Slide10 必做题

Exercise 7.1.3 从以下文法出发:

 $S \rightarrow 0A0 \mid 1B1 \mid BB$ $A \rightarrow C$ $B \rightarrow S \mid A$ $C \rightarrow S \mid \epsilon$

- a) 有没有无用符号? 如果有的话去除它们。
- b) 去除 ε-产生式。
- c) 去除单位产生式。
- d) 把该文发转化为乔姆斯基范式。

参考解答:

- a) 没有无用符.
- b) 所有符号 S,A,B,C 都是可致空的, 消去 ε-产生式后得到新的一组产生式:

 $S \rightarrow 0A0 \mid 1B1 \mid BB \mid B \mid 00 \mid 11$ $A \rightarrow C$ $B \rightarrow S \mid A$ $C \rightarrow S$

c) 单元偶对包括: (A,A), (B,B), (C,C), (S,S), (A,C), (A,S), (A,B), (B,A), (B,C), (B,S), (C,A), (C,B), (C,S), (S,A), (S,B), (S,C),

消去单元产生式后得到新的一组产生式

S → 0A0 | 1B1 | BB | 00 | 11 A → 0A0 | 1B1 | BB | 00 | 11 B → 0A0 | 1B1 | BB | 00 | 11 C → 0A0 | 1B1 | BB | 00 | 11

d) 先消去无用符号 C, 得到新的一组产生式:

S → 0A0 | 1B1 | BB | 00 | 11

```
A → 0A0 | 1B1 | BB | 00 | 11
B → 0A0 | 1B1 | BB | 00 | 11

引入非终结符 C, D, 增加产生式 C → 0 和 D → 1, 得到新的一组产生式:
S → CAC | DBD | BB | CC | DD
A → CAC | DBD | BB | CC | DD
B → CAC | DBD | BB | CC | DD
C → 0
D → 1
```

引入非终结符 E, F, 增加产生式 $E \rightarrow CA$ 和 $F \rightarrow DB$, 得到满足 Chomsky 范式

的一组产生式:

 $S \rightarrow EC \mid FD \mid BB \mid CC \mid DD$ $A \rightarrow EC \mid FD \mid BB \mid CC \mid DD$ $B \rightarrow EC \mid FD \mid BB \mid CC \mid DD$ $E \rightarrow CA$ $F \rightarrow DB$ $C \rightarrow 0$ $D \rightarrow 1$

Exercise 7.1.9 (b)

参考解答:

对于 CFG G = (V, T, P, S), 可通过下列归纳步骤计算可达符号集合:

基础 S 是可达符号;

归纳 如果 A 是可达符号,并且有产生式 $A \to \alpha$ (其中 $\alpha \in (V \cup T)^*$),则 α 中的符号都是可达符号;

该题目要求证明上述步骤可以求出所有并只能求出 *G* 的可达符号. 证明思路是: 一方面,所得到的符号的确是可达符号; 另一方面所有的可达符号都可由上述步骤得到。

先来证明所得到的符号的确是可达符号。对应于以上计算步骤应用结构归

纳:

首先, S属于该集合, 因为 S⇒*S, 所以 S为可达符号;

设 A 是可达符号,并且有产生式 $A \rightarrow \alpha$,符号 X 是 α 中的符号,则 X 属于该集合;因 X 是 α 中的符号,所以存在 β , $\gamma \in (V \cup T)^*$,使得 $\alpha = \beta X \gamma$,即 A $\rightarrow \beta X \gamma$ 是一个产生式;因 A 是可达符号,根据归纳假设,存在 β' , $\gamma' \in (V \cup T)^*$,使得 $S \Rightarrow ^*\beta' A \gamma'$,由此我们可以得出 $S \Rightarrow ^*\beta' \beta X \gamma \gamma'$;所以 X 是可达符号。

再来证明所有的可达符号都可由上述步骤得到:

设 X 是可达符号符号,即存在 $\beta,\gamma\in(V\cup T)^*$,使得 $S\Rightarrow^*\beta$ X γ ;归纳于该推导的步数 n:若 n=0,一定有 β X γ = S,只有 X = S,可以由上述步骤产生;若 n〉0,假设最后一步推导是 β' A γ' $\Rightarrow^*\beta$ X γ ,并使用了产生式 $A \to \beta''$ X γ'' (即 $\beta = \beta'$ β'' , $\gamma = \gamma'$ γ'');因为 $S\Rightarrow^*\beta'$ A γ' 的步数小于 n,根据归纳假设,符号 A 可由上述步骤产生;因为有产生式 $A \to \beta''$ X γ'' ,所以 X 也可由上述步骤产生。

证毕。

第十讲思考题

*!Exercise 7.1.10

参考解答:

从"课程文件"中下载网页文件,从中找到参考解答