

1. Steady-state convergence

Problem 1. Steady-state convergence

6/6 points (ungraded)

Let X_0, X_1, \ldots be a Markov chain, and let $r_{ij}(n) \equiv \mathbf{P}\left(X_n = j \mid X_0 = i
ight)$.

1. Consider the Markov chain represented below. The circles represent distinct states, while the arrows correspond to positive (one-step) transition probabilities.

For this Markov chain, determine whether each of the following statements is true or false.

(a) For every i and j, the sequence $r_{ij}(n)$ converges, as $n o \infty$, to a limiting value π_j , which does not depend on i.

False ▼ ✓

(b) Statement (a) is true, and $\pi_j>0$ for every state j.

False ▼ ✓

2. Consider the Markov chain represented below. The circles represent distinct states, while the arrows correspond to positive (one-step) transition probabilities.

(a) For every i and j, the sequence $r_{ij}(n)$ converges, as $n \to \infty$, to a limiting value π_j , which does not depend on i.

False ▼ ✓

(b) Statement (a) is true, and $\pi_j>0$ for every state j.

False ▼ ✓

3. Consider the Markov chain represented below. The circles represent distinct states, while the arrows correspond to positive (one-step) transition probabilities.

© 保留所有权利