CLASE 2 - 10/02/2025

Inducción

Ejemplo (metavariables)

Retomemos la definición inducitva de los números pares:

- 1. $0 \in \mathbb{P}$
- 2. Si $n \in \mathbb{P}$, entonces $n+2 \in \mathbb{P}$

Observación: Llamamos metavariables (n en este caso) a los elementos que necesitan menos reglas para su construcción

Definición (alfabeto)

Sea \sum un conjunto conocido de cosas distinguibles entre si (símbolos, letras, marcas).

Decimos que:

- Una palabra (o secuencia, o tira, o string) es una secuencia finita de elementos de \sum
- Dadas dos palabras w_1 y w_2 , podemos formar una nueva palabra w_1w_2 que es la concatenación de ambas.
- Existe una palabra vacía ε que no tiene ninguna letra, y es el neutro de la concatenación.
- ∑* es el conjunto de todas las palabras que se pueden formar con los elementos de ∑
 Cualquier subconjunto de ∑* que cumpla con las reglas anteriores es un lenguaje.
- Hay lenguajes que se pueden definir inductivamente y tratar como conjuntos inductivos

Ejemplo 1 (lenguaje) Definimos el lenguaje $L_1 \subset \{a,b\}^*$ con las siguientes reglas:

- 1. $a \in L_1$
- 2. Si $w \in L_1$, entonces $bwb \in L_1$

Veamos ejemplos de palabras que pertenecen a este lenguaje:

- $a \in L_1$
- $bab \in L_1$
- $bbabb \in L_1$
- $aba \notin L_1$
- $ababab \notin L_1$

Podemos decir que son todas las palabras con la misma cantidad de b a ambos lados de una aque queda en el medio.

Ejemplo 2 (lenguaje) Definimos el lenguaje $L_2 \subset \{a,b,c\}^*$ con las siguientes reglas:

- 1. $b \in L_2$
- 2. Si $w \in L_2$, entonces $awc \in L_2$

Pertenencia de un elemento a un conjunto inductivo

Para probar que un elemento pertenece a un conjunto inductivo, basta con mostrar como lo formamos. Su secuencia de formación indica cuáles reglas se usan y en que orden.

Ejemplo $bbabb \in L_1$ porque:

- 1. $a \in L_1 \text{ por } (i)$
- 2. $bab \in L_1 \text{ por } (ii)$
- 3. $bbabb \in L_1 \text{ por } (ii)$

Probar propiedades de conjuntos

Según como definimos al conjunto, tenemos dos formas de probar propiedades:

- Si definimos por extensión: Probar que la propiedad se cumple para todos los elementos del conjunto
- Si definimos por comprensión: Probar que la propiedad se cumple para los elementos que cumplen con la definción del conjunto

Principio de inducción primitiva Sea $N \subset \mathbb{N}$ definido inductivamente por:

- 1. $0 \in N$
- 2. Si $n \in N$, entonces $n + 1 \in N$

Sea P(n) una propiedad que queremos probar para todo $n \in \mathbb{N}$. Para probar que P(n) es verdadera para todo $n \in \mathbb{N}$, basta con:

- 1. Mostrar que P(0) es verdadera
- 2. Mostrar que si P(n) es verdadera, entonces P(n+1) es verdadera

Demostración Queremos probar que si se cumplen 1 y 2, entonces P(n) es verdadera para todo $n \in \mathbb{N}$.

Sea $X=\{n\in\mathbb{N}\mid P(n)\}$. Por hipótesis, sabemos que 1 y 2 se cumplen. Podemos observar que \mathbb{N} es el minimo subconjunto de X que cumple con 1 y 2. Por lo tanto, $X\subset\mathbb{N}$.

Ejemplo Dado el lenguaje L_1 definido anteriormente, probemos que todas las palabras de L_1 tienen una cantidad impar de letras.

Demostración Por inducción en la formación de las palabras de L_1 :

- Caso base: a tiene una cantidad impar de letras
 - -|a|=1 es impar
- Paso inductivo: Si $w \in L_1$ tiene una cantidad impar de letras, entonces bwb tiene una cantidad impar de letras.
 - Por hipótesis, |w| es impar, entonces |bwb| = |w| + 2 es impar, ya que si sumo 2 a un número impar, obtengo otro número impar

Por el principio de inducción primitiva, todas las palabras de ${\cal L}_1$ tienen una cantidad impar de letras.

Ejemplo 2 Probar que todas las palabras de L_1 son palíndromos

Demostración Por inducción en la formación de las palabras de L_1 :

- Caso base: a es palíndromo
 - -a es palíndromo porque es una sola letra
- Paso inductivo: Si $w\in L_1$ es palíndromo, entonces bwb es palíndromo Por hipótesis, w es palíndromo, entonces bwb es palíndromo porque es la misma palabra al revés