

Birmingham Parking Evaluation

Olivia Marcinkus, Ruthie Montella, Giulia Neves Monteiro

TABLE OF CONTENTS

Birmingham Parking Dataset

- Data ranging from Oct. 4th, 2016 Dec. 19th,
 2016
- GOAL: Benefit consumers and proprietors
 - Consumers to see forecasted prediction of best time to find parking
 - Proprietors may find a way to fill empty lots during slower periods of time
- Aggregated data from one parking structure into daily average for best model results

Linear and Quadratic Regression Models

Linear Regression:

Quadratic Regression:

Linear and Quadratic Regression Accuracy Scores

Linear Regression:

	ME	RMSE	MAE	MAPE
Test Set	1.69568	8.257515	5.456044	16.90603

Quadratic Regression:

	ME	RMSE	MAE	MAPE
Test Set	4.477765	9.277543	5.718846	16.32828

ARIMA Model

ARIMA Accuracy Scores

	ME	RMSE	MAE	MAPE
Test set	0.4814617	8.474017	5.899766	19.0532

Holt-Winters Model

Holt-Winters Accuracy Scores

	ME	RMSE	MAE	MAPE
Test set	1.8429612	8.290404	5.458908	16.83531

Neural Network Model

Neural Network Accuracy Scores

	ME	RMSE	MAE	MAPE
Test set	-0.239792493	4.457212	3.814515	14.773320

Aggregating Multiple Forecasts

MAPE: 16.02

MAPE: 18.25

Accuracy Scores

Final Thoughts:

- Neural Network performed best in accordance with accuracy scores
- More data (monthly or annual) would drastically improve prediction accuracy
- Attempted other models
 - STL: no performance on this data

