TRIGONOMETRY

Advisory sesion 2

Tomo 1 y 2

1. Simplifique:

$$M = \sqrt{\frac{27^{\circ} + 709}{\frac{\pi}{10}} \text{rad} - 8^{\circ}}$$

RESOLUCIÓN

Recordar:

 $180^{\circ} < > 2009 < > \pi \text{ rad}$

Convertiremos todo a un solo sistema (sexagesimal):

$$M = \sqrt{\frac{27^{\circ} + 709 \left(\frac{9^{\circ}}{109}\right)}{\frac{\pi}{10} \text{rad} \left(\frac{180^{\circ}}{\pi \text{rad}}\right) - 8^{\circ}}}$$

$$M = \sqrt{\frac{27^{\circ} + 63^{\circ}}{18^{\circ} - 8^{\circ}}} = \sqrt{\frac{90^{\circ}}{10^{\circ}}}$$

$$M = \sqrt{9}$$

$$\therefore$$
 M = 3

2.

Reduzc
$$G = \frac{\frac{2\pi C}{5} + 160R}{\frac{\pi S}{3}}$$
, siendo

S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN

Recordar:

$$S = 9n ; C = 10n ; R = \pi n/20$$

REEMPLAZANDO:

$$\mathsf{G} = \frac{\frac{2\pi(10n)}{5} + 160\left(\frac{\pi n}{20}\right)}{\frac{\pi(9n)}{3}}$$

$$G = \frac{2\pi(2)n + 8\pi n}{3\pi n}$$

$$G = \frac{12\pi n}{3\pi n}$$

Del gráfico, calcule el área del sector AOB, siendo el área del sector COD 32 m².

RESOLUCIÓN

Recordar:

$$\frac{S_{\triangleleft COD}}{S_{\triangleleft AOB}} = \frac{R_1^2}{R_2^2}$$

Por propiedad:

$$\frac{S_{\triangleleft AOB}}{S_{\triangleleft COD}} = \frac{(2+1)^2}{(2)^2}$$

$$\frac{S_{\triangleleft AOB}}{32m^2} = \frac{9}{4} \Rightarrow S_{\triangleleft AOB} = \frac{32 \times 9}{4}$$

$$\therefore S_{\triangleleft AOB} = 72 m^2$$

4. En el triángulo ABC rectángulo(${}^{4}C=90^{\circ}$), se cumple que $\frac{\text{secA}}{\text{senB}}=\frac{3}{2}$, efectúe:

$$E = \sqrt{3}cscA + tan^2B$$

RESOLUCIÓN

Recordar:

$$csc\theta = \frac{H}{CO}$$

$$\frac{\frac{c}{b}}{\frac{b}{c}} = \frac{3}{2} \quad \Rightarrow \quad \frac{c^2}{b^2} = \frac{3}{2} \quad \Rightarrow \quad \frac{c}{b} = \frac{\sqrt{3}}{\sqrt{2}}$$

Luego:
$$\sqrt{3}^2 = a^2 + \sqrt{2}^2$$
 | $a = 1$

Piden:

$$E = \sqrt{3} \left(\frac{\sqrt{3}}{1} \right) + \left(\frac{\sqrt{2}}{1} \right)^2 \rightarrow E = 3 + 2$$

∴ E = 5

5. Efectúe:

$$P = \left(15\cos 53^{\circ} + 5\sqrt{3}\cot 30^{\circ} + 4\tan^2 60^{\circ}\right)^{\sin 30^{\circ}}$$

RESOLUCIÓN

REEMPLAZANDO:

$$P = \left(15.(\frac{3}{5}) + 5\sqrt{3}.(\sqrt{3}) + 4(\sqrt{3})^2\right)^{1/2}$$

$$P = (9 + (5)(3) + (4)(3))^{1/2}$$

$$P = (36)^{1/2}$$

$$P = \sqrt{36}$$

6. Del gráfico, hallar el valor de x en términos de n, θ y ø.

Recordar:

RT (
$$\theta$$
) = $\frac{\text{LO QUE QUIERO}}{\text{LO QUE TENGO}}$

RESOLUCIÓN

Hallamos y en términos de n y θ .

$$\frac{y}{n} = \frac{H}{CO} = \csc\theta$$

Hallamos x en términos de y:

$$\frac{x}{y} = \frac{H}{CO} = \csc \emptyset$$

$$\rightarrow$$
 x = y.csc \emptyset

Reemplazando **y** en **x**:

$$\therefore \mathbf{x} = \mathbf{n}. \csc \theta . \csc \emptyset$$

7. Si un ángulo cumple con:

$$54s-2c = 25^{32}$$

Determine la medida en grados sexagesimales, siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN

Recordar:

$$S = 9n ; C = 10n ; R = \frac{\pi n}{20}$$

Reemplazando:

$$5^{4(9n)-2(10n)} = (5^2)^{32}$$

$$5^{16n} = 5^{64}$$

$$n = 4$$

Piden:
$$S = 9(4) = 36$$

Por lo tanto la medida del ángulo

en el sistema sexagesimal es: **36°**

8. Si $tan\theta = \frac{12}{5}$, donde θ es un ángulo

Teorema de Pitágoras en ABC: $H^2 = 12^2 + 5^2 \Rightarrow H = 13$

Teorema de Pitágoras en ABD: $y^2 = 12^2 + (13 + 5)^2$ \Rightarrow $y = \sqrt{468} = 6\sqrt{13}$

Piden: Q =
$$12\sqrt{13}\left(\frac{12}{6\sqrt{13}}\right)$$
 : Q = 24

9. En el triángulo rectángulo ABC se tiene inscrita una semicircunferencia de radio R. Determine la longitud del lado \overline{AC} en términos de R y α .

RESOLUCIÓN

Recordar:

RT (
$$\alpha$$
) = LO QUE QUIERO LO QUE TENGO

Trazamos: OP_AB y OT_BC

$$\triangle APO: \frac{AO}{R} = \sec \alpha \implies AO = R.\sec \alpha$$

$$\triangle OTC: \frac{OC}{R} = \csc \alpha \implies OC = R.\csc \alpha$$

$$\Rightarrow$$
 AC = R.sec α + R.csc α

$$\therefore AC = R(\sec\alpha + \csc\alpha)$$

10. Dos hermanos heredan un terreno que tiene la forma de un triángulo ABC como se muestra en la figura. Para repartirse el terreno ambos hermanos acuerdan dividirlo en dos partes triangulares y trazan una línea divisoria desde B hacia C. Dado que el hermano mayor se quedará con la parte de área s_1 , y el hermano menor con s_2 ? Del

gráfico, determine $\frac{s_1}{s_1}$. **Recordar:** 37° 80 km 88 km

RESOLUCIÓN

Calculando las áreas As

$$S_1 = \frac{(80)(a)}{2} \text{ sen } 37^\circ \Rightarrow S_1 = (40a) \left(\frac{3}{5}\right)$$

$$S_1 = 24a \text{ km}^2$$

$$S_2 = \frac{(88)(a)}{2} \text{sen} 30^\circ \Rightarrow S_2 = (44a) \left(\frac{1}{2}\right)$$

$$S_2 = 22a \text{ km}^2$$

Piden:
$$\frac{S_1}{S_2} = \frac{24a}{22a} \implies \frac{S_1}{S_2} = \frac{12}{11}$$