

ON THE INTEGRAL HOMOLOGY AND COUNTEREXAMPLES TO THE ANDREOTTI-GRAUERT CONJECTURE

MOHAMMED MOUÇOUF AND YOUSSEF ALAOUI

ABSTRACT. In this paper, we prove by means of a counterexample that there exist pair of integers (n, p) with $n \geq 3$, $1 < p \leq n - 1$, and open sets D in \mathbb{C}^n which are cohomologically p -complete with respect to the structure sheaf \mathcal{O}_D such that the cohomology group $H_{n+p}(D, \mathbb{Z})$ does not vanish. In particular D is not p -complete.

1. INTRODUCTION

By the theory of Andreotti and Grauert [1] it is known that a q -complete complex space is always cohomologically q -complete.

It was shown in [6] that if X is a Stein manifold and Ω is a cohomologically q -complete open set in X with respect to the structure sheaf \mathcal{O}_Ω , then Ω is q -complete, if it has a smooth boundary.

If now X is a q -complete space of complex dimension n , then $H_p(X, \mathbb{Z}) = 0$ for $p \geq n + q$ and $H_{n+q-1}(X, \mathbb{Z})$ is free (see [5] and [11]). Considering the short exact sequence given by the universal coefficient theorem

$$0 \rightarrow \text{Ext}_{\mathbb{Z}}(H_{p-1}(X, \mathbb{Z}), \mathbb{Z}) \rightarrow H^p(X, \mathbb{Z}) \rightarrow \text{Hom}_{\mathbb{Z}}(H_p(X, \mathbb{Z}), \mathbb{Z}) \rightarrow 0$$

we see that $H^p(X, \mathbb{Z}) = 0$ for $p \geq n + q$.

If X is a cohomologically q -complete complex space of dimension n , it follows from [9] that $H_p(X, \mathbb{C}) = 0$ for all integers $p \geq n + q$. Since $H^p(X, \mathbb{C})$, for an n -dimensional complex manifold X , are Frechet spaces whose topological duals are isomorphic to $H_p(X, \mathbb{C})$ (see [10]), then X satisfies the topological property $H^p(X, \mathbb{C}) = 0$ for $p \geq n + q$.

However, it seems unknown if $H^p(X, \mathbb{Z})$, $p \geq n + q$, vanishes, if X is assumed to be only cohomologically q -complete.

In this article, we prove that there exist pair of integers (n, p) with $1 < p \leq n - 1$,

1991 *Mathematics Subject Classification.* 32E10, 32E40.

Key words and phrases. q -complete spaces; q -Runge domains; q -convex functions; cohomologically q -complete spaces.

and cohomologically p -complete open sets D with respect to \mathcal{O}_D in \mathbb{C}^n such that $H_{n+p}(D, \mathbb{Z}) \neq 0$. It is clear that D is not p -complete.

2. PRELIMINARIES

Let Ω be an open set in \mathbb{C}^n with complex coordinates z_1, \dots, z_n . Then it is known that a function $\phi \in C^\infty(\Omega)$ is said to be q -convex if the hermitian form $L_z(\phi, \xi) = \sum_{i,j} \frac{\partial^2 \phi(z)}{\partial z_i \partial \bar{z}_j} \xi_i \bar{\xi}_j$ has at least $n - q + 1$ positive eigenvalues at each point $z \in \Omega$.

A function $\rho \in C^\infty(\Omega, \mathbb{R})$ is called q -convex with corners if ρ is locally a maximum of finite number of q -convex functions.

We say that Ω is q -complete (resp. q -complete with corners) if there exists an exhaustion function ϕ on Ω which is q -convex (resp. q -convex with corners).

An open subset D of Ω is called q -Runge if for every compact set $K \subset D$, there is a q -convex exhaustion function $\phi \in C^\infty(\Omega)$ such that

$$K \subset \{x \in \Omega : \phi(x) < 0\} \subset\subset D$$

It is shown in [1] that if Ω is q -complete, then Ω is cohomologically q -complete, which means that for every coherent analytic sheaf \mathcal{F} on Ω and $p \geq q$, the cohomology groups $H^p(\Omega, \mathcal{F})$ vanish. Moreover, if D is q -Runge in Ω , then for every $\mathcal{F} \in coh(\Omega)$ the restriction map

$$H^p(\Omega, \mathcal{F}) \rightarrow H^p(D, \mathcal{F})$$

has a dense image for all $p \geq q - 1$.

The purpose of the present article is to prove the following theorem

Theorem. *Let (n, q) be a pair of integers such that $n \geq 3$, $1 < q < n$, and q does not divide n . We put $m = [\frac{n}{q}]$ and $r = n - mq$. Then there exists a cohomologically $(\tilde{q} - 3)$ -complete domain D in \mathbb{C}^n such that $H_{n+\tilde{q}-3}(D, \mathbb{Z}) \neq 0$, if $r = 1$ and $m > q \geq 2$. Here $\tilde{q} = n - [\frac{n}{q}] + 1$ and $[\frac{n}{q}]$ is the integral part of $\frac{n}{q}$.*

3. PROOF OF THE THEOREM

Let (n, q) be a pair of integers with $n \geq 3$ and $1 \leq q \leq n$. We put $m = [\frac{n}{q}]$ and suppose that $r = n - mq > 0$. We consider the functions $\phi_1, \dots, \phi_{m+1}$ defined on \mathbb{C}^n by

$$\phi_j = \sigma_j + \sum_{i=1}^m \sigma_i^2 - \frac{1}{4} \|z\|^2 + N \|z\|^4, \quad j = 1, \dots, m,$$

and

$$\phi_{m+1} = -\sigma_1 - \cdots - \sigma_m + \sum_{i=1}^m \sigma_i^2 - \frac{1}{4} \|z\|^2 + N \|z\|^4,$$

$$\text{where } \sigma_j = y_j + \sum_{i=m+1}^n |z_i|^2 - (m+1) \left(\sum_{i=m+(j-1)(q-1)+1}^{m+j(q-1)} |z_i|^2 \right) \text{ for } j = 1, \dots, m,$$

$z_j = x_j + iy_j$. Then it is known from [4] that all ϕ_j , $1 \leq j \leq m+1$, are q -convex on \mathbb{C}^n , if $N > 0$ is sufficiently large and, if $\rho = \text{Max}\{\phi_j, 1 \leq j \leq m+1\}$, then there exists a small constant $\varepsilon_o > 0$ such that the set $D_{\varepsilon_o} = \{z \in \mathbb{C}^n : \rho(z) < -\varepsilon_o\}$ is relatively compact in the unit ball $B = B(0, 1)$, if N is large enough.

