EXERCICE 2

PARTIE A

1) Représentons les étapes de l'algorithme dans le tableau suivant :

a	Ъ	С	a > b
13	4	0	vrai
9	4	1	vrai
5	4	2	vrai
1	4	3	faux

 $\overline{\text{Fin} : a = 1 ; c = 3}$

2) L'algorithme permet de calculer au bout de n étapes le quotient $\,c_n$ et le reste a_n de la division euclidienne de $\,a_0$ par $\,b$:

$$bc_n + a_n = a_0$$

Dans l'exemple pris en 1):

$$4 \times 3 + 1 = 13$$

PARTIE B

1) Codage de U

Étape 1 : $U \rightarrow m = 20$ Étape 2 : 9m + 5 = 185

Division euclidienne de 185 par 26 : 185 = 26.7 + 3

Reste p = 3

Étape 3 : $p = 3 \rightarrow D$

2) Il suffit de modifier la première partie de l'algorithme de la façon suivante :

Variables: a est un entier naturel

b est un entier naturel c est un entier naturel m est un entier naturel

Initialisation: affecter à c la valeur 0

affecter à b la valeur 26

demander m

affecter à a la valeur de m*9 + 5

Le reste de l'algorithme est identique à celui donné dans l'énoncé. Le résultat recherché, p, est la valeur de a affichée en fin d'algorithme.

PARTIE C

- 1) On trouve facilement $x = 3: 3 \times 9 = 27$ et $27 \equiv 1$ [26] Multiplions les deux membres de la congruence $9m + 5 \equiv p$ [26] par $3: 27m + 15 \equiv 3p$ [26] soit $m \equiv 3p 15$ [26].
- 2) La lettre B correspond à 1 dans le tableau de la partie B. On obtient, en remplaçant p par 1 dans la congruence précédente : $m \equiv -12 \equiv 14$ [26], c'est à dire m = 14 (0 < m < 25) m = 14 correspond à la lettre O dans le tableau de la partie B. On a ainsi décodé $B \rightarrow O$.