응용경영통계 과제 2019.05.22

20160796 박보성

01 iris 데이터에서 종속변수 sl을 가장 잘 설명하는 선형모형을 구축하시오

어떤 모형이 가장 좋은 모형인지에 대하여 그 생각과 이유를 제시하시오/그 기준에 맞는 가장 좋은 모형을 찾으시오

P-value가 낮고 상대적으로 AIC, BIC가 작은 모형이 좋은 모형이라고 볼 수 있다. 충분히 예측력이 있는 모형이기 때문이다.

```
names(iris) < -c('sl','sw','pl','pw','sp')</pre>
ress <- lm(sl~ .,iris)
summary(ress)
Call:
lm(formula = sl \sim ., data = iris)
Residuals:
      Min
                1Q
                     Median
                    0.00899 0.20255 0.73103
-0.79424 -0.21874
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                     7.760 1.43e-12 ***
                           0.27979
 (Intercept)
               2.17127
                                      5.761 4.87e-08 ***
               0.49589
                           0.08607
SW
                           0.06853 12.101 < 2e-16 ***
0.15120 -2.084 0.03889 *
pl
               0.82924
              -0.31516
                           0.24017 -3.013 0.00306 **
spversicolor -0.72356
                           0.33373 -3.067 0.00258 **
spvirginica -1.02350
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3068 on 144 degrees of freedom
Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627
F-statistic: 188.3 on 5 and 144 DF, p-value: < 2.2e-16
```

Pw, pl이 상대적으로 예측력이 높은 변수임을 알 수 있다. 따라서 이 두 변수를 이용하여 선형모형을 만들면 좋은 모형을 만들 수 있다.

우선 pl과 관련하여 y 절편이 있는 모형과 없는 모형을 비교해보자.

```
ress1 <- lm(sl~ pl, iris)
ress2 <- lm(sl~-1+pl, iris)
summary(ress1)
summary(ress2)
```

```
> summary(ress1)
Call:
lm(formula = sl ~ pl, data = iris)
Residuals:
              1Q
                  Median
                               3Q
    Min
                                       Max
-1.24675 -0.29657 -0.01515 0.27676 1.00269
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                       <2e-16 ***
           4.30660
                      0.07839
                                54.94
(Intercept)
                                        <2e-16 ***
            0.40892
                       0.01889
                                21.65
pl
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 0.4071 on 148 degrees of freedom
Multiple R-squared: 0.76,
                              Adjusted R-squared: 0.7583
F-statistic: 468.6 on 1 and 148 DF, p-value: < 2.2e-16
> summary(ress2)
Call:
lm(formula = sl \sim -1 + pl, data = iris)
Residuals:
              1Q Median
    Min
                              3Q
                                     Max
-1.7933 -0.6583 0.2743 2.7918 4.1813
Coefficients:
   Estimate Std. Error t value Pr(>|t|)
               0.03692
                          36.53 <2e-16 ***
pl 1.34888
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.877 on 149 degrees of freedom
Multiple R-squared: 0.8996,
                                Adjusted R-squared: 0.8989
F-statistic: 1334 on 1 and 149 DF, p-value: < 2.2e-16
```

Y 절편이 없는 경우가 R^2는 더 높지만 AIC, BIC를 비교했을 때 훨씬 값이 크기 때문에 Y 절편이 없는 경우가 더 좋은 모형이다.

```
> AIC(ress1, ress2)

df AIC

ress1 3 160.0404

ress2 2 617.5056

> BIC(ress1, ress2)

df BIC

ress1 3 169.0723

ress2 2 623.5269
```

