第四章作业: 习题 4.1 全部, 其中题 2 见勘误表; 习题 4.2 2,4

第五章作业: 习题 5.1 1-6,9-11,14 选做; 习题 5.2 全部; 习题 5.3 任选不少于十道题目; 习题 5.4 任选 4 道题

4.1

4.1.1

For a>0, prove that $\lim_{x\to a}\sqrt{x}=\sqrt{a}$.

Proof: For any $\varepsilon>0$ there exists $\delta=\varepsilon\sqrt{a}>0$ such that for any $|x-a|<\delta$, $|\sqrt{x}-\sqrt{a}|=|x-a|/(\sqrt{x}+\sqrt{a})<\delta/\sqrt{a}=\varepsilon$. Hence $\lim_{x\to a}\sqrt{x}=\sqrt{a}$.

4.1.2

Calculate

$$\lim_{x\to 2}\left(\frac{7x^3-2x^2-17x-19}{2x^3+3x^2-11x-6}+\frac{1}{2x^2-3x-2}\right)=\frac{12}{5}.$$

4.1.3

Suppose ψ, φ are periodic functions on $(0, \infty)$, such that $\lim_{x \to \infty} (\psi(x) - \varphi(x)) = 0$. Prove that $\psi = \varphi$. Proof: Let $f(x) = \psi(x) - \varphi(x)$ have period T. If $f(x_0) \neq 0$, then $f(x_0 + nT) \neq 0$ for every $n \geqslant 1$, but there exists M such that $x \geqslant M$ implies $|f(x)| < |f(x_0)|/2$, leading to contradiction.

4.1.5

Suppose $a_0,a_1,\ell,lpha>0$, $a_1
eq a_0$, $a_{n+1}=rac{(\ell+n^lpha)a_n^2}{\ell a_n+n^lpha a_{n-1}}.$ Prove that:

- (1) If $\alpha < 1$, then $\lim_{n \to \infty} a_n > 0$;
- (2) If $\alpha=1,\ell>1$, then $\lim_{n\to\infty}a_n>0$;
- (3) If $\alpha>1$, then a_n diverges or $\lim_{n\to\infty}a_n=0$.

Proof: Let $b_n=rac{a_n}{a_{n+1}}-1$, then

$$rac{a_{n+1}}{a_n} = rac{\ell + n^lpha}{\ell + n^lpha \cdot a_{n-1}/a_n} \implies b_n = rac{n^lpha}{\ell + n^lpha} b_{n-1}.$$

Note that $a_n=a_0\prod_{k=0}^{n-1}(1+b_n)^{-1}$, so $\lim_{n\to\infty}a_n>0$ iff $\prod_{k=0}^{\infty}(1+b_k)$ converges, iff $\sum_{k=0}^{\infty}|b_k|$ converges (since b_n have the same sign). $b_n=b_0\prod_{k=1}^n\frac{n^\alpha}{\ell+n^\alpha}$ so we can denote $c_n=\prod_{k=1}^n\frac{n^\alpha}{\ell+n^\alpha}$. Consider Raabe's test: $R=\lim_{n\to\infty}n\left(\frac{c_n}{c_{n+1}}-1\right)$, then

$$n\left(rac{c_n}{c_{n+1}}-1
ight)=rac{\ell}{n^{lpha-1}} \implies R=\ell \lim_{n o\infty} n^{1-lpha}.$$

If $\alpha<1$ or $\alpha=1,\ell>1$, then R>1 so the limit converges. If $\alpha>1$ then R=0<1 so it diverges. Furthermore if $\alpha\leqslant 0$, then it converges; if $\alpha=1,\ell\leqslant 1$ then it diverges.

4.2.2

Suppose $\{x_n\}$, $\{y_n\}$ satisfy

$$egin{cases} x_n^2 + y_n^2 + 2y_n = 1 + \ln rac{n+1}{n}, \ x_n + ig(1 + rac{1}{3n}ig)y_n = n^{-1/n}. \end{cases}$$

Prove that $\{x_n\}$, $\{y_n\}$ converges and determine the limit.

