## Exercise 8.1

- (a) I will disprove the statement with a counterexample. Let  $G = (\{a, b, c\}, \{\langle a, b \rangle, \langle b, c \rangle\})$ . It holds that  $\langle a, b \rangle \in S_G^1 = \{\langle a, b \rangle, \langle b, c \rangle\}$ , but it is not the case that  $\langle a, b \rangle \in S_G^2 = \{\langle a, c \rangle\}$ .
- (b)  $(\rightarrow)$  If  $n_1, n_2$  are mutually reachable, then there exist a walk from  $n_1$  to  $n_2$  and a walk from  $n_2$  to  $n_1$ . We can combine these walks and walk from  $n_1$  to  $n_1$ , which is a cycle containing  $n_1, n_2$ .  $(\leftarrow)$  If there exists a cycle involving  $n_1$  and  $n_2$ , there exists a walk  $\pi = \langle n_0, \dots, n_1, \dots, n_0 \rangle$ . We can decompose this walk by walking from  $n_1$  to  $n_2$ , which means  $n_1$  reaches  $n_2$ , and also walk from  $n_2$  to  $n_1$ , which means  $n_2$  reaches  $n_1$ . Hence  $n_1$  and  $n_2$  are mutually reachable.
- (c) If  $n_1$  and  $n_2$  are in the same strongly connected component, then they are mutually reachable. This implies that they are in a component, where for all vertices u, v in the component a walk (u, v) OR (v, u) exists, which means a reachability relation exists between u, v. This also means that they are in the same equivalence class of the reachability relation, which implies that they are in a weakly connected component.

## Exercise 8.2

- (a) We will prove this by contradiction. Assume a topological order exits for a Graph G = (N, A) and G is cyclic.
  - We look at three arcs  $u, v, w \in A$  which form a cycle and propose a topological order f(u) < f(v) < f(w).
  - But as these arcs form a cycle it also holds that f(w) < f(u) which contradicts our assumption of a topological order.
  - Hence G has to be asyclic if a topological order exists for G.
- (b) If G = (N, A) is asyclic, then a node  $v \in N$  exists which has outdeg(v) = 0. We now remove the node  $v \in N$  from G and the resulting  $G_{-1}$  will also by asyclic as removing nodes doesn't introduce cycles.
  - As  $G_{-1}$  is asyclic we can keep finding nodes with outdeg(v) = 0 and remove them until no nodes are left. Every  $u \in indegree(N)$  has to be removed before the node is removed and since each node is removed in an order where  $v < v_{-1}$  the arcs fulfill  $f(u) < f(u_{-1})$  which is a topological order.

## Exercise 8.3

- (a) Let  $L = \{v \in V \mid v \text{ is a leaf }\}$ . If we consider |V| = 3, we have a (root) vertex  $r \in V$  which is connected to exactly two leaf vertices, since G is a tree. If we want to add a new vertex n, we can only connect n to r, since connecting it to another vertex, i.e. a leaf, would result in a path in G which is longer than 2. All the newly added vertices are leaves since they are only connected to r and therefore have degree 1. To calculate the number of leaves we can therefore count all vertices which are not the root, i.e. |L| = |V| 1.
- (b) Let  $L = \{v \in V \mid v \text{ is a leaf }\}$ . If the longest path in G has length |V| 1, then G is a path graph, i.e. a graph with two leaves and where the other vertices have vertex degree 2. To justify this, consider the following: The longest path has to visit all vertices since |V| 1 = |E|. If

the graph had more than two leaves, then the longest path would not visit all vertices, since a path in a tree can only visit two leaves at most. Therefore the graph can only have 2 leaves, i.e. |L| = 2.

## Exercise 8.4



