### 高等微积分

邹文明

第七章: 定积分





# 函数可积的必要条件

### 利用振幅刻画函数的可积性

定义 3. 假设 X 为非空数集, 而  $f: X \to \mathbb{R}$  为有界函数. 对于任意非空子集  $J \subseteq X$ , 定义

$$\omega(f;J) := \sup_{x,y \in J} |f(x) - f(y)|,$$

并称之为 f 在 J 上的振幅.

证明: 因  $\forall x, y \in J$ , 均有  $|f(x) - f(y)| \leq M - m$ , 因此  $\omega(f; J) \leq M - m$ . 与此同时, 我们也有  $M - m = \sup_{x \in J} f(x) - \inf_{y \in J} f(y)$ 

 $= \sup_{x,y \in J} (f(x) - f(y)) \leqslant \omega(f;J).$ 

引理 3. 令  $M = \sup_{x \in I} f(x)$ ,  $m = \inf_{x \in J} f(x)$ , 则

 $\omega(f;J) = M - m.$ 

故所证结论成立.

定理 3. 假设  $f:[a,b] \to \mathbb{R}$  为有界函数, 那么  $f \in \mathcal{R}[a,b]$  当且仅当我们有

$$\lim_{\lambda(P)\to 0} \sum_{i=1}^{\infty} \omega(f; \Delta_i) \Delta x_i = 0.$$

证明: 对任意的分割  $P: a = x_0 < \cdots < x_n = b$ ,  $\sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$  = U(f; P) - L(f; P),

于是由前面讨论立刻可知所证结论成立.

$$D(x) = \begin{cases} 0, \ \text{若 } x \in \mathbb{Q} \\ 1, \ \text{若 } x \notin \mathbb{Q}. \end{cases}$$
求证:  $D \notin \mathcal{R}[0,1]$ .

证明: 对于 [a, b] 的任意分割

$$P_0: a = x_0 < x_1 < \dots < x_n = b,$$

由于D在  $[x_{i-1}, x_i]$  上的上、下确界分别为 1、0, 故  $\sum_{i=1}^{n} \omega(D; \Delta_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1$  由此得证

故  $\sum_{i=1}^{n} \omega(D; \Delta_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1$ . 由此得证.

#### 一致连续函数

定义 4. 设 X 为非空的数集. 称  $f: X \to \mathbb{R}$  为一致连续, 如果  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  使得  $\forall x, y \in X$ , 当  $|x - y| < \delta$  时, 均有  $|f(x) - f(y)| < \varepsilon$ .

否定表述: 函数 f 在 X 上不为一致连续当且仅当  $\exists \varepsilon_0 > 0$  使得  $\forall \delta > 0$ , 存在  $x, y \in X$  满足  $|x-y| < \delta$ , 但  $|f(x) - f(y)| \ge \varepsilon_0$ .

命题 1. 函数 f 为一致连续当且仅当对于 X 中任意的数列  $\{x_n\}$ ,  $\{y_n\}$ , 如果  $\lim_{n\to\infty} (x_n - y_n) = 0$ , 那么  $\lim_{n\to\infty} (f(x_n) - f(y_n)) = 0$ .

证明:  $\frac{\text{充}}{\text{分性}}$ . 用反证法, 设 f 在 X 上非一致 连续, 那么  $\exists \varepsilon_0 > 0$  使得  $\forall \delta > 0$ , 存在  $x, y \in X$ 满足  $|x-y| < \delta$ , 但是  $|f(x)-f(y)| \ge \varepsilon_0$ . 从而  $\forall n \geq 1$ , 均存在  $x_n, y_n \in X$  满足  $|x_n - y_n| < \frac{1}{n}$ , 但  $|f(x_n) - f(y_n)| \ge \varepsilon_0$ . 于是  $\lim_{n \to \infty} (x_n - y_n) = 0$ , 但  $\{f(x_n) - f(y_n)\}$  不收敛到 0. 矛盾! 得证.

使得  $\forall n > N$ , 均有  $|x_n - y_n| < \delta$ , 从而我们有  $|f(x_n) - f(y_n)| < \varepsilon$ , 由此可知所证成立. 注: 该结论常用于证明某函数不为一致连续.

必要性. 假设 f 在 X 上一致连续, 那么  $\forall \varepsilon > 0$ ,

 $\exists \delta > 0$  使得  $\forall x, y \in X$ , 当  $|x - y| < \delta$  时, 均有

 $|f(x) - f(y)| < \varepsilon$ . 于是对于 X 中的任意数列

 $\{x_n\}$ ,  $\{y_n\}$ , 若  $\lim_{n\to\infty} (x_n - y_n) = 0$ , 那么  $\exists N > 0$ 

例 3. 求证: 余弦函数在 ℝ 上一致连续.

证明:  $\forall \varepsilon > 0$ , 选取  $\delta = \varepsilon$ , 则对任意的  $x, y \in \mathbb{R}$ , 当  $|x - y| < \delta$  时, 我们有

$$|\cos x - \cos y| = \left| 2\sin \frac{x - y}{2} \sin \frac{x + y}{2} \right|$$

$$\leq 2 \left| \sin \frac{x - y}{2} \right| \leq |x - y| < \varepsilon,$$

因此余弦函数在 ℝ 上为一致连续.

例 4. 求证:  $f(x) = \frac{1}{x}$  在 (0,1) 上非一致连续.

