Lista 01 - Aprendizado de Máquinas

25 fevereiro, 2025

Exercício 01

Faça uma pesquisa sobre aplicações práticas de aprendizado de máquinas e descreva aplicações de cada um dos problemas abaixo, incluindo a descrição dos vetores de características, rótulos ou respostas quando apropriado para cada um dos problemas:

- a) Problema de classificação. Um exemplo real poderia ser o filtro de spam dos emails. No sentido que ele recebe como entrada o conteúdo do email, palavras suspeitas, arquivos anexados, etc. E o modelo aprende a prever se o email é suspeito de spam ou não.
- b) Problema de regressão. Um exemplo real poderia ser a previsão de um preço de imóvel, com entrada sendo a área da casa, localização, quantos quartos, suítes, área construída, etc. E a saída sendoo preço estimado do imóvel
- c) Problema de Agrupamento. Um exemplo real poderia ser um banco identificando perfis de clientes em certos tipos de produtos do banco. Usando como entrada: frequencia e tipo de compras, idade, historico de transação, salário; e saída como: Perfis de cliente como "poupadores", "gastadores", "confiáveis", "não confiaveis", etc ## Exercício 02

Descreva com suas próprias palavras o que é a "maldição da dimensionalidade".

Em casos onde há muitas variáveis começam a aparecer problemas como aumento de custo computacional com processamentos e memórias muito requisitadas e dependendo das dimensões a complexidade aumenta exponencialmente. Outro problema comum é o dados estarem muito espalhados, a variar das dimensões tambem, fazendo com que atrapalhe a busca de padrões.

Exercício 03

Implemente o método dos vizinhos mais próximos para um problema de classificação. Sua função deve receber como argumento:

- 1) Um número k representando o número de vizinhos para usar no kNN;
- 2) Um vetor $x = (x_1, x_2)$ com duas componentes;
- 3) Uma dataframe D com colunas x_1 , x_2 e y, em que x_1 e x_2 são valores numéricos representando duas componentes do vetor de características x (i.e., $x = (x_1, x_2)$) e y é um fator representando os rótulos dos pontos. Abaixo tem-se um exemplo dessa dataframe com duas classes:

x_1	x_2	у
-0.1825480	-2.2289259	two
2.4495117	-2.7319493	three
0.4729542	-4.1085046	two
0.9793536	-1.9734251	two
0.3723913	0.9209118	two
1.9859052	-3.5777720	two

A função deve ter a assinatura function(k,x,D) e deve retornar a classe mais provável associada ao ponto x.

dica: Você pode fazer o kNN usando uma sequencia de comandos encadeados pelo operador pipe %>%. Por exemplo, teste a seguinte sequencia de comandos com a $dataframe\ D$ anterior:

```
x = c(1,2)
k = 10
D2 <- D %>%
mutate( dist = (x[1] - x_1)^2 + (x[2] - x_2)^2 ) %>%
arrange( dist ) %>% head(k) %>% count(y)
```

```
library(dplyr)
knn_classifier <- function(k, x, D) {</pre>
  D <- D %>%
    mutate(dist = (x[1] - x_1)^2 + (x[2] - x_2)^2) %>%
    arrange(dist) %>%
    head(k) %>%
    count(y)
  return(D$y[which.max(D$n)])
D <- tibble(
 x 1 = rnorm(100, 1, 1),
 x_2 = rnorm(100, -1, 2),
 y = factor(sample(c("A", "B", "C"), 100, replace = TRUE))
x \leftarrow c(1, 2)
k <- 10
resultado <- knn_classifier(k, x, D)
print(resultado)
```

```
## [1] A
## Levels: A B C
```

Exercício 04

Usando o banco de dados iris e sua implementação do kNN do exercício anterior, calcule quantos pontos são classificados corretamente de acordo com o rótulo Species usando as colunas Petal.length e Sepal.length com k=10 e com k=1.

dica 1: Você pode carregar o banco Iris no R da seguinte forma:

```
library(tidyverse)
data("iris") # Carrega o banco no ambiente global
iris <- as_tibble(iris) %>% # Converte para a dataframe tibble
select(Petal.Length,Sepal.Length,Species) %>% # Selectiona colunas da dataframe
rename( x_1 = Petal.Length, x_2 = Sepal.Length, y = Species) # Renomeia as colunas
head(iris)
```

x_1	x_2	У
1.4	5.1	setosa
1.4	4.9	setosa
1.3	4.7	setosa
1.5	4.6	setosa
1.4	5.0	setosa
1.7	5.4	setosa

dica 2: As funções map da biblioteca purrr do pacote tidyverse são muito úteis! Por exemplo, a função pmap_lgl aplica uma função à argumentos fornecidos por uma lista e retorna os resultados da função como um vetor de booleanos (neste caso, a função deve retornar valores booleanos). Rode o exemplo abaixo:

A função sum pode também ser útil. Lembre-se de usar o comando ? para ajuda.

```
library(tidyverse)
library(purrr)

data("iris")
iris <- as_tibble(iris) %>%
    select(Petal.Length, Sepal.Length, Species) %>%
    rename(x_1 = Petal.Length, x_2 = Sepal.Length, y = Species)

test_knn <- function(k) {
    acertos <- pmap_lgl(as.list(iris), function(x_1, x_2, y) {
        predicted_class <- knn_classifier(k, c(x_1, x_2), iris)
        return(predicted_class == y)
    })

return(mean(acertos))
}</pre>
```

```
accuracy_k10 <- test_knn(10)
accuracy_k1 <- test_knn(1)
print(paste("Acurácia com k = 10:", round(accuracy_k10 * 100, 2), "%"))
## [1] "Acurácia com k = 10: 95.33 %"
print(paste("Acurácia com k = 1:", round(accuracy_k1 * 100, 2), "%"))</pre>
```

[1] "Acurácia com k = 1: 99.33 %"

Exercício 5 (opcional)

Em aula vimos como calcular a função de regressão $f: \mathcal{X} \to \mathcal{Y}$ ótima que minimiza o risco esperado:

$$\mathcal{R}(f) = \mathbb{E}_{XY}[\ell(Y, f(X))]$$

quando a função de perda é dada por $\ell_2(y,y') := (y-y')^2$. Essa função de perda é geralmente usada pela simplicidade de soluções. Mas existem outras funções de perda, como a função de perda do erro absoluto, que é dada por: $\ell_1(y,y') := |y-y'|$. Mostre que a função f ótima, que minimiza o risco esperado com essa função de perda, é dada por f(x) := Mediana(Y|X=x). Suponha que a distribuição de Y é contínua.

dica 1: A mediana de uma variável aleatória contínua tomando valor em \mathbb{R} é definida como sendo o valor real m tal que P(Y > m) = P(Y < m) = 1/2.

dica 2: A derivada de $\ell_1(y,y')$ em relação a y' quando $y'\neq y$ existe e é limitada. Nestes casos, sabe-se que

$$\frac{\partial}{\partial z} \mathbb{E}[\ell_1(Y, z) | X = x] = \mathbb{E}\Big[\frac{\partial}{\partial z} \ell_1(Y, z) \Big| X = x\Big].$$

Exercício 6 (opcional)

Considere que m pontos são espalhados uniformemente em uma hiperesfera de raio unitário e dimensão d. Mostre que a mediana da distância do ponto mais próximo à origem é dada por: $(1-0.5^{1/m})^{1/d}$.