University Admit Eligibility Predictor

Professional Readiness for Innovation, Employability and Entrepreneurship

Team ID: PNT2022TMID13046

PARTHIBAN B (191239)

SANDIYAA B (191252)

THARMENTHERAN V B (191257)

VINITH J (191260)

Dissertation submitted in partial fulfillment of the requirements for the degree of

BACHELOR OF TECHNOLOGY

Branch: INFORMATION TECHNOLOGY

of Anna University

NOVEMBER 2022 DEPARTMENT OF INFORMATION TECHNOLOGY

PSG COLLEGE OF TECHNOLOGY

(Autonomous Institution)

COIMBATORE - 641 004

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to **Dr.K.Prakasan**, Principal, PSG College of Technology, for giving us the opportunity to do our Paper with various facilities and infrastructure, without which the success of the Paper would not have been possible.

We extend our heartfelt thanks to **Dr.K.Umamaheswari**, Professor and Head, Department of Information Technology, PSG College of Technology, for her unfailing support throughout this Paper.

We are also greatly indebted to **Dr.D.Karthika Renuka**, Professor, Programme Coordinator, Department of Information Technology for her kind support and encouragement given to complete the project .

We also wish to express our sincere thanks to our tutor **Dr. S. Sangeetha**, Assistant Professor Department of Information Technology, for her guidance that played a vital role in completing my Paper on time.

We also express our profound and sincere gratitude to our project guide **Ms.Shymala Gowri S**, Assistant Professor, Department of Information Technology for her valuable guidance and timely advice to complete the project work successfully.

Finally, we would like to thank God, Parents, siblings, our faculty members, lab technicians and friends without whom this Paper work would not have been completed successfully.

LIST OF FIGURES

Figure No.	Title	Page No.
3.1	Empathy map	12
3.2	Brainstorm	12
3.3	Group ideas	13
3.4	Prioritize	13
3.5	Problem solution fit	14
5.1	Data flow diagram	18
5.2	Solution architecture	19
5.3	Technical architecture	19
6.1	Burn Down chart	25
6.2	Sprint 1	26
6.3	Sprint 2	26
6.4	Sprint 3	26
6.5	Sprint 4	26
9.1	Eligibility inputs	29
9.2	Predicted result	29

TABLE OF CONTENTS

1.IN	TRODUCTION	6
	1.1 Project Overview	
	1.2 Purpose	
2.LIT	ERATURE SURVEY	7
	2.1 Existing problem	
	2.2 References	
	2.3 Problem Statement Definition	
3. ID	EATION & PROPOSED SOLUTION	12
	3.1 Empathy Map Canvas	
	3.2 Ideation & Brainstorming	
	3.3 Proposed Solution	
	3.4 Problem Solution fit	
4.RE	QUIREMENTANALYSIS	15
	4.1 Functional requirement	
	4.2 Non-Functional requirements	
5. PF	ROJECT DESIGN	18
	5.1 Data Flow Diagrams	
	5.2 Solution & Technical Architecture	
	5.3 User Stories	
6.PR	OJECT PLANNING & SCHEDULING	23
	6.1 Sprint Planning & Estimation	
	6.2 Sprint Delivery Schedule	
	6.3 Reports from JIRA	

7. CODING & SOLUTIONING	27
7.1 Feature 1	
7.2 Feature 2	
7.3 Database Schema	
8. TESTING	29
8.1 Test Cases	
8.2 User Acceptance Testing	
8.3 Integration Testing	
9. RESULTS	29
9.1 Performance Metrics	
10. ADVANTAGES & DISADVANTAGES	30
11. CONCLUSION	30
12. FUTURE SCOPE	31
13. APPENDIX	31
Source Code	
GitHub & Project Demo Link	

1. INTRODUCTION

Students are often worried about their chances of admission to University. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances to a particular university. This analysis should also help students who are currently preparing or will be preparing to get a better idea. College admission predictor is a boon to many students. This helps the student not only to help in filling out theapplication forms but also give the students an idea about their future college by calculating their cut off.

