模电实验报告 8: 波形发生电路实验

xy 学号 匡亚明学院 2019 年 2 月 29 日

1 实验目的

1. 学习使用运放组成方波发生器、三角波发生器和锯齿波发生器。

2 实验仪器

示波器、信号发生器、交流毫伏表、数字万用表。

3 预习内容

- 1. 复习关于用运放组成的方波发生器、三角波发生器、锯齿波发生器和正弦波发生器的基础知识。
- 2. 定性绘制本实验所用电路的输出波形,估算输出波形的周期。

4 实验内容

4.1 方波发生器

方波发生器电路如图 (1),其工作原理可试述如下。设电路通电瞬时,电容上的电压为零,电路

图 1: 方波发生器电路图

输出为 V_z,这时运放正向输入端电压为

$$V_{P1} = \frac{R_1}{R_1 + R_2} V_z = FV_z \tag{1}$$

运放输出电流经 R_3 、 R_P 、 R_4 向电容 C 充电。运放反向输入端 V_N 随时间延续电压升高,当 $V_N = V_{P1}$ 时,电路输出翻转, V_o 由 V_z 变为- V_z , V_P 由 $V_{P1} = FV_z$ 变为 $V_{P2} = -FV_z$ 。这时由"地"向电容反向充电, V_N 随时间延续电压下降,当 $V_N = V_{P2}$ 时,电路输出翻转, V_o 由- V_z 变为 V_z , V_P 由 $V_{P2} = -FV_z$ 变为 $V_{P1} = FV_z$ 。周而复始,电路输出方波。在稳态,输出为 V_z 的时间可用以下方法推导。在起始时刻,电容上的电压为 $V_C(0) = -FV_z$,电容充电的终了电压为 V_z ,这里"电容充电的终了电压"指"若输出电压 V_o 不翻转,电容充电的终了电压",所以电容上的电压为

$$V_c(t) = V_z + (-FV_z - V_z)e^{-\frac{t}{RC}}$$

$$\tag{2}$$

其中, $R=R_P+R_4$ 。当电容上的电压达到 FV_z 时,电路翻转,记电容充电的时间为 τ ,则

$$FV_z = V_z + (-FV_z - V_z)e^{-\frac{t}{RC}}$$
$$\tau = RC\ln\frac{1+F}{1-F}$$

输出方波的周期为2~。所以,输出方波的周期为

$$T = 2(R_P + R_4) \operatorname{Cln}\left(1 + \frac{2R_1}{R_2}\right)$$
 (3)

所以,在实验中通过改变 R_P 就可以该变电路输出方波的周期。

通常,由于运放最大输出电流小于稳压二极管的最大稳压电流 I_{zmax} ,为使运放能正常工作,必须有限流电阻 R_3 。若电路不起振,可适当减小 R_3 的阻值。观察 V_C 、 V_o 的波形,并与理论分析的结果相比较。

实验内容:

1. 分别测量 $R_4+R_P=20$ kΩ、40 kΩ、60 kΩ、80kΩ、100kΩ 时电路输出波形的峰峰值和周期,记录波形,并与理论分析的结果相比较。

4.2 占空比可调的矩形波发生器

电路如图 (2)。与方波发生器相比,给 C 正向充电和反向充电使用了不同的路径,从而使得高电平持续时间和低电平持续时间不同。当输出为高电平 V_z 时,运放输出的电流经 R_{PP} 、 D_1 、 R_4 向电容充电,类同于对方波发生器的分析,忽略二极管的开启电压,容易得到输出高电平持续的时间

$$\tau_1 = (R_{PP} + R_4) \text{Cln} \left(1 + \frac{2R_1}{R_2} \right)$$
(4)

类似地可以求得输出低电平持续的时间

$$\tau_2 = (R_{PN} + R_4) \text{Cln} \left(1 + \frac{2R_1}{R_2} \right)$$
(5)

输出的周期为

$$T = \tau_1 + \tau_2 = (R_P + 2R_4) \operatorname{Cln}\left(1 + \frac{2R_1}{R_2}\right)$$
 (6)

图 2: 占空比可调的矩形波发生器电路图

占空比

$$\eta = \frac{\tau_1}{\tau_2} = \frac{R_{PP} + R_4}{R_{PN} + R_4} \tag{7}$$

实验内容:

- 1. 调整 R_P ,分别测量 $R_4+R_{PP}=20$ k Ω 、40 k Ω 、60 k Ω 、80k Ω 、100k Ω 时电路输出波形的幅值、周期和占空比,并与理论分析的结果相比较。
- 2. 将占空比调为 1,测量二极管导通时的电压降,计及二极管导通时的电压降,推导图 (2) 所示电路周期,并与测量结果相比较。

4.3 三角波发生器

电路如图 (3)。它由一个过零比较器和一个积分器组成。其工作原理可试述如下。设电路通电瞬时,t=0,电容上的电压为零,积分器输出 $V_o=0$,过零比较器输出为 $V_{o1}=V_z$,这时运放 AR1 正向输入端电压为

$$V_{P1} = \frac{R_P}{R_1 + R_P} (V_z - V_o) = \frac{R_P}{R_1 + R_P} V_z + \frac{R_1}{R_1 + R_P} V_0 > 0$$
 (8)

