Méréselmélet 2. házi feladat

Ádám Tibor (adamtibi9@gmail.com)

ZK0MG3

1.1 Feladat

```
M=1:180;
       r=0.83;
       q=0.1;
       P=25;
       N=100000; % minták száma
       u=zeros(N,1); % helyfoglalás a gerjeszt?jelnek
       phi=rand(1,max(M)); % véletlen fázis generálás
     _ for n=0:N-1
       u(n+1)=sum(sin(2*pi*(M*n/N+phi)));
12 -
      end
13
14 -
       figure
       plot(0:N-1,u);
       title('u(n)');
16 -
17
```

A kapott jel:

1.2 Feladat

```
18
        % 1.2
19 -
        [A,B] = analyse (u, max(M));
20 -
        figure
21 -
        subplot (2,1,1);
22 -
        stem(A); % u(n) amplitúdóspektruma
23 -
        title('u(n) spektruma az M. harmonikus frekvenciájáig');
24 -
        subplot (2,1,2);
25 -
        stem(B); % u(n) fázisspektruma
```

Az analyse függvényben valósítottam meg a multiszinusz analizátort:

```
function [A,B]=analyse(a,M)

N=size(a,1); % minták száma

F=fft(a); % diszkrét fourier transzformáció

A=abs(F)*2/N; % amplitúdó spektrum

B=angle(F); % fázisspektrum

A=A(2:M+1); % az els? M frekvenciakomponens megtartása

B=B(2:M+1);
end
```

Az ellenőrzés eredménye:

Látszik, hogy a jel M=180 komponenst tartalmaz, melyek amplitúdója 1, ez megegyezik a várt értékkel. A fázis $-\pi$ és $+\pi$ közötti véletlen érték.

1.3 Feladat

```
28
       % 1.3
       Hz=tf([(1-r) 0],[1 0 r],1); % átviteli függvény képzése
29 -
30 -
       y=lsim(Hz,u); % az átviteli függvény gerjesztése u(n)-el
31
32 -
        [Ay,By]=analyse(y,max(M)); % a kimen? jel amplitúdó- és fázisspektruma
33 -
       H=Ay./A; % er?sítés
34 -
       dP=By-B; % fázistolás
35
36 -
       figure
37 -
       subplot (2,1,1);
38 -
       stem(H);
       title('Hz mért átvitele');
       subplot (2,1,2);
40 -
       stem(dP);
41 -
```

H(z) átvitele a multiszinusz frekvenciákon:

A rendszer erősítése a multiszinusz frekvenciákon konstanst 0.1 körül van. Ha megnézzük H(z) Bode-diagramját a Matlab bode() függvényével is, akkor látszik, hogy a [1/N...M/N] frekvencia-tartományon a rendszer erősítése -20 dB, vagyis 0.1. A közel nullának mért fázistolás is megegyezik a valós értékkel.

1.4 Feladat

```
44
        % 1.4
45
        % a 100. mintától már bőven állandósult állapotban van y(n)
46 -
       K=100;
47
       X=toeplitz(zeros(P,1),[0 u(1:end-1)']); % regressziós vektor előállítása
48 -
49
        % a gerjesztő jel elejére bekerült egy 0, így egy mintával késleltetve lett
50
       % tehát nem kell figyelni később az y és u indexelésére
51 -
       X=X';
52 -
       x=X(K:end,:); % (K-1)-ig tartó mintasorozat eldobása
53
       w0=ones(P,1)/P; % a súlyok inicializálása
54 -
55 -
       PO=eye(P); % a P mátrix iniciílizálsa
56 -
       w=recLS(w0,P0,x,y(K:end)); % rekurrzív LS függvény, w: súlytényezők
       y2=x*w;
57 -
58 -
       figure
59 -
       plot(0:9999, y2(1:10000), 'b', 0:9999, y(K:K+9999), 'r');
60 -
       legend('lin.kombinátor', 'adaptálandó rendszer');
61 -
       title('Az adaptálandó rendszer és a lin. kombinátor kiemenete');
```

A regressziós vektor értéke az n. ütemben megegyezik egy jól megkonstruált toeplitz-mátrix n. oszlopával. A mátrix első oszlopát nullákkal töltöttem fel, így toltam el egy mintányi idővel a gerjesztést a kimenethez képest. A rekurzív LS becslő számításához az első házi feladatban írt függvényt módosítottam egy kicsit:

A becslő és a P mátrix kezdeti értékét most nem a sima LS becsléssel határoztam meg, hanem egyszerűen minden súlyt 1/P-vel (ahol P jelöli a súlyok számát is) inicializáltam, a P mátrix kezdeti értékének pedig az egységmátrixot választottam. A kimenet beállási ideját az idődiagramjáról olvastam le.

