



### MOUSE Fkh<sup>sf</sup> cDNA SEQUENCE

| 1    | GCTGATCCCC | CTCTAGCAGT         | CCACTTCACC         | AAGGTGAGCG         | AGTGTCCCTG |
|------|------------|--------------------|--------------------|--------------------|------------|
| 51   | CTCTCCCCCA | CCAGACACAG         | CTCTGCTGGC         | GAAAGTGGCA         | GAGAGGTATT |
| 101  | GAGGGTGGGT | GTCAGGAGCC         | CACCAGTACA         | GCTGGAAACA         | CCCAGCCACT |
| 151  | CCAGCTCCCG | GCAACTTCTC         | CTGACTCTGC         | CTTCAGACGA         | GACTTGGAAG |
| 201  | ACAGTCACAT | CTCAGCAGCT         | CCTCTGCCGT         | TATCCAGCCT         | GCCTCTGACA |
| 251  | AGAACCCAAT | GCCCAACCCT         | AGGCCAGCCA         | AGCCTATGGC         | TCCTTCCTTG |
| 301  | GCCCTTGGCC | CATCCCCAGG         | AGTCTTGCCA         | AGCTGGAAGA         | CTGCACCCAA |
| 351  | GGGCTCAGAA | CTTCTAGGGA         | CCAGGGGCTC         | TGGGGGACCC         | TTCCAAGGTC |
| 401  | GGGACCTGCG | AAGTGGGGCC         | CACACCTCTT         | CTTCCTTGAA         | CCCCCTGCCA |
| 451  | CCATCCCAGC | TGCAGCTGCC         | TACAGTGCCC         | CTAGTCATGG         | TGGCACCGTC |
| 501  | TGGGGCCCGA | CTAGGTCCCT         | CACCCCACCT         | ACAGGCCCTT         | CTCCAGGACA |
| 551  | GACCACACTT | CATGCATCAG         | CTCTCCACTG         | TGGATGCCCA         | TGCCCAGACC |
| 601  | CCTGTGCTCC | AAGTGCGTCC         | ACTGGACAAC         | CCAGCCATGA         | TCAGCCTCCC |
| 651  | ACCACCTTCT | GCTGCCACTG         | GGGTCTTCTC         | CCTCAAGGCC         | CGGCCTGGCC |
| 701  | TGCCACCTGG | GATCAATGTG         | GCCAGTCTGG         | AATGGGTGTC         | CAGGGAGCCA |
| 751  | GCTCTACTCT | GCACCTTCCC         | ACGCTCGGGT         | ACACCCAGGA         | AAGACAGCAA |
| 801  | CCTTTTGGCT | GCACCCCAAG         | GATCCTACCC         | ${\bf ACTGCTGGCA}$ | AATGGAGTCT |
| 851  | GCAAGTGGCC | TGGTTGTGAG         | AAGGTCTTCG         | AGGAGCCAGA         | AGAGTTTCTC |
| 901  | AAGCACTGCC | ${\tt AAGCAGATCA}$ | TCTCCTGGAT         | GAGAAAGGCA         | AGGCCCAGTG |
| 951  | CCTCCTCCAG | AGAGAAGTGG         | TGCAGTCTCT         | GGAGCAGCAG         | CTGGAGCTGG |
| 1001 | AAAAGGAGAA | GCTGGGAGCT         | ATGCAGGCCC         | ACCTGGCTGG         | GAAGATGGCG |
| 1051 | CTGGCCAAGG | CTCCATCTGT         | GGCCTCAATG         | GACAAGAGCT         | CTTGCTGCAT |
| 1101 | CGTAGCCACC | AGTACTCAGG         | GCAGTGTGCT         | CCCGGCCTGG         | TCTGCTCCTC |
| 1151 | GGGAGGCTCC | AGACGGCGGC         | ${\tt CTGTTTGCAG}$ | ${\tt TGCGGAGGCA}$ | CCTCTGGGGA |
| 1201 | AGCCATGGCA | ATAGTTCCTT         | CCCAGAGTTC         | TTCCACAACA         | TGGACTACTT |
| 1251 | CAAGTACCAC | AATATGCGAC         | CCCCTTTCAC         | CTATGCCACC         | CTTATCCGAT |
| 1301 | GGGCCATCCT | GGAAGCCCCG         | GAGAGGCAGA         | GGACACTCAA         | TGAAATCTAC |
| 1351 | CATTGGTTTA | CTCGCATGTT         | CGCCTACTTC         | AGAAACCACC         | CCGCCACCTG |
| 1401 | GAAGAATGCC | ATCCGCCACA         | ACCTGAGCCT         | GCACAAGTGC         | TTTGTGCGAG |
| 1451 | TGGAGAGCGA | ${\tt GAAGGGAGCA}$ | GTGTGGACCG         | TAGATGAATT         | TGAGTTTCGC |
| 1501 | AAGAAGAGGA | GCCAACGCCC         | CAACAAGTGC         | TCCAATCCCT         | GCCCTTGACC |
| 1551 | TCAAAACCAA | GAAAAGGTGG         | GCGGGGGAGG         | GGGCCAAAAC         | CATGAGACTG |
| 1601 | AGGCTGTGGG | GGCAAGGAGG         | CAAGTCCTAC         | GTGTACCTAT         | GGAAACCGGG |
| 1651 | CGATGATGTG | ${\tt CCTGCTATCA}$ | GGGCCTCTGC         | TCCCTATCTA         | GCTGCCCTCC |
| 1701 | TAGATCATAT | CATCTGCCTT         | ACAGCTGAGA         | GGGGTGCCAA         | TCCCAGCCTA |
| 1751 | GCCCCTAGTT | CCAACCTAGC         | CCCAAGATGA         | ACTTTCCAGT         | CAAAGAGCCC |
| 1801 | TCACAACCAG | CTATACATAT         | CTGCCTTGGC         | CACTGCCAAG         | CAGAAAGATG |
| 1851 | ACAGACACCA | TCCTAATATT         | TACTCAACCC         | AAACCCTAAA         | ACATGAAGAG |
| 1901 | CCTGCCTTGG | TACATTCGTG         | AACTTTCAAA         | GTTAGTCATG         | CAGTCACACA |
| 1951 | TGACTGCAGT | CCTACTGACT         | CACACCCCAA         | AGCACTCACC         | CACAACATCT |
| 2001 | GGAACCACGG | GCACTATCAC         | ACATAGGTGT         | ATATACAGAC         | CCTTACACAG |
| 2051 | CAACAGCACT | GGAACCTTCA         | CAATTACATC         | CCCCCAAACC         | ACACAGGCAT |
| 2101 | AACTGATCAT | ACGCAGCCTC         | AAGCAATGCC         | CAAAATACAA         | GTCAGACACA |
| 2151 | GCTTGTCAGA |                    |                    |                    |            |

