Evariste Session on Proving Methods

Evariste, the math club of IIITD, is hosting a session on Proofs and Proving Methods.

Timing and Zoom Link

The session is on 10th Feb, Thursday at 6:00pm.

The link for the same is:

https://iiitd-ac-

in. zoom. us/j/91848888555? pwd = and 3bVpyS1hsSC8yeC9SQjJTeXdOZz09

Meeting ID: 918 4888 8555

Passcode: 565410

Lemma

Let A be an $m \times n$ matrix in reduced echelon form, having k pivot columns, where $1 \le k \le m$. Then $\{e_1, \dots, e_k\}$ is a basis for Col A.

firt k wlumms

Lemma

Let A be an $m \times n$ matrix and let A' be a matrix obtained by performing a row operation on A. Any <u>linear dependence relation</u> which holds between the columns of A also holds between the

The columns of A are linearly independent if and only if the columns of A' are linearly independent.

corresponding columns of A', and vice versa.

A' = EPEP-1 . . - E, A

Theorem

Let A be an $m \times n$ matrix. The pivot columns of A form a basis for Col A.

First proof: This is an obvious conclusion of the two preceding lemmas.

Second proof: (et f) be the ref of

Then there exists an

invertible matrix E such that

Let A = Ca... Columns. Chip (Ciz) - Chip pinot wimm of A, Je Ha PI-ED- ED- EDD EDD - EDD e, - Eai, e= Eai, e= Eaik

et be col A. Ther - Calous Ci, - . . . 5 MM At b= C, A, + C, A2 + - - + (nAn LED-CIEA, + C2 EO2 + E PI

... There exist scalars d, , - , dpeR End that Eb-dert. + drer

Colfic Span Sain..., air Clearly Sain, ..., aix of Colf Span Shi,, ---, Might Colf ... Colf = Span Sai, ..., airs.

Mext we swow ai, ..., air So suppose d'ai, + · · · + d'roip= v for somm d', - - , dreir-Ther XIEA; + . . - + Op Eair = 0 => XIEI + . . . - I XIER = 0.

$$=) \quad \mathcal{O}_1 = \mathcal{O}_2 - - - = \mathcal{O}_R = 0$$

Theorem 4, §1.4 (course textbook)

Theorem

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- **a** For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- **b** Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- The columns of A span \mathbb{R}^m . \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
- d A has a pivot position in every row.

The equivalence of (a), (b) and (c) is obvious.

- We show the equivalence of (c) and (d).
- Idea: The columns of A span \mathbb{R}^m if and only if the columns of the RREF of A span \mathbb{R}^m .

Prost dain. Let A be RREFA. Then I av invertible matrix E Such that First we show that col A=R

D=C,Ea, -- -- -- CnEan $= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}$

Conversely, let by Ma College - Prince -) scalars d,, En N Hat =) Eb = d, Ea, + . . - + dn En E col A' - RM

= The pirot wellows of A SPan R. =) RM = Span SC1, ..., CR3 Whene Ci, ..., ex an the Pivot columns DP.

-> R - M -> There is a pivot
in every now

(d)=)(c): Let R. bei the number of Pivot To there is a pivot in every mo, Ther R=W. =) 3e,,..., em? is a basis of cold =) COLA = RM

Invertible Matrix Theorem (more parts)

Let A be an $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
 - **b.** A is row equivalent to the $n \times n$ identity matrix.
 - **..** A has *n* pivot positions.
 - $abla_{\mathbf{A}}\mathbf{I}$ The equation $A\mathbf{x}=\mathbf{0}$ has only the trivial solution.
 - The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
 - **1.** There is an $n \times n$ matrix C such that CA = I.
 - There is an $n \times n$ matrix D such that AD = I.
 - A^T is an invertible matrix.
 - The columns of A form a linearly independent set.
 - **The columns of** A span \mathbb{R}^n .

Proof - continued from earlier

Conditions (d) and (i) are equivalent.

Conditions (e) and (j) are equivalent.

Definition

Let V be a vector space. Let S be an infinite subset of V. We say S is a *linearly independent* set if every finite subset of S is linearly independent.

Proposition

Let V be a vector space, and let \underline{S} be a linearly independent subset of V. Any subset of S is linearly independent.

What is the contrapositive?

Prov. (et S= Su, , , , , , , , , ,) bla linearly independent subset let ? Vij, . - , Vig be any Subset of S, where REP and

1 \(\) 6931,122,233 (=0 Suppres C7 V2 + C3 V3 = 0 (1V1+ (2V2+5V3 =0 (i, Vi, + Ci, Vi, + - - + Ci, Vip = 0 for some scalars Ci, ..., CiRER. J. 631, ..., igg

