Complexity of Reasoning in Kleene and Action Algebras

Stepan Kuznetsov

ESSLLI 2022 · Galway, Ireland · Gallimh, Éire

Lecture 2

- We are studying infinitary logics for *-continuous Kleene algebras.
- If you don't remember what a *-continuous Kleene algebra means, just think about regular expressions, in their standard interpretation.
- Sequents are expressions of the form Π → B, where B is a formula (reg. exp.) and Π is a sequence of formulae.
- Our calculi are sound and complete w.r.t. the standard interpretation, i.e., Π → B is derivable iff v(Π) ⊆ v(B).

The first calculus, KA_{ω} , has the ω -rule, but proofs are required to be well-founded.

$$\overline{A \to A} \quad Id \qquad \overline{\Gamma, 0, \Delta \to B} \quad 0L$$

$$\frac{\Gamma, \Delta \to B}{\Gamma, 1, \Delta \to B} \quad 1L \qquad \overline{\longrightarrow} \quad 1R$$

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \cdot B, \Delta \to C} \cdot L \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \cdot B} \cdot R$$

$$\frac{\Gamma, A, \Delta \to C \quad \Gamma, B, \Delta \to C}{\Gamma, A + B, \Delta \to C} + L \qquad \frac{\Pi \to A}{\Pi \to A + B} + R_1 \quad \frac{\Pi \to B}{\Pi \to A + B} + R_2$$

$$\frac{\left(\Gamma, A^n, \Delta \to B\right)_{n=0}^{\infty}}{\Gamma, A^*, \Delta \to B} \quad *L_{\omega} \qquad \frac{\Gamma_1 \to A \quad \dots \quad \Gamma_n \to A}{\Gamma_1, \dots, \Gamma_n \to A^*} \quad *R_n, \ n \ge 0$$

• In contrast, proofs in KA_{∞} has only binary branching, but are allowed to be non-well-founded.

- In contrast, proofs in KA_{∞} has only binary branching, but are allowed to be non-well-founded.
- The rules for * in KA_{∞} are as follows:

$$\frac{\Gamma, \Delta \to B \quad \Gamma, A, A^*, \Delta \to B}{\Gamma, A^*, \Delta \to B} *L \qquad \xrightarrow{\longrightarrow A^*} *R_0 \qquad \frac{\Gamma \to A \quad \Delta \to A^*}{\Gamma, \Delta \to A^*} *R$$

In *R we require Γ to be non-empty.

- In contrast, proofs in KA_{∞} has only binary branching, but are allowed to be non-well-founded.
- The rules for * in KA_{∞} are as follows:

$$\frac{\Gamma, \Delta \to B \quad \Gamma, A, A^*, \Delta \to B}{\Gamma, A^*, \Delta \to B} *L \qquad \xrightarrow{\longrightarrow A^*} *R_0 \qquad \frac{\Gamma \to A \quad \Delta \to A^*}{\Gamma, \Delta \to A^*} *R$$

In *R we require Γ to be non-empty.

• In the absence of *Cut*, no correctness condition on infinite paths is necessary.

Equivalence Between KA_{ω} and KA_{∞}

Theorem (Das & Pous 2018)

 KA_{ω} and KA_{∞} (its cut-free version) derive the same set of theorems.

Equivalence Between KA_{ω} and KA_{∞}

Theorem (Das & Pous 2018)

 KA_{ω} and KA_{∞} (its cut-free version) derive the same set of theorems.

• The direction from $\mathbf{K}\mathbf{A}_{\omega}$ to $\mathbf{K}\mathbf{A}_{\infty}$ is easy: we just model the ω -rule by an infinite branch:

$$ω$$
-rule by an infinite branch:
$$\frac{\Gamma, A, A, \Delta \to B}{\Gamma, A, A, A, A^*, \Delta \to B} \xrightarrow{\Gamma, A, A, A^*, \Delta \to B} *L$$

$$\frac{\Gamma, \Delta \to B}{\Gamma, A^*, \Delta \to B} \xrightarrow{\Gamma, A, A^*, \Delta \to B} *L$$

Equivalence Between KA, and KA,

Theorem (Das & Pous 2018)

 KA_{α} and KA_{∞} (its cut-free version) derive the same set of theorems.

• The direction from KA_{α} to KA_{∞} is easy: we just model the ω -rule by an infinite branch:

$$ω$$
-rule by an infinite branch:
$$\frac{\Gamma, A, A, \Delta \to B}{\Gamma, A, A, A, A^*, \Delta \to B} \xrightarrow{\Gamma, A, A, A^*, \Delta \to B} *L$$

$$\frac{\Gamma, \Delta \to B}{\Gamma, A^*, \Delta \to B} \xrightarrow{\Gamma, A, A^*, \Delta \to B} *L$$

$$\frac{\Gamma, A, A^*, \Delta \to B}{\Gamma, A^*, \Delta \to B} *L$$
The *R_n rules is several iterations of *R.