1.5 Feladat

Az átviteli függvényt a mértani sor együtthatói alapján írtam fel. A mértani sor összegképlete:

$$\sum_{i=0}^{\infty} a_1 q^i = \frac{a_1}{1-q}$$

Az átviteli függvényem:

$$H(z) = \frac{(1-r)z^{-1}}{1+rz^{-1}} = \frac{(1-r)z^{-1}}{1-(-rz^{-1})}$$

$$a_1 = (1-r)z^{-1}$$

$$q = (-rz^{-1})$$

A sorfejtett alak:

$$H(z) = \sum_{i=0}^{\infty} (1 - r)(-r)^{i} z^{-(1+2i)}$$

```
64 -
       sor = (1-r)*(-r).^(1:P); % sorfejtett alak együtthatói
65 -
       suly = impulse(Hz,1:2*P); % Hz impulsuválaszának első 2P együtthatója
66
67 -
       figure
68 -
       stem(sor);
69 -
       hold on
70 -
       stem(suly);
71 -
       title('A sorfejtett alak együtthatói és Hz súlyfüggvénye');
72
73 -
       figure
74 -
       stem(w);
75 -
       hold on
76 -
       stem(suly);
77 -
       title('A lineáris kombinátor együtthatói és Hz súlyfüggvénye');
78
79 -
       y3=X*w; % lin. kombiátor kimenete a teljes u(n) gerjesztésre
        [Alin, Blin] = analyse (y3, max(M)); % a lin.kombinátor kimenetének spektruma
80 -
81 -
       figure
82 -
       subplot (2,1,1);
83
       % erősítések
84 -
       stem(Alin./A);
85 -
       title('Az adaptálandó redszer és a lin. kombinátor er?sítése');
86 -
       hold on
87 -
       stem(Ay./A);
88 -
       legend('lin.komb.','H(z)');
89 -
       subplot(2,1,2);
90 -
       stem(abs((Ay-Alin)./A)); % er?sítések különbsége
```

A sorfejtett alak első P tényezője és a lineáris kombinátor együtthatóinak összevetése H(z) impulzusválaszának együtthatóival:

Az impulzusválasz páros sorszámú mintái rendre nullaértékűek, egyébként mind a három sorozat sin(x)/x alakú. A lineáris kombinátor súlyai sokkal kisebbek, és a lengése is kisebb.

A modellezendő rendszer és a lineáris kombinátor átvitelének összevetése:

A fenti két képen látszik, hogy a lineáris kombinátor nagyon jól közelíti a kívánt modellt, hiszen az erősítés hibája minden frekvencián kisebb, mint 0.02%, a fázistolás hibája, pedig kisebb, mint 0.03%.

1.6 Feladat

Összegezve a korábban leírtakat, sikerült úgy kiszámolni a lineáris kombinátor súlyait, hogy a közelítés hibája nagyon kicsit legyen. Az alábbi képen a lineáris kombinátor és a modell kimenete látható ugyanarra a gerjesztésre:

A két jel szinte teljesen fedésben van.

A W mátrix elemeit az alábbi táblázat tartalmazza.

w1	w2	w3	w4	w5	w6	w7
0.021751	0.019096	0.01659	0.014235	0.01203	0.009976	0.008072
w8	w9	w10	w11	w12	w13	w14
0.006318	0.004715	0.003262	0.00196	0.000808	-0.00019	-0.00104
w15	w16	w17	w18	w19	w20	w21
-0.00175	-0.0023	-0.0027	-0.00295	-0.00305	-0.003	-0.0028
w22	w23	w24	w25			
-0.00246	-0.00196	-0.00132	-0.00052			

A sorfejtés eredménye, a programkódok és diagramok a korábbi feladatoknál találhatóak.

