Билет №12

Необратимость процессов в природе. Тепловые машины, принцип их действия. Цикл Карно. КПД тепловой машины. КПД идеальной машины. Второе начало термодинамики.

Необратимость процессов в природе

Согласно первому закону термодинамики энергия ($Q = \Delta U + A$) не может быть создана или уничтожена, она может только передаваться от одной системы к другой. Но этот закон не устанавливает направления происходящих процессов.

Необратимые процесс — процесс, который может протекать только в одном направлении. То есть обратный процесс не может *самопроизвольно* протекать (без внешнего воздействия). Например, передача теплоты от горячего тела к холодному происходит, а самопроизвольное нагревание горячего тела и охлаждение холодного не происходит; падение стекла и разбиение — тоже необратимый процесс.

Обратимый процесс — процесс перехода системы из одного равновесного состояния в другое, который можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. Например, механическое движение без трения, изотермические сжатие\расширение.

Тепловые машины

Тепловой двигатель — устройство, в котором происходит преобразование внутренней энергии в механическую.

Тепловой двигатель состоит из *нагревателя* (устройство, передающее теплоту рабочему телу, т. е. газу), *рабочего тела* (газ, расширение которого влечет совершение работы) и *холодильника* (тело, поглощающее неиспользованную рабочим телом теплоту, обычно — внешняя среда, атмосфера). Температура холодильника должна быть меньше температуры рабочего тела, так как иначе он не будет поглощать теплоту.

ашины				
Обратного цикла				
Двигатели				

Коэффициент полезного действия (КПД, η) — скалярная физическая величина, численно равная отношению работы, совершенной рабочим телом, к количеству теплоты полученному от нагревателя. КПД часто выражается в процентах.

$$\eta = \frac{A_{\text{2a3a}}}{Q_{\text{Hap}}} = \frac{Q_{\text{Hap}} - |Q_{\text{NOA}}|}{Q_{\text{Happ}}} = 1 - \frac{|Q_{\text{NOA}}|}{Q_{\text{Happ}}}$$

Второй закон (второе начало) термодинамики

<u> </u>	второи закон (второе начало) термодинамики				
	Р. Клаузиус		У. Кельвин		
Формулировка	Невозможно такое устройство, единственным конечным результатом которого была бы передача тепла от тела с меньшей температурой к телу с большей температурой. $T_1 \!\!>\! T_2$	Нагреватель T_1	Невозможно такое устройство, работающее циклами, единственным результатом которого было бы полное превращение энергии от источника в механическую работу.	Нагреватель T_1 Рабочее тело	

Цикл Карно

Рассмотрим цикл из обратимых процессов: двух изотерм и двух адиабат. (12, 34 — изотермы, 23, 41 — адиабаты)

Для изотерм первый закон термодинамики

$$Q_{12} = A_{12} + \Delta U = A_{12} = vRT_1 \ln \frac{V_2}{V_1}$$

$$Q_{34} = A_{34} + \Delta U = A_{34} = vRT_2 \ln \frac{V_4}{V_3}$$

$$\eta = 1 - \frac{|Q_{34}|}{Q_{12}} = 1 - \frac{T_1}{T_2} \cdot \frac{\ln \frac{V_4}{V_3}}{\ln \frac{V_2}{V_1}} = 1 - \frac{T_1}{T_2} \cdot \frac{\ln \frac{V_3}{V_4}}{\ln \frac{V_2}{V_1}}$$

Для адиабат уравнение Пуассона

Подставляем в формулу КПД: $\eta = 1 - \frac{T_2}{T_1} \Rightarrow \eta = 1 - \frac{T_{_{xon}}}{T_{_{Hazp}}}$

Теорема Карно — любая реальная тепловая машина, работающая с нагревателем температуры T_1 и холодильником температуры T_2 не может иметь коэффициент полезного действия, превышающий КПД

идеальной машины. *Доказательство:*

Пусть $\eta' > \eta$ - КПД другой тепловой машины. Рассмотрим устройство, в котором работают эта машина и машина Карно (по обратному циклу в качестве холодильной машины) с общим нагревателем и холодильником.

Тепловая машина совершает работу $A' = \eta' Q_1'$. $A' = Q_1' - |Q_2'| = \eta' Q_1'$

$$Q_1' - \eta' Q_1' = |Q_2'| \Rightarrow Q_1' (1 - \eta') = |Q_2'| \Rightarrow \eta' Q_1' = \frac{|Q_2'|}{1 - \eta'}$$
 . Тогда $A = \frac{\eta'}{1 - \eta'} |Q_2'|$

Пусть холодильная машина забирает $Q_2 = |Q_2|$. Тогда над ней совершается работа $A = \frac{\eta}{1-\eta} |Q_2|$

Так как $\eta' > \eta$, A' > A . То есть при действии такого циклического устройства остается избыточная работа, что противоречит второму закону ТД.