Analiza algoritama

© Goodrich, Tamassia, Goldwasser

Katedra za informatiku, Fakultet tehničkih nauka, Univerzitet u Novom Sadu $2019. \label{eq:2019}$

Analiza algoritama 1 / 45

Analiza algoritama

• algoritam će od nekog ulaza proizvesti neki izlaz

• ULAZ \rightarrow ALGORITAM \rightarrow IZLAZ

Analiza algoritama 2 / 45

Vreme izvršavanja

- većina algoritama transformiše objekte na ulazu u objekte na izlazu
- vreme izvršavanja algoritma obično raste sa veličinom ulaza
- teško je izračunati prosečno vreme izvršavanja
- posmatraćemo najgori slučaj
 - jednostavnije za analizu
 - ključno za primene kao što su igre, finansije ili robotika

Analiza algoritama 3 / 45

Vreme izvršavanja

Analiza algoritama 4 / 45

Eksperimentalno proučavanje algoritama

- napisati program koji implementira posmatrani algoritam
- pokrenuti program za različite veličine i strukturu ulaznih podataka
- meriti vreme izvršavanja
- analizirati rezultate

Analiza algoritama 5 / 45

Merenje vremena pomoću sistemskog sata

```
from time import time
start_time() = time()
# ... run algorithm ...
end_time = time()
elapsed = end_time - start_time
```

Analiza algoritama 6 / 45

Analiza rezultata merenja

Analiza algoritama 7 / 45

Ograničenja eksperimentalnog pristupa

- potrebno je implementirati algoritam može biti teško
- teško je predvideti rezultate za ulaze koji nisu obuhvaćeni eksperimentom
- za poređenje dva algoritma mora se koristiti identično hardversko i softversko okruženje

Analiza algoritama 8 / 45

Teorijski pristup

- koristi se opis algoritma visokog nivoa umesto implementacije
- ullet opisuje vreme izvršavanja kao funkciju veličine ulaza n
- uzima u obzir sve moguće ulaze
- omogućava procenu brzine algoritma nezavisno od korišćenog hardvera ili softvera

Analiza algoritama 9 / 45

Pseudokôd

- opis algoritma visokog nivoa
- bolje strukturiran od prirodnog jezika
- manje detalja nego u stvarnom programu
- sakriva detalje vezane za dizajn programa
- poželjna notacija za opisivanje algoritama

Analiza algoritama 10 / 45

Pseudokôd

primer: pronalaženje najvećeg broja u nizu

```
\begin{array}{l} \operatorname{arrayMax}(A,n) \\ \mathbf{Input:} \ A: \ \operatorname{niz} \ \operatorname{celih} \ \operatorname{brojeva} \\ \mathbf{Input:} \ n: \ \operatorname{dužina} \ \operatorname{niza} \\ currentMax \leftarrow A[0] \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{if} \ A[i] > currentMax \ \mathbf{then} \\ currentMax \leftarrow A[i] \\ \mathbf{return} \ currentMax \end{array}
```

Analiza algoritama 11 / 45

Pseudokôd

- kontrola toka
 - if ...then ...[else] end if
 - for ...do ...end for
 - while ...do ...end while
 - repeat ...until ...
- izrazi
 - ← dodela vrednosti
 - poređenje vrednosti
 - n^2 matematička notacija je OK
- vraćanje rezultata
 - return vrednost

Analiza algoritama 12 / 45

konstantna funkcija

$$f(n) = c$$

- osnovna funkcija g(n) = 1
- ullet svaka druga može se prikazati kao $f(n) = c \cdot g(n)$
- može da opiše broj koraka potrebnih za neku od osnovnih operacija
- npr. sabiranje, dodela vrednosti, poređenje

Analiza algoritama 13 / 45

• logaritamska funkcija

$$f(n) = \log_b n$$

- za b > 1
- za osnovu logaritma se najčešće koristi 2
- 2 se podrazumeva, tj. $\log n = \log_2 n$
- podela problema na dva dela: čest princip koji se koristi u algoritmima

