Package 'rMVP'

January 16, 2019

Type Package

2 MVP

Index		28
	pig60K	27
	MVP.Version	27
	MVP.Report.QQplot	26
	MVP.Report.Density	25
	MVP.Report	22
	MVP.PCAplot	22
	MVP.PCA	21
	MVP.MLM	20
	MVP.K.VanRaden	19
	MVP.Hist	19
	MVP.GLM	18
	MVP.GEMMA.Vg.Ve	17
	MVP.FaSTLMM.LL	16
	MVP.FarmCPU	
	MVP.EMMA.Vg.Ve	
	MVP.Data.VCF2MVP	13
	MVP.Data.QC	12
	MVP.Data.Pheno	11

MVP

MVP, Memory-efficient, Visualization-enhanced, Parallel-accelerated

Description

Object 1: To perform GWAS using General Linear Model (GLM), Mixed Linear Model (MLM), and FarmCPU model Object 2: To calculate kinship among individuals using Varaden method Object 3: Estimate variance components using EMMA, FaST-LMM, and HE regression Object 4: Generate high-quality figures

```
MVP(phe, geno, map, K = NULL, nPC.GLM = NULL, nPC.MLM = NULL, nPC.FarmCPU = NULL, perc = 1, CV.GLM = NULL, CV.MLM = NULL, CV.FarmCPU = NULL, REML = NULL, priority = "speed", ncpus = detectCores(logical = FALSE), vc.method = "EMMA", method = "MLM", maxLine = 1000, memo = NULL, P = NULL, method.sub = "reward", method.sub.final = "reward", method.bin = "static", bin.size = c(5e+05, 5e+06, 5e+07), bin.selection = seq(10, 100, 10), Prior = NULL, maxLoop = 10, threshold.output = 1, iteration.output = FALSE, p.threshold = NA, QTN.threshold = NULL, bound = NULL, outward = FALSE, permutation.threshold = FALSE, permutation.rep = 100, bar = TRUE, col = c("dodgerblue4", "olivedrab4", "violetred", "darkgoldenrod1", "purple4"), plot.type = "b", file.output = TRUE, file = "jpg", dpi = 300, threshold = 0.05, Ncluster = 1, signal.cex = 0.8, box = FALSE)
```

MVP 3

Arguments

phe phenotype, n * 2 matrix, n is sample size

geno Genotype in bigmatrix format; m * n, m is marker size, n is sample size

map SNP map information, SNP name, Chr, Pos

K Kinship, Covariance matrix(n * n) for random effects, must be positive semi-

definite

nPC.GLM number of PCs added as fixed effects in GLM nPC.MLM number of PCs added as fixed effects in MLM nPC.FarmCPU number of PCs added as fixed effects in FarmCPU

perc percentage of total SNPs selected for PCA

CV.GLM covariates added in GLM
CV.MLM covariates added in MLM
CV.FarmCPU covariates added in FarmCPU
REML a list contains ve and vg

priority speed or memory

ncpus number of cpus used for parallel

vc.method methods for estimating variance component("EMMA" or "GEMMA")

method the GWAS model, "GLM", "MLM", and "FarmCPU", models can be selected

simutaneously, i.e. c("GLM", "MLM", "FarmCPU")

maxLine when the priority is 'memory', users can change this parameter to limit the mem-

ory

memo a marker added on output file name

P a start p value for each SNP

method.sub, method.sub.final method used in substitution process

method.sub.final

method used in substitution process, five options: 'penalty', 'reward', 'mean',

'median', or 'onsite'

method.bin EMMA or FaSTLMM bin.size window size in genome

bin.selection a vector, how many windows selected Prior four columns, SNP name, Chr, Pos, P

maxLoop maximum number of iterations

threshold.output

output GWAS results only for SNPs with p value lower than the threshold.output

iteration.output

whether to output results for FarmCPU iterations

p. threshold if all p values in the 1st iteration are bigger than p.threshold, FarmCPU stops

QTN. threshold Only SNPs have a more significant p value than QTN.threshold have chance to

be selected as pseudo QTNs

bound maximum number of SNPs selected as pseudo QTNs for each iteration

outward the direction of circular Manhattan plot

permutation.threshold

if use a permutation cutoff or not (bonferroni cutoff)

4

permutation.rep

number of permutation replicates

bar if TRUE, the progress bar will be drawn on the terminal

col for color of points in each chromosome on manhattan plot

plot.type "b" (both Manhattan plot and qq plot will be draw) or "q" (qq plot only)

file.output whether to output files or not file figure formats, "jpg", "tiff" dpi resolution for output figures

threshold a cutoff line on manhattan plot, 0.05/marker size

Ncluster number of colors used for drawing PC 1 and PC 2

signal.cex point size on output figures

box logical, if TRUE, the box frame will be added in output figure

Details

Build date: Aug 30, 2017 Last update: Dec 14, 2018

Value

a m * 2 matrix, the first column is the SNP effect, the second column is the P values Output: MVP.return\$map - SNP map information, SNP name, Chr, Pos Output: MVP.return\$glm.results - p-values obtained by GLM method Output: MVP.return\$mlm.results - p-values obtained by MLM method Output: MVP.return\$farmcpu.results - p-values obtained by FarmCPU method

