1) The antenna system shown has two components, the base B and the antenna dish D. The distance from O to A is L. At any instant, the angle between the y-axis and the fixed Y-axis is given by the angle θ , and the angle between OA and the y-axis is given by the angle ϕ . Calculate y_A and a_A the velocity and acceleration of point A using the formulae for a point a-axis is given by the angle a-axis is given by the axis is a-axis

2) The system shown has three components, a vertical column C, a horizontal arm M, and a disk D. The disk has radius r and rotates relative to the arm at a rate of ω_3 (rad/sec). The arm has length L and rotates relative to the column at a rate of ω_1 (rad/sec). The column rotates at a rate of ω_2 (rad/sec). Calculate v_A and v_A the velocity and acceleration of point v_A using the formulae for a point v_A and v_A and v_A on a body.

- 3) The position of the stylus tip *A* is controlled by the mechanism shown. At the instant shown, the following is known.
 - O The stylus has a *constant* speed u = 150 (mm/sec) relative to arm CD.
 - Arm CD rotates at a **constant** rate $\omega_2 = 1.6$ (rad/sec) relative to DEG.
 - Arm DEG rotates at a **constant** rate $\omega_1 = 1.2$ (rad/sec) relative to the ground.

Calculate y_A and g_A the velocity and acceleration of A for the instant shown.

