у2020-2-1. Дерево отрезков

А. Дерево отрезков на сумму

1 секунда, 1024 мегабайта

В этой задаче вам нужно написать обычное дерево отрезков на сумму.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Следующая строка содержит \$\$\$n\$\$\$ чисел \$\$\$a_i\$\$\$ — начальное состояние массива (\$\$\$0\le a_i \le 10^9\$\$\$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$i\$\$\$ \$\$\$v\$\$\$ присвоить элементу с индексом \$\$\$i\$\$\$ значение \$\$\$v\$\$\$ (\$\$\$0\le i < n\$\$\$, \$\$\$0\le v\le 10^9\$\$\$).
- 2 \$\$\$|\$\$\$ \$\$\$r\$\$\$ вычислить сумму элементов с индексами от \$\$\$|\$\$\$ до \$\$\$r-1\$\$\$ (\$\$\$0\le I < r \le n\$\$\$).

Выходные данные

Для каждой операции второго типа выведите соответствующую сумму.

ВХОДНЫЕ ДАННЫЕ 5 5 5 4 2 3 5 2 0 3 1 1 1 2 0 3 1 3 1 2 0 5 ВЫХОДНЫЕ ДАННЫЕ 11 8 14

В. Число минимумов на отрезке

1 секунда, 1024 мегабайта

Теперь измените код дерева отрезков, чтобы кроме минимума на отрезке считалось также и число элементов, равных минимуму.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Следующая строка содержит \$\$\$n\$\$\$ чисел \$\$\$a_i\$\$\$ — начальное состояние массива (\$\$\$0\le a_i \le 10^9\$\$\$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$i\$\$\$ \$\$\$v\$\$\$ присвоить элементу с индексом \$\$\$i\$\$\$
 значение \$\$\$v\$\$\$ (\$\$\$0\le i < n\$\$\$, \$\$\$0\le v\le 10^9\$\$\$).
- 2 \$\$\$\\$\$\$ \$\$\$r\$\$\$ найти минимум и число элементов, равных минимуму, среди элементов с индексами от \$\$\$\\$\$\$ до \$\$\$r-1\$\$\$ (\$\$\$0\le I < r \le n\$\$\$).

Выходные данные

Для каждой операции второго типа выведите два числа — минимум на заданном отрезке и число элементов, равных этому минимуму.

В	хc	Д	НЬ	ıe	Į	ιaι	нн	ыє	,								
5	5																
3	4	3	5	2													
2	0	3															
1	1	2															
2	0	3															
1	0	2															
2	0	5															

выходные данные3 2 2 1 2 3

С. Отрезок с максимальной суммой

1 секунда, 1024 мегабайта

В этой задаче вам нужно написать дерево отрезков для нахождения подотрезка с максимальной суммой.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Следующая строка содержит \$\$\$n\$\$\$ чисел \$\$\$a_i\$\$\$ — начальное состояние массива (\$\$\$-10^9\le a_i \le 10^9\$\$\$). Далее следует описание операций. Описание каждой операции имеет следующий вид: \$\$\$i\$\$\$ \$\$\$v\$\$\$ — присвоить элементу с индексом \$\$\$i\$\$\$ значения \$\$\$v\$\$\$ (\$\$\$0\le i < n\$\$\$, \$\$\$-10^9\le v\le 10^9\$\$\$).

Выходные данные

Выведите \$\$\$m+1\$\$\$ строку: максимальную сумму чисел на отрезке до всех операций и после каждой операции. Обратите внимание, что этот отрезок может быть пустым (при этом сумма на нем будет равна 0)

```
    входные данные

    5 2

    5 -4 4 3 -5

    4 3

    3 -1

    выходные данные

    8

    11

    7
```

```
Входные данные

4 2
-2 -1 -5 -4
1 3
3 2

Выходные данные

0
3
3
```

D. K-я единица

1 секунда, 1024 мегабайта

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения \$\$\$k\$\$\$-й единицы.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Следующая строка содержит \$\$\$n\$\$\$ чисел \$\$\$a_i\$\$\$ — начальное состояние массива (\$\$\$a_i \in \{0, 1\}\$\$\$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$i\$\$\$ изменить элемент с индексом \$\$\$i\$\$\$ на противоположный.
- 2 \$\$\$k\$\$\$ найти \$\$\$k\$\$\$-ю единицу (единицы нумеруются с 0, гарантируется, что в массиве достаточное количество единиц).

