確率論 宿題4の解答

1019163 2-G 日置竜輔

次の問題を解き、解答過程を示したレポートを提出しなさい.

ただし、解答は単に答えを書くのではなく、どのように考えたかが分かるように書きなさい.

問題 あるサイコロを n 回投げたとき, i の目が出る回数を Xi で表す.

このとき,以下の問いに答えよ.

但し、解答は単に答えを書くのではなく、どのように考えたかが分かるように書きなさい.

問1 サイコロの偶数の目が奇数の目より 2 倍でやすいサイコロの Xi E Xj の同時確率 P(Xi, Xj) が従う確率分布を求めよ.

ただし、奇数となるどの目が出る確率も等しく、偶数となるどの目が出る確率も等しいとする.

まず、「偶数の目が奇数の目より2倍でやすい」ので、サイコロを1回振ったら

 $\left\{egin{array}{ll} 1,3,5\$ の出る確率はそれぞれ $& rac{1}{9} \\ 2,4,6\$ の出る確率はそれぞれ $& rac{2}{9} \\ \end{array}
ight.$ であることがわかる。

(a)i, jが共に奇数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は、

$${}_{n}C_{k}\left(rac{1}{9}
ight)^{k}\left(rac{8}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $X_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^k \left(\frac{1}{9}\right)^l \left(\frac{7}{9}\right)^{n-k-l}$$

したがって、i,jが共に奇数のときの表は以下のようになる。

表1 i,j が共に奇数のときの確率分布

$(横:X_i)/(縦:X_j)$	 k	
0	 $\frac{n!}{k!(n-k)!} \frac{7^{n-k}}{9^n}$	
1	 $\frac{n!}{k! \ (n-k-1)!} \frac{7^{n-k-1}}{9^n}$	
2	 $\frac{n!}{2! \ k! \ (n-k-2)!} \frac{7^{n-k-2}}{9^n}$	
l	 $\frac{n!}{k! \ l! \ (n-k-l)!} \frac{7^{n-k-l}}{9^n}$	•••

(b) i が奇数, j が偶数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は、

$${}_{n}C_{k}\left(\frac{1}{9}\right)^{k}\left(\frac{8}{9}\right)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \ l! \ (n-k-l)!} \left(\frac{1}{9}\right)^k \left(\frac{2}{9}\right)^l \left(\frac{2}{3}\right)^{n-k-l}$$

したがって、iが奇数,jが偶数のときの表は以下のようになる。

(横: X_i)/(縦: X_j) 0 1 ...
0 $\left(\frac{2}{3}\right)^n$ $n\frac{1}{9}\left(\frac{2}{3}\right)^{n-1}$...
1 $n\frac{2}{9}\left(\frac{2}{3}\right)^{n-1}$ $n(n-1)\frac{2}{81}\left(\frac{2}{3}\right)^{n-2}$...
2 $\frac{n(n-1)(n-2)}{2}\left(\frac{2}{9}\right)^2\left(\frac{2}{3}\right)^{n-1}$ $\frac{n(n-1)(n-2)}{2}\frac{4}{9^3}\left(\frac{2}{3}\right)^{n-3}$...
1 ...
1 $\frac{n!}{l! \ (n-l)!}\left(\frac{2}{9}\right)^l\left(\frac{2}{3}\right)^{n-2}$ $\frac{n!}{l! \ (n-l-1)!}\frac{2^l}{9^{l+1}}\left(\frac{2}{3}\right)^{n-l-1}$...

表 2 i が奇数, j が偶数のときの確率分布

$(横:X_i)/(縦:X_j)$	 2	k	
0	 $\frac{n(n-1)}{2} \left(\frac{1}{9}\right)^2 \left(\frac{2}{3}\right)^{n-2}$	$\frac{n!}{k! \ (n-k)!} \left(\frac{1}{9}\right)^k \left(\frac{2}{3}\right)^{n-k}$	
1	 $\frac{n(n-1)(n-2)}{2} \frac{2}{9^3} \left(\frac{2}{3}\right)^{n-3}$	$\frac{n!}{k! \ (n-k-1)!} \frac{2}{9^{k+1}} \left(\frac{2}{3}\right)^{n-k-1}$	
2	 $\frac{n(n-1)(n-2)(n-3)}{4} \frac{4}{9^4} \left(\frac{2}{3}\right)^{n-4}$	$\frac{n!}{2! \ k! \ (n-k-2)!} \frac{4}{9^{k+2}} \left(\frac{2}{3}\right)^{n-k-2}$	
l	 $\frac{n!}{l! \ (n-l-2)!} \frac{2^l}{9^{l+2}} \left(\frac{2}{3}\right)^{n-l-2}$	$\frac{n!}{k! \ l! \ (n-k-l)!} \frac{2^{l}}{9^{k+l}} \left(\frac{2}{3}\right)^{n-k-l}$	
	 	•••	

