Simulação Estocástica

Thiago Rodrigo Ramos

17 de setembro de 2025

Sumário

1	Introdução					
	1.1	Um conselho: a importância de ser ruim antes de ser bom	5			
2	Elementos básicos de probabilidade					
	2.1	Axiomas da probabilidade	7			
		2.1.1 Probabilidade condicional e independência	7			
	2.2	Variáveis aleatórias	8			
	2.3	Valor esperado	9			
	2.4	Variância	10			
		2.4.1 Covariância	10			
	2.5	Desigualdades básicas de concentração	12			
	2.6	Teoremas assintóticos	12			
3	Variáveis discretas e como simulá-las					
	3.1	Variáveis com suporte finito	17			
	3.2	Bernoulli	18			
	3.3	Distribuição binomial	19			
		3.3.1 Simulando via Bernoullis	19			
		3.3.2 Simulando via identidade recursiva	20			
		3.3.3 Aspectos computacionais	21			
		3.3.4 Número médio de passos em algoritmos de inversão recursiva	22			
	3.4	Distribuição geométrica	23			
		3.4.1 Simulando via Bernoullis	23			
		3.4.2 Simulando a geométrica via inversão	24			
	3.5	Distribuição de Poisson	25			
		3.5.1 Simulação a Poisson via inversão e recursão	26			
		3.5.2 Algoritmo melhorado	27			
		3.5.3 Relação com a binomial	28			
	3.6	6.6 Distribuição binomial negativa				
		3.6.1 Simulando via Bernoullis	30			
		3.6.2 Simulando via soma de geométricas	30			
		3.6.3 Simulando via inversão recursiva	31			
		3.6.4 Por que o nome "Binomial Negativa"?	32			

4		SUMÁR.	Ю
3	3.7	Distribuição hipergeométrica	32
		3.7.1 Simulando a Hipergeométrica	33
4	Vari	áveis contínuas e como simulá-las	35
4	4.1	Método da Inversão	35
		4.1.1 Distribuição exponencial	36
4	4.2	Método da rejeição-aceitação	39
		4.2.1 Distribuição normal	42
		4.2.2 Beta	45
		4.2.3 Gamma	45
5]	Red	ução de variância	47
Į	5.1	Uso de variáveis antitéticas	47
Į	5.2	O uso de variáveis de controle	52
Į	5.3	Redução de Variância por Condicionamento	55
Į	5.4	Amostragem por importância	58
		5.4.1 Densidades Inclinadas (Tilted Densities)	59
6	Cad	eias de Markov	63
7]	Proc	ressos de difusão	65
8	Estra	atégias para acelerar códigos em Python	67
8	8.1	Profiling com cProfile	67
8	8.2	Paralelização com joblib.Parallel	70
8	8.3	Compilação Just-In-Time com Numba	72
8	8 4	Paralelismo simples em Bash	75

Capítulo 1

Introdução

1.1 Um conselho: a importância de ser ruim antes de ser bom

É natural que, quando começamos a fazer algo, a gente faça essa coisa muito malfeita ou cheia de defeitos. Isso é comum em qualquer processo de aprendizagem, e sempre foi assim, desde o início dos tempos.

Quando comecei a programar em Python, muita coisa sobre a linguagem eu aprendi por conta própria, apesar de já ter feito alguns cursos básicos em C. Programei de forma amadora em Python por muitos anos, até que, no doutorado, precisei aprender a programar de forma mais organizada e profissional. Lembro que, nessa época, um amigo da pós-graduação me apresentou ao "submundo da programação". Foi aí que aprendi muito do que sei hoje sobre terminal do Linux, Git, e foi também quando comecei a usar o Vim.

Uma das coisas que esse amigo me mostrou foi o Pylint, que nada mais é do que um verificador de bugs e qualidade de código para Python. O Pylint é bem rigoroso na análise, e ainda te dá, ao final, uma nota que vai até 10. Nessa fase, apesar de já ter evoluído bastante, meus códigos ainda recebiam notas por volta de 6 ou 7. Resolvi então rodar o Pylint nos meus códigos antigos pra ter uma noção de quão ruins eles eram — e a nota final foi -900. Pois é, existe um limite superior para o quão bem você consegue fazer algo, mas aparentemente o fundo do poço é infinito.

O que eu queria mostrar com essa história é que faz parte do processo de aprendizado ser ruim no começo e melhorar com o tempo. Falo isso porque, hoje em dia, com o crescimento dos LLMs, a gente fica tentado a pular essa etapa de errar muito até acertar, e ir direto pra fase em que escrevemos códigos limpos, bem comentados, identados e organizados. Mas não se enganem: apesar da aparência profissional, depender de LLMs pra escrever tudo atrapalha justamente essa parte essencial de aprender errando.

Neste curso, vários exercícios envolvem escrever códigos em Python. Meu conselho é: não tenham vergonha de errar, de escrever soluções ruins ou confusas. Isso é absolutamente normal. Vocês estão aqui para evoluir — e errar faz parte do processo.

Capítulo 2

Elementos básicos de probabilidade

2.1 Axiomas da probabilidade

Um espaço de probabilidade é uma tupla composta por três elementos: o espaço amostral, o conjunto de eventos e uma distribuição de probabilidade:

- Espaço amostral Ω : Ω é o conjunto de todos os eventos elementares ou resultados possíveis de um experimento. Por exemplo, ao lançar um dado, $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Conjunto de eventos \mathcal{F} : \mathcal{F} é uma σ -álgebra, ou seja, um conjunto de subconjuntos de Ω que contém Ω e é fechado sob complementação e união enumerável (e, consequentemente, também sob interseção enumerável). Um exemplo de evento é: "o dado mostra um número ímpar".
- **Distribuição de probabilidade** \mathbb{P} : \mathbb{P} é uma função que associa a cada evento de \mathcal{F} um número em [0,1], tal que $\mathbb{P}[\Omega] = 1$, $\mathbb{P}[\emptyset] = 0$ e, para eventos mutuamente exclusivos A_1, \ldots, A_n , temos:

$$\mathbb{P}\left[A_1 \cup \cdots \cup A_n\right] = \sum_{i=1}^n \mathbb{P}[A_i].$$

A distribuição de probabilidade discreta associada ao lançamento de um dado justo pode ser definida como $\mathbb{P}[A_i] = 1/6$ para $i \in \{1, ..., 6\}$, onde A_i é o evento "o dado mostra o valor i".

2.1.1 Probabilidade condicional e independência

A probabilidade condicional do evento A dado o evento B é definida como a razão entre a probabilidade da interseção $A \cap B$ e a probabilidade de B, desde que $\mathbb{P}[B] \neq 0$:

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$$

Dois eventos A e B são ditos independentes quando a probabilidade conjunta $\mathbb{P}[A \cap B]$ pode ser fatorada como o produto $\mathbb{P}[A]\mathbb{P}[B]$:

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B].$$

De forma equivalente, a independência entre A e B pode ser expressa afirmando que $\mathbb{P}[A \mid B] = \mathbb{P}[A]$, sempre que $\mathbb{P}[B] \neq 0$.

Além disso, uma sequência de variáveis aleatórias é dita *i.i.d.* (independentes e identicamente distribuídas) quando todas as variáveis da sequência são mutuamente independentes e seguem a mesma distribuição de probabilidade.

Seguem algumas propriedades importantes:

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$$
 (regra da soma)
$$\mathbb{P}\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} \mathbb{P}[A_{i}]$$
 (desigualdade da união)
$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[B \mid A]\mathbb{P}[A]}{\mathbb{P}[B]}$$
 (fórmula de Bayes)
$$\mathbb{P}\left[\bigcap_{i=1}^{n} A_{i}\right] = \mathbb{P}[A_{1}]\mathbb{P}[A_{2} \mid A_{1}] \cdots \mathbb{P}\left[A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right]$$
 (regra da cadeia)

Exercício 1. Prove os resultados acima.

2.2 Variáveis aleatórias

Uma *variável aleatória X* é uma função mensurável $X: \Omega \to \mathbb{R}$, ou seja, tal que, para qualquer intervalo $I \subset \mathbb{R}$, o conjunto

$$\{\omega \in \Omega : X(\omega) \in I\}$$

pertence à σ -álgebra de eventos.

No caso discreto, a função de massa de probabilidade de X é dada por

$$x \mapsto \mathbb{P}[X = x].$$

Quando a distribuição de X é absolutamente contínua, existe uma função densidade de probabilidade f tal que, para todo $a,b \in \mathbb{R}$,

$$\mathbb{P}[a \le X \le b] = \int_a^b f(x) \, dx.$$

A função f é chamada função densidade de probabilidade da variável aleatória X. A relação entre a função de distribuição acumulada $F(\cdot)$ e a densidade $f(\cdot)$ é

$$F(a) = \mathbb{P}\{X \le a\} = \int_{-\infty}^{a} f(x) \, dx.$$

Derivando ambos os lados, obtemos

$$\frac{d}{da}F(a) = f(a),$$

ou seja, a densidade é a derivada da função de distribuição acumulada.

Uma interpretação mais intuitiva de f pode ser obtida observando que, para $\varepsilon > 0$ pequeno,

$$\mathbb{P}\left(a - \frac{\varepsilon}{2} < X < a + \frac{\varepsilon}{2}\right) = \int_{a - \varepsilon/2}^{a + \varepsilon/2} f(x) \, dx \approx \varepsilon f(a).$$

2.3. VALOR ESPERADO 9

Assim, f(a) quantifica a probabilidade de X assumir valores próximos de a.

Em muitos contextos, o interesse recai não apenas sobre variáveis aleatórias individuais, mas também sobre o relacionamento entre duas ou mais variáveis. Para descrever a dependência entre *X* e *Y*, definimos a *função de distribuição acumulada conjunta* como

$$F(x,y) = \mathbb{P}\{X \le x, Y \le y\},\$$

que fornece a probabilidade de X ser menor ou igual a x e, simultaneamente, Y ser menor ou igual a y.

Se X e Y forem variáveis aleatórias discretas, a função de massa de probabilidade conjunta é

$$p(x,y) = \mathbb{P}\{X = x, Y = y\}.$$

Se forem *conjuntamente contínuas*, existe uma *função densidade de probabilidade conjunta f*(x,y) tal que, para quaisquer conjuntos C, $D \subset \mathbb{R}$,

$$\mathbb{P}\{X \in C, Y \in D\} = \iint_{x \in C, y \in D} f(x, y) \, dx \, dy.$$

As variáveis X e Y são *independentes* se, para quaisquer C, $D \subset \mathbb{R}$,

$$\mathbb{P}\{X \in C, Y \in D\} = \mathbb{P}\{X \in C\} \mathbb{P}\{Y \in D\}.$$

De forma intuitiva, isso significa que conhecer o valor de uma das variáveis não altera a distribuição da outra.

No caso discreto, X e Y são independentes se, e somente se, para todo x, y,

$$\mathbb{P}{X = x, Y = y} = \mathbb{P}{X = x} \mathbb{P}{Y = y}.$$

Se forem conjuntamente contínuas, a independência é equivalente a

$$f(x,y) = f_X(x) f_Y(y), \quad \forall x, y,$$

onde f_X e f_Y são as densidades marginais de X e Y, respectivamente.

2.3 Valor esperado

A esperança ou valor esperado de uma variável aleatória X é denotada por $\mathbb{E}[X]$ e, no caso discreto, é definida como

$$\mathbb{E}[X] = \sum_{x} x \, \mathbb{P}[X = x].$$

Exemplo 1. Se I é uma variável aleatória indicadora do evento A, isto é,

$$I = \begin{cases} 1, & \text{se A ocorre,} \\ 0, & \text{se A não ocorre,} \end{cases}$$

então

$$\mathbb{E}[I] = 1 \cdot \mathbb{P}(A) + 0 \cdot \mathbb{P}(A^c) = \mathbb{P}(A).$$

Portanto, a esperança de uma variável indicadora de um evento A é exatamente a probabilidade de que A ocorra.

No caso contínuo, quando X possui uma função densidade de probabilidade f(x), a esperança é dada por

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, dx.$$

Além disso, dado uma função qualquer *g*, temos que:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \, dx.$$

Uma propriedade fundamental da esperança é sua linearidade. Isto é, para quaisquer variáveis aleatórias X e Y e constantes $a,b \in \mathbb{R}$, temos:

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

2.4 Variância

A variância de uma variável aleatória X é denotada por Var[X] e definida como

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

O desvio padrão de X é denotado por σ_X e definido como

$$\sigma_X = \sqrt{\operatorname{Var}[X]}.$$

Para qualquer variável aleatória X e qualquer constante $a \in \mathbb{R}$, as seguintes propriedades básicas são válidas:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
,
 $Var[aX] = a^2 Var[X]$.

Além disso, se X e Y forem independentes, então

$$Var[X + Y] = Var[X] + Var[Y].$$

Exercício 2. Prove os resultados anteriores.

2.4.1 Covariância

A covariância entre duas variáveis aleatórias X e Y é denotada por Cov(X,Y) e definida por

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Exercício 3. Prove que

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Dizemos que X e Y são não correlacionadas quando Cov(X,Y) = 0. Se X e Y forem independentes, então certamente são não correlacionadas, mas a recíproca nem sempre é verdadeira.

Exercício 4. Seja X uniforme no intervalo [-1,1] e seja $Y=X^2$. Mostre que Cov(X,Y)=0 mas X,Y não são independentes.

2.4. VARIÂNCIA 11

Observação 1. Considere uma variável aleatória contínua X centrada em zero, ou seja, $\mathbb{E}[X] = 0$, com densidade de probabilidade par e definida em um intervalo do tipo (-a,a), com a > 0. Seja Y = g(X) para uma função g. A questão é: para quais funções g(X) temos Cov(X,g(X)) = 0?

Sabemos que

$$Cov(X, g(X)) = \mathbb{E}[Xg(X)] - \mathbb{E}[X]\mathbb{E}[g(X)].$$

Como $\mathbb{E}[X] = 0$, segue que $\text{Cov}(X, g(X)) = \mathbb{E}[Xg(X)]$. Denotando a densidade de X por f(x), temos

$$Cov(X, g(X)) = \int_{-a}^{a} xg(x)f(x)dx.$$

Uma maneira de garantir que Cov(X, g(X)) = 0 é exigir que g(x) seja uma função par. Assim, xg(x)f(x) será uma função ímpar e a integral em (-a,a) se anulará, ou seja,

$$\int_{-a}^{a} x g(x) f(x) dx = 0.$$

Portanto, Cov(X, f(X)) = 0 *e como* Y = g(X), *teremos que ambas são dependentes.*

Dessa forma, podemos concluir que a distribuição precisa de X não afeta a condição, desde que p(x) seja simétrica em torno da origem. Qualquer função par $f(\cdot)$ satisfará Cov(X, f(X)) = 0.

A covariância é uma forma bilinear simétrica e semi-definida positiva, com as seguintes propriedades:

- **Simetria**: Cov(X, Y) = Cov(Y, X) para quaisquer variáveis X e Y.
- **Bilinearidade**: Cov(X + X', Y) = Cov(X, Y) + Cov(X', Y) e Cov(aX, Y) = a Cov(X, Y) para qualquer $a \in \mathbb{R}$.
- **Semi-definida positiva**: $Cov(X, X) = Var[X] \ge 0$ para qualquer variável X.

Além disso, vale a desigualdade de Cauchy-Schwarz, que afirma que para variáveis X e Y com variância finita,

$$|Cov(X,Y)| \le \sqrt{Var[X] Var[Y]}.$$

Perceba a semelhança do resultado acima com a desigualdade de Cauchy-Schwarz!

Exercício 5. Prove os resultados acima.

A matriz de covariância de um vetor de variáveis aleatórias $\mathbf{X} = (X_1, \dots, X_p)$ é a matriz em $\mathbb{R}^{n \times n}$ denotada por $\mathbf{C}(\mathbf{X})$ e definida por

$$C(X) = \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^\top\right].$$

Portanto, $\mathbf{C}(\mathbf{X})$ é a matriz cujos elementos são $\mathrm{Cov}(X_i,X_j)$. Além disso, é imediato mostrar que

$$C(X) = \mathbb{E}[XX^\top] - \mathbb{E}[X]\,\mathbb{E}[X]^\top.$$

2.5 Desigualdades básicas de concentração

Nesta seção, apresentamos duas desigualdades fundamentais que estabelecem limites superiores para a probabilidade de uma variável aleatória assumir valores distantes de sua média. Tais resultados são amplamente utilizados em probabilidade, estatística e teoria da informação para analisar o comportamento de caudas de distribuições.

A primeira delas é a *Desigualdade de Markov*, que fornece um limite simples para variáveis aleatórias não-negativas em função apenas de sua esperança.

Teorema 1 (Desigualdade de Markov). Seja X uma variável aleatória não-negativa ($X \ge 0$ quase certamente) com valor esperado $\mathbb{E}[X] < \infty$. Então, para todo t > 0, temos:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

Exercício 6. Prove a designaldade de Markov. **Dica:** use o fato de que $\frac{x}{t} \geq \mathbb{I}\{x \geq t\}$.

A próxima desigualdade é um refinamento da anterior. Conhecida como *Desigualdade de Chebyshev*, ela aplica a desigualdade de Markov à variável aleatória $(X - \mu)^2$ e relaciona o desvio da média com a variância da distribuição.