Выходные данные

Для каждой операции второго типа выведите индекс соответствующей единицы (все индексы в этой задаче от 0).

В	ход	ные	данны	е		
5	7					
		1 0				
2						
2						
2	2					
1	2					
2	3					
	0					
2	0					
ВІ	ыхо	дны	е данн	ые		
0						
1						
3						
3						
1						

Е. Первый элемент не меньше Х - 2

1 секунда, 1024 мегабайта

В этой задаче вам нужно добавить в дерево отрезков операцию нахождения по данным \$\$\$x\$\$\$ и \$\$\$|\$\$\$ минимального индекса \$\$\$|\$\$\$, для которого \$\$\$| \ge |\$\$\$ и \$\$\$a[j] \ge x\$\$\$.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Следующая строка содержит \$\$\$n\$\$\$ чисел \$\$\$a_i\$\$\$ — начальное состояние массива (\$\$\$0\le a_i \le 10^9\$\$\$). Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$i\$\$\$ \$\$\$v\$\$\$ изменить элемент с индексом \$\$\$i\$\$\$ на \$\$\$v\$\$\$ (\$\$\$0\le i < n\$\$\$, \$\$\$0\le v\le 10^9\$\$\$).
- 2 \$\$\$x\$\$\$ \$\$\$|\$\$\$ найти минимальный индекс \$\$\$j\$\$\$, для \$\$\$j \ge \\$\$\$ и \$\$\$a[j] \ge x\$\$\$ (\$\$\$0\\\ x\\\ le 10^9\$\$\$, \$\$\$0\\\\ l < n\$\$\$). Если такого элемента нет, выведите \$\$\$-1\$\$\$. Индексы начинаются с 0.

Выходные данные

Для каждой операции второго типа выведите ответ на запрос.

```
входные данные
5 7
1 3 2 4 3
2 3 0
2 3 2
1 2 5
2 4 1
2 5 4
1 3 7
2 6 1
выходные данные
1
3
2
-1
3
```

F. Прибавление и минимум

1 секунда, 1024 мегабайта

Есть массив из \$\$\$n\$\$\$ элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает два вида запросов:

- прибавить к отрезку от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$ число \$\$\$v\$\$\$,
- узнать минимум на отрезке от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$.

Входные данные

Задачи - Codeforces

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$I\$\$\$ \$\$\$r\$\$\$ \$\$\$v\$\$\$ прибавить значение \$\$\$v\$\$\$ к отрезку от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$ (\$\$\$0\le I < r \le n\$\$\$, \$\$\$0\le v\le 10^9\$\$\$).
- 2 \$\$\$!\$\$\$ \$\$\$r\$\$\$ узнать минимум на отрезке от \$\$\$!\$\$\$ до \$\$\$r-1\$\$\$ (\$\$\$0\le I < r \le n\$\$\$).

Выходные данные

Для каждой операции второго типа выведите соответствующее значение.

G. Присваивание и минимум

1 секунда, 1024 мегабайта

Есть массив из \$\$\$n\$\$\$ элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает два вида запросов:

- присвоить всем элементам на отрезке от \$\$\$\\$\$\$ до \$\$\$r-1\$\$\$ значение \$\$\$v\$\$\$,
- узнать минимум на отрезке от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$|\$\$\$ \$\$\$r\$\$\$ \$\$\$v\$\$\$ присвоить всем элементам на отрезке от \$\$\$|\$\$\$ до \$\$\$r-1\$\$\$ значение \$\$\$v\$\$\$ (\$\$\$0\le I < r \le n\$\$\$, \$\$\$0\le v\le 10^9\$\$\$).
- 2 \$\$\$|\$\$\$ \$\$\$r\$\$\$ узнать минимум на отрезке от \$\$\$|\$\$\$ до \$\$\$r-1\$\$\$ (\$\$\$0\le I < r \le n\$\$\$).

