

Goal

- ☐ In Lab5, you will learn
 - How to read/write the memory.
 - → How to implement a simple image processing algorithm with a more complex FSM.

- Introduce to image filter
 - Mean filter (Only introduce)
 - Median filter (This Lab)
- Hardware description
 - Block diagram
 - I/O Information
 - Memory mapping
 - Flow in Lab5
- Criteria
 - Simulation Result
 - Grading policy
 - Requirement & file format

- Noise and Images
 - Principal sources of noise in digital images: during image acquisition, during image transmission.
 - Image acquisition: image sensor might produce noise because of environmental conditions or quality of sensing elements.
 - Image transmission: interference in the channel.

- Different types of image noise
 - Most common noise found in image processing: Gaussian noise, Rayleigh noise, Gamma noise, Exponential noise, Uniform noise, Impulse noise

- ☐ Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- ☐ Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- ☐ Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- ☐ Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

- ☐ Filtering to Remove Noise
 - → We can use spatial filters of different kinds to remove different kinds of noise
- Mean filter
 - → Taking the average of pixel values within a fixed region(ex:3X3 window)
 - This is implemented as the simple smoothing filter Blurs the image to remove noise

LPHPLMB VLSI Design LAB

Introduce to image filter

- How to solve the boundary issue?
 - Padding (Zero padding)

→ You need to do the zero padding in this Lab!

Median filter

- Find the median of all pixel values within a fixed range and replace the original central pixel value with this median value.
- → Excellent at noise removal, without the smoothing effects that can occur with other smoothing filters .
- Particularly good when salt and pepper noise is present.
- In Lab5, the window size is 3*3.

No part of this teaching material may be redistributed in any form without written permission from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan

The effects of different spatial filters

The original image

Add salt-and-pepper

Mean filter(3×3)

Median filter(3 x 3)

LPHPLHE VLSI Design LAE

Hardware description

Block diagram

□ I/O Information

Signal	I/O	width	Desc.	
clk	I	1	positive-edged triggered	
rst	- 1	1	asynchronous positive-edged triggered	
enable	I	1	enable signal to start processing	
*_Q	I	8	8-bit data to be transmitted	
*_OE	0	1	Active high read enable signal	
*_WE	0	1	Active high write enable signal	
*_A	0	16	Address	
*_D	0	8	Data	
done	0	1	Finish signal	

■ Memory mapping(1/2)

Content in RAM_IMG

fig[0]

fig[1]

fig[2]

fig[3]

fig[65533]

fig[65534]

fig[65535]

Storage format for input BMP

fig[0]	fig[255]
	•••
fig[65280]	fig[65535]

■ Memory mapping(2/2)

Content in RAM_OUT

output[0]

output[1]

output[2]

output[3]

output[65533]

output[65534]

output[65535]

Storage format for output BMP

out[0]		out[255]
	300	
out[65280]	3	out[65535

- enable & done signal
 - → The enable signal will be pulled up to HIGH after reset, and will be maintained for only one cycle.

→ When the testbench receives the done signal, it will start comparing the values inside RAM_OUT.

Flow in Lab5(1/2)

- ☐ Step1
 - → Read each address and its surrounding eight pixels sequentially from RAM.
- ☐ Step2
 - Utilize the sort module to sort the nine pixels and find the median.
- ☐ Step3
 - After finding the median, write it into the memory RAM_OUT.
 - Repeat step1-step3 until the entire input image is processed.

Flow in Lab5(2/2)

- The timing information for Read/Write SRAM
 - Read operation (delay one cycle)

- ✓ The memory will output values on the negative edge(T2), and you need to capture data on the positive edge(T3).
- Write operation

- Simulation result
 - Pass

Failed

Criteria

- Simulation result Visualization
 - → It will generate the input picture and your output result in a BMP file when your simulation is finished.

Criteria

- ☐ Grading policy(100%)
 - → Lab5
 - ◆ Simulation pass (90%)
 - ◆ Report (10%)

- You must finish median filter.v/.sv and pass all patterns
- For Lab5, you need to submit
 - median_filter.v / median_filter.sv
 - tb_median_fliter.sv
 - StudentID_Lab5.pdf
- Deadline:2024/03/28 08:59 a.m. (No late submission)

Lab5 Requirement & file format

- Friendly reminder
 - → Please complete the assignment by your own, discussion with peers is recommended, but do not cheat.
 - → Warning! Any dishonesty found will result in zero grade.
 - → Warning! Any late submission will also receive zero.
 - → Warning! Please make sure that your code can be compiled in Modelsim, any dead body that we cannot compile will also receive zero.
 - → Warning! Please submit your work according to the specified file format, making sure not to include any unnecessary files. Any unnecessary file found, will lead to 10% deduction from the overall score.

LPHPLMB VLSI Design LAB

Lab5 Requirement & file format

File format

Thanks for listening

