Metoda sjekućih ravni. Gomorijev rez.

Ema Djedović

Odsjek za matematičke i kompjuterske nauke Prirodno-matematički fakultet Univerzitet u Sarajevu

05/2024

Uvod

Algoritam sjekućih ravni rješava cjelobrojne programe modificirajući rješenja linearnih programa dok se ne dobije cjelobrojno rješenje. Ne dijeli dopušteno područje na podpodručja, kao u pristupima grananja i ograničavanja, već radi s jednim linearnim programom koji se rafinira **dodavanjem novih ograničenja**.

Nova ograničenja sukcesivno smanjuju dopušteno područje dok se ne pronađe optimalno cjelobrojno rješenje. Iako su u praksi postupci grananja i ograničavanja gotovo uvijek efikasniji, algoritam sjekućih ravni je bio važan za evoluciju cjelobrojnog programiranja. Historijski gledano, to je bio prvi algoritam za koji se moglo dokazati da konvergira u konačno mnogo koraka i koji je doveo do drugih, efikasnijih algoritama.

Uvod

Slika: Linearni program s realnim rješenjem (**Fractional solution**) na sjecištu prvog i drugog ograničenja. Cilj je doći do cjelobrojnih rješenja istaknutih crnim tačkama. U tu svrhu dodajemo jedan po jedan rez kako bismo "odsjekli" realna rješenja.

Bit će nam od koristi da izrazimo s_1 i s_2 preko varijabli x_1 i x_2 :

$$s_1 = 6 + x_1 - 3x_2$$

$$s_2 = 35 - 7x_1 - x_2$$

Ako zanemarimo cjelobrojnost, dobit ćemo sljedeću optimalnu simplex tablicu:

Variable	x_1	\mathbf{x}_2	s_1	s_2	-z	RHS
x_2	0	1	7/22	1/22	0	7/2
x_1	1	0	-1/22	3/22	0	9/2
-z	0	0	28/11	15/11	1	63

Posmatrajmo prvo ograničenje:

$$x_2 = \frac{7}{22}s_1 + \frac{1}{22}s_2 = \frac{7}{2}$$

Stavimo sve cijele dijelove na lijevu stranu, a sve razlomke na desnu:

$$x_2 - 3 = \frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2$$

$$x_2 - 3 = \frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2$$

Sada, budući da lijeva strana sadrži samo cijele brojeve, desna strana također mora biti cjelobrojna. Kako imamo neki pozitivni razlomak (u našem slučaju $\frac{1}{2}$) umanjen za niz nekih pozitivnih vrijednosti, tako desna strana može biti samo 0, -1, -2, Dakle, dobijamo sljedeće ograničenje:

$$\frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2 \le 0$$

Uvrstimo vrijednosti $s_1 = 6 + x_1 - 3x_2$ i $s_2 = 35 - 7x_1 - x_2$.

$$\frac{1}{2} - \frac{7}{22}(6 + x_1 - 3x_2) - \frac{1}{22}(35 - 7x_1 - x_2) \le 0$$

Sređivanjem dobivamo $-3 + x_2 \le 0$ odnosno $x_2 \le 3$.

Ograničenje koje smo dobili nazivamo **rez**, dodajemo ga u naš linearni program i isti ponovo rješavamo. Postupak ponavljamo sve dok optimalne vrijednosti za varijable odluke ne postanu cijeli brojevi - tada algoritam staje.

Rez smo mogli generirati i iz **drugog ograničenja**. Osmotrimo ponovo tablicu s početka:

Variable	x_1	\mathbf{x}_2	s_1	s_2	-z	RHS
x_2	0	1	7/22	1/22	0	7/2
x_1	1	0	-1/22	3/22	0	9/2
-z	0	0	28/11	15/11	1	63

Ovdje moramo biti oprezni da dobijemo pravilne znakove.

$$x_1 - \frac{1}{22}s_1 + \frac{3}{22}s_2 = \frac{9}{2}$$

$$x_1 + \left(-1 + \frac{21}{22}\right)s_1 + \frac{3}{22}s_2 = 4 + \frac{1}{2}$$

$$x_1 - s_1 - 4 = \frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2$$

$$x_1 - s_1 - 4 = \frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2$$

Odavdje dobivamo ograničenje (rez):

$$\frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2 \le 0$$

Ponovo izrazimo s_1 i s_2 preko varijabli odluke:

$$\frac{1}{2} - \frac{21}{22}(6 + x_1 - 3x_2) - \frac{3}{22}(35 - 7x_1 - x_2) \le 0$$

čijim se sređivanjem dobije:

$$x_2 \le \frac{10}{3}$$
 odnosno $x_2 \le 3$ (radi cjelobrojnosti)

Generalizirano

Ako imamo ograničenje $x_k + \sum a_i x_i = b$, gdje b nije cijeli broj, možemo pisati $a_i = \lfloor a_i \rfloor + a_i'$, za neko $0 \le a_i' < 1$, i $b = \lfloor b \rfloor + b'$ za neko 0 < b' < 1:

$$x_k + \sum (\lfloor a_i \rfloor + a_i')x_i = \lfloor b \rfloor + b'$$

$$x_k + \sum \lfloor a_i \rfloor x_i + \sum a_i'x_i = \lfloor b \rfloor + b'$$

$$x_k + \sum \lfloor a_i \rfloor x_i = \lfloor b \rfloor + b' - \sum a_i'x_i$$

$$x_k + \sum \lfloor a_i \rfloor x_i - \lfloor b \rfloor = b' - \sum a_i'x_i$$

Tako dobijamo rez:

$$b'-\sum a_i'x_i\leq 0$$

Ovo novo ograničenje dodajemo u linearni program i ponovo rješavamo problem.

