COMS 331: Theory of Computing, Spring 2023 Homework Assignment 8

Due at 10:00PM, Wednesday, April 12, on Gradescope.

Given a language $B \subseteq \{0,1\}^*$, define the language $\forall B \subseteq \{0,1\}^*$ by

$$\forall B = \{x \in \{0,1\}^* \mid (\forall w \in \{0,1\}^*) \langle x, w \rangle \in B\}.$$

Problem 51. Let $B \subseteq \{0,1\}^*$. Prove: If B is co-c.e., then $\forall B$ is co-c.e.

Problem 52. Prove: For every co-c.e. language $A \subseteq \{0,1\}^*$, there is a decidable language $B \subseteq \{0,1\}^*$ such that $A = \forall B$.

Given a function $f: \mathbb{N} \to \mathbb{N}$, define the following three subsets of $\mathbb{N} \times \mathbb{N}$: The graph of f is

$$Graph(f) = \{(n, f(n)) | n \in \mathbb{N}\}.$$

The upper graph of f is

$$Graph^+(f) = \{(n, k) \in \mathbb{N} \times \mathbb{N} | k > f(n) \}.$$

The <u>lower</u> graph of f is

$$Graph^{-}(f) = \{(n, k) \in \mathbb{N} \times \mathbb{N} | k < f(n) \}.$$

Problem 53. Use a picture of $\mathbb{N} \times \mathbb{N}$ to explain what the sets Graph(f), $Graph^+(f)$, and $Graph^-(f)$ are if f(n) = n + 2 for all $n \in \mathbb{N}$.

Recall the rapidly growing function $G: \mathbb{N} \to \mathbb{N}$ from the class lectures.

Problem 54. Answer the following questions and prove that your answers are correct

- (a) Is Graph(G) decidable?
- (b) Is Graph(G) c.e.?

(c) Is Graph(G) co-c.e.?

Problem 55. Answer the following questions and prove that your answers are correct

- (a) Is $Graph^+(G)$ decidable?
- (b) Is $Graph^+(G)$ c.e.?
- (c) Is $Graph^+(G)$ co-c.e.?

Problem 56. Answer the following questions and prove that your answers are correct

- (a) Is $Graph^{-}(G)$ decidable?
- (b) Is $Graph^{-}(G)$ c.e.?
- (c) Is $Graph^{-}(G)$ co-c.e.?