



**Parts Not Suitable**

**For Additional**

**End-Of-Life Products**

**Figure 3-14. M68000**



# ADDENDUM TO MC68341 Integrated Pro

**April 19, 1995**

This addendum to the initial release of the MC68341 text, plus additional information not included in the or is maintained on the AESOP BBS, which can be reached at (512)891-3650. Configure modem for up to 14.4Kbaud. Modem should support VT100 emulation. Internet access is available at [129.38.233.1] or through the World Wide Web at ht

## 1. Signal Index

On page 2-4, Table 2-4, the QSPI serial clock QSCL and CS2-5, FC3/DTC is an output-only signal.

## 2. Operand Alignment

On page 3-9, last paragraph, change the first two listed instructions) to be word-aligned. That is, word and long-word operands do not have to be long-word aligned.

## 3. WE on Fast Termination

On page 3-17, Figure 3-6, UWE and LWE do not as

## 4. Write Cycle Timing Waveforms

On page 3-25, the M68300 write cycle timing diagram shows CSx, UDS/LDS, and UWE/LWE. Replace these figures with CSx, UDS/LDS, and DTC/DSACK.

## 5. Additional Note on MBAR Decoding

Add to the CPU Space Cycles description on page 3-25: block from \$3FF00-3FFFF to the SIM module. An instruction for any access to this range, but selection of specific

Accesses to the MBAR register at long word \$3FF00-3FFFF require 3 cycles. Users should directly access only the MBAR register via LPSTOP broadcast access to \$3FFE. The remaining memory should not be accessed.

This document contains information on a product under development. Motorola



**Figure 3-12. M68300**

**Table 4-2. System Frequencies**

| Y  | CLKOUT (kHz) |       |       |       | VCO (kHz) |
|----|--------------|-------|-------|-------|-----------|
|    | W = 0        |       |       |       | W = 0     |
|    | Z = 0        |       | Z = 1 |       | Z = x     |
|    | X = 0        | X = 1 | X = 0 | X = 1 | X = x     |
| 0  | 16           | 33    | 131   | 262   | 524       |
| 1  | 33           | 66    | 262   | 524   | 1049      |
| 2  | 49           | 98    | 393   | 786   | 1573      |
| 3  | 66           | 131   | 524   | 1049  | 2097      |
| 4  | 82           | 164   | 655   | 1311  | 2621      |
| 5  | 98           | 197   | 786   | 1573  | 3146      |
| 6  | 115          | 229   | 918   | 1835  | 3670      |
| 7  | 131          | 262   | 1049  | 2097  | 4194      |
| 8  | 147          | 295   | 1180  | 2359  | 4719      |
| 9  | 164          | 328   | 1311  | 2621  | 5243      |
| 10 | 180          | 360   | 1442  | 2884  | 5767      |
| 11 | 197          | 393   | 1573  | 3146  | 6291      |
| 12 | 213          | 426   | 1704  | 3408  | 6816      |
| 13 | 229          | 459   | 1835  | 3670  | 7340      |
| 14 | 246          | 492   | 1966  | 3932  | 7864      |
| 15 | 262          | 524   | 2097  | 4194  | 8389      |
| 16 | 279          | 557   | 2228  | 4456  | 8913      |
| 17 | 295          | 590   | 2359  | 4719  | 9437      |
| 18 | 311          | 623   | 2490  | 4981  | 9961      |
| 19 | 328          | 655   | 2621  | 5243  | 10486     |
| 20 | 344          | 688   | 2753  | 5505  | 11010     |
| 21 | 360          | 721   | 2884  | 5767  | 11534     |
| 22 | 377          | 754   | 3015  | 6029  | 12059     |
| 23 | 393          | 786   | 3146  | 6291  | 12583     |
| 24 | 410          | 819   | 3277  | 6554  | 13107     |
| 25 | 426          | 852   | 3408  | 6816  | 13631     |
| 26 | 442          | 885   | 3539  | 7078  | 14156     |
| 27 | 459          | 918   | 3670  | 7340  | 14680     |
| 28 | 475          | 950   | 3801  | 7602  | 15204     |
| 29 | 492          | 983   | 3932  | 7864  | 15729     |
| 30 | 508          | 1016  | 4063  | 8126  | 16253     |
| 31 | 524          | 1049  | 4194  | 8389  | 16777     |

