Final Model

Edward J. Lee

2025-04-05

Usual Data Cleaning

```
library(NHANES) # NHANES dataset
library(dplyr) # Data wrangling
library(ggplot2) # Visualization
library(car)
               # Multicollinearity check (VIF)
library(ggResidpanel) # Advanced diagnostic plots
library(knitr) #for kable
library(gridExtra) #for scatterplot matrix
options(scipen = 999)
{\it \# if you don't have it installed, do install\_packages("NHANES")}
data("NHANES")
nrow(NHANES) #10,000 observations
## [1] 10000
# remove babies (ages 0-3)
nhanes_filtered <- NHANES %>% filter(Age > 20,
                                     Height > 0,
                                     Weight > 0,
                                     BPDia1 > 10,
                                     BPDia2 > 10,
                                     BPDia3 > 10,
                                     BPDiaAve > 10,
                                      BPSys1 > 10,
                                      BPSys2 > 10,
                                      BPSys3 > 10,
                                      BPSysAve > 10,
                                      TotChol > 0)
nrow(nhanes_filtered) #7094 observations
## [1] 5989
# remove NA entries and only select columns of interest
nhanes_data <- nhanes_filtered %>%
  dplyr::select(Height, Age, Weight, BPSysAve, BPDiaAve,
                TotChol, SmokeNow, PhysActiveDays) %>%
  na.omit()
# categorical predictors
```

Box-Cox Transformation and Polynomial Term


```
pb.lambda <- pb.b$x[which.max(pb.b$y)]

pb.log_product <- sum(log(pb_data$TotChol))
pb.geo_mean <- exp(pb.log_product/n)</pre>
```

```
pb.TotChol <- pb.geo_mean^(1-pb.lambda)*(pb_data$TotChol^pb.lambda - 1)/pb.lambda
p.BXCX.frame <- pb_data %>%
 dplyr::select(-TotChol) %>%
 mutate(pb.TotChol = pb.TotChol)
p.BXCX.model <- lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
                        BPDiaAve + SmokeNow + PhysActiveDays,
                      data = p.BXCX.frame)
summary(p.BXCX.model)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
##
      BPDiaAve + SmokeNow + PhysActiveDays, data = p.BXCX.frame)
##
## Residuals:
      Min
               1Q Median
                              3Q
                                    Max
## -4.5764 -0.6158 -0.0084 0.6574 3.8416
##
## Coefficients:
                  Estimate Std. Error t value
                                                        Pr(>|t|)
                 4.6682540 0.6104391 7.647
                                               0.000000000000401 ***
## (Intercept)
                 ## Age
                ## pb.Age2
## Weight
                -0.0006614 0.0016858 -0.392
                                                         0.69487
## Height
                -0.0087700 0.0033509 -2.617
                                                         0.00897 **
                0.0057045 0.0019803 2.881
## BPSysAve
                                                         0.00404 **
## BPDiaAve
                 0.0128515  0.0028416  4.523  0.0000066733181871 ***
                 0.0127777 0.0596913 0.214
## SmokeNowYes
                                                         0.83053
## PhysActiveDays -0.0128377 0.0154387 -0.832
                                                         0.40583
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9849 on 1280 degrees of freedom
## Multiple R-squared: 0.1264, Adjusted R-squared: 0.121
## F-statistic: 23.15 on 8 and 1280 DF, p-value: < 0.00000000000000022
#FITTED AND RESIDUAL VALUES FROM TRANSFORMED
pb.fitted <- fitted(p.BXCX.model)</pre>
pb.residuals <- resid(p.BXCX.model)</pre>
#DATA FRAME FOR PLOTTING
pb.plot_data <- data.frame(pb.fitted = pb.fitted, pb.residuals = pb.residuals)</pre>
#PAIRWISE PLOTS OF ORIGINAL MODEL
pairs(~pb.TotChol+Age+pb.Age2+Weight+Height+
       BPSysAve+BPDiaAve+SmokeNow+PhysActiveDays,
     data = p.BXCX.frame,
     main = "Pairwise ScatterPlots of Transformed Polynomial Model",
     col = "blue")
```

