Course Syllabus Model Order Reduction Some Examples Reduced Basis Method

Reduced Basis methods: an introduction

Christophe Prud'homme

prudhomme@unistra.fr

September 12, 2023

CeMosis - http://www.cemosis.fr

IRMA

Université de Strasbourg

Course Syllabus Model Order Reduction Some Examples Reduced Basis Method

- 1 Course Syllabus
- 2 Model Order Reduction
- **3** Some Examples
- 4 Reduced Basis Method

Course Syllabus

Date & Time

- Lecture & Seminar
 - Monday 13:30-15:30 Thurdays, 13.30-15.30,
 - Start: 16/01/2023 (total 15 sessions)
 - Homework requires programming in Python
- Website : Moodle
- Assessment
- Final exam
 - Date to be determined

Instructor

- Christophe Prud'homme
 - Room P-210, UFR Math Info (currently located at URFIST, thrid floor)
 - Email: prudhomme@unistra.fr
 - · Office hours: by appointment

Course Outline

Topics to be discussed: Reduced Basis Methods

- Origin: structural mechanics; Parametrized PDEs
- Stationary and time-dependent problems: a priori theory, certified error bounds, coercivity/inf-sup lower bounds, non intrusive reduced basis
- Non-Affine, Non-Linear problems :
- Data Assimilation for Reduced basis methods

Keywords/Methods: Galerkin, POD, Greedy, RB, Intrusive RB, Non Intrusive RB, CRB, EIM, DEIM, GEIM, PBDW, 3DVAR, 4DVAR, EnKF, RB3DVar, RB4DVar, RBEnKF, heat transfert, transport, Stokes/Navier-Stokes

Model Order Reduction

Goal

Replicate input-output behavior of large-scale system Σ over a certain (restricted) range of

- forcing inputs and
- parameter inputs

Given large-scale system $\Sigma_{\mathcal{N}}$ of dimension \mathcal{N} , find a reduced order model $\Sigma_{\mathcal{N}}$ of dimension $\mathcal{N} << \mathcal{N}$ such that: The approximation error is small, i.e., there exists a global error bound such that

- $||u(\mu) u_N(\mu)|| \le \varepsilon_{\text{des}}$, and $|s(\mu) s_N(\mu)| \le \varepsilon_{\text{des}}^s$, $\forall \mu \in D^{\mu}$.
- Stability (and passivity) is preserved.
- The procedure is computationally stable and efficient.

Generalized Inverse Problem

- Given PDE(μ) constraints, find value(s) of parameter μ which:
 - (OPT) minimizes (or maximizes) some functional;
 - (EST) agrees with measurements;
 - (CON) makes the system behave in a desired manner;
 - or some combination of the above
- Full solution computationally very expensive due to a repeated evaluation for many different values of μ
- Goal: Low average cost or real-time online response

Methodologies

- Reduced Basis Methods
- Proper Orthogonal Decomposition
- Balanced Truncation
- Krylov Subspace Methods
- Proper Generalized Decomposition
- Modal Decomposition
- Physical model reduction
- •

Disclaimer

Model Order Reduction Techniques

- DO NOT replace your favorite discretization scheme (e.g. FE, FV, FD), but instead are build upon and supplement these schemes.
- ARE NOT useful if you are interested in a single high-fidelity solution of your high-dimensional problem, but instead if you are interested in the many-query or real-time context.

