Simplex method

Simplex method is the method to solve (LPP) models which contain two or more decision variables.

Basic variables:

Are the variables which coefficients <u>One</u> in the equations and <u>Zero</u> in the other equations.

Non-Basic variables:

Are the variables which coefficients are taking any of the values, whether positive or negative or zero.

Slack, surplus & artificial variables:

- a) If the inequality be \leq (less than or equal, then we add a slack variable + S to change \leq to =.
- b) If the inequality be \geq (greater than or equal, then we subtract a surplus variable S to change \geq to =.
- c) If we have = we use artificial variables.

The steps of the simplex method:

Step 1:

Determine a starting basic feasible solution.

Step 2:

Select an entering variable using the optimality condition. Stop if there is no entering variable.

<u>Step 3:</u>

Select a leaving variable using the feasibility condition.

Optimality condition:

The entering variable in a maximization (minimization) problem is the non-basic variable having the most negative (positive) coefficient in the Z-row.

The optimum is reached at the iteration where all the Z-row coefficient of the non-basic variables are non-negative (non-positive).

Feasibility condition:

For both maximization and minimization problems the leaving variable is the basic associated with the smallest non-negative ratio (with strictly positive denominator).

Pivot row:

- a) Replace the leaving variable in the basic column with the entering variable.
- b) New pivot row equal to current pivot row divided by pivot element.
- c) All other rows:

New row=current row - (pivot column coefficient) *new pivot row.

Example 1:

Use the simplex method to solve the (LP) model:

$$max Z = 5x_1 + 4x_2$$

Subject to

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \leq 6$$

$$-x_1+x_2 \leq 1$$

$$x_2 \leq 2$$

$$x_1, x_2 \geq 0$$

Solution:

$$max \ Z - 5x_1 + 4x_2 = 0$$

$$6x_1 + 4x_2 + S_1 = 24$$

$$x_1 + 2x_2 + S_2 = 6$$

$$-x_1 + x_2 + S_3 = 1$$

$$x_2 + S_4 = 2$$

Basic	x_1	x_2	S_1	S_2	S_3	S_4	Sol.
S_1	6	4	1	0	0	0	24
S_2	1	2	0	1	0	0	6
S_3	-1	1	0	0	1	0	1
S_4	0	1	0	0	0	1	2
Max Z	-5	-4	0	0	0	0	0

$$\frac{24}{6} = \boxed{4}$$

$$\frac{6}{1} = 6$$

$$\frac{1}{-1} = -1$$
 (ignore)

$$\frac{2}{0} = \infty$$
 (ignore)

The entering variable is x_1 and S_1 is a leaving variable.

Table 2:

	Basic	$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	S_1	S_2	S_3	S_4	Sol.
	x_1	1	2/3	1/6	0	0	0	4
-	S_2	0	4/3	-1/6	1	0	0	2
	S_3	0	5/3	1/6	0	1	0	5
	S_4	0	1	0	0	0	1	2
	Max Z	0	-2/3	5/6	0	0	0	20

■ Pivot row or new x_1 -row= $\frac{1}{6}$ [current S_1 -row]

$$=\frac{1}{6}[6 \ 4 \ 1 \ 0 \ 0 \ 24]$$

$$= \begin{bmatrix} 1 & \frac{2}{3} & \frac{1}{6} & 0 & 0 & 0 & 4 \end{bmatrix}$$

- New S_2 -row=[current S_2 -row]-(1)[new x_1 -row] =[1 2 0 1 0 0 6]- (1)[1 2/3 1/6 0 0 0 0 4] =[0 4/3 -1/6 1 0 0 2]
- New S_3 -row=[current S_3 -row]-(1)[new x_1 -row] =[-1 1 0 0 1 0 1]- (1)[1 2/3 1/6 0 0 0 0 4] =[0 5/3 1/6 0 1 0 5]
- New S_4 -row=[current S_4 -row]-(0)[new x_1 -row] =[0 1 0 0 0 1 2]- (0)[1 2/3 1/6 0 0 0 0 4] =[0 1 0 0 0 1 2]
- New Z-row=[current Z -row]-(-5)[new x_1 -row] =[-5 -4 0 0 0 0]-(-5)[1 2/3 1/6 0 0 0 0 4] =[0 -2/3 5/6 0 0 0 20]

