ENPM 809T

UMCP, Mitchell, Summer 2019

- Engineering Annex
- Middle of AV Williams Building

- Engineering Annex
- Middle of AV Williams Building

- Tuesday July 30th, 5:30 8:45pm
- Tuesday August 6th, 5:30 8:45pm

In-Class Exercise

- Referring to HW #8, demonstrate your robot:
 - 1. Take as input a sequence of commands from operator
 - 2. Drive robot through sequence
 - 3. Record position data through sequence
- · Once complete, open & plot position data in Matplotlib

Robot Functionality

- Perception
- 1. RPi camera (picamera, raspistill, raspivid)
- 2. Ultrasonic range sensor (*range01.py*, *drive01.py*)
- Locomotion
- 1. H-bridge (motorcontrol01.py)
- 2. Servo gripper (**servocontrol01.py**)
- Localization
- 1. Motor encoders (encodercontrol01.py, map01.py)
- 2. Email communication (*email01.py*)
- Planning & Navigation

- We now transition to our robot's cognitive level
- Cognition: the purposeful decision-making & execution that a system utilizes to achieve its highest-order goals
- The specific aspect of cognition directly linked to robust robot mobility is navigation competence
- Path planning & obstacle avoidance

• First step: autonomously track moving object

• Begin by setting servo gripper to open position

• Begin by setting servo gripper to open position

• Use RPi camera to record 640x480 image of the scene

• Use *colorpicker.py* to determine HSV color bounds

• Refer to HW #3: apply mask(s) & find center of contour

 To navigate, consider the camera FOV

- To navigate, consider the camera FOV
- Horizontal FOV filled up by 12 inch ruler at a 17 inch range

- To navigate, consider the camera FOV
- Horizontal FOV filled up by 12 inch ruler at a 17 inch range
- Thus half angle $\theta = \text{atan}(6/17)$ = 19.44 deg
- Full angle $2\theta = 2*19.44$ = 38.88 deg

• The $2\theta = 38.88$ deg FOV is spread out across 640 pixels horizontally

• Therefore **each pixel** contributes 38.88/640 = 0.061 deg

• To align robot with the target contour, rotate by (num_pixels from center to centerline)*0.061

- To align robot with the target contour, rotate by (num_pixels from center to centerline)*0.061
- For example:
- (501-(640/2))*0.061=11.04 deg

- If contour in RHP, pivotright()
- If contour in LHP, pivotleft()

- To align robot with the target contour, rotate by (num_pixels from center to centerline)*0.061
- For example:
- (501-(640/2))*0.061=11.04 deg

- If contour in RHP, pivotright()
- If contour in LHP, pivotleft()

In-Class Exercise

- Create a new Python script: *trackblock01.py*
- Demonstrate robot can autonomously rotate & track object

• Update script to enable robot to autonomously retrieve object

In-Class Exercise

- Demonstrate robot autonomously retrieves object in a cluttered environment
- Once retrieved, deliver image via email: ENPM809TS19@gmail.com

References

- Introduction to Autonomous Mobile Robots, Siegwart
 - Chapter 6
- Picamera: Camera Hardware
 - https://picamera.readthedocs.io/en/release-1.12/fov.html