

AU PROGRAMME Python based

lundi 31 mars 2025		
	09h15 - 12h45	MORLIER Joseph
	14h00 - 16h15	MORLIER Joseph
mardi 01 avril 2025		
marar of avin 2025	09h15 - 12h45	MORLIER Joseph
11.00		
mercredi 02 avril 2025		
	09h15 - 12h45	MORLIER Joseph MURADÁS ODRIOZOLA Daniel
	091113 - 121145	MAS COLOMER JOAN
	14h00 - 16h15	MURADÁS ODRIOZOLA Daniel
jeudi 03 avril 2025		
		MAS COLOMER JOAN
		MURADÁS ODRIOZOLA
	09h15 - 12h45	Daniel

Intro: Sustainable Aviation (Materials) With Both Eyes Open

Design optimization 1: constrained optimization, MOO, Sensibility with examples

Project DO 1 2 3

Topology Optimization with examples

Material ecoselection, Ashby Diagram and more

Projet DO 123

Wrap up and demo from students

Intro to MDAO

Static Aeroelastic problem is a MDAO problem

Airbus PROJECT by TEAM of 3 (marked*)

vendredi 04 avril 2025	ORAL MARKED*	
		MORLIER Joseph
		MURADÁS
		ODRIOZOLA
	09h15 - 11h30	Daniel

FMSM207

Part1: On topolgy optimization

Lego?

History

- Homogenization of Microstructures was introduced by mathematics in the 1970s.
- First paper by Martin Bendsoe (Technical University of Denmark) and Noboru Kikuchi (University of Michigan) in 1022

A topology optimisation problem can be written in the general form of an optimization problem as

$$\min_{
ho} \ F = F(\mathbf{u}(
ho),
ho) = \int_{\Omega} f(\mathbf{u}(
ho),
ho) \mathrm{d}V$$

subject to

- $egin{align} lacksquare &
 ho \in \{0,1\} \ lacksquare & G_0(
 ho) = \int_\Omega
 ho(\mathbf{u}) \mathrm{d}V V_0 \leq 0 \ lacksquare & G_j(\mathbf{u}(
 ho),
 ho) \leq 0 ext{ with } j=1,\ldots,m \ \end{pmatrix}$

TopOpt

Je choisis un bloc de marbre et j'enlève tout ce dont je n' ai pas besoin.. Auguste Rodin (1840-1917)

Define the design space (marble block, fixed mesh)

Apply loads & BCs

Start optimization with hyper parameters

Interpreting the results

Optimal distribution of material (One can have an idea of the part to be reinforced, in addition to giving an excellent initial design ...)

Why is it so powerful?

→There is a lot of possible redistribution of FORCES (internal)

Stiff structure for your specifications

Stiff structure for your specifications

Well-Known example

Topology and shape optimization

Airbus A380 example (cont.)

Topology optimization:

Sizing / shape optimization:

EMSM207

Finally...

EMSM207

Airbus A380 example (cont.)

Result: 500 kg weight savings! DRIVE RIB I INBOARD DRIVE RIB 1 OUTBOARD DRIVE RIB 2 INBOARD DRIVE RESOUTBOARD ANTERMEDIATE RIB DRIVERIB JINBOARD DRIVERIBIJ OUTBOARD DRIVE RIB 4 OUTBOARD **Altair Engineering** HINGE RIB 4 -

Wing rib designs

The perforated plates were replaced by reinforced lattice structures (think of the path of preferential intern foces)

Is this really a discovery?

Supermarine Southampton, 1925

System approach automates the process!

Industrial probems

TopOpt: Preliminary phases of a project

The idea is to find the best path of stiffening in a given volume of matter.

The mass is only found where it is needed, which is a good starting point for optimization of shape or dimensioning.

Adapted formulation:

To find the structure with the best static behavior.

The paths of internal forces identified are those which help to rigidify the structure as well as possible

→ The structure will deform less, and stress levels will be possibly limited. But not only...

