

Dimensionality reduction

- Dimensionality reduction is the process of reducing the number of features of a dataset.
- Types: Feature selection, Feature extraction.
- Feature selection: Selects a subset of features.
 - Removes irrelevant features from the dataset.
- Feature extraction: Selects a few combinations of input features that capture most of the variations of the data.
 - Creates new features (through transformation) using existing ones.

Introduction to PCA

- Widely used method for dimensionality reduction.
- Original dataset large number of interrelated input variables.
- Consider dataset: $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)},, \mathbf{x}^{(N)}\}\$, where $\mathbf{x}^{(n)}$ is a D dimensional variable.
- Goal: Represent the data in a lower dimension Q (< D).
 - Transform the data to a new uncorrelated set of variables the principal components.
 - Extraction of the most informative Q linear combinations which explains the data.
 - This is the projection of the data in D dimensions onto a lower-dimensional subspace.
- Orthogonal projection of data onto a lower dimensional (linear) space, such that the variance of the projected data is maximized.

Principal Component Analysis

Principal components

- PC1: Direction of most variation
- PC2: Direction of second most variation orthogonal to PC1

Dataset

• Consider dataset: $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)},, \mathbf{x}^{(N)}\}$, where $\mathbf{x}^{(n)}$ is a D dimensional variable.

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdot & \cdot & x_1^{(N)} \\ x_1^{(1)} & x_1^{(2)} & \cdot & \cdot & x_1^{(N)} \\ x_2^{(1)} & x_2^{(2)} & \cdot & \cdot & x_2^{(N)} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ x_D^{(1)} & \cdot & \cdot & \cdot & x_D^{(N)} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \cdot \\ \cdot \\ \mathbf{x}_D \end{bmatrix}$$

• Want a lower-dimensional (Q < D) representation of the data:

$$\mathbf{Z} = \left[egin{array}{cccc} z_1^{(1)} & z_1^{(2)} & \cdot & \cdot & z_1^{(N)} \ \cdot & \cdot & \cdot & \cdot & \cdot \ z_Q^{(1)} & \cdot & \cdot & \cdot & z_Q^{(N)} \end{array}
ight]$$

Variance

- Consider a vector $\mathbf{x} = [x_1, x_2,, x_N]$ having a mean value of 0.
- \bullet The variance of the vector \mathbf{x} can be computed as

$$\sigma_{\mathbf{x}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - 0)(x_i - 0)$$
$$= \frac{1}{N-1} \mathbf{x} \mathbf{x}^{\mathrm{T}}$$

Covariance

- Now consider two vectors: $\mathbf{x} = [x_1, x_2,, x_N]$ and $\mathbf{z} = [z_1, z_2,, z_N]$, both having mean 0.
- \bullet The covariance between vectors **x** and **z** can be computed as

$$\sigma_{\mathbf{x}\mathbf{z}}^2 = \frac{1}{N-1}\mathbf{x}\mathbf{z}^{\mathrm{T}}$$

- Covariance measures the correlation between variables.
- If $\sigma_{\mathbf{x}\mathbf{z}}^2 \approx 0$ then \mathbf{x} and \mathbf{z} are almost uncorrelated.

Covariance matrix

- Assume data is centered.
- The covariance matrix **S** can be obtained as:

$$\mathbf{S} = \frac{1}{N-1} \mathbf{X} \mathbf{X}^{\mathrm{T}}.$$

• Can write the covariance matrix as

$$\mathbf{S} = \begin{bmatrix} \sigma_{\mathbf{x}_1}^2 & \sigma_{\mathbf{x}_1 \mathbf{x}_2}^2 & \cdot & \cdot & \sigma_{\mathbf{x}_1 \mathbf{x}_D}^2 \\ \sigma_{\mathbf{x}_2 \mathbf{x}_1}^2 & \sigma_{\mathbf{x}_2}^2 & \cdot & \cdot & \sigma_{\mathbf{x}_1 \mathbf{x}_D}^2 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \sigma_{\mathbf{x}_D \mathbf{x}_1}^2 & \cdot & \cdot & \cdot & \sigma_{\mathbf{x}_D}^2 \end{bmatrix}$$

- The *i*-th diagonal term corresponds to the variance in the *i*-th dimension of the problem.
- The off-diagonal terms are the covariances.
- Small off-diagonal term indicates that the variables are almost uncorrelated.
- S is symmetric.

