JP,10-320928,A (1998)

> MENU SEARCH

NEXT

8ACK

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-320928

(43)Date of publication of

04.12.1998

application:

(51)Int.Cl.

G11B 20/12

(21)Application

09-083929

TOSHIBA CORP

number:

Applicant:

TOSHIBA AVE CORP

(22)Date of filing:

02.04.1997

(72)Inventor:

TOMIDOKORO SHIGERU MIMURA HIDENORI

NISHIWAKI HIROHISA

(30)Priority

Priority

09

Priority

19.03.1997

Priority

P

number:

66438 date:

country:

(54) RECORDING MEDIUM

(57) Abstract:

PROBLEM TO BE SOLVED: To facilitate the reproduction process of audio data predetermined diversely by a method wherein the leading ends of respective sample data are aligned with the predetermined positions of packets to arrange a plurality of the sample data successively and the sample data are reproduced packet by packet. SOLUTION: The leading ends A0-H0 and A1-H1 of two pairs of samples are aligned with the leading end of the data region of the data part of an audio pack and, thereafter, data are arranged by using 2-pair samples as units. The total length of samples multiplied by an integer is so selected as not to exceed the maximum length of one pack and invalid data such as stuffing bytes, patting bytes, etc., are inserted into remaining parts and one packet is processed as one unit. With this constitution, as the leading end audio data of the respective packs are the leading ends of the 2-pair samples, i.e., main samples, without fail, if a reproducing device processes the data pack by pack, it

is necessary to take timing for one pack only, so that the reproduction process can be facilitated.

(19)日本 資特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-320928

(43)公開日 平成10年(1998)12月4日

(51) Int.Cl.6

G11B 20/12

織別記号

102

FI

C11B 20/12

102

審査請求 有 請求項の数5 OL (全22頁)

(21)出版番号	特顯平9-83929	(71)出願人	000003078 株式会社来芝
(22) 均縣日	平成9年(1997)4月2日	(71)出顧人	神奈川県川崎市卡区堀川町72番地
(31)優先擁主報番号	特爾平9-66438		東芝エー・ブイ・イー株式会社
(32)優先日	平 9 (1997) 3 月19日		東京都港区新橋3丁目3番9号
(33) 優先権主張国	日本 (JP)	(72)発明者	當所 茂
			東京都港区新橋3丁目3番9号 東芝工
			ー・ブイ・イー株式会社内
		(72)発明者	三村 英紀
			神奈川県川崎市幸区柳町70番地 株式会社
			東芝柳町工場内
		(74)代理人	弁理士 勢江 武彦 (外6名)
			

(54) [発明の名称] 配録媒体

(57)【要約】

【課題】各パケットの先頭の音声データを必ずサンプリングデータの先頭とし、パケットを単位として取扱えるようにしオーディオデータ処理のためのタイミング処理及びそのシーケンス処理等を容易とする。

【解決手段】 所定バイト(2013)のバケットに、可変長データからなる複数のサンブル(An~Hn)(an~hn)を配列される。この場合に、パケットの所定位置に前記サンプルの最初のサンブルの先頭を合わせて他のサンブルを順次配列し、該複数のサンブルの合計バイト長は、当該パケットのデータ部の最大バイト長以下とし、前記最大バイト長が余る場合にはこの余った部分には、スタッフィングバイト又はバッディングバケットが挿入される。

【特許請求の範囲】

【請求項1】 所定バイトのパケットに、チャンネル数に応じてデータ長が異なる複数のサンブルデータを収納する場合に、前記パケットの所定位置に最初のサンブルデータの先頭を合わせて他のサンプルデータを順次配列し、該複数のサンプルデータの合計バイト長は、前記パケットの最大バイト長以下とし、前記合計バイト長が前記最大バイト長に満たない場合には、この余った部分にスタッフィングバイト又はパッディングパケットによる無効データを挿入したパケット列を記録していることを特徴とする記録媒体。

【請求項2】 前記複数のサンプルデータは、リニアP CMデータであり、前記数大バイト長は2013である ことを特徴とする請求項1記載の記録媒体。

【請求項3】 前記合計バイト長が前記級大バイト長に 満たない場合で、この余った部分が7バイト以下の場合 にはパケットヘッダ内に前記スタッフィングバイトを挿 入し、8バイト以上の場合には上記パケットの後部にパ ッディングバイトを挿入していることを特徴とする請求 項1記載の記録媒体。

【請求項4】 1 つの前記パケット内に配置されている 複数のサンプルデータは、偶数であることを特徴とする 請求項1記載の記録媒体。

【請求項5】 オーディオフレームの先頭を含む前記パケットにはスタッフィングバイトが与えられ、オーディオフレームの先頭を含まない前記パケットにはパディングパケットが設けられていることを特徴とする請求項2 記載の記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えば、デジタルビデオディスクやデジタルオーディオディスクにリニアPCMデータ等のオーディオデータを記録したり伝送したりするのに有効な可変長データのバック方法及び記録媒体及び伝送受信装置に関する。

[0002]

【従来の技術】最近、光学式ディスクとして、従来のオーディオ用コンパクトディスク(以下CDと記す)に加えて、デジタルビデオディスク及びその再生装置が開発されている。このデジタルビデオディスクにおいても、特に最近は、従来のCD(直径12cm)と同じ程度の大きさで、約2時間分の映画情報を記録、再生可能なディスクが開発されている。またこのデジタルビデオディスクにおいては、映画情報に加えて、8種類の異なる言語の音声又は音楽、32種類の異なる言語の字幕情報を同一ディスクに記録できるようなフォーマットが考えられている。

【0003】上記したように、最近ではメイン映画情報 に加えて、多種の言語の音声又は音楽を記録でき、しか も、その大きさが従来のCDと同じというデジタルビデ オディスクが開発されている。

[0004]

【発明が解決しようとする課題】このようなデジタルビデオディスクが市場に出回るようになった場合、当然、オーディオ専用プレーヤーにより、従来のCDも新しいビデオディスクの音楽や音声(オーディオ信号)も再生したいという要望が出てくる。オーディオ信号の記録方式としては、圧縮方式、リニアPCM方式があるが、オーディオ専用プレーヤーにおいて音楽や音声のオーディオ信号を再生可能なビデオディスクを考えた場合、従来のCDと同様のリニアPCM方式によるデータを記録することが有効である。ここで多くの種類のデータを記録することが有効である。このような場合、そのデータの取扱いが容易であることが要望される。

【0005】そこで、この発明では、とくにチャンネル数と量子化ビット数が多様に設定されるオーディオデータを扱う場合にその取扱いを容易にする可変長データのパック方法を採用した記録媒体を提供することを目的とする。

[0006]

【課題を解決するための手段】この発明は上記の目的を 達成するために、所定バイトのパックに、チャンネル数 に応じてデータ長が異なるサンプルデータを複数配列し たパケットを収納する場合に、前記パケットの所定位置 に前記サンプルデータの先頭を合わせて複数のサンプル データを順次配列し、該サンプルデータの合計バイト長 は、当該パケットの最大バイト長以下とし、当該パケットのバイト長が前記最大バイト長に満たない場合にはこ の余った部分には、スタッフィングバイト又はパッディ ングバケットによる無効データを挿入してなることを特 徴とする。

【0007】このようなバック方法の場合、各バケット の先頭の音声データは必ずサンプリングデータの先頭で あり、パケットを単位として取扱うことができるので、 オーディオデータ処理のためのタイミング処理及びその シーケンス処理等が容易となる。

[0008]

【発明の実施の形態】以下、この発明の実施の形態を図 面を参照して説明する。

【0009】まずこの発明のデータ記録又は伝送方法において、リニアPCM方式によるデータの配列の例を説明する。リニアPCMデータは、量子化ビットとして、例えば16ビット、20ビット、24ビットが任意に採用されるものとする。さらに、オーディオのモードとしては、モノラル、ステレオ、3チャンネル、4チャンネル、5チャンネル、6チャンネル、7チャンネル、8チャンネルのモードがある。

【0010】今、8チャンネルA〜Hまでのオーディオ 信号があるものとする。これらは、48KHzまたは9 6KHzのサンプリング周波数でサンプルされ、量子化される。量子化ビットは、20ビットを例にとって説明する。

【0011】図1(A)には、8チャンネルまでのオーディオ信号A乃至日までがそれぞれサンプリングされた様子を示している。また、それぞれのサンプルは、例えば20ビットに量子化されているものとする。さらに20ビットの各サンプルは、メインワードとエキストラワードとに分けられている状態を示している。

【0012】各チャンのメインワードがアルファベットの大文学An-Hnで示され、エキストラワードが小文字an-hnで示されている。またサフィックスn(n=0, 1, 2, 3, \cdots)は、サンプル順を示している。ここでメインワードは16ビットであり、エキストラワードは4ビットである。