→ Lots of Actual Researches

Global and clustered approaches for stress constrained topology optimization and deactivation of design variables. Erik

Holmberg, Bo Torstenfelt, Anders Klarbring

Multiphysics

Topology Optimization of silver nano-particles in thin film solar cells Soohwan Byun,

Jeonghoon Yoo

H. Niemann, J. Morlier, A. Shahdin and Y. Gourinat. Damage Localization using Experimental Modal Parameters and Topology Optimization. Mechanical Systems and Signal Processing. 24(3)636-652. 2010

Microstructures

Topology Optimization for Highly-efficient Light-trapping Structure in Solar Cell Shuangcheng Yu, Chen Wang, Cheng Sun, Wei Chen*

Quiz ! draw material (black) or void (white)

Goal: 50% gain in mass

Pixels

- Finding a solution by checking all the possible combinations IS impossible since the number of topologies nT increases exponentially with the number of finite elements n
- $nT = 2^n$

The legal (top) and some illegal (bottom) topologies with 4 by 3 elements

Division into elements (pixels or voxels) and binary decision for each or example 10,000 elements --> 210,000 possible configurations!

Discrete Material Optimization: Prof. Pierre DUYSINX Université de Liège LTAS – Automotive Engineering

Maximum stiffness in the plane of a plate by selecting the best orientations of fibers

Loads and boundary conditions

Design model with 4* 4 patches

Table 4 Material properties			
E_x	E_{ν}	G_{xy}	v_{xy}
146.86GPa	10.62GPa	5.45GPa	0.33

Table 3	Orientations

Number of material phases (m)	Number of design variables for each region (m_v)	Discrete orientation angle (°)
4	2	90/45/0/-45
9	4	80/60/40/20/0/-20/-40/-60/-80
12	4	90/75/60/45/30/15/0/-15/-30/-45/-60/-75

Discrete Material Optimization: exemple

Topological optimization: vacuum + composite laminate

Volume constraints: V < 11/16

4 orientations 90/45/0/-45

18 orientations 90/80/70/60/50/40/30/20/10/0 / -10/-20/-30/-40/-50/-60/-70/-80

Discrete Material Optimization: exemple

Use of both glass fibers and foam
Limitation of the number of domains occupied by the fiber of glass

Optimization result of the square plate under vertical force with volume constraint
Glass-epoxy with 4 orientations
(90/45/0/-45) and polymer-foam

Compliant mechanism to your specifications

Use 30 % material

Compliant mechanism to your specifications

Concurrent method TOPOPT vs LAYOPT (continuous vs discrete)

https://www.nature.com/articles/nature23911

More recently

https://www.layopt.com/truss/ https://www.youtube.com/watch?v=80uU5K4iwSM

Layout Optimization

It was realized in the 1960s that minimum volume structures could be identified computationally. The steps in the numerical layout optimization procedure used by LayOpt are shown in the image below. First, the design domain (the region within which the structure is permitted to lie) is populated with nodes. Each pair of nodes is then connected with a potential structural member to create a "fully connected ground structure". Finally, a mathematical optimization problem is solved to identify the minimum volume subset of members and their sizes.

In LayOpt, nodes are located at the intersections of grid lines, and at locations where the grid lines cross the edges of the design domain. The coarseness of the grid can be adjusted using the slider. When a very fine nodal grid is employed a very close approximation of the true minimum volume is obtained. However, increasing the number of nodes also increases the computational resources required, and usually the complexity of the resulting structure.

To increase the computational efficiency LayOpt makes use of the adaptive member adding method proposed by Gilbert and Tyas (2003). This only requires a subset of the possible connections to be considered initially (here only adjacent nodes are initially connected). Once this problem is solved, each initially neglected potential member is checked to see if it is likely to reduce the calculated volume. If so, then is considered for addition to the problem in the next iteration. This process continues until no potential members can be found that have the potential to reduce the volume of the structure. At this point the volume of the structure will be identical to the solution of the corresponding problem which included all potential member connections from the outset. LayOpt shows the result of each member adding iteration as it is calculated, allowing you to see how the optimal design is being identified.

Intuition ...

TopOpt relies on FEA

Online computation: http://www.cloudtopopt.com

TopOpt

- 1. Objective?
- 2. Constraints?
- 3. Method?

