Estudio para la mejor elección de tipo de pista en jugadores de la ATP realizado en pyspark

Carlos María Canut Domínguez

Big Data - UPV

Resumen

En el presente estudio se va a utilizar el conjunto de datos de los partidos realizados en la ATP desde el año 2010 hasta el 2021. Con esto, se realizará una serie de modelos de clasificación con los que predecir en base a las características de un jugador vencedor y de otro perdedor, además del ranking en la ATP de ambos y el tiempo de duración de partida en minutos, cuál sería el tipo de pista más idónea para que el resultado planteado ocurriera.

Indice

escripción del Proyecto	
RESUMEN	••••••
INDICE	
DESCRIPCIÓN DEL PROYECTO	
ANÁLISIS DE VARIABLES	
Edad:	
Posición en ranking ATP:	
ALTURA:	
Duración de la partida:	
Mano dominante:	9
DESCRIPCIÓN DE LOS MODELOS:	1
Modelo de Regresión Logística con One-vs-All:	1
Modelo de Arboles de decisión:	1
Modelo de Bosques Aleatorios:	12
DESCRIPCIÓN DE LA PIPELINE:	1
DESCRIPCIÓN DE LOS HIPERPARAMETROS:	14
Modelo de Regresión Logística con One-vs-All:	14
Modelo de Arboles de decisión:	14
Modelo de Bosques aleatorios:	14
DESCRIPCIÓN DE LAS MÉTRICAS PARA EVALUAR LOS MODELOS:	1
Modelo de Regresión Logística con One-vs-All:	1:
MODELO DE ARBOLES DE DECISIÓN:	10
Modelo de Bosques aleatorios:	16
Análisis de los resultados:	17
REFERENCIAS	15

Descripción del Proyecto

Para este proyecto se ha seleccionado un conjunto de datos con todos los partidos jugados en la ATP con el cual se ha decidido utilizar los siguientes campos:

- Mano dominante del jugador (w_hand, l_hand)
- Altura del jugador (w_height, l_height)
- Edad del jugador (w_age, l_age)
- Posición en la ATP del jugador (w_rank, l_rank)
- Duración de la partida en minutos (minutes)
- Rango del torneo (tourney_level)
- Tipo de pista (Surface)
- ** Los campos con w_ se refieres a ganadores y con l_ a perdedores**

1	w_hand :	+ l_hand	w_height	l_height	w_age	1_age	w_rank	l_rank	minutes	tourney_level	surface
i	R	R	196.0	183.0	24.2984257358	21.4291581109	20.0	251.0	69.0	А	Hard
i	Lį	R	180.0	173.0	24.1204654346	32.0492813142	105.0	63.0	113.0	А	Hard
ı	R	L	188.0	198.0	27.3483915127	22.5434633812	7.0	134.0	81.0	A	Hard
ı	L	L	180.0	185.0	24.1204654346	26.1409993155	105.0	81.0	136.0	A	Hard
j	R	R	185.0	193.0	31.1047227926	23.3429158111	12.0	13.0	61.0	A	Hard
4						+					

+	+	+									+
summary	w_hand	l_hand	w_height	l_height	w_age	l_age	w_rank	l_rank	minutes	tourney_level s	urface
count	2392	2392	2392	2392	2392	2392	2392	2392	2392	2392	2392
mean	null	null	186.75627090301003	186.02759197324414	27.82013968533068	28.135315299229884	49.09531772575251	72.02132107023411	107.86580267558529	null	null
stddev	null	null	7.340978466231814	7.098994660527587	3.583103124835897	3.6729781088988136	59.7837111896956	70.89356750866155	45.0833881529782	null	null
min	L L	L	163.0	163.0	17.2320328542	17.9329226557	1.0	1.0	8.0	A	Clay
25%	null	null	183.0	183.0	25.1663244353	25.3826146475	14.0	30.0	79.0	null	null
50%	null	null	188.0	185.0	27.8576317591	28.205338809	34.0	58.0	100.0	null	null
75%	null	null	190.0	190.0	30.2422997947	30.6995208761	66.0	90.0	131.0	null	null
max	R	R	208.0	208.0	39.5811088296	39.9342915811	1042.0	836.0	1146.0	M	Hard
										and the second second	

