PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

G02B 13/04, 9/34, 3/02

(11) International Publication Number: WO 99/63379

(43) International Publication Date: 9 December 1999 (09.12.99)

US

(21) International Application Number: PCT/US99/12658

(22) International Filing Date: 4 June 1999 (04.06.99)

(71)(72) Applicant and Inventor: BETENSKY, Ellis, I. [US/CA];

5 June 1998 (05.06.98)

61 St. Clair Avenue West #1008, Toronto, Ontario M4V 2Y8 (CA).

(74) Agent: KLEE, Maurice, M.; 1951 Burr Street, Fairfield, CT 06430 (US).

(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: INVERSE TRIPLET LENS ASSEMBLIES

(57) Abstract

(30) Priority Data:

60/088,055

Objective lenses employing three lens units (U1, U2, U3) having a negative (or weak positive), positive, negative configuration are disclosed. The lenses have a total field coverage of at least 50 degrees with a relative aperture of less than f/5. They employ small lens elements having aspherical surfaces and are designed for mass production, particularly using plastic optical materials. The designs do not exist in an all spherical form because the aberrations, particularly distortion, cannot be sufficiently corrected, but by using a sufficient number of aspherical surfaces, not only can the aberrations be corrected to a higher degree than a conventional aspher-

ized triplet design, but the sensitivity to manufacturing deviations can be minimized. Optionally, the lenses can include a fourth lens unit (U4) which provides an extended exit pupil which is desirable when the lens is used with a digital light sensor.

BEST AVAILABLE COPY

BNSDOCID: <WO_____9963379A1_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

IE IL IS IT Republic JP KE KG KP KR LC LC LI LK LR	Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	TT UA UG US UZ VN YU ZW	Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
		SE	Sweden		
	KG KP KR KZ C LC LI LK	KG Kyrgyzstan KP Democratic People's Republic of Korea KR Republic of Korea KZ Kazakstan C LC Saint Lucia LI Liechtenstein LK Sri Lanka	KG Kyrgyzstan NO KP Democratic People's NZ Republic of Korea PL KR Republic of Korea PT KZ Kazakstan RO C LC Saint Lucia RU LI Liechtenstein SD LK Sri Lanka SE	KG Kyrgyzstan NO Norway KP Democratic People's NZ New Zealand Republic of Korea PL Poland KR Republic of Korea PT Portugal KZ Kazakstan RO Romania C LC Saint Lucia RU Russian Federation LI Liechtenstein SD Sudan LK Sri Lanka SE Sweden	KG Kyrgyzstan NO Norway ZW KP Democratic People's NZ New Zealand Republic of Korea PL Poland KR Republic of Korea PT Portugal KZ Kazakstan RO Romania C LC Saint Lucia RU Russian Federation LI Liechtenstein SD Sudan LK Sri Lanka SE Sweden

BNSDOCID: <WO_____9963379A1_I_>

5

15

20

25

30

INVERSE TRIPLET LENS ASSEMBLIES

FIELD OF THE INVENTION

This invention relates to objective lenses that contain aspherical surfaces and are designed to be manufactured in high volumes.

More particularly, the invention relates to an inverse triplet objective lens which:

- (1) has a negative (or weak positive), positive, negative configuration;
- (2) uses aspherical surfaces to correct primary aberrations; and
- (3) uses aspherical surfaces to reduce manufacturing sensitivities by reducing the amount of aberration correction contribution by an individual lens element.

In certain embodiments, the negative (or weak positive), positive, negative configuration is followed by a positive lens unit which serves to provide the lens with an extended exit pupil.

BACKGROUND OF THE INVENTION

It is well know that the classical triplet (see Figure 6A and Table 6) can be corrected for all of the primary aberrations, but because there is a residual secondary astigmatism that is not correctable, the performance is limited by astigmatism. If the specifications for the lens are "pushed" too far, the astigmatism is so severe that the depth of focus becomes very shallow (see Figure 6B), and the lens becomes very difficult to manufacture simply because any manufacturing variations will further reduce this already shallow depth.

A further disadvantage of the triplet design is that the spherical aberration and astigmatism correction are both achieved because the

negative element introduces just the "right" amount of aberration of the opposite sign to cancel the effects of the two positive elements. This means that strongly aberrated lenses must be located properly, without tilts or decentrations, or the aberrations will not completely cancel each other, as demonstrated by the through-focus MTF for a decentered second element shown in Figure 6C.