Pairwise ScatterPlots of Transformed Polynomial Model

Residual Plots

Residuals vs Fitted Values (BXCX and Poly)

Normal Q-Q Plot (BXCX and Poly)

Residuals vs Age (BXCX and Poly)

Residuals vs Weight (BXCX and Poly)

Residuals vs Height (BXCX and Poly)

Residuals vs BPSysAve (BXCX and Poly)

Residuals vs BPDiasAve (BXCX and Poly)


```
#RESIDUALS VS SmokeNow (BOXPLOT)
res_smoke_plot <- ggplot(
    p.BXCX.frame, aes(x = as.factor(SmokeNow), y = pb.residuals)) +
    geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
    geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
    theme_minimal() +
    ggtitle("Residuals vs Current Smoker (BXCX and Poly)") +
    xlab("Currently Smokes") +
    ylab("Residuals") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
    print(res_smoke_plot)</pre>
```

Residuals vs Current Smoker (BXCX and Poly)

Currently Smokes

```
#RESIDUALS VS PhysActiveDays (BOXPLOT)
res_active_plot <- ggplot(
   p.BXCX.frame,
   aes(x = as.factor(PhysActiveDays), y = pb.residuals)) +
   geom_boxplot(fill = "lightblue", color = "darkblue", alpha = 0.7) +
   geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
   theme_minimal() +
   ggtitle("Residuals vs Physically Active Days") +
   xlab("Days in a Week of Physical Activity") +
   ylab("Residuals") +
   theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8))
   print(res_active_plot)</pre>
```


Standardized Residual Histogram

Standardized Residuals

```
leverage <- hatvalues(p.BXCX.model)</pre>
##LEVERAGE POINTS
p <- 8
high_lev \leftarrow 2*(p+1)/n
leverage_points <- p.BXCX.frame[leverage > high_lev,]
leverage_points <- leverage_points %>%
  mutate(row = row.names(leverage_points))
#FINDING OUTLIERS
st.residuals <- rstandard(p.BXCX.model)</pre>
outlier_points <- p.BXCX.frame[abs(st.residuals) > 4,]
#COOKS DISTANCE
cooks_value <- cooks.distance(p.BXCX.model)</pre>
f_{value} \leftarrow qf(0.50, 8, 1280)
cooks_points <- p.BXCX.frame[cooks_value > f_value,]
#DFFITS
dffits\_cutoff \leftarrow 2*(sqrt((p+1)/n))
dffits_value = dffits(p.BXCX.model)
dffits_points <- p.BXCX.frame[(abs(dffits_value) > dffits_cutoff),]
```

```
dffits_points <- dffits_points %>%
 mutate(row = row.names(dffits_points))
#DFBETAS
dfbetas_cutoff <- 2/sqrt(n)</pre>
dfbeta_frame <- as.data.frame(dfbetas(p.BXCX.model))</pre>
dfbeta_points <- round(dfbeta_frame[apply(</pre>
 abs(dfbeta_frame)>dfbetas_cutoff,1,any),],4)
dfbeta_points <- dfbeta_points %>%
 mutate(row = row.names(dfbeta_points))
#Problematic observations
influential_points <- c(728,823)
p.BXCX.frame[influential_points, ]
      Height Age Weight BPSysAve BPDiaAve SmokeNow PhysActiveDays pb.Age2
## 728 160.9 72 108.0
                                      52
                                              Yes
                                                              5
                                                                   5184
                             132
## 823 180.3 36
                   64.8
                                      62
                                              Yes
                                                               6
                                                                   1296
                             117
##
      pb.TotChol
## 728
         3.65555
## 823
        10.63743
clean.frame <- p.BXCX.frame %>%
dplyr::filter(!row_number() %in% influential_points)
clean_model <- lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +</pre>
   BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
summary(clean_model)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve +
##
      BPDiaAve + SmokeNow + PhysActiveDays, data = clean.frame)
##
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -4.5691 -0.6185 0.0030 0.6555 3.1272
##
## Coefficients:
##
                    Estimate Std. Error t value
                                                            Pr(>|t|)
                  4.82829934   0.60556204   7.973   0.00000000000003403 ***
## (Intercept)
## Age
                  0.09839179  0.01111150  8.855 < 0.0000000000000000 ***
## pb.Age2
                 ## Weight
                 0.98218
                 -0.00984142 0.00332638 -2.959
## Height
                                                             0.00315 **
## BPSysAve
                  0.00564643 0.00196213
                                         2.878
                                                             0.00407 **
                                         4.523 0.000006665615466859 ***
## BPDiaAve
                  0.01274747 0.00281842
## SmokeNowYes
                  0.01780620 0.05923101
                                          0.301
                                                             0.76375
## PhysActiveDays -0.01413432 0.01530911 -0.923
                                                             0.35604
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.9757 on 1278 degrees of freedom
## Multiple R-squared: 0.129, Adjusted R-squared: 0.1236
## F-statistic: 23.66 on 8 and 1278 DF, p-value: < 0.00000000000000022
plots <- plot(p.BXCX.model)</pre>
```

