Criptografia de chave pública

Prof. Vilmar Abreu Junior vilmar.abreu@pucpr.br

Agenda

- Termos
- Conceitos básicos
- Elementos
- Tipo de ataques
- Algoritmos

Criptografia de chave pública

- Também conhecida como: Criptografia assimétrica;
- Proposta em 1976, foi o primeiro avanço revolucionário na criptografia em milhares de anos;
- A cifração e decifração da informação é realizada utilizando duas chaves;

Criptografia de chave pública (cont.)

- Utilizar duas chaves tem profundas consequências nas áreas de confidencialidade, distribuição de chaves e autenticação!
- Algoritmos baseados em funções matemáticas ao invés de simples operações (substituição/transposição);

Antes de mais nada, é bom saber:

- Criptografia de chave pública NÃO é mais segura do que a criptografia simétrica
 - Segurança está relacionada ao comprimento da chave e do esforço necessário para quebra de uma cifra
- Apesar de mais moderna, a criptografia simétrica
 NÃO está obsoleta
 - Criptografia de chave pública tem um elevado custo computacional
- Distribuição de chaves NÃO é mais simples.

Motivação

- Resolver o problema complexo de distribuição de chaves em criptografia simétrica: Duas entidades tem que compartilhar a mesma chave, de algum modo.
- Normalmente através de um KDC, um dos criadores da chave pública disse:
 - "Qual a razão de fazer algoritmos seguros, com chaves de comprimento apropriado, se dependem de uma terceira entidade (KDC) que pode ser comprometida?"

Conceitos

- Criptografia de chave pública utiliza uma chave para cifrar as informações e uma outra chave diferente, porém relacionada, para decifrar as informações;
- É computacionalmente **inviável** determinar a chave de decifração tendo conhecimento do algoritmo e da chave de cifração;
- Qualquer uma das chaves pode ser utilizada para cifrar, sendo obrigatório utilizar a outra para decifrar.

Conceitos (cont.)

- Como o nome sugere, a chave pública do par torna-se pública para outros usarem, enquanto a chave privada é de conhecimento apenas do seu proprietário;
- O algoritmo criptográfico depende de uma chave para cifração e de outra chave relacionada para a decifração.

Elementos

- Texto às claras: Mensagem/dado original;
- Algoritmo de cifração: Executa várias transformações no texto às claras, baseado na teoria dos números;
- Chave pública e privada: Par de chaves que foi selecionado, de modo que, se uma é usada para cifrar a outra é usada para decifrar.

Elementos (cont.)

- Texto cifrado: Mensagem/dado embaralhado produzido pelo algoritmo de cifração, utilizando o texto às claras e a chave secreta;
- Algoritmo de decifração: Recebe o texto cifrado e a chave equivalente, para produzir o texto às claras.

Cifrando com chave pública

- Cada usuário gera um par de chaves, para cifrar e decifrar
- 2. Cada usuário coloca uma das chaves em registro público ou arquivo acessível e outra chave é mantida privada. Dessa forma, determinado usuário pode ter uma coleção de chaves públicas
- 3. Se Bob deseja enviar uma mensagem privada para Alice, ele cifra a mensagem usando a chave pública de Alice

 Confidencialidade
- 4. Quando Alice recebe a mensaçem, ela decifra usando sua chave privada

Cifrando com chave pública (cont.)

Cifrando com chave privada

- Cada usuário gera um par de chaves, para cifrar e decifrar
- 2. Cada usuário coloca uma das chaves em registro público ou arquivo acessível e outra chave é mantida privada. Dessa forma, determinado usuário pode ter uma coleção de chaves públicas
- 3. Se Bob deseja enviar uma mensigem para quem conhece sua chave pública, ele cifra a mensagem usando a sua chave privada

 Autenticidade
- 4. Quem conhece a chave pública, decifra a mensagem e tem a garantia que foi Bob que enviou

Cifrando com chave privada

Premissas

- Deve ser computacionalmente fácil uma entidade gerar um par de chaves (público e privado);
- Deve ser computacionalmente fácil para um remetente (Bob) que conheça uma chave pública cifrar um texto;
- Deve ser computacionalmente fácil para um destinatário (Alice) decifrar um texto para recuperar a mensagem original.