Now:

$$\frac{4}{\frac{2}{3}}=6$$

$$\frac{\frac{2}{4}}{\frac{4}{3}} = \frac{6}{4} = \frac{3}{2}$$
$$\frac{\frac{5}{5}}{\frac{5}{3}} = 3$$
$$\frac{\frac{2}{1}}{\frac{1}{2}} = 2$$

The entering variable is x_2 and S_2 is a leaving variable.

Table 3: (optimal solution):

Basic	x_1	x_2	<i>S</i> ₁	S_2	S_3	S_4	Sol.
x_1	1	0	1/4	-1/2	0	0	В
x_2	0	1	-1/8	3/4	0	0	3/2
S_3	0	0	3/8	-5/4	1	0	5/2
S_4	0	0	1/8	-3/4	0	1	1/2
Max Z	0	0	5/6	1/2	0	0	21

■ Pivot row or new
$$x_2$$
-row= $\frac{1}{\frac{4}{3}}$ [current S_2 -row]
$$=\frac{1}{\frac{4}{3}}[0 \quad 4/3 \quad -1/6 \quad 1 \quad 0 \quad 0 \quad 2]$$

$$=[0 \quad 1 \quad -1/8 \quad \frac{3}{4} \quad 0 \quad 0 \quad 3/2]$$

- New
$$x_1$$
-row=[current x_1 -row]-(2/3)[new x_2 -row] =[1 2/3 1/6 0 0 0 4]- (2/3)[0 1 -1/8 $\frac{3}{4}$ 0 0 3/2] =[1 0 $\frac{1}{4}$ -1/2 0 0 3]

- New
$$S_3$$
-row=[current S_3 -row]-(5/2)[new x_2 -row] =[0 5/3 1/6 0 1 0 5]-(5/3)[0 1 -1/8 $\frac{3}{4}$ 0 0 3/2] =[0 0 3/8 -5/4 1 0 5/3]

- New
$$S_4$$
-row=[current S_4 -row]-(1)[new x_2 -row] =[0 1 0 0 0 1 2]-(1)[0 1 -1/8 $\frac{3}{4}$ 0 0 3/2] =[0 0 1/8 -3/4 0 1 $\frac{1}{2}$]

New Z-row=[current Z -row]-(-2/3)[new
$$x_2$$
 -row] = [0 -2/3 5/6 0 0 0 20]-(-2/3)[0 1 -1/8 $\frac{3}{4}$ 0 0 3/2] = [0 0 $\frac{3}{4}$ $\frac{1}{2}$ 0 0 21]

Then the solution is:

$$x_1 = 3 \& x_2 = \frac{3}{2} \& S_3 = \frac{5}{2} \& S_4 = \frac{1}{2}$$

 $S_1 = 0$, $S_2 = 0$

Example 2:

Use the simplex method to solve the (LP) model:

$$max Z = 2x_1 + 3x_2$$

Subject to

$$0.25x_1 + 0.5x_2 \le 40$$

$$0.4x_1 + 0.2x_2 \le 40$$

$$0.8x_2 \leq 40$$

$$x_1, x_2 \geq 0$$

Solution:

$$max \ Z - 2x_1 + 3x_2 = 0$$

Subject to

$$0.25x_1 + 0.5x_2 + S_1 = 40$$

$$0.4x_1 + 0.2x_2 + S_2 = 40$$

$$0.8x_2 + S_3 = 40$$

$$x_1, x_2, +S_1, +S_2, +S_3 \ge 0$$

Table 1:

Basic	x_1	x_2	$\boldsymbol{S_1}$	$\boldsymbol{S_2}$	S_3	Sol.
S_1	0.25	0.5	1	0	0	40
S_2	0.4	0.2	0	1	0	40
S_3	0	0.8	0	0	1	40
Max Z	-2	-3	0	0	0	0

$$\frac{40}{0.5}=80$$

$$\frac{40}{0.2} = 200$$

$$\frac{40}{0.8} = 50$$

■ Pivot row or new S_3 -row= $\frac{1}{0.8}$ [0 0.8 0 0 1 40] =[0 1 0 0 1.25 50]

New S_1 -row=[current S_1 -row]-(0.5)[new x_2 -row] =[0.25 0.5 1 0 0 40]-(0.5)[0 1 0 0 1.25 50] =[0 0.5 0 0 -0.625 15]

New S_2 -row=[current S_2 -row]-(0.2)[new x_2 -row] =[0.4 0.2 0 1 0 40]-(0.2)[0 1 0 0 1.25 50] [0.4 0 0 1 -0.25 30]

New Z-row=[current Z -row]-(-3)[new x_2 -row] = [-2 -3 0 0 0 0]-(-3)[0 1 0 0 1.25 50] = [-2 0 0 0 3.75 150]

Table 2:

		¥					
	Basic	x_1	x_2	<i>S</i> ₁	S_2	S_3	Sol.
\leftarrow	S_1	0.25	0	1	0	-0.625	15
	S_2	0.4	0	0	1	-0.25	30
	x_2	0	1	0	0	1.25	50
	Max Z	-2	0	0	0	3.75	150

$$\frac{15}{0.25} = 60$$

$$\frac{30}{0.4} = 75$$

$$\frac{50}{0} = \infty \quad \text{(ignore)}$$

Pivot row or new
$$S_1$$
-row= $\frac{1}{0.25}$ [0.25 0 1 0 -0.625 15]
=[1 0 4 0 -2.5 60]

New
$$S_2$$
-row=[current S_2 -row]-(0.4)[new x_1 -row] =[0.4 0 0 0 -0.25 30]-(0.4)[1 0 4 0 -2.5 60] [0 0 -1.6 0 -0.75 6]

New x_2 -row=[0 1 0 0 1.25 50]-(0)[1 0 4 0 -2.5 60] **=[0 1 0 0 1.25 50]**

New Z-row=[current Z -row]-(-2)[1 0 4 0 -2.5 60] =[-2 0 0 0 3.75 150]-(-2)[1 0 4 0 -2.5 60] [0 0 8 0 -1.25 270]

Table 3:

	Table 3	<u>:</u>				\downarrow	
	Basic	x_1	x_2	<i>S</i> ₁	S_2	S_3	Sol.
	x_1	1	0	4	0	-2.5	60
\leftarrow	S_2	0	0	-1.6	1	0.75	6
	x_2	0	1	0	0	1.25	50
	Max Z	0	0	8	0	-1.25	270

$$\frac{60}{-2.5} = -24$$
 (ignore)

$$\frac{6}{0.75} = 8$$

$$\frac{50}{1.25} = 40$$

New
$$S_2$$
-row= $\frac{1}{0.75}$ =[current S_2 -row] = $\frac{1}{0.75}$ [0 0 -1.6 0 0.75 6] =[0 0 -2.133 0 1 8]

New
$$x_1$$
-row= [1 0 4 0 -2.5 60]-(-2.5)[0 0 -2.133 0 1 8]
=[1 0 -1.333 0 0 80]

New
$$x_2$$
-row= [0 1 0 0 1.25 50]-(-1.25)[0 0 -2.133 0 1 8]
=[0 1 -2.76 0 0 40]

Table 3: (optimal solution):

