MAT20306 - Advanced Statistics

Lecture 11: Analysis of Covariance: ANCOVA

Topics @ Advanced Level

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

Example: Seed yield of peanut plants

y =seed yield of peanut plants

3 types of fertilizer; control, slow, fast release (C, S or F)

x = height of plant
 (measure of level of development or health)

30 plants, randomly assigned to C, S and F

the aim is to compare types of fertilizer C, S and F

We could consider forming blocks based on values of x.

But the extra information (height) in x is not qualitative but quantitative.

With some assumptions about the relationship between y and x, a more sophisticated approach is possible, called analysis of covariance (ANCOVA).

Seed yield of peanut plants

Plot of *y* against *x* suggests that data are roughly around three parallel lines.

Peanut plants, one-way ANOVA

Note (for later use): SSE = 7.11, $\hat{\sigma}_{\epsilon}^2$ = IMSE = 0.263 F-test: significant differences in mean yield among fertilizers

Yield

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	207.683	2	103.841	394.279	.000
Within Groups	7.111	27	.263		
Total	214.794	29			

ANOVA

Note (for later use): SSE = 7.11 , $\hat{\sigma}_{\epsilon}^2 = MSE = 0.263$

F-test: significant differences in mean yield among fertilizers

Motivation to include covariate x

Variability of y around each line smaller than variability ignoring x. Height is unevenly distributed over fertilizers: this may favour some fertilizers over others, maybe we can correct for this.

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

ANCOVA, peanut plants

Parallel lines model:

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \epsilon_{ij}$$
 - assumptions later!!!

index i = 1, 2, 3 for fertilizer C, S and F; $j = 1 \dots 10$ for plants per fertilizer

Suppose F is the reference (SPSS), so $\tau_3 = 0$

 β_0 = mean yield for F at x=0 !!!

 τ_i = difference in mean yield between fertilizer i (i = 1, 2 for C or S) and F

 β_1 = common slope

ANCOVA vs. one-way ANOVA

Tests of Between-Subjects Effects

Dependent Variable: yield

Source	Type II Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	214.376 ^a	3	71.459	4447.853	.000
Intercept	164.892	1	164.892	10263.470	.000
fert	213.904	2	106.952	6657.085	.000
height	6.693	1	6.693	416.615	.000
Error	.418	26	.016		
Total	4869.850	30			
Corrected Total	214.794	29			

One-way ANOVA vs. ANCOVA

SSE 7.11 0.42

MSE 0.263 0.016

Large part error variation one-way ANOVA explained by covariate x^x in ANCOVA: MSE changes from 0.263 into 0.016

ANCOVA offers more accurate comparisons of types of fertilizer.

a. R Squared = .998 (Adjusted R Squared = .998)

Parameter Estimates

Dependent Variable: vield

<u>Dependent v</u>	Dependent variable, yield							
					95% Confide	ence Interval		
Parameter Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound		
Intercept	6.385	.1535	41.590	.000	6.070	6.701		
[fertilizer=1]	3.144	.0604	52.078	.000	3.020	3.268		
[fertilizer=2]	6.716	.0585	114.784	.000	6.596	6.836		
[fertilizer=3]	0 ^a			•				
height	.056	.0027	20.411	.000	.050	.061		

a. This parameter is set to zero because it is redundant.

fitted model: $\hat{y} = \hat{\beta}_0 + \hat{\tau}_i + \hat{\beta}_1 x$

three parallel lines for the three types of fertilizer:

Fast
$$\hat{y} = 6.385$$

$$+ 0.056 x$$

Control
$$\hat{y} = (6.385 + 3.144) + 0.056 x$$

What is a smart choice of x?

$$\hat{y} = (6.385 + 6.716) + 0.056 x$$

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

Estimation: Adjusted treatment means

$$\overline{y}_{i.} = \hat{\beta}_0 + \hat{\tau}_i + \hat{\beta}_1 \overline{x}_{i.}$$

The <u>observed treatment means</u> are not only $\overline{y}_{i.} = \hat{\beta}_0 + \hat{\tau}_i + \hat{\beta}_1 \overline{x}_{i.}$ different because of treatment differences but also because of differences in the mean of x also because of differences in the mean of x for the units in the treatment group.

