Nonparametric Statistics

Ch.4 One-way ANOVA (k-sample problem)

Motivation

- Sometimes, one's interest is centered on comparison for the locations of three or more populations. This is called the k-sample location problem.
- A nonparametric method designed for k-sample location problem is an alternative to the one-way ANOVA.
- Our interest is to see if there is no differences among the location parameters of multiple distributions.

Review: One-way ANOVA

Let X_{ll} , ..., X_{ln_i} be a random sample from $N(\mu_i, \sigma^2)$ $(i = 1, \dots, k)$. A test for the hypothesis

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$
 vs $H_1: not \ H_0$

or equivalently,

$$H_0$$
: $\tau_1 = \tau_2 = \cdots = \tau_k = 0$ vs H_1 : not H_0

where $\mu_i = \mu + \tau_i$ can be performed with the test statistic

$$F = \frac{SS_{tr}/(k-1)}{SSE/(N-k)},$$

where $SS_{tr} = \sum_{i=1}^{k} n_i (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$, $SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i\cdot})^2$, $N = \sum_{i=1}^{k} n_i$, $\bar{X}_{i\cdot} = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}$, $\bar{X}_{\cdot\cdot} = N^{-1} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}$.

- F has the F(k-1,N-k) distribution under H_0 .
- Rejection region for the test at the significance level α is $\{f: f > f_{\alpha}(k-1, N-k) > k\}$ where $f_{\alpha}(k-1, N-k)$ satisfies $P(F > f_{\alpha}(k-1, N-k)) = \alpha$ with $F \sim F(k-1, N-k)$.
- p-value is $P(F > f_0)$ where f_0 is the observed value of the test statistic.
- τ_i 's are called the treatment effects.

Review: One-way ANOVA

- This test is based on the assumption that all random samples are independent.
- The basic idea of this test is to see how big the group variation (SS_{tr}) is in the total variation $(SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} \bar{X}_{..})^2)$.
- If k = 2, this reduces to the independent two-sample t-test with equal variances we have learned in the previous chapter.

Let $X_{i1}, ..., X_{in_i}$ be a random sample from $F(\cdot -\Delta_i)$ (i = 1, ..., k).

• We assume that *F* is continuous.

A test for the hypothesis

$$H_0: \Delta_1 = \cdots \Delta_k$$
 vs $H_1: not H_0$

can be performed with the test statistic

$$KW_{N} = \frac{12}{N(N+1)} \sum_{i=1}^{k} n_{i} \left(\bar{R}_{i} - \frac{N+1}{2} \right)^{2}$$

$$= \frac{12}{N(N+1)} \sum_{i=1}^{k} n_{i} \bar{R}_{i}^{2} - 3(N+1),$$

$$= \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_{i}^{2}}{n_{i}} - 3(N+1),$$

where $N=\sum_{i=1}^k n_i$, $\bar{R}_{i\cdot}=n_i^{-1}\sum_{j=1}^{n_i}R_{ij}=n_i^{-1}R_{i\cdot}$ and R_{ij} is the rank of X_{ij} in the pooled sample.

- Large values of W_n support the alternative hypothesis.
- Note that we assume that all distributions are the same in shape.
- In the case of k = 2, this test is equivalent to the Wilcoxon rank sum test and the Mann-Whitney test.
- In fact, the Kruskal-Wallis test borrows a similar idea with the one-way ANOVA. It is nothing but replacing X_{ij} with R_{ij} . Note that if we treat the rank R_{ij} 's as observations,

$$SS_{tr} = \sum_{i=1}^{k} n_i (\bar{R}_{i.} - \bar{R}_{..})^2 = \sum_{i=1}^{k} n_i \left(\bar{R}_{i.} - \frac{N+1}{2} \right)^2,$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (R_{ij} - \bar{R}_{..})^2 = \frac{N(N+1)(N-1)}{12},$$

Then, the test statistic can be expressed as

$$KW_N = \frac{(N-1)SS_{tr}}{SST}.$$

- If $\min\{n_i\colon 1\leq i\leq k\}$ is sufficiently large, $KW_N\approx \chi^2(k-1)$ under H_0 .
- Rejection region

$$\{\chi_0^2: \chi_0^2 > \chi_\alpha^2(k-1)\}$$

p-value

$$P(\chi^2 > kw_N)$$

where kw_N is the observed value of the test statistic and $\chi^2 \sim \chi^2(k-1)$.

Kruskal-Wallis test: Example

Ex1] The tensile strength of 12 wires were measured. They were produced by three different machines. Is there a significant difference among the machines?

	Α	В	С	•
	56	48	52	
	60	61	50	
	57	49	44	
	64	53	46	
mean	59.25	52.75	48.00	53.33

(1) One-way ANOVA

From the table,

$$SST = 438.67, SS_{tr} = 255.17, SSE = 183.50$$

The observed test statistic is

$$f_0 = \frac{255.17/(3-1)}{183.50/(12-3)} = 6.29$$

The p-value is P(F > 6.29) = 0.0195 where $F \sim F(2,9)$.

Kruskal-Wallis test: Example

- (2) Kruskal-Wallis test
- Add ranks to the table

	Α	В	С	_
	56 (8)	48 (3)	52 (6)	
	60 (10)	61 (11)	50 (5)	
	57 (9)	49 (4)	44 (1)	
	64 (12)	53 (7)	46 (2)	
Rank sum	(39)	(25)	(14)	78

The observed test statistic:

$$KW_N = \frac{12}{12(12+1)} \left(\frac{39^2}{4} + \frac{25^2}{4} + \frac{14^2}{4} \right) - 3(12+1) = 6.038$$

- The p-value by large sample approximation is $P(\chi^2 > 6.038) = 0.0489$ where $\chi^2 \sim \chi^2(2)$.

Kruskal-Wallis test : Example

Ex2] Calculate observed Kruskal-Wallis test statistics in the following data sets.

(1) Effect levels by 3 sleeping pills.

Α	В	С
2	1	5
4	3	7
	6	

(2) Fuel consumption on 4 buses

Α	В	С	D
114	111	107	105
108	109	106	98
110	112	116	102
113	114	111	101
113	115	102	96