Yang-Mills Instantons

Seongmin Kim, Taeyoon Kim

June 3, 2024

SNU

Table of Contents

- What is instanton?
- Instanton effect in Path Integral
- Yang-Mills Instanton : topology, and Anomalies
- Effects of Instantons in real world
- Calculation of Instanton effects
- Conclusion
- References

What is instanton?

 Mathematicaly, Instanton is a solution to the classical field equations of motion in Euclidean space.

- Instanton solutions of Euclidean EL equation are localized in (Euclidean) space and time, and have finite (Euclidean) action.
- In Minkofski QFT, it gives a non-perturbative effect: the tunneling between the classical vacua.
- Instantons are important in understanding non-perturbative effects and tunneling between vacua in quantum field theory.

Instanton effect in Path Integral

- In path integral formalism, instantons are classical solution, i.e., the saddle points of the action.
- Instantons only show up in the Euclidean path integral.
- Is it physically meaningful? Do we have to consider this effect in Minkowski space QFT?
- So the path integral is dominated by the instanton contributions in the semiclassical limit.
- The full path integral is given by the sum of all instanton contributions, with small fluctuations around them.

$$Z = \int \mathcal{D}\phi e^{-S[\phi]} = \sum_{\text{instantons}} e^{-S_{\text{inst}}} \int \mathcal{D}\delta\phi e^{-S_{\text{fluct}}[\delta\phi]}$$
 (2)

Instanton effect in Path Integral : Example

- A simple example: the one-dimensional quantum mechanics with two minima.
- The potential is given by $V(x) = \frac{1}{2}x^4 \frac{1}{2}x^2$, and the action is $S = \int dt \left(\frac{1}{2}\dot{x}^2 V(x)\right)$.
- The Euclidean action is $S_E = \int d\tau \left(\frac{1}{2}\dot{x}^2 + V(x)\right)$, and the Euclidean EOM has a classical solution, starting from x = -1 at $\tau = -\infty$ and ending at x = 1 at $\tau = \infty$.
- To evaluate correct path integral, We need to consider all the posible semiclassical paths, including the instanton solution. for example,
- If $T \gg t_{\text{inst}}$,all the instanton solution can be approximated as a composition of n single instanton solution, at time $t_1, ... t_n$, and the instanton action is given by $S = \sum_{i=1}^n S_{\text{inst}} = n S_{\text{inst}}$.

Instanton effect in Path Integral: Calculation

So, now we can calculate the matrix element of e^{-HT} from x=-1 to x=1, using the path integral including instanton solution.

$$\begin{split} \langle 1|e^{-HT}|1\rangle &= \int \mathcal{D}x e^{-S_E} = \sum_{\text{instantons}} e^{-S_{\text{inst}}} \int \mathcal{D}\delta x e^{-S_{\text{fluct}}} \\ &= e^{-T/2} \sum_{n \text{ odd}} \int_{-T/2}^{T/2} d\tau_1 \int_{-T/2}^{\tau_1} d\tau_2 \cdots \int_{-T/2}^{\tau_{n-1}} d\tau_n e^{-nS_{\text{inst}}} \int \mathcal{D}\delta x e^{-S_{\text{fluct}}} \end{split}$$

Here, the fluctuation path integral can be factorized into n parts, which are the fluctuation path integrals around each instanton solution.

$$\begin{split} &\int \mathcal{D}\delta x e^{-S_{\text{fluct}}} = \left(\int \mathcal{D}\delta x_n e^{-S_{\text{fluct}}}\right)^n e^{-T/2} = K^n e^{-T/2} \\ &\langle 1|e^{-HT}|1\rangle = e^{-T/2} \sum_{n \text{ odd}} \int_{-T/2}^{T/2} d\tau_1 \int_{-T/2}^{\tau_1} d\tau_2 \cdots \int_{-T/2}^{\tau_{n-1}} d\tau_n (Ke^{-S_{\text{inst}}})^n \\ &\langle 1|e^{-HT}|1\rangle = e^{-T/2} \sum_{n \text{ odd}} \frac{1}{n!} K^n (e^{-S_{\text{inst}}})^n T^n = e^{-T/2} \sinh \left(KTe^{-S_{\text{inst}}}\right) \end{split}$$

