Introduction to Machine Learning.

Siman Giri

Disclaimer!!!

• Pre-requisites:

- None to be specific.
- But basic understanding of python or any programming language might be helpful.

Assumptions:

Complete no-voice in Machine Learning.

• Objective:

- Introduce Machine Learning.
- In brief explain various elements and components of Machine learning
- Understand the basic of Machine Learning Workflow for any ML projects.

Learning -> Artificial Intelligence.

1. What is Learning?

Background and Motivation for Machine Learning.

1.1 What is Learning? Intuition.

- Example: Identify the spam emails!!!
- (Program a machine that learns how to filter spam emails.)

1.1 What is Learning? Intuition.

- Example: Identify the spam emails!!!
- (Program a machine that learns how to filter spam emails.)
 - Expert-System:
 - In the early days of "intelligent" applications, many systems used hand-coded rules of "if" and "else" decisions to process data or adjust to user input.
 - A naïve solutions: machine can simply **make a array of all the words**, appearance of whose result in an **email being spam**, when a **new email arrives**, machine can check for those **blacklisted word from array**. If it matches one of them, it can be assigned as **spam** otherwise can be moved to **inbox**.
 - This would be an example of using an expert-designed rule system ("learning by memorization") to design an "intelligent" application.

1.2 Expert System: Challenges.

- Example: Identify the spam emails!!!
- (Program a machine that learns how to filter spam emails.)
 - Expert-System ~ learning by memorizations:
 - In our example "learning by memorization" approach might work well but it lacks one important aspects of learning systems
 - – the ability to label unseen email-messages i.e. email messages which may be spam but does not contain any of the word in the black-list(array) will be delivered to our inbox.
 - Manually crafting decision rules is feasible for some application, but has following two disadvantages:
 - The **logic** required to **make a decision** is specific to a **single domain** and **task**. **Changing the task** even slightly might required to **rewrite** of the **whole system**.
 - Designing rules requires a deep understanding of how a decision should be made by a human expert.
 - {We did not learn from the data we had, instead we memorize a features of data.}

1.3 When do we need Machine Learning?

- A successful learning system must be able to progress from individual examples to broader generalization
 - – also referred as "inductive reasoning" or "inductive inference".
- Example1: detect cat in an image.

- Challenges with Expert System:
 - way in which **pixels** (~ which make up an image in a computer) are "**perceived**" by the **computer** is very different from how **humans perceive** a **face**.
 - This difference in representation makes it basically **impossible for a human** to come up with a **good set of rules to describe** what **constitutes a cat in a digital image**.
 - Using machine learning, however, simply presenting a program with a large collection of images of faces is enough for an algorithm to determine what characteristics are needed to identify a face.
 - {learning from data ~ What does it means learning from data?}

1.4 What is Machine Learning?

- Some popular definition from legends of the field:
 - "Learning is any process by which a system improves performance from experience".
 -- Herbert Simon
 - Definition by Tom Mitchel(1998):
 - Machine Learning is the study of algorithms that:
 - Improve their performance P
 - At some task T
 - With experience E
 - A well defined learning task is given by <P, T, E>.
 - "Field of study that gives computers the ability to learn without being explicitly programmed." -- Arthur Samuel ,1959 (an AI pioneer at IBM).

1.5 Definition: Machine Learning?

- Machine learning is a sub-domain of artificial intelligence (AI) that utilizes Statistics,
 Pattern recognition, knowledge discovery and data mining to automatically learn and improve with experiences without being explicitly programmed.
- As machine-learning (ML) methods have improved in their capability and scope, ML has become the best way,
 - measured in terms of speed, human engineering time, and robustness, to make many applications.
- Great examples are face detection and speech recognition and many kinds of languageprocessing tasks.
- Almost any application that involves understanding data or signals that come from the real world can be best addressed using machine learning.

1.6 Machine Learning: Premises.

- When and Why do we build Machine Learning System?
 - There exists some **pattern/behavior** of interest:

(Some Task to be solved)

- The pattern/behavior is difficult to describe: (Encoding a rule to understand a behavior is difficult)
- There is data (past experiences are in abundant)
- Use data to "learn" the pattern

1.7 Machine Learning: Cautions!!!

- Machine learning is a very general and useful framework, but it is not "magic" and will not always work.
 - In order to better understand when it will and when it will not work, it is useful to **formalize** the **learning problem** more.
- Some challenges of Machine Learning:
 - Why do we think that previously seen data will help us predict the future?
 - estimation:
 - When we have data that are noisy reflections of some underlying quantity of interest, we have to aggregate the data and make estimates or predictions about the quantity.
 - How do we deal with the fact that, for example, the same treatment may end up with different results on different trials?
 - How can we predict how well an estimate may compare to future results?
 - generalization:
 - How can we predict results of a situation or experiment that we have never encountered before in our data set?

