Coffee Talk #2

June 29, 2021

Ozgur Taylan Turan

The Deep Bootstrap Framework:Good Learners Are Good Offline Generalizers¹ Conference paper at 2021 ICLR

¹P. Nakkiran, B. Neyshabur, and H. Sedghi (2020). "The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers". In: 1. arXiv:

Why This Paper?

Interesting claims

 $Generalization \leftrightarrow Optimization$

Aim & Problem Setting

Aim

 \bullet Create a framework for investigating generalization in interpolating regime TrainError \approx 0

Problem Setting

Supervised classification:

 $\mathcal{D} \sim (x,y)$ minimize training error with SGD variant on an architecture \mathcal{F} for t steps with the hope of a classifier f_t with low testing error

Real World vs Ideal World-A

For a fixed \mathcal{D} and \mathcal{F} :

Ideal World [Train $_{\mathcal{D},\mathcal{F}}(\infty,t)$]

- ullet Access to ${\mathcal D}$
- Take t steps on mini-batches sampled from $\mathcal D$ to get f_t^{iid}

Real World [Train $_{\mathcal{D},\mathcal{F}}(n,t)$]

- Access to n samples from \mathcal{D}
- Take t steps on mini-batches of n samples to get ft

$$\mathsf{TestError}(f_t) = \mathsf{TestError}(f_t^{\mathsf{iid}}) + \underbrace{(\mathsf{TestError}(f_t) - \mathsf{TestError}(f_t^{\mathsf{iid}}))}_{\mathsf{Bootstrap\ error}(\varepsilon)}$$

Real vs Ideal-B

So keeping everything same,

Claim: $\varepsilon(n, \mathcal{D}, \mathcal{F}, t)$ is small for all *realistic* $(n, \mathcal{D}, \mathcal{F})$ at all t

Experimental Setup

Datasets

CIFAR-5m: generating 6M synthetic data 5M:train 1M:test

Training

• Train the real world optimizer until $\leq 1\%$ or reach specified epochs

Measure

Soft-Error = 1 - softmax(correct label)

If we have 10 points for training and train for 2 epochs in Real world then, I have to get 20 unique samples and train for 1 epoch for the Ideal world

Results-A

Figure 1: Three architectures trained from scratch on CIFAR-5m, a CIFAR-10-like task. The Real World is trained on 50K samples for 100 epochs, while the Ideal World is trained on 5M samples in 1 pass. The Real World Test remains close to Ideal World Test, despite a large generalization gap.

Claim: Generalization gap $MLP \geq CNN$ because CNN optimize faster in the Ideal world.

Results-B

Figure 2: **Real vs Ideal World: CIFAR-5m.** SGD with 50K samples. (a): Varying learning-rates $0.1 (\bullet), 0.01 (\blacksquare), 0.001 (\blacktriangle)$. (b): Random architectures from DARTS space (Liu et al., 2019).

Results-C

Figure 4: Effect of Sample Size.

Conclusions

- To understand the generalization (offline performance) in DL one has to look to population loss (online learning) has to be investigated
- Test performance of modern settings is close between infinite and finite sample sizes \rightarrow quick online learners are well generalizers ?