证明: 事实上, 我们有  $\lim_{n\to\infty} \left(\frac{1}{n} - \frac{2}{n}\right) = 0$ , 但

$$\lim_{n\to\infty} \left(f\left(\frac{1}{n}\right) - f\left(\frac{2}{n}\right)\right) = \lim_{n\to\infty} \frac{n}{2} = +\infty,$$

故所证结论成立.

例 5. 证明  $f(x) = \sin \frac{1}{x}$  在 (0,1) 上非一致连续.

证明:  $\forall n \geqslant 1$ ,  $\diamondsuit x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ ,  $y_n = \frac{1}{2n\pi} \in (0,1)$ ,

那么  $\lim_{n\to\infty} (x_n - y_n) = 0$ ,  $\lim_{n\to\infty} (f(x_n) - f(y_n)) = 1$ ,

因此所证结论成立.

证明: 用反证法, 设 f 在 [a,b] 上不为一致连续,则存在  $\varepsilon_0 > 0$  以及 X 中数列  $\{x_n\}, \{y_n\}$  使得  $|x_n - y_n| < \frac{1}{n}, |f(x_n) - f(y_n)| \ge \varepsilon_0$ . 由于  $\{x_n\}$  有界,因此存在收敛子列  $\{x_k\}$ ,设其极限为 c.

定理 4. 若  $f \in \mathcal{C}[a,b]$ , 则 f 为一致连续.

有界, 因此存在收敛于列  $\{x_{k_n}\}$ , 设具极限为 c. 由数列极限的保序性可知  $c \in [a,b]$ , 而由夹逼原理可知  $\{y_{k_n}\}$  也收敛到 c, 再由 f 的连续性得  $\lim_{n\to\infty} (f(x_{k_n}) - f(y_{k_n})) = f(c) - f(c) = 0$ . 矛盾! 由此可知所证结论成立.

13/1



$$\forall \varepsilon > 0$$
,  $\exists \delta > 0$  使  $\forall x, y \in [a, b]$ , 若  $|x - y| < \delta$ , 则  $|f(x) - f(y)| < \frac{\varepsilon}{b - a + 1}$ . 对  $[a, b]$  的任意分割  $P : a = x_0 < \dots < x_n = b$ , 当  $\lambda(P) < \delta$  时, 
$$\sum_{i=1}^n \omega(f; \Delta_i) \Delta x_i \leqslant \sum_{i=1}^n \frac{\varepsilon}{b - a + 1} (x_i - x_{i-1}) < \varepsilon.$$

证明: 由于  $f \in \mathcal{C}[a,b]$  在 [a,b] 上一致连续, 故

因此所证结论成立.

定理 5.  $\mathscr{C}[a,b] \subseteq \mathscr{R}[a,b]$ .

定理 6. 若  $f:[a,b] \to \mathbb{R}$  为有界函数并且仅在有限多个点间断, 则  $f \in \mathcal{R}[a,b]$ .

定义 5. 称函数  $f:[a,b] \to \mathbb{R}$  为逐段 (或分段) 连续函数, 如果 f 在 [a,b] 上至多只有有限多个间断点, 且均为第一类间断点.

注: 函数 f 为逐段连续当且仅当存在 [a,b] 的分割使得 f 在该分割的每个小区间上均连续. 因此逐段连续函数为有界函数.

推论. 若 f 在 [a,b] 上逐段连续, 则  $f \in \mathcal{R}[a,b]$ .



# 单调函数为可积函数

定理 7. 若  $f:[a,b]\to\mathbb{R}$  单调,则  $f\in\mathcal{R}[a,b]$ .

证明: 不失一般性, 假设 f 为单调递增 (否则可 考虑 -f).  $\forall \varepsilon > 0$ , 选取  $\delta = \frac{\varepsilon}{f(b) - f(a) + 1}$ , 则对于 区间 [a,b] 的任意分割  $P: a = x_0 < \cdots < x_n = b$ ,

当  $\lambda(P) < \delta$  时, 我们均有

$$\sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i \leqslant \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \delta$$
$$= (f(b) - f(a)) \delta < \varepsilon.$$

因此所证结论成立

#### Lebesgue 判别准则

定义 6. 我们称数集 X 为零测度集, 若  $\forall \varepsilon > 0$ , 存在一列开区间  $\{(a_n, b_n)\}$  使得

$$X \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n), \quad \lim_{n \to \infty} \sum_{k=1}^{n} (b_k - a_k) < \varepsilon.$$

- 注: (1) 空集为零测度集;
- (2) 零测度集的子集也为零测度集;
- (3) 有限集以及可数集为零测度集.

定理 8. (Lebesgue) 区间 [a,b] 上的有界函数 f 为 Riemann 可积当且仅当由 f 的所有间断点所构成的集合为零测度集.

推论. 如果  $f:[a,b] \to [c,d]$  可积, 而  $g \in \mathscr{C}[c,d]$ , 则  $g \circ f \in \mathscr{R}[a,b]$ .

证明: 假设 D(f),  $D(g \circ f)$  分别为 f,  $g \circ f$  的间断点集. 由于 g 连续, 因此  $D(g \circ f) \subseteq D(f)$ , 从而我们有  $g \circ f \in \mathcal{R}[a,b]$ .



#### 同学们辛苦了!