Improving Type Error Localization for Languages with Type Inference

Thomas Wies

New York University

joint work with Zvonimir Pavlinovic (NYU) and Tim King (Google)

Type Safety

"Well-typed programs don't go wrong."

```
let rec fac n =
  if n < 2 then 1
  else n * fac (n-1)
in
  fac "hello"</pre>
```

```
let rec fac (n: int): int =
  if n < 2 then 1
  else n * fac (n-1)
in
  fac "hello"</pre>
```

Error: This expression has type string but an expression was expected of type int

Error: This expression has type int but an expression was expected of type 'a -> 'b

"Have your cake and eat it too"

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

Error: This expression has type int but an expression was expected of type 'a -> 'b

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
  g (f x)
in
  compose 3 4
```

```
compose: 'd -> 'e -> 'n -> 'm
f: 'd
g: 'e
x: 'n
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
compose: 'd -> 'e -> 'n -> 'm
f: 'd
g: 'e
x: 'n
```

```
'd = 'a -> 'b
'n = 'a
```

```
let compose f g x =
    g (f x)
in
    compose 3 4
```

```
compose: 'd -> 'e -> 'n -> 'm
f: 'd
g: 'e
x: 'n
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

```
compose: ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

Checking the use of compose:

```
compose: ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

Checking the use of compose:

```
compose: ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
int = 'a -> 'b
```

```
int = 'a -> 'b
int = 'b -> 'c
'e = 'a -> 'c
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

Checking the use of compose:

```
compose: ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
int = 'a -> 'b
int = 'b -> 'c
'e = 'a -> 'c
```

```
let compose f g x =
   g (f x)
in
   compose 3 4
```

Checking the use of compose:

Error: This expression has type int but an expression was expected of type 'a -> 'b

- Type safety is guaranteed statically
- No type annotations needed
- Type parameterization comes for free
- Efficient in practice (more on that later)

```
let f x y =
  let yi = int_of_string y in
  x + yi
in
  f "1" "2" + f "3" "4"
```

```
let f x y =
  let yi = int_of_string y in
  x + yi
in
  f "1" "2" + f "3" "4"
```

Error: This expression has type string but an expression was expected of type int

```
let f x y =
  let yi = int_of_string y in
  x + yi
in
  f "1" "2" + f "3" "4"
```

Who should be blamed for a type mismatch?

Error: This expression has type string but an expression was expected of type int

```
let f(lst:move list): (float*float) list =
  let rec loop lst x y dir acc =
    if lst = [] then
      acc
    else
      print_string "foo"
  in
  List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

```
let f(lst:move list): (float*float) list =
  let rec loop lst x y dir[acc] =
    if lst = [] then
      acc -
                             acc must have type unit
    else
      print_string "foo"
  in
  List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

```
let f(lst:move list): (float*float) list =
  let rec loop lst x y dir[acc] =
    if lst = [] then
      acc -
                             acc must have type unit
    else
      print_string "foo"
  in
  List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

Error: This expression has type 'a list but an expression was expected of type unit

```
let f(lst:move list): (float*float) list =
  let rec loop lst x y dir[acc] =
    if lst = [] then
      acc
                             acc must have type unit
    else
      print_string "foo"
  in
  List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

Error: This expression has type 'a list but an expression was expected of type unit

```
let f(lst:move list): (float*float) list =
  let rec loop lst x y dir acc =
    if lst = [] then
      acc
    else
      print_string "foo"
  in
  List.rev
    (loop lst 0.0 0.0 0.0 [(0.0,0.0)])
```

Error: This expression has type unit but an
expression was expected of type (float*float) list

Challenges

 Can we find good heuristics to rank type error sources by their usefulness?

 Can we find a solution that is agnostic to the specific type system?

 Can we implement that solution without substantial compiler modifications?

Can we provide formal quality guarantees?

Is this not a solved problem by now?

Is this not a solved problem by now?

[M. Wand [Duggan & Bent]		[Beaven & Stansifer]	1986
[2 000000	[J. Yang]		
[O. Chitil]		[Tip & Dinesh]	
[Neubauer & Thiemman] [Stu		ckey, Sulzmann, & Wazny]	2000
[Haack & Well	s] [H. Gast]		
[Lerner, Flower, Grossman, & Chambers]			
[Chen & Erwig]	[Zhang & Myers]	[Pavlinovic, King, & Wies]	
[Zhang, Myers, Vytiniotis, & Jones]			2016

Defining the Problem

"A good definition is worth a thousand theorems"

Error Sources

```
let x = "hi" in not x
```

Error Sources

```
let x = "hi" in not x
```

Error Sources

```
let x = "hi" in not ?
```

Error Sources

Error Source

An error source is a set of program expressions that, once corrected, yield a well-typed program

Minimum Error Sources

