MC536 - Banco de Dados Trabalho Etapa 3

Nome: Murilo Guidetti Andrietta Ra: 147472

Nome: Naomi Takemoto Ra: 184849

1.Modelo Conceitual

2. Modelo Lógico (adaptado para Cypher)

No: Sample(name, _code_)

No: Clump_Thickness(name, _code_)

No: Uniformity_of_Cell_Size(name, _code_)

No: Uniformity of Cell Shape(name, code)

No: Marginal_Adhesion(name, _code_)

No: Single_Epithelial_Cell_Size(name, _code_)

No: Bare_Nuclei(name, _code_)

No: Bland_Chromatin(name, _code_)

No: Normal_Nucleoli(name, _code_)

No: Mitoses(name, _code_)

No: Diagnostic(name, _code_)

Aresta: Sample -> Clump_Thickness

Aresta: Sample -> Uniformity_of_Cell_Size
Aresta: Sample -> Uniformity_of_Cell_Shape

Aresta: Sample -> Marginal_Adhesion

Aresta: Sample -> Single_Epithelial_Cell_Size

Aresta: Sample -> Bare_Nuclei Aresta: Sample -> Bland_Chromatin

Aresta: Sample -> Normal_Nucleoli

Aresta: Sample -> Mitoses
Aresta: Sample -> Diagnostic

Observações: code no caso de Sample é o id da amostra. Para Diagnostic code é o valor 2 ou 4, indicando benígno e maligno respectivamente. Nos demais nós, esse atributo é um valor inteiro de 1 a10.

3.O porquê do modelo de Grafos

Um modelo de grafos é mais adequado quando se deseja realizar operações de caráter recursivo, por exemplo busca por caminhos. Esse tipo de tarefa não é suportado pelo SQL puro, sendo necessária a integração com uma linguagem tal qual JAVA.

No caso do dataset escolhido, a análise de caminhos não foi o foco, mas o uso de banco de dados de grafos foi vantajoso por facilitar a visualização dos dados, na plataforma Neo4j. Além disso, com ferramental de grafos, foi possível explorar a ideia de "centralidade", que evidenciou os nós com o maior número de links. Esses algoritmos são ponto de partida para explorar correlação entre os atributos da amostra.