

Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34
Giovanna Maria Nogueira	112479	Física / 34

Experimento II

Circuito RL em série, em corrente alternada

1- Anote os valores de
$$R = \begin{bmatrix} 219,30 \ \Omega \pm 0,01 \end{bmatrix}$$
 e $L = \begin{bmatrix} 0,00267 \ H \pm 0,00001 \end{bmatrix}$

2- Calcule a frequência de corte (f_c^{calc}) e anote aqui: 13072,164 \pm 0,001

Fig. 1. Esquema da montagem do circuito.

O gerador de função foi ajustado em 5 V, pico a pico (V_{pp}), e com forma de onda senoidal. Já o osciloscópio foi configurado para medir a V_{pp} nos canais 1 e 2, a frequência do canal 1 e a diferença de fase (ϕ) do canal 1 com relação ao canal 2;

- 3- Anote na Tabela (na última linha) os valores da f_C^{exp} (frequência de corte experimental), obtida por meio do osciloscópio. E nesta frequência, anote os valores de V_L (tensão pico a pico aplicada no indutor), V_R (tensão pico a pico aplicado no resistor) e da ϕ (diferença de fase entre a V_T e a corrente do circuito);
- 4- A frequência foi variada na fonte AC de 1 a 100 kHz. Anote cada uma das frequências selecionadas, e em cada uma delas anote também os valores de V_{fonte} , V_R , V_L e ϕ ;
- 5- Calcule X_L (Reatância indutiva), X_{Lexp} (Reatância indutiva experimental), Z_{exp} (Impedância total do circuito experimental) e anote seus valores na tabela;

$$X_{Lexp} = \frac{V_L}{I} = \frac{V_L}{(V_R/R)}; \quad X_L = 2\pi f L; \quad f_C^{calc} = \frac{R}{2\pi L} \; ; \quad Z_{exp} = \sqrt{R^2 + X_{Lexp}^2}; \quad Z = \sqrt{R^2 + X_L^2} \; ; \quad V_T = \sqrt{V_R^2 + V_L^2}; \quad$$

Discussão dos dados obtidos:

1) Construa em um mesmo gráfico de $V_T,\,V_L\,e\,V_R\,em\,$ função da frequência:

Tensão X Frequência

a. Obtenha f_C por meio deste gráfico e determine o desvio percentual com relação ao valor de f_C^{cal} .

É possível obter a frequência de corte experimental f_c^{exp} do sistema observando a interseção entre as curvas do potencial do indutor e do resistor. Fazendo isso se obtém:

$$f_C^{exp} = 12500Hz$$

Pode-se comparar este valor com a frequência de corte calculada via equação teórica. Se nos lembrarmos de que a diferença de fase entre os fasores \hat{V}_R e \hat{V}_L é dada pela variação da tangente do fasor da impedância complexa \hat{Z} , têm-se:

$$\phi = \tan^{-1} \left(\frac{2 \cdot \pi \cdot R \cdot L}{R} \right)$$

Os fasores serão iguais quando $\phi = 45^{\circ}$, ou seja:

$$f_C = \frac{R}{2 \cdot \pi \cdot L}$$

A frequência de corte teórica foi calculada em:

$$f_C = 13072,164 Hz$$

$$\Delta = \left| \frac{12500,000 - 13072,164}{12500,000} \right| \times 100 = 4,58\%$$

Comparando ambas as frequências, teórica e calculada, pôde-se estimar o desvio entre elas. O erro experimental calculado foi de 4,58%, o que está dentro do esperado visto os métodos experimentais aplicados. Tal erro pode ser atribuído na dificuldade em manter o potencial total do sistema constante, assim como os erros grosseiros típicos do experimento.

b. Descreva neste gráfico o comportamento de V_T, V_L e V_R para valores $f < f_C, \, f > f_C$ e $f = f_C$.

Ao contrário da reatância capacitiva que diminui para altas frequências, observa-se que para rápidas oscilações a reatância indutiva devida ao indutor torna-se cada vez maior. Note que pelo gráfico dado acima que o potencial do indutor V_L atinge seu maior valor para frequências maiores que f_C , e decai para valores menores. Já o potencial do resistor V_R se comporta exatamente ao contrário, aumenta para valores menores que f_C , e decai para valores maiores. Estes resultados correspondem com as equações obtidas em teoria. $f < f_C$ Por meio do gráfico podemos notar que $V_L < V_R$, dessa forma temos uma oscilação de baixa frequência. $f > f_C$ Nesse caso temos o inverso $V_L > V_R$, sendo assim, concluímos que a reatância indutiva é alta, logo a corrente será baixa. Sendo assim, temos que quando para altas frequências a corrente tende a diminuir. $f = f_C$ Nesse caso temos que $V_L = V_R$, podemos relacionar essa igualdade, pois a tensão assume características conservativas.

c. Discuta sobre as principais fontes de erro com relação à medida V_R e V_L e sobre o que estas podem acarretar sobre o valor de f_C obtida pelo gráfico.