1.8 Components of Machine Learning.

2. Datasets for Machine Learning.

What is Data and Dataset?

2.1 Data-Basic Overview and Definitions.

- "Data" :a collection of facts about any objects or phenomenon.
 - Facts/Measurements can be of quantitative(numeric) or qualitative(descriptive) in nature.
 - Variables and Measurements
- Some similar definitions:
 - Factual information (such as measurements or statistics) used as a basis for reasoning, discussion, or calculation
 - Information in digital form that can be transmitted or processed
 - Information output by a sensing device or organ that includes both useful and irrelevant or redundant information and must be processed to be meaningful

Cautions!!!!

Datum

A single piece of information, which can be treated as an observation

Data

The plural of datum; multiple observations

Dataset

A homogenous collection of data (each datum must have the same focus)

2.2 Dataset: Formats.

2.2 Dataset Formats for Machine Learning.

Plain Text:

Ends in .txt (generally)
No formatting, font type, font size, color, etc.
Text position is provided by whitespace characters (space, tab, return)

```
ALICE'S ADVENTURES IN WONDERLAND

Lewis Carroll

THE MILLENNIUM FULCRUM EDITION 3.0

CHAPTER I. Down the Rabbit-Hole

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice 'without pictures or conversations?'
```

```
Bill #, Jack Reed (RI), Elizabeth Warren (MA)
Bill 27, Yay, Yay
Bill 28, Yay, Nay
Bill 30,, Nay
Bill 47, Nay, Nay
Bill 91, Nay, Nay
Bill 105, Yay, Yay
```

JSON

XML

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York", "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
     "type": "home",
     'number": "212 555-1234"
     "type": "office",
     "number": "646 555-4567"
     "type": "mobile",
"number": "123 456-7890"
"children": [],
"spouse": null
```