【0013】信号Aは、A0 a0、A1 a1、A2 a2、A3 a3、A4 a4 …の如く、信号Bは、B0 b0、B1 b1、B2 b2、B3 b3、B4 b4 …の如く、信号Cは、C0 c0、C1 c1、C2 c2、C3 c3、C4 c4 …の如く、信号Hは、H0 h0、H1 h1、H2 h2、H3 h3、H4 h4 …の如く各サンフルが作成される。

【0014】次に、図1(B)には、上記のワードを記録媒体に記録する場合、上記ワードの配列フォーマットをサンブル列で示している。

【0015】まず、20(=M) ビットからなる各サンプルデータが、MSB脚の16(=m1)ビットのメインワードとLSB側の4(=m2)ビットのエキストラワードとに分けられる。次に、各チャンネルの0(=2 n)番目のメインワードがまとめられて配置される。この次に各チャンネルの1(=2n+1)番目のメインワードがまとめられて配置される。この次に各チャンネルの0(=2n)番目のエキストラワードがまとめられて配置される。この次に各チャンネルの1(=2n+1)番目のエキストラワードがまとめられて配置(但し、n=0、1、2、一)される。

【0016】ここで各チャンネルのメインワードが集まった群を、1メインサンプルとすることにする。また各チャンネルのエキストラワードが集まった群を1エキストラサンプルとする。

【0017】このようなフォーマットとしているために、簡易機種(例えば16ビットモードで動作する機種)によりデータ再生処理を行うときは、メインワードのみを取り扱って再生処理を行えばよく、上位機種(例えば20ビットモードで動作する機種)によりデータ再生処理を行うときは、メインワードと、これに対応するエキストラワードを取り扱って再生処理を行えばよい。【0018】図1(C)には、メインサンプルとエキストラサンブルの具体的なビット数を用いて、各サンブルの配列状態を示している。

【0019】このように、量子化されたリニアPCMコードの状態では、20ビットであるものを、16ビットのメインワードと4ビットのエキストラワードとに分けておくことにより次のようなことが可能である。16ビットモードで動作する機種は、サンプル配列において、エキストラサンプルの領域では8ビット単位でデータ処理を行うことにより不要な部分を容易に破棄することができる。なぜならば、エキストラサンプルの2サンプル分は、4ビット×8チャンネルである。そしてこのデータは、8ビット単位で8回連続して処理(破棄)することができるからである。

【0020】このデーク配列の特徴はこの実施形態に限らない。チャンネル数が奇数の場合も、またエキストラワードが8ビットの場合も、いずれの場合でも連続した2つのエキストラサンブルの合計ビット数は8ビットの整数倍となり、メインワードのみ再生する簡易機種では、モードに応じて8ビットの1回連続破棄処理を実行することにより、エキストラサンブルを読み飛ばすことができる。

【0021】上記の図1(B)の状態で、後は変調処理を行って記録媒体に記録してもよいが、さらに他の制御情報やビデオ情報とともに記録する場合には、データの取り扱いや同期を容易にするために時間管理しやすい形態で記録する方が好ましい。そこで次のような、フレーム化、パケット化を行っている。

【0022】図1(D)にはオーディオフレーム列を示 している。つまり、一定再生時間のデータの単位を(1 /600秒)として、これを1フレームとしている。1 フレームの中には、80或いは160サンブルが割り当 てられる。サンプリング周波数が48KHのときは、1 サンプルは1/4800秒であり、1フレームは、(1 /48000)×80サンプル=1/600秒となる。 また、サンプリング周波数が96KHのときは、1サン プルは1/9600秒であり、1フレームは、(1/9 6000)×160サンブル=1/600秒となる。こ のように1フレームは80サンプル、または160サン プルとされている。このフレーム列がパケット列に変換 された場合。フレームの先頭は、必ずしもパケットのデ ータの先頭に配置されるとはかぎらない。また1つのフ レームがパケット間をまたがって配置される場合もあ る。また1 つのパケット内に複数のフレームの先頭が配 置される場合もある。

【0023】図2(A)には、パケットを含むパックの配列例を示している。

【0024】DS1は、データサーチインフォメーションであり、Vはビデオオブジェクト、Aはオーディオオブジェクト、Sはサブピクチャーオブジェクトを意味し、各ブロックはパックと称せられる。1パックは、2048バイトとされ、これは固定である。1パックは、1パケットを含み、また1パックはバックへッグとバケ

ットヘッダ、パケットデータ部とからなる。DSIには、各パックのスタートアドレスやエンドアドレス等の再生時に各データを制御するための情報が記述されている。

【0025】図2(B)には、オーディオバックのみを取り出して示している。実際には、図2(A)に示すようにDSIバック、ビデオバック、オーディオバックが混在して配置されるのであるが、図2(B)にはバックをわかりやすくするために、オーディオバックを取り出して示している。このシステムの規格では、DSIと次のDSIとの間の情報を再生したときに約0.5秒となるだけの情報量を配置することが規定されている。1バックは、バックヘッダとバケットヘッダ、パケットデータ部とからなる。

【0026】ここでパックヘッダとパケットヘッダには、オーディオのパックのサイズ、ビデオとの再生出力タイミングを取るためのプレゼンテーションタイムスタンプ、チャンネル(ストリーム)の識別コード、量子化ビット、サンプリング周波数、データのスタートアドレス、エンドアドレス等のオーディオを再生するのに必要な情報が記載されている。

【0027】次に、このバケットに挿入されているオーディオは、図1(A)-図1(C)で示した2メインサンブルと2エキストラサンブルからなる2対サンプルを単位として挿入されている。

【0028】図3には、オーディオパックを拡大して深している。このオーディオパックのデータ部には、そのデータ領域の先頭に2対サンプルの先頭(A0−H0, A1−H1)を合わせて、以後2対サンプル単位で配列されている。ここで、1パックのバイト数は2048バイトと固定である。一方、サンプルは可変長データであるから、2048バイトが必ずしも2対サンブルの整数倍のバイト長であるとは限らない。そこで、1パックの最大バイト長と、(2対サンプル×整数倍)のバイト長とが異なる場合が生じる。このような場合は、バックのバイト長≥(2対サンプル×整数倍)のバイト長となるようにし、パックの一部が余った場合には、この残余の部分が7バイト以下の場合はパックヘッダ内にスタッフィングバイトを挿入し、7バイトを越える場合にはパック未尾にパッディングパケットを挿入するようにして

【0029】このようなバック形式のオーディオ情報の場合、再生時において取扱いが容易である。

【0030】これは各バックの先頭のオーディオデータは必ず2対サンアルの先頭、即ちメインサンプルとなるので、タイミングを取って再生処理を行う場合に再生処理が容易となる。これは再生装置がバック単位でデータを取り込んでデータ処理を行うからである。オーディオデータのサンブルが2のつパック間に跨がって配置されているとすると2つのバックを取り込んで、オーディオ

データを一体化してデコードを行うことになり処理が複雑になる。しかし、この発明のように、各バックの先頭のオーディオデータが必ず2対メインサンブルの先頭であり、オーディオデータがパック単位でまとめられていると、タイミングをとるのも1つのパックに対してのみであり、処理が容易である。またパケット単位で区切るデータ処理であるためにオーサリングシステム(支援システム)がシンプル化し、データ処理のためのソフトウエアも簡単化することができる。

【0031】特に、特殊再生時等は、ビデオデータを間欠的に間引いて処理したり、あるいは補間して処理を行うことがあるが、このような場合に、オーディオデータをパケット単位で扱えるようにしたために、再生タイミングの制御を比較的容易にすることができる。デコーダのソフトウエアを複雑化することもない。

【0032】なお上記のシステムでは、サンプルが上位 16ビットと下位4ビットに分けた形でサンプルを作成 しているが必ずしもこのような形式のデータである必要 はない。リニアPCMオーディオデータをサンプル化し たものであればよい。

【0033】例えばエキストラサンアルのデータ長を0 としたものを考えれば、データ列はメインサンアルの連 続となり、一般的なデータ形式となる。この場合エキス トラサンブルがないので、2対サンブルを単位とする必 要はなくメインサンブル単位でパケット化をすればよ い

【0034】図4には、上記のように2対サンプル単位 でパケット内にリニアPCMデータを配置した場合のリ ニアPCMデータのサイズの一覧表を示している。モノ ラル、ステレオ、マルチチャンネルの区分毎に深し、ま た各区分では量子化ビット数毎に区別して1パケット内 に治まる最大サンプル数を示している。2対サンプル単 位であるため、1パケット内のサンブル数は全て偶数サ ンプルとなっている。チャンネル数が多くなるとそれだ けバイト数が増えるので1パケット内のサンプル数は少 なくなる。量子化ビット数が16ビット、モノラルの場 合、1パケット内のサンプル数は1004個であり、バ イト数が2008、スタッフィングバイトは5バイト で、パディングバイトはないことを深している。ただ し、最初のパケットのスタッフィングバイトは、2バイ トであることを示している。これは、最初のパケットで は、そのヘッダに3バイトの属性情報が付加されること があるからである。

