Year 2020 Digital Circuits Number of the exercise: 4 Laboratory report Title of the exercise: Analysis of 1. Name and surname (author of realized circuit/this report): Nykonchuk Illia, 245693 synchronous circuit CAD¹ 2. Name and surname (author of the second circuit/report): CAD¹ Week day³: Thursday Laboratory group number²: Z00-38e Realization date: 03.11.20 Breadboard number: Hours of the lab: 17:05-18:45

Analysis of the circuit

The following circuit is the example of synchronous circuit in which the changes in the state are synchronized by a clock signal. It is performed by using D flip-flops — it provides a solution since it "allows" the pulse to enter to the next elements only when it was clocked.

Converted circuit using only NAND gates and 1 NOT gate

Excitation tables of flip-flops

D1:					
Y1	Y1*	Χ	Y2		
0	0	0	0		
0	1	1	Х		
1	0	Х	Х		
1 1		1	1		

D2:					
Y2	Y2*	Χ	Y1 x		
0	0	X			
0	1	1	1		
1	0	0	X		
1	1	1	Х		

Circuit with JK flip-flops with 1xNOT and 2xAND gates that behaves exactly as the circuit on the page 1

a) Default circuit

b) Table of transitions-outputs

$y_1y_2^X$	0	1	Ζ
00	00	10	0
01	00	11	1
10	00	01	0
11	00	11	1

c) Results of experiment

time	t₁	t ₂	t ₃	t ₄	t ₅	t ₆
Х	1	1	1	1	0	0
У ₁ У ₂	00	01	10	11	10	00
Z	О	О	О	1	О	О

d) Schematic of realized circuit

