CHEM2100J Chapter 04 RC

Zeng Haoxuan

UM-SJTU Joint Institute zenghaoxuan@sjtu.edu.cn

October 10, 2023

Table of Contents

- VSEPR Model
- 2 Valence-Bond Theory
- Molecular Orbital Theory

VSEPR Model

2 Valence-Bond Theory

Molecular Orbital Theory

Basic VSEPR Model

Basic Rules

- ▶ 1. Regions of high electron density are either bonding or lone pairs which repel one another to minimize repulsion.
- 2. Electron pairs in multiple bonds are treated as the same as single bonds.
- ▶ 3. The electronic arrangement only considers positions of atoms when reporting the shape of a molecule.
- ▶ 4. Lone pair repulsion energies order: lone pair-lone pair>lone pair-atom>atom-atom.
- Generic Formula: AX_nE_m
 - ▶ A central atom; X attached atom; E lone pair

Basic VSEPR Model

Number of Electron Dense Areas	Electron- Pair Geometry	Molecular Geometry						
		No Lone Pairs	1 Ione Pair	2 Ione Pairs	3 Ione Pairs	4 Ione Pairs		
2	Linear	Linear						
3	Trigonal planar	Trigonal planar	Bent					
4	Tetrahedral	Tetrahedral	Trigonal pyramidal	Bent				
5	Trigonal bipyramidal	Trigonal bipyramidal	Seesaw	T-shaped	Linear			
6	Octahedral	Octahedral	Square pyramidal	Square planar	T-shaped	Linear		

How to Determine the Generic Formula?

- Method 1
 - ▶ Draw the Lewis structure and directly count the number of bonding and lone pairs
- Method 2

 - ▶ a number of valence electrons of the central atom
 - b number of the electrons the terminal atom needs

Exercise

Determine the VSEPR model and molecule shape of:

$$NO_2$$
, NO_2^+ , NO_2^- , SF_4 , XeF_2

Consequences of Molecular Shape

- Repulsion
 - ▶ lp-lp≫lp-bp>bp-bp
 - ▶ Result different in bond angle and bond length
- Polarity
 - ▶ A nonpolar molecule has no total electric dipole moment
 - ► Asymmetric = Polar
 - Symmetric Dipole = Non-polar

Exercise

(1) Explain why in H_2O_2 , N_2H_4 and C_2H_6 the bond length

$$O-O>N-N>C-C$$

(2) Which of the following molecules are polar?

NH₃, C₂H₂Cl₂, CCl₄, CIF₃, SF₄, XeF₄

VSEPR Mode

2 Valence-Bond Theory

Molecular Orbital Theory

Valence-Bond Theory

- \bullet σ and π Bonds
 - \triangleright σ bond End to end
 - \blacktriangleright π bond Side by side
 - \blacktriangleright σ bond is usually stronger than π bond because of greater overlap of electron cloud
 - ONLY single bonds can spin
- Covalent Bond Types
 - ightharpoonup A single bond is a σ bond
 - \blacktriangleright A double bond is a σ bond plus one π bond
 - \blacktriangleright A triple bond is a σ bond plus two π bonds

Hybridization

- Electron Promotion
 - ➤ The promotion of electrons will occur if it leads to a lowering of energy by permitting the formation of more bonds
- Hybridization of Orbitals
 - ➤ The hybrid orbitals are formed from the linear combination of the original atomic orbitals
 - Number of hybrid orbitals = Number of atomic orbitals
 - \blacktriangleright The hybrid orbitals contain electrons in σ bonds and lone pairs
 - ▶ The hybrid orbitals can form stronger covalent bonds
- Summary of Bonds for C
 - ▶ Four σ bonds \rightarrow sp³
 - ▶ Three σ bonds \rightarrow sp²
 - ightharpoonup Two σ bonds \rightarrow sp

