Indexing Algorithms and Data Structures

David Boyuka, daboyuka@ncsu.edu North Carolina State University March 31, 2015

What Is an Index?

- A data structure to speed up certain types of access to a dataset vs. a sequential scan
 - Minimizes costly access to slow storage (disk, RAM?)
- Data consists of "records" (sometimes "documents")
 - Generally, each record has an ID, known as an "RID"
- Data has "attributes" ("columns," "variables," "fields")
 - Each record may have a value for each attribute
 - Attributes in semi-structured data sparsely cover records

Where Are Indexes* Used?

- Database Management Systems (DBMSs)
 - Relational
 - Distributed
 - Key-value store
- Web and Document Search
- File Systems

Overview

"Traditional" DBMS indexes

Bitmap indexes

Inverted indexes

Overview

- "Traditional" DBMS indexes
- Bitmap indexes
- Inverted indexes

"Traditional" DBMS Indexes

B+ Tree Index

- Based on the B-tree search tree
- Fast range and equality queries

Hash Index

- Based on the hash table
- Very fast equality queries

Both map search keys to matching record(s)

The B+ Tree

- Perfectly-balanced search tree with a wide fan-out
 - Allows search over some record attribute ("search key")
 - "Order" = b adjustable, each node has ceil(b/2) to b keys
- Leaf nodes hold *k* search keys, *k*+1 records
 - (record i) < (key i) ≤ (record i+1)
 - Leaf nodes connected via linked list
- Internal nodes have k search keys, k+1 child pointers
 - (subtree i) < (key i) ≤ (subtree i+1)

B+ Tree Example

<u>Linked list pointers between leaves</u>

Inserting a Record into a B+ Tree

- 1. Find the leaf where the record belongs
- 2. Add the record and corresponding search key
- 3. If node has $\leq b$ records, done!
- 4. Else:
 - a. Split the node, add the new half to the parent node
 - b. Push the least key of the greater half to the parent
 - c. If the parent has $\leq b$ records, done!
 - d. Else, repeat from step 4a for the parent
 - e. If the root splits, add a new root with two children

Deleting a Record from a B+ Tree

- 1. Find the leaf containing the record
- 2. Delete the record and the corresponding key
- 3. If node has $\geq \text{ceil}(b/2)$ records, done!
- 4. Else:
 - a. Try stealing a key/record from an adjacent sibling
 - b. If too few keys in all siblings, merge with a sibling
 - c. If merged, repeat from 3 for parent node

(We'll skip the example and move on to other topics)

Clustered vs. Non-clustered B+ Tree

Non-clustered:

 Only pointers to records are stored, with full data stored elsewhere on disk

Clustered:

- Full records are stored directly in the leaves
- Maximum of one clustered index per table/dataset

B+ Trees: Pros and Cons

- + Supports both range and equality queries
- + Inserts/deletes inexpensive (usually just modify 1 leaf)
- + Allows search key-sorted scan of data via linked leaves
- May use more seeks vs. other options
- May use more storage vs. other options
- Expensive to combine queries over multiple B+ trees
 (e.g. X>10 AND Y<20), as record IDs are unsorted
- Good for: high-cardinality attributes, value-sorted record listing, frequent updates

The Hash Index

- Essentially a hash table on disk (or other slow medium)
- Key/record pairs stored in buckets (one per disk block)
 - Overflow buckets via linked list as needed

Inserting a Record into a Hash Index

- Hash record to find the bucket, insert key/record pair
 - Add new overflow bucket if necessary
 - Overflow hurts performance
- Use "dynamic hashing" to grow hash table as needed
- Example: "extensible hashing"
 - In-memory bucket pointer array, double in size as needed
- Example: "linear hashing"
 - Add single new bucket when avg. records/bucket is high

Hash Index: Pros and Cons

- + ~1 seek per query (if overflow is limited), better than B+ tree
- + Fewer key compares than B+ tree, usually
- + Inserts/deletes inexpensive (usually just modify 1 bucket)
- Only equality queries supported
- May use more storage vs. other options
- Good for: faster equality queries, expensive key compares (e.g., long strings), frequent updates

