IEEE's Hands on Practical Electronics (HOPE)

Week 5: Silicon & Breadboards

Objective:

Experiment with solar cells and learn how to build circuits on breadboards.

Materials Needed:

1 Breadboard

6 Solar Cells

1 9V Batttery

4 1k Ω Resistors

Hints & Refreshers:

Remember the following:

- Ohm's Law: V=IR
- Series resistance: $R_{eq} = R_1 + R_2$
- Parallel resistance: $R_{eq} = (R_1 * R_2)/(R_1 + R_2)$. (Two parallel resistors)
- To measure current:
 - 1. Remove power from the circuit.
 - 2. Disconnect the two points in the circuit you want to measure current through.
 - 3. Use a multimeter in current-measuring mode to connect the two points.
 - 4. Restore power to the circuit, read the current from the multimeter.
- For breadboards:
 - Rows of five are wired horizontally (see handout)
 - Long columns on the side are wired vertically
 - Ask for help if you need it!

Directions:

Part I:

Find the currents shown for each of the circuits below (all resistors are $1k\Omega$):

Measure I_1 , I_2 , I_3 , and I_4 . Do your results agree with your calculations?

Part II:

Measure the voltage (V_{BA}) across one solar cell. How does the voltage compare to the 9V battery you were using before?

Predict what happens to the measured voltage if:

- You cover the solar cell with your hand?
- You put 3 solar cells in series?
- You put 6 solar cells in series?

Test your predictions. Do they agree with your results?

Questions:

- 1. How does I_1 compare with I_2 ? Why?
- 2. How does I_3 compare with I_4 ? Why?
- 3. What would you get if you were to measure the current in the second parallel resistor in Figure 2? Why?
- 4. Why does the voltage change when the solar cell is covered?
- 5. (Optional) Would you want to use these solar cells to power your home? What problems might arise?