다양한 모형들을 비교해보았다.

```
rest1 = lm(sl \sim pl, iris)
rest2 = lm(sl \sim pw * pl, iris)
rest3 = lm(sl \sim pw + pl, iris)
rest4 = lm(sl \sim pw; pl, iris)
rest5 = lm(sl \sim l(pl \wedge 2) * pw, iris)
rest6 = lm(sl \sim l(pw \wedge 2) + pl, iris)
rest7 = lm(sl \sim pl * l(pw \wedge 2), iris)
```

```
rest8= Im(sl\sim pw+I(pl^2),iris)
AIC(rest1, rest2, rest3, rest4, rest5, rest6, rest7, rest8)
BIC(rest1, rest2, rest3, rest4, rest5, rest6, rest7, rest8)
> AIC(rest1, rest2, rest3, rest4, rest5, rest6, rest7, rest8)
      df
               AIC
rest1 3 160.0404
rest2 5 130.6952
rest3 4 158.0468
rest4 3 174.8960
rest5 5 125.1783
rest6 4 161.9298
rest7 5 125.9031
rest8 4 123.2201
> BIC(rest1, rest2, rest3, rest4, rest5, rest6, rest7, rest8)
      df
               BIC
rest1 3 169.0723
rest2 5 145.7484
rest3 4 170.0894
      3 183.9279
rest4
rest5 5 140.2315
rest6 4 173.9724
rest7
       5 140.9563
rest8 4 135.2627
```

rest8= lm(sl~pw+l(pl^2),iris) 가 가장 좋은 모형이라는 결론을 내릴 수 있다.

02 iris 데이터에서 종속변수 sl이고 독립변수로 sw, sp를 사용하는 모형에서 교호작용이 있는 경우와 없는 경우의 모형을 구성하여 적합하고 그 결과를 그림으로 표현하고 어떤 모형이 더 좋은 모형이라고 생각하는지 그 근거를 설명하시오

교호작용이 없는 경우가 더 좋은 모형이라고 할 수 있다.

```
> library(ggplot2)
> ggplot(iris)+geom_point(aes(x=sw, y=sl))+stat_smooth(method='lm', aes(x=sw, y=sl, col=sp))
> p<-ggplot(data=iris,aes(x=sw,y=sl,colour=sp))+geom_point()+geom_smooth(method="lm")</pre>
```


<u>03 mtcars 데이터에서 다음 모형들의 의미와 그 차이를 비교하고 R을 이용하여 적합한 결과 어떤 차</u>이가 나는지 설명하시오

```
    Mpg ~ -1+ wt + factor(cyl) #factor 변수가 있고 y 절편이 없는 경우
    Mpg ~ wt + cyl #y 절편이 있는 경우
    Mpg ~ -1 + wt + cyl #y 절편이 없는 경우
    Mpg ~ -1 + wt + l(cyl-6) #cyl가 6씩 줄어든 경우
```

ANOVA table 비교

```
847.73
87.15
                                128.60 3.535e-12 ***
13.22 0.001064 **
            1 847.73
wt
              87.15
cyl
Résiduals 29 191.17
                         6.59
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> res3 <- lm(mpg \sim -1 + wt + cyl, mtcars)
> anova(res3)
Analysis of Variance Table
Response: mpg
           \mathsf{Df}^{\mathsf{T}}
               Sum Sq Mean Sq F value
                                            Pr(>F)
            1 10105.7 10105.7 81.4698 4.704e-10 ***
wt
                                            0.1976
                         215.3
                                 1.7361
                215.3
cy l
Residuals 30
               3721.3
                         124.0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
> res4 <- lm(mpg \sim -1 + wt + I(cyl-6), mtcars)
> anova(res4)
Analysis of Variance Table
Response: mpg
             Df Sum Sq Mean Sq F value Pr(>F)
1 10105.7 10105.7 242.572 6.427e-16 ***
               2686.8 2686.8
                                 64.493 5.787e-09 ***
I(cyl - 6)
             1
Residuals
           30
               1249.8
                            41.7
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

ANOVA 비교를 통해서 발견할 수 있는 점:

- -y 절편이 있는 모형에서 factor 변수의 자유도는 집단수 -1 이다.
- -v 절편이 있는 경우와 없는 경우에서 잔차 자유도는 29, 30 으로 나타난다.

Summary Table 비교

