Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ» Кафедра информатики

Отчет по лабораторной работе №5 Вычисление собственных значений и векторов

> Выполнил: студент гр. 953501 Кореневский С. А.

Руководитель: доцент Анисимов В. Я

Содержание

1. Цель работы	
2. Теоретические сведения	
3. Программная реализация	6
4 Вывол	Q

Цель выполнения задания: освоить методы вычисления собственных значений и векторов.

Краткие теоретические сведения.

Метод Якоби (вращений) использует итерационный процесс, который приводит исходную симметрическую матрицу A к диагональному виду с помощью последовательности элементарных ортогональных преобразований (в дальнейшем называемых вращениями Якоби или плоскими вращениями). Процедура построена таким образом, что на (k+1)-ом шаге осуществляется преобразование вида

$$A^{(k)} \to A^{(k+1)} = V^{(k)*} A^{(k)} V^{(k)} = V^{(k)*} \dots V^{(0)*} A^{(0)} V^{(0)} \dots V^{(k)}, \ k=0,1,2...,$$
 (5.1)

где $A^{(0)} = A$, $V^{(k)} = V^{(k)}_{ij} (\varphi)$ — ортогональная матрица, отличающаяся от единичной матрицы только элементами

$$v_{ii} = v_{jj} = \cos \varphi \quad v_{ij} = -v_{ji} = -\sin \varphi \quad , \tag{5.2}$$

значение φ выбирается при этом таким образом, чтобы обратить в 0 наибольший по модулю недиагональный элемент матрицы $A^{(k)}$. Итерационный процесс постепенно приводит к матрице со значениями недиагональных элементов, которыми можно пренебречь, т.е. матрица $A^{(k)}$ все более похожа на диагональную, а диагональная матрица A является пределом последовательности $A^{(k)}$ при $k \to \infty$.

Алгоритм метода вращений.

1) В матрице $A^{(k)}$ (k=0,1,2,...) среди всех недиагональных элементов выбираем максимальный по абсолютной величине элемент, стоящий выше главной диагонали; определяем его номера i и j строки и столбца, в которых он стоит (если максимальных элементов несколько, можно взять любой из них);

2) По формулам

$$\cos \varphi_k = \sqrt{\frac{1}{2}(1 + (1 + p_k^2))^{-1}}, \quad \sin \varphi_k \quad \operatorname{sgn} p_k \sqrt{\frac{1}{2}(1 - (1 + p_k^2))^{-1}},$$

где

$$p_k = 2a_{ij}^{(k)}/(a_{ii}^{(k)}-a_{ij}^{(k)}).,$$

вычисляем $\cos \varphi_k$ и $\sin \varphi_k$, получаем матрицу $V^{(k)} = V^{(k)}_{ij} (\varphi_k)$.

3) По формулам

$$\begin{split} b_{si} &= a_{si}^{(k)} \cos \varphi_k + a_{sj}^{(k)} \sin \varphi_k, \\ b_{sj} &= -a_{si}^{(k)} \sin \varphi_k + a_{sj}^{(k)} \cos \varphi_k, \quad s = 1, 2,, n, \\ a_{is}^{(k+1)} &= b_{is} \cos \varphi_k + b_{js} \sin \varphi_k, \\ a_{js}^{(k+1)} &= -b_{is} \sin \varphi_k + b_{js} \cos \varphi_k, \quad s = 1, 2,, n. \end{split}$$

находим элементы матрицы $A^{(k+1)}$.

- 4) Итерационный процесс останавливаем, когда в пределах принятой точности суммой квадратов всех недиагональных элементов матрицы $A^{(k+1)}$, обозначаемой $t(A^{(k+1)})$, можно пренебречь.
- 5) В качестве собственных значений матрицы A берем диагональные элементы матрицы $A^{(k+1)}$, в качестве собственных векторов соответствующие столбцы матрицы $V = V^{(0)}V^{(1)} V^{(k)}$

Основное достоинство метода Якоби заключается в том, что при выполнении каждого плоского вращения уменьшается сумма квадратов недиагональных элементов; сходимость этой суммы к нулю по мере увеличения числа шагов гарантирует сходимость процесса диагонализации.

