Notes on Topological Quantum Field Theory

Simon Xiang

February 19, 2022

Notes for my Spring 2022 DRP on Bordism and TQFTs, mentored by William Stewart. We follow Dan Freeds notes for a topics course called "Bordism: Old and New" (M392C) that he taught in 2012 (course url here: https://web.ma.utexas.edu/users/dafr/M392C-2012/index.html). Source files: https://git.simonxiang.xyz/math_notes/files.html

Contents

1	Intro	oduction to Bordism	2
	1.1	Review of smooth manifolds	2
	1.2	Bordism	3
	1.3	Disjoint union and the abelian group structure	4
	1.4	Cartesian product and the ring structure	5

1 Introduction to Bordism

Review of homology: A **singular** q-**chain** in a space S is a formal sum of continuous maps $\Delta^q \to S$ from the standard q-simplex. There is a boundary operation ∂ on chains; a chain c is a **cycle** if $\partial c = 0$, and a **boundary** if there exists a (q+1)-chain b with $\partial b = c$. If S is a point then every cycle is a boundary. Bordism replaces cycles by *closed smooth manifolds* mapping continuously into S. (Here *closed* means *compact without boundary*). Chains become *compact smooth manifolds* X with a continuous map $X \to S$, and the boundary of this chain is the restriction $\partial X \to S$ to the boundary.

Example 1.1. Not every closed smooth manifold is the boundary of a compact smooth manifold. We have $Y = \mathbb{R}P^2$ *not* the boundary of a compact 3-manifold. However, it is the boundary of a noncompact 1-manifold with with boundary. To see this, first consider $\mathbb{R}P^0 \simeq \{\text{pt}\}$. This is the boundary of a non-compact 1-manifold, namely the half line [0,1). Here the cover $\{[0,\frac{1}{2}),(\frac{1}{3},\frac{2}{3}),(\frac{1}{2},\frac{3}{4}),(\frac{2}{3},\frac{4}{5}),\cdots,(\frac{n}{n+1},\frac{n+2}{n+3})\}$) as $n \to \infty$ has no finite subcover. This generalizes to $\mathbb{R}P^1 \simeq S^1$, which is the boundary of $S^1 \times [0,1)$ and so $\mathbb{R}P^2$ is the boundary of $\mathbb{R}P^2 \times [0,1)$. From here, we can see that every closed smooth manifold Y is the boundary of a noncompact manifold with boundary, namely $Y \times [0,1)$. todo:check What fails if Y isn't closed? If Y has boundary, then $\partial^2 = 0$, and if Y is non-compact this doesn't work. todo:check (why we need closed). also 1-manifold??

How do we prove our earlier assertion that $\mathbb{R}P^2$ is not the boundary of a compact 3-manifold? We will see this later.

1.1 Review of smooth manifolds

Definition 1.1. A **topological manifold** is a paracompact, Hausdorff topological space X such that every point of X has an open neighborhood homeomorphic to an open subset of affine space. We define n-dimensional affine space as $\mathbb{A}^n = \{(x^1, x^2, \dots, x^n) \mid x^i \in \mathbb{R}\}$. The vector space \mathbb{R}^n acts transitively on \mathbb{A}^n by translations.

Definition 1.2. The empty set \emptyset is trivially a manifold of any dimension $n \in \mathbb{Z}^{\geq 0}$. We write \emptyset^n to denote the empty manifold of dimension n.

Definition 1.3. Define $\mathbb{A}^n_- = \{(x^1, x^2, \dots, x^n) \in \mathbb{A}^n \mid x^1 \leq 0\}$. We require that coordinate charts take values in open sets of \mathbb{A}^n_- . Then we partition X into two disjoint subsets (both manifolds): the **interior** (points with $x^1 < 0$ in every coordinate system) and the **boundary** ∂X (points with $x^1 = 0$).

