Ayudantía Teoría de Integración

August 28, 2025

Contents

1																		
1.1	Ayudantia 14 de Agosto																	
		1.1.1	Ejercicio 11	(Guia)	(i)													
		1.1.2	Ejercicio 11	(Guia)	(ii)													
		1.1.3	Ejercicio 11	(Guia)	(iii)													
	1.2	Ayudantía 21/08																
	1.3	Ayuda	ntía 28 de A	gosto .														

Chapter 1

1.1 Ayudantia 14 de Agosto

1.1.1 Ejercicio 11 (Guia) (i)

Proof. (A) Para ver que C es cerrado, veremos que cada C_n lo se. Notamos que si $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ tales que $f(x) \coloneqq frac13x$ y $g(x) \coloneqq frac23 + frac13$ son continuas y $C_n = f(C_{n-1}) \cup g(C_{n-1}) \Rightarrow C_n$ es compacto \Rightarrow es cerrado, $\forall n$

(B) Para ver que es no numerable, vamos a construir una inyeccion $\Phi: X \to X$ con X no numerable. Sea entonces $X \coloneqq 0, 2^{\mathbb{N}}$ y dado $w \in X$, definimos:

$$C_n(w) := \frac{C_0}{3^n} + \sum_{k=1} n \frac{w_k}{3^k}$$

Si
$$n = 2$$
: $C_2(w) = [0, \frac{1}{9}] + \frac{w_1}{3} + \frac{w_2}{9} = \begin{cases} [0, \frac{1}{9}] \\ [\frac{2}{3}, \frac{7}{9}] \\ [\frac{2}{9}, \frac{1}{3}] \\ [\frac{8}{0}, 1] \end{cases}$

Basicamente, $C_n(w)$ referencia siempre a alguno de los 2^n intervalos de C_n . Luego, es claro que para w fijo, $C_{n+1}(w) \subseteq C_n(w) \subseteq C_n(*)$ y $diam(C_n(w)) \xrightarrow{n\to\infty} 0$. Por el Teorema de interseccion de Cantor: $|\cap_{n\in\mathbb{N}} C_n(w)| = 1$. Sea C(w) tal elemento. Luego, por (*), $C(w) \in C$.

Sea entonces $\Phi:0,2^{\mathbb{N}}\to C$ tal que $\Phi(w):=C(w)$ y Φ es inyectiva (basta ver que pasa si $w^{(1)},w^{(2)}$ difieren en una coordenada). Como $|0,2^{\mathbb{N}}|=C$, se concluve.

(C) Si suponemos que existe $(a,b)\subset C.$ SPG, a=0. Consideremos $n\in\mathbb{N}$ suficientemente grande.

$$3^{-n} < b \Rightarrow (0,b) \nsubseteq [0,\frac{1}{3^n}] \cup [\frac{2}{3^n},\frac{3}{3^n}] \subseteq C_n$$

Luego, $\exists z \in (0,b) : z \notin C_n$, para algun $n \Rightarrow z \notin C$ (Contradiccion).

- 1.1.2 Ejercicio 11 (Guia) (ii)
- 1.1.3 Ejercicio 11 (Guia) (iii)

Ahora, para la integral superior:

1.2 Ayudantía 21/08

1. Sea $f:[a,b]\to\mathbb{R}$ continua. Probar que su gráfico en \mathbb{R}^2 :

$$\mathcal{G}: \{(x, f(x)) : x \in [a, b]\} \subseteq \mathbb{R}^2$$

tiene medida nula.

Proof. Sea $\varepsilon>0$, debemos contruir una familia de cuadrados en \mathbb{R}^2 que verifique $\mathcal{G}\subseteq\bigcup_{i\in\mathbb{N}}Q_i$ y $\sum_{i\in\mathbb{N}}|Q_i|<\varepsilon$. Como $f:[a,b]\to\mathbb{R}$ es continua, entonces f es uniformemente continua. Así. si $\varepsilon,\ \exists \delta>0:$ si $|x-y|<\delta\Rightarrow|f(x)-f(y)|<\varepsilon$. Sin pérdida de generalidad, sea $S\le 1$ y empezamos a particionar [a,b]. Sea $n:=\lceil\frac{b-a}{\delta}\rceil$ y consideramos la partición $\{I_j\}_{j=1}^n$ tales que $I_j:=[x_j,x_{j+1}]$ con $x_0=a,\ x_n=b$ y $0< x_{j+1}-x_j\le \delta$. Con esto, tenemos que:

- (a) Por construcción, $diam(I_j) \le \delta$, $\forall 0 \le j \le n$;
- (b) En particular, si $x \in I_j \Rightarrow I_j \subseteq B(x, \delta)$, $\forall j \in \{1, ..., n\}$. Luego, en cada $j \in \{1, ..., n\}$ elegimos $x_j \in I_j$ y cumple que $I_j \subseteq B(x_j, \delta)$. Además, $f(I_j) \subseteq B(f(x_j), \varepsilon)$.

Ahora definimos los cuadrados: Dado $(x, f(x)) \in \mathcal{G} \Rightarrow x \in I_j \subseteq B(x_j, \delta)$, para algún $j \circ f(x) \in B(f(x_j), \varepsilon)$. Por lo tanto, $(x, f(x)) \in B(x_j, \delta) \circ B(f(x_j), \varepsilon)$. Adamés:

 $B(x_j, \delta) \times B(f(x), \varepsilon)$. Luego, $\mathcal{G} \subseteq \bigcup_{j=1}^n B(x_j, \delta) \times B(f(x_j), \varepsilon)$. Además:

$$\sum_{j=1}^{n} |B(x_j, \delta) \times B(f(x_j), \varepsilon)| = n(2\delta)(2\varepsilon) = 4\varepsilon n\delta$$

$$= 4\varepsilon \left\lceil \frac{b-a}{\delta} \right\rceil \delta$$

$$\leq 4\varepsilon \left(\frac{b-a}{\delta} + 1 \right) \delta$$

$$= 4\varepsilon ([b-a] + \delta)$$

$$\leq 4\varepsilon (b-1+1).$$

2. Sean $\alpha \in (0,1]$ y $C_0 := [0,1]$. Para cada $n \geq 1$, defina recursivamente, el conjunto C_n que resulta de retirar el intervalo central de largo $\alpha 3^{-n}$ a C_{n-1} . Por ejemplo, $C_1 := \left[0, \frac{3-2}{6}\right] \cup \left[\frac{3+2}{6}, 1\right]$. Defina $C_{\alpha} := \bigcap_{n \geq 0} C_n$.

(a) Pruebe que C_{α} tiene medida nula $\Leftrightarrow \alpha = 1$. [Con esto (y mas resultados) $\chi_{C_{\alpha}}$ es R-integrable $\Leftrightarrow \alpha = 1$.]

Proof. Primero, estudiemos un poco mas de la construcción de los C_{α} . Para construir C_n , debemos retirar 2^{n-1} intevalos de largo $\alpha 3^{-n}$. Así, si sumamos los largos de los intervalos retirados hasta n obtenemos:

$$\sum_{k=1}^{n} 2^{k-1} (\alpha 3^{-k}) = \frac{\alpha}{2} \sum_{n=1}^{k} \left(\frac{2}{3}\right)^{k} \frac{\alpha}{2} \left(\sum_{k=0}^{n} \left(\frac{2}{3}\right)^{k} - 1\right).$$

Por lo tanto, el largo neto al sustraer todos los intervalos es

$$\lim_{n\to\infty}\sum_{k=1}^n 2^{k-1}(\alpha 3^{-k}) = \frac{\alpha}{2}\lceil \frac{1}{1-\frac{2}{3}} - 1 \rceil = \alpha.$$

Supongamos que $\alpha<1.$ Supongamos que $\forall \varepsilon>0, \ \exists \{I_j\}_{j=1}^{\infty}$ tal

que
$$C_{\alpha} \subseteq \bigcup_{j=1}^{\infty} I_j$$
 y $\sum_{j=1}^{\infty} |I_j| < \varepsilon$ (i.e., C_{α} tiene medida nula). En particular, si consideramos $\varepsilon := 1\alpha > 0$, obtenemos un cubrimiento

particular, si consideramos $\varepsilon := 1\alpha > 0$, obtenemos un cubrimiento de C_{α} , $\{I_k\}_{k \in \mathbb{N}} : \sum_{k=1}^{\infty} |I_k| < 1 - \alpha$. Si ahora añadimos a esta colección todos los inrevalos sustraidos, entonces puedo cubrir [0,1]. Como el largo es numerablemente sub-aditivo, entonces $1 = |[0,1]| = |I_k \cup \{\text{lo que quite}\}| < (1-\alpha) + \alpha = 1$.

