Import Library Files

from google.colab import drive

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

from sklearn.preprocessing import StandardScaler

2. Load the dataset

data = pd.read_csv('/content/drive/MyDrive/Churn_Modelling.csv')

3.1 UNIVARIATE ANALYSIS

I = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary']

for i in I:

sns.displot(data=data[i],kde=True)

l=['CreditScore','Age', 'Tenure','Balance','NumOfProducts','EstimatedSalary']
fig, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(nrows=6, ncols=1, figsize=(10,20))
data.boxplot(column=[I[0]],grid='False',color='blue',ax=ax1)
data.boxplot(column=[I[1]],grid='False',color='blue',ax = ax2)

```
data.boxplot(column=[I[2]],grid='False',color='blue',ax = ax3)
data.boxplot(column=[I[3]],grid='False',color='blue',ax = ax4)
data.boxplot(column=[I[4]],grid='False',color='blue',ax = ax5)
data.boxplot(column=[I[5]],grid='False',color='blue',ax = ax6)
plt.tight_layout()
import warnings
warnings.filterwarnings("ignore")
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(16,16))
sns.countplot(data.HasCrCard,ax=ax1)
sns.countplot(data.lsActiveMember,ax=ax2)
sns.countplot(data.Exited,ax=ax3)
plt.tight_layout()
3.2 BI - VARIATE ANALYSIS
for i in range(len(l)-1):
  for j in range(i+1,len(l)):
    sns.relplot(x = I[i], y = I[j], data = data)
```

3.3 MULTI - VARIATE ANALYSIS

sns.catplot(x='Gender', y='Age', hue='HasCrCard', data=data)

<seaborn.axisgrid.FacetGrid at 0x7fdd89a27210>

sns.pairplot(data = data,hue='Exited')

3354.000000

3354.000000 3354.000000

<seaborn.axisgrid.PairGrid at 0x7fdd87c0c290>

4. Perform descriptive statistics on the dataset

data.head()

RowNumber Baland		CustomerId Sur			Surname HasCrCard		CreditScore IsActiveMembe		Geography er Estima		Age yExited	Tenure
1	2	15647 1	311 11254	645 2.58	608 0	2	0	41	1	83807.	86	1
5	6 1	15574 0	012 14975	302 6.71	645 1	2	1	44	8	113755	5.78	2
10	11 0	15767 0	821 80181.	109 .12	528 0	0	1	31	6	102016	5.72	2
15	16 0	15643 1	966 64327.	561 .26	616 0	1	1	45	3	143129	9.41	2
26	27 1	15736 1	816 17004:	1605 1.95	756 0	1	1	36	2	136815	5.64	1
data.describe()												
RowNumber CustomerId Surname Balance NumOfProductsHasCrCard					CreditScore Geogr IsActiveMember			aphy Gender Age Tenure EstimatedSalaryExited			Tenure	
count 3354.000000 3.354000e+03 3354.000000 3354.000000 3354.000000 3354.000000									00000			

3354.000000 3354.000000 3354.000000

3354.000000 3354.000000

mean	4993.122242 38.594812 101173.425200	1.568997e+07 4.960644 0.237627	834.928145 111127.251270	651.885808 1.386106	0.798151 0.705426	0.551580 0.496720
std	2889.712337 6.171482 57475.269109	7.220517e+04 2.910065 0.425693	467.984617 23930.791436	66.341508 0.579239	0.744870 0.455919	0.497407 0.500064
min	2.000000 29.000000 11.580000	1.556571e+07 0.000000 0.000000	0.000000 3768.690000	522.000000 1.000000	0.000000 0.000000	0.000000 0.000000
25%	2469.250000 34.000000 53183.340000	1.562732e+07 2.000000 0.000000	443.250000 96579.825000	601.000000 1.000000	0.000000 0.000000	0.000000 0.000000
50%	4986.500000 38.000000 101348.755000	1.568912e+07 5.000000 0.000000	847.500000 113904.805000	652.000000 1.000000	1.000000 1.000000	1.000000 0.000000
75%	7483.750000 43.000000 150202.787500	1.575380e+07 7.000000 0.000000	1250.000000 129621.140000	705.000000 2.000000	1.000000 1.000000	1.000000 1.000000
max	9999.000000 53.000000 199970.740000	1.581569e+07 10.000000 1.000000	1628.000000 149238.970000	777.000000 4.000000	2.000000 1.000000	1.000000 1.000000

data.dtypes

RowNumber int64

CustomerId int64

Surname int64

CreditScore int64

Geography int64

Gender int64

Age int64

Tenure int64

Balance float64

NumOfProducts int64

HasCrCard int64

IsActiveMember int64

EstimatedSalary float64

Exited int64

dtype: object

data.skew()

