Домашняя работа по дискретной математике №3

Работу выполнил: Нодири Хисравхон Группа: Р3131. Найти путь с наибольшей пропускной способностью Вариант 25

Исходная таблица соединений R:

V/V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e 10	e 11	e ₁₂
e ₁	0			3		5			3	3	4	4
e ₂		0				3	4		1	3	2	
e ₃			0	2		5	5	3	5	1	2	4
e ₄	3		2	0	5	2			3	1	4	
e ₅				5	0	3			1	1		1
e ₆	5	3	5	2	3	0	4	3	3			
e ₇		4	5			4	0	5	4			3
e ₈			3			3	5	0		3		1
e ₉	3	1	5	3	1	3	4		0			5
e ₁₀	3	3	1	1	1			3		0		
e ₁₁	4	2	2	4							0	
e ₁₂	4		4		1		3	1	5			0

Построим граф и обозначим за s вершину e_1 , а за t вершину e_5 .

1. Проведём разрез K_1

- 2. Найдём $Q_1 = \max[q_{ij}] = 5$ 3. Закорачиваем все рёбра графа (x_i, x_j) с $q_{ij} >= Q_1$ Это рёбра (e_1, e_6) , (e_9, e_{12}) , (e_3, e_9) , (e_3, e_6) , (e_3, e_7) , (e_4, e_5) , (e_7, e_8) . Получаем граф G_1 :

Проведём разрез К2

Найдём $Q_2 = \text{max}[q_{ij}] = 4$ Закорачиваем все рёбра графа $(x_i, \, x_j)$ с $q_{ij} >= Q_2$

Это рёбра (e_1 , e_6 , e_{11} , e_3 , e_7 , e_9 , e_{12} , e_4 , e_5 , e_8). Получаем граф G_3 :

Вершины s-t объединены. Пропускная способность искомого пути Q(P) = 4 Строим граф, вершины которого – вершины исходного графа G, а рёбра – рёбра с пропускной способностью $q_{ij} >= Q(P) = 4$