Author(s)

Lilin Yin, Haohao Zhang, and Xiaolei Liu

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
mapPath <- system.file("extdata", "mvp.map", package = "rMVP")
map <- read.table("mvp.map" , head = TRUE)
mvp <- MVP(phe=phenotype, geno=genotype, map=map,
    method=c("GLM", "MLM", "FarmCPU"), file.output=FALSE)
str(mvp)</pre>
```

MVP.Data 5

MVP.Data	MVP.Data: To prepare data for MVP package Author: Xiaolei Liu, Lilin Yin and Haohao Zhang Build date: Aug 30, 2016 Last update:
	Sep 12, 2018

Description

MVP.Data: To prepare data for MVP package Author: Xiaolei Liu, Lilin Yin and Haohao Zhang Build date: Aug 30, 2016 Last update: Sep 12, 2018

Usage

```
MVP.Data(fileMVP = NULL, fileVCF = NULL, fileHMP = NULL,
  fileBed = NULL, fileNum = NULL, fileMap = NULL, filePhe = NULL,
  fileInd = NULL, fileKin = TRUE, filePC = TRUE, out = "mvp",
  sep.num = "\t", auto_transpose = TRUE, sep.map = "\t",
  sep.phe = "\t", sep.kin = "\t", sep.pc = "\t",
  type.geno = "char", pheno_cols = NULL, SNP.impute = "Major",
  maxLine = 10000, priority = "speed", perc = 1, pcs.keep = 5,
  verbose = TRUE, ...)
```

Arguments

fileMVP	Genotype in MVP format
fileVCF	Genotype in VCF format
fileHMP	Genotype in hapmap format
fileBed	Genotype in PLINK binary format
fileNum	Genotype in numeric format; pure 0, 1, 2 matrix; $m * n$, m is marker size, n is sample size
fileMap	SNP map information, there are three columns, including SNP_ID, Chromosome, and Position
filePhe	Phenotype, the first column is taxa name, the subsequent columns are traits
fileInd	Individual name file
fileKin	Kinship that represents relationship among individuals, n * n matrix, n is sample size
filePC	Principal components, n*npc, n is sample size, npc is number of top columns of principal components
out	prefix of output file name
sep.num	seperator for numeric file.
auto_transpose	Whether to automatically transpose numeric genotypes, the default is True, which will identify the most one of the rows or columns as a marker, If set to False, the row represents the marker and the column represents the individual.
sep.map	seperator for map file.
sep.phe	seperator for phenotype file.
sep.kin	seperator for Kinship file.
sep.pc	seperator for PC file.

6 MVP.Data.Bfile2MVP

type.geno	type parameter in bigmemory, genotype data. The default is char, it is highly recommended *NOT* to modify this parameter.
pheno_cols	Extract which columns of the phenotype file (including individual IDs)
SNP.impute	"Left", "Middle", "Right", or NULL for skip impute.
maxLine	number of SNPs, only used for saving memory when calculate kinship matrix
priority	"speed" or "memory"
perc	Percentage of markers used to calculate PCA
pcs.keep	how many PCs to keep
verbose	whether to print detail.
	Compatible with DEPRECATED parameters.

Value

NULL Output files: genotype.desc, genotype.bin: genotype file in bigmemory format phenotype.phe: ordered phenotype file, same taxa order with genotype file map.map: SNP information k.desc, k.bin: Kinship matrix in bigmemory format pc.desc, pc.bin: PC matrix in bigmemory format Requirement: fileHMP, fileBed, and fileNum can not input at the same time

Examples

```
bfilePath <- system.file("extdata", "02_bfile", "mvp", package = "rMVP")
MVP.Data(fileBed=bfilePath)</pre>
```

MVP.Data.Bfile2MVP

MVP.Data.Bfile2MVP: To transform plink binary data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.Bfile2MVP: To transform plink binary data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.Bfile2MVP(bfile, out = "mvp", maxLine = 10000, priority = "speed", type.geno = "char", threads = 0, verbose = TRUE)
```

Arguments

bfile	Genotype in binary format (.bed, .bim, .fam)
out	the name of output file
maxLine	the max number of line to write to big matrix for each loop
priority	'memory' or 'speed'
type.geno	the type of genotype elements
threads	number of thread for transforming
verbose	whether to print the reminder

Value

number of individuals and markers. Output files: genotype.desc, genotype.bin: genotype file in bigmemory format phenotype.phe: ordered phenotype file, same taxa order with genotype file map.map: SNP information

Examples

```
bfilePath <- system.file("extdata", "02_bfile", "mvp", package = "rMVP")
MVP.Data.Bfile2MVP(bfilePath)</pre>
```

