- 1. Consider a lossless TL which is short circuited at both ends. If l = 5 m is the length of the line, and $v = \frac{1}{3}c = 10^8$ m/s for the line,
 - a) What are all the resonance frequencies of the line frequencies at which source-free oscillations (standing waves) of voltage and current are sustained on the line expressed in MHz units? **Hint:** to satisfy the "open" boundary conditions at both ends of the line, we want the current phasor to vanish at z=0 and z=l when the oscillation frequency is resonant.

Due: Apr 23, 2013, 5PM

- b) Sketch the shapes of current magnitude |I(z)| vs z for the line corresponding to the three lowest resonance frequencies. Label each plot clearly and explain each briefly.
- c) Repeat (b) for voltage magnitude |V(z)| vs z.
- 2. Consider the circuit shown below, where a resistor, $R_L = 50 \Omega$, and a capacitor C, are connected in series with an open-circuited transmission line stub with characteristic impedance $Z_0 = R_L$, v = c, and length L = 160 cm (see diagram).

- a) What is the input impedance, Z(L), of the open T.L. stub?
- b) The circuit is driven by a voltage source of magnitude V_g at a frequency of 50 MHz, which has internal resistance $R_g = R_L$. If the voltage at the load, V_L , equals $V_g/2$, what is the capacitance C?
- 3. Two transmission line segments each having characteristic impedance $Z_0 = 100~\Omega$ are connected in parallel and share input voltage $V_{in} = j10~\rm V$. One transmission line has electrical length $l = \frac{\lambda}{2}$ and is terminated by a resistive load $Z_{L1} = 200~\Omega$, while the other has electrical length $l = \frac{\lambda}{4}$ is terminated by $Z_{L2} = 50~\Omega$.

- a) What is the voltage V_{L1} across Z_{L1} ?
- b) What is the voltage V_{L2} across Z_{L2} ?
- c) What is the current I_{L1} through Z_{L1} ?

- d) What is the current I_{L2} through Z_{L2} ?
- e) What is the input impedance Z_{in} associated with the combined TL network?
- f) What is the total time-averaged power absorbed by the two resistive loads?
- 4. A quarter-wavelength long transmission line section having characteristic impedance $Z_o = 100 \Omega$ is terminated by an unknown impedance Z_L at one end. The input current phasor at the other end is $I_{in} = 0.5 \angle 0^{\circ}$ A. Let V_{in} and V_L denote input and load voltage phasors, respectively, with directions defined in a compatible way with one another and with I_{in} .
 - a) Assuming that the load is not shorted (i.e., $Y_L = \frac{1}{Z_L} \neq 0$) what is V_L ?
 - b) Is it possible for $I_{in} = 0.5 \angle 0^{\circ}$ A if the load is a short? Discuss your answer.
 - c) What is V_{in} if $Z_L = 50 \Omega$?
- 5. In the transmission-line circuit shown below all lines are lossless, $Z_{01}=2Z_{02}=100\,\Omega$ and $R_{L1}=R_{L2}=50\,\Omega$. Calculate the following:
 - a) Voltage and current phasors at the two loads,
 - b) Time-average power dissipated at the two loads.

- 6. Consider a lossless TL having electrical length $l=\lambda$, characteristic impedance $Z_0=50~\Omega$, propagation velocity v=c, and resistive load $Z_L=150~\Omega$. The TL is connected in series with an open circuit voltage source $V_g=30e^{-j\frac{\pi}{2}}$ V having Thevenin impedance R_g , and the voltage across the load Z_L is known to be $V_L=-j10~\mathrm{V}$.
 - a) What is I_L ?
 - b) At what distance(s) d along the TL (where d = 0 at the load end) is the line impedance $Z(d) = Z_L$?
 - c) What is $V(d = \frac{\lambda}{4})$ and $I(d = \frac{\lambda}{4})$?
 - d) What is $Z(d = \frac{\lambda}{4})$?
 - e) What is $V(d = \frac{\lambda}{2})$ and $I(d = \frac{\lambda}{2})$?
 - f) What is R_g , the Thevenin impedance of the generator?