<u>Interest</u> is in the treatment effects, i.e. the (differences between) the τ_i 's. The differences between these are the differences in adjusted treatment means, not with the observed treatment means.

$$\overline{y}_{i.adj} = \hat{\beta}_0 + \hat{\tau}_i + \hat{\beta}_1 \overline{x}..$$

Adjusted treatment means Estimated means of y, when $x = \bar{x}$...

$$\overline{y}_{i,adj} = \overline{y}_{i} - \hat{\beta}_{1}(\overline{x}_{i} - \overline{x}_{i})$$

$$se(\overline{y}_{i,adj}) = \sqrt{\frac{\hat{\sigma}_{\varepsilon}^{2}}{n} + (\overline{x}_{i} - \overline{x}_{i})^{2}} se(\hat{\beta}_{1})^{2}$$

Seed yield of peanut plants, continued

Means output (Descriptive Statistics)

Report

fertilizer		y ield	height
С	Mean	12.130	46.60
	N	10	10
S	Mean	15.830	48.90
	N	10	10
F	Mean	9.410	54.20
	N	10	10
Total	Mean	12.457	49.90
	N	30	30

Adjusted Treatment means method 1:

$$\overline{y}_{i.,adj} = \overline{y}_{i.} - \hat{\beta}_1(\overline{x}_{i.} - \overline{x}..)$$

C: 12.13 - 0.056*(46.60-49.90) = 12.315

S: 15.83 - 0.056*(48.90-49.90) = 15.886

F: 9.41 - 0.056*(54.20-49.90) = 9.169

Parameter Estimates

Dependent Variable: yield

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	6.385	.1535	41.590	.000	6.070	6.701
[fertilizer=1]	3.144	.0604	52.078	.000	3.020	3.268
[fertilizer=2]	6.716	.0585	114.784	.000	6.596	6.836
[fertilizer=3]	0 ^a					
height	.056	.0027	20.411	.000	.050	.061

a. This parameter is set to zero because it is redundant.

Seed yield of peanut plants, continued

Estimated adjusted treatment means (method 2):

SPSS uses x = 0 as a reference in the model:

$$\overline{y}_{i.,adj} = \hat{\beta}_0 + \hat{\tau}_i + \hat{\beta}_1 \overline{x}..$$

but the mean of x in the adjusted means:

Adj. mean C:
$$6.385 + 3.144 + 0.056 * 49.9 = 12.32$$

Adj. mean S:
$$6.385 + 6.716 + 0.056 * 49.9 = 15.90$$

Adj. mean F:
$$6.385 + 0.056 * 49.9 = 9.18$$

Give estimated adjusted treatment means method 3 (Easy), using Estimates.

Note that observed means and adjusted means are not the same

	F			
fertilizer		y ield		height
С	Mean	12.1	30	46.60
	N		10	10
S	Mean	15.830		48.90
	N		10	
F	Mean	9.4	10	54.20
	N		10	10
Total	Mean	12.4	57	49.90
	N		30	30

Estimates							
Depender	nt Variable: yi	eld					
			95% Confidence Interval				
fertilizer	Mean	Std. Error	Lower Bound	Upper Bound			
С	12.314 ^a	.041	12.230	12.399			
	15.886 ^a	.040	15.803	15.968			
S	15.000	.040	13.003	13.900			

a. Covariates appearing in the model are evaluated at the following values: height = 49.90.

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

F-tests for treatment effects / covariate effect

Tests of Between-Subjects Effects										
Dependent Variable: yield										
Source	Type II Sum of Squares	df	Mean Square	F	Sig.					
Corrected Model	214.376 ^a	3	71.459	4447.853	.000					
Intercept	164.892	1	164.892	10263.470	.000					
fert	213.904	2	106.952	6657.085	.000					
height	6.693	1	6.693	416.615	.000					
Error	.418	26	.016							
Total	4869.850	30								
Corrected Total	214.794	29								

a. R Squared = .998 (Adjusted R Squared = .998)

So the test statistics used are: (use Type II SS)

For variety: F=MSfert / MSE with null-distribution F(df_{fert}, dfE)

For height: F = MSheight / MSE (for a two-sided H_a) or

 $t = \hat{\beta}_1 / se(\hat{\beta}_1)$ (for a one-sided or a two-sided H_a)

with null distributions F(1, dfE) or t_{dfE}

The test for the slope β_1 compares a model with 3 parallel (not horizontal) lines to a model with 3 horizontal lines(i.e. 1-way ANOVA model).