Let now $\varepsilon > \varepsilon_0$ and choose Stein open sets $U_1, \dots, U_k \subset\subset D_{\varepsilon_o}$ covering ∂D_ε and functions $\theta_j \in C_o^\infty(U_j, \mathbb{R}^+)$ such that $\sum_{j=1}^k \theta_j(x) > 0$ at any point $x \in \partial D_\varepsilon$. There exist sufficiently small constants $c_1 > 0, \dots, c_k > 0$ such that the functions $\phi_{i,j} = \phi_i - \sum_{i=1}^j c_i \theta_i$ are q -convex for $i = 1, \dots, m+1$ and $1 \leq j \leq k$. We define $\phi_{i,0} = \phi_i$ for $i = 1, \dots, m+1$, $D_o = D_\varepsilon$ and $D_j = \{z \in D_{\varepsilon_o} : \rho_j(z) < -\varepsilon\}$, where

$$\rho_j = \rho - \sum_{i=1}^j c_i \theta_i, \quad j = 1, \dots, k$$

Then ρ_j are q -convex with corners, $D_o \subset D_1 \subset \cdots \subset D_k$,

$D_o \subset\subset D_k \subset\subset D_{\varepsilon_o}$ and $D_j \setminus D_{j-1} \subset\subset U_j$ for $j = 1, \dots, k$.

Lemma 1. *Let \mathcal{F} be a coherent analytic sheaf on D_{ε_o} . Then the restriction map $H^p(D_{j+1}, \mathcal{F}) \rightarrow H^p(D_j, \mathcal{F})$ is surjective for every $p \geq \tilde{q} - 2$ and all $0 \leq j \leq k-1$. In particular, $\dim_{\mathbb{C}} H^p(D_j, \mathcal{F}) < \infty$ for $p \geq \tilde{q} - 2$ and $j = 0, \dots, k$.*

Proof. We first prove that for every $p \geq \tilde{q} - 2$, $H^p(D_j \cap U_l, \mathcal{F}) = 0$ for all $0 \leq j \leq k$ and $1 \leq l \leq k$. We fix $j \in \{0, \dots, k\}$ and we write $D_j \cap U_l = D'_1 \cap \cdots \cap D'_{m+1}$, where $D'_i = \{z \in U_l : \phi_{i,j}(z) < -\varepsilon\}$ are clearly q -complete and q -Runge in U_l . Then for any integer $t \leq m$, $D'_{i_1} \cap \cdots \cap D'_{i_t}$ is $(\tilde{q}-1)$ -Runge in U_l for all $i_1, \dots, i_t \in \{1, \dots, m+1\}$. In fact, let $K \subset D'_{i_1} \cap \cdots \cap D'_{i_t}$ be an arbitrary compact subset. There exists for any $i \in \{i_1, \dots, i_t\}$ a q -convex exhaustion function ψ_i on U_l such that

$$K \subset \{x \in U_l : \psi_i(x) < 0\} \subset\subset D'_i$$

Define $\psi = \text{Max}(\psi_{i_1}, \dots, \psi_{i_t})$. Then $K \subset \{x \in U_l : \psi(x) < 0\} \subset\subset D'_{i_1} \cap \cdots \cap D'_{i_t}$ and, ψ can be approximated in the C^0 -topology by smooth $(t(\tilde{q}-1)+1)$ -convex functions (see [10]). Since q does not divide n and $t \leq m$, then $t(\tilde{q}-1)+1 \leq \tilde{q}-1$. Therefore a suitable smooth $(\tilde{q}-1)$ -convex approximation of ψ shows that $D'_{i_1} \cap \cdots \cap D'_{i_t}$ is $(\tilde{q}-1)$ -Runge in U_l . This implies that for $r \geq \tilde{q}-2$, the image

of $H^r(U_l, \mathcal{F})$ is dense in the cohomology group $H^r(D'_{i_1} \cap \cdots \cap D'_{i_t}, \mathcal{F})$ which is separated, since $\tilde{q} - 2 \geq 2$ ($n \geq 4$ and $q \nmid n$). Thus $H^r(D'_{i_1} \cap \cdots \cap D'_{i_t}, \mathcal{F}) = 0$ for all $r \geq \tilde{q} - 2$. Then, by ([8], Proposition 1), we have

$$H^r(D_j \cap U_l, \mathcal{F}) \cong H^{r+m}(D'_1 \cup \cdots \cup D'_{m+1}, \mathcal{F}) \text{ if } r \geq \tilde{q} - 2$$

Since $U_l \setminus D'_1 \cup \cdots \cup D'_{m+1}$ has no compact connected components, then $D'_1 \cup \cdots \cup D'_{m+1}$ is n -Runge in U_l (see [3]). But for $r \geq \tilde{q} - 2$, $r + m \geq n - 1$ and hence $H^{r+m}(D'_1 \cup \cdots \cup D'_{m+1}, \mathcal{F}) = 0$.

Now since $D_{j+1} = D_j \cup (D_{j+1} \cap U_{j+1})$, then the Mayer-Vietoris sequence for cohomology

$$\cdots \rightarrow H^p(D_{j+1}, \mathcal{F}) \rightarrow H^p(D_j, \mathcal{F}) \oplus H^p(D_{j+1} \cap U_{j+1}, \mathcal{F}) \rightarrow H^p(D_j \cap U_{j+1}, \mathcal{F}) \rightarrow \cdots$$

implies that the restriction map $H^p(D_{j+1}, \mathcal{F}) \rightarrow H^p(D_j, \mathcal{F})$ is surjective for all $p \geq \tilde{q} - 2$. \square

We now choose n and q such that $m = [\frac{n}{q}] \geq q$ and $r = n - mq \geq 1$, and let \mathcal{O} be the sheaf of germs of holomorphic functions on B . Then we have the following

Lemma 2. *The restriction map $H^p(D_{\varepsilon_o}, \mathcal{O}) \rightarrow H^p(D_\varepsilon, \mathcal{O})$ has dense image for every $p \geq \tilde{q} - 3$ and $\varepsilon \geq \varepsilon_o$*