MVP.Data.Hapmap2MVP

MVP.Data.Hapmap2MVP: To transform Hapmap data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.Hapmap2MVP: To transform Hapmap data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.Hapmap2MVP(hapmap_file, out = "mvp", type.geno = "char",
    verbose = TRUE)
```

Arguments

hapmap_file Genotype in Hapmap format

out the name of output file

type.geno the type of genotype elements verbose whether to print the reminder

Value

number of individuals and markers. Output files: genotype.desc, genotype.bin: genotype file in bigmemory format phenotype.phe: ordered phenotype file, same taxa order with genotype file map.map: SNP information

```
hapmapPath <- system.file("extdata", "mvp.hmp", package = "rMVP")
MVP.Data.Hapmap2MVP(hapmapPath)</pre>
```

8 MVP.Data.Kin

MVP.Data.impute: To impute the missing genotype Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.impute: To impute the missing genotype Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.impute(mvp_prefix, out = "mvp.imp", method = "Major",
    ncpus = NULL)
```

Arguments

mvp_prefix the prefix of mvp file
out the prefix of output file
method 'Major', 'Minor', "Middle"
ncpus number of threads for imputing

Value

NULL Output files: imputed genotype file

Examples

```
mvpPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
MVP.Data.impute(mvpPath)</pre>
```

MVP.Data.Kin

Kinship

Description

Kinship

Usage

```
MVP.Data.Kin(fileKin = TRUE, mvp_prefix = "mvp", out = NULL,
maxLine = 10000, priority = "speed", sep = "\t")
```

Arguments

fileKin Kinshi	Kinship that represents relationship among individuals, n * n matrix, n is sample
	size

mvp_prefix Prefix for mvp format files out prefix of output file name

maxLine number of SNPs, only used for saving memory when calculate kinship matrix

priority "speed" or "memory" sep seperator for Kinship file.

MVP.Data.Map

Examples

```
geno <- file.path(system.file(), "06_mvp-impute", "mvp.imp")
MVP.Data.Kin(TRUE, mvp_prefix=geno, out="myKin")</pre>
```

MVP.Data.Map

MVP.Data.Map: To check map file Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.Map: To check map file Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.Map(map, out = "mvp", cols = c(1, 2, 3), header = TRUE, sep = "\t")
```

Arguments

map the name of map file or map object(data.frame or matrix)

out the name of output file

cols selected columns

header whether the file contains header

sep seperator of the file

Examples

```
mapPath <- system.file("extdata", "mvp.map", package = "rMVP")
MVP.Data.Map(mvp.map)</pre>
```

MVP.Data.MVP2Bfile

MVP.Data.MVP2Bfile: To transform MVP data to binary format Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.MVP2Bfile: To transform MVP data to binary format Author: Haohao Zhang Build date: Sep 12, 2018

```
MVP.Data.MVP2Bfile(bigmat, map, pheno = NULL, out = "mvp.plink",
   verbose = TRUE)
```

Arguments

bigmat Genotype in bigmatrix format (0,1,2)

map the map file

pheno the phenotype file out the name of output file

verbose whether to print the reminder

Value

NULL Output files: .bed, .bim, .fam

Examples

```
bigmat <- as.big.matrix(matrix(1:6, 3, 2))
map <- matrix(c("rs1", "rs2", "rs3", 1, 1, 1, 10, 20, 30), 3, 3)
MVP.Data.MVP2Bfile(bigmat, map)</pre>
```

MVP.Data.Numeric2MVP

MVP.Data.Numeric2MVP: To transform Numeric data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.Numeric2MVP: To transform Numeric data to MVP package Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.Numeric2MVP(num_file, out = "mvp", maxLine = 10000, priority = "speed", row_names = FALSE, col_names = FALSE, type.geno = "char", auto_transpose = TRUE, verbose = TRUE)
```

Arguments

num_file Genotype in Numeric format (0,1,2)

out the name of output file

maxLine the max number of line to write to big matrix for each loop

priority 'memory' or 'speed'

row_names whether the numeric genotype has row names col_names whether the numeric genotype has column names

type.geno the type of genotype elements

auto_transpose whether to detecte the row and column

verbose whether to print the reminder

Value

number of individuals and markers. Output files: genotype.desc, genotype.bin: genotype file in bigmemory format phenotype.phe: ordered phenotype file, same taxa order with genotype file map.map: SNP information

MVP.Data.PC

Examples

```
numericPath <- system.file("extdata", "mvp.num", package = "rMVP")
MVP.Data.Numeric2MVP(numericPath)</pre>
```

MVP.Data.PC

Principal component analysis

Description

Principal component analysis

Usage

```
MVP.Data.PC(filePC = TRUE, mvp_prefix = "mvp", out = NULL,
    perc = 1, pcs.keep = 5, sep = "\t")
```

Arguments

filePC Principal components, n*npc, n is sample size, npc is number of top columns of

principal components

mvp_prefix Prefix for mvp format files out prefix of output file name

perc Percentage of markers used to calculate PCA

pcs.keep how many PCs to keep sep seperator for PC file.