1.3 Ayudantía 28 de Agosto

Ejercicio N°1

Sea μ una medida sobre (X,β) (β una σ -álgebra). Pruebe que:

- 1. Si $A, B \in \beta$: $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$
- 2. Si $(A_n)_n \subseteq \beta$ y $A \in \beta$ tales que $A \subseteq \bigcup_n A_n \Rightarrow \mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n)$
- 3. Sea $(A_n)_n \subseteq \beta$ tal que $A_n \subseteq A_{n+1}, \forall n \in \mathbb{N}$. Luego:

$$\mu\left(\bigcup_{n} A_{n}\right) = \lim_{n \to \infty} \mu(A_{n})$$

4. Si $(A_n)_n \subseteq \beta$ cumple que $A_{n+1} \subseteq A_n \ \forall n$, entonces:

$$\mu\left(\bigcap_{n} A_{n}\right) = \lim_{n \to \infty} \mu(A_{n}) \quad \text{si } \exists n_{0} \in \mathbb{N} : \mu(A_{n_{0}}) < \infty$$

Proof (1.). Basta notar que:

$$B = A \, \mathbb{D}(B \setminus A) \Rightarrow \mu(B) = \mu(A) + \underbrace{\mu(B \setminus A)}_{\geq 0}$$

$$\geq \mu(A).$$

Proof (2.). Por (1.) tenemos que $\mu(A) \leq \mu(\bigcup_n A_n)$. $\sharp \mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$?

Idea. Descomponer $\bigcup_n A_n$ en otra unión que sea disjunta y que permita acotar?

Sea $B_1 := A_1$, $B_2 := A_2 \setminus A_1 = A_2 \setminus B_1, \ldots, B_n := A_n \setminus \bigcup_{k=1}^{n-1} B_k$. Luego, $(B_n)_n$ es disjunta y $\bigcup_n A_n = \bigcup_n B_n$. Finalmente:

$$\mu\left(\bigcup_{n} A_{n}\right) = \mu\left(\bigcup_{n} B_{n}\right) = \sum_{n} \mu(B_{n}) \le \sum_{n} \mu(A_{n})$$

Notar que la última desigualdad es por (1.) y $B_n \subseteq A_n$.

 ${\bf Proof}$ (3.). Nuevamente, vamos a apelar a una descomposición disjunta: Sean

$$B_1 := A_1, \ B_2 := A_2 \setminus A_1, \ldots, \ B_n := A_n \setminus A_{n-1}$$

Como la sucesión es creciente, $\bigcup_n A_n = \bigcup_n B_n$. Luego,

$$\mu\left(\bigcup_{n} A_{n}\right) = \mu\left(\bigcup_{n} B_{n}\right) = \sum_{n} \mu(B_{n})$$

$$= \mu(B_{1}) + \sum_{n \geq 2} \mu(B_{n})$$

$$= \mu(A_{1}) + \sum_{n \geq 2} [\mu(A_{n}) - \mu(A_{n-1})] \qquad (*)$$

$$= \mu(A_{1}) + \lim_{n \to \infty} \sum_{k=2}^{n} \mu(A_{k}) - \mu(A_{k-1})$$

$$= \mu(A_{1}) + \lim_{n \to \infty} \mu(A_{n}) - \mu(A_{1})$$

$$= \lim_{n \to \infty} \mu(A_{n})$$

Donde (*) es cierto, pues $B_n := A_n \setminus A_{n-1}$ cumple que $A_n = A_{n-1} \bowtie B_n$. Queda como ejercicio probar la continuidad si el espacio es σ -finito \square

Proof (4.). Notamos primero que como $A_{n+1} \subseteq A_n \stackrel{(i)}{\Rightarrow} \mu(A_{n+1}) \le \mu(A_n) \Rightarrow$

 $(\mu(A_n))_n \subset \mathbb{R}$ es monótona decreciente y acotada por abajo. Entonces, es convergente. Notemos que, siendo n fijo

$$\mu(A_n) - \mu\left(\bigcap_{k \ge 1} A_k\right) = \mu\left(A_n \setminus \bigcap_{k=1}^{\infty} A_k\right)$$

$$= \mu\left(\bigcup_{k \ge 1}^{\infty} (A_n \setminus A_k)\right)$$

$$= \mu\left(\bigcup_{k \ge n+1} \underbrace{(A_n \setminus A + k)}_{\text{creciente en } k}\right)$$

$$= \lim_{k \to \infty} \mu(A_n \setminus A_k)$$

$$= \lim_{k \to \infty} \mu(A_n) - \mu(A_k).$$

y esto concluye.

Ejercicio N°2

Pruebe que la medida de L Ebesgue del triángulo en \mathbb{R}^2 coincide con el area usual.

Proof. (0) Los triángulos son Lebesgue medibles: Como los triángulos son cerrados, entonces son Borelianos y por lo tanto Lebesgue.