197 Final Presentation

Signals, Structures, and Systems: Mathematical Perspectives on Deep Learning Models

Amshu Bellur, Darius Mahamedi, Angelina Jordan, and Natalie Wu

June 5th 2025

Introduction (Darius)

What does ML mean?

Machine learning, at a very high level, is a collection of algorithms which learn patterns from data and make decisions or predictions without being explicitly programmed

(a) Machine Learning

(b) -Me Learning-

Introduction (Darius)

Basic Idea: The computer learns to approximate a hypothetical function given some input.

The program 'learns' to approximate the function better by updating what are called 'parameters'

On the right, we are approximating a probability distribution

Introduction (Darius)

There are three types of machine learning

- **Supervised Learning:** The model learns from labeled data, using input-output pairs to make future predictions.
- Unsupervised Learning: The model finds hidden patterns or groupings in unlabeled data without explicit guidance
- **Reinforcement Learning:** The model learns by interacting with an environment, receiving rewards or penalties to guide its behavior.

Together, they can accomplish amazing things:

How many r's in the word "strawberry"

There are 2 r's in the word "strawberry".

Claude can make mistakes.

What Is a Neural Network?

In Simple Terms:

- A neural network is a function $f: \mathbb{R}^n \to \mathbb{R}^m$, built from layers of tunable parameters (weights and biases) (Sundararajan et al., 2017; Goodfellow et al., 2016).
- It maps input data (e.g., numbers, vectors, or images) to outputs (e.g., labels or continuous values) by applying a sequence of transformations (*LeCun et al., 2015*).
- Each layer applies an affine transformation followed by a nonlinearity, gradually extracting and combining features from the data (Nielsen, 2015).
- Neural networks are a core method in machine learning, where algorithms learn patterns from data to make predictions without being explicitly programmed (Mitchell, 1997).

Simple Feedforward Neural Network

Diagram inspired by Nielsen (2015).

More about Neural Networks

 A basic neural network architecture is the Multilayer Perceptron (MLP), which consists of a composition of layers of connected units (neurons). This composition can be written as:

$$f(x) = (f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1)(x),$$

where each f_l is a **layer function** that maps inputs to outputs (Goodfellow et al., 2016).

• In an MLP, a layer function typically computes:

$$z_j = \sum_{i=1}^M w_{ji} x_i + b_j, \quad y_j = \sigma(z_j),$$

where x_i are the inputs, w_{ji} are the weights, b_j is a bias term, and σ is a nonlinear activation function (e.g., ReLU). Thus, each layer in the composition applies an affine transformation followed by a nonlinearity (*Nielsen*, 2015).

• The network is trained end-to-end to approximate a function $y = f(x; \theta)$, where θ represents the learnable parameters (weights and

Why Are Neural Networks Important?

- Neural networks are the core building blocks of deep learning (LeCun et al., 2015).
- Deep learning uses large neural networks with many layers to learn complex patterns in data (Goodfellow et al., 2016).
- These networks can automatically extract useful features from raw input — such as images, audio, or text (Krizhevsky et al., 2012).
- This ability has led to breakthroughs in areas like computer vision, natural language processing, and robotics (Vaswani et al., 2017).

Attention

- Attention is building contextual representation based on the words around it
- Each layer of the transformer weighs and combines representations from other relevant tokens in the context from the previous layer to build the representation for tokens in the current layer
- Words get associated to vectors, the vectors are compared against each other with the matrices Q, K, and V. From that a new sequence is produced which captures some of the relationships between the initial vectors
- Attention = softmax($\frac{QK^T}{\sqrt{d_k}}$)V

Transformers

- It is the standard architecture for building larger models
- Each transformer block is made up of an attention layer and an MLP layer
- Transformers fundamentally changing the field of speech and language processing

Attribution Methods in Neural Networks

What Are Attribution Methods?

- Attribution methods explain which input features contribute most to a model's prediction.
- They help build trust, transparency, and diagnose models.
- \bullet We'll test Saliency, Gradient \times Input, Integrated Gradients, and Shapley Values.

Reference: Jethani et al. (2021). Fast Shapley Explanations for Neural Networks with Deep Approximate Shapley Propagation.