Premissas (cont.)

- Deve ser computacionalmente inviável que um oponente que conheça a chave pública determinar a chave privada;
- Deve ser computacionalmente inviável que um oponente que conheça a chave pública e o texto cifrado na pública consiga decifrar a mensagem;
- Qualquer uma das chaves pode ser utilizada para cifrar, sendo que a outra para decifrar.

Como atacar?

- Há duas abordagens gerais para atacar um esquema de cifração simétrica:
 - Criptoanálise;
 - Ataque de força bruta.

Algoritmos

- Os algoritmos são baseados em uma função de direção única (one-way);
- Os algoritmos mais conhecidos são:
 - RSA (1977)
 - Diffie e Hellman (1976)
 - Digital Signature Algorithm (1991)
 - Curvas Elipticas (1985)

Aplicações

A criptografia de chave pública pode ser utilizada principalmente em:

- Cifração/Decifração
- Distribuição de chaves simétricas
- Assinatura Digital

Distribuição de chave simétrica (simples)

- 1. Bob gera um par de chaves (PU_{bob}/PR_{bob}) e encaminha uma mensagem para Alice contendo a PU_{bob} e um identificador;
- 2. Alice gera uma chave secreta $(K_{sess\~ao})$ e encaminha para Bob, cifrando na PU_{bob} ;
- 3. Bob decifra a mensagem utilizando PR_{bob} e armazena $K_{sess\~ao}$;
- 4. Bob descarta PU_{bob}/PR_{bob} .

Distribuição de chaves assimétricas

As principais técnicas de distribuição de chaves públicas são:

- Anúncio público
- Diretório público
- Autoridade pública
- Certificado

Anúncio Público

Disponibiliza as chaves públicas para qualquer entidade (por *broadcast*, por

exemplo);

Anúncio Público (cont.)

• **Desvantagem**: Qualquer um pode forjar a chave pública de outra entidade.

Distribuição de chaves assimétricas

As principais técnicas de distribuição de chaves públicas são:

- Anúncio público
- Diretório público
- Autoridade pública
- Certificado

Diretório público

- Uma entidade confiável mantém um dicionário (mapeamento de entidade e chave pública) para cada participante;
- Cada participante deve registrar sua chave pública;
- Cada participante pode atualizar sua chave pública a qualquer momento;

Diretório público (cont.)

 Desvantagem: Caso o diretório seja comprometido, o oponente pode forjar ser qualquer entidade.

Distribuição de chaves assimétricas

As principais técnicas de distribuição de chaves públicas são:

- Anúncio público
- Diretório público
- Autoridade pública
- Certificado

Autoridade pública

- Baseado no diretório público, cada participante possui uma chave pública na Autoridade, sendo que apenas a Autoridade conhece a chave privada;
- O processo é composto de 6 etapas:

Autoridade pública (cont.)

- 1. Bob envia uma mensagem cifrada na $PU_{autoridade}$ para a Autoridade, solicitando a PU_{alice} ;
- 2. Autoridade responde a mensagem cifrada na $PR_{autoridade}$. A mensagem contém a chave pública de Alice (PU_{alice});
- 3. Bob armazena PU_{alice} e a utiliza para cifrar a mensagem para Alice. A mensagem contém um identificador de Bob.

Autoridade pública (cont.)

- 4. Alice solicita a PU_{bob} para a Autoridade, seguindo o mesmo procedimento;
 - Nesse momento Bob e Alice possuem as chaves públicas;
- 5. Alice gera um nonce e encaminha para Bob, cifrando na PU_{bob}
- 6. Bob responde Alice executando uma função sobre o nonce recebido, cifrando na PU_{alice}

Autoridade pública (cont.)

• **Desvantagem**: Caso a autoridade seja comprometida, o oponente pode forjar ser qualquer entidade.

Distribuição de chaves assimétricas

As principais técnicas de distribuição de chaves públicas são:

- Anúncio público
- Diretório público
- Autoridade pública
- Certificado (Tema de estudo futuro)