【0035】また、量子化ビット24ビット、ステレオ モードについて見ると、先頭のパケットは6 バイトのス タッフィングが施され、以降のパケットは9 バイトのパ ディングが施されていることを示している。

【0036】図5にはパックを生成する装置の手順を示している。

【0037】例えば各チャンネルのオーディオ信号がサ

ンプルされ図1(B)に示したようなサンプルが生成されて、メモリに蓄積されているものとする。ステップS11では、サンプルが順番に取り込まれる。ステップS12では、バイト数がパケットの容量(2010バイト)になったかどうかの判定を行い、2010バイトになっていると、そのサンブルでパック化される(ステップS13)。

【0038】バイト数がバケットの容量(2010バイト)でない場合は、ステップS14に移行する。ステップS14では、取り込んだサンプルのバイト数が、2010バイトを超えているかどうかを判定する。超えていない場合には、ステップS15において、最後に取り込んだサンプルを、ステップS15において、最後に取り込んだサンプルを、ステップS11の位置へ戻し、残りのバイト数と2010バイトとの差が計算される。ここで、差Rが8バイトを超えるかどうかが判断される(ステップS16)。差Rが8バイトを超える場合には、パディング処理(ステップS17)、差Rが7バイト以下の場合はスタッフィング処理(ステップS18)によりパケットが構成される。

【0039】次に、上記のデータが再生処理される再生 装置について簡単に説明する。

【0040】図6には光ディスク再生装置を示し、図7には、上記したオーディオストリームが記録されている 光ディスク10をドライブするディスクドライブ部30 の基本構成を示し、図8には光ディスク10の構成例を 説明するための図を示している。

【0041】図6の光ディスク再生装置を説明する。

【0042】光ディスク再生装置は、キー操作/表示部 500を有する。光ディスク再生装置には、モニタ1 1、スピーカ12が接続される。光ディスク10から読 み取られたピックアップデータは、ディスクドライブ部 501を介して、システム処理部504に送られる。光 ディスク10から読み取られたビックアップデータは、 例えば映像データ、副映像データ及び音声データを含 み、これらのデータは、システム処理部504で分離さ れる。分離された映像データは、ビデオバッファ506 を介してビデオデコーダラ08へ供給され、副映像デー タは副映像バッファ507を介して副映像デコーダ50 9へ供給され、音声デークはオーディオバッファ512 を介してオーディオデコーダ513へ供給される。ビデ オデコーダ508でデコーダされた映像信号と、副映像 デコーグ509でデコードされた副映像信号とは合成部 510で合成されてD/A変換器511でアナログ映像 信号として出力されモニク11に供給される。オーディ オデコーグ513でデコードされたオーディオ信号は、 D/A変換器514でアナログオーディオ信号となりス ピーカ12に供給される。

【0043】502はシステムCPUであり、再生装置 全体はこのシステムCPU502により管理されてい る。したがって、システムCPU502は、ディスクドライブ部501、システム処理部504、キー操作/表示部500と制御信号やタイミング信号等のやり取りを行うことができる。システムCPU502には、システムROM/RAM503が接続されており、このシステムROM/RAM503には、システムCPU502がデータ処理を行うための固定プログラムが格納されるとともに、光ディスク10から再生された管理データ等を格納することもできる。

【0044】データRAM505は、システム処理部5 04に接続され、上述したデータの分離やエラー訂正等 を行うときのバッファとして用いられる。

【0045】図7のディスクドライブ部501を説明する。

【0046】ディスクモーク駆動回路531は、スピンドルモータ532を回転駆動する。スピンドルモータ532が回転すると光ディスク10が回転し、光学ヘッド部533により光ディスクに記録されている記録データをピックアップすることが可能である。光学ヘッド部53により読み取られた信号は、ヘッドアンプ534に供給され、このヘッドアンプ534の出力が先のシステム処理部504に入力される。

【0047】フィードモータ535は、フィードモータ 駆動回路536により駆動される。フィードモータ53 5は、光ヘッド部533を光ディスク10の半径方向へ 駆動する。光ヘッド部533には、フォーカス機構及び トラッキング機構が設けられており、これらの機構には それぞれフォーカス回路537、トラッキング回路53 8からの駆動信号が与えらえる。

【0048】ディスクモータ駆動回路531、フィードモータ駆動回路536、フォーカス回路537、トラッキング回路538に対しては、サーボ処理部539から制御信号が入力されている。これにより、ディスクモータ532は、ビックアップ信号の周波数が所定の周波数であるように光ディスク10を回転制御し、フォーカス回路537は、光へッド部533の光学ビームの焦点が光ディスク10に最良の焦点を結ぶように、光学系のフォーカス機構を制御し、またトラッキング回路538は、光学ビームが所望の記録トラックの中央に照射されるようにトラッキング機構を制御する。

【0049】図8に示す光ディスク10の構造について 説明する。

【0050】光ディスク10は、その両面のクランプ領域21の周囲に情報記録領域22を有する。情報記録領域22は、外周に情報が記録されてないリードアウト領域23を有し、また、クランプ領域21との境目に情報が記録されていないリードイン領域24を有する。このリードアウト領域23とリードイン領域24の間がデータ記録領域25である。

【0051】データ記録領域25にはトラックがスパイ

ラル状に連続して形成される。このトラックは、複数の 物理的なセクタに分割され、そのセクタには連続番号が 付されている。トラックの信号形跡は、ビットとして形 成されている。読み出し専用の光ディスクでは、透明基 板にビット列がスタンバーで形成され、このビット列形 成節に反射膜が形成され記録層とされている。2枚貼り 合わせタイプの光ディスクは、このような記録層が対向 するように、2枚のディスクが接着層を介して合体さ れ、複合ディスクとされている。

【0052】次に、上記した光ディスク10の論理フォーマットについて説明する。

【0053】図9には、情報記録領域25の情報区分である論理フォーマットを示している。この論理フォーマットは、特定の規格、例えばマイクロUDF及びISO9660で9660に準拠して定められている。以下の説明では、論理アドレスが、マイクロUDF及びISO9660で定められる論理セクタ番号(LSN)を意味し、論理セクタは、先の物理セクタのサイズと同じで、1論理セクタが2048バイトである。また論理セクタ番号(LSN)は、物理セクタ番号の昇順とともに連続番号が付されているものとする。

【0054】論理フォーマットは、階層構造であり、ボリューム及びファイル構造領域70、ビデオマネージャージャー71、少なくとも1つ以上のビデオタイトルセット72、及び他の記録領域73を有する。これらの領域は、論理セクタの境界上で区分されている。1論理セクタは2048バイトである。1論理ブロックも2048バイトであり、1論理セクタは1論理ブロックと定義されている。

【0055】ファイル構造領域70は、マイクロUDF及び1SO9660で定められる管理領域に相当し、この領域の記述を介して、ビデオマネージャージャー71のデータがシステムROM/RAM部52に格納される。ビデオマネージャージャー71は、ビデオタイトルセットを管理するための情報が記述され、ファイル#0から始める複数のファイル74で構成されている。ビデオタイトルセット72には、圧縮されたビデオデータ、副映像デーク、オーディオデータ及びこれらを再生するための再生制御情報が記録されている。また各ビデオタイトルセット72は、複数のファイル74で構成されている。これらのファイルも論理セクタの境界で区分されている。これらのファイルも論理セクタの境界で区分されている。

【0056】他の記録領域73には、上記ビデオタイトルセットの情報を利用する場合に用いられる情報、あるいは独自に利用される情報が記録されている。

【0057】図10においてビデオマネーシャー71について説明する。

【0058】ビデオマネージャー71は、ビデオマネージャー情報 (VMGI) 75、ビデオマネージャー情報 メニューのためのビデオオブジェクトセット (VMGM

YOBS)76及びビデオマネージャー情報のバック アップ(VMGI BUP)77で構成される。

【0059】VMGM_VOBS76には。ビデオマネージャー71が管理する当該光ディスクのボリウムに関するメニューのためのビデオデータ、オーディオデータ、及び副映像データが格納されている。ボリウム内の各タイトルに関する音声及び副映像による説明情報や、タイトルの選択表示を得ることができる。例えば、光ディスクが語学学習用の英会話を格納したものである場合、英会話のタイトル名、レッスン例が再生表示されるとともに、テーマソングが音声で再生され、副映像ではどのレベルの教材であるか等が表示される。また選択項目としては、レッスンの番号(レベル)の選択が表示され、視聴者の操作入力を待つ。このような利用のためにVMGM VOBS76が用いられる。

