超楕円曲線上のHarley加算アルゴリズムと 暗号系への応用

松尾 和人中央大学

背景

1986: 楕円曲線暗号 Miller, Koblitz

1987: 加算アルゴリズム Cantor

1989: 超楕円曲線暗号 Koblitz

代数曲線上の暗号系

 C/\mathbb{F}_q : 代数曲線

 \mathcal{J}_C : Cの Jacobi 多様体

 $\mathcal{J}_C(\mathbb{F}_q)$ 上の離散対数問題:

 $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{J}_C(\mathbb{F}_q) \to m \in \mathbb{Z} \text{ s.t. } \mathcal{D}_1 = m\mathcal{D}_2$

離散対数問題ベースの暗号を構成可能

研究課題

- 1. 安全性の検討
 - (a) 攻擊
 - (b) 安全な曲線の構成
- 2. 高速化
 - (a) 加算アルゴリズム
 - (b) 整数倍算アルゴリズム

Cantorアルゴリズムの改良: Sakai-Sakurai-Ishizuka, Paulus-Stein, Nagao, ... 1999: Smart@Euro99

"On the Performance of Hyperelliptic Cryptosystems"

主旨

現在のところ, 超楕円曲線暗号は楕円曲線暗号と比較して 利点が認められない.

特に, 暗復号に楕円曲線暗号の数倍以上の時間を要する.

目次

- 1. Harley アルゴリズム
- 2. Harley アルゴリズムの改良
- 3. 楕円曲線暗号との比較
- 4. 種数3の超楕円曲線への適用
- 5. 標数2の有限体上の超楕円曲線への適用

Harley アルゴリズム

2000: Gaudry-Harley@ANTS-IV

"Counting Points on Hyperelliptic Curves over Finite Fields"

http://cristal.inria.fr/~harley/hyper/

Cantor:

- ・超楕円関数体の整数環のイデアル類群に 2次形式の 高速composition, reductionアルゴリズムを適用
- Mumford representationの利用

Harley:

- ・種数を2に限定
- ・Divisorの詳細な分類
- ・楕円曲線の chord-tangent law 的な加算 cf. 山本芳彦, 数論入門 2 (現代数学への入門)
- ・Mumford representationの利用
- ・多項式の CRTと Newton 反復を適用
- ・Karatsuba乗算の適用

加算 : 2I + 27M

2倍算 : 2I + 30M

1: 定義体上の逆元計算時間, M: 定義体上の乗算計算時間

種数2の超楕円曲線

 \mathbb{F}_q : 位数qの有限体

 $p := \operatorname{char} \mathbb{F}_q \neq 2$

$$C/\mathbb{F}_q: Y^2 = F(X),$$

$$F(X) = X^5 + f_4 X^4 + \dots + f_0,$$

$$f_i \in \mathbb{F}_q, \operatorname{disc}(F) \neq 0$$

入出力

入力 : $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{J}_C(\mathbb{F}_q)$

出力 : $\mathcal{D}_3 = \mathcal{D}_1 + \mathcal{D}_2$

$$P_{\infty} \in C$$
: 無限遠点
$$P_{ij} = (P_{ijX}, P_{ijY}) \in C \setminus \{P_{\infty}\}$$
$$-P_{ij} := (P_{ijX}, -P_{ijY})$$

Semi-reduced divisor:

$$\mathcal{D}_i = \sum n_j P_{ij} - \sum n_j P_{\infty}$$
$$P_{ij} \neq -P_{ik \neq j}$$

Reduced divisor:

Semi-reduced且つ $\sum n_j \leq 2$ (genus)

入出力はreduced divisor

$$\mathcal{D}_i$$
 = $P_{i1}+P_{i2}-2P_{\infty}, P_{i1}\neq -P_{i2}$
または \mathcal{D}_i = $P_{i1}-P_{\infty}$
または \mathcal{D}_i = 0

概略フロー

入力 : $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{J}_C(\mathbb{F}_q)$

出力 : $\mathcal{D}_3 = \mathcal{D}_1 + \mathcal{D}_2$

- 1. Divisorの分類
 - メインフローで計算できないものを 別フローに渡す
- 2. Composition
 - \mathcal{D}_3 と同値で容易(?)に計算可能な semi-reduced divisor \mathcal{D} を計算
- 3. Reduction

$$--\mathcal{D}\mapsto \mathcal{D}_3$$

加算概略

$$\mathcal{D}_3 = \mathcal{D}_1 + \mathcal{D}_2$$

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$
$$\mathcal{D}_2 = P_{21} + P_{22} - 2P_{\infty}$$

$$\mathcal{D} = P_{11} + P_{12} + P_{21} + P_{22} - 4P_{\infty}$$

$$V \in \mathbb{F}_q[X]$$
 such that $V(P_{11X}) = P_{11Y}$
$$V(P_{12X}) = P_{12Y}$$

$$V(P_{21X}) = P_{21Y}$$

$$V(P_{22X}) = P_{22Y}$$

$$P_{11} + P_{12} + P_{21} + P_{22} + P_{31} + P_{32} - 6P_{\infty} = 0$$

$$\mathcal{D}_1 + \mathcal{D}_2 + P_{31} + P_{32} - 2P_{\infty} = 0$$

$$\mathcal{D}_3 = -(P_{31} + P_{32} - 2P_{\infty})$$

$$\mathcal{D}_1 + \mathcal{D}_2 = \mathcal{D}_3$$

Mumford representation

$$\mathcal{D} = (U, V),$$

$$U, V \in \mathbb{F}_q[X], \deg V < \deg U$$

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty} = (U_1, V_1)$$

$$U_1 = (X - P_{11X})(X - P_{12X})$$

$$V_1(P_{11X}) = P_{11Y}, V_1(P_{12X}) = P_{12Y}$$

$$F - V_1^2 \equiv 0 \mod U_1$$

Composition

$$\mathcal{D} = P_{11} + P_{12} + P_{21} + P_{22} - 4P_{\infty}$$

$$= (U, V)$$

$$U = U_1 U_2$$

$$F - V^2 \equiv 0 \mod U = U_1 U_2$$

$$F - V_1^2 \equiv 0 \mod U_1$$

 $F - V_2^2 \equiv 0 \mod U_2$
 $F - V^2 \equiv 0 \mod U_1 U_2$

中国人剰余定理により V を求める.