Proof:
$$y_n^2 + 2y_n + \left(n^{-1/n} - \left(1 + \frac{1}{3n}\right)y_n\right)^2 = 1 + \ln\frac{n+1}{n}$$
, so $\left(2 + \frac{2}{3n} + \frac{1}{9n^2}\right)y_n^2 - 2\left(n^{-1/n}\left(1 + \frac{1}{3n}\right) - 1\right)y_n + n^{-2/n} - 1 - \ln\frac{n+1}{n} = 0$. Then $\lim_{n \to \infty} n^{-1/n}\left(1 + \frac{1}{3n}\right) - 1 = 0$ and $\lim_{n \to \infty} n^{-2/n} - 1 - \ln\frac{n+1}{n} = 0$ so $\lim_{n \to \infty} y_n = 0$ ($y_n \sim \sqrt{\frac{\log n}{n}}$). Likewise we know $\lim_{n \to \infty} x_n = 1$.

4.2.4

$$\begin{split} \sum_{k=1}^n \sqrt{1 + \frac{2k}{n^3}} - 1 &= \sum_{k=1}^n \sum_{j=1}^\infty \binom{\frac{1}{2}}{j} \binom{2k}{n^3}^j = \sum_{j=1}^\infty \binom{\frac{1}{2}}{j} 2^j n^{-3j} \sum_{k=1}^n k^j \\ &= \sum_{j=1}^\infty \binom{\frac{1}{2}}{j} \frac{2^j n^{-3j}}{j+1} \binom{j+1}{k} n^k B_{p+1-k} + n^j = \frac{1}{2n} + \frac{1}{2n^2} - \frac{1}{6n^3} + O(n^{-4}). \end{split}$$

5.1

5.1.1

Prove that $D(x) = \mathbf{1}_{\mathbb{Q}}$ is nowhere continuous on \mathbb{R} .

Proof: Note that $\mathbb Q$ and $\mathbb Q^C$ are both dense on $\mathbb R$. For $x\in\mathbb Q$, and any $\delta>0$, there exists $y\in\mathbb Q^C$ such that $|x-y|<\delta$ but |D(x)-D(y)|=1, so D is not continuous at x. Likewise for $x\in\mathbb Q^C$, and any $\delta>0$, there exists $y\in\mathbb Q$ such that $|x-y|<\delta$ but |D(x)-D(y)|=1, so D is not continuous at x.

5.1.2

Consider

$$R(x) = egin{cases} 1, & x=0 \ q^{-1}, & x=p/q, \gcd(p,q)=1, \ 0, & x\in\mathbb{Q}^C. \end{cases}$$

Prove that R is only continuous on \mathbb{Q}^C .

Proof: If $x\in\mathbb{Q}$, then likewise for any $\delta>0$ there exists $y\in\mathbb{Q}^C$ such that $|x-y|<\delta$ but |R(x)-R(y)|=R(x), so R is not continuous at x. If $x\in\mathbb{Q}^C$, then for any $\varepsilon>0$, there exists $\delta>0$ such that $\delta<\min\{\|qx\|/q:1\leqslant q\leqslant\lfloor\varepsilon^{-1}\rfloor\}$, then $|x-y|<\delta$ implies either $x\in\mathbb{Q}^C$, or $x=p/q\in\mathbb{Q}$, and $q>1/\varepsilon$, so $|f(x)-f(y)|<\varepsilon$.

