CS 344: OPERATING SYSTEMS I O2.20: PART III: NETWORKING I

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong

sanghyun.hong@oregonstate.edu

NOTICE

- Announcements
 - 1 more extra credit opportunities on Canvas
 - Build an ML classifier (+2%)
 - Multi-process data loader (+2%)

TOPICS FOR TODAY

- Part III: Networking
 - Manage resources
 - OSI model
 - OSI (TCP/IP)

MANAGE RESOURCES

- Socket
 - Host A and B communicate over the Internet

MANAGE RESOURCES

• Open Internet Interface (OSI)

MANAGE RESOURCES: OSI 7-LAYER MODEL

• Open Internet Interface (OSI)

MANAGE RESOURCES: TCP/IP MODEL

• Open Internet Interface (OSI)

TCP/IP MODEL: PACKET ENCAPSULATION

Packet encapsulation in the TCP/IP model

TCP/IP MODEL: ETHERNET (PHYSICAL LAYER)

- Ethernet Protocol (~80s)
 - Each network device (NIC) has 48-bit MAC address
 - Each NIC is connected via Ethernet cable

MAC (4B 00...)

TCP/IP MODEL: ETHERNET (PHYSICAL LAYER)

- Ethernet Protocol (~80s)
 - Each network device (NIC) has 48-bit MAC address
 - Each NIC is connected via Ethernet cable
 - ETH header contains:
 - (64 bit) Preamble (0x111111111... or a unique data)
 - (48-bit) Destination MAC address
 - (48-bit) Source MAC address
 - (16-bit) Type
 - (up to 1500 bytes) Data
 - (32-bit) CRC for error correcting

MAC (4B 00...)

TCP/IP MODEL: ETHERNET (PHYSICAL LAYER)

- Ethernet Protocol (~80s)
 - Each network device (NIC) has 48-bit MAC address
 - Each NIC is connected via Ethernet cable
 - ETH header contains:
 - (64 bit) Preamble (0x111111111... or a unique data)
 - (48-bit) Destination MAC address
 - (48-bit) Source MAC address
 - (16-bit) Type
 - (up to 1500 bytes) Data
 - (32-bit) CRC for error correcting

TCP/IP MODEL: IP LAYER

- Internet Protocol (IP)
 - IP allows us to connect multiple networks
 - Each host has a unique IP address
 - IPv4: 32-bit address (e.g., 147.56.28.101)
 - IPv6: 128-bit address (e.g., 2001:db8:3333:4444:5555:6666:7777:8888)

TCP/IP MODEL: IP LAYER

- Internet Protocol (IP)
 - IP allows us to connect multiple networks
 - Each host has a unique IP address
 - IPv4: 32-bit address (e.g., 147.56.28.101)
 - IPv6: 128-bit address (e.g., 2001:db8:3333:4444:5555:6666:7777:8888)
 - IP data (packets) is routed based on destination IP

Internet Physical (or Link) read/write

TCP/IP MODEL: TRANSPORT LAYER

- TCP vs UDP Protocol
 - Transmission Control Protocol: TCP Packet
 - (16-bit, for each) Source and destination ports
 - (32-bit) Sequence number
 - (32-bit) Acknowledgement number
 - Others: flags, checksums, window-size, pointer, ...
 - User Datagram Protocol: UDP Packet
 - (16-bit, for each) Source and destination port
 - (16-bit, for each) Length and checksum

TCP/IP MODEL: TRANSPORT LAYER

- TCP vs UDP Protocol
 - TCP requires an established connection, but UDP is not (broadcast)
 - TCP can use sequences, but UDP is not
 - TCP is like a PIPE; data won't be lost, but UDP will (can lose data)
 - TCP guarantees delivery, but UDP does not
 - TCP is slower than UDP (suppose that we deliver all the packets)

TCP/IP MODEL: APPLICATION LAYER

- Application layer
 - Support various user-defined or OS-defined protocols (on top of TCP/UDP)
 - TCP-based: HTTPS, HTTP, SMTP, POP, FTP, ...
 - UDP-based: Video streaming, conferencing, DNS, VoIP, ...

TOPICS FOR TODAY

- Part III: Networking
 - Manage resources
 - OSI model
 - OSI (TCP/IP)

Thank You!

M/W 12:00 – 1:50 PM (LINC #200)

Sanghyun Hong

sanghyun.hong@oregonstate.edu

