# EHB 211E: Basics of Electrical Circuits

**Graph Theory** 

Asst. Prof. Ahmet Can Erten (aerten@itu.edu.tr)

1

## **Graph Theory - History**

1st scientific paper: Leonhard Euler's paper on "Seven Bridges of Königsberg", published in 1736.

-> The city of Königsberg in Prussia was set on both sides of Pregel River, including two islands. Problem: Find a way to walk through the city that would cross each bridge only once, and once. Difficulty is to develop a technique of analysis to establish a solution.

https://ed.ted.com/lessons/how-the-konigsberg-bridge-problem-changed-mathematics-dan-vander-vieren#watch



2

A graph G=(N,E) is a finite set of N nodes (or vertices or points), together with a set of E edges (arcs or lines), each of them connecting a pair of distinct nodes.

Node (Vertex): A point

Edge: A line segment connecting a pair of distinct nodes is called an edge.



3

### Fundamentals of Graph Theory

End nodes: The nodes  $n_i$  and  $n_j$  associated with an edge are called end nodes of the edge.

Incidence: An edge is incident to a node that is one of its end nodes.

Degree (Order) of a node: Number of edges connecting this node to other nodes.

Adjacency: Two vertices connected by an edge are adjacent.



EHB 211E 4

Planar graph: A planar graph is a graph which can be drawn on a plane in such a way that all its edges intersect only at their endpoints.

Subgraph:  $G_1$  is called a subgraph of G if  $G_1$  itself is a graph,  $N_1$  is a subset of N and  $E_1$  is a subset of E. In other words a subgraph is a subset of the elements of a given graph, obtained by removing some edges and/or nodes together with the corresponding edges.

Path: A path is a subgraph that can be drawn so that all of its nodes, all distinct from one another, and edges lie on a single straight line. (No node can be repeated.)



5

### Subgraph

#### Graph

- V nodes
- B branches
- Each branch is incident to two nodes
- · connected

#### Subgraph

- V` nodes, subset of V
- B` branches, subset of B
- Does not have to be connected



Figure 2.3 Digraph & and its three subgraphs.



EHB 211E 6

Connected graph: A graph is connected when there is a path between every pair of nodes. Otherwise it is disconnected.

Hinged graph: A connected graph is hinged when it can be partitioned into two subgraphs connected by one node, called a hinge.

Loop: A subgraph containing only nodes of order 2 and a set of edges between these nodes.



7

### Fundamentals of Graph Theory

Mesh: A loop of a planar graph not containing any graph elements inside.

Cut-set: A set of edges of a graph which, when removed, makes the graph disconnected.

- The removal of all the edges of the cut-set results in a disconnected graph.
- The removal of all but any one edge of the cut-set leaves the graph connected.

Nodal cut-set: A cut-set such that one the two disconnected parts of the resulting graph is a single node.



Tree: A subgraph containing all the N nodes and N-1 edges of a given graph and in which any two nodes are connected by exactly one path.

- It contains all the nodes of the graph.
- It contains no loops.

Co-tree: A subgraph associated with a tree, containing all the N nodes and the remaining E-N+1 edges of the graph not contained in the tree (compliment of the tree)



9

### Fundamentals of Graph Theory

Theory: Given a connected graph G of N nodes and E edges, and a tree T of G, there is a unique path along the tree between any given pair of nodes.

Branch (twig): The edges of the tree are called branches.

Chord (link): The edges of the cotree are called chords.



10

## **Graph Theory**

A graph is an ordered pair of nodes. Graphs are used to model many relations and processes in physical, biological, social, and information systems.

- In computer science, graphs are used to represent networks of communication
- In physics, graphs are used to represent connections between part of systems & dynamics of physical processes within a system
- In sociology, graphs are used in social network analysis software.
- In biology, graphs are used to model interaction between species

https://ed.ted.com/lessons/can-you-solve-the-control-room-riddle-dennis-shasha#watch



EHB 211E

11

11

### From Circuit to Graph

For a given circuit if we replace each element by its element graph, we get the circuit graph.



EHB 211E 12

## **Modeling Circuit Element**

A mathematical model can be developed for each circuit element after performing certain tests on the element.