Proof. Let T be the set of all real numbers $\varepsilon \geq \varepsilon_o$ such that $H^p(D_\varepsilon, \mathcal{O}) \rightarrow H^p(D_{\varepsilon_1}, \mathcal{O})$ has a dense image for every real number $\varepsilon_1 > \varepsilon$ and all $p \geq \tilde{q} - 3$. Then $T \neq \emptyset$. In fact, choose $\varepsilon > \varepsilon_o$ such that $-\varepsilon < \text{Min}_{\overline{B} \setminus D_{\varepsilon_o}} \{\phi_i(z), i = 1, \dots, m+1\}$, and let $\varepsilon_1 > \varepsilon$. If $D_{\varepsilon_1} \neq \emptyset$, then $D_i = \{z \in B : \phi_i(z) < -\varepsilon_1\}$ and $D'_i = \{z \in B : \phi_i(z) < -\varepsilon\}$ are relatively compact in D_{ε_o} , q -complete and q -Runge in B .

Note first that for every $i_1, \dots, i_{m-1} \in \{1, \dots, m+1\}$, the cohomology group $H^p(D_{i_1} \cap \cdots \cap D_{i_{m-1}}, \mathcal{O}) = 0$ for $p \geq \tilde{q} - 2$, since $D_{i_1} \cap \cdots \cap D_{i_{m-1}}$ is $((m-1)(q-1)+1)$ -complete and $\tilde{q} - 2 \geq ((m-1)(q-1)+1)$. Next, we show, exactly as in the proof of lemma 1, that for every $i_1, \dots, i_m \in \{1, \dots, m+1\}$, $D_{i_1} \cap \cdots \cap D_{i_m}$ is $(\tilde{q} - 1)$ -Runge in B , which implies that the restriction map $H^p(D_{i_1} \cap \cdots \cap D_{i_{m-1}}, \mathcal{O}) \rightarrow H^p(D_{i_1} \cap \cdots \cap D_{i_m}, \mathcal{O})$ has a dense image for all $p \geq \tilde{q} - 2$. This shows that $H^p(D_{i_1} \cap \cdots \cap D_{i_m}, \mathcal{O}) = 0$ for $p \geq \tilde{q} - 2$. Then, by using ([8], Proposition 1), we obtain

$$H^p(D_{\varepsilon_1}, \mathcal{O}) \cong H^{p+m}(D_1 \cup \cdots \cup D_{m+1}, \mathcal{O}) \text{ for } p \geq \tilde{q} - 2.$$

Similarly

$$H^p(D_\varepsilon, \mathcal{O}) \cong H^{p+m}(D'_1 \cup \cdots \cup D'_{m+1}, \mathcal{O}) \text{ for } p \geq \tilde{q} - 2.$$

Since $D_1 \cup \dots \cup D_{m+1}$ is n -Runge in B and contained in the open set $D'_1 \cup \dots \cup D'_{m+1} \subset\subset D_{\varepsilon_0}$, then the restriction map

$$H^p(D'_1 \cup \dots \cup D'_{m+1}, \mathcal{O}) \rightarrow H^p(D_1 \cup \dots \cup D_{m+1}, \mathcal{O})$$

has a dense image for $p \geq n - 1$, which means that $H^p(D_\varepsilon, \mathcal{O}) \rightarrow H^p(D_{\varepsilon_1}, \mathcal{O})$ has a dense image for $p \geq \tilde{q} - 2$. We are now going to show that $H^{\tilde{q}-3}(D_\varepsilon, \mathcal{O}) = H^{\tilde{q}-3}(D_{\varepsilon_1}, \mathcal{O}) = 0$. To see this, let $\Omega_m = \{z \in D_1 \cap \dots \cap D_m : \phi_{m+1}(z) > -\varepsilon\}$ and $S_m = \{z \in D_1 \cap \dots \cap D_m : \phi_{m+1}(z) \leq -\varepsilon\}$. Then $H_{S_m}^p(D_1 \cap \dots \cap D_m, \mathcal{O}) = 0$ for all $p \leq n - q$, where $H_{S_m}^j(D_1 \cap \dots \cap D_m, \mathcal{O})$ is the j -th group of cohomology of $D_1 \cap \dots \cap D_m$ with support in S_m . In fact, for each point $\xi \in D_1 \cap \dots \cap D_m$ there exists [1] a fundamental system of connected Stein neighborhoods $U \subset D_1 \cap \dots \cap D_m$ of ξ such that $H^j(U \cap \Omega_m, \mathcal{O}) = 0$ for $0 < j < n - q$ and, the restriction map

$$\Gamma(U, \mathcal{O}) \longrightarrow \Gamma(U \cap \Omega_m, \mathcal{O})$$

is an isomorphism. It follows from [7] that $\underline{H}_{S_m}^j(\mathcal{O}) = 0$ for $0 \leq j \leq n - q$, where $\underline{H}_{S_m}^j(\mathcal{O})$ is the cohomology sheaf of $D_1 \cap \dots \cap D_m$ with coefficient in \mathcal{O} and support in S_m . By ([7]) there is a spectral sequence

$$H_{S_m}^p(D_1 \cap \dots \cap D_m, \mathcal{O}) \Longleftarrow E_2^{p,q} = H^p(D_1 \cap \dots \cap D_m, \underline{H}_{S_m}^q(\mathcal{O}))$$

Since $\underline{H}_{S_m}^p(\mathcal{O}) = 0$ for $p \leq n - q$, then the abutment $H_{S_m}^p(D_1 \cap \dots \cap D_m, \mathcal{O}) = 0$ for $p \leq n - q$.

Now it follows from the exact sequence of local cohomology

$$\dots \rightarrow H_{S_m}^p(D_1 \cap \dots \cap D_m, \mathcal{O}) \rightarrow H^p(D_1 \cap \dots \cap D_m, \mathcal{O}) \rightarrow H^p(\Omega_m, \mathcal{O}) \rightarrow H_{S_m}^{p+1}(D_1 \cap \dots \cap D_m, \mathcal{O}) \rightarrow \dots$$

that $H^p(D_1 \cap \dots \cap D_m, \mathcal{O}) \cong H^p(\Omega_m, \mathcal{O})$ for $0 \leq p \leq n - q - 1$.