```
> summary(res1)
call:
lm(formula = mpg ~ wt + factor(cyl), data = mtcars)
Residuals:
    Min
              1Q Median
-4.5890 -1.2357 -0.5159 1.3845
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
               33.9908
(Intercept)
                            1.8878
                                    18.006
                                              < 2e-16
                                     -4.252 0.000213 ***
                            0.7539
               -3.2056
wt
                                     -3.070 0.004718 **
factor(cyl)6
               -4.2556
                             1.3861
                                     -3.674 0.000999 ***
factor(cyl)8
              -6.0709
                            1.6523
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.557 on 28 degrees of freedom
Multiple R-squared: 0.8374, Adjusted R-squared: 0.82 F-statistic: 48.08 on 3 and 28 DF, p-value: 3.594e-11
> summary(res2)
```

```
call:
lm(formula = mpg \sim wt + cyl, data = mtcars)
Residuals:
Min 10 Median 30 Max
-4.2893 -1.5512 -0.4684 1.5743 6.1004
Coefficients:
             Estimate Std. Error t value Pr(>|t|) 39.6863 1.7150 23.141 < 2e-16
                                              < 2e-16 ***
(Intercept)
                                     -4.216 0.000222 ***
                            0.7569
               -3.1910
wt
cyl
                                     -3.636 0.001064 **
               -1.5078
                            0.4147
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
Residual standard error: 2.568 on 29 degrees of freedom
Multiple R-squared: 0.8302, Adjusted R-squared: 0.8 F-statistic: 70.91 on 2 and 29 DF, p-value: 6.809e-12
                                 Adjusted R-squared: 0.8185
> summary(res3)
call:
lm(formula = mpg \sim -1 + wt + cyl, data = mtcars)
Residuals:
                            3Q
10.597
    Min
               1Q
                   Median
-13.466
         -6.181
                    1.476
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
wt
        1.174
                    3.180
                             0.369
суΊ
                    1.660
        2.187
                             1.318
                                        0.198
Residual standard error: 11.14 on 30 degrees of freedom
Multiple R-squared: 0.735,
                                  Adjusted R-squared: 0.7173
F-statistic: 41.6 on 2 and 30 DF, p-value: 2.232e-09
> summary(res4)
lm(formula = mpg \sim -1 + wt + I(cyl - 6), data = mtcars)
Residuals:
    Min
               1Q Median
-12.422
         -3.494
                    2.532
                             4.832
                                     11.510
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                    17.339 < 2e-16 ***
-8.031 5.79e-09 ***
               6.2284
                           0.3592
I(cyl - 6)
             -5.4805
                           0.6824
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.455 on 30 degrees of freedom
Multiple R-squared: 0.911, Adjusted R-squared: 0.9 F-statistic: 153.5 on 2 and 30 DF, p-value: < 2.2e-16
                                Adjusted R-squared: 0.9051
```

- 비교했을 때 res4가 가장R^2가 높은 값이 나왔다.
- Factor 변수가 있는 경우(res1) 와 없는 경우(res2)를 비교했을 때는 factor변수가 있는 경우가 더 좋은 모형이다. (p value더 낮고 R^2높다)
- Res2, res3 비교했을 때는 Y 절편이 없는 모형보다 있는 모형이 더 좋다.