## 6. Additional Notes on CPU Space Ad

On page 3-31, Figure 3-16, the BKPT field for the Break instruction and the T bit is on bit 1. The Interrupt Acknowledge LEV

## 7. Breakpoints

On page 3-31, the last paragraph implies that either a hardware or software breakpoint can be used to insert an instruction. As mentioned earlier, a hardware breakpoint can be used to insert an instruction on the bus.

## 8. Interrupt Latency

Add to the Interrupt Acknowledge Bus Cycles section  
prefetch of the first instruction in the interrupt handler is  
clocks (using 2-clock memory and autovector termination)  
(DIVS.L with worst-case <fea>) = 108 clocks worst case  
shorter interrupt response time the latency can be reduced  
use of longer instructions (specifically DIVS.L, DIVU.L, MULS.L)

## 9. Interrupt Hold Time and Spurious Interference

Add to the Interrupt Acknowledge Bus Cycles section of the specification:  
asserted until the corresponding IACK cycle; otherwise, the interrupt may be ignored entirely. This is also true for level sensitive external interrupts. When using either the AVEC signal or the AVEC register, since the interrupt is asserted on the IMB if the external interrupt at that level has been asserted, the interrupt must be asserted for at least one clock cycle. The interrupt must be asserted only have to be held a minimum of 1.5 clocks - see the INTERRUPT PIR REGISTER (PIR).

Note that the level 7 interrupt is also level sensitive, and interrupt is unique in that it cannot be masked - another IACK cycle by negating IRQ7 and reasserting, even though level 7.

## 10. Typos in IACK Cycle Timing Wave

On page 3-38, Figure 3-21, the text “VECTOR FROM FROM 8-BIT PORT” should be on D15-D8. The significant byte of the data port.

## 11. Additional Note on Internal Autov

Add to the Autovector Interrupt Acknowledge Cycle set, autovectored either by the AVEC register programming or started and terminated internally. The interrupting device's resulting operation is undefined.

## 12. Additional Notes on Retry Termin

On page 3-42, Table 3-4: When HALT and BERR are asserted during a bus cycle, relative timing of HALT and BERR must be considered.



## 38. Additional Notes on DMA Feature

In the feature set listed on page 6-1, bullet six is “Operands”. This packing is for transfers between different ports e.g. Byte <> Word transfers. The DMA controller does not have a problem of residual bytes left in the controller when a change in address occurs.

## 39. Additional Note on Internal Request Generation

Add to the Internal Request Generation section on page 6-1:  
 If  $\overline{DREQ}_x$  and  $\overline{DONEx}$  are not active as outputs during transfers,  $\overline{DONEx}$  is asserted during the transfer.  $\overline{DONEx}$  is active during operation if asserted - pull up if not used.

## 40. Additional Note on DMA Transfer

Add to the External Request Generation section beginning on page 6-1:  
 Synchronization and IMB bus arbitration activity before the assertion of  $\overline{DREQ}_x$  will preempt the next CPU bus cycle if it is recognized during the current bus cycle, unless the current cycle is not the last cycle of the transfer. Operand transfers and RMC read/write sequences are not arbitrated from the CPU until the complete operation is completed, resulting in multiple bus cycles.

For a  $\overline{DREQ}_x$  assertion during an idle bus period, bus state is determined by the clock falling edge which  $\overline{DREQ}_x$  is recognized on. The bus state is determined by the falling edge that  $\overline{AS}$  for the transfer. See table for various memory speeds.