5.1.3

Let $S_n=rac{1}{n^2}\sum_{k=0}^n\log{n\choose k}$. Calculate $\lim_{n o\infty}S_n$. Solution: By Stolz,

$$\lim_{n \to \infty} \frac{\sum_{k=0}^n \log \binom{n}{k}}{n^2} = \lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} \log \binom{n}{k} / \binom{n-1}{k}}{2n} = \lim_{n \to \infty} \frac{\log n^n / n!}{2n} = \lim_{n \to \infty} \frac{\log (n / (n-1))^{n-1}}{2} = \frac{1}{2}.$$

5.1.4

Suppose $\lim_{x\to 0}f(x)=0$, $\lim_{x\to 0}\frac{f(2x)-f(x)}{x}=0$, prove that $\lim_{x\to 0}f(x)/x=0$. Proof: Let f(2x)-f(x)=xh(x), then $h(x)\to 0$, and

$$f(x) = -f(2^{-n}x) + \sum_{k=0}^{n-1} 2^{-k-1} x h(2^{-k-1}x)$$

For any arepsilon>0 there exists $\delta>0$ such that $x<\delta$ implies -arepsilon< h(x), f(x)<arepsilon, then

$$\left|\frac{f(x)}{x}\right|\leqslant \left|\frac{f(2^{-n}x)}{x}\right|+\sum_{k=0}^{n-1}2^{-k-1}|h(2^{-k-1}x)|\leqslant \left|\frac{f(2^{-n}x)}{x}\right|+4\varepsilon.$$

Let $n \to \infty$ then $|f(x)/x| < 4\varepsilon$.

5.1.5

If f is locally Lipschitz on \mathbb{R} , then f is Lipschitz on any compact subset [-A,A]. Proof: For any $x\in\mathbb{R}$, let O_x be the neighborhood of x such that $|f(y)-f(z)|\leqslant M_x|y-z|$. For any compact subset $K\subset\mathbb{R}$, $K\subset\bigcup_{x\in K}O_x$ so there is a finite subset $J\subset K$ such that $K\subset\bigcup_{x\in J}O_x$. Let $M=\max\{M_x:x\in J\}$, then $|f(y)-f(z)|\leqslant M|y-z|$ for any $y,z\in K$. (Let $E=\{x\in[-A,A],|f(y)-f(z)|\leqslant M|y-z|, \forall y,z\in[-A,x]\}$, then clearly $x=\sup E>-A$ and $x\in E, x=A$).

5.1.6

If $f:\mathbb{R} \to \mathbb{R}$ satisfy for any $x \in \mathbb{R}$, exists $\delta>0$ and M>0 such that $|f(x)-f(y)|\leqslant M|x-y|$ for all $y \in (x-\delta,x+\delta)$. Must f be locally Lipschitz? Solution: Consider $f(x)=x\sin x^{-1}$, then for any $x \in \mathbb{R}\setminus\{0\}$, f is locally C^1 so it is locally Lipschitz. For x=0, $|f(y)|\leqslant |y|$ for all $y \in (-1,1)$. But f is not locally Lipschitz at 0, since $x_n=(2\pi n)^{-1}$ and $y_n=\left(2\pi\left(n+\frac{1}{2}\right)\right)^{-1}$ satisfy $|f(x_n)-f(y_n)|=x_n+y_n$.

5.1.9

Prove that if $f:I\to\mathbb{R}$ where I is an interval and f monotonic, then $A=\{x:f \text{ not continuous at } x\}$ is countable.

Proof: Consider the map $\varphi:A\to\mathbb{Q},x\mapsto q_x$ where q_x is an arbitrary element of $\mathbb{Q}\cap(\sup_{y< x}f(y),\inf_{y>x}f(y))$, then φ is an injection so A is countable.

5.1.10

Suppose $\{x_k\}_{k=1}^\infty\subset\mathbb{R}$ and let $f(x)=\sum_{k=1}^\infty 2^{-k}\chi_{(x_k,\infty)}$, prove that all discontinuities of f are $\{x_k:k\geqslant 1\}$. Furthermore, if $\{x_k\}$ is dense in \mathbb{R} , then f is strictly increasing.

