平成30年度

OrigamiSat-1報告書

東京工業大学 名前

何か書く?

目 次

第1章	背景および衛星の概要	1
第 2 章 2.1	ミッション定義 開発の目的・ミッションステートメント/サクセスクライテリア/ミッション	2
	シークエンス	2
2.2	システム要求 (ミッション系(坂本)/バス系/インターフェース/安全(中西))	2
2.3	システム設計	2
第3章	サブシステム開発の経緯(設計・試験)	3
3.1	電源系 (概要/EPS/インヒビット設計 (二重絶縁)/電源系統図/電池/SAP) (池谷・中塚)	
3.2	通信系 (衛星) (大本)	9
3.3	地上局(加藤・飯島)	
3.4	C&DH 系(OBC 岩崎・小出・林・井手, COBC 黒崎・中塚・大本, Rpi	
	飯島)	9
3.5	姿勢制御系(恒光・中西)	9
3.6	構体系(奥山・大野) 重量管理も含む	
3.7	熱系(中村)	9
3.8	VHF/UHF 展開アンテナ(仁尾・坂本)	9
3.9	ミッション系	į
	3.9.1 5.8GHz 通信ミッション(井手)	į
	3.9.2 伸展カメラ	į
	3.9.3 膜展開部	
第4章	統合試験	_
4.1		_
	4.1.1 目的	_
	4.1.2 試験概要	_
	4.1.3 第1回放射線試験	
	4.1.4 第2回放射線試験	7
4.2	形状計測試験(大野・奥山)	10
4.3	振動試験 (加藤·飯島)	
4.4	衝擊試験(大野)	
4.5	連続動作試験 EMver (?)	
4.6	姿勢制御試験(恒光)	
4.7	通信系 機能試験 (大本)	
4.8	熱真空試験 (中村): ベーキングについても言及	
4.9	表面あらさ計測(大野・奥山)	
_	放出試験(大野・奥山)	

5.1 5.2	安全審査(中西・坂本) Phase 0/1	11
第 6 章 6.1 6.2	引き渡し コンプライアンスマトリクス(大野・中西)	
第 7 章 7.1 7.2 7.3	運用と不具合解析(加藤?) 運用(坂本・加藤・井手)	13
第8章	革新的衛星技術実証プログラムへの参加(坂本)	14
第9章	国際周波数調整(中西)	15
第 10 章	内閣府宇宙活動法(坂本)	16
第 11 章	物体登録(中西)	17
12.1 12.2	プロジェクトマネジメント (池谷・岩崎・大野) 開発日程	
13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14 13.15	システム設計 5.8 構体系 VHF/UHF 展開アンテナ 通信系 C&DH系 電源系 振動試験 熱真空試験 0連続動作試験 1引渡し 2プロジェクトマネジメント 3展開膜 4MDC 5伸展カメラ部 6運用	19 19 19 19 19 19 19 19 19 19 19

謝辞 21

第1章 背景および衛星の概要

第2章 ミッション定義

2.1 開発の目的・ミッションステートメント/サクセスクライテリア/ ミッションシークエンス

test

2.2 システム要求 (ミッション系(坂本) /バス系/インターフェース/安全(中西))

test

2.3 システム設計

test

第3章 サブシステム開発の経緯(設計・試験)

- 3.1 電源系 (概要/EPS/インヒビット設計 (二重絶縁)/電源系統図/ 電池/SAP) (池谷・中塚)
- 3.2 通信系 (衛星) (大本)
- 3.3 地上局(加藤・飯島)
- 3.4 C&DH系(OBC 岩崎・小出・林・井手, COBC 黒崎・中塚・大本, Rpi 飯島)
- 3.5 姿勢制御系(恒光·中西)
- 3.6 構体系(奥山・大野) 重量管理も含む
- 3.7 熱系(中村)
- 3.8 VHF/UHF 展開アンテナ(仁尾・坂本)
- 3.9 ミッション系
- 3.9.1 5.8GHz 通信ミッション(井手)
- 3.9.2 伸展カメラ
- (1) システム開発 (ウェル・坂本)
- (2) 3次元計測(飯島・黒崎)
- (3) 動画計測(飯島)
- 3.9.3 膜展開部
- (1) 展開膜開発(古谷・坂本)
- (2) MDC (大本)
- (3) 薄膜太陽電池ミッション (大野)
- (4) SMA アンテナミッション(鳥阪)
- (5) 球状太陽電池ミッション(サカセ・坂本)

