Kernelization

Serge Gaspers

UNSW

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for Edge Clique Cover
- 5 Kernels and Fixed-parameter tractability
- Further Reading

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Vertex cover

A vertex cover of a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that for each edge $\{u,v\}\in E$, we have $u\in S$ or $v\in S$.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?

Is this a YES-instance for VERTEX COVER? (Is there $S\subseteq V$ with $|S|\le 4$, such that $\forall\ uv\in E,\ u\in S$ or $v\in S$?)

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two instances I, I' are equivalent if they are both YES-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G-v,k) is a YES-instance. Let S be a vertex cover for G-v of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G,k) is a YES-instance.

Now, suppose (G-v,k) is a No-instance. For the sake of contradiction, assume (G,k) is a YES-instance. Let S be a vertex cover for G of size at most k. But then, $S\setminus\{v\}$ is a vertex cover of size at most k for G-v; a contradiction.

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u, v\}$ is a vertex cover of $G - N_G[v]$ of size at most k - 1, because $u \in S$ or $v \in S$.

If S' is a vertex cover of $G-N_G[v]$ of size at most k-1, then $S'\cup\{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G-N_G[v]$ are incident to u.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \le k$.

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$.

Suppose $S \subseteq V$, $|S| \le k$, is a vertex cover of G.

We have that S covers at most k^2 edges.

However, $|E| \ge k^2 + 1$.

Thus, S is not a vertex cover of G.

S. Gaspers (UNSW) Kernelization 8/34

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Preprocessing algorithm for VERTEX COVER

```
VC-preprocess Input: A graph G and an integer k. Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'. G' \leftarrow G' k' \leftarrow k repeat | Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k') until no simplification rule applies return (G', k')
```

Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

• Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.

First try

- Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.
- ullet executing it a linear number of times reduces the instance to a single bit
- ullet \to such an algorithm would solve Π in polynomial time
- For NP-hard problems this is not possible unless P = NP
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 2

For any instance (G,k) for VERTEX COVER, VC-preprocess produces an equivalent instance (G',k') of size $O(k^2)$.

Proof.

Since all simplification rules are sound, (G=(V,E),k) and (G'=(V',E'),k') are equivalent.

By (Number of Edges), $|E'| \le (k')^2 \le k^2$.

By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G'.

Since $\sum_{v \in V'} d_{G'}(v) = 2|E'| \le 2k^2$, this implies that $|V'| \le k^2$.

Thus, $|V'| + |E'| \subseteq O(k^2)$.

S. Gaspers (UNSW) Kernelization

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- 2 Kernelization algorithms
- 3 Kernel for HAMILTONIAN CYCLE
- 4 Kernel for Edge Clique Cover
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Kernelization: definition

Definition 3

A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f.

We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.

VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a $O(k^2)$ kernelization for $VERTEX\ COVER$.

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

HAMILTONIAN CYCLE |

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

```
vc-Hamiltonian Cycle
```

Input: A graph G = (V, E).

Parameter: k = vc(G), the size of a smallest vertex cover of G.

Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

HAMILTONIAN CYCLE II

Issue: We do not actually know a vertex cover of size k. We do not even know the value of k (it is not part of the input).

HAMILTONIAN CYCLE III

- Obtain a vertex cover using an approximation algorithm. We will use a 2-approximation algorithm, producing a vertex cover of size $\leq 2k$ in polynomial time.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- ullet No two consecutive vertices in the Hamiltonian Cycle can be in I.
- \bullet A kernel with $\le 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time.

If 2|C| < |V|, then return No

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Edge Clique Cover

Definition 5

An edge clique cover of a graph G=(V,E) is a set of cliques in G covering all its edges.

In other words, if $\mathcal{C} \subseteq 2^V$ is an edge clique cover then each $S \in \mathcal{C}$ is a clique in G and for each $\{u,v\} \in E$ there exists an $S \in \mathcal{C}$ such that $u,v \in S$.

