Stat 8003, HW1

Due: Thursday, Sep 4th, 2014

1. Let A and B be two matrices defined as

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \\ -2 & 1 \end{pmatrix}.$$

Calculate

- *AB*;
- \bullet B^TA :

Use R to check your calculation.

2. If **A** is invertible, prove that $det(\mathbf{A}^{-1}) = (det(\mathbf{A}))^{-1}$.

3.

- (a) If the matrix P is idempotent, then Q = I P is also idempotent;
- (b) If X is a $n \times m$ matrix with rank m, show that the following matrix P is idempotent,

$$P = X(X^T X)^{-1} X^T.$$

- **4.** Given a matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. Is \mathbf{A} positive-definite? Prove it or disprove it.
- **5.** The Gamma function $\Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} exp(-x) dx.$$

- 1. Prove that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$;
- 2. Calculate $\Gamma(n)$ where n is a positive integer;
- 3. Calculate $\int_0^\infty x^{-\alpha-1} \exp(-\frac{\beta}{x}) dx$, express your result using Gamma function.