When students come from rural places , they find it hard to go along with the formal procedures. So, this application helps them a lot and eases out their fear. Whatever may be their scores , this application helps to find the best colleges . Hence, our proposed computer aided system which help the students to get the list of all colleges in which they could get the admission at the click of a button. The students only have to enter their marks of XII, AIEEE etc. With this application, the students can very easily obtain the list of colleges even branch wise and course wise. This will not only make the admission process easy but also minimizes stress for students . The main objective of our system is to make the right choice of colleges. Recommending best suitable universities to students based on their GRE, GPA and TOEFL scores and also predicting admission probability.

1.1 Project Overview

The university prediction mostly depends the initial steps that are being carried out. Firstly, the dataset collection. The data that is collected for the prediction must be accurate and concise in nature. Any discrepancies in the dataset will cost the accuracy of the university prediction directly. The second step is Data preprocessing. The collected data is improper i.e., those data will have outliers, missing values and the number of attributes may also be huge. At times the data can also be unstructured. In order to solve this issue, the data must be cleaned and preprocessed in a proper manner. The next important issues arise with the data consistency, the university prediction data must be consistent. The data format must be same across all the dataset. These inconsistencies must be solved before training the model with the data. The issue also occurs due to abnormalities. The model cannot predict the in these abnormalities.

1.2 Purpose

The university prediction may help the school student's hugely to predict good possibility of good college. This university prediction can help the students hugely to plan ahead and save their valuable time. The reputation of the university can be majorly dependent on these university prediction because the prediction has a direct hand in determining the society trust on the application. Proper data preprocessing helps the model to get a high yield accuracy.

2. LITERATURE SURVEY

2.1 Existing problem

S.No	Title	Author and	Proposed Work	Limitations
		year of		
		Publication		
1.)	Predicting	Md.	The authors begin by	Error
	Undergraduate	Protikuzzaman	gathering information from	percentages
	Admission	et al[1]	Bangabandhu	are lower
		[2020]	University of Science and	because of k-
			Technology of Sheikh	fold cross-
			Mujibur Rahman	validation
			(BSMRSTU). They pre-	
			process the data after	
			gathering it. Feature	
			extraction from the data.	
			After that, they use	
			supervised machine	
			training, data validation,	
			and extraction techniques	
			for learning	
			understanding from it.	

2 /	Collogo	Vandit Manish	This paper states that	14
2.)	College	Vandit Manish	This paper states that,	It gives
	Admission	Jain et al[2]	One can enter their scores	ambiguous
	Prediction .	[2021]	in the proposed system by	result if
	using		the corresponding fields	unequal
	Ensemble		offered. After that, the	observations
	Machine		system performs the data	are present in
	Learning		entered generates a list of	dataset.
	Models		the results of	
			colleges that a person's	
			results might qualify them	
			for.	
			we have suggested an	
			innovative technique	
			using algorithms for	
			machine learning. To	
			increase the	
			our model's accuracy, we	
			have included not only	
			Several machine learning	
			algorithms, not just one.	
3.)	College	Annam	This paper illustrates a	It does not
	Admission	Mallikharjuna	model of developing a	include all the
	Predictor	Roa et al[3]	model with security based	desired
		[2018]	classification model which	features.
			tells the student's class	
			admission based on	
			advanced machine	
			learning techniques such	
			as k-means , naïve based	
			technioques.	
			-	