```
<studentsList:
   <student id="1">
       <firstName>Greg</firstName>
       <lastName>Dean</lastName>
       scertificate>True/certificate
           <module1>70</module1>
           <module12>80</module12>
           <module3>90</module3>
   </student>
   <student ind="2">
       <firstName>Wirt</firstName>
       <lastName>Wood</lastName>
       <certificate>True</certificate>
           <module1>80</module1>
           <module12>80.2</module12>
           <module3>80</module3>
      </scores>
   </student>
```

.csv format

Tab-separated (.tsv/.csv)

Delimiter: character that seperates.

2.2 Dataset Formats: In Practice.

- Some Terminology associated with dataset in practice:
- Variables:
 - Target or output variables also referred as dependent variables.
 - Predictor, Feature or input variables also referred as independent variables
- Notations:
 - Feature Variables: x or X.
 - Actual Target Variables: y or Y.
 - Predicted Target Variables: \hat{y} or \hat{Y} .

2.3 Dataset pre-processing.

- Major Tasks in Data (Pre)-processing:
 - Data cleaning
 - Fill in missing values, smooth noisy data, **identify** or remove **outliers**, and resolve inconsistencies
 - Data integration
 - Integration of multiple databases, or with in same data set.
 - Data transformation
 - Normalization/Scaling (scaling to a specific range)
 - Data reduction
 - Feature Selection/Extraction.

2.3 Dataset pre-processing – Missing Data.

- Data may not be always available.
 - E.g., many variables have no recorded value for several attributes, such as customer income in sales data
 - Missing data may be due to :
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred.

2.3 Dataset pre-processing – Missing Data.

- How to handle missing Data?
 - The process of handling missing data is known as Data Imputation. Some of the common approaches are:
 - Fill in the missing value **manually**: tedious + infeasible?
 - Use a **global constant** to fill in the missing value: e.g., "unknown", a new class?!
 - Use the attribute mean to fill in the missing value
 - Use the attribute mean for all samples of the same class to fill in the missing value: smarter
 - Use the most probable value to fill in the missing value
 - inference-based such as regression, Bayesian formula, decision tree

2.4 Dataset pre-processing – Data Transformation.

- Some common task in Data Transformation are:
 - Scaling.
 - Encoding.
 - Feature Selection and Feature Engineering (Dimensionality Reduction).
 - Learned Embedding (often for text data).

2.4 Data Transformation – Scaling.

- Goal: bring them all with the same range-scale.
 - Use when different numeric features have different scales (different range of values).
 - Features with much higher values may overpower the others.
- Different methods exist. Most common techniques are:
 - Standard Scaling
 - Generally most useful and used, assumes data is normally distributed.
 - For every feature or attribute subtract the mean value and scale by standard deviation.
 - New feature has mean 0 and standard deviation 1.

•
$$X_{new} = \frac{X-\mu}{\sigma}$$

- Min-max Scaling
 - Scales all features between a given min and max value.
 - Only used when min and max has some sense in data.
 - Sensitive to outliers.

•
$$X_{new} = \frac{X - x_{min}}{x_{max} - x_{min}} \cdot (max - min) + min.$$

2.5 Data Transformation – Encoding.

- Many algorithms can only handle numeric features, so we need to encode the categorical ones.
 - Ordinal Encoding:
 - Assigns an integer value to each category in the order they are encountered.
 - Only useful for ordinal data types.

	boro	boro_ordinal	salary
0	Manhattan	2	103
1	Queens	3	89
2	Manhattan	2	142
3	Brooklyn	1	54
4	Brooklyn	1	63
5	Bronx	0	219

Ordinal Encoding

- One Hot Encoding:
 - Also known as dummy encoding.
 - Adds a new features/attributes for every category in data.

One Hot Encoding

	boro	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens	salary
0	Manhattan	0	0	1	0	103
1	Queens	0	0	0	1	89
2	Manhattan	0	0	1	0	142
3	Brooklyn	0	1	0	0	54
4	Brooklyn	0	1	0	0	63
5	Bronx	1	0	0	0	219

Story So far.....

Story So far.....

2.6 Data Exploration – Statistical Analysis.

- Data exploration, also known as **exploratory data analysis (EDA)**, is a process where users look at and understand their data with **statistical and visualization methods**.
 - This step helps identifying patterns and problems in the dataset, as well as deciding which model or algorithm to use in subsequent steps.
- Bad data will lead to bad results even with perfect model.
- Some common things that precedes any ML model building are (but not limited to):
 - Outliers in Data:
 - Observations that either is very large or very small value.
 - Boxplot may be used to detect the presence of such outliers.
 - Distributions of Data:
 - Most of the time in ML we assume normality of data.
 - Techniques like Histogram may be used to check for such normality.
 - Collinearity:
 - Determines the linearity of feature variables among themselves.