Note that since $\Omega_m = \{z \in (D_1 \cap \dots \cap D_m) \cup D_{m+1} : \phi_{m+1}(z) > -\varepsilon\}$, one can verify exactly as for $H_{S_m}^p(D_1 \cap \dots \cap D_m, \mathcal{O})$ that, if

$S'_m = \{z \in (D_1 \cap \dots \cap D_m) \cup D_{m+1} : \phi_{m+1}(z) \leq -\varepsilon\} = D_{m+1} \cup S_m$, then $H_{S'_m}^p((D_1 \cap \dots \cap D_m) \cup D_{m+1}, \mathcal{O}) = 0$ for $p \leq n - q$ and, therefore

$$H^p((D_1 \cap \dots \cap D_m) \cup D_{m+1}, \mathcal{O}) \cong H^p((D_1 \cap \dots \cap D_m) \cup D_{m+1} \setminus S'_m, \mathcal{O}) = H^p(\Omega_m, \mathcal{O}) \cong H^p(\Omega_m \cup D_{m+1}, \mathcal{O})$$

for $q \leq p \leq n - q - 1$.

Now, since, in addition, $\Omega_m \cap D_{m+1} = \emptyset$, then, by using the Mayer-Vietoris sequence for cohomology

$$\begin{aligned} \dots &\rightarrow H^p((D_1 \cap \dots \cap D_m) \cup D_{m+1}, \mathcal{O}) \rightarrow H^p((D_1 \cap \dots \cap D_m), \mathcal{O}) \oplus H^p(D_{m+1}, \mathcal{O}) \rightarrow \\ &H^p(D_\varepsilon, \mathcal{O}) \rightarrow H^{p+1}((D_1 \cap \dots \cap D_m) \cup D_{m+1}, \mathcal{O}) \rightarrow \\ &H^{p+1}((D_1 \cap \dots \cap D_m), \mathcal{O}) \oplus H^{p+1}(D_{m+1}, \mathcal{O}) \rightarrow \dots \end{aligned}$$

and the fact that D_{m+1} is q -complete, we find that $H^p(D_\varepsilon, \mathcal{O}) = 0$ for $q \leq p \leq n - q - 2$. This implies that $H^{\tilde{q}-3}(D_\varepsilon, \mathcal{O}) = 0$ and similarly $H^{\tilde{q}-3}(D_{\varepsilon_1}, \mathcal{O}) = 0$, which proves that $\varepsilon \in T$.

To see that T is open in $[\varepsilon_o, +\infty[$, it is sufficient to prove that if $\varepsilon \in T$, $\varepsilon > \varepsilon_o$, then there is $\varepsilon_o < \varepsilon' < \varepsilon$ such that $\varepsilon' \in T$. For this, we consider as in lemma 1, finitely many Stein open sets $U_i \subset D_{\varepsilon_o}$, $i = 1, \dots, k$, such that $\partial D_\varepsilon \subset \bigcup_{i=1}^k U_i$ and functions $\theta_j \in C^\infty(U_j, \mathbb{R}^+)$ with compact support such that $\sum_{j=1}^k \theta_j(x) > 0$ at any point $x \in \partial D_\varepsilon$. Next we define $D_j(\varepsilon) = \{z \in D_{\varepsilon_o} : \rho_j(z) < -\varepsilon\}$, where $\rho_j(z) = \text{Max}(\phi_1 - \sum_{i=1}^j c_i \theta_i, \dots, \phi_{m+1} - \sum_{i=1}^j c_i \theta_i)$ with $c_i > 0$ sufficiently small so that the functions $\phi_i - \sum_{i=1}^j c_i \theta_i$ are q -convex for $1 \leq i \leq m+1$ and $1 \leq j \leq k$. Then, by lemma 1, the restriction map $H^p(D_k(\varepsilon), \mathcal{O}) \rightarrow H^p(D_\varepsilon, \mathcal{O})$ is surjective for $p \geq \tilde{q} - 2$ and, there exists $\varepsilon_o < \varepsilon' < \varepsilon$ such that $D_\varepsilon \subset D_{\varepsilon'} \subset D_k(\varepsilon)$. If now $\varepsilon' \leq \alpha \leq \varepsilon$, then we have

$$D_\alpha \subset D_{\varepsilon'} \subset D_k(\varepsilon) \subset D_k(\alpha) \subset D_{\varepsilon_o}.$$

Since, by lemma 1, the restriction map $H^p(D_k(\alpha), \mathcal{O}) \rightarrow H^p(D_\alpha, \mathcal{O})$ is surjective for $p \geq \tilde{q} - 2$ and $H^{\tilde{q}-3}(D_\alpha, \mathcal{O}) = 0$, then $H^p(D_{\varepsilon'}, \mathcal{O}) \rightarrow H^p(D_\alpha, \mathcal{O})$ is surjective for $p \geq \tilde{q} - 3$. For $\alpha > \varepsilon$, we have $D_\alpha \subset D_\varepsilon \subset D_{\varepsilon'} \subset D_k(\varepsilon)$. Since $H^p(D_k(\varepsilon), \mathcal{O}) \rightarrow H^p(D_\varepsilon, \mathcal{O})$ is surjective for $p \geq \tilde{q} - 3$, and $H^p(D_\varepsilon, \mathcal{O}) \rightarrow H^p(D_\alpha, \mathcal{O})$ has a dense image for $p \geq \tilde{q} - 3$, then $H^p(D_{\varepsilon'}, \mathcal{O}) \rightarrow H^p(D_\alpha, \mathcal{O})$ has a dense image for $p \geq \tilde{q} - 3$, which implies that $\varepsilon' \in T$.

