Math 697 Fall 2014: Week 9

Exercise 1 Given a branching process with the following offspring distributions determine the extinction probability a.

(a)
$$p(0) = .25, p(1) = .4, p(2) = .35$$

(b)
$$p(0) = 5, p(1) = .1, p(3) = .4$$

(c)
$$p(0) = .62, p(1) = .30, p(2) = .02, p(3) = .02, p(6) = .02, p(13) = .02$$

(d)
$$p(i) = (1 - q)q^i$$

Exercise 2 (Computer exercise) Write down a computer program which compute the extinction probability given a distribution of offsprings p(k) by solving the equation $a = \phi(a)$.

• Use it to compute the extinction probability if

$$p(0) = 1/10, p(1) = 3/10, p(2) = 2/10, p(4) = 1/20, p(5) = 1/20, p(8) = 1/10, p(12) = 2/10$$

• Use the previous algorithm to compute the probability that the population dies out after n = 20, 100, 200, 1000, 1500, 2000, 5000 generations if p(0) = p(1) = p(2) = 1/3.

Exercise 3 Consider a population with the following rules of (asexual) reproduction. An individual has probability q to leave long enough to reproduce and if it does, it produces 1 or 2 offsprings with equal probability and after this no longer reproduces and eventually dies. Suppose that the population starts with 4 individuals.

- \bullet For which values of q is it guaranteed that the population will eventually die out?
- If q = 0.9 what is the probability that the population will survive forever?

Exercise 4 Consider a branching process with offspring distribution given by p_n . One makes this process irreducible by asserting that if the population ever dies out, then in the next generation one new individual appears (i.e. $P_{01} = 1$). Determine for which values of p_n the chain is positive recurrent, null recurrent, transient.

Exercise 5 Jamie is working in a bookstore, ordering books that are not in store and that the customers request. Each order takes 5 minutes to complete. While each order is being filled there is a probability p_j that j more customers arrive with $p_0 = .2$, $p_1 = .2$, $p_2 = .6$. Jamie cannot take a coffee break until a service is completed and no one is waiting in line to order a book. When Jamie starts her shift there is one customer waiting. What is the probability that she ever will take a coffee break.

Exercise 6 An electric light that has survived n seconds fails during the (n+1)st second with probability q (with 0 < q < 1).

1. Let $X_n = 1$ if the light is functioning at time n seconds, and $X_n = 0$ otherwise. Let T be the time of failure of the light (in seconds), i.e.,

$$T = \inf\{n \, ; \, X_n = 0\} \, . \tag{1}$$

Determine E[T].

- 2. A building contains m lights of the type described above, which behave independently of each other. At time 0 they are all functioning. Let Y_n denote the number of lights functioning at time n. Specify the transition matrix of Y_n .
- 3. Find the moment generating function

$$\phi_n(s) = E[s^{Y_n}] \tag{2}$$

of Y_n . Hint: Express ϕ_n in terms of ϕ_{n-1} and solve the recursion relation.

4. Use the moment generating function to find $P\{Y_n = 0\}$ and $E[Y_n]$.