Development of a Nonlinear Finite Element Program for Seismic Analysis of Simple Structures

Fraser Allan and David de Koning April 20th, 2005

Goals

- Prediction of behaviour of complex structures under various loads
- Flexible analysis framework
- Control of entire modelling process

Method

Develop Finite Element Method (FEM) program

Develop and validate a non linear plastic hinge element

Model non linear behaviour of a multi story structure

FEM Validation

- Linear, SDOF system
- Constant, instantaneous load
- Calculated and theoretical responses compared

FEM Validation

FEM Validation

Plastic Hinge Validation

- SDOF system
- Monotonic loading
 - Expected response observed
- Cyclic loading compared to NonLin
 - Excellent correlation

Plastic Hinge Validation

Plastic Hinge Validation

Shear Wall Response

- Three story structure
 - Equal masses and story stiffness
 - Plastic hinge at base
- Push-pull analysis
 - Single linear cycle

Shear Wall Response

Limitations

- Enoch does not check units
- Damping sometimes causes convergence problems

- Validation is time-consuming
- Flexibility increases complexity

Conclusions

- Enoch analysis of linear and non linear systems is accurate
- Plastic hinge behaves as expected
- Writing custom FEM software is a feasible option

Development of a Nonlinear Finite Element Program for Seismic Analysis of Simple Structures

Fraser Allan and David de Koning April 20th, 2005