NOTE DI STRUTTURA DELLA MATERIA

Manuel Deodato

INDICE

	Noz	ioni di meccanica statistica e termodinamica	3
	1.1	Gas di particelle	3
	1.2	Principi della termodinamica	3
	1.3	Potenziali termodinamici	3
	1.4	Calori specifici e compressibilità	4
	1.5	Diagrammi di fase	4
	1.6	Modello per sistemi statistici	4
		1.6.1 Sistema in bagno termico	4
		1.6.2 Funzione di granpartizione	5
		1.6.3 Entropia e potenziali	5 6
		1.6.4 Degenerazione dei livelli energetici	6
		1.6.5 Applicazione – Particelle non-interagenti	6
		1.6.6 Applicazione – Sistema a due stati*	6
	1.7	Spazio delle fasi	6
		1.7.1 Costante di Planck	7
		1.7.2 Applicazione – Densità di energia ed energia per singola particella	7
		1.7.3 Applicazione – Gas interagente	8
		Gas perfetto	8
	1.9	Distribuzione dell'energia	10
	1.10	Incertezze quantistiche	10
<u>.</u>	Gas	quantistici	11
	2.1	Statistiche di Bose-Einstein e Fermi-Dirac	11
	2.2	Gas perfetto debolmente degenere	11
	2.3	Gas di Fermi	13
		2.3.1 Comportamento del gas per $T > 0$	14
		2.3.2 Proprietà termiche del gas di Fermi	14
		2.3.3 Paramagnetismo di Pauli	16
		2.3.4 Emissione termoionica	16
		2.3.5 Effetto fotoelettrico	17
	2.4	Gas di Bose	18
		2.4.1 Condensato di Bose-Einstein	18
		2.4.2 Oscillatori in una scatola	19
		2.4.3 Corpo nero	20

1 Nozioni di meccanica statistica e termodinamica

1.1 Gas di particelle

Si considera gas di particelle non interagenti e puntiformi. Ciascuna particella soddisfa $\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r})$ con $\hat{H} = \frac{\hat{\mathbf{p}}}{2m}$ e $E = \frac{\hbar^2}{2m}q^2$, quindi la soluzione generale è:

$$\psi(\mathbf{r}) = e^{i\mathbf{q}\cdot\mathbf{r}} \tag{1.1.1}$$

Imponendo condizione di periodicità al bordo della scatola $\Rightarrow q_i = \frac{2\pi}{L}l_i, \ l_i = 0, \pm 1, \pm 2, \ldots$ Si assumerà che particelle interagiscano abbastanza poco da rendere valida questa trattazione, e abbastanza tanto da permettere transizioni di fase.

1.2 Principi della termodinamica

(a). **Primo principio**: per un sistema chiuso (niente scambio di particelle) e isolato, vi è conservazione dell'energia interna:

$$dE = \delta Q + \delta L \tag{1.2.1}$$

- (b). **Secondo principio**: l'entropia, data da $S = \kappa_B \log \Gamma^1$ (con Γ numero di microstati del sistema all'equilibrio), per un sistema isolato, soddisfa $\frac{dS}{dt} \ge 0$. L'uguaglianza vale quando è raggiunto l'equilibrio.
- (c). **Terzo principio**: l'entropia tende a 0 per sistemi perfettamente ordinati, cioè sistemi in cui tutte le particelle popolano un solo microstato $\Rightarrow S = \kappa_B \log 1 = 0$. Sistemi perfettamente ordinati sono cristalli perfetti a temperatura nulla; non tutti i materiali a T=0 risultano perfettamente ordinati e alcuni presentano entropia residua.

1.3 Potenziali termodinamici

A seconda del caso, si usano diverse riscritture dell'energia.

- Energia libera di Helmholtz: $F = E TS \Rightarrow dF = -SdT PdV$. La sua variazione a temperatura costante restituisce lavoro compiuto sul sistema: $\delta F|_T = -P\delta V|_T = \delta L$.
- Energia libera di Gibbs: $\Phi = E TS + PV = F + PV \Rightarrow d\Phi = VdP SdT$. È adatta a descrivere transizioni di fase.
- Entalpia: $W = E + PV \Rightarrow dW = TdS + VdP$. La sua variazione a pressione costante è il calore scambiato dal sistema: $\delta W|_P = T\delta S|_P = \delta Q$.

Se è possibile scambio di particelle, la dipendenza da *N* nei potenziali si aggiunge con:

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{SV} = \left(\frac{\partial F}{\partial N}\right)_{TV} = \left(\frac{\partial \Phi}{\partial N}\right)_{SP} \tag{1.3.1}$$

 μ è esso stesso un potenziale: $d\mu = -S/NdT + V/NdP = -sdT + vdP^2$. Un altro potenziale utile è il **potenziale di Landau**: $\Omega = F - \mu N \Rightarrow d\Omega = -SdT - PdV - Nd\mu$.

¹Questa espressione è il caso limite della più generale $S = \kappa_B \sum_i p_i \log p_i$ che si ha quando il sistema non è all'equilibrio, cioè quando i microstati non sono popolati uniformemente.

²Aggiungendo particelle ferme ad un sistema, è ragionevole avere $\mu < 0$, visto che l'energia media diminuirebbe con l'aumentare di N.

1.4 Calori specifici e compressibilità

Calori specifici a volume e pressione costante:

$$c_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = T \left(\frac{\partial S}{\partial T}\right)_{V} = -T \left(\frac{\partial^{2} F}{\partial T^{2}}\right)_{V}$$

$$c_{P} = \left(\frac{\partial E}{\partial T}\right)_{P} = T \left(\frac{\partial S}{\partial T}\right)_{P} = -T \left(\frac{\partial^{2} \Phi}{\partial T^{2}}\right)_{P}$$
(1.4.1)

Vale

$$c_P \ge c_V \tag{1.4.2}$$

Compressibilità per trasformazioni isoterma e adiabatica:

$$k_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = -\frac{1}{V} \left(\frac{\partial^2 \Phi}{\partial P^2} \right)_T \; ; \quad k_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S = \left[V \left(\frac{\partial^2 E}{\partial V^2} \right)_S \right]^{-1}$$
 (1.4.3)

1.5 Diagrammi di fase

Grafico che mostra stato fisico di una sostanza in funzione, solitamente, di temperatura e pressione. Assumendo di avere un sistema con due stati coesistenti $\Rightarrow N_1 + N_2 = \cos t$. $\Rightarrow \delta N_1 = -\delta N_2$, all'equilibrio:

$$\frac{\partial F}{\partial N_1} = \frac{\partial}{\partial N_1} (F_1 + F_2) = \frac{\partial F_1}{\partial N_1} - \frac{\partial F_2}{\partial N_2} = \mu_1 - \mu_2 = 0$$

da cui si ottiene relazione $\mu_1(P,T) = \mu_2(P,T)$ che permette di tracciare grafico P = f(T). Lo stesso si può fare per tre stati coesistenti, individuando *punto triplo*.

Da $d\mu_1 = d\mu_2$, si ha $-s_1 dT + v_1 dP = -s_2 dT - v_2 dP$, quindi:

$$\frac{dP}{dT} = \frac{s_2 - s_1}{v_2 - v_1} \tag{1.5.1}$$

1.6 Modello per sistemi statistici

Si tratteranno i sistemi dividendo l'Universo in sistema in esame (E, S, T) + parte complementare, chiamata **bagno termico** (E', S', T). Quest'ultimo sarà assunto essere *sempre all'equilibrio e alla stessa temperatura del sistema*.

La variazione di energia del bagno termico dipende solo da variazione dell'entropia $\Rightarrow \delta E' = T \delta S'$; inoltre essendo l'Universo sempre isolato, la sua variazione di energia è nulla $\Rightarrow \delta E + \delta E' = 0$.

Unendo le due, si ha $\delta S' = -\delta E/T$; per il secondo principio, $\delta S + \delta S' \ge 0 \Rightarrow T\delta S - \delta E \ge 0 \Rightarrow \delta(E - TS) \le 0$, da cui si deduce che un sistema *a temperatura fissata* è all'equilibrio quando F = E - TS è al minimo.

Consentendo scambio di particelle, vale lo stesso principio con $\delta\Omega \leq 0$, quindi $\Omega = F - \mu N$ minimo.

1.6.1 Sistema in bagno termico

Si indica con \mathcal{E} il sistema immerso in bagno termico \mathcal{E}' e con \mathcal{E}_0 l'Universo. Questi hanno rispettivamente dipendenza dalle variabili (V, N, E, S), (V', N', E', S'), (V_0, N_0, E_0, S_0) .

