HW8 Collaborative

CS40 Fall'21

Benjamin Cruttenden (4672440) Bharat Kathi (5938444) Sean Oh (4824231) Marco Wong (4589198)

Due: Monday, Nov 29, 2021 at 10:00PM on Gradescope

In this assignment,

You will have more practice with induction and other proof strategies.

For all HW assignments:

Please see the instructions and policies for assignments on the class website and on the writeup for HW1. In particular, these policies address

• Collaboration policy

• Typing your solutions

• Where to get help

• Expectations for full credit

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assignment called "HW8".

In your proofs and disproofs of statements below, justify each step by reference to the proof strategies we have discussed so far, and/or to relevant definitions and calculations. We include only induction-related strategies here; you can and should refer to past material to identify others.

Proof by Mathematical Induction: To prove a universal quantification over the set of all integers greater than or equal to some base integer b:

Basis Step: Show the statement holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the **induction**

hypothesis) that the property holds for n, and use this and other facts to prove that

the property holds for n+1.

Proof by Strong Induction To prove that a universal quantification over the set of all integers greater than or equal to some base integer b holds, pick a fixed nonnegative integer j and then:

Basis Step: Show the statement holds for $b, b+1, \ldots, b+j$.

Recursive Step: Consider an arbitrary integer n greater than or equal to b + j, assume (as the **strong**

induction hypothesis) that the property holds for each of $b, b + 1, \ldots, n$, and use

this and other facts to prove that the property holds for n + 1.

Assigned questions

1. Assume L is the set of linked lists defined recursively in HW7 and toNum is a function from $L \to \mathbb{N}$ defined recursively as follows (also covered in Week 9 Monday's lecture):

Basis Step: toNum([]) = 0Recursive Step: If $n \in \mathbb{N}$ and $l \in L$, then $toNum((n, l)) = 2^n \cdot 3^{toNum(l)}$

Prove that toNum is one-to-one.

```
Answer: .
```

```
\forall l1 \in L \forall l2 \in L(tonum(l1) = tonum(l2) \rightarrow (l1 = l2))
Direct proof:
Assume tonum(11) = tonum(12)
Then: 2^n * 3^{tonum(l1')} = 2^n * 3^{tonum(l2')} // Divide both sides by 2^n
3^{tonum(l1')} = 3^{tonum(l2')}
N1 = n2
tonum(l1') = tonum(l2')
Induction: on 11 choose arbitrary 12
Base case: 11 = []
WTS: tonum([]) = tonum([2]) \rightarrow [] = 12
Direct proof:
Assume tonum([]) = tonum([2))
0 = \text{tonum}(12) by basis step
L2 = [] by basis step
Inductive Case: l1 = (n1, l1'). Choose arbitrary (n2, l2)
Assume as inductive hypothesis: tonum(l1') = tonum(l2) \rightarrow (l1' = l2)
WTS: tonum((n1, l1')) = tonum(n2, l2) - > ((n1, l1') = (n2, l2))
Direct proof:
Assume tonum((n1,l1')) = tonum(n2,l2)
2^{n1} * 3^{tonum(l1')} = 2^{n2} * 3^{tonum(l2)} // by recursive step
2^{n1-n2} * 3^{tonum(l1')-tonum(l2)} = 1
n1=n2
tonum(11') = tonum(12)
\Rightarrow (11' = 12) // by inductive hypothesis
\Rightarrow((n1,l1) = (n2,l2)) // by adding n1 and n2 to each side since n1 = n2
```

2. Define P(n) to be the assertion that:

$$\sum_{j=1}^{n} j^2 = n(n+1)(2n+1)/6$$

Answer the questions that follow:

(a) Verify that P(3) is true, and then express P(k) and P(k+1)

Answer: .

Verify P(3)
$$LHS = \sum_{j=1}^{3} j^2 = 3^2 + 2^2 + 1^2 = 9 + 4 + 1 = 14$$

 $RHS = 3(3+1)(2(3)+1)/6 = 3*4*7/6 = 14$
LHS = RHS verifying P(3)
 $P(k) : \sum_{j=1}^{k} k^2 = k(k+1)(2(k)+1)/6$
 $P(k) : \sum_{j=1}^{k+1} (k+1)^2 = (k+1)(k+1+1)(2(k+1)+1)/6$

(b) What is the basis step for an inductive proof of $\forall n \in \mathbb{Z}^+(P(n))$

Answer: .

