



# **The Multimed System**

T.-I. Salomie, I. Subasu, J. Giceva, G. Alonso Systems Group, ETH Zurich





# A story about "Data, Data!"

... and multicores





















4/19/2011 ETH Zurich, Systems Group











4/19/2011 ETH Zurich, Systems Group





## Increasing number of hardware contexts

- → Higher contention on shared data structures
  - Spinning and blocking locks (Johnson, DaMoN'09)
  - MCC-DB (Rubao, VLDB'09)
- → Impact of updates and large scans
  - Crescando (Unterbrunner, VLDB'09)
- → Design for concurrent operations, yet not for parallelism
  - Shore-MT (Johnson, EDBT'09)
- → Increasing load interaction
  - Multimed (Eurosys'11)

4/19/2011 ETH Zurich, Systems Group 9





## **Database trends for multicores**





## Database trends for multicores

Fix & pray!

```
while (!scales) {
    find_bottleneck();
    fix_it();
}
```

- Shore-MT, MCC-DB, Most of commercial DBMS, ...
- Throw out the old things!
  - Research: column stores, main memory, shared scans, FPGA/GPU
  - Appliances: Teradata, Netezza/IBM
- Be smart! ②





# Multimed's approach





# Multimed's approach

- Based on single-master data replication
  - Ganymed (Plattner, Middleware'04), Byzantium (Garcia, Eurosys'11)
  - Proven approach for clusters
  - Not a universal solution for all workloads
- ... within the same machine
- View the multicore as a distributed system
  - Barrelfish (Baumann, SOSP'09), fos (Wentzlaff, ACM OSR'09)
- ... partition resources into clusters
  - Cerberus (Song, Eurosys'11)
- ... and run a database on each partition
- → Non-intrusive approach for scaling DBMSs to multicores

















Swiss Federal Institute of Technology Zurich



















Swiss Federal Institute of Technology Zurich











## **Multimed architecture**



4/19/2011 ETH Zurich, Systems Group 21































Swiss Federal Institute of Technology Zurich











































































# **Multimed's scalability**





# **Multimed's scalability**







Swiss Federal Institute of Technology Zurich

# **Multimed's scalability**

















































# Why does Multimed work?





#### Why does Multimed work?

- Intuitively:
  - Reduces contention by replication
  - Solves the problems of load interaction by running "heavy" transactions on specific satellite nodes
  - Each engine runs on a small #cores
- Counter intuitively:
  - Routing layer adds latency,
  - Replication adds latency, <u>but</u>
  - Requests are answered faster by each satellite due to less load interaction and contention, compensating for these latencies
  - Shared caches





#### **Databases and workloads**





#### **Databases and workloads**

- Target workloads
  - Read-heavy workloads with updates (TPC-W)
    - TPC-W Browsing (5% Updates)
    - TPC-W Shopping (20% Updates)
  - Mainly main memory resident datasets

































































# The morale of the story





#### The morale of the story

# Why parallelize when you can distribute?

\* for the PowerPoint version that was presented at EuroSys 2011, please send an email to tsalomie at inf.ethz.ch

4/19/2011 ETH Zurich, Systems Group 59