

Aufgaben zu Riemannschen Flächen

2. Blatt - Übung am Montag, 31.10.2016

Aufgabe 5: Seien $\mathcal F$ und $\mathcal G$ Garben auf dem topologischen Raum X und $\alpha:\mathcal F\to\mathcal G$ ein Garbenmorphismus. Zeigen Sie, dass die Definition

$$\ker(\alpha): U \mapsto \ker\left(\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)\right)$$

eine Garbe liefert, die wir mit $\ker \alpha$ bezeichnen.

Aufgabe 6: Vervollständigen Sie das "Nicht"-Beispiel 6) der Vorlesung: Für $X=\mathbb{C}$ ist die Prägarbe

$$\mathcal{P}: U \mapsto \left(\mathsf{Bild}\left(\frac{d}{dz} : \mathcal{O}_X(U) \to \mathcal{O}_X(U) \right) \right)$$

keine Garbe.

Aufgabe 7: Sei X eine Riemannsche Fläche. Zeigen Sie, dass

$$\underline{2\pi i \mathbb{Z}} = \ker \left(\exp : \mathcal{O}_X \to \mathcal{O}_X^{\times} \right)$$

gilt, wobei \exp der durch $\exp(f)=e^f$ induzierte Garbenmorphismus sei und $2\pi i \mathbb{Z}$ die konstante Garbe zur abelschen Gruppe $2\pi i \mathbb{Z}$ ist.

Aufgabe 8: Sei X ein topologischer Raum und A eine abelsche Gruppe. Zeigen Sie, dass für $x \in X$

$$\underline{A}_x = A$$

kanonisch gilt.