• The $*R_n$ rules is several iterations of *R.

Equivalence Between KA_{ω} and KA_{∞}

• The opposite direction is based on the following lemma:

Lemma

If $\mathbf{K}\mathbf{A}_{\infty} \vdash \Gamma, A^*, \Delta \to B$, then $\mathbf{K}\mathbf{A}_{\infty} \vdash \Gamma, A^n, \Delta \to B$ for each n.

- This lemma is proved by induction on *n*.
 - We replace A^* with A^n and go upwards the proof. At the points of *L we refer to the induction hypothesis.
- Now we may eagerly apply the ω -rule, and translate finitary rules to $\mathbf{K}\mathbf{A}_{\omega}$.

• As we have shown, infinite proofs correspond to the ω -rule.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, induction (fixpoint rules) correspond to circular proofs.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, **induction** (fixpoint rules) correspond to **circular** proofs.
- In a circular derivation, each infinite path at some point reaches the same sequent as already seen below.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, **induction** (fixpoint rules) correspond to **circular** proofs.
- In a circular derivation, each infinite path at some point reaches the same sequent as already seen below.
- At this point, there is no need to develop the derivation further, but one can rather refer backwards via a **backlink**.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, **induction** (fixpoint rules) correspond to **circular** proofs.
- In a circular derivation, each infinite path at some point reaches the same sequent as already seen below.
- At this point, there is no need to develop the derivation further, but one can rather refer backwards via a **backlink**.
- Alternatively, circular proofs can be defined as regular non-well-founded proofs, i.e., proofs with a finite number of non-isomorphic subtrees.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, induction (fixpoint rules) correspond to circular proofs.
- In a circular derivation, each infinite path at some point reaches the same sequent as already seen below.
- At this point, there is no need to develop the derivation further, but one can rather refer backwards via a **backlink**.
- Alternatively, circular proofs can be defined as regular non-well-founded proofs, i.e., proofs with a finite number of non-isomorphic subtrees.
- We consider circular proofs with cuts, obeying the correctness condition.

- As we have shown, infinite proofs correspond to the ω -rule.
- In contrast, **induction** (fixpoint rules) correspond to **circular** proofs.
- In a circular derivation, each infinite path at some point reaches the same sequent as already seen below.
- At this point, there is no need to develop the derivation further, but one can rather refer backwards via a **backlink**.
- Alternatively, circular proofs can be defined as regular non-well-founded proofs, i.e., proofs with a finite number of non-isomorphic subtrees.
- We consider circular proofs with cuts, obeying the correctness condition.
- Let us denote this system by **KA**_{\(\tilde{\chi}\)}.

Circular Derivation: Example

$$\frac{a \to a \quad (a+b)^* \to a^*(ba^*)^*}{a,(a+b)^* \to aa^*(ba^*)^*} \quad \frac{b \to b \quad (a+b)^* \to a^*(ba^*)^*}{b,(a+b)^* \to ba^*(ba^*)^*} \quad ba^*(ba^*)^* \to (ba^*)^* \\
\underline{a,(a+b)^* \to a^*(ba^*)^*} \quad aa^*(ba^*)^* \quad b,(a+b)^* \to a^*(ba^*)^* \\
\underline{a,(a+b)^* \to a^*(ba^*)^*} \quad a+b,(a+b)^* \to a^*(ba^*)^* \\
\underline$$

KA₍₎ and KA

- KA_{\circlearrowright} derives the same set of theorems as Kozen's KA does (we are not going to prove this).

KA₍₎ and KA

- KA does (we are not going to prove this).
- Unfortunately, cut elimination for KA_{\circlearrowleft} again fails: examples include $(a+b)^* \to a^*(ba^*)^*$ (see above) and even $aa^* \to a^*a$.

KA_© and KA

- KA_{\circlearrowright} derives the same set of theorems as Kozen's KA does (we are not going to prove this).
- Unfortunately, cut elimination for KA_{\circlearrowright} again fails: examples include $(a+b)^* \to a^*(ba^*)^*$ (see above) and even $aa^* \to a^*a$.
- A sequent may have a circular proof with cuts, but unravelling it to an infinite proof and eliminating cuts yields a non-circular proof.