$$V = SU_1 + V_1, S \in \mathbb{F}_q[X]$$
$$S \equiv (V_2 - V_1)U_1^{-1} \bmod U_2$$

Reduction

$$\mathcal{D}_3 = -(P_{31} + P_{32} - 2P\infty)$$

$$= (U_3, V_3)$$

$$\mathcal{D}_{3'} = P_{31} + P_{32} - 2P\infty$$

$$= (U_{3'}, V_{3'})$$

$$\mathcal{D}_3 = (U_3, V_3) = (U_{3'}, -V_{3'})$$

$$U_3 = (F - V^2)/U$$
$$V_3 \equiv -V \mod U_3$$

2倍算

$$\mathcal{D}_3 = 2\mathcal{D}_1$$

$$U=U_1^2$$

$$F-V_1^2\equiv 0 \bmod U_1$$

$$F-V^2\equiv 0 \bmod U=U_1^2$$

Newton 反復によりVを求める.

$$V = SU_1 + V_1, S \in \mathbb{F}_q[X]$$

$$S \equiv \frac{F - V_1^2}{U_1} V_1^{-1} \bmod U_1$$

例外の処理

加算

$$res(U_1, U_2) = 0$$
 のとき

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$
$$\mathcal{D}_2 = P_{11} + P_{22} - 2P_{\infty}$$

$$\mathcal{D}_1 + \mathcal{D}_2 = 2(P_{11} - P_{\infty}) + (P_{12} - P_{\infty}) + (P_{22} - P_{\infty})$$

2倍算

$$res(U_1, V_1) = 0$$
 のとき

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$
$$2(P_{11} - P_{\infty}) = 0$$

$$2\mathcal{D}_1 = 2(P_{12} - P_{\infty})$$

例

$$\mathcal{D}_1 = P_{11} + P_{12} - 2P_{\infty}$$

 $res(U_1, V_1) = 0$
 $2(P_{11} - P_{\infty}) = 0$
 $2(P_{12} - P_{\infty}) \neq 0$ のとき

$$U_1 := X^2 + u_{11}X + u_{10}$$
$$V_1 := v_{11}X + v_{10}$$

$$V_1(P_{11X}) = P_{11Y} = 0$$

 $\Rightarrow P_{11X} = -v_{10}v_{11}^{-1}$

$$u_{11} = -(P_{11X} + P_{12X})$$

$$\Rightarrow P_{12X} = v_{10}v_{11}^{-1} - u_{11}$$

$$P_{12Y} = V_1(P_{12X})$$

$$\mathcal{D}_{1'} = (X - P_{12X}, P_{12Y})$$

$$2\mathcal{D}_1 = 2\mathcal{D}_{1'}$$

Divisorの分類

- 1. 加算/2倍算 の場合分け: $U_1 = U_2, V_1 = V_2$
- 2. *U*₁, *U*₂の次数
- 3. 共通因子による場合分け: Resultant
- 4. (Composition)
- 5. 結果の次数による場合分け: *S* の次数
- 6. (Reduction)

C+n	Dropoduro	Cost
Stp.	Procedure Compute the resultant work II and II	Cost
1	Compute the resultant r of U_1 and U_2 .	5M
	$w_1 \leftarrow u_{11}u_{21}; w_2 \leftarrow u_{10} + u_{21}^2 - u_{20} - w_1;$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{11}^2 + u_{20} - w_1);$	
2	$\frac{\text{If } r = 0 \text{ then}}{2^{n} + 2^{n} + 2^{$	
	\mathcal{D}_1 and \mathcal{D}_2 have a linear factor in common,	
	and call the exclusive procedure.	
3	Compute $I_1 = i_{11}X + i_{10} \equiv U_1^{-1} \mod U_2$.	I+2M
	$w_1 \leftarrow r^{-1}; I_1 \leftarrow (w_1(u_{21} - u_{11}))X + w_1w_2;$	
4	Compute $S = s_1X + s_0 \equiv (V_2 - V_1)I_1 \mod U_2$.	
	(Karatsuba)	5M
	$w_1 \leftarrow v_{20} - v_{10}; w_2 \leftarrow v_{21} - v_{11}; w_3 \leftarrow i_{10}w_1;$	
	$w_4 \leftarrow i_{11}w_2;$	
	$w_5 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4;$	
5	$S \leftarrow (w_5 - u_{21}w_4)X - u_{20}w_4 + w_3;$ If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
	and call the exclusive procedure.	
6		
6	Compute the coefficient k_2 of X^2	
	$\inf K = (F - V_1^2)/U_1.$	
	$k_2 \leftarrow f_4 - u_{11};$	
7	Compute $T_1 = s_1 X^3 + t_{12} X^2 + t_{11} X + t_{10} = SU_1$.	
	(Karatsuba)	3M
	$w_1 \leftarrow s_1 u_{11}; t_{10} \leftarrow s_0 u_{10};$	
	$t_{11} \leftarrow (s_0 + s_1)(u_{10} + u_{11}) - w_1 - t_{10};$	
	$t_{12} \leftarrow w_1 + s_0;$	
8	Compute $U_3 = (S(T_1 + 2V_1) - K)/U_2$.	
	(Karatsuba)	7 <i>M</i>
	$u_{32} \leftarrow s_1^2;$	
	$w_1 \leftarrow s_1(s_0 + t_{12}) - 1;$	
	$w_2 \leftarrow s_1(t_{11} + 2v_{11}) + s_0t_{12} - k_2;$	
	$u_{31} \leftarrow w_1 - u_{21}u_{32}; u_{30} \leftarrow w_2 - u_{20}u_{32} - u_{21}u_{31};$	
9	Make U_3 monic	I+2M
	$w_1 \leftarrow u_{32}^{-1}; u_{30} \leftarrow u_{30}w_1; u_{31} \leftarrow u_{31}w_1; u_{32} \leftarrow 1;$	
10	Compute $V_3 \equiv -(T_1 + V_1) \mod U_3$. (Karatsuba)	3 M $ $
	$w_1 \leftarrow t_{11} + v_{11}; w_2 \leftarrow t_{10} + v_{10};$	
	$w_3 \leftarrow s_1 u_{31}; w_4 \leftarrow t_{12} - w_3; w_5 \leftarrow w_4 u_{30};$	
	$w_6 \leftarrow (u_{30} + u_{31})(s_1 + w_4) - w_3 - w_5;$	
	$v_{31} \leftarrow w_6 - w_1; \ v_{30} \leftarrow w_5 - w_2;$ Total	
	I Otal	2I + 27M

