Integers

Paolo Bettelini

Contents

1	Divides operator 1.1 Definition	2 2 2
2	Division with remainder	2
3	Euclidean algorithm	2
4	Bézout's identity	3
5	Greatest common divisor of multiple integers 5.1 Coprime numbers	3
6	Linear diophantine equations	4
	6.1 Definition	4
	6.2 Two unkowns	4
7		5
	7.1 Congruence	5
	7.2 Congruence relation	5
	7.3 Equivalence of summation and multiplication	5
	7.4 Congruence class	5
	7.5 Quotient set	5
	7.6 Operations with congruent classes	5
	7.7 Properties of congruent classes	5
	7.8 Invertible congruent classes	6
	7.9 Properties of inverses	6

1 Divides operator

1.1 Definition

Given two integers a and b, we say that $a \mid b$ if a divides b, meaning that

$$\exists x \mid ax = b$$

.

1.2 Properties

Given the integers a, b and c

$$a \mid b \iff -a \mid b \iff a \mid -b$$
$$\mid a \mid \leq \mid b \mid, \quad b \neq 0$$
$$a \mid b \implies a \mid bc$$
$$a \mid b \land b \mid c \implies a \mid c$$

2 Division with remainder

Given two integers a and b with b > 0,

$$\exists_{=1}q, r \mid a = bq + r, \quad 0 \le r < b$$

Let q and r be the quotient and remainder of the division of b by a. The common divisors of a and b are equivalent to the common divisors of r and q.

3 Euclidean algorithm

Euclid's algorithm, is an efficient method for computing the greatest common divisor of two integers a and b where b > 0.

Consider

$$a = bq + r$$

The process is iterative. For each iteration take the coefficient of the quotient (b) and divide it by the remainder.

$$\begin{array}{ll} a = bq + r, & 0 \leq r < b \\ b = rq_1 + r_1, & 0 \leq r_1 < r \\ r = r_1q_2 + r_2, & 0 \leq r_2 < r_1 \\ \vdots & \\ r_n = r_{n+1}q_{n+2} + r_{n+1}, & 0 \leq r_{n+2} < r_{n+1} \\ r_{n+1} = r_{n+2}q_{n+3} + 0 & \end{array}$$

This sequence is strictly decreasing and will terminate with a null remainder. The last remainder r_{n+2} is then the greatest common divisor between a and b.

4 Bézout's identity

Let a and b be integers with greatest common divisor d. Then, there exist integers x and y such that

$$ax + by = d$$

Furthermore, the integers az + bt are multiples of d.

5 Greatest common divisor of multiple integers

The greatest common divisors of a_0, a_1, \dots, a_n , denoted $\gcd(a_0, a_1, \dots, a_n)$, is the greatest integer n such that $n \mid a_k$.

There exists integers u_k such that

$$a_0u_0 + \cdots + a_nu_n = \gcd(a_0, a_1, \cdots, a_n)$$

For $n \geq 2$, $\gcd(\gcd(a_0, \dots, a_{n-1}), a_n) = \gcd(a_0, \dots, a_n)$.

Given an integer c, $\gcd(ca_0, ca_1, \dots, ca_n) = c \cdot \gcd(a_0, a_1, \dots, a_n)$.

5.1 Coprime numbers

Two integers a and b are said to be **coprime** if they have no common divisor other than 1, meaning that gcd(a, b) = 1.

Let $d = \gcd(a, b) \neq 0$. Then, the integers a' and b' where a = da' and b = db' are coprime because $d = \gcd(da', db') = d \cdot \gcd(a', b') \implies \gcd(a', b') = 1$.

6 Linear diophantine equations

6.1 Definition

A linear diophantine equations is an equation with 2 or more integer unknowns of the following form.

$$a_1x_1 + a_2 + x_2 + \dots + a_nx_n = b$$

where $a_i, x_i, b \in \mathbb{Z}$ and x_i are unknowns.

The equation is solvable iff $gcd(a_1, a_2, \dots, a_n) \mid b$. This is because the left-hand side will always be a value that is a multiple of $gcd(a_1, a_2, \dots, a_n)$.

In fact, if $gcd(a_1, a_2, \dots, a_n) | b$, then $b = gcd(a_1, a_2, \dots, a_n)e$ for some e. By the Bezout identity, which can be find using Euclid's algorithm, we have

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = \gcd(a_1, a_2, \dots, a_n)$$

meaning that an integer solution is given by $x_n = ev_n$.