Teorema 2 (Desigualdade de Chebyshev). *Seja X uma variável aleatória com valor esperado* $\mu = \mathbb{E}[X]$ *e variância finita* $Var(X) = \sigma^2$. *Então, para todo* $\varepsilon > 0$, *vale*:

$$\mathbb{P}(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

Exercício 7. Prove a desigualdade de Chebyshev a partir da desigualdade de Markov aplicada a $(X - \mu)^2$.

2.6 Teoremas assintóticos

Em muitas aplicações de probabilidade e estatística, estamos interessados no comportamento de sequências de variáveis aleatórias quando o número de observações tende ao infinito. Os *teoremas assintóticos* fornecem resultados fundamentais que descrevem como certos estimadores ou somas de variáveis aleatórias se comportam no limite, ou seja, quando o tamanho da amostra *n* cresce indefinidamente.

Teorema 3 (Lei Fraca dos Grandes Números). Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias independentes, todas com a mesma esperança μ e variância $\sigma^2 < \infty$. Definindo a média amostral por

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

então, para qualquer $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| \ge \varepsilon\right) = 0.$$

Exercício 8. Prove a Lei Fraca dos Grandes números utilizando a desigualdade de Chebyshev.

Teorema 4 (Teorema Central do Limite). *Seja* X_1, \ldots, X_n *uma sequência de variáveis aleatórias i.i.d. com esperança* μ , *variância* σ^2 *e momento de ordem* 3 *finito. Definimos a média amostral como*

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Então,

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \quad \stackrel{d}{\longrightarrow} \quad N(0,1).$$

Demonstração. Suponha, sem perda de generalidade, que $\mu=0$ e $\sigma=1$. Defina

$$A_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$$
 e $B_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n N_i$,

onde $N_i \stackrel{\text{i.i.d.}}{\sim} N(0,1)$ independentes de tudo. Note que $B_n \sim N(0,1)$ para todo n.

Para provar que $A_n \xrightarrow{d} N(0,1)$, é suficiente mostrar que, para qualquer função de teste f suave e com crescimento controlado,

$$\mathbb{E}[f(A_n)] - \mathbb{E}[f(B_n)] \longrightarrow 0.$$

Passo 1: Construção telescópica. Considere as variáveis intermediárias

$$C_n^{(0)} = \frac{1}{\sqrt{n}}(X_1 + X_2 + \dots + X_n),$$

$$C_n^{(1)} = \frac{1}{\sqrt{n}}(N_1 + X_2 + \dots + X_n),$$

$$C_n^{(2)} = \frac{1}{\sqrt{n}}(N_1 + N_2 + X_3 + \dots + X_n),$$

$$\vdots$$

$$C_n^{(n)} = \frac{1}{\sqrt{n}}(N_1 + N_2 + \dots + N_n).$$

Claramente, $C_n^{(0)} = A_n$ e $C_n^{(n)} = B_n$.

Assim,

$$\mathbb{E}[f(A_n)] - \mathbb{E}[f(B_n)] = \mathbb{E}[f(C_n^{(0)})] - \mathbb{E}[f(C_n^{(n)})]$$
$$= \sum_{k=1}^n \Delta_k,$$

onde

$$\Delta_k := \mathbb{E}[f(C_n^{(k-1)}) - f(C_n^{(k)})].$$

Passo 2: Isolando o termo que difere. Entre $C_n^{(k)}$ e $C_n^{(k-1)}$, o único termo diferente é o k-ésimo. Definamos

$$D_n^{(k)} = \frac{1}{\sqrt{n}} (N_1 + \dots + N_{k-1} + 0 + X_{k+1} + \dots + X_n),$$

isto é, a parte comum entre $C_n^{(k)}$ e $C_n^{(k-1)}$, mas com o k-ésimo termo anulado.

Assim,

$$C_n^{(k)} = D_n^{(k)} + \frac{N_k}{\sqrt{n}}, \qquad C_n^{(k-1)} = D_n^{(k)} + \frac{X_k}{\sqrt{n}}.$$

Portanto,

$$\Delta_k = \mathbb{E}\left[f\left(D_n^{(k)} + \frac{X_k}{\sqrt{n}}\right) - f\left(D_n^{(k)} + \frac{N_k}{\sqrt{n}}\right)\right].$$

Passo 3: Expansão de Taylor condicional. Fixe $D_n^{(k)} = d$. Aplicando Taylor em torno de d, temos:

$$f\left(d + \frac{X_k}{\sqrt{n}}\right) = f(d) + \frac{X_k}{\sqrt{n}}f'(d) + \frac{X_k^2}{2n}f''(d) + \frac{X_k^3}{6n^{3/2}}f^{(3)}(d + \xi_X),$$

$$f\left(d + \frac{N_k}{\sqrt{n}}\right) = f(d) + \frac{N_k}{\sqrt{n}}f'(d) + \frac{N_k^2}{2n}f''(d) + \frac{N_k^3}{6n^{3/2}}f^{(3)}(d + \xi_N),$$

para alguns ξ_X , ξ_N entre 0 e X_k/\sqrt{n} ou N_k/\sqrt{n} .

Subtraindo,

$$f\left(d + \frac{X_k}{\sqrt{n}}\right) - f\left(d + \frac{N_k}{\sqrt{n}}\right) = \frac{1}{\sqrt{n}}f'(d)(X_k - N_k) + \frac{1}{2n}f''(d)(X_k^2 - N_k^2) + R_k(d),$$

onde

$$R_k(d) = \frac{1}{6n^{3/2}} \left(X_k^3 f^{(3)}(d + \xi_X) - N_k^3 f^{(3)}(d + \xi_N) \right).$$

Passo 4: Tomando esperança condicional. Voltamos para

$$\Delta_k = \mathbb{E}\left[f\left(D_n^{(k)} + \frac{X_k}{\sqrt{n}}\right) - f\left(D_n^{(k)} + \frac{N_k}{\sqrt{n}}\right)\right].$$

Usando a decomposição anterior e condicionando em $D_n^{(k)}$, temos:

$$\Delta_k = \mathbb{E}\left[\frac{1}{\sqrt{n}}f'(D_n^{(k)})(X_k - N_k)\right] + \mathbb{E}\left[\frac{1}{2n}f''(D_n^{(k)})(X_k^2 - N_k^2)\right] + \mathbb{E}[R_k].$$

Agora, como X_k e N_k são independentes de $D_n^{(k)}$, obtemos:

$$\mathbb{E}[f'(D_n^{(k)})(X_k - N_k)] = \mathbb{E}[f'(D_n^{(k)})] \cdot (\mathbb{E}[X_k] - \mathbb{E}[N_k]) = 0,$$

$$\mathbb{E}[f''(D_n^{(k)})(X_k^2 - N_k^2)] = \mathbb{E}[f''(D_n^{(k)})] \cdot (\mathbb{E}[X_k^2] - \mathbb{E}[N_k^2]) = 0.$$

Portanto, só resta

$$\Delta_k = \mathbb{E}[R_k].$$

Passo 5: Controle do resto. Do termo R_k , temos

$$|R_k| \le \frac{1}{6n^{3/2}} (|X_k|^3 \sup |f^{(3)}| + |N_k|^3 \sup |f^{(3)}|).$$

Tomando esperança,

$$|\mathbb{E}[R_k]| \leq \frac{C}{n^{3/2}} (\mathbb{E}[|X_1|^3] + \mathbb{E}[|N_1|^3]),$$

onde $C = \frac{1}{6} \sup |f^{(3)}|$.

Somando sobre k,

$$\left|\sum_{k=1}^n \Delta_k\right| \leq n \cdot \frac{C}{n^{3/2}} \left(\mathbb{E}[|X_1|^3] + \mathbb{E}[|N_1|^3] \right) = O\left(\frac{1}{\sqrt{n}}\right) \to 0.$$

Logo,

$$\mathbb{E}[f(A_n)] - \mathbb{E}[f(B_n)] \to 0,$$

e como $B_n \sim N(0,1)$ para todo n, segue que $A_n \stackrel{d}{\rightarrow} N(0,1)$.

Capítulo 3

Variáveis discretas e como simulá-las

O ponto de partida do nosso curso será sempre o mesmo: só podemos utilizar variáveis uniformes para gerar todas as demais distribuições. Ou seja, assumimos que temos disponível uma variável aleatória

$$U \sim \text{Uniforme}(0,1)$$
,

e a partir dela construiremos algoritmos para simular outras variáveis.

A propriedade fundamental dessa variável é:

$$\mathbb{P}(a < U < b) = b - a, \quad 0 \le a < b \le 1.$$

Isto é, a probabilidade de U cair em um subintervalo do intervalo (0,1) é igual ao comprimento desse subintervalo.

Exercício 9. Seja $U \sim \text{Uniforme}(0,1)$. Mostre que, para quaisquer números $0 \le a < b \le 1$,

$$\mathbb{P}(a < U < b) = b - a.$$

Para variáveis discretas, essa ideia pode ser usada da seguinte forma: suponha que X assuma valores x_1, x_2, \ldots, x_m com probabilidades p_1, p_2, \ldots, p_m , onde

$$p_k = \mathbb{P}(X = x_k), \quad p_k \ge 0, \quad \sum_{k=1}^m p_k = 1.$$

Definimos as probabilidades acumuladas

$$F_k = \sum_{i=1}^k p_i, \quad k = 1, \ldots, m.$$

Então, o algoritmo de simulação é:

- 1. Gerar $U \sim \text{Uniforme}(0,1)$;
- 2. Encontrar o menor índice k tal que $U \le F_k$;
- 3. Retornar $X = x_k$.

A propriedade $\mathbb{P}(a < U < b) = b - a$ garante que

$$\mathbb{P}(X = x_k) = p_k.$$

De forma intuitiva, dividimos o intervalo (0,1) em subintervalos consecutivos de comprimentos p_k . Ao sortearmos $U \sim \text{Uniforme}(0,1)$, o valor de X será aquele correspondente ao subintervalo no qual U cair. Esse procedimento é conhecido como *método da inversão* para variáveis discretas.

A Figura 3.1 ilustra esse processo para uma variável Bernoulli.

Figura 3.1: Particionamento do intervalo (0,1) para simular uma variável Bernoulli com p=0.7. Sorteia-se $U \sim \text{Uniforme}(0,1)$; se U cair na região azul, definimos X=0, e caso contrário, X=1.

A mesma ideia se aplica quando o conjunto de valores possíveis de X é infinito (ou muito grande). Nesse caso, o intervalo (0,1) é particionado em uma sequência de subintervalos, cada um correspondente a um valor de X, como ilustrado na Figura 3.2.

Figura 3.2: Particionamento do intervalo (0,1) para simular uma variável discreta com suporte infinito.

O nome *método da inversão* vem do fato de que a simulação utiliza a *função de distribuição* acumulada (CDF) e sua *inversa generalizada*. Seja X uma variável aleatória com CDF F(x). Então, se $U \sim \text{Uniforme}(0,1)$, vale que

$$X = F^{-1}(U),$$

onde a inversa generalizada é definida por

$$F^{-1}(u) = \min\{x : F(x) \ge u\}, \quad 0 < u < 1.$$

No caso discreto, isto corresponde exatamente ao passo do algoritmo em que escolhemos o menor k tal que $U \le F_k$. Ou seja, sorteamos U, e depois "invertemos" a CDF para recuperar uma realização de X na sua escala original.

Esse procedimento pode parecer um pouco abstrato neste momento, já que a noção de inversa de uma função acumulada fica mais clara quando lidamos com variáveis contínuas. Por isso, retornaremos a esse método mais adiante, ao estudarmos a simulação de variáveis contínuas via inversão. Antes, porém, vale formalizar essa ideia de maneira geral.

Exercício 10. Seja X uma variável aleatória com função de distribuição acumulada F_X . Considere $U \sim \text{Uniforme}(0,1)$ e defina

$$Y = F_X^{-1}(U)$$
, onde $F_X^{-1}(u) = \min\{x : F_X(x) \ge u\}$.

Prove que Y tem a mesma distribuição que X.

Esse resultado mostra que, a partir de uma variável uniforme, podemos simular qualquer outra distribuição usando a CDF e sua inversa generalizada. Com essa ferramenta em mãos, passamos agora ao estudo de algumas distribuições discretas fundamentais, que servirão de exemplo concreto dessa ideia.

3.1 Variáveis com suporte finito

Comecemos com o caso em que X assume um número finito de valores x_1, x_2, \ldots, x_m , cada um com probabilidade $p_i = \mathbb{P}(X = x_i)$.

Por exemplo, suponha que

$$p_1 = 0.20$$
, $p_2 = 0.15$, $p_3 = 0.25$, $p_4 = 0.40$.

Uma maneira direta de simular X é gerar $U \sim \text{Uniforme}(0,1)$ e aplicar:

- Se U < 0.20, definir X = 1 e pare;
- Se U < 0.35, definir X = 2 e pare;
- Se U < 0.60, definir X = 3 e pare;
- Caso contrário, definir X = 4.

Embora possamos reordenar os testes para tornar a verificação mais eficiente, a ideia central permanece a mesma: dividir o intervalo (0,1) em partes de comprimentos p_j e identificar onde U caiu.

De forma geral, se X é uma variável com suporte finito $S = \{x_1, x_2, \dots, x_m\}$, sua distribuição é completamente determinada pela função de probabilidade

$$p_X(x_k) = \mathbb{P}(X = x_k), \quad x_k \in S,$$

a qual satisfaz

$$p_X(k) \ge 0$$
 para todo $k \in S$, $\sum_{k \in S} p_X(k) = 1$.

Exemplo 2. Seja $S = \{x_1, x_2, ..., x_K\}$ um conjunto de K valores distintos. Dizemos que X tem distribuição uniforme discreta em S quando

$$p_X(x_i) = \frac{1}{K}, \quad i = 1, 2, \dots, K.$$

Nesse caso, cada valor é igualmente provável e temos

$$\sum_{i=1}^{K} p_X(x_i) = \sum_{i=1}^{K} \frac{1}{K} = 1.$$

Um caso especial é a *uniforme discreta* nos inteiros 1, 2, . . . , n, em que

$$\mathbb{P}(X=j)=\frac{1}{n}, \quad j=1,\ldots,n.$$

Neste cenário, o método se torna extremamente simples: basta gerar $U \sim \text{Uniforme}(0,1)$ e definir

$$X = |nU| + 1,$$

onde $\lfloor x \rfloor$ indica a parte inteira de x (maior inteiro menor ou igual a x).

De fato, X = j se e somente se $j - 1 \le nU < j$, o que ocorre com probabilidade $\frac{1}{n}$. Variáveis uniformes discretas são particularmente importantes em simulação, pois permitem gerar inteiros equiprováveis de forma extremamente eficiente.

3.2 Bernoulli

A distribuição de Bernoulli modela experimentos com dois resultados possíveis, tipicamente denominados "sucesso" (valor 1) e "fracasso" (valor 0). Dizemos que $X \sim \text{Bernoulli}(p)$ se

$$\mathbb{P}(X = 1) = p$$
 e $\mathbb{P}(X = 0) = 1 - p$,

19

onde $0 \le p \le 1$ representa a probabilidade de sucesso.

A função de probabilidade (pmf) pode ser escrita de forma compacta como

$$p_X(k) = p^k (1-p)^{1-k}, k \in \{0,1\}.$$

As principais características dessa distribuição são:

$$\mathbb{E}[X] = p$$
, $\operatorname{Var}(X) = p(1-p)$.

Exercício 11. Prove as propriedades acima, isto é, calcule a esperança e a variância de uma variável Bernoulli.

No contexto de simulação, a Bernoulli é um caso particular da uniforme discreta em $\{0,1\}$ com probabilidades 1-p e p, respectivamente. O algoritmo é simples: sorteamos $U\sim$ Uniforme(0,1) e definimos

$$X = \begin{cases} 1, & \text{se } U \le p, \\ 0, & \text{caso contrário.} \end{cases}$$

Exercício 12. Mostre que o procedimento acima gera corretamente uma variável Bernoulli, isto é, verifique que $\mathbb{P}(X=1) = p$ e $\mathbb{P}(X=0) = 1 - p$.

3.3 Distribuição binomial

A distribuição binomial modela o número de sucessos em n repetições independentes de um experimento de Bernoulli com probabilidade de sucesso p.

Sejam X_1, X_2, \dots, X_n variáveis aleatórias independentes, todas com distribuição Bernoulli(p). Definimos

$$X = \sum_{i=1}^{n} X_i.$$

Nesse caso, dizemos que $X \sim \text{Binomial}(n, p)$, cuja função de probabilidade é

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \quad k = 0, 1, \dots, n.$$

As principais propriedades são:

$$\mathbb{E}[X] = np, \quad \text{Var}(X) = np(1-p).$$

Exercício 13. Prove as propriedades acima.

3.3.1 Simulando via Bernoullis

Uma forma simples e direta de simular uma variável aleatória binomial é a partir de variáveis de Bernoulli independentes.

Recorde que se $X \sim \text{Binomial}(n, p)$, então X pode ser escrito como

$$X = \sum_{i=1}^{n} B_i,$$

onde B_1, B_2, \ldots, B_n são variáveis independentes e identicamente distribuídas, cada uma com

$$B_i \sim \text{Bernoulli}(p)$$
.

