

КураторЧеркасова Марина
9 год участия в ВИШ

Команда

Екимиани Роман

Электронщик, 2 год участия в ВИШ

Клишин Илья

Конструктор, 2 год участия в ВИШ

Юбко Артемий

Программист, 2 год участия в ВИШ

Обязательные задачи проекта

- Измерение распределения давления и температуры во время полета
- Получение и интерпретация данных с 3-х осевого акселерометра и магнитометра
- Прием телеметрии на собственной наземной станции
- Обеспечение работы бортового оборудования не менее 3-х часов
- Обеспечение скорости спуска в пределах 5-10 м/с
- Бесконтактная фиксация момента отделения от PH

Исследовательская задача

Общая исследовательская задача – разработка системы управления камерой для ее наведения в процессе полета на произвольную статичную точку на земле (точку старта). Для осуществления ee построение производится ориентации аппарата И раскрываются тканевые стабилизаторы.

Дополнительные задачи проекта

- Наведение камеры на точку старта
- Построение ориентации аппарата в пространстве
- Стабилизация аппарата во время полета
- Связь двух бортовых вычислителей по Bluetooth
- Видеозапись полета
- Сбор данных GPS о положении аппарата в пространстве
- Построение траектории полета аппарата по координатам GPS
- Световая индикация состояния аппарата
- Подача звукового сигнала для облегчения поиска аппарата
- Использование радиомаяка для облегчения поиска аппарата
- Анализ телеметрии аппарата на приемном пункте в режиме реального времени
- Сохранение телеметрии на SD карту

Схема деления аппарата

Микроконтроллер STM32F411CEU6

Радиомодуль NRF24L01

Усилитель радио **XQ-02A**

SD карта

Сдвиговый регистр 74HC595

Система электропитания

Аккумулятор 18650

Аккумулятор 18650

DC-DC MP2225 3V

DC-DC MP2225 5V

DC-DC B62801 12V

АППАРАТ

спасения

Парашют

Система

Тканевые стабилизаторы

Система поиска

Пищалка

Радиомаяк

Поисковое устройство

Система измерения

Датчик давления, температуры и влажности ВМЕ280

Акселерометр + гироскоп LSM6DS3

Магнитометр LIS3MDL

Фоторезистор VT93N1

GPS - модуль Ublox Neo-7M

Система наведения и видеозаписи

Rasberry pi zero 2w

Камера для Rasberry pi zero w

Сервопривод MG90S

Шаговый двигатель с редуктором пето 8

Bluetooth модуль на плате НС-06

Компоновочная схема бортового модуля

Оптический модуль

Программа полета

Алгоритм работы аппарата

Система спасения и стабилизации

Система наведения и видеозаписи

Разворот модуля свыше 360° (неограниченно) Угол поворота камеры от -73° до +73° (146°)

Построение траектории полета аппарата

Положение аппарата

- т. О (Во; Lo; Но) или $(X_0^W; Y_0^W; Z_0^W)$
- т. 1 (В1; L1; Н1) или $(X_1^W; Y_1^W; Z_1^W)$
- $\cos L_{0} \qquad 0 \\
 \sin B_{0} \sin L_{0} \quad \cos B_{0} \\
 \cos B_{0} \sin L_{0} \quad \sin B_{0}$ $\begin{bmatrix}
 X_{1}^{W} X_{0}^{W} \\
 Y_{1}^{W} Y_{0}^{W} \\
 Z_{1}^{W} Z_{0}^{W}
 \end{bmatrix}$ $\begin{bmatrix} X^{\mathrm{T}} \\ Y^{\mathrm{T}} \\ Z^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} -\sin L_0 & \cos L_0 \\ -\sin B_0 \cos L_0 & -\sin B_0 \sin L_0 \\ \cos B_0 \cos L_0 & \cos B_0 \sin L_0 \end{bmatrix}$

Rз - радиус Земли

Наведение камеры

 $R_t = {}^R_I q \cdot I_t \cdot {}^R_I q^*$ - формула для перевода вектора из ТСК (I) в ССК (R) $ar{t}$ - вектор цели

$$\xi = \operatorname{atan}\left(\frac{\sqrt{{R_{t_x}}^2 + {R_{t_y}}^2}}{R_{t_z}}\right)$$

Построение ориентации аппарата

q = (q1, q2, q3, q4) - кватернион для перехода из системы A в B ϕ - угол поворота V = (Vx, Vy, Vz) - направляющий вектор оси

q1 = $\cos (\phi/2)$ q2 = $Vx * \sin (\phi/2)$ q3 = $Vy * \sin (\phi/2)$ q4 = $Vz * \sin (\phi/2)$