Tras decidir que datos se utilizarían, se realizó un muestreo estratificado del conjunto en base al año en el que se jugó el partido:

Datos totales: 19459	Nuevos datos reducidos: 2392
++	++
year count	year count
++	++
2016 1983	2016 226
2012 2621	2012 334
2020 268	2020 34
2019 795	2019 88
2017 1599	2017 181
2014 2169	2014 248
2013 2408	2013 311
2018 1198	2018 162
2011 2592	2011 333
2021 120	2021 17
2015 1093	2015 115
2010 2613	2010 343
++	++

Finalmente observamos el total de partidas tenemos por cada tipo de pista:

surface	count
Clay	729
Grass	1414 249
+	

Podemos observar que falta la pista de alfombra, esto es porque al tener pocos registros y para los entrenamientos se decidió eliminarla.

Análisis de variables

Se ha realizado un análisis variable a variable y también se han observado ciertas variables en relación a otras:

Edad:

Podemos observar la edad de los jugadores ganadores y de los perdedores se distribuye siguiendo una normal si miramos la asimetría, curtosis y los histogramas, también se puede observar que la edad media de los perdedores suele ser mayor.

		+				
surface		mean(loser_age)		max(loser_age)	min(winner_age)	min(loser_age)
						•
Carpet	24.25272468803077	27.978307797600003	34.9678302533	33.6755646817	18.8911704312	19.832991102
Clay	27.81269322819466	28.08200889591144	40.2409308693	43.8302532512	17.2320328542	16.2354551677
Hard	27.9150914512067	28.09501089963693	41.8507871321	44.0602327173	17.2429842574	17.2046543463
Grass	28.409907806723666	28.25490127169548	39.3401779603	39.3785078713	17.6262833676	17.6262833676

Aquí podemos observar como en las pistas de alfombra es donde la edad tiene un importante factor, ya que los jugadores más jóvenes tienen más posibilidad de ganar observando las medias.

Posición en ranking ATP:

En cuanto a la posición en el ranking de la ATP, tanto jugadores ganadores como perdedores tienen una posición alta en la ATP, siendo la de los ganadores superior como es coherente.

surface	mean(winner_rank)	mean(loser_rank)	max(winner_rank)	max(loser_rank)	min(winner_rank)	min(loser_rank)
	237.07692307692307					
	52.23704842428901 47.768067906224736					1.0
	57.32218597063621					1.0 1.0
+	+		+			

Tambien se puede observar que en pistas de tierra dura es donde más diferencia de rango podemos observar es en tierra batida.

Altura:

En cuanto a la altura de los jugadores, tanto los ganadores como los perdedores se distribuyen de la misma forma, además se aproxima a una normal.

Duración de la partida:

Observando la duración de las partidas, podemos ver que la mayor parte de las partidas dura aproximadamente una hora y 40 minutos.

	_	game lenght by surfa							
į	surface		median	Q1	Q3	kurtosis	skewness	count	
	Carpet Clay Hard	137.0 108.87576006573542 107.25287663901526	137.0 101.0 99.0 105.0	137.0 79.0 78.0 79.0	137.0 132.0 129.0 138.0	NaN 88.38749169746019 34.538527193750575 10.14761220251931	NaN 4.061482538610376 2.370569473532891 1.6882444171412594	6085 11211	i
- +									٠

También se puede ver que las partidas más largas son las de césped, pudiendo deberse esto a que la pista de césped es la más rápida (ignorando alfombra ya que solo contamos con 1 registro).

Mano dominante:

winner_hand	count	percentage	loser_hand count	percentage
L R	2592 16867	0.1332031450742587 0.8667968549257413	L 2694 R 16765	0.13844493550542167 0.8615550644945783

Analizando el tipo de mano que utilizan los jugadores, podemos ver que en ambos casos, los diestros son la mayoría.