```
> AIC(res1, res2, res3, res4)
     df
      5 156.6223
res1
       156.0101
      3 249.0067
res3
      3 214.0926
> BIC(res1, res2, res3, res4)
             BIC
      5 163.9510
      4 161.8730
res2
      3 253.4040
res3
res4
     3 218.4899
```

- AIC, BIC를 비교해 보았을 때는 res2 가 가장 낮은 값이 나왔다.

그래프로 그려서 비교해보기

```
ff <- factor(mtcars$cyl)</pre>
p = ggplot() +
 \#geom\_line(data = mtcars, aes(x = -1 + wt + ff, y = mpg), color = "blue") +
 geom\_line(data = mtcars, aes(x = wt + cyl, y = mpg), color = "red") +
 geom_line(data = mtcars, aes(x = -1 + wt + cyl, y = mpg), color = "green") +
 geom_line(data = mtcars, aes(x = -1 + wt + I(cyl-6), y = mpg), color = "yellow") +
 xlab('x') +
 ylab('mpg')
р
 15-
```

04 mtcars데이터에서, mpg 변수를 종속변수로 하는 가장 좋은 모형을 구상하려 한다.

1) gear변수를 독립변수 중 하나로 포함하는 모형

gear의 distribution

barplot(table(mtcars\$gear),main = "Gear Distribution", xlab = "#Gears")

Car Distribution by gear, mpg

Counts <- table(mtcars\$mpg, mtcars\$gear)
barplot(Counts, main = "Car distribution by Gear, mpg", xlab = "#Gears", col = c("Red", "
Yellow", "Blue"), legend = rownames(Counts))

boxplot(mpg~gear,data=mtcars, main="MPG average and variance by Gear",

xlab="Number of Gear", ylab="Miles Per Gallon")

MPG average and variance by Gear

Mpg와 전체 변수들의 관계 알아보기

```
allmt = lm(data = mtcars, mpg ~ .)
summary(allmt)

Call:
lm(formula = mpg ~ ., data = mtcars)

Residuals:
```

Min 1Q Median 3Q Max -3.4506 -1.6044 -0.1196 1.2193 4.6271

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                        18.71788
(Intercept) 12.30337
                                    0.657
                                             0.5181
cyl
             -0.11144
                         1.04502
                                   -0.107
                                             0.9161
disp
              0.01334
                          0.01786
                                    0.747
                                             0.4635
             -0.02148
                          0.02177
                                   -0.987
                                             0.3350
hp
              0.78711
                          1.63537
                                    0.481
                                             0.6353
drat
             -3.71530
                          1.89441
                                   -1.961
                                             0.0633
wt
              0.82104
                          0.73084
                                    1.123
                                             0.2739
qsec
              0.31776
                          2.10451
                                    0.151
                                             0.8814
VS
                                    1.225
am
              2.52023
                          2.05665
                                             0.2340
              0.65541
                          1.49326
                                    0.439
                                             0.6652
gear
                          0.82875
                                   -0.241
carb
             -0.19942
                                             0.8122
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.65 on 21 degrees of freedom Multiple R-squared: 0.869, Adjusted R-squared: 0.8066 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

Wt가 가장 mpg에 따라서 움직이는 변수라는 것을 알 수 있다.

그 다음 amManual이 어느정도 설명력이 있다고 판단하여 mpg를 wt, gear, amManual로 설명해보기로 결정했다.

설명변수가 늘어나면 당연히 R^2값이 늘어나기 때문에 amManual을 포함했을 때, 포함하지 않았을 때의 AIC 값을 비교해보았다. 포함하지 않았을 때가 더 낮게 나왔다.

```
nmd1 = lm(data = mtcars, mpg ~ wt + gear + am)
summary(nmd)

nnn = lm(data = mtcars, mpg ~ wt + gear)
summary(nnn)

AlC(nmd1, nnn)
of AlC(nmd1, nnn)
df AlC(nmd1 5 169.8073
nnn 4 167.8984
```

y 졀편이 있는 경우에는

```
nmd = Im(data = mtcars, mpg \sim wt + gear)
lm(formula = mpg ~ wt + gear, data = mtcars)
Residuals:
              1Q Median
                               3Q
    Min
                                       Max
-4.1304 -2.3061 -0.2932 1.4409 6.8296
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                           5.0974 7.634 2.04e-08 ***
(Intercept) 38.9157
                           0.6987 -7.851 1.17e-08 ***
wt
              -5.4850
              -0.3196
                           0.9265 -0.345
                                               0.733
gear
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.092 on 29 degrees of freedom
Multiple R-squared: 0.7538, Adjusted R-squared: 0.7369
F-statistic: 44.41 on 2 and 29 DF, p-value: 1.488e-09
```

모형이 가장 좋은 모형이다.

y 절편이 없고 식에 변형을 조금 주었을 경우 훨씬 더 좋은 모형이 된다.