```
let x = "hi" in not x
```

Minimum Error Sources

```
let x = "hi" in ?
```

Minimum Error Sources

- Rank sources by some useful criterion
 - by assigning weights to expressions

Minimum Error Source

An error source with minimum cumulative weight

 Prefer error sources that require fewer code modifications?

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not ?(1)
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in ?(1) x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in ?(3)
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

? (5)

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

- Prefer error sources that require fewer code modifications?
 - assign weights according to expression's size

```
let x = "hi" in not x
```

Problem Definition

Computing Minimum Error Sources

Given a program and a compiler-provided ranking criterion, find a minimum error source subject to that criterion

Solving the Problem

"Every CS problem can be solved by adding another level of indirection"

```
let x = "hi" in not x
```

$$let x = "hi" in not x$$

$$\alpha_{let} = \alpha_o$$

let
$$x$$
 = "hi" in not x $lpha_{let} = lpha_o$ $lpha_x = ext{string}$

let
$$x$$
 = "hi" in $not x$ $lpha_{let} = lpha_o$ $lpha_x = string$ $alpha_{app} = fun(lpha_i\,,\,lpha_o)$

let
$$x$$
 = "hi" in not x $lpha_{let} = lpha_o$ $lpha_x = string$ $lpha_{app} = fun(lpha_i\,,\,lpha_o)$ $lpha_{not} = lpha_{app}$

let
$$x$$
 = "hi" in not x $lpha_{let} = lpha_o$ $lpha_x = ext{string}$ $lpha_{app} = ext{fun}(lpha_i\,,\,lpha_o)$ $lpha_{not} = lpha_{app}$ $\overline{lpha_i = lpha_x}$

```
let x = "hi" in not x
\alpha_{let} = \alpha_o
  \alpha_x = \mathsf{string}
lpha_{ann} = \mathsf{fun}(lpha_i \ , \ lpha_o)
\alpha_{not} = \alpha_{app}
   \alpha_i = \alpha_r
\alpha_{not} = fun(bool, bool)
```

let
$$\mathbf{x}$$
 = "hi" in not \mathbf{x}
$$\alpha_{let} = \alpha_o$$

$$\alpha_x = \mathrm{string}$$
 program is well-typed
$$\alpha_{app} = \mathrm{fun}(\alpha_i \ , \ \alpha_o)$$
 if and only if
$$\alpha_{not} = \alpha_{app}$$

$$\alpha_i = \alpha_x$$
 constraints are satisfiable
$$\alpha_{not} = \mathrm{fun}(\mathrm{bool}, \mathrm{bool})$$

let
$$x =$$
 "hi" in not x $lpha_{let} = lpha_o$ $lpha_x =$ string $lpha_{app} = ext{fun}(lpha_i\,,\,lpha_o)$ $lpha_{not} = lpha_{app}$ $lpha_i = lpha_x$ $lpha_{not} = ext{fun}(ext{bool},\, ext{bool})$

```
let x = "hi" in not x
\alpha_{let} = \alpha_o
  \alpha_x = \mathsf{string}
lpha_{app} = \mathsf{fun}(lpha_i \ , \ lpha_o) \ .
lpha_{not} = lpha_{app}
                             \mathbf{un}(\alpha_i, \alpha_o) = \mathbf{fun}(\mathbf{bool}, \mathbf{bool})
   \alpha_i = \alpha_x
\alpha_{not} = \mathsf{fun}(\mathsf{bool}, \mathsf{bool})
```

let
$$\mathbf{x}$$
 = "hi" in not \mathbf{x}
$$\alpha_{let} = \alpha_o$$

$$\alpha_x = \text{string}$$

$$\alpha_i = \text{bool}$$

$$\alpha_{app} = \text{fun}(\alpha_i, \alpha_o)$$

$$\alpha_o = \text{bool}$$

$$\alpha_{not} = \alpha_{app}$$

$$\alpha_i = \alpha_x$$

$$\alpha_{not} = \text{fun}(\text{bool}, \text{bool})$$

$$\alpha_{not} = \text{fun}(\text{bool}, \text{bool})$$

let
$$\mathbf{x} =$$
 "hi" in not \mathbf{x}
$$\alpha_{let} = \alpha_o$$

$$\alpha_x = \text{string}$$

$$\alpha_a = \text{fun}(\alpha_i, \alpha_o)$$

$$\alpha_{o} = \text{bool}$$

$$\alpha_{not} = \alpha_{app}$$

$$\alpha_{i} = \alpha_{x}$$

$$\alpha_{not} = \alpha_{i}$$

$$\alpha_{not} = \alpha_{i}$$

$$\alpha_{not} = \alpha_{i}$$

$$\alpha_{not} = \alpha_{i}$$
 fun(α_i, α_o) = fun(bool, bool)

Propositional Satisfiability (SAT)

• Input: a set of clauses in propositional logic

$$(\neg A \lor B) \land (\neg B \lor \neg C) \land A \land C$$

• Output: satisfying assignment/unsat

Weighted MaxSAT

Input: a set of clauses in propositional logic
 + a positive weight for each clause

$$(\neg A \lor B) \land (\neg B \lor \neg C) \land A \land C$$
2
1
3
3

 Output: satisfiable subset of input clauses with maximum cumulative weight

Weighted MaxSAT

Input: a set of clauses in propositional logic
 + a positive weight for each clause

$$(\neg A \lor B) \land (\neg B \lor \neg C) \land A \land C$$
2
1
3
3

 Output: satisfiable subset of input clauses with maximum cumulative weight

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specific theory

$$f(x) \neq z \land f(y) = z \land w = y \land (x - y = 0 \lor f(w) \neq z)$$

Output: satisfying assignment/unsat

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specific theory

$$f(x) \neq z \land f(y) = z \land w = y \land (x - y = 0 \lor f(w) \neq z)$$

Output: satisfying assignment/unsat

Observation:

Type Checking = Satisfiability Modulo Inductive Data Types

Weighted MaxSMT

Weighted MaxSMT

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specified theory

