Magdy's Assignment (1) FPGA Design

Question (1): -

Using only logic gates, design a 2-bit full adder with carry. Here is a partial truth table for the circuit.

INPUTS					OUTPUTS		
A0	A1	В0	B1	Ci	S0	S1	Со
0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0
0	1	0	0	0	0	1	0
1	0	1	0	0	0	1	0
0	1	0	1	0	0	0	1
0	1	0	0	1	1	1	0
1	0	1	0	1	1	1	0
1	1	1	1	1	1	1	1

Where A and B are inputs, Ci is Carry in, Si is output, and Co is Carry out.

Draw a schematic showing the gate interconnections. Include either a Boolean equation or an explanation of your design that matches the schematic you submit.

Solution

1st Solution:

Explanation: Using 4 XORs, 4 AND gates, 2 OR gates.

 $S_o = A_o XOR B_o XOR C_{in}$

 $S_1 = A_1 \text{ XOR } B_1 \text{ XOR } C_{0 \text{ out}} \text{ , where } C_{0 \text{ out}} = (A_o \text{ AND } B_o) \text{ OR } \left(C_{in} \text{ AND } (A_o \text{ XOR } B_o)\right)$

 $C_o = (A_1 \text{ AND } B_1) \text{ OR } (C_{0 \text{ out}} \text{ AND } (A_1 \text{ XOR } B_1))$

2nd Solution:

Explanation: Using 5 Inputs and their inverters, 11 AND gates, 3 OR gates.

$$S_o = A_o \overline{A_1} \ \overline{B_o} \ \overline{B_1} \ \overline{C_1} + \overline{A_o} A_1 \overline{B_o} \ \overline{B_1} \ C_i + A_o \overline{A_1} \ B_o \ \overline{B_1} \ C_i + A_o A_1 B_o B_1 C_i$$

$$S_1 = \overline{A_o} A_1 \overline{B_o} \ \overline{B_1} \ \overline{C_1} + A_o \overline{A_1} \ B_o \overline{B_1} \ \overline{C_1} + \overline{A_o} A_1 \overline{B_o} \ \overline{B_1} \ C_i + A_o \overline{A_1} \ B_o \ \overline{B_1} \ C_i + A_o A_1 B_o B_1 C_i$$

$$C_o = \overline{A_o} A_1 \overline{B_o} B_1 \overline{C_i} + A_o A_1 B_o B_1 C_i$$

Question (2): -

Show how the logic equation (A AND NOT(B)) OR (C AND NOT(D)) can be implemented using the following:

Solution

A. The PLA shown here:

Explanation: Fuse the wires of (A,!B) for the first AND gate (C,!D) for the Second AND then make ORing

B. The LUT shown here:

RAM CONTENTS								
	Output Data							
A	В	C	D	F				
0	0	0	0	0				
0	0	0	1	D				
0	0	1	0	1				
0	0	1	1	0				
0	1	0	0	0				
0	1	0	1	0				
0	1	1	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	0	1	1				
1	0	1	0	1				
1	0	1	1	1				
1	1	0	0	a				
1	1	0	1	٥				
1	1	1	0	1				
1	1	1	1	٥				

Explanation: Apply F = (A & ! B) | (C & ! D) to each combination of inputs the put it in the Truth Table.