Theory of Computing:

8. Context-Free Languages + Revision

Professor Imed Bouchrika

National Higher School of Artificial Intelligence imed.bouchrika@ensia.edu.dz

- Pumping Lemma
 - Explanation
 - Examples

Outline:

- Closure Properties
 - **Decisionable Problems**
- Revision : CFG / NFA-RegEx / Prove CFG
- Software & Tools

- Who is Noam Chomsky
 - American Linguist
 - Political Activist.
 - Professor Emeritus at MIT
 - Published more than 150 books on topics such as linguistics, war, politics, and mass media

Туре	Grammar	Language	Automaton
Type-3	Regular Grammar	Regular Languages	DFA/NFA
Type-2	Context-Free Grammar	Context Free Languages	PDA

Туре	Grammar	Language	Automaton
Type-3	Regular Grammar	Regular Languages	DFA/NFA
Type-2	Context-Free Grammar	Context Free Languages	PDA
Type-1	Context-Sensitive Grammar	Context-Sensitive Languages	Linear-bounded automaton

We have started with Regular languages

Туре	Grammar	Language	Automaton
Type-3	Regular Grammar	Regular Languages	DFA/NFA

- Example of Grammars
 - \blacksquare S \rightarrow abc | aAbc
 - \blacksquare Ab \rightarrow bA
 - \blacksquare Ac \rightarrow Bbcc
 - $bB \rightarrow Bb$
 - aB → aa aaA

What language is for this grammar?

- What about Context-sensitive languages?
 - Example of Grammars
 - \blacksquare S \rightarrow abc | aAbc
 - \blacksquare Ab \rightarrow bA
 - \blacksquare Ac \rightarrow Bbcc
 - \blacksquare bB \rightarrow Bb
 - aB → aa aaA

 $\mathsf{S} \to \mathsf{aAbc}$

 \rightarrow abAc

 \rightarrow abBbcc

→ aBbbcc

 \rightarrow aaAbbcc

 \rightarrow aabAbcc

 \rightarrow aabbAcc

 \rightarrow aabbBbccc

→ aabBbbccc

 \rightarrow aaBbbbccc

→ aaabbbccc

Туре	Grammar	Language	Automaton
Type-3	Regular Grammar	Regular Languages	DFA/NFA
Type-2	Context-Free Grammar	Context Free Languages	PDA
Type-1	Context-Sensitive Grammar	Context-Sensitive Languages	Linear-bounded automaton
Type-0	Unrestricted grammar	Recursively enumerable language	Turing Machine

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = $\{0^n1^n \mid n >= 0\}$

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = $\{0^n1^n \mid n >= 0\}$

- Context-free languages are those that can be generated by context-free grammar.
- What about : Language L = $\{a^nb^nc^n \mid n >= 0\}$?

- \circ S \rightarrow aX
- \circ X \rightarrow bc
- Let's derive the string abc

Given the following grammar:

$$\circ$$
 S \rightarrow aXc

$$\circ$$
 $X \rightarrow b$

Let's derive the string abc

- \circ S \rightarrow aXc
- $\circ X \rightarrow b$
- Can we generate:
 - o More or infinite number of words?

We can only Generate a single word

- Given the following grammar:
 - \circ S \rightarrow aXc
 - \circ $X \rightarrow b$
- Can we generate:

 - More or infinite number of words?

• Let's consider the grammar:

$$\circ$$
 S \rightarrow uT | ϵ

$$\circ$$
 T \rightarrow VT | x | ε

• Can we generate:

- Let's consider the grammar:
 - \circ S \rightarrow uT | ϵ
 - \circ T \rightarrow VT | x | ϵ
- Can we generate:
 - O UVVVX , UVVVVVVX, UVVVVVV...VVX

$$\circ$$
 S \rightarrow uT | ϵ

$$\circ$$
 $T \rightarrow vT | x | \epsilon$

• Can we generate:

$$\circ$$
 S \rightarrow uT | ϵ

$$\circ$$
 $T \rightarrow Ty | x | \varepsilon$

• Can we generate:

uxyy , uxyyyyyy, uxyyyyyy,...yy

Let's consider the grammar:

$$\circ$$
 S \rightarrow uT | ϵ

$$\circ$$
 $T \rightarrow Ty \mid x \mid \varepsilon$

- Can we generate:
- uxyy, uxyyyyyy, uxyyyyyy,...yy

21

- \circ S \rightarrow uTz | ϵ
- \circ $T \rightarrow vTy | x | \epsilon$
- Can we generate:
 - uvvvxyyyz , uvvvvvvxyyyyyyz, uvvvvvvv...vvxyyyyyy...yyz

$$\circ$$
 S \rightarrow uTz | ϵ

$$\circ$$
 $T \rightarrow vTy | x | \epsilon$

• Can we generate:

O UVVVXYYYZ, UVVVVVVXYYYYYYYZ, UVVVVVV...VVXYYYYYYY...YYZ

- For a given string belonging to the language which is infinite, it must be in the form: uvxyz
- Such that:

- For a given string belonging to the language which is infinite, it must be in the form: uvxyz
- Such that : pumping can happen for v or y or both

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

- What if |vy|= 0?
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow vTy | x | \epsilon$
- Would be:
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow T \mid x \mid \epsilon$

- What if |vy|= 0?
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow vTy | x | \epsilon$
- Would be:
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow T \mid x \mid \epsilon$

$$\circ$$
 S \rightarrow uTz | ϵ

$$\circ$$
 $T \rightarrow vTy | x | \epsilon$

Would be:

$$\circ$$
 S \rightarrow uTz | ϵ

$$\circ$$
 $T \rightarrow T \mid x \mid \varepsilon$

- What if |vy|= 0?
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow vTy | x | \epsilon$
- Would be:
 - \circ S \rightarrow uTz | ϵ
 - \circ $T \rightarrow T \mid x \mid \epsilon$

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

There is another technique called Ogden's lemma

- If you cannot for a given language :
 - Create the Context-Free Grammar
 - Create a Pushdown automaton
- You may use the pumping lemma to prove it is not a context-free language

- To use the pumping lemma via Proof by Contradiction:
 - Assume the language is a context free language
 - Assume the pumping length P
 - Think of a string which is part of the language, such that if you put it in the form: uvxyz,
 - Regardless how you choose v and y from the string, pumping them, would lead to generate strings not belonging to the language

- is not context free
- We assume it is context-free.
- We assume the pumping length P
- Let's try this string: a^P b^P c^P

is not context free

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
- Let's try all possible combinations for placing the VXY on our

string a^P b^P c^P and see if we can pump

Use the pumping lemma to show that the language B = {aⁿ bⁿ cⁿ | n ≥ 0}
 is not context free

Use the pumping lemma to show that the language B = {aⁿ bⁿ cⁿ | n ≥ 0}
 is not context free

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
 - At first part : a^P ⇒ you can pump just a ? generated words

would have more a than b and $c \Rightarrow$ not in the language

Use the pumping lemma to show that the language B = {aⁿ bⁿ cⁿ | n ≥ 0}
 is not context free

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
 - At middle part between a and b ?

Use the pumping lemma to show that the language B = {aⁿ bⁿ cⁿ | n ≥ 0}
 is not context free

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
 - At middle part between a and b:

You will pump only a and b but not C.

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
 - At middle part : Between b and c : Same

- String: $a^P b^P c^P \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
 - Between a^P and $b^P \Rightarrow regardless$ of what you take for v and y, the c will not be pumped.

Language:

WordWord

} is not context free

- We assume it is context-free.
- We assume the pumping length P
- Let's try this string : ?