Examples

```
geno <- file.path(system.file(), "06_mvp-impute", "mvp.imp")
MVP.Data.PC(TRUE, mvp_prefix=geno, out="myPC")</pre>
```

MVP.Data.Pheno

MVP.Data.Pheno: To clean up phenotype file Author: Haohao Zhang Build date: Sep 12, 2018

Description

MVP.Data.Pheno: To clean up phenotype file Author: Haohao Zhang Build date: Sep 12, 2018

```
MVP.Data.Pheno(pheno_file, out = "mvp", cols = NULL, header = TRUE, sep = "\t", missing = c(NA, "NA", "-9", 9999))
```

12 MVP.Data.QC

Arguments

pheno_file the name of phenotype file
out the name of output file
cols selected columns

header whether the file contains header

sep seperator of the file missing the missing value

Value

NULL Output files: cleaned phenotype file

Examples

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
MVP.Data.Pheno(phePath)</pre>
```

MVP.Data.QC: quality control of genotype Author: Haohao Zhang

Build date: Sep 12, 2018

Description

MVP.Data.QC: quality control of genotype Author: Haohao Zhang Build date: Sep 12, 2018

Usage

```
MVP.Data.QC(mvp_prefix, out = NULL, geno = 0.1, mind = 0.1, maf = 0.05, hwe = NULL, ncpus = NULL)
```

Arguments

mvp_prefix the prefix of genotype file out the prefix of output file

geno the threshold of calling rate of markers
mind the threshold of calling rate of individuals
maf the threshold of minor allel frequency

hwe the threshold of hwe

ncpus the number of threads for quality control

Value

NULL Output files: cleaned genotype file

```
geno <- file.path(system.file(), "06_mvp-impute", "mvp.imp")
MVP.Data.QC(geno, out="myKin")</pre>
```

MVP.Data.VCF2MVP

MVP.Data.VCF2MVP	MVP.Data.VCF2MVP: To transform vcf data to MVP package Author:
	Haohao Zhang Build date: Sep 12, 2018

Description

Accept the l or / separated markers, any variant sites that are not 0 or 1 will be considered NA.

Usage

```
MVP.Data.VCF2MVP(vcf_file, out = "mvp", maxLine = 10000,
type.geno = "char", threads = 1, verbose = TRUE)
```

Arguments

vcf_file	Genotype in VCF format
out	the name of output file
maxLine	the max number of line to write to big matrix for each loop
type.geno	the type of genotype elements
threads	number of thread for transforming
verbose	whether to print the reminder

Value

number of individuals and markers. Output files: genotype.desc, genotype.bin: genotype file in bigmemory format phenotype.phe: ordered phenotype file, same taxa order with genotype file map.map: SNP information

Examples

```
vcfPath <- system.file("extdata", "mvp.vcf", package = "rMVP")
MVP.Data.VCF2MVP(vcfPath)</pre>
```

MVP.EMMA.Vg.Ve

Estimate variance components using EMMA

Description

```
Build date: August 30, 2016 Last update: January 27, 2017
```

```
MVP.EMMA.Vg.Ve(y, X, K, ngrids = 100, llim = -10, ulim = 10, esp = 1e-10)
```

14 MVP.FarmCPU

Arguments

У	pnenotype, n * 2
Χ	covariate matrix, the first column is 1s
K	Kinship matrix
ngrids	parameters for estimating vg and ve
llim	parameters for estimating vg and ve
ulim	parameters for estimating vg and ve
esp	parameters for estimating vg and ve

Value

Output: REML - maximum log likelihood Output: delta - exp(root) Output: ve - residual variance Output: vg - genetic variance

Author(s)

EMMA (Kang et. al. Genetics, 2008), Modified only for speed up by Xiaolei Liu and Lilin Yin

Examples

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype)
vc <- MVP.EMMA.Vg.Ve(y=phenotype[,2], X=matrix(1, nrow(phenotype)), K=K)
print(vc)</pre>
```

MVP.FarmCPU

Perform GWAS using FarmCPU method

Description

Date build: Febuary 24, 2013 Last update: May 25, 2017 Requirement: Y, GD, and CV should have same taxa order. GD and GM should have the same order on SNPs

```
MVP.FarmCPU(phe, geno, map, CV = NULL, priority = "speed", P = NULL, method.sub = "reward", method.sub.final = "reward", method.bin = "EMMA", bin.size = c(5e+05, 5e+06, 5e+07), bin.selection = seq(10, 100, 10), memo = "MVP.FarmCPU", Prior = NULL, ncpus = 2, bar = TRUE, maxLoop = 10, threshold.output = 0.01, converge = 1, iteration.output = FALSE, p.threshold = NA, QTN.threshold = NULL, bound = NULL)
```

MVP.FarmCPU 15

Arguments

phe phenotype, n by t matrix, n is sample size, t is number of phenotypes

geno genotype, m by n matrix, m is marker size, n is sample size. This is Pure Geno-

type Data Matrix(GD). THERE IS NO COLUMN FOR TAXA.

map SNP map information, m by 3 matrix, m is marker size, the three columns are

SNP ID, Chr, and Pos

CV covariates, n by c matrix, n is sample size, c is number of covariates

priority modes, two options: 'speed' or 'memory'

P start p values for all SNPs

method sub method used in substitution process, five options: 'penalty', 'reward', 'mean',

