Network Layer: Data Plane

Overview of Network Layer

- What's Inside a Router?
- The Internet Protocol: IPv4, Addressing, NAT IPv6
- Generalized Forwarding and SDN
- Middleboxes
- Summary

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020
http://gaia.cs.umass.edu/kurose_ross

Network layer: our goals

- •understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - addressing
 - generalized forwarding
 - Internet architecture

- instantiation, implementation in the Internet
 - IP protocol
 - NAT, middleboxes

Network-layer services and protocols

- transport segment from sending to receiving host
 - sender: encapsulates segments into datagrams, passes to link layer
 - receiver: delivers segments to transport layer protocol
- network layer protocols in every Internet device: hosts, routers
- routers:
 - examines header fields in all IP datagrams passing through it
 - moves datagrams from input ports to output ports to transfer datagrams along end-end path

Two key network-layer functions

network-layer functions:

- forwarding: move packets from a router's input link to appropriate router output link
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane:

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components *in each and every router* interact in the control plane

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for *individual* datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a *flow* of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in interpacket spacing

Network-layer service model

Network Architecture		Service Model	Quality of Service (QoS) Guarantees ?				
			Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	

Internet "best effort" service model

No guarantees on:

- i. successful datagram delivery to destination
- ii. timing or order of delivery
- iii. bandwidth available to end-end flow

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees ?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes	
	ATM	Available Bit Rate	Guaranteed min	no	yes	no	
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes	
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no	

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model

Network Layer: Data Plane

Overview of Network Layer

- What's Inside a Router?
- The Internet Protocol: IPv4, Addressing, NAT,
 IPv6
- Generalized Forwarding and SDN
- Middleboxes
- Summary

Video: \$\ointimes 2020, J.F. Kurose, All Rights Reserved

Powerpoint: \$1996-2020, J.F. Kurose, K.W. Ross, All Rights Reserved

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook:

Computer Networking: A TopDown Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020
http://gaia.cs.umass.edu/kurose_ross