KA_© and KA

- KA
 \(\times \) derives the same set of theorems as Kozen's KA does (we are not going to prove this).
- Unfortunately, cut elimination for KA_{\circlearrowright} again fails: examples include $(a+b)^* \to a^*(ba^*)^*$ (see above) and even $aa^* \to a^*a$.
- A sequent may have a circular proof with cuts, but unravelling it to an infinite proof and eliminating cuts yields a non-circular proof.
- Furthermore, it is unclear how to reduce KA_{∞} to KA_{\circlearrowright} (even with cuts).

KA_© and KA

- KA
 \(\times \) derives the same set of theorems as Kozen's KA does (we are not going to prove this).
- Unfortunately, cut elimination for KA_{\circlearrowright} again fails: examples include $(a+b)^* \to a^*(ba^*)^*$ (see above) and even $aa^* \to a^*a$.
- A sequent may have a circular proof with cuts, but unravelling it to an infinite proof and eliminating cuts yields a non-circular proof.
- Furthermore, it is unclear how to reduce KA_{∞} to KA_{\circlearrowright} (even with cuts).
- However, it is possible to construct a cut-free circular calculus for KA, but with a more involved sequential syntax.

In a hypersequent Π → X (Das & Pous 2017), the left-hand side
Π is a sequence of formulae, and the right-hand side
X = Δ₁ | ... | Δ_m is a multiset of sequences of formulae.

- In a hypersequent Π → X (Das & Pous 2017), the left-hand side Π is a sequence of formulae, and the right-hand side X = Δ₁ | ... | Δ_m is a multiset of sequences of formulae.
- \mid means + (like, means ·)

- In a hypersequent Π → X (Das & Pous 2017), the left-hand side Π is a sequence of formulae, and the right-hand side X = Δ₁ | ... | Δ_m is a multiset of sequences of formulae.
- | means + (like, means ·)
- The left rules are the same, e.g.:

$$\frac{\Gamma_1, \Gamma_2 \to \mathcal{X} \quad \Gamma_1, A, A^*, \Gamma_2 \to \mathcal{X}}{\Gamma_1, A^*, \Gamma_2 \to \mathcal{X}} *L \qquad \frac{\Gamma_1, A, B, \Gamma_2 \to \mathcal{X}}{\Gamma_1, A \cdot B, \Gamma_2 \to \mathcal{X}} \cdot L \qquad ...$$

- In a hypersequent Π → X (Das & Pous 2017), the left-hand side
 Π is a sequence of formulae, and the right-hand side
 X = Δ₁ | ... | Δ_m is a multiset of sequences of formulae.
- \mid means + (like, means ·)
- The left rules are the same, e.g.:

$$\frac{\Gamma_1, \Gamma_2 \to \mathcal{X} \quad \Gamma_1, A, A^*, \Gamma_2 \to \mathcal{X}}{\Gamma_1, A^*, \Gamma_2 \to \mathcal{X}} *L \qquad \frac{\Gamma_1, A, B, \Gamma_2 \to \mathcal{X}}{\Gamma_1, A \cdot B, \Gamma_2 \to \mathcal{X}} \cdot L \qquad \dots$$

• The right-hand side enjoys structural rules:

$$\frac{\Pi \to \mathcal{X}}{\Pi \to \Delta \mid \mathcal{X}} WR \qquad \frac{\Pi \to \Delta \mid \Delta \mid \mathcal{X}}{\Pi \to \Delta \mid \mathcal{X}} CR$$

• The atomic case is handled as follows:

$$\frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{\epsilon \to \epsilon} Ax \qquad \frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{a, \Gamma \to a, \Delta_1 \mid \dots \mid a, \Delta_m} K$$

Hypersequential Calculus HKA_∞

• The atomic case is handled as follows:

$$\frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{a, \Gamma \to a, \Delta_1 \mid \dots \mid a, \Delta_m} K$$

• Finally, the right rules are as follows:

$$\frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \Delta_{1}, A, A^{*}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A^{*}, \Delta_{2} \mid \mathcal{X}} *R \qquad \frac{\Pi \to \Delta_{1}, A, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A \cdot B, \Delta_{2} \mid \mathcal{X}} \cdot R$$

$$\frac{\Pi \to \Delta_{1}, A, \Delta_{2} \mid \Delta_{1}, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A, B, \Delta_{2} \mid \mathcal{X}} + R \qquad \frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, 1, \Delta_{2} \mid \mathcal{X}} \cdot 1R$$

Hypersequential Calculus HKA_∞

• The atomic case is handled as follows:

$$\frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{a, \Gamma \to a, \Delta_1 \mid \dots \mid a, \Delta_m} K$$

