A Gentle Introduction to Deep Learning

Roberto Souza Biomedical Engineering Schulich School of Engineering

Outline

Learning Goals

Deep Learning Intuition

Commonly Used Activations

Summary

Learning Goals

 Get an intuitive feel for how the majority of deep learning methods work

Get familiar with different activation functions used in deep learning

- Alternated stack of linear and non-linear operations
- Non-linear operations that come immediately after a linear operation are called "activations"
- The activation at the end of the network determines if the model is a regression or classification network
- You can have two consecutive non-linear operations
- Two consecutive linear operations often do not make sense

$$C = A \times B \rightarrow Equivalent linear operation$$

$$Y = A \times B \times X$$

X →Input

 $Y \rightarrow Output$

A → Linear Operation

B → Linear Operation

Linear model

Non-linear models allow you to get more complex decision boundaries.

- 1. Data
- Model
- 3. Cost function or loss or objective

Fit the model to the data by minimizing your cost function.

- Gradient descent optimization of the cost function
 - Linear and non-linear operations need to be differentiable
- Compute the gradient across the training set (the whole set or mini-batches)
- Update the model weights by giving a step in the opposite direction (i.e., minimize the cost)
- Compute the average cost function in the train and validation sets after each epoch

Activations

ReLU(x) =
$$\begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\tanh(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

ELU(x) =
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Activations - ReLU

$$ReLU(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\frac{dReLU(x)}{dx} = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

Activations - Softmax

$$softmax(\vec{z}) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

- Softmax converts a real vector to a vector of categorical probabilities.
- The elements of the output vector are in range (0, 1) and sum to 1.
- Softmax is often used as the activation for the last layer of a classification network -> results are interpreted as a probability distribution.

Summary

 Deep learning models alternate between differentiable linear and non-linear operations

 Deep learning models are fit (i.e., trained) to the data by minimizing a cost function using gradient descent methods

There are many potential non-linear operations

 ReLUs are commonly used due to their computational simplicity and simple derivative

Thank you!