In order to prove that T is closed, we consider a sequence of real numbers $\varepsilon_j \in T$, $j \geq 0$, such that $\varepsilon_j \searrow \varepsilon$ and a Stein open covering $\mathcal{U} = (U_i)_{i \in I}$ of D_{ε_o} with a countable base of open subsets of D_{ε_o} . We fix $p \geq \tilde{q} - 3$. Then the restriction map of spaces of cocycles $Z^p(\mathcal{U}|_{D_{\varepsilon_{j+1}}}, \mathcal{O}) \rightarrow Z^p(\mathcal{U}|_{D_{\varepsilon_j}}, \mathcal{O})$ has a dense image for $j \geq 0$. Therefore, by ([1], p. 246), the restriction map $Z^p(\mathcal{U}|_{D_\varepsilon}, \mathcal{O}) \rightarrow Z^p(\mathcal{U}|_{D_{\varepsilon_j}}, \mathcal{O})$ has also a dense image. Let $\varepsilon' > \varepsilon$ and $j \in \mathbb{N}$ such that $\varepsilon' > \varepsilon_j$. Since $\varepsilon_j \in T$, then $Z^p(\mathcal{U}|_{D_{\varepsilon_j}}, \mathcal{O}) \rightarrow Z^p(\mathcal{U}|_{D_{\varepsilon'}}, \mathcal{O})$ has a dense image, and hence $\varepsilon \in T$. This completes the proof of lemma 3. \square

Let now A be the set of all real numbers $\varepsilon \geq \varepsilon_0$ such that $H^p(D_\varepsilon, \mathcal{O}) = 0$ for all $p \geq \tilde{q} - 2$. Then in the situation described above we have

Lemma 3. *The set A is not empty and, for every $\varepsilon \in A$ with $\varepsilon > \varepsilon_0$, there is $\varepsilon_o \leq \varepsilon' < \varepsilon$ such that $\varepsilon' \in A$.*

Proof. Let $\varepsilon_1 > \varepsilon_o$ be such that

$$-\varepsilon_1 < \inf_{z \in \partial D_{\varepsilon_o}} \{\phi_i(z), i = 1, 2, \dots, m+1\}.$$

Then $[\varepsilon_1, +\infty] \subset A$. In fact, let $\varepsilon \geq \varepsilon_1$ and write $D_\varepsilon = D_{\varepsilon,1} \cap D_{\varepsilon,2} \cap \dots \cap D_{\varepsilon,m+1}$, where $D_{\varepsilon,i} = \{z \in B : \phi_i(z) < -\varepsilon\} \subset \subset D_{\varepsilon_o}$ is q -complete and q -Runge in B for all $i \in \{1, \dots, m+1\}$. Moreover, for every integers $t \leq m$ and $i_1, \dots, i_t \in \{1, \dots, m+1\}$, $D_{\varepsilon,i_1} \cap D_{\varepsilon,i_2} \cap \dots \cap D_{\varepsilon,i_t}$ is $(tq-t+1)$ -Runge in B and $\tilde{q}-2 \geq tq-t$, then $D_{\varepsilon,i_1} \cap D_{\varepsilon,i_2} \cap \dots \cap D_{\varepsilon,i_t}$ is cohomologically $(\tilde{q}-2)$ -complete. Therefore, by ([8], Proposition 1)

$$H^r(D_\varepsilon, \mathcal{O}) \cong H^{r+m}(D_{\varepsilon,1} \cup D_{\varepsilon,2} \cup \dots \cup D_{\varepsilon,m+1}, \mathcal{O}), \quad \text{for } r \geq \tilde{q}-2$$

Since $D_{\varepsilon,1} \cup D_{\varepsilon,2} \cup \dots \cup D_{\varepsilon,m+1}$ is n -Runge in B , then

$H^p(B, \mathcal{O}) \rightarrow H^p(D_{\varepsilon,1} \cup D_{\varepsilon,2} \cup \dots \cup D_{\varepsilon,m+1}, \mathcal{O})$ has a dense image if $p \geq n-1$. Hence $H^p(D_{\varepsilon,1} \cup D_{\varepsilon,2} \cup \dots \cup D_{\varepsilon,m+1}, \mathcal{O})$ vanishes for $p \geq n-1$ and so is $H^p(D_\varepsilon, \mathcal{O})$ if $p \geq \tilde{q}-2$, since $\tilde{q}-2+m=n-1$.

For the proof of the second assertion of the lemma, we can write for all $0 \leq j \leq k$ and $1 \leq l \leq k$, $D_j \cap U_l = D'_1 \cap \dots \cap D'_{m+1}$, where $D'_i = \{z \in U_l : \phi_{i,j}(z) < -\varepsilon\}$ are q -complete and q -Runge in U_l . Therefore for all $t \leq m$ and $i_1, \dots, i_t \in \{1, \dots, m+1\}$, $D'_{i_1} \cap D'_{i_2} \cap \dots \cap D'_{i_t}$ is $(\tilde{q}-1)$ -Runge in U_l , which implies that $H^p(U_l, \mathcal{O})$ has a dense image in $H^p(D'_{i_1} \cap D'_{i_2} \cap \dots \cap D'_{i_t}, \mathcal{O})$ for all $p \geq \tilde{q}-2$. This shows that $H^p(D'_{i_1} \cap D'_{i_2} \cap \dots \cap D'_{i_t}, \mathcal{O}) = 0$ for all $p \geq \tilde{q}-2$. Moreover, by ([8], Proposition 1), one obtains

$$H^p(D_j \cap U_l, \mathcal{O}) \cong H^{p+m}(D'_1 \cup \dots \cup D'_{m+1}, \mathcal{O}) \quad \text{for } p \geq \tilde{q}-2.$$

Since $\tilde{q}-2+m=n-1$ and $D'_1 \cup \dots \cup D'_{m+1}$ is n -Runge in U_l , then

$$H^p(D_j \cap U_l, \mathcal{O}) \cong H^{p+m}(D'_1 \cup \dots \cup D'_{m+1}, \mathcal{O}) = 0 \quad \text{for } p \geq \tilde{q}-2.$$

We now consider the Mayer-Vietoris sequence for cohomology

$$\begin{aligned} &\dots \rightarrow H^{p-1}(D_j \cap U_{j+1}, \mathcal{O}) \rightarrow H^p(D_{j+1}, \mathcal{O}) \rightarrow \\ &H^p(D_j, \mathcal{O}) \oplus H^p(D_{j+1} \cap U_{j+1}, \mathcal{O}) \rightarrow H^p(D_j \cap U_{j+1}, \mathcal{O}) \rightarrow \dots \end{aligned}$$

Since $H^p(D_j \cap U_{j+1}, \mathcal{O}) = H^p(D_{j+1} \cap U_{j+1}, \mathcal{O}) = 0$ for $p \geq \tilde{q}-2$, then $H^p(D_{j+1}, \mathcal{O}) \rightarrow H^p(D_j, \mathcal{O})$ is surjective for all $p \geq \tilde{q}-2$.

