3.4. Homomorfismos de anillos

Si $(R, +_1, \cdot_1)$ y $(S, +_2, \cdot_2)$ son anillos, un **homomorfismo de anillos** es una aplicación $\varphi: R \to S$ tal que para todos $a, b \in R$ se verifica que: $\varphi(a+_1b) = \varphi(a)+_2\varphi(b)$ y $\varphi(a\cdot_1b) = \varphi(a)\cdot_2\varphi(b)$ Se define el **núcleo** de φ como el conjunto $\ker(\varphi) = \{r \in R : \varphi(r) = 0_S\}$ y la **imagen** de φ como el conjunto $\varphi(R) = \{\varphi(r) : r \in R\}$

Un homomorfismo biyectivo se denomina isomorfismo.

Propiedades de homomordismos de anillos

Sea $\varphi: R \to S$ un homomorfismo entre los anillos $(R, +_1, \cdot_1)$ y $(S, +_2, \cdot_2)$, entonces se verifica que

- 1. $\varphi(0_R) = 0_S$
- 2. $\varphi(-a) = -\varphi(a)$

El núcleo es ideal, la imagen es subanillo

Dados los anillos $(R, +_1, \cdot_1)$ y $(S, +_2, \cdot_2)$, si $\varphi : R \to S$ es un homomorfismo de anillos, entonces

- 1. $\ker(\varphi)$ es un ideal de $(R, +_1, \cdot_1)$.
- 2. $\varphi(R)$ es un subanillo de $(S, +_2, \cdot_2)$.

Caracterización de los homomorfismos de $(\mathbb{Z}_n, +_n, \cdot_n)$ en $(\mathbb{Z}_m, +_m, \cdot_m)$

Sea $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ una aplicación de $(\mathbb{Z}_n, +_n, \cdot_n)$ en $(\mathbb{Z}_m, +_m, \cdot_m)$. φ es un homomorfismo de anillos si y sólo si $\varphi([1]_n) = [k]_m$ siendo $nk \equiv 0 \mod m$ y $k^2 \equiv k \mod m$.

Homomorfismos destacables

- 1. Si $C[a,b] = \{f : [a,b] \to \mathbb{R} : f \text{ es continua}\}$ es el conjunto de funciones continuas en un intervalo [a,b], para todo $\alpha \in [a,b]$, la aplicación $\psi_{\alpha} : C[a,b] \to \mathbb{R}$ definida por $\psi_{\alpha}(f) = f(\alpha)$ es un homomorfismo de anillos que recibe el nombre de **homomorfismo de evaluación en** α .
- 2. Si I un ideal del anillo $(R, +, \cdot)$, la aplicación $\rho : R \to R/I$ definida por $\rho(x) = [x]_I$ es un homomorfismo de anillos, denominado **homomorfismo canónico** y su núcleo es $\ker(\rho) = I$.
- 3. Si $(R, +, \cdot)$ es un anillo con identidad $1_R \in R$ entonces la aplicación $\phi : \mathbb{Z} \to R$ definida por $\phi(n) = n1_R$ es un homomorfismo de anillos.

Primer Teorema de isomorfía de anillos

Sea $\varphi: R \to S$ un homomorfismo del anillo $(R, +_1, \cdot_1)$ en el anillo $(S, +_2, \cdot_2)$. Entonces $R/\ker(\varphi)$ es isomorfo al subanillo $\operatorname{im}(\varphi) = \varphi(R)$.

Todo anillo con identidad contiene un subanillo isomorfo a \mathbb{Z} o a \mathbb{Z}_n

Sea $(R, +, \cdot)$ un anillo con identidad.

- a) Si $\operatorname{char}(R) = n > 0$ entonces R contiene un subanillo isomorfo a \mathbb{Z}_n
- b) Si $\operatorname{char}(R) = 0$ entonces R contiene un subanillo isomorfo a \mathbb{Z}

3.4.12. Problemas

- 1. Estudiar si las siguientes aplicaciones son homomorfismos de anillos:
 - a) $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{10}$ definida por $\varphi([x]_5) = [5x]_{10}$
 - b) $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_{12}$ definida por $\varphi([x]_4) = [3x]_{12}$
 - c) $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{30}$ definida por $\varphi([x]_5) = [6x]_{30}$
 - d) $\varphi: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ definida por $\varphi([x]_{10}) = [2x]_{10}$
- 2. Un **endomorfismo de anillos** es un homomorfismo de anillos en el que los anillos inicial y final coinciden. Describir todos los endomorfismos de anillos en cada caso:
 - a) En el anillo $(\mathbb{Z}_6, +_6, \cdot_6)$.
 - b) En el anillo $(\mathbb{Z}, +, \cdot)$.
 - c) En el anillo $(\mathbb{Q}, +, \cdot)$.
- 3. Determinar todos los homomorfismos de anillos en cada caso:
 - a) Del anillo $(\mathbb{Z}_{20}, +_{20}, \cdot_{20})$ en el anillo $(\mathbb{Z}_{30}, +_{30}, \cdot_{30})$
 - b) Del anillo $(\mathbb{Z} \times \mathbb{Z}, +, \cdot)$ en el anillo $(\mathbb{Z}, +, \cdot)$
- 4. Demostrar que el único homomorfismo de anillos entre $(\mathbb{Z}[\sqrt{2}], +, \cdot)$ y $(\mathbb{Z}[\sqrt{3}], +, \cdot)$ es el homomorfismo nulo.
- 5. Estudiar si los siguientes pares de anillos son isomorfos:
 - a) $(\mathbb{Z}[\sqrt{2}], +, \cdot)$ y $H = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ (con la suma y producto usuales en matrices)
 - b) $(2\mathbb{Z}, +, \cdot)$ y $(3\mathbb{Z}, +, \cdot)$
 - c) $(2\mathbb{Z}, +, \cdot)$ y $(4\mathbb{Z}, +, \cdot)$
- 6. Demostrar que el homomorfismo de anillos $\phi : \mathbb{Z} \to \mathbb{Z}_4$ dado por $\phi(n) = [n]_4$ aplica todos los cuadrados impares al mismo elemento. Deducir que ninguno de los elementos de la sucesión 11, 111, 1111, ... es un cuadrado.
- 7. Sea $\varphi: \mathbb{Z} \to \mathbb{Z}_5 \times \mathbb{Z}_{11}$ el homomorfismo de anillos definido por $\varphi(n) = ([n]_5, [n]_{11})$. Se pide:
 - a) Determinar $\ker(\varphi)$
 - b) ¿Es φ suprayectivo?
 - c) Calcular $\varphi^{-1}(([1]_5,[5]_{11}))$
- 8. Sea $R = \{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \}$ y $\varphi : R \to \mathbb{Z}$ definida por $\varphi(\begin{pmatrix} a & b \\ b & a \end{pmatrix}) = a b$
 - a) Demostrar que φ es un homomorfismo de anillos
 - b) Determinar $ker(\varphi)$
 - c) Demostrar que $R/\ker(\varphi)$ es isomorfo a \mathbb{Z}
 - d) ¿Es $\ker(\varphi)$ un ideal maximal?