NuQleosim

Laetitia Bourgeade Hadrien Mary Florence Maurier Jean-Paul Navailles

Universités Bordeaux 1 & 2

Février 2011

Introduction

Le nucléole

- Localisation nucléaire
- Encore mal connu
- Responsable de certaines pathologies
- Peu d'outils pour l'étude in silico

NuQleoSim

- Interface graphique pour l'étude du nucléole
- Base de donnée : moléculaire et expérimentale
- Modélisation de l'activité nucléolaire
- Gestion des résultats

Plan

- Analyse
 - Structure et fonction
 - Les besoins
- 2 Conception
 - Base de données
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Diagramme de classe
 - Implémentation de la modélisation
 - Réalisation de l'interface

Rappel du plan

- **Analyse**
 - Structure et fonction
 - Les besoins
- - Base de données
 - Modélisation du nucléole
 - Prototypage de l'interface
- - Technologies utilisées

 - Implémentation de la modélisation
 - Réalisation de l'interface

Structure et fonction

Structure

Ivan Raska, Peter J Shaw, and Dusan Cmarko. *Structure and function of the nucleolus in the spotlight.* Curr Opin Cell Biol, Jun 2006.

Structure et fonction

Fonction

Les besoins

Stockage de données

- Deux types de données : moléculaire et expérimentale
- Création, consultation, modification et suppression
- Interopérabilité avec différents formats biologiques

Les besoins

Modélisation de l'activité nucléolaire

- Interface de paramétrage de la simulation
- Communication avec la base de données
- Visualisation 3D en temps réel
- Génération de résultats

Rappel du plan

- Analyse
 - Structure et fonction
 - Les besoins
- 2 Conception
 - Base de données
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Diagramme de classe
 - Implémentation de la modélisation
 - Réalisation de l'interface

Base de données

Organisation de la base de donnée

Modélisation du nucléole

Longueur et poids des protéines

de Protéine 1.

de Protéine 2.

de Protéine 3

Modélisation du nucléole

Organisation de la base de donnée

- P1 : Probabilité pour le transcriptor de transcrire un ARN de type 1.
- P2 : Probabilité de maturation d'un ARN type 2 en ARN type 3 lors d'une rencontre avec une protéine.
- P3 : Probabilité de maturation d'un ARN type 2 en ARN type 3 lors d'une rencontre avec une protéine.
- → Déplacement autorisé Maturation d'un ARN
- —— Déplacement interdit
- GC : Granular Center DFC: Dense Fibrillar Component
- FC : Fibrillar component

Prototypage de l'interface

Rappel du plan

- Analyse
 - Structure et fonction
 - Les besoins
- 2 Conception
 - Base de données
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Diagramme de classe
 - Implémentation de la modélisation
 - Réalisation de l'interface

Technologies utilisées

Qt / C++

- Performance de calculs
- Qt en tant que framework :
 - Multiplateforme
 - Rapidité de développement

XML comme SGBD

- •
- Temps de calculs important

Diagramme de classe

Implémentation de la modélisation

Améliorations possibles

- Calcul parallèle
- Calcul des densités des clusters finaux
- Algorithme k-médoïde
- Approche plus hiérarchique avec DIANA et AGNES

Interface avec la base de donnée

Paramétrage d'une simulation

Visualisation de la modélisation

Exemple de génération de résultats

Conclusion

- Construction et exploitation d'un entrepôt de données
- Traitement d'un grand nombre de données
- Etablissement de critères en fonction d'une problématique biologique
- Outil de visualisation

Merci de votre attention

Conclusion

Réalisation