• Finally, the right rules are as follows:

$$\frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \Delta_{1}, A, A^{*}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A^{*}, \Delta_{2} \mid \mathcal{X}} *R \qquad \frac{\Pi \to \Delta_{1}, A, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A \cdot B, \Delta_{2} \mid \mathcal{X}} \cdot R$$

$$\frac{\Pi \to \Delta_{1}, A, \Delta_{2} \mid \Delta_{1}, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A + B, \Delta_{2} \mid \mathcal{X}} + R \qquad \frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, 1, \Delta_{2} \mid \mathcal{X}} \cdot 1R$$

• HKA $_{\omega}$ allows non-well-founded proofs, with the following fairness condition: each infinite path should traverse *L infinitely many times.

Hypersequential Calculus HKA_∞

• The atomic case is handled as follows:

$$\frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{a, \Gamma \to a, \Delta_1 \mid \dots \mid a, \Delta_m} K$$

Finally, the right rules are as follows:

$$\frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \Delta_{1}, A, A^{*}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A^{*}, \Delta_{2} \mid \mathcal{X}} *R \qquad \frac{\Pi \to \Delta_{1}, A, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A \cdot B, \Delta_{2} \mid \mathcal{X}} \cdot R$$

$$\frac{\Pi \to \Delta_{1}, A, \Delta_{2} \mid \Delta_{1}, B, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, A + B, \Delta_{2} \mid \mathcal{X}} + R \qquad \frac{\Pi \to \Delta_{1}, \Delta_{2} \mid \mathcal{X}}{\Pi \to \Delta_{1}, 1, \Delta_{2} \mid \mathcal{X}} \cdot 1R$$

- HKA $_{\omega}$ allows non-well-founded proofs, with the following fairness condition: each infinite path should traverse *L infinitely many times.
- There is no cut rule in HKA_{∞} (it is even hard to formulate).

Theorem (Das & Pous 2017)

Sequents of the form $\Pi \to B$ are equiderivable in \mathbf{HKA}_{∞} , \mathbf{KA}_{∞} , and \mathbf{KA}_{ω} .

Theorem (Das & Pous 2017)

Sequents of the form $\Pi \to B$ are equiderivable in \mathbf{HKA}_{∞} , \mathbf{KA}_{∞} , and \mathbf{KA}_{ω} .

• For the direction from HKA_{∞} to KA_{ω} , we use the same argument as for KA_{∞} .

Theorem (Das & Pous 2017)

Sequents of the form $\Pi \to B$ are equiderivable in \mathbf{HKA}_{∞} , \mathbf{KA}_{∞} , and \mathbf{KA}_{ω} .

- For the direction from HKA_{∞} to KA_{ω} , we use the same argument as for KA_{∞} .
- Namely, we establish the following key lemma: if Γ , A^* , $\Delta \to \mathcal{X}$ is derivable in \mathbf{HKA}_{∞} , then so is Γ , A^n , $\Delta \to \mathcal{X}$ for each n. (Induction on n.)

• Next, we define the *-height of a reg. exp. as the maximal nesting depth of *.

- Next, we define the *-height of a reg. exp. as the maximal nesting depth of *.
- For a sequence Γ, its weighted *-height, wh_{*}(Γ), is the multiset of *-heights of the elements of Γ.

- Next, we define the *-height of a reg. exp. as the maximal nesting depth of *.
- For a sequence Γ, its weighted *-height, wh_{*}(Γ), is the multiset of *-heights of the elements of Γ.
- These wh_{*}'s have the following well-founded partial order: multiset *M* (of natural numbers) is greater than multiset *N*, if *N* can be obtained from *M* by replacing some elements by multisets of smaller elements (Dershowitz & Manna 1979).

- Next, we define the *-height of a reg. exp. as the maximal nesting depth of *.
- For a sequence Γ, its weighted *-height, wh_{*}(Γ), is the multiset of *-heights of the elements of Γ.
- These wh_{*}'s have the following well-founded partial order:
 multiset *M* (of natural numbers) is greater than multiset *N*, if *N* can be obtained from *M* by replacing some elements by
 multisets of smaller elements (Dershowitz & Manna 1979).
 - For example, $\{3, 3, 4, 0\} \gg \{2, 2, 2, 3, 4, 0\} \gg \{2, 2, 2, 3, 2, 2, 1, 0\}$.

