

O ALGORITMO:

• Seja a_i , $1 \le i \le n$, uma lista de elementos **Example 3.6** Let us select the 14 entries

-15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151

- Considere o problema de determinar se um determinado elemento o está presente na lista.
- Se x estiver presente, devemos determinar um valor j tal que $a_i = x$.
- Se x não estiver na lista, então j deve ser definido como zero.
- Deixe $P=(n,a_i,\ldots,a_\ell,x)$ denotar uma instância arbitrária deste problema de pesquisa (n é o número de elementos na lista, a_i,\ldots,a_ℓ é a lista de elementos, e x é o elemento procurado).
- Divisão e conquista pode ser usado para resolver esse problema.
- Seja Small(P) verdadeiro se n = 1.
 - Nesse caso, S(P) assumirá o valor i se $x = a_i$; caso contrário, assumirá o valor 0.
 - \triangleright Então $T(1) = \theta(1)$.

- Se P tiver mais de um elemento, ele pode ser dividido (ou reduzido) em um novo subproblema como segue:
 - Escolha um índice q (no intervalo $[i, \ell]$) e compare x com a_q . Existem três possibilidades:
 - 1. $x = a_q$: Neste caso o problema P é resolvido imediatamente.
 - 2. $x < a_q$: Neste caso x deve ser procurado apenas na sublista a_i , a_{i+1}, \ldots, a_{q-1} . Portanto, P se reduz a $P = (q i, a_i, \ldots, a_{q-1}, x)$.
 - 3. $x>a_q$: Neste caso a sublista pesquisada será $a_i, a_{q+1}, \ldots, a_\ell$. E, P se reduz a $P=(\ell-q, a_{q+1}, \ldots, a_\ell, x)$.

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
     // order, 1 \le i \le l, determine whether x is present, and
     // if so, return j such that x = a[j]; else return 0.
         if (l = i) then // If Small(P)
              if (x = a[i]) then return i;
              else return 0:
11
12
         \{ // \text{ Reduce } P \text{ into a smaller subproblem. } 
13
              mid := \lfloor (i+l)/2 \rfloor;
              if (x = a[mid]) then return mid;
14
15
              else if (x < a[mid]) then
                        return BinSrch(a, i, mid - 1, x);
17
                    else return BinSrch(a, mid + 1, l, x);
```



```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
    // order, 1 \le i \le l, determine whether x is present, and
    // if so, return j such that x = a[j]; else return 0.
         if (l = i) then // If Small(P)
             if (x = a[i]) then return i;
             else return 0:
10
11
         else
         \{ // \text{ Reduce } P \text{ into a smaller subproblem. } 
12
13
             mid := |(i+l)/2|;
14
             if (x = a[mid]) then return mid;
15
             else if (x < a[mid]) then
16
                       return BinSrch(a, i, mid - 1, x);
17
                   else return BinSrch(a, mid + 1, l, x);
18
19 }
```

Example 3.6 Let us select the 14 entries

```
-15, -6, \ 0, \ 7, \ 9, \ 23, \ 54, \ 82, \ 101, \ 112, \ 125, \ 131, \ 142, \ 151
```

- Neste exemplo, qualquer problema P é dividido (reduzido) em um novo subproblema. Esta divisão leva apenas $\theta(1)$ tempo.
- Depois de uma comparação com a_q , a instância restante a ser resolvida (se houver) pode ser resolvida usando novamente este esquema de dividir e conquistar.
- Se q é sempre escolhido tal que a_q é o elemento do meio (ou seja, $q = \lfloor (n+1)/2 \rfloor$), então o algoritmo de pesquisa resultante é conhecido como pesquisa binária.

- Observe que a resposta para o novo subproblema também é a resposta ao problema original P. Uma vez que achamos o índice correto chegamos a resposta global!!!
- Não há necessidade de nenhuma combinação.
- O Algoritmo BinSrch descreve esse método de busca binária, e possui quatro entradas a[], i, l, x.
- É inicialmente invocado como BinSrch(a, 1, n, x).

ANALISANDO O ALGORITMO:

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
    // order, 1 \le i \le l, determine whether x is present, and
    // if so, return j such that x = a[j]; else return 0.
         if (l = i) then // If Small(P)
             if (x = a[i]) then return i;
             else return 0:
10
11
        else
12
         \{ // \text{ Reduce } P \text{ into a smaller subproblem. } \}
13
             mid := |(i+l)/2|;
14
             if (x = a[mid]) then return mid;
             else if (x < a[mid]) then
16
                       return BinSrch(a, i, mid - 1, x);
17
                   else return BinSrch(a, mid + 1, l, x);
18
19 }
```

A.16: O algoritmo de pesquisa binária funciona de forma correta.

- **Prova (informal).** O algoritmo funciona para quando n=1, pois ou retorna o índice correto ou retorna zero.
- Se n>1 pergunta se o valor do meio indicado pelo índice q é igual a $x=a_q$, caso positivo retorna o índice. Caso contrário, reduz o problema e chama recursivamente,
- Como o problema fica menor a cada chamada recursiva garantimos que o algoritmo termina ou com o índice correto ou com o valor zero.

 Portanto, podemos descrever a Pesquisa Binária com a seguinte recorrência:

A.17: Para alguma constante c

$$T(n) = \begin{cases} T(1) & se \ n = 1 \\ T(n/2) + c & se \ n > 1 \end{cases}$$

ANALISANDO O ALGORITMO:

A.17: Para alguma constante c

$$T(n) = \begin{cases} T(1) & se \ n = 1 \\ T(n/2) + c & se \ n > 1 \end{cases}$$

$$\sum_{j=0}^{\log_2 n} c = \log_2 n \cdot c$$

$$O(\log_2 n \cdot c) = O(\log_2 n)$$

- Portanto, no pior caso teremos log_2 n chamadas recursivas que no fundo da recursão custam c=1 e o custo para dividir é c e o custo para combinar é zero.
- Portanto, no pior caso temos que

$$T(n) \notin O(\log_2 n)$$

Example 3.6 Let us select the 14 entries

$$-15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151$$

ANALISANDO O ALGORITMO:

A.17: Para alguma constante c

$$T(n) = \begin{cases} T(1) & se \ n = 1 \\ T(n/2) + c & se \ n > 1 \end{cases}$$

Pelo método mestre:

• T(n) = aT(n/b) + f(n) = T(n/2) + 1onde a = 1, b = 2, f(n) = 1

Caso 2:

- Então temos que $n^{\log_b a} = n^{\log_2 1} = n^0 = \Theta(1)$
- Como $f(n) = O(n^{\log_b a})$, pois $n^{\log_b a} = n^{\log_2 1} = 1$.
- Portanto, $n^{\log_b a} = f(n)$, a solução é $T(n) = \Theta(f(n)\log_2 n) = \Theta(\log_2 n) = \Theta(\log_2 n)$.