2022年嵌入式大赛海思赛道指导指南--0416

一、编译环境要求

• 需要同学们提前安装好自己的Ubuntu环境

序号	名称	要求
01	Windows	Windows10 64位系统,系统的用户名不能含有中文
02	Ubuntu	Ubuntu18.04及以上版本,运行内存推荐16G及以上,磁盘空间推荐100G及以上,强烈推荐具有GPU的电脑或服务器(后面在模型训练和模型转换的时候可提升效率)

二、嵌入式大赛Taurus&Pegasus硬件相关资料下载路径

序号	名称	说明
01	HiSpark WiFi IoT智能开发套件 原理图 硬件资料	Pegasus开发套件主板、底板等相关原理图以 及硬件资料
02	HiSpark WiFi IoT套件PCB资料	Pegasus开发套件PCB图
03	HiSpark WiFi IoT外设扩展板VER A	Pegasus开发套件的外设扩展板原理图
04	Taurus套件原理图PCB设计资料	Taurus 套件原理图与PCB图
05	Taurus结构资料	Taurus 套件结构资料

三、嵌入式大赛赋能培训资料列表 (持续更新)

以下资料没有链接的,暂时在QQ群文件的《Hi3861学习资料》文件夹中可以找到

序列	名称	说明
01	Taurus&Pegasus AI计算机视觉基础开发 套件组装说明	嵌入式大赛开发套件的组装视频
02	Taurus&Pegasus AI计算机视觉基础开发 套件硬件测试指导文档	参考《工厂测试程序文档.pdf》的内容,来对 Taurus硬件进行测试。
03	virtualBox的安装	主要介绍如何安装VirtualBox,也可使用其他 虚拟机
04	Ubuntu安装.mp4	主要介绍如何安装Ubuntu
05	开发环境搭建.mp4	主要介绍如何搭建编译环境
06	获取源码.mp4	主要介绍如何下载openharmony源码
07	Hi3861源码开发流程.mp4	主要介绍Hi3861源码的开发流程
08	运行Hi3861的第一个样例helloworld程序	主要介绍如何运行Hi3861的helloworld程序
09	Hi3861社区SDK (openharmony版本) 介绍	主要是对Hi3861 openharmony版本的SDK 介绍
10	WiFi-IOT芯片Hi3861 SDK使用介绍	主要是对WiFi-IOT芯片Hi3861 SDK的使用进 行简要介绍

以下资料暂时在QQ群文件的《Hi3516DV300 学习资料》文件夹中可以找到

序列	名称	说明
11	3516源码开发流程.mp4	主要介绍Hi3516DV300源码的开发流程
12	Hi3516DV300运行第一个HelloWorld	主要介绍如何运行Hi3516DV300的helloworld 程序
13	OpenHarmony Hi3516DV300 SDK包 简介	主要是对Hi3516DV300 社区SDK进行了简要介绍
14	Hi3516DV300媒体业务场景介绍	主要介绍Hi3516DV300媒体业务场景
15	Hi3516DV300智能业务典型场景介绍	主要对Hi3516DV300智能业务典型场景进行介绍
16	Hi3516DV300 SVP介绍	主要是对Hi3516DV300 SVP进行了简要介绍
17	IVE sdk sample介绍	主要对Hi3516DV300 SDK IVE Sample进行介 绍
18	Hi3516DV300 HIGV介绍	主要对Hi3516DV300 HIGV进行了简要介绍

四、Hi3861V100 Pegasus的学习路径

序列	名称	说明
00	<u>Pegasus硬件环境搭建</u>	主要介绍如何搭建Pegasus的硬件
01	<u>理论知识课程</u>	在学习实验之前,请学习一下理论知识
02	<u>Hi3861V100应用场景介</u> 绍	主要包含了产品简介、应用场景、以及芯片用户指南
03	<u>Pegasus开发环境搭建</u>	主要是介绍如何搭建Pegasus的开发环境
04	<u>运行第一个程序</u> <u>HelloWorld</u>	介绍新建工程、代码修改、配置文件修改、编译、烧录、功能验证的全过程
05	常用接口案例之I2C通信 介绍	主要介绍了WiFi_loT的I2C通信接口
06	常用接口案例之UART通 信介绍	主要介绍了WiFi_loT的UART通信接口
07	常用接口案例之PWM接口介绍	主要介绍了WiFi_loT的PWM接口
08	基础控制实验之LED实验	主要介绍了WiFi_loT的基础控制实验的LED控制实验
09	网络通信实验之AT指令 应用	主要介绍了WiFi_loT的网络通信实验的AT指令的使用

序列	名称	说明
10	网络通信实验之 LWIP协议的TCP/IP通 信	主要介绍了网络通信实验的LWIP协议的TCP/IP通信部分的内容
11	网络通信实验之 MQTT的通信实验	主要介绍了网络通信实验的MQTT的通信实验部分的内容
12	网络通信实验之 Coap协议的通信实验	主要介绍了网络通信实验的Coap协议通信实验部分的内容
13	WiFi loT应用实践实验 之腾讯云的 微信小程序开发及 Hi3861板端互联	主要介绍了WiFi_loT应用实践实验中的基于腾讯云微信小程序开 发以及Hi3861板端互联的内容
14	WiFi loT应用实践实验 之微信小程序 基于UDP局域网和 Hi3861板端互联	主要介绍了WiFi_loT应用实践实验中的微信小程序基于UDP局域网和Hi3861版本互联的内容
15	WiFi IoT工程实验之 NFC实验	主要介绍了WiFi_loT工程实验中的NFC实验的内容

