Physics 105 (Fall 2013): Solution to HW #1

- 1. An alternative solution is OK, if a reasonable argument is given and the right order of magnitude is obtained.
 - (a) We have 300 million people in the US, and say one-sixth of them are students. Suppose 30% of them are high-school students, thus there are about $3 \times 10^8 \times 0.3/6 = 15$ million high-school students. Let's suppose teacher-student ratio is 1 to 15, hence we need about 1 million high-school teacher.
 - (b) Considering both industrial and domestic usage, it is estimated that the daily consumption of gasoline is 1 gallon per person. Thus we have $3 \times 10^8 \times 365$ or about 100 billion gallons of gasoline consumed per year!!
 - (c) There are about 1 million people in San Francisco, with in average 3 persons in a household. Suppose there is a piano in every 10 households and each piano is tuned twice a year, then there are $\frac{10^6 \times 2}{3 \times 10 \times 365}$ or roughly 200 tunings per day. Estimate that a piano tuner can tune 4 pianos per day, then there are 50 piano tuners in San Francisco.
- 2. (a) We have length, time and mass as the three fundamental dimensions in mechanics.
 - (b) A dimension is intrinsic to a physical quantity while a unit is a *scale* for measuring a physically quantity *numerically*.

It's possible that a dimensionless quantity having a unit, for instance an angle has a unit. A dimensionful quantity needs a unit *only when* considered numerically. Of course, a pure number has neither dimensions or units.

When a equation is considered, both sides must have the same dimension but not necessarily the same unit as conversion between units is possible.

- (c) The argument of a transcendental function is dimensionless since otherwise its series expansion is inconsistent in dimensions. But it can possess a unit, say the argument of trigonometric functions can be either in degrees or in radians.
- 3. (a) Notice that $|\mathbf{B} \times \mathbf{C}|$ is the area of the parallelogram spanned by the two vectors. The volume of a parallelepiped is base area times height. Here the height is $|\mathbf{A} \cdot \hat{\mathbf{n}}|$ where $\hat{\mathbf{n}}$ is the unit vector normal to the parallelogram above, which is the along the direction of $\mathbf{B} \times \mathbf{C}$. Thus the volume is $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$.
 - (b) Using the so-called BAC-CAB rule for vector triple product,

$$(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}} = \hat{\mathbf{n}} \times (\mathbf{A} \times \hat{\mathbf{n}}) = \mathbf{A}(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}) - \hat{\mathbf{n}}(\mathbf{A} \cdot \hat{\mathbf{n}}).$$

Rearranging we get the desired result.

Alternatively one may set the coordinate axes such that $\hat{\mathbf{n}} = \hat{\mathbf{x}}$ and \mathbf{A} lies on x-y plane. The identity will be trivial.

- (c) $|\mathbf{A}|$ is a constant $\Leftrightarrow \frac{d}{dt}(\mathbf{A} \cdot \mathbf{A}) = 0 \Leftrightarrow \frac{d\mathbf{A}}{dt} \cdot \mathbf{A} = 0$.
- (d) $|\mathbf{A} + \mathbf{B}| = |\mathbf{A} \mathbf{B}| \Leftrightarrow (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} + \mathbf{B}) = (\mathbf{A} \mathbf{B}) \cdot (\mathbf{A} \mathbf{B}) \Leftrightarrow \mathbf{A} \cdot \mathbf{B} = 0.$
- (e) Suppose the diagonals are represented by vectors **A** and **B**. Observe that $\frac{1}{2}(\mathbf{A} + \mathbf{B})$ corresponds to two opposing sides of the rhombus, while $\frac{1}{2}(\mathbf{A} \mathbf{B})$ corresponds to the remaining two sides. As the sides are of equal length, from (d) **A** and **B** are perpendicular.
- 4. (a) $a_r = \ddot{r} r\dot{\theta}^2 = 2\beta\lambda 4\beta\lambda^3t^4$, it is zero when $t = \frac{1}{\sqrt[4]{2\lambda^2}}$.
 - (b) $a_{\theta} = \frac{1}{r} \frac{d}{dt} (r^2 \dot{\theta}) = 10 \beta \lambda^2 t^2$.