Harley アルゴリズムの効果

	加算	2倍算
Cantor	3I + 70M	3I + 76M
Nagao	I + 56M	I + 66M
Harley	2I + 27M	2I + 30M

加算:

入力 $\mathcal{D}_1 = (U_1, V_1), \mathcal{D}_2 = (U_2, V_2)$ に対し、

 $\deg U_1 = \deg U_2 = 2,$

 $res(U_1, U_2) \neq 0$

2倍算:

入力 $\mathcal{D}_1 = (U_1, V_1)$ に対し,

 $deg U_1 = 2$,

 $res(U_1, V_1) \neq 0$

のとき

上記以外の場合が起こる確率: O(1/q)

 \Rightarrow

暗号への応用では上記以外は無視できる

Harleyアルゴリズムの改良

改良の方針

- 1. 詳細計算のチューニング
- 2. 曲線の定義方程式の制限
- 3. 逆元計算の削減
 - (a) Montgomery multiple inversion
 - (b) Mumford representationの拡張

詳細計算のチューニング

・Resultantの計算

$$5M \Rightarrow 4M$$

U3の計算

8 Compute
$$U_3 = (S(T_1 + 2V_1) - K)/U_2$$
. (Karatsuba)
 $u_{32} \leftarrow s_1^2$;
 $w_1 \leftarrow s_1(s_0 + t_{12}) - 1$;
 $w_2 \leftarrow s_1(t_{11} + 2v_{11}) + s_0t_{12} - k_2$;
 $u_{31} \leftarrow w_1 - u_{21}u_{32}$; $u_{30} \leftarrow w_2 - u_{20}u_{32} - u_{21}u_{31}$;
9 Make U_3 monic
 $w_1 \leftarrow u_{32}^{-1}$; $u_{30} \leftarrow u_{30}w_1$; $u_{31} \leftarrow u_{31}w_1$; $u_{32} \leftarrow 1$;

$$U_3 = X^2 + (w_1(2s_0 - w_1) - w_2)X + w_1(w_1(s_0^2 + u_{11} + u_{21} - f_4) + 2(v_{11} - s_0w_2)) + u_{21}w_2 + u_{10} - u_{22},$$

where $w_1 = s_1^{-1}$ and $w_2 = u_{21} - u_{11}$.

$$I + 9M \Rightarrow I + 6M$$

2001/7 電子情報通信学会 ISEC研究会, 2001/8 暗号とそれを支える代数曲線理論ワークショップ

では、

加算: 21+23M

2倍算: 21+25M

と報告したが、 加算に重複処理があることが判明

実際には

加算: 21+22M

2倍算: 21+25M

で計算可能

加算

Input	Weight two coprime reduced divisors	
	$\mathcal{D}_1 = (U_1, V_1)$ and $\mathcal{D}_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $\mathcal{D}_3 = (U_3, V_3)$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4 <i>M</i>
	$w_1 \leftarrow u_{21} - u_{11}; \ w_2 \leftarrow u_{21}w_1 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{20} - u_{11}w_1);$	
2	If $r=0$ then \mathcal{D}_1 and \mathcal{D}_2 have	
	a linear factor in common,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv U_1^{-1} \mod U_2$.	I + 2M
	$w_3 \leftarrow r^{-1}; I_1 \leftarrow w_1 w_3 X + w_2 w_3;$	
4	Compute S . (Karatsuba)	5M
	$w_3 \leftarrow v_{20} - v_{10}; w_4 \leftarrow v_{21} - v_{11};$	
	$w_5 \leftarrow i_{10}w_3; w_6 \leftarrow i_{11}w_4;$	
	$w_7 \leftarrow (i_{10} + i_{11})(w_3 + w_4) - w_5 - w_6;$	
	$S \leftarrow (w_7 - u_{21}w_6)X - u_{20}w_6 + w_5;$	
5	If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
	and call the exclusive procedure.	
6	Compute	
	$U_3 = s_1^{-2}((SU_1 + V_1)^2 - F)/(U_1U_2).$	I + 5M
	$w_3 \leftarrow s_1^{-1};$	
	$u_{30} \leftarrow w_3(w_3(s_0^2 + u_{11} + u_{21} - f_4)$	
	$+2(v_{11}-s_0w_1))+w_2;$	
	$u_{31} \leftarrow w_3(2s_0 - w_3) - w_1; u_{32} \leftarrow 1;$	
7	Compute $V_3 \equiv -(SU_1 + V_1)$ mod U_3 .	6M
	$w_1 \leftarrow u_{30} - u_{10}; \ w_2 \leftarrow u_{11} - u_{31};$	
	$v_{30} \leftarrow s_1 u_{30} w_2 + s_0 w_1 - v_{10};$	
	$v_{31} \leftarrow s_1(u_{31}w_2 + w_1) - s_0w_2 - v_{11};$	
Total		2I + 22M

