

Digitaltechnik

Kapitel 12, AD- und DA-Umsetzer

Prof. Dr.-Ing. M. Winzker

Nutzung nur für Studierende der Hochschule Bonn-Rhein-Sieg gestattet. (Stand: 21.03.2022)

12.1 Analog-Digital-Umsetzung

- Umsetzung zwischen analoger und digitaler Signalverarbeitung
- Grundprinzip:
 - Tiefpass laut Abtasttheorem
 - Abtasten und Halten
 - Quantisieren
 - Codieren

- Verschiedene Umsetzungsprinzipien
 - Eigenschaften: Auflösung, Geschwindigkeit, Aufwand

Parallelverfahren

- Bezeichnung auch Flash-Verfahren
 - Schnell, da nur ein Messschritt
 - Hoher Aufwand

Wägeverfahren

- Schrittweiser Annäherung, Successive Approximation
- Je Bit Auflösung ein Schritt
- SAR = Successive Approximation Register
 - Mittlere Geschwindigkeit
 - Mittlerer Aufwand

Dual-Slope-Verfahren

- Zählverfahren
- Messspannung wird integriert
- Referenzspannung entlädt Integrator
- Zeitbedarf für Entladung ergibt Messwert
 - Langsam
 - Geringer Aufwand
 - Genau

Sigma-Delta-Verfahren

- Eingangsspannung wird durch sehr viele Pulse U_{dig} angenähert
- Zum Integrator wird U_x minus U_{dig} addiert
- Polarität von U_{int} bestimmt P und nächsten U_{dia}
- Filterung von P ergibt Ausgangswert: 1 V unteres Limit, 2V Pegel
 - 4 von 5 Werten an P sind 1: 4/5 * 2V 1V = 1,6 V 1V = 0,6 V

Sigma-Delta-Verfahren (II)

- Bezeichnung Sigma-Delta aus Funktionselementen
 - Integration: Sigma
 - Differenzbildung mit der Rückkopplung: Delta

Funktionsprinzip

- Grobe Pulse von +1 V und -1 V bilden die Eingangsspannung nach
- Im Gegenzug wird die Frequenz der Schritte sehr hoch gewählt
- Oversampling Ratio OSR: höchste Frequenz des Eingangssignals

 Abtastrate
 - Faktoren von 100 und höher möglich
 - Hohe Arbeitsfrequenz passt sehr gut zu modernen CMOS-Prozessen

Eigenschaften

- Nahezu völlig aus digitalen Komponenten aufgebaut
- Sehr hohe Auflösung
- Langsamer als Flash

Übungsaufgabe: Sigma-Delta-Verfahren

- Bestimmen Sie die Werte für U_x = -0,2 V
- Berechnen Sie den Ausgangswert

12.2. Digital-Analog-Wandlung Direktverfahren

- Hoher Aufwand an Widerständen und Schaltern
- Vereinfachung durch Interpolation zwischen Abgriffen der Widerstandsreihe möglich

R-2R-Leiternetzwerk

- Summation von Strömen
- Gute Genauigkeit der Widerstände nötig
 - Machbar, da gleiche Größenordnung

Pulsweitenmodulation

- Schneller Wechsel zwischen zwei Spannungswerten
- Tiefpass zur Mittelwertbildung
- In manchen System ist Tiefpass bereits enthalten
 - Gleichstrommotor: Mittelwertbildung durch Masse der Achse und Motorlast
 - Leuchtdiode: Menschliches Auge sorgt für die Mittelwertbildung

$$U_{DA} = U_L + \frac{t_H}{T_{Per}} U_H$$

Übungsaufgabe

Ein PWM-Ausgang hat den rechts dargestellten Zeitverlauf. Welche Ausgangsspannung wird durch das Signal erzeugt?