Compliance $J = f^T u$

Compliance = 1/Stiffness

Minimize Compliance

Volume Constraint

Minimize J

 $Vol.Frac \le 0.5$

Method: Gradient based: Need sensitivities...

Current TO Strategies

One pioneer, SIMP (Solid Isotropic Material with Penalization)

SIMP

SIMP: Solid Isotropic Material with Penalization

Min Compliance $v = 0.5v_0$

Where do we add holes?

 $0<\rho_{_{\varepsilon}}\leq 1$: 'Pseudo Density'

 $\begin{array}{c} \mathit{Min} \;\; \mathrm{Compliance} \\ \sum \rho_{\scriptscriptstyle e} v_{\scriptscriptstyle e} = 0.5 v_{\scriptscriptstyle 0} \end{array}$

Pixels?

EMSM207

Intuitive Problem? Quadratic Form

$$x_1 = 1$$

$$x_2 = 0.5$$

$$x_3 = 0$$
...

Objective function; Strain energy

$$\min c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} \qquad \text{with} \qquad x_e = \frac{\rho_e}{\rho_0} \quad (4)$$
 with
$$\mathbf{K} = \mathbf{K}_0 \sum_{a=1}^{N} x_e^{\rho} \qquad \text{one can write:}$$

$$\min c(\mathbf{x}) = \sum_{e=1}^{N} (\mathbf{x}_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$
 Scalar (5)

Contraints: mass target

$$\frac{V(\mathbf{x})}{V_0} = f = \underbrace{const} \iff \sum_{e=1}^{N} V_{e} \underbrace{x_e} V_0 f = 0 = h(\mathbf{x})^{\text{Scalar}}$$

$$0 < \rho_{\min} \le \rho_e \le 1$$

$$EMSM207$$

$$\min c(\mathbf{x}) = \sum_{e=1}^{N} (x_e)^p \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

Quadratic Form

X ∈ R MXI, AI ∈ R MXM

Quadratic form: XTAIX

XTAIX is a scalar value.

 $(1\times m)\times (m\times m)\times (m\times 1) \rightarrow 1\times 1$

K is linked through E and xe

Rozvany, G.I.N., Zhou, M., and Gollub, M. (1989). Continuum Type Optimality Criteria Methods for Large Finite Element Systems with a Displacement Connstraint, Part 1. *Structural Optimization* 1:47-72.

$$\mathbf{K} = \mathbf{K}_0 \sum_{e=1}^{N} x_e^p \qquad x_e = \frac{\rho_e}{\rho_0}$$

But HOW ??

Avoid intermediate densities!

Solid Isotropic Material with Penalization (SIMP)

$$E(x) = E_{min} + (E_0 - E_{min})x^p$$

p is the penalty parameter to push densities to black (1) and white (0).

 E_{min} is a small value that avoid stiffness matrix singularity

Penalization for altering stiffness localy

Let's take p=3

Penalty parameter in the SIMP method: Proof

Hashin-Shtrikman bounds

$$0 \le E \le \frac{\rho E^0}{3 - 2\rho}$$

Therefore,

$$\rho^{p}E^{0} \leq \frac{\rho E^{0}}{3-2\rho}$$

$$\Rightarrow p \geq 3$$

$$\Rightarrow p \ge 3$$

Bendsøe, M.P. and Sigmund, O., "Material Interpolation Schemes in Topology Optimization," *Archives in Applied Mechanics*, Vol. 69, (9-10), 1999, pp. 635-654.

Penalty parameter in the SIMP method: Continuation Methods

Nice idea!