Assim, o algoritmo de simulação da binomial segue naturalmente:

- 1. Para i = 1, ..., n, gerar $B_i \sim \text{Bernoulli}(p)$;
- 2. Retornar $X = \sum_{i=1}^{n} B_i$.

Em outras palavras, uma variável binomial conta o número de sucessos em n tentativas independentes, cada uma com probabilidade de sucesso p. Portanto, simular uma binomial se reduz a repetir n vezes o procedimento de simulação da Bernoulli e somar os resultados.

3.3.2 Simulando via identidade recursiva

Uma alternativa mais eficiente utiliza o *método da inversão*, aproveitando a identidade recursiva da função massa de probabilidade da Binomial.

Se $X \sim \text{Binomial}(n, p)$, então

$$\mathbb{P}(X=i) = \binom{n}{i} p^i (1-p)^{n-i}, \quad i = 0, 1, \dots, n.$$

Essas probabilidades satisfazem uma relação de recorrência simples. De fato, começando em

$$\mathbb{P}(X = i+1) = \binom{n}{i+1} p^{i+1} (1-p)^{n-i-1},$$

observamos que ¹

$$\binom{n}{i+1} = \frac{n!}{(i+1)! (n-i-1)!} = \frac{n-i}{i+1} \frac{n!}{i! (n-i)!} = \frac{n-i}{i+1} \binom{n}{i}.$$

Substituindo essa relação,

$$\mathbb{P}(X = i + 1) = \frac{n - i}{i + 1} \binom{n}{i} p^{i + 1} (1 - p)^{n - i - 1}.$$

Reorganizando,

$$\mathbb{P}(X=i+1) = \frac{n-i}{i+1} \cdot \frac{p}{1-p} \, \mathbb{P}(X=i).$$

Assim, conhecendo $\mathbb{P}(X=0)=(1-p)^n$, podemos calcular $\mathbb{P}(X=1)$, $\mathbb{P}(X=2)$, . . . de forma recursiva, sem reavaliar coeficientes binomiais nem potências.

Isso leva ao seguinte algoritmo de simulação via inversão:

1. Gerar $U \sim \text{Uniforme}(0,1)$;

$$\frac{10!}{7!3!} = \frac{10! \cdot 4}{7 \cdot 6! \cdot 4 \cdot 3!} = \frac{10!}{6! \cdot 4!} \frac{4}{7}$$

¹Por exemplo, se n = 10, i = 6 e i + 1 = 7, então

- 2. Inicializar o índice i = 0, a probabilidade atual $p_i = (1 p)^n$ e a soma acumulada $F = p_i$;
- 3. Enquanto U > F, atualizar

$$p_{i+1} = \frac{n-i}{i+1} \cdot \frac{p}{1-p} p_i, \quad i \leftarrow i+1, \quad F \leftarrow F + p_i;$$

4. Retornar X = i.

Esse procedimento verifica primeiro se X=0, depois se X=1, e assim por diante, até encontrar o valor de X sorteado. Em média, o número de passos necessários é aproximadamente 1+np, o que pode ser bem mais eficiente do que gerar n variáveis de Bernoulli quando n é grande.

Exemplo 3. Considere n = 5 e p = 0.3. Temos $\mathbb{P}(X = 0) = (1 - 0.3)^5 = 0.16807$. Suponha que geramos U = 0.4. Como U > 0.16807, passamos ao próximo valor:

$$p_1 = \frac{5-0}{1} \cdot \frac{0.3}{0.7} \cdot 0.16807 \approx 0.36015, \quad F = 0.16807 + 0.36015 = 0.52822.$$

Agora U = 0.4 < F, logo o algoritmo retorna X = 1.

Portanto, neste caso específico, o sorteio resultou em exatamente um sucesso entre as cinco tentativas.

3.3.3 Aspectos computacionais

A escolha do método para simular variáveis binomiais tem implicações diretas em termos de eficiência. Dois fatores fundamentais influenciam o desempenho: o número de tentativas n e a probabilidade de sucesso p.

No método da soma de Bernoullis, o custo de cada amostra é proporcional a n, já que é necessário realizar n sorteios independentes. Esse custo não depende do valor de p: tanto para valores pequenos quanto grandes de p, o algoritmo precisa sempre gerar todas as n Bernoullis.

Já no método da inversão recursiva, o número médio de passos é da ordem de 1 + np, pois o procedimento acumula probabilidades até ultrapassar o valor sorteado U. Quando p é pequeno,

o valor típico da variável X também é pequeno, e o algoritmo tende a parar cedo, podendo ser competitivo em relação à soma de Bernoullis. Por outro lado, quando p é moderado ou grande, o valor esperado np cresce e, com ele, o número de passos, tornando a inversão significativamente mais lenta.

Figura 3.3: Comparação de tempo de execução (em segundos) entre o método da inversão recursiva e a soma de Bernoullis para n=100 e N=2000 amostras, variando p.

A Figura 3.3 ilustra essa comparação em implementações com *loops* explícitos, para n=100 e diferentes valores de p. Enquanto o tempo da soma de Bernoullis cresce linearmente apenas com n e não é afetado por p, o tempo do método da inversão cresce proporcionalmente a np, aumentando de forma acentuada à medida que p se aproxima de 1. Na prática, bibliotecas como NumPy utilizam algoritmos especializados para a binomial, ainda mais rápidos do que ambos os métodos discutidos aqui, de modo que a utilidade principal desses algoritmos é didática e comparativa, permitindo compreender os diferentes custos computacionais associados a cada abordagem.

3.3.4 Número médio de passos em algoritmos de inversão recursiva

Nos algoritmos recursivos de inversão, a lógica é sempre a mesma: dado um número aleatório $U \sim \text{Uniforme}(0,1)$, acumulamos as probabilidades da distribuição até que a soma ultrapasse U. O valor de X sorteado é exatamente o índice k em que essa condição se verifica pela primeira vez.

Assim, se o valor sorteado é X = k, o algoritmo precisou verificar todos os valores $0, 1, 2, \dots, k-1$ e só então aceitou k. Isso significa que o número total de passos é

$$S = k + 1$$
.

Como X é a variável aleatória que estamos simulando, temos

$$\mathbb{E}[S] = \mathbb{E}[X+1] = \mathbb{E}[X] + 1.$$

23

Esse resultado é geral para qualquer algoritmo de inversão recursiva que inicie a busca no valor mínimo do suporte e avance de forma sequencial. No caso da binomial $X \sim \text{Bin}(n, p)$, por exemplo, o número esperado de passos é

$$\mathbb{E}[S] = 1 + np,$$

uma vez que $\mathbb{E}[X] = np$.

Portanto, o custo médio do algoritmo está diretamente ligado ao valor esperado da distribuição sorteada: distribuições concentradas em valores pequenos produzem simulações muito rápidas, enquanto distribuições centradas em valores grandes exigem proporcionalmente mais passos.

3.4 Distribuição geométrica

A distribuição geométrica modela o número de ensaios de Bernoulli até a ocorrência do primeiro sucesso. Seja p a probabilidade de sucesso em cada tentativa, com 0 . Definimos <math>X como o número de ensaios necessários até o primeiro sucesso. Dizemos que $X \sim \text{Geom}(p)$ se

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, 3, \dots$$

Nesse caso:

$$\mathbb{E}[X] = \frac{1}{p}, \quad \text{Var}(X) = \frac{1-p}{p^2}.$$

Exercício 14. Prove que a função de probabilidade acima satisfaz $\sum_{k=1}^{\infty} \mathbb{P}(X=k) = 1$.

Exercício 15. *Prove as propriedades acima.*

3.4.1 Simulando via Bernoullis

A distribuição geométrica modela o número de tentativas até a ocorrência do primeiro sucesso, em uma sequência de experimentos de Bernoulli independentes com probabilidade $p \in (0,1)$ de sucesso. Essa definição leva naturalmente a um algoritmo de simulação baseado em Bernoullis. A ideia é repetir experimentos de Bernoulli até obter sucesso pela primeira vez:

- 1. Inicializar o contador $X \leftarrow 1$;
- 2. Gerar $B \sim \text{Bernoulli}(p)$;
- 3. Enquanto B = 0, repetir:
 - $X \leftarrow X + 1$;
 - Gerar novo $B \sim \text{Bernoulli}(p)$;
- 4. Retornar X.

Note que esse procedimento reflete exatamente a definição da variável: contar quantas tentativas são necessárias até que ocorra o primeiro sucesso.

Exemplo 4. Se p = 0.3, então a probabilidade de obter um sucesso logo na primeira tentativa é 0.3. Se a primeira tentativa falha, a segunda terá chance 0.3, e assim por diante.

Suponha que, ao simular, os primeiros valores de Bernoulli gerados foram 0,0,1. Isso indica duas falhas seguidas e um sucesso na terceira tentativa. Portanto, o algoritmo retorna X=3.

3.4.2 Simulando a geométrica via inversão

A função de distribuição acumulada é

$$\mathbb{P}(X \le j) = 1 - \mathbb{P}(X > j) = 1 - \mathbb{P}(\text{primeiras } j \text{ tentativas são falhas}) = 1 - (1 - p)^{j}$$
.

Assim, podemos usar o método da inversão para gerar X. Seja $U \sim \text{Uniforme}(0,1)$. Definimos X = i se

$$1 - (1 - p)^{j-1} \le U < 1 - (1 - p)^j$$

ou seja,

$$(1-p)^j < 1 - U \le (1-p)^{j-1},$$

o que equivale a

$$X = \min\{j : (1 - p)^j < 1 - U\}.$$

Particionamento do intervalo para a distribuição geométrica (p = 0.3)

Como 0 < 1 - p < 1, temos $\log(1 - p) < 0$. Aplicando logaritmos,

$$(1-p)^j < 1-U \iff j\log(1-p) < \log(1-U).$$

Logo,

$$X = \min \Big\{ j : j > \frac{\log(1-U)}{\log(1-p)} \Big\}.$$

Portanto, obtemos a fórmula fechada

$$X \ = \ \left\lfloor \frac{\log(1-U)}{\log(1-p)} \right\rfloor + 1.$$

Como $1-U\sim \text{Uniforme}(0,1)$, podemos substituir 1-U por U sem perda de generalidade, resultando em

$$X = \left\lfloor \frac{\log(U)}{\log(1-p)} \right\rfloor + 1.$$

Exemplo 5. Considere uma variável geométrica $X \sim \text{Geom}(p)$ com p = 0.3 e seja U = 0.52 uma realização de uma variável uniforme (0,1). Usando a fórmula fechada da inversão, temos

$$X = \left| \frac{\log(1 - U)}{\log(1 - p)} \right| + 1,$$

e, substituindo os valores, obtemos

$$X = \left\lfloor \frac{\log(0.48)}{\log(0.7)} \right\rfloor + 1 \approx \lfloor 2.06 \rfloor + 1 = 3.$$

Outra forma é aplicar a inversão direta da CDF, que é dada por

$$F(j) = \mathbb{P}(X \le j) = 1 - (1 - p)^{j}.$$

Procuramos o menor j tal que $F(j) \ge U$. Para p = 0.3, temos

$$F(1) = 0.3$$
, $F(2) = 0.51$, $F(3) \approx 0.657$.

Como F(2) = 0.51 < U = 0.52 mas $F(3) = 0.657 \ge 0.52$, o menor j que satisfaz é j = 3.

3.5 Distribuição de Poisson

A distribuição de Poisson modela o número de ocorrências de um evento em um intervalo fixo de tempo ou espaço, assumindo que tais ocorrências sejam raras e independentes.

Dizemos que $X \sim \text{Poisson}(\lambda)$ se sua função de probabilidade for

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad k = 0, 1, 2, \dots,$$

onde $\lambda > 0$ representa a taxa média de ocorrências no intervalo considerado.

A média e a variância são dadas por

$$\mathbb{E}[X] = \lambda$$
, $Var(X) = \lambda$.

Exercício 16. Prove que $\sum_{k=0}^{\infty} \mathbb{P}(X=k) = 1$.

Exercício 17. Prove as propriedades acima. Dica: para a variância, calcule primeiro $\mathbb{E}[X(X-1)]$ e use o fato de que

$$Var(X) = \mathbb{E}[X(X-1)] + \mathbb{E}[X] - (\mathbb{E}[X])^{2}.$$

3.5.1 Simulação a Poisson via inversão e recursão

Seja $X \sim \text{Poisson}(\lambda)$. A função de probabilidade é

$$\mathbb{P}(X = i) = e^{-\lambda} \frac{\lambda^{i}}{i!}, \quad i = 0, 1, 2, ...$$

e essa expressão satisfaz a relação de recorrência

$$\mathbb{P}(X = i + 1) = \frac{\lambda}{i + 1} \mathbb{P}(X = i).$$

Para ver isso, basta observar que $\mathbb{P}(X=i+1)=e^{-\lambda}\frac{\lambda^{i+1}}{(i+1)!}$. Separando um fator $\lambda/(i+1)$, obtemos $\mathbb{P}(X=i+1)=\frac{\lambda}{i+1}e^{-\lambda}\frac{\lambda^i}{i!}$, que nada mais é do que $\frac{\lambda}{i+1}\mathbb{P}(X=i)$. Assim, conhecendo $p_0=\mathbb{P}(X=0)=e^{-\lambda}$, é possível calcular recursivamente $p_1=\lambda p_0$, depois $p_2=(\lambda/2)p_1$, e assim sucessivamente. Esse raciocínio evita a recomputação de fatoriais a cada passo e fornece um procedimento numericamente mais estável.

O algoritmo clássico para gerar uma variável de Poisson com parâmetro λ funciona da seguinte maneira:

- 1. Gerar $U \sim \text{Uniforme}(0,1)$;
- 2. Inicializar i=0, $p_0=e^{-\lambda}$ e $F=p_0$;
- 3. Enquanto U > F, atualizar

$$i \leftarrow i+1, \quad p_i \leftarrow \frac{\lambda}{i} p_{i-1}, \quad F \leftarrow F + p_i;$$

4. Retornar X = i.

Esse procedimento verifica primeiro se X=0, depois se X=1, e assim por diante, até encontrar o valor sorteado. O número médio de passos necessários é $1+\lambda$, de modo que o algoritmo é eficiente para λ pequeno, mas se torna custoso para valores grandes de λ .

Exemplo 6. Considere $\lambda = 3$ e suponha que o número aleatório gerado seja U = 0.35.

- Primeiro, calculamos $p_0=e^{-3}\approx 0.0498~e~F=p_0\approx 0.0498$. Como U=0.35>F, avançamos para o próximo valor.
- Calculamos $p_1 = \frac{3}{1}p_0 \approx 0.1494$ e atualizamos $F \approx 0.0498 + 0.1494 = 0.1992$. Ainda temos U = 0.35 > F, logo seguimos adiante.
- Agora $p_2 = \frac{3}{2}p_1 \approx 0.2240$ e $F \approx 0.1992 + 0.2240 = 0.4232$. Como U = 0.35 < F, o algoritmo para aqui e retornamos X = 2.

Portanto, neste exemplo, o valor simulado da variável aleatória foi X = 2.

3.5.2 Algoritmo melhorado

Uma forma mais eficiente de implementar o método é iniciar a busca em torno do valor mais provável da variável, que está próximo de λ . Seja $m = \lfloor \lambda \rfloor$. Calcula-se a probabilidade acumulada

$$F(m) = \mathbb{P}(X \le m),$$

usando a recorrência das probabilidades. Em seguida, gera-se $U \sim \text{Uniforme}(0,1)$ e procede-se assim:

- se U < F(m), faz-se a busca recursiva para baixo $(m-1, m-2, \ldots)$;
- se $U \ge F(m)$, faz-se a busca recursiva para cima (m+1, m+2, ...).

Note que a mesma identidade recursiva que relaciona $\mathbb{P}(X=i+1)$ a $\mathbb{P}(X=i)$ também pode ser escrita no sentido inverso:

$$\mathbb{P}(X=i) = \frac{i+1}{\lambda} \mathbb{P}(X=i+1).$$

Assim, a partir de $p_m = \mathbb{P}(X = m)$, é possível atualizar as probabilidades tanto para cima quanto para baixo, sem necessidade de recalcular fatoriais. Isso garante que a busca em torno de m seja realizada de forma eficiente, explorando o valor sorteado em ambas as direções.

Neste caso, o número de passos não depende mais diretamente de X, mas sim da distância entre X e λ : para localizar o valor sorteado, precisamos primeiro verificar m, e depois avançar |X-m| passos adicionais. Assim, o número de passos é

$$T = 1 + |X - m|.$$

Como $m \approx \lambda$, o custo médio pode ser aproximado por

$$\mathbb{E}[T] = 1 + \mathbb{E}[|X - \lambda|].$$

3.5.3 Relação com a binomial

A distribuição de Poisson pode ser vista como um caso limite da distribuição binomial.

Seja $X \sim \text{Binomial}(n, p)$, que modela o número de sucessos em n tentativas independentes, cada uma com probabilidade p de sucesso. Suponha agora que

$$n \to \infty$$
, $p \to 0$, de modo que $\lambda = np$ permaneça constante.

Nesse regime, dizemos que a binomial entra no chamado limite de Poisson, e temos

Binomial(
$$n, p$$
) \xrightarrow{d} Poisson(λ).

