

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 9: SUCHEN & ERSETZEN

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 08.01.2021

KMP-Algorithmus

Aufgabe 1

KMP-ALGORITHMUS

- Mustersuche in (großen) Texten
- Ziel: Verschiebung des Musters um mehr als eine Position bei Nichtübereinstimmung.
- Methode: Ermittlung einer Verschiebetabelle Tab[] inPhase 1
- Bedeutung des Eintrags Tab[i]=j:
 Bei Nichtübereinstimmung an Stelle i wird Position j des
 Musters an aktueller Vergleichsstelle angelegt.
- Suchprozess in Phase 2

j-algo: http://j-algo.binaervarianz.de/

KMP-ALGORITHMUS

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Erster Versuch:

aaabaaa**b**aaacaaabaaaa aaabaaa**a**

Tabelleneintrag an Position 7 ist 3, d.h. Tab[7]=3 — Lege Position 3 des Musters an aktueller Vergleichsposition an:

aaabaaa**c**aaabaaaa aaabaaa**a**

Gleicher Prozess noch einmal: Missmatch an Position 7 des Musters — verschiebe Muster auf Position 3.

KMP-ALGORITHMUS (FORTSETZUNG)

Suche das Muster aaabaaaa im Text aaabaaabaaacaaabaaaa.

Position	0	1	2	3	4	5	6	7
Pattern	а	а	а	b	а	а	а	а
Tabelle	-1	-1	-1	2	-1	-1	-1	3

Wir legen das Muster also wieder an Position 3 an:

aaabaaabaaa **c** aaabaaaa aaa**b**aaaa

Wegen Tab[3]=2, lege Muster an Position 2 an:

aaabaaabaaa**c**aaabaaaa aa**a**baaaa

Wegen Tab[2]=-1, lege Muster an Position -1 an:

aaabaaabaaacaaabaaaa ©

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

- ▶ 1. Phase: Markieren der längsten Teilwörter im Pattern, die mit einem Präfix übereinstimmen
 - ▷ ein Zyklus beginnt an einer Patternposition i falls i ≠ 0 und Pat[0] = Pat[i]
 - ⊳ ein Zyklus endet an der kleisten Patternposition i+m, sodass Pat [m+1] ≠ Pat [i+m+1]

KMP-ALGORITHMUS — DIE ZYKLENMETHODE

Zwei Phasen:

- ▶ 1. Phase: Markieren der längsten Teilwörter im Pattern, die mit einem Präfix übereinstimmen
 - ▷ ein Zyklus beginnt an einer Patternposition i falls i ≠ 0 und Pat[0] = Pat[i]
 - ▷ ein Zyklus endet an der kleisten Patternposition i+m, sodass Pat [m+1] ≠ Pat [i+m+1]
- ▶ 2. Phase: Bestimmung der Tabelleneinträge
 - \triangleright Tab[0] = -1
 - Tabelleneinträge nach einem Zyklus:
 Länge des längsten dort endenden Zyklus
 - Tabelleneinträgen in einem Zyklus:
 Tabelleneintrag der derzeitigen Position im längsten laufenden Zyklus
 - ▶ verbleibende Einträge: 0

AUFGABE 1

- (a) Geben Sie zu dem Pattern aabaaacaab die mit Hilfe des KMP-Algorithmus (Knuth-Morris-Pratt) berechnete Verschiebetabelle an.
- (b) Mit Hilfe des KMP-Algorithmus ist die unten stehende Verschiebetabelle berechnet worden: Vervollständigen Sie das aus den Symbolen a, b und c bestehende Pattern.

