18.303 Midterm, Fall 2010

Each problem has equal weight. You have 55 minutes.

Problem 1: Finite differences (20 points)

From class and homework, the d^2/dx^2 operator on [0,L] can be discretized into values $u_m \approx u(m\Delta x)$ at points $x = m\Delta x$ [for $\Delta x = L/(M+1)$] as $A = -D^T D/\Delta x^2$, where

$$D_{\text{Dirichlet}} = \begin{pmatrix} 1 & & & & \\ -1 & 1 & & & & \\ & \ddots & \ddots & & \\ & & -1 & 1 & \\ & & & -1 \end{pmatrix}, \qquad D_{\text{Neumann}} = \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & \ddots & \ddots & \\ & & & -1 & 1 \end{pmatrix}$$

when the boundary conditions are Dirichlet u(0) = u(L) = 0 [D an $(M+1) \times M$ matrix] and Neumann u'(0) = u'(L) = 0 [D an $(M-1) \times M$ matrix], respectively.

- (a) Write down a new D matrix that implements the boundary conditions: u(0) + u'(0) = 0, u(L) = 0. For simplicity, apply the left boundary condition at $\Delta x/2$ rather than at 0, using $u(\Delta x/2) \approx (u_0 + u_1)/2$. Be sure to indicate how many rows and columns your D matrix has, and for what m values you have degrees of freedom u_m .
- (b) If you use your D matrix from the previous part to solve u''(x) = f(x) approximately via $A = -D^T D/\Delta x^2$, how fast would you expect the errors to vanish as $\Delta x \to 0$? [i.e. errors proportional to Δx^n for what power n?]

Problem 2: Adjoints and stuff (20 points)

Let $\Omega \subseteq \mathbb{R}^2$ be the rectangular 2d region $x \in [0, L_x]$, $y \in [0, L_y]$, with Dirichlet boundaries $u|_{d\Omega} = 0$. Consider the operator

$$\hat{A}u = \nabla^2 u + \frac{\partial}{\partial x} \left[c(x, y) \frac{\partial u}{\partial y} \right] + \frac{\partial}{\partial y} \left[c(x, y) \frac{\partial u}{\partial x} \right]$$

for some real-valued function c(x,y). Let $\hat{B} = \frac{\partial}{\partial x} c \frac{\partial}{\partial y}$, i.e. $\hat{B}u = \frac{\partial}{\partial x} \left[c(x,y) \frac{\partial u}{\partial y} \right]$, the second term in \hat{A} .

- (a) Find $\hat{B}^* = \underline{} \underline{$
- (b) Under what conditions on c(x,y) will $\hat{A}u = \frac{\partial u}{\partial t}$ have solutions u(x,y,t) that $\to 0$ as $t \to \infty$ for any initial condition u(x,y,0)? Hint: consider $\langle u,\hat{A}u\rangle$ for $u \neq 0$, and note that the eigenvalues of the 2×2 matrix $\begin{pmatrix} 1 & c \\ c & 1 \end{pmatrix}$ are $1\pm c$. (From class: $\langle u,\nabla^2 u\rangle = -\int_{\Omega}\nabla u\cdot\nabla u$.)

Problem 3: Thinking Green (20 points)

Consider the operator $\hat{A} = -c(\mathbf{x})\nabla^2$ in some 2d region $\Omega \subseteq \mathbb{R}^2$ with Dirichlet boundaries $(u|_{d\Omega} = 0)$, where $c(\mathbf{x}) > 0$. Suppose the eigenfunctions of \hat{A} are $u_n(\mathbf{x})$ with eigenvalues λ_n [that is, $\hat{A}u_n = \lambda_n u_n$] for n = 1, 2, ..., numbered in order $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$. Let $G(\mathbf{x}, \mathbf{x}')$ be the Green's function of \hat{A} .

- (a) If $f(\mathbf{x}) = \sum_{n} \alpha_n u_n(\mathbf{x})$ for some coefficients $\alpha_n = \underline{}$ (expression in terms of f and u_n), then $\int_{\Omega} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d^2 \mathbf{x}' = \underline{}$ (in terms of α_n and u_n).
- (b) The maximum possible value of

$$\frac{\int_{\Omega} \int_{\Omega} \frac{1}{c(\mathbf{x})} \overline{u(\mathbf{x})} G(\mathbf{x}, \mathbf{x}') u(\mathbf{x}') d^2 \mathbf{x} d^2 \mathbf{x}'}{\int_{\Omega} \frac{|u(\mathbf{x}'')|^2}{c(\mathbf{x}'')} d^2 \mathbf{x}''},$$

for any possible $u(\mathbf{x})$, is ______ (in terms of quantities mentioned above). [Hint: min-max.]

1