HAI804I – Analyse et Traitement d'Images

Fabien Caballero

February 23, 2023

Contents

1	Création de la carte de gradient d'une image	3
2	Extraction des maximums locaux par seuillage.	4
3	Seuillage par hystérésis des maximums locaux.	5
4	Prétraitement par filtrage.	6
5	Calcul du Laplacien	8
6	Recherche des passages par zéro	9
7	Recherche des passages par zéro et seuillage par hystérésis	10

Figure 1: Image d'origine

1 Création de la carte de gradient d'une image

Pour cela on applique à chaque pixel la racine carrée de la somme des carrés des différence verticales et horizontales.

Figure 2: carte de gradient de l'image d'origine

Figure 3: profil de l'image d'origine

2 Extraction des maximums locaux par seuillage.

Seuillage classique

Figure 4: carte de gradient de l'image d'origine seuillée

3 Seuillage par hystérésis des maximums locaux.

Le seuillage par hysteresis se fai en 2 passes la première met à 0 les pixels inférieurs au seuil bas et à 255 ceux supérieurs au seuil haut. Dans la 2e passe on prend ceux entre le seuil bas et le seuil haut et si ils ont dans leurs voisins un pixel à 255 alors ont leur attribue la valeur 255 sinon 0.

Figure 5: carte de gradient de l'image d'origine seuillée avec une seuillage par hystérésis

4 Prétraitement par filtrage.

Pour chaque pixel on lui attribue la moyenne de ses 8 voisins + lui, donc moyenne de 9 valeurs de pixels.

Figure 6: Image d'origine filtree (filtre moyenneur)

Figure 7: Image d'origine filtree (filtre moyenneur)

Figure 8: Image d'origine filtree gradient

Figure 9: Image d'origine filtree gradient seuillée

Figure 10: Image d'origine filtree gradient seuillée (par hystérésis)

5 Calcul du Laplacien

Pour chaque pixel, on attribue à ce pixel 4 fois sa valeur + -1 fois * la valeur de ses 4 voisins horizontaux et verticaux, et on ajoute 128 au résultat.

Figure 11: Image d'origine filtree et application filtre Laplacien

6 Recherche des passages par zéro

Pour chaque pixels on calcule applique le filtre Laplacien sans faire +128, ensuite on calcule la direction du gradient, de là on en déduit l'angle de la direction. Celui-ci nous dit avec quel voisin on doit comparer notre pixel, si le pixel courant et notre voisin trouvé on des signes opposés alors on attribue à notre pixel courant la valeur de la norme du gradient.

gradient.

Figure 12: Image d'origine filtree et application filtre Laplacien

7 Recherche des passages par zéro et seuillage par hystérésis

Figure 13: Image d'origine filtree et application filtre Laplacien