Saliency Analysis

Formula:

$$R_i(x) = \left| \frac{\partial S(x)}{\partial x_i} \right|$$

S(x): model output x_i : input feature i

Description: Measures how much the output changes when feature x_i changes slightly.

Reference: Simonyan et al. (2014)

Saliency Analysis: Implementation Steps

- Set model to evaluation mode.
- Enable gradient tracking on the input.
- Perform a forward pass to get output score S(x).
- Compute the gradient of that score with respect to each input x_i .
- Take the absolute value of the gradient as the attribution score.

Gradient × Input

Formula:

$$R_i(x) = \frac{\partial S(x)}{\partial x_i} \cdot x_i$$

S(x): model output

 x_i : value of input feature i

 $\frac{\partial S(x)}{\partial x_i}$: gradient of the output with respect to x_i

Description: Multiplies each feature by how sensitive the output is to it.

Reference: Shrikumar et al. (2017); Ancona et al. (2018)

Gradient × Input: Implementation Steps

- Compute the gradient of the model's output with respect to input.
- Multiply each gradient value by its corresponding input value.
- The result reflects each input's contribution to the output.

Integrated Gradients

Formula:

$$R_i(x) = (x_i - \bar{x}_i) \cdot \int_{\alpha=0}^1 \frac{\partial S(\tilde{x})}{\partial \tilde{x}_i} \Big|_{\tilde{x} = \bar{x} + \alpha(x - \bar{x})} d\alpha$$

 x_i : input feature i

 \bar{x}_i : baseline value for feature i

lpha: interpolation factor between 0 and 1

 \tilde{x} : interpolated input between baseline and input

 $S(\tilde{x})$: model output

Description: Averages gradients along the path from a baseline to the actual input.

Baseline: A reference input used for comparison, typically representing the absence of features (e.g., a zero vector).

Reference: Sundararajan et al. (2017)

Integrated Gradients: Implementation Steps

- Choose a baseline input \bar{x} (e.g., all zeros).
- Interpolate inputs between baseline and actual input.
- At each step, compute gradients of output w.r.t. input.
- Average the gradients and multiply by $(x \bar{x})$.

Shapley Values

Formula:

$$R_i = \sum_{S \subseteq P \setminus \{i\}} \frac{|S|!(|P|-|S|-1)!}{|P|!} \left[\hat{f}(S \cup \{i\}) - \hat{f}(S) \right]$$

P: set of all input features

S: subset of features excluding i

 $\hat{f}(S)$: model output using only the features in S

 $\sum_{S\subseteq P\setminus\{i\}} \frac{|S|!(|P|-|S|-1)!}{|P|!}$: all possible subsets S

Description: Averages the added value of feature i across all possible subsets, weighted fairly.

Reference: Lundberg and Lee (2017)

Shapley Values: Implementation Steps

- Define a baseline input (e.g., zeros).
- Sample many subsets S of features without i.
- For each subset, compute model output with and without feature i.
- Compute the difference and weight it based on subset size.
- Average the results to estimate the contribution of feature i.

Deep Approximate Shapley Propagation (DASP)

Formula:

$$\mathbb{E}[R_i] = \frac{1}{N} \sum_{k=0}^{N-1} \mathbb{E}_k[R_{i,k}]$$

$$\mathbb{E}_k[R_{i,k}] = \mathbb{E}_{S \subseteq P \setminus \{i\}, |S| = k}[f(x_{S \cup \{i\}})] - \mathbb{E}_{S \subseteq P \setminus \{i\}, |S| = k}[f(x_S)]$$

N: number of subset sizes used

k: number of features in subset S

P: set of all features

 $f(x_S)$: model output using features in S

Description: Approximates Shapley values using random subsets and uncertainty propagation.

Reference: Jethani et al. (2021)

DASP: Implementation Steps

- Represent features as probabilistic distributions.
- Propagate these through layers using uncertainty propagation.
- Estimate marginal contributions without enumerating all subsets.
- Aggregate contributions to compute approximate Shapley values.