1			
tourney_level_winner_hand	L	R	
Α	1473	9444	
D	17	122	
F	9	111	
[G	488	3355	
M	605	3835	
+		+	

También es destacable el hecho de que independientemente de la categoría, se mantiene una diferencia significativa entre zurdos y diestros.

+	++	+
winner_rank_winner_hand	L	R
<u>+</u>	++	+
1.0	185	371
10.0	9	289
11.0	11	292
12.0	: :	259
13.0		
14.0		
15.0		
16.0		
17.0	: :	
18.0		
19.0	: :	241
	130	
20.0	: :	217
21.0		
22.0		
23.0		
24.0	: :	
25.0	:	
26.0	:	
27.0	: :	155
+	++	+

Cabe destacar que en los puestos 1 y 2, contamos con muchas partidas de jugadores zurdos a diferencia de puestos inferiores, este hecho puede que se deba a Rafael Nadal.

Descripción de los modelos:

Modelo de Regresión Logística con One-vs-All:

El clasificador OnevsRest (One-vs-All) es un tipo de clasificador multiclase que funciona con un clasificador binario de base, en nuestro caso una regresión logística.

El funcionamiento se fundamenta en obtener clasificaciones binarias entre todas las clases existentes, así con cada instancia comprueba si la clase es o no la que debería ser en la fase de entrenamiento.

Para hacer las predicciones, realiza una clasificación binaria con cada clase, y la que más confianza tenga es la que elige como resultado.

Ilustración One-vs-All. Anton Haugen (1 Marzo 2021).

Modelo de Arboles de decisión:

Los arboles de decisión funcionan en base a un primer nodo base del que se van generando distintas ramas en base a ciertas características que llevan a otros nodos, de manera que dependiendo de la instancia que estemos prediciendo, llegará hasta un nodo terminal que es el que indica el tipo de clase que se predice.

Ilustración Árbol de decisión. Casper Hansen (15 Septiembre 2021).

Modelo de Bosques Aleatorios:

Los Bosques aleatorios (Random Forest) hacen uso de los arboles de decisión, de manera que combinan diversos arboles de decisión, esto lo realizan creando cada arbol en base a un vector aleatorio de valores, todos los vectores se generan de manera aleatoria, y posteriormente se promedian entre estos, de manera que se evita el problema de overfitting.

Ilustración Bosque Aleatorio. CFI (2021).

Descripción de la Pipeline:

Para la tubería se ha realizado una binarización diferenciando entre jugadores de posiciones más altas (observando la media de los jugadores ganadores) y también con el tiempo de duración medio de los partidos, posteriormente se ha juntado con todas las demás variables predictoras, se ha realizado un PCA con los valores más significativos y se han normalizado todos los valores para el análisis.

surface	e surface_class	std_features	Ĺ
Clay Hard		[0.2445262842576335,1.677924080540802,-0.6278985789006248,-1.5390143247204846,0.3208099598293323,1.1600979342983386,-1.248650186052327] [0.05983408217682661,1.1777385826834315,-0.202784128266858,-1.5659437298755194,0.3102529820377186,0.5924697077162625,-0.725341609062653]	į
Clay	1.0	[-0.9102112307876484,-1.0153009539563096,0.1903123200629549,-0.5385002527554141,0.6811577913520477,0.8129224962828395,-1.1724352738879387]	l
Grass Clay		$ \begin{bmatrix} 0.5917603512771668, -0.5604579789789375, 0.6266299107065887, -0.36473809770870297, -0.5064932374976401, -0.441830468871907, -0.7508847513573038 \end{bmatrix} \\ \begin{bmatrix} -1.729273245789329, 4.137027620742789, -1.6639289013868066, 0.0749867876800114, -0.12498179811789945, -0.6061673273762095, -1.4587774178501327 \end{bmatrix} $	
1			i.

Este es el conjunto resultante después de aplicar la tubería.