Remark 1.1. Recall the mnemonic "ONF", standing for "Outward Normal First". An outward normal in a coordinate system is represented by the first coordinate vector field $\partial/\partial x^1$, which points outward at the boundary.

Definition 1.4. At any point $p \in \partial X$ there is a canonical subspace $T_p(\partial X) \subseteq T_pX$; the quotient space $T_pX/T_p(\partial X)$ is a real line v_p . So over the boundary there is a short exact sequence

$$0 \to T(\partial X) \to TX \xrightarrow{p} \nu \to 0$$

of vector bundles.

The vector $\partial/\partial x^1(p)$ projects to a nonzero element of v_p , but there is no canonical basis independent of coordinate system. However, any two such vectors are in the same component of $v_p \setminus \{0\}$, so v carries a canonical orientation. Furthermore, there is a splitting $s \colon v \to TX$ that assigns to a point on v a tangent vector which lies in $T(\partial X)$, which by the quotient projection maps to 0. Therefore since $s \circ p = \operatorname{id}_{TX}$, we have $TX \simeq T(\partial X) \oplus v$. For example, say we have an n-manifold with boundary, then $T_pM \simeq \mathbb{R}^{n+1}$ and $T_mM \simeq \mathbb{R}^n$ for $m \in \partial X$. Since T_mM has codimension 1 we have $v \simeq \mathbb{R}$, which comes from $\mathbb{R}^{n+1}/\mathbb{R}^n$. We also see that $T_pM \simeq \mathbb{R}^{n+1} \simeq (T_mM \simeq \mathbb{R}^n) \oplus (v \simeq \mathbb{R})$.

Definition 1.5. Let *X* be a manifold with boundary. A **collar** of the boundary is an open set $U \subset X$ which contains ∂X and a diffeomorphism $(-\varepsilon, 0] \times \partial X \to U$ for some $\varepsilon > 0$.

Theorem 1.1. The boundary ∂X of a manifold X with boundary has a collar.

Let $\{X_1, X_2, \cdots\}$ be a countable collection of manifolds. We form a new manifold $X_1 \coprod X_2 \coprod \cdots$, the **disjoint union** of X_1, X_2, \cdots . As a set it is the disjoint union of the underlying sets for the manifolds. A question is how to precisely define this; what is $X \coprod X$, for example? A solution is to fix some \mathbb{A}^{∞} and regard all manifolds embedded in it. Replace X_i by $\{i\} \times X_i$, then define the disjoint union to be the ordinary union of subsets of \mathbb{A}^{∞} . We could also use a universal property; a disjoint union of X_1, X_2, \cdots is a manifold X_i and collection of smooth maps $U_i : X_i \to X_i$ such that for any manifold X_i and collection $X_i : X_i \to X_i$ such that for each X_i the diagram

commutes.

1.2 Bordism

Definition 1.6. Let Y_0, Y_1 be closed n-manifolds. A **bordism** $(X, (\partial X)_0 \coprod (\partial X)_1, \theta_0, \theta_1)$ from Y_0 to Y_1 is a compact (n+1)-manifold X with boundary, a decomposition $\partial X = (\partial X)_0 \coprod (\partial X)_1$ of its boundary, and embeddings $\theta_0 \colon [0,+1) \times Y_0 \to X$, $\theta_1 \colon (-1,0] \times Y_1 \to X$ such that $\theta_i((0,Y_i)) = (\partial X)_i$, i=0,1.

The map θ_i is a diffeomorphism onto its image, which is a collar neighborhood of $(\partial X)_i$. The reason why we add the collar neighborhoods is to make it easier to glue bordisms; without them we could say a bordism X from Y_0 to Y_1 is a compact (n+1)-manifold with boundary Y_0 $\coprod Y_1$.

