Digital System Design

Lecture - 1

What is a System?

- A set of related components working as a whole to achieve a definite goal
- A system contains:
 - a. Inputs
 - b. A function that converts the inputs to outputs
 - c. Outputs

What is a Digital System?

A system in which signals have a finite number of discrete values

Advantages:

- a. Easy to design
- b. Low cost, automated design and fabrication

Disadvantages:

- a. Physical World is analog
- b. Less precision

Example:

- a. Calculator
- b. Digital Voltmeter

A Combinational Circuit

- Consists of logic gates whose outputs at any time are determined directly from the present combination of inputs without regard to previous inputs.
- Example: Half Adder, Full Adder

A Sequential Circuit

- The outputs of a sequential circuit depend not only on present inputs, but also on past inputs. Moreover, the circuit behavior (function) must be specified by a time sequence of inputs and internal states.
- Example: Flip-flop

Types of Adders:

- Half Adder: The half adder accepts two binary digits as its input and produce two binary digits as output- a sum bit and a carry bit.
- Full Adder: The full adder accepts three binary digits as its input and produce two binary digits as output- a sum bit and a carry bit.

Half Adder

Truth Table:

Input		Output		
А	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Output Function:

$$S = A'B + AB'$$

= $A \oplus B$

$$C = AB$$

Logic Circuit:

Full Adder

Truth Table:

Input			Output	
Α	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Output Function:

 $S = A \oplus B \oplus C_{in}$ [Try yourself]

$$C_{out} = AB + (A \oplus B) C_{in} [Try yourself]$$

Logic Circuit:

Full Adder (Contd.)

```
Let,

C_{in} = C

Hence, S_i = A_i \oplus B_i \oplus C_i

And, C_{out} is the C_{in} for the next step.

Hence, C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i
```

```
Let.
A_i \oplus B_i = P_i and A_iB_i = G_i
So, we get,
C_{i+1} = G_i + P_i C_i
Substituting i=1,2,....., we get,
C_2 = G_1 + P_1C_1
C_3 = G_2 + P_2C_2
   = G_2 + P_2 (G_1 + P_1C_1)
```

Binary Adder

Full Adder using Half Adders

Block Diagram:

Circuit Diagram:

