LM-115, Suites et intégrales, MIME 24.1, second semestre 2010-2011 Université Pierre et Marie Curie

Corrigé contrôle continu numéro 1

Exercice 1 Question de cours.

Tout est dans le cours.

Exercice 2 Théorème de Césaro

1. Soit $\varepsilon > 0$.

On sait que $u_n \xrightarrow[n \mapsto +\infty]{} \ell$ donc il existe $N_{0,\varepsilon} \in \mathbb{N}$ tel que, $\forall n \geq N_{0,\varepsilon}, \ |u_n - \ell| < \frac{\varepsilon}{2} \ (\text{le choix de } \varepsilon/2 \ \text{plutôt que } \varepsilon \ \text{ne peut se faire qu'à}$

Fixons donc un tel entier $N_{0,\varepsilon} \geq 1$. Intéressons nous maintenant à la quantité que nous souhaitons majorer par ε (à partir d'un certain rang) à savoir $|\widetilde{u}_n - \ell|$. Pour tout $n \ge 1$,

$$\begin{aligned} |\widetilde{u}_n - \ell| &= \left| \frac{1}{n} \sum_{k=1}^n u_k - \ell \right| \\ &= \left| \frac{1}{n} \sum_{k=1}^n \left(u_k - \ell \right) \right| \quad (\operatorname{car} \frac{1}{n} \sum_{k=1}^n \ell = \ell) \\ &\leq \frac{1}{n} \sum_{k=1}^n |u_k - \ell| \quad (\operatorname{par in\'egalit\'e triangulaire.}). \end{aligned}$$

Nous savons majorer les quantités $|u_k - \ell|$ pour $k \geq N_{0,\varepsilon}$. Il est donc naturel de couper la somme ci dessus en deux morceaux : l'un comprenant les indices inférieurs à $N_{0,\varepsilon}$, l'autre les indices supérieurs.

Ainsi, pour tout $n \geq N_{0,\varepsilon}$,

$$\begin{split} |\widetilde{u}_n - \ell| &\leq \frac{1}{n} \sum_{k=1}^{N_{0,\varepsilon} - 1} |u_k - \ell| + \frac{1}{n} \sum_{k=N_{0,\varepsilon}}^{n} \underbrace{|u_k - \ell|}_{<\frac{\varepsilon}{2}} \\ &< \frac{1}{n} \sum_{k=1}^{N_{0,\varepsilon} - 1} |u_k - \ell| + \underbrace{\frac{n - N_{0,\varepsilon} + 1}{n}}_{\leq 1} \times \frac{\varepsilon}{2} \\ &< \frac{1}{n} \sum_{k=1}^{N_{0,\varepsilon} - 1} |u_k - \ell| + \frac{\varepsilon}{2}. \end{split}$$

On remarque que $\frac{1}{n} \sum_{k=1}^{N_{0,\varepsilon}-1} |u_k - \ell| \xrightarrow[n \mapsto +\infty]{} 0$, car la somme ne dépend plus de n (cette suite est finalement du type " $\frac{K}{n}$ ")

Par conséquent, il existe un entier $N_{1,\varepsilon} \in \mathbb{N}$, tel que, $\forall n \geq N_{1,\varepsilon}$,

$$\left|\frac{1}{n}\sum_{k=1}^{N_{0,\varepsilon}-1}|u_k-\ell|-0\right| = \frac{1}{n}\sum_{k=1}^{N_{0,\varepsilon}-1}|u_k-\ell| < \frac{\varepsilon}{2}.$$

Afin de contrôler les deux membres "en même temps", on pose $N_{\varepsilon} = \max(N_{0,\varepsilon}, N_{1,\varepsilon})$. Et donc pour tout $n \geq N_{\varepsilon}$,

$$|\widetilde{u}_n - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
< \varepsilon.

Par conséquent nous avons démontré que $\widetilde{u_n} \xrightarrow[n]{} \ell$.

Exercice 3 Suites récurrentes. Soit les fonctions $f:]-\frac{1}{2},+\infty[\to\mathbb{R}\ et\ g:]-\frac{1}{2},+\infty[\to\mathbb{R}\ définies,\ pour\ tout$ $x > -\frac{1}{2}$, par

$$f(x) = \ln(1 + 2x)$$

et

$$g(x) = f(x) - x$$

1. a) Montrer que f est croissante sur son intervalle de définition.