A função de probabilidade da binomial é

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Substituindo $p = \lambda/n$, obtemos

$$\mathbb{P}(X=k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}.$$

Para analisar o limite, consideramos cada fator separadamente. O coeficiente binomial pode ser escrito como

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

Dividindo numerador e denominador por n^k , temos

$$\binom{n}{k} = \frac{n^k}{k!} \cdot \frac{n(n-1)\cdots(n-k+1)}{n^k} = \frac{n^k}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n}.$$

29

Cada termo do produto no numerador pode ser escrito como

$$\frac{n-j}{n}=1-\frac{j}{n}, \quad j=0,1,\ldots,k-1,$$

e portanto

$$\binom{n}{k} = \frac{n^k}{k!} \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).$$

Quando $n \to \infty$, cada termo do produto tende a 1, de modo que

$$\binom{n}{k} \sim \frac{n^k}{k!}$$
.

Além disso,

$$\left(1-\frac{\lambda}{n}\right)^n\longrightarrow e^{-\lambda},\quad \left(1-\frac{\lambda}{n}\right)^{-k}\longrightarrow 1$$

Juntando os três resultados, obtemos

$$\mathbb{P}(X=k) \sim \frac{n^k}{k!} \left(\frac{\lambda}{n}\right)^k e^{-\lambda} \cdot 1 = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Portanto,

$$\lim_{n\to\infty} \mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!},$$

que é exatamente a função de massa de probabilidade da distribuição Poisson(λ).

3.6 Distribuição binomial negativa

Seja X o número de ensaios necessários para obter um total de r sucessos, considerando que cada ensaio é independente e resulta em sucesso com probabilidade p. Nesse caso, dizemos que X segue uma distribuição $binomial\ negativa$ (também chamada Pascal) com parâmetros p e r.

Sua função de probabilidade é dada por:

$$\mathbb{P}(X=n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}, \quad n=r, r+1, r+2, \dots$$

Essa fórmula é justificada pelo fato de que, para que sejam necessários exatamente n ensaios para obter r sucessos, os primeiros n-1 ensaios devem conter exatamente r-1 sucessos — o que ocorre com probabilidade

$$\binom{n-1}{r-1}p^{r-1}(1-p)^{n-r}$$

— e, em seguida, o n-ésimo ensaio deve ser um sucesso, com probabilidade p.

Seja X_i , $i=1,\ldots,r$, o número de ensaios necessários após o (i-1)-ésimo sucesso para obter o i-ésimo sucesso. É fácil ver que X_1, X_2, \ldots, X_r são variáveis aleatórias independentes com distribuição Geom(p). Assim, como

$$X = X_1 + X_2 + \cdots + X_r$$

temos, usando os resultados da distribuição geométrica:

$$\mathbb{E}[X] = \sum_{i=1}^{r} \mathbb{E}[X_i] = \frac{r}{p}, \quad \text{Var}(X) = \sum_{i=1}^{r} \text{Var}(X_i) = \frac{r(1-p)}{p^2}.$$

Exercício 18. Prove que a função de probabilidade acima é válida, isto é, que $\sum_{n=r}^{\infty} \mathbb{P}(X=n) = 1$.

Exercício 19. Prove as fórmulas da média e variância usando o fato de que X é a soma de r variáveis independentes com distribuição Geom(p).

3.6.1 Simulando via Bernoullis

Uma forma direta de gerar uma variável Binomial Negativa é simular sucessivos ensaios de Bernoulli(p) até obter o r-ésimo sucesso.

De fato, por definição, X representa o número total de ensaios necessários até a ocorrência de r sucessos. Assim, o algoritmo pode ser descrito da seguinte forma:

- 1. Inicializar n = 0 (contador de ensaios) e s = 0 (contador de sucessos);
- 2. Enquanto s < r:
 - (a) Gerar $B \sim \text{Bernoulli}(p)$;
 - (b) Atualizar $n \leftarrow n + 1$;
 - (c) Se B = 1, atualizar $s \leftarrow s + 1$;
- 3. Retornar X = n.

Esse método é conceitualmente simples e corresponde exatamente à definição da distribuição Binomial Negativa. No entanto, quando p é pequeno e r é grande, o número esperado de ensaios $\mathbb{E}[X] = r/p$ pode ser elevado, tornando o algoritmo computacionalmente mais custoso.

3.6.2 Simulando via soma de geométricas

Recorde que se $X \sim \text{NegBin}(r, p)$, então X pode ser decomposto como

$$X = X_1 + X_2 + \cdots + X_r,$$

onde X_1, \ldots, X_r são variáveis independentes com

$$X_i \sim \text{Geom}(p), \quad i = 1, \dots, r,$$

no suporte {1,2,...} (número de ensaios até o primeiro sucesso).

Assim, podemos simular uma Binomial Negativa somando r geométricas independentes, cada uma gerada via o método da inversão:

$$X_i = \left| \frac{\log(1 - U_i)}{\log(1 - p)} \right| + 1$$
, $U_i \sim \text{Uniforme}(0, 1)$.

O algoritmo de simulação segue:

- 1. Para i = 1, ..., r, gerar $X_i \sim \text{Geom}(p)$ via inversão;
- 2. Retornar $X = \sum_{i=1}^{r} X_i$.

31

3.6.3 Simulando via inversão recursiva

Outra forma de simular a Binomial Negativa é aplicar diretamente o método da inversão, aproveitando a relação de recorrência da sua função de probabilidade.

Se $X \sim \text{NegBin}(r, p)$, então

$$\mathbb{P}(X=n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}, \quad n = r, r+1, r+2, \dots$$

Essas probabilidades satisfazem a seguinte relação recursiva:

$$\frac{\mathbb{P}(X=n+1)}{\mathbb{P}(X=n)} = \frac{n}{n-r+1}(1-p).$$

Exercício 20. Prove a identidade recursiva acima.

Portanto, conhecendo $\mathbb{P}(X=r)=p^r$, podemos calcular recursivamente as demais probabilidades. Isso leva ao seguinte algoritmo:

- 1. Gerar $U \sim \text{Uniforme}(0,1)$;
- 2. Inicializar n = r, $p_n = p^r$, $F = p_n$;
- 3. Enquanto U > F, atualizar

$$p_{n+1} = p_n \cdot \frac{n}{n-r+1} (1-p), \qquad n \leftarrow n+1, \qquad F \leftarrow F + p_{n+1};$$

4. Retornar X = n.

O número esperado de passos T no método recursivo não coincide diretamente com $\mathbb{E}[X]$, pois o algoritmo já inicia em n=r, que é o menor valor possível para a variável $X \sim \text{NegBin}(r,p)$.

De fato, se o sorteio resultar em X = n, o número de passos dados pelo algoritmo é

$$T = (n - r) + 1,$$

pois começamos verificando o valor n = r (primeiro passo) e avançamos até alcançar n.

Assim, em termos de valor esperado,

$$\mathbb{E}[T] = \mathbb{E}[X - r] + 1 = \frac{r}{p} - r + 1.$$

Esse termo -r aparece porque, embora $\mathbb{E}[X] = r/p$, o procedimento de inversão não percorre todos os valores desde 0, mas já parte de r.

Quando p é pequeno, $\mathbb{E}[T]$ pode ainda ser bastante grande, tornando o método recursivo lento. Nessas situações, a versão ingênua baseada na soma de geométricas pode ser mais eficiente na prática.

3.6.4 Por que o nome "Binomial Negativa"?

O nome Binomial Negativa tem origem na conexão com a expansão binomial para expoentes negativos. Para um inteiro $n \ge 0$ e p + q = 1, o teorema binomial fornece

$$1 = (p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}.$$

Essa identidade estende-se a expoentes reais (expansão binomial generalizada):

$$(1-p)^{-\alpha} = \sum_{k=0}^{\infty} {\alpha+k-1 \choose k} p^k, \qquad |p| < 1.$$

Tomando α = *r* ∈ {1, 2, . . .},

$$(1-p)^{-r} = \sum_{k=0}^{\infty} {r+k-1 \choose k} p^k.$$

Os coeficientes $\binom{r+k-1}{k}$ são precisamente os que aparecem na parametrização da Binomial Negativa em termos do número de falhas k antes do r-ésimo sucesso:

$$\mathbb{P}(Y = k) = {r+k-1 \choose k} p^r (1-p)^k, \qquad k = 0, 1, 2, \dots$$

Para ver a equivalência com a forma escrita em função do número total de ensaios n, detalhamos a reparametrização. Defina n = r + k (isto é, k = n - r). Então

$$\binom{r+k-1}{k} = \frac{(r+k-1)!}{k! (r-1)!} = \frac{(n-1)!}{(n-r)! (r-1)!} = \binom{n-1}{n-r}.$$

Pela simetria binomial, $\binom{a}{b} = \binom{a}{a-b}$; aplicando com a = n-1 e b = n-r obtemos

$$\binom{n-1}{n-r} = \binom{n-1}{(n-1)-(n-r)} = \binom{n-1}{r-1}.$$

Substituindo k = n - r em $\mathbb{P}(Y = k)$ e usando as igualdades acima,

$$\mathbb{P}(X = n) = \mathbb{P}(Y = n - r) = \binom{r + (n - r) - 1}{n - r} p^{r} (1 - p)^{n - r}$$
$$= \binom{n - 1}{r - 1} p^{r} (1 - p)^{n - r}, \qquad n = r, r + 1, \dots$$

Mostramos, assim, passo a passo, que as duas formas da PMF — em função de k (falhas) ou de n (ensaios) — são exatamente equivalentes; trata-se apenas de uma reparametrização.

3.7 Distribuição hipergeométrica

A distribuição hipergeométrica modela experimentos de seleção $sem\ reposição$ a partir de uma população finita contendo dois tipos de elementos. Por exemplo, suponha uma urna com N+M bolas, das quais N são claras e M são escuras. Retiramos, de forma aleatória e sem reposição, uma amostra de tamanho n. Seja X o número de bolas claras na amostra.

Nesse caso, cada subconjunto de tamanho n é igualmente provável, e a probabilidade de observar exatamente k bolas claras é

$$\mathbb{P}(X=k) = \frac{\binom{N}{k}\binom{M}{n-k}}{\binom{N+M}{n}}, \quad \max(0, n-M) \le k \le \min(n, N).$$

Dizemos então que $X \sim \text{Hipergeom}(N, M, n)$.

As principais propriedades dessa distribuição são:

$$\mathbb{E}[X] = n \cdot \frac{N}{N+M}, \quad \text{Var}(X) = n \cdot \frac{N}{N+M} \cdot \frac{M}{N+M} \cdot \frac{N+M-n}{N+M-1}.$$

Exercício 21. Prove que a função de probabilidade acima é válida, isto é, que

$$\sum_{k=\max(0,n-M)}^{\min(n,N)} \mathbb{P}(X=k) = 1.$$

Exercício 22. Prove as fórmulas da média e variância acima. Dica: considere o sorteio sequencial das n bolas e defina X_i como a variável indicadora do evento "a i-ésima bola é clara". Para a variância, use a decomposição

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{1 \le i < j \le n} \operatorname{Cov}(X_i, X_j).$$

3.7.1 Simulando a Hipergeométrica

Uma maneira natural de simular $X \sim \text{Hipergeom}(N, K, n)$ é reproduzir o sorteio sem reposição. Basta imaginar uma população com K sucessos e N-K fracassos, e retirar n elementos dela. O valor de X será o número de sucessos observados. Isso leva ao seguinte algoritmo:

- 1. Construir a população formada por K uns (sucessos) e N-K zeros (fracassos);
- 2. Sortear *n* elementos dessa população sem reposição;
- 3. Definir *X* como a soma dos elementos sorteados;
- 4. Retornar X.

Para realizar o *sorteio sem reposição*, podemos usar um procedimento eficiente baseado no *embaralhamento parcial de Fisher–Yates*. A ideia é que não precisamos embaralhar toda a população, apenas selecionar *n* elementos distintos de forma aleatória. O algoritmo funciona assim:

- 1. Coloque os elementos da população em um vetor de tamanho *N*;
- 2. Para cada posição $i = 1, 2, \dots, n$:
 - (a) Sorteie um índice j uniformemente entre i e N;
 - (b) Troque os elementos das posições i e j.
- 3. Os *n* primeiros elementos do vetor agora constituem a amostra sem reposição.

Esse método garante que cada subconjunto de tamanho n tem a mesma probabilidade de ser escolhido, e é mais eficiente do que embaralhar toda a população.

Figura 3.4: Distribuição Hipergeométrica com parâmetros N=50 (população total), K=20 (número de sucessos) e n=10 (tamanho da amostra).

Tabela de referência

Distribuição	Técnica utilizada	Dica/Obs
Suporte finito	Inversão simples	Separar em intervalos
Bernoulli	Inversão simples	Caso particular do suporte finito com $m = 2$
Binomial	Soma de Bernoullis ou inversão recursiva	Relação de recorrência evita coeficientes binomiais
Poisson	Inversão recursiva	Relação $p_{i+1} = \frac{\lambda}{i+1} p_i$ evita fatoriais
Geométrica	Inversão direta (CDF)	Retornar $X = \lfloor \frac{\log(1-U)}{\log(1-p)} \rfloor + 1$
Binomial negativa	Soma de geométricas ou inversão recursiva	Soma de r geométricas independentes
Hipergeométrica	Sorteio sem reposição (Fisher-Yates)	Selecionar n elementos distintos e contar sucessos

Capítulo 4

Variáveis contínuas e como simulá-las

Nosso objetivo agora é estudar algoritmos para simular variáveis aleatórias contínuas, isto é, variáveis cuja distribuição é descrita por uma função densidade de probabilidade.

Como no caso discreto, o ponto de partida será sempre o mesmo: assumimos que temos acesso a uma variável

$$U \sim \text{Uniforme}(0,1)$$
,

e construiremos a partir dela procedimentos para gerar amostras de outras distribuições.

A principal diferença em relação ao caso discreto é que, para variáveis contínuas, muitas vezes **não é possível** escrever a função de distribuição acumulada (CDF) de forma explícita, ou mesmo obter sua inversa em forma fechada. Com isso, diversos métodos alternativos são necessários.

Neste capítulo, organizamos os métodos de simulação em três grandes grupos:

- Métodos por inversão: funcionam diretamente a partir da CDF da distribuição;
- Métodos por rejeição ou aceitação: baseiam-se em gerar propostas e aceitar com certa probabilidade;
- Métodos por transformação: aplicam funções determinísticas a variáveis já conhecidas.

4.1 Método da Inversão

O método da inversão é uma das formas mais diretas de simular variáveis aleatórias contínuas.

A ideia central é simples: se conhecemos a função de distribuição acumulada (CDF) F de uma variável contínua X, e se essa função é estritamente crescente, então podemos inverter F e definir

$$X = F^{-1}(U)$$
, com $U \sim \text{Uniforme}(0,1)$.

Exemplo 7. Prove o fato acima.

Esse procedimento garante que X terá exatamente a distribuição desejada, pois a probabilidade de X cair em qualquer intervalo será proporcional ao comprimento correspondente no domínio de U.

Esse método é particularmente útil quando a inversa de *F* pode ser escrita de forma explícita, como ocorre com as distribuições Exponencial, Uniforme e Pareto, por exemplo.

4.1.1 Distribuição exponencial

A distribuição exponencial modela o tempo de espera até a ocorrência de um evento em um processo de Poisson, isto é, um processo no qual eventos ocorrem de forma contínua e independente, a uma taxa constante. Seja $\lambda>0$ a taxa de ocorrência dos eventos. Dizemos que $X\sim \text{Exponencial}(\lambda)$ se

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

A função de distribuição acumulada (CDF) é dada por:

$$F_X(x) = \mathbb{P}(X \le x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

As principais características da distribuição são:

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}.$$

Exercício 23. Verifique que $f_X(x)$ é uma densidade de probabilidade, isto é, $\int_0^\infty f_X(x) dx = 1$.

Exercício 24. Prove as expressões da média e variância acima.

A distribuição exponencial é um exemplo clássico onde o método da inversão pode ser aplicado diretamente. Sabemos que a CDF é

$$F(x) = 1 - e^{-\lambda x},$$

e queremos encontrar sua inversa, portanto, basta resolver a equação F(x)=U, com $U\sim$ Uniforme(0,1). Isso nos leva a:

$$1 - e^{-\lambda x} = U \quad \Rightarrow \quad x = -\frac{1}{\lambda} \log(1 - U).$$

Como $1 - U \sim \text{Uniforme}(0, 1)$, podemos reescrever de forma equivalente:

$$X = -\frac{1}{\lambda} \log(U)$$
, com $U \sim \text{Uniforme}(0,1)$.

Assim, o algoritmo para simular uma variável $X \sim \text{Exponencial}(\lambda)$ via inversão é:

- 1. Gerar $U \sim \text{Uniforme}(0,1)$;
- 2. Calcular $X = -\frac{1}{\lambda} \log(U)$;
- 3. Retornar X.

Relação com a distribuição geométrica

A distribuição exponencial pode ser vista como o análogo contínuo da distribuição geométrica.

Na distribuição geométrica, $X \sim \text{Geom}(p)$, interpretamos X como o número de tentativas independentes até a ocorrência do primeiro sucesso, em uma sequência de ensaios de Bernoulli com probabilidade p de sucesso.

