Failures of Contingent Thinking

Evan Piermont Royal Holloway – University of London ICEF – Higher School of Economics

Peio Zuazo-Garin

Bounded Rationality in Choice, June 2022

We are motivated by two facts:

- (1) There is a disconnect between the way uncertainty is modeled and how it is perceived by agents:
 - Modeled by semantic state spaces; each state represents a complete description
 - \diamond State-space Ω , and probability μ over Ω .
 - Real world uncertainty often doled out as a set of interconnected statements
 - "It is raining" or "The S&P500 went up today."

We are motivated by two facts:

- (1) There is a disconnect between the way uncertainty is modeled and how it is perceived by agents:
 - Modeled by semantic state spaces; each state represents a complete description
 - \diamond State-space Ω , and probability μ over Ω .
 - Real world uncertainty often doled out as a set of interconnected statements
 - "It is raining" or "The S&P500 went up today."
- (2) While rationality assumptions allow translating back and forth, humans are, unfortunately, not perfect reasoners.

Tversky and Kahneman (1983) provided subjects with the following vignette:

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply con-

majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and

also participated in anti-nuclear demonstrations.

When asked to rank the following statements in order of likelihood:

F = "Linda is active in the feminist movement."

T = "Linda is a bank teller."

 $T \wedge F =$ "Linda is a bank teller and is active in the feminist movement"

- \diamond 85% of subjects ranked F > T \land F > T
- ⋄ T ∧ F implies T, any (classical) state space must rank the later weakly more likely.

- 1. Contingent thinking *is* the ability to recognize implications,
 - ♦ In the example, subjects do not recognize that T ∧ F implies T
 - The opposite is also possible perceive an implication that does not exist
 - We provide a precise behavioral criterion for perceiving implication
- 2. A state-space implicitly determines implication relations:
 - we must start with a more primitive syntactic objects
 - representation connects a subjective state-space to perceived implication

Failures of contingent thinking abound:

- Voting (pivotality)
 - ♦ Feddersen (JEP, 2004); Esponda and Vespa (AEJ Micro, 2014)
- Auctions (winning)
 - Thaler (JEP, 1988); Eyster and Rabin, (ETCA, 2005); Li (AER, 2017)
- Disclosure (no news)
 - Jin, Luca and Martin (WP, 2015), Enke (QJE, 2020)
- Information acquisition (generation process)
 - Enke and Zimmermann (ReStud, 2019), Enke (QJE, 2020)

Our goal is to provide:

- an abstract definition of contingent thinking that is context independent
- a methodology for identifying what the decision maker (DM) understands
- the limits of the choice-data necessary for such identification

Related (decision theoretic) Literature:

- ♦ Syntactic Decision Theory:
 - Tversky and Kahneman (1983); Mukerji (1997); Blume, Easley, Halpern (2021) and Bjorndahl and Halpern (2021)
- Incomplete of Inconsistent State-Spaces:
 - Inconsistent: Lipman (1999); Sadler (2020)
 - Incomplete: Fagin and Halpern (1988); Modica and Rustichini (1999); Heifetz, Meier, Schipper (2008)
- Misspecified Models:
 - Acemoglu et al. (2016); Mailath and Samuelson (2020); Frick et al. (2020); Eliaz et al. (2020); Ellis and Thysen (2021),

Decision environment

\mathbb{P} is a set of **primitive statements**

♦ In the example, "Linda is bank teller," etc.

 ${\mathcal L}$ is the language induced by ${\mathbb P}$ via negation, conjunction and disjunction

- \diamond If φ is in \mathbb{P} then it is in \mathcal{L} too
- \diamond If φ is in \mathcal{L} then $\neg \varphi$ ("not φ ") is in \mathcal{L}
- \diamond If φ and ψ are in $\mathcal L$ then $\varphi \wedge \psi$ (" φ and ψ ") is in $\mathcal L$
- \diamond If φ and ψ are in \mathcal{L} then $\varphi \vee \psi$ (" φ or ψ ") is in \mathcal{L}

Let ' $\varphi \to \psi$ ' mean that ϕ implies ψ according to the rules of classical logic.

