10/575991

S4-000711US.ST25.txt SEQUENCE LISTING

SEQUENCE LISTING														
<110> The Scripps Research Institute Alfonta, Lital Schultz, Peter G Zhang, Zhiwen														
<120>	SITE-SPECIFIC INCORPORATION OF REDOX ACTIVE AMINO ACIDS INTO PROTEINS													
<130>	54-000711us													
<140> <141>	Not Yet Known 2006-04-14													
<160>	5													
<170> PatentIn version 3.2														
<210> 1 <211> 306 <212> PRT <213> Artificial														
<220> <223> synthetase selected for incorporation of DHP														
<400> 1														
Met As	o Glu	Phe	Glu 5	Met	Ile	Lys	Arg	Asn 10	Thr	Ser	Glu	Ile	Ile 15	Ser
Glu Gl	u Glu	Leu 20	Arg	Glu	val	Leu	Lys 25	Lys	Asp	Glu	Lys	Ser 30	Ala	Leu
Ile Gl	y Phe 35	Glu	Pro	Ser	Gly	Lys 40	Ile	His	Leu	Gly	His 45	Tyr	Leu	Gln
Ile Ly	s Lys	Met	Ile	Asp	Leu 55	Gln	Asn	Ala	Gly	Phe 60	Asp	Ile	Ile	Ile
Leu Le 65	u Ser	Asp	Leu	Asn 70	Ala	Tyr	Leu	Asn	G]n 75	Lys	Gly	Glu	Leu	Asp 80
Glu Il	e Arg	Lys	Ile 85	Gly	Asp	Tyr	Asn	Lys 90	Lys	val	Phe	Glu	Ala 95	Met
Gly Le	u Lys	Ala 100	Lys	туг	val	туг	Gly 105	Ser	Glu	Phe	Gln	Leu 110	Asp	Lys
Asp Ty	r Thr 115	Leu	Asn	Val	Tyr	Arg 120	Leu	Ala	Leu	Lys	Thr 125	Thr	Leu	Lys
Arg Al		Arg	Ser	Met	Glu 135	Leu	Ile	Ala	Arg	Glu 140	Asp	Glu	Asn	Pro
Lys Va 145	l Ala	Glu	Val	Ile 150	Tyr	Pro	Ile		Gln 155 age 1	_	Asn	Asp	Ile	His 160

54-000711US.ST25.txt

Tyr	Leu	Gly	٧a٦	Asp 165	val	Gln	val	Gly	Gly 170	Met	Glu	Gln	Arg	Lys 175	Ile	
нis	Met	Leu	Ala 180	Arg	Glu	Leu	Leu	Pro 185	Lys	Lys	۷al	٧a٦	Cys 190	Ile	His	
Asn	Pro	val 195	Leu	Thr	Gly	Leu	Asp 200	Gly	Glu	Gly	Lys	Met 205	Ser	Ser	Ser	
Lys	Gly 210	Asn	Phe	Ile	Ala	Val 215	Asp	Asp	Ser	Pro	G1u 220	Glu	Ile	Arg	Ala	
Lys 225	Ile	Lys	Lys	Ala	Tyr 230	Cys	Pro	Ala	Gly	va1 235	val	Glu	Gly	Asn	Pro 240	
Ile	Met	Glu	Ile	Ala 245	Lys	Tyr	Phe	Leu	G]u 250	туг	Pro	Leu	Thr	Ile 255	Lys	
Arg	Pro	Glu	Lys 260	Phe	Gly	Gly	Asp	Leu 265	Thr	val	Asn	Ser	Tyr 270	Glu	Glu	
Leu	Glu	Ser 275	Leu	Phe	Lys	Asn	Lys 280	Glu	Leu	His	Pro	Met 285	Asp	Leu	Lys	
Asn	Ala 290	Val	Ala	Glu	Glu	Leu 295	Ile	Lys	Ile	Leu	Glu 300	Pro	Ile	Arg	Lys	
Arg Leu 305																
<210> 2 <211> 77 <212> RNA <213> Artificial																
<220> <223> mutant tRNA																
<400> 2 ccggcgguag uucagcaggg cagaacggcg gacucuaaau ccgcauggcg cugguucaaa 60																
uccggcccgc cggacca 77																
<21 <21 <21 <21	1> ! 2> !	3 918 DNA Arti	fici	al												
<220> <223> synthetase selected for incorporation of DHP																
<40 atg		3 aat	ttga	aatg	at a	aaga	gaaa	c ac	atct	gaaa	tta	tcag	cga ·	ggaa	gagtta	60

