grid.best_estimator_
        print(f"/учшие параметры для {name}: {grid.best_params_}")

✓ Im 35.6s

Лучшие параметры для Линейная регрессия: {'fit_intercept': True}
Лучшие параметры для Хребет: {'alpha': 10.0}
Лучшие параметры для Опорные вектора: {'C': 0.1, 'epsilon': 0.5, 'gamma': 'scale', 'kernel': 'linear'}
Лучшие параметры для Случайный_лес: {'max_depth': 5, 'n_estimators': 100}
```

```
#0бучение моделй с оптимальными гипперпараметрами model.fit(X_train, y_train) best_models[name] = model 
✓ 0.5s
```

|                     | R^2   | MAE  | MSE  | MAPE  | Test Score |
|---------------------|-------|------|------|-------|------------|
| Линейная регрессия  | -0.00 | 0.16 | 0.04 | 64.45 | -0.00      |
| Хребет              | 0.00  | 0.16 | 0.04 | 64.51 | 0.00       |
| Опорные вектора     | -0.01 | 0.16 | 0.04 | 66.38 | -0.01      |
| Случайный_лес       | -0.01 | 0.16 | 0.04 | 65.10 | -0.01      |
| Градиентный бустинг | -0.06 | 0.16 | 0.04 | 66.59 | -0.06      |
|                     |       |      |      |       |            |



#### Создание и обучени:

- Сначала определили набор методов.
- Согласно задаче определили гипперпараметры и получили оптимальные по условию(cv=10)
- Обучили модели и получили оценки и визуализировали результаты.
- Для "модуля упругости при растяжении« и "прочность при растяжении« использовались одинаковые методы.



# Описание работы (процесс создания нейронной сети)

```
model = Sequential() # Создание модели

# Добавление слоев с регуляризацией и Dropout
model.add(Dense(64, activation='tanh', input_shape=(X_train.shape[1],), kernel_regularizer='12'))
model.add(Dropout(0.3)) # Слой Dropout
model.add(Dense(64, activation='tanh', kernel_regularizer='12'))
model.add(Dropout(0.3)) # Слой Dropout
model.add(Dense(32, activation='tanh', kernel_regularizer='12'))
model.add(Dense(1, activation='sigmoid'))

✓ 0.3s
```

```
model.compile(optimizer='adam', loss='mse', metrics=['mse']) # Для perpeccии

early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)# Настройка раннего прекращения

history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test), verbose=0)

✓ 17.7s
```





#### Создание и обучении:

- Создаём модель из 4 слоёв
- Добавляем слои Dropout
- Делаем настройку раннего прекращения обучения
- Получаем оценку модели (MSE) и визуализируем результат



# Описание работы (Создание приложения с графическим интерфейсом.)

```
# Функция для предсказания
def predict():
      # Сбор данных из полей ввода
      input data = []
      for col in columns:
           value = float(entries[col].get())
           if not (ranges[col][0] <= value <= ranges[col][1]):</pre>
             raise ValueError(f"Значение для '{col}' должно быть в диапазоне {ranges[col][0]:.2f} - {ranges[col][1]:.2f}.")
           input_data.append(value)
       # Нормализация данных
      input_data = scaler.transform([input_data])
      prediction = model.predict(input data)[0][0]
      messagebox.showinfo("Результат предсказания", f"Предсказанное значение 'Соотношение матрица-наполнитель': {prediction:.4f}")
   except ValueError as e:
      messagebox.showerror("Ошибка ввода", str(e))
   except Exception as e:
      messagebox.showerror("Ошибка", f"Произошла ошибка: {str(e)}")
```





#### Создание приложения:

- Создаём приложения с использованием библиотеки tkinter
- Добавляем функцию уведомления об ошибочно введённых данных
- Добавлена «шпаргалка» с диапазонами для ввода данных.



### Заключение.

Решить поставленную задачу не получилось, так как модели показали себя не с лучшей стороны. Возможными причинами неудачи могли стать как изначальный набор данных, так и методы и подходы к решению поставленной задачи. Не без основания сюда же можно отнести и мои компетенции, которые находятся на начальном этапе и отсутствия опыта. Не знание в области для которой ведутся расчёты (композитные материалы), так же могут отрицательно сказаться на решении задачи. Нужно обращается к металлургам или химикам для более глубокого понимания предмета по композитам.

Спасибо за внимание.





do.bmstu.ru