} is not context free

- We assume it is context-free.
- We assume the pumping length P
- Let's try this string: 0^P 1 0^P1

- String: $0^P 1 0^P 1 \Rightarrow uvxyz$ such that: $|vxy| \leftarrow P$
- Let's try all possible combinations for placing the uvxyz on our string 0^P 1 0^P 1 and see if we can pump

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 l is not context free

• Use the pumping lemma to show that the language $D=\{ww|w \in \{0,1\}*$

} is not context free

The second word would not be equal to the first word

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 } is not context free

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 } is not context free

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 } is not context free

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 l is not context free

57

We can pump the selected string and ends up generating words in the same language

€ {0.1}* This does not mean that the language is context-free, it means you chose a bad string V=0

 We can pump the selected string and ends up generating words in the same language

- String: 0^P 1 0^P 1 ⇒ uvxyz such that: |vxy| <= P
- Let's try all possible combinations for placing the uvxyz on our string 0^P 1^P 0^P 1^P and see if we can pump

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*

} is not context free

More ones in the first word + if you break to get two words ? => second word starts with 1, not zero

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*

} is not context free

More ones in the first word + if you break to get two words ? => second word starts with 1, not zero

• Use the pumping lemma to show that the language $D=\{ww|w \in \{0,1\}*$

} is not context free

More numbers added? if you break to get two word? => second word starts with 1, not zero

Use the pumping lemma to show that the language D={ww| w ∈ {0,1}*
 l is not context free

Even if you take x as empty string ...

- Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 j ≤ k} is not context free
 - We assume it is context-free.
 - We assume the pumping length P
 - Let's try this string: a^P b^Pc^P

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \ge 0$, $uv^{i}xy^{i}z \in A$,
 2. |vy| > 0, and
- 3. $|vxy| \le p$.

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- 2. |vy| > 0, and
- 3. $|vxy| \leq p$.

$$C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$$

Example of words:

- abbccc
- bc
- abcc

Use the pumping lemma to show that the language $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not context free

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤

j ≤ k} is not context free

Seems Easy?
We just pump **up**v and y which can
be c?

Words will be Always in the language

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 i ≤ k} is not context free

aaaa...aaaa bbbbbbbb cccc... ccccc

Seems Easy?
We just pump **up**v and y which can
be c?

Words will be Always in the language

• Use the pumping lemma to show that the language $C = \{a^i | b^j | c^k | 0 \le i \le j \le k\}$ is not context free

Pumping Lemma for Context Free Grammar

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 i ≤ k} is not context free

v or y contains only c Let's assume i=0 for the pumping lemma "Pumping down"

Pumping Lemma for Context Free Grammar

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 i ≤ k} is not context free

Pumping Lemma for Context Free Grammar

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 j ≤ k} is not context free

Pumping Lemma for Context Free Grammar

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 i ≤ k} is not context free

uv⁰xy⁰z ⇒ does it belong to the language ? No because the number of C is less than P

Pumping Lemma for Context Free Grammar

Use the pumping lemma to show that the language C = {aⁱ b^j c^k | 0 ≤ i ≤
 i ≤ k} is not context free

Pumping Lemma for Context Free Grammar

• Use the pumping lemma to show that the language $C = \{a^i | b^j | c^k | 0 \le i \le j \le k\}$ is not context free

- 0 L₁ U L₂
- 0 L₁L₂
- 0 L₁*
- are also Context-free languages.

Union

- Given two languages:
 - $\blacksquare G_1 = (N_1, \Sigma, S_1, P_1) \text{ be CFG for } L_1.$
 - \blacksquare $G_2 = (N_2, \Sigma, S_2, P_2)$ be CFG for L_2
- o $G_u = G_1 \cup G_2$ where $G_u = (N_u, \Sigma, S_u, P_u)$

 - $P_u = P_1 \cup P_2 \cup \{S_u \rightarrow S_1 \mid S_2\}$

N : non-terminal variables

P: Production rules

S: Start Variable.

- Union : Important
 - If L1 and L2 are context Free Languages ⇒ L1 U L2 is context free language.
 - If L1 and L1 U L2 are context free languages ⇒ does it imply that L2 is also context free language ?