Basic	x_1	x_2	<i>S</i> ₁	S_2	S_3	Sol.
x_1	1	0	-1.333	0	0	80
S_3	0	0	-2.133	0	1	8
x_2	0	1	-2.67	0	0	40
Max Z	0	0	5.33	0	0	280

The optimal solution:

$$x_1$$
=80 , $x_2=40$, $S_1=0\ \&\ S_2=0$ // Z=280

Example 3:

Use the simplex method to solve the (LP) model:

$$min \ Z = -6x_1 - 10x_2 - 4x_3$$

$$x_1 + x_2 + x_3 \le 1000$$
 $x_1 + x_2 \le 500$
 $x_1 + 2x_2 \le 700$
 $x_1, x_2, x_3 \ge 0$

Solution:

$$min \ Z + 6x_1 + 10x_2 + 4x_3 = 0$$

Subject to

$$x_1 + x_2 + x_3 + S_1 = 1000$$

$$x_1 + x_2 + S_2 = 500$$

$$x_1 + 2x_2 + S_3 = 700$$

$$x_1, x_2, x_3, S_{1,}S_2 S_3 \geq 0$$

Table 1:

	Basic	x_1	x_2	x_3	$\boldsymbol{S_1}$	S_2	S_3	Sol.
	S_1	1	1	1	1	0	0	1000
	S_2	1	1	0	0	1	0	500
_	S_3	1	2	0	0	1	1	700
	Max Z	6	10	4	0	0	0	0

$$\frac{1000}{1} = 1000$$

$$\frac{500}{1} = 500$$

$$\frac{700}{2} = 350$$

New S_3 -row or x_2 -row = $\frac{1}{2}$ [1 2 0 0 0 1 700]

$$=[\frac{1}{2} \ 1 \ 0 \ 0 \ 0 \ \frac{1}{2} \ 350]$$

New S_1 -row = [1 1 1 1 0 0 1000]-(1)[$\frac{1}{2}$ 1 0 0 0 $\frac{1}{2}$ 350]

$$=\left[\frac{1}{2} \ 0 \ 1 \ 1 \ 0 \ -\frac{1}{2} \ 650\right]$$

New S_2 -row = [1 1 0 0 1 0 500]-(1)[$\frac{1}{2}$ 1 0 0 0 $\frac{1}{2}$ 350]

$$= \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 1 & -\frac{1}{2} & 150 \end{bmatrix}$$

New Z-row = [6 10 4 0 0 0 0]-(10)[
$$\frac{1}{2}$$
 1 0 0 0 $\frac{1}{2}$ 350]
=[1 0 4 0 0 - 5 -3500]

	Basic	x_1	x_2	<i>x</i> ₃	<i>S</i> ₁	S_2	S ₃	Sol.
-	S_1	1/2	0	1	1	0	-1/2	650
	S_2	1/2	0	0	0	1	-1/2	150
	x_2	1/2	1	0	0	0	1/2	350
	Max Z	1	0	4	0	0	-5	-3500

$$\frac{650}{1} = 650$$

$$\frac{150}{0} = \infty \qquad \text{(ignore)}$$

$$\frac{350}{0} = \infty \qquad \text{(ignore)}$$

New
$$S_1$$
-row or x_3 -row =1[$\frac{1}{2}$ 0 1 1 0 $-\frac{1}{2}$ 650]
=[$\frac{1}{2}$ 0 1 1 0 $-\frac{1}{2}$ 650]

New
$$S_2$$
-row = $\begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 1 - \frac{1}{2} & 150 \end{bmatrix}$ -(0) $\begin{bmatrix} \frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650 \end{bmatrix}$
= $\begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 1 - \frac{1}{2} & 150 \end{bmatrix}$

New
$$x_2$$
-row = $\begin{bmatrix} \frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} & 350 \end{bmatrix}$ -(0) $\begin{bmatrix} \frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650 \end{bmatrix}$
= $\begin{bmatrix} \frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} & 350 \end{bmatrix}$