Residuals vs Fitted

Fitted values
Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .
Q-Q Residuals

Theoretical Quantiles Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Im(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Residuals vs Leverage

lm(pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve + Smo .

Subset selection object

```
## Call: regsubsets.formula(pb.TotChol ~ ., data = clean.frame, nvmax = 8,
##
       nbest = 1, really.big = TRUE, method = "exhaustive")
## 8 Variables (and intercept)
##
                    Forced in Forced out
## Height
                        FALSE
                                    FALSE
## Age
                        FALSE
                                    FALSE
## Weight
                        FALSE
                                    FALSE
## BPSysAve
                        FALSE
                                    FALSE
## BPDiaAve
                        FALSE
                                    FALSE
## SmokeNowYes
                        FALSE
                                    FALSE
## PhysActiveDays
                        FALSE
                                    FALSE
                                    FALSE
## pb.Age2
                        FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
##
             Height Age Weight BPSysAve BPDiaAve SmokeNowYes PhysActiveDays pb.Age2
      (1)""
                     11 11 11 11
                                           "*"
                                                     11 11
## 1
      (1)""
                     "*" " "
                                 11 11
                                           11 11
                                                     11 11
                                                                   11 11
                                                                                   "*"
## 2
      (1)""
                                 11 11
                                           "*"
                                                                                   "*"
## 3
      (1)"*"
                                           "*"
                                                                                   "*"
## 4
                                 "*"
                                           "*"
## 5
      (1)"*"
                                                                                   "*"
                                 "*"
                                           "*"
                                                                                   "*"
## 6
      (1)"*"
## 7
      (1)"*"
                                 "*"
                                           "*"
                                                                   "*"
                                                                                   "*"
## 8 (1) "*"
                                 "*"
                                           "*"
                                                     "*"
                                                                   "*"
                                                                                   "*"
plot(best_subset,scale='adjr2')
   0.12 -
   0.12
   0.12 -
인 0.12 - 
8 0.12 -
   0.11
  0.087
  0.055
                       Height
                                       Weight
              (Intercept)
                               Age
                                                BPSysAve
                                                        BPDiaAve
                                                                SmokeNowYes
                                                                        PhysActiveDays
```

plot(best_subset,scale='bic');

plot(best_subset,scale='Cp')