Definition 1.7. Let $(X, (\partial X)_0 \coprod (\partial X)_1, \theta_0, \theta_1)$ be a bordism from Y_0 to Y_1 . The **dual bordism** from Y_1 to Y_0 is $(X^{\vee}, (\partial X^{\vee})_0 \coprod (\partial X^{\vee})_1, \theta_0^{\vee}, \theta_1^{\vee})$ where $X^{\vee} = X$, the decomposition of the boundary is swapped so $(\partial X^{\vee})_0 = (\partial X)_1$ and $(\partial X^{\vee})_1 = (\partial X)_0$, and

$$\theta_0^{\vee}(t,y) = \theta_1(-t,y),$$
 $t \in [0,+1), y \in Y_1,$ $\theta_1^{\vee}(t,y) = \theta_0(-t,y),$ $t \in (-1,0], y \in Y_0.$

Think of the dual bordism X^{\vee} as the original bordism X "turned around", and view it as a bordism from Y_1^{\vee} to Y_0^{\vee} , where for naked manifolds we set $Y_i^{\vee} = Y_i$. When manifolds have tangential structure, this will not necessarily be the case.

Lemma 1.1. Bordism defines an equivalence relation.

Proof. For any closed manifold Y, the manifold $X = [0,1] \times Y$ is a bordism from Y to Y. Formally, set $(\partial X) + 0 = \{0\} \times Y$, $(\partial X)_1 = \{1\} \times Y$, and simple diffeomorphisms $[0,1) \to [0,\frac{1}{3})$, $(-1,0] \to (\frac{2}{3},1]$ to construct our θ_i . Symmetry is given by the dual bordism; if X is a bordism from Y_0 to Y_1 , then X^{\vee} is a bordism from Y_1 to Y_0 .

For transitivity let X be a bordism $Y_0 \to Y_1$, and X' a bordism from Y_1 to Y_2 . Define a new manifold $X'' = X \coprod X / \infty$, where for $(a,b),(c,d) \in X \coprod X'$, if either $a,d \in Y_1$, then $(a,b) \sim (c,d)$. todo:how exactly is this a manifold? bourbaki: https://math.stackexchange.com/questions/496571/under-what-conditions-the-quotient-space-of-a-material basically E is a closed submanifold of $M \times M$ (true since $E = (\partial M)_1 = (\partial M')_0$ which are manifolds by def. the projection is also a submersion. diffeomorphic. okay how do we show the smooth structure?

Example 1.2. If $f: M \to N$ is a diffeomorphism between manifolds, then consider the mapping cylinder $Mf = ([0,1] \times M) \coprod_f N$, a smooth manifold with boundary $M \times \{0\} \cup N \times \{1\}$. So diffeomorphic manifolds are bordant.

Let Ω_n denote the set of equivalence classes of n-manifolds under the equivalence relation of bordism. We use the term **bordism class** for an element of Ω_n . Note that \emptyset^0 (empty manifold) is a distinct element of Ω_n , so Ω_n is a **pointed set**.

1.3 Disjoint union and the abelian group structure

The disjoint union and cartesian product give Ω_n more structure.

Definition 1.8. A **commutative monoid** is a set with a commutative, associative composition law and identity element. An **abelian group** is a commutative monoid in which every element has an inverse.

Disjoint unions of manifolds pass to bordism classes: if Y_0 is bordant to Y_0' and Y_1 is bordant to Y_1' , then $Y_0 \coprod Y_1$ is bordant to $Y_0' \coprod Y_1'$ (take the disjoint union of the bordisms as manifolds). So (Ω_n, \coprod) is a commutative monoid.

Lemma 1.2. (Ω_n, \coprod) is an abelian group with identity \emptyset^n . Furthermore, for $Y \in \Omega_n$, $Y \coprod Y$ is null-bordant.

Proof. Let $Y \in \Omega_n$. Consider the manifold $X = [0,1] \times Y$; this gives a bordism between $Y \coprod Y$ and \emptyset^n , with $(\partial X)_0 = Y \coprod Y$ and $(\partial X)_1 = \emptyset^n$. Inverses are unique because if we took another manifold M not bordant to Y, we can't have a manifold with boundary $M \coprod Y$ by definition, so we cannot do the empty manifold decomposition. todo:check So $Y = Y^{-1}$ and we are done.