Summary: Traditional DBMS Indexes

B+ Trees

- Range/equality queries
- Inexpensive updates
- Value-sorted record access
- Storage space and seeks/query not the best

Hash Indexes

- Fast equality queries, but no range queries
- Inexpensive updates
- Better on seeks, still not best storage space

Overview

"Traditional" DBMS indexes

Bitmap indexes

Inverted indexes

Bitmap Indexes

- Less common than B+ trees in DBMSs, but popular in certain applications, e.g., indexing scientific data
- Idea: assume r records and k attribute values $a_1, ..., a_k$
 - Build k bitmaps $b_1, ..., b_k$ of length r bits each
 - Bit i in b_j is set iff record i has attribute value a_j

(RID, value)		
(1, X)	Attrib. value	Bitmap
	X	1010
$(2, Y) \longrightarrow$	Y	0100
(3, X) (4, Z)	Z	0001

Benefits of Bitmap Indexing

- B+ trees/hash indexes allow query on single attributes*
- Multi-dimensional indexes exist (R tree, etc.), but quickly succumb to the "curse of dimensionality"
 - Combinatorial explosion...
- Bitmap indexes are built on single attributes, but can be harnessed to answer multi-attribute queries
- Also, bitmap indexes may use less storage than B+ trees

Querying a Bitmap Index (One Variable)

- 1. Read the bitmaps for values matching the query
- 2. Compute the bitwise OR of these bitmaps
- 3. (Optionally) convert final bitmap to RIDs

	Attrib. value	Bitmap	
Range query:	X	1010	1010 0100
var ∈ [X, Y]	Y	0100	= 1110
	Z	0001	

Dataset (RID, value): (1, X), (2, Y), (3, X), (4, Z)

Querying a Bitmap Index (Multivariate)

Example: (temperature > 90) AND (pressure < 1000)

- 1. Evaluate single-variable constraints to bitmaps, as last slide
- 2. Combine bitmaps via bitwise operations via expression tree
- 3. (Optionally) convert final bitmap to RIDs

Updating a Bitmap Index

- Naïve inserts/deletes in bitmap indexes would be costly
 - Inserting/deleting a bit in the middle shifts many bits
 - Bitmaps are fixed length, would need to expand/shrink
 - Bitmap compression exacerbates the situation
- To mitigate, manage where how record RIDs
 - New records have increasing RIDs, always append a bit
 - Deleted record RIDs are not reused; bit position remains
- Still, bitmaps best with read-mostly/bulk-append data

3 Key Techniques in Bitmap Indexing

Compression

Reduces index size, can speed up query

Encoding

- Trades index size, query I/O, query CPU time, etc.

Binning

- Enables indexing of high-cardinality attributes
- These techniques are orthogonal, can be combined

Compressing Bitmap Indexes

- When an attribute's distinct value count is high (i.e., high cardinality), bitmaps become storage-heavy
 - However, they also become sparse (i.e., mostly o-bits)
 - Compression can give sublinear growth with cardinality
- Popular compression: Word-Aligned Hybrid (WAH)
 - Run-length encoding of o-bit/1-bit runs
 - All operations aligned to machine words, for speed
 - AND/OR/NOT possible on WAH without decompression

WAH Bitmap Compression

- Bitmap compressed as a series of 32-bit "words"
 - First bit is a "fill word flag"; o→literal word, 1→fill word
 - Literal word: the remaining 31 bits are used verbatim
 - **Fill word**: let f = second bit and the c = the last 30 bits. The fill word represents a (31•c)-long run of f-bits

Bitmap Index Encodings

- A bitmap index with one bitmap per attribute value is considered "equality encoded"
- Other encoding options exist:
 - Range encoding: bit *i* in b_j set iff record *i* value ≤ a_j
 - Interval encoding: similar to range, more compact
 - **Binary encoding**: only ceil($\log k$) bitmaps, next slide
 - No longer a 1-1 association between bitmaps and values
- Recover per-attribute bitmaps via bitwise operations

Bitmap Index Encoding Examples

Why Use Other Bitmap Encodings?