- Consider : L₁ = Σ*
- Consider L₂ any non context free language (aⁿbⁿcⁿ where n>0)
- O L₁ U L₂ = L₁

Union : Important

- If L1 and L2 are context Free Languages ⇒ L1 U L2 is context free language.
- If L1 and L1 U L2 are context free languages ⇒ does it imply that
 L2 is also context free language?
 - Not necessarily

Concatenation

- Given two languages:
 - $\blacksquare G_1 = (N_1, \Sigma, S_1, P_1) \text{ be CFG for } L_1.$
 - \blacksquare $G_2 = (N_2, \Sigma, S_2, P_2)$ be CFG for L_2
- o $G_c = G_1 G_2$ where $G_c = (N_c, \Sigma, S_c, P_c)$
 - $N_c = N_1 \cup N_2 \cup \{S_c\}$
 - $P_c = P_1 \cup P_2 \cup \{S_c \rightarrow S_1 S_2\}$

- Given the following language:
 - \blacksquare G₁ = (N₁, Σ, S₁, P₁) be CFG for L₁.
- \circ G_s is the grammar for L* where G_s = (N_s, Σ , S_s, P_s)
 - $N_s = N_1 \cup \{S_s\}$
 - $P_S = P_1 \cup \{S_S \rightarrow S_1 S_S \mid \epsilon \}$

- Given the two context free languages languages:
 - $L_1 = \{a^n b^n c^k \mid n \text{ and } k >= 0 \}$
 - $L_2 = \{a^k b^n c^n \mid n \text{ and } k >= 0 \}$
- \circ $L_1 \cap L_2 = ?$

- Given the two context free languages languages:
 - $L_1 = \{a^n b^n c^k \mid n \text{ and } k >= 0 \}$
 - $L_2 = \{a^k b^n c^n \mid n \text{ and } k >= 0 \}$
- \circ L₁ \cap L₂ = {aⁿ bⁿ cⁿ | n >=0 } this is non context free grammar

- Complement is not closed under the Context-Free Languages
 - Example:
 - Language { wx such that w is not x }
 - Can we design DFA/NFA/PDA for it? or the CFG?
 - YES.

Revision: DFA

• What's this language for ?

- Construct the CFGs for the following languages:
 - Words which starts and ends with the same symbol over {0,1}
 - Words of Odd Length over {0,1}
 - \circ L ={ aⁱb ^jc^k such that i = j + k } over {a,b,c} (number of a=number of b+c
 - \circ L = { aⁱb ^jc^k such that j = i + k } over {a,b,c} (number of b=number of a+c
 - (Number of a) +2 = number of b

Please, try to do it on your own without seeing the solution:

How to know you are correct, simulate basic words...

- Construct the CFGs for the following languages:
 - Words which starts and ends with the same symbol over {0,1}

$$S_0 \to 0$$
 $S_1 0 |1S_1 1| \varepsilon$

$$S_1 \rightarrow 0S_1 |1S_1| \varepsilon$$

- Construct the CFGs for the following languages:
 - Words of Odd Length over {0,1}

$$S_0 \rightarrow 0S_1 | 1S_1$$

$$S_1 \to 00S_1 |01S_1| 10S_1 |11S_1| \varepsilon$$

- Construct the CFGs for the following languages:
 - \circ L = { aⁱb ^jc^k such that i = j + k } over {a,b,c} (number of a=number of b+c

- Construct the CFGs for the following languages:
 - \circ L ={ aⁱb ^jc^k such that i = j + k } over {a,b,c} (number of a=number of b+c

$$S_0 \to aS_0c|S_1$$

 $S_1 \to aS_1b|\varepsilon$

- Construct the CFGs for the following languages:
 - \circ L ={ aⁱb ^jc^k such that i = j + k } over {a,b,c} (number of a=number of b+c

$$S_0 \to aS_0c|S_1$$

 $S_1 \to aS_1b|\varepsilon$

PDA done in the Tutorial sessions?