New Z-row =
$$\begin{bmatrix} 1 & 0 & 4 & 0 & 0 & -5 & -3500 \end{bmatrix}$$
- $\begin{bmatrix} 1 & 2 & 0 & 1 & 1 & 0 & -\frac{1}{2} \end{bmatrix}$ 650]
= $\begin{bmatrix} -1 & 0 & 0 & -4 & 0 & -3 & -6100 \end{bmatrix}$

Table 3: (optimal solution):

Basic	x_1	x_2	x_3	S ₁	S_2	S_3	Sol.
x_3	1/2	0	1	1	0	-1/2	650
S_2	1/2	0	0	0	1	-1/2	150
x_2	1/2	1	0	0	0	1/2	350
Max Z	-1	0	0	-4	0	-3	-6100

The optimal solution:

$$x_3$$
=650 , $x_2=350$, $S_1=0$ $S_3 \ \& \ S_2=150$ $x_1=0$ // Z=280

Example 4:

Use the simplex method to solve the (LP) model:

$$max Z = 4x_1 - x_2$$

Subject to

$$x_1 + 2x_2 \leq 4$$

$$2x_1 + 3x_2 \le 12$$

$$x_1 - x_2 \leq 3$$

$$x_1, x_2 \geq 0$$

Solution:

$$max \ Z - 4x_1 + x_2 = 0$$

$$x_1 + 2x_2 + S_1 = 4$$

$$2x_1 + 3x_2 + S_2 = 12$$

$$x_1 - x_2 + S_3 = 3$$

$$x_1, x_2, S_1, S_2, S_3 \geq 0$$

Table 1:

Basic	x_1	x_2	$\boldsymbol{S_1}$	$\boldsymbol{S_2}$	S_3	Sol.
S_1	1	2	1	0	0	4
S_2	2	3	0	1	0	12
S_3	1	-1	0	0	1	3
Max Z	-4	1	0	0	0	0

$$\frac{4}{1}=4$$

$$\frac{12}{2} = 6$$

$$\frac{3}{1} = 3$$

New
$$S_3$$
-row or x_1 -row =1[1 -1 0 0 1 3]
=[1 -1 0 0 1 3]

New
$$S_1$$
-row = [1 2 1 0 0 4]-(1)[1 -1 0 0 1 3]
=[0 3 1 0 -1 1]

New
$$S_2$$
-row = [2 3 0 1 0 12]-(2)[1 -1 0 0 1 3]
=[0 5 0 1 -2 6]

New Z-row =
$$\begin{bmatrix} -4 & 1 & 0 & 0 & 0 \end{bmatrix}$$
 - $\begin{bmatrix} -4 & 1 & 0 & 0 & 0 \end{bmatrix}$ - $\begin{bmatrix} 0 & -3 & 0 & 0 & 4 & 12 \end{bmatrix}$

Table 2:

	Basic	x_1	x_2	S_1	S_2	S_3	Sol.
_	S_1	0	3	1	0	-1	1
	S_2	0	5	0	1	-2	6
	x_1	1	-1	0	0	1	3
	Max Z	0	-3	0	0	4	12

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{6}{5} = \frac{6}{5}$$

$$\frac{3}{-1} = -3 \quad \text{(ignore)}$$

New
$$S_1$$
-row or x_2 -row = $(\frac{1}{3})[0\ 3\ 1\ 0\ -1\ 1]$
= $[0\ 1\ 1/3\ 0\ -1/3\ 1/3]$
New S_2 -row = $[0\ 5\ 0\ 1\ -2\ 6]$ - $(5)[0\ 1\ 1/3\ 0\ -1/3\ 1/3]$
= $[0\ 0\ -2/3\ 1\ 11/3\ 13/3]$
New x_1 -row = $[1\ -1\ 0\ 0\ 1\ 3]$ - $(-1)[0\ 1\ 1/3\ 0\ -1/3\ 1/3]$
= $[1\ 0\ 1/3\ 0\ 2/3\ 10/3]$

