2 Optimisation

2.1 Gradient of vector-valued functions

For a function J that maps a column vector $\mathbf{w} \in \mathbb{R}^n$ to \mathbb{R} , the gradient is defined as

$$\nabla J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{pmatrix},$$

where $\partial J(\mathbf{w})/\partial w_i$ are the partial derivatives of $J(\mathbf{w})$ with respect to the *i*-th element of the vector $\mathbf{w} = (w_1, \dots, w_n)^{\top}$ (in the standard basis). Alternatively, it is defined to be the column vector $\nabla J(\mathbf{w})$ such that

$$J(\mathbf{w} + \epsilon \mathbf{h}) = J(\mathbf{w}) + \epsilon (\nabla J(\mathbf{w}))^{\mathsf{T}} \mathbf{h} + O(\epsilon^{2})$$
(2.1)

for an arbitrary perturbation $\epsilon \mathbf{h}$. This phrases the derivative in terms of a first-order, or affine, approximation to the perturbed function $J(\mathbf{w} + \epsilon \mathbf{h})$. The derivative ∇J is a linear transformation that maps $\mathbf{h} \in \mathbb{R}^n$ to \mathbb{R} [see Chapter 9, for a formal treatment of derivatives]¹.

Use either definition to determine $\nabla J(\mathbf{w})$ for the following functions where $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function.

- i. $J(\mathbf{w}) = \mathbf{a}^{\mathsf{T}} \mathbf{w}$.
- ii. $J(\mathbf{w}) = \mathbf{w}^{\top} \mathbf{A} \mathbf{w}$.
- iii. $J(\mathbf{w}) = \mathbf{w}^{\top} \mathbf{w}$.
- iv. $J(\mathbf{w}) = ||\mathbf{w}||_2$.
- $v. J(\mathbf{w}) = f(||\mathbf{w}||_2).$

¹Walter Rudin. Principles of Mathematical Analysis. McGraw Hill, 3rd edition edition, 1976.

2.2 Newton's method

Assume that in the neighbourhood of \mathbf{w}_0 , a function $J(\mathbf{w})$ can be described by the quadratic approximation

$$f(\mathbf{w}) = c + \mathbf{g}^{\mathsf{T}}(\mathbf{w} - \mathbf{w}_0) + \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^{\mathsf{T}}\mathbf{H}(\mathbf{w} - \mathbf{w}_0),$$

where $c = J(\mathbf{w}_0)$, \mathbf{g} is the gradient of J with respect to \mathbf{w} , and \mathbf{H} a symmetric positive definite matrix (e.g. the Hessian matrix for $J(\mathbf{w})$ at \mathbf{w}_0 if positive definite).

- i. Use Task 2.1 to determine $\nabla f(\mathbf{w})$.
- ii. A necessary condition for \mathbf{w} being optimal (leading either to a maximum, minimum or a saddle point) is $\nabla f(\mathbf{w}) = 0$. Determine \mathbf{w}^* such that $\nabla f(\mathbf{w})|_{\mathbf{w} = \mathbf{w}^*} = 0$. Provide arguments why \mathbf{w}^* is a minimiser of $f(\mathbf{w})$.
- iii. In terms of Newton's method to minimise $J(\mathbf{w})$, what do \mathbf{w}_0 and \mathbf{w}^* stand for?

2.3 Gradient of matrix-valued functions

For functions J that map a matrix $\mathbf{W} \in \mathbb{R}^{n \times m}$ to \mathbb{R} , the gradient is defined as

$$\nabla J(\mathbf{W}) = \begin{pmatrix} \frac{\partial J(\mathbf{W})}{\partial W_{11}} & \cdots & \frac{\partial J(\mathbf{W})}{\partial W_{1m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial J(\mathbf{W})}{\partial W_{n1}} & \cdots & \frac{\partial J(\mathbf{W})}{\partial W_{nm}} \end{pmatrix}.$$

Alternatively, it is defined to be the matrix ∇J such that

$$J(\mathbf{W} + \epsilon \mathbf{H}) = J(\mathbf{W}) + \epsilon \operatorname{tr}(\nabla J^{\mathsf{T}} \mathbf{H}) + O(\epsilon^{2})$$
(2.2)

$$= J(\mathbf{W}) + \epsilon \operatorname{tr}(\nabla J \mathbf{H}^{\top}) + O(\epsilon^{2})$$
(2.3)

This definition is analogue to the one for vector-valued functions in (2.1). It phrases the derivative in terms of a linear approximation to the perturbed objective $J(\mathbf{W} + \epsilon \mathbf{H})$ and, more formally, $\operatorname{tr} \nabla J^{\top}$ is a linear transformation that maps $\mathbf{H} \in \mathbb{R}^{n \times m}$ to \mathbb{R} .