Dos dados obtidos concluímos que o experimento foi bem executado, mostrando um baixo desvio percentual.

2) Construa em um mesmo gráfico $X_{L_{exp}}$ e X_{L} em função da frequência.

a. Os valores obtidos para X_{Lexp} e X_L apresentam discrepância em função da frequência? Em caso afirmativo, discuta sobre as principais diferenças.

Os valores da reatância indutiva experimental foram obtidos por meio da equação:

$$\chi_{L_{exp}} = \frac{V_L}{I}$$

Já que o circuito está em série, a corrente pode ser obtida tomando o potencial no resistor e dividindo pela corrente:

$$I = \frac{V_R}{R}$$

Do gráfico pode-se perceber que:

$$\chi_L \propto f$$

A reatância indutiva é dada pela expressão:

$$\chi_L = 2 \cdot \pi \cdot L \cdot f$$

Ou seja, o valor da indutância obtida via experimento. Analisando as duas reatâncias, temos que elas estão de acordo, como podemos observar no gráfico acima. Poderíamos, talvez, obter um erro menor se a fonte que alimentava o circuito fosse mais estável e confiável, pois a utilizada para o experimento oscilava muito o potencial total fornecido V_{Tpp} , o que certamente gerou as flutuações observadas.

- b. Ajuste a função matemática que melhor descreve o comportamento de $X_{L_{exp}}$ em função da frequência. No gráfico deve constar a função matemática utilizada e os parâmetros de ajuste obtidos.
 - Realizamos uma linearização com as duas curvas obtidas, como é observado no gráfico acima.
- c. Por meio do ajuste realizado no item anterior obtenha o valor da indutância e calcula o desvio percentual com relação ao valor da indutância medida com a ponte LCR.

Comparando a equação teórica com a equação que descreve a reta, temos:

$$2 \cdot \pi \cdot L = 15,660 \rightarrow L = \frac{15,660}{2 \cdot \pi}$$

Assim temos a indutância experimental do indutor, $L_{exp} = 2,492$ mH. Comparando esse valor experimental com o valor teórico obtido, sendo o valor teórico de 2,670 mH. Calculando o desvio padrão;

$$\Delta = \left| \frac{2,670 - 2,492}{2,670} \right| \times 100 = 6,67\%$$

3) Construa em um mesmo gráfico de Z e Z_{exp} em função da frequência.

a. Os valores obtidos para Z e Z_{exp} apresentam discrepância em função da frequência? Em caso afirmativo, discuta sobre as principais diferenças.

Desejou-se estudar o comportamento da impedância Z, da reatância indutiva χ_L e da resistência R em função da frequência f do circuito. Como já dito anteriormente, é possível observar como a reatância indutiva aumenta para frequências altas, e assume valor igual a zero quando f = 0 kHz. A impedância Z

tem valor assintótico definido pela resistência do circuito, que aumenta para altas frequências assim como χ_L . No gráfico vemos uma certa discrepância dos pontos à medida que a frequência aumenta, temos que ao aumentar a frequência a intensidade da impedância aumenta proporcionalmente e consequentemente o desvio associado a essa medida, porém esse desvio é muito baixo no nosso experimento.

4) Construa em um mesmo gráfico de X_{Lexp} , Z_{exp} e R em função da frequência.

a. Obtenha f_C por meio deste gráfico e determine o desvio percentual com relação ao valor de f_C^{cal} .

Temos que a frequência de corte pode ser reescrita da seguinte forma:

$$f_C = \frac{R}{\chi_L} \cdot f$$

Dessa forma temos que a frequência de corte ocorre quando a resistência for igual à reatância indutiva. Observando o gráfico, esse ponto está para a frequência igual a aproximadamente 12500 Hz, lembrando que a resistência é constante. Dessa forma, podemos calcular o desvio percentual:

$$\Delta = \left| \frac{12500,000 - 13072,164}{12500,000} \right| \times 100 = 4,58\%$$

b. Descreva neste gráfico o comportamento de $X_{L_{exp}}$, Z_{exp} e R para valores $f < f_C$, $f > f_C$ e $f = f_C$.

Para $f < f_C$ nesse caso temos que para baixas frequências temos altas correntes e que a resistência (constante) é maior que a reatância. A reatância é baixa portanto, a impedância também será baixa, não será menor que a resistência, visto que quando a reatância for 0 temos que |Z| = R, logo a impedância nunca será menor que a resistência. Para o caso $f > f_C$ temos altas frequências, consequentemente a corrente é baixa, e a reatância será maior que a resistência (constante). Sendo assim temos que a impedância aumentara conforme a reatância aumenta, e quando a reatância tender a valores infinitamente altos, tanto a impedância quanto a reatância possuirão valores muito próximos. E quando $f = f_C$ temos que a frequência de oscilação é igual a frequência de corte, assim a resistência e a reatância são iguais.