Proof: If $x \notin \{x_k\}$, then $2^{-k}\chi_{(x_k,\infty)}$ are continuous at x, and the series converges uniformly, so f is continuous at x.

For $k\geqslant 1$, $2^{-l}\chi_{(x_l,\infty)}$ is only discontinuous at x_k when k=l, so f is not continuous at x_k . If $\{x_k\}$ is dense in $\mathbb R$, then for any x< y, there exists k such that $x_k\in (x,y)$, so $\chi_{(x_k,\infty)}(x)=0<1=\chi_{(x_k,\infty)}(y)$. Hence f(x)< f(y) and f is strictly increasing.

5.1.11

Write the real numbers in (0,1) into the decimal form $0.a_1a_2\cdots a_n\cdots$, (there does not exists N such that $n\geqslant N\implies a_n=9$). Define

$$f(0.a_1a_2\cdots a_n\cdots)=0.a_10a_20\cdots a_n0\cdots,$$

determine at which points is f continuous.

Solution: If $a_n=0$ for all $n\geqslant N$ while $a_{N-1}=1$, then for any $\varepsilon>0$, there exists $y=x-10^{-M}$ where $x=0.a_1a_2\cdots a_{N-1}$, such that $|y-x|<\varepsilon$, and $|f(x)-f(y)|\geqslant 8\cdot 10^{-2N}$, so f is not continuous at $x=0.a_1a_2\cdots a_{N-1}$.

If infinitely many $a_n \neq 0$, then for any $\varepsilon > 0$ there exists $N \geqslant -10\log_{10}\varepsilon + 10$, and $\delta < 10^{-10N}$, such that $\forall |y-x| < \delta$, the first N digits of x,y are the same, then $|f(x)-f(y)| < 10^{-2N+2} < \varepsilon$. Hence f is continuous at x.

5.1.14

The continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfy the following property: for any $\delta > 0$,

$$\lim_{n o\infty}f(n\delta)=0.$$

Prove that $\lim_{x \to \infty} f(x) = 0$.

Proof: Consider any $\varepsilon>0$. For any $N\in\mathbb{N}$,

$$A_N = \{\delta > 0 : \forall n \geqslant N, |f(n\delta)| \leqslant \varepsilon\}.$$

Then since f is continuous, A_N is closed, and by $\lim_{n\to\infty} f(n\delta)=0$ for any $\delta>0$, $\bigcup_{N\geqslant 1}A_N=\mathbb{R}_{>0}$. Hence by Baire Category Theorem, there exists an N>0 such that $(a,b)\subset A_N$ for some interval (a,b). Let $X=\{x\in\mathbb{R}_{>0}:|f(x)|\leqslant\varepsilon\}$, then since $(a,b)\subset A_N$, for any $n\geqslant N$, $(na,nb)\subset X$. Note that when n>b/(b-a), nb>(n+1)a, hence there exists M>0 such that $(M,\infty)\subset X$. Therefore $\lim_{x\to\infty} f(x)=0$.

5.2

5.2.1

Calculate

$$\lim_{n\to\infty}\left(\frac{n!}{n^n}\right)^{1/n}=\lim_{n\to\infty}\frac{(n!)^{1/n}}{n}=\frac{1}{e}.$$

5.2.2

For a, b > 0, prove that

$$\lim_{n o\infty}\left(rac{\sqrt[n]{a}+\sqrt[n]{b}}{2}
ight)^n=\sqrt{ab}.$$

Proof: $f(x)=\left(\frac{a^x+b^x}{2}\right)^{1/x}$, then f is monotonically decreasing on $(0,\infty)$, so using L'Hopital, $\lim_{n\to\infty}f(1/n)=\lim_{x\to 0}f(x)=\exp\lim_{x\to 0}\frac{\log(a^x+b^x)-\log 2}{x}=\sqrt{ab}$.

5.2.3

Calculate

$$\lim_{x o 0} rac{e^x - 1 - x}{x^2} = rac{1}{2}.$$

5.2.4

Calculate

$$\lim_{x \to 0} \frac{\log(1+x) - x}{x^2} = -\frac{1}{2}.$$

5.2.5

For $\alpha \in \mathbb{R}$, calculate

$$\lim_{x o 0}rac{(1+x)^lpha-1-x}{x^2}=rac{lpha(lpha-1)}{2}.$$

5.3

5.3.8

Prove that $f(x) = \sin^2 x + \sin x^2$ is not periodic.

Proof: If f is periodic, then f is continuous so f is uniformly continuous. Since $\sin^2 x$ is uniformly continuous, so is $\sin x^2$. But for $\varepsilon=1/2$, and any $\delta>0$, consider $x=\sqrt{2\pi N}$ and $y=\sqrt{2\pi(N+1/2)}$, then $|x-y|<1/2N<\delta$ when $N>2/\delta$, but $|\sin x^2-\sin y^2|=1>\varepsilon$, leading to contradiction.

5.3.9

Suppose f is uniformly continuous on \mathbb{R} , prove that there exists a,b such that for any $x\in\mathbb{R}$, $|f(x)|\leqslant a+b|x|$.

Proof: For $\varepsilon=1$ there exists δ such that $|x-y|\leqslant \delta$ implies $|f(x)-f(y)|\leqslant 1$. Let $M=\sup_{x\in[0,\delta]}|f(x)|$, then for any $x\in\mathbb{R}$, $|f(x)|\leqslant \delta^{-1}|x|+M$.

5.3.10

Suppose $a>0, a^2+4b<0$. Prove that there does not exist $f:\mathbb{R}\to\mathbb{R}$ such that f(f(x))=af(x)+bx and for any a< b and $r\in (f(a),f(b))$ there exists $c\in (a.b)$ such that f(c)=r. Proof: For any such f, clearly f is injective, and unbounded. If for some a< b< c we have $(f(a)-f(b))(f(c)-f(b))\geqslant 0$, then we can find $u\in (a,b)$ and $v\in (b,c)$ such that f(u)=f(v), a contradiction. Hence f is strictly monotonic, and so f is continuous. If f has a fixed point f(t)=t, then t=at+bt so t=0 or a+b=1 which is impossible. Consider any $x_0\in\mathbb{R}\setminus\{0\}$, and $x_{n+1}=f(x_n)$, then $x_n=A\alpha^n+B\beta^n$, where $\alpha,\beta=(-1\pm\sqrt{a^2+4b})/2$ so $\alpha,\beta\in\mathbb{C}\setminus\mathbb{R}$. It is well-known that x_n change signs infinitely often, so f is monotonically decreasing. Since $f(x_n)-x_n=x_{n+1}-x_n$ takes both positive and negative values, f has a fixed point so f(0)=0. Let $x_1>0$, then $x_2=f(x_1)< f(0)=0$, so $x_{2k+1}>0$ and $x_{2k}<0$. But $x_3=ax_2+bx_1<0$, leading to contradiction.

5.3.11

If for a sequence $\{f_n\}$ of continuous functions on \mathbb{R} , $\{f_n(x)\}_{n\geqslant 1}$ is bounded for any $x\in\mathbb{R}$, prove that there is an interval (a,b) and M>0 such that $|f_n(x)|\leqslant M$ for all $n\geqslant 1$, $x\in(a,b)$. Proof (Osgood): For any n,M let $F_{n,M}=\{x\in\mathbb{R}:|f_n(x)|\leqslant M\}$. Then $F_{n,M}$ is closed, so $\tilde{F}_M=\bigcap_{n\geqslant 1}F_{n,M}$ is also closed. We want to find M such that \tilde{F}_M has an interior (a,b). Since $\mathbb{R}=\bigcup_{M\geqslant 1}\tilde{F}_M$, this is a simple application of Baire category theorem.

