

COM303: Digital Signal Processing

Lecture 9: Linear Systems

Overview

- ► linear systems
- ► filtering by example
- stability

Overview

- ► linear systems
- ▶ filtering by example
- stability

Overview

- ► linear systems
- ▶ filtering by example
- stability

Overview:

- ► Linearity and time invariance
- Convolution

Overview:

- ► Linearity and time invariance
- Convolution

A generic signal processing device

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n]$$

$$y[n] = \mathcal{H}\{x[n]\}$$

Linearity

$$\mathcal{H}\{\alpha x_1[n] + \beta x_2[n]\} = \alpha \mathcal{H}\{x_1[n]\} + \beta \mathcal{H}\{x_2[n]\}$$

Linearity

(Non) Linearity

Time invariance

$$y[n] = \mathcal{H}\{x[n]\} \quad \Longleftrightarrow \quad \mathcal{H}\{x[n-n_0]\} = y[n-n_0]$$

Time invariance

Time (in)variance

Ç

Linear, time-invariant systems

Linear, time-invariant systems

$$y[n] = H(x[n], x[n-1], x[n-2], \dots, y[n-1], y[n-2], \dots)$$

with $H(\cdot)$ a linear function of its arguments

Impulse response

$$h[n] = \mathcal{H}\{\delta[n]\}$$

Fundamental result: impulse response fully characterizes the LTI system!

$$h[n] = \alpha^n u[n]$$

- $x[n] = 2\delta[n] + 3\delta[n-1] + \delta[n-2]$
- we know the impulse response $h[n] = \mathcal{H}\{\delta[n]\};$
- ▶ compute $y[n] = \mathcal{H}\{x[n]\}$ exploiting linearity and time-invariance

- $x[n] = 2\delta[n] + 3\delta[n-1] + \delta[n-2]$
- we know the impulse response $h[n] = \mathcal{H}\{\delta[n]\};$
- ▶ compute $y[n] = \mathcal{H}\{x[n]\}$ exploiting linearity and time-invariance

- $x[n] = 2\delta[n] + 3\delta[n-1] + \delta[n-2]$
- we know the impulse response $h[n] = \mathcal{H}\{\delta[n]\};$
- ▶ compute $y[n] = \mathcal{H}\{x[n]\}$ exploiting linearity and time-invariance

$$y[n] = \mathcal{H}\{2\delta[n] + 3\delta[n-1] + \delta[n-2]\}$$

$$= 2\mathcal{H}\{\delta[n]\} + 3\mathcal{H}\{\delta[n-1]\} + \mathcal{H}\{\delta[n-2]\}$$

$$= 2h[n] + 3h[n-1] + h[n-2]$$

$$y[n] = \mathcal{H}\{2\delta[n] + 3\delta[n-1] + \delta[n-2]\}$$

$$= 2\mathcal{H}\{\delta[n]\} + 3\mathcal{H}\{\delta[n-1]\} + \mathcal{H}\{\delta[n-2]\}$$

$$= 2h[n] + 3h[n-1] + h[n-2]$$

$$y[n] = \mathcal{H}\{2\delta[n] + 3\delta[n-1] + \delta[n-2]\}$$

$$= 2\mathcal{H}\{\delta[n]\} + 3\mathcal{H}\{\delta[n-1]\} + \mathcal{H}\{\delta[n-2]\}$$

$$= 2h[n] + 3h[n-1] + h[n-2]$$

Convolution

We can always write a canonical-base decomposition:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

by linearity and time invariance:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= x[n] * h[n]$$

Convolution

We can always write a canonical-base decomposition:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

by linearity and time invariance:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= x[n] * h[n]$$

Performing the convolution algorithmically

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Ingredients:

- ightharpoonup a sequence x[m]
- ightharpoonup a second sequence h[m]

The recipe:

- ▶ time-reverse *h*[*m*]
- ▶ at each step n (from $-\infty$ to ∞):
 - center the time-reversed h[m] in n (i.e. shift by -n)
 - compute the inner product

Performing the convolution algorithmically

$$\times [n] * h[n] = \sum_{k=-\infty}^{\infty} \times [k] h[n-k]$$

Ingredients:

- ightharpoonup a sequence x[m]
- ▶ a second sequence h[m]

The recipe:

- ▶ time-reverse *h*[*m*]
- ▶ at each step n (from $-\infty$ to ∞):
 - center the time-reversed h[m] in n (i.e. shift by -n)
 - compute the inner product

Performing the convolution algorithmically

$$\times [n] * h[n] = \sum_{k=-\infty}^{\infty} \times [k] h[n-k]$$

Ingredients:

- ightharpoonup a sequence x[m]
- ▶ a second sequence h[m]

The recipe:

- ▶ time-reverse *h*[*m*]
- ▶ at each step n (from $-\infty$ to ∞):
 - center the time-reversed h[m] in n
 (i.e. shift by -n)
 - compute the inner product

Same example, different perspective

$$h[n] = \alpha^n u[n]$$

Convolution example

Convolution example

Convolution example

Convolution properties

- ▶ linearity and time invariance (by definition)
- ▶ commutativity: (x * h)[n] = (h * x)[n]
- ▶ associativity for absolutely- and square-summable sequences: ((x*h)*w)[n] = (x*(h*w))[n]

Convolution properties

- linearity and time invariance (by definition)
- commutativity: (x * h)[n] = (h * x)[n]
- ▶ associativity for absolutely- and square-summable sequences: ((x*h)*w)[n] = (x*(h*w))[n]

Convolution properties

- linearity and time invariance (by definition)
- commutativity: (x * h)[n] = (h * x)[n]
- ▶ associativity for absolutely- and square-summable sequences: ((x*h)*w)[n] = (x*(h*w))[n]

Overview:

- ► Moving average filter
- ► Leaky integrator

Overview:

- ► Moving average filter
- ► Leaky integrator

Typical filtering scenario: denoising

Typical filtering scenario: denoising

Typical filtering scenario: denoising

- ▶ idea: replace each sample by the local average
- for instance: y[n] = (x[n] + x[n-1])/2)
- ► more generally:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

- ▶ idea: replace each sample by the local average
- for instance: y[n] = (x[n] + x[n-1])/2)
- more generally:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

- ▶ idea: replace each sample by the local average
- for instance: y[n] = (x[n] + x[n-1])/2)
- more generally:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Denoising by Moving Average

Denoising by Moving Average

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

$$h[n] = \frac{1}{M} \sum_{k=0}^{M-1} \delta[n-k]$$

$$h[n] = rac{1}{M} \sum_{k=0}^{M-1} \delta[n-k]$$

$$= \begin{cases} 1/M & \text{for } 0 \leq n < M \\ 0 & \text{otherwise} \end{cases}$$

MA: analysis

- ► smoothing effect proportional to *M*
- lacktriangle number of operations and storage also proportional to M

$$y_M[n] = \frac{1}{M} (x[n] + x[n-1] + x[n-2] + \dots + x[n-M+1])$$
moving average over M points

$$y_M[n] = \frac{1}{M} (x[n] + x[n-1] + x[n-2] + \dots + x[n-M+1])$$
moving average over M points

$$y_{M-1}[n] = \frac{1}{M-1} \left(x[n] + x[n-1] + x[n-2] + \ldots + x[n-M+2] \right)$$

$$y_M[n] = \frac{1}{M} x[n] + \frac{1}{M} (x[n-1] + x[n-2] + \ldots + x[n-M+1])$$

$$y_{M}[n] = \frac{1}{M}x[n] + \frac{1}{M}(x[n-1] + x[n-2] + \dots + x[n-M+1])$$
"almost" $y_{M-1}[n-1]$

i.e., moving average over M-1 points, delayed by one

$$y_M[n] = \frac{1}{M}x[n] + \boxed{\frac{1}{M}(x[n-1] + x[n-2] + \ldots + x[n-M+1])}$$

$$y_M[n] = \frac{1}{M}x[n] + \frac{M-1}{M}y_{M-1}[n-1]$$

$$y_M[n] = \frac{M-1}{M} y_{M-1}[n-1] + \frac{1}{M} x[n]$$

$$y_M[n] = \lambda y_{M-1}[n-1] + (1-\lambda)x[n], \qquad \lambda = \frac{M-1}{M}$$

$$y_M[n] = \frac{M-1}{M} y_{M-1}[n-1] + \frac{1}{M} x[n]$$

$$y_M[n] = \lambda y_{M-1}[n-1] + (1-\lambda)x[n], \qquad \lambda = \frac{M-1}{M}$$

