Generující množiny a báze Dimense Báze obecných prostorů

Báze a dimense

Odpřednesenou látku naleznete v kapitolách 3.1–3.3 a 3.6 skript *Abstraktní a konkrétní lineární algebra*.

Minulé přednášky

- Lineární kombinace, lineární závislost/nezávislost.
- 2 Lineární obal seznamu/množiny vektorů.

Dnešní přednáška

- Báze lineárního (pod)prostoru.
 - Intuitivní význam: báze je výběr systému souřadnicových os.
- 2 Dimense lineárního (pod)prostroru.
 - Intuitivní význam: dimense je počet souřadnicových os.

Připomenutí

Množina M je konečná, pokud buď $M = \emptyset$ nebo $M = \{x_1, \dots, x_n\}$ pro nějaké přirozené číslo $n \ge 1$. Množina M je nekonečná, když není konečná.

Definice (množina generátorů)

Ať W je lineární podprostor prostoru L. Řekneme, že množina G generuje W, když platí span(G) = W. (Říkáme také: G je množina generátorů podprostoru W.)

Definice (konečně generovaný podprostor)

Řekneme, že lineární podprostor W prostoru L je konečně generovaný, když existuje konečná množina jeho generátorů. (To jest, když platí span(G) = W pro nějakou konečnou množinu G.)

Příklady

- Pro každý prostor L platí: L je množina generátorů prostoru L.
 - Množina generátorů L prostoru L obecně není konečná a je vždy lineárně závislá (například: \mathbb{R}^2 je nekonečná lineárně závislá množina generátorů prostoru \mathbb{R}^2).
- ② Jak \emptyset , tak $\{\vec{o}\}$ jsou konečné množiny generátorů triviálního prostoru $\{\vec{o}\}$. Důvody: span $(\emptyset) = \{\vec{o}\}$ (minulé přednášky) a span $(\{\vec{o}\}) = \{\vec{o}\}$. Všimněme si:
 - \emptyset je lineárně nezávislá množina generátorů prostoru $\{\vec{o}\}$.
 - **2** $\{\vec{o}\}$ je lineárně závislá množina generátorů prostoru $\{\vec{o}\}$.
- **3** Konečná množina $G = \{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$ generuje "osu prvního a třetího kvadrantu" prostoru \mathbb{R}^2 . Množina G je lineárně závislá.

Definice (báze)

Lineárně nezávislé množině B, která generuje prostor L, říkáme báze prostoru L. Je-li B konečná, pak seznamu prvků B říkáme uspořádaná báze.

Slogan pro bázi

Báze prostoru je "nejúspornější" množina generátorů.

Příklady

- **1** \emptyset je báze triviálního prostoru $\{\vec{o}\}$.
- **2** Každá z množin $\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -4 \end{pmatrix} \right\}$, $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ tvoří bázi prostoru \mathbb{R}^2 .
- **3** Množina $\{1, x, x^2, x^3, \dots\}$ tvoří bázi prostoru $\mathbb{R}[x]$ všech reálných polynomů.

Příklad (kanonická báze prostoru \mathbb{F}^n , $n \geq 1$)

Ať \mathbb{F} je jakékoli těleso. Označme jako $K_n = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ následující seznam vektorů v \mathbb{F}^n , $n \geq 1$:

e; má jedničku na *i*-té posici, všude jinde nuly.

Potom K_n je uspořádaná báze prostoru \mathbb{F}^n .

Této uspořádané bázi K_n říkáme kanonická báze prostoru \mathbb{F}^n .

(Také: standardní báze.)

Příklad: kanonická báze K_3 v \mathbb{R}^3 .

