Theorem (3.2.1d). Let f be the function defined by $f(x) = 5 \log x$. f(x) is $\mathcal{O}(x)$.

Proof. Let g be the function defined by g(x) = x. It is clear that the inequality $|5\log x| \le 5|x|$ is true for all x > 1. Therefore, $|f(x)| \le 5|g(x)|$, for all x > 1. It follows from the definition of big-O notation that f(x) is $\mathcal{O}(x)$ with constant witnesses C = 5, and k = 1.