2. Feladat

```
104
        % 2 - LMS algoritmus
105
106
        % a Wiener-Hopf egyenlet R mátrixának számítás - a bátorsági tényezőhöz
107
       R = X' * X;
108 -
109 -
       R=R/max(M);
       lam = max(eig(R)); % lambda az R mátrix sajátértékeinek maximuma
        mu = 1/(10*lam); % bátorsági tényező
111 -
112
       W = zeros(P,N); % súlymátrix inicializálása nullákkal
113 -
114
115 - for i=P:N/2
116 -
           X=u(i-P+l:i);
117 -
            e=y(i)-X'*W(:,i);
118 -
            W(:,i+1)=W(:,i)+2*mu*X*e; % a súlyok rekurzív számítása LMS módszerrel
119 -
120
121 -
       Hz_q = tf([(1-(r-q)), 0, 0], [1, 0, 0, (r-q)], 1); % H(z) csökkentett r-el
122 -
       y q = lsim (Hz q,u); % az új modell kimenete u(n) gerjesztésre
123
124
       % a súlyok számításának folytatása az előbbi módon
125 - for i=N/2+1:N
           X=u(i-P+1:i);
127 -
            e=y q(i)-X'*W(:,i);
128 -
            W(:,i+1)=W(:,i)+2*mu*X*e;
129 -
```

Bátorsági tényező számítása az alábbi egyenlőtlenségből:

 $\mu < \frac{1}{2\lambda}$, ahol μ a bátorsági tényező és λ az R mátrix legnagyobb sajátértéke.

Túl kicsi bátorsági tényező esetén nagyon lassan konvergáltak a súlyok, viszont pontosan álltak be, túl nagy bátorsági tényező esetén pedig, gyorsan, de pontatlanul álltak be. A megfelelő értéket pár futtatás után sikerült megtalálnom.

A konvergencia diagramok és azok kirajzolásának kódja:

```
131 -
        figure
        % súlyok csökkenő sorrendben
132
133 -
        [maxW, maxNum] = sort(abs(W(:,end-1)),'descend');
        hold all
134 -
135 - - for i=1:5
        plot(abs(W(maxNum(i),:)')); % az 5 legnagyobb súly kirajzolása
136 -
137 -
138 -
       legend(strcat('W', num2str(maxNum(1:5),-1)));
139 -
       hold off
        title('Az 5 legnagyobb súly konvergecia diagramja');
140 -
```


3. Feladat

```
142
143
        P2=6; % 6 együtthatót kell számolni
144 -
145 -
        X=toeplitz(zeros(P2,1),[0 u(1:end-1)']);
        R=X*X'/max(M); % ugyanúgy kiszámoljuk R-t a bátorsági tényezőhöz
146 -
147 -
        lam=max(eig(R));
148 -
        mu=1/(10*lam); % bátorsági tényező
149
        % W1 és W2 számolása közös ciklusban
150
151 -
        W1 = zeros(P2,N); % súlyok az normál modellhez
152 -
        W2 = zeros(P2,N); % súlyok a csökkentett r-ű modellhez
153
154
        % equation-error formulation és LMS egyenletek
155 - for i=P2:N-1
156 -
            X1=[u(i-1:i)', y(i-3:i)']; % 2 bemeneti és 4 korábbi kimeneti minta
157 -
            X2=[u(i-1:i)', y q(i-3:i)'];
158 -
            el=y(i+1)-X1*W1(:,i);
159 -
            e2=y q(i+1)-X2*W2(:,i);
            Wl(:,i+1)=Wl(:,i)+2*mu*Xl'*el;
160 -
161 -
            W2(:,i+1)=W2(:,i)+2*mu*X2*e2;
162 -
       -end
```

```
164 -
        figure
165 -
      _ for i=1:P2
166 -
            plot(Wl(i,:)')
167 -
            hold on
168 -
        legend('al','a2','b1','b2','b3','b4');
169 -
170 -
        title('Súlyok konvergencia diagramja a normál IIR rendszerhez');
174 -
       - for i=1:P2
175 -
             plot(W2(i,:)')
176 -
             hold on
177 -
178 -
         legend('al','a2','b1','b2','b3','b4');
179 -
         title('Súlyok konvergencia diagramja a csökkentett r-ű IIR rendszerhez');
```

Konvergencia diagramok:

