CLAIMS

What is claimed is:

5,		1.	A collector for collecting non-referenced objects stored in a heap by a program
	2		executing in a computer system comprising:
	3		an object allocation routine which stores an object of a particular type in
	4		one of a plurality of spaces in the heap dependent on a predefined category for
	5		the type; and
	6		a collection routine which searches one of the spaces for referenced
	7		objects and reclaims non-referenced objects stored in the searched space.
3ÚB	8271	2	The collector as claimed in Claim 1 further comprising:
	2		a sample and partition routine which defines a category of an object
	3	·	stored in the heap to be hot or cold.
	1	3.	The collector as claimed in Claim 2 wherein upon determining that hot space is
	2		full, the collection routine searches gold space and hot space for referenced
	3		objects and moves referenced objects of the hot category stored in hot space to
	4		cold space.
	1	4.	The collector as claimed in Claim 2 wherein the sample and partition further
	2		comprises:
	3		a write barrier elimination routine, which eliminates a write
	4		barrier for an intergenerational pointer between an object stored in hot space and
	5		an object stored in cold space.

sub 047	1	Š .	The collector as claimed in Claim 4 wherein the write barrier elimination routine
	2		eliminates a write barrier by replacing a write barrier machine code instruction
	3		with a no operation machine code instruction.
		`	
	1	6.	The collector as claimed in Claim 2 wherein the sample and partition routine
	2		defines the object category dependent on object type mortality.
	1	7.	The collector as claimed in Claim 6 wherein the sample and partition routine
	2		estimates the object mortality dependent on difference of the number of bytes of
Ī	3		the object type stored in the heap before a collection and the number of bytes of
	4		the object type stored in the heap after the collection.
u N			
	1	8.	The collector as claimed in Claim 2 wherein the sample and partition routine
<u> </u>	2		partitions the heap to minimize intergenerational pointers between hot space and
0 N N 0 0	3		cold space.
N M			
	1	9.	A collector for collecting non-referenced objects stored in a heap by a program
	2		executing in a computer system comprising:
	3		means for storing an object of a particular type in one of a plurality of
	4		spaces in the heap dependent on a predefined category for the type;
	5		means for searching one of the spaces for referenced objects; and
	6		means for reclaiming non-referenced objects stored in the searched
	7		space.
	1	10.	The collector as claimed in Claim 9 further comprising:
	2		means for partitioning the heap into cold space and hot space by defining
	3		a category of an object stored in the heap to be hot or cold.
			$oldsymbol{\lor}$

00

- The collector as claimed in Claim 10/wherein upon determining that hot space is 11. 2 full, the means for searching searches cold space and hot space for referenced 3 objects and moves referenced objects stored in the hot space to a cold space.
- The collector as claimed in Claim 10 wherein the means for partitioning further 1 12. 2 comprises:
- means for eliminating a write barrier for an intergenerational pointer 3 between an object stored in hot space and an object stored in cold space. 4

2

3

- The collector as claimed in Claim 12 wherein the means for eliminating a write barrier replaces write barrier machine code instructions with no operation machine code instructions.
- The collector as claimed in claim 10 wherein the means for partitioning defines 1 14. 2 a hot object dependent on object type mortality.
- The collector as claimed in Claim 14 wherein the means for partitioning 15. 1 estimates the object mortality dependent on difference of the number of bytes of 2 the object type stored in the heap before a collection and the number of bytes of 3 the object type stored in the heap after the collection. 4

3

- The collector as claimed in Claim 9 wherein the means for partitioning partitions 16. the heap to minimize intergenerational pointers between hot space and cold 2 space.
- A method for collecting non-referenced objects stored in a heap by a program 1 17. executing in a computer system comprising the steps of: 2
- storing an object of a particular type in one of a plurality of spaces in the 3 heap dependent on a predefined category for the type; 4

Ø	
M	
LT,	
ΠĮ	
##.	

L.			1
la la	5		searching one of the spaces for referenced objects; and
0	6		reclaiming non-referenced objects stored in searched space.
-			
	1	18.	The method as claimed in Claim 17 further comprising the step of:
	2		partitioning the heap into cold space and hot space by defining hot space
	3		objects and cold space objects.
	1	19.	The method as claimed in Claim 18 wherein upon determining that hot space is
	2		full, the step of reclaiming further comprises the step of:
ű m	3		moving referenced objects stored in the hot space to a cold space.
C	1	20.	The method as claimed in Claim 18 wherein the step of partitioning further
i.i	2		comprises the step of
	3		eliminating a write barrier for an intergenerational pointer between an
- - - - - - - - - - - - - - - - - - -	4		object stored in hot space and an object stored in cold space.
N M			
SG 687	1	2 \(\).	The method as claimed in Claim 20 wherein the step of eliminating a write
	2		barrier replaces write barrier machine code instructions with no operation
	3	\	machine code instructions.
	1	22.	The method as claimed in claim 18 wherein the step of partitioning further
	2		comprises the step of:
	3		identifying a hot object dependent on object type mortality.
	1	23.	The method as claimed in Claim 22 wherein the step of identifying estimates
	2		the object type mortality dependent on difference of the number of bytes of the
	3		object type stored in the heap before a collection and the number of bytes of the
	4		object type stored in the heap after the collection.

The method as claimed in Claim 18 wherein the step of partitioning partitions 24. 1 2 the heap to minimize intergenerational pointers between hot space and cold 3 space. 25. A computer system comprising: 1 a central processing unit connected to a memory bus by a system bus; 2 3 an I/O system, connected to the system bus by a bus interface; and a collector for collecting non-referenced objects stored in a heap by a 4 OSTORDY: OSTOROS program executing in a computer system, the collector: 5 storing an object of a particular type in one of a plurality of 6 spaces in the heap dependent on a predefined category for the type; 7 8 searching one of the spaces for referenced objects; and reclaiming non-referenced objects stored in searched space. 9 10 A computer program product for collecting non-referenced objects stored in a 11 26. heap by a program executing in a computer system, the computer program 12 product comprising a computer usable medium having computer readable 13 program code thereon, including program code which: 14 stores an object of a particular type in one of a plurality of spaces 15 in the heap dependent on a predefined category for the type; 16 searches one of the spaces for referenced objects; and 17 reclaims non-referenced objects stored in searched space. 18