'median', or 'onsite'

method.sub.final

method used in substitution process, five options: 'penalty', 'reward', 'mean',

'median', or 'onsite'

method.bin method for selecting the most appropriate bins, two options: 'EMMA' or 'FaSTLMM'

bin.size bin sizes for all iterations, a vector, the bin size is always from large to small

bin.selection number of selected bins in each iteration, a vector

memo a marker on output file name

Prior prior information, four columns, which are SNP_ID, Chr, Pos, P-value

ncpus number of threads used for parallele computation

bar if TRUE, the progress bar will be drawn on the terminal

maxLoop maximum number of iterations

threshold.output

only the GWAS results with p-values lower than threshold.output will be output

converge a number, 0 to 1, if selected pseudo QTNs in the last and the second last itera-

tions have a certain probability (the probability is converge) of overlap, the loop

will stop

iteration.output

whether to output results of all iterations

p. threshold if all p values generated in the first iteration are bigger than p.threshold, Farm-

CPU stops

QTN. threshold in second and later iterations, only SNPs with lower p-values than QTN.threshold

have chances to be selected as pseudo QTNs

bound maximum number of SNPs selected as pseudo QTNs in each iteration

Value

a m by 4 results matrix, m is marker size, the four columns are SNP_ID, Chr, Pos, and p-value

Author(s)

Xiaolei Liu and Zhiwu Zhang

16 MVP.FaSTLMM.LL

Examples

MVP.FaSTLMM.LL

Evaluation of the maximum likelihood using FaST-LMM method

Description

Last update: January 11, 2017

Usage

```
MVP.FaSTLMM.LL(pheno, snp.pool, X0 = NULL, ncpus = 2)
```

Arguments

pheno a two-column phenotype matrix

snp.pool matrix for pseudo QTNs

X0 covariates matrix

ncpus number of threads used for parallel computation

Value

Output: beta - beta effect Output: delta - delta value Output: LL - log-likelihood Output: vg - genetic variance Output: ve - residual variance

Author(s)

Qishan Wang, Feng Tian and Zhiwu Zhang (Modified by Xiaolei Liu)

MVP.GEMMA. Vg. Ve

MVP.GEMMA.Vg.Ve

To estimate variance component using HE regression

Description

```
Build date: Feb 2, 2017 Last update: Feb 2, 2017
```

Usage

```
MVP.GEMMA.Vg.Ve(y, X, K, rtol = 1e-06, atol = 1e-08, ctol = 1e-08)
```

Arguments

У	phenotype
Χ	genotype
K	kinship matrix
rtol	parameters for HE regression, no changes is recommended
atol	parameters for HE regression, no changes is recommended
ctol	parameters for HE regression, no changes is recommended

Value

```
vg, ve, and delta
```

Author(s)

Translated from C++(GEMMA, Xiang Zhou) to R by: Haohao Zhang

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype)
vc <- MVP.GEMMA.Vg.Ve(y=phenotype[,2], X=matrix(1, nrow(phenotype)), K=K)
print(vc)</pre>
```

18 MVP.GLM

	To perform GWAS with GLM and MLM model and get the P value of SNPs
--	--

Description

Build date: Aug 30, 2016 Last update: May 25, 2017

Usage

```
MVP.GLM(phe, geno, CV = NULL, cpu = 2, priority = "speed", memo = "MVP.GLM", bar = TRUE)
```

Arguments

phe	phenotype, n * 2 matrix
geno	Genotype in numeric format, pure 0, 1, 2 matrix; $m * n$, m is marker size, n is population size
CV	Covariance, design matrix($n * x$) for the fixed effects
cpu	number of cpus used for parallel computation
priority	'memory' or 'speed'
memo	a marker on output file name
bar	whether to show the progress bar

Value

m * 2 matrix, the first column is the SNP effect, the second column is the P values

Author(s)

Lilin Yin and Xiaolei Liu

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
glm <- MVP.GLM(phe=phenotype, geno=genotype)
str(glm)</pre>
```

MVP.Hist

MVP.Hist	$Phenotype\ distribution\ histogram$
----------	--------------------------------------

Description

Phenotype distribution histogram

Usage

```
MVP.Hist(phe, col = c("dodgerblue4", "olivedrab4", "violetred",
   "darkgoldenrod1", "purple4"), breakNum = 15, file.type = "pdf",
   dpi = 300)
```

Arguments

phe	phenotype data
col	The color vector of the histogram. If the number of colors is less than break.n, the color will be reused. If the number of colors is greater than break.n, only the previous break.n colors will be used.
breakNum	the number of cells for the histogram. The default value is 15.
file.type	A string or NULL is used to determine the type of output file. Can be "jpg", "pdf", "tiff". If it is NULL, it will use dev.new() to create a new graphics device in the current environment, which may be RStudioGD or the default device of the system.
dpi	The resolution of the image, specifying how many pixels per inch.