 \mathcal{S} si trova in stato quantistico generico indicato tramite serie di numeri quantici α ; si assume che *il volume sia fissato* e si richiede che: $E_{\alpha} \ll E_0$ e $N_{\alpha} \ll N_0$; in questo modo *temperatura e potenziale chimico del bagno termico sono costanti*.

I microstati dell'Universo sempre equiprobabili perché è sempre all'equilibrio $\Rightarrow w_{\rm eq} = 1/\Gamma_0$, con Γ_0 numero di microstati. La probabilità di avere uno stato α per il sistema, allora è $w_{\alpha} = \Gamma'_{\alpha}/\Gamma_0$, dove Γ'_{α} è il numero di microstati in cui $\mathcal S$ è in α e $\mathcal S'$ è in uno stato generico.

L'entropia di S' è:

$$S'_{\alpha} = \kappa_B \log \Gamma'_{\alpha} = S'(E_0 - E_{\alpha}, N_0 - N_{\alpha})$$
 (1.6.1)

Inoltre:

$$S_0 - S_{\alpha}' = \kappa_B \log \Gamma_0 - \kappa_B \log \Gamma_{\alpha}' = -\kappa_B \log \frac{\Gamma_{\alpha}'}{\Gamma_0} = -\kappa_B \log w_{\alpha}$$
 (1.6.2)

quindi

$$w_{\alpha} = \exp\left(-\frac{S_0 - S_{\alpha}'}{\kappa_B}\right) \equiv Ae^{S_{\alpha}'/\kappa_B}$$
 (1.6.3)

In questo modo, si può calcolare valore medio dell'entropia per \mathcal{S} (in genere α non è uno stato di equilibrio per \mathcal{S}):

$$\langle S \rangle \equiv \langle S_0 - S_\alpha' \rangle = -\kappa_B \sum_\alpha w_\alpha \log w_\alpha$$
 (1.6.4)

1.6.2 Funzione di granpartizione

Sviluppando in serie eq. 1.6.1, si ha:

$$S'_{\alpha} \simeq S'(E_0, N_0) - \left(\frac{\partial S'}{\partial E'}\right)_{N'} E_{\alpha} - \left(\frac{\partial S'}{\partial N'}\right)_{E'} N_{\alpha} \Rightarrow S'_{\alpha} = \text{cost.} - \frac{E_{\alpha} - \mu N_{\alpha}}{T}$$
 (1.6.5)

perciò la probabilità, comprensiva di normalizzazione, è:

$$w_{\alpha} = \frac{\exp\left[-(E_{\alpha} - \mu N_{\alpha})/\kappa_{B}T\right]}{\sum_{\alpha} \exp\left[-(E_{\alpha} - \mu N_{\alpha})/\kappa_{B}T\right]} \equiv \frac{1}{\mathcal{L}} \exp\left(-\frac{E_{\alpha} - \mu N_{\alpha}}{\kappa_{B}T}\right)$$
(1.6.6)

con \mathcal{L} funzione di granpartizione. Nel limite di $N_{\alpha} = N$, $\forall \alpha$, w_{α} tende al caso canonico con normalizzazione data dalla funzione di partizione \mathcal{L} .

1.6.3 Entropia e potenziali

Ora si può calcolare $\langle S \rangle$:

$$\langle S \rangle = \kappa \log \mathcal{L} + \frac{1}{T} \sum_{\alpha} w_{\alpha} E_{\alpha} - \frac{\mu}{T} \sum_{\alpha} w_{\alpha} N_{\alpha} = \kappa_{B} \log \mathcal{L} + \frac{\langle E \rangle - \mu \langle N \rangle}{T}$$
 (1.6.7)

Da questa si ottiene il potenziale di Landau:

$$\Omega = -\kappa_B T \log \mathcal{L} = -\kappa_B T \log \sum_{\alpha} \exp\left(-\frac{E_{\alpha} - \mu N_{\alpha}}{\kappa_B T}\right)$$

$$= -\mu N - \kappa_B T \log \sum_{\alpha} \exp\left(-\frac{E_{\alpha}}{\kappa_B T}\right) = -\mu N - \kappa_B T \log \mathcal{L}$$
(1.6.8)

dove si è imposto $N_{\alpha} = N$, $\forall \alpha$. Conseguentemente $F = \Omega + \mu N = -\kappa_B T \log \mathcal{Z}$.

1.6.4 Degenerazione dei livelli energetici

Ammettendo che *diversi stati occupano stesso livello energetico*, continuando ad assumere $N_{\alpha} = N, \ \forall \alpha$:

$$w(E_{\alpha}) = \frac{1}{\mathcal{Z}} \rho(E_{\alpha}) \exp\left(-\frac{E_{\alpha}}{\kappa_B T}\right)$$
 (1.6.9)

con ρ degenerazione relativa a energia E_{α} . Passando al continuo:

$$w(E_{\alpha}) \to w(\mathcal{E}) = \frac{1}{\mathcal{Z}} \rho(\mathcal{E}) \exp\left(-\frac{\mathcal{E}}{\kappa_B T}\right), \ \mathcal{Z} \to \int_{0}^{+\infty} d\mathcal{E} \ \rho(\mathcal{E}) \exp\left(-\frac{\mathcal{E}}{\kappa_B T}\right)$$
 (1.6.10)

Il numero di microstati si può riscrivere come:

$$d\Gamma = \frac{d\Gamma}{d\mathcal{E}}d\mathcal{E} = \rho(\mathcal{E})d\mathcal{E} \tag{1.6.11}$$

1.6.5 Applicazione – Particelle non-interagenti

Per N particelle non-interagenti, ciascun grado di libertà fattorizza in \mathcal{Z} ; per particelle **distinguibili** (distribuzioni diverse delle particelle in microstati individuano stati diversi), si ha $\mathcal{Z}_{\text{tot}} = \mathcal{Z}_{1p}^N$; per particelle **indistinguibili**, una buona stima è: $\mathcal{Z}_{\text{tot}} = \frac{1}{N!}\mathcal{Z}_{1p}^N$. Si considera il secondo caso.

Si ha $F=-\kappa_BT\log\mathcal{Z}=\kappa_BT\log N!-\kappa_BNT\log\mathcal{Z}_{1p}$. Ricordando che $E_{q_i}=\frac{\hbar^2q_i^2}{2m}$, con $q_i=\frac{2\pi l_i}{L}$, quindi $E_q\propto L^{-2}=V^{-2/3}$, pertanto:

$$\begin{split} P &= -\left(\frac{\partial F}{\partial V}\right)_T = \frac{N\kappa_B T}{\mathcal{Z}_{1p}} \frac{\partial \mathcal{Z}_{1p}}{\partial V} = -\frac{N\kappa_B T}{\mathcal{Z}_{1p}} \frac{1}{\kappa_B T} \sum_i \frac{\partial E_{q_i}}{\partial V} \exp\left(-\frac{E_{q_i}}{\kappa_B T}\right) \\ &= \frac{2N}{3V} \frac{1}{\mathcal{Z}_{1p}} \sum_i E_{q_i} \exp\left(-\frac{E_{q_i}}{\kappa_B T}\right) \equiv \frac{2N}{3V} \langle E \rangle \end{split}$$

1.6.6 Applicazione - Sistema a due stati*

Sistema in cui particelle interagiscono solo tramite spin Valutare se va scritto

1.7 Spazio delle fasi

Per sistema di N particelle, è uno spazio 6N-dimensionale delle coordinate e impulsi. Fissare energia dell'Universo equivale a definire un'ipersuperficie Σ_0 a (6N-1) dimensioni data da $\mathcal{E}_0(\{x_i\},\{p_i\}) = E_0$.

Si discretizza lo spazio in celle che rispettano $\Delta x_k \Delta p_k = \tau$, con τ costante generica. Si assume che *le celle siano piccoli a sufficienza da avere un solo stato in ciascuna*; allora numero di stati sarà area dell'ipersuperficie normalizzata con elemento di volume:

$$\Gamma_0 = \frac{1}{\tau^{f_0}} \iint_{\Sigma_0} \prod_{i=1}^{f_0} dx_i, dp_i, \text{ con } f_0 = 3N$$
 (1.7.1)

Allora l'entropia dell'Universo è:

$$S_0 = \kappa_B \log \iint_{\Sigma_0} \prod_{i=1}^{f_0} dx_i dp_i - \kappa_B f_0 \log \tau$$
 (1.7.2)

Per Σ' ipersuperificie data da $E'_{\alpha}=E_0-E_{\alpha}$, si può ripetere il discorso per il bagno termico:

$$S'_{\alpha} = \kappa_B \log \iint_{\Sigma'} \prod_{i=1}^{f'} dx_i dp_i - \kappa_B f' \log \tau$$
 (1.7.3)

In questo modo, l'entropia media del sistema è:

$$\langle S \rangle = \kappa_B \log \iint_{\Sigma_a} \prod_{i=1}^{f_0} dx_i dp_i - \left(\kappa_B \log \iint_{\Sigma_a'} \prod_{i=1}^{f'} dx_i dp_i \right) - \kappa_B (f_0 - f') \log \tau$$
 (1.7.4)

L'entropia è singolare per $\tau \to 0$, quindi deve essere un valore finito.