Analiza algoritama 14 / 45

• linearna funkcija

$$f(n) = n$$

- kada treba obaviti prostu operaciju nad svakim od n elemenata ulaza
- npr. poređenje broja sa svim elementima niza

Analiza algoritama 15 / 45

• n-log-n funkcija

$$f(n) = n \log n$$

- raste nešto brže od linearne funkcije
- i znatno sporije od kvadratne funkcije
- ullet npr. najbrže sortiranje n brojeva zahteva $n \log n$ vreme

Analiza algoritama 16 / 45

kvadratna funkcija

$$f(n) = n^2$$

- npr. dve ugnježdene petlje
- gde unutrašnja obavlja linearan broj operacija nad elementima ulaza
- a spoljna se izvršava linearan broj puta
- su proporcionalne sa n^2

Analiza algoritama 17 / 45

kubna funkcija

$$f(n) = n^3$$

- ređe se javlja od kvadratne, ali
- predstavlja jednu klasu polinomijalnih funkcija

$$f(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + \ldots + a_d n^d$$

Analiza algoritama 18 / 45

• eksponencijalna funkcija

$$f(n) = b^n$$

- b je baza
- \bullet n je eksponent
- često je b=2
- najsporija

Analiza algoritama 19 / 45

Analiza algoritama 20 / 45

Analiza algoritama 21 / 45

Primitivne operacije

- osnovne operacije koje izvršava algoritam
- prikazane u pseudokodu
- nezavisne od programskog jezika
- troše konstantnu količinu vremena
- na primer:
 - izračunavanje izraza
 - dodela vrednosti promenljivoj
 - pristup elementu niza preko indeksa
 - poziv funkcije
 - vraćanje rezultata

Analiza algoritama 22 / 45

Brojanje primitivnih operacija

 analizom pseudokoda možemo odrediti maksimalan broj primitivnih operacija koje izvršava algoritam kao funkciju veličine ulaza

Algoritam $arrayMax(A, n)$	br. operacija
$currentMax \leftarrow A[0]$	2
for $i \leftarrow 1$ to $n-1$ do	2n
if $A[i] > current Max$ then	2(n-1)
$currentMax \leftarrow A[i]$	2(n-1)
increment i	2(n-1)
${f return} \ current Max$	1
ukupno	8n-2

Analiza algoritama 23 / 45

Procena vremena izvršavanja

- algoritam **arrayMax** izvršava 8n-2 primitivnih operacija u najgorem slučaju
- neka je
 - a: vreme izvršavanja **najbrže** primitivne operacije
 - b: vreme izvršavanja **najsporije** primitivne operacije
 - ullet T(n) vreme u najgorem slučaju
- tada je
 - $a(8n-2) \le T(n) \le b(8n-2)$
 - $\Rightarrow T(n)$ je ograničena sa dve linearne funkcije!

Analiza algoritama 24 / 45

Primer ograničene funkcije

Analiza algoritama 25 / 45

Porast vremena izvršavanja

- izmena u hardverskom ili softverskom okruženju
 - ullet menja T(n) za konstantan faktor
 - ullet ali ne menja brzinu rasta T(n)
- \bullet linearni porast vremena izvršavanja T(n) je suštinska osobina algoritma $\operatorname{arrayMax}$

Analiza algoritama 26 / 45

Zašto je porast vremena bitan

T(n)	vreme za n+1	vreme za 2n	vreme za 4n
$c \log n$	$c\log(n+1)$	$c(\log n + 1)$	$c(\log n + 2)$
cn	c(n+1)	2cn	4cn
$cn \log n$	$\sim cn\log n + cn$	$2cn\log n + 2cn$	$4cn\log n + 4cn$
cn^2	$\sim cn^2 + 2cn$	$4cn^2$	$16cn^2$
cn^3	$\sim cn^3 + 3cn$	$8cn^3$	$64cn^3$
$c2^n$	$c2^{n+1}$	$c2^{2n}$	$c2^{4n}$