【0060】図11は、ビデオオブジェクトセット (V OBS) 82の例を深している。

【0061】ビデオオブジェクトセット(VOBS)としては、メニュー用として2つのタイプ、ビデオ用のタイトル用として1つのタイプがあるがいずれも同様な構造である。

【0062】ビデオオブジェクトセット(VOBS)8 2は、1個以上のビデオオブジェクト(VOB)83の 集合として定義され、VOBは同一の用途に用いられ る。通常、メニュー用のビデオオブジェクトセット(V OBS)は、複数のメニュー画面を表示するためのビデ オオブジェクト(VOB)として構成され、ビデオタイ トルセット用のビデオオブジェクトセット(VOBS) は、通常の動画等を表示するためのビデオオブジェクト (VOB)として構成されている。

【0063】ビデオオブジェクト(VOB)には、識別番号($VOB_IDN#J$)が付されており、この識別番号($VOB_IDN#J$)を利用してビデオオブジェクト(VOB)を特定することができる。1つのビデオオブジェクト(VOB)は、1つ又は複数のセル84で構成されている。間様にセルにも、識別番号($C_IDN#J$)が付されており、この識別番号($C_IDN#J$)を利用してセルを特定することができる。メニュー用のビデオオブジェクトは、1つのセルで構成されることもある。

【0064】さらに1つのセルは、1つ叉は複数のビデオオブジェクトユニット(VOBU)から構成される。そして1つのビデオオブジェクトユニット(VOBU)は、1つのナビゲーションパック(NVパック)を先頭に有するパック列として定義される。1つのビデオオブジェクトユニット(VOBU)は、NVパック(先のDSIを含む)から次のNVパックの直前まで記録される全パックの集まりとして定義されている。

【0065】ビデオオブジェクトユニット(VOBU)の再生時間は、このVOBU内に含まれる単数または複

数個のGOP (グループオブビクチャー)から構成されるビデオデータの再生時間に相当し、その再生時間は約 0.4秒以上で1秒以内に定められている。MPEGの 規格では、1GOPは、約0.5秒の再生時間に相当する 画像データが圧縮されるとされている。したがって、 MPEGの規格に合わせると、オーディオも映像も約 0.5秒分の情報が配置されることになる。

【0066】1つのビデオオブジェクトユニット(VOBU)内には、上述したNVバックを先頭にして、ビデオバック(Vバック)、副映像バック(SPバック)。オーディオバック(Aパック)が配列されている。よって、1VOBU内の複数のVバックは、再生時間が1秒以内となる圧縮画像データが1GOPあるいは複数GOPの形で構成されており、またこの再生時間に相当するオーディオ信号が圧縮処理されてAパックとして配列されている。またこの再生時間内に用いる副映像データが圧縮されてSPバックとして配列されている。但し、オーディオ信号は、例えば8ストリーム、副映像としては例えば32ストリーム分のデータをパック化して記録されている。

【0067】オーディオ信号の1ストリームは1種類の符号化形式で符号化されたデータであり、例えばリニアPCM、20ビット景子化データの8チャンネル分で構成される。

【0068】図10に戻って説明する。

【0069】ビデオマネージャー情報(VMGI)75 としては、ビデオタイトルをサーチするための情報が記 述されており、少なくとも3つのテーブル78、79、 80が含まれている。

【0070】ボリウム管理情報管理テーブル(VMGI MAT)は、ビデオマネージャー(VMG)71のサイズ、ビデオマネージャー内の各情報のスタートアドレス、ビデオマネージャーメニュー用のビデオオブジェクトセット(VMGM VOBS)に関する属性情報等が記述されてる。

【0071】タイトルサーチボインターテーブル(TTSRPT)は、装置のキー操作及び表示部500からのタイトル番号の入力に応じて選定可能な当該光ディスクのボリウムに含まれるビデオタイトルのエントリープログラムチェーン(EPGC)が記述されている。

【0072】図12においてプログラムチェーンを説明する。プログラムチェーン87とは、あるタイトルのストーリーを再現するためにプログラム番号の集合であって、プログラムチェーンが連続して再生されることによりある1つのタイトルのストーリ章あるいはストーリーが完結される。また1つのプログラム番号は、複数のセル裁別番号から構成されている。セル識別番号は、VOBS内のセルを特定することができる。

【0073】ビデオタイトルセット属性テーブル (VTS ART) 80には、当該光ディスクのボリウム中の

ビデオタイトルセット(VTS)に定められた属性情報 が記載されている。属性情報としては、VTSの数、番号、ビデオの圧縮方式、オーディオの符号化モード、副映像の表示タイプ等があり、このビデオタイトルセット 属性テーブルに記述されてる。

【0074】以上説明したようにこの発明のパケット方式の場合、各パケットの先頭の音声データは必ずサンアリングデータの先頭であり、パケットを単位として取扱うことができるので、オーディオデータ処理のためのタイミング処理及びそのシーケンス処理等が容易となる。【0075】次に、上記のごとく配列され、記録されているデータを再生する音声デコーダについて説明する。【0076】図13は、オーディオデコーグ513の基本構成を示している。

【0077】この例は、図4に示したチャンネル数とサンプルのビット数の各モードのすべてに対応して再生できるデコーダの例を示している。入力データは、8チャンネルのすべての量子化ビット数が24ビットである場合を示している。

【0078】入力端子710には、図1で説明したサンプルの列が連続して入力される。このサンプル列は、スッチSW0の入力端子711に与えられる。スッチSW0は、チャンネルAnからHn、anからhnまでの各サンブルの振り分け端子を有する。各チャンのサンプルに対応する端子には、代表サンプルと同一符号を付している。ここでは代表サンプルとして、サンプルAOからHO、A1からH1、aOからhO、a1からh1を示している。

【0079】端子AOからHO、A1からH1は16ビ ットであり、端子aOからhO、alからh1は、それ ぞれ4ビットの端子であるものとする。 エキストラサン プルは、全部で8ビットの場合もあるから、4ビットの 場子 a O から h O 、 a 1 から h 1 が、 2 組用意されてい る。16ビット端子AOは、メモリMAOの上位ビット (16ビット)に接続され、対応する4ビット端子a O, a Oはそれぞれスッチ31、32を介してメモリM A0の下位ピット (8ピット) に接続されている。16 ビット端子BOは、スッチJBを介してメモリMBOの 上位ビットに接続され、対応する4ビット端子60, b Oはそれぞれ対応するスッチ」1、12を介してメモリ MBOの下位ビットに接続されている。16ビット端子 COは、スッチJCを介してメモリMCOの上位ビット に接続され、対応する4ビット端子c0, c0はそれぞ れ対応するスッチ j 1、j 2を介してメモリMCOの下 位ピットに接続されている。同様に、各端子DOからH 0, D1 moH1, d0 moh0, d1 moh16 th ぞれ対応するメモリMDOからMH1に接続されてい

【0080】これにより、各チャンネルがメモリMAOからMH1に綴り分けられたことになる。メモリMAO

とMA1の出力端子は、Aチャンネル出力スッチSWAの端子TA0, Ta0, Ta0, TA1, Ta1, Ta1に接続されている。TA0、TA1はそれぞれ16ビット端子、Ta0, Ta0, Ta1は、それぞれ4ビット端子である。同様にメモリMB0とMB1の出力端子は、Bチャンネル出力スッチSWBの端子TB0, Tb0, Tb0, Tb1, Tb1に接続されている。TB0, Tb1, Tb1は、それぞれ4ビット端子である。同様に他のメモリの出力端子も対応する出力スッチに接続されている。

【0081】次に、動作に付いて説明する。

【0082】スッチSWOに入力される記録/伝送よう に配列されたサンプルSO、S1.e1,e2,…は、 各チャンのサンブルとして、AO、BO、…、HO、A 1, B1, ..., H1, a0, b0, ...h0, a1, b1 …, h O として表せる。ここで、各チャンネルのメイン ワードは16ビット。エキストラワードは8ビットであ る。回路の開閉スッチがすべて閉じているものとする。 回転スッチSWOが最上部接点から、順次切り替わるこ とにより、メモリMAOからMH1にそれぞれ対応する サンプルが転送されることになる。このように回転スッ チSWOの動作により、2対サンプルがメモリMAOか らMEL1にサイクリックに格納される。以後は、メモリ MAOからMH1に格納されているサンブルのうち、所 望のチャンのサンプルが対応する回転スッチを介して読 み出されることになる。読み出されたサンプルは、メイ ンサンブルとエキストラサンブルとがデコードされて、 合成されて用いられる。

