

Variables aléatoires discrètes sans mémoire Énoncé

Partie I: Étude d'une variable discrète sans mémoire.

Soit X une variable aléatoire discrète, à valeurs dans \mathbb{N} telle que : $\forall m \in \mathbb{N}, P(X \ge m) > 0$.

On suppose également que X vérifie : $\forall (m,n) \in \mathbb{N} \times \mathbb{N}, P_{(X \geqslant m)}(X \geqslant n+m) = P(X \geqslant n)$. On pose P(X=0) = p et on suppose que p > 0.

- 1. On pose q = 1 p. Montrer que $P(X \ge 1) = q$. En déduire que 0 < q < 1.
- 2. Montrer que : $\forall (m,n) \in \mathbb{N} \times \mathbb{N}, P(X \geqslant n+m) = P(X \geqslant m)P(X \geqslant n)$.
- 3. Pour tout n de \mathbb{N} on pose $u_n = P(X \ge n)$.
 - (a) Utiliser la relation obtenue à la deuxième question pour montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique.
 - (b) Pour tout n de \mathbb{N} , exprimer $P(X \ge n)$ en fonction de n et q.
 - (c) Établir que : $\forall n \in \mathbb{N}, P(X = n) = P(X \ge n) P(X \ge n + 1).$
 - (d) En déduire que, pour tout n de \mathbb{N} , on a $P(X = n) = q^n p$.
- 4. (a) Reconnaître la loi de la variable X + 1.
 - (b) En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

Partie II: Taux de panne d'une variable discrète.

Pour toute variable aléatoire Y à valeurs dans $\mathbb N$ et telle que: $\forall n \in \mathbb N$, $P(Y \geqslant n) > 0$. On définit le taux de panne de Y à l'instant n, noté λ_n par : $\forall n \in \mathbb N, \lambda_n = P_{(Y \geqslant n)}(Y = n)$.

- 5. (a) Montrer que: $\forall n \in \mathbb{N}, \lambda_n = \frac{P(Y=n)}{P(Y \ge n)}$
 - (b) En déduire que: $\forall n \in \mathbb{N}, 1 \lambda_n = \frac{P(Y \ge n + 1)}{P(Y \ge n)}$.
 - (c) Établir alors que : $\forall n \in \mathbb{N}, 0 \leq \lambda_n < 1$.
 - (d) Montrer par récurrence, que : $\forall n \in \mathbb{N}^*, P(Y \ge n) = \prod_{k=0}^{n-1} (1 \lambda_k)$.
- 6. (a) Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} P(Y=k) = 1 P(Y \geqslant n).$
 - (b) En déduire que $\lim_{n\to\infty} P(Y\geqslant n)=0$.
 - (c) Montrer que $\lim_{n\to\infty}\sum_{k=0}^{n-1}-\ln(1-\lambda_k)=+\infty$
 - (d) Conclure quant à la nature de la série de terme général λ_n .

Partie III: Caractérisation des variables dont la loi est du type de celle de X.

- 7. Déterminer le taux de panne de la variable X dont la loi a été trouvée à la question 3 d) de la partie 1.
- 8. On considère une variable aléatoire Z, à valeurs dans \mathbb{N} , et vérifiant : $\forall n \in \mathbb{N}, P(Z \geqslant n) > 0$. On suppose que le taux de panne de Z est constant, c'est-à-dire que l'on a : $\forall n \in \mathbb{N}, \lambda_n = \lambda$.
 - (a) Montrer que $0 < \lambda < 1$.
 - (b) Pour tout n de N, déterminer $P(Z \ge n)$ en fonction de λ et n.
 - (c) Conclure que les seules variables aléatoires Z à valeurs dans \mathbb{N} , dont le taux de panne est constant et telles que pour tout n de \mathbb{N} , $P(Z \ge n) > 0$, sont les variables dont la loi est du type de celle de X.