The test on the factor compares the model with 3 parallel lines to a model with only 1 line (where the 3 intercepts are the same).

ANCOVA, F- and t-tests

Tests of Between-Subjects Effects

Dependent Variable: yield

Dependent variable	or yrora				
Source	Type II Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	214.376 ^a	3	71.459	4447.853	.000
Intercept	164.892	1	164.892	10263.470	.000
fert	213.904	2	106.952	6657.085	.000
height	6.693	1	6.693	416.615	.000
Error	.418	26	.016		
Total	4869.850	30			
Corrected Total	214.794	29			

a. R Squared = .998 (Adjusted R Squared = .998)

Parameter Estimates

Dependent Variable: yield

					95% Confide	ence Interval
Parameter Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	6.385	.1535	41.590	.000	6.070	6.701
[fertilizer=1]	3.144	.0604	52.078	.000	3.020	3.268
[fertilizer=2]	6.716	.0585	114.784	000	6.596	6.836
[fertilizer=3]	0 ^a					
height	.056	.0027	20.411	.000	.050	.061

a. This parameter is set to zero because it is redundant.

F- or t-test for height significant (P-value 0.000): seems good idea to have covariate in the model.

F-test for treatments significant (P-value = 0.000).

t-tests for pairwise comparisons significant (both P-values = 0.00)

Difference between adjusted treatment means, formal expression

Difference between e.g. adjusted means for treatments 1 and 2:

$$\begin{aligned} \overline{y}_{1.,adj} - \overline{y}_{2.,adj} &= \hat{\tau}_1 - \hat{\tau}_2 = \\ &= \overline{y}_{1.} - \overline{y}_{2.} - \hat{\beta}_1 (\overline{x}_{1.} - \overline{x}_{2.}) \end{aligned}$$

adjustment for differences in mean height

Pairwise Comparisons

Dependent	Variable:	yield
-----------	-----------	-------

		Mean Difference				95% Confiden	ce Interval for rence
(I) f ertilizer	(J) fertilizer	(I-J)	Std. Error		Sig. ²	Lower Bound	Upper Bound
С	S	-3.572*	.0570		.000	-3.689	-3.454
	F	3.144*	.0604		-,000	3.020	3.268
S	С	3.572*	.0570		.000	3.454	3.689
	F	6.716*	.0585		.000	6.596	6.836
F	С	-3.144*	.0604		.000	-3.268	-3.020
	S	-6.716*	.0585	'	.000	-6.836	-6.596

Based on estimated marginal means

- * The mean difference is significant at the .05 level.
- a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

3. Pairwise comparisons by Fisher's LSD show that all 3 fertilizers differ significantly from each other.

Why are s.e.diff.'s different?

Seed yield of peanut plants, continued

$$Se(\bar{y}_{1.,adj} - \bar{y}_{2.,adj}) = \sqrt{\hat{\sigma}_{\varepsilon}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right) + (\bar{x}_{1.} - \bar{x}_{2.})^2 se(\hat{\beta}_1)^2}$$

Pairwise Comparisons

Dependent Variable: yield

		~					
		Mean Difference				95% Confidence Interval for Difference	
(I) fertilizer	(J) fertilizer	(I-J)	Std. Error		Sig. ²	Lower Bound	Upper Bound
С	S	-3.572*	.0570-		.000	-3.689	-3.454
	F	3.144*	.0604	//	-000	3.020	3.268
S	С	3.572*	.0570		.000	3.454	3.689
	F	6.716*	.0585		.000	6.596	6.836
F	С	-3.144*	.0604		.000	-3.268	-3.020
	S	-6.716*	.0585		.000	-6.836	-6.596

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

3. Pairwise comparisons by Fisher's LSD show that all 3 fertilizers differ significantly from each other.

Why are s.e.d's different?