### DREQ Latency (Clocks) vs. Bus Speed

| Access Type | Maximum DREQ Latency (Clocks) |    |    |
|-------------|-------------------------------|----|----|
|             | 16-Bit Bus Clocks/Bus Cycle   |    |    |
|             | 2                             | 3  | 4  |
| Longword    | 7                             | 9  | 11 |
| RMC (TAS)   | 10                            | 12 | 14 |

## 41. Additional Note on Burst Transfer

On page 6-5, replace the 2nd paragraph of 6.3.2.1 External Requests with:  
 If  $\overline{DREQ}_x$  is asserted during a burst transfer, it must be negated one clock before the end of the last DMA bus cycle of the burst transfer. Also,  $\overline{DREQ}_x$  must be negated two clocks before the start of the next burst transfer. An idle clock between that transfer and the following CPU transfer is required.

## 42. Additional Note on Cycle steal DMA

Add to the External Cycle Steal Mode description on page 6-1:  
 The external cycle steal mode is supported by the MC68341. However, for some 2-clock accesses using cycle steal mode, there is incomplete overlap of the DMA transfer with internal IMB bus access. There are two cases: 1) single address 2-clock transfers and 2) dual address transfers. The transfers are completely overlapped for all other cases.

Table 4-2. System Frequencies from 32 MHz to 63 MHz

| Y  | CLKOUT (kHz) |       |       |       | VCO (kHz) |
|----|--------------|-------|-------|-------|-----------|
|    | W = 0        |       |       |       | W = 0     |
|    | Z = 0        |       | Z = 1 |       | Z = X     |
| X  | X = 0        | X = 1 | X = 0 | X = 1 | X = X     |
| 32 | 541          | 1081  | 4325  | 8651  | 173024    |
| 33 | 557          | 1114  | 4456  | 8913  | 178264    |
| 34 | 573          | 1147  | 4588  | 9175  | 183504    |
| 35 | 590          | 1180  | 4719  | 9437  | 188744    |
| 36 | 606          | 1212  | 4850  | 9699  | 193992    |
| 37 | 623          | 1245  | 4981  | 9961  | 199232    |
| 38 | 639          | 1278  | 5112  | 10224 | 204472    |
| 39 | 655          | 1311  | 5243  | 10486 | 209720    |
| 40 | 672          | 1343  | 5374  | 10748 | 214960    |
| 41 | 688          | 1376  | 5505  | 11010 | 220200    |
| 42 | 705          | 1409  | 5636  | 11272 | 225440    |
| 43 | 721          | 1442  | 5767  | 11534 | 230696    |
| 44 | 737          | 1475  | 5898  | 11796 | 235936    |
| 45 | 754          | 1507  | 6029  | 12059 | 241176    |
| 46 | 770          | 1540  | 6160  | 12321 | 246424    |
| 47 | 786          | 1573  | 6291  | 12583 | 251664    |
| 48 | 803          | 1606  | 6423  | 12845 | 256904    |
| 49 | 819          | 1638  | 6554  | 13107 | 262144    |
| 50 | 836          | 1671  | 6685  | 13369 | 267392    |
| 51 | 852          | 1704  | 6816  | 13631 | 272632    |
| 52 | 868          | 1737  | 6947  | 13894 | 277872    |
| 53 | 885          | 1769  | 7078  | 14156 | 283120    |
| 54 | 901          | 1802  | 7209  | 14418 | 288360    |
| 55 | 918          | 1835  | 7340  | 14680 | 293600    |
| 56 | 934          | 1868  | 7471  | 14942 | 298840    |
| 57 | 950          | 1901  | 7602  | 15204 | 304096    |
| 58 | 967          | 1933  | 7733  | 15466 | 309336    |
| 59 | 983          | 1966  | 7864  | 15729 | 314576    |
| 60 | 999          | 1999  | 7995  | 15991 | 319824    |
| 61 | 1016         | 2032  | 8126  | 16253 | 325064    |
| 62 | 1032         | 2064  | 8258  | 16515 | 330304    |
| 63 | 1049         | 2097  | 8389  | 16777 | 335544    |

### NOTES:

- Some W/X/Y/Z bit combinations shown may select a CLKOUT frequency other than those shown. See **Section 11 Electrical Characteristics** for CLKOUT and VCO frequency ranges.
- Any change to W or Y results in a change in the VCO frequency.