• **参考实验案例**,如下实验案例仅用于参考,里面涉及到的硬件,海思嵌入式大赛开发套件中没有包含,如需使用请自行购买

序列	名称	说明
01	基础控制实验之蜂鸣器实验	主要介绍了WiFi_loT的基础控制实验的蜂鸣器控制实验
02	WiFi IoT应用实践实验之 Histreaming APP的智慧 交通灯	主要介绍了WiFi_IoT应用实践实验中基于Histreaming APP的智慧交通灯实验
03	WiFi loT应用实践实验之 华为云的智能交通灯上报	主要介绍了WiFi_IoT应用实践实验中基于华为云的智能交通 灯上报实验
04	WiFi loT工程实验之交通 灯实验	主要介绍了WiFi_loT工程实验中的交通灯实验
05	WiFi loT工程实验之环境 检测实验	主要介绍了WiFi_loT工程实验中的环境检测实验

五、Hi3516DV300 Taurus的学习路径 (持续更新)

序列	名称	说明
00	<u>Taurus硬件环境搭建</u>	可参考此链接进行Taurus的硬件环境搭建,包括硬件组装 文档和视频,以及硬件测试文档
01	Taurus SDK的参考文档	可参考此链接获取Taurus SDK 的higv、HilSP、HilVE、 HiMPP、HiSVP、Audio等参考文档
02	<u>Taurus的相关概述</u>	主要是介绍Hi3516DV300的相关概述
03	Taurus套件的硬件介绍	主要是对Taurus开发套件进行简要的介绍
04	<u>Taurus的开发环境搭建</u>	主要是介绍如何搭建Taurus的开发环境
05	RuyiStudio工具的安装	主要介绍了如何安装海思的Ruyistudio工具
06	<u>Caffe环境搭建</u>	主要介绍了如何在Ubuntu搭建caffe环境
07	运行HelloWorld程序并介绍 VI到VO的视频通路	主要介绍了VI到VO的整个视频通路,并介绍如何在Taurus 开发板上面运行一个HelloWorld程序
08	图像Resize	主要介绍如何使用Resize算子对图像进行处理
09	<u>图像Crop</u>	主要介绍如何使用Crop算子对图像进行处理
10	IVE概述	主要是对IVE进行了简要的介绍

序列	名称	说明
11	<u>目标跟踪(KCF)</u>	主要介绍如何运行Hi3516DV300 SDK 的KCF 目标跟踪sample
12	<u>背景建模(GMM2)</u>	主要介绍如何运行Hi3516DV300 SDK 的 GMM2 背景建模 sample
13	<u>移动侦测(MD)</u>	主要介绍如何运行Hi3516DV300 SDK 的 MD 移动侦测 sample
14	<u>边缘检测算子</u> 主要介绍如何运行Hi3516DV300 SDK 的canny 边缘检测算子 sample	
15	<u>色彩空间转换算子实现</u>	主要介绍AI sample的色彩空间转换算子
16	色彩空间转换算子 sample案例演示	主要演示色彩空间转换算子的案例sample
17	NNIE介绍	主要对海思的NNIE进行简要介绍
18	分类网(<u>resnet18)</u>	重点介绍分类网(resnet18),从视频录制、数据采集和标注、 模型训练、模型转换来展开
19	检测网	采用darknet框架,以YOLOV2网络为例,来对检测网进行阐述

序列	名称	说明
20	分割网	主要介绍如何运行Hi3516DV300 SDK 的分割网 sample
21	AI CPU算子实 现	主要是以RFCN为例,通过CPU实现NNIE不支持的算子
22	<u>ai sample环</u> <u>境搭建</u>	主要介绍如何搭建ai_sample ,为后续的垃圾分类和手势识别的代码演示做准备
23	<u>手部检测+手</u> 势识别实验	主要介绍基于IVE+AI CPU算子进行手部检测+手部识别的实验案例
24	垃圾分类实验	主要介绍如何运行基于CNN 分类网的垃圾分类的实验案例
25	串口互联	主要是介绍基于手部检测+手部识别sample将Taurus识别到的数据通过 串口传输给Pegasus做相应的处理实验
26	<u>audio sample</u>	主要介绍如何运行Hi3516DV300 SDK 的audio sample,主要包括录制音 频文件到本地,播放本地音频文件
27	<u>vio sample</u>	主要介绍如何运行Hi3516DV300 SDK 的vio sample,如何将sensor采 集到的数据通过HDMI在显示屏上面显示
28	higv_sample	主要介绍如何基于HiGV进行UI界面开发

附录:上海海思2022年嵌入式大赛FAQ(持续更新)