AIC <- step(clean_model, direction="both")

```
## Start: AIC=-54.33
## pb.TotChol ~ Age + pb.Age2 + Weight + Height + BPSysAve + BPDiaAve +
##
       SmokeNow + PhysActiveDays
##
##
                    Df Sum of Sq
                                     RSS
                                             AIC
## - Weight
                           0.000 1216.7 -56.334
                     1
                           0.086 1216.8 -56.244
## - SmokeNow
                     1
## - PhysActiveDays
                           0.811 1217.5 -55.476
                    1
## <none>
                                  1216.7 -54.335
## - BPSysAve
                           7.884 1224.5 -48.022
                     1
```

```
1
## - Height
                        8.333 1225.0 -47.550
                    1 19.475 1236.1 -35.897
## - BPDiaAve
## - pb.Age2
                    1
                      65.377 1282.0 11.028
## - Age
                      74.647 1291.3 20.300
                    1
##
## Step: AIC=-56.33
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve + SmokeNow +
      PhysActiveDays
##
##
                   Df Sum of Sq
                                  RSS
                                          AIC
## - SmokeNow
                      0.088 1216.8 -58.241
                   1
## - PhysActiveDays 1
                         0.811 1217.5 -57.476
## <none>
                               1216.7 -56.334
## + Weight
                    1
                        0.000 1216.7 -54.335
## - BPSysAve
                        7.936 1224.6 -49.967
                    1
## - Height
                    1
                      10.536 1227.2 -47.237
## - BPDiaAve
                      19.546 1236.2 -37.823
                    1
## - pb.Age2
                    1 65.904 1282.6 9.557
## - Age
                    1 75.216 1291.9 18.868
##
## Step: AIC=-58.24
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve + PhysActiveDays
##
                   Df Sum of Sq
##
                                  RSS
                                          AIC
## - PhysActiveDays 1
                         0.811 1217.6 -59.384
## <none>
                               1216.8 -58.241
## + SmokeNow
                    1
                         0.088 1216.7 -56.334
## + Weight
                         0.003 1216.8 -56.244
                   1
## - BPSysAve
                        8.071 1224.8 -51.731
                   1
## - Height
                    1 10.615 1227.4 -49.062
                    1 19.459 1236.2 -39.821
## - BPDiaAve
                      66.037 1282.8 7.779
## - pb.Age2
                    1
## - Age
                    1 75.131 1291.9 16.872
##
## Step: AIC=-59.38
## pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve
##
##
                   Df Sum of Sq
                                 RSS
                                          AIC
## <none>
                               1217.6 -59.384
## + PhysActiveDays 1
                         0.811 1216.8 -58.241
## + SmokeNow 1
                         0.088 1217.5 -57.476
## + Weight
                         0.000 1217.6 -57.384
                    1
## - BPSysAve
                   1
                         7.982 1225.5 -52.974
## - Height
                    1 10.444 1228.0 -50.391
## - BPDiaAve
                    1 19.562 1237.1 -40.870
                    1 65.411 1283.0 5.965
## - pb.Age2
## - Age
                    1
                        74.398 1292.0 14.949
summary(AIC)
##
## Call:
## lm(formula = pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve +
##
      BPDiaAve, data = clean.frame)
##
```

```
## Residuals:
##
      Min
              1Q Median 3Q
                                   Max
## -4.5880 -0.6170 -0.0140 0.6438 3.1057
##
## Coefficients:
              Estimate Std. Error t value
                                                   Pr(>|t|)
##
## Age
             ## pb.Age2
## Height
            -0.0098211 0.0029628 -3.315
                                                   0.000943 ***
## BPSysAve
             0.0056469 0.0019487 2.898
                                                   0.003821 **
             0.0127101 0.0028016 4.537 0.00000624991387098 ***
## BPDiaAve
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9749 on 1281 degrees of freedom
## Multiple R-squared: 0.1284, Adjusted R-squared: 0.125
## F-statistic: 37.73 on 5 and 1281 DF, p-value: < 0.000000000000000022
final_model <- lm(pb.TotChol ~ Age+pb.Age2+Height+BPSysAve+BPDiaAve,</pre>
                  data=clean.frame)
#PREDICTION ACCURACY
set.seed(123)
train_index <- sample(1:nrow(clean.frame), 0.7 * nrow(clean.frame))</pre>
train_data <- clean.frame[train_index, ]</pre>
test_data <- clean.frame[-train_index, ]</pre>
validation_model <- lm(pb.TotChol ~ Age + pb.Age2 + Height + BPSysAve + BPDiaAve,
                     data = train_data)
predictions <- predict(validation_model, newdata = test_data)</pre>
# Compare predictions to actual
mean((predictions - test_data$pb.TotChol)^2) # MSE
## [1] 0.9542581
sqrt(mean((predictions - test_data$pb.TotChol)^2)) # RMSE
## [1] 0.9768613
#K-Fold (10-Fold) MODEL VALIDATION
library(caret)
#FINAL_MODEL VALIDATION
train_control <- trainControl(method = "cv", number = 10)</pre>
cv_model <- train(</pre>
 pb.TotChol ~ Age+pb.Age2+Height+BPSysAve+BPDiaAve,
 data = clean.frame,
 method = "lm",
 trControl = train_control
)
print(cv_model)
## Linear Regression
```

