

Lab Experiment #8:

Simple AC Circuits: Reactance and impedance

David McNeary
Partner: Glendy Lara

PHYS 220BL 11/1/2021

Data

Inherent values of elements

R (Ω)	Internal R of inductor (Ω)	C (F)	
$2.728 imes 10^3 \Omega$	136.7Ω	21.45nF	

Current for 4 circuit configurations:

Current (A)	1V	2V	3V	4V	5V	6V	7V
Resistor	$0.30 imes 10^{-3} ext{A}$	$0.66 imes 10^{-3}\mathrm{A}$	$1.03 imes 10^{-3} ext{A}$	$1.39 imes 10^{-3} ext{A}$	$1.75 imes 10^{-3} ext{A}$	$2.11 imes 10^{-3} ext{A}$	$2.47 imes 10^{-3} \mathrm{A}$
Inductor	$1.40 imes 10^{-3} ext{A}$	$2.82 imes 10^{-3} ext{A}$	$4.25 imes 10^{-3} \mathrm{A}$	$5.67 imes 10^{-3}\mathrm{A}$	$7.10 imes 10^{-3} ext{A}$	$8.52 imes 10^{-3} ext{A}$	$9.74 imes 10^{-3} \mathrm{A}$
Capacitor	$0.09 \times 10^{-3} \mathrm{A}$	$0.22 imes 10^{-3} \mathrm{A}$	$0.35 imes 10^{-3} \mathrm{A}$	$0.48 imes 10^{-3} ext{A}$	$0.61 imes 10^{-3} ext{A}$	$0.75 imes 10^{-3} \mathrm{A}$	$0.88 imes 10^{-3} ext{A}$
RLC	$0.09 \times 10^{-3} \mathrm{A}$	$0.22 imes 10^{-3} \mathrm{A}$	$0.35 imes 10^{-3} \mathrm{A}$	$0.49 imes 10^{-3} ext{A}$	$0.62 imes 10^{-3} ext{A}$	$0.76 imes 10^{-3} ext{A}$	$0.90 imes 10^{-3} ext{A}$

Resonance

Maximum current: $1.58 \times 10^{-3} \mathrm{A}$ Resonance frequency $f = 4000 \mathrm{Hz}$

Calculations and plots

$$R=2.76 imes10^3\Omega, \sigma_R=4.73\Omega$$

 $X_C = 7.59 imes 10^3 \Omega, C = 2.10 imes 10^{-8} F$

 $Z_{exp}=7.406 imes10^3\Omega$

 $Z_{calc}=7.409 imes10^{3}\Omega,$

 $\Delta Z = 3\Omega,$

%~error:0.0405%

 $f_{calc}=3310 {
m Hz},$

 $\Delta f = 690 \mathrm{Hz},$

%~error:18.9%

Questions

- 1. The given values $R=2700\Omega$, $L\approx 0.106~{\rm H~at~}1000{\rm Hz}$, and $C\approx 0.02\mu F$ compare to the experimental values of $R=2.76\times 10^3\Omega$, $L=0.110~{\rm H~at~}1000{\rm Hz}$, and $C=0.0210\mu F$. Therefore, the values do closely agree.
- 2. The calculated percent error using correct significant figures is zero; taking a leap and estimating beyond the accuracy of our calculations, the percent error using the next decimal place is still only 0.0405%. Therefore, the value Z_{exp} of the total impedance of the experimental circuit agrees with the value Z_{calc} of the calculated impedance using individual values R, L, and C.

Data sheet + Quiz

8.6 Data sheet

Name: David McNewy	Date: 10/26/21	Instructor's initials:
Partner: Glendy Lara	Group No:	A STATE OF THE STA

Procedure and Data

1. Record the values of:

$R(\Omega)$		Internal Resistance of Inductor (Ω)	
	2,728 K sz	136.7 1	21.45nF

2. Record the current for the 4 cases at 1 kHz:

 $Z_{\rm exp} = 7.466 \times 10^3 \, \Omega \, \sigma_{\rm Z} =$

Current (A)	1V	2V	3V	4V	5V	6V	7V
Resistor	0.30mA	0.66mA	1.03mA	1.39mA	1.75mA	2.11mA	2.47mA
Inductor	1.40m A	7.87mA	4.25mA	5.67mA	7.10mA	8.52mA	9.19MH
Capacitor	0.09.4	0.2ZmA	035mA	0.48mA	0.61mA	0.75mA	0.88MA
RLC	0.09mA	0.22nA	0.35mA	0.49mA	0.62mA	0.76mA	0.90mA

3. Resonance. Set the voltage to 5 V. Vary the frequency until the current is maximum.

Maximum current=	1.58mA	Resonance	Frequency	4000 Hz
		1] -		

Calculation

1. Plot voltage vs. current for resistor. From the slope determine the resistance R.

2. Plot voltage vs. current for inductor. From the slope determine the reactance X_L .

$$X_L = 713 \text{ L} = 0.110 \text{ H} \sigma_L =$$

3. Plot voltage vs. current for capacitor. From the slope determine the reactance X_C.

$$X_{\rm C} = 7.59 \times 10^3 \, \text{c} = 2./0 \times 10^{-8} \, \text{F} = 0.00 \, \text{c} = 0.00 \, \text{c}$$

4. Plot voltage vs. current for RLC. From the slope determine the resistance Z.

5. Calculate resonance frequency using eqn 8.21 and compare with the measured value.

$$f_{calc} = 3310 \text{ Hz}$$
 $\Delta f = 690 \text{ Hz}$ % error 18.9%