- Next, we define the *-height of a reg. exp. as the maximal nesting depth of *.
- For a sequence Γ, its weighted *-height, wh_{*}(Γ), is the multiset of *-heights of the elements of Γ.
- These wh_{*}'s have the following well-founded partial order:
 multiset *M* (of natural numbers) is greater than multiset *N*, if *N* can be obtained from *M* by replacing some elements by
 multisets of smaller elements (Dershowitz & Manna 1979).
 - For example, $\{3,3,4,0\} \gg \{2,2,2,3,4,0\} \gg \{2,2,2,3,2,2,1,0\}$.
 - This is exactly what happens in our lemma, when A^* is replaced by $A^n = A, ..., A$.

• Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .
- Rules of π_0 can be modelled in $\mathbf{K}\mathbf{A}_{\omega}$.

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .
- Rules of π_0 can be modelled in $\mathbf{K}\mathbf{A}_{\omega}$.
- For each cut-off point, we have $\Gamma, A^*, \Delta \to \mathcal{Y}$, where $\operatorname{wh}_*(\Gamma, A^*, \Delta) \underline{\ll} \operatorname{wh}_*(\Sigma)$.

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .
- Rules of π_0 can be modelled in KA_{ω} .
- For each cut-off point, we have $\Gamma, A^*, \Delta \to \mathcal{Y}$, where $\operatorname{wh}_*(\Gamma, A^*, \Delta) \leq \operatorname{wh}_*(\Sigma)$.
- By our lemma, we get derivability of Γ , A^n , $\Delta \to \mathcal{X}$ for each n in \mathbf{HKA}_{∞} , and since $\mathrm{wh}_*(\Gamma, A^n, \Delta) \ll \mathrm{wh}_*(\Gamma, A^*, \Delta) \underline{\ll} \mathrm{wh}_*(\Sigma)$, also in \mathbf{KA}_{ω} by induction hypothesis.

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .
- Rules of π_0 can be modelled in $\mathbf{K}\mathbf{A}_{\omega}$.
- For each cut-off point, we have $\Gamma, A^*, \Delta \to \mathcal{Y}$, where $\operatorname{wh}_*(\Gamma, A^*, \Delta) \leq \operatorname{wh}_*(\Sigma)$.
- By our lemma, we get derivability of Γ , A^n , $\Delta \to \mathcal{X}$ for each n in \mathbf{HKA}_{∞} , and since $\mathrm{wh}_*(\Gamma, A^n, \Delta) \ll \mathrm{wh}_*(\Gamma, A^*, \Delta) \underline{\ll} \mathrm{wh}_*(\Sigma)$, also in \mathbf{KA}_{ω} by induction hypothesis.
- Now we finalise our proof by applying $*L_{\omega}$.

- Now let π be a proof of $\Sigma \to \mathcal{X}$ in \mathbf{HKA}_{∞} , and proceed by induction on $\mathrm{wh}_{*}(\Sigma)$.
- We cut off π at lowermost applications of *L, and this results in a finite proof π_0 .
- Rules of π_0 can be modelled in KA_{ω} .
- For each cut-off point, we have $\Gamma, A^*, \Delta \to \mathcal{Y}$, where $\operatorname{wh}_*(\Gamma, A^*, \Delta) \leq \operatorname{wh}_*(\Sigma)$.
- By our lemma, we get derivability of Γ , A^n , $\Delta \to \mathcal{X}$ for each n in \mathbf{HKA}_{∞} , and since $\mathrm{wh}_*(\Gamma, A^n, \Delta) \ll \mathrm{wh}_*(\Gamma, A^*, \Delta) \underline{\ll} \mathrm{wh}_*(\Sigma)$, also in \mathbf{KA}_{ω} by induction hypothesis.
- Now we finalise our proof by applying $*L_{\omega}$.
- Notice that induction here is more involved than for KA_{∞} .

• For the opposite direction, a stronger result holds.

• For the opposite direction, a stronger result holds.

Theorem (Das & Pous 2017)

If a sequent is derivable in KA_{ω} , then it can be derived in HKA_{∞} by a circular derivation.

• For the opposite direction, a stronger result holds.

Theorem (Das & Pous 2017)

If a sequent is derivable in KA_{ω} , then it can be derived in HKA_{∞} by a circular derivation.

• Therefore, $\mathbf{K}\mathbf{A}_{\omega}$ is enumerable, and by Post's theorem it is decidable.

• For the opposite direction, a stronger result holds.

Theorem (Das & Pous 2017)

If a sequent is derivable in KA_{ω} , then it can be derived in HKA_{∞} by a circular derivation.

- Therefore, KA_ω is enumerable, and by Post's theorem it is decidable.
- A more accurate analysis of circular proofs yields the PSPACE upper bound.

• For the opposite direction, a stronger result holds.

Theorem (Das & Pous 2017)

If a sequent is derivable in KA_{ω} , then it can be derived in HKA_{∞} by a circular derivation.

