Math 240B: Real Analysis, Winter 2020 Homework Assignment 2

Due Wednesday, January 22, 2020

Unless otherwise stated, (X, \mathcal{M}, μ) denotes a measure space.

1. Prove the following:

- (1) The space $L^{\infty}(\mu)$ of all essentially bounded functions (with two functions being equal if and only if they are equal μ -a.e.) equipped with $\|\cdot\|_{\infty}$ is a Banach space;
- (2) If $f, f_n \in L^{\infty}(\mu)$ (n = 1, 2, ...), then $f_n \to f$ in $L^{\infty}(\mu)$ if and only if there exists $E \in \mathcal{M}$ such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E;
- (3) Simple functions are dense in $L^{\infty}(\mu)$.
- 2. Assume $f \in L^p(\mu) \cap L^{\infty}(\mu)$ for some $p \in [1, \infty)$. Prove that $f \in L^q(\mu)$ for any $q \in (p, \infty)$ and that $\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}$.
- 3. Prove that the space $L^p(\mathbb{R}^n, m)$ (where m denotes the Lebesgue measure) is separable if $1 \leq p < \infty$ but not separable if $p = \infty$. (This is Exercise 13 on page 187 of the textbook. See some hints there.)
- 4. Suppose $\mu(X) = 1$ and $f \in L^p(\mu)$ for some p > 0. Prove the following:
 - (1) $f \in L^q(\mu) \quad \forall q \in (0, p);$
 - (2) $\log \|f\|_q \ge \int \log |f| \, d\mu;$
 - (3) $\frac{1}{q} \left(\int |f|^q d\mu 1 \right) \ge \log \|f\|_q$ and $\lim_{q \to 0^+} \frac{1}{q} \left(\int |f|^q d\mu 1 \right) = \int \log |f| d\mu;$
 - (4) $\lim_{q \to 0^+} ||f||_q = \exp\left(\int \log|f| \, d\mu\right).$
- 5. Let $1 \le p < \infty$. Prove the following:
 - (1) If $f_n \to f$ in $L^p(\mu)$, then $f_n \to f$ in measure, and hence there exists a subsequence of $\{f_n\}_{n=1}^{\infty}$ converging to f μ -a.e.
 - (2) If $f_n \to f$ in measure and $|f_n| \le g$ on X for some $g \in L^p(\mu)$ (n = 1, 2, ...), then $||f_n f||_p \to 0$.
- 6. Assume $1 \leq p < \infty$, all $f_n, f \in L^p(\mu)$ (n = 1, 2, ...), and $f_n \to f$ μ -a.e. Prove that $||f_n f||_p \to 0$ if and only if $||f_n||_p \to ||f||_p$.
- 7. Let $g \in L^{\infty}(\mu)$ and $1 . Prove that the operator <math>T : L^{p}(\mu) \to L^{p}(\mu)$ defined by Tf = fg is bounded on $L^{p}(\mu)$, and its operator norm is at most $||g||_{\infty}$ with equality if μ is semifinite.
- 8. Assume $1 , all <math>f, f_n \in L^p(\mu)$, $\sup_{n \ge 1} \|f_n\|_p < \infty$, and $f_n \to f$ a.e. Prove that $f_n \to f$ weakly in $L^p(\mu)$. (See hints in Exercise 20 on page 192 of the textbook.)