

<u>Help</u> 🗘

sandipan_dey >

Next >

<u>Course Progress Dates Discussion Syllabus Outline laff routines Community</u>

☆ Course / Week 11: Orthogonal Projection, Low Rank Appro... / 11.2 Projecting a Vector ...

()

11.2.2 An Application: Rank-1 Approximation

☐ Bookmark this page

< Previous

■ Calculator

Week 11 due Dec 22, 2023 21:12 IST Completed

11.2.2 An Application: Rank-1 Approximation

Homework 11.2.2.1

1/1 point (graded)

Let ${f S}$ and ${f T}$ be subspaces of ${\Bbb R}^m$ and ${f S}\subset {f T}$.

 $\dim (\mathbf{S}) \leq \dim (\mathbf{T}).$

Always ~

✓ Answer: Always

Proof by contradiction:

Let $\dim(\mathbf{S}) = k$ and $\dim(\mathbf{T}) = n$, where k > n. Then we can find a set of k vectors $\{s_0, \ldots, s_{k-1}\}$ that form a basis for \mathbf{S} and a set of n vectors $\{t_0, \ldots, t_{n-1}\}$ that form a basis for \mathbf{T} .

Let

$$S = \left(egin{array}{c|c} s_0 & s_1 & \cdots & s_{k-1} \end{array}
ight) \quad ext{and} \quad T = \left(egin{array}{c|c} t_0 & t_1 & \cdots & t_{n-1} \end{array}
ight).$$

 $s_j \in \mathbf{T}$ and hence can be written as $s_j = Tx_j$. Thus

$$S = T \underbrace{\left(egin{array}{c|c} x_0 & x_1 & \cdots & x_{k-1} \end{array}
ight)}_{X} = TX$$

But X is n imes k which has more columns that it has rows. Hence, there must exist vector z
eq 0 such that Xz = 0.

But then

$$Sz = TXz = T0 = 0$$

and hence S does not have linearly independent columns. But, we assumed that the columns of S formed a basis, and hence this is a contradiction. We conclude that $\dim(S) \leq \dim(T)$.

Submit

Answers are displayed within the problem

Homework 11.2.2.2

10.0/10.0 points (graded)

Let $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Then the m imes n matrix uv^T has a rank of at most one.

TRUE ✓ Answer: TRUE

Let $y\in\mathcal{C}\left(uv^{T}
ight)$. We will show that then $y\in\mathrm{Span}\left(\{u\}
ight)$ and hence $\mathcal{C}\left(uv^{T}
ight)\subset\mathrm{Span}\left(\{u\}
ight)$.

$$egin{aligned} y \in \mathcal{C}\left(uv^{T}
ight) \ &\Rightarrow \quad < ext{there exists a } x \in \mathbb{R}^{n} ext{ such that } y = uv^{T}x > \ y = uv^{T}x \ &\Rightarrow \quad < ulpha = lpha u ext{ when } lpha \in \mathbb{R} > \ y = (v^{T}x)\, u \ &\Rightarrow \quad < ext{Definition of span and } v^{T}x ext{ is a scalar} > \end{aligned}$$

□ Calculator

 $y\in \mathrm{Span}\left(\{u\}
ight)$

Hence $\dim (\mathcal{C}(uv^T)) \leq \dim (\operatorname{Span}(\{u\})) \leq 1$. Since $\operatorname{rank}(uv^T) = \dim (\mathcal{C}(uv^T))$ we conclude that $\operatorname{rank}(uv^T) \leq 1$.

Submit

Answers are displayed within the problem

Homework 11.2.2.3

1/1 point (graded)

Let $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Then uv^T has rank equal to zero if (Mark all correct answers.)

- u = 0 (the zero vector in \mathbb{R}^m).
- $\checkmark v = 0$ (the zero vector in \mathbb{R}^n).
- Never.
- ____ Always.

u=0 (the zero vector in \mathbb{R}^m).

v=0 (the zero vector in \mathbb{R}^n).

Submit

Answers are displayed within the problem

Previous

Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>