Vorlesung 26

Das Anlegen einer Zugspannung führt zu einer Volumenänderung des angegriffenen Körpers :

Z.B. für einen Stab der Länge ℓ mit quadratischem Querschnitt d^2 führt eine Längsdehnung zu einer Querkontraktion $\Delta d < 0$

Volumenänderung : $\Delta V = (d+\Delta d)^2 \cdot (\ell+\Delta \ell) - d^2 \ell$ $\approx d^2 \cdot \Delta \ell + 2\ell \cdot d \cdot \Delta d \qquad (\Delta d)^2 \& \Delta d \cdot \Delta \ell \text{ klein}$

$$\rightarrow \frac{\Delta V}{V} \approx \frac{\Delta \ell}{\ell} + 2\frac{\Delta d}{d}$$

Analog : **Kompression** ($\Delta d > 0$, $\Delta \mathcal{E} < 0$) durch Druck p : $\frac{F}{A} = p = -\frac{K}{V} \cdot \frac{\Delta V}{V}$

Bezug zu Elastizitätsmodul über die Querkontraktionszahl / Poissonzahl μ

Kompressionsmodul $[K] = \frac{N}{m^2}$

$$\mu = -\frac{\Delta d}{d} / \left(\frac{\Delta \mathcal{E}}{\mathcal{E}}\right) \longrightarrow \frac{1}{K} = \frac{3}{E} \left(1 - 2\mu\right) \qquad \text{(Herleitung via } \sigma = E \cdot \varepsilon \text{ ,}$$

$$\text{Druck } p = -\sigma\text{)}$$

8.3 Mechanische Spannungen

Scherung und Torsionsmodul:

Als Scherungskräfte bezeichnet man tangential angreifende Kräfte

Schub-/Scherspannung:
$$\vec{\tau} = \frac{\vec{F}}{A}$$

(pro Flächeneinheit wirkende tangentiale Kraft)

Skalare Größe:

$$\tau = G \cdot \alpha$$
 Scherwinkel (vgl. Abbildung)

Schubmodul / Schermodul

Versuch: Modell Torsion

Einheiten:
$$[\sigma] = [\tau] = [p] = \frac{N}{m^2} = Pa$$

8.4 Beispiel: Biegung eines Balken

Situation:

neutrale Faser = Keine Längenänderung

Kreisnäherung

sog. Krümmungsradius:

$$\ell \pm \Delta \ell = (r \pm y) \cdot \varphi \qquad \Rightarrow \qquad \Delta \ell = y \varphi = y \frac{\ell}{r}$$

r groß \leftrightarrow kleine Krümmung r klein ↔ große Krümmung

$$\Delta \ell = y \, \varphi = y \, \frac{\ell}{r}$$

vgl. Folie 489

Zug / Druckspannung :
$$\sigma = E \cdot \varepsilon = E \cdot \frac{\Delta \ell}{\ell} = E \cdot \frac{y}{r}$$

Druck:
$$p = -E \cdot \frac{y}{r}$$

Kraft am Flächenelement $\mathrm{d}A$:

$$dF = \sigma \cdot dA = E \frac{y}{r} dA$$

Drehmoment:

$$dM_y = y dF = \frac{Ey^2}{r} dA$$

$$|d\overrightarrow{M}_y| = |y \times dF| = y dF$$

$$\to M_y = \int y^2 \, \mathrm{d}A \cdot \frac{E}{r}$$

B: Biegemoment

Krümmungsradius :
$$r = B \cdot E \cdot \frac{1}{M_y}$$

Weitere **Biegemomente**:

Gleiches B bei A =

$$h$$
 b

$$B = 2b \int_0^{h/2} y^2 \, dy = \frac{2}{3}b \left(\frac{h}{2}\right)^3 = \frac{1}{12}h^3b$$

1

$$B = \frac{\pi}{4}R^4$$

1.03

$$B = \frac{\pi}{4}(R^4 - r^4)$$
 Wand Dicke

0.25

$$B = \frac{1}{12}(H^3B - h^3B)$$

0.39

8.5 Reibung

Nicht vorhanden für MP und ideale starre Körper (mit glatter Oberfläche)

realer Körper:

Bewegung in x-Richtung: "y-Verkantung"

→ Berge müssen überwunden werden durch :

Verformung Bruch

Überwindung

Haftreibung: $|\overrightarrow{F}_H| \sim |\overrightarrow{F}_N|$

Es gilt :
$$F_H = \mu_H \cdot F_N$$

†

Haftreibungskoeffizient (Materialeigenschaft)

Achtung: nur Normalkomponente relevant

Schiefe Ebene mit Winkel α : $F_H = \mu_H F_N \cos \alpha$

Gleitreibung:

Wenn ein Körper mal in Bewegung ist → oft Reduktion der Reibung

Aber wieder
$$|\overrightarrow{F}_G| \sim |\overrightarrow{F}_N|$$
 und es gilt : $F_G = \mu_G \cdot F_N$

Gleitreibungskoeffizient

(Materialeigenschaft)

Rollreibung:

Analog bei Abrollen eines Rades gibt es Reibung

$$\mu_R \ll \mu_G \ll \mu_H$$

$$F_R = \mu_R \cdot F_N$$

Rollreibungskoeffizient

(Materialeigenschaft)