Итеративные алгоритмы решают задачу вычисления собственных значений путём построения последовательностей, сходящихся к собственным значениям. Некоторые алгоритмы дают также последовательности векторов, сходящихся к собственным векторам. Чаще всего последовательности собственных значений выражаются через последовательности подобных матриц, которые сходятся к треугольной или диагональной форме, что позволяет затем просто получить собственные значения. Последовательности собственных векторов выражаются через соответствующие матрицы подобия.

Метод	Применим к матрицам	Результат	Цена за один шаг	Сходимость	Описание
Степенной метод	общего вида	наибольшее собственное значение и соответствующий вектор	$O(n^2)$	Линейная	Многократное умножение матрицы на произвольно выбранный начальный вектор с последующей нормализацией.
Обратный степенной метод	общего вида	ближайшее к µ собственное значение и соответствующий вектор		Линейная	Степенная итерация с матрицей $(A - \mu E \)^{-1}$
Метод итераций Рэлея	общего вида	ближайшее к µ собственное значение и соответствующий вектор		Кубическая	Степенная итерация с матрицей $(A - \mu_i E)^{-1}, \text{где } \mu_i \text{является отношением}$ Рэлея от предыдущей итерации.
Предобусловленная обратная итерация ^[6] или LOBPCG ^[en]	положительно определённая вещественная симметричная	ближайшее к µ собственное значение и соответствующий вектор			Обратная итерация с предобуславливанием (приближённое обращение матрицы A).
Метод деления пополам ^[7]	вещественная симметричная трёхдиагональная	любое собственное значение		Линейная	Использует метод бисекции для поиска корней характеристического многочлена и свойства последовательности Штурма.
Итерации Лагерра	вещественная симметричная трёхдиагональная	любое собственное значение		Кубическая ^[8]	Использует метод Лагерра ^[еп] вычисления корней характеристического многочлена и свойства последовательности Штурма.
QR-алгоритм ^[9]	хессенберга	все собственные значения	$O(n^2)$ $6n^3 + O(n^2)$	Кубическая	Разложение $A = QR$, где Q ортогональная, R — треугольная, затем используется итерация к RQ .
Метод Якоби	вещественная симметричная	все собственные значения	$O(n^3)$	квадратичная	Использует поворот Гивенса в попытке избавиться от недиагональных элементов. Попытка не удаётся, но усиливает диагональ.
Разделяй и властвуй ^[en]	эрмитова	все собственные значения	$O(n^2)$		Матрица разбивается на подматрицы, которые диагонализируются, затем воссоединяются.
	трёхдиагональная	все собственные значения	$(\frac{4}{3})n^3 + O(n^2)$		
Метод гомотопии	вещественная симметричная трёхдиагональная	все собственные значения	$O(n^2)^{[10]}$		Строится вычисляемая гомотопия.
Метод спектральной свёртки ^[en]	вещественная симметричная	ближайшее к µ собственное значение и соответствующий собственный вектор			Предобусловленная обратная итерация, применённая к $(A$ - μE $)^2$
Алгоритм MRRR ^[11]	вещественная симметричная трёхдиагональная	некоторые или все собственные значения и соответствующие собственные вектора	$O(n^2)$		«Multiple Relatively Robust Representations» — Осуществляется обратная итерация с разложением LDL ^T смещённой матрицы.

3. Программная реализация

ЗАДАНИЕ С точностью 0,0001 вычислить собственные значения и собственные векторы матрицы A,

где A = kC + D, A - исходная матрица для расчёта, <math>k - номер варианта (0-15), матрицы C, D заданы ниже:

$$C = \begin{bmatrix} 0.2 & 0 & 0.2 & 0 & 0 \\ 0 & 0.2 & 0 & 0.2 & 0 \\ 0.2 & 0 & 0.2 & 0 & 0.2 \\ 0 & 0.2 & 0 & 0.2 & 0 \\ 0 & 0 & 0.2 & 0 & 0.2 \end{bmatrix}, \quad D = \begin{bmatrix} 2.33 & 0.81 & 0.67 & 0.92 & -0.53 \\ 0.81 & 2.33 & 0.81 & 0.67 & 0.92 \\ 0.67 & 0.81 & 2.33 & 0.81 & 0.92 \\ 0.92 & 0.67 & 0.81 & 2.33 & -0.53 \\ -0.53 & 0.92 & 0.92 & -0.53 & 2.33 \end{bmatrix}$$

Результат работы программы (k = 6, eps = 0.0001):

A:

Вектор собственных значений: [3.5537 7.3934 4.8776 1.6121 0.2131] Столбцы — собственные векторы:

Количество итераций: 19

Проверка с помощью встроенной функции:

Вектор собственных значений: [7.3934 0.2131 1.6121 3.5537 4.8777] Столбцы – собственные векторы:

```
[[-0.4298 -0.4184  0.3552  0.6640 -0.2704]

[-0.4812  0.2657  0.6089 -0.5429 -0.1798]

[-0.5648  0.5996 -0.3208  0.3219  0.3391]

[-0.4113 -0.2708 -0.6324 -0.3074 -0.5129]

[-0.3091 -0.5670 -0.0140 -0.2573  0.7187]]
```

```
Результат работы программы (k = 6, eps = 0.01):
```

```
Α:
```

```
[[ 3.53  0.81  1.87  0.92 -0.53]
[ 0.81  3.53  0.81  1.87  0.92]
[ 1.87  0.81  3.53  0.81  2.12]
[ 0.92  1.87  0.81  3.53 -0.53]
[-0.53  0.92  2.12 -0.53  3.53]]
```

Вектор собственных значений: [3.5547 7.3931 4.8770 1.6121 0.2132] Столбцы — собственные векторы:

```
[[ 0.6735  0.4237 -0.2554 -0.3584  0.4161]
[-0.5348  0.4859 -0.1920 -0.6069 -0.2697]
[ 0.3196  0.5619  0.3459  0.3245 -0.5977]
[-0.2918  0.4141 -0.5196  0.6307  0.2751]
[-0.2704  0.3118  0.7130  0.0104  0.5668]]
Количество итераций: 16
```

Проверка с помощью встроенной функции:

Вектор собственных значений: [7.3934 0.2131 1.6121 3.5537 4.8777] Столбцы – собственные векторы:

```
[[-0.4298 -0.4184  0.3552  0.6640 -0.2704]

[-0.4812  0.2657  0.6089 -0.5429 -0.1798]

[-0.5648  0.5996 -0.3208  0.3219  0.3391]

[-0.4113 -0.2708 -0.6324 -0.3074 -0.5129]

[-0.3091 -0.5670 -0.0140 -0.2573  0.7187]]
```

Результат работы программы (k = 0, eps = 0.0001):

```
Α:
```

```
[[ 2.33  0.81  0.67  0.92 -0.53]
[ 0.81  2.33  0.81  0.67  0.92]
[ 0.67  0.81  2.33  0.81  0.92]
[ 0.92  0.67  0.81  2.33 -0.53]
[-0.53  0.92  0.92 -0.53  2.33]]
```

Вектор собственных значений: [4.7525 0.5201 1.6154 1.3146 3.4474] Столбцы – собственные векторы:

```
[[ 0.4476 -0.3507 -0.4001 -0.5835 -0.4196]
[ 0.5279  0.4204 -0.5831  0.3994  0.2124]
[ 0.5278  0.4204  0.5839 -0.3995  0.2103]
[ 0.4476 -0.3507  0.3987  0.5835 -0.4210]
[ 0.2051 -0.6329  0.0013 -0.0000  0.7466]]
Количество итераций: 20
```

Проверка с помощью встроенной функции:

Вектор собственных значений: [4.7525 3.4474 0.5201 1.6154 1.3146] Столбцы – собственные векторы:

```
[[-0.4476 -0.4202 -0.3508 -0.3982 -0.5843]

[-0.5278  0.2113  0.4204 -0.5843  0.3982]

[-0.5278  0.2113  0.4204  0.5843 -0.3982]

[-0.4476 -0.4202 -0.3508  0.3982  0.5843]

[-0.2051  0.7466 -0.6328  0.0000  0.0000]]
```

4. Выводы

В результате выполнения лабораторной работы, я ознакомился с различными методами вычисления собственных значений и векторов. А также реализовал метод Якоби (вращений), и сравнил количество итераций при разной заданной точности и исходных данных.