The Leaky Integrator

- ▶ when M is large, $y_{M-1}[n] \approx y_M[n]$ (and $\lambda \approx 1$)
- ▶ try the filter

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n]$$

▶ filter is now recursive, since it uses its previous output value

The Leaky Integrator

- ▶ when M is large, $y_{M-1}[n] \approx y_M[n]$ (and $\lambda \approx 1$)
- ▶ try the filter

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n]$$

▶ filter is now recursive, since it uses its previous output value

The Leaky Integrator

- when M is large, $y_{M-1}[n] \approx y_M[n]$ (and $\lambda \approx 1$)
- ▶ try the filter

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n]$$

▶ filter is now recursive, since it uses its previous output value

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ▶ y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$
- **.** . . .

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ightharpoonup y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$
- **.** . . .

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ightharpoonup y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$

. . . .

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ▶ y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$
- **.** . . .

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ightharpoonup y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$

· . . .

$$y[n] = \lambda y[n-1] + (1-\lambda)\delta[n]$$

- ▶ y[n] = 0 for all n < 0
- $y[0] = \lambda y[-1] + (1 \lambda)\delta[0] = (1 \lambda)$
- $y[1] = \lambda y[0] + (1 \lambda)\delta[1] = \lambda(1 \lambda)$
- $y[2] = \lambda y[1] + (1 \lambda)\delta[2] = \lambda^2(1 \lambda)$
- $y[3] = \lambda y[2] + (1 \lambda)\delta[3] = \lambda^3(1 \lambda)$
- **.** . . .

Impulse response

$$h[n] = (1 - \lambda)\lambda^n u[n]$$

Leaky Integrator: why the name

Discrete-time integrator is a boundless accumulator:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

We can rewrite the integrator as

$$y[n] = y[n-1] + x[n]$$

Leaky Integrator: why the name

To prevent "explosion" pick $\lambda < 1$

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n]$$

keep only a fraction λ of the accumulated value so far and forget ("leak") a fraction $1-\lambda$

add only a fraction $1-\lambda$ of the current value to the accumulator

LI: analysis

- \blacktriangleright smoothing effect dependent on λ
- \blacktriangleright number of operations and storage: independent of λ
- recursion generates infinite-length impulse response
- ▶ infinite-length impulse responses are computable

- ► Finite Impulse Response (FIR)
- ► Infinite Impulse Response (IIR)
- ► causal
- noncausa

- ► Finite Impulse Response (FIR)
- ► Infinite Impulse Response (IIR)
- causal
- noncausa

- ► Finite Impulse Response (FIR)
- ► Infinite Impulse Response (IIR)
- causal
- noncausa

- ► Finite Impulse Response (FIR)
- ► Infinite Impulse Response (IIR)
- causal
- noncausal

FIR

- ▶ impulse response has finite support
- ▶ only a finite number of samples are involved in the computation of each output sample

FIR (example)

Moving Average filter

- ▶ impulse response has infinite support
- ▶ a potentially infinite number of samples are involved in the computation of each output sample
- surprisingly, in many cases the computation can still be performed in a finite amount of steps

IIR (example)

Causal vs Noncausal

- causal:
 - impulse response is zero for n < 0
 - only past samples (with respect to the present) are involved in the computation of each output sample
 - causal filters can work "on line" since they only need the past
- noncausal:
 - impulse response is nonzero for some (or all) n < 0
 - can still be implemented in a offline fashion (when all input data is available on storage, e.g. in Image Processing)

Causal example

Moving Average filter

Noncausal example

Zero-centered Moving Average filter

Causal and Noncausal Moving Average

Causal and Noncausal Moving Average

Causal and Noncausal Moving Average

Stability

- ▶ key concept: avoid "explosions" if the input is nice
- ▶ a nice signal is a bounded signal: |x[n]| < M for all r
- Bounded-Input Bounded-Output (BIBO) stability: if the input is nice the output should be nice

Stability

- key concept: avoid "explosions" if the input is nice
- ▶ a nice signal is a bounded signal: |x[n]| < M for all n
- Bounded-Input Bounded-Output (BIBO) stability: if the input is nice the output should be nice