Some Examples

Cooling of electronical components Aerothermal flows Modeling of high field magnets Summary

Thermal Testcase Description

Overview

- Heat-Transfer with conduction and convection possibly coupled with Navier-Stokes
- Simple but complex enough to contain all difficulties to test the certified reduced basis
 - non symmetric, non compliant
 - steady/unsteady
 - physical and geometrical parameters
 - coupled models
- Testcase can be easily complexified

Objective

Apply reduced basis methods on an aerothermal simulation in an avionic bay

Model

- Steady Navier-Stokes/Heat transfert
- Incompressible Newtonian Fluid
- Boussinesq Approximation
- Turbulent Flow

Some Scientific Issues

- Turbulence
- Mixed forced and natural convection
- Boundary conditions coupled to an ECS (Environment Control System)
- Error prediction (Reduced Basis)

Course Syllabus
Model Order Reduction
Some Examples
Reduced Basis Method

Cooling of electronical components Aerothermal flows Modeling of high field magnets Summary

HiFiMagnet project

High Field Magnet Modeling

Large scale user facility in France

- High magnetic field: from 24 T
- Grenoble : continuous magnetic field (36 T)
- Toulouse: pulsed magnetic field (90 T)

Application domains

- Magnetoscience
- Solide state physic
- Chemistry
- Biochemistry

Magnetic Field

- Farth: $5.8 \cdot 10^{-4} T$
- Supraconductors : 24*T*
- Continuous field: 36T
- Pulsed field · 90 T

Access

- Call for Magnet Time : 2 × per year
- \approx 140 projects per year

Course Syllabus
Model Order Reduction
Some Examples
Reduced Basis Method

High Field Magnet Modeling

Cooling of electronical components Aerothermal flows Modeling of high field magnet **Hydraulics** Deformation Mechanics NS + Turb - 3d Elasticity – NL 3d Heat Eqn - 3d Cooling Electromag. **Thermics** QS Maxwell - 3d Heat egn - NL 3d Joules Losses Displacement (mm) 0.155

0.08

Why use Reduced Basis Methods

Challenges

- Modeling: multi-physics non-linear models, complex geometries, genericity
- Account for uncertainties: uncertainty quantification, sensitivity analysis
- Optimization : shape of magnets, robustness of design

Objective 1 : Fast

- Complex geometries
 - Large number of dofs
- Uncertainty quantification
 - Large number of runs

Objective 2: Reliable

- Field quality
- Design optimization
 - Certified bounds
 - Reach material limits

Summary

Many problems in computational engineering require

many or real-time evaluations of PDE(μ)-induced input-output relationships.

Model order reduction techniques enable

certified, real-time calculation of outputs of PDE(μ) for parameter estimation, optimization, and control.

Reduced Basis Method

Problem Statement Key Ingredients Summary

The Reduced Basis Method

Reduced basis method

A model order reduction technique that allows efficient and reliable reduced order approximations for a large class of parametrized partial differential equations (PDEs) in real-time or in the limit of many queries.

The Reduced Basis Method

Reduced basis method

A model order reduction technique that allows efficient and reliable reduced order approximations for a large class of parametrized partial differential equations (PDEs) in real-time or in the limit of many queries.

- Comparison to other model reduction techniques:
 - Parametrized problems(material, constants, geometry,...)
 - A posteriori error estimation
 - Offline-online decomposition
 - Greedy algorithm (to construct reduced basis space)

The Reduced Basis Method

Reduced basis method

A model order reduction technique that allows efficient and reliable reduced order approximations for a large class of parametrized partial differential equations (PDEs) in real-time or in the limit of many queries.

- Comparison to other model reduction techniques:
 - Parametrized problems(material, constants, geometry,...)
 - A posteriori error estimation
 - Offline-online decomposition
 - Greedy algorithm (to construct reduced basis space)
- Motivation:
 - Efficient solution of optimization and optimal control problems governed by parametrized PDEs.

Given
$$\mu \in \mathcal{D}^{\mu}$$
 parameter domain

Given
$$\underbrace{\mu}_{\text{parameter}} \in \underbrace{\mathcal{D}^{\mu}}_{\text{parameter domain}}$$
 , evaluate

$$\underbrace{s(\mu)}_{\text{output}} = L(\mu)^T \underbrace{u(\mu)}_{\text{field variable}}$$

Given
$$\mu \in \mathcal{D}^{\mu}$$
, evaluate
$$\underbrace{s(\mu)}_{\text{parameter domain}} = L(\mu)^T \underbrace{u(\mu)}_{\text{field variable}}$$
 where $u(\mu) \in \underbrace{X}_{\text{FE space}}$ satisfies a $PDE_{FE}(\mu)$