- 1. Transform discrete variables continuously (TO USE gradient-based algorithms)
- 2. Find an objective function with "cheap" derivatives (we will see this later)

Others formulations

$$\min_{\mathbf{\mu}} \max_{l=1,\dots,nc} C_l = \mathbf{F}_l^T \mathbf{q}_l$$

$$\sum_{i} \mu_i V_i \leq \overline{V}$$

$$0 < \underline{\mu}_i \leq \mu_i \leq 1$$

$$\min_{\boldsymbol{\mu}} \sum_{i} \mu_{i} V_{i}$$

$$q_{j} \leq \overline{q}_{j} \qquad j = 1, ..., m$$

$$0 < \underline{\mu}_{i} \leq \mu_{i} \leq 1$$

- If several load cases no
- we can minimize the maximal compliance
- → with ql obtained by solving Kllql=Fl
- Prescribed displacement
- → we can minimize the volume (mass)
- wrt amplitude at node j inferior to a certain displacement

Others formulations

$$\max_{\mu} \min_{k=1,nf} \omega_{k}$$

$$\sum_{i} \mu_{i} V_{i} \leq \overline{V}$$

$$0 < \underline{\mu}_{i} \leq \mu_{i} \leq 1$$

- Eigensolver to obtain the stiffest structure at a certain volfrac
- > wrt a vibration ccriteria

Which is the best optimizer? why?

Can you comment this? Compliance are re

Figure 13.20 Solution du problème du pont avec GCMMA.

Figure 13.21 Solution du problème du pont avec GCM.

Small changes in BCs ...

Interested in research?

Niels Aage, Erik Andreassen, Boyan S Lazarov, and Ole Sigmund. Giga-voxel computational morphogenesis for structural design. Nature, 550(7674):84, 2017.

Coniglio, S., Gogu, C., Amargier, R., & Morlier, J. (2019, May). Application of geometric feature based topology optimization to engine pylon architecture design including engine performance criteria. In 13th Wolrd Congress on Structural and Multidisciplinary Optimization.

EMSM207

Coniglio, S., Gogu, C., Amargier, R., & Morlier, J. (2019). Engine pylon topology optimization framework based on performance and stress criteria. AIAA Journal, 57(12), 5514-5526.

MULTIMATERIAL

• Solid Isotropic Material with Penalization (SIMP)

•
$$E_{e}(\rho_{e}) = A_{E} * \rho_{e}^{p} + B_{E}$$
,
 $\rho_{\theta} \in [\rho_{i}, \rho_{i+1}], \quad A_{E} = \frac{E_{i} - E_{i+1}}{\rho_{i}^{p} - \rho_{i+1}^{p}}, \quad B_{E} = E_{i} - A_{E} * \rho_{i}^{p}$

Zuo, W., & Saitou, K. (2016). Multi-material topology optimization using ordered SIMP interpolation. *Structural and Multidisciplinary Optimization*, *55*(2), 477-491. doi:10.1007/s00158-016-1513-3

Part2: TOPOPT in practice

Lego?

BUT ...IN PRACTICE?

Educational article:

O. Sigmund, A 99 line topology optimization code written in Matlab Struct Multidisc Optim 21, 120-127 Springer-Verlag 2001

Heuristic formulation (intuitive method of optimisation, but with no convergency proofs) to update xe by bi-section algorithm

History (1988, Bendsoe)

A topology optimization problem based on the powerlaw approach, where the objective is to minimize compliance can be written as

$$\min_{\mathbf{x}}: \quad c(\mathbf{x}) = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^{N} (x_e)^p \ \mathbf{u}_e^T \ \mathbf{k}_0 \ \mathbf{u}_e$$
subject to:
$$\frac{V(\mathbf{x})}{V_0} = f$$

$$: \quad \mathbf{K} \mathbf{U} = \mathbf{F}$$

$$: \quad \mathbf{0} < \mathbf{x}_{\min} \le \mathbf{x} \le \mathbf{1}$$
(1)

where **U** and **F** are the global displacement and force vectors, respectively, **K** is the global stiffness matrix, \mathbf{u}_e and \mathbf{k}_e are the element displacement vector and stiffness matrix, respectively, **x** is the vector of design variables, \mathbf{x}_{\min} is a vector of minimum relative densities (non-zero to avoid singularity), N (= nelx × nely) is the number of elements used to discretize the design domain, p is the penalization power (typically p = 3), $V(\mathbf{x})$ and V_0 is the material volume and design domain volume, respectively and f (volfrac) is the prescribed volume fraction.