VA

Схема подключения электронных компонентов

Обмен данными

Анализ телеметрии в режиме реального времени

State = 1 AccIX = 1 AccIY = 1 AccIZ = 1 GyroX = 1 GyroY = 1 GyroZ = 1 MagX = 1 MagY = 1	Temp = 26 Press = 100000 Height = 0 Humidity = 40 Photores = 15 Time_s = 10 Time_us = 10 lat = 0 lon = 0
MagY = 1 MagZ = 1	lon = 0 alt = 0

- Трафики:
 - Температура
 - Давление
 - Влажность
 - Ускорение по трем осям
 - Угловая скорость по трем осям
 - Индукция магнитного поля по трем осям
 - Освещенность
- Положение аппарата по координатам GPS
- Ориентация аппарата
- Данные телеметрии:
 - ➤ Состояние
 - Показания акселерометра
 - Показания гироскопа
 - Показания магнитометра
 - Показания датчика температуры, давления и влажности
 - > Показания фоторезистора
 - ➤ Данные GPS

Система поиска

Схема распределения питания

Энергобаланс

- Потребление бортового отсека - Потребление оптического отсека

Энергобаланс

Заряды АБ за 3 часа работы

Масса и стоимость аппарата

Наименование	Количество, шт.	Цена за 1 шт., руб.	Цена общая, руб.	Масса 1 шт., гр.	Масса общая, гр.
Микроконтроллер Black Pill	1,00	709,00	709,00	6,80	6,80
Модуль Bluetooth HC-06	1,00	480,00	480,00	20,00	20,00
Радиомодуль NRF24L01	1,00	327,00	327,00	1,40	1,40
Усилитель радио XQ-02A	1,00	1 265,00	1 265,00	5,00	5,00
SD Card	1,00	590,00	590,00	18,00	18,00
Сдвиговый регистр 74НС595	1,00	14,5	14,5	10,00	10,00
Raspberry Pi Zero 2W	1,00	1 996,00	1 996,00	9,00	9,00
Камера для Raspberry Pi Zero	1,00	629,00	629,00	3,00	3,00
Шаговый двигатель Nema 8	1,00	4 835,00	4 835,00	80,00	80,00
Сервопривод MG90S	1,00	158,00	158,00	13,4	13,40
GPS модуль Ublox-NEO-7М	1,00	508,00	508,00	40,00	40,00
Аккумулятор 18350	3,00	329,00	987,00	23,00	69,00
Понижающий DC-DC MP2225	2,00	26,30	52,60	2,00	4,00
DC-DC преобразователь MT3608	1,00	179,00	179,00	19,00	19,00
Радиомаяк tBeacon Onyx	1,00	4 800,00	4 800,00	10,00	10,00
Поисковое устройство tBeacon Findy	1,00	3 700,00	3 700,00	-	-
Датчик темп. и давл. ВМЕ280	1,00	192,00	192,00	10,00	10,00
Акселерометр+гироскоп LSM6DS3	1,00	118,00	118,00	10,00	10,00
Магнитометр LIS3MDL	1,00	1 353,00	1 353,00	10,00	10,00
Фоторезистор VT93N1	1,00	49,00	49,00	1,20	1,20
Пищалка Active Buzzer	1,00	12,10	12,10	2,00	2,00
Антенна для радиомодуля	1,00	107,00	107,00	2,40	2,40
Антенна GPS	1,00	315,00	315,00	10,00	10,00
Переключатель SS-12D11	1,00	131,00	131,00	1,50	1,50
Переключатель SK-12F14	1,00	55,00	55,00	0,80	0,80
Парашют	1,00	-	-	10,00	10,00
Плата печатная	3,00	812,00	2 436,00	20,00	60,00
Конструкция и кабельная сеть	1,00	-	-	0,00	260,56
Итог			25 998,20		687,06

Расчет парашюта

$$r = R/15$$

М – масса аппарата

V – скорость спуска 5-10

g – ускорение свободного падения

ρ – плотность воздуха

С – коэффициент аэродинамического сопротивления парашюта 1.2-1.3

S – площадь парашюта

D – диаметр купола парашюта

$$M = 687 rp$$

$$V = 9 \text{ M/c}$$

$$g = 9.81 \text{ m/c}^2$$

$$\rho = 1,225 \text{ kg/m}^3$$

$$C = 1,2$$

$$S = 2Mg/C\rho V^2 = 0.1136 M^2$$

$$D = 4S/\pi = 0.38029M$$

Команда "КНПН"

Спасибо за внимание!

