Package 'extremogram'

October 13, 2022

Title Estimation of Extreme Value Dependence for Time Series Data

Type Package

Version 1.0.2 **Date** 2015-09-24

Author Nadezda Frolova, Ivor Cribben
Maintainer Nadezda Frolova <nfrolova@ualberta.ca></nfrolova@ualberta.ca>
Description Estimation of the sample univariate, cross and return time extremograms. The package can also adds empirical confidence bands to each of the extremogram plots via a permutation procedure under the assumption that the data are independent. Finally, the stationary bootstrap allows us to construct credible confidence bands for the extremograms.
License GPL-3
Imports boot(>= 1.3-11), MASS(>= 7.3-31), parallel(>= 3.1.1)
Depends R (>= $3.1.0$)
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-08 08:48:07
R topics documented:
extremogram-package
bootconfl
bootconf2
bootconfr
extremogram1
extremogramr
permfn1
permfn2
permfnr
Index 15

2 bootconf1

extremogram-package extremogram

Description

The package estimates the sample univariate, cross and return time extremograms. It can also add empirical confidence bands to each of the extremogram plots via a permutation procedure under the assumption that the data are independent. Finally, the stationary bootstrap allows us to construct credible confidence bands for the extremograms.

Functions:

- 1. extremogram1
- 2. extremogram2
- 3. extremogramr
- 4. bootconf1
- 5. bootconf2
- 6. bootconfr
- 7. permfn1
- 8. permfn2
- 9. permfnr

Author(s)

Nadezda Frolova <nfrolova@ualberta.ca>, Ivor Cribben <cribben@ualberta.ca>

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

bootconf1

Confidence bands for the sample univariate extremogram

Description

The function estimates confidence bands for the sample univariate extremogram using the stationary bootstrap.

Usage

```
bootconf1(x, R, 1, maxlag, quant, type, par, start = 1, cutoff = 1,
   alpha = 0.05)
```

bootconf1 3

Arguments

X	Univariate time series (a vector).
R	Number of bootstrap replications (an integer).
1	Mean block size for stationary bootstrap or mean of the geometric distribution used to generate resampling blocks (an integer that is not longer than the length of the time series).
maxlag	Number of lags to include in the extremogram (an integer).
quant	Quantile of the time series to indicate an extreme event (a number between 0 and 1).
type	Extremogram type (see function extremogram1).
par	If par = 1, the bootstrap replication procedure will be parallelized. If par = 0 , no parallelization will be used.
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
alpha	Significance level for the confidence bands (a number between 0 and 1, default is 0.05).

Value

Returns a plot of the confidence bands for the sample univariate extremogram.

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

```
# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
      = 1000
quant = 0.95
type = 1
maxlag = 70
      = 3
      = 10
      = 30
1
      = 0
par
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogram1(G, quant, maxlag, type, 1, 1, 0)
bootconf1(G, R, 1, maxlag, quant, type, par, 1, 1, 0.05)
```

4 bootconf2

bootconf2	Confidence bands for the sample cross extremogram

Description

The function estimates confidence bands for the sample cross extremogram using the stationary bootstrap.

Usage

```
bootconf2(x, R, 1, maxlag, quant1, quant2, type, par, start = 1, cutoff = 1,
   alpha = 0.05)
```

Arguments

Χ	Bivariate time series (n by 2 matrix).
R	Number of bootstrap replications (an integer).
1	Mean block size for stationary bootstrap or mean of the geometric distribution used to generate resampling blocks (an integer that is not longer than the length of the time series).
maxlag	Number of lags to include in the extremogram (an integer).
quant1	Quantile of the first time series to indicate an extreme event (a number between 0 and 1).
quant2	Quantile of the second series to indicate an extreme event (a number between 0 and 1).
type	Extremogram type (see function extremogram2).
par	If par = 1, the bootstrap replication procedure will be parallelized. If $par = 0$, no parallelization will be used.
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
alpha	Significance level for the confidence bands (a number between 0 and 1, default is 0.05).

Value

Returns a plot of the confidence bands for the sample cross extremogram.

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

bootconfr 5

Examples

```
# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
      = 1000
quant = 0.95
type
maxlag = 70
      = 10
1
      = 30
par
      = 0
G1
      = extremogram:::garchsim(omega,alpha1,beta1,n,df)
      = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data = cbind(G1, G2)
extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
bootconf2(data, R, 1, maxlag, quant, quant, type, par, 1, 1, 0.05)
```

bootconfr

Confidence bands for the sample return time extremogram

Description

The function estimates confidence bands for the sample return time extremogram using the stationary bootstrap.