Выходные данные

Для каждой операции второго типа выведите соответствующее значение.

```
    входные данные

    5 6

    1 0 3 3

    2 1 2

    1 1 4 4

    2 1 3

    2 1 4

    2 3 5

    выходные данные

    3 4 4 4 6 0
```

Н. Присваивание, прибавление и сумма

1 секунда, 1024 мегабайта

Есть массив из \$\$\$n\$\$\$ элементов, изначально заполненный нулями. Вам нужно написать структуру данных, которая обрабатывает три вида запросов:

- присвоить всем элементам на отрезке от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$ значение \$\$\$v\$\$\$.
- прибавить ко всем элементам на отрезке от \$\$\$\$\$\$ до \$\$\$r-1\$\$\$ число \$\$\$v\$\$\$.
- узнать сумму на отрезке от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$.

Входные данные

Первая строка содержит два числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ (\$\$\$1\le n, m\le 100000\$\$\$) — размер массива и число операций. Далее следует описание операций. Описание каждой операции имеет следущий вид:

- 1 \$\$\$|\$\$\$ \$\$\$r\$\$\$ \$\$\$v\$\$\$ присвоить всем элементам на отрезке от \$\$\$|\$\$\$ до \$\$\$r-1\$\$\$ значение \$\$\$v\$\$\$ (\$\$\$0\le I < r \le n\$\$\$, \$\$\$0\le v\le 10^5\$\$\$).
- 2 \$\$\$|\$\$\$ \$\$\$r\$\$\$ \$\$\$v\$\$\$ прибавить ко всем элементам на отрезке от \$\$\$|\$\$\$ до \$\$\$r-1\$\$\$ число \$\$\$v\$\$\$ (\$\$\$0\le I < r \le n\$\$\$, \$\$\$0\le v\le 10^5 \$\$\$).
- 3 \$\$\$\\$\$\$ \$\$\$\\$\$\$ узнать сумму на отрезке от \$\$\$\\$\$\$ до \$\$\$\\$\$\$ 1\$\$\$ (\$\$\$0\l | < r \le n\$\$\$).

Выходные данные

Для каждой операции третьего типа выведите соответствующее значение.

входные данные 5 7 1 0 3 3 2 2 4 2 3 1 3 2 1 5 1 1 0 2 2 3 0 3 3 3 5 выходные данные 8 10 4

Криптография

2 секунды, 1024 мегабайта

Задано \$\$\$n\$\$\$ матриц \$\$\$A_1, A_2, \ldots, A_n\$\$\$ размера \$\$\$2\times 2\$\$\$. Необходимо для нескольких запросов вычислить произведение матриц \$\$\$A_i, A_{i+1}, \ldots, A_j\$\$\$. Все вычисления производятся по модулю \$\$\$r\$\$\$.

Входные данные

Первая строка входного файла содержит числа \$\$\$\\$\$\$ (\$\$\$1 \le r \le 10\,000\$\$\$), \$\$\$\\$\$\$ (\$\$\$1 \le n \le 200\,000\$\$\$) и \$\$\$\\$\$\$\$ (\$\$\$1 \le m \le 200\,000\$\$\$). Следующие \$\$\$\\$\$\$ блоков по две строки содержащие по два числа в строке — описания матриц. Затем следуют \$\$\$\\$\$\$ пар целых чисел от \$\$\$1\$\$\$ до \$\$\$\\$\$\$, запросы на произведение на отрезке.

Выходные данные

Выведите \$\$\$m\$\$\$ блоков по две строки,по два числа в каждой — произведения на отрезках. Разделяйте блоки пустой строкой. Все вычисления производятся по модулю \$\$\$r\$\$\$

Задачи - Codeforces

B	ХC	одные данные
3		4
0		
0	0	
2		
-	2	
0	0	
0		
1		
0	2	
1	4	
2		
1	3	
2		
-	_	
ВІ	ых	содные данные
0		
0	0	
	_	
0		
0	Τ	
0	1	
0		
2		
1	2	

J. Землетрясения

1 секунда, 1024 мегабайта

Город представляет собой последовательность из \$\$\$n\$\$\$ клеток, занумерованных числами от 0 до \$\$\$n-1\$\$\$. Изначально все клетки пустые. Далее последовательно происходят \$\$\$m\$\$\$ событий одного из двух типов:

- в клетке \$\$\$i\$\$\$ строится здание с прочностью \$\$\$h\$\$\$ (если в этой клетке уже было здание, оно сносится и заменяется на новое).
- на отрезке от \$\$\$I\$\$\$ до \$\$\$r-1\$\$\$ случается землятресение мощностью \$\$\$p\$\$\$, оно разрушает все здания, прочность которых не больше \$\$\$p\$\$\$.
 - Ваша задача для каждого землятресения сказать, сколько зданий оно разрушит.