Examples

```
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phe <- read.table(phePath, header=TRUE)
MVP.Hist(phe)</pre>
```

MVP.K.VanRaden

Calculate Kinship matrix by VanRaden method

Description

```
Build date: Dec 12, 2016 Last update: Dec 12, 2016
```

```
MVP.K.VanRaden(M, weight = NULL, priority = c("speed", "memory"), memo = NULL, SUM = NULL, maxLine = 1000)
```

20 MVP.MLM

Arguments

M Genotype, m * n, m is marker size, n is population size

weight vector, the weights for makers

priority speed or memory

memo add a character to the name of temporary files

SUM the scaled value to kinship matrix

maxLine when the priority is 'memory', users can change this parameter to limit the mem-

ory

Value

K, n * n matrix

Examples

```
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype)</pre>
```

MVP.MLM

To perform GWAS with GLM and MLM model and get the P value of

SNPs

Description

Build date: Aug 30, 2016 Last update: Aug 30, 2016

Usage

```
MVP.MLM(phe, geno, K = NULL, CV = NULL, REML = NULL, priority = "speed", cpu = 2, bar = TRUE, vc.method = "EMMA", maxLine = 1000, file.output = TRUE, memo = "MVP")
```

Arguments

phe phenotype, n * 2 matrix

geno genotype, m * n, m is marker size, n is population size

K Kinship, Covariance matrix(n * n) for random effects; must be positive semi-

definite

CV covariates

REML a list that contains ve and vg

priority speed or memory

cpu number of cpus used for parallel computation

bar whether to show the progress bar

vc.method the methods for estimating variance component("emma" or "gemma")

maxLine when the priority is 'memory', users can change this parameter to limit the mem-

ory

file.output whether to output files or not memo a marker on output file name

MVP.PCA 21

Value

results: a m * 2 matrix, the first column is the SNP effect, the second column is the P values

Author(s)

Lilin Yin and Xiaolei Liu

Examples

```
phePath <- system.file("extdata", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype)
mlm <- MVP.MLM(phe=phenotype, geno=genotype, K=K)
str(mlm)</pre>
```

MVP.PCA

Principal Component Analysis

Description

Build date: Dec 14, 2016 Last update: Oct 29, 2018

Usage

```
MVP.PCA(M, perc = 1, pcs.keep = 5, memo = NULL)
```

Arguments

M Genotype in numeric format, pure 0, 1, 2 matrix; m * n, m is marker size, n is

population size

perc percentage of total SNPs selected for calculate principal components

pcs.keep maximum number of PCs for output memo a marker on output file name

Value

Output: PCs - a n * npc matrix of top number of PCs, n is population size and npc is @param pcs.keep

Author(s)

Xiaolei Liu, Lilin Yin and Haohao Zhang

```
genoPath <- system.file("extdata", "mvp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
pca <- MVP.PCA(M=genotype)
str(pca)</pre>
```

22 MVP.Report

MVP.PCAplot	PCA Plot
rivi .i capiot	ICATIO

Description

PCA Plot

Usage

```
MVP.PCAplot(PCA, col = NULL, pch = NULL, class = NULL, legend.pos = "topright", Ncluster = 3, plot3D = TRUE, file = "pdf", dpi = 300, box = FALSE)
```

Arguments

PCA	Principal component analysis result, 2-column matrix
col	colors for each cluster
pch	Either an integer specifying a symbol or a single character to be used as the default in plotting points. See points for possible values and their interpretation. Note that only integers and single-character strings can be set as a graphics parameter (and not NA nor NULL).
class	the class of all individuals, for example: "breed", "location"
legend.pos	position of legend. default is "topright"
Ncluster	cluster number
plot3D	(DEPRECATED)if TRUE, plot PC figure in 3D format, it can be only used in windows and mac operation system, "rgl" package should be installed beforehead
file	Character. Options are jpg, pdf, and tiff
dpi	Number. Dots per inch for .jpg and .tiff files
box	Logical value. If TRUE, the border line of Manhattan plot will be added

Examples

```
PCPath <- system.file("extdata", "07_other", "mvp.imp.pc.desc", package = "rMVP")
pca <- attach.big.matrix(PCPath)[, 1:3]
MVP.PCAplot(PCA=pca, Ncluster=3, class=NULL, col=c("red", "green", "yellow"), file="jpg", pch=19)</pre>
```

MVP.Report	MVP.Report

Description

MVP.Report

MVP.Report 23

Usage

```
MVP.Report(MVP, col = c("#377EB8", "#4DAF4A", "#984EA3", "#FF7F00"), bin.size = 1e+06, bin.max = NULL, pch = 19, band = 1, cir.band = 0.5, H = 1.5, ylim = NULL, cex.axis = 1, plot.type = "b", multracks = FALSE, cex = c(0.5, 0.8, 1), r = 0.3, xlab = "Chromosome", ylab = expression(-log[10](italic(p))), xaxs = "i", yaxs = "r", outward = FALSE, threshold = NULL, threshold.col = "red", threshold.lwd = 1, threshold.lty = 2, amplify = TRUE, chr.labels = NULL, signal.cex = 0.8, signal.pch = 19, signal.col = "red", signal.line = NULL, cir.chr = TRUE, cir.chr.h = 1.3, chr.den.col = c("darkgreen", "yellow", "red"), cir.legend = TRUE, cir.legend.cex = 0.8, cir.legend.col = "grey45", LOG10 = TRUE, box = FALSE, conf.int.col = "grey", file.output = TRUE, file = "jpg", dpi = 300, memo = "")
```