##

```
## 1287 samples
##
      5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1158, 1159, 1158, 1158, 1158, 1159, ...
## Resampling results:
##
##
     RMSE
                Rsquared
                           MAE
##
     0.9751559 0.1373103 0.7694394
## Tuning parameter 'intercept' was held constant at a value of TRUE
#FINAL_MODEL VALIDATION
train_control_full <- trainControl(method = "cv", number = 10)</pre>
cv_full_model <- train(</pre>
 pb.TotChol ~ .,
 data = clean.frame,
 method = "lm",
 trControl = train_control_full
print(cv_full_model)
## Linear Regression
##
## 1287 samples
##
      8 predictor
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1159, 1160, 1160, 1157, 1159, 1158, ...
## Resampling results:
##
##
     RMSE
                Rsquared
     0.9751863 0.1249023 0.7700059
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
#NULL_MODEL VALIDATION
train_control_null <- trainControl(method = "cv", number = 10)</pre>
cv_null_model <- train(</pre>
 pb.TotChol ~ SmokeNow,
 data = clean.frame,
 method = "lm",
  trControl = train_control_null
print(cv_null_model)
## Linear Regression
## 1287 samples
```

```
##
      1 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1159, 1159, 1159, 1159, 1158, 1158, ...
## Resampling results:
##
     RMSE
##
               Rsquared
                           MAF.
##
     1.040307 0.01430996 0.822368
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
#ORIGINAL MODEL VALIDATION
train_original <- trainControl(method = "cv", number = 10)</pre>
cv_original_model <- train(</pre>
 TotChol ~ Age+Height+BPSysAve+BPDiaAve,
 data = nhanes_data,
 method = "lm",
 trControl = train_original
)
print(cv_original_model)
## Linear Regression
## 1289 samples
##
      4 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1161, 1159, 1162, 1160, 1160, 1159, ...
## Resampling results:
##
##
     RMSE
               Rsquared
                            MAE
##
     1.040968 0.08495365 0.811146
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
#ORIGINAL FULL MODEL VALIDATION
train_full.og <- trainControl(method = "cv", number = 10)</pre>
cv_full.og_model <- train(</pre>
 TotChol ~ .,
 data = nhanes data,
 method = "lm",
 trControl = train_full.og
print(cv_full.og_model)
## Linear Regression
##
## 1289 samples
##
      7 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
```

```
## Summary of sample sizes: 1159, 1160, 1161, 1160, 1160, 1160, ...
## Resampling results:
##
##
    RMSE
              Rsquared
                         MAF.
##
    1.042695 0.07761385 0.8123572
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
library(glmnet)
lasso model <- train(</pre>
 pb.TotChol ~ Age+pb.Age2+Height+BPSysAve+BPDiaAve,
 data = clean.frame,
 method = "glmnet",
 trControl = train_control,
 tuneGrid = expand.grid(
   alpha = 1,
                     # Lasso
   lambda = 10^seq(-4, 1, length = 100) # Lambda grid
 )
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
print(lasso_model)
## glmnet
##
## 1287 samples
##
     5 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1157, 1159, 1159, 1159, 1157, 1157, ...
## Resampling results across tuning parameters:
##
##
    lambda
                  RMSE
                             Rsquared
                                        MAE
##
     0.0001000000 0.9739945
                             0.12976077
                                        0.7691609
##
     0.0001123324 0.9739945 0.12976077
                                        0.7691609
##
     0.0001261857 0.9739954 0.12976027
                                        0.7691613
##
     0.0001417474 0.9739968
                            0.12976110
                                        0.7691633
##
     ##
     0.0001788650 0.9739984 0.12975948 0.7691810
##
     0.0002009233 0.9739984 0.12975931 0.7691886
##
     0.0002257020 0.9740001 0.12975727
                                        0.7692012
##
     0.0002535364 0.9740017 0.12975569 0.7692135
##
     ##
     0.0003199267  0.9740048  0.12975191  0.7692410
##
     0.0003593814 0.9740075 0.12974927 0.7692584
##
     0.0004037017  0.9740107  0.12974633  0.7692776
##
     0.0004534879 0.9740149 0.12974168 0.7692999
##
     0.0005094138 0.9740202 0.12973622
                                        0.7693249
##
     0.0005722368 0.9740262 0.12973035
                                        0.7693532
##
     0.0006428073 0.9740347 0.12972198 0.7693856
##
     0.0007220809 0.9740448 0.12971192 0.7694221
```

```
##
      0.0008111308
                     0.9740576
                                 0.12969877
                                              0.7694622
##
      0.0009111628
                     0.9740733
                                 0.12968324
                                              0.7695082
      0.0010235310
##
                     0.9740939
                                 0.12966277
                                              0.7695633
##
      0.0011497570
                     0.9741190
                                 0.12963730
                                              0.7696274
##
      0.0012915497
                     0.9741515
                                 0.12960470
                                              0.7697029
