SBVLIFA: Linguagens Formais e Autômatos

Aula 04: Autômatos Finitos Não-Determinísticos com ε -transições

2/29 Linguagens Regulares

Linguagens Regulares

Tipo	Classe de Linguagens	Modelo de Gramática	Modelo de Reconhecedor
0	Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato de pilha
3	Regulares	Linear (direita ou esquerda)	Autômato finito

Linguagens Regulares

- Relembrando...
 - Autômato Finito Determinístico (DFA): o controle é determinístico, ou seja, sempre está em um único estado em qualquer instante;
 - Autômato Finito Não-Determinístico (NFA): o controle pode estar em mais de um estado em qualquer instante.
 - Autômato Finito Não-Determinístico com ε -transições (ε -NFA): É uma outra extensão dos autômatos finitos, que permite que os NFAs façam transições sobre a string vazia. Alguns autores fazem essa divisão entre NFAs e ε -NFAs, entretanto, formalmente, um NFA já tem permissão para realizar transições espontâneas, sendo assim, faremos essa complementação nessa aula.

Linguagens Regulares Autômatos Finitos Não-Determinísticos com ε -transições

- \blacksquare Os ε -NFAs permitem que haja uma transição espontânea de um estado para outro;
- Essa característica, assim como a diferença entre DFAs e NFAs, não permite que esse autômato reconheça linguagens que não sejam regulares, entretanto, auxilia na capacidade de modelagem da máquina abstrata;
- A transição vazia é representada da mesma forma que as transições que já vimos, entretanto é rotulada pelo símbolo ε ;
- lacktriangle Os ε -NFAs são intimamente ligados às expressões regulares, assunto da próxima aula.

Autômatos Finitos Não-Determinísticos com ε -transições

Definição Formal:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- ightharpoonup A: autômato finito não-determinístico com ε-transições, uma 5-upla, onde:
 - Q: conjunto finito de estados;
 - ightharpoonup Σ : conjunto finito de símbolos de entrada (alfabeto);
 - lacksquare δ : função de transição, na forma $\delta(q,a) \to \{p_1,p_2,...,p_n\}$, ou seja, $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$
 - $ightharpoonup q_0$: estado inicial, tal que $q_0 \in Q$
 - F: conjunto de estados finais ou de aceitação, tal que $F \subseteq Q$
- **Obs:** $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, ou seja, a string vazia não faz parte do alfabeto

Autômatos Finitos Não-Determinísticos com ε -transições Exemplo

- Um ε -NFA que aceita números decimais, consistindo em:
 - Um sinal + ou -, opcional;
 - Uma string de dígitos;
 - Um ponto decimal;
 - Uma outra string de dígitos. Essa string ou a primeira podem ser vazias, mas não ambas.

Autômatos Finitos Não-Determinísticos com ε-transições Exemplo

Diagrama de transições:

8/29 Autômatos Finitos Não-Determinísticos com ε -transições

- $A = (Q, \Sigma, \delta, q_0, F)$, onde:
- $Q = \{ q_0, q_1, q_2, q_3, q_4, q_5 \}$
- $\Sigma = \{., +, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $F = \{q_5\}$

	ε	+,-		0, 1, 2,, 9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	{q ₂ }	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	{q ₃ }	Ø
* q ₅	Ø	Ø	Ø	Ø 🚼

9/29 Autômatos Finitos Não-Determinísticos com ε -transições ε-fechamentos

- Definição central necessária para a extensão da função de transição para strings;
- Informalmente, o ε -fechamento de um estado q consiste no conjunto de estados acessíveis a partir de q, seguindo todas as transições rotuladas por ε .
- Formalmente, o ε -fechamento pode ser definido recursivamente pela função ECLOSE(q) da seguinte forma:
 - **Base:** O estado q está em ECLOSE(q).
 - **Indução:** Se o estado p está em ECLOSE(q) e existe uma transição do estado ppara o estado r rotulada por ε , então r está em ECLOSE(q), ou seja, se δ é a função de transição do ε -NFA envolvido, e p está em ECLOSE(q), então ECLOSE(q) também contém todos os estados em $\delta(p, \varepsilon)$.