(c) i が偶数, j が奇数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $X_i = k$)は,

$${}_{n}C_{k}\left(rac{2}{9}
ight)^{k}\left(rac{7}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \; l! \; (n-k-l)!} \left(\frac{2}{9}\right)^k \left(\frac{1}{9}\right)^l \left(\frac{2}{3}\right)^{n-k-l}$$

したがって、iが偶数,jが奇数のときの表は以下のようになる。

表 3 i が偶数, j が奇数のときの確率分布

$(横:X_i)/(縦:X_j)$	0	1	
0	$\left(\frac{2}{3}\right)^n$	$\frac{n!}{(n-1)!} \frac{2}{9} \left(\frac{2}{3}\right)^{n-1}$	
1	$n\frac{1}{9}\left(\frac{2}{3}\right)^{n-1}$	$n(n-1)\frac{2}{81}\left(\frac{2}{3}\right)^{n-2}$	
2	$\frac{n(n-1)}{2} \left(\frac{1}{9}\right)^2 \left(\frac{2}{3}\right)^{n-2}$	$\frac{n(n-1)(n-2)}{2} \frac{2}{9^3} \left(\frac{2}{3}\right)^{n-3}$	
l	$\frac{n!}{(n-l)!} \left(\frac{1}{9}\right)^l \left(\frac{2}{3}\right)^{n-l}$	$\frac{n!}{l! \ (n-l-1)!} \frac{2}{9^{l+1}} \left(\frac{2}{3}\right)^{n-l-1}$	

$(横:X_i)/(縦:X_j)$	 2	k	
0	 $\frac{n(n-1)}{2} \frac{4}{81} \left(\frac{2}{3}\right)^{n-2}$	$\frac{n!}{k! \ (n-k)!} \left(\frac{2}{3}\right)^{n-k}$	
1	 $\frac{n(n-1)(n-2)}{2} \frac{4}{9^3} \left(\frac{2}{3}\right)^{n-3}$	$\frac{n!}{k! \ (n-k-1)!} \frac{2^k}{9^{k+1}} \left(\frac{2}{3}\right)^{n-k-1}$	
2	 $\frac{n(n-1)(n-2)(n-3)}{4} \frac{4}{9^4} \left(\frac{2}{3}\right)^{n-4}$	$\frac{n!}{2! \ k! \ (n-k-2)!} \frac{2^k}{9^{k+2}} \left(\frac{2}{3}\right)^{n-k-2}$	
l	 $\frac{n!}{2! \ l! \ (n-l-2)!} \frac{4}{9^{l+2}} \left(\frac{2}{3}\right)^{n-l-2}$	$\frac{n!}{k! \ l! \ (n-k-l)!} \frac{2^k}{9^{k+l}} \left(\frac{2}{3}\right)^{n-k-l}$	
	 	•••	

(d) i ,j が共に偶数であるとき、

さいころを n 回振って、k 回だけ i が出る確率(すなわち $\mathbf{X}_i = k$)は,

$${}_{n}C_{k}\left(rac{2}{9}
ight)^{k}\left(rac{7}{9}
ight)^{n-k}$$
 (反復試行の回数)

また、サイコロを n 回振って、k 回だけ i が出て、 l 回だけ j が出る確率(すなわち $\mathbf{X}_i=k$, $X_j=l$ の同時確率)は、

$$\frac{n!}{k! \; l! \; (n-k-l)!} \left(\frac{2}{9}\right)^k \left(\frac{2}{9}\right)^l \left(\frac{5}{9}\right)^{n-k-l}$$

したがって、 i, j が共に偶数のときの表は以下のようになる。

表 4 i, j が共に偶数のときの確率分布

$(横:X_i)(縦:X_j)$	1	2	
1	$n(n-1)4\frac{5^{n-2}}{9^n}$	$\frac{n(n-1)(n-2)}{2} 8 \frac{5^{n-3}}{9^n}$	
2	$\frac{n(n-1)(n-2)}{2}8\frac{5^{n-3}}{9^n}$	$\frac{n(n-1)(n-2)(n-3)}{4}16\frac{5^{n-4}}{9^n}$	
l	$\frac{n!}{l! \ (n-l-1)!} 2^{l+1} \frac{5^{n-l-1}}{9^n}$	$\frac{n!}{2! \ l! \ (n-l-2)!} 2^{l+2} \frac{5^{n-l-2}}{9^n}$	

$(横:X_i)(縦:X_j)$	 k	
1	 $\frac{n!}{k! (n-k-1)!} 2^{k+1} \frac{5^{n-k-1}}{9^n}$	
2	 $\frac{n!}{2! \ k! \ (n-k-2)!} 2^{k+2} \frac{5^{n-k-2}}{9^n}$	
	 •••	
l	 $\frac{n!}{k! \ l! \ (n-k-l)!} 2^{k+l} \frac{5^{n-k-l}}{9^n}$	