

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

the theory does assume; as, for instance, that all particles, whether of insulators or conductors, are, as wholes, conductors; that, being conductors, they can readily be charged either bodily or polarly; that contiguous particles being on the line of inductive action can communicate their forces more or less readily; that those doing so most readily constitute the bodies called conductors, and those doing so least readily those called insulators, &c.

Having thus given a brief summary of the conclusions drawn from the previous investigations, the author proceeds to consider the particular condition of the particles which, in an insulating body, are considered as polarized; and after showing that the theory requires that they should be able to polarize in any direction, he states his expectation that a greater facility to polarize in one direction than another would still be found to belong to them, and proceeds experimentally to determine this point. His experiments were made by observing the degree of inductive force across cubes of perfectly crystallized bodies, as rock crystal and Iceland spar; these being cut so as to have the axis of the crystal parallel to the line joining two opposite faces of the cube; but the experiments, which are laborious, require extension, and he has not as yet been able to prove or disprove the expected result.

The author then considers whether in compound bodies it is the ultimate and elementary particles or the compound particles which polarize as wholes. He concludes that it is the latter which assume that state; and shows how this point bears upon the electrolyzation of such bodies as are separated into simpler substances, or otherwise

altered by the action of the voltaic current.

He then proceeds to certain experiments bearing upon the nature of the relation of the electric and magnetic forces, giving his view of the character of this relation; and concludes his paper by briefly stating what he thinks is more satisfactorily explained by the theory which refers inductive action to an action of contiguous particles than by the old theory.

"Experiments on the Vibration of the Pendulum." By W. J. Frodsham. Communicated by Francis Beaufort, Capt. R.N., F.R.S.

The object of this paper is to show the advantages that may result from attaching to the top of the pendulum a brass tube, which the author terms "an isochronal piece," about five inches in length, fitting the pendulum very nicely, and slit so as to form a spring for about an inch at the bottom, sliding rather stiffly on the rod, so that its position, and consequently its influence on the action of the pendulum, may be varied at pleasure; and that unequal arcs of vibration may be made to correspond to equal intervals of time.

"An Account of some Experiments on the Blood in connexion with the Theory of Respiration." By John Davy, M.D., F.R.S., Assistant Inspector of Army Hospitals.

The author has investigated, experimentally, several of the important questions connected with the theory of respiration and of