1 Komunikace vozidel přes mobilní sítě – základní charakteristiky a vlastnosti komunikace, Device to Device (proximity services), interface, komunikační módy a typy komunikace (broadcast, unicast, multicast). - 5

The cellular based technologies for vehicular communication are standardized by 3GPP, with initial standardization exploiting LTE in 3GPP release 14 in 2014, known as LTE-V2X. The LTE-V2X is based on Device to Device (D2D) communication for Proximity Services (ProSe), and as a such exploit sidelink channels. The sidelink channels are SLSS, PDSS, SSSS,...

Pro záměry V2V komunikace byl vytvořen v architektuře interface PC5, který dokáže spojit vozidla až do 250 kmph

LTE V2X:

- Cellular based komunikace
 - Založena na D2D komunikaci
 - Rychlosti do 250 km/h
 - Komunikace probíhá v mobilním licensovaném spektru

NR V2X:

- Cellular based komunikace
 - Doplňuje a podporuje LTE V2X mělo by to být 5G rozšíření
 - 256 QAM, network slicing, krátké TTI

Obrázek 1

NR V2X sidelink:

- Feedback channel for higher reliability and lower latency
- Agregace až 16 nosných
- Podporuje Unicast a multicast
- Komunikační módy:
 - Mód 1: (vehicle under BS coverage) configured and dynamic scheduling
 - * BS ví o kvalitě kanálu s autem
 - Mód 2: (vehicle without BS coverage) dynamic schedulnig
 - * Kvalitu kanálu si hlídají auta
- Scheduling
 - Configured schedulnig: pre-defined bitmap-based allocation
 - Dynamic scheduling: each milisecond based on channel quality

1.1 Device to device komunikace vozidel

- Vegicle-to-Vehicle V2V
 - kolizní brždění, varování o mrtvém úhlu
- Vehicle-to-Infrastructure V2I
 - Priorita na světlech, varování o IZS
- Vehicle-to-Network V2N
 - Real-time doprava, cloudové služby
- Vehicle-to-Pedestrian V2P
 - Bezpečnostní upozornění chodcům a cyklistům

2 LPWAN protokoly – základní vlastnosti, porovnání technologií, využití a aplikace - 6

LPWAN - Low-Power Wide-Area Network

2.1 Základní vlastnosti

- Nízká cena a komplexita mnoho jednoduchých zařízení
- Nízké bit-rates (bps stovky kbps)
- Tolerance ke zpoždění (nevysílá se souběžně, ale jenom občas)
- Nízká spotřeba energie (časté napájení z baterek chceme výdrž několik let)
- Rozdělení protokolů
 - Long-range
 - * Pokrytí do desítek km
 - * LPWAN Cellular IoT, LoRa, SigFox
 - Short-range
 - * Pokrytí pár až stovek metrů
 - * Bluetooth, 6LoWPAN, ZigBee

2.2 Aplikace

• Levná zařízení, s občasným malým datovým přenosem, která musí dlouho vydržet na baterku

Obrázek 2: Aplikace LPWAN

2.3 Porovnání technologií

Obrázek 3: Porovnání technologií LPWAN

2.4 Communication range

- Komunikační dostupnost je daná tzv. Maximum Coupling Loss (MCL)
- Je to maximální ztráta výkonu, při kterém stále dokáže zařízení pracovat
- Coupling Loss je rozdíl mezi výkony naměřenými na vysílací a přijímací anténě

Obrázek 4: MCL

3 LoRa/LoRaWAN – základní vlastnosti, architektura, procedura připojení (join), přenos dat UL/DL - 6

LoRa (Long-Range) – radiofrekvenční modulace pro LPWAN, je to pouze fyzická vrstva LoRaWAN protokol – vrstva MAC (Medium Access Control)

- Výdrž roky (odběr v microW)
- Nízká cena zařízení
- Rozšířený dosah (157/165 dB mCL)
- Malé přenosové rychlosti
- Veřejné a soukromé sítě
- Narrowband channels (125 kHz)
- Chirp Spread Spectrum (CSS) adaptivní spreading faktor (buď je dobrý data rate nebo pokrytí)

3.1 Architektura

• LoRaWAN gateway

- Přijímá zprávy od zařízení a směruje je do LNS (IP protokol)
- Operuje na fyzické vrstvě
- Koncové zařízení
 - Senzor nebo aktuátor
- LNS (LoRa Network server)
 - Síťový manažment a kontrola síťových parametrů (ack zpráv, počítá framy, adaptivní data rate)
 - Zajišťuje autenticitu koncových zařízení a integritu zpráv
- Application Servers
 - Bezpečná manipulace, správa a interpretace aplikačních dat senzorů
- Join Server
 - Zařizuje aktivaci koncových zařízení Join procedura
 - Přiřazuje Aplikační servery koncovým zařízením (přes LNS)

Obrázek 5: Architektura Lory

3.2 Procedura připojení

Obrázek 6: Join procedure

3.3 Přenos dat

- Uplink
 - Zprávy jsou broadcastovány a přijaty všemi gatewayi v dosahu
 - Gateway směruje zprávu do LNS
 - LNS deduplikuje data a odstraní kopie
 - LNS směruje data na cílový aplikační server
- Downlink
 - Aplikační server posílá zprávu do LNS
 - LNS určí gateway, který pošle zprávu koncovému zařízení
 - * Gateway je vybrán na základě max RSSI přijatého v uplinku

4 Fyzická vrstva LoRa – princip CCS, rozprostírání (spreading) a jeho vliv na přenosové rychlosti - 6

ISM bands – nelicensovaná pásma EU: 868 MHz (+ 433)

- Šířka kanálu 125 kHz
- Proprietary spread-spectrum modulation
 - Založena na Chirp Spread Spectrum (CSS)
 - Resilience to interference, multipath, (and doppler effect)
 - Low power
 - Signal spread in frequency domain
 - Orthogonal spreading factors
 - Chirp sweep tone/signal (Frequency increases/decreases in time (up-chirp/down-chirp))

Obrázek 7

Spreading factor and Data rate

Modulation

- ▶ Data encoded via frequency changes at the beginning of symbol
 - > Starting frequency of chirp
 - \triangleright Bandwidth = $f_{high} f_{low}$

symbol = 1011111

Example (SF=7)

Spreading Factor (SF) = Number of bits per symbol

▶ 2^{SF} values (steps, chips) per symbol

Symbol duration: $T_S = \frac{2^{SF}}{BW}$

- ► SF increases \rightarrow Symbol duration increases

 Robert Lie, "LoRa/LoRa/WAN tutorial 13: Symbol, Spreash thtos://www.youtube.com/
- ► Bandwidth increases → Symbol duration decreases

Symbol rate: $R_S = \frac{1}{T_S} = \frac{BW}{2^{SF}}$

Data rate: $R_d = SF \times \frac{BW}{2^{SF}} \times CR$

Examples
BW=125 kHz, SF=7, CR=4/5 \rightarrow R_d = 5460 bps, T_s = 1.02 ms
BW=125 kHz, SF=12, CR=4/5 \rightarrow R_d = 290 bps , T_s = 33.77 ms

- ▶ Number of bits/symbol times Symbol rate times code rate (CR)
 - Code rate 4/5, 4/6, 4/7, 4/8 (Code rate index 1, 2, 3, 4, resp)

16

Obrázek 8

4.1 Vliv spreading faktoru při jeho zvyšování

- Doba symbolu se zvýší
 - Time on Air increases (delší řas přenosu) zvýšení spotřeby
 - délka symbolu se zdvojnásobí, když se SF zvedne o 1
- Zvyšování pokrytí (dosahu)
 - Koncové zařízení je dál od Gatewaye delší čas vysílání
 - požadované SNR pro dekódování je nižší
- Bitrate se snižuje
 - Bitrate snížený napůl odpovídá zvýšení SF o 1