Куратор Черкасова Марина 9 год участия в ВИШ

Команда

Екимиани Роман Электронщик, 2 год участия в ВИШ

Клишин Илья Конструктор, 2 год участия в ВИШ

Юбко Артемий Программист, 2 год участия в ВИШ

План-график работ

№	Сроки	Содержание работ
1	Октябрь	Определение дополнительных миссий аппарата, постановка задач
2	Ноябрь - Декабрь	Выбор способов решения поставленных задач, определение состава аппарата, разработка модели аппарата, подбор комплектующих
2	Декабрь	Прохождение онлайн-тестирования
3	Январь	Разработка модели аппарата, начало написания кода, подготовка к отборочной сессии
4	Февраль	Отборочная сессия, доработка ПО, доработка модели аппарата, разработка печатных плат
5	Март	Изготовление элементов конструкции аппарата, доработка ПО, испытания всех систем
6	Апрель	Разработка ПО для взаимодействия всех систем, сборка аппарата, пайка микросхем
7	Май	Сборка тестовой модели аппарата, проведение испытаний, проверка работы всех систем, заочный допуск
8	Июнь	Разбор телеметрии с испытаний, устранение недочетов, сборка финальной модели аппарата
9	Июль	Финал чемпионата

Энергопотребление компонентов аппарата

Устройство	Потребление в рабочем режиме, А	Напряжение питания, В	Мощность, Вт					
Бортовой модуль								
Микроконтроллер STM32F411CEU6	0,0214	3,3	0,0706					
Усилитель XQ-02A	0,6061	3,3	2,0000					
Радиомодуль NRF24I01p	0,0113	3,3	0,0373					
Фоторезистор VT93N1	0,0054	3,3	0,0178					
Датчик давления, температуры и влажности ВМЕ280	0,0001	3,3	0,0000					
Радиомодуль NRF24I01p	0,1300	3,3	0,4290					
MicroSD карта	0,0200	3,3	0,0660					
Трехосевые акселерометр и гироскоп LSM6DS3	0,0009	3,3	0,0030					
Трехосевой магнитометр LIS3MDL	0,0002	3,3	0,0007					
GPS модуль Ublox-NEO-7M	0,0220	3,3	0,0726					
Пищалка Active Buzzer	0,0250	5,0	0,1250					
Шаговой двигатель	0,8000	5,0	4,0000					
Bluetooth модуль HC-06	0,0400	5,0	0,2000					
Нихромовая проволока	2,0000	8,0	16,0000					
	Оптический модуль							
Raspberry Pi Zero 2W (Bluetooth+съемка)	0,5000	5,0	2,5000					
Raspberry Pi Zero 2W (без Bluetooth)	0,1250	5,0	0,6250					
Raspberry Pi Zero 2W (без съемки)	0,3500	5,0	1,7500					
Камера для Raspberry Pi Zero	0,1500	5,0	0,7500					
MicroSD карта	0,0200	5,0	0,1000					
Сервопривод SG90 (поворот)	1,0000	5,0	5,0000					
Сервопривод SG90 (удержание)	0,2700	5,0	1,3500					

Энергопотребление компонентов аппарата

Потребление	Ток, А
Максимальное потребление	
бортового отсека	3,111
Максимальное потребление	
бортового отсека (3,3В)	0,817
Максимальное потребление	
бортового отсека (5В)	0,865
Максимальное потребление	
оптического отсека	2,257
Максимальное потребление	
бортового отсека (5В)	1,670

Токоотдача	Ток, А
Максимальная токоотдача	
аккумулятора бортового отсека	5,0
Максимальная токоотдача	
бортового отсека dc-dc (3,3B)	1,5
Максимальная токоотдача	
бортового отсека dc-dc (5B)	1,5
Максимальная токоотдача	
аккумулятора оптического отсека	3,0
Максимальная токоотдача	
оптического отсека dc-dc (5B)	2,0

Параметры датчиков

Структура пакетов							
flag time n Данные crc							
16 46 26 236 (max) 26							
326							