A distribuição exponencial, por sua vez, modela o tempo contínuo até a ocorrência de um evento, sob uma taxa constante $\lambda > 0$. Embora uma seja discreta e a outra contínua, existe uma relação direta entre essas duas distribuições, que pode ser formalizada por um limite.

Seja $X_n \sim \text{Geom}(p_n)$, com $p_n = \lambda/n$, e defina a variável reescalada

$$T_n = \frac{X_n}{n}$$
.

A variável T_n representa o tempo até o primeiro sucesso quando fazemos n tentativas por unidade de tempo, cada uma com probabilidade de sucesso $p_n = \lambda/n$. À medida que $n \to \infty$, as tentativas se tornam mais frequentes e individualmente menos prováveis, mas o número esperado de sucessos por unidade de tempo permanece constante: $n \cdot p_n = \lambda$.

Vamos mostrar que T_n converge em distribuição para uma variável exponencial de parâmetro λ . De fato, temos:

$$\mathbb{P}(T_n > t) = \mathbb{P}\left(\frac{X_n}{n} > t\right) = \mathbb{P}(X_n > \lfloor nt \rfloor).$$

Como X_n é geométrica com parâmetro $p_n = \lambda/n$, segue que:

$$\mathbb{P}(X_n > k) = (1 - p_n)^k$$
, logo $\mathbb{P}(T_n > t) = \left(1 - \frac{\lambda}{n}\right)^{\lfloor nt \rfloor}$.

Quando $n \to \infty$, vale que $|nt| \sim nt$, e obtemos:

$$\left(1-\frac{\lambda}{n}\right)^{nt} \longrightarrow e^{-\lambda t}.$$

Portanto,

$$\mathbb{P}(T_n \le t) \to 1 - e^{-\lambda t},$$

que é a função de distribuição acumulada da exponencial $\text{Exp}(\lambda)$. Isso conclui a demonstração da convergência.

Essa convergência tem uma interpretação intuitiva. Inicialmente, a variável X_n conta o número de tentativas até o sucesso. Se cada tentativa leva um tempo fixo de 1/n segundos, então o tempo total até o sucesso é $T_n = X_n/n$.

A divisão por n serve justamente para transformar o número de tentativas em tempo contínuo. Por exemplo, se cada tentativa leva 0.01 segundo e o sucesso ocorre na 17^a tentativa, então o tempo até o sucesso foi $17 \times 0.01 = 0.17$ segundos.

À medida que n cresce, as tentativas são feitas cada vez mais rapidamente (a cada 1/n unidades de tempo), e a chance de sucesso em cada uma cai proporcionalmente ($p_n = \lambda/n$). O resultado final é que o tempo total até o sucesso — T_n — se aproxima de uma variável contínua exponencial com taxa λ .

Essa relação também pode ser observada diretamente nas fórmulas de inversão utilizadas para simulação.

Seja $U \sim \text{Uniforme}(0,1)$. A inversão da CDF da exponencial dá:

$$T = -\frac{1}{\lambda} \ln(U).$$

Já no caso da geométrica $X_n \sim \text{Geom}(p_n)$, a fórmula de inversão baseada na CDF discreta é:

$$X_n = \left\lceil \frac{\ln(U)}{\ln(1-p_n)} \right\rceil, \text{ com } p_n = \frac{\lambda}{n}.$$

Dividindo por n, temos:

$$T_n = \frac{X_n}{n} \approx \frac{1}{n} \cdot \frac{\ln(U)}{\ln(1 - \lambda/n)}.$$

Sabemos que para *n* grande,

$$\ln(1-\lambda/n) \approx -\frac{\lambda}{n},$$

então:

$$T_n \approx -\frac{1}{\lambda} \ln(U),$$

o que mostra que, no limite, a fórmula de simulação da geométrica reescalada **tende para a fórmula da exponencial**.

Relação com a Poisson

A distribuição exponencial pode ser entendida como o análogo contínuo da distribuição geométrica, e sua relação com a distribuição de Poisson surge naturalmente ao considerarmos divisões finas de um intervalo fixo em pequenos subintervalos com experimentos de Bernoulli raros.

Considere o intervalo de tempo [0,1] dividido em n subintervalos de comprimento 1/n. Em cada subintervalo, ocorre um evento (ou sucesso) com probabilidade $p_n = \lambda/n$, de forma independente. Este é exatamente o modelo da variável binomial

$$X_n \sim \text{Binomial}(n, \lambda/n),$$

que conta o número total de eventos no intervalo. Sabemos que, quando $n \to \infty$,

$$X_n \xrightarrow{d} \text{Poisson}(\lambda).$$

Por outro lado, podemos perguntar: quanto tempo leva até o primeiro evento acontecer? A resposta a essa pergunta leva à distribuição exponencial.

Seja $X_n \sim \text{Geom}(p_n)$ com $p_n = \lambda/n$, modelando o número de subintervalos até o primeiro sucesso. O tempo contínuo correspondente é então

$$T_n = \frac{X_n}{n}$$
.

Como visto anteriormente, temos

$$T_n \xrightarrow{d} \text{Exponencial}(\lambda).$$

Tempo

Portanto, podemos pensar nessas distribuições da seguinte forma:

- A distribuição *Poisson* modela o número total de eventos no intervalo.
- A distribuição *geométrica* modela a posição discreta do primeiro sucesso.
- A distribuição *exponencial* modela o tempo contínuo até o primeiro evento.

4.2 Método da rejeição-aceitação

Embora o método da inversão funcione muito bem para distribuições cuja função de distribuição acumulada (CDF) possa ser invertida de forma analítica ou computacionalmente eficiente, ele se torna inviável em casos como o da distribuição normal padrão. A função de distribuição acumulada da normal, denotada por $\Phi(x)$, não possui inversa em forma fechada, o que impede a aplicação direta da fórmula $X = \Phi^{-1}(U)$. Embora existam aproximações numéricas para Φ^{-1} , elas podem ser computacionalmente custosas ou introduzir erros de arredondamento. Nesses casos, recorre-se a métodos alternativos que não exigem a inversão da CDF — como o método da rejeição-aceitação.

O método de aceitação-rejeição é uma técnica geral para gerar variáveis aleatórias com uma dada densidade f(x), partindo de uma densidade auxiliar g(x) mais simples, da qual é fácil simular. A ideia central é gerar candidatos a partir de g e aceitá-los com uma certa probabilidade que depende da razão f(x)/g(x).

Suponha que desejamos gerar uma variável aleatória X com densidade alvo f(x), mas não dispomos de um método direto para isso. Por outro lado, assumimos que sabemos simular uma variável Y com densidade auxiliar g(x), e que existe uma constante c>0 tal que

$$\frac{f(x)}{g(x)} \le c$$
 para todo x .

Essa condição garante que a função f está sempre abaixo da curva cg, ou seja, $f(x) \leq cg(x)$ para todo x. Além disso, isso assegura que a razão $\frac{f(x)}{cg(x)}$ está sempre entre 0 e 1, podendo ser interpretada como uma probabilidade de aceitação. Note que, ao integrar ambos os lados da desigualdade $f(x) \leq cg(x)$, obtemos $\int f(x) \, dx \leq \int cg(x) \, dx$, ou seja, $1 \leq c$, e portanto $\frac{1}{c} \leq 1$.

O procedimento do método de rejeição-aceitação é o seguinte:

- 1. Gere um candidato $Y \sim g$.
- 2. Gere um número aleatório $U \sim \text{Uniforme}(0,1)$, independente de Y.
- 3. Se $U < \frac{f(Y)}{cg(Y)}$, aceite Y como amostra e retorne X = Y.
- 4. Caso contrário, rejeite Y e retorne ao passo 1.

Para entender por que o método de rejeição-aceitação funciona, vamos construir uma intuição passo a passo com um exemplo concreto. Suponha que queremos gerar uma variável aleatória $X \sim f$, com densidade definida por

$$f(x) = 20x(1-x)^3, x \in [0,1].$$

Essa é uma densidade válida sobre o intervalo [0,1], mas sua função de distribuição acumulada F(x) não possui inversa em forma fechada já que envolve resolver uma equação polinomial de grau 5, o que inviabiliza o uso direto do método da inversão. Por isso, recorremos ao método de rejeição.

Nesse caso, utilizamos como densidade auxiliar a uniforme g(x) = 1 sobre [0,1], que é fácil de simular. O procedimento funciona da seguinte forma:

1. Escolhemos uma constante c > 0 tal que $f(x) \le cg(x)$ para todo $x \in [0,1]$. Como g(x) = 1, essa condição se torna $f(x) \le c$. Para garantir isso, basta determinar o valor máximo da função f(x) no intervalo [0,1], o que pode ser feito derivando:

$$f(x) = 20x(1-x)^3 = 20x - 60x^2 + 60x^3 - 20x^4,$$

- 2. Geramos um candidato $Y \sim g$, ou seja, escolhemos um ponto Y aleatório uniformemente em [0,1].
- 3. Geramos um valor $U \sim \text{Unif}(0,1)$, que usaremos para introduzir variabilidade vertical.
- 4. Calculamos a altura $U \cdot cg(Y)$. Como g(Y) = 1, isso equivale a $U \cdot c$, ou seja, sorteamos um ponto dentro do retângulo de altura c sobre o intervalo [0,1].

41

5. Comparamos essa altura com o valor da densidade f(Y). Se

$$U \cdot cg(Y) < f(Y)$$
,

aceitamos o valor Y como amostra de X; caso contrário, rejeitamos e repetimos o processo.

A interpretação geométrica é simples: estamos sorteando pontos aleatórios dentro do retângulo delimitado por $x \in [0,1]$ e altura c. Esses pontos têm coordenadas $(Y, U \cdot cg(Y))$. Aceitamos apenas os que caem abaixo da curva f(x). Dessa forma, os pontos aceitos se acumulam na região sob f, replicando a forma da densidade desejada.

Teorema 5. Sejam f e g funções de densidade de probabilidade com suporte em um conjunto $\mathcal{X} \subseteq \mathbb{R}$, e suponha que existe uma constante c > 0 tal que

$$\frac{f(x)}{g(x)} \le c$$
 para todo $x \in \mathcal{X}$.

Considere o algoritmo de geração:

- 1. Gere $Y \sim g$ e $U \sim Uniform(0,1)$, independentes.
- 2. Retorne X = Y se $U < \frac{f(Y)}{cg(Y)}$. Caso contrário, repita.

Então a variável aleatória X, definida como o primeiro valor Y aceito, possui densidade f. Além disso, o número total de iterações até a aceitação segue uma distribuição geométrica com parâmetro 1/c.

Demonstração. Seja f a densidade-alvo da qual desejamos amostrar. Usamos uma densidade auxiliar g, com suporte que contém o de f, e uma constante $c \ge \sup_x \frac{f(x)}{g(x)}$.

Queremos mostrar que a variável X aceita tem densidade f. Para isso, analisamos sua função de distribuição acumulada $F_X(x) = \mathbb{P}(X \le x)$. Pela definição do algoritmo, temos:

$$\mathbb{P}(X \le x) = \mathbb{P}(Y \le x \mid \text{aceito}) = \frac{\mathbb{P}\left(Y \le x, \ U < \frac{f(Y)}{cg(Y)}\right)}{\mathbb{P}\left(U < \frac{f(Y)}{cg(Y)}\right)}.$$

Usamos a fórmula da probabilidade condicional:

$$\mathbb{P}\left(Y \le x, U < \frac{f(Y)}{cg(Y)}\right) = \int \mathbb{P}\left(Y \le x, U < \frac{f(Y)}{cg(Y)} \mid Y = y\right) g(y) \, dy$$

$$= \int \mathbb{P}\left(y \le x, U < \frac{f(y)}{cg(y)} \mid Y = y\right)$$

$$= \int_{-\infty}^{x} \mathbb{P}\left(U < \frac{f(y)}{cg(y)}\right) g(y) \, dy$$

$$= \int_{-\infty}^{x} \frac{f(y)}{cg(y)} \cdot g(y) \, dy$$

$$= \frac{1}{c} \int_{-\infty}^{x} f(y) \, dy.$$

De forma análoga:

$$\mathbb{P}\left(U < \frac{f(Y)}{cg(Y)}\right) = \int \mathbb{P}\left(U < \frac{f(Y)}{cg(Y)} \mid Y = y\right) g(y) \, dy$$

$$= \int \mathbb{P}\left(U < \frac{f(y)}{cg(y)} \mid Y = y\right) g(y) \, dy$$

$$= \int \mathbb{P}\left(U < \frac{f(y)}{cg(y)}\right) g(y) \, dy$$

$$= \int \frac{f(y)}{cg(y)} \cdot g(y) \, dy$$

$$= \frac{1}{c} \int f(y) \, dy = \frac{1}{c}.$$

Substituindo numerador e denominador:

$$\mathbb{P}(X \le x) = \frac{\frac{1}{c} \int_{-\infty}^{x} f(y) \, dy}{\frac{1}{c}} = \int_{-\infty}^{x} f(y) \, dy = F_X(x).$$

Portanto, $X \sim f$, como queríamos demonstrar.

Além disso, a probabilidade de aceitação em uma única tentativa é dada por:

$$\mathbb{P}\left(U < \frac{f(Y)}{cg(Y)}\right) = \frac{1}{c},$$

ou seja, cada tentativa tem probabilidade 1/c de ser aceita. Portanto, o número de repetições até obter um ponto aceito segue uma distribuição geométrica com parâmetro 1/c.

4.2.1 Distribuição normal

A distribuição normal padrão, denotada por $\mathcal{N}(0,1)$, é uma das distribuições mais importantes da estatística e da probabilidade. Sua densidade é dada por:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, \quad x \in \mathbb{R}.$$

Ela possui média $\mathbb{E}[X] = 0$ e variância Var(X) = 1.

Como a função de distribuição acumulada $\Phi(x) = \int_{-\infty}^{x} f(t) dt$ não possui inversa fechada, o método da inversão não pode ser aplicado diretamente. Em vez disso, uma abordagem alternativa é utilizar uma técnica baseada em outra distribuição mais simples, como a exponencial, combinada com o método de rejeição.

Uma forma eficiente de simular uma variável normal padrão positiva $X \sim \mathcal{N}(0,1)$ condicionada a X>0 é utilizar o método da rejeição com uma distribuição exponencial como proposta.

Sabemos que a densidade da normal padrão é

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2},$$

e que, para x>0, a função decresce com a cauda $e^{-x^2/2}$. Por outro lado, a densidade da distribuição exponencial com taxa $\lambda=1$ é

$$g(x) = e^{-x}, \quad x \ge 0.$$

Note que:

$$\frac{f(x)}{g(x)} = \frac{\sqrt{2}}{\pi} e^{-x^2/2 + x}.$$

Para aplicar o método da rejeição, precisamos encontrar o ponto de máximo da razão f(x)/g(x), ou seja, maximizar a função $x-x^2/2$. Derivando:

$$\frac{d}{dx}\left(x - \frac{x^2}{2}\right) = 1 - x = 0 \Rightarrow x = 1.$$

Portanto, o máximo ocorre em x = 1, e o valor da constante c será:

$$c = \frac{\sqrt{2e}}{\pi}.$$

A razão f(x)/cg(x) pode então ser escrita como:

$$\frac{f(x)}{cg(x)} = \exp\left(-\frac{1}{2}(x-1)^2\right),\,$$

o que nos leva ao seguinte algoritmo:

- 1. Gere $Y \sim \text{Exp}(1)$.
- 2. Gere $U \sim \text{Uniforme}(0, 1)$.
- 3. Se $U < \exp\left(-\frac{(Y-1)^2}{2}\right)$, aceite Y como amostra da normal positiva.
- 4. Caso contrário, volte ao passo 1.

Finalmente, se $X \sim |\mathcal{N}(0,1)|$, isto é, uma normal padrão truncada para valores positivos (obtida via o algoritmo anterior).

Para gerar uma normal padrão simétrica $Z \sim \mathcal{N}(0,1)$, basta sortear um sinal $S \sim \text{Bernoulli}(1/2)$, e definir:

$$Z = \begin{cases} X, & \text{se } S = 1, \\ -X, & \text{se } S = 0. \end{cases}$$

Dessa forma, Z tem distribuição simétrica em torno de zero, com densidade normal padrão, como desejado.

Intuição geométrica

O método da rejeição pode ser visualizado como um processo de *amostragem de pontos aleatórios em uma região do plano*, com o objetivo de "pintar" a curva da densidade alvo f(x).

Imagine que temos uma função auxiliar g(x), da qual sabemos simular facilmente, e uma constante de majoração c>0 tal que $f(x)\leq cg(x)$ para todo x. Isso nos permite usar cg(x) como um *envelope* que cobre toda a curva de f(x).

A cada tentativa, sorteamos:

- Um valor $Y \sim g(x)$: isso escolhe uma posição no eixo x, com densidade g;
- Um valor $U \sim \text{Unif}(0,1)$: isso define uma altura relativa no intervalo [0,cg(Y)], formando o ponto $(Y,U\cdot cg(Y))$ dentro do retângulo sob o envelope.

45

O ponto é aceito se estiver abaixo da curva de f, ou seja, se

$$U < \frac{f(Y)}{cg(Y)}$$
.

Caso contrário, o ponto é rejeitado.

Assim, ao longo do tempo, os pontos aceitos se acumulam nas regiões onde f(x) é maior, formando uma amostra com exatamente a distribuição desejada.