## 25. Additional Note on PORTA/B Output

Add to the External Bus Interface Operation description: position after the S4 falling edge for the internal write to the ports at roughly the same time DS negates for the data specified in the Electrical Specifications.

## 26. RTC Memory Map

The RTC register offsets shown on page 4-21 are incorrect. Addresses within the RTC can be accessed as either bytes or offset \$0CE. Note that RTC registers marked S/U are reserved in user mode.

| ADDR | FC  | 15                       | 8         |
|------|-----|--------------------------|-----------|
| 0C0  | S   |                          | RTC INTER |
| 0C2  | S/U | MINUTES (MIN)            |           |
| 0C4  | S/U | DATE                     |           |
| 0C6  | S/U | MONTH                    |           |
| 0C8  | S   | RTC CONTROL/STATUS (RCR) |           |
| 0CA  | S/U | MINUTES ALARM (MINA)     |           |
| 0CC  | S/U | DATE ALARM (DATEA)       |           |
| 0CE  | -   | RESERVED                 |           |

## 27. MBAR Register Reset Values

On page 4-22, the reset values for MBAR bits 31-12 are

## 28. MBAR AS7 Bit and IACK Cycles

On page 4-23, the second code sequence initializes the address decode for the internal 4K register block from reset. This prevents the register block decode of \$FFFFFxxx from interacting with the vector table, possibly corrupting the vector number returned. Normal operation is not affected by this change.

Early versions of the MC68330 User's Manual (original Rev. 1 releases) did not show AS7 set. Code which was to be checked for this problem when porting to the MC68330, MC68330 and/or MC68340.

## 29. Additional Note on VCO Overshoot

On page 4-30 place the following note under the Y-bits description:

A VCO overshoot can occur when increasing the operating register. The effects of this overshoot can be controlled by:

1. Write the X bit to zero. This will reduce the previous overshoot.
2. Write the Y bits to the desired frequency divided by 2.
3. After the VCO lock has occurred, write the X bit to one to return the clock frequency to the desired frequency.

Steps 1 and 2 may be combined.

## 30. RCCR Initialization

Add to the RCCR description on page 4-41: the RCCR register is initialized to an arbitrary value on initial powerup of the RTC. Calibration is required before beginning the calibration process, since RTC operation is not guaranteed until the RCCR is initialized - on current silicon it always reads 0, and should be initialized to a non-zero value.

## 31. RCCR Typos

On page 4-42, delete the first description for RCD4-RCD5.

## 32. MONTH Register Range

The valid range for the MONTH register on page 4-43 is 0 to 11, responding to December.

## 33. SIM41 Example Code

On page 4-49, about mid-page, change "MOVEQ #8-1" to "MOVEQ #8-11".

## 34. Bus Error Stack Frame

On page 5-61, in the next-to-last paragraph, delete "(the stack space allocated for the stack frame is 16 words, and the SSW is located at SP+12)". The stack space allocated for the stack frame is 16 words, and the internal count register and SSW remains the same. The stack frame location SP+10 and SP+12 will contain invalid data. To determine the faulted exception frame, look at the first nibble of the faulted exception frame, look at the first nibble of the four-word frame, and \$2 for the six-word frame.

## 35. DSO Timing

On page 5-71, Figure 5-23, DSO transitions one clock later than the IPIPE transition.

## 36. Typo on BDM RSREG Command

On page 5-77, Section 5.6.2.8.6, RSREG register bit #8 is labeled "RSREG bit #8".

