MECÁNICA GENERAL FUERZAS EXTERNAS EN EL ENFOQUE LAGRANGIANO

1. Barra que pende de un carro

Obtenga las ecuaciones que describen la dinámica del sistema. El momento de inercia para una barra de masa m y longitud l para una rotación desde uno de sus extremos es $\frac{m}{12}l^2$.

- el forzado externo $\vec{F}(t)$,
- y la que hace ejerce amortiguador de constante b en Y función de la velocidad del carro, $-b\dot{x}\hat{x}$.
- b) Genere el Lagrangiano.
- c) Calcule las ecuaciones de Euler-Lagrange.

b) $\frac{N}{m}$

c) Nm

d) Otra

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.

Una cuerda de masa despreciable envuelve al cilindro externo y sus extremos conectan un resorte de constante elástica k y un amortiguador. Tal amortiguador ejerce una fuerza de resistencia al movimiento lineal con la velocidad,

$$\vec{F}_{\rm amortiguador} = -c\dot{\vec{r}}.$$

Una correa de masa despreciable envuelve al cilindro de menor radio y de ella pende vertical un bloque de masa m_o .

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.

4. Sobre la superficie inclinada en θ_0 del carro de masa m_0 rueda sin deslizar un disco de radio R y masa m. Este no se sale de la superficie a pesar de que al centro del mismo se aplica una fuerza $\vec{F} = F(t)\hat{x}$ gracias a un resorte de constante elástica K_1 que une este centro con el carro. Limita el alcance de este un resorte de constante elástica K_2 fijado a la pared y un amortiguador proporcional a la velocidad de constante proporcional b. Ambos resortes tienen originalmente su longitud de equilibrio l_{10} y l_{20} . Se descarta la fricción del carro con el suelo. Todo el sistema está sometido a la aceleración gravitatoria $\vec{g} = -g\hat{y}$.

Pregunta conceptual: ¿Qué es la fuerza generalizada asociada al desplazamiento virtual δx debida a \vec{F} ?

- a) $F(t)\cos(\theta)$
- b) F(t)

- c) $F(t)\delta x$
- d) 0

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.