Making RL practical

Pac-Man

Pac-Man

Extended Actions or Options

<I, π, β>

 $I \in S$

 $\pi \colon S \times A \to [0 \ 1]$

 $\beta(s)$ is the termination set

Hallway options \mathcal{O} = \mathcal{H}

Initial Values

Iteration #1

Iteration #2

Types of Decompositions

- Things-to-do: **Options**
 - Offer coherent, near-optimal sequences of actions for solving subtasks
 - For example "go to the closest food"
- Things-not-to-do: Constraints
 - Indicate sequences of actions that should be taken to stay alive within the domain
 - For example "avoid ghost"

Tic-Tac-Toe Chess

MCTS

MCTS

Useful in problems with large state spaces
Requires lots of samples to get a good estimate
Planning time independent of the total number of the states
Running time exponential in the effective horizon (H)