AMENDMENTS TO THE CLAIMS

1. (Previously presented) A yellow dye-forming coupler represented by formula (I):

formula (I)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

2. (Currently amended) The yellow dye-forming coupler as claimed in claim 1, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

$$Q \xrightarrow{N^{-R_1}} Q \xrightarrow{(R_2)_m} X \xrightarrow{(R_1)_m} X \xrightarrow{(R_2)_m} X$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 R_2 is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄₁ represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

3. (Previously presented) A yellow dye-forming coupler represented by formula (IB):

formula (IB)

$$Q_1$$
 N Q_2 N Q_2 N Q_2 N Q_3 N Q_4 N Q_4 N Q_5 N Q_4 N Q_5 N Q_5 N Q_6 N Q_7 N Q_8 N N Q_8 N Q_8 N Q_8 N Q_8 N Q_8 N Q_8 N

wherein Q_1 represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N((CH₂)₃O-R₁₀₁)-; R₁₀₁ represents an alkyl group having 4 to 8 carbon atoms; R₂ represents a substituent; R₄₂ represents a primary alkyl group; m represents an

integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

4. (Previously presented) A silver halide color photographic light-sensitive material comprising at least one yellow dye-forming coupler represented by formula (I) in at least one layer provided on a support:

formula (I)

$$Q \bigvee_{N} \begin{matrix} R_1 & O & (R_2)_m \\ \vdots & \vdots & \vdots \\ X & H & S-R_4 \end{matrix}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

5. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 4, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $\frac{N=C N(R_1)}{N=C-N(R_1)}$; $\frac{N=C-N(R_1)-1}{N-C-N(R_1)}$; $\frac{R_1}{R_1}$ is $\frac{R_1}{N-C-N(R_1)}$ in which R_{101} is an alkyl group having 4 to 8 carbon atoms and R_2 represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

6. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 5, wherein Q in formula (IA) is a group represented by -C(-R11)=C(-R12)-SO₂- or -C(-R11)=C(-R12)-CO-, in which R11 and R12 are groups that bond with each other to form a 5- to 7- membered ring together with -C=C-, or they each independently represents a hydrogen atom or a substituent.

7. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 5, wherein the yellow dye-forming coupler represented by formula (IA) is a yellow dye-forming coupler represented by formula (IIA):

formula (IIA)

$$(R_3)_n$$
 $(R_2)_m$
 $(R_3)_n$
 $(R_4)_n$
 $(R_2)_m$

wherein R_4 R_1 is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄₁ represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; R₃ represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R₃'s may be the same or different, and the R₃'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

8. (Currently amended) A silver halide color photographic light-sensitive material, comprising at least one yellow dye-forming coupler represented by formula (IB) in at least one layer provided on a support:

formula (IB)

$$Q_1$$
 N Q_1 N Q_2 Q_3 Q_4 Q_5 $Q_$

wherein Q_1 Q_1 represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $N=C-N((CH_2)_3O-R_{101})$; $N=C-N((CH_2)_3O-R_{101})$; R_{101} represents an alkyl group having 4 to 8 carbon atoms; R_2 represents a substituent; R_{42} represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

9. (Currently amended) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein Q₁ Q₁ in formula (IB) is a group represented by -C(-R11)=C(-R12)-SO₂- or -C(-R11)=C(-R12)-CO-, in which R11 and R12 are groups that bond with each other to form a 5- to 7- membered ring together with -C=C-, or they each independently represent a hydrogen atom or a substituent.

10. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein the yellow dye-forming coupler represented by formula (IB) is a yellow dye-forming coupler represented by formula (IIB):

formula (IIB)
$$\begin{array}{c} O & O \\ S & (CH_2)_3O-R_{101} \end{array}$$

$$(R_3)n_{11}$$
 $(R_3)n_{12}$
 $(R_2)m$
 $(R_2)m$
 $(R_3)n_{12}$
 $(R_3)m$
 $(R_3$

wherein R₁₀₁ represents an alkyl group having 4 to 8 carbon atoms; R₂ represents a substituent; R₄₂ represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; R₃ represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R₃'s may be the same or different, and the R₃'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

11. (Previously presented) The silver halide color photographic light-sensitive material as claimed in claim 8, wherein R₂ in formula (IB) represents a t-butyl group.

Docket No.: 0234-0469P

Application No. 10/669,414 Amendment dated January 10, 2006

After Allowance Under 37 C.F.R. 1.312

12. (Previously presented) The silver halide color photographic light-sensitive

material as claimed in claim 4, wherein the amount of the yellow dye-forming coupler is 1 x 10⁻³

mole to 1 mole per mole of silver halide.

13. (Previously presented) The silver halide color photographic light-sensitive

material as claimed in claim 4, wherein an emulsion of the layer containing the yellow dye-

forming coupler represented by formula (I) is a silver halide emulsion having silver chloride

content of 90 mol% or more.

14. (Previously presented) The silver halide color photographic light-sensitive

material as claimed in claim 13, wherein the silver halide emulsion is doped with an iridium

complex.

15. (Previously presented) The silver halide color photographic light-sensitive

material as claimed in claim 4, wherein a hydrophilic colloid layer is provided between the

9

support and a color-forming silver halide emulsion layer nearest to the support.

BEST AVAILABLE COPY

MSW/JMK/jmb