

Optimización

Optimización sin restricciones

Docente: Cristian Guarnizo Lemus

Somos Innovación Tecnológica con Sentido Humano

Contenido

- 1. Optimización sin restricciones.
- 2. Convexidad en optimización.

Optimización sin restricciones suave

Problema de optimización sin restricciones:

Caso especial cuando el conjunto factible $\Omega = R^n$

$$\min f(x)$$

$$x \in \mathbb{R}^n$$

Definición:

 x^* es una solución local si $\exists N(x^*): f(x^*) \leq f(x)$ $\forall x \in N(x^*).$

Condiciones de optimalidad:

1er orden Necesaria: sí x^* es un mínimo local entonces $\nabla f(x^*) = \mathbf{0}$.

2do orden Necesaria: sí x^* es un mínimo local entonces $\nabla f(x^*) = \mathbf{0}$ y $H(x^*)$ es semidefinida positiva.

2do orden Suficiente: sí $\nabla f(x^*) = \mathbf{0}$ y $H(x^*)$ es definida positiva entonces x^* es un mínimo local.

Vigilada Mineducación

Ejemplo de aplicación de Condición necesaria

Problema

Encontrar todos los puntos estacionarios de la función

$$f(x) = x_1^4 + x_1^2(1 - 2x_2) + 2x_2^2 - 2x_1x_2 + 4.5x_1 - 4x_2 + 4$$

Y úselos para determinar los mínimos.

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \Big|_{x} \\ \frac{\partial f}{\partial x_2} \Big|_{x} \end{bmatrix} = \begin{bmatrix} 4x_1^3 + 2x_1(1 - 2x_2) - 2x_2 + 4.5 \\ -2x_1^2 + 4x_2 - 2x_1 - 4 \end{bmatrix} = \mathbf{0}$$

$$\Rightarrow \begin{cases} 4x_1^3 + 2x_1(1 - 2x_2) - 2x_2 + 4.5 = 0 \\ -2x_1^2 + 4x_2 - 2x_1 - 4 = 0 \end{cases}$$

Vigilada Mineducac

Ejemplo de aplicación de Condición necesaria

- Solucionando el sistema de ecuaciones resultan en los puntos estacionarios A (-1.053, 0.9855), B (1.941, 3.854), C (0.6117, 1.4929)
- Para clasificar los puntos estacionarios, investigamos la definición de la Hessiana H(x)

$$H(x) = \begin{bmatrix} 12x_1^2 + 2(1 - 2x_2) & -4x_1 - 2 \\ -4x_1 - 2 & 4 \end{bmatrix}$$

- En A y B todos las valores propios son positivos. Por la segundo condición suficiente A y B son mínimos locales. (A es de hecho un mínimo global)
- En C, la Hessiana tiene un valor propio positivo y uno negativo. Es un punto de ensilladura.

Vigilada Mineducación

Una función funky

•
$$\nabla f(x) = \begin{bmatrix} -10x_1x_2 + 16x_1^3 \\ 2x_2 - 5x_1^2 \end{bmatrix}$$
, $\nabla f(\mathbf{0}) = \mathbf{0}$

•
$$H(x) = \begin{bmatrix} -10x_2 + 48x_1^2 & -10x_1 \\ -10x_1 & 2 \end{bmatrix}, H(\mathbf{0}) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

- Se satisfacen las condiciones necesarias (1ro y 2do).
- No se satisfacen las condiciones suficientes.

- **0** es mínimo local con respecto a toda línea que lo atraviese.
- **0** no es mínimo local de f.
- Como puede ser?

$f(\mathbf{x}) = (x_2 - x_1^2)(x_2 - 4x_1^2)$

Una función funky

• Tomar $x_2 = 2x_1^2$. Tenemos $f(x) = f(x_1, 2x_1^2) = -2x_1^4$ y claramente (0,0) no es un mínimo a lo largo de la curva.

Contenido

- 1. Optimización sin restricciones.
- 2. Convexidad en optimización.

Convexidad de un conjunto

Definicion conjunto convexo:

• Un conjunto $\Omega \subseteq \mathbb{R}^n$ es convexo, si $\forall x_1, x_2 \in \Omega$ y $\forall \alpha \in [0,1], \alpha x_1 + (1-\alpha)x_2 \in \Omega$

- Las restricciones definen el conjunto factible $\Omega = \{x \in D | c_i(x) \le 0 \ \forall i \in I, c_i(x) = 0 \ \forall i \in E\}.$
- La convexidad de Ω hace una gran diferencia en las propiedades teóricas y en una solución numérica.
- Un conjunto es convexo o no convexo.

on Sentido Humano

Convexidad de una función

Definición función convexa: asumir que *D* es convexo

- Una función f es convexa en D, si $\forall x_1, x_2 \in D$, $\forall \alpha \in [0,1]$: $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2).$
- f es estrictamente convexa en D, si $\forall x_1, x_2 \in D$, $\forall \alpha \in [0,1]$: $f(\alpha x_1 + (1 \alpha)x_2) < \alpha f(x_1) + (1 \alpha)f(x_2)$.
- f es estrictamente concava en D, si f es estrictamente convexa.

Estrictamente convexa

Concava, pero no estrictamente

Ni convexa, ni concava

Vigilada Mineducac

Criterio de convexidad

Definición (semidefinido positivo):

- Una matriz A (nxn) simétrica es llamada definida positiva, si $p^T A p > 0 \ \forall p \in \mathbb{R}^n$, $p \neq 0$.
- Una matriz A (nxn) simétrica es llamada semi-definida positiva, si $p^T A p \ge 0 \ \forall p \in \mathbb{R}^n, p \ne 0$.
- Si (-A) es positiva (semi-)definida, entonces A es llamada negativa (semi-)definida.

Teorema:

Una matriz A (nxn) simétrica es llamada definida positiva, si $\lambda_k > 0, \forall k \in \{1, ..., n\}$ donde λ_k representa el k-ésimo valor propio (eigenvalue) de A, o sea, las soluciones de $\det(A - \lambda I) = 0$. De manera similar, semi-definida positiva si $\lambda_k \geq 0, \forall k \in \{1, ..., n\}$.

Teorema:

- f es convexa, si y solo si la Hessiana H(x) es semi-definida positiva $\forall x \in D$.
- Si H(x) es definida positiva $\forall x \in D$, entonces f es estrictamente convexa.

Vigilada Mineducación

Criterio de convexidad

	if $\forall x \in D$		
f is	H(x) is	all λ_k are	$orall oldsymbol{p} \in R^n, \ oldsymbol{p}^T oldsymbol{H}(oldsymbol{x}) oldsymbol{p} ext{ is }$
strictly convex	positive definite	> 0	> 0
convex	positive semi-definite	≥ 0	≥ 0
strictly concave	negative definite	< 0	< 0
concave	negative semi-definite	≤ 0	≤ 0
neither convex, nor concave	-	$\geq 0 \text{ or } \leq 0$	$\geq 0 \text{ or } \leq 0$

Definiteness of the Hessian

Sign of the eigenvalues

Sign of the quadratic form

Vigilada Mineducació

Ejemplos de convexidad

Somos Innovación Tecnológica con Sentido Humano

Problemas de Opt. Convexa

Definición - problema de optimización convexa:

- El problema de optimización $\min f(x)$ con $x \in \Omega$ es convexo, si la función objetivo f es convexa y si el conjunto factible Ω es convexo.
- Si D es un conjunto convexo, $c_i \forall i \in I$ con convexas en D y $c_i \forall i \in E$ son lineales entonces
 - $\Omega = \{x \in D | c_i(x) \le 0 \ \forall i \in I, c_i(x) = 0 \ \forall i \in E\}$ es convexo.
- Aparte de algunas excepciones:
 - Ω es no convexo, si cualquier $c_i \forall i \in E$ es una función no-lineal.
 - Ω es no convexo, si cualquier $c_i \forall i \in I$ es no convexa en D.
- "de hecho el mayor punto de inflexión en la optimización no es entre lineal y nolineal, sino entre convexo y no convexo." R. Tyrrell Rockafellar in SIAM Review, 1993.

Vigilada Mineducació

Condiciones de optimalidad para problemas convexos suaves

- Sea f dos veces diferenciables y convexa.
- Debido que f es suave y convexa, $\nabla^2 f(x)$ es positiva semi-definida para todo x.
- Si $x^* \in \mathbb{R}^n$ es un punto de solución local, entonces también es punto de solución global. Prueba: La convexidad implica que la primera derivada no decrece cuando nos alejamos de x^* . Entonces no podemos encontrar otro mínimo local distinto.
- Un punto $x^* \in \mathbb{R}^n$ es un punto de solución global si y solo si $\nabla f(x^*) = \mathbf{0}$.
 - La convexidad implica $f(x) \ge f(x^*) + (\nabla f(x^*))^{\mathsf{T}}(x x^*)$
 - Con estacionariedad $f(x) \ge f(x^*)$

Condiciones de optimalidad para problemas convexos suaves

- Se puede decir:
 - La condición de primer orden es necesaria y suficiente.
 - Un punto estacionario es equivalente a una solución local y una solución global.
 - En problemas con restricciones la convexidad implica que las condiciones de primer orden son necesarias y suficientes.

Chequeo

- Cuando un problema de optimización es convexo?
- Como podemos verificar la convexidad de un problema de optimización sin restricciones suave?

Referencias

 Basado en el curso "Applied Numerical Optimization" por el profesor Alexander Mitsos.

1 Gracias!