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

Assumptions in ANCOVA

In addition to usual assumptions about error terms ϵ , we need to verify:

- ullet that the relationship is linear between the response y and covariate x
- that the slope is the same for all treatments (parallel lines)
- that the covariate x does not depend on the treatments (see later the section "reservations")

The last assumption will certainly hold, when x is observed prior to random assignment of the treatments.

Test for non-parallel lines

Test whether lines are parallel by including extra interaction between factor and covariate,

e.g. interaction between fertilizer and height for peanut plants will give three lines with separate intercepts and separate slopes.

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \lambda_i x_{ij} + \varepsilon_{ij}$$

Compare complete and reduced model with an F-test

Complete model (= model with interaction):

separate slope and separate intercept for each fertilizer, so three arbitrary lines

Reduced model (= analysis of covariance model):

common slope and separate intercept for each fertilizer, so three parallel lines

Test for non-linearity

As a simple test for non-linearity, add a quadratic term to the model for e.g. height in the peanut plants example.

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \beta_2 x_{ij}^2 + \varepsilon_{ij}$$

Test whether the coefficient of the quadratic term significantly differs from 0 with a t- or F-test.

We might also consider adding both the quadratic term and the aforementioned interaction and test for significance of each again.

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \lambda_i x_{ij} + \beta_2 x_{ij}^2 + \varepsilon_{ij}$$

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

Another example

The example

Example: Peanut yield

- experimental study on effect of fertilizers
- covariate = initial plant height measured before treatment was assigned cannot be influenced by treatment
- Safe as a covariate

Question: what if plant height was measured a week after the start of the experiment?

Plant height will likely be influenced by treatment.

Correction for plant height would remove part of the treatment effect on peanut yield.

Don't use this measure of height as a covariate.

Should correction for covariate be made at all?

Correction for covariate may unwittingly remove (part of) treatment effects, when covariate is influenced by treatment.

Correction for covariate may erroneously rely on extrapolation of regression lines, when covariate values are very different between groups due to poor study design or unfortunate configuration in observational study.

Correction for covariate may create unrealistic adjusted means for some groups, when covariate values differ systematically between groups in the underlying population.

ANCOVA model

Adjusted treatment means

Testing & pairwise comparisons

Assumptions

Reservations

The Very last Example: GLM

Two points of view

The same model can be used for two distinct situations

- Interest is in the treatments; x is introduced to_
- 1. increase the accuracy of comparison between treatments. Technically, we filter out part of the residual variation (similar to blocking).
- 2. "correct" for differences in the mean of the covariate between the treatments.
- There is a specific interest in the relationship between μ_V and x.

We want to know whether this relationship is affected by the treatments/ is different for different sub-populations.

The model is the same, but goals and interpretation are different.

This is usually what we have in mind for analysis of covariance.

Regression in the presence of a qualitative factor.

Example: anxiety of rats

Study of relationship between anxiety score and dose for two types of drugs (A, B). Drugs administered to 60 rats, in a number of doses for each drug.

y = anxiety score,

 x_1 = dose (possible covariate),

 x_2 = 1 for drug B, 0 for drug A (dummy variable)

We assume a linear relationship, i.e. a linear effect of dose on expected anxiety.

Anxiety of rats, 1st try: parallel lines

First assume that the effect of dose on anxiety is the same for drugs A and B: the slopes of the regression lines for A and B are the same, the lines are parallel.

Model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
 so $\mu_y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

For drug A
$$x_2 = 0$$
, so $\mu_{vA} = \beta_0 + \beta_1 x_1$

$$\mu_{yA}$$
 ρ_0 $\rho_1 \lambda_1$

For drug B
$$x_2 = 1$$
, so $\mu_{vB} = (\beta_0 + \beta_2) + \beta_1 x_1$

$$\mu_{yB} = (\beta_0 + \beta_2) + \beta_1 x_1$$

- intercept for A: β_0 intercept for B: $\beta_0 + \beta_2$
- common slope for A and B: β_1

Equivalent model form: (i=1,2)

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \varepsilon_{ij},$$
with $\tau_2 = 0$

Model form is as the ANCOVA model. But effect of dose (x_1 / x) is also of interest in itself. So, the aims of the analysis are different.

