Verão 2019 - TÓPICOS DE PROGRAMAÇÃO

Prof. Dr. Leônidas O. Brandão (coordenador)

Profa. Dra. Patrícia Alves Pereira (ministrante)

Prof. Bernardo (Monitor)

Ao analisar algoritmos é importante verificar...

- Finitude: o algoritmo para?
- Corretude: o algoritmo faz o que promete?
- Complexidade: quantas instruções são necessárias no pior caso para resolver o problema tratado pelo algoritmo?

Problemas clássicos

Busca em vetor ordenado

- Um vetor está ordenado se for crescente ou decrescente.
- Um vetor v[p..r] crescente se $v[p] \le v[p+1] \le ... \le v[r]$.
- Um vetor v[p..r] decrescente se $v[p] \ge v[p+1] \ge ... \ge v[r]$.

Busca sequencial

```
//recebe um número x e um vetor crescente v[p..r] com p <= r+1
// devolve j em p..r tal que x == v(j), caso j não existe, devolve -1
 int buscaSequencial (int x, int v[], int p, int r)
     int j = p;
     while (j \le r \&\& v[j] < x) ++j;
     if (j \le r \&\& v[j] == x) return j;
     else return -1;
```

Busca Binária

//recebe um número x e um vetor crescente v[p..r] com p <= r+1 // devolve j em p..r tal que x == v[j], caso j não existe, devolve -1

```
int buscaBinaria (int x, int v[], int p, int r)
   while (p <= r) {
       int m = (p + r)/2;
       if (x == v[m]) return m;
       if (x < v[m]) r = m - 1;
       else p = m + 1;
    return -1;
```

Agora é com vcs... Em duplas pensem...

Para cada algoritmo de busca mostre:

- Finitude: o algoritmo para? (o quê garante a parada?)
- Corretude: o algoritmo faz o que promete? (qual é o invariante?)
- Complexidade de tempo: melhor caso e no pior caso?
- Lembrando: a operação mais cara, que deve ser considerada, é a comparação entre elementos.

Respondam de forma individual no sistema

Busca sequencial:

• Finitude: o algoritmo para?

o algoritmo será encerrado:

- quando encontrar x no vetor ou quando j>r.

• Corretude: o algoritmo faz o que promete?

Invariante: No começo de cada iteração temos v[j-1] < x

Complexidade:

- Melhor caso: x é encontrado na primeira posição do vetor → complexidade no melhor caso: O(1) - constante
- Pior caso: o x não é encontrado no vetor, nesse caso o numero de interações será igual ao número de elementos do vetor adicionado de 1: r-p+1 → pior caso: O(n) – linear.

Busca binária:

- Finitude: o algoritmo para?
- o algoritmo será encerrado:
- quando encontrar x no vetor ou quando p>r.
- Corretude: o algoritmo faz o que promete?

Partindo do pressuposto que o algoritmo será invocado apenas se v[p] < x < v[r], temos o seguinte invariante:

no começo de cada iteração é válido a seguinte afirmação: v[p-1] < x < v[r+1]

• Complexidade: Consumo de tempo da função no pior caso: O(lg n) lg abreviatura para o logaritmo na base 2 e N = r-p+1.

Busca binária: complexidade

• Melhor caso: O(1) - constante

Na primeira iteração o elemento é encontrado: v[m]=x

Pior caso: O(lg N)
 lg abreviatura para o logaritmo na base 2 e N = r-p+1
 x não está no vetor

Busca binária: nunca faz mais que lg n iterações

iterações	k	elementos	Comparações
1º	0	$\frac{n}{1} = \frac{n}{2^0}$	2
2º	1	$\frac{n}{2} = \frac{n}{2^1}$	2
3º	2	$\frac{n}{4} = \frac{n}{2^2}$	2
4º	3	$\frac{n}{8} = \frac{n}{2^3}$	2
•••			
•••	k	$\frac{n}{2^k}$	2

numero máximo de iterações: $\frac{n}{2^k} = 1$ \rightarrow $2^k = n$ \rightarrow $k = \lg n$

numero de comparações: $2(k+1) = 2 \lg n + 2$

Comparando as duas buscas no pior caso

buscas	n=1000 = 10 ³	n = 10 ⁶	n = 10 ⁹
sequencial	1.000	1.000.000	1000.000.000
binária	$2 \lg 10^3 + 2 \approx 22$	$2\lg 10^6 + 2 \approx 44$	$2\lg 10^9 + 2 \approx 62$