

μPD23C256E 32,768 x 8-BIT MASK-PROGRAMMABLE CMOS ROM

Revision 1

Description

The μ PD23C256E is a 262,144-bit Read-only Memory utilizing CMOS silicon gate technology. The device is static in operation, organized as 32,768 words by 8 bits, and has three-state outputs. All inputs and outputs are fully TTL-compatible. The Output Enable pin is mask-programmable and can be specified by selecting 1, 0, or don't-care data. The μ PD23C256E is packaged in a 28-pin plastic (μ PD23C256EC) DIP and a 28-pin miniflat package (μ PD23C256EG). Pinout is compatible with μ PD27256 EPROMs.

Features

- ☐ 32,768-word by 8-bit organization
- □ I/O TTL-compatible
- ☐ Three-state output
- ☐ Single +2.5V to +6.0V power supply
- ☐ Available in plastic DIP and miniflat packages
- □ Low power consumption
 - Active: 40mA max
 - Standby: 30µA max
- ☐ 2 performance ranges:

Device	A	Power Supply				
	Access Time -	Active	Standby			
μPD23C256E	200ns	25mA	30µA			
μPD23C256E-1	150ns	30mA	30 μ A			

Block Diagram

Pin Configuration

Pin Identification

	Pin					
No. Symbol		Description				
1	NC	No Connection				
2-10, 21, 23-27	A ₀ -A ₁₄	Address inputs				
11-13, 15-19	O ₀ -O ₇	Data Outputs				
14	GND	Ground				
20	CE	Chip Enable				
22	0E	Output Enable ①				
28	V _{CC}	Single +2.5V to +6.0V Power Supply				

Notes ① The active level of the OE input is specified by 0, 1, or x where x equals don't-care data.

Absolute Maximum Ratings*

Supply Voltage, V _{CC}	-0.3V to +7V		
Input Voltage, V _I	-0.3V to V _{CC} +0.3V		
Output Voltage, V _O	-0.3V to V _{CC} +0.3V		
Operating Temperature, Topk	-10°C to +70°C		
Storage Temperature, T _{STG}	-65°C to +150°C		

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

T_ = -10°C to +70°C

Parameter	Symbol		Limits			Test	
		Min	Typ	Max	Unit	Conditions	
Input Capacitance	C,			10	pF	f = 1MHz	
Output Capacitance	Co			15	pF	f = 1MHz	

DC Characteristics

T_A = -10°C to +70°C; V_{CC} = +5.0V ± 10%

			Limit	ts		Test			
Parameter	Symbol	Min	Тур	Max	Unit				
input High Voitage	V _{IH}	2.2		V _{CC} + 0.3	٧				
Input Low Voltage	V _{IL}	-0.3		0.8	٧				
Output High Voltage	V _{OH}	2.4			٧	l _{OH} = -400μA			
Output Low Voltage	VoL			0.4	٧	l _{OL} = +3.2mA			
Input Leakage Current High	1 _{LIH}			10	μΑ	Vi = Vcc			
Input Leakage Current Low	I _{LIL}			- 10	μΑ	V ₁ = 0V			
Output Leakage Current High	I _{LOH}			10	μΑ	$V_0 = V_{CC}$ (Chip deselected)			
Output Leakage Current Low	I _{LOL}			- 10	μА	V _O = 0V (Chip deselected)			
			14	25	mA	CE = V _{IL} μPD23C256E			
	lec1		17	30	mA	μPD23C256E-1			
Power Supply Current	lcc2		0.2	1.5	mA	CE = V _{IH} (Standby mode)			
	Icc 3		0.2	30	μА	CE = V _{CC} ~ 0.2V (Standby mode)			

DC Characteristics (Cont.)