5.3.17

Suppose $f,g\in C([a,b])$, and exists $x_n\in [a,b]$ such that $f(x_n)=g(x_{n+1})$, for all $n\geqslant 1$. Prove that $\exists \xi\in [a,b], f(\xi)=g(\xi)$. Proof: Otherwise suppose f>g, so $g(x_{n+1})=f(x_n)>g(x_n)$ and $f(x_n)< f(x_{n+1})$. Take a sub-sequence $\{x_{n_k}\}\to u$, and suppose $\{x_{n_k+1}\}\to v$ (otherwise choose a sub-sequence of $\{x_{n_k}\}$). Then

 $f(x_{k_n}) = g(x_{k_n+1})$, so $f(u) = \lim_{n o \infty} f(x_{k_n}) = g(v)$. Note that $g(x_{k_n}) < g(x_{k_n+1}) < \dots < g(x_{k_{n+1}})$, so $g(u) = \lim_{n o \infty} g(x_{k_n}) = \lim_{n o \infty} g(x_{k_{n+1}}) = g(v)$, hence f(u) = g(v) = g(u), leading to contradiction.

5.3.18

Prove that there does not exists $f \in C(\mathbb{R})$ such that for any $\alpha \in \mathbb{R}$, $f(x) = \alpha$ has exactly two roots. Proof: Let f(a) = f(b) = 0 where a < b, and suppose f(x) > 0 when $x \in (a,b)$ (otherwise consider -f). Suppose $M = \sup_{x \in [a,b]} f(x) > 0$. If there exists a < c < d < b such that f(c) = f(d) = M, then take $e \in (c,d)$ and $r = f(e) \in (0,M)$. There exists $u \in (a,c)$ and $v \in (d,b)$ such that f(u) = f(v) = r = f(e), leading to contradiction. Otherwise suppose there exists a < c < b < d such that f(c) = f(d) = M, then there exists $u \in (a,c)$, $v \in (c,b)$, $w \in (b,d)$ such that f(u) = f(v) = f(w) = M/2, a contradiction.

5.3.19

Suppose $n\in\mathbb{Z}$, $f\in C([0,n])$ and f(0)=f(n). Prove that there are n distinct sets $\{x,y\}$ such that f(x)=f(y) and $x-y\in\mathbb{Z}\backslash\{0\}$. Proof: For any $k\in\{1,\cdots,n\}$, let g(x)=f(x+k)-f(x) where $g:[0,n-k]\to\mathbb{R}$. Then g(0)=-g(n-k) so there exists $x\in[0,n-k]$ such that g(x)=0 so f(x+k)=f(x), and we obtain the n distinct sets $\{x,x+k\}$.

5.3.20

Suppose for any a < b, and $y \in (f(a), f(b))$ (or $y \in (f(b), f(a))$), there exists $c \in (a, b)$ such that f(c) = y. If for any $r \in \mathbb{Q}$, $\{x \in \mathbb{R} : f(x) = r\}$ is closed, prove that $f \in C(\mathbb{R})$.

Proof: Otherwise if f is discontinuous at x_0 , i.e. there exists $\varepsilon>0$ such that for any $\delta>0$, there exists $y\in (x_0-\delta,x_0+\delta)$ such that $|f(x_0)-f(y)|>\varepsilon$. Either $f(y)>f(x_0)+\varepsilon$ or $f(y)< f(x_0)-\varepsilon$ so we can assume that there is a sequence $x_n\to x_0$ such that $f(x_n)>f(x_0)+\varepsilon$. Take $r\in\mathbb{Q}\cap(f(x_0),f(x_0)+\varepsilon)$, then there is a sequence $y_m\to x_0$ such that $f(y_m)=r$. Since $f^{-1}(\{r\})$ is closed, $x_0\in f^{-1}(\{r\})$, leading to contradiction.