- Therefore, $\mathbf{K}\mathbf{A}_{\omega}$ is enumerable, and by Post's theorem it is decidable.
- A more accurate analysis of circular proofs yields the PSPACE upper bound.
- Circular proofs in \mathbf{HKA}_{∞} can be translated to $\mathbf{KA}_{\circlearrowright}$ proofs (but with cuts), and therefore to \mathbf{KA} proofs. Thus, $\mathbf{KA} = \mathbf{KA}_{\omega}$. (We shall not go into this.)

• We are going to construct proofs of a specific form, which will force them to become circular

- We are going to construct proofs of a specific form, which will force them to become circular
- A proof in HKA_{∞} is called a **leftmost** one, if for each logical rule its active formula is the first formula in a sequence.

- We are going to construct proofs of a specific form, which will force them to become circular
- A proof in HKA_{∞} is called a **leftmost** one, if for each logical rule its active formula is the first formula in a sequence.
- This holds for both left and right rules.

- We are going to construct proofs of a specific form, which will force them to become circular
- A proof in HKA_{∞} is called a **leftmost** one, if for each logical rule its active formula is the first formula in a sequence.
- This holds for both left and right rules.
- Restricting ourselves to leftmost proofs means dropping left contexts in sequent rules.

- We are going to construct proofs of a specific form, which will force them to become circular
- A proof in HKA_{∞} is called a **leftmost** one, if for each logical rule its active formula is the first formula in a sequence.
- This holds for both left and right rules.
- Restricting ourselves to leftmost proofs means dropping left contexts in sequent rules.
- Now we have the following left logical rules:

$$\frac{\Gamma \to \mathcal{X} \quad A, A^*, \Gamma \to \mathcal{X}}{A^*, \Gamma \to \mathcal{X}} *L \qquad \frac{A, B, \Gamma \to \mathcal{X}}{A \cdot B, \Gamma \to \mathcal{X}} \cdot L$$

$$\frac{A, \Gamma \to \mathcal{X} \quad B, \Gamma \to \mathcal{X}}{A + B, \Gamma \to \mathcal{X}} + L \qquad \frac{\Gamma \to \mathcal{X}}{1, \Gamma \to \mathcal{X}} *L \qquad \frac{0, \Gamma \to \mathcal{X}}{0, \Gamma \to \mathcal{X}} *DL$$

• ... and the following right rules:

$$\frac{\Pi \to \Delta \mid A, A^*, \Delta \mid \mathcal{X}}{\Pi \to A^*, \Delta \mid \mathcal{X}} *R \qquad \frac{\Pi \to A, B, \Delta \mid \mathcal{X}}{\Pi \to A \cdot B, \Delta \mid \mathcal{X}} \cdot R$$

$$\frac{\Pi \to A, \Delta \mid B, \Delta \mid \mathcal{X}}{\Pi \to A + B, \Delta \mid \mathcal{X}} + R \qquad \frac{\Pi \to \Delta \mid \mathcal{X}}{\Pi \to 1, \Delta \mid \mathcal{X}} 1R$$

• ... and the following right rules:

$$\frac{\Pi \to \Delta \mid A, A^*, \Delta \mid \mathcal{X}}{\Pi \to A^*, \Delta \mid \mathcal{X}} *R \qquad \frac{\Pi \to A, B, \Delta \mid \mathcal{X}}{\Pi \to A \cdot B, \Delta \mid \mathcal{X}} \cdot R$$

$$\frac{\Pi \to A, \Delta \mid B, \Delta \mid \mathcal{X}}{\Pi \to A + B, \Delta \mid \mathcal{X}} + R \qquad \frac{\Pi \to \Delta \mid \mathcal{X}}{\Pi \to 1, \Delta \mid \mathcal{X}} *R$$

• Other rules are the same:

$$\frac{\Gamma \to \Delta_1 \mid \dots \mid \Delta_m}{a, \Gamma \to a, \Delta_1 \mid \dots \mid a, \Delta_m} K$$

$$\frac{\Pi \to \mathcal{X}}{\Pi \to \Delta \mid \mathcal{X}} WR \qquad \frac{\Pi \to \Delta \mid \Delta \mid \mathcal{X}}{\Pi \to \Delta \mid \mathcal{X}} CR$$

• The usage of an ω -rule is arguably not really a mechanism of "proof" in the desirable sense.