1.7.1 Costante di Planck

Si ricava per particella confinata in segmento L. I livelli energetici sono $E_q = \hbar^2 q^2/(2m)$ con $q = 2\pi l/L$, e $l \in \mathbb{Z}$. Il conteggio degli stati nella cella $L\Delta p$ è $\Delta l = L\Delta q/(2\pi) = L\Delta p/(2\pi\hbar)$; d'altra parte:

$$\frac{1}{\tau} \int_{L} \int_{\Delta p} dx dp = \frac{L}{\tau} \Delta p \Rightarrow \tau = 2\pi \hbar = h$$

1.7.2 Applicazione - Densità di energia ed energia per singola particella

Per singola particella libera, usando coordinate cilindriche per gli impulsi:

$$\Gamma = \frac{1}{h^3} \iint d^3x d^3p = \frac{V}{h^3} \int 4\pi p^2 dp$$
 (1.7.5)

Visto che $\mathscr{E} = p^2/2m$, tramite confronto:

$$\rho(\mathcal{E})d\mathcal{E} = \frac{4\pi V}{h^3} p^2 \frac{dp}{d\mathcal{E}} d\mathcal{E} = \frac{4\pi V m^{3/2}}{h^3} \sqrt{2\mathcal{E}} d\mathcal{E}$$
 (1.7.6)

Si può calcolare l'energia media:

$$\langle \mathcal{E} \rangle = \frac{\int\limits_{0}^{+\infty} \mathcal{E} e^{-\mathcal{E}/\kappa_B T} \rho(\mathcal{E}) d\mathcal{E}}{\int\limits_{0}^{+\infty} e^{-\mathcal{E}/\kappa_B T} \rho(\mathcal{E}) d\mathcal{E}} = \kappa_B T \frac{\int\limits_{0}^{+\infty} dx \ x^{3/2} e^{-x}}{\int\limits_{0}^{+\infty} dx \ x^{1/2}} e^{-x} = \kappa_B T \frac{\Gamma(5/2)}{\Gamma(3/2)} = \frac{3}{2} \kappa_B T$$

1.7.3 Applicazione - Gas interagente

Gas non-relativistico immerso in potenziale generico dipendente solo dalle coordinate. Elemento differenziale dello spazio delle fasi è $d\Gamma=\rho(\mathcal{E})d\mathcal{E}=\frac{1}{N!h^{3N}}\prod_{i=1}^{3N}dx_idp_i$, da cui essendo $\mathcal{E}=U\left(\left\{x_i\right\}\right)+\sum_{i=1}^{3N}p_i^2/2m$

$$\mathcal{Z} = \int e^{-\mathcal{E}/\kappa_B T} \rho(\mathcal{E}) d\mathcal{E} = \frac{1}{N!h^{3N}} \iint \prod_{i=1}^{3N} dx_i dp_i e^{-\mathcal{E}/\kappa_B T}$$

$$= \frac{1}{N!h^{3N}} \iint \prod_{i=1}^{3N} dx_i dp_i \exp \left[-\frac{\sum_{i=1}^{3N} p_i^2}{2m\kappa_B T} - \frac{U(\{x_i\})}{\kappa_B T} \right]$$

$$= \frac{1}{N!h^{3N}} \iint \prod_{i=1}^{N} d^3 p_i \exp \left[-\frac{\sum_{i=1}^{N} p_i^2}{2m\kappa_B T} \right] \iint \prod_{i=1}^{N} d^3 x_i \exp \left[-\frac{U(\{x_i\})}{\kappa_B T} \right]$$

Il primo integrale, insieme al prefattore, si può ricondurre a quello di un gas ideale, a meno di un V^N :

$$\mathcal{Z}_{IG} = \frac{1}{N!} \left[\frac{1}{h^3} \iint d^3x d^3p \; \exp\left(-\frac{p^2}{2m\kappa_B T}\right) \right]^N = \frac{V^N}{N!h^{3N}} \iint \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i=1}^N d^3p_i \; \exp\left(-\frac{\sum_{i=1}^N p_i^2}{2m\kappa_B T}\right) = \frac{1}{N!} \frac{V^N}{\Lambda^{3N}} \int \prod_{i$$

con $\Lambda = 2\pi\hbar/\sqrt{2\pi m\kappa_B T}$ lunghezza d'onda termica di de Broglie. Il secondo dipende dalla forma del potenziale ed è detto **integrale delle configurazioni**:

$$\mathcal{D} \equiv \int \prod_{i=1}^{N} d^3 x_i \, \exp\left(-\frac{U(\{x_i\})}{\kappa_B T}\right) \tag{1.7.7}$$

Quindi:

$$\mathcal{Z} = \frac{1}{N!} \frac{\mathcal{D}}{\Lambda^{3N}} \tag{1.7.8}$$

Per la funzione di granpartizione¹:

$$\mathcal{L} = \sum_{\alpha} \exp\left[-\frac{E_{\alpha} - \mu N_{\alpha}}{\kappa_{B}T}\right] = \sum_{N_{\alpha}} \left[\exp\left(\frac{\mu N_{\alpha}}{\kappa_{B}T}\right) \sum_{\alpha \mid N_{\alpha}} \exp\left(-\frac{E_{\alpha}}{\kappa_{B}T}\right)\right]$$

$$= \sum_{N_{\alpha}} \left\{ \left[\exp\left(\frac{\mu}{\kappa_{B}T}\right)\right]^{N_{\alpha}} \sum_{\alpha \mid N_{\alpha}} \exp\left(-\frac{E_{\alpha}}{\kappa_{B}T}\right) \right\} \equiv \sum_{N_{\alpha}} \left[z^{N_{\alpha}} \sum_{\alpha \mid N_{\alpha}} \exp\left(-\frac{E_{\alpha}}{\kappa_{B}T}\right)\right]$$

$$(1.7.9)$$

dove z è detta **fugacità**. Nel limite al continuo, si trova:

$$\mathcal{L} = \sum_{N} \frac{z^{N} \mathcal{D}_{N}}{N! \Lambda^{3N}}$$
 (1.7.10)

con \mathcal{D}_N integrale delle configurazioni relativo agli stati α con N particelle.

1.8 Gas perfetto

Particelle confinate in scatola con autostati dell'energia individuati dagli impulsi q. Numero di particelle in uno stato è n_q .

¹Nella seconda uguagliamza, si spezza la somma, raggruppando i termini della somma stessa in base a N_{α} , per questo $\alpha|N_{\alpha}$ indica una somma sugli α relativa a ciascun N_{α} .

Per gas ideale, la maggior parte dei microstati sarà vuota, cioè $w(0)\approx 1$, e la probabilità di avere più di una particella in un microstato è praticamente nulla, quindi $w(1)\ll 1$ e $w(n\geq 2)\approx 0$. Usando $\mathscr{L}=\exp\left[-\Omega/\kappa_B T\right]$:

$$w(n_q) = \exp\left[\frac{\Omega_q - n_q(E_q - \mu)}{\kappa_B T}\right]$$
 (1.8.1)

Allora le condizioni di popolazione dei microstati si traducono in:

$$w(0) \approx 1 \Rightarrow \exp\left(\frac{\Omega_q}{\kappa_B T}\right) \approx 1$$

$$w(n) = e^{\Omega_q/\kappa_B T} \left[\exp\left(-\frac{E_q - \mu}{\kappa_B T}\right)\right]^n \equiv w^n(1) \ll 1, \forall q \iff \exp\left(\frac{\mu}{\kappa_B T}\right) \ll 1$$
(1.8.2)

quindi $\mu \to -\infty$. Da questo, il numero medio di particelle in uno stato q è:

$$\langle n_q \rangle = \frac{\sum_{n_q} n_q \exp\left[-n_q (E_q - \mu)/\kappa_B T\right]}{\sum_{n_q} \exp\left[-n_q (E_q - \mu)/\kappa_B T\right]} \approx \exp\left(-\frac{E_q - \mu}{\kappa_B T}\right)$$
(1.8.3)

avendo usato $w(1) \ll 1$. Dal potenziale di Landau, si ottiene equazione di stato dei gas perfetti:

$$\Omega_q \approx -\kappa_B T \log \left[1 + \exp \left(-\frac{E_q - \mu}{\kappa_B T} \right) \right] = -\kappa_B T \log \left(1 + \langle n_q \rangle \right) \approx -\kappa_B T \langle n_q \rangle$$

Essendo $\Omega \approx -\kappa_B T \sum_q \langle n_q \rangle \equiv -\kappa_B T N$ e valendo allo stesso tempo $\Omega = -PV$, si ha $PV = \kappa_B NT$.