运放 AR1 输出保持为高电平。积分器输出线性地下降。当 V_{P1} 等于零时刻 τ ,过零比较器翻转, $V_{o1}=-V_z$,记此时刻的积分器输出电压值为 V_{oN} ,

$$\frac{R_P}{R_1+R_P}V_z = -\frac{R_1}{R_1+R_P}V_{oN}$$

由上式可解得

$$V_{oN} = -\frac{R_P}{R_1} V_z \tag{9}$$

不难得到三角波的周期 4τ。

$$V_{oN} = -\frac{1}{R_3 C} \int_0^{\tau} V_z dt = -\frac{V_z}{R_3 C} \tau$$
 (10)

图 3: 锯齿波发生器电路图

将(9)式代入(10)式可得到三角波的周期 T

$$T = \frac{4R_3R_PC}{R_1} \tag{11}$$

还可以得到三角波的幅值为

$$V_{om} = \frac{R_P}{R_1} V_z \tag{12}$$

实验内容:

- 1. 取 R_P =10kΩ, 观察电路输出波形 V_o 、 V_{o1} , 测量输出波形的周期和幅值。
- 2. 要求改变三角波的周期,可调整哪个元件,实验并测量记录之。

4.4 锯齿波发生器

电路如图 (4)。与图 (3) 三角波发生器相比,不同之处是:给 C 正向充电和反向充电使用了不同的路径,从而使得输出 V_{o1} 上升持续时间和下降持续时间不同。电容反向充电电流经过 C、 R_4 、 R_{PN} 、 D_2 ,类似于对三角波周期的推导,忽略二极管的开启电压,容易得到锯齿波的下降时间为

$$\tau_2 = \frac{2(R_{PN} + R_4)R_1C}{R_2} \tag{13}$$

电容正向充电电流经过 C、 R_4 、 R_{PP} 、 D_1 , 忽略二极管的开启电压,容易得到锯齿波的上升时间为

$$\tau_1 = cfrac2(R_{PP} + R_4)R_1CR_2 \tag{14}$$

锯齿波的周期为

$$T = \tau_1 + \tau_2 = \frac{2(R_P + 2R_4)R_1C}{R_2} \tag{15}$$

图 4: 三角波发生器电路图

类似于对三角波幅值的推导,容易得到锯齿波的幅值为

$$V_{om} = \frac{R_1}{R_2} V_z \tag{16}$$

实验内容:

- 1. 观察电路的输出波形,测量输出波形的上升时间 τ 1 和下降时间 τ 2。
- 2. 取 R_{PP} 分别为 10kΩ、30kΩ、50kΩ、70kΩ、90kΩ,测量输出波形 V_o 的 $\tau 1$ 、 $\tau 2$ 的变化,并与理论估算值比较.
- 3. 将 D_1 、 D_2 反接输出波形 V_o 将发生什么变化?
- 4. 要求改变输出波形的周期,宜改变哪一个元件的元件值?测量记录之。

4.5 正弦波发生器

电路如图 (5)。该电路有一条正反馈支路, R_4 、 C_1 、 R_3 、 C_2 。反馈系数为

$$F = \frac{V_F}{V_o} = \frac{R_3 C_1 s}{R_3 R_4 C_1 C_2 s^2 + (R_3 C_2 + R_4 C_1 + R_3 C_1) s + 1}$$
(17)

若取 $R_3=R_4=$ R, $C_1=C_2=$ C,则对于 $\omega_o=\frac{1}{RC}$,有 $F=\frac{1}{3}$ 。还有一条负反馈支路, D_1 、 D_2 、 R_2 、 R_P 、 R_1 。该支路与运放组成了同相输入放大器,放大倍数为

$$A_{VF} = 1 + \frac{R_P + R_{eq}}{R_1} \tag{18}$$

其中, R_{eq} 为 D_1 、 D_2 、 R_2 的等效电阻。

振荡器起振的条件是: 幅值条件: $|\dot{A}_{VF}F|>1$; 相位条件: $\sum \varphi=2k\pi$, $k=0,\pm 1,\,\pm 2...$ 。对于 ω_o 正反馈支路的相移为 0,所以只要 $A_{VF}>3$,电路就能起振。

对于正弦波振荡器,起振后的平衡条件是:幅值条件: $|\dot{A}_{VF}F|=1$;相位条件: $\sum \varphi=2k\pi$, k=0,±1, ±2...。因此,电路一定要有自动调节的能力。在本电路中,在起振的瞬间,输出正弦波的幅值较小,其

图 5: 正弦波发生器电路图

在电阻 R_2 上的分压 V_{R2} 小于二极管的开启电压 V_{Dth} ,二极管不起作用, $R_{eq}=R_2$,假设 $R_P=15$ k Ω ,由 (18) 式可知,这时同相放大器的放大倍数为 3.5 倍,大于 3 倍,输出电压波形的幅值不断增大。随着输出电压波形的幅值不断增大,当 $V_{R2}=V_{Dth}$ 时,二极管导通, R_{eq} 减小,最终平衡于 $A_{VF}=3$,电路输出稳定的正弦波。