12.3 Ansteuerung diskreter ADUs, DAUs

- Analog-Digital- und Digital-Analog-Umsetzer k\u00f6nnen als Teil eines gr\u00f6\u00dferen ASICs implementiert werden
- Bezeichnung: Mixed-Signal-ASIC

Beispiel: STMicroelectronics STDP7310

- Controller für Monitor mit analoger VGA-Schnittstelle
- Oft ist eine Aufteilung auf zwei ICs sinnvoll:
 - Digital-IC plus diskrete ADU, DAU
- Vorteile:
 - Große Auswahl an diskreten ADUs und DAUs verfügbar
 - Digitale Verarbeitung kann den analogen Schaltungsteil stören
 - Mixed-Signal-ASIC ist aufwändiger und daher teurer.
 - Mixed-Signal-Fertigungstechnik ist schlechter verfügbar
- Eventuell besteht auch der STDP7310 aus zwei Silizium-Plättchen ("Die"), die in einem Gehäuse verpackt sind

(Bild aus Datenblatt http://www.st.com)

Serielle Ansteuerung

Beispiel: AD-Umsetzer MCP3201

- 12 bit Auflösung, Abtastrate maximal 100 kHz
- Acht Pins mit Anschlüssen:
 - IN+ und IN-, analoge Eingänge
 - DOUT, Datenausgang
 - CLK, Takteingang
 - /CS, Chip-Select und Shutdown
 - VREF, Referenzspannung
 - VDD und VSS, Versorgungsspannung und Masse
- Ansteuerung entspricht SPI-Protokoll (Serial Peripheral Interface)

Serielle Ansteuerung (II)

Beispiel: DA-Umsetzer MCP4921

- Acht Pins, wieder mit SPI-Protokoll:
 - VOUT, analoger Ausgang
 - SDI, Dateneingang
 - SCK, Takteingang
 - /CS, Chip-Select
 - /LDAC, Übernahmesignal für Daten (Latch DAC, Verwendung optional)
 - VREF, VDD, VSS
- Ausgabe von 16 bit Datenwort:
 - Null
 - B: Buffer für VREF
 - G: Gain, Verstärkungsfaktor 1 oder 2
 - S: Shutdown von VOUT, verringert Verlustleistung
 - 12 Bit Ausgabewert

Parallele Ansteuerung

- Für höhere Datenraten ist eine Datenübertragung über SPI nicht mehr möglich
- Geschwindigkeitssteigerung über parallele Datenleitungen

Beispiel: AD-Umsetzer AD9200

- 10 bit Auflösung, Abtastrate 20 MHz
- Zwei Gehäuse mit 28 und 48 Pins verfügbar
- Digitale Schnittstelle besteht aus den Anschlüssen:
 - D9 bis D0, Datenausgang mit 10 bit Wortbreite
 - OTR, Out-of-Range Indicator
 - STBY, Standby, setzt den AD-Umsetzer in den Ruhezustand
 - THREE-STATE, schaltet die Ausgangsleitungen ab
 - CLK, Takt
- Bei jedem Takt wird ein Datenwort mit 10 Bit ausgegeben
- Der Out-of-Range Indicator gibt an, wenn die Eingangswerte außerhalb des Messbereichs liegen

Parallele Ansteuerung – Differenzielle Datenleitungen

- Bei Geschwindigkeiten ab ca. 100 MHz wird Leitungsführung auf Platine schwierig
- Einsatz von differentiellen Leitungen
 - Ausgang hat zwei Leitungen mit entgegengesetzten Spannungspegeln
 - Kennzeichnung durch ,+' und ,-'

Beispiel: AD-Umsetzer AD9467

- 16 bit Auflösung, Abtastrate 250 MHz
- CLK+ und CLK-, Takteingang (2 Leitungen)
- DCO+ und DCO-, Taktausgang (2 Leitungen)
- Acht Datenausgänge mit LVDS-Werten auf 16 Leitungen
- Double-Data-Rate (DDR) also pro Taktzyklus nacheinander zwei Bit auf einer Datenleitung

Serielle Hochgeschwindigkeitsschnittstelle JESD204B

- Baustein auf vorheriger Folie benötigt 20 Leitungen
- Problem ist nicht unbedingt hohe Geschwindigkeit, sondern Synchronisierung von Daten und Takt
- JESD204B nutzt Rekonstruktion des Taktes aus den Daten
 - 8 bit Werte werden durch 10 Bit codiert mit garantierten 0-1-Wechseln

Beispiel: AD-Umsetzer ADC32J45

- 14 bit Auflösung, Abtastrate 160 MHz, zwei Analogports
- LVDS-Datenleitungen für Port A und B
- Datenübertragung mit 10-facher Geschwindigkeit des Taktsignals
- Taktsynchronisierung