Arguments

col

bin.max

pch

MVP	Data frame. Includes at least four columns. The first three columns are Marker
	ID, Chromosome ID, and Physical position. The fourth and following optional
	columns are P-values or effects of markers

Vector or matrix. If 'col' is a vector, multiple-group GWAS results will use the same color scheme for plotting points on different Chromosomes. The vector length can be shorter than the number of Chromosomes and the colors will be used circularly. If 'col' is a matrix, multiple-group GWAS results will be drawn with colors from different rows, NA is allowed in the color matrix, e.g. col = matrix(c("grey30", "grey60", NA, "red", "blue", "green", "orange", NA, NA), 3, 3, byrow=T)

bin.size Number. Number of markers will be counted for each marker window and used for plotting marker density

Number. The maximum marker density value used for plotting marker density. Windows with marker density higher than 'bin.max' will use the same color as 'bin.max'

Number. Type of points, same as 'pch' in <plot> R function

band Number. The space among chromosomes.

cir.band Number. The space between circles when plotting Manhattan plot in circular

namer

H Number. The height for each circle when plotting multiple-group GWAS results

using Manhattan plot in circular manner

ylim Vector. The range of Y-axis when plotting Manhattan plot, same as "ylim" in

<plot> R function

cex.axis Number. The size of Chromosome ID and labels when plotting Manhattan plot

in circular manner

plot.type Character or Vector, options are "d", "c", "m", "q", and "b". If plot.type="d", marker density will be plotted; if plot.type="c", Manhattan plot in circular manner will be plotted; if plot.type="m", Manhattan plot in rectangular manner will be plotted; if plot.type="q", Q-Q plot will be plotted; if plot.type="b", both

Manhattan plot and Q-Q plot will be plotted

24 MVP.Report

multracks	Logical value. If FALSE, multiple-group GWAS results will be plotted on multiple tracks; if TRUE, multiple-group GWAS results will be plotted on a single track
cex	Number or Vector. The size of points. It is the same as "size" in <plot> R function. If given as a vector, the numbers are used to control the point size on Manhattan plot in circular manner, Manhattan plot in rectangular manner, and Q-Q plot, respectively</plot>
r	Number. The radius of the inside circle when plotting Manhattan plot in circular manner
xlab	Character. The label of X axis
ylab	Character. The label of Y axis
xaxs	Character. Options are "r", and "i". It is the same as "xaxs" in <plot> R function</plot>
yaxs	Character. Options are "r", and "i". It is the same as "yaxs" in <plot> R function</plot>
outward	Logical value. If TRUE, all points will be plotted from inside toward outside; otherwise, all points will be plotted from outside toward inside
threshold	Number or Vector. The cutoff line on Manhattan plot, e.g. Bonfferoni correction. More than one significant line can be added onto one figure. If threshold=0 or NULL, the threshold line will not be added
threshold.col	Character or Vector. The colors of threshold lines
threshold.lwd	Number or Vector. The widths of threshold lines
threshold.lty	Number or Vector. The type of threshold line
amplify	Logical value. If TRUE, the points that passed the threshold line will be highlighted
chr.labels	Vector. The labels for the Chromosome IDs on Manhattan plot in circular manner
signal.cex	Number. If "amplify" is TRUE, "signal.cex" is used to set the size of significant points
signal.pch	Number. If "amplify" is TRUE, users can set the type of significant points
signal.col	Character. If "amplify" is TRUE, "signal.col" is used to set the color of significant points, if "signal.col" is NULL, the colors of significant points will not be changed
signal.line	Number. The width of dotted lines used for marking significant points
cir.chr	Logical value. If TRUE, a band that represents marker density information will be added onto Manhattan plot in circular manner
cir.chr.h	Number. If "cir.chr=TRUE", it can be used to set the width of marker density band
chr.den.col	Character or Vector or NULL. The colors for plotting marker density band on Manhattan plot. If "chr.den.col=NULL", it will use the colors in parameter 'col'
cir.legend	Logical value. If TRUE, legends will be added on each circle of Manhattan plot in circular manner
cir.legend.cex	Number. The size of legend on Manhattan plot in circular manner
cir.legend.col	Character. The color of legends on Manhattan plot in circular manner
LOG10	Logical value. If TRUE, the p values of GWAS results will be scaled by log10
box	Logical value. If TRUE, the border line of Manhattan plot will be added

MVP.Report.Density 25

conf.int.col	Character. The color of confidence interval on QQ-plot
file.output	Logical value. If TRUE, the figures will be generated.
file	Character. Options are jpg, pdf, and tiff
dpi	Number. Dots per inch for .jpg and .tiff files
memo	Character. A text marker on output files

