

Capstone Project Presentation (December 19, 2023)

Team

André Oliveira

Mechanical Engineer

Data Scientist

Al Enthusiast

Purvi Parmar

Software Developer

Data-Driven Insights, Problem Solving, Text Analysis

Michael Schickenberg

Linguist/translator with strong technical background going NLP

Eric Martinez

Industrial Engineer

Data, Strategy and Al Enthusiast

Content Warning

The following presentation is about detecting toxicity in user content published on the internet. It may therefore contain **offensive and hateful language** with regard to religion, gender, race and other kinds of identity and **may be disturbing**.

Agenda

- Why, what, how?
- Insights in our data
- Baseline model and performance metric
- Techniques and final NLP system
- Next steps and further improvements

Why is toxicity a problem?

69 % reported experiencing a risk last year (2022)

Why is toxicity a problem?

42 % of people became less trusting

"Toxic online comments aren't just hurtful for users, they're also bad for business."

Our mission

Help to mitigate toxicity and ensure healthy dialogue online.

Solution

NLP system designed for detecting and flagging toxic comments by predicting a toxicity score.

Raw Data

What's driving toxicity?

Word Cloud

Most Frequent Sequences in Toxic Comments

Word Pairs

white, supremacist white, people mental, ill donald, trump black, people look, like white, men white, male sexual, assault white, house

Word Triplets

black, live, matter sexual, assault, women make, america, great nazi, white, supremacist president, unit, state ha, ha, ha racist, white, supremacist could, care, less lisa, bloom, also liberal, mental, disorder

Toxic Comments vs Non-Toxic Comments

Baseline Model

Raw data

Text vectorization algorithm: Bag of words

Classifier: Logistic regression

Performance Metric

Recall

(= how many of true toxic comments are detected in total)

Precision

(= how many of the comments predicted as toxic are really toxic)

F1 Score

(= harmonic mean of precision and recall)

Baseline Model Performance

Data Cleaning and Pre-Processing

- Standard procedure: remove HTML tags, URLs, punctuation, special characters etc.
- "Normalize" creative spellings: yuuuge → huge f*ck → fuck
- Lemmatize words

LSTM Long Short-Term Memory

Captures complex sequential patterns in data, while logistic regression handles simpler linear relationships between features.

LSTM Performance

LSTM outperforms logistic regression.

F1 score is boosted by 56 %.

Next Steps and Further Improvements

Integrate trained model into target applications.

 Address potential biases and unintended consequences using more complex models which might capture textual nuances and bias more effectively.

3. **Combine predictions** from multiple models to **improve prediction performance and reliability**.

Dashboard Prototype (Streamlit)

Thank you!

Obrigado!

André Oliveira

धन्यवाद!

Purvi Parmar

Danke!

Michael Schickenberg

¡Gracias!

Eric Martinez