Obrázek 9

5 LoRaWAN třídy zařízení – rozdíly mezi třídami, princip komunikace - 6

- Třída A All end-device
 - Musí to mít všechny zařízení
 - Energeticky efektivní oboustranná komunikace
 - Přístup pomocí ALOHA
 - Zařízení jsou dostupné pouze po vysílání
- Třída B Beacon
 - Volitelné
 - Periodicky naplánované okno, kdy je možné se se zařízením spojit
 - Scheduling na základě beaconů od gatewayů
- Třída C Continuously listening
 - Volitené
 - Téměř stále dosažitelné zařízení (ne během svého přenosu)
 - Větší energetická náročnost
 - Malá latence

Obrázek 10: Třídy Lory

5.1 Principy komunikace

Zařízení třídy A:

- Oboustranná komunikace
- Uplink
 - Koncová zařízení vysílají v libovolných časech (ALOHA) znovyvysílání po random backoff
 - Další vysílání nesmí nastat před vypršením okna pro downlink
- Downlink
 - Koncová zařízení jsou dostupná pouze po jejich vysílání
 - Mají připravená 1 nebo 2 rx okna po každém svém vysílání
 - Pokud během Rx1 nepřijme paket, tak otevře Rx2
 - Rx okna definuje a odešle na konci svého vysílání
 - * Rx1 začíná 1-15 s po vysílání (1 s krok)
 - * Rx2 je vždy 1 s po Rx1

Robert Lie, "LoRa/LoRaWAN tutorial 4: LoRaWAN Device Classes," https://www.youtube.com/watch?v=ShJ5RERof5I

Obrázek 11: Třída A

Zařízení třídy B:

- Zahrnuje třídu A, ale má něco navíc
- Gatewaye mohou pravidelně vysílat beacony
 - Nemodulovaných 10 symbolů
 - Periodicky 128 s mezi beacony
 - Ping sloty pro příjem dat
 - * Beacon perioda je rozdělena do $2^12 = 4096$ ping slotů (30 ms každý)
 - * Začínají náhodně, po beaconu, aby se vyhnuly kolizi
 - * Koncové zařízení otevírají periodicky ping sloty, když jsou dostupné
 - Pokud není beacon přijat v očekávaném čase, tak se přijímací okno zvětší
- Síť by měla být informovaná o pozici zařízení koncové zařízení posílá v uplinku, jakou nejlepší cestou je dosažitelné

Obrázek 12: Třída B

Zařízení třídy C:

- Zahrnuje třídu A, ale má něco navíc
- Koncové zařízení stále poslouchá v Rx oknu (RXC) s několika výjimkami
 - Když samo vysílá
 - Když přijímá data v Rx1 nebo v Rx2
- Koncové zařízení otvírá RXC

- mezi koncem uplinku a začátkem Rx1
- mezi Rx1 a Rx2
- Hned jak zavře Rx2
- Síť by měla být informovaná o pozici zařízení koncové zařízení posílá v uplinku, jakou nejlepší cestou je dosažitelné

Obrázek 13: Třída C

6 IoT v mobilních sítích – základní vlastnosti EC-GSM-IoT, LTE-M/(fe)MTC, NB-IoT, porovnání technologií - 7

Technologie pro Cellular IoT (C-IoT):

- Long-Term Evolution for Machine-Type Communications LTE-M(TC)/(f)eMTC
- Narrowband Internet of Things (NB-IoT)
- Extended Coverage Global System for Mobile Communications Internet of Things (EC-GSM-IoT)

6.1 EC-GSM-IoT

- Výdrž na baterku 10 let (to určitě xd)
- Nízká nákupní cena ve srovnání se zařízeníma na GPRS/GSM
- Kanál 200 kHz
- Používá opakování (repetition) ke zvýšení dosahu
- TDMA/FDMA
- Zbytek v tabulce

Oproti ostatním technologiím n. je větší komunikační rozsah = zařízení může být dál od základnové stanice všude se to nedefinuje pomocí vzdálenosti, ale pomocí parametru max coupling loss = útlum mezi portem vysílací antény a portem přijímací antény; odpovídá to jednotkám až desítkám km