Usage

```
bootconfr(x, R, l, maxlag, uplevel = 1, lowlevel = 0, type, par,
   start = 1, cutoff = 1, alpha = 0.05)
```

Arguments

X	Univariate time series (a vector).
R	Number of bootstrap replications (an integer).
1	Mean block size for stationary bootstrap or mean of the geometric distribution used to generate resampling blocks (an integer that is not longer than the length of the time series).
maxlag	Number of lags to include in the extremogram (an integer)
uplevel	Quantile of the time series to indicate a upper tail extreme event (a number between 0 and 1, default is 1).
lowlevel	Quantile of the time series to indicate a lower tail extreme event (a number between 0 and 1, default is 0).

6 extremogram1

type	Extremogram type (see function extremogramr).
par	If par = 1, the bootstrap replication procedure will be parallelized. If par = 0 , no parallelization will be used.
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
alpha	Significance level for the confidence bands (a number between 0 and 1, default is 0.05).

Value

Returns a plot of the confidence bands for the sample return time extremogram.

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

```
# generate a GARCH(1,1) process
omega
       = 1
alpha
      = 0.1
        = 0.6
beta
        = 1000
uplevel = 0.95
lowlevel = 0.05
type
maxlag = 70
        = 3
R
        = 10
        = 30
1
        = 0
par
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)
bootconfr(G, R, 1, maxlag, uplevel, lowlevel, type, par, 1, 1, 0.05)
```

extremogram1

Sample univariate extremogram

Description

The function estimates the sample univariate extremogram and creates an extremogram plot.

extremogram1 7

Usage

```
extremogram1(x, quant, maxlag, type, ploting = 1, cutoff = 1, start = 0)
```

Arguments

Χ	Univariate time series (a vector).
quant	Quantile of the time series to indicate an extreme event (a number between 0 and 1).
maxlag	Number of lags to include in the extremogram (an integer).
type	Extremogram type. If type = 1, the upper tail extremogram is estimated. If type = 2, the lower tail extremogram is estimated.
ploting	An extremogram plot. If ploting = 1 , a plot is created (default). If ploting = 0 , no plot is created.
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
start	The lag that the extremogram plots starts at (an integer not greater than \max lag, default is 0).

Value

Extremogram values and a plot (if requested).

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

```
# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogram1(G, quant, maxlag, type, 1, 1, 0)
```

8 extremogram2

extremogram2	Sample cross extremogram	
--------------	--------------------------	--

Description

The function estimates the sample cross extremogram and creates an extremogram plot.

Usage

```
extremogram2(a, quant1, quant2, maxlag, type, ploting = 1, cutoff = 1,
    start = 0)
```

Arguments

а	Bivariate time series (n by 2 matrix).
quant1	Quantile of the first time series to indicate an extreme event (a number between 0 and 1).
quant2	Quantile of the second time series to indicate an extreme event (a number between 0 and 1).
maxlag	Number of lags to include in the extremogram (an integer).
type	If type=1, the upper tail extremogram is estimated - $P(Y>y,X>x)$. If type=2, the lower tail extremogram is estimated - $P(Y. If type=3, the extremogram is estimated for a lower tail extreme value in the first time series and an upper tail extreme value in the second time series - P(Y>y,X. If type=4, the extremogram is estimated for a lower tail extreme value in the second time series and an upper tail extreme value in the first time series - P(Yx).$
ploting	An extremogram plot. If ploting = 1 , a plot is created (default). If ploting = 0 , no plot is created.
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 0).

Value

Cross extremogram values and a plot (if requested).

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

extremogramr 9

Examples

```
# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
G1 = extremogram:::garchsim(omega,alpha1,beta1,n,df)
G2 = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data = cbind(G1, G2)
extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
```

extremogramr

Sample return time extremogram

Description

The function estimates the sample return time extremogram and creates an extremogram plot.

Usage

```
extremogramr(x, type, maxlag, uplevel = 1, lowlevel = 0, histogram = 1,
  cutoff = 1)
```

Arguments

x	Univariate time series (a vector).
type	Extremogram type. If type = 1, the upper tail extremogram is estimated. If type = 2, the lower tail extremogram is estimated. If type = 3, both upper and lower tail extremogram is estimated.
maxlag	Number of lags to include in the extremogram (an integer).
uplevel	Quantile of the time series to indicate a upper tail extreme event (a number between 0 and 1, default is 1).
lowlevel	Quantile of the time series to indicate a lower tail extreme event (a number between 0 and 1 , default is 0).
histogram	An extremogram plot. If histogram = 1 , a plot is created (default). If histogram = 0 , no plot is created.
cutoff	The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

10 permfn1

Value

Extremogram values, return time for extreme events, mean return time and a plot (if requested).

