

Course Instructor: Hashim Ayub

Book: Prof. Sipser-MIT Slides: Prof. Busch - LSU

Why Normal Form?

 Working with CFG, it is convenient to have them in simplified form

· Easy one is Chomsky Normal Form

· Usually longer/expanded than initial CFG

Helpful for algorithms

Chomsky Normal Form

A CFG is in Chomsky normal form, if every rule is of the form:

$$A \rightarrow BC$$
 or $A \rightarrow a$

Where a is any terminal and A, B, and C are any variables- except that B and C may not be the start variable.

Chomsky Normal Form

Each production has form:

Examples:

$$S \to AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

We will convert it to Chomsky Normal Form

Chomsky Normal Form

In Chomsky Normal Form (CNF) we have a restriction on the length of RHS; which is; elements in RHS should either be two variables or a Terminal.

A CFG is in Chomsky Normal Form if the productions are in the following forms:

 $A \rightarrow a$

 $A \rightarrow BC$

where A, B and C are non-terminals and a is a terminal

Conversion of CFG to Chomsky Normal Form

Convert the following CFG to CNF: P: $S \rightarrow ASA \mid aB$, $A \rightarrow B \mid S$, $B \rightarrow b \mid \in$

Steps to convert a given CFG to Chomsky Normal Form:

- Step 1: If the Start Symbol S occurs on some right side, create a new Start Symbol S' and a new Production S'→S.
- Step 2: Remove Null Productions. (Using the Null Production Removal discussed in previous Lecture)
- Step 3: Remove Unit Productions. (Using the Unit Production Removal discussed in previous Lecture)
- Step 4: Replace each Production $A \rightarrow B_1$ B_n where n > 2, with $A \rightarrow B_1 C$ where $C \rightarrow B_2$ B_n Repeat this step for all Productions having two or more Symbols on the right side.
- Step 5: If the right side of any Production is in the form $A \rightarrow aB$ where 'a' is a terminal and A and B are non-terminals, then the Production is replaced by $A \rightarrow XB$ and $X \rightarrow a$. Repeat this step for every Production which is of the form $A \rightarrow aB$

Conversion of CFG to Chomsky Normal Form

Convert the following CFG to CNF: P: $S \rightarrow ASA \mid aB$, $A \rightarrow B \mid S$, $B \rightarrow b \mid \in$

- 1) Since S appears in RHS, we add a new State S' and S' \rightarrow S is added to the production P: S' \rightarrow S, S \rightarrow ASA|aB, A \rightarrow B|S, B \rightarrow b| \in
- 2) Remove the Null Productions: $B \rightarrow \in$ and $A \rightarrow \in$: After Removing $B \rightarrow \in$: P: $S' \rightarrow S$, $S \rightarrow ASA|aB|a$, $A \rightarrow B|S| \in$, $B \rightarrow b$
 - After Removing $A \rightarrow \in :$ P: S' \rightarrow S, S \rightarrow ASA|aB|a|AS|SA|S, $A \rightarrow$ B|S, B \rightarrow b

```
2) Remove the Null Productions: B \rightarrow \in and A \rightarrow \in:
   After Removing B \rightarrow \in : P: S' \rightarrow S, S \rightarrow ASA|aB|a, A \rightarrow B|S| \in , B \rightarrow b
  After Removing A \rightarrow \in : P: S' \rightarrow S, S \rightarrow ASA|aB|a|AS|SA|S, A \rightarrow B|S, B \rightarrow b
3) Remove the Unit Productions: S \rightarrow S, S' \rightarrow S, A \rightarrow B and A \rightarrow S:
   After Removing S \rightarrow S: P: S' \rightarrow S, S \rightarrow ASA|aB|a|AS|SA, A \rightarrow B|S, B \rightarrow b
   After Removing S'→S: P: S'→ASA|aB|a|AS|SA,
                                          S \rightarrow ASA|aB|a|AS|SA
                                           A \rightarrow B \mid S, B \rightarrow b
   After Removing A→B: P: S'→ASA|aB|a|AS|SA,
                                          S→ ASA aB a AS SA,
                                           A \rightarrow b \mid S, B \rightarrow b
   After Removing A \rightarrow S: P: S' \rightarrow ASA|aB|a|AS|SA,
                                          S→ ASA aB a AS SA,
                                           A \rightarrow b|ASA|aB|a|AS|SA
                                           B→ b
```