Basis Step, n = 1 so P(1) is the assertion that
$$P(k): \sum_{j=1}^{1} j^2 = 1(1+1)(2(1)+1)/6$$

Evaluating: $LHS = 1^2 = 1$
RHS = 1(2)(3)/6 = 6/6 = 1
LHS = RHS so n = 1 is true

(c) What would be the inductive hypothesis? What must be proven in the inductive step?

Answer: .

Inductive hypothesis would be that the assertion is true for n = k So IH is P(k):
$$\sum_{j=1}^{k+1} k^2 = (k+1)(k+1+1)(2(k+1)+1)/6$$
 And what must be prove is n = k + 1 So WTS is P(k+1): $\sum_{j=1}^{k+1} (k+1)^2 = (k+1)(k+1+1)(2(k+1)+1)/6 = k^3/3 + 3k^2/2 + 13k/6 + 1$

(d) Write the complete inductive proof for the provided assertion by combining all your answers from the previous parts

Answer: .

So by inductive proof over n Basis Step, n = 1 so P(1) is the assertion that $\sum_{j=1}^{1} j^2 = 1(1+1)(2(1)+1)/6$ Evaluating: LHS = $1^2 = 1$ RHS = 1(2)(3)/6 = 6/6 = 1LHS = RHS so n = 1 is true

Inductive step: Now with that being true we form the IH of n = k being true, So IH is P(k): $\sum_{j=1}^k (k)^2 = k(k+1)(2(k)+1)/6 = k^3/3 + k^2/2 + k/6$ We WTS that its true for n = k + 1 which is P(k+1): $\sum_{j=1}^{k+1} (k+1)^2 = (k+1)(k+1+1)(2(k+1)+1)/6$ Evaluating LHS = $\sum_{j=1}^{k+1} (k+1)^2 = (k+1)^2 + \sum_{j=1}^k k^2 = k^2 + 2k + 1 + \sum_{j=1}^k k^2$ RHS = (k+1)(k+1+1)(2(k+1)+1)/6 = $k^3/3 + 3k^2/2 + 13k/6 + 1$ = $k^3/3 + k^2/2 + k^2 + k/6 + 2k + 1$ = $k^2 + 2k + 1 + \sum_{j=1}^k k^2$ LHS = RHS so proving it

3. (Graded for correctness in evaluating statement and for fair effort completeness in the justification)

Consider the functions $f_a: \mathbb{N} \to \mathbb{N}$ and $f_b: \mathbb{N} \to \mathbb{N}$ defined recursively by

$$f_a(0) = 0$$
 and for each $n \in \mathbb{N}$, $f_a(n+1) = f_a(n) + 2n + 1$

$$f_b(0) = 0$$
 and for each $n \in \mathbb{N}$, $f_b(n+1) = 2f_b(n)$

Which of these two functions (if any) equals 2^n and which of these functions (if any) equals n^2 ? Use induction to prove the equality or use counterexamples to disprove it.

4. (Graded for correctness) Prove the following statement:

$$\exists n_0 \in \mathbb{N} \, \forall n \in \mathbb{Z}^{\geq n_0} \, (n^2 < 2^n)$$

In your proof, you may use the following lemma:

$$\exists n_0 \in \mathbb{N} \, \forall n \in \mathbb{Z}^{\geq n_0} \, (1 + 2n < n^2)$$

Proof of lemma. This proof can also be used as reference for a possible approach for the statement you are trying to prove:

To prove the existential claim, consider the witness $n_0 = 3$. We will prove that

$$\forall n \in \mathbb{Z}^{\geq 3} \left(1 + 2n < n^2 \right)$$

using mathematical induction.

Basis step For the basis step, we need to show that $1+2\cdot 3 < 3^2$. Evaluating: $1+2\cdot 3 = 1+6=7$ and $3^2=9$. Since 7<9, the basis step is complete.