Hybridization & VSEPR Model

Class of hybridization	sp	sp ²			sp ³				
Class of molecule	AB_2	AB_3	AB ₂ E		Al	B ₄	AB₃E	AB_2E_2	
Geometry of molecule	Linear	Trigonal plane	Bent		Tetrah	edron	rigonal yamidal	Bent	
Examples	CO ₂ CS ₂	BF ₃ NPCl ₂	SO ₂ ONCI		Xe CC		NCl ₃ AsH ₃	H_2O OF_2	
Class of hybridization	sp³d					sp³d²			
Class of molecule	AB_5	AB ₄ E	AB_3E_2	A	B_2E_3	AB ₆	AB₅E	AB_4E_2	
Geometry of molecule	Trigonal bipyramid	Distorted tetrahedron (or see saw)	T-shaped	L	inear	Octahedro	n Square pyramid	Square plane	
Examples	PCl ₅ AsCl ₅	TeCl ₄ SCl ₄	ClF ₃ XeOF ₂	,	I ₃ KeF ₂	SF ₆ PCl ₆	XeOF ₄ IF ₅	XeF ₄ IF ₄	

VSEPR Mode

2 Valence-Bond Theory

Molecular Orbital Theory

Molecular Orbital Theory

- Basic Concept
 - ▶ Molecular orbitals are built from linear combinations of atomic orbitals
 - ▶ Bonding orbital AOs interfere constructively, energy ↓
 - ► Antibonding orbital AOs interfere destructively, energy ↑
- Electron Configurations of Diatomic Molecules
 - MOs are built from the available valence-shell AOs and every AO produces an MO
 - ► Analogous to the electron configuration of atoms, we need to obey the building-up principle
 - \triangleright σ -orbital end to end; π -orbital side by side
 - ► Allow single electron bonds

Bonding in Diatomic Molecules

- Homonuclear
 - ▶ Equal sharing of bonding electrons
 - ▶ Equal contribution to bonding orbitals and antibonding orbitals
- Heteronuclear
 - Unequal sharing of bonding electrons
 - ▶ More electronegative elements has AO lower in energy and contributes more to the bonding orbitals
 - ► Less electronegative elements has AO higher in energy and contributes more to the antibonding orbitals

MO Energy-level Diagrams

Generic Form

Homonuclear

Heteronuclear

MO Energy-level Diagrams

• For Homonuclear Diatomic Molecules of Period 2 Elements

 Li_2 to N_2

 O_2 and F_2

MO Energy-level Diagrams

For Heteronuclear Diatomic Molecules of Period 2 Elements

$$XO(X=C \text{ or } X=N)$$

• Tip: The energy-level can not be determined qualitatively.

Bond Order

- Formula
 - ► BO= $\frac{1}{2}$ (N-N*)
 - ▶ N number of electrons in bonding orbitals
 - ▶ N* number of electrons in antibonding orbitals
- BO $\uparrow \Rightarrow$ stronger covalent bond \Rightarrow more stable molecule
- $BO=0 \Rightarrow$ no covalent bonds formed

Magnetic Properties of Molecules

- Diamagnetic
 - Tend to move out of a magnetic field
 - ► All electrons are paired
- Paramagnetic
 - ► Tend to move into a magnetic field
 - Exist unpaired electrons

Steps to Solve MO Problems

- Identify all AOs in the valence shell
- Construct the MO energy-level diagram
- Ount the total number of valence electrons
- Construct the electron configuration using the building-up principle
- Determine the bond order
- Oetermine whether the molecule is paramagnetic or diamagnetic

Exercise

- (1) According to MO theory, how many σ bonds and π bonds are there in an O₂ molecule?
- (2) Write the ground-state electron configurations of CO and NO and determine which molecule is more stable.

Reference

- Atkins, P. (2016) *Chemical principles: The quest for insight.* New York: W H Freeman.
- Prof. Milias Liu, Lecture Slides. 23FA VC210
- MA Anlin, RC Slides. 22FA VC210
- ZONG Junzhe, RC Slides, 22FA VC210

Thanks!