AE351 Experiments in Aerospace Engineering

Experiment-S2

Torsion Testing

(17-1-2020)

By:
Mataria Pence Jagatkumar
170382 | B9

OBJECTIVE

The objective of this experiment is to perform a torsion (shear) test on a shaft with a circular cross section and measure the shear modulus of a material using two different methods (T- θ & τ_{XY} - γ_{XY}).

INTRODUCTION & THEORY

In solid mechanics, Torsion is the twisting effect found on any material on application of torque (torsional loads) along the longitudinal axis.

For uniform cross-section, following equation holds true:

$$T/J = \tau/R = G\theta/L$$

T: External Torque (N·m)

J: Polar Moment of Inertia (in case of a cylinder: $\pi R^4/2$) (m⁴)

 τ : Maximum shear stress (N/m²)

R: Radius of the shaft (m)

G: Shear modulus (N/m²)

 θ : Angle of twist

L: Length of the shaft (m)

Torque

The Torque is given by: $T = P \cdot d$

Where P is the external load and d is the torque arm.

• Angle of Twist

The angle of twist is measured by: $\tan \theta = h/s$ Where h is the dial gauge reading and s is the distance between dial gauge and shaft center.

• Shear Strain

The strain rosette provides strain data along the 0-45-90 degrees. These readings can be related as follows:

$$\epsilon_{0} = \epsilon_{x}$$

$$\epsilon_{45} = (\epsilon_{x} + \epsilon_{y} + \gamma_{xy})/2$$

$$\epsilon_{90} = \epsilon_{y}$$

$$\gamma_{xy} = 2 \epsilon_{45} - \epsilon_{0} - \epsilon_{90}$$

Thus, Shear strain can be obtained from strain gauge readings.

EQUIPMENT USED

The following equipment are used for the experiment:

- Test Cylindrical Shaft Aluminum (6063)
- Dial Gauge
- Bearings and test fixtures
- Strain rosette with strain indicator
- Weights
- Vernier Calipers and Measuring scale

PROCEDURE & MEASUREMENTS

- 1. Apply loads to the torque arm. The load range and the load increment will be given by your lab instructor.
- 2. At each load, record the three strain gage readings, and the vertical deflection of the torque arm.
- 3. Determine the torque, shear strain, and the angle of twist for each applied load. Tabulate all measurements and calculations.
- 4. Use the measured data to generate plots of Shear Stress vs. Shear Strain (τ_{XY} - γ_{XY}), and Torque vs. Angle of Twist (T- θ).
- 5. Using linear regression fit the data (Draw a best possible straight-line fit passing through all the data). Calculate shear modulus using the slope of the straight line fit.
- 6. Compare experimentally measured G to the published value for your specimen material.
- 7. Calculate the percent differences between the measured and published values.
- 8. Identify sources of errors in your measurements.

Analyzing the graph

RESULTS & DISCUSSION

• Initial Observations

- o Length (L) = 700mm
- Distance b/w shaft center and dial gauge(s)=130mm
- Torque arm (d) = 344mm
- o Radius (R) = 9.95mm

Data

Sno.	Load (N)	€ ₀ (x10 ⁻⁶ m/m)	E ₄₅ (x10 ⁻⁶ m/m)	€ ₉₀ (x10 ⁻⁶ m/m)	h (mm)	θ	T (Nm)	γ _{XY} (x10 ⁻⁶ m/m)	τ _{XY} (x10 ⁶ Pa)
1.	5	0	19.9	0.004	0.38	0.167°	1.72	39.80	1.112
2.	10	0	39.9	-0.0015	0.80	0.352°	3.44	79.80	2.224
3.	15	1	60.2	-0.0015	1.22	0.538°	5.16	119.40	3.336
4.	20	1	79.9	-0.004	1.65	0.727°	6.88	158.80	4.448
5.	25	-1	97.2	-0.001	2.04	0.899°	8.60	195.40	5.560

Sample Calculation (Load = 5 N):

$$\theta = \arctan(h/s) = \arctan(0.38/130) = 0.167^{\circ}$$

$$\circ$$
 T = P·d = 5*0.344 = 1.72 Nm

$$\begin{array}{l} \circ \ \, \gamma_{xy} = 2 \,\, \epsilon_{45} \text{-} \,\, \epsilon_{0} \text{-} \,\, \epsilon_{90} \\ \ \, = \left(2^* 19.9 - 0 - 0.004 \right) \,\, ^* 10^{\text{-}6} = 39.80 \,\, ^* \,\, 10^{\text{-}6} \,\, \text{m/m} \\ \end{array}$$

$$\circ$$
 $\tau_{XY} = T^*R/J = 2^*T^*R/\pi R^4 = 1.112 * 10^6 N/m^2$

• Plots

Shear Stress vs Shear Strain (Method-1)

G = Slope = **28.490 GPa**

Torque vs Angle of Twist (Method-2)

G = Slope*L/J = **24.384 GPa**

- Error (wrt standard Aluminum AA6063 Alloy):
 Standard G = 25.8 GPa
 - Method-1
 - Measured G = 28.490 GPa
 - Error = 100*(28.490-25.8)/25.8 = **10.42**%
 - o Method-2
 - *Measured G = 24.384 GPa*
 - Error = 100*(25.8-24.384)/25.8 = **5.48**%

RESULT ANALYSIS

- Sources of Error
 - Unstable Strain indicator readings.
 - Incorrect placing of weights (sway of pans or not placing both weights simultaneously).
 - Bearing friction and slippage with shaft.
 - Strain gauge alignment error.
 - Incorrect zeroing and environmental pressure difference.
- Precautions
 - Keep the pans steady while placing weights.
 - o Zero the Strain indicator after every load change.
 - Wait for few minutes before recording the readings.
 - Regularly maintain and oil the bearings.

CONCLUSION

The experiment was successfully carried out and the values found resembles the true values to acceptable extent.