Now suppose that $(x_k - x^*)/\|x_k - x^*\| \to \bar{d}$. It is obvious that

$$\|\nabla f(x_k)\|^2 = \|x_k - x^*\|^2 (\|\nabla^2 f(x^*)\bar{d}\|^2 + o(1))$$

and

$$f(x_k) - f(x^*) = \frac{1}{2} ||x_k - x^*||^2 (\bar{d}^T \nabla^2 f(x^*) \bar{d} + o(1)).$$

Using the above equalities and (3.1.22) yields

$$\lim_{k \to \infty} \frac{\|\nabla f(x_k)\|^2}{f(x_k) - f(x^*)} = \frac{2\|\nabla^2 f(x^*)\bar{d}\|^2}{\bar{d}^T \nabla^2 f(x^*)\bar{d}} \ge 2m. \tag{3.1.25}$$

Hence, it follows from (3.1.24) and (3.1.25) that

$$\limsup_{k \to \infty} \beta_k \leq 1 - \liminf_{k \to \infty} \frac{\|\nabla f(x_k)\|^2}{2M[f(x_k) - f(x^*)]}$$

$$\leq 1 - \frac{m}{M} < 1.$$

We complete the proof. \Box

3.1.3 Barzilai and Borwein Gradient Method

From the above discussions we know that the classical steepest descent method performs poorly, converges linearly, and is badly affected by ill-conditioning.

Barzilai and Borwein [8] presented a two-point step size gradient method, which is called usually the Barzilai-Borwein (or BB) gradient method. In the method, the step size is derived from a two-point approximation to the secant equation underlying quasi-Newton methods (see Chapter 5).

Consider the gradient iteration form

$$x_{k+1} = x_k - \alpha_k g_k (3.1.26)$$

which can be written as

$$x_{k+1} = x_k - D_k g_k, (3.1.27)$$

where $D_k = \alpha_k I$. In order to make the matrix D_k have quasi-Newton property, we compute α_k such that

$$\min \|s_{k-1} - D_k y_{k-1}\|. \tag{3.1.28}$$

This yields that

$$\alpha_k = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}},\tag{3.1.29}$$

where $s_{k-1} = x_k - x_{k-1}, y_{k-1} = g_k - g_{k-1}$.

By symmetry, we may minimize $||D_k^{-1}s_{k-1} - y_{k-1}||$ with respect to α_k and get

$$\alpha_k = \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T y_{k-1}}. (3.1.30)$$

The above description produces the following algorithm.

Algorithm 3.1.8 (The Barzilai-Borwein gradient method)

Step 0. Given $x_0 \in \mathbb{R}^n$, $0 < \varepsilon \ll 1$. Set k = 0.

Step 1. If $||g_k|| \le \varepsilon$, stop; otherwise let $d_k = -g_k$.

Step 2. If k = 0, find α_0 by line search; otherwise compute α_k by (3.1.29) or (3.1.30).

Step 3. Set $x_{k+1} = x_k + \alpha_k d_k$.

Step 4. k := k + 1, return to Step 1. \square

It is easy to see that in this method no matrix computations and no line searches (except k=0) are required. The Barzilai-Borwein method is, in fact, a gradient method, but requires less computational work, and greatly speeds up the convergence of the gradient method. Barzilai and Borwein [8] proved that the above algorithm is R-superlinearly convergent for the quadratic case.

In the general non-quadratic case, a globalization strategy based on non-monotone line search is suitable to Barzilai-Borwein gradient method. In addition, in general non-quadratic case, α_k computed by (3.1.29) or (3.1.30) can be unacceptably large or small. Therefore, we must assume that α_k satisfies the condition

$$0 < \alpha^{(l)} \le \alpha_k \le \alpha^{(u)}$$
, for all k ,

where $\alpha^{(l)}$ and $\alpha^{(u)}$ are previously determined numbers.

If we employ the iteration

$$x_{k+1} = x_k - \frac{1}{\alpha_k} g_k = x_k - \lambda_k g_k \tag{3.1.31}$$

with

$$\alpha_k = \frac{s_{k-1}^T y_{k-1}}{s_{k-1}^T s_{k-1}}, \quad \lambda_k = \frac{1}{\alpha_k}, \tag{3.1.32}$$

note that $s_k = -\frac{1}{\alpha_k}g_k = -\lambda_k g_k$, then we have

$$\alpha_{k+1} = \frac{s_k^T y_k}{s_k^T s_k} = \frac{-\lambda_k g_k^T y_k}{\lambda_k^2 g_k^T g_k} = -\frac{g_k^T y_k}{\lambda_k g_k^T g_k}.$$

Now we give the following Barzilai-Borwein gradient algorithm with non-monotone globalization.

Algorithm 3.1.9 (The Barzilai-Borwein gradient algorithm with nonmonotone linesearch)

Step 0. Given
$$x_0 \in \mathbb{R}^n, 0 < \varepsilon \ll 1$$
, an integer $M \geq 0$, $\rho \in (0,1), \delta > 0, 0 < \sigma_1 < \sigma_2 < 1$, $\alpha^{(l)}, \alpha^{(u)}$. Set $k = 0$.

Step 1. If $||g_k|| \le \varepsilon$, stop.

Step 2. If
$$\alpha_k \leq \alpha^{(l)}$$
 or $\alpha_k \geq \alpha^{(u)}$ then set $\alpha_k = \delta$.

Step 3. Set $\lambda = 1/\alpha_k$.

Step 4. (nonmonotone line search) If

$$f(x_k - \lambda g_k) \le \max_{0 \le j \le \min(k, M)} f(x_{k-j}) - \rho \lambda g_k^T g_k,$$

then set

$$\lambda_k = \lambda, \quad x_{k+1} = x_k - \lambda_k g_k,$$

and go to Step 6.

Step 5. Choose $\sigma \in [\sigma_1, \sigma_2]$, set $\lambda = \sigma \lambda$, and go to Step 4.

Step 6. Set
$$\alpha_{k+1} = -(g_k^T y_k)/(\lambda_k g_k^T g_k)$$
, $k := k+1$, return to Step 1.

Obviously, the above algorithm is globally convergent.