データベース設計論

第9回 商演算

商演算

・直感的な説明から...

学生 *R*stid

g07508

g07517

SU111

JY006

 $R \times S = T$ とすると $T \div S = R$ または $T \div R = S$

学生x授業 T

stid	csid
g07508	SU101
g07508	SU111
g07508	JY006
g07517	SU101
g07517	SU111
g07517	JY006

 $T \div S = R$

Rは、リレーションTにおいてリレーションSのすべてのcsidを持つstidのリストとなる

商演算

リレーション $R(A_1, A_2, ..., A_{n-m}, B_1, ..., B_m)$ をn次, $S(B_1, ..., B_m)$ (m < n) をm次のリレーションとするとき, RをSで割った商 $(R \div S \succeq = \{t \mid t \in R[A_1, A_2, ..., A_{n-m}] \land (\forall u \in S)((t, u) \in R)\}$

stid	csid	
g07508	JY006	
g07517	SU111	
g07517	JY006	

stid

<u>g07508</u>
<u>g07517</u>

商演算は直積と差集合で表すことができる

$$R \div S = \pi_{A_1, \dots, A_{n-m}} R - \pi_{A_1, \dots, A_{n-m}} (((\pi_{A_1, \dots, A_{n-m}} R) \times S) - R)$$

R	$oldsymbol{\pi}_{csid}R$		S		(π_{csid})	$R) \times S$
stid	csid		stid		csid	stid
g07508	JY006	×	g07508	=	JY006	g07508
g07517	SU111		g07517		SU111	g07508
g07517			JY006	g07517		
					SU111	a07517

商演算は直積と差集合で表すことができる

$$R \div S = \pi_{A_1, \dots, A_{n-m}} R - \pi_{A_1, \dots, A_{n-m}} (((\pi_{A_1, \dots, A_{n-m}} R) \times S) - R)$$

$$(\pi_{csid}R)\times S$$

 $(\pi_{stid}R)\times S-R$

csid	stid
JY006	g07508
SU111	g07508
JY006	g07517
SU111	g07517

csid	stid
JY006	g07508
SU111	g07517
JY006	g07517

csid	stid
SU111	g07508

各csidにおける全stidの組合せ

全てのstidの組合せを 持つcsidが消える

商演算は直積と差集合で表すことができる

$$R \div S = \pi_{A_1, \dots, A_{n-m}} R - \pi_{A_1, \dots, A_{n-m}} (((\pi_{A_1, \dots, A_{n-m}} R) \times S) - R)$$

$$\pi_{csid}R - \pi_{csid}((\pi_{csid}R) \times S - R)$$

 csid
 _
 csid
 _
 csid
 _
 JY006
 _
 JY006
 _
 _
 JY006
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _

商演算はどんな時に使うか

- 「すべてのxxを持つ〇〇」を求める問合せ
 - 全ての授業を履修している学生
- •練習問題:
 - ①以下のリレーション「お菓子」「利用ログ」を用いて「すべてのお菓子を食べた人の名前」を求める関係代数を求めよ

お菓子

お菓子名
ポッキー
オレオ
源氏パイ

利用ログ

名前	お菓子名	日時
渡辺	ポッキー	5/28
阿部	源氏パイ	5/28
浅賀	オレオ	5/28
渡辺	源氏パイ	5/29
阿部	オレオ	5/29
渡辺	オレオ	5/29

商演算はどんな時に使うのか

- •練習問題2
 - ・以下のリレーション「授業」「成績」をもとに、すべての授業でAをとった学生の学籍番号を求める問合せを関係代数で求めよ

授業番号	授業名
IS001	プログラミング実習
IS002	データベース設計論
IS003	線形代数

学籍番号	授業番号	成績
g4501	IS001	Α
g4501	IS002	В
g4501	IS003	В
g4502	IS001	Α
g4502	IS002	Α
g4502	IS003	Α
g4503	IS002	Α
g4503	IS003	Α

商演算の応用

・ 商演算を使って最大値・最小値が求められる

例)最低点を取っている学生名を求めよ

ho(成績1,成績)

ho(成績2, $\sigma_{$ 成績.点数 \leq 成績1.点数}(成績×成績1))

成績=成績1

学生	点数
阿部	73
田川	62
石井	92

成績2

学生	点数	学生	点数
阿部	73	阿部	73
阿部	73	石井	92
田川	62	阿部	73
田川	62	田川	62
田川	62	石井	92
石井	92	石井	92

商演算の応用

例)最低点を取っている学生名を求めよ

 $\pi_{$ 成績2.学生(成績2÷成績1)

成績2

学生	点数	学生	点数
阿部	73	阿部	73
阿部	73	石井	92
田川	62	阿部	73
田川	62	田川	62
田川	62	石井	92
石井	92	石井	92

成績1

学生	点数
阿部	73
田川	62
石井	92

学生	点数	
田川	62	

商演算をSQL文で書いてみよう

・以下の式をそのまま SQL文で書けば良い

$$R \div S = \pi_{A_1, \dots, A_{n-m}} R - \pi_{A_1, \dots, A_{n-m}} (((\pi_{A_1, \dots, A_{n-m}} R) \times S) - R)$$

- ・いくつか方法があります
 - 1. 差集合演算を使う方法
 - 2. IN と EXISTS と NOT 演算を使う方法

補足:EXISTS 演算

- ・EXISTS演算:副問合せの結果が存在するか
 - 相関のある入れ子問合せでのみ利用可能

例)何処かのチームに登録されているアカウントID

SELECT s.stid
FROM students s
WHERE EXISTS (SELECT s.stid
FROM members m
WHERE s.stid = m.stid);

補足:EXISTS 演算

- ・EXISTS演算:副問合せの結果が存在するか
 - 相関のある入れ子問合せでのみ利用可能

例)どのチームにも属していないアカウントID

SELECT s.stid
FROM students s
WHERE NOT EXISTS (SELECT s.stid
FROM members m
WHERE s.stid = m.stid);