Espacio cociente

1.— Se considera el subespacio de \mathbb{R}^3 , $W=\langle (1,-1,0),(0,-1,1)\rangle$. ¿Cuáles de los siguientes elementos de \mathbb{R}^3/W son distintos?

$$\overline{(1,0,0)}, \ \overline{(0,1,0)}, \ \overline{(0,0,1)}, \ \overline{(1,1,1)}, \ \overline{(1,-1,1)}, \overline{(2,1,0)}.$$

- **2.** Calcular el espacio vectorial cociente del espacio vectorial \mathbb{R}^4 respecto al subespacio W, siendo:
 - a) $W = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_3 x_4 = 0\}.$
 - b) $W = \langle (1, 1, 1, 1), (1, 2, 3, 4), (1, 2, 5, 6) \rangle$.
 - c) $W = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_1 x_2 = x_3 + x_4 = x_3 x_4\}.$
 - d) $W = \langle (1, 2, 3, 4), (2, 2, 2, 6), (0, 2, 4, 4) \rangle$.
- **3.** Dados los subespacios vectoriales $W_1, W_2 \subset \mathbb{R}^4$ definidos por

$$W_1 = \{(x_1 + 5x_2, x_2 + 3x_3, -x_4, x_4) \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\} \quad y$$

$$W_2 = \langle (0, 0, 1, 0), (6, 4, 0, 0) \rangle.$$

Calcular una base y la dimensión de cada uno de los siguientes espacios cociente:

$$\mathbb{R}^4/(W_1 \cap W_2), \quad \mathbb{R}^4/(W_1 + W_2) \quad \mathbb{R}^4/W_1, \quad (W_1 + W_2)/(W_1 \cap W_2).$$

4.— Sean V un espacio vectorial, W_1, W_2 dos subespacios vectoriales de V y

$$\varphi \colon V \longrightarrow V/W_1 \times V/W_2$$
 definida por $\varphi(\mathbf{v}) = (\mathbf{v} + W_1, \mathbf{v} + W_2)$

- 1. Comprobar que φ es lineal. Hallar ker φ
- 2. Demostrar que φ es un isomorfismo si y solo si $V = W_1 \oplus W_2$.
- 5.— Sea $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0, \ x y + z t = 0\}$. Analizar si los siguientes conjuntos son o no son bases de \mathbb{R}^4/W :
 - i) $\{\overline{(1,0,0,0)},\overline{(0,1,0,0)}\}.$

ii)
$$\{\overline{(1,0,0,0)},\overline{(0,0,1,0)}\}.$$

iii)
$$\{\overline{(1,1,1,1)},\overline{(1,1,-1,1)},\overline{(1,1,1,-1)}\}.$$

6.— Dar una base de \mathbb{R}^4/W en cada uno de los siguientes casos

a)
$$W = \langle (1, 1, 1, 1), (1, -1, 1, 1) \rangle$$
.

b)
$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid y + z + t = 0, \ y + 2z + 3t = 0\}.$$

c)
$$W = \langle (1, 1, 1, 1), (0, 1, 0, 1), (1, -1, 1, -1) \rangle$$
.

d)
$$W = \{(x + y, x - y, y, x) \mid x, y \in \mathbb{R}\}.$$

Calcular, en cada caso, las coordenadas de [(1,0,1,0)] en las bases elegidas.

7.— Sea $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = z + t = 0\}$. Calcular una base del espacio cociente \mathbb{R}^4/W y encontrar las coordenadas de los vectores (2, -2, 0, 0) y (3, 4, 0, 0) en dicha base.

8.— Sea V un espacio vectorial, W un subespacio de V y $\mathbf{v} \in V$. Demostrar que si $\mathbf{v} \notin W$, existe una base de V/W en la que las coordenadas de $\overline{\mathbf{v}}$ en dicha base son $(1,0,\ldots,0)$

9.— Sea W el subespacio vectorial de $\mathcal{M}_{2\times 3}(\mathbb{K})$ definido por

$$W = \left\{ \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{K}) \mid a_1 + b_1 = 0, a_2 + b_2 = 0, c_1 + c_2 = 0 \right\}.$$

Encontrar una base de $\mathcal{M}_{2\times 3}(\mathbb{K})/W$ y las coordenadas del vector \overline{A} , siendo $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, respecto a dicha base.

10.— Sea el subespacio de \mathbb{R}^4 , $W = \langle (1,1,1,0), (0,1,1,1) \rangle$ ¿Cuáles de las siguientes aplicaciones $\varphi \colon \mathbb{R}^4/W \longrightarrow \mathbb{R}^4/W$, definidas por:

i)
$$\overline{(x,y,z,t)} \longmapsto \overline{(t,x,y,z)}$$
,

ii)
$$\overline{(x,y,z,t)} \longmapsto \overline{(x+t,3x-y,3x-z,x-2t)}$$
,

iii)
$$\overline{(x,y,z,t)} \longmapsto \overline{(x^2,y^2,z^2,t^2)}$$
,

están bien definidas?

11.— Comprobar si para los siguientes casos se satisfacen las condiciones para que $f \in \text{End}(\mathbb{R}^4)$ induzca un endomorfismo \overline{f} de \mathbb{R}^4/W :

- a) f(x, y, z, t) = (x + y, y + z, z + t, t + x) y $W = \langle (1, 1, 1, 1) \rangle$,
- b) f(x, y, z, t) = (x+y+z, y+z+t, z+t+x, t+x+y) y $W = \langle (1, 0, 1, 0), (0, 1, 0, 1) \rangle$,
- c) f(x, y, z, t) = (x y, y z, z t, t x) y $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}.$

En caso afirmativo, hallar una base de V tal que la matriz asociada f sea de la forma $\left(\begin{array}{cc} A & B \\ 0 & C \end{array} \right)$.