Hsuan-Tien Lin

Home | MOOCs | Courses | Research Group | Awards | Publications | Presentations | Programs

I am fortunate to be among the very first <u>NTU EECS</u> professors to offer two Mandarinteaching MOOCs (massive open online courses) on <u>NTU@Coursera</u>. The two MOOCs are <u>Machine Learning Foundations</u> and <u>Machine Learning Techniques</u> and are based on the textbook <u>Learning from Data: A Short Course</u> that I co-authored. The book is consistently among the best sellers in Machine Learning on <u>Amazon</u>.

You can find the slides of the two MOOCs below. The slides are available as is with no explicit or implied warranties. The slides themselves are shared by <u>CC-BY-NC 3.0</u>, but the copyright of all materials (figures in particular) remain with the original copyright holder (in almost all cases the authors of the <u>Learning from Data: A Short Course</u> book).

Machine Learning Foundations (all handout slides)

When can machines learn?		
Lecture 1	the learning problem: 0. Course Introduction 1. What is Machine Learning 2. Applications of Machine Learning 3. Components of Machine Learning 4. Machine Learning and Other Fields	handout slides; presentation slides; go to MOOC; watch on youtube
Lecture 2	learning to answer yes/no: 1. Perceptron Hypothesis Set 2. Perceptron Learning Algorithm (PLA) 3. Guarantee of PLA 4. Non-Separable Data	handout slides; presentation slides; go to MOOC; preview on youtube
Lecture 3	types of learning: 1. Learning with Different Output Space 2. Learning with Different Data Label 3. Learning with Different Protocol 4. Learning with Different Input Space	handout slides; presentation slides; go to MOOC; preview on youtube
Lecture 4	feasibility of learning: 1. Learning is Impossible? 2. Probability to the Rescue 3. Connection to Learning 4. Connection to Real Learning	handout slides; presentation slides; go to MOOC; preview on youtube
Why can machines learn?		
	training versus testing:	

201	16/1/11 Hsuan-Tien Lin > MOOCs			
	Lecture 5	 Recap and Preview Effective Number of Lines Effective Number of Hypotheses Break Point 	handout slides; presentation slides; go to MOOC	
أ		theory of generalization:		
	Lecture 6	 Restriction of Break Point Bounding Function: Basic Cases Bounding Function: Inductive Cases A Pictorial Proof 	handout slides; presentation slides; go to MOOC	
أ		the VC dimension:		
	Lecture 7	 Definition of VC Dimension VC Dimension of Perceptrons Physical Intuition of VC Dimension Interpreting VC Dimension 	handout slides; presentation slides; go to MOOC	
İ		noise and error:		
	Lecture 8	Noise and Probabilistic Target Error Measure Algorithmic Error Measure Weighted Classification	handout slides; presentation slides; go to MOOC	
İ	How car	n machines learn?		
İ		linear regression:		
	Lecture 9	Linear Regression Problem Linear Regression Algorithm Generalization Issue Linear Regression for Binary Classification	handout slides; presentation slides; go to MOOC	
		logistic regression:		
	Lecture 10	Logistic Regression Problem Logistic Regression Error Gradient of Logistic Regression Error Gradient Descent	handout slides; presentation slides; go to MOOC	
İ		linear models for classification:		
	Lecture 11	Linear Models for Binary Classification Stochastic Gradient Descent Multiclass via Logistic Regression Multiclass via Binary Classification	handout slides; presentation slides; go to MOOC	
		nonlinear transformation:		
	Lecture 12	Quadratic Hypotheses Nonlinear Transform Price of Nonlinear Transform Structured Hypothesis Sets	handout slides; presentation slides; go to MOOC	
Į				

1150/1/11 1150/1/11 Lill > 14100C5		
How can machines learn better?		
Lecture 13	hazard of overfitting: 1. What is Overfitting? 2. The Role of Noise and Data Size 3. Deterministic Noise 4. Dealing with Overfitting	handout slides; presentation slides; go to MOOC
Lecture 14	regularization: 1. Regularized Hypothesis Set 2. Weight Decay Regularization 3. Regularization and VC Theory 4. General Regularizers	handout slides; presentation slides; go to MOOC
Lecture 15	validation: 1. Model Selection Problem 2. Validation 3. Leave-One-Out Cross Validation 4. V-Fold Cross Validation	handout slides; presentation slides; go to MOOC
Lecture 16	three learning principles: 1. Occam's Razor 2. Sampling Bias 3. Data Snooping 4. Power of Three	handout slides; presentation slides; go to MOOC