There are many four element lens types that are much better than the classical triplet and are usually employed to achieve higher performance than the triplet, but with some increase in cost. Even employing aspherical surfaces only results in limited improvement of a classical triplet because the stop is located too close to the negative element for the astigmatism to be corrected and the manufacturing sensitivity problem still remains.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

In view of the foregoing, it is an object of the invention to provide improved objective lenses. More particularly, it is an object of the invention to provide objective lenses having improved aberration correction and reduced sensitivity to manufacturing variations. It is a further object of the invention to provide objective lenses which use a minimum of lens elements, e.g., three or four elements, where, preferably, all of the lens elements are composed of moldable materials and have aspherical surfaces.

To achieve the foregoing and other objects, the invention in accordance with certain of its aspects provides an optical system for producing an image of an object, said system having an overall positive optical power " Φ_0 ", an overall positive focal length " f_0 " ($f_0 = 1/\Phi_0$), an object side, and an image side, and comprising in order from its object side to its image side of:

(a) a first lens unit (U1) having a negative power or a weak positive power (i.e., a positive power which is less than 0.3 times the overall positive power of the optical system and

preferably is less than 0.2 times the overall positive power) and an object side surface and an image side surface;

- (b) a second lens unit (U2) having a positive power and an object side surface and an image side surface;
- (c) a third lens unit (U3) having a negative power, the magnitude of the focal length of the third lens unit being less than 1.5 times the overall positive focal length of the optical system;
 - (d) an aperture stop (AS) between the object side surface of the first lens unit and the image side surface of the second lens unit; and
 - (e) at least one aspherical surface.

In certain preferred embodiments, the optical system has some or all of the following characteristics, either separately or in combination:

- (1) each of the first, second, and third lens units comprises at least15 one aspherical surface;
 - (2) at least two of the first, second, and third lens units comprises two aspherical surfaces;
 - (3) each of the first, second, and third lens units comprises two aspherical surfaces;
 - (4) each of the first, second, and third lens units consists of a single lens element;
 - (5) the operative imaging components of the optical system, i.e., the components with optical power, consist of just the first, second, and third lens units:
 - (6) the operative imaging components of the optical system, i.e., the components with optical power, consist of just the first, second, and third lens units and each of those units consists of a single lens element;
 - (7) the optical system comprises a fourth lens unit (U4) on the image side of the third lens unit, said fourth lens unit having a positive power;
 - (8) the fourth lens unit comprises at least one aspherical surface;

5

10

20

25

- (9) each of the first, second, third, and fourth lens units consists of a single lens element;
- (10) the operative imaging components of the optical system, i.e., the components with optical power, consist of just the first, second, third, and fourth lens units;
- (11) the operative imaging components of the optical system, i.e., the components with optical power, consist of just the first, second, third, and fourth lens units and each of those units consists of a single lens element;
- 10 (12) all lens elements used in the optical system are made from moldable materials, e.g., plastics or moldable glasses;
 - (13) the back focal length of the optical system is at least 0.5 times the overall positive focal length of the optical system;
- (14) the exit pupil of the optical system is located at a distance from the image of at least 2 times the overall positive focal length of the optical system;
 - (15) the distance from the object side of the first lens unit to the image is less than 2 times the overall positive focal length of the optical system;
- 20 (16) at least one surface of the lens element nearest the image has an inflection;
 - (17) the optical system has a half field of view in the direction of the object of at least 25°;
- (18) the optical system has a relative aperture of less than f/5, e.g., a relative aperture of f/4 or f/3.5;
 - (19) the optical system is used as a taking lens for a digital light sensor; and
- (20) the optical system comprises sufficient aspherical surfaces to substantially correct third and fifth order aberrations and to substantially
 30 reduce the system's sensitivity to manufacturing deviations (tolerances).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A is a schematic side view of an inverse triplet lens constructed in accordance with the invention and having an f/# of 4.5, a semi-field of view of 25°, and a focal length (f) of 10 mm.

Figure 1B is a through-focus white light MTF at 50 cycles/mm for the inverse triplet of Figure 1A.

Figure 2A is a schematic side view of a desensitized inverse triplet constructed in accordance with the invention.

Figure 2B is a through-focus MTF at 50 cycles/mm for the inverse triplet of Figure 2A with the second element decentered by 0.025 mm.

Figure 3A is a schematic side view of an inverse triplet modified for an extended exit pupil position.

Figure 3B is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 3A.

Figure 4A is a schematic side view of an inverse triplet modified for an extended exit pupil position and a large back focal length.

Figure 4B is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 4A.

Figure 5A is a schematic side view of a further inverse triplet having an extended exit pupil position and a large back focal length.

Figure 5B is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A.

Figure 5C is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A with the first element (U1) decentered by 0.035 mm.

Figure 5D is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A with the second element (U2) tilted by 0.3°.

Figure 5E is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A with the third and fourth elements (U3 and U4) each tilted by 0.3°.