Perceba que a constante c controla a *eficiência* do método: quanto maior c, maior a área total do envelope cg(x) em relação à curva alvo f(x), e mais pontos são desperdiçados. O valor ideal de c é o menor possível que ainda garanta $f(x) \leq cg(x)$ para todo x; nesse caso, a taxa de aceitação é maximizada e igual a 1/c.

4.2.2 Beta

4.2.3 Gamma

Redução de variância

Em um estudo de simulação, é comum que se deseje estimar um parâmetro θ associado a um modelo estocástico. Para isso, o modelo é executado a fim de gerar uma variável de saída X, cuja esperança é $\theta = \mathbb{E}[X]$.

Realizam-se então n repetições independentes da simulação, sendo que a i-ésima repetição fornece o valor X_i . A partir dessas observações, a estimativa natural de θ é a média amostral

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Note que \overline{X} é um estimador não viesado de θ , de modo que

$$\mathbb{E}[\overline{X}] = \theta.$$

Assim, o erro quadrático médio do estimador coincide com sua variância:

$$MSE(\overline{X}) = \mathbb{E}[(\overline{X} - \theta)^2] = Var(\overline{X}) = \frac{Var(X)}{n}.$$

Portanto, se for possível construir um outro estimador não viesado de θ com variância menor do que a de \overline{X} , obteremos uma estimativa mais eficiente. Este é o ponto de partida para as técnicas de redução de variância que discutiremos a seguir.

5.1 Uso de variáveis antitéticas

Considere o problema de estimar $\theta = \mathbb{E}[X]$ por simulação. Se gerarmos duas observações X_1 e X_2 , identicamente distribuídas com esperança θ , uma estimativa natural é a média

$$\hat{\theta} = \frac{X_1 + X_2}{2}.$$

A variância desse estimador pode ser escrita como

$$Var(\hat{\theta}) = \frac{1}{4} Var(X_1 + X_2) = \frac{1}{4} (Var(X_1) + Var(X_2) + 2 Cov(X_1, X_2)).$$

Como X_1 e X_2 têm a mesma distribuição, $Var(X_1) = Var(X_2)$, segue que

$$Var(\hat{\theta}) = \frac{1}{2} Var(X_1) + \frac{1}{2} Cov(X_1, X_2).$$

Portanto:

- se X_1 e X_2 forem independentes, $Cov(X_1,X_2)=0$ e $Var(\hat{\theta})=\frac{1}{2}Var(X_1)$;
- se conseguirmos construir X_1 e X_2 de modo que a covariância seja **negativa**, então a variância de $\hat{\theta}$ será ainda menor.

A questão, então, é: como gerar dois valores X_1 e X_2 com a mesma distribuição, mas negativamente correlacionados?

Suponha que X_1 seja função de m números aleatórios independentes, isto é,

$$X_1 = h(U_1, \ldots, U_m),$$

onde U_1, \ldots, U_m são independentes e uniformemente distribuídos em (0,1).

Observe que, se $U \sim U(0,1)$, então também $1 - U \sim U(0,1)$. Assim, se definirmos

$$X_2 = h(1 - U_1, \dots, 1 - U_m),$$

teremos que X_2 possui a mesma distribuição que X_1 .

Além disso, como 1-U é negativamente correlacionado com U, é razoável esperar que X_2 seja negativamente correlacionado com X_1 .

Para tornar a ideia mais clara, considere o caso em que X_1 depende apenas de uma variável uniforme. Seja $U \sim U(0,1)$ e uma função monótona crescente $h:[0,1] \to \mathbb{R}$. Definimos

$$X_1 = h(U), \qquad X_2 = h(1 - U).$$

Note que X_1 e X_2 têm a mesma distribuição, pois U e 1-U são identicamente distribuídos. Além disso, se U assume um valor grande, então $X_1=h(U)$ também será grande, mas nesse caso 1-U será pequeno, de modo que $X_2=h(1-U)$ será pequeno. Assim, valores altos de X_1 tendem a estar associados a valores baixos de X_2 , e vice-versa, o que implica correlação negativa.

No caso particular em que h(u) = u, temos

$$X_1 = U$$
, $X_2 = 1 - U$.

Claramente, $\mathbb{E}[X_1] = \mathbb{E}[X_2] = \frac{1}{2}$, de modo que

$$\mathbb{E}[X_1]\mathbb{E}[X_2] = \frac{1}{4}.$$

Por outro lado,

$$\mathbb{E}[X_1 X_2] = \int_0^1 u(1-u) \, du = \int_0^1 (u-u^2) \, du = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

Assim,

$$Cov(X_1, X_2) = \frac{1}{6} - \frac{1}{4} = -\frac{1}{12} < 0,$$

mostrando explicitamente a correlação negativa entre X_1 e X_2 . Esse raciocínio se estende naturalmente para funções h monótonas em várias variáveis. Sejam U_1, \ldots, U_m variáveis independentes uniformes em (0,1) e definamos

$$X_1 = h(U_1, \dots, U_m), \qquad X_2 = h(1 - U_1, \dots, 1 - U_m),$$

com h crescente em cada coordenada.

Nesse caso, X_1 é uma função crescente do vetor (U_1, \ldots, U_m) , enquanto X_2 é decrescente. Considerando

$$g(U_1,\ldots,U_m)=-X_2,$$

vemos que g também é crescente em cada coordenada.

Ora, quando duas funções de um mesmo conjunto de variáveis independentes são monótonas no mesmo sentido (ambas crescentes ou ambas decrescentes), seus valores tendem a variar em conjunto, de modo que a covariância é não-negativa. Aplicando esse raciocínio a X_1 e g, concluímos que

$$Cov(X_1, -X_2) \ge 0,$$

o que implica

$$Cov(X_1, X_2) \le 0.$$

Portanto, para qualquer função h crescente em cada coordenada, o par (X_1, X_2) é negativamente correlacionado, e o uso de variáveis antitéticas reduz (ou, no pior caso, não aumenta) a variância do estimador.

Em resumo, o *método das variáveis antitéticas* consiste em explorar a correlação negativa entre pares de simulações para reduzir a variância do estimador. Em vez de gerar duas réplicas independentes X_1 e X_2 , construímos o par de forma que ambas tenham a mesma distribuição, mas sejam negativamente correlacionadas. A variável antitética é dado por

$$X'=\frac{X_1+X_2}{2},$$

o qual satisfaz $\mathbb{E}[X'] = \theta$, mas possui variância menor ou igual à do estimador baseado em amostras independentes.

Um algoritmo simples para aplicar o método pode ser descrito da seguinte forma:

- 1. Gere $U_1, \ldots, U_m \sim \text{Uniforme}(0,1)$ independentes.
- 2. Calcule $X_1 = h(U_1, ..., U_m)$.
- 3. Calcule $X_2 = h(1 U_1, ..., 1 U_m)$.
- 4. Defina a variável antitética como

$$X'=\frac{X_1+X_2}{2}.$$

Sempre que utilizamos o método da inversão para gerar variáveis aleatórias, podemos aplicar diretamente a técnica das variáveis antitéticas. De fato, se $U \sim U(0,1)$ gera a variável desejada via a transformação $X = F^{-1}(U)$, então 1 - U também é uniforme em (0,1), e portanto $X' = F^{-1}(1 - U)$ tem a mesma distribuição de X.

A grande vantagem é que, em vez de gerar duas variáveis independentes U_1 e U_2 para obter duas amostras de X, basta gerar uma única variável uniforme U. Com ela, obtemos simultaneamente o par antitético (X, X'), o que não apenas economiza custo computacional como também pode reduzir a variância do resultado final.

Exemplo 8. Considere a geração de uma variável aleatória exponencial com parâmetro $\lambda > 0$. Pelo método da inversão, se $U \sim U(0,1)$, então

$$X = -\frac{1}{\lambda}\log(U)$$

segue a distribuição $Exp(\lambda)$.

Para aplicar o método das variáveis antitéticas, em vez de gerar duas variáveis independentes $U_1,U_2\sim$ U(0,1), usamos o par (U,1-U). Assim, obtemos

$$X_1 = -\frac{1}{\lambda}\log(U), \qquad X_2 = -\frac{1}{\lambda}\log(1-U).$$

Definimos, então, a variável final como a média

$$Z = \frac{X_1 + X_2}{2}.$$

O algoritmo é:

- 1. Gere $U \sim Uniforme(0,1)$.
- 2. Calcule $X_1 = -\frac{1}{\lambda} \log(U)$.
- 3. Calcule $X_2 = -\frac{1}{\lambda} \log(1 U)$.
- 4. Defina $Z = (X_1 + X_2)/2$.

Comparação das médias de duas exponenciais (n=100000) Média (independente) Média (antitética)

No método independente, como cada variável exponencial pode assumir valores próximos de zero (quando U o 1), a média também pode se aproximar de zero. Já no método antitético temos, supondo $\lambda = 1$,

$$Z = -\frac{1}{2}\log\big(U(1-U)\big).$$

Como $U(1-U) \le 1/4$, segue que

$$Z \ge \frac{1}{2}\log 4 = \log 2 \approx 0.693.$$

Ou seja, a variável construída por antitéticos nunca assume valores menores que log 2.

Esse resultado explica por que, ao comparar os histogramas, a média independente pode assumir valores próximos de zero, enquanto a antitética tem suporte a partir de $\log 2$. Além disso, no experimento com $n=10^5$, o erro quadrático médio foi aproximadamente 0.505 no caso independente e apenas 0.174 no caso antitético, mostrando a expressiva redução de variância obtida pelo método.

Exemplo 9. Considere a integral

$$I = \int_0^\infty \log(1 + x^2) e^{-x} \, dx.$$

Observe que o termo e^{-x} corresponde à densidade de uma variável $X \sim Exp(1)$. Assim, podemos reescrever a integral como

$$I = \mathbb{E}[\log(1+X^2)], \quad X \sim Exp(1).$$

Portanto, a solução via Monte Carlo é imediata: basta gerar amostras $X_i \sim Exp(1)$, calcular $\log(1 + X_i^2)$ e tirar a média. O algoritmo segue os passos:

- 1. *Gerar* $U_i \sim U(0,1)$.
- 2. Transformar em $X_i = -\log(U_i)$.
- 3. Calcular $\log(1+X_i^2)$ e tirar a média.

Para reduzir a variância, podemos usar variáveis antitéticas. Nesse caso, ao invés de gerar apenas U_i , usamos também $1-U_i$. Isso produz

$$X_i = -\log(U_i), \quad X_i' = -\log(1 - U_i),$$

e então o estimador final é

$$\hat{I}_{ant} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left(\log(1 + X_i^2) + \log(1 + (X_i')^2) \right).$$

Note que nem sempre variáveis antitéticas reduzem a variância: essa técnica é mais eficaz quando a função aplicada às amostras (aqui, $\log(1+x^2)$) é monotônica, pois nesse caso os pares (U, 1-U) tendem a gerar correlação negativa entre os valores simulados.

Exemplo 10. Considere a integral

$$J = \int_{-\infty}^{\infty} e^x \, \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx.$$

O integrando envolve a densidade da normal padrão N(0,1), logo podemos escrever

$$J = \mathbb{E}[e^Z], \quad Z \sim N(0,1).$$

O valor exato é conhecido:

$$J = e^{1/2}$$
.

Para estimar I via Monte Carlo, seguimos os passos:

1. *Gerar* $Z_i \sim N(0,1)$.

- 2. Calcular e^{Z_i} .
- 3. Tomar a média sobre as n amostras.

Note que a distribuição normal é simétrica em torno de zero, isto é, $Z \sim N(0,1)$ implica que também $-Z \sim N(0,1)$. Assim, para cada Z_i gerado, podemos considerar o par $(Z_i, -Z_i)$ e formar o estimador

$$\hat{J}_{ant} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left(e^{Z_i} + e^{-Z_i} \right).$$

Neste caso, como e^x é uma função monotônica crescente, os valores e^{Z_i} e e^{-Z_i} tendem a se compensar, gerando correlação negativa e uma variância muito menor na estimativa. O ponto essencial é que a esperança se mantém inalterada, mas o uso da antitética torna o estimador mais eficiente.

5.2 O uso de variáveis de controle

Suponha que desejamos estimar

$$\theta = \mathbb{E}[X],$$

onde X é o resultado de uma simulação. Agora suponha que exista outra variável Y cuja esperança é conhecida, digamos

$$\mathbb{E}[Y] = \mu_Y$$
.

Então, para qualquer constante c, o estimador

$$Z = X + c \left(Y - \mu_Y \right)$$

é não-viesado para θ , pois $\mathbb{E}[Z] = \theta$.

A variância deste estimador é

$$Var(Z) = Var(X + c(Y - \mu_Y)) = Var(X) + c^2 Var(Y) + 2c Cov(X, Y).$$

Minimizando em relação a c, obtemos

$$c^* = -\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}.$$

Substituindo este valor na expressão da variância, resulta

$$Var(Z) = Var(X) - \frac{Cov(X,Y)^2}{Var(Y)}.$$

A variável Y é chamada de variável de controle. A intuição é a seguinte: se X e Y são positivamente correlacionados, então $c^* < 0$. Nesse caso, quando Y assume um valor acima da sua média conhecida μ_Y , é provável que X também esteja acima de sua média θ . Para compensar esse excesso, reduzimos o valor de X ao somar $c(Y - \mu_Y)$ com c < 0. De forma análoga, se Y estiver abaixo de sua média, provavelmente X também estará, e nesse caso o termo $c(Y - \mu_Y)$ corrige o valor de X para cima. Quando X e Y são negativamente correlacionados, o raciocínio é simétrico: nesse caso $c^* > 0$, e se Y está acima de sua média, é provável que X esteja abaixo; o termo $c(Y - \mu_Y)$ corrige então X para cima. Do mesmo modo, quando Y está abaixo de μ_Y , X

tende a estar acima, e a correção ajusta *X* para baixo. Assim, tanto em correlação positiva quanto em correlação negativa o método funciona: o que importa não é o sinal, mas sim a intensidade da correlação.

Esse ajuste reduz a variância porque parte da flutuação de X pode ser explicada pela sua correlação com Y. O desvio de Y em relação à sua média atua como um indicador do desvio de X, e ao subtrair essa componente previsível obtemos um estimador mais estável. Do ponto de vista matemático, a variância de X é decomposta em uma parte explicável pela covariância com Y e uma parte residual; ao introduzir a variável de controle, eliminamos a parte explicável e restamos apenas com a parte residual, que é menor. Assim, a variância do estimador nunca aumenta e, se $\rho(X,Y) \neq 0$, ela é estritamente reduzida.

Além disso, ao dividir pela variância de X, obtemos

$$\frac{\operatorname{Var}(Z)}{\operatorname{Var}(X)} = 1 - \rho(X, Y)^2,$$

onde

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

é a correlação entre X e Y. Isso mostra que a redução relativa de variância obtida é de $100 \cdot \rho(X,Y)^2$ por cento, independentemente de a correlação ser positiva ou negativa.

Na prática, Cov(X,Y) e Var(Y) não são conhecidos de antemão e precisam ser estimados a partir dos dados simulados. Se n simulações são realizadas, gerando pares (X_i,Y_i) , podemos

calcular

$$\widehat{\text{Cov}}(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}), \quad \widehat{\text{Var}}(Y) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2,$$

e então definir

$$\hat{c}^* = -\frac{\widehat{\mathrm{Cov}}(X, Y)}{\widehat{\mathrm{Var}}(Y)}.$$

O estimador final com variável de controle é dado por

$$\hat{\theta}_{\text{ctrl}} = \frac{1}{n} \sum_{i=1}^{n} \left(X_i + \hat{c}^* (Y_i - \mu_Y) \right).$$

O procedimento pode ser resumido no seguinte algoritmo:

- 1. Gerar amostras (X_i, Y_i) da simulação, i = 1, ..., n.
- 2. Calcular \bar{X} e \bar{Y} .
- 3. Estimar $\widehat{Cov}(X,Y)$ e $\widehat{Var}(Y)$.
- 4. Determinar $\hat{c}^* = -\widehat{\text{Cov}}(X, Y) / \widehat{\text{Var}}(Y)$.
- 5. Formar o estimador $\hat{\theta}_{\text{ctrl}} = \frac{1}{n} \sum_{i=1}^{n} (X_i + \hat{c}^*(Y_i \mu_Y)).$

Exemplo 11. Considere a integral

$$\theta = \int_0^1 e^x \, dx = e - 1.$$

Podemos reescrevê-la como uma esperança, notando que se $U \sim U(0,1)$ então

$$\theta = \mathbb{E}[e^U].$$

Assim, definindo $X = e^{U}$, podemos estimar θ por Monte Carlo a partir da média amostral de X.

Agora considere a variável Y = U, cuja esperança é conhecida, $\mu_Y = \mathbb{E}[U] = 0.5$. Como $X = e^U$ e Y = U são fortemente correlacionados positivamente, podemos utilizar Y como variável de controle. O estimador controlado é dado por

$$Z = X + c^*(Y - \mu_Y),$$

onde

$$c^* = -\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}.$$

Na prática, basta gerar pares (X_i, Y_i) a partir de $U_i \sim U(0, 1)$, calcular as estimativas amostrais de Cov(X, Y) e Var(Y) para obter \hat{c}^* , e então construir o estimador

$$\hat{\theta}_{ctrl} = \frac{1}{n} \sum_{i=1}^{n} \left(X_i + \hat{c}^* (Y_i - \mu_Y) \right).$$

A correlação positiva entre X e Y faz com que o desvio de Y em relação à sua média indique a direção do desvio de X em relação a θ . O termo de ajuste $c^*(Y - \mu_Y)$ corrige esse efeito, reduzindo drasticamente a variância do estimador. Na simulação, observamos que a variância caiu de aproximadamente 0.24 (sem controle) para 0.004 (com controle), com estimativas muito mais concentradas em torno do valor verdadeiro $e-1\approx 1.718$.

