HAX501X – Groupes et anneaux 1

Examen terminal

Exercice 1 : le critère d'Euler. On fixe un nombre premier $p \neq 2$. On dit qu'un entier a non divisible par p est un carré modulo p s'il existe un entier x tel que $x^2 \equiv a \pmod{p}$. Le critère d'Euler, qu'on prouve dans les deux premières questions, est l'équivalence suivante :

$$a \ est \ un \ carr\'e \ modulo \ p \iff a^{\frac{p-1}{2}} \equiv 1 \ (\text{mod } p)$$
.

- 1) Implication directe " \Longrightarrow ".
 - a) Rappeler la preuve vue en TD du petit théorème de Fermat comme application du théorème de Lagrange.

Soit p un nombre premier. On applique le théorème de Lagrange (pour l'ordre d'un élément) dans le groupe $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{\overline{1}, \dots, \overline{p-1}\}$, qui est d'ordre p-1. Il dit que pour tout $\overline{x} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, on a $\overline{x}^{p-1} = \overline{1}$. En termes de congruences, cela veut dire que pour tout $x \in \mathbb{Z}$ qui n'est pas divisible par p, on a $x^{p-1} \equiv 1 \pmod{p}$.

b) Déduire du petit théorème de Fermat l'implication directe "=>".

Soit a un entier non divisible par p qui est un carré modulo p. Par définition, il existe donc $x \in \mathbb{Z}$ tel que $x^2 \equiv a \pmod{p}$. En mettant cette congruence à la puissance $\frac{p-1}{2}$ (qui est un entier car $p \neq 2$ donc p est impair) on obtient :

$$x^{p-1} \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Or, par le petit théorème de Fermat, on a $x^{p-1} \equiv 1 \pmod{p}$, et donc on obtient bien que :

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

- 2) Implication réciproque "\=".
 - a) À quelle condition sur $u, v \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ a-t-on $u^2 = v^2$? On justifiera.

Soient $u, v \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. On a les équivalences :

$$u^{2} = v^{2} \iff u^{2} - v^{2} = \overline{0}$$

$$\iff (u - v)(u + v) = \overline{0}$$

$$\iff u - v = \overline{0} \text{ ou } u + v = \overline{0}$$

$$\iff u = v \text{ ou } u = -v.$$

Dans la troisième ligne on a utilisé le fait que $\mathbb{Z}/p\mathbb{Z}$ est un anneau intègre car p est premier.

b) On note E l'ensemble des éléments de $(\mathbb{Z}/p\mathbb{Z})^{\times}$ de la forme u^2 , avec $u \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Déduire de la question précédente que $|E| = \frac{p-1}{2}$.

Considérons la liste des u^2 , pour tous les $u \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Cette liste est de longueur p-1, mais il y a des répétitions parce que $(-u)^2=u^2$ pour tout u, et d'après la question précédente, c'est la seule source de répétitions. On note que $-u \neq u$ car $p \geqslant 3$, et donc chaque élément de la liste apparaît exactement 2 fois. Le nombre d'éléments distincts qui apparaissent dans la liste est donc $\frac{p-1}{2}$.

(Concrètement, E est égal à l'ensemble des \overline{a}^2 , pour $a \in \{1, \dots, \frac{p-1}{2}\}$, et ces éléments sont deux à deux distincts.)

c) On note F l'ensemble des éléments $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ qui vérifient $\overline{a}^{\frac{p-1}{2}} = \overline{1}$. Montrer que $|F| \leqslant \frac{p-1}{2}$.

Considérons le polynôme $X^{\frac{p-1}{2}} - \overline{1}$ à coefficients dans $\mathbb{Z}/p\mathbb{Z}$, qui est de degré $\frac{p-1}{2}$. Comme p est premier, $\mathbb{Z}/p\mathbb{Z}$ est un corps et donc par le cours, ce polynôme a au plus $\frac{p-1}{2}$ racines.

d) Déduire des questions 1) et 2)b), 2)c) qu'on a l'égalité E = F. En déduire l'implication réciproque \Leftarrow .

La question 1) montre que $E \subset F$. Or les questions 2)b) et 2)c) impliquent que $|E| \geqslant |F|$. On a donc nécessairement E = F. L'inclusion $F \subset E$ est l'implication réciproque \longleftarrow .

3) En utilisant le critère d'Euler, énoncer et démontrer une condition nécessaire et suffisante sur un nombre premier $p \neq 2$ pour que -1 soit un carré modulo p.