We are now going to show that $H^p(D_{j+1}, \mathcal{O}) \rightarrow H^p(D_j, \mathcal{O})$ is injective for all $p \geq \tilde{q}-2$. Let $\mathcal{V} = (V_i)_{i \in \mathbb{N}}$ be an open covering of D_{ε_o} with a fundamental system of Stein neighborhoods of D_{ε_o} such that if $V_{i_o} \cap \dots \cap V_{i_r} \neq \emptyset$ and $V_{i_o} \cup \dots \cup V_{i_r} \subset D_{j+1}$, then $V_{i_o} \cup \dots \cup V_{i_r} \subset D_j$ or $V_{i_o} \cup \dots \cup V_{i_r} \subset U_{j+1} \cap D_{j+1}$.

We first show that $H^{n-1}(D_k, \mathcal{O}) = 0$. We shall prove it assuming that it has

already been proved for $j < k$. For this, we consider the Mayer-Vietoris sequence for cohomology

$$\rightarrow H^{\tilde{q}-3}(D_j, \mathcal{O}) \oplus H^{\tilde{q}-3}(D_{j+1} \cap U_{j+1}, \mathcal{O}) \xrightarrow{r^*} H^{\tilde{q}-3}(D_j \cap U_{j+1}, \mathcal{O}) \xrightarrow{j^*} H^{\tilde{q}-2}(D_{j+1}, \mathcal{O}) \xrightarrow{\rho^*}$$

Let ξ be a cocycle in $Z^{\tilde{q}-2}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$ and let $\rho(\xi)$ be its restriction to a cocycle in $Z^{\tilde{q}-2}(\mathcal{V}|_{D_j}, \mathcal{O})$. Since $\rho(\xi)$ is a coboundary by induction and

$H^{\tilde{q}-2}(D_{j+1} \cap U_{j+1}, \mathcal{O}) = 0$, from the Mayer-Vietoris sequence, it follows that there exist

$$\eta \in Z^{\tilde{q}-3}(\mathcal{V}|_{D_j \cap U_{j+1}}, \mathcal{O}) \text{ and } \mu \in C^{\tilde{q}-3}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$$

such that $\xi = j(\eta) + \delta\mu$. There exists a sequence $\{\eta_n\} \subset Z^{\tilde{q}-3}(\mathcal{V}|_{D_{j+1} \cap U_{j+1}}, \mathcal{O})$ with $r(\eta_n) - \eta \rightarrow 0$, when $n \rightarrow \infty$. This is possible because

$Z^{\tilde{q}-3}(\mathcal{V}|_{D_{j+1} \cap U_{j+1}}, \mathcal{O}) \rightarrow Z^{\tilde{q}-3}(\mathcal{V}|_{D_j \cap U_{j+1}}, \mathcal{O})$ has a dense range. (See the proof of lemma 2). Now choose a sequence $\{\gamma_n\} \subset C^{\tilde{q}-3}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$ such that $j(r(\eta_n)) = \delta\gamma_n$. Then

$$\xi - \delta\mu - \delta\gamma_n = j(\eta - r(\eta_n))$$

This proves that $\delta\mu + \delta\gamma_n$ converges to ξ when $n \rightarrow \infty$. Since, by lemma 1, $\dim_{\mathbb{C}} H^{\tilde{q}-2}(D_{j+1}, \mathcal{O}) < \infty$, then the coboundary space $B^{\tilde{q}-2}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$ is closed in $Z^{\tilde{q}-2}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$. Therefore $\xi \in B^{\tilde{q}-2}(\mathcal{V}|_{D_{j+1}}, \mathcal{O})$ and $H^{\tilde{q}-2}(D_j, \mathcal{O}) = 0$ for all $0 \leq j \leq k$.

Now since $D_\varepsilon \subset\subset D_k(\varepsilon) = D_k$, there exists $0 < \varepsilon' < \varepsilon$ such that $\varepsilon' > \varepsilon_0$ and $D_{\varepsilon'} \subset\subset D_k(\varepsilon)$. Then we have $D_\varepsilon \subset D_{\varepsilon'} \subset D_k(\varepsilon) \subset D_k(\varepsilon')$. Since for every $p \geq \tilde{q}-2$, $H^p(D_k(\varepsilon'), \mathcal{O}) \rightarrow H^p(D_{\varepsilon'}, \mathcal{O})$ is surjective by lemma 1, then $H^p(D_k(\varepsilon), \mathcal{O}) \rightarrow H^p(D_{\varepsilon'}, \mathcal{O})$ is also surjective for all $p \geq \tilde{q}-2$, which shows that $H^p(D_{\varepsilon'}, \mathcal{O}) = 0$ for $p \geq \tilde{q}-2$ and $\varepsilon' \in A$. \square

Proposition. *The set D_{ε_0} is cohomologically $(\tilde{q}-3)$ -complete with respect to the structure sheaf $\mathcal{O}_{D_{\varepsilon_0}}$, which means that $H^p(D_{\varepsilon_0}, \mathcal{O}_{D_{\varepsilon_0}}) = 0$ for all $p \geq \tilde{q}-3$.*

Proof. In order to prove the Proposition, we consider the set A of all real numbers $\varepsilon \geq \varepsilon_0$ such that $H^p(D_\varepsilon, \mathcal{O}) = 0$ for all $p \geq \tilde{q}-2$, where $D_\varepsilon = \{z \in \mathbb{C}^n : \rho(z) < -\varepsilon\}$. Then, by lemma 3, the set A is not empty and open in $[+\varepsilon_0, +\infty[$. Moreover, if $\varepsilon = \text{Inf}(A)$, there exists a decreasing sequence of real numbers $\varepsilon_j \in A$, $j \in \mathbb{N}$, such that $\varepsilon_j \rightarrow \varepsilon$. Since $H^p(D_{\varepsilon_j}, \mathcal{O}) = 0$ for all $p \geq \tilde{q}-2$ and, by lemma 2, $H^p(D_{\varepsilon_{j+1}}, \mathcal{O}) \rightarrow H^p(D_{\varepsilon_j}, \mathcal{O})$ has a dense image for $p \geq \tilde{q}-3$, then $H^p(D_\varepsilon, \mathcal{O}) = 0$ for all $p \geq \tilde{q}-2$ (see [1], p. 250). Hence $\varepsilon \in A$. Suppose now that $\varepsilon > \varepsilon_0$. then there exists $\varepsilon' \in A$ such that $\varepsilon_0 < \varepsilon' < \varepsilon$, which is a contradiction. Therefore $\varepsilon_0 = \varepsilon \in A$. But, since $H^{\tilde{q}-3}(D_{\varepsilon_0}, \mathcal{O}) = 0$ according to the proof of lemma 2, then D_{ε_0} is cohomologically $(\tilde{q}-3)$ -complete. \square