Stability

- key concept: avoid "explosions" if the input is nice
- ▶ a nice signal is a bounded signal: |x[n]| < M for all n
- ▶ Bounded-Input Bounded-Output (BIBO) stability: if the input is nice the output should be nice

Fundamental Stability Theorem

A filter is BIBO stable if and only if its impulse response is absolutely summable

Hypotheses:

▶
$$|x[n]| < M$$

$$ightharpoonup \sum_{n} |h[n]| = L < \infty$$

Thesis:

▶
$$|y[n]| < \infty$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\leq ML$$

Hypotheses:

$$ightharpoonup \sum_{n} |h[n]| = L < \infty$$

Thesis:

▶
$$|y[n]| < \infty$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\leq ML$$

Hypotheses:

▶
$$|x[n]| < M$$

$$ightharpoonup \sum_{n} |h[n]| = L < \infty$$

Thesis:

▶
$$|y[n]| < \infty$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\leq ML$$

Hypotheses:

$$ightharpoonup \sum_{n} |h[n]| = L < \infty$$

Thesis:

▶
$$|y[n]| < \infty$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\leq ML$$

Proof:

Hypotheses:

$$ightharpoonup \sum_{n} |h[n]| = L < \infty$$

Thesis:

▶
$$|y[n]| < \infty$$

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]x[n-k]|$$

$$\leq M \sum_{k=-\infty}^{\infty} |h[k]|$$

$$\leq ML$$

Proof (⇐)

Hypothesis:

$$\forall |x[n]| < \infty, |(x * h)[n]| < \infty$$

Thesis:

$$ightharpoonup \sum_n |h[n]| < \infty$$

Proof (by contradiction)

▶ assume hypothesis true, yet $\sum_{n} |h[n]| = \infty$

build
$$x[n] = \begin{cases} +1 & \text{if } h[-n] \ge 0 \\ -1 & \text{if } h[-n] < 0 \end{cases}$$

- ▶ clearly, $|x[n]| < \infty$
- however

$$(x*h)[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

Proof (\Leftarrow)

Hypothesis:

$$\forall |x[n]| < \infty, |(x * h)[n]| < \infty$$

Thesis:

$$ightharpoonup \sum_n |h[n]| < \infty$$

Proof (by contradiction):

▶ assume hypothesis true, yet $\sum_{n} |h[n]| = \infty$

build
$$x[n] = \begin{cases} +1 & \text{if } h[-n] \ge 0 \\ -1 & \text{if } h[-n] < 0 \end{cases}$$

- ▶ clearly, $|x[n]| < \infty$
- however

$$(x*h)[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

Proof (⇐)

Hypothesis:

$$\forall |x[n]| < \infty, |(x * h)[n]| < \infty$$

Thesis:

$$ightharpoonup \sum_n |h[n]| < \infty$$

Proof (by contradiction):

- ▶ assume hypothesis true, yet $\sum_{n} |h[n]| = \infty$
- build $x[n] = \begin{cases} +1 & \text{if } h[-n] \ge 0 \\ -1 & \text{if } h[-n] < 0 \end{cases}$
- ▶ clearly, $|x[n]| < \infty$
- however

$$(x*h)[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

Proof (\Leftarrow)

Hypothesis:

$$\forall |x[n]| < \infty, |(x*h)[n]| < \infty$$

Thesis:

$$ightharpoonup \sum_n |h[n]| < \infty$$

Proof (by contradiction):

- ▶ assume hypothesis true, yet $\sum_{n} |h[n]| = \infty$
- build $x[n] = \begin{cases} +1 & \text{if } h[-n] \ge 0 \\ -1 & \text{if } h[-n] < 0 \end{cases}$
- ▶ clearly, $|x[n]| < \infty$
- however

$$(x*h)[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

Proof (⇐)

Hypothesis:

$$\forall |x[n]| < \infty, |(x * h)[n]| < \infty$$

Thesis:

$$ightharpoonup \sum_n |h[n]| < \infty$$

Proof (by contradiction):

