IS-664 Database Programming Fall 2022 hlocklear@pace.edu

Class Exercise

Class Exercise 1

STORED PROGRAMS FOR THE ASTEROIDS DATABASE

Asteroids

- ▶ C-Type (Carbonaceous) asteroids are the most common variety, forming around 75% of known asteroids. They are volatile-rich and distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. They occur most frequently at the outer edge of the asteroid belt, 3.5 AU from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 AU from the Sun are C-type.
- S-Type (Siliceous) asteroids are asteroids with a spectral type that is indicative of a siliceous (i.e., stony) mineralogical composition. They are dominant in the inner part of the asteroid belt within 2.2 AU, common in the central belt within about 3 AU, but become rare farther out.
- ▶ M-Type (Metallic) asteroids are a spectral class of asteroids which appear to contain higher concentrations of metal phases (e.g., iron-nickel) than other asteroid classes, and are widely thought to be the source of iron meteorites.

Relationships

Relations

registry						spatialCoord						
<u>Designation</u>	AType	Сс	ountry	DDate	<u> </u>	<u>Designation</u>	. X	Y	Z			
specifications									surface_feature			
<u>Designation</u>	Diame	ter 1	Mass	Density	Inclina	ation Rota	tion	<u>Desig</u>	<u>nation</u>	Surfac	ce '	Water
orbit												
<u>Designation</u>	Aphelio	n Pei	Perihelion Eccentric			Period_Orbit Radius_O			ıs_Orbit			
composition_simple composition_common												
	compo	osition_	_simple					compo	sition_c	ommon		
<u>Designation</u>		osition_ ent_Roc		Content_	Metal	<u>Design</u>	ation	compo Nickel		ommon odenum		n Zinc
<u>Designation</u>				Content_		<u>Design</u>	<u>ation</u>					n Zinc
<u>Designation</u> <u>Designation</u>	Conte			Content_					Molyk	odenum		
	Conte	ent_Roc Silver	ck C	Content_	osition adium	_precious		Nickel	Molyk	odenum	Iror	

Units of Measure

Attribute	Unit of Measure				
Diameter	Meters				
Mass	Kilograms				
Density	Kilograms per Cubic Meter				
Inclination	Degrees				
Rotation	Hours				
Aphelion	Astronomical Units				
Perihelion	Astronomical Units				
Eccentricity	Ratio				
Period_Orbit	Years				
Radius Orbit	Astronomical Units				
X,Y, and Z	Number (Ordinate)				
All Composition Attributes	Percentages of Mass				
Water and Rock	Percentages				

Stored Procedure 1

Create the Stored Procedure showType which accepts an Asteroid Type (T) and an integer (C)as its parameters and returns the data about the specified number (C) of asteroids of that

type (T) in the format shown below.

```
US = 'United States'
UK = United Kingdom'
RUSSIA = 'Russian Federation'
CHINA = People's Republic of China
```

```
Carboneous = 'CARBON_BASED'
Metallic = 'METAL_BASED'
Silicaceous = 'SILICON_BASED'
```

```
November – March = 'Winter'
April – May = 'Spring'
June – August = 'Summer'
September – October = 'Fall'
```

Stored Procedure 2

Create the Stored Procedure showValue which accepts an Asteroid Designation (A) and calculates the total value of its strategic metals and displays the total value in the format shown below.

```
Chromium = $12.50 per kg
Cobalt = $9.25 per kg
Tungsten = $7.75 per kg
Uranium = $10.00 per kg
```

The Total Value of an asteroids strategic metals is the sum of the values of each of the metals based on their percentage of the mass of the asteroid.