```
nnn1 = Im(data = mtcars, mpg \sim -1 + I(wt^2) + gear)
summary(nnn1)
```

```
Call:
lm(formula = mpg \sim -1 + I(wt^2) + gear, data = mtcars)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-12.1894 -1.3621 0.3398
                            3.2190 10.5849
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
I(wt^2) -0.2290
                    0.1123 -2.039 0.0504
                    0.3925 15.340 9.64e-16 ***
         6.0215
gear
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.145 on 30 degrees of freedom
Multiple R-squared: 0.9435,
                              Adjusted R-squared: 0.9397
F-statistic: 250.3 on 2 and 30 DF, p-value: < 2.2e-16
```

2) gear변수를 ordered변수로 변환해서 포함하는 모형

명목변수가 아닌 순서변수로 gear를 포함시키는 모형이다. Polynomial contrast로 변수를 대입하게 된다.

```
onmd = Im(data = mtcars, mpg \sim -1 + I(wt^2) + ordered(gear))
summary(onmd)
Call:
lm(formula = mpg \sim -1 + I(wt^2) + ordered(gear), data = mtcars)
Residuals:
    Min
             1Q Median
                             3Q
-4.0643 -2.8524 -0.1987 2.1366 7.1084
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            0.1181 -4.971 3.00e-05 ***
                -0.5871
I(wt^2)
                            2.0725 12.247 9.20e-13 ***
ordered(gear)3
                25.3824
                                           < 2e-16 ***
ordered(gear)4
                28.7684
                            1.3199
                                    21.795
ordered(gear)5 25.7638
                            1.7936 14.364 1.92e-14 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 3.492 on 28 degrees of freedom
Multiple R-squared: 0.9757,
                                Adjusted R-squared: 0.9722
F-statistic: 280.9 on 4 and 28 DF, p-value: < 2.2e-16
```

R^2값은 더 높아지고 P-value는 더 낮아졌다.

3) 결과를 비교하여 설명하기

AIC값과 BIC 값을 비교했을 때 ordered인 경우가 더 낮게 나온다.

따라서 ordered(gear)를 포함한 경우가 더 좋은 모형이라고 할 수 있다. gear가 아니라 wt를 ordered로 넣었을 경우에도 기존보다 훨씬 좋은 모형으로 변했다.

