

Table of Contents

- 1. 生成线性回归数据
- 2. load data from RDatasets
- 3. using MLJ ensemble model

```
    begin
    using PlutoUI ,MLJ , DataFrames ,StatsPlots ,StatsBase ,RDatasets ,ScientificTypes
    PlutoUI.TableOfContents()
    end
```

1. 生成线性回归数据

Regression-data-generated-from-noisy-linear-models

	Х1	Х2	х3	х4	х5	у
1	2.03465	-0.466263	1.18746	-0.255324	0.70891	-0.097129
2	0.0856653	-0.671893	0.145437	1.75428	-0.20806	0.568957
3	1.27709	0.41057	0.000103094	-1.34266	-1.08045	0.325458

```
begin

X1, y1 = make_regression(100, 5; noise=0.5, sparse=0.2, outliers=0.1)

dfRegression = DataFrame(X1)

dfRegression.y = y1

first(dfRegression, 3)

end
```

2. load data from RDatasets

使用数据,boston housing. 收集了波士顿地区房屋的一些特征和平均价格, 在线性回归中可以使用特征数值来预测房价. 特征数值作为预测变量(predict variables), 房价作为响应变量(responsive variable)

```
boston = dataset("MASS", "Boston");
```

names	scitypes	types
Crim Zn Indus Chas NOx Rm Age Dis Rad Tax	Continuous Continuous Continuous Count Continuous Continuous Continuous Continuous Continuous Count Count	Float64 Float64 Int64 Float64 Float64 Float64 Float64 Int64 Int64

4 rows omitted

• schema(boston) # using ScientificTypes to show data type

	variable	mean	min	median	max	nmissing	eltype
1	:Crim	3.61352	0.00632	0.25651	88.9762	0	Float64
2	:Zn	11.3636	0.0	0.0	100.0	0	Float64
3	:Indus	11.1368	0.46	9.69	27.74	0	Float64
4	:Chas	0.06917	0	0.0	1	0	Int64
5	:NOx	0.554695	0.385	0.538	0.871	0	Float64
6	:Rm	6.28463	3.561	6.2085	8.78	0	Float64
7	:Age	68.5749	2.9	77.5	100.0	0	Float64
8	:Dis	3.79504	1.1296	3.20745	12.1265	0	Float64
9	:Rad	9.54941	1	5.0	24	0	Int64
10	:Tax	408.237	187	330.0	711	0	Int64
11	:PTRatio	18.4555	12.6	19.05	22.0	0	Float64
12	:Black	356.674	0.32	391.44	396.9	0	Float64
13	:LStat	12.6531	1.73	11.36	37.97	0	Float64
14	:MedV	22.5328	5.0	21.2	50.0	0	Float64

describe(boston)

3. using MLJ ensemble model

• md"""## 3. using MLJ ensemble model"""

MLJLinearModels.LinearRegressor

```
    begin
    import MLJLinearModels
    MLJLinearModels.LinearRegressor
    LinearRegressor = @load LinearRegressor pkg=MLJLinearModels
    end
```

```
F import MLJLinearModels √ ⑦ erbosity=0'.
```

• data = coerce(boston, autotype(boston, :discrete_to_continuous)); #由于很多计算方法要用 到浮点类型,执行这个操作将整数类型转化为浮点类型

```
([24.0, 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, more ,11.9],
                                                                                 Crim
                                                                               0.00632
                                                                           1
                                                                                         18
                                                                               0.02731
                                                                               0.02729
                                                                           3
                                                                                         0.
                                                                               0.03237
                                                                                         0.
                                                                               0.06905
                                                                                         0.
                                                                               0.02985
                                                                           6
                                                                                         0.
                                                                           7
                                                                               0.08829
                                                                                         12
                                                                               0.14455
                                                                                         12
                                                                               0.21124
                                                                           9
                                                                                         12
                                                                             0.17004
                                                                                         12
                                                                          10
                                                                             more
                                                                          506 0.04741
                                                                                         0.
```

```
• y,X = data.MedV,select(data, Not(:MedV))

• mdl = LinearRegressor(
    fit_intercept = true,
    solver = nothing)

• mdl = LinearRegressor() # 实例化线性模型
```

```
begin
mach = machine(mdl, X, y) #使用数据生成模型
fit!(mach)

fp = fitted_params(mach)
coefs = fp.coefs
intercept = fp.intercept
for (name, val) in coefs
println("$(rpad(name, 8)): $(round(val, sigdigits=3))")
end
println("Intercept: $(round(intercept, sigdigits=3))")
end
```

```
15 Crim
                      nalytical _intercept = true, ...), ...).
         : -0.108
          : 0.0464
   Zn
          : 0.0206
   Indus
   Chas
          : 2.69
   NOx
            -17.8
          : 3.81
   Rm
          : 0.000692
   Age
             -1.48
   Dis
          : 0.306
   Rad
            -0.0123
   Tax
   PTRatio :
             -0.953
          : 0.00931
   Black
             -0.525
   LStat
   Intercept: 36.5
```

4.679

```
begin

•  ŷ = MLJ.predict(mach, X)

• round(rms(ŷ, y), sigdigits=4)

• end
```



```
    begin
    n=size(boston)[1]
    range=1:n
    res = ŷ .- y # 预测值和实际值逐一相减,得到每个数据点的残差集合
    plot(repeat((1:n)', 2),
    [zeros(1, n); res'], label = "", color = :grey, alpha = 0.5, size=(800,600))
    plot!(1:n, res, color = :grey, markershape = :circle,
    alpha = 0.5, label = "", linewidth = 0)
    end
```


• histogram(res, label=false, fc=:lightblue, fillalpha=0.5) #残差频数统计柱形图

stem

```
plot residual stem plot

stem(res::Array,color=:grey)
```

```
begin
"""
stem

plot residual stem plot

'''julia
stem(res::Array,color=:grey)
"""
function stem(res::Array,color=:grey)
bar(res,fillcolor=color,width=0.5,label=false,alpha=0.5,size=(800,600))
plot!(1:length(res), res, color = color, markershape = :circle,
alpha = 0.5, label = "", linewidth = 0)

end
end
```