

Chapter 11: Fuzzy Logic

Fuzzy-Logik - An Introduction by Mathias Bank and Kimia Lab - Machine Intelligence - Lecture 17

Content

- What is Fuzziness
- Fuzzy Sets
- Fuzzy Logic
- Reasoning with Fuzzy

The origins of fuzziness

- In contrast to precise, limited and constrained language that we use to describe notions, entities, and concepts while building logical models (so far), the real-life concepts and entities are described in much less rigid way.
- Let's consider the following example. In real life sentence: John is a tall guy
 - may mean many things, depending of our perspective, the place we live (meaning of tall is different in e.g. Japan) and so on.
 - But, if we want to feed John's data into computer, we have to determine his height precisely – say 190 cm.
 - But what if do not know John's height exactly?
- In real life we are doing perfectly all right with the sentences like:
- It takes about 40 minutes to reach an airport if the traffic is not too heavy.
- But what if we want a computer to understand such a sentence? How do we represent about and too heavy in a machine?

Fuzzy concepts and fuzzy sets

- In 1965 Lotfi Zadeh proposed a different way of looking at notions such as: set, containment, subset. His target was to make it possible to deal with concepts (sets) and dependencies that by nature are imprecise and vague - so called fuzzy concepts (sets).
- Again, the example of such concept is the natural language sentence:
- John is a tall guy.
- If we know, that John is 175 cm tall, we may start to wonder about the validity of the above sentence.
- In classical set theory we are forced to make definite decision whether 175 cm qualifies John as tall or not.
- In the fuzzy set theory we may be more subtle and express to what degree 175 cm of height makes John a tall guy.

Fuzzy sets

lf

In classical set theory and with classical binary logic, that we usually employ when doing things with use of computer, the (contents of a) set A in some universe X can be expressed in the form of its characteristic (containment) function: Such classical, rigidly defined set we will further call crisp or definite. The key step in defining fuzzy set theory is the replacement of characteristic function χ_A by function $\mu_A:X\Rightarrow [0,1]$ μ_A is called membership function or fuzzy membership.

$$\chi_A(x) = \begin{cases} 1 & \text{if} \quad x \in A \\ 0 & \text{if} \quad x \notin A \end{cases}$$

then A is a classical set i.e., crisp (definite) set. If there exists $x \in X$ such that $0 < \mu_A(x) < 1$ - the set A is fuzzy.

Fuzzy sets - examples

A classical example of a fuzzy set near - zero provided by Zadeh for the concept of real number near 0. This set may be defined, for example, by the following membership function:

Fuzzy sets - examples

The previously considered notion of tall guy could be given – for height \times in centimetres – by membership:

$$\mu_{tall} = \begin{cases} 0 & \text{if} \quad x \le 125\\ 1 & \text{if} \quad x \ge 185\\ \frac{x-185}{2} + 1 & \text{if} \quad 125 < x < 185 \end{cases}$$

:

Fuzzy sets - examples

 Another example of three fuzzy sets for the notion of cold, warm and hot, where x is a temperature.

Height of a fuzzy set

The height of a fuzzy set is the largest degree of membership possessed by all elements of the fuzzy set. Thus, for a fuzzy set μ over a basic set A, its height is defined as:

$$H(F) = \max \{ \mu(x) : x \in X \}$$

Accordingly, two-valued logic works with sets whose height is 1.

Comming from Temperature to Words (revisited)

Fuzzy Sets (revisited)

Rules in 'common' logic and approximation as decision trees

Interpretation of Rules in Fuzzy Logic

Fuzzification, Inference, Defuzzification

Example: The inverted Pendulum

- inpuls }
- 7) error (difference)
- z) owegon (angular velocity)

cut pot: covert (+/- lor direction)

Example: Rules 1

Example: Rules 2

ΔΘ	NL	NM	NS	ZE	PS	PM	PL
NL				PL		1	- · · .
NM				PM			
NS				PS	NS		
ZE	PL	PM	PS	ZE	NS	NM	NL
PS			PS	NS	Salara Concession		ASSESSED FOR CONTRACT
PM			0.000.0000.0000.0000	NM	- 1		
PL				NL			

Example: Calculate output

Input: Error = 27^{o} , Omega= $-1.5^{o}/s$, Current?

Lets look at the rule: If error is PM and Omega is Z, then the current is NM .

Example: Calculate output when taking all rules into account

Example: Calculate output when taking all rules into account

Correlation-minimum fuzzy inference procedure.

- All rules are activated in parallel, but to varying degrees.
- The degree depends on how well the input value matches the membership function on the left- hand side (input side, antecedent side).
- The first rule is not applied since the input values $\theta=15$ and $\Delta theta=-10$ do not intersect any of their membership functions.
- Next rule: the membership function for PS is intersected by $\theta=15$ at 0.8, the one for ZE is intersected by $\Delta theta=-10$ at 0.5.
- These values are combined by using the minimum (logically speaking the AND) function: min(0.8, 0.5) = 0.5. Thus, this rule is applied to degree 0.5.
- This degree of application of the rule is propagated to the output side as shown geometrically. Similarly for the third rule.
- Now take maximum over all consequent sides of the rules (shaded areas): get fuzzy
 centroid at bottom. This is the geometrical output function that we are looking for.
 This is a kind of min- max procedure.

Summary

- Fuzzy Logic successful in many applications (in particular controlling)
- takes intrinsic uncertainty of real world into account
- fundamental difference between probabilistic and fuzzy logic thinking
- fuzzy sets differ from classical crisp sets by their membership function
- five steps in development of fuzzy rule system
- fuzzy inference procedure apply all rules in parallel to varying degrees