Hugo Marquerie 24/03/2025

Teorema de Cauchy-Hadamard

Teorema 1 (de Cauchy-Hadamard). Sea $f(z) = \sum_n a_n (z - z_0)^n \in \mathbb{C}[[x]]$ una serie formal de potencias con coeficientes en \mathbb{C} tal que $R = \frac{1}{\lim \sup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, \infty]$, entonces

- 1. f(z) converge absolutamente en $D(z_0, R) = \{z \in \mathbb{C} : |z z_0| < R\}$.
- 2. f(z) converge uniformemente en cada disco cerrado $\overline{D}(z_0,r)$ con $0 \le r < R$.
- 3. f(z) diverge en $\overline{D}(z_0, R)^c$.
- 4. El teorema no dice nada acerca de la convergencia en los puntos tales que $|z-z_0|=R$.