After Removing $A \rightarrow S$: P: $S' \rightarrow ASA|aB|a|AS|SA$, $S \rightarrow ASA|aB|a|AS|SA$, $A \rightarrow b|ASA|aB|a|AS|SA$, $B \rightarrow b$

4) Now find out the productions that has more than TWO variables in RHS $S' \rightarrow ASA$, $S \rightarrow ASA$ and $A \rightarrow ASA$

After removing these, we get: P: $S' \rightarrow AX|aB|a|AS|SA$, $S \rightarrow AX|aB|a|AS|SA$, $A \rightarrow b|AX|aB|a|AS|SA$, $B \rightarrow b$, $X \rightarrow SA$

```
4) Now find out the productions that has more than TWO variables in RHS
   S' \rightarrow ASA, S \rightarrow ASA and A \rightarrow ASA
   After removing these, we get: P: S' \rightarrow AX|aB|a|AS|SA,
                                                S → AX | aB | a | AS | SA,
                                                A →b|AX|aB|a|AS|SA,
                                                 B \rightarrow b
                                                X \rightarrow SA
5) Now change the productions S' \rightarrow aB, S \rightarrow aB and A \rightarrow aB
    Finally we get:
                                          P: S' \rightarrow AX[YB]a]AS[SA]
                                               S \rightarrow AX[YB]a]AS[SA]
                                               A \rightarrow b|AX|YB|a|AS|SA
                                               B \rightarrow b
                                               X \rightarrow SA
                                               y \rightarrow a
```

which is the required Chomsky Normal Form for the given CFG

Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

Final grammar in Chomsky Normal Form:

$$S oup AV_1$$
 $V_1 oup BT_a$
 $A oup T_a V_2$
 $V_2 oup T_a T_b$
 $S oup ABa$
 $A oup aab$
 $B oup AC$
 $T_a oup a$
 $T_a oup a$
 $T_b oup b$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

an equivalent grammar

in Chomsky Normal Form

The Procedure

First remove:

Nullable variables
Unit productions
(Useless variables optional)

Then, for every symbol a:

New variable: T_a

Add production $T_a \rightarrow a$

In productions with length at least 2 replace $\,a\,$ with $\,T_a\,$

Productions of form $A \rightarrow a$ do not need to change!

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \to C_1 V_1$$

$$V_1 \to C_2 V_2$$

$$\cdots$$

$$V_{n-2} \to C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Abstract syntax tree of "a^2+4*b"

Syntax tree of "a^2+4*b" in Chomsky NF

Step 1:

Make sure start symbol does not Appear on right hand side.

Step 2:

Remove Rules like $A \rightarrow \mathcal{E}$ (Not allowed) Unless $S \rightarrow \mathcal{E}$ (Allowed)

Step 3:

Get Rid of all unit rules

 $A \rightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is Just an overhead in parse tree

Step 4:

Get rid of rules with more than 2 symbols on right hand side

 $A \rightarrow BCDE$ (Not allowed)

 $A \rightarrow Bcde$ (Not allowed)

Step 5:

Make sure

 $A \rightarrow BC$ (only 2: Must be Variables)

 $A \rightarrow a$ (only 1: Must be a Terminal symbol)

Example:

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \varepsilon$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

Example:

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \varepsilon$$

Not Chomsky Normal Form

We will convert it to Chomsky Normal Form

Step 1:

Make sure start symbol does not Appear on right hand side.

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$

Step 2:

```
Remove Rules like A \rightarrow \mathcal{E} (Not allowed)
Unless S \rightarrow \mathcal{E} (Allowed)
e.g.
A \to \varepsilon
B \rightarrow BCACBAB
4Cases
B \rightarrow BCACBAB(Neither goes to E)
B \to BCCBAB(1^{st} A goes to E)
B \to BCACBB(2^{nd} A goes to E)
B \to BCCBB (Both goes to \varepsilon)
```

Step 2:

Remove Rules like
$$A \rightarrow \mathcal{E}$$
 (Not allowed)
Unless $S \rightarrow \mathcal{E}$ (Allowed)

$$S_0 \to S$$

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \varepsilon$$

$$S_{0} \to S$$

$$S \to ASA \mid aB \mid a$$

$$A \to B \mid S \mid \varepsilon$$

$$B \to b$$

Step 2:

Remove Rule $A \rightarrow \mathcal{E}$ (Not allowed)

$$S_{0} \to S$$

$$S \to ASA \mid aB \mid a$$

$$A \to B \mid S \mid \varepsilon$$

$$B \to b$$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Step 3:

Get Rid of all unit rules

 $A \longrightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is

$$S \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Step 3:

Get Rid of all unit rules

 $A \rightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is

Just an overhead in parse tree

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Remove 5
$$\longrightarrow$$
 5 $S_0 \longrightarrow S$ $S \longrightarrow ASA \mid aB \mid a \mid SA \mid AS$ $A \longrightarrow B \mid S$

 $B \rightarrow b$

Step 3:

Get Rid of all unit rules

 $A \rightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is

$$S \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Remove
$$S_0 \rightarrow S$$
 $S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $A \rightarrow B \mid S$

$$B \rightarrow b$$

Step 3:

Get Rid of all unit rules

 $A \rightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove
$$A \longrightarrow B$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid S$
 $B \rightarrow b$

Step 3:

Get Rid of all unit rules

 $A \rightarrow B$ (Not allowed)

Reason: One non-terminal going to be another non-terminal is

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid S$
 $B \rightarrow b$

Remove
$$A \longrightarrow S$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

Step 4:

Get rid of rules with more than 2 symbols on right hand side

 $A \rightarrow BCDE$ (Not allowed)

A → Bcde (Not allowed)

$$A \rightarrow BCDE$$

Re placeWith

$$A \rightarrow BA_1$$

$$A_1 \rightarrow CA_2$$

$$A_2 \rightarrow DE$$

Step 4:

Get rid of rules with more than 2 symbols on right hand side $A \rightarrow BCDE$ (Not allowed) $A \rightarrow Bcde$ (Not allowed) |ASA| aB |a| SA |AS| $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $A \rightarrow b | ASA | aB | a | SA | AS$ $B \rightarrow b$ $S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$ $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$ $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$ $B \rightarrow b$

$$A_1 \rightarrow SA$$

The Algorithm - CFG to CNF

Step 5:

Make sure

 $A \rightarrow BC$ (only 2: Must be Variables)

 $A \rightarrow a$ (only 1: Must be a Terminal symbol)

$$A \rightarrow bC$$

With

$$A \rightarrow A_1C$$

$$A_1 \rightarrow b$$

The Algorithm - CFG to CNF

Step 5:

Make sure

 $A \rightarrow BC$ (only 2: Must be Variables)

 $A \rightarrow a$ (only 1: Must be a Terminal symbol)

$$S_0 \rightarrow AA_1 | aB | a | SA | AS$$

$$S \rightarrow AA_1 | aB | a | SA | AS$$

$$A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$A_1 \rightarrow SA$$

$$S_0 \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$A_1 \rightarrow SA$$

$$A_2 \rightarrow a$$

The Algorithm - CFG to CNF

Step 5:

Make sure

- $A \rightarrow BC$ (only 2: Must be Variables)
- $A \rightarrow a$ (only 1: Must be a Terminal symbol)

$$S_0 \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid A_2B \mid a \mid SA \mid AS$$

$$B \rightarrow b$$

$$A_1 \rightarrow SA$$

$$A_2 \rightarrow a$$

Chomsky Normal Form

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \to b \mid \varepsilon$$

Not Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is easy to find the Chomsky normal form for any context-free grammar (which doesn't generate λ)

Parsing Trees

 However, Chomsky Normal form has its own limitations

· It is not most efficient for parsing trees

 This leads to emergences of other standards/normal form

· One better for parsing is Greinbach form

Greinbach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S o abSb$$
 $S o aT_bST_b$ $S o aT_a$ $T_a o a$ $T_b o b$ Greinbach Normal Form

Observations

Greinbach normal forms are very good
 for parsing strings (better than Chomsky Normal Forms)

 However, it is difficult to find the Greinbach normal of a grammar

Parsing

Parsing takes a grammar and a string and answers two questions:

- 1. Is that string in the language of the grammar?
- 2. What is the structure of that string relative to the grammar?

Interesting Note

Noam Chomsky (1928-) is an American linguist, philosopher, cognitive scientist, historian, logician, social critic, and political activist.

He has spent more than half a century MIT

Practice: Exercise 2.1 to 2.6 from the Sipser's book

Thank You!