State-of-Art – SIMP^{1,2}

Predict an optimal distribution of the material in a design space for given boundary conditions and design constraints

Density-based topopt

$$E_e = E_{min} + x_e^p (E_0 - E_{min})$$

$$c(x) = U^T K U = \sum_{e=1}^{N} E_e(x_e)^p u_e^T k_0 u_e$$

MBB problem result by top88³

$$c = 222.3$$

- 1 Bendsøe MP (1989) Optimal shape design as a material distribution problem.
- 2 Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization.
- 3 Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code

Compliance minimization self adjoint

Compliance is the opposite of stiffness

$$C = \mathbf{f}^T \mathbf{u} = \mathbf{u}^T K \mathbf{u}$$

Inexpensive derivatives (use chain rule)

$$\frac{dC}{dx} = 2\mathbf{u}^T K \frac{d\mathbf{u}}{dx} + \mathbf{u}^T \frac{dK}{dx} \mathbf{u}$$

But since $K\mathbf{u} = \mathbf{f}$ if \mathbf{f} does not depend on \mathbf{x}

$$K\frac{d\mathbf{u}}{dx} = -\frac{dK}{dx}\mathbf{u}$$

$$\frac{dC}{dx} = -\mathbf{u}^T \frac{dK}{dx} \mathbf{u}$$

Knowing displacements you also know gradients

Need a DEMO?

• Recall
$$\frac{dC}{dx} = -\mathbf{u}^T \frac{dK}{dx} \mathbf{u}$$

For density variables

$$\frac{dC}{d\rho^e} \propto -\mathbf{u}^T \rho^{p-1} K^e \mathbf{u}$$

- Want to increase density of elements with high strain energy and vice versa
- To minimize compliance for given weight can use an optimality criterion method.

And for other responses?

$$O = f(x, U)$$

$$\frac{\partial O}{\partial x} = \frac{\partial f}{\partial U}^T \frac{\partial U}{\partial x}$$

$$KU = F$$

$$\frac{\partial K}{\partial x}U + K\frac{\partial U}{\partial x} = 0$$

$$\frac{\partial O}{\partial x} = \frac{\partial f}{\partial U}^T \frac{\partial U}{\partial x} = -\frac{\partial f}{\partial U}^T K^{-1} \frac{\partial K}{\partial x} U = -\frac{\partial f}{\partial U}^T \delta$$

$$K\lambda = \frac{\partial f}{\partial U}$$
 Adjoint Method

$$K\delta = \frac{\partial K}{\partial x}U$$
 Direct Method

response
Either one solution per
Either one solution per
design variables
That's why
Compliance!

Matlab Code

```
x(1:nelv, 1:nelx) = volfrac;
                                                        % INITIAI 17F
loop = 0; change = 1.;
while change > 0.01
                                                        % START ITERATION While Xk+1>>Xk
              loop = loop + 1;
              xold = x:
             [U]=FE(nelx,nely,x,penal);
                                          % FE-ANALYSIS
             [KE] = Ik;
             C = 0.1
for elv = 1: nelv
  for elx = 1: nelx
   n1 = (nely+1)*(elx-1)+ely;
   n2 = (nely+1)^* elx + ely;
   Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2], 1);
   c = c + x(ely, elx)^penal*Ue'*KE*Ue;
                                                      % OBJECTIVE FUNCTION
   dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; % SENSITIVITY ANALYSIS
end
  end
```

Sensitivity

$$\frac{\partial c}{\partial x_e} = -p(x_e)^{p-1} \mathbf{u}_e^T \mathbf{k}_0 \mathbf{u}_e$$

Update rule

► OPTIMALITY CRITERIA METHOD

$$\begin{cases} \max(x_{\min}, x_e - m) \\ \text{if } x_e B_e^{\eta} \le \max(x_{\min}, x_e - m), \\ x_e B_e^{\eta} \\ \text{if } \max(x_{\min}, x_e - m) < x_e B_e^{\eta} < \min(1, x_e + m) \end{cases} \qquad B_e = \frac{-\frac{\partial c}{\partial x_e}}{\lambda \frac{\partial V}{\partial x_e}}$$

$$\min(1, x_e + m)$$

$$\inf_{\text{if } \min(1, x_e + m) \le x } B_e^{\eta}$$

Optimality criterion

- If " $-\frac{\partial c}{\partial \rho_i}$ " is large, increase ρ_i
- Otherwise, decrease ρ_i
- How to determine large or small?
- Bisection search for a threshold