6.2 LTE-M/eMTC

- 10 let na baterku (reálně méně)
- Cena podobná zařízením GPRS/GSM
- Úzkopásmové kanály 1,08 MHz
- Opakování vysílání ke zvýšení dosahu
- Používá stávající LTE BTSky
- Zařízení Cat-M1
- Modulace QPSAK nebo 16QAM
- Zbytek v tabulce

6.3 further enhanced MTC (feMTC)

- Zařízení cat-M2
- Nové featury
 - Volte
 - Multicast
 - Vyšší přenosová rychlost (až 4 Mbps)
 - Support for positioning umožňuje pohyb zařízení

6.4 NB-IoT

- 10 let výdrž
- Levnější než eMTC
- Až 50000 zařízení na buňku
- V enhanced verzi Vat-NB2 umožňuje také Positioning a mobilitu, multicast

6.5 Porovnání technologií

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-loT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, TBCC, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~250 kbps UL: ~250 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, 20 dBm, 14 dBm (Cat NB2, Rel 14)	33 dBm, 23 dBm

^{*} In terms of MCL target. Targets for different technologies are based on somewhat different link budget assumptions (see TR 36.888/45.820 for more information).

Obrázek 14: IoT technologie

7 Architektura mobilní sítě pro IoT – bloky a rozhraní a jejich funkce, účel a funkce bloku Service Capability Exposure Function - 7

Obrázek 15: Architektura

7.1 Service Capability Exposure Function (SCEF)

Je to rozšíření standardní architektury pro LTE, kdy některé svoje funkce zpřístupní i třetím stranám. Umí překládat adresování, takže pro nás je výhodné používat formát 〈LocalID〉@〈DomainID〉. Hlavní výhodou je možnost posílat data jako signalizaci, takže data nemusíme zapouzdřit do IP paketu – velice výhodné. Normálně se přenáší hodně režijních informací, takže např. přenos inforamce o teplotě by byl málo efektivní. Když uživatel není aktivní, tak pro něho data ukládá a pošle mu je až když je aktivní.

- Bezpečné rozšíření schopností mobilní sítě
 - Set QoS, group messaging, network parameters configuration (e.g., energy saving modes), device triggering, change billing party of a session
- Interface for small data and control msgs between third parties and core network
 - Application programing interface (API) for third parties (enterprises, service providers)
 - External ID ⟨LocalID⟩@⟨DomainID⟩
 - Non-IP Data delivery

7.2 Ostatní bloky a rozhraní

- eNB chytrá základnová stanice
- MME Zajišťuje control signaling k UE, autentizaci a autorizaci, navazuje spojení mezi UE
 a sítí
- S-GW Přenáší všechny IP pakety (user data)
- P-GW Zajišťuje QoS
- S1-MME přenos řídících dat
- S1-U přenos uživatelských dat
- S11 důležitý interface pro handover

8 Fyzická vrstva pro NB-IoT – módy provozu (modes of operation) downlink/uplink, single/multi-tone, repetition - 7

8.1 Módy provozu

- In-band: využívá RBs z pásma LTE (NB-IoT a (fe)MTC). Máme frekvenční spektrum, které je určené pro sítě LTE a část toho spektra necháme pro IoT komunikaci
- Standalone: samostatná nosná, využívá spektrum GSM. Ve spektru jsou mezery, které byly určeny pro GSM a ty využijeme pro NB-IoT (protože BW je jen 180 kHz)
- Guard-band: využívá nepoužité RBs z ochranného pásma LTE spektra. Každé frekvenční
 pásmo má ochranný interval, aby se nerušila komunikace v okolních pásmech. Vzhledem k
 malé šířce pásma NB-IoT to lze využít

LTE carrier In-band

GSM carrier Standalone

LTE carrier
Guard-band

Obrázek 16

8.2 DL/UL

Obrázek 17: Downlink

Downlink využívá standardní LTE formát: Jeden frame, který trvá 10 ms se skládá z 10 subframe a každý subframe obsahuje 2 sloty po 0,5 ms. Tento slot obsahuje tzv. Resource unit (nebo resource block), které jsou složeny z Resource elementů. RU je nejmenší přiřaditelná jednotka, skládá se z 12 subnosných a 7 symbolů. 12 subnosných se spacingem 15 kHz dá dohromady pásmo 180 kHz, což odpovídá pásmu pro NB-IoT. Když máme technologii eMTC tak můžeme do BW 1,08 MHz vložit resource unitů až 6.