- ▶ assume hypothesis true, yet $\sum_{n} |h[n]| = \infty$
- build $x[n] = \begin{cases} +1 & \text{if } h[-n] \ge 0 \\ -1 & \text{if } h[-n] < 0 \end{cases}$
- ▶ clearly, $|x[n]| < \infty$
- however

$$(x*h)[0] = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

The good news

FIR filters are always stable

Let's check the Leaky Integrator:

$$\sum_{n=-\infty}^{\infty} |h[n]| = |1 - \lambda| \sum_{n=0}^{\infty} |\lambda|^n$$

$$= \lim_{n \to \infty} |1 - \lambda| \frac{1 - |\lambda|^{n+1}}{1 - |\lambda|}$$

$$< \infty \quad \text{for } |\lambda| < 1$$

Let's check the Leaky Integrator:

$$\sum_{n=-\infty}^{\infty} |h[n]| = |1 - \lambda| \sum_{n=0}^{\infty} |\lambda|^n$$

$$= \lim_{n \to \infty} |1 - \lambda| \frac{1 - |\lambda|^{n+1}}{1 - |\lambda|}$$

$$< \infty \quad \text{for } |\lambda| < 1$$

Let's check the Leaky Integrator:

$$\sum_{n=-\infty}^{\infty} |h[n]| = |1 - \lambda| \sum_{n=0}^{\infty} |\lambda|^n$$

$$= \lim_{n \to \infty} |1 - \lambda| \frac{1 - |\lambda|^{n+1}}{1 - |\lambda|}$$

$$< \infty \quad \text{for } |\lambda| < 1$$

Let's check the Leaky Integrator:

$$\sum_{n=-\infty}^{\infty} |h[n]| = |1 - \lambda| \sum_{n=0}^{\infty} |\lambda|^n$$

$$= \lim_{n \to \infty} |1 - \lambda| \frac{1 - |\lambda|^{n+1}}{1 - |\lambda|}$$

$$< \infty \quad \text{for } |\lambda| < 1$$

We will study indirect methods for filter stability later

Overview:

- ► Eigensequences
- ► Convolution theorem
- ► Frequency and phase response

Overview:

- ► Eigensequences
- ► Convolution theorem
- ► Frequency and phase response

Overview:

- ► Eigensequences
- ► Convolution theorem
- ► Frequency and phase response

A remarkable result

A remarkable result

$$y[n] = e^{j\omega_0 n} * h[n]$$

$$= h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0 (n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

$$y[n] = e^{j\omega_0 n} * h[n]$$

$$= h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0(n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

$$y[n] = e^{j\omega_0 n} * h[n]$$

$$= h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0(n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

$$y[n] = e^{j\omega_0 n} * h[n]$$

$$= h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0(n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

$$y[n] = e^{j\omega_0 n} * h[n]$$

$$= h[n] * e^{j\omega_0 n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] e^{j\omega_0(n-k)}$$

$$= e^{j\omega_0 n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega_0 k}$$

$$= H(e^{j\omega_0}) e^{j\omega_0 n}$$

- complex exponentials are eigensequences of LTI systems, i.e., linear filters cannot change the frequency of sinusoids
- ▶ DTFT of impulse response determines the frequency characteristic of a filter

- complex exponentials are eigensequences of LTI systems, i.e., linear filters cannot change the frequency of sinusoids
- ▶ DTFT of impulse response determines the frequency characteristic of a filter

Magnitude and phase

If
$$H(e^{j\omega_0})=Ae^{j\theta}$$
, then
$$\mathcal{H}\{e^{j\omega_0n}\}=Ae^{j(\omega_0n+\theta)}$$
 amplitude: amplification $(A>1)$ or attenuation $(0\leq A<1)$ or advancement $(\theta>0)$

60

In general:

$$\mathsf{DTFT}\left\{x[n]*h[n]\right\} = ?$$

Intuition: the DTFT reconstruction formula tells us how to build x[n] from a set of complex exponential "basis" functions. By linearity...

In general:

$$\mathsf{DTFT}\left\{x[n]*h[n]\right\} = ?$$

Intuition: the DTFT reconstruction formula tells us how to build x[n] from a set of complex exponential "basis" functions. By linearity...