4.)	Prediction	A.Sivasangari	In this paper, the modelling	The most
	Probability of	et al[4] [2021]	dataset has the following	important
	Getting an		appearance.	feature is only
	admission		Preprocessing is an	considered for
	using ml		essential stage of the	prediction
			process. Choosing how to	
			handling missing data is a	
			typical issue in data	
			cleaning. After cleaning ,	
			prediction done.	
5.)	Engineering &	Mr. Sachin	This paper aims in helping	Tuning the
	Technology	Bhoite et al[5]	students to select	model is
	Admission	[2021]	engineering college for first	essential for
	Analysis And		year based on marks.For	better
	Prediction		achieving that , they used	accuracy.
			machine learning	
			algorithms such as k	
			nearest neighbour ,	
			decision tree classifier.	
6.)	Graduate	Ali bou	In this paper, they assist in	Larger dataset
	admission	nasif[6][2020]	advance prediction for	-
	predicting		student gettting into a	train the model
	using machine		college.The algorithms	_
	learning		used here are multiple	performance
			linear regression ,	
			multilayer perceptron.	
7.)	•	Kiran Kumari et	This paper illustrates to	The process of
	Admission	al	generate probability to	data feeding is
	Predictor and	[7] [2019]	predict yes or no. This is	manual and
			done using filters and	prediction is

	Smart	List		several	prepr	ocessing	limited	to
	Generator			steps. Se	everal an	alysis of	certain	region
				algorithm	is done a	and they	only.	
				are com	pared to	get a		
				optimised	d and wel	I defined		
				class labl	les.			
8.)	Hybrid		Abdul hamid et	This p	aper a	ims at	The	real
	recommen	d	al[8][2020]	construct	tion of	trusted	student	s data
	system	for		recomme	endation	system	was use	ed from
	college			based	data	mining	KAU,	so the
	prediction			technique	es and fra	me rules	design	is not
				to predict	t the enro	llment of	generic	
				student's	admissio	n. Based		
				on pa	arameters	s like		
				capacity,	course	e rate,		
				student's	score and	d classify		
				them acc	ordingly.			

2.2 References

- [1] Md. Protikuzzaman, Mrinal Kanti Baowaly, Maloy Kumar Devnath, Bikash Chandra Singh," Predicting Undergraduate Admission: A Case Study in Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh", (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 12, 2020
- [2] Vandit Manish Jain, Rihaan Satia," College Admission Prediction using Ensemble Machine Learning Models", International Research Journal of Engineering and Technology (IRJET), Volume: 08 Issue: 12 | Dec 2021
- [3] Annam Mallikharjuna Roa, Nagineni Dharani, A. Satya Raghava, J. Buvanambigai, K. Sathish," College Admission Predictor", Journal of Network Communications and Emerging Technologies (JNCET), Volume 8, Issue 4, April (2018)

- [4] A.Sivasangari, V.Shivani, Y.Bindhu, D.Deepa, R.Vignesh, "Prediction Probability of Getting an Admission into a University using Machine Learning", Proceedings of the Fifth International Conference on Computing Methodologies and Communication (ICCMC 2021) IEEE Xplore Part Number: CFP21K25-ART
- [5] Sachin Bhoite, Ajit More, "Engineering & Technology admission analysis and prediction", Article published at: https://www.researchgate.net/publication/341740217 ,May 2020 DOI: 10.37896/GOR33.02/181
- [6] Ali Bou Nassif ,Ismail Shahin ,Ashraf M Elnagar, "Graduate admission predicting using machine learning", Article published at: https://www.researchgate.net/publication/348433004, December 2020 DOI: 10.46300/91013.2020.14.13
- [7] Kiran Kumari, Meet Kataria, Viral Limbani, Rahul Soni, "CAPSLG: College Admission Predictor and Smart List Generator", 2nd International Conference on Advances in Science & Technology (ICAST-2019) K. J. Somaiya Institute of Engineering & Information Technology, University of Mumbai, Maharashtra, India
- [8] Ragab, A.H.M.," Hybrid recommender system for predicting college admission", Intelligent Systems Design and Applications (ISDA), 29 Nov. 2012, 107-113.