Komentar

Metoda sjekućih ravni može garantirati pronalaženje optimalnog cjelobrojnog rješenja. Međutim, postoje neki nedostaci:

- Greška zaokruživanja može uzrokovati velike poteškoće: Je li to 3.000000001 stvarno 3, ili trebamo generirati rez?
- Kao što metoda grananja i ograničenje može generirati veliki broj podproblema, ova tehnika može generirati veliki broj ograničenja (rezova).

Python biblioteka lippy

```
import lippy as lp
# biblioteka za rjesavanje
# problema linearnog programiranja
c_{vektor} = [3, 3, 7]
a_{matrica} = [[1, 1, 1],
          [1, 4, 0],
[0, 0.5, 3]]
b_{vektor} = [3, 5, 7]
gomory = Ip.CuttingPlaneMethod(c_vektor, a_matrica, b_vektor)
print("Rjesenje:-", gomory.solve())
```

Cilj: Maksimizirati profit knjižare određivanjem optimalnog broja knjiga iz različitih kategorija.

- Beletristika
- Publicistika
- Edukativne knjige

Ograničenja su postavljena u odnosu na budžet, prostor na policama i minimalne zalihe knjiga za svaku kategoriju.

Varijable odluke:

- x₁: broj beletrističkih knjiga
- x₂: broj publicističkih knjiga
- x₃: broj edukativnih knjiga

Koeficijenti:

- ▶ $p_1 = 5$ €, $p_2 = 6$ €, $p_3 = 8$ € (profit po knjizi za svaku kategoriju)
- $ightharpoonup c_1=12$ \in , $c_2=15$ \in , $c_3=20$ \in (trošak po knjizi za svaku kategoriju)
- $ightharpoonup s_1=0.5\,\mathrm{m}^2$, $s_2=0.7\,\mathrm{m}^2$, $s_3=1.0\,\mathrm{m}^2$ (prostor po knjizi za svaku kategoriju)
- B = 2000 € (ukupni budžet)
- $ightharpoonup S = 100 \,\mathrm{m}^2$ (ukupni prostor na policama)
- $ightharpoonup m_1=10,\ m_2=5,\ m_3=8$ (minimalne zalihe za svaku kategoriju)

Maksimizirati
$$Z = 5x_1 + 6x_2 + 8x_3$$

$$12x_1 + 15x_2 + 20x_3 \le 2000$$

$$0.5x_1 + 0.7x_2 + x_3 \le 100$$

$$x_1 \ge 10$$

$$x_2 \ge 5$$

$$x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0$$

$$x_1, x_2, x_3 \in \mathbb{Z}$$

Algoritam:

- Riješiti linearnu relaksaciju problema.
- Ako rješenje nije cjelobrojno, generirati Gomorijev rez.
- Dodati rez u originalni problem.
- Ponovno riješiti LP relaksaciju s novim ograničenjem.
- Ponavljati dok se ne pronađe cjelobrojno rješenje.

Sve znakove " \geq " pretvorimo u " \leq " kako bismo dobili oblik pogodan za rješavanje u biblioteci lippy. Imamo:

Maksimizirati
$$Z = 5x_1 + 6x_2 + 8x_3$$
 $12x_1 + 15x_2 + 20x_3 \le 2000$
 $0.5x_1 + 0.7x_2 + x_3 \le 100$
 $-x_1 \le -10$
 $-x_2 \le -5$
 $-x_3 \le -8$
 $x_1, x_2, x_3 \ge 0$
 $x_1, x_2, x_3 \in \mathbb{Z}$


```
c_{vektor} = [5, 6, 8]
a_{matrica} = [[12, 15, 20],
           [0.5, 0.7, 1].
            [-1, 0, 0],
            [0, -1, 0],
            [0.0.-1]
b_{\text{vektor}} = [2000, 100, -10, -5, -8]
gomory = Ip.CuttingPlaneMethod(c_vektor, a_matrica, b_vektor)
rjesenje = gomory.solve()
print("Optimalan broj knjiga za svaku kategoriju: ", rjesenje[0])
print(" Maksimalni profit: ", rjesenje[1])
```

► rjesenje[0] nam daje niz [147, 5, 8] što nam daje uvid u optimalne vrijednosti varijabli odluke:

$$x_1 = 147$$
 (broj knjiga beletristike)
 $x_2 = 5$ (broj knjiga publicistike)
 $x_3 = 8$ (broj edukativnih knjiga)

rjesenje[1] ima vrijednost 829 što predstavlja maksimalnu vrijednost funkcije cilja, odnosno profit od 829\$.

Izvori

- https://pypi.org/project/lippy
- https://mat.tepper.cmu.edu
- ▶ Wolsey, L.A. (1998) *Integer Programming*, Wiley, New York.
- Marija Ivanović (2009) Vežbe iz Operacionih istraživanja, Univerzitet u Beogradu, Matematički fakultet
- ▶ Bradley, S.P., Hax, A.C. and Magnanti, T.L. (1977) *Applied mathematical programming* Reading, Mass: Addison-Wesley.