Proposition 1.1. $\Omega_0 \cong \mathbb{Z}/2\mathbb{Z}$ with generator pt.

Proof. Compact 0-manifolds are finite disjoint unions of points. Lemma 1.2 implies that the disjoint union of two points is a boundary, so this is zero in Ω_0 . To show that pt is not the boundary of a compact 1-manifold without boundary, this follows from the classification of 1-manifolds with boundary; they are a finite disjoint union of circles and closed intervals, so its boundary has an even number of points.

Proposition 1.2. $\Omega_1 = 0$ and $\Omega_2 = \mathbb{Z}/2\mathbb{Z}$ with generator $\mathbb{R}P^2$.

Proof. By the classification of compact 1-manifolds, closed 1-manifolds are finite disjoint unions of circles, which bound disks (and so they are null-bordant). Therefore $\Omega_1 = 0$. Now recall the classification theorem for 2-manifolds, which states that there are two connected families; oriented and unoriented surfaces. For oriented surfaces, they are either 2-spheres or connected sum of tori (genus g surfaces). Spheres bound the 3-ball, and genus g surfaces go to genus g handlebodies. todo:check

Any unoriented surface is a **connected sum** of $\mathbb{R}P^2$'s. It suffices to prove that $\mathbb{R}P^2$ does not bound and $\mathbb{R}P^2\#\mathbb{R}P^2$ does not bound. For the former, suppose that X is a compact manifold with $\partial X = \mathbb{R}P^2$. Then consider the **double** $D = X \cup_{\mathbb{R}P^2} X$, constructed by gluing two copies of X along $\mathbb{R}P^2$. We have $\chi(D) = 2\chi(X) - \chi(\mathbb{R}P^2) = 2\chi(X) - 1$ by Hatcher 2.2.21, which is odd. However, closed odd-dimensional manifolds have zero euler characteristic. It remains to show that $\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B)$; this is true by inclusion-exclusion (on counting cells). todo:check

Similarly $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) - \chi(S^2) = 1$. The same argument applies; suppose there exists some compact X with $\partial X = \mathbb{R}P^2 \# \mathbb{R}P^2$, examine χ of the double, and we are done. todo:hatcher 3.3.6(b). where does this argument fail? right, existence of X. but it does bound...??

Correct argument; $\mathbb{R}P^2 \# \mathbb{R}P^2$ is diffeomorphic to the Klein bottle K, which has a map $K \to S^1$, a fiber bundle with fiber S^1 . Then there is an associated fiber bundle with fiber D^2 , a compact 3-manifold with boundary K. \boxtimes

1.4 Cartesian product and the ring structure

Definition 1.9.

(i) A **commutative ring** R is an abelian group (+,0) with a second commutative, associative composition law (\cdot) with identity (1) which distributes over the first: $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3$ for all $r_1, r_2, r_3 \in R$.

(ii) A \mathbb{Z} -graded commutative ring is a commutative ring S which as an abelian group is a direct sum $S = \bigoplus_{n \in \mathbb{Z}} S_n$ of abelian group such that $S_{n_1} \cdot S_{n_2} \subseteq S_{n_1 + n_2}$. In other words, you can multiply two elements in S_{n_1}, S_{n_2} to get an element in $S_{n_1 + n_2}$.

Elements in $S_n \subset S$ are called **homogeneous of degree** n; an element of S is a finite sum of homogeneous elements.

Example 1.3. The integers \mathbb{Z} form a commutative ring, and for any commutative ring R there is a polynomial ring S = R[x] in a single variable which is \mathbb{Z} -graded. To define this grading, we need to assign a degree to the indeterminate x, usually 1; in this case S_n is the abelian group of homogeneous polynomials of degree n in x. More generally, there is a \mathbb{Z} -graded polynomial ring $R[x_1, \cdots, x_k]$ in any number of indeterminates with any assigned integer degrees $\deg x_k \in \mathbb{Z}$.

