Ovation的PID算法INHB功能的分析

Zhu Wei

2015年7月6日 v1.0

前述 1

首先我们来详细讨论一下Ovation的PID的计算过程,如下图方式的并行计算:

where:

 $\tau_d^{"}$ = Derivative rate time constant (DRATE)

s = LaPlace operator

Note:

Output is limited by algorithm limits.

这里我们做一些简化,通常PID的微分项是不用的,将PID变为PI。假设PI是Indirect型,即 偏差Error=设定值SP-过程值PV。比例增益 $PGAIN(K_p)$ 为1,积分时间 $INTG(\tau_i)$ 为10秒。这 样PI的输出OUT= $(K_p*Error)+\frac{1}{\tau_i}\int Error d(t)$ 。 通常PID在下游的MASTATION算法为手动 时,跟踪MASTATION的输出,此时设定值跟踪过程值,PID的偏差为0;在MASTATION切 换至自动时,PID输出保持原值。如果此时偏差值发生变化,PID开始计算,实际上PID这 时的输出值是原输出值加上当前偏差值计算出的输出值。Ovation的PID由控制器计算,必 然受控制周期影响,假设当前逻辑运行在100毫秒的控制区。对于每个周期来说PID的输 出=投入自动时的初始输出+偏差计算输出。由于积分时间为10秒,每周期的积分量=1/10个周期/10秒*偏差,每秒的积分量=1/10秒*偏差。这里假设设定值SP和过程值PV都等于50,PID输出也为50(这里所有值都假设归一化为0~100,Ovation要求PID的SP和PV都归一化至0~100),PID下游的MASTATION刚投入自动,看下面的表格,展示PID如何计算:

	, ,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	
时间轴(秒)	设定值SP	过程值PV	PID输出值
0	50	50	50
1	50	40	61
2	50	40	62
10	50	40	70
11	50	50	70

然而实际的Ovation控制器计算过程会稍有偏差,第一个周期的输出实际上=投入自动时的初始输出+偏差计算输出(第一个周期积分只计算半个周期),也就是说偏差改变后第1个控制周期的输出是60.05,由于Ovation广播数据是1秒一次,时间趋势上看到的值也可能是60.15,60.25,60.35,...60.95这样的值,当然如果逻辑是运算在1000ms的控制区,实际的PID输出值便是60.5。下面的图便是一个运行在100ms控制区的PID的运算结果,实际的PID输出第1秒是60.25,也就是计算了3个周期(其中第一个周期的积分项只算一半)后广播数据,当然为了简化,假设了PID输出变化,PV也没有发生变化。

Date Time	SP.UNIT	PV.UNIT	PID-OUT
07/14/2015 09:24:31	50.000	40.000	75.250
07/14/2015 09:24:30	50.000	40.000	74.250
07/14/2015 09:24:29	50.000	40.000	73.250
07/14/2015 09:24:28	50.000	40.000	72.250
07/14/2015 09:24:27	50.000	40.000	71.250
07/14/2015 09:24:26	50.000	40.000	70.250
07/14/2015 09:24:25	50.000	40.000	69.250
07/14/2015 09:24:24	50.000	40.000	68.250
07/14/2015 09:24:23	50.000	40.000	67.250
07/14/2015 09:24:22	50.000	40.000	66.250
07/14/2015 09:24:21	50.000	40.000	65.250
07/14/2015 09:24:20	50.000	40.000	64.250
07/14/2015 09:24:19	50.000	40.000	63.250
07/14/2015 09:24:18	50.000	40.000	62.250
07/14/2015 09:24:17	50.000	40.000	61.250
07/14/2015 09:24:16	50.000	40.000	60.250
07/14/2015 09:24:15	50.000	50.000	50.000

