- Gradient of a function (grad f(a), $\nabla f(a)$).
- Mean value theorem.
- C^0 -functions, C^1 -functions.
- The implicit function theorem.
- Local homeomorphisms, local diffeomorphisms, diffeomorphisms.
- The inverse function theorem.
- Immersions, submersions.
- Second-order and higher-order derivatives.
- Schwarz's lemma.
- Hessian matrix.
- C^{∞} -functions, smooth functions.
- Taylor-Young's formula.
- Generalized mean value theorem.
- Taylor-MacLaurin's formula.
- Taylor's formula with integral remainder.
- Faà di Bruno's formula.

39.11 Problems

Problem 39.1. Let $f: \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$f(A) = A^2.$$

Prove that

$$Df_A(H) = AH + HA,$$

for all $A, H \in M_n(\mathbb{R})$.

Problem 39.2. Let $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$f(A) = A^3$$
.

Prove that

$$Df_A(H) = A^2H + AHA + HA^2,$$

for all $A, H \in M_n(\mathbb{R})$.