2倍算

Input	A weight two reduced divisor $\mathcal{D}_1 = (U_1, V_1)$	
Output	without ramification points A weight two reduced divisor	
Output	$\mathcal{D}_2 = (U_2, V_2) = 2\mathcal{D}_1$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and V_1 .	$\frac{603c}{4M}$
_	$w_1 \leftarrow v_{11}^2; w_2 \leftarrow u_{11}v_{11};$	
	$r \leftarrow u_{10}w_1 + v_{10}(v_{10} - w_2);$	
2	If $r = 0$ then	
	\mathcal{D}_1 is with a ramification point,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv (2V_1)^{-1} \mod U_1$.	I + 2M
	$w_3 \leftarrow (2r)^{-1};$	
	$I_1 \leftarrow -v_{11}w_3X + (v_{10} - w_2)w_3;$	
4	Compute $T_1 \equiv (F - V_1^2)/U_1$ mod U_1 .	4 M $ $
	$w_2 \leftarrow u_{11} - f_4; w_3 \leftarrow 2u_{10};$	
	$t_{10} \leftarrow u_{11}(2w_3 - u_{11}w_2 - f_3)$	
	$-f_4w_3 + f_2 - w_1;$	
5	$t_{11} \leftarrow u_{11}(2w_2 + u_{11}) + f_3 - w_3$ Compute $S \equiv I_1T_1 \mod U_1$. (Karatsuba)	5M
	$\frac{\text{compate } S \equiv I_1 I_1 \text{ mod } S_1. \text{ (Naratsuba)}}{w_1 \leftarrow i_{10} t_{10}; w_2 \leftarrow i_{11} t_{11};}$	JW
	$w_{3} \leftarrow (i_{10} + i_{11})(t_{10} + t_{11}) - w_{1} - w_{2};$	
	$S \leftarrow (w_3 - u_{11}w_2)X - u_{10}w_2 + w_1;$	
6	If $s_1 = 0$ then \mathcal{D}_2 should be weight one,	
	and call the exclusive procedure.	
7	Compute $U_2 = s_1^{-2}((SU_1 + V_1)^2 - F)/U_1^2$.	I + 4M
	$w_1 \leftarrow s_1^{-1};$	
	$u_{20} \leftarrow w_1(w_1(s_0^2 + 2u_{11} - f_4) + 2v_{11});$	
	$u_{21} \leftarrow w_1(2s_0 - w_1); u_{22} \leftarrow 1;$	
8	Compute $V_2 \equiv -(S\tilde{U}_1 + V_1) \mod U_2$.	6M
	$w_1 \leftarrow u_{11} - u_{21};$	
	$v_{20} \leftarrow u_{20}(s_1w_1 + s_0) - s_0u_{10} - v_{10};$	
Total	$v_{21} \leftarrow s_1(u_{21}w_1 + u_{20} - u_{10}) - s_0w_1 - v_{11};$	
Total		2I + 25M

曲線の定義方程式の制限

 $p \neq 5$ のとき

$$(X,Y) \mapsto \left(X + \frac{f_4}{5}, Y\right)$$

により

$$C/\mathbb{F}_q : Y^2 = F(X),$$

 $F(X) = X^5 + f_3 X^3 + \dots + f_0$

とできる.

暗号への応用を考慮すると、この定義で十分 楕円曲線暗号ではより強い制限を与えて 高速化を計る事も多い

$$f_4 = 0 \Rightarrow 2$$
倍算に必要な乗算を2回削減可能 $\Rightarrow 2$ 倍算: $2M + 23M$

加算

Input	Weight two coprime reduced divisors	
	$\mathcal{D}_1 = (U_1, V_1)$ and $\mathcal{D}_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $\mathcal{D}_3 = (U_3, V_3)$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$w_1 \leftarrow u_{21} - u_{11}; \ w_2 \leftarrow u_{21}w_1 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{20} - u_{11}w_1);$	
2	If $r=0$ then \mathcal{D}_1 and \mathcal{D}_2 have	
	a linear factor in common,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv U_1^{-1} \mod U_2$.	I + 2M
	$w_3 \leftarrow r^{-1}; I_1 \leftarrow w_1 w_3 X + w_2 w_3;$	
4	Compute S . (Karatsuba)	5M
	$w_3 \leftarrow v_{20} - v_{10}; w_4 \leftarrow v_{21} - v_{11};$	
	$w_5 \leftarrow i_{10}w_3; w_6 \leftarrow i_{11}w_4;$	
	$w_7 \leftarrow (i_{10} + i_{11})(w_3 + w_4) - w_5 - w_6;$	
	$S \leftarrow (w_7 - u_{21}w_6)X - u_{20}w_6 + w_5;$	
5	If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
	and call the exclusive procedure.	
6	Compute	
	$\overline{U_3} = s_1^{-2} ((SU_1 + V_1)^2 - F)/(U_1U_2).$	I + 5M
	$w_3 \leftarrow s_1^{-1};$	
	$u_{30} \leftarrow w_3(w_3(s_0^2 + u_{11} + u_{21})$	
	$+2(v_{11}-s_0w_1))+w_2;$	
	$u_{31} \leftarrow w_3(2s_0 - w_3) - w_1; u_{32} \leftarrow 1;$	
7	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.	6M
	$w_1 \leftarrow u_{30} - u_{10}; \ w_2 \leftarrow u_{11} - u_{31};$	
	$v_{30} \leftarrow s_1 u_{30} w_2 + s_0 w_1 - v_{10};$	
	$v_{31} \leftarrow s_1(u_{31}w_2 + w_1) - s_0w_2 - v_{11};$	
Total		2I + 22M

