Quaderno delle regole - Matematica

Tommaso Bocchietti 29 gennaio 2024

Indice

1	Gor	niometria
	1.1	Funzioni goniometriche
	1.2	Equazioni goniometriche
		1.2.1 Equazioni elementari
		1.2.2 Equazioni di 1° grado
		1.2.3 Equazioni di 2° grado
	1.3	Disequazioni goniometriche
2	Trig	gonometria
	2.1	Teoremi sui triangoli rettangoli
	2.2	Teoremi sui triangoli qualunque
3	Esp	ponenziali e logaritmi
	3.1	Proprietà dei logaritmi

1 Goniometria

Un angolo può essere misurato in gradi o radianti, infatti si ha $\alpha^{\circ} = \alpha [rad] \frac{180^{\circ}}{\pi}$. Considerando una circonferenza goniometrica (raggio r=1), un angolo orientato α , dal prolungamento del lato dell'angolo α , otteniamo l'intersezione B, dove:

 $y_B=\sin(\alpha)$ $x_B=\cos(\alpha)$ $\frac{y_B}{x_B}=\tan(\alpha)$ Al variare dell'angolo α , le funzioni vengono così rappresentate:

Tutte queste funzioni sono periodiche, per cui f(x) = f(x+T), dove T è il periodo della funzione. Angoli noti:

Angolo °	$\sin(\alpha)$	$\cos(\alpha)$	$\tan(\alpha)$
0	0	1	0
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	1	0	∞

Esistono poi le funzioni inverse, che permettono di trovare l'angolo α a partire da un dato valore della funzione (es. $\sin(30^\circ) = \frac{1}{2} \to 30^\circ = \arcsin(\frac{1}{2})$).

Il periodo T di una funzione si ricava come: $f(x) = \sin(\omega x) \to T = \frac{2\pi}{\omega}$ Relazioni fondamentali della goniometria: $\sin(\alpha)^2 + \cos(\alpha)^2 = 0$ e $\frac{\sin(\alpha)}{\cos(\alpha)} = \tan(\alpha)$ alpha)

Funzioni goniometriche

Addizione

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \tag{1}$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \tag{2}$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$
(3)

Sottrazione

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) \tag{4}$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \tag{5}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)} \tag{6}$$

(7)

Duplicazione

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \tag{8}$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \tag{9}$$

$$\tan(2\alpha) = 2\tan(\alpha)\frac{1 - \tan^2(\alpha)}{1 + \tan^2(\alpha)} \tag{10}$$

Bisezione

$$\sin(\frac{\alpha}{2}) = \pm \sqrt{\frac{1 - \cos(\alpha)}{2}}$$

$$\cos(\frac{\alpha}{2}) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}}$$

$$\tan(\frac{\alpha}{2}) = \pm \frac{\sqrt{1 - \cos(\alpha)}}{\sqrt{1 + \cos(\alpha)}} = \frac{\sin(\alpha)}{1 + \cos(\alpha)} = \frac{1 - \cos(\alpha)}{\sin(\alpha)}$$
(13)

$$\cos(\frac{\alpha}{2}) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}} \tag{12}$$

$$\tan(\frac{\alpha}{2}) = \pm \frac{\sqrt{1 - \cos(\alpha)}}{\sqrt{1 + \cos(\alpha)}} = \frac{\sin(\alpha)}{1 + \cos(\alpha)} = \frac{1 - \cos(\alpha)}{\sin(\alpha)}$$
(13)

Parametriche

$$\sin(\alpha) = \frac{2\tan(\frac{\alpha}{2})}{1 + \tan^2(\frac{\alpha}{2})} \tag{14}$$

$$\cos(\alpha) = \frac{1 - \tan^2(\frac{\alpha}{2})}{1 + \tan^2(\frac{\alpha}{2})} \tag{15}$$

$$\tan(\alpha) = \frac{2\tan(\frac{\alpha}{2})}{1 - \tan^2(\frac{\alpha}{2})} \tag{16}$$

Esistono anche

$$\sin^{2}(\alpha) = \frac{1 - \cos(2\alpha)}{2}$$

$$\cos^{2}(\alpha) = \frac{1 + \cos(2\alpha)}{2}$$
(18)

$$\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \tag{18}$$

(19)

Ogni formula contenente la tangente ha le sue condizioni di esistenza. In generale essendo $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$ si ha che $tan(\alpha)$ esiste se $cos(\alpha) \neq 0$, ovvero se $\alpha \neq K\pi$ con $K \in \mathbb{Z}$.

Equazioni goniometriche 1.2

Esistono diversi tipologie di equazioni goniometriche.