第4章 統合試験

4.1 放射線試験(寺田(報告書)・池谷・黒崎)

4.1.1 目的

本試験では、多量の放射線が入射することに起因する電離効果のうち、トータルイオンドーズ効果が機器に与える恒久的損傷を調べた。これにより、新規開発基盤である通信&インヒビット(CI)基板および膜上デバイス制御(MDC)基板に関して、ミッション期間中に受ける損傷具合を試験した。

4.1.2 試験概要

(1) 試験日時

第1回

2015年10月20日

第2回

2018 年 5 月 28 日 14 時から 18 時 (計 4 時間. 準備と撤収時間も含む. γ 線の照射時間は 3 時間.)

コメント

- 実験室を予約する場合は、照射時間だけでなく、前後の準備撤収時間を考慮し最低 1 時間は余分に予約する.
- 第2回試験では1名のみで当日,準備から実験まで行ったが,照射室とPC等を置く 場所は離れているので,2名いた方が準備しやすいと思う.

(2) 試験場所

東京工業大学 大岡山キャンパス 大岡山北実験棟1コバルト60 照射室

コメント

• 予約はメールでやり取りを行う.

4.1.3 第1回放射線試験

(1) 試験供試体

CI 基板, MDC 基板上の IC. 供試体一覧を表 4.1 に示す.

		種類	照射時間	照射量	安全率	宇宙実証
CI	PIC16F887	マイコン	3	231	5.4	
	PIC16F886	マイコン				0
	TPS55330	DCDCコンバータ	0.5	39	0.9	
	TC74HC4066	マルチプレクサ				
	MPU-9250	加速度, ジャイロ				
	FX614	モデム				0
	MAX11605	ADコンバータ				
	MTM232230	MOSFET				
	MTM231232	MOSFET				
	BSC030P03NS3G	MOSFET				
	B540-13-F	ダイオード	0.5	39	0.9	
MDC	PIC18F25K80	マイコン	3	231	16.2	
	MAX3051	CANトランシーバ	3	231	16.2	
	AD8657ARMZ					
MA	ADL5513ACPZ		3	16830	5.1	
共通	TA78033AF	レギュレータ	0.5	39	0.9	
共通	24LC256	EEPROM				0
共通	SK8603140L	MOSFET				
共通	2SK2009	MOSFET				
共通	RB080L-30	ダイオード				

表 4.1: 第1回放射線試験 試験供試体一覧

(2) 検証方法

図 4.1 の通りに、デバイスを配置し、データロガー及び PC でデータをモニタリングした.

図 4.1: デバイスの位置関係. 長方形内が放射線試験室を示している.

コメント

- 放射線照射室と PC 等を置くう照射室外を繋ぐ図 4.1 の緑ハーネス部分は、コバルト 60 照射室の設備として D サブハーネスが既にある. ただ、D サブハーネスと接続するケーブルは両側、事前に作成しておく必要がある. 事前にコバルト 60 照射室を見学しておくと、どのようなハーネスを作成しなければならないかイメージがつきやすいと思う.
- ハーネス作成時には、グラウンドを全て共有することを忘れずに、

(3) 照射量

OrigamiSat-1 の CI 基板周り, および MDC 基板周りのアルミニウム構体板厚は 2 mm である. 文献 [相互参照使おうね] の厚さ 1.85 mm, 1 年あたりトータルドーズ量 4.28E+03 rad であるため使用期間を CI 基板は 1 年, MDC 基板は 4 か月として, この値から安全率を計算した. 表 4.2 に示す.

11月の線源からの距離 60 cm の値 74 Gy/h を用いた。また両基板ともに両面に IC が搭載されているため 0.5 h ごとに基板の表裏をひっくり返した。線源に対して裏面にある IC の被ばく量は表面にある IC の被ばく量に対して微小であると仮定した。

	使用期間	最大想定	片面照射時間	照射量 [Gy]	安全率
	[months]	被ばく量 [Gy]	[h]		
CI基板	12	42.8	3	222	5.2
MDC基板	4	14.3	1	74	5.2

表 4.2: 照射量

(4) 配置

線源から 60 cm. 実験の様子を図 4.2, 図 4.2 に示す.