Position	0	1	2	3	4	5
Pattern	С	b				а
Tabelle	-1	0	-1	1	0	2

AUFGABE 1 — ZYKLENMETHODE

Teil (a) Pattern: aabaaacaab

Position	0	1	2	3	4	5	6	7	8	9
Pattern	а	а	b	a	a	a	С	а	a	b
Tabelle										

AUFGABE 1 — ZYKLENMETHODE

	eii (a)	Pa	ittern	ı: aat	aaac	aab						
	Position	0	1	2	3	4	5	6	7	8	9	
	Pattern	a	а	b	a	а	а	С	a	а	b	
-	Tabelle	-1	-1	1	-1	-1	2	2	-1	-1	1	

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

$$\operatorname{Tab}[\mathtt{i}] = \max\left\{-1\right\} \cup \left\{ m \middle| \begin{array}{ccc} 0 \leq m \leq i-1 \\ b_0 \dots b_{m-i} = b_{i-m} \dots b_{i-1} \\ b_m \neq b_j \end{array} \right\} \qquad (\star)$$

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- linker Finger: wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat[i] ≠ Pat[m]
- ▶ Parallelverschiebung beider Finger bis zum linken Rand: wenn Pat[0...m-1] = Pat[i-m...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

AUFGABE 1 — ZWEI-FINGER-METHODE

Teil (a) Pattern: aabaaacaab

Position	0	1	2	3	4	5	6	7	8	9
Pattern	a	а	b	a	a	a	С	а	а	b
Tabelle										

AUFGABE 1 — ZWEI-FINGER-METHODE

leii	(a)	Pā	ittern	ı: aat	aaac	caab					
Р	osition	0	1	2	3	4	5	6	7	8	9
P	attern	a	а	b	а	а	а	С	а	а	b
Tá	abelle	-1	-1	1	-1	-1	2	2	-1	-1	1

AUFGABE 1 — TEIL (B)

Teil (b)

Position	0	1	2	3	4	5
Pattern	С	b				a
Tabelle	-1	0	-1	1	0	2

Teil (b)

Position	0	1	2	3	4	5
Pattern	С	b	С	С	b	a
Tabelle	-1	0	-1	1	0	2

- Pat[0...1] = Pat[3...4] wegen Tab[5] = 2 (Zyklenmethode), d.h. Pat[3] = Pat[0] = c und Pat[4] = Pat[1] = b
- wegen Tab[3] = 1 ist Pat[2] = Pat[0] = c (Zyklenmethode)
- oder: wegen Tab[3] = 1 ist Pat[1] # Pat[3] und
 Pat[2] = Pat[0] = c (Parallelverschiebung in der Zwei-Finger-Methode bzw. Gleichung (*))

Levenshtein-Distanz

Aufgabe 2

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$d(0,i) = i$$

$$d(j,0) = j$$

$$d(j,i) = \min \{d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i}\}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$\begin{split} d(0,i) &= i \\ d(j,0) &= j \\ d(j,i) &= \min \left\{ d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i} \right\} \end{split}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

AUFGABE 2

Gegeben seien die Wörter w =espen und v =beispiele.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v). Geben Sie dazu die Berechnungsmatrix an. Tragen Sie alle Zelleneinträge zusammen mit den dazugehörigen Pfeilen ein.
- (b) Geben Sie die Levenshtein-Distanz d(espe,beispiel) an. Beachten Sie, dass espe und beispiel Präfixe von espen bzw. beispiele sind.
- (c) Geben Sie zwei Alignments zwischen espen und beispiele an, die zu den minimalen Kosten führen. Dabei sollen die Alignments die jeweils angewendeten Editieroperation enthalten.
- (d) Wieviele Alignments enthält die in Aufgabe (a) angegebene Berechnungsmatrix?

AUFGABE 2

Teil (a)

Teil (a) d(espen, beispiele) = 5

d(j,i)		b	е	i	S	р	i	е	1	е
	0 →	1 →	2 →	3 →	4 →	5 →	6 →	· 7 →	. 8 →	9
е									· 7 →	
s									• 6 →	
р									- 5 →	
е	↓ ∖ 4	↓	3 <i>→</i>	↓ \ 4	↓ 4	33	3	3 →	4 →	5
n	↓ \ 5	↓ 5	↓ \ 4	4 →	↓ 5	↓ \ 4	↓ \ 4	. ↓ ` 4	4 →	5

Teil (b)

d(espe, beispiel) = 4

AUFGABE 2

Teil (c) Alignments mit minimaler Levenshtein-Distanz:

Teil (d)

Teil (c) Alignments mit minimaler Levenshtein-Distanz:

Teil (d) 2 Alignments = 2 Backtraces

mit Lösungen

Weitere Aufgaben aus der

Aufgabensammlung

AUFGABE 7.1.13 (AGS)

- (a) Bestimmen Sie die mit Hilfe des KMP-Algorithmus berechnete Verschiebetabelle für das Pattern abbabbaa.
- (b) Mit Hilfe des KMP-Algorithmus ist unten stehende Verschiebetabelle berechnet worden. Die mit einem "?" markierten Einträge sind unbekannt. Vervollständigen Sie das aus den Symbolen a, b und c bestehende Pattern.