Всего байт	81	Скорость
1 пакет	25	40 Гц
2 пакет	32	5 Гц
3 пакет	24	10 Гц

			Точность		Частота	Время между	Время	Разрешение		Объем	Объем на	
Датчик	Измерения	Диапазон измерений	измерения	Шум	измерения	данными	старта	датчика	выбранная	данных, байт	устройство	
	Температура	-40 - +85 град (0 - +65 град)	1 град (0,5 град)	0,004 град				0,01 град	0,1 град	2		
BME280	Давление	30 000 - 110 000 ∏a	100 Па (1 м)	1,3 Па (11 см) - 0,2 Па (4 см)	157 Fu - 26 32 Fu	43,2+0,5 мс	2 мс	0,16 Па	1 ∏a	4		
DIVILZOO	Влажность	0% - 100%	3%	0.02%	157 14 - 20,52 14	43,2+0,5 MC	2 MC	0.008%		2		
	Высота		1м							4	12	
	Акселерометр х								0,001 g	2		
	Акселерометр у	16 g	40 mg	3 mg				0,488 mg	0,001 g	2		
LSM6DSL	Акселерометр z				104,2 Гц	9,6 мс	35 мс		0,001 g	2		
LSWIDDSL	Гироскоп х				104,214	3,0 MC	35 MC		0,001 град/с	2		
	Гироскоп у	2000 град/с	з град/с	75 мград/с					0,001 град/с	2		
	Гироскоп z								0,001 град/с	2	12	
	Магнитометр х	16 raycc		3,2 мгаусс				- 1711 raycc	0,001 Гаусс	2		
LIS3MDL	Магнитометр у		усс 1 гаусо	3,2 мгаусс	80 Гц	12,5 мс	-		0,001 Гаусс	2		
	Магнитометр z			4,1 мгаусс					0,001 Faycc	2	6	
	Широта	-		-				-	0	4		
	Долгота	-	2 м	-			30 c	-	0	4		
	Высота	0 - 50000 м		-		(Cold	(Cold Start)	1	0,1 м	4		
Ublox neo 7m	Скорость, узл	0 - 500 м/с	0,1 м/с	-	10 Гц	1 - 0,1 c		-	-	-		
	Время, с	-	30 нс	-			1 c	_	1 c	8		
	Время, мкс	-	30 HC	30 HC	-			(Hot start)	-	0,000001 c	4	
	Fix	-	-	•				-	0	1	25	
Состояние	Номер	-	-	•	-	-	-	-	0	1	1	
Фоторезистор	Сопротивление	12-300K	-	•	28,6 Гц	35мс	-	0.9	1 Люкс	4	4	

Расчет радиолинии

с – скорость света

f – частота радио

λ – длина волны

d – максимальное расстояние между радиомодулями

ΣL – суммарные потери в пространстве

ΣР – суммарная мощность на входе в радиоприемник

P_{min} – чувствительность радиоприемника

Δ − запас мощности на входе в радиоприемник

$$\lambda = \frac{c}{f}$$

c = 299792458 m/c

 $f = 2.501 \Gamma \Gamma \mu$

 $\lambda = 0.1198690355857 \text{ M}$

d = 2500 M

 $\Sigma L = -108.368857299 \text{ dBm}$

 $\Sigma P = P_{npd} + G_{yc} - L_{npd} + G_{npd} - \Sigma L + G_{npm} - L_{npm} + P_{npm} = -73.37 \text{ dBm}$

 $P_{min} = -82 \text{ dBm}$

 $\Delta = P_{min} + \Sigma P = -8.63 \text{ dBm}$

Радиомодуль	Усилитель	Кабель	Антенна	Воздух	Антенна	Кабель	Радиомодуль
20	11	-2	0	-108,37	8	-2	20
дБм	дБ	дБ	дБи	дБ	дБи	дБ	дБм
Рпрд	G _{yc}	L _{прд}	G _{прд}	ΣL	G _{прм}	L _{прм}	Рпрм

Возможные нештатные ситуации

Nº	Нештатная ситуация	Последствия	Выход из ситуации	Способы предотвращения
1	Потеря аппарата	Полное или частичное невыполнение миссий	нет	Проверять заряд аккумуляторов перед стартом
2	Нераскрытие парашюта	Потеря аппарата	нет	Правильный расчет парашюта, качественное изготовление и грамотная укладка парашюта
3	Отказ шагового двигателя	Частичное невыполнение миссий	нет	Грамотная сборка механики
4	Отказ сервопривода	Частичное невыполнение миссий	нет	Грамотная сборка механики
5	Отказ радиомодуля	Потеря телеметрии	Использование SD носителя для резервного копирования данных	Проверка радиомодуля на земле
6	Ошибка в определении момента отделения от ракеты	Частичное невыполнение миссий	нет	Отладка и испытания