New Z-row =
$$[0 -3 0 0 4 12]$$
- $(-3)[0 1 1/3 0 - 1/3 1/3]$
= $[0 0 1 0 3 13]$

Table 3: (optimal solution):

Basic	x_1	x_2	S_1	S_2	S_3	Sol.
x_2	0	1	1/3	0	-1/3	1/3
S_2	0	0	-2/3	1	11/3	13/3
x_1	1	0	1/3	0	2/3	10/3
Max Z	0	0	1	0	3	13

The optimal solution:

$$x_1$$
=10/3 , $x_2=1/3$, $S_2=13/3$ $S_1 \,\&\, S_3=0$ // Z=13

Example 5:

Use the simplex method to solve the (LP) model:

$$max Z = 16x_1 + 17x_2 + 10x_3$$

Subject to

$$x_1 + 2x_2 + 4x_3 \leq 2000$$

$$2x_1 + x_2 + x_3 \le 3600$$

$$x_1 + 2x_2 + 2x_3 \le 2400$$

$$x_1 \leq 30$$

$$x_1, x_2, x_3 \ge 0$$

Solution:

$$max \ Z - 16x_1 - 17x_2 - 10x_3 = 0$$

Subject to

$$x_1 + 2x_2 + 4x_3 + S_1 = 2000$$

$$2x_1 + x_2 + x_3 + S_2 = 3600$$

$$x_1 + 2x_2 + 2x_3 + S_3 = 2400$$

$$x_1 + S_4 = 30$$

$$x_1, x_2, x_3 \ge 0, S_1, S_2, S_3, S_4 \ge 0$$

Table 1:

Basic	x_1	x_2	x_3	S_1	S_2	S_3	S_4	Sol.
S_1	1	2	4	1	0	0	0	2000
S_2	2	1	1	0	1	0	0	3600
S_3	1	2	2	0	0	1	0	2400
S_4	1	0	0	0	0	0	1	30
Max Z	-16	-17	-10	0	0	0	0	0

$$\frac{\frac{2000}{2}}{\frac{3600}{1}} = 3600$$

$$\frac{\frac{2400}{2}}{2} = 1200$$

$$\frac{30}{0} = \infty \quad \text{(ignore)}$$

New
$$S_1$$
-row or x_1 -row = $(\frac{1}{2})[1 \ 2 \ 4 \ 1 \ 0 \ 0 \ 0 \ 2000]$
=[1/2 1 2 1/2 0 0 0 1000]

New
$$S_2$$
-row = [2 1 1 0 1 0 0 3600]
-(1)[1/2 1 2 1/2 0 0 0 1000]
=[3/2 0 -1 -1/2 1 0 0 2600]

New
$$S_3$$
-row = [1 2 2 0 0 1 0 2400]
-(2)[1/2 1 2 1/2 0 0 0 1000]
=[0 0 -2 -1 0 1 0 400]

New
$$S_4$$
-row = [1 0 0 0 0 0 1 30]
-(0)[1/2 1 2 1/2 0 0 0 1000]
=[1 0 0 0 0 1 30]

New Z-row = [-16 -17 -10 0 0 0 0 0]
$$-(-17)[1/2 1 2 1/2 0 0 0 1000]$$
 =[15/2 0 24 17/2 0 0 0 17000]

Table 2: (optimal solution):

Basic	x_1	x_2	x_3	S_1	S_2	S_3	S_4	Sol.
x_2	1/2	1	2	1/2	0	0	0	1000
S_2	3/2	0	-1	-1/2	1	0	0	2600
S_3	0	0	-2	-1	0	1	0	400
S_4	1	0	0	0	0	0	1	30
Max Z	15/2	0	24	17/2	0	0	0	17000