The speed of the particle is $v = \sqrt{\dot{r}^2 + (r\dot{\theta})^2} = 2\beta\lambda t\sqrt{1 + \lambda^2 t^4}$ and the tangential acceleration is $\frac{dv}{dt} = 2\beta\lambda \frac{1+3\lambda^2 t^4}{\sqrt{1+\lambda^2 t^4}}$.

The angular acceleration is $\ddot{\theta} = 2\lambda$.

(c) The have equal magnitude when $1 - 2\lambda^2 t^4 = \pm 5\lambda t^2$, that is when $2\theta^2 \mp 5\theta - 1 = 0$. Solving gives $\theta = \frac{\sqrt{33} \pm 5}{4}$.

1

- (d) $\vec{F} = m\vec{a} = 2m\beta\lambda(1 2\lambda^2t^4)\hat{r} + 10m\beta\lambda^2t^2\hat{\theta}$.
- (e) $v(t) = 2\beta \lambda t \sqrt{1 + \lambda^2 t^4}$ as shown in (b).
- 5. (a) Either using algebraic or geometric method, we can obtain

$$\dot{\hat{r}} = \dot{\phi}\hat{\phi}, \dot{\hat{\phi}} = -\dot{\phi}\hat{r} \text{ and } \dot{\hat{z}} = 0.$$

Then
$$\mathbf{v} = \frac{d}{dt}(r\hat{r} + z\hat{z}) = \dot{r}\hat{r} + r\dot{\phi}\hat{\phi} + \dot{z}\hat{z}, \ \mathbf{a} = \frac{d}{dt}\mathbf{v} = (\ddot{r} - r\dot{\phi}^2)\hat{r} + (2\dot{r}\dot{\phi} + r\ddot{\phi})\hat{\phi} + \ddot{z}\hat{z}.$$

(b)
$$\mathbf{i} = (r^{(3)} - 3\dot{r}\dot{\phi}^3 - 3\dot{r}\dot{\phi}\ddot{\phi})\hat{r} + (3\ddot{r}\dot{\phi} + 3\dot{r}\ddot{\phi} + r\phi^{(3)} - r\dot{\phi}^3)\hat{\phi} + z^{(3)}\hat{z}.$$

6. (a) Here a purely algebraic method is shown, one may also employ differential calculus for this problem. The trajectory of the arrow is given by $y = x \tan \theta - \frac{gx^2}{2v_0^2 \cos^2 \theta}$, and where it lands should satisfy $y = -x \tan \phi$. We get from these the x-coordinate of its landing position:

$$x = \frac{2v_0^2}{g} (\tan \theta + \tan \phi) \cos^2 \theta$$

$$= \frac{2v_0^2}{g} \frac{\cos \phi \sin \theta \cos \theta + \sin \phi \cos^2 \theta}{\cos \phi}$$

$$= \frac{2v_o^2}{g \cos \phi} \sin (\phi + \theta) \cos \theta$$

$$= \frac{v_0^2}{g \cos \phi} [\sin (\phi + 2\theta) + \sin \phi]$$

Thus for maximum distance, $\theta = \frac{\pi}{4} - \frac{\phi}{2}$.

(b) The horizontal component of velocity is a constant: $v_x = v_0 \cos\left(\frac{\pi}{4} - \frac{\phi}{2}\right) = v_0 \sqrt{\frac{1+\sin\phi}{2}}$. From one dimensional kinematics the vertical component is

$$v_y = v_0 \sin\left(\frac{\pi}{4} - \frac{\phi}{2}\right) - g\frac{x_f}{v_x} = v_0 \sqrt{\frac{1 - \sin\phi}{2}} - v_0 \frac{1 + \sin\phi}{\cos\phi} \sqrt{\frac{2}{1 + \sin\phi}}$$
$$= -v_0 \sqrt{\frac{1 - \sin\phi}{2}} \left(\frac{2}{\cos\phi} \sqrt{\frac{1 + \sin\phi}{1 - \sin\phi}} - 1\right) = -v_0 \frac{1 + \sin\phi}{\sqrt{2(1 - \sin\phi)}}.$$