接下来我们继续那个运行在100ms控制区的实际PID,如果在运行一段时间后PV值发生了变化呢,比如下面左边的图PV从40变回50,导致偏差为0,输出从72.95变为63,减少了9.95,这是由于比例部分由原来的1*10变为0*10,减少了10,而积分还会计算半个周期,就是10-0.05,结果是输出减少了9.95;再比如下面右边的图PV从40先变到45,再变到50。看下面的图就会发现,PV由40变为45后,PID输出由71.45变为67.275,减少了4.175,这是由于偏差由10减少了到5,这样输出在1秒内会减少5(注意之前设置的比例系数为1),而这时积分作用还在,1秒积分作用0.5,半个周期为0.025。最后PV由45变为50,PID输出最后停在64.05,相对于上个周期68.775减少了4.725。由于广播时间的原因,偏差减少了5,输出值的减少就会在4和5之间,半个周期的积分作用导致了输出会有0.025的部分。

Graph Table View Radar Vie	Informati	00			Date Time	SP.UNIT	PV.UNIT	PID-OUT
					07/14/2015 09:47:51	50.000	50.000	64.050
Date Time	SP.UNIT	PV.UNIT	PID-OUT		07/14/2015 09:47:50	50.000	50.000	64.050
07/14/2015 09:58:35	50.000	50.000	63.000		07/14/2015 09:47:49	50.000	50.000	64.050
07/14/2015 09:58:34	50.000	50.000	63.000		07/14/2015 09:47:48	50.000	50.000	64.050
07/14/2015 09:58:33	50.000	50.000	63.000			50,000	45.000	68.775
07/14/2015 09:58:32	50.000	50.000	63.000		07/14/2015 09:47:47			
07/14/2015 09:58:31	50.000	50.000	63.000	- 50	07/14/2015 09:47:46	50.000	45.000	68.275
07/14/2015 09:58:30	50.000	40.000	72.950		07/14/2015 09:47:45	50.000	45.000	67.775
07/14/2015 09:58:29	50.000	40.000	71.950		07/14/2015 09:47:44	50.000	45.000	67.275
07/14/2015 09:58:28	50.000	40.000	70.950	>	07/14/2015 09:47:43	50.000	40.000	71.450
07/14/2015 09:58:27	50.000	40.000	69.950		07/14/2015 09:47:42	50.000	40.000	70.450
07/14/2015 09:58:26	50.000	40.000	68.950		07/14/2015 09:47:41	50.000	40.000	69.450
07/14/2015 09:58:25	50.000	40.000	67.950		07/14/2015 09:47:40	50.000	40.000	68.450
07/14/2015 09:58:24	50.000	40.000	66.950		07/14/2015 09:47:39	50.000	40.000	67.450
07/14/2015 09:58:23	50.000	40.000	65.950		07/14/2015 09:47:38	50.000	40.000	66.450
07/14/2015 09:58:22	50.000	40.000	64.950		07/14/2015 09:47:37	50.000	40.000	65.450
07/14/2015 09:58:21	50.000	40.000	63.950		07/14/2015 09:47:36	50.000	40.000	64.450
07/14/2015 09:58:20	50.000	40.000	62.950		07/14/2015 09:47:35	50.000	40.000	63.450
07/14/2015 09:58:19	50.000	40.000	61.950		07/14/2015 09:47:34	50.000	40.000	62.450
07/14/2015 09:58:18	50.000	40.000	60.950		07/14/2015 09:47:33	50.000	40.000	61.450
07/14/2015 09:58:17	50.000	50.000	50.000		07/14/2015 09:47:32	50.000	40.000	60.450
07/14/2015 09:58:16	50.000	50.000	50.000		07/14/2015 09:47:31	50,000	50.000	50.000

2 Hard Inhibit功能

Ovation在Solaris版本的1.8开始,为PID引入了INHB参数,即Hard Inhibit参数,可以设置为Enable或Disable。Ovation使用MAMODE可以发出RAI(禁止升)和LWI(禁止降)信号给MASTATION算法,PID的跟踪输入从MASTATION的跟踪输出点接收了RAI和LWI信号。当RAI发生时,PID输出不能再增大,只能减少;当LWI发生时,PID输出不能减少,只能增