54-000711US.ST25.txt

agagaggttt	taaaaaaaga	tgaaaaatct	gctctcatag	gttttgaacc	aagtggtaaa	120
atacatttag	ggcattatct	ccaaataaaa	aagatgattg	atttacaaaa	tgctggattt	180
gatataatta	tattgttgag	cgatttaaac	gcctatttaa	accagaaagg	agagttggat	240
gagattagaa	aaataggaga	ttataacaaa	aaagtttttg	aagcaatggg	gttaaaggca	300
aaatatgttt	atggaagtga	attccagctt	gataaggatt	atacactgaa	tgtctataga	360
ttggctttaa	aaactacctt	aaaaagagca	agaaggagta	tggaacttat	agcaagagag	420
gatgaaaatc	caaaggttgc	tgaagttatc	tatccaataa	tgcaggttaa	tgatattcat	480
tatttaggcg	ttgatgttca	ggttggaggg	atggagcaga	gaaaaataca	catgttagca	540
agggagcttt	taccaaaaaa	ggttgtttgt	attcacaacc	ctgtcttaac	gggtttggat	600
ggagaaggaa	agatgagttc	ttcaaaaggg	aattttatag	ctgttgatga	ctctccagaa	660
gagattaggg	ctaagataaa	gaaagcatac	tgcccagctg	gagttgttga	aggaaatcca	720
ataatggaga	tagctaaata	cttccttgaa	tatcctttaa	ccataaaaag	gccagaaaaa	780
tttggtggag	atttgacagt	taatagctat	gaggagttag	agagtttatt	taaaaataag	840
gaattgcatc	caatggattt	aaaaaatgct	gtagctgaag	aacttataaa	gattttagag	900
ccaattagaa	agagatta					918

<210> 4 <211> 306

<211> 300 <212> PRT

<213> Methanococcus jannaschii

<400> 4

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Tyr 20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln 35 40 45

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys 100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys Page 3 Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 130

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Asp Ile His 150

150

Tyr Leu Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile 165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His 180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala 210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro 225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys 245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 260 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 290 295 300

Arg Leu 305

<210> 5 <211> 918

<212> DNA <213> Methanococcus jannaschii

<400> 5
atggacgaat ttgaaatgat aaagagaaac acatctgaaa ttatcagcga ggaagagtta 60
agagaggttt taaaaaaaga tgaaaaatct gcttacatag gttttgaacc aagtggtaaa 120
atacatttag ggcattatct ccaaataaaa aagatgattg atttacaaaa tgctggattt 180
gatataatta tattgttggc tgatttacac gcctatttaa accagaaagg agagttggat 240
gagattagaa aaataggaga ttataacaaa aaagtttttg aagcaatggg gttaaaggca 300

54-000711US.ST25.txt aaatatgttt atggaagtga attccagctt gataaggatt atacactgaa tgtctataga 360 420 ttggctttaa aaactacctt aaaaagagca agaaggagta tggaacttat agcaagagag 480 gatgaaaatc caaaggttgc tgaagttatc tatccaataa tgcaggttaa tgatattcat 540 tatttaggcg ttgatgttgc agttggaggg atggagcaga gaaaaataca catgttagca 600 agggagcttt taccaaaaaa ggttgtttgt attcacaacc ctgtcttaac gggtttggat 660 ggagaaggaa agatgagttc ttcaaaaggg aattttatag ctgttgatga ctctccagaa 720 gagattaggg ctaagataaa gaaagcatac tgcccagctg gagttgttga aggaaatcca 780 ataatggaga tagctaaata cttccttgaa tatcctttaa ccataaaaag gccagaaaaa 840 tttggtggag atttgacagt taatagctat gaggagttag agagtttatt taaaaaataag 900 gaattgcatc caatggattt aaaaaatgct gtagctgaag aacttataaa gattttagag 918 ccaattagaa agagatta