Uplink:

- SC-FDMA, aby se zmenšila energetická náročnost
- Frame má 10 ms jako u LTE
- (fe)MTC stejný formát jako u DL

- NB-IoT jiná numerologie RU (resource unit)
 - Single-tone vyšší power spectral density
 - * Subcarrier spacing: 15 kHz and 3.75 kHz single subcarrier
 - * Slot duration: 0.5 ms and 2 ms 8/32 ms per RU
 - Multi-tone compatible with LTE
 - * Subcarrier spacing: 15 kHz
 - * 3, 6, 12 subcarriers over 4, 2, 1 ms, respectively, per RU

Obrázek 18: Multi a single tone

8.3 Single tone vs multi tone

- Multi-tone (vs Single-tone)
 - Tón je vlastně subnosná, takže na mutitone máme více subnosných
 - Vyšší bitrate
 - Nižší spotřeba kratší vysílací čas
 - Omezené pokrytí výkon se šíří do širšího pásma
- Scénáře:
 - Single-tone: vysoké pokrytí a nízký bitrate
 - Multi-tone: vyšší kapacita, hodně zařízení s dobrým pokrytím, ale na kratší vzdálenost

8.4 Repetition

Chceme zvýšit oblast pokrytí, tak prostě vysíláme vícekrát. (Jednou to nedojde, podruhé už třeba jo).

- Každý přenos (transport block) je opakovaný 2^N
 - Coherent transmissions (same phase of Tx signal)
 - Each transmission self-decodable (jsou nezávislé)
 - Vyšší šance rozkódování
 - Stačí 1 ACK pro všechny opakování
 - * Uplink: až 128 opakování (N=7)
 - * Downlink: až 2048 opakování (N=11)
- Double number of TXs \rightarrow approx. +3 dB gain

Obrázek 19

9 Metody úspory energie pro NB-IoT – (e)DRX, PSM, connected/idle state – princip a realizace - 7

Dva stavy:

- · Connected state
 - Když probíhá komunikace (spotřeba stovky mW až jednotky W)
 - Zařízení je plně aktivní (vysílá data)
- Idle state
 - Spotřeba mW
 - Omezená činnost

- Detekuje příchozí připojení, broaadcasty, multicasty a updatové informace

Další možnosti, jak šetřit energii jsou Discontinuous reception DRX a jeho vylepšení a Power saving mode PSM.

9.1 Discontinuous reception (DRX) a enhanced eDRX

- Normální operace zařízení monituruje kontrolní kanály každý subframe (každou 1 ms)
- Discontinuous reception DRX Kontrolní kanály kontroluje v předem definovaných intervalech (až 2,56 s)
- Enhanced DRX (eDRX) Větší interval mezi monitorujícím a kontrolním kanálem
 - V Connected stavu prodloužení intervalu na 10,24 s (hyperframe)
 - V Idle stavu prodloužení až na 3 h (210 hyperframu) pro NB-IoT a 44 minut pro MTC

Obrázek 20: DRX

9.2 Power Saving Mode (PSM)

- Maximální šetření energie
- Spící stav všechny obvody jsou vypnuté
- Zařízení zůstává registrováno v síti, ale nelze se s ním spojit (při znovunavázání spojení není potřeba obnovovat spojení)
- PSM inicializace a aktivace zařízení v request zprávě pošle, jak dlouho bude vypnuté síť ví, kdy se vzbudí
 - Tracking Area Update (TAU) maximálně 413 dní
 - Page monitoring window maximálně 186 minut zařízení zůstává dostupné poté co odešle data

Obrázek 21: PSM