【0083】チャンネルAの読み出しに着目して見る。 回転スッチSWAはまず戦上部の16ビットの接点位置で16ビットのサンプルAの読み出す。次に2つの4ビットの接点位置で、合計8ビットのサンプルa0を読み出す。さらに、次の16ビットの接点位置で16ビットのサンプルA1読み出す。次に2つの4ビットの接点位置で、合計8ビットのサンプルa1を読み出す。回転スッチSWAの一回転でチャンネルAの2対サンプルA0、a0、A1、a1が読みだされることになる。このようにチャンネルAの2対サンブルが時系列で得られる。以下、チャンネルB、C…に付いても同様な動作でサンプルが読み出される。ここで、回転スッチSW0、SWA、…SWHは、それぞれ1回転で2対サンプルを処理するので、回転周期はサンプリング周波数の1/2(fs/2)であることが必要である。

【0084】図14は、さらにオーディオデコーダの別の実施の形態である。

【0085】この実施の形態は、チャンネル数2、サンブルの量子化ビット数が20ビットの場合のデータを処理する状態を示している。図13に示した凹路と異なる点は、スッチJB…JH、j1、j2の状態である。従

って、図13の回路に対応する部分には、同一符号を付 している。

【0086】S0、S1、e0,e1,…を各チャンネルのサンプル列で表すと、A0,B0,A1,B1,a0,b0,a1,b1,…である。ここで、各チャンネルのメインサンプルは、16ビット、エキストラサンプルは4ビットである。

【0087】スイッチJB…JHの状態としては、図に 示すように、スイッチJBのみが閉で、JC…JHは、 開になっている。またスイッチj1、j2に関しては、 図示のように、エキストラサンブルa0, b0, a1, b1に対応するスイッチで、j1のみが閉で、他は開と なっている。また、その他のエキストラサンブルc0, …h0、c1, …h1に対応するスイッチj1、j2は、すべて開となっている。スイッチが開となっている 部分では、データ転送は行われない。

【0088】回転スイッチSW0がデータ入力に同期して入力データをふり分けると、転送されるデータは、A0、B0、A1、B1、a0(4ビット)、b0(4ビット)、a1(4ビット)、b1(4ビット)である。この回転スイッチSW0の動作により、メモリMA0、MB0、MA1、MB1にのみ、図に示すような順序でサンブルが入力される。

【0090】上記した実施の形態における各スイッチの設定、及び切り換え動作は、オーディオストリームのチャンネル数と、サンプルの量子化ビット数に応じて、プログラマブルに設定される。このような信号処理モードは、図10で示したビデオタイトルセット属性テーブル、及び図3で示したバックヘッグに記述されている。つまり、オーディオパケットに含まれているオーディオデータが、リニアPCMであること、さらにオーディオフレーム番号、量子化ビット数、サンプリング周波数、オーディオチャンネル番号などが記述されている。

【0091】上記図13と図14で示したデコーダは、 すべてのモードに対応でき、全ビット、全チャンネルを 再生できる高級機種に適用される、いわゆるフルデコー ダである。

【0092】本発明の考え方は、チャンネル数、量子化 ビット数の多様な組み合わせモードに対応できるデータ 配列、記録再生処理方法、及び装置に関わるものである。上記のような高級機種に対応できることはもちろんのこと、安価なコストを要求される簡易機種、例えば、すべてのモードに対して2チャンネル、16ビットのみを再生するような機種に対しても対応できるデータ配列である。このような機種は、回路の規模が高級機種に比べて規模が小さくて済む。

【0093】上記の図及び説明では、各サンブルの振り 分け、及びメモリからのサンブルの取り出しに用いるス イッチが、機械的に示されていたが、これらはすべて電 子回路手段で構成されるものである。

【0094】次に、簡易再生機種におけるオーディオデコーダに付いて説明する。このオーディオデコーダは、チャンネルA、Bのみの16ビットのデータを処理するデコーダである。入力サンブルは、8チャンネルで量子化ビットは24ビットであるものとする。

【0095】図15において、入力端子810には、図1で説明したサンプルの列が連続して入力される。このサンプル列は、スッチSW0の入力端子811に与えられる。スッチSW0は、チャンネルAnからHn、anからhnまでの各サンプルの振り分け端子を有する。各チャンのサンプルに対応する端子には、代表サンブルと同一符号を付している。ここでは代表サンブルとして、サンプルA0からH0、A1からH1、a0からh0、a1からh1を示している。

【0096】端子AOからHO、A1からH1は16ビットであり、端子aOからhO、a1からh1は、それぞれ4ビットの端子であるものとする。エキストラサンブルは、全部で8ビットの場合もあるから、4ビットの端子aOからhO、a1からh1が、2組用窓されている。

【0097】しかし、このデコーダでは、端子A0,B0,A1,B1のみが、メモリMA,MBに接続されており、他の端子C0-H0、c0-h0は接地されている。このようにスイッチSW0を製造してもよいし、最初からチャンネルA,Bに関する系統のみが製造されてもよい。

【0098】メモリMA、MBからデータを読み出すスイッチSWA、SWBは、16ビット単位でデータを読み出すスイッチである。このスイッチSWA、SWBは、出力データの整合が得られるように動作される。 【0099】動作について説明する。

【0100】スイッチSWOに入力される記録用、または伝送用配列のサンプルSO、S1、e0,e1,…は、各チャンネルのサンプルで表せばA0,B0,…、H0,A1,B1,…、H1,a0,b0,…h0,a1,b1…,h0として表せる。ここで、各チャンネルのメインサンプルは16ビット、エキストラサンプルは8ビットである。回路の測器スッチはすべて閉じている。回転スッチSWOが最上部接点から、順次切り替わ

ることにより、メモリMAからMB1にそれぞれ対応するサンブルが転送されることになる。他のサンブルはすべて業却される。

【0101】以後は、メモリMAO、MB1に格納されているサンプルが、チャンネルA、Bのサンプルとして 読み出される。

【0102】回転スイッチSWOは、1回転で2サンプルを処理するので、サンプリング周波数fsの1/2である。また回転スイッチSWA、SWBは、1回転で1サンブルを読み出すので、周波数はfsである。

【0103】次に、簡易再生機種における別のオーディオデコーダに付いて説明する。このオーディオデコーダは、チャンネルA、Bのみの16ビットのデータを処理するデコーダである。入力サンブルは、2チャンネルで、量子化ビットは20ビットであるものとする。

【0104】図16において、入力端子810には、図1で説明したサンアルの列が連続して入力される。このサンプル列は、スッチSWOの入力端子811に与えられる。スッチSWOは、チャンネルAnからHn、anからhnまでの各サンプルの振り分け端子を有する。各チャンのサンプルに対応する端子には、代表サンプルと同一符号を付している。ここでは代表サンブルとして、サンプルAO、BO、A1、B1、aO、bO、a1、b1を示している。

【0105】端子AO、BO、A1、B1は16ビットであり、端子aO、bO、a1、b1は、それぞれ4ビットの端子である。2チャンネル、量子化ビット数20ビットのモードに対応するために、スイッチJBのみが閉で、スイッチJCーJHは開になっている。また端子aO、bO、a1、b1に対応するスイッチJ1、J2が閉で、他の端子に対応するスイッチj3ーj16は開である。

【0106】上記の状態で回転スイッチSWOが順次切り替わると、開になっているスイッチではデータ転送が行われない。そして、メインサンプルAO、BO、A1、B1のみがメモリMA、MBに転送される子とになる。またエキストラサンブルaaO、bO、a1、b1に関しては対応するスイッチが接地されているので、破棄されることになる。メモリMA、MBからサンプルを読み出す動作は、先の実施の形態と同じように行われる

【0107】上記の簡易機種の例では、2種類のモードの場合を説明したが、スイッチの開閉選択状態によりすべてのモードにおける2チャンネルのデータを取り出すことができる。特に注目すべき点は、エキストラサンプルのための処理は、8ビット単位であることである。このようなデータ配列により、1対のエキストラサンプルのビット数は、各チャンネルのエキストラワードが4ビットの場合でも、チャンネル数に関わらず8ビットの整数倍となる。このために、簡易デコーダにおいてエキス

トラサンプルを棄却する場合においても、8ビット単位 で処理することができる。

【0108】メインサンプルのメインワードは16ビットであるから、すべて、8ビット単位での処理が可能であり、具体的凹路を構成する上でも利点が多い。

【0109】図17には、オーディオバックのパックへッグの概略を示している。

【0110】まず、パックスタートコード(4バイト)があり、次にシステムクロックリファレンス(SCR)が記述されている。システムクロックリファレンス(SCR)は、このバックの取り込み時間を示しており、装置内部の基準時間の値より、このSCRの値が小さい場合には、このSCRが付与されているパックがオーディオバッファに取り込まれる。またパックヘッグには、プログラム多重レートが3バイトで記述されている。さらに、スタッフィング長が制御回路により参照されることにより、制御回路は、制御情報の読み取りアドレスを決めることができる。

