1 2.1 - Sets

Sets are groups of objects, often Numbers. Objects in sets usually have something in common, as otherwise a set would be nonsensical.

1.1 Common Sets

- 1. The set of all Complex numbers \mathbb{C} (\mathbb{C})
- 2. The set of all Real numbers \mathbb{R} (\mathbb{R})
- 3. The set of all Rational numbers \mathbb{Q} (\mathbd{Q})
- 4. The set of all Integer numbers \mathbb{Z} (\mathbb{Z})
- 5. The set of all Natural numbers \mathbb{N} (\mathbb{M})
- 6. The set of all Imaginary numbers \mathbb{I} (\mathbb{I})
- 7. The empty Set \emptyset or $\{\}$ (\emptyset or $\setminus \{ \setminus \}$)

$$\mathbb{N} \in \mathbb{Z} \in \mathbb{Q} \in \mathbb{R} \in \mathbb{C}$$

$$\mathbb{I} \in \mathbb{C}$$

1.2 Subsets

The set A is a *subset* of B iff B contains **all** objects of A. A being a subset of B can also be expressed as B is a *superset* of A. Subsets are written as \in (\in) in equations.

1.3 Size of a Set

|S| denotes the size, or number of $distinct^1$ objects in set S. Size is also called the Cardinality of a **finite** set.

1.4 Power Sets

A Power Set is one that includes all subsets of another set. Power Sets are denoted by $\mathcal{P}(S)$ (\mathcal { P} (S)) in equations.

1.5 Ordered n-tuple

An ordered n-tuple is an ordered collection denoted by $(a_1, a_2, ...)$ ($(a_1, a_2, ...)$) Ordered tuples are equal if they have the same elements at the same locations.

 $^{^1\}mathrm{Distinct}$ objects means that equivalent objects are only counted once, e.g. |2,2|=1 as 2 is only counted once