Masterarbeit:

Karlsruher Institut für Technologie

Experimentelle und numerische Untersuchung des Bauteilverhaltens von hybriden CFK-/Metall-Strukturen

Motivation der Arbeit

CFK-/Metall-Verbunde können mit Hilfe großflächiger metallischer Krafteinleitungselemente hergestellt werden, um beispielsweise lösbare Verbindungen von CFK-Bauteilen oder eine direkte Einbindung der Funktion zu realisieren. Zur Dimensionierung und Gestaltung der hybriden Strukturen ist es wichtig, die zugrundeliegenden Mechanismen zu verstehen.

Zielsetzung der Arbeit

Das Ziel der Arbeit besteht darin die Schädigung im Laminat unter quasi-statischer Belastung sowohl numerisch als auch experimentell zu bestimmen und auszuwerten. Dies ermöglicht die Prognosegüte der Simulation anhand eines Vergleichs mit Experimenten zu bewerten.

Aufgabenstellung

Die Aufgabenstellung dieser Arbeit beinhaltet die Herstellung der Bauteile im RTM-Verfahren am wbk – Institut für Produktionstechnik. Anschließend erfolgen mechanische Versuche an den Hybridbauteilen. Die dazugehörigen FEM-Simulationen werden in Zusammenarbeit mit dem Institut für Fahrzeugsystemtechnik (FAST) durchgeführt. Hierfür ist das CFK-Material zuvor mittels strukturmechanischer Versuche experimentell zu charakterisieren.

BMW 7er mit Carbon Core

Quelle: springerprofessional.de

Ansprechpartner:

3-Punkt-Biegung am Hybridbauteil mit digitaler Bildkorrelation

Markus Muth

IAM-WK

Art der Arbeit: Experimentell und simulativ (FEM)

Voraussetzung: Studiengang MWT / Mach o. Ä

Eigenständiges Arbeiten und Interesse an FVK und Simulation

Beginn: März 2020

Geb. 10.96, Raum 111 Markus.Muth@kit.edu