【0111】図18には、オーディオバケットのバケットへッダーの中身を示している。パケットへッダは、パケットのスタートを知らせるための、パケットスタートコードプリフィックス、パケットがなにのデータを有するのかを示すストリームID、パケットストリームの長さを示すデータがある。パケットエレメンタリーストリーム(PES)の各種の情報、例えばコピーの禁止、許可を示すフラッグ、オリジナル情報かコピーされた情報かを示すフラッグ、パケットへッダの長さなどが記述されている。さらにこのバケットと他のビデオや副映像との時間的出力同期を取るためのプレゼンテーションタイムスタンプ(PTS)も記述されている。さらに、各ビデオオブジェクトの中で最初のフィールドの最初のパケットには、バッファについて記述しているかどうか示すフラッグ、バッファのサイズなどの情報が記述されている。

【0112】また0-7パイトのスタッフィングバイト を有する。

【0113】さらに、オーディオストリームであること、リニアPCMか他の圧縮方式及びオーディオストリームの番号を示すためのサブストリームIDを有する。さらにまた、このパケット内に先頭のバイトを配置しているオーディオのフレーム数が記述されている。さらにまた、前記PTSで指示されている時刻に再生されるべき、バケット内の最初のオーディオフレーム、すなわち最初にアクセスするユニットの先頭バイトを指示するボインタが記述されている。このポインタは、この情報の最後のバイトからのバイト番号で記述されている。そしてボインタは、そのオーディオフレームの最初のバイトアドレスを示している。また、高域強調されたのか否かを示すオーディオ強調フラッグ、オーディオフレームデ

ータがオール0のときにミュートを得るためのミュートフラッグ、オーディオフレームグループ(GOF)の中の最初にアクセスするフレーム番号も記述されている。また量子化ワードの長さ、つまり量子化ビット数、サンプリング周波数、チャンネル数、ダイナミックレンジの制御情報などが記述されている。

【0114】上記のヘッグ情報は、オーディオデコーダ 内のデコーダ制御部(図示せず)において解析される。 デコーダ制御部は、デコーダの信号処理回路を現在取り 込み中のオーディオデータに対応する信号処理形態に切 り換える。切り替わった状態は、先の図13万至図16 で示した通りである。上記のヘッタ情報と同様な情報 は、ビデオオマネージャにも記述されているので、再生 動作の初期にこのような情報を読み取れば、以後は同じ サブストリームの再生であれば読み取る必要はない。し かし上述したように各パケットのヘッグに、オーディオ を再生するに必要なモードの情報が記述されているの は、例えばパケット列が通信系列で伝送されるような場 合に何時受信を開始しても受信端未がオーディオのモー ドを認識できるようにしたからである。また、パックの みをオーディオデコーダが取り込んだ場合でも、オーデ ィオ情報を再生できるようにしたからである。

【0115】図19には、オーディオストリームに関する再生装置の信号系列を示している。図6の装置に比べて、図19の装置は、システム処理部504の内部と、オーディオデコーダ513の内部が詳しく示されている。

【0116】システム処理部504に入力した高周波信号(読み取り信号)は、同期検出器601に入力される。同期検出器601では、記録データに付加されている同期信号を検出し、タイミング信号を生成する。同期検出器601で同期信号を除去された読み取り信号は、16ビットを8ビットに復調する8-16復調器602に入力されて、8ビットのデータ列に復調される。復調データは、エラー訂正回路603に入力されて、エラー訂正処理が施される。エラー訂正されたデータは、デマルチプレクサ604に入力される。このデマルチプレクサ604では、オーディオパック、ビデオパック、副映像パックの識別がストリーム1Dに基づいて行われ、対応するデコーダに各パックは出力される。

【0117】オーディオパックは、オーディオバッファ611に取り込まれる。またオーディオバックのバックヘッグ及びパケットヘッダは、コントロール回路612は、オーディオバックの内容を認識する。すなわち、オーディオバックのスタートコード、スタッフィング長、パケットスタートコード、ストリームIDを認識する。さらにパケットの長さ、サブストリームIDの認識、最初のアクセスボイントの認識、オーディオの量子化ビット数の認識、チャンネル数の認識、サンプリング周波数の認識も行

う。このような情報が認識されると、先の図4に示した テーブルにより、スタッフィングバイト長、パディング バケット長が判明する。またコントロール回路612 は、サブストリームIDに基づいて、リニアPCMのバ ケットを認識する。

【0118】この結果、コントロール回路612は、オーディオバッファ611に格納されているオーディオデータの切り出しアドアドレスを把握することができる。よって、このオーディオバッファ611は、コントロール回路612により制御され、先に説明したサンブル、例えばSO、S1、eO、e1、S2、S3、…を出力することができる。コントロール回路612は、少なくとも、量子化ビット数、サンプリング周波数、オーディオチャンネル数を認識すれば、スタッフィングバイト数、パディングバケット数を認識することができる。そしてこの認識情報に基づいて、データの切り出しを実行することができる。

【0119】このサンプルは、チャンネル処理器613に供給される。このチャンネル処理器613の内部は、図13万至図16で説明したような回路であり、その動作モードは、コントロール回路612により制御される。

【0120】次に、上記したオーディオパケット、ビデオパケット、副映像パケットと、光ディスクの記録トラックとの物理的な関係を説明することにする。

【0121】図20(A)、図20(B)、図20(C)、図20(D)に示すように、光ディスク10の一部の記録面を拡大すると、ピット列が形成されている。このピットの集合が、セクタを構成している。従って光ディスクのトラック上には、セクタ列が形成されている。このセクタは光ヘッドにより連続して読み取られる。そしてオーディオパックがリアルタイムで再生される。

【0122】次に1つのセクタ、例えばオーディオ情報が記述されているセクタを説明する。図21(A)、図21(B)に示すように、1つのセクタは、13×2フレームから構成されている。そして各フレームには、飼期符号が付加されている。図面では2次元的にフレームの配列を示しているが、トラック上には先頭のフレームから順番に記録されている。図に示されている同期符号の順番で述べると、SYO、SY5、SY1、SY5、SY2、SY5、一である。

【0123】図に示されている1フレームにおける問期符号とデータのビット数は、32ビットと、1456ビットである。32ビット=16ビット×2、1456ビットである。32ビット=16ビット×2、1456ビットの変調コードが記録されていることを意味する。光学式ディスに対する記録が行われるときは、8ビットのデータが16ビットに変調されて記録されるからである。さらにこのセクタ情報は、変調されたエラー訂正コード

も含んでいる。

【0124】図22(A)には、上記の物理セクタの16ビットデータを、8ビットに復号した後の1つの記録セクタを示している。この記録セクタのデータ量は、(172+10)バイト×(12+1)ラインである。各ラインには、10バイトの誤り訂正符号が付加されている。また1ライン分の誤り訂正符号が存在するが、この誤り訂正符号は、後で述べるように、12ライン分が集まったときに、列方向の誤り訂正符号として機能する。

【0125】上記の1記録セクタのデークから、誤り訂正符号が除去されると、図22(B)に示すようなデータブロックとなる。すなわち、2048バイトのメインデータに、6バイトのセクタID、2バイト1D誤り検出符号、6バイトの著作権管理情報がデータ先頭に付加され、さらにデータの末尾には4バイトの誤り検出符号が付加されたデータブロックとなる。

【0126】上記の2048バイトのデータが、先に説明した1パックであり、この1パックの先頭からバックヘッダ、パケットヘッダ、オーディオデータが記述されている。そして、バックヘッダ及びバケットヘッダには、オーディオデータを処理するための各種のガイド情報が記述されていることになる。

【0127】上記したようにディスクの1つのセクタに対して、オーディオサンブルを配列した1つのパケットが割り当てられて記録されている。そして、オーディオデコーダは、1つのセクタの情報であっても、リニアPCMデータを良好に再生することができる。これは、1パック内のオーディオデータの先頭は、必ずメインサンブルの先頭から開始するようにデータ配分されているからである。また、パックヘッグ及びパケットヘッグには、オーディオデコーダがオーディオデータを処理するのに十分な制御情報が記述されているからである。

