Exercice 1.

1. On calcule v_1 .

$$\nu_1 = 1,6\nu_0 - 1,6\nu_0^2
= 1,6 \times 0,3 - 1,6 \times 0,3^2
= 0,336$$

Au bout d'un mois il y aura 0,336 million d'insectes soit 336000.

2. (a) Résolvons l'équation f(x) = x.

$$f(x) = x \iff 1,6x - 1,6x^{2} = x$$

$$\iff 0,6x - 1,6x^{2} = 0$$

$$\iff x(0,6 - 1,6x) = 0$$

$$\iff x = 0 \text{ ou } 0,6 - 1,6x = 0$$

$$\iff x = 0 \text{ ou } x = \frac{0,6}{1,6} = 0,375$$

$$S_{\left[0;\frac{1}{2}\right]} = \{0;0,375\}.$$

(b) On étudie les variations de f sur l'intervalle $\left[0; \frac{1}{2}\right]$.

$$f$$
 est dérivable sur $\left[0; \frac{1}{2}\right]$.
 $\forall x \in \left[0; \frac{1}{2}\right], f'(x) = 1, 6 - 3, 2x$.
Étudions le signe de $f'(x)$ sur $\left[0; \frac{1}{2}\right]$.
 $0 \le x \le \frac{1}{2} \implies 0 \ge -3, 2x \ge -1, 6$

On en déduit que la fonction f est strictement croissante sur $\left[0;\frac{1}{2}\right]$.

3. (a) Soit pose P_n la proposition : « $0 \le v_{n+1} \le v_n \le \frac{1}{2}$. ».

 $\implies 1.6 \geqslant f'(x) \geqslant 0$

- Initialisation : On a $v_0 = 0.5$ et $v_1 = 0.336$. On a bien $0 \le v_1 \le v_0 \le \frac{1}{2}$ donc la proposition P_0 est vraie.
- Hérédité : Soit n un entier naturel . On suppose P_n vraie c'est-à-dire $0 \leqslant v_{n+1} \leqslant v_n \leqslant \frac{1}{2}$ et montrons alors que P_{n+1} vraie c'est-à-dire $0 \leqslant v_{n+2} \leqslant v_{n+1} \leqslant \frac{1}{2}$. Par hypothèse de récurrence :

$$0 \leqslant v_{n+1} \leqslant v_n \leqslant \frac{1}{2}$$

$$\implies f(0) \leqslant f(v_{n+1}) \leqslant f(v_n) \leqslant f\left(\frac{1}{2}\right) \quad f \text{ est strictement croissante sur } \left[0; \frac{1}{2}\right]$$

$$\implies 0 \leqslant v_{n+2} \leqslant v_{n+1} \leqslant 0, 4 \quad \text{car } f(0) = 0, \ f(v_{n+1}) = v_{n+2}, \ f(v_n) = v_{n+1}), \ f\left(\frac{1}{2}\right) = 0, 4$$

$$\implies 0 \leqslant v_{n+2} \leqslant v_{n+1} \leqslant 0, 4 \leqslant 0, 5$$

Ainsi, P_{n+1} est vraie.

— Conclusion : P_0 est vraie, et P_n est héréditaire : on en déduit que P_n est vraie pour tout entier naturel p_n

$$\forall n \in \mathbb{N}, \quad 0 \leqslant v_{n+1} \leqslant v_n \leqslant \frac{1}{2}$$

- (b) $-\forall n \in \mathbb{N}, v_{n+1} \leq v_n$: la suite (v_n) est donc décroissante.
 - \forall *n* ∈ \mathbb{N} , 0 \leq v_n : la suite (v_n) est donc minorée par 0.
 - La suite (v_n) converge donc vers une limite ℓ telle que $\ell \geqslant 0$.
- (c) L'énoncé nous précise que la limite ℓ de la suite est solution de l'équation f(x) = x dont les solutions sont x = 0 ou x = 0,375.
 - Or $v_0 = 0,3$ et la suite (v_n) est décroissante donc ℓ ne peut être égale à 0,375 et donc $\ell = 0$.
- (d) Ce résultat suggère que les insectes seront en voie de disparition puisque leur nombre se rapprochera de à.

Exercice 2.

1. On reconnaît une forme indéterminée du type « $\infty - \infty$ » donc on change d'écriture.

Soit
$$n > 0$$
: $-2n^2 + 8n - 5 = n^2 \left(-2 + \frac{8}{n} - \frac{5}{n^2} \right)$.

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} n^2 = +\infty$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} -2 + \frac{8}{n} - \frac{5}{n^2} = -2$$

$$\Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} n^2 \left(-2 + \frac{8}{n} - \frac{5}{n^2} \right) = -\infty.$$

Conclusion: $\lim_{n \to +\infty} -2n^2 + 8n - 5 = -\infty$.

2.
$$-1 < \frac{12}{13} < 1 \implies \lim_{n \to +\infty} \left(\frac{12}{13}\right)^n = 0$$
 et par suite $\lim_{n \to +\infty} 5 \left(\frac{12}{13}\right)^n + 200 = 200$.

3. On a une forme indéterminée du type « $\infty - \infty$ » donc on change d'écriture.

$$4n - \sqrt{n} = n\left(4 - \frac{1}{\sqrt{n}}\right).$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} n = +\infty \\ \lim_{\substack{n \to +\infty }} 4 - \frac{1}{\sqrt{n}} = 4 \end{array} \right\} \overset{\text{par produitdes limites}}{\Longrightarrow} \lim_{\substack{n \to +\infty \\ n \to +\infty}} n \left(4 - \frac{1}{\sqrt{n}} \right) = +\infty.$$

Conclusion:
$$\lim_{n \to +\infty} 4n - \sqrt{n} = +\infty$$
.

4. $\forall n \in \mathbb{N}, -1 \leqslant \cos(2n) \leqslant 1$ puis $4^n - 1 \leqslant 4^n + \cos(2n) \leqslant 4^n + 1$. $4 > 1 \implies \lim_{n \to +\infty} 4^n = +\infty$ puis $\lim_{n \to +\infty} 4^n - 1 = +\infty$: d'après le théorème de comparaison des limites on a alors $\lim_{n \to +\infty} 4^n + \cos(2n) = +\infty$.

5. $\forall n \in \mathbb{N}, -1 \leqslant (-1)^n \leqslant 1 \text{ puis } -2 \leqslant 2(-1)^n \leqslant 2 \text{ et enfin} :$

$$-2-n \le 2(-1)^n - n \le 2 - n$$
.

Or $\lim_{n\to+\infty} 2-n=-\infty$: d'après le théorème de comparaison des limites on a alors :

$$\lim_{n \to +\infty} 2(-1)^n - n = -\infty$$

•