Protección de Datos y Backup

José M. Peña <jmpena@fi.upm.es>

Contenidos

- 1. Definiciones y términos
- 2. Requisitos de usuario:
 - Plazos de recuperación
 - Planificación de la organización
- 3. Granularidad de la copia.
- 4. Topologías de sistemas de backup
- 5. Dispositivos físicos
- 6. Fabricantes (hardware/software)

Definiciones

- Un backup es una copia adicional de la información que puede utilizarse con fines de recuperación y restauración ante fallos.
 - Su utilización se hace cuando la copia original está inutilizada o corrupta.
 - La copia puede ser:
 - Copias de los ficheros en instantes de tiempo determinados.
 - Copias especulares de los datos originales completamente sincronizados.

Tipologías de Backups

- Según necesidades:
 - Copias para recuperación ante desastres: El objeto es disponer de una copia que subsane la perdida potencial de datos valiosos para el usuario.
 - Copias operacionales: Se hacen para disponer de una instantánea de los datos del sistema en un momento determinado, con la intención de poder regresar a esa situación (sin necesidad de que haya un desastre):
 - E.g., versiones de un repositorio software.
 - Copias reguladas: Se realizan para cumplir con normativas legales que exigen el almacenado de datos históricos durante un periodo de tiempo. (LOPD en España).

Requisitos de Usuario

- Plazos de recuperación
- Instalaciones:
 - Original
 - De recuperación
- Elementos a recuperar:
 - Ficheros con poca variación.
 - Ficheros con mucha variación.

- Temporizaciones:
 - Cuándo se hacen los backups.
 - Cuánto tiempo dura la operación de copia.
 - Durante cuánto tiempo se guarda copias.

Plazos de Recuperación

- Recovery Point Objective (RPO): Periodo máximo de tiempo en el cual se han podido ver afectados datos antes de un incidente.
- Recovery Time Objective (RTO): Periodo máximo de tiempo en el que es asumible tener los sistemas de información parados después de un incidente.

© Wikipedia

Planificación de la Organización

- La empresa debe incluir en sus procedimientos internos diferentes documentos de reglamentación:
 - Plan de continuidad del negocio (business continuity plan): Que indica la exposición de la organización a amenazas internas y externas y las contramedidas para prevención y recuperación. Incluye:
 - Análisis de impacto en el negocio (business impact analysis BIA): Se diferencian sistemas críticos de no críticos y donde se definen, por ejemplo RTP y RPO.
 - Análisis de amenazas y riesgos (*threat and risk analysis* TRA): Se identifican los tipos de amenazas.

Business Continuity Planning, FEMA, Retrieved: June 16, 2012

http://www.ready.gov/business/implementation/continuity

Planificación de la Organización

- Plan de recuperación ante desastres (disaster recovery plan):
 Determina los pasos a realizar para realizar las acciones de recuperación ante un incidente.
 - Incluye las prioridades de esas tareas, el entrenamiento de los grupos participantes y los canales de comunicación.
 - Debe realizarse un ensayo de recuperación de forma periódica para verificar la integridad de datos y la agilidad de los procedimientos.
 - Lleva asociado acciones relativas al inventario sistemático de equipos, las pólizas de seguro y garantías de los mismos y un listado de números de emergencias y similares.

Disaster Recovery Planning Process. Geoffrey H. Wold. Disaster Recovery Journal. Adapted from Vol. 5 #1. Disaster Recovery World© 1997

http://www.drj.com/new2dr/w2 002.htm

Tipologías de Backups

Por Granularidad:

- "Cuándo y de qué se hace copia".
- Se determinan diferentes tipos de backups de acuerdo a cuáles son los ficheros copiados.
- Los diferentes tipos de backups se hacen en "ciclos de backup"
- Por Operatividad del sistema:
 - "En qué estado está el sistema cuando se realiza la copia".
 - Se determina si es necesario detener la operativa del sistema (dejar de proporcionar servicio) para hacer el backup.

Ganularidad

Backup completo: Se realiza una copia integral de los datos, copiando todos los contenidos de los sistemas a mantener.

Backup diferencial: Partiendo de una copia de backup completa, se realiza una copia de todos los datos modificados desde que se hizo ese backup completo.

Backup incremental: Partiendo de una copia de backup completa, se realiza una copia sólo de los datos modificados desde el último backup (sea completo o incremental).

Recuperación de un Backup Incremental

Aspectos clave:

- Los ficheros que se han modificado después del último backup se guardan.
- Se realizan un número menor de copias de ficheros, que requieren una menor capacidad de almacenamiento y backups más rápidos.
- Mayor tiempo de recuperación porque resulta necesario deshacer el último backup completo y todos los incrementales.

Recuperación de un Backup Diferencial

Aspectos clave

- Se copian más ficheros, por lo tanto el backup lleva más tiempo y usa más espacio de almacenamiento.
- Las recuperaciones son mucho más rápidas porque sólo conllevan recuperar el backup completo y el último de los diferenciales.

Operatividad del Sistema Durante Copia

- Backup frio (cold) u off-line: La operativa del sistema se detiene.
 - Entre el comienzo de la fase de copia y el final de la misma no se hace ninguna operación sobre los datos.
 - Requiere ventanas de tiempo para realizar esas copias que deben ser programadas y validadas.
 - No válido para sistemas 24x7 (e.g., un comercio on-line).
- Backup caliente (hot) u on-line: La operativa del sistema no se detiene y la copia se hace con el sistema en producción.
 - Requiere fijar el instante de tiempo de referencia.
 - Gestionar no sólo los datos estables sino las modificaciones (log de operaciones) entre ese instante y el final de la copia.

Hot Backup

- Muy utilizado típicamente en bases de datos (pero también aplicable a sistemas de ficheros).
 - Se configura el sistema en modo hot backup (a veces llamado point-in-time recovery)
 - Se crea un log de operaciones (redo log) donde se almacenan todas las modificaciones que se piden sobre los datos al comenzar la copia:
 - Eso implica que los datos estables no se modifican por esas operaciones.
 - Al finalizar la copia el redo log se ejecuta y se aplican todos los cambios.
 - Durante la operación de copia el sistema funciona en modo degradado (peores prestaciones).

Arquitectura de un Sistema de Backup

- Cliente de backup
 - Manda los datos a copial al servidor de backup
- Servidor de backup
 - Puede ser uno de los nodos de almacenamiento en sistemas con varios de estos nodos.
 - Gestiona las operaciones de copia y mantiene un catálogo con los metadatos de la copia.
 - Si es uno de los nodos de almacenamiento se comunica con el dispositivo.
- Bibliotecas de cintas
 - Armario con almacenamiento secundario.

© EMC Corporation

Operation de Copia

Servidor de aplicaciones y clientes de backup

- 1 Comienza un proceso de backup planificado
- 2 El servidor de backup recupera del catálogo la información relativa a la copia
- 3a El servidor le pide al nodo de almacenamiento que carge la cinta en el dispositivo de backup
- Believidor da la orden a los clientes que le manden los metadatos al servidor y los datos al servidor de almacenamiento
- 4 Clientes manda datos al servidor de almacenamiento
- 5 El nodo de almacenamiento le manda los datos Al dispositivo de backup
- 6 El nodo de almacenamiento le remite la información sobre el número de cinta al nodo de backup
- 7 El servidor de back lo registra en el catálogo y actualiza el valor de estado del backup

© EMC Corporation

Operación de Recuperación

backup

Servidor de aplicaciones y clientes de backup Dispositivo de Nodo de Servidor de backup

Almacenamiento

- El servidor recorre el catálogo de para identificar los datos a recuperar y el cliente que debe recibir los datos
- 2 El servidor da la orden al nodo de almacenamiento para que carge la cinta en el dispostivo
- Se leen los datos y se mandan al cliente correspondiente
- El nodo de almacenamiento le transmite al servidor los metadatos de backup recuperado
- 5 El servidor de backup actualiza el catálogo

© EMC Corporation

Topologías de Backup

- Determinan la configuración de conexión de los sistemas operacionales de almacenamiento con el sistema de copias de backup.
 - Son muy dependientes de la topología de conexión de los sistemas de almacenamiento.
 - Tipos:
 - Backup de conexión directa.
 - Backup vía LAN (Local Area Network)
 - Backup vía SAN (Storage Area Network)
 - Backup mixto
 - Backup vía NAS (Network-Attached Storage): Con/sin servidor

Backup de Conexión Directa

Backup Vía LAN

Backup Vía SAN (Sin LAN)

Nodo de Almacenamiento

Backup Mixto

Backup Vía NAS – Con Servidor

Backup Vía NAS – Sin Servidor

Backup Vía NAS – NDMP de 2 Vías

Sistema de Backup como Dispositivo NAS NDMP de 3 Vías

Dispositivos Físicos de Almacenamiento

- Tienen que considerarse aspectos de eficiencia, capacidad y durabilidad del medio.
- Su localización:
 - On-line: Directamente accesible, por lo general en disco.
 - Near-line: Accesible pero con una latencia mayor, por lo general cinta en un robot o biblioteca de backup.
 - Off-line: No está accesible sin intervención humana, requiere transportar el medio de almacenamiento desde otra localización.
 - Centro de recuperación de desastres: Instalación que dispone de una copia de datos sincronizada con alta frecuencia (o especular) y que puede estar operativa en un intervalo de tiempo mínimo.

Dispositivos Físicos de Almacenamiento

Tipo de dispositivo:

- Cinta:
 - Bajo coste, acceso lento.
- Disco:
 - Alto coste, acceso rápido.
 - Por lo general se usan extensiones RAID para dar mayor fiabilidad.
- Cintas virtuales:
 - Usualmente proporcionada por dispositivos de backup de gama alta.
 - Compuesta por discos que "cachean" contenidos de una biblioteca de cintas asociada.
 - Recuperación con prestaciones simulares (salvo cacheado), pero backup mucho más eficiente (disco → disco → cinta).

Fabricantes y Software

- IBM:
 - Tivoli
- EMC:
 - EMC Networker / RecoverPoint
- Hitachi (HDS):
 - True Copy
- HP:
 - HP Data protector

- Software de propósito general:
 - Libre:
 - AMANDA
 - BACULA
 - Propietario:
 - NovaBACKUP
 - Acronis
 - Symantec/Veritas