1.2.1 Equazioni elementari

Sfruttano il principio degli angoli associati:

$$\sin(\alpha) = \rightarrow \begin{cases} \alpha = \arcsin(\frac{1}{2}) \\ \alpha = (\pi - \arcsin(\frac{1}{2})) \end{cases}$$

1.2.2 Equazioni di 1° grado

Qui distinguiamo due casi di omogenea (se tutti i termini sono dello stesso grado) e non omogenea.

Omogenea, c=0 Data l'equazione $A\sin(\alpha) + B\cos(\alpha) = 0$, la riconduco a una forma elementare dividendo i termini per $\cos(\alpha)$ e ottenere \cos i:

$$A \tan(\alpha) + B = 0 \rightarrow \tan(\alpha) = -\frac{A}{B}$$

Non omogenea, $c \neq 0$ Data l'equazione $A \sin(\alpha) + B \cos(\alpha) + C = 0$, esistono tre modi per risolverla:

- Parametrico: pongo $sin(\alpha) = \frac{2T}{1+T^2}$ e $cos(\alpha) = \frac{1-T^2}{1+T^2}$, con $T = \tan(\frac{\alpha}{2})$.
- Grafico: pongo $Y = \sin(\alpha)$ e $X = \cos(\alpha)$, e metto a sistema

$$\begin{cases} AY + BX + C = 0 \\ X^2 + Y^2 = 1 \end{cases}$$

Le intersezioni trovate corrispondono alle soluzioni.

Angolo aggiunto: considero l'equazione $A\sin(\alpha) + B\cos(\alpha) + C = 0$ come se fosse la formula di addizione (??) di $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) = -C$, dove $\cos(\beta) = A$ e $\sin(\beta) = B$ Calcolo dunque il raggio della circonferenza come $r = \sqrt{A^2 + B^2}$ e divido il tutto per r. Trovo dunque α avendo il valore di $\cos(\alpha)$ e $\sin(\alpha)$, e riduco a equazione elementare $\sin(\alpha+\beta)$ $-\frac{C}{2} \to \alpha = \arcsin(-\frac{C}{2}) - \beta$

Esempio angolo aggiunto:

$$\cos(\alpha) - \sqrt{3}\sin(\alpha) = 1 \to r = \sqrt{1^2 + (\sqrt{3})^2} = 2$$
 (20)

$$\begin{cases}
\cos(\beta) = \frac{1}{2} \\
\sin(\beta) = -\frac{\sqrt{3}}{2}
\end{cases} \to \beta = \frac{5\pi}{6}$$
(21)

$$\sin(\alpha + \frac{5\pi}{6}) = \frac{1}{2} \to \begin{cases} \alpha + \frac{5\pi}{6} = \frac{\pi}{6} + 2k\pi \to \alpha = -\frac{2\pi}{3} + 2k\pi \\ \alpha + \frac{5\pi}{6} = \frac{5\pi}{6} + 2k\pi \to \alpha = 0 + 2k\pi \end{cases}$$
(22)

1.2.3 Equazioni di 2° grado

Definite nella forma $A\sin^2(\alpha) + B\cos(\alpha)\sin(\alpha) + C\cos^2(\alpha) + D = 0$, si risolvono in maniera differente a seconda del valore di D.

Caso 1, D=0 Si raccoglie $\sin(\alpha)$ o $\cos(\alpha)$ se A=0 o C=0 rispettivamente, e si risolve come un'equazione di 1° grado. Altrimenti si divide per $\cos^2(\alpha)$ e otteniamo $A \tan^2(\alpha) + B \tan(\alpha) + C = 0$, e si risolve come un'equazione di 2° grado ponendo $x=\tan(\alpha)$.

Caso 2, $D \neq 0$ Si riscrive D come $D = D\sin^2(\alpha) + D\cos^2(\alpha)$, e si arriva quindi ad avere $A\sin^2(\alpha) + B\cos(\alpha)\sin(\alpha) + C\cos^2(\alpha) + D\sin^2(\alpha) + D\cos^2(\alpha) = 0$. Proseguo dividendo per $\cos^2(\alpha)$ e riportandomi dunque al caso sopra descritto.