 - Can be deduce with covariance matrix or heatmap.

3. Elements of Learning Process.

Building a Machine Learning Models.

3.1 Framing a Learning Problem.

- Learning Problem(Tasks) in Machine Learning depends on type of the data we have:
- Datasets are made up of individual examples that contain features and a label.
 - Examples that contain both features and a label are called **labeled datasets**.
 - Examples that contain only features are called unlabeled datasets.

3.2 Supervised Machine Learning.

- Data in Supervised Learning:
 - For Supervised Learning Setup, training data comes in pairs of inputs (x, y): where $X \in \mathbb{R}^d$ is the input instance and Y its label, which can be written as:
 - $D = \{(x_1, y_1) \dots (x_n, y_n)\} \subseteq R^d * C$
 - Where:
 - R^d : d-dimensional feature space.
 - x_i : input vector of the i^{th} sample.
 - y_i : label of the i^{th} sample.
 - *C*: label space.
- Tasks in Supervised Learning:
 - There can be multiple scenario for the label space *c*.

Binary Classification	$c = \{0 \ or \ 1\}$	E.g.: An email is either spam or not a spam.
Multi Class Classification	$c = \{1, 2, \dots k\} (k \ge 2)$	E.g.: Traffic sign Classification.
Regression	$c = \mathbb{R}$	E.g.: Height of the person.

Elements of Machine Learning.

- There may be hundreds of machine learning algorithms, all of those algorithms must have following three attributes:
 - A Decision Process (Representation/Model):
 - Machine learning algorithms(Models) are used to make inference or estimate of an output based on input data labeled or unlabeled.
 - An Error Function (Evaluation):
 - A performance metric used to evaluate the estimate of a model.
 - Metrics depends on types of learning (supervised or unsupervised) and types of task (Classification or Regression)
 - An model Optimization Process:
 - An automated algorithm or process used to update parameters of machine learning models until threshold or accepted evaluation metric has been achieved.
 - Examples:
 - Gradient Descent
 - ID3/CART

A Decision Process: Function Approximation.

- Machine learning is concerned with using the right features to build the right models that achieve the right tasks.
- For a given problem, what kind of function better approximates the relationship between input (feature) with output (target/label)
- The function broadly can be classified as:
 - Numerical Function:
 - Linear Regression.
 - Support Vector Machines.
 - Symbolic Function (Logical or Rule Based):
 - Decision Tree and Random Forest
 - Instance Based:
 - Nearest Neighbor
 - Probabilistic Models:
 - Naïve Bayes

Framework of a Learning Process.

3.2 Supervised Machine Learning.

- Data in Supervised Learning:
 - For Supervised Learning Setup, training data comes in pairs of inputs (x, y): where $X \in \mathbb{R}^d$ is the input instance and Y its label, which can be written as:
 - $D = \{(x_1, y_1) \dots (x_n, y_n)\} \subseteq R^d * C$
 - Where:
 - R^d : d-dimensional feature space.
 - x_i : input vector of the i^{th} sample.
 - y_i : label of the i^{th} sample.
 - *C*: label space.
- Tasks in Supervised Learning:
 - There can be multiple scenario for the label space c.

Binary Classification	$c = \{0 \ or \ 1\}$	E.g.: An email is either spam or not a spam.
Multi Class Classification	$c = \{1, 2, \dots k\} (k \ge 2)$	E.g.: Traffic sign Classification.
Regression	$c = \mathbb{R}$	E.g.: Height of the person.

3.3 Supervised Machine Learning: Examples.

Regression

• House Price Prediction:

A	В	C	D	E	F	G	H	1	J	K	L	M	N
Street	OverallCond	YearBuilt	YearRemo	MasVnrArea	TotalBsmt	Heating	CentralAir	BsmtFullB	FullBath	HalfBath	Bedroom/	SaleCondition	Price
Pave	6	1961	1961	0	882	GasA	Y	0	1	. 0	2	Normal	11622
Pave	6	1958	1958	108	1329	GasA	Y	0	1	. 1	3	Normal	14267
Pave	5	1997	1998	0	928	GasA	Y	0	2	1	3	Normal	13830
Pave	6	1998	1998	20	926	GasA	Y	0	2	1	3	Normal	9978
Pave	5	1992	1992	0	1280	GasA	Y	0	2	. 0	2	Normal	5009
Pave	5	1993	1994	0	763	GasA	Y	0	2	1	3	Normal	10000
Pave	7	1992	2007	0	1168	GasA	Y	1	2	. 0	3	Normal	7980
Pave	5	1998	1998	0	789	GasA	Y	0	2	1	3	Normal	8402
Pave	5	1990	1990	0	1300	GasA	Y	1	1	. 1	2	Normal	10176
Pave	5	1970	1970	0	882	GasA	Y	1	1	. 0	2	Normal	8400
Pave	5	1999	1999	0	1405	GasA	Y	1	2	0	2	Normal	585
Pave	5	1971	1971	504	483	GasA	Y	0	1	. 1	2	Normal	1680
Pave	5	1971	1971	492	525	GasA	Y	0	1	1	3	Normal	1680
Pave	6	1975	1975	0	855	GasA	Y	0	2	1	3	Normal	2280
Pave	6	1975	1975	0	836	GasA	Y	0	1	. 0	2	Normal	2280
Pave	5	2009	2010	162	1590	GasA	Y	0	2	1	3	Partial	1285
Pave	5	2009	2010	256	1544	GasA	Y	0	2	0	3	Partial	12883
Pave	5	2005	2005	615	1698	GasA	Y	0	2	. 0	3	Normal	11520
Pave	5	2005	2006	240	1822	GasA	Y	0	2	0	3	Normal	14122
Pave	5	2003	2004	1095	2846	GasA	Y	1	2	1	3	Normal	14300
Pave	5	2002	2002	232	1671	GasA	Y	1	2	1	3	Normal	13650
Pave	5	2006	2006	178	1370	GasA	Y	0	2	0	2	Normal	713
Pave	5	2005	2005	0	1324	GasA	Y	0	2	0	3	Normal	18494
Pave	5	2006	2006	14	1145	GasA	Y	0	2	. 0	2	Normal	3203
Pave	5	2004	2004	0	384	GasA	Y	1	2	1	3	Normal	1330

Classification

- Tasks in Supervised Learning-Classification Task:
 - Binary Classification.
 - Multi-Class Classification.

3.4 Supervised Learning: Problem Formulation.

- Data → Learning.
- Our assumptions:
 - We belief that datapoints (x_i, y_i) are drawn from some (unknown) distribution P(X, Y).
 - We would like to learn a function "h" such that for a new pair (x, y), we have
 h(x) = ŷ where ŷ ≈ y.
- Learning:
 - **Step-I:** .From a hypothesis class "H" i.e. " $h \in H$ "; we need to select the machine learning algorithm that we think is appropriate for the particular problem.
 - **Step-II:** Find the best function with in the class " $h \in H$ "
 - How can we find best function?
 - For this we need be able to evaluate what it means for one function to be better than another. (Aka Loss/Error function.)

3.4 Supervised Learning: Error Function.

- Error function(E):
- Aka Loss Function(L).
- A loss function evaluates a hypothesis $h \in H$; on our training data and tells us how bad it is.
 - Higher the loss, the worse it is
 - A loss of zero means it makes **perfect predictions**.
- It is common practice to normalize the loss by the total number of training samples; "n", so that the output can interpreted as the average loss per sample (Cost Function).

3.4 Supervised Learning: Error Function.

- Loss function(L): Examples.
- Zero-One Loss:
 - It counts how many mistakes and hypothesis function "h" makes on the training set, given by:
 - $\mathbb{L}_{0\backslash 1}(h) = \frac{1}{n} (\sum \delta_h(x_i) \neq y_i; \{\delta_h(x_i) \neq y_i = \begin{cases} 1, if \ h(x_i) \neq y_i \\ 0, otherwise. \end{cases}$
 - For every single example: if it is miss-predicted then loss is 1 and 0 otherwise.
 - The normalized zero-one loss returns the fraction of misclassified training samples.
 - Can be used to evaluate classifier but are seldom used because it is rarely is useful to guide **optimization procedures** because the function is non-differentiable and non-continuous.

3.4 Supervised Learning: Error Function.

- Loss function(L): Examples.
 - **Squared Loss**:
 - Typically used in regression settings. It iterates over all training sample and computes the loss as:

•
$$\mathbb{L}_{sq}(h) = \frac{1}{n} \left(\sum_{i=1}^{n} (h(x_i) - y_i)^2 \right).$$

- Absolute Loss:
 - Expressed as:
 - $\mathbb{L}_{abs}(h) = \frac{1}{n} \left(\sum_{i=1}^{n} |h(x_i) y_i| \right).$

3.5 What after learning "h"?

• Prediction:

• Learned model(hypothesis) h(.) is used to predict the label Y for data without label, the predicted label is represented as \hat{Y} .

• Inference:

- Understanding the association between Y and X.
 - Which predictors are associated with the response?
 - What is the relationship between the response and predictor?
 - Can the relationship between Y and each predictor be adequately summarized using a linear equation?

3.6 (Supervised) Machine Learning: Conclusion.

- It is an attempt to find the function "h" that minimizes the selected loss such that:
 - $h = argmin_{h \in H} \mathbb{L}(h)$
- A big part of machine learning focuses on the question, how to do this minimization efficiently?
 - Optimization Techniques.
- If you find a function h(.) with low loss on your data D, how do you know whether it will still get examples right that are not in D?
 - Generalization!!!

4. Towards Generalization.

How to achieve Generalization in Machine Learning?

Train-Test Split?

4.1 How to achieve Generalization in Machine Learning?

- We want to build a model $\hat{f}(x) \approx f(x)$; such that it can make a best prediction on sampled data $\hat{y}_i = \hat{f}(x_i) | \mathbf{E}_{\text{in}}(\hat{y}, y) \approx \mathbf{0}$ and also on observed data $\hat{y}_o = \hat{f}(x_o) | E_o(\hat{y}_o, y_o) \approx \mathbf{0}$.
 - Sample data: data D_{in} used to train model.
 - Observed data: data D_o used to measure the predictive quality of model.
- E_{in} is typically defined as the average of $Pointwise\ errors$ from data points in the sample data i.e.
 - $E_{in}(\hat{f}, f) = \frac{1}{n} \sum_{i} err_{i}$. [re-substitution error-> how well the model fits the learning data?]
- E_o is the *theoretical mean(expected value)* of the *Pointwise errors* over the entire *input space*:
 - $E_o(\hat{f}, f) = E_X[err(\hat{f}(x), f(x))]$ [generalization error-> how well the model fits the data]
- The point x denotes a **general data** point in the *input space* X. And as we said, *the expectation is taken over the input space* X. This means that the nature of E_0 is highly theoretical. In practice, we will **never** be able to **compute this quantity**.
- What do we do in practice?

4.2 Training vs. Test Error: Towards Generalization!!!

- How to split? Holdout Method!!!
- Generalization: The Train-Test Split.
 - Training Data: used to fit model (insample Data)
 - Error:

For a Dataset:
$$D_{train} = \{(x_1, y_1), ..., (x_{n-a}, y_{n-a})\}.$$

$$E_{train}(\hat{f}, f) = \frac{1}{n-a} \sum_{i=1}^{n-a} err[\hat{f}(x_i), y_i];$$
 Training error typically underestimates test error.

- **Test Data**: check generalization error(outsample-data).
 - Error:

```
For a Dataset: D_{test} = \{(x_1, y_1), \dots, (x_a, y_a)\} \colon a > 1. E_{test}(\hat{f}, f) = \frac{1}{a} \sum_{l=1}^{a} err[\hat{f}(x_l), y_l]; E_{test} \text{ is unbiased estimate of } E_{out}(h).
```


4.3 Training vs. Test Error: Overfitting and Underfitting!!!

- Errors is composed of:
 - MSE = Variance +Bias + Noise.
- Underfitting:
 - †High Train Error †High Test Error.
 - High Bias Low Variance.
- Overfitting:
 - ↓Low Train Error ↑High Test Error
 - Low Bias High Variance.

4.4 Mitigating Overfitting: Techniques.

- Some Techniques to avoid overfitting:
 - Early stopping
 - Train with more data
 - Feature Selection or Data augmentation
 - Cross-Validation

 ✓

 - Regularization

(Supervised) Machine Learning: Workflow.

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d from the distribution D.
 - Find $y = f(x) \in H$ that minimizes $\widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
 - such that the expected loss is small:
 - $L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,xy)]$

5. Unsupervised Learning

5.1 Unsupervised Learning: Introduction.

- Unsupervised learning focuses on a set of **statistical tool/methods** intended for setting in which we have only a **set of features** i.e.:
 - $D = \{(x_1) \dots (x_n)\} \subseteq R^d$
 - Here:
 - R^d : d-dimensional feature space.
 - x_i : input vector of the i^{th} sample measured on n observations.
- In unsupervised learning we are **not interested in prediction**, because we do not have an associated response variable **Y**.
- Then, What can be the **goal/objective** of unsupervised learning?

5.2 Unsupervised Learning: Need.

- What can be the goal/objective of unsupervised learning?
 - Goal in unsupervised learning is to discover interesting things about the measurements/features. Thus tasks in unsupervised learnings are defined purely from exploratory perspective.
- Unsupervised learning explores the relationship between the feature variables and tries to answer the questions such as:
 - Is there an informative way to visualize the data?
 - Can we discover subgroups among the variables or among the observations?

5.3 Unsupervised Learning: Task.

Clustering:

- The method of dividing the objects into clusters which are similar between them and are dissimilar to the objects belonging to another cluster
 - K means Clustering,

• Association:

- Rule based machine learning algorithms, that discovers the probability of the cooccurrence of items in a collection i.e. finding relationships between variables in a given dataset.
 - Apriori Algorithm, FP-Growth Algorithm

• Dimensionality reduction:

• Principal component analysis

6. Concluding Remarks.

6.1 ML Process

Ask an interesting Question.

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

Fig: Flowchart of ML Process.

6.1 ML Process-1.

Ask an interesting Question.

• What are the goals?

- What would you do if you had all the data?
- What do you want to predict or estimate?

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

6.1 ML Process-2.

Ask an interesting Question.

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

6.1 ML Process-3.

Ask an interesting Question.

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

6.1 ML Process-4.

Ask an interesting Question.

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

• Build/Train and Validate a Machine Learning Model.

6.1 ML Process-5.

Ask an interesting Question.

Collect the Data.

Explore the Data.

Build the Model.

Result/Decision.

Did it answered the question?

Thank You!!! For Collaboration: simangiri@heraldcollege.edu.np