DTFT
$$\{x[n] * h[n]\} = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega}) X(e^{j\omega})$$

62

DTFT
$$\{x[n] * h[n]\} = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega}) X(e^{j\omega})$$

62

DTFT
$$\{x[n] * h[n]\} = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega}) X(e^{j\omega})$$

DTFT
$$\{x[n] * h[n]\} = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega}) \times (e^{j\omega})$$

DTFT
$$\{x[n] * h[n]\} = \sum_{n=-\infty}^{\infty} (x * h)[n]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega(n-k)}e^{-j\omega k}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega(n-k)}$$

$$= H(e^{j\omega})X(e^{j\omega})$$

Frequency response

$$H(e^{j\omega}) = \mathsf{DTFT}\{h[n]\}$$

Two effects:

- ▶ magnitude: amplification $(|H(e^{j\omega})| > 1)$ or attenuation $(|H(e^{j\omega})| < 1)$ of input frequencies
- phase: overall delay and shape changes

Frequency response

$$H(e^{j\omega}) = \mathsf{DTFT}\{h[n]\}$$

Two effects:

- ▶ magnitude: amplification $(|H(e^{j\omega})| > 1)$ or attenuation $(|H(e^{j\omega})| < 1)$ of input frequencies
- phase: overall delay and shape changes

Moving Average revisited

$$h[n] = (u[n] - u[n - M])/M$$

Moving Average revisited

$$H(e^{j\omega}) = \sum_{n=0}^{M-1} \frac{1}{M} e^{-j\omega n}$$

$$= \frac{1}{M} \frac{1 - e^{-j\omega M}}{1 - e^{-j\omega}}$$

$$= \frac{1}{M} \frac{e^{-j\frac{\omega M}{2}} \left[e^{j\frac{\omega M}{2}} - e^{-j\frac{\omega M}{2}} \right]}{e^{-j\frac{\omega}{2}} \left[e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}} \right]}$$

$$= \frac{1}{M} \frac{\sin\left(\frac{\omega}{2}M\right)}{\sin\left(\frac{\omega}{2}\right)} e^{-j\frac{\omega}{2}(M-1)}$$

Moving Average, magnitude response

$$|H(e^{j\omega})| = rac{1}{M} \left| rac{\sin\left(rac{\omega}{2}M
ight)}{\sin\left(rac{\omega}{2}
ight)}
ight|$$

Moving Average, magnitude response

$$|H(e^{j\omega})| = rac{1}{M} \left| rac{\sin\left(rac{\omega}{2}M
ight)}{\sin\left(rac{\omega}{2}
ight)}
ight|$$

Moving Average, magnitude response

$$|H(e^{j\omega})| = rac{1}{M} \left| rac{\sin\left(rac{\omega}{2}M
ight)}{\sin\left(rac{\omega}{2}
ight)}
ight|$$

By the way, remember the time-domain analysis...

By the way, remember the time-domain analysis...

What about the phase?

Assume
$$|H(e^{j\omega})|=1$$

- ▶ zero phase: $\angle H(e^{j\omega}) = 0$
- ▶ linear phase: $\angle H(e^{j\omega}) = d\omega$
- nonlinear phase

What about the phase?

Assume
$$|H(e^{j\omega})|=1$$

- ▶ zero phase: $\angle H(e^{j\omega}) = 0$
- ▶ linear phase: $\angle H(e^{j\omega}) = d\omega$
- nonlinear phase

What about the phase?

Assume
$$|H(e^{j\omega})|=1$$

- ▶ zero phase: $\angle H(e^{j\omega}) = 0$
- ▶ linear phase: $\angle H(e^{j\omega}) = d\omega$
- nonlinear phase

Phase and signal shape

$$x[n] = \frac{1}{2}\sin(\omega_0 n) + \cos(2\omega_0 n) \qquad \omega_0 = \frac{2\pi}{40}$$

Phase and signal shape: linear phase

$$x[n] = \frac{1}{2}\sin(\omega_0 n + \theta_0) + \cos(2\omega_0 n + 2\theta_0)$$
 $\theta_0 = \frac{8\pi}{5}$

Phase and signal shape: nonlinear phase

$$x[n] = \frac{1}{2}\sin(\omega_0 n) + \cos(2\omega_0 n + 2\theta_0)$$

$$x[n] \longrightarrow z^{-d} \longrightarrow x[n-d]$$

- y[n] = x[n-d]
- $Y(e^{j\omega}) = e^{-j\omega d} X(e^{j\omega})$
- $H(e^{j\omega}) = e^{-j\omega d}$
- ► linear phase term

$$x[n] \longrightarrow z^{-d} \longrightarrow x[n-d]$$

- y[n] = x[n-d]
- $Y(e^{j\omega}) = e^{-j\omega d} X(e^{j\omega})$
- $H(e^{j\omega}) = e^{-j\omega d}$
- ► linear phase term

