#### Simulation 6

Ishan Bajaj



#### Root Locus with P Controller





$$Y = G_{cl}Y_{sp}$$

$$G_{cl} = \frac{G_c G_p}{1 + G_c G_p}$$

$$G_p = \frac{K_p}{(\tau_1 s + 1)(\tau_2 s + 1)(\tau_3 s + 1)}$$

- Assume proportional controller,  $G_c = K_c$
- Denominator polynomial (characteristic equation),  $1 + G_c G_p = (\tau_1 s + 1)(\tau_2 s + 1)(\tau_3 s + 1) + K_p K_c$
- Root locus is a plot of roots of denominator polynomial equation as some parameter is varied
- In other words, it is a plot of poles of the closed-loop TF as some parameter is varied
- For this case, it is a degree 3 polynomial, so we will get 3 roots at a fixed Kc

#### Root Locus with P Controller



- Kp = 6; tau1 = 2; tau2 = 4; tau3 = 6;
- sys = tf([Kp], [tau1\*tau2\*tau3 (tau1\*tau2 + tau2\*tau3 + tau1\*tau3) (tau1+tau2+tau3) 1]);
- controlSystemDesigner(sys)



#### Root Locus with PI Controller





- Assume PI Controller,  $G_c = K_c \left(1 + \frac{1}{\tau_I s}\right) = K_c \frac{(\tau_I s + 1)}{\tau_I s} = K_c' \frac{(\tau_I s + 1)}{s}$
- Denominator polynomial (characteristic equation),  $1 + G_c G_p = s(\tau_1 s + 1)(\tau_2 s + 1)(\tau_3 s + 1) + K_p K_c'(\tau_I s + 1)$
- Degree 4 polynomial

## PI Controller in Control System Designer



- Right click on root locus plot
- Select "Edit compensator"
- Compensator ↔ controller

$$G_c = K_c' \frac{(\tau_I s + 1)}{s}$$

- Root locus based on changing  $K'_c$
- Comment on chosen  $K_c'$  and  $\tau_I$  values
- Roots close to right-half plane
- Small change in **plant** parameters can lead to instability
- Estimated parameters have uncertainty



### PI Controller in Control System Designer



- Decrease  $\tau_I = 0.1$ , note that integral controller can make system unstable/close to unstable
- No offset



# PI Controller in Control System Designer



• Increase  $\tau_I = 10$ 



# Tuning P/PI/PID





