

1		en	tai		51	n) è		w	nt	in	ia	9	m	-	R.				1				1	1		1	-	-				1			-		
a		+00		n	74	1		- 1		a			2																			-	-					
		n=												an			-		0:	777		1		+	カナマア	1+1	4	+	-	+				+				
		R	1,	1	H		1	1,6	n	in	+	V		a		_			n	-	, +	0	1		77		-											
				_												_								C									1					
								=	li	772		İ	İ	1	2	1	1		4)		-	1=	5	lim	1	2	-		+	-	=		-	1	1			
									n	-7	9	0		1	2	.,.		r)				n		175	~		9	1)	1								
								12	Li	n.				K	,		-	1	1	-	-							-										
									n	-	÷	00		2	X				Y						1	1												
		0							A		F	F	-				-		1																		-	
		R	-	_	1		3		2	-		t																										
					1/2													+																				
b)	01-	M)=	tox)		n		-	r	ì		-	- 2.		<	у	<	1	a																			
	5	r	7=	1		2 '	1		40		-			-		-																						
				1			_		2			y.	n)		7	1	<	1																			
			1	- 7	1			٢	=	0																												
		+00	0				0		İ		+	00						V	9				+	* O				0										
		2	1	2	0	N	11		=	ł	2	-1	+	0		-	2)			=		2	-1		n	4											
		1=	1	O.					I			1																	Y									
									ŀ	+										au	105	h:	tre	ca	e		ap	f	2	,								-
							to	0	I		0																											
-		1	6	-	=	r	2	0	H	4	1	1	-	y		<	1																					
			4					+0	0		1		7	n			-		1							ļ												
-	_	1	()	-		=		1=			1	2	-))	+	+	X		<	2	,																
		1-	6								1	Ĭ	i																_									
+			1			1		+17	0	-	1	M	1	n_			1	N	1	-	2																	
		2	-7			_		n=	_		1	W 2	1)	1	-	R	-		2																	
			2							-		1																										
			2			1		+-	1		1	N.	10	-	-	1	n	<	2	,																		
			-					n=	0	1	1	2	1		1		1			1	1																	
1							1	+	0	+				1	1																							
		(-	2)	=	-	2	I		(-	()	10				,		N	1	4	2																
		1	2 -	X	1		1	n	= ()	1	1	1	1			-																					

Digitalizada com CamScanner


```
Série de Fourier des comenos
                        b_n = 2 \int_0^{\pi} a_n \operatorname{cen}(nx) dn = 2 \int_{\overline{n}}^{\overline{n}} a \operatorname{cen}(nx) dn
                          =\frac{4}{\pi}\left[-\frac{\cos(n\pi)}{n}\right]^{\frac{\pi}{n}}=-\frac{4}{\pi}\left[\frac{\cos(n\pi)-\cos(o)}{n}\right]=
                           = -\frac{4}{11} \left( (-1)^{11} - 1 \right) = \frac{4}{11} \left( -(-1)^{11} + 1 \right) =
                          =\frac{4}{\pi}\begin{pmatrix} (-1)^{n+1}+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -par \\ 2 & 2 \end{pmatrix} \approx 0 - impor
  14.
          f(x) = cos(x), x e [0, 11)
                  função seno - função impos
                  série de Fourier dos senos: \sum_{n=1}^{+\infty} b_n \sin(mx)
Externad împar da função em [0, 11]:
       f_{i}(x) = \begin{cases} -\cos(-x) & -\pi < x < 0 \\ & x = 0 \end{cases}
(\cos(x)) & \cos(x) = 0
    → Série de Fourier dos senos
             \theta_{x} \sim \sum_{n=1}^{+\infty} b_{n} a_{n}(nx) dx
     b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \cos(\pi) \sin(\pi x) dx =
         = 2 \left( \frac{\pi}{\pi} \right) \left( \text{sen} \left( nx - x \right) + \text{sen} \left( nx + x \right) \right) dx =
       = \frac{1}{\pi} \left[ \int_{0}^{\pi} \operatorname{sen}(nx + x) dx + \int_{0}^{\pi} \operatorname{sen}(nx - x) dx \right] =
       = \frac{1}{\pi} \int_{0}^{\pi} \operatorname{nen}(x(n+1)) dx + \int_{0}^{\pi} \operatorname{nen}(x(n-1)) dx =
```


1

	em iR
	$\frac{1}{n} = 1 + \frac{1}{n^2} = \frac{4}{n^2} = $
4	New $\frac{1}{2}$ $\frac{4(-1)^{2}}{n^{2}}$ tem a mesma naturata que $\frac{1}{2}$ $\frac{(-1)^{2}}{n^{2}}$
Est	udando a réin dos módulos de 2 (-1) 9
12 n=1	(-1) =) , qui é uma céri de Dirichlet harmónica
Com	r=271, logo é con vagenté.
Pelo	critério de Weierstram, como fix) < an, sendo an uma série
	ergente de termos positivos, en tad a série de fourier de fé
unif	en memente convergente.
e)	
	Low the case drie
	yushficax que $ \frac{1}{x^3-1} = \frac{1}{x^3} =$
	$\frac{\chi^{3}-\overline{\chi}^{2}\chi}{3} = \frac{+\infty}{n^{3}} = \frac{1}{n^{3}} = 1$
	$\chi^{3} - \chi^{2} \chi = \frac{1}{2} \qquad (-1)^{n} \qquad \frac{4}{n^{3}} \qquad 2n(n\chi), \forall \chi \in [-\overline{\mu}, \overline{\mu}]$ $\chi^{2} = \frac{1}{2} + \frac{1}{2} \qquad (-1)^{n} \qquad 4 \qquad \omega_{2}(n\chi)$ $\chi^{3} = \frac{1}{2} + \frac{1}{2} \qquad (-1)^{n} \qquad 4 \qquad \omega_{2}(n\chi)$ $\chi^{3} = \frac{1}{2} + \frac{1}{2} \qquad (-1)^{n} \qquad 4 \qquad \omega_{2}(n\chi)$
	$ \frac{1}{3} - \frac{1}{3} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1$
	$x^{3} - x^{2} \times x = 0 (-1)^{n} 4 2n(nx), \forall x \in [-\bar{x}, \bar{x}]$ $x^{2} = x^{2} + 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$
	$x^{3} - x^{2} \times x = 0 (-1)^{n} 4 2n(nx), \forall x \in [-\bar{x}, \bar{x}]$ $x^{2} = x^{2} + 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$ $x^{3} - x^{2} = 2 (-1)^{n} 4 \cos(nx)$
	$ \frac{1}{3} - \frac{1}{3} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1$