- The usage of an ω -rule is arguably not really a mechanism of "proof" in the desirable sense.
- To compare, let us consider the arithmetical statement of Fermat's Last Theorem:

$$\forall x, y, z, n \ (x, y, z > 0 \ \& \ n > 2 \supset x^n + y^n \neq z^n).$$

- The usage of an ω -rule is arguably not really a mechanism of "proof" in the desirable sense.
- To compare, let us consider the arithmetical statement of Fermat's Last Theorem:

$$\forall x, y, z, n \ (x, y, z > 0 \ \& \ n > 2 \supset x^n + y^n \neq z^n).$$

• Using the arithmetical ω -rule, we can reduce it to proving the statement for each **concrete** tuple (x, y, z, n), which is an obvious check.

- The usage of an ω -rule is arguably not really a mechanism of "proof" in the desirable sense.
- To compare, let us consider the arithmetical statement of Fermat's Last Theorem:

$$\forall x, y, z, n \ (x, y, z > 0 \ \& \ n > 2 \supset x^n + y^n \neq z^n).$$

- Using the arithmetical ω -rule, we can reduce it to proving the statement for each **concrete** tuple (x, y, z, n), which is an obvious check.
- This, of course, does not constitute a mathematical proof of the theorem in a reasonable sense.

• The same happens in KA_{ω} . With the ω -rule, as we say yesterday, one proves $A \to B$, i.e., $v(A) \subseteq v(B)$, just by brute-force over all words in v(A).

- The same happens in KA_{ω} . With the ω -rule, as we say yesterday, one proves $A \to B$, i.e., $v(A) \subseteq v(B)$, just by brute-force over all words in v(A).
- Non-well-founded proofs in general (KA_{∞}) do not resolve this issue, since they are capable of modelling the ω -rule directly.

- The same happens in KA_{ω} . With the ω -rule, as we say yesterday, one proves $A \to B$, i.e., $v(A) \subseteq v(B)$, just by brute-force over all words in v(A).
- Non-well-founded proofs in general (KA_{∞}) do not resolve this issue, since they are capable of modelling the ω -rule directly.
- This simulation is performed by eager application of *L to one and the same instance of A^* .

- The same happens in KA_{ω} . With the ω -rule, as we say yesterday, one proves $A \to B$, i.e., $v(A) \subseteq v(B)$, just by brute-force over all words in v(A).
- Non-well-founded proofs in general (KA_{∞}) do not resolve this issue, since they are capable of modelling the ω -rule directly.
- This simulation is performed by eager application of *L to one and the same instance of A*.
- Leftmost proofs disallow this:

$$\frac{\Gamma \to \mathcal{X} \quad A, A^*, \Gamma \to \mathcal{X}}{A^*, \Gamma \to \mathcal{X}} *L$$

since now we are forced to decompose A before we are allowed to do the next iteration of A^* .

• The sophisticated hypersequent structure on the right is needed to postpone the choice $(+R_{1,2} \text{ or } *R)$ upwards the proof.

- The sophisticated hypersequent structure on the right is needed to postpone the choice $(+R_{1,2} \text{ or } *R)$ upwards the proof.
- An example is $a, a^* \rightarrow a^* \cdot a$.

- The sophisticated hypersequent structure on the right is needed to postpone the choice $(+R_{1,2} \text{ or } *R)$ upwards the proof.
- An example is $a, a^* \rightarrow a^* \cdot a$.
- As the proof should be leftmost, we are not allowed to decompose a* using *L on the left.

- The sophisticated hypersequent structure on the right is needed to postpone the choice $(+R_{1,2} \text{ or } *R)$ upwards the proof.
- An example is $a, a^* \rightarrow a^* \cdot a$.
- As the proof should be leftmost, we are not allowed to decompose a* using *L on the left.
- We think of decomposing a* on the right, but this would yield a choice: a*a ≡ a + (aa*a), and this choice should actually be made after applying *L.

- The sophisticated hypersequent structure on the right is needed to postpone the choice $(+R_{1,2} \text{ or } *R)$ upwards the proof.
- An example is $a, a^* \rightarrow a^* \cdot a$.
- As the proof should be leftmost, we are not allowed to decompose a* using *L on the left.
- We think of decomposing a* on the right, but this would yield a choice: a*a ≡ a + (aa*a), and this choice should actually be made after applying *L.
 - On the left branch of *L we choose a → a, and on the right one
 we choose aaa* → aa*a.

This is handled by the hypersequential version of the *R rule, which keeps both choices in the sequent, and postpones the decision to applications of WR above:

$$\frac{\varepsilon \to \varepsilon}{\varepsilon \to \varepsilon \mid a^*, a} WR \quad \frac{a, a^* \to a^*, a}{a, a^* \to \varepsilon \mid a^*, a} WR$$

$$\frac{a^* \to \varepsilon \mid a^*, a}{\underbrace{a, a^* \to a \mid a, a^*, a}_{a, a^* \to a^*, a} K} *L$$

Constructing Circular Proofs

Now we are going to prove the following two statements, which give the necessary result:

- 1. If $v(A) \subseteq v(B)$, then $A \to B$ has a leftmost proof in HKA_{∞} .
- 2. Each leftmost proof can be transformed into a circular one.