^{*} za dvostruki ulaz četvorostruko vreme

Analiza algoritama 27 / 45

Primer poređenja dva algoritma

- insertion sort je $n^2/4$
- merge sort je $2n \log n$
- sortiramo milion elemenata
 - insertion sort \sim 70 sati
 - merge sort \sim 40 sekundi
- na 100x bržoj mašini to bi bilo
 - insertion sort \sim 40 minuta
 - \bullet merge sort \sim 0.5 sekundi

Analiza algoritama 28 / 45

Primer poređenja tri algoritma

Analiza algoritama 29 / 45

Konstantni činioci

- porast vremena izvršavanja ne zavisi od
 - konstantnih činilaca
 - izraza nižeg reda
- na primer
 - $10^2n + 10^5$ je linearna funkcija
 - \bullet $10^5 n^2 + 10^8 n$ je kvadratna funkcija

Analiza algoritama 30 / 45

Veliko O notacija

- "Big-Oh"
- opisuje granično ponašanje funkcije kada argument raste
- \bullet za date f(n) i g(n) kažemo da f(n) je O(g(n)) ako postoje pozitivne konstante c i n_0 takve da

$$f(n) \leq cg(n) \ \text{za} \ n \geq n_0$$

Analiza algoritama 31 / 45

Veliko O notacija

- primer: 2n + 10 je O(n)
 - 2n + 10 < cn
 - $(c-2)n \ge 10$
 - $n \ge 10/(c-2)$
 - ullet izaberemo c=3 i $n_0=10$

Analiza algoritama 32 / 45

Veliko O notacija

- primer: n^2 nije O(n)
 - $n^2 < cn$
 - n ≤ c
 - ullet ova nejednakost ne može biti zadovoljena jer je c konstanta

Analiza algoritama 33 / 45

Još primera

- 7n-2 je O(n)
 - tražimo c>0 i $n_0\geq 1$ takve da $7n-2\leq cn$ za $n\geq n_0$
 - ullet ovo je zadovoljeno za c=7 i $n_0=1$
- $3n^3 + 20n^2 + 5$ je $O(n^3)$
 - tražimo c>0 i $n_0\geq 1$ takve da $3n^3+20n^2+5\leq cn^3$ za $n\geq n_0$
 - ovo je zadovoljeno za c=4 i $n_0=21$
- $3\log n + 5$ je $O(\log n)$
 - tražimo c>0 i $n_0\geq 1$ takve da $3\log n + 5 \leq c\log n$ za $n\geq n_0$
 - ovo je zadovoljeno za c=8 i $n_0=2$

Analiza algoritama 34 / 45

Veliko O i porast vremena

- veliko O definiše gornju granicu na rast funkcije
- ullet tvrdnja f(n) je O(g(n)) znači da f(n) ne raste brže od g(n)
- možemo da koristimo veliko O da rangiramo funkcije po brzini rasta

	$\int f(n)$ je $O(g(n))$	g(n) je $O(f(n))$
g(n) raste brže	da	ne
f(n) raste brže	ne	da
jednako brzo rastu	da	da

Analiza algoritama 35 / 45

Veliko O: još neka pravila

- ullet ako je f(n) polinom stepena d tada f(n) je $O(n^d)$, tj.
 - možemo zanemariti niže stepene polinoma
 - možemo zanemariti konstantne koeficijente
- koristimo najsporiju moguću klasu funkcija
 - ullet kažemo "2n je O(n)" umesto "2n je $O(n^2)$ "
- koristimo najjednostavniji izraz koji predstavlja klasu
 - ullet kažemo "3n+5 je O(n)" umesto "3n+5 je O(3n)"

Analiza algoritama 36 / 45

Asimptotska analiza algoritama

- asimptotska analiza algoritama određuje vreme izvršavanja u "veliko O" notaciji
- kako obaviti asimptotsku analizu
 - odredimo broj primitivnih operacija u najgorem slučaju kao funkciju veličine ulaza
 - izrazimo funkciju u "veliko O" notaciji
- primer:
 - ustanovimo da **arrayMax** izvršava najviše 8n-2 primitivnih operacija
 - ullet kažemo da je složenost **arrayMax** algoritma O(n)
- konstantne činioce i izraze nižeg stepena svakako ne iskazujemo na kraju, pa ih možemo zanemariti kada brojimo primitivne operacije