1.3 Disequazioni goniometriche

Per risolvere una disequazione goniometrica, si ricava da prima la soluzione dell'equazione associata come descritto sopra, e si utilizza poi la circonferenza come grafico per determinare il segno.

$$(2\sin(\alpha) + \sqrt{2})(2\cos(\alpha) - 1) > 0 \tag{23}$$

$$\begin{cases} 2\sin(\alpha) + \sqrt{2} > 0 \\ 2\cos(\alpha) - 1 > 0 \end{cases} = \begin{cases} \sin(\alpha) > -\frac{1}{\sqrt{2}} \\ \cos(\alpha) > \frac{1}{2} \end{cases} \rightarrow \begin{cases} -\frac{\pi}{4} < \alpha < \frac{5\pi}{4} \\ -\frac{\pi}{3} < \alpha < \frac{\pi}{3} \end{cases}$$
(24)

Dal grafico si vede che la soluzione è $-\frac{\pi}{4} < \alpha < \frac{\pi}{3} \lor \frac{5\pi}{4} < \alpha < \frac{5\pi}{4}$.

2 Trigonometria

La trigonometria è lo studio delle relazioni tra i lati e gli angoli di un triangolo.

Figura 1: Triangolo rettangolo

$$a = \begin{cases} c \sin(\alpha) \\ c \cos(\beta) \\ b \tan(\alpha) \\ b \cot(\alpha) \end{cases}$$

Preso per esempio il lato a, si possono scrivere le suddette relazioni.

Risolvere un triangolo significa trovare il valore di ogni suo lato e angolo.

2.1 Teoremi sui triangoli rettangoli

- Area di un triangolo: $A = \frac{1}{2}ab\sin(\alpha)$ (due lati per l'angolo compreso)
- Misura di una corda: $AB = 2r\sin(\alpha)$
- Raggio della circonferenza inscritta: $r = \frac{a}{2\sin(\alpha)}$

2.2 Teoremi sui triangoli qualunque

- Teorema dei seni: $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$
- Teorema del coseno: $a^2 = b^2 + c^2 2bc\cos(\alpha)$, dimostrabile essendo $a^2 = HH'^2 + (AB HB)^2 = (b\sin(\alpha))^2 + c^2 + (b\cos(\alpha))^2 2bc\cos(\alpha)$

3 Esponenziali e logaritmi

Si definisce funzione esponenziale ogni funzione del tipo $f(x) = a^x$, con $a \in \mathbb{R}$ e $a \ge 0$.

Se a > 1, la funzione è sempre crescente, mentre se 0 < a < 1 è sempre decrescente.

É un equazione esponenziale, una qualsiasi equazione che contiene almeno una potenza con l'incognita all'esponente: $a^x = b$, risolvibile con il logaritmo $x = \log_a(b)$. Per risolvere le disequazioni con gli esponenziali, si riporta tutto alla stessa base e si osserva se:

- a>1, allora si pongono gli esponenti uno maggiore dell'altro $\to 2^{2x}>2^3$, Soluzione: 2x>3
- 0 < a < 1, allora si pongono gli esponenti uno minore dell'altro $\to \frac{1}{3}^{2x} > \frac{1}{3}^5$, Soluzione: 2x < 5

Il logaritmo è l'esponente da dare alla base per ottenere l'argomento: $\log_a(b)=x\iff a^x=b$. Le condizioni di esistenza sono b>0 e $a\neq 1\land a>0$

3.1 Proprietà dei logaritmi

$$\begin{split} \log_a(b \cdot c) &= \log_a(b) + \log_a(c) \\ \log_a(\frac{b}{c}) &= \log_a(b) - \log_a(c) \\ \log_a(b^c) &= c \cdot \log_a(b) \\ \log_a(b) &= \frac{\log_c(b)}{\log_c(a)} \end{split}$$

Una equazione è logaritmica se compare l'incognita nell'argomento del logaritmo: $\log_a(x)$. Per risolvere le disequazioni, riportiamo il entrambi i membri alla stessa base, sapendo che $\log_a(b) = e^{\ln(\log_a(b))}$, oppure sfruttando la definizione di logaritmo: $a^x = b \iff x = \log_a(b)$.

$$\log_3(x+2) \ge 5 \to C.E. : x+2 > 0 \tag{25}$$

$$x + 2 \ge 3^5 \to x \ge 3^5 - 2 \tag{26}$$

Per risolvere un equazione esponenziale, si utilizzano i logaritmi e le sue proprietà:

$$7 \cdot 5^{2x} = 3^{x+1} \tag{27}$$

$$\log_1 0(7 \cdot 5^{2x}) = \log_1 0(3^{x+1}) \tag{28}$$

$$\log_1 0(7) + 2x \log_1 0(5) = (x+1) \log_1 0(3) \tag{29}$$

$$x = \frac{\log_1 0(3) - \log_1 0(7)}{2\log_1 0(5) - \log_1 0(3)}$$
(30)