Due: 6pm, Apr. 23, 2019

Problem 1 (20 points). For the following network G = (V, E) with source s and sink t:

- 1. Give one maximum flow f^* of G (i.e., give $f^*(e)$ for every $e \in E$).
- 2. Draw the residual graph $G(f^*)$.
- 3. Give the *s*-*t* cut (S,T), where $S := \{ v \in V \mid s \text{ can reach } v \text{ in } G(f^*) \}$, and $T := V \setminus S$, and give the capacity of this cut.
- 4. Give the *s*-*t* cut (S', T'), where $T' := \{v \in V \mid v \text{ can reach } t \text{ in } G(f^*)\}$, and $S' := V \setminus T'$, and give the capacity of this cut.

Problem 2 (20 points). Let f^* be one maximum flow of network G = (V, E) with source $s \in V$ and sink $t \in V$. Let $T := \{v \in V \mid v \text{ can reach } t \text{ in } G(f^*)\}$. Let $S := V \setminus T$.

- 1. Prove that $s \in S$.
- 2. Prove that (S, T) is a minimum s-t cut of G.

Problem 3 (20 points). Give a counter-example or prove this statement: Let f^* be one maximum flow of network G = (V, E) with source $s \in V$ and sink $t \in V$. Let $S := \{v \in V \mid s \text{ can reach } v \text{ in } G(f^*)\}$. Let $T := \{v \in V \mid v \text{ can reach } t \text{ in } G(f^*)\}$. Then G has a *unique* minimum s-t cut if and only if $S \cup T = V$.

Problem 4 (20 points). Find a maximum matching and minimum vertex cover of the following bipartite graph $B = (X \cup Y, E)$ by reducing to the maximum flow problem:

- 1. Draw the corresponding network G = (V, E') together with capacity c(e) for any $e \in E'$.
- 2. Give a maximum integral flow f^* of G.
- 3. Give the maximum matching of *B* constructed from f^* , i.e., $\{e \in E \mid f^*(e) = 1\}$.
- 4. Draw the residual graph $G(f^*)$.
- 5. Give the s-t cut (S,T) of G, where $S:=\{v\in V\mid s \text{ can reach }v\text{ in }G(f^*)\}$, and $T:=V\setminus S$.
- 6. Give the minimum vertex cover of B constructed from $G(f^*)$, i.e., $(X \cap T) \cup (Y \cap S)$.

Due: 6pm, Apr. 23, 2019

Problem 5 (20 points). Let G = (V, E) be an directed graph with $s, t \in V$. Design an algorithm (by inducing to the max-flow problem) to find the maximum number of mutually edge-disjoint s-t paths in G. We define a set of s-t paths are mutually edge-disjoint if any two of them do not share any edge (they may share vertices).