Flement Stiffness Matrix

function [KE]=lk %Flement Stiffness Matrix

$$\begin{split} E &= 1.; \\ nu &= 1/3.; \\ k &= [\ 1/2 - nu/6 \ 1/8 + nu/8 \ - 1/4 + nu/12 \ - 1/8 - nu/8 \\ - 1/4 - nu/12 \ - 1/8 + 3*nu/8 \ ... \ nu/6 \ 1/8 - 3*nu/8]; \\ KE &= E/(1 - nu^2)* \ ... \\ [\ k(1) \ k(2) \ k(3) \ k(4) \ k(5) \ k(6) \ k(7) \ k(8) \\ k(2) \ k(1) \ k(8) \ k(7) \ k(6) \ k(5) \ k(4) \ k(3) \ k(3) \ k(8) \ k(1) \ k(6) \\ k(7) \ k(4) \ k(5) \ k(2) \ k(4) \ k(7) \ k(6) \ k(1) \ k(8) \ k(3) \ k(2) \ k(3) \ k(4) \ k(6) \ k(6) \ k(1) \ k(6) \\ k(8) \ k(3) \ k(2) \ k(5) \ k(4) \ k(7) \ k(6) \ k(1)]; \end{split}$$

$$\frac{\mathbf{K_e}}{8 \times 8} = \int_{-b}^{b} \int_{-a}^{a} \frac{\mathbf{B}^{T}}{8 \times 3} \frac{\mathbf{E}}{3 \times 3} \frac{\mathbf{B}}{3 \times 8} t \, dx \, dy$$

FEM Analysis (2D mesh is invariant wrt to homotheties)

```
function [U]=FE(nelx,nely,x,penal)
[KE] = Ik;
K = \text{sparse}(2^*(\text{nelx}+1)^*(\text{nely}+1), 2^*(\text{nelx}+1)^*(\text{nely}+1));
F = \text{sparse}(2^*(\text{nely}+1)^*(\text{nelx}+1), 1); U = \text{zeros}(2^*(\text{nely}+1)^*(\text{nelx}+1), 1);
for elx = 1: nelx
for ely = 1: nely
 n1 = (nely+1)*(elx-1)+ely;
 n2 = (nely+1)^* elx + ely;
 edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];
 K(edof, edof) = K(edof, edof) + x(ely, elx)^penal*KE;
end
end
F(2*(nelx+1)*(nely+1),1)=-1;
fixeddofs=union([1,2],[2*nely+1:2*(nely+1)]);
alldofs = [1:2*(nely+1)*(nelx+1)];
freedofs = setdiff(alldofs, fixeddofs);
% SOLVING
U(freedofs,:) = K(freedofs, freedofs) \ F(freedofs,:);
U(fixeddofs:) = 0;
```

TO HAVE REAL DISPLACEMENT

- 1) Choose consistent units N, mm, MPa for example (Remember Nastran Course)
- 2) Put the real Young's modulus $E=210^{\circ}3$ MPa for example;
- 3) Multiply the unit load by true amplitude F for example 54*1°3 N;
- 4) Multiply the elementary stiffness matrix by the thickness (mm)
- 5) 2D mesh is invariant wrt to homotheties; Need to check that nelx and nely are related to the true value for example 140 and 50 mm
- 6) Apply the BCs

The compliance unit is mJ.

