Introducció a la Investigació Operativa Grau en Estadística UB-UPC

Tema 2. El procés de modelització

Catalina Bolancé Dept. Econometria, Estadística i Economia Espanyola

> Javier Heredia Dept. Estadística i Investigació Operativa

- Objectius del tema
- Formalització matemàtica
 - Formulació de problemes de PL
 - Resolució gràfica de problemes de PL de dues variables
- 3 Casos especials de problemes de PL
- Fonaments geomètrics de la PL
 - Poliedres i conjunts convexos
 - Punts extrems i vèrtexs
 - Punts extrems i solucions òptimes

Objectius específics del Tema 2

- Formular matemàticament problemes senzills de programació lineal.
- Trobar la solució òptima d'un problema de programació lineal de dues variables mitjançant la seva representació gràfica.
- Classificar un problema de programació lineal de dues variables com a problema il·limitat o amb solució òptima.
- Donat un problema de PL de dues variables amb solució òptima, indicar si aquesta és única o múltiple i si és degenerada.
- Donada la descripció gràfica o algebraica d'un conjunt sobre R², determinar si és convex.
- Classificar la regió factible d'un problema de PL de dues variable com a polítop o poliedre.
- Entendre la relació entre punts extrems, vèrtexs i solucions òptimes de problemes de PL.
- Comprendre les implicacions del teorema fonamental de la programació lineal en la resolució de problemes de PL.

Forma general d'un problema d'optimització

$$(P) = \begin{cases} \min\limits_{x \in \Re^n} & f(x) & \text{Funci\'o Objectiu} \\ \text{subjecte a (s.a.):} & h(x) = 0 & \text{Restriccions d'igualtat} \\ & g(x) \leq 0 \\ & g(x) \geq 0 & \text{Restriccions de desigualtat} \\ & x \in X & \text{Domini de definici\'o} \end{cases}$$

on $x \in \Re^n$ són les **variables de decisió**, o senzillament, **variables**, i:

$$f:\Re^n\longrightarrow\Re,\;h:\Re^n\longrightarrow\Re^m,\;g:\Re^n\longrightarrow\Re^I,\;X\subseteq\Re^n$$

Amb: f, h, $g \in C^2$.

Forma general d'un problema de Programació Lineal (PL)

$$(P) = \begin{cases} \min_{\substack{x \in \mathbb{R}^n \\ s.a. :}} \sum_{i=1}^n c_i x_i \\ \sum_{i=1}^n a_{ij} x_i \begin{cases} \leq \\ = \\ \geq \end{cases} b_j \quad j = 1, 2, \dots, m \end{cases} \implies$$

$$\downarrow_i \leq x_i \leq u_i \quad i = 1, 2, \dots, m$$

$$\Rightarrow (P) = \begin{cases} \min_{\substack{x \in \mathbb{R}^n \\ s.a. :}} c' x \quad c \in \mathbb{R}^n \\ s.a. : \end{cases}$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j = 1, 2, \dots, m$$

$$\downarrow_j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i$$

$$\downarrow_j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i$$

$$\downarrow_j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i$$

$$\downarrow_j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i \quad j \leq x_i \leq u_i$$

$$\downarrow_j \leq x_i \leq u_i \quad j \leq$$

on c, l, u i A són els **parámetres del problema**, que són les dades conegudes del problema.

Forma general d'un problema de Programació Lineal (PL)

On:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad c = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix},$$

$$I = \begin{pmatrix} I_1 \\ I_2 \\ \dots \\ I_n \end{pmatrix}, \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$

Un exemple de problema de PL

L'empresa "Blue Ridge Hot Tubs" fabrica dos tipus de jacuzzi: Aqua-Spa i Hydro-Luxe, amb les següents especificacions:

	Aqua-Spa	Hydro-Lux
Bombes	1	1
Mà d'obra	9 hores	6 hores
Canonades	12 ft	16 ft
Bfci/unitat	350€	300€

Hi ha 200 bombes, 1566 hores de mà d'obra i 2880 ft de canonada disponibles.

Passos en la formulació de problemes de PL

- 0. Comprendre el problema.
- 1. Identificar les variables de decisió.
 - $x_1 = \# d'Aqua-Spa$ a fabricar
 - $x_2 = \# d' Hydro-Lux$ a fabricar
- 2. Definir la funció objectiu de la combinació lineal de les variables de decisió.
 - $maxz = 350x_1 + 300x_2$
- 3. Definir les restriccions com a combinació lineal de les variables de decisió.

$$x_1 + x_2 \le 200$$
 Bombes d'aigua $9x_1 + 6x_2 \le 1566$ Mà d'obra $12x_1 + 16x_2 \le 2880$ Canonades

- 4. Identificar les fites superior i inferior de les variables de decisió.
 - $x_1 > 0; x_2 > 0$

En el Tema 3 estudiarem la forma de resoldre el model, primer introduirem l'algorisme de resolució (algoritme Simplex) i posteriormete utilitzarem EXCEL i SAS per trobar la solució òptima.

Resum del model de PL pel problema "Blue Ridge Hot Tubs"

$$\begin{array}{ll} \max \ z & 350x_1 + 300x_2 \\ \text{s.a.:} & x_1 + x_2 \leq 200 \\ & 9x_1 + 6x_2 \leq 1566 \\ & 12x_1 + 16x_2 \leq 2880 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{array}$$

Resolució de problemes de PL: mètode gràfic

- Les constriccions (restriccions) d'un problema de PL defineixen la seva **regió factible**.
- El millor punt dins de la regió factible és la solució òptima del problema.
- Per a problemes de PL amb dues variables, és senzill representar la regió factible i trobar la solució òptima.