Soit un nombre premier $p \neq 2$. Par le critère d'Euler, -1 est un carré modulo p si et seulement si $(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. Comme $(-1)^{\frac{p-1}{2}} = \pm 1$ et que $p \geqslant 3$, c'est équivalent à l'égalité $(-1)^{\frac{p-1}{2}} = 1$.

La valeur de $(-1)^{\frac{p-1}{2}}$ dépend de la parité de $\frac{p-1}{2}$, c'est-à-dire du reste de p dans la division euclidienne par 4. Concrètement :

$$(-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{si } p \equiv 1 \pmod{4}; \\ -1 & \text{si } p \equiv 3 \pmod{4}. \end{cases}$$

On en déduit que :

-1 est un carré modulo $p \iff p \equiv 1 \pmod{4}$.

4) Soit un entier a non divisible par p, tel que a n'est pas un carré modulo p. Combien vaut a $\frac{p-1}{2}$ modulo p? On justifiera.

Par le petit théorème de Fermat on a $a^{p-1} \equiv 1 \pmod{p}$, et donc

$$\left(a^{\frac{p-1}{2}}\right)^2 \equiv 1 \pmod{p}.$$

Dans $\mathbb{Z}/p\mathbb{Z}$ cela s'écrit :

$$\left(\overline{a}^{\frac{p-1}{2}}\right)^2 = \overline{1},$$

ou encore:

$$\left(\overline{a}^{\frac{p-1}{2}} - \overline{1}\right) \left(\overline{a}^{\frac{p-1}{2}} + \overline{1}\right) = \overline{0}.$$

Comme p est premier, $\mathbb{Z}/p\mathbb{Z}$ est un anneau intègre, et on en déduit que

$$\overline{a}^{\frac{p-1}{2}} = \overline{1}$$
 ou $\overline{a}^{\frac{p-1}{2}} = -\overline{1}$.

Par hypothèse, a n'est pas un carré modulo p, donc le critère d'Euler implique que $\overline{a}^{\frac{p-1}{2}} \neq \overline{1}$, et donc $\overline{a}^{\frac{p-1}{2}} = -\overline{1}$. On en déduit que si a n'est pas un carré modulo p alors

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

Exercice 2 : groupes et sous-groupes d'ordre premier.

- 1) Soit G un groupe fini, dont l'élément neutre est noté e. On suppose que $G \neq \{e\}$ et que les seuls sous-groupes de G sont $\{e\}$ et G. Montrer que G est cyclique, puis que G est d'ordre premier.
 - ightharpoonup Comme $G \neq \{e\}$, il existe un élément $x \in G$ qui est différent de e. On considère le sous-groupe de G engendré par x, noté $\langle x \rangle$ comme dans le cours. Ce sous-groupe n'est pas $\{e\}$ car il contient x qui est différent de e. Comme les seuls sous-groupes de G sont $\{e\}$ et G, on en déduit que $\langle x \rangle = G$. Donc G est engendré par x, et est donc cyclique.
 - Notons n l'ordre de G. Comme G est cyclique d'ordre n, on a par le cours que G a exactement un sous-groupe pour chaque diviseur positif de n. Concrètement, pour chaque diviseur positif d de n, on a le sous-groupe $\langle x^d \rangle$, qui est d'ordre $\frac{n}{d}$. Or, par hypothèse, G a exactement deux sous-groupes, et donc n a exactement deux diviseurs positifs. Donc n est premier.
- 2) Soit p un nombre premier, soit $n \in \mathbb{N}^*$, et soit G un groupe d'ordre p^n . En utilisant la première question, montrer que G contient un sous-groupe d'ordre p.

On prouve l'énoncé par récurrence forte sur n.

- Pour tout $n \in \mathbb{N}^*$, considérons l'assertion P(n): "Tout groupe G d'ordre p^n contient un sous-groupe d'ordre p."
- Initialisation. P(1) est vraie, car un groupe G d'ordre p se contient lui-même comme sous-groupe.
- Hérédité. Soit $n \ge 2$ tel que $P(1), \ldots, P(n-1)$ sont vraies. Soit G un groupe d'ordre p^n . Comme p^n n'est pas premier car $n \ge 2$, la question précédente implique que G a un sous-groupe H qui n'est ni $\{e\}$ ni G. Par le théorème de Lagrange, l'ordre de H divise l'ordre de G. Comme p est premier, il existe donc $k \in \{1, \ldots, n-1\}$ tel que $|H| = p^k$. En appliquant l'hypothèse de récurrence P(k) au groupe H, on voit que H contient un sous-groupe K d'ordre P. Alors K est un sous-groupe de G d'ordre P.
- Conclusion : on a montré que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