 \diamond For example $\phi \Rightarrow \phi \lor \psi$

Decision environment

An **act** is a function $f \colon \Phi \to [0, \infty)$ with finite domain $\Phi \subseteq \mathcal{L}$

- \diamond f yields (vNM) utility $f(\varphi)$ when $\varphi \in \Phi$ is true, and is called off if no $\varphi \in \Phi$ is true
- $\diamond x_{\Phi}$ denotes the constant act $\Phi \mapsto x$
- \diamond \mathcal{F} denotes the set of all acts

The DM has a **strict** preference > over the set of acts

♦ Let $f \approx g$ if f and g satisfy the same \succ relations.

Interpretations of uncertainty

An interpretation (of uncertainty) is a list (Ω, t, μ) consisting of:

- 1. A set of states Ω
- 2. A truth-valuation map $t: \mathcal{L} \to 2^{\Omega}$
- 3. A likelihood assessment $\mu:\mathcal{A}\to[0,\infty)$, where \mathcal{A} is the algebra generated by the image of t

Interpretations of uncertainty

- $\diamond t(\varphi) \subseteq \Omega$ is the set of states in which φ is considered to true
 - $\diamond t$ may not obey the usual logical dictates; e.g., $t(\varphi \land \psi) \not\subseteq t(\varphi)$

Interpretations of uncertainty

- $\diamond t(\varphi) \subseteq \Omega$ is the set of states in which φ is considered to true
 - $\diamond\ t$ may not obey the usual logical dictates; e.g., $t(\varphi \land \psi) \nsubseteq t(\varphi)$
- ϕ $\mu(t(\varphi))$ quantifies the likelihood that statement φ is true
 - ♦ In the paper: μ may not be additive—not even monotone (e.g., $\mu(E) > \mu(F)$ for $E \subseteq F$)
 - \diamond For now: μ is a probability

Properties of t

- \diamond **Exact**: $\varphi \leftrightarrow \psi$ implies $t(\varphi) = t(\psi)$
- \diamond Monotone: $\varphi \to \psi$ implies $t(\varphi) \subseteq t(\psi)$
- \diamond Distributive: $t(\varphi \land \psi) = t(\varphi) \cap t(\psi)$
- $\diamond \ \, \mathsf{Symmetric} \colon t(\neg \varphi) = \Omega \setminus t(\psi)$
- ♦ Sound: all of the above

Interpretations of uncertainty allow for evaluating an act in two steps:		
interpretation and aggregation		

- \diamond An act $f \colon \Phi \to [0, \infty)$ is defined over linguistic statements $\varphi \in \Phi$
- \diamond Thus, the first step will consist in interpreting f as a map $f\colon\Omega\to[0,\infty)$
- \diamond This interpretation is subjective and hinges on (Ω, t)
- \diamond There is an obvious ambiguity involved: Where to map states $\omega \in t(\varphi) \cap t(\psi)$ (if any) for $\varphi, \psi \in \Phi$?

$$\Phi = \{\varphi, \neg \varphi\} \text{ and } f \colon \varphi \mapsto 2, f \colon \neg \varphi \mapsto 3$$

 $\diamond \ t : \varphi \mapsto \{\omega_1, \omega_2\}$

 $t: \neg \varphi \mapsto \{\omega_2, \omega_3\}$

 $\diamond \ f \colon \varphi \mapsto 2$

 $\diamond \ f \colon \neg \varphi \mapsto 3$

 \diamond Payoff in state ω_2 is undefined

 \diamond Maximal consistent act $\bar{\mathbf{f}}(\omega) = \sup\{f(\varphi) \mid \omega \in t(\varphi)\}\$

 \diamond Minimal consistent act $\underline{\mathbf{f}}(\omega) = \inf\{f(\varphi) \mid \omega \in t(\varphi)\}\$

Fix act f with domain Φ

 \diamond $f \colon t(\Phi) \to [0, \infty)$ is **consistent** with f if:

$$f(\omega) \in \{f(\varphi) \mid \omega \in t(\varphi)\}$$

for every $\omega \in t(\Phi)$

- \diamond Let $[\![f]\!]$ collect all the maps $f\colon t(\Phi)\to [0,\infty)$ consistent with f
 - \diamond The multiplicity of $[\![f]\!]$ represents the ambiguity arising in the interpretation of f