OPTIMALITY CRITERIA

```
function [xnew]=OC(nelx,nely,x,volfrac,dc)
11 = 0; 12 = 100000; move = 0.2;
while (12-11 > 1e-4)
 Imid = 0.5*(12+11);
 xnew = max(0.001, max(x-move, min(1., min(x+move, x.*sqrt(-dc./lmid)))));
 if sum(sum(xnew)) - volfrac*nelx*nely > 0;
                                                                                              11: 0.0000
                                                                                                          12: 50.0000
                                                                                Imid: 50.0000
  11 = \text{Imid};
                                                                                Imid: 25.0000
                                                                                              11: 0.0000
                                                                                                          12: 25.0000
 else
                                                                                Imid: 12.5000
                                                                                              11: 0.0000
                                                                                                          12: 12.5000
                                                                                              11: 6.2500
                                                                                Imid: 6.2500
                                                                                                          12: 12.5000
  12 = Imid;
                                                                                Imid: 9.3750
                                                                                              11: 6.2500
                                                                                                          12: 9.3750
                                                                                              11: 6.2500
                                                                                Imid: 7.8125
                                                                                                          12: 7.8125
 end
                                                                                Imid: 7.0313
                                                                                              11: 7.0313
                                                                                                          12: 7.8125
end
                                                                                Imid: 7.4219
                                                                                              11: 7.0313
                                                                                                          12: 7.4219
                                                                                Imid: 7.2266
                                                                                              11: 7.2266
                                                                                                          12: 7.4219
                                                                                Imid: 7.3242
                                                                                              11: 7.3242
                                                                                                          12: 7.4219
                                                                                Imid: 7.3730
                                                                                              11: 7.3242
                                                                                                          12: 7.3730
                                                                                Imid: 7.3486
                                                                                              11: 7.3242
                                                                                                          12: 7.3486
                                                                                              11: 7.3364
                                                                                Imid: 7.3364
                                                                                                          12: 7.3486
                                                                                Imid: 7.3425
                                                                                              11: 7.3425
                                                                                                          12: 7.3486
                                                                                Imid: 7.3456
                                                                                              11: 7.3425
                                                                                                          12: 7.3456
                                                                                              11: 7.3441
                                                                                Imid: 7.3441
                                                                                                          12: 7.3456
                                                                                              11: 7.3448
                                                                                Imid: 7.3448
                                                                                                          12: 7.3456
                                                                                Imid: 7.3452
                                                                                              11: 7.3448
                                                                                                          12: 7.3452
                                                                                Imid: 7.3450
                                                                                              11: 7.3450
                                                                                                          12: 7.3452
                                                                                Imid: 7.3451
                                                                                              11: 7.3450
                                                                                                          12: 7.3451
```

Can also use:

- fmincon
- MMA...

The MMA approach, which was initially proposed by Svanberg (see Mini Project) is based on the first-order Taylor series expansion of the objective and constraint functions.

With this method, an explicit convex subproblem is generated to approximate the implicit nonlinear problem.

Matlab code command

top(nelx, nely, volfrac, penal, rmin)

- nelx and nely: number of elements in the horizontal and vertical directions,
- volfrac: volume fraction,
- penal: penalization power,
- rmin: filter size (divided by element size).

Example 1

Numerical instability

top(40, 20, 0.5, 3, 1.0)

effect→ Checkerboard Pattern

Example 1 -- Checkerboard Pattern Problem

→ Solution: LOW PASS Filter

$$\frac{\widehat{\partial c}}{\partial x_e} = \frac{1}{x_e \sum_{f=1}^{N} \hat{H}_f} \sum_{f=1}^{N} \hat{H}_f x_f \frac{\partial c}{\partial x_f}.$$

$$\hat{H}_f = r_{\min} - \operatorname{dist}(e, f)$$
,

$$\{f \in N \mid \mathrm{dist}(e,f) \leq r_{\min}\}, \quad e = 1, \ldots, N$$

[dc] = check(nelx, nely, rmin, x, dc);

Filtering

Sensitivity Filtering by a Convolution Operation

25

Filtering

Convolution Operation

Example 2

top(40, 20, 0.5, 3, 1.5)

• top(40, 20, 0.5, 3, 3) effect?

