Using Imagery to Simplify Perception

29th Soar Workshop

Samuel Wintermute University of Michigan

SVS Project Background

- Soar Visual/Spatial (SVS) adds visual and spatial processing to Soar
- Previous workshops:
 - Architecture was presented
 - Pieces of it were examined
 - Agents were shown
- ► This year: studying *sufficiency* and *generality* in representing spatial problems
 - Giving Soar the tools it needs to solve lots of spatial problems

Getting Symbols from Sensors

- Goal: Allow Soar to solve arbitrary spatial problems
- Problem state information in Soar is (almost always) abstract
- Basic perceptions available to an embodied agent might have much more detail
- What perceptual information should be provided to Soar?
- This problem is about what is calculated by the perception system, not about how to calculate it

Motivating Example (1)

Symbolic Planning in the Blocks World

Motivating Example (1)

Symbolic Planning in the Blocks World

Motivating Example (2)

Motion Planning

Motivating Example (2)

Motion Planning (robot, obstacles, goal)

Problem Dependencies in Perception

- Problems can be geometrically similar, but require very different symbolic abstractions
 - Any given agent only has one perception system
 - An agent may need to solve unforeseen problems
- Possible solution: space -> symbol transformation can be considered task knowledge.
 - Soar rules for blocks world would map a set of coordinates to "on" relationships
 - Soar rules for navigation would take a set of coordinates, calculate configuration space, and determine locations and adjacencies
 - This is certainly possible, but math-intensive and hard to learn
- Possible solution: abstractions can be symbolically composed from problem-independent primitives
- ▶ These domains are also very simple...

Motivating Example (3)

Symbolic Planning in the Blocks World

Motivating Example (3)

Symbolic Planning in the Pegged Blocks World

Motivating Example (3)

Symbolic Planning in the Pegged Blocks World

Motivating Example (4)

► Non-Holonomic Motion Planning (robot, obstacles, goal)

Difficulties in perception

- Different problem domains require very different qualitative symbolic relationships
 - But any given agent only has one perception system
- For some problems, computing any useful qualitative symbolic representation is difficult (or impossible)
 - And if it is possible, the calculated relationships will be extremely problem-specific
- Solution: reconsider one-way perception

Imagery

Imagery

Imagery in the Pegged Blocks World

Imagery for Non-Holonomic Motion

Soar / Imagery Interface

- High-level perceptions to Soar:
 - Object identities
 - Object topology (intersecting or not)
 - Object distances
 - Object directions (left-of, right-of, etc.)
- Imagery actions:
 - Qualitative predicate projection (e.g., imagine A on B)
 - Motion simulation
 - Memory retrieval

- All instances considered have the same abstract initial state and goal
- Any instance may be in one of four cases where the optimal plan differs

- Soar with SVS can encode a plan to get (almost) optimal behavior in all four cases
 - This would be extremely difficult without imagery

▶ goal :

▶ goal :

move black above red, if it fits

▶ goal :

move blue to bin

▶ goal :

move black next to red, if it fits

goal :

- move green above black, if it fits
- lacksquare else, move red to bin

▶ goal :

build goal stack from bin

Motion Planning Agent

- Common robotics problem: must determine a sequence of actions to move from place to place in a fully-observed world
- Abstraction can be very difficult
- Result: sampling-based motion planning
 - RRT Algorithm: through simulation, build a tree of reachable configurations until the goal is reached
- ▶ This algorithm has been instantiated in Soar/SVS.

RRT Motion Planning

- Controller steers car toward a goal, biasing steering away from obstacles
- Soar keeps track of tree of possible configurations, and chooses which to expand next

RRT Motion Planning

 Controller steers car toward a goal, biasing steering away from obstacles

 Soar keeps track of tree of possible configurations, and chooses which to expand next

RRT Motion Planning

- Controller steers car toward a goal, biasing steering away from obstacles
- Soar keeps track of tree of possible configurations, and chooses which to expand next

High-Level Perceptions Used

- Pegged Blocks World:
 - intersecting(X,Y); above(X,Y); distance(X,Y)
 - Symbolically composed to on(X,Y) and collision(X,Y) predicates
- ► RRT Motion Planning:
 - intersecting(X,Y); in-front-of(X,Y); distance(X,Y)
 - Used to determine if car has hit an obstacle or reached the goal, and choose which node to expand
- Low-level perception and object recognition are (hypothetically) the same in both cases.

Imagery Actions Used

- Pegged Blocks World:
 - predicate projection: imagine a copy of a block on top of an existing block, centered relative to it
- RRT Motion Planning:
 - predicate projection: imagine a random point within the floor
 - motion simulation: imagine a copy of the car in the future, given its motion model

Conclusion

Nuggets:

- Imagery allows spatial problems to be accurately solved even when no good abstraction is available
- Imagery reduces complicated perceptual operations to simple operations performed over time
 - ▶ This results in a small set of perceptual primitives
 - This allows the same perceptual system to be used in many problem domains

Coal:

- Low-level perception is still hard
- Generality is a hard claim to evaluate
- Still no software release

References

SVS

S. Wintermute, An Overview of Spatial Processing in Soar/SVS, Technical Report, University of Michigan Center for Cognitive Architecture, 2009.

Pegged blocks world agents

- S. Wintermute, "Representing Problems (and Plans) Using Imagery," Submitted to the AAAI Fall Symposium on Multi-representational Architectures, 2009.
- S. Wintermute and J.E. Laird, "Imagery as Compensation for an Imperfect Abstract Problem Representation," *Proceedings of the 31st Annual Conference of the Cognitive Science Society*, 2009.

► RRT algorithm

S.M. LaValle and J.J. Kuffner Jr, "Randomized Kinodynamic Planning," *The International Journal of Robotics Research*, vol. 20, 2001, p. 378.

► RRT agent

S. Wintermute, "Integrating Reasoning and Action through Simulation," Proceedings of the Second Conference on Artificial General Intelligence, 2009.