- Amostragem:
 - Função bi-dimensional I(x,y)

Imagem Real

Grid de pixels

Quantização

Resultado da amostragem

Imagem Real

Imagem amostrada

Resolução

Pixelization of Color Images: All Bands Equal

Exemplo

Exemplo

Espectro visível

Range (nm)	Colour
380 – 450	Violet
450 – 490	Blue
490 – 560	Green
560 – 590	Yellow
590 – 640	Orange
640 – 730	Red

• Percepção humana

Mosaico da retina

Cepko, Connie, "Giving in to the blues", Nature Genetics, 24, 99 - 100 (2000) cepko@genetics.med.harvard.edu

Sensibilidade

Sensibilidade

RGB

- Modelo de cores aditivas
 - reprodução de cores em dispositivos eletrônicos

RGB

16× Pixelization of Color Images: R, G, & B Bands

Exercício

Reproduzir o resultado anterior

- r, g, b = img.split()
- img = Image.merge('RGB', (r, g, b))

CMYK

- Modelo de cores subtrativas
 - C: Ciano, M: magenta, Y: amarelo, K: Preto
 - empregado por imprensas, impressoras e fotocopiadoras

- Codifica imagens coloridas levando mais em consideração a percepção humana
- Aplicação de Visão computacional
 - Deve ser mais robusta a alterações em iluminação.
 - Cor e iluminação são representados separadamente
- Y → Luminância
- UV → Crominância

Percepção

Modelo YUV

Conversões entre modelos

$$\begin{split} W_R &= 0.299 \\ W_B &= 0.114 \\ W_G &= 1 - W_R - W_B = 0.587 \\ U_{Max} &= 0.436 \\ V_{Max} &= 0.615 \\ Y' &= W_R R + W_G G + W_B B \\ U &= U_{Max} \frac{B - Y'}{1 - W_B} \approx 0.492 (B - Y') \\ V &= V_{Max} \frac{R - Y'}{1 - W_R} \approx 0.877 (R - Y') \end{split}$$

- Modelo YUV
 - Forma matricial

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}$$

Exercício

- Repetir o exercício anterior para YUV
 - img_yuv = img.convert('YcbCr')
 - y, u, v = img_yuv.split()
 - img = Image.merge('YCbCr', (y, u, v))

