Assignment #1

ABHINAV KUMAR

BHASKAR GUPTA

180050003

180050022

1	Assignment #1 Date: Youvi
Q.1	$ \mathcal{X}_{i}-\mathcal{U} \leqslant \sqrt{\sum_{j=1}^{n} (\mathcal{X}_{j}-\mathcal{U})^{2}} \lesssim \sqrt{\sigma^{2}(N-1)}$
	$= \sigma \sqrt{N-1}$
	> (&:-M) < 0 \N-1
	For large n,
	Probabillity of $SK = \{x_i : x_i - M > \sigma \sqrt{n-1}\}$ is $\frac{ SK }{N} \leqslant \frac{1}{n-1}$ according to Chebychev inequality
	For n→∞
	$\frac{18\kappa}{n} \rightarrow 0$
	While , from above inequality, 15x1 -0 since 4
Total S	€ € [1, m] (N; - M) ≤ 5 [m-1)

```
Chebycher- Cantelli is inequality - NOTE for 0=0=1=0, H=0
    Sx = {x: | xi - x > Ko} equality holds
     \frac{|SK|}{N} < \frac{1}{1+K^2} \qquad \qquad \frac{|S_1|}{N} \leq \frac{1}{2}
  But S_0 = \langle x_i \mid x_i + \rangle T
\frac{|S_0|}{N} > \frac{1}{2}
Hence T cannot lie in S_K
Similarly SK' = \ni | \ni - \ni \sir \Ko\
   \frac{|S_{K'}|}{N} < \frac{1}{1+K^2} \qquad \text{for } K=1, \quad \frac{|S_{1'}|}{N} < \frac{1}{2}
  S_{L} = \langle Xi \mid Xi \leq T \rangle \quad |S_{U}| \geq 1 \quad [Median \ def.]
\Rightarrow \quad T \geq X - \sigma \quad [Hence \ T \ can't \ lie \ in \ Sk']
\Rightarrow \quad X - \sigma \leq T \leq X + \sigma \quad \Rightarrow \quad |X - T| \leq \sigma
```

0.3	
	P(CRIR) = P(RICR) × P(CR)
	P(RICR)P(CR)+ P(RICB) P(CB)
-	where P(CR) is probabillity of auto being Red
	PCB) " " Blue
ton a few	P(R) is probabillity of XYZ seeing ned object as re
	P(B) " "
	$P(C_R R) = \frac{99}{100} \times \frac{1}{100} = \frac{3}{3} = 33\%$
	Main Argument of lawyer will be the probabillity
	of XYZ seeing a red auto really when he
	observed & reported it to be red is only 33%.
	so, he is not a heliable.

(a) P(Ci | Z,) is 1/3 for all i E(1,3) as Ci and Z, are independent events (b) P(H3 (C, NZ, 3) = 1/2 as it was equally probable that he would open door 2 or 3 as neither contains the con and can't open door I as contestant chose it and P(G/Z)=P(1) P(H3/(C2 NZ)) as he can't chose door I as the contestant chose I and can't chose door 2 as car is int it and P(C, 1Z)=1(c) P(H3) C3 NZ1) = 0 as he can't open the door with can present behind it $P(H_3|(C_2NZ)) = 1 = 2$ P(H3/(C, NZ)) implies to car behind door 2 is twice as probable behind door !-Let p = Prob behind door 1 : 2p = Prot behinddoor 2

p+2p=1. (As prot behind closer 3 is goo) $p=1/3 \implies Behind closer 1$. $2p=2/3 \implies Behind closer 2$. c) 2/3 d) 1/3 (e) It is beneficial to swap as probability doubles. (f) $P = P(H_3 | C_1 \cap Z_1) = 1/2$ as it was equally probable he would open closer 2 or door 3 as he is upinisical. $P_2 = P(H_3 | (C_2 \cap Z_1)) = 1/2$ as it was equally probable he would open closer 2 or door 3 and $p_1+p_2=1$. (As only 2 choices are left). $p_1=\frac{1}{2}=\frac{1}{2}.$ So no need to change

5. Quartle (first quartile) method produces the lest relative mean squared error as mean is easily affected by outliers and lower quartile is even less affected than median for increased outliers because for lower quartile to be affected 75% of values have to be increased while for median to be affected just 50% of the values in the range need to be affected (As the values are less increases). But 60% disturbance vicreases the values for all three values than 30%.

	Date: YouvX
Q.6c	$\sigma_{\text{old}} = \sum_{i=1}^{2} (x_i - \overline{x}_{i})^2$
	No.
	Thew xm = \(\sum_{i=1}^{n+1} \left(\times_i - \times_{new}\right)\)
	- S. (Xi-Xnew) + (Anew-Xnew)
	<u>i=1</u>
	- \(\sum_{i=1}^{\infty} \left(\times_i - \times_{\infty} \left(\times_{\infty} - \times_{\infty} \reft(\times_{\infty} - \times_{\infty} \reft)\)
	Z (Xi-Xoia) + (n) (Xoia-Xnew)
	+ 2(Xold-Xnew) \(\frac{\times}{\times}(\times \times \times \times \tau \tau \tau \tau \tau \tau \tau \tau
	= [Tola x (n-1)] + [Anew-Xnew] + (n) (Xola-Xnew)
	=> Theu = Fold x (97-1) + [Anew-Xnew] + n (Xold-Xnew)
	2
	Ø.8.D.

O	
9.6	To update the histogram, we will simply choose the bin in which new Data Value lies and Increase
	the 1st seemed as
	one bin in which new Data Value was and increase
	the height of the bin by I unit if on y-axis number of elements in the bin is present.
	The tragic of the bis by I writ it on y-axis number
	of elements in the bin is present.
	The state of the s

3.7	$1 - (365)(365-1) - (366-n) > p$ $(365)^{m}$	_
	Since first person has 365 choices, second person has 364 choices of day 4 so on-	