Example: $\{\{a,b,c\},\{b,c,d,e\}\}$ is an edge clique cover for this graph.

EDGE CLIQUE COVER

EDGE CLIQUE COVER

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover $\mathcal C$ is the number of cliques contained in $\mathcal C$ and is denoted $|\mathcal C|$.

Helpful properties

Definition 5

A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 6

A graph G has an edge clique cover $\mathcal C$ of size at most k if and only if G has an edge clique cover $\mathcal C'$ of size at most k such that each $S \in \mathcal C'$ is a maximal clique.

Proof sketch.

- (\Rightarrow) : Replace each clique $S \in \mathcal{C}$ by a maximal clique S' with $S \subseteq S'$.
- (\Leftarrow) : Trivial, since \mathcal{C}' is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G-v is a smallest edge clique cover for G, and vice-versa. $\hfill\Box$

Simplification rules for EDGE CLIQUE COVER II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G-v is a smallest edge clique cover for G, and vice-versa. \qed

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u,v\}$ and $k \leftarrow k-1$.

Simplification rules for Edge Clique Cover III

(Twins)

If $\exists u,v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8

(Twins) is sound.

Simplification rules for EDGE CLIQUE COVER III

(Twins)

If $\exists u,v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8

(Twins) is sound.

Proof.

We need to show that G has an edge clique cover of size at most k if and only if G-v has an edge clique cover of size at most k.

 (\Rightarrow) : If \mathcal{C} is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in \mathcal{C}\}$ is an edge clique cover of G - v of size at most k.

 (\Leftarrow) : Let \mathcal{C}' be an edge clique cover of G-v of size at most k. Partition \mathcal{C}' into

 $\mathcal{C}'_u = \{S \in \mathcal{C}' : u \in S\}$ and $\mathcal{C}'_{\neg u} = \mathcal{C}' \setminus \mathcal{C}'_u$. Note that each set in

 $\mathcal{C}_u = \{S \cup \{v\} : S \in \mathcal{C}_u'\}$ is a clique in G since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $\mathcal{C}_u \cup \mathcal{C}_{\neg u}'$ is an edge clique cover of G of size at most k.

Simplification rules for EDGE CLIQUE COVER IV

(Size-V)

If the previous simplification rules do not apply and $|V|>2^k$, then return No.

Lemma 9

(Size-V) is sound.

Simplification rules for EDGE CLIQUE COVER IV

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 9

(Size-V) is sound.

Proof.

applicable.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^k , and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in C: v \in S} S = \bigcup_{S \in C: v \in S} S = N_G[v]$, contradicting that (Twin) is not

S. Gaspers (UNSW) Kernelization 28 / 34

Kernel for Edge Clique Cover

Theorem 10 ((GrammGHIV08))

EDGE CLIQUE COVER has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 11

EDGE CLIQUE COVER is FPT.

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Kernels and Fixed-parameter tractability

Theorem 12

Let Π be a decidable parameterized problem.

 Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Kernels and Fixed-parameter tractability

Theorem 12

Let Π be a decidable parameterized problem.

 Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

 (\Leftarrow) : Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$.

If f(k) < n, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial YES- or No-instance depending on the answer of A.

Otherwise, $f(k) \ge n$. In this case, the kernelization algorithm outputs the input instance.

Outline

- Vertex Cover
 - Simplification rules
 - Preprocessing algorithm
- Kernelization algorithms
- 3 Kernel for Hamiltonian Cycle
- 4 Kernel for EDGE CLIQUE COVER
- 5 Kernels and Fixed-parameter tractability
- 6 Further Reading

Further Reading

- Chapter 2, Kernelization in (CyganFKL+15)
- Chapter 4, Kernelization in (DowneyF13)
- Chapter 7, Data Reduction and Problem Kernels in (Niedermeier06)
- Chapter 9, Kernelization and Linear Programming Techniques in (FlumG06)
- the kernelization book (FominLSZ19)

References