      0.0014508288
##
                     0.9741919
                                 0.12956313
                                              0.7697917
##
      0.0016297508
                     0.9742422
                                 0.12951111
                                              0.7698953
##
      0.0018307383
                     0.9743054
                                 0.12944533
                                              0.7700177
##
      0.0020565123
                     0.9743852
                                 0.12936063
                                              0.7701696
##
      0.0023101297
                     0.9744860
                                 0.12925250
                                              0.7703542
##
      0.0025950242
                     0.9746139
                                 0.12911309
                                              0.7705734
##
      0.0029150531
                     0.9747736
                                 0.12893521
                                              0.7708222
##
      0.0032745492
                     0.9749757
                                 0.12870552
                                              0.7711129
##
      0.0036783798
                     0.9752300
                                 0.12840816
                                              0.7714521
##
      0.0041320124
                     0.9755503
                                 0.12802323
                                              0.7718671
##
      0.0046415888
                     0.9759544
                                 0.12752228
                                              0.7723643
##
      0.0052140083
                     0.9764636
                                 0.12686796
                                              0.7729484
##
      0.0058570208
                     0.9771052
                                              0.7736473
                                 0.12601114
##
      0.0065793322
                     0.9779143
                                 0.12488299
                                              0.7745175
##
      0.0073907220
                     0.9789321
                                 0.12339687
                                              0.7755773
##
      0.0083021757
                     0.9802155
                                 0.12142813
                                              0.7768724
##
      0.0093260335
                     0.9818310
                                 0.11881896
                                              0.7783836
##
      0.0104761575
                     0.9838665
                                 0.11535396
                                              0.7801559
##
      0.0117681195
                     0.9864259
                                 0.11077160
                                              0.7822815
##
      0.0132194115
                     0.9896455
                                 0.10474258
                                              0.7848019
##
      0.0148496826
                     0.9936933
                                 0.09690608
                                              0.7878965
##
      0.0166810054
                     0.9981864
                                 0.08815626
                                              0.7914723
##
      0.0187381742
                     0.9997776
                                 0.08527529
                                              0.7927283
##
      0.0210490414
                     0.9999655
                                 0.08514331
                                              0.7928204
                     1.0001619
##
                                 0.08506055
                                              0.7929176
      0.0236448941
##
      0.0265608778
                     1.0004073
                                 0.08495308
                                              0.7930506
##
      0.0298364724
                     1.0007142
                                 0.08481231
                                              0.7932449
##
      0.0335160265
                     1.0010956
                                 0.08463104
                                              0.7935106
##
      0.0376493581
                     1.0015596
                                 0.08441208
                                              0.7938228
##
                     1.0021302
                                 0.08413960
      0.0422924287
                                              0.7942503
##
      0.0475081016
                     1.0028260
                                 0.08379719
                                              0.7947584
##
      0.0533669923
                     1.0036963
                                 0.08331182
                                              0.7953584
##
                                              0.7960685
      0.0599484250
                     1.0047968
                                 0.08259402
##
      0.0673415066
                     1.0061608
                                 0.08156831
                                              0.7969906
##
      0.0756463328