5

15

20

in the second of the second

15

20

25

30

Figure 5F is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A with the air space between second and third elements (U2 and U3) changed by 0.04 mm.

Figure 5G is a through focus MTF at 50 cycles/mm for the inverse triplet of Figure 5A with the thickness of the second element (U2) changed by 0.04 mm.

Figure 6A is a schematic side view of a classical triplet having an f# of 4, a semi-field of view of 25°, and a focal length (f) of 10 mm.

Figure 6B is a through-focus white light MTF plot at 50 cycles/mm for the classical triplet of Figure 6A at selected field positions.

Figure 6C is a through-focus white light MTF plot at 50 cycles/mm for the classical triplet of Figure 6A with second element decentered by 0.025 mm.

Prescriptions for the lenses of Figures 1-6 are set forth in Tables 1-6, respectively. The prescriptions of these tables use the "OSLO" format of the optical design program sold under that trademark by Sinclair Optics Inc., Rochester, New York.

The symbols used in the MTF plots have the following meanings: plus sign (+) -- on-axis; upward facing triangle (\triangle) -- 0.7 field tangential; downward facing triangle (∇) -- 0.7 field sagittal; square (\square) -- full field tangential; diamond (\diamondsuit) -- full field sagittal; circle (\bigcirc) -- ideal. The wavelengths used in calculating the MTF plots were 0.5461 microns, 0.4800 microns, and 0.6438 microns. The wavelengths were equally weighted.

The through-focus MTF plots of Figures 1B, 3B, 4B, and 6B are for full fields of $\pm 25^{\circ}$, while those of Figures 2B, 5B-5G, and 6C are for a full field of $\sim \pm 20^{\circ}$.

The foregoing drawings, which are incorporated in and constitute part of the specification, illustrate the preferred embodiments of the invention, and together with the description, serve to explain the principles of the invention. It is to be understood, of course, that both the drawings

BNSDOCID: <WO_____9963379A1_i_>

and the description are explanatory only and are not restrictive or limiting of the invention.

DETAILED DESCRIPTION OF THE INVENTION

A. <u>Dividing the Negative Power</u>

As discussed above, the classical triplet with its positive, negative, positive configuration suffers from both aberration correction and manufacturability problems. In accordance with the invention, the powers of the classical triplet are inverted so that the lens has three lens units with a negative (or weak positive), positive, negative configuration. Figure 1A shows the basic structure of the inverse triplet lens of the invention.

By inverting the powers of the triplet, a different means of aberration correction is achieved. The stop is placed after the first element near the positive element, and the negative elements are allowed to be spaced somewhat from it.

In an all-spherical surface design, the single positive element contributes too much spherical aberration for the negative elements to correct, but the astigmatism can be well corrected with little secondary aberration residual. Unlike astigmatism, the spherical aberration can always be corrected with aspherics, and in fact the design form can be well corrected. The through-focus MTF of Figure 1B shows the improved astigmatism correction as compared to the classical triplet (see Figure 6B).

B. <u>Manufacturing Desensitization</u>

While the inverse triplet requires aspherical surfaces for full correction, only one or two aspheres are required, depending on the field and aperture desired. For molded lenses, only the cost of tooling is increased if additional aspherics are added, and this cost is easily justified if the manufacturing yield is increased. By allowing all of the surfaces to become aspherical, the design can be tailored for particular manufacturing processing.

Figure 2A shows a design modified to minimize effects of tilting, decentering, and spacing errors. A comparison of through-focus MTF for

5

10

15

20

about 0.75 relative field is shown in Figure 2B where the second lens element is decentered.

Table 7 compares the sums of the primary and secondary aberrations for each element of the classical triplet of Figure 6A and the desensitized inverse triplet of Figure 2A. As can be seen in this table, the approximate aberration correction of the individual inverse triplet lens elements is better than those of the classical triplet.

For manufacturing purposes, the most important characteristic is whether any of the tolerances required is too severe for mass production, even if all of the other tolerances are very loose. The next level is the cost associated with too many restrictive tolerances. The use of multiple aspherical surfaces provides the means to accomplish both of these goals. That is, if a sufficient number of surfaces are aspherical, there are more degrees of freedom than required for aberration correction, so the lens can be optimized for manufacturability.

C. <u>Modification for Extended Exit Pupil Position</u>

For imaging with a single polychromatic sensor it is often necessary to limit the angle of maximum chief rays so as to avoid color artifacts caused by the separation of the color filter and the actual active sensor. Satisfying this telecentric, or nearly telecentric condition, requires additional positive power in the space between the objective lens and the image. Ideally, a lens at the image could perform the function of extending the exit pupil without introducing severe aberrations. In actual practice this space is usually occupied with filters of various types so the positive lens is removed somewhat.