2倍算

Input	A weight two reduced divisor $\mathcal{D}_1 = (U_1, V_1)$	
Output	without ramification points	
Output	A weight two reduced divisor $\mathcal{D}_2 = (U_2, V_2) = 2\mathcal{D}_1$	
Ctop		Cost
Step	Procedure Compute the resultant mof W and W	Cost
1	Compute the resultant r of U_1 and V_1 .	4M
	$w_1 \leftarrow v_{11}^2; w_2 \leftarrow u_{11}v_{11};$	
2	$r \leftarrow u_{10}w_1 + v_{10}(v_{10} - w_2);$	
	$\begin{array}{c c} \underline{\text{If } r=0 \text{ then}} \\ \overline{\mathcal{D}_1} \text{ is with a ramification point,} \end{array}$	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv (2V_1)^{-1} \mod U_1$.	I+2M
3		
	$w_3 \leftarrow (2r)^{-1};$	
4	$I_1 \leftarrow -v_{11}w_3X + (v_{10} - w_2)w_3;$	$\sim M$
4	Compute $T_1 \equiv (F - V_1^2)/U_1 \mod U_1$.	2M
	$w_2 \leftarrow u_{11}^2$; $w_3 \leftarrow w_2 + f_3$; $w_4 \leftarrow 2u_{10}$;	
	$t_{10} \leftarrow u_{11}(2w_4 - w_3) + f_2 - w_1;$	
_	$t_{11} \leftarrow 2w_2 + w_3 - w_4$	E 1/1
5	Compute $S \equiv I_1T_1 \mod U_1$. (Karatsuba)	5 M
	$w_1 \leftarrow i_{10}t_{10}; w_2 \leftarrow i_{11}t_{11};$	
6	If $s_1 = 0$ then \mathcal{D}_2 should be weight one,	
	and call the exclusive procedure.	
7	Compute $U_2 = s_1^{-2}((SU_1 + V_1)^2 - F)/U_1^2$.	I + 4M
,		1 7 711
	$w_1 \leftarrow s_1^{-1};$	
	$u_{20} \leftarrow w_1(w_1(s_0^2 + 2u_{11}) + 2v_{11});$	
	$u_{21} \leftarrow w_1(2s_0 - w_1); u_{22} \leftarrow 1;$	CM
8	Compute $V_2 \equiv -(SU_1 + V_1) \mod U_2$.	6M
	$w_1 \leftarrow u_{11} - u_{21};$	
	$v_{20} \leftarrow u_{20}(s_1w_1 + s_0) - s_0u_{10} - v_{10};$	
Total	$v_{21} \leftarrow s_1(u_{21}w_1 + u_{20} - u_{10}) - s_0w_1 - v_{11};$	2I + 23M
Total		Z1 T ZJW1

逆元計算の削減

有限体上の演算において 乗算処理と比較し 逆元計算処理にはより多くの時間を必要とする

実装により異なるが I>4M と考える事は妥当なことと思われる Ipprox 2M という実装も存在する

乗算回数が多少増えても, 逆元計算回数が減れば高速になる

- 1. Montgomery multiple inversion
 - 一 逆元計算1回
- 2. Mumford representationの拡張
 - 一 逆元計算0回

Montgomery multiple inversionの利用

Montgomery multiple inversion

$$a_i \in \mathbb{F}_q^*, \ (a_1, \dots, a_n) \mapsto (a_1^{-1}, \dots, a_n^{-1})$$

通常: nI

Montgomery: I + (3n - 3)M

独立な2元の逆元はI+3Mで計算可能 詳細は Cohen's text book

いまは,

$$(r, s' = rs) \mapsto (r^{-1}, s^{-1})$$

$$1 \ w_1 \leftarrow (rs')^{-1}$$

2
$$r^{-1} \leftarrow w_1 s'$$

$$w_2 \leftarrow r^2$$

2
$$r^{-1} \leftarrow w_1 s'$$

3 $w_2 \leftarrow r^2$
4 $s^{-1} \leftarrow w_1 w_2$

$$2I \rightarrow I + 4M$$

加算

Input	Weight two reduced divisors	
	$\mathcal{D}_1 = (U_1, V_1)$ and $\mathcal{D}_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $\mathcal{D}_3 = (U_3, V_3)$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$w_1 \leftarrow u_{21} - u_{11}; \ w_2 \leftarrow u_{21}w_1 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(w_2 - u_{20}) + u_{20}(u_{20} - u_{11}w_1);$	
2	If $r=0$ then \mathcal{D}_1 and \mathcal{D}_2 have	
	a linear factor in common,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv rU_1^{-1}$ mod U_2 .	
	$I_1 \leftarrow w_1 X + w_2;$	
4	Compute S . (Karatsuba)	5M
	$w_3 \leftarrow v_{20} - v_{10}; w_4 \leftarrow v_{21} - v_{11};$	
	$w_5 \leftarrow i_{10}w_3; \ w_6 \leftarrow i_{11}w_4;$	
	$w_7 \leftarrow (i_{10} + i_{11})(w_3 + w_4) - w_5 - w_6;$	
	$S \leftarrow (w_7 - u_{21}w_6)X - u_{20}w_6 + w_5;$	
5	If $s_1 = 0$ then \mathcal{D}_3 should be weight one,	
	and call the exclusive procedure.	
6	Collect S	I + 6M
	$w_3 \leftarrow (rs_1)^{-1}; w_4 \leftarrow s_1 w_3; w_3 \leftarrow r^2 w_3;$	
_	$s_0 \leftarrow s_0 w_4$; $s_1 \leftarrow s_1 w_4$;	
7	Compute	
	$\overline{U_3 = s_1^{-2}}((SU_1 + V_1)^2 - F)/(U_1U_2).$	5M
	$u_{30} \leftarrow w_3(w_3(s_0^2 + u_{11} + u_{21})$	
	$+2(v_{11}-s_0w_1))+w_2;$	
	$u_{31} \leftarrow w_3(2s_0 - w_3) - w_1; u_{32} \leftarrow 1;$	
8	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.	6 M
	$w_1 \leftarrow u_{30} - u_{10}; \ w_2 \leftarrow u_{11} - u_{31};$	
	$v_{30} \leftarrow s_1 u_{30} w_2 + s_0 w_1 - v_{10};$	
	$v_{31} \leftarrow s_1(u_{31}w_2 + w_1) - s_0w_2 - v_{11};$	T 1 0 6 7 4
Total		I+26M