The relation between the terminal variables is called terminal equation. f(v,i)=0 or f(v,I, dv/dt, di/dt)=0

Mathematical Model: The terminal graph and the terminal equation are the mathematical model of the circuit element.

- Current direction is preserved w.r.t the circuit: current direction points from +v sign towards –v sign
- No need to mark voltage signs in digraphs
- Circuit element is suppressed (deleted)
- power delivered to element
   P(t) = v(t)i(t)



EHB 211E 13

13





# Circuit Graphs - Two Ports

Two port is a circuit (element) with two pairs of accessible terminals: Example: transformers, hi-fi's





- KCL: -> i1 = i1` & i2 = i2`
- Power delivered: P=v1(t)i1(t) + v2(t)i2(t)
- The graph of a two port(4 terminal) circuit contains 2 branches, but the graph of a 1 port 4 terminal circuit contains 3 branches



EHB 211E 16

## Mathematical Model Example - BJT



Mathematical model is given by the terminal equation

$$\left[\begin{array}{c} v_{bc} \\ i_c \end{array}\right] = \left[\begin{array}{cc} h_{11} & h_{12} \\ h_{21} & h_{22} \end{array}\right] \left[\begin{array}{c} i_b \\ V_{ce} \end{array}\right]$$

and terminal graph (b). Find the terminal equation in the form

$$\left[\begin{array}{c} v_{eb} \\ i_c \end{array}\right] = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} i_e \\ V_{cb} \end{array}\right]$$

if (c) is the terminal graph.

EHB 211E 17

17

# Mathematical Model Example - BJT

Terminal equations

$$v_{bc} = h_{11}i_b + h_{12}v_{ce}$$
  
 $i_c = h_{21}i_b + h_{22}v_{ce}$ 

KCL and KVL for the circuit element

$$i_c + i_e + i_b = 0$$
  
 $v_{ce} + v_{eb} + v_{bc} = 0.$ 

New terminal variables are  $i_e$  and  $V_{eb}$  (additional to  $i_c$  and  $V_{cb}$ ). Substituting KVL and KCL Eqs. into above Eqs. we obtain

$$\begin{array}{lcl} v_{bc} & = & h_{11}(-i_c-i_e)+h_{12}(-v_{eb}+v_{cb}) \\ i_c & = & h_{21}(-i_c-i_e)+h_{22}(-v_{eb}+v_{cb}) \end{array}$$

EHB 211E 18

## Mathematical Model Example - BJT

$$\begin{array}{lll} h_{12}v_{eb} + h_{11}i_c & = & -h_{11}(i_e) + (1+h_{12})v_{cb} \\ (1+h_{21})i_c + h_{22}v_{eb} & = & -h_{21}i_e + h_{22}v_{cb} \end{array}$$

New terminal equations

$$\left[\begin{array}{cc} h_{12} & h_{11} \\ h_{22} & 1+h_{21} \end{array}\right] \left[\begin{array}{c} v_{eb} \\ i_c \end{array}\right] = \left[\begin{array}{cc} -h_{11} & (1+h_{12}) \\ -h_{21} & h_{22} \end{array}\right] \left[\begin{array}{c} i_e \\ V_{cb} \end{array}\right]$$

and terminal graph (c) will be the new mathematical model!

EHB 211E 19

19

### First Postulate of Circuit Theory

#### First Postulate of Circuit Theory:

All the properties of an n-terminal (or n-1 port) electrical element can be described by a mathematical relation between a set of (n-1) voltage and a set of (n-1) current variables.



Terminal variables and Terminal equation of n-terminal circuit element:

$$v = \begin{bmatrix} V_{1,n} \\ V_{2,n} \\ V_{3,n} \\ \vdots \\ V_{n-1,n} \end{bmatrix}, i = \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ \vdots \\ \vdots \\ i_{n-1} \end{bmatrix} \text{ and } f\left(v, i, \frac{dv}{dt}, \frac{di}{dt}, t\right) = 0$$

Power delivered at time t to the n-terminal circuit element:

$$P = \sum_{k=1}^{n} v_k i_k$$

EHB 211E 20

### Second Postulate of Circuit Theory: Kirchhoff's Voltage Law (KVL)

#### Second Postulate of Circuit Theory: Kirchhoff's Voltage Law (KVL)

For all lumped connected circuits, for all closed node sequences, for all times t, the algebraic sum of all node-to-node voltages around the chosen closed node sequence is equal to zero.