## 37. IPIPE Timing

On page 5-88, Figure 5-29 shows the third IPIPE assertion occurring after two additional 0.5 CLKs. IPIPE transitions occur after the fall of the IPIPE# signal.

|                                           |     |                        |
|-------------------------------------------|-----|------------------------|
| * Timer register offsets from timer1 base |     |                        |
| IR                                        | EQU | \$4 interrupt register |
| CR                                        | EQU | \$6 control register   |
| SR                                        | EQU | \$8 status register    |
| CNTR                                      | EQU | \$A counter register   |
| PRLD1                                     | EQU | \$C preload register   |
| COM                                       | EQU | \$10 compare register  |

On page 8-27, change the last code line from "CLR.W S TC interrupt status bits are cleared by writing a "1" to cleared without affecting the other bits.

On page 8-28, second code line down, the "MOVE.W #\$ initialized vector - change the \$0F to a user-definable value just past mid-page.

## 61. MC68341 BSDL File

An electronic copy of the BSDL file for the MC68341 is part of this document for information on accessing AESOP.

## 62. Additional Note on Oscillator Layout

Add to the Processor Clock Circuitry (page 11-1) and S short connections and place external oscillator component through or near the oscillator circuit, especially high frequency above on DREQ1 and serial oscillator for page 7-5). a separate trace for ground to the oscillator so that it does

## 63. Recommended 32KHz Oscillator Circuity

On page 11-2, Figure 11-2, a 10M resistor can be subst



Figure 11-2. Sample Oscillator Circuity

## 64. SRAM Interface

The SRAM interface shown in Figure 11-5 on page 11-4 LWE do not assert for 2-clock writes.

## 43. Additional Note on Cycle Steal

For the external cycle steal mode description on page 6-10, hold off until after the channel is started. If DREQx is asserted before the channel start bit, an internal DREQx assertion is generated to start.

## 44. DREQx Negation on Burst

On page 6-8, Figure 6-5, and on page 6-10, Figure 6-7, (one clock earlier than shown) to prevent another DMA 6-5 on Burst Transfer DREQx Negation.

## 45. DREQ Assert Time

On page 6-21, Figure 6-13: The second DREQx assertion antecede recognition on 2 consecutive clock falling edges. Note 1 should be deleted.

## 46. Fast Termination and Burst Request

On the last paragraph of page 6-21, delete the reference incorrectly - it actually shows operation with fast termination. The second DREQx signal should be held for 2 consecutive clock edges. Note 1 of Figure 6-14 should be deleted.

## 47. Typo in DAPI

On page 6-26, for DAPI = 1, the DAR is incremented ac

## 48. Additional note on DMA limited range

On page 6-27, in the BB-Bus Bandwidth Field: The DMA is the bus master (each channel has its own counter). relinquish the bus before completion of the active count. Higher priority requests could come from 1) the other CPU32 core (if either the interrupt mask level in the SR channel's ISM level), or 3) an external bus request. When releases the bus, and the "idle" count increments regard

## 49. Configuration Error

The Configuration Error description paragraph at the top of error results when 1) either the SAR or DAR contains an invalid value, 2) the SAR is greater than the value in the CCR, or 2) the BTC register does not match the last

## 50. Additional Note on DMA Interrupt

Add to the Interrupt Register description on page 6-31: When interrupt level, channel 1 is higher priority than channel

## 51. Single Address Enable

6-33 SE-Single Address Enable: The note "used for in 68341 does not support intermodule single address transaction." should be removed.

## 52. Code Examples - Immediate Addressing

On pages 6-40 through 6-44 make the following changes:  
MOVE.L SARADD,DMASAR1(A0) should be MOVE.  
MOVE.L DARADD,DMADAR1(A0) should be MOVE.  
MOVE.L NUMBYTE,DMABTC1(A0) should be MOVE.