Define

$$\Omega = \bigoplus_{n \in \mathbb{Z}^{\geq 0}} \Omega_n.$$

Formally, define $\Omega_{-m} = 0$ for m > 0. The Cartesian product of manifolds is compatible with bordism; if Y_0 is bordant to Y_0' and Y_1 is bordant to Y_1' , then $Y_0 \times Y_1$ is bordant to $Y_0' \times Y_1'$. To see this, let M_0, M_1 be the bordisms with $\partial M_0 = Y_0 \coprod Y_0'$, $\partial M_1 = Y_1 \coprod Y_1'$. Then the bordism between $Y_0 \times Y_1$ and $Y_0' \times Y_1'$ is given by $M_0??M_1$ todo:not $M_0 \times M_1$, dimension. not $M_0 \times M_1$, dimension.

Proposition 1.3. $(\Omega, \coprod, \times)$ is a \mathbb{Z} -graded ring. A homogeneous element of degree $n \in \mathbb{Z}$ is represented by a closed manifold of dimension n.

 \boxtimes

Proof. todo:?? dk what the bordism of product is. show it's compatible??

In his Ph.D. thesis Thom todo:references proved the following theorem.

Theorem 1.2 (Thom). There is an isomorphism $\Omega \cong \mathbb{Z}/2\mathbb{Z}[x_2, x_4, x_5, x_6, x_8, \cdots]$ where there is a polynomial generator of degree k for each positive integer k not of the form $2^i - 1$. Furthermore, if k is even, then x_k is represented by $\mathbb{R}P^k$. todo:does this vibe with $\Omega_2 = \mathbb{Z}/2\mathbb{Z}$? shouldn't it be $\mathbb{Z}/2\mathbb{Z}[x_2]$? or is that just $\mathbb{Z}/2\mathbb{Z}$

Dold later constructed manifolds representing the odd degree generators, which are fiber bundles over $\mathbb{R}P^m$ will fiber $\mathbb{C}P^\ell$. Working out Ω_{10} , or 10-manifolds up to bordism, we have generator $\mathbb{R}P^{10}$. todo:?? don't know much about 10-manifolds

Thom proved that the **Stiefel-Whitney numbers** determine the bordism clsas of a closed manifold. The **Steifel-Whitney classes** $w_i(Y) \in H^i(Y; \mathbb{Z}/2\mathbb{Z})$ are examples of **characteristic classes** of the tangent bundle; we will discuss this stuff later. Any closed n-manifold Y has a **fundamental class** $[Y] \in H_n(Y; \mathbb{Z}/2\mathbb{Z})$. If $x \in H^{\bullet}(Y; \mathbb{Z}/2\mathbb{Z})$, the pairing $\langle x, [Y] \rangle$ produces a number in $\mathbb{Z}/2\mathbb{Z}$.

Theorem 1.3. The Stiefel-Whitney numbers

$$\langle w_{i_1}(Y) \smile w_{i_2}(Y) \smile \cdots \smile w_{i_k}(Y), [Y] \rangle \in \mathbb{Z}/2\mathbb{Z}$$

determine the bordism class of a closed n-manifold Y.

That is to say, if two closed n-manifolds Y_0, Y_1 have the same Stiefel-Whitney numbers, then they are bordant. Notice that not all naively possible nonzero Stiefel-Whitney numbers can be nonzero. For example, $\langle w_1(Y), [Y] \rangle$ vanishes for any closed 1-manifold Y. Also, the theorem implies that a closed n-manifold is the boundary of a compact (n+1)-manifold iff all the Stiefel-Whitney numbers of Y vanish. If it is a boundary, it is immediate that the Stiefel-Whitney numbers vanish; the converse is not obvious. todo:I'm not supposed to get this right yet?

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$