H21T1A3

Auf dem Gebiet $\Omega := \{z \in \mathbb{C} : |z| < 2\pi\}$ betrachten wir die meromorphe Funktion $f(z) := \frac{e^{z}-1}{\sin(z)}$.

- a) Bestimmen Sie alle Singularitäten von f und deren Typ.
- b) Berechnen Sie die Residuen von f in allen Singularitäten.
- c) Besitzt die Funktion f eine Stammfunktion auf Ω ?
- d) Bestimmen Sie $c_1, c_2, a_1, a_2 \in \mathbb{C}$, sodass die Funktion $F(z) := f(z) + c_1 \frac{1}{z a_1} + c_2 \frac{1}{z a_2}$ auf Ω eine Stammfunktion besitzt.

Zu a) und b)

Da die Nullstellen von $\sin(z)$ genau die Vielfachen von π sind, ist $f: \Omega \setminus \{-\pi, 0, \pi\} \to \mathbb{C}$; $z \to \frac{e^z - 1}{\sin(z)}$ holomorph als Quotient holomorpher Funktionen mit nullstellenfreiem Nenner.

Es gilt
$$\lim_{z \to \pi} |f(z)| = \infty = \lim_{z \to \pi} |f(z)|$$
 und $\lim_{z \to \pi} (z - \pi) f(z) = \lim_{z \to \pi} \frac{(z - \pi)(e^z - 1)}{\sin(z)} \stackrel{\text{(1)}}{=} -\lim_{z \to \pi} \frac{(z - \pi)(e^z - 1)}{\sin(z - \pi)} = -\lim_{z \to \pi} \frac{(z - \pi)(e^z - 1)}{\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z - \pi)^{2k+1}} = -\lim_{z \to \pi} \frac{(e^z - 1)}{\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z - \pi)^{2k}} = (2) = -(e^{\pi} - 1) = 1 - e^{\pi},$

denn (1): $\sin(z - \pi) = -\sin(z)$ und (2): Die Potenzreihe $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z - \pi)^{2k}$ konvergiert auf ganz \mathbb{C} , insbesondere definiert sie eine ganze Funktion mit $\lim_{z \to \pi} \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z - \pi)^{2k} \right) = 1$.

Analog zeigt man $\lim_{z \to -\pi} (z + \pi) f(z) = 1 - e^{-\pi}$. Daher sind π und $-\pi$ Pole erster Ordnung von f mit $Res(f, -\pi) = 1 - e^{-\pi}$ und $Res(f, \pi) = 1 - e^{\pi}$.

Für z = 0 haben sowohl $e^z - 1$ als auch $\sin(z)$ eine Nullstelle und $\sin(z) = \sum_{l=0}^{\infty} \frac{(-1)^l}{(2l+1)!} z^{2l+1}$ sowie $e^z - 1 = \left(\sum_{k=0}^{\infty} \frac{z^k}{k!}\right) - \left(\frac{z^0}{0!}\right) = \sum_{k=1}^{\infty} \frac{z^k}{k!}$. Also gilt für $0 < |z| < \pi$:

$$\frac{e^{z}-1}{\sin(z)} = \frac{\sum_{k=1}^{\infty} \frac{z^{k}}{k!}}{\sum_{l=0}^{\infty} \frac{(-1)^{l}}{(2l+1)!} z^{2l+1}} = \frac{z\left(\sum_{k=1}^{\infty} \frac{z^{k-1}}{k!}\right)}{z\left(\sum_{l=0}^{\infty} \frac{(-1)^{l}}{(2l+1)!} z^{2l}\right)} \xrightarrow{z \to 0} \frac{1}{1} = 1$$

Da $\sum_{k=1}^{\infty} \frac{z^{k-1}}{k!}$ und $\sum_{l=0}^{\infty} \frac{(-1)^l}{(2l+1)!} z^{2l}$ ganze Funktionen mit Grenzwert 1 (für z \rightarrow 0) definieren. Deshalb hat f bei 0 eine hebbare Singularität mit Res(f,0) = 0.

Zu c)

f hat keine Stammfunktion auf $\Omega \setminus \{-\pi, 0, \pi\}$, denn z.B. $\gamma: [0; 2\pi] \to \Omega \setminus \{-\pi, 0, \pi\}$; $t \to \pi + e^{it}$ ist ein geschlossener C¹-Weg in $\Omega \setminus \{-\pi, 0, \pi\}$ mit $\int_{\gamma} f(z)dz = 2\pi i \operatorname{Res}(f, \pi) = 2\pi i (1 - e^{\pi}) \neq 0$.

Zu d)

 $F:\Omega\backslash\{-\pi,0,\pi\}\to\mathbb{C}$; $z\to f(z)-\frac{Res(f,\pi)}{z-\pi}-\frac{Res(f,-\pi)}{z+\pi}$ ist holomorph. Da Ω als offene Kreisscheibe einfach zusammenhängend ist, ist jeder geschlossene stückweise C^1 -Weg in $\Omega\backslash\{-\pi,0,\pi\}$ auch ein geschlossener stückweiser C^1 -Weg in Ω mit $Spur(\gamma)\cap\{-\pi,0,\pi\}=\emptyset$ und also solcher nullhomolog in Ω . Nach dem Residuensatz gilt dann $\int_{\gamma}F(z)dz=2\pi i\left((n(\gamma,0)Res(f,0)+n(\gamma,\pi)Res(f,\pi)+n(\gamma,-\pi)Res(f,-\pi)\right)-n(\gamma,\pi)Res(f,\pi)-n(\gamma,-\pi)Res(f,-\pi)\right)=0$ (Da $\frac{Res(f,\pi)}{z-\pi}$ einen Pol erster Ordnung mit Residuum $Res(f,\pi)$ hat und analog).

Da also $\int_{\gamma} F(z)dz = 0$ für jeden geschlossenen stückweisen C¹-Weg γ in $\Omega \setminus \{-\pi, 0, \pi\}$ gilt, hat F auf $\Omega \setminus \{-\pi, 0, \pi\}$ eine Stammfunktion.