

Arquitetura de Computadores

Prof. Dr. José Augusto de Sena Quaresma Jq.quaresma12@gmail.com

Representação de dados

Bit/Byte

- Um computador representa dados reduzindo todos os símbolos, figuras ou palavras a uma cadeia de dígitos binários.
- Cada valor binário é chamado de bit (b), contração de binary digit ou dígito binário, e pode ser 1 ou 0, ou seja, está ou não passando corrente elétrica.
- Um conjunto de 8 bits forma um byte (B), e cada byte representa um caractere (letra, algarismo ou símbolo).

Unidades de medida da informação

- Kilobyte
 - 1 kilobyte equivale a 1024 bytes
 - Representação: "KB"
 - 1.024 caracteres
- Megabyte
 - 1 megabyte equivale a 1024 kilobytes
 - Representação: "MB"
 - 1.048.576 caracteres

Unidades de medida da informação

- Gigabyte
 - 1 gigabyte equivale a 1024 megabytes
 - Representação: "GB"
 - 1.073.741.824 caracteres
- Terabyte
 - 1 terabyte equivale a 1024 gigabytes
 - Representação: "TB"
 - 1.099.511.627.776 caracteres

- Um sistema de numeração é formado por um conjunto de símbolos (alfabeto) que é utilizado para representar quantidades e por regras que definem a forma de representação.
- È definido por sua base, a qual define o número de algarismos (ou dígitos) utilizados para representar números.

Bases utilizadas em computação

- Binária 2
- ➤ Octal 8
- Decimal 10
- Hexadecimal 16

- O valor atribuído a um algarismo depende da posição em que ele ocupa no número.
- No sistema decimal, por exemplo, o símbolo 5 pode representar:
 - > o valor 5, como em 25
 - > o valor 50, como em 57 (50 + 7)
 - o valor 500, como em 523 (500 + 20 + 3)
- Quanto mais à esquerda o símbolo está, mais ele vale (mais significativo).

- Em uma base B genérica, são usados B algarismos (ou dígitos) distintos:
- Base 2: 0, 1
- Base 4: 0, 1, 2, 3
- Base 8: 0, 1, 2, 3, 4, 5, 6, 7
- Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Base 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Dada uma base B, quanto vale seu maior dígito? E o menor?

- Resposta:
 - Maior dígito: B-1
 - Menor dígito: 0 (zero)

Sistemas de numeração – Conversão base decimal para binária

- É necessário converter separadamente a parte inteira e a parte fracionária e fazer a concatenação dos resultados
- A vírgula continua separando as duas partes na nova base B.

Sistemas de numeração – Conversão base decimal para binária

Parte inteira

- ➢ Divide-se o número decimal dado e os quocientes sucessivos por B até que o quociente resulte em 0.
- O último quociente e todos os restos, tomados no sentido ascendente (de baixo para cima), formarão o número na base B.

Sistemas de numeração – Conversão base decimal para binária

➤ Parte inteira — Exemplo $(197)_{10} \rightarrow (11000101)_2$

Sistemas de numeração - Conversão base decimal para binária

- Parte fracionária
 - Para transformar a parte fracionaria de um número decimal para a base B, ela deve ser multiplicada, repetidamente, por B.
 - Após cada multiplicação, o dígito da parte inteira do resultado será transportado para a parte fracionária da nova base.
 - Repete-se o processo com a parte fracionária do resultado, até que:
 - Atinja-se a precisão desejada, ou
 - O novo resultado seja igual a zero.

Sistemas de numeração - Conversão base decimal para binária

Parte fracionária – Exemplo $(.4375)_{10} \rightarrow (.0111)_2$

Sistemas de numeração - Conversão base binária para decimal

Multiplicar cada bit pela potência de sua posição e somar os resultados

Binário	1	0	1	1
Valor da posição	1 X 2 ³	0 X 2 ²	1 X 2 ¹	1 X 2 ⁰
8	0	2	1	
Resultado	8+0+2 + 1 = 11 decimal			I

Sistemas de numeração – Conversão base hexadecimal para decimal

Multiplicar cada digito pela potência de sua posição e somar os resultados

Hexadecimal	1	2	С
Valor da posição	1 x 16 ²	2 X 16 ¹	12 X 16 ⁰
256	32	12	
Resultado	256 + 32 + 12 =300 decimal		

Sistemas de numeração – Conversão base decimal para hexadecimal

Dividir sucessivamente por 16

Sistemas de numeração - Conversão base octal para decimal

Multiplicar cada digito pela potência de sua posição e somar os resultados

Octal	1	2	3
Valor da posição	1 x 8 ²	2 X 8 ¹	3 X 8 ⁰
64	16	3	
Resultado	64 + 16 + 3 = 83 decimal		ı

Atividade – Conversão

- 01101010 de base 2 para base 10
- 3476 de base 10 para base 2
- AB23 de base 16 para base 10
- 754 de base octal para decimal
- 2967 de base hexadecimal para decimal
- 95 de base decimal para base 2
- 189 de base decimal para base 2
- 789 de base decimal para base 2
- 897 de base hexadecimal para base 10
- 894 de base octal para base 10

Bibliografia

- STALLINGS, William. Arquitetura e organização de computadores. 8 ed. Prentice Hall, 2010.
- https://embarcados.com.br/conversao-entre-sistemas-denumeracao/#Conversao-de-binario-para-decimal
- Notas de aula da professoa Regiane kawasaki.