図 4.2: 配置の様子

図 4.3: 試験供試体拡大図

(5) 試験手順

- 1. 各コンポーネントを接続する
- 2. 順番に電源を投入する
- 3. 照射前に各ICが適切に動作していることを確認する
- 4. 照射:照射中はログを取る
- 5. 撤収する
- 6. データの解析を行う

コメント

• 試験前日までに、放射線を照射しない状態で予定試験時間分 IC が動作することを確認しておく.

(6) 試験結果

結果: RXCOBC が 1.5 年分の照射後一時動作不良を引き起こした.

原因: UART もしくは I^2C ラインに不具合が発生したことが原因と思われる. 対策: PIC16F887 を CubeSat での使用実績のある PIC16LF877A に変更.

4.1.4 第2回放射線試験

第1回試験で CI 基板上の PIC において不具合が生じたことを受け、搭載 IC の型番を決定するために、3種類の PIC における追加試験が行われた。また、WDT 機能に使用される SA555 タイマーの放射線損傷具合も試験した。

(1) 試験供試体

CI 基板上に搭載される PIC およびタイマー

PIC: 16F886
PIC: 16F887
PIC: 16LF877A
タイマー: SA555

(2) 検証方法

後で図を追加!!!

(3) 照射量

線源からICまでの距離:100cm

• 1時間あたりの線量: 28.2 Gy/h (参考文献 [???] の 2017 年 12 月 100cm の数値)

照射時間:3時間 総照射量:84.6 Gy

コメント

• 第1回試験と行る試験条件(線源までの距離, 照射時間)で試験を行ってしまったが, 第1回と試験条件を揃えないと, 適切に比較はできなかったかもしれない.

(4) 配置

線源から 100 cm.

図 4.4: 配置の様子

図 4.5: 試験供試体拡大図

図 4.6: 照射室外の様子. mbed 等が搭載されたブレッドボード,, 外部電源, PC などがある.

(5) 試験手順

4.1.3 第1回放射線試験(5)試験手順と同様

(6) 試験結果

結果: 不具合発生せず. RXCOBC は16LF877A, TXCOBC は16F886, タイマーはSA555 を採用することに決定.

- 4.2 形状計測試験(大野·奥山)
- 4.3 振動試験(加藤·飯島)
- 4.4 衝擊試験(大野)
- 4.5 連続動作試験 EMver (?)
- 4.6 姿勢制御試験(恒光)
- 4.7 通信系 機能試験(大本)
- 4.8 熱真空試験(中村):ベーキングについても言及
- 4.9 表面あらさ計測(大野・奥山)
- 4.10 放出試験(大野・奥山)

第5章 安全審査(中西・坂本)

- 5.1 Phase 0/1
- 5.2 Phase 2
- 5.3 Phase 3

第6章 引き渡し

- 6.1 コンプライアンスマトリクス(大野・中西)
- 6.2 内之浦での引渡し(中西・坂本)

第7章 運用と不具合解析(加藤?)

- 7.1 運用(坂本・加藤・井手)
- 7.2 軌道上データ(坂本・井手・岩崎)
- 7.3 不具合解析(岩崎·大本)

第8章 革新的衛星技術実証プログラムへの参加(坂本)

第9章 国際周波数調整(中西)

第10章 内閣府宇宙活動法(坂本)

第11章 物体登録(中西)

第12章 プロジェクトマネジメント(池谷・岩崎・大野)

- 12.1 開発日程
- 12.2 人員配置・引継ぎ

第13章 付録

- 13.1 システム設計
- 13.2 5.8
- 13.3 構体系
- 13.4 VHF/UHF 展開アンテナ
- 13.5 通信系
- 13.6 C&DH系
- 13.7 電源系
- 13.8 振動試験
- 13.9 熱真空試験
- 13.10 連続動作試験
- 13.11 引渡し
- 13.12 プロジェクトマネジメント
- 13.13 展開膜
- 13.14 MDC
- 13.15 伸展カメラ部
- 13.16 運用

参考文献

謝辞

謝辞 本文

2019年5月 名前