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

```
# generate a GARCH(1,1) process
        = 1
omega
alpha
         = 0.1
beta
         = 0.6
         = 1000
uplevel = 0.95
lowlevel = 0.05
         = 3
type
         = 70
maxlag
df
         = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)
```

permfn1

Confidence bands for the sample univariate extremogram

Description

The function estimates empirical confidence bands for the sample univariate extremogram via a permutation procedure under the assumption that the data are independent.

Usage

```
permfn1(x, p, m, type, exttype, maxlag, start = 1, alpha = 0.05)
```

Arguments

x Univariate time series (a vector).

p Quantile of the time series to indicate an extreme event (a number between 0

and 1).

m Number of permutations (an integer).

type Type of confidence bands. If type=1, it adds all permutations to the sample extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and

(1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.

permfn2

exttype	Extremogram type (see extremogram1).
maxlag	Number of lags to include in the extremogram (an integer).
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
alpha	Significance level for the confidence bands (a number between 0 and 1, default is 0.05).

Value

The empirical confidence bands are added to the sample univariate extremogram plot.

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

```
# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
quant = 0.95
exttype = 1
maxlag = 70
df = 3
type = 3
m = 10
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogram1(G, quant, maxlag, exttype, 1, 1, 0)
permfn1(G, quant, m, type, exttype, maxlag, 1, 0.05)
```

permfn2

Confidence bands for the sample cross extremogram

Description

The function estimates empirical confidence bands for the sample cross extremogram via a permutation procedure under the assumption that the data are independent.

Usage

```
permfn2(x, p1, p2, m, type, exttype, maxlag, start = 1, alpha = 0.05)
```

12 permfn2

Arguments

X	Bivariate time series (n by 2 matrix).
p1	Quantile of the first time series to indicate an extreme event (a number between $0\ \mathrm{and}\ 1$).
p2	Quantile of the second time series to indicate an extreme event (a number between $0 \ \mathrm{and} \ 1$).
m	Number of permutations (an integer).
type	Type of confidence bands. If type=1, it adds all permutations to the sample extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and (1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.
exttype	Extremogram type (see extremogram2).
maxlag	Number of lags to include in the extremogram (an integer).
start	The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).
alpha	Significance level for the confidence bands (a number between 0 and 1 , default is 0.05).

Value

The empirical confidence bands are added to the sample cross extremogram plot.

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

```
# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
      = 1000
quant = 0.95
exttype = 1
maxlag = 70
       = 3
df
type
       = 3
G1
       = extremogram:::garchsim(omega,alpha1,beta1,n,df)
       = extremogram:::garchsim(omega,alpha2,beta2,n,df)
G2
     = cbind(G1, G2)
data
```

permfnr 13

```
extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
permfn2(data, quant, quant, m, type, exttype, maxlag, 1, 0.05)
```

ı	pe	rm	١f	'n	r

Confidence bands for the sample return time extremogram

Description

The function estimates empirical confidence bands for the sample returt time extremogram via a permutation procedure under the assumption that the data are independent.

Usage

```
permfnr(x, m, type, exttype, maxlag, uplevel = 1, lowlevel = 0, start = 1,
    alpha = 0.05)
```

Arguments

Univariate time series (a vector).		
Number of permutations (an integer).		
Type of confidence bands. If type=1, it adds all permutations to the sample extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and (1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.		
Extremogram type (see extremogramr).		
Number of lags to include in the extremogram (an integer).		
Quantile of the time series to indicate a upper tail extreme event (a number between 0 and 1, default is 1).		
Quantile of the time series to indicate a lower tail extreme event (a number between 0 and 1 , default is 0).		
The lag that the extremogram plots starts at (an integer not greater than maxlag, default is 1).		
Significance level for the confidence bands (a number between 0 and 1 , default is 0.05).		

References

- 1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial dependence via the bootstrapped extremogram. Journal of Econometrics, 170(1), 142-152.
- 2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

permfnr permfnr

```
# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
       = 1000
uplevel = 0.95
lowlevel = 0.05
exttype = 3
maxlag = 70
        = 3
type
        = 10
df
        = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)
extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)
permfnr(G, m, type, exttype, maxlag, uplevel, lowlevel, 1, 0.05)
```

Index

```
bootconf1, 2, 2
bootconf2, 2, 4
bootconfr, 2, 5

extremogram (extremogram-package), 2
extremogram-package, 2
extremogram1, 2, 3, 6, 11
extremogram2, 2, 4, 8, 12
extremogramr, 2, 6, 9, 13

permfn1, 2, 10
permfn2, 2, 11
permfnr, 2, 13
```