Example of Implementing Methods

Model Input

$$\mathtt{input} = [0.5, -0.5]$$

Attribution Results

Method	Feature 1	Feature 2
Saliency	0.15	0.02
Gradient imes Input	0.12	-0.03
Integrated Gradients	0.10	-0.01
Shapley Values	0.08	0.00

Definition We can take a *residual neural network* to be a neural network where the neuron activation functions are given as follows:

$$\begin{cases} x(k+1) = x(x) + \omega(k) \cdot \sigma(a(k)x(k) + b(k)) \\ x(0) = x \end{cases}$$
 Here, k indicates the layer of the neuron, and $\sigma(\cdot)$ is a Lipschitz function.

Note that

$$a(k)x(k) + b(k)$$

is an affine transformation.

We can use this to approximate a derivative:

$$\begin{cases} \dot{x} = \omega(t) \cdot \sigma(a(t)x(t) + b(t)) \\ x(0) = x \end{cases}$$

Aside: After each layer in a transformer, we are left with an output vector. We assume that after each layer, the output is *normalized* so the output vector has norm one

Consequence: For simplicity, we can take the data/inputs to be on \mathbb{S}^{d-1} throughout, where d is the original size of our input.

This means we can think of a transformer as a "flow map" on $(\mathbb{S}^{d-1})^n$.

We get the dynamics

$$\dot{x}_i(t) = P_{x_i(t)}^{\perp}(\frac{1}{Z_{\beta,i}(t)}\sum_{j=1}^n e^{eta < Q(t)x_i(t), \ K(t)x_j(t) > V(t)x_j(t)}$$

where

$$P_x^{\perp} y = y - \langle x, y \rangle x$$

is the projection of $y \in \mathbb{R}^d$ onto $T_x \mathbb{S}^{d-1}$ and $Z_{\beta,i}(t) > 0$ is

$$Z_{\beta,i}(t) = \sum_{k=1}^n e^{\beta < Q(t)x_i(t), \ K(t)x_k(t) >}$$

Some Examples

Lets say Q = K = V = Id, let $\beta = 1$ and

- $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Then $\langle x_1, x_2 \rangle = \langle x_2, x_1 \rangle = 0$, and $\langle x_1, x_1 \rangle = \langle x_2, x_2 \rangle = 1$. We have $Z_{1,1}(t) = Z_{1,2}(t) = e + 1$.

•
$$\dot{x}_1(t) = P_{x_1(t)}^{\perp}(\frac{1}{1+e} \cdot (e \cdot x_1(t) + x_2(t))) = P_{x_1(t)}^{\perp}(\left(\frac{\frac{e}{1+e}}{\frac{1}{1+e}}\right))$$

•
$$\dot{x}_2(t) = P_{x_2(t)}^{\perp}(\frac{1}{1+e} \cdot (x_1(t) + e \cdot x_2(t))) = P_{x_2(t)}^{\perp}(\begin{pmatrix} \frac{1}{1+e} \\ \frac{e}{1+e} \end{pmatrix})$$

$$\begin{split} \bullet \ \, \dot{x}_1(t) &= P_{x_1(t)}^{\perp}(\left(\frac{\frac{e}{1+e}}{1+e}\right)) = \left(\frac{\frac{e}{1+e}}{1+e}\right) - < \left(\frac{1}{0}\right), \left(\frac{\frac{e}{1+e}}{1+e}\right) > \left(\frac{\frac{e}{1+e}}{1+e}\right) \\ &= \left(\frac{\frac{e}{1+e}}{1+e}\right) - \frac{e}{1+e} \left(\frac{\frac{e}{1+e}}{1+e}\right) = \left(\frac{\frac{e}{(1+e)^2}}{\frac{1}{(1+e)^2}}\right) \\ \bullet \ \, \dot{x}_2(t) &= P_{x_2(t)}^{\perp}(\left(\frac{\frac{1}{1+e}}{\frac{e}{1+e}}\right)) = \left(\frac{\frac{1}{1+e}}{\frac{e}{1+e}}\right) - < \left(\frac{0}{1}\right), \left(\frac{\frac{1}{1+e}}{\frac{1+e}{1+e}}\right) > \left(\frac{\frac{1}{1+e}}{\frac{e}{1+e}}\right) \\ &= \left(\frac{\frac{1}{1+e}}{\frac{e}{1+e}}\right) - \frac{e}{1+e} \left(\frac{\frac{1}{1+e}}{\frac{e}{1+e}}\right) = \left(\frac{\frac{1}{(1+e)^2}}{\frac{e}{(1+e)^2}}\right) \end{split}$$