Evaluation of an act - Aggregation

- \diamond Fix act f with domain Φ
- \diamond For each $f \in \llbracket f
 rbracket$ we have a well-defined **Expected Utility**: $\int f \mathrm{d}\mu$
- \diamond Thus, each syntactic act is associated to a subset of $[0, \infty)$:

$$\left\{ \int \boldsymbol{f} \mathrm{d}\mu \, \middle| \, \boldsymbol{f} \in \llbracket f \rrbracket \right\}$$

Interpretation-Dependent Expected Utility

 \succ is an interpretation-dependent expected utility (IDEU) preference if there exists some interpretation (Ω, t, μ) that represents \succ ; i.e., such that, for every pair of acts f and g,

$$f \succ g \Longleftrightarrow \inf \left\{ \left. \int \boldsymbol{f} \, \mathrm{d} \boldsymbol{\mu} \, \right| \, \boldsymbol{f} \in \llbracket f \rrbracket \right\} > \sup \left\{ \left. \int \boldsymbol{g} \, \mathrm{d} \boldsymbol{\mu} \, \right| \, \boldsymbol{g} \in \llbracket g \rrbracket \right\}$$

- The ambiguity that arises when interpreting an act manifest as incompleteness of the preference
- We provide an axiomatization of these preferences in the paper.

- Understanding of contingencies via implication

- Relation to objective knowledge / models

Belief updating

- Benchmarks of rationality

The interpretation t formally captures the DM's contingent thinking:

 \diamond Exact: $\varphi \leftrightarrow \psi$ implies $t(\varphi) = t(\psi)$

 \diamond If $\varphi \leftrightarrow \psi$ and $\varphi \in \Phi$ then $x_\Phi \approx x_{\Phi \cup \psi}$

- \diamond Exact: $\varphi \leftrightarrow \psi$ implies $t(\varphi) = t(\psi)$
 - \diamond If $\varphi \leftrightarrow \psi$ and $\varphi \in \Phi$ then $x_\Phi \approx x_{\Phi \cup \psi}$
- $\diamond \ \, \mathsf{Monotone} \colon \varphi \to \psi \mathsf{ implies } \mathit{t}(\varphi) \subseteq \mathit{t}(\psi)$
- \diamond If $\varphi \to \psi$ and $\varphi \in \Phi$ then $x_{\Phi} \approx x_{\Phi \cup \psi}$

$$\diamond$$
 Exact: $\varphi \leftrightarrow \psi$ implies $t(\varphi) = t(\psi)$

$$\diamond$$
 If $arphi \leftrightarrow \psi$ and $arphi \in \Phi$ then $x_\Phi pprox x_{\Phi \cup \psi}$

$$\diamond$$
 Monotone: $\varphi \to \psi$ implies $t(\varphi) \subset t(\psi)$

$$\diamond$$
 If $arphi o \psi$ and $arphi \in \Phi$ then $x_\Phi pprox x_{\Phi\sqcup \eta \psi}$

$$\diamond$$
 If $arphi o \psi$ and $arphi \in \Phi$ then $x_\Phi pprox x_{\Phi \cup \psi}$

$$\diamond \begin{cases} \varphi \mapsto x \\ \psi \mapsto 0 \end{cases} \approx \begin{cases} \varphi \mapsto x \\ \psi \land \varphi \mapsto 0 \end{cases}$$

$$\diamond$$
 Exact: $\varphi \leftrightarrow \psi$ implies $t(\varphi) = t(\psi)$

$$\diamond$$
 If $arphi \leftrightarrow \psi$ and $arphi \in \Phi$ then $x_\Phi pprox x_{\Phi \cup \psi}$

$$\diamond$$
 Monotone: $\varphi \to \psi$ implies $t(\varphi) \subseteq t(\psi)$

$$\diamond$$
 If $arphi o \psi$ and $arphi \in \Phi$ then $x_\Phi pprox x_{\Phi \cup \psi}$

$$\Rightarrow \text{ Distributive: } t(\varphi \land \psi) = t(\varphi) \cap t(\psi)$$

$$\diamond \begin{cases} \varphi \mapsto x \\ \psi \mapsto 0 \end{cases} \approx \begin{cases} \varphi \mapsto x \\ \psi \land \varphi \mapsto 0 \end{cases}$$

$$\diamond$$
 Symmetric: $t(\neg \varphi) = \Omega \setminus t(\psi)$

 $\diamond x_{\{\varphi,\neg\varphi\}} \approx x_{\{\varphi \vee \neg\varphi\}}$

Symmetric.
$$t(\neg \varphi) = \Omega \setminus t(\psi)$$

Perceived implications

For any $\varphi, \psi \in \mathcal{L}$, a DM with preference \succ **perceives** that φ implies ψ , denoted by $\varphi = \succ \psi$ if.

$$1_{\{\psi\}} \approx 1_{\{\varphi,\psi\}}.$$

- \diamond There is never any benefit to betting on φ given a bet on ψ
- ♦ We show => is a partial order over propositions
 - \diamond Not true if μ is not a measure

 $\diamond \varphi \not= \psi$ necessarily implies that $t(\varphi) \not\subseteq t(\psi)$ (otherwise

 \diamond Thus, there exists some $\omega \in t(\varphi) \setminus t(\psi)$, i.e., it is conceivable for the

 $t(\{\psi\}) = t(\{\varphi\}) \cup t(\{\psi\})$

DM that φ holds and ψ does not

Faithful Representation

An interpretation (Ω, t, μ) is **faithful** (for \succ)if it represents \succ and for every $\varphi, \psi \in \mathcal{L}$,

$$\varphi = \psi$$
 if and only if $t(\varphi) \subseteq t(\psi)$

Subjective implication exactly corresponds to set containment

Theorem

If \succ has an IDEU representation it has a faithful IDEU representation.

Moreover this is unique in some meaningful sense.

Identification of theories

Typically, elicitation experiments rely on the analyst assuming some (non-logical) relation between statements.

- 'It is raining' implies 'The ground is wet'
- This implications is true but not logically necessary—it requires a theory

Question

- Could seemingly erratic behavior be explained as not understanding that some statement is true?
- Can we disentangle irrationality from differing beliefs?

Identification of theories

Theories

A set $\mathcal{T} \subseteq \mathcal{L}$ is a **theory** if, for any $\varphi \in \mathcal{T}$ and any $\psi \in \mathcal{L}$ the following two hold:

- 1. If $\varphi \to \psi$ then $\psi \in \mathcal{T}$
- 2. If $\varphi \to \neg \psi$ then $\psi \notin \mathcal{T}$

A theory $\mathcal T$ allows for additional implications, denoted by $\stackrel{\mathcal T}{\to}$ $(\mathcal T\text{-implications})$

E.g., if $\neg \varphi \lor \psi \in \mathcal{T}$ then $\varphi \xrightarrow{\mathcal{T}} \psi$ regardless of whether $\varphi \to \psi$ or not

An IDEU preference perceives \mathcal{T} -implications if $\varphi = \not\sim \psi$ for every $\varphi, \psi \in \mathcal{L}$ such that $\varphi \xrightarrow{\mathcal{T}} \psi$

Identification of theories

Theorem

Let \succ be an IDEU preference that perceives implications, and let \mathcal{T} be a theory. Then, there exists a unique theory $\mathcal{T}^{\succ} \subseteq \mathcal{T}$ such that:

- 1. \succ perceives \mathcal{T}^{\succ} -implications
- 2. For any theory \mathcal{T}' such that $\mathcal{T}^{\succ}\subseteq\mathcal{T}'\subseteq\mathcal{T}$, \succ does not perceive all \mathcal{T}' -implications

We can identify the largest theory that rationalizes a rational DM's choices—even if inconsistent with the analyst's theory

What if we only observed preferences over simple bets of the form:

$$x_{\varphi} \mapsto \begin{cases} x & \text{if } \varphi \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

- In many environments (for example SEU) this suffices for identification.
- $\diamond x_{\varphi} \succ x_{\psi}$ implies φ is assessed as more likely than ψ .

- Given simple bets, we cannot distinguish failures of logical thinking from failures of probabilistic thinking.
- \diamond Non-rational t imparts the same preferences (over simple bets!) as weakening the conditions on μ

μ additive and	$\it t$ sound and:
any t	N/A
t exact	any μ
t monotone	μ monotone
$t \land \text{-distributive}$	μ totally monotone
t sound	μ additive

