## Отчёт по лабораторной работе

Лабораторная №2

Дерябина Мария Сергеевна

# Содержание

| 1 | Цель работы                    | 5  |
|---|--------------------------------|----|
| 2 | Задание                        | 6  |
| 3 | Выполнение лабораторной работы | 7  |
| 4 | Вывод                          | 10 |

#### **List of Tables**

## **List of Figures**

| 3.1 | Разложение скорости катера | 8 |
|-----|----------------------------|---|
| 3.2 | Траектория 1               | 8 |
| 3.3 | Траектория 2               | g |

# 1 Цель работы

Решить задачу о погоне. Вариант 37.

#### 2 Задание

- 1. Провести рассуждения и вывод дифференциальных уравнений в решении задачи о погоне, если скорость катера больше скорости лодки в 3,9 раз и лодка обнаружилась на расстоянии 19,1 км от катера.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

#### 3 Выполнение лабораторной работы

- 1. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x , а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/3, y0 (во втором случае x+k/3, y0). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:
- $\frac{x}{v} = \frac{k-x}{3.9v}$  в первом случае или
- $\frac{x}{v} = \frac{k+x}{3,9v}$  во втором. Отсюда мы найдем два значения
- $x1 = \frac{k}{4.9}$ ,
- $x2 = \frac{k}{2,9}$  задачу будем решать для двух случаев.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: радиальная скорость и тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса,  $v_r = \frac{dr}{dt}$ . Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем  $\frac{dr}{dt} = v$ . Тангенциальная скорость - это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости  $\frac{d\theta}{dt}$  на радиус:  $v_t = \frac{rd\theta}{dt}$ .

Скорость катера можно разложить на тангенциальную и радиальную (рис. 3.1)



Figure 3.1: Разложение скорости катера

Из рисунка видно:  $v_t = \sqrt{15,21v^2-v^2} = \sqrt{15,21}v$ 

Решение исходной задачи сводится к решению уравнения:  $\frac{dr}{d\theta}=\frac{r}{\sqrt{15,21}}$  с начльными условиями  $\theta_0=0, r_0=x_1$  или  $\theta_0=-\pi, r_0=x_2$ 

2. Построила траекторию движения катера и лодки для двух случаев(рис. 3.2, рис. 3.3).



Figure 3.2: Траектория 1



Figure 3.3: Траектория 2

### 4 Вывод

Я научилась решать дифференциальные уравнения с помощью python, рисовать траектории движения в декартовых и полярных координатах.