Autômatos Finitos Não-Determinísticos com ε -transições Exemplos de ε -fechamentos

- $ECLOSE(q_0): \{q_0, q_1\}$
- ightharpoonup $ECLOSE(q_1): \{q_1\}$
- $ightharpoonup ECLOSE(q_2): \{q_2\}$
- \blacksquare *ECLOSE*(q_3): { q_3 , q_5 }
- ightharpoonup $ECLOSE(q_4): \{q_4\}$
- $ightharpoonup ECLOSE(q_5): \{q_5\}$

11/29 Autômatos Finitos Não-Determinísticos com ε -transições Exemplos de ε -fechamentos

- $ECLOSE(q_0): \{q_0, q_1, q_2, q_3, q_4\}$
- \blacksquare *ECLOSE*(q_1): { q_1, q_2, q_3 }
- ightharpoonup *ECLOSE*(q_2): { q_2 , q_3 }
- $ECLOSE(q_3)$: $\{q_3\}$
- $ECLOSE(q_4)$: $\{q_4\}$
- $ECLOSE(q_5): \{q_5, q_6\}$
- $ECLOSE(q_6)$: $\{q_6\}$

12/29 Autômatos Finitos Não-Determinísticos com ε -transições Extensão da Função de Transição às Strings

- Necessária para tornar exata a noção da linguagem de um ε -NFA;
- lacktriangle lacktriangle eta é a função de transição, $\hat{\delta}$ (delta chapéu) é a função de transição estendida:
- Definição:
 - **Base:** $\hat{\delta}(q, \varepsilon) = ECLOSE(q)$

Se estamos em q e não lemos nada, podemos estar em qualquer estado de ECLOSE(q)

- Indução:
 - w = xa, onde a é o último símbolo de w, x é o restante de w e $a \in \Sigma$;
 - $\hat{\delta}(q, x) = \{p_1, p_2, ..., p_k\}$

 - $\hat{\delta}(q, w) = \bigcup_{i=1}^{m} ECLOSE(r_i)$

13/29 Autômatos Finitos Não-Determinísticos com ε -transições Extensão da Função de Transição às Strings

- **Exemplo:** Considerando o exemplo do ε -NFA que reconhece números decimais, realizar a computação de $\hat{\delta}(q_0, 5.6)$:
 - $\hat{\delta}(q_0, \varepsilon) = ECLOSE(q_0) = \{q_0, q_1\}$
 - $-\delta(q_0,5)$:
 - 1: $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\}$
 - ullet 2: $\hat{\delta}(q_0, 5) = ECLOSE(q_1) \cup ECLOSE(q_4) = \{q_1\} \cup \{q_4\} = \{q_1, q_4\}$
 - $\hat{\delta}(q_0, 5.)$:
 - 1: $\delta(q_1,...) \cup \delta(q_4,...) = \{q_2\} \cup \{q_3\} = \{q_2,q_3\}$
 - $ightharpoonup 2: \hat{\delta}(q_0, 5.) = ECLOSE(q_2) \cup ECLOSE(q_3) = \{q_2\} \cup \{q_3, q_5\} = \{q_2, q_3, q_5\}$
 - $\hat{\delta}(q_0, 5.6)$:
 - 1: $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\} \cup \{q_3\} \cup \emptyset = \{q_3\}$
 - $ightharpoonup 2: \hat{\delta}(q_0, 5.6) = ECLOSE(q_3) = \{q_3, q_5\}$

14/29 Autômatos Finitos Não-Determinísticos com ε -transições Extensão da Função de Transição às Strings

- **Exemplo:** Considerando o exemplo do ε -NFA que reconhece números decimais, realizar a computação de $\hat{\delta}(q_0, 5.6)$:
 - $\hat{\delta}(q_0, \varepsilon) = ECLOSE(q_0) = \{q_0, q_1\}$
 - $-\delta(q_0,5)$:
 - 1: $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\}$
 - ullet 2: $\hat{\delta}(q_0, 5) = ECLOSE(q_1) \cup ECLOSE(q_4) = \{q_1\} \cup \{q_4\} = \{q_1, q_4\}$
 - $\hat{\delta}(q_0, 5.)$:
 - 1: $\delta(q_1,...) \cup \delta(q_4,...) = \{q_2\} \cup \{q_3\} = \{q_2,q_3\}$
 - $ightharpoonup 2: \hat{\delta}(q_0, 5.) = ECLOSE(q_2) \cup ECLOSE(q_3) = \{q_2\} \cup \{q_3, q_5\} = \{q_2, q_3, q_5\}$
 - $\hat{\delta}(q_0, 5.6)$:
 - 1: $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\} \cup \{q_3\} \cup \emptyset = \{q_3\}$
 - $ightharpoonup 2: \hat{\delta}(q_0, 5.6) = ECLOSE(q_3) = \{q_3, q_5\}$

