Formule de Stirling

Dans ce développement un peu technique, nous démontrons la formule de Stirling $n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$ à l'aide du théorème central limite et de la fonction Γ d'Euler.

Lemme 1. Soit *Y* une variable aléatoire réelle à densité. Alors $\forall n \ge 1$, $\frac{Y-n}{\sqrt{n}}$ est à densité et,

$$f_{\frac{Y-n}{\sqrt{n}}}(x) = \sqrt{n} f_Y(n+x\sqrt{n})$$
 pp. en $x \in \mathbb{R}$

Démonstration. $\forall x \in \mathbb{R}$,

$$F_{\frac{Y-n}{\sqrt{n}}}(x) = \mathbb{P}\left(\frac{Y-n}{\sqrt{n}} \le x\right)$$
$$= \mathbb{P}(Y \le x\sqrt{n} + n)$$
$$= F_Y(x\sqrt{n} + n)$$

Or, la fonction de répartition d'une variable aléatoire réelle à densité est dérivable presque partout, et sa dérivée est presque partout égale à sa densité. Donc :

$$f_{\frac{Y-n}{\sqrt{n}}}(x) = \sqrt{n} f_Y(x\sqrt{n} + n)$$
 pp. en $x \in \mathbb{R}$

Remarque 2. Il ne s'agit ni plus ni moins qu'une version affaiblie du théorème de changement de variable.

Lemme 3. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

p. 180

 $D\acute{e}monstration.$ Soit $f_{a,\gamma}: x \mapsto \frac{\gamma^a}{\Gamma(a)} x^{a-1} e^{-\gamma x} \mathbb{1}_{\mathbb{R}^+}(x)$ la densité de la loi $\Gamma(a,\gamma)$. $\forall x \geq 0$, on a :

$$\begin{split} f_{Z}(x) &= \int_{0}^{x} f_{a,\gamma}(t) f_{b,\gamma}(x-t) \, \mathrm{d}t \\ &= \int_{0}^{x} \frac{\gamma^{a}}{\Gamma(a)} t^{a-1} e^{-\gamma t} \frac{\gamma^{b}}{\Gamma(b)} (x-t)^{b-1} e^{-\gamma (x-t)} \, \mathrm{d}t \\ &= \frac{\gamma^{a+b} e^{-\gamma x}}{\Gamma(a)\Gamma(b)} \int_{0}^{x} t^{a-1} (x-t)^{b-1} \, \mathrm{d}t \\ &\stackrel{t=ux}{=} \frac{\gamma^{a+b} e^{-\gamma x}}{\Gamma(a)\Gamma(b)} x^{a+b-1} \int_{0}^{1} u^{a-1} (1-u)^{b-1} \, \mathrm{d}t \\ &= K_{a,b} f_{a+b,\gamma}(x) \end{split}$$

p. 556

où $K_{a,b} = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 u^{a-1} (1-u)^{b-1} du$. Notons par ailleurs que f_Z est nulle sur \mathbb{R}^- et coïncide donc avec $K_{a,b} f_{a+b,\gamma}$ sur \mathbb{R}^- .

Pour conclure, on utilise la condition de normalisation :

$$1 = \int_{\mathbb{R}} f_Z(x) \, dx = K_{a,b} \int_{\mathbb{R}} f_{a+b,\gamma}(x) \, dx = K_{a,b}$$

On obtient ainsi $f_Z = f_{a+b,\gamma}$, ce que l'on voulait.

Théorème 4 (Formule de Stirling).

 $n! \sim \sqrt{2n\pi} \left(\frac{n}{a}\right)^n$

Démonstration. Soit (X_n) une suite de variable aléatoires indépendantes de même loi $\mathcal{E}(1)$. On pose $S_n = \sum_{k=0}^n X_k$. Montrons par récurrence que $S_n \sim \Gamma(n+1,1)$.

- Pour n = 0: c'est clair car $\mathcal{E}(1) = \Gamma(1, 1)$.
- On suppose le résultat vrai à un rang $n \ge 0$. Pour montrer qu'il reste vrai au rang n + 1, il suffit d'appliquer le Lemme 3 à $S_n \sim \Gamma(n,1)$ et $X_{n+1} \sim \Gamma(1,1)$ (qui sont bien indépendantes).

Par le Lemme 1 appliqué à S_n , pp. en $x \in \mathbb{R}$,

$$\widehat{f}_{\frac{S_n-n}{\sqrt{n}}}(x) = \sqrt{n} f_{S_n}(n+x\sqrt{n})$$

$$= \frac{\sqrt{n}}{\Gamma(n+1)} n^n \left(1 + \frac{x}{\sqrt{n}}\right)^n e^{-(n+x\sqrt{n})} \mathbb{1}_{[-\sqrt{n},+\infty[}(x)]$$

$$= a_n h_n(x)$$

avec:

—
$$a_n = \frac{n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}}{\Gamma(n+1)}$$
 (ce qui nous intéresse).

—
$$h_n: x \mapsto \frac{e^{-\sqrt{n}x}}{\sqrt{2\pi}} \left(1 + \frac{x}{\sqrt{n}}\right)^n \mathbb{1}_{[-\sqrt{n}, +\infty[}(x) \text{ (ce qui nous intéresse moins)}.$$

Montrons maintenant que $\frac{S_n-n}{\sqrt{n}}$ converge en loi vers $\mathcal{N}(0,1)$. D'après le théorème central limite,

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{(d)} \mathcal{N}(0, 1)$$

où:

$$--- \mathbb{E}(S_n) = (n+1)\mathbb{E}(X_0) = n+1.$$

— $Var(S_n) = (n+1) Var(X_0) = n+1$ par indépendance.

On applique maintenant le théorème de Slutsky:

$$\frac{S_n - n}{\sqrt{n}} = \underbrace{\frac{\sqrt{n+1}}{\sqrt{n}}}_{\longrightarrow 1} \left(\underbrace{\frac{S_n - (n+1)}{\sqrt{n+1}}}_{\underbrace{\frac{(d)}{\sqrt{N}(0,1)}}} + \underbrace{\frac{1}{\sqrt{n+1}}}_{\longrightarrow 0} \right) \xrightarrow{(d)} \mathcal{N}(0,1)$$

Tout cela pour dire que,

$$\int_0^1 g_n(x) \, \mathrm{d}x = \mathbb{P}\left(\frac{S_n - n}{\sqrt{n}} \in [0, 1]\right) \longrightarrow \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, \mathrm{d}x$$

De plus:

— \forall *n* ∈ \mathbb{N} , h_n est mesurable.

— Comme $\forall x > -1$, $\varphi(x) \ge 0$, alors h_n est dominée par $x \mapsto \frac{1}{\sqrt{2\pi}}$.

Donc par le théorème de convergence dominée,

$$\int_0^1 h_n(x) \, \mathrm{d}x \longrightarrow \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, \mathrm{d}x$$

Pour conclure, on écrit:

$$\int_{0}^{1} g_{n}(x) dx = a_{n} \int_{0}^{1} h_{n}(x) dx \implies \lim_{n \to +\infty} a_{n} = \frac{\lim_{n \to +\infty} \int_{0}^{1} g_{n}(x) dx}{\lim_{n \to +\infty} \int_{0}^{1} h_{n}(x) dx} = 1$$

et comme $\Gamma(n+1) = n!$, par définition de a_n :

$$1 = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{n^{n+\frac{1}{2}} e^{-n} \sqrt{2\pi}}{n!}$$

Bibliographie

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.