【0128】次に、誤り訂正符号ブロック (ECCブロック) について説明する。

【0129】図23(A)、図23(B)に示すように、ECCブロックは、上記した1記録セクタが16個集合することにより構成されている。図23(A)は、12行×127パイトのデータセクタ(図22(A))が16個集合された状態を示している。そして、各列には、16パイトの外符号パリティ(PO)が付加される。また各行には10パイトの内符号パリティ(PI)が付加される。さらに、記録される前には、図23(B)に示されるように、16パイトの外符号パリティ(PO)が1ビットずつ各行に分散される。この結果、1記録セクタは、13(=12+1)行のデータとして構成されることになる。図23(A)において、BO、O、BO、1、一は、パイト単位のアドレスを示している。また図23(B)において、各ブロックに付されている0乃至15は、それぞれ1記録セクタである。

【0130】上記したディスクの記録トラック上には、 ビデオパック、副映像パック、オーディオパック、NV バックがインターリーブされて配列されている。

【0131】しかし、この発明はこのようなディスクに 限定されるものではない。オーディオパックの列のみが 記録されているディスクにも適用できる。またオーディ オパックと副映像パックとがインターリーブされたディ スクにも適用できる。またオーディオパックと、副映像 パックと、NVパックとがインターリーブされたディス クにも適用できる。これらの組合わせは自由である。

[0132]

【発明の効果】上記したようにこの発明は、とくにチャンネル数と量子化ビット数が多様に設定されるオーディオデータを扱う場合にその取扱いを容易にする。

【図面の簡単な説明】

【図1】この発明の基本的な実施例を説明するために示したサンプル構成及びサンアルの配置を示す説明図。

【図2】この発明に係るバックの配列例と、この配列の中のオーディオバックの構成を示す説明図。

【図3】オーディオバックの構成を詳しく説明図。

【図4】この発明が適用されるリニアPCMデータのパケット内データサイズの例の一覧表を示す説明図。

【図5】オーディオバックの生成手順を示す説明図。

【図6】ディスク再生装置のブロック構成図。

【図7】ディスクドライブ部の説明図。

【図8】光ディスクの説明図。

【図9】光ディスクの論理フォーマットを示す説明図。

【図10】図9のビデオマネージャーの説明図。

【図11】図8のビデオオブジェクトの説明図。

【図12】プログラムチェーンの説明図。

【図13】この発明に係るオーディオデコーダの基本的な回路構成の一例を示す図。

【図14】この発明に係るオーディオデコーダの基本的 な回路構成の他の例を示す図。

【図15】さらにこの発明に係るオーディオデコーダの 基本的な回路構成の他の例を示す図。

【図16】この発明に係るオーディオデコーダの基本的 な回路構成のまた他の例を示す図。

【図17】オーディオバックのバックヘッダの内容を示す図。

【図18】オーディオバックのパケットヘッダの内容を示す図。

【図19】は、ディスク再生装置の特にオーディオ処理 系統のブロック構成図。

【図20】ディスク、ピット列、セクタ列及び物理セクタを示す説明図。

【図21】物理セクタの内容を示す図。

【図22】記録セクタの構成を示す図。

【図23】エラー訂正符号ブロックの構成を示す図。 【符号の説明】

10…ディスク、

501…ディスクドライブ部、

502mシステムCPU。

503…システムROM/RAM。

504…システム処理部、

505…データRAM、

506…ビデオバッファ、

507…劉映像バッファ。

508…ビデオデコーダ、

509…副映像デコーダ、

511…D/A变换器、

512…オーディオバッファ、

513…オーディオデコーダ、

514…D/A変換器。

[図1]

[图2]

[33]

[34]

ストリームモード			パケット内データ				
チャンネル数 fa		这子化	パケット内 最大 サンブル数	データ サイズ	パケット スタンプ 名 数 初 人他	パディング パケット 器初ノ他	
	(%) (z)	(bits)		(bytes)	(bytes)	(bytes)	
	48./98	16	1004	2008	2/5	0/0	
1(%2)	48./96	20	804	2010	0/3	0/0	
	48/98	24	670	2010	0/3	0/0	
	48/98	16	502	2008	2/5	3/0	
2(ステレな)	48/96	50	402	2010	6/3	0/0	
	48./98	24	334	2004	6/0	0/9	
	48/98	វត	334	2004	6/0	8/9	
3	48/98	20	268	2010	0/3	0/0	
	48	24	333	1998	0/0	12/15	
	49/96	16	250	2000	0/0	10/13	
4	48	20	200	2000	0/0	10/13	
	48	24	165	1992	0/0	18/21	
	48	16	200	2000	0/0	10/13	
5	48	20	100	2000	0/0	10/13	
	48	24	134	2016	0/3	0/0	
6	48	16	166	1992	0/0	18/21	
	48	26	134	2010	0/3	0/0	
7	48	18	142	1988	0/0	22/25	
8	48	15	124	1984	8/8	26/29	

【図5】

[36]

[2]9]

リードインエリア	24
ポリューム及びファイル機造領域	74
EF444 -54 -	777 #0 71 ;
ビデオタイトルセット #1	-72 74
ビデオタイトルセット # 2	ファイル # j (# j + 1
ビデオタイトルセット #3	
(
ビデオタイトルセット 48	
他の記録機械	~~73
ソードアウトエリア	23

[2]17]

フィールド	ビット数	/5イナ数	燧
Pack_start_code	32	4	000001BAh
SCR	-48	6	创作者为金
Program_mux_rate	24	3	10.08 моря
Pack stuffing length	8	7	スタッフィング 無しのとき 000b

[図10]

[211]

	ビデオオブジェク	00) 1 k = 1 k	as)		
83			3:	82	
ビデオオブジェクト (VOB_IDNI)	ビデオオブジェクト (VOB_IDN2)	,	ビデオオブジェク (VOB_JON)		
84	And the second of the second of	**************************************		**********	
(C_HN1)		(C_IOND			
85	The second secon		**********	**************************************	
ビアオオブジェクトビデ ユニット (VOBU)	A. 11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	オブジェクト マット VOBU)		ビデオオブジェクト ユニット (VOBU)	
86 88 90	91	The second second second second	**************************************	······································	
6 6 5 1 A	Arroy	SPARA	C CACAN	\$28.9.5 	

(図12)

[图13]

【図14】

【図15】

[図16]

[318]

stream_id & & PES_packet_length 16 PES_packet_length 16 PES_packet_length 16 PES_packet_length 16 PES_packet_length 24 PTS 40 PT		000001h 191111161b	プラマベー!
PES_packet_length 16 PES_packe	2 3	101111101b	プラマベー!
PTS 40 butter_size etc. stuffing_byte 8- sub_execm_id 8 number_of_brame_heders 8 first_access_unit_pointer 18 sudio_emphasis_fize audio_muto_flag audio_trame_number	3		
PTS 40 buffer_size etc. stuffing_byte 8- sub_sarean_id 8- mumber_of_frame_heders 6- first_access_unit_pointer 16- audio_emphasiz_fiag audio_muto_fiag audio_trame_number			X1-17-61
buffer_size etc. stuffing_byte 8- sub_execm_id 8- number_of_frame_heders 5- first_access_unit_pointer 16- sudio_emphasis_fixg sudio_muto_flag sudio_trame_number	5		
stuffing byte 8 sub_saream_id 8 number_of_bame_heders 8 first_access_unit_pointe; 16 audio_emphasis_flag audio_muto_flag audio_trame_number	~ [
stuffing byte 8- sub_screen_id 8 number_of_frame_heders 6 first_access_unit_pointer 16 audio_emphasis_flag audio_muto_flag audio_trame_number	1		
sub_execm_id 8 number_of_hams_heders 8 first_access_unit_pointer 16 audio_emphasis_fiag audio_muto_flag audio_trame_number	2	***************************************	
number of trams_heders 8 first_access_unit_pointe: 16 audio_emphasis_fisq audio_muto_fisq audio_trams_number	~7		
first_access_unit_pointer 16 audio_emphasis_flag audio_muto_flag audio_trame_number	1		
first_access unit pointe: 18 audio_emphasis_fisq audio_trame_number			
audio_muto_flag audio_frame_number	3		
quardization_word_length audio_sampling_frequency number_of_audio_charaseta dynamic_range_control	33		

[図20]

【図19】

【図23】

【手統補正書】

【提出日】平成9年11月14日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正內容】

【発明の名称】

記録媒体

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 所定バイトのパケットに、チャンネル数 及びまたは量子化数に応じてデータ長が異なるサンブル データを複数個収納する場合に、前記パケットの所定位 置に最初のサンブルデータの先頭を合わせて他のサンブ ルデータを順次配列し、該複数のサンブルデータの合計 バイト長は、前記パケットの最大バイト長以下とし、前 記合計バイト長が前記最大バイト長に満たない場合に は、この余った部分にスタッフィングバイト又はパッディングパケットによる無効データを挿入したパケット列を記録しており、

