Supplementary Files: Screening negative compound-protein samples

Liu et al.

No Institute Given

Fig. S1. Frequency distribution of validated/predicted interactions *vs.* interaction degree of involved compounds/proteins.

Table S1. AUC/Recall/Precision values of six classical classifiers on screened and randomly generated negative samples of *C. elegans* (pairwise cross-validation).

Measure	Negative	Naive Baves		kNN		Random Forest		L1-logistic		L2-logistic		SVM	
	sample ratio					screened			<i></i>		5	screened	
AUC	1	0.645	0.621	0.858	0.628	0.902	0.659	0.882	0.712	0.892	0.693	0.894	0.702
	3	0.633	0.613	0.892	0.668	0.926	0.672	0.895	0.712	0.896	0.698	0.901	0.706
	5	0.632	0.614	0.897	0.682	0.928	0.694	0.902	0.715	0.906	0.702	0.907	0.713
Precision	1	0.613	0.601	0.801	0.573	0.821	0.618	0.872	0.748	0.890	0.763	0.785	0.600
	3	0.351	0.335	0.787	0.468	0.836	0.580	0.863	0.680	0.875	0.689	0.837	0.438
	5	0.247	0.235	0.774	0.524	0.830	0.626	0.857	0.648	0.863	0.667	0.896	0.225
Recall	1	0.465	0.422	0.827	0.560	0.844	0.672	0.849	0.704	0.877	0.729	0.818	0.503
	3	0.454	0.372	0.743	0.323	0.705	0.340	0.648	0.293	0.681	0.330	0.576	0.107
	5	0.442	0.366	0.690	0.205	0.639	0.208	0.566	0.176	0.582	0.195	0.519	0.024

2 Liu et al.

Fig. S2. Histogram of the AUC values achieved by six classical classifiers on screened and randomly-selected negative samples of *human* (block-wise cross-validation).

Fig. S3. Histogram of the AUC values achieved by six classical classifiers on screened and randomly-selected negative samples of *C. elegans* (block-wise cross-validation).

Fig. S4. Histogram of the AUC values achieved by existing predictive methods on screened and randomly-selected negative samples of *C. elegans*.

Fig. S5. Frequency distribution of the overlapped interactions between the negative samples extracted from Davis *et al.* (2011) drug bioactivity data and our screened negative samples, with respect to different thresholds of the confidence scores d_{kj} .

4 Liu et al.

Fig. S6. Statistical boxplots of the AUC, precision and recall measures of the SVM and L2-logistic classifiers trained on screened negative samples, which were partitioned into 5 bins according to the confidence scores d_{kj} in descending order.

Table S2. Top 125 predicted target proteins of *Donepezil* and related functional annotations involved in signaling pathways, together with the p-value derived by gene set enrichment analysis.

Annotations	Proteins						
	ADORA1, ADORA2A, ADORA2B, ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRB1,						
	ADRB2, AGTR2, AVPR2, BDKRB2, CCKBR, CHRM1, CHRM2, CHRM3, CHRM4,						
	CNR1, CYSLTR1, DRD2, EDNRB, F2, FPR1, GNRHR, HRH2, HRH3, HTR1A,						
	HTR1D, HTR2A, HTR2C, MTNR1A, NPY2R, NR3C1, NTSR2, OPRK1, OPRM1,						
	P2RY2, PTGER1, PTGFR, PTGIR, TAAR1, TACR1, TBXA2R, TSPO, ABCB1,						
	ABCB11, ABCB4, ABCC1, ABCC10, ABCC2, ABCC3, ABCC4, ABCC6, ABCC8,						
Target proteins	ABCC9, ACE, ACHE, ALB, ALOX5, ANXA1, BCHE, CALM1, CCR5, CFTR, COMT,						
rarget proteins	CXCR1, CYP11A1, CYP11B1, CYP17A1, CYP19A1, CYP1A1, CYP1A2, CYP1B1,						
	CYP24A1, CYP26A1, CYP27B1, CYP2A6, CYP2B6, CYP2C18, CYP2C19, CYP2C8,						
	CYP2C9, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP3A7, CYP4B1, CYP51A1, DPP4,						
	EGFR, ESR1, GPR162, GPR18, GPR44, JUN, KCNH2, MPO, NPSR1, P2RY12, PDE6H,						
	PGR, POMC, PPARG, PROS1, PTGER3, PTGIS, PTGS1, PTGS2, REN, RHO, SHBG,						
	SLC15A1,SLC22A1, SLC22A2, SLC22A4, SLC22A5, SLC22A6, SLC22A8, SLC2A2,						
	SLC6A4, TAP1,TBXAS1, TOP2A, TPO						
Neuroactive	ADORA1, ADORA2A, ADORA2B, ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRB1,						
ligand-receptor	ADRB2, AGTR2, AVPR2, BDKRB2, CCKBR, CHRM1, CHRM2, CHRM3, CHRM4,						
interaction pathway	CNR1, CYSLTR1, DRD2, EDNRB, F2, FPR1, GNRHR, HRH2, HRH3, HTR1A,						
(p-value≤4.7e-32)	HIRID, HIRZA, HIRZC, MINRIA, NPY 2R, NR3CI, NISRZ, OPRKI, OPRMI,						
(p varue_3 1:7e 32)	P2RY2, PTGER1, PTGFR, PTGIR, TAAR1, TACR1, TBXA2R, TSPO						
	ADORA1, ADORA2A, ADRA1A, ADRA1B, ADRA2A, ADRB1, ADRB2, AGTR2,						
hypertension	BDKRB2, EDNRB, F2, HTR2A, NR3C1, P2RY2, ABCB1, ACE, CCR5, COMT,						
(p-value≤1.5E-11)	CYP11B1, CYP1B1, CYP2C19, CYP2C8, CYP2C9, CYP2J2, CYP3A4,						
	CYP3A5, CYP4B1, ESR1, PPARG, PTGIS, PTGS2, REN, SLC22A2, SLC6A4						
Alzheimer's	ADRA2A, HTR2A, ABCB1, ACE, CCR5, COMT, ESR1, PPARG, PTGS2, REN,						
(p-value≤3.1e-4)	SLC6A4, CHRM1, HTR2C, ACHE, ALB, ALOX5, BCHE, CYP17A1,						
*	CYP19A1, CYP1A1, MPO						
Parkinson's	ADRA2A, HTR2A, ABCB1, ACE, CCR5, COMT, ESR1, PTGS2, SLC6A4,						
(p-value≤3.0E-4)	CYP1A1, ADRA1A, CYP1B1, CCKBR, CNR1, DRD2, CYP2E1, POMC						
atherosclerosis	ACE, CCR5, ESR1, PTGS2, CYP2E1, PPARG, BCHE, CYP17A1, CYP19A1,						
$(p\text{-value} \le 1.3E\text{-}3)$	ADRB2, AGTR2, BDKRB2, F2, NR3C1, CYP2J2, ABCC6, CALM1, P2RY12, PTGS1						