Machine Learning Techniques (<u>all handout slides</u>)

embedo	ding numerous features	
Lecture 1	linear support vector machine: 0. Course Introduction 1. Large-Margin Separating Hyperplane 2. Standard Large-Margin Problem 3. Support Vector Machine 4. Reasons behind Large-Margin Hyperplane	handout slides; presentation slides; go to MOOC
Lecture 2	dual support vector machine: 1. Motivation of Dual SVM 2. Lagrange Dual SVM 3. Solving Dual SVM 4. Messages behind Dual SVM	handout slides; presentation slides; go to MOOC
Lecture 3	kernel support vector machine: 1. Kernel Trick 2. Polynomial Kernel 3. Gaussian Kernel 4. Comparison of Kernels	handout slides; presentation slides; go to MOOC

1	Tibuan Ten Emir 110	·
	soft-margin support vector machine:	
Lectu	re 1. Motivation and Primal Problem 2. Dual Problem	handout slides; presentation
4	3. Messages behind Soft-Margin SVM	slides; go to MOOC
	4. Model Selection	
	kornal la gistic regression:	
	kernel logistic regression:	
Loctu	Soft-Margin SVM as Regularized Model Regularized	handout slides; presentation
Lectu 5	2. SVM versus Logistic Regression	slides;
	3. SVM for Soft Binary Classification	go to MOOC
	4. Kernel Logistic Regression	
	support vector regression:	
Lectu	1. Kernel Ridge Regression	handout slides; presentation
6	re 1. Kernel Ridge Regression 2. Support Vector Regression Dual 3. Support Vector Regression Dual	slides; go to MOOC
	4. Summary of Kernel Models	<u>90 to MOOC</u>
C C Pal	sining prodictive factures	
comk	bining predictive features blending and bagging:	
Lectu	re 1. Motivation of Aggregation 2. Uniform Blending	handout slides; presentation slides;
7	3. Linear and Any Blending	go to MOOC
	4. Bagging (Bootstrap Aggregation)	
	adaptive boosting:	
	1. Motivation of Boosting	handout slides; presentation
Lectu 8	2. Diversity by Re-weighting	slides;
	3. Adaptive Boosting Algorithm4. Adaptive Boosting in Action	go to MOOC
	decision tree:	
Lectu	re 1. Decision Tree Hypothesis 2. Decision Tree Algorithm	handout slides; presentation slides;
9	3. Decision Tree Heuristics in C&RT	go to MOOC
	4. Decision Tree in Action	
	random forest:	
	1. Random Forest Algorithm	handout slides; presentation
Lectu 10	re 2. Out-Of-Bag Estimate	slides;
	3. Feature Selection4. Random Forest in Action	go to MOOC
	gradient boosted decision tree:	
l o o t	1. Adaptive Boosted Decision Tree	handout slides; presentation
Lectu 11	2. Optimization View of AdaBoost 3. Gradient Boosting	slides;
	4. Summary of Aggregation Models	go to MOOC
-11	11	

distilling	hidden features	JL
Lecture 12	neural network:	handout slides; presentation slides; go to MOOC
Lecture 13	deep learning: 1. Deep Neural Network 2. Autoencoder 3. Denoising Autoencoder 4. Principal Component Analysis	handout slides; presentation slides; go to MOOC
Lecture 14	radial basis function network: 1. RBF Network Hypothesis 2. RBF Network Learning 3. k-Means Algorithm 4. k-Means and RBF Network in Action	handout slides; presentation slides; go to MOOC
Lecture 15	matrix factorization: 1. Linear Network Hypothesis 2. Basic Matrix Factorization 3. Stochastic Gradient Descent 4. Summary of Extraction Models	handout slides; presentation slides; go to MOOC
happy le	-	
Lecture 16	finale: 1. Feature Exploitation Techniques 2. Error Optimization Techniques 3. Overfitting Elimination Techniques 4. Machine Learning in Practice	handout slides; presentation slides; go to MOOC

Last updated at CST 18:25, December 20, 2015
Please feel free to contact me: htlin@csie.ntu.edu.tw