Multi-Headed Attention

$$\dot{x}_i(t) = P_{x_i(t)}^{\perp}(\frac{1}{Z_{\beta,i}(t)}(\sum_{h=1}^{H}\sum_{j=1}^{n}e^{\beta < Q_h(t)x_i(t), K_h(t)x_j(t) >}V_h(t)x_j(t)))$$

Full Transformer

$$\dot{x}_i(t) = P_{x_i(t)}^{\perp}(\frac{1}{Z_{\beta,i}(t)}(\sum_{h=1}^H \sum_{j=1}^n e^{\beta < Q_h(t)x_i(t), K_h(t)x_j(t) >} V_h(t)x_j(t)) + \omega(t)\sigma(a(t)x_i(t) + b(t)))$$

Tragically, we can generalize the previous tools to get a Partial Differential Equation.

Let
$$\dot{x}_i(t) = \chi[\mu(t)](x_i(t))$$

Where $\mu(t,\cdot) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}(\cdot)$
 $\chi[\mu] : \mathbb{S}^{d-1} \to T\mathbb{S}^{d-1}$ is given by $\chi[\mu](x) = P_x^{\perp}(\frac{1}{Z_{\beta,\mu}(x)} \int e^{\beta < x,y>} y \ \mathrm{d}\mu(y))$
with $Z_{\beta,\mu}(x) = \int e^{\beta < x,y>} \mathrm{d}\mu(y)$ The evolution of $\mu(t)$ is governed by
$$\begin{cases} \partial_t \mu + \mathrm{div}(\chi[\mu]\mu) = 0, \ \text{on } \mathbb{R}_{\geq 0} \times \mathbb{S}^{d-1} \\ \mu|_{t=0} = \mu(0), \ \text{on } \mathbb{S}^{d-1} \end{cases}$$

The above is called the continuity equation, and it has been solved for simple cases (i.e., Q = K = V = Id), and we pursued solving through a spherical harmonic expansion:

$$\mu(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta,\phi)$$

Amshu and Natalie's Project

Transcoder Over Transformer

Why Transcoder Over Transformer

Transformers

- It is dense which leads to containing a lot of information
- Having too much depth makes it hard to find those connections
- We don't know why certain words are making certain connections because there's too much going on

Transcoder

- Solution: Transcoder
- Helpful for interpreting the mechanism of transformers
- It is a simple neural network that has sparse entries
- Easier to analyze connections because it's less dense
- We are not only defining the object, but the relationship grammatically
- It is making connections to the other words in the sentence

Reference: Dunefsky et al. (2024)

Transcoder Diagram

Reference: Ameisen, Lindsey, Pearce et al. (2025)

Pseduocode

1. Load GPT-2 Model and Tokenizer

 $[1] \ \textit{Initialize} \ \textbf{tokenizer} \leftarrow \textbf{LoadGPT2Tokenizer} \ \textit{Initialize} \ \textbf{gpt2.node1} \leftarrow \textbf{Load-GPT2Model}$

2. Define a Simple 2-Layer Neural Network

[1] Function SinpleNN(input.dim, hidden.dim, output.dim) Initialize ¥1 ← Random Weightsinput.dim, hidden.dim Initialize ±1 ← Zeroshiden.dim Linitialize ±2 ← Random Weightshidden.dim, output.dim Initialize ±2 ← Zerosoutput.dim Return Neural Network with parameters (¥11, ±1, ¥2, ±2) Coll neural.net ← SimpleNN gpt2.embedding.dim, hidden.layer.size, gpt2.embedding.dim, hidden.layer.size, gpt2.embedding.dim, hidden.layer.size, gpt2.embedding.dim

3. Define a Loss Function

[1] Function Loss(predicted.target, true_target, hidden.values, lambda_penalty)
Difference_from_GPT2 ← MeanSquaredErrorpredicted.target, true_target ←
lambda_penalty × SumOlSquareshidden_values Return Difference_from_GPT2
+ Penalty_for_large_hidden_values