Instanton effect in Path Integral: Conclusion

- The Path integral including instanton solution gives the correct matrix element of e^{-HT} from x=-1 to x=1: $\langle 1|e^{-HT}|1\rangle=e^{-T/2}\sinh(KTe^{-S_{\rm inst}})$.
- By changing the result to $T \to it$, we can get the propagator of the Minkowski QM: $\langle 1|e^{-iHT}|1\rangle = e^{-it/2}\sin(Kte^{-S_{inst}})$.
- No instanton solution in Minkowski space, but the instanton effect is still important in understanding the non-perturbative effects in Minkowski QFT.
- Why? Wick rotation is essential in the path integral formalism, so even if the instanton solution is not a solution of the Minkowski EOM, it still contributes to the path integral.

Yang-Mills Instanton: Introduction

- Yang-Mills instantons are the instanton solutions of the Yang-Mills theory.
- The Yang-Mills action is given by $S=\int d^4x \left(-\frac{1}{4g^2}F^a_{\mu\nu}F^{\mu\nu a}\right)$, and the Euclidean action is $S_E=\int d^4x \left(\frac{1}{4g^2}F^a_{\mu\nu}F^{\mu\nu a}\right)$.
- The Euclidean EOM is given by $\mathcal{D}_{\mu}F^{\mu\nu a}=0$, with the Bianchi identity $\sum_{cvc}\mathcal{D}_{\mu}\tilde{F}^{\nu\rho a}=0$.
- The YM instanton solution is nontrivial solution of the EOM, and can be obtained by solving the self-dual equation $\tilde{F}^{\mu\nu a} = F^{\mu\nu a}$.

Yang-Mills Instanton : Self-dual equation

- Hodge dual operator : $\tilde{F}^{\mu\nu a}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F^a_{\rho\sigma}.$
- The self-dual equation is given by $\tilde{F}^{\mu\nu a} = F^{\mu\nu a}$.
- All the 2-forms can be decomposed into self-dual and anti-self-dual parts: $F^{\mu\nu a} = F^{\mu\nu a}_{\perp} + F^{\mu\nu a}_{\perp}$.
- If either $F_+^{\mu\nu a}$ or $F_-^{\mu\nu a}$ is zero, the solution is called self-dual or anti-self-dual, and satisfies the EOM of the YM theory, $\mathcal{D}_\mu F^{\mu\nu a}=0$.

Yang-Mills Instanton: evaluating S_{inst}

- The instanton action is given by $S_{\text{inst}} = \int d^4x \left(\frac{1}{4g^2} F_{\mu\nu}^a F^{\mu\nu a} \right)$.
- The action can be evaluated easily when the instanton is self-dual or anti-self-dual.

$$\begin{split} S_{\text{YM}} &= \int d^4 x \left(\frac{1}{4g^2} F^a_{\mu\nu} F^{\mu\nu a} \right) \\ &= \frac{1}{4g^2} \int d^4 x \left(F^a_{\mu\nu} \pm \tilde{F}^a_{\mu\nu} \right)^2 \mp \frac{1}{2g^2} \int d^4 x \tilde{F}^a_{\mu\nu} F^{\mu\nu a} \\ &\geq \pm \frac{1}{2g^2} \int d^4 x \tilde{F}^a_{\mu\nu} F^{\mu\nu a} = \frac{8\pi^2}{g^2} |n| \end{split}$$

So, the instanton action is the bound, $8\pi^2/g^2|n|$, where n is the instanton number(the 2nd chern number). This derivation of the instanton action shows the topological nature of the instanton solution : the instanton action is quantized, and the instanton number is a topological invariant of the corresponding SU(N) principal bundle.

Yang-Mills Instanton: Physical effects

- The instanton solution is a non-perturbative effect in the YM theory : $e^{-S_{\rm inst}} = e^{-8\pi^2/g^2|n|}$ is the tunneling amplitude between the classical vacua, and non-perturbative in g.
- The instanton is a source of tunneling between classical vacua in the YM theory, and the true vaccume structure of the YM theory, and the θ term.
- THe instanton solution is also important in understanding the anomalies in the YM theory.