Theorem. Let (n, q) be a pair of integers such that $n \geq 3$, $1 < q < n$, and q does not divide n . We put $m = [\frac{n}{q}]$ and $r = n - mq$. Then there exists a cohomologically $(\tilde{q} - 3)$ -complete domain D with respect to \mathcal{O}_D in \mathbb{C}^n such that $H_{n+\tilde{q}-3}(D, \mathbb{Z}) \neq 0$, if $r = 1$ and $m > q \geq 2$, where $\tilde{q} = n - [\frac{n}{q}] + 1$ and $[\frac{n}{q}]$ is the integral part of $\frac{n}{q}$.

Proof. We have proved in the Proposition that D_{ε_0} is cohomologically $(\tilde{q} - 3)$ -complete with respect to the structure sheaf $\mathcal{O}_{D_{\varepsilon_0}}$.

It was shown by Diederich-Fornaess [4] that if $\delta > 0$ is small enough, then the following topological sphere of real dimension $n + \tilde{q} - 2$:

$$\begin{aligned} S_\delta = \{z \in \mathbb{C}^n : & x_1^2 + \cdots + x_m^2 + |z_{m+1}|^2 + \cdots + |z_n|^2 = \delta, \\ & y_j = - \sum_{i=m+1}^n |z_i|^2 + (m+1) \left(\sum_{i=m+(j-1)(q-1)+1}^{m+j(q-1)} |z_i|^2 \right) \text{ for} \\ & j = 1, \dots, m\}, \end{aligned}$$

where $z_j = x_j + y_j$ for $j = 1, \dots, n$, is not homologous to 0 in D_{ε_0} . This follows from the fact that the set $E = \{z \in \mathbb{C}^n : x_1 = \cdots = x_m = z_{m+1} = \cdots = z_n = 0\}$ does not intersect D_{ε_0} .

Let $0 < \varepsilon < \varepsilon_0$ be such that $D_\varepsilon \subset \subset B$. Then it follows, exactly as for D_{ε_0} , that D_ε is cohomologically $(\tilde{q} - 2)$ -complete with respect to $\mathcal{O}_{D_\varepsilon}$. We may take ε such that D_ε does not intersect E . Then S_δ is not homologous to 0 in D_ε .

We are now going to prove that $H_{n+\tilde{q}-3}(D_\varepsilon, \mathbb{Z})$ does not vanish. Indeed, we define for $1 \leq j \leq m+1$ the sets $E_j = (D_1 \cap \cdots \cap D_{m-j+2}) \cup (D_{m-j+3} \cup \cdots \cup D_{m+1})$. Then by using the Mayer-Vietoris sequence for homology

$$\begin{aligned} 0 = H_{n+\tilde{q}+j-3}(D_1 \cap \cdots \cap D_{m-j+2}, \mathbb{Z}) \oplus H_{n+\tilde{q}+j-3}(D_{m-j+3} \cup \cdots \cup D_{m+1}, \mathbb{Z}) \rightarrow \\ H_{n+\tilde{q}+j-3}(E_{j+1}, \mathbb{Z}) \rightarrow H_{n+\tilde{q}+j-4}(E_j, \mathbb{Z}) \rightarrow \\ H_{n+\tilde{q}+j-4}(D_1 \cap \cdots \cap D_{m-j+2}, \mathbb{Z}) \oplus H_{n+\tilde{q}+j-4}(D_{m-j+3} \cup \cdots \cup D_{m+1}, \mathbb{Z}) \rightarrow \cdots \end{aligned}$$

one can easily verify by induction that

$$H_{2n-2}(D_1 \cup \cdots \cup D_{m+1}, \mathbb{Z}) \rightarrow H_{n+\tilde{q}-3}(D_\varepsilon, \mathbb{Z})$$

is injective.

We first show that $H^{n+\tilde{q}-3}(D_\varepsilon, \mathbb{C}) \neq 0$. For this, we consider the $(2n-m-2)$ -real form defined as follows:

$$\begin{aligned} \omega = \frac{1}{2} \left(\sum_{i=1}^n x_i^2 + \sum_{i=m+2}^n y_i^2 \right)^{-2n+m+1} \left(\sum_{i=1}^n (-1)^i x_i dx_1 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_n \wedge dy_{m+2} \wedge \cdots \wedge \right. \\ \left. dy_{m+i} \wedge \cdots \wedge dy_n + \sum_{i=2}^{n-m} (-1)^{n+i-1} y_{m+i} dx_1 \wedge \cdots \wedge dx_n \wedge dy_{m+2} \wedge \cdots \wedge \widehat{dy_{m+i}} \wedge \cdots \wedge dy_n \right) \end{aligned}$$

Then ω is d-closed and therefore defines a cohomology class in $H^{2n-m-2}(D_\varepsilon, \mathbb{C})$.

Let S'_δ be the topological sphere of real dimension $2n - m - 2$ defined by

$$S'_\delta = \{z \in S_\delta : y_{m+1} = 0\}, \text{ where } z_j = x_j + iy_j \text{ for } j = 1, \dots, n.$$

Since ω does not depend on y_1, \dots, y_{m+1} , then

$$\int_{S'_\delta} \omega \neq 0$$

This implies that $H^{2n-m-2}(D_\varepsilon, \mathbb{C}) \neq 0$.

We shall prove now that if $E = D_1 \cup \dots \cup D_{m+1}$, then the homology group $H_{2n-2}(E, \mathbb{Z})$ does not vanish. We note first that the map

$$H^{2n-m-2}(D_\varepsilon, \mathbb{C}) \rightarrow H^{2n-2}(E, \mathbb{C})$$

is an isomorphism. In fact, we consider over E the resolution of the constant sheaf \mathbb{C} :

$$0 \rightarrow \mathbb{C} \xrightarrow{i} \mathcal{O} \xrightarrow{d} \Omega^1 \xrightarrow{d} \dots \xrightarrow{d} \Omega^n \rightarrow 0$$

where Ω^p is the sheaf of germs of holomorphic p -forms on E . This resolution maybe break it up into short exact sequences

$$0 \rightarrow Z^i \rightarrow \Omega^i \rightarrow Z^{i+1} \rightarrow 0, \quad \text{for } i = 0, \dots, n$$

where $Z^0 = \mathbb{C}$, $\Omega^0 = \mathcal{O}$, and $Z^i = \text{Im}\{\Omega^{i-1} \xrightarrow{d} \Omega^i\}$ for $1 \leq i \leq n$.