Descripción de los hiperparametros:

Modelo de Regresión Logística con One-vs-All:

Los hiperparametros a editar de este modelo son:

- regParam LogisticRegression.regParam, [0.01, 0.2]
- elasticNetParam LogisticRegression.elasticNetParam, [0.0, 0.2]
- maxIter LogisticRegression.maxIter, [10, 20, 30]

Modelo de Arboles de decisión:

Los hiperparametros a editar de este modelo son:

- maxDepth DecisionTreeClassifier.maxDepth, [4, 6, 12, 14]
- maxBins DecisionTreeClassifier.maxBins, [20, 24, 27, 29]

Modelo de Bosques aleatorios:

Los hiperparametros a editar de este modelo son:

- maxDepth: random_forest.maxDepth, [3, 4, 5, 6, 8]
- maxBins random_forest.maxBins, [22, 23, 24, 25, 26, 27, 29]
- numTrees random_forest.numTrees, [6, 7, 8, 10, 11]

Descripción de las métricas para evaluar los modelos:

Para la evaluación de los modelos, se ha calculado el porcentaje de acierto del modelo, además de mostrar ciertas instancias de la predicción y como reacciona el modelo a estas.

Modelo de Regresión Logística con One-vs-All:

Error del modelo: 0.379888

Precisión mejor OnevsRest con Regresión Logística: 0.6201117318435754

surface	surface_class	prediction
Hard	0.0	0.0
Grass	2.0	0.0
Hard	0.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0

Modelo de Arboles de decisión:

Error del modelo: 0.379888 Precisión mejor Decision Tree: 0.6201117318435754

surface	surface_class	prediction
Hard	0.0	0.0
Grass	2.0	0.0
Hard	0.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0

Modelo de Bosques aleatorios:

Error del modelo: 0.377095

Precisión mejor Random Forest: 0.6229050279329609

surface	surface_class	prediction
Hard	0.0	0.0
Grass	2.0	0.0
Hard	0.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Clay	1.0	0.0
Hard	0.0	0.0

Análisis de los resultados:

```
Precisión mejor OnevsRest con Regresión Logística: 0.6201117318435754
Precisión mejor Decision Tree: 0.6201117318435754
Precisión mejor Random Forest: 0.6229050279329609
Precisión mejor Perceptron Multicapa: 0.61731843575419

['Random Forest', 0.6229050279329609]
['Decision Tree', 0.6201117318435754]
['OnevsRest', 0.620117318435754]
['Perceptron Multicapa', 0.61731843575419]
```

Podemos concluir que aunque el modelo con más precisión sea el de Bosque aleatorio, al ser tan ligeras las diferencias entre los modelos, no se trata de una mejora sustancial.

Referencias

JeffSackmann (31 Mayo 2021). https://github.com/JeffSackmann/tennis_atp
Spark 2.3.0 (30 Mayo 2014). https://spark.apache.org/docs/2.3.0/ml-classification-regression.html

Spark 2.3.0 (30 Mayo 2014). https://spark.apache.org/docs/2.3.0/ml-pipeline.html
Spark 2.3.0 (30 Mayo 2014). https://spark.apache.org/docs/2.3.0/ml-features.html
Spark 2.3.0 (30 Mayo 2014). https://spark.apache.org/docs/2.3.0/ml-tuning.html
Wikipedia (14 Mayo 2021).

https://es.wikipedia.org/wiki/Regresi%C3%B3n_log%C3%ADstica Wikipedia (15 Febrero 2021).

https://es.wikipedia.org/wiki/%C3%81rbol_de_decisi%C3%B3n

Wikipedia (5 Octubre 2020). https://es.wikipedia.org/wiki/Random_forest

Arya Mohapatra (25 Enero 2020). https://medium.com/analytics-vidhya/logistic-regression-from-scratch-multi-classification-with-onevsall-d5c2acf0c37c

CFI (2021). https://corporatefinanceinstitute.com/resources/knowledge/other/random-forest/
Casper Hansen (15 Septiembre 2021). https://mlfromscratch.com/decision-tree-classification/
Anton Haugen (1 Marzo 2021). https://antonhaugen.medium.com/introducing-mllibs-one-vs-rest-classifier-402eeab22493