La fonction $x \mapsto 1 + 2x$ est croissante sur $]-\frac{1}{2}, +\infty[$ et a pour image $]0,+\infty[$. La fonction ln est croissante sur $]0,+\infty[$. La fonction f est donc la composée de deux fonctions croissantes, elle est donc croissante sur $]-\frac{1}{2},+\infty[.$

b) Etudier la fonction g et montrer que l'équation f(x) = x admet, en plus de la solution 0, une autre solution $c > \frac{1}{2}$. On rappelle que $\ln(2) \approx 0,69$.

La fonction g est dérivable sur $]-\frac{1}{2},+\infty[$ comme composée et somme de fonction dérivables. On a pour tout x dans $]-\frac{1}{2},+\infty[$,

$$g'(x) = \frac{2}{1+2x} - 1 = \frac{1-2x}{1+2x}.$$

Cette quantité a donc le même signe que 1-2x pour $x \in]-\frac{1}{2}, +\infty[$. Pour ce qui est des limites, on a

$$g(x) \xrightarrow[x \mapsto \frac{1}{2}]{+} -\infty$$

par les techniques habituelles et

$$g(x) \xrightarrow[x\mapsto +\infty]{} -\infty$$

par théorème de comparaison entre le logarithme et les polynômes. On obtient donc le tableau de variations suivant :

$x \mid$	$\frac{1}{2}$ $\frac{1}{2}$ +c	∞
g'(x)	+ φ –	
g(x)	$\ln(2) - \frac{1}{2}$ $-\underline{\infty}$	∞

De plus, g est continue, $\lim_{x\to \frac{1}{2}^+} g(x) = -\infty$ et $g(\frac{1}{2}) > 0$ donc par le théorème des valeurs intermédiaires l'équation g(x) = 0 a une solution dans $]-\frac{1}{2},\frac{1}{2}[$ et cette solution est unique par injectivité (car g est continue et strictement monotone sur $]-\frac{1}{2},\frac{1}{2}[$). En fait c'est la solution évidente x=0.

Maintenant, sur $]\frac{1}{2},+\infty[$, le même raisonnement montre qu'il existe un unique réel $c>\frac{1}{2}$ vérifiant g(c)=0, c'est-à-dire f(c)=c.

c) Etudier le signe de g(x) pour $x \in]-\frac{1}{2}, +\infty[$.

On le déduit aisément du tableau de variations :

x	$-\frac{1}{2}$		0		c		$+\infty$
g(x)		_	0	+	ф	_	

2. Montrer que [0,c] est stable.

La fonction f est croissante et continue sur [0,c], donc f([0,c])=[f(0),f(c)]=[0,c].

Voir Figure 1.

3. On définit la suite (u_n) par la donnée de $u_0 \in [0,c]$ et la relation

$$u_{n+1} = \ln(1 + 2u_n)$$

pour tout n entier.

- a) Faire un dessin très propre.
- b) Expliquer pourquoi cette suite est bien définie. La suite est bien définie car l'intervalle [0, c] est stable par f. On montre par récurrence que pour tout entier naturel $n, u_n \in [0, c]$.
- c) Montrer que (u_n) est croissante. Soit n entier naturel, alors $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$. Or d'après la question précédente $u_n \in [0,c]$ donc $g(u_n) \geq 0$ d'après le tableau de signes de g. Donc (u_n) est croissante.
- d) Montrer que (u_n) converge et calculer sa limite en fonction de la valeur de u_0 .

La suite (u_n) est croissante et majorée par c, elle converge donc vers une limite $\ell \in \mathbb{R}$. Comme f est continue, la limite de (u_n) est un point fixe de f donc $\ell = 0$ ou $\ell = c$.

Si $u_0 = 0$ alors la suite est stationnaire et converge donc vers 0. Sinon on a $u_0 > 0$ et par croissance ℓ est supérieure à u_0 donc strictement positive, donc (u_n) converge vers c.

3

FIGURE 1 – Graphe de la fonction f (en bleu) et de la première bissectrice (en rouge) ainsi que quelques itérations de la suite $(u_n)_{n\geq 0}$.