Project1 report

Lingli WANG

April 2025

1 Introduction of Survival Analysis

Survival analysis is a branch of statistics that deals with analyzing the time until the occurrence of an event of interest. This event is often referred to as a "failure" or "death," but it can represent any endpoint, such as machine breakdown, customer churn, or recovery from a disease.

What makes survival analysis unique is its ability to handle censored data—situations where the exact time of the event is unknown for some subjects. For example, if a study ends before a patient dies, we only know that the patient survived up to a certain point, but not how much longer they lived.

2 Detailed Procedures and Methods

2.1 Load and Process Data

Here there are many ways to deal with data. The tutorial used Databrikes package, which is quite hard for me to use, so I chose an ordinary way – DataFrame! And it's also convenient to process the data.

2.2 Fit models

In this part, we'll divide the models into two kinds who estimate different numbers of variables.

2.2.1 Kplan-Meier Method

Single Variable Analysis: Kaplan-Meier: The method describes the probability of survival at time t. It requires two main parameters, time parameter — means the survival time of each individual and event parameter — means if something happened. And the probability formula is displayed as below: And

在某个时间点 t_i 处,设:

- d_i : 第 i 个时间点发生事件的人数
- n_i : 还未发生事件、仍在"风险中"的人数(即还活着、没流失)

那么:

$$P$$
(在 t_i 之后仍然存活) = $1 - \frac{d_i}{n_i}$

Kaplan-Meier 的估计是这些存活率的连续乘积:

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - rac{d_i}{n_i}
ight)$$

这个乘积就是 Kaplan-Meier 曲线的"台阶"。

Figure 1: Caption

some examples of figures:

2.2.2 Cox Proportional Hazards

Multiple Variable Analysis: Cox Proportional Hazards: The method describes what features influence the probability of survival by estimating hazard function instead of survival time. An example on certain five features is dis-

Figure 2: Caption

played below:

Figure 3: Caption

2.2.3 Accelerated Failure Time

Multiple Variable Analysis: Accelerated Failure Time: The method suppose that the covariables influence the result at multiplying level, so some features might make our costumer live longer or die sonner.

Figure 4: Caption

And after we fit the data and choose the features that we're interested in, we can get a summary on the influence of each feature.

Figure 5: Caption

2.3 Calculate Customer's lifetime

After fit cph, we can display the result by creating some widgets.

Figure 6: Caption

3 End

That's all of the survival analysis.