Figure 1

### MOUSE Fkhsf PROTEIN SEQUENCE

|     |                   | -                 |            |                   | •          |
|-----|-------------------|-------------------|------------|-------------------|------------|
| 1   | MPNPRPAKPM        | APSLALGPSP        | GVLPSWKTAP | KGSELLGTRG        | SGGPFQGRDL |
| 51  | RSGAHTSSSL        | NPLPPSQLQL        | PTVPLVMVAP | SGARLGPSPH        | LQALLQDRPH |
| 101 | <b>FMHQLSTVDA</b> | HAQTPVLQVR        | PLDNPAMISL | PPPSAATGVF        | SLKARPGLPP |
| 151 | GINVASLEWV        | SREPALLCTF        | PRSGTPRKDS | NLLAAPQGSY        | PLLANGVCKW |
| 201 | PGCEKVFEEP        | EEFLKHCQAD        | HLLDEKGKAQ | CLLQREVVQS        | LEQQLELEKE |
| 251 | KLGAMQAHLA        | <b>GKMALAKAPS</b> | VASMDKSSCC | <b>IVATSTQGSV</b> | LPAWSAPREA |
| 301 | PDGGLFAVRR        | HLWGSHGNSS        | FPEFFHNMDY | FKYHNMRPPF        | TYATLIRWAI |
| 351 | LEAPERQRTL        | NEIYHWFTRM        | FAYFRNHPAT | WKNAIRHNLS        | LHKCFVRVES |
| 401 | EKGAVWTVDE        | FEFRKKRSQR        | PNKCSNPCP* |                   | •          |