For the closed node sequence i-j-k-i

$$V_{i,j} + V_{j,k} + V_{k,i} = 0$$
  
 $e_i - e_j + e_j - e_k + e_k - e_i = 0$ 

EHB 211E 21

21

### Third Postulate of Circuit Theory: Kirchhoff's Current Law (KCL)

#### Third Postulate of Circuit Theory: Kirchhoff's Current Law (KCL)

For all lumped circuits, for all gaussian surfaces G, for all times t, the algebraic sum of all the currents leaving the gaussian surface G at time t is equal to zero.

Gaussian surface: It is a closed surface that cuts only the wires which connect the circuit elements.

#### KCL (node law)

For all lumped circuits for all times t, the algebraic sum of the currents leaving any node is equal to zero.



 $i_2$   $i_1$   $i_2$   $i_3$   $i_4$   $i_6$ 

For the node k:

EHB 211E

$$i_1 - i_2 + i_3 - i_4 + i_5 + i_6 = 0$$

1 2 1 3 14 1 3 1 10

### Tellegen's Theorem

#### Tellegen's Theorem

The algebraic sum of power absorbed by all elements in a circuit is zero at any instant.

Tellegen's theorem asserts that

$$\sum_{k=1}^{n_e} v_k i_k = 0$$

EHB 211E 23

23

### Cut Sets and KCL

Cut set  $(\xi)$  is an important graph-theoretical concept:

ξ of a Gaussian surface is called a cut set if

- Removal of all branches of the cut set results in an unconnected graph
- If you leave 1 branch within the cut set, the digraph stays connected

For the digraph of Fig. 5.15,  $\mathscr{C}_1 = \{\beta_1, \beta_3\}$ ,  $\mathscr{C}_2 = \{\beta_4, \beta_5, \beta_6\}$ , and  $\mathscr{C}_3 = \{\beta_4, \beta_5, \beta_7\}$  form cut sets. Here,  $\beta_k$  denotes "branch k."



EHB 211E 24

### Cut Sets and KCL

KCL: the sum of currents within a cut set is 0 Arrow of the cut set is its reference direction



i1 + i2 - i3 = 0

#### **Proof**:

node 5: 
$$i4 - i2 - i5 = 0$$
 (node 6:  $i3 = -i5$ )  
 $i4 - i2 + i3 = 0$  (node 4:  $i4 = -i1$ )  
 $-i1 - i2 + i3 = 0$ 

Cut set partitions set of nodes into 2 subsets

By writing KCL for each node and adding the result, we obtain the cut-set equation

EHB 211E 25

25

# Matrix Formulation and Independence Property - KCL

A digraph with 4 nodes and 6 branches



KCL:

Branches: 1 2 3 4 5 6  

$$i1 + i2$$
  $-i6 = 0$   
 $-i1$   $-i3 + i4$   $= 0$   
 $-i2 + i3$   $+ i5$   $= 0$   
 $-i4 - i5 + i6 = 0$ 

n: # of nodes

**Rank:** # of independent equations = n-1 -> 4 nodes -> rank: 3



 $A_{a}i=0$ 

Independence property of KCL equations

For any connected grahp with  $n_n$  nodes, the KCL equations for any  $n_n$  of these nodes form a set of  $n_n - 1$  linearly independent equations.

incidence matrix of the graph G and  $A_a \in \{-1,0,1\}^{n_a}$ 

Reduced incidence matrix:  $\mathbf{A}\mathbf{i} = 0$ 

26

### Matrix Formulation - KCL

A digraph with 4 nodes and 6 branches



EHB 211E 27

27

28

### **Matrix Formulation - KVL**

A digraph with 4 nodes and 6 branches



Branch voltages v1 = e1 - e2

$$v2 = e1$$
 -  $e3$   
 $v3 =$  - $e2 + e3$ 

$$v3 = -e2 + e3$$
  
 $v4 = e2$   
 $v5 = e3$ 

-1 0

Matrix form v = Me $v = A^T e$  $M = A^T$ 



EHB 211E

Independent KVL Equation

For an  $n_n$ -node  $n_b$ -branch connected graph  $\mathsf{G}$ , independent KVL equations are given by

where  $V=[V_1\ V_2...V_{n_c}]^T$  and  $V_n=[V_{n1}\ V_{n2}...V_{nn_o-1}]^T$  are called the branch voltage vector and node-to-datum voltage vector, respectively. M is a  $n_e\times n_o-1$  matrix.