- Construct the CFGs for the following languages:
 - \circ L ={ aib jck such that j = i + k } over {a,b,c} (number of b=number of a+c

- Construct the CFGs for the following languages:
 - \circ L ={ aⁱb ^jc^k such that j = i + k } over {a,b,c} (number of b=number of a+c

$$S_0 \rightarrow aS_1bS_2|S_1bS_2c|\varepsilon$$

$$S_1 \rightarrow aS_1b|\varepsilon$$

$$S_2 \rightarrow bS_2c|\varepsilon$$

- Construct the CFGs for the following languages:
 - \circ L = { aⁱb ^jc^k such that j = i + k } over {a,b,c} (number of b=number of a+c

$$S_0 \rightarrow aS_1bS_2|S_1bS_2c|\varepsilon$$

$$S_1 \rightarrow aS_1b|\varepsilon$$

$$S_2 \rightarrow bS_2c|\varepsilon$$

Can you design the PDA from scratch without converting from the CFG?

Revision : NFA to RegEx

Exam Question

Software & Tools

- You can download the JFLAP:
 - https://www.jflap.org/tutorial/turing/one/index.html

Software & Tools

- Online
 - https://automatonsimulator.com/
 - https://turingmachine.io/

Software & Tools

- Mobile Apps:
 - https://play.google.com/store/apps/details?id=com.TripleVGam es.MFLAP
 - https://play.google.com/store/apps/details?id=com.singh.tuhina
 .automatasimulationcopy&hl=en&gl=US

TD6 - Solutions

 $T \rightarrow aS \mid bS \mid \epsilon$

```
In each case below, say what language is generated by the context-free grammar:
       1. S \rightarrow aS \mid bS \mid \epsilon \{a,b\}*
       2. S \rightarrow SS \mid bS \mid a \{a,b\}*a
       3. S \rightarrow SaS \mid b babababa starts with b, there is a between two b
       4. S \rightarrow SaS | b | \epsilon does not contain bb
       5. S \rightarrow T T contains exactly two b
           T \rightarrow aT \mid T a \mid b
       6. S → aSa | bSb | aAb | bAa not palindromes
           A \rightarrow aAa \mid bAb \mid a \mid b \mid \epsilon \mid S
       7. S \rightarrow aT \mid bT \mid \epsilon Even number of letters
           T \rightarrow aS \mid bS
       8. S \rightarrow aT \mid bT odd number of letters
```

TD6 - Solutions

Give the context-free grammars that generate the following languages. Alphabet Σ is $\{0,1\}$.

4. {w| the length of w is odd and its middle symbol is a 0}
 S → 0 | 0S0 | 0S1 | 1S0 | 1S1

TD6 - Solutions

Give the context-free grammars that generate the following languages. Alphabet Σ is $\{0,1\}$. 1. $\{w \mid w = w^R, \text{ that is, } w \text{ is a palindrome}\}$ $S \rightarrow 0S0 \mid 1S1 \mid 1 \mid 0 \mid \epsilon$ 2. $\{w \mid w \text{ is not equal to } w^R \text{, that is, } w \text{ is not a palindrome}\}$ $S \rightarrow 0S0 \mid 1S1 \mid 0A1 \mid 1A0$ $A \rightarrow 0A0 \mid 1A1 \mid 0 \mid 1 \mid \epsilon \mid S$ 3. {number of 0 is the same as 1} $S \rightarrow \epsilon$ | SOS1S | S1SOS **OR** $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \epsilon$ All strings with more a's than b's $S \rightarrow S_1aS_1$ $S_1 \rightarrow bS_1a|aS_1b|S_1S_1|aS_1| \epsilon$ Test String: aabbaa: $S-> S_1aS_1 \rightarrow aS_1b aS_1 \rightarrow aaS_1bb aS_1 \rightarrow aaS_1bb aS_1 \rightarrow aabbaaS_1 \rightarrow aabbaaS_1 \rightarrow aabbaaS_1 \rightarrow aabbaaS_1 \rightarrow aabbaaS_1 \rightarrow aabbaaS_2 \rightarrow aabbaaS_3 \rightarrow aabbaaS_4 \rightarrow aabbaaS_1 \rightarrow aabbaaS_2 \rightarrow aabbaaS_3 \rightarrow aabbaaS_4 \rightarrow aabbaaS_3 \rightarrow aabbaaS_4 \rightarrow aabbaaS_5 \rightarrow aabbaaS$