Exercice 3 : l'anneau des polynômes à valeurs entières. On définit l'anneau des polynômes à valeurs entières :

$$A = \{ f \in \mathbb{Q}[X] \mid \forall n \in \mathbb{Z}, f(n) \in \mathbb{Z} \}.$$

- 1) Montrer que A est un sous-anneau de $\mathbb{Q}[X]$.
 - \triangleright Clairement, le polynôme nul 0 appartient à A.

- \triangleright Soient $f, g \in A$. Alors pour tout $n \in \mathbb{Z}$, $f(n) \in \mathbb{Z}$ et $g(n) \in \mathbb{Z}$, et donc $(f+g)(n) = f(n) + g(n) \in \mathbb{Z}$. Donc $f + g \in A$.
- \triangleright Soit $f \in A$. Alors pour tout $n \in \mathbb{Z}$, $f(n) \in \mathbb{Z}$, et donc $(-f)(n) = -f(n) \in \mathbb{Z}$. Donc $-f \in A$.
- \triangleright Clairement, le polynôme unité 1 appartient à A.
- \triangleright Soient $f, g \in A$. Alors pour tout $n \in \mathbb{Z}$, $f(n) \in \mathbb{Z}$ et $g(n) \in \mathbb{Z}$, et donc $(fg)(n) = f(n)g(n) \in \mathbb{Z}$. Donc $fg \in A$.
- 2) Déterminer le groupe des inversibles de A.

Soit $f \in A^{\times}$. Alors il existe $g \in A$ tel que fg = 1. Comme \mathbb{Q} est un corps, on a alors $\deg(f) + \deg(g) = \deg(fg) = 0$, et donc $\deg(f) = \deg(g) = 0$, c'est-à-dire que f et g sont des polynômes constants. On écrit f = a et g = b avec $a, b \in \mathbb{Q}$. Or, $f, g \in A$ et donc notamment $f(0), g(0) \in \mathbb{Z}$, ce qui veut dire que $a, b \in \mathbb{Z}$. Comme ab = 1, on en déduit que $a = b = \pm 1$.

Conclusion : les seuls inversibles de A sont les polynômes 1 et -1, c'est-à-dire :

$$A^{\times} = \{1, -1\}.$$

3) Pour tout $k \in \mathbb{N}$ on pose

$$\binom{X}{k} = \frac{X(X-1)(X-2)\cdots(X-k+1)}{k!}.$$

(Par convention, $\binom{X}{0} = 1$.) Montrer que c'est un élément de A.

- \triangleright Pour $n \in \mathbb{N}$, on a que $\binom{n}{k}$ est par définition un coefficient binomial, c'est un entier car c'est le nombre de parties à k éléments d'un ensemble à n éléments.
- \triangleright Il faut aussi traiter le cas où n est négatif! Pour n=-m avec $m\in\mathbb{N}^*$, on calcule :

$${\binom{-m}{k}} = \frac{(-m)(-m-1)(-m-2)\cdots(-m-k+1)}{k!}$$
$$= (-1)^k \frac{(m+k-1)(m+k-2)\cdots(m+1)m}{k!}$$
$$= (-1)^k {\binom{m+k-1}{k}},$$

qui est aussi un entier.

Conclusion: pour tout $n \in \mathbb{Z}$, $\binom{n}{k} \in \mathbb{Z}$. Donc $\binom{X}{k} \in A$.

4) Soit $f \in A$ de degré $\leq n$. Montrer que f s'écrit de manière unique sous la forme

$$f = a_0 + a_1 {X \choose 1} + a_2 {X \choose 2} + \dots + a_n {X \choose n}$$

avec $a_0, a_1, \ldots, a_n \in \mathbb{Z}$. (Indication: montrer cette assertion avec les a_i dans \mathbb{Q} , puis montrer que les a_i sont dans \mathbb{Z} .)