4. Train the Neural Network

[1] step from 1 to 10 Choose a word word Tokenize input.tokens ← tokenizer.encodeword Get GPT-2 activations gpt2.outputs ← gpt2.model.forwardinput.tokens Extract input vector input.vector ← GetLayerActivationgpt2.outputs, in-put.layer.index Extract larget vector target.vector ← GetLayerActivationgpt2.outputs, intravel.lawer.index

Forward pass through neural network hidden_output ← ReLU(input_vector ⋅ W1 + b1) predicted_target ← (hidden_output ⋅ W2 + b2)

 $Calculate\ Loss$ current_loss \leftarrow Losspredicted_target, target_vector, hidden_output, $lambda_penalty$

Backpropagate and Adjust Network Weights MinimizeLossneural.net, current_loss

5. Do Coreference Resolution

[1] Define pronoun pronoun ← "it" Define possible meanings possible_meanings ← ["cat", "mat", "dog", ...]

Tokenize pronoun pronoun.tokens ← tokenizer.encodepronoun Get GPT-2 output for pronoun pronoun.gpt2.output ← gpt2.model.forwardpronoun.tokens Get GPT-2 vector of the pronoun pronoun.vector ← GetLastLayerEmbeddingergenoun.pst2.output

each meaning in possible meanings Tokenize meaning meaning.tokens \leftarrow tokenizer.encodemeaning Get GPT-2 output for meaning meaning.gpt2.output

 $\leftarrow \texttt{gpt2}.model.forward \texttt{meaning_tokens} \ \textit{Get} \ \textit{GPT-2} \ \textit{vector} \ \textit{of} \ \textit{the} \ \textit{meaning_wector}$

← GetLastLayerEmbeddingmeaning_gpt2_output

Loss Function

- Tells us how well our model is performing compared to a known model
- Act as a feedback mechanism
- Helps the model learn and improve over time
- Loss Function
- $||NN_i(\sum_{j=1}^i \vec{x_j}) TB_i(x_i)|| + \lambda ||L(NN_i(x_i))||$

Reference: Ameisen, Lindsey, Pearce et al. (2025)

Results

- We were unable to fully complete the code to work with all possible sentence inputs
- We hope to work more on it in the future
- We want to hopefully make it better one day.

Future

- Transformers outperform encoder-decoder models in translation
- Attention improves focus on relevant words
- Used in image generation, music, drug design
- Future: smarter assistants, tutoring systems, semantic robotics

Reference: Vaswani, Shazeer, Parmar et al. (2017)

Thank you!

Thank you, NordVPN

References

- Sundararajan, M., Taly, A., Yan, Q. (2017). Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference on Machine Learning (ICML).
- Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.
- LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. *Nature*, 521(7553), 436–444.
- Nielsen, M. (2015). Neural Networks and Deep Learning. [neuralnetwork-sanddeeplearning.com](http://neuralnetworksanddeeplearning.com)
- Mitchell, T. M. (1997). *Machine Learning*. McGraw-Hill.
- Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. NeurIPS.
- Vaswani, A., et al. (2017). Attention is all you need. *NeurIPS*.

References

- Jethani, N., Sundararajan, M., Wang, D., Varshney, K. R. (2021). Fast Shapley Explanations for Neural Networks with Deep Approximate Shapley Propagation. NeurIPS.
- Simonyan, K., Vedaldi, A., Zisserman, A. (2014). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps.
- Sundararajan, M., Taly, A., Yan, Q. (2017). Axiomatic Attribution for Deep Networks. ICML.
- Lundberg, S. M., Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. NeurIPS.
- Ancona, M., Ceolini, E., Öztireli, C., Gross, M. (2018). Towards better understanding of gradient-based attribution methods for Deep Neural Networks. ICLR.
- Shrikumar, A., Greenside, P., Kundaje, A. (2017). *Learning Important Features Through Propagating Activation Differences*.

References

- Dunefsky, J. Chlenski, P (2024). Transcoders Find Interpretable LLM Feature Circuits. NeurIPS.
- Amesisen, E., Lindsey, J., Pearce, A, more (2025). Circuit Tracing: Revealing Computational Graphs in Language Models. Anthropic.
- Vaswani, A., Shazeer, N., Parmar, N, more (2017). Attention Is All You Need. NIPS