

Demand Functions

			Demand Functions	
Utility Function	$U(q_1,q_2)$	Solution	q_1	q_2
Perfect complements	$\min(q_1, q_2)$	interior	$Y/(p_1 + p_2)$	$Y/(p_1 + p_2)$
CES, $\rho \neq 0$, $\rho < 1$, $\sigma = 1/(\rho - 1)$ $S = \frac{1}{2} \qquad \alpha = \chi_1 \frac{1}{2} + \chi_2$	$(q_1^{\rho} + q_2^{\rho})$	interior	$q_1 = \frac{Yp_1^{\sigma}}{p_1^{\sigma+1} + p_2^{\sigma+1}}$	$q_2 = \frac{Y p_2^{\sigma}}{p_1^{\sigma+1} + p_2^{\sigma+1}}$
Cobb-Douglas	$q_1^a q_2^{1-a}$	interior	aY/p_1	$(1-a)Y/p_2$
Perfect substitutes, $p_1 = p_2 = p$	$q_1 + q_2$	interior	$q_1 + q_2 = Y/p$	
$p_1 < p_2$		corner	Y/p_1	0
$p_1 < p_2$ $p_1 > p_2$ $V(x_1, x_2) = f(u)$ Quasilinear,	(x1, x2))	corner	0	Y/p ₂
Quasilinear,	$aq_1^{0.5} + q_2$		$\left(\frac{a}{2}\frac{p_2}{p_1}\right)^2$	$\frac{Y}{}$ $ \frac{a^2}{}$ $\frac{p_2}{}$
$Y > a^2 p_2 / [4p_1]$		interior	$(2 p_1)$	$p_2 = 4 p_1$
$Y \le a^2 p_2 / [4p_1]$		corner	Y/p_1	0

7

Price Elasticity

• *Price* elasticity of demand: Percentage change in the quantity demanded in response to a given percentage change in *price*

$$\varepsilon = \frac{\% \ change \ in \ demand}{\% \ change \ in \ price} = \frac{dx_1}{dp_1} \frac{p_1}{x_1}$$

• Elasticity is a unit-less measure, i.e. percentage differences

Price Elasticity

• The price elasticity of demand is also called the *own-price* elasticity of demand.

• There's another notion of price elasticity: cross-price elasticity
$$\epsilon_{12} = \frac{\% \ change \ in \ demand \ of \ good \ 1}{\% \ change \ in \ price \ of \ good \ 2} = \frac{dx_1}{dp_2} \frac{p_2}{x_1}$$

$$\epsilon_{21} = \frac{\% \ change \ in \ demand \ of \ good \ 2}{\% \ change \ in \ price \ of \ good \ 1} = \frac{dx_2}{dp_1} \frac{p_1}{x_2}$$

Cross-Price Elasticity

• The price elasticity of demand is also called the *own-price* elasticity of demand.

• There's another notion of price elasticity: cross-price elasticity
$$\epsilon_{12} = \frac{\% \ change \ in \ demand \ of \ good \ 1}{\% \ change \ in \ price \ of \ good \ 2} = \frac{dx_1}{dp_2} \frac{p_2}{x_1}$$

$$\epsilon_{21} = \frac{\% \ change \ in \ demand \ of \ good \ 2}{\% \ change \ in \ price \ of \ good \ 1} = \frac{dx_2}{dp_1} \frac{p_1}{x_2}$$

7

Cross-Price Elasticity

- We have seen perfect substitutes:
 - Example: $u(x_1, x_2) = x_1 + x_2$
- We have also seen perfect complements:
 - Example: $u(x_1, x_2) = \min(x_1, x_2)$
- Why are they called "perfect"?
 - What about imperfect substitutes and imperfect complements?

Cross-Price Elasticity

- Two goods are substitutes if $\epsilon_{12}>0$
- Two goods are complements if $\epsilon_{12} < 0$
- ϵ_{12} & ϵ_{21} always have the same sign, so you don't have to check both.

Cross-Price Elasticity Perfect Substitutes

Consider the following consumer's optimization problem:

$$u(x_1, x_2) = x_1 + x_2$$

Subject to: $Y \ge p_1 x_1 + p_2 x_2$

- If currently $p_1 = p_2$, $\epsilon_{12} = ?$
 - Be careful, because the demand is not differentiable!

Carnegie Mellon University
Tepper School of Business

William Larimer Mellon, Founder

Cross-Price Elasticity Perfect Substitutes

Consider the following consumer's optimization problem:

$$u(x_1, x_2) = x_1 + x_2$$

Subject to: $Y \ge p_1 x_1 + p_2 x_2$

- If currently $p_1=p_2$, $\epsilon_{12}=?$
 - Be careful, because the demand is not differentiable!
 - Answer: $\epsilon_{12} = \infty$

Cross-Price Elasticity Perfect Complements

Consider the following consumer's optimization problem:

$$u(x_1, x_2) = \min(x_1, x_2)$$

Subject to: $Y \ge p_1 x_1 + p_2 x_2$

• If currently $p_1 = p_2$, $\epsilon_{12} = ?$

Cross-Price Elasticity Perfect Complements

• Consider the following consumer's optimization problem:

$$u(x_1, x_2) = \min(x_1, x_2)$$

Subject to: $Y \ge p_1 x_1 + p_2 x_2$

- $\epsilon_{12} = ?$
 - $x_1 = x_2 = \frac{Y}{p_1 + p_2}$ (check that you can derive this)
 - $\epsilon_{12} = \epsilon$

7

Cross-Price Elasticity More Example

Consider the following consumer's optimization problem:

$$u(x_1, x_2) = \sqrt{x_1} + \sqrt{x_2}$$

Subject to: $Y \ge p_1 x_1 + p_2 x_2$

What is the own-price elasticity? What is the cross-price elasticity ϵ_{12} ?