The optimal solution:

$$\emph{x}_2$$
=1000 , $\emph{S}_2=2600$, $\emph{S}_3=400$, $\emph{S}_4=30$ \emph{x}_1 , \emph{x}_2 $\emph{S}_1=0$ / Z=17000

Example 6:

Use the simplex method to solve the (LP) model:

$$max Z = 3x_1 + 5x_2 + 4x_3$$

Subject to

$$2x_{1} + 3x_{2} \leq 8$$

$$2x_{1} + 5x_{2} \leq 10$$

$$3x_{1} + 2x_{2} + 4x_{3} \leq 15$$

$$x_{1}, x_{2}, x_{3} \geq 0$$

Solution:

$$max \ Z - 3x_1 - 5x_2 - 4x_3 = 0$$

$$2x_{1} + 3x_{2} + S_{1} \leq 8$$

$$2x_{1} + 5x_{2} + S_{2} \leq 10$$

$$3x_{1} + 2x_{2} + 4x_{3} + S_{3} \leq 15$$

$$x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0$$

Table 1:

ı
,

Basic	x_1	x_2	x_3	$\boldsymbol{S_1}$	S_2	S_3	Sol.	
S_1	2	3	0	1	0	0	8	
S_2	2	5	0	0	1	0	10	
S_3	3	2	4	0	0	1	15	
Max Z	-3	-5	-4	0	0	0	0	

$$\frac{8}{3} = 2.7$$

$$\frac{15}{2} = 7.5$$

New
$$S_2$$
-row or x_2 -row = $(\frac{1}{5})[2 \ 5 \ 0 \ 0 \ 1 \ 0 \ 10]$
= $[2/5 \ 1 \ 0 \ 0 \ 1/5 \ 0 \ 2]$

New
$$S_1$$
-row = [2 3 0 1 0 0 8]
-(3)[2/5 1 0 0 1/5 0 2]
=[4/5 0 0 1 -3/5 0 2]

New
$$S_3$$
-row = [3 2 4 0 0 1 15]
-(2)[2/5 1 0 0 1/5 0 2]
=[11/5 0 4 0 -2/5 1 11]

New Z-row =
$$[-3 \ -5 \ -4 \ 0 \ 0 \ 0 \ 0]$$

-(-5)[2/5 1 0 0 1/5 0 2]
=[-1 0 -4 0 1 0 10]

Table 2:

Basic	x_1	x_2	x_3	<i>S</i> ₁	S_2	S_3	Sol.
S_1	4/5	0	0	1	-3/5	0	2
x_2	2/5	1	0	0	1/5	0	2
S_3	11/5	1	4	0	-2/5	1	11
Max Z	-1	0	-4	0	1	0	10

New S_3 -row or x_3 -row = $(\frac{1}{4})[11/5 \ 0 \ 4 \ 0 \ -2/5 \ 1 \ 11]$

=[11/20 0 1 0 -1/10 1/4 11/4]

New S_1 -row = [4/5 0 0 1 -3/5 0 2]

 $-(0)[11/20 \ 0 \ 1 \ 0 \ -1/10 \ 1/4 \ 11/4]$

=[4/5 0 0 1 -3/5 0 2]

New x_2 -row = [2/5 1 0 0 1/5 0 2]

New Z-row = [-1 0 -4 0 1 0 10]
$$-(-4)[11/20 0 1 0 -1/10 1/4 11/4]$$

$$=[6/5 0 0 0 3/5 1 21]$$

Table 3: (optimal solution):

Basic	x_1	x_2	x_3	S_1	S_2	S_3	Sol.
S_1	4/5	0	0	1	-3/5	0	2
x_2	2/5	1	0	0	1/5	0	2
x_3	11/20	0	1	0	-1/10	1/4	11/4
Max Z	6/5	0	0	0	3/5	1	21

The optimal solution:

$$x_2$$
=2 , $x_3 = 11/4$,

$$S_1 = 2$$
,

Z=21

 $x_1 = 0$, $S_2 = 0$, $S_3 = 0$,