O procedimento pode ser resumido no seguinte algoritmo:

- 1. Gerar n amostras $U_i \sim U(0,1)$, $i = 1, \ldots, n$.
- 2. Calcular $X_i = e^{U_i} e Y_i = U_i$.
- 3. Estimar $\widehat{Cov}(X,Y)$ e $\widehat{Var}(Y)$ a partir dos dados.
- 4. Determinar $\hat{c}^* = -\widehat{Cov}(X, Y)/\widehat{Var}(Y)$.
- 5. Construir o estimador controlado

$$\hat{\theta}_{ctrl} = \frac{1}{n} \sum_{i=1}^{n} \left(X_i + \hat{c}^* (Y_i - \mu_Y) \right).$$

5.3 Redução de Variância por Condicionamento

Uma técnica bastante útil para reduzir a variância em simulação é o uso de condicionamento. A ideia se baseia diretamente na fórmula da variância condicional:

$$\mathrm{Var}(X) = \mathbb{E}\big[\mathrm{Var}(X\mid Y)\big] + \mathrm{Var}\big(\mathbb{E}[X\mid Y]\big).$$

A demonstração é simples. Por definição,

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Pela propriedade da esperança condicional,

$$\mathrm{Var}(X) = \mathbb{E}\big[\mathbb{E}[X^2 \mid Y]\big] - \big(\mathbb{E}[\mathbb{E}[X \mid Y]]\big)^2.$$

Agora, observe que

$$\mathbb{E}[X^2 \mid Y] = \text{Var}(X \mid Y) + (\mathbb{E}[X \mid Y])^2.$$

Portanto,

$$\mathbb{E}[\mathbb{E}[X^2 \mid Y]] = \mathbb{E}[\operatorname{Var}(X \mid Y)] + \mathbb{E}[(\mathbb{E}[X \mid Y])^2].$$

Substituindo de volta,

$$\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X \mid Y)] + (\mathbb{E}[(\mathbb{E}[X \mid Y])^2] - (\mathbb{E}[X])^2),$$

e o termo entre parênteses é precisamente $Var(\mathbb{E}[X \mid Y])$.

Assim, chegamos à decomposição

$$Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y]).$$

Como $\mathbb{E}[Var(X \mid Y)] \ge 0$, segue que

$$Var(X) \ge Var(\mathbb{E}[X \mid Y]),$$

portanto, podemos utilizar $Z = \mathbb{E}[X \mid Y]$ como variável para simularmos, já que $\mathbb{E}[Z] = \mathbb{E}[X]$.

Uma forma de entender por que o condicionamento reduz a variância é pensar no problema de estimar a altura média de uma população. Se representarmos por X a altura de uma pessoa escolhida ao acaso, cada sorteio pode resultar em valores muito diferentes, como um homem de 1,90 m ou uma mulher de 1,55 m, e essa variabilidade individual é refletida em Var(X). Agora, suponha que introduzimos uma variável Y que indica o grupo ao qual a pessoa pertence, por exemplo, sexo masculino ou feminino. Em vez de registrar a altura individual X, passamos a registrar a média do grupo correspondente, isto é,

$$Z = \mathbb{E}[X \mid Y].$$

Se a pessoa sorteada for um homem, usamos a média de alturas dos homens (digamos, 175 cm); se for uma mulher, usamos a média das mulheres (digamos, 162 cm). Note que a média global continua correta: metade das vezes registramos 175, metade das vezes 162, o que resulta em 168,5 cm, exatamente a média real da população.

A identidade

$$Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y])$$

mostra como essa substituição reduz a variância. O primeiro termo corresponde à variabilidade dentro de cada grupo (diferenças entre indivíduos do mesmo sexo), enquanto o segundo termo corresponde à variabilidade entre as médias dos grupos (diferença entre a média dos homens e a das mulheres). Quando usamos diretamente X, ambos os termos estão presentes; quando usamos $\mathbb{E}[X\mid Y]$, eliminamos o primeiro termo e ficamos apenas com a variabilidade entre grupos. Assim, o estimador permanece não-viesado, mas com menor variância. Em outras palavras, condicionar equivale a substituir um indivíduo ruidoso pela média de seu grupo, preservando a esperança e reduzindo a dispersão.

O procedimento para estimar $\theta = \mathbb{E}[X]$ via condicionamento pode ser descrito da seguinte forma:

- 1. Identificar uma variável auxiliar Y em relação à qual seja possível calcular $\mathbb{E}[X \mid Y]$ de forma analítica ou computacionalmente simples.
- 2. Gerar amostras $Y_1, Y_2, ..., Y_n$ da distribuição de Y.
- 3. Para cada Y_i , calcular $Z_i = \mathbb{E}[X \mid Y_i]$.
- 4. Usar a média amostral

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i$$

como estimador de θ .

Esse algoritmo gera um estimador não-viesado de θ , mas com variância reduzida em comparação ao estimador usual baseado diretamente em X.

Exemplo 12. Queremos estimar π via simulação. Podemos gerar dois números aleatórios $U_1, U_2 \sim U(0,1)$ e definir

$$V_i = 2U_i - 1, \quad i = 1, 2,$$

de modo que $V_1, V_2 \sim U(-1,1)$. Se considerarmos

$$I = \mathbf{1}\{V_1^2 + V_2^2 \le 1\},\,$$

então $\mathbb{E}[I] = \pi/4$, pois a probabilidade de um ponto uniforme em $[-1,1]^2$ cair dentro do círculo unitário é exatamente a razão entre a área do círculo e a área do quadrado. Assim, uma estimativa usual seria

$$\hat{\pi} = \frac{4}{n} \sum_{i=1}^{n} I_i.$$

Podemos, porém, melhorar esse estimador aplicando a técnica de condicionamento. Em vez de usar I diretamente, consideremos $\mathbb{E}[I \mid V_1]$. Temos

$$\mathbb{E}[I \mid V_1 = v] = P(V_1^2 + V_2^2 \le 1 \mid V_1 = v).$$

Isso equivale a

$$\mathbb{E}[I \mid V_1 = v] = P(V_2^2 \le 1 - v^2).$$

Como $V_2 \sim U(-1,1)$ e é independente de V_1 , temos

$$P(V_2^2 \le 1 - v^2) = P(-\sqrt{1 - v^2} \le V_2 \le \sqrt{1 - v^2}).$$

Portanto,

$$\mathbb{E}[I \mid V_1 = v] = \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} \frac{1}{2} dx = \sqrt{1-v^2}.$$

Assim, obtemos o estimador condicionado

$$Z=\sqrt{1-V_1^2},$$

que satisfaz $\mathbb{E}[Z] = \pi/4$, mas tem variância menor do que I.

Finalmente, se $U \sim U(0,1)$, temos $V_1 = 2U - 1$, e portanto

$$Z = \sqrt{1 - (2U - 1)^2}.$$

Logo, podemos simular π a partir do estimador

$$\hat{\pi} = \frac{4}{n} \sum_{i=1}^{n} \sqrt{1 - (2U_i - 1)^2},$$

que é mais eficiente do que usar diretamente o indicador I.

5.4 Amostragem por importância

Considere uma variável aleatória X com densidade f(x). Nosso objetivo é calcular

$$\theta = \mathbb{E}[h(X)] = \int h(x)f(x) dx.$$

Em alguns casos, uma simulação direta de $X \sim f$ pode ser ineficiente:

- pode ser difícil gerar amostras segundo *f*;
- a variância de h(X) sob f pode ser grande;
- ou ainda uma combinação desses fatores.

Uma alternativa é escolher uma outra densidade g(x) tal que f(x) = 0 sempre que g(x) = 0. Nesse caso, podemos reescrever

$$\theta = \int h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[h(X) \frac{f(X)}{g(X)} \right],$$

onde \mathbb{E}_g denota esperança em relação à densidade g.

Assim, se gerarmos $X_1, \ldots, X_n \sim g$, um estimador natural é

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(X_i) \frac{f(X_i)}{g(X_i)}.$$

Se a densidade instrumental g for bem escolhida, a variância do peso h(X)f(X)/g(X) pode ser bem menor do que a variância de h(X) sob f, resultando em uma estimação mais eficiente.

Note que f(x) e g(x) representam as probabilidades relativas de se observar x quando $X \sim f$ ou $X \sim g$. Quando $X \sim g$, em geral a razão f(x)/g(x) é menor que 1, mas como

$$\mathbb{E}_{g}\left[\frac{f(X)}{g(X)}\right] = 1,$$

ela ocasionalmente assume valores grandes, podendo gerar alta variância.

A ideia central da amostragem por importância é escolher g de modo que nesses pontos onde f(x)/g(x) é grande, a função h(x) seja pequena (ou mesmo nula). Dessa forma, o produto

$$W(X) = h(X) \frac{f(X)}{g(X)}$$

permanece controlado, evitando explosões na variância.

Esse raciocínio mostra por que a técnica é especialmente eficaz na estimação de probabilidades raras. Nesse caso, h(x) é uma função indicadora de um conjunto A pouco provável sob f. Se escolhermos g de modo que A seja mais frequente, então:

- para $x \in A$, temos h(x) = 1 e a razão f(x)/g(x) é moderada;
- para $x \notin A$, temos h(x) = 0, logo não importa se f(x)/g(x) é grande.

Assim, o estimador se torna muito mais estável e com variância reduzida, o que torna a amostragem por importância uma ferramenta poderosa para lidar com eventos raros.

5.4.1 Densidades Inclinadas (Tilted Densities)

Uma questão central em amostragem por importância é a escolha da densidade instrumental g(x). Uma família bastante útil é a das *densidades inclinadas*, definidas a partir da função geradora de momentos.

Seja $X \sim f$ uma variável aleatória com função geradora de momentos

$$M(t) = \mathbb{E}_f[e^{tX}] = \int e^{tx} f(x) dx.$$

Definição 1. A densidade inclinada de f, associada ao parâmetro $t \in \mathbb{R}$, é definida por

$$f_t(x) = \frac{e^{tx} f(x)}{M(t)}.$$

Intuitivamente, a densidade f_t dá mais peso a valores grandes de X quando t > 0 e mais peso a valores pequenos quando t < 0. Em muitos casos, f_t pertence à mesma família paramétrica de f, mas com parâmetros modificados.

Alguns exemplos:

- Normal. Se $X \sim N(\mu, \sigma^2)$, então f_t é $N(\mu + t\sigma^2, \sigma^2)$. Nesse caso, o tilt desloca a média, concentrando a massa de probabilidade à direita quando t > 0 e à esquerda quando t < 0.
- Exponencial. Se $X \sim \text{Exp}(\lambda)$, então f_t é $\text{Exp}(\lambda t)$, válido para $t < \lambda$. Aqui, o tilt altera o comportamento da cauda: para t > 0, a distribuição decai mais rápido (cauda mais leve), enquanto para t < 0 a cauda se torna mais pesada.
- Gama. Se $X \sim \text{Gamma}(\alpha, \beta)$, então f_t é Gamma $(\alpha, \beta t)$, válido para $t < \beta$. Assim como na exponencial (caso particular da gama), o tilt controla a espessura da cauda, deixando-a mais leve quando t > 0 e mais pesada quando t < 0.

- **Poisson.** Se $X \sim \text{Poisson}(\lambda)$, então f_t é $\text{Poisson}(\lambda e^t)$. Nesse caso, o tilt modifica a média exponencialmente: para t > 0, a distribuição se desloca para valores grandes, enquanto para t < 0 se concentra em valores pequenos.
- **Binomial.** Se $X \sim \text{Binomial}(n, p)$, então f_t é Binomial (n, p_t) com

$$p_t = \frac{pe^t}{1 - p + pe^t}.$$

Aqui, o tilt altera diretamente a probabilidade de sucesso: quando t > 0 temos $p_t > p$, o que força mais sucessos, e quando t < 0 temos $p_t < p$, forçando mais fracassos.

Exercício 25. Prove as afirmações acima.

Exemplo 13 (Estimando probabilidades raras). Sejam $X_1, ..., X_n$ variáveis aleatórias independentes com densidades (funções de massa ou de probabilidade) f_i , para i = 1, ..., n. Defina

$$S = \sum_{i=1}^{n} X_i, \qquad \mu = \sum_{i=1}^{n} \mathbb{E}[X_i].$$

Nosso objetivo é estimar a probabilidade de que S seja maior do que um limiar a, onde a $\gg \mu$, isto é,

$$\theta = \mathbb{P}(S > a) = \mathbb{E}\left[\mathbf{1}_{\{S > a\}}\right].$$

Quando a é muito maior que a média μ , esse evento é raro, e portanto uma simulação direta via Monte Carlo ingênuo é ineficiente, pois apenas uma fração ínfima das amostras contribui para o cálculo do estimador. Uma alternativa é utilizar a técnica de amostragem por importância com densidades inclinadas.

Seja

$$f_{i,t}(x) = \frac{e^{tx}f_i(x)}{M_i(t)}, \qquad M_i(t) = \mathbb{E}[e^{tX_i}],$$

a densidade inclinada de X_i , onde t > 0 é um parâmetro comum a todas as variáveis. Ao simular cada X_i segundo $f_{i,t}$, obtemos que

$$\theta = \mathbb{E}_t \left[\mathbf{1}_{\{S>a\}} \exp(-tS) \prod_{i=1}^n M_i(t) \right],$$

onde \mathbb{E}_t denota esperança sob as densidades inclinadas.

A partir dessa representação, segue naturalmente um estimador de Monte Carlo:

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\{S^{(j)} > a\}} \exp(-tS^{(j)}) \prod_{i=1}^{n} M_i(t),$$

onde $S^{(j)} = \sum_{i=1}^{n} X_{i}^{(j)}$ e cada $X_{i}^{(j)}$ é simulado de $f_{i,t}$.

A escolha de t é crucial: se for muito pequeno, a distribuição inclinada pouco difere da original e o evento $\{S>a\}$ continua raro. Se for muito grande, os pesos podem se tornar instáveis, aumentando a variância. O critério usual é escolher t de forma que

$$\mathbb{E}_t[S] \approx a$$
,

ou seja, deslocar a média da soma sob a medida inclinada para próximo do limiar a. Dessa forma, amostras são concentradas justamente nas regiões que mais contribuem para o evento raro, aumentando a eficiência do método.

O algoritmo pode ser resumido da seguinte forma:

- 1. Escolha t > 0 de modo que $\mathbb{E}_t[S] \approx a$.
- 2. *Para* j = 1, ..., N:
 - (a) Gere $X_1^{(j)}, \ldots, X_n^{(j)}$ independentemente segundo as densidades inclinadas $f_{i,t}$.
 - (b) Calcule $S^{(j)} = \sum_{i=1}^{n} X_i^{(j)}$.
 - (c) Associe o peso

$$W^{(j)} = \mathbf{1}_{\{S^{(j)} > a\}} \exp(-tS^{(j)}) \prod_{i=1}^{n} M_i(t).$$

3. Estime θ por

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} W^{(i)}.$$

No caso particular em que cada $X_i \sim N(0,1)$, temos que a soma $S = \sum_{i=1}^n X_i$ é normal N(0,n). Quando n=1, por exemplo, estimar $\mathbb{P}(S>5)$ é um evento extremamente raro, pois o valor exato dessa probabilidade é

$$\theta = \mathbb{P}(S > 5) \approx 2.87 \times 10^{-7}.$$

Um procedimento de Monte Carlo ingênuo, baseado apenas em amostrar de N(0,1), é ineficiente: em uma simulação com N=200,000 repetições, a estimativa obtida foi de aproximadamente 5.0×10^{-6} , um valor que não coincide com o verdadeiro devido à raridade do evento.

Aplicando a técnica de densidades inclinadas, obtemos que a tilted density é

$$f_t(x) = \frac{e^{tx}f(x)}{M(t)}, \qquad M(t) = \exp\left(\frac{1}{2}t^2\right),$$

o que implica que f_t é a densidade de uma normal N(t,1). Ao escolher t=5, a distribuição inclinada desloca a média exatamente para o limiar de interesse. O peso associado a cada amostra é dado por

$$W = \mathbf{1}_{\{S>5\}} \exp(-tS + \frac{1}{2}t^2).$$

Nesse caso, a estimativa via amostragem por importância com N=200,000 simulações foi

$$\hat{\theta}_{tilt} \approx 2.87 \times 10^{-7}$$
,

em perfeito acordo com o valor teórico.

Cadeias de Markov

Processos de difusão

Estratégias para acelerar códigos em Python

8.1 Profiling com cProfile

Antes de otimizar, é essencial medir onde o tempo realmente está sendo gasto. O módulo cProfile, da biblioteca padrão do Python, permite gerar um perfil de execução mostrando quantas vezes cada função foi chamada e quanto tempo ela consumiu.