RowNumber 0.011381

CustomerId 0.010861

Surname -0.033943

CreditScore -0.024726

Geography 0.344510

Gender -0.207520

Age 0.415624

Tenure 0.034787

Balance -0.691529

NumOfProducts 1.450814

HasCrCard -0.901691

IsActiveMember 0.013125

EstimatedSalary 0.002697

Exited 1.233424

dtype: float64

5. Handle the Missing values.

data.isnull().any()

RowNumber False

CustomerId False

Surname False

CreditScore False

Geography False

Gender False

Age False

Tenure False

Balance False

NumOfProducts False

HasCrCard False

IsActiveMember False

EstimatedSalary False

Exited False

dtype: bool

No missing values

6. Find the outliers and replace the outliers

data['CreditScore'].describe()

count 10000.000000

mean 650.528800

std 96.653299

min 350.000000

25% 584.000000

50% 652.000000

75% 718.000000

max 850.000000

Name: CreditScore, dtype: float64

data['Age'].describe()

count 10000.000000

mean 38.921800

std 10.487806

min 18.000000

25% 32.000000

50% 37.000000

75% 44.000000

max 92.000000

```
Name: Age, dtype: float64
data['Balance'].describe()
count 10000.000000
        76485.889288
mean
      62397.405202
std
min
         0.000000
25%
         0.000000
50%
       97198.540000
75%
       127644.240000
       250898.090000
max
Name: Balance, dtype: float64
l=['Balance','Age','CreditScore']
for i in I:
  percentile_least = data[i].quantile(0.1)
  percentile90 = data[i].quantile(0.9)
  data = data[(data[i]<percentile90)& (data[i]>percentile_least)]
data['CreditScore'].describe()
count 3354.000000
mean 651.885808
std
       66.341508
min
       522.000000
25%
       601.000000
50%
       652.000000
75%
       705.000000
max
       777.000000
Name: CreditScore, dtype: float64
data['Age'].describe()
count 3354.000000
mean
        38.594812
```

```
6.171482
std
min
       29.000000
25%
        34.000000
50%
        38.000000
75%
        43.000000
        53.000000
max
Name: Age, dtype: float64
data['Balance'].describe()
count
        3354.000000
mean 111127.251270
std
      23930.791436
       3768.690000
min
25%
       96579.825000
50%
       113904.805000
75%
       129621.140000
       149238.970000
max
Name: Balance, dtype: float64
The STD have reduced drastically indicating removal of outliers.
7. Check for Categorical columns and perform encoding.
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
for i in data:
  if data[i].dtype=='object':
    data[i]=encoder.fit_transform(data[i])
data.head()
```

CreditScore

IsActiveMember

Geography

Gender Age

EstimatedSalaryExited

Tenure

RowNumber

CustomerId

Balance NumOfProductsHasCrCard

Surname

1	2	15647311 1 112	645 2542.58	608 0	2	0	41	1	83807.86	1
5	6 1	15574012 0 149	302 9756.71	645 1	2	1	44	8	113755.78	2
10	11 0	15767821 0 801	109 181.12	528 0	0	1	31	6	102016.72	2
15	16 0	15643966 1 643	561 327.26	616 0	1	1	45	3	143129.41	2
26	27 1	15736816 1 170	1605 0041.95	756 0	1	1	36	2	136815.64	1

8. Split the data into dependent and independent variables.

data.shape

(3354, 14)

x = data.iloc[:,:13]

y = data.iloc[:,13]

y.head()

1 0

5 1

10 0

15 0

26 0

Name: Exited, dtype: int64

x.head()

RowNumber		CustomerId		Surname		CreditScore		Geography		Gender Age	Tenure
Balance Num Of Products Has Cr Card					IsActiveMember			EstimatedSalary			
1	2	15647	311	645	608	2	0	41	1	83807.86	1
	0	1	112542	2.58							
5	6	155740	012	302	645	2	1	44	8	113755.78	2
	1	0	149756	5.71							
10	11	15767	821	109	528	0	1	31	6	102016.72	2
	0	0 80181.12		12							

15 16		15643966	561	616	1	1	45	3	143129.41	2
	0	1 643								
26	27	15736816	1605	756	1	1	36	2	136815.64	1
	1	1 170	041.95							

9. Scale the independent variables

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

x = sc.fit_transform(x)

10. Split the data into training and testing

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2, random_state=0)

x_train.shape

(2683, 13)

y_train.shape

(2683,)

x_test.shape

(671, 13)

y_test.shape

(671,)