Given
$$\mu \in \mathcal{D}^{\mu}$$
, evaluate
$$\underbrace{s(\mu)}_{\text{parameter domain}} = L(\mu)^T \underbrace{u(\mu)}_{\text{field variable}}$$
 where $u(\mu) \in \underbrace{X}_{\text{FE space}}$ satisfies a $PDE_{FE}(\mu)$
$$\underbrace{A(\mu)}_{\text{parameter domain}} = \underbrace{f(\mu)}_{\text{parameter domain}}$$

loading,control...

linear operator

Given
$$\mu \in \mathcal{D}^{\mu}$$
 , evaluate
$$\underline{s(\mu)} = L(\mu)^T \quad \underline{u(\mu)}$$

where
$$u(\mu) \in \underbrace{X}_{\mathsf{FE \, space}}$$
 satisfies a $\mathsf{PDE}_{\mathsf{FE}}(\mu)$

$$\underbrace{A(\mu)}_{\text{linear operator}} u(\mu) = \underbrace{f(\mu)}_{\text{loading,control...}}$$

Difficulties:

- Need to solve $PDE_{FE}(\mu)$ numerous times at different values of μ
- Finite element space X has large dimension \mathcal{N}

The Main Idea - Key Observation

General Problem Statement

Given a system $\Sigma_{\mathcal{N}}$ of large dimension N,

PARAM
$$\mu \longrightarrow M(\mu)\dot{u} = A(\mu)u + B(\mu)g$$
 FORCING $g \longrightarrow s = L^T(\mu)u$ OUTPUT s

where

- $u(\mu, t) \in \mathbb{R}^{\mathcal{N}}$, the state
- $s(\mu, t)$, the outputs of interest
- g(t), the forcing or control inputs

are functions of

- $\mu \in D$, the parameter inputs
- t, time

and the matrices M, A, B, and L also depend on μ ...

General Problem Statemen

... construct a reduced order system Σ_N of dimension $N \ll N$,

PARAM
$$\mu \longrightarrow M_N(\mu)\dot{u}_N = A_N(\mu)u_N + B_N(\mu)g$$
 \longrightarrow OUTPUT s_N INPUT $g \longrightarrow S_N = L_N^T(\mu)u_N$

where $u_N(\mu) \in \mathbb{R}^N$ is the reduced state.

Special case

We start by considering $\dot{u} = 0$

Full Model

Reduced Model

$$A(\mu)u(\mu) = F(\mu)$$
 $A_N(\mu)u_N(\mu) = F_N(\mu)$
 $s(\mu) = L^T(\mu)u(\mu)$ $s_N(\mu) = L_N^T(\mu)u_N(\mu)$