5.3.21

Suppose f,g,xf are uniformly continuous on $\mathbb R$, prove that fg is uniformly continuous on $\mathbb R$. Proof: Since xf,g are uniformly continuous, there exists A,B such that $|xf(x)|\leqslant A+B|x|$, and C,D such that $|g(x)|\leqslant C+D|x|$.

For any x < y, such that $|x - y| < \delta$,

$$|f(x)g(x) - f(y)g(y)| \le |f(x)| \cdot |g(x) - g(y)| + |g(y)| \cdot |f(x) - f(y)|$$

and

$$|f(x)g(x)-f(y)g(y)|\leqslant |xf(x)-yf(y)|\cdot |g(x)/x|+|yf(y)|\cdot \left|rac{g(x)}{x}-rac{g(y)}{y}
ight|.$$

Note that

$$\left| rac{g(x)}{x} - rac{g(y)}{y}
ight| \leqslant rac{|y| \cdot |g(x) - g(y)| + |g(y)| \cdot |x - y|}{xy}.$$

For any $\varepsilon>0$, take M>0, and suppose $m=\sup_{x\in [-M-1,M+1]}|f(x)|+|g(x)|$, then there exists $\delta>0$ such that $|x-y|<\delta$ implies

$$|xf(x)-yf(y)|, |f(x)-f(y)|, |g(x)-g(y)| For any $|x-y|<\delta$, if $x\in[-M-1/2,M+1/2]$, then$$

$$|f(x)g(x)-f(y)g(y)|\leqslant |f(x)|\cdot |g(x)-g(y)|+|g(y)|\cdot |f(x)-f(y)|\leqslant 2m\varepsilon'<\varepsilon.$$

Otherwise |x|, |y| > M, so

$$\left|\frac{g(x)}{x} - \frac{g(y)}{y}\right| \leqslant \frac{|g(x) - g(y)|}{|y|} + \frac{|g(y)| \cdot |x - y|}{|xy|} < \frac{\varepsilon'}{|y|} + (D + C \cdot M^{-1}) \frac{\delta}{|y|},$$

then

$$\begin{split} |f(x)g(x)-f(y)g(y)| \leqslant |xf(x)-yf(y)|\cdot|g(x)/x| + |yf(y)|\cdot|g(x)/x - g(y)/y| \\ \leqslant \varepsilon'\cdot (D+CM^{-1}) + (A+B|y|)\cdot \left(\frac{\varepsilon'+\delta(D+CM^{-1})}{|y|}\right) < \varepsilon. \end{split}$$

So in both cases |f(x)g(x)-f(y)g(y)|<arepsilon, then fg is uniformly contiuous.

Suppose $A, B \in M_n(\mathbb{C})$ prove that

$$\detegin{pmatrix}A&B\B&A\end{pmatrix}=\det(A+B)\det(A-B).$$

Proof: Note that

$$\det\begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det\begin{pmatrix} A & B \\ B-A & A-B \end{pmatrix} = \det\begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix} = \det(A+B)\det(A-B).$$

5.4

5.4.1

Consider

$$f(x)=egin{cases} x\sin x^{-2},&x\in(0,1],\ 0,&x=0. \end{cases}$$

Prove that $f \in C([0,1])$ and determine whether f is Hölder on [0,1].

Proof: Clearly f is continuous on (0,1], and $|x\sin x^{-2}|\leqslant x$ so $\lim_{x\to 0}x\sin x^{-2}=0$ hence $f\in C([0,1])$. We prove that for M=100 and $\alpha=1/3$, we have $|f(x)-f(y)|\leqslant M|x-y|^{\alpha}$. The case x=0 is trivial, now suppose 0 < y < x.