6.2 Two unknwns

Let

$$ax + by = c$$

be a solvable diophantine equation and let $d = \gcd(a, b)$. If d = 0, this means that a = b = 0 and c = 0 since $d \mid c$ (identity). Otherwise, let a = da', b = db' and c = dc', then the equation is equivalent to

$$a'x + b'y = c'$$

Consider any solution to the equation $x = \overline{x}$ and $y = \overline{y}$, then the equation has infinitely many other solutions given by

$$x = \overline{x} + b'hy = \overline{y} + a'h$$

for any $h \in \mathbb{Z}$.

7 Modular arithmetic

7.1 Congruence

Let $a, b, n \in \mathbb{Z}$. We say that a and b are said to be congruent modulo n, denoted as $a \equiv b \pmod{n}$, if a - b is a multiple of n.

Note that $\forall a, b \in \mathbb{Z}, a \equiv b \pmod{1}$.

7.2 Congruence relation

The congruence relation modulo n is an equivalence relation.

- Reflexive: $\forall a, a a = 0$, which is always a multiple of n.
- Symmetric: $a \equiv b \pmod{n} \implies \exists k \mid a b = kn \implies b a = -kn$. Since -kn is a multiple of n, then $b \equiv a \pmod{n}$.
- Transitive: $a \equiv b \pmod{n} \land b \equiv c \pmod{n}$ implies that both a b and b c are multiples of n. $\exists h, k \mid nh = a b \land nk = b c \implies a b + b c = nh + nk \implies a c = n(h + k)$ which means that a c is also a multiple of n, so $a \equiv c \pmod{n}$.

7.3 Equivalence of summation and multiplication

If $a \equiv a' \pmod{n}$ and If $b \equiv b' \pmod{n}$, then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

We can prove this by noting that there exist integers handk such that a=a'+hn and b=b'+kn. Now a+b=a'+b'+n(h+k) and ab=a'b'+n(hb0+ka'+hkn), meaning $a+b\equiv a'+b'\pmod n$ and $ab\equiv a'b'\pmod n$.

7.4 Congruence class

The equivalence class of an integer a with respect to modulo n is said to be a **congruence class**, denoted $[a]_n$.

$$[a]_n = \{a + kn \mid k \in \mathbb{Z}\}$$

Note that

$$[a]_n = [a + kn]_n, \quad k \in \mathbb{Z}$$

7.5 Quotient set

The set of all congruence classes modulo n is denoted \mathbb{Z}/n .

Note that \mathbb{Z}/n has n elements:

$$[0]_n, [1]_n, \cdots, [n-1]_n$$

7.6 Operations with congruent classes

$$[a]_n + [b]_n \triangleq [a+b]_n$$
$$[a]_n \cdot [b]_n \triangleq [a \cdot b]_n$$

7.7 Properties of congruent classes

For all $[a]_n, [b]_n, [c]_n \in \mathbb{Z}/n$.

- 1. Associative addition: $[a]_n + ([b]_n + [c]_n) = ([a]_n + [b]_n) + [c]_n$
- 2. Associative multiplication: $[a]_n([b]_n[c]_n) = ([a]_n[b]_n)[c]_n$
- 3. Commutative addition: $[a]_n + [b]_n = [b]_n + [a]_n$

- 4. Commutative multiplication: $[a]_n[b]_n = [b]_n[a]_n$
- 5. Neutral addition element: $[a]_n + [0]_n = [a]_n$
- 6. Neutral multiplication element: $[a]_n[1]_n = [a]_n$
- 7. Inverse addition element: $(-[a]_n) + [a]_n = [0]_n$
- 8. Distributive property: $([a]_n+[b]_n)[c]_n=[a]_n[c]_n+[b]_n[c]_n$
- 9. Cancellation law: $[a]_n + [b]_n = [a]_n + [c]_n \implies [b]_n = [c]_n$

7.8 Invertible congruent classes

A congruent class $[a]_n$ is **invertible** if there exist an $[b]_n$ such that $[a]_n[b]_n = [1]_n$. The inverse of $[a]_n$ is denoted $[a]_n^{-1}$.

7.9 Properties of inverses

- 1. If $[a]_n$ is invertible, then $[a]_n^{-1}$ is unique.
- 2. If $[a]_n$ is invertible, then $[a]_n^{-1}$ is invertible and $([a]_n^{-1})^{-1} = [a]_n$.
- 3. If $[a]_n$ and $[b]_n$ are invertible, then $[a]_n[b]_n$ is invertible and $([a]_n[b]_n)^{-1}=[a]_n^{-1}[b]_n^{-1}$.