Filter

A checkerboard field and filtered fields ($r_{\rm min}=1.5l_e$ and $3l_e$)

Example 3

rmin=1.5Obj=82.7562;

→ Size of the filter makes it possible to obtain a more physical representation (Unblur?)

rmin=3Obj=99.1929;

Example 3: Change mesh!

top(60, 30, 0.5, 3, 1.0)Obj: 83.0834

top(40, 20, 0.5, 3, 1.0)Obj: 80.4086;

EMSM207

Example 4: mixing

top(60, 30, 0.5, 3, 1.5)

Obj: 81.3491

Filter size

top(60, 30, 0.5, 3, 2.25)

Obj: 83.5963

top(40, 20, 0.5, 3, 1.5)

Obj=82.7562;

Common questions?

• Grayness level ?

```
%% Greyness Level
gl = 4/nele*sum(xPhys(:).*(1-xPhys(:)));
```

How to obtain B&W for the final design?

```
function xPhys=automatic threshold(xPhys)
% %code to input xPhys and obtain the B&W design at respected volfrac
xPhys01=xPhys;
volfrac=mean(mean(xPhys))
lowlim=0;
highlim=1;
difVF=1;
while difVF>0.0001 && highlim-lowlim > 0.000001
midlim=(lowlim+highlim)/2;
xPhys01(xPhys>=midlim)=1;
xPhys01(xPhys<midlim)=0;
volfrac01=mean(mean(xPhys01));
difVF=abs(volfrac01-volfrac);
if volfrac01<volfrac</pre>
highlim=midlim;
else
lowlim=midlim:
end
end
xPhys=xPhys01;
                                                            EMSM207
```

First Exercice

Read and finish the notebook called top88_Student.ipynb

At this time the structure is rigid... but feasible?

Check the stress?

Stress-based (your project)

Find
$$\mathbf{X} = [x_1, x_2, \dots, x_N]^T$$

minimize $f(\mathbf{X}) = W(\mathbf{X})$

subject $\mathbf{K}(\mathbf{X})\mathbf{U}(\mathbf{X}) = \mathbf{F}$
 $\mathbf{\sigma}(\mathbf{X}) - [\mathbf{\sigma}] \leq \mathbf{0}$
 $\frac{V(\mathbf{X})}{V_0} \leq f$
 $0 < x_{\min} \leq x_e \leq x_{\max} \leq 1$

Constraints Aggregation (Reduce the Number of Constraints)

$$\widehat{\rho_i} \leq \alpha, \forall i \iff \max_{i=1,\dots,n} |\widehat{\rho_i}| \leq \alpha \iff \lim_{p \to \infty} ||\rho||_p = \left(\sum_i (\widehat{\rho_i})^p\right)^{\frac{1}{p}} \leq \alpha$$

Too many constraints!

A single constraint But non-differentiable A single constraint and differentiable Approximated with p=16

Stress Based TO

Microscopic stress tensor

$$\sigma_e = C_e(E_0) \langle \epsilon_e \rangle$$

$$\overline{g}_j = \rho_j \left(\frac{\sigma_j}{\sigma_{\lim}} - 1 \right) \le 0.$$

Aggregation

$$G_{KS}^{L} = \Psi_{KS}^{L} = \frac{1}{P} \ln \left(\frac{1}{N} \sum_{i=1}^{N} e^{P\overline{g}_i} \right) \le 0.$$

(a) Lower bound KS-function: optimized designs for different values of P.

Kreisselmeier, G., and R. Steinhauser. "Systematic control design by optimizing a vector performance index." *Computer aided design of control systems*. Pergamon, 1980. 113-117.

Verbart, Alexander, Matthijs Langelaar, and Fred Van Keulen. "A unified aggregation and relaxation approach for stress-constrained topology optimization." *Structural and Multidisciplinary Optimization* 55.2 (2017): 663-679.

Results

Le et al., SMO (2010)

Conclusion

"The art of structure is where to put the holes"

Robert Le Ricolais
French-American engineer and philosopher (1894-1977)

"What is the optimal form for a tall building? We don't know..." — William Baker, Skidmore Owings and Merrill, Lecture at the Harvard Graduate School

"The significant design decision is not how big is the beam to be, but rather to have a beam." — Sir Alan Harris, Co-founder, Harris & Sutherland