大。而Hard Inhibit功能就是在PID收到RAI或LWI信号时,行为可以不同。如果将INHB设置为Enable,在发生RAI和LWI时,PID会停止计算,输出保持最后一次的计算值,直到偏差值反向(就是符号改变,比如偏差由1变为-1或-1变为1)或禁止信号撤销。如果将INHB设置为Disable,在发生RAI和LWI时,PID还会继续计算新的输出值,如果新计算的输出值违反了禁止条件,输出会保持,如果新的值没有违反禁止条件,PID的输出值更新为新的计算值。不管INHB功能是否开启,PID的抗积分饱和功能一直作用,也就是说,输出值在遇到禁止条件发生时,会停止积分计算。

在Ovation的1.8版本之前PID没有INHB参数设置,而实际上PID是按照INHB为Enable来计算的,而PIDFF则一直是按照INHB为Disable来计算的,即使到Ovation3.5版本,PIDFF也是没有INHB参数设置功能的。

3 Hard Inhibit功能的实际表现

首先我们来看看PID的INHB功能开启(Enable)的情况,还是原来那个100ms控制器 的PID恢复到初始状态投入自动,如下面左边的图,PV先到40,然后等待PID的输出 到65.25的时候,发出RAI信号,这时候PID的输出就保持在65.25了,然后改变PV值从40->45->48->50, PID的输出一直不变,一直到PV变成55了,这时偏差改变符号,输出才 由65.25变为59.825。这里我们就可以看到,在INHB开启时遇到RAI,然后PID输出被锁住, 一直到偏差符号改变才重新计算。再让PID恢复到初始状态,但是将INHB功能关闭(Disable), 如下面右边的图,PV先到40,然后等待PID输出到64.45,发出RAI信号,这时候输出也会保 持在64.45,而实际上PID内部还在计算输出值,但是因为已经到达上限,由于PID的抗积分 饱和功能,积分项已经不再运算了,如果此时改变PV到45,注意这种改变并没有让偏差反 向,但是PID的输出由64.45变为59.525,减少了4.925,实际上就是比例计算的PID输出由原来 的1*10变为1*5,减少了5,再加上积分项的计算(一个半周期就是0.075),然后PV再由45变 为50,输出由59.525减少到54.55,输出减少了4.975,实际上就是比例计算的PID输出由原来 的1*5变为1*0,减少了5,再加上积分项的计算(半个周期就是0.025),积分项计算多少个周 期在偏差没有变为0时是不固定的,取决于指令发生的时间,当然最多也就一秒加半个周期, 而偏差变为0的那刻,积分项必然只计算半个周期。当然接下来PV变为55,偏差符号改变,这 时候输出也必然再次减少,减少的值必然至少5.025。