- 7. (a) Consider the train as a whole and apply Newton's second law, the common acceleration of the cars is given by F = NMa, $a = \frac{F}{NM}$.
 - (b) Consider car i and all the cars behind it as a single object, then the force we want to find is the only external force act on the object. So $F_{i,i-1} = (N+1-i)Ma = \frac{N+1-i}{N}F$.
 - (c) From third law we have $F_{i+1,i} = -F_{i,i+1} = -\frac{N-i}{N}F$.
- 8. As this problem is already discussed during sections only a brief solution is given. Consider a fraction of the rope warping around the capstan, with length being $Rd\theta$. Force cancellation along the tangential direction gives: $f = -\frac{dT}{d\theta}d\theta$, cancellation along radial direction gives: $N = Td\theta$. Then using $f = \mu N$ we come up with $\frac{dT}{d\theta} = -\mu T$, $T = T_0 e^{-\mu \theta}$.
- 9. (a) Tension of the string is minimum when the mass is at its highest position, thus we only need to ensure tension is non-negative there. By energy conservation, the speed at that point is given by $v^2 = v_0^2 2gL$, the centripetal force is $\frac{Mv^2}{L} = T + Mg$, $T \ge 0$ implies $v_0 \ge \sqrt{3gL}$.
 - (b) Tangential acceleration of the mass is due to circumferential component of the weight. Thus $a_{\theta} = -g \cos \theta$.
 - (c) By energy conservation, $v^2(\theta) + 2gL\sin\theta = v_0^2$, so $v(\theta) = \sqrt{v_0^2 2gL\sin\theta}$.
 - (d) Apply Newton's law along the radial direction, $T+Mg\sin\theta=\frac{Mv^2}{L},\,T=\frac{Mv_0^2}{L}-3Mg\sin\theta.$

- 10. (a) Force equilibrium gives $f = mg \sin \phi$ and $N = mg \cos \theta$. Thus $f \leq \mu N \Rightarrow \tan \phi \leq \mu$.
 - (b)(c) We can deal with these two parts together. As in the diagram, if we apply Newton's law along the direction parallel to the slope we get: $f = mg\sin\phi - ma\cos\phi$, and along the direction normal to the slope we get: $N = mg\cos\phi + ma\sin\phi$. Static equilibrium requires $f \leq \mu N$ then $a \ge \frac{\tan\phi - \mu}{1 + \mu \tan\phi} g$, here we should also have $f \ge 0 \Leftrightarrow a \le g \tan\phi$. For the case $0 \ge f \ge -\mu N$ and we get $a(\cos\phi - \mu\sin\phi) \le g(\sin\phi + \mu\cos\phi)$. Here we have to separate into two cases: Case 1: $\mu < \cot\phi$, then $a \le \frac{\tan\phi + \mu}{1 - \mu\tan\phi}g$. Case 2: $\mu \ge \cot\phi$, then the inequality is always true given $f \le 0 \Leftrightarrow a \ge g\tan\phi$. To sum up, $a_{\min} = \frac{\tan\phi - \mu}{1 + \mu\tan\phi}g$, $a_{\max} = \frac{\tan\phi + \mu}{1 - \mu\tan\phi}g$ if $\mu < \cot\phi$ and $a_{\max} = +\infty$ if $\mu \ge \cot\phi$.

11. (a) Either using geometry or derive from the metric tensor in Cartesian coordinate, we can obtain in spherical coordinate:

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2.$$

This is singular when r=0 or $\sin\theta=0$, that is at the z-axis. This is because the coordinate system itself is singular there, more precisely ϕ is ill-defined at the z-axis and so does θ at the origin. Then $d\phi$ or $d\theta$ will be ambiguous.

- (b) $\mathbf{r} = r\hat{r}$.
- (c) The derivative of \hat{r} is: $\dot{\hat{r}} = \dot{\theta}\hat{\theta} + \sin\theta\dot{\phi}\hat{\phi}$. Hence $\mathbf{v} = \dot{r}\hat{r} + r\dot{\hat{r}} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\hat{\phi}$. Alternatively, as spherical coordinate is a orthogonal coordinate system, it is not hard to derive the expression geometrically.