Първо малко контролно по Дискретни структури, 09.04.2023 г.

Име: _____, ФН: ____, Курс: ___, Група: ___

Задача	1	2	3	Общо
получени точки				
максимум точки	3	3	4	10

Задача 1. Фермер притежава нива с формата на правилен петоъгълник със страна 7. В него са избрани произволно тринадесет точки. Докажете, че поне две от тях са на разстояние по-малко или равно на 7.

Задача 2. В завод се произвеждат 6 различни модела мивки и 6 различни модела батерии, като не всеки модел батерия пасва на всяка мивка. Колко са възможните варианти да се избере нов комплект от мивка и батерия, ако:

- а) Модел батерия номер едно пасва само на модел мивка номер четири;
- б) Модел батерия номер две пасва само на модели мивка номер три и пет.

Разглеждайте двете подточки като независими условия.

Задача 3. Съществува ли множество A, за което е вярно, че $A \cap 2^{A^2} \neq \emptyset$? Ако съществува, дайте пример, ако ли не - докажете защо не съществува.

Решения

Задача 1. Нека наречем тегловния център на петоъгълника точка О. Когато построим отсечките от точка О до всеки от върховете на петоъгълника, ще получим 5 еднакви равнобедрени триъгълника с основа 7 и ъгъл между бедрата 72°, такива че най-голямото разстояние между 2 точки във всеки от тях е равно на 7, защото другите два ъгъла са по 54°, а най-голямата страна е срещу най-големият ъгъл. Тогава, използвайки принципа на Дирихле, разпределяйки тринадесетте точки в тези 5 триъгълника, в поне един от тях ще попаднат поне две от точките. Тъй като най-голямото разстояние между две точки във всяка от тези фигури е 7, то условието ще е изпълнено.

Задача 2. Търсените комплекти и в двете подточки на задачата представляват наредени двойки, като първият елемент на всяка наредена двойка е моделът батерия, а вторият - моделът мивка.

- а) Щом модел батерия номер едно пасва само на модел четири от мивките, то този модел батерия се съдържа само в една наредена двойка двойката (1,4). Останалите пет модела батерии пасват на всеки от шестте модела мивки, което продуцира 5*6=30 наредени двойки. Така получаваме общо 31 наредени двойки.
- б) Аналогично на подточка а), неразглеждайки батерия номер две, имаме 30 наредени двойки 5 други батерии и 6 мивки. Щом батерия номер две може да бъде комбинирана с модели три и пет от мивките, то имаме две наредени двойки, в които този модел батерия участва. Така общият брой на възможните наредени двойки от батерия и мивка е 32.
- Задача 3. Такова множество съществува и ще го покажем конструктивно, т.е. ще представим едно такова множество. Ако $A \cap 2^{A^2} \neq \emptyset$, то $A \neq \emptyset$. Тоест в множеството A има поне един елемент и може да има или да няма други елементи. Едно такова минимално множество има вида $A = \{a\}$. Ако A има този вид, то $A^2 = A \times A = \{(a,a)\}$. И значи $2^{A^2} = \{\emptyset, \{(a,a)\}\}$. Искаме сечението на A и 2^{A^2} да е непразно, затова ни е нужно да има елемент съвпадащ с a в 2^{A^2} . Единственият възможен вариант това да се случи е, когато $a = \emptyset$. Следователно показахме, че е съществува такова множество $A = \{\emptyset\}$.