2.3 Problem Statement Definition

University education is becoming a critical pillar of social and economic life in the twenty-first century. It is crucial not only in the educational process but also in assuring two vital things: a great job and financial stability. Predicting university entrance, on the other hand, might be extremely challenging because pupils are unaware of the admission standards. This University admission predictor most often helps the students in getting the chances of good college. This university prediction can help the students hugely to plan ahead and save their valuable time. The reputation of the university can be majorly dependent on these university prediction because the prediction has a direct hand in determining the society trust on the application.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Figure 3.1 Empathy map

This Figure 3.1 shows a empathy map that will gives a collaborative visualization for the end user, what they can perform using this project, what challenges have been faced and also what is the real time use for this application.

3.2 Ideation & Brainstorming

3.2.1 Brainstorm

Brainstorming phase, the ideas from every group members are gathered.

Figure 3.2 Brainstorm

3.2.2 Group ideas

Grouping the ideas under the suitable topics for better understanding

Figure 3.3 Group ideas

3.2.3 Prioritize

Prioritizing the ideas or the features and performing the feasibility study on it.

Figure 3.4 Prioritize

3.3 Proposed Solution

The main objective of the model is to predict university admission accurately and efficiently inorder to help students in selecting college. Using a machine learning model, university admission for college is done. The input to the algorithm is rows of feature vector like marks or gpa, cut off, category etc. Then a decision tree and random forest is used to predict the eligibility of the student for that college / university. Unlike other models here, comparison of decision tree classifier with logistic regression and random forest classifier for various figures of merit is performed for better efficiency of prediction. The model used is where students will be able to use features of the app for free. If the application used with more students, it is planned to enhance for subscription for some features

3.4 Problem Solution fit

Figure 3.5 Problem solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Details	Enter the Marks scored
		HSC/Diploma score
		GRE score
		TOEFL score
		GATE score
		IELTS score
		CGPA etc.

FR-4	User Requirements	Choose the tier of university they wish
		to apply and then get a prediction of their
		chances ofadmission to that level university
		based on the mapping between their
		requirements and the
		student's results.
		The system shall allow the user's details
		to bestored for the next time they return to the
		website.
		If the user chooses to take a new
		evaluation,the most recent inputs as well as
		prediction shall replace any previous data.

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	No training is required to use
		thewebsite.
		The form, home, about, FAQ and
		analysis pages load up within 10
		seconds.
		The results from the predictor should
		nottake more than 30 seconds.
NFR-2	Security	The system shall provide password
		protected access to the website to all
		users –students & admins both.

NFR-3	Reliability	University Application process itself	
		being a tedious task students needs	
		lots of determination for completing	
		overall application process.	
		It seems students have to work on	
		lots ofthings when he/she prepares for	
		application process.	
		 It would definitely be easier for 	
		studentsif they get relief from step of	
		selecting best suited universities and	
		colleges for application.	
		This would encourage them to work	
		vigorously on other application	
		componentsso that their application	
		candidacy will be potent enough to be	
		selected.	
		This system shall be completely	
		operational all hours of the day unless	
		system failure or upgradation work is	
		to beperformed.	
		 Downtime after a failure shall not 	
		exceed24 hours.	
NFR-4	Performance	This system can support any	
		number of users at a time.	
		The mean time to view a webpage	
		overa 56 Kbps modem connection shall	
		not exceed5 seconds.	

NFR-5	Availability	Easy access of data.
		Avoids data redundancy
		andinconsistency.
		It is fast, efficient and reliable.
		Very user friendly.
		Chances of occurrence of error is
		lesswhen compared to existing
		system.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

