École polytechnique fédérale de Lausanne

Semester project fall/spring 202X or Master thesis fall/spring 202X

Bachelor or Master in Mathematics or Minor heading such as course title

Title of your document Second line of your title

Author: First Name Last Name

Supervisor: First Name Last Name

Contents

1	Introduction	1
2	Title of section 2.1 Title of subsection	
3	Conclusion	1
Aj	ppendix A Symbols	2
Aı	ppendix B Using tikz for drawing	2

1 Introduction

In this project we analyse a model for describing the trajectory of particles of pollutants in groundwater. A successful model for describing underground flows is given by the uncertain Darcy problem. Given a domain D such that its boundary ∂D is divided in three subsets $\Gamma_{\rm in}$, $\Gamma_{\rm out}$, Γ_N such that

$$\Gamma_{\text{in}} \cup \Gamma_{\text{out}} \cup \Gamma_N = \partial D, \quad \Gamma_{\text{in}} \cap \Gamma_{\text{out}} \cap \Gamma_N = \emptyset,$$

the pressure and velocity fields p and u are given by the solution of the following Partial Differential Equation (PDE)

$$\begin{cases}
 u = -A\nabla p, & \text{in } D, \\
 \nabla \cdot u = f, & \text{in } D, \\
 p = p_0, & \text{on } \Gamma_{\text{in}}, \\
 p = 0, & \text{on } \Gamma_{\text{out}}, \\
 \nabla p \cdot n = 0, & \text{on } \Gamma_N,
\end{cases}$$
(1)

where Γ_{in} , Γ_{out} are the inlet and outlet portions of the boundary of D, and an impermeability condition is imposed on Γ_N .

2 Title of section

Let *D* be a subset of \mathbb{R}^d and W(t) be a vector of *m* independent Brownian motions and two functions $f: \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^d \to \mathbb{R}^{d \times m}$. We consider the following stochastic differential equation (SDE)

$$\begin{cases} dX(t) = f(X(t))dt + g(X(t))dW(t), & 0 < t \le T, \\ X(0) = X_0, & X_0 \in D. \end{cases}$$
 (2)

The problem is equipped with two different types of boundary conditions, namely

- i. some item
- ii. another one

2.1 Title of subsection

Look at the appendix. but also let us cite some famous mathematicians, such as [1], [2] and [3].

2.1.1 Title of subsubsection

Some figures of the MA building at EPFL.

(a) Put your sub-caption here

(b) Put your sub-caption here

Figure 1: Put your caption here

3 Conclusion

In this project we did a lot of things.

Appendix A Symbols

In the The Comprehensive LaTeX Symbol List, one can find a **lot** of symbols. Such as $|\delta| \oint \longleftrightarrow G$ or even some non-maths ones $|\Omega| : F$.

Appendix B Using tikz for drawing

Tikz can help you draw some nice things. but other tools exist as well. Take a look at Tikz pour l'impatient Some examples:

References

- [1] L. Euler. Elémens d'algèbre. Elémens d'algèbre. chez Bruyset ainé & Compagnie, 1795.
- [2] R. A. Fisher. Contributions to Mathematical Statistics. Wiley, New York, 1950.
- [3] Maryam Mirzakhani. Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. *Inventiones Mathematicae*, 167(1):179–222, 2006.