5) Construa o gráfico de ϕ em função da frequência.

a. Por meio deste gráfico obtenha o valor de f_c e calcule o desvio percentual com relação ao valor de f_c^{cal} .

Temos que:

$$\phi = tan^{-1} \left(\frac{X_L}{R} \right)$$

Sabemos que quando $X_L = R$ temos a frequência de corte, então:

$$\phi = tan^{-1}(1) \rightarrow \phi = 45^{\circ}$$

Observando o gráfico vemos que a frequência associada a essa fase é aproximadamente igual a 12500Hz

$$\Delta = \left| \frac{12500,000 - 13072,164}{12500,000} \right| \times 100 = 4,58\%$$

Se comparado ao valor experimental, calcula-se um desvio de aproximadamente 2,9 %, o que está dentro do esperado. Os erros grosseiros somados à fonte externa justificam o desvio.

b. Descreva neste gráfico o comportamento de ϕ para valores $f < f_C$, $f > f_C$ e $f = f_C$.

 $f < f_C A$ frequência de oscilação é menor que a frequência de corte e a fase estará em um intervalo de $0 \le \phi < 45^\circ$, e a tangente tem o intervalo $0 \le \tan \phi < 1$, assim teremos que . Sendo assim, para frequências de oscilação menores que a frequência de corte teremos que a resistência será maior que a reatância indutiva. $f > f_C A$ frequência de oscilação é maior que a frequência de corte e a fase estará em um intervalo de $45^\circ < \phi \le 90^\circ$, e a tangente tem o intervalo $1 < \tan \phi \le +\infty$, assim teremos que $\chi_L > R$. Portanto para frequências de oscilação maiores que a frequência de corte a resistência será menor que a reatância. $f = f_C$, A frequência de oscilação e de corte forem iguais teremos que $\phi = 45^\circ$ assim $\chi_L = R$.

f (kHz)	$V_{fonte}(V)$	$V_T(V)$	$V_{R}\left(V\right)$	$V_L(V)$	φ (graus)	$X_{L_{exp}}(\Omega)$	$X_L(\Omega)$	$Z_{exp}\left(\Omega \right)$	$Z\left(\Omega ight)$
1000,00	5,12	5,023	5,00	0,480	4,32	21,053	16,776	220,308	219,940
2002,00	5,12	5,077	5,00	0,880	8,93	38,600	33,586	222,671	221,857
3008,00	5,12	5,084	4,92	1,28	13,9	57,054	50,463	226,600	225,031
4039,00	5,16	5,148	4,88	1,64	16,9	73,699	67,759	231,353	229,529
5000,00	5,12	5,133	4,76	1,92	22,0	88,457	83,881	236,468	234,795
6024,00	5,16	5,223	4,68	2,32	25,2	108,713	101,059	244,767	241,465
7072,00	5,12	5,160	4,48	2,56	29,5	125,314	118,641	252,579	249,335
8013,00	5,16	5,237	4,40	2,84	31,7	141,548	134,427	261,014	257,222
10080,00	5,12	5,204	4,04	3,28	39,9	178,046	169,103	282,476	276,927
11030,00	5,16	5,245	3,96	3,44	40,1	190,503	185,040	290,489	286,936
12000,00	5,08	5,178	3,76	3,56	44,9	207,635	201,313	302,001	297,690
14080,00	5,16	5,268	3,52	3,92	47,2	244,220	236,208	328,231	322,315
18050,00	5,20	5,305	3,08	4,32	54,6	307,590	302,809	377,762	373,879
20080,00	5,12	5,237	2,84	4,40	57,8	339,761	336,864	404,388	401,958
23090,00	5,08	5,229	2,56	4,56	61,5	390,628	387,360	447,976	445,129
26110,00	5,12	5,277	2,36	4,72	63,0	438,600	438,024	490,370	489,855
29100,00	5,20	5,337	2,16	4,88	65,0	495,455	488,185	541,819	535,179
40190,00	5,12	5,262	1,64	5,00	71,1	668,598	674,232	703,645	709,000
60020,00	5,20	5,315	1,10	5,20	78,7	1036,691	1006,902	1059,632	1030,507
80130,00	5,12	5,183	0,808	5,12	80,8	1389,624	1344,269	1406,822	1362,040
100000,00	5,16	5,202	0,656	5,16	83,9	1724,982	1677,610	1738,866	1691,883
12660,00	5,12	5,204	3,68	3,68	44,2	219,300	212,385	310,137	305,287