Ora si ricava N in funzione di T, V, μ . Usando la densità di stati $\rho(\mathcal{E})$ trovata per singola particella in §1.7.2, si ha:

$$\begin{split} N &= \int \rho(\mathcal{E}) \exp\left(-\frac{\mathcal{E} - \mu}{\kappa_B T}\right) \, d\mathcal{E} = \frac{4\pi \sqrt{2} V m^{3/2}}{h^3} e^{\mu/\kappa_B T} \int d\mathcal{E} \, e^{-\mathcal{E}/\kappa_B T} \mathcal{E}^{1/2} \\ &= \frac{V}{\Lambda^3} e^{\mu/\kappa_B T} \end{split} \tag{1.8.4}$$

Usando $PV = N\kappa_B T$, si può scrivere

$$\mu = -\kappa_B T \log \frac{\kappa_B T}{P\Lambda^3}$$

$$\Phi = N\mu = -\kappa_B NT \log \frac{\kappa_B T}{P\Lambda^3}$$
(1.8.5)

Quindi, espandendo il logaritmo del prodotto nelle somme dei logaritmi e nuovamente la legge $PV = N\kappa_B T$ per sostituire la pressione nel primo logaritmo:

$$S = -\left(\frac{\partial \Phi}{\partial T}\right)_{PN} = -N\kappa_B \log \frac{V}{N} + \frac{5}{2}N\kappa_B \log \kappa_B T + N\kappa_B \left(\frac{5}{2} + \frac{3}{2}\log \frac{m}{2\pi\hbar^2}\right) \tag{1.8.6}$$

Da questa trattazione, si ricavano tutti gli altri risultati, come:

$$c_P = T \left(\frac{\partial S}{\partial T} \right)_P = \frac{5}{2} N \kappa_B \; ; \; c_V = T \left(\frac{\partial S}{\partial T} \right)_V = \frac{3}{2} N \kappa_B$$

Dalla formula per μ , la condizione di gas ideale diventa:

$$\frac{\kappa_B T}{P \Lambda^3} \gg 1 \iff \frac{N \Lambda^3}{V} \ll 1$$
 (1.8.7)

Infine, fissando *N* (ensemble canonico):

$$F = -N\kappa_B T \log \frac{V}{\Lambda^3} + \kappa_B T \log N! \tag{1.8.8}$$

mentre fissando $\langle N \rangle$ (ensemble grancanonico):

$$F = \Phi - PV = -N\kappa_B T \log \frac{V}{\Lambda^3} + \kappa_B T (N \log N - N) \tag{1.8.9}$$

Per *N* grandi, queste espressioni coincidono, essendo $\log N! \approx N \log N - N$.

1.9 Distribuzione dell'energia

In assenza di potenziale, vincolo sull'energia è fissato da $\mathscr{E}=\frac{1}{2m}\sum_{i=1}^{3N}p_i^2$; in questo, un elemento dello spazio delle fasi $d\Gamma$ sarà proporzionale ad un elemento di volume, a sua volta proporzionale al raggio: $\rho(\mathscr{E})d\mathscr{E} \propto dV*(\mathscr{E}) \propto (p^*)^{3N}$, con $p^*=\sqrt{2m\mathscr{E}}=\sqrt{\sum_{i=1}^{3N}p_i^2}$.

Ricordando che $w(\mathscr{E}) = \frac{1}{\mathscr{Z}} \rho(\mathscr{E}) e^{-\mathscr{E}/\kappa_B T}$ (nel caso di degenerazione di un livello energetico e $N_\alpha = N, \ \forall \alpha$):

$$\begin{split} dV^* &\propto \frac{\partial V^*}{\partial \mathcal{E}} d\mathcal{E} \propto (p^*)^{3N-1} \frac{\partial p^*}{\partial \mathcal{E}} d\mathcal{E} \propto \mathcal{E}^{3N/2-1} d\mathcal{E} \\ &\Rightarrow w(\mathcal{E}) \propto \mathcal{E}^{3N/2-1} \exp\left(-\frac{\mathcal{E}}{\kappa_B T}\right) \Rightarrow w(\mathcal{E}) = \frac{1}{\Gamma(3N/2)} \left(\frac{\mathcal{E}}{\kappa_B T}\right)^{3N/2-1} \frac{\exp(-\mathcal{E}/\kappa_B T)}{\kappa_B T} \end{split}$$

L'energia più probabile si ottiene imponendo $\partial_{\mathscr{C}} w \stackrel{!}{=} 0$, da cui $\mathscr{C}_{\text{max}} = (3N/2 - 1)\kappa_B T$. D'altra parte, il valore medio è $E = \int d\mathscr{C} w(\mathscr{C}) \mathscr{C} = \frac{3}{2} N \kappa_B T$: i due differiscono per fattore additivo indipendnete da N, quindi per N molto grandi, la distribuzione è piccata attorno al valore medio.

Per la varianza $\sigma_{\mathscr{C}}^2 = \langle \mathscr{C}^2 \rangle - E^2$, si usa $\partial_T^2 F = (E^2 - \langle \mathscr{C}^2 \rangle)/(\kappa_B T^3)$ e $c_V = \partial_T E = 3N\kappa_B/2$, quindi:

$$\sigma_{\mathcal{E}}^2 = -\kappa_B T^3 \frac{\partial^2 F}{\partial T^2} = \kappa_B T^2 c_V = \frac{3}{2} N \kappa_B^2 T^2$$
(1.9.1)

Per la singola particella, allora: $\sigma_{\mathscr{C}} \sim \kappa_B T$.

1.10 Incertezze quantistiche

Valutare se aggiungere

2 Gas quantistici

2.1 Statistiche di Bose-Einstein e Fermi-Dirac

Perché valga indistinguibilità delle particelle, a bassa temperatura si devono modificare gli stati occupabili. Per sistema di due particelle, deve risultare $|\psi(1,2)|^2 = |\psi(2,1)|^2$, cioè la probabilità di trovare le particelle in un punto dello spazio deve essere uguale se si scambiano le due particelle.

Quindi $\psi(1,2) = \pm \psi(2,1)$. Si assume che le due particelle stiano o in a, o in b, si suppone che le funzioni d'onda delle singole particelle siano fattorizzate; le uniche combinazioni che rispettano la condizione $\psi(1,2) = \pm \psi(2,1)$ sono una simmetrica e una antisimmetrica:

$$\psi_S = \psi_a(1)\psi_b(2) + \psi_a(2)\psi_b(1); \ \psi_A = \psi_a(1)\psi_b(2) - \psi_a(2)\psi_b(1)$$
 (2.1.1)

Quando entrambe sono nello stesso stato (a = b), $\psi_A = 0$; questo è il principio di esclusione di Pauli.

Particelle con funzione d'onda antisimmetrica sono dette **fermioni**, mentre con funzione d'onda simmetrica sono dette **bosoni**.