Examples

```
data(pig60K, package = "rMVP")
#MVP.Report(pig60K[,c(1:3, 5)], plot.type="m", threshold=0.05/nrow(pig60K))
#MVP.Report(pig60K, plot.type="c", threshold=0.05/nrow(pig60K))
```

MVP.Report.Density SNP Density

Description

SNP Density

Usage

```
MVP.Report.Density(Pmap, taxa, col = c("darkgreen", "yellow", "red"),
dpi = 300, bin.size = 1e+06, bin.max = NULL, file.type = "jpg",
file.output = TRUE)
```

Arguments

Pmap	P value Map
taxa	The identifier of the output file.
col	The color vector
dpi	Number. Dots per inch for .jpg and .tiff files
bin.size	the window size for counting SNP number
bin.max	maximum SNP number, for winows, which has more SNPs than bin.max, will be painted in same color
file.type	format of output figure
file.output	Whether to output the file

```
data(pig60K, package = "rMVP")
MVP.Report.Density(pig60K, "mvp")
```

 ${\tt MVP.Report.QQplot} \qquad \qquad QQ\ Plot$

Description

QQ Plot

Usage

```
MVP.Report.QQplot(P.values, taxa_name, col = c("blue"), cex = 0.5,
  threshold = NULL, amplify = TRUE, signal.col = "red",
  signal.pch = 19, signal.cex = 0.8, conf.int = TRUE, cex.axis = 1,
  conf.int.col = "grey", threshold.col = "red", file.type = "jpg",
  memo = "MVP", box = TRUE, dpi = 300)
```

Arguments

P.values	P values
taxa_name	The identifier of the phenotype will be used to generate a portion of the image file name. If the title parameter is NULL, it will also be part of the title.
col	default color is "blue"
cex	A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. This starts as 1 when a device is opened, and is reset when the layout is changed, e.g. by setting mfrow. see par.
threshold	Number or Vector. The cutoff line on Manhattan plot, e.g. Bonfferoni correction. More than one significant line can be added onto one figure. If threshold=0 or NULL, the threshold line will not be added.
amplify	Logical value. If TRUE, the points that passed the threshold line will be highlighted
signal.col	Character. If "amplify" is TRUE, "signal.col" is used to set the color of significant points, if "signal.col" is NULL, the colors of significant points will not be changed
signal.pch	Number. If "amplify" is TRUE, users can set the type of significant points
signal.cex	Number. If "amplify" is TRUE, "signal.cex" is used to set the size of significant points
conf.int	Whether to draw a confidence interval
cex.axis	a number, controls the size of numbers of X-axis and the size of labels of circle plot.
conf.int.col	a character, the color of the confidence interval on QQ-plot.
threshold.col	Character or Vector. The colors of threshold lines
file.type	A string or NULL is used to determine the type of output file. Can be "jpg", "pdf", "tiff". If it is NULL, it will use dev.new() to create a new graphics device in the current environment, which may be RStudioGD or the default device of the system.
memo	the prefix of the output image file.
box	A Boolean value that controls whether to draw a box around QQplot.
dpi	a number, the picture element for .jpg and .tiff files. The default is 300.

MVP. Version 27

Examples

```
data(pig60K, package = "rMVP")
MVP.Report(pig60K,plot.type="q",conf.int.col=NULL,box=TRUE,file="jpg",memo="",dpi=300)
```

MVP.Version

Print MVP Banner

Description

Build date: Aug 30, 2017 Last update: Dec 12, 2018

Usage

```
MVP. Version(width = 60)
```

Arguments

width

the width of the message

Author(s)

Lilin Yin, Haohao Zhang, and Xiaolei Liu

Examples

MVP.version()

pig60K

Genotyped by pig 60k chip

Description

This dataset gives the results of Genome-wide association study of 3 traits, individuals were genotyped by pig 60K chip.

Usage

```
data(pig60K)
```

Format

A dataframe containing 3 traits' Pvalue

Index

```
*Topic datasets
     pig60K, 27
dev.new(), 19, 26
MVP, 2
MVP.Data, 5
MVP.Data.Bfile2MVP, 6
MVP.Data.Hapmap2MVP, 7
MVP.Data.impute, 8
MVP.Data.Kin, 8
MVP.Data.Map, 9
MVP.Data.MVP2Bfile,9
MVP.Data.Numeric2MVP, 10
MVP.Data.PC, 11
MVP.Data.Pheno, 11
MVP.Data.QC, 12
MVP.Data.VCF2MVP, 13
MVP.EMMA.Vg.Ve, 13
MVP.FarmCPU, 14
MVP.FaSTLMM.LL, 16
MVP.GEMMA.Vg.Ve, 17
MVP.GLM, 18
\mathsf{MVP}.\mathsf{Hist}, \textcolor{red}{19}
MVP.K. VanRaden, 19
MVP.MLM, 20
MVP.PCA, 21
MVP.PCAplot, 22
MVP.Report, 22
MVP.Report.Density, 25
{\tt MVP.Report.QQplot}, \textcolor{red}{\textbf{26}}
MVP. Version, 27
par, 26
pig60K, 27
points, 22
```