15/29 Autômatos Finitos Não-Determinísticos com ε -transições Definição de Linguagem de um ε -NFA

Dado um ε -NFA $A=(Q,\Sigma,\delta,q_0,F)$, sua linguagem L(A) é definida por:

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

▶ Isto é, L(A) é o conjunto de strings w em Σ^* tais que $\hat{\delta}(q_0, w)$ contém pelo menos um estado de aceitação. Se L é L(A) para algum arepsilon-NFA A, dizemos que L é uma linguagem regular, pois um ε -NFA possui um DFA equivalente.

16/29 Autômatos Finitos Não-Determinísticos com ε -transições Equivalência entre DFAs e ε -NFAs (remoção de ε -transições)

- Dado um ε-NFA $E = (Q_E, \Sigma, \delta_E, q_0, F_E)$, construir o DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ tal que L(E) = L(D)
 - Os alfabetos são os mesmos.
- Construção dos outros componentes:
 - $\longrightarrow Q_D$ é o conjunto de subconjuntos de Q_E em que todos os estados acessíveis de D são subconjuntos com ε -fechamento de Q_E , isto é, conjuntos $S \subseteq Q_E$ tais que S = ECLOSE(S)

 - ▶ F_D é o conjunto de subconjuntos S de Q_E tais que $S \cap F_E \neq \emptyset$, isto é, F_D representa todos os conjuntos de estados de E que incluem pelo menos um estado de aceitação de E;
 - Para cada conjunto $S \subseteq Q_E$ e para cada símbolo de entrada α em Σ :
 - a) Seja $S = \{p_1, p_2, ..., p_k\}$
 - b) Calcule $\bigcup_{i=1}^{k} \delta_{E}(p_{1}, a) = \{r_{1}, r_{2}, ..., r_{m}\}$
 - c) Então $\delta_D(S, a) = \bigcup_{i=1}^m ECLOSE(r_i)$

17/29 Autômatos Finitos Não-Determinísticos com ε -transições Equivalência entre DFAs e ε -NFAs (remoção de ε -transições)

Construção do DFA D=(QD, E, SD, 9D, FD)
97= ECLOSE (90)= 19091)
QD= } {90,91}, {91}, {91}, 491, 494, 444, 444, 443, 95}, 492, 93, 95}
Fo= 1 (43, 45), (41, 43, 45)

+,-	•	٥,١, ٠٠, ٩
591)	3925	991,94}
Ø	4 9 2}	391,945
ϕ	ϕ	193,95 }
Ø	192,93,95}	391,945
Ø	Ø	193,95
φ	Ø	393,954
	(41) Ø Ø Ø	(q1) (q2) φ (q2) φ φ (q2),93,95} φ φ

Autômatos Finitos Não-Determinísticos com ε -transições Equivalência entre DFAs e ε -NFAs (remoção de ε -transições)

19/29 Teoremas de Fechamento Sobre as Operações Regulares

- **Teorema 1:** Se L_1 e L_2 são linguagens regulares, então uma linguagem $L = L_1 \cup L_2$ também é regular.
- Prova: dados os autômatos finitos $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ que reconhece L_1 e $A_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconhece L_2 , construir $A = (Q, \Sigma, \delta, q_0, F)$ que reconhece L.

^{20/29} Teoremas de Fechamento Sobre as Operações Regulares

- **Teorema 2:** Se L_1 e L_2 são linguagens regulares, então uma linguagem $L = L_1 L_2$ também é regular.
- **Prova:** dados os autômatos finitos $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ que reconhece L_1 e $A_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ que reconhece L_2 , construir $A = (Q, \Sigma, \delta, q_1, F_2)$ que reconhece $L. \sqcap$

Teoremas de Fechamento Sobre as Operações Regulares

- **Teorema 3:** Se L é uma linguagem regular, L^* também é regular.
- **Prova:** dado o autômato finito $A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ que reconhece L, construir $B = (Q, \Sigma, \delta, q_0, F)$ que reconhece L^* . \square