Comparing the independent KVL and KCL equations, we conclude that







Linearly dependent equations!

EHB 211E 29

29



3 loops are enough to represent all nodes!



EHB 211E 30

### Tree

A **Tree** is a subgraph that is

- Connected
- Contains all the nodes of the graph
- Has no loops
- Tree branches: twigs
- Branches that do not belong to the tree within a graph: links & chords & cotree branches



Figure 3.1 Four distinct trees of the digraph G.

EHB 211E 31

31

# Fundamental Theorem of Graphs

- 1) There is a unique path along the tree between any pairs of nodes since a tree is connected
- 2) There are n-1 twigs and l=b-(n-1) links
- 3) Every twig together with some links define a unique cut set, called <u>fundamental cut set</u> associated with the twig
- 4) Every link and the unique path on the tree between its two nodes constitute a unique loop called the <u>fundamental loop associated with the link</u>



Figure 3.1 Four distinct trees of the digraph G.

EHB 211E 32

### Fundamental Loop Analysis

Fundamental Loop: Every link (chord) of co-tree and the unique tree path between its nodes constitute a unique loop. This loop is called the Fundamental Loop associated with the link.

**Fundamental Loop Equation:** The linear algebraic equations obtained by applying KVL to each Fundamental Loop constitute a set of b-n+1 linearly independent equations.

Reference direction for the loop is taken as the direction which agrees with that of the link defining the loop.



The links  $G_L = \{1,4,6\}$  for the chosen tree  $G_T = \{2,3,5\}$ . The Fundamental loop sets are  $G_{L1} = \{1,2,3\}$   $G_{L4} = \{4,5,3\}$   $G_{L6} = \{6,2,3,5\}$ .

If we apply KVL to the Fundamental Loops,

$$V_1 - V_3 - V_2 = 0$$
  
 $V_4 - V_5 - V_3 = 0$   
 $V_6 - V_5 - V_3 - V_2 = 0$ 

EHB 211E 33

33

### Fundamental Loop Analysis



The links  $G_L = \{1,4,6\}$  for the chosen tree  $G_T = \{2,3,5\}$ . The Fundamental loop sets are  $G_{L1} = \{1,2,3\}$   $G_{L4} = \{4,5,3\}$   $G_{L6} = \{6,2,3,5\}$ .

If we apply KVL to the Fundamental Loops,  $V_1 - V_3 - V_2 = 0$ 

> $V_4 - V_5 - V_3 = 0$  $V_6 - V_5 - V_3 - V_2 = 0$

$$\begin{bmatrix} I & F & F \\ 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_4 \\ V_6 \\ V_2 \\ V_3 \end{bmatrix} \quad V_t$$

V<sub>I</sub> Link Voltage Vector V<sub>t</sub> Twig Voltage Vector

**B Fundamental Loop Matrix** 

 $V_I = -F V_t$ 

The number of Fundamental loop equations is b-n+1 (number of links)

HB 211E

## Mesh Analysis

Meshes are special case of the Fundamental Loops i.e., there exists a tree such that the meshes are Fundamental loops.