- Each bitmap encoding optimizes for some property
- Range encoding: fast range queries
 - Range query $[a_i, a_j) = b_j b_i$ (at most 2 bitmaps needed)
 - However, index compression becomes less effective
- Interval encoding: similar to range, fewer bitmaps
- **Binary encoding**: fewer bitmaps = reduced storage
 - However, every query requires reading most bitmaps

Binning for Bitmap Indexes

- Suppose we want to index a floating-point attribute
 - Need one per unique value, which is intractable
- Idea: collect values into "bins," use one bitmap per bin
 - Each "bin" groups together a range of values

Types of Binning

- **Equal-width:** each bin has a fixed width *k*
 - Easy to compute, sometimes too rigid
- **Equal-frequency:** adjust *k* bins to each match approx. equal number of records
 - Guarantees balanced binning
 - Requires sampling and/or knowledge of data distribution
- **Precision:** round values to k significant digits
 - Easy to compute, bin widths adaptive to scale of data
 - May allocate too much precision near o

The Cost of Binning

- Binning greatly reduces effective data cardinality
 - Improves bitmap compression, query performance
- However: exact query results no longer possible
 - If a query partially covers a bin, which records match?
- Option 1: Accept error in results
 - Fast, but (bounded) error in results
- Option 2: Do "candidate checks" on uncertain records
 - Exact results, but costly random access

Summary: Bitmap Indexing

- Bitmap indexes offer an alternative to traditional DBMS indexes for efficient multi-attribute querying
 - Bitmaps may use less storage, thanks to compression
 - Bitmap encoding can reduce storage, speed up query
 - Binning allows bitmap indexing on high-cardinality data
- + Fast equality and range queries + multivariate queries
- + Low storage space
- Frequent inserts/deletes are difficult
- High cardinality data needs binning, with its trade-offs

Overview

"Traditional" DBMS indexes

Bitmap indexes

Inverted indexes

Inverted Indexes

- Most commonly used in text/document search engines
- Maps words to containing documents via a list of RIDs
 - This model differs a bit from attributes/records
- Supports "full text" search queries: which documents contain certain words?

 Inverted Index

Document 1: "to be or not to be"

Document 2: "to thine own self be true"

Querying an Inverted Index

- 1. Read the RID lists for each word involved in the query
- 2. Use list intersections/merges for AND/OR between words

Updating an Inverted Index

- Has some similar issues to bitmap indexes
 - RID insert/delete in the middle of a list would shift RIDs
- However, inverted lists needn't be (completely) sorted
 - Inserts can be simply be appended
 - Deleted RIDs may overwritten by moving the last RID
 - Maintaining a partial sort can speed up intersect/merge
- Still, inverted indexes work best for read-mostly data

Inverted Index Compression

- Compression greatly reduces storage for long RID lists
- Most compression methods are "chunk-based"
 - RIDs grouped into chunks, compressed independently
- Frame-of-Reference (FOR)
 - Keep lowest RID, subtract it from all RIDs in chunk
 - Can then use fewer bits per RID

103, 105, 106, 109, 111, 137, 139 \rightarrow

lowest: **103**, relative RIDs: **0**, **2**, **3**, **6**, **7**, **34**, **36** (**6 bits each**)

Inverted Index Compression (cont.)

Patched Frame-of-Reference (PFOR)

- As FOR, but keep large values separate as "exceptions"
- If few large exceptions, allows even fewer bits per RID

```
103, 105, 106, 109, 110, 137, 139 \rightarrow
```

lowest: 103, relative RIDs: 0, 2, 3, 6, 7, *, * (3 bits each), exceptions: 137, 139

Patched Frame-of-Reference Delta (PFOR-Delta)

- As PFOR, but sort RIDs and store pairwise deltas
- Stores large jumps in the list with only one exception each

```
103, 105, 106, 109, 110, 137, 139 \rightarrow
```

lowest: 103, RID deltas: 2, 1, 3, 1, *, 2 (2 bits each), exceptions: 27

Use Case: ElasticSearch*

- Documents are JSON objects with various fields
 - Running example:

```
content: "The quick brown fox jumped over the lazy dog"
},
{
  content: "Quick brown foxes leap over lazy dogs in summer"
}
```

- Want to allow keyword search within each JSON field
 - Approach: build an inverted index on each field
- However, some challenges exist in practice...