By adding positive power, field curvature is increased as well, and because there is no significant choice of plastic materials, correction requires either larger size or additional negative power. The aspherical surfaces are sufficient to correct for the aberrations resulting from this increased power, and even the ability to desensitize remains.

5

10

15

20

25

It seems possible to place the positive lens anywhere in the image space. If it is placed near the image, shown in Figure 3A, only spherical surfaces are required. If aspherical surfaces are used the departure from sphericity of the additional lens becomes very noticeable. This design, shown in Figure 4A, looks like a conventional triplet with negative element added to the front. The aberration correction, however, is quite different because the stop is located a substantial distance from the central negative element.

It is interesting to note how the aspherical surfaces can be used to correct the aberrations in different ways. The sum of the Seidel and fifth order surface contributions lens element by lens element is shown in Tables 8 and 9 for the designs shown in Figure 3A and 4A, respectively. By adding the additional aspheres the lens of Figure 4A has less spherical aberration per lens element, and thus is less sensitive to manufacturing errors of decentration. Because the positioning and tilting of the sensor itself can usually be adjusted to remove the effects of a tilted image, the larger lens element contribution for off-axis aberrations can be tolerated.

The through-focus MTF at 50 cycles/mm for the extended exit pupil designs of Figures 3A and 4A are shown in Figures 3B and 4B, respectively. The designs show some astigmatism for the corner of the image (25 degrees semi-field), but compare quite favorably with the conventional triplet without the extended pupil.

Figure 5A illustrates a further lens design which (1) has an extended pupil, (2) has a long back focal length, and (3) employs sufficient aspherical surfaces so as to reduce substantially the design's sensitivity to manufacturing deviations (tolerances). In particular, a comparison of Figure 5B with Figures 5C-5G demonstrates the relative insensitivity of this design to decentration (Figure 5C), tilt (Figures 5D and 5E), spacing errors (Figure 5F), and element thickness errors (Figure 5G).

Although preferred and other embodiments of the invention have been described herein, further embodiments may be perceived by those

5

10

15

20

25

skilled in the art without departing from the scope of the invention as defined by the following claims.

BNSDOCID: <WO_____9963379A1_I_>

WO 99/63379 PCT/US99/12658 -11-

TABLE 1

SRF	RADIUS	THICKNESS	APE	ERTURE RAI	oius	GLASS SPE	NOTE
OBJ		5.8238e+19	2.	7157e+19		AIR	
1	-3.064874 V	2.400264	V	1.779136	S	ACRYL C *	
2	-7.562037 V	0.248357	V	1.488879	s	AIR	
AST	3.722346 V	2.313840	-	1.419980		ACRYL C *	
4	-3.051072 V	0.500484	v	1.830093	S	AIR	
5	-2.329861 V	1.033262	v	1.814661	S	STYRE C *	
6	-7.191681 V		•	2.095155	_	AIR *	
J	7.131001	3.00000		2.005100	3	AIR "	
7		0.874400		3.393300	s	вк7 с	
8 (4.315274	s	3.542750	s	AIR	
}							
IMS		-0.091852	V ,	4.639273	S		
+ CONT.C	AND POLYNOMIA	AL ACDUEDTO					
SRF	CC CC						
		AD	_	AE	AF	AG	
1		0.016073		001518		-2.1617e-05	
3		-0.014628				-5.8687e-05	
5		0.046559				8.7316e-05	
6		0.028145	-0.0	000172 -	-0.000283	4.1117e-05	
*WAVEL	ENGTHS: 0.5	40000 0.4	50000	0.6200	000		
*REFRA	CTIVE INDICES						
GLASS	RN:	1 RN	2	RN3	VNI	BR	
ACRYL	1.492	403 1.499	298	1.488808	3 46.940	0121	
STYRE;	1.595	772 1.611	790	1.587636	24.66	5717	
. קעם	1 510	020 1 505	330	1 51552		1427	

GLASS	RN1	RN2	RN3	VNBR
ACRYL	1.492403	1.499298	1.488808	46.940121
STYRE;	1.595772	1.611790	1.587636	24.665717
BK7	1.519039	1.525320	1.515539	53.071437

Working F-number: 4.499908 Field angle: 25.000000 Effective focal length: 10.000093

UNIT	POWER	EFL
1	-0.078720	-12.703311
2	0.260570	3.837735
3	-0.159153	-6.283258

SRF	RADIUS	THICKNESS	A	PERTURE RA	DIUS	GLASS SPE	NOTE
OBJ		1.0000e+20		3.6397e+1	9	AIR	
1	-1.871869 V	7 0 000560					
2		***************************************	V	1.40000		ACRYL C *	
2	-2.078649 V	0.077102		1.46874	5 S	AIR *	
AST	~ -	1.362577	v	1.443414	1 አሮ	3.70	
			•	1.44341	t AS	AIR	
4	4.385774 V	2.038735	v	1.70000) K	ACRYL C *	
5	-4.896073 V	0.218500		1.982925			
				1.902925) S	AIR *	
6	-2.583927 V	1.752980	v	1.959875	5 S	CARBO C *	
7	-7.200777 V	5.00000		2.300000			
				2.30000	, K	AIR *	
8		0.873000		3.089841	. s	вк7 с	
9	- -	3.121103	s	3.176392	· S	AIR	
			_		. 5	AIR	
IMS				3.646332	: S		
	AND POLYNOMI	AL ASPHERIC D	ATA				
SRF	CC	AD		AE	AF	AG	
1		0.022092	0	.004971	-0.002012	_	
2		0.016915			-0.000566		
4		-0.000542				-2.1005e-05	
5		0.000532				-2.6015e-05	
6		0.029750				-1.7813e-05	
7		0.015015	-0	000516	0.000357	-1.76136-05	-
		***************************************	Ŭ	. 000316	0.000157	-1.7916e-05	
*WAVELE	NGTHS: 0.	546100 0.4	8000	0.64	3800	-	
*REFRAC	TIVE INDICES						
GLASS	RN	l RN2		DAYO			
ACRYL	1.4920		40	RN3	VNI		
	1.472	T.4305	* U	1.48797	8 57 .47 4	1701	

GLASS	RN1	RN2	RN3	VNBR
ACRYL	1.492067	1.496540	1.487978	57.474701
CARBO	1.590088	1.600365	1.580754	30.090095
BK7	1.518721	1.522829	1.514721	63.978408

Working F-number: 4.007073 Field angle: 20.000000 Effective focal length: 10.018215

UNIT	POWER	EFL
1	0.010658	93.823764
2	0.197291	5.068654
3	-0.125789	-7.949799

SRF	RADIUS	THICKNESS	APERTURE	RADIUS	GLASS SPE	NOTE
OBJ		5.8238e+19	2.7157e+	19	AIR	
ı	-2.668669	9 V 2.400985	V 1.8862	56 S	ACRYL C *	
2	-5.645963	3 V 0.432900	V 1.6959	83 S	AIR	
AST	3.787009	9 V 3.639209	V 1.5807	53 AS	ACRYL C *	
4	-3.143441	V 0.721000	V 2.1432	64 S	AIR	
5	-2.452537	7 V 1.551295	V 2.0675	23 S	STYRE C *	
6	-42.455643	3 V 5.000000	2.0000	00 K	AIR *	
	15.018072	2 V 2.000000	4.2674	59 S	вк7 с	
8	-12.712902	2 V 3.861206	S 4.5508	94 S	AIR	
IMS		-0.038531	V 4.6635	57 S		
*CONIC	AND POLYNO	MIAL ASPHERIC	DATA			
SRF	CC	AD	AE	AF	AG	
1		0.019180	-0.001186	0.000194	2.4289e-06	
3	war saler	-0.011463	-0.000298	-5.0005e-05	-3.0879e-05	
5		0.027499	-0.001863	0.000268	2.1667e-05	
6		0.016636	-0.001448	0.000153	-1.0934e-05	
*WAVEL	engths :	0.540000 0.	450000 0.	620000		

*REFRACTIVE INDICES

SRF	GLASS	RN1	RN2	RN3	VNBR
1	ACRYL	1.492403	1.499298	1.488808	
_					46.940121
3	ACRYL	1.492403	1.499298	1.488808	46.940121
5	STYRE	1.595772	1.611790	1.587636	24.665717
7	BK7	1.519039	1.525320	1.515539	53.071437

Working F-number: 4.201221
Field angle: 25.000000
Effective focal length: 10.003465

UNIT	POWER	EFL
1	-0.071410	-14.003548
2	0.237003	4.219364
3	-0.225574	-4.433135
4	0.073531	13.599728

SRF	RADIUS	THICKNESS	APE	RTURE RA	DIUS	GLASS SPI	E NOTE
OBJ		1.0000e+20		6631e+19		AIR	J NOIE
1	-1.981542 V	0.956852	v	1.400000	v	A CIDITY OF A	
2	-2.437039 V	0.094142		1.420000		ACRYL C * AIR *	
AST		2.527223	v :	1.430000	AK	AIR	
4	4.551250 V	3.503587	v ·	7 170000			
5	-5.535989 V	0.667224		3.170000		ACRYL C *	
		0.007224		3.170000		AIR *	
6	-2.557747 V	0.517987	v :	2.880000		GARRO	
7	-7.7229e+03 V	1.338772		2.600000	v	CARBO C *	
			•	000000	K	AIR *	
8	35.060881 V	2.904450	V 4	1.000000		ACDUT O	
9	-4.739874 V	3.277058		1.000000		ACRYL C * AIR *	
						AIR *	
10		1.000000	5	5.000000		BK7 C	
11		3.287032		.000000		AIR	
				_		AIK	
IMS		-0.036095	V 4	.662896	s		
*CONIC	AND POLYNOMIA	ASPHERIC D	∆ጥ∆				
SRF	CC	AD	AE	•	AF		
1		0.025922			0.000232	AG	
2		0.015826	-0.00			0.000238	
4		0.001478	-0.00			-5.1713e-05	
5			0.00			-1.3072e-06 2.6057e-05	
6	-1.000000	0.032196	-0.00			-7.2973e-06	
7		0.026643	-0.00			-1.1361e-05	
8	5	.3670e-05			81080-05	4.8652e-07	
9		0.002044	-0.00			-6.6382e-07	
					11/30 03	-0.03020-07	
*WAVEL	ENGTHS: 1	0.546100	0.480	000 0	.643800		
*REFRA	CTIVE INDICES						
SLASS	RN1	RN2		DMO		_	
CARBO	1.59008		5	RN3	VNB		
ACRYL	1.49206			1.580754			
3K7	1 51072		•	1.487978	57.474	701	

GLASS	RN1	RN2	RN3	tamo
CARBO			1013	VNBR
CARBO	1.590088	1.600365	1.580754	30 00000
N CD3ct			1.300/34	30.090095
ACRYL	1.492067	1.496540	1 407070	
DIE		7.120240	1.487978	57.474701
BK7	1.518721	1.522829	7	
		1.344649	1.514721	63 978408

Working F-number: 3.999787 Field angle: 25.000000 Effective focal length: 10.000000

UNIT	POWER	EFI.
1	-0.014259	-70.129963
2	0.174436	5.732754
3	-0.230624	-4.336065
4	0.115013	8.694691

BNSDOCID: <WO_____9963379A1_I_>

TABLE 5

SRF OBJ	RADIUS	THICKNESS		RTURE RAI		GLASS AIR	SPE	NOTE
		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				AIR		
1	-2.702181 V	0.993383	V	2.250000		ACRYL	C *	
2	-3.057447 V	3.503000		2.300000		AIR	*	
AST		1.526000		1.230000	AK	AIR		
4	5.478221 V	2.593481	v	1.900000		ACRYL	C *	
5	-5.441035 V	1.255000		1.960000		AIR	*	
6	-2.181334 V	1.000000		1.960000		CARBO	C *	
7	21.138383	0.800000		2.700000		AIR	*	
8	7.220047 V	2.505124		3.400000		ACRYL	C *	
9	-3.781015 V	1.280000		3.500000		AIR	*	
7.0		0 50000						
10		0.500000		5.000000		GLASS16	M	
11				5.000000		AIR		
12		1.400000		5.00000	(GLASS18	М	
13				5.000000		AIR		
1.4		1 00000					_	
14		1.000000		5.000000		BK7	C	
15	- -	3.096984	S	5.000000	ı	AIR		
IMS		-0.020000		5.00000		•		
*CONIC	AND POLYNOMIA	AL ASPHERIC	DATA					
SRF	CC	AD		AE	AF	AC	3	
1		0.010789	Ο.	000437 3	.4575e-05			
2		0.008419	8.25	33e-05 8	.7405e-05	-6.4345	5e-06	
4		0.002926	0.		.2554e-06			
5	-0.500000	0.003504	7.65		0.000364			
6		0.004121	0.	002268	0.000353			
7		-0.009885			.1870e-05			
8		-0.003873			.5720e-05			
9		0.004438			.1630e-05			
+6/21/01	ENOTES A	746300	40000		2000			
-WAVEL	ENGTHS: 0.	546100 0.	48000	0 0.64	3800			
*0555	OTTUE THETOPO							
	CTIVE INDICES	1 52	10	DITO	***	on.		
GLASS	RN:			RN3	VN			
CARBO	1.590			1.58075				
ACRYL	1.4920			1.48797				
GLASS1				1.51472				
GLASS1	8 1.550	000 1.555	122	1.54512	55.00	0000		

TABLE 5 (continued)

Working F-number: 4.010265 Field angle: 26.372434 Effective focal length: 8.708503

