APÊNDICE AO CAPÍTULO 7, (1)

TRANSFORMADAS DE LAPLACE BÁSICAS:

TRANSFORMADAS DE LAPLACE BÁSICAS:	
f(t)	F(s)
H(t) = 1 (t)	1/s
$e^{-at}.1(t)$	1/(s+a)
$\sin(\omega t).1(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t).1(t)$	$\frac{s}{s^2 + \omega^2}$
$\delta (t)$	1
$t^n e^{-at} 1(t)$	$\frac{n!}{(s+a)^{n+1}}$
$e^{-at}\sin(\omega_0 t).1(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$
$e^{-at}\cos(\omega_0 t).1(t)$	$\frac{s+a}{(s+a)^2+{\omega_0}^2}$
$\sin(\omega_0 t + \varphi).1(t)$	$\frac{s\sin\varphi + \omega_0\cos\varphi}{s^2 + \omega_0^2}$
$\cos(\omega_0 t + \varphi).1(t)$	$\frac{s\cos\varphi - \omega_0\sin\varphi}{s^2 + \omega_0^2}$

APÊNDICE AO CAPÍTULO 7

PROPRIEDADES DA TRANSFORMAÇÃO DE LAPLACE:

Função do tempo:	Transformada:
f(t)	F(s)
$c_1 f_1(t) + c_2 f_2(t) + \dots$	$c_1F_1(s)+c_2F_2(s)+$
$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s)-s^{n-1}f(0_{-})-$
dt^n	$-s^{n-2}.\dot{f}(0_{-})f^{(n-1)}(0_{-})$
$\int_{-\infty}^t f(\tau) d\tau$	$\frac{F(s)}{s} + \frac{1}{s} \cdot \int_{-\infty}^{0} f(\tau) d\tau$
t.f(t)	$-\frac{dF(s)}{ds}$
$e^{-at}.f(t)$	F(s+a)
f(t-a).1(t-a)	$e^{-as}.F(s)$
f(at), a>0	$\frac{1}{a} \cdot F\left(\frac{s}{a}\right)$
f(t), $f(t)=f(t+T)$, $T>0$	$\frac{1}{1-e^{-sT}}.\int_{0_{-}}^{T}f(t).e^{-st}.dt$

Nota: $\mathcal{L}^{-1}[F(s)] = f(t), t \ge 0.$