Bac S 2010 Nouvelle Calédonie

CORRECTION © Sujet 09

EXERCICE II. CONDENSATEUR ET ÉCLAIRAGE D'UN TRAIN MINIATURE (5,5 points)

1. Utilisation de lampes à incandescence

1.1 Déplacement du train sans soubresaut

1.1.1.a. (0,25) Le générateur fait circuler un courant d'intensité i qui, au nœud A, se répartit dans les deux branches dérivées.

Les lampes sont parcourues par un courant.

1.1.1.b. (0,25)
$$i = \frac{dq}{dt}$$
 avec $q = C.u_C$ où $C = Cte$ alors $i = C.\frac{du_C}{dt}$.

Dès que le condensateur est chargé, u_C = Cte donc $\frac{du_C}{dt}$ = 0. Plus aucun courant électrique ne circule dans la branche AB ($i_2 = 0$).

1.1.2. (0,25) D'après la loi des mailles dans la maille PABNP, on peut écrire : $E - u_{R0} - u_{C} = 0$ soit $E = u_{R0} + u_{C}$ Or d'après la loi d'Ohm $u_{R0} = R_0.i_2$.

(0,25) Lorsque le condensateur est chargé, $i_2 = 0$ impose $u_{R0} = 0$ donc $\mathbf{E} = \mathbf{u}_C$: la tension aux bornes du condensateur chargé est égale à la tension E = 12 V délivrée par le générateur.

1.1.3. (0,25) La constante de temps τ du dipôle (R₀,C) s'écrit $\tau = \mathbf{R_0} \cdot \mathbf{C}$;

On considère le condensateur chargé au bout d'une durée égale à $5\tau = 5R_0$. $C = 5 \times 10 \times 1000 \times 10^{-6} = 5,0 \times 10^{-2}$ s. Soit un ordre de grandeur de 10^{-1} s.

1.2 Déplacement du train avec soubresauts

1.2.1.(0,25) D'après la loi des mailles, on peut écrire : $u_C + u_{R0} + u_{1+} + u_{2} = 0$ (1) Les deux lampes L₁ et L₂ se comportent comme des conducteurs ohmiques, d'après la loi d'Ohm en convention récepteur $u_1 = u_2 = R.i$. De même, $u_{R0} = R_0.i$ Reportons ces expressions dans l'équation (1) : $u_C + R_0 \cdot i + R \cdot i = 0$ \Leftrightarrow u_C + (2R+R₀).i = 0

(0,25) Par définition, $i = \frac{dq}{dt} = \frac{d(C.u_C)}{dt} = C.\frac{du_C}{dt}$, la capacité du condensateur étant une constante. (0,25) On obtient ainsi $u_C + (2R + R_0).C.\frac{du_C}{dt} = 0$. CQFD

1.2.2. (0,25) Reportons l'expression de $u_C(t)$ et de sa dérivée temporelle $\frac{du_C}{dt} = \frac{-A}{(2R+R_0)C}$. $e^{-\frac{t}{(2R+R_0)C}}$ dans

l'équation différentielle.

On a:
$$A.e^{-\frac{t}{(2R+R_0).C}} + (2R+R_0).C.\frac{-A}{(2R+R_0).C}.e^{-\frac{t}{(2R+R_0).C}} = 0$$

$$(0,25) \Leftrightarrow A.e^{-\frac{t}{(2R+R_0).C}} - A.e^{-\frac{t}{(2R+R_0).C}} = 0$$

 $\Leftrightarrow 0 = 0$ L'expression $u_C(t) = A.e^{-\frac{(2R+R_0).C}{(2R+R_0).C}}$ est bien solution de l'équation différentielle précédente.

(0,25) On détermine A grâce aux conditions initiales : à t = 0, instant initial de la décharge, $u_C(0) = E$ impose A=E=12V

Lors de la décharge, la tension u_C aux bornes du condensateur décroît exponentiellement : $u_C(t) = E.e^{-\frac{t}{(2R+R_0).C}}$

1.2.3. (0,25)
$$i(t) = C \cdot \frac{du_C}{dt} = C \cdot \frac{-E}{(2R+R_0) \cdot C} \cdot e^{-\frac{t}{(2R+R_0) \cdot C}}$$

 $i(t) = \frac{-E}{(2R + R_0)} e^{-\frac{t}{(2R + R_0) \cdot C}}$. (0,25) Lors de la décharge, le signe de i(t) est négatif. Le courant circule dans le sens

opposé du sens indiqué sur la figure 4.

1.2.4. La puissance instantanée consommée par chaque lampe s'écrit $p(t) = R.i^2(t) = R.\left(\frac{-E}{(2R+R_0)C}e^{-\frac{t}{(2R+R_0).C}}\right)^2$

(0,25) $p(t) = R \cdot \left(\frac{E}{(2R+R_0)}\right)^2 \cdot e^{-\frac{2t}{(2R+R_0)\cdot C}}$ La puissance instantanée consommée par chaque lampe est une

fonction exponentielle décroissante du temps dont l'évolution est représentée sur la figure 6. (0,25)

1.2.5.a. (0,25) L'éclairement reste satisfaisant tant que $p(t) > \frac{75}{100}$. P_0 c'est-à-dire tant que p(t) > 0,27 W.

On détermine la durée Δt d'éclairement satisfaisant pour chaque lampe en recherchant sur la figure 6 l'abscisse du point de la courbe d'ordonnée 0,27 W.

(0,25) On trouve $\Delta t \approx 0.025$ s.

1.2.5.b. (0,25) La durée d'éclairement satisfaisant (0,025 s) est inférieure à la durée du soubresaut (0,1 s) donc les lampes ne brilleront pas de manière satisfaisante pendant toute la durée du soubresaut.

2. Utilisation de diodes électroluminescentes

2.1.(0,5)
$$\Delta t = (R_3 + R_0).C.\ell n \left(\frac{I_{\text{max}}}{I_{\text{seuil}}} \right)$$

Le rapport $\frac{I_{m \, ax}}{I_{seuil}}$ est sans dimension, son log népérien également. Ainsi $[\Delta t] = [(R_3 + R_0).C]$

$$[\Delta t] = [R] \cdot [C]$$
 avec $R = u/i$ et $C = q/u_C$

$$[\Delta t] = \frac{[u]}{[i]} \cdot \frac{[q]}{[u]} = \frac{[q]}{[i]} = [t] \operatorname{car} i = \frac{dq}{dt}.$$

Donc Δt a bien la dimension d'un temps.

2.2.
$$\Delta t = (R_3 + R_0).C.\ell n \left(\frac{I_{\text{max}}}{I_{\text{seuil}}}\right)$$

$$\Delta t = (1, 5 \times 10^3 + 10) \times 1000 \times 10^{-6} \times \ln\left(\frac{6, 0}{2, 0}\right)$$

(0,25) soit
$$\Delta t = 1,7s$$
.

(0,25) $\Delta t = 1,7s > 0,1 \text{ s}$: les diodes vont éclairer pendant toute la durée du soubresaut.