Approximation

• Take "snapshots" at different μ -values: $u(\mu_i), i=1\dots N$, and let

$$Z_N = [\xi_1, \dots, \xi_N] \in \mathbb{R}^{N \times N}$$

where the basis/test functions, ξ_i "=" $u(\mu_i)$, are orthonormalized

Approximation

• Take "snapshots" at different μ -values: $u(\mu_i), i = 1 \dots N$, and let

$$Z_N = [\xi_1, \dots, \xi_N] \in \mathbb{R}^{N \times N}$$

where the basis/test functions, ξ_i "=" $u(\mu_i)$, are orthonormalized

• For any new μ , approximate u by a linear combination of the ξ_i

$$u(\mu) \approx \sum_{i=1}^{N} u_{N,i}(\mu) \xi_i = Z_N u_N(\mu)$$

determined by Galerkin projection, i.e.,

Approximation

• Take "snapshots" at different μ -values: $u(\mu_i), i = 1...N$, and let

$$Z_N = [\xi_1, \dots, \xi_N] \in \mathbb{R}^{N \times N}$$

where the basis/test functions, ξ_i "=" $u(\mu_i)$, are orthonormalized

• For any new μ , approximate u by a linear combination of the ξ_i

$$u(\mu) \approx \sum_{i=1}^{N} u_{N,i}(\mu) \xi_i = Z_N u_N(\mu)$$

determined by Galerkin projection, i.e.,

$$\underbrace{Z_N^T A(\mu) Z_N}_{\equiv A_N(\mu)} u_N(\mu) = \underbrace{Z_N^T F(\mu)}_{\equiv F_N(\mu)}$$
$$s_N(\mu) = \underbrace{L^T(\mu) Z_N}_{\equiv L_N^T(\mu)} u_N(\mu)$$

A posteriori error estimation

• Assume well-posedness; $A(\mu)$ pos.def. with min eigenvalue $\alpha_a := \lambda_1 > 0$, where $A\xi = \lambda X\xi$ and X corresponds to the X-inner product, $(v, v)_X = \|v\|_X^2$

A posteriori error estimation

- Assume well-posedness; $A(\mu)$ pos.def. with min eigenvalue $\alpha_a := \lambda_1 > 0$, where $A\xi = \lambda X\xi$ and X corresponds to the X-inner product, $(v, v)_X = \|v\|_X^2$
- Let $\underbrace{e_N = u Z_N \ u_N}_{\text{error}}$, and $\underbrace{r = F A \ Z_N \ u_N}_{\text{residual}}, \forall \mu \in D$, so that

$$A(\mu)e_N(\mu)=r(\mu)$$

A posteriori error estimation

- Assume well-posedness; $A(\mu)$ pos.def. with min eigenvalue $\alpha_a := \lambda_1 > 0$, where $A\xi = \lambda X\xi$ and X corresponds to the X-inner product, $(v,v)_X = \|v\|_X^2$
- Let $\underbrace{e_N = u Z_N \ u_N}_{\text{error}}$, and $\underbrace{r = F A \ Z_N \ u_N}_{\text{residual}}, \forall \mu \in D$, so that

$$A(\mu)e_N(\mu)=r(\mu)$$

• Then for any $\mu \in D$,

LAX-MILGRAM

$$||u(\mu) - Z_N u_N(\mu)||_X \le \frac{||r(\mu)||_{X'}}{\alpha_{LB}(\mu)} =: \Delta_N(\mu)$$

$$|s(\mu) - s_N(\mu)| \le ||L||_{X'} \Delta_N(\mu) =: \Delta_N^s(\mu)$$

where $\alpha_{LB}(\mu)$ is a lower bound to $\alpha_a(\mu)$, and $||r||_{X'} = r^T X^{-1} r$.

Problem Statement Key Ingredients Summary

Offline-Online decomposition

How do we compute u_N , s_N , Δ_N^s for any μ efficiently online?

Offline-Online decompositior

How do we compute u_N , s_N , Δ_N^s for any μ efficiently online?

We assume

$$A(\mu) = \sum_{q=1}^Q \underbrace{\theta^q(\mu)}_{ ext{parameter dependent coefficients parameter independent matrices}} \underbrace{\mathcal{A}^q}_{ ext{parameter independent matrices}}$$

so that

$$A_N(\mu) = Z_N^T A(\mu) Z_N = \sum_{q=1}^Q \theta^q(\mu) \underbrace{Z_N^T A^q Z_N}_{\text{paramerer independent}}$$

How do we compute u_N , s_N , Δ_N^s for any μ efficiently online?

We assume

$$A(\mu) = \sum_{q=1}^{Q} \underbrace{\theta^q(\mu)}_{\text{parameter dependent coefficients parameter independent matrices}} \underbrace{\mathcal{A}^q}_{\text{parameter dependent coefficients}}$$

so that

$$A_N(\mu) = Z_N^T A(\mu) Z_N = \sum_{q=1}^Q \theta^q(\mu) \underbrace{Z_N^T A^q Z_N}_{\text{paramerer independent}}$$

Since all required quantities can be decomposed in this manner, we can

- **OFFLINE**: Form and store μ -independent quantities at cost $O(\mathcal{N}^*)$
- ONLINE: For any $\mu \in D$, compute approx and error bounds at cost $O(QN^2 + N^3)$ and $O(Q^2N^2)$.