2倍算

Input	A weight two divisor $\mathcal{D}_1 = (U_1, V_1)$	
	without ramification points	
Output	A weight two reduced divisor	
	$\mathcal{D}_2 = (U_2, V_2) = 2\mathcal{D}_1$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and V_1 .	4 <i>M</i>
	$w_1 \leftarrow v_{11}^2; w_2 \leftarrow u_{11}v_{11};$	
	$r \leftarrow u_{10}w_1 + v_{10}(v_{10} - w_2);$	
2	$\frac{\text{If } r = 0 \text{ then}}{2}$	
	\mathcal{D}_1 is with a ramification point,	
	and call the exclusive procedure.	
3	Compute $I_1 \equiv rV_1^{-1} \mod U_1$.	
	$I_1 \leftarrow -v_{11}X + v_{10} - w_2;$	
4	Compute $T_1 \equiv (F - V_1^2)/U_1$ mod U_1 .	2M
	$w_2 \leftarrow u_{11}^2$; $w_3 \leftarrow w_2 + f_3$; $w_4 \leftarrow 2u_{10}$;	
	$t_{10} \leftarrow u_{11}^{11}(2w_4 - w_3) + f_2 - w_1;$	
	$t_{11} \leftarrow 2w_2 + w_3 - w_4;$	
5	Compute $S \equiv I_1T_1 \mod U_1$. (Karatsuba)	$\int 5M$
	$w_1 \leftarrow i_{10}t_{10}; w_2 \leftarrow i_{11}t_{11};$	
	$w_3 \leftarrow (i_{10} + i_{11})(t_{10} + t_{11}) - w_1 - w_2;$	
6	$S \leftarrow (w_3 - u_{11}w_2)X - u_{10}w_2 + w_1;$	
6	If $s_1 = 0$ then \mathcal{D}_2 should be weight one,	
7	and call the exclusive procedure.	
7	Collect S	I + 6M
	$w_1 \leftarrow (2rs_1)^{-1}; w_2 \leftarrow s_1w_1; w_1 \leftarrow 4r^2w_1;$	
	$s_0 \leftarrow s_0 w_2; s_1 \leftarrow s_1 w_2;$	47.7
8	Compute $U_2 = s_1^{-2}((SU_1 + V_1)^2 - F)/U_1^2$.	4 M
	$u_{20} \leftarrow w_1(w_1(s_0^2 + 2u_{11}) + 2v_{11});$	
	$u_{21} \leftarrow w_1(2s_0 - w_1); u_{22} \leftarrow 1;$	635
9	Compute $V_2 \equiv -(SU_1 + V_1) \mod U_2$.	6 M
	$w_1 \leftarrow u_{11} - u_{21};$	
	$v_{20} \leftarrow u_{20}(s_1w_1 + s_0) - s_0u_{10} - v_{10};$	
Total	$v_{21} \leftarrow s_1(u_{21}w_1 + u_{20} - u_{10}) - s_0w_1 - v_{11};$	1 1 07 1/
Total		I+27M

Mumford representationの拡張

Harley アルゴリズムの入出力 divisor \mathcal{D}_i :

$$\mathcal{D}_{i} = (U_{i}, V_{i}),$$

$$U_{i} = X^{2} + u_{i1}X + u_{i0},$$

$$V_{i} = v_{i1}X + v_{i0}$$

 \Rightarrow

出力の U_i をモニックにするために、 逆元計算は不可避

 \Rightarrow

逆元計算を消去するためには, Mumford representationの拡張が必要 U_i, V_i に任意の $a \in \mathbb{F}_q^*$ を乗じた,

$$U'_{i} = aU_{i}$$
 = $aX^{2} + au_{i1}X + au_{i0}$,
 $V'_{i} = aV_{i}$ = $av_{i1}X + av_{i0}$

を用いた表現

$$\mathcal{D}_i = (U_i', V_i') \ (= (U_i, V_i))$$

を許す

(Modified Mumford Representation)

$$(U_i, V_i) = (U'_i/u'_{i2}, V'_i/u'_{i2})$$

入力 divisor も MMR なので、 計算手順は全面的な書き換えが必要であった

加算: 54M

2倍算: 53M

改良の変遷

		加算	2倍算
2000/7	[1]	2I + 30M	$2I + 30M^{\ddagger}$
2000	[2]	2I + 27M	$ 2I + 30M^{\ddagger} $
2001/7	[3]	$2I + 23M^{\dagger}$	$2I + 25M^{\ddagger}$
2001/8	[4]	$I + 27M^{\dagger}$	I + 27M
2002/1	[5]	I + 26M	I + 27M
		54M	53 <i>M</i>
2002/1	[6]	2I + 21M	$2I + 25M^{\ddagger}$
		I + 25M	$I + 29M^{\ddagger}$

[1] Gaudry-Harley, ANTS IV, [2] Harley, Homepage

[3]M-Chao-Tsujii, ISEC

[4]M, 暗号とそれを支える代数曲線理論ワークショップ (アナウンスのみ)

- [5] Miyamoto-Doi-M-Chao-Tsujii, SCIS
- [6] Takahashi, SCIS

†: 本来 −M

 $\ddagger: f_4 = 0 \Rightarrow -2M$

高橋さんのアイディア

 U_3 : モニック化 \Rightarrow S: モニック化

楕円曲線暗号との比較

比較対象:

EC IEEE P1363方式(Jacobian Projective)

加算: 16M, 2倍算: 10M

Affine

加算: I + 3M, 2倍算: I + 4M

HEC 加算: 54M, 2倍算: 53M

加算: I + 25M, 2倍算: I + 27M加算: 2I + 21M, 2倍算: 2I + 23M

安全性 $\approx \#E(\mathbb{F}_q), \#\mathcal{J}_C(\mathbb{F}_q)$

 $(q^{1/2} - 1)^{2g} \le \# \mathcal{J}_C(\mathbb{F}_q) \le (q^{1/2} + 1)^{2g}$ \Rightarrow $\# E(\mathbb{F}_q) \approx q$ $\# \mathcal{J}_C(\mathbb{F}_q) \approx q^2$

 $N \approx \#E(\mathbb{F}_{q_E}) \Rightarrow q_E \approx N$ $N \approx \#\mathcal{J}_C(\mathbb{F}_{q_H}) \Rightarrow q_H \approx \sqrt{N} \Rightarrow q_H \approx \sqrt{q_E}$

定義体上の乗算コスト

 $M \approx (\log q)^2$ (classical mulitiplication)

 $M_E: \mathbb{F}_{q_E}$ 上の乗算コスト $M_H: \mathbb{F}_{q_H}$ 上の乗算コスト

 $\Rightarrow M_E \approx 4M_H$

整数倍算時間比 暗復号処理時間の殆んどは整数倍算処理

	加算	2倍算
EC1	$16M_{E} =$	$10M_{E} =$
	$64M_H$	$40M_H$
EC2	$I_E + 3M_E =$	$I_E + 4M_E =$
	$4I_H + 12M_H$	$4I_H + 16M_H$
HEC1	$54M_H$	$53M_H$
HEC2	$I_H + 25 M_H$	$I_H + 27 M_H$
HEC3	$2I_H + 21M_H$	$2I_H + 23M_H$

整数倍算中に 加算と2倍算が等頻度で現れるとすると

I_H/M_H	EC1	EC2	HEC1	HEC2	HEC3
2	2.4	1	2.4	1.3	1.2
4	1.7	$\frac{1}{1}$	1.8	<u>1</u>	<u>1</u>
6	1.6	1.2	1.7	<u>1</u>	1.1
8	1.5	1.4	1.6	<u>1</u>	1.1
10	1.4	1.5	1.5	<u>1</u>	1.2
12	1.4	1.6	1.4	1 1 1 1 1 1 1 1	1.2
14	1.3	1.8	1.3	<u>1</u>	1.3
16	1.2	1.9	1.3	<u>1</u>	1.3
18	1.2	2.0	1.2	<u>1</u>	1.3
20	1.1	2.0	1.2	<u>1</u>	1.3
22	1.08	2.1	1.1	<u>1</u>	1.4
24	1.04	2.2	1.07	<u>1</u>	1.4
26	<u> 1</u>	2.3	1.03	<u>1</u>	1.4
28	1 1 1	2.4	1.03	1.04	1.5
30	<u>1</u>	2.6	1.03	1.07	1.6

加算の頻度が2倍算の頻度の1/2とすると

I_H/M_H	EC1	EC2	HEC1	HEC2	HEC3
2 4	2.1	1	2.4	1.3	1.2
4	1.6	1.01	1.8	<u>1</u>	<u>1</u>
6	1.5	1.2	1.6	<u>1</u>	1.06
8	1.4	1.4	1.6	<u>1</u>	1.1
10	1.3	1.5	1.5	<u>1</u>	1.2
12	1.3	1.6	1.4	1 1 1 1 1 1 1	1.2
14	1.2	1.8	1.3	<u>1</u>	1.2
16	1.1	1.9	1.3	<u>1</u>	1.3
18	1.1	2.0	1.2	<u>1</u>	1.3
20	1.03	2.0	1.2	<u>1</u>	1.3
22	1	2.1	1.1	1.01	1.4
24	1	2.3	1.1	1.04	1.5
26	1	2.5	1.1	1.09	1.5
28	$\begin{array}{c c} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{array}$	2.6	1.1	1.1	1.6
30	<u>1</u>	2.8	1.1	1.2	1.7

実装による比較

超楕円曲線 : 加算 2I+23M 版と I+26M 版

楕円曲線 : P1363

整数倍算 : sliding window (幅4)

逆元演算 : Kobayashi et al. @Euro99

 $\mathbb{F}_{q_H} = \mathbb{F}_p(\alpha)$: 93-bit OEF

 $\mathbb{F}_{q_E} = \mathbb{F}_p(eta)$: 186-bit OEF

$$p = 2^{31} - 1$$

$$\alpha^3 - 5 = 0$$

$$\beta^6 - 5 = 0$$

$$\#\mathcal{J}_C(\mathbb{F}_{q_H}) \approx \#E(\mathbb{F}_{q_E}) \approx 2^{186}$$

整数倍算は186bit 乱数倍

使用言語 : C++

コンパイラ: gnu g++-2.95.2

	加算	2倍算	整数倍算
EC	11.6μ s.	6.58μ s.	1.76ms.
2I + 23M 版	8.32μ s.	8.74 μ s.	1.98ms.
I+26M版	7.22μ s.	7.50μ s.	1.69ms.

on Pentium III 866MHz

 $M_E \approx 3.8 M_H$

 $I_H \approx 6.4 M_H$

 \Rightarrow

超楕円曲線の演算は理論値より遅い

 \Rightarrow

実装について検討する必要がある.

Harley アルゴリズムの種数3の超楕円曲線への適用

種数3の超楕円曲線

 \mathbb{F}_q : 位数qの有限体

 $p := \operatorname{char} \mathbb{F}_q \neq 2, 7$

$$C/\mathbb{F}_q: Y^2 = F(X),$$

 $F(X) = X^7 + f_5 X^5 + \dots + f_0,$
 $f_i \in \mathbb{F}_q, \operatorname{disc}(F) \neq 0$

暗号応用での利点

位数 size ≈ 種数 × 定義体 size

定義体サイズ: 64bit ⇒ 位数サイズ: 192bit

位数 size≥160bit ⇒ 安全な暗号系を構成可能

64bit CPU 上で多倍長演算を用いること無く 安全な暗号系を構成可能

種数2の場合との相違点

- 1. Divisorの分類
- 2. Composition
- 3. Reduction

Divisorの分類

Reduced divisor

$$\mathcal{D}_i = P_{i1} + P_{i2} + P_{i3} - 3P_{\infty}$$
 または $\mathcal{D}_i = P_{i1} + P_{i2} - 2P_{\infty}$ または $\mathcal{D}_i = P_{i1} - P_{\infty}$ または $\mathcal{D}_i = 0$