	μ_H	μ_G	μ_R
Stahl Stahl + Ölfilm Diamant	0.5-0.8 0.08 0.1	0.4 0.06 0.08	0.05 0.03

9. Ruhende Flüssigkeiten und Gase

(Hydro-/Aerostatik)

Flüssigkeiten : frei querverschiebbar (Schermodul G=0)

ruhende FL ↔ **keine** Tangentialkraft

Versuch: Wasserzentrifuge

Tangente (
$$\perp \overrightarrow{F}$$
) $\tan \alpha = \frac{F_Z}{F_G} = \frac{m\omega^2 r}{mg} = \frac{\mathrm{d}z}{\mathrm{d}r}$

Steigung d. Einhüllenden

$$\Rightarrow z(r) = \frac{\omega^2}{g} \int_0^r r' dr' = \frac{\omega^2}{2g} r^2$$

9.1 Kompression und Druck

Definition **Druck**: Normalkraft / Fläche

$$p = \frac{F_N}{A}$$

Volumenänderung durch Druck:

$$\frac{\mathrm{d}V}{V} = -\kappa \,\mathrm{d}p$$

Kompressibilität

Relation zum **Kompressionsmodul** $\kappa = K^{-1}$ (vgl. Folie 494)

$$\kappa = -\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}p} \qquad [\kappa] = \frac{\mathrm{m}^2}{\mathrm{N}} = \mathrm{Pa}^{-1}$$

Beispielswerte bei Normalbedingungen

$$(20^{\circ} \text{ C}, 10^{5} \frac{\text{N}}{\text{m}^{2}} = 10^{5} \text{ Pa} = 1 \text{ Atm})$$

Al
$$1.4 \times 10^{-11}$$

H₂O 5×10^{-10}
Benzol 1×10^{-9}
Luft 10^{-5}

Um z.B. Wasser bei Normalbedingungen um 1% seines Volumens zu komprimieren muss ein Druck von $2 \times 10^7 \, \text{Pa} = 200 \, \text{Atm}$ aufgebracht werden (!)

Druck wirkt von allen Seiten

→ überall in der Flüssigkeit / Gas konstant

Versuch: Allseitigkeit

bis auf Gravitationseffekte (dazu gleich mehr)

Alle Säulen haben die gleiche Höhe, i.e. es wirkt der gleiche Druck

→ Anwendung: hydraulische Presse

$$\begin{array}{c|c} & & \uparrow \\ \hline A_1 & & \uparrow \\ \hline \end{array} \qquad p_1 = p_2 \quad \Rightarrow \quad F_2 = F_1 \cdot \frac{A_2}{A_1} \\ \hline \rightarrow \text{große Kräfte} \qquad \end{array}$$

Versuch: Schuss auf Melone
$$dp = -\frac{1}{\kappa} \frac{dV}{V} = \frac{1}{5 \cdot 10^{-10}} \cdot \frac{0.1}{1000} \text{ Pa} = 0.2 \cdot 10^6 \text{ Pa} = 2 \text{ atm}$$

$$V_{\text{H}_2\text{O}} = 1 \,\ell = 1000 \,\text{cm}^3$$
 $V_{\text{Kugel}} = 0.1 \,\text{cm}^3$

Kompression von **Gasen** : $\kappa(Gas) \approx 10^5 \cdot \kappa(Fluessigkeiten)$

Boyle-Mariotte-Gesetz:

bei
$$T = \text{const.}$$
 $p \sim \frac{1}{V} \rightarrow p \cdot V = \text{const.}$

$$p \sim \frac{1}{V}$$

$$p \cdot V = \text{const}$$

$$\rightarrow \frac{p_1}{p_2} = \frac{V_2}{V_1}$$

Kompressibilität von Gasen :
$$\kappa = -\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}p} = -\frac{p}{\mathrm{const.}} \cdot \frac{-\mathrm{const.}}{p^2} = \frac{1}{p}$$

$$\Rightarrow \kappa_{\rm gas} = \frac{1}{p} \quad \text{bei } T = {\rm const.}$$

Hoher Druck : kleine Kompression $\leftarrow \frac{dV}{V} = -\kappa dp$

$$\longleftarrow \frac{\mathrm{d}V}{V} = -\kappa \,\mathrm{d}p$$

Niedr. Druck: große Kompression

$$m = \rho V \Rightarrow \text{ aus } p \cdot V = p \cdot \frac{m}{\rho} = \text{const.}$$
 $\Rightarrow p \sim \rho$ Bei $T = \text{const.}$: Gasdruck ~ Gasdichte bzw. $\frac{p}{N} = \text{const.}$

9.2 Flüssigkeiten und Gase im Schwerefeld

Gravitation: externe Kraft $F_{\rm ext}$ auf Fl. / Gas \rightarrow erzeugt Druck

Unterschiedliche Effekte für Gas (Obere Schichten komprimieren untere Schichten) und Flüssigkeiten ($\kappa \approx 0$)

aus Boyle-Mariotte, vgl. Folie 504 $\rho(z) \approx \rho = \mathrm{const} \,. \qquad \frac{\rho(z)}{p(z)} = \mathrm{const} \,. = \frac{\rho_0}{p_0} \quad \rightarrow \quad \rho(z) = p(z) \cdot \frac{\rho_0}{p_0}$