ΑΛΓΕΒΡΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΕΡΓΑΣΙΑ 1

Άσχηση 1. Έστω το σύνολο $S = \{a, b\}$.

- (i) Πόσες διμελείς πράξεις μπορούν να ορισθούν στο S;
- (ii) Πόσες από αυτές είναι προσεταιριστικές;
- (iii) Πόσες από αυτές έχουν επιπλέον ουδέτερο στοιχείο;
- (iv) Πόσες από αυτές εφοδιάζουν το S με δομή ομάδας;

'Ασκηση 2. Έστω το σύνολο $S=\mathbb{R}\setminus\{-1\}$ εφοδιασμένο με την πράξη: a*b=a+b+ab.

- (i) Δ είξτε ότι η * ορίζει μία διμελή πράξη στο S και ότι (S,*) αποτελεί ομάδα.
- (ii) Βρείτε στην S τη λύση:
 - (a) Της εξίσωσης 1 * x * 2 = 23
 - (b) Του συστήματος $\left\{ \begin{array}{l} (x+1)*(y-1) = x*y \\ (x-2)*(y+2) = x*(y+1) \end{array} \right.$

Άσκηση 3. Έστω το σύνολο G των πινάκων της μορφής $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, όπου $a,b,c,d\in\mathbb{Z}_2$ και $ad-bc\neq 0$. Να αποδείξετε ότι το (G,\cdot) με πράξη τον συνήθη πολλαπλασιασμό των πινάκων είναι ομάδα τάξης 6. Βρείτε τον πίνακα πολλαπλασιασμού της G. Με ποιά γνωστή ομάδα είναι η G ισομορφική;

Άσκηση 4. Αν G είναι μια ομάδα τέτοια ώστε $(ab)^2=a^2b^2$ για κάθε $a,b\in G$, να δείξετε ότι η G είναι αβελιανή.

Άσχηση 5. Έστω (G,*) ομάδα. Δείξτε ότι:

- (i) $A \nu$ όλα τα στοιχεία της είναι τάξης 2, τότε η ομάδα είναι αντιμεταθετική.
- (ii) Αν η G είναι μη τετριμμένη πεπερασμένη και άρτιας τάξης, τότε υπάρχει ένα τουλάχιστον στοιχείο της τάξης 2.

Άσκηση 6. Έστω G ομάδα και έστω $a,b\in G$. Δείξτε ότι τα στοιχεία ab και ba έχουν την ίδια τάξη. (Υπόδειξη: $ba=a^{-1}(ab)a$.)

Άσκηση 7. Έστω G ομάδα και έστω $a,b\in G$. Δείξτε ότι αν το στοιχείο a έχει τάξη 5 και $a^3b=ba^3$, τότε ab=ba.

Άσκηση 8. Έστω το σύνολο $\mathbb{C}^*=\{a+bi\in\mathbb{C}:\ |a|+|b|\neq 0\}$ εφοδιασμένο με τον συνήθη πολλαπλασιασμό των μιγαδικών αριθμών και έστω $\mathbb{U}=\{a+bi\in\mathbb{C}^*:\ a^2+b^2=1\}.$ Να αποδείξετε ότι το \mathbb{U} είναι υποομάδα της \mathbb{C}^* .

Άσκηση 9. (i) Βρείτε την ομάδα (D, \circ) των συμμετριών του κύκλου.

- (ii) Δείξτε ότι η διεδρική ομάδα (D_n, \circ) είναι υποομάδα της (D, \circ) .
- (iii) Θυμηθείτε ότι η υποομάδα των στροφών (Σ_n, \circ) της (D_n, \circ) είναι ισομορφική με την ομάδα (\mathcal{U}_n, \cdot) και ότι $(\mathcal{U}_n, \cdot) \leq (\mathcal{U}, \cdot) \leq (\mathbb{C}^*, \cdot)$. Συσχετίστε την ομάδα (D, \circ) με την ομάδα (\mathcal{U}, \cdot) .

'Ασκηση 10. (i) Έστω (G,*) αντιμεταθετική ομάδα. Να δειχθεί ότι το υποσύνολο $T=\{\tau\in G\mid \operatorname{ord}(\tau)<+\infty\}$

είναι υποομάδα της G (η υποομάδα σ τρέ ψ ης της G).

(ii) Βρείτε την υποομάδα στρέψης της πολλαπλασιαστικής ομάδας του τριγωνομετρικού κύκλου (\mathcal{U},\cdot) .

Άσκηση 11. Βρείτε την ομάδα των συμμετριών:

- (i) Του τετραέδρου.
- (ii) Του κύβου.
- (iii) Της σφαίρας ακτίνας 1 στον \mathbb{R}^3 .

Άσκηση 12. Έστω (G,\cdot) ομάδα. Το σύνολο $Z(G)=\{z\in G\,|\, zg=gz\,\,\forall\,\,g\in G\}$ λέγεται κέντρο της G.

- (i) $\Delta \epsilon$ ίξτε ότι το Z(G) είναι υποομάδα της G.
- (ii) Βρείτε το κέντρο της διεδρικής ομάδας D_4 .

Παράδοση: 20/11/2019

Οι διδάσχοντες