Principal Component Analysis

Covariance matrix

• Want to transform the covariance matrix S to S_Z that has the following form:

$$\mathbf{S}_{\mathbf{Z}} = \begin{bmatrix} \sigma_{\mathbf{Z}_{1}}^{2} & 0 & \cdot & \cdot & 0 \\ 0 & \sigma_{\mathbf{Z}_{2}}^{2} & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \sigma_{\mathbf{Z}_{D}}^{2} \end{bmatrix}$$

- \bullet The transformed matrix $S_{\mathbf{Z}}$ has no correlation between the different dimensions.
- Can order the variances such that: $\sigma_{\mathbf{Z}_1}^2 \geq \sigma_{\mathbf{Z}_2}^2 \geq \dots \geq \sigma_{\mathbf{Z}_D}^2$.
- So $\sigma_{\mathbf{Z}_1}^2$ is the largest variance, and the dimension corresponding to it is known as the first principal component.
- Similarly $\sigma_{\mathbf{Z}_2}^2$ is the variance of the second principal component.

Eigenvalue decomposition

• Eigenvalue decomposition of the covariance matrix **S**:

$$\mathbf{S} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

where Λ is a diagonal matrix, \mathbf{V} is a matrix of eigenvectors of \mathbf{S} with columns corresponding to right eigenvectors of \mathbf{S} .

- The diagonal elements of Λ are the eigenvalues of ${\bf S}$ for the corresponding eigenvectors.
- Since **S** is symmetric, the eigenvalues are real and the eigenvectors are orthogonal to each other.
- The eigenvectors can be made orthonormal by taking $\mathbf{V}\mathbf{V}^{\mathrm{T}} = \mathbf{I}$.

Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• Consider a 2D example where the transformation is applied to a single data point $\mathbf{x}^{(1)}$

Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• The covariance of **Z** can be obtained as:

$$\mathbf{S}_{\mathbf{Z}} = \frac{1}{N-1} \mathbf{Z} \mathbf{Z}^{\mathrm{T}}$$

$$= \frac{1}{N-1} (\mathbf{V}^{\mathrm{T}} \mathbf{X}) (\mathbf{V}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}}$$

$$= \frac{1}{N-1} (\mathbf{V}^{\mathrm{T}} \mathbf{X}) (\mathbf{X}^{\mathrm{T}} \mathbf{V})$$

$$= \frac{1}{N-1} \mathbf{V}^{\mathrm{T}} (\mathbf{X} \mathbf{X}^{\mathrm{T}}) \mathbf{V}$$

$$= \mathbf{V}^{\mathrm{T}} \left(\frac{1}{N-1} \mathbf{X} \mathbf{X}^{\mathrm{T}} \right) \mathbf{V}$$

$$= \mathbf{V}^{\mathrm{T}} \mathbf{S} \mathbf{V}$$

Covariance matrix

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• The covariance of **Z** can be obtained as:

$$\mathbf{S}_{\mathbf{Z}} = \mathbf{V}^{\mathrm{T}} \mathbf{V} \Lambda \mathbf{V}^{-1} \mathbf{V}$$

$$= (\mathbf{V}^{\mathrm{T}} \mathbf{V}) \Lambda (\mathbf{V}^{\mathrm{T}} \mathbf{V}) \qquad (\mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}} \text{ as } \mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I})$$

$$= \Lambda$$

• The covariance matrix $S_{\mathbf{Z}}$ is diagonal as Λ is diagonal.

Diagonal covariance matrix

• So we have

$$\mathbf{S}_{\mathbf{Z}} = \Lambda = \begin{bmatrix} \sigma_{\mathbf{Z}_{1}}^{2} & 0 & \cdot & \cdot & 0 \\ 0 & \sigma_{\mathbf{Z}_{2}}^{2} & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \sigma_{\mathbf{Z}_{D}}^{2} \end{bmatrix}$$

- \bullet The diagonal terms of $S_{\mathbf{Z}}$ correspond to variances along the dimensions of the transformed vector space.
- Note, the diagonal matrix Λ comprise the eigenvalues of S.
- The variances along the projected dimensions (eigenvectors of **S**) are the corresponding eigenvalues of **S**.

Percentage of variance

• The percentage of variance explained by the jth principal component:

$$PV_j = \frac{\lambda_j}{\sum_{i=1}^D \lambda_i} \times 100$$

• The percentage of variance accounted for by the first Q principal components is given by:

$$PV = \frac{\sum_{i=1}^{Q} \lambda_i}{\sum_{i=1}^{D} \lambda_i} \times 100$$

AUTOENCODERS

Introduction

SUPERVISED LEARNING

SELF-SUPERVISED LEARNING

Introduction

- Neural network models that attempts to yield outputs same as that of the inputs.
- Why do we do this?
 - Want to learn the most important characteristics of the input data.
- Network comprise two components:
 - Encoder: Takes input \mathbf{x} and generates a hidden representation

$$\mathbf{h} = \mathbf{f}(\mathbf{w}_e \mathbf{x} + \mathbf{w}_{0,e})$$

- Decoder: Takes input **h** and outputs $\overline{\mathbf{x}} = g(\mathbf{w}_d \mathbf{h} + \mathbf{w}_{0,d})$, where $\overline{\mathbf{x}}$ is the reconstruction of \mathbf{x} .
- State-of-the-art autoencoders use stochastic mappings $p_{encoder}(\mathbf{h}|\mathbf{x})$ and $p_{decoder}(\mathbf{x}|\mathbf{h})$.