Analiza algoritama 37 / 45

ullet i-ti prosek prefiksa niza X je prosek vrednosti prvih i+1 elemenata X

$$A[i] = (X[0] + X[1] + \ldots + X[i])/(i+1)$$

ullet niz A se koristi u finansijskoj analizi

Analiza algoritama 38 / 45

ullet računanje proseka prefiksa prema definiciji: $O(n^2)$

Algoritam $prefixAverages1(X, n)$	br. operacija
$A \leftarrow$ novi niz od n integera	n
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow X[0]$	n
for $j \leftarrow 1$ to i do	1+2++(n-1)
$s \leftarrow s + X[j]$	$ \begin{vmatrix} 1+2++(n-1) \\ 1+2++(n-1) \end{vmatrix} $
$A[i] \leftarrow s/(i+1)$	n
return A	1

Analiza algoritama 39 / 45

- složenost **prefixAverages1** je O(1+2+...+n)
- suma prvih n prirodnih brojeva je n(n+1)/2
- ullet \Rightarrow algoritam radi za $O(n^2)$ vreme

Analiza algoritama 40 / 45

• računanje proseka prefiksa u linearnom vremenu pomoću tekuće sume

Algoritam $prefixAverages2(X, n)$	br. operacija
$A \leftarrow$ novi niz od n integera	n
$s \leftarrow 0$	1
	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s/(i+1)$	n
return A	1

Analiza algoritama 41 / 45

Šta nam treba od matematike

- tehnike izvođenja dokaza
- verovatnoća
- redovi
- logaritmi

•
$$\log_b(xy) = \log_b x + \log_b y$$

•
$$\log_b(x/y) = \log_b x - \log_b y$$

$$\bullet \ \log_b(xa) = a \log_b x$$

•
$$\log_b a = \log_x a / \log_x b$$

eksponencijalne funkcije

$$\bullet \ a^{b+c} = a^b a^c$$

$$\bullet \ a^{bc} = (a^b)^c$$

$$\bullet$$
 $a^b/a^c = a^{b-c}$

•
$$b = a \log_a b$$

$$b^c = a^{c \log_a b}$$

Analiza algoritama 42 / 45

Rođaci velikog O

- \bullet Ω : veliko Omega
 - f(n) je $\Omega(g(n))$ ako postoje c>0 i $n_0\geq 1$ takvi da $f(n)\geq cg(n)$ za $n\geq n_0$
- Θ: veliko Teta
 - f(n) je $\Theta(g(n))$ ako postoje $c_1>0$ $c_2>0$ i $n_0\geq 1$ takvi da $c_1g(n)\leq f(n)\leq c_2g(n)$ za $n\geq n_0$

Analiza algoritama 43 / 45

Rođaci velikog O

- veliko O
 - f(n) je O(g(n)) ako je f(n) asimptotski manje ili jednako g(n)
- veliko Ω
 - f(n) je $\Omega(g(n))$ ako je f(n) asimptotski veće ili jednako g(n)
- veliko Θ
 - f(n) je $\Theta(q(n))$ ako je f(n) asimptotski jednako q(n)

Analiza algoritama 44 / 45

Primeri sa O, Ω , Θ

- $5n^2$ je $\Omega(n^2)$
 - f(n) je $\Omega(g(n))$ ako postoje c>0 i $n_0\geq 1$ takvi da $f(n)\geq cg(n)$ za $n\geq n_0$
 - \bullet rešenje: c=5 i $n_0=1$
- $5n^2$ je $\Omega(n)$
 - f(n) je $\Omega(g(n))$ ako postoje c>0 i $n_0\geq 1$ takvi da $f(n)\geq cg(n)$ za $n\geq n_0$
 - ullet rešenje: c=1 i $n_0=1$
- $5n^2$ je $\Theta(n^2)$
 - f(n) je $\Theta(g(n))$ ako je $\Omega(n^2)$ i $O(n^2)$; prvi uslov smo proverili a drugi je ispunjen za
 - $c = 5 i n_0 = 1$

Analiza algoritama 45 / 45