Appendix A Mathematical background

Last update on 2024-02-26 18:28

Table of contents

Notations

Linear algebra

Linear algebra

numbers

$$\mathbb{R}_{+} = \{ x \in \mathbb{R} \mid x \ge 0 \}$$

$$\mathbb{R}_{++} = \{ x \in \mathbb{R} \mid x > 0 \}$$

- all vectors/matrices are delimited by square brackets, parentheses are used for construct column vectors from comma separated lists
- ▶ 1 in bold font denotes a vector all of whose components are 1
- matrices

$$\begin{split} \mathbb{S}^k &= \{X \in \mathbb{R}^{k \times k} \mid X^T = X\} \\ \mathbb{S}^k_+ &= \{X \in \mathbb{R}^{k \times k} \mid X^T = X \text{ and } X \succeq 0\} \quad \text{(positive semidefinite symmetric)} \\ \mathbb{S}^k_{++} &= \{X \in \mathbb{R}^{k \times k} \mid X^T = X \text{ and } X \succ 0\} \quad \text{(positive definite symmetric)} \end{split}$$

▶ $f: A \to B$ indicates $\operatorname{\mathbf{dom}} f \subseteq A$

Linear algebra

Symmetric eigenvalue decomposition

▶ Suppose $A \in \mathbb{S}^n$, then

$$A = Q\Lambda Q^T$$
,

where Q is orthogonal and $\Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_1 \geq \dots \geq \lambda_n$.

▶ Suppose $A \in \mathbb{S}^n_+$, then $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$. We define

$$A^{\frac{1}{2}} = Q \operatorname{diag}(\lambda_1^{\frac{1}{2}}, \dots, \lambda_n^{\frac{1}{2}}) Q^T.$$

Singular value decomposition

Suppose $A \in \mathbb{R}^{m \times n}$ with $\operatorname{\mathbf{rank}} A = r$, then

$$A = U\Sigma V^T$$

where

- $V \in \mathbb{R}^{m \times r}$ with $U^T U = I_r$;
- $\triangleright \ \ \varSigma = \mathbf{diag}(\sigma_1, \ldots, \sigma_r) \ \text{with} \ \sigma_1 \ge \cdots \ge \sigma_r > 0;$
- $V \in \mathbb{R}^{n \times r}$ with $V^T V = I_r$.

The matrix

$$A^{\dagger} = V \Sigma^{-1} U^T \in \mathbb{R}^{n \times m}$$

is called the **pseudo-inverse** of A.

Schur complement

Let

$$X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \in \mathbb{S}^n$$

and assume $\det A \neq 0$. Then the matrix

$$S = C - B^T A^{-1} B$$

is called the **Schur complement** of A in X.

- $ightharpoonup \det X = \det A \det S$
- $ightharpoonup X \succ 0 \iff A \succ 0 \text{ and } S \succ 0$
- $\blacktriangleright \ \, X \succeq 0 \quad \Longleftrightarrow \quad A \succ 0 \ \, \text{and} \, \, S \succeq 0$

Linear algebra

Standard inner products

ightharpoonup For any $x,y\in\mathbb{R}^n$

$$\langle x, y \rangle = x^T y, \qquad ||x||_2 = (x^T x)^{\frac{1}{2}}.$$

ightharpoonup For any $X,Y\in\mathbb{R}^{m\times n}$

$$\langle X, Y \rangle = \mathbf{tr}(X^T Y), \qquad ||X||_F = (\mathbf{tr}(X^T X))^{\frac{1}{2}}.$$

Norms

 \blacktriangleright ℓ_p norm: $x \in \mathbb{R}^n$, $p \ge 1$ or $p = \infty$

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \qquad ||x||_\infty = \max\{|x_1|, \dots, |x_n|\}$$

• quadratic norm: $x \in \mathbb{R}^n$, $P \in \mathbb{S}^n_{++}$

$$||x||_P = (x^T P x)^{\frac{1}{2}} = ||P^{\frac{1}{2}} x||_2$$

Facts about norms

 $C \subseteq \mathbb{R}^n$ symmetric, convex, closed, compact with non-empty interior $\iff C$ is the unit ball of the norm

$$||x|| = (\sup\{t \ge 0 \mid tx \in C\})^{-1}$$
 for any $x \in \mathbb{R}^n$

▶ let $\|\cdot\|_a$ and $\|\cdot\|_b$ be any norms on \mathbb{R}^n , then there exists $\alpha, \beta > 0$ such that

$$\alpha \|x\|_a \le \|x\|_b \le \beta \|x\|_a$$
 for any $x \in \mathbb{R}^n$

lacktriangle let $\|\cdot\|$ be any norm on \mathbb{R}^n , then there exists a quadratic norm $\|\cdot\|_P$ such that

$$||x||_P \le ||x|| \le \sqrt{n} ||x||_P$$
 for any $x \in \mathbb{R}^n$

Operator norms

Given $(\mathbb{R}^m, \|\cdot\|_a)$ and $(\mathbb{R}^n, \|\cdot\|_b)$, for any $X \in \mathbb{R}^{m \times n}$, we define

$$||X||_{a,b} = \sup_{u \in \mathbb{R}^n} \{||Xu||_a \mid ||u||_b \le 1\}.$$

▶ if a = b = 2, it is called ℓ_2 -norm or spectral norm

$$\|X\|_2 = \sigma_{\mathbf{max}}(X) = \left(\lambda_{\mathbf{max}}\left(X^TX\right)\right)^{\frac{1}{2}}$$

▶ if $a = b = \infty$, it is called ℓ_{∞} -norm or max-row-sum

$$||X||_{\infty} = \max_{1 \le i \le m} \left(\sum_{j=1}^{n} |x_{ij}| \right)$$

▶ if a = b = 1, it is called ℓ_1 -norm or max-column-sum

$$||X||_{\infty} = \max_{1 \le j \le n} \left(\sum_{i=1}^{m} |x_{ij}| \right)$$

Dual norm

Given $(\mathbb{R}^n, \|\cdot\|)$, the dual norm is given as

$$||z||_* = \sup_{x \in \mathbb{R}^n} \{ z^T x \mid ||x|| \le 1 \}$$

with properties

$$z^T x \le ||x|| ||z||_*$$
 and $||\cdot||_{**} = ||\cdot||$

- ▶ on \mathbb{R}^n , the dual of the p-norm is the q-norm, where $\frac{1}{p} + \frac{1}{q} = 1$
- ightharpoonup on $\mathbb{R}^{m \times n}$, the dual of the spectral norm

$$||X||_2 = \sigma_{\max}(X)$$

is the nuclear norm

$$||Z||_{2*} = \sigma_1(Z) + \dots + \sigma_r(Z) = \mathbf{tr}\left(\left(Z^T Z\right)^{\frac{1}{2}}\right)$$

Derivatives

▶ The derivative (Jacobian) of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ at x is

$$Df(x) \in \mathbb{R}^{m \times n}$$
 with $Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_i}$, $i = 1, \dots, m, \quad j = 1, \dots, n$.

▶ The gradient of a function $f: \mathbb{R}^n \to \mathbb{R}$ at x is

$$\nabla f(x) = Df(x)^T \in \mathbb{R}^n.$$

▶ The Hessian matrix of a function $f: \mathbb{R}^n \to \mathbb{R}$ at x is

$$\nabla^2 f(x) = D\nabla f(x) \in \mathbb{S}^n.$$

First order approximation

General form

Suppose $f : \mathbb{R}^n \to \mathbb{R}$, and $x, y \in \mathbb{R}^n$, where y is close to x, then

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x)$$
$$= f(x) + \langle \nabla f(x), y - x \rangle$$

where both $\nabla f(x)$ and y-x are vectors in \mathbb{R}^n .

Special case

Suppose $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, and $X, Z \in \mathbb{R}^{m \times n}$, where Z is close to X, then

$$f(Z) \approx f(X) + \mathbf{tr} \left(\nabla f(x)^T (Z - X) \right)$$

where both $\nabla f(x)$ and Z-X are $m\times n$ matrices.

Second order approximation

Suppose $f : \mathbb{R}^n \to \mathbb{R}$, and $x, y \in \mathbb{R}^n$, where y is close to x, then

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x)$$
$$= f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} \langle \nabla^{2} f(x) (y - x), y - x \rangle$$

where both $\nabla^2 f(x)(y-x)$ and y-x are vectors in \mathbb{R}^n .

Remark

The term $\nabla^2 f(x)(y-x)$ appears also in the first order approximation of $\nabla f(x)$:

$$\nabla f(y) \approx \nabla f(x) + D\nabla f(x)(y - x)$$
$$= \nabla f(x) + \nabla^2 f(x)(y - x),$$

which is sometimes helpful for the computation.

Example

Consider the function $f \colon \mathbb{S}^n \to \mathbb{R}$ defined as

$$f(X) = \log \det X$$
, $\operatorname{dom} f = \mathbb{S}_{++}^n$.

Compute the second order approximation of f.