O uso mais simples é direto pelo terminal, aplicando o profiler a um script:

```
# Executa o script inteiro e mostra estatisticas

python -m cProfile meu_script.py

# Salva os resultados em arquivo para analise posterior

python -m cProfile -o saida.prof meu_script.py
```

Rodando pelo terminal

O arquivo gerado pode ser inspecionado com o módulo pstats, que permite ordenar e filtrar resultados:

Explorando com pstats (terminal)

Também é possível usar cProfile dentro do código, o que facilita em notebooks ou quando queremos medir apenas um trecho específico:

```
import cProfile, pstats, io

pr = cProfile.Profile()
```

Usando cProfile dentro do código

As duas métricas principais são:

- time: tempo gasto apenas dentro da função, sem contar chamadas internas.
- cumtime: tempo acumulado, incluindo todas as funções chamadas.

Em geral, começa-se ordenando por cumtime para encontrar o caminho mais caro da execução. Depois, olhar o time ajuda a identificar funções individuais que valem otimização.

A seguir montamos um experimento simples para evidenciar como o cProfile ajuda a localizar gargalos: comparamos uma multiplicação de matrizes feita de forma ingênua em Python (três laços) com a versão vetorizada do NumPy (delegada à BLAS).

O código abaixo implementa as duas versões e usa uma função auxiliar para rodar o profiler em cada uma delas, exibindo as funções mais custosas. O script pode ser salvo como profile_matmul.py.

```
import numpy as np
 import math
 import cProfile, pstats, io
 import time
 # Versao ingenua: 3 loops em Python
 def matmul_naive(A, B):
      n, m = A.shape
      m2, p = B.shape
      assert m == m2
      C = np.zeros((n, p))
11
      for i in range(n):
          for j in range(p):
              s = 0.0
              for k in range(m):
15
                  s += A[i, k] * B[k, j]
              C[i, j] = s
      return C
18
19
```

```
20 # Versao NumPy (vetorizada/BLAS)
 def matmul_numpy(A, B):
      return A @ B
 def profile_func(func, *args, top=15):
     pr = cProfile.Profile()
     pr.enable()
     t0 = time.perf_counter()
     result = func(*args)
     t1 = time.perf_counter()
     pr.disable()
     s = io.StringIO()
     ps = pstats.Stats(pr, stream=s).sort_stats("cumtime")
      ps.print_stats(top)
      print(f"\n>>>> Tempo total (parede): {t1 - t0:.3f} s\n")
      return s.getvalue()
A = np.random.rand(n, n)
B = np.random.rand(n, n)
 print("==== Profiling matmul_naive ====")
41 out_naive = profile_func(matmul_naive, A, B)
42 print (out_naive)
44 print("==== Profiling matmul_numpy ====")
45 out_np = profile_func(matmul_numpy, A, B)
46 print (out_np)
```

Esse script pode ser executado normalmente com python profile_matmul.py. Outra forma é rodar o profiler diretamente no terminal, usando python -m cProfile -o saida.prof profile_matmul.py. Nesse caso o resultado fica salvo em saida.prof, e podemos explorá-lo depois com o módulo pstats de forma interativa, usando comandos como sort cumtime, stats 20 ou callers matmul_naive.

Rodando a versão ingênua, a saída típica mostra que praticamente todo o tempo foi consumido dentro de matmul_naive:

```
7 function calls in 8.532 seconds

Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 8.523 8.523 8.523 profile_matmul.py:11(
matmul_naive)
1 0.009 0.009 0.009 {built-in method builtins.
print}
...
```

Ao comparar com a versão vetorizada, vemos que a execução termina em milésimos de segundo, com o tempo todo acumulado em matmul_numpy:

```
7 function calls in 0.020 seconds

Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.019 0.019 0.019 profile_matmul.py:28(
matmul_numpy)
....
```

Os números exatos variam conforme o tamanho das matrizes e a biblioteca BLAS instalada, mas o padrão é claro: a implementação ingênua em Python puro consome segundos de CPU, enquanto a versão NumPy é milhares de vezes mais rápida.

As colunas do profiler têm significados diferentes. O campo ncalls mostra o número de chamadas à função. O tottime corresponde ao tempo gasto apenas dentro da função, sem contar chamadas internas. Já o cumtime indica o tempo acumulado incluindo funções chamadas dentro dela. Em geral, ordenar por cumtime ajuda a encontrar o caminho mais custoso da execução, enquanto olhar para tottime revela funções "folha" particularmente lentas.

Quando esse mesmo código é rodado em um notebook Jupyter, o output tende a ficar mais "poluído", aparecendo referências a asyncio, zmq e outros componentes do kernel. Isso acontece porque o profiler mede tudo o que roda no processo, não apenas a nossa função. Para uma visão limpa e didática, vale a pena executar o script direto no terminal.

8.2 Paralelização com joblib.Parallel

A biblioteca joblib fornece uma forma simples de paralelizar *loops embaraçosamente paralelos* em Python, isto é, situações em que várias tarefas independentes podem ser executadas ao mesmo tempo. A ideia básica é escrever um laço for como uma compreensão preguiçosa de chamadas a uma função via delayed, e despachar essas tarefas para Parallel, que se encarrega de distribuílas entre diferentes trabalhadores.

```
from joblib import Parallel, delayed
from math import sqrt

# aplicar sqrt a 0^2, 1^2, ..., 9^2 em paralelo
res = Parallel(n_jobs=4)(
    delayed(sqrt)(i**2)
    for i in range(10)

8
```

Receita de bolo

No exemplo acima, o parâmetro n_jobs define quantos trabalhadores serão usados (tipicamente o número de CPUs lógicas da máquina). A função delayed apenas empacota a chamada para que ela possa ser enviada a um worker, enquanto Parallel recolhe todas as tarefas e coordena sua execução.

Uma forma intuitiva de entender esse mecanismo é pensar em uma cozinha: se temos apenas um cozinheiro (um for sequencial), cada prato é preparado do início ao fim antes do próximo

começar. Já com vários cozinheiros (workers), cada um recebe um prato e trabalha nele independentemente, de modo que vários ficam prontos ao mesmo tempo. Essa estratégia funciona muito bem, mas há alguns cuidados: se uma tarefa demora muito enquanto outras são rápidas, pode haver desequilíbrio entre os workers; por outro lado, se existem milhares de tarefas minúsculas, o custo de despachá-las pode ser maior que o ganho da paralelização. Para reduzir esse problema, o joblib agrupa chamadas em lotes (*batching*), enviando várias de uma vez só.

Outro detalhe importante está no backend usado. Em Python, o *Global Interpreter Lock* (GIL) impede que várias threads executem código Python puro ao mesmo tempo. Por isso, o backend padrão (loky) cria processos separados, que contornam o GIL e escalam bem em cálculos pesados. Já o backend threading mantém as tarefas no mesmo processo, sendo útil em funções que passam a maior parte do tempo esperando I/O ou que já liberam o GIL (como operações NumPy). Existe ainda o multiprocessing, mas o loky tende a ser mais robusto.

```
# Uso de threads porque a funcao processa_io
# passa a maior parte do tempo esperando rede.
res = Parallel(n_jobs=8, backend="threading")(
    delayed(processa_io)(u) for u in urls
)
```

Exemplo com I/O

Em resumo: use loky (padrão) para tarefas CPU-bound, threading para tarefas I/O-bound, e sempre ajuste o número de jobs de acordo com o hardware disponível. Paralelizar acelera muito, mas nem sempre compensa: quando as tarefas são pequenas demais, o overhead pode superar o benefício.

Um exemplo clássico de tarefa CPU-bound é calcular números primos ou executar operações pesadas de álgebra linear. Nesses casos, vale usar o backend padrão:

```
from joblib import Parallel, delayed
import math

def eh_primo(n):
    for i in range(2, int(math.sqrt(n))+1):
        if n % i == 0:
            return False
    return True

nums = range(10**6, 10**6+1000)
res = Parallel(n_jobs=4)(delayed(eh_primo)(n) for n in nums)
```

Exemplo CPU-bound

Aqui, cada worker testa um conjunto de números independentemente. Quanto mais núcleos disponíveis, mais rápido o processamento.

Já um exemplo I/O-bound seria baixar várias páginas da web. Cada tarefa fica a maior parte do tempo esperando a rede, e usar processos separados não traz vantagem; nesse caso o backend threading é mais leve:

```
import requests
urls = ["https://httpbin.org/delay/1"] * 20

def baixa(url):
    return requests.get(url).status_code

res = Parallel(n_jobs=8, backend="threading")(
    delayed(baixa)(u) for u in urls
)
```

Exemplo I/O-bound

Se cada requisição demora cerca de 1 segundo, com 8 threads as 20 requisições terminam em poucos segundos, em vez de mais de 20.

Por fim, um caso em que a paralelização atrapalha é quando as tarefas são rápidas demais, por exemplo calcular o quadrado de números pequenos:

```
def quadrado(n):
    return n*n

nums = range(1000)
res = Parallel(n_jobs=4)(delayed(quadrado)(n) for n in nums)
```

Exemplo de overhead

Aqui o custo de organizar as tarefas, mandar para os workers e reunir os resultados é maior do que simplesmente rodar um for sequencial. Nesse cenário, a paralelização pode ser mais lenta.

8.3 Compilação Just-In-Time com Numba

Numba é um compilador JIT (Just-In-Time) para Python focado em acelerar código numérico. Ele "traduz" funções Python (que operam sobre tipos e arrays compatíveis) para código nativo via LLVM, reduzindo drasticamente o overhead dos laços em Python puro. A ideia prática é simples: decorar funções críticas com @njit (ou @jit(nopython=True)), evitar objetos Python dentro dessas funções e, quando fizer sentido, ativar paralelização com parallel=True e prange.

O primeiro cuidado ao medir é lembrar do custo de compilação: na *primeira* chamada de cada assinatura de tipos, Numba compila a função (demora mais). Depois disso, as chamadas seguintes usam o código nativo já gerado.

O exemplo abaixo acelera uma multiplicação de matrizes ingênua (três laços) sem recorrer ao NumPy @. Primeiro mostramos a versão *njit* sequencial; em seguida, a variação paralela (parallel=True + prange). Usamos perf_counter para mostrar o tempo da primeira chamada (com compilação) e das chamadas seguintes (sem compilação).

```
import numpy as np
import time
from numba import njit, prange
```

```
# Versao Python pura (referencia)
 def matmul_naive(A, B):
      n, m = A.shape
      m2, p = B.shape
      assert m == m2
      C = np.zeros((n, p))
      for i in range(n):
          for j in range(p):
              s = 0.0
              for k in range(m):
                  s += A[i, k] * B[k, j]
              C[i, j] = s
      return C
# Versao Numba: nopython mode (sem objetos Python dentro)
20 Onjit
21 def matmul_numba(A, B):
      n, m = A.shape
      m2, p = B.shape
23
      C = np.zeros((n, p))
      for i in range(n):
          for j in range(p):
              s = 0.0
              for k in range(m):
                  s += A[i, k] * B[k, j]
              C[i, j] = s
31
      return C
33 # Versao Numba paralela: requer parallel=True e uso de prange
34 Onjit(parallel=True)
 def matmul_numba_parallel(A, B):
      n, m = A.shape
      m2, p = B.shape
      C = np.zeros((n, p))
      for i in prange(n): # <-- prange permite paralelizar esse loop</pre>
         externo
          for j in range(p):
40
              s = 0.0
              for k in range(m):
                  s += A[i, k] * B[k, j]
43
              C[i, j] = s
      return C
45
47 # Benchmark simples: separa "primeira chamada" e "repetidas"
def bench(func, *args, repeat=3, label=""):
      # primeira chamada (inclui compilacao JIT quando aplicavel)
49
      t0 = time.perf_counter()
```

```
out = func(*args)
      t1 = time.perf_counter()
52
      print(f"{label} [1a chamada]: {t1 - t0:.3f} s")
53
      # chamadas seguintes (ja compilado)
55
      best = float("inf")
      for _ in range(repeat):
57
          t0 = time.perf_counter()
          func(*args)
          t1 = time.perf_counter()
60
          best = min(best, t1 - t0)
61
      print(f"{label} [melhor chamada subsequente]: {best:.3f} s")
62
      return out
63
 if __name__ == "__main__":
      n = 600
      A = np.random.rand(n, n)
      B = np.random.rand(n, n)
68
69
      # Referencia Python puro (lento)
70
      bench(matmul_naive, A, B, label="naive (Python)")
72
      # Numba sequencial
      bench(matmul_numba, A, B, label="Numba (njit)")
      # Numba paralelo
76
      bench(matmul_numba_parallel, A, B, label="Numba (parallel)")
```

Acelerando loops com Numba (@njit)

Na prática, você deverá observar algo assim: a versão Python pura leva segundos; a versão @njit cai para frações (ou poucos segundos em matrizes grandes) após a compilação; a versão paralela tende a ganhar mais em máquinas com vários núcleos, desde que o tamanho do problema justifique o overhead de criar e sincronizar threads. Nem todo laço se beneficia de parallel=True; se o problema é pequeno, o custo extra pode superar o ganho.

Outro modo útil de Numba é compilar funções *elementwise* com @vectorize, criando uma ufunc ao estilo NumPy; isso permite aplicar a função diretamente sobre arrays, com broadcast, sem escrever laços em Python. O exemplo a seguir define uma ufunc para uma transformação escalar simples e a aplica a um array grande.

```
import numpy as np
from numba import vectorize, float64

@vectorize([float64(float64)])
def transform(x):
    # alguma transformacao escalar (exemplo)
    return (x * x + 0.5) / (x + 1.0)
```

```
x = np.random.rand(1_000_000)
y = transform(x) # aplica como ufunc, sem lacos explicitos em Python
```

UFunc com @vectorize (estilo NumPy)

Algumas recomendações práticas ao usar Numba: (i) mantenha dentro das funções JIT apenas operações suportadas (aritmética, indexação NumPy, algumas funções math/numpy); (ii) evite objetos Python (listas que crescem, dicionários, set) e chamadas que exijam o interpretador; (iii) prefira arrays com *dtype* numéricos (float64, int64, etc.) e formatos contíguos; (iv) tome cuidado com alocação excessiva dentro do laço; (v) ative parallel=True apenas após confirmar que o gargalo é CPU-bound e que o tamanho do problema compensa a paralelização; (vi) lembre-se do "aquecimento": meça separando a primeira chamada (com compilação) das seguintes; (vii) quando a função estabilizar, @njit(cache=True) pode salvar o binário no disco e reduzir o tempo de compilação em execuções futuras (útil em scripts).

Por fim, se você já tem uma versão vetorizada eficiente em NumPy (que usa BLAS), muitas vezes ela será tão rápida quanto (ou mais rápida que) reimplementar em Numba, a menos que o seu padrão de acesso/cálculo seja muito específico. O ponto forte do Numba é acelerar *laços* e lógicas numéricas que seriam lentas em Python puro, mantendo o código próximo ao original, sem partir direto para C/C++.

8.4 Paralelismo simples em Bash

O Bash permite escrever pequenos scripts para automatizar tarefas repetitivas. Um dos recursos mais uteis é a possibilidade de rodar varios comandos em paralelo, sem esperar um terminar para comecar o proximo. Para isso usamos o operador &.

No exemplo abaixo, usamos o comando sleep (que apenas dorme por alguns segundos) para simular tarefas demoradas. Cada chamada ao sleep é enviada ao plano de fundo com &, de modo que o laco continua imediatamente para a proxima iteracao.

```
#!/bin/bash

for i in $(seq 1 5)

do
    echo "Iniciando tarefa $i"
    sleep 3 &
done

echo "Todas as tarefas foram lancadas!"
```

Rodando sleeps em paralelo

Nesse script, as cinco tarefas comecam quase ao mesmo tempo e, apos cerca de tres segundos, todas terminam juntas. Se tirassemos o &, o script levaria cerca de 15 segundos, pois cada sleep 3 seria executado em sequencia.

Para visualizar essa diferenca, vejamos primeiro a execucao sequencial:

```
#!/bin/bash
```

```
for i in $(seq 1 5)

do
    echo "Rodando tarefa $i"
    sleep 3

done

echo "Todas as tarefas terminaram (sequencial)"
```

Execucao sequencial

E agora a versao em paralelo, onde o tempo total cai para cerca de 3 segundos:

```
#!/bin/bash

for i in $(seq 1 5)

do
    echo "Rodando tarefa $i"
    sleep 3 &
    done

wait
echo "Todas as tarefas terminaram (paralelo)"
```

Execucao em paralelo

Para garantir que o script so finalize depois que todas as tarefas concluirem, podemos usar explicitamente o comando wait:

```
#!/bin/bash

for i in $(seq 1 5)

do

sleep 3 &
done

wait
echo "Todas as tarefas terminaram!"
```

Sincronizando com wait

Tambem é possivel limitar quantas tarefas rodam em paralelo. Uma tecnica simples é controlar com um contador e usar wait -n para esperar pelo menos um job terminar antes de lancar o proximo:

```
#!/bin/bash

N=2  # no maximo 2 processos ao mesmo tempo

for i in $(seq 1 5)
do
```

Limitando jobs simultaneos

Esses exemplos usam apenas comandos nativos (sleep, echo), mas a ideia é exatamente a mesma se quisermos chamar um script Python ou outro programa no lugar.

Referências Bibliográficas