Per principio di esclusione, i fermioni possono soddisfare $n_q=0,1$ solamente, quindi:

$$\Omega_q = -\kappa_B T \log \left[1 + \exp \left(\frac{\mu - E_q}{\kappa_B T} \right) \right]$$
 (2.1.2)

da cui si ricava la statistica di Fermi-Dirac:

$$\langle n_q \rangle = -\frac{\partial \Omega_q}{\partial \mu} = \frac{1}{\exp\left[(E_q - \mu)/\kappa_B T \right] + 1}$$
 (2.1.3)

Per ottenere potenziale di Landau e numero di particelle totali, bastsa sommare su q. Per i bosoni, invece, tutti gli n sono possibili e si deve calcolare la somma di una serie geometrica, *che converge solamente se* $\mu \leq E_0$. In questa trattazione $E_0 = 0$, quindi μ deve essere negativo e

$$\Omega_q = -\kappa_B T \log \sum_{n=0}^{+\infty} \exp \left[\frac{n(\mu - E_q)}{\kappa_B T} \right] = \kappa_B T \log \left[1 - \exp \left(\frac{\mu - E_q}{\kappa_B T} \right) \right]$$
(2.1.4)

da cui la statistica di Bose-Einstein è:

$$\langle n_q \rangle = \frac{1}{\exp\left[(E_q - \mu)/\kappa_B T \right] - 1}$$
 (2.1.5)

2.2 Gas perfetto debolmente degenere

Si studia comportamento quantistico del gas perfetto. Per passare al continuo, è necessario che fluttuazioni statistiche siano maggiori della separazione tra i livelli, quindi

$$\kappa_B T \gg \frac{\hbar^2}{2m} \left(\frac{2\pi}{L}\right)^2$$
(2.2.1)

Se $L\sim 1$ cm e $m\sim 10^{-24}$ g (massa atomo di idrogeno), si ha $T\gg 10^{-13}$ K; per elettroni $T\gg 10^{-10}$ K. Dal punto di vista pratico, queste sono sempre soddisfatte.

In assenza di campi, ogni spin S ha g = 2S+1 orientazioni possibili e si deve aggiungere nel conteggio dei microstati¹. La correzione per misura dello spazio delle fasi è:

$$d\Gamma = \frac{d^3x d^3p}{h^3} \to g \frac{d^3x d^3p}{h^3}$$

Si sviluppano in serie le espressioni dei potenziali di Landau per ciascuna statistica (eq. 2.1.2, 2.1.4) (segno superiore per FD, inferiore per BE):

$$\begin{split} \Omega &= \mp \kappa_B T \sum_q \log \left[1 \pm \exp \left(-\frac{E_q - \mu}{\kappa_B T} \right) \right] \\ &= -\kappa_B T \sum_q \exp \left(-\frac{E_q - \mu}{\kappa_B T} \right) \pm \frac{\kappa_B T}{2} \sum_q \exp \left(-2 \frac{E_q - \mu}{\kappa_B T} \right) \\ &= \Omega_{\text{class}} \pm \frac{\kappa_B T}{2} \sum_q \exp \left(-2 \frac{E_q - \mu}{\kappa_B T} \right) \end{split}$$

Si esegue il passaggio al continuo e si sostituisce $\mathscr{E} \to 2\mathscr{E}$, usando $\rho(\mathscr{E}) \propto \sqrt{\mathscr{E}}$; inoltre si riscrive il potenziale classico:

$$\sum_{q} \exp\left(-\frac{2E_{q}}{\kappa_{B}T}\right) \to \int_{0}^{+\infty} \rho(\mathscr{E}) \exp\left(-\frac{2\mathscr{E}}{\kappa_{B}T}\right) d\mathscr{E} \to \left(\frac{1}{2}\right)^{3/2} \int_{0}^{\infty} \rho(\mathscr{E}) \exp\left(-\frac{\mathscr{E}}{\kappa_{B}T}\right) d\mathscr{E}$$

$$\Omega_{\text{class}} \to -\kappa_{B}T \exp\left(\frac{\mu}{\kappa_{B}T}\right) \int_{0}^{+\infty} \rho(\mathscr{E}) \exp\left(-\frac{\mathscr{E}}{\kappa_{B}T}\right) d\mathscr{E}$$

Da questi passaggi, si ottiene:

$$\Omega \simeq \Omega_{\text{class}} \left(1 \mp \frac{e^{\mu/\kappa_B T}}{2^{5/2}} \right)$$
(2.2.2)

Usando $\Omega = -PV$ e $\Omega_{\text{class}} = -N\kappa_B T$:

$$PV \simeq N\kappa_B T \left(1 \mp \frac{e^{\mu/\kappa_B T}}{2^{5/2}} \right) \tag{2.2.3}$$

La statistica agisce come sorta di forza sulle particelle; per capire se attrattiva o repulsiva, si deve passare da Ω a F^2 , in cui sono fissati T, V, N. Definendo $\delta\Omega = \Omega - \Omega_{\text{class}}$ e $\delta F = F - F_{\text{class}}$, si ha $(\delta\Omega)_{T,V,U} = (\delta F)_{T,V,N}$.

 $\delta F = F - F_{\rm class}$, si ha $(\delta \Omega)_{T,V,\mu} = (\delta F)_{T,V,N}$. Per eliminare μ in $\delta \Omega = \pm N \kappa_B T e^{\mu/\kappa_B T}/2^{5/2}$, si usa espressione classica $\mu_{\rm class} = -\kappa_B T \log V/(N\Lambda^3)$, da cui:

$$\begin{split} F &= F_{\rm class} \pm \frac{N^2 \kappa_B T \Lambda^3}{2^{5/2} V} \\ &\Rightarrow P = -\frac{\partial F}{\partial V} = \frac{N \kappa_B T}{V} \left(1 \pm \frac{N \Lambda^3}{2^{5/2} V} \right) \end{split} \tag{2.2.4}$$

Quindi la statistica di Fermi corrisponde ad una forza repulsiva, mentre quella di Bose a una attrattiva.

¹Aumentando il numero di microstati di g, l'entropia subisce un aumento per un termine $\kappa_B \log g$.

²Usando Ω , si è trovato risultato in cui P/N ha N variabile.

2.3 Gas di Fermi

Si considera gas di fermioni nel limite $T \to 0$, in cui le particelle occuperanno i livelli energetici più bassi consetiti dal principio di esclusione, inziando dal ground state a salire, fino a esaurimento particelle.

Allora lo spazio delle fasi di singola particella¹ avrà tutte le celle piene dall'origine fino a un'energia $E_f = p_f^2/2m$, con E_f energia di Fermi e p_f impulso di Fermi, relativa all'energia del più alto stato quantistico occupabile da una particella²; lo spazio delle fasi a molti corpi, invece, consiste in un solo punto.

Nel limite $T \to 0$, il grafico (E_q, n_q) (numero di occupazione in funzione dell'energia) è un gradino con $n_q = 1$ per $0 \le E_q \le \mu_0$ e 0 altrimenti, con $\mu(T = 0) \equiv \mu_0 \equiv E_f$.

Quest'ultimo è fissato dal numero totale di particelle dato da:

$$N = \lim_{T \to 0} \sum_{q} \frac{1}{\exp\left[(E_q - \mu)/\kappa_B T\right] + 1} \to \lim_{T \to 0} \int_{0}^{+\infty} \frac{\rho(\mathcal{E})}{\exp\left[(\mathcal{E} - \mu)/\kappa_B T\right] + 1}$$
$$= \frac{gV}{h^3} \frac{4}{3} \pi p_f^3$$
(2.3.1)

con g = 2S + 1 degenerazione degli stati quantistici dovuta allo spin. L'ultima uguaglianza è verificata perché, in questo caso, N è # di celle in una sfera di raggio p_f^3 nello spazio delle fasi di singola particella.

Da questo, $p_f = h[3N/(4\pi g)]^{1/3}$, quindi il valore dell'energia di Fermi è:

$$E_f = \frac{h^2}{2m} \left(\frac{N}{V}\right)^{2/3} \left(\frac{3}{4\pi g}\right)^{2/3} \tag{2.3.2}$$

Da questa si ottiene **temperatura di Fermi** $\kappa_B T_f = E_f$.

La sfera nello spazio di singola particella è detta **sfera di Fermi**, o **mare di Fermi**, mentre il guscio è detto **superficie di Fermi**.

Essendo $\rho(\mathscr{E}) \propto \mathscr{E}^{1/2}$, l'energia media per particella è:

$$\langle \mathcal{E} \rangle = \frac{\int\limits_{0}^{E_{f}} \mathcal{E} \rho(\mathcal{E}) d\mathcal{E}}{\int\limits_{0}^{E_{f}} \mathcal{E} \rho(\mathcal{E}) d\mathcal{E}} = \frac{\int\limits_{0}^{E_{f}} \mathcal{E}^{3/2} d\mathcal{E}}{\int\limits_{0}^{E_{f}} \rho(\mathcal{E}) d\mathcal{E}} = \frac{3}{5} E_{f}$$
(2.3.3)

Quindi l'energia totale è $E = \frac{3}{5}NE_f$.

Entropia del sistema è nulla (una sola possibile configurazione nello spazio delle fasi del gas) e l'energia complessiva del sistema coincide con l'energia interna (sempre perché il sistema si può trovare in un solo stato); allora la pressione è:

$$P = -\left(\frac{\partial E}{\partial V}\right)_{N} = \frac{2}{3}\frac{E}{V}$$

Pressione finita a temperatura nulla è conseguenza della forza repulsiva tra i fermioni.

