Zusammenfassung Information Theory and Coding

Markus Velm

Inhaltsverzeichnis

1.	Einleitung 1.1. Informationstheorie	
2.	Blockcodes	1
3.	Galois-Felder	1
4.	Reed-Solomon-Code 4.1. Wunsch und Idee	1 1 1 1 1
5.	Erweiterungskörper	2
6.	BCH-Codes	2
Α.	Polynome A.1. Polynommultiplikation	

1. Einleitung

1.1. Informationstheorie

1.2. Quellcodierung

2. Blockcodes

3. Galois-Felder

4. Reed-Solomon-Code

n: Länge Codewort

k: Länge Informationswort

d: Mindestabstand

4.1. Wunsch und Idee

Wunsch

Konstruktion eines Codes mit vorgegebener Korrekturfähigkeit

 \rightarrow Vorgabe des Mindestabstandes d

$$e = \left\lfloor \frac{d-1}{2} \right\rfloor$$

$$d = 2e-1$$

bei linearem Code ist Mindestabstand = Mindestgewicht

 \rightarrow Codeworte haben mind. dvon 0 verschiedene Koeffizienten

d'Alembert: Polynom vom Grad n hat n komplexe (oder höchstens n reelle) Nullstellen; auch im Galois-Feld

Idee

Konstruktion des Informationswortes als Polynom A(x) mit Grad k-1 (damit höchstens k-1 Nullstellen)

Im GF(p) mit Ordnung n = p - 1 kann man A(x) an n Stellen auswerten, danach wiederholen sich die Werte

 \to Auswertung des Polynoms für verschieden
ex (bzw. $\alpha^i)$ ergeben die Koeffiziente
n a_i des Polynoms a(x)

$$a_i = A(\alpha^i)$$
 IDFT

von diesen sind höchstens k-1 Null (weil grad(A(x)) = k-1)

von diesen sind also mind
.n-(k-1)von Null verschieden \rightarrow Mindestgewich
td

$$d = n - (k - 1) = n - k + 1$$

4.2. Codierung

Verschiedene Möglichkeiten aus einem Informationswort ein Codewort zu generieren

4.2.1. IDFT (nicht systematisch)

$$a_i = A(\alpha^i)$$

A(x): Informationswort a_i : Koeff. des Codewortes

4.2.2. Generatorpolynom (nicht systematisch)

$$a_i = g(x) \cdot i(x)$$

mit Generatorpolynom

$$g(x) = \prod_{i=k}^{n-1} (x - \alpha^{-i})$$

g(x): Generator polynom i(x): Information spolynom

4.2.3. Polynomdivision (systematisch)

Informationswort ist Teil des Codewortes (an den hohen Potenzen)

$$a^*(x) = i_{k-1}x^{n-1} + i_{k-2}x^{n-2} + \dots + i_1x^{n-k+1} + i_0x^{n-k}$$

jedes Codewort muss durch Generatorpolynom teilbar sein \to ist für $a^*(x)$ i.A. nicht der Fall

$$\frac{a^*(x)}{g(x)} = b(x) + \frac{rest(a^*(x))}{g(x)}$$

$$\rightarrow \frac{a^*(x) - rest(a^*(x))}{g(x)} = b(x)$$

$$a(x) = a^*(x) - rest(a^*(x))$$

 $rest(a^*(x))$: Divisionsrest

4.2.4. Über Prüfpolynom (systematisch)

Prüfpolynom:

$$h(x) = \prod_{i=0}^{k-1} (x - \alpha^{-i})$$

Produkt aus Generator- und Prüfpolynom ist 0

$$g(x) \cdot h(x) = 0$$

4.3. Decodierung

Idee

Addition des Fehlerpolynoms f(x) mit t Koeffizienten (d.h. t Fehler sind auf dem Kanal aufgetreten) zum gesendeten Codewort a(x)

im Zeitbereich:

$$r(x) = a(x) + f(x)$$

im Frequenzbereich:

$$R(x) = A(x) + F(x)$$

gedanklich wird ein Polynom c(x)aufgestellt, welches t Nullen an den Fehlerstellen hat

Da die Koeffizienten von c(x) die Auswertung ihrer Fouriertransformierten C(x) ist, ist der Grad von C(x) t

Da c(x) gerade dort 0 ist, wo f(x) ungleich 0, ist das Produkt $f_i \cdot c_i$ immer 0 (Achtung, keine Polynommultiplikation gemeint, sondern punktweise Multiplikation)

$$f_i \cdot c_i = 0$$

wenn Zeitbereich = $0 \rightarrow$ Frequenzbereich = 0

$$F(x) \cdot C(x) = 0$$

Achtung: hier Polynommultiplikation/ Faltung/ Filterung gemeint

→ Aufstellen der Schlüsselgleichungen

Schlüsselgleichungen

beschreiben, dass Faltung von C(x) und F(x) Null sind (Achtung: zyklische Faltung, siehe Abschnitt 3)

 F_0 bis F_{n-k-1} (bzw. $F_{d-2})$ sind bekannt, da diese direkt an den Syndromstellen von R(x)stehen

Alle $C\text{-}\mathrm{Koeff.}$ sind unbekannt, außer $C_{t-1},$ dieser wird zu 1gesetzt

$$C_{t-1}=1$$

da Anzahl der Fehler (t) unbekannt sind, muss ausprobiert werden, welche minimale Anzahl an Fehlern die Schlüsselgleichungen erfüllt

4.4. Horner-Schema

5. Erweiterungskörper

Erweitern des Grundkörpers (z.B. 2) mit Exponent (z.B. 4) $\to GF(2^4)$

primitives Element wird zu primitivem Polynom, z.B. $p(x) = x^4 + x + 1$

6. BCH-Codes

A. Polynome

A.1. Polynommultiplikation

A.2. Polynomdivision