Pour tout $k \in \{0, ..., n\}$, le polynôme $\binom{X}{k} \in \mathbb{Q}[X]$ est de degré k. Par le cours d'algèbre linéaire, ces polynômes forment donc une base de l'espace vectoriel des polynômes

de degré $\leq n$ à coefficients dans \mathbb{Q} . Donc il existe une unique famille de scalaires $a_0, a_1, \ldots, a_n \in \mathbb{Q}$ tels que

$$f = a_0 + a_1 {X \choose 1} + a_2 {X \choose 2} + \dots + a_n {X \choose n}.$$

Il reste maintenant à montrer que les a_i sont dans \mathbb{Z} . On utilise le fait que comme $f \in A$, les évaluations $f(0), f(1), \ldots, f(n)$ sont dans \mathbb{Z} . Or :

- $\triangleright f(0) = a_0, \text{ donc } a_0 \in \mathbb{Z}.$
- $\triangleright f(1) = a_0 + a_1$, donc $a_0 + a_1 \in \mathbb{Z}$. Comme $a_0 \in \mathbb{Z}$ par le point précédent, on en déduit que $a_1 \in \mathbb{Z}$.
- $\Rightarrow f(2) = a_0 + 2a_1 + a_2$, donc $a_0 + 2a_1 + a_2 \in \mathbb{Z}$. Comme $a_0, a_1 \in \mathbb{Z}$ par les deux points précédents, on en déduit que $a_2 \in \mathbb{Z}$.
- \triangleright Plus généralement, supposons qu'on a montré que $a_0, a_1, \ldots, a_{k-1} \in \mathbb{Z}$ pour un certain $k \in \{1, \ldots, n\}$. Alors en considérant f(k), on voit que

$$a_0 + a_1 \binom{k}{1} + a_2 \binom{k}{2} + \dots + a_{k-1} \binom{k}{k-1} + a_k \in \mathbb{Z},$$

et on en déduit que $a_k \in \mathbb{Z}$.

Ce raisonnement (qu'on pourrait écrire de manière plus propre sous la forme d'une récurrence) montre que a_0, a_1, \ldots, a_n sont dans \mathbb{Z} .

5) Soit p un nombre premier, et soit I_p l'idéal de A engendré par les éléments $\binom{X}{k}$, pour $k \in \{1, \ldots, p-1\}$. Montrer que :

$$\begin{pmatrix} X \\ p \end{pmatrix} \notin I_p.$$

(Remarque : cela montre que l'anneau A n'est pas noethérien puisqu'on a les inclusions strictes d'idéaux de $A: I_2 \subsetneq I_3 \subsetneq I_5 \subsetneq I_7 \subsetneq I_{11} \subsetneq I_{13} \subsetneq I_{17} \subsetneq \cdots$.)

On procède par l'absurde, en supposant que $\binom{X}{p} \in I_p$. Il existe donc des éléments $f_1, \ldots, f_{p-1} \in A$ tels que

$$\binom{X}{p} = f_1 \binom{X}{1} + \dots + f_{p-1} \binom{X}{p-1}.$$

En évaluant en X = p, on obtient alors :

$$1 = f_1(p) \binom{p}{1} + \dots + f_{p-1}(p) \binom{p}{p-1}.$$

Or, par le cours, $\binom{p}{k}$ est un multiple de p pour tout $k \in \{1, \ldots, p-1\}$. Comme de plus $f_k(p) \in \mathbb{Z}$ pour tout $k \in \{1, \ldots, p-1\}$ car $f_k \in A$, l'égalité précédente implique que 1 est un multiple de p, ce qui est absurde.

On a donc montré que $\binom{X}{p} \notin I_p$.

6) Montrer que l'anneau A n'est pas factoriel. (Indication : considérer les factorisations de l'élément X(X-1).)

On a l'égalité dans A:

$$2\binom{X}{2} = X(X-1).$$

- \triangleright L'élément $2 \in A$ est irréductible car il n'est pas inversible (par la question 2)) et que ses seuls factorisations sont de la forme $(\pm 1) \times (\pm 2)$. En effet, il est clair que les polynômes constants dans A sont nécessairement des entiers.
- \triangleright Si l'anneau A était factoriel, on aurait existence et unicité de la décomposition en produit d'irréductibles dans A. Donc l'irréductible 2 devrait apparaître dans la décomposition en produit d'irréductibles de X ou de X-1, c'est-à-dire qu'on devrait avoir 2|X ou 2|X-1 dans A. Ce n'est pas vrai, car $\frac{X}{2}$ et $\frac{X-1}{2}$ ne sont pas dans A. On en déduit que A n'est pas un anneau factoriel.