$$x[n] \longrightarrow z^{-d} \longrightarrow x[n-d]$$

- y[n] = x[n-d]
- $Y(e^{j\omega}) = e^{-j\omega d} X(e^{j\omega})$
- $H(e^{j\omega}) = e^{-j\omega d}$
- ► linear phase term

$$x[n] \longrightarrow z^{-d} \longrightarrow x[n-d]$$

- y[n] = x[n-d]
- $Y(e^{j\omega}) = e^{-j\omega d} X(e^{j\omega})$
- \vdash $H(e^{j\omega}) = e^{-j\omega d}$
- ▶ linear phase term

In general, if
$$H(e^{j\omega})=A(e^{j\omega})e^{-j\omega d}, \quad ext{with } A(e^{j\omega})\in\mathbb{R}$$

Moving Average is linear phase

$$H(e^{j\omega}) = rac{1}{M} rac{\sin\left(rac{\omega}{2}M
ight)}{\sin\left(rac{\omega}{2}
ight)} e^{-jrac{M-1}{2}\omega}$$

$$h[n] = (1 - \lambda)\lambda^n u[n]$$

$$H(e^{j\omega})=rac{1-\lambda}{1-\lambda e^{-j\omega}}$$

Finding magnitude and phase require a little algebra... $% \label{eq:continuous} % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n} \] % \[\mathcal{L}_{n} = \mathcal{L}_{n} = \mathcal{L}_{n}$

Recall from complex algebra:

$$\frac{1}{a+jb} = \frac{a-jb}{a^2+b^2}$$

so that if x = 1/(a+jb),

$$|x|^{2} = \frac{1}{a^{2} + b^{2}}$$

$$\angle x = \tan^{-1} \left[-\frac{b}{a} \right]$$

$$H(e^{j\omega}) = \frac{1-\lambda}{(1-\lambda\cos\omega)-j\lambda\sin\omega}$$

so that:

$$|H(e^{j\omega})|^2 = \frac{(1-\lambda)^2}{1-2\lambda\cos\omega+\lambda^2}$$

$$\angle H(e^{j\omega}) = \tan^{-1}\left[\frac{\lambda\sin\omega}{1-\lambda\cos\omega}\right]$$

Leaky integrator, magnitude response

Leaky integrator, magnitude response

Leaky integrator, magnitude response

Leaky integrator, phase response

Leaky integrator, phase response

Leaky integrator, phase response

Phase is sufficiently linear where it matters

Phase is sufficiently linear where it matters

Karplus-Strong revisited, again!

$$y[n] = \alpha y[n - M] + x[n]$$

Karplus-Strong revisited

$$y[n] = \bar{x}[0], \bar{x}[1], \dots, \bar{x}[M-1], \alpha \bar{x}[0], \alpha \bar{x}[1], \dots, \alpha \bar{x}[M-1], \alpha^2 \bar{x}[0], \alpha^2 \bar{x}[1], \dots$$

Karplus-Strong revisited

KS revisited: sawtooth signal

$$y[n] = \alpha^{\lfloor n/M \rfloor} \bar{x}[n \mod M] u[n]$$

DTFT of KS signal, using the convolution theorem

key observation:

$$y[n] = \bar{x}[n] * w[n],$$
 $w[n] = \begin{cases} \alpha^k & \text{for } n = kM \\ 0 & \text{otherwise} \end{cases}$

DTFT of KS signal, using the convolution theorem

key observation:

$$y[n] = \bar{x}[n] * w[n],$$
 $w[n] = \begin{cases} \alpha^k & \text{for } n = kM \\ 0 & \text{otherwise} \end{cases}$

$$Y(e^{j\omega}) = \bar{X}(e^{j\omega})W(e^{j\omega})$$

DTFT of KS signal, using the convolution theorem

$$ar{X}(e^{j\omega}) = e^{-j\omega} \left(rac{M+1}{M-1}
ight) rac{1 - e^{-j(M-1)\omega}}{(1 - e^{-j\omega})^2} - rac{1 - e^{-j(M+1)\omega}}{(1 - e^{-j\omega})^2}$$

$$W(e^{j\omega})=rac{1}{1-lpha e^{-j\omega M}}$$