¹Per spazio delle fasi di singola particella, si fa riferimento all'insieme di tutti i possibili stati che una particella può occupare; in avanti, si menzionerà lo spazio delle fasi complessivo (quello di tutto il gas), il quale rappresenterà tutti gli stati occupabili dall'intero sistema. Essendo le particelle indistinguibili, quest'ultimo deve collassare a un punto perché i fermioni si possono distribuire solo in stati di singola particella ad energia via via crescente.

²In quanto tale, dipenderà dal numero totale di particelle e dal volume in cui è confinato il gas.

2.3.1 Comportamento del gas per T > 0

Si considera cosa succede al gas quando la temperatura sale di poco sopra 0, quindi nel limite $T \ll T_f^{-1}$. Questo modello si userà per studiare comportamento degli elettroni nei metalli, quindi si stima T_f usando massa e spin dell'elettrone e densità di elettroni di conduzione nel rame, ottenendo $T_f \approx 8.5 \times 10^4$ K; questa risulta due ordini di grandezza sopra la temperatura di fusione del rame stesso, quindi il gas di elettroni è sempre in limite di basse temperature.

Con aumento di T, le particelle sulla superficie di Fermi (nei livelli energetici più esterni) possono eccitarsi con energia $\sim \kappa_B T$, mentre quelli nel mare no perché i livelli successivi sono occupati. Numero di elettroni eccitati $\sim T/T_f$ per il totale.

Il grafico di n(e) è un gradino consumato: l'intervallo attorno a E_f , di larghezza $\sim \kappa_B T$.

Questo modello per elettroni in metallo con background uniforme postiivamente carico², quindi finché $\lambda \gg a$, con λ lunghezza d'onda elettroni e a dimensione caratteristica del reticolo del metallo.

La condizione è verificata per stati a bassi impulsi ($p = \hbar q$), per i quali si può assumere che $E \propto q^2$ (l'energia continua ad obbedire la legge di dispersione), mentre avrà una forma diversa fuori da questo regime. In realtà, anche in questo caso, è diversa: $E = \frac{\hbar^2 q^2}{2m^*}$, con m^* massa efficace dovuta all'interazione degli elettroni con gli ioni.

2.3.2 Proprietà termiche del gas di Fermi

Indicando con $\overline{n}(\mathscr{E})$ la statistica di Fermi-Dirac, *si sa* che per gas perfetti con dispersione quadratica $\Omega = -\frac{2}{3}E$, quindi:

$$\Omega = -\frac{2}{3} \int\limits_{0}^{+\infty} \rho(\mathcal{E}) \overline{n}(\mathcal{E}) \; d\mathcal{E} = -\frac{2}{3} \frac{4\pi V g \sqrt{2} m^{2/3}}{h^3} \int\limits_{0}^{+\infty} \frac{\mathcal{E}^{3/2}}{\exp\left[(\mathcal{E} - \mu)/\kappa_B T\right] + 1} d\mathcal{E}$$

Si deve, quindi, risolvere integrale della forma $I=\int_0^{+\infty}\frac{f(\mathscr{E})d\mathscr{E}}{\exp[(\mathscr{E}-\mu)/\kappa_BT]+1}$. Visto che $\overline{n}(\mathscr{E})$ è una funzione gradino per $T\ll T_f$, il contributo maggiore nell'integrale sarà da 0 a E_f in cui $n(\mathscr{E})=1$. L'integrale su questi estremi si chiama I_0 . La correzione su I è δI in modo che $I=I_0+\delta I$; essendo $I=I_0$ per T=0, il comportamento termico è incluso in δI .

Per ricavare δI , si calcola differenza tra integrale sul gradino e integrale esatto: $\delta I = I - I_0$. Si introduce una sovrastima prima di E_f e una sottostima dopo per avere gradino perfetto; questi due si compensano a vicenda e termine lineare è nullo.

Per correzioni successive, si prende $z = (\mathcal{E} - \mu)/\kappa_B T$. Si definiscono $g_0(z), g_1(z)$ non nulle attorno z = 0 e si esprime la correzione con³

$$\delta I = \int\limits_{-\infty}^{+\infty} d\mathcal{E} \ f(\mathcal{E}) \left[g_1(z) - g_0(z) \right] = \int\limits_{-\infty}^{+\infty} \kappa_B T f(\mu + \kappa_B T z) \left[g_1(z) - g_0(z) \right] \ dz$$

 $^{^{1}}$ La scala di grandezza delle temperature è data solo da T_{f} in questo caso, quindi si usa questa come iferimento.

²Approssimazione in cui gli ioni si immaginano come una carica positiva uniformemente distribuita invece che come punti discreti facenti parte di un reticolo, per questo l'approssimazione è valida nella condizione riportata.

³Vedere perché estremo inferiore è $-\infty$.

Essendo $g_0, g_1 \neq 0$ solo intorno a z = 0, si sviluppa attorno a z = 0:

$$f(\mu + \kappa_B T z) \simeq f(\mu) + \kappa_B T z \left(\frac{\partial f}{\partial \mathcal{E}}\right)_{\mathcal{E} = \mu} = f(\mu) + \kappa_B T z f'(\mu)$$

$$\Rightarrow \delta I = \kappa_B T f(\mu) \int_{-\infty}^{+\infty} dz \left[g_1(z) - g_0(z)\right] + \kappa_B^2 T^2 f'(\mu) \int_{-\infty}^{+\infty} dz \left[g_1(z) - g_0(z)\right] z$$

Essendo $g_1(z)$ la parte di \overline{n} per $z \ge 0$ e $g_0(z) = 1 - \overline{n}$, per $z \le 0$:

$$g_1(z) = \frac{1}{e^z + 1}$$
; $g_0(z) = 1 - \frac{1}{e^z + 1} = \frac{1}{e^{-z} + 1}$

Allora il primo termine in δI è nullo, mentre il secondo è

$$\int_{0}^{+\infty} dz \ zg_1(z) - \int_{-\infty}^{0} dz \ zg_0(z) = 2 \int_{0}^{+\infty} \frac{zdz}{e^z + 1} = \frac{\pi^2}{6}$$

Complessivo di correzione quadratica in *T*, il potenziale di Landau è:

$$\Omega = -\frac{2}{3} \frac{4\pi\sqrt{2}Vgm^{3/2}}{h^3} \left[\frac{2}{5}\mu^{5/2} + \frac{\pi^2}{4}\sqrt{\mu}(\kappa_B T)^2 \right]$$
 (2.3.4)

quindi

$$N = -\frac{\partial \Omega}{\partial \mu} = N_0 \left[1 + \frac{\pi^2}{8} \left(\frac{\kappa_B T}{\mu} \right)^2 \right]$$
 (2.3.5)

Ora si vuole capire come si distribuiscono gli N elettroni nei livelli al variare della temperatura. Per questo si considerano sistemi $\mathcal{S}, \mathcal{S}'$ a $T \neq 0$ e $N_0 \neq N_0'$, $\mu \neq \mu'$. All'aumentare di T, N, N' seguono la legge sopra. Se N rimanesse invariato, μ dovrebbe cambiare di conseguenza, quindi basta imporre $N' = N_0(\mu)$.

Dalla stessa legge per N, si vede che $N_0 \propto \mu^{3/2}$ (?), quindi si può sostituire rapporto N_0'/N_0 in favore di μ'/μ :

$$\left[1 + \frac{\pi^2}{8} \left(\frac{\kappa_B T}{\mu'}\right)^2\right] \left(\frac{\mu'}{\mu}\right)^{3/2} = 1$$

Si risolve per μ' , sostituendo μ con μ' al denominatore (che porta errore oltre secondo ordine) e si sviluppa in serie:

$$\mu' = \frac{\mu}{\left[1 + \pi^2 / 8(\kappa_B T/\mu')^2\right]^{2/3}} \simeq \mu \left[1 - \frac{\pi^2}{12} \left(\frac{\kappa_B T}{\mu}\right)^2\right]$$

Sostituendo in Ω , si possono trovare entropia e calore specifico:

$$\begin{split} S &= -\frac{\partial \Omega}{\partial T} = \frac{4\pi \sqrt{2} V g m^{3/2}}{h^3} \frac{\pi^2}{3} \mu^{1/2} \kappa_B^2 T \simeq \frac{\pi^2}{2} N \kappa_B \frac{T}{T_f} \\ c_V &= T \left(\frac{\partial S}{\partial T} \right)_V \simeq \frac{\pi^2}{2} N \kappa_B \frac{T}{T_f} \end{split}$$

Stima per calore specifico in accordo con dati sperimentali, ma stime migliori si ottengono per $m \to m^*$. La massa effettiva si può misurare tramite campi magnetici ed è legata a frequenza di ciclotrone: $\omega_c = e|\mathbf{H}|/(m^*c)$.