There are 3 meshes. Corresponding loop sets and mesh currents (loop currents)  $G_{M1}=\{1,2,3\}$  and  $i_{m1}$ :  $G_{M2}=\{3,4,5\}$  and  $i_{m2}$ ;  $G_{M3}=\{2,4,6\}$  and  $i_{m3}$ .

$$\begin{aligned} \mathbf{i}_1 &= \mathbf{i}_{m1} \\ \mathbf{i}_2 &= -\mathbf{i}_{m3} - \mathbf{i}_{m1} \\ \mathbf{i}_3 &= \mathbf{i}_{m2} - \mathbf{i}_{m1} \\ \mathbf{i}_4 &= -\mathbf{i}_{m3} - \mathbf{i}_{m2} \\ \mathbf{i}_5 &= \mathbf{i}_{m2} \\ \mathbf{i}_6 &= \mathbf{i}_{m3} \end{aligned}$$

$$\begin{bmatrix} \mathbf{i}_1 \\ \mathbf{i}_5 \\ \mathbf{i}_6 \\ \mathbf{i}_2 \\ \mathbf{i}_3 \\ \mathbf{i}_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{i}_{m1} \\ \mathbf{i}_{m2} \\ \mathbf{i}_{m3} \end{bmatrix}$$

EHB 211E 35

35

### KVL using twig voltages



Twig voltages

$$\begin{array}{lll} v_1 = v_{t1} & & & & & & \\ v_2 = v_{t2} & & & & & & \\ v_3 = v_{t3} & & & v_7 = v_3 - v_4 & & = v_{t3} - v_{t4} \\ v_4 = v_{t4} & & v_8 = v_2 + v_3 & & = v_{t2} + v_{t3} \\ v_5 = v_{t5} & & v_9 = v_2 + v_3 + v_5 & = v_{t2} + v_{t3} + v_{t5} \end{array}$$

$$\begin{bmatrix} v_t \\ v_2 \\ \cdot \\ \cdot \\ \cdot \\ v_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{r1} \\ v_{r2} \\ v_{r3} \\ v_{r4} \\ v_{r5} \end{bmatrix} \qquad \mathbf{v} = \mathbf{Q}^\mathsf{T} \mathbf{v}_t$$

### Fundamental Cut-set Analysis

Cut-set is made up of links and one twig, namely the twig 
If we apply KCL to the Fundamental cut-sets, which defines the cut-set.

Every twig defines a unique Fundamental cut-set.

Reference direction for the cut-set is the direction of the twig defining the cut-set.



Cut sets of the tree of  $G_T = \{2,3,5\}$  are  $G_{C2} = \{2,1,6\}$  $G_{C3} = \{3, 1, 4, 5\} \ G_{C5} = \{5, 4, 6\}.$ 

 $i_2 + i_1 + i_6 = 0$ 

$$i_2 + i_1 + i_6 = 0$$
  
 $i_3 + i_1 + i_4 + i_6 = 0$   
 $i_4 + i_5 + i_6 = 0$ 



i, Link Current Vector i, Twig Current Vector

**Q** Fundamental Loop Matrix

$$\begin{aligned} \text{Qi} &= \begin{bmatrix} E & I \end{bmatrix} \begin{bmatrix} i_l \\ i_t \end{bmatrix} \\ i_t &= -Ei_l \end{aligned}$$

Each fundamental cut-set constitute a linearly independent equation. (n-1 linearly independent equations total)

37

### Fundamental Cut-Sets Associated with a Tree: KCL based on fundamental cut-sets

n = 6, b = 9-> 5 twigs, 4 links

0



Cut set 1:

 $i_1 - i_6 = 0$ 

Cut set 2:

Cut set 3:

Cut set 4:

 $i_4 - i_7 = 0$  $i_5 + i_9 = 0$ 

Cut set 5:

 $i_2 - i_6 + i_8 + i_9 = 0$  $i_3 + i_7 + i_8 + i_9 = 0$ 

Q: (n-1)\*b matrix: fundamental cut-set matrix

-1

€ links

 $\mathbf{Q}_{l}$ 

Each twig defines a unique fundamental cut-set

(Fundamental Theorem of graphs #3)

 $Q = [1_{n-1}Q_{i}]$ 

1

EHB 211E

# Relationship Between B and Q

# $F = -E^T$

**Proof:** Since they are the tree-branch voltages of the tree, the branch voltages are given by

$$V = Q^{T} V_{n}$$

$$BV = BQ^{T} V_{n} = 0$$

$$BQ^{T} V_{n} = 0$$

$$BQ^{T} = 0$$

$$BQ^{T} = 0$$

$$IE^{T} + FI = 0$$

$$E^{T} + F = 0$$

$$E^{T} = -F$$

EHB 211E 3