Teoremas de Fechamento Sobre as Operações Regulares

- **Teorema 4:** Se L é uma linguagem regular, seu complemento \overline{L} também é regular.
- **Prova:** dado o autômato finito $A = (Q, \Sigma, \delta, q_0, F_A)$ que reconhece L, construir $B=(Q,\Sigma,\delta,q_0,F_B)$ que reconhece \overline{L} . Primeiramente completamos a especificação de A caso haja necessidade, ou seja, criamos um novo estado, chamado de estado nulo (ou sumidouro) e, a partir de cada estado existente, criamos novas transições sobre os símbolos do alfabeto faltantes para o estado nulo. Posteriormente, todos os estados de aceitação (finais) de A deverão tornar-se estados de não aceitação e, todos os estados de não aceitação de A deverão tornar-se estados de aceitação. Sendo assim, toda string w aceita por A, ou seja, $\hat{\delta}(q_0, w) \cap F_A \neq \emptyset$, não pode ser aceita por B e, toda string x aceita por B, ou seja, $\hat{\delta}(q_0, x) \cap F_B \neq \emptyset$, não pode ser aceita por A. \square

^{23/29} Teoremas de Fechamento Sobre as Operações Regulares

- **Teorema 5:** Se L_1 e L_2 são linguagens regulares, então uma linguagem $L = L_1 \cap L_2$ também é regular.
- **Prova:** pela lei de De Morgan, $\overline{L} = \overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$. Pelo **Teorema 1**, sabemos que a união de duas linguagens regulares é também regular e, pelo Teorema 4, também sabemos que o complemento de uma linguagem regular é regular. Sendo assim, como L_1 é regular, $\overline{L_1}$ também o é, assim como L_2 , sendo regular, $\overline{L_2}$ Íambém o é. Dado que pela lei de De Morgan $\overline{L}=\overline{L_1}$ U $\overline{L_2}$, L também é regular, pois $L = \overline{L}$.

Exercício e4.1: Considerando o ε -NFA a seguir:

- a) Calcule o ε -fechamento de cada estado;
- b) Forneça todas as strings de comprimento menor ou igual a três aceitas pelo autômato;
- Converta o ε -NFA em DFA.

	ε	а	b	С
$\rightarrow p$	Ø	{ <i>p</i> }	{q}	{r}
q	{ <i>p</i> }	{q}	{r}	Ø
* <i>Y</i>	{ <i>q</i> }	{r}	Ø	{ <i>p</i> }

Exercício e4.2: Considerando o ε -NFA a seguir:

- a) Calcule o ε -fechamento de cada estado;
- b) Forneça todas as strings de comprimento menor ou igual a três aceitas pelo autômato;
- Converta o ε -NFA em DFA.

	ε	а	b	С
$\rightarrow p$	{ <i>q</i> , <i>r</i> }	Ø	{q}	{r}
q	Ø	{ <i>p</i> }	{r}	{ <i>p</i> , <i>q</i> }
* <i>Y</i>	Ø	Ø	Ø	Ø

Exercício e4.3: Para cada linguagem abaixo, defina formalmente o seu respectivo ε -NFA e apresente o diagrama de transições:

a)
$$L = \{ a^i b^j c^k \mid i \ge 0, j \ge 0, k \ge 0 \}$$

O conjunto de strings que consistem em 01 repetido uma ou mais vezes ou 010 repetido uma ou mais vezes.

Exercício e4.4: Para cada item do exercício anterior, construa um DFA equivalente aplicando á remoção de arepsilon-transições.

Exercício e4.5: Considerando o ε -NFA a seguir, converta-o em um DFA equivalente.

	Е	а	b
$\rightarrow q_0$	{ <i>q</i> ₁ }	$\{q_0\}$	Ø
q_1	{q ₂ }	Ø	$\{q_1\}$
q_2	{ <i>q</i> ₃ }	{q ₂ }	Ø
* q3	Ø	Ø	{q ₃ }

Exercício e4.6: Considerando o ε -NFA a seguir, converta-o em um DFA equivalente.

Exercício e4.7: Considerando o ε -NFA a seguir, converta-o em um DFA equivalente.

Exercício e4.8: Considerando o ε -NFA a seguir, converta-o em um DFA equivalente. a, b

29/29 Bibliografia

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. 2. ed. Rio de Janeiro: Elsevier, 2002. 560 p.

RAMOS, M. V. M.; JOSÉ NETO, J.; VEGA, I. S. Linguagens Førmais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009. 656 p.

SIPSER, M. Introdução à Teoria da Computação. 2. ed. São Paulo: Cengage Learning, 2017. 459 p.