Příklad: Fourierova báze pro n=4 (varianta této báze je používána v JPEG)

Pro $w = e^{\frac{2\pi i}{4}} = i$, je seznam $(\vec{f_0}, \vec{f_1}, \vec{f_2}, \vec{f_3})$, kde

$$\vec{f_0} = \begin{pmatrix} w^0 \\ w^0 \\ w^0 \\ w^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{f_1} = \begin{pmatrix} w^0 \\ w^1 \\ w^2 \\ w^3 \end{pmatrix} = \begin{pmatrix} 1 \\ i \\ -1 \\ -i \end{pmatrix}$$

$$ec{f_2} = egin{pmatrix} w^0 \ w^2 \ w^4 \ w^6 \end{pmatrix} = egin{pmatrix} 1 \ -1 \ 1 \ -1 \end{pmatrix}, \quad ec{f_3} = egin{pmatrix} w^0 \ w^3 \ w^6 \ w^9 \end{pmatrix} = egin{pmatrix} 1 \ -i \ -1 \ i \end{pmatrix}$$

uspořádaná báze lineárního prostoru \mathbb{C}^4 nad tělesem \mathbb{C} .

Tvrzení (Existence báze pro konečně generované prostory)

Každý konečně generovaný prostor L má konečnou bázi.

Navíc: všechny možné báze prostoru *L* mají stejný počet prvků.

Myšlenka důkazu

První tvrzení: víme, že span(G) = L, kde G je konečná. Lze postupovat dvěma způsoby:

- (I) "Přidávat" do prázdné množiny "důležité" vektory z G.
- (II) "Ubírat" z G "zbytečné" vektory.

Detaily: přednáška.

Druhé tvrzení: Exchange Lemma (viz skripta, Lemma 3.2.10 a cvičení).

Definice (prostor konečné dimense)

Lineární prostor L má dimensi n (značíme: $\dim(L) = n$), když existuje báze B prostoru L, která má n prvků, a kde n je přirozené číslo.

Příklady

- Obecněji: pro jakékoli těleso \mathbb{F} platí $\dim(\mathbb{F}^n) = n, n \geq 0$.
- **1** Prostor $\mathbb{R}[x]$ všech reálných polynomů nemá konečnou dimensi.
- **⊙** Podprostor $\mathbb{R}^{\leq 3}[x]$ (polynomy stupně nejvýše 3) prostoru $\mathbb{R}[x]$ má dimensi 4. Uspořádaná báze je např. $(x^3, x^2, x, 1)$.

 $^{{}^}a$ A tudíž, podle předchozího, všechny báze prostoru L mají n prvků.

Poznámka

Ať $\dim(L) = n$ a ať M je podmnožina L, která má m prvků.

- **1** Je-li M lineárně nezávislá, pak $m \leq n$.
- ② Ať m = n. M je lineárně nezávislá právě tehdy, když platí span(M) = L.

Důsledek (klasifikace lineárních podprostorů \mathbb{R}^3)

Lineární podprostory prostoru \mathbb{R}^3 jsou přesně tvaru span(M), kde M (zaměření podprostoru) je lineárně nezávislá podmnožina \mathbb{R}^3 :

- Počátek $\{\vec{o}\}$ (když M má nula prvků).
- Přímky procházející počátkem (když M má jeden prvek).
- Roviny procházející počátkem (když M má dva prvky).
- Celé \mathbb{R}^3 (když M má tři prvky).

Zobecnění: klasifikace^a lineárních podprostorů prostoru \mathbb{R}^n (dokonce na lineární podprostory prostoru \mathbb{F}^n).

 $^{^{\}text{a}}\text{To}$ je náročnější na představu, ale geometrický význam je podobný jako pro lineární podprostory prostoru $\mathbb{R}^3.$

10/16

Připomenutí (Téma 2A)

Podprostoru span $(W_1 \cup W_2)$ říkáme spojení podprostorů W_1 a W_2 . Značení: $W_1 \vee W_2$.

Věta (rovnost dvou lineárních podprostorů)

Ať W_1 , W_2 jsou lineární podprostory prostoru L konečné dimense. Potom $W_1 = W_2$ právě tehdy, když platí rovnost $\dim(W_1) = \dim(W_2) = \dim(W_1 \vee W_2)$.