UNIT	POWER	EFL
1	-0.001647	-607.021954
2	0.166139	6.019058
3	-0.303181	-3.298355
4	0.183403	5 452484

TABLE 6 - PRIOR ART

SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS	SPE	NOTE
OBJ		1.0000e+19	4.6631e+18	AIR		
1	3.618229 V	1.516310 V	2.021492 K	GLASS1	м	
2	6.70865 <u>.</u> 6 V	0.357025	1.458777	AIR	1-1	
3	-5.035902 V	0.186013	1.445575	GLASS3	M	
4	4.352446 V	0.241346 V	1.283532	AIR	141	
5	8.221513 V	0.602167 V	1.271637	GLASS5	M	
6	-4.236010 V	0.081008 V	1.126154	AIR	171	
AST		8.299840 S	1.010817 AK	AIR		
IMS		-0.073304 V	4.631058 S			
WAVEL	ENGTHS: 0.5875	60 0.480000	0.643800			
REFRA	CTIVE INDICES					

GLASS	RN1	RN2	RN3	VNBR
GLASS1	1.744000	1.754114	1.740592	55.022000
GLASS3	1.784700	1.803037	1.778831	32.418000
GLASS5	1.834000	1.847665	1.829490	45.885000

Working F-number: 4.000002 Field angle: 25.000000 Effective focal length: 10.000005

UNIT	POWER	EFL
1	0.114551	8.729745
2	-0.339039	-2.949517
3	0.291767	3.427392

Classical	SA	CMA	AST	Inverse	SA	CMA	AST
Element 1	053	017	088	Element 1	020	.099	.083
Element 2	.203	034	.522	Element 2	092	.097	134
Element 3	150	.054	429	Element 3	.089	171	005

TABLE 8

Lens Element	SA	CMA	AST	DIST
1	376	.140	.012	373
2	041	099	103	069
3	.425	025	.002	.461
4	003	006	.036	235

TABLE 9

Lens Element	SA	CMA	AST	DIST
1	126	.013	.096	245
2	062	.269	.234	.209
3	.089	153	.229	-1.67
4	025	034	660	.503

What is claimed is:

- 1. An optical system for producing an image of an object, said system having an object side, an image side, an overall positive focal length f₀, and comprising in order from its object side to its image side of:
 - (a) a first lens unit having:
 - (i) a negative power or a weak positive power; and
 - (ii) an object side surface and an image side surface;
 - (b) a second lens unit having:
 - (i) a positive power; and
 - (ii) an object side surface and an image side surface; and
 - (c) a third lens unit having a negative power, the magnitude of the focal length of the third lens unit being less than 1.5 times f₀;

wherein said optical system has:

- (i) at least one aspherical surface; and
- (ii) an aperture stop between the object side surface of the first lens unit and the image side surface of the second lens unit.
- 2. The optical system of Claim 1 wherein each of the first, second, and third lens units comprises at least one aspherical surface.
- 3. The optical system of Claim 1 wherein at least two of the first, second, and third lens units comprises two aspherical surfaces.
- 4. The optical system of Claim 1 wherein each of the first, second, and third lens units comprises two aspherical surfaces.
- 5. The optical system of Claim 1 wherein each of the first, second, and third lens units consists of a single lens element.
- 6. The optical system of Claim 1 wherein the components of the optical system with optical power consist of just the first, second, and third lens units.
- 7. The optical system of Claim 6 wherein the first, second, and third lens units each consists of a single lens element.

- 8. The optical system of Claim 1 further comprising a fourth lens unit on the image side of the third lens unit, said fourth lens unit having a positive power.
- 9. The optical system of Claim 8 wherein the fourth lens unit comprises at least one aspherical surface.
- 10. The optical system of Claim 8 wherein each of the first, second, third, and fourth lens units consists of a single lens element.
- 11. The optical system of Claim 8 wherein the components of the optical system with optical power consist of just the first, second, third, and fourth lens units.
- 12. The optical system of Claim 11 wherein the first, second, third, and fourth lens units each consists of a single lens element.
- 13. The optical system of Claim 1 wherein all lens elements used in the optical system are made from moldable materials.
- 14. The optical system of Claim 8 wherein all lens elements used in the optical system are made from moldable materials.
- 15. The optical system of Claim 1 wherein the back focal length of the optical system is at least 0.5 times f_0 .
- 16. The optical system of Claim 8 wherein the back focal length of the optical system is at least 0.5 times f_0 .
- 17. The optical system of Claim 8 wherein the exit pupil of the optical system is located at a distance from the image of at least 2 times f₀.
- 18. The optical system of Claim 1 wherein the distance from the object side of the first lens unit to the image is less than 2 times f₀.
- 19. The optical system of Claim 8 wherein the distance from the object side of the first lens unit to the image is less than 2 times f₀.
- 20. The optical system of Claim 1 wherein at least one surface of the lens element nearest the image has an inflection.
- 21. The optical system of Claim 8 wherein at least one surface of the lens element nearest the image has an inflection.