How do we choose the sample points μ_i (snapshots) optimally?

How do we choose the sample points μ_i (snapshots) optimally?

How do we choose the sample points μ_i (snapshots) optimally?

$$\mu_{N+1} = \operatorname{argmax}_{\mu \in D^{\text{train}}} \frac{\Delta_N(\mu)}{\|u_N(\mu)\|_X}$$

How do we choose the sample points μ_i (snapshots) optimally?

$$\mu_{N+1} = \operatorname{argmax}_{\mu \in D^{\operatorname{train}}} \frac{\Delta_N(\mu)}{\|u_N(\mu)\|_X}$$

$$Z_{N+1} = [u(\mu_1), \dots, u(\mu_{N+1})]$$

How do we choose the sample points μ_i (snapshots) optimally?

$$\mu_{N+1} = \operatorname{argmax}_{\mu \in D^{\operatorname{train}}} \frac{\Delta_N(\mu)}{\|u_N(\mu)\|_X}$$

$$Z_{N+1} = [u(\mu_1), \dots, u(\mu_{N+1})]$$

How do we choose the sample points μ_i (snapshots) optimally?

$$\mu_{N+1} = \operatorname{argmax}_{\mu \in D^{\text{train}}} \frac{\Delta_N(\mu)}{\|u_N(\mu)\|_X}$$

$$Z_{N+1} = [u(\mu_1), \ldots, u(\mu_{N+1})]$$

- Key: $\Delta_N(\mu)$ is sharp and inexpensive to compute (online)
- Error bound "optimal" samples \Rightarrow good approximation $u_N(\mu)$.

Reduced Basis Opportunitie

Computational Opportunities

- We restrict our attention to the typically smooth and low-dimensional manifold induced by the parametric dependence.
 - ⇒ Dimension reduction
- We accept greatly increased offline cost in exchange for greatly decreased online cost.
 - ⇒ Real-time and/or many-query context

Reduced Basis Relevance

Real-Time Context (control,...):

$$\mu
ightarrow ~s_{\it N}(\mu), \Delta^{\it s}_{\it N}(\mu) \ t_0 ext{("input")} \ t_0 + \delta t_{
m comp} ext{("response")}$$

Many-Query Context (design,...):

$$\mu_j \rightarrow s_N(\mu_j), \Delta_N^s(\mu_j), \quad j = 1 \dots J$$
 $t_0 \qquad t_0 + \delta t_{\text{comp}} J \quad (J \rightarrow \infty)$

⇒ Low marginal (real-time) and/or low average (many-query) cost.

Reduced Basis Challenge

- A Posteriori error estimation
 - Rigorous error bounds for outputs of interest
 - Lower bounds to the stability "constants"
- Offline-online computational procedures
 - Full decoupling of finite element and reduced basis spaces
 - A posteriori error estimation
 - Nonaffine and nonlinear problems
- Effective sampling strategies
 - High parameter dimensions

Reduced Basis Outline

- Affine Elliptic Problems
 - (non)symmetric, (non)compliant, (non)coercive
 - (Convection)-diffusion, linear elasticity, Helmholtz
- 2 Affine Parabolic Problems
 - (Convection)-diffusion equation
- 3 Nonaffine and Nonlinear Problems
 - Nonaffine parameter dependence, nonpolynomial nonlinearities
- 4 Reduced Basis (RB) Method for Fluid Flow
 - Saddle-Point Problems (Stokes)
 - Navier-Stokes Equations
- 6 Applications
 - Data Assimilation: 3DVar, 4DVar, EnKF
 - Parameter Optimization and Estimation (Inverse Problems)
 - Optimal Control