```
3 f(x) \neq z \land

1 f(y) = z \land

1 w = y \land

4 (x - y = 0 \lor f(w) \neq z)
```

Output: satisfiable subset of input clauses with maximum cumulative weight

Weighted MaxSMT

 Input: a set of clauses in (quantifier-free) first-order logic interpreted in a specified theory

```
3 f(x) \neq z \land

1 f(y) = z \land

1 w = y \land

4 (x - y = 0 \lor f(w) \neq z)
```

Output: satisfiable subset of input clauses with maximum cumulative weight

```
let x = "hi" in not x
```

let
$$x =$$
 "hi" in not x

$$\alpha_{let} = \alpha_o \wedge$$

let
$$x$$
 = "hi" in not x $lpha_{let} = lpha_o \ \land$ $lpha_x = {\sf string} \ \land$

let
$$x$$
 = "hi" in not x $lpha_{let} = lpha_o$ \wedge $lpha_x = string \wedge $lpha_{app} = fun(lpha_i, lpha_o)$ $\wedge$$

let
$$x$$
 = "hi" in not x
 $lpha_{let} = lpha_o \ \land$
 $lpha_x = ext{string} \ \land$
 $lpha_{app} = ext{fun}(lpha_i, lpha_o) \ \land$
 $lpha_{not} = lpha_{app} \ \land$

let
$$x$$
 = "hi" in not x
 $lpha_{let} = lpha_o \land$
 $lpha_x = ext{string} \land$
 $lpha_{app} = ext{fun}(lpha_i, lpha_o) \land$
 $lpha_{not} = lpha_{app} \land$
 $lpha_i = lpha_x \land$

```
let x = "hi" in not x
           \alpha_{let} = \alpha_o \wedge
              \alpha_x = \operatorname{string} \wedge
                    \alpha_{app} = \operatorname{fun}(\alpha_i, \alpha_o) \wedge
                             \alpha_{not} = \alpha_{app} \wedge
                          \alpha_i = \alpha_x \qquad \wedge
                   \alpha_{not} = \text{fun(bool, bool)}
```

let
$$x =$$
 "hi" in not x

$$\alpha_{let} = \alpha_o \land$$

$$\alpha_x = \text{string} \land$$

$$\alpha_{app} = \text{fun}(\alpha_i, \alpha_o) \land$$

$$\alpha_{not} = \alpha_{app} \land$$

$$\alpha_i = \alpha_x \land$$

$$\alpha_{not} = \text{fun(bool, bool)}$$

let
$$x =$$
 "hi" in not x
 $T_{let} \Longrightarrow (\alpha_{let} = \alpha_o \land T_x \Longrightarrow \alpha_x = \operatorname{string} \land T_{app} \Longrightarrow (\alpha_{app} = \operatorname{fun}(\alpha_i, \alpha_o) \land T_{not} \Longrightarrow \alpha_{not} = \alpha_{app} \land T_i \Longrightarrow \alpha_i = \alpha_x)) \land T_{not impl} \Longrightarrow \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not} \land T_i \land T_{not impl}$

let
$$x$$
 = "hi" in not x
 $T_{let} \Longrightarrow (\alpha_{let} = \alpha_o \land T_x \Longrightarrow \alpha_x = \operatorname{string} \land T_{app} \Longrightarrow (\alpha_{app} = \operatorname{fun}(\alpha_i, \alpha_o) \land T_{not} \Longrightarrow \alpha_{not} = \alpha_{app} \land T_i \Longrightarrow \alpha_i = \alpha_x)) \land T_{not\ impl} \Longrightarrow \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{not\ impl} \lt \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{not\ impl} \land T_{let} \land T_x \land$

let
$$x$$
 = "hi" in not ?

 $T_{let} \Longrightarrow (\alpha_{let} = \alpha_o \land T_x \Longrightarrow \alpha_x = \operatorname{string} \land T_{app} \Longrightarrow (\alpha_{app} = \operatorname{fun}(\alpha_i, \alpha_o) \land T_{not} \Longrightarrow \alpha_{not} = \alpha_{app} \land T_i \Longrightarrow \alpha_i = \alpha_x)) \land T_{not impl} \Longrightarrow \alpha_{not} = \operatorname{fun}(\operatorname{bool}, \operatorname{bool}) \land T_{let} \land T_x \land T_{app} \land T_{not} \land T_i \land T_{not impl} < \infty$

let
$$x =$$
 "hi" in not ?

 $T_{let} \implies (\alpha_{let} = \alpha_o \land T_x \implies \alpha_x = \text{string } \land T_{app} \implies (\alpha_{app} = \text{fun}(\alpha_i, \alpha_o) \land T_{not} \implies \alpha_{not} = \alpha_{app} \land T_i \implies \alpha_i = \alpha_x)) \land T_{not impl} \implies \alpha_{not} = \text{fun}(\text{bool}, \text{bool}) \land$

Exponential Complexity of Type Checking for the ML Language Family

```
let pair f x = f x x in
let f x = pair x in
let f x = f (f x) in
fun z \rightarrow f (fun x \rightarrow x) z
```

I'll reserve a table at Miliways for you!

Let Polymorphism

```
let id x = x in
  id 1, id true
```

$$egin{pmatrix} lpha_{id} = \mathsf{fun}(lpha_x,lpha_r) \ lpha_x = lpha_r \end{pmatrix}$$

Let Polymorphism

let id
$$x = x$$
 in id 1, id true

$$egin{pmatrix} lpha_{id} = \mathsf{fun}(lpha_x, lpha_r) \ lpha_x = lpha_r \end{pmatrix}$$

$$egin{aligned} &lpha_{app_1} = \operatorname{fun}(lpha_{i_1},lpha_{o_1}) \ &lpha_{i_1} = \operatorname{int} \ &lpha_{app_1} = lpha_{id_1} \ &lpha_{id_1} = \operatorname{fun}(lpha_{x_1},lpha_{r_1}) \ &lpha_{x_1} = lpha_{r_1} \end{aligned}$$

$$\begin{split} &\alpha_{app_2} = \operatorname{fun}(\alpha_{i_2}, \alpha_{o_2}) \\ &\alpha_{i_2} = \operatorname{bool} \\ &\alpha_{app_2} = \alpha_{id_2} \\ &\alpha_{id_2} = \operatorname{fun}(\alpha_{x_2}, \alpha_{r_2}) \\ &\alpha_{x_2} = \alpha_{r_2} \end{split}$$

Let Polymorphism

$$\begin{aligned} &\alpha_{app_1} = \operatorname{fun}(\alpha_{i_1}, \alpha_{o_1}) \\ &\alpha_{i_1} = \operatorname{int} \end{aligned}$$

$$egin{align*} & lpha_{app_1} = lpha_{id_1} \ & lpha_{id_1} = \operatorname{\mathsf{fun}}(lpha_{x_1}, lpha_{r_1}) \ & lpha_{id_1} = lpha_{id_1} \end{aligned}$$

$$egin{pmatrix} lpha_{id} = extstyle extst$$

$$egin{aligned} &lpha_{app_2} = \operatorname{fun}(lpha_{i_2},lpha_{o_2}) \ &lpha_{i_2} = \operatorname{bool} \ &lpha_{app_2} = lpha_{id_2} \ &lpha_{id_2} = \operatorname{fun}(lpha_{x_2},lpha_{r_2}) \ &lpha_{x_2} = lpha_{r_2} \end{aligned}$$

Constraint size grows exponential with the nesting depth of lets

System Architecture

System Architecture

- support various type systems due to SMT
- modest compiler modifications
- easy to change the ranking criterion

Prototype Implementation

Subset of OCaml (roughly Caml light)

Weighted MaxSMT procedure of vZ (branch of Z3)

 15% more accuracy than OCaml's type checker (even with a rather simplistic ranking criterion)

 Good scalability (a few seconds for several thousand lines of code)

Conclusions

- Practical algorithm for localizing type errors
- Finds the "best" source of a type error
- Abstracts from the definition of "best"
- Works well for Hindley-Milner type systems (OCaml, SML, F#, Haskell, ...)
- Still work to be done for more expressive type systems (GADTs, dependent types, ...)