

구해린 박희정 도예진 차진혁 신규화

1 중간 2 침종 단계 목차 3 최종 4 질입 시연

◆ 중간 단계

3D 맵 제작

3D 맵 제작

메인카메라 이동 및 자이로 구현

중 간 결 과

메인카메라 이동

전진

-> 어플리케이션 사용자의 위치에 따라 움직이고 있는 이용객 캐릭터가 눈앞에 제대로 출력되는지 확인하 기 위한 버튼

자이로 구현

-> quaternion회전을 이용하는 유니티 내장 자이로를 이용

방문객 캐릭터 구현

유니티 Prefab 사용

〈 새로 만든 데이터 〉

파일(F) 편진(F) 서식(O) 보기(A) 도움말(H 34.97421271 A0:E6:F8:34:8B:B6 86.86173698 20170925 132030 A0:E6:F8:34:8B:B6 86.86173698 34.97421271 20170925 132033 A0:E6:F8:34:8B:B6 83.25575681 31.4564004 20170925 132036 A0:E6:F8:34:8B:B6 83.25575681 31.4564004 20170925 132039 A0:E6:F8:34:8B:B6 84.83691768 37.22553889 20170925 132042 A0:E6:F8:34:8B:B6 87.49696282 35.41081668 20170925 132045 A0:E6:F8:34:8B:B6 87,49696282 20170925 132048 35.41081668 A0:E6:F8:34:8B:B6 84.96202946 36.1742537 20170925 13205 A0:E6:F8:34:8B:B6 36.1742537 20170925 132054 84.96202946 A0:E6:F8:34:8B:B6 84.01435224 37.06611403 20170925 A0:E6:F8:34:8B:B6 91.55312064 37.23593995 20170925 13210 A0:E6:F8:34:8B:B6 91.55312064 37.23593995 20170925 A0:E6:F8:34:8B:B6 83.48149848 31.86832465 20170925 A0:E6:F8:34:8B:B6 83.48149848 31.86832465 20170925 132110 A0:E6:F8:34:8B:B6 89.7878814 37.36204144 20170925 A0:E6:F8:34:8B:B6 32.98039433 20170925 84.41164018 A0:E6:F8:34:8B:B6 84.41164018 32.98039433 20170925 132119 A0:E6:F8:34:8B:B6 97.4109147 34.45038416 20170925 A0:E6:F8:34:8B:B6 97.4109147 34.45038416 20170925 132125 A0:E6:F8:34:8B:B6 86.54213905 34.86391225 20170925 132128 132131 A0:E6:F8:34:8B:B6 84.99319065 36.20987131 20170925 A0:E6:F8:34:8B:B6 36,2098713 20170925 132135 84.99319065 A0:E6:F8:34:8B:B6 83.26180883 35.58737378 20170925 132138 A0:E6:F8:34:8B:B6 83.26180883 35.58737378 20170925 132141

〈데이터이동〉

주어진 데이터는 사람의 위치가 3초 단위로 전송 -> 데이터를 그대로 사용 X

-> 시간 변화에 따라 사람이 자연스럽게 움직이는 것처럼 구현

일정 거리 밖 방문객 단순 표현

중 간 결 과

어플리케이션 이용자의 좌표, 바라보는 방향에 상관없이 항상 시야 안에서 일정 거리 이상 떨어진 방문객 수를 합산해야 함 Main camera의 하위 오브젝트로 사각형모양의 오브젝트를 추가해서 항상 camera를 [[다라다니게 하여 사각형 오브젝트의 좌표 안에 속한 이용객 데이터 수를 합산

숫자로 UI상에 9명 출력 (이후에는 그림으로 표현 예정)

VR에서 AR 전환

카메라 자이로 센서와 그라운드는 그대로 사용하고 배경에 핸드폰 카메라 화면을 투영

방위조정 Local좌표를 World좌표로 변환
이후의 김서방 찾기 기능을 위한 전체리

네트워크 구성

프로토콜

TCP/IP 연결

바이트 스트림으로 송수신, UTF-8 형식으로 읽고 씀

프로토콜

String 으로 저장된 데이터를 byte로 변환, stream으로 전송

Byte stream을 읽어 들여 다시 string의 형태로 저장해준다.