Position	0	1	2	3	4	5
Pattern	b					С
Tabelle	-1	?	?	0	?	3

AUFGABE 7.1.13 (AGS)

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	a	b	b	a	b	b	а	а
Tabelle								

Te	eil (a)	Pattern: abbabbaa							
	Position	0	1	2	3	4	5	6	7
,	Pattern	а	b	b	a	b	b	а	а
	Tabelle	-1	0	0	-1	0	0	-1	4
Teil (b)									
	Position	0		1	2	3	3	4	5
	Pattern	b							С
	Tabelle	-1		?	?	C)	?	3

Position 0 1 2 3 Pattern a b b a Tabella -1 0 0 -1										
	Position	0	1	2	3	4	5	6	7	
	Pattern	a	b	b	a	b	b	a	а	_
	Tabelle	-1	0	0	-1	0	0	-1	4	

Dattorn, abbabbaa

Teil (b)

Tail (a)

Position	0	1	2	3	4	5
Pattern	b	a	b	a	b	С
Tabelle	-1	?	?	0	?	3

- Pat[0 ... 2] = Pat[2 ... 4] wegen Tab[5] = 3 (Zyklenmethode), d.h. Pat[2] = Pat[0] = Pat[4] = b
- ▶ wegen Tab[3] = 0 ist Pat[3] ≠ Pat[0] = b und wegen Tab[5] = 3
 ist Pat[3] ≠ Pat[5] = c (Zwei-Finger-Methode bzw. Gleichung (*))
 ⇒ Pat[3] = Pat[1] = a

AUFGABE 7.2.1 (AGS)

Gegeben seien die Wörter w = Dinstas und v = Distanz.

- (a) Berechnen Sie die Levenshtein-Distanz d(w, v) zwischen w und v. Geben Sie die Berechnungsmatrix vollständig an.
- (b) Geben Sie alle Alignments mit minimaler Levenshtein-Distanz zwischen w und v an.

AUFGABE 7.2.1 (AGS)

d(j,i)	D	i	S	t	a	n	Z
D							
i							
n							
S							
t							
a							
S							

d(j,i)		D	i	S	t	a	n z
	0 →		2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	↓ ¼ 1	0 →			3 →	
n	3	<u>†</u>	↓ \ 1 ↓ \		2 →	3	3 → 4
S	4	↓ 3	2			3 →	
t	5	4	→ 3	2	1 → ↓ ¾	2 →	3 → 4
a	6	5	4	→ 3	2	1 →	2 -> 3
S	[†] 7	$\overset{\downarrow}{6}$	↓ \ 5	↓ 4	↓ 3	↓ ↓ 2	2 \(\frac{\frac{1}{3}}{3}\)

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →			3 →	4 → 5
n	3	↓ 2	1	1 →	2 →	. 3 🌂	
S	4	3	2		2 →	3 →	
t	5	4	↓ 3	2	1 →	2 →	3 → 4
a	6	5	4	3	2		2 → 3
S	[†] 7	é 6	↓ \ 5	↓ 4	↓ 3	↓ ↓ 2	2 \(\frac{1}{2}\)

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →	1 →		3 →	4 → 5
n	3	<u>†</u>	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{ccc} 1 & \stackrel{\vee}{\rightarrow} \\ & \stackrel{\vee}{\rightarrow} \end{array}$	2 → \(\frac{\frac{1}{2}}{2}\)	3 🖁	3 → 4
S	4	3	2			3 →	↓
t	5	4	3	2		2 →	3 → 4
a	6	5	4 ↓ ↓	↓ 3 ↓	↓ 2 		2 → 3
S	Ž	ě	š 1	4	↓ 3	¹ / ₂	2 - 3

AUFGABE 7.2.1 (AGS)

Alignments mit minimaler Levenshtein-Distanz:

Alignments mit minimaler Levenshtein-Distanz:

AUFGABE 7.2.2 (AGS)

- (a) Berechnen Sie die Levenshtein-Distanz d(bürste, schürze). Geben Sie die Berechnungsmatrix vollständig an. Wieviele Backtraces enthält die Berechnungsmatrix?
- (b) Geben Sie zwei Alignments mit minimaler Levenshtein-Distanz zwischen den Wörtern bürst und sch an.