Undercomplete Autoencoder

- Such a representation compels the autoencoder to capture the most important features of the data.
- Loss function $L(\mathbf{x}, \overline{\mathbf{x}})$ penalizes $\overline{\mathbf{x}}$ if it is dissimilar to \mathbf{x} .
- The autoencoder learns the same subspace as PCA when:
 - the decoder is linear
 - the loss function is mean squared error

Undercomplete Autoencoder

• Loss function (for real values) is (often) taken to be

$$L(\mathbf{x}, \overline{\mathbf{x}}) = \left| \left| \mathbf{x} - \overline{\mathbf{x}} \right| \right|^2$$

- Also referred to as the reconstruction error.

Overcomplete Autoencoder

- Dimension of the hidden representation \mathbf{h} is greater than equal to that of the input \mathbf{x} .
- May lead to trivial encoding where \mathbf{x} is copied into \mathbf{h} , and then decoder copies \mathbf{h} to $\overline{\mathbf{x}}$. Such mappings can be learnt using simple linear encoder and decoder.
 - Do not learn anything useful about the training data.

Regularized Autoencoder

- Overcomplete encoders are prone to overfitting due to the use of large number of parameters.
 - The model can just copy \mathbf{x} to \mathbf{h} and then \mathbf{h} to $\overline{\mathbf{x}}$.
 - This can lead to poor generalization.
- Overfitting can also occur in case of undercomplete autoencoders.
 - For example, when there is a lot of redundancy in the input data, then the reduced dimension of the hidden representation may not be sufficient to remove all the redundancies.

Regularized Autoencoder

- Need regularization to overcome the issue.
- L_2 regularization objective:

$$L(\mathbf{x}, \overline{\mathbf{x}}) + \lambda ||\mathbf{w}||^2$$

• Tie the weights of encoder and decoder: $\mathbf{w}_e^{\mathrm{T}} = \mathbf{w}_d^{\mathrm{T}}$.

Denoising Autoencoder

- Input **x** corrupted by some form of noise.
- Denoising autoencoders need to undo the corruption that has been done to the input.
 - Therefore the autoencoder cannot simply copy \mathbf{x} to \mathbf{h} and then \mathbf{h} to $\overline{\mathbf{x}}$.
- The objective is still to reconstruct the original input \mathbf{x} . The loss function is $L(\mathbf{x}, \overline{\mathbf{x}})$.
 - The model is forced to capture the important characteristics of the data.

Sparse Autoencoder

- In sparse autoencoders, the hidden neurons are constrained such that they remain mostly "inactive".
 - Here "inactive" means that the outputs of the neurons will be 0 for sigmoid activation.
- By imposing this constraint an attempt is made to ensure that whenever a neuron is "active" then that neuron is capturing some really important characteristic/pattern in the data.

Sparse Autoencoder

Encoder Decoder

• The average value of activation of the kth neuron using the N training examples can be written as

$$\overline{\mu}_k = \frac{1}{N} \sum_{n=1}^{N} h_k(\mathbf{x}^{(n)})$$

- The kth neuron is sparse if the value of $\overline{\mu}_k$ is close to zero.
- Sparse autoencoders use a sparsity penalty $\Omega(\mathbf{h})$ on the hidden representation \mathbf{h} in addition to the reconstruction error, and so the optimization objective becomes

$$L(\mathbf{x}, \overline{\mathbf{x}}) + \Omega(\mathbf{h})$$

Sparse Autoencoder

• The penalty term can take the following form:

$$\Omega(\mathbf{h}) = \sum_{k=1}^{K} \mu \log \left(\frac{\mu}{\overline{\mu}_k}\right) + (1 - \mu) \log \left(\frac{1 - \mu}{1 - \overline{\mu}_k}\right)$$

where μ is the sparsity parameter whose value is close to 0.

 $-\Omega(\mathbf{h})$ is minimum when $\overline{\mu}_k = \mu$.

Convolutional Autoencoder

- Convolutional Neural Networks are well suited for image datasets.
 - Why not use convolutional layers in autoencoders when the inputs are images
- The learnt hidden features can further be used for other purposes e.g. classification
 - The learnt representation can be used as initialization for other models.
 - Can be very useful for problems with lot of unlabelled data.