- 22. The optical system of Claim 1 wherein the system has a half field of view in the direction of the object of at least 25°.
- 23. The optical system of Claim 8 wherein the system has a half field of view in the direction of the object of at least 25°.
- 24. The optical system of Claim 1 wherein the system has a relative aperture of less than f/5.
- 25. The optical system of Claim 8 wherein the system has a relative aperture of less than f/5.
- 26. The optical system of Claim 1 wherein the system comprises sufficient aspherical surfaces to substantially correct third and fifth order aberrations and to substantially reduce the system's sensitivity to manufacturing deviations.
- 27. The optical system of Claim 8 wherein the system comprises sufficient aspherical surfaces to substantially correct third and fifth order aberrations and to substantially reduce the system's sensitivity to manufacturing deviations.
- 28. A digital camera comprising the optical system of Claim 1 and a digital light sensor.
- 29. A digital camera comprising the optical system of Claim 8 and a digital light sensor.
- 30. An optical system comprising first and second lens elements, the first lens element having first and second aspherical surfaces and the second lens element having third and fourth aspherical surfaces, wherein the first and second aspherical surfaces at least partially correct at least one primary aberration of the first lens element and the third and fourth aspherical surfaces at least partially correct at least one primary aberration of the second lens element, said corrections being sufficient to reduce the sensitivity of the optical system to at least one manufacturing tolerance.
- 31. The optical system of Claim 30 wherein the first and second aspherical surfaces at least partially correct the spherical aberration of the

WO 99/63379 -21- PCT/US99/12658

first lens element and the third and fourth aspherical surfaces at least partially correct the spherical aberration of the second lens element.

32. The optical system of Claim 30 wherein the first lens element has a positive power and the second lens element has a negative power.

·日本書 丁丁香 1年、大田八田 日本丁

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 2B

FIG. 3A

FIG. 3B

4/9

FIG. 4A

FIG. 4B

a many party property of a second

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 5F

FIG. 5G

FIG. 6A - PRIOR ART

FIG. 6B - PRIOR ART

FIG. 6C - PRIOR ART

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/12658

	SSIFICATION OF SUBJECT MATTER				
	IPC(6) : G 02 B 13/04, 9/34, 3/02 US CL : 359/753, 784, 716				
	o International Patent Classification (IPC) or to both n	national classification and IPC			
B. FIEL	DS SEARCHED				
Minimum de	ocumentation searched (classification system followed	by classification symbols)			
	359/715, 716, 753, 781, 784				
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
Electronic d	ata base consulted during the international search (nar	ne of data base and, where practicable	, search terms used)		
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
X	US 5,251,073 A [SCHAUSS] 5 October 1993, see entire document, especially, column 1, line 53-column 3, line 12.				
Y	US 4,109,995 A [BETENSKY] 29 August 1978, see entire document, especially column 1, line 6-column 8, line 24				
Y	US 4,781,449 A (HIRAKAWA et al.] 01 November 1999, see entire document, especially column 1, line 5-column 8, line 55.				
A	US 5,617,255 A [YAMADA] 01 April 1997, see entire document. 1-32				
A	US 5,204,781 [ISHIBAI et al.] 20 April 1993, see entire document. 5-7, 10-21				
Furtl	her documents are listed in the continuation of Box C.	. See patent family annex.			
• Sc	pecial categories of cited documents:	"T" later document published after the in	ternational filing date or priority		
"A" do	date and not in conflict with the application but cited to understand the document defining the general state of the art which is not considered principle or theory underlying the invention				
	be of particular relevance rlier document published on or after the international filing date	"X" document of particular relevance; t	he claimed invention cannot be		
_	document which may throw doubts on priority claim(s) or which is considered novel or callnot be considered to involve an inventive step when the document is taken alone				
cit	cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be				
O do	document referring to an oral disclosure, use, exhibition or other means considered to involve an inventive step when the document combined with one or more other such documents, such combination being obvious to a person skilled in the art				
	ocument published prior to the international filing date but later than be priority date claimed	document member of the same pater	nt family		
Date of the	actual completion of the international search	Date of mailing of the international se			
09 AUG	UST 1999	23 SEP 199	99 🔷 🔒		
Commissi	mailing address of the ISA/US oner of Patents and Trademarks	Authorized officer	19 - , temp they		
Box PCT Washingto	on, D.C. 20231	`	4		
Level and the State of	No. (703) 305 3330	Telephone No. (703) 308-4883	1		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐/IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.