正弦波的幅值的估算。在稳态,负反馈支路的电流在 R_1 上的压降为输出电压的三分之一

$$\frac{V_o - V_{Dth}}{R_P + R_1} R_1 = \frac{1}{3} V_o$$

从中可解出输出正弦波的幅值

$$V_o = \frac{3R_1}{2R_1 - R_P} V_{Dth}$$

由于二极管在一个周期内,在导通、截止之间不断变化,所以输出的"正弦波"的质量并不好,电路非线性造成的谐波失真较大。有多种实现从 $|\dot{A}_{VF}F|>1$ 到 $|\dot{A}_{VF}F|=1$ 的电路,有的电路可使输出正弦波的谐波失真较小。

实验内容:

- 1. 调整 R_P , 使电路起振,且使输出波形的幅值为 5V,这时的 R_P 的阻值为多少?
- 2. 再把 R_P 调到最大,观察输出波形 V_o 。

5 实验数据

5.1 方波发生器

表 1: 方波发生器数据

$R_P/\mathrm{k}\Omega$	峰峰值 V _{PP} /V	周期测量值 T/ms	周期理论值 T/ms	周期误差
10.057	11.9	3.2803	4.407	-25.56%
30.0218	12	5.401	8.794	-38.58%
50.0151	12	7.274	13.187	-44.83%
70.156	12	9.061	17.612	-48.55%
90.06	11	10.784	21.985	-50.94%

图 6: 方波发生器波形图

5.2 矩形波发生器

表 2: 矩形波发生器数据

$R_P/\mathrm{k}\Omega$	$V_{PP}/{ m V}$	T(测量值)/ms	T(理论值)/ms	T 误差	η(测量值)	η(理论值)	η误差
10.02	11.8	7.818	10.986	-28.83670126	23.16%	25.02%	-7.43%
30.042	11.9	8.026	10.986	-26.94338249	37.36%	41.7%	-10.40%
50.077	12	8.071	10.986	-26.53377025	50.15%	58.4%	-14.12%
70.026	12	8.022	10.986	-26.97979246	62.96%	75.02%	-16.07%
90.053	11.9	7.801	10.986	-28.99144366	77.34%	91.71%	-15.66%

图 7: 矩形波发生器波形图

5.3 三角波发生器

表 3: 三角波发生器数据

$R_P/\mathrm{k}\Omega$	峰峰值 V _{PP} /V 周期测量值 T/ms		周期理论值 T/ms	周期误差
10.0466	11.1	9.498	8.841	7.43%
5.026	5.55	4.872	4.423	10.15%
18.976	21.7	17.742	16.699	6.24%

图 8: 三角波发生器波形图

5.4 锯齿波发生器

表 4: 锯齿波发生器数据: D_1D_2 正接

$R_P/\mathrm{k}\Omega$	$V_{PP}/{ m V}$	T/ms	上升时间 $ au_1$	下降时间 $ au_2$	正脉宽 T_1/ms	负脉宽 T_2/ms	占空比 η
10.00538	12.1	62.33	8.62	41.22	51.71	10.71	82.84%
30.0187	11.9	62.85	16.74	32.64	41.74	21.18	66.34%
50.03	11.9	63.06	24.86	24.48	31.4	31.58	49.85%
70.0231	11.9	62.99	33.31	16.7	20.99	41.91	33.37%
90.0472	12.1	62.47	44.17	8.42	10.5	52.03	16.80%

表 5: 锯齿波发生器数据: D_1D_2 反接

$R_P/\mathrm{k}\Omega$	$V_{PP}/{ m V}$	T/ms	上升时间 $ au_1$	下降时间 $ au_2$	正脉宽 T_1/ms	负脉宽 T_2/ms	占空比 η
10.0796	12.1	62.55	41.5	8.53	10.75	51.8	17.19%
30.044	11.9	62.91	33.19	16.94	21.22	41.68	33.73%
50.0191	11.9	62.94	24.98	25.22	31.62	31.38	50.19%
70.003	11.9	62.77	16.58	32.61	41.93	20.97	66.66%
90.0261	12.1	62.25	8.5	41.13	51.88	10.51	83.15%

图 9: 锯齿波发生器波形图

5.5 正弦波发生器

表 6: 正弦波发生器数据

$R_{PP}/\mathrm{k}\Omega$	$V_{PP}/{ m V}$
22.0573	5
22.852	5.95

图 10: 正弦波发生器波形图

6 实验讨论

7 思考题

- 7.1 图 (1) 中的 R_3 的阻值应如何选定?
- 7.2 图 (1) 所示电路中, 电容 C 的容值应如何取?
- 7.3 在图 (5) 中,改变 R_P 时频率是否会随之变化?如电路已输出稳定的正弦波,改变 R_4 这时波形会发生什么变化?为什么?

参考文献

[1] 康华光. 电子技术基础 (模拟部分). 高等教育出版社, 2006.