Figure 5.1 Data flow diagram

5.2 Solution & Technical Architecture

5.2.1 Solution Architecture

Figure 5.2 Solution architecture

5.2.2 Technical Architecture

Figure 5.3 Technical architecture

5.3 User Stories

User Type	Functional	User	User Story / Task	Acceptance	Priority	Release
	Requiremen	Story		criteria		
	t(Epic)	Numbe				
		r				
Student	Dashboard	USN-1	As a user, I	I can access	High	Sprint-1
			can view the	and download		
			cut off	the files		
			marks of			
			previous			
			years in my			
			dashboard			
		USN-2	As a user, I	I can only	Medium	Sprint-1
			can view	view(read-only)		
			university			
			details and			
			their rankings			
		USN-3	As a user, I can	I can	Medium	Sprint-2
			review the	access the		
			experience of	review		
			thestudents in	sections		
			the university			
		USN-4	As a user, I can	I have	High	Sprint-1
			upload my	read and		
			documents	write		
				access to		
				upload		
				files		
		USN-5	As a user,I	I have read and	High	Sprint-2
			can fill out	write access to		

			the general	the forms filled		
			and			
			educational			
			details in			
			the form			
			provided			
	Predictor	USN-6	I can view the	I can receive	High	Sprint-2
			list of	the final		
			universities in	result as		
			which I am	whether		
			eligible to get an	eligible		
			admission	or not		
		USN-7	I can view the	I can access	Medium	Sprint-2
			list of	the files with		
			universities I	read-only		
			am eligiblewith	permission		
			the same cut-			
			off but in			
			previous years			
Administrat	Dashboard	USN-8	As an	I can have	High	Sprint-3
or			administrator,I	access to		
			can have	readand write		
			access to	the university		
			update the	information in		
			latest updates	the		
			of the	dashboard		
			universities			
		USN-9	As an	I can access	Medium	Sprint-3
			administr	the resources		
			ator,I can	that are		

		access	available		
		any			
		resource			
		s			
		available			
		in the			
		page			
	USN-	As an	I can access	High	Sprint-3
	10	administrator,I	the list of the		
		can have a	universities		
		track on the	obtained as		
		universities the	final result		
		student is			
		eligible to get			
		admission at			

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requirement	Story	Task	Point		Members
	(Epic)	Number				
Sprint	Registrati	USN-1	As a new user,	2	High	Parthiban
-1	on and		I can register for			
	Login		the application			
			by entering my			
			email and my			
			password.			
Sprint	Confirmation	USN-2	As a user, I	2	Mediu	Vinith
-2	email		will receive		m	
			confirmation			
			email once			
			I have registered			
			for the application			
Sprint	User login	USN-3	As a user, I can	2	High	Tharmenthera
-1			login into the			n
			application by			
			entering the			
			registered email-id			
			and password			
Sprint	Admin Panel	USN-4	As an admin, I	2	High	Sandiyaa
-2			can authenticate			Carranyaa
			the registration			
			and login			

			credentials of the			
			passengers			
Sprint	University	USN-5	As a user, I can	2	High	Parthiban
-3	availabilities		find all the details			i aitiibaii
			of a specific			
			universities			
Sprint		USN-6	As a user, I can	2	High	Vinith
-3			find exactly how			VIIICI
			long the flightwill			
			be delayed			
Sprint	Helpdesk	USN-7	As a customer	1	Mediu	Tharmenthera
-4			care executive, I		m	n
			can provide the			
			contact details of			
			the airlines			
Sprint		USN-8	As a student, I	1	High	Sandiyaa
-4			can see the			•
			universities with			
			similar name			
Sprint	Feedback	USN-9	As a user, I can	2	Mediu	Sandiyaa
-4			provide my		m	,
			suggestions and			
			feedback for the			
			improvement of			
			the application			

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint Start	Sprint	Story	Sprint
	Story		Date	End	Points	Release
	Points			Date	Complete	Date
				(Plann	d (as on	(Actual)
				ed)	Planned	
					End Date)	
Sprint-1	4	6 Days	24 Oct 2022	29 Oct	4	29 Oct 2022
				2022		
Sprint-2	4	6 Days	31 Oct 2022	05 Nov	4	05 Nov 2022
				2022		
Sprint-3	4	6 Days	07 Nov 2022	12 Nov	4	12 Nov 2022
				2022		
Sprint-4	4	6 Days	14 Nov 2022	19 Nov	4	19 Nov 2022
				2022		