Lemma

If there is a subderivation

$$\frac{\frac{\Gamma \to A^*, \Delta \mid \mathcal{X}}{\vdots \pi}}{\frac{\Gamma \to \Delta \mid A, A^*, \Delta \mid \mathcal{Y}}{\Gamma \to A^*, \Delta \mid \mathcal{Y}}} *R$$

where π consists only of right logical rules, and the sequent $\Gamma \to A^*, \Delta \mid \mathcal{Y}$ is valid in the standard interpretation, then so is $\Gamma \to \mathcal{X}$ (i.e., A^*, Δ there is redundant).

- All right rules are invertible, so $\Gamma \to A^*, \Delta \mid \mathcal{X}$ is also valid.
- It is sufficient to prove $A^*, \Delta \to \mathcal{X}$ in HKA_{∞} .
- By soundness, this means $v(A^*, \Delta) \subseteq v(\mathcal{X})$, and thus $v(\Gamma) \subseteq v(A^*, \Delta) + v(\mathcal{X}) = v(\mathcal{X})$.
- Proving A*, Δ → X is performed by using the left rules corresponding to the rules from π:

$$\frac{\vdots \pi'}{\Delta \to \mathcal{X}} \frac{\vdots \pi''}{A, A^*, \Delta \to \mathcal{X}} {}_{*L}$$

• In π' and π'' , antecedents will be the corresponding sequences from the succedents in π . For example, if π had a step of the form

$$\frac{\Gamma \to B, \Delta' \mid C, \Delta' \mid \mathcal{Z}}{\Gamma \to B + C, \Delta' \mid \mathcal{Z}} + R$$

where B + C, Δ' was the antecedent in π' or π'' , then we proceed as

$$\frac{B,\Delta'\to\mathcal{X}\quad C,\Delta'\to\mathcal{X}}{B+C,\Delta'\to\mathcal{X}} + L$$

• In π' and π'' , antecedents will be the corresponding sequences from the succedents in π . For example, if π had a step of the form

$$\frac{\Gamma \to B, \Delta' \mid C, \Delta' \mid \mathcal{Z}}{\Gamma \to B + C, \Delta' \mid \mathcal{Z}} \ + R$$

where B + C, Δ' was the antecedent in π' or π'' , then we proceed as

$$\frac{B, \Delta' \to \mathcal{X} \quad C, \Delta' \to \mathcal{X}}{B + C, \Delta' \to \mathcal{X}} + L$$

• Thus, a linear derivation π with rich succedents is decomposed into branching derivations π' and π'' with simple antecedents.

• In π' and π'' , antecedents will be the corresponding sequences from the succedents in π . For example, if π had a step of the form

$$\frac{\Gamma \to B, \Delta' \mid C, \Delta' \mid \mathcal{Z}}{\Gamma \to B + C, \Delta' \mid \mathcal{Z}} + R$$

where B + C, Δ' was the antecedent in π' or π'' , then we proceed as

$$\frac{B, \Delta' \to \mathcal{X} \quad C, \Delta' \to \mathcal{X}}{B + C, \Delta' \to \mathcal{X}} + L$$

- Thus, a linear derivation π with rich succedents is decomposed into branching derivations π' and π'' with simple antecedents.
- In π'' , on top we shall have either $\Phi \to \mathcal{X}$ where $\Phi \in \mathcal{X}$ (derivable by WR), or $A^*, \Delta \to \mathcal{X}$, which is derived by backlink to the goal.

• Fairness is maintained by the lowermost *L.

- Fairness is maintained by the lowermost *L.
- For π' , we do not have this guarantee of fairness.

- Fairness is maintained by the lowermost *L.
- For π' , we do not have this guarantee of fairness.
- However, we claim that if a leaf of π' is of the form $A^*, \Delta \to \mathcal{X}$, then the corresponding path should have traversed *L.

- Fairness is maintained by the lowermost *L.
- For π' , we do not have this guarantee of fairness.
- However, we claim that if a leaf of π' is of the form $A^*, \Delta \to \mathcal{X}$, then the corresponding path should have traversed *L.
- Indeed, all rules in π' are left logical rules, and such rules other than *L decrease the size of the antecedent. On the other hand, A*, Δ is bigger than Δ.