서버 구성

• 위치 정보를 행렬로 저장

• 프로토콜에 맞춘 문자열 생성

• 클라이언트로 전송

위치 정보를 행렬로 저장

- 비콘을 통해서 들어온 고객의 위치와 정보를 행렬 형태로 만드는 부분
- 한 단위시간(0.2초) 마다 행렬을 하나씩 만들어 디스크에 저장

ID	X	Υ	DATE	TIME
----	---	---	------	------

0,0	1,0	2,0	3,0	4,0	5,0		Width,0
0,1	ID	0	0	0	0	•••	0
0,2	0	0	0	0	ID	•••	0
0,3	0	0	0	0	0	•••	0
	•••	•••	•••	•••	•••	•••	•••
0.Height	0	0	ID	0	0	•••	ID

2 렌데링

프로토콜에 맞춘 문자열 생성

- · 001 아닌 원소가 있으면 그 원소의 인덱스는 x, y 좌표
- 001 아닌 값들을 모으면 ID의 존재 여부를 알 수 있음

0,0	1,0	2,0	3,0	4,0	5,0	•••	Width,0
0,1	ID=6	0	0	0	0	•••	0
0,2	0	0	0	0	ID	•••	0
0,3	0	0	0	0	0	•••	0
	•••	•••	•••	•••	•••	•••	•••
0,Height	0	0	ID	0	0	•••	ID

ID = 6 T/F = T X = 1 Y = 1

〈각 ID별 필요한 정보〉

프로토콜에 맞춘 문자열 생성

• 한 단위시간별 (ID, T/F, X, Y) * 30 을 하나의 행으로 만들어 저장한다

클라이언트로 전송

• 리스트의 한 행을 string으로 만들어 전송

" 1 0 0 0 2 0 0 0 3 0 0 0 4 1 59.6 26.7 5 0 0 0 ······ 28 0 0 0 29 1 100.5 30.7 30 0 0 0 "

클라이언트

ID 구조체

Real Obj X Y

Real: 객체 존재여부

Obj: 해당 아이디의 객체

X : 객체의 X 좌표 Y : 객체의 Y 좌표

구조체 ID로 구성된 배열에 서버로 부터 받은 데이터를 저장한다.

오브젝트 풀링

많은 객체를 렌더링 할 때 Instance, Destroy를 이용해 렌더링을 하면 과부하가 일어남

오브젝트 풀링

만흉의 원인 : 가비지 컬렉터

가비지 컬렉터(GC)는 언제 일어날지 모른다.

- Mono의 동적 메모리 관리 때문에, 메모리 해제를 위해 GC가 자동 호출 된다.
- GC는 언제 일어날지 모른다.
- GC가 일어나면, 게임이 멈추는 현상(랙)이 발생하게 된다.
- 동적 메모리 해제가 가능한 일어나지 않도록 하는것이 GC 관리의 핵심

오브젝트 풀링

- 오브젝트(or 프리팹)의 동적 생성과 해제는 부하가 크다.
- 오브젝트가 해제되면, 언젠가는 GC가 동작하여 정리 한다 = 랙이 발생
- 오브젝트를 풀을 만들어 미리 많이 만들어 두고, 활성화/비활성화로 사용한다.
- 풀에서 가져와서 사용하고, 사용이 끝나면 비활성화 상태로 풀에 반환
- 오브젝트 풀링 사용은 선택이 아닌 필수!!

오브젝트 풀림을 사용해 렌더링 구현

오브젝트 풀링

ID 구조체

ID 구조체에서 Real 값이 true 이면 객체를 켜주고 false면 객체를 꺼준다. 객체가 켜지면, 객체에 저장된 X, Y 좌표로 객체를 이동시켜 준다.

RTLS 기반 사용자 이동

기존 계획 사용자의 비콘의 위치를 실시간으로 회사에서 제공받아서 카메라를 이동

현재 구현 상황

이후에 회사에서 데이터를 받았을 시 바로 적용할 수 있도록 구현 현재는 사용자를 고정시킨 상태

위치 데이터파일 실시간으로 서버에서 전송

UI 구현

기능을 선택할 수 있는 메뉴 버튼

미니 맵 구현

-> 다른 오브젝트는 미니 맵에 안 나타나도록 해주고, 김서방 프리팹에 하위로 들어가있는 오브젝트만미니 맵에 띄워지도록 한다.

기 능 구 현

UI 구현

앱이 종료됨

타임머신 (시간대 선택)

기 구 현

타임머신 과정

현재 데이터: 13시 20분 30초 ~ 14시 14분 56초

원하는 시간대를 선택 -> 확인을 누름 -> 시간의 값을 string형의 hhmmss값으로 생성 -> 서버로 넘겨줌 -> 현재 시간이 선택한 시간으로 바뀜

ID 선택 -> 서버로 ID를 전송

서버에서는 김서방의 위치를 보내줌

김서방 찾기 (선택한 사람 찾기)

김서방 찾기 과정

김서방 찾기 (선택한 사람 찾기)

기 늠 구 현

김서방 찾기 알고리즘

- · 유니티에 내장된 Compass를 이용
- 카메라가 바라보는 방향 정보를 string 값으로 서버에 전송

- · y > 0.5 -> 왼쪽 화살표
- · y < 0.5 -> 오른쪽 화살표
- · 0.5 ≤ y ≤ 0.5 -> 없음

정보 ON/OFF

정보 ON/OFF 방법

3D text를 객체위에 띄우고 LookAtConstraint를 이용해서 빌보드를 구현

빌보드: 카메라가 움직이거나 회전을 해도 카메라를 향해서 바라보고있는 오브젝트