2.3.3 Paramagnetismo di Pauli

Immergendo sistema in campo magnetico, la degenerazione dovuta allo spin è rotta e si ha $\mathcal{E}_{\pm} = \frac{p^2}{2m} \pm \mu B$, con μ momento magnetico della particella. Questo termine aggiuntivo trasla energia e va considerato in calcolo del numreo di occupazione e densità di stati.

Se $T \sim 0$, B = 0, densità di popolazioni con spin up e spin down è uguale per entrambe e pari a $\rho(\mathcal{E})/2$ e lo spazio delle fasi è riempito dall'origine a E_f .

Quando $B \neq 0$, questo interagisce con momento magnetico intrinseco delle particelle e l'energia per gli stati dei due tipi di spin cambia secondo energia di Zeeman:

$$E_{\uparrow} = E - \mu B$$
; $E_{\downarrow} = E + \mu B$

quindi stati ↑ avranno energia minore e quindi saranno più popolati, nonostante l'energia di Fermi rimanga invariata.

La differenza di popolazione ΔN si può approssimare con $\rho(E_f)/2E_{\downarrow} - \rho(E_f)/2E$ $\uparrow = \Delta E \rho(E_f)/2$, assumendo $\rho(\mathscr{E})$ costante. In questo modo:

$$\Delta N = 2\mu B \frac{\rho(E_f)}{2} = 2\mu_B \frac{4\pi V m^{3/2}}{\sqrt{2}h^3} \sqrt{E_f} = \frac{3}{2} N \frac{\mu B}{E_f}$$

con N calcolato sulla densità per B = 0, T = 0:

$$N = \int_{0}^{E_f} \rho(\mathcal{E}) \ d\mathcal{E} = \int_{0}^{E_f} \frac{4\pi\sqrt{2}Vm^{3/2}}{h^3} \mathcal{E}^{1/2} \ d\mathcal{E} = \frac{4\pi\sqrt{2}Vm^{3/2}}{h^3} \frac{2}{3} E_f^{3/2}$$

Questa forma di paramagnetismo, con magnetizzazione

$$M = \mu \Delta N = \frac{3N}{2} \frac{\mu^2}{E_f} B$$
 (2.3.6)

è detta paramagnetismo di Pauli.

2.3.4 Emissione termoionica

Emissione di elettroni indotta termicamente nei conduttori. Si fanno le seguenti ipotesi:

- il metallo è una buca di potenziale alta *W*;
- il rate di emissione è basso ⇒ numero di elettroni nel metallo è ~ costante;
- è presente campo elettrico esterno che rimuove elettroni emessi (altrimenti il rate sarebbe nullo);
- è il compleanno di Stefano (tanti auguri).

Affinché vi sia effettiva emissione, si impone che in direzione z (arbitraria) valga $p_z > \sqrt{2mW}$. Se dt tempo di emissione, si deve avere $dz = v_z dt = p_z/mdt$.

Il numero di elettroni emessi sarà proporzionale all'integrale del numero di occupazione sulla parte di spazio delle fasi in cui si può verificare l'emissione; dividendo per dt, si ottiene il rate.

Definendo rate per unità di superficie, si tagli ala'integrale su dS = dxdy:

$$dR = \frac{g\overline{n}d\Gamma}{dSdt} = \frac{2\overline{n}}{h^3}\frac{dxdyv_zdtd^3p}{dSdt} = \frac{2\overline{n}}{h^3}\frac{p_z}{m}d^3p$$

quindi:

$$\begin{split} R &= \frac{2}{h^3} \int\limits_{\sqrt{2mW}}^{+\infty} \frac{p_z dp_z}{m} \iint\limits_{\mathbb{R}^2} \frac{dp_x dp_y}{\exp\left[(p^2/2m - \mu)/\kappa_B T\right] + 1} \\ &= \frac{2}{h^3} \int\limits_{\sqrt{2mW}}^{+\infty} \frac{p_z dp_z}{m} \int\limits_{0}^{+\infty} \frac{2\pi p' dp'}{\exp\left[(p'^2 + p_z^2)/2m - \mu\right)/\kappa_B T\right] + 1} \\ &= \frac{4\pi \kappa_B T}{h^3} \int\limits_{\sqrt{2mW}}^{+\infty} p_z \log\left[1 + \exp\left(\frac{\mu - p_z^2/2m}{\kappa_B T}\right)\right] dp_z = \frac{4\pi m \kappa_B T}{h^3} \int\limits_{W}^{+\infty} d\mathcal{E}_z \log\left[1 + \exp\left(\frac{\mu - \mathcal{E}_z}{\kappa_B T}\right)\right] dp_z \end{split}$$

Infine, bisogna imporre che $W-\mu\gg\kappa_BT^1$, per cui $\exp\left(\frac{\mu-\mathscr{E}_z}{\kappa_BT}\right)\ll 1$; allora sviluppando:

$$R \simeq \frac{4\pi m \kappa_B T}{h^3} \int_{W}^{+\infty} d\mathcal{E}_z \exp\left(\frac{\mu - \mathcal{E}_z}{\kappa_B T}\right) = \frac{4\pi m \kappa_B^2 T^2}{h^3} \exp\left(\frac{\mu - W}{\kappa_B T}\right)$$
(2.3.7)

Dal rate, si ottiene la densità di corrente:

$$J = eR = \frac{4\pi e m_e \kappa_B^2 T^2}{h^3} \exp\left(\frac{\mu - W}{\kappa_B T}\right)$$
 (2.3.8)

2.3.5 Effetto fotoelettrico

Gas di elettroni nel metallo colpito da fotoni di energia hv. La condizione in direzione di fuga diventa: $\frac{p_z^2}{2m} + hv > W$, quindi:

$$R = \frac{4\pi m \kappa_B T}{h^3} \int\limits_{W_z}^{+\infty} d\mathcal{E}_z \log \left[1 + \exp \left(\frac{\mu - \mathcal{E}_z}{\kappa_B T} \right) \right]$$

Non si può sviluppare in serie come prima perché potrebbe essere $hv \sim W$. Si prende $x = \frac{\mathscr{C}_z - W + hv}{\kappa_B T}$ e $hv_0 = W - \mu \approx W - E_f = \phi$:

$$R = \frac{4\pi m \kappa_B^2 T^2}{h^3} \int\limits_0^{+\infty} dx \ \log \left[1 + \exp \left(\frac{h(v - v_0)}{\kappa_B T} - x \right) \right]$$

Integrali del genere hanno soluzioni della forma

$$\int_{0}^{+\infty} dx \log \left(1 + e^{\delta - x}\right) = f_2(e^{\delta})$$

Per trovare espressione di f_2 si considerano i casi limite, rispettivamente radiazione molto energetica e poco energetica:

$$h(v - v_0) \gg \kappa_B T \Rightarrow e^{\delta} \gg 1 \Rightarrow f_2(e^{\delta}) \simeq \frac{\delta^2}{2}$$

 $v < v_0 \Rightarrow h|v - v_0| \gg \kappa_B T \Rightarrow e^{\delta} \ll 1 \Rightarrow f_2(e^{\delta}) \simeq e^{\delta}$

¹Si richiede che il potenziale di estrazione sia molto maggiore del potenziale chimico, altrimenti elettroni fuggirebbero spontaneamente.

Nel primo caso, l'espressione della corrente è

$$J \simeq \frac{me}{\hbar} (v - v_0)^2 \tag{2.3.9}$$

cioè la corrente non ha dipendenza dalla temperatura perché l'emissione degli elettroni è prevalentemente dovuta all'incisione di fotoni ad alta energia.

Nel secondo caso, invece:

$$J \simeq \frac{4\pi me \kappa_B^2 T^2}{h^3} \exp\left(\frac{hv - \phi}{\kappa_B T}\right) \tag{2.3.10}$$

che è una correzione alla corrente termoionica.

2.4 Gas di Bose

2.4.1 Condensato di Bose-Einstein

Bosoni descritti dalla statistica

$$\overline{n}(\mathcal{E}) = \frac{1}{\exp\left[(\mathcal{E} - \mu)/\kappa_B T\right] - 1}$$

e deve valere μ < 0. Nel limite $\mu \to 0$:

- a *T* costante, esiste massimo numero di particelle consentito, sopra cui si dovrebbe avere μ > 0;
- a N fissato, esiste limite inferiore per T, imposto sempre dal segno di μ .

