计算机网络概述

网络体系结构

结构图

各层作用及协议

分层	作用	协议
物理层	通过媒介传输比特,确定机械及电气规 范 (比特 Bit)	RJ45、CLOCK、IEEE802.3(中继器,集线器)
数据链 路层	将比特组装成帧和点到点的传递(帧 Frame)	PPP、FR、HDLC、VLAN、MAC(网桥,交 换机)
网络层	负责数据包从源到宿的传递和网际互连 (包 Packet)	IP、ICMP、ARP、RARP、OSPF、IPX、 RIP、IGRP(路由器)
运输层	提供端到端的可靠报文传递和错误恢复 (段Segment)	TCP、UDP、SPX
应用层		HTTP DNS DHCP

应用层

常用端口

应用	应用层协议	端口号	传输层协议	备注
域名解析	DNS	53	UDP/TCP	长度超过 512 字节时使用 TCP
动态主机配置协议	DHCP	67/68	UDP	
	HTTPS	443	TCP	
文件传送协议	FTP	20/21	TCP	控制连接 21,数据连接 20
远程终端协议	TELNET	23	TCP	
超文本传送协议	HTTP	80	TCP	
简单邮件传送协议	SMTP	25	TCP	
邮件读取协议	POP3	110	TCP	
网际报文存取协议	IMAP	143	TCP	

1. DHCP 配置主机信息

- 假设主机最开始没有 IP 地址以及其它信息,那么就需要先使用 DHCP 来获取。
- 主机生成一个 DHCP 请求报文,并将这个报文放入具有目的端口 67 和源端口 68 的 UDP 报文段中。
- 该报文段则被放入在一个具有广播 IP 目的地址(255.255.255.255) 和源 IP 地址 (0.0.0.0) 的 IP 数据报中。
- 该数据报则被放置在 MAC 帧中,该帧具有目的地址 FF:FF:FF:FF:FF:FF, 将广播到与交换机连接的 所有设备。
- 连接在交换机的 DHCP 服务器收到广播帧之后,不断地向上分解得到 IP 数据报、UDP 报文段、DHCP 请求报文,之后生成 DHCP ACK 报文,该报文包含以下信息: IP 地址、DNS 服务器的 IP 地址、默认网关路由器的 IP 地址和子网掩码。该报文被放入 UDP 报文段中,UDP 报文段有被放入 IP 数据报中,最后放入 MAC 帧中。
- 该帧的目的地址是请求主机的 MAC 地址,因为交换机具有自学习能力,之前主机发送了广播帧之后就记录了 MAC 地址到其转发接口的交换表项,因此现在交换机就可以直接知道应该向哪个接口发送该帧。
- 主机收到该帧后,不断分解得到 DHCP 报文。之后就配置它的 IP 地址、子网掩码和 DNS 服务器的 IP 地址,并在其 IP 转发表中安装默认网关。

2. ARP 解析 MAC 地址

- 主机通过浏览器生成一个 TCP 套接字,套接字向 HTTP 服务器发送 HTTP 请求。为了生成该套接字,主机需要知道网站的域名对应的 IP 地址。
- 主机生成一个 DNS 查询报文,该报文具有 53 号端口,因为 DNS 服务器的端口号是 53。
- 该 DNS 查询报文被放入目的地址为 DNS 服务器 IP 地址的 IP 数据报中。
- 该 IP 数据报被放入一个以太网帧中, 该帧将发送到网关路由器。
- DHCP 过程只知道网关路由器的 IP 地址,为了获取网关路由器的 MAC 地址,需要使用 ARP 协议。
- 主机生成一个包含目的地址为网关路由器 IP 地址的 ARP 查询报文,将该 ARP 查询报文放入一个具有广播目的地址(FF:FF:FF:FF:FF:FF)的以太网帧中,并向交换机发送该以太网帧,交换机将该帧转发给所有的连接设备,包括网关路由器。
- 网关路由器接收到该帧后,不断向上分解得到 ARP 报文,发现其中的 IP 地址与其接口的 IP 地址匹配,因此就发送一个 ARP 回答报文,包含了它的 MAC 地址,发回给主机。

3. DNS 解析域名

- 知道了网关路由器的 MAC 地址之后,就可以继续 DNS 的解析过程了。
- 网关路由器接收到包含 DNS 查询报文的以太网帧后,抽取出 IP 数据报,并根据转发表决定该 IP 数据报应该转发的路由器。
- 因为路由器具有内部网关协议(RIP、OSPF)和外部网关协议(BGP)这两种路由选择协议,因此路由表中已经配置了网关路由器到达 DNS 服务器的路由表项。
- 到达 DNS 服务器之后,DNS 服务器抽取出 DNS 查询报文,并在 DNS 数据库中查找待解析的域名。
- 找到 DNS 记录之后,发送 DNS 回答报文,将该回答报文放入 UDP 报文段中,然后放入 IP 数据报中,通过路由器反向转发回网关路由器,并经过以太网交换机到达主机。

4. HTTP 请求页面

- 有了 HTTP 服务器的 IP 地址之后,主机就能够生成 TCP 套接字,该套接字将用于向 Web 服务器发送 HTTP GET 报文。
- 在生成 TCP 套接字之前,必须先与 HTTP 服务器进行三次握手来建立连接。生成一个具有目的端口 80 的 TCP SYN 报文段,并向 HTTP 服务器发送该报文段。
- HTTP 服务器收到该报文段之后,生成 TCP SYN ACK 报文段,发回给主机。
- 连接建立之后,浏览器生成 HTTP GET 报文,并交付给 HTTP 服务器。
- HTTP 服务器从 TCP 套接字读取 HTTP GET 报文,生成一个 HTTP 响应报文,将 Web 页面内容放入报文主体中,发回给主机。
- 浏览器收到 HTTP 响应报文后,抽取出 Web 页面内容,之后进行渲染,显示 Web 页面。

URL与URI

HTTP 使用 URL(**U**niform **R**esource **L**ocator,统一资源定位符)来定位资源,它是 URI(**U**niform **R**esource **I**dentifier,统一资源标识符)的子集,URL 在 URI 的基础上增加了定位能力。URI 除了包含 URL,还包含 URN(Uniform Resource Name,统一资源名称),它只是用来定义一个资源的名称,并不具备定位该资源的能力。例如 urn:isbn:0451450523 用来定义一个书籍名称,但是却没有表示怎么找到这本书。

CyC2018

- wikipedia: 统一资源标志符
- wikipedia: URL
- rfc2616: 3.2.2 http URL
- What is the difference between a URI, a URL and a URN?

•