### HUMAN FKH<sup>f</sup> cDNA Sequence

| 1    | GCACACACTC | ATCGAAAAAA | ATTTGGATTA | TTAGAAGAGA | GAGGTCTGCG |
|------|------------|------------|------------|------------|------------|
| 51   |            |            |            | CTCGGTATAA |            |
| 101  |            |            |            | CAGGCTGATC |            |
| 151  | AGTCCACTTC | ACCAAGCCTG | CCCTTGGACA | AGGACCCGAT | GCCCAACCCC |
| 201  | AGGCCTGGCA | AGCCCTCGGC | CCCTTCCTTG | GCCCTTGGCC | CATCCCCAGG |
| 251  |            |            |            | AGCCTCAGAC |            |
| 301  |            |            |            | GAGATCTTCG |            |
| 351  |            |            |            | CCACCATCGC |            |
| 401  |            |            |            | CTCCGGGGCA |            |
| 451  |            |            |            | ACAGGCCACA |            |
| 501  |            |            |            | ACCCCTGTGC |            |
| 551  |            |            |            | CACACCACCC |            |
| 601  |            |            |            | GCCTCCCACC |            |
| 651  | GTGGCCAGCC | TGGAATGGGT | GTCCAGGGAG | CCGGCACTGC | TCTGCACCTT |
| 701  | CCCAAATCCC | AGTGCACCCA | GGAAGGACAG | CACCCTTTCG | GCTGTGCCCC |
| 751  |            |            |            | TCTGCAAGTG |            |
| 801  |            |            |            | CTCAAGCACT |            |
| 851  | CCATCTTCTG |            |            | ATGTCTCCTC |            |
| 901  | TGGTACAGTC |            |            | TGGAGAAGGA |            |
| 951  | GCCATGCAGG |            |            | GCACTGACCA |            |
| 1001 | TGTGGCATCA | TCCGACAAGG | GCTCCTGCTG | CATCGTAGCT | GCTGGCAGCC |
| 1051 | AAGGCCCTGT | CGTCCCAGCC |            | CCCGGGAGGC |            |
| 1101 | CTGTTTGCTG | TCCGGAGGCA | CCTGTGGGGT | AGCCATGGAA | ACAGCACATT |
| 1151 | CCCAGAGTTC |            | TGGACTACTT |            | AACATGCGAC |
| 1201 | CCCCTTTCAC |            | CTCATCCGCT | GGGCCATCCT | GGAGGCTCCA |
| 1251 | GAGAAGCAGC |            | TGAGATCTAC | CACTGGTTCA |            |
| 1301 | TGCCTTCTTC |            | CTGCCACCTG | GAAGAACGCC | ATCCGCCACA |
| 1351 | ACCTGAGTCT | GCACAAGTGC | TTTGTGCGGG |            |            |
| 1401 | GTGTGGACCG | TGGATGAGCT |            | AAGAAACGGA | GCCAGAGGCC |
| 1451 | CAGCAGGTGT |            | CACCTGGCCC | CTGACCTCAA | GATCAAGGAA |
| 1501 | AGGAGGATGG | ACGAACAGGG |            | TGGGAGGCAG |            |
| 1551 |            |            |            | CAGGGACCAA |            |
| 1601 | TTCCACTGTC |            |            | TCCCCCCCTG |            |
| 1651 | CCTCCCCCAT | CATATCCTTT |            | TGCTCAGAGG |            |
| 1701 | CTGGCCCCAG |            |            | ACACCCCCCA |            |
| 1751 | GCAGCCAAAC |            |            | CACAGAGCCT |            |
| 1801 | CTCGCACAGA |            | GCTGGAAAAG | TCACACAGAC | ACACAAAATG |
| 1851 | TCACAATCCT | GTCCCTCAC  |            |            |            |

Figure 3

### HUMAN FKHsf PROTEIN SEQUENCE

| 1   | MPNPRPGKPS | APSLALGPSP         | GASPSWRAAP | KASDLLGARG | PGGTFQGRDL |
|-----|------------|--------------------|------------|------------|------------|
| 51  | RGGAHASSSS | LNPMPPSQLQ         | LPTLPLVMVA | PSGARLGPLP | HLQALLQDRP |
| 101 | HFMHQLSTVD | ${\bf AHARTPVLQV}$ | HPLESPAMIS | LTPPTTATGV | FSLKARPGLP |
| 151 |            | VSREPALLCT         |            | _          |            |
| 201 | WPGCEKVFEE | PEDFLKHCQA         | DHLLDEKGRA | QCLLQREMVQ | SLEQQLVLEK |
| 251 | EKLSAMQAHL | AGKMALTKAS         | SVASSDKGSC | CIVAAGSQGP | VVPAWSGPRE |
| 301 | APDSLFAVRR | HLWGSHGNST         | FPEFLHNMDY | FKFHNMRPPF | TYATLIRWAI |
| 351 | -          | NEIYHWFTRM         |            |            | LHKCFVRVES |
| 401 | EKGAVWTVDE | LEFREKRSOR         | PSRCSNPTPG | P*         | •          |

## Transgenic Vector for generation of FKH<sup>sf</sup> mice



Figure ?

## BEST AVAILABLE COPY

# FKHsf Transgene corrects the defect in scurfy animals



Figure 6

FKHsf tg mice have reduce lymph node cells compared to normal cells

|                | Mor    | Mouse genotype | ype        |
|----------------|--------|----------------|------------|
|                | Normal | Scurfy         | Transgenic |
| Cell number    |        |                |            |
| Cells / LN     | 0.92   | 1.97           | 7 0.29     |
| Cells / Thymus | 0.76   | 0.54           | 4 0.76     |

FKHsf transgenic mice respond poorly to in vitro stimulation

|                    | Moi    | Mouse genotype | ype        |
|--------------------|--------|----------------|------------|
|                    | Normal | Scurfy         | Transgenic |
| Proliferation      |        | ·              |            |
| No stimulation     | 778    | 23488          | 596        |
| Anti-CD3+Anti-CD28 | 22932  | 225981         | 9106       |
|                    |        |                |            |

Figure 8



(exons) joined by heavy horizontal lines (introns). Coding exons are numbered 1-11 as determined by sequence analysis of FKH<sup>sf</sup> cDNA; non-coding 5' exons are labelled a and b. The FKH<sup>sf</sup>-specific and JM2-specific splicing patterns and Comparison of FKH st and JM2 cDNAs. Exon/intron structure is shown (Genomic) as open rectangles resulting cDNAs are indicated above and below the genomic structure, respectively.

Figure 9

| Human FKHsi |       | Mouse Fkhst |
|-------------|-------|-------------|
| Forkhead    | 96.4% | ·           |
| Mid         | 82.8% |             |
| ZNE         | 95.8% |             |
| N-terminal  | 83.4% |             |

Human and mouse FKHsf proteins are highly conserved.