- ⇒ 場合分けが爆発的に増える: コードサイズの増加 分類処理計算も複雑: 処理時間の増加
- ⇒ Cantor アルゴリズムを併用する

分類フロー

加算

入力:
$$\mathcal{D}_1 = (U_1, V_1), \mathcal{D}_2 = (U_2, V_2)$$

- 1. $\deg U_1 = \deg U_2 = 3$ and $\operatorname{res}(U_1, U_2) \neq 0$ \Rightarrow Harley アルゴリズム
- 2. そうでないならば \Rightarrow Cantor アルゴリズム: 確率 O(1/q)

2倍算

入力:
$$\mathcal{D}_1 = (U_1, V_1)$$

- 1. $\deg U_1 = 3$ and $\operatorname{res}(U_1, V_1) \neq 0$ \Rightarrow Harley アルゴリズム
- 2. そうでないならば \Rightarrow Cantor アルゴリズム: 確率 O(1/q)

Composition

基本的には種数2と同じ

 $\deg U, \deg V$ が種数2と違う

	$\deg U$	$\deg V$
genus 2	4	3
genus 3	6	5

⇒ 有限体上の演算数は増える

Reduction

2回の reduction が必要

	$\deg U$	$\deg V$	$F-V^2$ の根
Composition	6	5	10個
First reduction	4	3	7個
Second reduction	3	2	

加算: I + 81M

Input	Weight three coprime reduced divisors	
Output	$\mathcal{D}_1 = (U_1, V_1)$ and $\mathcal{D}_2 = (U_2, V_2)$ A weight three reduced divisor	
Output	$\mathcal{D}_3 = (U_3, V_3) = \mathcal{D}_1 + \mathcal{D}_2$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	18 <i>M</i>
2	If $r = 0$ then call Cantor algorithm.	
3	Compute $I_1 = i_{12}X^2 + i_{11}X + i_{10} \equiv r/U_1 \mod U_2$.	3 <i>M</i>
4	Compute $rS=rs_2X^2+rs_1X+rs_0\equiv (V_2-V_1)I_1 \bmod U_2.$ (Karatsuba)	11M
5	If $rs_2 = 0$ then call the exclusive procedure.	
6	Compute $S = s_2 X^2 + s_1 X + s_0$ $= r^{-1} (rs_2 X^2 + rs_1 X + rs_0).$	I + 7M
7	Compute $U_t = s_2^{-2}((S^2U_1 + 2SV_1)/U_2 - (F - V_1^2)/(U_1U_2)).$	19M
8	Compute $V_t = -(SU_1 + V_1) \mod U_t$. (Karatsuba)	12M
9	Compute $U_3 = (F - V_t^2)/U_t$.	8 <i>M</i>
10	Compute $V_3 = -V_t$ mod U_3 . (Karatsuba)	3 <i>M</i>
Total		I + 81M

2倍算: I + 74M

Input	A weight three reduced divisor $\mathcal{D}_1 = (U_1, V_1)$ without ramification points	
Output	A weight three reduced divisor $\mathcal{D}_2 = (U_2, V_2) = 2\mathcal{D}_1$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and V_1 .	15M
2	If $r = 0$ then call Cantor algorithm.	
3	Compute $I_1 = i_{12}X^2 + i_{11}X + i_{10} \equiv r/V_1 \mod U_1$.	3 <i>M</i>
4	Compute $T_1 = t_{12}X^2 + t_{11}X + t_{10} \equiv (F - V_1^2)/U_1 \mod U_1$.	7 M
5	Compute $2rS=2rs_2X^2+2rs_1X+2rs_0\equiv I_1T_1\ \text{mod}\ U_1.$ (Karatsuba)	11M
6	If $2rs_2 = 0$ then call the exclusive procedure.	_
7	Compute $S = s_2X^2 + s_1X + s_0$ $= (2r)^{-1}(2rs_2X^2 + 2rs_1X + 2rs_0).$	I + 7M
8	Compute $U_t = s_2^{-2}(((SU_1 + V_1)^2 - F)/U_1^2)$.	9M
9	Compute $V_t = -(SU_1 + V_1) \mod U_t$. (Karatsuba)	12M
10	Compute $U_2 = (F - V_t^2)/U_t$.	7 M
11	Compute $V_2 = -V_t \mod U_2$. (Karatsuba)	3 <i>M</i>
Total		I + 74M

実装結果

定義体: $\mathbb{F}_p, p = 2^{61} - 1$

整数倍算は186bit 乱数倍, sliding window (幅4)

使用言語 : C++ (1行だけ inline assembler 使用)

コンパイラ: Compaq C++

加算	2倍算	整数倍算
4.27 μ s.	4.09 μ s.	932 μ s.

on Alpha 21264 667MHz

Harley アルゴリズムの標数2の有限体上の超楕円曲線への適用(g=2)

種数2の超楕円曲線 $/\mathbb{F}_{2^n}$

 \mathbb{F}_q : 位数qの有限体, char $\mathbb{F}_q=2$

$$C/\mathbb{F}_q : Y^2 + H(X)Y = F(X),$$

 $F(X) = X^5 + f_3X^3 + f_1X + f_0,$
 $H(X) = X^2 + h_1X + h_0,$
 $f_i, h_i \in \mathbb{F}_q,$

$$\{(x,y) \in \overline{\mathbb{F}}_q^2 \mid y^2 + H(x)y + F(x) = H(x) = H'(x)y + F'(x) = 0\}$$

$$= \phi$$

 $\deg H = 2 \Leftrightarrow \mathcal{J}_C$: ordinary

$p \neq 2$ の場合との相違点

	$p \neq 2$	p = 2
分岐点	$P_Y = 0$	$H(P_X)=0$
Mumford	$U \mid F - V^2$	$U \mid F + HV + V^2$
$-\mathcal{D}$	(U, -V)	(U, U+V+H)
2倍算		
$\exists \mathcal{J}_C[2](\mathbb{F}_q)$	res(U,V)	res(H,V)
S	$\frac{F-V_1^2}{U_1}V_1^{-1} \bmod U_1$	$rac{F+HV_1+V_1^2}{U_1}H^{-1}\ mod\ U_2$

結果

加算: I + 26M(暫定)

2倍算: I + 28M(暫定)