## 53. Serial Oscillator Problems with DI

Add to the Crystal Input or External Clock (X1) section of the oscillator section (page 1MHz) with excessive undershoot on  $\overline{DREQ1}$  can result in oscillation on the X1 pin, damping out oscillation. Avoid routing  $\overline{DREQ1}$  directly to the oscillator section. Instead, use termination techniques such as series termination on the signal and accompanying undershoot.

## 54. Additional Note on RTSx operation

Add to the RTSA and RTSB descriptions on page 7-6: The RTSx signal is a logic "0" when set, and a logic "1" when cleared.

$\overline{RTSx}$  can be set (output logic level 0) by any of the following:

- Writing a "1" to the corresponding bit in the OPSET register
- Issuing an "Assert RTS" command using command code 0x00000001
- If RxRTS=1, set by receiver FIFO transition from FULL

$\overline{RTSx}$  can be cleared (output logic level 1) by any of the following:

- Hardware reset of the serial module
- Writing a "1" to the corresponding bit in the OPRES register
- Issuing a "Negate RTS" command using command code 0x00000002
- If RxRTS=1, cleared by receiver FIFO transition from EMPTY
- If TxRTS=1, cleared by completion of last character

## 55. Serial Frequency Restriction

On page 7-8, place the following notes at the end of Section 5.5:

The current implementation of the serial module restricts baud rate generators to approximately 8.3MHz. A synchronized internal clock which is at a lower frequency than the baud rate generator. One method to extend the minimum CLKOUT frequency is shown in the table below. The corresponding baud rates

scaled by the same factor. This method preserves most of the baud rate.

| Serial XTAL Frequency | CLKOUT Frequency |
|-----------------------|------------------|
| 3.6864MHz             | 8.29MHz          |
| 1.8432                | 4.15MHz          |
| 0.9216                | 2.07MHz          |

$$\text{CLKOUT min} = 2.25 * \text{XTAL frequency}$$

Alternatively, the baud rate clock can be supplied directly to the serial module. In this case, both serial channels must use the same baud rate. The baud rate must be set to the same value in both channels and the other in the 16x mode. When using this method, the baud rate must be set to the same value in both channels.

## 56. 68341 Serial Module RTS Differentiation

Add to the description for receiver-controlled RTS operation: In the 68681, the RTS signal does not have to be manually asserted. It has a built-in self-flow capability on the receiver.

## 57. Additional Note on Serial multidrop operation

Add to the Multidrop Mode section beginning on page 7-10: The transmitter can be controlled by the A/D bit, as generally indicated in the previous character completes transmission (i.e. TxRDY asserted). The A/D bit is transferred to the data character when the character is transferred to the shift register. Once this transfer occurs (as indicated by the TxRDY assertion), the A/D bit can be changed without affecting the character in progress. The A/D bit for the next character would be:

- 1.) poll TxRDY until asserted (or interrupt on TxRDY)
- 2.) set/clear A/D bit in MR1 for new character
- 3.) write character to transmit buffer (TB)
- 4.) A/D bit can be changed only after TxRDY asserted

No other bits in MR1 should be modified when changing the A/D bit.

## 58. Typo in CPE Description

The CPE bit header on page 8-20 should be "Counter/Pulse Edge" instead of "Counter/Pulse".

## 59. Typo in Status Register Configuration

On page 8-26, Section 8.5.1, the Status Register (SR) configuration table lists the following bits to reset the interrupts:

## 60. Typos in Timer Initialization Examples

On pages 8-27 and 8-29, the Timer register offsets should be 0x00000000 and 0x00000001 respectively. The correct base address for the Timer register is 0x00000000.



## 65. Corrections to 8/16-Bit DMA Control

On page 11-10, the logic driving  $\overline{OE}$  on the 74F245 in Figure 11-10 is not shown. Although not detailed, the byte enables for the memory block are generated by the MC68341. The timing diagram shows the contention between the upper and lower bytes of the data bus.



Figure 11-14. Circuit For Interfacing a Device to MC68341 in Single-Address Mode

## 66. X1 and $\overline{BSW}$ Input Levels

On page 12-5, the Clock Input High Voltage spec also applies to the  $\overline{BSW}$  input.

