MindGames

CAPSTONE PROJECT PRESENTATION

Brandon Knotek (bk11@hood.edu)
Walid Muhammad (wm5@hood.edu)
Jack Wilder (jmw38@hood.edu)

Our Goal

Neurofeedback to control real-time interactive experiences

Our Goal

Neurofeedback to control real-time interactive experiences

Play Pac-Man just by **thinking** commands

No mouse, No keyboard, No voice

Project Motivation

- Accessibility
 - Physical disabilities
- Communication
 - Locked In Syndrome
- Immersive Experiences
 - Games and simulations

System Requirements

Fig. 1 - Using an OpenBCI Ultracortex headset to interact with a computer

Unraveling the Brain

- All brain activity = electrical
- Electroencephalography (EEG) uses electrodes to measure activity
- Different thoughts, actions, and mental states produce unique electrical patterns
- Patterns differ between individuals

Fig. 2 - An example of EEG hardware

Fig. 3 - Sample EEG output

Building a Neural Fingerprint

- Computer training:
 - Analyze an individual's unique patterns
- Machine Learning (ML):
 - Computer associates labeled patterns with commands

Fig. 4 - Calibration module collecting training data

Command Classification

- Enough examples for ML model to classify patterns on its own
- Probabilistic:
 - Determines most likely command given pattern

Fig. 5 - Visualization of model's classification output

System Overview

Fig. 6 - A diagram of the MindGames system architecture

Collecting Data

- EEG Signals
 - Spike electrodes
 - OpenBCI Daisy Biosensing Board
 - OpenBCI Ultracortex Mk 4 headset
- ML Training Labels
 - Training module
- Data synchronized, sent to processing pipeline

Fig. 7 - Ultracortex headset, profile view

EEG Processing Pipeline

Fig. 8 - MindGames EEG processing pipeline simplified view

Fig. 9 - MindGames EEG processing pipeline detailed view

EEG Processing Pipeline

Fig. 10 - EEG pipeline data acquisition component

Using Commands

Fig. 14 - Pac Man in action

Accomplished Work

- Pac-Man web-frontend
 - Javascript, HTML, CSS
- Flask backend
 - Python

Challenges

- Training time
- Hardware Limitations

Noise and unrelated spikes

Thought to Action Latency

Fig. 15 - OpenBCI Headset with Additional Nodes

Lessons Learned and Future Work

- Upgrade our EEG hardware
- Fine-tune our noise reduction and ML classification techniques
- Transition from classifying movements to classifying imagined movements (motor imagery)

Questions?