Challenge #1: Search Term "Fuzziness"

- Suppose we search for "Quick"
 - Should this match document 1 (below)?
 - Capitalization probably doesn't matter to the user...
- Other (usually) unimportant differences exist
 - Punctuation
 - Misspellings
 - Synonyms

Document 1: The quick brown fox jumped over the lazy dog

Solution: Analysis/Normalization

- ElasticSearch uses "analysis" to normalize text
 - Applied to both documents and search text equally
- 1. Character filters: cleans up raw text
 - Remove uninteresting punctuation, etc.
- 2. Tokenizer: splits text into "terms"
 - Split on whitespace, handle hyphenated words, etc.
- 3. Token filters: normalize each term
 - Example: convert to lowercase
 - Example: remove suffixes (e.g., -ing, -ed)
 - Example: remove stop word terms entirely

Challenge #2: Relevance vs. Exact Match

- Suppose we search for "quick brown fox in summer"
 - Should this match document 1 (below)?
 - Maybe, though it is less relevant than document 2
- Strict "expression tree" evaluation won't "almost match"

Document 1: The quick brown fox jumped over the lazy dog

Document 2: Quick brown foxes leap over lazy dogs in summer

Solution: Results Ranking

- ElasticSearch "match" queries return documents containing any query words, sorted by relevance score
 - We can already get the document list: use an OR query
 - Score from matching terms via weighted heuristics:
- 1. Term frequency: how many appearances?
 - More appearances in a field = more weight for matching
- 2. Document frequency: how common is the term?
 - More common across all documents = less weight
- 3. Field-length norm: how long is the matched field?
 - Shorter fields (e.g., "title") = more weight

Other Uses for Inverted Indexes

- Though designed for word-to-document mapping, inverted indexes can still be useful on structured data
- Inverted lists have been substituted for bitmap indexes
 - "Words" = attribute values, "documents" = record IDs
- Inverted indexes can use less storage than bitmaps
 - Especially high-cardinality attributes; similar to "words"
- Bitmaps are often faster at ANDs/ORs, though

Summary: Inverted Indexes

- Most commonly used to support full text search
- Compression is often used to reduce storage footprint
- Search needs practical considerations beyond indexing
- + Fast equality queries
- + Very low storage space for text/high-cardinality data
- Frequent inserts/deletes are difficult
- Multivariate query possible, costlier than with bitmaps

Thank You!

Questions?

Attrib. value	Bitmap
X	1010
Y	0100
Z	0001

be	: 1, 2
not	:1
or	:1
own	: 2
self	: 2
thine	: 2
true	: 2
to	: 1, 2

References

• Much of this presentation's content is covered in:

"Database Systems: The Complete Book" by Garcia-Molina, Ullman, and Widom

• Classic B-tree paper:

Douglas Comer. "Ubiquitous B-Tree." ACM Comput. Surv. Vol. 11. No. 2, 1979.

• Bitmap indexing:

Wu, Kesheng. "FastBit: an efficient indexing technology for accelerating dataintensive science." *Journal of Physics: Conference Series*. Vol. 16. No. 1, 2005.

Wu, Kesheng, Ekow J. Otoo, and Arie Shoshani. "Optimizing bitmap indices with efficient compression" *ACM Trans. Database Syst.* Vol. 31, No. 1, 2006.

Chee-Yong Chan and Yannis E. Ioannidis. "An efficient bitmap encoding scheme for selection queries." In *Proc. ACM SIGMOD*, 1999.

References (cont.)

Inverted indexing:

Zobel, Justin, and Alistair Moffat. "Inverted files for text search engines." *ACM Computing Surveys (CSUR)*. Vol. 38, No. 2, 2006.

Zukowski, Marcin, et al. "Super-scalar RAM-CPU cache compression." *Data Engineering*, 2006. *ICDE'06*. *Proceedings of the 22nd International Conference on*. IEEE, 2006.

Jenkins, John et al. "ALACRITY: Analytics-driven lossless data compression for rapid in-situ indexing, storing, and querying." *Transactions on Large-Scale Data-and Knowledge-Centered Systems X*, 2013.

ElasticSearch-related content can be found at:

http://www.elastic.co/guide/en/elasticsearch/guide