Gràfica de la primera constricció

Gràfica de la segona constricció

Gràfica de la tercera constricció

Gràfica d'una corba de nivell de la funció objectiu

Una altra corba de nivell de la funció objectiu

Identificació de la solució òptima mitjançant les corbes de nivell

Càlcul de la solució òptima mitjançant les corbes de nivell

• Solució òptima: intersecció de les constriccions de "bombes" i "mà d'obra".

$$x_1 + x_2 = 200 (1)$$

$$9x_1 + 6x_2 = 1566 \tag{2}$$

• A partir d'(1), tenim:

$$x_2 = 200 - x_1 \tag{3}$$

• Substituïnt (3) per x_2 a (2), tenim:

$$9x_1 + 6(200 - x_1) = 1566$$

que es redueix a $x_1 = 122$

• Així, la solució òptima és:

$$x_1 = 122, x_2 = 200 - x_1 = 78$$

Benefici total: $350 \times 122 + 300 \times 78 = 66100$

Punts factibles per a ser solucions òptimes: punts extrems

Resum del mètode gràfic de resolució de problemes de PL

- 1. Dibuixar la recta associada a cada restricció.
- 2. Identificar la regió factible.
- **3.** Representar el vector de costos (*c*).
- 4. Identificar el punt extrem òptim.
- 5. Calcular la solució òptima.

Casos especials de problemes de PL (I): Òptims alternatius

Casos especials de problemes de PL (II): Restriccions redundants

Casos especials de problemes de PL (III): Solució il·limitada

Casos especials de problemes de PL (IV): Problema infactible

Fonaments geomètrics de la PL

- Fins ara, hem vist alguns dels concetes fonamentals de la PL de forma intuitiva.
- A la resta del capítol, definirem geogràficament tots aquests conceptes.
- El que segueix es basa en el capítol 2 del manual "Introduction to Linear Optimisation", D. Bertsimas, N. Tsitsikis.

Poliedres i conjunts convexos (I)

• **Definició de poliedre.** Un poliedre P és un conjunt en l'espai \Re^n , que pot ser expressat en la forma següent:

$$P = \{x \in \Re^n | Ax \ge b\}$$

on $A \in \Re^{m*n}$ i $b \in \Re^m$

• $P = \{x \in \Re^n | Ax \ge b, x \ge 0\}$ també és un poliedre (poliedre en forma estàndard).

Poliedres i conjunts convexos (II)

• **Definició de conjunts afitats.** $S \subset \Re^n$ és afitat si:

$$\exists \mathcal{K} \in \Re \text{ t.q. } |x_i| \leq \mathcal{K}, \ i=1,\ldots,n, \ \forall x \in \mathcal{S}$$
 poliedre no buit i afitat.

Poliedres i conjunts convexos (II)

• Sigui $a \in \Re^n$, $a \neq 0$ i $b \in \Re$:

▶ **a.** HIPERPLÀ: $\{x \in \Re^n \mid a'x = b\}$

▶ **b.** Semiespai: $\{x \in \Re^n \mid a'x \ge b\}$

Exemple: Problema "Blue Ridge"

Poliedres i conjunts convexos (III)

• **Definició de conjunt convex.** Un conjunt $S \subset \Re^n$ és convex si:

$$\forall x, y \in S, \ \forall \lambda \in [0,1]:$$

$$\lambda x + (1-\lambda)y \in S$$
 (combinació convexa de x i y)

Poliedres i conjunts convexos (IV)

Sigui $x^1, \ldots, x^k \in \Re^n$, i $\lambda_1, \ldots, \lambda_k \in \Re$ t.q.:

$$\sum_{i=1}^{n} \lambda_i = 1, \ \lambda_i \ge 0, \ \forall i$$

• a. Combinació convexa de x^1, \ldots, x^k :

Qualsevol vector
$$y \in \Re^n$$
tal que: $\sum_{i=1}^n \lambda_i x_i$

• **b.** Embolcall convex de x^1, \ldots, x^k :

conjunt definit pels vectors
$$x \in \Re^n$$
 tal que: $x = \sum_{i=1}^n \lambda_i x_i$

Poliedres i conjunts convexos (IV)

Poliedres i conjunts convexos (V)

Propietats:

• La intersecció de conjunts convexos és convexa.

Poliedres i conjunts convexos (V)

Propietats:

• Tot poliedre (intersecció de semiespais) és un conjunt convex.

Punts extrems i vèrtexs (I)

• **Definició de punt extrem**: sigui el poliedre P un vector $x \in P$ és un punt extrem P si no existeix cap parell de vectors y, $z \in P$, diferents de x, ni cap escalar $\lambda \in [0,1]$ tal que:

$$x = \lambda y + (1 - \lambda) z$$

Punts extrems i vèrtexs (II)

 Definició de vèrtex: Sigui el poliedre P un vector x ∈ P és un vèrtex de P si:

$$\exists c \mid c'x < c'y$$
$$\forall y \in P, \ y \neq x$$

Punts extrems i vèrtexs (II)

• **Teorema**: Si *P* és un poliedre no buit, llavors:

x és un punt extrem $\Leftrightarrow x$ és un vèrtex

Punts extrems i solucions òptimes (I)

Teorema: "Sigui (PL)= $min\{c'x : x \in P\}$, suposem que:

- a. P té, com a mínim, un punt extrem.
- b. (PL) té solució òptima.

Llavors, existeix una solució òptima que és un punt extrem de P."

Punts extrems i solucions òptimes (I). Descartats

Punts extrems i solucions òptimes (II)

- Problema: Sabem com caracteritzar solucions òptimes geomètricament (punts extrems): com les podem caracteritzar numèricament (és a dir, preparades per a ser tractades computacionalment)?
- Resposta:

Solucions Bàsiques Factibles