```
onmd1 = Im(data = mtcars, mpg \sim -1 + ordered(wt^2) + gear)
summary(onmd1)
                        Estimate Std. Error t value Pr(>|t|)
                                                      0.00675 **
ordered(wt^2)2.289169
                         29.3375
                                     2.4225
                                             12.111
                                                      0.00450 **
ordered(wt^2)2.608225
                         29.5500
                                     1.9898
                                              14.851
                                                      0.00361 **
                         33.0500
                                     1.9898
ordered(wt^2)3.367225
                                              16.610
ordered(wt^2)3.744225
                                     1.9898
                                                      0.00561 **
                         26.4500
                                             13.293
                                                      0.00930 **
                         24.9375
                                     2.4225
                                             10.294
ordered(wt^2)4.5796
ordered(wt^2)4.84
                         31.5500
                                     1.9898
                                              15.856
                                                      0.00395 **
                                     1.9898
                         21.9500
                                                      0.00812 **
                                              11.031
ordered(wt^2)5.3824
ordered(wt^2)6.076225
                                     1.5731
                                                      0.00564 **
                         20.8625
                                             13.262
                                     1.9898
                                                      0.00961 **
ordered(wt^2)6.8644
                         20.1500
                                             10.127
                                                      0.01648 *
ordered(wt^2)7.6729
                         18.6375
                                     2.4225
                                              7.694
                                                      0.00925 **
ordered(wt^2)7.7284
                                     1.9898
                                             10.328
                         20.5500
ordered(wt^2)8.265625
                                     1.9898
                                                      0.00961 **
                         20.1500
                                             10.127
                                     1.9898
                                                      0.00812 **
                                             11.031
ordered(wt^2)9.9225
                         21.9500
ordered(wt^2)10.0489
                         14.7375
                                     2.4225
                                              6.084
                                                      0.02597 *
                                     1.9898
                         23.5500
                                                      0.00706 **
                                              11.835
ordered(wt^2)10.1761
ordered(wt^2)10.336225
                         20.7625
                                     1.5731
                                             13.199
                                                      0.00569 **
                                                      0.01147 *
ordered(wt^2)11.799225
                         14.5625
                                     1.5731
                                              9.257
                                                      0.00947 **
ordered(wt^2)11.8336
                         17.7875
                                     1.7436
                                              10.201
                         17.4625
                                                      0.00802 **
ordered(wt^2)11.9716
                                     1.5731
                                              11.101
ordered(wt^2)12.3904
                                     1.5731
                                                      0.01102 *
                         14.8625
                                              9.448
                         13.8000
                                     1.9174
                                              7.197
                                                      0.01876 *
ordered(wt^2)12.7449
                                     1.5731
ordered(wt^2)13.9129
                         16.6625
                                             10.592
                                                      0.00880 **
                         14.5625
                                     1.5731
                                              9.257
                                                      0.01147 *
ordered(wt^2)14.2884
ordered(wt^2)14.7456
                                     1.5731
                                              8.049
                         12.6625
                                                      0.01509 *
                                             11.800
                                                      0.00711 **
ordered(wt^2)14.784025
                         18.5625
                                     1.5731
                                                      0.00981 **
ordered(wt^2)16.5649
                         15.7625
                                     1.5731
                                              10.020
                                     1.5731
                                                      0.02500 *
ordered(wt^2)27.5625
                          9.7625
                                               6.206
ordered(wt^2)28.569025
                         14.0625
                                     1.5731
                                               8.939
                                                      0.01228 *
                                                      0.02500 *
ordered(wt^2)29.419776
                          9.7625
                                     1.5731
                                               6.206
                          0.2125
                                     0.4606
                                              0.461
                                                      0.68983
gear
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7521 on 2 degrees of freedom
Multiple R-squared: 0.9999,
                                 Adjusted R-squared:
F-statistic: 827.5 on 30 and 2 DF, p-value: 0.001208
```

p-value와 R^2값 모두 굉장히 유의미하게 나왔으며

AIC, BIC값 또한 굉장히 낮게 나왔다.

05 케플러의 제3 법칙과 회귀분석

독일 천문학자인 Kepler가 덴마크 천문학자 Brahe의 관측결과로부터 얻은 행성운동에 대한 법칙을

만들었다. 그 중에 제 3 법칙은 행성의 공전주기 T의 제곱이 타원 궤도의 긴 반지름인 R의 3제곱에 비례한다는 것으로 식으로는 $T^2 = kR^3$ (k: 비례상수)로 표현할 수 있다.

선형회귀를 알아보기 위한 input data는 다음과 같이 정리할 수 있다.

Planet	Semi-Major Axis x	Period P
Mercury	0.39	0.24
Venus	0.72	0.61
Earth	1.00	1.00
Mars	1.52	1.88
Jupiter	5.20	11.86
Saturn	9.54	29.46
Uranus	19.19	84.01
Neptune	30.06	164.79
Pluto	39.53	248.54

Planets, Distance, Period를 넣어서 Kepler를 만든다.

