Using GPS Data to Predict Accident Risk: Evidence from Beijing

Kanyao Han

University of Chicago

Summary

The popularization of telematics technology over the last decade have ushered in a new era for accident analysis since it can provide two critical sets of always-on information pertinent to accident analysis and prediction: individual-level moving behavior and sociodemographic characteristics. In this paper, I extract them from a car GPS dataset from a telematics company in Beijing, merge them with an insurance dataset from an insurance company, and test their role in accident analysis. I find the features extracted from the car GPS dataset can not only help us better analyze the probability of car accident, but improve the prediction of accident loss.

Objectives

- > Design a method to extract home address information from the GPS dataset.
- > Further mine useful information from home address for prediction
- > Extract driving behavior information from the GPS dataset
- > Build predictive models for accident analysis and prediction

Data

- > GPS DATA: a three-month record of more than 10,000 cars, including GPS points and driving behavior records such as mileage and speed.
- ➤ INSURANCE DATA: claim history (used for measuring accident), insurance policy, a limited number of vehicle owners' demographic characteristics and some vehicle-related characteristics such as car price and type.

Identifying Home Address

For each car:

- d_i is the distance from GPS point i to the mean center of all points
- N_j is the number of GPS points in period j
- d_{final} is the distance between two GPS points when $N_i = 2$

The Distribution of Car Owners' Home Address

The distributions of all car owners' home address and that of those who report accident are similar since more residents signifies more accidents in terms of quantity instead of proportion. In other words, the differences between them may imply different probability of accident. According to the maps and the socioeconomic layout in Beijing, I speculate that Haidian District, the south part of Beijing and northern resident area might provide some important information for accident prediction.

Mobility Pattern and Driving Behavior

The mobility pattern and driving behavior can be easily obtained because the GPS dataset also directly contains driving parameters. Generally, they can be divided into three groups:

Pure driving behavior	Social driving behavior
Acceleration and brake behavior, driving speed	Driving record based on time and place such as
and familiar road driving	night driving and urban driving

Accident classification in binary logistic models

Variables	Definition	Models		
		Insurance	GPS	Stepwise
Driver-related characteristics in a		0.000	0.000	
FEMALE	Drivers are female	0.008	0.030	
	D	(0.094)	(0.095)	
AGE	Drivers' age	-0.001	0.001	
	Windows Courtly advis	(0.004)	(0.107)	
STATE_JOB	Working for the state	-0.016	-0.008	
INTERNET_SALE	T	(0.090)	(0.091)	0.22444
	Buying insurance via internet	-0.323 ***	-0.339 ***	-0.324 **
		(0.125)	(0.126)	(0.120)
ANNUAL_MIL	Annual driving mileage	0.160 ***	0.130 ***	0.133 ***
Vahida salatadah sasatsaistisais	the incomes detect	(0.025)	(0.028)	(0.028)
Vehicle-related characteristics in to CAR_PRICE		1.578e-07	-1.629e-09	
	Car price			
NEW CAD	Car was purchased in recent three years	(4.3e-07) 0.503 ***	(4.37e-07) 0.498 ***	0.501 ***
NEW_CAR	Car was purchased in recent timee years			
	Can balance to Minima (SLIV)	(0.098)	(0.099)	(0.098)
BIG_CAR AIRBAG	Car belongs to Minivan/SUV	-0.190	-0.194	
	Number of sinks	(0.188)	(0.189)	
	Number of airbags	0.003	0.005	
	Eminoral mith f-1 -14 -1	(0.028)	(0.028)	
ALARM	Equipped with a safe belt alarm	-0.0143	-0.132	
	nr 1-1-	(0.349)	(0.354)	
Home address extracted from G			-0.409	-0.417
HAIDIAN	Living at Haidian District			
SOUTH	T initial at the court of the major material and		(0.279) 0.278 ***	(0.275)
	Living at the south of the main urban area			0.262 **
NORTH	Living in the northern resident area		(0.107) 0.255 *	(0.103) 0.269 **
	Living in the northern resident area		(0.139)	(0.133)
Driving behaviors and patterns e	extracted from GDS data		(0.139)	(0.133)
HARD_ACCL	Average number of hard accelerations in one hour		-0.025	
HARD_ACCL	Twentige number of hard accelerations in one nour		(0.032)	
HARD_BRK	Average number of hard brakes in one hour		0.187 ***	0.159 **
	Therage number of hard brance in one near		(0.054)	(0.042)
PCT_SPEED	The fraction of mileage of driving with speed below 90 km/h		-0.028	(0.012)
	The fraction of infreage of arving with speed below 50 km/h		(0.687)	
PCT_URBAN	The fraction of mileage of driving in the urban area		0.205	
	The fraction of infreage of driving in the droan area		(0.256)	
PCT_FREEWAY	The fraction of mileage of driving on the freeways		-0.148	
	The fraction of infleage of driving on the freeways		(0.535)	
PCT_LOCAL	The fraction of mileage of driving on the local roads		0.360	
	The fraction of infleage of driving off the focal foads		(0.645)	
PCT_WEEKEND	The fraction of mileage of driving during weekends		-0.334	
	The traction of inneage of driving during weekends		(0.382)	
PCT_NIGHT	The fraction of mileage exposure of driving during nights		0.611 *	0.621 *
	The traction of inneage exposure of driving during inghts			
MEAN_FMLRT	The frequency in the same reads		(0.361) -0.123 ***	(0.349) -0.121 **
	The frequency in the same roads.			
Intercept		-2.403 ***	(0.036) -2.225**	(0.035) -2.390 **
miercepi		(0.392)	(0.921)	(0.152)
Log-likelihood		-2039.3	-2015.5	-2017.7
_				
AIC		4100.6 4175	4077 4232	4055 4123
BIC				

Accident Loss prediction

Feature Influence / Importance

The gradient boosting model with features from both GPS and insurance data heavily relies on driving behavior and mobility pattern.

Conclusion and Discussion

- ➤ It is possible to extract useful socioeconomic information from GPS data for predictive purpose. However, the difficulty in this step is not only to design an appropriate method/algorithm, but to interpret the GPS points and assign the social meaning to it.
- ➤ I identify car owners' home address and speculate some areas that might provide information for prediction. The logistic regression results show that this method is useful since the variables are significant or quasi-significant. .
- The combination of socioeconomic and driving behavior features extracted from GPS data can improve the prediction of both accident and its loss, since they increase the log likelihood in the logistic model and lower the mean squared error via gradient boosting model.
- > Driving behaviors sometimes seem more important than socioeconomic characteristics in accident prediction.