## 67. Operating IDD Limits

On page 12-5, the spec operating (RUN) currents are shown for the MC68341FT16V, MC68341FT16, and MC68341FT25.

| Product    | Frequency | Max Idd     |
|------------|-----------|-------------|
| 68341FT16V | 16.78MHz  | 95mA@3.6V   |
| 68341FT16  | 16.78MHz  | 150mA@5.25V |
| 68341FT25  | 25.16MHz  | 210mA@5.25V |

## 68. Input Clock Duty Cycle in External Clock Mode Without PLL

On page 12-7, External Clock With PLL Mode: The input clock duty cycle requirement is not specified. This mode can be used when the VCO is not turned off during a power-down sequence. In this mode, the input clock is used for clocking the SIM, and must meet the requirements of Figure 12-7.

## 69. Clock Skew Notes

On page 12-7, External Clock With PLL Mode, Clock Input to CLKIN

edges of the clock signals - the PLL phase locks the fall

## 70. Data Setup Time for 3.3V

On page 12-9, electrical specification #27 (Data Setup) changed from 5ns to 8ns.

## 71. UWE and LWE Signals

In Figure 12-3 on page 12-12,  $\overline{UWE}$  and  $\overline{LWE}$  will assert in the fast termination write cycle in Figure 12-5 on page 12-12 like  $\overline{DS}$ .

## 72. Serial Module Specs

Note 1 on page 12-25 should reference synchronous operation.

## 73. Ordering Information

Replace the ordering information table in Section 11.

| Supply Voltage | Package Type                     | Frequency (MHz) |
|----------------|----------------------------------|-----------------|
| 5.0 V          | Plastic Quad Flat Pack FT Suffix | 0 – 25          |
| 5.0 V          | Plastic Quad Flat Pack FT Suffix | 0 – 16.7        |
| 3.3 V          | Plastic Quad Flat Pack FT Suffix | 0 – 16.7        |

## 74. Upper and Lower Data Strobes

In paragraph 3.2.8 page 3-6, change (D15–D0) to (D15–D1).

## 75. Figure 3-2

Change Note 1 to reference MC68341 instead of MC68000.

## 76. Figure 4-8

The Periodic Interrupt Control Register (PICR) and Periodic interrupt instead of 2 bytes. Disregard the Scale Select Register.

## 77. Page 4-24

Refer to 4-17 for more information on the AVEC-Automatic Vectoring.

## 78. Page 4-48

The label at the start of the code should be INIT341 instead of INIT34.

## 79. Page 6-5, Paragraph 6.3.1.2

The table reference in the last sentence should be 6-4 not 6-5.

## 80. Page 9-19,

The timing diagrams reference as Figures 9-24 — 9-27.

## 81. Page 9-29, DT-Delay

A value of 1 enables this bit and 0 disables it.

## 82. Package Dimensions

The package dimension drawing on page 13-3 should be replaced by the one on page 13-4.

Motorola reserves the right to make changes without further notice to any product. The suitability of its products for any particular purpose, nor does Motorola assume any liability, including without limitation consequential applications. All operating parameters, including "Typicals" must be validated by user. Motorola neither conveys any license under its patent rights nor the rights of others. Motorola products intended for surgical implant into the body, or other applications intended to support such use, are not recommended. Such use may create a situation where personal injury or death may occur. In the event of an unauthorized application, Buyer shall indemnify and hold Motorola and its office costs, damages, and expenses, and reasonable attorney fees arising out of, unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the product. Motorola is a registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

**Literature Distribution Centers:**

USA: Motorola Literature Distribution; P.O. Box 20912, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Slough, Berks, U.K. SL1 4RL.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, Tai Po, N.T., Hong Kong.

---

**SEMICONDUCTOR PRC**

For More Information On This Product,  
Go to: [www.freescale.com](http://www.freescale.com)