Task Discussion Return of the Jedi

Daniel Graf

ETH Zürich

December 16, 2015

Problem Statement

First hurdle: Cut through the long story and find the algorithmic problem.

- Given: a complete, weighted, undirected graph G = (V, E) on n vertices
- Wanted: the cost of the second cheapest spanning tree (the second cheapest spanning tree might not be unique and/or might have the same cost as the MST)
- Subtasks:
 - 40 points: $n \le 100$
 - 40 points: $n \le 1000$ and one (specific) MST is a star
 - **20** points: $n \le 1000$

First Algorithm (40 points)

Lemma

The second cheapest spanning tree differs from a cheapest spanning tree by at least one edge.

This immediately gives us the following algorithm

- Take any minimal spanning tree *T*.
- For every edge e of T: compute the MST for $G' = (V, E \setminus \{e\})$ and minimize.

Runtime: $\mathcal{O}(n \cdot (n^2 \log n)) \to 40$ points

Second Algorithm (80 points)

Lemma

There is a second cheapest spanning tree that differs from a cheapest spanning tree by exactly one edge. (Proof follows later)

Look at any MST T. There are two ways of using this lemma:

■ If we remove the right edge e ∈ T, adding the cheapest edge that reconnects the graph gives the answer.

ightarrow we can solve the star testcase in $\mathcal{O}(\mathit{n}^2)$ with this.

Second Algorithm (80 points)

Lemma

There is a second cheapest spanning tree that differs from a cheapest spanning tree by exactly one edge. (Proof follows later)

Look at any MST T. There are two ways of using this lemma:

- If we remove the right edge $e \in T$, If we add the right edge $e \notin T$, adding the cheapest edge that reconnects the graph gives the answer.
 - removing the most expensive edge on the forming cycle gives the answer.

Third Algorithm (100 points)

Problem: How to find the most expensive edge on the forming cycle quickly? **Solution:** Precompute it for all (v, w)-paths in the MST T in time $\mathcal{O}(n^2)$. Then we can answer for each edge (v, w) in $\mathcal{O}(1)$.

- First, find the MST *T*.
- For every vertex $v \in V$ run a DFS over T starting at v. We find the most expensive edge on the path from v to u for all $u \in V$.
- Then, try adding all edges $e = (v, w) \notin T$ and look up the cost of the most expensive edge between v and w in T in time $\mathcal{O}(1)$ per edge.

Implementation Details: If you use BGL's weight map on an adjacency_list to lookup the edge costs you get an overhead which causes a timelimit. Use adjacency_matrix or your own copy (e.g. in a vector<vector<int> >) for fast constant time access. (also applies to the 80 point subtask).

Single Swap Lemma

Lemma

There is a second cheapest spanning tree that differs from a cheapest spanning tree by exactly one edge.

Proof (by picture).

Single Swap Lemma

Lemma

There is a second cheapest spanning tree that differs from a cheapest spanning tree by exactly one edge.

Proof (in words).

For the sake of reaching a contradiction, let T be a MST and T' a second cheapest spanning tree such that $|T \cup T'| - |T \cap T'| > 2$.

Let (v, w) be the cheapest edge that is in T but not in T'.

We now run Kruskal's algorithm in parallel on both E and $E' = E \setminus \{(u, v)\}$ (with ties broken the same way when sorting the edges).

Let (x, y) be the first edge that is only added in one of the two runs.

We must have $c((v, w)) \le c((x, y))$ and $(x, y) \in T'$ and adding (x, y) to T creates a cycle that contains (v, w).

After adding (x, y) in the run on E', the connected components created up to this point are the same as on E and so Kruskal will also choose the same edges afterwards. In the end, T and T' only differ by (v, w) and (x, y) – a contradiction.