Note that $f'(x)=\sin x^{-2}-2x^{-2}\cos x^{-2}$ so $|f'(t)|\leqslant 1+2t^{-2}.$

Case1: $x-y < x^3$, then $|f(x)-f(y)| \leqslant (x-y)(1+2x^{-2})$, and $(x-y)^{2/3}(1+2x^{-2}) < x^2+2 \leqslant 3$ is bounded, so $|f(x)-f(y)|\leqslant 3|x-y|^{1/3}.$

Case2: $x-y>x^3$, then $|f(x)-f(y)|\leqslant |f(x)|+|f(y)|\leqslant x+y\leqslant 2x\leqslant 2|x-y|^{1/3}$. Hence $|f(x) - f(y)| \le 3|x - y|^{1/3}$.

5.4.2

Consider

$$f(x)=egin{cases} x\sin e^{1/x}, & x\in(0,1],\ 0, & x=0. \end{cases}$$

Prove that $f \in C([0,1])$ and determine whether f is Hölder on [0,1].

Proof: $|f(x)|\leqslant |x|$ so $\lim_{x o 0}f(x)=0$ and clearly f is continuous on (0,1].

Let
$$x_n=1/\log(2\pi n)$$
, $y_n=1/\log(2\pi(n+1/2))$, then $|x_n-y_n|=\frac{\log(1+1/2n)}{\log(2n\pi)\log(2\pi(n+1/2))}=O\left(\frac{1}{n\log^2 n}\right)$, and $|f(x_n)-f(y_n)|=|x_n+y_n|=O\left(\frac{1}{\log n}\right)$, hence for any $\alpha\in(0,1)$ and $M>0$, there exists n such that $\frac{1}{\log n}>CM\left(\frac{1}{n\log^2 n}\right)^{\alpha}$ so f is not Hölder.

5.4.3

Construct a function $f:\mathbb{R} o\mathbb{R}$ such that |f(x)-f(y)|<|x-y| for any x
eq y but f has no fixed points. Solution: Consider $f(x)=\sqrt{x^2+1}$, then $f'(x)=rac{x}{\sqrt{x^2+1}}<1$ so |f(x)-f(y)|<|x-y|.

5.4.5

Suppose f has period 1, and $|f(x)-f(y)|\leqslant |x-y|$. Consider g(x)=x+f(x). For any $x_0\in\mathbb{R}$, let $x_{n+1}=g(x_n)$, prove that $\lim_{n\to\infty}x_n/n$ exists and its value is independent of x_0 . Proof: Clearly f,g are continuous, and g is monotonically increasing: if x>y then $0\leqslant g(x)-g(y)\leqslant 2(x-y)$. Note that g(x+k)=g(x)+k so $g^{(n)}(x+k)=g^{(n)}(x)+k$. If u< v< u+1, then |g(u)-g(v)|=|v+f(v)-u-f(u)|<|v-u|+|u+1-v|=1, so |u-v|<1 implies $|g^{(n)}(u)-g^{(n)}(v)|<1$. For any two sequences $\{x_n\}$ and $\{y_n\}$, suppose $x_0+k-1\leqslant y_0< x_0+k$, then $x_n+k-1=g^{(n)}(x_0+k-1)\leqslant y_n=g^{(n)}(y_0)< g^{(n)}(x_0+k)=x_n+k$. So if $\lim_{n\to\infty}x_n/n$ exists, then $\lim_{n\to\infty}y_n/n=\lim_{n\to\infty}x_n/n$ so the limit is independent of x_0 . Let $h(n,x)=g^{(n)}(x)-x$, then $h(n+m,x)=h(n,g^m(x))+h(m,x)$ and $h(n,x)=h(n,\{x\})$. Also, $|h(n,x)-h(n,y)|=|h(n,\{x\})-h(n,\{y\})|\leqslant |\{x\}-\{y\}|+|g(\{x\})-g(\{y\})|\leqslant 2$. Hence $h(n,x)+h(m,x)-2\leqslant h(n+m,x)\leqslant h(n,x)+h(m,x)$, so $\lim_{n\to\infty}h(n,x)/n$ exists (recall problem 3.4.4).