

Colour Contents Colour Colour Models Converting between colour spaces Design with Colour

MOVING

- Visible light: electromagnetic energy having wavelengths in the range 400-700 nm 700 nm 400 nm 400 nm frequency (Hz) wavelength (nm) AM radio microwave ultraviolet gamma rays FM radio, TV infrared x-rays MOVING

Colour

- Cones are most densely packed within a region of the eye called the fovea.
- There are three types of cones: S, M, and L.
 - Roughly equivalent to blue, green, and red sensors, respectively.
 - Their peak sensitivities are located at approximately 430nm, 560nm, and 610nm for the "average" observer.

Colour

- Colour Perception
 - Different spectra can result in a perceptually identical sensations called metamers
 - Colour perception results from the simultaneous stimulation of 3 cone types (trichromat)
 - Our perception of colour is also affected by surround effects and adaptation

Colour

A certain colour will be represented by a certain signal

Colour

- Colour representations
 - Additive colour: Reproduce the red, green and blue parts of the image by adding together red, green and blue lights, starting with darkness
 - Subtractive colour: Filter the red, green and blue components of the image from white light.
 - Use coloured filters that in theory modulate only the red, green and blue components of the spectrum

Colour

Additive versus subtractive colour representations

Colour Models

- Colour models
 - RGB
 - CMY(K)
 - HSV
 - CIE
 - Other CIE Lab, HSL, ...

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Colour Models

- RGB: Colours are represented by varying intensities of red, green, and blue light.
 - Intensity of the components on a scale [0..255]
 - o no light emitted
 - 255 maximum intensity

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Colour Models

- CMY(K): Subtractive colour model used in colour printing.
 - Known as "four-colour process" or simply "process" colour.
 - All of the colours in the printable portion of the colour spectrum can be achieved by overlapping "tints" of cyan, magenta, yellow and black inks.
 - Combining cyan, magenta and yellow should form black
 - Because of the impurities in ink it produces a muddy brown colour.
 - Black ink is added to this system to compensate for these impurities.

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Colour Models

- CMYK:
 - Components quantities usually represented in

percentages.

Pere-Pau Vázguez – per

Colour Models

- HSV: encodes a colour using three components: Hue, Saturation, and Intensity (Value):
 - Hue: the actual colour of the object. It is an angle from o degrees to 360 degrees.
 - Saturation: measure of purity. Saturation indicates the range of grey in the colour space. It ranges from o (grey) to 100% (pure colour).
 - Intensity (value): how light the colour is.
 - The brightness of the colour
 - Varies with colour saturation.

Colour Models

- CIE: Standardized a set of primaries and colour matching functions
 - Based on actual human response
 - The basis for most colour measurement instruments used today
 - Tristimulus values are notated X, Y and Z.
 - Often reduced to two dimensions by projecting them onto the X+Y+Z=1 plane

Colour Models

Pere-Pau Vázquez – pere. pau@cs.upc.edu

MOVING

Colour Models

CD contains applets for you to test

Converting between colour spaces

- RGB to CMY and CMYK
 - RGB to CMY

C = 1-R;

M = 1-G;Y = 1-B;

RGB to CMYK with a percentage s of black :

K = min(1-R, 1-G, 1-B)*s/100;

C = 1-R-K;

M = 1-G-K;

Y = 1-B-K;

Converting between colour spaces

- CMY and CMYK to RGB
 - From CMY to RGB:

R = 1-C;

G = 1-M;

B = 1-Y;

CMYK to RGB:

R := max(1-C-K,0);

G := max(1-M-K,0);

B := max(1-Y-K,0);

Design with Colour

- Size and spatial frequency also important in perception
 - The higher the spatial frequency the lower the saturation
- Chromatic adaptation:
 - Illumination changes affect the colours dramatically
 - Human perception adapts to changes
 - Does not perceive those changes linearly

Design with Colour

- Colour blindness:
 - Inability to distinguish the colours the same way than non-colour impaired people
 - 5-10% of men
 - 1-2% of women
 - Relatively easy to detect
 - Ishihara tests

Design with Colour

Design with Colour

- Colour friendly design:
 - Exaggerate lightness differences between foreground and background colours
 - Avoid using adjacent colours of similar lightness
 - Contrast dark colours against light colours
 - Content areas should be monochromatic with the font colour and background at the opposite ends of the colour saturation poles
 - Elements of navigation, headers and sub-headers, require some extra visual enhancement

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Design with Colour

Contrast dark colours against light colours

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Design with Colour

Use opposite colours

Pere-Pau Vázquez – pere.pau@cs.upc.edu

MOVING

Design with Colour

Analogous colours

Pere-Pau Vázquez – pere.pau@cs.upc.edu

Design with Colour

Triad relationship

Design with Colour

Tetrad relationsip

Exercises

 Un triangle de color verd s'envia a imprimir a una impressora CMY. El paper que hi ha és groc. De quin color es veurà pintat el triangle en el paper? Raona la resposta.

Exercises

 Donat el color (1.0, 0.0, 0.5) en CMY, doneu una expressió d'un color RGB de la mateixa tonalitat però menys brillant.

Exercises

- Es vol imprimir un dibuix de color RGB = (1,0.5,0.5), en un full blanc usant una impressora que utilitza tintes Cyan, Magenta i Yellow. Contesta i justifica les respostes:
- Quines tintes s'han d'usar i en quina quantitat per a obtenir aquest dibuix?
- Si la impressora s'ha quedat sense tinta magenta, i imprimeix igualment, de quin color quedarà imprès el dibuix?