Ci si aspetterebbe, però, di poter osservare un gas a qualsi temperatura con qualsiasi numero di particelle. Si cerca il motivo di questo risultato.

Si calcola *N* a *T* costante passando da somma a integrale:

$$N = \sum_{q} \overline{n}_q = \frac{4\pi V g \sqrt{2} m^{3/2}}{h^3} \int\limits_0^{+\infty} \frac{\mathcal{E}^{1/2} d\mathcal{E}}{\exp\left[(\mathcal{E} - \mu)/\kappa_B T\right] - 1}$$

Si manda $\mu \to 0$ e si prende $\mathscr{E} = \kappa_B T x$, quindi:

$$N = \frac{4\pi V g \sqrt{2} m^{3/2}}{h^3} (\kappa_B T)^{3/2} \int_0^{+\infty} \frac{\sqrt{x} dx}{e^x - 1}$$

L'integrale ha soluzione generale: $\int_0^{+\infty} \frac{x^n dx}{e^x-1} = \Gamma(n+1)\zeta(n+1)$; il risultato corrisponderebbe alle aspettative se l'integrale divergesse, mentre $\int_0^{+\infty} \frac{\sqrt{x}dx}{e^x-1} = 2.31$. Si definiscono, quindi, una densità critica e una temperatura critica, rispettivamente, sopra cui e sotto cui sorgono problemi:

$$\left(\frac{N}{V}\right)_{c} = \frac{2.612}{\Lambda^{3}}$$

$$T_{c} = \frac{1}{2.31} \left(\frac{N}{V}\right)_{c}^{2/3} \frac{h^{2}}{(4\pi\sqrt{2})^{2/3}m\kappa_{B}}$$
(2.4.1)

L'errore è dovuto nel passaggio al continuo: per quanto la condizione $\kappa_B T \gg \frac{1}{2m} (h/L)^2 \Rightarrow N^{2/3} \gg 2.31 \frac{(4\pi\sqrt{2})^{2/3}}{2} \approx 7.8$ sia solitamente verificata, si ha, contemporaneamente al passaggio al continuo, anche $\lim_{\mathcal{E}\to 0} \rho(\mathcal{E}) = 0$, quindi nei conti precedendi, si sono trascurate le particelle nello stato fondamentale.

Queste, però, tendono a popolare sempre più lo stato fondamentale più si sale sopra la densità critica a T fissato, o si scende sotto temperatura critica a N fissato.

Quello che si verifica è una **transizione di fase** in uno stato conosciuto come **condensato di Bose-Einstein**, con numero di particelle nello stato fondamentale dato da:

$$\bar{n}_0 = \frac{1}{\exp(-\mu/\kappa_B T) - 1}$$
(2.4.2)

che coerentemente converge per $\mu \to 0$.

Valore di N calcolato prima, in realtà, è $N^* = N - N_0 = N(T/T_c)^{3/2}$, da cui:

$$N_0 = N \left[1 - \left(\frac{T}{T_c} \right)^{3/2} \right] \tag{2.4.3}$$

OSSERVAZIONE 2.1. In due dimensioni non vi può essere condensazione perché la densità di stati è costante in energia:

$$d\mathcal{E} = \frac{pdp}{m} \Rightarrow d^2p = 2\pi pdp = 2\pi md\mathcal{E}$$

Per $\mu \to 0$ e per $T < T_c$, ricordando che le particelle nel condensato hanno energia nulla, l'energia media è:

$$E = \int_{0}^{+\infty} \frac{\rho(\mathscr{E})d\mathscr{E}}{\exp(\mathscr{E}/\kappa_B T) - 1} = \frac{4\pi V g \sqrt{2} m^{3/2}}{h^3} (\kappa_B T)^{3/2} \kappa_B T \int_{0}^{+\infty} \frac{x^{3/2} dx}{e^x - 1} \approx 0.77 \cdot N \kappa_B T \left(\frac{T}{T_c}\right)^{3/2} \propto T^{5/2}$$
(2.4.4)

da cui la capacità termica è:

$$c_V \approx 1.9 \cdot N \kappa_B \left(\frac{T}{T_c}\right)^{3/2} = 1.9 \cdot N^* \kappa_B \propto T^{3/2}$$
 (2.4.5)

Per T grande, però, c_V deve tenere a $3N\kappa_B/2$; l'andamento trovato sopra cambia bruscamente per $T \sim T_c$.

Infine, la pressione si ottiene a partire dalla formula valida per tutti i gas perfetti a dispersione quadratica:

$$P = \frac{2}{3} \frac{E}{V} \approx 0.513 \cdot \frac{N \kappa_B T}{V} \left(\frac{T}{T_c}\right)^{3/2}$$
 (2.4.6)

Essendo calcolata a $\mu(P,T)=0$, questa identifica la curva di coesistenza tra stato gassoso non degenere e del condensato di Bose-Einstein.

2.4.2 Oscillatori in una scatola

L'Hamiltoniano di singolo oscillatore è:

$$H = \frac{\mathbf{p}^2}{2m} + \frac{m\omega^2 \mathbf{x}^2}{2} \tag{2.4.7}$$

L'energia media classica è data dal principio di equipaartizione ed è $E=3N\kappa_BT$, mentre l'energia quantizzata per singola particella è $E_n=(n+1/2)\hbar\omega$.

La funzione di partizione di singola particella, quindi, è:

$$Z_1 = \sum_{n=0}^{+\infty} \exp\left[-\left(n + \frac{1}{2}\right) \frac{\hbar\omega}{\kappa_B T}\right] = \frac{1}{2\sinh(\hbar\omega/\kappa_B T)}$$
(2.4.8)

Da questa, si ottiene energia media per oscillatore:

$$E = \frac{1}{2}\hbar\omega + \frac{\hbar\omega}{\exp(\hbar t a\omega/\kappa_B T) - 1} = \left(\overline{n} + \frac{1}{2}\right)\hbar\omega \tag{2.4.9}$$

Dall'ultima, si ha che gli oscillatori seguono la statistica di Bose-Einstein con $\mu=0$:

$$\overline{n}(\omega) = \frac{1}{\exp(\hbar\omega/\kappa_B T) - 1} \tag{2.4.10}$$

2.4.3 Corpo nero

Si usa gas di oscillatori come modello per campo elettromagnetico: si vede campo come un oscillatore con diversi livelli popolati secondo la statistica \overline{n} , o come unico livello popolato da \overline{n} fotoni.

Essendo $\mu = 0$, non esiste legge di conservazione per numero totale di quasiparticelle: se ne possono creare e distruggere a piacimento.

Inserendo gas in scsatola con pareti perfettamente assorbenti (quindi con condizione di annullamento ai bordi), la legge di dispersione è $\omega = ck$, quindi $\mathscr{E} = cp$.

Allora elemento di spazio delle fasi è:

$$d\Gamma = 2V \frac{4\pi p^2 dp}{h^3} = V \frac{\omega^2 d\omega}{\pi^2 c^3} \rho(\omega) d\omega$$
 (2.4.11)

dove il fattore 2 è perché esistono due modi possibili di propagazione, linearmente indipendenti fra loro, per il campo (circolare destra e circolare sinsitra), associata allo spin del fotone.

La densità di energia per unità di volume è ottenuta moltiplicando energia del singolo fotone per numero di occupazione e densità (a meno di V), trascurando energia $\hbar\omega/2$ che non è misurabile e farebbe divergere energia totale. Quindi:

$$u(\omega)d\omega = \frac{\rho(\omega)}{V}\overline{n}(\omega)\hbar\omega \ d\omega = \frac{\hbar\omega^3}{\exp(\hbar\omega/\kappa_BT) - 1}\frac{d\omega}{\pi^2c^3} \eqno(2.4.12)$$

Questa è la legge di Planck per radiazione di corpo nero.

Integrando sulle frequenze, si ha energia totale del corpo nero in funzione della temperatura:

$$E = \int_{0}^{+\infty} u(\omega)d\omega = \sigma T^{4}$$
 (2.4.13)

con σ costante di Stefan-Boltzmann. Il calore specifico è

$$c_V = \frac{\partial E}{\partial T} \propto T^3 \tag{2.4.14}$$

e diverge con T perché N non è fissato e ω non ha limite superiore, quindi si possono aggiungere quasiparticelle con energia grande a piacere. Il limite classico per alte T non si osserva perché gli oscillatori trattati sono infiniti.