                     1.0076835
                                 0.08042130
                                              0.7980031
##
      0.0849753436
                     1.0092617
                                 0.07970862
                                              0.7991878
##
                                              0.8006928
      0.0954548457
                     1.0110954
                                 0.07890115
##
      0.1072267222
                     1.0134043
                                 0.07743096
                                              0.8026675
##
      0.1204503540
                     1.0163388
                                 0.07457984
                                              0.8051721
##
      0.1353047775
                     1.0197924
                                 0.07010347
                                              0.8080000
##
      0.1519911083
                     1.0230368
                                 0.06637875
                                              0.8105885
##
      0.1707352647
                     1.0260602
                                 0.06605730
                                              0.8126892
##
      0.1917910262
                     1.0297810
                                 0.06605634
                                              0.8152489
##
      0.2154434690
                     1.0344526
                                 0.06605634
                                              0.8184422
##
      0.2420128265
                     1.0395529
                                 0.03679097
                                              0.8215551
##
                     1.0403394
                                              0.8219620
      0.2718588243
                                        NaN
##
      0.3053855509
                     1.0403394
                                        NaN
                                              0.8219620
##
                     1.0403394
                                              0.8219620
      0.3430469286
                                        NaN
##
      0.3853528594
                     1.0403394
                                        NaN
                                              0.8219620
```

```
##
      0.4328761281 1.0403394
                                      NaN 0.8219620
##
                                     NaN 0.8219620
      0.4862601580 1.0403394
                                     NaN 0.8219620
##
      0.5462277218 1.0403394
##
      0.6135907273 1.0403394
                                     NaN 0.8219620
##
      0.6892612104 1.0403394
                                      NaN 0.8219620
##
     0.7742636827 1.0403394
                                      NaN 0.8219620
                                      NaN 0.8219620
##
      0.8697490026 1.0403394
                                      NaN 0.8219620
##
      0.9770099573 1.0403394
##
      1.0974987655 1.0403394
                                      NaN 0.8219620
##
      1.2328467394 1.0403394
                                      NaN 0.8219620
##
      1.3848863714 1.0403394
                                      NaN 0.8219620
##
      1.5556761439 1.0403394
                                      NaN 0.8219620
##
      1.7475284000 1.0403394
                                      NaN 0.8219620
##
                                      NaN 0.8219620
      1.9630406500 1.0403394
##
      2.2051307399 1.0403394
                                      NaN 0.8219620
##
      2.4770763560 1.0403394
                                      NaN 0.8219620
##
      2.7825594022 1.0403394
                                      NaN 0.8219620
##
      3.1257158497 1.0403394
                                      NaN 0.8219620
##
      3.5111917342 1.0403394
                                      NaN 0.8219620
##
      3.9442060594 1.0403394
                                      NaN 0.8219620
##
      4.4306214576 1.0403394
                                      NaN 0.8219620
##
      4.9770235643 1.0403394
                                      NaN 0.8219620
##
      5.5908101825 1.0403394
                                     NaN 0.8219620
      6.2802914418 1.0403394
                                     NaN 0.8219620
##
##
     7.0548023107 1.0403394
                                      NaN 0.8219620
##
     7.9248289835 1.0403394
                                      NaN 0.8219620
##
     8.9021508545 1.0403394
                                      NaN 0.8219620
     10.000000000 1.0403394
                                      NaN 0.8219620
##
##
## Tuning parameter 'alpha' was held constant at a value of 1
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 1 and lambda = 0.0001123324.
# Best lambda from caret model
best_lambda <- cv_model$bestTune$lambda</pre>
# Extract coefficients at that lambda
lasso_coefs <- round(coef(cv_model$finalModel, s = best_lambda),4)</pre>
# Convert to tidy format
as.matrix(lasso_coefs)
##
                  [,1]
## (Intercept)
               4.8098
## Age
               0.0975
## pb.Age2
               -0.0009
## Height
              -0.0098
## BPSysAve
               0.0056
## BPDiaAve
               0.0127
```