Let $\mathbf{e}^{(i)}$ be *column* vector which is everywhere zero but in slot i where it is 1. Moreover let $\mathbf{e}^{[j]}$ be a *row* vector which is everywhere zero but in slot j where it is 1. The outer product $\mathbf{e}^{(i)}\mathbf{e}^{[j]}$ is then a matrix that is everywhere zero but in row i and column j where it is one. For $\mathbf{H} = \mathbf{e}^{(i)}\mathbf{e}^{[j]}$, we obtain

$$J(\mathbf{W} + \epsilon \mathbf{e}^{(i)} \mathbf{e}^{[j]}) = J(\mathbf{W}) + \epsilon \operatorname{tr}((\nabla J)^{\top} \mathbf{e}^{(i)} \mathbf{e}^{[j]}) + O(\epsilon^{2})$$
$$= J(\mathbf{W}) + \epsilon \mathbf{e}^{[j]} (\nabla J)^{\top} \mathbf{e}^{(i)} + O(\epsilon^{2})$$
$$= J(\mathbf{W}) + \epsilon \mathbf{e}^{[i]} \nabla J \mathbf{e}^{(j)} + O(\epsilon^{2})$$

Note that $\mathbf{e}^{[i]} \nabla J \mathbf{e}^{(j)}$ picks the element of the matrix ∇J that is in row i and column j, i.e. $\mathbf{e}^{[i]} \nabla J \mathbf{e}^{(j)} = \partial J / \partial W_{ij}$.

Use either of the two definitions to find $\nabla J(\mathbf{W})$ for the functions below, where $\mathbf{u} \in \mathbb{R}^n, \mathbf{v} \in \mathbb{R}^m, \mathbf{A} \in \mathbb{R}^{n \times m}$, and $f : \mathbb{R} \to \mathbb{R}$ is differentiable.

i.
$$J(\mathbf{W}) = \mathbf{u}^{\top} \mathbf{W} \mathbf{v}$$
.

ii.
$$J(\mathbf{W}) = \mathbf{u}^{\top}(\mathbf{W} + \mathbf{A})\mathbf{v}$$
.

iii.
$$J(\mathbf{W}) = \sum_n f(\mathbf{w}_n^{\top} \mathbf{v})$$
, where \mathbf{w}_n^{\top} are the rows of the matrix \mathbf{W} .

iv.
$$J(\mathbf{W}) = \mathbf{u}^{\mathsf{T}} \mathbf{W}^{-1} \mathbf{v}$$
.

[Hint:
$$(\mathbf{W} + \epsilon \mathbf{H})^{-1} = \mathbf{W}^{-1} - \epsilon \mathbf{W}^{-1} \mathbf{H} \mathbf{W}^{-1} + O(\epsilon^2)$$
]

2.4 Gradient of the log-determinant

The goal of this exercise is to determine the gradient of

$$J(\mathbf{W}) = \log |\det(\mathbf{W})|.$$

i. Show that the *n*-th eigenvalue λ_n can be written as

$$\lambda_n = \mathbf{v}_n^{\top} \mathbf{W} \mathbf{u}_n,$$

where \mathbf{u}_n is the *n*th eigenvector and \mathbf{v}_n the *n*th column vector of \mathbf{U}^{-1} , with \mathbf{U} being the matrix with the eigenvectors \mathbf{u}_n as columns.

- ii. Calculate the gradient of λ_n with respect to **W**, i.e. $\nabla \lambda_n(\mathbf{W})$.
- iii. Write $J(\mathbf{W})$ in terms of the eigenvalues λ_n and calculate $\nabla J(\mathbf{W})$.
- iv. Show that

$$\nabla J(\mathbf{W}) = (\mathbf{W}^{-1})^{\top}.$$

2.5 Descent directions for matrix-valued functions

Assume we would like to minimise a matrix-valued function $J(\mathbf{W})$ by gradient descent, i.e. the update equation is

$$\mathbf{W} \leftarrow \mathbf{W} - \epsilon \nabla J(\mathbf{W}),$$

where ϵ is the step-length. The gradient $\nabla J(\mathbf{W})$ was defined in Task 2.3. It was there pointed out that the gradient defines a first order approximation to the perturbed objective function $J(\mathbf{W} + \epsilon \mathbf{H})$. With (2.2),

$$J(\mathbf{W} - \epsilon \nabla J(\mathbf{W})) = J(\mathbf{W}) - \epsilon \operatorname{tr}(\nabla J(\mathbf{W})^{\top} \nabla J(\mathbf{W})) + O(\epsilon^{2})$$

For any (nonzero) matrix M, it holds that

$$\operatorname{tr}(\mathbf{M}^{\top}\mathbf{M}) = \sum_{i} (\mathbf{M}^{\top}\mathbf{M})_{ii}$$

$$= \sum_{i} \sum_{j} (\mathbf{M}^{\top})_{ij} (\mathbf{M})_{ji}$$

$$= \sum_{i} \sum_{j} M_{ji} M_{ji}$$

$$= \sum_{ij} (M_{ji})^{2}$$

$$> 0.$$

which means that $\operatorname{tr}(\nabla J(\mathbf{W})^{\top} \nabla J(\mathbf{W})) > 0$ if the gradient is nonzero.

Hence,

$$J(\mathbf{W} - \epsilon \nabla J(\mathbf{W})) < J(\mathbf{W})$$

for small enough ϵ . Consequently, $\nabla J(\mathbf{W})$ is a descent direction.

Show that $\mathbf{A}^{\top} \mathbf{A} \nabla J(\mathbf{W}) \mathbf{B} \mathbf{B}^{\top}$ for non-zero matrices \mathbf{A} and \mathbf{B} is also a descent direction or leaves the leaves the objective invariant.