- **1** Ať $W_1 = W_2$. Potom $W_1 \vee W_2 = W_1$. Tudíž platí rovnost $\dim(W_1) = \dim(W_2) = \dim(W_1 \vee W_2)$.
- ② Ať dim(W₁) = dim(W₂) = dim(W₁ ∨ W₂). Protože W₁ ⊆ W₁ ∨ W₂ a oba podprostory mají stejnou dimensi, platí W₁ = W₁ ∨ W₂. Rovnost W₂ = W₁ ∨ W₂ se dokáže analogicky. Celkově: W₁ = W₁ ∨ W₂ = W₂, hotovo.

^aDůkaz: domácí cvičení. Postupujte následovně:

Důsledek (důležitý pro Frobeniovu větu, téma 6A)

Ať W je lineární podprostor prostoru L konečné dimense. Pro vektor \vec{v} jsou následující podmínky ekvivalentní:^a

- $\mathbf{0}$ $\vec{v} \in W$

^aDůkaz: domácí cvičení. Postupujte následovně:

- **1** Dokažte: $\vec{v} \in W$ iff span $(\vec{v}) \subseteq W$ iff $W = W \vee \text{span}(\vec{v})$.
- ② Použijte větu z předchozí stránky: $W = W \vee \operatorname{span}(\vec{v})$ iff $\dim(W) = \dim(W \vee \operatorname{span}(\vec{v})) = \dim(\underbrace{W \vee (W \vee \operatorname{span}(\vec{v}))}_{=W \vee \operatorname{span}(\vec{v})})$.

Měl by pomoci obrázek situace, kdy $\vec{v} \notin W$:

12/16

Připomenutí (princip inkluse a exkluse)

Ať A a B jsou konečné množiny.

Označíme-li počet prvků množin A, B, $A \cap B$ a $A \cup B$ jako $\operatorname{card}(A)$, $\operatorname{card}(B)$, $\operatorname{card}(A \cap B)$ a $\operatorname{card}(A \cup B)$, potom platí rovnost

$$\operatorname{card}(A \cup B) + \operatorname{card}(A \cap B) = \operatorname{card}(A) + \operatorname{card}(B)$$

Věta (o dimensi spojení a průniku)

Ať je L lineární prostor konečné dimense. Potom, pro libovolné lineární podprostory W_1 , W_2 , platí rovnost $\dim(W_1\vee W_2)+\dim(W_1\cap W_2)=\dim(W_1)+\dim(W_2)$.

Důkaz.

Přednáška.

Slogan pro větu o dimensi spojení a průniku

Jde o "princip inkluse a exkluse" pro lineární prostory konečné dimense. Dimense hraje roli počtu prvků.^a

^aZnovu upozorňujeme: slogan je reklamní heslo, nikoli skutečnost.

Věta (za předpokladu (AC))

Každý lineární prostor L má bázi.

Důkaz.

Náročný: nebudeme dokazovat.

Poznámka

Předpoklad (AC). Zkratka (AC) znamená Axiom of Choice, česky: axiom výběru.

Jedná se o tvrzení: kartézský součin libovolného systému neprázdných množin je neprázdná množina.^a

Tvrzení (AC) je nezávislé na základních axiomech teorie množin. Srovnejte s axiomem o rovnoběžkách z geometrie.

^aVe skriptech je použita ekvivalentní formulace (AC), tzv. Zornovo Lemma.

Pozor: stejný prostor nad různými tělesy má různé vlastnosti

- Množina © všech komplexních čísel je
 - lineární prostor dimense 1 nad tělesem €,
 - ② lineární prostor dimense 2 nad tělesem ℝ.
- - lineární prostor dimense 1 nad tělesem R,
 - lineární prostor nekonečné dimense nad tělesem Q.ª

Důsledek: měli bychom vždy psát, nad jakým tělesem o lineárním prostoru mluvíme!

^aNepovinné: takzvaná Hamelova báze reálných čísel, viz Příklad 3.6.5 skript.