Anxiety of rats, 2nd try: different slopes

- Now, we allow for a different effect of dose on anxiety for drugs A and B:
 the slopes of the regression lines may be different.
- Add product x_1x_2 as a third variable $(x_3 = x_1 * x_2)$ to model:

$$\mu_y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

• for drug A: $x_2 = 0$, $x_3 = 0$, so for drug B: $x_2 = 1$, $x_3 = x_1$, so

$$\mu_{y} = \beta_{0} + \beta_{1}x_{1}$$

$$\mu_{y} = (\beta_{0} + \beta_{2}) + (\beta_{1} + \beta_{3})x_{1}$$

different lines

- intercept for A: β_0 intercept for B: $\beta_0 + \beta_2$ drug A is the slope for A: β_1 reference slope for B: $\beta_1 + \beta_3$
- β_3 : difference in slope between B and A
- β_2 : difference in intercept between B and A

Anxiety of rats, different slopes: regression output SPSS

• Regression of anxiety on dose, dummy coding for drug B, and product x_3 .

ANOVA table

			ANOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
 1	Regression	442.105	3	147.368	61.758	.000
	Residual	133.629	56	2.386		
	Total	575.733	59			1
		(() - O - I		D)		

ANIOVAD

a. Predictors: (Constant), x3, dose, dummy (drug B)

b. Dependent Variable: anxiety score

F-test "no drug- or x-effect"

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = 0$

Parameter estimates

 SSR_{-}

SSE

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
Model	B	Std. Error	Beta	t	Sig.
1 (Constant)	/15.300	.598		25.573	.000
dose	.191	.045	.385	4.233	.000
dummy (drug B)	700	.846	113	827	.412
х3	.300	.064	.708	4.691	.000

a. Dependent Variable: anxiety score

Estimated line drug A:

$$\hat{y} = 15.3 + 0.191x_1$$

Estimated line drug B:

$$\hat{y} = (15.3 - 0.700) + (0.191 + 0.3) x_1 = 14.6 + 0.491 x_1$$

Model in GLM form

The interaction model in GLM form looks as follows:

$$y_{ij} = \beta_0 + \tau_i + \beta_1 x_{ij} + \lambda_i x_{ij} + \varepsilon_{ij}, \qquad \varepsilon_{ij} \text{ 's indep from N}(0, \sigma)$$
with $\tau_2 = 0$ $\lambda_2 = 0$ $i = 1, 2; \quad j = 1, 2, ..., 30$

Two intercepts: β_0 and $\beta_0 + \tau_1$ (for groups 2 and 1, resp.)

Two slopes: β_1 and $\beta_1 + \lambda_1$ (for groups 2 and 1, resp.)

Parameter Estimates

Dependent Variable: anxiety score

					95% Confidence Interval	
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound
Intercept	14.600	.598	24.403	.000	13.402	15.798
[drug=A]	.700	.846	.827	.412	995	2.395
[drug=B]	0 ^a					
x1	.491	.045	10.866	.000	.401	.582
[drug=A] * x1	300	.064	-4.691	.000	428	172
[drug=B] * x1	0 ^a	-				

GLM – output for rat example

Are Slopes significantly different?

Estimated line drug A: $\hat{y} = (14.6 + 0.7) + (0.491 - 0.31)x_1 = 15.3 + 0.191x_1$

Estimated line drug B: $\hat{y} = 14.6 + 0.491x_1$

a. This parameter is set to zero because it is redundant.

SPSS output, General Linear Model (GLM – Univariate)

- See ANOVA table. Interaction is significant. So the two lines have different slopes.
- Suppose we want to know if x1 is useful in the model. Compare:

FM: drug, x1 and interaction

RM: only drug

$$F = \frac{\Delta SSE / \Delta dfE}{MSE_{FM}}$$
, under H_0 $F \sim F(2,56)$

Tests of Between-Subjects Effects

Dependent Variable: anxiety score

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	442.105 ^a	3	147.368	61.758	.000
Intercept	2980.033	1	2980.033	1248.849	.000
drug	1.633	1	1.633	.684	.412
x1	272.005	1	272.005	113.990	.000
drug * x1	52.500	1	52.500	22.001	.000
Error	133.629	56	2.386		
Total	22084.000	60			
Corrected Total	575.733	59			

a. R Squared = .768 (Adjusted R Squared = .755)