Входные данные

Первая строка содержит числа \$\$\$n\$\$\$ и \$\$\$m\$\$\$ — число клеток и число событий (\$\$\$1\le n, m\le 10^5\$\$\$). Следующие \$\$\$m\$\$\$ строк содержат описание событий. Описание каждого события имеет следующий вид:

- 1 \$\$\$i\$\$\$ \$\$\$h\$\$\$ в клетке \$\$\$i\$\$\$ строится здание с прочностью \$\$\$h\$\$\$ (\$\$\$0\le i < n\$\$\$, \$\$\$1\le h\le 10^9\$\$\$).
- 2 \$\$\$\\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ на отрезке от \$\$\$\\$\$\$ до \$\$\$r-1\$\$\$ происходит землятресение с мощностью \$\$\$р\$\$\$ (\$\$\$0\le I < r \le n\$\$\$, \$\$\$0\le $1 < r \le 10^9$ \$\$\$).

Выходные данные

Для каждого события второго типа выведите, сколько зданий было разрушено.

входные данные
5 9
1 0 3
1 2 5
2 0 4 3
1 1 4
1 2 7
2 1 3 6
1 3 8
1 4 4
2 0 5 10
выходные данные
1
1
3

К. Художник

2 секунды, 256 мегабайт

Итальянский художник-абстракционист Ф. Мандарино увлекся рисованием одномерных черно-белых картин. Он пытается найти оптимальное местоположение и количество черных участков картины. Для этого он проводит на прямой белые и черные отрезки, и после каждой из таких операций хочет знать количество черных отрезков на получившейся картине и их суммарную длину.

Изначально прямая — белая. Ваша задача — написать программу, которая после каждой из таких операций выводит в выходной файл интересующие художника данные.

Входные данные

В первой строке входного файла содержится общее количество нарисованных отрезков (\$\$\$1 \le n \le 100\,000\$\$\$). В последующих \$\$\$n\$\$\$ строках содержится описание операций. Каждая операция описывается строкой вида \$\$\$c\$\$\$ \$\$\$x\$\$\$, где \$\$\$c\$\$\$ — цвет отрезка (W для белых отрезков, В для черных), а сам отрезок имеет вид \$\$\$[x; x+l)\$\$\$, причем координаты обоих концов — целые числа, не превосходящие по модулю \$\$\$500\,000\$\$\$. Длина задается положительным целым числом.

Выходные данные

После выполнения каждой из операций необходимо вывести в выходной файл на отдельной строке количество черных отрезков на картине и их суммарную длину, разделенные одним пробелом.

B	xot	дные	данн	ые			
7							
W	2 3	3					
В	2 2	2					
В	4 2	2					
В	3 2	2					
В	7 2	2					
W	3 1	L					
W	0 1	LO					
В	ыхс	одны	е дан	ные			
B		одны	е дан	ные			
0	0	одны	е дан	ные			
0	0 2	одны	е дан	ные			
0	0 2 4	одны	е дан	ные			
0 1	0 2 4 4	одны	е дан	ные			
0 1 1	0 2 4 4 6	одны	е дан	ные			

L. Запросы о взвешенной сумме

1 second, 256 megabytes

В этой задаче вам надо обрабатывать запросы о взвешенной сумме для заданного массива. Формально, пусть задан массив \$\$\$a[1 \dots n]\$\$\$ длины \$\$\$n\$\$\$. Ваша задача уметь обрабатывать запросы двух видов:

• запрос изменения на отрезке: запрос характеризуется тремя числами \$\$\$1, r, d\$\$\$ и обозначает прибавление \$\$\$d\$\$\$ ко всем

Задачи - Codeforces

- элементам \$\$\$i\$\$\$ массива, таким что \$\$\$I \le i \le r\$\$\$,
- запрос взвешенной суммы: запрос характеризуется двумя числами \$\$\$I, r\$\$\$ и обозначает вывод значения \$\$\$a[I] \cdot 1 + a[I + 1] \cdot 2 + \dots \ a[r] \cdot (r - I + 1)\$\$\$.