T_A = -10°C to +70°C; V_{CC} = +2.5V to +6.0V

	Limits				
Symbol	Min	Тур	Max	Unit	Test Conditions
VIH	0.7 x V _{CC}		V _{CC} +0.3V	٧	
V	-0.3		0.55	v	V _{CC} = 2.5V to 4.5V
*IL	-0.3		8.0	•	$V_{CC} = 4.5V$ to 6.0V
V _{OH}	0.75 V _{CC}			v	t _{OH} = -400μA
VoL			0.45	v	I _{OL} = +400µA
ŧ _{LIH}			10	μΑ	Vi = V _{CC}
ILIL			-10	μ Α	$\mathbf{v}_{\mathrm{i}} = \mathbf{o}\mathbf{v}$
I _{LOH}			10	μΑ	V _O = V _{CC} (Chip deselected)
ILOL			- 10	μΑ	V _O = 0V (Chip deselected)
		3	10	mA	V _{CC} = +3.0V ± 10% μPD23C256E
		6	18	mA	V _{CC} = +5.0V ± 10%
lees		3.5	10		V _{CC} = +3.0V ± 10% μPD23C256E-1
		7	20		$V_{CC} = +5.0V \pm 10\%$
ler a		0.1	30	μΑ	V _{CC} = +3.0V ± 10% CE = V _{DC} - 0.2V
-CC 3		0.2	30	μΑ	V _{CC} = +5.0V ± 10% (Standby mode)
	V _{IH} V _{IL} V _{OH} V _{OL} LIH LOH	V _N V _{CC} V _{IL} = 0.3 -0.3 V _{OH} 0.75 V _{CC} V _{OL} I _{LIH} I _{LIL} I _{LOH} I _{LOL}	Symbol Min Typ	Symbol Min Typ Max VoH 0.7 x VCC VCC +0.3V VoL −0.3 0.55 −0.8 VoH 0.75 VCC 0.45 I _{LIH} 10 −10 I _{LOH} −10 −10 I _{LOH} −10 −10 I _{LOH} −3 10 I _{LOH} −3 10 I _{LOH} −3 10 I _{LOH} −2 0.1 I _{LOH} −3 10 I _{LOH} −3 10	Symbol Min Typ Max World V _{IM V_{CC} -0.3 -0.55 -0.3 -0.8 V V_{OL} 0.75 V V_{OL} -10 μA I_{LIL} -10 μA I_{LOL} -10 μA}

AC Characteristics

T_A = -10°C to +70°C; V_{CC} = +5.0V ±10%

Parameter				Lin					
		23C258E			23C256E-1			•	Test Conditions
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	1
Access Time	t _{ACC}			200			150	ns	
Chip Enable Access Time	t _{CE}			200			150	ns.	
Output Enable Access Time	toE	10		100	10		100	пв	
Output Hold Time	t _{OH}	0			0			ns.	
Output Disable Time	tor	0		90	0		90	ns	2

Notes: ① Input voltage, f_R, f_F = 20ns; Input and output liming reference levels = 0.8V and 2.0V; Load = 1TTL + 100pF.
② I_{OF} is specified from CE or OE, whichever occurs first.

AC Characteristics (Cont.)

T_A = -10°C to +70°C; V_{CC} = +2.5V to +6.0V

Parameter				Lin					
		23C256E			23C256E-1				Test Conditions
	Symbol	Min	Typ	Max	Min	Typ	Max	Unit	1
Access Time	tACC			650			500	ns	
Chip Enable Access Time	t _{CE}			650			500	ns	
Output Enable Access Time	t _{OE}			300			300	ns	
Output Hold Time	ton	0			0			ns	
Output Disable Time	tor	0		250	0		250	ns	2

Notes: ① Input and output timing reference levels = V_{IL} and V_{IH} ; Load = 150pF. ② t_{OF} is specified from \overline{CE} or OE, whichever occurs first.

Timing Waveform

Definitions

Access Time, t_{ACC}

Access time is the maximum time between the application of a valid address and the corresponding valid data out.

Chip Enable Access Time, t_{CE}

The maximum time between application of a valid chip enable input and the corresponding valid outputs.

Output Enable Access Time, top

The maximum time between application of a valid output enable input and the corresponding valid outputs.

Output Hold Time, toH

Output hold time is the minimum time after an address change that the previous data remains valid.

Output Disable Time, top

Output disable time is the delay between chip selects becoming false and output stages going to the high-impedance state. $t_{\rm DF}$ is specified from $\overline{\rm CE}$ or ${\rm OE}$, whichever occurs first.