AUFGABE 7.2.2 (AGS) — TEIL (A)

d(j,i)	S	С	h	ü	r	Z	е
b							
ü							
r							
S							
t							
е							

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	- 5 →	6 →	7
b	1	1 →	2 →	3 <i>→</i>	4 <i>→</i>	_	6 →	7
ü	↓ ¾2	↓ \ 2	2 →	_	3 →	4 →	5 →	6
r	3	3 >	33	3 <i>→</i>		3 →	4 →	5
S	↓ ¾ 4	3 <i>→</i>	↓ \ 4	↓ \ 4	4	↓ \ 4	4 →	5
t	↓ 5	↓ \ 4	4 →		5	5	↓ \ 5	5
е	6	↓ \ 5	↓ \ 5	5 →	↓ \ 6	↓ \ 6	↓	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i))	S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	5 →	6 →	7
	1 1	1	2	2	1	_ >	~ >	7
b		1 → \(\frac{1}{4}\)	2 → ¥	3 →	4 →	5 →	6 →	7
ü	Ż	2	2 →	3	3 →	•	5 →	6
r	3	3	3	3 <i>→</i>	↓ <u>↓</u> 4	3 →	4 →	5
-	↓ ✓	\checkmark	↓	↓ ↘		↓ <u>\</u>	\checkmark	
S	4	3 → \[\]	4	4 ↓ <i>√</i>	4 ↓ ∖	4 ↓ <i>√</i>	•	5
t	5	4	4 →	š [*]	5	5	5	5
е	↓ 6	↓ \ 5	↓ \ 5	5 →	↓ <i>√</i>	6 ✓	↓	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 →	7
b	1	1 →	2 →	3 →			6 →	7
ü	↓ ¾2	↓ \ 2	2 →		3 →	. 4 →	5 →	6
r	3	3	↓	3 <i>→</i>		3 →	4 →	5
s	↓ \	3 →		↓ ↓ 4	4	↓ \ 4	4 →	5
t	↓ 5	↓ \ 4	4 →		↓ \ 5	↓ 5	↓ \ 5	5
е	∮	↓ 5	↓ ↓ 5	5 →	· ·	↓ ↓ 6	↓ ↓ 6	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 →	5 →	6 →	7
	↓ ¼		¥	¥				
b	1	1 →	2 →	3 →	4 →	5 →	6 →	7
ü	2 \(\frac{1}{2} \)	2	2 →	3	3 →	4 →	5 →	6
r	3 7	3	3	3 <i>→</i>	↓ <u>↓</u> 4	3 →	4 →	5
•	J √	7	J √			↓ ¼	\checkmark	_
S	4	3 →		4	4	4	4 →	5
t	↓ 5	4	4 →	↓ \ 5	5	5		5
е	6	↓ \ 5	↓ \ 5	5 →	↓ <i>√</i>	↓ <i>√</i>	↓	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$ Anzahl der Backtraces = 3 * 2 = 6

AUFGABE 7.2.2 (AGS) — TEIL (B)

d(j,i)		S	C	h
	0 →	. 1 -	→ 2 →	3
b	1	1 -	$\stackrel{\searrow}{\rightarrow}$ 2 $\stackrel{\searrow}{\rightarrow}$	3
ü	2	2	¹ 2 →	3
r	3	3	3	3
S	↓ ↓ 4	3 -	↓ ↓ ↓→ 4	↓ 4
t	↓ 5	↓ 4	4 →	5

AUFGABE 7.2.2 (AGS) — **TEIL (B)**

```
      b ü r s t
      b ü r s t

      | | | | | | | | | | |

      s c h * * * * * s c h

      s s s d d
      d d s s s
```