Входные данные

В первой строке записана пара целых чисел \$\$\$n, m\$\$\$ (\$\$\$1 \le n,m \le 10^5\$\$\$), \$\$\$n\$\$\$\$ — длина массива, а \$\$\$m\$\$\$\$ — количество запросов. Во второй строке записаны значения в массиве \$\$\$a[1], a[2], \dots, a[n]\$\$\$ (\$\$\$-100 \le a[i] \le 100\$\$\$). Далее в \$\$\$m\$\$\$ строках записаны запросы по одному в строке. Запрос первого вида записан в форме «\$\$\$1~l~r~d\$\$\$» (\$\$\$1 \le I \le r \le n, -100 \le d \le 100\$\$\$), а запрос второго вида в форме «\$\$\$2~l~r\$\$\$» (\$\$\$1 \le I \le r \le n\$\$\$).

Выходные данные

На каждый запрос второго типа выведите ответ в отдельной строке.

```
Входные данные

5 4
1 2 3 4 5
1 2 3 1
2 1 3
1 2 2 3 -1
2 1 5

Выходные данные

19
55
```

М. Окна

2 секунды, 256 мегабайт

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Входные данные

В первой строке входного файла записано число окон \$\$\$n\$\$\$ (\$\$\$1\le n\le 50000\$\$\$). Следующие \$\$\$n\$\$\$ строк содержат координаты окон \$\$\$x_{(1, i)}\ y_{(1, i)}\ x_{(2, i)}\ y_{(2, i)}\$\$\$, где \$\$\$(x_{(1, i)}, y_{(1, i)})\$\$\$ — координаты левого верхнего угла \$\$\$i\$\$\$-го окна, а \$\$\$(x_{(2, i)}, y_{(2, i)})\$\$\$ — правого нижнего (на экране компьютера \$\$\$y\$\$\$ растет сверху вниз, а \$\$\$x\$\$\$ — слева направо). Все координаты — целые числа, по модулю не превосходящие \$\$\$2 \cdot 10^5 \$\$\$.

Выходные данные

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенные пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т.е. покрывающими свои граничные точки.

```
      входные данные

      2

      0 0 3 3

      1 1 4 4

      выходные данные

      2

      1 3
```

```
входные данные

1

0 0 1 1

выходные данные

1

0 1
```

2 секунды, 256 мегабайт

Вася любит наблюдать за звездами. Но следить за всем небом сразу ему тяжело. Поэтому он наблюдает только за частью пространства, ограниченной кубом размером $n \times n \times n$. Этот куб поделен на маленькие кубики размером $1 \times 1 \times 1$. Во время его наблюдений могут происходить следующие события:

- 1. В каком-то кубике появляются или исчезают несколько звезд.
- 2. К нему может заглянуть его друг Петя и поинтересоваться, сколько видно звезд в части пространства, состоящей из нескольких кубиков.

Входные данные

Первая строка входного файла содержит натуральное число $1 \le n \le 128$. Координаты кубиков — целые числа от 0 до n - 1. Далее следуют записи о происходивших событиях по одной в строке. В начале строки записано число m. Если m равно:

- 1, то за ним следуют 4 числа x, y, z ($0 \le x$, y, z < N) и k ($20000 \le k \le 20000$) координаты кубика и величина, на которую в нем изменилось количество видимых звезд;
- 2, то за ним следуют 6 чисел $x_1, y_1, z_1, x_2, y_2, z_2$ $(0 \le x_1 \le x_2 \le N, 0 \le y_1 \le y_2 \le N, 0 \le z_1 \le z_2 \le N)$, которые

Задачи - Codeforces

означают, что Петя попросил подсчитать количество звезд в кубиках (x,y,z) из области: $x_1 \le x \le x_2, y_1 \le y \le y_2, z_1 \le z \le z_2;$

• 3, то это означает, что Васе надоело наблюдать за звездами и отвечать на вопросы Пети. Эта запись встречается во входном файле только один раз и будет последней.

Количество записей во входном файле не больше 100 002.

Выходные данные

Для каждого Петиного вопроса выведите искомое количество звезд.

```
    входные данные

    2

    2 1 1 1 1 1 1

    1 0 0 0 1

    1 0 1 0 3

    2 0 0 0 0 0 0

    2 0 0 0 0 1 0

    1 0 1 0 -2

    2 0 0 0 1 1 1

    3

    выходные данные

    0

    1

    4

    2
```

Codeforces (c) Copyright 2010-2022 Михаил Мирзаянов Соревнования по программированию 2.0