6.2.1 Velocity

We have a 24-day sprint duration, and the velocity of the team is 4 (points per sprint). Thus the team's average velocity (AV) per iteration unit (storypoints per day) is as follows

AV = sprint duration / velocity= 24/16 = 1.5

6.2.2 BurnDown chart

Figure 6.1 BurnDowm chart

6.3 Reports from JIRA

Figure 6.2 Sprint 1

Figure 6.3 Sprint 2

Figure 6.4 Sprint 3

Figure 6.5 Sprint 4

7. CODING & SOLUTIONING

7.1 Feature 1

The application's registration page is created. User registration is carried out if the user hasn't already done so. Enough work was put into making this process seamless. If the user has registered, he can now log in directly. Email address, name, and password were required for registration. The code to link it to the backend was successful, and this data is stored in Firebase.

7.2 Feature 2

The trained machine learning model can predict the output from an image that is uploaded, and the nutrition facts are also displayed on the same page.

7.3 Database Schema

The Firebase platform was used. A mechanism for storing and retrieving data that is modelled in ways other than the tabular relations used in relational databases is provided by the Firebase database (NoSQL).

This is the logical code which accepts the input from the user and the model predicts whether the user is eligible or not.

```
@app.route("/home")
def demo2():
    return render_template("demo2.html")
@app.route("/chance/<percent>")
def chance(percent):
    return render_template("chance.html", content-[percent])
@app.route("/nochance/<percent>")
def no_chance(percent):
    return render_template("noChance.html", content=[percent])
@app.route('/<path:path>')
def catch_all():
    return redirect(url_for("demo2"))
const disableButton = () => {
    console.log('Submitting form...');
    button.disabled = true;
    button.className = "btn btn-outline-primary";
    button.innerHTML = "Predicting..."
    loading.style.display = "block"
};
const enableButton = () => {
    console.log('Loading window...');
    button.disabled = false;
    button.className = "btn btn-primary"
    button.innerHTML = "Predict"
    loading.style.display = "none"
}
```

Model predicts chance or no chance based on the input parameters

You Have Chance

The model has predicted that you have chance

You have a LOW / NO chance

The model has predicted that you have no chance

8. TESTING

8.1 Test Cases

The test cases include invalid email and unrecognizable images. For the image part, a text file or other format files were uploaded as a corner case.

8.2 User Acceptance Testing

Users in our college were tested with the application about the eligibility criteria.

8.3 Integration Testing

This combined and tested both the registration and prediction modules, which showed to provide accurate results.

9. RESULTS

9.1 Performance Metrics

Figure 9.1 Eligibility inputs

You Have Chance

The model has predicted that you have chance

Figure 9.2 Predicted result

10. ADVANTAGES & DISADVANTAGES

10.1 Advantages

- The above model yields high classification accuracy
- It can train and test on very large datasets.
- It predicts the output efficiently

10.2 Disadvantages

- The proposed model is computationally expensive to train and test.
- The neural network architecture used in this project work is highly complex.

11. CONCLUSION

The model here involves classifying images from datasets of gre score, toefl score. The number of epochs was increased to boost categorization accuracy. Different classification accuracies are obtained for different batch sizes. The accuracies are increased by adding more convolution layers. The accuracy of classification is also increased by adjusting the number of dense layers. The accuracies are different while varying the size of the train and test datasets.

12. FUTURE SCOPE

The model currently uses is to predict the eligibility of a student for getting chance for a college. This can be expanded to integrate with preexisting history of college chance results which helps the user to get clarification. This project's work can be expanded to include security applications including face, iris, and figure print recognition.

13. APPENDIX

Source Code

GitHub & Project Demo