```
library(ggplot2)
```

Planets <- c('Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune', 'Pluto')

Distance <- c(0.39, 0.72, 1.00, 1.52, 5.20, 9.54, 19.19, 30.06, 39.53)

Period <- c(0.24, 0.61, 1.00, 1.88, 11.86, 29.46, 84.01, 164.79, 248.54)

kepler = data.frame(Planets, Distance, Period)

kepler

```
> kepler
  Planets Distance Period
1 Mercury
              0.39
                     0.24
                     0.61
              0.72
    Venus
    Earth
              1.00
                     1.00
              1.52
                     1.88
     Mars
5 Jupiter
              5.20
                    11.86
              9.54
                    29.46
6 Saturn
             19.19
                   84.01
   Uranus
8 Neptune
             30.06 164.79
             39.53 248.54
    Pluto
```

Kepler에서 Distance, Period를 비교했을 때

다음과 같은 선형 관계가 있음을 확인할 수 있다.

T^2=kR^3을 확인하기 위해서는 상용로그를 취해서 값을 구했을 때 기울기를 확인하면 된다.

T=R $^{(3/2)}$ 이기 때문에 loga =0, a=1이 되고 n = 1.5=3/2가 되는 것을 알 수 있다. 이를 증명하면 케 플러 3법칙이 증명된다.

b= Im(log(Period, base=10)~ log(Distance, base=10)) summary(b)

```
lm(formula = log(Period, base = 10) \sim log(Distance, base = 10))
Residuals:
                         Median
      Min
                  1Q
                                                 Max
-0.0042597 -0.0005731 0.0000888 0.0010836 0.0026899
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                        -0.0015524 0.0009327
                                              -1.664 0.14
(Intercept)
log(Distance, base = 10) 1.5014025 0.0009847 1524.678 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.002085 on 7 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 2.325e+06 on 1 and 7 DF, p-value: < 2.2e-16
```

기울기가 1.5로 확인되었다.

그래프로 확인해보면 다음과 같다.

```
b= Im(log(Period, base=10)~ log(Distance, base=10))
summary(b)
   lm(formula = log(Period, base = 10) \sim log(Distance, base = 10))
   Residuals:
                       1Q
                               Median
   -0.0042597 -0.0005731 0.0000888 0.0010836 0.0026899
  Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
  (Intercept) -0.0015524 0.0009327 -1.664 log(Distance, base = 10) 1.5014025 0.0009847 1524.678
                                                                    0.14
                                                                   <2e-16 ***
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Residual standard error: 0.002085 on 7 degrees of freedom
                           1,
                                     Adjusted R-squared:
  Multiple R-squared:
  F-statistic: 2.325e+06 on 1 and 7 DF, p-value: < 2.2e-16
  > D = (log(Period, base=10))
  > P = (log(Distance, base=10))
  > data.frame(Planets, log(Distance, base=10),log(Period, base=10))
Planets log.Distance..base...10. log.Period..base...10.
                             -0.4089354
                                                      -0.6197888
  1 Mercury
       Venus
                             -0.1426675
                                                      -0.2146702
                                                       0.0000000
  3
      Earth
                              0.0000000
        Mars
                              0.1818436
                                                       0.2741578
  5 Jupiter
                                                       1.0740847
                              0.7160033
   6 Saturn
                              0.9795484
                                                       1.4692327
                                                       1.9243310
                              1.2830750
     Uranus
  8 Neptune
                              1.4779890
                                                       2.2169309
                              1.5969268
                                                       2.3953963
       Pluto
 ggplot(data = kepler, aes(x = D, y = P)) +
  geom point(color='blue') +
  geom_smooth(method = "Im", se = FALSE)
```


참고자료
http://ime.math.arizona.edu/g-teams/Profiles/VP/KeplersLawsRegression.pdf