各パック内のサンアルデータを格納したパケットには、 ヘッダを付しており、このヘッダには前記量子化したデ ータの量子化ビット情報、サンプリング周波数、チャン ネル情報が少なくとも含まれている構造のデータが記録 されてなる記録媒体。

【請求項2】 前記複数のサンプルデータは、リニアPCMデータであり、前記最大パイト長は2010パイトであることを特徴とする請求項1記載の記録媒体。

【請求項3】 前記合計バイト長が前記級大バイト長に 満たない場合で、この余った部分が7バイト以下の場合 にはパケットヘッダ内に前記スタッフィングバイトを挿 入し、8バイト以上の場合には上記バケットの後部にパ ッディングバイトを挿入していることを特徴とする請求 項1記載の記録媒体。

【請求項4】 1 つの前記バケット内に配置されている 複数のサンプルデータは、偶数であることを特徴とする 請求項1記載の記録媒体。 【請求項5】 所定バイトのパケットに、チャンネル数 及びまたは量子化数に応じてデータ長が異なるサンフル データを複数個収納する場合に、前記パケットの所定位 徴に最初のサンプルデータの先頭を合わせて他のサンプ ルデータを順次配列し、該複数のサンプルデータの合計 バイト長は、前記パケットの最大バイト長以下とし、前 記合計バイト長が前記最大バイト長に満たない場合に は、この余った部分にスタッフィングバイト又はバッディングパケットによる無効データを挿入したパケット列 を記録しており、

各バック内のサンプルデータを格納したパケットには、 ヘッダを付しており、このヘッダには前記量子化したデータの量子化ビット情報、サンプリング周波数、チャンネル情報が少なくとも含まれており、

前記量子化したデータの縁子化ビット情報、サンプリング周波数、チャンネル情報に応じて、前記パケット内のデータサイズが決まると、前記パケットスタッフィング及びパディングパケットのバイト数が決まるように取り決められていることを特徴とする記録媒体。

【請求項6】 前記ヘッダには、他のデータとの同期を 取るためのプレゼンテーションタイムスタンプを含むこ とを特徴とする請求項5記載の記録媒体。

【請求項7】 前記ヘッグには、オーディオデータの符号化方式を示すサブストリーム識別情報を含むことを特徴とする請求項5記載の記録媒体。

【讃求項8】 トラック上にビット列が形成され、複数

のピット列で物理セクタを構成し、この物理セクタは、 同期信号を付加されたデータとしての所定数のフレーム で構成され、この物理セクタを復号すると記録セクタを 含むデータとなり、この記録セクタは、所定バイト数の データ部と、これに付加された識別情報及び誤り訂正符 号からなり、上記の記録セクタの所定数が集められて、 かつ外符号バリティー、内符号バリティーが付加された 状態が1ECCブロックを構成し、

前記記録セクタの所定パイト数のデータがパックを構成し、このパックには、パックヘッグ、パケットヘッグを含むパケットが含まれており、

前記パケットには、チャンネル数及びまたは量子化数に 応じてデータ長が異なるサンプルデータを複数個収納さ れ

この場合に、前記パケットの所定位置に最初のサンアル データの先頭を合わせて他のサンプルデータを順次配列 し、該複数のサンプルデータの合計バイト長は、前記パ ケットの最大バイト長以下とし、前記合計バイト長が前 記最大バイト長に満たない場合には、この余った部分に スタッフィングバイト又はパッディングバケットによる 無効データを挿入しており、

各パック内のサンプルデータを格納したパケットには、 ヘッダを付しており、このヘッダには前記量子化したデータの量子化ビット情報、サンプリング周波数、チャン ネル情報が少なくとも含まれている構造のデータが記録 されてなる記録媒体。

【手続補正書】

【提出日】平成10年5月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正內容】

【特許請求の範囲】

【請求項1】 バックを構成する所定バイト内にバックへッグ、バケットへッグ、データ部を順次配置し、前記データ部に、チャンネル数及びまたは量子化数に応じてデータ長が異なるサンプルデータを複数個収納する場合に、前記データ部の所定位置に最初のサンプルデータの先頭を合わせて他のサンブルデータを順次配列し、該複数のサンプルデータの合計バイト長は、前記データ部の許容できる最大バイト長以下とし、前記合計バイト長が前記最大バイト長に満たない場合には、前記バックヘッグにスタッフィングバイト又は前記データ部にバッディングパケットによる無効データを挿入したパック列を記録しており、

各バック内の上記サンプルデータを格納したデータ部に は上記パケットへッダを付しており、このパケットへッ ダには前記量子化したデータの量子化ビット情報、サンプリング周波数、チャンネル情報が少なくとも含まれており

更にこのバケットヘッダに付されているパックヘッダに は、スタッフィングの有無と長さを示す情報が含まれて いる構造のデータが記録されてなる記録媒体。

【請求項2】 前記複数のサンプルデータは、リニアPCMデータであり、前記数大バイト長は2010バイトであることを特徴とする請求項1記載の記録媒体。

【請求項3】 前記合計バイト長が前記級大バイト長に 満たない場合で、この余った部分が7バイト以下の場合 には前記バケットヘッダ内に前記スタッフィングバイト を挿入し、8バイト以上の場合には上記データ部の後部 にパッディングバイトを挿入していることを特徴とする 請求項1記載の記録媒体。

【請求項4】 1つの前記バック内に配置されている複数のサンプルデータは、偶数であることを特徴とする請求項1記載の記録媒体。

【請求項5】 前記パックを構成する所定バイト内にパックヘッダ、パケットヘッダ、データ部を順次配置し、前記データ部に、チャンネル数及びまたは量子化数に応

してデータ長が異なるサンアルデータを複数個収納する場合に、前記データ部の所定位置に最初のサンプルデータの先頭を合わせて他のサンプルデータを順次配列し、該複数のサンプルデータの合計バイト長は、前記データ部の許容できる最大バイト長以下とし、前記合計バイト長が前記最大バイト長に満たない場合には、前記パックへッグにスタッフィングバイト又は前記データ部にパッディングパケットによる無効データを挿入したパック列を記録しており、

各パック内の上記サンプルデータを格納したデータ部に は上記パケットヘッダを付しており、このパケットヘッ ダには前記量子化したデータの量子化ビット情報、サン プリング周波数、チャンネル情報が少なくとも含まれて おり、

前記量子化したデータの量子化ビット情報、サンプリング周波数、チャンネル情報に応じて、前記パック内のデータサイズが決まると、前記パケットスタッフィング及びパディングパケットのバイト数が決まるように取り決められており、

更に上記パケットヘッダに付されているパックヘッダに は、スタッフィングの有無と長さを示す情報が含まれて いる構造のデータが記録されていることを特徴とする記 録媒体。

【請求項6】 前記パケットヘッダには、他のデータと の問期を取るためのプレゼンテーションタイムスタンプ を含むことを特徴とする請求項5記載の記録媒体。

【請求項7】 前記パケットヘッグには、オーディオデータの符号化方式を示すサブストリーム識別情報を含むことを特徴とする請求項5記載の記録媒体。

【請求項8】 トラック上にビット列が形成され、複数

のピット列で物理セクタを構成し、この物理セクタは、 阿期信号を付加されたデータとしての所定数のフレーム で構成され、この物理セクタを復号すると記録セクタを 含むデータとなり、この記録セクタは、所定バイト数の データ部と、これに付加された識別情報及び誤り訂正符 号からなり、上記の記録セクタの所定数が集められて、 かつ外符号パリティー、内符号パリティーが付加された 状態が1mCCブロックを構成し、

前記記録セクタの所定パイト数のデータがパックを構成 し、このパックには、パックヘッダ、パケットヘッダ、 データ部を含むパックが含まれており、

前記データ部には、チャンネル数及びまたは量子化数に応じてデータ長が異なるサンプルデータを複数個収納され、

この場合に、前記データ部の所定位置に最初のサンプルデータの先頭を合わせて他のサンプルデータを順次配列し、該複数のサンプルデータの合計バイト長は、前記データ部の許容できる最大バイト長以下とし、前記合計バイト長が前記最大バイト長に満たない場合には、前記パクットヘッダにスタッフィングバイト又は前記データ部にパッディングパケットによる無効データを挿入しており、

各パック内の前記サンプルデータを格納したデータ部には、前記パケットへッダを付しており、このパケットへッダには前記量子化したデータの量子化ビット情報、サンプリング周波数、チャンネル情報が少なくとも含まれており、

要に上記パケットヘッダに付されているバックヘッダに は、スタッフィングの有無と長さを示す情報が含まれている構造のデータが記録されてなる記録媒体。

フロントページの続き

(72)発明者 西脇 博久

神奈川県川崎市幸区郷町70番地 株式会社 東芝柳町工場内