On the other hand, since for any integer t with $1 \leq t \leq m-1$ and all $i_1, \dots, i_t \in \{1, \dots, m+1\}$, $D_{i_1} \cap \dots \cap D_{i_t}$ is $((m-1)(q-1)+1)$ -Runge in B and $n-m-2 \geq (m-1)(q-1)$, then $H^p(D_{i_1} \cap \dots \cap D_{i_t}, \mathbb{C}) = 0$ for $p \geq 2n-m-2$. Hence for any indexes $j_1, \dots, j_m \in \{1, \dots, m+1\}$ we have

$$H^{2n-m-2}(D_{j_1} \cap \dots \cap D_{j_m}, \mathbb{C}) \cong H^{2n-3}(D_{j_1} \cup \dots \cup D_{j_m}, \mathbb{C})$$

But $H^{2n-3}(D_{j_1} \cup \dots \cup D_{j_m}, \mathbb{C}) = 0$. Indeed, if we put $E_m = D_{j_1} \cup \dots \cup D_{j_m}$, then obviously $H^p(E_m, \Omega^j) = 0$ for all $p \geq n-1$, and $j \geq 0$, because E_m is n -Runge in B . Note also that since $n-m-2 \geq (m-1)q - (m-1)$, then, by the proof of lemma 2, $H^{n-2}(E_m, \Omega^{n-1}) \cong H^{n-m-1}(D_{j_1} \cap \dots \cap D_{j_m}, \Omega^{n-1}) = 0$ and $H^{n-3}(E_m, \Omega^n) \cong H^{n-m-2}(D_{j_1} \cap \dots \cap D_{j_m}, \Omega^n) = 0$, because the Ω^j are free and $n-m-2 \geq q$ and $n-m-1 \leq n-q-2$. (See the proof of lemma 2). Therefore from the long exact sequences of cohomology associated to the short exact sequences

$$0 \rightarrow Z^i \rightarrow \Omega^i \rightarrow Z^{i+1} \rightarrow 0, \quad \text{for } i = 0, \dots, n$$

we deduce a natural \mathbb{C} -isomorphism

$$H^{2n-3}(E_m, \mathbb{C}) \cong H^{n-2}(E_m, Z^{n-1})$$

and, an exact sequence

$$\cdots \rightarrow H^{n-3}(E_m, \Omega^n) \rightarrow H^{n-2}(E_m, Z^{n-1}) \rightarrow H^{n-2}(E_m, \Omega^{n-1}) \rightarrow \cdots$$

Since $H^{n-3}(E_m, \Omega^n) = H^{n-2}(E_m, \Omega^{n-1}) = 0$, then $H^{2n-3}(E_m, \mathbb{C}) \cong H^{n-2}(E_\varepsilon, Z^{n-1}) = 0$, which shows that $H^{2n-m-2}(D_\varepsilon, \mathbb{C}) \rightarrow H^{2n-2}(E, \mathbb{C})$ is an isomorphism.

Now by using the universal coefficient theorem for homology

$$H_{2n-2}(E, \mathbb{C}) \cong H_{2n-2}(E, \mathbb{Z}) \otimes \mathbb{C} \oplus \text{Tor}(H_{2n-3}(E, \mathbb{Z}), \mathbb{C})$$

and the fact that $\text{Tor}(H_{2n-3}(E, \mathbb{Z}), \mathbb{C}) = 0$, we conclude that $H_{2n-2}(E, \mathbb{Z}) \neq 0$. Since we know already that the map $H_{2n-2}(E, \mathbb{Z}) \rightarrow H_{n+\tilde{q}-3}(D_\varepsilon, \mathbb{Z})$ is injective, then $H_{n+\tilde{q}-3}(D_\varepsilon, \mathbb{Z})$ does not vanish. This completes the proof of the theorem. \square

REFERENCES

- [1] A. Andreotti and H. Grauert. Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 153-259.
- [2] Bredon, G.E.: Sheaf theory. Mac-Graw Hill series in higher Mathematics. 1967. Zbl. 158, 205.
- [3] M. Coltoiu and A. Silva. *Behnke-Stein theorem on complex spaces with singularities*. Nagoya Math. J. Vol. 137 (1995), 183-194.
- [4] H. Diederich and J. E. Fornaess. *Smoothing q-convex functions and vanishing theorems*. Invent. Math. 82, (1985), 291-305.
- [5] G. Forni. *Homology and cohomology with compact supports for q-convex spaces*. Ann. Mat. Pura Appl. 159, (1991), 229-254.
- [6] M. G. Eastwood and G. V. , Suria, Cohomologically complete and pseudoconvex domains. Comment. Math. Helv. 55 (1980), 413 – 426.
- [7] A. Grothendieck, 1957, Sur quelques points d'Algèbre homologique. Tohoku Mathematical Journal, IX, 119 – 221.
- [8] K. Matsumoto. *On the homological completeness of q-complete domains with corners*. Nagoya Math. J. Vol 165, (2002), 105-112.
- [9] J. Le Potier. *Une propriété topologique des espaces q-convexes*. Bull. Soc. Math. France, 98, (1970), 319-328.
- [10] G. Sorani *Homologie des q-paires de Runge*. Ann. Scuola Norm. Sup. Pisa, t. 17, (1963), 319-332.

[11] V. Vajaitu. *Approxiamtion theorems and homology of q -Runge domains in complex spaces.*
J. Reine Angew. Math. 449, (1994), 179-199.

Mohammed Moucouf
Département de mathématiques et Informatique,
Université Chouaib Doukkali,
Faculté des Sciences,
B.P.20; 24000, El Jadida,Morocco.
Email : **moucouf@hotmail.com**

Youssef Alaoui
Département de mathématiques et Informatique,
Université Chouaib Doukkali,
Faculté des Sciences,
B.P.20; 24000, El Jadida,Morocco.
Email : **y.alaoui@iav.ac.ma or comp5123ster@gmail.com**