MATHEMATIK II FÜR INFORMATIKER

Sommersemester 2018

Rüdiger Zeller

Mitschrift von Dominique Wernado

Inhaltsverzeichnis

1 Folgen		2	
	1.1	Definition (Folge)	2
	1.2	Beispiel	2
	1.3	Definition (Beschränkte und alternierende Folgen)	3
	1.4	Beispiel	4
	1.5	Definition (Konvergenz)	4
	1.6	Bemerkung	4
	1.7	Beispiel	5

1 Folgen

Grundbegriffe und Beispiele

1.1 Definition (Folge)

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von der Menge \mathbb{N} in eine Menge \mathbb{M} (oft $M\in\mathbb{R}$.

 a_n ist n-tes Folgenglied

n ist Index

Oft ist das erste Folgenglied nicht a_1 , sondern z.B. a_7 .

Schreibweise: $(a_n)_{n\in\mathbb{N}}$, $(a_n)_{n\geq n_0}$ oder (a_n) .

1.2 Beispiel

- a) $a_n = c \forall n \in \mathbb{N}$ konstante Folge
- **b)** $a_n = n$ *Zeichnung fehlt*
- c) $a_n = (-1)^n n \in \mathbb{N}$ alternierende Folge
- d) $a_n = \frac{1}{n}$ Nullfolge
- e) Rekursive Folgen, z.B. Fibonacci-Folge

$$f_1 = 1, f_2 = 1, f_{n+1} = \underbrace{f_n + f_{n-1}}_{\text{Rekursions formel}}$$

 $f_3 = 1 + 1 = 2, f_4 = 3, f_5 = 5, \text{ usw.}$

f) Exponentielles Wachstum (z.B. von Bakterien)

Rekursiv: $x_{n+1} = q * x_n$ mit

n ist Generation

 x_n ist Anzahl der Individuen in Generation n q ist Wachstumsfaktor x_0 ist Startpopulation

Explizit:
$$x_n = q^n * x_0$$

z.B.: $x_0 = 5, q = 2$
 $\rightarrow x_1 = 10, x_2 = 20, x_3 = 40, x_4 = 80, ...$

g) Logistisches Wachstum

$$x_{n+1} = r * x_n (1 - x_n)$$

 $r \in [0, 4]$ ist Wachstums - bzw. Sterbefaktor

 $\underbrace{x_n}_{\in [0,1]}$ ist relative/prozentuale Anzahl der Individuen in Generation n

Anzahl der Individuen in Generation n+1 hängt ab von aktueller Populationsgröße x_n und den vorhandenen natürlichen Ressourcen, charakterisiert durch $(1-x_n)$.

1.3 Definition (Beschränkte und alternierende Folgen)

Sei $(a_n)_{n\in\mathbb{N}}$ mit $a_n\in\mathbb{R}\forall n\in\mathbb{N}$.

- a) (a_n) heißt beschränkt $\Leftrightarrow |a_n| \leq K$ für ein $K \geq 0$
- **b)** (a_n) heißt alternierend, falls die Glieder abwechselnd positiv und negativ sind.

1.4 Beispiel

- i) 1.2 a), c), d) und g) sind beschränkt. b) und e) sind unbeschränkt.
- ii) 1.2 c) ist alternierend.

1.5 Definition (Konvergenz)

- a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen $a\in\mathbb{R}$, wenn es zu jedem $\epsilon>0$ ein $N\in\mathbb{N}$ gibt (das von ϵ abhängen darf), so dass $|a_n-a|<\epsilon\forall n\geq\mathbb{N}$ Kurschreibweise: $\forall \epsilon>0 \exists N\in\mathbb{N} \forall n\geq N: |a_n-a|<\epsilon.$
- **b)** $a \in \mathbb{R}$ heißt Grenzwert oder Limes der Folge. Man schreibt $\lim_{n \to \infty} a_n = a$ oder $a_n \to a$ für $n \to \infty$ oder $a_n \xrightarrow[n \to \infty]{} a$ oder $a_n \to a$.
- c) Eine Folge (a_n) mit Limes 0 heißt Nullfolge.
- d) Eine Folge, die nicht konvergiert, heißt divergent.

1.6 Bemerkung

 $a_n \to a$ bedeutet anschaulich:

Gibt mindestens eine Fehlerschranke $\epsilon > 0$ vor, so sind ab einem bestimmten $N \in \mathbb{N}$ alle Folgenglieer weniger als ϵ von a entfernt. Je kleiner ϵ , desto größer muss i.A. N gewählt werden.

Solch ein N muss sich für jedes noch so kleine ϵ finden lassen. Ansonsten ist (a_n) divergent.

1.7 Beispiel

a)
$$a_n = \frac{1}{n}, (a_n)_{n \in \mathbb{N}}$$
 Nullfolge:

- z.B.: Wähle
$$\epsilon=\frac{1}{10}$$
. Dann ist f¿ür $N>10$
$$|a_n-0|=|\frac{1}{n}|=\frac{1}{n}\underset{(N< n)}{\leq}\frac{1}{N}\underset{(N>10)}{<}\frac{1}{10}\ \forall n\geq N$$

- Allgemein (für beliebiges ϵ):

Sei
$$\epsilon > 0$$
. Dann ist für $N > \frac{1}{\epsilon} |a_n - 0| = \frac{1}{n} \le \frac{1}{N} < \frac{1}{\frac{1}{\epsilon}} \forall n \ge N$.

b)
$$(a_n)_{n\in\mathbb{N}}$$
 mit $a_n = \frac{n+1}{3n}$ hat Limes $a = \frac{1}{3}$.

Sei
$$\epsilon>0$$
. Dann ist für $N>\frac{1}{3\epsilon}$

$$|a_n - a| = \left|\frac{n+1}{3n} - \frac{1}{3}\right| = \frac{n+1-n}{3n} = \frac{1}{3n} \le \frac{1}{3N}$$

c) N muss nicht optimal gewählt werden:

$$\frac{1}{n^3+n+5} \underset{n\to\infty}{\longrightarrow} 0$$

Sei
$$\epsilon > 0$$
 für $N > *?*$

$$|a_n - a| = \frac{1}{n^3 + n + 5} \le \frac{1}{N^3 + N + 5} < \frac{1}{N} < \epsilon$$