Recursive step Consider arbitrary integer n that is greater than or equal to 3. Assume, as the induction hypothesis, that $1+2n < n^2$. We need to show that $1+2(n+1) < (n+1)^2$. Calculating:

$$(n+1)^2 = (n+1)(n+1) = n^2 + 2n + 1$$

 $> (1+2n) + 2n + 1$ by the induction hypothesis
 $> 2n+2n+1$ since $1>0$
 $> 2n+2\cdot 1+1$ since $n>1$ by assumption that $n\geq 3$
 $= 2(n+1)+1=1+2(n+1)$ as required to complete the recursive step.

Thus, the universal quantification was proved using mathematical induction and so the witness $n_0 = 3$ proves the existential.

5. (*Graded for fair effort completeness*) Can the statement you proved above be used to prove or disprove the following statement? Why or why not?

$$\exists n_0 \in \mathbb{N} \, \forall n \in \mathbb{Z}^{\geq n_0} \, (2^n < n^2)$$

6. Prove the following upper bound for the given recurrence relation using strong induction. Define the sequence $\{a_n\}$ as follows:

$$a_1 = a_2 = a_3 = 1$$

 $a_n = a_{n-1} + a_{n-2} + a_{n-3}$, for $n \ge 4$

Prove that

$$\forall n \in \mathbb{Z}^{\geq 1} \left(a_n \leq 2^n \right)$$

7. Use induction to prove that the following algorithm is correct. Binary strings are the set of all strings of length 0 or more made up of characters from the set $\{0,1\}$.

Recursively computing the set of all binary strings of a fixed length n

```
procedure StringSet(n:a non-negative integer)
   S := \emptyset
4
   \mathbf{if} \ n = 0
         Add \lambda to S
5
         return (S)
   T := StringSet(n-1)
   for every x \in T
9
10
         y := 0x
11
         Add y to S
         y := 1x
12
         Add y to S
    end for
14
    return (S) {output is S}
15
```

8. Let $W = \mathcal{P}(\{1, 2, 3, 4, 5\})$.

Sample response that can be used as reference for the detail expected in your answer for parts (a) and (b) below:

To give an example element in the set $\{X \in W \mid 1 \in X\} \cap \{X \in W \mid 2 \in X\}$, consider $\{1,2\}$. To prove that this is in the set, by definition of intersection, we need to show that $\{1,2\} \in \{X \in W \mid 1 \in X\}$ and that $\{1,2\} \in \{X \in W \mid 2 \in X\}$.

- By set builder notation, elements in $\{X \in W \mid 1 \in X\}$ have to be elements of W which have 1 as an element. By definition of power set, elements of W are subsets of $\{1,2,3,4,5\}$. Since each element in $\{1,2\}$ is an element of $\{1,2,3,4,5\}$, $\{1,2\}$ is a subset of $\{1,2,3,4,5\}$ and hence is an element of W. Also, by roster method, $1 \in \{1,2\}$. Thus, $\{1,2\}$ satisfies the conditions for membership in $\{X \in W \mid 1 \in X\}$.
- Similarly, by set builder notation, elements in $\{X \in W \mid 2 \in X\}$ have to be elements of W which have 2 as an element. By definition of power set, elements of W are subsets of $\{1,2,3,4,5\}$. Since each element in $\{1,2\}$ is an element of $\{1,2,3,4,5\}$, $\{1,2\}$ is a subset of $\{1,2,3,4,5\}$ and hence is an element of W. Also, by roster method, $2 \in \{1,2\}$. Thus, $\{1,2\}$ satisfies the conditions for membership in $\{X \in W \mid 2 \in X\}$.
- (a) Give two example elements in

$$W \times W$$
.

Justify your examples by explanations that include references to the relevant definitions.

(b) Give one example element in

$$\mathcal{P}(W)$$

that is **not** equal to \emptyset or to W. Justify your example by an explanation that includes references to the relevant definitions.

9. We define the following function:

$$f: \{0,1\}^4 \to \{0,1\}^3,$$

where the output of f is obtained by taking the input string and dropping the first bit. For example f(1011) = 011. Indicate whether the f is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Attributions

Thanks to Mia Minnes and Joe Politz for the original version of the instructions and select questions. All materials created by them is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.