Date Time	SP.UNIT	PV.UNIT	PID-OUT	Gra	ph Table View Radar Vi	ew Informati	on	
07/14/2015 13:42:08	50.000	55.000	59.325		Date Time	SP.UNIT	PV.UNIT	PID-OUT.
07/14/2015 13:42:07	50.000	55.000	59.825		07/14/2015 13:54:14	50.000	55.000	46.225
07/14/2015 13:42:06	50.000	50.000	65.250		07/14/2015 13:54:13	50.000	55.000	46.725
07/14/2015 13:42:05	50.000	50.000	65.250		07/14/2015 13:54:12	50.000	55.000	47.225
07/14/2015 13:42:04	50,000	50.000	65,250		07/14/2015 13:54:11	50.000	55.000	47.725
07/14/2015 13:42:03	50,000	50.000	65,250		07/14/2015 13:54:10	50.000	55.000	48.225
07/14/2015 13:42:02	50,000	50,000	65.250		07/14/2015 13:54:09	50.000	55.000	48.725
	50.000	50.000	65.250		07/14/2015 13:54:08	50.000	55.000	49.225
07/14/2015 13:42:01					07/14/2015 13:54:07	50.000	50.000	54.550
07/14/2015 13:42:00	50.000	48.000	65.250		07/14/2015 13:54:06	50.000	50.000	54.550
07/14/2015 13:41:59	50.000	48.000	65.250		07/14/2015 13:54:05	50.000	50.000	54.550
07/14/2015 13:41:58	50.000	48.000	65.250		07/14/2015 13:54:04	50.000	50.000	54.550
07/14/2015 13:41:57	50.000	45.000	65.250		07/14/2015 13:54:03	50.000	45.000	59.525
07/14/2015 13:41:56	50.000	45.000	65.250		07/14/2015 13:54:02	50.000	45.000	59.525
07/14/2015 13:41:55	50.000	45.000	65.250		07/14/2015 13:54:01	50.000	45.000	59.525
07/14/2015 13:41:54	50.000	45.000	65.250	>	07/14/2015 13:54:00	50.000	45.000	59.525
07/14/2015 13:41:53	50,000	40.000	65.250		07/14/2015 13:53:59	50.000	40.000	64.450
07/14/2015 13:41:52	50,000	40,000	65,250		07/14/2015 13:53:58	50.000	40.000	64.450
07/14/2015 13:41:51	50,000	40.000	65.250		07/14/2015 13:53:57	50.000	40.000	64.450
	50,000	40.000	65.250	-	07/14/2015 13:53:56	50.000	40.000	64.450
				-	07/14/2015 13:53:55	50.000	40.000	64.450
07/14/2015 13:41:49	50.000	40.000	65.250		07/14/2015 13:53:54	50.000	40.000	64.450
07/14/2015 13:41:48	50.000	40.000	65.250		07/14/2015 13:53:53	50.000	40.000	64.050
07/14/2015 13:41:47	50.000	40.000	64.750		07/14/2015 13:53:52	50.000	40.000	63.050
07/14/2015 13:41:46	50.000	40.000	63.750		07/14/2015 13:53:51	50.000	40.000	62.050
07/14/2015 13:41:45	50.000	40.000	62.750		07/14/2015 13:53:50	50.000	40.000	61.050
07/14/2015 13:41:44	50.000	40.000	61.750		07/14/2015 13:53:49	50.000	40.000	60.050
07/14/2015 13:41:43	50.000	40.000	60.750		07/14/2015 13:53:48	50.000	50.000	50.000
07/14/2015 13:41:42	50,000	50.000	50.000		07/14/2015 13:53:47	50.000	50.000	50.000

4 实际使用中遇到的问题

上面说了那么多,分析了Ovation的PID实际计算过程,接下来我们就说说实际使用中的问题。常常有用户会抱怨PIDFF的问题,由于PIDFF的默认行为就是INHB为关闭的行为,而且PIDFF也没有设置INHB为开启的功能。试想一个使用PIDFF(INDIRECT类型)的场景,输出值在50的时候,RAI信号发出,而此时过程值PV一直小于设定值,我们认为PIDFF的输出就应该保持在RAI信号发出的那一刻,然而由于此时PID还在计算,即使过程值PV小于设定值,但是一直在波动,那么不断重新计算的比例项,只要遇到偏差减少的情况,就会减少输出值(即使此时偏差的符号还没有改变),而且由于抗积分饱和的功能,RAI信号在的时候,积分项几乎不被计算,最后输出值就会达到下限(如果RAI信号一直在的话)。

那可以说PIDFF这是一种bug吗,当然不是。对于PIDFF来说,FF的开环前馈计算是起主要作用的,PID的闭环计算只是一个修正作用,用于微调。另外RAI或者LWI信号一直发着也是有问题的,说明你的前馈计算有问题,稳不住过程,而一个好的控制策略,应该说,前馈的计算值是多少,最终的输出就是多少,PID的闭环修正只是偶尔作用一下,更不要说还要

一直来个RAI或者LWI了,说明被控对象根本稳不住吗。那么PID原来默认INHB开启的情况不是好好的么,为什么还要引入关闭功能呢,必然是某些情况下的需求咯,比如过程的滞后较大,如果被RAI或LWI锁住后,要一直等到偏差反向才动作,就有可能晚了。

上面一段说了那么多,其实没什么用,如果被部分工艺党看到了,一定会说搞系统的啥啥都不知道,然后就变成口水战了。

5 总结

如果有人对PIDFF的行为感到困惑,那就让他用PID配SUM吧,PID默认INHB为Enable。如果有人对那半个周期的积分项感到困惑,这其实也很好理解,想想微积分里面 $\int_0^1 x\,dx=\frac{1}{2}+C$,这里设常数C为0。

... 没有啦,就到这里吧。