Problem Set 8: Complex Numbers

Goal: Become familiar with math operations using complex numbers; see how complex numbers can be used to show the frequency response of an RC circuit.

Note: This PSet will be much easier if you have already watched the lectures on complex numbers.

Deliverables: This worksheet and two plots.

Part I: Basic Operations with complex numbers

For the following, take $z_1 = 1 + j$ and $z_2 = -3 + 4j$.

1. Convert z_1 and z_2 to polar and exponential notation (find r, θ). $Z_1 = \int Z_1 \cos \frac{T}{2} dx$ $Z_2 = \int Z_1 \cos \frac{T}{2} \cos \frac{T}{$

2. Plot z_1 and z_2 on the complex plane below. Use this plane for the next questions.

3. Compute $z_1 + z_2$. Show $z_1 + z_2$. graphically on a plot in the complex plane.

-2+51

4. Compute z_1 - z_2 . Show z_1 - z_2 graphically on a plot in the complex plane.

5. Compute z_1z_2 . Repeat the computation using a different notation.

6. Compute $\frac{z_1}{z_2}$ using complex notation. Compute $\frac{z_2}{z_1}$ and compare

7. Compute z_1^4 .

Page 1

Total Pages: 4

Part II: Plotting complex numbers

Complex numbers using **polar notation** are super useful for illustrating how a circuit responds to time-varying signals. The polar axes can be superimposed on the complex plane as shown:

The polar coordinates (above grid of red & blue) make use of a special property of the *exponential* function when it operates on $j(=\sqrt{-1})$. You may have seen this function notated (equivalently) as:

$$e^{j\theta}$$
, $\exp(j\theta)$, or $e^{i\theta}$

where θ represents an angle in radians (Recall that π radians = 180°).

The amazing property of $e^{j\theta}$ is known as Euler's formula (section 6.3 in your book):

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

If θ varies with a frequency, ω , $\theta = \omega \cdot t$, what would $e^{j\omega t}$ look like in time?

Click this <u>link</u> to see. There is more info on page 6 for those who are interested.

Problem set 8

Page 2

Total Pages: 4

Recall from Figure 6.3 that if we represent our cosine voltage input to a low-pass filter with polar notation.

$$V_{in}(t) = V_{in} \cdot e^{j\omega t}$$

And V_{in} represents a complex number.

And remember that because the R and C are in series, the time varying current passing through both will be the same, we get,

$$\frac{V_{in}(t) - V_{out}(t)}{R} = C \frac{dV_{out}(t)}{dt}$$

and, rearranged a bit,

$$V_{in} \cdot e^{j\omega t} - V_{out} \cdot e^{j\omega t} = RCj\omega V_{out} \cdot e^{j\omega t}$$

Or

solving for
$$\frac{v_{out}}{v_{in}}$$
,

Vout, while a complex number, does not vary with time, so $\frac{dV_{out}}{dt}$ treats Vout as a constant.

$$V_{n}e^{j\omega t}$$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$
 $V_{n}e^{j\omega t}$

Let's let RC=1 second and
$$z_3 = \frac{1}{1+j\omega}$$

And

$$z_4 = \frac{j\omega}{1+j\omega}$$

 $z_3 = \frac{1}{1+j\omega}$ $z_4 = \frac{j\omega}{1+j\omega}$ Convert z_3 and z_4 to r, θ notation.

Problem set 8

Plot the magnitude of r for z_3 and z_4 as a function of ω on a log-log scale. Let ω^* vary from 10^{-3} to 10^3 .

*In Matlab, you can use the command, y = logspace(-3,3), to generate a logarithmically-spaced vector, y, that spans 10^{-3} to 10^3

Knowing that z_i and z_i represent the $\frac{V_{eut}}{V_{in}}$ of low- and high-pass filters, what do you expect the graphs to look like?

Plot θ in degrees for z_3 and z_4 as a function of ω on a semilog* scale . Let ω vary from 10^{-3} to 10^3 .

*In MATLAB, use semilogx (x, y) to plot linear values for y and log x.

This plot is the phase angle part of the Bode plot. Which value should be plotted on a log scale, ω or heta?

You expect θ at the natural frequency ("cutoff frequency") to be 45", where $\cos(\theta) = \sin(\theta)$,

Is your plot what you expect?