pós-graduação em ciências da saúde do iamspe

Genômica Computacional

Anotação de genômas

Professor: Ricardo A. Vialle

CS31 - Genômica Computacional

Genome assembled, what next?

Adding biological info to sequences

ribosome binding site ccggcc

delta toxin
PubMed: 15353161

transfer RNA Leu-(UUR)

tandem repeat

homopolymer 10 x T

Segunda base								
		u	С	A	G			
Primera base	u	UUU J Fenilalanina (Fen) UUA J Leucina (Leu) UUG	UCU UCC UCA UCG	UAU Tirosina (Tir) UAA Codón de terminación	UGU Cisteína (Cis) UGA Codón de terminación UGG Triptófano (Tri)	U C A G		
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU Histidina (His) CAC Glutamina (Gln)	CGU CGC CGA CGG	U C A G	Tercera	
	A	AUU AUC Isoleucina (Ileu) AUA AUG Metionina (Met) Inicio	ACU ACC ACA ACG	AAU ASparagina (Asn) AAA AAA Lisina (Lis)	AGU Serina (Ser) AGA Arginina (Arg)	U C A G	a base	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU J Ácido aspártico (Asp) GAA J Ácido glutámico (Glu)	GGU GGC GGA GGG	U C A G		

Prokaryotic Gene Structure

Eukaryotic Gene Structure

Promoter:

Prokaryotic Genes

- -35 Region
- TATA Box
- Initiation site (TSS)

Operons:

- Promoter
- Some genes
- A terminator

Eukaryotic Genes

Automatic Structural Annotation

Very difficult problem

- Short, variable, unspecific motifs
- Need data to support predictions

Strategies for identifying coding genes - Structural annotation

Ab initio Gene Calling

Predictions using:

- Genome sequence
- Statistical model (specific to organism)

Models:

- Training on the best evidence-based gene calls
- "Best" = strong evidence, highly conserved
- Training can be iterative:
 - o train, predict, select best genes, retrain, etc

Strategies for identifying coding genes - Structural annotation

Evidence

Multiple pieces of evidence

- Alignment of RNASeq reads
- Alignment of EST or transcripts (same species or closely related species)
- Alignment of proteins (closely related species)

But data unavailable for novel or very distant genes, or unexpressed genes

Strategies for identifying coding genes - Structural annotation

Alignment

- Homology based
- Find similar sequences in DBs
- Might miss proteins that are not in the DB

Ab initio

- Find candidate ORFs
 - Model of RBS
 - Prediction of CDS
- May choose the incorrect start codon
- May miss atypical genes

Functional annotation of the identified proteins

similar sequences => similar structures => similar functions

Functional annotation

Methods

- Similarity search / homology
- Pattern search
- Orthologies
- Comparison against databases:
 - GenBank, NR: sequence databanks
 - o InterPro: pattern databank (active sites, protein families, peptide signal ...)
 - EggNOG: databank of orthology relationships + functional annotation

NCBI Blast

- Blast against NR
 - For each protein (or CDS) of the annotation
 - Find the best xx hits
- Huge database, good chances to have a match
- Risk:
 - Spread of "putative xx protein"
 - Spread of low-evidence annotations

Functional annotation

For each annotated gene

Orthology

- Search of orthologous genes in related species
- Search for paralogues
- · Bioinformatics method:
 - Blast all against all transcripts
 - Filtering the best hits
 - Clustering
 - OrthoFinder, OrthoMCL, ...

Functional annotation

NCBI Prokaryotic Genome Annotation Pipeline

- Structural annotation by comparing ORFs to:
 - libraries of protein models (HMMs),
 - representative RefSeq proteins
 - proteins from well characterized reference genomes.
- •GeneMark S+: *ab initio* coding region predictions for regions lacking HMM or protein evidence

Prokka

Fast

Structural and Functional annotation

- Standards compliant
 - GFF3/GBK, TBL/FSA for GenBank
- Archaea, mitochondria, viruses

Feature prediction tools used:

Tool (reference)	Features predicted	
Prodigal (Hyatt 2010)	Coding sequence (CDS)	
RNAmmer (Lagesen et al., 2007)	Ribosomal RNA genes (rRNA)	
Aragorn (Laslett and Canback, 2004)	Transfer RNA genes	
SignalP (Petersen et al., 2011)	Signal leader peptides	
Infernal (Kolbe and Eddy, 2011)	Non-coding RNA	

Prokka

GFF3

GFF3 - The GFF (General Feature Format) format consists of one line per feature, each containing **9** columns of data, plus optional track definition lines.

1.seqid - name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seq ID must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below.

2.source - name of the program that generated this feature, or the data source (database or project name)

3.type - type of feature. Must be a term or accession from the SOFA sequence ontology

4.start - Start position of the feature, with sequence numbering starting at 1.

5.end - End position of the feature, with sequence numbering starting at 1.

6.score - A floating point value.

7.strand - defined as + (forward) or - (reverse).

8.phase - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on..

attributes - A semicolon-separated list of tag-value pairs, providing additional information about each feature. Some of these tags are predefined, e.g. ID, Name, Alias, Parent - see the GFF documentation for more details

```
pronoter
        gene
        nRNAs
                EDEN.1
                EDEN.2
                   EDEN.3 (CDS 1)
                   EDEN.3 (CDS 2)
0 ##gff-version 3.2.1
   ##sequence-region ctg123 1 1497228
   ctg123 . gene
                                                 ID=gene00001;Name=EDEN
   ctg123 . TF binding site 1000 1012
                                                 ID=tfbs00001;Parent=gene00001
   ctg123 . mRNA
                                                  ID=mRNA00001; Parent=gene00001; Name=EDEN.1
 5 ctg123 . mRNA
                                                  ID=mRNA00002;Parent=gene00001;Name=EDEN.2
   ctg123 . mRNA
                                                 ID=mRNA00003; Parent=gene00001; Name=EDEN.3
                                                 ID=exon00001;Parent=mRNA00003
   ctg123 . exon
   ctg123 . exon
                                                  ID=exon00002; Parent=mRNA00001, mRNA00002
   ctg123 . exon
                                                 ID=exon00003; Parent=mRNA00001, mRNA00003
   ctg123 . exon
                                                 ID=exon00004; Parent=mRNA00001, mRNA00002, mRNA00003
   ctg123 . exon
                                                  ID=exon00005; Parent=mRNA00001, mRNA00002, mRNA00003
   ctg123 . CDS
                                                 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
13 ctg123 . CDS
                                        . + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
   ctg123 . CDS
                                                 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
   ctg123 . CDS
                                                 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
16 ctg123 . CDS
                                                 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
17 ctg123 . CDS
                                                 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
   ctg123 . CDS
                                        . + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
   ctg123 . CDS
                                        . + 0 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
   ctg123 . CDS
                                        . + 1 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
21 ctg123 . CDS
                                                 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
22 ctg123 . CDS
                                        . + 0 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
23 ctg123 . CDS
                                              1 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
                                        . + 1 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
24 ctg123 . CDS
```

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md